Title
Bromoenol lactone inhibits magnesium-dependent phosphatidate phosphohydrolase and blocks triacylglycerol biosynthesis in mouse P388D1 macrophages.

Permalink
https://escholarship.org/uc/item/28p071sp

Journal
The Journal of biological chemistry, 271(50)

ISSN
0021-9258

Authors
Balsinde, J
Dennis, EA

Publication Date
1996-12-01

DOI
10.1074/jbc.271.50.31937

Peer reviewed
BromoenoL Lactone Inhibits Magnesium-dependent Phosphatidate Phosphohydrolase and Blocks Triacylglycerol Biosynthesis in Mouse P388D1 Macrophages*

(Received for publication, May 21, 1996, and in revised form, September 19, 1996)

Jesús Balsinde‡ and Edward A. Dennis§
From the Department of Chemistry and Biochemistry, Revelle College and School of Medicine, University of California, La Jolla, California 92039-0601

BromoenoL lactone (BEL) has previously been identified as a potent, irreversible, mechanism-based phospholipase A$_2$ (PLA$_2$) inhibitor that possesses greater than 1000-fold selectivity for inhibition of Ca$^{2+}$-independent PLA$_2$ (iPLA$_2$) versus the Ca$^{2+}$-dependent ones. Thus, this compound has been used as a selective tool for studies aimed at elucidating the role of iPLA$_2$ in certain cellular functions. Herein we report that BEL also inhibits cellular phosphatidic acid phosphohydrolase (PAP) activity in intact P388D1 macrophages with an IC$_{50}$ of about 8 μM, which is very similar to that previously found for inhibition of iPLA$_2$ under the same experimental conditions. This results in the blockage of the incorporation of exogenous arachidonate and palmitate into diacylglycerol and triacylglycerol. Thus, inhibition of PAP by BEL blocks triacylglycerol biosynthesis in P388D1 cells due to decreased diacylglycerol availability. Because two forms of PAP activity exist in mammalian cells, differential assays were performed to identify which of these forms was inhibited by BEL. The results of these experiments revealed that BEL selectively inhibits the cytosolic, Mg$^{2+}$-dependent enzyme. No apparent effect of BEL on the membrane-bound Mg$^{2+}$-independent PAP form could be detected. Collectively, the results reported herein establish that BEL inhibits two cellular phospholipases, namely iPLA$_2$ and Mg$^{2+}$-dependent PAP, with similar potency. Therefore, the inhibitory effect of BEL on Mg$^{2+}$-dependent PAP might explain several cellular functions previously attributed to iPLA$_2$.

Current evidence indicates that phospholipase A$_2$ (PLA$_2$) is a major mediator of agonist-induced arachidonic acid (AA) release in most cell types (for review, see Ref. 1). However, the levels of free AA available for eicosanoid synthesis are also controlled by the AA reacylating and remodeling enzymes, i.e. arachidonoyl-CoA synthetase, acyltransferases, and transacylases (for review, see Ref. 2). Thus, a major portion of the AA released by the action of one or more PLA$_2$s (3) is rapidly reincorporated into phospholipids (4, 5). This PLA$_2$-countering mechanism is thought to efficiently regulate the level of eicosanoids generated during cell activation (2).

Two main pathways exist for the incorporation of AA into phospholipids. One is the de novo pathway, i.e. the acylation of glycerol-3-phosphate and/or lysophosphatic acid to yield PA (for review, see Ref. 6), and this leads to the production of AA-containing TAG. The other route involves a deacylation-reacylation cycle of membrane phospholipids and is initiated by PLA$_2$-mediated cleavage of preexisting phospholipids, followed by rapid re-esterification of the lysophospholipid formed with AA by CoA-dependent acyltransferase (2, 7).

Our studies on the mechanisms regulating free AA levels in P388D1 macrophages have established that in these cells, phospholipid deacylation-reacylation reactions constitute the preferred route for incorporation of low amounts (nanomolar range) of free AA into phospholipids (8–10). In addition, a lower affinity, higher capacity pathway, the de novo pathway, leads to incorporation of AA into TAG. The latter appears to operate only when high amounts of free AA (micromolar range) are available (10).

