In Fe-based superconductors, the nematic order and fluctuations attract great attention as one of the essential properties of the electronic states. A schematic phase diagram of BaFe$_2$As$_2$ as a function of carrier doping y is shown in Fig. 1: For $y > 0$ (e-doping), the non-magnetic orthorhombic (C_2) phase transition occurs at T_S, and the antiferro (AF) spin order is realized at $T_N (\lesssim T_S)$ in the C_2 phase. In Ba(Fe$_{1-y}$Co$_y$)$_2$As$_2$ ($y = x$), both the structural and magnetic quantum critical points (QCPs) are very close, and strong magnetic fluctuations are observed near the QCPs by NMR [1]. In addition, strong nematic susceptibility that couples to the shear modulus C_{66} and the Raman quadrupole susceptibility $\chi_{Raman}^{x^2-y^2}$ due to the Aslamazov-Larkin vertex correction, the nematic-type orbital fluctuations are induced, and they enhance both $1/C_{66}$ and $\chi_{Raman}^{x^2-y^2}$ strongly. However, $\chi_{Raman}^{x^2-y^2}$ remains finite even at the structure transition temperature T_S, because of the absence of the band Jahn-Teller effect and the Pauli (=intra-band) contribution, as proved in terms of the linear response theory. The present study clarifies that origin of the nematicity in Fe-based superconductors is the nematic-orbital order/fluctuations.

FIG. 1: (color online) (a)Schematic phase diagram of Fe-based superconductors. (b)Fermi surfaces for $y = 0$. The weight of dx_z orbital is stressed by green circles. (c) Relation $\lambda_{\text{photon}} \gg \lambda_{\text{ac}}$. (d) Particle-hole excitation continuum.

In this paper, we analyze both C_{66} and $\chi_{Raman}^{x^2-y^2}$, both of which are key experiments to uncover the nematic order parameter. It is found that both C_{66} and $\chi_{Raman}^{x^2-y^2}$ are enhanced by the orbital fluctuations due to Aslamazov-Larkin type VC (AL-VC). However, $\chi_{Raman}^{x^2-y^2}$ is less singular since the band Jahn-Teller (band-JT) effect and the Pauli (=intra-band) quadrupole susceptibilities does not contribute to $\chi_{Raman}^{x^2-y^2}$. Since both C_{66} and $\chi_{Raman}^{x^2-y^2}$ are explained satisfactorily, the orbital nematic scenario is essential for many Fe-based superconductors.
As for the pairing mechanism, at present, both the spin fluctuation mediated \(s_\pm\) wave state [22–24] and orbital fluctuation mediated \(s_{++}\) wave state [25, 26] have been discussed. When both fluctuations coexist, nodal \(s\)-wave state can be realized [27]. The \(s_{++}\)-wave state is consistent with the robustness of \(T_c\) against impurities [28, 29] and broad hump structure in the inelastic neutron scattering [30, 31]. The self-consistent vertex correction (SC-VC) method [13, 26] predicts the developments of ferro- and AF-orbital fluctuations, and the freezing of the latter fluctuations would explain the nematic order at \(T^* \sim 200\text{K} (\gg T_S)\) [32, 33].

First, we discuss the susceptibility at \(k \approx 0\) with respect to the quadrupole order parameter \(\hat{O}_{x^2-y^2} \equiv n_{xz} - n_{yz}\) in the Hubbard model. For \(U = U' + 2J\), it is approximately given as [13, 16]

\[
\chi_{x^2-y^2}(k) = 2\Phi(k)/(1 - (U - 5J)\Phi(k)),
\]

where \(k = (k, \omega)\), and \(\Phi(k) \equiv \chi^{(0)}(k) + X(k)\) is the intra-orbital (within \(d_{xz}\) orbital) irreducible susceptibility: \(\chi^{(0)}(k)\) is the non-interacting susceptibility and \(X(k)\) is the VC for the charge channel. The orbital nematic order \(n_{xz} \neq n_{yz}\) occurs when the charge Stoner factor \(\alpha_c = (U - 5J)\Phi(0)\) reaches unity, which is realized near the magnetic QCP since the AL-VC is proportional to the square of the magnetic correlation length [13, 16, 17].

