Constrained energy problems
with external fields

Natalia Zorii

Abstract. Given a positive definite kernel in a locally compact space \(X \), a closed set \(\Sigma \), a measure \(\sigma \geq 0 \), and a positive continuous \(g \), we study the minimal energy problem in the presence of an external field \(f \) over the class of all measures \(\nu \geq 0 \) supported by \(\Sigma \) and such that \(\int g \, d\nu = 1 \), \(\sigma - \nu \geq 0 \). Under general assumptions, we establish the existence of a minimizing measure \(\lambda_\sigma^\Sigma \) and analyze its continuity properties in the weak* and strong topologies when \(\sigma \) and \(\Sigma \) are varied. We also give a description of the \(f \)-weighted potential of \(\lambda_\sigma^\Sigma \) and single out its characteristic properties. Such results are mostly new even for classical kernels in \(\mathbb{R}^n \), which is important in applications.

Mathematics Subject Classification (2000). 31C15.

Keywords. Constrained energy problems, external fields, equilibrium measures, variational inequalities for weighted equilibrium potentials.

1. Introduction and statement of the problem

Let \(X \) be a locally compact Hausdorff space and \(\mathfrak{M} = \mathfrak{M}(X) \) the linear space of all real-valued Radon measures \(\nu \) on \(X \) equipped with the vague (=weak*) topology, i.e., the topology of pointwise convergence on the class of all real-valued continuous functions on \(X \) with compact support.

A kernel \(\kappa \) on \(X \) is meant to be an element from \(\Phi(X \times X) \), where \(\Phi(Y) \) consists of all lower semicontinuous functions \(\psi : Y \to (-\infty, \infty] \) such that \(\psi \geq 0 \) unless \(Y \) is compact. Given \(\nu, \mu \in \mathfrak{M} \), the mutual energy and the potential with respect to the kernel \(\kappa \) are defined by

\[
\kappa(\nu, \mu) := \int \kappa(x, y) \, d(\nu \otimes \mu)(x, y) \quad \text{and} \quad \kappa_\nu(\cdot) := \int \kappa(\cdot, y) \, d\nu(y),
\]

respectively. (Here and in the sequel, when introducing notation, we shall always tacitly assume the corresponding object on the right to be well defined.) For \(\nu = \mu \) we get the energy \(\kappa(\nu, \nu) \) of \(\nu \). Let \(\mathcal{E} \) consist of all \(\nu \in \mathfrak{M} \) with \(-\infty < \kappa(\nu, \nu) < \infty \).
In this work we consider a positive definite kernel κ, which means that it is symmetric (i.e., $\kappa(x, y) = \kappa(y, x)$ for all $x, y \in X$) and the energy $\kappa(\nu, \nu)$, $\nu \in \mathfrak{M}$, is nonnegative whenever defined. Then \mathcal{E} forms a pre-Hilbert space with the scalar product $\kappa(\nu, \mu)$ and the seminorm $\|\nu\| := \sqrt{\kappa(\nu, \nu)}$ (see [3]). The topology on \mathcal{E} defined by means of this seminorm is called strong.

For an arbitrary closed set $E \subset X$, let $\mathfrak{M}^+(E)$ consist of all nonnegative $\nu \in \mathfrak{M}$ with the support $S_\nu \subset E$, and let $\mathcal{E}^+(E) := \mathfrak{M}^+(E) \cap \mathcal{E}$. Given a measure ν and a function ψ, for the sake of brevity we shall write $\langle \psi, \nu \rangle := \int \psi d\nu$.

Fix an external field f. We assume that either $f \in \Phi(X)$ (Case I), or $f = \kappa_\zeta$, where $\zeta \in \mathcal{E}$ is a signed measure (Case II). Then the f-weighted potential W^f and the f-weighted energy $G^f(\nu)$ of $\nu \in \mathcal{E}$ are respectively given by the formulas

$$W^f(x) := \kappa_\nu(x) + f(x), \quad G^f(\nu) := \|\nu\|^2 + 2\langle f, \nu \rangle = (W^f + f, \nu).$$

Note that $W^f, \nu \in \mathcal{E}$, is defined and $\neq -\infty$ at least nearly everywhere (n.e.) in X, that is, except at most for some set $N \subset X$ with the interior capacity $C(N) = 0$.

Having fixed also a nonempty closed set $\Sigma \subset X$, we consider a function $g > 0$, defined and continuous at least in some open neighborhood U_Σ of Σ, and a measure $\sigma \in \mathfrak{M}^+(\Sigma)$ which will serve as a constraint.

