Molecules and Prostaglandins Related to Embryo Tolerance

Gabriel Mayoral Andrade, Gabriela Vásquez Martínez, Laura Pérez-Campos Mayoral, María Teresa Hernández-Huerta, Edgar Zenteno, Eduardo Pérez-Campos Mayoral, Margarito Martínez Cruz, Ruth Martínez Cruz, Carlos Alberto Matías-Cervantes, Noemi Meraz Cruz, Carlos Romero Díaz, Eli Cruz-Parada and Eduardo Pérez-Campos

It is generally understood that the entry of semen into the female reproductive tract provokes molecular and cellular changes facilitating conception and pregnancy. We show a broader picture of the participation of prostaglandins in the fertilization, implantation and maintenance of the embryo. A large number of cells and molecules are related to signaling networks, which regulate tolerance to implantation and maintenance of the embryo and fetus. In this work, many of those cells and molecules are analyzed. We focus on platelets, polymorphonuclear leukocytes, and group 2 innate lymphoid cells involved in embryo tolerance in order to have a wider view of how prostaglandins participate. The combination of platelets and neutrophil extracellular traps (Nets), uterine innate lymphoid cells (uILC), Treg cells, NK cells, and sex hormones have an important function in immunological tolerance. In both animals and humans, the functions of these cells can be regulated by prostaglandins and soluble factors in seminal plasma to achieve an immunological balance, which maintains fetal-maternal tolerance. Prostaglandins, such as PGI2 and PGE2, play an important role in the suppression of the previously mentioned cells. PGI2 inhibits platelet aggregation, in addition to IL-5 and IL-13 expression in ILC2, and PGE2 inhibits some neutrophil functions, such as chemotaxis and migration processes, leukotriene B4 (LTB4) biosynthesis, ROS production, and the formation of extracellular traps, which could help prevent trophoblast injury and fetal loss. The implications are related to fertility in female when seminal fluid is deposited in the vagina or uterus.

Keywords: prostaglandins, PGE2, platelets, polymorphonuclear leukocyte, group 2 innate lymphoid cells, embryo tolerance
INTRODUCTION

Prostaglandins (PGs) belong to a subclass of eicosanoids known as prostanooids, these are comprised of C20 atoms, including a cyclopentane ring. PGs are hormone-like chemical messengers which act as autacoids (1) through prostaglandin receptors (G protein-coupled receptors) and their variants or isoforms such as EP1-4, DP1-2, FP, TP, and IP1,2. The main precursor of eicosanoids is arachidonic acid (AA), this is released by the action of phospholipases A2 (PLA2) and C (PLC) (3), AA is then converted into different metabolites through the COX, LOX, and CYP450 pathways (4). The importance of prostaglandins becomes evident when ovulation and fertilization are affected, e.g., as cyclooxygenase (COX) is inhibited by aspirin or indomethacin (5).

PGs have a significant role in maternal immune tolerance and the conception process. We consider prostaglandins in seminal fluid as key in modulating responses in different types of cells participating in fetal-maternal tolerance.

The balance of the immune response in maintaining fetal-maternal tolerance is due to a complex network of soluble molecules and cells, such as macrophages, and dendric, decidual, and NK cells. In Table 1, cells and biological processes are summarized. Moreover, many molecules are released by these cells and have a fundamental role in the tolerance process. Table 2 summarizes the most important of these.

The molecules are released through macro-, micro-, and nanovesicles, including exosomes from placenta cells, syncytiotrophoblasts, denudated syncytiotrophoblasts, and extravillous trophoblasts. All are part of the complex intercommunication between the foetus and the mother. These vesicles transport immunomodulatory proteins such as Fas ligand, TRAIL, CD274, CD276, HLA-G5, Synctyin-1, hCG, glycoelidin, galectin-1 (107), which may maintain fetal-maternal tolerance, and may even be related to recurrent early miscarriage (108).

The accumulated evidence indicates that when sexual intercourse occurs and seminal fluid is deposited in the female reproductive tract, the prostaglandins in the seminal fluid, i.e., PGE2, PGE1, PGE3, and PGF2 (109), initiate a signaling cascade toward the woman’s innate immune cells. The cells mentioned in Table 1, such as platelets, polymorphonuclear leukocytes, and Group 2 innate lymphoid cells participate in the physiological mechanisms in embryo tolerance and implantation, allowing successful fertilization.

PREIMPLANTATION, IMPLANTATION, AND DECIDUALIZATION

Implantation begins by apposition and adhesion of the embryo to the luminal epithelium of the endometrium. Following its invasion toward the stromal bed, the union of the embryo to the luminal epithelium transforms the underlying stromal fibroblasts into secretory cells of the epithelioid type, or decidualization (110). Through different molecules such as IL-1β, steroid hormones, insulin-like growth-factor-binding protein-1 (IGFBP-1) and prostaglandin-endoperoxide synthase-2 (PTGS-2), the decidualized cells regulate this stage with the invasion of embryos, and the formation of the placenta (110).

Prostaglandins participate in each stage of the interaction of the embryo with the endometrium, for example in preimplantation, implantation (apposition, adhesion/attachment, invasion/penetration) and decidualization; as well as affecting many other cells and molecules. PGs have a complex role in each of these stages, e.g., the essential role of prostaglandin E2 (PGE2) in the oocyte is to enhance the cumulus expansion in ovulation for sperm penetration, to regulate extracellular matrices disassembly (111), and also, importantly, to participate during transport and embryo implantation (112).

PROSTAGLANDIN SIGNALING BY SEMINAL FLUID AND FERTILIZATION

Preceding evidence shows that sperm induces immunosuppression against hapten-modified self and alloantigens, including cytotoxic T-cell in mice responses (113). Also, seminal plasma contains high concentrations of prostaglandins, key molecules in the regulation of sexual intercourse signaling (114). The female immune response tolerates seminal plasma and supplies cytokines and prostaglandins, which are synthesized in the male accessory glands. In addition, it causes molecular and cellular changes in the endometrium. This facilitates the development and implantation of the embryo when prostaglandins, cytokines and hormones bind to receptors in target cells in the cervix and uterus (115).

The prostaglandins present in seminal fluid have a role in immune modulation. They regulate the pathways that may exacerbate inflammation in the female reproductive tract during physiological processes such as ovulation, implantation, and parturition (116), e.g., ejaculation or the spermatozoa induce an inflammatory response in the endometrium in the preimplantation period after mating, in which IL-1 (alpha and beta), and TNF-alpha participate (117).

