SMOKING CARCINOGENS AND LUNG CANCER – A REVIEW

VINAY S1, CHANDAN DHARMASHEKARA1, ASHWINI PRASAD2, KOLLUR SHIVA PRASAD2, CHANDRASHEKAR SRINIVASA4, KAVITHA GC3, POOJITHA B. SRIHDHARA SETTY1, CHANDAN SHIVAMALLU1*

1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India. 2Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India. 3Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India. 4Department of Biotechnology, Davangere University, Shivagangotri, Davangere, Karnataka, India

ABSTRACT

Smoking ambiguity contributes to a certain revelation regarding the process by which cancer is induced. In the laboratory, carcinogens induce clear lung tumor to lung cancer induction. For instance, carcinogenic chemicals, namely, 4(methyl nitrosomine)-1-(3-pyridyl)-1-butanol, and nitrosonornicotine (NNN) cause tumor malignancy. It is evident from the mechanistic studies that the carcinogens have a stronger tendency to mutate the genes like suppressor gene, a gene that encodes the receptor of the cell surface to the nucleus, thus, giving way to the proliferation of mutation leading to tumor to lung cancer induction. For instance, carcinogenic chemicals, namely, 4(methyl nitrosomine)-1-(3-pyridyl)-1-butanol nitrosonornicotine, Carcinogen, Carcinogen, Cigarette, Mutant, Nitrosamine ketone, P53, Tumor

INTRODUCTION

The major cause of mortality from cancer among males and females is due to lung cancer in 2018, with over 234,030 cases (12,680 in males and 112,250 in females). Around 90% in males and 75.90% in female death are estimated common death rate from cancer [1]. In general, nicotine is deemed as a carcinogen because of its tumor-inducing property, including such specific cases such as hyperoxia nicotine-derived nitrosamine ketone (NNK) [2]. More strict carcinogenic materials induce oxygen atomic addiction to carcinogenic compounds, which improves the water solubility and allows it more readily extricable [3]. Other cell pollutants have been supported by the phase 2 enzyme to transform oxygenated carcinogenic substances into liquids. Some of the cytotoxic P450-formed intermediates (HEME as a cofactor) with carcinogenic substances were reactivated since their intermediate reactions are electro-deficient center and deoxyribonucleic acid (DNA) lead to the formation of a covalent product known as a DNA adduct [4].

The carcinogenic agents associated with the tobacco primarily responsible to cause lung cancer. The process of association with DNA and genetic alteration in the gene has a clear understanding of how to respond to oncogene and tumor-suppressor gene exposures to tobacco smoke. Each cigarette contains a minor dose of “polycyclic chromat hydrocarbons” (PAH) and NNK in the cigarette smoke [5]. To exercise the cancer effects, NNK and PAHs involve activation of metabolism and there is a contest among hepatic metabolism and detoxifying the risk of cancer differs between individuals [7]. Further, carcinogenic metabolism promotes DNA adduct production [8]. As DNA adducts are an escape and survive from the mobile repair system, miscoding may lead to permanent mutation. DNA impaired cells may be killed by programmed cell death [9]. In the critical area of oncogenes or tumor suppressors, a permanent mutation leads to activation or decapitation of the tumor suppressor gene. Such multiple occurrences will lead, ultimately to lung cancer; into the aberrant cell that is controlled by growth loss. Scheme related to nicotine addiction of cigarette smoke carcinogens and lung cancer and several mutations in essential genes [10]. Many reports are available on the mutation of the human beings KRAS and P53 genes in smoker tumors and targeted at the association of mutations with specific carcinogenic substances in tobacco smoke [11]. If any step-in horizontal steps are blocked or stopped, even people who continue to smoke may reduce lung cancer (Fig. 2).

Carcinogens linked to lung cancer

The carcinogen is a molecule that induces or increases the occurrence of cancer, whether chemically, physically, or virally [13]. More than 55 of the 4000 chemicals found in cigarette smoke have been carcinogenic, according to international cancer research agency assessments [14]. This chemical carcinogenic substance induces cigarette smoke cancer. The flow out of the cigarette’s mouthpiece is an aero solution that holds 1010 particle/ml water. The most frequently contained carcinogenic substances are estimated to be 95% of smoke made up of O2, CO2, and nitrogen polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines. For small quantities, they are usually 2–500 mg/ cigarette. Aldehyde and other organic fluid molecules including benzene and butadiene are more frequently contained. PAHs such as benzo[a]pyrene and tobacco-specific nitrosamine 4-(methyl nitro-amino)-1- (3-pyridyl)-1-butane (also known as nitrosamine ketone (NNK), arguably the most effective carcinogens concerning human lung cancer [15].

