Microtechnology in computer optics

V A Danilov

1Russian Academy of Sciences, Scientific and Technological Center of Unique Instrumentation, Butlerova st. 15, Moscow, Russia, 117342

e-mail: viktordanilov@bk.ru

Abstract. The article briefly describes the development of microtechnology in the field of diffractive computer optics. The author presents the material based on the development of the laboratory of micro- and nanotechnology of Image Processing Systems Institute of the RAS. The creator and head of this laboratory was Doctor of Technics, Professor Alexey Volkov, a well-known expert in the field of electronic and vacuum technologies. The author analyzes the impact of scientific results of Professor A.V. Volkov on the development of diffractive optics.

1. Introduction

Diffraction optical elements (DOEs) have a long history. The Rayleigh-Soret diffraction gratings and Fresnel zone plates developed over 200 and 150 years ago respectively should be considered the first DOEs. The emergence of new types of DOEs is usually associated with two main factors: the methods for calculation of such elements and the manufacturing technology. Diffraction gratings are simple elements in the form of a diffraction microstructure with periodic phase relief and are intended to form a one-dimensional or two-dimensional set of flat beams with a given ratio of energy between the beams. Multi-order diffraction gratings are widely used nowadays in optical devices for image multiplication, in optical fiber connectors and free space connectors, in devices for optical communication and information processing, in coherent optical processors. The basic manufacturing technology of diffraction gratings is mechanical, using a sharp cutter. After the diffraction grating, a zone plate was invented, which began to be widely used only at the end of the 20th century because of the lack of reliable manufacturing techniques. These elements have binary amplitude or phase transmission and are used in optics communications and information processing means.

The use of computers (1970), as well as laser technology and microelectronics technology (1980) allowed to make a quantum leap in calculation and production of DOEs. It became possible to create DOEs with a complex microrelief.

The availability of computerized synthesis of binary amplitude-phase and phase spatial filters, wave-front correctors led to the creation of multi-level DOEs with unique characteristics that are not achievable within the framework of traditional optics [1, 2]. In 1981, the focusators of laser radiation were suggested and studied in our country for the first time [3]. The basic solutions of the focusing problem for various focal areas for creating various focusing DOEs were found in the works of I.N. Sisakyan, V.A. Soifer et alias and in a number of other works of domestic researchers in the first half of the 1980s [4-7]. The works appeared that performed a computational treatment of influence of technological errors of microrelief formation on the operation of focusing DOEs [8-10].
The publications reviewed above demonstrate a broad study of the theoretical issues of producing DOEs. However, the technology of producing DOE did not keep pace with the development of theoretical methods. As the microelectronics developed, various microlrelief formation methods appeared, such as photolithography and e-beam lithography. Direct transfer of these methods to the production of DOEs appeared to be not quite effective. For example, in microelectronics, it is essential to obtain a surface-supported binary microstructure and the presence of point errors of the microstructure is absolutely unacceptable and leads to inoperativeness of the product. At the same time, the thickness of the structure obtained is not very important, moreover, there is no need to make the structure thickness different over the area. The production of DOE microlreliefs, on the contrary, allows for a fairly large number of point errors in the structure, while the thickness of the relief should be controlled with a considerable accuracy ($\lambda/8$). The undoubted advantage of the technology is the possibility to change the depth of the microlrelief over the area, thus forming multi-level DOEs.

2. Methods of forming a multi-level microlrelief

The production of DOEs using traditional materials and traditional methods does not allow to reach the potential of diffractive optics. It is impossible to achieve continuous or almost continuous reliefs needed for the construction of optical elements without the excessive costs. It was the modification of microelectronics technology for DOE production [11-20] where the talent of Professor Alexey V. Volkov (August 3, 1939 - January 13, 2015) was of great value.

A key problem in making focusators [11] is to achieve high energy efficiency together with the required intensity distribution in the focal area. It should be noted that almost all the works on theoretical evaluation of efficiency of optical elements are based on the assumption of a perfect or almost perfect accuracy of microlrelief production. In reality, there are technological errors due to the drawbacks of the methods of microstructures formation: errors in the size of the zones and the microlrelief height, shift of the boundaries of the zones, etc.

