PHOSPHINE-FREE TETRADENTATE SALICYLALDIMINE LIGAND COMPLEXED WITH PALLADIUM: FIRST APPLICATION IN HECK REACTIONS

Rahul S. Kalhapure,1 Thirumala Govender,2 and Krishnacharya G. Akamanchi1

1Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
2Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa

GRAPHICAL ABSTRACT

Abstract Heck reactions were carried out using phosphine-free tetradentate salicylaldimine ligand complexed with PdCl₂ under mild reaction conditions, short reaction time, and low palladium loading. All aryl iodides underwent coupling reactions with olefins, giving corresponding trans-products, with good to excellent yields, whereas aryl bromides gave very poor yields and aryl chlorides failed to react.

Keywords Aryl halides; Heck reactions; olefins; palladium chloride; salicylaldimine

Received April 20, 2014.

The present affiliation for Rahul S. Kalhapure is Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.

Address correspondence to Krishnacharya G. Akamanchi, Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India. E-mail: kgap@rediffmail.com

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lsyc.
INTRODUCTION

Because of their high potential for useful features such as enhanced performance over mononuclear complexes, ability to combine the best properties of homogeneous and heterogeneous catalysts in one system, and stable macromolecular structures that make them suitable for isolation via ultrafiltration and thus provide potential for catalyst recycling, dendrimeric ligand–based metal catalysts (metallodendrimers) have recently attracted attention. Their exploitation is mainly aimed at reducing the amount of Pd required and high performance of the catalysts. Reactions catalyzed by using metallodendrimers include the Heck reaction, Suzuki–Miyaura reaction, oxidation, polymerization, Sonogashira reaction, hydroformylation, C-C coupling metathesis, and epoxide ring opening.

The Heck reaction, a widely used reaction in synthesis of various substituted olefins, dienes, and natural products, is one of the most important palladium-catalyzed reactions in organic chemistry for which several homogeneous and heterogeneous protocols have been reported in literature. Most of the reported protocols employ Pd, an expensive metal, as catalyst in relatively large amounts and use of these large amount also results in residual metals in the products, creating environmental concerns. Ligands play an important role in the Heck reaction by increasing the solubility of metal, minimizing the palladium loading, and yielding catalysts with high turnover number and high reactivity. In this context dendritic ligands have received attention. A few examples are Reetz’s dendritic phosphine, DAB-dendr-[N(CH2PPh2)2]16, bearing P-centers on the periphery coordinated to Pd catalysts, DAB-G1(impyr-PdCl2)4 catalyst, Pd(II)-phosphine complexes modified poly(ether imine) PETIM dendrimers, palladium nanoparticle cored G3 dendrimer, iminophosphine DAB-dendr-[1,2-(NCHC6H4PPh2)]32, DAB-32-imiphos, and corresponding aminophosphine, DAB-dendr-[1,2-(NHCH2-C6H4PPh2)]32, DAB-32-amiphos, i.e., two dendrimeric P, N-ligands, G4 PAMAM dendrimer encapsulated Pd0 nanoparticles, dendritic nanoreactor prepared by incorporating Pd0 nanoparticles into poly(propylene imine) (PPI) dendrimer, and PPI dendrimer covalently functionalized with perfluorinated polyether chains on the periphery. G1 and G2 dendrimeric salicylaldimine ligands based on PPI dendrimer scaffolds have been synthesized for preparation of multinuclear nickel complexes and evaluated in polymerization of norbornene. However, these ligands have not been used so far for preparation of Pd complexes and screened.

Figure 1. Structure of [DAB-dendr-[1,2-\(N=CH-\text{C}_6\text{H}_4\text{OH}\)]_4\[\text{PdCl}_2\]_2] complex 1.
for Heck reaction. In the present work we synthesized the same PPI tetradsentate
ligand [DAB-dendr-[1,2-N=CH-C6H4-OH]4], successfully prepared the Pd(II)
complex 1 (Fig. 1), and employed it for Heck coupling reactions.

