Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis

Soudeh Ghafouri-Fard1, Tayyebeh Khoshbakht2, Bashdar Mahmud Hussen3,4, Mohammad Taheri5* and Normohammad Arefiinan6*

1 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 2 Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 3 Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq, 4 Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq, 5 Institute of Human Genetics, Jena University Hospital, Jena, Germany, 6 Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.

Keywords: IncRNA, miRNA, sepsis, expression, biomarker

INTRODUCTION

Sepsis is a systemic inflammatory response to different infections, namely bacterial, viral, or fungal agents. This condition is the principal source of mortality in intensive care units (1). These infectious microorganisms can stimulate inflammatory reactions through induction of cytokines release. These reactions lead to multiple organ system failure. Other factors that contribute in this
devastating condition during sepsis are systemic hypotension and abnormal perfusion of the microcirculatory system (2). No specific treatment modality has been suggested for prevention of multiple organ system failure during sepsis (2). Thus, identification of sepsis-related changes at cellular and biochemical levels is important. Currently, there is no effective pharmacological therapy for sepsis. Thus, early diagnosis, resuscitation and instant administration of suitable antibiotics are essential steps in decreasing the burden of this condition (Thompson, 2019 #562).

Lipopolysaccharide (LPS) as the main constituent of the cell wall of Gram-negative bacteria has been found to stimulate apoptotic pathways in tubular epithelial cells of kidney (3). Moreover, it can prompt acute inflammatory responses through activation of NF-κB during the course of acute kidney injury (4). This molecular pathway is an important axis in mediation of immune-related organ damage.

Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.

LncRNAs and Sepsis

LncRNAs are transcripts with sizes larger than 200 nucleotides. These transcripts regulate gene expression through modulation of chromatin configuration, regulation of splicing events, serving as decoys for other transcripts and making structures for recruitment of regulatory proteins (5). These transcripts participate in the regulation of immune reactions and pathoetiology of several immune-related disorders (6).

Experiments in animal model of acute lung injury have shown down-regulation of TUG1 and induction of apoptosis and inflammation. Up-regulation of TUG1 in these animals could ameliorate sepsis-associated lung injury, apoptosis and inflammatory reactions. TUG1 could also protect lung microvascular endothelial cells from deteriorative effects of LPS. In fact, TUG1 inhibits cell apoptosis and inflammatory reactions in LPS-stimulated microvascular endothelial cells through sponging miR-34b-5p and releasing GAB1 from its inhibitory effects. Cumulatively, TUG1 ameliorates sepsis-associated inflammation and apoptosis through miR-34b-5p/GAB1 axis (7). Another study has demonstrated down-regulation of TUG1 while up-regulation of miR-223 in the plasma samples of sepsis patients. They have also reported a negative correlation between expressions of TUG1 and miR-223 in sepsis patients. Besides, expression levels of TUG1 have been negatively correlated with respiratory infection, serum creatinine, white blood cell, C-reactive protein, APACHE II score, and SOFA score. Based on these results, TUG1 has been suggested as a biomarker for prediction of course and prognosis of sepsis (8). TUG1 has also been shown to interact with miR-27a. Over-expression of TUG1 has resulted in down-regulation of TNF-α, while up-regulation of miR-27a has enhanced expression of TNF-α in cardiomyocytes. TNF-α and miR-27a up-regulation could enhance LPS-induced apoptosis of cardiomyocytes. On the other hand, TUG1 up-regulation has exerted opposite effects (9).

MALAT1 is another lncRNA that affects immune responses of rats with LPS-induced sepsis through influencing the miR-146a/NEAT1 axis (10). Moreover, MALAT1 could increase apoptosis skeletal muscle cells and sepsis-associated immune responses through down-regulating BRCA1 levels via recruitment of EZH2 (11). The miR-150-5p/NEAT1 axis is another axis that mediates the effects of MALAT1 in sepsis-associated cardiac inflammation (12). In addition, the protective effects of Ulinastatin against LPS-associated dysfuncion of heart microvascular endothelial cells have been shown to be exerted through down-regulation of MALAT1 (13). Most notably, MALAT1/miR-125a axis has been shown to discriminate sepsis patients based on their severity of diseases, organ damage, levels of inflammatory responses and mortality (14). Figure 1 depicts function of MALAT1 in sepsis-related events.

NEAT1 is another lncRNA whose participation in the pathophysiology of sepsis has been vastly investigated. This lncRNA could promote inflammatory responses and aggravate sepsis-associated hepatic damage through the Let-7a/TLR4 axis (15). Moreover, NEAT1 can accelerate progression of sepsis via miR-370-3p/TSP-1 axis (16). This lncRNA could also promote LPS-induced inflammatory responses in macrophages through regulation of miR-17-5p/TLR4 axis (17). NEAT1 silencing could suppress immune responses during sepsis through miR-125/MCEMP1 axis (18). Figure 2 shows the function of NEAT1 in sepsis-related events. Several other lncRNAs have also been found to influence course of sepsis through modulation of immune responses (Table 1).

miRNAs and Sepsis

miRNAs have sizes about 22 nucleotides and regulate expression of genes through binding with different regions of target mRNAs, particularly their 3’ UTR. They can either degrade target mRNA or suppress its translation. Several miRNAs have been found to influence course of sepsis. Altered expression of these small-sized transcripts has been reported in sepsis by numerous research groups. For instance, plasma levels of miR-494-3p have been shown to be decreased in sepsis patients compared with healthy controls in correlation with up-regulation of TLR6. Expression level of miR-494-3p has been decreased in LPS-induced RAW264.7 cells, parallel with up-regulation of TLR6 and TNF-α. Forced over-expression of miR-494-3p in RAW264.7 cells could reduce TNF-α level and suppress translocation of NF-κB p65 to the nucleus.
Several other lncRNAs have also been found to influence the course of sepsis through modulation of immune responses (Table 1).
TLR6 has been shown to be targeted by miR-494-3p. Taken together, miR-494-3p could attenuate sepsis-associated inflammatory responses through influencing expression of TLR6 (132). miR-218 is another miRNA which participates in the pathoetiology of sepsis. This miRNA could reduce inflammatory responses in the sepsis through decreasing expression of VOPP1 via JAK/STAT axis (133).

miR-122 is another important miRNA in the sepsis which has superior diagnostic power compared with CRP and total leucocytes count for distinguishing sepsis from wound infection. miR-122 has also been found to be a prognostic marker for sepsis, albeit with poor specificity and accuracy values (134).

In the mouse model of sepsis, decreased levels of miR-208a-5p and increased levels of SOCS2 has been associated with enhanced activity of SOD, while reduction in LDH and MDA activities. and increased levels of SOCS2 has been associated with enhanced values (134).

miR-12-2 is another miRNA whose role in sepsis has been investigated by several groups. Down-regulation of miR-21 has been shown to inhibit inflammasome activation, ASC pyroptosome, LPS-induced pyroptosis and septic shock in one study (136). On the other hand, another study in animal models of sepsis has shown that up-regulation of miR-21 reduced inflammation and apoptosis (137). Similarly, βMSCs-derived exosomes have been shown to reduce symptoms in septic mice and improve their survival rate through up-regulation of miR-21 (138).

miR-328 is another miRNA which is dysregulated in sepsis patients as well as animal models of sepsis. Serum levels of this miRNA could properly differentiate sepsis from normal conditions. Thus, miR-328 has been suggested as a diagnostic biomarker for sepsis. Moreover, down-regulation of miR-328 could amend sepsis-related heart dysfunction and inflammatory responses in this tissue (139). miR-452 is another miRNA with diagnostic applications in sepsis. Notably, serum and urinary levels of this miRNA have been suggested as possible markers for early diagnosis of sepsis-associated acute kidney injury, since expression of this miRNA has been higher in sepsis patients with acute kidney injury compared with those without this condition (140) (Table 2). Figure 3 depicts miRNAs that are down-regulated in sepsis.

CircRNAs AND SEPSIS

CircRNAs are a recently appreciated group of non-coding RNAs with enclosed circular configuration formed by covalent bonds between two ends of linear transcripts. However, some of these transcripts have been shown to produce proteins. They mostly exert regulatory functions in the transcriptome. Impact of circRNAs in the sepsis has been assessed by several groups (303). For instance, circC3P1 has been shown to attenuate production of inflammatory cytokines and decrease cell apoptosis in sepsis-associated acute lung injury via influencing expression of miR-21 (304).

A microarray-based has shown differential expression of 132 circRNAs between sepsis patients and healthy controls among them have been hsa_circRNA_104484 and hsa_circRNA_104670 whose up-regulation in sepsis serum exosomes has been verified been RT-PCR. Expression levels of these two circRNAs have been suggested as diagnostic biomarkers for sepsis (305).

CircVMA21 is another circRNA that has been shown to ameliorate sepsis-related acute kidney injury through modulation of oxidative stress and inflammatory responses via miR-9-3p/SMG1 axis (306). Circ_0114428/miR-495-3p/CRBN axis is another molecular axis which is involved in the pathoetiology of sepsis-related acute kidney injury (307). Moreover, expression levels of circPRKCI have been correlated with sepsis risk, severity of sepsis and mortality during a period of 28 days (308). Table 3 summarizes the role of circRNAs in sepsis.

DISCUSSION

A vast body of literature points to the involvement of lncRNAs, miRNAs and circRNAs in the pathoetiology of sepsis-related complications. NEAT1, MALAT1, MEG3, THRIL, XIST, CRNDE, ZFAS1, HULC, MIAT and TUG1 are among IncRNAs with the strongest evidence for their participation in this process. NEAT1 as the mostly assessed IncRNA in this regard has been shown to act as a molecular sponge for let-7a, let-7b-5p, miR-370-3p, miR-124, miR-125, miR-17-5p, miR-16-5p, miR-93-5p, miR-370-3p, miR-144-3p, miR-944, miR495-3p, miR-22-3p, miR-31-5p and miR-590-3p. Through sequestering these miRNAs, NEAT1 can affect several molecular pathways in the course of sepsis. It can enhance immune responses and the related injury in target organs, thus participating in sepsis-related multiple organ damage.

