A radiative seesaw model in a supersymmetric modular A_4 group

Takaaki Nomura1,* and Hiroshi Okada2,*†

1College of Physics, Sichuan University, Chengdu 610065, China
2Asia Pacific Center for Theoretical Physics (APCTP) - Headquarters San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea

(Dated: January 26, 2022)

Abstract

We propose a supersymmetric radiative seesaw model with modular A_4 symmetry. Thanks to contributions of supersymmetric partners to one-loop diagrams generating neutrino masses, we successfully fit neutrino data and obtain predictions in case of normal hierarchy in a minimal framework that would not be realized in a non-supersymmetric model. We show several predictive figures and demonstrate a best fit benchmark point through χ^2 analysis.

*Electronic address: nomura@scu.edu.cn
†Electronic address: hiroshi.okada@apctp.org
I. INTRODUCTION

The neutrino sector is described by several observables such as neutrino masses containing two or three non-zero mass eigenvalues; three mixing angles inducing neutrino oscillations; CP phases including Dirac CP and Majorana phases that are not yet perfectly confirmed by experiments. We can come up with various ideas in order not only to reproduce experimental data but also to predict unknown observables such as phases. The neutrino mass model is sometimes constructed under a radiatively induced mass scenario [1], called radiative seesaw, in which we can induce the neutrino mass at loop levels while tree level mass is forbidden. Such a model would be natural in order to explain the tiny neutrino masses, retaining not-so-small Yukawa couplings. It also sometimes accommodates a dark matter (DM) candidate and potentially causes lepton flavor violation that could leads us to more intriguing phenomenology. This kind of model usually requires additional symmetry to guarantee the radiative seesaw mechanism and stability of DM. In order to get predictions in the lepton sector, non-Abelian discrete flavor symmetries frequently plays an outstanding role. The symmetries (that has currently been developed with the help of modular symmetry) would perfectly match with the radiative seesaw model, because a remnant or part of symmetry plays a role in replacing the additional symmetry to guarantee the radiative seesaw mechanism and stability of DM.

The modular flavor symmetry has been proposed by 2017 in ref. [2, 3]. After that, a lot of ideas have been come up with in order to realize predictive models. For example, the modular A_4 flavor symmetry has been discussed in refs. [2, 4, 6, 8–17], S_3 in refs. [18, 53, S_4 in refs. [54, 66, A_5 in refs. [59, 67, 68], double covering of A_4 in refs. [69, 71], double covering of S_4 in refs. [72, 73], and double covering of A_5 in refs. [74, 77]. Other types of modular symmetries have also been proposed to understand masses, mixings, and phases of the standard model (SM) in refs. [78–87].\footnote{Different applications to physics such as dark matter and origin of CP violation are found in refs. [7, 8, 12, 15, 58, 96, 101]. Mathematical study such as possible correction from Kähler potential, systematic analysis of the fixed points, moduli stabilization are discussed in refs. [102–105]. It is recently studied that a scenario to derive four-dimensional modular flavor symmetric models from higher dimensional theory.}

\footnote{Here, we provide useful review references for beginners [88–95].}
by assuming the compactification consistent with the modular symmetry \cite{106}.

In this letter, we extend our original radiative seesaw model analyzed under the non-supersymmetric (non-SUSY) framework \cite{8} to the one under the SUSY version considering contributions from superpartner particles. Thanks to contributions from supersymmetric partners to diagrams generating neutrino masses, we successfully fit neutrino data and obtain predictions in case of normal hierarchy in a minimal framework that would not be realized in a non-supersymmetric model. We show several predictive figures and demonstrate a best fit benchmark point through χ^2 analysis.

This letter is organized as follows. In Sec. II, we explain our model setup under the modular A_4 symmetry, formulating valid mass matrix and their mixings and the neutrino sector. In Sec. III, we carry out our χ^2 numerical analysis scanning free parameters. Finally, we conclude and discuss in Sec. IV.

II. MODEL

In this section we review our model with modular A_4 symmetry in a framework of SUSY. We construct the model as minimal assignment as possible. Thus we give zero modular weight to leptons $L_{(e,\mu,\tau)}$, (e^c, μ^c, τ^c) and two Higgs doublets H_1 and H_2. When we respectively assign A_4 singlet representations $(1, 1', 1'')$ and $(1, 1'', 1')$ to $L_{(e,\mu,\tau)}$ and (e^c, μ^c, τ^c), the charged-lepton mass matrix is diagonal. Therefore, the observed lepton mixing arises from the neutrino sector only. To induce neutrino masses at one-loop level minimally, we introduce the SM singlet superfields N^c and χ, and inert doublet superfields $\eta_{1,2}$. Here, N^c

	L_e	L_μ	L_τ	e^c	μ^c	τ^c	N^c	H_1	H_2	η_1	η_2	χ
$SU(2)_L$	2	2	2	1	1	1	1	2	2	2	2	1
$U(1)_Y$	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	1	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	0
A_4	1	1'	1''	1	1'	1''	3	1	1	1	1	1
k	0	0	0	0	0	0	0	0	0	0	-1	-3

TABLE I: Superfield contents and their charge assignments under $SU(2)_L \times U(1)_Y \times A_4$, where $-k$ is the number of modular weight.
is assigned to triplet under A_4 with -1 modular weight and corresponds to heavy Majorana neutrino. The second inert doublet η_2 plays the same role in generating the mass terms for $\eta_{1,2}$ as the MSSM Higgs sector $H_{1,2}$. The singlet χ is required in order to connect the boson loop in neutrino mass generating diagram. 2 Superfields $H_{1,2}$, $\eta_{1,2}$ and χ are chosen to be trivial singlet under A_4, while zero modular weight for $H_{1,2}$ and $(-1, -3, -3)$ weights for (η_1, η_2, χ) are assigned; we choose the assignment to make the model minimal. All the charge assignment and field contents are summarized in Table I. Under these symmetries, our valid superpotential is given as follows (formulas in modular A_4 framework are summarized in the Appendix):

