Running head: *Euonymus europaeus* lectin represents a novel protein family

Corresponding author:

Els J.M. Van Damme,

Department of Molecular Biotechnology,

Lab. Biochemistry and Glycobiology,

Ghent University,

Coupure links 653, B-9000 Gent, Belgium

E-mail: ElsJM.VanDamme@UGent.be;

Fax +32 92646219;

Tel. +32 92646086

Research area: Biochemical Processes and Macromolecular Structures
THE ‘OLD’ *EUONYMUS EUROPAEUS* AGGLUTININ REPRESENTS A NOVEL FAMILY OF UBIQUITOUS PLANT PROTEINS

Elke Fouquaert¹, Willy J. Peumans¹, David F. Smith², Paul Proost³, Savvas N. Savvides⁴ and Els J.M. Van Damme¹

¹Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

²Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA

³Rega institute, Laboratory of Molecular Immunology, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium

⁴Unit for Structural Biology, L-ProBE, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
Footnotes

The financial support of Ghent University and the Fund for Scientific Research-Flanders (FWO grants G.0201.04 and G.0022.08) is gratefully acknowledged. The authors would like to acknowledge The Consortium for Functional Glycomics funded by the NIGMS GM62116 for the glycan array analysis.

Corresponding author: ElsJM.VanDamme@UGent.be; Fax : +32 92646219

Key words: lectin, *Euonymus europaeus*, agglutinin, OSR40 domain, spindle tree, carbohydrate binding
Abstract

Molecular cloning of the ‘old’ but still unclassified *Euonymus europaeus* agglutinin (EEA) demonstrated that the lectin is a homodimeric protein composed of 152 residue subunits. Analysis of the deduced sequence indicated that EEA is synthesized without a signal peptide and undergoes no post-translational processing apart from the removal of a 6-residue N-terminal peptide. Glycan array screening confirmed the previously reported high reactivity of EEA towards blood group B oligosaccharides, but also revealed binding to high mannose N-glycans, providing firm evidence for the occurrence of a plant carbohydrate-binding domain that can interact with structurally different glycans.

BLAST searches indicated that EEA shares no detectable sequence similarity with any other lectin but is closely related evolutionarily to a domain that was first identified in some abscisic acid and salt stress-responsive rice proteins, and according to the available sequence data might be ubiquitous in Spermatophyta. Hence, EEA can be considered the prototype of a novel family of presumably cytoplasmic/nuclear proteins that are apparently ubiquitous in plants. Taking into account that some of these proteins are definitely stress-related, the present identification of the EEA lectin domain might be a first step in the recognition of the involvement and importance of protein-glycoconjugate interactions in some essential cellular processes in Embryophyta.
INTRODUCTION

Plant lectins have been studied for more than a century. Nevertheless the inventory of all carbohydrate-binding domains occurring in plant cells is still incomplete. Until a few years ago, virtually all known plant lectins could be classified into seven families of structurally and evolutionarily related proteins (Van Damme et al., 1998). However, the identification of three novel sugar-binding domains/proteins during the last two years (Kaku et al., 2006; Peumans et al., 2007; Van Damme et al., 2007) leaves little doubt that more carbohydrate-binding domains remain to be discovered in plants. Two major problems hamper the discovery of the remaining sugar-binding motifs in plants. First, unless homologous lectins have been identified in other organisms no relevant information is provided by genome/proteome analyses. Second, evidence is accumulating that the expression level of lectins with a specific endogenous role is so low that they escape detection by the currently available activity assays (Van Damme et al., 2004a,b).

Though at present virtually all abundant plant lectins can be classified into well-defined protein families there are still a few exceptions for which sufficient sequence information is not available. One of these ‘orphan’ lectins is the Euonymus europaeus (spindle tree) agglutinin (EEA). As early as 1954 Schmidt et al. (1954) reported that the fleshy arils surrounding the seeds of the spindle tree contain a lectin with a clear preference for B-type erythrocytes within the human ABO-system. The lectin was isolated for the first time in 1975 by conventional protein purification techniques (Pacak and Kocourek, 1975) and later by affinity chromatography on immobilized polyleucyl hog A+H blood group substance (Petryniak et al., 1977). Though the data shown in both papers indicated that the lectin consisted predominantly of partly disulfide-linked subunits of approximately 17 kDa the molecular structure of the native agglutinin remained unclear. According to Pacak and Kocourek (1975) the lectin is a mixture of isoforms that have a similar molecular weight (Mr) (varying between 119 and 127 kDa) but differ in carbohydrate content (1.9% - 4.7%). Petryniak et al. (1977) also distinguished multiple molecular forms but reported a higher Mr (166 kDa) and higher carbohydrate content (approximately 10%) for the native lectin.
Later studies of both the *E. europaeus* lectin (Petryniak and Goldstein, 1987) and a lectin from the closely related species *E. sieboldiana* (Yamamoto and Sakai, 1981) yielded no additional information about the molecular structure of the native agglutinins. In contrast to the molecular structure, fairly detailed information was reported about the sugar-binding specificity of the *E. europaeus* lectin, which was found to be directed against the blood group B substance Galα1-3(Fucα1-2)Galβ1-4GlcNAc (Petryniak *et al.*, 1977; Petryniak and Goldstein, 1987).

This report describes a detailed reinvestigation of the *E. europaeus* agglutinin (EEA) using a combination of biochemical, molecular and cellular-biological approaches. EEA represents a novel lectin family that shares no significant sequence similarity with any other known lectin family. Glycan array screening experiments confirmed that EEA recognizes the blood group B antigen, but also demonstrated that the lectin interacts with high mannose N-glycans. Interestingly, EEA shares high sequence identity with some previously identified salt stress/ABA responsive proteins from rice (*Oryza sativa*) (Moons *et al.*, 1995; 1997) which are apparently expressed in all terrestrial plants but in no other organisms.