Similar to lncRNAs, circRNAs influence course of sepsis mainly through acting as molecular sponges for miRNAs. circC3P1/miR-21, circVMA21/miR-9, circVMA21/miR-199a-5p, circ_PRKCI/miR-545, circPRKCI/miR-106b-5p, circDNMT3B/miR-20b-5p, circ_0114428/miR-495-3p, circ_Ttc3/miR-148a, circPRKCI/miR-454, circ-Fryl/miR-490-3p, circ_0091702/miR-182, circTLK1/miR-106a-5p, circFADS2/miR-15a-5p, circ_0091702/miR-545-3p, hsa_circ_0068888/miR-21-5p, circPTK2/miR-181c-5p, circFANCA/miR-93-5p and circANKRD36/miR-330 are among circRNA/miRNA axes which are involved in the pathophysiology of sepsis-related conditions.
LncRNA	Expression Pattern	Clinical Samples/ Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
TUG1	↓	35 ARDS patients and 68 HCs, male CS7BL/6 mice	PMVECs	† miR-34b-5p, GAB1	↓	TUG1 reduces sepsis-induced pulmonary injury, apoptosis and inflammation in ALI.	(7)
TUG1	↓	122 patients with sepsis and 122 HCs	-	† miR-223	-	Low levels of TUG1 was correlated with respiratory infection. TUG1 expression was negatively associated with Scr, WBC, SOFA score, and CRP levels and 28-day deaths, but positively associated with albumin levels.	(8)
TUG1	↓	70 patients with sepsis and 70 HCs rats with and without LPS-induced sepsis	AC16	miR-27a, ↓ SLIT2	↑	Up-regulation of TUG1 reduced apoptosis, autophagy, and inflammatory response.	(19)
MALAT1	†	BALB/c male mice	HSMKMC 3500	↓ miR-146a, ↑ P65	↑ NF-κB signaling pathway	Downregulation of MALAT1 decreased the number of TNF-α and iNOS positive cells.	(10)
MALAT1	†	196 patients with sepsis and 196 HCs,	H9c2	↓ miR-150-5p, ↑ NF-κB signaling pathway	-	Downregulation of MALAT1 increased inflammatory responses, neutrophil migration, skeletal muscle cell apoptosis, and AKT-1 phosphorylation.	(11)
MALAT1	†	sepsis mice	U937	↓ BRCA1, Ezh2	-	Downregulation of MALAT1 reduced inflammatory response and downregulated NF-κB signaling pathway.	(12)
MALAT1	†	male SD rats	CMVECs	↑ Ezh2	-	MALAT1 significantly inhibited levels of Ezh2 target genes, DAB2IP and Brachyury. Up-regulation of CRNDE increased permeability and apoptosis.	(13)
MALAT1	†	196 patients with sepsis and 196 HCs,	-	↓ miR-125a	-	MALAT1 expression was positively correlated with APACHE II score, SOFA score, serum creatinine, CRP, TNF-α, IL-1β, IL-6, 28-day deaths, and negatively with albumin.	(14)
MALAT1	†	sepsis mice	-	↓ miR-23a, ↑ MCEMP1	-	Downregulation of MALAT1 suppressed expression of MPO, IL-6, IL-10, TNF-α, and IL-1β, and reduced inflammation.	(20)
MALAT1	†	male C57 mice	-	↑ p38 MAPK / pS6 NF-κB signaling pathway	-	Downregulation of MALAT1 reduced MPO and inflammatory responses.	(21)
MALAT1	†	a lung injury inflammatory cell model	-	↑ p38 MAPK / pS6 NF-κB signaling pathway	↑ NF-κB pathway	Downregulation of MALAT1 reduced the levels of MyD88, TNF-α, IL-1β, and IL-6, and prevented the NF-κB pathway.	(22)
MALAT1	†	CLP-induced septic mice	HUVECs, PAECs	↓ miR-149, ↑ MyD88	↑ NF-κB pathway	Downregulation of MALAT1 reduced apoptosis, ER stress and inflammation.	(23)
MALAT1	† in ARDS group	152 patients with sepsis (41 ARDS and 111 Non-ARDS patients)	-	↑ IL-6, ↑ TNF-α, ↑ SAA3	-	MALAT1 expression was association with APACHE II score, SOFA score, inflammatory factors levels, and high mortality.	(24)
MALAT1	†	GEO dataset (GSE3140), male CS7BL/6 mice	HL-1	↑ IL-6, ↑ TFN-α, ↑ SAA3	-	Downregulation of MALAT1 Protected Cardiomyocytes from LPS-induced Apoptosis.	(25)
MALAT1	†	190 patients with sepsis and 190 HCs	-	↓ miR-125b	-	MALAT1 expression was associated with Scr, WBC, CRP, PCT, TNF-α, IL-8, IL-17, APACHE II score, SOFA score, and 28-day deaths. Expression of MALAT1 was found to be an independent risk factor for sepsis, poor prognosis and septic shock.	(26)
MALAT1	†	120 patients with sepsis and 60 HCs	-	-	-	Downregulation of MALAT1 attenuated the burn injury and post-burn sepsis-induced inflammatory reaction.	(27)
MALAT1	†	female CS7BL/6 mice	THP-1	↓ miR-214, ↑ TLR5	-	Down-regulation of MALAT1 attenuated sepsis-induced myocardial injury.	(28)
KCNQ1OT1	↓	male SD rats	H9c2	↑ miR-192-5p, ↓ XIAP	-	Up-regulation of KCNQ1OT1 ameliorated proliferation and impeded apoptosis in sepsis-induced myocardial injury.	(29)
IncRNA	Expression Pattern	Clinical Samples/ Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
------------	--------------------	--------------------------------	---------------------	----------------------	--------------------	---	-----------
CYTOR	↓	male SD rats	H9c2	↑ miR-24, ↓ XIAP		Up-regulation of CYTOR ameliorated viability and inhibited apoptosis in sepsis-induced myocardial injury. (30)	
IncRNA-5657	↑	15 patients with sepsis-induced ARDS and 15 non-septic and non-ARDS patients, SD rats	NR8383	↑ Spns2		Downregulation of IncRNA-5657 prevented sepsis-induced lung injury and LPS-induced inflammation. (31)	
RMRP	↓	male C57BL/6 mice	HL-1	↑ miR-1-5p, ↓ HSPA4	↑ NF-κB Pathway	Up-regulation of RMRP reduced LPS-induced damage, apoptosis and mitochondrial damage and LPS-induced sepsis. (32)	
NEAT1	↑	15 patients with sepsis-induced liver injury and 15 HCs	Kupffer, Raw264.7	↓ Let-7a, ↑ TLR4		Downregulation of NEAT1 reduced expression of inflammatory factors in sepsis-induced liver injury. (15)	
NEAT1	↑	25 Sepsis patients and 25 HCs	RAW 264.7	↑ miR-370-3p, ↑ TSP-1		Downregulation of NEAT1 prevented LPS-mediated inflammation and apoptosis and ameliorated proliferation. (16)	
NEAT1	↑	male pathogen-free C57BL/6 mice	-	↓ miR-125, ↑ MOEMP1		Downregulation of NEAT1 suppressed inflammation and T lymphocyte apoptosis. (18)	
NEAT1	↑	68 patients with sepsis and 32 HCs	THP-1 macrophages	↓ miR-17-5p, ↑ TLR4		Downregulation of NEAT1 prevented LPS-induced inflammatory responses in macrophages. (17)	
NEAT1	↑	mouse with sepsis-induced lung injury	-	↓ miR-16-5p, ↑ BRD4		Downregulation of NEAT1 inhibited inflammation, apoptosis, pulmonary edema, MPO activity, pathological changes, promoted viability. (33)	
NEAT1	↑	male C57 mice	-	↑ TLR2/ NF-κB signaling pathway	↑ HMGB1/RAGE signaling pathway	Downregulation of NEAT1 increased viability attenuated LPS-induced apoptosis and suppressed inflammation. (35)	
NEAT1	↑	male C57BL/6 mice	A549	-	↑ TLR2/ NF-κB signaling pathway	Downregulation of NEAT1 increased proliferation and inhibited apoptosis and inflammation. (36)	
NEAT1	↑	30 patients with sepsis and 30 HCs	HK-2	↓ let-7b-5p, ↑ TRAF6		Downregulation of NEAT1 decreased inflammation by promoting macrophage M2 polarization. (37)	
NEAT1	↑	-	RAW264.7	↓ miR-125a-5p, ↑ TRAF6, ↑ P-TAK1		Downregulation of NEAT1 inhibited apoptosis, inflammation and oxidative stress. (38)	
NEAT1	↑	patients with sepsis	HK2	↓ miR-95-5p, ↑ TNF, ↑ P-TAK1		Downregulation of NEAT1 ameliorated viability, prevented apoptosis and the expression of inflammatory cytokines. (39)	
NEAT1	↑	sepsis tissues and ANCTs	AW 264.7 and HL-1	↓ miR-370-3p, ↑ Irak2		Downregulation of NEAT1 ameliorated viability, prevented apoptosis and inflammatory response in LPS-induced myocardial cell injury. (40)	
NEAT1	↑	-	HL-1	↓ miR-144-3p, ↑ NF-κB signaling pathway		Up-regulation of NEAT1 was positively associated with Acute Physiology and Chronic Health Evaluation II score, inflammatory responses, while negatively associated with IL-10. (41)	
NEAT1	↑	152 patients with sepsis and 150	-	-	-	Downregulation of NEAT1 inhibited inflammatory responses and apoptosis. Overexpression of TRIM37 rescued influence of downregulation of NEAT1 on cell's. (42)	
NEAT1	↑	C57BL/6 mice	WI-38	↓ miR-944, ↑ TRIM37		Downregulation of NEAT1 inhibited inflammatory responses and apoptosis. Overexpression of TRIM37 rescued influence of downregulation of NEAT1 on cell's. (42)	
NEAT1	↑	59 patients with sepsis, 52 patients with noninfectious SIRS, and 56 HCs	PBMCs	-	-	Levels of NEAT1 could be considered as a good predictor for the diagnosis of sepsis. (43)	
NEAT1	↑	127 patients with sepsis and 50 HCs	-	↑ Th1, ↑ Th17	-	Overexpression of NEAT1 was associated with chronic health evaluation II score, CRP level, acute physiology, and SOFA score. (44)	

(Continued)
TABLE 1 | Continued

IncRNA	Expression Pattern	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
NEAT1	†	male C57BL/6 mice	RAW264.7	↓ miR-22-3p	↑ NF-xB pathway	Overexpression of NEAT1 was associated with inflammatory responses.	(45)
NEAT1	†	102 patients with sepsis and 100 HCs	–	↓ miR-125a	–	High levels of NEAT1 was associated with SOFA score, APACHE II score, 28-day deaths, and high ARDS risk.	(46)
NEAT1	†	Septic Mice	–	↑ NF-xB	–	Downregulation of NEAT1 increased activity of nerve cells and reduced apoptosis.	(47)
NEAT1	†	82 patients with sepsis and 82 HCs	–	↓ miR-124	–	NEAT1 showed a good predictive value for increased sepsis risk. NEAT1 expression was positively associated with disease severity, CRP, PCT, TNF-α, and IL-1β, 28-day deaths.	(48)
NEAT1	†	18 patients with sepsis-induced AKI and 18 HCs	HK-2	↓ miR-31-5p	–	Downregulation of NEAT1 reduced levels of autophagy factors and inflammatory responses.	(49)
NEAT1	†	22 patients with sepsis and 22 HCs	H9c2	↓ miR-590-3p	NF-xB signaling pathway	Downregulation of NEAT1 reduced apoptosis and inflammatory responses in LPS-induced sepsis.	(50)
H19	†	69 patients with sepsis and HCs, male BALB/c mice	–	↑ miR-874, ↓ AQP1	–	Downregulation of H19 contributed to inflammatory responses. Up-regulation of H19 ameliorated the impairment of sepsis companied myocardial dysfunction.	(51)
H19	†	104 patients with sepsis, and 92 HCs rats	HSAECs	↑ miR-93-5p	–	Up-regulation of H19 suppressed inflammatory responses in sepsis-induced myocardial injury.	(52)
CASC9	†	60 patients with sepsis and 60 HCs	HCAECs	↑ miR-195-5p, ↓ PDK4	–	Expression of H19 was negatively associated with 28-day deaths and inflammatory response markers.	(53)
LUADT1	†	66 patients with sepsis and 66 HCs	HBEpCs	↓ miR-19a	–	Up-regulation of LUADT1 reduced inflammatory responses.	(54)
MiAT	†	male SD rats	NRK-52E	↓ miR-29a	–	Up-regulation of MiAT promoted apoptosis in sepsis-related kidney injury.	(55)
MiAT	†	male BALB/c mice	HL-1	↑ miR-330-5p	↑ NF-xB signaling	Downregulation of MiAT restrained inflammation and oxidative stress in Sepsis-Induced Cardiac Injury.	(56)
THRIL	†	66 patients with sepsis and 66 HCs	MPVECs	↓ miR-155-5p	–	Up-regulation of THRIL promoted apoptosis.	(57)
THRIL	†	male C57BL/6 mice	Kupffer	↑ BRD4	–	Downregulation of XIST reduced inflammation, oxidative stress, and apoptosis in sepsis-induced acute liver injury.	(58)

(Continued)
TABLE 1 | Continued

IncRNA	Expression Pattern	Clinical Samples/ Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
XIST	↑	GEO database: GSE94717 (6 patients with sepsis-induced AKI and 6 HCs)	MPC5	↓ miR-15a-5p, ↑ CUL3	-	Up-regulation of XIST enhanced apoptosis in sepsis-induced AKI.	(65)
xist	↑	-	-	-	-	Downregulation of xist inhibited apoptosis and induced proliferation.	(66)
GASS	↓	60 patients with sepsis and 60 HCs	AC16	↓ miR-214	-	Downregulation of GASS restrained apoptosis of cardiomyocytes induced by LPS. GASS could regulate miR-214 through methylation pathway.	(67)
CRNDE	↓	male specific-pathogen-free Wistar rats	-	↑ miR-29a, ↓ SIRT1, ↑ NF-xB/ PARP1 signaling	-	Up-regulation of CRNDE reduced apoptosis, oxidative stress and inflammatory response.	(68)
CRNDE	↑	136 patients with sepsis and 151 HCs	TBP-1	↓ miR-181a-5p, ↑ TLPA4	-	Up-regulation of CRNDE was correlated with poorer OS and was a significant predictor in patients with sepsis. Downregulation of CRNDE reduced sepsis-related inflammatory pathogenesis.	(69)
CRNDE	↑	male C57 mice	-	↑ p65	↑ TLPA4/ NF-xB pathway signaling	Downregulation of CRNDE reduced edema, necrosis and apoptosis in sepsis-induced AKI.	(70)
CRNDE	↑	HK-2	-	↑ miR-146a	↑ TLPA4/ NF-xB signaling pathway	Up-regulation of CRNDE enhanced cell injuries, inflammatory responses and apoptosis in sepsis-induced AKI.	(71)
CRNDE	↓	rats	HK-2, HEP293	↑ miR-181a-5p, ↓ PPARγ	-	Downregulation of CRNDE increased the urea nitrogen and serum creatinine, and reduced proliferation and promoted apoptosis.	(72)
CRNDE	↓	male SD rats	L02	↑ miR-126-5p, ↓ BCL2L2	-	Downregulation of CRNDE increased viability and repressed apoptosis in sepsis-induced liver injury.	(73)
HOTAIR	↓	male SD rats	HK-2	↑ miR-34a	-	Up-regulation of HOTAIR reduced apoptosis in sepsis-induced AKI.	(74)
HULC	↑	110 patients with sepsis and 100 HCs	HMEC-1, CRL-3243	↓ miR-128-3p, ↑ RAC1	-	Downregulation of HULC restrained apoptosis and inflammation, and protected HMEC-1 cells from LPS-induced injury.	(75)
HULC	↑	174 patients with sepsis and 100 HCs	-	-	-	Expression of HULC was correlated with APACHE II, SOFA score, and 28-day deaths. It was also positively associated with Scr, WBC, and CRP, but negatively correlated with albumin.	(76)
HULC	↑	56 patients with sepsis and 56 HCs	HUVECs	↓ miR-204-5p, ↑ TRPM7	-	Downregulation of HULC promoted viability and reduced apoptosis, inflammatory responses and oxidative stress.	(77)
HULC	↑	C57BL/6 mice	HMECs	↑ IL6, ↑ ICAM1, ↑ VCAM1	-	Downregulation of HULC reduced levels of pro-inflammatory factors.	(78)
TapSAKI	↑	SD rats	HK-2	↓ miR-22	↑ TLPA4/ NF-xB pathway	Downregulation of TapSAKI decreased inflammatory factors and renal function indicators, so decreased kidney injury.	(79)
ITS1N1-2	↑	309 patients with intensive care unit (ICU)-treated sepsis and 300 HCs	-	-	-	High levels of ITS1N1-2 were correlated with elevated disease severity, inflammation, and poor prognosis in sepsis patients.	(80)
LncRNA-p21	↑	sepsis-induced ALI rat model	BEAS-2B c	-	-	Downregulation of LncRNA-p21 restrained apoptosis, inflammatory responses and oxidative stress in sepsis-induced ALI.	(81)
TCONS_00016233	↑	15 patients with septic AKI and non-AKI, and 15 HCs, C57BL/6j mice	HK-2	miR-22-3p, ↑ AIM1	TLPA4/ p38MAPK axis	Downregulation of TCONS_00016233 restrained LPS-induced apoptosis. Up-regulation of TCONS_00016233 induced LPS-induced apoptosis and inflammatory responses.	(82)
UCA1	↑	C57BL/6 mice	HMECs	↑ IL6, ↑ ICAM1, ↑ VCAM1	-	Downregulation of UCA1 reduced inflammatory responses.	(83)