$$
\mathcal{W} = \sum_{\ell=e,\mu,\tau} y_\ell \ell^c L_\ell H_1 \\
+ a_\eta (y_1 N_1^c + y_2 N_3^c + y_3 N_2^c) E_\eta_1 + b_\eta (y_2 N_2^c + y_1 N_1^c + y_3 N_1^c) E_\mu_1 + c_\eta (y_3 N_3^c + y_1 N_2^c + y_2 N_1^c) E_{\tau_1} \\
+ m_N [y_1 (2 N_1^c N_1^c - N_2^c N_3^c - N_3^c N_2^c) + y_2 (2 N_2^c N_2^c - N_1^c N_3^c - N_3^c N_1^c) + y_3 (2 N_3^c N_3^c - N_1^c N_2^c - N_2^c N_1^c)] \\
+ \mu_1 Y_1^{(6)} H_1 \eta_2 \chi + \mu_2 Y_2^{(4)} H_2 \eta_1 \chi + \mu_3 Y_3^{(6)} \chi \chi + \mu_4 H_1 H_2 + \mu_5 Y_4^{(2)} \eta_1 \eta_2, \tag{II.1}
$$

where $Y_3^{(2)} = (y_1, y_2, y_3)^T$, and we imposed R-parity forbidding the R-parity violating terms such as $L_e H_1$, $L_e L_\mu \tau^c$. Note here that oddness of modular weight provides oddness under accidental Z_2 symmetry since all modular forms have even modular weight in modular A_4 framework and sum of modular weight of superfields should be even to make modular weight of a term zero.

Then, the valid renormalizable soft SUSY breaking Lagrangian is found as follows:

$$
-\mathcal{L}_{\text{soft}} = A_1 Y_1^{(6)} H_1 \eta_2 \chi + A_2 Y_2^{(4)} H_2 \eta_1 \chi + m_1^2 |H_1|^2 + m_2^2 |H_2|^2 \\
+ B_2^2 [y_1 (2 \tilde{N}_1^c \tilde{N}_1^c - \tilde{N}_2^c \tilde{N}_3^c - \tilde{N}_3^c \tilde{N}_2^c) + y_2 (2 \tilde{N}_2^c \tilde{N}_2^c - \tilde{N}_1^c \tilde{N}_3^c - \tilde{N}_3^c \tilde{N}_1^c) \\
+ y_3 (2 \tilde{N}_3^c \tilde{N}_3^c - \tilde{N}_1^c \tilde{N}_2^c - \tilde{N}_2^c \tilde{N}_1^c)] \\
+ B_1^2 H_1 H_2 + B_2^2 Y_1^{(4)} \eta_1 \eta_2 + B_3^2 Y_1^{(6)} \chi \chi, \tag{II.2}
$$

where all fields are supposed to be scalars; \tilde{N}^c’s are gauge singlet sneutrinos. Note that we also have SUSY breaking terms associated with sleptons, squarks and gauginos in the MSSM. In our analysis, however, we do not discuss super partner of the SM fermions and

1 SUSY does not allow to induce the interaction $(H_1^\dagger \eta_1)^2$ in a renormalizable theory.
gauge bosons assuming they are heavy enough to avoid experimental constraints, and focus on neutrino mass generating mechanism.

A. N^c mass matrix

The mass matrix of right-handed neutral fermions is straightforwardly found from the superpotential as follows:

$$M_N = m_N \begin{bmatrix} 2y_1 & -y_3 & -y_2 \\ -y_3 & 2y_2 & -y_1 \\ -y_2 & -y_1 & 2y_3 \end{bmatrix} \equiv m_N \mathcal{Y}, \quad (II.3)$$

where M_N is diagonalized by $D_N \equiv U_N M_N U_N^T \equiv (M_1, M_2, M_3)$, where U_N is a unitary matrix, and we define the mass eigen-field ψ^c as $N^c \equiv U_N^T \psi^c$.

B. \tilde{N}^c mass matrix

The mass matrix of \tilde{N}^c arises from the F and soft SUSY breaking terms;

$$-L_{\tilde{N}} = |m_N|^2 (\tilde{N}^c)^* \mathcal{Y} \mathcal{Y} \tilde{N}^c + B_N^2 \tilde{N}^c \mathcal{Y} \tilde{N}^c + \text{h.c.}. \quad (II.4)$$

Here, we write $\tilde{N}^c_i \equiv (\phi_R + i\phi_I)_i/\sqrt{2}$. Then, mass terms are given by

$$-L_{\tilde{N}} = \phi_{R_i}^T \left(\frac{|m_N|^2}{2} \mathcal{Y} \mathcal{Y} + B_N^2 \mathcal{Y} + \text{h.c.} \right)_{ij} \phi_{R_j} + \phi_{I_i}^T \left(\frac{|m_N|^2}{2} \mathcal{Y} \mathcal{Y} - B_N^2 \mathcal{Y} + \text{h.c.} \right)_{ij} \phi_{I_j}$$

$$\equiv \phi_{R_i}^T M_{R ij} \phi_{R_j} + \phi_{I_i}^T M_{I ij} \phi_{I_j}. \quad (II.5)$$

The mass matrix $M_{R ij}^2$ is diagonalized such that $D_{R(i)}^2 \equiv O_{R(i)} M_{R(i)}^2 O_{R(i)}^T \equiv (m_{R(i)1}^2, m_{R(i)2}^2, m_{R(i)3}^2)$, where $O_{R(i)}$ is an orthogonal matrix. Furthermore, we define the mass eigen-fields $\tilde{n}_{R,i}$ then we have $\phi_{R(i)} = O_{R(i)}^T \tilde{n}_{R(i)}$.

C. $\chi - \eta$ mixing

Scalar fields χ and $\eta_{1,2}$ mix each other due to the soft-breaking terms associated with A_1 and A_2 after the EW symmetry breaking by non-zero VEV of $H_{1,2}$. Here, we assume the mixing between χ and η_1 is only active for simplicity. Note, however, that this assumption
FIG. 1: One loop diagrams generating neutrino mass where we write particles inside loops by flavor eigenstates.

does not affect the mechanism of neutrino mass matrix.