Nicotine use and lung cancer are related to carcinogens. Nicotine allows people to Smoke keep on despite the notorious health problems consequences, and it can lead to tumors in particular circumstances, such as hyperoxia [16]. Nicotine is not typically a carcinogen. Nicotine may also be found in the body as a carcinogenic agent such as NNK. Cigarettes are a catastrophic nicotine delivery instrument because in every puff nicotine includes more than 55 carcinogens, such as PAH and NNK [17]. The accumulated smoking over a lifetime is significant, although the dosage per cigarette for any carcinogen is very low. The organism has a similar reaction to carcinogen exposure to any external compound or medication. Cytochrome enzymes P450 facilitates an oxygen atom introduced to cancer, enhances its solubility in water, and increases its excitation. Furthermore, Phase 2 enzymes contribute to
this metabolic detox cycle, transforming the oxygenated carcinogen into a shape that is highly water-soluble. This oxidation is further facilitated by phase 2 enzymes, which convert oxygenated carcinogens into a highly soluble shape in the water [18]. The individual is safeguarded insofar as this mechanism is successful. Some of the cytochrome P450 enzymes intermediate products react to carcinogens but typically have an electrophilic core [19].

Such metabolites or intermediates that react with DNA, such that products called DNA adducts are formed covalently. Cells have DNA repair mechanisms that can eliminate adduct and restore DNA to its usual form [20]. Variations in DNA repair can influence the likelihood of cancer between people. Not functional repair solutions are usable. Any adducts fail and appear to be in DNA. Such persistent DNA supplements after metabolic activation of DNK and inserts thymidine during replication [21]. As a result, the G–C side chains permanently converted to the A – T base pair. This mutation and others that cause oncogenes such as RAS or tumor-Suppressing genes such as p53 [22]. Changes in RAS and p53 are also shown directly to result from the reaction of those genes with metabolic carcinogens. This relentless attack on genes is entirely compatible with the genetic disruptions which have led to six proposed characteristics of cancer growth signals autonomous, insensitivity to anti-growth signals, apoptosis evasion, tissue invasion, and metastasis, persistent angiology, and infinite replicative capacity.

ADDUCT FORMATION

Adducts in 4(methyl nitrosomine)-1-(3-pyridyl)-1-butanol (NNAL) and NNK NNK and NNAL are condensed metabolic pathways. The sensitivity of humans is primarily to NNK, as it much exceeds the concentration of NNAL in tobacco material. Moreover, NNK in humans, animals, and primates has been commonly and efficiently transformed into metabolic NNAL. Among animals such as NNAL, NNAL is common lung cancer [24]. The key methods of metabolic NNK and NNAL enables the DNA adducts are by carbon α-hydroxylation next to group N-nitroso. This metabolic process is popular with certain nitrosamines. Methyl or methylene carbon NNK hydroxylating may be essential [3,25]. A-Hydroxylation creates methyl carbon-hydroxymethyl NNK which is relatively constant to be glucuronidase. This loses formaldehyde naturally, generates pyridyl-isobutyl diazohydroxide, that reacts with DNA yielding pyridyloxobutylation adducts [26].

The adducts are very soluble in DNA. They will release the drug by acid hydrolysis. HPB drug keto, hydroxy NNK generates methylene diazo-hydroxide, and keto aldehyde of methylene carbon-ethylenedioxide-NNK spontaneous development [3,27]. Methane diazo-dioxide is converted to methanediazonium ion which methylate’s DNA. Thus, 7-mG, O6-mG, and O4-have been detected in tissues of animals treated with NNK. A large range of methylation agents, including a method bearing nitrosamines such as N-nitrosodimethylamine, N-nitroso-methyl benzylamine, and nitroamides or sulfur nitrosoines such as N-methyl nitrosourea contain the same inducts [28]. A variety of P450s catalyze the NNK reactions in hydroxylation. The association with
NNK α-hydroxylation of common P450s is summarized NNAL similarly undergoes a β-hydroxylation at the methyl and-methylene carbons, producing DNA damage [29].

