Cranial ornamentation in the Late Cretaceous nodosaurid ankylosaur

Hungarosaurus

Attila Ősi*, János Magyar¹, Károly Rosta¹, Matthew Vickaryous²

¹ Department of Paleontology, Eötvös Loránd University, Budapest, Hungary;
hungaros@gmail.com, magyarjani90@gmail.com, karoly94@hotmail.hu

² Department of Biomedical Sciences, University of Guelph, Guelph, Canada;
mvickary@uoguelph.ca

*Corresponding author: Attila Ősi, hungaros@gmail.com

Key words: skull; Hungarosaurus, ankylosaur; cranial ornamentation; osteoderm fusion; cranial elaboration; sexual dimorphism; Late Cretaceous
ABSTRACT

Bony cranial ornamentation is developed by many groups of vertebrates, including ankylosaur dinosaurs. To date, the morphology and ontogenetic origin of ankylosaurian cranial ornamentation has primarily focused on a limited number of species from only one of the two major lineages, Ankylosauridae. For members of the sister group Nodosauridae, less is known. Here, we provide new details of the cranial anatomy of the nodosaurid Hungarosaurus from the Santonian of Europe. Based on a number of previously described and newly identified fragmentary skulls and skull elements, we recognize three different size classes of Hungarosaurus. We interpret these size classes as representing different stages of ontogeny. Cranial ornamentation is already well-developed in the earliest ontogenetic stage represented herein, suggesting that the presence of outgrowths may have played a role in intra- and interspecific recognition. We find no evidence that cranial ornamentation in Hungarosaurus involves the contribution of coossified osteoderms. Instead, available evidence indicates that cranial ornamentation forms as a result of the elaboration of individual elements. Although individual differences and sexual dimorphism cannot be excluded, the observed variation in Hungarosaurus cranial ornamentation appears to be associated with ontogeny.
INTRODUCTION

Development of osseous cranial ornamentation is a relatively common occurrence in the evolutionary history of terrestrial vertebrates (Buffrénil, 1982). Among reptiles, cranial ornamentation, including frills, crests, horns, bosses, or casques, is known for representative members of many fossil and extant groups (e.g. Gadow, 1901; Romer, 1956; Clarac et al., 2017; Mayr, 2018). The ultimate morphology of cranial ornamentation, especially among skeletally mature adults, is often highly variable and species-specific (e.g. Otto, 1909; Montanucci, 1987). As currently understood, this vast diversity is the result of two principal modes of morphogenesis: (1) the fusion of additional skeletal elements, commonly identified as osteoderms, with the skull; and (2) the elaboration of individual cranial elements (Moss, 1969; Vickaryous, Russell & Currie, 2001).

Osteoderms (= dermal sclerifications, osteoscutes) are bone-rich elements that form within the dermis of the skin (Moss, 1969; Vickaryous & Sire, 2009). As demonstrated by modern lizards, osteoderms that develop across the head contribute to the formation of a highly variable polygonal-like pattern of cranial ornamentation that embosses the superficial surface of the skull and mandible (Fig. 1A-D). The extent to which osteoderm contact or even fuse with the skull is both species-specific and ontogenetically variable (Vickaryous, Russell & Currie, 2001; Bhullar, 2011; Paluh, Griffing & Bauer, 2017; Maisano et al., 2019; Laver et al., 2020). While in some species, osteoderms always remain suspended within the dermis itself (e.g. some gekkotan lizards; Paluh; Griffing & Bauer, 2017, Laver et al., 2020), in other taxa they gradually fuse with subadjacent bones of the skull (e.g. helodermatids, xenosaurids; Bhullar, 2011; Maisano et al., 2019). As osteoderms develop within the skin, their development is not restricted to the area of
an individual bone, and hence they routinely occupy positions that overlap sutural boundaries (Vickaryous, Russell & Currie, 2001).

In addition to the fusion of osteoderms, cranial ornamentation may also develop as a result of the elaboration or exaggerated outgrowth of individual cranial (and mandibular) elements (Fig. 1E-H) (e.g. Montanucci, 1987; Vickaryous, Russell & Currie, 2001; Hieronymus et al., 2009). In some species, particularly among aged individuals, this form of exaggerated outgrowth may become continuous across multiple adjacent bones (e.g. „hummocky rugosities”; Hieronymus et al., 2009).

Cranial ornamentation is one of the most diagnostic features of the extinct archosaur clade Ankylosauria (Maryańska, 1977; Coombs, 1978; Carpenter et al., 2001; Vickaryous, Maryańska & Weishampel, 2004). For most ankylosaur taxa, the dorsolateral surfaces of the cranium and the posterolateral surface of the mandible are externally (superficially) embossed with cranial ornamentation. Although intraspecific (and possibly ontogenetic) variation exists, details of the size, shape and pattern of cranial ornamentation, often referred to as ‘caputegulae’ (Blows, 2001), have long been recognized as taxonomically informative (e.g. Parks, 1924; Coombs, 1971; 1978; Blows, 2001; Penkalski, 2001; Arbour & Currie, 2013; 2016). This includes the classical distinction of the two major clades of ankylosaurs: Ankylosauridae and Nodosauridae (Coombs, 1978).

The ontogenetic origin of cranial ornamentation in ankylosaurs has primarily focused on a handful of species (Leahey et al., 2015), most of which are members of Ankylosauridae (Coombs, 1971; Vickaryous, Russell & Currie, 2001; Carpenter et al., 2001; Hill, Witmer & Norell, 2003). Based on the investigation of multiple specimens of the ankylosaurids
Euoplocephalus and Pinacosaurus, including material attributed to subadult (i.e., not skeletally mature) individuals, the cranial ornamentation of these forms are interpreted involving both the coosification of osteoderms with the skull and the exaggerated outgrowth of individual cranial elements (Vickaryous, Russell & Currie, 2001; Hill, Witmer & Norell, 2003; although see Carpenter et al., 2001). A similar combination of processes has been proposed for the basal ankylosaurian Kunbarrasaurus ieversi (Leahey et al., 2015). In contrast, osteoderms do not appear to fuse with the skulls of some basal taxa Cedarpelta (Carpenter et al., 2001) and Gastonia (Kinneer, Carpenter & Shaw, 2016). Hence, cranial ornamentation in these species appears to be exclusively the result of elaborated outgrowth of individual elements. Among nodosaurids, less is known. Although a partial skull (attributed to an unidentified species) was reported to demonstrate a rugose external texture, with no evidence of "... overgrowth of dermal bone" (Jacobs et al., 1994), the specimen is fragmentary, incomplete, and skeletally immature. Therefore, the developmental processes involved in the formation of cranial ornamentation among nodosaurids remains uncertain.

Cranial ornamentation in extant amniotes

Many extant groups of non-iguanian lizards develop osteoderms across the dorsal and lateral surfaces of the skull (Table 1; see also Gadow, 1901; Moss, 1969; Montanucci, 1987; Etheridge & de Queiroz, 1988; Vickaryous & Sire, 2009). Although the morphology and arrangement of osteoderms across the skull is taxonomically variable (e.g. Fig. 1A-D; see also Mead et al., 2012; Ledesma & Scarpetta, 2018), evidence for sexual dimorphism remains limited (Table 1). For most species, both males and females develop comparable arrangements of osteoderm-based
ornamentation (see references in Table 1). One possible exception is the skeletally mature marine iguana (*Amblyrhynchus cristatus*). Marine iguanas are one of the only iguanid lizards that have been identified as developing osteoderms, and these elements only form on the head (Etheridge & de Queiroz, 1988). In females, cranial ornamentation is reportedly less developed than that of males (Eibl-Eibesfeldt, 1966).

Unlike lizards, osteoderms are absent from the heads of modern archosaurs (birds and crocodilians), with the possible exception of the bony crocodilian palpebral (eyelid bone) (Vickaryous & Hall, 2008).

