First results from a multiplexed and massive instrument with sub-electron noise Skipper-CCDs

F. Chierchiea,b,\textasciitilde C.R. Chavezc,b,d M. Sofo Haroe G. Fernandez Moronie B.A. Cervantes-Vergarac,f S. Perezg,c J. Estradac J. Tiffenbergc S. Uemurac and A. Bottic

aInstituto de Investigaciones en Ingeniería Eléctrica “Alfredo C. Desages” CONICET, Bahía Blanca, Argentina
bUniversidad Nacional del Sur (UNS), Bahía Blanca, Argentina
cFermi National Accelerator Laboratory (FERMILAB), Batavia, IL 60510, U.S.A.
dFacultad de Ingeniería, Universidad Nacional de Asunción, Asunción, Paraguay
eInstituto de Física Enrique Gaviola (CONICET) and Reactor Nuclear RA0 (CNEA), Universidad Nacional de Córdoba, Córdoba, Argentina
fUniversidad Nacional Autónoma de México, Ciudad de México, México
gUniversidad de Buenos Aires, Buenos Aires, Argentina

E-mail: fernando.chierchie@uns.edu.ar

ABSTRACT: We present a new instrument composed of a large number of sub-electron noise Skipper-CCDs operated with a two stage analog multiplexed readout scheme suitable for scaling to thousands of channels. New, thick, 1.35 Mpix sensors, from a new foundry, are glued into a Multi-Chip Module (MCM) printed circuit board on a ceramic substrate which has 16 sensors each. The instrument, that can hold up-to 16 MCMs, a total of 256 Skipper-CCD sensors (called a Super-Module with \approx 130 grams of active mass and 346 Mpix), is part of the R&D effort of the OSCURA experiment which will have \approx 94 super-modules. Experimental results with 10 MCMs and 160 Skipper-CCD sensors are presented in this paper. This is already the largest ever built instrument with single electron sensitivity CCDs using nondestructive readout, both, in terms of active mass and number of channels.

KEYWORDS: Dark Matter detectors (WIMPs, axions, etc.); Front-end electronics for detector readout; Neutrino detectors; Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc)

\textasciitildeCorresponding author.

22210.16418v2

\textasciitildeCorresponding author.
1 Introduction

The Skipper Charge-Coupled Device (Skipper-CCD) with nondestructive output readout stage can achieve single electron sensitivity allowing to count the exact number of electrons deposited in each pixel [1, 2]. This feature has driven its use in many experiments with various different objectives, from dark matter (DM) searches [3, 4], reactor neutrino experiments [5], measurement of properties of silicon [6, 7], spectrograph instruments [8] and is now being considered by NASA as a detector for a future space telescope for habitable exoplanets searches [9].

To increase the sensitivity of the experiments the active mass, and therefore the number of sensors, should be increased significantly. There are instruments with a large number of standard scientific CCDs (noise above one electron). For example, the Dark Energy Camera (DECam) for the Dark Energy Survey has 496 Mpix using 62 2k×4k CCDs (15 × 15 μm² pixels, 250 μm thick) with 124 video channels (additionally 12 2k×2k CCDs are used for guiding and focus) [10], for a total mass of 60 grams. The CONNIE experiment [11] instrumented 224 Mpix using 14 4k×4k standard CCDs (15 μm pixels, 675 μm thick) with 28 video channels, for a total mass of 80 grams for research in nuclear reactor neutrinos. The DAMIC experiment [12] instrumented 119 Mpix using 7 4k×4k standard CCDs (15 μm pixels, 675 μm thick), for a total mass of 40 grams for DM search. The world’s largest camera for astronomy, the LSST (Legacy Survey of Space and Time) camera [13, 14], currently under construction, has 3.2 Gpix using 189 4k×4k CCDs (10 μm pixels, 100 μm thick as described in [15]) with a total of 3024 video channels, 70 grams of active mass and a performance goal of 5 electrons of noise.

