NOTES ON NON-ARCHIMEDEAN TOPOLOGICAL GROUPS

MICHAEL MEGRELIŠVILI AND MENACHEM SHLOSSBERG

Dedicated to Professor Dikran Dikranjan on his 60th birthday

Abstract. We show that the Heisenberg type group $H_X = (\mathbb{Z}_2 \oplus V) \rtimes V^*$, with the discrete Boolean group $V := C(X, \mathbb{Z}_2)$, canonically defined by any Stone space X, is always minimal. That is, H_X does not admit any strictly coarser Hausdorff group topology. This leads us to the following result: for every (locally compact) non-archimedean G there exists a (resp., locally compact) non-archimedean minimal group M such that G is a group retract of M. For discrete groups G the latter was proved by S. Dierolf and U. Schwanengel [8]. We unify some old and new characterization results for non-archimedean groups. We show also that any epimorphism into a non-archimedean group must be dense.

Contents

1. Introduction and preliminaries 1
2. Minimality and group representations 3
3. Some facts about non-archimedean groups and uniformities 6
4. The Heisenberg group associated to a Stone space 9
5. More characterizations of non-archimedean groups 11
6. Automorphizable actions and epimorphisms in topological groups 12
References 20

1. Introduction and preliminaries

A topological group is non-archimedean if it has a local base at the identity consisting of open subgroups. This class of groups coincides with the class of topological subgroups of the homeomorphism groups $\text{Homeo}(X)$, where X runs over Stone spaces (compact zero-dimensional spaces) and $\text{Homeo}(X)$ carries the usual compact open topology. Recall that by Stone’s representation theorem, there is a duality between the category of Stone spaces and the category of Boolean algebras. The class \mathcal{NA} of non-archimedean groups and their actions on ultra-metric and Stone spaces have many applications. For instance, in non-archimedean functional analysis, in descriptive set theory, computer science, etc. See, e.g., [44, 3, 25, 24] and references therein.

In the present paper we provide some applications of generalized Heisenberg groups, with emphasis on minimality properties, in the theory of \mathcal{NA} groups and actions on Stone spaces.

Date: June 06, 2011.

Key words and phrases. Boolean group, epimorphisms, Heisenberg group, isosceles, minimal group, free topological G-group, non-archimedean group, Stone duality, ultra-metric, ultra-norm.
Recall that a Hausdorff topological group G is minimal (Stephenson [47] and Doichinov [13]) if it does not admit a strictly coarser Hausdorff group topology, or equivalently, if every injective continuous group homomorphism $G \to P$ into a Hausdorff topological group is a topological group embedding.

If otherwise is not stated all topological groups and spaces in this paper are assumed to be Hausdorff. We say that an additive topological group $(G, +)$ is a Boolean group if $x + x = 0$ for every $x \in G$. As usual, a G-space X is a topological space X with a continuous group action $\pi : G \times X \to X$ of a topological group G. We say that X is a G-group if, in addition, X is a topological group and all g-translations, $\pi^g : X \to X$, $x \mapsto gx := \pi(g, x)$, are automorphisms of X. For every G-group X we denote by $X \rtimes G$ the corresponding topological semidirect product.

To every Stone space X we associate a (locally compact, 2-step nilpotent) Heisenberg type group

$$H_X = (\mathbb{Z}_2 \oplus V) \rtimes V^*,$$

where $V := C(X, \mathbb{Z}_2)$ is a discrete Boolean group which can be identified with the group of all clopen subsets of X (symmetric difference is the group operation). $V^* := \text{Hom}(V, \mathbb{Z}_2)$ is the compact group of all group homomorphisms into the two element cyclic group \mathbb{Z}_2. V^* acts on $\mathbb{Z}_2 \oplus V$ in the following way: every $(f, (a, x)) \in V^* \times (\mathbb{Z}_2 \oplus V)$ is mapped to $(a + f(x), x) \in \mathbb{Z}_2 \oplus V$. The group operation on H_X is defined as follows: for

$$u_1 = (a_1, x_1, f_1), \ u_2 = (a_2, x_2, f_2) \in H_X$$

we define

$$u_1u_2 = (a_1 + a_2 + f_1(x_2), x_1 + x_2, f_1 + f_2).$$

In Section 4 we study some properties of H_X and show in particular (Theorem 4.1) that the (locally compact) Heisenberg group $H_X = (\mathbb{Z}_2 \times V) \rtimes V^*$ is minimal and non-archimedean for every Stone space X.

Every Stone space X is naturally embedded into $V^* := \text{Hom}(V, \mathbb{Z}_2)$ by the natural map $\delta : X \to V^*$, $x \mapsto \delta_x$ where $\delta_x(f) := f(x)$. Every δ_x can be treated as a 2-valued measure on X. Identifying X with $\delta(X) \subset V^*$ we get a restricted evaluation map $V \times X \to \mathbb{Z}_2$ which in fact is the evaluation map of the Stone duality. Note that the role of $\delta : X \to V^*$ for a compact space X is similar to the role of the Gelfand map $X \to C(X)^*$, representing X via the point measures.

For every action of a group $G \subset \text{Homeo}(X)$ on a Stone space X we can deal with a G-space version of the classical Stone duality. The map $\delta : X \to V^*$ is a G-map of G-spaces. Every continuous group action of G on a Stone space X is automorphizable in the sense of [29], meaning that X is a G-subspace of a G-group K. This contrasts the case of general compact spaces (see [29]). More generally, we study (Theorem 6.3) also metric and uniform versions of automorphizable actions.

Furthermore, a deeper analysis shows (Theorem 4.4) that every topological subgroup $G \subset \text{Homeo}(X)$ induces a continuous action of G on H_X by automorphisms such that the corresponding semidirect product $H_X \rtimes G$ is a minimal group.

We then conclude (Corollary 4.5) that every (locally compact) non-archimedean group is a group retract of a (resp., locally compact) minimal non-archimedean group. It covers a result of Dierolf and Schwanengel [8] (see also Example 3.5 below).
which asserts that every discrete group is a group retract of a locally compact non-archimedean minimal group.

Section 2 contains additional motivating results and questions. Several interesting applications of generalized Heisenberg groups can be found in the papers [25, 31, 32, 13, 84, 10, 11, 46].

Studying the properties of the Heisenberg group H_X, we get a unified approach to several (mostly known) equivalent characterizations of the class $\mathcal{N}A$ of non-archimedean groups (Lemma 3.2 and Theorem 5.1). In particular, we show that the class of all topological subgroups of $\text{Aut}(K)$, for compact abelian groups K, is precisely $\mathcal{N}A$.

A morphism $f : M \to G$ in a category C is an epimorphism if there are no different morphisms $g, h : G \to F$ in C such that $gf = hf$. In the category of Hausdorff topological groups a morphism with dense range is obviously an epimorphism. K.H. Hofmann asked in late 1960’s whether the converse is true. This epimorphism problem was answered by Uspenskij [50] in the negative. Nevertheless, in many natural cases indeed the epimorphism $M \to G$ must be dense. For example, Nummela [39] has shown it in the case that the co-domain G is either locally compact or having the coinciding left and right uniformities. Using a criterion of Pestov [40] and the uniform automorphizability of certain actions by non-archimedean groups (see Theorem 6.5) we prove in Theorem 6.7 that any epimorphism $f : M \to G$ into a non-archimedean group G must be dense.

Acknowledgment: We thank Dikranjan for many valuable ideas and concrete suggestions. We are indebted also to the referee for several improvements.

2. Minimality and Group Representations

Clearly, every compact topological group is minimal. Trivial examples of non-minimal groups are: the group \mathbb{Z} of all integers (or any discrete infinite abelian group) and \mathbb{R}, the topological group of all reals. By a fundamental theorem of Prodanov and Stoyanov [38] every abelian minimal group is precompact. For more information about minimal groups see review papers of Dikranjan [9] and Comfort-Hofmann-Remus [6], a book of Dikranjan-Prodanov-Stoyanov [12] and a recent book of Lukacs [26].

Unexpectedly enough many non-compact naturally defined topological groups are minimal.

Remark 2.1. Recall some nontrivial examples of minimal groups.

1. Prodanov [37] showed that the p-adic topologies are the only precompact minimal group topologies on \mathbb{Z}.
2. Symmetric topological groups S_X (Gaughan [18]).
3. Homeo($\{0,1\}^\mathbb{N}$) (see Gamarnik [17]) and also Uspenskij [52] for a more general case).
4. Homeo(0,1] (Gamarnik [17]).
5. The semidirect product $\mathbb{R} \ltimes \mathbb{R}_+$ (Dierolf-Schwanengel [8]). More general cases of minimal (so-called admissible) semidirect products were studied by Remus and Stoyanov [43]. By [31], $\mathbb{R}^n \ltimes \mathbb{R}_+$ is minimal for every $n \in \mathbb{N}$.
(6) Every connected semisimple Lie group with finite center, e.g., $SL_n(R)$, $n \geq 2$ (Remus and Stoyanov [43]).

