The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions

Alessandro W Rossoni¹, Dana C Price², Mark Seger³, Dagmar Lyska¹, Peter Lammers³, Debashish Bhattacharya⁴, Andreas PM Weber¹*

¹Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany; ²Department of Plant Biology, Rutgers University, New Brunswick, United States; ³Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa, United States; ⁴Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, United States

Abstract The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.

DOI: https://doi.org/10.7554/eLife.45017.001

Introduction Eukaryotes transmit their nuclear and organelar genomes from one generation to the next in a vertical manner. As such, eukaryotic evolution is primarily driven by the accumulation, divergence (e.g., due to mutation, insertion, duplication), fixation, and loss of gene variants over time. In contrast, horizontal (also referred to as lateral) gene transfer (HGT) is the inter- and intraspecific transmission of genes from parents to their offspring. HGT in Bacteria (Doolittle, 1999; Ochman et al., 2000; Boucher et al., 2003) and Archaea (Nelson-Sathi et al., 2012) is widely accepted and recognized as an important driver of evolution leading to the formation of pan-genomes (Tettelin et al., 2005; Vernikos et al., 2015). A pan-genome comprises all genes shared by any defined phylogenetic clade and includes the so-called core (shared) genes associated with central metabolic processes, dispensable genes present in a subset of lineages often associated with the origin of adaptive traits, and lineage-specific genes (Vernikos et al., 2015). This phenomenon is so pervasive that it has been questioned whether prokaryotic genealogies can be reconstructed with any confidence using standard phylogenetic methods (Philippe and Douady, 2003; Doolittle and Brunet, 2016). In contrast, as eukaryote genome sequencing has advanced, an increasing body of data has pointed towards
The existence of HGT in these taxa, but at much lower rates than in prokaryotes (Danchin, 2016). The frequency and impact of eukaryotic HGT outside the context of endosymbiosis and pathogenicity however, remain hotly debated topics in evolutionary biology. Opinions range from the existence of ubiquitous and regular occurrence of eukaryotic HGT (Husnik and McCutcheon, 2018) to the almost complete dismissal of any eukaryotic HGT outside the context of endosymbiosis as being Lamarckian, thus false, and resulting from analysis artefacts (Martin, 2018; Martin, 2017). HGT skeptics favor the alternative hypothesis of differential loss (DL) to explain the current data. DL imposes strict vertical inheritance (eukaryotic origin) on all genes outside the context of pathogenicity and endosymbiosis, including putative HGTs. Therefore, all extant genes have their root in LECA, the last eukaryotic common ancestor. Patchy gene distributions are the result of multiple ancient paralogs in LECA that have been lost over time in some eukaryotic lineages but retained in others. Under this view, there is no eukaryotic pan-genome, there are no cumulative effects (e.g., the evolution of eukaryotic gene structures and accrual of divergence over time), and therefore, mechanisms for the uptake and integration of foreign DNA in eukaryotes are unnecessary.

A comprehensive analysis of the frequency of eukaryotic HGT was recently done by Ku and Martin (2016). These authors reported the absence of eukaryotic HGT candidates sharing over 70% protein identity with their putative non-eukaryotic donors (for very recent HGTs, this figure could be as high as 100%). Furthermore, no continuous sequence identity distribution was detected for HGT candidates across eukaryotes and the ‘the 70% rule’ was proposed (‘Coding sequences in eukaryotic genomes that share more than 70% amino acid sequence identity to prokaryotic homologs are most likely assembly or annotation artifacts.’) (Ku and Martin, 2016). However, as noted by others (Richards and Monier, 2016; Leger, 2018), this result was obtained by categorically dismissing all

Species	Origin	Country	Habitat	Habitat pH	Habitat Temp (°C)	Source
C. merolae 10D*	Sardinia	Italy	Acidic Hot Spring	1.5	Up to 45°C	ATCCS, T. Kuroiwa
C. merolae Soos	Soos National Park	CZ	Diatom field	0.8 - 2	< 0° - 30°C	W. Gross, M. Seger
G. phlegrea DBV09*	Nepi	Italy	Sulphur Spring	0.8	12°C	G. Pinto, ACUF
G. phlegrea Soos	Soos National Park	CZ	Diatom field	0.8 - 2	< 0° - 30°C	W. Gross, M. Seger
G. sulphuraria 002(S)	La Solitana	Italy	na	1	36°C	G. Pinto
G. sulphuraria 074W*	Mount Lawu	Indonesia	Fumaroles	na	35°C	W. Gross, P. De Luca
G. sulphuraria 5572	Norris Basin, YNP	USA	Acidic soil	1	55°C	M. Seger, R. W. Castenholz
G. sulphuraria Azora	Azores	Portugal	Porous sandstone, endolithic	2.1	na	W. Gross, A. Flechner
G. sulphuraria MS1	Contaminant	USA	Ronust contaminant of YNP cultures	na	na	M. Seger, P. Lammers
G. sulphuraria MSh	Mount Shasta	USA	Soil, close to mountain peak (4300m)	2.2	na	W. Gross, R. R. Pausewtein
G. sulphuraria RT22	Rio Tinto, Berrocal	Spain	Riverbank, endolithic	2.5	na	J. T.
G. sulphuraria SAG21.92	Yangmingshan	Taiwan	Hot spring	na	na	W. Gross, R. R. Pausewtein
G. sulphuraria YNP5578.1	Nymph Creek, YNP	USA	Acid stream	3	42°C	M. Seger, R. W. Castenholz

Figure 1. Geographic origin and habitat description of the analyzed Cyanidiales strains. Available reference genomes are marked with an asterisk (*), whereas ‘na’ indicates missing information.
DOI: https://doi.org/10.7554/eLife.45017.002
eukaryotic HGT singletons located within non-eukaryotic branches as assembly/annotation artefacts, as well as those remaining that exceeded the 70% threshold. In addition, all genes that were presumed to be of organellar origin were excluded from the analysis, leaving a small dataset extracted from already under-sampled eukaryotic genomes.

Given these uncertainties, the aim of our work was to systematically analyze eukaryotic HGT using the Cyanidiales (known as Cyanidiophytina in some taxonomic schemes) as model organisms. The Cyanidiales comprise a monophyletic clade of polyextremophilic, unicellular red algae (Rhodophyta) that thrive in acidic and thermal habitats worldwide (e.g., volcanoes, geysers, acid mining sites, acid rivers, urban wastewaters, geothermal plants) (Castenholz and McDermott, 2010). With a divergence age estimated to be around 1.92–1.37 billion years (Yoon et al., 2004), the Cyanidiales are the earliest split within Rhodophyta and define one of the oldest surviving eukaryotic lineages. They are located near the root of the supergroup Archaeplastida, whose ancestor underwent the primary plastid endosymbiosis with a cyanobacterium that established photosynthesis in eukaryotes (Reyes-Prieto et al., 2007; Price et al., 2012). In the context of HGT, the Cyanidiales became more broadly known after publication of the genome sequences of Cyanidioschyzon merolae 10D (Matsuzaki et al., 2004; Nozaki et al., 2007), Galdieria sulphuraria 074W (Schönknecht et al., 2013), and Galdieria phlegra DBV009 (Qiu et al., 2013). The majority of putative HGTs in these taxa was hypothesized to have provided selective advantages during the evolution of polyextremophily, contributing to the ability of Galdieria, Cyanidioschyzon, and Cyanidium to cope with extremely low pH values, temperatures up to 56˚C, as well as high salt and toxic heavy metal ion concentrations (Castenholz and McDermott, 2010; Doemel and Brock, 1971; Reeb and Bhattacharya, 2010; Hsieh et al., 2018). In such environments, they can represent up to 90% of the total biomass, competing with specialized Bacteria and Archaea (Seckbach, 1972), although some Cyanidiales strains also occur in more temperate environments (Qiu et al., 2013; Gross et al., 2002; Ciniglia et al., 2004; Barczy et al., 2018; Iovinella et al., 2018). The integration and maintenance of HGT-derived genes, in spite of strong selection for genome reduction in these taxa (Qiu et al., 2015) underlines the potential ecological importance of this process to niche specialization (Schönknecht et al., 2013; Qiu et al., 2013; Raymond and Kim, 2012; Bhattacharya et al., 2013; Foflonker et al., 2018; Schönknecht et al., 2014). For this reason, we chose the Cyanidiales as a model lineage for studying eukaryotic HGT.

It should be appreciated that the correct identification of HGTs based on sequence similarity and phylogeny is rarely trivial and unambiguous, leaving much space for interpretation and erroneous assignments. In this context, previous findings regarding HGT in Cyanidiales were based on single genome analyses and have therefore been questioned (Ku and Martin, 2016).

Many potential sources of error need to be excluded during HGT analysis, such as possible bacterial contamination in the samples, algorithmic errors during genome assembly and annotation, phylogenetic model misspecification, and unaccounted for gene paralogy (Richards and Monier, 2016). In addition, eukaryotic HGT reports based on single gene tree analysis are prone to misinterpretation and may be a product of deep branching artefacts and low genome sampling. Indeed, false claims of prokaryote-to-eukaryote HGT have been published (Boothby et al., 2015; Crisp et al., 2015) which were later corrected (Koutsovoulos et al., 2016; Salzberg, 2017).

Here, we used multi-genomic analysis with 13 Cyanidiales lineages (including 10 novel, long-read, draft genome sequences) from nine geographically isolated habitats. This approach increased phylogenetic resolution within Cyanidiales to allow more accurate assessment of HGT while avoiding many of the above-mentioned sources of error. The following questions were addressed by our research: (i) did HGT have a significant impact on Cyanidiales evolution? (ii) Are previous HGT findings in the sequenced Cyanidiales genomes an artefact of short read assemblies, limited genome databases, and uncertainties associated with single gene trees, or do they hold up with more extensive sampling? (iii) And, assuming that evidence of eukaryotic HGT is found across multiple Cyanidiales species, are cumulative effects observable, or is DL the better explanation for these results?
Table 1. Summary of the 13 analyzed Cyanidiales genomes.

The existing genomes of *Galdieria sulphuraria* 074W, *Cyanidioschyzon merolae* 10D, and *Galdieria phlegrea* are marked with ‘#’. The remaining 10 genomes are novel. Genome Size (Mb): size of the genome assembly in Megabases. Contigs: number of contigs produced by the genome assembly. The contigs were polished with quiver Contig N50 (kb): Contig N50. %GC Content: GC content of the genome given in percent. Genes: transcriptome size of species. Orthogroups: All Cyanidiales genes were clustered into a total of 9075 OGs. Here we show how many OGs there are per species. HGT Orthogroups: Number of OGs derived from HGT. HGT Genes: Number of HGT gene candidates found in species. %GC Native: GC content of the native transcriptome given in percent. %GC HGT: GC content of the HGT gene candidates given in percent. % Multiexon Native: % of multiexon genes in the native transcriptome. % Multiexon HGT: percent of multiexonic genes in the HGT gene candidates. S/M Native: Ratio of Multiexonic vs Singleexonic genes in native transcriptome. S/M HGT: Ratio of Multiexonic vs Singleexonic genes in HGT candidates. Asterisks (*) denote a significant difference (p≤0.05) between native and HGT gene subsets. EC, PFAM, GO, KEGG: Number of species-specific annotations in EC, PFAM, GO, KEGG.

Strain	Genome Size (Mb)	Contigs	Contig N50 (kb)	%GC Content	Genes	Ortho groups	HGT ortho groups	HGT genes	%GC Native	%GC HGT	(% Multiexon Native)	(% Multiexon HGT)	Exon/Gene Native	Exon/Gene HGT	EC	PFAM	KEGG	GO
G. sulphuraria 074W#	13.78	433	172.3	36.89	7174	5265	51	55	38.99	39.62*	73.6	47.3*	2.25	3.2*	938	3073	3241	6572
G. sulphuraria MS1	14.89	129	172.1	37.62	7441	5389	54	58	39.59	40.79*	83.4	62.1*	2.5	3.88*	930	3077	3178	6564
G. sulphuraria RT22	15.62	118	172.9	37.43	6982	5186	51	54	39.54	40.85*	74.7	51.9*	2.63	3.95*	941	3118	3223	6504
G. sulphuraria SAG21	14.31	135	158.2	37.92	5956	4732	44	47	40.04	41.47*	84.8	83.0	4.02	5.03*	931	3047	3143	6422
G. sulphuraria MtSh	14.95	101	186.6	40.04	6160	4746	46	47	41.33	42.48*	79.7	63.8*	3.15	4.32*	939	3114	3244	6450
G. sulphuraria Azora	14.06	127	162.3	40.10	6305	4905	49	58	41.34	42.57*	84.5	75.9*	2.68	4.03*	934	3072	3181	6474
G. sulphuraria YNP5587.1	14.42	115	170.8	40.05	6118	4846	46	46	41.33	42.14*	74.5	54.3*	2.61	3.65*	938	3084	3206	6516
G. sulphuraria 5572	14.28	108	229.7	37.99	6472	5009	46	53	39.68	40.5*	78.4	45.3*	2.15	3.53*	936	3108	3252	6540
G. sulphuraria 002	14.11	107	189.3	39.16	5912	4701	46	52	40.76	41.35*	97.1	50.0*	2.37	3.73*	927	3060	3184	6505
G. phlegrea DBV002#	11.41	9311	2.0	37.86	7836	5562	54	62	39.97	40.58*	na	na	na	na	935	3018	3125	6512
G. phlegrea Soos	14.87	108	201.1	37.52	6125	4624	44	47	39.57	40.73*	77.5	43.2*	2.19	3.33*	929	3034	3197	6493
C. merolae 10D#	16.73	22	859.1	54.81	4803	3990	33	33	56.57	56.57	0.5	0.0	1	1.01	883	2811	2832	6213
C. merolae Soos	12.33	35	567.5	54.33	4406	3574	34	34	54.84	54.26	9.4	2.9	1.06	1.1	886	2787	2823	6188
Results

Features of the newly sequenced cyanidiales genomes

Genome sizes of the 10 targeted Cyanidiales (Figure 1) range from 12.33 Mbp - 15.62 Mbp, similar to other members of this red algal lineage (Matsuzaki et al., 2004; Schölknecht et al., 2013; Qiu et al., 2013) (Table 1). PacBio sequencing yielded 0.56 Gbp – 1.42 Gbp of raw sequence reads with raw read N50 ranging from 7.9 kbp – 14.4 kbp, which translated to a coverage of 28.91x – 70.99x at the unitigging stage (39.46x – 91.20x raw read coverage) (Appendix 1). We predicted a total of 61,869 novel protein coding sequences which, together with the protein data sets of the already published Cyanidiales species (total of 81,682 predicted protein sequences), capture 295/303 (97.4%) of the highly conserved eukaryotic BUSCO dataset. Each species, taken individually, scored an average of 92.7%. In spite of massive gene losses observed in the Cyanidiales (Qiu et al., 2015), these results corroborate previous observations that genome reduction has had a minor influence on the core eukaryotic gene inventory in free-living organisms (Qiu et al., 2016). Even C. merolae Soos, the species with the most limited coding capacity (4406 protein sequences), includes 89.5% of the eukaryotic BUSCO dataset. The number of contigs obtained from the Galdieria genomes ranged between 101–135. G. sulphuraria 17.91 (a strain different from the ones sequenced) was reported to have 40 chromosomes, and strains isolated from Rio Tinto (Spain), 47 or 57 chromosomes (Moreira et al., 1994). Pulsed-field gel electrophoresis indicates that G. sulphuraria 074W has approximately 42 chromosomes that are between 100 kbp and 1 Mbp in size (Weber, 2007). The genome assembly of C. merolae Soos produced 35 contigs, which approximates the 22 chromosomes (including plastid and mitochondrion) of the C. merolae 10D telomere-to-telomere assembly. Whole genome alignments indicate that a portion of the assembled contigs represent complete chromosomes.

Orthogroups and phylogeny

The 81,682 predicted protein sequences from all 13 genomes clustered into a total of 9075 orthogroups and phylogenetic trees were built for each orthogroup. The reference species tree was constructed using 2,090 OGs that contained a single-copy gene in at least 12 of the 17 taxa (Porphyra umbilicalis (Brawley et al., 2017), Porphyridium purpureum (Bhattacharya et al., 2013), Ostreococcus tauri RCC4221 (Blanc-Mathieu et al., 2014), and Chlamydomonas reinhardtii (Merchant et al., 2007) were added to the dataset as outgroups). As a result, the species previously named G. sulphuraria Soos and C. merolae MS1 were reannotated as G. phlegrea Soos and G. sulphuraria MS1. Given these results, we sequenced a second genome of C. merolae and a representative of the G. phlegrea lineage. The species tree reflects previous findings that suggest more biodiversity exists within the Cyanidiales (Ciniglia et al., 2004) (Figure 2).

Analysis of HGTs

The most commonly used approach to identify HGT candidates is to determine the position of eukaryotic and non-eukaryotic sequences in a maximum likelihood tree. Using this approach, 96 OGs were identified in which Cyanidiales genes shared a monophyletic descent with prokaryotes, representing 1.06% of all OGs. A total of 641 individual Cyanidiales sequences are considered as HGT candidates (Table 1). The amount of HGT per species varied considerably between members of the Cyanidioschyzon (33–34 HGT events, all single copy genes) and Galdieria lineages with 44–54 HGT events (52.6 HGT origins on average, 47–62 HGT gene candidates). In comparison to previous studies (Schölknecht et al., 2013; Qiu et al., 2013), no evidence of massive gene family expansion regarding HGT genes was found because the maximum number of gene copies in HGT orthogroups was three. We note, however, that one large gene family of STAND-type ATPases that was previously reported to originate from an archaeal HGT (Schölknecht et al., 2013) did not meet the criteria used in our restrictive Blast searches; that is the 10^{-5} e-value cut-off for consideration and a minimum of three different non-eukaryotic donors. This highly diverged family requires more sophisticated comparative analyses that were not done here (Appendix 2).
Gene co-localization on raw sequence reads

One major issue associated with previous HGT studies is the incorporation of contaminant DNA into the genome assembly, leading to incorrect results (Boothby et al., 2015; Crisp et al., 2015; Koutsovoulos et al., 2016; Salzberg, 2017). Here, we screened for potential bacterial contamination in our tissue samples using PCR analysis of extracted DNA with the \textit{rbcL} and 18S rRNA gene markers prior to sequencing. No instances of contamination were found. Furthermore, our work relied on PacBio RSII long-read sequencing technology, whereby single reads frequently exceed 10 kbp of DNA. Given these robust data, we also tested for co-occurrence of HGT gene candidates and 'native' genes in the same read. The protein sequences of each species were queried with \texttt{tblastn} (10^{-5} e-value, 75 bitscore) against a database consisting of the uncorrected PacBio RSII long reads. This analysis showed that 629/641 (98.12\%) of the HGT candidates co-localize with native red algal genes on the same read (38,297 reads in total where co-localization of native genes and HGT candidates was observed). It should be noted that the 10 novel genomes we determined share HGT candidates with \textit{G. sulphuraria} 10D, \textit{G. sulphuraria} 074W, and \textit{G. phlegrea} DBV009, which were sequenced in different laboratories, at different points in time, using different technologies, and assembly pipelines. Hence, we consider it highly unlikely that these HGT candidates result from bacterial contamination. As the accuracy of long read sequencing technologies further increases, we believe this criterion for excluding bacterial contamination provides an additional piece of evidence that should be added to the guidelines for HGT discovery (Richards and Monier, 2016).
Differences in molecular features between native and HGT-derived genes

One of the main consequences of HGT is that horizontally acquired genes may have different structural characteristics when compared to native genes (cumulative effects). HGT-derived genes initially retain characteristics of the genome of the donor lineage. Consequently, the passage of time is required (and expected) to erase these differences. Therefore, we searched for differences in genomic features between HGT candidates and native Cyanidiales genes with regard to: (1) GC-content, (2) the number of spliceosomal introns and the exon/gene ratio, (3) differential transcription, (4) percent protein identity between HGT genes and their non-eukaryotic donors, and (5) cumulative effects as indicators of their non-eukaryotic origin (Danchin, 2016; Ku and Martin, 2016; Schönknecht et al., 2013).