We are interested in the constrained minimal f-weighted energy problem

$$G^f_\sigma(\Sigma, g) := \inf_{\nu \in \mathcal{E}^\sigma(\Sigma, g)} G^f(\nu),$$

(1.1)

where

$$\mathcal{E}^\sigma(\Sigma, g) := \{\nu \in \mathcal{E}^+(\Sigma) : \langle g, \nu \rangle = 1, \nu \leq \sigma\}$$

and $\nu \leq \sigma$ means that $\sigma - \nu \geq 0$. (In (1.1), as usual, the infimum over the empty set is taken to be $+\infty$.) Along with its electrostatic interpretation, this problem has also found applications in approximation theory (see [1] [2] [7]). If

$$G^f_\sigma(\Sigma, g) < \infty$$

(1.2)

(or, which is equivalent, if the class

$$\mathcal{E}^\sigma(\Sigma, g) := \{\nu \in \mathcal{E}^\sigma(\Sigma, g) : G^f(\nu) < \infty\}$$

is nonempty), then we shall consider the problem on the existence of $\lambda^f_\Sigma \in \mathcal{E}^\sigma(\Sigma, g)$ with minimal f-weighted energy $G^f(\lambda^f_\Sigma) = G^f_\sigma(\Sigma, g)$. Such a λ^f_Σ (if exists) will be called an equilibrium measure corresponding to the data $\kappa, \Sigma, \sigma, g,$ and f.

If $X = \mathbb{R}^2$, $\kappa(x, y) = -\log |x - y|$, and $g = 1$, the constrained energy problem has been analyzed by P. Dragnev, E. Saff and E. Rakhmanov: see [1] [2], where $f \in \Phi(\mathbb{R}^2)$ is fast growing at infinity, and [7], where $\Sigma = [-1, 1]$ and $f = 0$.

However, the methods applied in this note and the results obtained differ essentially from those in [1] [2] [7]. Namely, our approach is mainly based on the use of both the strong and vague topologies, which enables us in both Cases I and II to establish the existence of an equilibrium measure λ^f_Σ for noncompact Σ and to study continuity properties of λ^f_Σ as a function of (Σ, σ). We also obtain variational inequalities for the f-weighted equilibrium potential W^f_λ and single out its characteristic properties, modifying properly the arguments from [1] [2] [7].
For the sake of simplicity we shall restrict ourselves to the case where either X is a countable union of compact sets or $\inf_{x \in X} g(x) > 0$. Then the concept of local ν-negligibility and that of ν-negligibility coincide for any $\nu \geq 0$ with $\langle g, \nu \rangle < \infty$; hence, every N with $C(N) = 0$ is ν-negligible if, moreover, $\nu \in E$.

Before formulating the results obtained, we observe the following lemma.

Lemma 1.1. $G_f^\sigma(\Sigma, g) > -\infty$.

Proof. Indeed, in Case II it is an immediate consequence of the representation

$$G_f(\nu) = \|\nu\|^2 + 2\kappa(\nu, \zeta) = \|\nu + \zeta\|^2 - \|\zeta\|^2, \quad \nu \in E.$$ \hspace{1cm} (1.4)

Let Case I take place. If X is compact, then $f \in \Phi(X)$ is bounded from below by $-c$, where $c > 0$, while $\nu(X) \leq \left[\min_{x \in X} g(x)\right]^{-1} < \infty$ for all $\nu \in E^\sigma(\Sigma, g)$, and the required inequality follows. Otherwise, f has to be ≥ 0; hence, $G_f^\sigma(\Sigma, g) \geq 0$. □

2. Main results

Following [5], we call a (positive definite) kernel κ **perfect** if $E^+ := E^+(X)$, treated as a topological subspace of E, is strongly complete and the strong topology on E^+ is finer than the induced vague topology. It follows that a perfect kernel has to be **strictly positive definite**, and the seminorm $\| \cdot \|$ is then actually a norm.

Remark 2.1. It is well known (see, e.g., [4, 5, 6]) that the class of perfect kernels includes the Riesz kernels $|x - y|^{\alpha - n}$, $0 < \alpha < n$, in \mathbb{R}^n, $n \geq 2$ (in particular, the Newtonian kernel $|x - y|^{2 - n}$ in \mathbb{R}^n, $n \geq 3$), the restriction of the logarithmic kernel $-\log |x - y|$ in \mathbb{R}^2 to the open unit disk, and the Green kernel g_D, where D is an open set in \mathbb{R}^n, $n \geq 2$, and g_D is its generalized Green function.

Let ν_E denote the trace of $\nu \in M$ upon a ν-measurable set E.

Theorem 2.2. Assume (1.2) to hold, κ to be perfect, and let $C(\Sigma)$ be finite

If, moreover, either $g|_{U\Sigma}$ is bounded or there exist $r \in (1, \infty)$ and $\omega \in E$ such that $g^r(x) \leq \kappa_\omega(x) \text{ n.e. in } U\Sigma,$ \hspace{1cm} (2.1)

then the following assertions hold true:

(a) There exists a unique equilibrium measure λ_Σ^σ.

(b) Let $\Sigma_s \subset U\Sigma$, $s \in S$, be a decreasing ordered family of closed sets such that $C(\Sigma_s) < \infty$ and $\bigcap_{s \in S} \Sigma_s = \Sigma$. Let $\sigma_s \in M^+(\Sigma_s)$, $s \in S$, decrease and converge vaguely to σ. Then

$$G_f^\sigma(\Sigma, g) = \lim_{s \in S} G_f^{\sigma_s}(\Sigma_s, g)$$ \hspace{1cm} (2.2)

and $\lambda_{\Sigma_s}^\sigma \to \lambda_\Sigma^\sigma$ strongly (hence, also vaguely).