(7) The full unitary group $U(H)$ (Stoyanov [48]).

One of the immediate difficulties is the fact that minimality is not preserved by quotients and (closed) subgroups. See for example item (5) with minimal $\mathbb{R} \times \mathbb{R}_+$ where its canonical quotient \mathbb{R}_+ (the positive reals) and the closed normal subgroup \mathbb{R} are nonminimal. As a contrast note that in a minimal abelian group every closed subgroup is minimal [12].

In 1983 Pestov raised the conjecture that every topological group is a group retract of a minimal group. Note that if $f : M \to G$ is a group retraction then necessarily G is a quotient of M and also a closed subgroup in M. Arhangel’skii asked the following closely related questions:

Question 2.2. ([3], [36]) Is every topological group a quotient of a minimal group? Is every topological group a closed subgroup of a minimal group?

By a result of Uspenskij [51] every topological group is a subgroup of a minimal group M which is Raikov-complete, topologically simple and Roelcke-precompact.

Recently a positive answer to Pestov’s conjecture (and hence to Question 2.2 of Arhangel’skii) was obtained in [34]. The proof is based on methods (from [28]) of constructing minimal groups using group representations on Banach spaces and involving generalized Heisenberg groups.

According to [28] every locally compact abelian group is a group retract of a minimal locally compact group. It is an open question whether the same is true in the nonabelian case.

Question 2.3. ([28], [34] and [6]) Is it true that every locally compact group G is a group retract (at least a subgroup or a quotient) of a locally compact minimal group?

A more general natural question is the following:

Question 2.4. [28] Let \mathcal{K} be a certain class of topological groups and min denotes the class of all minimal groups. Is it true that every $G \in \mathcal{K}$ is a group retract of a group $M \in \mathcal{K} \cap \text{min}$?

So Corollary 4.5 gives a partial answer to Questions 2.3 and 2.4 in the class $\mathcal{K} := N\mathcal{A}$ of non-archimedean groups.

Remark 2.5. Note that by [34] Theorem 7.2] we can present any topological group G as a group retraction $M \to G$, where M is a minimal group having the same weight and character as G. Furthermore, if G is Raikov-complete then M also has the same property. These results provide in particular a positive answer to Question 2.4 in the following basic classes: second countable groups, metrizable groups, Polish groups.

2.1. Minimality properties of actions.

Definition 2.6. Let $\alpha : G \times X \to X$, $\alpha(g, x) = gx$ be a continuous action of a Hausdorff topological group (G, σ) on a Hausdorff topological space (X, τ). The action α is said to be:
(1) algebraically exact if $\ker \alpha := \{ g \in G : gx = x \ \forall x \in X \}$ is the trivial subgroup $\{ e \}$.

(2) topologically exact (t-exact, in short) if there is no strictly coarser, not necessarily Hausdorff, group topology $\sigma' \subsetneq \sigma$ on G such that α is (σ', τ, τ)-continuous.

Remark 2.7. (1) Every topologically exact action is algebraically exact. Indeed, otherwise $\ker \alpha$ is a non-trivial subgroup in G. Then the preimage group topology $\sigma' \subset \sigma$ on G induced by the onto homomorphism $G \to G/\ker \alpha$ is not Hausdorff (in particular, it differs σ) and the action remains (σ', τ, τ)-continuous.

(2) On the other hand, if α is algebraically exact then it is topologically exact if and only if for every strictly coarser Hausdorff group topology $\sigma' \subset \sigma$ on G the action α is not (σ', τ, τ)-continuous. Indeed, since α is algebraically exact and (X, τ) is Hausdorff then every coarser group topology σ' on G which makes the action (σ', τ, τ)-continuous must be Hausdorff.

Let X be a locally compact group and $\text{Aut}(X)$ be the group of all automorphisms endowed with the Birkhoff topology (see [19, §26] and [12, p. 260]). Some authors use the name Braconnier topology (see [5]).

The latter is a group topology on $\text{Aut}(X)$ and has a local base formed by the sets

$$\mathcal{B}(K, O) := \{ f \in \text{Aut}(X) : f(x) \in O x \text{ and } f^{-1}(x) \in O x \ \forall x \in K \}$$

where K runs over compact subsets and O runs over neighborhoods of the identity in X. In the sequel $\text{Aut}(X)$ is always equipped with the Birkhoff topology. It equals to the Arens g-topology [8, 10]. If X is compact then the Birkhoff topology coincides with the usual compact-open topology. If X is discrete then the Birkhoff topology on $\text{Aut}(X) \subset X^X$ coincides with the pointwise topology.

Lemma 2.8. In each of the following cases the action of G on X is t-exact:

(1) [28] Let X be a locally compact group and G be a subgroup of $\text{Aut}(X)$.

(2) Let G be a topological subgroup of $\text{Homeo}(X)$, the group of all automorphisms of a compact space X with the compact open topology.

(3) Let G be a subgroup of $\text{Is}(X, d)$ the group of all isometries of a metric space (X, d) with the pointwise topology.

Proof. Straightforward. □

2.2. From minimal dualities to minimal groups. In this subsection we recall some definitions and results from [28, 34].

Let E, F, A be abelian additive topological groups. A map $w : E \times F \to A$ is said to be biadditive if the induced mappings

$$w_x : F \to A, w_f : E \to A, w_x(f) := w(x, f) =: w_f(x)$$

are homomorphisms for all $x \in E$ and $f \in F$.

A biadditive mapping $w : E \times F \to A$ is separated if for every pair (x_0, f_0) of nonzero elements there exists a pair (x, f) such that $w(x_0) \neq 0_A$ and $f_0(x) \neq 0_A$.

A continuous separated biadditive mapping \(w : (E, \sigma) \times (F, \tau) \to A \) is \textit{minimal} if for every coarser pair \((\sigma_1, \tau_1)\) of Hausdorff group topologies \(\sigma_1 \subseteq \sigma, \tau_1 \subseteq \tau\) such that \(w : (E, \sigma_1) \times (F, \tau_1) \to A \) is continuous, it follows that \(\sigma_1 = \sigma\) and \(\tau_1 = \tau\).

Let \(w : E \times F \to A \) be a continuous biadditive mapping. Consider the action: \(w^{\tau} : F \times (A \oplus E) \to A \oplus E, \quad w^{\tau}(f, (a, x)) = (a + w(x, f), x) \). Denote by \(H(w) = (A \oplus E) \times F \) the topological semidirect product of \(F \) and the direct sum \(A \oplus E \). The group operation on \(H(w) \) is defined as follows: for a pair
\[
\begin{align*}
 u_1 &= (a_1, x_1, f_1), \\
 u_2 &= (a_2, x_2, f_2)
\end{align*}
\]
we define
\[
u_1u_2 = (a_1 + a_2 + f_1(x_2), x_1 + x_2, f_1 + f_2)\]
where, \(f_1(x_2) = w(x_2, f_1) \). Then \(H(w) \) becomes a Hausdorff topological group which is said to be a \textit{generalized Heisenberg group} (induced by \(w \)).

Let \(G \) be a topological group and let \(w : E \times F \to A \) be a continuous biadditive mapping. A continuous \textit{birepresentation} of \(G \) in \(w \) is a pair \((\alpha_1, \alpha_2)\) of continuous actions by group automorphisms \(\alpha_1 : G \times E \to E \) and \(\alpha_2 : G \times F \to F \) such that \(w \) is \(G \)-invariant, i.e., \(w(gx, gf) = w(x, f) \).

The birepresentation \(\psi \) is said to be \(t \)-exact if \(\ker(\alpha_1) \cap \ker(\alpha_2) = \{e\} \) and for every strictly coarser \textit{Hausdorff} group topology on \(G \) the birepresentation does not remain continuous. For instance, if one of the actions \(\alpha_1 \) or \(\alpha_2 \) is \(t \)-exact then clearly \(\psi \) is \(t \)-exact.

Let \(\psi \) be a continuous \(G \)-birepresentation
\[
\psi = (w : E \times F \to A, \alpha_1 : G \times E \to E, \alpha_2 : G \times F \to F).
\]
The topological semidirect product \(M(\psi) := H(w) \ltimes_\pi G \) is said to be the \textit{induced group}, where the action \(\pi : G \times H(w) \to H(w) \) is defined by
\[
\pi(g, (a, x, f)) = (a, gx, gf).
\]

Fact 2.9. Let \(w : E \times F \to A \) be a minimal biadditive mapping and \(A \) is a minimal group. Then

1. [11] Corollary 5.2] The Heisenberg group \(H(w) \) is minimal.
2. (See [28] Theorem 4.3 and [34]) If \(\psi \) is a \(t \)-exact \(G \)-birepresentation in \(w \) then the induced group \(M(\psi) \) is minimal.

