Gas-like state of α clusters around ^{16}O core in ^{24}Mg

T. Ichikawa1, N. Itagaki1, T. Kawabata2, Tz. Kokalova3, and W. von Oertzen4

1Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Chō, 606-8502 Kyoto, Japan
2Division of Physics and Astronomy, Kyoto University, Kitashirakawa Oiwake-Chō, 606-8502 Kyoto, Japan
3School of Physics and Astronomy, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK and Helmholtz-Zentrum Berlin, Glienicker Str. 100, D-14109 Berlin, Germany

(Dated: January 12, 2013)

We have studied gas-like states of α clusters around an ^{16}O core in ^{24}Mg based on a microscopic α-cluster model. This study was performed by introducing a Monte Carlo technique for the description of the THSR (Tohsaki Horiuchi Schuck Röpke) wave function, and the coupling effect to other low-lying cluster states was taken into account. A large isoscalar monopole (E0) transition strength from the ground to the gas-like state is discussed. The gas-like state of two α clusters in ^{24}Mg around the ^{16}O core appears slightly below the 2α-threshold energy.

PACS numbers: 21.10.-k,21.60.-n,21.60.Gx,27.20.+n,27.30.+t

I. INTRODUCTION

In the last couple of years, gas-like states comprised of α clusters in atomic nuclei have attracted increased interest1,2. It is basically considered that all of the α-clusters in such states occupy the same 0s-orbital, which has a spatially extended distribution2. This situation is well expressed by introducing the so-called THSR (Tohsaki Horiuchi Schuck Röpke) wave function, where the oscillator parameter is large, which is completely different from the normal 0s-orbital for each nucleon. The most plausible candidates for such gas-like states of α clusters are the second 0$^+$ state of ^{12}C (3α) at $E_x = 7.65$ MeV and more generally, states around the No-threshold energies. The squared overlap between the wave function of a microscopic cluster model and the THSR wave function has been found to be more than 90% for ^{12}C3, which suggests that the single THSR wave function is a good approximation for the description of the gas-like state. Furthermore, a candidate for the gas-like state of 4α clusters around the threshold energy in ^{16}O has been studied by both theoretical and experimental approaches1,2,3.

Lately, the research into gas-like states comprised of α clusters moved on to the second stage. For instance, the possibility of gas-like states of α clusters around a core in heavier nuclei has been suggested4. The coherent emission of α clusters from the compound nucleus in heavier nuclei has been reported4, which leads us to a hypothesis that gas-like states of α clusters can be formed not only in ^{12}C and ^{16}O but also in heavier nuclei with some core. Using the $^{28}\text{Si}+^{24}\text{Mg}$ reaction, the compound states of ^{52}Fe have been populated, and the $^8\text{Be}(0^+_1)$ and $^{12}\text{C}(0^+_2)$ emissions from these states have been observed, which are much enhanced compared to the sequential α-emission. From a statistical model point of view, it is natural to consider that the emitted second 0$^+$ state of ^{12}C is formed inside the Coulomb barrier of the compound nucleus. The enhancement of the emission of the gas-like states of α clusters could be due to the lowering of the effective Coulomb barrier for the condensed states3, since the kinetic energy of the emitted ^{12}C in coincidence with γ-emission has been observed to be much smaller than the energy sum of three α’s in the sequential 3α emission.

To study the possibility of gas-like states of α clusters in heavier nuclei from the theoretical side, we have introduced a Monte Carlo technique for the description of the THSR wave function, which is called the “virtual THSR” wave function12. We have shown the possibility of a three α state around a ^{40}Ca core13. The three α cluster state around ^{40}Ca has an energy below the Coulomb barrier top energy with a spatial extension comparable to the second 0$^+$ state of ^{12}C.

Recently, it has been proposed that the strong enhancement of isoscalar monopole (E0) transitions can be a measure of the existence of cluster structure14. For instance, the presence of cluster states in ^{13}C has been suggested by measuring the isoscalar E0 transitions from the ground 1/2$^-$ state induced by the $^{13}\text{C}(\alpha, \alpha')^{13}\text{C}$ reaction15. The obtained cross-sections are much larger than those of the shell-model calculations. The result suggests that protons and neutrons are coherently excited and that they have spatially extended distribution in the excited states. From the theoretical side, the relation between the monopole transition strength and the cluster structure has also been discussed16,20. The basic idea arises from the Bayman-Bohr theorem21, which shows that the lowest representation of the shell-model contains a component of the lowest SU(3) representation of the cluster states and the monopole operator connects the lowest SU(3) state and the well-developed cluster states.

