Biodistribution of phenylalanine labeled with gallium-68

V K Tishchenko1, https://orcid.org/0000-0001-8983-5976, V M Petriev1,2, https://orcid.org/0000-0002-0231-2177 and E D Stepchenkova1

1 Tsyb Medical Radiological Research Centre, Obninsk, Russia
2 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
E-mail: petriev@mrrc.obninsk.ru

Abstract. Positron emission tomography (PET) is modern high sensitivity method of various tumor imaging. The synthesis of new radiopharmaceuticals based on amino acids and positron emitting radionuclide 68Ga for PET imaging is of great interest. This work is devoted to study the biodistribution of a new agent based on amino acid phenylalanine and 68Ga (68Ga-phenylalanine) in Wistar rats with cholangioma RS-1 after intravenous administration. A comparative investigation of 68Ga-phenylalanine and 68GaCl₃ biodistribution was also carried out. It was shown that the highest uptake of 68Ga-phenylalanine was observed in blood, liver, femur and tumor. Tumor uptake of 68Ga-phenylalanine increased 3.5 times from 0.20 ± 0.03 % ID/g to 0.70 ± 0.10 % ID/g, whereas uptake of 68GaCl₃ decreased from 0.34 ± 0.07 % ID/g to 0.13 ± 0.04 % ID/g within 3 h. Blood uptake of 68Ga-phenylalanine reached 2.98 ± 0.31 % ID/g. In other organs and tissues the uptake of 68Ga-phenylalanine didn’t exceed 1 % ID/g. Kidneys and femur uptake of 68Ga-phenylalanine was lower as compared with 68GaCl₃, but in other organs the uptake of 68Ga-phenylalanine was similar or slightly higher when compared with 68GaCl₃.

1. Introduction

A high occurrence of cancer diseases is a serious medical problem. Early and precise disease detection is a key problem that determines further approaches and treatment potential. Nuclear medicine technologies play an important role in this problem solving.

Positron emission tomography (PET) is highly sensitive non-invasive diagnostic method that allows visualizing of metabolic abnormalities in organs and tissues long before the appearance of structural alterations. A wide spread of PET is impossible without high specific tumor-seeking radiopharmaceuticals.

Despite a large amount of synthesized radiopharmaceuticals, nowadays more than 90 % of PET surveys are performed with 2-deoxy-2-[18F]fluoro-glucose (18F-FDG). Automated 18F-FDG synthesis and local cyclotron availability for 18F production lead to high cost of survey and determine a broad application of PET [1]. PET with 18F-FDG is poorly suitable for visualization of tumors with low glycolytic rate such as neuroendocrine or brain tumors.

Thus, generator-produced radionuclides are of great interest. Gallium-68 (68Ga) is a positron-emitting radionuclide with appropriate physical properties ($\beta^+ = 89\%$, $E_{\beta_{\text{max}}} = 1.9$ MeV) and short half-life ($T_{1/2} = 67.7$ min). Commercially available 68Ge/68Ga generator is placed in hospitals, and 68Ga$^{5+}$ can be obtained during 12-18 months [2].
Aminoacids are promising carriers of radionuclides as they play an important role in metabolism, protein synthesis, signal and nerve impulses transmission between cells. Tumor cells are characterized by metabolic reprogramming, which is consisted in increasing of aminoacids consumption as compared with non-tumor cells [3]. Tumor cells are also characterized by upregulation of amino acid transporters such as LAT1 [4]. It is known that LAT1 is highly expressed in tumor cells of breast, prostate, lung, colorectal cancer, head and neck cancer, gliomas [5, 6].

Phenylalanine is essential amino acid, a source of tyrosine and protein synthesis. Tyrosine, in turn, is a precursor of dopamine, adrenaline and noradrenaline in nerve tissue and medullary layer of adrenal glands. Phenylalanine derivative, 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine (6-[18F]-DOPA), has been used for 30 years in PET to diagnose several nervous system disorders such as schizophrenia or Parkinson’s disease [7, 8]. Besides, 6-[18F]-DOPA can be used for diagnosis of neuroendocrine tumors (pheochromocytomas, pancreatic adenocarcinomas, etc.) due to neuroendocrine tumor cells consume and store the transported and decarboxylated amines in cytoplasmic neurosecretory granules [9].