Fact 2.10. [28] Let \(G \) be a locally compact abelian group and \(G^* := \text{Hom}(G, \mathbb{T}) \) be the dual (locally compact) group. Then the canonical evaluation mapping
\[
G \times G^* \to \mathbb{T}
\]
is minimal and the corresponding Heisenberg group \(H = (\mathbb{T} \oplus G) \ltimes G^* \) is minimal.

3. Some facts about non-archimedean groups and uniformities

3.1. **Non-archimedean uniformities.** For information on uniform spaces, we refer the reader to [16] (in terms of entourages) and to [22] (via coverings). If \(\mu \) is a uniformity for \(X \) in terms of coverings, then the collection of elements of \(\mu \) which are \textit{finite} coverings of \(X \) forms a base for a topologically compatible uniformity for \(X \) which we denote by \(\mu_{\text{fin}} \) (the precompact replica of \(\mu \)).
A partition of a set X is a covering of X consisting of pairwise disjoint subsets of X. Due to Monna (see [44, p.38] for more details), a uniform space (X, μ) is non-archimedean if it has a base consisting of partitions of X. In terms of entourages, it is equivalent to saying that there exists a base \mathcal{B} of the uniform structure such that every entourage $P \in \mathcal{B}$ is an equivalence relation. Equivalently, iff its large uniform dimension (in the sense of Isbell [22, p. 78]) is zero.

A metric space (X, d) is said to be an ultra-metric space (or, isosceles [24]) if d is an ultra-metric, i.e., it satisfies the strong triangle inequality

$$d(x, z) \leq \max\{d(x, y), d(y, z)\}.$$}

The definition of ultra-semimetric is the same as ultra-metric apart from the fact that the condition $d(x, y) = 0$ need not imply $x = y$. For every ultra-semimetric d on X every ε-covering $\{B(x, \varepsilon) : x \in X\}$ by the open balls is a clopen partition of X.

Furthermore, a uniformity is non-archimedean iff it is generated by a system $\{d_i\}_{i \in I}$ of ultra-semimetrics. The following result (up to obvious reformulations) is well known. See, for example, [22] and [21].

Lemma 3.1. Let (X, μ) be a non-archimedean uniform space. Then both (X, μ_{fin}) and the uniform completion $(\hat{X}, \hat{\mu})$ of (X, μ) are non-archimedean uniform spaces.

3.2. Non-archimedean groups.

The class \mathcal{NA} of all non-archimedean groups is quite large. Besides the results of this section see Theorem 5.1 below. The prodiscrete (in particular, the profinite) groups are in \mathcal{NA}. All \mathcal{NA} groups are totally disconnected and for every locally compact totally disconnected group G both G and $Aut(G)$ are \mathcal{NA} (see Theorems 7.7 and 26.8 in [19]). Every abelian \mathcal{NA} group is embedded into a product of discrete groups.

The minimal groups $(\mathbb{Z}, \tau_p), S_X, \text{Homeo} (\{0, 1\}^{\mathbb{N}})$ (in items (1), (2) and (3) of Remark 2.1) are non-archimedean. By Theorem 4.1 the Heisenberg group $H_X = (\mathbb{Z}^2 \oplus V) \ltimes V^*$ is \mathcal{NA} for every Stone space X. It is well known that there exist $2^{\mathbb{N}}$-many nonhomeomorphic metrizable Stone spaces.

Recall that every topological group can be identified with a subgroup of $\text{Homeo}(X)$ for some compact X and also with a subgroup of $Is(M, d)$, topological group of isometries of some metric space (M, d) endowed with the pointwise topology, [49]. Similar characterizations are true for \mathcal{NA} with compact zero-dimensional spaces X and ultra-metric spaces (M, d). See Lemma 3.2 and Theorem 5.1 below.

We will use later the following simple observations. Let X be a Stone space (compact zero-dimensional space) and G be a topological subgroup of $\text{Homeo}(X)$. For every finite clopen partition $P = \{A_1, \ldots, A_n\}$ of X define the subgroup

$$M(P) := \{g \in G : gA_k = A_k \forall 1 \leq k \leq n\}.$$}

Then all subgroups of this form defines a local base (subbase, if we consider only two-element partitions P) of the original compact-open topology on $G \subset \text{Homeo}(X)$. So for every Stone space X the topological group $\text{Homeo}(X)$ is non-archimedean. More generally, for every non-archimedean uniform space (X, μ) consider the group $\text{Unif}(X, \mu)$ of all uniform automorphisms of X (that is, the bijective functions $f : X \to X$ such that both f and f^{-1} are μ-uniform). Then
Lemma 3.2. The following assertions are equivalent:

1. G is a non-archimedean topological group.
2. The right (left) uniformity on G is non-archimedean.
3. $\dim \beta G = 0$, where βG is the maximal G-compactification \[35\] of G.
4. G is a topological subgroup of $\text{Homeo}(X)$ for some compact zero-dimensional space X (where $w(X) = w(G)$).
5. G is a topological subgroup of $\text{Unif}(Y, \mu)$ for some non-archimedean uniformity μ on a set Y.

Proof. For the sake of completeness we give here a sketch of the proof. The equivalence of (1) and (3) was established by Pestov \[41, \text{Prop. 3.4}\]. The equivalence of (1), (2) and (3) is \[35, \text{Theorem 3.3}\].

(1) \Rightarrow (2) Let $\{H_i\}_{i \in I}$ be a local base at e (the neutral element of G), where each H_i is an open (hence, clopen) subgroup of G. Then the corresponding decomposition of $G = \bigcup_{g \in G} H_i g$ by right H_i-cosets defines an equivalence relation Ω_i and the set $\{\Omega_i\}_{i \in I}$ is a base of the right uniform structure μ_r on G.

(2) \Rightarrow (3) If the right uniformity μ is non-archimedean then by Lemma 3.1 the completion $(\hat{X}, \hat{\mu}_{\text{fin}})$ of its precompact replica (Samuel compactification of (X, μ)) is again non-archimedean. Now recall (see for example \[35\]) that this completion is just the greatest G-compactification βG (the G-space analog of the Stone-Čech compactification) of G.

(3) \Rightarrow (4) A result in \[27\] implies that there exists a zero-dimensional proper G-compactification X of the G-space G (the left action of G on itself) with $w(X) = w(G)$. Then the natural homomorphism $\varphi: G \to \text{Homeo}(X)$ is a topological group embedding.

(4) \Rightarrow (5) Trivial because $\text{Homeo}(X) = \text{Unif}(X, \mu)$ for compact X and its unique compatible uniformity μ.

(5) \Rightarrow (1) The non-archimedean uniformity μ has a base \mathfrak{B} where each $P \in \mathfrak{B}$ is an equivalence relation. Then the subsets

$$M(P) := \{g \in G : \ (gx, x) \in P \ \forall x \in X\},$$

form a local base of G. Observe that $M(P)$ is a subgroup of G. \qed

$\mathcal{N}A$-ness of a dense subgroup implies that of the whole group. Hence the Raikov-completion of $\mathcal{N}A$ groups are again $\mathcal{N}A$. Subgroups, quotient groups and (arbitrary) products of $\mathcal{N}A$ groups are also $\mathcal{N}A$. Moreover the class $\mathcal{N}A$ is closed under group extensions.

Fact 3.3. \[20, \text{Theorem 2.7}\] If both N and G/N are $\mathcal{N}A$, then so is G.

For the readers convenience we reproduce here the proof from \[20\].

Proof. Let U be a neighborhood of e in G. We shall find an open subgroup H contained in U. We choose neighborhoods U_0, V and W of e in G as follows. First let U_0 be such that $U_0^2 \subseteq U$. By the assumption, there is an open subgroup M of N contained in $N \cap U_0$. Let $V \subseteq U_0$ be open with $V = V^{-1}$ and $V^3 \cap N \subseteq M$. We denote by π the natural homomorphism $G \to G/N$. Since $\pi(V)$ is open in G/N, it...
contains an open subgroup \(K \). We set \(W = V \cap \pi^{-1}(K) \). We show that \(W^2 \subseteq WM \).

Suppose that \(w_0, w_1 \in W \). Since \(\pi(w_0), \pi(w_1) \in K \), we have \(\pi(w_0w_1) \in K \). So there is \(w_2 \in W \) with \(\pi(w_2) = \pi(w_0w_1) \). Then \(w_2^{-1}w_0w_1 \in N \cap W^3 \subseteq M \), and hence \(w_0w_1 \in w_2M \). Using this result and also the fact that \(M \) is a subgroup of \(N \) we obtain by induction that \(W^k \subseteq WM \) for all \(k \in \mathbb{N} \). Now let \(H \) be the subgroup of \(G \) generated by \(W \). Clearly, \(H = \bigcup_{k=1}^{\infty} W^k \). Then \(H \) is open and

\[
H \subseteq WM \subseteq U_0^2 \subseteq U
\]
as desired. \(\Box \)

Corollary 3.4. Suppose that \(G \) and \(H \) are non-archimedean groups and that \(H \) is a \(G \)-group. Then the semidirect product \(H \ltimes G \) is non-archimedean.