RESULTS AND DISCUSSION

Purification and biochemical characterization of EEA

Since EEA purification using a classical protocol for plant lectin isolation was hampered by the formation of insoluble complexes with endogenous glycoconjugates the crude extract was first fractionated by ion exchange chromatography and gel filtration under conditions whereby the carbohydrate-binding activity of EEA was reversibly inhibited. The resulting protein fraction was fully soluble in an aqueous buffer at neutral pH, and could readily be chromatographed on a column of immobilized ovomucoid to yield a pure water-soluble lectin preparation.

SDS-PAGE of the purified lectin in the presence of β-mercaptoethanol yielded a single polypeptide band of 17 kDa (Fig. 1). The lectin did not contain any covalently bound sugar.
Mass spectrometry of the lectin yielded a single peak with a molecular mass of 16,907 ±2 Da. Edman degradation of the electroblotted 17 kDa polypeptide yielded a single sequence (ATGPTYRVYXRAAPNYNMTV, Suppl. Fig. S1).

Since gel filtration experiments yielded no conclusive results the molecular mass of native EEA was estimated by dynamic light scattering. Dynamic light scattering of the sample revealed that the lectin was largely monodisperse. The scattering peak corresponded to particles having an average hydrodynamic diameter of 5.6 nm consistent with globular protein assemblies of 37 kDa. Given a molecular weight of 16.9 kDa for the monomer, the dynamic light scattering data indicate that native EEA occurs as a dimer.

Though our data confirm the size of the EEA subunits reported before, our lectin preparation did not contain any covalently bound sugars. Moreover, as is demonstrated below EEA is synthesized on free ribosomes and hence cannot be N-glycosylated. Therefore the relatively high carbohydrate content (2-10%) of the EEA preparations described in previous papers can hardly be ascribed to the lectin itself. Taking into account that EEA tends to form aggregates with endogenous glycoconjugates present in crude extracts, it is likely that the previously purified preparations consisted at least partly of lectin-glycoprotein complexes. The presence of such complexes not only accounts for the carbohydrate found in the lectin preparations described by Pacak and Kocourek (1975) and Petryniak et al. (1977) but also explains why these preparations sedimented with an apparent Mr of 119-127 kDa and 166 kDa, respectively, upon analytical centrifugation.

Molecular cloning of EEA

Screening of a cDNA library prepared from mRNA isolated from developing arilli allowed isolating a cDNA clone with a deduced sequence that perfectly matched the N-terminal sequence of the EEA polypeptide. The cysteine, which is degraded during Edman degradation if it is not alkylated prior to the analysis, corresponded to the blank in the experimentally determined sequence. The cDNA clone comprised an open reading frame of 474 nucleotides corresponding to a EEA precursor sequence *(LECEEA)* of 158 amino acid
residues that contains 6 extra residues preceding the N-terminus of the mature polypeptide (Suppl. Fig. S1). Calculation of the Mr of the polypeptide spanning residues A7 – G158 yielded a value of 16,903.8 Da, which is in good agreement with the value obtained by mass spectrometry of the lectin (16,907 Da). This nearly perfect match in Mr and the occurrence of a 20 amino acid sequence identical to the N-terminus of the mature lectin polypeptide at the N-terminus of the deduced amino acid sequence of the cDNA shows that the isolated cDNA clone encodes EEA.

No putative signal peptide could be identified in the deduced sequence indicating that the protein is synthesized on free ribosomes. After synthesis, the first 6 residues are apparently removed from the primary translation product. In silico analyses predict a cytoplasmic location of the *Euonymus* lectin.

To check for the presence of intron(s), a genomic sequence corresponding to the EEA gene was amplified and sequenced. Alignment of the genomic and cDNA sequence demonstrated that the lectin gene contains three introns (Suppl. Fig. S1).

EEA recognizes two classes of structurally different glycans

A reinvestigation of the carbohydrate binding specificity of EEA using glycan array screening experiments confirmed its interaction with blood group B substance as previously described (Petryniak *et al.*, 1977; Petryniak and Goldstein,1987, Teneberg *et al.*, 2003), but at the same time also revealed a previously unobserved interaction with N-linked, high mannose type glycans. The binding of fluorescent-labeled EEA to glycans on the microarray is shown in Supplementary Fig. S2 where average relative fluorescence units (RFU) bound by each glycan are plotted versus glycan numbers that correspond to structures identified in Supplementary Table S1. The unusual carbohydrate-binding specificity is summarized in Table 1 where the glycan array data at five different concentrations of the labeled lectin are selected for the highest binding to blood group B related structures and N-linked, high mannose type structures. The glycans are ranked in approximate order of apparent affinity. The data indicate that EEA specifically binds to the
blood group B oligosaccharides with highest affinity for B-type II structures, with lower affinity for blood group H and structures with terminal Galα1,3. EEA interacts with glycan 79, the only blood group A-type I structure on the array. No binding was observed to A-type II structures (Glycans 80-83). EEA also has specificity for N-linked, high mannose type glycans (192-193, 197-198) as shown in Table 1 at concentrations of 10-200 µg/ml. Since other linear oligomannosides on the array showed no binding, the binding of EEA towards N-linked glycans apparently requires the core pentasaccharide (Manα1,3(Manα1,6)Manβ1,4GlcNAcβ1,4GlcNAc). To assess the relative affinity of EEA for blood group B oligosaccharides and high mannose type N-glycans the binding assays were carried out at decreasing lectin concentrations to reveal the higher affinity structures. At 50 µg/ml and 10 µg/ml EEA the blood group B structures demonstrated highest affinity for EEA while, the fluorescence values for the high mannose N-glycans were roughly 10-fold lower (Table 1). These data indicate that EEA has a much higher affinity for blood group B oligosaccharides than for high mannose N-glycans.