Incorporation of AA via phospholipid remodeling appears to be strikingly dependent on the generation of lysophospholipid acceptors by the Ca$^{2+}$-independent PLA$_2$ (iPLA$_2$) (9, 10). This enzyme is irreversibly inhibited by the mechanism-based inhibitor BEL, a compound that shows great selectivity for inhibition of Ca$^{2+}$-independent versus Ca$^{2+}$-dependent PLA$_2$s (3, 11) and that has no effect on the AA-reacylating enzymes arachidonoyl-CoA synthetase, CoA-dependent acyltransferase, and CoA-dependent transacylase (9). Using this inhibitor, we previously demonstrated that P388D1 cell iPLA$_2$ largely regulates AA esterification via phospholipid remodeling by providing the acceptor lysophospholipid used in the reaction (9). Now we have found that BEL also inhibits incorporation of AA into TAG, and that this is due to inhibition of the Mg$^{2+}$-dependent PA phosphohydrolase (PAP-1) present in these cells, an enzyme that converts PA into diacylglycerol (DAG). Although the finding that BEL blocks PAP-1 does not affect our previous conclusion that iPLA$_2$ is responsible for basal phospholipid remodeling (9), it does raise the possibility that some other biological functions assigned to iPLA$_2$ on the sole basis of sensitivity to BEL (for review, see Ref. 12) may actually be due to PAP-1.

EXPERIMENTAL PROCEDURES

Materials—Murine P388D1 cells were obtained from the American Type Culture Collection (Rockville, MD). Iscove’s modified Dulbecco’s medium (endotoxin, <0.05 ng/ml) was from Whittaker Bioproducts.

* This work was supported by Grants HD 26,171 and GM 20,501 from the National Institutes of Health. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Supported in part by a Postdoctoral Fellowship from the American Heart Association, California Affiliate.

§ To whom correspondence should be addressed: Dept. of Chemistry and Biochemistry, Revelle College and School of Medicine, University of California, La Jolla, CA 92039-0601.

1 The abbreviations used are: PLA$_2$, phospholipase A$_2$; AA, arachidonic acid; BEL, bromoenol lactone; DAG, 1,2-diacylglycerol; NEM, N-ethyl maleimide; PAP, phosphatidic acid phosphohydrolase; PAP-1, Mg$^{2+}$-dependent phosphatidic acid phosphohydrolase; PAP-2, Mg$^{2+}$-independent phosphatidic acid phosphohydrolase; iPLA$_2$, Ca$^{2+}$-independent phospholipase A$_2$; PA, phosphatic acid; TAG, triacylglycerol; CHAPS, 3-[3-cholamidopropyl]dimethylammonio-1-propanesulfonic acid.
BEL Inhibits Mg2+-dependent Phosphatidate Phosphohydrolase

(Walkersville, MD). Fetal bovine serum was from HyClone (Logan, UT). Nonadherent cells were from DSMZ (Braunschweig, Germany). The following were from Sigma: Silica Gel G-60 TLC plates were from Analtech (Newark, DE). Organic solvents (analytical grade) were from Baker (Phillipsburg, NJ) or Fisher. The iPLA2 inhibitor BEL was synthesized in our laboratory by Dr. K. Conde-Friebœs (13).

Cell Culture—P388D1 cells were maintained at 37°C in a humidified atmosphere containing 90% air and 10% CO2 in Iscove's modified Dulbecco's medium supplemented with 10% fetal bovine serum, 2 mM glutamine, and 100 units/ml penicillin, 100 μg/ml streptomycin, and nonessential amino acids. Cells were plated at 10⁵ cells/100-mm well in 6- or 12-well plastic culture plates, allowed to adhere overnight, and used for experiments the following day. All experiments were conducted in serum-free Iscove's modified Dulbecco's medium.

