Research Article

Modelling the Dynamics of Campylobacteriosis Using Nonstandard Finite Difference Approach with Optimal Control

Shaibu Osman, Houenafa Alain Togbenon, and Dominic Otoo

1Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
2Ecole Doctorale des Sciences, Technologies Ingenierie et Mathematiques, Universite Nationale des Sciences, Technologie Ingenierie et Mathematiques, Benin
3Department of Mathematics and Statistics, University of Energy and Natural Resources, Box 214, Sunyani, Ghana

Correspondence should be addressed to Shaibu Osman; sosman@uhas.edu.gh

Received 31 August 2020; Revised 30 October 2020; Accepted 4 November 2020; Published 19 November 2020

Academic Editor: Nadia A. Chuzhanova

Copyright © 2020 Shaibu Osman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Campylobacter genus is the bacteria responsible for campylobacteriosis infections, and it is the commonest cause of gastroenteritis in adults and mostly infants [1]. The Campylobacter bacteria have been confirmed as the leading cause of diarrhea in the United States of America. Campylobacteriosis is mostly hyperendemic in children in most parts of developing countries. It is a zoonotic disease that can be contracted via direct contact, food, and water. This paper, we formulated a deterministic model for Campylobacteriosis as a zoonotic disease with optimal control and to determine the best control measure. The nonstandard finite difference scheme was used for the model analysis. The disease-free equilibrium of the scheme in its explicit form was determined, and it was shown to be both locally and globally asymptotically stable. The campylobacteriosis model was extended to optimal control using prevention of susceptible humans contracting the disease and treatment of infected humans and animals. The objective function was optimised, and it was established that combining prevention of susceptible humans and treatment of infected animals was the effective control measure in combating campylobacteriosis infections. An analysis of the effects of contact between susceptible and infected animals as well susceptible and infected humans was conducted. It showed an increase in infected animals and humans whenever the contact rate increases and decreases otherwise. Biologically, it implies that campylobacteriosis infections can be controlled by ensuring that interactions among susceptible humans, infected animals, and infected humans is reduced to the barest minimum.

1. Introduction

Campylobacter genus is the bacteria responsible for campylobacteriosis infections. This is solely the commonest cause of gastroenteritis in adults and mostly infants [1]. The Campylobacter bacteria have been confirmed as the leading cause of diarrhea in the United States of America. Campylobacteriosis is mostly hyperendemic in children in most parts of developing countries. Campylobacteriosis can be spread or contracted through the fecal-oral path. It is a zoonotic disease that can be contracted via direct contact, food, and water. The disease is zoonotic in nature and hence can be spread from animals to humans and also from humans to humans [2].

A campylobacteriosis-infected person is usually asymptomatic at the incubation period, that is, between one and three days of infection. Diarrhea, fever, and abdominal cramps are usually the commonest symptoms of the disease. Symptoms of campylobacteriosis can last for at least five to eight days of infections. Children in developing countries mostly show symptoms of campylobacteriosis infections while adults rarely show any symptoms of infections. But on the contrary, the infection is less common in the developed world [1].

Symptomatic persons can infect others directly and contaminate water and food during the infectious period of campylobacteriosis. The mode of infection of campylobacteriosis is mostly through food, water, and milk that has been infected by contaminated feces which has been poorly treated. However, water contamination is basically via water fowl feces, sewage, and farm animal manure. On the other hand, human contamination is via leaked septic tanks into groundwater supply that is poorly disinfected or not disinfected at all. The disease is mostly foodborne and waterborne illness but can also be spread
through direct contact with infected humans or animals via the fecal-oral path of transmission. But human-to-human spread is usually uncommon [3].

Understanding the spread dynamics of campylobacteriosis at policy and implementation levels of public health is necessary to design effective control and cost-effective strategies at prevention levels. Deterministic models enhance the general understanding of the disease spread by the provision of a theoretical frame which underlines factors that accounts for the spread and control of diseases [4, 5].

The concept of deterministic modelling involves the process of constructing, testing, and validating models. These models are real representations of natural phenomena of systems or hypothesis in a mathematical perspective [6, 7].

Generally, the intended use of a deterministic model is paramount in guiding the development of the model since the model structure has to adequately address its objective. Hence, the understanding the mechanism and causes of patterns present in an observed data is usually an objective that initiates a deterministic modelling process [8, 9]. Moreover, epidemiological models explain dynamics of infections and determine the best optimal control strategies and the most cost effective among these strategies [10, 11]. However, authors in [12–14] proposed and formulated models that attempts to explain this hidden and existing phenomena.

2. Model Formulation and Description

The model diagram in Figure 1 shows the transmission dynamics of campylobacteriosis in humans and animals. This diagram is significant as it gives an overview of the disease transmission pattern in humans and animals.

We divided the model into two parts, the total human and animal populations. These populations at any time, t are also divided into six subcompartments with respect to their disease status in the system. The total human population, represented by $N_h(t)$, is divided into subpopulations of susceptible humans $S_h(t)$, infected humans $I_h(t)$, and recovered humans $R_h(t)$. Susceptible humans are recruited through immigration into the population at a rate Λ_h. They are infected with campylobacteriosis through ingestion of contaminated water, foods, and direct contact with infected animals and humans at a rate $(I_v + I_h)\beta$. Infected humans recover from campylobacteriosis at a rate γ. Campylobacteriosis-related death rate is given by δ_h.Recovered individuals may lose immunity and return to the susceptible group at a rate σ_h. Campylobacteriosis natural death rate for all human compartments is μ_h. Susceptible animals S_v are recruited through immigration at a rate Λ_v. Animals can be infected with campylobacteriosis through ingestion of contaminated food, water, and contact with infected animals at a rate $(I_v + I_h)\lambda_v$. Susceptible and infected animal natural death rate is μ_v. Infected animal death rate as a result of campylobacteriosis is δ_v, and animals may recover at a rate α. Animals may lose immunity at a rate σ_v.

