Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Preadmission use of antidiabetic medications and mortality among patients with COVID-19 having type 2 diabetes: A meta-analysis

Nam Nhat Nguyena, Dung Si Hob,c, Hung Song Nguyena,d, Dang Khanh Ngan Hoe, Hung-Yuan Lif, Chia-Yuan Ling, Hsiao-Yean Chiu\textsuperscript{h,i}, Yang-Ching Chen\textsuperscript{a,b,*}

a College of Medicine, Taipei Medical University, Taipei, Taiwan
b Department of Geriatric Medicine, Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Viet Nam
c Department of Pulmonology, Thong Nhat Hospital, Ho Chi Minh City, Viet Nam
d Wellcome Trust Major Overseas Program, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
e School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
f Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
g Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan
h School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
i Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
j Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

ARTICLE INFO

Keywords:
COVID-19
Type 2 diabetes mellitus
Antidiabetic medication

ABSTRACT

Background: Diabetes is an independent predictor of poor outcomes in patients with COVID-19. We compared the effects of the preadmission use of antidiabetic medications on the in-hospital mortality of patients with COVID-19 having type 2 diabetes.

Methods: A systematic search of PubMed, EMBASE, Scopus and Web of Science databases was performed to include studies (except case reports and review articles) published until November 30, 2021. We excluded papers regarding in-hospital use of antidiabetic medications. We used a random-effects meta-analysis to calculate the pooled OR (95% CI) and performed a sensitivity analysis to confirm the robustness of the meta-analyses.

Main findings: We included 61 studies (3,061,584 individuals), which were rated as having low risk of bias. The OR (95% CI) indicated some medications protective against COVID-related death, including metformin [0.54 (0.47–0.62), \textit{I}^2 86\%], glucagon-like peptide-1 receptor agonist (GLP-1RA) [0.51 (0.37–0.69), \textit{I}^2 85\%], and sodium–glucose transporter-2 inhibitor (SGLT-2i) [0.60 (0.40–0.88), \textit{I}^2 91\%]. Dipeptidyl peptidase-4 inhibitor (DPP-4i) [1.23 (1.07–1.42), \textit{I}^2 82\%] and insulin [1.70 (1.33–2.19), \textit{I}^2 97\%] users were more likely to die during hospitalization. Sulfonylurea, thiazolidinedione, and alpha-glucosidase inhibitor were mortality neutral [0.92 (95\% CI 0.83–1.01, \textit{I}^2 44\%), 0.90 (95\% CI 0.71–1.14, \textit{I}^2 46\%), and 0.61 (95\% CI 0.26–1.45, \textit{I}^2 77\%), respectively]. The sensitivity analysis indicated that our findings were robust.

Conclusions: Metformin, GLP-1RA, and SGLT-2i were associated with lower mortality rate in patients with COVID-19 having type 2 diabetes. DPP-4i and insulin were linked to increased mortality. Sulfonylurea, thiazolidinedione, and alpha-glucosidase inhibitors were mortality neutral. These findings can have a large impact on the clinicians’ decisions amid the COVID-19 pandemic.

1. Introduction

Since late 2019, SARS-CoV-2 has emerged as a novel pathogenic microbe, resulting in the COVID-19 pandemic. By the end of November 2021, more than 257 million people had been infected with SARS-CoV-2 globally, approximately 5.1 million of whom died [1]. Several risk factors have been linked with the progression and deterioration of COVID-19, such as advanced age, diabetes, hypertension, cardiovascular diseases, and obesity [2]. Diabetes, with its increasing worldwide prevalence, has become major comorbidity in patients with COVID-19 and predisposes them to poor outcomes. Many potential pathways for this have been proposed, including increased inflammatory cascade,
immunocompromised status, glucose homeostasis dysfunction, hypercoagulability, alveolar hyperpermeability, and vascular endothelial damage. These pathophysiological changes might lead to acute respiratory distress syndrome, thromboembolism events, and cytokine storms, thereby contributing to increased COVID-19-related deaths [3].

In the past two decades, many drugs have been approved for diabetic patients, leading to a noticeable change in the trend of medication use. Glucose-lowering therapies have also received much critical attention recently as potential host-directed therapies due to their mechanisms of action that may influence the natural course of SARS-CoV-2 infection. Many studies have evaluated whether the premadmission use of certain antidiabetic medications might improve outcomes in those participants. The results have remained controversial, partly because different classes of drugs may differ in their effectiveness and safety against SARS-CoV-2. The gap between preclinical research and real-world data must be bridged. For example, dipeptidyl peptidase-4 inhibitor (DPP-4i) has recently gained much attention due to its safety, cardiovascular neutrality, and potential mechanistic pathways that could alleviate the course of SARS-CoV-2 infection. Although the exact mechanisms underly the effect of this class on the prognosis of COVID-19 remain unclear, several hypotheses may provide some insights. In addition to glucose homeostasis, DPP-4i inhibits the enzyme DPP-4, which is involved in many events of COVID-19 pathophysiology, including T-cell proliferation, nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) activation, CD86 expression, and inflammatory cytokines production [4]. However, many studies and meta-analyses have indicated no significant benefit of DPP-4i against COVID-19 [5,6]. Moreover, even for the same drug class, previous small meta-analyses have indicated inconsistent effects regarding the severity or mortality of patients with COVID-19, as in the case of the glucagon-like peptide-1 receptor agonist (GLP-1RA) [5,7]. Therefore, little is known about their true efficacy in the prognosis of that disease.

In this systematic review and meta-analysis, we (1) summarized the effects of every single antidiabetic medication on the mortality of patients with COVID-19 having diabetes and (2) evaluated the dose-responsiveness of the impacts of medications on mortality. By incorporating much more original papers, our findings would strengthen or reject the evidence for effects of each antidiabetic medication on COVID-19 mortality from inconsistent meta-analyses, and provided novel results regarding the effect of TZD and AGI, and the relationship between dosages and effects, which have not been previously reported.

2. Material and methods

2.1. Population, intervention, comparison, outcomes, and study design (PICOS)

Participants included patients with confirmed COVID-19 who had diabetes and were on prehospital medications extending to the pandemic. A confirmed case of COVID-19 was defined using a positive result on reverse transcription-polymerase chain reaction (RT-PCR) according to the diagnostic procedures of each center. Preexisting diabetes was ascertained through a diabetes diagnosis in medical records. The diagnostic procedures of each center. Preexisting diabetes and were on prehospital medications extending to the pandemic. Although the exact mechanisms underlying the effect of this class on the prognosis of COVID-19 remain unclear, several hypotheses may provide some insights. In addition to glucose homeostasis, DPP-4i inhibits the enzyme DPP-4, which is involved in many events of COVID-19 pathophysiology, including T-cell proliferation, nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) activation, CD86 expression, and inflammatory cytokines production [4]. However, many studies and meta-analyses have indicated no significant benefit of DPP-4i against COVID-19 [5,6]. Moreover, even for the same drug class, previous small meta-analyses have indicated inconsistent effects regarding the severity or mortality of patients with COVID-19, as in the case of the glucagon-like peptide-1 receptor agonist (GLP-1RA) [5,7]. Therefore, little is known about their true efficacy in the prognosis of that disease.

In this systematic review and meta-analysis, we (1) summarized the effects of every single antidiabetic medication on the mortality of patients with COVID-19 having diabetes and (2) evaluated the dose-responsiveness of the impacts of medications on mortality. By incorporating much more original papers, our findings would strengthen or reject the evidence for effects of each antidiabetic medication on COVID-19 mortality from inconsistent meta-analyses, and provided novel results regarding the effect of TZD and AGI, and the relationship between dosages and effects, which have not been previously reported.

2.2. Systematic review protocol

This systematic review and meta-analysis were registered in the PROSPERO International Prospective Register of Systematic Reviews (ID: CRD42021293064).

2.3. Search strategy and data sources

We systematically searched PubMed/MEDLINE, EMBASE, Scopus, and Web of Science databases for relevant articles up to November 30, 2021, without limiting the language or publication year. The following main keywords and related terms were used: “COVID-19,” “diabetes,” “antidiabetic medication,” or the names of specific classes. The detailed search strategy is presented in Table A1 (Supplementary appendix). We further identified additional articles through a manual search. We used Endnote (version 20; Clarivate. Philadelphia, PA, USA) to manage studies found.

2.4. Data extraction

The number of events, the number of observations, and other demographic variables, including race/ethnicity, sex, age, HbA1c, diabetes duration, BMI, and percentage of important comorbidities such as hypertension and chronic kidney disease, were documented for each group. OR was also extracted from the papers. The article’s corresponding author was contacted through e-mail if raw data were required.

2.5. Data analysis

The risk of bias was assessed by two independent reviewers by using the Newcastle–Ottawa Scale [8].