Measurement of [3H]AA and [3H]palmitic acid incorporation into Cellular Phospholipids—P388D1 cells were incubated for 30 min to 60 min before exposure to [3H]AA (10 μM, 0.5 μCi/ml) or [3H]palmitic acid (10 μM, 0.5 μCi/ml). When BEL-treated cells were used, they were incubated for 30 min with the indicated concentrations of inhibitor, washed, and overlaid with fresh medium containing the radioactive fatty acid. At the indicated times, supernatants were collected, and the cell monolayers were scraped twice with 0.5% Triton X-100, and total lipids were extracted according to the method of Bligh and Dyer (14). Lipids were separated by thin layer chromatography using the system complaining hexane/acetic acid/water (70:30:1, v/v/v). This system allows a good resolution among phospholipids, triglycerides, and free fatty acids. At the indicated times the reaction was stopped, and [3H]PA and [3H]DAG labeled PA was presented as mixed micelles with Triton X-100 at a concentration of 20 μg/ml.

RESULTS

Effect of BEL on AA Incorporation into TAG—Previous work from this (9, 10) and other laboratories (19, 20) has demonstrated that an important factor that controls the incorporation of AA into the different cellular lipids is the concentration of available free fatty acid. At low, nanomolar levels of free AA, the fatty acid is incorporated almost exclusively into phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, which occur via decylation-reacylation reactions (9). No AA is incorporated into PA or neutral lipids (9). In contrast, at high, micromolar levels of AA, abundant incorporation of fatty acid occurs via the de novo pathway, which ultimately leads to accumulation of AA in TAG (10, 19, 20). However, even at these high levels of free fatty acid, the preferred pathway for AA incorporation into phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol still appears to be the phospholipid-remodeling pathway (10). Thus, an important yet unresolved question is whether the two routes are linked, i.e. whether a precondition for AA incorporation into the de novo pathway to occur is that AA incorporation via phospholipid remodeling reaches saturation (2, 10). We hypothesized that this question could be assessed by studying AA incorporation into TAG (i.e. de novo pathway) (10) in BEL-treated cells, wherein AA incorporation via phospholipid remodeling is blocked (9). Fig. 1 shows the effect of BEL on the incorporation of exogenous AA (10 μM) into the lipids of P388D1 cells. In agreement with our previous results (10), the bulk of AA esterified under these concentrations was found in TAG, not in phospholipids. Unexpectedly, preincubation of the cells with 25 μM BEL for 30 min before addition of exogenous AA resulted in inhibition of fatty acid incorporation not only into the major glycerophospholipid classes, such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, but also into DAG and TAG (Fig. 1). In contrast, AA incorporation into PA was enhanced (Fig. 1).

Effect of BEL on PAP Activity of P388D1 Cells—The above results suggested that BEL blocks an event in the de novo biosynthetic route that is upstream of DAG production. Thus, we proceeded to examine the effect of BEL on the four enzyme activities that participate in the de novo pathway of glycerolipid synthesis, i.e. glycerol-3-phosphate acyltransferase, lysophosphatidyl-CoA acyltransferase, PAP, and DAG-acyl-CoA acyltransferase. Only PAP activity was inhibited by BEL (Fig. 2). For the experiments depicted in Fig. 2, BEL was added directly to the assay mixture. However, such an approach does not assure that the observed inhibitory effects of BEL are physiologically relevant in the intact cells. To overcome this problem, PAP activity was also measured in homogenates from BEL-treated cells. Thus, before preparing the homogenates that would serve as a source of enzyme, the cells were pre-treated with the indicated concentrations of BEL for 30 min. The dose dependence curve obtained was very similar to that found when BEL was added directly to the assay mixture (cf. Figs. 2D and 3), i.e. saturation of inhibition at concentrations

Data Presentation—Experiments were carried out in duplicate or triplicate. Each set of experiments was repeated at least three times with similar results. Unless otherwise indicated, data are shown as means ± S.E. of at least three different experiments. Error bars are not shown when they are smaller than the symbol size.
above 25 μM and an IC₅₀ of about 8 μM. Importantly, the IC₅₀ for PAP inhibition by BEL in intact cells is very similar to that previously found for inhibition of cellular iPLA₂ under the same experimental conditions (7 μM; Ref. 9).