Hence, total human population is

$$N_h(t) = S_h(t) + I_h(t) + R_h(t).$$

Total animal population, $N_v(t)$, is divided into subpopu-
Considering,

\[F : X \in \mathbb{R}^6 \rightarrow F(X) \in \mathbb{R}^6, \quad (5) \]

where

\[
\begin{aligned}
\frac{dS_h}{dt} &= \lambda_s + \sigma_s R_h - \beta_s^\mu S_h - \mu_s S_h, \\
\frac{dI_h}{dt} &= \beta_s^\mu S_h - \gamma I_h - (\mu_h + \delta_h)I_h, \\
\frac{dR_h}{dt} &= \gamma I_h - (\sigma_s + \mu_h)R_h, \\
\frac{dS_s}{dt} &= \lambda_s - \beta_s^\alpha S_s - \mu_s S_s + \sigma_s R_s, \\
\frac{dI_s}{dt} &= \beta_s^\alpha S_s - aI_s - (\sigma_s + \mu_s)I_s, \\
\frac{dR_s}{dt} &= aI_s - (\sigma_s + \mu_s)R_s.
\end{aligned}
\]

Therefore,

\[
F(X) = \begin{bmatrix}
\frac{dS_h}{dt} \\
\frac{dI_h}{dt} \\
\frac{dR_h}{dt} \\
\frac{dS_s}{dt} \\
\frac{dI_s}{dt} \\
\frac{dR_s}{dt}
\end{bmatrix}.
\]

Hence,

\[
\frac{dX}{dt} = F(X),
\]

\[
X(0) = X_0 = \begin{pmatrix} S_{h(0)}, I_{h(0)}, R_{h(0)}, S_{s(0)}, I_{s(0)}, R_{s(0)} \end{pmatrix}^T.
\]

Based on the existence and uniqueness theorem, \(F \) is \(C^1 \). Hence, \(\exists \) a unique global solution of the initial value problem of (3) and this solution should be nonnegative whenever its initial conditions are nonnegative.

4. Nonstandard Finite Difference Scheme

This is basically a numerical scheme with step size \(\Delta t \) that is usually used in the approximation of solution \(X(t_k) \) of autonomous system of differential equations of the form

\[
\frac{dX}{dt} = F(X),
\]

subject to

\[
X(0) = X_0,
\]

where \(F \) is \(C^1 \) usually of the form

\[
D_{\Delta t}(X_k) = F_{\Delta t}(X_k),
\]

where

\[
D_{\Delta t}(X_k) = \frac{dX(t_k)}{dt},
\]

\[
X_k = X(t_k),
\]

\[
F_{\Delta t}(X_k) = F(X_k),
\]

\[
t_k = t_0 + k\Delta t.
\]

The scheme

\[
D_{\Delta t}(X_k) = F_{\Delta t}(X_k).
\]

Definition 1. The scheme (12) can be referred to as a nonstandard finite difference scheme when it at least satisfies the following conditions:

\[
\begin{aligned}
(i) & \quad D_{\Delta t}(X_k) = (X_{k+1} - \psi X_k)/\varphi(\Delta t), \quad \text{where } \psi \text{and } \varphi \text{ are positive functions which depend on parameters of the differential equations, step size, } (\Delta t) \text{ and satisfy}
& \quad \psi(\Delta t) = 1 + O(\Delta t),
& \quad \varphi(\Delta t) = \Delta t + O(\Delta t^2),
(ii) & \quad F_{\Delta t}(X_k) = g(X_k, X_{k+1}, \Delta t), \quad \text{where } g \text{ denotes an approximation of the nonlocal right hand side of the system}
\end{aligned}
\]

Definition 2. The nonstandard finite difference scheme is called elementary stable, if, for any value of the step size, its only fixed points are those of the original differential system, the linear stability properties of each fixed points being the same for both the differential system and the discrete scheme.

Based on the definition of the nonstandard finite difference (NSFD) scheme and the rules governing its construction in [15–18], the NSFD scheme for the system of (3) is given by

\[
\begin{align}
\frac{S_h^{n+1} - S_h^n}{\varphi_1(\Delta t)} &= \lambda_s - \beta_s^\mu (I_h^n + I_s^n)S_h^{n+1} - \mu_s S_h^{n+1} + \sigma_s R_h^{n+1}, \\
\frac{I_h^{n+1} - I_h^n}{\varphi_2(\Delta t)} &= \beta_s^\mu (I_h^n + I_s^n)S_h^{n+1} - \gamma I_h^{n+1} + (\mu_h + \delta_h)I_h^{n+1}, \\
\frac{R_h^{n+1} - R_h^n}{\varphi_3(\Delta t)} &= \gamma I_h^{n+1} - (\sigma_h + \mu_h)R_h^{n+1}, \\
\frac{S_s^{n+1} - S_s^n}{\varphi_4(\Delta t)} &= \lambda_s - \lambda_s (I_h^n + I_s^n)S_s^{n+1} - \mu_s S_s^{n+1} + \sigma_s R_s^{n+1}, \\
\frac{I_s^{n+1} - I_s^n}{\varphi_5(\Delta t)} &= \lambda_s (I_h^n + I_s^n)S_s^{n+1} - \alpha I_s^{n+1} + (\mu_s + \delta_s)I_s^{n+1}, \\
\frac{R_s^{n+1} - R_s^n}{\varphi_6(\Delta t)} &= \alpha I_s^{n+1} - (\sigma_s + \mu_s)R_s^{n+1},
\end{align}
\]
where

\[
\varphi_i(\Delta t, k_j) = \frac{1 - e^{-\beta \Lambda_h \Delta t}}{\mu_h},
\]

\[\quad k_j^* = \max \{ |y_j| \}, \]

\[j = 1, 2, 3, \ldots, 6, \]

\[i = 1, 2, 3, \ldots, 6, \]

