An energy method for weak solutions of general hyperbolic conservation law in one space dimension

Citation: 中国科学. 数学 49, 321 (2019); doi: 10.1360/N012017-00184

View online: http://engine.scichina.com/doi/10.1360/N012017-00184

View Table of Contents: http://engine.scichina.com/publisher/scp/journal/SSM/49/2

Published by the 《中国科学》杂志社

Articles you may be interested in

THE CONSERVATION LAW OF ENERGY MOMENTUM IN GENERAL RELATIVITY
Science in China Series A-Mathematics, Physics, Astronomy & Technological Science 26, 961 (1983);

Convergence of viscosity solutions for 2×2 hyperbolic conservation laws with one characteristic field linearly degenerate on some zero measure sets
Chinese Science Bulletin 41, 11 (1996);

DECAY OF SOLUTIONS OF A CONSERVATION LAW
Chinese Science Bulletin 25, 537 (1980);

THE GENERIC PROPERTIES OF SOLUTIONS OF A CONSERVATION LAW
Scientia Sinica 23, 673 (1980);

A STUDY OF THE GLOBAL SOLUTIONS FOR QUASI-LINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS
Scientia Sinica 16, 317 (1973);
一维空间一般双曲守恒律弱解的能量方法

周忆

复旦大学数学科学学院，上海 200433
E-mail: yizhou@fudan.edu.cn

摘要　本文研究一维空间一般的双曲守恒律的 Cauchy 问题，给出弱熵解的整体存在性及正则性的一个新的证明。

关键词　双曲守恒律　弱熵解　能量方法

MSC (2010) 主题分类　35L65, 35L45

1 引言

关于双曲守恒律的弱解的研究有广泛的文献，参见文献 [1] 及其参考文献。众所周知，双曲守恒律方程的光滑解通常会在有限时刻产生奇性，无论初值多么光滑也是如此，参见文献 [2]，所以有必要在间断解的框架内研究弱解。在一维的情形，一个好的空间是 BV 空间，这方面的研究起源于 Kružkov [3] 的经典工作。根据 Sobolev 嵌入定理可知，$H^1(\mathbb{R})$ 中的函数是 Hölder 连续的，所以不能包含间断的函数。从而许多人认为 H^1 的能量方法不适于研究双曲守恒律弱解的存在性。本文的工作是举一个经典的例子，说明只要运用得当，仍然可以用 H^1 的能量方法证明弱解的整体存在性。

考察一维空间中一般的双曲守恒律方程的 Cauchy 问题

\[
\begin{align*}
&u_t + f(u)_x = 0, \quad t > 0, \quad x \in \mathbb{R}, \\
&u(0, x) = u_0(x), \quad x \in \mathbb{R},
\end{align*}
\]

其中 $u: (t, x) \to \mathbb{R}$，$f(u)$ 是 u 的 C^1 函数。

构造 (1.1) 物理上有意义的弱解的方法有所谓的黏性消失法，即通过研究正则化方程

\[
\begin{align*}
&u_t^\epsilon + f(u^\epsilon)_x = \epsilon u_{xx}^\epsilon, \quad t > 0, \quad x \in \mathbb{R}, \\
&w(0, x) = u_0(x), \quad x \in \mathbb{R}
\end{align*}
\]

英文引用格式：Zhou Y. An energy method for weak solutions of general hyperbolic conservation law in one space dimension (in Chinese). Sci Sin Math, 2019, 49: 321–324, doi: 10.1360/N012017-00184
(其中 $\epsilon > 0$ 是一个实数) 来证明当 $\epsilon \to 0$ 时, (1.2) 的整体光滑解趋于 (1.1) 的一个弱熵解. 在 Kružkov[3]的经典文献中, 他证明了解的 BV 模是不增的, 从而解的 BV 模有界, 只要初值属于 BV 空间. 于是可取子列在 L^1_{loc} 中收敛到 (1.1) 的解. 本文采用一个不同于 Kružkov 的能量方法来证明 (1.2) 的解当 $\epsilon \to 0$ 时收敛于 (1.1) 的解. 假设

$$u_0 \in \dot{H}^1(\mathbb{R}) \cap L^\infty(\mathbb{R}),$$ \hfill (1.3)

其中

$$\|u_0\|_{\dot{H}^1(\mathbb{R})} \leq \|u_0^\prime\|_{L^2(\mathbb{R})},$$ \hfill (1.4)

即初值也许根本不属于 BV 空间.

定理 1.1 考察 Cauchy 问题 (1.2), 其中初值满足 (1.3), 则存在一个子列 ϵ_k, 当 $\epsilon_k \to 0$ 时, u^{ϵ_k} 几乎处处收敛于 Cauchy 问题 (1.1) 的一个弱熵解, 并且对于固定的 t, $u(t, x)$ 在 x 的一个可列集外是连续的.

关于 (1.1) 弱解的正则性, 在最近的文献 [4] 中有更为详细的讨论. 不过这里的证明更为简单.