Next, we discuss the “total” quadrupole susceptibility in real systems, by including the realistic quadrupole interaction due to the acoustic phonon for the orthorhombic distortion. According to Ref. [34], it is given as \(-g_{\text{ac}}(k)\hat{O}_{x^2-y^2} \equiv \hat{O}_{x^2-y^2}(-k)\), where \(\hat{O}_{x^2-y^2}\) is the quadrupole operator, and \(g_{\text{ac}}(k) = g (v_{ac}(k)/\omega)^2/(v_{ac}(k)/\omega)^2 - 1\) is the phonon propagator multiplied by the coupling constants. \(v_{ac}\) is the phonon velocity. Since the Migdal’s theorem tells that the effect of \(g\) on the irreducible susceptibility is negligible, the total susceptibility is

\[
\chi_{x^2-y^2}^{\text{tot}}(k) = \chi_{x^2-y^2}(k)/(1 - g_{\text{ac}}(k)\chi_{x^2-y^2}(k)).
\]

Now, we discuss the acoustic and optical responses based on the total susceptibility (2), by taking notice that any susceptibilities in metals are discontinuous at \(\omega = |k| = 0\). Since the elastic constant is measured under the static \((\omega = 0)\) strain with long wavelength \((|k| \rightarrow 0)\), \(C_{66}\) is given as

\[
C_{66}^{-1} \sim 1 + \lim_{k \rightarrow 0} g_{\text{ac}}(k, 0)\chi_{x^2-y^2}^{\text{tot}}(k, 0) = \frac{1}{1 - g \chi_{k-\text{lim}}},
\]

where \(\chi_{k-\text{lim}} \equiv \lim_{k \rightarrow 0} \chi_{x^2-y^2}(k, 0)\) is called the \(k\)-limit, and the relation \(g_{\text{ac}}(k) = g\) for \(\omega = 0\) is taken into account. The structure transition occurs when \(C_{66}^{-1}\) diverges. When the AL-VC is negligible, \(\chi_{k-\text{lim}}\) is as small as \(\chi_{k-\text{lim}}^{(0)}\). Even in this case, \(C_{66}^{-1}\) can diverge when \(g\) is very large, which is known as the band-JT effect. However, the band-JT mechanism cannot explain the strong enhancement of \(\chi_{R\text{aman}}^{x^2-y^2}\), as we will clarify later. In fact, the fitting of experimental data in the present paper indicates that the softening of \(C_{66}\) is mainly given by the AL-VC. The relation \(1/g \sim \chi_{k-\text{lim}} \gg \chi_{k-\text{lim}}^{(0)}\) is satisfied in Fe-based superconductors.

Next, we derive the optical response in the DC limit, measured by using the low-energy photon with \(k = (k, \omega = c|k|)\) and \(\omega \rightarrow 0\). Considering that the photon velocity \(c\) is much faster than the Fermi velocity \(v_F\) and \(v_{ac}\), it is given as

\[
\chi_{x^2-y^2}^{\text{Raman}} \sim \lim_{\omega \rightarrow 0} \chi_{x^2-y^2}^{\text{tot}}(0, \omega) = \chi_{\omega-\text{lim}}.
\]

where \(\chi_{\omega-\text{lim}} = \lim_{\omega \rightarrow 0} \chi_{x^2-y^2}(0, \omega)\) is called the \(\omega\)-limit [35, 36]. Since \(g_{\text{ac}}(k)\) is zero for \(|\omega/k| = c\), the band-JT effect does not contribute to the Raman susceptibility. The physical explanation is that the acoustic phonons cannot be excited by photons because of the mismatch of the wavelengths \(\lambda_{\text{photon}} \gg \lambda_{\text{ac}}\) for the same \(\omega\) as shown in Fig. 1 (c). Also, since \(\omega \gg v_F\), low-energy photon cannot induce the intraband particle-hole excitation as understood from the location of the particle-hole continuum shown in Fig. 1 (d). This fact leads to the relationship “\(\chi_{\omega-\text{lim}}\) is smaller than \(\chi_{k-\text{lim}}\)” as we discuss mathematically later. For the charge quadrupole susceptibility, this relationship holds even if the quasiparticle lifetime is finite due to impurity scattering; see the Supplemental Material [37]. Therefore, \(\chi_{x^2-y^2}^{\text{Raman}}\) remains finite at \(T \sim T_S\) although \(C_{66}^{-1}\) diverges at \(T_S\), consistently with experiments [20, 21].

