Split hypergraphs

by Ádám Timár

Abstract. Generalizing the notion of split graphs to uniform hypergraphs, we prove that the class of these hypergraphs can be characterized by a finite list of excluded induced subhypergraphs. We show that a characterization by generalized degree sequences is impossible, unlike in the well-known case of split graphs. We also give an algorithm to decide whether a given uniform hypergraph is a split hypergraph. If it is, the algorithm gives a splitting of it; the running time is $O(N \log N)$. These answer questions of Sloan, Gy. Turán and Peled.

§1. Introduction, split graphs.

We call a graph G split if there exists a partition $A \cup B$ of its vertex set so that there is no edge between any two points of A and there is an edge between every two points of B. Such a partition $A \cup B$ of $V(G)$ is called a splitting.

The following theorem describes split graphs in two different ways:

Theorem 1.1. For a graph G the following are equivalent:

1. G is split.
2. G does not contain C_4, C_5 or $K_2 \cup K_2$ as an induced subgraph.
3. There is an m such that $\sum_{i=1}^{m} d_i - m(m-1) = \sum_{i=m+1}^{n} d_i$, where $d_1 \geq d_2 \geq \ldots \geq d_n$ are the degrees in G.

The equivalence of (1) and (2) is first shown in [5], while the equivalence of (1) and (3) is in [6]. See also [1] or [4] for history and further references.

The generalizations of many graph theoretical questions to hypergraphs have practical significance. Most frequently, posing these problems for hypergraphs makes them rather difficult. For example, testing the existence of a perfect matching can be solved by a well-known polynomial algorithm for graphs. Generalizing it to 3-uniform hypergraphs we get an NP-complete problem ([7], [3]).
The class of line-graphs can be characterized by a finite list of excluded induced subgraphs — on the other hand there are infinitely many pairwise nonisomorphic graphs with the property that none of them is the line-graph of any 3-uniform hypergraph, but every proper subgraph of any of them is, [8]. Studying extremal questions for graphs turned out to be very fruitful. The generalization of this theory to hypergraphs comes up against serious difficulties.

Recent research in learning theory has led to a generalization of the notion of split-graphs, [9]. Call a \(k \)-uniform hypergraph \(G \) a split-hypergraph if its vertices can be partitioned into two classes so that every \(k \)-tuple in one of the classes is an edge and no \(k \)-tuple in the other class is an edge in \(G \). We call such a partition a splitting. Note that our definition allows one of the classes to have size smaller than \(k \), in which case the requirement on that class automatically holds.

When \(G \) is not a split hypergraph, we say that it is not split or non-split. For a hypergraph \(G \), \(V(G) \) will denote its vertex set and \(E(G) \) its edge set. From now on, \(n \) denotes \(|V(G)| \) and \(N \) is \(|V(G)| + |E(G)| \).

The question arose naturally: can we state something similar to Theorem 1.1 for the case of split hypergraphs? U. N. Peled asked whether the class of \(k \)-uniform split hypergraphs can be characterized by a finite list of excluded induced subhypergraphs. We give an affirmative answer to this question in the next section. Section 3 gives examples of minimal non-split hypergraphs in the 3-uniform case. We did not strive for the completeness of the list. Nevertheless, it may show that the number of excluded induced subhypergraphs increases considerably as we go from graphs to 3-uniform hypergraphs. In Section 4 we examine if the connection between degree sequences and the split property of graphs can be generalized. We find a negative answer.

In their paper [9], where they apply split hypergraphs in learning theory, R. H. Sloan and Gy. Turán gave an algorithm that decides if a \(k \)-uniform hypergraph is split and gives a splitting if possible. The running time of their algorithm is \(O(n^{2k}) \); they mention that finding a more efficient algorithm is an open question. Feder, Hell, Klein and Motwani introduce the notion of a sparse and dense partition of a graph, which is a kind of generalization of a splitting. Their definition can be extended to hypergraphs and the algorithm they present (in Theorem 3.1) can be used to find a splitting (or all splittings) of a uniform hypergraph. The running time of their algorithm in this context is the same as the time requirement of the one given by Sloan and Turán. In the last section we give an \(O(N \log N) \) algorithm for the problem. Our method can also be used to give an algorithm for sparse and dense partitions that is faster than the one in [2] in certain cases.

The restriction of an edge to an \(X \subset V(G) \) is its intersection with \(X \). Minimality
of a graph with respect to a certain property will always mean that no induced proper subgraph of it has the property. As usual, \(X \Delta Y \) will stand for the symmetric difference between sets \(X \) and \(Y \). When \(x \in V(G) \), we sometimes simply use \(x \) instead of \(\{x\} \) in set operations.