(Continued)
TABLE 1 | Continued

IncRNA	Expression Pattern	Clinical Samples/ Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
NR024118	↓	82 patients with sepsis without MD, 35 patients with sepsis and MD and 82 HCs	AC16	↑ IL-6	NF-κB signaling pathway	Up-regulation of NR024118 reduced the secretion of IL-6 and apoptosis, and improved LPS-induced myocardial APD duration and cell injury.	(83)
MIR155HG	↑	28 patients with sepsis and 28 without sepsis	HL-1, RAW 264.7	↓ miR-194-5p, ↑ MEF2A		Downregulation of MIR155HG increased viability and decreased apoptosis and inflammatory responses.	(84)
LUCAT1	↑	GEO dataset: GSE101639	H9c2	↓ miR-642a, ↑ ROCK1		Downregulation of LUCAT1 decreased inflammatory responses.	(85)
SOX2OT	↑	male C57B6/L mice	H9c2	↑ SOX2		Downregulation of SOX2OT reduced mitochondrial dysfunction in septic cardiomyopathy.	(86)
MEG3	↑	male C57BL/6 mice	TECs	↓ miR-18a-3P		Downexpression of MEG3 expression was positively correlated with cardiomyopathy, APACHE II score, SOFA score, Scr, TNF-α, IL-1β, IL-6, and IL-17, 28-day deaths, while negatively correlated with albumin.	(87)
MEG3	↑	82 patients with sepsis and 54 HCs	Human primary renal mixed epithelial cells , AC16			Downregulation of MEG3 reduced mitochondrial dysfunction in septic cardiomyopathy and expression of GSDMD in LPS-induced AKI.	(88)
MEG3	↑	112 patients with sepsis and 100 HCs	—	—		High levels of MEG3 were associated with 28-day deaths and it was found to be a predictor of higher ARDS risk.	(89)
MEG3	↑	219 patients with sepsis and 219 HCs, male C57BL/6 J mice	—	↓ miR-21		Lnc-MEG3 expression was positively correlated with cardiomyopathy, APACHE II score, SOFA score, Scr, TNF-α, IL-1β, IL-6, and IL-17, 28-day deaths, while negatively correlated with albumin.	(90)
MEG3	↓	male C57/BL mice	Caco2	↑ miR-129-5p, ↓ SP-D		Overexpression of MEG3 reduced villus length and apoptosis, inhibited intestinal injury and enhanced proliferation.	(91)
GASS	↓	—	conditional immortalized podocyte line THLE-3	↓ PTEN	↑ PI3K/ AKT pathway	Downregulation of GASS elevated the Podocyte Injury.	(92)
LINC00472	↑	male SD rats	—	—		Downregulation of LINC00472 enhanced viability and suppressed apoptosis.	(93)
HOTAIR	↑	male C57B6/L mice	HL-1	↑ p-p65, ↑ NF-κB	NF-κB pathway	Downregulation of HOTAIR restrained LPS-induced myocardial dysfunction in septic mic. HOTAIR was involved in p65 phosphorylation and NF-κB activation, leading to 15 TNF-α production.	(94)
HOTAIR	↑	male SD rats	HK-2	↓ miR-22, ↑ HMGB1		Downregulation of HOTAIR reduced renal function indicators (blood urea nitrogen and serum creatinine).	(95)
Hotairm1	↑	male C57BL/6 mice	MDSCs	↑ S100A9 localization		Downregulation of Hotairm1 restrained the suppressive functions of late sepsis Gr1+CD11b+ MDSCs. Hotairm1 Was involved in shutting S100A9 protein to the nucleus.	(96)
NKILA	↑	—	HK2	↓ miR-140-5p, ↑ CLDN2		Downregulation of NKILA restrained apoptosis, autophagy and inflammation and promoted viability in sepsis-induced AKI.	(97)
HOXA-AS2	↓	44 patients with sepsis and 44 HCs, adults clean Kunming mice	HK-2	↑ Wnt/β-catenin and NF-κB pathways		Up-regulation of HOXA-AS2 increased viability and repressed apoptosis and protect cells to resist LPS-induced damage in sepsis-induced AKI.	(98)
SNHG14	↑	—	HK-2	miR-93, IL-6, ↑ TLR4/NF-κB pathway, ↑ NF-κB pathway		Up-regulation of SNHG14 promoted oxidative stress, inflammation, and apoptosis. TLR4/NF-κB pathway induced upregulation of SNHG14.	(99)

(Continued)
IncRNA	Expression Pattern	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
IncRNA-CCL2	↑	male C57BL/6 mice	_	↓ SIRT1	_	Expression of IncRNA-CCL2 was inhibited by SIRT1 through maintaining a more repressive chromatin state in IncRNA-CCL2 locus. Downregulation of SIRT1 induced inflammatory response.	(100)
DLX6-AS1	↑	patients with septic AKI	HK-2	↓ miR-223-3p, ↑ NLRP3	_	Downregulation of DLX6-AS1 suppressed LPS-induced cytotoxicity and pyroptosis. Expression of DLX6-AS1 was positively correlated with levels of creatinine in the serum of patients.	(101)
CASC2	↓	patients with sepsis and HCs	HK-2	↑ miR-155	↑ NF-κB signaling pathway	The levels of CASC2 were negatively correlated with the severity of AKI. CASC2 expression induced cell viability and inhibited inflammatory response, apoptosis and oxidative stress.	(102)
CASC2	↓	patients with sepsis and HCs	HPAEpiC	↑ miR-152-3p, ↓ PDK4	_	Up-regulation of CASC2 increased viability and restrained apoptosis, inflammatory and oxidative damages.	(103)
ZFAS1	↓	202 patients with sepsis and 200 HCs	_	_	_	Expression of ZFAS1 was negatively associated with APACHE II, level of CRP, TNF-α, IL-6 and positively with IL-10.	(104)
ZFAS1	↓	male SD rats	H9C2	↑ miR-34b-5p, ↓ SIRT1	_	Up-regulation of ZFAS1 decreased inflammatory responses and apoptosis.	(105)
ZFAS1	↑	male C57BL/6 mice	_	↓ miR-590-3p, SP1	AMPK/mTOR signaling pathway	Downregulation of ZFAS1 reduced LPS-induced pyroptosis and enhanced LPS-suppressed autophagy in sepsis-induced cardiac dysfunction.	(106)
ZFAS1	↓	22 patients with SIMI and 24 HCs, rats treated by LPS	H9C2	↑ miR-138-5p, ↓ SESN2	_	Up-regulation of ZFAS1 attenuated myocardial injury and inflammatory response.	(107)
Mirt2	↓	male SD rats	_	↑ MiR-101	↓ PI3K/AKT Signaling Pathway	Up-regulation of Mirt2 inhibited inflammatory responses and improved cardiac function.	(108)
Mirt2	↓	40 patients with sepsis, 40 patients with sepsis-AI, 40 HCs	HBEpCs	↓ miR-1246	_	Up-regulation of Mirt2 inhibited LPS-induced inflammatory response, apoptosis, and promoted miR-1246 expression but reduced its gene methylation.	(109)
TCONS_00016406	↓	male C57BL/6 mice	PTEC	↑ miR-687, ↓ PTEN	_	Up-regulation of IncRNA 6406 inhibited inflammatory responses, apoptosis and oxidative stress in LPS-induced AKI.	(110)
NORAD	↑ in NS patients	88 patients with late-onset NS and 86 patients with pneumonia neonates	RAW264.7	↓ miR-410-3p	_	Expression of NORAD was closely correlated with WBC, PCT, IL-6, IL-8, and TNF-α.	(111)
GAS5	↑	_	THP-1	↓ miR-23a-3p, ↑ TLR4	_	Downregulation of GAS5 inhibited inflammation and apoptosis.	(112)
Inc-ANRIL	↑	126 patients with sepsis and 125 HCs	_	↓ miR-125a	_	Inc-ANRIL showed good predictive values for sepsis risk. Inc-ANRIL was positively associated with CRP and PCT levels, disease severity scale scores, and pro-inflammatory cytokine levels, 28-day deaths in sepsis patients,	(113)
PVT1	↑	109 patients with sepsis and 100 HCs	_	_	_	PVT1 was found to be an independent risk factor for sepsis ARDS. And PVT1 expression positively associated with disease severity and 28-day deaths.	(114)
PVT1	↑	_	THP-1	_	↑ p38 MAPK signaling pathway	Downregulation of PVT1 reduced levels of IL-1β and TNF-α mRNA and inhibited the p38 MAPK signaling pathway,	(115)
In general, the pathophysiology of sepsis is considered as an initial hyperinflammatory phase ("cytokine storm") followed by a protracted immunosuppressive phase. Since no data is available about the differential expression of non-coding RNAs during these two distinct phases, future studies are needed to evaluate expression patterns of non-coding RNAs in these two phases. It is possible that some of the non-coding RNAs that suppress the immune response could be used as biomarkers to indicate the immunoparalysis in sepsis.

From a therapeutic point of view, several studies have shown that up-regulation/silencing of circRNAs, circRNAs and miRNAs in the context of sepsis. These transcripts, particularly miRNAs can be used as diagnostic or prognostic markers in sepsis. Expression levels of these regulatory transcripts might be used for diagnosis of organ specific damages during the course of sepsis.

In general, the pathophysiology of sepsis is considered as an initial hyperinflammatory phase ("cytokine storm") followed by a protracted immunosuppressive phase. Since no data is available about the differential expression of non-coding RNAs during these two distinct phases, future studies are needed to evaluate expression patterns of non-coding RNAs in these two phases. It is possible that some of the non-coding RNAs that suppress the immune response could be used as biomarkers to indicate the immunoparalysis in sepsis.

From a therapeutic point of view, several in vitro and in vivo studies have shown that up-regulation/silencing of circRNAs,
TABLE 2 | Lists the function of miRNAs in the course of sepsis.

miRNA Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
miR-125a-5p	GEO database: GSE94717 (6 patients with sepsis-induced AKI and 6 HCs)	MPC8	↓ XIST, ↓ CUL3	-	Downregulation of miR-15a-5p reduced apoptosis in sepsis-induced AKI.	(65)
miR-494-3p	Patients with sepsis and HCs	RAW264.7	↑ TLR6	-	Upregulation of microRNA-494-3p reduced inflammation, TNF-α level, and prevented nuclear translocation of NF-κB p65.	(132)
miR-218	53 Patients with sepsis and 20 HCs, septic mouse model	PBMCs	↑ VOPP1↑ JAK/STAT pathway		Upregulation of microRNA-494-3p reduced inflammation.	(133)
miR-122	male S SD rats	RAW264.7	↑ RUNX2		Up-regulation of miR-218 inhibited inflammatory response.	(141)
miR-208a-5p	septic mouse model	-	↓ SOCS2↑ NF-κB/ HIF-1α pathway		miR-122 showed higher AUC in comparison with CRP and TLC which had 66.6% sensitivity, 50% specificity, and 56.6% accuracy as a prognostic biomarker for sepsis.	(134)
miR-328	110 Patients with sepsis and 89 HCs, male SD rats	-	-		miR-328 expression was positively associated with Scr, WBC, CRP, PTC, APACHE II score, and SOFA score. miR-328 was found to be a good diagnostic value for sepsis. Downregulation of miR-328 reduced inflammatory response.	(139)
miR-452	47 sepsis patients with AKI, 50 patients without AKI, and 10 HCs	BUMPT	NF-KB	-	Serum and urinary miR-452 could be a potential biomarker for early detection of septic AKI. It was upregulated in sepsis patients with AKI compared with without AKI, miR-452 had high diagnostic value for AKI.	(140)
miR-21	219 Patients with sepsis and 219 HCs	-	-		miR-21 was found to be a good value in predicting sepsis risk. miR-21 expression was negatively correlated with APACHE II, SOFA score, and 28-day mortality risk.	(142)
miR-126	208 Patients with sepsis and 210 HCs	-	-		miR-126 expression was positively correlated with APACHE II, serum creatinine, CRP, TNF, IL-6, IL-8, mortality rate, but negatively with IL-10.	(143)
mir-103	196 Patients with sepsis and 196 HCs	-	-		mir-103 predicted high ARDS risk. Mir-103 and was negatively associated with APACHE II score, SOFA score, serum creatinine, CRP, TNF, IL-1β, IL-6, IL-8, 28-day deaths, but positively correlated with albumin. mir-107 predicted high ARDS risk, mir-107 and was negatively associated with APACHE II score, SOFA score, serum creatinine, CRP, TNF, IL-1β, IL-6, IL-8, 28-day deaths, but positively correlated with albumin.	(144)
mir-107	196 Patients with sepsis and 196 HCs	-	-		mir-107 predicted high ARDS risk. Mir-103 and was negatively associated with APACHE II score, SOFA score, serum creatinine, CRP, TNF, IL-1β, IL-6, IL-8, 28-day deaths, but positively correlated with albumin. mir-107 and was negatively associated with APACHE II score, SOFA score, serum creatinine, CRP, TNF, IL-1β, IL-6, IL-8, 28-day deaths, but positively correlated with albumin.	(144)
miR-92a	in sepsis-induced ARDS	HPMEC, A549	-	↑ Akt/mTOR signaling pathway	Downregulation of mir-92a reduced apoptosis and inflammatory response, and enhanced migration	(145)
mir-98	male C57BL/6 mice	-	↑ HMG2A↑ NF-κB pathway		Upregulation of miR-98 prevented HMG2A, NF-κB, TNF-α, IL-6, IL-8, Bcl-2 and augmented IL-10, Cleaved caspase-3 and Bax expression, it reduced LVEDP, CTR-I, BNP, ALT, AST, TBIL, LDH, and PaCO2 but elevated +dp/dt max, −dp/dt max, pH and PaO2.	(146)
miR-125a	150 Patients with sepsis and 150 HCs	-	-		miR-125a expression was positively associated with Scr, APACHE II score, SOFA score.	(147)
miR-125b	150 Patients with sepsis and 150 HCs	-	-		miR-125b was correlated with Scr, CRP, APACHE II score, SOFA score, and chronic obstructive pulmonary disease , and 28-days death.	(147)
mir-199a	male C57BL/6 mice	-	↓ SIRT1	-	Downregulation of mir-199a reduced apoptosis and inflammatory response.	(148)
mir-496	105 Patients with sepsis and 100 HCs, rats	-	-		miR-496 was negatively correlated with Scr, WBC, CRP, PCT, APACHE II score and SOFA score. CLP rats showed worse LVSP, LVEDP, ±dp/dtmax, and exhibited an increase in serum CTR-I, CK-MB, TNF-α, IL-6 and IL-1β.	(149)
mir-106a	50 patients with sepsis and 30 HCs, clean Kunming mice	TCMK-1	↓ THBS2	-	Downregulation of mir-106a reduced apoptosis and inflammatory response.	(150)

(Continued)
miR-21 was decreased in septic mice and improved their survival rate through IL-1β stimulation resulted in packaging miR-146a into exosomes. The exosomal miR-146a was transferred to macrophages, yielded to M2 polarization, and finally led to high survival in septic mice.

Upregulation of miR-574 increased viability, inhibited apoptosis, and reduced sepsis-induced ERS.

MicroRNA-195 could promote cardiac remodeling by up-regulating the nanobiotics signaling pathway in sepsis rats.

Downregulation of miR-133a prevented inflammatory response, sepsis-induced lung, liver and kidney injuries.

Upregulation of miR-191-5p prevented inflammatory response and apoptosis in sepsis.

MI-146a was of good value in predicting high sepsis risk and 28-day mortality risk. MI-146b was positively associated with biochemical indices, inflammatory cytokines, overall disease severity.

miR-146b was of good value in predicting high sepsis risk and 28-day mortality risk. MI-146a was positively associated with biochemical indices, inflammatory cytokines, overall disease severity.

miR-126 was negatively associated with the levels of caspase-3, APACHE II score, and positively with 28-day cumulative survival rate. AUC for predicting the prognosis by miR-126 was 0.823.