Seminal plasma derived from the male accessory sex glands performs a fundamental function in fertilization in animals. The components of seminal plasma participate in the transport and survival of viable sperm and the elimination of non-viable sperm from the uterus (118). In the quail species, the cloacal gland produces prostaglandin F2α (PGF2α), which contributes to successful fertilization and acts as a natural mechanism for the protection of sperm from rejection or death by the female reproductive tract (119). Seminal fluid factors exert significant effects on the female reproductive tract, as shown by Shahnazi et al. (120). Also, in the uterine tissues of mice that were paired with mice without seminal vesicles, implantation rates, enzyme cytosolic PGE synthase (cPGES), microsomal PGE synthase (mPGES) and receptors EP2 and EP4 involved in the signaling pathway of PGF2, were all significantly low (120). In addition, 19-hydroxy PGE and 19-hydroxy PGF are regulators of sperm motility, and its effects may be mediated by the content of ATP in sperm (121). Prostaglandins such as PGE-1 are potent stimulators of adenylate cyclase in various
Cells	Biological process	Molecules related	Prostaglandins related	Authors
Dendritic cells	ILT4+ Dendritic cells (DCs) Induction of Foxp3+ Treg cells. DCs suppress T-cell activity, induce T helper cell anergy and inhibit the differentiation of cytotoxic T cells.	IL-10	PGE2-EP4 receptor signaling inhibits IL-12 and promotes IL-23 production.	Liu et al. (8)
	Tolerogenic dendritic cells (tol-DCs) Present the antigen to Th0 cells, which become activated, proliferate and differentiate into peripherally derived Tregs (pTregs).		PGE2 regulates IL-10 production.	Flesz-Grau et al. (7)
Macrophages	M1 macrophages Skew T cell responses to a TH1 mediated immune response.	IL-12, IL-23, ROS	PGE2 is essential to corpus luteum formation by stimulating macrophages to induce angiogenesis through EP2/EP4.	Brown et al. (9)
	M2 macrophages Promote TH2 or antibody mediated immune responses.	IL-10, TGF-β	PGE2, PGF2α, and PGE2 contribute to differentiation toward M2-like macrophages	Brown et al. (9)
NK cells	Uterine NK cells (uNK) Respond to fetal MHC class I molecules. Stimulate fetal growth. Regulate decidual blood vessel remodeling.	IFN-γ, growth-promoting factors	Suppression of their activity has been observed in humans and mice by PGE2.	Sojka et al. (12) Fu et al. (13) Yang et al. (14) Manaster et al. (15) Yu et al. (16)
	Endometrial NK cells (eNK) Inactive cells (before IL-15 activation) that are present in the endometrium before conception and pregnancy.	IP-10 or IFN-γ		
	Decidual NK cells (dNK) (CD56brightCD16-) Widen maternal blood vessels and promote fetal growth. Interact with resident myeloid cells and participate in the induction of regulatory T cells.	IL-24, Angiopoietin 1 and 2 (Ang 1, Ang 2), vascular endothelial growth factor C (VEGF-C), TGF-β1, SDF-1, pleiotrophin, osteoglycin, IL-8, protein-10.	Yang et al. (14)	
Decidual cells	Decidual stromal cells (DSCs) Differentiation and development of dNK during decidualization. Induce the downregulation of activating NK receptors and inhibit NK cell proliferation, cytoxicity, and IFN-γ production.	IL-24, TGF-β	The DSC-induced inhibition is primarily mediated by PGE2.	Yang et al. (14) Sojka et al. (12) Vacca et al. (17) Croxatto et al. (18) Vacca et al. (17)
	Decidual ILC3 (NCR+NCR-) Establish physical and functional interactions with neutrophils and produce factors for pregnancy induction/maintenance and promotion of the early inflammatory phase.	IL-8, IL-22, GM-CSF, TNF, IL-17		
	Decidual Tregs Express CD25, CTLA4, and PD-L1, which are hallmark mediators of Treg suppression. Downregulate DC costimulatory molecules CD80 and CD86 needed for T effector (Teff) activation.	IL-10, TGF-β		Robertson et al. (8)
Decidual T cells	Proliferate in response to fetal tissue. Elevated expression of proteins associated with the response to interferon signaling.	IL-4, IL-10, IFN-γ, leukemia inhibitory factor and colony-stimulating factor 1 (M-CSF).		Ermerudh et al. (19) Powell et al. (20)
Decidual myeloid cells (dCD14+) Induce Treg, dNK and dCD14+ cells resulting in the production of IFN-γ.	IFN-γ, IL-4	TGF-β, indoleamine 2,3-dioxygenase (IDO).	Vacca et al. (17)	
Decidual CD4+EM cells Increase expression of the immune inhibitory checkpoint receptors PD-1, Tim-3, cytotoxic T lymphocyte antigen 4 (CTLA-4), and lymphocyte activation gene 3 (LAG-3).	IFN-γ, IL-4		Kieffer et al. (21)	
Decidual CD8+EM cells The interaction with trophoblasts induces the upregulation of Tim-3 and PD-1. Trophoblasts may induce tolerance in CD8+ EM cells in the decidua. Reduced expression of perforin and granzyme B.	IFN-γ, IL-4	PGE2 is an important modulator of CD8 membrane expression in human lymphocytes.	Kieffer et al. (21) Tilburgs et al. (22) Ouellette et al. (23)	
T Cells	Tregs (CD4+CD25+FOXP3+) Inhibit the activation and function of Th1 and Th17 cells and control inflammation. Control IL-15 release from DCs and suppress uNK cytolytic activity.	TGF-β, IL-10, Heme oxygenases-1(HO-1)	PGE2 promotes the development of regulatory T cells.	Robertson et al. (8) Erkers et al. (24)

(Continued)
cellular systems (122). An increase in adenylate cyclase activity and subsequent entry into cAMP levels may also be involved. PGs stimulate the fertilization capacity of human sperm by facilitating the transport of calcium through their plasma membrane (123).

The amplification of effects by microparticles from epididymal fluid (epididymosomes) and prostasomes could lead to the activation of many genes and the expression of related molecules, as reported in humans and mice, some species of cows, pigs and sheep (123, 124). More specifically, signaling may affect the enzymes of the cyclooxygenase pathway and other molecules related to the metabolism of arachidonic acid, e.g., Cytochrome P450 in blastocyst implantation (125), and prostaglandin D2 in the maintenance of pregnancy through Th1/Th2 and T-cytotoxic (Tc) 2 cells balance (126, 127).

The change induced by seminal plasma in a porcine uterus makes conception and pregnancy possible (128), it also reduces embryonic mortality in pigs and other livestock (129). In addition, seminal plasma possesses potent immunosuppressive activity caused by immune-deviating soluble factors, inducing tolerance, with molecules, such as Transforming growth factor-β (TGFβ) and prostaglandin E (PGE).

EFFECTS OF PROSTAGLANDINS AND RELATED MOLECULES ON INNATE IMMUNITY AND FEMALE REPRODUCTIVE TRACT CELLS

Cells of the innate immune response are modulated by prostaglandins (130), among them, are the following:

1. M1 macrophages (Mø1) which produce proinflammatory cytokines (TNFα, IL-6, IL-12, IL-23, and IL-1β), M2 macrophages(Mø2) which produce IL-10 and TGFβ (transforming growth factor-β) and have anti-inflammatory and immune down-regulating properties. Both are regulated by prostaglandins in pregnancy (9) (Table 1).

2. Dendritic cells (DCs) have several subclasses, e.g., CD103+, myeloid, plasmacytoid, the latter are related to the production of high IFNα levels. In infertile patients with endometriosis, CD4+, CD25+, and CD103+ dendritic cells are increased in peritoneal fluid (131), dendritic cells CD103+ have a relevant role in implantation (132); in addition, CD103+ dendritic cells are regulated by prostaglandin D2 in different disorders (133).

3. Endothelial cells have innate and immune tolerogenic function (134). In patients with preeclampsia (PE), in the presence of vascular endothelial growth factor (VEGF), these cells increase levels of prostacyclin (135). In the pathogenesis of PE, VEGF (VEGF-A) participates in the proliferation, migration and angiogenesis of endothelial cells, and works through the receptors VEGFR-1 (or Flt-1) and VEGFR-2. In PE this increases the release of FMS-like tyrosine kinase-1 (sFlt-1) and blocks free VEGF to protect the fetus from toxicity (136).

4. Neutrophils (PMN) are regulated by cytokines and prostaglandins (137). The aspirin (ASA) is used for prevention of preeclampsia in high-risk patients (138, 139). ASA triggers

| TABLE 1 | Continued |
Authors	Molecules related	Biological process	Cells	Endothelial and epithelial cells
Merse付け et al. (19)	VN, TGFβ	Induce the mucosal environment that is intrinsically rich in TGFβ.	T helper-3 cells (Th3 cells)	Endothelial stromal cells (ESCs)
Grasso et al. (20)	VN, TGFβ	Express higher levels of T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) and programme death-1 (PD-1) inducing “decadualization” window transforms endothelial stromal cells into larger more decidual cells.	Human Umbilical Ven Endothelial Cells (HUVECs)	Possess immune-regulating properties and are one of the first fetal cells to make contact with foreign maternal immune cells. Also, increase the Treg cell population.
Ahmad et al. (21)	IL-10	Induce decidualization in the endometrium.	Endometrial and epithelial cells	
TABLE 2 | Principal soluble molecules acting in implantation (apposition/adhesion/invasion) to maintain fetal-maternal tolerance.