Although the results of the glycan array screening experiments are only semi-quantitative, they indicate that EEA binds two structurally unrelated glycans. To determine if the lectin possibly possesses two independent binding sites with different specificities, the glycan array screening experiment was repeated in the presence of inhibitory oligosaccharides. The inhibition data are graphically presented in Supplemental Fig. S3 and summarized in Table 2. For this analysis a high concentration of lectin (200 µg/ml) was used so that strong binding to both the blood group B related structures and the N-linked high mannose type structures were tested simultaneously. Addition of B-active oligosaccharide (at a concentration of 3 mg/ml) completely abolished the interaction of EEA with all B-active glycans on the array (95,97,98,99,290) but had little effect on the binding to the mannose containing oligosaccharides (Table 2, Suppl. Fig. S3). However, when the assay was done in the presence of 3 mg/ml RNase B glycopeptides (a mixture of glycopeptides containing the N-linked high mannose type structures) binding of EEA to all glycans on the array was inhibited, indicating that the RNase B glycopeptides can also displace the B-active glycans from the carbohydrate binding site of EEA. Based on these data no final conclusion can be drawn with respect to the possible presence of two distinct binding sites. The results of the
inhibition experiments with the high affinity ligand (B-active oligosaccharide), however, strongly argue for the occurrence of two different binding sites whereas these obtained with the lower affinity ligand (the mannose containing oligosaccharides) can not be reconciled with the same concept. It is also difficult to explain why the lower affinity ligand displaces the high affinity ligand (and not the other way around). It can be expected that only structural data can give a definitive answer to the question of the possible presence of two distinct sites in the EEA domain.

Nonetheless, the results of the glycan array screening have two important consequences. First, they demonstrate that the resolving power of this novel technique allows distinguishing a previously undetectable weak interaction with high mannose N-glycans against a background of strong interactions with blood group B substances. Secondly, the finding that EEA recognizes high mannose N-glycans is highly relevant because it implies (i) that the previously observed biological activities of the lectin (depending on the concentration used) are not necessarily due to binding of the lectin to Galα1-3(Fucα1-2)Galβ1-4GlcNAc or related glycans and (ii) that the distribution pattern obtained upon staining tissue sections with labeled EEA cannot simply be linked to the presence of the same sugars (Teneberg et al., 2003).

EEA shares high sequence similarity with a domain found in some abscisic acid and salt stress-responsive rice proteins

Even though EEA cannot be classified into any of the currently known lectin families, it definitely shares a high sequence similarity with several other (hypothetical) plant proteins. BLASTp searches with the deduced complete sequence of **LECEEA** revealed that the rice protein osr40g3 scored best (Expect value = 1e-28) sharing 46% and 62% sequence identity and similarity, respectively, with EEA within a 151 residue overlap (Fig. 2A). Osr40g3 was identified as an abscisic acid and salt stress-responsive protein (Moons et al., 1997). The protein is encoded by the rice gene Os07g0684000 (NCBI annotation)/Os07g48500 (TIGR annotation). Four additional genes were identified in the rice genome three of which encode proteins comprising two in tandem arrayed domains equivalent to Osr40g3 (Fig. 2B).
Interestingly, these rice proteins are annotated as a ‘Ricin B-related lectin domain containing protein’. This annotation is based on the presence in their sequence of two ‘QXW’ repeats, which are considered typical motifs of the ricin-B domain. However, it is questionable whether osr40g3 can be classified in the ricin-B family because according to BLASTp searches it shares no significant overall sequence similarity with any protein comprising a ricin-B domain. Moreover, alignment of the amino acid sequences of osr40g3 and e.g. the B-chain of the *Ricinus communis* agglutinin (AAA33869.1) yields a very low sequence identity/similarity (Suppl. Fig. S4).

Besides the 5 members of the rice OSR40 family, 20 other plant proteins were retrieved by the BLASTp searches (E-value<0.1; Suppl. Table S2). One of these proteins is a wheat ortholog of Osr40g3. Another is a putative Osr40g3 homolog from *Arabidopsis thaliana*. This Arabidopsis protein (At2g39050) is annotated as a ‘Hydroxyproline-rich glycoprotein family protein, contains QXW lectin repeat domain, Pfam:PF00652 (=Ricin-type beta-trefoil lectin domain)’. In this case also the annotation is primarily based on the presence of two ‘QXW’ repeats. Orthologs of At2g39050 were also identified in *Populus trichocarpa*, *Vitis vinifera*, the gymnosperm *Picea sitchensis* and the moss *Physcomitrella patens*. Proteins with two domains (similar to OSR40c1 and OSR40g2 from rice) were found in *Picea sitchensis* and *Physcomitrella patens*.

Though all these proteins share a high sequence similarity with EEA, there is an important difference concerning the overall structure of the proteins. Apart from the two proteins expressed in the vascular tissues of *Plantago major* (CAH59433.1 and CAH59435.1, which are annotated as lectin-like protein 1 and lectin-like protein 2, respectively) all other proteins contain an N-terminal extension varying in length from approximately 10 up to >150 residues. The presence of highly variable extra N-terminal sequences combined with the occurrence of proteins with two tandemly arrayed lectin domains makes it difficult to make a phylogenetic analysis using the complete sequences of the proteins. To circumvent this problem, the alignment was confined to the sequences spanning the (putative) lectin domains only (Suppl. Fig. S5). In addition, proteins with a double lectin domain were split up in an N-terminal and a C-terminal domain. A phylogenetic analysis indicates that EEA (and also the presumed lectins from *Plantago major*) do not cluster with the sequences
from the angiosperms but are placed in two separate branches outside the Spermatophyta group (Fig. 3). Due to the limited number of sequences no definitive conclusions can be drawn with respect to the aberrant position of EEA in the dendrogram. However, it seems likely that the *Euonymus* agglutinin, which for the time being is the only identified lectin of this protein family, does not belong to the main evolutionary line but represents a small side group. A similar conclusion was drawn for e.g. the galactose-specific jacalin-related lectins, which are confined to a small taxonomic group within the family Moraceae and are believed to represent a small side group of a ubiquitous family of mannose-specific plant lectins (Van Damme et al., 2004a).