During the study, the team of A.V. Volkov suggested several methods of forming a relief with a continuous profile of various heights and resolutions. For example, in [12, 19] a liquid photopolymerizable composition exposed through DOE halftone photomask was used to form the microlrelief (Fig. 1).

![Figure 1. The focusator in the segment based on a liquid photopolymerizable composition.](image)

In [13, 20] a method of layer-by-layer photoresist enhancement allowing to form a multilevel microlrelief was suggested and studied. In [21, 22] a technology of manufacturing DOEs using chalcogenide glassy semiconductors is reviewed. Figure 2 shows a microlrelief section formed according to this technology.

In [23] it was suggested to form DOE microlrelief using polyamide films. Another task related to the technology of forming a multilevel microlrelief considered by Professor A.V. Volkov is the transfer of microlrelief from a polymer mask to a substrate material (silicon, quartz, glass) [12, 13, 20, 23-25]. The process of transfer of multilevel microlrelief from a polymer composition to a solid substrate is significantly more complicated as compared to obtaining a binary structure. The main problem is that the plasma etching rate for the polymer composition and the substrate material is different, and as a result, the total thickness of the microlrelief changes [25]. This situation was solved
by using metal-based protective layers. In this case, it is necessary to perform several sequential etching operations to obtain a multilevel microrelief [14].

![Figure 2](image1.png)

Figure 2. Microrelief section on a chalcogenide glassy semiconductor measured on a scanning probe microscope.

3. Production of DOE with submicron resolution

Different approaches to errors in microelectronics and optics led to the necessity to adapt the control methods and surface cleaning methods to the task of forming DOE microreliefs. A significant number of works of Professor A.V. Volkov is dedicated to solving particular problems of technology: preparation of substrates, control of pollution and roughness, and rapid methods to control the microrelief shape [18, 26-35].

Another direction of microelectronics technology improvement reflected in the works of Professor A.V. Volkov is increasing the resolution of the microrelief of DOEs produced [15, 36] using electronic lithography technologies. One of the significant problems is that DOE microrelief shall have a certain thickness, which may be comparable with the period of DOE for some purposes. The task of obtaining such a microrelief was successfully solved (Fig. 3) [36].

![Figure 3](image2.png)

Figure 3. SEM image of a diffraction grating with a period of 400 nm in a resist with the height of 500 nm.

The problems of producing DOEs for the operation outside the visible range resulted in the need to adjust the microelectronics methods for the new materials: sapphire substrates, diamond films, chalcogenide glasses [36-48].

Recent works of Professor A.V. Volkov were devoted to increasing the resolution of photolithographic process by using the recording of a photomask on thin films of refractory metals [49-52]. This allowed to obtain a resolution of almost 200 nm.

![Figure 4](image3.png)

Figure 4. Image of a microrelief on the end of a chalcogenide fiber obtained with a scanning probe microscope.
4. Conclusion

Comprehensive adaptation of microelectronics methods to the requirements of DOE production have brought the results. The methods developed by Professor A.V. Volkov allowed to develop and produce optical devices with DOEs [53], focusors for different transverse and longitudinal areas [11, 54-61], DOE for the formation of modes [16], lighting devices [62-64] and polarization devices [65-67]. The technological routes and lines developed under the direction of A.V. Volkov still work, which made it possible to create compact and light computer vision systems and hyperspectrometers [68-72] for unmanned aerial vehicles and nanosatellites.

