Quantum to Classical Transition per the Relational Blockworld
W.M. Stuckey1, Michael Silberstein2,3 and Michael Cifone2

Abstract
The transition from the quantum realm to the classical realm is described in the context of the Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics. We first introduce RBW, discuss its philosophical implications and provide an example of its explanatory methodology via the so-called “quantum liar experiment.” We then provide a simple example of a quantum to classical transition in this context using a gedanken twin-slit experiment. We conclude by speculating on the extrapolation of RBW to quantum field theory, suggesting the need for a new principle of physics based in spatiotemporal relationalism. Accordingly, RBW suggests a novel approach to new physics which supplies a means for its falsification.

PACS: 03.65.Ta; 03.65.Ud

Key Words: blockworld, non-relativistic quantum mechanics, twin-slit experiment

1 Department of Physics, Elizabethtown College, Elizabethtown, PA 17022, stuckeym@etown.edu
2 Department of Philosophy, Elizabethtown College, Elizabethtown, PA 17022, silbermd@etown.edu
3 Department of Philosophy, University of Maryland, College Park, MD 20742, cifonemc@wam.umd.edu
1. INTRODUCTION

Physicists agree that quantum mechanics is extremely successful in predicting the outcomes of experiments, but there is little agreement as to its ontological implications. Gell-Mann has stated\(^{(1)}\)

All of modern physics is governed by that magnificent and thoroughly confusing discipline called quantum mechanics. It has survived all tests and there is no reason to believe that there is any flaw in it. We all know how to use it and how to apply it to problems; and so we have learned to live with the fact that nobody can understand it.

And Holland writes\(^{(2)}\), “Quantum mechanics is the subject where we never know what we are talking about.” While most practitioners can and do proceed per the famous instrumentalist dictum, “Shut up and calculate!” (the Copenhagen interpretation per Mermin\(^{(3)}\)), scholars in foundational issues believe there may be new physics lurking in the answer to van Fraassen’s\(^{(4)}\) “foundational question par excellence: how could the world possibly be the way quantum theory says it is?” We share this sentiment and are therefore motivated to “understand” non-relativistic quantum mechanics (NRQM).

What we mean by an “understanding” of NRQM is to couch it in space and time as required for “comprehension” per Schrödinger\(^{(5)}\),

This contradiction is so strongly felt that it has even been doubted whether what goes on in an atom can be described within the scheme of space and time. From a philosophical standpoint, I should consider a conclusive decision in this sense as equivalent to a complete surrender. For we cannot really avoid our thinking in terms of space and time, and what we cannot comprehend within it, we cannot comprehend at all.

and Einstein\(^{(6)}\),

Some physicists, among them myself, cannot believe that we must abandon, actually and forever, the idea of direct representation of physical reality in space and time.

It is widely believed that couching an interpretation of NRQM in space and time requires a compromise of sorts, e.g., abandoning the relativity of simultaneity in Bohmian mechanics, and the interpretation we employ herein, the \textit{Relational Blockworld}\(^{(7)}\) (RBW), rejects the fundamentality of diachronic objects \textit{a la} Heisenberg\(^{(8)}\),
Some physicists would prefer to come back to the idea of an objective real world whose smallest parts exist objectively as the same sense as stones or trees exist independently of whether we observer them. This however is impossible. Materialism rested upon the illusion that the direct ‘actuality’ of the world around us can be extrapolated into the atomic range. This extrapolation, however, is impossible—atoms are not things.

and Bohr et. al.\(^{(9)}\), “Indeed, atoms and particles as things are phantasms (things imagined).”

After briefly introducing RBW in section 2, we argue that it allows us to model NRQM phenomena in 4D spacetime without the need for realism about 3N Hilbert space, i.e., with the understanding that configuration space is nothing more than a calculational device. Further, our new interpretation of NRQM provides a geometric account of quantum entanglement and non-locality that is free of conflict with special relativity and free of interpretative mystery. RBW also provides a novel statistical interpretation of the wavefunction that deflates the measurement problem. We then review Anandan’s derivation of the Born rule in the context of spacetime relations in section 4 and apply our explanatory methodology to the so-called “quantum liar experiment” in section 5. Having established the formal and conceptual groundwork, we provide a twin-slit example of the quantum to classical transition per RBW in section 6. We speculate on extrapolation to quantum field theory (QFT) in section 7 concluding that if RBW is to become a viable interpretation of NRQM, then new physics, by way of a new principle based in spatiotemporal relationalism, is required.

2. THE RELATIONAL BLOCKWORLD

The RBW interpretation of NRQM is founded on a result due to Kaiser\(^{(10)}\), Bohr & Ulfbeck\(^{(11)}\) and Anandan\(^{(12)}\) who showed independently that the non-commutivity of the position and momentum operators in NRQM follows from the non-commutivity of the Lorentz boosts and spatial translations in special relativity (SR), i.e., the relativity of simultaneity. Whereas Bohr et. al. maintain a dynamical view of NRQM via the Principle of Fortuitousness, we assume the blockworld implication of the relativity of simultaneity so that no particular event is more fortuitous than any other. Kaiser writes\(^{(13)}\),

For had we begun with Newtonian spacetime, we would have the Galilean group instead of [the restricted Poincaré group]. Since Galilean boosts commute with spatial translations (time being absolute), the brackets between the corresponding generators vanish, hence no canonical commutation relations (CCR)! In the \(c \rightarrow \infty\) limit of the Poincaré
algebra], the CCR are a remnant of relativistic invariance where, due to the nonabsolute nature of simultaneity, spatial translations do not commute with pure Lorentz transformations. [Italics in original].

Bohr & Ulfbeck also realized that the “Galilean transformation in the weakly relativistic regime\(^{(14)}\)” is needed to construct a position operator for NRQM, and this transformation “includes the departure from simultaneity, which is part of relativistic invariance.” Specifically, they note that the commutator between a “weakly relativistic” boost and a spatial translation results in “a time displacement,” which is crucial to the relativity of simultaneity. Thus they write\(^{(15)}\),

“For ourselves, an important point that had for long been an obstacle, was the realization that the position of a particle, which is a basic element of nonrelativistic quantum mechanics, requires the link between space and time of relativistic invariance.”

So, the essence of non-relativistic quantum mechanics – its canonical commutation relations – is entailed by the relativity of simultaneity.

To outline Kaiser’s result, we take the limit \(c \to \infty\) in the Lie algebra of the Poincaré group for which the non-zero brackets are:

\[
\begin{align*}
[J_m, J_n] &= iJ_k \\
[T_0, K_n] &= iT_n \\
[K_m, K_n] &= -\frac{i}{c^2} J_k \\
[J_m, K_n] &= iK_k \\
[J_m, T_n] &= iT_k \\
[T_m, K_n] &= -\frac{i}{c^2} \delta_{mn} T_0
\end{align*}
\]

where expressions with subscripts \(m,n\) and \(k\) denote 1, 2 and 3 cyclic, \(J_m\) are the generators of spatial rotations, \(T_0\) is the generator of time translations, \(T_m\) are the generators of spatial translations, \(K_m\) are the boost generators, \(i^2 = -1\), and \(c\) is the speed of light. We obtain
\[
\begin{aligned}
[J_m, J_n] &= iJ_k \\
[M, K_n] &= 0 \\
[K_m, K_n] &= 0 \\
[J_m, K_n] &= iK_k \\
[J_m, T_n] &= iT_k \\
[T_m, K_n] &= -\frac{i}{\hbar} \delta_{mn} M
\end{aligned}
\]

where \(M \) is obtained from the mass-squared operator in the \(c \to \infty \) limit since

\[
c^{-2} \hbar T_0 = c^{-2} P_0
\]

and

\[
\frac{P_m}{c^2} = \left(M^2 + c^{-2} P^2 \right)^{1/2} = M + \frac{P^2}{2Mc^2} + O(c^{-4}).
\]

Thus, \(c^{-2} T_0 \to \frac{M}{\hbar} \) in the limit \(c \to \infty \). [\(M \equiv mI \), where \(m \) is identified as “mass” by choice of ‘scaling factor’ \(\hbar \).] So, letting

\[
P_m \equiv \hbar T_m
\]

and

\[
Q_n \equiv -\frac{\hbar}{m} K_n
\]

we have

\[
[P_m, Q_n] = -\frac{\hbar^2}{m} [T_m, K_n] = \left(-\frac{\hbar^2}{m} \right) \left(\frac{i}{\hbar} \right) \delta_{mn} mI = -i\hbar \delta_{mn} I
\]

Bohr & Ulfbeck point out that in this “weakly relativistic regime” the coordinate transformations now look like:

\[
\begin{aligned}
X &= x - vt \\
T &= t - \frac{vx}{c^2}
\end{aligned}
\]

These transformations differ from Lorentz transformations because they lack the factor

\[
\gamma = \left(1 - \frac{v^2}{c^2} \right)^{-1/2}
\]
which is responsible for time dilation and length contraction. And, these transformations differ from Galilean transformations by the temporal displacement vx/c^2 which is responsible for the relativity of simultaneity, i.e., in a Galilean transformation time is absolute so $T = t$. Therefore, the spacetime structure of Kaiser et. al. lies between Galilean spacetime (G4) and Minkowski spacetime (M4) and we see that the Heisenberg commutation relations are not the result of Galilean invariance, where spatial translations commute with boosts, but rather they result from the relativity of simultaneity per Lorentz invariance.

The received view has it that Schrödinger’s equation is Galilean invariant, so it is generally understood that NRQM resides in G4 and therefore respects absolute simultaneity\(^{(16)}\). *Prima facie* the Kaiser et. al. result seems incompatible with the received view, so to demonstrate that these results are indeed compatible, we now show that these results do not effect the Schrödinger dynamics\(^{(17)}\). To show this we simply operate on $|\psi\rangle$ first with the spatial translation operator then the boost operator and compare that outcome to the reverse order of operations. The spatial translation (by a) and boost (by v) operators in x are

$$U_T = e^{-ixT_r} \quad \text{and} \quad U_K = e^{-ivK},$$

respectively. These yield

$$U_K U_T |\psi\rangle = U_T U_K e^{i\gamma m/v^2} |\psi\rangle$$

Thus, we see that the geometric structure of Eq. 3 introduces a mere phase to $|\psi\rangle$ and is therefore without consequence in the computation of expectation values. And in fact, this phase is consistent with that under which the Schrödinger equation is shown to be Galilean invariant\(^{(18)}\).

Therefore, we realize that the spacetime structure for NRQM, while not M4 in that it lacks time dilation and length contraction, nonetheless contains a “footprint of relativity\(^{(19)}\), due to the relativity of simultaneity. In light of this result, it should be clear that there is no metaphysical tension between SR and NRQM. This formal result gives us motivation for believing that NRQM is intimately connected to the geometry of spacetime consistent with the relativity of simultaneity and therefore we feel justified in couching an interpretation of NRQM in a blockworld.
In addition to being housed in a blockworld spacetime structure, RBW assumes that spacetime relations are fundamental to diachronic objects (as opposed to the converse per a dynamic perspective). We justify this assumption based on the work of Bohr, Mottleson & Ulfbeck\(^{(20)}\) who showed how the quantum density operator can be obtained via the symmetry group. Their result follows from two theorems due to Georgi\(^{(21)}\):

The matrix elements of the unitary, irreducible representations of \(G\) are a complete orthonormal set for the vector space of the regular representation, or alternatively, for functions of \(g \in G\).

which gives\(^{(22)}\)

If a hermitian operator, \(H\), commutes with all the elements, \(D(g)\), of a representation of the group \(G\), then you can choose the eigenstates of \(H\) to transform according to irreducible representations of \(G\). If an irreducible representation appears only once in the Hilbert space, every state in the irreducible representation is an eigenstate of \(H\) with the same eigenvalue.

What we mean by “the symmetry group” is precisely that group \(G\) with which some observable \(H\) commutes (although, these symmetry elements may be identified without actually constructing \(H\)). Thus, the mean value of our hermitian operator \(H\) can be calculated using the density matrix obtained wholly by \(D(g)\) and \(<D(g)>\) for all \(g \in G\). Observables such as \(H\) are simply ‘along for the ride’ so to speak.

