A DIRECT DECOMPOSITION OF 3-STRIP TABLEAUX

EMMA YU JIN†

ABSTRACT. Baryshnikov and Romik derived combinatorial identities for the numbers of the m-strip tableaux. This generalized the classical André’s theorem for the number of up-down permutations. They asked for a bijective proof for the enumeration of 3-strip tableaux. In this paper we count the 3-strip tableaux by decomposition. The key decomposition, in combination of the recursions for tangent numbers \(E_{2n-1} \) and Bernoulli numbers \(B_{2n} \), provides a semi-bijective proof for the enumeration of 3-strip tableaux.

1. Introduction

A permutation \(w = a_1a_2 \cdots a_n \in S_n \) is called an up-down permutation if \(a_1 < a_2 > a_3 < a_4 > \cdots \). It is well-known that the number of up-down permutations of \([n]\) is Euler number \(E_n \), whose exponential generating function is

\[
\sum_{n \geq 0} E_n \frac{x^n}{n!} = \sec x + \tan x.
\]

(1.1)

This is also called André’s theorem. Sometimes \(E_{2n} \) is called a secant number and \(E_{2n+1} \) a tangent number. Up-down permutations can be viewed as a special case of a standard Young tableau. For instance, the permutation \(\sigma = 132546 \) is an up-down permutation, which can be identified as the tableau below.

Formally speaking, we adopt the notations from \([1]\). An integer partition is a sequence \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k) \) where \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0 \) are integers. We identify each partition \(\lambda \) with its Young diagram and speak of them interchangeably. Given a partition \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k) \), the Young diagram of shape \(\lambda \) is a left-justified array of \(\lambda_1 + \lambda_2 + \cdots + \lambda_n \) boxes with \(\lambda_1 \) in the first row, \(\lambda_2 \) in the second row, and so on. A skew Young diagram is the difference \(\lambda/\mu \) of two Young diagrams where \(\mu \subset \lambda \). If \(\lambda/\mu \) is a skew Young diagram, a standard Young tableau of shape \(\lambda/\mu \) is a filling of the boxes of \(\lambda/\mu \) with the integers \(1, 2, \ldots, |\lambda/\mu| \) that is increasing along rows and columns, where \(|\lambda/\mu| \) is the number of boxes of shape \(\lambda/\mu \) and is called the size of shape \(\lambda/\mu \). Given any skew shape \(\lambda/\mu \) of size \(n \), let \(f^{\lambda/\mu} \) denote the number of standard Young tableaux of shape \(\lambda/\mu \), i.e., the number of ways to put \(1, 2, \ldots, n \) into the squares of the diagram of \(\lambda/\mu \), each number \(1, 2, \ldots, n \) occurring exactly once, so that the rows and columns are increasing. Given a standard Young tableau, we can form the reading word of the tableau by reading the last row from left to right, then the next-to-last row, and so on. The reading word of the above tableau is exactly the permutation \(\sigma = 132546 \).

† Corresponding author email: yu.jin@tuwien.ac.at. Tel.: +43(1)58801 – 104583. The author was supported by the German Research Foundation DFG, JI 207/1-1, and the Austrian Research Fund FWF, project SFB F50 Algorithmic and Enumerative Combinatorics.
Up-down permutations of $[n]$ are in simple bijection with standard Young tableaux of shape

$$\theta_n = (m + 1, m, m - 1, \ldots, 3, 2)/(m - 1, m - 2, \ldots, 1, 0)$$

when $n = 2m$ is even, or

$$\theta_n = (m, m, m - 1, m - 2, \ldots, 3, 2)/(m - 1, m - 2, \ldots, 1, 0)$$

when $n = 2m - 1$ is odd. Clearly this bijection converts each standard Young tableau of shape θ_n into an up-down permutation via its reading word. By “thickening” the shape θ_n, Baryshnikov and Romik generalized the classical enumeration formula (1.1) for up-down permutations [1]. They introduced the m-strip tableaux and enumerated the m-strip tableaux by using transfer operators, but the computations become more complicated as m increases. The standard Young tableaux of shape θ_n are exactly 2-strip tableaux, which are counted by the Euler number E_n. For the particular case $m = 3$, there are three different shapes of 3-strip tableaux, denoted by $\sigma_{3n-2}, \sigma_{3n-1}, \sigma_{3n}$, respectively. Let σ_{3n-2} be the Young diagram of shape