Whereas cranial ornamentation in many non-iguanians is characterized by osteoderms, that of iguanians is dominated by the elaboration and outgrowth of individual skull (and specifically dermatocranial) elements (Etheridge & de Queiroz, 1988; see Table 1). This outgrowth form of cranial ornamentation primarily manifests as rugosities with variably developed crests, pits and bumps (Hieronymous et al., 2009, Fig. 1E-F), although some taxa may develop large horn-like structures as well. For example, in species of *Phrynosoma* horns and bosses can develop on each both of the parietal and squamosal (Lang, 1989; Vickaryous, Russell & Currie, 2001; Powell et al., 2017). Although the number, morphology and orientation of these protuberances can vary among *Phrynosoma* species, there is no evidence that they are sexual dimorphic (Powell et al., 2017, see Table 1). Similarly, anoles (Dactyloidae) also develop taxon-specific cranial ornamentation that is present in both sexes (Etheridge & de Queiroz, 1988).

The exaggerated development of bony horns and crests is also characteristic of many archosaurs, including fossil (e.g., *Ceratosuchus* Schmidt, 1938; Bartels, 1984; Brochu, 2006; 2007; Bickelmann & Klein, 2009) and extant (e.g., *Crocodylus rhombifer*; Brochu et al., 2010).
crocodylians. Among modern crocodylians, these protuberances are not sexually dimorphic, but may be used for species recognition in ecosystems where multiple taxa of crocodylians exist (Bartels, 1984). Cranial ornamentation is also characteristic of many taxa of birds (Table 1). In most cases these elaborations and outgrowths are monomorphic (Mayr, 2018). One of the most obvious examples are cassowaries (*Casuarius* spp.), where males and females are similarly ornamented with elaborate casques on the skull roof (Naish & Perron, 2016). The internal bony architecture of this cranial ornamentation can also vary. For example, the casque on the upper bills of bucorvid and some bucerotid birds is typically dominated by an air-filled cavity and thin trabecular bone, but is reportedly solid bone in the greater helmeted hornbill (*Buceros vigil*) (Gamble, 2007).

Here we describe several fragmentary skulls and skull elements of the European Late Cretaceous (Santonian) nodosaurid ankylosaur, *Hungarosaurus* (Table 2). These specimens represent at least three different size classes (and likely different stages of ontogeny), and provide new information about the morphological diversity, development and possible function of cranial ornamentation of nodosaurid skulls. We compared our findings with gross anatomical and micro-computed tomography (microCT) data from the study of cranial ornamentation in modern lizards.

MATERIAL AND METHODS

Specimens
The Hungarian nodosaurid ankylosaur specimens used in this study (Table 2) are from the Upper Cretaceous (Santonian) Csehbánya Formation of the Iharkút vertebrate site, Bakony Mountains, western Hungary (Ősi et al., 2019; for geology and taphonomy, see Botfalvai, Ősi & Mindszenty, 2015; Botfalvai et al., 2016). Four partial nodosaurid ankylosaur skulls (Fig. 2) and various isolated skull elements (see Table 2 for all used specimens) from Iharkút are briefly described and compared in detail particularly focusing on the morphology, topographic distribution and origin of the cranial ornamentations. Two of the fragmentary skulls (holotype, MTM PAL 2013.23.1., Fig. 2A, D) and some isolated elements have been already described in more detail (Ősi, 2005; Ősi & Makádi, 2009; Ősi, Pereda-Suberbiola & Földes, 2014; Ősi et al., 2019), but cranial ornamentation was not discussed. The two new partial skulls (MTM PAL 2020.31.1., MTM PAL 2020.32.1., Fig. 2B, C, Data S1) have not been described in detail, and the comparative osteological description of these specimens are in Data S1.

The basis of this work is that all four skulls and isolated remains are thought to belong to *Hungarosaurus*. Although the presence of the much smaller *Struthiosaurus* at the site has also been confirmed by postcranial findings (Ősi & Prondvai, 2013; Ősi & Pereda-Suberbiola, 2017), the two new skulls are closer to *Hungarosaurus* based on the osteological features listed in Data S1. The postorbital crest of the specimen MTM PAL 2020.32.1. is, however, somewhat different from that of the holotype of *Hungarosaurus*.

In addition to the fossil specimens, we performed a comparative micro-computed tomography (microCT) investigation on one skull each of four extant lizard species: *Tiliqua scincoides* (MDE R45); *Tiliqua nigrolutea* (MDE R47); *Iguana iguana* (MDE R20); and *Chamaeleo calyptratus* (MDE R43).
Methods

Specimens were collected between 2001 and 2019, and all of them are housed in the Vertebrate Paleontological Collection of the Hungarian Natural History Museum, Budapest (MTM). Specimens were prepared mechanically in the labs of the Department of Paleontology of the Eötvös University and the Hungarian Natural History Museum, and the bones were pieced together using cyanoacrylic glue.

For 3D reconstruction of the skulls (Fig. 2), we photographed each bone with a Canon EOS 600D DS126311 camera using photogrammetry. 2D images were converted to 3D images using open source 3DF Zephyr software (version 4.5.3.0). 3D images of bones also show the original surface texture of the bones. 3D files of each bone were assembled within the open source software Blender using Polygonal modeling and Sculpting techniques. Finally, we rendered a turntable video of the digitally finalized skull in Marmoset Toolbag 3 (version 3.08). The 3D reconstructions of the three studied skulls are in the video files (Video S1-S6; https://zenodo.org/record/4117812#.X5FfUO28o2w).

Specimens were not allowed to be cut for histological purposes, thus micro-computed tomography (microCT) imaging was used to investigate the cross-sectional structure of select cranial elements and their ornamentation. MicroCT scanning of fossil and recent bones was conducted the laboratory of the Carl Zeiss IMT Austria GmbH (Budaörs, Hungary), using a Zeiss Metrotom computer tomograph with interslice distances of 130 µm. CT scans of the 14 fossil and extant specimens used in this study is available at morphosource.org:

MDE R 43 (https://doi.org/10.17602/M2/M170133);

MDE R 20 (https://doi.org/10.17602/M2/M170132);
RESULTS
As revealed by microCT images of extant lizards, the presence of osteoderms across the skull is often associated with a thin radiolucent or unossified seam separating the overlying ornamentation from the underlying cranial element (e.g., Fig. 1A, C). In contrast, among species that develop their ornamentation by the exaggerated outgrowth of individual elements (and not the coossification of osteoderms), this radiolucent seam is absent (Fig. 1E, G). Although the superficial layer of bone is typically invested with many small openings and canals and that pass into the cancellous core (Fig. 1C2, D2), the microCT data does not reveal an obvious boundary between cranial ornamentation and the underlying compact cortex.

Cranial ornamentation in Hungarosaurus

Premaxilla

Premaxillae are preserved in four specimens, including two isolated elements along with the holotype skull (MTM 2007.26.1.-2007.26.34.) and in MTM PAL 2020.31.1. (Fig. 3A-D). The smallest premaxilla (MTM V.2003.12) is almost half the size of the holotype (Fig. 3A), and thus likely represents a juvenile or subadult individual (Ősi & Makádi, 2009). Premaxillae are unfused to each other in all specimens. Ornamentation can be observed on all the specimens including the smallest element, but does not overlap the sutures between the two premaxillae, or the borders with the nasals and maxillae. On the smallest specimen (MTM V.2003.12), the ornamentation is formed by various deep, relatively large pits and grooves present both anteriorly and laterally reaching the premaxilla-maxilla contact. In addition, various nutritive foramina are present further suggesting the still active growth of this bone. This ornamentation is thickest along the anterior margin. On the larger specimens, the surface of the ornamentation is very slightly
irregular, pitting is less extensive and various shallow holes (diameter 2-3 mm) are present (Fig. 3C, D). Ornamentation in the larger specimens is restricted to the anterolateral and ventrolateral margins of the premaxilla (Fig. 3D) and composed of irregularly shaped, 1-3 mm thick, flat bumps with branching morphology. Pits and grooves are less extensive but wider compared to those on the smaller premaxilla. MicroCT scanning of the three smallest premaxillae (Fig. 3A-C) indicates that there is no evidence of a seam of separation between the superficial cranial ornamentation and the underlying cranial element, similarly to that seen in extant lizards (Fig. 1C2, D2).