\footnote{Even for the Newtonian kernel, sets of finite capacity might be noncompact (see [5]).}
(c) Let \(\{K\} \) be the increasing ordered family of all compact subsets of \(\Sigma \). Then there exists a net \((\beta^*_K)_{K \in \{K\}} \subset (1, \infty)\) that decreases to 1 and such that, for all \(\beta_K \in [1, \beta^*_K] \),

\[
G^*_f(\Sigma, g) = \lim_{K \uparrow \Sigma} G^{\beta_K \sigma_K}_f(K, g).
\]

Furthermore, \(\lambda^{\beta_K \sigma_K}_K \to \lambda^*_\Sigma \) strongly (and, hence, vaguely).

Given a closed set \(E \subset X \) with \(C(E) > 0 \) and a universally measurable function \(\psi \) bounded from below nearly everywhere in \(E \), we write

\[
\inf_{x \in E} \psi(x) := \sup \left\{ q : \psi(x) \geq q \text{ n. e. in } E \right\}.
\]

Then

\[
\psi(x) \geq \inf_{x \in E} \psi(x) \text{ n. e. in } E,
\]

which follows from the countable subadditivity of \(C(\cdot) \) over universally measurable sets with interior capacity zero [5]. If \(\psi \) is bounded from above n. e. in \(E \), write

\[
\sup_{x \in E} \psi(x) := \inf_{x \in E} - \psi(x).
\]

In the next theorem we assume that \(\sigma_K \in \mathcal{E} \) for every compact \(K \subset \Sigma \) and \(\langle g, \sigma_{\Sigma_0} \rangle > 1 \), where \(\Sigma_0 := \{x \in \Sigma : f(x) < \infty\} \). Then (1.2) necessarily holds, since one can choose a compact \(K_0 \subset \Sigma_0 \) so that \(\sigma_{K_0} / \langle g, \sigma_{K_0} \rangle \in \mathcal{E}(\Sigma, g) \); cf. [2, 8].

Theorem 2.3. Given \(\lambda \in \mathcal{E}^*(\Sigma, g) \), the following assertions are equivalent:

(i) \(\lambda \) is an equilibrium measure \(\lambda^*_\Sigma \).

(ii) There exists \(w_\lambda \in \mathbb{R} \) such that

\[
W^f_\lambda(x) \geq w_\lambda g(x) \text{ n. e. in } S_{\sigma-\lambda},
\]

\[
W^f_\lambda(x) \leq w_\lambda g(x) \text{ n. e. in } S_\lambda.
\]

(iii) \(-\infty < \ell \leq L < \infty\), where

\[
\ell := \sup_{x \in S_\lambda} \frac{W^f_\lambda(x)}{g(x)}, \quad L := \inf_{x \in S_{\sigma-\lambda}} \frac{W^f_\lambda(x)}{g(x)}.
\]

Remark 2.4. It follows that, if \(\lambda \) is an equilibrium measure, then the collection of all \(w_\lambda \) for whom both (2.4) and (2.5) hold forms the finite closed interval \([\ell, L] \).

Of course, if \(g = 1 \), \(f = 0 \) and \(\kappa \) satisfies the maximum principle, then \(\ell = L \) and \([\ell, L] \) consists of just one point. However, this is not the case in general (see Sec. 5).

Remark 2.5. Relation (2.5) actually holds for every \(x \in S_\lambda \) if, moreover, \(f \in \Phi(X) \).

The rest of the article is organized as follows. Theorem 2.3 will be proved in Sec. 5. The proof of Theorem 2.2 to be given in Sec. 4 is based on a theorem on the strong completeness of \(\mathcal{E}^*(\Sigma, g) \), which is the main subject of the next section.

2 Observe that, under the assumptions made, both \(C(S_{\sigma-\lambda}) \) and \(C(S_\lambda) \) are nonzero.
3. Auxiliary assertions

Theorem 3.1. Let \(\kappa \) be perfect, \(E \subset U_\Sigma \) be a closed set with \(C(E) < \infty \), and let \(g \) be as in Theorem 2.2. Then

\[
\mathcal{E}^+(E,g) := \{ \nu \in \mathcal{E}^+(E) : \langle g, \nu \rangle = 1 \},
\]

is strongly complete. In more detail, every strongly fundamental net \((\nu_s)_{s \in S} \subset \mathcal{E}^+(E,g)\) converges strongly (and, hence, vaguely) to a unique \(\nu_0 \in \mathcal{E}^+(E,g) \). If, moreover, \(\sigma_0 \in \mathcal{M}^+(E) \) is given, then the same holds true for \(\mathcal{E}^\sigma_0(E,g) \) instead of \(\mathcal{E}^+(E,g) \).

Proof. For every \(B \subset E \) there exists a uniquely determined measure \(\theta_B \in \mathcal{E}^+(\overline{B}) \), called the interior capacitary distribution associated with \(B \), with the properties

\[
\theta_B(X) = \| \theta_B \|^2 = C(B), \quad (3.1)
\]

\[
\kappa \theta_B(x) \geq 1 \quad \text{n. e. in } B. \quad (3.2)
\]

Indeed, this follows from \(C(E) < \infty \) and the perfectness of \(\kappa \) due to [5, Th. 4.1].