While we do not reproduce Bohr et. al.’s derivation of the density matrix, we do provide a prefacing link with Georgi’s theorems. Starting with Eq. 1.68 of Georgi\(^{(23)}\),

\[
\sum_{g} \frac{n_a}{N} \left[D_a \left(g^{-1} \right) \right]_{kj} \left[D_b \left(g \right) \right]_{lm} = \delta_{ab} \delta_{ij} \delta_{km}
\]

where \(n_a\) is the dimensionality of the irreducible representation, \(D_a\), and \(N\) is the group order, and considering but one particular irreducible representation, \(D\), we obtain the starting point (orthogonality relation) found in Bohr et. al. (their Eq. 1),

\[
\sum_{g} \frac{n}{N} \left[D \left(g^{-1} \right) \right]_{ij} \left[D \left(g \right) \right]_{km} = \delta_{ji} \delta_{km}
\]

where \(n\) is the dimension of the irreducible representation. From this, they obtain the density matrix as a function of the irreducible representations of the symmetry group elements, \(D(g)\), and their averages, \(<D(g)>\), i.e., (their Eq. 6):
The methodological significance of the Bohr et al. result is that any NRQM system may be described with the appropriate spacetime symmetry group. The philosophical significance of this proof is more interesting, and one rooted in our ontology of spacetime relationalism. As we will argue in the following section, our view is a form of ontological structural realism which holds that the features of our world picked out by SR and NRQM are structures; moreover, we think that the structures picked out by our most successful theories to date – spacetime theories – are geometrical structures. And those structures are, we posit, structures of spacetime relations which will be formalized to obtain Born’s rule in section 4. [The reader less interested in detailed philosophical argument may skip section 3 without loss of continuity.]

3. PHILOSOPHICAL CONSIDERATIONS

Quantum theory1 *simpliciter* and special relativity are not in conflict, but rather it is only on some interpretations of quantum theory where conflict arises. For example, the following interpretations of quantum theory are consistent with relativity, requiring no preferred frame: Tumulka-GRW(24), hyperplane-dependent collapse accounts(25), Saunders-Wallace-Everett(26) to name a few.

Even though there is no necessary tension between the basic structure of quantum theory (the structure of physical states allowed by Hilbert space and how those states evolve over time) and the structure of special relativity (the structure of spacetime events given by the “causal” or Minkowski spacetime geometry necessitated by the two postulates of special relativity), there is a question as to how to understand the relationship between the theory of the quantum and the theory of relativistic spacetime structure (special relativity). This is a question about how to interpret the *structures of the theories themselves*.

Increasingly in the literature a divide is forming between interpretations of special relativity and quantum theory along the so-called “constructive” vs. “principle” axis of

\[\rho \equiv \frac{n}{N} \sum_{g} D(g^{-1})(D(g)). \]
theory interpretation. While some might question whether, in practice, such a distinction is useful, or what the metaphysical/epistemological import of such a distinction is, many find it a useful conceptual device in itself. Roughly, the distinction amounts to the distinction one can draw between, say, the axioms of geometry and a model or instantiation of those axioms. In general, a “principle” theory in the natural sciences is one where a set of axioms – or physical postulates\(^2\) – are outlined, that entail a characteristic structure which our universe may exhibit. A “constructive” theory is usually associated with some principle theory, of which it is a particular instantiation, although not necessarily so. Constructive theories supply some physical ontology (e.g., Newtonian point-particles for statistical mechanical theories) and a dynamics (again, Newtown’s laws of motion) which are supposed to “underwrite” the merely phenomenological laws of some other theory (in this case, thermodynamics – laws that refer to “gasses” or “heat” or “entropy,” etc.). The “underwriting” has its cash-value in the ability to re-derive or re-state the essential content of the principles, but in more concrete, visualizable terms\(^3\) (and perhaps in a way that allows the theorist to easily derive predictions from the more abstract principles of the theory, principles which might otherwise have no obvious reference to the experiences of scientists in their laboratory).

The orthodox view is that SR as it now stands is a principle theory and most interpretations of NRQM are constructive accounts because most people assume that the theory is about quantum constructive entities and the dynamical laws that govern them. However, as we will see shortly, there is some disagreement as to whether SR requires a constructive interpretation in order to be complete, whether or not NRQM is that constructive theory grounding SR, and there is even some disagreement as to whether NRQM is best viewed as a constructive theory at all.

But as to what that structure refers will depend on the kind of theory under consideration. For spacetime theories, that structure is the metrical structure of spacetime events (“happenings” at particular times and places). It is a good bit trickier for quantum theories, since it is by no means clear how to relate them to other more familiar theories.

\(^2\) Some have thought that even the postulates of mathematical geometry are “physical” in some sense, which would make even geometry a kind of “natural science.”

\(^3\) Indeed, Hertz thought that part of the function of such theories was to provide for a picture or some kind of literal representation of the world given by the theory\(^{(27)}\).
like classical theories (or classical mechanical theories). And it is tricky to even say exactly what the principles refer to in the world – “measurement acts,” the behavior of “matter,” “information,” etc. Furthermore, and perhaps more troubling, not everyone agrees on what the postulates are! Does quantum theory include or exclude the collapse postulate, for example (as von Neumann’s famous axiomatic presentation seems to take for granted)? Another point of disagreement arises here, namely, on the proper relationship between the so-called spacetime background (the geometry of the world) and the constructive dynamical entities “embedded” in that background.

Nevertheless, as many in the quantum-logical camp were eager to point out⁴, everyone can agree quite easily on a couple of basic structural features which are essential to quantum theory: a non-Boolean lattice structure of measurement propositions. Such a logical structure will capture such quantum-theoretic features like “interference” or “uncertainty” as a characteristic structure of what can and cannot be simultaneously measured according to the theory (and we can indeed represent classical mechanical theories like this too, conveniently)⁵. Also, one can, with this same logical structure, represent the characteristic structure of correlations that quantum theory (and any of its interpretations) exhibits (that structure being the well-known Bell correlations).

A constructive interpretation of this structure – the non-Booleanity of measurement propositions and the structure of entangled quantum states – would amount to providing some kind of physical ontology (particles, fields, wavefunctions) and a dynamics of how that structure changes over time in accordance with the essential features of quantum theory. This ontology-plus-dynamics would also have to reproduce the characteristic structure of correlations for non-locally entangled quantum mechanical systems. This is the fundamental challenge to natural philosophers today, aside from how to relate the theory to Minkowski spacetime.

In relativity theory, we have two physical postulates (relativity and light postulates) and we have a geometric model or “interpretation” of those postulates –

⁴ Though, even as Putnam⁵ has recently pointed out, the quantum-logical school of interpretation really does not resolve, so much as clarify the logical structure of, the fundamental interpretive problems with quantum theory.

⁵ That is, aside from providing a dynamics of “beables” with which to reconstruct quantum theory constructively, one can (in an interpretively neutral way) provide the structure of observables, whose reference is to acts of measurement on physical systems.
Minkowski’s hyperbolic 4-geometry that gives us a geometry of “light-cones.” The “blockworld” view tries to establish a *metaphysical* interpretation of the Minkowski geometrical rendition of SR. It is a view that tries to establish the reality of all spacetime events, whose structure is given by the special relativistic metric. It does *not* try to find an ontology *per se*. This would amount to defending a view about how “spacetime events” relate to the objects of our experience (like cars, tables, falling empires, and swirling galaxies). In this sense, therefore, the blockworld view of Minkowski spacetime does *not* commit one to an ontology of those spacetime events – just their equal reality. So the Minkowski interpretation of the postulates of relativity do not constitute a “constructive theory” of spacetime. Needless to say, the blockworld does not commit one to either a constructive or principle interpretation of special relativity. Though, since the blockworld is a metaphysical interpretation of the geometrical model of special relativity, and since such a model *does not add an ontology per se*, the blockworld view is more naturally associated with a principle account of SR.

3.1 Special Relativity and Quantum Theory. Most natural philosophers are inclined to accept that special relativity unadorned implies the blockworld view. Among those who might agree that special relativity unadorned implies a blockworld are those who think that quantum theory provides an excellent reason to so adorn it. That is, there are those who claim that NRQM non-locality or some particular solution to the measurement problem (such as collapse accounts) require the addition of, or imply the existence of, some variety of preferred frame (a preferred foliation of spacetime into space and time). This trick could be done in a number of ways and *need not* involve postulating something like the “luminiferous aether.” For example, one could adopt the Newtonian or neo-Newtonian spacetime of Lorentz, or one could *add* a physically preferred foliation to M4.

Most of these moves, however, lack an answer to a deeper question: how *exactly* are special relativity and quantum theory related? In other words, to pursue our earlier analogy, is quantum theory – or some interpretation of it – the “statistical mechanics” that

6 E.g., everywhere-continuous spacetime “worms” (the 4D view), or infinitely thin slices of space (the 3+1 view) with some additional affine connection linking each slice to the next.

7 See Tooley (29) chap. 11, for but one example.

8 As will be discussed shortly, Brown (30) develops a sophisticated neo-Lorentzian account of spacetime structure from a “dynamical perspective.”
underwrites the “thermodynamics” which is special relativity? Moreover, what is the right ontology of quantum theory, and how does one avert the standard litany of conceptual problems with that ontological interpretation? If the conceptual function of a theory like statistical mechanics is to provide a physical ontology from which one can reconstruct the laws of the macroscopic phenomena from the underwriting laws of the (constitutive) microscopic phenomena, then most of the attempts to argue for a “preferred foliation” on the basis of quantum theory fall rather short. None of these moves that invoke quantum theory are intended to provide something like a Lorentzian underpinning to the postulates of Einstein’s special relativity on the basis of quantum theory as the right account of the behavior of matter. Most simply argue something like, for example, “if there is collapse, then some spatial hypersurface must be physically preferred.” Such a natural philosopher will then try to establish the truth of the antecedent, but its consequent is merely an existence claim. What exactly constitutes that physical frame in spacetime? Is it itself “made out of” quantum-mechanical constituents? These types of arguments are indeed damaging to blockworld (if the antecedent can be established), but too quick in the final analysis (since it is by no means clear that the consequent is defensible on quantum-theoretical grounds).

3.2 Quantum Theory underneath Special Relativity? There is, however, one notable exception to this lopsidedness: Harvey Brown has tried to defend the heterodoxical view that special relativity requires a constructive, underwriting theory of matter from which one can recover (at least in principle) the phenomenological postulates of special relativity. This move requires defending two claims: (1) special relativity can be given an empirically equivalent constructive interpretation without the necessity of re-introducing a preferred frame from the outset and (2) quantum theory can be invoked as the long-awaited theory of matter upon which one can reconstruct the postulates of relativity (without thereby denying the truth of those postulates in the process\(^9\)). Brown defends (1)

\(^9\) It is important to point out that for this move to be well-motivated, it ought to be at least possible for one to take quantum theory as the fundamental and/or universal theory of matter without thereby impugning either postulate of relativity. For example, since Bohmian mechanics does (quite radically) violate Lorentz invariance at the level of the beables (i.e., the underwriting physical ontology), such an interpretation of quantum theory is suspect as the “underwriting” theory of special relativity (since it denies the truth of SR at a fundamental level!). Since Brown has recently ended support for Bohmian mechanics\(^3\) and has explicitly argued that Everett does not prima facie conflict with special relativity (or any theory of space
rather thoroughly, but leaves (2) somewhat vaguely defended. Let us characterize this heterodox view in more detail.