All the aforementioned instruments use standard scientific CCDs with noise in the range of a few electrons and without the nondestructive readout characteristic. There are also experiments that will reach a large mass of single electron resolution Skipper-CCDs when fully instrumented, such as SENSEI (100 grams) [3] and projected instruments such as DAMIC-M (1 kg) [4]. The OSCURA experiment [16] will be the largest instrument using Skipper-CCDs: 10 kg of active sensor mass, ≈ 24000 channels, and ≈ 28 Gpix for DM search. As part of this effort, we present in this paper the largest ever
Figure 1. Block diagram of the multiplexed architecture capable of controlling and reading up to 256 Skipper-CCDs. Red lines indicate the path of video signals and blue lines illustrate the CCDs clock signals, bias voltages and frontend control signals.

build instrument with single electron sensitivity Skipper-CCDs using nondestructive readout, both, in terms of active mass and number of channels. A pile-up technique [17] with analog multiplexed [18] frontend and new prototype Skipper-CCDs from a new foundry are used for this instrument [19].

The organization of this paper is as follows: in section 2 the sensors, packaging and electronics of the instrument are described. In section 3 experimental results are presented performing an individual calibration using the single electron peak and showing subelectron noise operation of the array. Also, results of the first energy spectrum of the interactions measured by combining the data of the best sensors in the array, with an exposure of 0.06 kg×day, are presented. Finally a summary is presented in section 4.

2 Description of the instrument

In this section we present the main components of the experimental setup (hereinafter referred to as the instrument) which include: a new sensor package that holds and routes the signals for 16 Skipper-CCDs, called MCM, the analog multiplexed frontend electronics, a vacuum interface board (VIB), which has a second multiplexing stage, and the readout controller with expanded capabilities.

A block diagram of the system can be seen in figure 1 and photographs of different parts of the instruments are shown in figure 2. The vacuum vessel detailed in figure 2a), has two main volumes, a cylinder at the top which holds a copper box with copper trays to hold 16 modules with 16 sensors each, as seen in figure 2b) and left box in figure 1), and a box at the bottom where the frontend electronics, shown in figure 2c), is connected to the vacuum interface board (VIB). Outside the vessel, the Low Threshold Acquisition Controller (LTA) [20] with an expansion board, developed for this instrument, is used to generate all the clocks and reference voltage required to operate the array of Skipper-CCDs and also to digitize the pixels values. A cryocooler is used to operate the sensors at temperatures between 130 and 160 Kelvin cooling down the copper box and trays (145 Kelvin
is the default temperature). The MCM was designed to include an RTD temperature sensor glued to the substrate and the flex cable has 4 wires dedicated to this RTD. For these results those RTDs sensors were not populated in each MCM and only one RTD was mounted on the cooper box that holds the MCMs to sense and control the temperature. As shown in the block diagram of figure 1, all the frontend boards share the digital control signals and the MCMs share the CCDs clock signals and bias voltages (blue lines). Each of the 16 MCMs has it own frontend board that includes the first multiplexing stage. The VIB has the second multiplexing stage and is connected from the outside to the LTA expansion board, video lines are shown with red lines.

2.1 New sensors and Multi-Chip Module Package

Since the first development of the Skipper-CCD operating with deep sub-electron noise [1, 2], the sensors were fabricated at Teledyne DALSA (150 mm wafers). Due to plans for stopping the production line required for thick fully depleted CCDs, the OSCURA project has fabricated the first run of new prototype sensors, designed at Lawrence Berkeley National Laboratory, LBNL and adapter for Microchip Technology Inc in 200 mm diameter wafers. For details of the individual performance of these new sensors see [19]. The Skipper-CCDs adopted for OSCURA are thick (675
to 725 μm) sensors with 1278 rows and 1058 columns given a total of 1.35 Mpix per sensor. Each sensor is readout using one out of the four available amplifiers. The small sensors area guarantees a high yield: indeed larger sensors are prone to fabrications defects. Moreover, having smaller sensors allows a higher readout speed (smaller number of pixels to be readout per amplifier), required to reduce the dark-current rate which is proportional to the exposure plus readout times.