Proteins comprising domain(s) homologous to EEA are expressed in all Embryophyta for which adequate genomic coverage is available

None of the hits of the BLASTp search with the EEA sequence corresponds to a previously isolated and characterized (plant) lectin. In addition, the lists comprise exclusively plant sequences. PSI-BLAST searches yielded no additional positive hits. Accordingly, one can reasonably conclude that EEA cannot be classified into any of the previously identified plant lectin families and hence represents a novel lectin family that, based on the currently available information, seems to be confined to plants.

To check whether the EEA protein family is more widespread than can be inferred from the BLASTp and PSI-BLAST searches, the publicly accessible transcriptome databases were screened for cDNA/expressed sequence tags encoding proteins with EEA domain(s). tBLASTn searches yielded a very high number (several thousands) of hits with an Expect value <1e-20 (Suppl. Table S3). A quick overview of the 20 best matches already illustrates that homologs of EEA are expressed in a variety of species covering both monocots (*Oryza sativa, Panicum virgatum, Saccharum officinarum, Sorghum bicolor*) and dicots (*Glycine max, Gossypium hirsutum, Ipomoea nil, Poncirus trifoliata, Vitis vinifera*). More detailed analyses revealed that proteins with one or two domains equivalent to EEA are expressed in all Embryophyta for which a reasonable number of sequences have been deposited (including liverworts, ferns, lycopods, cycads, gymnosperms and angiosperms). All these proteins are like EEA synthesized without a signal peptide and accordingly destined to
reside in the cytoplasmic/nuclear compartment of the plant cell. Preliminary experiments aiming at the localization of a fusion protein of EEA coupled to green fluorescent protein have confirmed the nucleocytoplasmic location (unpublished results).

Similar BLAST searches in non-plant protein, genome and transcriptome databases did not yield a single positive hit indicating that the EEA domain is absent from other Eukaryota (e.g. animals and fungi) as well as from Prokaryota. Accordingly, one can reasonably conclude that the EEA domain is confined to plants.

CONCLUSIONS

A reinvestigation of the *E. europaeus* agglutinin indicated that the previously reported molecular structure has to be revised. In addition, glycan array screening revealed that EEA interacts with two structurally unrelated glycans namely the blood group B oligosaccharide and high mannose N-glycans. Molecular cloning demonstrated that EEA cannot be classified into any of the currently known (plant) lectin families but shares a high sequence similarity with a domain found in some previously identified abscisic acid and salt stress-responsive rice proteins. Although no similar lectins have been isolated yet, searches in the databases leave no doubt that all Spermatophyta express one or more proteins comprising either a single or two in tandem domains equivalent to the EEA subunit. We therefore propose that EEA represents a novel family of proteins that are apparently ubiquitous in Spermatophyta. Moreover, since no homologous genes/proteins are present in other eukaryotes or in prokaryotes the EEA lectin family can be considered plant-specific. At present, the physiological role of the EEA family remains unclear. It has been proposed that the rice OSR40 protein family plays a role in the adaptive response of roots to a hyper-osmotic environment and most probably has structural functions (Moons *et al.*, 1995; 1997). The latter assumption was based primarily on the presence at the N-terminus of some OSR40 proteins of a histidine-rich sequence that was believed to mediate protein-protein-interactions. Evidently, the finding that the OSR40 proteins contain one or two EEA domains sheds new light on their function in the plant cells because they might be
bifunctional proteins possessing both a protein binding and a carbohydrate binding domain. This is of paramount importance because OSR40 proteins are at least in principle capable of cross-linking proteins and glycoconjugates. Taking into consideration that OSR40 proteins are presumably located in the cytoplasmic/nuclear compartment and, in addition, are apparently involved in responses to stress, the identification of EEA eventually leads to the conclusion that lectin-mediated protein-glycoconjugate-interactions are essential for some important cellular processes in Embryophyta. Moreover, the fact that the EEA domain is apparently confined to plants strongly suggests that there are fundamental differences between plants and other eukaryotes at the level of ‘intracellular glycobiology’.
MATERIALS AND METHODS

Purification of the Euonymus europaeus agglutinin (EEA)

EEA was purified from arillus tissue using a combination of conventional protein purification techniques and affinity chromatography. Seeds were collected from local spindle trees (*Euonymus europaeus* L.) at the end of October and air-dried. Arilli were removed by gently crushing the seeds, extracted for 24 h in ethanol and air-dried. Twenty five gram of dried arillus tissue was powdered with mortar and pestle and extracted with 500 ml of 20 mM unbuffered 1,3-diaminopropane. The homogenate was centrifuged (9000 g for 15 min) and the supernatant filtered through filter paper (Whatman 3MM). The clarified filtrate was diluted with an equal volume of distilled water and loaded on a column of Q Fast Flow (GE Healthcare, Uppsala, Sweden; 2.6 cm x 5 cm; approximately 25 ml bed volume) equilibrated with 20 mM unbuffered 1,3 diaminopropane. The column was washed with 20 mM unbuffered 1,3 diaminopropane until the A280 fell below 0.01 and the bound proteins eluted with a gradient (500 ml) of increasing NaCl (0-1 M) in the same buffer. Estimation of the protein and lectin content of the fractions (5 ml each) by measuring the A280 and agglutination activity, respectively, indicated that EEA eluted in the main peak. The peak fractions were pooled, diluted with 10 volumes of 20 mM unbuffered 1,3 diaminopropane and applied onto a small column (1.6 cm x 5 cm; approximately 10 ml bed volume) of Q Fast Flow. Desorption with 1 M NaCl yielded 5 ml of a concentrated solution of partially purified EEA that was directly applied onto a column (2.6 cm x 70 cm; approximately 350 ml bed volume) of Sephacryl 100 equilibrated with 0.2 M NaCl in 20 mM unbuffered 1,3 diaminopropane for subsequent gel filtration. Fractions were collected and assayed for protein and lectin content. Most of the protein eluted in a single symmetrical peak that contained virtually all agglutinating activity and according to SDS-PAGE consisted almost exclusively of a single 17 kDa polypeptide. Peak fractions (40 ml in total) were pooled and dialyzed against PBS. Unlike in previously described purification protocols (Pacak and Kocourek, 1975; Petryniak *et al.*, 1977), no precipitation occurred during dialysis, indicating that the ion exchange and gel filtration chromatography steps.
effectively removed some interfering compounds from the crude extract. Final purification of the lectin was achieved by affinity chromatography. The lectin fraction was mixed with an equal volume of 2 M ammonium sulfate and applied on a column of ovomucoid-Sepharose 4B (2.6 cm x 10 cm; 50 ml bed volume) equilibrated with 1 M ammonium sulfate. After loading, the column was washed with 1 M ammonium sulfate until the A280 fell below 0.01 and the bound lectin desorbed with 20 mM Tris-HCl (pH 10). The resulting affinity-purified lectin was dialysed against an appropriate buffer and used immediately or stored at -20°C until use. Following this procedure approximately 50 mg pure EEA was obtained from 100 g of dry arillus material with an overall recovery of roughly 75%.