Nasal

Nasals (Fig. 3E-H) are preserved for the skulls of MTM PAL 2020.31.1., MTM PAL 2020.32.1. and the holotype (Ősi et al., 2019, Fig. 3E, F, H, Data S1, Video S1-S6). There is also an isolated, complete right nasal (MTM PAL 2020.34.1., Fig. 3G). Similar to the premaxillae, nasals are unfused, a feature that is characteristic of skeletally immature ankylosaurs (e.g. Pinacosaurus, ZPAL MgD-II, Maryańska, 1977; the holotype skull of Europleta, Kirkland et al., 2013) and Kunbarrasaurus (Molnar, 1996; Leahey et al., 2015), but otherwise uncommon to ankylosaurs. Despite evidence of weathering, ornamentation is present along the dorsal surface of all the nasals (Fig. 3F). As revealed by MTM PAL 2020.32.1, the cranial ornamentation across the nasal consists of four or five transversely oriented and weakly shingled hummocky ridges (Fig. 3E). A comparable, hummocky-shingled ornamentation is also observed on the nasals of Pawpawsaurus (Lee, 1996; Paulina-Carabajal, Lee & Jacobs, 2016). Although hummocky ornamentation is also preserved on the larger specimen (MTM PAL 2020.34.1., Fig. 3G), the shingled arrangement is less obvious. Cranial ornamentation across the nasal is further characterized by a network of
small pits (diameter: 0.5-3 mm) and grooves (length: 5-20 mm). None of the ornamentation across the nasal reaches the premaxilla-nasal, internasal and maxilla-nasal sutural borders on any of the studied specimens. Along the maxillary and prefrontal sutural borders, the nasal becomes thins and the ornamentation abruptly ends, resulting in an irregular, step-like raised edge towards the maxilla and prefrontal. The nasal connects to the frontal via a scarf joint and, unlike the other sutural contacts, the pattern of cranial ornamentation appears to overlap the nasal process of the frontal (Data S1).

MicroCT scans from the nasals of three different individuals (MTM PAL 2020.32.1., MTM PAL 2020.31.1., MTM PAL 2020.34.1.) revealed no indication that cranial ornamentation was separated from the nasal in any of the specimens. Instead, the nasal (including cranial ornamentation) reveals a diploë organization, with a thicker layer of compact bone along the external (dorsal) surface as compared with the cancellous internal (ventral) surface (Fig. 3E-G).

Prefrontal-supraorbital-frontal complex

The skull roof between the orbits is partly preserved from a number of specimens (Table 2), including MTM PAL 2020.32.1., MTM 2007.27.1 (an isolated left frontal), and MTM PAL 2013.23.1 (Fig. 4A-C). In all specimens, the cranial elements posterior to the nasals (i.e., the temporal region of Vickaryous & Russell, 2003) are completely fused and their sutural boundaries obliterated. Cranial ornamentation on MTM PAL 2020.32.1. (Fig. 4A, Suppl. Fig. 2, Data S1, Video S3-S6) includes a number of large, deep pits (diameter: 2-4 mm) and relatively short, shallow grooves. These grooves appear to radiate from a near-central domed area, corresponding to the position of the parietals. Similar to the nasals, the surface of these elements
is further ornamented by very small pits (diameter: 0.2-1 mm) and grooves (length: 1-5 mm). The isolated frontal (Fig. 4B) is ornamented by various small, deep pits (diameter: 1-3 mm) and grooves (width: 1-3 mm). Similar to the nasals, microCT scans of the frontals revealed diploë structure, with a thicker layer of compact bone along the external (dorsal) surface, and no radiolucent seam between cranial ornamentation and the element proper. Some pits pass through the compact bone into the deeper cancellous bone whereas some wider holes (diameter: 2-3 mm) and channels of the cancellous part enter and end into the upper compact bone.

Postorbital-jugal

Portions of the postorbital and jugal are preserved that represent a number of different size classes (and presumably ontogenetic stages), including MTM PAL 2020.32.1. (Fig. 4D), two isolated specimens, MTM 2007.28.1. (Fig. 4E) and MTM 2010.1.1. (Fig. 4F), and the holotype (Fig. 4G, Data S1, Video S1-S6). Characteristically, the long axis of the postorbital of *Hungarosaurus* passes along the posterodorsal margin of the orbit with a variably projecting crest-like caputegulum. In the smallest referred specimens (MTM PAL 2020.32.1., MTM 2007.28.1., Fig. 4D, E), this crest has a dorsoventral height/anterodorsal-posteroventral length ratio of 0.58, whereas in the larger specimens this ratio is reduced to 0.5-0.45 (MTM 2010.1.1., holotype, Fig. 4F, G). As a result, the crests in the larger specimens encircle more of the orbit, both dorsally and caudally (i.e. towards the jugal process). In addition, the crests of the smaller specimens are more rugose than the larger specimens, and are ornamented by a larger number of small, deeply opening pits and/or neurovascular canals. In contrast, these canals are largely absent from the largest specimen. As for the other cranial elements, microCT scans reveal no
evidence of separation between the cranial ornamentation and the underlying elements (Fig. 4D-F), with a similar pattern of compact bone surrounding a cancellous core.

The posteroventral margin of the orbit receives contributions from the jugal (and possibly the quadratojugal). In *Hungarosaurus*, the jugal is preserved in the holotype and by an isolated element (MTM 2010.1.1., Fig. 4F, G). The isolated specimen includes a relatively small quadratojugal boss with a short, ventrally pointed process, whereas that of the holotype is more rounded. As revealed by microCT scans, quadratojugal bosses are not separate elements from the quadratojugal. In all specimens, the surfaces are ornamented with rugose bone, including short neurovascular grooves (1-8 mm long) and small pits (0.3-1 mm). Similar to the postorbital crests, the smaller specimens are more heavily ornamented than the larger specimens. MicroCT scans of the jugal ornamentation (not figured) reveal a similar cross-sectional structure to the other skull elements, viz. a compact cortex surrounding a cancellous core.

Parietal

The area of the skull roof corresponding with the parietal is preserved in MTM PAL 2020.32.1. (Fig. 4A, Data S1, Video S1-S6) and MTM PAL 2013.23.1. (Fig. 4C). This area forms a domed or vaulted complex, and most of its dorsal surface is relatively smooth or ornamented by shallow, short grooves and small pits (0.5-1 mm) on both specimens. On MTM PAL 2020.32.1., comparatively deep and wide grooves (> 5mm) and large pits appear to roughly correspond with the positions of contact with the frontal, supraorbital and postorbital bones. MTM PAL 2013.23.1. (Fig. 4C) is at least 1.5 times larger than in MTM PAL 2020.32.1., and thus most probably representing different ontogenetic stages. Based on microCT imaging (Fig.
4A), there is no evidence that osteoderms contribute to the development of cranial ornamentation on this element.

DISCUSSION

Cranial ornamentation is a hallmark feature of ankylosaurs (Coombs, 1978; Vickaryous, Maryańska & Weishampel, 2004), and an emerging source of phylogenetic information (e.g., Arbour & Currie, 2013; 2016). Although the skeletally mature pattern of cranial ornamentation may take the form of a series of variably shaped and sized polygons (referred to as caputegulae; Blows, 2001; see also Arbour & Currie, 2013), in some species these discrete features are not present. Regardless of the pattern formed, cranial ornamentation appears to form as a result of two potentially congruent processes: the coossification of overlying osteoderms with the skull, and the exaggerated outgrowth of individual cranial elements (Vickaryous, Russell & Currie, 2001; Hill, Witmer & Norell, 2003). The cranial material described here provides a rare opportunity to investigate the contribution of each of these processes in a European nodosaurid.