Sixteen sensors are assembled in a single MCM module. The printed circuit board is a single layer in a ceramic substrate (96% Al₂O₃) of 0.635 mm thickness. The traces are made of copper 34.8 μm thick with a surface finishing of ENEPIG. This ceramic offers electrical isolation and a good thermal conductivity for cooling down the sensors, which are glued on top of the copper traces using an epoxy. The flex cable is also glued to the ceramic and all connections, to the flex, to the sensors and between traces are made by wire-bonds. Figure 3 shows a photograph of the MCM where the traces, 16 sensors, flex cable and some test structures are observed. The cable was designed for the MCMs and for this instrument specifically. It has 41 tracks, all in a single layer and a ground plane which is not being connected on the current MCM design. A 68-pin connector is used on the front-end electronics side of the flex. The length and connector of the flex cables will be modified for the final OSCURA experiment. A smaller connector is being considered and the fabrication of a low radioactivity flex cable is part of the R&D of the OSCURA collaboration [21]. Also, R&D efforts are being made to replace the ceramic substrate with a silicon substrate which will be of the same quality as the one used to produce the sensors, the silicon substrate is not used in this paper. This will reduce the radioactivity and lower any possible background signal produced by the contamination in the substrate material, as will be shown in the experimental measurements. Further details on the silicon radioactive contamination and activation can be found in [22] and about the impact and plans for OSCURA experiment in [16].
2.2 Electronics

The MCM has no active electronics other than the output transistors in the CCD sensors. The flex cables are routed to the bottom of the vessel (see figure 2), and connected to the frontend electronics board. There is one frontend board for each MCM (see figure 2c)) as also indicated schematically in the block diagram of figure 1. This board has sixteen analog channels, one per sensor, to compute the pixel values and an analog multiplexer to read one channel at a time. The analog processing chain of each channel consists of: a preamplifier (gain 5) and an analog integrator circuit that implements a novel pile-up technique, which adds up independent measurements of the same pixel charge (skipper samples) into the integrator’s capacitor [17]. The gain of the preamplifier was defined as a trade-off between the noise and dynamic range. A higher gain could saturate the integrator. If low pile-up is used a higher gain could be implemented.

The pile-up technique highly reduces the data rate because only the final averaged pixel value is readout. The user could decide to use or not the technique by defining the sequencer of the LTA controller. It is possible to just do each individual measurement of the same pixel charge packet with the integrator, without using the pile-up technique, digitally sampling each measurement and averaging the results in the computer (as usually done with the LTA controller [20]). Other intermediate approaches are possible, for example: pile-up an intermediate number of samples, then digitizing, and pile-up another set of samples of the same charge packet. Doing intermediate number of pile-ups for the same charge packet would require more analog multiplexing and ADC use.

The final stage in each channel is a sample and hold circuit, that could be used to store the pixel value before ADC conversion. Details of the operation, capabilities and advantages of using this frontend circuit were reported in [18].

The other side of the frontend electronics is connected to a new-designed VIB. In the vacuum side, this VIB has sixteen 68-pin connectors for all the required frontend boards (see figure 2c)). On the outside, the VIB has a second stage of analog multiplexing and a 50 pin connector which is enough to route all the control signals for the frontend, two multiplexing stages, CCD clock signals, CCD reference voltages and a single multiplexed video line.

The LTA, which has 4 fully digital video channels, and was originally designed to read a single, four channel CCD, was used for readout and control of the sensors and frontend electronics. Only a single channel and ADC of the LTA is necessary for this instrument. An expansion board was designed and firmware modifications were made to be able to sequence additional clock signals required to control the analog switches of the frontend and the control signals of the two stage multiplexing. With these upgrades, the full instrument could be controlled using a single LTA. The expansion board also includes high current buffer for the vertical transfer clocks of the CCDs, in case they are required, and a video offset correction circuit with a low noise reference voltage that could be used to center the output into the ADC converter range. It also allows the use of external power supplies for any reference voltage that could exceed the output current capabilities of the LTA.

A clock sequencer to control the 256 channel system was programmed. Readout of all the skipper CCD sensors is synchronized because the control signals (CCDs’ clocks) are the same for all of them. This is the usual practice in large CCDs arrays because otherwise, non-synchronized readouts, could results in large interference between sensors impacting the noise. A single multiplexed image is generated by the software in each acquisition and a post processing script is used to demux and generate one 16-channel image per MCM.
3 Measurements and experimental results

The instrument is partially loaded with 10 MCMs, i.e. a total of 160 sensors, this is already the largest array of single electron sensitivity Skipper-CCDs ever built with 84 grams of active sensors. The total power delivered to the 10 frontend boards and LTA expansion board is 31.8 Watts. An external power supply for the polarization of the output transistors of the CCDs was used due to the large amount of amplifiers (≈ 0.63 mA per amplifier), which exceeds the capability of the LTA controller. All other clocks and bias voltages, including the 70 V substrate voltage to fully deplete the sensors, are provided by the LTA.