Example 3.5. (Dierolf and Schwanengel [8]) Every discrete group \(H \) is a group retract of a locally compact non-archimedean minimal group.

More precisely, let \(\mathbb{Z}_2 \) be the discrete cyclic group of order 2 and let \(H \) be a discrete topological group. Let \(G := \mathbb{Z}_2^H \) be endowed with the product topology. Then

\[
\sigma : H \to \text{Aut}(G), \quad \sigma(k)((x_h)_{h \in H}) := (x_{hk})_{h \in H} \quad \forall k \in H, \quad (x_h)_{h \in H} \in G
\]
is a homomorphism. The topological semidirect (wreath) product \(G \ltimes \sigma H \) is a locally compact non-archimedean minimal group having \(H \) as a retraction.

Corollary 3.5 below provides a generalization.

4. **The Heisenberg group associated to a Stone space**

Let \(X \) be a Stone space. Let \(V = (V(X), \Delta) \) be the discrete group of all clopen subsets in \(X \) with respect to the symmetric difference. As usual one may identify \(V \) with the group \(V := C(X, \mathbb{Z}_2) \) of all continuous functions \(f : X \to \mathbb{Z}_2 \).

Denote by \(V^* := \text{hom}(V, \mathbb{T}) \) the Pontryagin dual of \(V \). Since \(V \) is a Boolean group every character \(V \to \mathbb{T} \) can be identified with a homomorphism into the unique 2-element subgroup \(\Omega_2 = \{1, -1\} \), a copy of \(\mathbb{Z}_2 \). The same is true for the characters on \(V^* \), hence the natural evaluation map \(w : V \times V^* \to \mathbb{T} \) (\(w(x, f) = f(x) \)) can be restricted naturally to \(V \times V^* \to \mathbb{Z}_2 \). Under this identification \(V^* := \text{hom}(V, \mathbb{Z}_2) \) is a closed (hence compact) subgroup of the compact group \(\mathbb{Z}_2^V \). Clearly, the groups \(V \) and \(\mathbb{Z}_2 \), being discrete, are non-archimedean. The group \(V^* = \text{hom}(V, \mathbb{Z}_2) \) is also non-archimedean since it is a subgroup of \(\mathbb{Z}_2^V \).

In the sequel \(G \) is an arbitrary non-archimedean group. \(X \) is its associated Stone space, that is, \(G \) is a topological subgroup of \(\text{Homeo}(X) \) (see Lemma 3.2). \(V \) and \(V^* \) are the non-archimedean groups associated to the Stone space \(X \) we have mentioned at the beginning of this subsection. We intend to show using the technique introduced in Subsection 2.2, among others, that \(G \) is a topological group retract of a non-archimedean minimal group.

Theorem 4.1. For every Stone space \(X \) the (locally compact 2-step nilpotent) Heisenberg group \(H = (\mathbb{Z}_2 \oplus V) \ltimes V^* \) is minimal and non-archimedean.

Proof. Using Fact 2.10 (or, by direct arguments) it is easy to see that the continuous separated biadditive mapping

\[
w : V \times V^* \to \mathbb{Z}_2
\]
is minimal. Then by Fact 2.9.1 the corresponding Heisenberg group H is minimal. H is non-archimedean by Corollary 3.4.

Lemma 4.2. Let G be a topological subgroup of Homeo (X) for some Stone space X (see Lemma 3.2). Then $w(G) \leq w(X) = w(V) = |V| = w(V^*)$.

Proof. Use the facts that in our setting V is discrete and V^* is compact. Recall also that (see e.g., \[16\, Thm. 3.4.16\])

$$w(C(A, B)) \leq w(A) \cdot w(B)$$

for every locally compact Hausdorff space A (where the space $C(A, B)$ is endowed with the compact-open topology).

The action of $G \subset \text{Homeo}(X)$ on X and the functoriality of the Stone duality induce the actions on V and V^*. More precisely, we have

$$\alpha : G \times V \to V, \quad \alpha(g, A) = g(A)$$

and

$$\beta : G \times V^* \to V^*, \quad \beta(g, f) := gf, \quad (gf)(A) = f(g^{-1}(A)).$$

Every translation under these actions is a continuous group automorphism. Therefore we have the associated group homomorphisms:

$$i_\alpha : G \to \text{Aut}(V)$$

$$i_\beta : G \to \text{Aut}(V^*)$$

The pair (α, β) is a birepresentation of G on $w : V \times V^* \to \mathbb{Z}_2$. Indeed,

$$w(gf, g(A)) = (gf)(g(A)) = f(g^{-1}(g(A))) = f(A) = w(f, A).$$

Lemma 4.3. (1) Let G be a topological subgroup of Homeo (X) for some Stone space X. The action $\alpha : G \times V \to V$ induces a topological group embedding $i_\alpha : G \hookrightarrow \text{Aut}(V)$.

(2) The natural evaluation map

$$\delta : X \to V^*, \quad x \mapsto \delta_x, \quad \delta_x(f) = f(x)$$

is a topological G-embedding.

(3) The action $\beta : G \times V^* \to V^*$ induces a topological group embedding $i_\beta : G \hookrightarrow \text{Aut}(V^*)$.

(4) The pair $\psi := (\alpha, \beta)$ is a t-exact birepresentation of G on $w : V \times V^* \to \mathbb{Z}_2$.

Proof. (1) Since V is discrete, the Birkhoff topology on $\text{Aut}(V)$ coincides with the pointwise topology. Recall that the topology on G inherited from Homeo (X) is defined by the local subbase

$$H_A := \{g \in G : gA = A\}$$

where A runs over nonempty clopen subsets in X. Each H_A is a clopen subgroup of G. On the other hand the pointwise topology on $i_\alpha(G) \subset \text{Aut}(V)$ is generated by the local subbase of the form

$$\{i_\alpha(g) \in i_\alpha(G) : gA = A\},$$

So, i_α is a topological group embedding.

(2) Straightforward.
(3) Since V^* is compact, the Birkhoff topology on $\text{Aut}(V^*)$ coincides with the compact open topology.

The action of G on X is t-exact. Hence, by (2) it follows that the action β cannot be continuous under any weaker group topology on G. Now it suffices to show that the action β is continuous.

The topology on $V^* \subset \mathbb{Z}_2^V$ is a pointwise topology inherited from \mathbb{Z}_2^V. So it is enough to show that for every finite family A_1, A_2, \cdots, A_m of nonempty clopen subsets in X there exists a neighborhood O of $e \in G$ such that $(g\psi)(A_k) = \psi(g^{-1}(A_k))$ for every k. Since $(g\psi)(A_k) = \psi(g^{-1}(A_k))$ we may define $O := \cap_{k=1}^m H_{A_k}$

(Another way to prove (3) is to combine (1) and \textbf{[19, Theorem 26.9]}).

(4) $\psi = (\alpha, \beta)$ is a birepresentation as we already noticed before this lemma. The t-exactness is a direct consequence of (1) or (3) together with Fact \textbf{[2.8.1].} \hfill \Box

\textbf{Theorem 4.4.} The topological group

$$M := M(\psi) = H(w) \times G = ((\mathbb{Z}_2 \oplus V) \times V^*) \times G$$

is a non-archimedean minimal group.

\textit{Proof.} By Corollary \textbf{3.4} M is non-archimedean. Use Theorem \textbf{4.1}, Lemma \textbf{4.3} and Fact \textbf{2.9} to conclude that M is a minimal group. \hfill \Box

\textbf{Corollary 4.5.} Every (locally compact) non-archimedean group G is a group retract of a (resp., locally compact) minimal non-archimedean group M where $w(G) = w(M)$.

\textit{Proof.} Apply Theorem \textbf{4.4} taking into account Fact \textbf{2.8.1} and the local compactness of the groups \mathbb{Z}_2, V, V^* (resp., G). \hfill \Box

\textbf{Remark 4.6.} Another proof of Corollary \textbf{4.5} can be obtained by the following way. By Lemma \textbf{4.3} a non-archimedean group G can be treated as a subgroup of the group of all automorphisms $\text{Aut}(V^*)$ of the compact abelian group V^*. In particular, the action of G on V^* is t-exact. The group V^* being compact is minimal. Since V^* is abelian one may apply \textbf{[28, Cor. 2.8]} which implies that $V^* \times G$ is a minimal topological group. By Lemmas \textbf{3.2} and \textbf{4.2} we may assume that $w(G) = w(V^* \times G)$.