Effects	Soluble molecule	Biological process	Steroid hormones and related molecules	Author
Attachment and implantation	Oestrogen	Regulation of oestrogen receptors [IL-24 (ERβ/IL-24) signal pathways. Induces the recruitment of macrophages and DCs.	Promotes the conversion of peripheral Tregs in secondary lymphoid organs. Prolongs the survivals of H-Y skin grafts by the expansion of Tregs, suppression of CD3(+) CD8(+) effector T-cells and immune shifts toward Th2 cytokines.	Padmanabhan et al. (32) Vrtačnik et al. (33) Lin et al. (34)
	17β-oestradiol (E2)	Promotes uterine blood flow, myometrial growth stimulates breast growth and later promotes cervical softening and expression of myometrial receptors. Expansion and activation of monocytic-myeloid-derived suppressor cells (M-MDSCs) through signal transducer and activator of transcription (STAT)-3.	E2-treated MDSCs have a stronger capability in suppressing T cell responses. 17β-oestradiol, FSH, oxytocin, and arachidonic acid (AA) induce receptors and enzymes through the synthetic pathway for PGE2.	Rahimpour et al. (35) Pan et al. (36) Falchi and Scaramuzzi, (37)
Progesterone (P4)		Stimulates the activity of some specific enzyme matrix metalloproteinases and adhesion molecules. Inhibits antibody production and suppresses T-cell activation and cytotoxicity and modifies the activity of natural killer cells; influences B cells and induces secretion of protective asymmetric antibodies.	Progesterone-induced blocking factor (PBF) mediates the immunomodulatory effects of progesterone. Consumption of IL-4 increases and the number of cells undergoing apoptosis. Increases secretion of IL-10, IL-27, causes increased secretion of IL-13 and decreased secretion of IL-23 by the monocyte-derived dendritic cells. Upregulates macrophage-colony-stimulating factor (M-CSF) and downregulates granulocyte-macrophage colony-stimulating factor (GM-CSF). Progesterone and prostaglandin E have synergistic inhibition effects on T-cell mitogenesis.	Rahimpour et al. (35) Kyrchkiev et al. (38) Svensson et al. (39) Fujisaki et al. (40)
Chorionic gonadotropin (CG)	hCG is comprised of 4 molecules, one produced by villous syncytiotrophoblastic cells, another hyperglycosylated hCG produced by cytotrophoblast cells, the free beta subunit, and hCG produced by anterior pituitary gonadotrophic cells. Stimulates P4 production by the corpus luteum, facilitating trophoblast invasion, and promoting angiogenesis.	It is a pleiotropic molecule that mediates implantation. Upregulation of indoleamine 2,3-dioxygenase activity of dendritic cells. hCG may have a biological role in the regulation of PG (PGE and 6-keto-PGF1) synthesis in trophoblasts. In particular, the hyperglycosylated form stimulates implantation through the invasion of cytotrophoblast cells.		Cole, 2020. (41). Szmilt et al. (42) Bansal et al. (43) Schumacher et al. (44) North et al. (45)
Neuropeptide kisspeptin (KP)	KP is a regulator of Gonadotropin (GnRH) secretion and stimulates LH secretion and LH pulse frequency. KP-10 moderates trophoblast invasion and regulating implantation.			Muntaz et al. (46) Francis et al. (47) Skrupsklate et al. (48) Pinilla et al. (49) Harper, 1989. (50) Tieman, 2008. (51) Roudeebush, 2001. (52)
Platelet-Activating Factor (PAF)	Platelet-activating factor is an acetylated Glycerophospholipid, releasing histamine from platelets, which increase vascular permeability. PAF is related to processes of ovulation, implantation and parturition, and is regulated by ovarian steroid hormones. PAF is associated with sperm motility, acrosome reaction, and fertilization.			De et al. (53) Ochoa-Bernal et al. (54) Cork et al. (55) Prins et al. (56) Baston-Buest et al. (57)
Cytokine mediators of implantation and decidualization	IL-6 is a cytokine with functions in immunity, metabolism and tissue regeneration. It is produced in the endometrial epithelium and stromal cells during implantation. Variation in the expression of pro-inflammatory cytokines such as IL-6, CSF-1, macrophage colony-stimulating factor (CSF-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 1-alpha, interleukin 1-beta, and tumor necrosis factor-alpha (TNF alpha) has been reported in the uterus immediately after mating in mice. Changes in the bioavailability of IL-6 are important for pregnancy. The increase of IL6 is related to unexplained infertility, recurrent miscarriage, preeclampsia and preterm delivery and inhibition of the generation of CD4 + regulatory T cells in pregnancy tolerance. Local IL-6 insufficiency could also contribute to recurrent spontaneous abortion. IL6 activate cathepsin S (CTSS) in dendritic cells, in decidualized endometrial stromal cells, this process is regulated by cystatins CST7 and CST3.			(Continued)
Effects	Soluble molecule	Biological process	Steroid hormones and related molecules	Author
---------	-----------------	--------------------	---------------------------------------	--------
Leukaemia inhibitory factor (LIF)	It is a member of the interleukin-6 family of cytokines. Upregulation of p0FUT1, promotes trophoblast cell migration, invasion and differentiation at the fetal-maternal interface through activating the Janus kinase/signal transducers and fetal transcription (JAK/STAT) and a mitogen-activated protein kinase (MAPK) signaling pathway. LIF participates in placentation by up-regulating PGE2 production and PGE2 receptor expression.	Urokinase-type plasminogen activator receptor (uPAR) is upregulated by LIF, also it is mediated by phosphoinositide-3-kinase–protein kinase B/Akt (PI3K/AKT) signaling pathway.	Szmidi et al. (42) Liu et al. (59) Zheng et al. (59) Horita et al. (60)	
IL-1	Acts on blastocysts, syncytiotrophoblasts and endometrial glands.	Stimulates endometrial secretion of endometrial leukaemia inhibitory factor (LIF), prostaglandin E2, and integrin β3 subunit expression.	Viganò et al. (61) Hambartsoumian, 1998. (62) Fouladi-Nashta et al. (63)	
IL-11	IL-11 regulates endometrial epithelial cell increasing adhesion to fibronectin and collagen IV, similar to IL-6.	IL-11 decreases TNFα in a dose-dependent way in epithelial and stromal cells, in endometria, through gp130. IL-11 production is maximal during decidualization, its production depends on steroid hormones, relaxin and PGE2.	Manaster et al. (15) Kopcow and Karumanchi, 2007. (66) Joshi et al. (67)	
IL-15	Promotes the differentiation of the local eNK cells toward dNK cells.	Decidual NK cells secrete cytokines and angiogenic factors to placentation vascular remodeling and differentiation, ifN-γ, IP-10, vascular endothelial growth factor (VEGF), Placenta growth factor (PlGF). Suppression of IL-15-activated NK cell is mediated by PGE (2).	Yang et al. (14)	
IL-24	Regulates the function of eNK and pNK through the Janus kinase (JAK)/STAT3 pathway.			
Cytokine-like protein 1 (Cyt1)	Regulation of embryo implantation. It is an ovarian hormone-dependent protein expressed in the endometrium that stimulates the secretion of LIF and heparin-binding epidermal growth factor (HB-EGF), induces endometrial cell proliferation.	Numerous integrins interact with the trophoblast, especially the oββ3, with its ligand osteopontin. HOXA 10 and IL-1 regulated β3 subunit expression in the receptive endometrium. The absence of L-selectin and its Meca-79 ligand is associated with recurrent implantation failure (RIF), also, a significant reduction of HOXA-10 and E-cadherin in recurrent implantation failure (RIF) and recurrent miscarriage (RM). iCAM-1, VCAM-1, NCAM, CD44, and CD49d provide interaction between the embryo and maternal cells. Melatonin is an indoleamine acting as an antioxidant, free radical scavenger, and it promotes embryo development in different species	Achiache and Revel, 2006. (71) Foulk et al. (72) Yang et al. (73) Lu et al. (74)	
Melatonin	Melatonin is an indoleamine acting as an antioxidant, free radical scavenger, and it promotes embryo development in different species	A positive feedback loop among p53, p38, and p21 inhibiting mucin 1 and activating LIF is realized by melatonin signaling, which improves adhesion proteins, present at the membrane level on endometrial cells and the blastocyst, in the pre-implantation stage. Melatonin is associated with the inhibition of prostaglandin synthesis.	Carломagno et al. (75) Voiculescu et al. (76) Gimeno et al. (77)	
Calcitonin (CT)	It is a peptide hormone which regulates calcium homeostasis			
Platelet-derived growth factor (PDGF-BB)	Decidualized endometrial stromal cells migrate upon exposure to PDGF-BB.	Involvement of ERK1/2 and PI3K/Akt signaling in endometrial stromal cell chemotaxis. Both epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) participate in implantation in the first days of gestation.	Xiong et al. (78) Xiong et al. (79) Schwenke et al. (80) Jaber and Kan, 1998. (81)	
TABLE 2
Continued