GC-content

All 11 Galdieria species showed significant differences (GC-content of transcripts is normally distributed, Student’s t-test, two-sided, p<0.05) in percent GC-content between native sequences and HGT candidates (Table 1). Sequences belonging to the Galdieria lineage have an exceptionally low GC-content (39%–41%) in comparison to the majority of thermophilic organisms that exhibit higher values (~55%). On average, HGT candidates in Galdieria display 1% higher GC-content in comparison to their native counterparts. No significant differences were found for C. merolae 10D and C. merolae Soos in this respect. Because native Cyanidioschyzon genes have an elevated GC-content (54%–56%), this makes it difficult to distinguish between them and HGT-derived genes (Appendix 3).

Spliceosomal introns and exon/Gene

Bacterial genes lack spliceosomal introns and therefore the spliceosomal machinery. Consequently, genes acquired through HGT are initially single-exons and may acquire introns over time due to the invasion of existing intervening sequences. We detected significant discrepancies in the ratio of single-exon to multi-exon genes between HGT candidates and native genes in the Galdieria lineage. On average, 42% of the Galdieria HGT candidates are single-exon genes, whereas only 19.2% of the native gene set are comprised of single-exons. This difference is significant (categorical data, ‘native’ vs ‘HGT’ and ‘single exon’ vs. ‘multiple exon’, Fisher’s exact test, p<0.05) in all Galdieria species except G. sulphuraria SAG21.92 (Table 1). The Cyanidioschyzon lineage contains a highly reduced spliceosomal machinery (Qiu et al., 2018), therefore only ~10% of native genes are multi-exonic in C. merolae Soos and only 1/34 HGT candidates has gained an intron. C. merolae 10D has only 26 multi-exonic genes (~0.5% of all transcripts) and none of its HGT candidates has gained an intron. Enrichment testing is not possible with these small sample sizes (Appendix 4).

We analyzed the number of exons that are present in multi-exonic genes and obtained similar results for the Galdieria lineage (Table 1). All Galdieria species show significant differences regarding the exon/gene ratio between native and HGT genes (non-normal distribution regarding the number of exons per gene, Wilcoxon-Mann-Whitney-Test, 1000 bootstraps, p<0.05). HGT candidates in Galdieria have 0.97–1.36 fewer exons per gene in comparison to their native counterparts. Because the multi-exonic HGT subset in both Cyanidioschyzon species combined includes only one multi-exonic HGT candidate, no further analysis was performed (Appendix 4).

Differential transcription

Several RNA-Seq datasets are publicly available for G. sulphuraria 074W (Rossoni, 2018) and C. merolae 10D (Rademacher et al., 2016). We aligned (Kim et al., 2015) the transcriptome reads to the respective genomes, using an identical data processing pipeline (Robinson et al., 2010) for both datasets to exclude potential algorithmic errors (Figure 3). The average read count per gene (measured as counts per million, CPM), of native genes was 154 CPM in G. sulphuraria 074W and 196 CPM C. merolae 10D. The average read counts for HGT candidates in G. sulphuraria 074W and C. merolae 10D were 130 CPM and 184 CPM, respectively. No significant differences in RNA abundance between native genes and HGT candidates were observed for these taxa (non-normal distribution of CPM, Wilcoxon-Mann-Whitney-Test, p<0.05).
Gene function – not passage of time – explains percent protein identity (PID) between Cyanidiales HGT candidates and their non-eukaryotic donors

Once acquired, any HGT-derived gene may be fixed in the genome and propagated across the lineage. The PID data can be further divided into different subsets depending on species composition of the OG. Of the total 96 OGs putatively derived from HGT events, 60 are exclusive to the *Galdieria* lineage (62.5%), 23 are exclusive to the *Cyanidioschyzon* lineage (24%), and 13 are shared by both lineages (13.5%) (Figure 4A). Consequently, either a strong prevalence for lineage specific DL exists, or both lineages underwent individual sets of HGT events because they share their habitat with other non-eukaryotic species (which is what the HGT theory would assume). The 96 OGs in question are affected by gene loss or partial fixation. Once acquired only 8/13 of the ‘Cyanidiales’ (including ‘Multiple HGT’ and ‘Uncertain’) OGs and 20/60 of the *Galdieria* specific OGs are encoded by all species. Once acquired by the *Cyanidioschyzon* ancestor, the HGT candidates were retained by both *C. merolae* Soos and *C. merolae* 10D in 22/23 *Cyanidioschyzon* specific OGs. It is not possible to verify whether the only *Cyanidioschyzon* OG containing one HGT candidate is the result of gene loss, individual acquisition, or due to erroneously missing this gene model during gene prediction. The 96 OGs in question are affected by gene loss or partial fixation. Once acquired only 8/13 of the ‘Cyanidiales’ (including ‘Multiple HGT’ and ‘Uncertain’) OGs and 20/60 of the *Galdieria* specific OGs are encoded by all species. Once acquired by the *Cyanidioschyzon* ancestor, the HGT candidates were retained by both *C. merolae* Soos and *C. merolae* 10D in 22/23 *Cyanidioschyzon* specific OGs. It is not possible to verify whether the only *Cyanidioschyzon* OG containing one HGT candidate is the result of gene loss, individual acquisition, or due to erroneously missing this gene model during gene prediction. The average percent PID between HGT gene candidates of the 13 OGs shared by all Cyanidiales is 41.2% (min = 24.4%; max = 65.4%) (Figure 4B). From the HGT perspective, these OGs are derived from ancient HGT events that occurred at the root of the Cyanidiales, well before the split of the *Galdieria* and *Cyanidioschyzon* lineages. The OGs were retained over time in all Cyanidiales, although evidence of subsequent gene loss is observed. Under the DL hypothesis, this group of OGs contains genes that have been lost in all other eukaryotic lineages except the Cyanidiales. Similarly, the average PID between HGT candidates their non-eukaryotic donors in OGs

![Figure 3. Differential gene expression of *G. sulphuraria* 074W (A) and *C. merolae* 10D (B), here measured as log fold change (logFC) vs transcription rate (logCPM). Differentially expressed genes are colored red (quasi-likelihood (QL) F-test, Benjamini-Hochberg, p <= 0.01). HGT candidates are shown as large circles. The blue dashes indicate the average logCPM of the dataset. Although HGT candidates are not significantly more or less expressed than native genes, they react significantly stronger to temperature changes in *G. sulphuraria* 074W (‘more red than black dots’). This is not the case in high CO2 treated *C. merolae* 10D. DOI: https://doi.org/10.7554/eLife.45017.005](https://doi.org/10.7554/eLife.45017.005)
exclusive to the Cyanidioschyzon lineage is 46.4% (min = 30.8%; max = 69.7%) and 45.1% (min = 27.4%; max = 69.5%) for those OGs exclusive to the Galdieria lineage. According to the HGT view, these subsets of candidates were horizontally acquired either in the Cyanidioschyzon lineage, or in the Galdieria lineage after the split between Galdieria and Cyanidioschyzon. DL would impose gene loss on all other eukaryotic lineages except Galdieria or Cyanidioschyzon. Over time, sequence similarity between the HGT candidate and the non-eukaryotic donor is expected to decrease at a rate that reflects the level of functional constraint. The average PID of ‘ancient’ HGT candidates shared by both lineages (before the split into Galdieria and Cyanidioschyzon approximately 800 Ma years ago [Yang et al., 2016]) is ~5% lower than the average PID of HGT candidates exclusive to one lineage which, according to HGT would represent more recent HGT events because their acquisition occurred only after the split (thus lower divergence) (Figure 4C). However, no significant difference between Galdieria-exclusive HGTs, Cyanidioschyzon-exclusive HGTs, and HGTs shared by
both lineages was found (non-normal distribution of percent protein identity, Shapiro-Wilk normality test, W = 0.95, p=0.002; Pairwise Wilcoxon rank-sum test, Benjamini-Hochberg, all comparisons p>0.05). Therefore, neither Cyanidioschyzon nor Galdieria specific HGTs, or HGTs shared by all Cyanidiales, are significantly more, or less, similar to their potential prokaryotic donors. We also addressed the differences in PID within the three groups. The average PID within HGT gene candidates of the 13 OGs shared by all Cyanidiales is 75.0% (min = 51.9%; max = 90.9%) (Figure 4B). Similarly, the average PID within HGT candidates in OGs exclusive to the Cyanidioschyzon lineage is 65.1% (min = 48.9%; max = 83.8%) and 75.0% (min = 52.6%; max = 93.4%) for those OGs exclusive to the Galdieria lineage. Because we sampled only two Cyanidioschyzon species in comparison to 11 Galdieria lineages that are also much more closely related (Figure 2A), a comparison between these two groups was not done. However, a significant positive correlation (non-normal distribution of PID across all OGs, Kendall’s tau coefficient, p=0.000747) exists between the PID within Cyanidiales HGTs versus PID between Cyanidiales HGTs and their non-eukaryotic donors (Figure 4B). Hence, the more similar Cyanidiales sequences are to each other, the more similar they are to their non-eukaryotic donors, showing gene function dependent evolutionary constraints.

Complex origins of HGT-impacted orthogroups

While comparing the phylogenies of HGT candidates, we also noted that not all Cyanidiales genes within one OG necessarily originate via HGT (phylogenetic trees of each HGT-OG are included in Figure 5—figure supplements 1–96). Among the 13 OGs that contain HGT candidates present in both Galdieria and Cyanidioschyzon, we found two cases (Figure 4A, ‘Multiple HGT’), OG0002305 and OG0003085, in which Galdieria and Cyanidioschyzon HGT candidates cluster in the same orthogroup. However, these have different non-eukaryotic donors and are located on distinct phylogenetic branches that do not share a monophyletic descent (Figure 5A). This is potentially the case for OG0002483 as well, but we were uncertain due to low bootstrap values (Figure 4A, ‘Uncertain’). These OGs either represent two independent acquisitions of the same function or, according to DL, the LECA encoded three paralogs of the same gene which were propagated through evolutionary time. One of these was retained by the Galdieria lineage (and shares sequence similarity with one group of prokaryotes), the second was retained by Cyanidioschyzon (and shares sequence similarity with a different group of prokaryotes), and a third paralog was retained by all other eukaryotes. It should be noted that the ‘other eukaryotes’ do not always cluster in one uniformly eukaryotic clade which increases the number of required paralogs in LECA to explain the current pattern. Furthermore, some paralogs could also have already been completely eroded and do not exist in extant eukaryotes. Similarly, 6/60 Galdieria specific OGs also contain Cyanidioschyzon genes (OG0001929, OG0001938, OG0002191, OG0002574, OG0002785 and OG0003367). Here, they are nested within other eukaryote lineages and would not be derived from HGT (Figure 5B). Also, eight of the 23 Cyanidioschyzon specific HGT OGs contain genes from Galdieria species (OG0001807, OG0001810, OG0001994, OG0002727, OG0002871, OG0003539, OG0003929 and OG0004405) which cluster within the eukaryotic branch and are not monophyletic with Cyanidioschyzon HGT candidates (Figure 5C). According to the HGT view, this subset of candidates was horizontally acquired in either the Cyanidioschyzon lineage, or the Galdieria lineage only after the split between Galdieria and Cyanidioschyzon, possibly replacing the ancestral gene or functionally complementing a function that was lost due to genome reduction. According to DL, the LECA would have encoded two paralogs of the same gene. One was retained by all eukaryotes, red algae, and Galdieria or Cyanidioschyzon, the other exclusively by Cyanidioschyzon or Galdieria together with non-eukaryotes.

Stronger erosion of HGT genes impedes assignment to HGT or DL

As already noted above, only 50/96 of the sampled HGT-impacted OGs do not appear to be affected by erosion. Dense sampling of 11 taxa within the Galdieria lineage allowed a more in-depth analysis of this issue. Here, a bimodal distribution is observed regarding the number of species per OG in the native and HGT dataset (Figure 6C). Only 52.5% of the native gene set is present in all Galdieria strains (defined as 10 and 11 strains in order to account for potential misassemblies and missed gene models during prediction). Approximately 1/3 of the native OGs (36.1%) has been missed gene models during prediction). Approximately 1/3 of the native OGs (36.1%) has been affected by gene erosion to such a degree that it is present in only one, or two Galdieria strains. In comparison, 26.7% of the candidate HGT-impacted OGs are encoded in >10 Galdieria strains,
The analysis of OGs containing HGT candidates revealed different patterns of HGT acquisition. Some OGs contain genes that are shared by all Cyanidiales, whereas others are unique to the *Galdieria* or *Cyanidioschyzon* lineage. In some cases, HGT appears to have replaced the eukaryotic genes in one lineage, whereas the other lineage maintained the eukaryotic ortholog. Here, some examples of OG phylogenies are shown, which were simplified for ease of presentation. The first letter of the tip labels indicates the kingdom. A = Archaea (yellow), B = Bacteria (blue), E = Eukaryota (green). Branches containing Cyanidiales sequences are highlighted in red. (A) Example of an ancient HGT that occurred before *Galdieria* and *Cyanidioschyzon* split into separate lineages. As such, both lineages are monophyletic (e.g., OG0001476). (B) HGT candidates are unique to the *Galdieria* lineage (e.g. OG0001486). (C) HGT candidates are unique to the *Cyanidioschyzon* lineage (e.g., OG0001542). (D) *Galdieria* and *Cyanidioschyzon* HGT candidates are derived from different HGT events and share monophyly with different non-eukaryotic organisms (e.g., OG0001542). (E) *Galdieria* HGT candidates cluster with non-eukaryotes, whereas the *Cyanidioschyzon* lineage clusters with eukaryotes (e.g., OG0001542). (F) *Cyanidioschyzon* HGT candidates cluster with non-eukaryotes, whereas the *Galdieria* lineage clusters with eukaryotes (e.g., OG0006136).

DOI: https://doi.org/10.7554/eLife.45017.007

The following figure supplements are available for figure 5:

Figure supplement 1. Sequence tree of orthogroup OG0001476.
DOI: https://doi.org/10.7554/eLife.45017.008

Figure supplement 2. Sequence tree of orthogroup OG0001486.
DOI: https://doi.org/10.7554/eLife.45017.009

Figure supplement 3. Sequence tree of orthogroup OG0001509.
DOI: https://doi.org/10.7554/eLife.45017.010

Figure supplement 4. Sequence tree of orthogroup OG0001513.
DOI: https://doi.org/10.7554/eLife.45017.011

Figure supplement 5. Sequence tree of orthogroup OG0001542.
DOI: https://doi.org/10.7554/eLife.45017.012

Figure supplement 6. Sequence tree of orthogroup OG0001613.
DOI: https://doi.org/10.7554/eLife.45017.013

Figure supplement 7. Sequence tree of orthogroup OG0001658.

Figure 5 continued on next page
Figure 5 continued

DOI: https://doi.org/10.7554/eLife.45017.014

Figure supplement 8. Sequence tree of orthogroup OG0001760.
DOI: https://doi.org/10.7554/eLife.45017.015

Figure supplement 9. Sequence tree of orthogroup OG0001807.
DOI: https://doi.org/10.7554/eLife.45017.016

Figure supplement 10. Sequence tree of orthogroup OG0001810.
DOI: https://doi.org/10.7554/eLife.45017.017

Figure supplement 11. Sequence tree of orthogroup OG0001929.
DOI: https://doi.org/10.7554/eLife.45017.018

Figure supplement 12. Sequence tree of orthogroup OG0001938.
DOI: https://doi.org/10.7554/eLife.45017.019

Figure supplement 13. Sequence tree of orthogroup OG0001955.
DOI: https://doi.org/10.7554/eLife.45017.020

Figure supplement 14. Sequence tree of orthogroup OG0001976.
DOI: https://doi.org/10.7554/eLife.45017.021

Figure supplement 15. Sequence tree of orthogroup OG0001994.
DOI: https://doi.org/10.7554/eLife.45017.022

Figure supplement 16. Sequence tree of orthogroup OG0002036.
DOI: https://doi.org/10.7554/eLife.45017.023

Figure supplement 17. Sequence tree of orthogroup OG0002051.
DOI: https://doi.org/10.7554/eLife.45017.024

Figure supplement 18. Sequence tree of orthogroup OG0002191.
DOI: https://doi.org/10.7554/eLife.45017.025

Figure supplement 19. Sequence tree of orthogroup OG0002305.
DOI: https://doi.org/10.7554/eLife.45017.026

Figure supplement 20. Sequence tree of orthogroup OG0002337.
DOI: https://doi.org/10.7554/eLife.45017.027

Figure supplement 21. Sequence tree of orthogroup OG0002431.
DOI: https://doi.org/10.7554/eLife.45017.028

Figure supplement 22. Sequence tree of orthogroup OG0002483.
DOI: https://doi.org/10.7554/eLife.45017.029

Figure supplement 23. Sequence tree of orthogroup OG0002574.
DOI: https://doi.org/10.7554/eLife.45017.030

Figure supplement 24. Sequence tree of orthogroup OG0002578.
DOI: https://doi.org/10.7554/eLife.45017.031

Figure supplement 25. Sequence tree of orthogroup OG0002609.
DOI: https://doi.org/10.7554/eLife.45017.032

Figure supplement 26. Sequence tree of orthogroup OG0002676.
DOI: https://doi.org/10.7554/eLife.45017.033

Figure supplement 27. Sequence tree of orthogroup OG0002727.
DOI: https://doi.org/10.7554/eLife.45017.034

Figure supplement 28. Sequence tree of orthogroup OG0002785.
DOI: https://doi.org/10.7554/eLife.45017.035

Figure supplement 29. Sequence tree of orthogroup OG0002871.
DOI: https://doi.org/10.7554/eLife.45017.036

Figure supplement 30. Sequence tree of orthogroup OG0002896.
DOI: https://doi.org/10.7554/eLife.45017.037

Figure supplement 31. Sequence tree of orthogroup OG0002999.
DOI: https://doi.org/10.7554/eLife.45017.038

Figure supplement 32. Sequence tree of orthogroup OG0003085.
DOI: https://doi.org/10.7554/eLife.45017.039

Figure supplement 33. Sequence tree of orthogroup OG0003250.
DOI: https://doi.org/10.7554/eLife.45017.040

Figure supplement 34. Sequence tree of orthogroup OG0003367.
DOI: https://doi.org/10.7554/eLife.45017.041

Figure supplement 35. Sequence tree of orthogroup OG0003441.