§2. The existence of a finite characterization.

In this section we prove our main theorem. First we state two lemmas. The following lemma holds for hypergraphs with edges of sizes at most \(k \), which is a relaxation of \(k \)-uniformity, and is convenient for our inductive proof.

Lemma 2.1. Let \(k \) and \(m \) be positive integers and \(\Gamma \) a hypergraph with edges of size at most \(k \). Then \(\Gamma \) has at most \(k^m \) different minimal cover sets of at most \(m \) points. Furthermore, there is an algorithm of time requirement \(O(|V(\Gamma)| + |E(\Gamma)|) \) that outputs a list of these minimal cover sets.

Because of the short running time of our algorithm, some more details about the implementation could be added. However, designing data structure and the implementation of the algorithm does not match the texture of our paper, so we leave these to the interested reader.

Proof. We prove the first part of the claim by induction on \(m \). The case \(m = 1 \) is obvious. Suppose that for \(m < r \) the statement is true, and let \(\Gamma \) be any hypergraph with edges of size at most \(k \). Let \(H \) be an arbitrary edge. Any minimal cover set of \(\Gamma \) with at most \(m \) points consists of a point \(x \) of \(H \) and a minimal cover set of \(\Gamma|_{V(\Gamma) \setminus \{x\}} \) with at most \(m - 1 \) elements. Applying the induction hypothesis to the latter one and noting that \(x \) could be chosen in \(k \) different ways, we get the statement for \(m = r \).

The algorithm will imitate the proof in the previous paragraph. For \(i = 1, \ldots, m \), pick the first edge \(e_i \) that has not been deleted yet, a vertex \(v_i \) of \(e_i \), delete the edges that contain \(v_i \), and let \(i := i + 1 \). The output is \(\{v_1, \ldots, v_m\} \). Since the number of minimal cover sets is bounded by a constant, we can list all of them by systematically going through all possible ways of picking \(v_i \) in the sequence of \(e_i \), and still use only linear time.

In what follows, for the sake of simplicity, the edges of the \(k \)-uniform hypergraph \(G \) will be referred to as type 0 edges, and the \(k \)-tuples not contained in \(E(G) \) as type 1 edges. (Thus we identify \(G \) with a labeling of the edges of a complete \(k \)-uniform hypergraph by numbers 0 and 1.)

Consider some minimal non-split hypergraph \(G \). Minimality implies that for any \(x \in G \) there is a splitting \((A^0_x, A^1_x)\) of \(G \setminus x \), i.e. \(A^0_x \) induces only edges of type 0, \(A^1_x \)
induces only edges of type 1. (A class that only contains edges of type i will sometimes be
called a \textit{type-i-class}.)

Lemma 2.2. Fix a splitting (A^x_0, A^y_1) of $G \setminus v$ for every $v \in V(G)$. If $x, y \in V(G)$ are
vertices in a minimal non-split hypergraph G then $|A^x_i \cap A^y_1 - i| < k$ and $|A^x_i \Delta A^y_1| \leq 2k$ for
$i = 0, 1$.

\textit{Proof.} The first inequality follows by the fact that a k-tuple cannot be contained in the
type i class of a splitting (of $G \setminus x$) and a type $1 - i$ class of a splitting (of $G \setminus y$) at the
same time. For the second inequality, use the facts

$$A^x_i \setminus A^y_1 \subset A^x_i \cap (A^y_1 \cup \{y\}),$$

and $|A^x_i \cap (A^y_1 \cup \{y\})| \leq k$ by the first inequality; similarly with x and y interchanged. $lacksquare$

In the proof we shall consider sets subindexed by 0 or 1. Such a set, of subindex i, will always be a class of edges of type i, or some “preliminary set” in constructing a class only with edges of type i. This notation will provide us with the following convenience in terminology. Given some set $S \subset V(G)$ by a name subindexed by i ($i = 0, 1$), let the \textit{bad edges} of S be the edges of type $1 - i$ on S.

Theorem 2.3. If a k-uniform non-split hypergraph has more than $4(k + 1)k^{4k(k+1)+1}$ vertices then it has a proper induced subhypergraph that is non-split.