Effects	Soluble molecule	Biological process	Steroid hormones and related molecules	Author
	Platelet-derived growth factor (PDGF-AA)	Secreted by the trophoblast cell line AC-1M88 and by first trimester villous explants. Trigger endometrial stromal cell chemotaxis.	Participates in attracting decidualized endometrial stromal cells to the implantation site.	Schwenke et al. (80)
	Tissue inhibitor of MMP (TIMP)	Endogenous inhibitor of MMP activity in tissues.	Modulates early post-implantation.	Liu et al. (58)
	Heparin-binding epidermal growth factor (HB-EGF)	HB-EGF has a function in implantation, decidualization and placenta development. Promotes differentiation of trophoblast cells to the invasive phenotype. Stimulates the migration of decidualized endometrial stromal cells.	Inhibits trophoblast invasion. Decidual cell production. TIMP-2 attenuates the proteolysis of IGFBP-1 by MMP-3. Endometrial stromal cells with HB-EGF increase the level of the tetraspanin CD82, a metastasis suppressor found in decidual cells at the implantation site. A decreased level of HB-EGF is related to pregnancy complications.	Coppock et al. (83)
	Lipoxins	These are derived from arachidonic acid, an ω-6 fatty acid. They exert their anti-inflammatory effects through binding to high-affinity G protein-coupled lipoxin receptors.	Lipoxins, calcitonin, leukaemia inhibitory factor, and homeobox A10 are essential in implantation. Lipoxin A4 is regulated by human chorionic gonadotrophin (hCG) during early pregnancy and it has anti-inflammatory activity in human endometrium and decidua tissue.	Xiong et al. (79)
	Complement components and their receptors (C1q, gC1q, α4β1 integrin)	It is produced at the fetal-maternal interface by macrophages, decidual endothelial cells and invading trophoblasts.	Synthesis of C1q by decidual endothelial cells is crucial for the replacement by endovascular trophoblasts. Surfactant proteins SP-A and SP-D play a role in implantation, trophoblast invasion and placental development.	Agostinis et al. (87)
	Protein O-phosphotransferase 1 (poFUT1)	Favors trophoblast cell migration and invasion at the fetal-maternal interface.	Increases Tissue inhibitors of metalloproteinases 1 and 2 (TIMP-1, TIMP-2) expression further inhibited MMP-2 activity. Activates MAPK and PI3K/Akt signaling pathways.	Liu et al. (58)
	Matrix metalloproteinase (MMP-2) -2	Implicated in the remodeling of the extracellular matrix (ECM) during the trophoblast invasion process.	Synthesis and degradation of the extracellular matrix under physiological and pathological conditions. It is capable of degrading collagen. During the implantation process, matrix metalloproteinase (MMP)/insulin-like growth factor binding protein-1 (IGFBP-1) activity is stimulated by leukaemia inhibitory factor (LIF) and colony-stimulating factor (CSF).	Liu et al. (58)
	Gonadotropin-releasing hormone type II (GnRH-II) agonist	Promotes cell motility of human decidual endometrial stromal cells through the GnRH-IR by phosphorylation of ERK1/2 and JNK in decidual endometrial stromal cells.	Increased expression and proteolytic activity of matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) is due to GnRH-II.	Wu et al. (92)
Immune tolerance	Human leukocyte antigen G (HLA-G)	Promotes proliferation and cytokine production by uNK cells.	Secretion of growth-promoting factors essential for fetal development by uNK cells. Levels of sHLA-G ≥ 2 U/ml in embryos which were selected for transfer after IVF based on culture media gave a 65% pregnancy rate compared with low levels of sHLA-G. The HLA-G -725 promoter polymorphism has a high risk for recurrent miscarriage.	Sojka et al. (12)
	Soluble MHC class I (sMHC-I)	sMHC-I induces apoptosis by stimulating expression of CD95-L and regulates the Fas/FasL system.	sHLAs downregulates T-cell responses.	Bakela and Athanassakis, 2018. (95)
	Soluble MHC class II (sMHC-II)	It has important immunoregulatory properties, stimulates proliferation of CD25– CD4+, CD25+ CD8+ and CD25– CD4+ cell, as well as inhibits CD25– CD8+ cells.	sMHC-II decreases IL-2, increases IL-10, and inhibits phosphorylation of ZAP-70, particularly LAT proteins in the pathways of TCR signaling in CD4+ cells.	Bakela and Athanassakis, 2018. (95)

(Continued)
TABLE 2 | Continued

Soluble molecule	Biological process	Effects
Alpha-fetoprotein (AFP)	It is released by trophoblasts, it influences fetal-maternal immunologic relationships during the first trimester and helps to protect the placenta against attacks by the maternal immune system.	Suppressed the production of TNF-α. Controls the production of HLA-G and the Ia antigen, it stimulates the growth of trophoblasts containing paternal H2 antigens. Lu et al. (100) Inhibits macrophage expression of Ia antigens. Fettke et al. (101)
Indoleamine-2,3-dioxygenase (IDO)	It is a fifteen amino acid linear peptide secreted by embryos in the two-cell, four-cell and six-cell stages in mice, in human and bovine embryos, and acetylated PGHS-2. Eicosanoids are inhibitors of leukotriene B4-mediated neutrophils (140). Considering that preeclampsia is associated with increased proinflammatory, angiogenic and PMN-endothelial cell adhesion, Gil-Villa et al. (141) shows that PMN adhesion in patients with preeclampsia is reduced by Aspirin-triggered lipoxin (ATL) when aspirin is used.	
Preimplantation Factor (PIF)	It is a fifteen amino acid linear peptide secreted by embryos, it increases from the 2-cell embryo stage to the blastocyst, increases prostaglandins and expression of receptors in a proinflammatory environment. Considering that preeclampsia is associated with increased proinflammatory, angiogenic and PMN-endothelial cell adhesion, Gil-Villa et al. (141) shows that PMN adhesion in patients with preeclampsia is reduced by Aspirin-triggered lipoxin (ATL) when aspirin is used.	

5. Natural killer and innate lymphoid cells (ILC). According to the cytokine profile and transcription factor, ILCs are divided into two groups, cytotoxic and “helper”-ILC (17). The cytotoxic ILC group is represented by Natural Killer (NK). The “helper”-ILC in humans has three subclasses, ILC1 with two subsets, producing IFN-γ; ILC2 produces IL-5, IL-13, and IL-4; and ILC3 releases IL-17 and IL-22. The NK cells in a decidua (dNK) microenvironment are around 50% to 70% of the total of lymphoid cells in decidual tissue. They have CD56brght CD16− CD14+ and CD16+ CD56− subsets (18). In the normal eutopic endometrium, the Mo2 together with the Tregs predominate, providing an anti-inflammatory environment for the implantation of the embryo, while in endometriosis, they can cause infertility. The Mo1 provide a pro-inflammatory environment which affects embryo implantation, the dendritic cells (DC) do not increase in endometrial tissue, also the Treg is dysregulated. Therefore, DC does not eliminate the cellular debris which could migrate to the peritoneal cavity and grow in ectopic sites, developing as endometriosis. On the other hand, Treg and NK have abnormal behavior, the first favors a pro-inflammatory environment and the second is less cytotoxic which impacts embryo implantation (142). COX2 and PGE2 are related to the pathogenesis of endometriosis. A high level of COX-2 due to various factors such as estrogens, hypoxia and environmental pollutants could suppress apoptosis and increase cell proliferation through PGE2 and its receptors EP2, and EP4 in endometriosis (143). In addition, experimental studies with intrasional injections of ASA, in rabbits with peritoneal endometriosis, eliminate endometriotic lesions (144).

PROSTAGLANDINS IN IMPLANTATION AND MAINTENANCE OF GESTATION

The generation of prostaglandins and expression of receptors in a mouse uterus has demonstrated their importance during implantation and decidualization (145). In mice, PGE2 levels increase from the 2-cell embryo stage to the blastocyst,
demonstrating the importance of PGE2 in early development (112). PGE2 also plays a significant role in peri-implantation in a mouse uterus through the expression of EP2 and EP4 receptors, which increase cAMP levels during the implantation and decidualization processes. EP4 induces the activation of VEGF (growth factor vascular endothelial), increasing vascular permeability of the endometrium (146), implantation and decidualization, together with PGF2 (132).

Inadequate production of prostaglandins in mice, and possibly in humans, may explain some cases of infertility (147). Low concentrations of PGE2, PGF and PGII2 cause failure in ovulation, fertilization, implantation, and decidualization (133). In mice, prostacyclin (PGI2) is the primary prostaglandin at the implantation site. It participates in implantation and decidualization through the peroxisome proliferator-activated receptor (PPAR-δ) and the RXRα signaling pathway in the uterus (148).

As an example, PGF2α is used in fertilization procedures, in addition to GnRH, to pre-synchronize ovulation before applying for a resynchronization program in cows in dairy herds with acceptable pregnancy outcomes (149).

PROSTAGLANDINS IN MATERNAL IMMUNE TOLERANCE

When intercourse occurs, endothelial cells release IL-8, IL-1, INF-α, and TNF-α to recruit immune cells (150). Neutrophils are mobilized in the ovuduct in female mammals in response to the presence of sperm (151). This process may also induce a state of unresponsiveness by the presence of anti-inflammatory cytokines, such as IL-4, IL-10, IL-13, and TGF-β (152) Figure 1.

In order to prevent a compromised systemic maternal immune response, local immune regulation in the fetal-maternal interface is very important. This is achieved by several mechanisms. One of these is local immunoregulation at the fetal-maternal interface, e.g., Human amniotic membrane-derived mesenchymal stem cells (hAM-MSCs) release factors such as indoleamine 2,3 dioxygenase (IDO), TGF-β, prostaglandin E2 (PGE2), and others inducing immunomodulatory effects (153).

PGs release or regulate different kinds of cells, such as Tolerogenic dendritic cells (tol-DCs), Mo1 and Mo2 macrophages, Decidual NK cells (dNK) (CD56brightCD16), Decidual stromal cells (DSCs), Endometrial stromal cells, Tregs (CD4^CD25^FOXp3^), and Decidual CD8EM cells (CD45RACCR7) (Table 1).