(15)

\[
\varphi_1(\Delta t) = \left(\frac{1 - e^{-\mu_s \Delta t}}{\mu_h}, -\beta \Lambda_h, 0, \frac{-\beta \Lambda_h}{\mu_h}, 0 \right),
\]

\[
\varphi_2(\Delta t) = \left(\frac{1 - e^{-[(\beta \Lambda_h/\mu_h) - \gamma \mu_h - \delta_h \Delta t]}}{[(\beta \Lambda_h/\mu_h) - \gamma - \mu_h - \delta_h \Delta t]}, -\beta \Lambda_h, 0, 0, -\beta \Lambda_h/\mu_h, 0 \right),
\]

\[
\varphi_3(\Delta t) = \left(\frac{1 - e^{-[\sigma_v + \mu_v] \Delta t}}{(\sigma_v + \mu_v)}, \gamma, -\sigma_v - \mu_v, 0, 0, 0 \right),
\]

\[
\varphi_4(\Delta t) = \left(\frac{1 - e^{-\mu_v \Delta t}}{\mu_v}, 0, -\lambda \Lambda_v, -\mu_v, -\lambda \Lambda_v/\mu_v, \sigma_v \right),
\]

\[
\varphi_5(\Delta t) = \left(\frac{1 - e^{-[(\lambda \Lambda_v/\mu_v) - \alpha \mu_v - \delta_v \Delta t]}}{[(\lambda \Lambda_v/\mu_v) - \alpha - \mu_v - \delta_v \Delta t]}, \lambda \Lambda_v, 0, 0, 0, -\lambda \Lambda_v/\mu_v - \alpha - \mu_v - \delta_v \right),
\]

\[
\varphi_6(\Delta t) = \left(\frac{1 - e^{-[\sigma_v + \mu_v] \Delta t}}{(\sigma_v + \mu_v)}, 0, 0, 0, \alpha, \sigma_v - \mu_v \right),
\]

(17)

where,

\[
\varphi^{n+1}_i = \left(\frac{\Lambda_h + \sigma_h R^{n+1}_h}{1 + (\beta \Lambda_h + \beta \Lambda_v + \mu_h) \varphi_i(\Delta t) + S^n_v}, \frac{\beta \Lambda_h + \beta \Lambda_v + \mu_h}{1}, \right)
\]

\[
\varphi^{n+1}_h = \left(\frac{\beta \Lambda_h + \beta \Lambda_v + \mu_h}{1 + (\gamma + \mu_h + \delta_h) \varphi_2(\Delta t) + R^n_h}, \right)
\]

\[
\varphi^{n+1}_h = \left(\frac{\gamma \Lambda_h + \gamma \Lambda_v + \mu_v}{1 + (\sigma_v + \mu_v) \varphi_3(\Delta t) + R^n_h}, \right)
\]

\[
\varphi^{n+1}_h = \left(\frac{\Lambda_h + \sigma_v R^{n+1}_h}{1 + (\lambda \Lambda_h + \lambda \Lambda_v + \mu_v) \varphi_4(\Delta t) + S^n_v}, \right)
\]

\[
\varphi^{n+1}_v = \left(\frac{\lambda \Lambda_v + \lambda \Lambda_v}{1 + (\alpha + \mu_v + \delta_v) \varphi_5(\Delta t) + R^n_h}, \right)
\]

\[
\varphi^{n+1}_v = \left(\frac{\alpha \Lambda_v + \alpha \Lambda_v}{1 + (\sigma_v + \mu_v) \varphi_6(\Delta t) + R^n_h}, \right)
\]

(18)

The scheme in its explicit form is given by

\[
\gamma_i = \frac{\partial f}{\partial x_i} |_{x = \bar{x}},
\]

\[f(\bar{x}) = 0, \quad (16)\]

where;
5. Disease-Free Equilibrium

Given initial conditions,

\[S_h(t) = 0, I_h(t) = 0, R_h(t) = 0, S_v(t) = 0, I_v(t) = 0, R_v(t) = 0. \]

The disease-free equilibrium of the system of equations in its explicit form can be established by linearising the system in its explicit form. The Jacobian matrix of the system of equations is given by

\[
\begin{pmatrix}
1 + \mu_h \phi_1(\Delta t) & P_1 & \sigma_h \phi_1(\Delta t) / (1 + \mu_h \phi_1(\Delta t)) & 0 & 0 & P_6 & 0 \\
0 & P_2 & 0 & 0 & 0 & P_7 & 0 \\
0 & P_3 & 1 / (\sigma_h + \mu_h) & 1 / (\sigma_h + \mu_h) \phi_3(\Delta t) & 0 & 0 & 0 \\
0 & P_4 & 0 & 0 & 1 / (1 + \mu_v \phi_4(\Delta t)) & P_8 & \sigma_v \phi(\Delta t) / (1 + \mu_v \phi_4(\Delta t)) \\
0 & P_5 & 0 & 0 & 0 & P_9 & 0 \\
0 & 0 & 0 & 0 & 0 & P_{10} & 1 / (\sigma_v + \mu_v) \phi_6(\Delta t)
\end{pmatrix}
\]

