Chronic fatigue syndrome: An old public health issue highlighted by the COVID-19 pandemic

“Oh I need a coffee! I am so tired!” Something would feel amiss if one does not hear this exclamation at least once on a workday. More often than not a cup of coffee is exactly what you need to help you focus, be it the third paper on a Monday morning or the patient rounds that have made your eyes heavy. However, for some people ‘tired’ could mean not being sure if they could make it to the post box or being too exhausted to stand long enough to take a shower or even answer a simple phone call, all of it despite enough number of hours spent sleeping. Such severe examples are gaining more attention in the wake of the ongoing COVID-19 pandemic that hit the world in March 2020. Fatigue is a major symptom associated with long COVID, but what does it entail?

If an average adult in our society were to attempt to run a marathon, they would most likely, not make it without prior training. The result of any serious attempt at that would most probably be fatigue, that is, a reduced ability to activate muscle force or power leading to weaker muscle response. Exercise-induced peripheral fatigue is determined by a multitude of factors including local factors such as pH level, ion distribution, as well as oxygen supply and consumption, for example, through mitochondria. Decreased muscle perfusion, for example, due to an NO-deficiency caused by oxidative stress or aging can lead to accelerated fatigue. Muscle oxygenation and perfusion are also influenced by systemic factors like hormonal signaling, the ability to reoxygenate blood through an intact lung or the amount of breathing work, all of which are affected by COVID. In addition, fatiguing locomotor exercise alters neuromuscular function, which in turn leads to reduced muscular activation and activity.

Although such fatigue, that is, exhaustion caused by physical activity can be relieved by resting, persistent fatigue that cannot be alleviated by sleep may indicate chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME). CFS/ME is a complex condition that affects multiple organ systems. Its symptoms can therefore be multifaceted and vary in severity. According to the new definition by the Institute of Medicine (now National Academy of Medicine [NAM]), USA, to be diagnosed with CFS/ME, a patient must exhibit three main symptoms: (1) A substantial inability to perform pre-illness levels of activity that lasts for more than 6 months. This should be accompanied by profound fatigue of new onset that is not a result of unusual cognitive, physical, emotional or social exertion and is not significantly relieved by rest. (2) Post-exertional malaise (PEM) after an activity that would not have been an issue before the illness. Symptoms worsen after activity with a delay of hours or even days and a recovery time that is disproportional to the activity itself (hours to weeks). (3) Unrefreshing sleep despite the absence of objective alterations in sleep. Other than these, at least one of two additional manifestations must be present: (1) cognitive impairment (aka “brain fog”) that exacerbates by exertion and (2) orthostatic intolerance, in which a patient develops symptoms such as increased heart rate and blood pressure abnormalities while in an upright or standing position.

In some cases, COVID-19 has been shown to cause both acute as well as prolonged neuropsychiatric manifestations, possibly due to CNS immune cell activation. Between 13% and 23% of hospitalized COVID-19 patients suffer from fatigue and PEM-like symptoms more than 6 months after the infection. These numbers, although alarming, are hardly surprising. Looking back at the 2002/03 SARS pandemic, a similar proportion of hospitalized patients with a severe course also developed CFS/ME (27% of survivors 4 years after hospitalization). Other common pathogens that can lead to CFS/ME include viruses like Epstein–Barr virus, cytomegalovirus and enteroviruses, bacteria such as mycoplasma, Borrelia burgdorferi (Lyme disease), and Coxiella burnetii (Q fever). In fact, in three out of four cases of CFS/ME, the disease develops following an infectious episode. Interestingly, the innate immune response to infections is generally higher among women than men, which could perhaps also explain the higher prevalence of CFS/ME among women given the role that immunity plays.
in it. With an estimated prevalence of 0.1%-0.7%, CFS/ME is far above the threshold value set by the European Union for classification as a rare disease (<5:10000).19–21

In Germany, its prevalence was comparable with multiple sclerosis (MS, ~300000) before the COVID-19 pandemic.18 CFS/ME is also associated with a considerable burden of disease. In terms of individual burden of disease as measured by health-related quality of life, it scores lower than not only MS but also chronic obstructive pulmonary disease (COPD) as well as stroke.22 Another measure that looks more into the socioeconomic burden of disease is ‘disability-adjusted life years (DALYs)’ that also takes incidence into account. People with CFS/ME lose more DALYs than patients of MS as well as other debilitating conditions such as epilepsy or Parkinson disease.23