As we said, the orthodox view of SR, as Einstein conceived it, is that it is a principle theory about kinematics and Minkowski provided a unified geometric interpretation of the principles where space and time form some kind of whole. However, as many have pointed out recently\(^\text{(33)}\), Einstein’s principle approach to the problem of devising an adequate “electrodynamics of moving bodies\(^\text{10}\)” was a move he made out of “desperation.” All other things being equal, a constructive theory is to be preferred, which provides for, as Lorentz and Hertz might put it, “true physical insight\(^\text{(34)}\).” So, in light of this preference (and assuming that only constructive theories provide “true physical insight\(^\text{11}\)”), special relativity’s ultimate constructive or “underwriting” story has been left an open question, one to be filled in by our best theory of matter. Presently, so this view goes, that is the quantum theory. Therefore, as it stands now, quantum theory is the constructive theory of matter that will complete the principle theory of space and time Einstein found. This is the heterodox view, an argument for which Brown attempts to articulate and defend in great detail with his recent book\(^\text{(35)}\). Since it is taken largely for granted that quantum theory is a theory of the fundamental structure and nature of matter\(^\text{12}\), such a theory could be the long-awaited constructive theory Einstein despised over with his principle version of SR, and that Lorentz desired but ultimately failed to find. In Physical Relativity, however, Brown defends – quite in contrast to the received view – a sophisticated constructive account of SR, whose aim is to ultimately defend a “dynamical” account of spacetime structure\(^\text{37}\):

in a nutshell, the idea is to deny that the distinction Einstein made in his 1905 paper between the kinematical and dynamical parts of the discussion is a fundamental one, and to assert that relativistic phenomena like length contraction and time dilation are in the last analysis the result of structural properties of the quantum theory of matter.

and time, for that matter; see Brown & Timpson\(^\text{(32)}\). It seems plausible that Brown would endorse an Everett-style interpretation of quantum theory.

\(^\text{10}\) The title of Einstein’s famous 1905 paper.

\(^\text{11}\) A premise which we reject quite explicitly, though on the basis of our radical relational ontology. See section 4 for how our relationalism is successfully implemented in the derivation of the Born rule.

\(^\text{12}\) A claim disputed by many who argue for quantum theory as a kind of information theory\(^\text{36}\). For these philosophers, the question of the structure of matter (or its inner constitution) is largely beyond the scope of quantum theory itself, whose principles are about the structure of information that can be communicated between physical systems – irrespective of their constitution.
With a constructive theory of STR in hand, perhaps along Brown’s line, one might attempt to block the blockworld interpretation. As Callender notes\(^{(38)}\):

In my opinion, by far the best way for the tenser to respond to Putnam \textit{et. al.} is to adopt the Lorentz 1915 interpretation of time dilation and Fitzgerald contraction. Lorentz attributed these effects (and hence the famous null results regarding an aether) to the Lorentz invariance of the dynamical laws governing matter and radiation, not to spacetime structure. On this view, Lorentz invariance is not a spacetime symmetry but a dynamical symmetry, and the special relativistic effects of dilation and contraction are not purely kinematical. The background spacetime is Newtonian or neo-Newtonian, not Minkowskian. Both Newtonian and neo-Newtonian spacetime include a global absolute simultaneity among their invariant structures (with Newtonian spacetime singling out one of neo-Newtonian spacetime’s many preferred inertial frames as the rest frame). On this picture, there is no relativity of simultaneity and spacetime is uniquely decomposable into space and time. Nonetheless, because matter and radiation transform between different frames via the Lorentz transformations, the theory is empirically adequate. Putnam’s argument has no purchase here because Lorentz invariance has no repercussions for the structure of space and time. Moreover, the theory shouldn’t be viewed as a desperate attempt to save absolute simultaneity in the face of the phenomena, but it should rather be viewed as a natural extension of the well-known Lorentz invariance of the free Maxwell equations. The reason why some tensers have sought all manner of strange replacements for special relativity when this comparatively elegant theory exists is baffling.

3.3 The Heterodoxy of our Geometric Interpretation. Part of this paper is an extended reply to both the orthodox view, and the new heterodoxy. Whereas most orthodox interpreters of special relativity, when trying to defeat the blockworld view, use quantum theory simply to establish the existence of a preferred frame \textit{without} answering the deeper question as to how exactly \textit{and ontologically} the spacetime structure of relativity is related to quantum theory (or one of its many interpretations), we provide an answer to that question with RBW, a radically new geometric interpretation of NRQM. Such an ontology, as we show, provides for not only a rather natural transition from classical to quantum mechanics, but also resolves – deeper down and \textit{prior to} considerations about relativistic invariance, etc. – the conceptual tensions endemic to quantum theory in a relativistic context. It is here that we also reply to the orthodoxy, which holds that quantum theory is a theory of the behavior of matter-in-motion and Brown’s heterodox view (though perhaps soon to be orthodoxy) that special relativity stands in need of constructive theoretical completion by quantum theory. Our view is that quantum theory
can be interpreted as a theory of principle, but one which provides a further structural constraint on the introduction of events in spacetime, and that quantum phenomena can be modeled in spacetime without the necessary invocation of or realism regarding Hilbert space geometries. In this way, our heterodoxical view marries a principle interpretation of special relativity with a principle interpretation of quantum theory. This is the heart of our heterodoxy.

We take this to be a radically new heterodoxy not only because of our irreducibly principle interpretation of both SR and quantum theory, but also because our ontology collapses the matter-geometry dualism with an ontology of spacetime relations. Our interpretation of both SR and NRQM is a brand of ontological structuralism which defends the surprising thesis that the relativity of simultaneity plays an essential role in the spacetime regime for which one can obtain the Heisenberg commutation relations of non-relativistic quantum mechanics – the cornerstone of the structure of quantum theory.

This point bears repeating. While it is widely appreciated that special relativity and quantum theory are not necessarily incompatible, what is not widely appreciated are a collection of formal results (supra) showing that quantum theory and the relativity of simultaneity are not only compatible, but in fact are intimately related. More specifically, it is precisely this “nonabsolute nature of simultaneity” which survives the $c \to \infty$ limit of the Poincaré algebra, and entails the canonical commutation relations of non-relativistic quantum mechanics.

RBW nicely resolves the standard conceptual problems with the theory: (i) prior to the invocation of any interpretation of quantum theory itself and (ii) prior to the issue of whether any interpretation of quantum theory – i.e., a mechanics of the quantum – can be rendered relativistically invariant/covariant. Namely, it provides both a geometrical account of entanglement and so-called “non-locality” free of tribulations, and a novel version of the statistical interpretation that deflates the measurement problem. Our geometrical NRQM has the further advantage that it does not lead to the aforementioned problems that some constructive accounts of NRQM face when relativity is brought into the picture, such as Bohmian mechanics and collapse accounts like the wavefunction interpretation of GRW. On the contrary, not only does our view require no preferred
foliation but it also provides for a profound, though little-appreciated, *unity* between SR and NRQM *by way of the relativity of simultaneity*\(^\text{13}\).

3.4 Our geometrical interpretation in a nutshell

To summarize, our view can be characterized as follows:

(i) We are realists about the geometry of spacetime but antirealists about Hilbert space.

(ii) We adopt the view that NRQM is a principle, not a constructive, theory in the following respects:

a. it merely provides a probabilistic rule by which new trajectories are generated – i.e., we take NRQM *qua* principle theory to provide *constraints on the introduction of events in spacetime*.

b. it is not a theory of the behavior of matter-in-motion. Our ontology does not accept matter-in-motion as *fundamental* (though it is phenomenologically/pragmatically useful).

c. so-called quantum entities and their characteristic properties such as entanglement are geometric features of the spacetime structure just as length contraction, on the *Minkowski-geometrical interpretation of special relativity*, is taken to be a feature of the geometry and not ultimately explained by the “inner constitution” of material bodies themselves\(^\text{14}\).

(iii) Some take the deeper physical insight of relativity to be the *true* metaphysical equivalence of all possible foliations of the spacetime manifold. We take this to mean that consistency – *metaphysical* consistency – with relativity at least demands that all foliations of spacetime be considered *equally real*. Our geometrical quantum mechanics embraces such a radical democracy of

\(^{13}\) In this respect, our interpretation is close to that of Bohr & Ulfbeck\(^{40}\). In their words, “quantal physics thus emerges as but an implication of relativistic invariance, liberated from a substance to be quantized and a formalism to be interpreted.”

\(^{14}\) A note on this explanatory strategy. It is rather controversial to claim that, on the Minkowski interpretation of SR, length contraction can be *explained*. This is because it is thought that a *pure* geometry of spacetime does not have the explanatory resources to say *why* it is that rods are the way they are; a pure geometry can merely *represent* the rod’s *behavior* from different points of view in spacetime. However, we are here rejecting the fundamentality of constructive explanations in favor of principle geometric explanation. This is where our *ontology* of relations and the *global determination* of events with spacetime *symmetries* are important; see points (iv) and (v).
foliations. In this way, we are pursuing an analogy between NRQM and what is called the “geometrical rendition by Minkowski of special relativity(41).”

(iv) Spatiotemporal relations are the means by which all physical phenomena (including both quantum and classical “entities”) are modeled, allowing for a natural transition from quantum to classical mechanics (including the transition from quantum to classical probabilities) as simply the transition from rarefied to dense collections of spacetime relations.

(v) Given (i) – (iv), we adopt an explanatory strategy that is faithful to our methodological and ontological commitments: we take the view that the determination of events, properties, experimental outcomes, etc., in spacetime is made with spacetime symmetries both globally and acausally. That is, we will invoke an acausal global determination relation that respects neither past nor future common cause principles. We will apply this methodology to a specific quantum mechanical set-up in section 5.

(vi) As will be demonstrated in section 5, the reality of all events is necessary for explanation on our view, the blockworld assumption thus plays a non-trivial explanatory role.

3.5 Motivating our geometrical interpretation of quantum theory. In order to appreciate how we came to this view, we will outline our broad motivations for this brand of geometrical quantum mechanics. Our primary philosophical motivations, which have profound methodological implications for how one would model reality, are to eliminate various “dualisms” that currently plague theoretical physics. One main dualism is the following: “inner constitution of material bodies” vs. “their spatiotemporal background.” For example, as long as one maintains this dualism, troubling questions such as the following will arise(42):

if it is the structure of the background spacetime that accounts for the phenomenon [such as length contraction], by what mechanism is the rod or clock informed as to what this structure is? How does this material object get to know which type of spacetime – Galilean or Minkowskian, say – it is immersed in.

This may also be called the “matter-geometry” dualism.
There are certain constructive accounts of NRQM (e.g., collapse accounts such as the wavefunction view of GRW, or modal accounts such as Bohmian mechanics) where, if this dualism is true, you are led to a dilemma between the dynamics of NRQM state-evolution and kinematical coordinate transformations. So, here is the problem. One tries to interpret NRQM constructively, as a theory of the dynamics of matter-in-motion. And then, one tries to relate that theory to a principle account of spacetime structure where we take the kinematical transformations as simply perspectives on already-existing events and independent of dynamical considerations. But now, we are forced to either: (i) conclude that the dynamical laws of motion are in some sense wrong (i.e., that they are not invariant under a kinematical coordinate transformation) or (ii) that the space in which the matter-in-motion evolves has been entirely misconstrued (i.e., that we are not relating foliations of a spacetime with quantum objects there, but are relating the dynamical evolution of a quantum mechanical wavefunction in configuration space, from which we must extract an image of ordinary spacetime)\(^{(43)}\).

For Brown, the solution to this conundrum is to collapse the fundamental distinction between kinematics and dynamics in favor of a dynamical account of spacetime structure from which one can reconstruct the essential features of the kinematical coordinate transformations on the basis of the ontology/dynamics supplied (via quantum theory, for example). Thus, with the appropriate underwriting story of spacetime structure in hand, one can derive the necessary coordinate transformations on the basis of how matter behaves. And with this, empirical adequacy is achieved.

As we will argue, our geometrical quantum mechanics with spacetime relations collapses the matter-geometry dualism and therefore avoids this dilemma without having to deny that kinematics and dynamics are conceptually distinct. We therefore embrace and defend a non-dynamical view of spacetime structure, contra Brown.