FIG. 2: (color online) (a) \(X_{\text{lim}}/T\) and (b) \(X_{\omega-\text{lim}}/T\) as functions of \(T\). Their \(T\)-dependences originates from \(|\Lambda_Q^{k-(\omega))^{-1}}|^2\) since \(\xi^2 \propto 1/(1 - \alpha_s)\) is fixed.

Hereafter, we perform the numerical calculation of the quadrupole susceptibility in the five-orbital model. The unit of energy is eV unless otherwise noted. First, we discuss the \(k\)-limit and \(\omega\)-limit of the bare bubble made of two \(d_{xz}\)-orbital Green functions. They are connected by the following relation:

\[
\chi_{k-\text{lim}}^{(0)} = \chi_{\omega-\text{lim}}^{(0)} + \sum_{\alpha} \left(-\frac{\partial F_{\alpha}}{\partial \lambda_{\alpha}}\right) \left(\chi_{k-\text{lim}}^{(0)}\right)^2,
\]
where \(z^2_R = |(xz, k|\alpha, k)|^2 \leq 1 \) is the weight of the \(dx_z \)-orbital on band \(\alpha \), and \(f_k^\alpha = (\exp((c_k^\alpha - \mu)/T) + 1)^{-1} \).

In Eq. (5), \(\chi_{\omega \text{-lim}}^{(0)} \) is given by

\[
\chi_{\omega \text{-lim}}^{(0)} = \sum_{\alpha \neq \beta} \left(f_k^\alpha - f_k^\beta \right) \left(c_k^\alpha - c_k^\beta \right)
\]

is the spin Stoner factor. Thus, we obtain the relationship \(X_{k \text{-lim}} / T \sim T^{-0.5} \xi^2 \), in which the factor \(T^{-0.5} \) originates from the strong \(T \)-dependence of \(|Q|_{\text{lim}}^{k}^2 \). We also show the temperature dependence of \(X_{\omega \text{-lim}} / T \) in Fig. 2 (b): The relation \(X_{\omega \text{-lim}} / T \sim (b - T) \xi^2 \) is realized due to the \(T \)-dependence of \(|Q|_{\text{lim}}^{k}^2 \) [40]. Therefore, the relationship \(X_{k \text{-lim}} > X_{\omega \text{-lim}} \) is confirmed by the present calculation.

Here, we perform the fitting of experimental data. To reduce the number of fitting parameters, we put \(x_{s} - y_{s} \approx 2 \Phi \) by assuming \((U - 5J) \sim 0 \), which would be justified since the relation \(J / U \sim 0.15 \) is predicted by the first principle study [41]. Also, we put \(\Phi \approx X \) by assuming that \(X > \chi(0) \). Then, Eqs. (3) and (4) are simplified as

\[
C_{66}^{-1} \propto 1/(1 - 2gX_{k \text{-lim}}), \tag{9}
\]

\[
\chi_{x_{s} - y_{s}}^{Raman} \propto X_{\omega \text{-lim}}, \tag{10}
\]

where \(X_{k \text{-lim}} \equiv a_0 T_0 \xi^2 \) and \(X_{\omega \text{-lim}} \equiv b_0 (b - T) \xi^2 \). According to Fig. 2, \(a \sim 0.5 \) and \(b \sim 0.1 \) for \(T > 0.01 \).