Effect sizes were calculated as the natural logarithm of ORs. The logOR and standard error of the logOR were used as input for meta-analysis in statistical software. Forest plots were used to display the OR from each original study and the pooled findings. We used Cochran’s Q test and I² statistics to assess heterogeneity between studies [9,10]. A random-effects model was chosen when the Cochran’s Q test p-value of <0.1 or an I² of >50% was obtained. A fixed-effects model was preferred if there was no evidence of heterogeneity. Publication bias was statistically assessed using Egger’s asymmetry test [11]. A publication bias was suspected if the p-value for Egger’s test was <0.05. Meta-regression and subgroup analysis were predefined to explore the source of heterogeneity further. We performed meta-regression on a set of pre-specified important characteristics, comorbidities, and chronic complications that are commonly found in diabetes patients, including age, gender, race/ethnicity, BMI, hypertension, and chronic kidney disease. We performed sensitivity analysis by outlier removal and trim-and-fill methods and then compared the original results with reanalyzed results to confirm the stability and robustness of our main meta-analyses. A two-sided p-value of <0.05 was considered statistically significant. We analyzed data by using R software (version 4.0.2; R Foundation for Statistical Computing; Vienna, Austria).
2.6. Ethics

Formal ethics approval is not required because we only collect nonconfidential information from which the patients’ identities could not be ascertained.

3. Results

3.1. Literature search and study selection

A total of 6920 articles were identified from the databases through a systematic search (Fig. 1). Next, 5790 articles remained after deduplication to be screened for their titles and abstracts. Of these articles, 5644 were excluded due to full-text inaccessibility (n = 173), duplication (n = 566), and irrelevancy (n = 4905); thus, 146 papers remained for eligibility assessment. The other 85 publications were further excluded because they did not include the outcome of interest; reported composite endpoint of intensive care unit admission, mechanical ventilation, and death; involved the same cohort; investigated inpatient use of antidiabetic drugs; or were irrelevant to our topic. Finally, 61 studies met our inclusion criteria for a systematic review. However, only 59 articles were pooled in the meta-analyses because one publication reported the hazard ratio instead of odds ratio, and one reported longer-term mortality (7 months) [12,13].

3.2. Study and participant characteristics

A total of 3,061,584 participants were recruited from studies [14–72]. Most of them were retrospective, except for two cross-sectional studies [26,52]. The antidiabetic drugs that were investigated included metformin (42 articles), SU (21), TZD (8), AGI (8), GLP-1RA (12), DPP-4i (28), SGLT-2i (13), and insulin (33) (Table 1). Only two papers reported glinide-associated mortality in patients with COVID-19 with few users [34,50]. Therefore, we did not present this drug in our research. The Newcastle–Ottawa assessment results revealed that all studies were rated as having adequate quality (Table A.2). No publication bias was found using Egger’s test (Table A.3).

3.3. Main findings

3.3.1. Mortality between medication users and nonusers

Compared with nonusers, metformin (OR 0.54, 95% CI 0.47–0.62, I² 86%), GLP-1RA (OR 0.51, 95% CI 0.37–0.69, I² 85%), and SGLT-2i (OR 0.60, 95% CI 0.40–0.88, I² 91%) use significantly reduced mortality among patients with COVID-19 with diabetes (Figs. 2–4). By contrast, DPP-4i (OR 1.23, 95% CI 1.07–1.42, I² 82%) and insulin (OR 1.70, 95% CI 1.33–2.19, I² 97%) were associated with an increased risk of in-hospital death (Figs. A.1, A.2). SU (OR 0.92, 95% 0.83–1.01, I² 44%), TZD (0.90, 95% CI 0.71–1.14, I² 46%), and AGI (OR 0.61, 95% 0.26–1.45, I² 77%) were mortality neutral (Figs. A.3–A.5).

3.3.2. Meta-regression of confounding factors

Using meta-regression, we observed some significant variables that were significantly associated with mortality due to COVID-19, including continent, white race, male sex, age, BMI, HbA1C, hypertension, and CKD (Table 2).

3.3.3. Subgroup analysis

We performed subgroup analyses based on confounding factors identified through meta-regression to compare the effects of antidiabetic
Table 1
Characteristics of studies (systematic review).

Study	Country	Number of patients	Race/ethnicity (%)	Male sex (%)	Age (years)	HbA1C (%)	Body mass index (kg/m^2) or obesity (%)	Hypertension (%)	CKD (%)	Mortality
Metformin users/nonusers										
An et al. [15]	Korea	423/598			39.9	45.0 ± 19.9	8.1 ± 23 vs. 8.4 ± 1.8	18.2	0.8	NS
Bliden et al. [16]	USA	34/41			51.6	73.0	(66.0–80.0) vs. 76.0	Obesity: 4.8% vs. 9.0%	56.3 vs. 60.4	NS
Bramante et al. [18]	USA	2333/3923				44.6	(67.0–84.0)			18.6
Cernigliaro et al. [19]	Italy	82/90			43.9	64.5		Decreased		
Chen et al. [20]	China	43/77			51.6	72.6		32.8 ± 8.9	47.7	15.5 Decreased
Cheng et al. [21]	China	18/32			67.0	64.5		24.2 vs. 33.8	20.4 vs. 37.5	NS
Crouse et al. [22]	USA	76/144	White: 27.6, African American: 64.9							
Dave et al. [23]	Africa	4084/1624			43.9	55.0		37.78 vs. 40.3	29.4 vs. 47.4	4.6
Do et al. [25]	Korea	469/1396			39.0	44.8	(11.4 ± 14) vs. 74.1 ± 12.1	74.1	55.5	
Eliboi et al. [26]	Turkey	379/53			46.0	63.3	(10.3)			
Ghany et al. [29]	USA	243/350	Black: 71.0 vs. 70.0							
Goodall et al. [31]	England	210/166	White: 25.5, Black: 13.9, Asian: 37.8							
Khunti et al. [34]	England	1,800,005/1,051,460	White: 64.5, Black: 4.8, Asian: 16.0							
Kim et al. [35]	Korea	113/122			59.5	66.2	(11.2 ± 12) vs. 72.7 ± 11.7	24.2 ± 3.2	78.0	
Lally et al. [37]	USA	127/172	White: 61.4, Black: 30.7							
Li et al. (1) [39]	China	37/94			50.0	68.3 ± 18.0		62.6	7.7	NS
Li et al. (2) [38]	China	142/245			45.1	72.3 ± 8.3	7.5 ± 1.4 vs. 6.5 ± 1.3	29.7 ± 6.6 vs. 28.0 ± 7.0		
Luk et al. [40]	China	737/254	Asian		50.0	68.9	(2.6 ± 8.5) vs. (6.3 ± 8.5)	24.1	19.5	Decreased
Luo et al. (1) [41]	China	104/179			50.0	63.0		63.1 vs. 56.7	13.2	NS
Luo et al. (2) [42]	China	54/137			50.0	61.0	(19.1 ± 8.2) vs. (19.1 ± 1.9)	55.5	2.0	Decreased
Ma et al. [43]	USA	361/995	White: 72.6, Black: 12.2, Asian: 1.9							
Mirani et al. [46]	Iran	69/21			50.0	69.0 ± 13.0	(21.5 vs. 27.7) vs. (22.2–27.0)	81.6	0.8	
Mirsoleymani et al. [47]	Iraq	35/32			43.0	59.8 ± 17.2		29.8 ± 5.0	66.0	
Nafakhi et al. [48]	USA	5077/24,439	White: 47.9, African American: 25.5, Asian: 3.1							

(continued on next page)
Study	Country	Number of patients	Race/ethnicity (%)	Age (years)	HbA1C (%)	Body mass index (kg/m²) or obesity (%)	Hypertension (%)	CKD (%)	Mortality
Oh et al. [51]	Korea	7204/20,289		44.7 ± 11.6	7.0 ± 2.4	Obesity: 62.0% vs. 65.1%	73.1 ± 76.3	3.4	NS
Ong et al. [52]	Philippines	186/169		56.6 ± 11.6	7.6 ± 1.9	Obesity: 55.4% vs. 58.1%	48.6 ± 70.1	4.1	Decreased
Orio et al. [53]	Belgium	45/23		69.0 ± 11.0	7.1 ± 6.8	Obesity: 26.4% vs. 26.1%	30.5 ± 5.3	80.8	Decreased
Perez-Belmonte et al. [54]	Spain	825/663		74.8 ± 11.0	7.7 ± 6.8	Obesity: 26.4% vs. 26.1%	74.2 ± 79.5	4.7	NS
Philipose et al. [55]	England	100/59	White: 45.5, Afro-Caribbean: 20.2, Asian: 19.1	59.0					
Ramos-Rincón et al. [56]	Spain	421/369		47.1		Obesity: 17.7%	84.3 ± 71.7	17.2	NS
Ravindra et al. [57]	India	53/313		63.2 ± 17.1	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%	28.7 ± 70.1	0.9	NS
Saygili et al. [60]	Turkey	432/154		65.0 ± 11.2	7.7 ± 6.8	Obesity: 26.4% vs. 26.1%	67.1 ± 70.1	0.0	Decreased
Shetaskova et al. [61]	Russia	196/113		54.1 ± 12.7	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Silveri et al. [62]	Italy	76/83		63.1 ± 11.0	7.7 ± 7.0	Obesity: 26.4% vs. 26.1%			
Sourir et al. [63]	Austria	77/103		63.9 ± 16.0	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Tamura et al. [65]	Brazil	116/72		63.5 ± 15.0	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Wander et al. [66]	USA	29,685/64,892	White: 66.0, Black: 27.0, Hispanic: 9.0	64.0 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Wang et al. (1) [67]	USA	9/7	African American: 23.0, Hispanic: 16.0	52.0 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Wang et al. (2) [68]	England	110/54		52.0 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Wargny et al. [69]	France	1553/1241	White: 58.1, African: 17.4, Asian: 3.6	36.3 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Cheng et al. [12]	China	678/553		53.8 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Yuan et al. [72]	China	73/109		52.1 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Pazoki et al. [13]	Iran	177/216		56.2 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
SU users/nonusers									
An et al. [15]	Korea	212/809		39.9 ± 19.0	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Cernigliaro et al. [19]	Italy	35/137		39.9 ± 19.0	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Chen et al. [20]	China	53/67		42.9 ± 12.5	8.3 ± 7.7	Obesity: 26.4% vs. 26.1%			
Dave et al. [23]	Africa	2110/3598		39.3 ± 19.0	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Elbibi et al. [26]	Turkey	66/366		45.6 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Khunti et al. [34]	England	561,290/2,290,175	White: 63.7, Black: 5.0, Asian: 17.2	60.5 ± 12.5	7.1 ± 7.0	Obesity: 26.4% vs. 26.1%			
Kim et al. [35]	Korea	60/175		45.1 ± 11.9	7.9 ± 7.0	Obesity: 26.4% vs. 26.1%			
Li et al. (1) [39]	China	22/109		56.5 ± 11.9	7.9 ± 7.0	Obesity: 26.4% vs. 26.1%			
Li et al. (2) [38]	China	91/296		51.1 ± 11.9	7.9 ± 7.0	Obesity: 26.4% vs. 26.1%			
Luk et al. [40]	China	385/679	Asian	57.7 ± 11.9	7.7 ± 6.9	Obesity: 26.4% vs. 26.1%			