One can certainly assume that \(C(E) > 0 \), since otherwise \(\mathcal{E}^+(E,g) \) is empty. Also observe that there is no loss of generality in assuming \(g \) to satisfy (2.1) for \(E \) instead of \(U_\Sigma \), since otherwise \(g|_E \) is bounded from above (say by \(M \)), which combined with (3.2) again gives (2.1) for \(\omega := M^r \theta_E, r \in (1, \infty) \) being arbitrary.

Fix a strongly fundamental net \((\nu_s)_{s \in S} \subset \mathcal{E}^+(E,g)\); then one can assume it to be strongly bounded. Due to the perfectness of the kernel, such a net converges to some \(\nu_0 \in \mathcal{E}^+ \) strongly and, therefore, vaguely. The latter yields \(S_{\nu_0} \subset E \) and \(\langle g, \nu_0 \rangle \leq 1 \). To prove that \(\mathcal{E}^+(E,g) \) is strongly complete, it is enough to show that

\[
\langle g, \nu_0 \rangle = 1. \quad (3.3)
\]

To this end, we shall treat \(E \) as a locally compact space with the topology induced from \(X \). Given a set \(B \subset E \), let \(\chi_B \) denote its characteristic function and let \(CB := E \setminus B \). Further, let \(\{K\} \) be the increasing family of all compact subsets \(K \) of \(E \). Since \(g\chi_K \) is upper semicontinuous on \(E \) while \((\nu_s)_{s \in S} \) converges to \(\nu_0 \) vaguely, for every \(K \in \{K\} \) we have

\[
\langle g\chi_K, \nu_0 \rangle \geq \limsup_{s \in S} \langle g\chi_K, \nu_s \rangle.
\]

On the other hand, Lemma 1.2.2 from [5] gives

\[
\langle g, \nu_0 \rangle = \lim_{K \in \{K\}} \langle g\chi_K, \nu_0 \rangle.
\]

Combining the last two relations, we obtain

\[
1 \geq \langle g, \nu_0 \rangle \geq \limsup_{(s, K) \in S \times \{K\}} \langle g\chi_K, \nu_s \rangle = 1 - \liminf_{(s, K) \in S \times \{K\}} \langle g\chi_K, \nu_s \rangle,
\]

\(S \times \{K\} \) being the directed product of the directed sets \(S \) and \(\{K\} \). Hence, if we prove

\[
\liminf_{(s, K) \in S \times \{K\}} \langle g\chi_K, \nu_s \rangle = 0, \quad (3.4)
\]

the desired relation (3.3) follows.
To obtain (3.3), consider the interior capacitary distribution \(\theta_{CK}, K \in \{ K \} \) being given. Then application of Lemma 4.1.1 and Theorem 4.1 from [5] yields
\[
\| \theta_{CK} - \theta_{\tilde{K}} \|^2 \leq \| \theta_{CK} \|^2 - \| \theta_{\tilde{K}} \|^2 \quad \text{provided } K \subset \tilde{K}.
\]
Furthermore, it is clear from (3.1) that the net \(\| \theta_{CK} \|, K \in \{ K \} \), is bounded and nonincreasing, and hence fundamental in \(\mathbb{R} \). The preceding inequality thus implies that \((\theta_{CK})_{K \in \{ K \}} \) is strongly fundamental in \(\mathcal{E}^+ \). Since it converges vaguely to zero, zero is also its strong limit due to the perfectness of the kernel; hence,
\[
\lim_{K \in \{ K \}} \| \theta_{CK} \| = 0.
\]
Write \(q := r(r - 1)^{-1} \), where \(r \in (1, \infty) \) is the number involved in condition (2.1). Combining (2.1) with (3.2) shows that the inequality
\[
g(x) \chi_{CK}(x) \leq \kappa_\omega(x)^{1/r} \kappa_{\theta_{CK}}(x)^{1/q}
\]
subsists n. e. in \(E \), and hence \(\nu_\omega \)-almost everywhere in \(X \). Having integrated this relation with respect to \(\nu_\omega \), we then apply the Hölder and, subsequently, the Cauchy-Schwarz inequalities to the integrals on the right. This gives
\[
\langle g \chi_{CK}, \nu_\omega \rangle \leq (\kappa_\omega, \nu_\omega)^{1/r} (\kappa_{\theta_{CK}}, \nu_\omega)^{1/q} \leq \| \omega \|^{1/r} \| \theta_{CK} \|^{1/q} \| \nu_\omega \|.
\]
Taking limits here along \(S \times \{ K \} \), we obtain (3.3) and, hence, (3.3).

Lemma 3.2. Assume \(\kappa \) to be perfect. In both Cases I and II, the \(f \)-weighted energy \(G_f \) is lower semicontinuous on \(\mathcal{E}^+ \) in the strong topology.