Figure 5 continued on next page
Figure 5 continued

DOI: https://doi.org/10.7554/eLife.45017.042

Figure supplement 36. Sequence tree of orthogroup OG0003539.
DOI: https://doi.org/10.7554/eLife.45017.043

Figure supplement 37. Sequence tree of orthogroup OG0003777.
DOI: https://doi.org/10.7554/eLife.45017.044

Figure supplement 38. Sequence tree of orthogroup OG0003782.
DOI: https://doi.org/10.7554/eLife.45017.045

Figure supplement 39. Sequence tree of orthogroup OG0003834.
DOI: https://doi.org/10.7554/eLife.45017.046

Figure supplement 40. Sequence tree of orthogroup OG0003846.
DOI: https://doi.org/10.7554/eLife.45017.047

Figure supplement 41. Sequence tree of orthogroup OG0003856.
DOI: https://doi.org/10.7554/eLife.45017.048

Figure supplement 42. Sequence tree of orthogroup OG0003901.
DOI: https://doi.org/10.7554/eLife.45017.049

Figure supplement 43. Sequence tree of orthogroup OG0003905.
DOI: https://doi.org/10.7554/eLife.45017.050

Figure supplement 44. Sequence tree of orthogroup OG0003907.
DOI: https://doi.org/10.7554/eLife.45017.051

Figure supplement 45. Sequence tree of orthogroup OG0003929.
DOI: https://doi.org/10.7554/eLife.45017.052

Figure supplement 46. Sequence tree of orthogroup OG0003954.
DOI: https://doi.org/10.7554/eLife.45017.053

Figure supplement 47. Sequence tree of orthogroup OG0004030.
DOI: https://doi.org/10.7554/eLife.45017.054

Figure supplement 48. Sequence tree of orthogroup OG0004102.
DOI: https://doi.org/10.7554/eLife.45017.055

Figure supplement 49. Sequence tree of orthogroup OG0004142.
DOI: https://doi.org/10.7554/eLife.45017.056

Figure supplement 50. Sequence tree of orthogroup OG0004203.
DOI: https://doi.org/10.7554/eLife.45017.057

Figure supplement 51. Sequence tree of orthogroup OG0004258.
DOI: https://doi.org/10.7554/eLife.45017.058

Figure supplement 52. Sequence tree of orthogroup OG0004339.
DOI: https://doi.org/10.7554/eLife.45017.059

Figure supplement 53. Sequence tree of orthogroup OG0004392.
DOI: https://doi.org/10.7554/eLife.45017.060

Figure supplement 54. Sequence tree of orthogroup OG0004405.
DOI: https://doi.org/10.7554/eLife.45017.061

Figure supplement 55. Sequence tree of orthogroup OG0004486.
DOI: https://doi.org/10.7554/eLife.45017.062

Figure supplement 56. Sequence tree of orthogroup OG0004658.
DOI: https://doi.org/10.7554/eLife.45017.063

Figure supplement 57. Sequence tree of orthogroup OG0005083.
DOI: https://doi.org/10.7554/eLife.45017.064

Figure supplement 58. Sequence tree of orthogroup OG0005087.
DOI: https://doi.org/10.7554/eLife.45017.065

Figure supplement 59. Sequence tree of orthogroup OG0005153.
DOI: https://doi.org/10.7554/eLife.45017.066

Figure supplement 60. Sequence tree of orthogroup OG0005224.
DOI: https://doi.org/10.7554/eLife.45017.067

Figure supplement 61. Sequence tree of orthogroup OG0005235.
DOI: https://doi.org/10.7554/eLife.45017.068

Figure supplement 62. Sequence tree of orthogroup OG0005280.
DOI: https://doi.org/10.7554/eLife.45017.069

Figure supplement 63. Sequence tree of orthogroup OG0005479.

Figure 5 continued on next page
Figure 5 continued

DOI: https://doi.org/10.7554/eLife.45017.070

Figure supplement 64. Sequence tree of orthogroup OG0005540.
DOI: https://doi.org/10.7554/eLife.45017.071

Figure supplement 65. Sequence tree of orthogroup OG0005561.
DOI: https://doi.org/10.7554/eLife.45017.072

Figure supplement 66. Sequence tree of orthogroup OG0005596.
DOI: https://doi.org/10.7554/eLife.45017.073

Figure supplement 67. Sequence tree of orthogroup OG0005683.
DOI: https://doi.org/10.7554/eLife.45017.074

Figure supplement 68. Sequence tree of orthogroup OG0005694.
DOI: https://doi.org/10.7554/eLife.45017.075

Figure supplement 69. Sequence tree of orthogroup OG0005738.
DOI: https://doi.org/10.7554/eLife.45017.076

Figure supplement 70. Sequence tree of orthogroup OG0005963.
DOI: https://doi.org/10.7554/eLife.45017.077

Figure supplement 71. Sequence tree of orthogroup OG0005984.
DOI: https://doi.org/10.7554/eLife.45017.078

Figure supplement 72. Sequence tree of orthogroup OG0006136.
DOI: https://doi.org/10.7554/eLife.45017.079

Figure supplement 73. Sequence tree of orthogroup OG0006143.
DOI: https://doi.org/10.7554/eLife.45017.080

Figure supplement 74. Sequence tree of orthogroup OG0006191.
DOI: https://doi.org/10.7554/eLife.45017.081

Figure supplement 75. Sequence tree of orthogroup OG0006251.
DOI: https://doi.org/10.7554/eLife.45017.082

Figure supplement 76. Sequence tree of orthogroup OG0006252.
DOI: https://doi.org/10.7554/eLife.45017.083

Figure supplement 77. Sequence tree of orthogroup OG0006435.
DOI: https://doi.org/10.7554/eLife.45017.084

Figure supplement 78. Sequence tree of orthogroup OG0006482.
DOI: https://doi.org/10.7554/eLife.45017.085

Figure supplement 79. Sequence tree of orthogroup OG0006498.
DOI: https://doi.org/10.7554/eLife.45017.086

Figure supplement 80. Sequence tree of orthogroup OG0006623.
DOI: https://doi.org/10.7554/eLife.45017.087

Figure supplement 81. Sequence tree of orthogroup OG0006670.
DOI: https://doi.org/10.7554/eLife.45017.088

Figure supplement 82. Sequence tree of orthogroup OG0007051.
DOI: https://doi.org/10.7554/eLife.45017.089

Figure supplement 83. Sequence tree of orthogroup OG0007123.
DOI: https://doi.org/10.7554/eLife.45017.090

Figure supplement 84. Sequence tree of orthogroup OG0007346.
DOI: https://doi.org/10.7554/eLife.45017.091

Figure supplement 85. Sequence tree of orthogroup OG0007383.
DOI: https://doi.org/10.7554/eLife.45017.092

Figure supplement 86. Sequence tree of orthogroup OG0007550.
DOI: https://doi.org/10.7554/eLife.45017.093

Figure supplement 87. Sequence tree of orthogroup OG0007551.
DOI: https://doi.org/10.7554/eLife.45017.094

Figure supplement 88. Sequence tree of orthogroup OG0007596.
DOI: https://doi.org/10.7554/eLife.45017.095

Figure supplement 89. Sequence tree of orthogroup OG0008189.
DOI: https://doi.org/10.7554/eLife.45017.096

Figure supplement 90. Sequence tree of orthogroup OG0008334.
DOI: https://doi.org/10.7554/eLife.45017.097

Figure supplement 91. Sequence tree of orthogroup OG0008335.

Figure 5 continued on next page
whereas 53.0% are present in less than three. The latter number might be an underestimation due to the strict threshold for HGT discovery which led to the removal of HGT candidates that were singletons. The HGT distribution is therefore skewed towards OGs containing only a few or one Galdieria species as the result of recent HGT events that occurred; for example after the split of G. sulphuraria and G. phlegrea. In spite of the strong erosion which would also lead to partial fixation of presumably recent HGT events, we analyzed whether the distribution patterns of HGT candidates across the sequenced genomes reflect the branching pattern of the species trees (Figure 4C). This is true for all HGT candidates that are exclusive to the Cyanidioschyzon or Galdieria lineage. Either the HGT candidates were acquired after the split of the two lineages (according to HGT), or differentially lost in one of the two lineages (according to DL). In the 60 Galdieria specific OGs we found 12 OGs containing less than 10 and more than one Galdieria species (Figure 4C). In 5/12 of the cases, the presence absence pattern reflects the species tree (OG0005087, OG0005083, GO0005479, OG0005540). Here, the potential HGT candidates are not found in any other eukaryotic species. According to HGT, they were acquired by a monophyletic sub-clade of the Galdieria lineage. According to DL, they were lost in all eukaryotes with the exception of this subset of the Galdieria lineage (e.g., OG0005280 and OG0005083 were potentially acquired or maintained exclusively by the last common ancestor of G. sulphuraria 074W, G. sulphuraria MS1, G. sulphuraria RT22, and G. sulphuraria SAG21). In the remaining OGs, the HGT gene candidate is distributed across the Galdieria lineage and conflicts with the branching pattern of the species tree. HGT would assume either multiple independent acquisitions of the same HGT candidate, or partial fixation of the HGT candidate in the lineage, while still allowing for gene erosion. According to DL, these are the last existing paralogs of an ancient gene, whose erosion within the eukaryotic kingdom is nearly complete. However, it must be considered that in some cases, DL must have occurred independently across multiple species in a brief time after the gene was maintained for hundreds of millions of years across the lineage (e.g., OG0005224 contains G. phlegrea Soos, G. sulphuraria Azora and G. sulphuraria MS1). This implies that the gene was present in the ancestor of the Galdieria lineage and also in the last common ancestor of closely related G. sulphuraria MS1, G. sulphuraria 074W and G. sulphuraria RT22 (as well as G. sulphuraria SAG21) and the last common ancestor of closely related G. sulphuraria MtSh, G. sulphuraria Azora and G. sulphuraria YNP5587.1 (as well as G. sulphuraria 5572). A gene that was encoded and maintained since LECA, was lost independently in 6/8 species within the past few million years.

The seventy percent rule

In their analysis of eukaryotic HGT (Ku and Martin, 2016), Ku and co-authors reach the conclusion that prokaryotic homologs of genes in eukaryotic genomes that share >70% PID are not found outside individual genome assemblies (unless derived from endosymbiotic gene transfer, EGT). Hence, they are considered as assembly artifacts. We analyzed whether our dataset supports this rule, or alternatively, it is arbitrary and a byproduct of the analysis approach used, combined with low eukaryotic sampling (Richards and Monier, 2016; Leger, 2018). In addition to the 96 OGs potentially acquired through HGT, 2134 of the 9075 total OGs contained non-eukaryotic sequences, in which the Cyanidiales sequences cluster within the eukaryotic kingdom, but are similar enough to non-eukaryotic species to produce blast hits. Based on the average PID, no OG contains HGT.
Figure 6. HGT vs. non-HGT orthogroup comparisons. (A) Maximum PID of Cyanidiales genes in native (blue) and HGT (yellow) orthogroups when compared to non-eukaryotic sequences in each OG. The red lines denote the 70% PID threshold for assembly artifacts according to ‘the 70% rule’. Dots located in the top-right corner depict the 73 OGs that appear to contradict this rule, plus the 5 HGT candidates that score higher than 70%. 18/73 of those OGs are not derived from EGT or contamination within eukaryotic assemblies. (B) Density curve of average PID towards non-eukaryotic species in the same orthogroup (potential non-eukaryotic donors in case of HGT candidates). The area under each curve is equal to 1. The average PID of HGT candidates (left dotted line) is 6.1% higher than the average PID of native OGs also containing non-eukaryotic species (right dotted line). This difference is significant (Wilcoxon rank-sum test, p>0.01). (C) Distribution of OG-sizes (=number of Galdieria species present in each OG) between the native and HGT dataset. A total of 80% of the HGT OGs and 89% of the native OGs are present in either ≤10 species, or ≤2 species. Whereas 52.5% of the native gene set is conserved in ≤10 Galdieria strains, only 36.1% of the HGT candidates are conserved. In contrast, about 50% of the HGT candidates are present in only one Galdieria strain. (D) Pairwise OG-size comparison between HGT OGs and native OGs. A significantly higher PID when compared to non-eukaryotic sequences was measured in the HGT OGs at OG-sizes of 1 and 11 (Wilcoxon rank-sum test, BH, p<0.01). No evidence of cumulative effects was detected in the HGT dataset. However, the fewer Galdieria species that are contained in one OG, the higher the average PID when compared to non-eukaryotic species in the same tree (Jonckheere-Terpstra, p<0.01) in the native dataset. DOI: https://doi.org/10.7554/eLife.45017.104
candidates that share over 70% PID to their non-eukaryotic donors with OG0006191 having the highest average PID (69.68%). However, 5/96 HGT-impacted OGs contain one or more individual HGT candidates that exceed this threshold (5.2% of the HGT OGs) (Figure 6A). These sequences are found in OG0001929 (75.56% PID, 11 Galdieria species), OG0002676 (75.76% PID, 11 Galdieria species), OG0006191 (80.00% PID, both Cyanidioschyzon species), OG0008680 (72.37% PID, 1 Galdieria species), and OG0008822 (71.17% PID, 1 Galdieria species). Moreover, we find 73 OGs with eukaryotes as sisters sharing over 70% PID to non-eukaryotic sequences (0.8% of the native OGs) (Figure 6A). On closer inspection, the majority are derived from endosymbiotic gene transfer (EGT): 16/73 of the OGs are of proteobacterial descent and 33/73 OGs are phylogenies with gene origin in Cyanobacteria and/or Chlamydia. These annotations generally encompass mitochondrial/plastid components and reactions, as well as components of the phycobilisome, which is exclusive to Cyanobacteria, red algae, and red algal derived plastids. Of the remaining 24 OGs, 18 cannot be explained through EGT or artifacts alone unless multiple eukaryotic genomes would share the same artifact (and also assuming all gene transfers from Cyanobacteria, Chlamydia, and Proteobacteria are derived from EGT). A total of 6/24 OGs are clearly cases of contamination within the eukaryotic assemblies. Although ‘the 70% rule’ captures a large proportion of the dataset, increasing the sampling resolution within eukaryotes increased the number of exceptions to the rule. This number is likely to increase as more high-quality eukaryote nuclear genomes are determined. Considering the paucity of these data across the eukaryotic tree of life and the rarity of eukaryotic HGT, the systematic dismissal of eukaryotic singletons located within non-eukaryotic branches as assembly/annotation artifacts (or contamination) may come at the cost of removing true positives.

Cumulative effects

We assessed our dataset for evidence of cumulative effects within the candidate HGT-derived OGs. If cumulative effects were present, then recent HGT candidates would share higher similarity to their non-eukaryotic ancestors than genes resulting from more ancient HGT. Hence, the fewer species that are present in an OG, the higher likelihood of a recent HGT (unless the tree branching pattern contradicts this hypothesis, such as in OG 0005224, which is limited to 3 Galdieria species, but is ancient due to its presence in G. sulphuraria and G. phlegrea). In the case of DL, no cumulative effects as well as no differences between the HGT and native dataset are expected because the PID between eukaryotes and non-eukaryotes is irrelevant to this issue because all genes are native and occurred in the LECA. According to DL, the monophyletic position of Cyanidiales HGT candidates with non-eukaryotes is determined by the absence of other eukaryotic orthologs (given the limited current data) and may be the product of deep branching effects.

First, we tested for general differences in PID with regard to non-eukaryotic sequences between the native and HGT datasets (Figure 6B). Neither the PID with non-eukaryotic species in the same OG for the native dataset, nor the PID with potential non-eukaryotic donors in the same OG for the HGT dataset was normally distributed (Shapiro-Wilk normality test, p=2.2e-16/0.00765). Consequently, exploratory analysis was performed using non-parametric testing. On average, the PID with non-eukaryotic species in OGs containing HGT candidates is higher by 6.1% in comparison to OGs with eukaryotic descent. This difference is significant (Wilcoxon rank-sum test, p=0.000008).

Second, we assessed if OGs containing fewer Galdieria species would have a higher PID with their potential non-eukaryotic donors in the HGT dataset. We expected a lack of correlation with OG size in the native dataset because the presence/absence pattern of HGT candidates within the Galdieria lineage is dictated by gene erosion and thus independent of which non-eukaryotic sequences also cluster in the same phylogeny. Jonckheere’s test for trends revealed a significant trend within the native subset: the fewer Galdieria species are contained in one OG, the higher the average PID with non-eukaryotic species in the same tree (Jonckheere-Terpstra, p=0.002). This was not the case in the ‘HGT’ subset. Here, no general trend was observed (Jonckheere-Terpstra, p=0.424).

Third, we compared the PID between HGT-impacted OGs and native OGs of the same size (OGs containing the same number of Galdieria species). This analysis revealed a significantly higher PID with non-eukaryotic sequences in favor of the HGT subset in OGs containing either one Galdieria sequence, or all 11 Galdieria sequences (Wilcoxon rank-sum test, Benjamini-Hochberg, p=2.52e-08/3.39e-03) (Figure 6D). Hence, the ‘most recent’ and ‘most ancient’ HGT candidates share the highest identity with their non-eukaryotic donors, which is also significantly higher when compared to native genes in OGs of the same size.
Natural habitat of extant prokaryotes with closely related orthologs

We next set out to explore the natural habitats of extant prokaryotes that harbor the closest orthologs with candidate HGTs in the Cyanidiales. To this end, we counted the frequency at which any non-eukaryotic species shared monophyly with Cyanidiales (Table 2). A total of 568 non-eukaryotic species (19 Archaea, 549 Bacteria), from 365 different genera representing 24 divisions share monophyly with the 96 OGs containing HGT candidates. Most prominent are Proteobacteria that are sister phyla to 53/96 OGs. This group is followed by Firmicutes (28), Actinobacteria (19), Chloroflexi (12), and Bacteroidetes/Chlorobi (10). The only frequently occurring archaeal orthologs were found in Euryarchaeota (6 OGs). Interestingly, the closest orthologs often occurred in extremophilic prokaryotes that share similar (current) habitats with Cyanidiales. We hypothesize that potential non-eukaryotic HGT donors might share similar habitats because proximity is thought to favor HGT. However, we have no direct evidence of what the environment might have been at the time of HGT, or whether a third organism acted as the vector and has not been sampled in our analyses. It is worth noting that the phylogenetic data clearly demonstrate that Cyanidiales have been extremophiles for hundreds of millions of years.