where

\[
\begin{align*}
P_1 &= -\frac{(\beta \Lambda_h/\mu_h) \phi_1(\Delta t)}{1 + \mu_h \phi_1(\Delta t)}, \\
P_2 &= \frac{1 + (\beta \Lambda_h/\mu_h) \phi_2(\Delta t)}{1 + (\gamma + \mu_h + \delta_h) \phi_2(\Delta t)}, \\
P_3 &= \frac{\gamma \phi_3(\Delta t)}{1 + \phi_3(\Delta t)}, \\
P_4 &= -\frac{(\lambda \Lambda_v/\mu_v) \phi_4(\Delta t)}{1 + \mu_v \phi_4(\Delta t)}, \\
P_5 &= \frac{(\lambda \Lambda_v/\mu_v) \phi_5(\Delta t)}{1 + (\alpha + \mu_v + \delta_v) \phi_5(\Delta t)}, \\
P_6 &= -\frac{(\beta \Lambda_h/\mu_h) \phi_1(\Delta t)}{1 + \mu_h \phi_1(\Delta t)}, \\
P_7 &= \frac{(\beta \Lambda_h/\mu_h) \phi_2(\Delta t)}{1 + (\gamma + \mu_h + \delta_h) \phi_2(\Delta t)}, \\
P_8 &= \frac{\sigma_v \phi(\Delta t)}{1 + \mu_v \phi_4(\Delta t)}, \\
P_9 &= \frac{\lambda \Lambda_v/\mu_v \phi_4(\Delta t)}{1 + (\alpha + \mu_v + \delta_v) \phi_5(\Delta t)}, \\
P_{10} &= \frac{a \phi_6(\Delta t)}{1 + (\sigma_v + \mu_v) \phi_6(\Delta t)}
\end{align*}
\]
The corresponding eigenvalues of the Jacobian matrix are obtained as

\[
\begin{align*}
\lambda_1 &= \frac{1}{1 + \mu_h \phi_1(\Delta t)}, \quad \lambda_2 = \frac{1 + (\beta A_h / \mu_h) \phi_2(\Delta t)}{1 + (\gamma + \mu_h + \delta_h) \phi_2(\Delta t)}, \\
\lambda_3 &= \frac{1}{1 + (\sigma + \mu_h) \phi_3(\Delta t)}, \quad \lambda_4 = \frac{1}{1 + \mu_v \phi_4(\Delta t)}, \\
\lambda_5 &= \frac{1 + (\lambda A_v / \mu_v) \phi_5(\Delta t)}{1 + (\alpha + \mu_v + \delta_v) \phi_5(\Delta t)}, \quad \lambda_6 = \frac{1}{1 + (\sigma_v + \mu_v) \phi_6(\Delta t)}.
\end{align*}
\]

(23)

5.1. Local Stability of the Disease-Free Equilibrium

Theorem 3. The DFE is locally asymptotically stable for every value of \(\Delta t\) if the following conditions are satisfied:

(i) \(\beta A_h / \mu_h (\gamma + \mu_h + \delta_h) < 1\)

(ii) \(\lambda A_v / \mu_v (\alpha + \mu_v + \delta_v) < 1\)

Proof. The sequence

\[(S^0, I^0_h, R^0_h, S^0_v, I^0_v, R^0_v),\]

should converge to the disease-free equilibrium

\[\text{DFE} = \left(\frac{A_h}{\mu_h}, 0, 0, \frac{A_v}{\mu_v}, 0, 0 \right),\]

(24)

for any positive initial conditions when conditions (i) and (ii) are satisfied for every value of \(\Delta t\).

Linearising system (3) at the DFE, the eigenvalues of the corresponding Jacobian matrix are given by

\[
\begin{align*}
\lambda_1 &= \frac{1}{1 + \mu_h \phi_1(\Delta t)}, \quad \lambda_2 = \frac{1 + (\beta A_h / \mu_h) \phi_2(\Delta t)}{1 + (\gamma + \mu_h + \delta_h) \phi_2(\Delta t)}, \\
\lambda_3 &= \frac{1}{1 + (\sigma + \mu_h) \phi_3(\Delta t)}, \quad \lambda_4 = \frac{1}{1 + \mu_v \phi_4(\Delta t)}, \\
\lambda_5 &= \frac{1 + (\lambda A_v / \mu_v) \phi_5(\Delta t)}{1 + (\alpha + \mu_v + \delta_v) \phi_5(\Delta t)}, \quad \lambda_6 = \frac{1}{1 + (\sigma_v + \mu_v) \phi_6(\Delta t)}.
\end{align*}
\]

(26)

It shows that the DFE is locally asymptotically stable for every value of \(\Delta t\) if the conditions (i) and (ii) of Definition 1 are satisfied.

For \(\lambda_1\),

\[|\lambda_1| < 1 \text{ since } 1 + \mu_h \phi_1(\Delta t) > 1.\]

(27)

For \(\lambda_2\),

\[|\lambda_2| = \left| \frac{1 + (\beta A_h / \mu_h) \phi_2(\Delta t)}{1 + (\gamma + \mu_h + \delta_h) \phi_2(\Delta t)} \right|,\]

(28)

For \(\lambda_3\),

\[|\lambda_3| < 1 \text{ if and only if } 1 + (\beta A_h / \mu_h) \phi_2(\Delta t) < 1 + (\gamma + \mu_h + \delta_h) \phi_2(\Delta t).\]

For \(\lambda_4\),

\[|\lambda_4| = \left| \frac{1}{1 + \mu_v \phi_4(\Delta t)} \right|,\]

(29)

For \(\lambda_5\),

\[|\lambda_5| < 1 \text{ since } 1 + (\sigma + \mu_v) \phi_5(\Delta t) > 1.\]

For \(\lambda_6\),

\[|\lambda_6| = \left| \frac{1}{1 + (\sigma_v + \mu_v) \phi_6(\Delta t)} \right|,\]

(30)

For \(\lambda_7\),

\[|\lambda_7| < 1 \text{ if and only if } 1 + (\lambda A_v / \mu_v) \phi_5(\Delta t) < 1 + (\alpha + \mu_v + \delta_v) \phi_5(\Delta t).\]

For \(\lambda_8\),

\[|\lambda_8| < 1 \text{ since } 1 + (\sigma_v + \mu_v) \phi_6(\Delta t) > 1.\]

5.2. Global Stability of the Disease-Free Equilibrium

Theorem 4. The disease-free equilibrium is globally asymptotically stable if the conditions stated in Theorem 3 are satisfied.