Formation of adducts in homosapien

Just 20% of smokers can get lung cancers, the sensitivity of smokers may rely on the patron equilibrium between mitochondrial activation of carcinogens and detoxification [30]. Tobacco smoking effect carcinogens on the genome and oncogenes of tumor suppressors. The majority of studies of this type conclude that P53 plays an important role in the response variable between cell proliferation and death, and mutates into around half of all cancers [31]. Cancer in the lungs, in an exhibit of 550 p53 lung tumor mutations shows 33% transversions of G(guanine) to T(thymine) and 26% transitions of G(guanine) to A(adenine). Activated carcinogens react mainly to G and the resulting adduct repairs would be slower on the transcribed, stranded, and supported by the hypotheses [32]. Levels of 7-mdG in several studies have looked at the human lung. The mean 7-mdG level in the largest study is 2.11 per 107 nucleotides. It is a ratio of 7-mdG: HPB, equivalent to that of rat 7.52, relative to the 0.1 per 10 nuclear adducts of HPB release. The presence of 7-mdG in the human pulmonary system is not the product of experiments that show greater numbers of smoking than non-smokers [33]. A link between the extensive metabolizing genotype of debrisoquine is observed. CYP2D6, 7-mdG higher intake of cigarette smoke are unknown. 3-ethylene rates are also considerably higher in smokers compatible with humans' lung tissue's capacity to utilize all hydroxylation pathways; however, there is no specific quantification on the dimension of the metabolism-to-DNA level connection [35]. 3-ethylene rates are also considerably higher in smokers relative to non-smokers, although the origins of the ethylated agent in cigarette smoke are unknown.

NIROSAmine-INDUCED CANCER GENETIC PATHWAYS

Cancer activation NNK and nitrosonornicotine (NNN) encoded Naturally, present NNK is a procarcinogen in cigarette smoke, to full fill its carcinogenic functions; an inactive form requires mitochondrial activation [35]. Various CYPs enable the active use of NNK in DNA metabolites which could cause methylation, pyridyl hydroxy butyl of nucleobases, DNA adduct forming, and pyridyl hydroxy butyl [36]. NNK-Methylene hydroxylation creates methane dialdehydes and methane diazonium, which reacts with the extended metabolizing 7-Nmethylguanine (7-m Gua) and O6-methylguanine (O6-mGua) along with minimal amounts of O4-methylamine. 5-007 NNK hydroxylation can occur with either methyl or methylene oxide 5-007-Hydroxylation of methyl carbon produces 5-007 hydroxymethyl NNK; it is relatively constant to undergo glucuronidation. In spontaneity, formaldehyde is missing from the POB dialdehydes and interacts with DNA adducts that form heavy POB [37]. Four were identified. 11-β-Hydroxysteroid dehydrogenase, the microsomal enzyme responsible for 11-hydroxyglucocorticoid interconversion, 2'-Hydroxy NNK initiates a random ring-opening to create the same structure as NNK methyl hydroxylation for pyridyloxobutyldiazohydroxide. 5'-Hydroxylation frequently creates electrophilic diazohydroxide that is necessary for DNA to react, and CYPs primarily catalyze hydroxylation reactions to NNK [38]. The development of DNA adducts as the key stage in the NNK and its carcinogenesis processes is established, but the opportunity for specific DNA adducts to contribute to mutations, chromosome aberrations differ greatly from O6-methylguanine [39]. There is no direct proof of BER's role in the preparation of POB DNA damage, but POB DNA adducts could be resolved by nucleotide viewing reparation (NER) and BER pathways [40]. However, the lack of X-ray repair of the important BER fragen protein cross complementary protein 1 (XRCC1) enhanced the mutagenic and toxicity of 4-(acetoxyethyl)nitrosamine-1-(3-pyridyl)-1-butane that shows that XRCC1-despite the absence of ERCC-2 it performed an essential part in protecting cells from the adverse impact of these additives [41]. Reflecting the significance of NER in the elimination of this addictive experimental evidence. Revealed that the multistep phase of genetic engineering is carcinogenesis caused by NNK and NNN [42]. Adducts of DNA are incorrectly remedied, either remedied are required, A prerequisite for cancer induction if not necessary. There will be lung cancer in fewer than 20% of smokers.

Inflammation, infection, and immune reactions are often correlated with a range of procedures [43]. The susceptibility depends in part on the balance among the relation and growth of ROS and RNS. Smoking involves free radicals such as nitrous oxide and hydroquinone mixtures, semiquinones, and quinones that may contribute to redox cycling, and oxidative smoking injury. The factors for oxidative stress [44]. This is not well established among NNK-and NNN. Regulation and detoxification of carcinogenic activity in smoking. NNK's potential to cause oxidative stress, however, became apparent when increased levels of NNK induction to an A/J mouse were detected and 8-OHdG was a major ROS-generated lesion known to be the markers of Oxidative DNA impact 8 OHdG is deleted by the gene component Mm/h/Ogg1. 8 Hydrog is a genetic component Mm/h/Ogg 1 gene, and 8-OHdG is the product of the increased incidence of NNK 8-HdG [44].