The experimental search for the large monopole strength to gas-like cluster state(s) of α clusters around an ^{16}O core is on going, and we analyze such structure from the theoretical point of view. In this paper we study the gas-like state of two α clusters around an ^{16}O core in ^{24}Mg, and here, the coupling effect between the gas-
like α cluster state and the normal cluster states in the low-lying region is taken into account.

II. METHOD

The original THSR wave function for the α-condensed state has the following form:

\[\Psi = \int d\vec{R}_1 d\vec{R}_2 \cdots d\vec{R}_n \times \exp[-(\vec{R}_1^2 + \vec{R}_2^2 + \vec{R}_3^2 + \cdots + \vec{R}_n^2)/\sigma^2] \]

\[\Psi = A \prod_{i=1}^{n} d\vec{R}_i \times \exp[-(\vec{R}_1^2 + \vec{R}_2^2 + \vec{R}_3^2 + \cdots + \vec{R}_n^2)/\sigma^2] \]

where \(A\), \(G(\vec{r}_i, \vec{R}_i) = \exp[-\nu(\vec{r}_i - \vec{R}_i)^2]\), and \(\sigma\) are the antisymmetrizer, the wave function for the \(i\)-th α-cluster centered at \(\vec{R}_i\), and the oscillator parameter of the α-condensation, respectively. The four nucleons (proton spin-up, proton spin-down, neutron spin-up, and neutron spin-down) in the \(i\)-th α-cluster share the common Gaussian center parameter \(\vec{R}_i\).

To simplify this wave function, we introduce the “virtual THSR” wave function in the following way [12]:

\[\Psi^\sigma = \sum_{k=1}^{m} P^\sigma P_{MK}^i \Psi^\sigma_k \]

\[\Psi^\sigma_k = [A G(\vec{r}_1, \vec{R}_1)G(\vec{r}_2, \vec{R}_2)G(\vec{r}_3, \vec{R}_3) \cdots G(\vec{r}_n, \vec{R}_n)]_k \]

Here, the integral over the Gaussian center parameters \(\{\vec{R}_i\}\) in the original THSR wave function (in Eq. (1)) is replaced by the sum of many Slater determinants. The Gaussian center parameters \(\{\vec{R}_i\}\) are randomly generated by the weight function \(W\) with a Gaussian shape:

\[W(\vec{R}_i) \propto \exp[-\vec{R}_i^2/\sigma^2] \]

With increasing ensemble number, the distribution of \(\{\vec{R}_i\}\) approaches a Gaussian with \(\sigma\) width parameter. Thus, it can be considered that the integration in the original THSR wave function (see Eq. (1)) is performed by using a Monte Carlo technique for the virtual THSR wave function, and the wave function agrees with the original THSR wave function when the number of Slater determinants \((m\) in Eq. (2)) increases.

In the present case, we add a \(^{16}\text{O}\) core and discuss the two α state around it. Thus, each basis state (Eq. (3)) becomes

\[\Psi^\sigma_k = [A \phi(\text{^{16}\text{O}})] G(\vec{r}_1, \vec{R}_1)G(\vec{r}_2, \vec{R}_2)]_k \]

Here the \(^{16}\text{O}\) core \((\phi(\text{^{16}\text{O}}))\) is described by a tetrahedron configuration of four α-clusters with small relative distances, and only the Gaussian center parameters of two α clusters around the \(^{16}\text{O}\) core \((\vec{R}_1, \vec{R}_2)\) are randomly generated with the weight function \(W(\vec{R}_i)\). The center of mass of each basis state \(\Psi_k\) is shifted to the origin after generating the wave functions of α clusters around \(^{16}\text{O}\). The projection onto good parity \((P^\pi)\) and angular momentum \((P^J)\) is performed numerically. Here, \(\pi\) is positive parity and \(J = M = K = 0\). The number of mesh points for the Euler angle integral is \(16^3 = 4096\). The Gaussian size of each nucleon (\(\nu\) in \(G(\vec{r}_i, \vec{R}_i) = \exp[-\nu(\vec{r}_i - \vec{R}_i)^2]\)) is taken to be \(\nu = 1/2b^2\), \(b = 1.46\) fm.

In the present study, we calculate the coupling effect between the gas-like cluster states described by the virtual THSR wave function and normal cluster states. The normal cluster states \(\{\Psi_{nc}^j\}\) are described by many different configurations of \(^{16}\text{O}+\alpha+\alpha\) for \(^{24}\text{Mg}\). The total wave function \(\Psi\) is therefore

\[\Psi = \sum_j c_{nc}^j \Psi_{nc}^j + \sum_{\sigma} c^\sigma \Psi^\sigma \]

and the coefficients \(c_{nc}^j\) and \(c^\sigma\) are determined by diagonalizing the Hamiltonian matrix.