Upregulation of mir-223 impelled M2 macrophage through lower activity of glycolysis Pathway, the implementation of miR-223 over-expressed macrophages with IL-4 preconditioning alleviated sepsis severity.

Treatment with hucMSC-Ex improved survival in mice with sepsis by reducing levels of IRAK1, increasing of miR-126, and inhibition of NF-κB activity.

miR-1-3p decreased proliferation, and increased apoptosis, and permeability and HUVECs membrane injury.

Levels of miR-25 was associated with the severity of sepsis, SOFA score, CRP and PCT level, 28-day deaths, and levels of oxidative stress indicators.

miR-370-3p was associated with TNF-α and increased brain apoptosis in SAE mice.

miR-21 inhibition alleviated renal disease by exosomes. The exosomal miR-21 was transported from ischemic limbs to the kidneys by exosomes.

miR-21 decreased inflammatory and apoptosis.

miR-21 levels so reduced inflammatory responses and increased viability. IfMSCs-derived exosomes reduced symptoms in septic mice and improved their survival rate through miR-21 upregulation.

miR-21 inhibition alleviated renal disease by exosomes. The exosomal miR-21 was transported from ischemic limbs to the kidneys by exosomes.

miR-21 inhibition alleviated renal disease by exosomes. The exosomal miR-21 was transported from ischemic limbs to the kidneys by exosomes.

miR-21 inhibition alleviated renal disease by exosomes. The exosomal miR-21 was transported from ischemic limbs to the kidneys by exosomes.

miR-21 inhibition alleviated renal disease by exosomes. The exosomal miR-21 was transported from ischemic limbs to the kidneys by exosomes.
TABLE 2 | Continued

miRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
miR-21	↑	septic C57BL/6J mice	PTEN	↓ PGE2, ↓ IL-10		Downregulation of miR-21 reduced bacterial growth, systemic inflammation, organ damage, macrophage glycolysis, and increased animal survival.	(165)
miR-21-3p	↑	SD rats	TECs	↓ AKT, ↓ CDK2, ↑ FOXO1		miR-21-3p regulated lipid metabolism and increased cell cycle arrest and apoptosis.	(166)
miR-34	↑	male C57BL/6 mice (15 control group and 15 sepsis model group)			↓ KLF4	Plasma miR-34a was positively associated with SCR and BUN.	(167)
miR-483-5p	↑	CLP-treated mice	PMVECs	↓ PIAS1		Downregulation of miR-483-5p reduced inflammation and apoptosis and improved lung injury in mice with sepsis-induced ALI.	(168)
miR-125a	↓	CLP-treated mice		↑ HMGB1		Upregulation of miR-181-5p reduced inflammatory response, and sepsis-induced renal and hepatic dysfunction.	(169)
miR-20a	↑	SD rats				miR-20a could deteriorated AKI via activating autophagy in sepsis rats.	(170)
hsa-miR-92a-3p	↓ in sepsis-induced coagulopathy group	116 patients with sepsis				AUC of hsa-miR-92a-3p was 0.660. Levels of plasma hsa-miR-92a-3p were related to plasma lipocalin-2 level, activated partial thromboplastin time, and prothrombin activity.	(171)
miR-93-5p	↓	septic mouse model	HK2	↑ KDM6B, ↓ H3K27me3		Extracellular vesicles containing miR-93-5p reduced inflammation, apoptosis, multiple organ injury, and vascular leakage in septic mice.	(172)
miR-223	↓	143 patients with sepsis and 44 HCs				Expression of miR-223 was negatively correlated with SOFA scores and positively with survival rate. Upregulation of miR-223 decreased apoptosis and increased proliferation and G1/S transition.	(173)
miR-34a	↑	male C57BL/6 mice	↓ SIRT1, ↓ ATG4B			Downregulation of miR-34a reduced inflammatory response and pyroptosis, apoptosis and enhanced autophagy.	(174)
miR-30a	↑	septic rats		↓ SOCS-1 ↑ JAK/STAT signaling pathway		Upr egulation of miR-30a promoted apoptosis and inhibited proliferation.	(175)
miR-150-5p	↓	rat septic shock model	H9C2	↑ Akt2		Upregulation of miR-150-5p inhibited apoptosis.	(176)
miR-140	↓	SPF male BALB/c mice		↑ WNT signaling pathway		Upregulation of miR-140 inhibited apoptosis and inflammation, skeletal muscle glycolysis and atrophy.	(177)
miR-22-3p	↓	male SD rats	HK-2	↑ HMGB1 ↑ PTEN		Upregulation of miR-22-3p inhibited apoptosis and inflammatory response Down regulation of miR-205-5b increased HMGB1 expression in LPS-induced sepsis. Upr egulation of miR-526b increased viability by inhibiting autophagy.	(178)
miR-205-5b	↑	BALB/c mice	RAW264.7			Upregulation of miR-205-5b increased viability by inhibiting autophagy.	(179)
miR-526b	↓	BALB/c mice	HK2	↑ ATG7		Upregulation of miR-526b reduced levels of proinflammatory cytokines.	(180)
miR-145a	↓	septic mouse model		↑ Fl-1	↑ NF-kB signaling	AUC of miR-125a: 0.749 miR-125a was positively correlated with APACHE II score and SOFA score. AUC of miR-125b: 0.839 miR-125b was positively correlated with APACHE II score, SOFA score CPR, TNF-α, IL-6, IL-17, IL-23, and 28-day mortality risk. Upregulation of miR-135a exacerbated inflammation and myocardial dysfunction.	(181)
miR-125a	↑	150 patients with sepsis and 150 HCs				AUC of miR-125a: 0.749 miR-125a was positively correlated with APACHE II score and SOFA score. AUC of miR-125b: 0.839 miR-125b was positively correlated with APACHE II score, SOFA score CPR, TNF-α, IL-6, IL-17, IL-23, and 28-day mortality risk. Upregulation of miR-135a exacerbated inflammation and myocardial dysfunction.	(182)
miR-125b	↑	150 patients with sepsis and 150 HCs				AUC of miR-125a: 0.749 miR-125a was positively correlated with APACHE II score and SOFA score. AUC of miR-125b: 0.839 miR-125b was positively correlated with APACHE II score, SOFA score CPR, TNF-α, IL-6, IL-17, IL-23, and 28-day mortality risk. Upregulation of miR-135a exacerbated inflammation and myocardial dysfunction.	(183)
miR-122	↑	108 patients with sepsis and 20 patients with infections without sepsis as controls				AUC of miR-122: 0.760 miR-122 was found as independent prognostic factor for 30-day mortality. Upregulation of miR-135a exacerbated inflammation and myocardial dysfunction.	(184)
miR-135a	↑	patients with sepsis and HCs, BALB/c mice			↑ p38 MAPK/NF-kB pathway ↑ NF-kB pathway	Upr egulation of miR-135a exacerbated inflammation and myocardial dysfunction.	(185)
miR-133a	↓	TCMK-1	↑ BNIP3L			Upregulation of miR-133a reduced inflammation and apoptosis.	(186)
TABLE 2 | Continued

miRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
miR-223	†	male C57BL/6 mice				In multiple models of experimental sepsis, miR-223 showed the complex role in the pathogenesis of septic kidney injury. (186)	
miR-155	†	44 patients with severe sepsis, 102 patients with sepsis, and 19 HCs	†	†	†	AUC of miR-155: 0.782 (for predicting 30-day mortality in ALI) (187)	
miR-146	†	44 patients with severe sepsis, 102 patients with sepsis, and 19 HCs	†	†	†	AUC of miR-146a: 0.733 (for predicting 30-day mortality in ALI). CC genotype of rs2910164 in miR-146a was correlated with worse treatment result. (188)	
miR-194	†	H9c2	† Stc7a5	†	† Wnt/β-catenin pathway	Upregulation of miR-194 increased apoptosis. (189)	
miR-30a	†	male C57BL/6 mice	RAW 264.7	† ADAR1, † SOCS3	†	Upregulation of ADAR1 (a target of miR-30a) reduced inflammation and organ damage. (190)	
miR-27b	†	male C57BL/6 mice	BMSCs	† JMJD3	† NF-κB signaling pathway	Upregulation of miR-27b MSC-derived exosomes reduced pro-inflammatory cytokines. (191)	
miR-155	†	BALB/c mice		† SOCS1	† JAK/STAT signaling pathway	Downregulation of miR-155 alleviated LPS-induced mortality and liver injury (192)	
miR-155	†	C57BL/6 mice		† Ar rb2	† JNK signaling pathway	Upregulation of miR-155 ameliorated late sepsis survival and its cardiac dysfunction, and reduced pro-inflammatory responses. (193)	
miR-155	†	patients with sepsis and HCs, mouse septic shock model		† CD47		Downregulation of microRNA-155 reduced sepsis-associated cardiovascular dysfunction and mortality. (194)	
miR-155	†	60 patients with sepsis and 20 HCs		† Foxp3		Expression of miR-155 was correlated with APACHE II score, it was significantly higher in non-survival group. (195)	
miR-155	†	156 patients with sepsis (41 with ALI and 32 with ARDS)				AUC of miR-155: 0.87, miR-155 was positively associated with IL-1β, TNF-α levels, and ALI/ARDS score, but negatively with PaO2/FIO2. (196)	
miR-29c-3p	†	86 patients with sepsis and 65 HCs, male SD rats				AUC of miR-29c-3p: 0.872 miR-29c-3p expression was positively correlated with APACHE II score, SOFA score, levels of CRP and PCT. miR-29c-3p was found to be an independent factor in the occurrence of cardiac dysfunction. PTEN increased miR125 production through associating with the nuclear localization of Drosha-Dgcr8. Downregulation of PTEN resulted in cytokine production, MyD88 abundance and mortality. (197)	
miR-125b	†	40 patients with sepsis and HCs, female and male C57BL/6 mice		† PTEN, † MyD88		PTEN increased miR125 production through associating with the nuclear localization of Drosha- Dgcr8, Downregulation of PTEN resulted in cytokine production, MyD88 abundance and mortality. (198)	
miR-203b	†	40 patients with sepsis and HCs, female and male C57BL/6 mice		† PTEN, † MyD88		PTEN increased miR203b production through associating with the nuclear localization of Drosha-Dgcr8, Downregulation of PTEN resulted in cytokine production, MyD88 abundance and mortality. (199)	
miR-146	†	EA. hy926		† NF-κB signaling pathway		Upregulation of reduced levels inflammatory cytokines. (200)	
miR-140-5p	†	male SPF rats	MLE-12	† TLR4, † MyD88	† NF-κB signaling pathway	Shikonin could alleviated sepsis-induced ALI by increasing the levels of miR-A-140-5p and decreasing the levels of TLR4. (201)	
miR-125b	†	male C57BL/6 mice	HUVECs	† ICAM-1, † VCAM-1, † TRAF6	† NF-κB signaling pathway	Upregulation of miR-125b alleviated sepsis-induced cardiac dysfunction and ameliorated survival. (202)	
miR-494	†	ARDS rat models			† Nrf2 signaling pathway	Upregulation of miR-494 increased inflammatory response, oxidative stress and ALI. (203)	

(Continued)
TABLE 2 | Continued

miRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
miR-146a	↓	male C57BL/6 mice	HiCa2, J774	↑ IRAK, ↑ TRAF6	↑ NF-κB signaling pathway	Upregulation of miR-146 reduced levels of inflammatory cytokines and sepsis-induced cardiac dysfunction	(202)
miR-223		221 patients with sepsis and 75 HCs, male C57BL/6 mice				Levels of serum miR-223 did not differ between critically ill patients and HCs, but ICU patients with APACHE-II score had moderately decreased circulating miR-223,	(203)
miR-300	↓	septic mouse model		↑ NAMPT	↓ AMPK/mTOR signaling pathway	Upregulation of miR-300 increased autophagy, cell cycle entry and reduced apoptosis and inflammatory response.	(204)
miR-126	↓	male C57BL/6 mice		↓ HSPA12B		Upregulation of HSPA12B increased levels of miR-126, upregulation of miR-126 reduced levels of adhesion molecules and improved sepsis-induced cardiac dysfunction,	(205)
miR-10a	↓	62 patients with sepsis and 20 HCs		↑ MAP3K7	↑ NF-κB signaling pathway	miR-10a expression was negatively associated with disease severity scores, levels of c-reactive protein, procalcitonin, and 28-day death.	(206)
miR-146a	↓	mice		↑ Notch1	↑ NF-κB signaling pathway	Upregulation of miR-146a reduced inflammatory responses of macrophages and protected mice from organ damage	(207)
miR-19a	↓	CLP mice	RAW 264.7	↑ Fn14		Upregulation of miR-19a reduced LPS-Induced Tubular Damage, it was found to protected mice from sepsis-induced AKI.	(208)
miR-214		male Kunming mice				Upregulation of miR-214 reduced apoptosis, inflammatory response, myocardial injury, and improved cardiac function in SMI.	(209)
miR-539-5p	↓	male C57BL/6 mice	MPVECs	↑ ROCK1		Upregulation of miR-539-5p reduced apoptosis, inflammatory response, sepsis-induced pulmonary injury.	(210)
miR-155	↑	60 patients with sepsis and 30 HCs				miR-155 was positively correlated with a higher SOFA score and a greater severity. AUC of miR-155 for 28-day survival was 0.763, miR-155 derived immunosuppression through CD39(+) Tregs.	(211)
miR-146a	↑ in sepsis group compared to shame group	male BALB/C mice				Up-regulation of miR-146a reduced levels of inflammatory cytokine TNF-α and mitigated inflammatory reaction and lung tissue injury in sepsis-induced ALI.	(212)
miR-7110-5p	↑	52 patients with pneumonia, 44 patients with sepsis and 21 HCs				The sensitivity and specificity of miR-7110-5p were 84.2 and 90.5% respectively. (sepsis vs HCs)	(213)
miR-223-3p	↑	52 patients with pneumonia, 44 patients with sepsis and 21 HCs				The sensitivity and specificity of miR-223-3p were 82.9 and 100% respectively. (sepsis vs HCs)	(214)
miR-19a	↑	patients with sepsis	B cells from patients with sepsis	CD22		Expression of CD22 initially increased but subsequently reduced. Upregulation of miR-19a resulted in an increased BCR signaling, while overexpression of CD22 reduced the effect of miR-19a and promoted its expression. miR-206 was positively associated with SOFA score and APACHE-II score. It was observed an activated partial thromboplastin time and notably longer prothrombin time.	(215)
miR-206	↑	63 patients with sepsis, 30 patients with septic shock and HCs				Up-regulation of miR-146a reduced apoptosis, inflammatory response, and weakened organ injury in splenic macrophages.	(216)
miR-146a	↓	male C57BL/6 mice	RAW264.7	↑ NF-κB signaling		Up-regulation of miR-146a reduced apoptosis, inflammatory response, and weakened organ injury in splenic macrophages.	(217)
miR-19b-3p	↓	103 patients with sepsis and 98 HCs	HUVECs			Up-regulation of miR-19b-3p reduced inflammatory response. miR-19b-3p was found to be an independent prognostic factor for 28-day survival. Up-regulation of miR-129-5p reduced apoptosis, inflammatory response, lung wet/dry weight ratio, and myeloperoxidase activity.	(218)
miR-129-5p	↓	CLP mice	MLE-12	↑ HMGB1		Up-regulation of miR-129-5p reduced apoptosis, inflammatory response, lung wet/dry weight ratio, and myeloperoxidase activity.	(219)
TABLE 2 | Continued

miRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
miR-23b	↓	30 patients with sepsis and 30 HCs	THP-1	↑ ADAM10		Up-regulation of miR-23b reduced apoptosis and inflammatory response.	(219)
miR-150	↓	140 patients multiple trauma and 10 HCs	MDSCs	↑ ARG31		Up-regulation of miR-150 reduced IL-6, TGF-β and IL-10.	(220)
miR-375	↓	patients with sepsis, septic mice	MDSCs	↑ miR-21	↑ JAK2/STAT3 pathway	Up-regulation of miR-375 reduced the number of sepsis Gr1+CD11b+ MDSCs in mice.	(221)
miR-31	↑	male SD rats	Caco-2	↓ HMOX1	↑ NF-κB/HIF-1α pathway	Downregulation of miR-31 reduced intestinal barrier function, intestinal mucosal permeability, oxidative damage and inflammation level.	(222)
miR-21 and 181b	↑ (in early sepsis), sustained (in late sepsis)	male BALB/c mice	MDSCs	↑ NFI-A		Down regulation of miR-21 and miR-181b decreased, immunosuppression, reprogramming myeloid cell, late-sepsis mortality, and improved bacterial clearance.	(223)
miR-150	↓ slightly	223 critically ill patients (including 138 fulfilled sepsis criteria) and 76 HCs	–	–	–	Serum levels of miR-150 were associated with hepatic or renal dysfunction. Low levels were correlated with an unfavorable prognosis of patients. Serum levels of miR-150 were not suitable for predicting of sepsis.	(224)
miR-10a	↑	SD rats	–	–	↑ TGF-β1/Smad pathway	Up-regulation of miR-10a increased ROS, TNF-α, IL-6, and MPO, and downregulation reduced sepsis-induced liver injury.	(225)
miR-145	↓	septic mice	HUVECs	↑ TGFB2, ↑ SMAD2, ↑ DNMT1		Up-regulation of miR-145 reduced LPS-Induced sepsis and improved the overall survival of septic mice.	(226)
miR-150	↓	17 patients with sepsis and 32 HCs	–	–	–	Levels of miR-150 were negatively correlated with the level of disease severity, TNF-α, IL-10, and IL-18.	(227)
miR-103a-3p	↑	30 patients with sepsis and 30 HCs, male C57 BL/6 mice	AML12, LO2	↓ FBXW7		Downregulation of miR-103a-3p reduced apoptosis, and inflammatory response.	(228)
miR-143	↑	103 patients with sepsis, 95 patients with SIRS and 16 HCs	–	–	–	miR-143 was positively correlated with SOFA score and APACHE II score in patients with sepsis. For distinguishing between sepsis and SIRS, miR-143 showed a sensitivity of 78.6% and specificity of 91.6%.	(229)
miR-145	↓	33 patients with sepsis and 22 HCs, septic mice	BEAS-2B	↑ TGFB2		Up-regulation of miR-145 reduced inflammatory response and improved the overall survival of septic mice.	(230)
miR-150	↓	C57Blk/6J mice	HPAECs	↑ Ang2		Downregulation of miR-150 damaged adherens junctions reannealing after injury, which caused an irreversible increase in vascular permeability. Up-regulation of miR-150 reduced vascular injury and mortality.	(231)
miR-34b-3p	↓	CLP mice	RMCs	↑ UBL4A	↑ NF-κB signaling	Up-regulation of MIR-34b-3p reduced inflammatory response and AKI in sepsis mice.	(232)
miR-21-3p	↑	patients with sepsis, C57BL/6 mice	–	↓ SORBS2		Downregulation of miR-21-3p induced mitochondrial ultrastructural damage and autophagy in LPS-treated mice. Levels of miR-21-3p increased in patients with cardiac dysfunction than without cardiac dysfunction.	(233)
miR-199a-5p	↑	C57BL/6 mice	HEK-293T	↓ SP-D	↑ NF-κB signaling	Down regulation of miR-199a-5p reduced D-lactic acid, DAO, FD-40, oxidative damage and inflammation.	(234)
miR-17	↓	mice	BMSCs, RAW264.7	↑ BDR4, ↑ EZH2, ↑ TRAIL		MIR-17 carried by BMSC-EVs reduced inflammation and apoptosis.	(235)
miR-125b	↑	120 patients with sepsis and 120 HCs	–	–	–	AUC of miR-125b: 0.658. MiR-125b was positively associated with APACHE II score, SOFA score, Scr, CRP, PCT, TNF-α, and IL-6 levels. MiR-125b was found to be an independent risk factor for mortality risk.	(236)

(Continued)
Continued

miRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
miR-30e	↓	septic rats		↑ FOSL2	↑ JAK/STAT signaling	Up-regulation of miR-30e increased proliferation and reduced apoptosis.	(237)
miR-20b-5p	↑	SD rats	HEK-293T	↓ circDMNT3B		Downregulation of miR-20b-5p reduced level of d-lactic acid, FD-40, MDA, diamine oxidase, IL-10, IL-6, oxidative damage and inflammatory factors level.	(238)
miR-146b	↓	CLP mice		↑ Notch1		Up-regulation of miR-146b reduced apoptosis and inflammatory response.	(239)
miR-27a	↓	SD rats	Hi9C2	↑ PTEN, ↑ TLR4	↑ NF-κB signaling	Up-regulation of miR-25 reduced apoptosis and enhanced survival rate.	(240)
miR-96-5p	↑	septic mice	MDSCs, GR-1 +CD11b + cells	↑ C/EBPβ, ↑ Stat3		Stat3 and C/EBPβ increased miR-21 and miR-181b expression by binding to their promoters during sepsis.	(241)
miR-128-3p	↓	septic mice	LPS-induced macrophages, HBMECs	↑ TLR4		Sch B increased miR-17-5p expression and reduced inflammation.	(242)
miR-200a-3p	↑	male C57BL/6J mice		↑ NLRP3, ↑ Keep1, ↓ Nrf2, ↓ HO-1		Up-regulation of miR-200a-3p induced inflammatory response in sepsis-induced brain injury.	(243)
miR-26b	↓	14 patients with sepsis and 7 patients with septic shock and 21 HCs	MEG-01	↑ SELP, ↓ Dicer1		Low levels of miR-26b was correlated with the severity and mortality of sepsis.	(244)
miR-96-5p	↓	RAW264.7	↑ NAMPT	↑ NF-κB pathway		Up-regulation of miR-96-5p reduced inflammatory response.	(245)
miR-27a	↑	septic mice		↑ NLRP3, ↑ NF-κB pathway		Downregulation of miR-27a reduced inflammatory response and promoted survival of septic mice.	(246)
miR-21a-3p	↑	specific pathogen-free SD rats	NRP52E	↑ Ago2, ↑ Nrp-1		miR-21a-3p was found to be internalized by TECs via Nrp-1 and Ago2.	(247)
miR-574-5p	↑	118 patients with sepsis				miR-574-5p was associated with the death of sepsis patients.	(248)
miR-181b	↓	26 patients with sepsis, 36 patients with sepsis plus sepsis/ARDS and 16 HCs, male C57BL/6 mice	TPH-1, HLVECs	↑ importin-α3	↑ NF-κB signaling pathway	Up-regulation of miR-181b reduced mortality rate, inflammation response, LPS-induced EC activation, leukocyte accumulation.	(249)
miR-182-5p	↑	male C57BL/6 mice	endothelial cells	↓ BCL-2, ↓ Sirt1, ↓ Pim-1		Downregulation of miR-182-5p reduced apoptosis, inflammation response and promoted viability and proliferation.	(250)
miR-195	↑	female C57BL/6 mice				Downregulation of miR-182-5p reduced apoptosis, and improved survival.	(251)
miR-205	↓	male SD rats		↑ HMGB1-PTEN signaling pathway		Up-regulation of miR-205 reduced apoptosis and renal injury.	(252)
miR-21-3p	↑ in AKI group	49 patients with sepsis-induced AKI and 93 sepsis patients with non-AKI		↑ Scr, ↑ Cys-C, ↑ KIM-1		Levels of miR-21-3p was positively associated with Scr, Cys-C, and KIM-1 in the AKI group.	(253)
miR-181a-2-3p	↓	GSE46955 data set, CLP mouse model	TCMK-1	↑ GJB2		Up-regulation of miR-181a-2-3p reduced apoptosis and inflammatory response.	(254)
miR-21	↓	female Wistar rats	HK-2	↑ PTEN, ↑ PI3K, ↑ AKT		Up-regulation of miR-21 suppressed apoptosis and kidney injury.	(255)
miR-146a	↓	female ICR mice	Raw264.7	↑ JMJ D3, ↑ NF-κB p65		GSKJ4 reduced inflammatory response by increasing miR-146a levels.	(256)
miR-294	↓	RAW264.7	TREM-1			Transcription of miR-146a was negatively regulated by JMJ D3 through epigenetic mechanism.	(257)
miR-128-3p	↑	CLP mouse model	TCMK-1	↓ NRP1		miR-294 reduced TNF-κB and IL-6 secretion.	(258)

(Continued)
TABLE 2 | Continued

miRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
miR-146a	↓		HiC2	ErbB4, ↑TRAFl, ↑IRAK1		Up-regulation of miR-146a reduced apoptosis and inflammatory response and promoted viability.	(259)
miR-511	↑ in S mice	C57BL/6J (S) mice, SFRET/ Ei (S) mice,	BUMPT	NF-kB, NFkBZ		miR-511 was induced by glucocorticoids. miR-511 inhibited endotoxemia and experimental hepatitis.	(260)
miR-376b	↓ in sepsis with AKI group	20 Patients with sepsis with AKI, 20 patients with sepsis without AKI and 10 HCs, male C57BL/6 mice	BUMPT			miR-376b inhibited NF-kB inhibitor ↓[NFkBZ] expression and NF-kB inhibited miR-376b expression so they created a negative feedback loop.	(261)
miR-101-3p	↑	clean grade Kunming mice	HEK-293T	↑ VNN1	↓ AKT signaling pathway	Up-regulation of miR-203 reduced apoptosis, inflammatory response, MDA, ALT, and AST in lung tissues, PMN and PAM levels in BALF and increased SOD activity.	(264)
miR-34a	↑	CLP-induced suckling rats	U937	↑ STAT3 pathway		Up-regulation of miR-34a reduced apoptotic pathway. miR-34a inhibited C-reactive protein, pro-calcitonin, IL-6 and TNF-α.	(265)
miR-146a	↓	patients with sepsis and HCs	Human primary T cells	↑ PPKCε		Reduced levels of miR-146a contributes to the pathogenesis of sepsis.	(266)
miR-223	↑	187 patients with sepsis and 186 HCs	HEK-293T	↑ VNN1		Up-regulation of miR-203 reduced apoptosis, inflammatory response, MDA, ALT, and AST in lung tissues, PMN and PAM levels in BALF and increased SOD activity.	(267)
miR-214	↓	male Kunming mice	PTEN	↑ AKT pathway		Up-regulation of miR-214 reduced oxidative stress and autophagy, so ameliorated CLP-induced AKI.	(268)
miR-27a	↑	LPS induced sepsis mice model	HiC2	↓ rhTNFR: Fc, ↓Nrf2		rhTNFR:Fc elevated viability and reduced apoptosis by increasing Nrf2 levels and reducing miR-27a levels.	(269)
miR-150	↓ in non-survival group	48 patients with septic shock (23 survival patients and 25 non-survival patients)	RAW264.7	↑ PTEN		MiR-150 level was positively associated with cardiac index and negatively with EVLWI and PVI.	(270)
miR-148a-3p	↑	male adult wild-type mice and myeloid-specific RBP-J-deficient mice	RAW264.7	↑ Notch signaling and NF-kB pathway		Up-regulation of miR-148a-3p increased proinflammatory cytokines and decreased protective effect of EVs in LPS induced sepsis.	(271)
miR-218-5p	↑	male ICR mice	GMCs	↓ HO-1		miR-218-5p was reduced in honokiol-treated septic mice, so the survival rate was increased. Up-regulation of miR-218-5p reduced inflammatory response and sepsis-related liver damage.	(272)
miR-425-5p	↑	C57BL/6 mice	hepatocytes	↑ Rip1		Serum levels of miR-122 were associated with APTT ratios, FIB and antithrombin III levels. Downregulation of reduced apoptosis and inflammatory response.	(273)
miR-101-3p	↑	168 patients with sepsis (CA group and CN group)	RAW264.7	↑ MAPK p38 and NF-kB pathways		Up-regulation of miR-148a-3p increased proinflammatory cytokines and decreased protective effect of EVs in LPS induced sepsis.	(274)
miR-122	↑ in CA group	168 patients with sepsis (CA group and CN group)	RAW264.7	↑ MAPK p38 and NF-kB pathways		Up-regulation of miR-148a-3p increased proinflammatory cytokines and decreased protective effect of EVs in LPS induced sepsis.	(275)
miR-101-3p	↑	RAW264.7				(Continued)	
miRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
---------	-----------------------	-------------------------------	---------------------	----------------------	-------------------------------------	---	-----------
miR-124	↓	mouse model of ALI	_	↑ MAPK14	↑ MAPK signaling pathway	Up-regulation of miR-124 reduced apoptosis and inflammatory response and promoted proliferation.	(277)
miR-942-5p	↓	_	HK-2	↑ FOXO3	_	Up-regulation of miR-942-5p reduced apoptosis and inflammatory response and promoted viability.	(278)
miR-23a-5p	↑	SD rats	NR8383	_	_	_	(279)
miR-124	↑	_	BEAS-2B	↓ SOCS6,	↑ STAT3	Up-regulation of miR-124-5p induced cell permeability and inflammatory response and reduced proliferation.	(280)
miR-942-5p	↓	male C57BL/6 mice	MPC5	↑ CCL-2	_	Propofol increased levels of miR-290-5p and decreased CCL-2 and inflammatory response.	(281)
miR-124	↑ in AKI group	155 patients with sepsis (68 AKI and 87 non-AKI) and 57 patients with non-infectious SIRS	_	_	_	_	(282)
miR-124	↑	Rat model of SAK0	_	_	_	_	(283)
miR-29a	↑ in AKI group	74 patients with AKI and 41 without AKI	_	_	_	AUC for miR-29a: 0.82	(284)
miR-10a-5p	↑ in AKI group	74 patients with AKI and 41 without AKI	_	_	_	AUC for miR-10a-5p: 0.75	(285)
miR-155	↑	septic mice	NCM460	_	↑ NF-κB signaling	Up-regulation of miR-155 increased hyperpermeability to FITC-dextran, TNF-α and IL-6 levels, and decreased ZO-1 and Occludin expression.	(286)
miR-155	↑	male C57BL/6 mice	Raw264.7,	_	↑ PI3K/AKT signaling pathways	Curcumin inhibited inflammatory responses and miR-155 expression.	(287)
miR-497	↑ in myocardial injury group	148 patients with sepsis (58 myocardial injury group and 90 non-myocardial injury group)	BEAS-2B	↓ IL2RB	_	Plasma miRNA-497 was correlated with cTnI in patients with myocardial injury.	(288)
miR-497-5p	↑	GEO database, male C57BL/6 mice	_	_	_	Downregulation of miR-497-5p reduced apoptosis and inflammatory responses.	(289)
miR-30a	↓	_	monocytes	↑ STAT1, ↑ MD-2	_	_	(290)
miR-150	↓	C57BL/6 mice	HLVECs	↑ NF-κB1	_	_	(291)
miR-146a	_	_	THP-1	RBM4, Ago2, p38	_	_	(292)
miR-146b	_	C57BL/6 mice	HEK293TN, J774.1	_	_	_	(293)
miR-27a	↓	septic mice	_	↑ TAB3	↑ NF-κB signaling pathway	Up-regulation of miR-146b reduced mortality and increased Ago2-RBM4 protein interaction, so reduced inflammatory responses.	(294)
miR-146a	↓ in septic patients than SIRS and HCs groups	50 patients with sepsis, 30 patients with SIRS and 20 HCs	_	_	_	Up-regulation of miR-146a reduced morphine mediated hyper-inflammation.	(295)
miR-146a	_	_	_	_	_	_	(296)