Scalar boson mixing is then defined by
\[\chi_R = c_R H_1 - s_R H_2, \quad \eta_R = s_R H_1 + c_R H_2, \]
\[\chi_I = c_I A_1 - s_I A_2, \quad \eta_I = s_I A_1 + c_I A_2, \] \hspace{1cm} (II.6)

where \(s_{R/I}(c_{R/I}) \) is the short-hand symbol of \(\sin \theta_{R/I}(\cos \theta_{R/I}) \), and \(H_{1,2} \) and \(A_{1,2} \) are respectively CP-even and odd mass eigenstates.

We also consider the mixing between the fermionic superpartners of \(\chi \) and \(\eta \) denoted by \(\tilde{\chi} \) and \(\tilde{\eta}_1 \). Fermion mixing is defined by
\[\tilde{\chi} = c_\alpha \psi_\chi - s_\alpha \psi_\eta, \quad \tilde{\eta}_1 = s_\alpha \psi_\chi + c_\alpha \psi_\eta, \] \hspace{1cm} (II.7)

where \(s_\alpha(c_\alpha) \) is the short-hand symbol of \(\sin \theta_\alpha(\cos \theta_\alpha) \), and \(\psi_\chi \) and \(\psi_\eta \) are mass eigenstates.

D. Neutrino sector

Now we can discuss the neutrino sector estimating neutrino mass at one-loop level. Our valid renormalizable Lagrangian is explicitly given by
\[-\mathcal{L}^\nu = \frac{1}{\sqrt{2}} (\psi_N^c)_i^T (U_N)_{ia} Y_{ab} \nu_b (s_R H_1 + c_R H_2) + \frac{i}{\sqrt{2}} (\psi_N^c)_i^T (U_N)_{ia} Y_{ab} \nu_b (s_I A_1 + c_I A_2) \]
\[+ \frac{1}{\sqrt{2}} (\tilde{n}_R)_i^T (O_R)_{ia} Y_{ab} \nu_b (s_\alpha \psi_\chi + c_\alpha \psi_\eta) + \frac{i}{\sqrt{2}} (\tilde{n}_I)_i^T (O_I)_{ia} Y_{ab} \nu_b (s_\alpha \psi_\chi + c_\alpha \psi_\eta) \] \hspace{1cm} (II.8)
These interactions induce neutrino mass at one-loop level via the diagrams in Fig. [1]. Calculating the diagrams the neutrino mass matrix is given by $m_\nu \equiv m^{(I)}_\nu + m^{(II)}_\nu$;

$$(m^{(I)}_\nu)_{ab} = -\frac{1}{2(4\pi)^2} Y^T_{a\beta}(U^T_N)_{\beta i} D_N(U_N)_{i\alpha} Y_{ab}$$

$$\times \left[s^2_{R} F(m_{H_1}, M_i) - s^2_{I} F(m_{A_1}, M_i) + c^2_{R} F(m_{H_2}, M_i) - c^2_{I} F(m_{A_2}, M_i) \right], \quad (\text{II.9})$$

$$(m^{(II)}_\nu)_{ab} = -\frac{1}{2(4\pi)^2} Y^T_{a\beta} Y_{ab}$$

$$\times \left[m_\psi s^2_{\alpha}(O_R)_{\beta i} F(m_{R_i}, M_\psi)(O_R)_{i\alpha} - (O_I)_{\beta i} F(m_{I_i}, M_\psi)(O_I)_{i\alpha} \right]$$

$$+ m_\psi c^2_{\alpha}(O_R)_{\beta i} F(m_{R_i}, M_\psi)(O_R)_{i\alpha} - (O_I)_{\beta i} F(m_{I_i}, M_\psi)(O_I)_{i\alpha} \right], \quad (\text{II.10})$$

$$F(m_a, m_b) = \int_0^x dx \ln \left[x \left(\frac{m_a^2}{m_b^2} - 1 \right) + 1 \right] , \quad (\text{II.11})$$

where $(m^{(I)}_\nu)_{ab}$ and $(m^{(II)}_\nu)_{ab}$ denote contribution from diagram (I) and (II) respectively. Here, $(m^{(I)}_\nu)_{ab}$ comes from the first line of Eq.(II.8), while $(m^{(II)}_\nu)_{ab}$ comes from the second line of Eq.(II.8). Then, m_ν is diagonalized by a unitary matrix $U_{\text{PMNS}} ; U_{\text{PMNS}}^T m_\nu U_{\text{PMNS}} \equiv \text{diag}(m_1, m_2, m_3)$.

Several experimental data are given as follows. We write mass square difference

$$\Delta m^2_{\text{atm}} = m^2_3 - m^2_1, \quad (\text{NH}) : \Delta m^2_{\text{atm}} = m^2_2 - m^2_3, \quad (\text{IH})$$

where Δm^2_{atm} is atmospheric neutrino mass square difference, and NH and IH represent the normal hierarchy and the inverted hierarchy, respectively. Solar mass square difference is given as follows:

$$\Delta m^2_{\text{sol}} = m^2_2 - m^2_1, \quad (\text{II.13})$$

which can be compared to the observed value. U_{PMNS} is parametrized by three mixing angle $\theta_{ij}(i, j = 1, 2, 3; i < j)$, one CP violating Dirac phase δ_{CP}, and two Majorana phases $\{\alpha_{21}, \alpha_{32}\}$ as follows:

$$U_{\text{PMNS}} = \begin{pmatrix}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta_{CP}} \\
-s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta_{CP}} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta_{CP}} & s_{23} c_{13} \\
 s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta_{CP}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta_{CP}} & c_{23} c_{13}
\end{pmatrix} \begin{pmatrix}1 & 0 & 0 \\
0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i\frac{\alpha_{31}}{2}}\end{pmatrix}, \quad (\text{II.14})$$

where c_{ij} and s_{ij} stands for $\cos \theta_{ij}$ and $\sin \theta_{ij}$ respectively. Then, each of mixing is given in
terms of the component of U_{PMNS} as follows:

$$
\sin^2 \theta_{13} = \frac{|(U_{\text{PMNS}})_{13}|^2}{1 - |(U_{\text{PMNS}})_{13}|^2}, \quad \sin^2 \theta_{23} = \frac{|(U_{\text{PMNS}})_{23}|^2}{1 - |(U_{\text{PMNS}})_{13}|^2}, \quad \sin^2 \theta_{12} = \frac{|(U_{\text{PMNS}})_{12}|^2}{1 - |(U_{\text{PMNS}})_{13}|^2}.
$$