The Hamiltonian operator \((H)\) has the following form:

\[H = \sum_{i=1}^{A} \hat{t}_i - \hat{T}_c.m. + \sum_{i>j}^{A} \hat{v}_{ij} \]

where \(\hat{t}_i\) is the kinetic energy of \(i\)-th nucleon, and the center-of-mass kinetic energy \((\hat{T}_c.m.)\) is exactly removed. Here, the two-body interaction \((\hat{v}_{ij})\) includes the central part and the Coulomb part. We use the following Volkov No.2 effective \(N - N\) potential [22]:

\[V(r) = (W - MP^\sigma P^\sigma) \sum_{k=1,2} V_k \exp(-r^2/c_k^2) \]

where \(W = 1 - M\) (\(M\): Majorana exchange parameter). It is known that although \(M \sim 0.6\) reproduces the \(\alpha-\alpha\) scattering phase shift, larger \(M\) values are needed for the structure calculation beyond \(^{12}\text{C}\), and here \(M\) is chosen to be 0.63 to yield a reasonable binding energy of \(^{24}\text{Mg}\). Using the present interaction, the lowest state of \(^{16}\text{O}+2\alpha\) \((^{24}\text{Mg})\) is calculated to be \(-16.24\) MeV from the three-body threshold energy, when we perform a GCM (generator coordinate method) calculation by superposing the basis states and diagonalizing the Hamiltonian, compared with the experimental value of \(-14.046\) MeV.

III. RESULTS

We start the discussion with the virtual THSR wave function for the gas-like state of \(\alpha\) clusters around \(^{16}\text{O}\) \((\Psi^\sigma)\). The energy convergence of \(^{16}\text{O}+\alpha+\alpha\) \((^{24}\text{Mg})\) as a function of number of basis states \((m\) in Eq. (2)) is shown in Fig. 1. The energy is measured from the \(^{16}\text{O}+\alpha+\alpha\) threshold. Our previous application of the virtual THSR
wave function for the three α (12C) case has shown that the wave function with $\sigma = 4$ fm is found to give a reasonable root mean square radius for the second 0^+ of 12C compared with that obtained by other approaches [12]. In the present case, the result of $\sigma = 4$ fm (also that of $\sigma = 5$ fm) shows the converged energy below the threshold due to the presence of the 16O core. In the case of $\sigma = 3$ fm, the converged energy is much lower; ~ -6 MeV below the threshold.

Next we calculate the coupling effect between the gas-like cluster states described by the virtual THSR wave function (Ψ^σ, $\sigma = 3, 4, 5$ and 6 fm) and normal cluster states (Ψ_{nc}). The left column of Fig. 2 shows the 0^+ levels of 24Mg obtained by diagonalizing the Hamiltonian consisting of 200 different configurations of 16O+$\alpha+\alpha$. The energy convergence of $\{\Psi_{nc}\}$ is shown in Fig. 3. In addition to this normal cluster states of $\{\Psi_{nc}\}$, we superpose virtual THSR wave functions with the σ values of $\sigma = 3, 4, 5$ and 6 fm, and the result obtained after the coupling is shown as the right column of Fig. 2. In principle, the model space of Ψ_{nc} covers that of Ψ^σ if we prepare an infinite number of different configurations, however the energies of the calculated 7th 0^+ state at -4.267 MeV is influenced by the coupling with the virtual THSR wave function. This state is considered to have a large component of gas-like α clusters. Because of the presence of the 16O core, the 7th 0^+ state appears below the threshold energy.

The energies of the eleven lowest 0^+ states of 24Mg measured from the 16O+$\alpha+\alpha$ threshold (MeV) and squared isoscalar monopole (E0) transition strength from the ground state (fm4) are summarized in Table I. The calculated monopole transition strengths from the ground state to the 7th 0^+ state at -4.267 MeV shows strong enhancement (187.5 fm4). The result shows that the state which has large components of gas-like cluster basis states is strongly excited by the E0 transition, which could be observed in experiments as a signature of well developed α cluster state.