Fix k. We shall give an algorithm. Its brief description is given in the next two
paragraphs. The input is $G, x, (A^x_0, A^x_1), \alpha, \beta$, where G is a minimal non-split hypergraph,
$x \in V(G)$, (A^x_0, A^x_1) is a splitting of $G \setminus x$, $\alpha \in \{1, \ldots, 4k\}$, $\beta \in \{1, \ldots, k + 1\}$. The
algorithm either stops without any output, or outputs a splitting of $G \setminus y$ for some $y \in V(G)$.
It has a randomized part, to simplify description.

At the beginning our algorithm adds x to A^x_0, creating some type 1 edges (bad edges)
in $B_0 := A^x_0 \cup x$. There is another class B_1, set to be A^x_1 at the start. Then we choose a
random minimal cover set of size at most $k + 1$ for the bad edges, and move it over from
B_0 to B_1. In general, at each step at most one of B_0 and B_1 contains any bad edges,
depending on the parity of the step. The algorithm always chooses uniformly a random
minimal cover set of size at most $k + 1$ for these bad edges, and consisting of points that
have not been moved between the two classes yet, and any such set is chosen with positive
probability. (If there is no such set, then the algorithm fails.) Move this minimal cover set
to the other class. When we arrive at the α’th step, let the β’th element of the minimal
cover set be called y. (We may assume that there is some fixed ordering on any subset of
the vertices, for example the one given by the listing of the vertices in the input.) Remove
from the minimal cover set (and hence from both classes in the future), and continue the procedure. We run the algorithm for at most $4k$ steps. With positive probability, at some step, (B_0, B_1) will be a splitting of $G \setminus y$, and this is the output.

The inputs α and β, together with the choices that the random part of the algorithm makes, determine y. Using Lemma 2.1, we shall give a bound on the number of possible choices, and finally get the general upper bound in Theorem 2.3 for the number of vertices in G.

Here is a formal presentation of the algorithm.

Algorithm 1

FUNCTION BadEdges(i, B_i) returns the list of type $1-i$ (bad) edges of B_i.

FUNCTION MinCoverSet(R, L) returns a uniformly chosen random minimum cover set of R of size at most $k+1$ that is disjoint from L. If there is no such set then the algorithm ends and outputs ‘‘Unsuccessful’’.

Start of Algorithm

INPUT: a k-uniform hypergraph G, vertex x of G, a splitting (A_x^0, A_x^1) of $G \setminus x$, numbers $\alpha \in \{1, \ldots, 4k\}$ and $\beta \in \{1, \ldots, k+1\}$.

$B_0 := A_x^0 \cup \{x\}$, $B_1 := A_x^1$, $L := \emptyset$, $i := 0$, $j := 1$, $\ell := \emptyset$

while $j \leq 4k$ do {

 if $R = \emptyset$ then output (B_0, B_1), end of algorithm

 $\ell := \text{MinCoverSet}(R, L)$

 $B_i := B_i \setminus \ell$, $L := L \cup \ell$

 if $j = \alpha$ then {

 if $|\ell| < \beta$ then output (‘‘Unsuccessful’’), end of algorithm,

 else $\ell := \ell \setminus \{y\}$, where y is the β'th element of ℓ

 $B_{1-i} := B_{1-i} \cup \ell$

 $i := 1-i$, $j := j+1$

 }

 output (‘‘Unsuccessful’’), end of algorithm

}

Lemma 2.4. Fix G, x and (A_x^0, A_x^1) in the input. For any $y \in V(G)$, Algorithm 1 outputs a splitting of $G \setminus y$ with positive probability for some values of α, β.

Proof. Fix y, and a splitting (A_y^0, A_y^1) of $G \setminus y$. None of the bad edges in $A_y^0 \cup \{x\}$ can be contained in A_y^1, so there exists some minimal cover set of these bad edges that is contained in $A_y^1 \cup \{y\}$. (Such a minimal cover set is chosen by MinCoverSet with positive
This minimal cover set cannot have more than \(k + 1\) elements, because then a \(k\)-tuple would be present in both \(A_0^x\) and \(A_0^y\), contradicting Lemma 2.2. Since the points that we moved are in \(A_0^y \cup \{y\}\) by our choice, they get to their final class by the move, so we may assume that they are not moved in later steps of the algorithm. Hence, when the algorithm chooses a minimal cover set of the bad edges of size at most \(k\) moved, as in the algorithm; we may assume by symmetry that it was moved from \(A_0^x\) to \(A_1^x\), (call the resulting sets \(C_0\) and \(C_1\) respectively), we have
\[|C_0 \Delta A_0^x| < |A_0^x \Delta A_0^y|\] and \[|C_1 \Delta A_1^y| \leq |A_1^y \Delta A_1^x|\]. These inequalities are crucial in that we succeed after at most \(4k\) repetitions. When \(y\) is in \(\ell\), if \(\alpha\) is equal to the actual \(j\) and \(y\) is the \(\beta\)'th element in \(\ell\), then \(y\) is removed from \(\ell\), and its removal ensures that the remaining graph has a splitting. (This possible removal causes the second inequality above to be not necessarily strict.)