(II.15)

Also, we compute the Jarlskog invariant, δ_{CP} derived from PMNS matrix elements $U_{\alpha i}$:

$$
J_{CP} = \text{Im}[U_{\alpha 1} U_{\mu 2} U_{e 2}^* U_{e 1}^*] = s_{23} c_{23} s_{12} c_{12} c_{13}^2 \sin \delta_{CP},
$$

(II.16)

and the Majorana phases are also estimated in terms of other invariants I_1 and I_2:

$$
I_1 = \text{Im}[U_{e 1}^* U_{e 2}] = c_{12} s_{12} c_{13}^2 \sin \left(\frac{\alpha_{21}}{2} \right), \quad I_2 = \text{Im}[U_{e 1}^* U_{e 3}] = c_{12} s_{13} c_{13} \sin \left(\frac{\alpha_{31}}{2} - \delta_{CP} \right).
$$

(II.17)

In addition, the effective mass for the neutrinoless double beta decay is given by

$$
\langle m_{ee} \rangle = |m_1 \cos^2 \theta_{12} \cos^2 \theta_{13} + m_2 \sin^2 \theta_{12} \cos^2 \theta_{13} e^{i \alpha_{21}} + m_3 \sin^2 \theta_{13} e^{i (\alpha_{31} - 2 \delta_{CP})}|,
$$

(II.18)

where its observed value could be measured by KamLAND-Zen in future [109]. We will adopt the neutrino experimental data in NuFit5.0 [110] in order to perform the numerical χ^2 analysis.

III. NUMERICAL ANALYSIS

In this section, we show our numerical χ^2 analysis where we set the following ranges for free parameters,

$$
\begin{align*}
\{ a_\eta, b_\eta, c_\eta, s_R, s_I, s_\alpha \} & \in [10^{-3}, 1], \\
\{ m_N, B_N, m_{H_1}, m_{H_2}, m_{A_1}, m_{A_2}, M_{\phi_x}, M_{\phi_y} \} & \in [10^2, 10^5] \text{GeV,}
\end{align*}
$$

(III.1) (III.2)

where modulus τ runs over the fundamental region. Notice here that we focus on the case of NH because we find it difficult to obtain the allowed region within $\sqrt{\chi^2} = 6$ in the IH case.

Fig. 2 shows the allowed region of τ. We find that $\tau \simeq 1.49i - 1.62i$ within $\sqrt{\chi^2} = 5$, which would be nearby at a fixed point of $\tau = i \times \infty$. Here, the color of points corresponds to the range of $\sqrt{\chi^2}$ value such that blue: $\sqrt{\chi^2} \leq 1$, green: $1 < \sqrt{\chi^2} \leq 2$, yellow: $2 < \sqrt{\chi^2} \leq 3$, and red: $3 < \sqrt{\chi^2} \leq 5$.

8
FIG. 2: Allowed region of τ in NH, where the color of points corresponds to the range of $\sqrt{\chi^2}$ value such that blue: $\sqrt{\chi^2} \leq 1$, green: $1 < \sqrt{\chi^2} \leq 2$, yellow: $2 < \sqrt{\chi^2} \leq 3$, and red: $3 < \sqrt{\chi^2} \leq 5$.

FIG. 3: Allowed region of $\sum m_i$ and Dirac CP phase δ_{CP}. The color legend is the same as Fig. 1.

Fig. 3 shows the allowed region of $\sum m_i$ and Dirac CP phase δ_{CP}. We find that δ_{CP} is localized at nearby 0, then the allowed region of $\sum m_i$ is [60-64] meV within $\sqrt{\chi^2} = 5$. On the other hand δ_{CP} is localized at nearby π, the allowed region of $\sum m_i$ is [65-70] meV within $\sqrt{\chi^2} = 5$. Even though we do not show the figure on Majorana phases α_{31} and α_{21}, we obtained localized solutions at nearby 0 or π for α_{31} and π for α_{21} only. Note that we have small CP violation in our allowed parameter region. This is due to small real part of τ which is only the source of CP violating phase.

Fig. 4 shows the allowed region of the lightest neutrino mass m_1 and effective mass for neutrinoless double beta decay $\langle m_{ee} \rangle$. m_1 tends to be localized at the range of [2-4] meV within $\sqrt{\chi^2} = 5$, while $\langle m_{ee} \rangle$ is localized at nearby [0.25-0.5] meV within $\sqrt{\chi^2} = 5$.

Finally, we show a benchmark point for NH in Table II that provide minimum $\sqrt{\chi^2}$ in
IV. CONCLUSION AND DISCUSSION

We have proposed a supersymmetric radiative seesaw model with modular A_4 symmetry. Thanks to contributions of the SUSY partners, especially \tilde{N}_c, to the diagrams generating neutrino mass matrix, we have successfully constructed a predictive model in a minimum manner where we would not have obtained it in a non-SUSY model. Through our χ^2 numerical analysis, we have obtained several allowed regions; τ is localized at nearby $\tau \simeq 1.49i - 1.62i$ within $\chi^2 = 5$, which would be nearby at a fixed point of $\tau = i \times \infty$. We find that δ_{CP} is localized at nearby 0 when the allowed region of $\sum m_i$ is [60-64] meV within $\sqrt{\chi^2} = 5$ while δ_{CP} is localized at nearby π when the allowed region of $\sum m_i$ is [65-70] meV within $\sqrt{\chi^2} = 5$. Even though we do not show the figure on Majorana phases α_{31} and α_{21}, we have obtained localized solutions at nearby 0 or π for α_{31} and π for α_{21} only. m_1 tends to be localized at the range of [2-4] meV within $\sqrt{\chi^2} = 5$, while $\langle m_{ee} \rangle$ is localized at nearby [0.25-0.5] meV within $\sqrt{\chi^2} = 5$.