Given our geometric view of NRQM, we reject realism about the Hilbert space, for as David Albert says\(^{(44)}\),

> the space in which any realistic interpretation of quantum mechanics is necessarily going to depict the history of the world as playing itself out ... is configuration-space. And whatever impression we have to the contrary (whatever impression we have, say, of living in a three-dimensional space, or in a four-dimensional space) is somehow flatly illusory.
Given that spatiotemporal relations are fundamental on our view, we want no part of any interpretation that is embroiled with the problem of how to extract an image of a three-dimensional world from either the instantaneous state or the evolving state of a $3N$-dimensional system. Moreover, we want to avoid any concerns about the ontological status of configuration space. This paper constitutes an extended defense of the claim that nothing about quantum mechanics requires denying the truth of 4D-ism, and it provides an interpretation of both SR and NRQM which is realist about 4-space and anti-realist about Hilbert space.

In short, the geometrical perspective adopted here is inimical to: (a) theories which invoke a preferred frame for their dynamics (such as a neo-Lorentzian account of SR), (b) constructive accounts of either SR or NRQM, (c) any realistic interpretation of Hilbert space, and (d) accounts of NRQM for which the role of spacetime as a unifying descriptive framework, such as found in Minkowski’s interpretation of SR, is either unclear or problematic (such as “many-worlds” interpretations of Everettian NRQM).

Many will assume that a geometric interpretation such as ours is impossible because quantum wavefunctions live in Hilbert space and contain much more information than can be represented in a classical space of three dimensions. The existence of entangled quantum systems provides one obvious example of the fact that more information is contained in the structure of quantum mechanics than can be represented completely in spacetime. As Peter Lewis says\(^{45}\), “the inescapable conclusion for the wavefunction realist seems to be that the world has $3N$ dimensions; and the immediate problem this raises is explaining how this conclusion is consistent with our experience of a three-dimensional world.” On the contrary, the existence of the non-commutativity of quantum mechanics is deeply related to the structure of spacetime itself, without having to invoke the geometry of Hilbert space. Surprisingly, it is a spacetime structure for which the relativity of simultaneity is upheld and not challenged.

3.6 Philosophical significance. One important point should be brought out, which reveals how we understand the relationship between spacetime structure (given by relativity) and the theory of quantum mechanics (in a non-Minkowskian, but non-Galilean, spacetime regime, i.e., K4). Most natural philosophers agree that SR just constrains the set of possible dynamical theories to those which satisfy the light and relativity postulates. It is
often worried, as we have pointed out, that somehow quantum theory violates those constraints. The view we adopt here is importantly different, in that we distinguish between:

(a) the question of how to relate the structures of quantum theory and relativity
(b) the question of the compatibility of constructive interpretations of quantum theory and whether they violate relativistic constraints.

We interpret quantum theory as a theory of principle – detached from a constructive interpretation of it. We point out, by way of the formal results supra, that the spacetime structure for which one can obtain the Heisenberg commutation relations is one where the relativity of simultaneity is upheld – a fact often not appreciated in most interpretations of quantum theory. Furthermore, with an ontology of spacetime relations, we show how one can motivate and derive the Born rule, and to construct a quantum density operator from the spacetime symmetry group of any quantum experimental configuration, and how one can use this to deduce and then explain the phenomenon of quantum interference – all by appealing to nothing more than a spacetime structure for which one can obtain the Heisenberg commutator while obeying the relativity of simultaneity.

We take the deepest significance of the Kaiser et. al. results to be that, given the asymptotic relationship between the spacetime structure of special relativity and the “weakly relativistic” spacetime structure of quantum theory, non-relativistic quantum mechanics is something like a relativity theory in an “embryonic” stage. It is “embryonic” in that it is yet without the Lorentz-contraction factor γ that appears in the familiar Lorentz transformation equations of special relativity.

Having identified the appropriate spacetime structure for the Heisenberg commutation relations, and having discovered that this structure upholds the relativity of simultaneity, we have provided a principle explanation for the quantum. A natural question now arises: what would the appropriate description of NRQM and quantum mechanical phenomena such as interference be like in light of the asymptotic relationship between relativity and quantum theory? Our “geometric” interpretation of NRQM is one answer to this question, an answer grounded in our fundamental ontology of spacetime relations.
In order to motivate our relational approach to physical reality, consider first a rival interpretation of NRQM which is antithetical to the view we are presenting here, Bohmian mechanics. Bohmian mechanics provides us with a classical-like picture of reality. It begins by modeling the behavior of a classical-like particle whose velocity is determined, via “Bohm’s equation” (i.e., the “guiding field”), by a wavefunction; the wavefunction evolves according to Schrödinger’s equation. Such particles always have well-defined locations in spacetime, and their total Hamiltonian is constructed from both a non-classical quantum potential and classical potential fields. In a basic twin-slit experiment, a simple picture of the mechanism behind the interference pattern is provided: a particle is directed deterministically by the guiding field to a particular location and registered as a “click” in a detector. Measurement on Bohm’s theory is just like any other physical interaction. A constructive account of measurement, from particle to “click” registration, is provided by breaking down the whole process into particles and wavefunctions. A “click” is clearly the result of a causal process (however non-classical/non-local that process might be), and evidences a particle trajectory in spacetime.

Given our principle, geometrical interpretation of NRQM, it should be clear that we do not take detector events to be indicators of the trajectories of classical-like particles and wavefunctions, as in Bohm’s mechanics. From our rejection of Hilbert space realism, for example, the wavefunction in Hilbert space does not determine our experiences in spacetime. To motivate Bohm’s equation, one must believe that the wavefunction determines the velocity of particles, and hence what the world looks like. Bohm’s equation is therefore unwarranted on our view.

More generally, our explanation for the detector events is not going to appeal to dynamical objects and their equations of motions, or the forces acting on them. Rather, our project is to model denumerable and discrete sets of events with a space and time of four dimensions as the basic geometry of the world. Clicks evidence irreducible spatiotemporal relations between the source and the detector. Given that we are forced to take collections of relations and not trajectories as fundamental, we must construct those trajectories out of such relations. Therefore, in order to more fully capture the manner by which trajectories are inferred and constructed (for example from the exchange of
“bosons”) we assume that the fundamental constituents for modeling trajectories in spacetime are relations per Anandan\(^{(48)}\), i.e., elements of \(S \times S\) where \(S\) is the spacetime manifold.

3.7 Conclusion: Interpretive consequences of RBW.

The Measurement Problem. According to the account developed here, we offer a deflation of the measurement problem with a novel form of the “statistical interpretation.” The fundamental difference between our version of this view and the usual understanding of it is the following: whereas on the usual view the state description refers to an “ensemble” which is an ideal collection of similarly prepared quantum particles, “ensemble” according to our view is just an ideal collection of spacetime regions \(D_i\) “prepared” with the same spatiotemporal boundary conditions per the experimental configuration itself. The union of the first events in each \(D_i\), as \(i \to \infty\), produces the characteristic Born distribution\(^{15}\). Accordingly, probability on our geometrical NRQM is interpreted per relative frequencies. It should be clear, also, that probabilities are understood as the likelihood that a particular relation between source-detector in spacetime is realized, from among a set of all equally likely relations between source-detector.

On our view, the wavefunction description of a quantum system can be interpreted statistically because we now understand that, as far as measurement outcomes are concerned, the Born distribution has a basis in the spacetime symmetries of experimental configurations. Each “click,” which some would say corresponds to the impingement of a particle onto a measurement device and whose probability is computed from the wavefunction, corresponds to a spacetime relation in the context of the experimental configuration. The measurement problem exploits the possibility of extending the wavefunction description from the quantum system to the whole measurement apparatus, whereas the spacetime description according to our geometrical quantum mechanics already includes the apparatus via the spacetime symmetries instantiated by the entire experimental configuration. The measurement problem is therefore a non-starter on our view.

\(^{15}\) “First” meaning the first event in a sequence whence a trajectory is inferred. There would be \(N\) first events in trials with \(N\) entangled particles, since each “particle” would correspond to a family of possible trajectories. More on this in section 4.
More importantly, following the Bohr et. al. results invoked throughout this paper, the spacetime symmetry group of an experimental configuration entails its density matrix. According to our view, the reason for the confusion over the ontological status of the wavefunction is illustrated nicely by the relationship between source and detector in the twin-slit experiment. If we illustrate this relationship via the *orbit of the translation operator* (figure 1), it is easy to see why one might infer the existence of diachronic objects “emitted by the source and impinging on the detector.” When one adds the double slit, the relationship established by the experimental configuration (source, slits, detector) involves a pair of translations between the source and each slit, and between each slit and the ultimate location of an event at the detector (figure 2). Therefore, the distribution of clicks at the detector is obtained from

\[
\psi(\theta) = A(e^{ik_1(\theta)} + e^{ik_2(\theta)})
\]

which is, while itself not a translation, just the sum of spatial translations (figure 3). It is easy to see why this event distribution is commonly attributed to “wave interference,” especially with the addition of explicit time dependence but the wavefunction has no fundamental, ontological status in spacetime. If many events are accumulated, the pattern will seem to add credence to an ontological interpretation of “wave interference.” But

the pattern is built one event (click) at a time and the explanation of each click is simply given by the appropriate composition of translations.

Accordingly, there is no “wave” or “particle” emitted by the source, moving through the slits and impinging on the detector. *The key to deflating the mystery of wave-particle duality is that the orbits of the relevant spacetime symmetries are not worldlines.*

Entanglement & Non-locality. On our geometric view of NRQM we explain entanglement as a feature of the spacetime geometry as follows. Each initial detection event, which evidences a spacetime relation, selects a trajectory from a family of possible trajectories (one family per entangled ‘particle’). In the language of detection events *qua* relations, it follows that correlations are correlations between the members of the *families* of trajectories and these correlations are the result of the relevant spacetime symmetries for the experimental configuration. And, since an experiment’s spacetime symmetries are manifested in the Hamilton-Jacobi families of trajectories throughout the relevant
spacetime region D, there is no reason to expect entanglement to diminish with distance from the source. Thus, the entanglement of families of trajectories is spatiotemporally global, i.e., non-local. That is, there is no reason to expect entanglement geometrically construed to respect any kind of common cause principle. Obviously, on our geometric interpretation there is no non-locality in the odious sense we find in Bohm for example, that is, there are no instantaneous causal connections (construed dynamically or in terms of production—bringing new states of affairs into being) between space-like separated events.

Quantum non-locality and entanglement are demystified in a straightforward fashion since spatiotemporal relations are fundamental in a blockworld. Correlations between space-like separated events that violate Bell’s inequalities are of no concern as long as spatiotemporal relations in the experimental apparatus warrant the correlations. There is no need to satisfy either past or future versions of the common cause principle, since non-local correlations are not about “particles” impinging on measuring devices or what have you. Rather, the non-local correlations derive from the spatiotemporal relations in the construct of the experiment. There are no influences, causal mechanisms, etc., because non-locality is a relational property that is precisely described by the spacetime symmetries of any given experimental arrangement. That the density matrix may be obtained from the spacetime symmetries of the Hamiltonian is consistent with the notion that $\psi^*\psi$ provides the distribution for detector events in single-event trials for each family of trajectories obtained via the Hamilton-Jacobi formalism. Our view exploits this correspondence to infer the existence of a single spacetime relation between source and detector for each detector event.

4. THE BORN RULE

In keeping with our principle, geometric interpretation of NRQM, we restrict our modeling to that which is observed in the measurement process: the spatiotemporal location of discrete events in a specific spacetime region D occupied by the detector. To be consistent with the assumption that spatiotemporal relations are fundamental, we are assuming that the worldlines of detector events begin at the second event entry, s_2, of the
relation \((s_1, s_2)\) in question\(^{16}\). Accordingly, we are charged to find rules that will allow us to predict the locations and shapes of the trajectories in \(D\), i.e., the distribution of detector events whence a trajectory is inferred in \(D\). Of course, these rules exist in quantum and classical physics so we need to map our geometric ontology of spacetime relations to the relevant rules of quantum and classical physics, i.e., to NRQM and non-relativistic classical mechanics (CM).