Proof. The sequence

\[(S^0, I^0_h, R^0_h, S^0_v, I^0_v, R^0_v),\]

(33)

should converge to the disease-free equilibrium

\[\left(\frac{A_h}{\mu_h}, 0, 0, \frac{A_v}{\mu_v}, 0, 0 \right),\]

(34)
for any positive initial condition whenever conditions (i) and (ii) of Definition 1 are satisfied for every value of Δt.

From Definition 1, the DFE is LAS for every value of Δt whenever conditions (i) and (ii) of Definition 1 hold.

Suppose that for $n > 0$,

$$ (S^+_n, I^+_n, R^+_n, S^-_n, I^-_n, R^-_n) $$

converges to $(\Lambda_\gamma/\mu_\gamma, 0, 0, \Lambda_\gamma/\mu_\gamma, 0, 0)$.

Then, it can be shown that

$$ (S^{n+1}_+, I^{n+1}_+, R^{n+1}_+, S^{n+1}_-, I^{n+1}_-, R^{n+1}_-) $$

converges to

$$ \left(\frac{\Lambda_\gamma}{\mu_\gamma}, 0, \frac{\Lambda_\gamma}{\mu_\gamma}, 0, 0 \right) . \tag{35} $$

Considering the system of equation in (19), we prove that the disease-free equilibrium is globally asymptotically stable using the conditions in Definition 1.

For I^+_n,

$$ I^{n+1}_+ = \frac{\left(\beta I^n_+ S^n_+ + \beta I^n_- S^n_- \right) \varphi_1(\Delta t) + I^n_+}{1 + (\gamma + \mu_\delta + \delta_\gamma) \varphi_2(\Delta t)} \tag{37}, $$

then, $I^{n+1}_+ \to 0$ as $n \to \infty$.

For R^+_n,

$$ R^{n+1}_+ = \frac{\gamma I^n_+ \varphi_1(\Delta t) + R^n_+}{1 + (\sigma_\gamma + \mu_\gamma) \varphi_3(\Delta t)}, \tag{38} $$

then, $R^{n+1}_+ \to 0$ as $n \to \infty$.

For S^+_n,

$$ S^{n+1}_+ = \frac{\left(\Lambda_\gamma + \sigma_\gamma R^n_+ \right) \varphi_1(\Delta t) + S^n_+}{1 + (\beta I^n_+ + \beta I^n_- + \mu_\gamma) \varphi_1(\Delta t)} \tag{39}, $$

then, $S^{n+1}_+ \to \Lambda_\gamma/\mu_\gamma$ as $n \to \infty$.

For I^-_n,

$$ I^{n+1}_- = \frac{\left(\lambda I^n_+ S^n_+ + \lambda I^n_- S^n_- \right) \varphi_1(\Delta t) + I^n_+}{1 + (\alpha + \mu_\gamma + \delta_\gamma) \varphi_3(\Delta t)} \tag{40}, $$

then, $I^{n+1}_- \to 0$ as $n \to \infty$.

For R^-_n,

$$ R^{n+1}_- = \frac{\alpha I^n_+ \varphi_1(\Delta t) + R^n_-}{1 + (\sigma_\gamma + \mu_\gamma) \varphi_3(\Delta t)}, \tag{41} $$

then, $R^{n+1}_- \to 0$ as $n \to \infty$.

For S^-_n,

$$ S^{n+1}_- = \frac{\left(\Lambda_\gamma + \sigma_\gamma R^n_+ \right) \varphi_1(\Delta t) + S^n_-}{1 + (\lambda I^n_+ + \lambda I^n_- + \mu_\gamma) \varphi_3(\Delta t)} \tag{42}, $$

then, $S^{n+1}_- \to \Lambda_\gamma/\mu_\gamma$ as $n \to \infty$.

Hence, the DFE is GAS since conditions (i) and (ii) are satisfied for every value of (Δt).

6. Optimal Control Analysis of the Model

In this section, we carried out an analysis of optimal control to determine the impact of all intervention of the control schemes. This is derived by incorporating the following controls into the model in Figure 1 and the introduction of an objective functional that seeks to minimise: (u_1, u_2, u_3), where u_1 denotes prevention of S_h, u_2 denotes treatment of I_h, and u_3 denotes treatment of I_v.

By introducing all controls, the system in equation (3) becomes

\[
\begin{align*}
\frac{dS_h}{dt} &= \Lambda_h + \sigma_h - (1 - u_1) \beta(I_v + I_h)S_h - \mu_h S_h, \\
\frac{dI_h}{dt} &= (1 - u_1) \beta(I_v + I_h)S_h - (u_2 + \gamma)I_h - (\delta_h + \mu_h)I_h, \\
\frac{dR_h}{dt} &= (u_2 + \gamma)I_h - (\sigma_h + \mu_h)R_h, \\
\frac{dS_v}{dt} &= \Lambda_v - (1 - u_1) \lambda(I_v + I_h)S_v - (\mu_v S_v + \sigma_v R_v), \\
\frac{dI_v}{dt} &= (1 - u_1) \lambda(I_v + I_h)S_v - \alpha I_v - (\delta_v + \mu_v)I_v, \\
\frac{dR_v}{dt} &= \alpha I_v - (\sigma_v + \mu_v)R_v.
\end{align*}
\]

(43)

In epidemiological models, the essence of optimal control analysis is to minimise the spread or number of infections and cost associated with treatment and prevention controls. The objective functional required to achieve this is formulated by

\[
J = \min_{(u_1, u_2, u_3)} \int_0^{t_f} \left(B_1 I_v + B_2 I_h + B_3 u_1^2 + B_4 u_2^2 + B_5 u_3^2 \right) dt, \quad \tag{44}
\]

subject to the system of equations in (3).