It would be worthwhile briefly mentioning the other aspects such as lepton flavor violations (LFVs) and dark matter (DM) candidate. Since input Yukawa couplings are typically of the order 10^{-6} and masses of particle mediating LFVs are of the order 100 GeV at the lightest, the typical branching ratio of the $\mu \rightarrow e\gamma$, which gives the most stringent constraint, is less than 10^{-20}. Therefore, it is totally safe for these kinds of constraints, because the upper bounds of $\mu \rightarrow e\gamma$ is 4.2×10^{-13}. Notice here that we do not discuss LFVs induced by
TABLE II: Numerical benchmark point of our input parameters and observables at nearby the fixed point $\tau = i \times \infty$ in NH. Here, the NH1 is taken such that $\sqrt{\Delta \chi^2}$ is minimum. On the other hand, NH2 is taken so that δ_{CP} is closest to the BF value of 195° within $\sqrt{\Delta \chi^2} \leq 2$.

We have several DM candidates such as the lightest N_c, $\eta_{1,2}$, χ, and their super-partners. At first, N_c might not be a good DM candidate since magnitude of associated Yukawa couplings are order of 10^{-6} at most, and the DM annihilation cross section to obtain the relic density would be too small. Thus, we may need to rely on $\eta_{1,2}$, χ in obtaining observed relic density. Suppose $\eta_{1,2}$ does not mix with χ, $\eta_{1,2}$ cannot have mass difference between their neutral components in case of bosons. Thus, $\eta_{1,2}$ would be ruled out as DM candidate from direct detection experiments since DM-nucleon scattering via running Z boson is large. Namely, pure χ would be a good DM candidate. The main annihilation modes to explain the observed relic density would arise from Higgs potential. It would be easy to evade from constraints from direct detections via Higgs portals \cite{111}. Notice here that we do not discuss

Parameter	Value
τ	$0.000122456 + 1.58071i$
$[a_\eta, b_\eta, c_\eta] \times 10^6$	$[95.067, 6.17325, 9.81507]$
$[m_N, B_N]/\text{GeV}$	$[8211.59, 302.961]$
$[m_{\psi}, m_{\psi^*}]/\text{GeV}$	$[6075.09, 348.251]$
$[m_{H_1}, m_{A_1}, m_{H_2}, m_{A_2}]/\text{GeV}$	$[7639.91, 384.573, 76.5929, 359.136]$
Δm_{atm}^2	$2.52 \times 10^{-3} \text{eV}^2$
Δm_{sol}^2	$7.48 \times 10^{-5} \text{eV}^2$
$\sin \theta_{12}$	0.550
$\sin \theta_{23}$	0.759
$\sin \theta_{13}$	0.149
$[\delta_{CP}, \alpha_{21}, \alpha_{31}]$	$[0.806^\circ, 180^\circ, 0.633^\circ]$
$\sum m_i$	62.2 meV
$\langle m_{ee} \rangle$	0.330 meV
$\sqrt{\Delta \chi^2}$	0.536
a DM analysis including super-partners that is beyond our scope and will be considered in future work.

Acknowledgments

The work of H.O. is supported by the Junior Research Group (JRG) Program at the Asia-Pacific Center for Theoretical Physics (APCTP) through the Science and Technology Promotion Fund and Lottery Fund of the Korean Government and was supported by the Korean Local Governments-Gyeongsangbuk-do Province and Pohang City. The work is also supported by the Fundamental Research Funds for the Central Universities (T. N.). H.O. is sincerely grateful for all the KIAS members.

Appendix A: Formulas in modular A_4 framework

Here we summarize some formulas of A_4 modular symmetry framework. Modular forms are holomorphic functions of modulus τ, $f(\tau)$, which are transformed by

$$
\tau \rightarrow \gamma \tau = \frac{a \tau + b}{c \tau + d}, \quad \text{where } a, b, c, d \in \mathbb{Z} \text{ and } ad - bc = 1, \quad \text{Im}[\tau] > 0 , \quad (A.1)
$$

$$
f(\gamma \tau) = (c \tau + d)^k f(\tau), \quad \gamma \in \Gamma(N), \quad (A.2)
$$

where k is the so-called as the modular weight.

A superfield $\phi^{(I)}$ is transformed under the modular transformation as

$$
\phi^{(I)} \rightarrow (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \phi^{(I)}, \quad (A.3)
$$

where $-k_I$ is the modular weight and $\rho^{(I)}(\gamma)$ represents an unitary representation matrix corresponding to A_4 transformation. Thus superpotential is invariant if sum of modular weight from fields and modular form in corresponding term is zero (also it should be invariant under A_4 and gauge symmetry).

The basis of modular forms is weight 2, $Y_3^{(2)} = (y_1, y_2, y_3)$, transforming as a triplet of A_4
that is written in terms of the Dedekind eta-function $\eta(\tau)$ and its derivative $[2]$:

$$
\begin{align*}
\eta_1(\tau) &= \frac{i}{2\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right), \\
\eta_2(\tau) &= -\frac{i}{\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega^2 \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right), \\
\eta_3(\tau) &= -\frac{i}{\pi} \left(\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega \frac{\eta'((\tau+1)/3)}{\eta((\tau+1)/3)} + \omega^2 \frac{\eta'((\tau+2)/3)}{\eta((\tau+2)/3)} \right), \\
\eta(\tau) &= q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \quad q = e^{2\pi i \tau}, \quad \omega = e^{2\pi i / 3}.
\end{align*}
$$

Modular forms with higher weight can be obtained from $\eta_{1,2,3}(\tau)$. Some A_4 singlet modular forms used in our analysis are summarized as

$$
Y_1^{(4)} = y_1^2 + 2y_1y_3, \quad Y_1^{(6)} = y_1^2 + y_2^2 + y_3^2 - 3y_1y_2y_3,
$$

where number in superscript indicates modular weight.