RESULTS AND DISCUSSION

DAB-dendr-[1,2-N=CH-C6H4-OH]4 Pd (II) complex 1, having two catalytic
sites, was prepared by using PdCl2(CH3CN)2 and refluxing in CH3CN for 24 h to
ensure the completion of the reaction. The infrared (IR) spectra of 1 showed shifts
in ν (C=N) and ν (C-O) stretching frequencies from 1627 and 1275 cm⁻¹ to 1621
and 1313 cm⁻¹ respectively, ensuring the formation of the complex, and mass spec-
trometry and elemental analysis confirmed the molecular formula.

Previously, dendrimers with 2 to 60 Pd atoms have been prepared either by
complexation or entrapment.[2,10,11,13] Two Pd atoms were complexed with G1
PETIM dendrimer[10] but in the form of phosphine ligand. For the first time we com-
plexed two Pd atoms with tetradsentate DAB-dendr-[1,2-N=CH-C6H4-OH]4 ligand
without any phosphine. Phosphine-free conditions for Pd-catalyzed reactions are
preferred because of adverse environmental effects associated with phosphines.[12]

Heck coupling reactions between iodobenzene and methyl acrylate as model
substrates were attempted using 1 and the results are summarized in Table 1. Reac-
tions were carried out in different solvents such as toluene, CH3CN, acetone, acet-
one–water (1:1), water, and dimethylformamide (DMF) with 1 mol% of 1 and
K2CO3 as a base and at different temperatures. Reaction did not proceed in acetone,
acetone–water (1:1) mixture, or water (entries 4–6, Table 1), whereas in toluene and
CH3CN the reaction did proceed but gave poor yields (10–17%) (entries 1–3, Table 1).

Entry	Amount of 1 (mol%)	Solvent	Temperature (°C)	Yieldb (%)
1	1	PhMe	110	17
2	1	PhMe	80	12
3	1	CH3CN	80	10
4	1	Acetone	60	n.r.
5	1	Acetone–H2O (1:1)	80	n.r.
6	1	H2O	80	n.r.
7	1	DMF	120	92
8	1	DMF	80	94
9	0.1	DMF	120	89
10	0.1	DMF	80	90

aReaction conditions: Iodobenzene (5 mmol), methyl acrylate (10 mmol), K2CO3 (5 mmol), 1, solvent
(10 mL), reaction time 4 h, in a sealed tube under N2 atmosphere.
bIsolated yield.
Note. n.r., no reaction.
The best results were obtained in DMF and at reaction temperature of 80 °C, giving very good yield in 4 h (entry 8, Table 1). Amount of \(\text{I} \) was reduced up to 0.1 mol\%, keeping the other reaction conditions the same, and we noticed no significant change in yield (entry 10, Table 1). Therefore for further studies DMF was chosen as solvent with catalyst amount of 0.1 mol\% and reaction temperature of 80 °C.

To study the scope of the methodology, reactions were carried out using different substrates, and results are presented in Table 2. All of the olefins gave good to excellent yields except acrylamide (entry 8, Table 2), which did not show any reaction. In all cases only trans isomer was obtained and none of the cis isomer or any other by-product could be observed by thin-layer chromatography (TLC) or \(^1\)H NMR spectra. In the case of acrylic acid esters it was noticed that going from methyl to \(t \)-butyl esters resulted in a slight decrease in yield (entries 3–6, Table 2). Styrene also reacted well but yield was comparatively less (entry 7, Table 2). Failure of acrylamide to react (entry 8, Table 2) was attributed to deactivation of catalyst by complexation with amide group. This conclusion is supported by carrying out reactions with methyl acrylate in the presence of acrylamide and acetamide and in both the cases the reaction did not proceed. Reactions with \(p \)-chloriodobenzene and \(p \)-methyliodobenzene were equally facile but slightly lower yields were obtained with \(p \)-methyl- compared to \(p \)-chloriodobenzenes (entries 9–12, Table 2).