Similarly, denote by \(D_0\) and \(D_1\) the sets \(B_0\) and \(B_1\) respectively at some step, and let \(C_0\) and \(C_1\) be \(B_0\) and \(B_1\) respectively in the next step. Let \(\ell\) be the set that was moved, as in the algorithm; we may assume by symmetry that it was moved from \(D_0\) to \(D_1\). So, \(C_0 = D_0 \setminus \ell\) and \(C_1 = D_1 \cup (\ell \setminus y)\). There were some bad edges in \(D_0\), because the algorithm did not stop. None of these bad edges can be contained in \(A_0^y\), so there exists some minimal cover set of the bad edges that is contained in \(A_1^y\). We may assume that the elements of this minimal cover set are points that have not been moved at any previous step (i.e., they are not in \(L\)), because we are considering the outcome of the algorithm (of positive probability), when the moved vertices must reach the type of class that contains them in \((A_0^y, A_1^y)\) by the move. (The only vertex not in any of \(A_0^y\) or \(A_1^y\) is \(y\), but it is removed from \(\ell\) if \(\alpha\) and \(\beta\) are suitable.) The algorithm chooses such a minimal cover set \(\ell\) with positive probability, and then we have

\[|C_0 \Delta A_0^y| < |D_0 \Delta A_0^y|\text{ and }|C_1 \Delta A_1^y| \leq |D_1 \Delta A_1^y|\].

We conclude that \(|B_0 \Delta A_0^y| + |B_1 \Delta A_1^y|\) decreases in each iteration step by at least 1 with positive probability. At some step \(y\) has to be contained in \(\ell\), since \(G\) itself is not split. If \(\alpha\) and \(\beta\) are suitable, then \(y\) is removed from \(\ell\) (and the future \(B_0 \cup B_1\)). Then the algorithm can stop for two reasons. The first one is when it outputs “Unsuccessful” because of the random choices that MinCoverSet made. However, we have seen that for a certain sequence of the random choices that MinCoverSet makes along the iteration steps, there always exists a minimal cover set of the bad edges consisting of points not moved yet, as long as the set of the bad edges is nonempty. On the other hand, when the set of bad edges becomes empty, the actual \(B_0\) and \(B_1\) is a splitting. This either happens when the algorithm has already run for \(4k\) steps \((j > 4k)\), in which case \(|B_0 \Delta A_0^y| + |B_1 \Delta A_1^y|\) has to be 0 (at the first step \(|B_0 \Delta A_0^y| + |B_1 \Delta A_1^y| = |A_0^x \Delta A_0^y| + |A_1^y \Delta A_1^x| \leq 4k\), by Lemma 2.2),
and we achieved the splitting \((A_y^0, A_y^1)\) as an output. Or there are no bad edges at some earlier step. In that case the actual \((B_0, B_1)\) does not necessarily coincide with the fixed splitting \((A_y^0, A_y^1)\), but it is still a splitting of \(G \setminus y\).

Proof of Theorem 2.3. Fix again \(G, x\) and \((A_x^0, A_x^1)\). According to Lemma 2.4, for every \(y \in V(G)\) there is some input \(\alpha, \beta\) such that with positive probability Algorithm 1 gives a splitting of \(G \setminus y\). The corresponding sequence of \(\ell\)'s (along the iteration steps of the algorithm) and the \(\alpha, \beta\) determine the output and \(y\). There are at most \(k^{k+1}\) choices for \(\ell\) in each step, by Lemma 2.1, and the rest of the algorithm is deterministic. So there are at most \(k^{4k(k+1)}\) possible sequences of \(\ell\)'s along the iteration steps of the algorithm. There are \(4k(k+1)\) possible inputs \(\alpha, \beta\). Hence there are at most \(k^{4k(k+1)} 4k\) possible \(y\)'s, which is our upper bound for the number of vertices in a minimal non-split \(k\)-uniform hypergraph.