Table 2. Natural habitats of extant prokaryotes harboring the closest orthologs to Cyanidiales HGTs.

Numbers in brackets represent how many times HGT candidates from Cyanidiales shared monophyly with non-eukaryotic organisms; for example Proteobacteria were found in 53/96 of the OG monophilies. Kingdom: Taxon at kingdom level. Species: Scientific species name. Habitat: habitat description of the original sampling site. pH: pH of the original sampling site. Temp: Temperature in Celsius of the sampling site. Salt: Ion concentration of the original sampling site. na: no information available.

Kingdom	Division	Species	Habitat description	pH	Max. temp	Salt
Bacteria	Proteobacteria (53)	Acidithiobacillus thiooxidans (4)	Mine drainage/Mineral ores	2.0–2.5	30˚C	‘hypersaline’
		Carnimonas nigrificans (4)	Raw cured meat	3.0	35˚C	8% NaCl
		Methyllosarcina frigida (4)	Landfill	5.0–9.0	37˚C	1% NaCl
		Sphingomonas phyllosphaerae (3)	Phyllosphere of Acacia caven	na	28˚C	na
		Gluconacetobacter diazotrophicus (3)	Symbiont of various plant species	2.0–6.0	na	‘high salt’
		Gluconobacter frateurii (3)	na	na	na	na
		Sphingobium yeojuensis (3)	River	na	na	na
		Thioalkalivibrio sulfidiphilus (3)	Soda lake	8.0–10.5	40˚C	15% total salts
		Thiomonas arsenitoxydans (3)	Disused mine site	3.0–8.0	30˚C	‘halophilic’
Firmicutes (28)		Sulfobacillus thermosulfidooxidans (6)	Copper mining	2.0–2.5	45˚C	‘salt tolerant’
		Alicyclobacillus acidoterrestris (4)	Soil sample	2.0–6.0	53˚C	5% NaCl
		Gracilibacillus lacisalis (3)	Salt lake	7.2–7.6	50˚C	25% total salts
Actinobacteria (19)		Amycolatopsis halophila (3)	Salt lake	6.0–8.0	45˚C	15% NaCl
		Rubrobacter xylanophilus (3)	Thermal industrial runoff	6.0–8.0	60˚C	6.0% NaCl
Chloroflexi (12)		Caldilinea aerophila (4)	Thermophilic granular sludge	6.0–8.0	65˚C	3% NaCl
		Ardenticatena maritima (3)	Coastal hydrothermal field	5.5–8.0	70˚C	6% NaCl
		Ktedonobacter racemifer (3)	Soil sample	4.8–6.8	33˚C	>3% NaCl
Bacteroidetes Chlorobi (10)		Salinibacter ruber (4)	Saltern crystallizer ponds	6.5–8.0	52˚C	30% total salts
		Salisaeta longa (3)	Experimental mesocosm (Salt)	6.5–8.5	46˚C	20% NaCl
Nitrospirae (7)		Leptospirillum ferrophilum (4)	Arsenopyrite biooxidation tank	0–3.0	40˚C	2% NaCl
Fibrobacteres (6)		Acidobacteriaceae bacterium TAA166 (3)	na	na	na	na
Deinococcus (5)		Truepera radiovictrix (3)	Hot spring runoffs	7.5–9.5	na	6% NaCl
Archaea	Euryarchaeota (6)	Ferroplasma acidarmanus (3)	Acid mine drainage	0–2.5	40˚C	‘halophilic’

DOI: https://doi.org/10.7554/eLife.45017.105
of millions of years. It is however conceivable that the HGTs may have occurred when these cells were being dispersed (they have a worldwide distribution) from one extreme site to another and would have encountered mesophilic donors at these times. Given these caveats, it is interesting to note that *Sulfobacillus thermosulfidooxidans* (Firmicutes), a mixotrophic, acidophilic (pH 2.0), and moderately thermophilic (45˚C) bacterium that was isolated from acid mining environments in northern Chile (where *Galdieria* is also present) was most prominent amongst the prokaryotic orthogroups. *Sulfobacillus thermosulfidooxidans* shares monophyly in 6/96 HGT-derived OGs and is followed in frequency by several species that are either thermophiles, acidophiles, or halophiles and share habitats in common with Cyanidiales (Table 2).

Functions of horizontally acquired genes in cyanidiales

We analyzed the putative molecular functions and processes acquired through HGT. Annotations were curated using information gathered from blast, GO-terms, PFAM, KEGG, and EC. A total of 72 GO annotations occurred more than once within the 96 HGT-impacted OGs. Furthermore, 37/72 GO annotations are significantly enriched (categorical data, ‘native’ vs ‘HGT’, Fisher’s exact test, Benjamini-Hochberg, p<0.05). The most frequent terms were: ‘decanoate-CoA ligase activity’ (5/72 GOs, p=0.001), ‘oxidation-reduction process’ (16/72 GOs, p=0.001), ‘transferase activity’ (14/72 GOs, p=0.009), ‘carbohydrate metabolic process’ (5/72 GOs, p=0.01), ‘oxidoreductase activity’ (9/72 GOs, p=0.012), ‘methyltransferase activity’ (5/72 GOs, p=0.023), ‘transmembrane transporter activity’ (4/72 GOs, p=0.043), and ‘hydrolase activity’ (9/72 GOs, p=0.048). In comparison to previous studies, our analysis did not report a significant enrichment of membrane proteins in the HGT dataset (‘membrane’, 11/72 OGs, p=0.699; ‘integral component of membrane’, 22/72 OGs, p=0.416. The GO annotation ‘extracellular region’ was absent in the HGT dataset) (Schönknecht et al., 2013). As such, we report a strong bias for metabolic functions among HGT candidates (Figure 7).

Metal and xenobiotic resistance/detoxification

Geothermal environments often contain high arsenic (Ar) concentrations, up to a several g/L as well as high levels of mercury (Hg), such as >200 µg/g in soils of the Norris Geyser Basin (Yellowstone National Park) and volcanic waters in southern Italy (Stauffer and Thompson, 1984; Aiuppa, 2003), both known Cyanidiales habitats (Castenholz and McDermott, 2010; Ciniglia et al., 2004; Toplin et al., 2008; Pinto, 1975). Studies with *G. sulphuraria* have shown an increased efficiency and speed regarding the biotransformation of HgCl$_2$ compared to eukaryotic algae (Kelly et al., 2007). Orthologs of OG0002305, which are present in all 13 Cyanidiales genomes, encode mercuric reductase that catalyzes the critical step in Hg$^{2+}$ detoxification, converting cytotoxic Hg$^{2+}$ into the less toxic metallic mercury, Hg0. Arsenate (As(V)) is imported into the cell by high-affinity P$_i$ transport systems (Meharg and MacNair, 1992; Catarêcha et al., 2007), whereas aquaporins regulate arsinite (As(III)) uptake (Zhao et al., 2010). *Galdieria* and Cyanidioschyzon possess a eukaryotic gene-set for the chemical detoxification and extrusion of As through biotransformation and direct efflux (Schönknecht et al., 2013). Arsenic tolerance was expanded in the Galdieria lineage through the acquisition (OG0001513) of a bacterial *arsC* gene, thus enabling the reduction of As(V) to As(III) using thioredoxin as the electron acceptor. It is known that As(III) can be converted into volatile dimethylarsine and trimethylarsine through a series of reactions, exported, or transported to the vacuole in conjugation with glutathione. Two separate acquisitions of a transporter annotated as *ArsB* are present in *G. sulphuraria* RT22 and *G. sulphuraria* 5572 (OG0006498, OG0006670), as well as a putative cytoplasmic heavy metal binding protein (OG0006191) in the Cyanidioschyzon lineage. In the context of xenobiotic detoxification, we found an aliphatic nitrilase (OG0001760) involved in styrene degradation and three (OG0003250, OG0005087, OG0005479) *Galdieria* specific 4-nitrophenylphosphatases likely involved in the bioremediation of highly toxic hexachlorocyclohexane (HCH) (van Doesburg et al., 2005), or more generally other cyclohexyl compounds, such as cyclohexylamine. In this case, bioremediation can be achieved through the hydrolysis of 4-nitrophenol to 4-nitrophenyl phosphate coupled with phosphoesterase/metallophosphatase activity. The resulting cyclohexyl compounds serve as multifunctional intermediates in the biosynthesis of various heterocyclic and aromatic metabolites. A similar function in the Cyanidioschyzon lineage could have been taken up by OG0006252, a cyclohexanone monoxygenase (Chen et al., 1988) oxidizing phenylacetone to...
benzyl acetate that can also oxidize various aromatic ketones, aliphatic ketones (e.g., dodecan-2-one) and sulfides (e.g., 1-methyl-4-(methylsulfanyl)benzene). In this context, a probable multidrug-resistance/quaternary ammonium compound exporter (OG0002896), which is present in all Cyanidiales, may control relevant efflux functions whereas a phosphatidylethanolamine (penicillin?) binding protein (OG0004486) could increase the stability of altered peptidoglycan cell walls. If these annotations are correct, then Galdieria is an even more promising target for industrial bioremediation applications than previously thought (Henkanatte-Gedera et al., 2017; Fukuda et al., 2018).

Cellular oxidant reduction

Increased temperature leads to a higher metabolic rate and an increase in the production of endogenous free radicals (FR), such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), for example during cellular respiration (Phaniendra et al., 2015). Furthermore, heavy metals such as lead and mercury, as well as halogens (fluorine, chlorine, bromine, iodine) stimulate formation of FR (Dietz et al., 1999). FR are highly biohazard and cause damage to lipids (Ylä-Herttuala, 1999), proteins (Stadtman and Levine, 2000) and DNA (Marnett, 2000). In the case of the superoxide radical (\(O^2\)), enzymes such as superoxide dismutase enhance the conversion of 2 x \(O^2\) into hydrogen peroxide (\(H_2O_2\)) which is in turn reduced to \(H_2O\) through the glutathione-ascorbate cycle. Other toxic hydroperoxides (R-OOH) can be decomposed various peroxidases to \(H_2O\) and alcohols (R-OH) at the cost of oxidizing the enzyme, which is later recycled (re-reduced) through oxidation of thioredoxin (Rouhier et al., 2008). The glutathione and thioredoxin pools and their related enzymes are thus factors contributing to a successful adaptation to geothermal environments. Here, we found a cytosolic and/or extracellular peroxiredoxin-6 (OG0005984) specific to the Cyanidioschyzon lineage and two peroxidase-related enzymes (probable alkyl hydroperoxide reductases acting on

Figure 7. Cyanidiales live in hostile habitats, necessitating a broad range of adaptations to polyextremophily. The majority of the 96 HGT-impacted OGS were annotated and putative functions identified (in the image, colored fields are from HGT, whereas gray fields are native functions). The largest number of HGT candidates is involved in carbon and amino acid metabolism, especially in the Galdieria lineage. The excretion of lytic enzymes and the high number of importers (protein/AA symporter, glycerol/H2O symporter) within the HGT dataset suggest a preference for import and catabolic function.

DOI: https://doi.org/10.7554/eLife.45017.106
carboxymuconolactone) in the Galdieria lineage (OG0004203, OG0004392) (Chae et al., 1994). In addition, a thioredoxin oxidoreductase related to alkyl hydroperoxide reductases (OG0001486) as well as a putative glutathione-specific gamma-glutamylcyclotransferase 2 (OG0003929) are present in all Cyanidiales. The latter has been experimentally linked to the process of heavy metal detoxification in Arabidopsis thaliana (Paulose et al., 2013).

Carbon metabolism

G. sulphuraria is able to grow heterotrophically using a large variety of different carbon sources and compounds released from dying cells (Gross et al., 1995; Gross, 1998). In contrast, C. merolae is strictly photoautotrophic (De Luca et al., 1978). G. sulphuraria can be maintained on glycerol as the sole carbon source (Gross et al., 1995) making use of a family of glycerol uptake transporters likely acquired via HGT (Schönknecht et al., 2013). We confirm the lateral acquisition of glycerol transporters in G. sulphuraria RT22 (OG0006482), G. sulphuraria Azora and G. sulphuraria SAG21 (OG0005235). The putative HGT glycerol transporters found in G. sulphuraria 074W did not meet the required threshold of two Cyanidiales sequences (from different strains) in one OG. In addition, another MIP family aquaporin, permeable to H2O, glycerol and other small uncharged molecules (Liu et al., 2007) is encoded by G. sulphuraria Azora (OG0007123). This could be an indication of a very diverse horizontal acquisition pattern regarding transporters. OG0003954 is the only exception to this rule, because it is present in all Galdieria lineages and is orthologous to AcpA|SatP acetate permeases involved with the uptake of acetate and succinate (Robellet et al., 2008; Sá-Pessoa et al., 2013).

We found evidence of saprophytic adaptations in Galdieria through the potential horizontal acquisition of an extracellular beta-galactosidase enzyme (Rojas et al., 2004; Rico-Díaz et al., 2014). This enzyme contains all five bacterial beta-galactosidase domains (OG0003441) involved in the catabolism of glycosaminoglycans, a polysaccharide deacetylase/peptidoglycan-N-acetylglucosamine deacetylase (OG0004030) acting on glucosidic (but note peptide bonds) that may degrade chitooligosaccharides, chitin, and/or xylan (Psylinakis et al., 2005; Lee et al., 2002) as well as an alpha-amylase (OG0004658) converting starch/glycogen to dextrin/maltose (Diderichsen and Christiansen, 1988) which is missing only in G. sulphuraria SAG21. All other HGT OGs involved in sugar metabolism are involved in the intercellular breakdown and interconversions of sugar carbohydrates. OG0006623 contains a non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase found in hyperthermophile archaea (Ettema et al., 2008) (G. sulphuraria 002). The OG0005153 encodes a glycosyl transferase family one protein involved in carbon metabolism (G. sulphuraria 074W, G. sulphuraria MS1, G. sulphuraria RT22, G. sulphuraria YNP5587.1). All Galdieria have an alpha-xyllosidase resembling an extremely thermo-active and thermostable alpha-galactosidase (OG0001542) (van Lieshout et al., 2003; Okuyama et al., 2004). The only horizontal acquisition in this category present in all Cyanidiales is a cytoplasmic ribokinase involved in the D-ribosyl catabolic process (OG0001613).

The irreversible synthesis of malonyl-CoA from acetyl-CoA through acetyl-CoA carboxylase (ACCase) is the rate limiting and step in fatty acid biosynthesis. The bacterial ACCase complex consists of three separate subunits, whereas the eukaryotic ACCase is composed of a single multifunctional protein. Plants contain both ACCase isozymes. The eukaryotic enzyme is located in the cytosol and a bacterial-type enzyme consisting of four subunits is plastid localized. Three of the HGT orthogroups (OG0002051, OG0007550 and OG0007551) were annotated as bacterial biotin carboxyl carrier proteins (AbbB/BCCP), which carry biotin and carboxybiotin during the critical and highly regulated carboxylation of acetyl-CoA to form malonyl-CoA [ATP + long-chain carboxylate + CoA, ADP + Orthophosphate + Malonyl-CoA]. Whereas OG0002051 is present in all Cyanidiales and located in the cytoplasm, OG0007550 and OG0007551 are unique to C. merolae Soos and annotated as ‘chloroplastic’. Prior to fatty acid (FA) beta-oxidation, FAs need to be transformed to a FA-CoA before entering cellular metabolism as an exogenous or endogenous carbon source (eicosanoid metabolism is the exception). This process is initiated by long-chain-fatty-acid-CoA ligases/acyl-CoA synthetases (ACSL) (Mashek et al., 2007) [ATP + long-chain carboxylate + CoA = AMP + diphosphate + Acyl-CoA]. Five general non-eukaryotic ACSL candidates were found (OG0001476, OG0002999, OG0005540, OG0008579, OG0008822). Only OG0001476 is present in all species, whereas OG0002999 is present in all Galdieria, OG0005540 in G. sulphuraria 074W and G.
Amino acid metabolism

Oxidation of amino acids (AA) can be used as an energy source. Once AAs are deaminated, the resulting \(\alpha\)-ketoacids (‘carbon backbone’) can be used in the tricarboxylic acid cycle for energy generation, whereas the remaining \(\text{NH}_4^+\) can be used for the biosynthesis of novel AAs, nucleotides, and ammonium containing compounds, or dissipated through the urea cycle. In this context, we confirm previous observations regarding a horizontal origin of the urease accessory protein UreE (OG0003777) present in the \textit{Galdieria} lineage (Qiu \textit{et al.}, 2013) (the other urease genes reported in \textit{G. phlegrea} DBV009 appear to be unique to this species and were thus removed from this analysis as singletons; for example ureG, OG0008984). AAs are continuously synthesized, interconverted, and degraded using a complex network of balanced enzymatic reactions (e.g., peptidases, lyases, transferases, isomerases). Plants maintain a functioning AA catabolism that is primarily used for the interconversion of metabolites because photosynthesis is the primary source of energy. The \textit{Cyanidiales}, and particularly the \textit{Galdieria} lineage is known for its heterotrophic lifestyle. We assigned 19/96 HGT-impacted OGs to this category. In this context, horizontal acquisition of protein|AA:proton symporter AA permeases (OG0001658, OG0005224, OG0005596, OG0007051) may be the first indication of adaptation to a heterotrophic lifestyle in \textit{Galdieria}. Once a protein is imported, peptidases cleave single AAs by hydrolyzing the peptide bonds. Although no AA permeases were found in the \textit{Cyanidioschyzon} lineage, a cytoplasmic threonine-type endopeptidase (OG0001994) and a cytolsolic proline iminopeptidase involved in arginine and proline metabolism (OG0006143) were potentially acquired through HGT. At the same time, the \textit{Galdieria} lineage acquired a Clp protease (OG0007596). The remaining HGT candidates are involved in various amino acid metabolic pathways. The first subset is shared by all \textit{Cyanidiales}, such as a cytoplasmic imidazoleglycerol-phosphate synthase involved in the biosynthetic process of histidine (OG0002036), a phosphoribosyltransferase involved in phenylalanine/tryptophan/tyrosine biosynthesis (OG0001509) and a peptidylproline peptidyl-prolyl cis-trans isomerase acting on proline (OG0001938) (Dilworth \textit{et al.}, 2012). The second subset is specific to the \textit{Cyanidium} lineage. It contains a glutamine/leucine/phenylalanine/valine dehydrogenase (OG0006136) (Kloosterman \textit{et al.}, 2006), a glutamine cyclotransferase (OG0006251) (Dahl \textit{et al.}, 2000), a cysteine deaminase (OG0003539) as well as an adenine deaminase (OG0005683) and a protein binding hydrolase containing a NUDIX domain (OG0005694). The third subset is specific to the \textit{Galdieria} lineage and contains an ornithine deaminase, a glutaryl-CoA dehydrogenase (OG0007383) involved in the oxidation of lysine, tryptophan, and hydroxylsine (Rao \textit{et al.}, 2006), as well as an ornithine cyclodeaminase (OG0004258) involved in arginine and/or proline metabolism. Finally, a lysine decarboxylase (OG0007346), a bifunctional ornithine acetyltansferase/N-acetylglutamate synthase (Martin and Mulks, 1992) involved in the arginine biosynthesis (OG0008989) and an aminocetone oxidase family FAD-binding enzyme (OG0007383), probably catalytic activity against several different L-amino acids were found as unique acquisitions in \textit{G. sulphuraria} YNP5587.1 respectively.