Figure 4 shows an image with 160 sub-images of a fraction of each sensor active area after a few minutes of exposure. Around 80×240 pixels per image was chosen as a compromise between size and resolution to be able to distinguish traces produced by cosmic rays interaction. There is no special order in this arrangement. Most of the channels show tracks produced by muons and electrons from cosmic rays. There was no preselection or pretesting of the sensors before gluing them into the MCMs. A few malfunctioning sensors were disconnected (by removing the wire-bonds), these were sensors with critical issues, like a short circuit, that could affect the functioning of an entire MCM. Other sensors, with non-optimal performance, for example with higher noise, were kept connected. The sensor yield is being evaluated as part of the efforts of the OSCURA collaboration. Because each sensors has four amplifiers, the yield is measured in terms of the number of amplifiers working (able to see cosmic rays interaction) and in terms of the ability of the channel for single electron resolution performance. The yield for working amplifiers is very high: around 95% and the yield for single electron resolution is 75% measured in more than 250 channels. These are very promising numbers for the first production batch in a new foundry and taking into account that several doping levels of backside and buried channel implant are being tested for performance optimization to have the final sensor design for science use [19].

Figure 5 shows a detailed view of a full image acquired by one MCM. The 16 sub-images are arranged in the positions and with the separations that the sensors have in the physical array (see figure 3). Cosmic rays interactions are seen in all the channels, some of the tracks produced by muons (straight lines) cross more than one sensor, for example as seen in the images produced by the sensors of the first and second row of the last column.
Figure 5. Full image of a single MCM with 16 sensors. Each sub-image corresponds to a 1.35 Mpix Skipper-CCD, and is separated from the neighbors by the space in the physical arrange, as seen in figure 3. Muons crossing more than one sensor can be appreciated. The color scale in this image was inverted compared to figure 4.

3.1 Single electron operation and calibration

The gain or conversion factor between the charge deposited in the pixel (in units of \(e^-\)) and the number of digital to analog converter units (ADU) is given by [18]

\[
G[\text{ADU/}e^-] = kAN \left(\frac{t_i}{R \times C} \right) S
\]

(3.1)

where: \(S \text{ [}\mu\text{V/}e^-\text{]}\) is the sensitivity of the sense node in the CCDs (usually in the range between 1.2 and 2.5 \(\text{[}\mu\text{V/}e^-\text{]}\)), \(R = 2000 \Omega\) and \(C = 18 \text{nF}\) are the resistor and capacitor of the integrator circuit in the frontend electronics, \(t_i\) is the integration time interval during the pedestal and signal periods of the video signal (\(t_i = 10 \mu\text{s}\) was used for this paper), \(N\) is the number of times the charge
in each pixel is measured (Skipper samples) using the pile-up technique. \(A = 16.5 \, [V/V] \) is the total amplification gain (5 in the preamplifier and 3.3 in the LTA) and \(k = 0.128 \, [ADU/\mu V] \) is the ADC conversion factor. With a sensitivity of 1.7 \([\mu V/e^-]\) the theoretical gain in (3.1) can be computed and dividing it by \(N \) gives the nominal single-sample gain of \(G/N \approx 1 \, [ADU/(N \times e^-)] \).

An image was acquired with \(N = 400 \) and \(t_i = 10 \, \mu s \) and a histogram of a subset of the pixels in the active area (around 10000 pixels) was computed for each of the MCMs and for each of the channels, the results are shown in figure 6. The gain of each channel was calibrated by fitting a Gaussian to the 0 \(e^- \) electron peak and 1 \(e^- \) which are the two peaks with higher amplitude. These gains \(G[ADU/e^-] \) for each channel are used to calibrate all other measurements in this work. The average noise of the channels is about 0.175 \(e^- \) and the minimum noise is 0.16 \(e^- \). To automatically choose the channels without any bias in the selection, a threshold of 0.22 \(e^- \) was used to discard bad sensors with a performance 25\% worst than the average performance. Also, the gain of each channel was verified to be deviated less than 25\% of the mean gain. The peaks produced by the charge

![Figure 6. Histograms of pixels for each of the MCMs and channels for an acquisition with \(N = 400 \) samples per pixel and pixel integration time of \(t_i = 10 \, \mu s \).](image-url)
Figure 7. Noise in e^- as a function of the number of samples per pixel N for all the MCMs and channels. The two histograms at the right bottom show the gain and noise computed for $N = 400$.