Prostaglandin E (PGE), specifically, induces T-helper type 3 (Th3) and T-regulatory 1 cells (Tr1), as shown by Lewis’ rat and mouse test (154, 155). PGE2 secretion by human decidual cells in the first trimester of pregnancy blocks the activation of maternal leukocytes in the decidua and inhibits IL-2 production and its receptor (156).

Other cells assisting in the decidualization of endometrial stromal cells (ESCs) and pregnancy maintenance are decidual natural killer (dNK) cells (157) and CD14 cells for Treg induction and immunosuppression (158). Also, Treg and Breg may contribute to the regulation of type 1 and 2-like T helper anti-fetal immune mechanisms during human pregnancy (159) (Table 1).

PLATELETS

It is evident that platelets may be important in tolerance mechanisms. Platelet activity is inhibited post-coitus, and this inhibition depends on prostaglandins (160). Seminal fluid has factors that favor clot formation, similar to peripheral blood, such as Factor VIII: Ag, FVIII: C and Von Willebrand factor (vWF), in addition to other factors (161). vWF (162), fibronectin (163), and vitronectin (164) are proteins that favor platelet adhesion (165). This implies that inhibition of platelet aggregation by PGI2 could be a compensatory mechanism for pro-adhesive molecules.

Using a mouse model, Etulain et al. (166) found that platelets act through P-selectin glycoprotein ligand-1 (PSGL-1), and directly affect neutrophil extracellular traps (NETosis). Platelet P-selectin is crucial for neutrophil recruitment (167). Furthermore, NETs cause the recruitment and activation of platelets and induce procoagulant activity due to the expression of histones H3 and H4, toll-like receptor 2 (TLR2) and TLR4 platelets. NETs present a surface for the activation of coagulation factor XII (168) in order to promote thrombosis as a mechanism of rejection (169).

Platelets cause a decrease in the formation of extracellular traps when preincubated with PGI2, followed by stimulation with lipopolysaccharide (LPS), arachidonic acid, and a synthetic diacylated lipopeptide (Pam3SCK4). This highlights the physiological role of PGII in platelet modulation (170). Prostaglandins may also inhibit the function of neutrophils by increasing levels of cyclic adenosine monophosphate (cAMP) (171).

The interaction of PMN–platelets releases products of arachidonic acid serving as precursors of neutrophil eicosanoids (172). In polymorphonuclear neutrophils (PMN), PGE2 modulates their response through the expression of EP2 and EP4 receptors (173).

In addition, other mechanisms of maternal immune tolerance are mediated by placental trophoblast derived microvesicles (MVs) and maternal thrombocyte-derived MVs. These bind to circulating peripheral T lymphocytes through P-selectin (CD62P)–PSGL-1 (CD162) interaction induces STAT3 phosphorylation in T cells (174).

The above mentioned may explain why platelet aggregation is inhibited post-intercourse and has a possible reduction in the formation of NETs to protect the embryo. It is possible that the release of extracellular traps may contribute to trophoblast lesions.

Many other cells mentioned above participate through high complexity fetal-maternal interface interaction to induce a tolerance stage, which protects the embryo (175).

POLYMORPHONUCLEAR CELLS

In mammalian species, PMNs are implicated in endometrial remodeling as being receptive to oocyte implantation. Human neutrophils exposed to progesterone and estriol hormones
promote the establishment of maternal tolerance through the induction of CD4+ T cells (176).

In humans, during coitus, sperm is deposited into the female reproductive tract (FRT). Neutrophils are then recruited for the elimination of excess sperm through phagocytosis (177).

However, bovine seminal plasma is shown to reduce the ability of PMNs to phagocytize bull sperm. Furthermore, equine seminal plasma is reported to contain factors that reduce the binding of neutrophils to sperm, avoiding the formation of NETs (178). In humans, when granulocytes are exposed to the seminal plasma, the respiratory burst is inhibited (179). These mechanisms allow more of the healthy motile sperm to reach the oviduct, which makes it clear that seminal plasma contains factors that modulate the response of PMN.

In addition, PGE2 can exert anti-inflammatory action on neutrophils and other innate immune cells such as macrophages, natural killer cells, dendritic cells, and monocytes (180, 181). Also, it inhibits the production of IFN-γ in plasmacytoid dendritic cells and the production of IL-12 in myeloid dendritic cells.

Finally, polymorphonuclear leukocytes contribute to preterm labor by activating prostaglandin production from human fetal membranes (182).

GROUP 2 INNATE LYMPHOID CELLS

Specific ILC2s (Group 2 innate lymphoid cells) and uterine innate lymphoid cells (uILCs, uILC1, uILC2, and uILC3) (183) in the uterus are regulated by PGD2, PGE2, PGJ2, and sex hormones, in particular, oestrogen (151, 184). Together, these may play a role in the balance between immunity and tolerance at the beginning of placenta formation and could be related to pregnancy loss, as shown in mice (185). Some studies show that ILC2 is the most abundant subset in the human fetal-maternal interface during premature and full-term pregnancies, in which its presence is regulated by sex hormones (e.g., oestrogen) (186). PGJ2 decreases the proliferation of ILC2 and significantly inhibits the expression of IL-5 and IL-13 induced by IL-33 (187).

The production of PGE2 could also suppress the function of neutrophils and uILCs, a particular cell, similar to ILC2, through its EP2 and EP4 receptors in both healthy humans and mouse models (188, 189). PGE2 inhibits the expression of GATA-3, as well as the production of type 2 cytokines (IL-5 and IL-13) (144). These effects are mediated by the action of the EP2 and EP4 prostanoid receptors, which are specifically expressed in ILC2 (151, 190).
In addition, Group 1 ILCs, uNK cells, and uILC3s significantly increase in abortion in mice. They also have a lower proportion of uILC2s (183).

DISCUSSION

Of the hundreds of molecules released with cells in the preimplantation, implantation, and decidualization processes; prostaglandins are integrated into each of these stages by seminal fluid, even until parturition. In particular, some of these molecules are found to be related to infertility and abortions, such as PGE2, PGF, and PGD2, which, in turn, are related to ovulation, fertilization, implantation, and decidualization (133). Increased levels of IL6 are also related to unexplained infertility, recurrent fertilization, implantation, and decidualization (133). Increased as PGE2, PGF, and PGI2, which, in turn, are related to ovulation, the molecules are found to be related to infertility and abortions, such seminal fluid.

REFERENCES

1. Seo MJ, Oh DK. Prostaglandin syntheses: Molecular characterization and involvement in prostaglandin biosynthesis. *Prog Lipid Res* (2017) 66:50–68. doi: 10.1016/j.plipres.2017.04.003
2. Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA. Prostanoids in health and disease. *J Lipid Res* (2009) 50:S423–8. doi: 10.1194/jlr.R800094-JLR200
3. Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. *J Adv Res* (2018) 11:23–32. doi: 10.1016/j.jare.2018.03.005
4. Wang T, Fu X, Chen Q, Patra JK, Wang D, Wang Z, et al. Arachidonic Acid Metabolism and Kidney Inflammation. *Int J Mol Sci* (2019) 20(15):3683. doi: 10.3390/ijms20153683
5. Sugimoto Y, Inazumi T, Tsuchiya S. Roles of prostaglandin receptors in female reproduction. *J Biochem* (2015) 157(2):73–80. doi: 10.1093/jb/mvu081
6. Liu S, Wei H, Li Y, Huang C, Lian R, Xu J, et al. Downregulation of ILT4+ dendritic cells in recurrent miscarriage and recurrent implantation failure. *Am J Reprod Immunol* (2018) 80(4):e12998. doi: 10.1111/aji.12998
7. Florez-Grau G, Cabezón R, Borgman KJE, España C, Lozano JJ, Garcia-Parajo MF, et al. Up-regulation of EP 2 and EP 3 receptors in human tolerogenic dendritic cells boosts the immunosuppressive activity of PGE 2. *J Leukocyte Biol* (2017) 102(3):881–95. doi: 10.1189/jlb.2A1216-526R
8. Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo implantation and the immune response to pregnancy. *J Clin Invest* (2018) 128(10):4224–35. doi: 10.1172/JCI122182

CONCLUSIONS

To maintain fetal-maternal tolerance in the process of implantation (apposition/adhesion/invasion), a whole network of cells and molecules regulate different factors and responses according to the stage of pregnancy. Among the most highly studied cells and molecules are tolerogenic dendritic cells (tol-DCs), M1 and M2 macrophages, Decidual NK cells (dNK) (CD56brightCD16+), Decidual stromal cells (DSCs), Endometrial stromal cells, Tregs (CD4+ CD25+ FOXP3+) and Decidual CD8+ EM cells (CD45RA−CCR7+), progesterone, oestrogen, Leukaemia inhibitory factor (LIF), Indoleamine-2,3-dioxygenase (IDO), and melatonin. Within this complex network, prostaglandins, specifically, PGD2, PGF2α, and PGE2, are important modulators and regulators in maintaining maternal-fetal tolerance, as we deduced. Nevertheless, other cells such as platelets, uILCs, and polymorphonuclear leukocyte/Nets require more research.