[1] E. Ma, Phys. Rev. D 73, 077301 (2006) doi:10.1103/PhysRevD.73.077301 [hep-ph/0601225].
[2] F. Feruglio, doi:10.1142/9789813238053_0012 [arXiv:1706.08749 [hep-ph]].
[3] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858, 437-467 (2012) doi:10.1016/j.nuclphysb.2012.01.017 [arXiv:1112.1340 [hep-ph]].
[4] J. C. Criado and F. Feruglio, SciPost Phys. 5, no.5, 042 (2018) doi:10.21468/SciPostPhys.5.5.042 [arXiv:1807.01125 [hep-ph]].
[5] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 11, 196 (2018) doi:10.1007/JHEP11(2018)196 [arXiv:1808.03012 [hep-ph]].
[6] H. Okada and M. Tanimoto, Phys. Lett. B 791, 54-61 (2019) doi:10.1016/j.physletb.2019.02.028 [arXiv:1812.09677 [hep-ph]].
[7] T. Kobayashi, H. Okada and Y. Orikasa, arXiv:2111.05674 [hep-ph].
[8] T. Nomura and H. Okada, Phys. Lett. B 797, 134799 (2019) doi:10.1016/j.physletb.2019.134799 [arXiv:1904.03937 [hep-ph]].
[9] H. Okada and M. Tanimoto, Eur. Phys. J. C 81, no.1, 52 (2021) doi:10.1140/epjc/s10052-021-08845-y [arXiv:1905.13421 [hep-ph]].
[10] F. J. de Anda, S. F. King and E. Perdomo, Phys. Rev. D 101, no.1, 015028 (2020) doi:10.1103/PhysRevD.101.015028 [arXiv:1812.05620 [hep-ph]].
[11] P. P. Novichkov, S. T. Petcov and M. Tanimoto, Phys. Lett. B 793, 247-258 (2019) doi:10.1016/j.physletb.2019.04.043 [arXiv:1812.11289 [hep-ph]].
[12] T. Nomura and H. Okada, Nucl. Phys. B 966, 115372 (2021) doi:10.1016/j.nuclphysb.2021.115372 [arXiv:1906.03927 [hep-ph]].
[13] H. Okada and Y. Orikasa, [arXiv:1907.13520 [hep-ph]].
[14] G. J. Ding, S. F. King and X. G. Liu, JHEP 09, 074 (2019) doi:10.1007/JHEP09(2019)074 [arXiv:1907.11714 [hep-ph]].
[15] T. Nomura, H. Okada and O. Popov, Phys. Lett. B 803, 135294 (2020) doi:10.1016/j.physletb.2020.135294 [arXiv:1908.07457 [hep-ph]].
[16] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, Phys. Rev. D 100, no.11, 115045 (2019) [erratum: Phys. Rev. D 101, no.3, 039904 (2020)] doi:10.1103/PhysRevD.100.115045 [arXiv:1909.05139 [hep-ph]].
[17] T. Asaka, Y. Heo, T. H. Tatsuishi and T. Yoshida, JHEP 01, 144 (2020) doi:10.1007/JHEP01(2020)144 [arXiv:1909.06520 [hep-ph]].
[18] D. Zhang, Nucl. Phys. B 952, 114935 (2020) doi:10.1016/j.nuclphysb.2020.114935 [arXiv:1910.07869 [hep-ph]].
[19] G. J. Ding, S. F. King, X. G. Liu and J. N. Lu, JHEP 12, 030 (2019) doi:10.1007/JHEP12(2019)030 [arXiv:1910.03460 [hep-ph]].
[20] T. Kobayashi, T. Nomura and T. Shimomura, Phys. Rev. D 102, no.3, 035019 (2020) doi:10.1103/PhysRevD.102.035019 [arXiv:1912.00637 [hep-ph]].
[21] T. Nomura, H. Okada and S. Patra, Nucl. Phys. B 967, 115395 (2021) doi:10.1016/j.nuclphysb.2021.115395 [arXiv:1912.00379 [hep-ph]].
[22] X. Wang, Nucl. Phys. B 957, 115105 (2020) doi:10.1016/j.nuclphysb.2020.115105 [arXiv:1912.13284 [hep-ph]].
[23] H. Okada and Y. Shoji, Nucl. Phys. B 961, 115216 (2020) doi:10.1016/j.nuclphysb.2020.115216 [arXiv:2003.13219 [hep-ph]].
[24] H. Okada and M. Tanimoto, [arXiv:2005.00775 [hep-ph]].
[25] M. K. Behera, S. Singirala, S. Mishra and R. Mohanta, [arXiv:2009.01806 [hep-ph]].
[26] M. K. Behera, S. Mishra, S. Singirala and R. Mohanta, [arXiv:2007.00545 [hep-ph]].
[27] T. Nomura and H. Okada, [arXiv:2007.04801 [hep-ph]].
[28] T. Nomura and H. Okada, [arXiv:2007.15459 [hep-ph]].
[29] T. Asaka, Y. Heo and T. Yoshida, Phys. Lett. B 811, 135956 (2020) doi:10.1016/j.physletb.2020.135956 [arXiv:2009.12120 [hep-ph]].

[30] H. Okada and M. Tanimoto, Phys. Rev. D 103, no.1, 015005 (2021) doi:10.1103/PhysRevD.103.015005 [arXiv:2009.14242 [hep-ph]].

[31] K. I. Nagao and H. Okada, [arXiv:2010.03348 [hep-ph]].

[32] H. Okada and M. Tanimoto, JHEP 03, 010 (2021) doi:10.1007/JHEP03(2021)010 [arXiv:2012.01688 [hep-ph]].

[33] C. Y. Yao, J. N. Lu and G. J. Ding, JHEP 05 (2021), 102 doi:10.1007/JHEP05(2021)102 [arXiv:2012.13390 [hep-ph]].

[34] P. Chen, G. J. Ding and S. F. King, JHEP 04 (2021), 239 doi:10.1007/JHEP04(2021)239 [arXiv:2101.12724 [hep-ph]].

[35] M. Kashav and S. Verma, [arXiv:2103.07207 [hep-ph]].

[36] H. Okada, Y. Shimizu, M. Tanimoto and T. Yoshida, [arXiv:2105.14292 [hep-ph]].