First, we fit the data of \(C_{66}^{\text{exp}} \), which is normalized by the shear modulus due to phonon anharmonicity (=33% Co-Ba122 data) given in Ref. [5]. We putting \(a = 0.5 \), and the remaining fitting parameters are \(h = 2ga_0 \) and \(\theta \). Figure 3 (a) shows the fitting result for
Ba(Fe\textsubscript{1−x}Co\textsubscript{x})\textsubscript{2}As\textsubscript{2}: The “dotted line C\textsubscript{66}′′ is the fitting result of C\textsubscript{66}exp under the constraint C\textsubscript{66} = 0 at T = T\textsubscript{S}. We fix \(h = 2.16 \) for all \(x \), and change \(\theta \) from 116K to −30K. The “broken line C\textsubscript{66}′′” is the fitting for \(x = 0 \sim 0.09 \) without the constraint, by using \(h = 2.67 \). Thus, both fitting methods can fit the T- and x-dependences of C\textsubscript{66}exp very well by choosing only \(\theta(x) \) with a fixed \(h \). Figure 3 (b) shows the obtained \(\theta(x) \) by C\textsubscript{66}′-fitting \((x = 0 \sim 0.043) \) and by C\textsubscript{66}′′-fitting \((x = 0.06, 0.09) \), as explained above. The obtained \(\theta(x) \) is very close to \(\theta_{\text{Raman}} \) given by the Curie-Weiss fitting of 1/\(T_1 \)\(T \) \cite{1}, which manifests the importance of the AL-VC. Also, \(\theta_{\text{Raman}} \) is given by the Raman spectroscopy \cite{20}.

In this paper, we showed that Raman susceptibility at \(\omega = 0 \) is enlarged by the AL-VC. The present theory predicts that the \(\omega \)-dependence of the AC Raman susceptibility follows \(\chi_{\text{Raman}}(x, \omega) \sim X(0, \omega) \sim (1 - i\omega / \Gamma)^{-1} \), and \(\Gamma \) is approximately \(\sim \omega_{\text{F}} \). However, \(\Gamma \) could be modified by the \(\omega \)-dependence of \(|\Delta_{\text{F}}(k)|^2 \).

In summary, we presented a unified explanation for the softening of C\textsubscript{66} and enhancement of C\textsubscript{Raman} based on the five-orbital model. Both 1/C\textsubscript{66} and \(\chi_{\text{Raman}} \) are enhanced by the nematic-type orbital fluctuations induced by the AL-VC. However, \(\chi_{\text{Raman}} \) remains finite even at the structure transition temperature \(T\textsubscript{S} \), because of the absence of the band-JT effect and the Pauli (=intra-band) contribution. The present study clarified that the origin of the nematicity, which is a central issue in Fe-based superconductors, is the nematic-orbital order/fluctuations.

We are grateful to A.E. Böhmer for offering us her experimental data published in Ref. \cite{5}. We also thank Y. Gallais, A.V. Chubukov, J. Schmalian, R. Fernandes and S. Onari for useful discussions. This study has been supported by Grants-in-Aid for Scientific Research from MEXT of Japan. Part of numerical calculations were performed on the Yukawa Institute Computer Facility.