Analytical methods

The purified lectin was analyzed by SDS-PAGE in a 4-12 % (w/v) Bis Tris acrylamide gel (Invitrogen, Carlsbad, CA) and visualized by staining with Coomassie brilliant blue. Glycoproteins were distinguished after SDS-PAGE and electroblotting using periodic acid Schiff’s staining following the instructions of Sigma-Aldrich. Alternatively, total neutral sugar was determined by the phenol/H₂SO₄ method with D-glucose as standard (Dubois et al., 1956).

For N-terminal amino acid sequencing, the EEA polypeptides were separated by SDS-PAGE and electroblotted on a polyvinylidene difluoride membrane. Polypeptides were excised from the blots and sequenced on a model Procise 491cLC protein sequencer without alkylation of cysteines (Applied Biosystems, Foster City CA, USA).

Dynamic Light Scattering (DLS) measurements were carried out using a Zetasizer Nano S (Malvern Instruments, UK) equipped with a 633nm He-Ne laser and a temperature-controlled measuring chamber. Purified EEA at 0.45 mg/mL in distilled water was clarified by centrifugation for two hours at 16000 g and the supernatant was then subjected to dynamic light scattering measurements at 20 °C.
Glycan array screening

The microarrays are printed as described before (Blixt et al., 2004) and version 3.0 (see https://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml) was used for the analyses reported here. Lyophilized lectin preparations are dissolved in PBS at 1 mg/ml and labeled with tetrafluorophenyl (TFP)-Alexa Fluor 488 using the Invitrogen protein labeling kit following the manufacturers instructions. Assuming an extinction coefficient of 1.85 for a 1.0 mg/ml solution, the molar ratios of Alexa488 to protein were 0.3 or 0.7 in two separate labelings.

The labeled lectin was diluted to 0.2 mg/ml in Tris buffered saline (20 mM Tris, 150 mM NaCl, 2 mM CaCl₂, 2 mM MgCl₂, pH 7.4) containing 1% BSA and 0.05% Tween 20. An aliquot (70 µl) of the labeled lectin solution with or without oligosaccharide or glycopeptide inhibitors is applied to separate microarray slides and incubated under a cover slip for 60 min in a dark, humidified chamber at room temperature. After the incubation, the cover slips are gently removed in a solution of Tris-buffered saline containing 0.05% Tween 20 and washed by gently dipping the slides 4 times in successive washes of Tris-buffered saline containing 0.05% Tween 20, Tris-buffered saline, and deionized water. After the last wash the slides are spun in a slide centrifuge for approximately 15 sec to dry and immediately scanned in a PerkinElmer ProScanArray MicroArray Scanner using an excitation wavelength of 488 nm and Imagen Gene software (BioDiscovery, Inc., El Segundo, CA) to quantify fluorescence. The data are reported as average RFU of 4-6 replicates (after removal of the highest and lowest values) for each glycan represented on the array.

Inhibition of EEA binding to the array at 200 µg/ml was carried out using a 3 mg/ml human blood group B active tetrasaccharide (Galα1-3[Fucα1-2]Galβ1-4GlcNAcβ-) obtained from the Glycan Array Synthesis Core D of the Consortium for Functional Glycomics or 3 mg/ml of a mixture of glycopeptides from bovine ribonuclease B (Sigma, St Louis, USA) containing N-linked, high mannose oligosaccharides (Man₅₋₈GlcNAc₂) obtained by pronase (Calbiochem, San Diego, USA) digestion of RNase B and affinity purification of the glycopeptides on a column of Con A as previously described (Lang et al., 1984).
RNA isolation and construction of a cDNA library

Total RNA was prepared from the arils of *Euonymus europaeus* as described by Van Damme and Peumans (1993). The plant material was ground to a fine powder in liquid nitrogen using a pre-chilled mortar and pestle, and extracted in 20 ml/g fresh weight cold homogenization buffer (100 mM Tris-HCl pH 9.0, 5 mM EDTA, 100 mM NaCl, 1% β-mercaptoethanol). After centrifugation, SDS was added to a final concentration of 0.5%. RNA was extracted with phenol (preheated to 60°C): chloroform: isoamylalcohol (25:24:1). The phenol/chloroform extraction was repeated twice. Nucleic acids in the supernatant were precipitated overnight at –20°C by adding 0.3 M sodium acetate and 2.5 volumes cold ethanol. RNA was collected by centrifugation and washed with ethanol. After centrifugation the pellet was dried and dissolved in a small volume of TE buffer (10 mM Tris-HCl containing 1 mM EDTA, pH 8.0). The redissolved RNA was precipitated overnight at –20°C at a final concentration of 2 M lithium chloride, collected by centrifugation, washed with ethanol and dissolved in water. Poly (A)-enriched RNA was obtained using the Oligotex mRNA Maxi kit (Qiagen, Venlo, The Netherlands). The quality of the RNA was checked by spectrophotometric analysis. A cDNA library was constructed from 2 µg poly (A)-rich RNA by using the cDNA Synthesis System from Roche (Roche Diagnostics, Mannheim, Germany), following the instruction manual. cDNA fragments were inserted into the pJET1/ blunt cloning vector with the use of the GeneJET PCR Cloning kit (MBI Fermentas, St. Leon-Rot, Germany) and the ligation mixture was transformed into *E. coli* Top 10 F’ competent cells using the heat shock protocol.