(continued on next page)
Table 1 (continued)

Study	Country	Number of patients	Race/ethnicity	Male sex (%)	Age (years)	HbA1C (%)	Body mass index (kg/m²) or obesity (%)	Hypertension (%)	CKD (%)	Mortality
Luo et al. [42]	China	37/154		56.5	62.7 ± 11.0	7.9 (6.3–9.0)	23.5 (21.5–27.0)	55.5	0.0	Decreased
Mirani et al. [46]	Italy	10/80		60.0 vs. 73.8	70.0 ± 12.0		55.5 (80.0 vs. 76.3) vs. 21.4	NS		
Nyland et al. [50]	USA	1889/27,627	White: 47.9, African American: 25.5, Asian: 3.1	48.2	60.9 ± 15.0	7.7 ± 2.1	32.8 ± 8.9	47.7	15.5	
Oh et al. [51]	Korea	3680/23,813						NS		
Orioli et al. [53]	Belgium	19/49		48.0	69.0 ± 14.0	7.1 (6.6–8.3)	30.5 ± 5.3	80.8	34.2	
Svetaskova et al. [61]	Russia	129/180						NS		
Silveri et al. [62]	Italy	33/126		54.1	73.3 ± 12.7			NS		
Sourij et al. [63]	Austria	14/166		63.9	67.6 ± 14.0	6.7 (1.9)	29.4 ± 5.7	77.0	23.1	
Wander et al. [66]	USA	12,298/52,594	White: 66.0, Black: 27.0, Hispanic: 9.0	64.0	67.7			89.0	36.0	NS
Wargny et al. [69]	France	782/2012	White: 58.1, African: 17.4, Asian: 3.6	36.3	69.7 ± 13.2	7.7 (6.8–9.0)	28.4 (25.0–32.4)	76.8	NS	
Yuan et al. [72]	China	43/139		55.8	67.0	8.5 (7.0–9.5)	23.7 (22.0–25.4)	48.8	0.0	Decreased
Pazoki et al. [13]	Iran	72/321		56.2	65.4 ± 11.6			65.4	7.9	NS
TZD users/nonusers								NS		
Cernigliaro et al. [19]	Italy	10/162						74.1	4.6	NS
Elbibi et al. [26]	Turkey	27/405		45.6	63.3 ± 10.3			80.5	NS	
Khunti et al. [34]	England	60,085/2,791,380	White: 63.5, Black: 3.7, Asian: 18.4	63.4	67.0			87.4	NS	
Luo et al. [42]	China	7/184	White: 52.4, African American: 23.2, Asian: 3.5	56.5	62.7 ± 11.0	7.9 (6.3–9.0)	34.3 ± 9.0	55.5	3.0	NS
Nyland et al. [50]	USA	469/23,714	White: 58.1, African American: 17.4, Asian: 3.6	53.3 vs. 48.8	63.1 ± 12.5	8.2 ± 2.0	32.3 ± 8.7	52.1 vs. 14.9	17.4	NS
Oh et al. [51]	Korea	1264/26,229						89.0	36.0	NS
Silveri et al. [62]	Italy	19/49		54.1	73.3 ± 12.7			NS		
Wander et al. [66]	USA	2075/62,817	White: 66.0, Black: 27.0, Hispanic: 9.0	64.0	67.7			89.0	36.0	NS
AGI users/nonusers								NS		
An et al. [15]	Korea	7/1014		39.9	45.0 ± 19.9	66.0	8.4 (7.4–10.3)	61.2	10.2	NS
Chen et al. [20]	China	69/51		42.9	66.0 (57.5–73.0) vs. 65.0 (56.0–72.0)		18.2	10.2	NS	
Khunti et al. [34]	England	1665/2,849,800	White: 56.5, Black: 7.5, Asian: 23.4	56.8	67.0			87.4	NS	
Li et al. [1] [39]	China	38/93		56.5	66.8 ± 11.6	7.9 ± 1.9	24.2 ± 3.4	59.5	1.0	NS
Li et al. [2] [38]	China	140/247		51.1	60.0 (49.0–68.0)		48.6		NS	
Luo et al. [42]	China	77/114		65.0	62.3 ± 9.6	7.9 ± 1.8	8.3 ± 2.0	55.5	2.2	Decreased
Nyland et al. [50]	USA	16/29,500	White: 47.9, African American: 25.5, Asian: 3.1	48.2	60.9 ± 15.0	7.7 ± 2.1	32.8 ± 8.9	47.7	15.5	NS
Yuan et al. [72]	China	88/94		51.1	8.2 (7.0–9.2)	58.0	1.1			

(continued on next page)
Study	Country	Number of patients	Race/ethnicity (%)	Male sex (%)	Age (years)	HbA1C (%)	Body mass index (kg/m²) or obesity (%)	Hypertension (%)	CKD (%)	Mortality
GLP-1RA users/nonusers										
Cernigliaro et al.	Italy	8/164								
Israelensen et al.	Denmark	370/558								
Noh et al.	Korea	453/133								
Meijer et al.	USA	6692/5854	White: 64.1							
Luo et al.	China	11/180								
Khunti et al.	England	100,820/3,750,645	White: 76.3,							
			Black: 3.3,							
			Asian: 7.9							
Nyland et al.	USA	1774/23,714	White: 52.3,							
			Black: 28.7,							
			Asian: 0.9							
Orioli et al.	Belgium	5/63								
Ramos-Rincon et al.	Spain	37/753								
Shibaskova et al.	Russia	1/308								
Silveri et al.	Italy	7/152								
Sourj et al.	Austria	3/177								
Wander et al.	USA	4737/60,155	White: 66.0,							
			Black: 27.0,							
			Hispanic: 9.0,							
			Black: 7.9,							
Wargny et al.	France	254/2540	White: 58.1,							
			African: 17.4,							
			Asian: 3.6							
DPP-4i users/nonusers										
An et al.	Korea	229/792								
Chen et al.	Italy	13/159								
Eliboi et al.	Turkey	246/186								
Emral et al.	Turkey	6846/26,632								
Fanidi et al.	Italy	9/72								
Israelensen et al.	Denmark	284/664								
Kablkoska et al.	USA	3511/8935	White: 57.4							
Khunti et al.	England	479,555/2,371,910	White: 65.5,							
			Black: 4.7,							
			Asian: 15.7							
Kim et al.	Korea	85/150								
Kristian et al.	USA	76/756								
Luk et al.	China	199/952								
Luo et al.	China	11/180								
Meijer et al.	Netherlands	28/537								
Mirani et al.	Italy	11/79								
Noh et al.	Korea	453/133								