Human tobacco carcinogen intake

We aim to understand the absorption of human tobacco-carcinogens more fully. We want to enhance our basic understanding of human carcinogenic doses and cancer mechanisms. We are also looking for a biochemical base to explore the connection between the smoking and cancer risk of the lungs. Regulatory smoking is the in the name used to describe the burning enclosed product [46]. Smoke (100–200 mg/cigarette), as reported in several international studies, it is available in both incomplete combustion cigarette smoke, 1–2 mg/g [47]. This should be seen in products linked to cigarettes. The NNK is the strongest lung-linked carcinogen that causes pulmonary tumors in which path rodents, mice, and hamsters through which rats are administered to be particularly susceptible to NNK cancer. The lower average dosage in rats with the potential to cause lung tumors (1.8 mg/Kg in dose trend) is comparable to that in a smoker with the maximum NNK (approx. 1.1 mg/kg) during their entire lives [48]. DNA activation trends in rats' lungs and people with NNK exposure are also similar [49]. Adenomalous tumors have been developed mainly in mice infected with NNK in the skin or rodents, for example, when carcinogen is purified in the oral cavity and inserted into the urinary bladder [50]. Human lung cancer is a popular form of lung cancer. NNK was attributed to adenocarcinoma which further causes the animals to have this type of cancerous tumor [50]. The main cause of lung tumors in humans is the production of adenocarcinoma. NNK seems to be the most prevalent type of cancer: Over the past 2 centuries, NNK rates in regular cigarettes have increased in combination with an increase in lung adenocarcinoma, whereas benz[a]pyrene has decreased as a cause of squamous cell carcinoma in the lung [51].

This is more essential, as NNK is present in cigarettes only. The identification of NNAL in the urine and glucuronide may also be associated with nicotine consumption, since NNK is not found in the general setting, in the diet, or anywhere. The usage of NNK in non-smokers that are prone to smoke from the atmosphere [52]. NNAL and also its glucuronide levels in the urine substantially increased when exposed to such high levels of tobacco environmental smoke. For example, long-term hospital staff subjected to ambient cigarette smoke from smoking patients has large levels of NNAL glucuronide in their urine. NNK was ultimately investigated in people with the majority of ambient smoking cigarette observational tests and also in people with smoking couples [53]. The intake of NNK among women living with people who smoke was much greater than in non-smokers subjected to
atmospheric cigarette smoke [54]. The usage of NNK by non-smokers subjected to ambient tobacco smoke offers a biochemical correlation between such exposure and lung cancer, which firmly supports the notion that environmental tobacco smoke induces human lung cancer [55].

There has been a constant connection between the levels of cotinine and cotinine glucuronide in the urine of these chemicals with nicotine metabolites. A metabolite of nicotine, cotinine is widely used for human tobacco and other nicotine-containing drug uptake biomarkers. Nicotine and cotinine are nonetheless not cancerous [56].

DIAGNOSTICS

Cough, hard breathing, wheezing, blood in sputum, and diagnosis depend on the type of cancer, tumor position. Biomarkers – carcinoembryonic antigen in protein biomarkers for diagnosis [57]. It is better even combined with cytokeratin fragmentation −21 for
more accurate results more than one biomarker is necessary. Tumor-infiltrating lymphocytes, complement split product, autoantibodies, circulating tumor cell, and miRNAs with CEA.

Imaging technology-X-ray section emission tomography (positron emission tomography [PET]), magnetic resonance imaging, bone scan, bronchoscopy, biopsy, surgery will not refer to final stage patients. Standard PET Computed tomography (CT) procedure for location identification and tumor size [58].

CYTOGENETIC TECHNIQUE - FICTION

Fluorescence immunophenotyping and interphase cytogenetic. To detect the lung tumor able to identify the "genetic abnormalities," immunophenotypic markers. The cytogenetic analysis allows us to determine genes, oncogenes, overexpressing cells, receptors, and ligands in the homoplastic area. Fluorescence in situ hybridization comparative genetic hybridization, spectral karyotyping (SKY) chromosome analysis using SKY microarray [59]. One of the different arrays evaluations of the frequency of DNA methylation gene indicator of lung cancer is an early detection tool. Identification of volatile compounds in breath example of VOCs emitted by neoplastic cells is methionine aldehydes, pentane, ammonia, detected by gas chromatography with the help of biomarkers, and cancer also be detected by blood and urine sample [60].

SCREENING

It is much more important to avoid lung cancer than screening this with. Randomized research tests found getting a chest X-ray do not increase. Survival in confirmed lung cancer cases [61]. However,
Vinson et al.