A straightforward corollary is our main theorem:

Theorem 2.5. The family of \(k\)-uniform split hypergraphs can be characterized by a finite set of forbidden induced subhypergraphs.

§3. 3-uniform minimal non-split hypergraphs.

Although Theorem 2.3 gave a very rough upper bound on the size of minimal non-split hypergraphs, in this section we illustrate with a few examples that the list of excluded induced subhypergraphs increases considerably compared to the case of graphs.

For \(|V(G)| = 6\), \(G\) is non-split if and only if for any edge its complement is also an edge and if the subhypergraph induced by any 4 points is neither the empty nor the complete 3-uniform hypergraph. It is clear that these are minimal non-split hypergraphs too.

We get examples of minimal non-split hypergraphs for the case of \(|V(G)| = 7, 8, 9\) in the following manner. Write the vertices along a circle and let the edges be exactly those 3-tuples that consist of three consecutive nodes along the circle. \(G\) is not split, since we could put into the type-0-class at most 3 vertices, but then the rest contains a type 0 edge (and similarly if we put only 2 arbitrary points in the type-0-class). However, dropping any vertex, two suitably chosen points can cut up the remaining arc to parts with at most two vertices. In the case of 8 (respectively 9) vertices, we can erase 1 (respectively 1, 2, 3 or 4) edges from the hypergraph just described, and similarly, we still get a minimal non-split hypergraph. The argument is nearly the same for these new graphs.

We have found minimal 3-uniform non-split hypergraphs on vertex sets of 11 and 12 elements, but the details are lengthy. The examples above may show that even in the
3-uniform case there are more than a hundred (and probably even much more) minimal excluded subhypergraphs.

§4. Degree sequences of hypergraphs.

The question arises, whether a characterization like that in part (iii) of Theorem 1.1 can be given for split hypergraphs. Since the equivalence of (iii) and (i) provides us with an $O(n)$ algorithm to decide if a graph is split or not, a characterization for split hypergraphs using degree sequences could be promising.

Proposition 4.1. There are 3-uniform hypergraphs G and G' on the vertex set $\{1, \ldots, n\}$ such that G is split, G' is non-split, moreover $d_i = d_i'$ and $\delta_{ij} = \delta_{ij}'$ for any $i, j \in \{1, 2, \ldots, n\}$. Here d_i (d_i') stands for the degree of i in G (G'); δ_{ij} (δ_{ij}') is the number of edges containing both i and j in G (G').

Proof. Call a 6-element subset of the vertices of a 3-uniform hypergraph H exchangeable if there is a list $a_1, a_2, a_3, a_{-1}, a_{-2}, a_{-3}$ of these vertices so that $\{a_1, a_2, a_3\}, \{a_1, a_{-2}, a_{-3}\}, \{a_{-1}, a_2, a_{-3}\}, \{a_{-1}, a_{-2}, a_3\}$ are edges of H, and the other 3-tuples not containing a_i and a_{-i} together for some i are not in H. We say that we exchange the exchangeable point set $\{a_1, a_2, a_3, a_{-1}, a_{-2}, a_{-3}\}$ when we erase the four edges described above and add the 3-tuples $\{a_{-1}, a_{-2}, a_{-3}\}, \{a_{-1}, a_2, a_3\}, \{a_{-1}, a_{-2}, a_3\}, \{a_1, a_2, a_{-3}\}$ to $E(H)$. We may think of the exchangeable 6 vertices as the nodes of an octahedron. Then being exchangeable means that, if the nodes were labeled appropriately, the four 3-tuples in $E(H)$ are determined by four faces whose pairwise intersection is one point. Exchanging means that we replace these 3-tuples in $E(H)$ by the other four faces of the octahedron. One can easily see that these are well-defined, the listing of the 6 vertices is essentially unique. On the other hand the degrees and the number of edges incident to two points does not change after applying an exchanging. Thus if we get a non-split hypergraph from a split hypergraph after serial exchanging, then the proposition follows.