5. References

[1] Golub M A, Degtyarev V P, Klimov A N, Popov V V, Prokhorov A M, Sisakyan E V, Sisakyan I N and Soifer V A 1982 Machine synthesis of focusing elements for CO2-laser Technical Physics Letters 8(13) 449-451
[2] Goncharskiy A V, Danilov V A, Popov V V, Prokhorov A M, Sisakyan I N, Soifer V A and Stepanov V V 1984 Focusing elements of an obliquely incident laser-radiation Quantum Electronics 11(1) 166-168
[3] Golub M A, Karpeev S V, Prokhorov A M, Sisakyan I N, Soifer V A and Danilov V A 1981 Focusing coherent radiation in a given region of space with the help of computer generated holograms Technical Physics 7(10) 618-623
[4] Goncharskiy A V, Danilov V A, Popov V V, Sisakyan I N, Soifer V A and Stepanov V V 1986 Flat focusing elements for the visible-light Quantum Electronics 13(3) 660-662
[5] Danilov V A, Dubov M V 1989 Effects of distortions in incident-beam intensity of focuser operation Computer Optics 1(1) 39-49
[6] Danilov V A, Popov V V, Prokhorov A M, Sagatelyan D M, Sisakyan I N and Soifer V A 1982 Synthesis of optical elements, that create focal free-form line Technical Physics Letters 8(13) 810-815
[7] Doskolovich L L, Golub M A, Kazanskii N L, Khramov A G, Pavelyev V S, Seraphimovich P G, Soifer V A and Volotovskiy S G 1995 Software on diffractive optics and computer generated holograms Proceedings of SPIE 2363 278-284 DOI: 10.1117/12.199645
[8] Golub M A, Kazanskiy N L, Sisakyan I N and Soifer V A 1988 Computational experiment with plane optical elements Optoelectronics, Instrumentation and Data Processing 1 78-89
[9] Kazanskiy N L and Soifer V A 1994 Diffraction investigation of geometric-optical focusators into segment Optik 96(4) 158-162
[10] Kazanskiy N L, Kharitonov S I and Soifer V A 1996 Application of a pseudogeometrical optical approach for calculation of the field formed by a focuser Optics & Laser Technology 28(4) 297-300 DOI: 10.1016/0305-4490(95)00103-4
[11] Golub M A, Rybakov O E, Usplenjev G V, Volkov A V and Volotovskiy S G 1995 The technology of fabrication of focusators of IR laser's radiation Optics & Laser Technology 27(4) 215-218
[12] Volkov A V, Kazanskiy N L, Soifer V A and Soloviev V S 1997 Technology for forming continuous microlief of diffractive optical elements Computer Optics 17 91-93
[13] Volkov A V, Kazanskiy N L, Moiseev O J and Soifer V A 1998 A Method for the diffractive microlief formation using the layered photoresist growth Optics and Lasers in Engineering 29(4-5) 281-288 DOI: 10.1016/s0143-8166(97)00116-4
[14] Volkov A V, Kazanskiy N L and Rybakov O E 1998 Investigation of plasma etching technology for producing multilayer diffractive optical elements Computer Optics 18 127-130
[15] Volkov A V, Kazanskiy N L and Rybakov O E 1998 Development of technology for creation of diffractive optical elements with submicron dimensions of the relief in the silicon wafer Computer Optics 18 130-133
[16] Borodin S A, Volkov A V, Kazanskiy N L, Pavelyev V S, Karpeev S V, Palagushkin A N, Prokopenko S A, Sergeev A P and Arlamenkov A N 2005 Numerical and experimental study of DOE-aided nondispersive multi-mode beams Computer Optics 27 41-44
[17] Karpeev S V, Khonina S N, Moiseev O Y, Alferov S V and Volkov A V 2012 Polarization converter for generating higher-order laser beams using a binary diffractive optical element *Physical and Mathematical Science* 29(4) 162-170

[18] Volkov A V, Kazanskii N L and Usplen’ev G V 2001 Automation of the Physical Experiment in *Computer Optics Pattern Recognition and Image Analysis* 11(2) 469-470

[19] Volkov A V, Volotovsky S G, Granchak V M, Kazanskiy N L, Moiseev O Yu, Soifer V A, Soloviev V S and Yaunenkov D M 1995 Experimental study of mass transfer in liquid photopolymerizing compositions *Zhurnal Tekhnicheskoi Fiziki* 65(9) 181-185

[20] Volkov A V, Kazanskiy N L and Moiseev O Y 2001 Preparation of a substrate surface for DOE fabrication using a layered photoresist growth method *Computer Optics* 21 113-116

[21] Volkov A V, Kazanskiy N L, Kostyuk G F, Kostyukevich S A and Shepelyavyi P E 1999 Forming a DOE micro-relief with the use of chalcogenide vitreous semiconductors *Computer Optics* 19 129-131

[22] Volkov A V, Kazanskiy N L and Moiseev O Y 2002 Synthesis of a micro-relief using chalcogenide vitreous semiconductors *Computer Optics* 24 74-77