Screening of cDNA library

Clones were screened by colony hybridisation using a ^32^P-end labeled synthetic oligonucleotide probe derived from the N-terminal amino acid sequence of the mature EEA polypeptide. In subsequent screenings a cDNA clone encoding the EEA was used as a
probe, as described previously (Van Damme et al., 1996). The radioactive signal was visualized using the FujiFilm Fluorescent Image Analyzer FLA-5100 (FUJI, Dusseldorf, Germany).

Colonies that yielded positive signals were selected and rescreened at low density under the same conditions. Plasmids were isolated from purified single colonies on a miniprep scale using the QIAprep Spin MiniPrep kit (Qiagen, Venlo, The Netherlands) and sequenced at the VIB Genetic Service Facility (Antwerp, Belgium).

PCR amplification of genomic DNA fragment

Genomic DNA was isolated from 300 mg of *Euonymus europeaus* seeds using the Fast DNA Spin kit in a homogenizer (FastPrep Instrument, MP Biomedicals and Qbiogene, Irvine, CA, USA) following the manufacturer’s recommendations. The genomic sequence encoding the *Euonymus europeaus* agglutinin was amplified by PCR. The forward primer was complementary to the 5’ end (5’-ATGGCTTCAAACAATCATCGAA- 3’) of the coding sequence of the cDNA clone encoding EEA and the reverse primer complementary to the 3’ untranslated sequence (5’-TTC CAA AGC TAT AAG GAA AGG - 3’). PCR was performed in a 50 µl reaction volume containing 200 ng genomic DNA, 10x DNA polymerase buffer, 1.5 mM MgCl₂, 0.4 mM dNTPs, 0.2 µM of each primer and 1.25 U Taq polymerase (Invitrogen). The PCR program consisted of 25 repetitive cycles with a denaturation step at 94°C for 15 s, an annealing step at 50°C for 30 s and an elongation step at 72°C for 1 min. The PCR cycles were preceded by an extra denaturation step of 2 min at 94°C and ended with an extra elongation step of 5 min at 72°C.

PCR fragments were cloned into the pCR®2.1-TOPO® vector using the TOPO TA Cloning® kit from Invitrogen and the ligation mixture transformed into *E. coli* Top 10 F' heat shock competent cells. Transformed clones were selected on LB agar plates containing ampicillin (100 µg/ml) and PCR screening was used to check for positive clones. Plasmid DNA of a positive colony was purified and its sequence analysed.
Retrieval of sequences

Sequences encoding proteins with a domain homologous to EEA were retrieved (in the NCBI database) by BLASTp and PSI-BLAST searches using the complete deduced amino acid sequences of EEA as a query.

Sequence alignment and preliminary phylogenetic analysis

The amino acid sequences of EEA and homologous domains from other plant proteins were aligned by CLUSTAL W (1.81) Multiple Sequence Alignments (http://align.genome.jp/). A dendrogram (N-J tree with branch length) was generated by the same program for a phylogenetic analysis.

Accession numbers for the sequence data: EF990655-EF990656
SUPPLEMENTAL MATERIAL

Tables S1-S3:

Table S1: Glycan array binding of EEA at a concentration of 200µg/ml: list of glycan structures ranked from highest relative fluorescence units (RFU) to lowest.

Table S2: List of best hits (E<0.01) of a BLASTp search using the deduced sequence of LECEEA as a query.

Table S3: List of top 50 hits of a tBLASTn search using the deduced sequence of LECEEA as a query (EST database).

Figures S1-S5:

Figure S1: Genomic sequence of EEA. Intron sequences are shown in italic, the start- and stop codon are underlined.

Figure S2: Determination of the specificity of EEA by screening on the printed array v3 of the Consortium for Functional Glycomics. Error bars represent mean ± standard deviation. The entire glycan array version is available at https://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml

Figure S3: Summary of EEA inhibition by B-active oligosaccharides and RNase B glycopeptides.

Figure S4: Alignment of the amino acid sequences of osr40g3 (CAA70175.1, Os07g0684000) and the individual ricin-B domains of Ricinus communis agglutinin (AAA33869.1).

Figure S5: Sequence alignment of EEA domains retrieved from NCBI database.
LITERATURE CITED

Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101: 17033-17038

Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28: 350-356

Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103: 11086-11091

Lang L, Reitman M, Tang J, Roberta RM, Kornfeld S (1984) Lysosomal enzyme phosphorylation. Recognition of a protein-dependent determinant allows specific phosphorylation of oligosaccharides present on lysosomal enzymes. J Biol Chem 259: 14663-14671

Moons A, Bauw G, Prinsen E, Van Montagu M, Van der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107:177-186

Moons A, Gielen J, Vandekerckhove J, Van der Straeten D, Gheysen G and Van Montagu M (1997) An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta 202: 443-454

Pacak F, Kocourek J (1975) Studies on Phytohemagglutinins. XXV. Isolation and characterization of hemagglutinins of the spindle tree seeds (Evonymus europaea L.) Biochim Biophys Acta 400: 374-386
Petryniak J, Goldstein IJ (1987) *Evonymus europaea* lectin. Methods Enzymol 138: 552-561

