Supporting information of

Water adsorption on MO$_2$ (M = Ti, Ru and Ir) surfaces.

Importance of octahedral distortion and cooperative effects.

Danilo González,a,1 Javier Heras-Domingo,a,1 Stefano Pantaleone,a,1 Albert Rimola,a Luis Rodríguez-Santiago,a Xavier Solans-Monfort,a,* Mariona Sodupea,*

aDepartament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

Corresponding author: mariona.sodupe@uab.cat, xavier.solans@uab.cat

1 All authors have equally contributed.
Table S1: Adsorption energies for the single water adsorption on the TiO$_2$ (110) and (011) rutile surfaces. The relative energies (ΔE) are calculated with respect to the water adsorbed in its molecular form (mol). The adsorption energies are calculated as $\Delta E_{ads} = E_{complex} - E_{surf} - E_{H2O}$, with each system optimized separately.

(h k l)	Adsorption mode	PBE-D2 ΔE_{ads} (kJ/mol)	PBE-D3 ΔE (kJ/mol)	PBE0-D2 ΔE_{ads} (kJ/mol)	PBE0-D3 ΔE (kJ/mol)
(110)	mol	-86.9	0.0	-85.4	0.0
(110)	diss	-52.2	34.7	-47.7	37.7
(011)	mol	-136.2	0.0	-129.3	0.0
(011)	diss	-140.0	-3.7	-134.5	-5.2

Table S2: PBE-D2 adsorption energies for the single water adsorption on different TiO$_2$ (110) rutile surface models. The relative energies (ΔE) are calculated with respect to the water adsorbed in its molecular form (mol). The adsorption energies are calculated as $\Delta E_{ads} = E_{complex} - E_{surf} - E_{H2O}$, with each system optimized separately.

Number of layers	Adsorption mode	PBE-D2 ΔE (kJ mol$^{-1}$)	PBE-D2 ΔE_{ads} (kJ mol$^{-1}$)
4 layer	mol	0.0	-86.9
	diss	34.7	-52.2
5 layer	mol	0.0	-105.6
	diss	-8.6	-114.3
6 layer	mol	0.0	-89.8
	diss	26.1	-63.6
7 layer	mol	0.0	-95.0
	diss	4.3	-90.6
Figure S1: PBE-D2 calculated surface energies.

Figure S2: PBE-D2 geometries for the reconstructed (right) and non-reconstructed (left) TiO$_2$ (011) rutile surface.
Figure S3: Surface energy for the reconstructed (blue line) and non-reconstructed (green points) TiO$_2$ (011) rutile surface.

Figure S4: M—O$_w$ distances of two neighbor water adsorbed (in Å) along the dynamics.