Despite the worryingly impressive numbers, CFS/ME remains poorly understood. A review paper written in the 1970s by two psychiatrists in the United Kingdom concluded because of the absence of physical signs and the higher prevalence in women that a psychosocial etiology of CFS/ME was most likely. This work shaped pathophysiological understanding in the years that followed.12 However up until recently, research remained largely focused on psychological, psychosomatic, or social etiology and consequently treatment programs focused on cognitive behavioral therapy or activating therapy to improve endurance. While these therapies were recommended by the National Institute for Health and Care Excellence (NICE), UK, in their guideline published in 2007,24 it has since been established that these approaches could actually exacerbate the disease. To date, there is no test or biomarker for objective diagnosis. Owing to this, CFS/ME often gets delegitimized as “not a real physiological condition” and patients often face stigma from their peers and healthcare professionals alike.25 This further deteriorates the quality of life for people with CFS/ME, who are already experiencing trauma, grief and loss due to their severe symptoms, and could lead to the development of depression and a heightened risk of suicide.26,27 Many patients, clinicians and experts associate the persistent stigmatization of the disease with the name ‘chronic fatigue syndrome’ and suggest that it should be referred to as ‘myalgic encephalomyelitis’ to underline the neuroimmunological character of the disease.

A public health problem of this magnitude certainly needs immediate attention and efforts are indeed being taken. The new guideline published by NICE in October 2021 has parted ways with the earlier, potentially harmful treatment recommendations.28 With pandemic COVID-19 further highlighting the public health impact of CFS/ME and accelerating research, hopes are high for improved therapeutic approaches as well as a better understanding of the disease.

CONFLICT OF INTEREST
There is no conflict of interest to declare.

Julia S. Bonk
Pratik H. Khedkar

Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Institut für Translationale Physiologie, Berlin, Germany

Correspondence
Julia S. Bonk, Institut für Translationale Physiologie, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
Email: julia-sophie.bonk@charite.de

ORCID
Julia S. Bonk https://orcid.org/0000-0003-2178-509X
Pratik H. Khedkar https://orcid.org/0000-0002-4778-7731

REFERENCES
1. Christiansen D, Eibye K, Hostrup M, Bangsbo J. The effect of blood-flow-restricted interval training on lactate and H+ dynamics during dynamic exercise in man. Acta Physiol. 2021;231(3):e13580. doi:10.1111/apha.13580
2. Wernbom M, Aagaard P. Muscle fibre activation and fatigue with low-load blood flow restricted resistance exercise—an integrative physiology review. Acta Physiol. 2020;228(1):e13302. doi:10.1111/apha.13302
3. Lindsay A, Kemp B, Larson AA, et al. Tetrahydrobiopterin synthesis and metabolism is impaired in dystrophin-deficient mdx mice and humans. Acta Physiol. 2021;231(4):e13627. doi:10.1111/apha.13627
4. Larsen FJ, Schiffer TA, Zinner C, et al. Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake. Acta Physiol. 2020;229(3):e13463. doi:10.1111/apha.13463
5. Louijjaard SMLM, Lintel Hekkert ML, Wüst RC, Otten RHJ, Meskers CGM, Maier AB. Pathophysiological mechanisms explaining poor clinical outcome of older cancer patients with low skeletal muscle mass. Acta Physiol. 2021;231(1):e13516. doi:10.1111/apha.13516
6. Zhong C, Xu M, Boral S, et al. Age impairs soluble Guanylyl cyclase function in mouse mesenteric arteries. Int J Mol Sci. 2021;22(21):11412. doi:10.3390/ijms22211141
7. Dominelli PB, Katayama K, Vermeulen TD, et al. Work of breathing influences muscle sympathetic nerve activity during semi-recumbent cycle exercise. Acta Physiol. 2019;225(4):e13212. doi:10.1111/apha.13212
8. Kulow VA, Fähling M. How to increase cellular oxygen availability in COVID-19? Acta Physiol. 2021;233(2):e13724. doi:10.1111/apha.13724
9. Steiner JL, Johnson BR, Hickner RC, Ormsbee MJ, Williamson DL, Gordon BS. Adrenal stress hormone action in skeletal muscle.
muscle during exercise training: an old dog with new tricks? Acta Physiol. 2021;231(1):e13522. doi:10.1111/apha.13522