5. More characterizations of non-archimedean groups

The results and discussions above lead to the following list of characterizations (compare Lemma \textbf{3.2}).

\textbf{Theorem 5.1.} The following assertions are equivalent:

(1) G is a non-archimedean topological group.
(2) G is a topological subgroup of the automorphisms group (with the pointwise topology) $\text{Aut}(V)$ for some discrete Boolean ring V (where $|V| = w(G)$).
(3) G is embedded into the symmetric topological group S_κ (where $\kappa = w(G)$).
(4) G is a topological subgroup of the group $\text{Is}(X, d)$ of all isometries of an ultra-metric space (X, d), with the topology of pointwise convergence.
The right (left) uniformity on G can be generated by a system of right (left) invariant ultra-semimetrics.

G is a topological subgroup of the automorphism group $\text{Aut}(K)$ for some compact abelian group K (with $w(K) = w(G)$).

Proof. (1) ⇒ (2) As in Lemma 4.3.1.

(2) ⇒ (3) Simply take the embedding of G into $S_V \cong S_\kappa$, with $\kappa = |V| = w(G)$.

(3) ⇒ (4) Consider the two-valued ultra-metric on the discrete space X with $|X| = \kappa$.

(4) ⇒ (5) For every $z \in X$ consider the left invariant ultra-semimetric $\rho_z(s, t) := d(sz, tz)$.

Then the collection $\{\rho_z\}_{z \in X}$ generates the left uniformity of G.

(5) ⇒ (1) Observe that for every right invariant ultra-semimetric ρ on G and $n \in \mathbb{N}$ the set

$$H := \{g \in G : \rho(g, e) < 1/n\}$$

is an open subgroup of G.

(3) ⇒ (6) Consider the natural (permutation of coordinates) action of S_κ on the usual Cantor additive group \mathbb{Z}_2^κ. It is easy to see that this action implies the natural embedding of S_κ (and hence, of its subgroup G) into the group $\text{Aut}(\mathbb{Z}_2^\kappa)$.

(6) ⇒ (1) Let K be a compact abelian group and K^* be its (discrete) dual. By [19, Theorem 26.9] the natural map $\nu : g \mapsto \tilde{g}$ defines a topological anti-isomorphism of $\text{Aut}(K)$ onto $\text{Aut}(K^*)$. Now, K^* is discrete, hence, $\text{Aut}(K^*)$ is non-archimedean as a subgroup of the symmetric group S_{K^*}. Since G is a topological subgroup of $\text{Aut}(K)$ we conclude that G is also non-archimedean (because its opposite group $\nu(G)$ being a subgroup of $\text{Aut}(K^*)$ is non-archimedean). □

Remark 5.2. (1) Note that the universality of S_N among Polish groups was proved by Becker and Kechris (see [4, Theorem 1.5.1]). The universality of S_κ for N.A. groups with weight $\leq \kappa$ can be proved similarly. It appears in the work of Higasikawa, [20, Theorem 3.1].

(2) Isometry groups of ultra-metric spaces studied among others by Lemin and Smirnov [25]. Note for instance that [25, Theorem 3] implies the equivalence (1) ⇔ (4). Lemin [23] established that a metrizable group is non-archimedean iff it has a left invariant compatible ultra-metric.

(3) In item (6) of Theorem 5.1 it is essential that the compact group K is abelian. For every connected non-abelian compact group K the group $\text{Aut}(K)$ is not N.A. containing a nontrivial continuous image of K.

(4) Every non-archimedean group admits a topologically faithful unitary representation on a Hilbert space. It is straightforward for S_X (hence, also for its subgroups) via permutation of coordinates linear action.

6. AUTOMORPHIZABLE ACTIONS AND EPIMORPHISMS IN TOPOLOGICAL GROUPS

Resolving a longstanding principal problem by K. Hofmann, Uspenskij [50] has shown that in the category of Hausdorff topological groups epimorphisms need not have a dense range. Dikranjan and Tholen present in [14] a rather direct proof of this important result of Uspenskij. Pestov gave later a criterion [40, 42] (Fact 6.1) which we will use below in Theorem 6.7. This criterion is closely related to the
natural concept of the free topological G-group $F_G(X)$ of a G-space X introduced by the first author [29]. It is a natural G-space version of the usual free topological group. A topological (uniform) G-space X is said to be automorphizable if X is a topological (uniform) G-subspace of a G-group Y (with its right uniform structure). Equivalently, if the universal morphism $X \to F_G(X)$ of X into the free topological (uniform) G-group $F_G(X)$ of the (uniform) G-space X is an embedding.

Fact 6.1. (Pestov [40, 42]) Let $f : M \to G$ be a continuous homomorphism between Hausdorff topological groups. Denote by $X := G/H$ the left coset G-space, where H is the closure of the subgroup $f(M)$ in G. The following are equivalent:

1. $f : M \to G$ is an epimorphism.
2. The free topological G-group $F_G(X)$ of the G-space X is trivial.

Triviality in (2) means, ‘as trivial as possible’, isomorphic to the cyclic discrete group.

Let X be the n-dimensional cube $[0,1]^n$ or the n-dimensional sphere S_n. Then by [29] the free topological G-group $F_G(X)$ of the G-space X is trivial for every $n \in \mathbb{N}$, where $G = \text{Homeo} (X)$ is the corresponding homeomorphism group. So, one of the possible examples of an epimorphism which is not dense can be constructed as the natural embedding $H \hookrightarrow G$ where $G = \text{Homeo} (S_1)$ and $H = G_z$ is the stabilizer of a point $z \in S_1$. The same example serve as an original counterexample in the paper of Uspenskij [50].

In contrast, for Stone spaces, we have:

Proposition 6.2. Every continuous action of a topological group G on a Stone space X is automorphizable (in \mathcal{NA}). Hence the canonical G-map $X \to F_G(X)$ is an embedding.

Proof. Use item (2) of Lemma 4.3. □

Roughly speaking this result says that the action by conjugations of a subgroup H of a non-archimedean group G on G reflects all possible difficulties of the Stone actions. Below in Theorem 6.5 we extend Proposition 6.2 to a much larger class of actions on non-archimedean uniform spaces, where X need not be compact. This will be used in Theorem 6.7 about epimorphisms into \mathcal{NA}-groups.

Definition 6.3. [30] Let $\pi : G \times X \to X$ be an action and μ be a uniformity on X. We say that the action is π-uniform if for every $\varepsilon \in \mu$ and $g_0 \in G$ there exist: $\delta \in \mu$ and a neighborhood O of g_0 in G such that

$$(gx, gy) \in \varepsilon \quad \forall (x, y) \in \delta, \ g \in O.$$

It is an easy observation that if the action $\pi : G \times X \to X$ is π-uniform and all orbit maps $\tilde{x} : G \to X$ are continuous then π is continuous.

Lemma 6.4. [30] Let μ be a uniformity on a G-space X which generates its topology. Then the action $\pi : G \times X \to X$ is π-uniform in each of the following cases:

1. X is a G-group and μ is the right or left uniformity on X.
2. X is the coset G-space G/H with respect to the standard right uniformity (which is always compatible with the topology).
3. μ is the uniformity of a G-invariant metric.
(4) X is a compact G-space and μ is the unique compatible uniformity on X.

A function $|| \cdot || : G \to [0, \infty)$ on an abelian group $(G, +)$ is an ultra-norm if

$||u|| = 0 \Leftrightarrow u = 0$, $||u|| = || - u||$ and

$||u + v|| \leq \max\{||u||, ||v||\}$ $\forall u, v \in G$.

A group $(G, +, || \cdot ||)$ with an ultra-norm $|| \cdot ||$ is an ultra-normed space. The definition of an ultra-seminorm is understood. It is easy to see that if the topology on $(G, +)$ can be generated by a system of ultra-seminorms then G is a non-archimedean group (cf. Theorem 5.1, the equivalence $(1) \Leftrightarrow (5)$) and its right (=left) uniformity is just the uniform structure induced on G by the given system of ultra-seminorms. Every abelian non-archimedean metrizable group admits an ultra-norm (see Theorems 6.4 and 6.6 in [53]).

6.1. Arens-Eells linearization theorem for actions. Recall that the well known Arens-Eells linearization theorem (cf. [2]) asserts that every uniform (metric) space can be (isometrically) embedded into a locally convex vector space (resp., normed space). For a metric space (X, d) one can define a real normed space $(A(X), || \cdot ||)$ as the set of all formal linear combinations

$$\sum_{i=1}^{n} c_i(x_i - y_i)$$

where $x_i, y_i \in X$ and $c_i \in \mathbb{R}$. For every $u \in A(X)$ one may define the norm by

$$||u|| := \inf \left\{ \sum_{i=1}^{n} |c_i|d(x_i, y_i) : u = \sum_{i=1}^{n} c_i(x_i - y_i) \right\}.$$

Now if (X, z) is a pointed space with some $z \in X$ then $x \mapsto x - z$ defines an isometric embedding of (X, d) into $A(X)$ (as a closed subset).