Effect of BEL on Palmitic Acid Incorporation into the Lipids of P388D₁ Cells

For the sake of comparison, we also studied the effect of BEL on the incorporation of palmitic acid into the lipids of P388D₁ macrophages (Fig. 4). Unlike AA, palmitic acid entry into phospholipids and neutral lipids takes place mainly via de novo reactions (6–8). In accord with this, BEL severely impaired incorporation of this fatty acid into DAG and TAG (Fig. 4). Interestingly, although AA incorporation into phospholipids was also strongly blunted by BEL (75–85%; Fig. 1), palmitic acid incorporation into phospholipids was only slightly affected (10–20%) by the inhibitor (Fig. 4). Dose-response measurements of the specific products into which palmitic acid was incorporated revealed that the slight inhibitory effect of BEL was due to a decreased labeling of phosphatidylcholine and phosphatidylethanolamine that was partially offset by an increased labeling of PA (Fig. 5). Labeling of phosphatidylinositol was not significantly affected by BEL (Fig. 5).

BEL Selectively Blocks Mg²⁺-dependent PAP Activity

BEL activity exists in two distinct forms in mammalian cells. The first one, designated PAP-1, is a Mg²⁺-dependent, cytosolic activity that is inhibited by NEM. The second, PAP-2, is a Mg²⁺-independent, membrane-bound activity that shows no sensitivity to NEM (for review, see Ref. 21). Based on these biochemical properties, differential assays were performed to identify which...
BEL Inhibits Mg2+-dependent Phosphatidate Phosphohydrolase

Fig. 5. Dose dependence of the effect of BEL on the levels of \([^{3}\text{H}]\)palmitic acid-containing lipids. The cells, preincubated for 30 min with the indicated BEL concentrations, were exposed to 10 \(\mu\text{M}\) \([^{3}\text{H}]\)palmitic acid (0.5 \(\mu\text{Ci}) for 10 min. The \(\text{H}\) radioactivity incorporated into the different lipid classes was determined as described under “Experimental Procedures” and is expressed as a percentage of the radioactivity originally present in the media.

of the two PAP forms was inhibited by BEL. PAP-2 was assayed using membrane fractions obtained after ultracentrifugation of the cell homogenates at 39,000 rpm for 60 min in a Ti-50 rotor. The assays were carried out in the absence of MgCl\textsubscript{2} and in the presence of 3 mM EDTA and 1 mM EGTA. The substrate \([^{3}\text{H}]\)glycerol-labeled PA was presented as mixed micelles with Triton X-100 at a detergent/phospholipid mole ratio of 10:1. Confirming that under these conditions only PAP-2 was being measured, PAP activity was not affected if the membrane fraction was treated with 8 mM NEM for 10 min before adding the substrate (Fig. 6). Interestingly, PAP-2 activity was unchanged by the presence of 25 \(\mu\text{M}\) BEL in the assay mixture (Fig. 6).

PAP-1 activity was assayed using cytosolic fractions, and the assays contained 3 mM MgCl\textsubscript{2} (plus 1 mM EGTA and 1 mM EDTA). The substrate was presented as mixed micelles composed of PA/Triton X-100 at a mole ratio 10:1.2 PAP activity in the cytosolic fraction used was inhibited up to 80% by 8 mM NEM, indicating the presence of small amounts of PAP-2 in this fraction (Fig. 6). Inclusion of 25 \(\mu\text{M}\) BEL in the assays led to the same degree of inhibition as that observed for NEM, i.e. 80%. Thus, BEL completely inhibits PAP-1 activity, and the 20% BEL-insensitive PAP activity in this fraction corresponds to the contaminating PAP-2. Collectively, the results from Fig. 6, showing differential effects of BEL on the Mg2+-dependent and -independent PAPs, likely explain the lack of total inhibition observed when whole cell homogenates were used as the enzyme source (Figs. 2 and 3).