AUTHOR CONTRIBUTIONS

Conceptualization: EP-C and GM. Writing—original draft preparation: GM, GV, LP-C, MH-H, EC-P. Manuscript revision: GM, LP-C, MH-H, EZ, EP-CM, MM, RM, CM-C, NM, CR, EC-P, and EP-C. All authors contributed to the article and approved the submitted version.

FUNDING

This research was supported by from National Technological of Mexico/ITOaxaca (project 5302.19-P) and Benito Juárez Autonomous University of Oaxaca (UABJO-CA-056). This work was supported by the Clinical Pathology Laboratory “Dr Eduardo Perez Ortega” in Oaxaca, Mexico.

ACKNOWLEDGMENTS

The authors would like to thank Charlotte Grundy for her support throughout the work, and also UABJO and National Institute of Technology in Mexico, (TecNM) project 5302.19-P, for financial support.
22. Tilburgs T, Schonkeren D, Eikmans M, Nagtzaam NM, Datema G, Swings J.
21. Kieffer TEC, Laskewitz A, Scherjon SA, Faas MM, Prins JR. Memory T Cells with Unique Properties.
19. Ernerudh J, Berg G, Mjösberg J. Regulatory T helper cells in pregnancy and immune responses in pregnancy.
18. Croxatto D, Vacca P, Canegallo F, Conte R, Venturini PL, Moretta L, et al. Human Natural Killer-Like Effector Cells in Vitro does not Require Interleukin-21.
17. Vacca P, Vitale C, Munari E, Cassatella MA, Mingari MC, Moretta L. Human Stromal cells from human decidua exert a strong inhibitory effect on NK cell function and dendritic cell differentiation.
16. Croxatto D, Vacca P, Canegallo F, Conte R, Venturini PL, Moretta L, et al. Stromal cells from human decidua exert a strong inhibitory effect on NK cell function and dendritic cell differentiation.
15. Manaster I, Mizrahi S, Goldman-Wohl D, Sela HY, Stern-Ginossar N, Lankry D, et al. Endometrial NK Cells Are Special Immature Cells That Await Pregnancy.
14. Croxatto D, Vacca P, Canegallo F, Conte R, Venturini PL, Moretta L, et al. Stromal cells from human decidua exert a strong inhibitory effect on NK cell function and dendritic cell differentiation.
13. Sojka DK, Yang L, Yokoyama WM. Uterine natural killer cells: To protect and to nurture. Birth Defects Res (2018) 110(20):1531–8. doi: 10.1002/bdr2.1419
12. Sojka DK, Yang L, Yokoyama WM. Uterine natural killer cells: To protect and to nurture. Birth Defects Res (2018) 110(20):1531–8. doi: 10.1002/bdr2.1419
11. Wang S, Qian J, Sun F, Li M, Ye J, Li M, et al. Bidirectional regulation of 17β-estradiol on the cervical epithelium in the ewe: the follicular stage: the effects of 17β-estradiol, oxytocin, FSH, and arachidonic acid on the cervical pathway for the synthesis of prostaglandin E2. Theriogenology (2015) 83 (6):1007–14. doi: 10.1016/j.theriogenology.2014.12.003
10. Liu M, Gong Y, Wei JY, Xie D, Wang J, Yu YH, et al. [Media of rat embryonic endometrial macrophages and prostaglandin E2. J Clin Immunol Metab (2002) 87(4):1898–901. doi: 10.1210/jcem.2002.048539
9. Brown MB, von Chamier M, Allam AR, Reyes L. M1/M2 macrophage polarity in normal and complicated pregnancy. Front Immunol (2014) 5:620. doi: 10.3389/fimmu.2014.00666
8. Dunn CL, Critchley HO, Kelly RW. IL-15 regulation in human endometrial stromal cells. J Clin Endocrinol Metab (1991) 73(1):60–70. doi: 10.1210/jcem.73-1-60
7. doi: 10.1111/j.1600-0897.1999.tb00531.x
6. Paparini D, Agüero M, Mor G, Pe et al. Natural Killer-Like Effector Cells in Vitro does not Require Interleukin-21.
5. Mayoral Andrade et al. Molecules Related to Embryo Tolerance
4. Sengo JS, Ding T, Smith C, Lu J, Brunner-Tran KL, Osteen KG. Hemodynamic forces enhance decidua formation via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium. Hum Reprod (Oxford England) (2019) 34(4):702–14. doi: 10.1093/humrep/dez003
3. Oettel A, Lorenz M, Stangl V, Costa SD, Zencusslen AC, Schumacher A. Human Umbilical Vein Endothelial Cells Exhibit a Highly Differentiated Phenotype and Demonstrate Potential for the synthesis of prostaglandin E2. J Immunol (2011) 186(1):2591–9. doi: 10.4049/jimmunol.1100039
2. Joana VC, Wittig TB, Christensen PR, et al. The many faces of estrogen signaling. Biochem Med (Zagreb) (2014) 24(3):329–42. doi: 10.11613/BM.2014.035
1. Grasso E, Paparini D, Agüero M, Mor G, Pe et al. Natural Killer-Like Effector Cells in Vitro does not Require Interleukin-21.
Mayoral Andrade et al. Molecules Related to Embryo Tolerance

64. Marwood M, Visser K, Salamonsen LA, Dimitriadis E. Interleukin-11 and pregnancy: physiological roles and regulatory mechanisms. Physiol Rev (2012) 92(3):1235–316. doi: 10.1152/physrev.00037.2010

65. von Rango U, Alfer J, Kertschanska S, Kemp B, Müller-Newen G, Heinrich PC, Prins JR, Gomez-Lopez N, Robertson SA. Interleukin-6 in pregnancy and embryo implantation failure and recurrent miscarriage. J Immunol (Baltimore Md 1950) 2016) 196(4):885–91. doi: 10.1095/jimmunol.116.62885

66. Ai Z, Jing W, Fang L. Cytokine-Like Protein 1(Cytl1): A Potential Molecular Mediator in Embryo Implantation. PloS One (2016) 11(1):e0147424. doi: 10.1103/journals.pone.0147424

67. Joshi PC, Zhou X, Cucmens M, Jones Q. Prostaglandin E2 suppressed IL-15-mediated human NK cell function through down-regulation of common gamma-chain. J Immunol (Baltimore Md 1950) 2001) 166(2):885–91. doi: 10.1095/jimmunol.166.2.885

68. Wang H, Shi G, Li M, Fan H, Ma H, Sheng L. Correlation of IL-1 and HB-EGF with endometrial receptivity. Exp Ther Med (2017) 16(6):5130–6. doi: 10.3892/etm.2018.9680

69. Moghani-Ghoroghi F, Moshkhdanian G, Sehat M, Nematollahi-Mahani SN, Ragerdi-Kashani I, Pasbakhsh P. Melatonin Pretreated Blastocysts along with Calcitonin Administration Improved Implantation by Upregulation of Heparin Binding-Epidermal Growth Factor Expression in Murine Endometrium. J Cell (2018) 19(4):599–606. doi: 10.22077/jcell.2018.4737

70. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update (2006) 12(6):731–46. doi: 10.1093/humupd/dm004

71. Fouk RA, Zdravkovic T, Genbacev O, Prakopbollah A. Expression of L-selectin ligand MECA-79 as a predictive marker of human uterine receptivity. J Assisted Reprod Genet (2007) 24(7):316–21. doi: 10.1007/s10815-007-9151-8

72. Wang Y, Chen X, Saravolos SH, Liu Y, Huang J, Zhang J, et al. HOXA-10 and E-Selectin ligand MECA-79 as a predictive marker of human uterine receptivity. J Assisted Reprod Genet (2007) 24(7):316–21. doi: 10.1007/s10815-007-9151-8

73. Lu DP, Tian L, O’Neill C, King NJ. Regulation of cellular adhesion molecule expression in murine oocytes, peri-implantation and post-implantation embryos. Cell Res (2002) 12(5-6):373–83. doi: 10.1038/sj.cr.7290139

74. Carlomagno G, Minini M, Tilotta M, Unfer V. From Implantation to Birth: Insight into Molecular Melatonin Functions. Int J Mol Sci (2018) 19(9):2802. doi: 10.3390/ijms19092802

75. Voiculescu SE, Zygouropoulos N, Zahui CD, Zagream AM. Role of melatonin in embryo fetal development. J Med Life (2014) 7(4):488–92.