(Continued)
TABLE 2 | Continued

miRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
miR-223	↓ in septic patients than SIRS and HCs groups	50 patients with sepsis, 30 patients with SIRS and 20 HCs	_ _ _	_ _ _	_ _ _	AUC for miR-223: 0.804	(298)
miR-339-5p	↓ in septic mice	RAW264.7	↑ HMGB1, ↑ IKK-β	_ _ _	_ _ _	Paeonol could reduce inflammatory responses by upregulating miR-339-5p expression.	(299)
miR-99b	↑ in male C57BL/6 J mice	RAW264.7	↓ MFG-E8	_ _ _	_ _ _	Spherical nucleic acid increased migration by inhibiting miR-99b.	(300)
miR-215-5p	↓ in H9c2	Hi5c2	↑ LLRFIP1, ↑ IFL3	_ _ _	_ _ _	miR-215-5p reduced inflammatory responses.	(301)
miR-15a	↑ in sepsis and SIRS than HCs	166 patients with sepsis, 32 patients with SIRS, and 24 HCs	_ _ _	_ _ _	_ _ _	miR-15a could distinguish sepsis/SIRS from HCs.	(302)
miR-16	↑ in sepsis and SIRS than HCs	166 patients with sepsis, 32 patients with SIRS, and 24 HCs	_ _ _	_ _ _	_ _ _	miR-16 could distinguish sepsis/SIRS from HCs.	(303)

miRNAs and Sepsis. AKI, Acute kidney injury; HCs, healthy controls; AUC, significant higher area under curve; CRP, C-reactive protein; TLC, total leucocytes count; SD, Sprague-Dawley; SOFA, sequential organ failure assessment; Scr, serum creatinine; WBC, white blood cell; PCT, procalcitonin; APACHE, physiology and chronic health evaluation; CLP, cecal ligation and puncture; ERS, endoplasmic reticulum stress; AUC, area under the ROC curve; SAE, sepsis-associated encephalopathy; BUN, blood urea nitrogen; rIPC, remote ischemic preconditioning; SPF, specific pathogen-free; GEO, Gene Expression Omnibus; SIMI, sepsis-induced myocardial injury; Tregs, regulatory T-cells; Sch B, Schisandrin B; DXM, dexamethasone; MDA, malondialdehyde; ALT, aminotransferase; AST, aspartate aminotransferase; PAM, pulmonary alveolar macrophages; PMN, polymorphonuclear neutrophils; BALF, bronchoalveolar lavage fluid; SOD, superoxide dismutase; CA, coagulation abnormal; CN, coagulation normal; APTT, serum activated partial thromboplastin time; FIB, fibrinogen; SIC, sepsis-induced cardiomyopathy; SIRS, systemic inflammatory response syndrome; DEX, dexamethasone; SAKI, sepsis-induced acute kidney injury.

FIGURE 3 | Down-regulated miRNAs in sepsis.
TABLE 3 | CircRNAs and Sepsis.

circRNA	Pattern of Expression	Clinical Samples/Animal Model	Assessed Cell Lines	Targets / Regulators	Signaling Pathways	Description	Reference
circVMA21	↓	CLP rats	HK-2, WI-38	miR-9-39, ↓	SMG1	CircVMA21 reduced apoptosis, inflammatory responses and oxidative stress.	(306)
hsa_circRNA_104484	↑	25 patients with sepsis and 22 HCs	MPVECs	miR-545		Low levels of circ-PRKCI were correlated with sepsis risk, clinical disease severity and 28-day mortality risk.	(308)
hsa_circRNA_104670	↑	25 patients with sepsis and 22 HCs	Caco2	miR-20b-5p, ↓	SOD	Downregulation of circDNMT3B decreased cell survival and increased apoptosis, inflammatory responses and oxidative damage.	(328)
circ_0114428	↑	HK2	↓	miR-495-3p, ↑	CRBN	Downregulation of circ_0114428 decreased apoptosis, inflammatory responses, oxidative stress, and ER stress.	(307)
circ_0001105	↓	septic rats	↑	YAP1		Up-regulation of circ_0001105 decreased apoptosis, inflammatory responses and oxidative damage.	(309)
circ_Fryl	↑	septic mice	HK2	miR-545, ↓	ZEB2	Up-regulation of circPRKCI reduced LPS-induced cell injury and inflammatory responses.	(311)
hsa_circ_0003420	↑	CLP rats	HK2	miR-183a, ↑	Rcan2	Up-regulation of circPRKCI reduced LPS-induced cell injury and oxidative damage.	(312)
circ_Ttc3	↓	CLP rats	↑	miR-148a, ↓		Up-regulation of circPRKCI reduced LPS-induced cell injury and oxidative damage.	(313)
circPRKCI	↓	patients with sepsis and HCs	HK2	miR-545, ↓	2EB2	Up-regulation of circPRKCI reduced LPS-induced cell injury and inflammatory responses.	(314)
circ_0091702	↓	septic mice	HK2	miR-182, ↑	PDE7A	Up-regulation of circ_0091702 reduced LPS-induced cell injury.	(315)
circVMA21	↓	ADSCs, LPS-induced AEC damage model	↑	SIRT3 in ADSC exosomes	SIRT3/AMPK signaling	Up-regulation of circVMA21 reduced LPS-induced cell injury and inflammatory responses.	(316)
circTLK1	↑	HEBEpCs	↑	mature miR-15a-5p		Downregulation of circTLK1 reduced apoptosis, inflammatory responses and oxidative stress.	(317)
circFADS2	↑	50 patients with sepsis and 50 HCs	↑	miR-545-3p, ↑	THBS2	Up-regulation of circ_0091702 reduced LPS-induced cell injury.	(318)
circ_0091702	↓	septic mice	HK2	miR-545-3p, ↑	THBS2	Up-regulation of circ_0091702 reduced LPS-induced cell injury.	(319)
hsa_circ_0068,888	↓	C57BL/6 mice	↑	miR-21-5p, ↑		Up-regulation of hsa_circ_0068,888 reduced inflammatory response and oxidative stress and increased viability.	(305)
circPTK2	↓	septic mice	B2V microglia	miR-181c-5p, ↑		Downregulation of circPTK2 reduced apoptosis, inflammatory responses.	(320)
circ-FANCA	↑	19 patients with sepsis and 19 HCs	HK2	miR-93-5p, ↑	OXSR1	Downregulation of circ-FANCA reduced apoptosis, inflammatory responses and oxidative stress and increased proliferation.	(321)
circANKRD36	↑	60 patients with sepsis-induced ARDS	RAW264.7	miR-330, ↑	ROCK1	Downregulation of circANKRD36 reduced viability and migration alleviated inflammatory responses.	(322)
circPRKCI	↓	HK2	↑	miR-106b-5p, ↑	GAB1	Up-regulation of circPRKCI reduced apoptosis, inflammatory responses and oxidative stress and increased viability.	(323)

HCs, healthy controls; AKI, acute kidney injury; ARDS, acute respiratory distress syndrome.
IncRNAs and miRNAs can ameliorate the pathologic events in the target organs, particularly heart and kidney during sepsis. Yet, this field is still in its infancy needing verification in additional animal models and cell lines. Moreover, since sepsis is an emergency situation, any therapeutic option should be verified in terms of bioavailability, efficiency and instant amelioration of pathological events.

Since the pathoetiology of sepsis-related complications is not completely understood, high throughput sequencing strategies focusing on different classes of non-coding as well coding RNAs are necessary to find the complicated networks between these transcripts in the context of sepsis.

AUTHOR CONTRIBUTIONS

SG-F wrote the draft and revised it. MT designed and supervised the study. NA, BH, and TK collected the data and designed the figures and tables. All authors contributed to the article and approved the submitted version.
Yang Y, Yang L, Liu Z, Wang Y, Yang J. Long Noncoding RNA NEAT 1 and its Target Microrna-125a in Sepsis: Correlation With Acute Respiratory Distress Syndrome Risk, Biochemical Indexes, Disease Severity, and 28-Day Mortality. J Clin Lab Anal (2020) 34(2):e23509. doi: 10.1002/jcla.23509

Liu W, Wang Y, Zhang C, Han Y, Chen H. Long Noncoding RNA NEAT1 on Sepsis-Induced Brain Injury in Mice via NP-xb, Eur Rev Med Pharmacol Sci (2019) 23(9):833-9. doi: 10.26355/eurrev_201905_17822

He F, Zhang C, Huang Q. Long Noncoding RNA Nuclear Enriched Abundant Transcript 1/Mirna-124 Axis Correlates With Increased Disease Risk, Elevated Inflammation, Deteriorative Disease Condition, and Predicts Downregulated Survival of Sepsis. Med (2019) 98(32). doi: 10.1097/MD.0000000000016470

Yang F, Liu J, Wu R, Yang P, Ye Z, Song F. NEAT1 Aggravates Sepsis-Induced Acute Kidney Injury by Sponging Mir-22-3p. Open Med (2020) 15(1):333–42. doi: 10.1515/med-2020-0401

Yang Y, Yue J, Qin L, Zhang J, Liu J, Yu J. Lncrna NEAT1 Promotes Inflammatory Response in Sepsis via the Mir-31-5p/POU2F1 Axis. Inflammation 2021 (44):4–11. doi: 10.1017/s10753-021-01436-9

Liu L, Liu F, Sun Z, Peng Z, You T, Yu Z. Lncrna NEAT1 Promotes Apoptosis and Inflammation in LPS–Induced Sepsis Models by Targeting Mir–590–3p. Exp Ther Med (2020) 20(4):3290–300. doi: 10.3892/etm.2020.9079

Fang Y, Hu J, Wang Z, Zong H, Zhang L, Zhang R, et al. Lncrna H19 Functions as an Aquaporin 1 Competitive Endogenous RNA to Regulate Microrna-874 Expression in LPS Sepsis. Biomed Pharmacother (2018) 105:1183–91. doi: 10.1016/j.biopha.2018.06.007

Shan B, Li J–Y, Liu Y–J, Tang X–B, Zhou Z, Luo L–X. Lncrna H19 Inhibits the Progression of Sepsis-Induced Myocardial Injury via Regulation of the Mir-93-5p/SORBS2 Axis. Inflammation 2021 (44):344–57. doi: 10.1016/s10753-020-01340-8

Yu B, Cui R, Yan L, Zhang J, Liu B. Long Non-Coding RNA H19 as a Diagnostic Marker in Peripheral Blood of Patients With Sepsis. Am J Trans Res (2021) 13(4):2923.