1. F. L. Ning, K. Ahilan, T. Imai, A. S. Sefat, M. A. McGuire, B. C. Sales, D. Mandrus, P. Cheng, B. Shen, and H.-H Wen, Phys. Rev. Lett. 104, 037001 (2010)
2. R.M. Fernandes, L. H. VanBebber, S. Bhattacharya, P. Chandra, V. Keppens, D. Mandrus, M.A. McGuire, B.C. Sales, A.S. Sefat, and J. Schmalian, Phys. Rev. Lett. 105, 157003 (2010).
3. M. Yoshizawa, D. Kimura, T. Chiba, S. Simayi, Y. Nakanishi, K. Kihou, C.-H. Lee, A. Iyo, H. Eisaki, M. Nakajima, and S. Uchida, J. Phys. Soc. Jpn. 81, 024604
[4] S. Simayi, K. Sakano, H. Takezawa, M. Nakamura, Y. Nakanishi, K. Kihou, M. Nakajima, C.-H. Lee, A. Iyo, H. Eisaki, S. Uchida, and M. Yoshizawa, J. Phys. Soc. Jpn., 82, 114604 (2013).
[5] A. E. Böhmör, P. Burger, F. Hardy, T. Wolf, P. Schweiss, R. Fromknecht, M. Reinecker, W. Schranz, and C. Meingast, Phys. Rev. Lett. 112, 047001 (2014).
[6] T. Goto, R. Kurihara, K. Araki, K. Mitsumoto, M. Akatsu, Y. Nemoto, S. Tatemsatsu, and M. Sato, J. Phys. Soc. Jpn. 80, 073702 (2011).
[7] H.-H. Kuo, J. G. Analytis, J.-H. Chu, R. M. Fernandes, Y. Takata, Y. Tanaka, M. Oura, S. Shin, A. P. Singh, H. G. Lee, J.-Y. Kim, and C. Kim, Phys. Rev. Lett. 111, 210701 (2013).
[8] M. Yoshizawa, private communication.
[9] R. Zhou, Z. Li, J. Yang, D. L. Sun, C. T. Lin, and G. Zheng, Nat. Commun. 4, 2265, (2013).
[10] F. Krüger, S. Kumar, J. Zaanen, J. van den Brink, Phys. Rev. B 79, 054504 (2009).
[11] W. Lv, J. Wu and P. Phillips, Phys. Rev. B 80, 224506 (2009); W. Lv, F. Krüger, and P. Phillips, Phys. Rev. B 82, 045125 (2010).
[12] C.-C. Lee, W.-G. Yin, and W. Ku, Phys. Rev. Lett. 103, 267001 (2009).
[13] S. Onari and H. Kontani, Phys. Rev. Lett. 109, 137001 (2012).
[14] H. Kontani, Y. Inoue, T. Saito, Y. Yamakawa and S. Onari, Solid State Communications, 152, 718 (2012).
[15] R.M. Fernandes and A.J. Millis, Phys. Rev. Lett. 111, 127001 (2013).
[16] Y. Ohno, M. Tsuchiizu, S. Onari, and H. Kontani, J. Phys. Soc. Jpn. 82, 013707 (2013).
[17] M. Tsuchizu, Y. Ohno, S. Onari and H. Kontani, Phys. Rev. Lett. 111, 057003 (2013).
[18] M. Yi, D. H. Lu, J.-H. Chu, J. G. Analytis, A. P. Sorini, A. F. Kemper, B. Moritz, S.-K. Mo, R. G. Moore, M. Hashimoto, W.-S. Lee, Z. Hussain, T. P. Devereaux, I. R. Fisher, and Z.-X. Shen, Proc. Natl. Acad. Sci. USA 108, 6878 (2011).
[19] H. Miao, L.-M. Wang, P. Richard, S.-F. Wu, J. Ma, T. Qian, L.-Y. Xing, X.-C. Wang, C.-Q. Jin, C.-P. Chou, Z. Wang, W. Ku, and H. Ding, arXiv:1310.4601
[20] Y. Gallais, R. M. Fernandes, I. Paul, L. Chauviere, Y.-X. Yang, M.-A. Measson, M. Cazayous, A. Sacuto, D. Colson, and A. Forget, Phys. Rev. Lett. 111, 267001 (2013).
[21] Y.-X. Yang, Y. Gallais, R. M Fernandes, I. Paul, L. Chauviere, M.-A. Measson, M. Cazayous, A. Sacuto, D. Colson, and A. Forget arXiv:1310.0934
[22] K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett. 101, 087004 (2008).
[23] P. J. Hirschfeld, M. M. Korshunov, I. I. Mazin Rep. Prog. Phys. 74, 124508 (2011).
[24] A. V. Chubukov, D. V. Efremov, and I. Eremin, Phys. Rev. B 78, 134512 (2008).
[25] H. Kontani and S. Onari, Phys. Rev. Lett. 104, 157001 (2010).
[26] S. Onari, Y. Yamakawa and H. Kontani, Phys. Rev. Lett. 112, 187001 (2014).
[27] T. Saito, S. Onari and H. Kontani, Phys. Rev. B 88, 045115 (2013).
[28] S. Onari and H. Kontani, Phys. Rev. Lett. 103, 177001 (2009).
[29] Y. Yamakawa, S. Onari, and H. Kontani, Phys. Rev. B 87, 195121 (2013).
[30] S. Onari, H. Kontani and M. Sato, Phys. Rev. B 81, 060504(R) (2010).
[31] S. Onari and H. Kontani, Phys. Rev. B 84, 144518 (2011).
[32] S. Kasahara, H. J. Shi, K. Hashimoto, S. Tonegawa, Y. Mizukami, T. Shibauchi, K. Sugimoto, T. Fukuda, T. Terashima, A. H. Nevidomskyy, and Y. Matsuda, Nature 486, 382 (2012).
[33] Y. K. Kim, W. S. Jung, G. R. Han, K.-Y. Choi, C.-C. Chen, T. P. Devereaux, A. Chainani, J. Miyawaki, Y. Takata, Y. Tanaka, M. Oura, S. Shin, A. P. Singh, H. G. Lee, J.-Y. Kim, and C. Kim, Phys. Rev. Lett. 111, 210701 (2013).
[34] H. Kontani, T. Saito and S. Onari, Phys. Rev. B 84, 024528 (2011).
[35] P. Nozieres, Theory of Interacting Fermi Systems (Benjamin, New York, 1964); A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics Dover, New York, 1975); A. J. Leggett, Phys. Rev. 140, 1A1869 (1965).
[36] H. Kontani, and K. Yamada, J. Phys. Soc. Jpn. 65, 172 (1996); H. Kontani, and K. Yamada, J. Phys. Soc. Jpn. 66, 2232 (1997).
[37] H. Kontani and Y. Yamakawa, Supplemental Material
[38] A.-J. Millis, H. Monien and D. Pines, Phys. Rev. B 42, 167 (1990); P. Monthoux and D. Pines, Phys. Rev. B 47, 6069 (1993).
[39] P. Steffens, C.H. Lee, N. Qureshi, K. Kihou, A. Iyo, H. Eisaki, and M. Braden, Phys. Rev. Lett. 110, 137001 (2013).
[40] The analytic expression of $\Lambda^\omega_{\alpha \beta \gamma}$ is given as