One carbon metabolism and methylation

One carbon (1C) metabolism based on folate describes a broad set of reactions involved in the activation and transfer C1 units in various processes including the synthesis of purine, thymidine, methionine, and homocysteine re-methylation. C1 units can be mobilized using tetrahydrofolate (THF) as a cofactor in enzymatic reactions, vitamin B12 (cobalamin) as a co-enzyme in methylation/rearrangement reactions and S-adenosylmethionine (SAM) (Ducker and Rabinowitz, 2017). In terms of purine biosynthesis, OG0005280 encodes an ortholog of a bacterial FAD-dependent thymidylate (dTMP)
synthase converting dUMP to dTMP by oxidizing THF present in *G. sulphuraria* 074W, *G. sulphuraria* MS1, and *G. sulphuraria* RT22. In terms of vitamin B12 biosynthesis, an ortholog of the cobalamin biosynthesis protein CobW was found in the *Cyanidioschyzon* lineage (OG0002609). Much of the methionine generated through C1 metabolism is converted to SAM, the second most abundant cofactor after ATP, which is a universal donor of methyl (-CH$_3$) groups in the synthesis and modification of DNA, RNA, hormones, neurotransmitters, membrane lipids, proteins and also play a central role in epigenetics and posttranslational modifications. Within the 96 HGT-impacted dataset we found a total of 9 methyltransferases (OG0003901, OG0003905, OG0002191, OG0002431, OG0002727, OG0003907, OG0005083 and OG0005561) with diverse functions, 8 of which are SAM-dependent methyltransferases. OG0002431 (*Cyanidiales*), OG0005561 (*G. sulphuraria* MS1 and *G. phlegrea* DBV009) and OG0005083 (*G. sulphuraria* SAG21) encompass rather unspecific SAM-dependent methyltransferases with a broad range of possible methylation targets. OG0002727, which is exclusive to *Cyanidioschyzon*, and OG0002191, which is exclusive to *Galdieria*, both methylate rRNA. OG0002727 belongs to the Erm rRNA methyltransferase family that methylate adenine on 23S ribosomal RNA (*Yu et al., 1997*). Whether it confers macrolide-lincosamide-streptogramin (MLS) resistance, or shares only adenine methylating properties remains unclear. The OG0002191 is a 16S rRNA (cytidine1402-2'-O)-methyltransferase involved the modulation of translational fidelity (*Kimura and Suzuki, 2010*).

Osmotic resistance and salt tolerance

Cyanidiales withstand salt concentrations up to 10% NaCl (*Albertano, 2000*). The two main strategies to prevent the accumulation of cytotoxic salt concentrations and to withstand low water potential are the active removal of salt from the cytosol and the production of compatible solutes. Compatible solutes are small metabolites that can accumulate to very high concentrations in the cytosol without negatively affecting vital cell functions while keeping the water potential more negative in relation to the saline environment, thereby avoiding loss of water. The *G. sulphuraria* lineage produces glycine/betaine as compatible solutes under salt stress in the same manner as halophilic bacteria (*Imhoff and Rodriguez-Valera, 1984*) through the successive methylation of glycine via sarcosine and dimethylglycine to yield betaine using S-adenosyl methionine (SAM) as a cofactor (*Lu et al., 2006*; *Waditee et al., 2003*; *Nyyssola et al., 2000*). This reaction is catalyzed by the enzyme sarcosine dimethylglycine methyltransferase (SDMT), which has already been characterized in *Galdieria* (*McCoy et al., 2009*). Our results corroborate the HGT origin of this gene, supporting two separate acquisitions of this function (OG0003901, OG0003905). In this context, a inositol 2-dehydrogenase possibly involved in osmoprotective functions (*Kingston et al., 1996*) in *G. phlegrea* DBV009 was also found in the HGT dataset (OG0008335).

Non-Metabolic functions

Outside the context of HGT involving enzymes that perform metabolism related functions, we found 6/96 OGs that are annotated as transcription factors, ribosomal components, tRNA, or fulfilling functions not directly involved in metabolic fluxes. Specifically, two OGs associated with the bacterial 30S ribosomal subunit were found, whereas OG0002627 (*Galdieria*) is orthologous to the tRNA binding translation initiation factor eIF1a which binds the tMet-tRNA(Met) start site to the ribosomal 30S subunit and defines the reading frame for mRNA translation (*Simonetti et al., 2009*), and OG0004339 (*Galdieria*) encodes the S4 structural component of the S30 subunit. Three genes functioning as regulators were found in *Cyanidioschyzon*, a low molecular weight phosphotyrosine protein phosphatase with an unknown regulator function (OG0002785), a SfsA nuclease (*Takeda et al., 2001*), similar to the sugar fermentation stimulation protein A and (OG0002871) a MRP family multidrug resistance transporter connected to parA plasmid partition protein, or generally involved in chromosome partitioning (mrp). Additionally, we found a *Cyanidioschyzon*-specific RuvX ortholog (OG0002578) involved in chromosomal crossovers with endonucleolytic activity (*Nautiyal et al., 2016*) as well as a likely Hsp20 heat shock protein ortholog (OG0004102) unique to the *Galdieria* lineage.
Various functions and uncertain annotations

The remaining OGs were annotated with a broad variety of functions. For example, OG0001929, OG0001810, OG0004405, and OG0001087 are possibly connected to the metabolism of cell wall precursors and components and OG0001929 (Galdieria) is an isomerizing glutamine-fructose-6-phosphate transaminase most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins, such as for peptidoglycan. In contrast, OG0004405 (Cyanidioschyzon) synthesizes exopolysaccharides on the plasma membrane and OG0001087 (Cyanidiales) and OG0001810 (Cyanidioschyzon) are putative undecaprenyl transferases (UPP) which function as lipid carrier for glycosyl transfer in the biosynthesis of cell wall polysaccharide components in bacteria (Apfel et al., 1999). The OGs OG0002483 and OG0001955 are involved in purine nucleobase metabolic processes, probably in cAMP biosynthesis (Galperin, 2005) and IMP biosynthesis (Schrimsher et al., 1986). A Cyanidioschyzon specific 9,15,9’-tri-cis-zeta-carotene isomerase (OG0002574) may be involved in the biosynthesis of carotene (Chen et al., 2010). Two of the 96 HGT OGs obtained the tag ‘hypothetical protein’ and could not be further annotated. Others had non-specific annotations, such as ‘selenium binding protein’ (OG0003856) or contained conflicting annotations.

Discussion

Making an argument for the importance of HGT in eukaryote (specifically, Cyanidiales) evolution, as we do here, requires that three major issues are addressed: a mechanism for foreign gene uptake and integration, the apparent absence of eukaryotic pan-genomes, and the lack of evidence for cumulative effects (Martin, 2017). The latter two arguments are dealt with below but the first concern no longer exists. For example, recent work has shown that red algae harbor naturally occurring plasmids, regions of which are integrated into the plastid DNA of a taxonomically wide array of species (Lee et al., 2016). Genetic transformation of the unicellular red alga Porphyridium purpureum has demonstrated that introduced plasmids accumulate episomally in the nucleus and are recognized and replicated by the eukaryotic DNA synthesis machinery (Li and Bock, 2018). These results suggest that a connection can be made between the observation of bacterium-derived HGTs in P. purpureum (Bhattacharya et al., 2013) and a putative mechanism of bacterial gene origin via long-term plasmid maintenance. Other proposed mechanisms for the uptake and integration of foreign DNA in eukaryotes are well-studied, observed in nature, and can be successfully recreated in the lab (Leger, 2018; Li and Bock, 2018).

HGT- the eukaryotic pan-genome

Eukaryotic HGT is rare and affected by gene erosion. Within the 13 analyzed genomes of the polyextremophilic Cyanidiales (Foflonker et al., 2018; Schänknecht et al., 2014), we identified and annotated 96 OGs containing 641 single HGT candidates. Given an approximate age of 1,400 Ma years and ignoring gene erosion, on average, one HGT event occurs every 14.6 Ma years in Cyanidiales. This figure ranges from one HGT every 33.3 Ma years in Cyanidioschyzon and one HGT every 13.3 Ma in Galdieria. Still, one may ask, given that eukaryotic HGT exists, what comprises the eukaryotic pan-genome and why does it not increase in size as a function of time due to HGT accumulation? In response, it should be noted that evolution is ‘blind’ to the sources of genes and selection does not act upon native genes in a manner different from those derived from HGT. In our study, we report examples of genes derived from HGT that are affected by gene erosion and/or partial fixation (Figure 4A). As such, only 8/96 of the HGT-impacted OGs (8.3%) are encoded by all 13 Cyanidiales species. Looking at the Galdieria lineage alone (Figure 6C), 28 of the 60 lineage-specific OGs (47.5%) show clear signs of erosion (HGT orthologs are present in ≤10 Galdieria species), to the point where a single ortholog of an ancient HGT event may remain.

When considering HGT in the Cyanidiales it is important to keep in mind the ecological boundaries of this group, the distance between habitats, the species composition of habitats, and the mobility of Cyanidiales within those borders that control HGT. Hence, we would not expect the same HGT candidates derived from the same non-eukaryotic donors to be shared between Cyanidiales and marine/freshwater red algae (unless they predate the split between Cyanidiales and other red algae), but rather between Cyanidiales and other polyextremophilic organisms. In this context,
inspection of the habitats and physiology of potential HGT donors revealed that the vast majority is extremophilic and, in some cases, shares the same habitat as Cyanidiales (Table 2). A total of 84/96 of the inherited gene functions could be connected to ecologically important traits such as heavy metal detoxification, xenobiotic detoxification, ROS scavenging, and metabolic functions related to carbon, fatty acid, and amino acid turnover. In contrast, only 6/96 OGs are related to methylation and ribosomal functions. We did not find HGTs contributing other traits such as ultrastructure, development, or behavior (Figure 7). If cultures were exposed to abiotic stress, the HGT candidates were significantly enriched within the set of differentially expressed genes (Figure 3). These results not only provide evidence of successful integration into the transcriptional circuit of the host, but also support an adaptive role of HGT as a mechanism to acquire beneficial traits. Because eukaryotic HGT is the exception rather than the rule, its number in eukaryotic genomes does not need to increase as a function of time and may have reached equilibrium in the distant past between acquisition and erosion.

HGT vs. DL

Ignoring the cumulative evidence from this and many other studies, one may still dismiss the phylogenetic inference as mere assembly artefact and overlook all the significant differences and trends between native genes and HGT candidates. This could be done by superimposing vertical inheritance (and thus eukaryotic origin) on all HGT events outside the context of pathogenicity and endosymbiosis. Under this extreme view, all extant genes would have their roots in LECA. Consequently, patchy phylogenetic distributions are the result of multiple putative ancient paralogs existing in the LECA followed by mutation, gene duplication, and gene loss. Following this line of reasoning, all HGT candidates in the Cyanidiales would be the product of DL acting on all other eukaryotic species, with the exception of the Cyanidiales, Galdieria and/or Cyanidioschyzon (Figure 5A–C). However, we found cases where either Galdieria HGT candidates (six orthogroups), or Cyanidioschyzon HGT candidates (eight orthogroups) show non-eukaryotic origin, whereas the others cluster within the eukaryotic branch (Figure 5E–F). In addition, we find two cases in which Galdieria and Cyanidioschyzon HGT candidates are located in different non-eukaryotic branches (Figure 5D). DL would require LECA to have encoded three paralogs of the same gene, one of which was retained by Cyanidioschyzon, another by Galdieria, whereas the third by all other eukaryotes. The number of required paralogs in the LECA would be further increased when taking into consideration that some ancient paralogs of LECA may have been eroded in all eukaryotes and that eukaryote phylogenies are not always monophyletic which would additionally increase the number of required paralogs in the LECA in order to explain the current pattern. The strict superimposition of vertical inheritance would thus require a complex LECA, an issue known as ‘the genome of Eden’.

Cumulative effects are observed when genes derived from HGT increasingly diverge as a function of time. Hence, a gradual increase in protein identity towards their non-eukaryotic donor species is expected the more recent an individual HGT event is. The absence of cumulative effects in eukaryotic HGT studies has been used as argument in favor of strict vertical inheritance followed by DL. Here, we also did not find evidence for cumulative effects in the HGT dataset. ‘Recent’ HGT events that are exclusive to either the Cyanidioschyzon or Galdieria lineage shared 5% higher PID with their potential non-eukaryotic donors in comparison to ancient HGT candidates that predate the split, but this difference was not significant (Figure 4C). We also tested for cumulative effects between the number of species contained in orthogroups compared to the percent protein identity shared with potential non-eukaryotic donors under the assumption that recent HGT events would be present in fewer species in comparison to ancient HGT events that occurred at the root of Galdieria (Figure 6D). Neither a gradual increase in protein identity for potentially recent HGT events, nor a general trend could be determined. Only orthogroups containing one Galdieria species reported a statistically significant higher protein identity to their potential non-eukaryotic donors which could be an indication of ‘most recent’ HGT.

Whereas the absence of cumulative effects may speak against HGT, this does not automatically argue in favor of strict vertical inheritance followed by DL. Here, the null hypothesis would be that no differences exist between HGT genes and native genes because all genes are descendants of LECA. This null hypothesis is rejected on multiple levels. At the molecular level, the HGT subset differs significantly from native genes with respect to various genomic and molecular features (e.g., GC-content, frequency of multiexonic genes, number of exons per gene, responsiveness to
temperature stress) (Table 1, Figure 3). Furthermore, HGT candidates in Galdieria are significantly more similar (6.1% average PID) to their potential non-eukaryotic donors when compared to native genes and non-eukaryotic sequences in the same orthogroup (Figure 6B). This difference cannot be explained by the absence of eukaryotic orthologs. We also find significant differences in PID with regard to non-eukaryotic sequences between HGT and native genes in orthogroups containing either one Galdieria sequence, or all eleven Galdieria sequences regarding (Figure 6D). Hence, the ‘most recent’ and ‘most ancient’ HGT candidates share the highest resemblance to their non-eukaryotic donors, which is also significantly higher when compared to native genes in OGs of the same size. Intriguingly, a general trend towards ‘cumulative effects’ could be observed for native genes, highlighting the differences between these two gene sources in Cyanidiales.

Given these results and interpretations, we advocate the following view of eukaryotic HGT. Specifically, two forces may act simultaneously on HGT candidates in eukaryotes. The first is strong evolutionary pressure for adaptation of eukaryotic genetic features and compatibility with native replication and transcriptional mechanisms to ensure integration into existing metabolic circuits (e.g., codon usage, splice sites, methylation, pH differences in the cytosol). The second however is that key structural aspects of HGT-derived sequence cannot be significantly altered by the first process because they ensure function of the transferred gene (e.g., protein domain conservation, three-dimensional structure, ligand interaction). Consequently, HGT candidates may suffer more markedly from gene erosion than native genes due to these countervailing forces, in spite of potentially providing beneficial adaptive traits. This view suggests that we need to think about eukaryotic HGT in fundamentally different ways than is the case for prokaryotes, necessitating a taxonomically broad genome-based approach that is slowly taking hold.

In summary, we do not discount the importance of DL in eukaryotic evolution because it can impact ca. 99% of the gene inventory in Cyanidiales. What we strongly espouse is that strict vertical inheritance in combination with DL cannot explain all the data. HGTs in Cyanidiales are significant because the 1% (values will vary across different eukaryotic lineages) helps explain the remarkable evolutionary history of these extremophiles. Lastly, we question the validity of the premise regarding the applicability of cumulative effects in the prokaryotic sense to eukaryotic HGT. The absence of cumulative effects and a eukaryotic pan-genome are neither arguments in favor of HGT, nor DL.

Materials and methods

Cyanidiales strains used for draft genomic sequencing

Ten Cyanidiales strains (Figure 1) were sequenced in 2016/2017 using the PacBio RS2 (Pacific Biosciences Inc, Menlo Park, CA) technology (Rhoads and Au, 2015) and P6-C4 chemistry (the only exception being C. merolae Soos, which was sequenced as a pilot study using P4-C2 chemistry in 2014). Seven strains, namely G. sulphuraria 5572, G. sulphuraria 002, G. sulphuraria SAG21.92, G. sulphuraria Azora, G. sulphuraria MtSh, G. sulphuraria RT22 and G. sulphuraria MS1 were sequenced at the University of Maryland Institute for Genome Sciences (Baltimore, MD). The remaining three strains, G. sulphuraria YNP5587.1, G. phlegrea Soos, and C. merolae Soos were sequenced at the Max-Planck-Institut für Pflanzenzüchtungsforschung (Cologne, Germany). To obtain axenic and monoclonal genetic material for sequencing, single colonies of each strain were grown at 37°C in the dark on plates containing glucose as the sole carbon source (1% Gelrite mixed 1:1 with 2x Allen medium [Allen, 1959], 50 μM Glucose). The purity of single colonies was assessed using microscopy (Zeiss Axio Imager 2, 1000X) and molecular markers (18S, rbcL). Long-read compatible DNA was extracted using a genomic-tip 20/G column following the steps of the ‘YEAST’ DNA extraction protocol (QIAGEN N.V., Hilden, Germany). The size and quality of DNA were assessed via gel electrophoresis and the Nanodrop instrument (Thermo Fisher Scientific Inc, Waltham, MA).