Now, denote $X = \{1, 2, 3, 4\}$, $Y = \{5, 6, 7, 8\}$. Define G on the vertex set $\{1, \ldots, 14\}$ as follows. Every 3-tuple of $X \cup \{9, 10, 11\}$ is red, every 3-tuple of $Y \cup \{12, 13, 14\}$ is blue, and if a 3-tuple intersects both X and $\{12, 13, 14\}$ then it is blue, if a 3-tuple intersects both Y and $\{9, 10, 11\}$ then it is red. Moreover, the 3-tuples of $\{9, 10, \ldots, 14\}$ that have not been defined yet get colors so that $\{9, 10, \ldots, 14\}$ give an exchangeable set of points, as in the first sentence of this proof with $(a_1, a_2, a_3, a_{-1}, a_{-2}, a_{-3}) = (9, 10, 11, 12, 13, 14)$. The colors of the remaining 3-tuples are arbitrary. G is obviously split with color classes $X \cup \{9, 10, 11\}$ as red and $Y \cup \{12, 13, 14\}$ as blue. Let G' be the hypergraph obtained
from G by exchanging $\{9, \ldots, 14\}$. In G', $\{9, 10, 11\}$ has become blue, so at least one of its points must be put to the other class. But there this point gives a red edge with any two points of Y. Since at least two points of Y must remain in the blue class, we conclude that G' is indeed non-split.

For an arbitrary k, one can give a k-uniform counterexample with a construction similar to the one above, using the k-dimensional cross-polytope $\{x \in \mathbb{R}^k : ||x||_1 \leq 1\}$ (the “octahedron” of dimension k).

§5. Algorithm for splitting.

Theorem 5.1. For an arbitrary, but fixed k there is an algorithm that decides if a G k-uniform hypergraph is a split hypergraph, and gives a splitting when it is. The running time is $O(N \log N)$ (where we defined $N = |V(G)| + |E(G)|$).

As in the case of Lemma 2.1, we mention that the running time is understood with appropriately chosen data structure. Let us also point out that the constant in the $O(N \log N)$ bound is exponential in k.

The following lemma is used repeatedly, to obtain splittings of larger and larger sub-hypergraphs of G.

Lemma 5.2. Let H be a k-uniform hypergraph, and (V^1, V^2) be a partition of $V(H)$. Denote by H^1 and H^2 the subhypergraphs of H induced by V^1 and V^2 respectively. Suppose that (A_0, A_1) is a splitting of H and (A_0^i, A_1^i) is a splitting of H^i ($i = 1, 2$). Then $|A_j \setminus (A_j^1 \cup A_j^2)| \leq 2k - 2$, $j = 0, 1$.

Proof. Otherwise some k-tuple in A_j would be present in A_{1-j}^1 or A_{1-j}^2 ($j \in \{0, 1\}$), contradicting the fact that both are monochromatic of different types.

We present an algorithm whose existence proves Theorem 5.1. Call it **Algorithm 2**. We do not give the pidgin Pascal program this time, because the main structure of the algorithm is very simple, and the more particular elements are similar to **Algorithm 1** (except that the random part is replaced by a deterministic choice, as we shall see). Let me start with an overview of the algorithm. We use notation $\langle m \rangle$ for the modulo 2 value of an integer m.

The crucial component of our algorithm is a subroutine called **Tree**. Its input is (H, X_0, X_1), where H is a k-uniform hypergraph, and (X_0, X_1) partitions $V(H)$. **Tree** will create labels for the vertices of a rooted tree T of depth $2k - 2$, where each inner node has k^{2k-2} children. For each vertex, we assume that there is some ordering on its children,
so we can talk about the “m’th child” (when \(m \leq k^{2k-2} \)). Similarly, we assume that for any set of \(k \)-tuples of \(G \), there is some fixed ordering on the minimal cover sets of size at most \(2k - 2 \) of these \(k \)-tuples, so we can talk about the “m’th minimal cover set” (when \(m \) is small enough). Note that such an ordering of the minimal cover sets can be easily implemented by an algorithm that is linear in the input size, using Lemma 2.1. Finally, fix some ordering on the vertices of \(T \), so that vertices at smaller depth precede vertices at larger depth.

Say that the root has depth 0, its children have depth 1, etc. The root \(r \) will have label \((X^0_0, X^1_1) := (X_0, X_1)\). If \(X^0_0 \) contains some edge of type 1 in \(G \), let \(s := 0 \). Otherwise let \(s := 1 \).

Suppose that \(v \) is a vertex in \(T \) whose parent is \(u \), and \(v \) is at depth \(g \). Assume that \(v \) is the \(m \)’th child of \(u \). Let \(v \) get label \((\ell_v, X^v_0, X^v_1)\), where \(\ell_v \) is the \(m \)’th minimal cover set of size at most \(2k - 2 \) of the bad edges in \(X^u_{(g+s)} \), let \(X^v_{(g+s)} := X^u_{(g+s)} \setminus \ell_v \) and \(X^v_{(1+g+s)} = X^u_{(1+g+s)} \cup \ell_v \). If \(m \) is such that there is no \(m \)’th minimal cover set of size at most \(2k - 2 \) for the actual bad edges, then delete \(v \) and all its offspring from \(T \). If there are no bad edges in \(X^u_{g+s} \), then Tree outputs the first such \((X^u_0, X^u_1)\) (in the ordering of the vertices), which is a splitting of the input graph \(H \). If there are bad edges for all the leaves, then Tree outputs “No”, indicating \(H \) is not split.