Wang H-R, Guo X-Y, Liu X–Y, Song X. Down-Regulation of Lncrna CASC9 Aggravates Sepsis-Induced Acute Lung Injury by Regulating Mir-195-5p/ PKD4 Axis. Inflammation Res 2020 (69):559–68. doi: 10.1007/s10753-020-01316-2

Zhang Z, Lv M, Wang X, Zhao Z, Jiang D, Wang L. Lncrna LUAD1 Sponges Mir-195 to Prevent Cardiac Endothelial Cell Apoptosis in Sepsis. Mol Med (2020) 26(1):1–8. doi: 10.1186/s12030-020-00228-5

Zhang Y, Zhang Y, Xia F, Yang A, Qian J, Zhao H, et al. Effect of Lncrna-MIAT on Kidney Injury in Sepsis Rats via Regulating Mir-29a Expression. Eur Rev Med Pharmaco Sci (2019) 23:10942–9. doi: 10.26355/eurrev_201912_19797

Xing P–C, An P, Hu G–Y, Wang D–L, Zhou M–J. Lncrna MIAT Promotes Inflammation and Oxidative Stress in Sepsis-Induced Cardiac Injury by Targeting Mir-330-5p/TRAF6/NF-kB Axis. Biochem Genet (2020) 58(5):783–800. doi: 10.1007/s13577-020-00997-6

Liu T, Liu J, Tian C, Wang H, Wen M, Yan M. Lncrna THRIL Is Upregulated in Sepsis and Sponges Mir-19a to Upregulate TNF-α in Human Bronchial Epithelial Cells. J Inflammation 2021 (17)1:1–7. doi: 10.1186/s12950-020-00259-z

Chen H, Hu X, Li R, Liu B, Zheng X, Fang Z, et al. Lncrna NECAT Aggravates Sepsis-Induced Acute Lung Injury by Regulating Mir-424/ROCK2 Axis. Mol Immunol (2020) 126:111–9. doi: 10.1016/j.molimm.2020.07.021

Wang Y, Xu F, Yu B, Ai F. Long Non-Coding RNA THRIL Predicts Increased Acute Respiratory Distress Syndrome Risk and Positively Correlates With Disease Severity, Inflammation, and Mortality in Sepsis Patients. J Clin Lab Anal (2019) 33(6):e22882. doi: 10.1002/jcla.22882

Song X, Li L, Zhao Y, Song Y. Down-Regulation of Non-Coding RNA XIST Aggravates Sepsis-Induced Lung Injury by Regulating Mir-16-5p. Hum Cell (2021) 34(5):1–11. doi: 10.1186/s13577-021-00542-y

Wang L, Cao QM. Long Non-Coding RNA XIST Alleviates Sepsis-Induced Acute Kidney Injury Through Inhibiting Inflammation and Cell Apoptosis via Regulating Mir-155-5p/WWC1 Axis. Kaohsiung J Med Sci (2021). doi:10.1002/kjm2.12442

Shen C, Li J, Lncrna XIST Silencing Protects Against Sepsis-Induced Acute Liver Injury via Inhibition of BRD4 Expression. Inflammation (2021) 44 (1):194–205. doi: 10.1017/s10753-020-01321-x

Xu G, Mo L, Wu C, Shen X, Dong H, Yu L, et al. The Mir-15a-5p-SIRT2-CCND2 Axis During Sepsis-Induced Cell Apoptosis, Inflammation, and Survival. Free Radic Biol Med (2020) 17(12):2570. doi: 10.1016/j.freeradbiomed.2020.04.017
68. ZHU Y, Sun A, Meng T, Li H. Protective Role of Long Noncoding RNA CRNDE in Myocardial Tissues From Injury Caused by Sepsis Through the MicroRNA-29a/SIRT1 Axis. *Life Sci* (2020) 255:117849. doi: 10.1016/j.lfs.2020.117849

69. Wang Y, Xu Z, Yue D, Zeng Z, Yuan W, Xu K. Linkage of LncRNA CRNDE Sponging Mir-18a-5p With Aggravated Inflammation Underlying Sepsis. *Innate Immun* (2020) 26(2):152–61. doi: 10.1177/1753459119880046

70. Sun B, Sui Y, Huang H, Zou X, Chen S, Yu Z. Effect of LncRNA CRNDE on Sepsis-Related Kidney Injury Through the TLR3/NF-κB Pathway. *Eur Rev Med Pharmacol Sci* (2019) 23(23):10489–97. doi: 10.26355/eurrev_201912_19688

71. Wu S, Qiu H, Wang Q, Cao Z, Wang J. Effects and Mechanism of LncRNA CRNDE on Sepsis-Induced Acute Kidney Injury. *Anal Cell Pathol* (2020) doi: 10.1002/jcla.23656

72. Wang J, Song J, Li Y, Shao J, Xie Z, Sun K. Down-Regulation of LncRNA CRNDE Aggravates Kidney Injury via Increasing Mir-18a-1p in Sepsis. *Int Immunopharmacol* (2020) 79:105933. doi: 10.1016/j.immp.2019.105933

73. Li Y, Song J, Xie Z, Liu M, Sun K. Long Noncoding RNA Colorectal Neoplasia Differentially Expressed Alleviates Sepsis-Induced Liver Injury via Regulating Mir-126-3p. *JUBMB Life* (2020) 72(3):440–51. doi: 10.1002/jub.2230

74. Jiang Z, Zhang M, Fan Z, Sun W, Tang Y. Influence of LncRNA HOTAIR on Acute Kidney Injury in Sepsis Rats Through Regulating Mir-34a/Bcl-2 Pathway. *Eur Rev Med Pharmacol Sci* (2019) 23(8):3512–9. doi: 10.26355/eurrev_201904_17717

75. Yang W, Luo X, Liu Y, Xiong J, Xia H, Liu Y. Potential Role of LncRNA HULC/Mir-128–3p/RAC1 Axis in the Inflammatory Response During LPS –Induced Sepsis in HMEC-1 Cells. *Mol Med Rep* (2020) 22(6):5095–104. doi: 10.3892/mmr.2020.11601

76. Wang H, Feng Q, Wu Y, Feng L, Yuan H, Hou L, et al. Association of Circulating Long Non-Coding RNA HULC Expression With Disease Risk, Inflammatory Cytokines, Biochemical Index Levels, Severity-Assessed Scores, and Mortality of Sepsis. *J Clin Lab Anal* (2021) 35(3):e23656. doi: 10.1002/jcla.23656

77. Chen X, Song D. LPS Promotes the Progression of Sepsis by Activation of LncRNA HULC/Mir-204-5p/TRPM7 Network in Huh7. *Biosci Rep* (2020) 40(6):BSR20200740. doi: 10.1042/BSR20200740

78. Chen Y, Fu Y, Song Y-F, Li N. Increased Expression of LncRNA UCA1 and HULC Is Required for Pro-Inflammatory Response During LPS Induced Sepsis in Endothelial Cells. *Front Physiol* (2019) 10:608. doi: 10.3389/fphys.2019.00608

79. Shen J, Liu L, Zhang F, Gu J, Pan G. LncRNA Tapski Promotes Inflammation Injury in HK-2 Cells and Urine Derived Sepsis-Induced Kidney Injury. *Pharm Pharmacol* (2019) 71(5):833–48. doi: 10.1111/pph.13049

80. Zeng Q, Wu J, Yang S. Circulating LncRNA ITSN1-2 Is Upregulated, and its High Expression Correlates With Increased Disease Severity, Elevated Inflammation, and Poor Survival in Sepsis Patients. *J Clin Lab Anal* (2019) 33(4):e22836. doi: 10.1002/jcla.22836

81. Wang W, Li Y, Zhi S, Li J, Miao J, Ding Z, et al. LncRNA-ROR/MiRNA-21 Axis Regulating Mir-126-5p. *Circulating Long Non-Coding RNA HULC Expression With Disease Risk, Systemic Inflammation, Disease Severity, and Poor Prognosis of Sepsis via Interacting With Mir-21. *J Clin Lab Anal* (2020) 34(4):e23123. doi: 10.1002/jcla.23123

82. Du X, Tian D, Wei J, Yan C, Hu P, Wu X, et al. MEG3 Alleviated LPS-Induced Intestinal Injury in Sepsis by Modulating Mir-129-5p and Surface Protein D. *Mediators Inflamm* (2020) doi: 10.1155/2020/8232734

83. Fang Y, Hu J, Wang Z, Zhang S, Zhang R, Sun L, et al. GAS5 Promotes Podocyte Injury in Sepsis by Inhibiting PTEN Expression. *Eur Rev Med Pharmacol Sci* (2018) 22(23):8423–30. doi: 10.26355/eurrev_201812_16541

84. Li L, He Y, He X-J, Bi M-R, Qi Y-H, Zhi W-W. Down-Regulation of Long Noncoding RNA LINCO0472 Alleviates Sepsis-Induced Acute Hepatic Injury by Regulating Mir-373-3p/TRIM8 Axis. *Exp Mol Pathol* (2020) 110:104562. doi: 10.1016/j.yexmp.2020.104562

85. Wu H, Liu J, Li W, Liu G, Li Z. LncRNA-HOTAIR Promotes TNF-α Production in Cardiomyocytes of LPS-Induced Sepsis Mice by Activating NF-κB Pathway. *Biochem Biophys Res Commun* (2016) 471(1):240–6. doi: 10.1016/j.bbrc.2016.01.117

86. Shen J, Zhang J, Jiang X, Wang H, Pan G. LncRNA HOX Transcript Antisense RNA Accelerated Kidney Injury Induced by Urine-Derived Sepsis Through the Mir-22/High Mobility Group Box 1 Pathway. *Life Sci* (2018) 210:185–91. doi: 10.1016/j.lfs.2018.08.041

87. Alkhateeb B, Bah I, Kumbhare A, Yousef D, Yao QZ, McCall CE, et al. Long Non-Coding RNA HOTAIR Promotes S100A9 Support of MDSC Expansion During Sepsis. *J Clin Immunol* (2020) 116().

88. Lin D, Fang R, Shi J, Jin Y, Wang Q, LncRNA NRK1A Knockdown Promotes Cell Viability and Represses Cell Apoptosis, Autophagy and Inflammation in Lipopolysaccharide-Induced Sepsis Model by Regulating Mir-140-5p/CLDN2 Axis. *Biochem Biophys Res Commun* (2021) 559:8–14. doi: 10.1016/j.bbrc.2021.04.074

89. Wu H, Wang J, Ma Z. Long Noncoding RNA HOXA5-AS2 Mediates MicroRNA-106b-5p to Repress Sepsis-Engendered Acute Kidney Injury. *J Bioch Mol Toxicol* (2020) 34(4):e22453. doi: 10.1002/jbt.22453

90. Shi C, Zhao Y, Li Q, Li J. LncRNA SNHG14 Plays a Role in Sepsis-Induced Acute Kidney Injury by Regulating Mir-93. *Mediators Inflamm* (2021) doi: 10.1155/2021/5318369

91. Jia Y, Li Z, Cai W, Xiao D, Han S, Han F, et al. SIRT1 Regulates Inflammation Response of Macrophages in Sepsis Mediated by Long Noncoding RNA. *Biochim Biophys Acta (BBA)-Molecular Basis Dis* (2018) 1864(3):784–92. doi: 10.1016/j.bbadis.2017.12.029

92. Tan J, Fan J, He J, Zhao L, Tang H. Knockdown of LncRNA DLX6-AS1 Inhibits HK-2 Cell Pyroptosis via Regulating Mir-223-3p/SLRNP3 Pathway in Lipopolysaccharide-Induced Acute Kidney Injury. *J Bioenerg Biomembr* (2020) 52(5):367–76. doi: 10.1007/s10863-020-09845-5

93. Wang M, Wei J, Zhang F, Zang K, Ji T. Long Non-Coding RNA CASC2 Ameliorates Sepsis-Induced Acute Kidney Injury by Regulating the Mir-155 and NF-κB Pathway. *Int J Mol Med* (2020) 45(5):1554–62. doi: 10.3892/ijmm.2020.4518
103. Zhu L, Shi D, Cao J, Song L. Lncrna CASC2 Alleviates Sepsis-Induced Acute Lung Injury by Regulating the Mir-152-3p/PDK4 Axis. *Immunol Invest* (2021) 1–15. doi: 10.1080/08820339.2021.1928693

104. Xu Y, Shao J, Circulating Long Noncoding RNA ZNF51 Anti-sense RNA Negatively Correlates With Disease Risk, Severity, Inflammatory Markers, and Predicts Poor Prognosis in Sepsis Patients. *Med* (2019) 98(9). doi: 10.1097/MD.00000000000014558

105. Chen D-D, Wang H-W, Cai X-J. Long Non-Coding RNA ZFAS1 Alleviates Sepsis-Induced Myocardial Injury by Targeting Mir-23a-3p/SIRT1. *Innate Immun* (2021) 27(5):377–87. doi: 10.1177/17534592211034221

106. Liu J-J, Li Y, Yang M-S, Chen R, Cai X-J. Targeting SOCS2-Mediated PDCD4 Stability. *Int J Mol Sci* (2021) 22(11):1–12. doi: 10.3390/ijms22114919

107. Luo S, Huang X, Liu S, Zhang L, Cai X, Chen B. Long Non-Coding RNA SNHG14 Aggravates LPS-Induced Acute Kidney Injury Through Regulating Mir-205/PIK3CA Axis. *BMC Pulmonary Med* (2021) 21(1):1–14. doi: 10.1186/s12890-021-01552-0

108. Zhang X, Huang Z, Wang Y, Wang T, Li J, Xie P. Long Non-Coding RNA RMRP Contributes to Sepsis-Induced Acute Kidney Injury. *Toxins Med J* (2021) 62(3):262. doi: 10.3349/ymj.2021.62.3.262

109. Xu X, Xu Y, Tao X, Liang G. Lncrna Mirt2 Upregulates Mir-1246 Through Methylation by Suppressing LS-D Lysine-Dependent Long Cell Apoptosis. *Immun Inflamm Dis* (2020) 9(3):269–75. doi: 10.1016/j.ijid.2020.108611

110. Liu X, Zhu N, Zhang B, Xu SB. Long Noncoding RNA TCONS_00016406 Facilitates the Surveillance of Acute Respiratory Distress Syndrome and Predicts Higher Risk, More Severe Disease Condition, and Worse Prognosis in Sepsis. *BMC Infect Dis* (2020) 20:315985–1. doi: 10.1186/s12879-020-05694-0

111. Zhu L, Shi D, Cao J, Song L. Lncrna CASC2 Alleviates Sepsis-Induced Acute Lung Injury by Regulating the Mir-152-3p/PDK4 Axis. *Immunol Invest* (2021) 1–15. doi: 10.1080/08820339.2021.1928693

112. Gao Z, Huang D. Lncrna GAS5 Alleviates Sepsis Induced Myocardial Injury by Regulating the Mir-23a-3p/SIRT1. *Innate Immun* (2021) 27(5):377–87. doi: 10.1177/17534592211034221

113. Luo Y-Y, Yang Z-Q, Lin X-F, Zhao F-L, Tu H-T, Wang L-J, et al. Knockdown of Lncrna PVT1 Attenuated Macrophage M1 Polarization and Relieved Inflammation and Apoptosis of Cardiomyocytes. *Int J Clin Exp Pathol* (2019) 12(7):3595–67. doi: 10.21773/ijcep.12.7.3595

114. Liu J, Li Y, Yang M-S, Chen R, Cai X-J. Targeting SOCS2-Mediated PDCD4 Stability. *Int J Mol Sci* (2021) 22(11):1–12. doi: 10.3390/ijms22114919

115. Hu M, Wei J, Yang L, Xu J, He Z, Li H, et al. Lnc-KIAA1737–2 Promoted LPS-Induced HK-2 Cell Apoptosis by Regulating Mir-27a-3p/TLR4/NF-kB Axis. *J Bioenerg Biomembr* (2021) 53(4):1–11. doi: 10.1007/s10863-021-09897-1

116. Fu D, Zhou K, Liu J, Zhang B, Cheng W, et al. Long Non-Coding RNA Pcn-mrna-1 Regulates Cell Proliferation, Apoptosis, and Autophagy in Septic Acute Kidney Injury by Regulating BCL2. *Int J Clin Exp Pathol* (2018) 11(1):314.