(continued on next page)
Study	Country	Number of patients	Race/ethnicity (%)	Male sex (%)	Age (years)	HbA1C (%)	Body mass index (kg/m²) or obesity (%)	Hypertension (%)	CKD (%)	Mortality	
					49.2	64.6 ± 13.5 vs. 60.9 ± 15.3	8.0 ± 2.0 vs. 7.5 ± 2.1	31.4 ± 8.1 vs. 32.3 ± 8.7	55.9 vs. 44.9	21.2 vs. 18.0	Increased
N. N. Nguyen et al.	USA	2264/23,714	White: 49.2, African American: 36.6, Asian: 5.1	49.1 vs. 48.8	64.6 ± 13.5 vs. 60.9 ± 15.3	8.0 ± 2.0 vs. 7.5 ± 2.1	31.4 ± 8.1 vs. 32.3 ± 8.7	55.9 vs. 44.9	21.2 vs. 18.0	Increased	
	Korea	4132/23,361			48.0	69.0 ± 14.0	7.1 (6.6–8.3)	30.5 ± 5.3	80.8	NS	
Oh et al. [51]	Austria	63/156			54.9	78.8 ± 7.1 vs. 74.7 ± 8.2	Obesity: 30.6% vs. 28.1%	55.6 vs. 56.5	32.2 vs. 11.9	Increased	
	Korea	4132/23,361			54.1	73.3 ± 12.7				NS	
Orioli et al. [53]	Spain	180/1409			63.9	67.6 ± 14.0	6.7 (1.9)	29.4 ± 5.7	77.0	23.1 NS	
	Austria	42/138			54.9	76.7 ± 11.8				NS	
Perez-Belmonte et al. [54]	Spain	266/524			47.1	Obesity: 17.7%	84.3	17.2 Decreased			
	Spain	266/524			47.1	Obesity: 17.7%	84.3	17.2 Decreased			
	Russia	26/283				66.0 vs. 74.1	Obesity: 15.4%	49.6	NS		
Silveri et al. [62]	Italy	13/146			36.3	69.7 ± 13.2	7.7 (6.8–9.0)	28.4 (25.0–32.4)	76.8	NS	
Souri et al. [63]	Spain	42/138			60.7	66.3 ± 11.7 vs. 65.1 ± 13.0	7.8 ± 2.3 vs. 7.4 ± 2.5	Obesity: 15% vs. 11.3%	88.8 vs. 75.2	30.8 vs. 11.3	NS
Strollo et al. [64]	Italy	30/163			56.2	65.4 ± 11.6	28.0 ± 5.1	65.4	7.9 NS		
Wander et al. [66]	USA	5810/59,082	White: 66.0, Black: 27.0, Hispanic: 9.0		64.0	67.7	89.0	36.0 NS			
Wargny et al. [69]	France	615/2179			30.7	65.1 ± 13.0	7.4 ± 2.5	28.0 ± 5.1	65.4	7.9 NS	
Wong et al. [70]	China	107/1107			53.1	65.4 ± 11.6	28.0 ± 5.1	65.4	7.9 NS		
Pazoki et al. [13]	Iran	20/373			36.3	69.7 ± 13.2	7.7 (6.8–9.0)	28.4 (25.0–32.4)	76.8	NS	
SGLT-2 users/nonusers	Italy	4/168			45.6	63.3 ± 10.3	74.1	4.6 NS			
Germiglia et al. [19]	Italy	56/376			61.8	59.0 (52.0–68.0)	8.2 ± 1.8	35.2 ± 7.8	77.3	16.3 Decreased	
Elbodi et al. [36]	Denmark	274/654			55.2	57.9 ± 11.7	8.3 ± 1.8	35.2 ± 7.8	77.3	16.3 Decreased	
Israelsen et al. [32]	USA	3665/8781	White: 33.9		60.8	67.0 (57.0–77.0)	75.4	75.4 Decreased			
Kahkoska et al. [13]	USA	266/505/2,584,960	White: 66.8, Black: 36.3, Asian: 15.2		45.1	68.3 ± 11.9	24.2 ± 3.2	62.6	7.7 NS		
Iliadis et al. [19]	Korea	8/227			48.2	60.9 ± 15.0	7.7 ± 2.1	32.8 ± 8.9	47.7	15.5 Decreased	
Nyland et al. [50]	USA	792/28,724	White: 47.9, African American: 25.5, Asian: 3.1		64.0	67.7	89.0	36.0 NS			
Souri et al. [63]	Belgium	4/64			48.0	69.0 ± 14.0	7.1 (6.6–8.3)	30.5 ± 5.3	80.8	34.2 NS	
Ramos-Rincon et al. [56]	Spain	45/745			47.1	Obesity: 17.7%	84.3	17.2 NS			
Shetaskova et al. [61]	Russia	13/296			54.1	73.3 ± 12.7				NS	
Silveri et al. [62]	Italy	4/155			63.9	67.6 ± 14.0	6.7 (1.9)	29.4 ± 5.7	77.0	23.1 NS	
Wander et al. [66]	USA	5542/59,350	White: 66.0, Black: 27.0, Hispanic: 9.0		64.0	67.7	89.0	36.0 NS			
Insulin users/nonusers	USA	531/661	White: 15.5, African American: 74.5		49.3	67.9 ± 13.7	7.5 ± 2.0	30.1 ± 7.5	90.9	42.5 Increased	
Agarwal et al. [14]	USA	3461/6070			46.0	71.6 ± 12.5	7.2	37 Increased			

(continued on next page)
Study	Country	Number of patients	Race/ethnicity (%)	Male sex (%)	Age (years)	HbA1C (%)	Body mass index (kg/m²) or obesity (%)	Hypertension (%)	CKD (%)	Mortality
Cernigliaro et al. [19]	Italy	42/130								
Chen et al. [20]	China	7/49		42.9	65.0	8.8	61.2	10.2	NS	Increased
Cheng et al. [12]	China	11/39		54.5 vs.	58.0	24.8	20.4	27.3 vs.	27.3	NS
Crouse et al. [22]	USA	87/133		50.6	62.0 ± 15.0	32.9	78.4	21.3	NS	
Dave et al. [23]	Africa	207/3635		39.3	55.0	24.2	62.6	7.7	NS	
Deng et al. [24]	China	29/56		57.6	65.0	7.9 ± 2.3	62.6	7.7	NS	
Giorda et al. [30]	Italy	656/1226		50.9	60.0	32.9	84.4	60.1	NS	
Khunti et al. [34]	England	350,960/2,500,505	White: 71.1, Black: 4.7, Asian: 12.3	54.5 (57.0-77.0)	67.0	24.2 vs. 32.9	78.4	21.3	NS	
Kim et al. [35]	Korea	19/216		45.1	68.3 ± 11.9	24.2	62.6	7.7	NS	
Kristan et al. [36]	USA	281/351		51.0	62.0 ± 15.0	32.9	78.4	21.3	NS	
Lally et al. [37]	USA	103/190	White: 54.4, Black: 40.8	97.1	73.3 ± 9.4	7.7 ± 1.5	29.3 ± 3.0	52.4	NS	
Li et al. (1) [39]	China	26/105		56.5	66.8 ± 11.6	7.9 ± 1.9	24.2 ± 3.4	59.5	NS	
Li et al. (2) [38]	China	102/285		51.1	60.0	7.9 ± 1.9	24.2 ± 3.4	48.6	1.0	
Luk et al. [40]	China	385/679	Asian	57.7	66.0 (58.5-73.1) vs. 65.3	7.7 ± 15.1 vs. 7.9 ± 1.3	22.9	69.4 vs. 48.5	Increased	
Luo et al. [42]	China	88/103		56.5	62.7 ± 11.0	7.9 (6-9-9)	22.9	69.4 vs. 48.5	Increased	
Mansour et al. [44]	Iran	25/86		55.9	63.6 ± 13.3	7.9 ± 6.3	Obesity: 51.7%	31.0	Increased	
Mirani et al. [46]	Italy	29/61		72.4	72.0 ± 10.0 vs. 70.0	7.7 ± 2.1	32.8	15.5	Increased	
Nyland et al. [50]	USA	9149/20,367	White: 47.9, African American: 25.5, Asian: 3.1	48.2	60.9 ± 15.0	7.7 ± 2.1	32.8	15.5	Increased	
Oh et al. [51]	Korea	914/26,579		48.0	69 ± 14	7.1 (6.7-8.3)	30.5	80.8	34.2	NS
Orioli et al. [52]	Belgium	31/37		48.0	69 ± 14	7.1 (6.7-8.3)	30.5	80.8	34.2	NS
Perez-Belmonte et al. [54]	Spain	292/1458		77.9 ± 9.0	Obesity: 20.9%	vs. 28.8%	Obesity: 17.7%	84.3	17.2	NS
Ramos-Rincon et al. [56]	Spain	225/565		47.1	66.4 ± 12.7	8.6 ± 3.5	31.1	91.0	25.0	Increased
Ribad et al. [58]	USA	88/78	White: 6.0, African American: 71.0	52.0	66.4 ± 12.7	31.1	91.0	25.0	Increased	
Satman et al. [59]	Turkey	3340/15,318		42.3	53.0 (22.0)	6.9 (2.3)	30.0 (7.1)	66.4	18.9	Increased
Shetakova et al. [61]	Russia	115/194		54.1	73.3 ± 12.7	7.7 (8.8-9.0)	7.7 (6.8-9.0)	28.4	76.8	Increased
Silveri et al. [62]	Italy	43/116		63.9	67.6 ± 14.0	6.7	29.4	77.0	23.1	NS
Sourj et al. [63]	Austria	41/139		64.0	67.7	89.0	36.0	Increased		
Wender et al. [66]	USA	18,521/46,371	White: 66.0, Black: 27.0, Hispanic: 9.0	36.3	69.7 ± 13.2	Obesity: 74.5%	Increased			
(continued on next page)
medications in more homogenous populations. The results of metformin and insulin were consistently confirmed among various groups in terms of vulnerability, including advanced age, high BMI, and high rate of CKD (Figs. A.6–A.8 and A.25–A.27, respectively). Meanwhile, GLP-1RA and SGLT-2i were still beneficial compared to nonusers, albeit less pronounced in populations with a higher rate of comorbidities and older

Table 1 (continued)

Study	Country	Number of patients	Race/ethnicity (%)	Male sex (%)	Age (years)	HbA1C (%)	Body mass index (kg/m²) or obesity (%)	Hypertension (%)	CKD (%)	Mortality
Yan et al. [71]	China	4/30	White: 58.1, African: 17.4, Asian: 3.6	68.8	69.4 ± 9.9	7.2 (6.7–8.3)	50.0	0.0	Increased	
Yuan et al. [72]	China	76/106		47.4	66.0	8.6	23.7	57.9	2.6	Increased
Pazoki et al. [13]	Iran	53/340		56.2	65.4 ± 11.6	28.0 ± 5.1	65.4	7.9	NS	

Data are presented as mean ± SD or median (IQR). Abbreviation: AGI, alpha-glucosidase inhibitor; CKD, chronic kidney disease; DPP-4i, dipeptidyl peptidase inhibitor; GLP-1RA, glucagon-like peptide-1 receptor agonist; NS, not significant; SGLT-2i, sodium–glucose transporter-2 inhibitor; SU, sulfonylurea; TZD, thiazolidinedione.