[23] Berendyaev V I, Volkov A V, Kazanskiy N L, Kotov B V and Solovjov V S 2000 Synthesis of a diffractive optical element micrelief using polyimide films *Computer Optics* 20 90-92

[24] Volkov A V 1999 Synthesis of diffractive elements: micrelief fabrication techniques *Physical and Mathematical Science* 7 127-140

[25] Volkov A V, Kazanskiy N L and Moiseev O Y 1999 Study of processes of photoresist deposition and etching to improve the accuracy of the wide DOE micrelief formation *Computer Optics* 19 143-146

[26] Volkov A V, Kazanskiy N L and Kolpakov V A 2001 Calculation of the rate of plasma-chemical etching of quartz *Computer Optics* 21 121-125

[27] Volkov A V 2001 Evaluation of parameters of a diffractive optical element micrelief using test diffractive structures *Physical and Mathematical Science* 12 179-185

[28] Volkov A V, Kazanskiy N L and Solovjov V S 2002 Checking the refractive index change in liquid photopolymerizable compositions *Proceedings of SPIE* 4680 214-219 DOI: 10.1117/12.454679

[29] Borodin S A, Volkov A V and Kazanskiy N L 2005 Automated device for substrate surface cleanliness estimation from the dynamic state of a liquid drop deposited on its surface *Computer Optics* 28 69-75

[30] Kazanskiy N L, Volkov A V and Borodin S A 2006 A method for dielectric surface roughness inspection *Russian Federation Patent for an Invention No. 2331870 dated 17.07.2006 BI No. 23 dated 20.08.2008*

[31] Agafonov A N, Volkov A V, Konygin S B and Sanoyan A G 2007 Development of physical principles and algorithms for computer simulation of basic microstructuring processes by means of probability cellular automaton *Physical and Mathematical Science* 14(1) 99-107

[32] Borodin S A, Volkov A V and Kazanskiy N L 2009 Device for analyzing nanoroughness and contamination on a substrate from the dynamic state of a liquid drop deposited on its surface *Journal of Optical Technology* 76(7) 408-412 DOI: 10.1364/JOT.76.000408

[33] Krishtal M M, Khrustalev A K, Volkov A V and Borodin S A 2009 Nucleation and growth of macrofluctuations of plastic strain with discontinuous yield and luders deformation: Results of high-speed video filming *Doklady Physics* 54(5) 225-229

[34] Solovjov V S, Kazanskiy N L, Volkov A V, Volodkin B O and Starojilov A E 2012 Experimental verification of the mechanism of mass transfer in liquid photopolymerizable compositions using fourier-transform infraredspectroscopy *Computer Optics* 36(2) 235-241

[35] Glyanko M S, Volkov A V and Fomchenkov S A 2014 Assessment of surface roughness of substrates subjected to plasma-chemical etching *Journal of Physics: Conference Series* 541(1) 012100 DOI: 10.1088/1742-6596/541/1/012100

[36] Nesterenko D V, Poletaev S D, Moiseev O Y, Yakunenko B M, Volkov A V and Skidanov R V 2011 Fabrication of curved diffraction gratings for UV *Proceedings of the Samara Scientific Center of the Russian Academy of Sciences* 13(1-4) 66-71
[37] Volkov A V, Kazanskiy N L and Moiseev O Y 2004 A method for the manufacture of diffractive optical elements. *Russian Bulletin of Inventions Russian Federation Patent for an invention No. 2231812* dated 27.06.2004

[38] Volkov A V, Kazanskiy N L, Kostyuk G F and Pavelyev V S 2002 Dry Etching of Polycrystalline Diamond Films. *Optical Memory & Neural Networks (Information Optics)* 11(2) 135-137

[39] Pavelyev V S, Soifer V A, Kazanskiy N L, Volkov A V, Kostyuk G F, Kononenko V V, Konov V I, Pimenov S M, Komlenok M S, Duparré M, Luedege B and Berger M 2005 Synthesis of diamond diffractive optical elements for IR laser beam focusing. *Proceedings of SPIE* 5965 59650M DOI: 10.1117/12.623753