DISCUSSION

The results presented in this paper demonstrate that, besides inhibiting iPLA\textsubscript{2} (10), BEL also blocks PAP in P388D\textsubscript{1} macrophage-like cells. The inhibition of PAP activity by BEL in intact cells has an IC\textsubscript{50} of 8 \(\mu\text{M}\), which is almost identical to that previously found for the inhibition of iPLA\textsubscript{2} by BEL under the same experimental conditions (10). However, concentrations of BEL higher than 25 \(\mu\text{M}\) completely inhibit cellular PAP activity (10), whereas complete inhibition of cellular PAP was not reached at 50 \(\mu\text{M}\) BEL. At these BEL concentrations, cellular PAP activity was inhibited by about 70%. However, mammalian cells contain two completely different types of PAP activity (for review, see Ref. 21). The first one, designated PAP-1, is a Mg2+-dependent enzyme, and the other form, designated PAP-2, has no such a requirement. PAP-1 is cytosolic and translocates to the endoplasmic reticulum, whereas PAP-2 is an integral plasma membrane protein. Moreover, PAP-1 is sensitive to NEM and other sulfhydryl group reagents, whereas PAP-2 is insensitive to these reagents (21).

Taking advantage of these biochemical differences, it was possible to perform assays that could distinguish between the two PAP activities. By doing so, we have found that BEL selectively blocks PAP-1 but has no effect on PAP-2.3 Thus, these differential effects on the Mg2+-dependent and -independent PAPs may explain the lack of 100% inhibition of cellular PAP activity by BEL.

BEL is a suicide inhibitor, which means that the enzyme has to first act on the compound for the inhibitory species to be produced. In the case of BEL, this is achieved by enzymatic rupture of the lactone ring present in the molecule (23). PAP-1 is a phosphomonoesterase, not an acyl esterase. Therefore, it would not be surprising if the inhibition of PAP-1 by BEL is not the result of an irreversible covalent modification, as might be expected from previous studies with the iPLA\textsubscript{2} (13).

PAP-1 has long been thought to be involved in phospholipid biosynthesis (21). Consistent with this notion, we have found that inhibition of PAP-1 by BEL leads to a strong reduction of DAG and TAG synthesis by the P388D\textsubscript{1} cells. On the other hand, PAP-1 is also known to play a key role in receptor-mediated intracellular signaling (21). PAP, acting on the PA produced by either receptor-activated phospholipase D or de novo synthesis, induces a delayed elevation of cellular DAG levels, which may mediate sustained cellular responses (21). Although it appears likely that PAP-2 is the enzyme primarily involved in intracellular signaling (24), a role for PAP-1 in these events is possible as well, especially in those cases in which the phospholipid biosynthetic route does contribute to receptor-mediated DAG elevations (21, 25–27). Thus, the fundamental aspect of our observation that BEL similarly affects iPLA\textsubscript{2} and PAP-1

2 Triton X-100 has been reported to severely inhibit PAP-1 under certain experimental conditions (17). In agreement with the results by Day and Yeaman (15), from whom our PAP assay was adapted, PAP-1 activity was higher if measured with PA and Triton X-100 mixed micelles than with pure PA vesicles.

3 We have found that BEL partially inhibits (60–70%) a pure Mg2+-dependent PAP from yeast (microsomal 104-kDa isoform) (22). However, it is not known how similar the yeast PAP is to the P388D\textsubscript{1} cell PAP-1.
in intact cells is that, where a role for iPLA₂ in a given cellular process has been attributed on the sole basis of its inhibition by BEL, a role for PAP-1 must also be considered. An example of this may be the regulation of AA release in agonist-stimulated cells. Based on sensitivity to BEL, a number of studies have suggested a major role for the iPLA₂ in receptor-mediated AA release in certain cell types (28–35). However, only in a few of these studies, involvement, either direct or indirect, of DAG in the response was examined.