[37] I. de Medeiros Varzielas and J. Lourenço, [arXiv:2107.04042 [hep-ph]].

[38] T. Nomura, H. Okada and Y. Orikasa, [arXiv:2106.12375 [hep-ph]].

[39] P. T. P. Hutauro, D. W. Kang, J. Kim and H. Okada, [arXiv:2011.15156 [hep-ph]].

[40] G. J. Ding, S. F. King and J. N. Lu, [arXiv:2108.09655 [hep-ph]].

[41] K. I. Nagao and H. Okada, [arXiv:2108.09984 [hep-ph]].

[42] Georgianna Charalampous, Stephen F. King, George K. Leontaris, Ye-Ling Zhou [arXiv:2109.11379 [hep-ph]].

[43] H. Okada and Y. h. Qi, [arXiv:2109.13779 [hep-ph]].

[44] T. Nomura, H. Okada and Y. h. Qi, [arXiv:2111.10944 [hep-ph]].

[45] T. Kobayashi, H. Otsuka, M. Tanimoto and K. Yamamoto, [arXiv:2112.00493 [hep-ph]].

[46] A. Dasgupta, T. Nomura, H. Okada, O. Popov and M. Tanimoto, [arXiv:2111.06898 [hep-ph]].

[47] X. G. Liu and G. J. Ding, [arXiv:2112.14761 [hep-ph]].

[48] T. Kobayashi, K. Tanaka and T. H. Tatsuishi, Phys. Rev. D 98, no.1, 016004 (2018) doi:10.1103/PhysRevD.98.016004 [arXiv:1803.10391 [hep-ph]].

[49] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys. Lett. B 794, 114-121 (2019) doi:10.1016/j.physletb.2019.05.034 [arXiv:1812.11072 [hep-ph]].

[50] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, PTEP 2020, no.5,
H. Okada and Y. Orikasa, Phys. Rev. D 100, no.11, 115037 (2019) doi:10.1103/PhysRevD.100.115037 [arXiv:1907.04716 [hep-ph]].

S. Mishra, [arXiv:2008.02095 [hep-ph]].

X. Du and F. Wang, JHEP 02, 221 (2021) doi:10.1007/JHEP02(2021)221 [arXiv:2012.01397 [hep-ph]].

J. T. Penedo and S. T. Petcov, Nucl. Phys. B 939, 292-307 (2019) doi:10.1016/j.nuclphysb.2018.12.016 [arXiv:1806.11040 [hep-ph]].

P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 04, 005 (2019) doi:10.1007/JHEP04(2019)005 [arXiv:1811.04933 [hep-ph]].

T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 02, 097 (2020) doi:10.1007/JHEP02(2020)097 [arXiv:1907.09141 [hep-ph]].

S. F. King and Y. L. Zhou, Phys. Rev. D 101, no.1, 015001 (2020) doi:10.1103/PhysRevD.101.015001 [arXiv:1908.02770 [hep-ph]].

H. Okada and Y. Orikasa, [arXiv:1908.08409 [hep-ph]].

J. C. Criado, F. Feruglio and S. J. D. King, JHEP 02, 001 (2020) doi:10.1007/JHEP02(2020)001 [arXiv:1908.11867 [hep-ph]].

X. Wang and S. Zhou, JHEP 05, 017 (2020) doi:10.1007/JHEP05(2020)017 [arXiv:1910.09473 [hep-ph]].

Y. Zhao and H. H. Zhang, JHEP 03 (2021), 002 doi:10.1007/JHEP03(2021)002 [arXiv:2101.02266 [hep-ph]].

S. F. King and Y. L. Zhou, JHEP 04 (2021), 291 doi:10.1007/JHEP04(2021)291 [arXiv:2103.02633 [hep-ph]].

G. J. Ding, S. F. King and C. Y. Yao, [arXiv:2103.16311 [hep-ph]].

X. Zhang and S. Zhou, [arXiv:2106.03433 [hep-ph]].

Bu-Yao Qu, Xiang-Gan Liu, Ping-Tao Chen, Gui-Jun Ding [arXiv:2106.11659 [hep-ph]].

T. Nomura and H. Okada, [arXiv:2109.04157 [hep-ph]].

P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 04, 174 (2019) doi:10.1007/JHEP04(2019)174 [arXiv:1812.02158 [hep-ph]].

G. J. Ding, S. F. King and X. G. Liu, Phys. Rev. D 100, no.11, 115005 (2019) doi:10.1103/PhysRevD.100.115005 [arXiv:1903.12588 [hep-ph]].
[69] X. G. Liu and G. J. Ding, JHEP 08, 134 (2019) doi:10.1007/JHEP08(2019)134 [arXiv:1907.01488 [hep-ph]].

[70] P. Chen, G. J. Ding, J. N. Lu and J. W. F. Valle, Phys. Rev. D 102, no.9, 095014 (2020) doi:10.1103/PhysRevD.102.095014 [arXiv:2003.02734 [hep-ph]].

[71] C. C. Li, X. G. Liu and G. J. Ding, [arXiv:2108.02181 [hep-ph]].

[72] P. P. Novichkov, J. T. Penedo and S. T. Petcov, Nucl. Phys. B 963, 115301 (2021) doi:10.1016/j.nuclphysb.2020.115301 [arXiv:2006.03058 [hep-ph]].

[73] X. G. Liu, C. Y. Yao and G. J. Ding, Phys. Rev. D 103, no.5, 056013 (2021) doi:10.1103/PhysRevD.103.056013 [arXiv:2006.10722 [hep-ph]].

[74] X. Wang, B. Yu and S. Zhou, Phys. Rev. D 103, no.7, 076005 (2021) doi:10.1103/PhysRevD.103.076005 [arXiv:2010.10159 [hep-ph]].

[75] C. Y. Yao, X. G. Liu and G. J. Ding, Phys. Rev. D 103, no.9, 095013 (2021) doi:10.1103/PhysRevD.103.095013 [arXiv:2011.03501 [hep-ph]].

[76] X. Wang and S. Zhou, [arXiv:2102.04358 [hep-ph]].

[77] M. K. Behera and R. Mohanta, [arXiv:2108.01059 [hep-ph]].