Control efforts of model in (3) is by linear combination of $u_i^2(t)$, $(i = 1, 2)$. It is assumed to be a quadratic in nature by the assumption that cost is generally nonlinear in nature. Thus, the aim is to minimise the number of infection and reduce the cost of treatment.

In (44), $B_1, B_2, B_3, B_4, \text{ and } B_5$ denote weight constants to facilitate balance terms in the integral to avoid dominance of one another. $B_1 I_v, B_2 I_h$ are costs associated with I_v and I_h, respectively. $B_3 u_1^2$, is cost associated with prevention of S_h. $B_4 u_2^2$, is cost of treatment of I_h, and $B_5 u_3^2$ is cost associated with treatment of I_v. t_f, is the period of intervention. Hence, $(B_1 I_v, B_2 I_h)$ denotes a linear function for cost associated with infections and $(B_3 u_1^2, B_4 u_2^2)$,
\(B_j u_j^2 \), denotes a quadratic function for the cost associated with controls \([19, 20]\).

The objective is to find the optimal functions \((u_1^*(t), u_2^*(t), u_3^*(t))\) such that

\[
J(u_1^*(t), u_2^*(t), u_3^*(t)) = \min_{(u_1, u_2, u_3) \in \mathcal{U}} J(u_1, u_2, u_3),
\]

where \(\mathcal{U} = \{ u : 0 \leq u_i(t) \leq 1, \text{ for } t \in [0, T], \ i = 1, 2, 3 \} \) denotes the control set.

6.1. Pontryagin's Maximum Principle

This principle provides the necessary conditions that an optimal must satisfy. It changes the system in equations (3) and (44) into minimisation problem

\[
\frac{dM_{S_b}}{dt} = ((1 - u_1) (I_v + I_h) \beta (M_{S_b} - M_{I_b}) + \mu_b M_{S_b}),
\]

\[
\frac{dM_{I_b}}{dt} = -B_2 + (1 - u_1) \beta S_h (M_{S_b} - M_{I_b}) + (u_2 + \gamma) (M_{I_b} - M_{R_b}) + (\mu_h + \delta_h) M_{I_b} + (1 - u_1) \lambda S_v (M_{S_b} - M_{I_b}) + b V_v (M_{I_b} - M_{I_b}),
\]

\[
\frac{dM_{R_b}}{dt} = -\sigma_h M_{S_b} + (\sigma_h + \mu_h) M_{R_b},
\]

\[
\frac{dM_{S_v}}{dt} = (1 - u_1) \lambda (I_v + I_h) (M_{S_v} - M_{I_v}) + \mu_v M_{S_v},
\]

\[
\frac{dM_{I_v}}{dt} = -B_1 + (1 - u_1) \beta S_h (M_{S_v} - M_{I_v}) + (1 - u_1) \lambda S_v (M_{S_v} - M_{I_v}) + (\mu_v + \delta_v) M_{I_v} + (u_4 + \alpha) (M_{I_v} - M_{R_v}),
\]

\[
\frac{dM_{R_v}}{dt} = -\sigma_v M_{S_v} + (\sigma_v + \mu_v) M_{R_v}.
\]

This satisfies the transversality condition

\[
M_{S_b} (t_f) = M_{I_b} (t_f) = M_{R_b} (t_f) = M_{S_v} (t_f) = M_{I_v} (t_f) = M_{R_v} (t_f) = 0,
\]

by combining the Pontryagin’s maximum principle and the existence of the optimal control.

Theorem 5. The optimal control vector \((u_1^*(t), u_2^*(t), u_3^*(t))\) that maximises the objective function \(J\) over \(\mathcal{U}\) is given by

\[
u_1^*(t) = \max \left\{ 0, \min \left(1, \frac{\beta (M_{I_b} - M_{S_b}) (I_v + I_h) S_b}{2B_2} + \frac{\lambda (M_{I_v} - M_{S_v}) (I_v + I_h) S_v}{2B_2} \right) \right\},
\]

\[
u_2^*(t) = \max \left\{ 0, \min \left(1, \frac{M_{I_b} - M_{R_b}}{2B_2} \right) \right\},
\]

\[
u_3^*(t) = \max \left\{ 0, \min \left(1, \frac{M_{I_v} - M_{R_v}}{2B_2} \right) \right\},
\]
where M_{S_1}, M_{I_1}, M_{R_1}, M_{S_2}, M_{I_2}, and M_R are the solutions of equation (47) and (48).