Using size as a proxy for age, we interpret the described specimens as representing a partial ontogenetic series of Hungarosaurus (Fig. 2-4). The smallest specimen (MTM V.2003.12; estimated total skull length ~15-17 cm) is approximately half the size of the largest (the holotype and MTM PAL 2013.23.1; estimated total skull length ~34-36 cm). A fourth skull (MTM PAL 2020.32.1.; estimated total skull length ~25 cm), is intermediate in size. Our findings reveal that cranial ornamentation, in the form of rugose texturing across the premaxilla and nasal, as well a sharp crest-like ridge along the postorbital, is already present in the smallest (= ontogenetically youngest) individuals examined. Although the pattern of cranial ornamentation changes as the
individual gets larger, we found no evidence for the fusion or coossification of osteoderms with the underlying skull.

In Hungarosaurus, the smallest (= ontogenetically youngest) specimens have a more well-defined pattern of cranial ornamentation compared to larger (and presumably older) specimens. For example, the premaxilla of the smallest specimen has a more deeply pitted rugosity profile when compared to the larger specimens. Similarly, the pattern of small pits and grooves across the prefrontal-supraorbital-frontal complex and the parietal is more obvious on the smallest specimen. And while the nasal bone also demonstrates a well-developed pattern of transversely oriented pattern of hummocky rugosity, in smaller specimens these features form an anteriorly imbricated or shingle-like arrangement. In larger individuals the hummocky rugosity pattern is retained, albeit with a reduced (i.e., more shallow) profile. Whether this reflects an alternation in growth and maintenance of cranial ornamentation or the overlying keratinous skin structures, or evidence of sexual dimorphism or other form of signaling or identifier, remains unclear.

One of the most characteristic features of Hungarosaurus is the formation of a well-defined crest-like caputegulum on the postorbital. This structure is present in the smallest specimens (MTM PAL 2020.32.1, MTM 2007.28.1, Fig. 4D-G), suggesting that it develops relative early during ontogeny, similar to the supraorbital horns of ceratopsians (Horner & Goodwin, 2006). MicroCT images reveal no evidence that this crest is formed by the coossification of an osteoderm with the postorbital. As for other features of cranial ornamentation, the morphology of the postorbital crest changes during ontogeny. In the smallest specimens, the shape of the postorbital crest is more acute compared with larger (and presumably ontogenetically older) individuals. Near the margin of the orbit, the postorbital demonstrates a pronounced basal sulcus or 'lip' (sensu Hieronymus et al., 2009, Fig. 4D-G). Although this feature was previously characterized as a fused osteoderm
(Ösi et al., 2012), it is reinterpreted here, according to Hieronymus and colleagues (2009), as
evidence for a cornified sheath. A similar, well demarcated basal sulcus on the postorbital has
also been reported for *Euoplocephalus* (Vickaryous, Russell & Currie, 2001).

Osteoderms do not contribute to the cranial ornamentation across the skull of *Hungarosaurus*.
Our microCT data does not reveal any evidence that the cranial elements received a separate
superficial contribution of bone, and there are no signs of osteoderms superimposed across
sutural boundaries. Consequently, we predict that cranial ornamentation in *Hungarosaurus*,
similar to the basal ankylosaur *Cedarpelta*, is the result of elaborated (exaggerated or exostotic)
outgrowth of individual cranial elements. This elaborated/outgrowth form of cranial
ornamentation has also reported for non-eurypodan thyreophorans such as *Scelidosaurus* and
Emausaurus (Norman, 2020), as well as many extant lizard species (e.g., Etheridge and de
Queiroz, 1988; Powell et al., 2017).

Similar to other ankylosaurs (e.g., Arbour and Currie, 2013), the pattern of cranial ornamentation
varies between specimens of *Hungarosaurs*. Although this variation is primarily interpreted as
ontogenetic, the potential role of sexual dimorphism, individual differences, and taphonomic
processes (e.g., deformation, weathering) cannot be excluded. Sexually dimorphic differences in
cranial ornamentation has been suggested for a number of fossil archosaurs, including pterosaurs
(Bennett, 1992; 2001; Naish & Martill, 2003), ceratopsian dinosaurs (Lehman, 1990; Sampson,
Ryan & Tanke, 1997; Knell & Sampson, 2011, Borkovic, 2013; Hone & Naish, 2013) and the
ankylosaurid *Pinacosaurus* (Godefroit et al., 1999). With rare exceptions however, the limited
number of specimens and/or incomplete preservation of skull material makes the identification of
sex-related differences challenging (but see Bennett, 1992). Among the elements described
herein, we did observe differences in size and shape. Although none of this variation cannot be
separated from changes as a result of ontogeny, their potential use as dimorphic signals cannot be ruled out. For example, the postorbital crest of the holotype and MTM V 2010.1.1. encircles more of the orbit (dorsally and caudally), than those of MTM PAL 2020.32.1. and MTM 2007.28.1. (Fig. 4D-G). Though the latter specimens are from smaller individuals, it remains possible that some of the morphological differences may also be related to dimorphism. Evidence from both fossil and extant species have made it clear that cranial ornamentation is often variable, and that the exclusive use of these features for taxonomic characterization should be viewed with caution (Godefroit et al., 1999; Martill & Naish, 2006). Future work on the cranial ornamentation of recent forms may bring us closer to the understanding of the cranial ornamentation of fossil taxa as well.

Conclusions

The Santonian nodosaurid Hungarosaurus is represented by multiple individuals, including a partial ontogenetic series. Unlike some Late Cretaceous ankylosaurids, osseous ornamentation in Hungarosaurus is restricted to individual elements, and does not appear to include the incorporation of osteoderms. In Hungarosaurus, cranial ornamentation was already well-formed in the smallest (= youngest) individuals. Although ontogeny appears to be a key source of variation, the contribution of individual differences, sexual dimorphism and even taphonomic processes cannot be ruled out.

Acknowledgements
We thank the reviewers Lucy Leahey, James Kirkland and Jelle Wiersma for their constructive comments that highly improved the manuscript. We are grateful for Doug Boyer for his generous help in depositing the CT data in Morphosource. We thank the 2000-2019 field crew for their assistance in the Iharkút fieldwork. Field and laboratory work was supported by the MTA ELTE Lendület Dinosaur Research Group (Grant no. 95102), Hungarian Scientific Research Fund and National Research, Development and Innovation Office (NKFIH K 116665, K 131597), National Geographic Society (Grant No. 7228-02, 7508-03), Bolyai Fellowship, Hungarian Natural History Museum, Eötvös Loránd University, the Jurassic Foundation and the Hungarian Dinosaur Foundation.

Supplementary files available at: https://zenodo.org/record/4117812#.X5FfUO28o2w; DOI: 10.5281/zenodo.4117812
References

Alexander, G. D., Houston, D. C., & Campbell, M. (1994). A possible acoustic function for the casque structure in hornbills (Aves: Bucerotidae). Journal of Zoology, 233(1), 57-67. DOI: 10.1111/j.1469-7998.1994.tb05262.x

Anderson, R. A., & Vitt, L. J. (1990). Sexual selection versus alternative causes of sexual dimorphism in teiid lizards. Oecologia, 84(2), 145-157.