Fig. 2. Forest plot of the relationship between metformin and mortality in patients with COVID-19 having type 2 diabetes.
patients, respectively (Figs. A.15, A.17, and A.21). Despite overall mortal neutrality, SU might have mild benefits in younger and less vulnerable populations (Figs. A.9–A.12). In contrast, DPP-4i showed harm or at least no benefit (A.18–A.20).

3.3.4. Sensitivity analysis

We further performed a sensitivity analysis by using two methods. First, we identified outliers by implementing the outlier removal algorithm in the dmetar package to explore the influence of individual studies on pooled effects. After outliers were removed, the pooled OR did not significantly change (all p > 0.05). Next, we conducted the trim-and-fill method to impute missing effects and concluded that our main results were stable after extending additional effects (all p > 0.05; Table 3).

3.3.5. Dose-response meta-analysis

Metformin was the only medication that was reported the daily dosage in these original papers. Therefore, we performed a dose-response meta-analysis for metformin. We observed a significant linear dose-response association between metformin dose and odds ratio of mortality (estimate: 0.88, standard error: 0.22, p < 0.001) and no evidence of heterogeneity among studies (I² = 0%, p = 0.46; Fig. 5).

3.3.6. Comparison with previous meta-analyses

We next compared our results with those from other publications [4–7,73–88]. No published meta-analysis has analyzed the association between TZD or AGI and COVID-19-related mortality (Table 4).

4. Discussion

4.1. Summary of main findings

To the best of our knowledge, this timely study has been the most extensive systematic review and meta-analysis confirming that different antidiabetic medications could predispose individuals with COVID-19 to different prognoses. Compared with a previous publication [5], we observed significant roles of GLP-1RA and SGLT-2i, besides metformin, in protecting individuals from COVID-19-related death. Similar to most studies, we also identified a positive association between DPP-4i usage and mortality. Moreover, we are the first to report the pooled effect of TZD and the pooled effect of AGI. Similar to smaller meta-analyses [5,75,85], our data also indicated the inconsistent impact of SU. Finally, we are the first to perform a dose-response meta-analysis regarding the daily dose of metformin to predict the magnitude of the effect on mortality in patients with COVID-19 having diabetes. These findings can have a large impact on the outpatient management strategy.
Table 2

Meta-regression analysis on potentially confounding factors.

Medication	Continent factor	Estimate	SE	p-Value
Metformin	Continent (vs. America)			
	Africa	0.274	0.482	0.57
	Asia	-0.076	0.227	0.74
	Europe	0.096	0.235	0.68
	White race (%)	0.004	0.006	0.53
	Age (years)	-0.003	0.013	0.81
	Male sex (%)	-0.001	0.007	0.87
	HbA1C (%)	-0.100	0.181	0.59
	Body mass index (kg/m²)	0.043	0.037	0.26
	Hypertension (%)	-0.001	0.006	0.87
	Chronic kidney disease (%)	0.001	0.005	0.89
Sulfonylurea	Continent (vs. America)			
	Africa	-0.123	0.204	0.56
	Asia	0.075	0.185	0.69
	Europe	0.076	0.158	0.64
	White race (%)	0.017	0.003	0.02
	Age (years)	0.015	0.007	0.03
	Male sex (%)	0.009	0.003	0.01
	HbA1C (%)	-0.753	0.551	0.55
	Body mass index (kg/m²)	-0.045	0.030	0.19
	Hypertension (%)	0.006	0.002	0.01
	Chronic kidney disease (%)	0.009	0.003	0.02
Thiazolidinedione	Continent (vs. America)			
	Asia	0.389	0.398	0.37
	Europe	0.182	0.350	0.62
	White race (%)	0.071	0.026	0.22
	Age (years)	0.099	0.063	0.19
	Male sex (%)	-0.001	0.030	0.07
	HbA1C (%)	Insufficient data for analysis		
	Body mass index (kg/m²)	Insufficient data for analysis		
	Hypertension (%)	0.025	0.008	0.05
	Chronic kidney disease (%)	0.005	0.025	0.87
Alpha-glucosidase inhibitor	Continent (vs. America)			
	Asia	0.073	1.966	0.97
	Europe	1.452	2.234	0.54
	White race (%)	Insufficient data for analysis		
	Age (years)	-0.078	0.067	0.28
	Male sex (%)	-0.090	0.054	0.15
	HbA1C (%)	1.845	1.991	0.42
	Body mass index (kg/m²)	0.108	0.174	0.65
	Hypertension (%)	-0.007	0.027	0.81
	Chronic kidney disease (%)	0.023	0.124	0.86
Glucagon-peptide like-1 receptor agonist	Continent (vs. America)			
	Asia	1.707	1.459	0.27
	Europe	-0.004	0.283	0.99
	White race (%)	0.033	0.027	0.30
	Age (years)	0.043	0.021	0.08
	Male sex (%)	0.032	0.010	0.01
	HbA1C (%)	-1.000	0.361	0.07
	Body mass index (kg/m²)	-0.053	0.038	0.25
	Hypertension (%)	0.029	0.010	0.02
	Chronic kidney disease (%)	0.008	0.007	0.32
Dipeptidyl peptidase-4 inhibitor	Continent (vs. America)			
	Asia	-0.183	0.247	0.47
	Europe	-0.260	0.243	0.30
	White race (%)	-0.003	0.018	0.90
	Age (years)	-0.005	0.014	0.74

Table 2 (continued)

Medication	Continent factor	Estimate	SE	p-Value
Sodium-glucose transporter-2 inhibitor	Continent (vs. America)			
	Asia	0.675	0.381	0.11
	Europe	-0.500	0.218	0.04
	White race (%)	-0.006	0.017	0.77
	Age (years)	0.029	0.048	0.56
	Male sex (%)	-0.031	0.023	0.21
	HbA1C (%)	0.565	0.124	0.35
	Body mass index (kg/m²)	-0.069	0.107	0.57
	Hypertension (%)	0.011	0.012	0.38
	Chronic kidney disease (%)	0.008	0.018	0.66
Insulin	Continent (vs. America)			
	Asia	0.217	0.576	0.71
	Europe	0.009	0.285	0.98
	White race (%)	-0.221	0.280	0.44
	Age (years)	-0.000	0.011	0.98
	Male sex (%)	-0.001	0.011	0.97
	HbA1C (%)	0.029	0.347	0.93
	Body mass index (kg/m²)	0.115	0.061	0.08
	Hypertension (%)	0.011	0.008	0.19
	Chronic kidney disease (%)	0.002	0.009	0.87

Abbreviations: SE, standard error.

of diabetes patients amid the COVID-19 pandemic. These results can be helpful for clinicians in terms of choosing proper glucose-lowering regimens and dosage for those patients to reduce the risk of in-hospital death, i.e. by promoting the prescription of metformin, GLP-1RA, and SGLT-2i in the absence of any contraindications. In contrast, caution should be exercised in long-term insulin use.

Metformin might decrease or did not significantly affect COVID-19 death in the original studies. However, when performing meta-analyses, it yielded the most consistent result, even in vulnerable patients. Our study corroborated previous publications highlighting the potential benefits of metformin in patients with COVID-19 and diabetes. Several mechanisms might explain the lower mortality from SARS-CoV-2 infections in individuals taking metformin. First, beyond the hypoglycemic effect, metformin could reduce the release of inflammatory cytokines such as interleukin-6 and tumor necrosis factor-alpha, which play a vital role in COVID-19 pathophysiology [89]. Second, metformin is also involved in other pathways: angiotensin-converting enzyme-2 (ACE-2) modulation through adenosine monophosphate-activated protein kinase, decreased coagulation and thrombosis formation, mast cell stabilization, and improved endothelial function [18,90]. Therefore, several researchers are currently investigating metformin as a host-directed medication in patients with COVID-19 [91]. Our current study indicated that metformin is effective among different races, sexes, weight status, and levels of glucose control. The dosage of metformin also affected the risk of mortality. First, Cheng et al. indicated that preadmission metformin usage was associated with better outcomes in a dose-response manner. In that study, metformin median dose was 1000 (890–1220) mg/day [21]. Ghany et al. reported that individuals using metformin at a dose of ≥1000 mg/day had lower mortality than those on 500–850 mg/day [29]. Referenced to nonusers, Ong et al. reported the greatest benefit on mortality with the dose from 1000 to <2000 mg/day [52]. Our findings were consistent with these studies. Specifically, every
metformin is only 2550 mg/day (immediate-release form) and 2000 mg/day (extended-release form).