Proof. The existence of an optimal control is as a result the convexity of the integral of J with respect to u_1, u_2, and u_3, the Lipschitz property of the state system with respect to the state variables, and a priori boundedness of the state solutions [21, 22]. The system in (47) was obtained by differentiating the Hamiltonian function and evaluated at optimal control. However, by equating the derivatives of the Hamiltonian with respect to the controls to zero, the following are obtained:

\[
\begin{align*}
v_1 &= \frac{\beta(M_{M_1} - M_{S_1})(I_1 + I_2)S_{M_1}}{2B_{M_1}} + \lambda(M_{I_1} - M_{S_1})(I_1 + I_2)S_{I_1}
t_1 &= \frac{\beta(M_{M_1} - M_{S_1})(I_1 + I_2)S_{I_1}}{2B_{I_1}} + \lambda(M_{I_1} - M_{S_1})(I_1 + I_2)S_{I_1}
t_3 &= \frac{\beta(M_{M_1} - M_{S_1})(I_1 + I_2)S_{I_1}}{2B_{I_1}} + \lambda(M_{I_1} - M_{S_1})(I_1 + I_2)S_{I_1}
\end{align*}
\]

(50)

In conclusion, by standard control arguments involving bounds on controls,

\[
\begin{align*}
u_1^* &= \begin{cases}
0, & \text{if } \bar{u}_1 \leq 0, \\
\bar{u}_1, & \text{if } 0 < \bar{u}_1 < 1, \\
1, & \text{if } \bar{u}_1 \geq 1,
\end{cases} \\
u_2^* &= \begin{cases}
0, & \text{if } \bar{u}_2 \leq 0, \\
\bar{u}_2, & \text{if } 0 < \bar{u}_2 < 1, \\
1, & \text{if } \bar{u}_2 \geq 1,
\end{cases} \\
u_3^* &= \begin{cases}
0, & \text{if } \bar{u}_3 \leq 0, \\
\bar{u}_3, & \text{if } 0 < \bar{u}_3 < 1, \\
1, & \text{if } \bar{u}_3 \geq 1.
\end{cases}
\end{align*}
\]

(51)

The system in (49) leads to system in (48). The optimal control uniqueness for small t_f was obtained as a result of the Lipschitz structure of system of equations and the prior boundedness of the state solutions and adjoint functions. Existence of optimal control uniqueness is in line with uniqueness of optimal system that comprises equations (3), (47), (48), and (49) [22–24].

7. Numerical Analysis

In this section, we solved the optimal system by employing the Range-Kutta fourth-order scheme. We solved the state systems, adjoint equations, and the transversality conditions by considering it as a two-point boundary value problem with boundary conditions at $t = 0$ and $t = t_f$. Our goal is to solve for $t_f = 90$ days or three months. At this value, it is assumed that campylobacteriosis can easily spread. System of equations of the model in Figure 1 is solved numerically using the Range-Kutta fourth-order scheme with a guess on controls over a period of time. Moreover, we used current iterations of the model equations in Figure 1, the costate equations, and transversality conditions by backward approach. Convex combinations of controls in previous iterations and characterisations of values from the system are then updated. The process is repeated continuously, and iteration stops if values of unknowns at previous iteration is as close as those at present iteration [25, 26]. A number of combination of controls were considered and the best and most effective selected.

7.1. Analysis of Contact Rate (β) on Infected Humans

Figure 2 shows the analysis of contact rate (β) on infected humans. As the contact rate (β) increases, there seem to be an increase in the number of infections. As the contact rate (β) decreases, there is a corresponding decrease in the number of infected humans. This confirms the effects of contact rate (β) on infected humans. Hence, infections can be curbed by ensuring that the value of contact rate (β) reduces to the nearest minimum.

7.2. Analysis of Contact Rate (λ) on Infected Animals

Figure 3 shows the analysis of contact rate (λ) on infected
Figure 4: Population dynamics of infected animals and humans with and without optimal control.

Figure 5: Population dynamics of recovered animals and humans with and without optimal control.

Figure 6: Population dynamics of infected animals and humans with and without optimal control.
animals. As the contact rate increases, there seem to be an increase in the number of infections. As the contact rate decreases, there is a corresponding decrease in the number of infected animals. This confirms the effects of contact rate (λ) on infected animals. Hence, infections can be curbed by ensuring that the value of contact rate (λ) reduces to the bearest minimum.

7.3. Strategy 1: Optimal Prevention of S_h and Treatment of I_v. We optimised the objective function using prevention of S_h and treatment of I_v as control measures. This was done by setting the treatment of infected humans, u_3, to zero. Figure 6 indicates a reduction in number of campylobacteriosis-infected animals and humans. Figure 7 indicates an increase in campylobacteriosis recovery in both animal and human populations.

Biologically, the implication is that campylobacteriosis infections can be curbed effectively by prevention of humans and treatment of infected animals.

7.4. Strategy 2: Optimal Prevention of S_h and Treatment of I_h. We optimised the objective function using prevention of S_h and treatment of I_h as control measures. This was done by setting the treatment of infected humans, u_3, to zero. Figure 6 indicates a reduction in number of campylobacteriosis-infected animals and humans. Figure 7 indicates an increase in campylobacteriosis recovery in both animal and human populations.

Biologically, the implication is that campylobacteriosis infections can be curbed effectively by prevention of humans and treatment of infected animals.

8. Conclusion

A deterministic model that explains the spread dynamics of campylobacteriosis infection was formulated and analysed for its qualitative and quantitative solutions. The qualitative analysis of the model was carried out using the nonstandard finite difference scheme for boundedness of solution, disease-free equilibrium, and its local and global stability. Campylobacteriosis disease-free equilibrium of the scheme in its explicit form was established. Analysis of the scheme established that the disease-free equilibrium was both locally and globally asymptotically stable.

The campylobacteriosis model was extended to optimal control using prevention of susceptible humans, treatment of infected humans, and treatment of infected animals. The objective functional was optimised, and it was established that combining prevention of susceptible humans and treatment of infected animals was the effective control measure in combating campylobacteriosis infections.

An analysis of the effects of contact rate between susceptible and infected animals as well as susceptible and infected humans was conducted. This showed an increase in infected animals and humans whenever the contact rate increases and decreases otherwise. Biologically, campylobacteriosis infections can be controlled by ensuring that interactions between susceptible humans, infected animals, and infected humans is reduced to the bearest minimum.