Algorithm 2 receives input \(G \), a \(k \)-uniform hypergraph. In the preparational step it partitions \(V(G) \) to sets \(A_1, \ldots, A_{\lceil n/k-1 \rceil} \), where each \(A_i \) has \(k - 1 \) elements with the possible exception of \(A_{\lceil n/k-1 \rceil} \). Then we call the iteration part of the algorithm, with input \(((A_1, \emptyset), \ldots, (A_{\lceil n/k-1 \rceil}, \emptyset))\).

In each cycle of the iteration part of Algorithm 2 there is an incoming list \(((X^1_0, X^1_1), (X^2_0, X^2_1), \ldots, (X^m_0, X^m_1))\), where \((X^i_0, X^i_1)\) is a splitting of \(G|_{X^i_0 \cup X^i_1} \), and the \((X^i_0 \cup X^i_1)_{i=1}^m\) give a partition of \(V(G) \). Now form pairs \((Y^i_0, Y^i_1) := (X^{2i-1}_0 \cup X^{2i-1}_0, X^{2i}_1 \cup X^{2i}_1)\) as \(i = 1, \ldots, \lceil m/2 \rceil \); if \(m \) is odd then define \((Y^i_{\lceil m/2 \rceil}, Y^i_{\lceil m/2 \rceil}) := (X^m_0, X^m_1)\). Now, call Tree for each \(i \in \{1, \ldots, \lceil m/2 \rceil \} \), with input \((Y^i_0, Y^i_1)\). If any of these returns “No”, then Algorithm 2 ends and outputs “\(G \) has no splitting”. Otherwise, if Tree returns \((A^i_0, A^i_1)\) at the \(i \)’th call then the input for the next iteration step is \(((A^1_0, A^1_1), (A^2_0, A^2_1), \ldots, (A^\lceil m/2 \rceil, A^\lceil m/2 \rceil))\). The last cycle of the iteration is when \(m = 2 \), that is, when we only call Tree once. Suppose that then it returns the pair \((A^1_0, A^1_1)\). In this case Algorithm 2 outputs this pair, which is a splitting of \(G \).

Lemma 5.3. Algorithm 2 provides a splitting of \(G \) if there is any, and answers “\(G \) has no splitting” if \(G \) is non-split.

Proof. We shall prove that Tree indeed decides if there is a splitting of the hypergraph...
that it receives while Algorithm 2 is running and outputs a splitting if there is one. (Note that the hypergraphs that Tree receives in Algorithm 2 have a very specific form.) Then it is clear that the iteration steps give splittings for families of bigger and bigger graphs and finally for G, if G is split. So, as in Lemma 5.2, let H be a k-uniform hypergraph, and (V^1, V^2) be a partition of $V(H)$. Denote by H^1 and H^2 the subhypergraphs of H induced by V^1 and V^2 respectively. Suppose that (A^i_0, A^i_1) is a splitting of H^i ($i = 1, 2$). We need to show that if the input is $(H, A^1_0 \cup A^2_0, A^1_1 \cup A^2_1)$ then Tree finds a splitting of H if there is any, and answers “No” if H is not split. Note that the inputs that Tree can get in Algorithm 2 indeed have this special form.

Suppose that H has a splitting, fix one such (A_0, A_1). The process of finding a splitting of H corresponds to a walk on T, starting from the root and going in each step towards a child. Each step of the walk corresponds to finding a minimal cover set for the bad edges in the class being examined actually, and putting this set over to the other class (starting with the two classes from the input of Tree). By the same argument as in Lemma 2.4 (using the analogue Lemma 5.2 of Lemma 2.2 now), we shall conclude that if there is a splitting, we get it in $\leq 2k - 2$ steps, or equivalently, at the latest when arriving to a leaf of T.