$$\Lambda^\omega_{\alpha \beta \gamma} = \sum_{\alpha, \beta, \gamma} \sum_{k} \frac{1}{\epsilon_k - \epsilon_k'} \left(\frac{f_{k}^{\beta}}{\epsilon_k - \epsilon_k'} - \frac{f_{k}^{\alpha}}{\epsilon_k - \epsilon_k} \right) + \frac{f_{k}^{\gamma}}{\epsilon_k - \epsilon_k'} \left(\frac{\epsilon_k - \epsilon_k'}{\epsilon_k'} \right) \zeta_{\alpha \beta \gamma} = \left(\frac{\epsilon_k - \epsilon_k'}{\epsilon_k'} \right)^2 \zeta_{\alpha \beta \gamma}.$$
[SUPPLEMENTAL MATERIAL]: RELATIONSHIP \(\chi_{k\text{-limit}} > \chi_{\omega\text{-limit}} \) IN THE PRESENCE OF IMPURITIES

In the main text, we have studied the \(k \)-limit and \(\omega \)-limit of the quadrupole susceptibility \(\chi_{x^2-y^2}(q,\omega) \), and found that the relationship \(\chi_{k\text{-limit}} > \chi_{\omega\text{-limit}} \) is satisfied. The basis of this relationship is that the intra-band Pauli term is absent in both \(\chi^{(0)}(k) \) and \(\chi^{(0)}(q) \). However, the relationship \(\chi_{k\text{-limit}} > \chi_{\omega\text{-limit}} \) is not trivial when the scattering processes exist. Here, we calculate both \(\chi^{(0)}(k) \) and \(\chi^{(0)}(q) \) in the presence of the local nonmagnetic impurities based on the \(T \)-matrix approximation in the five-orbital model. For the charge quadrupole susceptibility, the relationship \(\chi_{k\text{-limit}} > \chi_{\omega\text{-limit}} \) is confirmed even in the presence of impurities.