Consequently, the development of new radiolabelled phenylalanine derivatives is of current interest of nuclear medicine. The aim of this work is to study the biodistribution of a promising agent for PET tumor imaging, 68Ga-phenylalanine, in Wistar rats with transplanted cholangioma RS-1.

2. Materials and methods

68Ga68Ge generator was obtained from Cyclotron Co., Ltd (Obninsk, Russia). Preparation of 68Ga-phenylalanine was the following: 10.0 mg of phenylalanine was dissolved in 2.0 ml of bidistilled water and adjusted with 3.0 M of HCl to pH of 2.0. Then 0.5 ml of 68GaCl3 in 0.05 M of HCl solution (3.7 MBq), stir for 5 min and adjusted with 0.1 M of sodium bicarbonate solution to pH of 5.6-6.0.

Radiochemical impurities were detected by paper chromatography in the same manner as described in [10]. The rate of 68Ga binding with phenylalanine was 92 % throughout the study.

All animal studies were carried out in female Wistar rats (140-160 g) with transplanted cholangioma RS-1. The transplantation of cholangioma RS-1 was performed as follows: the donor rat with tumor was sacrificed by cervical disruption, tumor tissue was removed, ground up and diluted in 0.9 % NaCl (1:3). Then this suspension (100 mg/rat in a volume of 0.1 ml) was injected subcutaneously into right flanks of Wistar rats. Ten days later, when the tumor volume reached 0.7-0.8 cm3, the rats were divided into 2 equal groups and used for biodistribution experiments. The animals of group 1 (n = 16) were administered intravenously with 0.37 MBq in 0.1 ml of 68Ga-phenylalanine. The animals of group 2 (n = 16) were intravenously injected with 0.37 MBq in 0.1 ml of 68GaCl3. At each time points after injection (5 min, 1, 2 and 3 h) four rats were sacrificed, the samples of tissues and organs were placed in tubes and weighed. The radioactivity was measured by automatic gamma counter. The amount of activity in organs and tissues was expressed as a percentage of the injected dose per gram of tissue (%ID/g). Also tumor/blood and tumor/muscle ratios were calculated. All the biodistribution studies were carried out in strict compliance with the national laws related to the conduct of animal experiments.

The results of the biodistribution data for each group of rats were expressed as mean value and standard error of the mean (M ± m). Comparisons between groups at different time points were analyzed using Student’s t test, and p<0.05 was considered statistically significant.

3. Results and discussion

The biodistribution of 68Ga-phenylalanine in tumor-bearing rats is represented in figure 1. The highest uptake of 68Ga-phenylalanine was observed in blood, liver, femur and tumor.

The initial tumor uptake of 68Ga-phenylalanine was 0.20 ± 0.03 % ID/g at 5 min post-injection (p.i.) and increased to 0.70 ± 0.10 % ID/g at 3 h p.i. In contrast, the uptake of 68GaCl3 decreased from 0.34 ± 0.07 % ID/g at 5 min to 0.13 ± 0.04 % ID/g at 3 h (figure 2).

In our previous investigations we studied the biodistribution of 68Ga-methionine [10], 68Ga-leucine [11], 68Ga-histidine and 68Ga-tryptophan [12]. The tumor uptake of 68Ga-methionine, 68Ga-histidine

2
and 68Ga-tryptophan is similar to 68Ga-phenylalanine, increasing to maximal values to the end of the study [10, 12]. But the accumulation of 68Ga-leucine reduced from 0.79 ± 0.02 % ID/g to 0.29 ± 0.05 % ID/g throughout the study [11].