Attempts to carry out the reaction on aryl chlorides were unsuccessful whereas reaction with aryl bromides gave poor yields (entries 13 and 14, Table 2). A control reaction using only equivalent amounts of \(\text{PdCl}_2 \) as catalyst with no ligand gave <3\% yield. To assess the standing of \(\text{I} \) with respect to other metallodendrimers, literature data is compiled in Table 3. Metallodendrimers with palladium loading in the range of 0.2 to 8 mol\% have been used for 5 mmol of iodobenzene in evaluating Heck reactions, whereas in our case 0.2 mol \% of Pd loading was sufficient to give almost the same yield as that of the best catalyst but in shorter time (entry 1 and 5, Table 3), showing the superiority of \(\text{I} \).

CONCLUSION

In conclusion we have developed a new phosphine-free tetradentate palladium complex \([\text{DAB-dendr-[1,2-N=CH-C}_6\text{H}_4\text{-OH]}_4][\text{PdCl}_2]\) for efficient Heck reaction. The catalyst is superior because less Pd is required to achieve the same yield under similar reaction conditions in comparison with known methods utilizing metallodendrimers.

EXPERIMENTAL

Bis(acetonitrile)dichloropalladium (II), 1,4-diaminobutane, and iodobenzene were obtained from Aldrich and used as received. All other chemicals were purchased from local chemical suppliers and used without any purification. IR spectra were recorded on a FT-IR RX1 Perkin-Elmer instrument. \(^1\)H NMR spectra were recorded on a Jeol MY-60 instrument operating at 60 MHz. Chemical shifts are given as parts per million (ppm) downfield from tetramethylsilane (TMS) in \(\delta \) units. Electrospray ionization (ESI)–mass spectra (MS) was recorded using an Agilent 6524 Q-TOF Mass LC MS/MS system (Agilent, USA). Melting points were determined
Table 2. Heck reactions using [DAB-dendr-[1,2-N=CH-C₆H₄-OH]₄[PdCl₂]₂] complex 1a

Entry	Ar-X	R	Product	Yield (%)
1	COOH	4a		88
2	CN	4b		84
3	COOCH₃	4c		94
4	COOC₂H₅	4d		86
5	COO-n-C₄H₉	4e		82
6	COO-t-Bu	4f		75
7	C₆H₅	4g		78
8	CONH₂	4h		n.r.
9	CN	4h		88

(Continued)
with a Veego melting-point apparatus having a stirred paraffin bath. Silica gel (60–120 mesh) was used for column chromatography and thin-layer chromatography (TLC) was performed using Merck silica-gel 60 F254 plates.

Synthesis of DAB-dendr-(NH$_2$)$_4$

DAB-dendr-(NH$_2$)$_4$ was prepared by some modifications in the reported method.15 Acrylonitrile (800 mmol, 42.45 g) was added dropwise to a solution of

Table 2. Continued

Entry	Ar-X	R	Product	Yieldb (%)
10	![Image](image1.png)	CN	![Image](image2.png)	82
11	![Image](image3.png)	COOCH$_3$![Image](image4.png)	93
12	![Image](image5.png)	COOCH$_3$![Image](image6.png)	85
13	![Image](image7.png)	COOCH$_3$	4c	04
14	![Image](image8.png)	COOCH$_3$	4c	n.r.

aReaction conditions: Aryl halide (5 mmol), olefin (10 mmol), K$_2$CO$_3$ (5 mmol), I$_2$ (0.1 mol%), DMF (10 mL), temperature 80°C, reaction time 4 h, in a sealed tube under N$_2$ atmosphere.

bIsolated yield.

Note. n.r., no reaction.