The squared overlaps between each of the 0^+ states and the THSR wave functions for the two α clusters around 16O ($\sigma = 3, 4, 5,$ and 6 fm) are shown in Table II. The ground state has a large overlap with $\sigma = 3$ fm, because...
the limit of $\sigma = 0$ fm corresponds to the limit of the Elliot SU(3) state. It is confirmed that the 7th 0^+ state has a considerable amount of overlap with the THSR wave functions with larger σ values (e.g. about 40% with $\sigma = 5$ fm). The 10th 0^+ state at 0.140 MeV just around the 16O+$\alpha+$\alpha~threshold energy, which also has a large E_0 transition strength from the ground state (76.32 fm4 in Table I), has a certain overlap with the THSR wave functions with large σ values.

IV. CONCLUSION

We have studied α cluster states around an 16O core, which has been hinted at experimentally. The approach is based on a microscopic α cluster model. This was performed by introducing a Monte Carlo technique for the description of the THSR (Tohsaki Horiuchi Schuck Röpke) wave function, which is called the “virtual THSR” wave function.

The two α cluster state around an 16O core in 24Mg has an energy below the threshold energy, when the spatial extension is comparable to that of the second 0^+ state of 12C. The character of this state survives after imposing the coupling with other cluster states in lower energy region. The 7th 0^+ state below the 16O+$\alpha+$\alpha~threshold has significant overlaps with the THSR wave functions for large σ values. The calculated isoscalar monopole (E_0) transition from the ground state to this state shows strong enhancement, which could be observed as an experimental signature of a well developed α gas-like state.

Acknowledgments

The authors would like to thank C. Wheldon and P. Schuck for important suggestions. Numerical computation in this work was carried out at the Yukawa Institute Computer Facility using the new SR16000 system. This work was done in the Yukawa International Project for Quark-Hadron Sciences (YIPQS).

TABLE I: The energies of the eleven lowest 0^+ states of 24Mg measured from the 16O+α+α threshold (MeV) and squared isoscalar monopole (E0) transition strength from the ground state (fm4).

energy (MeV)	squared monopole strength (fm4)
0.658	
0.140	73.62
-1.393	0.503
-0.650	0.118
-4.267	187.5
-6.157	1.684
-7.344	8.709
-7.580	29.76
-8.807	0.009
-16.24	0

TABLE II: The energies of the eleven lowest 0^+ states of 24Mg measured from the 16O+α+α threshold (MeV) and squared overlap with the THSR wave functions for the two α clusters around 16O ($\sigma = 3, 4, 5$ and 6 fm).

energy (MeV)	$\sigma = 3$ fm	$\sigma = 4$ fm	$\sigma = 5$ fm	$\sigma = 6$ fm
-16.24	0.234	0.114	0.094	0.046
-8.807	0.000	0.000	0.000	0.000
-7.580	0.113	0.070	0.058	0.025
-7.344	0.023	0.014	0.012	0.005
-6.157	0.007	0.006	0.005	0.003
-5.739	0.003	0.002	0.002	0.001
-4.267	0.429	0.426	0.392	0.263
-1.393	0.000	0.000	0.000	0.000
-0.650	0.000	0.000	0.000	0.000
0.140	0.038	0.092	0.083	0.087
0.658	0.016	0.047	0.046	0.005

[1] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).
[2] P. Schuck, Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, and T. Yamada, Nucl. Phys. A738, 94 (2004).
[3] Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. C 67, 051306(R) (2003).
[4] Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Mod. Phys. Lett. A 21, 2331 (2006).
[5] Y. Funaki et al., Phys. Rev. C 80, 064326 (2009).
[6] H. Matsumura and Y. Suzuki, Nucl. Phys. A739, 238 (2004).
[7] T. Yamada and P. Schuck, Phys. Rev. C 69, 024309 (2004).
[8] C. Kurokawa and K. Katō, Phys. Rev. C 71, 021301(R) (2005).
[9] T. Wakasa et al., Phys. Lett. B 653, 173 (2007).
[14] T. Kawabata et al., Phys. Lett. B 646, 6 (2007).
[15] Y. Sasamoto et al., Mod. Phys. Lett. A 21, 2393 (2006).
[16] T. Yoshida, N. Itagaki and T. Otsuka, Phys. Rev. C 79, 034308 (2009).
[17] T. Yoshida, N. Itagaki, and K. Katō, Phys. Rev. C 83, 024301 (2011).
[18] E. Uegaki et al., Prog. Theor. Phys. 62, 1621 (1979).
[19] H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977).
[20] T. Yamada et al., Prog. Theor. Phys. 120, 6 (2008).
[21] B. F. Bayman and A. Bohr, Nucl. Phys. 9, 596 (1959).
[22] A.B. Volkov, Nucl. Phys. 74, 33 (1965).