This theorem on isometric linearization of metric spaces can be naturally extended to the case of non-expansive semigroup actions provided that the metric is bounded [33], or, assuming only that the orbits are bounded [45]. Furthermore, suppose that an action of a group G on a metric space (X, d) with bounded orbits is only uniform in the sense of Definition 6.3 (and not necessarily non-expansive). Then again such an action admits an isometric G-linearization on a normed space.

Here we give a non-archimedean version of Arens-Eells type theorem for uniform group actions.

Theorem 6.5. Let $\pi : G \times X \to X$ be a continuous π-uniform action of a topological group G on a non-archimedean Hausdorff uniform space (X, μ).

1. Then there exist a $\mathcal{N}A$ Hausdorff Boolean G-group E and a uniform G-embedding

$$\alpha : X \hookrightarrow E$$

such that $\alpha(X)$ is closed. Hence, (X, μ) is uniformly G-automorphizable (in $\mathcal{N}A$).

2. Let (X, d) be an ultra-metric space and suppose there exists a d-bounded orbit Gx_0 for some $x_0 \in X$. Then there exists an ultra-normed Boolean G-group E and an isometric G-embedding $\alpha : X \hookrightarrow E$ such that $\alpha(X)$ is closed.
(3) Every ultra-metric space is isometric to a closed subset of an ultra-normed Boolean group.

Proof. (1) Every non-archimedean uniformity μ on X can be generated by a system $\{d_j\}_{j \in J}$ of ultra-semimetrics. Furthermore one may assume that $d_j \leq 1$. Indeed, every uniform partition of X leads to the naturally defined $0, 1$ ultra-semimetric. We can suppose in addition that X contains a G-fixed point θ. Indeed, adjoining if necessary a fixed point θ and defining $d_j(x, \theta) = d_j(\theta, x) = 1$ for every $x \in X$, we get again an ultra-semimetric.

Furthermore one may assume that for any finite collection $d_{j_1}, d_{j_2}, \ldots, d_{j_m}$ from the system $\{d_j\}_{j \in J}$ the ultra-semimetric $\max\{d_{j_1}, d_{j_2}, \ldots, d_{j_m}\}$ also belongs to our system.

Consider the free Boolean group $(P_\infty(X), +)$ over the set X. The elements of $P_\infty(X)$ are finite subsets of X and the group operation $+$ is the symmetric difference of subsets. The zero element (represented by the empty subset) we denote by 0. Clearly, $u = -u$ for every $u \in P_\infty(X)$.

For every nonzero $u = \{x_1, x_2, x_3, \ldots, x_m\} \in P_\infty(X)$, define the support $\text{supp}(u)$ as u treating it as a subset of X. So $x \in X$ is a support element of u iff $x \in \{x_1, x_2, x_3, \ldots, x_m\}$. Let us say that u is even (odd) if the number of support elements m is even (resp., odd). Define the natural homomorphism $\text{sgn} : P_\infty(X) \to \mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$, where, $\text{sgn}(u) = \overline{0}$ iff u is even. We denote by E the subgroup $\text{sgn}^{-1}(\overline{0})$ of all elements in $P_\infty(X)$.

Consider the natural set embedding

$$\iota : X \hookrightarrow P_\infty(X), \quad \iota(x) = \{x\}.$$

Sometimes we will identify $x \in X$ and $\iota(x) = \{x\} \in P_\infty(X)$.

Define also another embedding of sets

$$\alpha : X \to E, \quad \alpha(x) = x - \theta.$$

Observe that $\alpha(x) - \alpha(y) = \iota(x) - \iota(y) = x - y$ for every $x, y \in X$.

By a configuration we mean a finite subset of $X \times X$ (finite relations). Denote by Conf the set of all configurations. We can think of any $\omega \in \text{Conf}$ as a finite set of some pairs

$$\omega = \{(x_1, x_2), (x_3, x_4), \ldots, (x_{2n-1}, x_{2n})\},$$

where all $\{x_i\}_{i=1}^{2n}$ are (not necessarily distinct) elements of X. If $x_i \neq x_k$ for all distinct $1 \leq i, k \leq 2n$ then ω is said to be normal. For every $\omega \in \text{Conf}$ the sum

$$u := \sum_{i=1}^{2n} x_i = \sum_{i=1}^{n} (x_{2i-1} - x_{2i}).$$

necessarily belongs to E and we say that ω represents u or, that ω is an u-configuration. Notation $\omega \in \text{Conf}(u)$. We denote by $\text{Norm}(u)$ the set of all normal configurations of u. If $\omega \in \text{Norm}(u)$ then necessarily $\omega \subseteq \text{supp}(u) \times \text{supp}(u)$ and $\text{supp}(u) = \{x_1, x_2, \ldots, x_{2n}\}$. So, $\text{Norm}(u)$ is a finite set for any given $u \in E$.

Let $j \in J$. Our aim is to define an ultra-seminorm $\| \cdot \|_j$ on the Boolean group $(E, +)$ such that $d_j(x, y) = \|x - y\|_j$. For every configuration ω we define its
For every even nonzero element \(u \in E \) and every \(u \)-configuration
\[
\omega = \{(x_1, x_2), (x_3, x_4), \ldots, (x_{2n-1}, x_{2n})\}
\] define the following elementary reductions:

1. Deleting a trivial pair \((t, t)\). That is, deleting the pair \((x_{2i-1}, x_{2i})\) whenever \(x_{2i-1} = x_{2i} \).
2. Define the trivial inversion at \(i \) of \(\omega \) as the replacement of \((x_{2i-1}, x_{2i})\) by the pair in the reverse order \((x_{2i}, x_{2i-1})\).
3. Define the basic chain reduction rule as follows. Assume that there exist distinct \(i \) and \(k \) such that \(x_{2i} = x_{2k-1} \). We delete in the configuration \(\omega \) two pairs \((x_{2i-1}, x_{2i}), (x_{2k-1}, x_{2k})\) and add the following new pair \((x_{2i-1}, x_{2k})\).

Then in all three cases we get again an \(u \)-configuration. The reductions \(1\) and \(2\) do not change the \(d_j\)-length of the configuration. Reduction \(3\) cannot exceed the \(d_j\)-length.

Proof. Comes directly from the axioms of ultra-semimetric. In the proof of \(3\) observe that
\[
x_{2i-1} + x_{2i} + x_{2k-1} + x_{2k} = x_{2i-1} + x_{2k}
\] in \(E \). This ensures that the new configuration is again an \(u \)-configuration. \(\square \)

Claim 2: For every even nonzero element \(u \in E \) and every \(u \)-configuration \(\omega \) there exists a normal \(u \)-configuration \(\nu \) such that \(\varphi_j(\nu) \leq \varphi_j(\omega) \).

Proof. Using Claim 1 after finitely many reductions of \(\omega \) we get a normal \(u \)-configuration \(\nu \) such that \(\varphi_j(\nu) \leq \varphi_j(\omega) \). \(\square \)

Now we define the desired ultra-seminorm \(|| \cdot ||_j \). For every \(u \in E \) define
\[
||u||_j = \inf_{\omega \in \text{Conf}(u)} \varphi_j(\omega).
\]

Claim 3: For every nonzero \(u \in E \) we have
\[
||u||_j = \min_{\omega \in \text{Normal}(u)} \varphi_j(\omega).
\]

Proof. By Claim 2 it is enough to compute \(||u||_j \) via normal \(u \)-configurations. So, since \(\text{Norm}(u) \) is finite, we may replace \(\inf \) by \(\min \). \(\square \)

Claim 4: \(|| \cdot ||_j \) is an ultra-seminorm on \(E \).

Proof. Clearly, \(||u||_j \geq 0 \) and \(||u||_j = || - u ||_j \) (even \(u = -u \)) for every \(u \in E \). For the \(0 \)-configuration \(\{(\theta, \theta)\} \) we obtain that \(||0||_j \leq d_j(\theta, \theta) = 0 \). So \(||0||_j = 0 \). We have to show that
\[
||u + v||_j \leq \max\{||u||_j, ||v||_j\} \quad \forall u, v \in E.
\]
Assuming the contrary, there exist configurations
\[
\{(x_i, y_i)\}_{i=1}^n, \quad \{(t_i, s_i)\}_{i=1}^m
\]
with
\[u = \sum_{i=1}^{n} (x_i - y_i), \quad v = \sum_{i=1}^{m} (t_i - s_i) \]
such that
\[||u + v||_{j} > c := \max \{ \max_{1 \leq i \leq n} d_j(x_i, y_i), \max_{1 \leq i \leq m} d_j(t_i, s_i) \} \]
but this contradicts the definition of \(||u + v||_{j} \) because
\[u + v = \sum_{i=1}^{n} (x_i - y_i) + \sum_{i=1}^{m} (t_i - s_i) \]
and hence
\[\omega := \{(x_1, y_1), \ldots, (x_n, y_n), (t_1, s_1), \ldots, (t_m, s_m)\} \]
is a configuration of \(u + v \) with \(||u + v||_{j} > \varphi_j(\omega) = c \), a contradiction to the definition of \(|| \cdot ||_{j} \).