Table 3. Comparison of different metallodendrimer catalysts with catalyst 1 for Heck reaction between iodosbenzene and methyl acrylate

Entry	Catalyst	Pd loading (mol%)	Temperature (°C)	Time (h)	Yield (%)	Reference
1	DAB-G1 (impyr)-(PdCl$_2$)$_4$	0.96	82	8	96	2
2	G1 PETIM metallodendrimer	2–0.2	140	4	69	10
3	G2 PETIM metallodendrimer	4–0.3	140	4	56	10
4	G3 PETIM metallodendrimer	8–0.8	140	4	54	10
5	[DAB-dendr-[1,2-N=CH-C$_6$H$_5$-OH]$_4$][PdCl$_2$]$_2$I	0.2	80	4	94	This work

R. S. KALHAPURE, T. GOVENDER, AND K. G. AKAMANCHI
diaminobutane (100 mmol, 8.81 g) in 100 ml of water with stirring. The reaction mixture was heated at 80 °C for 1 h. Excess of acrylonitrile was removed as a water azeotrope under vacuum using rotary evaporator to get the product (29.7 g, 99%) as residue. This product was characterized by FT-IR and NMR. DAB-<i>dendr</i>-(CN)₄ (66.6 mmol, 20 g) dissolved in methanol (100 ml) was added to a hydrogenation vessel filled with Raney nickel catalyst (4 g), NaOH (65 mmol, 2.6 g), and methanol (100 ml) and the mixture was hydrogenated at 100 psi at ambient temperature for 8 h. Reaction mixture was filtered through a bed of celite to remove Raney nickel and the filtrate was concentrated under vacuum. The crude product obtained was dissolved in dry acetone and filtered to remove NaOH. The acetone layer was concentrated in vacuo to get the colorless oil (20.44 g, 97%). This G1 PPI was used without further purification.

Preparation of Ligand DAB-<i>dendr</i>-[1,2-N=CH-C₆H₄-OH]₄^[1a]

Salicylaldehyde (12.6 mmol, 1.54 mL) was added to a mixture of DAB-(NH₂)₄ (3.2 mmol, 1 g) and dry toluene (25 mL) under N₂ atmosphere. The mixture was stirred at room temperature for 72 h. The solvent was evaporated in vacuo leaving a yellow oil. Dichloromethane (20 mL) followed by petroleum ether (40 mL) were added and the mixture was kept at −4 °C for 72 h. A yellow precipitate obtained was recovered by filtration, washed with cold petroleum ether, and air dried. Yield 2 g (85%); mp 65–67 °C (lit. 66–68 °C). IR (KBr): ν = 3082, 1627, 1394, 1275 cm^{−1}. ¹H NMR (60 MHz, CDCl₃): δ = 1.41 (4 H, m), 1.99 (8 H, m), 2.40–2.62 (12 H, m), 3.69 (8 H, t), 6.83 (4 H, m), 7.16–7.26 (12 H, m), 8.32 (4 H, s). MS (ESI): <i>m/z</i> = 733.45.

Preparation of [DAB-<i>dendr</i>-[1,2-N=CH-C₆H₄-OH]₄][PdCl₂]₂ 1

A mixture of ligand (1 mmol, 0.73 g) and PdCl₂·(CH₃CN)₂ (2 mmol, 1.037 g) in CH₃CN (15 mL) was refluxed under N₂ atmosphere for 24 h. The solvent was removed under vacuum using rotary evaporator. Orange-colored solid residue obtained was washed with cold methanol and dried in an oven at 100 °C for 1 h, yield 1.20 g (83%), mp 183 °C (dec). IR (KBr): ν = 2926, 1621, 1313 cm^{−1}. MS (ESI): <i>m/z</i> = 1083.8 [M⁺]. Anal. calcd. for C₄₄H₅₄Cl₄N₆O₅Pd₂: C, 47.97; H, 4.94; N, 7.63. Found: C, 48.04; H, 5.06; N, 7.26.

General Procedure for Heck Reaction

Aryl halide (5 mmol), olefin (10 mmol), K₂CO₃ (5 mmol), and 1 (0.1 mol%) were taken in DMF (10 mL) in a sealed tube (25 mL) fitted with a Teflon cap under N₂ atmosphere and the mixture was heated with stirring at 80 °C for 4 h and cooled to room temperature. The solvent was evaporated under reduced pressure on a rotary evaporator. The residue was extracted using EtOAc (3 × 10 mL) and dried over Na₂SO₄, and the solvent was removed on a rotary evaporator. The crude residue obtained was purified by column chromatography on silica gel, 60–120 mesh (petroleum ether–EtOAc, 98:2).
FUNDING

Rahul S. Kalhapure is thankful to the University Grants Commission (UGC), Government of India, and the National Research Foundation of South Africa for financial support.