$$(m, m - 1, m - 2, \ldots, 3, 2)/(m - 2, m - 3, \ldots, 1, 0)$$

that contains $3n - 2$ boxes when $n \geq 3$, and σ_1 be the Young diagram of shape (1), σ_4 be the Young diagram of shape $(2, 2)$. Let σ_{3n-1} be the Young diagram of shape

$$(m, m, m - 1, m - 2, \ldots, 3, 2)/(m - 1, m - 2, \ldots, 1, 0)$$

that contains $3n - 1$ boxes when $n \geq 3$, and σ_2 be the Young diagram of shape $(1, 1)$, σ_5 be the Young diagram of shape $(2, 2, 2)/(1, 0, 0)$. Let furthermore σ_{3n} be the Young diagram of shape

$$(m, m, m - 1, \ldots, 3, 2, 1)/(m - 1, m - 2, \ldots, 1, 0, 0)$$

that contains $3n$ boxes when $n \geq 3$, and σ_3 be the Young diagram of shape $(1, 1, 1)$, σ_6 be the Young diagram of shape $(2, 2, 2, 2)/(1, 0, 0, 0)$. Below we show three standard Young tableaux of shape $\sigma_7, \sigma_8, \sigma_9$, from left to right, respectively.

\[
\sigma_7 = \begin{bmatrix}
3 & 6 \\
1 & 4 & 7 \\
2 & 5 \\
\end{bmatrix} \\
\sigma_8 = \begin{bmatrix}
6 \\
3 & 7 \\
1 & 4 & 8 \\
2 & 5 \\
\end{bmatrix} \\
\sigma_9 = \begin{bmatrix}
7 \\
4 & 8 \\
1 & 5 & 9 \\
2 & 6 \\
3 \\
\end{bmatrix}
\]

Baryshnikov and Romik proved

Theorem 1 ([1], 3-strip tableaux).

\begin{align*}
(1.2) & \quad f^{\sigma_{3n-2}} = \frac{(3n - 2)!E_{2n-1}}{(2n - 1)!2^{2n-2}}, \\
(1.3) & \quad f^{\sigma_{3n-1}} = \frac{(3n - 1)!E_{2n-1}}{(2n - 1)!2^{2n-1}}, \\
(1.4) & \quad f^{\sigma_{3n}} = \frac{(3n)!(2^{2n-1} - 1)E_{2n-1}}{(2n - 1)!2^{2n-1}(2^{2n} - 1)}.
\end{align*}

Baryshnikov and Romik [1] asked for a bijective proof of Theorem 1, namely to prove Theorem 1 by directly relating 3-strip tableaux to up-down permutations in some combinatorial way. Here we prove Theorem 1 by decomposing 3-strip tableaux. The key decomposition offers an inductive way to relate 3-strip tableaux and up-down permutations, but finding a purely bijective proof of Theorem 1 still remains open.

While it is easy to bijectively prove $f^{\sigma_1} = E_1$ and $2^2 f^{\sigma_4} = 4E_3$, a framework to bijectively prove $2^{2n-2} f^{\sigma_{3n-2}} = (3n - 2)!/(2n - 1)!E_{2n-1}$ in general has met with
A DIRECT DECOMPOSITION OF 3-STRIP TABLEAUX

3

frustratingly little progress. It seems to me, in order to prove eq. (1.2), we have to first decompose the up-down permutation of size $2n - 1$ into small pieces, i.e., the up-down permutations of size 3 or 1, then start inserting $(n - 1)$ distinct integers from $[3n - 2]$ successively. That motivated us to consider the decomposition of 3-strip tableaux.