Since we are dealing with NRQM and CM (as opposed to QFT and SR) we consider a ‘single-particle’ source emitting at a slow enough rate that, in the language of dynamism, there exists no more than one non-relativistic ‘quantum object’ in the space occupied by the detector at any given time. For those trials with multiple detector events, we will find that the events reside on a trajectory satisfying the classical equations of motion per the relevant spacetime boundary conditions. This follows by assumptions implicit in the experimental arrangement. First, the assumption of a “single particle” is defined by a single trajectory so if detector events fell along more than one trajectory in some trial, we would believe that our source had emitted a second particle near enough to the first in time that, contrary to our initial assumption, we had two particles in the detector region at the same time (or that scattering or particle decay had taken place, contrary to our criteria for membership in the experiment). Second, the trajectory realized by the detector events will reside on the relevant (classical) Hamilton-Jacobi family of possible trajectories because that is how one obtains the properties of a quantum object, such as mass and charge, required to solve the Schrödinger equation. Further, the trajectory of the quantum object will be uniquely determined (among the family of possibilities) by the first of the detector events per the continuity equation, whence trajectories do not intersect. Now, CM provides the shapes of the trajectories in the family of possibilities, but it does not provide a rule for predicting which trajectory will be realized by our quantum object\(^{17}\); that task falls to NRQM via the probability density \(\psi^*\psi\) as we now argue.

\(^{16}\) The first entry, \(s_1\), is presumably an event in the spacetime region of the source although we agree with Ulfbeck & Bohd\(^{50}\) that the wavefunction of standard quantum mechanics does not “belong to an object” in the source or anywhere else for that matter.

\(^{17}\) This is also true of classical objects, but it is typically of no concern as classical objects are by their very nature never “screened off” so the experimenter can exercise total control over the initial conditions.
Again, we are trying to predict the location and shape of a trajectory for a
collection of detector events in a particular spacetime region D, a subset of S. We hold
that $\psi^*\psi$ pertains only to the first event in an n-event trial (at least for those that satisfy
the experimental assumptions) because if $\psi^*\psi$ were intended to hold for the first and
subsequent events, then the fact that subsequent events fall along a trajectory, being
highly improbable in general\(^{18}\), would force us to dismiss $\psi^*\psi$ on empirical grounds\(^{19}\).
Therefore, the first detector event of a multiple-event trial determines which trajectory
exists in D for any given trial, and the distribution of first events is given probabilistically
by NRQM\(^{20}\). Subsequent detector events in each trial will fall on the trajectory,
determined by the first event, whose shape is given by CM.

To summarize, we are denying the standard claim that, as Anandan puts it\(^{52}\), “the
particle at any given time is described by a wave-function.” Per RBW, particles are
described by trajectories in spacetime which must themselves be constructed from
spatiotemporal relations. NRQM is a principle theory that provides a description of “first
events,” i.e., it provides rules for determining the probability of detection events in some
region of spacetime\(^{21}\). Each “first event” picks out a trajectory from all that are possible
in a family of trajectories, and subsequent events lie along that trajectory which is
described classically. NRQM just provides the distribution of these first events in
spacetime\(^{22}\).

\(^{18}\) In order to construct a wavefunction that accounts a priori for spatially sequential events requires
configuration space in general\(^{51}\), since the distribution of possible n^{th} events are ipso facto contingent upon
first events unless the boundary conditions require a unique trajectory.

\(^{19}\) In the case of N entangled particles, one is dealing with N entangled families of trajectories and $\psi^*\psi$
provides the distribution for first events in each family, i.e., one new trajectory per family of possibilities.

\(^{20}\) We are embracing a typical assumption of statistical physics, i.e., experiments are repeatable and the
probability outcomes are realized in the frequencies of the repeated trials. Thus, we have many equivalent
samples of D (which include the relevant spatiotemporal boundary conditions), one trial of the experiment
in each sample, and the union of all these samples, containing but the first event of each trial, then
approaches $\psi^*\psi$ as the number of samples/trials increases.

\(^{21}\) Principle theories are usually taken to provide constraints on the behavior of phenomena\(^{53}\). For our
purposes, we take NRQM qua principle theory to provide constraints on the distribution of events in
spacetime.

\(^{22}\) It should be noted that since our spacetime structure respects the relativity of simultaneity and first
trajectory events are fundamentally distinct from subsequent trajectory events, trajectories must be time-
like to avoid the temporal ordering ambiguity of space-like trajectories. Of course, NRQM satisfies this
constraint ipso facto, but this fact may bear on the rule for the distribution of spacetime relations which is
ultimately responsible for quantum field theory (see section 7).
Now we appropriate and review a result due to Anandan(54) showing the Born rule, $\psi^*\psi$, follows from simple assumptions concerning the probability amplitudes, ψ, of all possible spacetime paths from an emission event in the source to a reception event in the detector. RBW’s version of Anandan’s ‘dynamic’ derivation of $\psi^*\psi$ is realized by assuming the transitivity of spacetime relations $S \times S$, where S is the spacetime manifold, i.e., $(s_1, s_3) = (s_1, s_2) + (s_2, s_3)$, such that Anandan’s “all possible paths” are decomposed into “all possible sets of relations” \textit{(a la} the Feynman path integral). In this sense, particles are characterized by trajectories which are inferred from spatiotemporal relations. This additional level of decomposition, trajectories into spacetime relations, is the leitmotif of the RBW approach. Accordingly, NRQM and classical mechanics are used to predict the location and shape of new ‘single-particle’ trajectories, respectively, as inferred from a collection of detector events in a particular spacetime region.

While Anandan is concerned with a “geometric approach to quantum mechanics(55),” he does so in the context of a dynamic evolution of ψ, as when he writes, “According to quantum theory, the state of a particle at any given time is described by a wavefunction ψ, which is a complex-valued function of space(56).” Anandan apparently imagines ψ as a dynamic entity. We understand that it is nothing of the sort, but rather an algorithm for predicting the distribution of what is spatiotemporally real, i.e., \textit{relations} in spacetime (as evidenced by detector events). In this sense we agree with Ulfbeck & Bohr(57) in that “there is no longer a particle passing through the apparatus and producing a click. Instead, the connection between source and counter is inherently non-local.” Since complex probability amplitudes should be associated with all sets of spacetime relations equivalent to that relation for which we are trying to compute the probability of occurrence in the detector, we now understand the non-dynamical role of the Schrödinger equation in RBW. Schrödinger’s equation is not describing the dynamic evolution of an entity in space, nor does it describe the “state of” a dynamic entity moving through space. Rather, Schrödinger’s equation simply provides a calculation of the probability amplitudes for what \textit{does} exist at the most fundamental level, spacetime relations.

We begin by noting that the totality of all relations in region D (whether they are possible per NRQM or not) form a featureless set (think of a block of marble which is to be chiseled into a sculpture). Therefore, our first task is to articulate the reason for our
restricted outcomes space, i.e., the subsets of $S \times S$ with s_2 in D whence we may infer trajectories for the trials of the experiment. Here we modify Anandan’s “heuristic principle $M^{(58)}$” to read:

A necessary and sufficient condition for a set of relations to be admissible as outcomes in a trial of our experiment is that the set should conform to the spacetime symmetries inherent in the experiment.

A detector event evidences but the second element s_2 of a relation (s_1, s_2) and without information concerning the first entry s_1 we cannot hope obtain a full geometric characterization of the experiment. Therefore, assuming the missing information is summarized in the Hamiltonian describing the experiment, M restricts the possible sets of relations in any given experiment to those which conform to the spacetime symmetries of the Hamiltonian\(^{23}\). Of course, NRQM and CM employ the same Hamiltonian and we know how spacetime symmetries are used in CM to establish deterministically the shapes of trajectories via Noether’s theorem, so we just need to understand how M is used to obtain $\psi^* \psi$, thereby specifying the rule by which one and only one trajectory is realized in each trial\(^{24}\).

In this context, we want to compute the probability density of finding the first event of a given trial in the neighborhood of s_2 in D. We require but one more conceptual-interpretative adjustment to Anandan’s argument before we can appropriate its details for the origin of Born’s rule in our view. In discussing the relation between s_1 in the source and s_2 in the detector, Anandan argues that all possible paths between s_1 and s_2 are equally probable per his assumption that “there are no causal dynamical laws.” Specifically, if there existed a weighting of the various paths, this weighting would constitute a “causal dynamical law,” albeit probabilistic, in violation of his assumption. Since we are working in the realm of relations rather than paths, we need to articulate the sense in which a path is a collection of relations. Of course, this decomposition is straightforward if we assume simply that relations are transitive, i.e.,

\(^{23}\) This generalizes to QFT by including interaction Hamiltonians which introduce gauge symmetries\(^{59}\).

\(^{24}\) For situations involving entangled particles, one trajectory per particle is realized.
Thus, we assume\(^\text{25}\) that all possible combinations of relations equivalent to \(s_1\) in the source and \(s_2\) in the detector are to be considered equally in computing the probability of a detector event in the neighborhood of \(s_2\). Anandan’s argument follows precisely from here.

If we start with the naïve assumption that the method by which all possible combinations of relations from \(s_1\) to \(s_2\) (or equivalently, “all possible paths”) contribute to the probability outcome is via addition, we find the contribution from each path must be zero because there are an infinite number of such paths. To counter this result, without introducing an ad hoc weighting of paths, we need to have cancellation in the addition process. We therefore introduce a probability amplitude for each relation, such that the probability amplitude for a path should be constructed multiplicatively from the probability amplitudes of its relations per the transitivity of relations, i.e., the probability amplitude of \((s_n,s_k)\) times that of \((s_k,s_m)\) equals the probability amplitude of \((s_n,s_m)\). Then, the final probability for \((s_1,s_2)\) is found, by a means to be determined, after first adding the probability amplitudes of the equivalent paths. In this fashion, we might expect some cancellation in the addition process. To obtain a non-negative probability from an amplitude we need a norm “\(\|\cdot\|\)” over the amplitudes. That the probability amplitude of \((s_n,s_k)\), denoted by \(\psi\), multiplied by that of \((s_k,s_m)\), denoted by \(\phi\), equals the probability amplitude of \((s_n,s_m)\) suggests \(\|\psi\phi\| = \|\psi\| \|\phi\|\). Theorems by Horwitz\(^{60}\) and Albert\(^{61}\) state that these probability amplitudes should be reals, complex numbers, quaternions, or octonions\(^{62}\).

Octonions are not candidates for probability amplitudes since they are non-associative under multiplication when addition is also used, i.e., in general we do not have \(\|\psi_1(\psi_2 \psi_3) + \phi\| = \|(\psi_1\psi_2) \psi_3 + \phi\\. Reals are excluded because the only way to get cancellation between them is to use negative numbers, but the norms of negative numbers equal their positive counterparts so when working with an infinite number of paths we would still find the probability amplitude of each path is zero. Adler\(^{63}\) showed that it is not possible to construct a path integral using quaternions, so that leaves us with complex numbers for our probability amplitudes.

\(^{25}\) Of course, this statement is the geometric counterpart to the Feynman path integral formulation of NRQM.
Now we find the probability for \((s_n, s_m)\) from the probability amplitudes for \((s_n, s_k)\), denoted by \(\psi_1\), and \((s_k, s_m)\), denoted by \(\psi_2\), in order to obtain the Born rule. If the phase of a relation is completely uncertain, then we expect the average of the probability for \((\psi_1 + \psi_2)\) over all possible relative phases, \((\theta_1 - \theta_2)\), will equal the sum of the individual probabilities for each of \(\psi_1\) and \(\psi_2\), i.e.,

\[
\frac{1}{2\pi} \int_0^{2\pi} d\theta_1 P(\psi_1 + \psi_2) = P(\psi_1) + P(\psi_2)
\]

(7)

where all possible relative phases are realized by having \(\theta_1\) assume all values between zero and \(2\pi\), \(P(\psi_i)\) is the probability for the probability amplitude \(\psi_i\) and \(\theta_i\) is the phase of \(\psi_i\). Since we have integrated over \(\theta_1\), \(P(\psi_1)\) on the right hand side of Eq. 7 is not a function of its phase, which means that in general \(P(\psi)\) is a function of \(|\psi|\) only. Since \(P(\psi)\) is non-negative, it is reasonable to assume \(P(\psi) = |\psi|^n\), where \(n\) is a non-negative integer. Now, that each path is equally likely means \(P(\psi_1) = P(\psi_2)\), and therefore \(|\psi_1| = |\psi_2|\). Let \(|\psi_1| = b\) so that \(|\psi_1 + \psi_2| = |[2b^2(1 + \cos(\theta_1 - \theta_2))]^{1/2} | = 2b|\cos(\theta/2)|\), where \(\theta = \theta_1 - \theta_2\) and “| |” around terms containing the cosine functions means “absolute value.”