Proof. Actually, in Case II \(G_f \) is continuous on \(\mathcal{E}^+ \) in the strong topology, which is seen from (1.4). Let Case I take place; then \(f \in \Phi(X) \), and hence, \((f, \nu) \) is vaguely lower semicontinuous on \(\mathcal{E}^+ \) (see [5]). Since so is \(\kappa(\nu, \nu) \), the desired conclusion follows in view of the fact that the strong topology is finer than the vague one. \(\square \)

Lemma 3.3. Assume that (1.2) holds. For \(\lambda \in \mathcal{E}_f^+(\Sigma, g) \) to be an equilibrium measure, it is necessary and sufficient that
\[
\langle W_f^\lambda, \nu - \lambda \rangle \geq 0 \quad \text{for all } \nu \in \mathcal{E}_f^+(\Sigma, g).
\]

Proof. Since \(\mathcal{E}_f^+(\Sigma, g) \) is convex, for any its elements \(\nu, \mu \), and \(h \in (0, 1] \) we get
\[
G_f(h \nu + (1 - h) \mu) - G_f(\mu) = 2h(W_f^\mu, \nu - \mu) + h^2 \| \nu - \mu \|^2.
\]
(It has been used here that \(G_f \) is finite on \(\mathcal{E}_f^+(\Sigma, g) \); see (1.3) and Lemma 1.1.) If \(\mu = \lambda \) is an equilibrium measure, then the left (hence, the right) side of (3.6) is \(\geq 0 \), which leads to (3.5) by letting \(h \to 0 \). Conversely, if (3.5) holds, then with \(\mu = \lambda \) and \(h = 1 \) gives \(G_f(\nu) \geq G_f(\lambda) \) for all \(\nu \in \mathcal{E}_f^+(\Sigma, g) \), as required. \(\square \)
4. Proof of Theorem 2.2

(a) Fix \((\nu_s)_{s \in S} \subset E_f^\sigma(\Sigma, g)\) with the property that \(\lim_{s \in S} G_f(\nu_s) = G_f^\sigma(\Sigma, g)\); such a net will be called minimizing. Then identity \((4.6)\) with \(h = 1/2\) implies

\[\|\nu_s - \nu_d\|^2 \leq 2G_f(\nu_s) + 2G_f(\nu_d) - 4G_f^\sigma(\Sigma, g)\]

for all \(s, d \in S\), which establishes the strong fundamentality of \((\nu_s)_{s \in S}\) when combined with the above definition and Lemma 1.1. Therefore, by Theorem 3.1 it converges strongly and vaguely to a unique \(\nu_0 \in E^\sigma(\Sigma, g)\). On account of Lemma 3.2 we thus get

\[G_f^\sigma(\Sigma, g) \leq G_f(\nu_0) \leq \liminf_{s \in S} G_f(\nu_s) = G_f^\sigma(\Sigma, g)\]

consequently, \(\nu_0\) is an equilibrium measure \(\lambda_S^\sigma\).

The uniqueness of \(\lambda_S^\sigma\) follows in a standard way. Indeed, if \(\lambda, \hat{\lambda} \in E_f^\sigma(\Sigma, g)\) are two equilibrium measures, then the sequence \((\mu_n)_{n \in \mathbb{N}}\) with \(\mu_{2n} = \lambda\) and \(\mu_{2n+1} = \hat{\lambda}\) is minimizing; therefore, what has just been proved yields \(\lambda = \hat{\lambda}\) as required.

(b) Under the assumptions of (b), \(E^\sigma(\Sigma, g) \subset E^{\sigma_i}(\Sigma_d, g) \subset E^{\sigma_i}(\Sigma_s, g)\) for all \(s, d \in S\) whenever \(s \leq d\). Hence, \(G_f^\sigma(\Sigma_s, g)\) increases as \(s\) ranges through \(S\) and

\[G_f^\sigma(\Sigma, g) = \lim_{s \in S} G_f^\sigma(\Sigma_s, g).\] \(\quad (4.1)\)

By reason of \((4.1)\), this yields \(G_f^\sigma(\Sigma_s, g) < \infty\) for every \(s \in S\). Therefore, by (a), there exists a unique equilibrium measure \(\lambda_s := \lambda_{S_s}^\sigma\). Since \(\lambda_d \in E_f^{\sigma_*}(\Sigma_s, g)\) for all \(d \geq s\), we conclude from Lemma 5.3 that \((W_f^{\lambda_0^*}, \lambda_d - \lambda_s) \geq 0\) and, consequently,

\[\|\lambda_d - \lambda_s\|^2 \leq G_f^\sigma(\Sigma_d, g) - G_f^\sigma(\Sigma_s, g)\] \(\quad (4.2)\)

However, as follows from \((4.1)\), the net \(G_f^\sigma(\Sigma_s, g)\), \(s \in S\), is fundamental in \(\mathbb{R}\). When combined with \((4.2)\), this implies that \((\lambda_s)_{s \in S}\) is strongly fundamental in \(E^{\sigma_*}(\Sigma, g)\) for every \(\Sigma \in S\). Therefore, by Theorem 3.1 \((\lambda_s)_{s \in S}\) converges strongly and vaguely to a unique measure \(\nu_0\) and \(\nu_0 \in E^{\sigma_0}(\Sigma, g)\) for every \(\Sigma \in S\). Since \(\nu_0 \leq \sigma_0\) and \(\sigma_0 - \nu_0 \to \sigma - \nu_0\) vaguely as \(\ell\) ranges over \(S\), we get \(\nu_0 \leq \sigma\). Thus, actually \(\nu_0 \in E^\sigma(\Sigma, g)\) and, by Lemma 5.2

\[G_f(\Sigma, g) \leq G_f(\nu_0) \leq \liminf_{s \in S} G_f(\lambda_s).\]

Together with \((4.1)\), this gives \((2.2)\) and \(\nu_0 = \lambda_S^\sigma\), and the proof of (b) is complete.