Arbour, V. M., & Currie, P. J. (2013). Euoplocephalus tutus and the diversity of ankylosaurid dinosaurs in the Late Cretaceous of Alberta, Canada, and Montana, USA. PLoS One, 8(5), e62421. DOI: 10.1371/journal.pone.0062421

Arbour, V. M., & Currie, P. J. (2016). Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs. Journal of Systematic Palaeontology, 14(5), 385-444. DOI: 10.1080/14772019.2015.1059985

Bartels, W. S. (1984). Osteology and systematic affinities of the horned alligator Ceratosuchus (Reptilia, Crocodilia). Journal of Paleontology, 1347-1353.

Bennett, S. C. (1992). Sexual dimorphism of Pteranodon and other pterosaurs, with comments on cranial crests. Journal of Vertebrate Paleontology, 12(4), 422-434. DOI: 10.1080/02724634.1992.10011472

Bennett, S. C. (2001). The osteology and functional morphology of the Late Cretaceous pterosaur Pteranodon Part II. Size and functional morphology. Palaeontographica Abteilung A, 113-153.
Bhullar, B. S. (2011). The power and utility of morphological characters in systematics: a fully resolved phylogeny of *Xenosaurus* and its fossil relatives (Squamata: Anguimorpha). Bulletin of the Museum of Comparative Zoology, 160(3), 65-181. DOI: 10.3099/0027-4100-160.3.65

Bickelmann, C., & Klein, N. (2009). The late Pleistocene horned crocodile *Voay robustus* (Grandidier & Vaillant, 1872) from Madagascar in the Museum für Naturkunde Berlin. Fossil Record, 12(1), 13-21. DOI: 10.1002/mmng.200800007

Blows, W. T. (2001). Dermal armor of the polacantheme dinosaurs. In Carpenter, K. (Ed.). The Armored Dinosaurs. Bloomington: Indiana University Press, pp. 363-385.

Borkovic, B. (2013). Investigating sexual dimorphism in Ceratopsid Horncores. Unpublished Master's thesis, University of Calgary, Calgary, Canada, 203 pp. DOI: 10.11575/PRISM/26635

Botfalvai, G., Ősi, A., & Mindszenty, A. (2015). Taphonomic and paleoecologic investigations of the Late Cretaceous (Santonian) Iharkút vertebrate assemblage (Bakony Mts, northwestern Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 379-405. DOI: 10.1016/j.palaeo.2014.09.032

Botfalvai, G., Prondvai, E., & Ősi, A. (2020). Living alone or moving in herds? A holistic approach highlights complexity in the social lifestyle of Cretaceous ankylosaurs. Cretaceous Research, 118, 104633. DOI: 10.1016/j.cretres.2020.104633

Botfalvai, G., Haas, J., Bodor, E. R., Mindszenty, A., & Ősi, A. (2016). Facies architecture and palaeoenvironmental implications of the Upper Cretaceous (Santonian) Csehbánya formation at the Iharkút vertebrate locality (Bakony Mountains, Northwestern Hungary).
Brochu, C. A. (2006). A new miniature horned crocodile from the Quaternary of Aldabra Atoll, western Indian Ocean. Copeia, 2006(2), 149-158. DOI: 10.1643/0045-8511(2006)6[149:ANMHCF]2.0.CO;2

Brochu, C. A. (2007). Morphology, relationships, and biogeographical significance of an extinct horned crocodile (Crocodylia, Crocodylidae) from the Quaternary of Madagascar. Zoological Journal of the Linnean Society, 150(4), 835-863. DOI: 10.1111/j.1096-3642.2007.00315.x

Brochu, C. A., Njau, J., Blumenschine, R. J., & Densmore, L. D. (2010). A new horned crocodile from the Plio-Pleistocene hominid sites at Olduvai Gorge, Tanzania. PLoS One, 5(2). DOI: 10.1371/journal.pone.0009333

Broeckhoven, C., de Kock, C., & Hui, C. (2018). Sexual dimorphism in the dermal armour of cordyline lizards (Squamata: Cordylinae). Biological Journal of the Linnean Society, 125(1), 30-36. DOI: 10.1093/biolinnean/bly096

Broeckhoven, C., de Kock, C., & Mouton, P. L. F. N. (2017). Sexual dimorphism in osteoderm expression and the role of male intrasexual aggression. Biological Journal of the Linnean Society, 122(2), 329-339. DOI: 10.1093/biolinnean/blx066

Broeckhoven, C., du Plessis, A., & Hui, C. (2017). Functional trade-off between strength and thermal capacity of dermal armor: insights from girdled lizards. Journal of the mechanical behavior of biomedical materials, 74, 189-194. DOI: 10.1016/j.jmbbm.2017.06.007
Buchholz, R. (1991) Older males have bigger knobs: correlates of ornamentation in two species of curassow. Auk 198:153–160. DOI: 10.1093/auk/108.1.153

de Buffrénil, V. (1982). Morphogenesis of bone ornamentation in extant and extinct crocodilians. Zoomorphology, 99(2), 155-166. DOI: 10.1007/BF00310307

Carpenter, K., Kirkland, J. I., Burge, D., & Bird, J. (2001). Disarticulated Skull of a New Primitive Ankylosaurid from the Lower Cretaceous of Eastern Utah. In Carpenter, K. (Ed.). The Armored Dinosaurs. Indiana University Press, Bloomington. pp. 318-340.

Čerňanský, A., & Hutchinson, M. N. (2013). A new large fossil species of Tiliqua (Squamata; Scincidae) from the Pliocene of the Wellington Caves (New South Wales, Australia). Alcheringa: An Australasian Journal of Palaeontology, 37(1), 131-136. DOI: 10.1080/03115518.2012.715326

Čerňanský, A., & Syromyatnikova, E. V. (2019). The first Miocene fossils of *Lacerta* cf. *trilineata* (Squamata, Lacertidae) with a comparative study of the main cranial osteological differences in green lizards and their relatives. PloS one, 14(8). DOI: 10.1371/journal.pone.0216191

Clarac, F., De Buffrenil, V., Brochu, C., & Cubo, J. (2017). The evolution of bone ornamentation in Pseudosuchia: morphological constraints versus ecological adaptation. Biological Journal of the Linnean Society, 121: 395-408. DOI: 10.1093/biolinnean/blw034

Coombs Jr., W. P. (1971). The Ankylosauria. PhD dissertation, Columbia University, New York, 487 p.
Coombs Jr., W. P. (1978). The families of the ornithischian dinosaur Order Ankylosauria. Palaeontology, 21,143-170.

Doughty, P., & Shine, R. (1995). Life in two dimensions: natural history of the southern leaf-tailed gecko, Phyllurus platurus. Herpetologica, 51, 193-201.

Eastick, D. L., Tattersall, G. J., Watson, S. J., Lesku, J. A., & Robert, K. A. (2019). Cassowary casques act as thermal windows. Scientific Reports, 9(1), 1-7. DOI: 10.1038/s41598-019-38780-8

Eckhardt, F. S., Gehring, P. S., Bartel, L., Bellmann, J., Beuker, J., Hahne, J., Korte, V., Knittel, M., Mensch, D., Nagel, M., Vences, C., Rostosky, V., Vierath, V., Wilms, J. Zenk & Pohl, M. (2012). Assessing sexual dimorphism in a species of Malagasy chameleon (Calumma boettgeri) with a newly defined set of morphometric and meristic measurements. Herpetology Notes, 5, 335-344.

Eibl-Eibesfeldt, I. (1966). The fighting behaviour of marine iguanas. Philosophical Transactions of the Royal Society B: Biological Sciences, 251, 475-476.

Etheridge, R., & de Queiroz, K. (1988). A phylogeny of Iguanidae. In Estes R., & Pergil, G. (Eds.) Phylogenetic relationships of the lizard families, Essays Commemorating Charles L. Camp, pp. 283-367.