Quantization and the sub-electron noise of the sensors are clearly observed. These measurements show the capability of the instrument for achieving the same noise performance that was previously obtained for a single sensor (or a few of them) but with hundreds of Skipper-CCDs. As expected by the previously explained yield, a few sensors deviate from the ideal performance either showing slightly reduced gain (or just showing the $0 e^-$ peak) or higher noise, but most of the sensors show a very homogeneous performance noted by the superimposed histograms in figure 6.

Figure 7 shows measurements of the noise in e^- computed for 10 different values of N in the range between $N = 1$ and $N = 400$ for all the MCMs. A desirable homogeneous response of all the channels is observed, since most of the circular markers are superimposed. For each MCM the $1/\sqrt{N}$ expected noise reduction for independent samples averaging, which is seen as a straight line in a log-log plot is shown. This rate was computed by taking as starting point the noise at $N = 400$ for the channel with the closest performance to the median noise. For $N > 20$ the noise performance follows the expected reduction rate and circles are over the line. As explained in [17], the noise for $N = 1$ is not dominated by the CCD performance but by the analog readout electronics because the frontend is designed for operation with $N \gg 1$. The two histograms shown in the last row of figure 7 were computed with the measured gains G/N and noises in e^-, for $N = 400$ and for all the sensors.

From the histogram in the bottom right corner of figure 7, the best noise for $N = 400$ is $0.16 e^-$, obtained for a pixel integration time of $t_i = 10 \mu s$. Given the $1/\sqrt{N}$ reduction rate, the equivalent
single sample noise is $3.2 \, e^-$. This noise could be compared to the best performance achieved by a single Skipper-CCD fabricated at DALSA and operated with the digital LTA controller, which is also about $3.2 \, e^-$ for $t_i = 10 \, \mu s$ [20, figure 16].

3.2 Energy spectrum

The noise performance as a function of N and the ability of the system for single electron counting in more than a hundred sensors was experimentally demonstrated in the previous section. In this section the number of sample per pixel was fixed at $N = 20$, which according to the results in figure 7 results in a noise of about $1 \, e^-$. In this mode of operation the analog frontend electronics can achieve a wide dynamic range allowing to calculate a spectrum in a higher range of energies. A total of 100 acquisitions were taken (100 images per channel) for these measurements.

To compute the spectra, several post-processing steps are applied to the raw images: 1) baseline subtraction based on an overscan region of the image is done line by line, 2) master bias subtraction of each channel is performed by computing the median image over the 100 acquisitions and subtracting the result from all the images and 3) a clusterization algorithm is applied to add up the energy of each event spread out in more than one pixel. As a result, a catalog of the events with information of its energy, position and additional geometric metrics, such as variance of the size in the two dimensions of the images is build. The calibration gain for each channel, presented in the previous section, was used and an electron-hole pair creation energy of $3.75 \, eV$ [6] was applied to calibrate in units of electron-volts. No shielding was used for the experiment so a high background rate is expected.

Two ranges of energy were used as shown in figure 8. To compute these spectra a selection of the MCMs and channels with the best performance was made, 107 sensors were used. The active region of the sensors was used excluding a 50 pixels border all around the edges of the active area. After the quality channel selection and pixel area the total active mass used is 0.046 kg and the average exposure/readout time of one image is 0.013 days resulting in a mass \times time of 0.06 kg\timesday for the 100 measurements.

Figure 8a shows the resulting energy spectrum between $5 \, keV$ and $450 \, keV$. The most noticeable feature is the bump in the range between $200 \, keV$ and $350 \, keV$, this is produced by the charge deposited in the pixels mostly by muons interactions. No selection cuts were applied for this spectrum other than the previously mentioned: exclusion of the borders of the active area and channels selection, and the spectrum is scaled by these cuts.