To be more detailed, suppose that $(A^1_0 \cup A^2_0, A^1_1 \cup A^2_1) =: (B_0, B_1)$ is not a splitting yet (otherwise we are done, the algorithm outputs the splitting after making the label for the root). Then there are type 1 edges in B_0 or there are type 0 edges in B_1 (call any of these a bad edge). We may assume by symmetry that B_0 has bad edges. Then some minimal cover set of these bad edges is contained in A_1, and the root has a child v such that ℓ_v is this minimal cover set. The iteration part of Algorithm 2 moves over ℓ_v from B_0 to B_1, hence creating X^u_0 and X^u_1. We have $|X^u_0 \Delta A_0| + |X^u_1 \Delta A_1| < |B_0 \Delta A_0| + |B_1 \Delta A_1|$, similarly to the displayed line in the proof of Lemma 2.4. Note that after the first step of the walk on T only one of X^u_0 and X^u_1 can have bad edges.

Proceed similarly: when the walk in T is in u and the bad edges are in X^u_i ($i \in \{0, 1\}$), there is a minimal cover set for these bad edges that is contained in A_{1-i}, and such that it is disjoint from $\bigcup \ell_w$, where w ranges through the ancestors of u. (This latter assumption can be made because in each step we moved points that got to their “final class” in (A_0, A_1) by this move.) Some child v of u is such that this minimal cover set is ℓ_v, and for the arising (X^u_0, X^u_1) we again have

$$|X^u_0 \Delta A_0| + |X^u_1 \Delta A_1| < |X^u_0 \Delta A_0| + |X^u_1 \Delta A_1|.$$

Since for the root r we have $|X^r_0 \Delta A_0| + |X^r_1 \Delta A_1| \leq 2k - 2$ by Lemma 5.2, in at most $2k - 2$ steps we necessarily arrive to a vertex where the two cases contain no bad edges.
At this step Tree outputs the two classes, which is a splitting of H.

If H is not split, then it is clear that there are bad edges in some class for any partition of the vertex set, so Tree will eventually output “No”.

Lemma 5.4. The algorithm runs in $O(N \log N)$ time.

Proof. First, Tree runs in linear time, because the size of the underlying tree is a constant (determined by k), and the labels consisting of minimal cover sets can be constructed in a number of steps that is linear in the input of Tree, using the method in Lemma 2.1.

In each iteration step each element of $V(G) \cup E(G)$ is present in at most one of the subhypergraphs that some Tree subroutine receives, and then in each iteration cycle there is a linear number of extra steps when the iteration cycle creates what it returns from the outputs of the Tree subroutines. This is $O(N)$, and there are $O(\log N)$ iteration steps, so we get the claim.

Acknowledgements. I am grateful to Péter Hajnal for his support and suggestions. I also thank Csaba Biró for his comments on the manuscript.

REFERENCES

[1] A. Brandstädt, V. B. Le, J. P. Spinrad. *Graph classes: a survey*. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1999.

[2] T. Feder, P. Hell, S. Klein, R. Motwani. List partitions. *SIAM J. of Discrete Math.*, 16: 449-478, 2003.

[3] M. R. Garey, D. S. Johnson. *Computers and intractability. A guide to the theory of NP-completeness*. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979.

[4] M. C. Golumbic. *Algorithmic Graph Theory and Perfect Graphs*. Annals of Disc. Math., 57, Elsevier, 2004.

[5] A. Gyárfás, J. Lehel. A Helly-type problem in trees. *Combinatorial theory and its applications*, II (Proc. Colloq., Balatonfüred, 1969), 571-584, North-Holland, Amsterdam, 1970.

[6] P.L. Hammer, B. Simeone. The splittance of a graph. Univ. of Waterloo, Dept. of Combinatorics and Optimization, Res. Report CORR 77-39, 1977.

[7] R. M. Karp. Reducibility among combinatorial problems. *Complexity of computer computations* (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), 85-103, Plenum, New York, 1972.

[8] R. N. Naik, S. B. Rao, S. S. Shrikhande, N. M. Singhi. Intersection graphs of k-uniform linear hypergraphs. *European J. Combin.* 3, no. 2, 159-172, 1982.
[9] R. H. Sloan, Gy. Turán. Learning from incomplete boundary queries using split graphs and hypergraphs (extended abstract). *Computational learning theory*, Jerusalem, 1997, Lecture Notes in Comput. Sci., 38-50, Springer, 1997.

[10] Á. Timár. Split hypergraphs. Diploma thesis at the University of Szeged (in Hungarian), 2000.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, 121-1984 MATHEMATICS RD., VANCOUVER, BC V6T1Z1, CANADA

timar[at]math.ubc.ca

http://www.math.ubc.ca/~timar/