Claim 5: \(\alpha : (X, d_j) \hookrightarrow (E, || \cdot ||_{j}), \alpha(x) = x - \theta \) is an isometric embedding, that is,
\[||x - y||_{j} = d_j(x, y) \quad \forall \; x, y \in X. \]

Proof. By Claim 3 we may compute via normal configurations. For the element \(u = x - y \neq 0 \) only possible normal configurations are \{\((x, y) \)\} or \{\((y, x) \)\}. So \(||x - y||_{j} = d_j(x, y) \).

Claim 6: For any given \(u \in E \) with \(u \neq 0 \) we have
\[||u||_{j} \geq \min \{ d_j(x_i, x_k) : x_i, x_k \in \text{supp}(u), x_i \neq x_k \}. \]

Proof. Easily comes from Claims 2 and 3.

Claim 7: For any given \(u \in E \) with \(u \neq 0 \) there exists \(j_0 \in J \) such that \(||u||_{j_0} > 0 \).

Proof. Since \(u \neq 0 \) we have at least two elements in \(\text{supp}(u) \). Since \((X, \mu) \) is Hausdorff the system \(\{d_j\}_{j \in J} \) of ultra-semimetrics separates points of \(X \). So some finite subsystem \(d_{j_1}, d_{j_2}, \ldots, d_{j_m} \) separates points of \(\text{supp}(u) \). By our assumption the ultra-semimetric \(d_{j_0} := \max \{d_j, d_{j_2}, \ldots, d_{j_m} \} \) belongs to our system \(\{d_j\}_{j \in J} \). Then
\[\min \{ d_{j_0}(x_i, x_k) : x_i, x_k \in \text{supp}(u), x_i \neq x_k \} > 0. \]
Claim 6 implies that \(||u||_{j_0} > 0 \).

It is easy to see that the family \(\{|| \cdot ||_{j}\}_{j \in J} \) of ultra-seminorms induces a non-archimedean group topology on the Boolean group \(E \) and a non-archimedean uniformity \(\mu_\ast \) which is the right (=left) uniformity on \(E \). By Claim 7 the topology on \(E \) is Hausdorff.

We have the natural group action
\[\pi : G \times E \to E, (g, u) \mapsto gu \]
induced by the given action $G \times X \to X$. Clearly, $g(u + v) = gu + gv$ for every $(g, u, v) \in G \times E \times E$. So this action is by automorphisms. Since $g\theta = \theta$ for every $g \in G$ it follows that $\alpha : X \to E$ is a G-embedding.

Now we show that the action π of G on E is uniform and continuous. Indeed, the original action on (X, μ) is π-uniform. Hence, for every $j \in J$, $\varepsilon > 0$ and $g_0 \in G$, there exist: a finite subset $\{j_1, \ldots, j_n\}$ of J, $\delta > 0$ and a neighborhood $O(g_0)$ of g_0 in G such that

$$
d_j(gx, gy) \leq \varepsilon \quad \forall \max_{1 \leq i \leq n} d_j(x, y) \leq \delta, \ g \in O.
$$

Then by Claim 3 it is easy to see that

$$
\|gu\|_j \leq \varepsilon \quad \forall \max_{1 \leq i \leq n} \|u\|_j, \ g \in O.
$$

This implies that the action π of G on (E, μ_\ast) is uniform. Claim 5 implies that $\alpha : X \hookrightarrow E$ is a topological G-embedding. Since $\alpha(X)$ algebraically spans E it easily follows that every orbit mapping $G \to E$, $g \mapsto gu$ is continuous for every $u \in E$. So we can conclude that π is continuous (see the remark after Definition 6.3) and E is a G-group.

Finally we check that $\alpha(X)$ is closed in E. Let $u \in E$ and $u \notin \alpha(X)$. Since $u - x + \theta \neq 0$ for every $x \in X$, we can suppose that there are at least two elements in $\text{supp}(u) \cap (X \setminus \{\theta\})$. Similarly to the proof of Claim 7 we may choose $j_0 \in J$ and $\varepsilon_1 > 0$ such that

$$
\varepsilon_1 := \min\{d_{j_0}(x_i, x_k) : x_i, x_k \in \text{supp}(u), x_i \neq x_k\} > 0.
$$

Furthermore, one may assume in addition that

$$
\varepsilon_2 := \min\{d_{j_0}(x_i, \theta) : x_i \in \text{supp}(u), x_i \neq \theta\} > 0.
$$

Define $\varepsilon_0 := \min\{\varepsilon_1, \varepsilon_2\}$.

For every $x \in X$, every normal configuration ω of $u - x + \theta \neq 0$ contains an element (s, t) such that $\{s, t\} \subset \text{supp}(u) \cup \{\theta\}$. Therefore,

$$
\varphi_{j_0}(\omega) \geq d_{j_0}(s, t) \geq \varepsilon_0.
$$

So by Claim 3 we obtain $\|u - x + \theta\|_j \geq \varepsilon_0$ for every $x \in X$.

Summing up we finish the proof of (1).

(2) The proof in the second case is similar. We only explain why we may suppose that X contains a G-fixed point. Indeed, as in the paper of Schröder [45, Remark 5] we can look at (X, d) as embedded into the space $\exp(X)$ of all bounded closed subsets endowed with the standard Hausdorff metric d_H defined by

$$
d_H(A, B) := \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(A, b)\}.
$$

The closure $cl(Gx_0)$ of the orbit Gx_0 in X is bounded and defines an element $\theta \in \exp(X)$. Consider the metric subspace $X' := X \cup \{\theta\} \subset \exp(X)$. It is easy to see that the induced action of G on X' is well defined and remains uniform (Definition 6.3) with respect to the metric $d_H|_{X'}$. Clearly, θ is a G-fixed point in X'. This implies that all orbit maps $G \to X'$ are continuous. It follows that the action of G on X' is continuous (see the remark after Definition 6.3).
Finally observe that since d is an ultra-metric the Hausdorff metric d_H on $\exp(X)$ is also an ultra-metric. Hence, $d_H|_{X'}$ is an ultra-metric on X'. To prove the strong triangle inequality for d_H we will use the following lemma.

Lemma 6.6. Let (X, d) be an ultra-metric space and A, B, C subsets of X. Then
\[
\sup_{a \in A} d(a, C) \leq \max \{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, C) \}
\]

Proof. Let $M := \sup_{a \in A} d(a, C)$. Assuming the contrary,
\[
M > d(a, B) \quad \forall a \in A
\]
and also
\[
M > d(b, C) \quad \forall b \in B.
\]
Set $a_0 \in A$. Since $M > d(a, B) \quad \forall a \in A$, we have in particular $M > d(a_0, B)$. So there exists $b_0 \in B$ such that $M > d(a_0, b_0)$. Now, $M > d(b, C) \quad \forall b \in B$, hence, there exists $c_0 \in C$ such that $M > d(b_0, c_0)$. Since d is an ultra-metric we obtain that $M > d(a_0, c_0) \geq d(a_0, C)$. Since a_0 is an arbitrary element of A we get that $M > \sup_{a \in A} d(a, C) = M$. This clearly contradicts our assumption. \hfill \Box

We can now prove the strong triangle inequality for d_H. Using Lemma 6.6 twice we obtain that
\[
\sup_{a \in A} d(a, C) \leq \max \{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, C) \}
\]
and also (by switching $A \leftrightarrow C$)
\[
\sup_{c \in C} d(A, c) \leq \max \{ \sup_{b \in B} d(A, b), \sup_{c \in C} d(B, c) \}.
\]
This implies that
\[
d_H(A, C) \leq \max \{ d_H(A, B), d_H(B, C) \}.
\]

(3) Directly follows from (2). \hfill \Box

Theorem 6.7. Let G be a non-archimedean group. If a continuous homomorphism $f : M \to G$ is an epimorphism in the category of Hausdorff topological groups then $f(M)$ is dense in G.