DAG can influence receptor-mediated AA release in at least two different ways. In the first, DAG itself may serve as a substrate for AA release through the sequential action of DAG and monoacylglycerol lipases (34). Although the amount of AA released by the DAG deacylation pathway may not be significant in certain cell types, there are some examples in which a role for this pathway has been established. For instance, Konrad et al. (35) have provided evidence of the involvement of the DAG lipase pathway in AA release in glucose- and carbachol-stimulated pancreatic islets. In stark contrast with these data, Ramanadham et al. (28) proposed iPLA₂ as the major mediator of AA release in this same system, on the basis of inhibition of the response by BEL. The studies reported in this article might help explain this discrepancy if, besides iPLA₂, BEL was inhibiting DAG generation in the studies by Ramanadham et al. (28).

DAG may also be involved in regulating stimulus-induced AA release indirectly, by activating protein kinase C. The key regulatory role that protein kinase C exerts on receptor-coupled AA release has been clearly established in a wide variety of cell types with many different agonists (36). Based on the results reported here, it cannot be ruled out that BEL, by inhibiting PAP-1, may act to lower intracellular DAG levels and consequently to blunt protein kinase C activation. This in turn could reduce PLA₂ activation and hence AA release (36).

Despite these complications in the use of BEL, there are studies that have used BEL to assign a role for iPLA₂ in AA release in which the conclusions are likely correct, because confirmatory evidence was provided by other approaches, e.g. the use of Ca²⁺–depleted cells to demonstrate that AA release is truly a Ca²⁺–independent process (32). Furthermore, when BEL has been used to study the role of iPLA₂ in processes that are not affected by variations in DAG levels, the conclusions have remained valid. That is the case for AA remodeling into the phospholipids of resting P388D1 cells via reacylation-deacylation reactions (9). This process, independent of DAG, is regulated by a PLA₂ that we have identified as the iPLA₂ on the basis of: (i) the calcium–independent nature of the response; (ii) the correlative inhibition by BEL of endogenous iPLA₂ activity, steady-state levels of lysophospholipid, and AA incorporation into phospholipids; and (iii) the inhibition of AA incorporation into phospholipids by palmitoyl trifluromethyl ketone, another iPLA₂ inhibitor that is structurally unrelated to BEL but protects against BEL inhibition by binding at the same site (9, 10, 37).

In conclusion, the present studies demonstrate inhibition by BEL of PAP-1, a key enzyme in glycerolipid metabolism, and identify one functional sequel of the inhibition of DAG production by BEL, i.e. the reduction of AA accumulation into TAG. The latter process is thought to represent a homeostatic mechanism that either protects the cells from extremely high concentrations of AA or recaptures AA released intracellularly during conditions in which massive PLA₂ activation occurs (2, 38). Moreover, AA incorporation into TAG is associated with changes in the morphology of the cells (39) and constitutes an important step in the chain of reactions leading to remodeling and redistribution of AA among cellular compartments (19, 20, 38, 39). Thus the current studies establish that the effect of BEL on cellular phospholipid metabolism is not limited to inhibition of deacylation reactions catalyzed by iPLA₂ but is more complex and also involves reduction of cellular DAG levels.

Acknowledgments—We thank Dr. María Angeles Balboa for reading the manuscript and Dr. George Carman (Rutgers University) for generously providing us with pure yeast PAP.