After Baryshnikov and Romik published their results [1], Stanley [3] also generalized shape θ_r by introducing the skew partition $\sigma(a, b, c, n)$. $\sigma(a, b, c, n)$ is defined to be the skew partition whose Young diagram has a squares in the first row, b squares in the other nonempty rows, and n rows in total. Moreover, each row begins $c - 1$ columns to the left of the row above, with $b \geq c$. Although the standard Young tableaux of shape $\sigma(a, b, c, n)$ is neither a subset nor a superset of the m-strip tableaux, the skew partition $\sigma(2, 3, 2, n)$ (resp. $\sigma(3, 3, 2, n)$) after the transposition of rows to columns, is exactly σ_{3n-1} (resp. σ_{3n}). It follows that $f^{\sigma(2,3,2,n)} = f^{\sigma_{3n-1}}$ and $f^{\sigma(3,3,2,n)} = f^{\sigma_{3n}}$.

Stanley [3] derived the generating functions for the standard Young tableaux of shape $\sigma(a, b, c, n)$ by analyzing the determinant in the Aitken formula. For any integer partition λ, let $\ell(\lambda)$ be the length of λ. If $\ell(\lambda) \leq m$ and $\mu \subseteq \lambda$, the Aitken formula asserts that

$$f^{\lambda/\mu} = n! \det \left[\frac{1}{(\lambda_i - \mu_j - i + j)!} \right]_{i,j=1}^m.$$

The Aitken formula can be obtained by applying the exponential specialization on the Jacobi-Trudi identity, see [2] [3]. For the special cases $f^{\sigma(2,3,2,n)} = f^{\sigma_{3n-1}}$ and $f^{\sigma(3,3,2,n)} = f^{\sigma_{3n}}$, the exponential generating functions for 3-strip tableaux of shape σ_{3n-1} and σ_{3n} are [3]

$$\sum_{n \geq 1} \frac{f^{\sigma_{3n-1}}}{(3n - 1)!} x^{2n} = \sum_{n \geq 1} \frac{(-1)^{n-1} x^{2n}}{(2n)!} \sum_{n \geq 0} \frac{(-1)^n x^{2n}}{(2n + 1)!} = x \tan \left(\frac{x}{2} \right)$$

$$\sum_{n \geq 1} \frac{f^{\sigma_{3n}}}{(3n)!} x^{2n} = \sum_{n \geq 1} \frac{(-1)^{n-1} x^{2n}}{(2n + 1)!} \sum_{n \geq 0} \frac{(-1)^n x^{2n}}{(2n + 1)!} = \frac{x}{\sin(x) - 1}$$

In the next two sections we will prove the generating functions for the 3-strip tableaux of shape σ_{3n-1} for $i = 0, 1, 2$ by decomposing the 3-strip tableaux.

2. THE KEY DECOMPOSITION

In what follows, we represent each standard Young tableau by a natural labeling on its corresponding poset. For $i = 0, 1, 2$, let $P_{\sigma_{3n-1}}$ be the poset whose elements are the squares of the Young diagram of shape σ_{3n-1}, with t covering s if t lies directly to the right or directly below s, with no squares in between. In this way, each Young diagram of shape σ_{3n-i} can be represented by the Hasse diagram of $P_{\sigma_{3n-i}}$ and we will speak of them interchangeably. A natural labeling of $P_{\sigma_{3n-i}}$ is an order-preserving bijection $\eta : P_{\sigma_{3n-i}} \to [3n - i]$, i.e., a natural labeling η is a bijection such that $\eta(x) \leq \eta(y)$ for every $x, y \in P_{\sigma_{3n-i}}$ and $x \leq y$. Sometimes a natural labeling of $P_{\sigma_{3n-i}}$ is also called a linear extension of $P_{\sigma_{3n-i}}$. The number of linear extensions of $P_{\sigma_{3n-i}}$ is denoted $e(P_{\sigma_{3n-i}})$. Then we have $f^{\sigma_{3n-i}} = e(P_{\sigma_{3n-i}})$ because each 3-strip tableau of shape σ_{3n-i} can be identified as a natural labeling of the poset $P_{\sigma_{3n-i}}$ for $i = 0, 1, 2$, see [2]. As an example, every 3-strip tableau of
is represented by a natural labeling of its corresponding poset