[40] Pavelyev V S, Soifer V A, Kazanskiy N L, Golovashkin D L, Volkov A V, Kostyuk G F, Kononenko V V, Konov V I, Pimenov S M, Komlenok M S, Duparré M and Luedege B 2006 Synthesis and investigation of diamond diffractive optical elements. *Proceedings of SPIE* 6290 62900B DOI: 10.1117/12.682129

[41] Volkov A V, Istinova O G, Kazanskiy N L and Kostyuk G F 2002 Research and Development of Technology of DOE Microrelief Formation on Sapphire Substrates. *Computer Optics* 24 70-73

[42] Borodin S A, Volkov A V, Kazanskiy N L, Karpeev S V, Moiseev O Y, Pavelyev V S, Yakunenkov D M, Runkov Y A and Golovashkin D L 2005 Fabrication and characterization of a front-end diffractive microrelief in a halogenide IR waveguide. *Computer Optics* 27 45-49

[43] Volkov A V, Golovashkin D L, Eropolov V A, Kazanskiy N L, Karpeev S V, Moiseev O Y, Pavelyev V S, Artyushenko V G and Kashin V V 2006 Analysis of fabrication errors when synthesizing front-end diffraction gratings in a halogenide IR waveguide. *Proceedings of the Samara Scientific Center of the Russian Academy of Sciences* 8(4) 1211-1217

[44] Pavelyev V S, Borodin S A, Kazanskiy N L, Kostyuk G F and Volkov A V 2007 Formation of diffractive microrelief on diamond film surface. *Optics & Laser Technology* 39(6) 1234-1238 DOI: 10.1016/j.optlastec.2006.08.004

[45] Solovjev V S, Volkov A V, Volodkin B O, Kazanskiy N L and Storojilova O V 2008 Relaxation of supramolecular structures in polydimethylsiloxane films. *Computer Optics* 32(1) 59-61

[46] Solovjev V S, Volovkin B O, Volkov A V and Kazansky N L 2009 Relaxation of supramolecular structures in polydimethylsiloxane films. *Mendeleyev Communications* 19(6) 342-343

[47] Pavelyev V S, Soifer V A, Konov V I, Kononenko V V and Volkov A V 2009 Diffractive Microoptics for Technological IR-Lasers. *High-Power and Femtosecond Lasers: Properties, Materials and Applications*

[48] Pavelyev V S, Soifer V A, Konov V I, Kononenko V V and Volkov A V 2011 Diffractive Microoptics for Technological IR-Lasers. *Encyclopedia of Laser Research*

[49] Volkov A V, Moiseev O Y and Poletaev S D 2013 Precision laser recording on a molybdenum films for diffractive microrelief formation. *Computer Optics* 37(2) 220-225

[50] Volkov A V, Moiseev O Y, Poletaev S D and Chistyakov I V 2014 Application of thin molybdenum films in contact masks for manufacturing the micro-relief of diffractive optical elements. *Computer Optics* 38(4) 757-762

[51] Volkov A V, Kazanskiy N L, Moiseev O Yu and Poletaev S D 2015 Thermal oxidative degradation of molybdenum films under laser ablation. *Technical Physics* 60(2) 265-269 DOI: 10.1134/S1063784215020255

[52] Volkov A V, Kazanskiy N L, Moiseev O Y, Paranin V D, Poletaev S D and Chistyakov I V 2016 Specific features of the laser irradiation of thin molybdenum films. *Technical Physics* 61(4) 579-583 DOI: 10.1134/S1063784216040241