Assembly

All genomes (excluding the already published G. sulphuraria 074W, G. phlegrea DBV009 and C. merolae 10D) were assembled using canu version 1.5 (Koren et al., 2017). The genomic sequences were polished three times using the Quiver algorithm (Chin et al., 2013). Different versions of each genome were assessed using BUSCO v.3 (Simão et al., 2015) and the best performing genome was chosen as reference for gene model prediction. Each genome was queried against the National
Center for Biotechnology Information (NCBI) nr database (Geer et al., 2010) in order to detect contigs consisting exclusively of bacterial best blast hits (i.e., possible contamination). None were found.

Gene prediction
Gene and protein models for the 10 sequenced Cyanidiales were predicted using MAKER v3 beta (Cantarel et al., 2008). MAKER was trained using existing protein sequences from Cyanidioschyzon merolae 10D and Galdieria sulphuraria 074W, for which we used existing RNA-Seq (Rossoni, 2018) data with expression values > 10 FPKM (Rademacher et al., 2016) combined with protein sequences from the UniProtKB/Swiss-Prot protein database (UniProt Consortium T, 2018). Augustus (Stanke and Morgenstern, 2005), GeneMark ES (Borodovsky and Lomsadze, 2011), and EVM (Haas et al., 2008) were used for gene prediction. MAKER was run iteratively and using various options for each genome. The resulting gene models were again assessed using BUSCO v.3 (Sima˜o et al., 2015) and PFAM 31.0 (Finn et al., 2016). The best performing set of gene models was chosen for each species.

Sequence annotation
The transcriptomes of all sequenced species and those of Cyanidioschyzon merolae 10D, Galdieria sulphuraria 074W, and Galdieria phlegrea DB10 were annotated (re-annotated) using BLAST2GO PRO v.5 (Götz et al., 2008) combined with INTERPROSCAN (Jones et al., 2014) in order to obtain the annotations, Gene Ontology (GO)-Terms (Ashburner et al., 2000), and Enzyme Commission (EC)-Numbers (Bairoch, 2000). KEGG orthology identifiers (KO-Terms) were obtained using KAAS (Ogata et al., 1999; Moriya et al., 2007) and PFAM annotations using PFAM 31.0 (Finn et al., 2016).

Orthogroups and phylogenetic analysis
The 81,682 predicted protein sequences derived from the 13 genomes listed in Table 1 were clustered into orthogroups (OGs) using OrthoFinder v. 2.2 (Emms and Kelly, 2015). We queried each OG member using DIAMOND v. 0.9.22 (Buchfink et al., 2015) to an in-house database comprising NCBI RefSeq sequences with the addition of predicted algal proteomes available from the JGI Genome Portal (Nordberg et al., 2014), TBESTDB (O’Brien et al., 2007), dbEST (Boguski et al., 1993), and the MMETSP (Moore Microbial Eukaryote Transcriptome Sequencing Project) (Keeling et al., 2014). The database was partitioned into four volumes: Bacteria, Metazoa, remaining taxa, and the MMETSP data. To avoid taxonomic sampling biases due to under or overabundance of particular lineages in the database, each volume was queried independently with an expect (e-value) of 1×10^{-5}, and the top 2000 hits were saved and combined into a single list that was then sorted by descending DIAMOND bitscore. Proteins containing one or more bacterial hits (and thus possible HGT candidates) were retained for further analysis, whereas those lacking bacterial hits were removed. A taxonomically broad list of hits was selected for each query (the maximum number of genera selected for each taxonomic phylum present in the DIAMOND output was equivalent to 180 divided by the number of unique phyla), and the corresponding sequences were extracted from the database and aligned using MAFFT v7.3 (Katoh and Standley, 2013) together with queries and hits selected in the same manner for remaining proteins assigned to the same OG (duplicate hits were removed). A maximum-likelihood phylogeny was then constructed for each alignment using IQTREE v7.3 (Nguyen et al., 2015) under automated model selection, with node support calculated using 2000 ultrafast bootstraps. Single-gene trees for the referenced HGT candidates from previous research regarding G. sulphuraria 074W (Schönknecht et al., 2013) and G. phlegra DBV009 (Qiu et al., 2013) were constructed in the same manner, without assignment to OG. To create the algal species tree, the OG assignment was re-run with the addition of proteomes from outgroup taxa Porphyra umbilicalis (Brawley et al., 2017), Porphyridium purpureum (Bhattacharya et al., 2013), Ostreococcus tauri RCC4221 (Blanc-Mathieu et al., 2014), and Chlamydomonas reinhardtii (Merchant et al., 2007). Orthogroups were parsed and 2090 were selected that contained single-copy representative proteins from at least 12/17 taxa; those taxa with multi-copy representatives were removed entirely from the OG. The proteins for each OG were extracted and aligned with MAFFT, and IQTREE was used to construct a single maximum-likelihood phylogeny via a partitioned
analysis in which each OG alignment represented one partition with unlinked models of protein evolution chosen by IQTREE. Consensus tree branch support was determined by 2,000 UF bootstraps.

Detection of HGTs

All phylogenies containing bacterial sequences were inspected manually. Only trees in which there were at least two different Cyanidiales sequences and at least three different non-eukaryotic donors were retained. The singleton HGT candidates in Cyanidiales are presented in the appendix (Appendix 5) and were not analyzed further here. Phylogenies with cyanobacteria and Chlamydiae as sisters were considered as EGT and excluded from the analysis. Genes that were potentially transferred from cyanobacteria were only accepted as HGT candidates when homologs were absent in other photosynthetic eukaryotes; that is, the cyanobacterium was not the closest neighbor, and when the annotation did not include a photosynthetic function, to discriminate from EGT. Furthermore, phylogenies containing inconsistencies within the distribution patterns of species, especially at the root, or UF values below 70% spanning over multiple nodes, were excluded. Each orthogroup was queried against NCBI nr to detect eukaryotic homologs not present in our databases. The conservative approach to HGT assignment used here allowed identification of robust candidates for in-depth analysis. This may however have come at the cost of underestimating HGT at the single species level. Furthermore, some of the phylogenies that were rejected because <3 non-eukaryotic donors were found may have resulted from current incomplete sampling of prokaryotes. For example, OG00001817 is present in the sister species G. sulphuraria 074W and G. sulphuraria MS1 but has a single bacterial hit (Acidobacteriaceae bacterium URHE0068, CBS domain-containing protein, GI:651323331).

Data deposit

The nuclear, plastid, and mitochondrial sequences of the 10 novel genomes, as well as gene models, ESTs, protein sequences, protein alignments, orthogroup and single gene trees, and gene annotations are available at http://porphyra.rutgers.edu. Raw PacBio RSII reads, and also the genomic, chloroplast and mitochondrial sequences, have been submitted to the NCBI and are retrievable via BioProject ID PRJNA512382.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (under Germany’s Excellence Strategy – EXC-2048/1 – Project ID: 390686111 and EXC 1028, and WE 2231/21-1 to APMW) and by the Heine Research Academy (AWR). We thank Dr. Luke Tallon and Dr. Bruno Hüttel for the excellent technical assistance for PacBio sequencing. Dr. Marion Eisenhut for her fantastic Power Point templates. DCP and DB are grateful to the New Jersey Agricultural Experiment Station and the Rutgers University School of Environmental and Biological Sciences Genome Cooperative for supporting this research.

Additional information

Funder	Grant reference number	Author
Deutsche Forschungsgemeinschaft	EXC 1028	Andreas P M Weber
Heinrich-Heine-Universität		
Düsseldorf		Andreas P M Weber
Deutsche Forschungsgemeinschaft	WE 2231/21-1	Andreas P M Weber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Author contributions
Alessandro W Rossoni, Conceptualization, Resources, Data curation, Software, Formal analysis, Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing—original draft, Project administration; Dana C Price, Resources, Data curation, Software, Formal analysis, Methodology, Writing—original draft; Mark Seger, Conceptualization, Resources, Investigation, Methodology, Writing—review and editing; Dagmar Lyska, Formal analysis, Validation, Methodology, Writing—original draft; Peter Lammers, Conceptualization, Resources, Funding acquisition, Writing—review and editing; Debashish Bhattacharya, Conceptualization, Resources, Data curation, Formal analysis, Supervision, Validation, Methodology, Writing—review and editing; Andreas PM Weber, Conceptualization, Resources, Data curation, Supervision, Funding acquisition, Methodology, Project administration, Writing—review and editing

Author ORCIDs
Alessandro W Rossoni https://orcid.org/0000-0003-4716-6799
Debashish Bhattacharya https://orcid.org/0000-0003-0611-1273
Andreas PM Weber https://orcid.org/0000-0003-0970-4672

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.45017.151
Author response https://doi.org/10.7554/eLife.45017.152

Additional files
Supplementary files
• Transparent reporting form
DOI: https://doi.org/10.7554/eLife.45017.107

Data availability
The genomic, chloroplast and mitochondrial sequences of the 10 novel genomes, as well as gene models, ESTs, protein sequences, and gene annotations are available at http://porphyra.rutgers.edu. These data have also be uploaded to Dryad doi:10.5061/dryad.m06n200. Raw PacBio RSII reads, and also the genomic, chloroplast and mitochondrial sequences, have been submitted to the NCBI and are retrievable via BioProject ID PRJNA512382.

The following datasets were generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Alessandro W Rossoni, Dana C Price, Mark Seger, Dagmar Lyska, Peter Lammers, Debashish Bhattacharya, Andreas PM Weber	2019	Genome sequencing of 10 novel Cyanidiales strains	https://www.ncbi.nlm.nih.gov/bioproject/PRJNA512382/	NCBI Sequence Read Archive, PRJNA512382
Alessandro W Rossoni, Dana C Price, Mark Seger, Dagmar Lyska, Peter Lammers, Debashish Bhattacharya, Andreas PM Weber	2019	Data from: The genomes of polyextremophilic Cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions	http://dx.doi.org/10.5061/dryad.m06n200	Dryad Digital Repository, 10.5061/dryad.m06n200
Alessandro W Rossoni, Dana C Price, Mark Seger, Dagmar Lyska, Peter Lammers, Debashish Bhattacharya, Andreas PM Weber	2019	Red Algal Resources to Promote Integrative Research in Algal Genomics	http://porphyra.rutgers.edu/binindex.php	Rutgers University, Red Algal
References

Aluppa A. 2003. The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy. Science 18: 1283–1296. DOI: https://doi.org/10.1007/s0883-2927(03)00051-9

Albertano P. 2000. The taxonomic position of cyanidium, cyanobiochlorocyclus and galdieria: an update. Hydrobiologia 433:137–143. DOI: https://doi.org/10.1023/A:1004031123806

Allen MB. 1959. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. In: Archiv Für Mikrobiologie 43:270–277. DOI: https://doi.org/10.1038/75556. PMID: 10802651

Apfel CM, Takács B, Fountoulakis M, Steiger M, Keck W. 1999. Use of genetics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential upp5 gene. Journal of Bacteriology 483:483–492. PMID: 9828662

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature Genetics 25:25–29. DOI: https://doi.org/10.1038/75556. PMID: 10802651

Bairoch A. 2000. The ENZYME database in 2000. Nucleic Acids Research 28:304–305. DOI: https://doi.org/10.1093/nar/28.1.304. PMID: 10592255

Barcyte D, Elster J, Nedbalová L. 2018. Plastid-encoded rbc L phylogeny suggests widespread distribution of galdieria phlegrea (Cyanidiophyceae, rhodophyta). Nordic Journal of Botany 36:e01794. DOI: https://doi.org/10.1111/njeb.01794

Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, Weber AP, Arias MC, Henrissat B, Coutinho PM, Krishnan A, Zäuner S, Morath S, Hiiou F, Egizi A, Perrineau MM, Yoon HS. 2013. Genome of the red alga porphyridium purpureum. Nature Communications 4. DOI: https://doi.org/10.1038/ncomms2931. PMID: 23770768

Blanc-Mathieu R, Verheist B, Derelle E, Rombouts S, Bouget FY, Carre i, Château A, Eyer-Walker A, Grimsley N, Moreau H, Flégas B, Rivals E, Schackwitz W, Van de Peery Y, Piganeau G. 2014. An improved genome of the model marine alga ostreococcus tauri unfolds by assessing Illumina de novo assemblies. BMC Genomics 15: 1103. DOI: https://doi.org/10.1186/1471-2164-15-1103. PMID: 25946111

Boguski MS, Lowe TMJ, Tolstoshev CM. 1993. dbEST — database for “expressed sequence tags”. Nature Genetics 4:332–333. DOI: https://doi.org/10.1038/ng0893-332

Boothby TC, Tenlen JR, Smith FW, Wang JR, Patanella KA, Nishimura EO, Tintori SC, Li Q, Jones CD, Yandell M, Messina DN, Glasscock J, Goldstein BS. 2015. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade. PNAS 112:15976–15981. DOI: https://doi.org/10.1073/pnas.1510461112. PMID: 26598659

Borodovsky M, Lomsadze A. 2011. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES. Current Protocols in Bioinformatics 4.6.1–4.6.6. DOI: https://doi.org/10.1007/0-071-250953-bi0406s35

Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo CL, Case RJ, Doolittle WF. 2003. Lateral gene transfer and the origins of prokaryotic groups. Annual Review of Genetics 37:283–328. DOI: https://doi.org/10.1146/annurev.genet.37.050503.084247. PMID: 14616063

Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, Jenkins JW, Blaby-Haas CE, Helliwell KE, Chan CX, Marriage TN, Bhattacharya D, Klein AS, Badis Y, Brodie J, Cao Y, Collié J, Dittami SM, Gachon CMM, Green BR, et al. 2017. Insights into the red algae and eukaryotic evolution from the genome of galdieria umbilicalis (Bangioiphycaceae, Rhodophyta). PNAS 114:E6361–E6370. DOI: https://doi.org/10.1073/pnas.1703088114. PMID: 28716924

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12: 59–60. DOI: https://doi.org/10.1038/nmeth.3176

Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sánchez Alvarado A, Yandell M. 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Research 18: 188–196. DOI: https://doi.org/10.1101/gr.7643907. PMID: 18025629

Castenholz RW, McDermott TR. 2010. The Cyanidiales: ecology, biodiversity, and biogeography. In: Seckbach J, Chapman D. J (Eds). Red Algae in the Genomic Age. Springer. p. 357–371. DOI: https://doi.org/10.1007/978-0-94-3795-4_19

Catarecha P, Segura MD, Franza-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Levy A. 2007. A mutant of the arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. The Plant Cell Online 19:1123–1133. DOI: https://doi.org/10.1105/tpc.106.041871

Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. 1994. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. PNAS 91:7017–7021. DOI: https://doi.org/10.1073/pnas.91.15.7017. PMID: 8041738

Chen YC, Peoples OP, Walsh CT. 1988. Acinetobacter cyclohexanone monoxygenase: gene cloning and sequence determination. Journal of Bacteriology 170:781–789. DOI: https://doi.org/10.1128/jb.170.2.781-789.1988. PMID: 3338974

Chen Y, Li F, Wurtzel ET. 2010. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiology 153:66–79. DOI: https://doi.org/10.1104/pp.110.153916. PMID: 20335404
Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korf J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods 10:563–569. DOI: https://doi.org/10.1038/nmeth.2474, PMID: 23644548

Cingiglia C, Yoon HS, Pollio A, Pinto G, Bhattacharya D. 2004. Hidden biodiversity of the extremophilic cyanidioid red algae. Molecular Ecology 13:1827–1838. DOI: https://doi.org/10.1111/j.1365-294X.2004.02180.x, PMID: 15189206

Crisp A, Boschetti C, Perry M, Tunacliffe A, Micklem G. 2015. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biology 16:50. DOI: https://doi.org/10.1186/s13059-015-0607-3, PMID: 27863503

Dahl SW, Slaughter C, Lauritzen C, Bateman RC, Connerton I, Pedersen J. 2000. Carica papaya glutamine cyclotransferase belongs to a novel plant enzyme subfamily: cloning and characterization of the recombinant enzyme. Protein Expression and Purification 20:27–36. DOI: https://doi.org/10.1006/prep.2000.1273, PMID: 11035947

Danchin EG. 2016. Lateral gene transfer in eukaryotes: tip of the iceberg or of the ice cube? BMC Biology 14:101. DOI: https://doi.org/10.1186/s12915-016-0330-x, PMID: 27106790

De Luca P, Taddei R, Varano L. 1978. « Cyanidioschyzon merolae »: a new alga of thermal acidic environments. Webbia 33:37–44. DOI: https://doi.org/10.1080/00837792.1978.10670110

Diderichsen BÅ̄rge, Christiansen L. 1988. Cloning of a maltogenic alpha-amylase from Bacillus stearothermophilus. FEMS Microbiology Letters 56:53–60. DOI: https://doi.org/10.1111/j.1574-6968.1988.tb03149.x

Dietz K-J, Baier M, Krämer U. 1999. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy Metal Stress in Plants. Springer. p. 73–97. DOI: https://doi.org/10.1007/978-3-662-07745-0_4

Dilworth D, Gudavicius G, Leung A, Nelson CJ. 2012. The roles of peptidyl-proline isomerases in gene regulation. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire 89:55–69. DOI: https://doi.org/10.1139/o11-045, PMID: 21999350

Doemel WN, Brock T. 1971. The physiological ecology of Cyanidium caldarium. Microbiology 67:17–32. DOI: https://doi.org/10.1099/00221287-67-1-17

Doolittle WF. 1999. Lateral genomics. Trends in Cell Biology 9:MS–M8. DOI: https://doi.org/10.1016/S0962-8924(99)01664-5

Doolittle WF, Brunet TD. 2016. What is the tree of life? PLOS Genetics 12:e1005912. DOI: https://doi.org/10.1371/journal.pgen.1005912, PMID: 27078870

Ducker GS, Rabinowitz JD. 2017. One-Carbon metabolism in health and disease. Cell Metabolism 25:27–42. DOI: https://doi.org/10.1016/j.cmet.2016.08.009, PMID: 27641100

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology 16:157. DOI: https://doi.org/10.1186/s13059-015-0721-2, PMID: 26243257

Ettema TJ, Ahmed H, Geerling AC, van der Oost J, Siebers B. 2008. The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of sulfurobolus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner-Doudoroff pathway. Extremophiles 12:75–88. DOI: https://doi.org/10.1007/s00792-007-0082-1, PMID: 17549431

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Ponder SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. 2016. The pfam protein families database: towards a more sustainable future. Nucleic Acids Research 44:D279–D285. DOI: https://doi.org/10.1093/nar/gkv1344, PMID: 26673716

Foflonker F, Mollegard D, Ong M, Yoon HS, Bhattacharya D. 2018. Genomic analysis of picocellum species reveals how microalgae may adapt to variable environments. Molecular Biology and Evolution 40:8. DOI: https://doi.org/10.1093/molbev/msy167