(c) To prove (c), we start by establishing the relation

\[G_f^\sigma(\Sigma, g) = \lim_{K \uparrow \Sigma} G_f^{\sigma \cap}(K, g).\] \(\quad (4.3)\)

For every \(\nu \in E_f^\sigma(\Sigma, g)\), write \(\hat{\nu}_K := \nu_K / \langle g, \nu_K \rangle\). Since, by \([5\text{ Lemma 1.2.2}]\),

\[1 = \lim_{K \uparrow \Sigma} \langle g, \nu_K \rangle, \quad \langle f, \nu \rangle = \lim_{K \uparrow \Sigma} \langle f, \nu_K \rangle, \quad \|\nu\|^2 = \lim_{K \uparrow \Sigma} \|\nu_K\|^2,\]

we obtain

\[G_f(\nu) = \lim_{K \uparrow \Sigma} G_f(\hat{\nu}_K).\] \(\quad (4.4)\)
Having fixed \(\varepsilon > 0 \), we also conclude that there exists \(K^0 \in \{ K \} \) such that
\[
\hat{\nu}_K \in \mathcal{E}_f^{(1+\varepsilon)\sigma_K}(K, g) \text{ for all } K \in \{ K \} \text{ that follow } K^0.
\]
This yields
\[
G_f(\hat{\nu}_K) \geq G_f^{(1+\varepsilon)\sigma_K}(K, g).
\] (4.5)

In view of the arbitrary choice of \(\nu \), substituting (4.5) into (4.4) gives
\[
G_f^\sigma(\Sigma, g) \geq \lim_{K \uparrow \Sigma} G_f^{(1+\varepsilon)\sigma_K}(K, g) \geq G_f^{(1+\varepsilon)\sigma}(\Sigma, g),
\]
the latter inequality being a consequence of the monotonicity of \(G_f \).

Letting here \(\varepsilon \to 0 \) and applying (b), we obtain
\[
G_f^\sigma(\Sigma, g) = \lim_{\varepsilon \to 0} \left[\lim_{K \uparrow \Sigma} G_f^{(1+\varepsilon)\sigma_K}(K, g) \right] = \lim_{K \uparrow \Sigma} G_f^\sigma(K, g),
\]
and (4.3) is thus proved. Since obviously \(\lambda^\sigma_K \in \mathcal{E}_f^\sigma(\Sigma, g) \), relation (4.3), in turn, implies that the net \((\lambda^\sigma_K)_{K \in \{ K \}} \) is minimizing and, hence, strongly fundamental.

Further, according to (b), for every \(K \in \{ K \} \) one can choose \(\beta^*_K \in (1, \infty) \) so that \(\beta^*_K \downarrow 1 \) as \(K \uparrow \Sigma \) and, for all \(\beta_K \in [1, \beta^*_K] \),
\[
\lim_{K \in \{ K \}} \left\| \lambda^{\beta_K\sigma_K} - \lambda^\sigma_K \right\|^2 = 0,
\] (4.6)
\[
\lim_{K \in \{ K \}} \left[G_f(\lambda^{\beta_K\sigma_K}) - G_f(\lambda^\sigma_K) \right] = 0.
\] (4.7)

Then combining (4.3) and (4.7) gives (2.3), while (4.6) together with the strong fundamentality of \((\lambda^\sigma_K)_{K \in \{ K \}} \) shows that \((\lambda^{\beta_K\sigma_K})_{K \in \{ K \}} \) is strongly fundamental as well. Hence, according to Theorem 5.1 there exists a unique \(\nu_0 \) which is the strong limit of \((\lambda^{\beta_K\sigma_K})_{K \in \{ K \}} \) and belongs to \(\mathcal{E}^{(1+\delta)\sigma}(\Sigma, g) \) for every \(\delta > 0 \); therefore, \(\nu_0 \in \mathcal{E}^\sigma(\Sigma, g) \). On account of Lemma 3.2 and (2.3), this yields
\[
G_f^\sigma(\Sigma, g) \leq G_f(\nu_0) \leq \lim_{s \in \mathcal{S}} G_f(\lambda^{\beta_K\sigma_K}) = G_f^\sigma(\Sigma, g).
\]

Consequently, \(\nu_0 = \lambda^\sigma_K \), and the proof is complete. \(\square \)

5. Proof of Theorem 2.3

Assume (i) to hold. Since \(G_f(\lambda) \) is finite, so is \(\langle W^f_\lambda, \lambda \rangle \). We start by showing that
\[
W^f_\lambda(x) \geq \langle W^f_\lambda, \lambda \rangle g(x) \text{ n.e. in } S_{\sigma - \lambda}.
\] (5.1)

On the contrary, let \(C(N) > 0 \), where \(N := \{ x \in S_{\sigma - \lambda} : W^f_\lambda(x) < \langle W^f_\lambda, \lambda \rangle g(x) \} \).