The peak blood uptake of 68Ga-phenylalanine and 68GaCl\textsubscript{3} was 2.98 ± 0.31 % ID/g and 3.64 ± 0.28 % ID/g at 5 min p.i., respectively. Further their amounts in blood decreased and became almost equal at 3 h p.i. High amounts of 68Ga-methionine, 68Ga-histidine and 68Ga-tryptophan in blood were observed [10, 12]. Only blood uptake of 68Ga-leucine (up to 1.40 ± 0.25 % ID/g) was lower [11].

\begin{figure}
\centering
\includegraphics[width=\textwidth]{biodistribution.png}
\caption{The biodistribution of 68Ga-phenylalanine in tumor-bearing Wistar rats (in %ID/g); SI – small intestine}
\end{figure}

The accumulation of 68Ga-phenylalanine in kidneys varied from 0.42 ± 0.07 to 0.55 ± 0.06 % ID/g, whereas kidneys uptake of 68GaCl\textsubscript{3} was 3.3-6.5 times higher and reached 3.57 ± 0.89 % ID/g at 5 min p.i. (figure 2). But at the next terms kidneys uptake of 68GaCl\textsubscript{3} reduced to 1.69 ± 0.24 % ID/g and stayed constant to the end of study.

In liver the amount of 68Ga-phenylalanine was 0.54-0.74 % ID/g. There are no statistical differences with 68GaCl\textsubscript{3} uptake in liver.

The brain uptake of 68Ga-phenylalanine was 3.4-4.5 higher as compared with 68GaCl\textsubscript{3} (p < 0.01). The peak amount of 68Ga-phenylalanine in brain was 0.118 ± 0.012 % ID/g at 5 min p.i., whereas the amount of 68GaCl\textsubscript{3} didn’t exceed 0.035 ± 0.008 % ID/g. It can be explained by high expression of L-type amino acid transporters LAT1 in endothelial cells of brain-blood barrier [13].

It is known that unbound 68Ga has high affinity to hydroxyapatite of bones [14]. For this reason the femur uptake of 68GaCl\textsubscript{3} reached 3.03 ± 0.62 % ID/g. The femur uptake of 68Ga-phenylalanine increased from 0.44 ± 0.04 to 0.93 ± 0.16 % ID/g that was lower than that of 68GaCl\textsubscript{3} (figure 2).
In other organs and tissues (lungs, heart, spleen, stomach, small intestine and muscle) the uptake of
\(^{68}\text{Ga-phenylalanine}\) was similar or slightly higher when compared with \(^{68}\text{GaCl}_3\). The specific activity of \(^{68}\text{Ga-phenylalanine}\) in these organs didn’t exceed 1 % ID/g (figure 1).

* – p < 0,05 as compared with control group (\(^{68}\text{GaCl}_3\))

Figure 2. A comparative uptake of \(^{68}\text{Ga-phenylalanine}\) and \(^{68}\text{GaCl}_3\) in some organs of tumor-bearing Wistar rats (in %ID/g)

Table 1. Tumor/blood and tumor/muscle ratios of \(^{68}\text{Ga-phenylalanine}\) in soft organs and tissues of Wistar rats at different time after intravenous injection (in % ID/g)

	Time after injection			
	5 min	1 h	2 h	3 h
Tumor/blood	0.07±0.01	0.26±0.04	0.37±0.07	0.61±0.15
Tumor/muscle	1.10±0.12	2.99±0.48	3.99±0.60	6.27±1.55

Tumor/blood and tumor/muscle ratios for \(^{68}\text{Ga-phenylalanine}\) increased throughout the study (table 1). Thus, tumor/muscle ratios reached 6.27 ± 1.55 at 3 h p.i. Unfortunately, tumor/muscle ratios were less than 1 within the study. Also tumor/blood and tumor/muscle ratios for \(^{68}\text{Ga-phenylalanine}\) were higher than for \(^{68}\text{GaCl}_3\).