We assume that the impurity potential \(I \) is diagonal in the orbital basis. (We write \(d_{x^2}, d_{xz}, d_{yz}, d_{xy}, d_{x^2-y^2} \) orbitals as 1, 2, \(\cdots \), 5, respectively.) Then, the \(T \)-matrix in the orbital basis is given as

\[
\hat{T}(\epsilon_n) = I(1 - \sum q \hat{G}(q,\epsilon_n))^{-1}
\]

where \(\epsilon_n = (2n + 1)\pi T \) and the Green function is \(\hat{G}(q,\epsilon_n) = (i\epsilon_n + \mu - \hat{H}_0^q - \Sigma^{\text{imp}}(\epsilon_n)) \), and

\[
\Sigma^{\text{imp}}(\epsilon_n) = \pi n_{\text{imp}} \hat{T}(\epsilon_n)
\]

is the impurity self-energy when the impurity concentration is \(n_{\text{imp}}(\ll 1) \). The Bethe-Salpeter equation for the one-particle operator \(\hat{O} \) is

\[
\hat{L}^{\text{imp}}(k;\epsilon_n) = \hat{O} + n_{\text{imp}} \sum q \hat{T}(\omega_l + \epsilon_n)\hat{G}(q + k) \\
\times \hat{L}^{\text{imp}}(k;\epsilon_n)\hat{G}(q)\hat{T}(\epsilon_n)
\]

where \(q = (q,\epsilon_n) \) and \(k = (k,\omega_l) \). We will show the significant role of the VC given by the second term; \(\hat{L}^{\text{imp}} - \hat{O} \).

First, we study the impurity effect on the bare-bubble \(\chi^{(0)}(k) \) for the \(O_{x^2-y^2} \) quadrupole. The impurity effect is divided into the (i) self-energy correction (12) and (ii) vertex correction (13). Only (i) is taken into account, the bare-bubble within the \(d_{xz} \)-orbital is given as

\[
\chi^{(0),\Sigma}(k) = -T \sum q G_{2,2}(k + q) G_{2,2}(q)
\]

where \(G \) includes the self-energy, and the suffix 2 in \(G \) represents the \(d_{xz} \)-orbital. If both (i) and (ii) is taken into account, it is given as

\[
\chi^{(0),\text{true}}(k) = -T \sum_{q,m,m'} \hat{L}^{\text{imp}}_{m,m'}(k;\epsilon_n) G_{m',2}(k + q) G_{2,m}(q)
\]

for \(\hat{O} = \hat{O}_{x^2-y^2} \) in Eq. (13), where \(l, m = 1 \sim 5 \) represents the \(d \)-orbital. \(\chi^{(0),\text{true}} \) gives the correct susceptibility for \(n_{\text{imp}} > 0 \), whereas \(\chi^{(0),\Sigma} \) is incorrect.

\[
\Sigma^{\text{imp}}(\epsilon_n) = \pi n_{\text{imp}} \hat{T}(\epsilon_n)
\]

FIG. 5: (color online) (a) \(\chi_{\omega\text{-limit}}^{(0)} \) and \(\chi_{\text{true}}^{(0)} \), (b) \(\chi_{\omega\text{-limit}}^{(0)} \) and \(\chi_{\text{true}}^{(0)} \), (c) \(\chi_{\omega\text{-limit}}^{(0)} \) and \(\chi_{\text{true}}^{(0)} \), and (d) \(\chi_{\omega\text{-limit}}^{(0)} \) and \(\chi_{\text{true}}^{(0)} \) as functions of \(n_{\text{imp}} \). The correct results are given in (b) and (d). Here, \(\omega \)-limit values are obtained by extrapolating the data at \(\omega_l \) with \(l = 1 \sim 10 \) to the real axis numerically.

Here, we discuss the susceptibilities in the \(k \)-limit and \(\omega \)-limit. Using Eq. (14) or (15), the former is simply given as \(\chi_{k\text{-limit}} = \chi(k,\omega_l) \) at \(l = 0 \) and \(k = 0 \). Here, we derive the latter numerically by extrapolating the data at \(\omega_l \) with \(l = 1 \sim 10 \) to the real axis. This procedure is successful at sufficiently low temperatures. Figure 5 (a) and (b) represent the numerically obtained \(\chi^{(0),\Sigma} \) and \(\chi^{(0),\text{true}} \) for \(I = 1 \), respectively. We fix \(T = 3 \) meV and \(n = 6.0 \). In (a), \(\chi_{\omega\text{-limit}} \) quickly increases with \(n_{\text{imp}} \), and it is almost equal to \(\chi^{(0),\text{true}} \) for \(n_{\text{imp}} > 0.01 \). In (b), in contrast, \(\chi_{\omega\text{-limit}} \) does not reach the \(k \)-limit value even for \(n_{\text{imp}} \sim 0.1 \). In both (a) and (b), impurity effect on the \(k \)-limit value is very small. Since \(\chi^{(0),\text{true}} \) gives the true susceptibility, we conclude that the relationship \(\chi^{(0)}_{k\text{-limit}} > \chi^{(0)}_{\omega\text{-limit}} \) is satisfied even for \(n_{\text{imp}} > 0 \).