Eq. 7 now reads

\[
\frac{2^n b^n}{2\pi} \int_0^{2\pi} d\theta |\cos^n(\theta/2)| = 2b^n
\]

Letting \(\alpha = \theta/2\) we have

\[
\frac{2^n b^n}{2\pi} \int_0^{\pi} d\alpha |\cos^n \alpha| = 2b^n
\]

or

\[
\frac{2^n \pi}{2\pi} \int_0^{\pi} d\alpha |\cos^n \alpha| = 1
\]

(8)

A useful identity is

\[
\int_0^{\pi} d\alpha |\cos^{2m+1} \alpha| = 2 \int_0^{\pi/2} d\alpha \cos^{2m+1} \alpha
\]

(9)
for any non-negative integer m. Evaluating the integral in Eq. 9 gives

$$2 \int_{0}^{\pi/2} d\alpha \cos^{2m+1} \alpha = \frac{2^{2m+1}(m!)^{2}}{(2m+1)!}$$

(10).

Eqs. 8, 9 and 10, with \(n = 2m+1\), give

$$\frac{2^{n}}{2\pi} \frac{2^{n}}{n!} \left(\frac{(n-1)!}{2} \right)^{2} = 1$$

(11).

Since we need \(\pi\) to cancel on the left hand side, \((n-1)\) must be odd thus \(n\) must be even.

Therefore, let \(n = 2k\) and Eq. 11 becomes:

$$\frac{2^{2k}}{2\pi} \frac{2^{2k}}{(2k)!} \left(\frac{(2k)!}{2^{k}k!} \right)^{2} = 1$$

(12)

so we can use

$$\left(\frac{k - \frac{1}{2}}{2} \right) = \frac{\sqrt{\pi} (2k)!}{2^{k}k!}$$

to cancel \(\pi\) in Eq. 12, which then becomes

$$\frac{(2k)!}{2(k!)^{2}} = 1$$

(13).

Eq. 13 holds for \(k = 1\) \((n = 2)\), but not for \(k > 1\). Therefore, the only way Eq. 7 can hold with \(P(\psi) = |\psi|^{n}\) is to have \(n = 2\), which is the Born rule.

5. THE QUANTUM LIAR EXPERIMENT

We now apply the Bohr et. al. method to a particular experimental set-up. In two recent articles, Elitzur and Dolev try to establish something like the negation of the blockworld view, by arguing for an intrinsic direction of time given by the dynamical laws of quantum theory\(^{(64)}\). They put forward the strong claim that certain experimental set-ups such as the quantum liar experiment (QLE) “entail inconsistent histories” that “undermine the notion of a fixed spacetime within which all events maintain simple causal relations. Rather, it seems that quantum measurement can sometimes ‘rewrite’ a process’s history\(^{(65)}\)” In response, they propose a “spacetime dynamics theory\(^{(66)}\)” Certainly, if something like this is true, then blockworld is jeopardized. By applying the
geometrical interpretation of quantum mechanics to the “quantum liar” case, we will not only show that the blockworld assumption is consistent with such experiments, but that blockworld a la our geometric interpretation provides a non-trivial and unique explanation of such experiments.

The history of NRQM is littered with comparatively radical or reactionary attempts to explain features such as EPR-Bell correlations. For example, some accounts of NRQM give up the (past) common cause principle and invoke some kind of backwards-causal theory to explain quantum phenomena. Others argue that EPR-Bell correlations require no (causal) explanation whatsoever. We provide another interpretation, one which is neither causal in character, nor merely skeptical about the possibility of causal explanations of EPR-like phenomena – but which is genuinely acausal and deeply revelatory about the origin of both the theory of quantum mechanics and its seemingly mysterious class of phenomena. Our geometric interpretation and its explanatory methodology reject both past and future versions of the common cause principle.

Our account provides a clear description, in terms of fundamental spacetime relations, of quantum phenomena that does not suggest the need for a “deeper” causal or dynamical explanation. If explanation is simply determination, then our view explains the structure of quantum correlations by invoking what can be called acausal global determination relations. These global determination relations are given by the spacetime symmetries which underlie a particular experimental set-up. Not objects and dynamical laws, but rather acausal spacetime relations per the relevant spacetime symmetries do the fundamental explanatory work according to RBW.

5.1 Mach-Zehnder Interferometer & Interaction Free Measurements. Since QLE employs interaction-free measurement (IFM), we begin with an explication of IFM. Our treatment of IFM involves a simple Mach-Zehnder interferometer (MZI, figure 4; BS = beam splitter, M = mirror and D = detector). All photons in this configuration are detected at D1 since the path to D2 is ruled out by destructive interference. This obtains even if the MZI never contains more than one photon in which case each photon “interferes with itself.” If we add a detector D3 along either path (figures 5a and 5b), we can obtain clicks in D2 since the destructive interference between BS2 and D2 has been
destroyed by D3. If we introduce detectors along the upper and lower paths between the mirrors and BS2, obviously we do not obtain any detection events at D1 or D2.

To use this MZI for IFM we place an atom with spin X+, say, into one of two boxes according to a Z spin measurement, i.e., finding the atom in the Z+ (or Z-) box means a Z measurement has produced a Z+ (or Z-) result. The boxes are opaque for the atom but transparent for photons in our MZI. Now we place the two boxes in our MZI so that the Z+ box resides in the lower arm of the MZI (figure 6). If we obtain a click at D2, we know that the lower arm of the MZI was blocked as in figure 5a, so the atom resides in the Z+ box. However, the photon must have taken the upper path in order to reach D2, so we have measured the Z component of the atom’s spin without an interaction. Accordingly, the atom is in the Z+ spin state and subsequent measurements of X spin will yield X+ with a probability of one-half (whereas, we started with a probability of X+ being unity).

5.2 Quantum Liar Experiment. The QLE leads to the quantum liar paradox of Elitzur & Dolev(70) because it presumably instantiates a situation isomorphic to a liar paradox such as the statement: “this sentence has never been written.” As Elitzur & Dolev put it, the situation is one in which we have two distinct non-interacting atoms in different wings of the experiment that could only be entangled via the mutual interaction of a single photon. However one atom is found to have blocked the photon’s path and thus it could not interact with the other atom via the photon and the other atom should therefore not be entangled with the atom that blocked the photon’s path. But, by violating Bell’s inequality, its “having blocked the photon” was affected by the measurement of the other atom, hence the paradox. Our explication of the paradox differs slightly in that we describe outcomes via spin measurements explicitly.

We start by exploiting IFM to entangle two atoms in an EPR state, even though the two atoms never interact with each other or the photon responsible for their entanglement(71). We simply add another atom prepared as the first in boxes Z2+/Z2- and position these boxes so that the Z2- box resides in the upper arm of the MZI.

26 The non-interaction of the photons and atoms is even more strongly suggested in an analogous experiment, where a super-sensitive bomb is placed in one of the arms of the MZI(72).
(figure 7). Of course if the atoms are in the Z1+/Z2- states, we have blocked both arms and obtain no clicks in D1 or D2. If the atoms are in Z1-/Z2+ states, we have blocked neither arm and we have an analog to figure 4 with all clicks in D1. We are not interested in these situations, but rather the situations of Z1+ or Z2- as evidenced by a D2 click. Thus, a D2 click entangles the atoms in the EPR state:

\[
\frac{1}{\sqrt{2}} \left(|Z+\rangle_1 |Z+\rangle_2 + |Z-\rangle_1 |Z-\rangle_2 \right)
\]

and subsequent spin measurements with orientation of the Stern-Gerlach magnets in \(\mathbb{R}^2 \) as shown in figure 8 will produce correlated results which violate Bell’s inequality precisely as illustrated by Mermin’s apparatus\(^{(73)}\). This EPR state can also be obtained using distinct sources\(^{(74)}\) (figure 9), so a single source is not necessary to entangle the atoms. In either case, subsequent spin measurements on the entangled atoms will produce violations of Bell’s inequality.

Suppose we subject the atoms to spin measurements after all D2 clicks and check for correlations thereafter. A D2 click means that one (and only one) of the boxes in an arm of the MZI is acting as a “silent” detector, which establishes a “fact of the matter” as to its Z spin and, therefore, the other atom’s Z spin. In all trials for which we chose to measure the Z spin of both atoms this fact is confirmed. But, when we amass the results from all trials (to include those in which we measured \(\Gamma \) and/or \(\Delta \) spins) and check for correlations we find that Bell’s inequality is violated, which indicates the Z component of spin cannot be inferred as “a matter of unknown fact” in trials prior to \(\Gamma \) and/or \(\Delta \) measurements. This is not consistent with the apparent “matter of fact” that a “silent” detector must have existed in one of the MZI arms in order to obtain a D2 click, which entangled the atoms in the first place. To put the point more acutely, Elitzur and Dolev\(^{(75)}\) conclude their exposition of the paradox with the observation that

The very fact that one atom is positioned in a place that seems to preclude its interaction with the other atom leads to its being affected by that other atom. This is logically equivalent to the statement: “This sentence has never been written.”\(^{27}\)

\(^{27}\) This quote has been slightly modified per correspondence with the authors to correct a publisher’s typo. In the original document they go on to point out that “[we] are unaware of any other quantum mechanical experiment that demonstrates such inconsistency.”
In other words, there must be a fact of the matter concerning the Z spins in order to produce a state in which certain measurements imply there was no fact of the matter for the Z spin.

5.3 Geometrical account of QLE. By limiting any account of QLE to a story about the interactions of objects or entities in spacetime (such as the intersection of point-particle-worldlines, or an everywhere-continuous process connecting two or more worldlines), it is on the face of it difficult to account for “interaction-free” measurements (since, naively, a necessary condition for an “interaction” is the “intersection of two or more worldlines”). Since the IFM in this experiment “generated” the entanglement, we can invoke the entire spacetime configuration of the experiment so as to predict, and explain, the EPR-Bell correlations in QLE. Indeed, it has been the purport of this paper that the spacetime symmetries of the quantum experiment can be used to construct its quantum density operator, that such a spacetime is one for which simultaneity is relative, that events in the detector regions evidence spatiotemporal relations, and that the Born rule can be derived on the basis of the geometry of spacetime relations.

Accordingly, spatiotemporal relations provide the ontological basis for our principle geometric interpretation of quantum theory, and on that basis, explanation (qua determination) of quantum phenomena can be offered. According to our ontology of relations, the distribution of clicks at the detectors reflects the spatiotemporal relationships between the source, beam splitters, mirrors, and detectors as described by the spacetime symmetry group – spatial translations and reflections in this case. The relevant 2D irreps for 1-dimensional translations and reflections are

\[
T(a) = \begin{pmatrix} e^{-ika} & 0 \\ 0 & e^{ika} \end{pmatrix}, \quad S(a) = \begin{pmatrix} 0 & e^{-2ika} \\ e^{2ika} & 0 \end{pmatrix}
\]

respectively, in the eigenbasis of T. These are the fundamental elements of our geometric description of the MZI. Since, with this ontology of spatiotemporal relations, the matter-geometry dualism (as explained in section 3) has been collapsed, both “object” and “influence” reduce to spacetime relations. The entanglement found in this experimental arrangement reduces to the spatiotemporal relationship between two families of trajectories, one family for each ‘atom’ in subsequent spin measurements. We can then
obtain the density matrix for such a system via its spacetime symmetry group per Bohr et al. Recall that the density matrix characterizes the “entanglement” now understood as entanglement between families of trajectories.