REFERENCES

1. Dennis, E. A. (1994) J. Biol. Chem. 269, 3087–3090
2. Fluharty, F. H., Fonté, A. N., Surette, M. E., Triglia, M., and Winkler, J. D. (1996) Biochim. Biophys. Acta 1299, 1–5
3. Balasinde, J., and Dennis, E. A. (1996) J. Biol. Chem. 271, 6758–6765
4. Balsinde, Fernández, I., Solis-Herruzo, J. A., and Diez, E. (1992) Biochim. Biophys. Acta 1136, 75–82
5. Balasinde, J., Fernández, B., and Solis-Herruzo, J. A. (1994) Eur. J. Biochem. 221, 1013–1018
6. Dennis, E. A. (1992) Methods Enzymol. 209, 1–4
7. Lands, W. E. M., and Crawford, C. G. (1976) in The Enzymes of Biological Membranes (Martonosi, A., ed.) Vol. 2, pp. 3–45, Plenum Press, New York
8. Balasinde, J., Barbour, S. E., Bianco, I. D., and Dennis, E. A. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 11060–11064
9. Balasinde, J., Bianco, I. D., Ackermann, E. J., Conde-Friebies, K., and Dennis, E. A. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 8527–8531
10. Balasinde, J., and Dennis, E. A. (1996) Eur. J. Biochem. 235, 480–485
11. Hazen, S. L., Zopan, L. A., Weiss, R. H., Getman, D. P., and Gross, R. W. (1991) J. Biol. Chem. 266, 7227–7232
12. Ackermann, E. J., and Dennis, E. A. (1995) Biochim. Biophys. Acta 1259, 125–136
13. Ackermann, E. J., Conde-Friebies, K., and Dennis, E. A. (1995) J. Biol. Chem. 270, 445–450
14. Bligh, E. G., and Dyer, W. J. (1959) Can. J. Biochem. Physiol. 37, 911–917
15. Day, C. P., and Yeaman, S. J. (1992) Biochim. Biophys. Acta 1127, 87–94
16. Balasinde, J., Balsinde, J., Dennis, E. A., and Insel, P. A. (1995) J. Biol. Chem. 270, 11738–11740
17. Jamal, Z., Martin, A., Gómez-Muñoz, A., and Brindley, D. N. (1991) J. Biol. Chem. 266, 2988–2996
18. Lehner, R., and Kukis, A. (1995) J. Biol. Chem. 270, 13630–13636
19. Blank M. L., Smith, Z. L., and Snyder, F. (1992) Biochim. Biophys. Acta 1124, 262–272
20. Blank M. L., Smith, Z. L., and Snyder, F. (1993) Biochim. Biophys. Acta 1170, 275–282
21. Martin, A., Gómez-Muñoz, A., Duffy, P. A., and Brindley, D. N. (1994) in Signal Activated Phospholipases (Lisovitch, M., ed.) pp. 139–164, Landes Co., Austin, TX
22. Morlock, R. K., McLaughlin, J. J., Lin, Y. P., and Carman, G. (1991) J. Biol. Chem. 266, 3586–3590
23. Daniels, S. B., Coney, E., Sohia, M. J., Chakravarty, P. K., and Katzenellenbogen, J. A. (1985) J. Biol. Chem. 258, 15046–15053
24. Brindley, D. N., and Waggoner, D. W. (1996) J. Biol. Chem. 271, 1029–1042
25. Lennartz, M. R., Lefkowith, J. B., Bromley, F. A., and Brown, E. J. (1993) J. Cell. Physiol. 156, 389–398
26. Kester, M. (1993) J. Cell. Physiol. 156, 317–325
27. Ramanadham, S., Gross, R. W., Han, X., and Turk, J. (1993) Biochemistry 32, 337–346
28. Ramanadham, S., Gross, R. W., Han, X., and Turk, J. (1993) Cell. Membranes 1259, 13284–13294
29. Kester, M. (1993) J. Biol. Chem. 268, 15638–15643
30. Konrad, R. R., Major, C. D., and Wolf, B. A. (1994) Biochemistry 33, 13284–13294
31. Ichihara, Y. (1995) FASEB J. 9, 484–496
32. Balasinde, J., and Dennis, E. A. (1996) in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury (Hohn, K. V., Nigam, S., and Wong, P. F. K., eds.) Plenum Press, New York, in press
33. Triglia, M., Oriente, A., and Marone, G. (1994) J. Immunol. 152, 1394–1403
34. Triglia, M., Oriente, A., Seeds, M. C., Bass, D. A., Marone, G., and Chilton, F. H. (1995) J. Exp. Med. 182, 1181–1190