76. Gimeno MF, Landa A, Sterin-Speziale N, Cardinale DP, Gimeno AL. Melatonin blocks in vitro generation of prostaglandin by the uterus and hypothalamus. Eur J Pharmaco (1998) 36(4):309–17. doi: 10.1016/S0014-2999(98)00909-9

77. Xiong T, Zhao Y, Hu D, Meng J, Wang R, Yang X, et al. Administration of melatonin promotes blastocyst implantation in mice by up-regulating integrin β3 expression in endometrial epithelial cells. Hum Reprod (Oxford England) (2012) 27(12):3540–51. doi: 10.1093/humrep/des330

78. Xiong J, Zeng P, Ye D. Lipoxins: a novel regulator in embryo implantation. Mol Hum Reproduct (Oxford England) (2011) 17(2):88–93. doi: 10.1530/REP-09-0381

79. Schwenke M, Knöller M, Velicky P, Weimar CH, Kruse M, Samalecos A, et al. Control of human endometrial stromal cell motility by PGF2-β, HB-EGF and trophoblast-secreted factors. J Reprod Immunol (2012) 81(1):e4336. doi: 10.1016/j.jri.2011.07.004

80. Jaber L, Kan FW. Non-identical distribution pattern of epidermal growth factor and platelet-derived growth factor in the mouse uterus during the oestrous cycle and early pregnancy. Histochem J (1999) 30(10):711–22. doi: 10.1023/A:1003441904274

81. Haimovic F, Anderson DJ. Cytokines and growth factors in implantation. Microscopy Res Tech (1993) 25(3):201–7. doi: 10.1002/jemt.1070253030

82. Coppock HA, White A, Aplin JD, Westwood M. Matrix metalloproteinase-9 and –9 proteolytic insulin-like growth factor-binding protein-1. Biol Reprod (2004) 71(2):438–43. doi: 10.1093/biolreprod.71.2.438

83. Gonzalez M, Neufeld J, Reimann K, Wittmann S, Samalecos A, Wolf A. Prostaglandin E2 production by leukemia inhibitory factor promotes migration of first trimester extravillous trophoblast cell line, HTR-8/SVneo. Hum Reprod (Oxford England) (2007) 22(7):1801–9. doi: 10.1093/humrep/dem125

84. Viganò P, Mangioni S, Pompei F, Chiodo I. Maternal-conceptus cross-talk: a review. Placenta (2003) 24(8):S56–61. doi: 10.1016/s1353-4403(03)00137-1

85. Hambartsoumian E. Endometrial leukemia inhibitory factor (LIF) as a potential cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol (N Y NT 1989) (1998) 39(2):137–43. doi: 10.1100/1600-8097.98.39034.5.x

86. Fouladi-Nashita AA, Mohamet L, Heath JK, Kimber SJ. Interleukin 1 signaling is regulated by leukemia inhibitory factor (LIF) and is absent in LIF-/- mouse uterus. Biol Reprod (2008) 79(1):142–53. doi: 10.1093/biolreprod.70.605219

87. Marwood M, Visser K, Salamonsen LA, Dimitriadis E. Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation. Endocrinology (2009) 150(6):2915–23. doi: 10.1210/en.2008-05138

88. von Rango U, Aller J, Kertschanska S, Kemp B, Müller-Newen G, Heinrich PC, et al. Interleukin-11 expression: its significance in eutopic and ectopic human implantation. Mol Hum Reprod (2004) 10(11):785–92. doi: 10.1093/ molhr/10.11.785

89. Kopcow HD, Karunamachi SA. Angiogenic factors and natural killer (NK) cells in the pathogenesis of preeclampsia. J Reprod Immunol (2007) 76(1-2):23–9. doi: 10.1016/j.jri.2007.03.018

90. Francis VA, Abera AB, Matjila M, Pillar RP, Katz AA. Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells. PLoS One (2014) 9(6):99680. doi: 10.1371/journal.pone.0096800
Mayoral Andrade et al. Molecules Related to Embryo Tolerance

100. Lu CY, Changelian PS, Unanue ER. Alpha-fetoprotein inhibits macrophage

101. Fettke F, Schumacher A, Canellada A, Toledo N, Bekeredjian I, Bondt

103. Mellor AL, Chandler P, Lee GK, Johnson T, Keskin DB, Lee J, et al.

104. Kang JW, Koo HC, Hwang SY, Kang SK, Ra JC, Lee MH, et al.

105. Hakam MS, Miranda-Sayago JM, Hayrabedyan S, Todorova K, Spencer PS,

J Exp Cell Physiol Biochem Pharmacol (2017) 43(6):2277–96. doi: 10.1159/000484378

Cold Spring Harb Perspect Med (2015) 5(3):a023028. doi: 10.1101/csb.perspmed.a023028

Gonadotropin-releasing hormone type II (GnRH-II) agonist regulates the

Growth and differentiation of human embryonic germ cells in vitro.

Expression in JEG-3 Choriocarcinoma Cells and Endogenous Progesterone

Activity. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol

Preimplantation-induced MAPK and PI3K/Akt signaling pathways. Biomed

Biopharmaco Pharmaco Theracem 1987) 88:209–18. doi: 10.1016/

at embryo implantation site.

Where Are We Now?