Consider now figure 4, with the present geometrical interpretation of quantum mechanics in mind. We must now re-characterize that experimental set-up in our new geometrical language, using the formalism of Bohr et al. Let a detection at D1 correspond to the eigenvector $|1\rangle$ (associated with eigenvalue e^{-ika}) and a detection at D2 correspond to the eigenvector $|2\rangle$ (associated with eigenvalue e^{ika}). The source-detector combo alone is simply described by the click distribution $|1\rangle$. The effect of introducing BS1 is to change the click distribution per the unitary operator

$$Q(a_o) = \frac{1}{\sqrt{2}}(I - iS(a_o))$$

where $a_o \equiv \pi/(4k)$. Specifically,

$$Q(a_o) = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \right] = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

and

$$|\psi\rangle = Q(a_o)|1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

This is an eigenstate of the reflection operator, so introducing the mirrors does not change the click distribution. Introduction of the second beam splitter, BS2, changes the distribution of clicks at D1 and D2 per

$$|\psi_{\text{final}}\rangle = Q^*(a_o)|\psi\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Note there is no mention of photon interference here. We are simply describing the distribution of events (clicks) in spacetime (spatial projection, rest frame of MZI) using the fundamental ingredients in this type of explanation, i.e., spacetime symmetries (spatial translations and reflections in the MZI, rotations in the case of spin measurements). What it means to “explain” a phenomenon in this context is to provide
the distribution of spacetime events per the spacetime symmetries relevant to the experimental configuration.

To complete our geometrical explanation of QLE we simply introduce another detector (D3 as in figure 5a, say), which changes the MZI description *supra* prior to BS2 in that the distribution of clicks for the configuration is given by

\[|\psi_{final}\rangle = \begin{pmatrix} Q^\dagger(a_o) & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 \\
0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\
0 \\
\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & 1/2 \\
1/2 & 0 \\
0 & 1/2 \end{pmatrix} = \begin{pmatrix} 1/2 \\
-1/2 \\
1/2 \end{pmatrix} \]

Again, we need nothing more than \(Q^\dagger \), which is a function of the reflection symmetry operator, \(S(a) \), to construct this distribution. And for the distribution of clicks for the configuration in figure 5b

\[|\psi_{final}\rangle = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\
-1/\sqrt{2} & 1/\sqrt{2} & 0 \\
0 & 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/2 \\
1/2 \\
1/2 \end{pmatrix} \]

Of course, spin measurements using the MZI boxes (“spin measurements on the atoms”) are viewed as binary outcomes in space (spin \(\frac{1}{2} \)) with respect to the orientation of the magnetic poles in a Stern-Gerlach device (SG). This is “how the atom was placed in the boxes according to spin.” Successive spin measurements are described via rotation, i.e.,

\[|\psi_{2}\rangle = \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\
\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix} |\psi_{1}\rangle \]

where \(|\psi_{1}\rangle \) is created by a source, magnet and detector and \(|\psi_{2}\rangle \) obtains when introducing a second SG measurement at an angle \(\theta \) with respect to the first. The three possible orientations for SG measurements in \(\mathbb{R}^2 \) considered here and in the Mermin apparatus (initial X+ orientation aside) are shown in figure 8. As with MZI outcomes, the description of spin measurement is to be understood via the spatiotemporal relationships
between source(s) and detector(s) per the experimental arrangement, i.e., there are no “atoms impinging on the detectors” behind the SG magnets per their spins. There are just sources, detectors and magnets whose relative orientations in space provide the computation of probabilities for event (click) distributions.

This constitutes an acausal and non-dynamical characterization and explanation of entanglement. According to our view, the structure of correlations evidenced by QLE is determined by the spacetime relations instantiated by the experiment, understood as a spatiotemporal whole. This determination is obtained by systematically describing the spatiotemporal symmetry structure of the Hamiltonian for the experimental arrangement. Since

(i) the explanation lies in the spacetime symmetries as evidenced, for example, in the family of trajectories per the Hamilton-Jacobi formalism,

(ii) each family of trajectories characterizes the distribution of spacetime relations,

(iii) we take those relations to be a timeless “block,” and

(iv) these relations collapse the matter-geometry dualism,

our geometrical quantum mechanics provides for an acausal, global and non-dynamical understanding of quantum phenomena.

According to our geometrical view, the detector clicks are not caused by particles impinging on the detectors, from the source or otherwise. Using such a view, one can determine the correlations between the spin measurements in the quantum liar experiment, and thereby explain such correlations. This determination is obtained by systematically describing the spatiotemporal symmetry structure of the experimental arrangement.

5.4 QLE and Blockworld. Our analysis of QLE shows the explanatory necessity of the reality of all events—in this case the reality of all phases (past, present and future) of the QLE experiment. We can provide an illustrative, though qualitative, summary by dividing the QLE into three spatiotemporal phases, as depicted in figures 10 – 12. In the first phase the boxes $Z_1^+, Z_1^-, Z_2^+, \text{ and } Z_2^-$ are prepared – without such preparation the

28 The experimental apparatus itself providing the particular initial and final “boundary conditions” needed for a prediction unique to the apparatus.
MZI is unaffected by their presence. In a sense, the boxes are being prepared as detectors since they have the potential to respond to the source ("atom absorbs the photon" in the language of dynamism). The second phase is to place the four boxes in the MZI per figure 7 and obtain a D1 or D2 click (null results are discarded). The third phase is to remove the four boxes and do spin measurements. The entire process is repeated many times with all possible Γ, Δ and Z spin measurements conducted randomly in phase 3. As a result, we note that correlations in the spin outcomes after D2 clicks violate Bell’s inequality.

We are not describing “photons” moving through the MZI or “atoms” whose spin-states are being measured. According to our ontology, clicks are evidence not of an impinging particle-in-motion, but of a spacetime relation. If a Z measurement is made on either pair of boxes in phase 3, an inference can be made a posteriori as to which box acted as a “silent” detector in phase 2. If Γ and/or Δ measurements are done on each pair (figure 10), then there is no fact of the matter concerning the detector status of the original boxes (boxes had to be recombined to make Γ and/or Δ measurements). This is not simply a function of ignorance because if it was possible to identify the “silent” detectors before the Γ and/or Δ measurements were made, the Bell assumptions would be met and the resulting spin measurements would satisfy the Bell inequality. Therefore, that none of the four boxes can be identified as a detector in phase 2 without a Z measurement in phase 3 is an ontological, not epistemological, fact.

Notice that what obtains in phase 3 “determines” what obtains in phase 2, so we have a true delayed-choice experiment. For example, suppose box Z2- is probed in phase 3 (Z measurement) and an event is registered (an “atom’ resides therein,” figure 11). Then, the Z2- and Z1- boxes are understood in phase 3 to be detectors in phase 2. However, nothing in the blockworld has “changed” – the beings in phase 2 have not “become aware” of which boxes are detectors. Neither has anything about the boxes in phase 2 “changed.” According to our view, the various possible spatiotemporal distributions of events are each determined by NRQM as a whole throughout space and time irrespective of space-like, time-like or null separation.
To further illustrate the spatiotemporal nature of the correlations, suppose we make spin measurements after a D1 click. Figure 12 shows a spatiotemporal configuration of facts in phases 1, 2 and 3 consistent with a D1 click:

- Phase 1: No prep
- Phase 2: Boxes are not detectors, D1 click
- Phase 3: Γ_2 measurement, Δ_1 measurement, No outcomes.

One can find correlated spatiotemporal facts by starting in any of the three phases:

Starting with phase 3, “No outcomes” \rightarrow “No prep” in phase 1 and “Boxes are not detectors” and “D1 click” in phase 2. If you insisted on talking dynamically, you could say that the “No outcomes” result of phase 3 determined “Boxes are not detectors” result of phase 2.

Starting with phase 2, “Boxes are not detectors” \rightarrow “D1 click” in phase 2, “No prep” in phase 1 and “No outcomes” in phase 3.

Starting with phase 1, “No prep” \rightarrow “No outcomes” in phase 3 and “Boxes are not detectors” and “D1 click” in phase 2.

One can chart implications from phase 1 to phase 3 then back to phase 2, since the order in which we chart implications in a spacetime diagram is meaningless (meta-temporal) to the blockworld inhabitants. In point of fact the three phases of QLE are jointly acausally and globally (without attention to any common cause principle) determined by the spacetime symmetries of all three phases of the experimental set-up; hence, the explanatory necessity of the blockworld. What determines the outcomes in QLE is not given in terms of influences or causes. In this way we resolve the quantum liar paradox with RBW by showing how “the paradox” is not only consistent with a blockworld structure, but actually strongly suggests a non-dynamical approach such as ours over interpretations involving dynamical entities and their histories. Events in the context of this experiment are evidence not of particles, wavefunctions, etc., existing independently of the experimental set-up, but rather of spacetime relations (between source, detectors, etc.). It is the spatiotemporal configuration of the QLE as a spacetime whole and its spacetime symmetries that determine the outcomes and not constructive entities with dynamical histories.
6. QUANTUM TO CLASSICAL TRANSITION IN THE TWIN-SLIT EXPERIMENT

Per Feynman, the twin-slit experiment\(^\text{(77)}\) “\textit{has in it the heart of quantum mechanics. In reality, it contains the only mystery.}” It serves here to provide an example of quantum to classical transition in ‘single-particle’ configurations where the quantum realm is that of the single-event distribution \(\psi^*\psi\) which can evidence interference, and the classical realm is that of trajectories inferred from two or more sequential events (as explained in section 4) where the trajectories do not evidence interference.

The standard twin-slit configuration employs a source, screen with two slits and a detector surface (figure 13). Per the fundamentality of classical objects (\textit{contra} the Bohr et. al. and Heisenberg quotes in section 1), there is only one trajectory in existence in each trial and there are only two trajectories in the family that pass through the slits to the detector, so repeated single-event trials will produce two (perhaps overlapping) regions of events on the detector surface roughly in line with the slits (figure 14). Per the fundamentality of spacetime relations, the screen reduces the collection of ‘Huygens sources’ at the screen’s location to just two – one for each slit (figure 2). The relational result between these two ‘Huygens sources’ and the detector produces an interference pattern (figure 3). When the experiment is conducted with electrons for example\(^\text{(78)}\), the interference pattern per the fundamentality of relations is realized rather than the pattern per the fundamentality of classical objects. We can use this result to provide a quantum to classical transition per RBW.

Suppose we convert regions A and B of figure 13 to detector regions (\textit{a la} the cloud chamber), referring to the original detector as the “final detector surface” to avoid confusion. For those trials in which the first event lies in region A, a trajectory is established in region A so subsequent events produce a result consistent with figure 14. Since we establish a classical pattern in region A, we never have a quantum pattern in region B and these trials can’t provide quantum interference or our desired quantum to classical transition. Rather, we must employ those trials in which the first event lies in region B.

There are two families of trajectories in region B, i.e., a family based at each slit. If the first event lies close to slit 1 (or 2) in those trials for which the trajectories
terminate at the final detector surface, the trajectory will be associated with family 1 (or 2). Therefore, the collection of trial-terminating events at the final detector surface in these trials will be in accord with trajectories emanating from slit 1 or 2 and terminating at the final surface without interference (classical case)29. If on the other hand the first event lies close to the final detector surface, the final event will also be close to the final surface, again, given the linearity of the events in space30. Since the first event must correspond to $\psi^*\psi$, the collection of trial-terminating events at the final detector surface in these trials will (artificially) evidence interference (quantum case). Therefore, a quantum to classical transition can be illustrated experimentally via the partition of all trials per the initial event position in region B – when the initial event is close to the slits, the distribution of events at the final detector surface is classical and when the initial event is close to the final detector surface, the distribution of events at the final detector surface is quantum.