Evans, R. M., & Knopf, F. L. (1993). American white pelican (Pelecanus erythrorhynchos). In Poole, A. & Gill, F. (Eds.), The birds of North America No. 57. American Ornithologists Union, Washington, DC.
Flemming, A., Bates, M., & Broeckhoven, C. (2018). The relationship between generation gland morphology and armour in Dragon Lizards (Smaug): a reassessment of ancestral states for the Cordylidae. Amphibia-Reptilia, 39(4), 457-470. DOI: 10.1163/15685381-20181032

Fraga, R. M., & Kreft, S. (2007). Natural history and breeding behavior of the olive (Psarocolius yuracares) and yellow-billed (P. angustifrons alfredi) oropendolas in Chapare Province, Bolivia. Ornitología Neotropical, 18:251–261.

Gadow, H. (1901). Amphibia and reptiles. The Cambridge natural history. Vol. 8. London, Macmillan, 13(668), 181.

Gaffney, E. S. (1979). Comparative cranial morphology of Recent and fossil turtles. Bulletin of the American Museum of Natural History; v. 164, article 2.

Gamble, K. C. (2007). Internal anatomy of the hornbill casque described by radiography, contrast radiography, and computed tomography. Journal of Avian Medicine and Surgery, 21(1), 38-49. DOI: 10.1647/1082-6742(2007)21[38:IAOTHC]2.0.CO;2

Garbin, R. C., & Caramaschi, U. (2015). Is the matamata only one species? Morphological variation and color polymorphism in the South American turtle Chelus fimbriatus (Schneider, 1783) (Pleurodira: Chelidae). PeerJ PrePrints. 3 (2015), Article e1072. DOI:10.7287/peerj.preprints.870v1

Godefroit, P., Pereda-Suberbiola, X., Li, H., & Dong, Z. M. (1999). A new species of the ankylosaurid dinosaur Pinacosaurus from the Late Cretaceous of Inner Mongolia (PR China). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 69(Suppl B), 17-36.
González-García, F. (1995). Reproductive biology and vocalizations of the Horned Guan Oreophasis derbianus in Mexico. The Condor, 97(2), 415-426.

Green, T., & Gignac, P. (2019). Ontogeny of Southern Cassowary, Maleo, and Helmeted Guinea Fowl Casques: Implications for the Study of Bony Patterning in Non-avian Dinosaur Cranial Ornaments. The FASEB Journal, 33(1_supplement), 452-13.

Hieronymus, T. L., Witmer, L. M., Tanke, D. H., & Currie, P. J. (2009). The facial integument of centrosaurine ceratopsids: morphological and histological correlates of novel skin structures. Anatomical Record, 292(9), 1370-1396. DOI: 10.1002/ar.20985

Hill, R. V., Witmer, L. W. & Norell, M. A. (2003). A new specimen of Pinacosaurus grangeri (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia: ontogeny and phylogeny of ankylosaurs. American Museum Novitates, 3395, 1-29. DOI: 10.1206/0030082(2003)395<0001:ANSOPG>2.0.CO;2

Hone, D. W. E., & Naish, D. (2013). The ‘species recognition hypothesis’ does not explain the presence and evolution of exaggerated structures in non-avialan dinosaurs. Journal of Zoology, 290(3), 172-180. DOI: 10.1111/jzo.12035

Horner, J. R., & Goodwin, M. B. (2006). Major cranial changes during Triceratops ontogeny. Proceedings of the Royal Society B: Biological Sciences, 273(1602), 2757-2761. DOI: 10.1098/rspb.2006.3643

Horrocks, N., Perrins, C., & Charmantier, A. (2009). Seasonal changes in male and female bill knob size in the mute swan Cygnus olor. Journal of avian biology, 40(5), 511-519. DOI: 10.1111/j.1600-048X.2008.04515.x Jacobs, L. L., Winkler, D. A., Murry, P. A., & Maurice, J.
M. (1994). A nodosaurid scuteling from the Texas shore of the Western Interior Seaway. In Carpenter, K., Hirsch K. F. & Horner J. R. (Eds.). Dinosaur eggs and babies, pp. 337-346.

Jones, I. L. (1993). Sexual differences in bill shape and external measurements of Crested Auklets. The Wilson Bulletin, 105(3), 525-529.

Jouventin, P. & Viot, C. R. (1985). Morphological and genetic variability of Snow Petrels Pagodroma nivea. Ibis, 127(4), 430-441. DOI: 10.1111/j.1474-919X.1985.tb04839.x

Kemp, A. C. (2001) Family Bucerotidae (Hornbills). In del Hoyo J, Elliott A, & Sargatal J (Eds.) Handbook of the birds of the world, vol 6. Mousebirds to Hornbills. Lynx Edicions, Barcelona, pp. 436–523

Kinneer, B., Carpenter, K., & Shaw, A. (2016). Redescription of Gastonia burgei (Dinosauria: Ankylosauria, Polacanthidae), and description of a new species. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 282(1), 37-80.

Kirby, A., Vickaryous, M., Boyde, A., Olivo, A., Moazen, M., Bertazzo, S., & Evans, S. (2020). A comparative histological study of the osteoderms in the lizards Heloderma suspectum (Squamata: Helodermatidae) and Varanus komodoensis (Squamata: Varanidae). Journal of anatomy, 236(6), 1035-1043. DOI: 10.1111/joa.13156

Kirkland, J. I., Alcala, L., Loewen, M. A., Espílez, E., Mampel, L., & Wiersma, J. P. (2013). The basal nodosaurid ankylosaur Europelta carbonensis n. gen., n. sp. from the Lower Cretaceous (Lower Albian) Escucha Formation of Northeastern Spain. PLoS One, 8(12), e80405. DOI: 10.1371/journal.pone.0080405
Klembara, J., Dobiašová, K., Hain, M., & Yaryhin, O. (2017). Skull anatomy and ontogeny of legless lizard *Pseudopus apodus* (Pallas, 1775): heterochronic influences on form. *The Anatomical Record*, 300(3), 460-502. DOI: 10.1002/ar.23532

Knell, R. J., & Sampson, S. D. (2011). Bizarre structures in dinosaurs. *Journal of Zoology*, 283, 18-22. DOI: 10.1111/j.1469-7998.2010.00758.x

Kopij, G. (1998). Behavioural patterns in the Southern Bald Ibis (*Geronicus calvus*) at breeding sites. *Vogelwarte*, 39, 248-263.

Lang, M. (1989). Phylogenetic and Biogeographic Patterns of Basiliscine Iguanians. *Bonner Zoologische Monographien*, Nr. 28, Herausgeber: Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, p. 172.

Laver, R. J., Morales, C. H., Heinicke, M. P., Gamble, T., Longoria, K., Bauer, A. M., & Daza, J. D. (2020). The development of cephalic armor in the tokay gecko (*Squamata: Gekkonidae: Gekko gecko*). *Journal of morphology*, 281(2), 213-228. DOI: 10.1002/jmor.21092

Leahey, L. G., Molnar, R. E., Carpenter, K., Witmer, L. M., & Salisbury, S. W. (2015). Cranial osteology of the ankylosaurian dinosaur formerly known as *Minmi* sp. (Ornithischia: Thyreophora) from the Lower Cretaceous Allaru Mudstone of Richmond, Queensland, Australia. *PeerJ*, 3, e1475. DOI: 10.7717/peerj.1475

Ledesma, D. T., & Scarpetta, S. G. (2018). The skull of the gerrhonotine lizard *Elgaria panamintina* (Squamata: Anguidae). *PloS one*, 13(6), e0199584. DOI: 10.1371/journal.pone.0199584
Lee, Y. N. (1996). A new nodosaurid ankylosaur (Dinosauria: Ornithischia) from the Paw Paw Formation (late Albian) of Texas. Journal of Vertebrate Paleontology, 16(2), 232-245. DOI: 10.1080/02724634.1996.10011311

Lehman, T. M. (1990). The ceratopsian subfamily Chasmosaurinae: sexual dimorphism and systematics. In Currie P. J. & Carpenter K. (Eds.). Dinosaur systematics symposium, pp. 211-229.