Figure 8b shows the spectrum in an energy range between $0.5 \, keV$ and $25 \, keV$. For this spectrum, additional selection cuts to filter events based on their shape were applied. The standard deviation of the size in the x-direction σ_x and in the y-direction σ_y were limited [23] to extract single hits taking into account the expected diffusion for those events produced by the thickness of the sensor [24] and specific characteristics of the prototype sensors under development used for this work ($\sigma_y > 0.4$, $\sigma_x < 1.35$ and $\sigma_y < 2.2$). The spectrum in figure 8b is scaled by the channel selection cut and active area region used but not by the geometric selection cuts. A constant efficiency is expected by this geometric cuts [23], simulation tools are being developed for future evaluation of the efficiency.

X-ray fluorescence lines produced by the materials surrounding the detectors can be observed in figure 8b, the most noticeable are the two copper peaks emitted by the cold box and copper trays seen in figure 2. These are $k_{\alpha 1,2} = 8.05, 8.03 \, keV$ seen as the single most noticeable peak and the $k_{\beta} = 8.91 \, keV$ peak. Despite using the calibration obtained in the previous section at very low
Two additional, more disperse peaks, are observed in the ranges 12–14 keV and 15–17 keV. Similar spectral characteristics were reported in the engineering run of the CONNIE experiment [25] using standard non-Skipper-CCDs and in the DAMIC experiment [26], specifically in [27]. Peaks in the ranges 12–14 keV and 15–17 keV were identified as produced by uranium contamination in the ceramic aluminum nitride (AlN) substrate that provides mechanical support to the CCDs in those
experiments. The circuit on ceramic substrate of the MCMs will be replaced by a circuit on a high purity silicon substrate for the OSCURA experiment to reduce this radioactive contamination. This circuit on silicon is currently under development and will be reported in the future.

4 Summary

The largest instrument built to date using single electron sensitivity Skipper-CCDs with nondestructive readout was presented in this paper. A two level analog multiplexed readout scheme and a charge pile-up frontend that allows to average the multiple measurements of the same charge packet were demonstrated using hundreds of sensors. Experimental results showing the capability for counting single electrons and the flexibility of computing a higher energy spectrum by changing the number of samples per pixel were also shown. This instrument can have direct application in dark matter and neutrino searches and the readout approach is scalable to thousands of sensors representing an important result towards the construction of the 10 kg OSCURA experiment.

Acknowledgments

The authors would like to thank the SiDet team at Fermilab for the support on the development of this instrument: Michelle J. Jonas for the assembly and wire-bonding of the MCMs, Leland E. Scott Jr. for the assembly of the many printed circuits boards required, Eng. Hemanth Kiran Gutti for the mechanical designs and specially to Andrew Lathrop for always being available to solve any issue or building any necessary parts. Lawrence Berkeley National Laboratory is the developer of the fully depleted CCD and the designer of the Skipper-CCD readout.

References

[1] G. Fernandez Moroni, J. Estrada, G. Cancelo, S.E. Holland, E.E. Paolini and H.T. Diehl, *Sub-electron readout noise in a Skipper CCD fabricated on high resistivity silicon*, Exp. Astron. 34 (2012) 43 [arXiv:1106.1839].

[2] SENSEI collaboration, *Single-electron and single-photon sensitivity with a silicon Skipper CCD*, Phys. Rev. Lett. 119 (2017) 131802 [arXiv:1706.00028].

[3] SENSEI collaboration, *SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD*, Phys. Rev. Lett. 125 (2020) 171802 [arXiv:2004.11378].

[4] DAMIC-M collaboration, *DAMIC-M Experiment: Thick, Silicon CCDs to search for Light Dark Matter*, Nucl. Instrum. Meth. A 958 (2020) 162933 [arXiv:2001.01476].

[5] CONNIE collaboration, *Low-energy reactor neutrino physics with the CONNIE experiment*, J. Phys. Conf. Ser. 2156 (2021) 012115 [arXiv:2110.13620].

[6] D. Rodrigues et al., *Absolute measurement of the Fano factor using a Skipper-CCD*, Nucl. Instrum. Meth. A 1010 (2021) 165511 [arXiv:2004.11499].

[7] A.M. Botti et al., *Constraints on the electron-hole pair creation energy and Fano factor below 150 eV from Compton scattering in a skipper CCD*, Phys. Rev. D 106 (2022) 072005 [arXiv:2202.03924].