SUPPORTING INFORMATION

Supplemental data for this article can be accessed on the publisher’s website.

REFERENCES

1. (a) Malgas-Enus, R.; Mapolie, S. F.; Smith, G. S. Norbornene polymerization using multinuclear nickel catalysts based on a polypropyleneimine dendrimer scaffold. *J. Organomet. Chem.* 2008, 693, 2279; (b) de Jesus, A. E.; de la Matra, F. J.; Flores, J. C.; Gomez, R.; Rodrigo, M.; Vigo, S. Ethylene polymerization behavior of monometallic complexes and metallodendrimers based on cyclopentadienyl-aryloxy titanium units. *J. Organomet. Chem.* 2005, 690, 4620.
2. Smith, G. S.; Mapolie, S. F. Iminopyridyl-palladium dendritic catalyst precursors: Evaluation in Heck reactions. *J. Mol. Catal. A: Chem.* 2004, 213, 187.
3. (a) Hattori, H.; Fujita, K.-I.; Muraki, T.; Sakaba, A. Suzuki–Miyaura reaction in water, conducted by employing an amphiphilic dendritic phosphine–palladium catalyst: A positive dendritic effect on chemical yield. *Tetrahedron Lett.* 2007, 48, 6817; (b) Karakhanov, E. A.; Maximov, A. L.; Tarasevich, B. N.; Skorkin, V. A. Dendrimer-based catalysts in Wacker oxidation: Unexpected selectivity to terminal double bonds. *J. Mol. Catal. A: Chem.* 2009, 297, 73; (c) Krishnan, G. R.; Sreekumar, K. Polystyrene-supported poly(amidoamine) dendrimer–manganese complex: Synthesis, characterization, and catalysis. *Appl. Catal. A* 2009, 353, 80; (d) Li, P.; Kawi, S. Dendritic SBA-15-supported Wilkinson’s catalyst for hydroformylation of styrene. *Catal. Today* 2008, 131, 61.
4. Heuze, K.; Mery, D.; Gauss, D.; Astrue, D. Copper-free, recoverable dendritic Pd catalysts for the Sonogashira reaction. *Chem. Comm.* 2003, 18, 2274.
5. (a) Oosterom, G. E.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Transition-metal catalysis using functionalized dendrimers. *Angew. Chem. Int. Ed. Engl.* 2001, 40, 1828; (b) Groot, D.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Palladium complexes of phosphane-functionalised carbosilane dendrimers as catalysts in a continuous-flow membrane reactor. *Eur. J. Org. Chem.* 2002, 6, 1085.
6. Krishnan, G. R.; Sreekumar, K. Ring opening of epoxides catalysed by polyamidoamine dendrimer supported on cross-linked polystyrene. *Polym.* 2008, 49, 5233.
7. (a) Heck, R. F. In *Comprehensive Organic Synthesis*; B. M. Trost and I. Fleming (Eds.); Pergamon Press: Oxford, 1991; Vol. 4; (b) Oshima, T.; Kagegika, K.; Adachi, M.; Sodeoka, M.; Shibasaki, M. Asymmetric Heck reaction-carbanion capture process: Catalytic asymmetric total synthesis of (−)-Δ9(12)-capnellene. *J. Am. Chem. Soc.* 1996, 118, 7108; (c) Crisp, G. T. Variations on a theme: Recent developments on the mechanism of the Heck reaction and their implications for synthesis. *Chem. Soc. Rev.* 1998, 27, 427; (d) Reetz, M. T. In *Transition-Metal-Catalyzed Reactions*; S. G. Davies and S.-I. Murahashi (Eds.); Blackwell Scientific: Oxford, 1999; (e) Honzawa, S.; Mizutani, T.; Shibasaki, M. Synthetic studies on (+)-wortmannin: An asymmetric construction of an allylic quaternary carbon center by a Heck reaction. *Tetrahedron Lett.* 1999, 40, 311; (f) Jagtap, S.; Deshpande, R. True water-soluble palladium-catalyzed Heck reactions in aqueous–organic biphasic media. *Tetrahedron Lett.* 2013, 54, 2733; (g) Karami, K.;
Moghadam, Z. K.; Hosseini-Kharat, M. Polyethylene-glycol-supported recyclable NC palladacycle catalyst for Heck cross-coupling reactions. Catal. Comm. 2014, 43, 25.