[53] Volkov A V, Kazanskiy N L, Moiseev O Y and Soifer V A 1997 A spectroscopic device for visible and infrared light. *Russian Federation Patent for Invention № 2148849* dated 18.07. BI № 13 dated 10.05.2000
[54] Volkov A V, Kazanskiy N L and Uspleniev G V 1999 Fabrication and experimental study of focusing devices in a ring and two points Computer Optics 19 132-136
[55] Volkov A V and Skidanov R V 2000 Diffraction of light by diffractive lenses: numerical investigation Physical and Mathematical Science 9 174-183
[56] Volkov A V, Doskolovich L L, Kazanskiy N L, Uspleniev G V and Zanelly A 2000 Creation and study of binary focusing devices for a high-power ND-YAG laser Computer Optics 20 84-89
[57] Kazanskiy N L, Uspleniev G V and Volkov A V 2000 Fabricating and testing diffractive optical elements focusing into a ring and into a twin-spot Proceedings of SPIE 4316 193-199 DOI: 10.1117/12.407678
[58] Volkov A V, Kotlyar V V, Moiseev O V, Rybakov O E, Skidanov R V, Soifer V A and Khonina S N 2000 Binary Diffraction Optical Element Focusing a Gaussian Beam to a Longitudinal Segment Optics and Spectroscopy (English translation of Optika i Spektroskopiya) 89(2) 318-323 DOI: 10.1134/1.1307454
[59] Volkov A V, Kazanskiy N L, Golovashkin D L, Doskolovich L L, Kotlyar V V, Pavelyev V S, Skidanov R V, Soifer V A, Solovjov V S, Uspleneyev G V, Khartinov S I and Khonina S N 2000 Methods of Computer Optics (Moscow: FIZMATLIT)
[60] Soifer V A, Doskolovich L L, Golovashkin D L, Kazanskiy N L, Kharitonov S I, Khonina S N, Kotlyar V V, Pavelyev V S, Skidanov R V, Solovyov V S, Usplenyev G V and Volkov A V 2002 Methods for Computer Design of Diffractive Optical Elements (USA: John Wiley & Sons)
[61] Soifer V A, Doskolovich L L, Golovashkin D L, Kazanskiy N L, Kharitonov S I, Khonina S N, Kotlyar V V, Pavelyev V S, Skidanov R V, Solovyov V S, Usplenyev G V and Volkov A V 2007 Methods for Computer Design of Diffractive Optical Elements (Tianjin Science & Technology Press)
[62] Volkov A V, Kazanskiy N L and Uspleneyev G V 1999 Experimental study of lighting devices with DOE Computer Optics 19 137-142
[63] Kazanskiy N L, Kharitonov S I, Soifer V A and Volkov A V 2000 Investigation of Lighting Devices Based on Diffractive Optical Elements Optical Memory & Neural Networks 9(4) 301-312
[64] Volkov A V, Kazanskiy N L, Moiseev O Y, Soifer V A and Kharitonov S I 2002 A directional radiation device Russian Federation Patent for an Invention No. 2213985 dated 05.04.2002 BI No. 28 dated 10.10.2003
[65] Solovyov V S, Volkov A V, Soifer V A and Kazanskiy N L 2004 A technique to generate a polarizing cell Russian Federation Patent of an Invention No. 2259577 dated 16.03.2004 BI No. 24 dated 27.08.2005
[66] Volkov A V, Kazanskiy N L and Solovyov V S 2005 Liquid crystal orientation using surface-directed structures Computer Optics 27 38-40
[67] Kazanskiy N L, Solovyov V S and Volkov A V 2005 Orientating Liquid Crystals Using Surface-Directed Structures Optical Memory & Neural Networks (Information Optics) 14(2) 123-128
[68] Kazanskiy N L 2018 Modeling diffractive optics elements and devices Proceedings of SPIE 10774 107740O DOI: 10.1117/12.2319264
[69] Nikonorov A V, Petrov M V, Bibikov S A, Yakimov P Y, Kutikova V V, Yuzifovich Y V, Morozov A A, Skidanov R V and Kazanskiy N L 2018 Toward Ultralightweight Remote Sensing with Harmonic Lenses and Convolutional Neural Networks IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(9) 3338-3348 DOI: 10.1109/JSTARS.2018.2856538
[70] Kazanskiy N L, Skidanov R V 2019 Technological line for creation and research of diffractive optical elements Proc. SPIE 11146 111460W DOI: 10.1117/12.2527274
[71] Blank V A, Skidanov R V 2018 Hyperspectrometer based on a harmonic lens with diffraction grating Journal of Physics: Conference Series 1096(1) 012003
[72] Podlipnov V V, Shchedrin V N, Babichev A N, Vasilyev S M and Blank V A 2018 Experimental determination of soil moisture on hyperspectral images Computer Optics 42(5) 877-884 DOI: 10.18287/2412-6179-2017-42-5-877-884