10. Ye Q, Lai EY, Fu LF, Persson PB, Mao J. SARS-CoV-2 effects on the renin-angiotensin-aldosterone system, therapeutic implications. Acta Physiol. 2021;231(4):e13608. doi:10.1111/apha.13608

11. Brownstein CG, Millet GY, Thomas K. Neuromuscular responses to fatiguing locomotor exercise. Acta Physiologica. 2021;231(2):e13533. doi:10.1111/apha.13533

12. Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. National Academies Press; 2015. doi:10.17226/19012

13. Steardo L, Steardo L, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol. 2020;229(3):e13473. doi:10.1111/apha.13473

14. Steardo L Jr, Steardo L, Verkhratsky A, Scuderi C. Post-COVID-19 neuropsychiatric syndrome: is maladaptive glial recovery to blame? Acta Physiol. 2021;233(2):e13717. doi:10.1111/apha.13717

15. González-Hermosillo JA, Martínez-López JP, Carrillo-Lampón SA, et al. Post-acute COVID-19 symptoms, a potential link with Myalgic encephalomyelitis/chronic fatigue syndrome: A 6-month survey in a Mexican cohort. Brain Sci. 2021;11(6):760. doi:10.3390/brainsci11060760

16. Lam MH-B, Wing Y-K, Yu MW-M, et al. Mental morbidity and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med. 2009;169(22):2142-2147. doi:10.1001/archinternmed.2009.384

17. Rasa S, Nora-Krakle Z, Henning N, et al. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med. 2018;16(1):268. doi:10.1186/s12967-018-1644-y

18. Froehlich L, Hattesohl DBR, Jason LA, Scheibenbogen C, Behrends U, Thoma M. Medical care situation of people with Myalgic encephalomyelitis/chronic fatigue syndrome in Germany. Medicina. 2021;57(7):646. doi:10.3390/medicina57070646

19. Jessi E, Citadini C, Antici C, Fecchi K, Matarrese P, Ruggieri A. Sex differences in antiviral immunity in SARS-CoV-2 infection: mitochondria and mitoMiR come into view. Acta Physiol. 2021;231(2):e13571. doi:10.1111/apha.13571

20. Nacul LC, Lacerda EM, Pheby D, et al. Prevalence of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) in three regions of England: a repeated cross-sectional study in primary care. BMC Med. 2011;9(1):91

21. Thomas N, Gurvich C, Huang K, Gooley PR, Armstrong CW. The underlying sex differences in neuroendocrine adaptations relevant to Myalgic encephalomyelitis chronic fatigue syndrome. Front Neuroendocrinol. 2022;66:100995. doi:10.1016/j.yfrne.2022.100995

22. Falk Hvidberg M, Brinth LS, Olesen AV, Petersen KD, Ehlers L. The health-related quality of life for patients with Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS). PLOS One. 2015;10(7):e0132421. doi:10.1371/journal.pone.0132421

23. Dimmock ME, Mirin AA, Jason LA. Estimating the disease burden of ME/CFS in the United States and its relation to research funding. J Med Ther. 2016;1(1):1-7. doi:10.15761/JMT.1000102

24. Baker R, Shaw EJ. Diagnosis and management of chronic fatigue syndrome or myalgic encephalomyelitis (or encephalopathy): summary of NICE guidance. BMJ. 2007;335(7617):446-448

25. Froehlich L, Hattesohl DB, Cotler J, Jason LA, Scheibenbogen C, Behrends U. Causal attributions and perceived stigma for myalgic encephalomyelitis/chronic fatigue syndrome. J Health Psychol. 2021. doi:10.1177/13591053211027631

26. Chu L, Elliott M, Stein E, Jason LA. Identifying and managing suicidality in Myalgic encephalomyelitis/chronic fatigue syndrome. Healthcare. 2021;9(6):629. doi:10.3390/healthcare9060629

27. Fennell PA, Dorr N, George SS. Elements of suffering in Myalgic encephalomyelitis/chronic fatigue syndrome: the experience of loss, grief, stigma, and trauma in the severely and very severely affected. Healthcare. 2021;9(5):553. doi:10.3390/healthcare9050553

28. National Guideline Centre (UK). Identifying and Diagnosing ME/CFS: Myalgic Encephalomyelitis (or Encephalopathy)/Chronic Fatigue Syndrome: Diagnosis and Management; 2021.