Levrat-Calviac, V., & Zylberberg, L. (1986). The structure of the osteoderms in the gekko: Tarentola mauritanica. American Journal of Anatomy, 176(4), 437-446. DOI: 10.1002/aja.1001760406

Lindén, H., & Väisänen, R. A. (1986). Growth and sexual dimorphism in the skull of the Capercaillie Tetrao urogallus: a multivariate study of geographical variation. Ornis Scandinavica, 85-98.

Lowe, P. R. (1916) Studies on the Charadriiformes. IV. An Additional note on the Sheath-bills: Some points in the osteology of the skull of an embryo of Chionarchus “minor” from Kerguelen.—V. Some notes on the Crab-Plover (Dromas ardeola Paykull). Ibis 58:313–337.

Lüps, P. (1990) Wozu besitzen Höckerschwäne Cygnus olor. Höcker? Der Ornithologische Beobachter, 87:1–11

Maisano, J. A., Bell, C. J., Gauthier, J. A., & Rowe, T. (2002). The osteoderms and palpebral in Lanthanotus borneensis (Squamata: Anguimorpha). Journal of Herpetology, 36(4), 678-682.
Maisano, J. A., Laduc, T. J., Bell, C. J., & Barber, D. (2019). The cephalic osteoderms of Varanus komodoensis as revealed by high-resolution X-ray computed tomography. The Anatomical Record, 302(10), 1675-1680. DOI: 10.1002/ar.24197

Martill, D. M., & Naish, D. (2006). Cranial crest development in the azhdarchoid pterosaur Tupuxuara, with a review of the genus and tapejarid monophyly. Palaeontology, 49(4), 925-941. DOI: 10.1111/j.1475-4983.2006.00575.x

Maryńska, T. (1977). Ankylosauridae (Dinosauria) from Mongolia. Palaeontologia Polonica, 37, 85-151.

Mayr, G. (2018). A survey of casques, frontal humps, and other extravagant bony cranial protuberances in birds. Zoomorphology, 137(3), 457-472. DOI: 10.1007/s00435-018-0410-2

Mead, J. I., Schubert, B. W., Wallace, S. C., & Swift, S. L. (2012). Helodermatid lizard from the Mio-Pliocene oak-hickory forest of Tennessee, eastern USA, and a review of monstersaurian osteoderms. Acta Palaeontologica Polonica, 57(1), 111-121. DOI: 10.4202/app.2010.0083

Molnar, R. E. (1996). Preliminary report on a new ankylosaur from the Early Cretaceous of Queensland, Australia. Memoirs of the Queensland Museum, 39, 653-668.

Montanucci, R. R. (1987). A phylogenetic study of the horned lizards, genus Phrynosoma, based on skeletal and external morphology. Contrib. in science/Natural History Museum of Los Angeles County, 113, 1–26.

Moss, M. L. (1969). Comparative osteology of dermal sclerifications in reptiles. Acta anatomica, 73, 510-533.

Naish, D., & Martill, D. M. (2003). Pterosaurs- a successful invasion of prehistoric skies. Biologist, 50(5), 213–216.
Naish, D., & Perron, R. (2016). Structure and function of the cassowary's casque and its implications for cassowary history, biology and evolution. Historical Biology, 28(4), 507-518. DOI: 10.1080/08912963.2014.985669

Nance, H. A. (2007). Cranial osteology of the African gerrhosaurid Angolosaurus skoogi (Squamata; Gerrhosauridae). African Journal of Herpetology, 56(1), 39-75. DOI: 10.1080/21564574.2007.9635552

Norman, D. B. (2020). Scelidosaurus harrisonii from the Early Jurassic of Dorset, England: cranial anatomy. Zoological Journal of the Linnean Society, 188(1), 1-81. DOI: 10.1093/zoolinnean/zlz074

Otto, H. (1909). Die Beschuppung der Brevilinguier und Ascalaboten. Jena Z Naturwiss, 44, 193–252.

Ősi, A. (2005). Hungarosaurus tormai, a new ankylosaur (Dinosauria) from the Upper Cretaceous of Hungary. Journal of Vertebrate Paleontology, 25(2), 370-383. DOI: 10.1671/0272-4634(2005)025[0370:HTANAD]2.0.CO;2

Ősi, A., & Makádi, L. (2009). New remains of Hungarosaurus tormai (Ankylosauria, Dinosauria) from the Upper Cretaceous of Hungary: skeletal reconstruction and body mass estimation. Paläontologische Zeitschrift, 83(2), 227-245. DOI: 10.1007/s12542-009-0017-5

Ősi, A., & Pereda-Suberbiola, X. (2017). Notes on the pelvic armor of European ankylosaurs (Dinosauria: Ornithischia). Cretaceous Research, 75, 11-22. DOI: 10.1016/j.cretres.2017.03.007
Ösi, A., Pereda-Suberbiola, X., & Földes, T. (2014). Partial skull and endocranial cast of the ankylosaurian dinosaur Hungarosaurus from the Late Cretaceous of Hungary: implications for locomotion. Palaeontologia Electronica, Article-nr.

Ösi, A., & Prondvai, E. (2013). Sympatry of two ankylosaurs (Hungarosaurus and cf. Struthiosaurus) in the Santonian of Hungary. Cretaceous Research, 44, 58-63. DOI: 10.1016/j.cretres.2013.03.006

Ösi, A., Rabi, M., Makádi, L., Szentesi, Z., Botfalvai, G., Gulyás, P., & Godefroit, P. (2012). The Late Cretaceous continental vertebrate fauna from Iharkút (Western Hungary): a review. Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems. Indiana University Press, Bloomington, pp. 532-569.

Ösi, A., Botfalvai, G., Albert, G., & Hajdu, Z. (2019). The dirty dozen: taxonomical and taphonomical overview of a unique ankylosaurian (Dinosauria: Ornithischia) assemblage from the Santonian Iharkút locality, Hungary. Palaeobiodiversity and Palaeoenvironments, 99(2), 195-240. DOI: 10.1007/s12549-018-0362-z

Paluh, D. J., Griffing, A. H., & Bauer, A. M. (2017). Sheddable armour: identification of osteoderms in the integument of Geckolepis maculata (Gekkota). African Journal of Herpetology, 66(1), 12-24. DOI: 10.1080/21564574.2017.1281172

Parks, W. A. (1924). Dyoplosaurus acutosquameus: a new genus and species of armoured dinosaur; and notes on a skeleton of Prosaurolophus maximus. Univ. Toronto Studies, Geological series, 18, 1-35.
Paulina-Carabajal, A., Lee, Y. N., & Jacobs, L. L. (2016). Neuroanatomy of the primitive nodosaurid dinosaur *Pawpawsaurus campbelli* and paleobiological implications of some endocranial features. PLoS One, 11, e0150845.

Penkalski, P. (2001). Variation in specimens referred to *Euoplocephalus tutus*. In Carpenter, K. (Ed.). The Armored Dinosaurs. Bloomington: Indiana University Press, pp. 363–385.

Peterson, J. A., & Bezy, R. L. (1985). The microstructure and evolution of scale surfaces in xantusiid lizards. Herpetologica, 41, 298-324.