4. Summary

It was shown that tumor uptake of \(^{68}\text{Ga-phenylalanine}\) was higher than \(^{68}\text{GaCl}_3\) uptake. Moreover, the concentration of \(^{68}\text{Ga-phenylalanine}\) in tumor increased throughout the study. Sufficiently high uptake of \(^{68}\text{Ga-phenylalanine}\) in blood was observed. In other organs and tissues the uptake of \(^{68}\text{Ga-phenylalanine}\) was similar or slightly higher when compared with \(^{68}\text{GaCl}_3\) and didn’t exceed 1 % ID/g. Tumor/blood ratios were less than 1, whereas tumor/muscle ratios varied from 1.10 to 6.27.
Acknowledgement
This work was financially supported by Russian Foundation for Basic Research and the Government of Kaluga Region (project № 17-16-40007-OGN).

References
[1] Tishchenko V K, Petriev V M and Krasikova R N 2016 18F-FDG and other labeled glucose derivatives for use in radionuclide diagnosis of oncological diseases (review) Pharm. Chem. J. 50(4) 209–20
[2] Rösch F 2013 Past, present and future of 68Ge/68Ga generators Appl. Radiat Isot 76 24–30
[3] Hanahan D and Weinberg R A 2011 Hallmarks of Cancer: The Next Generation Cell 144 646–74.
[4] Zhang L, Sui C, Yang W and Luo Q 2020 Amino acid transporters: Emerging roles in drug delivery for tumor-targeting therapy Asian J. Pharm. Sci. 15(2) 192–206
[5] Singh N and Ecker G F 2018 Insights into the structure, function, and ligand discovery of the large neutral amino acid transporter 1, LAT1 Int. J. Mol. Sci. 19 1278
[6] Toyoda M, Kaira K, Ohshima Y, Ishioka N S, Shino M, Sakakura K, Takayasu Y, Takahashi K, Tominaga H, Orituchi N, Nagamori S, Kanai Y, Oyama T and Chikamatsu K 2014 Prognostic significance of amino-acid transporter expression (LAT1, ASCT2, and xCT) in surgically resected tongue cancer Br. J. Cancer 110 2506–13
[7] Howes O D, Montgomery A J, Asselin M C, Murray R M, Grasby P M and Mcguire P K 2007 Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br. J. Psychiatry 191(51) S13–S18
[8] Brooks D J 2003 PET studies on the function of dopamine in health and Parkinson’s disease Ann. N. Y. Acad. Sci. 991 22–35
[9] Neves A C B, Hrynchak I, Fonseca I, Alves V H P, Pereira M M, Falcao A and Abrunhosa A J 2021 Advances in the automated synthesis of 6-[18 F]Fluoro-L-DOPA EJNMMI Radiopharm. Chem. 6(1) 11.
[10] Tishchenko V K, Petriev V M, Mikhailovskaya A A and Smoryzanova O A 2018 The in vivo evaluation of biodistribution of methionine labeled with gallium-68, potential positron emission tomography agent Radiation and Risk 27(2) 97–106
[11] Tishchenko V K, Petriev V M, Mikhailovskaya A A and Smoryzanova O A 2018 Preliminary Biological Evaluation of Leucine Labeled with Gallium-68 – A Potential Agent for Tumor Imaging in The 2nd Int. Symp. on Physics, Engineering and Technologies for Biomedicine KnE Energy & Physics 2018 513–8
[12] Tishchenko V K, Petriev V M, Mikhailovskaya A A, Kuzenkova K A, Kaprin A D, Ivanov S A and Zavestovskaya I N 2019 Biological evaluation of histidine and tryptophan labeled with gallium-68 as potential tumor imaging agents IOP Conf. Series: Journal of Physics: Conf. Series 1189 012038
[13] Taslimifar M, Buono S, Verrey F and Kurtcuoglu V 2018 Functional Polarity of Microvascular Brain Endothelial Cells Supported by Neurovascular Unit Computational Model of Large Neutral Amino Acid Homeostasis Front. Physiol. 9 171
[14] Toegel S, Wadsak W, Mien L K, Vierstein H, Kluger R, Eidherr H, Haeusler D, Kletter K, Dudeczak R and Mitterhauser M 2008 Preperaretion and pre-vivo evaluation of no-carrier-added, carrier-added and cross-complexed [68Ga]-EDTMP formulations Eur. J. Pharm. Biopharm. 68 406–12