8. (a) Yi, W.-B.; Cai, C.; Wang, X. A novel fluorous palladium catalyst for Heck reaction in a fluorous biphasic system (FBS). J. Mol. Catal. A: Chem. 2007, 274, 68; (b) Sawant, D.; Wagh, Y.; Bhatta, K.; Panda, A.; Bhange, B. Palladium polyether diphosphinite complex anchored in polyethylene glycol as an efficient homogeneous recyclable catalyst for the Heck reactions. Tetrahedron Lett. 2011, 52, 2393; (c) Phan, N. T. S.; Van Der Sluys, M.; Jones, C. W. On the nature of active species in palladium-catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings, homogeneous or heterogeneous catalysis: A review. Adv. Synth. Catal. 2006, 348, 609; (d) Beletskaya, I. P.; Cheprakov, A. V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 2000, 100, 3009; (e) Gibson, S. E.; Lecci, C.; White, A. J. P. Application of the Heck reaction in the synthesis of macrocycles derived from amino alcohols. Synlett 2006, 18, 2929; (f) Saiyed, A. S.; Bedekar, A. V. One-pot synthesis of stilbenes by dehydrohalogenation–Heck olefination and multicomponent Wittig–Heck reaction. Tetrahedron Lett. 2010, 51, 6227; (g) Ullah, I.; Nawaz, M.; Villinger, A.; Langer, P. Synthesis of 8,9-disubstituted fluoranthenes by domino two-fold Heck/electrocyclization/dehydrogenation of 1,2-dibromoacenaphthylene. Tetrahedron Lett. 2011, 52, 1888; (h) Paul, S.; Gorai, T.; Koley, A.; Ray, J. K. A simple route to 9-fluorenylidienes by domino Suzuki/Heck coupling reactions. Tetrahedron Lett. 2011, 52, 4051.

9. Reetz, M. T.; Lohmer, G.; Schwickardi, R. Synthesis and catalytic activity of dendritic diphosphane metal complexes. Angew. Chem. Int. Ed. 1997, 36, 1526.

10. Krishna, T. R.; Jayaraman, N. Synthesis and catalytic activities of PdII–phosphine complexes modified poly(ether imine) dendrimers. Tetrahedron 2004, 60, 10325.

11. Gopidas, K. R.; Whitesell, J. M.; Fox, M. A. Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Lett. 2003, 3, 1757.

12. Catsoulacos, D. P.; Steele, B. R.; Heropoulos, G. A.; Micha-Screttas, M.; Screttas, C. G. An iminophosphine dendrimeric ligand and its evaluation in the Heck reaction. Tetrahedron Lett. 2003, 44, 4575.

13. Rahim, E. H.; Kamounah, F. S.; Frederiksen, J.; Christensen, J. B. Heck reactions catalyzed by PAMAM-dendrimer encapsulated Pd(0) nanoparticles. Nano Lett. 2001, 1, 499.

14. Yeung, L. K.; Crooks, R. M. Heck heterocoupling within a dendritic nanoreactor. Nano Lett. 2001, 1, 14.

15. de Barbander-van den Berg, E. M. M.; Meijer, E. W. Poly(propylene imine) dendrimers: Large-scale synthesis by heterogeneously catalyzed hydrogenations. Angew. Chem. Int. Ed. Engl. 1993, 32, 1308.