Petryniak J, Pereira ME, Kabat EA (1977) The lectin of *Euonymus europeus*: purification, characterization, and an immunochemical study of its combining site. Arch Biochem Biophys 178: 118-134

Peumans WJ, Fouquaert E, Jauneau A, Rougé P, Lannoo N, Hamada H, Alvarez R, Devreese B, Van Damme EJM (2007) The liverwort *Marchantia polymorpha* expresses orthologs of the fungal *Agaricus bisporus* agglutinin family. Plant Physiol 144: 637-647

Schmidt VG (1954) Die hämagglutination, im besonderen menschlicher B-Blutzellen durch Extrakte aus Samen von *Euonymus vulgaris* (Phaffen-Hütchen). Z Immunitätsforsch 11: 432-439

Teneberg S, Alsen B, Angstrom J, Winter HC, Goldstein IJ (2003) Studies on Galα3-binding proteins: comparison of the glycosphingolipid binding specificities of *Marasmius orades* lectin and *Euonymus europaeus* lectin. Glycobiology 13: 479-486

Van Damme EJM, Peumans WJ (1993) Cell-free synthesis of lectins. In H-J Gabius, S Gabius, eds, Lectins and Glycobiology. Springer-Verslag, Berlin, pp 458-468

Van Damme EJM, Barre A, Verhaert P, Rougé P, Peumans WJ (1996) Molecular cloning of the mitogenic mannose/maltose-specific rhizome lectin from Calystegia sepium. FEBS Lett 397: 352-356

Van Damme EJM, Peumans WJ, Barre A, Rougé P (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17: 575-692

Van Damme EJM, Barre A, Rougé P, Peumans WJ (2004a) Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9: 484-489
Van Damme EJM, Culerrier R, Barre A, Alvarez R, Rougé P, Peumans WJ (2007) A novel family of lectins evolutionarily related to class V chitinases. An example of neofunctionalization in legumes. Plant Physiol 144: 662-672

Van Damme EJM, Lannoo N, Fouquaert E, Peumans WJ (2004b) The identification of inducible cytoplasmic/nuclear carbohydrate-binding proteins urges to develop novel concepts about the role of plant lectins. Glycoconjugate J 20: 449-460

Yamamoto S, Sakai I (1981) Composition and immunochemical properties of glycoproteins with anti-B agglutinin activity isolated from Euonymus sieboldiana seeds. J Immunogenet 8: 271-279
FIGURE LEGENDS

Figure 1- SDS-PAGE of crude extract and purified *Euonymus europaeus* agglutinin.
Samples were loaded as follows: lane 1, crude extract of mature arilli; lane 2, reduced EEA.
Molecular mass reference proteins (lane R): PageRuler prestained protein ladder
(Fermentas), mixture of 10 recombinant proteins with apparent molecular weights of
approximately 10, 15, 25, 35, 40, 55, 70, 100, 130 and 170 kDa.

Figure 2 – A. Alignment of the amino acid sequences of *LECEEA* and osr40g3
(CAA70175.1). *, : and . denote identical, conserved or semi-conserved amino acid
residues, respectively. The amino acid sequence corresponding to the N-terminal sequence
of EEA is underlined. B. Schematic representation of the domain architecture of the *Oryza sativa* proteins with domain(s) homologous to EEA.

Figure 3 – Phylogenetic analysis of EEA domain sequences retrieved from NCBI database.
Table 1: Glycan array binding assay of different concentrations of the *Euonymus europaeus* agglutinin.

Glycan number	Glycan structure	Blood Group B Related Structures
99	Galβ1-3(Fucα1-2)Galβ–Sp8	49370 37555 22185 32195 177
290	Galβ1-3(Fucα1-2)Galβ–Sp18	45917 43578 46448 46764 244
97	Galβ1-3(Fucα1-2)Galβ1-4GlcNAc–Sp0	35329 38351 39913 41304 2234
95	Galβ1-3(Fucα1-2)Galβ1-3GlcNAcβ–Sp0	35176 33212 41881 42788 2036
98	Galβ1-3(Fucα1-2)Galβ1-4Glcβ–Sp0	47659 45717 54776 48208 1208
105	Galβ1-3Galβ1-4GlcNAcβ–Sp8	6872 9570 4375 1685 153
112	Galβ1-4GlcNAcβ–Sp8	3204 1518 961 409 99
103	Galβ1-3Galβ1-4(Fucα1-3)GlcNAcβ–Sp8	4514 2228 1278 387 49
70	Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ–Sp0	5641 5369 2950 1746 106
61	Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ–Sp10	24615 22118 13985 8012 61
63	Fucα1-2Galβ1-3GlcNAcβ–Sp0	21920 23138 15808 9243 178
69	Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAc–Sp0	19799 10747 6702 3689 85
64	Fucα1-2Galβ1-3GlcNAcβ–Sp8	7994 18933 11425 7305 53
62	Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ–Sp8	9804 32376 19942 9081 77
72	Fucα1-2Galβ1-4GlcNAcβ–Sp8	4881 3851 1483 626 145
270	Fucα1-2Galβ1-4[6OSO3]GlcNAc–Sp8	2543 2694 972 961 53
241	Galβ1-4GlcNAcβ1-2Manα1-3(Fucα1-3GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp20	23203 12628 3012 899 131
172	(GlcNAcβ1-4)β–Sp8	12800 3781 1755 798 59
201	Fucα1-3(Galβ1-4)GlcNAcβ1-2Manα1-3(Fucα1-3GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp20	11885 2456 1270 626 47
173	GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ–Sp8	7530 6594 1287 999 49
79	GalNAcα1-3(Fucα1-2)Galβ1-3GlcNAcβ–Sp0	7512 8659 6660 2681 138
87	GalNAcα1-4(Fucα1-2)Galβ1-4GlcNAcβ–Sp8	6044 2163 1209 596 111
171	(GlcNAcβ1-4)β–Sp8	6402 4909 946 740 46
52	Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp13	9560 2213 1134 805 20