It follows from [3. Th. 4.2] that then one can choose \(n \in \mathbb{N} \) and a compact set \(K \subset N \) with \(C(K) > 0 \) so that \(W^f_\lambda(x)/g(x) \leq \langle W^f_\lambda, \lambda \rangle - n^{-1} \) for all \(x \in K \). Write \(\tau := \beta(\sigma - \lambda)_K \), where \(\beta := 1/\langle g, (\sigma - \lambda)_K \rangle \). Then \(\tau \) belongs to \(\mathcal{E}^+ \), is \(\neq 0 \), and
\[
\langle W^f_\lambda, \tau \rangle < \langle W^f_\lambda, \lambda \rangle.
\] (5.2)

Since \(\kappa(\lambda, \tau) \) is finite, this yields \(\langle f, \tau \rangle < \infty \). A straightforward verification also shows that \(\tau_h := (1 - h)\lambda + h\tau \leq \sigma \) for any \(h \in (0, 1] \). Consequently, \(\tau_h \in \mathcal{E}^f_\lambda(\Sigma, g) \) and, by Lemma 3.3 \(\langle W^f_\lambda, \tau_h - \lambda \rangle = h\langle W^f_\lambda, \tau - \lambda \rangle \geq 0 \), which contradicts (5.2).
Thus, according to \((2.4)\), \(W^f_\lambda/g(x)\) is bounded from below n.e. in \(S_{\sigma-\lambda}\); this implies \((2.4)\) with \(w_\lambda = L\), where \(L\) is defined by \((2.0)\). In turn, \((2.4)\) yields \(L < \infty\), because \(C(S_{\sigma-\lambda} \cap \Sigma_0) > 0\). Hence, \(\infty > L \geq (W^f_\lambda, \lambda) > -\infty\).

We proceed by establishing \((2.5)\) with \(w_\lambda = L\). Having denoted (cf. \([7]\))

\[
E^+(w) := \{ x \in \Sigma : W^f_\lambda(x)/g(x) > w \}, \quad E^-(w) := \{ x \in \Sigma : W^f_\lambda(x)/g(x) < w \},
\]

where \(w \in \mathbb{R}\) is arbitrary, we assume on the contrary that \((2.5)\) for \(w_\lambda = L\) does not hold. Then \(\lambda(E^+(L)) > 0\); hence, \(\lambda(E^+(w_1)) > 0\) for some \(w_1 \in (L, \infty)\).

At the same time, as \(w_1 > L\), relation \((2.4)\) yields \((\sigma - \lambda)(E^-(w_1)) > 0\). Therefore, there is a compact set \(F \subset E^-(w_1)\) such that \(\xi := (\sigma - \lambda)_F\) is nonzero. Since \(\xi \in E^+\) and \(\langle W^f_\lambda, \xi \rangle \leq w_1(g, \xi) < \infty\), we get \(\langle f, \xi \rangle < \infty\). A direct verification also shows that

\[
\gamma := \lambda - \lambda_{E^+(w_1)} + \alpha \xi \leq \sigma, \quad \text{where} \quad \alpha := \langle g, \lambda_{E^+(w_1)} \rangle/\langle g, \xi \rangle.
\]

Consequently, \(\gamma \in \mathcal{E}_f^+(\Sigma, g)\). On the other hand, it also follows from the above that

\[
\langle W^f_\lambda, \gamma - \lambda \rangle = \langle W^f_\lambda - w_1 g, \gamma - \lambda \rangle = -\langle W^f_\lambda - w_1 g, \lambda_{E^+(w_1)} \rangle + \alpha \langle W^f_\lambda - w_1 g, \xi \rangle < 0,
\]

which is, however, impossible (see Lemma \([3.3]\)). Thus, \((i) \Rightarrow (ii)\).

Furthermore, since \(L\) is finite, \((2.5)\) with \(w_\lambda = L\) yields \(\ell \leq L\). To complete the proof of \((iii)\), it remains to observe that \(\ell > -\infty\), which is obtained from \((2.5)\) with \(w_\lambda = \ell\) due to the fact that \(W^f_\lambda \neq -\infty\) n.e. in \(\Sigma\). Hence, \((i) \Rightarrow (iii)\).

Next, assume \(\lambda \in \mathcal{E}_f^+(\Sigma, g)\) to satisfy \((2.4)\) and \((2.5)\) for some \(w_\lambda \in \mathbb{R}\). Then actually \(\lambda \in \mathcal{E}_f^+(\Sigma, g)\), which is seen from \((2.5)\) when integrated with respect to \(\lambda\). Given \(\nu \in \mathcal{E}_f^+(\Sigma, g)\), we also conclude from \((2.4)\) and \((2.5)\) that

\[
\langle W^f_\lambda, \nu - \lambda \rangle = \langle W^f_\lambda - w_\lambda g, \nu - \lambda \rangle
\]

\[
= \langle W^f_\lambda - w_\lambda g, \nu_{E^+(w_\lambda)} \rangle + \langle W^f_\lambda - w_\lambda g, (\nu - \sigma)_{E^-(w_\lambda)} \rangle \geq 0,
\]

which establishes \((i)\) according to Lemma \([3.3]\). Thus, \((ii) \Rightarrow (i)\).