Proof. Denote by H the closure of the subgroup $f(M)$ in G. We have to show that $H = G$. Assuming the contrary consider the *nontrivial* Hausdorff coset G-space G/H. Recall that the sets
\[
\tilde{U} := \{(aH, bH) : bH \subseteq UaH\},
\]
where U runs over the neighborhoods of e in G, form a uniformity base on G/H. This uniformity (called the right uniformity) is compatible with the quotient topology (see for instance [2]).

The fact that G is \mathcal{NA} implies that the right uniformity on G/H is non-archimedean. Indeed, if \mathcal{B} is a local base at e consisting of clopen subgroups then $\tilde{\mathcal{B}} := \{ \tilde{U} : U \in \mathcal{B} \}$ is a base for the right uniformity of G/H and its elements are equivalence relations. To see this just use the fact that H as well as
the elements of \mathcal{B} are all subgroups of G. By Lemma 6.4.2 the natural left action $\pi : G \times G/H \to G/H$ is π-uniform. Obviously this action is also continuous. Hence, we can apply Theorem 6.5.1 to conclude that the nontrivial G-space $X := G/H$ is G-automorphizable in $\mathcal{N} \mathcal{A}$. In particular, we obtain that there exists a non-trivial equivariant morphism of the G-space X to a Hausdorff G-group E. This implies that the free topological G-group $F_G(X)$ of the G-space X is not trivial. Now by the criterion of Pestov (Fact 6.1) we conclude that $f : M \to G$ is not an epimorphism.

References

[1] R. Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593–610.
[2] R. Arens and J. Eells, On embedding uniform and topological spaces, Pacific J. Math., 6 (1956), 397-403.
[3] A.V. Arhangel’skii, Topological homogeneity, topological groups and their continuous images, Russian Math. Surv. 42 (1987), no. 2, 83–131.
[4] H. Becker and A. Kechris, The Descriptive Set Theory of Polish group Actions, London Math. Soc. Lecture Notes Ser. 232, Cambridge Univ. Press, 1996.
[5] P.E. Caprace and N. Monod, Decomposing locally compact groups into simple pieces, arXiv:0811.4101v3, May, 2010.
[6] W.W. Comfort, K.H. Hofmann and D. Remus, A survey on topological groups and semigroups, in: M. Husek and J. van Mill, eds. Recent Progress in General Topology, North Holland, Amsterdam, 1992, 58-144.
[7] S. Dierolf and W. Roelcke, Uniform Structures in Topological Groups and their Quotients, McGraw-Hill, New York, 1981.
[8] S. Dierolf and U. Schwaneke, Examples of locally compact non-compact minimal topological groups, Pacific J. Math. 82 (1979), no. 2, 349–355.
[9] D. Dikranjan, Recent advances in minimal topological groups, Topology Appl. 85 (1998), 53–91.
[10] D. Dikranjan and A. Giordano Bruno, Arnautov’s problems on semitopological isomorphisms, Appl. Gen. Topol. 10 (1) (2009), 85–119.
[11] D. Dikranjan and M. Megrelishvili, Relative minimality and co-minimality of subgroups in topological groups, Topology Appl. 157 (2010), 62-76.
[12] D. Dikranjan, Ivi. Prodanov and L. Stoyanov, Topological groups: characters, dualities and minimal group topologies, Pure and Appl. Math. 130, Marcel Dekker 201 (1998), 289–300.
[13] D. Dikranjan, M. Tkachenko and Ivi. Yaschenko, Transversal group topologies on non-abelian groups, Topology Appl. 153 (17) (2006), 3338–3354.
[14] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators: with Applications to Topology, Algebra and Discrete Mathematics, Series: Mathematics and Its Applications, Vol. 346, 1995.
[15] D. Doichinov, Produits de groupes topologiques minimaux, Bull. Sci. Math. 96 (1972), 59–64.
[16] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
[17] D. Gamarnik, Minimality of the group Aut(C), Serdika 17 (1991), no. 4, 197–201.
[18] E. Gaughan, Topological group structures of infinite symmetric groups, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 907–910.
[19] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963.
[20] M. Higasikawa, Topological group with several disconnectedness, arXiv:math/0106105v1, 2000, 1-13.
[21] J. Isbell, Zero-dimensional Spaces, Tohoku Mat. J. (2), 7 (1955), 1-8.
[22] J. Isbell, Uniform Spaces, American Mathematical Society, Providence, 1964.
[23] A.Yu. Lemin, Isosceles metric spaces and groups, in: Cardinal invariants and mappings of topological spaces, Izhevsk, 1984, 26–31.
A.Yu. Lemin, *The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT*, Algebra Universalis, 50 (2003), 35-49.

A.Yu. Lemin and Yu. M. Smirnov, *Groups of isometries of metric and ultrametric spaces and their subgroups*, Russian Math. Surveys 41 (1986), 6, 213-214.

G. Lukacs, *Compact-like Topological Groups*, Research and Exposition in Math., 31, Heldermann Verlag, 2009.

M. Megrelishvili, *Compactification and Factorization in the Category of G-spaces* in Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, J. Adámek and S. Maclane, editors, World Scientific, Singapore (1989), 220-237.

M. Megrelishvili, *Group representations and construction of minimal topological groups*, Topology Appl. 62 (1995), no. 1, 1–19.

M. Megrelishvili, *Free Topological G-Groups*, New Zealand Journal of Mathematics, vol. 25 (1996), no. 1, 59-72.

M. Megrelishvili, *Fragmentability and continuity of semigroup actions*, Semigroup Forum, 57 (1998), 101-126.

M. Megrelishvili, *G-Minimal Topological Groups*, In: Abelian Groups, Module Theory and Topology, Lecture Notes in Pure and Appl. Math. 201, Marcel Dekker, (1998), 289–300.

M. Megrelishvili, *Generalized Heisenberg groups and Shtern’s question*, Georgian Math. J. 11 (2004), no. 4, 775–782.

M. Megrelishvili, *Compactifications of semigroups and semigroup actions*, Topology Proceedings, 31:2 (2007), 611-650.

M. Megrelishvili, *Every topological group is a group retract of minimal group*, Topology Appl. 155 (2008), no. 17-18, 2105–2127.

M. Megrelishvili and T. Scarr, *The equivariant universality and couniversality of the Cantor cube*, Fund. Math. 167 (2001), no. 3, 269–275.

J. van Mill and G.M. Reed (Eds.), *Open Problems in Topology*, North-Holland, 1990.

Iv. Prodanov and L. Stoyanov, *Minimal group topologies*, Topology, theory and applications (Eger, 1983), 493–508, Colloq. Math. Soc. János Bolyai 41.

E.C. Nummela, *On epimorphisms of topological groups*, Gen. Top. and its Appl. 9 (1978), 155-167.

V.G. Pestov, *Epimorphisms of Hausdorff groups by way of topological dynamics*, New Zealand J. of Math. 26 (1997), 257–262.

V.G. Pestov, *On free actions, minimal flows, and a problem by Ellis*, Trans. Amer. Math. Soc. 350 (1998), 4149-4175.

V. Pestov, *Topological groups: where to from here?* Topology Proceedings, 24 (1999), 421-502. http://arXiv.org/abs/math.GN/9910144.

D. Remus and L. Stoyanov, *Complete minimal and totally minimal groups*, Topology Appl. 42 (1991), no. 1, 57–69.

A.C.M. van Rooij, *Non-Archimedean Functional Analysis*, Monographs and Textbooks in Pure and Applied Math. 51, Marcel Dekker, Inc., New York, 1978.

L. Schröder, *Linearizability of non-expansive semigroup actions on metric spaces*, Topology Appl., 155 (2008), 15761579.

M. Shlossberg, *Minimality in topological groups and Heisenberg type groups*, Topology Proc. 35 (2010), 331-344.

R.M. Stephenson, *Minimal topological groups*, Math. Ann. 192 (1971), 193–195.

L. Stoyanov, *Total minimality of the unitary groups*, Math. Z. 187 (1984)), no. 2, 273–283.

S. Telemann, *Sur la représentation linéaire des groupes topologiques*, Ann. Sci. Ecole Norm. Sup. 74 (1957), 319-339.

V.V. Uspenskij, *The epimorphism problem for Hausdorff topological groups*, Topology Appl. 57 (1994), 287–294.

V.V. Uspenskij, *On subgroups of minimal topological groups*, Topology Appl. 155 (2008), no. 14, 1580–1606.
[52] V.V. Uspenskij, *The Roelcke compactification of groups of homeomorphisms*, Topology Appl. 111 (2001), 195–205.

[53] S. Warner, *Topological Fields*, North Holland, Mathematics Studies, vol. 157, North-Holland-Amsterdam, London, New York, Tokyo, 1993.

Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

E-mail address: megereli@math.biu.ac.il

URL: http://www.math.biu.ac.il/~megereli

Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

E-mail address: shlosbm@macs.biu.ac.il

URL: http://www.math.biu.ac.il/~shlosbm