Asian J Pharm Clin Res, Vol 14, Issue 1, 2021, 5-12

research has shown that regular screening is for CT of the chest lung cancer reduces the death rate in suffers from a good profile dependence on the toxin. Effectiveness of intense control for identification by regular chest CT scanning consequent cancers or method of cancer did not exist Formal evidence, although a consequent yearly one. The CT scans are frequently carried out but also suggested the Guidelines for a National Comprehensive Cancer Network [62]. However, these are the information not sufficient for it to be conclusive accept this custom popular to everyone. More rational treatment measurements such as fluorescence endoscopy of the lung they have been examined to show their effectiveness. Synchronous tumor identification [63].

LUNG CANCER CARE OR REHABILITATION

Based on how far pulmonary cancer progresses, lung cancer is managed in several forms. NSCL cancer patients diagnosed with surgery, chemotherapy, and radiation therapy.

CHEMOTHERAPY

Chemotherapy is an active type of chemical drug treatment designed to kill cells that are fast-growing in the body. The main form of chemotherapy is to decrease the body’s gross cancer cell count, reduce cancer, propagation probability, shrink the scale of the tumor, and reduce signs now.

CRISPR cas9 variants

As well as a viable genome engineering method. CRISPR/Cas9 is used in several methods [65]. Many variations have been added in many modifications to the CRISPR system’s basic structure such as the Cas9 RNA scaffold (DCas9) and dead RCas9 RNA scaffold, siRNA have RNA scaffolds connected to sgRNA Scaffolds are built to recruit specifically engineered RNA proteins interacting with cellular effectors for different active molecule-module modulation. AMPK α1 and α2 exclusion [66].

The editing in murine lung adenocarcinoma cells controlled by CRISPR Cas9 showed a substantial decrease in the level of the lung tumor (KRASG12D p53/F controlled non-small cell lung cancer).

VACCINS

Instead of a fixed causal link, there is a potential association between HPV and cancer. However, HPV is involved as a causative factor in several cancer types and a preventive was created. After 2006, the centers for Disease Care and Prevention (CDC) has advised that all pre-teens teens between the ages of 11 and 12 should be regularly vaccinated and that young people between the ages of 13 and 26 should also be vaccinated with HPV to avoid genital cancer [66]. The CDC also recommends daily vaccination for males aged from 11 to 12, plus young adults aged 13 to 21. Where the vaccination is not already completed, high-risk males up to 26 years old vaccinated by the increasing data on the widespread prevalence of HPV and HPV diseases [67]. Further work indicates that HPV and the lung are more associated and beneficial.

DISCUSSION

Smoking and mechanism by which carcinogens react with DNA. Suggest that cancer is a genetic disorder and refers to the cause of lung cancer [68]. Rearrangement of the cell control gene by tobacco carcinogens through the reaction of metabolically activated DNA. In this paper, several preventive measures, like chemoprevention [69]. When we claim cancer is a hereditary disorder. Most genetic epidemiological experiments have centered on smoking, seeking to establish gene – carcinogenic associations and explaining phenomena, elements of the carcinogenic cycle [71]. It is equally amenable to know the clarity of the factor that adzed which chain smoker inclined to the advancement of lung cancer and to find native medication [72]. While these findings have been of considerable significance to the date, these experiments have not yet attained their maximum potential [73,74]. Many of them also concentrated on human genotypes that may be predicted to trigger different reactions including activation of metabolism. Some works were motivated by fairly easy-techniques of genotyping. As this area progresses, it is increasingly clear that this method can only produce minimal knowledge [75]. More thorough incorporation of biomarkers of genotypes and phenotypes into epidemiological observation is needed. DNA microarray will support these studies which enable the quick result of genotyping. In the end, control of the metabolic pathways outlined in Fig. 1 should also be feasible. A Hybrid genotyping and genotyping strategy of smoking and other individually exposed to tobacco carcinogens [76]. Blocking either of the horizontal pathways in Fig. 1 will result in reduced prevalence and mortality of lung cancer. Avoiding the tolerance to nicotine and developing smoking prevention approaches are goals but only marginally effective ones are found. Human DNA methylation is almost certainly caused by NNK or NNN exposure [77]. The function of tobacco-specific nitrosamines is uncertain to ensure that they are protected against the oxidative harm caused by the human lungs. DNA-methylating nitrosamine compounds are more probable origins. Are more research is required to establish the precise source of DNA methylation damage from the human pulmonary tobacco-specific nitrosamines [78]. Carcinogenic symptoms are less typical of SSB and 8-oxo-dG. Chemoprevention is an effective method for addicted smokers and former smokers. There are now several agents identified that can inhibit carcinogenic activation or promote detoxification [79]. Many chemopreventive substances impede downstream activities from the development of adduct DNA [80]. Further production of successful chemopreventive agents which are less toxic would be a big goal in reducing the occurrence of lung cancer [81]. There are many techniques used to cure lung cancer, such as scanning, radiation, guided treatment, screening, targeted therapy, and the CRISPR system allows deteriorating malignancy [82]. This type of controlled cell approaches the gene and what form of the disease will develop and produce.