GLP-1RA and SGLT-2i are two novel classes of antidiabetic medications that have been approved for cardiorenal protection in type 2 diabetes patients. In the COVID-19 scenario, GLP-1RA can help reduce cytokine-induced lung injury by interfering with the NF-kB pathway or exerting anti-inflammatory effects [92,93]. Meanwhile, when hypoxemia and hypoxia occur, SGLT-2i reverses the acid-base cytokine balance by decreasing lactic acid accumulation, thereby inhibiting the lowering of cytosolic pH and preventing cell damage during COVID-19-induced cytokine storm [94]. These cardiorenal benefits can synergistically offer protection to vital organs to reduce the risk of severity progression accompanied by beta-cell dysfunction. Therefore, it was not insulin therapy, per se, that was associated with poor prognosis of patients with COVID-19 having type 2 diabetes, but rather that it represented a proxy of severity and duration of diabetes. However, notably, iatrogenic hyperinsulinemia caused by exogenous insulin use might lead to adverse effects, including insulin resistance due to downregulation of insulin receptors, vascular changes, and subsequent adverse cardiovascular outcomes [96]. Moreover, our subgroup analyses as well as those from previous publications controlling for severity markers did not eliminate the association, raising concerns about the actual harmful effects of insulin [17]. Like DPP-4i, the increased risk of death among insulin users should be cautiously interpreted.

Unlike two smaller meta-analyses demonstrating that SU could reduce mortality risk [5,75], our results indicated that SU was not significantly associated with COVID-19-related mortality. Moreover, our study conducted a meta-analysis of AGI, which has not been reported previously. Traditionally, these drugs were often considered cardiovas-
cular neutral. This characteristic makes them not a first-line treatment in several comorbidities who had a compelling need to minimize hypoglycemia. These characteristics promoted the prescription of DPP-4i and limited the indication of other antidiabetic medications [33,50,54]. On the other hand, our subgroup analyses showed that DPP-4i might have little or no benefit among patient groups differed by vulnerability, suggesting that DPP-4i might not be associated with favorable COVID-19-related outcomes. To summarize, higher mortality rates in DPP-4i users should be cautiously interpreted.

The association between insulin treatment and severity or mortality is more complex. This result may still be affected by a confounding factor regarding the late commencement of insulin at an advanced stage of diabetes and the heterogeneous effectiveness of different insulin regimens, such as basal, basal-bolus, or premixed therapies. We speculate that insulin therapy is likely a surrogate indicator of diabetes progression accompanied by beta-cell dysfunction. Therefore, it was not insulin therapy, per se, that was associated with poor prognosis of patients with COVID-19 having type 2 diabetes, but rather that it represented a proxy of severity and duration of diabetes. However, notably, iatrogenic hyperinsulinemia caused by exogenous insulin use might lead to adverse effects, including insulin resistance due to downregulation of insulin receptors, vascular changes, and subsequent adverse cardiovascular outcomes [96]. Moreover, our subgroup analyses as well as those from previous publications controlling for severity markers did not eliminate the association, raising concerns about the actual harmful effects of insulin [17]. Like DPP-4i, the increased risk of death among insulin users should be cautiously interpreted.

Fig. 5. Dose–response meta-analysis between daily metformin dosage and mortality in patients with COVID-19 with diabetes.

250 mg/day increase in metformin use was associated with a 19.7% lower odds of mortality. In summary, the minimum metformin dosage that was found beneficial was 500 mg/day, and the higher the dose, the higher the effect. However, notably, the maximum approved dose for metformin is only 2550 mg/day (immediate-release form) and 2000 mg/day (extended-release form).

Metformin, SGLT-2i, and GLP-1RA have been identified as promising therapeutic targets for COVID-19 treatment. Metformin can reduce mortality. DPP-4i has yielded both protective and harmful effects on the underlying mechanisms of SARS-CoV-2 infection and progression from preclinical studies [4,95]. Moreover, the controversial results of DPP-4i from various original studies and meta-analyses up to the present might be explained by the fact that the authors could not entirely exclude potential confounders, even with multivariate adjustment or propensity score matching. For example, we observed a trend toward higher use of DPP-4i in older fragile people and in patients with several comorbidities who had a compelling need to minimize hypoglycemia. These characteristics promoted the prescription of DPP-4i and limited the indication of other antidiabetic medications [33,50,54]. On the other hand, our subgroup analyses showed that DPP-4i might have little or no benefit among patient groups differed by vulnerability, suggesting that DPP-4i might not be associated with favorable COVID-19-related outcomes. To summarize, higher mortality rates in DPP-4i users should be cautiously interpreted.

Table 3
Sensitivity analysis.

Medication	Main meta-analysis	Sensitivity analysis					
	OR (95% CI)	I²	OR (95% CI)	I²	p value	OR (95% CI)	p value
Metformin	0.54 (0.47–0.62)	86%	0.50 (0.45–0.55)	41%	0.37	0.61 (0.54–0.70)	0.17
Sulfonylurea	0.92 (0.83–1.01)	44%	0.98 (0.90–1.06)	18%	0.31	0.93 (0.84–1.04)	0.80
Thiazolidinedione	0.90 (0.71–1.14)	46%	No outlier	88.0 (0.70–1.11)	91%		
Alpha-glucosidase inhibitor	0.61 (0.26–1.45)	77%	1.13 (0.60–2.11)	47%	0.26	1.45 (0.57–3.74)	0.18
Glucagon-like peptide-1 receptor agonist	0.51 (0.37–0.69)	85%	0.54 (0.49–0.60)	0%	0.70	0.62 (0.45–0.84)	0.40
Dipeptidyl peptidase-4 inhibitor	1.23 (1.07–1.42)	82%	1.25 (1.14–1.37)	37%	0.86	1.29 (1.12–1.48)	0.67
Sodium-glucose transporter-2 inhibitor	0.60 (0.40–0.88)	91%	0.67 (0.52–0.85)	47%	0.63	0.54 (0.37–0.79)	0.72
Insulin	1.70 (1.33–2.19)	97%	1.60 (1.41–1.81)	60%	0.65	2.00 (1.58–2.52)	0.37

a Comparison of OR before vs. after removing outliers.
b Comparison of OR before vs. after trimming and filling.

Fig. 5. Dose–response meta-analysis between daily metformin dosage and mortality in patients with COVID-19 with diabetes.

In contrast to previous smaller meta-analyses reporting that DPP-4i had no significant effect on COVID-19-related death [6,75,80,85], after incorporating a larger number of studies, we observed that preadmission DPP-4i users were associated with higher odds of in-hospital mortality.
lungs [97]. Moreover, evidence has shown that a TZD could downregulate A Disintegrin and Metalloproteinase-17 (ADAM-17), an ACE2 cleaving enzyme in human skeletal muscles [98]. This event, in turn, increased membrane ACE2 and facilitated cellular viral entry, raising concerns about increased susceptibility to SARS-CoV-2 infection. These hypotheses partially explained why TZD did not improve the mortality outcomes of patients with COVID-19 with diabetes in our study.

4.2. Strengths and limitations

Our study has several strengths. Despite the high heterogeneity related to some analyses, the robustness of our findings was confirmed through meta-regression, subgroup analysis, and sensitivity analysis. First, after outliers were identified and removed, the heterogeneity of all remaining studies drastically decreased without a significant change in OR (all p > 0.05). Second, after the trim-and-fill method was performed, the OR did not significantly change (all p > 0.05), indicating that our pooled odds ratio still reflected the actual effect size. In other words, our results were reliable and stable, even in the presence of high heterogeneity. Third, we only included preadmission-usage studies instead of combining both preadmission and in-hospital use like some meta-analyses, leading to a more consistent data interpretation. Moreover, unlike some publications, we updated the most recent and completed data instead of using ongoing data or pooling two studies from the same cohort. Next, we recruited relatively diverse samples from multicenter and multinational cohorts, thus increasing the ability to generalize to a larger population. Finally, we could present a dose-response meta-analysis to predict the effect of daily metformin doses on COVID-19 mortality.

Our study nevertheless has some limitations. First, we could include only observational studies because no randomized controlled trial was conducted on the topic of interest at the time of analysis. Any conclusions, therefore, should be cautiously drawn (considering indication bias). However, we recruited the largest number of participants from various papers of acceptable quality, making our systematic review and meta-analysis have high internal validity. Second, due to the observational nature of the studies, the multidrug issue could not be excluded. An investigation of specific combination therapies was necessary, an investigation that was not possible with the available data. Third, we could only perform a single meta-analysis to predict the effect of daily metformin doses on COVID-19 mortality.

Table 4
Comparison with previous meta-analyses.