from left to right. Let τ_{3n} be the Young diagram of shape $(m, m, m - 1, m - 2, \ldots, 3)/(m - 1, m - 2, \ldots, 1, 0)$ that contains $3n$ boxes when $n \geq 2$, and τ_3 be the Young diagram of shape $(2, 2)/(1, 0)$. For instance, a standard Young tableau of shape τ_6 is represented as

We say a standard Young tableau T of shape σ_{3n-i} filled with integers m_1, \ldots, m_{3n-i} if the corresponding natural labeling of $P_{\sigma_{3n-i}}$ is an order-preserving bijection $\eta : P_{\sigma_{3n-i}} \rightarrow \{m_1, \ldots, m_{3n-i}\}$. If $m_i = i$ for all i, then T is the usual standard Young tableau of shape σ_{3n-i}. Let $P_{\sigma_{3n-i}}^d$ be the dual poset of $P_{\sigma_{3n-i}}$ and σ_{3n-i}^d be the Hasse diagram of dual poset $P_{\sigma_{3n-i}}^d$, then the shape σ_{3n-i}^d is obtained by flipping the shape σ_{3n-i} upside down and therefore $f^{\sigma_{3n-i}} = f^{\sigma_{3n-i}^d}$. We will use this fact to prove two simple but important observations in Lemma 2.

Lemma 2. The numbers $f^{\sigma_{3n-2}}, f^{\sigma_{3n-1}}, f^{\sigma_{3n}}$ and $f^{\tau_{3n}}$ satisfy

\begin{align}
(3n - 1) f^{\sigma_{3n-2}} &= 2 f^{\sigma_{3n-1}} \\
(3n) f^{\sigma_{3n-1}} &= f^{\sigma_{3n}} + f^{\tau_{3n}}.
\end{align}

Proof. Given a pair (T, i) where $i \in [3n - 1]$ and T is a standard Young tableau of shape σ_{3n-2} filled with integers from $[3n - 1] \setminus \{i\}$. Suppose $\omega(T) = a_1 a_2 \cdots a_{3n-2}$ is the reading word of tableau T, then the 3-strip tableau T, after omitting the labels in between, is

where $a_j \in [3n - 1]$ for all j. If $i < a_{3n-2}$, then we put i below a_{3n-2} such that a_{3n-2} covers i. Graphically, we obtain
which is a natural labeling on the poset $P_{\sigma_{3n-1}}$. If $i > a_{3n-2}$, then we put i above a_{3n-2} such that i covers a_{3n-2} and we obtain

which is a natural labeling on the dual poset $P_{\sigma_{3n-1}}$. It follows that $(3n-1)f^{\sigma_{3n-2}} = f^{\sigma_{3n-1}} + f^{\sigma_{3n-1}} = 2f^{\sigma_{3n-1}}$, i.e., eq. (2.1) follows. Next we prove eq. (2.2). Given a pair (T_1, i) where $i \in [3n]$ and T_1 is a standard Young tableau of shape σ_{3n-1} filled with integers from $[3n] - \{i\}$. Suppose $\omega(T_1) = b_1 b_2 \cdots b_{3n-1}$ is the reading word of tableau T_1, if $i < b_1$, then we obtain a tableau of shape τ_{3n} by putting i below b_1 such that b_1 covers i. Otherwise if $i > b_1$, then we obtain a tableau of shape σ_{3n} by putting i above b_1 such that i covers b_1. This implies eq. (2.2). □

From Lemma 2 we find in order to enumerate the 3-strip tableaux of shape σ_{3n-i} for $i = 0, 1, 2$, it suffices to enumerate the standard Young tableaux of shape σ_{3n-2} and τ_{3n}. In the following we shall introduce the way to decompose each standard Young tableau of shape σ_{3n-2} and τ_{3n}, which gives a combinatorial proof of