Front Immunol (2002) 57(1-2):143

doi: 10.1038/nm0996-1005

doi: 10.1038/nm9996-1005

doi: 10.1095/biobreprod.114.127324

doi: 10.1016/j.jbreast.2013.02.002

doi: 10.1007/s10815-007-9148-3

doi: 10.1007/s12958-018-0359-5

doi: 10.1016/j.jreprodendo.2015.12.003–10. doi: 10.1007/s10815-007-9148-3

doi: 10.1136/jmam.1975101144

doi: 10.1016/S0015-0282(16)59723-4

doi: 10.1530/EJEM-16-023028. doi: 10.1101/csb.perspmed.a023028

doi: 10.1095/biobreprod.114.127324

doi: 10.1016/J.IJIM.2014.03.018

doi: 10.1038/nm996-1005

doi: 10.1016/j.jbreast.2013.02.002

doi: 10.1095/biobreprod.114.127324

doi: 10.1038/nm996-1005

doi: 10.1016/j.jbreast.2013.02.002

doi: 10.1016/j.jbreast.2013.02.002

doi: 10.1038/nm996-1005

doi: 10.1016/j.jbreast.2013.02.002

doi: 10.1016/j.jbreast.2013.02.002

doi: 10.1016/j.jbreast.2013.02.002

doi: 10.1016/S0015-0282(16)59723-4

doi: 10.1136/jmam.1975101144

doi: 10.1038/nm996-1005

doi: 10.1038/nm996-1005

doi: 10.1038/nm996-1005

doi: 10.1038/nm996-1005

doi: 10.1016/j.jbreast.2013.02.002

doi: 10.1038/nm996-1005

doi: 10.1038/nm996-1005
125. Han BC, Xia HF, Sun J, Yang Y, Peng JP. Retinoic acid-metabolizing enzyme cytochrome P450 26a1 (cyp26a1) is essential for implantation: functional study of its role in early pregnancy. J Cell Physiol (2010) 223(2):471–9. doi: 10.1002/jcp.22056
126. Saito S, Tsuda H, Michimita T. Prostaglandin D2 and reproduction. Am J Reprod Immunol (N Y NY: 1989) (2002) 47(5):295–302. doi: 10.1034/j.1600-0897.2002.00111.x
127. Michimita T, Tsuda H, Sakai M, Fujimura M, Nakaga K, Nakamura M, et al. Accumulation of CRTH2-positive T-helper 2 and T-lytotoxic 2 cells at implantation sites of human decidua in a prostaglandin D(2)-mediated manner. Mol Hum Reprod (2002) 8(2):181–7. doi: 10.1093/molehr/8.2.181
128. Kaczmarek MM, Krawczyński K, Filant J. Seminal plasma affects prostaglandin synthesis and angiogenesis in the porcine uterus. Biol Reprod (2013) 88(3):72. doi: 10.1095/biolreprod.113.105364
129. Robertson SA. Seminal fluid signaling in the female reproductive tract: lessons from rodents and pigs. J Anim Sci (2007) 85(13):E36–44. doi: 10.2527/jaas.2006-5758
130. Striz I, Brabcova E, Kolesar L, Sekerova A. Cytokine networking of innate immunity cells: a potential target of therapy. Clin Sci (London England: 1979) (2014) 126(9):593–612. doi: 10.1042/CS20130497
131. Tariverdian N, Siedentopf F, Rücke M, Blois SM, Klapp BF, Kentenich H, et al. Intraperitoneal immune cell status in infertile women with and without endometriosis. J Reprod Immunol (2009) 80(1-2):80–90. doi: 10.1016/j.jri.2008.12.003
132. Yasuda I, Shima T, Moriya T, Ikebuchi R, Kusumoto Y, Ushijima A, et al. Intraperitoneal immune cell status in infertile women with and without endometriosis: characteristics in the periimplantation mouse uterus. J Reprod Immunol (2010) 87(4-5):127–35. doi: 10.1016/j.jci.2010.07.002
133. Saito S, Tsuda H, Michimita T. Prostaglandin D2 and reproduction. Am J Reprod Immunol (N Y NY: 1989) (2002) 47(5):295–302. doi: 10.1034/j.1600-0897.2002.00111.x
134. Shao Y, Sareddy J, Yang WY, Sun Y, Lu Y, Saaoud F, et al. Vascular endothelial cells and innate immunity. Am J Obstetr Gynecol (2012) 206(3):38–69. doi: 10.1016/j.ajog.2011.12.1416
135. Atallah A, Lecarpentier E, Gofin G, Lorette S. Prostaglandin synthesis and angiogenesis in the porcine uterus. J Reprod Immunol (2001) 51:161–70. doi: 10.1016/S0167-5699(00)00066-6
136. Jag J, Gómez-Sánchez MM, González-Esparza L, et al. Prostaglandin synthesis and angiogenesis in the porcine uterus. J Reprod Immunol (2001) 51:161–70. doi: 10.1016/S0167-5699(00)00066-6
137. Saito S, Michimita T, Tsuda H, et al. Prostaglandin D2 and reproduction. Am J Reprod Immunol (N Y NY: 1989) (2002) 47(5):295–302. doi: 10.1034/j.1600-0897.2002.00111.x
138. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: Updates in 2020. J Cell Physiol (2020) 235(12):18405–11. doi: 10.1002/jcp.29235
139. Von Willebrand factor accelerates platelet adhesion and thrombus formation in the mouse uterus coincides with differentiation of the luminal epithelium for implantation. Endocrinology (1997) 138(11):4599–606. doi: 10.1210/endo.138.11.5528
140. Lim H, Paria BC, Dask SK, Dinchuk JE, Langenbach R, Trzaskos JM, et al. Multiple female reproductive failures in cyclooxygenase-2-deficient mice. Cell (1997) 91(2):197–208. doi: 10.1016/S0092-8674(00)80402-X
141. Lim H, Gupta RA, Ma WG, Paria BC, Doller ME, Morrow JD, et al. Cyclooxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. Genes Dev (1999) 13(12):1561–74. doi: 10.1101/ gadd.13.12.1561
142. Yao Y, Lu X, Wang Y, Wang XH, Zhou WJ, Jin LP, et al. Crosstalk between cyclooxygenase-2 and prostanoids in the human decidua with potential anti-trophoblast activity. Therapeutic Resp Med (2018) 84(1):1182–90. doi: 10.1101/jaci.2018.02.006
143. Marie C, Pitton C, Fitting C, Cavallion JM. Regulation by anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGfβ) of interleukin-8 production by LPS-and/or TNFα-activated human polymorphonuclear cells. Mediators Inflamm (1996) 5(3):334–40. doi: 10.1155/1996/923519600488
144. Agard M, Asakrath S, Morii L. PGE2 suppression of innate immunity during murosal bacterial infection. Front Cell Infect Microbiol (2013) 3:45. doi: 10.3389/fcitm.2013.00045
145. Robertson SA, Sharkey DJ. The role of selenin in induction of maternal immune tolerance to pregnancy. Semin Immunol (2001) 13(4):243–54. doi: 10.1016/s0899-8711(00)000320
146. Weiner HL. Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect (2001) 3(11):947–54. doi: 10.1016/s1286-4579(01)01456-3
147. Parhar RS, Yagel S, Lala PK. PGE2-mediated immunosuppression by first trimester human decidua cells blocks activation of maternal leukocytes in the decidua with potential anti-trophoblast activity. Cell Immunol (1999) 120(1):61–74. doi: 10.1006/ccim.1999.4174
148. Zhang Y, Wang Y, Wang XH, Zhou WJ, Jin LP, Li MQ. Crosstalk between human endometrialstromal cells and deciduaNK cells promotes deciduulization in vitro by upregulating IL–5. Mol Med Rep (2017) 28(2):2689–78. doi: 10.3892/mmr.2017.8267
149. Vaccaro C, Caruso M, Prato C, Canevallo F, Feloglio D, et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci U States A (2010) 107(26):11918–23. doi: 10.1073/pnas.1001749107
150. Mjosberg J, Berg G, Ernrudh J, Ekerfelt C. CD4+ CD25+ regulatory T cells in human pregnancy: development of a Treg-MLC-ELISPOT suppression assay and indications of paternal specific Tregs. Immunology (2007) 120(4):456–66. doi: 10.1111/j.1365-2567.2006.02529.x
151. Mayoral-Andrade G, Pérez-Campos-Mayoral L, Majluf-Cruz A, Pérez-Campos-Mayoral E, Pérez Campos-Mayoral C, Rocha-Nuñez A, et al. Reduced platelet aggregation in women after intercourse: a possible role for the cyclooxygenase pathway. Clin Exp Pharmacol Physiol (2017) 44(8):847–53. doi: 10.1111/1440-1681
152. Lwaleed BA, Greenfield R, Royle E, Birch B, Cooper AJ, Seminal Factor VIII. and von Willebrand Factor: a possible role of the conventional clotting system in human semen? Int J Androl (2005) 28(1):3–8. doi: 10.1111/j.1365-2605.2004.00508.x
153. Tomokyio K, Kamikubo Y, Hanada T, Araki T, Nakatomi Y, Ogata Y, et al. Von Willebrand factor accelerates platelet adhesion and thrombus formation on a collagen surface in platelet-reduced blood under flow conditions. Blood (2005) 105(3):1078–84. doi: 10.1182/blood-2004-05-1827
163. Bastida E, Escolar G, Ordinas A, Siama JF. Fibronecrt is required for platelet adhesion and for thrombus formation on subendothelium and collagen surfaces. Blood (1987) 70(5):1437–42. doi: 10.1182/blood.V70.5.1437.bloodjournal7051437

164. Asch E, Podack E. Vitronectin binds to activated human platelets and plays a role in platelet aggregation. J Clin Investigat (1990) 85(5):1372–8. doi: 10.1172/JCI114581

165. Xu LC, Bauer JW, Siedlecki CA. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf B Biointerf (2014) 124:49–68. doi: 10.1016/j.colsurfb.2014.09.040

166. Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P–selectin promotes neutrophil extracellular trap formation in mice. Blood (2015) 126(2):242–6. doi: 10.1182/blood-2015-01-624023

167. Singbartl K, Forlow SB, Ley K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure. FASEB J Off Publ Fed Am Soc Exp Biol (2001) 15(13):2337–44. doi: 10.1096/fj.01-0199cm

168. Stavrou EX, Fang C, Bane KL, Long AT, Naund C, Kucukal E, et al. and uPAR upregulate neutrophil functions to influence wound healing. J Clin Invest (2018) 128(3):944–59. doi: 10.1172/JCI92880

169. Gaertner F, Massberg S. Blood coagulation in immunothrombosis: At the frontline of intravascular immunity. Semin Immunol (2016) 28(6):561–9. doi: 10.1016/j.smim.2016.10.010

170. Carestia A, Kaufman T, Rivadeneyra L, Landoni VI, Pozner RG, Negroto S, et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol (2016) 99(1):153–62. doi: 10.1187/jlb.3A0415-161R

171. Zurier RB, Weisssmann G, Hofstein S, Kammern S, Tai HH. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Investig (1974) 53(1):297–309. doi: 10.1072/JCI107550

172. Marcus AJ, Broekman MJ, Safier LB, Ullman HI, Islam N, Serhan CN, et al. Production of arachidonic acid lipoxigenase products during platelet-neutrophil interactions. Clin Physiol Biochem (1984) 2(2-3):78–83.

173. Turcotte C, Zarini S, Jean S, Martin C, Murphy RC, Mansolais D, et al. The endocannabinoïd metabolite prostaglandin E2 (PGE2)-glycerol inhibits human neutrophil functions: Involvement of its hydrolysis into PGE2 and EP receptors. J Immunol (1997) 158(8):3255–63. doi: 10.4049/jimmunol.1601767

174. Pap E, Pällinger E, Falus A, Kiss AA, Kettler A, Kovács P, et al. T lymphocytes are targets for platelet- and trophoblast-derived microvesicles during pregnancy. Placenta (2008) 29(9):826–32. doi: 10.1016/j.placenta.2008.06.006

175. Vázquez J, Chavarria M, Li Y, Lopez GE, Stanic AK. Computational Herna...