In Fig. 5 (a), \(\chi^{(0),\Sigma} \) approaches to the \(k \)-limit value.
for $n_{\text{imp}} > 0$, since the intra-band Pauli term also contributes to the ω-limit ($k = 0$ and $\omega \to 0$) due to the broadening of the quasiparticle spectrum caused by $\text{Im} \Sigma$. However, the impurity three-point vertex $\hat{L}^{\text{imp}}(k; \epsilon_n)$ takes large value for $\omega_l \cdot (\epsilon_n + \omega_l) < 0$, and it suppresses the Pauli term. These effects exactly cancel for conserved quantities: For this reason, the charge and spin susceptibilities become zero in the ω-limit even for $n_{\text{imp}} > 0$. Although $O_{x^2-y^2}$ is not conserved, the VC in $\hat{L}^{\text{imp}}(k; \epsilon_n)$ is nonzero in the present model, and therefore the relationship $\chi^{(0), \text{true}}_k > \chi^{(0), \text{true}}_\omega$ is satisfied.

Next, to discuss the AL-VC, we calculate $\Lambda^{k(\omega)-\lim}_Q$ at $Q = (0, \pi)$ introduced in the main text (Eq. (8)) in the presence of impurities ($I = +1$), by which the AL-VC is given as $X_{k(\omega)-\lim} \sim T|\Lambda^{k(\omega)-\lim}_Q|^2 \sum_k \chi^s(k)^2$. Figure 5 (a) shows the numerically obtained $\Lambda^{Q(\omega)-\lim}_{Q, \Sigma}$, in which only Σ^{imp} is included. We see that $\Lambda^{Q(\omega)-\lim}_{Q, \Sigma}$ increases with n_{imp}, and coincides with the k-limit value just for $n_{\text{imp}} \gtrsim 0.01$. We also calculate $\Lambda^{k(\omega)-\lim}_{Q, \text{true}}$, in which both Σ^{imp} and L^{imp} are taken into account properly. In this case, $\Lambda^{Q(\omega)-\lim}_{Q, \text{true}}$ does not reach the k-limit value even for $n_{\text{imp}} \gtrsim 0.1$ thanks to the VC in L^{imp}. Since $\Lambda^{k(\omega)-\lim}_{Q, \text{true}}$ gives the true vertex function, the relation of the AL-VC $X^{k(\omega)-\lim}_k > X^{\omega-\lim}_\text{true}$ is confirmed even for $n_{\text{imp}} > 0$.

In summary, we confirmed that the relationship $\chi^{k-\lim}_k > \chi^{\omega-\lim}_\omega$ is satisfied in the presence of impurities, by taking both Σ^{imp} and L^{imp} into account correctly. In other words, although the relation $\chi^{k-\lim}_k \approx \chi^{\omega-\lim}_\omega$ is obtained by including Σ^{imp} only, it is an artifact due to the neglect of the VC in L^{imp}. (Since $L^{\text{imp}} = \hat{O}$ for the charge current $\hat{O} = v_k$, such discontinuity will be absent for the conductivity.) In real compounds, the Raman vertex $\hat{R}_{x^2-y^2}$ is very complex and momentum dependent. In this paper, we take the momentum average of $\hat{R}_{l,l}^{x^2-y^2}$ ($l = 2, 3$), and consider the constant Raman vertex $\hat{O}_{x^2-y^2}$ to simplify the discussion. In the present multiorbital model, L^{imp} does not vanish even if the k-dependence of $\hat{R}_{x^2-y^2}$ is taken into account, so the relationship $\chi^{k-\lim}_k > \chi^{\omega-\lim}_\omega$ should be satisfied for $n_{\text{imp}} > 0$.