Theorem 3. For $n \geq 2$, the numbers $f^{\sigma_{3n-2}}$ and $f^{\tau_{3n}}$ satisfy

\begin{align}
(2.3) \quad f^{\sigma_{3n-2}} &= \frac{1}{2n-1} \sum_{i=1}^{n-1} \left(\frac{3n-2}{3i-1} \right) f^{\sigma_{3n-3i-1}} \\
(2.4) \quad f^{\tau_{3n}} &= \frac{1}{2n+1} \sum_{i=1}^{n-1} \left(\frac{3n}{3i} \right) f^{\tau_{3n-3i}}.
\end{align}

Proof. For every element a in the standard Young tableau T of shape σ_{3n-2}, there are at most two elements that cover a. We call an element b the left (resp. right) parent of a if b covers a and b is to the left (resp. right) of a, denoted by $p_{1,T}(a)$ (resp. $p_{2,T}(a)$). If a has no right (resp. left) parent, then we assume $p_{2,T}(a) = +\infty$ (resp. $p_{1,T}(a) = +\infty$).

We next define a reflection γ that maps each standard Young tableau T into its mirror image $\gamma(T)$, with respect to a vertical line outside T. Below we show the tableau T and its mirror image $\gamma(T)$.

We say the elements x_1, x_2, x_3 are on the bottom row of T. It is clear the set of standard Young tableaux of shape σ_{3n-2} (resp. τ_{3n}) is closed under the reflection γ. We use $\min(T)$ to denote the minimal element of tableau T. Let $T_{\sigma_{3n-2}}^{x_{1j}}$ (resp. $T_{\tau_{3n}}^{x_{1j}}$) be the set of standard Young tableau T filled with integers x_1, \ldots, x_{3n-2} satisfying

1. the left parent of $\min(T)$ is greater (resp. smaller) than the right parent of $\min(T)$, i.e., $p_{1,T}(\min(T)) > p_{2,T}(\min(T))$ (resp. $p_{1,T}(\min(T)) < p_{2,T}(\min(T))$),
2. $\min(T)$ is the j-th element from left to right of the bottom row of T.
Then from the reflection γ we can easily see
\[
|\mathcal{T}_{\sigma_{3n-2}^{1,j}}| = |\mathcal{T}_{\sigma_{3n-2}^{2,n-j}}| \quad \text{and} \quad \sum_{j=1}^{n-1} |\mathcal{T}_{\sigma_{3n-2}^{1,j}}| = \frac{1}{3} f^{\sigma_{3n-2}}.
\]
Given a pair (T, i) where $i \in [3n - 1]$ and $T \in \mathcal{T}_{\sigma_{3n-2}^{1,j}}$ is filled with integers from $[3n - 1] - \{i\}$, then we can represent T as below

\[\begin{array}{cccccc}
 \vdots & \vdots & & \vdots & \vdots \\
 x_1 & & c & > & a & x_2 \\
 & & \text{min}(T) & & & \\
 x_3 & & & x_8 & & x_9 \\
 \vdots & \vdots & & \vdots & \vdots \\
\end{array}\]

where $c = p_{1,T}(\min(T)) > a = p_{2,T}(\min(T))$. Let furthermore $\sigma_{3n-2}^{1,j}$ be the shape of T represented by the Hasse diagram

\[\begin{array}{cccccc}
 \vdots & \vdots & & \vdots & \vdots \\
 \vdots & & \text{min} & & & \\
 \vdots & \vdots & & \vdots & \vdots \\
\end{array}\]

where we use \square to emphasize the location of the minimal element of shape $\sigma_{3n-2}^{1,j}$ is fixed by the assumption on T. We will construct the bijection $(T, i) \mapsto g(T)$ by comparing the values of i and $a = p_{2,T}(\min(T))$. If $i > a$, then we let i cover a in the new tableau $g(T)$. In this case we notice $\min(T) = \min(g(T)) = 1$ and the tableau $g(T)$ can be represented as