Posso, S. R, & Donatelli, R. J. (2001) Cranial osteology and systematic implications in Crotophaginae (Aves, Cuculidae). Journal of Zoological Systematics and Evolutionary Research, 39, 247–256. DOI: 10.1046/j.1439-0469.2001.00178.x

Powell, G. L., Russell, A. P., Jamniczky, H. A., & Hallgrimsson, B. (2017). Shape variation in the Dermatocranium of the greater short-horned Lizard *Phrynosoma hernandesi* (Reptilia: Squamata: Phrynosomatidae). Evolutionary Biology, 44(2), 240-260. DOI: 10.1007/s11692-016-9403-6

Ramírez-Bautista, A., Vitt, L., Ramírez-Hernández, A., Quijano, F. M., & Smith, G. (2008). Reproduction and sexual dimorphism of *Lepidophyma sylvaticum* (Squamata: Xantusiidae), a tropical night lizard from Tlanchinol, Hidalgo, Mexico. Amphibia-Reptilia, 29(2), 207-216. DOI: 10.1163/156853808784124938

Rand, A. S. (1961). A suggested function of the ornamentation of East African forest chameleons. Copeia, 1961(4), 411-414.

Romer, A. S. (1956). Osteology of the Reptiles. University of Chicago Press, Chicago, Illinois, 772 p.
Sampson, S. D., Ryan, M. J., & Tanke, D. H. (1997). Craniofacial ontogeny in centrosaurine dinosaurs (Ornithischia: Ceratopsidae): taxonomic and behavioral implications. Zoological Journal of the Linnean Society, 121(3), 293-337.

Schmidt, K. P. (1938). New crocodilians from the upper Paleocene of western Colorado. Geological Series of the field museum of natural history, 6(21), 315-321.

Smith, K. T. (2011). The evolution of mid-latitude faunas during the Eocene: late Eocene lizards of the Medicine Pole Hills reconsidered. Bulletin of the Peabody Museum of Natural History, 52(1), 3-105. DOI: 10.3374/014.052.0101

Smith, G. R., Lemos-Espinal, J. A., & Ballinger, R. E. (1997). Sexual dimorphism in two species of knob-scaled lizards (genus Xenosaurus) from Mexico. Herpetologica, 53, 200-205.

Taylor, G. W., Santos, J. C., Perrault, B. J., Morando, M., Vásquez Almazán, C. R., & Sites Jr., J. W. (2017). Sexual dimorphism, phenotypic integration, and the evolution of head structure in casque-headed lizards. Ecology and evolution, 7(21), 8989-8998. DOI: 10.1002/ece3.3356

Tinius, A. (2019). Cranial Ornamentation in Anolis baleatus. Available at https://www.anoleannals.org/2019/08/28/cranial-ornamentation-in-anolis-baleatus/ (accessed 08 August 2019.)

Vaurie, C. (1968) Taxonomy of the Cracidae (Aves). Bulletin of the American Museum of Natural History, 138,1–259.

Vickaryous, M. K., & Hall, B. K. (2008). Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. Journal of morphology, 269(4), 398-422. DOI: 10.1002/jmor.10575

Vickaryous, M. K., Maryańska, T., & Weishampel, D. B. (2004). Ankylosauria. In Weishampel D B, Dodson P,
Vickaryous, M. K., & Russell, A. P. (2003). A redescription of the skull of Euoplocephalus tutus (Archosauria: Ornithischia): a foundation for comparative and systematic studies of ankylosaurian dinosaurs. Zoological Journal of the Linnean Society, 137(1), 157-186. DOI: 10.1046/j.1096-3642.2003.00045.x

Vickaryous, M. K., Russell, A. P., & Currie, P. J. (2001). Cranial Ornamentation of Ankylosaurs (Ornithischia: Thyerophora): Reappraisal of Developmental Hypotheses. In Carpenter, K. (Ed.). The Armored Dinosaurs. Indiana University Press, Bloomington and Indianapolis, pp. 318-340.

Vickaryous, M. K., & Sire, J. Y. (2009). The integumentary skeleton of tetrapods: origin, evolution, and development. Journal of Anatomy, 214(4), 441-464. DOI: 10.1111/j.1469-7580.2008.01043.x

Webster, M. S. (1992). Sexual dimorphism, mating system and body size in New World blackbirds (Icterinae). Evolution, 46(6), 1621-1641.

Wikelski, M., & Trillmich, F. (1997). Body size and sexual size dimorphism in marine iguanas fluctuate as a result of opposing natural and sexual selection: an island comparison. Evolution, 51(3), 922-936. DOI: 10.1111/j.1558-5646.1997.tb03673.x
Table and figure captions

Table 1. Osseous cranial ornamentation in extant sauropsid vertebrates.

Table 2. List of Hungarosaurus specimens used in this study.

Figure 1. Surface view and microCT cross sectional images (in level of the green line) of cranial ornamentation developed as either osteodermal fusion (A-F) or elaboration of skull bones (G-L) in squamates. (A) Tiliqua scincoides skull (MDE R45) in dorsal view. (B) partially fused polygonal osteoderms on the skull of T. scincoides. (C) inner structure of the skull bones and covering osteoderms of T. scincoides. (D) Tiliqua nigrolutea skull (MDE R47) in dorsal view. (E) partially fused polygonal osteoderms on the skull of T. nigrolutea. (F) inner structure of the skull bones and covering osteoderms of T. nigrolutea. (G) Iguana iguana skull (MDE R20) in dorsal view. (H) elaboration of skull bones in I. iguana. (I) inner structure of the elaborated skull bones in I. iguana. (J) Chamaeleo calyptratus (MDE R43) skull in lateral view. (K) inner structure of the elaborated skull bones in C. calyptratus. (L) elaboration of skull bones in C. calyptratus. Abbreviations: cb, cancellous bone; cel, cranial elaboration; cob, compact bone; fr, frontal; glo, globular ornamentation; mx, maxilla; or, orbit, os, osteoderm; pa, parietal; pcr, parietal crest; pfos, partially fused osteoderms; plos, polygonal osteoderms; po, postorbital; uno, unossified part between osteoderm and skull bone; sp, small pits.

Figure 2. Cranial specimens of the Late Cretaceous (Santonian) nodosaurid ankylosaur, Hungarosaurus tormai in 3D reconstruction (for 3D reconstruction see Video S1-S6). (A)
Figure 3. Ontogenetic change of the cranial ornamentation on the premaxillae (A-D) and nasals (E-H) of *Hungarosaurus*. Each element is visualized in surface view, three-dimensional surface rendering of microCT images, and microCT cross-sectional view. (A) right premaxilla of MTM V 2003.12. (mirrored) in left lateral view. (B) left premaxilla of MTM PAL 2020.33.1. in left lateral view. (C) premaxilla of MTM PAL 2020.31.1. in left lateral view. (D) holotype premaxilla in left lateral view. (E) nasals of MTM PAL 2020.32.1. in dorsal view. (F) right nasal from MTM PAL 2020.31.1. (G) right nasal (MTM PAL 2020.34.1.) in doral view. (H) holotype nasal fragment (mirrored). Abbreviations: cb, cancellous bone; cob, compact bone; den, dorsal margin of external nares; en, external nares; es, eroded surface; gr, groove; ins, internasal suture; lp, large pits; or, ornamentation; re, raised edge; sho, ornamentation in shingled arrangement; sp, small pits.

Figure 4. Ontogenetic change of the cranial ornamentation on the skull roof and orbital region of *Hungarosaurus*. Each element is visualized in surface view, three-dimensional surface rendering of microCT images, and microCT cross-sectional view. (A) skull roof of MTM PAL 2020.32.1. in dorsal view. (B) MTM 2007.27.1. left fragmentary frontal in dorsal view. (C) MTM PAL 2013.23.1. basicranium and partial skull roof in dorsal view. (D) postorbital of MTM PAL 2020.32.1. (E) MTM 2007.28.1. left postorbital. (F) MTM 2010.1.1. left postorbital and jugal.
(G) holotype postorbital and jugal (mirrored). Abbreviations: cb, cancellous bone; cob, compact bone; efe, edge of frontal elaboration; gr, groove; lip, depressed „lip” at transition to softer skin; lp, large pits; npf, nasal process of frontal; orb, orbit; pa, parietal; po, postorbital; poc, postorbital crest; sp, small pits.