CONCLUSION

Tobacco and the process by which DNA is reacted by carcinogens. Propose cancer as a genetic disease and refers to the cause of pulmonary cancer. Rearrangement by metabolically triggered DNA of the cell control gene by tobacco carcinogens. Chemoprevention is an efficient means of treating addiction and ex-smokers. If some of the horizontal pathways are blocked in Fig. 1, the incidence is reduced and the lung cancer mortality is reduced. Avoiding nicotine tolerance and improving approaches to smoking prevention are priorities but only moderately successful ones are established. A major aim is to reduce lung cancer further and produces effective chemoprevention agents that are less harmful. There are several methods used in the treatment of lung cancer, for example, scan, radiation, direct treatment, screening, and targeted therapy. This regulated cell type discusses the gene and how the disease evolves and produces.

ACKNOWLEDGMENTS

The authors acknowledge the support and infrastructure provided by the JSS Academy of Higher Education and Research, Mysuru, India. ISPD thankfully acknowledge the Director, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, for infrastructure support.

CONFLICTS OF INTEREST

There are no conflicts of interest.

FINANCIAL SUPPORT AND SPONSORSHIP

NIL.

REFERENCES

1. Hamilton M, Wolf JL., Rusk J, Beard SE, Clark GM, Witt K, et al. Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res 2006;12:2166-71.
2. Cagle PT, Chirieac LR. Advances in treatment of lung cancer with targeted therapy. Arch Pathol Lab Med 2012;136:504-9.

3. Bearz A, Berretta M, Llesi A, Tirelli U. Target therapies in lung cancer. J Biomed Biotechnol. 2011;2011:921251.

4. Van Zandwijk N, Fong KM. Update in lung cancer: Prologue to a modern review series. Respiriology 2015;20:183-4.

5. Alama A, Truni A, Coco S, Genova C, Grossi F. Prognostic and predictive relevance of circulating tumor cells in patients with non-small-cell lung cancer. Drug Discov Today 2014;19:1671-6.

6. These Guidelines Have Been Replaced by 2010 Guideline on Radical... 2013:597-608.

7. Thomas L, Kwok Y, Edelman MJ. Management of paraneoplastic syndromes in lung cancer. Curr Opin Oncol 2004;5:51-62.

8. Salgia R. Diagnostic challenges in non-small-cell lung cancer: An integrated medicine approach. Future Oncol 2015;11:489-500.

9. Kerr KM. Classification of lung cancer: Proposals for change? Arch Pathol Lab Med 2012;136:1190-3.

10. Rozanski AM, Doboszyńska A. Multiple primary lung cancer: A literature review. Adv Clin Exp Med 2018;27:725-30.

11. Gibbons DL, Byers LA, Kurie JM. Smoking, p53 mutation, and lung cancer. Mol Cancer Res 2014;12:3-13.

12. Park BJ, Louie O, Altkofer N, Stagliano LM. The surgical management of lung cancer in the elderly. J Thorac Oncol 2000;5:385-61.

13. Garelli E, Rittmeyer A, Putora PM, Glatzer M, Dressel R, Andreas S. Abscopal effect in lung cancer: Three case reports and a concise review. Immunotherapy 2019;11:1445-61.

14. Vaccarino V, Mazzone P, Mutti A. Lung cancer biomarkers in exhaled breath. Exp Rev Mol Diag 2011;11:207-17.

15. Marks LB, Saynak M, Christodoulae JP. Stage III vs. stage IV lung cancer: Crossing a great divide. Lung Cancer 2010;67:1-3.

16. Divisi D, De Vico A, Ferrari V, Crisci R. Management of lung cancer in a sinus vestibulum invasive patient. Eur J Cardiothorac Surg 2014;45:197-8.

17. Adjei AA. Lung cancer-celebrating progress and acknowledging challenges. J Thorac Oncol 2013;8:1350-1.

18. Brumell A. Ventilatory efficiency slope: An additional prognosticator after lung cancer surgery. Eur J Cardiothorac Surg 2016;50:780-81.