\[\begin{array}{cccccc}
 \vdots & \vdots & & \vdots & \vdots \\
 \vdots & & \square & \vdots & \vdots \\
 \vdots & \vdots & & \vdots & \vdots \\
\end{array}\]

where $c > a$. Let σ_{1}^{i} be the shape of $g(T)$ under the condition $i > a$, represented by

\[\begin{array}{cccccc}
 \vdots & \vdots & & \vdots & \vdots \\
 \vdots & & \text{min} & & & \\
 \vdots & \vdots & & \vdots & \vdots \\
\end{array}\]

where the location of the minimal element is fixed by T. If $i < a$, then we let a cover i in the new tableau $g(T)$ and the tableau $g(T)$ can be represented as

\[\begin{array}{cccccc}
 \vdots & \vdots & & \vdots & \vdots \\
 \vdots & & \text{min}(T) \square & \vdots & \vdots \\
 \vdots & \vdots & & \vdots & \vdots \\
\end{array}\]

where $c > a$. Let σ_{2}^{i} be the shape of $g(T)$ under the condition $i < a$, represented by

\[\begin{array}{cccccc}
 \vdots & \vdots & & \vdots & \vdots \\
 \vdots & & \text{min} & & & \\
 \vdots & \vdots & & \vdots & \vdots \\
\end{array}\]
where only two elements in \Box can be the minimal element. We shall next prove
\begin{equation}
(2.5)
\sum_{j=1}^{n-1} f^{\sigma_j} = (n - \frac{1}{2}) f^{\sigma_{3n-2}}.
\end{equation}

We first observe that for the tableau $g(T)$ of shape σ_2^i, $\min(g(T))$ is either equal to $\min(T)$ or equal to i. If $i < \min(T)$, then $i = \min(g(T)) = 1$ and $\min(T) = 2$.

By removing i and replacing every element j by $j - 1$, we obtain a standard Young tableau filled with integers $1, 2, \ldots, 3n - 2$ from $T_{\sigma_2^{i-1}}$. By summing over all the possible locations of the minimal element of T, we get
\begin{equation}
\sum_{j=1}^{n-1} f^{\sigma_{3n-2}^{j-1}} = \frac{1}{2} f^{\sigma_{3n-2}}.
\end{equation}

If $i > \min(T)$, then $\min(g(T)) = \min(T) = 1$ and $c > a > i$. We remove $\min(T)$ from the tableau $g(T)$ and connect i with c, next we replace every element j by $j - 1$, which gives us

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Diagram of a standard Young tableau T with colored elements.}
\end{figure}

where $i' = i - 1$, $c' = c - 1$, $a' = a - 1$, $x_m' = x_m - 1$ and i' is not necessary to be the minimal element 1. We color the element i' in the above tableau. Therefore the tableau $g(T)$ under the condition $i > \min(T)$, is uniquely corresponding to a tableau of shape σ_{3n-2}, having the j-th element i' from the bottom row colored, whose left parent is larger than its right parent. By summing over all the possible values of j, we need to count the number of standard Young tableau T of shape σ_{3n-2} having a colored element i' from the bottom row and $p_{1,T}(i') > p_{2,T}(i')$. This number is $\frac{1}{2} (n - 1) f^{\sigma_{3n-2}}$ since there are $(n - 1)$ ways to choose the colored element from the bottom row and by reflection γ, this number is equal to the number of standard Young tableau T' of shape σ_{3n-2} having a colored element m' from the bottom row, such that $p_{1,T'}(m') < p_{2,T'}(m')$. In sum, after discussing two cases $i < \min(T)$ and $i > \min(T)$, we have proved
\begin{equation}
\sum_{j=1}^{n-1} f^{\sigma_2} = \frac{1}{2} n f^{\sigma_{3n-2}}
\end{equation}

and eq. (2.5) follows immediately since inserting i to T for $T \in T_{\sigma_2^{i-1}}$ gives us
\begin{equation}
f^{\sigma_i} + f^{\sigma_2} = (3n - 1) f^{\sigma_{3n-2}},
\end{equation}

from which it follows
\begin{equation}
\sum_{j=1}^{n-1} (f^{\sigma_i} + f^{\sigma_2}) = \frac{1}{2} (3n - 1) f^{\sigma_{3n-2}}.
\end{equation}