Since \((iii)\) obviously yields \((ii)\) for any \(w_\lambda \in [\ell, L]\), the proof is complete. \(\Box\)

6. Examples

The following easily verified fact is used in this section: if \(\lambda_*\) gives a solution to the **unconstrained** \(f\)-weighted minimal energy problem over a closed set \(\Sigma_*\), i.e.,

\[
\lambda_* \in \mathcal{E}_f^+(\Sigma_*, g), \quad G_f(\lambda_*) = \min_{\nu \in \mathcal{E}_f^+(\Sigma_*, g)} G_f(\nu),
\]

then \(\lambda_*\) also serves as an equilibrium measure \(\lambda^{\ast}_{\Sigma_*}\), provided the closed set \(\Sigma\) and the constraint \(\sigma \in \mathcal{M}_f^+(\Sigma)\) satisfy the assumptions \(S_{\lambda_*} \subset \Sigma \subset \Sigma_*\) and \(\sigma \geq \lambda_*\).

In the examples below, the collection of all \(w_\lambda\) for whom both \((2.4)\) and \((2.5)\) hold forms the whole non-degenerated interval \([\ell, L]\). The kernels from the examples are perfect, so that every equilibrium measure is determined uniquely.
Example 1. Let \(X = \mathbb{R}^n, n \geq 3, g = 1, f = 0, \kappa(x, y) = |x - y|^\alpha - n \), where \(\alpha \in (2, n) \) is given, and let \(\Sigma := S(0, 1) \cup S(0, r) \), where \(S(0, R) := \{ x : |x| = R \} \) and \(r < 1 \). Consider \(\sigma \in \mathcal{E}^+(\Sigma) \) such that \(\sigma_{S(0, 1)} \) is the rotationally symmetric probability measure, while \(\sigma_{S(0, r)} \) is an arbitrary nonzero measure. Then \(\lambda^\sigma_{\Sigma} = \sigma_{S(0, 1)} \), because \(\sigma_{S(0, 1)} \) minimizes \(\|\nu\|^2 \) among all probability measures supported by the closed unit ball (see [6]). Since the potential of \(\sigma_{S(0, 1)} \) takes constant values \(c_1 \) and \(c_r \) on \(S(0, 1) \) and \(S(0, r) \), respectively, and \(c_r > c_1 \) (see [6]), we get \(L = c_r > c_1 = \ell \).

A crucial assumption in Example 1 is that \(\kappa \) does not satisfy the maximum principle. As is seen from Example 2, this restriction is not necessary in case \(f \neq 0 \).

Example 2. Let \(X = \mathbb{R}^n, n \geq 3, g = 1, \kappa(x, y) = |x - y|^\alpha - n \), where \(\alpha \in (0, 2] \), \(f(x) = |x - a|^\alpha - n \), where \(a \in S(0, 1) \) is fixed, and let \(\lambda_\bullet \) minimize \(G_f(\nu) \) among the probability measures supported by \(S(0, 1) \). Then there are a constant \(q \) and a closed neighborhood \(U \) of \(a \) on \(S(0, 1) \) such that \(W_{\lambda_\bullet} f(x) = q \) a.e. in \(S_\lambda \) and \(W_{\lambda_\bullet} |f| > 2q \) (see [3]). We define \(\sigma \) to be \(\lambda_\bullet \) on \(S_\lambda \), any nonzero \(\nu \in \mathcal{E}^+ \) on \(U \), and 0 elsewhere, and let \(\Sigma := S_\lambda \cup U \). Then \(\lambda^\sigma_{\Sigma} = \lambda_\bullet \) and, consequently, \(\ell = q < 2q \leq L \).

References

[1] P. D. Dragnev, Constrained energy problems for logarithmic potentials, Ph. D. Thesis, University of South Florida, Tampa (1997).
[2] P. D. Dragnev, E. B. Saff, Constrained energy problems with applications to orthogonal polynomials of a discrete variable, J. Anal. Math. 72 (1997), 223-259.
[3] P. D. Dragnev, E. B. Saff, Riesz spherical potentials with external fields and minimal energy points separation, Potential Anal. 26 (2007), 139-162.
[4] R. Edwards, Cartan’s balayage theory for hyperbolic Riemann surfaces, Ann. Inst. Fourier 8 (1958), 263-272.
[5] B. Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139–215.
[6] N. S. Landkof, Foundations of modern potential theory, Nauka, Fizmatlit, Moscow (1966); English trans., Springer–Verlag, Berlin (1972).
[7] E. A. Rakhmanov, Equilibrium measure and the distribution of zeros of extremal polynomials of a discrete variable, Mat. Sb. 187 (1996), 109–124 (in Russian); English transl. in: Sbornik:Mathematics 187 (1996).
[8] N. Zorii, Equilibrium problems for potentials with external fields, Ukrain. Math. J. 55 (2003), 1315–1339 (in Russian); English transl. in: Ukrain. Math. J. 55 (2003).