Medication	Study	Medication use setting	Number of studies	OR/RR	Conclusion
Metformin	Our current study	Preadmission	42	0.54	Decreased
	Han et al. [5]	Preadmission + in-hospital	20	0.62	Decreased
	Hariyanto et al. [74]	Preadmission	5	0.54	Decreased
	Kan et al. [75]	Preadmission + in-hospital	15	0.69	Decreased
	Kow et al. [76]	Preadmission	5	0.62	Decreased
	Li et al. [77]	Preadmission + in-hospital	19	0.66	Decreased
	Lukito et al. [78]	Preadmission	6	0.64	Decreased
	Oshana et al. [79]	Preadmission + in-hospital	22	0.56	Decreased
	Poly et al. [82]	Preadmission + in-hospital	16	0.66	Decreased
	Schein et al. [84]	Preadmission	4	0.75	Decreased
	Schlesinger et al. [85]	ND	4	0.50	Decreased
	Sun et al. [86]	Preadmission	7	0.54	Decreased
	Yang et al. [87]	Preadmission + in-hospital	17	0.63	Decreased
Sulfonylurea	Our current study	Preadmission	21	0.92	NS
	Han et al. [5]	Preadmission	4	0.93	Decreased
	Kan et al. [75]	Preadmission + in-hospital	5	0.80	Decreased
	Schlesinger et al. [85]	ND	2	0.73	NS
Thiazolidinedione	Our current study	Preadmission	8	0.90	NS
	No published meta-analysis				
Alpha-glucosidase inhibitor	Our current study	Preadmission	8	0.61	NS
	No published meta-analysis				
Glucagon-like peptide-1 receptor agonist	Our current study	Preadmission	12	0.51	Decreased
	Han et al. [5]	Preadmission + in-hospital	3	0.92	NS
	Hariyanto et al. [7]	Preadmission	9	0.53	Decreased
Dipeptidyl peptidase-4 inhibitor	Our current study	Preadmission	28	1.23	Increased
	Bonora et al. [73]	Preadmission	7	0.81	NS
	Han et al. [5]	Preadmission + in-hospital	11	0.95	NS
	Hariyanto et al. [6]	Preadmission	7	1.14	NS
	Kan et al. [75]	Preadmission + in-hospital	8	0.72	NS
	Pal et al. [80]	Preadmission	4	1.21	NS
	Patouis et al. [81]	Preadmission	8	1.14	NS
	Rahmat et al. [83]	Preadmission + in-hospital	9	0.76	NS
	Schlesinger et al. [85]	ND	2	0.90	NS
	Yang et al. [4]	Preadmission + in-hospital	4	0.58	NS
Sodium-glucose transporter-2 inhibitor	Our current study	Preadmission	13	0.60	Decreased
	Han et al. [5]	Preadmission + in-hospital	3	1.04	NS
Insulin	Our current study	Preadmission	33	1.70	Increased
	Kan et al. [75]	Preadmission + in-hospital	7	2.20	Increased
	Schlesinger et al. [85]	ND	5	1.75	Increased
	Yang et al. [88]	Preadmission + in-hospital	12	2.10	Increased

Abbreviations: ND, not defined; NS, not significant.
drugs used during hospitalization, both of which are especially critical for mortality modeling. Fifth, it is impossible to completely rule out unmeasured confounders, such as smoking or socioeconomic status, although the original studies tried to adjust for these factors to a certain extent. Therefore, further studies with a strictly controlled design are warranted to confirm the relationships between therapies and mortality among patients with COVID-19 having type 2 diabetes. Last, because of the high publication rate regarding the COVID-19 topic within the past three years, there is a possibility that some studies might have been missed and therefore were not included in our current review. Although it is unavoidable, we minimized that issue by assigning three researchers to systematically search and select studies and another reviewer to be consulted to reach a final decision if needed.

5. Conclusions

The preadmission prescription of glucose-lowering therapies was associated with different outcomes in patients with COVID-19 having type 2 diabetes. Specifically, metformin, GLP-1RA, and SGLT-2i were more likely to be beneficial regarding in-hospital death. By contrast, DPP-4i and insulin were associated with increased mortality. However, SU, TZD, and AGI were mortality neutral.

Abbreviations

ACE-2 Angiotensin-converting enzyme-2
ADAM-17 A Disintegrin And Metalloproteinase-17
AGI Alpha-glucosidase inhibitor
CKD Chronic kidney disease
COVID-19 Coronavirus disease of 2019
DPP-4i Dipeptidyl peptidase-4 inhibitor
GLP-1RA Glucagon-like peptide-1 receptor agonist
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cell
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SGLT-2i Sodium–glucose transporter-2 inhibitor
SU Sulfonylurea
TZD Thiazolidinedione

CRediT authorship contribution statement

NNN conceived of the original idea, performed meta-analyses, meta-regression, sensitivity analyses, interpreted data, and wrote the first manuscript. DSH, HSN, and DKNH performed the systematic search, study selection, risk of bias assessment, and data extraction. HYC and YCC verified the analytical methods, supervised the findings of this study, and contributed to the revisions of the final manuscript. HYC and CYL provided clinical advice on the interpretation of the data and contributed to the revisions of the final manuscript. All authors approved the final manuscript as submitted and have agreed to be accountable for all aspects of the work. YCC is the guarantor of this work.

Declaration of competing interest

The authors have no conflicts of interest relevant to this article to disclose. All authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Acknowledgement

This manuscript was edited by Wallace Academic Editing. We gratefully acknowledge Ngan Khanh Nguyen for her expertise and assistance in designing the graphical abstract.

Data availability

Data were extracted from published research papers, all of which are available and accessible. All datasets generated during the current study are available upon reasonable request from the corresponding authors. The study protocol has been published (PROSPERO ID: CRD42021293064; www.crd.york.ac.uk/PROSPERO/) and is unrestrictedly available.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.metabol.2022.155196.

References

[1] WHO n.d. Coronavirus disease (COVID-19) pandemic. Updated November 23. Accessed November 30, 2021. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
[2] Hu J, Wang Y. The clinical characteristics and risk factors of severe COVID-19. Gerontology 2021;67(3):255–66. https://doi.org/10.1159/000513400.
[3] Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol Jan 2021;17(1):1–10. https://doi.org/10.1038/s41571-020-00435-4.
[4] Yang Y, Cai Z, Zhang J. DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: a meta-analysis. PLoS One 2021;16(5):e0251916. https://doi.org/10.1371/journal.pone.0251916.
[5] Han T, Ma S, Sun C, et al. The association between anti-diabetic agents and clinical outcomes of COVID-19 in patients with diabetes: a systematic review and meta-analysis. Arch Med Res 2021. https://doi.org/10.1016/j.arcmed.2021.08.002. 2021/12/01/.
[6] Hariyanto TI, Kurniawan A. Dipeptidyl peptide 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression. J Diabetes Metab Disord 2021;20(1):1–8. https://doi.org/10.1007/s40200-021-00777-4.
[7] Hariyanto TI, Intan D, Hananto JE, Putri C, Kurniawan A. Pre-admission glucagon-like peptide-1 receptor agonist (GLP-1RA) and mortality from coronavirus disease 2019 (COVID-19): a systematic review, meta-analysis, and meta-regression. Diabetes Res Clin Pract Sep 2021;179:109031. https://doi.org/10.1016/j.diabres.2021.109031.
[8] Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. [Accessed 30 November 2021].
[9] Wg C. The combination of estimates from different experiments. Biometrics 1954; 10:101–29.
[10] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11):1539–58. https://doi.org/10.1002/sim.1186.
[11] Sterne JA, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol Nov 2001;54(11):1119–29. https://doi.org/10.1016/s0895-4356(00)00242-0.
[12] Cheng X, Liu YM, Li H, et al. Metformin is associated with higher incidence of acidosis, but not mortality, in individuals with COVID-19 and pre-existing type 2 diabetes. Cell Metab 2020;32(4):537–547.e5. https://doi.org/10.1016/j.cmet.2020.08.015.
[13] Pazoki M, Chichagi F, Hadadi A, et al. Association of clinical characteristics, antidiabetic and cardiovascular agents with diabetes mellitus and COVID-19: a 7-month follow-up cohort study. J Diabetes Metab Disord Nov 2021:1–11. https://doi.org/10.1007/s40200-021-00901-4.
[14] Agarwal S, Schechter C, Southern W, Crandall JP, Tomer Y. Preadmission diabetes-specific risk factors for mortality in hospitalized patients with diabetes and coronavirus disease 2019. Diabetes Care Oct 2020;43(10):2339–44. https://doi.org/10.2337/dci20-0134.
[15] An C, Lim H, Kim DW, Chang JH, Choi YJ, Kim SW. Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study. Sci Rep Oct 30 2020;10(1):18716. https://doi.org/10.1038/s41598-020-75767-2.
[16] Bleden K, Tantry U, Usman A, et al. Abstract 12228: metformin use in patients hospitalized with COVID-19: lower inflammation, oxidative stress, and thrombotic risk markers and better clinical outcomes. Circulation 2021;144(Suppl.1). https://doi.org/10.1161/circulationaha.121.12228.
[17] Boye KS, Tokar Erdeniz E, Zimmerman N, et al. Risk factors associated with COVID-19 hospitalization and mortality: a large claims-based analysis among people with type 2 diabetes mellitus in the United States. Diabetes Ther Aug 2021; 12(8):2223-39. https://doi.org/10.1007/s41390-021-01110-1.
Do JY Kim SW, Park JW, Cho KH, Kang SH. Is there an association between diabetes and COVID-19? A retrospective observational study. Life Sci Jun 15 2021;275:119371. https://doi.org/10.1016/j.lfs.2021.119371.