Consequently it remains to prove
\begin{equation}
(2.6)
f^{\sigma_1} = \frac{1}{2} \left(\frac{3n}{3i} \right) f^{\sigma_{3n-1}} f^{\sigma_{3n-3i-1}}.
\end{equation}

For a given tableau $g(T)$ of shape σ_1^i, we have $\min(T) = \min(g(T)) = 1$. By removing 1 from the tableau $g(T)$ and replacing every label m by $m - 1$, we obtain a standard Young tableau T_2.

Together with the exponential generating function for E_f, immediately have the generating function of f from these generating functions, Theorem 1 is proved. More precisely, let

$$f(x) = \sum_{n \geq 1} \frac{f^{\sigma_{3n-1}}(3n-2)!}{x^{2n-1}}, \quad g(x) = \sum_{n \geq 1} \frac{f^{\sigma_{3n}}(3n-1)!}{x^{2n-1}},$$

then from eq. (2.1) we have $f(x) = 2g(x)$. Furthermore, eq. (2.3) is equivalent to $f'(x) = 1 + g(x)^2$ where $f(0) = 0$. This leads to a unique solution, $g(x) = \tan(x/2)$. Together with the exponential generating function for E_{2n-1}, the formula for $f^{\sigma_{3n-2}}$ and $f^{\sigma_{3n-1}}$, eq. (1.2) and eq. (1.3) are proved. Similarly, let

$$h(x) = \sum_{n \geq 1} \frac{f^{\sigma_{3n}}(3n)!}{x^{2n-1}},$$

then eq. (2.4) is equivalent to $-xh'(x) = -x + 2h(x) - xh^2(x)$ where $h(0) = 0$. This yields a unique solution

$$h(x) = -\frac{1}{\tan x} + \frac{1}{x},$$

and consequently in view of eq. (2.2), the exponential generating function for $f^{\sigma_{3n}}$ is equal to $g(x) - h(x)$, thus eq. (1.4) follows. By considering the expansion of $x/\sin(x)$, we finally obtain the coefficients $f^{\sigma_{3n}}$, i.e., eq (1.4). Alternatively, we can obtain the expression of $f^{\sigma_{3n-2}}$ and $f^{\sigma_{3n}}$ by using the recursion of tangent numbers E_{2n-1} and Bernoulli numbers B_{2n}. The Bernoulli numbers B_{2n} are integers defined from the Euler number E_{2n-1} by the relation:

$$B_{2n} = \frac{nE_{2n-1}}{2^{2n-1}(2^{2n-1} - 1)} \quad \text{where} \quad n \geq 1.$$
After verifying the initial conditions that $f^{\sigma_1} = E_1$, $2^2 f^{\sigma_4} = 4 E_3$, $1!(2^2 - 1)f^{\tau_3} = 3! E_1$ and $3!(2^4 - 1)f^{\tau_6} = 6! E_3$, we can inductively prove eq. (1.2) and

$$f^{\tau_{3n}} = \frac{(3n)! E_{2n-1}}{(2n-1)!(2^{2n} - 1)}.$$

In view of Lemma 2, we can further obtain the expression of $f^{\sigma_{3n-1}}$ and $f^{\tau_{3n}}$. Henceforth the proof of Theorem 1 is complete.

REFERENCES

[1] Y. Baryshnikov and D. Romik, Enumeration formulas for Young tableaux in a diagonal strip, Israel Journal of Mathematics 178, 157-186 (2010).
[2] R. Stanley, Enumerative Combinatorics I and II, Cambridge University Press, 1999.
[3] R. Stanley, Two remarks on skew tableaux, The electronic journal of combinatorics, 18(2), #P16, 2011.

E-mail address: yu.jin@tuwien.ac.at

Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Hauptstr. 8–10, 1040 Wien, Austria