[8] E.M. Villalpando, A. Drlica-Wagner, M. Bonati, A. Bakshi, V.B. de Paula Macanhan, B. Cancino et al., *Design of a skipper CCD focal plane for the SOAR integral field spectrograph*, Proc. SPIE 12191 (2022) 121910U.
[9] B.J. Rauscher, S.E. Holland, E. Kan, D. Kelly, L. Miko, D.B. Mott et al., Radiation tolerant, photon counting, visible, and near-IR detectors for space coronagraphs, *Proc. SPIE 12180* (2022) 1218065.

[10] J. Estrada et al., Focal plane detectors for Dark Energy Camera (DECam), *Proc. SPIE 7735* (2010) 77351R.

[11] CONNIE collaboration, Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment, *Phys. Rev. D 100* (2019) 092005 [arXiv:1906.02200].

[12] DAMIC collaboration, Results on low-mass weakly interacting massive particles from a 11 kg-day target exposure of DAMIC at SNOLAB, *Phys. Rev. Lett. 125* (2020) 241803 [arXiv:2007.15622].

[13] K. Gilmore, S. Kahn, M. Nordby, D. Burke, P. O'Connor, J. Oliver et al., The LSST camera system overview, *Proc. SPIE 6269* (2006) 62690C.

[14] F.M. Newcomer, S. Bailey, C. Britton, N. Felt, J. Geary, K. Hashimi et al., LSST Camera Electronics, *Am. Astron. Soc. Meeting Abstracts 213* (2009) 460.21.

[15] C. Lage, Physical and electrical analysis of LSST sensors, arXiv:1911.09577 (2019).

[16] A. Aguilar-Arevalo et al., The Oscura Experiment, FERMILAB-PUB-22-104-PPD-SCD (2022) [arXiv:2202.10518].

[17] M.S. Haro et al., Analog pile-up circuit technique using a single capacitor for the readout of Skipper-CCD detectors, 2021 JINST 16 P11012 [arXiv:2108.09389].

[18] C.R. Chavez, F. Chierchie, M. Sofo-Haro, J. Lipovetzky, G. Fernandez-Moroni and J. Estrada, Multiplexed Readout for an Experiment with a Large Number of Channels Using Single-Electron Sensitivity Skipper-CCDs, Sensors 22 (2022) 4308.

[19] B.A. Cervantes-Vergara, S. Perez, J.C. D’Olivo, J. Estrada, D.J. Grimm, S. Holland et al., Skipper-CCDs: Current applications and future, *Nucl. Instrum. Meth. A 1046* (2023) 167681 [arXiv:2208.05434].

[20] G.I. Cancelo et al., Low Threshold Acquisition controller for Skipper CCDs, *J. Astron. Telesc. Instrum. Syst. 7* (2021) 015001 [arXiv:2004.07599].

[21] I.J. Arnquist, C. Beck, M.L. di Vacri, K. Harouaka and R. Saldanha, Ultra-low radioactivity Kapton and copper-Kapton laminates, *Nucl. Instrum. Meth. A 959* (2020) 163573 [arXiv:1910.04317].

[22] R. Saldanha et al., Cosmogenic activation of silicon, *Phys. Rev. D 102* (2020) 102006 [arXiv:2007.10584].

[23] G. Moroni Fernandez et al., Skipper Charge-Coupled Device for Low-Energy-Threshold Particle Experiments above Ground, *Phys. Rev. Appl. 17* (2022) 044050.

[24] M. Sofo Haro, G. Fernandez Moroni and J. Tiffenberg, Studies on small charge packet transport in high-resistivity fully-depleted CCDs, *IEEE Trans. Electron. Devices 67* (2020) 1993 [arXiv:1906.11379].

[25] CONNIE collaboration, Results of the Engineering Run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE), 2016 JINST 11 P07024 [arXiv:1604.01343].

[26] DAMIC collaboration, The DAMIC experiment at SNOLAB, in Proceedings of the 53rd Rencontres de Moriond on Cosmology, La Thuile, Italy, 17–24 March 2018, pp. 315–318 [arXiv:1805.10001].

[27] P.W. Lucas, Overview of Fermi National Accelerator Lab control system, in Proceedings of Supercollider 2: International Industrial Symposium on the Super Collider and Exhibition, Miami Beach, FL, U.S.A., 14–16 March 1990, pp. 417–426.