7. NEXUS TO PARTICLE PHYSICS AND THE DEMAND FOR NEW PHYSICS

Since $\psi^*\psi$ applies only the first event in a family of trajectories (“creation of a single particle”), RBW implies NRQM is a ‘toy’ version of QFT, which is precisely concerned with the fact that “particles can be born and particles can die(80).” In fact, per RBW, we might now understand QFT as providing the distributions for new families of trajectories embedded in families of trajectories (two such families are shown in figure 15 emanating from vertex 2, itself embedded in another family of trajectories emanating from vertex 1). Thus, another level of complexity is introduced combinatorially by such phenomena. This is consistent with, for example,

$$Z(J) = \int D\varphi \quad e^{i\int d^{D-1}\varphi \left[\frac{1}{2} (\varphi^\dagger \varphi)^2 - \frac{1}{2} m^2 \varphi^2 - \lambda \varphi^4 + J\varphi \right]}$$

of QFT reducing to

$$Z(J) = \int D\varphi \quad e^{i\int \frac{1}{2} \left(\frac{d\varphi}{dt} \right)^2 - \frac{1}{2} m^2 \varphi^2 - \lambda \varphi^4 + J\varphi}$$

of NRQM per Zee(81).

29 Mott has shown(79) that the source, first event and second event will be co-linear in space (less an external potential and scattering), so it will not be difficult to identify a slit as the ‘source’ in this situation.

30 That is, when the first event is close to the final detector screen, spread in the final detector events resulting from variation in the slit ‘source’ will be small.
All this implies there is something unique and fundamental about the “creation of a particle.” Thus, if RBW is to become a viable interpretation of NRQM and per it quantum mechanics is to remain fundamental to classical mechanics, then it is not sufficient to claim, as we have supra, that “subsequent events lie along that trajectory which is described classically.” Rather there must exist a rule or rules for the distribution of all spacetime relations qua detector events31 whence $\psi^{*}\psi$ for first events and whence the interpolation between subsequent events produces the dynamics of CM. Since such a rule must square with QFT, there is new physics lurking in the RBW interpretation whereby the notion of fundamental forces per gauge symmetries is a ‘dynamic story’ about the distribution of trajectory vertices in spacetime (whence the dynamic notion of particle birth and decay). In fact, the RBW interpretation of NRQM will have to be abandoned if such a rule for spatiotemporal relationalism cannot be found. In this sense, RBW suggests a novel approach to new physics and in doing so becomes vulnerable to falsification.

31 Decoherence can provide this understanding in dynamic interpretations since sequential trajectory events can be viewed as successive interactions between the quantum object and its environment, i.e., the detector.
REFERENCES

1. L. Wolpert, *The Unnatural Nature of Science* (Harvard University Press, Cambridge, MA, 1993), p. 144.
2. P. Holland, *The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics* (Cambridge University Press, Cambridge, 1993), p. xvii.
3. N. D. Mermin, *Physics Today* **57**, #5, 10-11 (2004).
4. B.C. van Fraassen, *Quantum Mechanics: An Empiricist View* (Oxford University Press, Oxford, 1991), p. 4.
5. E. Schrödinger, *Ann. Phys.* **79**, 489-527 (1926).
6. A. Einstein, *Science* **91**, #5, 487-492 (1940).
7. W.M. Stuckey, M. Silberstein & M. Cifone, to appear in *Phys. Ess.* **19** (2006; preprint quant-ph/0503065).
8. N. Herbert, *Quantum Reality* (Anchor Press, NY, 1985), p. 186.
9. A. Bohr, B. Mottelson & O. Ulfbeck, *Found Phys* **34**, #3, 405-417 (2004).
10. G. Kaiser, *J. Math. Phys.* **22**, 705-714 (1981).
11. A. Bohr & O. Ulfbeck, *Rev. Mod. Phys.* **67**, 1-35 (1995).
12. J. Anandan, *Int. J. Theor. Phys.* **42**, 1943-1955 (2003).
13. Ibid Kaiser (1981), p. 706.
14. Ibid Bohr & Ulfbeck (1995), section D of part IV, p. 28.
15. Ibid, p. 24.
16. H. Brown & P.R. Holland, *Amer. J. Phys.* **67**, #3, 204-214 (1999).
17. J.V. Lepore, *Phys. Rev.* **119**, #2, 821-826 (1960).
18. See Eq. 6 in Brown & Holland (1999). For a derivation of Eq. 3, assuming the acceptability of a phase difference such as that in Eq. 6, see L. Ballentine, *Quantum Mechanics* (Prentice Hall, Englewood Cliffs, NJ, 1990), p. 49-58.
19. H. Brown in conversation (Apr 2005) with the authors while describing his work with P. Holland (Brown & Holland, 1999).
20. Ibid Bohr *et. al.* (2004); A. Bohr, B. Mottelson & O. Ulfbeck, *Physics Today* **57**, #10, 15-16 (2004). A very nice synopsis of their formal result is in the appendix of their 2004 *Foundations* paper.
21. H. Georgi, *Lie Algebras in Particle Physics, 2nd Ed* (Perseus Books, 1999), p. 14.
22. Ibid, p. 25.
23. Ibid, p. 18.
24. T. Maudlin, “Non-local Correlations: How the Trick Might Be Done,” (unpublished manuscript, 2005).
25. T. Maudlin in *Interpreting Bodies: Classical and Quantum Objects in Modern Physics*, E. Castellani (ed.), (Princeton University Press, Princeton, 1998), p. 46-60.
26. H. Brown & C.G. Timpson, arXiv: quant-ph/0601182.
27. M. Frisch, *Stud. Hist. Phil. Mod. Phys.* **36B**, #4, 659-679 (2005).
28. H. Putnam, *Brit. J. Phil. Sci.* **56**, #4, 615-634 (2005).
29. M. Tooley, *Time, Tense and Causation* (Clarendon Press, NY, 1997).
30. H. Brown, *Physical Relativity: Space-time Structure from a Dynamical Perspective* (Oxford University Press, Oxford, 2005a).
31. H. Brown & D. Wallace, *Found. Phys.* **35**, #4, 517-540 (2005b).
32. Ibid Brown & Timpson (2006).
33. Ibid Frisch (2005). See also M. Janssen, *Physics in Perspective* 4, 421-446 (2002).
34. Ibid Frisch (2005).
35. Ibid Brown (2005a).
36. J. Bub, *Studies in History and Philosophy of Modern Physics* 35B, #2, 241-266 (2004); J. Bub, *Found. Phys.* 35, #4, 541-560 (2005). For criticisms see Hagar, *Phil. Sci.* 70, #4, 752-775 (2003), Hagar and Hemmo, arXiv:quant-ph/0512095 and Brown & Timpson (2006, ibid).
37. Ibid Brown (2005a), p. vii-viii.
38. C. Callender in *Absolute Simultaneity*, W.L. Craig & Q. Smith (eds.), (Oxford University Press, Oxford, forthcoming).
39. Ibid Kaiser (1981), p. 706.
40. Ibid Bohr & Ulfbeck (1995), p. 1.
41. Ibid Brown (2005a), p. vii.
42. Ibid, p. 8.
43. For a discussion of this dilemma see section 5 of P.J. Lewis, *Brit. J. Phil. Sci.* 55, #4, 713-729 (2004).
44. D. Albert in *Bohmian Mechanics And Quantum Theory: An Appraisal*, J.T. Cushing, A. Fine & S. Goldstein (eds.), (Kluwer, Dordrecht, 1996), p. 277-284.
45. Ibid P. Lewis (2004), p. 717.
46. See P. Holland (ibid, 1993), p. 22 and 81ff; J. Barrett, *The Quantum Mechanics of Minds and Worlds* (Oxford University Press, Oxford, 1999), sections 5.2 – 5.6; and T. Maudlin, *Quantum Non-Locality & Relativity* (Blackwell Publishing, Oxford, 1994), p. 116ff for the senses in which Bohm is classical-like.
47. Ibid Maudlin (1994), p.118.
48. J. Anandan, *Found. Phys. Lett.* 15, 415-438 (2002).
49. R. Shankar, *Principles of Quantum Mechanics*, 2nd edition (Plenum Press, New York, 1994), p. 107-113, for example.
50. O. Ulfbeck & A. Bohr, *Found. Phys.* 31, 757-774 (2001).
51. N. Mott in *Quantum Theory and Measurement*, J. Wheeler & W. Zurek (eds.), (Princeton University Press, Princeton, 1983), p. 129 – 134.
52. J. Anandan, *Nature* 360, 307-313 (1992).
53. M. Janssen, *Phys. Perspect.* 4, 421-446 (2002).
54. Ibid Anandan (2002).
55. J. Anandan, *Found. Phys.* 21, 1265-1284 (1991).
56. J. Anandan, *Nature* 360, 307-313 (1992).
57. Ibid Ulfbeck & Bohr (2001).
58. Ibid Anandan (2002), p. 419.
59. Ibid Anandan (2002), p. 424. See also A. Zee, *Quantum Field Theory in a Nutshell* (Princeton University Press, Princeton, 2003), p. 84-85.
60. A. Horwitz, *Nachr. Gesell. Wiss. Gottingen, Math.-Phys. Kl.* 309 (1898).
61. A.A. Albert, *Ann. Math.* 48, 496 (1947).
62. S.L. Adler, *Quaternionic Quantum Mechanics and Quantum Fields* (Oxford University Press, Oxford, 1995), p. 6 – 7; 109 – 111.
63. Ibid.
64. A. Elitzur & S. Dolev in *Quo Vadis Quantum Mechanics*, A. Elitzur, S. Dolev & N. Kolenda (eds.), (Springer, Berlin, 2005a), p. 325-349; A. Elitzur & S. Dolev in *Endophysics, Time, Quantum and the Subjective*, R. Buccheri, A. Elitzur and M. Saniga (eds.), (World Scientific, Singapore, 2005b), p. 589-606.
65. Ibid (2005b), p. 593.
66. Ibid Elitzur & Dolev (2005a), p. 345.
67. H. Price, *Time’s Arrow and Archimedes Point* (Oxford University Press, Oxford, 1996).
68. A. Fine in *Philosophical Consequences of Quantum Theory*, J.T. Cushing & E. McMullin (eds.), (University of Notre Dame Press, Notre Dame, 1989), p. 175-194.
69. A.C. Elitzur & L. Vaidman, *Found. Phys.* 23, #7, 987-997 (1993).
70. Ibid Elitzur & Dolev (2005a).
71. L. Hardy, *Phys. Lett. A* 167, 11-16 (1992).
72. Y. Aharonov & D. Rohrlich, *Quantum Paradoxes: Quantum Theory for the Perplexed* (John Wiley & Sons, NY, 2005), esp. section 6.4 and chapter 17.
73. N.D. Mermin, *Amer. J. Phys.* 49, #10, 940-943 (1981).
74. A.C. Elitzur, S. Dolev & A. Zeilinger, arXiv: quant-ph/0205182.
75. Ibid Elitzur & Dolev (2005a), p. 344.
76. Ibid Bohr & Ulfbeck (1995).
77. R.P. Feynman, R.B. Leighton & M. Sands, *The Feynman Lectures on Physics III, Quantum Mechanics* (Addison-Wesley, Reading, 1965), p. 1-1.
78. D. Park, *Introduction to Quantum Theory, 3rd ed.* (McGraw-Hill, NY, 1992), p. 30.
79. Ibid Mott (1983).
80. Ibid Zee (2003), p. 3.
81. Ibid, p. 84.
Figure 1

Source

Orbit for horizontal translation from source

Events at detector

DETECTOR
Dashed lines are orbits for translations from source to detector
Figure 4

Source

BS1

BS2

D1

D2

M

M
\[\theta = 120^\circ \]

\[\Delta^+ \]

\[\Gamma^+ \]

\[Z^+ \]
Figure 10

Phase 1
Prep Boxes

Phase 2
Boxes into MZI

Phase 3
EPR Measurement

Δ1+

Γ2-

No fact of the matter

Prep

Phase 1
Prep Boxes

D2 click
Figure 11

Phase 1
Prep Boxes

Phase 2
Boxes into MZI

Phase 3
EPR Measurement

Z2- Detector
Z1- Detector
D2 click

Z2-

Δ1+

Prep

Phase 1
Prep Boxes
Figure 12

Phase 1: Prep Boxes

Phase 2: Boxes into MZI

Phase 3: EPR Measurement

Γ2

Δ1

No outcomes

Boxes are not detectors

No Prep

Phase 1: Prep Boxes

Phase 2: Boxes into MZI

D1 click
Figure 13

Source

Region A

Region B

DETECTOR
Figure 14