Data Availability

The parameter values supporting this deterministic model simulations were assumed and others taken from some published articles. All these were dully acknowledged and cited in...
this paper. These published articles are also cited at relevant places within the text as references.

Conflicts of Interest

We declare that there are no conflict of interest regarding the publication of this article.

Acknowledgments

Authors sincerely acknowledged and expressed their profound appreciation to all colleagues for their reviews, comments, and suggestions.

References

[1] W. Cha, T. Henderson, J. Collins, and S. D. Manning, “Factors associated with increasing campylobacteriosis incidence in Michigan, 2004–2013,” *Epidemiology & Infection*, vol. 144, no. 15, pp. 3316–3325, 2016.

[2] J. H. Helba, *A dynamical model of campylobacteriosis in Ohio, [Ph.D. thesis]*, The Ohio State University, 2017.

[3] A. H. Havelaar, W. van Pelt, C. W. Ang et al., “Immunity to campylobacter: its role in risk assessment and epidemiology,” *Critical Reviews in Microbiology*, vol. 35, no. 1, pp. 1–22, 2009.

[4] A. Parshotama, “Modelling of a zoonotic pathogen (Campylobacter) in a dairy herd,” in *19th International Congress on Modelling and Simulation*, Perth, Australia, 2011.

[5] C. Lanzas, Z. Lu, and Y. T. Gröhn, “Mathematical modeling of the transmission and control of foodborne pathogens and antimicrobial resistance at preharvest,” *Foodborne Pathogens and Disease*, vol. 8, no. 1, pp. 1–10, 2011.

[6] O. F. Egbeleowo, *The nonstandard finite difference method applied to pharmacokinetic models, [Ph.D. thesis]*, WITS University, Johannesburg, South Africa, 2018.

[7] M. J. Keeling and P. Rohani, *Modeling Infectious Diseases in Humans and Animals*, Princeton university press, 2008.

[8] S. Ruan and W. Wang, “Dynamical behavior of an epidemic model with a nonlinear incidence rate,” *Journal of Differential Equations*, vol. 188, no. 1, pp. 135–163, 2003.

[9] K. A. Eustace, S. Osman, and M. Wainaina, “Mathematical modelling and analysis of the dynamics of cholera,” *Global Journal of Pure and Applied Mathematics*, vol. 14, no. 9, pp. 1259–1275, 2018.

[10] M. Farman, A. Ahmad, M. U. Saleem, and M. O. Ahmad, “Analysis and numerical solution of epidemic models by using nonstandard finite difference scheme,” *Pure and Applied Biology*, vol. 9, no. 1, pp. 674–682, 2020.

[11] W. E. Eyaran, S. Osman, and M. Wainaina, “Modelling and analysis of seir with delay differential equation,” *Global Journal of Pure and Applied Mathematics*, vol. 15, no. 4, pp. 365–382, 2019.

[12] L. Zhang, S. Gao, and Q. Zou, “A non-standard finite difference scheme of a multiple infected compartments model for waterborne disease,” *Differential Equations and Dynamical Systems*, vol. 28, no. 1, pp. 59–73, 2020.

[13] O. D. Makinde, “Adomian decomposition approach to a sir epidemic model with constant vaccination strategy,” *Applied Mathematics and Computation*, vol. 184, no. 2, pp. 842–848, 2007.

[14] J. W. Karunditu, G. Kimathi, and S. Osman, “Mathematical modeling of typhoid fever disease incorporating unprotected humans in the spread dynamics,” *Journal of Advances in Mathematics and Computer Science*, vol. 32, pp. 1–11, 2019.

[15] H. A. Togbenon, G. A. Degla, and M. E. Kimathi, “Stability analysis using nonstandard finite difference method and model simulation for multi-mutation and drug resistance with immune-suppression,” *Mathematical Theory and Modeling*, vol. 8, no. 7, 2018.

[16] R. E. Mickens, *Nonstandard Finite Difference Models of Differential Equations*, World Scientific Publishing Co. Pte. Ltd, Singapore, 1994.

[17] C. Kailash, “On the use of nonstandard finite difference methods,” *Journal of Difference Equations and Applications*, vol. 11, no. 8, pp. 735–758, 2005.

[18] R. E. Mickens, *Advances in the Applications of Nonstandard Finite Difference Schemes*, World Scientific, 2005.

[19] S. Osman and O. D. Makinde, “A mathematical model for coinfection of listeriosis and anthrax diseases,” *International Journal of Mathematics and Mathematical Sciences*, vol. 2018, 14 pages, 2018.

[20] O. D. Makinde and K. O. Okosun, “Impact of chemo-therapy on optimal control of malaria disease with infected immigrants,” *BioSystems*, vol. 104, no. 1, pp. 32–41, 2011.

[21] K. O. Okosun and O. D. Makinde, “A co-infection model of malaria and cholera diseases with optimal control,” *Mathematical Biosciences*, vol. 258, pp. 19–32, 2014.

[22] L. S. Pontryagin, *Mathematical Theory of Optimal Processes*, CRC Press, 1987.

[23] J. P. LaSalle, *The Stability of Dynamical Systems*, Regional Conference Series in Appl. Math., SIAM, Philadelphia, 1976.

[24] S. Osman, O. D. Makinde, and D. M. Theuri, “Mathematical modelling of transmission dynamics of anthrax in human and animal population,” *Mathematical Theory and Modelling*, vol. 8, 2018.

[25] D. W. Muia, S. Osman, and M. Wainaina, “Modelling and analysis of trypansomiasis transmission mechanism,” *Global Journal of Pure and Applied Mathematics*, vol. 14, no. 10, pp. 1311–1331, 2018.

[26] P. Van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” *Mathematical Biosciences*, vol. 180, no. 1-2, pp. 29–48, 2002.