Fukuda S-ya, Yamamoto R, Iwamoto K, Minoda A. 2018. Cellular accumulation of cesium in the unicellular red alga Galdieria sulphuraria under mixotrophic conditions. Journal of Applied Physiology 30:3057–3061. DOI: https://doi.org/10.1007/s10811-018-1525-z

Galperin MY. 2005. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiology 5:35. DOI: https://doi.org/10.1186/1471-2180-5-35, PMID: 15955239

Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH. 2010. The NCBI BioSystems database. Nucleic Acids Research 38:D492–D496. DOI: https://doi.org/10.1093/nkbp058, PMID: 19854944

Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A. 2008. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36:3420–3435. DOI: https://doi.org/10.1093/nar/gkn176, PMID: 18445632

Gross W, Schnarrenberger CJP, Physiology C. 1995. Heterotrophic growth of two strains of the acidothermophilic red alga Galdieria sulphuraria. Plant and Cell Physiology 36:633–638. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a078803

Gross W. 1999. Cryptostromelithic growth of the red alga Galdieria sulphuraria in volcanic areas. European Journal of Phycology 33:25–31. DOI: https://doi.org/10.1017/S0967026297001467

Gross W, Oesterhelt C, Tischendorf G, Lederer F. 2002. Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Republic). European Journal of Phycology 37:477–482. DOI: https://doi.org/10.1017/S0967026202003773
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology 9:R7. DOI: https://doi.org/10.1186/gb-2008-9-1-r7, PMID: 18190707

Henkanatte-Gedera SM, Selvaratnam T, Karbakhshsharavi M, Myint M, Nirmalakhandan N, Van Voorhies W, Lammers PJ. 2017. Removal of dissolved organic carbon and nutrients from urban wastewaters by galdieria sulphuraria: laboratory to field scale demonstration. Algal Research 24:450–456. DOI: https://doi.org/10.1016/j.algal.2016.08.001

Hsieh CJ, Zhan SH, Liao CP, Tang SL, Wang LC, Watanabe T, Geraldino PJL, Liu SL. 2018. The effects of contemporary selection and dispersal limitation on the community assembly of acidophilic microalgae. Journal of Phycology 54:720–733. DOI: https://doi.org/10.1111/jpy.12771, PMID: 30055054

Husnik F, McCutcheon JP. 2018. Functional horizontal gene transfer from bacteria to eukaryotes. Nature Reviews Microbiology 16:67–79. DOI: https://doi.org/10.1038/nrmicro.2017.137, PMID: 29176581

Imhoff JF, Rodriguez-Valera F. 1984. Betaine is the main compatible solute of halophilic eubacteria. Journal of Bacteriology 160:478–479. PMID: 6148337

Iovinella M, Eren A, Pinto G, Pollio A, Davis SJ, Ceninamo P, Ciniglia C. 2018. Cryptic dispersal of cyanidiophyta (Rhodophyta) in non-acidic environments from Turkey. Extremophiles 22:713–723. DOI: https://doi.org/10.1007/s00792-018-1031-x, PMID: 29797132

Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. 2014. InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. DOI: https://doi.org/10.1093/bioinformatics/btu456, PMID: 24451626

Kato K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:770–782. DOI: https://doi.org/10.1093/molbev/mst010, PMID: 23329690

Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM, Bharti AK, Bell CJ, Beszteri B, Bidle KD, Cameron CT, Campbell L, Caron DA, Cattolico RA, Collier JL, Coyne K, Davy SK, Deschamps P, et al. 2014. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLOS Biology 12:e1001889. DOI: https://doi.org/10.1371/journal.pbio.1001889, PMID: 24959919

Kelly DJ, Budd K, Lefebvre DD. 2007. Biotransformation of mercury in p-histat cultures of eukaryotic freshwater algae. Archives of Microbiology 187:45–53. DOI: https://doi.org/10.1007/s00203-006-0170-0, PMID: 17031617

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357–360. DOI: https://doi.org/10.1038/nmeth.3317, PMID: 25751142

Kimura S, Suzuki T. 2010. Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16s rRNA. Nucleic Acids Research 38:1341–1352. DOI: https://doi.org/10.1093/nar/gkp1073, PMID: 19965768

Kingston RL, Scopes RK, Baker EN. 1996. The structure of glucose-fructose oxidoreductase from zymomonas mobilis: an osmoprotective periplasmic enzyme containing non-dissociable NADP. Structure 4:1413–1428. DOI: https://doi.org/10.1016/S0969-2126(96)00149-9, PMID: 8994968

Kloosterman TG, Hendriksen WT, Bijlsma JJ, Bootsma HJ, van Hijum SA, Kok J, Hermans PW, Kuipers OP. 2006. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in streptococcus pneumoniae. Journal of Biological Chemistry 281:25097–25109. DOI: https://doi.org/10.1074/jbc.M601661200, PMID: 16787930

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722–736. DOI: https://doi.org/10.1101/gr.215087.116, PMID: 28298431

Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M. 2016. No evidence for extensive horizontal gene transfer in the genome of the tardigrade hypsibius dujardini. PNAS 113:5053–5058. DOI: https://doi.org/10.1073/pnas.1603381113, PMID: 27035985

Ku C, Martin WF. 2016. A natural barrier to lateral gene transfer from prokaryotes to eukaryotes revealed from genomes: the 70 % rule. BMC Biology 14:89. DOI: https://doi.org/10.1186/s12915-016-0315-9, PMID: 27751184

Lee HS, Kim MS, Cho HS, Kim Ji, Kim TJ, Choi JH, Park C, Lee HS, Oh BH, Park KH. 2002. Cyclomaltodextrinase, Neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. Archives of Microbiology 178:21891–21897. DOI: https://doi.org/10.1007/s00203-018-12564-2, PMID: 11923309

Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, Yoon HS. 2016. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Scientific Reports 6:23744. DOI: https://doi.org/10.1038/srep23744, PMID: 27030297

Leger MM. 2018. Demystifying eukaryote lateral gene transfer (Response to martin 2017 DOI: 10.1002/bies.2017000115). BioEssays 40:e1700242. DOI: https://doi.org/10.1002/bies.2017000242

Li Z, Bock R. 2018. Replication of bacterial plasmids in the nucleus of the red alga porphyridium purpureum. Nature Communications 9:3451. DOI: https://doi.org/10.1038/s41467-018-05651-1, PMID: 30150628

Liu Y, Promenier D, Rojek A, Kumar N, Frakiaker J, Nielsen S, King LS, Agre P, Carbery JM. 2007. Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence. PNAS 104:12560–12564. DOI: https://doi.org/10.1073/pnas.0703311104, PMID: 17636116

Lu WD, Chi ZM, Su CD. 2006. Identification of glycine betaine as compatible solute in synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Archives of Microbiology 186:495–506. DOI: https://doi.org/10.1007/s00203-006-0167-8, PMID: 17019606

Rossoni et al. eLife 2019;8:e45017. DOI: https://doi.org/10.7554/eLife.45017 32 of 57
YicI and YihQ, originated from Escherichia coli. and plant functions.

Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of haloarchaea.

sarcosine dimethylglycine methyltransferase from 74
gkm321
doi.org/10.1128/jb.174.8.2694-2701.1992

from glycine by methylation.

merolae 10D.

Arsenate Tolerance in 109–114.

merolae.

Protects arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione 11–26.

various diseases.

Marečal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, PNAS 428:2653–2657. DOI: https://doi.org/10.1073/pnas.1002989103, PMID: 15071595

McCoy JG, Bailey LJ, Ng YH, Bingman CA, Wrobel R, Weber AP, Fox BG, Phillips GN. 2009. Discovery of sarcosine dimethylglycine methyltransferase from galdieria sulphuraria. Proteins: Structure, Function, and Bioinformatics 74:368–377. DOI: https://doi.org/10.1002/prot.21454, PMID: 18623062

Meharg AA, MacNair MR. 1992. Suppression of the High Affinity Phosphate Uptake System: A Mechanism of Arsenate Tolerance in Holcus lanatus L. . Journal of Experimental Botany 43:519–524. DOI: https://doi.org/10.1093/jxb/43.4.519

Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Ou LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, et al. 2007. The chloramphenolomas genome reveals the evolution of key animal and plant functions. Science 318:245–250. DOI: https://doi.org/10.1126/science.1143609, PMID: 17932292

Moreira D, LApez-Archilla A-I, Amils R, MarAn I. 1994. Characterization of two new thermoacidophilic microalgae: Genome organization and comparison with Galdieria sulphuraria . FEMS Microbiology Letters 122: 109–114. DOI: https://doi.org/10.1111/j.1574-6968.1994.tb07152.x

Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35:W182–W185. DOI: https://doi.org/10.1093/nar/gkm321, PMID: 17526522

MauBy A, Rani PS, Sharples GJ, Muniyappa K. 2016. Mycobacterium tuberculosis RuvX is a Holliday junction resolvase formed by dimerisation of the monomeric YqgF nuclease domain. Molecular Microbiology 100:656–674. DOI: https://doi.org/10.1111/mmi.13338, PMID: 26817626

Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M, Mclnerney JO, Deppenmeier U, Martin WF. 2012. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of haloarchaea. PNAS 109:20537–20542. DOI: https://doi.org/10.1073/pnas.1209119109, PMID: 23184964

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268–274. DOI: https://doi.org/10.1093/molbev/msv130, PMID: 25371430

Nordberg H, Cantor M, Dusheiko S, Hua S, Poliakov A, Shabalov I, Sminova T, Grigoriev IV, Dubchak I. 2014. The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Research 42:D26–D31. DOI: https://doi.org/10.1093/nar/gkt1069, PMID: 24225321

Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T. 2007. A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga cyanidioschyzon merolae. BMC Biology 5:28. DOI: https://doi.org/10.1186/1741-7007-5-28, PMID: 17623057

Nyussola A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T. 2000. Extreme halophiles synthesize betaine from glycine by methylation. Journal of Biological Chemistry 275:22196–22201. DOI: https://doi.org/10.1074/jbc.M91111199, PMID: 10896953

O’Brien EA, Koski LB, Zhang Y, Yang L, Wang E, Gray MW, Burger G, Lang BF. 2007. TBESTDB: a taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Research 35:D445–D451. DOI: https://doi.org/10.1093/nar/gkl770, PMID: 17202165

Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304. DOI: https://doi.org/10.1038/35012500, PMID: 10830951

Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 1999. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 27:29–34. DOI: https://doi.org/10.1093/nar/27.1.29, PMID: 9847135

Okuyama M, Mori H, Chiba S, Kimura A. 2004. 0xerexpression and characterization of two unknown proteins, YidC and YihQ, originated from Escherichia coli. Protein Expression and Purification 37:170–179. DOI: https://doi.org/10.1016/j.pep.2004.05.008, PMID: 15294295

Paulose B, Chikara S, Coomey J, Jung HI, Vatamaniuk O, Dhankher OP. 2013. A γ-glutamyl cyclotransferase protects arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. The Plant Cell 25:4580–4595. DOI: 10.1105/tpc.113.111815, PMID: 24214398

Phaniendra A, Jestadi DB, Periyasamy L. 2015. Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry 30:11–26. DOI: https://doi.org/10.1007/s12291-014-0446-0, PMID: 25646037

Rossoni et al. eLife 2019;8:e45017. DOI: https://doi.org/10.7554/eLife.45017

33 of 57
Rossoni et al. eLife 2019;8:e45017. DOI: https://doi.org/10.7554/eLife.45017

34 of 57
AP. 2013. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210. DOI: https://doi.org/10.1126/science.1231707, PMID: 23471408

Schönknecht G, Weber AP, Lercher MJ. 2014. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36:9–20. DOI: https://doi.org/10.1002/bies.201300095, PMID: 24323918

Schrömmer J, Schendel FJ, Stubbe J, Smith JM. 1986. Purification and characterization of aminomethylazole ribonucleotide synthetase from Escherichia coli. Biochemistry 25:4366–4371. DOI: https://doi.org/10.1021/bi00363a028, PMID: 3530323

Seckbach J. 1972. On the fine structure of the acidophilic hot-spring alga Cyanidium caldarium: a taxonomic approach. Microbios 5:133–142. PMID: 2406412

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212. DOI: https://doi.org/10.1093/bioinformatics/btv351, PMID: 26059717

Simonetti A, Marzi S, Jennler L, Myasnikov A, Romby P, Yusupova G, Klaholz BP, Yusupov M. 2009. A structural view of translation initiation in bacteria. Cellular and Molecular Life Sciences 66:423–436. DOI: https://doi.org/10.1007/s00018-008-8416-4, PMID: 19011758

Stadtman ER, Levine RL. 2000. Protein oxidation. Annals of the New York Academy of Sciences 899:191–208. DOI: https://doi.org/10.1111/1749-6632.2000.tb06187.x, PMID: 10863540

Stanke M, Morgenstern B. 2005. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Research 33:W465–W467. DOI: https://doi.org/10.1093/nar/gkj458, PMID: 15980513

Stauffer RE, Thompson JM. 1984. Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA. Geochimica Et Cosmochimica Acta 48:2547–2561. DOI: https://doi.org/10.1016/0016-7037(84)90305-3

Takeda K, Akimoto C, Kawa-mukai M. 2001. Effects of the Escherichia coli sfsA gene on mal genes expression and a DNA binding activity of SfsA. Bioscience, Biotechnology, and Biochemistry 65:213–217. DOI: https://doi.org/10.1271/bbb.65.213, PMID: 1127834

Tettelin H, Masiagni V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, et al. 2005. Genome analysis of multiple pathogenic isolates of streptococcus galactiae: implications for the microbial “pan-genome”. PNAS 102:1340–1347. DOI: https://doi.org/10.1073/pnas.0506758102, PMID: 16172379

Toplin JA, Norris TB, Lehr CR, McDermott TR, Castenholz RW. 2008. Biogeographic and phylogenetic diversity of thermoacidiphilic cyanidiales in Yellowstone National Park, Japan, and New Zealand. Applied and Environmental Microbiology 74:2822–2833. DOI: https://doi.org/10.1128/AEM.02741-07, PMID: 18344337

UniProt Consortium T. 2018. UniProt: the universal protein knowledgebase. Nucleic Acids Research 46:2699. DOI: https://doi.org/10.1093/nar/gky092, PMID: 29425356

van Doesburg W, van Eekert MH, Middeldorp PJ, Balk M, Schraa G, Stams AJ. 2005. Reductive dechlorination of beta-hexachlorocyclohexane (beta-HCH) by a dehalobacter species in Coculture with a sedimentibacter sp. FEMS Microbiology Ecology 54:87–95. DOI: https://doi.org/10.1016/j.femsec.2005.03.003, PMID: 16329975

van Lieshout JFT, Verhees CH, Ettema TJG, van der Sar S, Imamura H, Matsuzawa H, van der Oost J, de Vos WM. 2003. Identification and Molecular Characterization of a Novel Type of α-galactosidase from Pyrococcus furiosus. Biocatalysis and Biotransformation 21:243–252. DOI: https://doi.org/10.1080/1024242031001614342

Vernikos G, Medini D, Riley DR, Tettelin H. 2015. Ten years of pan-genome analyses. Current Opinion in Microbiology 23:148–154. DOI: https://doi.org/10.1016/j.mib.2014.11.016, PMID: 25483351

Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T, Takabe T. 2003. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism aphanothece halophytica. Journal of Biological Chemistry 278:4932–4942. DOI: https://doi.org/10.1074/jbc.M210970200, PMID: 12466265

Weber AP. 2007. A genomics approach to understanding the biology of thermo-acidophilic red algae. In: Seckbach J (Ed). Algae and Cyanobacteria in Extreme Environments. Springer. p. 503–518. DOI: https://doi.org/10.1007/978-1-4020-6112-7_27

Yang EC, Boo SM, Bhattacharyya D, Saunders GW, Knoll AH, Fredericq S, Graf L, Yoon HS. 2016. Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Scientific Reports 6:21361. DOI: https://doi.org/10.1038/srep21361, PMID: 26892537

Ylä-Herttuala S. 1999. Oxidized LDL and Atherogenesis. In: Annals of the New York Academy of Sciences 874:134–137. DOI: https://doi.org/10.1111/1749-6632.1999.tb09231.x, PMID: 10415527

Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution 21:809–818. DOI: https://doi.org/10.1093/molbev/msb075, PMID: 14963099

Yu L, Petros AM, Schnuchel A, Zhong P, Severin JM, Walter K, Holzmann TF, Fesik SW. 1997. Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance. Nature Structural Biology 4:483–489. DOI: https://doi.org/10.1038/nsb0697-483, PMID: 9187657

Zhao FJ, McGrath SP, Meharg AA. 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology 61:535–559. DOI: https://doi.org/10.1146/annurev-arplant-042809-112152, PMID: 20192735
Appendix 1—figure 1. Raw read length distribution of the sequenced Cyanidiales strains. The strains were sequenced in 2016/2017 using PacBio’s RS2 sequencing technology and P6-C4 chemistry (the only exception being *C. merolae* Soos, which was sequenced as pilot study using P4-C2 chemistry in 2014). Seven strains, namely *G. sulphuraria* 5572, *G. sulphuraria* 002, *G. sulphuraria* SAG21.92, *G. sulphuraria* Azora, *G. sulphuraria* MtSh, *G. sulphuraria* RT22 and *G. sulphuraria* MS1 were sequenced at the University of Maryland Institute for Genome Sciences (Baltimore, USA). The remaining three strains, *G. sulphuraria* YNP5578.1, *G. phlegrea* Soos and *C. merolae* Soos, were sequenced at the Max-Planck-Institut für Pflanzenzüchtungsforschung (Cologne, Germany).

DOI: https://doi.org/10.7554/eLife.45017.109
Appendix 1—table 1. Sequencing and Assembly stats.

The strains were sequenced using PacBio’s RS2 sequencing technology and P6-C4 chemistry (the only exception being C. merolae Soos, which was sequenced using P4-C2 chemistry). For genome assembly, canu version 1.5 was used, followed by polishing three times using the Quiver algorithm. Genes were predicted with MAKERv3 beta (Doolittle, 1999; Doolittle, 1999). The performance of genome assemblies (not shown here) and gene prediction was assessed using BUSCO v.3. Raw Reads: Number of raw PacBio RSII reads. Raw Reads N50: 50% of the raw sequence is contained in reads with sizes greater than the N50 value. Raw Reads GC: GC content of the raw reads in percent. Raw Reads (bp): Total number of sequenced basepairs (nucleotides) per species. Raw Coverage (bp): Genomic coverage by raw reads. This figure was computed once the assembly was finished. Unigiging (bp): Total number of basepairs that survived read correction and trimming. This amount of sequence is what the assembler considered when constructing the genome. Unigiging Coverage: Genomic coverage by corrected and trimmed reads. Genome Size (bp): Size of the polished genome. Genome GC: GC content of the polished genome. Contigs: Number of contigs. Contig N50: 50% of the final genomic sequence is contained in contigs sizes greater than the N50 value. Genes: Number of genes predicted by Maker v3 beta. BUSCO (C): Percentage of complete gene models. BUSCO (C + F): Percentage of complete and fragmented gene models. Fragmented gene models are also somewhat present. BUSCO (D): Percentage of duplicated gene models. BUSCO (M): Percentage of missing gene models.