Crousse AB, Grimes T, Li P, Might M, Ovalle F, Shave A. Metformin use is associated with reduced mortality in a diverse population with COVID-19 and diabetes. Front Endocrinol (Lausanne) 2021;10:60439. https://doi.org/10.3389/fendo.2020.60439.

Dave JA, Tamhula T, Tiffin N, et al. Risk factors for COVID-19 hospitalisation and death in people living with diabetes: a virtual cohort study from the Western Cape Province, South Africa. Diabetes Res Clin Pract 2021;177:108925. https://doi.org/10.1016/j.diabres.2021.108925.

Fadini GP, Morieri ML, Longato E, et al. Exposure to dipeptidyl-peptidase-4 inhibitors and COVID-19 pneumonia and association with oral anti-diabetic drugs in hospitalized patients with diabetes mellitus. Diabetes Care Oct 2021;5(5):806–12. https://doi.org/10.1111/doi.14059.

Lally MA, Tsoukas P, Halladay CW, O’Connor C, Ulasli T, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care 2020;43(7):1399–407. https://doi.org/10.23736/s0149-1992.20.36560-6.

Chen Y, Yang D, Cheng B, et al. Effects of metformin on COVID-19 patients with pre-existing type 2 diabetes: A multicentric retrospective study. Life Sci Jun 15 2021;275:119371. https://doi.org/10.1016/j.lfs.2021.119371.

Cheng X, Xin S, Chen Y, et al. Effects of metformin on COVID-19 patients: A systematic review and meta-analysis. medRxiv 2021:2021.05.21.21257490. https://doi.org/10.1101/2021.05.21.21257490.

Chen CC, Su YJ, Liao SC, et al. Metformin use and risk of COVID-19 among patients with Type 2 diabetes mellitus: a nation-wide retrospective study. Diabetes Metab Syndr Obes 2021;14:608. https://doi.org/10.20945/2359-3997-000000384.

Emral R, Haymana C, Demirci I, et al. Unexpectedly lower mortality rates in patients with pre-existed type 2 diabetes: A multicentric observational study. Ir J Med Sci 2020;198(1):35. https://doi.org/10.1007/s40200-020-01666-7.

Silverii GA, Monami M, Cernigliaro A, et al. Are diabetes and its medications risk factors for severe coronavirus disease 2019 among Iranian patients. Italian Journal of Endocrinology and Metabolism 2020;60:00833-z.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Philipose Z, Smati N, Jefferson Wong CS, Aspey K, Mendall M. Obesity, old age, and mortality in COVID-19 patients including the post-discharge period. Ir J Med Sci 2020;209(4):341–6. https://doi.org/10.1007/s11845-021-02816-3.

Ravindra G, Chitra L, Madhur M, et al. Retrospective assessment of treatments of COVID-19 patients on type 2 diabetes mellitus. J Diabetes Metab Disord Jun 26 2021:1–8. https://doi.org/10.1007/s40200-021-00833-z.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. COVID-19 mortality in patients with and without diabetes: a population-based study in Turkey. Ir J Med Sci 2020;209:14–20. https://doi.org/10.1007/s11845-021-02823-9.

Neill E, Gravenstein S, Rudolph JL. Diabetes and mortality from COVID-19: A retrospective cohort study. JAMA Netw Open 2021;4(8):e21156257. https://doi.org/10.1001/jamanetworkopen.2021.156257.

Oh TK, Song IA. Metformin use and risk of COVID-19 among patients with type 2 diabetes mellitus: an NHS COVID-19 database cohort study. Acta Diabetol Jun 2021;58(6):771–8. https://doi.org/10.1007/s00592-020-01666-7.

Ong AN, Tan CC, Cattey MT, Lim BA, Robles J. Association between metformin use and mortality among patients with Type 2 diabetes mellitus hospitalized for COVID-19 infection. Journal of the ASEAN Federation of Endocrine Societies 2021;36(2):343–11. https://doi.org/10.15605/jafes.036.02.20.

Orioli L, Servais L, Belkhir L, et al. Clinical characteristics and short-term prognosis of in-patients with diabetes and COVID-19: a retrospective study from an academic center in Belgium. Diabetes Metab Syndr 2021;15(3):533–8. https://doi.org/10.1016/j.dsx.2020.12.014. Jan-Feb.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.

Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality from COVID-19: a single-centred, retrospective observational study. Endocr J 2021;68:131–9. https://doi.org/10.1507/endocrj.2021.29.
Kow CS, Hasan SS. Mortality risk with preadmission metformin use in patients with COVID-19. Diabetes Res Clin Pract Jan 2021;171:108444. https://doi.org/10.1016/j.driiabetes.2020.108444.

Tamura RE, Said SM, de Freitas LM, IGS Rubio. Outcome and death risk of diabetes patients with COVID-19 receiving pre-hospital and in-hospital metformin therapies. Diabetol Metab Syndr Jul 2021;13(1):76. https://doi.org/10.1186/s13098-021-00695-x.

Wander PL, Lowy E, Beste LA, et al. Prior glucose-lowering medication use and 30-day outcomes among 64,892 veterans with diabetes and COVID-19. Diabetes Care Oct 6 2021. https://doi.org/10.23736/S0149-1991.21.48531-9.

Wang B, Van Oeckelen G, Mouhieddine TH, et al. A tertiary center experience of multiple myeloma patients with COVID-19: lessons learned and the path forward. J Hematol Oncol Jul 14 2020;13(1):94. https://doi.org/10.1186/s13045-020-00934-x.

Wang J, Cooper JM, Gokhale K, et al. Association of Metformin with susceptibility to COVID-19 in people with type 2 diabetes. J Clin Endocrinol Metab 2021;106(5):1255–68. https://doi.org/10.1210/clinem/dgaa067.

Wargny M, Potier L, Gourdy P, et al. Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: updated results from the nationwide CORONADO study. Diabetologia Apr 2021;64(4):778–94. https://doi.org/10.1007/s00125-020-04351-w.

EKH Wong, DTW Lui, AYC Lui, et al. Use of DPP4I reduced odds of clinical deterioration and hyperinflammatory syndrome in COVID-19 patients with type 2 diabetes: propensity score analysis of a territory-wide cohort in Hong Kong. Diabetes & Metabolism 2021;101:0307. https://doi.org/10.1016/j.dfm.2021.101:0307. 2021/12/01.

Yan Y, Yang Y, Wang F, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Res Care Apr 2020;8(1). https://doi.org/10.1136/bmjdrc-2020-001343.

Yuan S, Li H, Chen C, Wang F, Wang DW. Association of glycosylated haemoglobin HbA1c levels with outcome in patients with COVID-19: a retrospective study. J Cell Mol Med Apr 2021;25(7):3484–97. https://doi.org/10.1111/jcmm.14631.

Bonora BM, Avogaro A, Fadini GP. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: narrative review and meta-analysis. J Endocrinol Invest Jul 2021;44(7):1379–86. https://doi.org/10.1007/s40618-021-01515-6.

Harayanto Ti, Kurniawan A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection. Obes Med Sep 2020;19:100290. https://doi.org/10.1016/j.obmed.2020.100290.

Kan C, Zhang Y, Han F, et al. Mortality risk of antidiabetic agents for type 2 diabetes with COVID-19: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2021;12:696087. https://doi.org/10.3389/fendo.2021.696087.

Kow CS, Hasan SS. Mortality risk with prednisolone metformin use in patients with COVID-19 and diabetes: a meta-analysis. J Med Virol Feb 2021;93(2):695–7. https://doi.org/10.1002/jmv.26498.

Li Y, Yang X, Yan P, Sun T, Zeng Z, Li S. Metformin in patients with COVID-19: a systematic review and meta-analysis. Front Med (Lausanne) 2021;8:704666. https://doi.org/10.3389/fmed.2021.704666.

Lukito AA, Pranata R, Henrata J, Lim MA, Lawrensen S, Suastika K. The effect of metformin consumption on mortality in hospitalized COVID-19 patients: a systematic review and meta-analysis. Diabetes Metab Syndr 2020;4(4):2773–87. https://doi.org/10.1016/j.dsx.2020.11.006. Nov-Dec.

Ocanosa TJ, Amado J, Vidal X, Savarino A, Romero-Ortuno R. Metformin therapy and severity and mortality of SARS-CoV-2 infection: a meta-analysis. Clin Diabetol Metab 2021;10(4):317–29. https://doi.org/10.5603/CD.2021.00035.

Pal R, Banerjee M, Mukherjee S, Bhogal RS, Kaur A, Bhadada SK. Dipeptidyl peptidase-4 inhibitor use and mortality in COVID-19 patients with diabetes mellitus: an updated systematic review and meta-analysis. Ther Adv Endocrinol Metab 2021;12:2042018821996482. https://doi.org/10.1177/2042018821996482.