[78] I. de Medeiros Varzielas, S. F. King and Y. L. Zhou, Phys. Rev. D 101, no.5, 055033 (2020) doi:10.1103/PhysRevD.101.055033 [arXiv:1906.02208 [hep-ph]].

[79] T. Kobayashi and S. Tamba, Phys. Rev. D 99, no.4, 046001 (2019) doi:10.1103/PhysRevD.99.046001 [arXiv:1811.11384 [hep-th]].

[80] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, JHEP 11, 101 (2020) doi:10.1007/JHEP11(2020)101 [arXiv:2007.06188 [hep-th]].

[81] Y. Almumin, M. C. Chen, V. Knapp-Perez, S. Ramos-Sanchez, M. Ratz and S. Shukla, JHEP 05 (2021), 078 doi:10.1007/JHEP05(2021)078 [arXiv:2102.11286 [hep-th]].

[82] G. J. Ding, F. Feruglio and X. G. Liu, SciPost Phys. 10 (2021), 133 doi:10.21468/SciPostPhys.10.6.133 [arXiv:2102.06716 [hep-ph]].

[83] F. Feruglio, V. Gherardi, A. Romanino and A. Titov, JHEP 05 (2021), 242 doi:10.1007/JHEP05(2021)242 [arXiv:2101.08718 [hep-ph]].

[84] S. Kikuchi, T. Kobayashi and H. Uchida, [arXiv:2101.00826 [hep-th]].

[85] P. P. Novichkov, J. T. Penedo and S. T. Petcov, JHEP 04 (2021), 206 doi:10.1007/JHEP04(2021)206 [arXiv:2102.07488 [hep-ph]].

[86] S. Kikuchi, T. Kobayashi, Y. Ogawa and H. Uchida, [arXiv:2112.01680 [hep-ph]].
[87] P. P. Novichkov, J. T. Penedo and S. T. Petcov, arXiv:2201.02020 [hep-ph].

[88] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701-2729 (2010) doi:10.1103/RevModPhys.82.2701 arXiv:1002.0211 [hep-ph].

[89] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor. Phys. Suppl. 183, 1-163 (2010) doi:10.1143/PTPS.183.1 arXiv:1003.3552 [hep-th].

[90] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes Phys. 858, 1-227 (2012) doi:10.1007/978-3-642-30805-5

[91] D. Hernandez and A. Y. Smirnov, Phys. Rev. D 86, 053014 (2012) doi:10.1103/PhysRevD.86.053014 arXiv:1204.0445 [hep-ph].

[92] S. F. King and C. Luhn, Rept. Prog. Phys. 76, 056201 (2013) doi:10.1088/0034-4885/76/5/056201 arXiv:1301.1340 [hep-ph].

[93] S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys. 16, 045018 (2014) doi:10.1088/1367-2630/16/4/045018 arXiv:1402.4271 [hep-ph].

[94] S. F. King, Prog. Part. Nucl. Phys. 94, 217-256 (2017) doi:10.1016/j.ppnp.2017.01.003 arXiv:1701.04413 [hep-ph].

[95] S. T. Petcov, Eur. Phys. J. C 78, no.9, 709 (2018) doi:10.1140/epjc/s10052-018-6158-5 arXiv:1711.10806 [hep-ph].

[96] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Nucl. Phys. B 947, 114737 (2019) doi:10.1016/j.nuclphysb.2019.114737 arXiv:1908.00805 [hep-th].

[97] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 101, no.5, 055046 (2020) doi:10.1103/PhysRevD.101.055046 arXiv:1910.11553 [hep-ph].

[98] P. P. Novichkov, J. T. Penedo and S. T. Petcov and A. V. Titov, JHEP 07, 165 (2019) doi:10.1007/JHEP07(2019)165 arXiv:1905.11970 [hep-ph].

[99] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Phys. Lett. B 795, 7-14 (2019) doi:10.1016/j.physletb.2019.03.066 arXiv:1901.03251 [hep-th].

[100] T. Kobayashi and H. Otsuka, Phys. Rev. D 101, no.10, 106017 (2020) doi:10.1103/PhysRevD.101.106017 arXiv:2001.07972 [hep-th].

[101] M. Tanimoto and K. Yamamoto, arXiv:2106.10919 [hep-ph].

[102] M. C. Chen, S. Ramos-Sánchez and M. Ratz, Phys. Lett. B 801, 135153 (2020) doi:10.1016/j.physletb.2019.135153 arXiv:1909.06910 [hep-ph].
[103] I. de Medeiros Varzielas, M. Levy and Y. L. Zhou, JHEP 11, 085 (2020)
doi:10.1007/JHEP11(2020)085 [arXiv:2008.05329 [hep-ph]].

[104] K. Ishiguro, T. Kobayashi and H. Otsuka, JHEP 03, 161 (2021)
doi:10.1007/JHEP03(2021)161 [arXiv:2011.09154 [hep-ph]].

[105] H. Abe, T. Kobayashi, S. Uemura and J. Yamamoto, Phys. Rev. D 102, no.4, 045005 (2020)
doi:10.1103/PhysRevD.102.045005 [arXiv:2003.03512 [hep-th]].

[106] S. Kikuchi, T. Kobayashi, H. Otsuka, M. Tanimoto, H. Uchida and K. Yamamoto,
[arXiv:2201.04505 [hep-ph]].

[107] N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO].

[108] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

[109] A. Gando et al. [KamLAND-Zen Collaboration], Phys. Rev. Lett. 117, no. 8, 082503 (2016) Addendum: [Phys. Rev. Lett. 117, no. 10, 109903 (2016)]
doi:10.1103/PhysRevLett.117.109903, 10.1103/PhysRevLett.117.082503 [arXiv:1605.02889 [hep-ex]].

[110] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz,
JHEP 1901, 106 (2019) doi:10.1007/JHEP01(2019)106 [arXiv:1811.05487 [hep-ph]].

[111] S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Phys. Rev. D 82, 055026 (2010)
doi:10.1103/PhysRevD.82.055026 [arXiv:1005.5651 [hep-ph]].