Species	Raw reads	Raw reads N50	Raw reads GC	Raw reads (bp)	Raw reads coverage	Unigiging (bp)	Unigiging coverage	Genome size (bp)	Genome GC %	Contigs	Contig N50	Genes	BUSCO (C)	BUSCO (C + F)	BUSCO (D)	BUSCO (M)
G. sulphuraria RT22	163764	12023	35.83%	1424372481	91.20	1108677098	70.99	15617852	37.43%	118	172878	6982	92.8%	94.5%	6.3%	5.5%
G. sulphuraria 002	131978	10109	37.90%	946093501	67.05	805608410	57.09	14110219	39.16%	107	189293	5912	87.5%	92.5%	5.0%	7.5%
G. sulphuraria 5572	101472	10449	36.45%	802203307	56.19	664626554	46.55	14277368	37.99%	108	229711	6472	91.5%	93.5%	5.0%	6.5%
G. sulphuraria MS1	128294	9991	36.18%	934546621	62.77	777587876	52.23	14887946	37.62%	129	172087	7441	90.8%	94.1%	4.0%	5.9%
G. sulphuraria MtSh	158936	13617	39.19%	1523875693	101.95	1235394614	82.65	14947614	40.04%	101	186619	6160	87.4%	91.7%	6.9%	8.3%
G. sulphuraria Azora	82544	10244	37.09%	651280930	46.31	551720524	39.23	14063793	40.10%	127	162248	6305	88.4%	92.0%	2.3%	8.0%

Appendix 1—table 1 continued on next page
Species	Raw reads	Raw reads N50	Raw reads GC	Raw reads coverage	Unitigging (bp)	Unitigging coverage	Genome size (bp)	Genome GC	Contigs	Contig N50	Genes	Busco (C)	Busco (C + F)	Busco (D)	Busco (M)	Genomesize (bp)
G. sulphuraria SAG21.92	71480	10341	36.67%	564874149	413793659	28.91	14312824	37.92%	135	158217	5956	83.8%	88.4%	3.6%	11.6%	
G. sulphuraria YNP5587.1	77421	13842	36.69%	769606723	613905250	42.58	14416547	40.05%	115	170797	6118	91.8%	93.5%	5.0%	6.5%	
C. merolae Soos	92263	14365	36.01%	966702049	619580741	41.66	14872696	37.52%	108	201071	6125	92.1%	93.8%	7.9%	6.2%	
C. merolae 074W*	154461	7924	52.92%	848542698	570542830	68.82	12329961	54.33%	35	567466	4406	85.2%	89.5%	2.0%	10.5%	
G. sulphuraria 074W*	13712004	36.89%	433	1723227177	83.8%	87.4%	2.3%	10.3%								
C. merolae 10D*	16728945	54.81%	22	8591195044	90.4%	93.4%	1.3%	6.6%								
G. phlegrea DBV009*	11413183	37.86%	9311	19937836	68.3%	88.1%	3.6%	11.9%								

DOI: https://doi.org/10.7554/eLife.45017.110
Archaeal ATPases and ‘old’ HGT

We compared the HGT results of this study to previous published claims of HGT in G. sulphuraria 074W (75 separate acquisitions followed by gene family expansion, 335 transcripts in total) (Schönknecht et al., 2013) and G. phlegrea DBV009 (13 genes from 11 acquisitions unique to this strain, excluding those shared with G. sulphuraria 074W and other red algae) (Qiu et al., 2013). Each HGT candidate was queried against our database, mapped to the existing OGs and phylogenetic trees were built for each sequence (where possible). The HGT candidates of G. sulphuraria 074W mapped into 100 different OGs, thus increasing the number of separate origins from 75 to 100 (more separate origins = less gene family expansion). 211 out of the 335 HGT candidates in G. sulphuraria 074W are ‘archaeal STAND ATPases’. They clustered into OG0000000, OG0000003 and OG0000001 which are not classified as HGT. Thus, HGT origin for those gene families can be excluded. The remaining 124 G. sulphuraria 074W HGT candidates are spread across 98 OGs. Of those, 20 OGs overlap with our HGT findings, whereas 78 are OGs that do not have HGT origins (one was classified as EGT). All 13 HGT candidates in G. phlegrea DBV009 were found and their HGT origin could be confirmed. Some do not make the cut due to individual acquisitions by G. phlegrea DBV009 alone. However, considering the operon structures of the acquisition it seems plausible in this case.

In order to exclude the possibility that our database was ‘missing’ crucial non-eukaryotic species we queried all protein sequences against our own database and NCBI’s uncurated nr database, including predicted models and environmental samples and implementing various search strategies. 219 out of the 335 HGT candidates in G. sulphuraria 074W did not report any hits outside the species itself (including the 211 ‘archaeal ATPases’) and no functional evidence could be found besides the one obtained through manual curation of sequence alignments as reported by the author (Schönknecht et al., 2013).

As seen in the case of the human and the Tardigrade genome, the overestimation of HGT in eukaryotic genomes, followed by later re-correction, is not a new phenomenon (Boothby et al., 2015; Crisp et al., 2015; Koutsovoulos et al., 2016; Salzberg, 2017). There are several reasons that may have led to the drastic overestimation of HGT candidates in the case of G. sulphuraria 074W (100 OGs derived from HGT, instead of 58 OGs). Although published in 2013, the HGT analysis was performed in early 2007. By then, the RefSeq database contained 4.7 million accessions compared to 163.9 million accessions in May 2018. The low resolution regarding eukaryotic species may have led to many singletons, here defined as Galdieria being the only eukaryotic species in otherwise bacterial clusters, leading to the mislabelling of HGT. Further, the many small contigs derived from short read sequencing technologies of the last decade, combined with older assembly software [138] are known potential pitfalls (Danchin, 2016) for misassembly that may lead to the inclusion of bacterial contigs into the reference genome as a consequence of prior culture contamination. Lastly, this analysis occurred a decade prior to the tardigrade and human case that led to raised awareness and standards regarding HGT annotation as many claims of HGT were later refuted by further analyses. From a biological view the HGT origin of the Archaeal ATPases is disputable as a re-sequencing of the Genome using MinION technology (Rossoni, data unpublished) shows they always occur immediately adjacent to every single telomere, therefore adding another layer of complexity. The ‘archaeal ATPase’ was not only integrated into the genome, but also put under influence a non-random duplication mechanism responsible for spreading copies in a targeted manner to the subtelomeric region of each single contig (no exception!). Examples of similar cases may be found in the Variant Surface Glycoproteins (VSGs) of the Trypanosoma [139] and the Candidates for Secreted Effector Proteins (CSEPs) in the powdery mildew fungus Blumeria graminis [140]. As those genes are vital for the infection of the host, they are subjects of very strong natural selection and profit.
from high evolutionary rates achieved at the subtelomeric regions. But the high evolutionary rates also made it impossible to correctly embed the aforementioned gene families in a phylogenetic tree. As such, it is not to be excluded that a similar case occurred regarding *Galdieria sulphuraria*’s ‘archaeal ATPases’, although a permissive search might indicate an archaeal origin of single protein domains. Also, as only a patchy subset of the ATPases reacts to temperature fluctuations, it cannot be determined that temperature is the driving factor.
%GC

Appendix 3—table 1. %GC analysis of the Cyanidiales transcriptomes. %GC content of HGT genes was compared to the %GC content of native genes using students test. Legend: HGT Genes: number of HGT gene candidates found in species. Avg. %GC Native: average %GC of native transcripts. Avg. %GC HGT: average %GC of HGT candidates. P-Val (T-test): significance value (p-value) of student’s test. Delta: difference in %GC between average %GC of native genes and the average %GC of HGT candidates.

Species	HGT genes	Avg. %GC Native	Avg. %GC HGT	p-Val (T-test)	Delta
Galdieria sulphuraria_074W	55	38.99	39.62	0.046	0.63
Galdieria sulphuraria_MS1	58	39.59	40.79	0	1.2
Galdieria sulphuraria_RT22	54	39.54	40.85	0	1.31
Galdieria sulphuraria_SAG21	47	40.04	41.47	0	1.43
Galdieria sulphuraria_MtSh	47	41.33	42.48	0	1.15
Galdieria sulphuraria_Azora	58	41.34	42.57	0	1.23
Galdieria sulphuraria_YNP55871	46	41.33	42.14	0.006	0.81
Galdieria sulphuraria_5572	53	39.68	40.5	0.002	0.82
Galdieria sulphuraria_002	52	40.76	41.35	0.016	0.59
Galdieria phlegrea_DBV08	54	39.97	40.58	0.016	0.61
Galdieria phlegrea_Soos	44	39.57	40.73	0	1.16
Cyanidioschyzon merolae_10D	33	56.57	56.57	0.996	0
Cyanidioschyzon merolae_Soos	34	54.84	54.26	0.479	-0.58
Appendix 3—figure 1. %GC – Galdieria sulphuraria 074W: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.114

Appendix 3—figure 2. %GC – Galdieria sulphuraria MS1: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.115

Appendix 3—figure 3. %GC – Galdieria sulphuraria RT22: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the
average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.116

Appendix 3—figure 4. %GC – Galdieria sulphuraria SAG21: (Left) Violin plot showing the % GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.117

Appendix 3—figure 5. %GC – Galdieria sulphuraria Mount Shasta (MtSh): (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.118
Appendix 3—figure 6. *Galdieria sulphuraria* Azora: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.
DOI: https://doi.org/10.7554/eLife.45017.119

Appendix 3—figure 7. %GC – *Galdieria sulphuraria* Mount Shasta YNP5578.1: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.
DOI: https://doi.org/10.7554/eLife.45017.120

Appendix 3—figure 8. %GC – *Galdieria sulphuraria* 5572: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the
average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.121

Appendix 3—figure 9. %GC – Galdieria sulphuraria 002: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.122

Appendix 3—figure 10. %GC – Galdieria phlegrea Soos: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.123
Appendix 3—figure 11. %GC – *Galdieria phlegrea* DBV009: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘**’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.124

Appendix 3—figure 12. %GC – *Cyanidioschyzon merolae* Soos: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘**’ demarks HGT candidates. As the %GC content was normally distributed, students test was applied for the determination of significant differences between the native gene and the HGT candidate subset.

DOI: https://doi.org/10.7554/eLife.45017.125

Appendix 3—figure 13. %GC – *Cyanidioschyzon merolae* 10D: (Left) Violin plot showing the %GC distribution across native transcripts and HGT candidates. (Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based...
on the average value. (Right) Ranking all transcripts based upon their %GC content. Red ‘*’
demarks HGT candidates. As the %GC content was normally distributed, students test was
applied for the determination of significant differences between the native gene and the
HGT candidate subset.
DOI: https://doi.org/10.7554/eLife.45017.126
Appendix 4—table 1. Single exon genes vs multiexonic

The ratio of single exon genes vs multiexonic genes was compared between HGT candidates and native Cyanidiales genes (Fisher enrichment test). Legend: HGT Genes: number of HGT gene candidates found in species. Single Exon HGT: number of single exon genes in HGT candidates. Multi Exon HGT: number of multiexonic genes in HGT candidates. Single Exon Native: number of single exon genes in native Cyanidiales genes. Multi Exon Native: number of multiexonic genes in native Cyanidiales genes. HGT SM Ratio percentage of single exon genes within the HGT candidate genes. Native SM Ratio percentage of single exon genes within the native genes. Delta: difference in percent between the percentage of single exon genes between the native genes and HGT candidates. Fisher p-val: p-value of fisher enrichment test.

Species	HGT genes	Single exon (HGT)	Multi exon (HGT)	Single exon (Native)	Multi exon (Native)	Fisher’s p	Single exon % (HGT)	Single exon % (Native)	Multi exon % (HGT)	Multi exon % (Native)	Delta	Fisher p-val
Galdieria sulphuraria 074W	55	29	26	1879	5240	4.05E-05	52.7%	26.4%	47.3%	73.6%		
Galdieria sulphuraria MS1	58	22	36	1224	6159	0.0001098	37.9%	16.6%	62.1%	83.4%		
Galdieria sulphuraria RT22	54	26	28	1756	5172	0.0004079	48.1%	25.3%	51.9%	74.7%		
Galdieria sulphuraria SAG21	47	8	39	901	5008	0.6852	17.0%	15.2%	83.0%	84.8%		
Galdieria sulphuraria MtSh	47	17	30	1239	4874	0.01054	36.2%	20.3%	63.8%	79.7%		
Galdieria sulphuraria Azora	58	14	39	966	5286	0.03558	24.1%	15.5%	75.9%	84.5%		
Galdieria sulphuraria YNP55871	46	21	25	1548	4524	0.00341	45.7%	25.5%	54.3%	74.5%		
Galdieria sulphuraria S572	53	29	24	1389	5030	1.75E-07	54.7%	21.6%	45.3%	78.4%		
Galdieria sulphuraria 002	52	26	26	140	4720	8.75E-07	50.0%	2.9%	50.0%	97.1%		
Galdieria phlegrea DBv009	54	na	na	na	na	0.00000	na	na	na	na		
Galdieria phlegrea Soos	44	25	22	1369	4709	5.17E-06	56.8%	22.5%	43.2%	77.5%		
Cyanidioschyzon merolae 100	33	33	0	4744	26	1	100.0%	99.5%	0.0%	0.5%		

Appendix 4—table 1 continued on next page
Appendix 4—table 1 continued

	HGT genes	Single exon (HGT)	Multi exon (Native)	Fisher’s p	Single exon % (HGT)	Multi exon % (HGT)	Multi exon % (Native)
Cyanidioschyzon merolae Soos	34	33	1	3960	412	0.367	97.1% 90.6% 2.9% 9.4%

DOI: https://doi.org/10.7554/eLife.45017.128

Appendix 4—table 2. Exon/Gene ratio. The ratio of exons per gene was compared between HGT candidates and native Cyanidiales genes (Wilcox ranked test). Legend: HGT Genes: number of HGT gene candidates found in species. E/G All: average number of exons per gene across the whole transcriptome. E/G Native: average number of exons per gene across native genes. E/G HGT: average number of exons per gene in HGT gene candidates. p-Val (Wilcox) SM Ratio p-value of non-parametric Wilcox test for significant differences. Delta: difference in average number of exons per gene the native genes and HGT candidates.

	HGT genes	Mean exon per transcript (HGT)	Mean exon per transcript (Native)	Wilcox (p)	Delta
Galdieria sulphuraria_074W	55	2.25	3.2	9.4E-06	0.95
Galdieria sulphuraria_MS1	58	2.5	3.88	1.41E-05	1.38
Galdieria sulphuraria_RT22	54	2.63	3.95	3.42E-06	1.32
Galdieria sulphuraria_SAG21	47	4.02	5.03	0.0004	1.01
Galdieria sulphuraria_MtSh	47	3.15	4.32	0.0011	1.17
Galdieria sulphuraria_Azora	58	2.68	4.03	9.92E-05	1.35
Galdieria sulphuraria_YNPS871	46	2.61	3.65	2.30E-04	1.04
Galdieria sulphuraria_5572	53	2.15	3.53	2.25E-07	1.38
Galdieria sulphuraria_002	52	2.37	3.73	2.65E-06	1.36
Galdieria phlegrea_DBV009	54	na	na	na	na
Galdieria phlegrea_Soos	44	2.19	3.33	1.19E-05	1.14
Cyanidioschyzon merolae_10D	33	1	1.01	1.0E+ + 00	0.01
Cyanidioschyzon merolae_Soos	34	1.06	1.1	2.1E-01	0.04

DOI: https://doi.org/10.7554/eLife.45017.129

Appendix 4—figure 1. Exon/Intron – Galdieria sulphuraria 074W: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their
number of exons. Red ‘*' demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.130

Appendix 4—figure 2. Exon/Intron – Galdieria sulphuraria MS1: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘*' demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.131

Appendix 4—figure 3. Exon/Intron – Galdieria sulphuraria RT22: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘*' demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.
times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.132

Appendix 4—figure 4. Exon/Intron – Galdieria sulphuraria SAG21: (Left) Mid) Cumulative % GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘**’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.133

Appendix 4—figure 5. Exon/Intron – Galdieria sulphuraria MtSh: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘**’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.
Appendix 4—figure 6. Exon/Intron – Galdieria sulphuraria Azora: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘*’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.135

Appendix 4—figure 7. Exon/Intron – Galdieria sulphuraria YNP5578.1: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘*’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.136
Appendix 4—figure 8. Exon/Intron – Galdieria sulphuraria 5572: (Left) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘*’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.137

Appendix 4—figure 9. Exon/Intron – Galdieria sulphuraria 002: (Left) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘**’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.138
Appendix 4—figure 10. Exon/Intron – Galdieria phlegrea Soos: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘*’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.139

Appendix 4—figure 11. Exon/Intron – Cyanidioschyzon merolae Soos: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘*’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates..

DOI: https://doi.org/10.7554/eLife.45017.140
Appendix 4—figure 12. Exon/Intron – Cyanidioschyzon merolae 074W: (Left) Mid) Cumulative %GC distribution of transcripts. Red line shows the average, blue line a normal distribution based on the average value. The data is categorical (genes have either one, two, three etc. exons) and does not follow a normal distribution. (Mid) Ranking all transcripts based upon their number of exons. Red ‘*’ demarks HGT candidates. As the number of exons was not normally distributed, transcripts were ranked by number of exons. In order to resolve the high number of tied ranks (e.g. many transcripts have two exons) a bootstrap was implied by which the rank of transcripts sharing the same number of exons was randomly assigned 1000 times. Wilcoxon-Mann-Whitney-Test applied for the determination of significant rank differences between the native gene and the HGT candidate subset. (Right) Violin plot showing the number of exons per transcript distribution across native transcripts and HGT candidates.

DOI: https://doi.org/10.7554/eLife.45017.141
Appendix 5—figure 1. Best Blast Hit between each of the 13 Cyanidiales species and their most similar non-eukaryotic Ortholog in each OG-phylogeny. Values are given as average.
percent protein identity between Cyanidiales and non-eukaryotic ortholog. White boxes represent missing Cyanidiales orthologs.

DOI: https://doi.org/10.7554/eLife.45017.143