2 定理 1.1 的证明

我们作一个自变量的变换 $(t, x) \to (s, \alpha)$,

$$s = t, \quad \alpha = \alpha^\epsilon(t, x),$$ \hfill (2.1)

从而,

$$u^\epsilon_t = u^\epsilon_x + u^\epsilon_\alpha \alpha_x^\epsilon,$$ \hfill (2.2)

$$u^\epsilon_x = u^\epsilon_\alpha \alpha_x^\epsilon,$$ \hfill (2.3)

$$u^\epsilon_{xx} = u^\epsilon_{\alpha\alpha}(\alpha_x^\epsilon)^2 + u^\epsilon_\alpha \alpha_{xx}^\epsilon.$$ \hfill (2.4)

从而方程 (1.2) 转化为

$$u^\epsilon_t + (\alpha_t^\epsilon + f'(u^\epsilon)\alpha_x^\epsilon - \epsilon \alpha_{xx}^\epsilon)u^\epsilon_x = \epsilon u^\epsilon_{\alpha\alpha}(\alpha_x^\epsilon)^2.$$ \hfill (2.5)

选取 α^ϵ, 使得

$$ \begin{cases} \alpha_t^\epsilon + f'(u^\epsilon)\alpha_x^\epsilon - \epsilon \alpha_{xx}^\epsilon = 0, \\ t = 0 : \alpha^\epsilon = x. \end{cases}$$ \hfill (2.6)

对于原方程 (1.2), 由极值原理, 有

$$|u^\epsilon(t, x)| \leq |u_0|_{L^\infty(\mathbb{R})}, \quad \forall t > 0, \quad x \in \mathbb{R},$$ \hfill (2.7)

令

$$M = \sup_{|u| \leq |u_0|_{L^\infty(\mathbb{R})}} |f'(u)|,$$ \hfill (2.8)

从而, 方程 (2.6) 的解, 由极值原理可得

$$x - Mt \leq \alpha^\epsilon(t, x) \leq x + Mt.$$ \hfill (2.9)
事实上，不等式的最左边是一个所谓下解，而不等式的右边是一个所谓上解.

对 (2.6) 关于 x 求导，可得

$$
\begin{align*}
(\alpha^2_x)_t + (f'(\alpha^2_x))_x &= \epsilon(\alpha^2_x)_{xx}, \\
 t = 0: \alpha^2_x &= 1.
\end{align*}
$$

(2.10)

根据抛物方程的极值原理，有

$$
\alpha^2_x > 0, \quad \forall (t, x) \in \mathbb{R}^+ \times \mathbb{R}.
$$

(2.11)

从而，对于固定的 t，α^2 都是 x 的单调上升函数，并且 (2.9) 说明 α^2 是 $\mathbb{R} \to \mathbb{R}$ 的满射，因此存在反函数 $x^2 = x^2(\alpha, t)$. 令

$$
v^2(t, \alpha) = u^2(t, x^2(\alpha, t)),
$$

(2.12)

则

$$
u^2(t, x) = v^2(t, \alpha^2(t, x)).
$$

(2.13)

由 (2.5) 可得

$$
v^2_t = \epsilon v^2_{\alpha\alpha}(\alpha^2_x)^2,
$$

(2.14)

两边乘 $v^2_{\alpha\alpha}$，并且对 α 分部积分，注意到 $t = 0$ 时，$\alpha = x$，我们得到

$$
\frac{1}{2} \int_{-\infty}^{\infty} (v^2_{\alpha}(t, \alpha)) dx + \epsilon \int_{0}^{\infty} \int_{-\infty}^{\infty} (v^2_{\alpha\alpha}(\alpha^2_x)^2 d\alpha d\tau = \frac{1}{2} \int_{-\infty}^{\infty} (u^2_0(x))^2 dx.
$$

(2.15)

从而，

$$
\|v^2(t, \cdot)\|_{H^1(\mathbb{R})} \leq \|u_0\|_{H^1(\mathbb{R})}.
$$

(2.16)

于是存在一个子列 ϵ_k，当 $\epsilon_k \to 0$ 时，

$$
v^2(t, \cdot) \rightharpoonup v(t, \cdot)
$$

(2.17)

在 $\dot{H}^1(\mathbb{R})$ 中弱收敛，

由 Sobolev 嵌入定理可知，$v^2(t, \cdot)$ 在 Hölder 连续空间中强收敛于 $v(t, \cdot)$. 从而，$v(t, \alpha)$ 是关于 α的一个 Hölder 连续函数.

另一方面，$\alpha^2(t, x)$ 是关于 x 的单调上升函数，并且由 (2.9) 可知它是局部一致有界的，所以必几乎处处收敛于一个函数 $\alpha(t, x)$，并且 $\alpha(t, x)$ 也是单调不减函数. 从而对固定的 t，除了可列个点外，$\alpha(t, x)$ 都是连续函数. 由于 Dini 定理可知，在这可列个点的闭包外，$\alpha^2(t, x)$ 是局部一致收敛到 $\alpha(t, x)$，从而在 (2.13) 中取极限可知 u^2 几乎处处收敛于 u，并且对固定的 t，除了可列个点外，$u(t, x)$ 关于 x 都是连续的. 这样，我们就找到了定理 1.1.

注 2.1 $\alpha(t, x)$ 就是所谓的广义特征. 广义特征在文献 [5] 中有讨论. 我们在本文中发现了广义特征与黏性消失法的一个联系，也是一个额外的收获.

注 2.2 当初值仅在 $\dot{H}^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$ 中时，研究解的大时间行为也是一个公开问题.

参考文献

1. Dafermos C M. Hyperbolic Conservation Laws in Continuum Physics. Berlin: Springer-Verlag, 2000
2. Li T T. Global Classical Solutions for Quasilinear Hyperbolic Systems. New York: John Wiley and Sons, 1994
An energy method for weak solutions of general hyperbolic conservation law in one space dimension

Yi Zhou

Abstract In this paper, we investigate the Cauchy problem of general hyperbolic conservation law in one space dimension. We prove the global existence and regularity for weak entropy solutions by an energy method.

Keywords hyperbolic conservation law, weak entropy solution, energy method

MSC(2010) 35L65, 35L45

doi: 10.1360/N012017-00184