N-Linked High Mannose Type Structures

Glycan number	Glycan structure	Blood Group B Related Structures
193	Manα1-2Manα1-6(Manα1-3)Manα1-6(Manα2Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp12	24511 3242 1785 751 33
192	Manα1-6(Manα1-2Manα1-3)Manα1-6(Manα2Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp12	36914 11766 5950 3345 145
197	Manα1-6(Manα1-3)Manα1-6(Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp12	40788 24583 5037 1995 88
310	Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp12	37819 32654 6034 4719 110
198	Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp12	50258 27893 11061 3030 154
50	Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp13	30930 46287 32315 10055 129

Copyright © 2008 American Society of Plant Biologists. All rights reserved.
Avg = average relative fluorescence units

The histogram of the binding of EEA at a concentration of 200µg/ml without addition of an inhibitor is shown in Suppl Fig. S2. The list of structures (Version 3.0 of the Glycan Array) ranked from highest RFU to lowest can be found in Suppl. Table S1.
Table 2: Glycan array binding assay of the *Euonymus europaeus* agglutinin in the presence and absence of the blood group B tetrasaccharide or a mixture of glycopeptides derived from RNase B.

Glycan number	Glycan name	Avg RFU	%CV	Avg. +B	%CV	MAN	%CV
99	Galα1-3(Fucα1-2)Galβ–Sp8	62332	1	155	69	1243	43
290	Galα1-3(Fucα1-2)Galβ–Sp18	54525	12	357	55	845	41
97	Galα1-3(Fucα1-2)Galβ1-4GlcNAc-Sp0	52093	14	1822	54	2615	55
95	Galα1-3(Fucα1-2)Galβ1-3GlcNAcβ–Sp0	37688	8	582	124	839	49
98	Galα1-3(Fucα1-2)Galβ1-4Glcβ–Sp0	37318	26	2252	37	1468	66
105	Galα1-3Galβ1-4GlcNAcβ–Sp8	15512	27	649	44	246	37
112	Galα1-4GlcNAcβ–Sp8	11351	6	341	96	1053	120
103	Galα1-3Galβ1-4(Fucα1-3)GlcNAcβ–Sp8	7077	16	518	47	689	65
70	Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ–Sp0	30494	11	1120	58	500	20
61	Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ–Sp10	27090	6	1090	61	1168	49
63	Fucα1-2Galβ1-3GlcNAcβ–Sp0	21403	21	357	82	1410	64
69	Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAc–Sp0	12647	2	1117	58	783	76
64	Fucα1-2Galβ1-3GlcNAcβ–Sp8	10659	8	131	118	1280	65
62	Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ–Sp8	9753	29	786	21	989	63
72	Fucα1-2Galβ1-4GlcNAcβ–Sp8	6132	12	5310	7	1265	43
241	Galβ1-4GlcNAcβ1-2Manα1-3(Fucα1-3(Galβ1-4)GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp20	62332	1	155	69	1243	43
172	(GlcNAcβ1-4)5–Sp8	54525	12	357	55	845	41
201	Fucα1-3(Galβ1-4)GlcNAcβ1-2Manα1-3(Fucα1-3(Galβ1-4)GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp20	52093	14	1822	54	2615	55
173	GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ–Sp8	37688	8	582	124	839	49
79	GalNAcα1-3(Fucα1-2)Galβ1-3GlcNAcβ–Sp0	37318	26	2252	37	1468	66
87	GalNAcα1-4(Fucα1-2)Galβ1-4GlcNAcβ–Sp8	11152	27	649	44	246	37
171	(GlcNAcβ1-4)6–Sp8	11351	6	341	96	1053	120
52	Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp13	7077	16	518	47	689	65

N-Linked High Mannose Type Structures

Glycan number	Glycan name	Avg RFU	%CV	Avg. +B	%CV	MAN	%CV
193	Manα1-2Manα1-6(Manα1-3)Manα1-6(Manα2Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp12	11861	15	15956	10	1888	46
192	Manα1-6(Manα1-2Manα1-3)Manα1-6(Manα2Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp12	25386	4	20390	20	1335	24
197	Manα1-6(Manα1-3)Manα1-6(Manα2Manα2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ–Sp12	29927	14	22023	13	1893	10
Time	m/z	RFU	Error	CV %			
------	-----	-----	-------	------			
310	Man\(\alpha_1-3\)Man\(\alpha_1-6\)Man\(\beta_1-4\)GlcNAc\(\beta_1-4\)GlcNAc\(\beta_1-4\)GlcNAc\(\beta_1-4\)Sp12	31136	31	20644	6	545	15
198	Man\(\alpha_1-6\)Man\(\alpha_1-3\)Man\(\alpha_1-6\)Man\(\alpha_1-3\)Man\(\beta_1-4\)GlcNAc\(\beta_1-4\)GlcNAc\(\beta_1-4\)Sp12	52567	19	31661	6	456	20
50	Man\(\alpha_1-3\)Man\(\alpha_1-6\)Man\(\beta_1-4\)GlcNAc\(\beta_1-4\)GlcNAc\(\beta_1-4\)GlcNAc\(\beta_1-4\)Sp13	59884	5	58680	6	3559	5

Avg RFU = average relative fluorescence units for control (EEA without addition of inhibitor), Avg. + B = average relative fluorescence units for EEA in the presence of blood group B tetrasaccharide, Avg. + MAN = average relative fluorescence units for EEA in the presence of a mixture of glycopeptides derived from RNase B; %CV = Coefficient of variation expressed as %

A summary of the results for EEA inhibition by blood group B tetrasaccharide or a mixture of glycopeptides derived from RNase B can be found in Suppl. Fig. S3.
Figure 2
Figure 3