19. Laskin JJ. Bronchoalveolar carcinoma: Current treatment and future challenges. J Thorac Oncol 2013;8:1350-1.

20. Akira C, Sakurada E, Kondo T. Early central airways lung cancer. Thorac Cancer 2015;6:557-9.

21. Tzeng K, Kurosawa Y, Mazzone P, Mutti A, Mattia M, Freulich E, et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell 2015;57:1034-46.

22. Wang C, Liu L, Liu X, Chen W, He G. Mechanisms of lung cancer caused by cooking fumes exposure: A minor review. Chin Med Sci J 2017;32:193-7.

23. Lee DK. Suspected lung cancer: Its initial management and staging. Prim Care Respir J 2007;16:106-11.

24. Tsujino K, Kuretani Y, Harada A, Fujiy O, Soejima T. Radiation therapy for non-small-cell lung cancer. Jpn J Clin Radiol 2009;677-85.

25. Green JA, Bates V, Greenhalgh V, Boland A, Jain P, Dickson RC, et al. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Database Syst Rev 2013;5:CD010383.

26. Singer GA, Hickey DA. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 2003;317:39-47.

27. Amann A, Hickey DA. Composition of proteins. In: Atlas of Protein Structure. Saito S, ed. New York, NY: Plenum Press; 1991:5-12.

28. Cochran DB, Bragg DG. Current applications of imaging procedures in the patient Lung Cancer 2012;60:557-9.

29. Amancio O, Mazzone P, Mutti A, Mattia M, Freulich E, et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell 2015;57:1034-46.

30. Singer GA, Hickey DA. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 2003;317:39-47.

31. Gibbons DL, Byers LA, Kurie JM. Smoking, p53 mutation, and lung cancer. Mol Cancer Res 2014;12:3-13.

32. Park BJ, Louie O, Altkofer N, Stagliano LM. The surgical management of lung cancer in the elderly. J Thorac Oncol 2000;5:385-61.

33. Garelli E, Rittmeyer A, Putora PM, Glatzer M, Dressel R, Andreas S. Abscopal effect in lung cancer: Three case reports and a concise review. Immunotherapy 2019;11:1445-61.

34. Vaccarino V, Mazzone P, Mutti A, Mattia M, Freulich E, et al. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell 2015;57:1034-46.

35. Parsons A, Daley A, Suh KJ, Beam B, Kim TM, et al. Epidermal growth factor receptor tyrosine kinase inhibitors vs conventional chemotherapy in non-small cell lung cancer harboring wild-type epidermal growth factor receptor: A meta-analysis. JAMA J Am Med Assoc 2014;311:1430-7.

36. Zhang Y, Kang S, Fang W, Hong S, Liang W, YAN Y, et al. Impact of smoking status on EGFR-TKI efficacy for advanced non-small-cell lung cancer in EGFR mutants: A meta-analysis. Clin Lung Cancer 2015;16:144-51.

37. El-Aarag SA, Mahmoud A, Hashem MH, Abd Elkader H, Hemeida AE, ElHefawi M. In-silico identification of potential key regulatory factors and pathways in smoking-induced lung cancer. BMC Med Genomics 2017;10:40.

38. Noboa EM, Navrátil PL. Lung cancer screening. Medicine (Spain) 2018;19:3835-8.

39. Hasegawa Y, Ando M, Maemomo M, Yamamoto S, Ito S, Saka H, et al. The role of smoking status on the progression-free survival of non-small cell lung cancer patients harboring activating epidermal growth factor receptor (EGFR) mutations receiving first-line EGFR tyrosine kinase inhibitor versus platinum doublet chemotherapy: A meta-analysis of prospective randomized trials. Oncologist 2015;20:307-15.

40. Akira C, Sakurada E, Kondo T. Early central airways lung cancer. J Thorac Oncol 2013;8:1350-1.

41. Sheng Z, Zhang Y. The efficacy of epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer harboring wild-type epidermal growth factor receptor: A meta-analysis of 25 RCTs. Am J Clin Oncol 2017;40:362-9.

42. Malyankar UM, MacDougal JR. Genome-scale analysis of lung cancer progression. Am J Pharmacogenomics 2004;4:169-76.

43. International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans. In: Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines. Vol. 89. Lyon, France: International Agency for Research on Cancer; 2007.

44. Quinn S. Lung cancer: The role of the nurse in treatment and prevention. Internationat Agency for Research on Cancer; 2007.

45. van Wijk BT, Jansen ML, Overkleeft HS, van den Brink P, van der Velden AJ, et al. Mapping the hallmarks of lung adenocarcinoma with In-silico approach towards protein targets. Asian J Pharm Clin Res, Vol 14, Issue 1, 2021, 5-12
with lung cancer. Int J Radiat Oncol Biol Phys 1991;21:847-51.
60. Muhm J, Miller W, Fontana RS, Sanderson DR, Uhlenhopp MA. Lung cancer detected during a screening program using four-month chest radiographs. Radiology 1983;148:609-15.
61. Doll R. Cancers weakly related to smoking. Br Med Bull 1996;52:35-49.
62. Bennett A. White J. Improving care and quality of life for patients with lung cancer. NursingStandard 2013;28:50-8.
63. Miller AB. Epidemiology, prevention, and prognostic factors in lung cancer. Curr Opin Oncol 1991;3:282-7.
64. Jablons DM, Cheng SJ, Clary-Macy RN, Hirsch FR. 1st international lung cancer conference in Beijing October 27-30, 2002. Lung Cancer 2003;41:237-44.
65. Devesa SS, Blot V, Fraumeni JF. Declining lung cancer rates among young men and women in the United States: A cohort analysis. J Natl Cancer Inst 1989;81:1568-71.
66. Petty TL. The predictive value of spirometry: Identifying patients at risk for lung cancer in the primary care setting. Postgrad Med 1997;101:128-30.
67. Holmes EC. Adjuvant treatment in resected lung cancer. Semin Surg Oncol 1990;6:263-7.
68. Lubin JH, Qiao YL, Taylor PR, Yao SX, Schatzkin A, Mao BL, et al. Quantitative evaluation of the radon and lung cancer association in a case-control study of Chinese tin miners. Cancer Res 1990;50:174-80.
69. Denholm R, Crellin E, Arvind A, Quint J. Asthma and lung cancer, after accounting for co-occurring respiratory diseases and allergic conditions: A systematic review protocol. BMJ Open 2017;7:e013637.
70. Cancer Research UK. Lung Cancer Research U.K. Website; 2011. Available from: http://www.info.cancerresearchuk.org/cancerstats. [Last accessed on 2011 May 23].
71. Moore S, Corner J, Haviland J, Wells M, Salmon E, Normand C, et al. Nurse led follow up and conventional medical follow up in management of patients with lung cancer: Randomised trial. BMJ 2002;325:1145.
72. Nakamura R, Kurishima K, Kobayashi N, Ishikawa S, Goto Y, Sakai M, et al. Postoperative follow-up for patients with non-small cell lung cancer. Onkologie 2010;33:14-8.
73. Virgo KS, McKirgan LW, Caputo MC, Chao LC, Caputo NA, Naunheim KS, et al. Post-treatment management options for patients with lung cancer. Ann Surg 1995;222:700-10.
74. Lian CK, Wahid MI, Rajadurai P, Cheah YK, Ng TS. Epidermal growth factor receptor mutations in lung adenocarcinoma in Malaysian patients. J Thorac Oncol 2013;8:766-72.
75. Haggar AM, Pearleblg J, Froelich JW, Hearshen DO, Beute GH, Lewis JW Jr., et al. Chest-wall invasion by carcinoma of the lung: Detection by MR imaging. AJR Am J Roentgenol 1989;148:1075-8.
76. Fontana RS, Sanderson DR, Woolner LB, Taylor WF, Miller WE, Muhm JR, et al. Screening for lung cancer: A critique of the Mayo lung project. Cancer 1991;67:1155-64.
77. Ataman ÖU, Arrett A, Illeron T, Kramar A, ESTRO-REACT Group. Optimization of follow-up timing from study of patterns of first failure after primary treatment. An example from patients with NSCLC: A study of the REACT working group of ESTRo. Radiother Oncol 2006;78:95-100.
78. Reining JW, Doppman JL, Dwyer AL. Adrenal the pulmonary nodule by MR. Radiology 1986;158:81-4.
79. British Thoracic Society Standards of Care Committee. BTS statement on criteria for specialist referral, admission, discharge and follow-up for adults with respiratory disease. Thorax 2008;63:i1-16.
80. Rubins J, Unger M, Colice GL, American College of Chest Physicians. Follow-up and surveillance of the lung cancer patient following curative intent therapy: ACCP evidence-based clinical practice guideline (2nd edition). Chest 2007;132:355S-67.
81. Chanda R, Nallaguntula L. Formulation and evaluation of medicated lozenges for sore throat. Asian J Pharm Clin Res 2020;13:62-7.
82. Farooqui M, Pardeshi R, Jadhav S. Antioxidant-Vitamin C: Lung function; lung cancer. Asian J Pharm Clin Res 2016;9:43-51.