117. Wang B, Sun Q, Ye W, Li J, Lin P. Long Non-Coding RNA CDKN2B-AS1 Enhances LPS-Induced Apoptotic and Inflammatory Damages in Human Lung Epithelial Cells via Regulating the Mir-140-5p/TGFBR2/Smad3 Signal Network. *BMC pulmon Med* (2021) 22(1):1–12. doi: 10.1186/s12890-021-01561-z

118. Wang H, Li Y, Wang Y, Li H, Dou L. Microrna-494-3p Alleviates Inflammatory Response in Sepsis by Targeting TLR6. *Exp Ther Med* (2019) 23(7):2971–7. doi: 10.26355/ezurev_201904_17578

119. Li J, Zhang H, Zuo Y. Microrna-218 Alleviates Sepsis Inflammation by Negatively Regulating VOPP1 via JAK/STAT Pathway. *Exp Ther Med* (2018) 22(17):5620–6. doi: 10.4061/ezurev_201809_15827

120. Abou El-Khier NT, Zaki ME, Alkasaby NM. Study of Microrna-122 as a Diagnostic Biomarker of Sepsis. *Egypt J Immunol* (2019) 26(2):105–16.

121. Ouyang H, Tan Y, Li Q, Xiao F, Xiao Z, Zheng S, et al. Microrna-208-5p Regulates Myocardial Injury of Sepsis Mouse via Targeting SOCS2-Mediated NF-kB/Hif-1α Pathway. *Medicine* (2020) 89(1):106204. doi: 10.1016/j.euratop.2020.106204

122. Yao M, Cui B, Zhang W, Ma W, Zhao G, Xing L. Exosomal Mir-21 Secreted From Mesenchymal Stem Cells Induces Macrophage M2 Polarization and Ameliorates Sepsis. *Acta Biochim Biophys Sin* (2021) 53(6):719–28. doi: 10.1093/abbs/gmab034

123. Zhang X, Huang Z, Wang Y, Wang T, Li J, P. Long Non-Coding RNA RMRP Contributes to Sepsis-Induced Acute Kidney Injury. *Toxins Med J* (2021) 62(3):262. doi: 10.3349/ymj.2021.62.3.262

124. Gao H, Ma H, Gao M, Chen A, Zha S, Yan J. Long Non-Coding RNA GAS5 Aggravates Myocardial Depression in Mice With Sepsis via the Microrna-449b/HMGB1 Axis and the NF-kB Signaling Pathway. *Biosci Rep* (2021) 41(4):BSR20210738. doi: 10.1042/BSR20210738

125. Han X, Yuan Z, Jing Y, Zhou W, Sun Y, Xing J. Knockdown of Lncrna Tapsaki Alleviates LPS-Induced Injury in HK-2 Cells Through the Mir-205/IRF3 Pathway. *Open Med* (2021) 16(1):581–90. doi: 10.1515-med-2021-0204

126. Sun J, Xin K, Leng C, Ge J. Down-Regulation of SNHG16 Alleviates the Acute Lung Injury in Sepsis Rats Through Mir-128-3p/HMGB3 Axis. *BMC Pulmonary Med* (2021) 21(1):1–14. doi: 10.1186/s12890-021-01552-0

127. Sun B, Luan C, Guo L, Zhang B, Liu Y. Low Expression of Microrna-328 can Predict Sepsis and Alleviate Sepsis-Induced Cardiac Dysfunction and
141. Zhou M, Zhang L, Song M, Sun W. Microrna-218 Prevents Lung Injury in Sepsis via Inhibiting RUNX2. *Eur Rev Med Pharmacol Sci* (2018) 22 (23):8438–46. doi: 10.26355/eurrev_201812_16543

142. Na L, Ding H, Xing E, Zhang Y, Gao J, Liu B, et al. The Predictive Value of Lncrna SNHG1 Knockdown in Predicting Disease Risk, Mortality of Sepsis, and its Correlation With Inflammation and Sepsis Severity. *J Clin Lab Anal* (2020) 34(9):e23408. doi: 10.1002/jcla.23408

143. Wang Q, Feng Q, Zhang Y, Zhou S, Chen H. Decreased Microrna 103 and Microrna-21 for Sepsis Risk and its Correlation With Disease Severity, and Prognosis in Patients With Sepsis. *J Cell Physiol* (2020) 34(3):e23098. doi: 10.1002/jcp.20103

144. Wang Q, Feng Q, Zhang Y, Zhou S, Chen H. Decreased Microrna 103 and Microrna-21 for Sepsis Risk and its Correlation With Disease Severity, and Prognosis in Patients With Sepsis. *J Cell Physiol* (2020) 34(3):e23098. doi: 10.1002/jcp.20103

145. Gao Y, Zhang N, Lv C, Li N, Li X, Li W. Lncrna SNHG1 Knockdown Alleviates Amloid-β-Induced Neuronal Injury by Regulating 2Nf217 via Sponging Mgr-361-3p in Alzheimer’s Disease. *J Alzheimers Dis* (2020) 7:1–14. doi: 10.3233/JAD-191303

146. Zou Q, Zhao S, Wu Q, Wang H, He X, Liu C. Correlation Analysis of Microrna-126 Expression in Peripheral Blood Lymphocytes With Apoptosis and Prognosis in Patients With Sepsis. *Zhonghua weizi zhiyou bing ji jiu xi yue* (2020) 32(8):938–42. doi: 10.3760/cma.j.cn121430-20200213-00181

147. Dang CP, Leelavahanichkul A. Over-Expression of Mir-223 Induces M2 Macrophage Through Glycolysis Alteration and Attenuates LPS-Induced Sepsis Mouse Model. *PloS One* (2020) 15 (7):e0236038. doi: 10.1371/journal.pone.0236038

148. Zhang N, Gao Y, Yu S, Sun X, Shen K. Berberine Attenuates Aβ42-Induced Neuronal Damage Through Regulating Cichrac9/Mir-142-5p Axis in Human Neuronal Cells. *Life Sci* (2020) 117637. doi: 10.1016/j.lfs.2020.117637

149. Gao M, Yu T, Liu D, Shi Y, Yang P, Zhang J, et al. Sepsis Plasma-Derived Exosomal Mir-1-3p Induces Endothelial Cell Dysfunction by Targeting SERTP1. *Clin Sci* (2021) 135(2):347–65. doi: 10.1042/CS20200573

150. Yao L, Liu Z, Zhu J, Li B, Chai C, Tian Y. Clinical Evaluation of Circulating Microrna-25 Level Change in Sepsis and its Potential Relationship With Oxidative Stress. *Int J Clin Exp Pathol* (2015) 8(7):7675

151. Visitchanakun P, Tangtananakul P, Prithiphen O, Soonthornchai W, Wongphoom T, Tachaboon S, et al. Plasma Mir-370-3p as a Biomarker of Sepsis-associated Endoplasmaphagy, the Transcriptomic Profiling Analysis of Microrna-Arrays From Mouse Brains. *Shock* (2020) 54(3):347–57. doi: 10.1097/SHK.0000000000001473

152. Pan P, Jia C, Chen N, Fang Y, Liang Y, Guo M, et al. Delayed Remote Ischemic Preconditioning Conferresoponad Protection Against Septic Acute Kidney Injury via Exosomal Mir-21. *Theranostics* (2019) 9(2):405. doi: 10.7150/thno.29832

153. Zhang J, Liu Y, Liu L. Hyperslide Prevents Sepsis-Associated Cardiac Dysfunction Through Regulating Cardiomyocyte Viability and Inflammation via Inhibiting Mir-21. *Biomed Pharmacother* (2021) 138:111524. doi: 10.1016/j.biopharma.2021.111524

154. De Melo P, Alvarez ARP, Ye X, Blackman A, Alves-Filho JC, Medeiros AI, et al. Macrophage-Derived Microrna-21 Drives Overwhelming Glycolytic and Inflammatory Response During Sepsis via Repression of the PGE2/IL-10 Axis. *J Immunol* (2021) 207(3):902–12. doi: 10.4049/jimmunol.2001251

155. Lin Z, Liu Z, Wang X, Qiu C, Zheng S. Mir-21-3p Plays a Crucial Role in Induction of Acute Lung Injury. *Acta Cirurgica Bras* (2020) 35(4):e20200179. doi: 10.11655/acbc.20200179

156. Jiang Q, Wu C, Zhang Q, Microrna-34a Participates in Lipopolysaccharide Mediated Sepsis Related Renal Function Impairment via Krupell-Like Factor 4. *Zhonghua weizi zhiyou bing ji jiu yi xue* (2020) 34(5):351–4. doi: 10.3760/cma.j.issn.2095-4352.2018.04.013

157. Leng C, Sun J, Xin K, Ge J, Liu P, Feng X. High Expression of Mir-483p Aggravates Sepsis-Induced Acute Lung Injury. *J Toxicol Sci* (2020) 45(2):77–86. doi: 10.2131/jts.45.77

158. Xu J, Qin J, Guo X. Mir-181-3p Protects Mice From Sepsid via Repressing HMGB1 in an Experimental Model. *Eur Rev Med Pharmacol Sci* (2020) 24(2):9712–20. doi: 10.26355/eurrev_202009_23063

159. Wang J, Tao Y, Wang Z, Mao Q, Mir-20a Promotes Kidney Injury in Sepsis Rats Through Autophagy. *J Biol Regulators Homeostatic Agents* (2020) 34 (4):1277–83. doi: 10.23812/20-174-A

160. Wang Y, Wang H, Zhang C, Zhang G, Yang H, Gao R, et al. Plasma Hsa-Mir-92a-3p in Correlation With Lipocalin-2 is Associated With Sepsis-Induced Coagulopathy. *BMC Infect Dis* (2020) 20(1):1–9. doi: 10.1186/s12879-020-04853-y

161. He Z, Wang H, Yue L. Endothelial Progenitor Cells-Secluded Extracellular Vesicles Containing Microrna-93-5p Confer Protection Against Sepsis-Induced Acute Kidney Injury via the KDM6B/H3k27me3/TNF-α Axis. *Exp Cell Res* (2020) 395(2):112173. doi: 10.1016/j.yexcr.2020.112173

162. Liu D, Wang Z, Wang H, Ren F, Li Y, Zou S, et al. The Protective Role of Mir-223 in Sepsis-Mediated Mortality. *Sci Rep* (2020) 10(1):1–10. doi: 10.1038/s41598-020-74965-2

163. Chen S, Ding R, Hu Z, Yin X, Xiao F, Zhang W, et al. Microrna-34a Inhibition Alleviates Lung Injury in Cecal Ligation and Puncture Induced Sepsis Mouse. *Front Immunol* (2020) 11:1829. doi: 10.3389/fimmu.2020.01829

164. Yuan FH, Chen YL, Zhao Y, Liu ZM, Nan CC, Zheng BL, et al. Microrna-30a Inhibits the Liver Cell Proliferation and Promotes Cell Apoptosis Through the JAK/STAT Signaling Pathway by Targeting SOCS-1 in Rats With Sepsis. *J Cell Physiol* (2019) 234(9):3789–93. doi: 10.1002/jcp.28410

165. Zhu XG, Zhang TN, Wen R, Liu CF. Overexpression of Mir-150-5p Alleviates Apoptosis in Sepsis-Induced Myocardial Depression. *BioMed Res Int* (2020) 2020. doi: 10.1155/2020/3023186
187. Liu L, Li T-M, Liu X-R, Bai Y-P, Li J, Tang N, et al. Microrna-140 Inhibits Skeletal Muscle Glycolysis and Atrophy in Endotoxin-Induced Sepsis in Mice via the WNT Signaling Pathway. *Am J Physiol-Cell Physiol* (2019) 317:C189–C99. doi: 10.1152/ajpcell.00419.2018

188. Zhou W, Wang J, Li Z, Li S, Sun M. Microrna-205–5b Inhibits HMGBl Expression in LPS-Induced Sepsis. *Int J Mol Med* (2016) 38(1):312–8. doi: 10.3892/ijmm.2016.2613

189. Liu Y, Xiao J, Sun J, Chen W, Wang S, Su R, et al. ATG7 Promotes Autophagy in Sepsis–Induced Acute Kidney Injury and Is Inhibited by Mir-526b. *Mol Med Rep* (2020) 21(5):2193–201. doi: 10.3892/mmr.2020.11001

190. Wu Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Zingarelli B, et al. Mir-145a Regulation of Pericyte Dysfunction in a Murine Model of Sepsis. *J Infect Dis* (2020) 226(6):1037–45. doi: 10.1093/infdis/jiaa184

191. Zhao D, Li S, Cui J, Wang L, Ma X, Li Y. Plasma Mir-125a and Mir-125b in Sepsis: Correlation With Disease Risk, Inflammation, Severity, and Prognosis. *J Clin Lab Anal* (2020) 34(2):e23036. doi: 10.1002/jcla.23036

192. Rahmel T, Schäfer ST, Frey UH, Adamzik M, Peters J. Increased Circulating Microrna-122 Is a Biomarker for Discrimination and Risk Stratification in Patients Defined by Sepsis-3 Criteria. *PloS One* (2018) 13(5):e0197637. doi: 10.1371/journal.pone.0197637

193. Sun J, Sun X, Chen J, Liao X, He Y, Wang J, et al. Microrna-27b Shuttled by Arrestin 2. *Mol Med Rep* (2018) 17(6):2861–5. doi: 10.3892/mmr.2018.7553

194. Zhai Y, Ding N. Microrna-194 Participates in Endotoxemia Induced Acute Kidney Injury by Targeting PTEN. *Biosci Rep* (2020) 40(6): BSRR2000527. doi: 10.1042/BSRR2000527

195. Zhang B, Yu L, Sheng Y. Clinical Value and Role of Microrna-29c-3p in Sepsis-Induced Inflammation and Cardiac Dysfunction. *Eur J Med Res* (2021) 26(1):1–7. doi: 10.1186/s40001-021-00566-y

196. Gao N, Dong L, Microrna-146a, and Microrna-146b Regulates the Inflammatory Cytokines Expression in Vascular Endothelial Cells During Sepsis. *Die Pharmazie-An Int J Pharm Sci* (2017) 72(11):700–4. doi: 10.1691/ph.2017.7600

197. Zhang YY, Liu X, Zhang X, Zhang J. Shiokinin Improve Sepsis-Induced Lung Injury via Regulation of Mirna-140-5p/TLR4—a Vitro and Vivo Study. *J Cell Biochem* (2020) 121(3):2103–17. doi: 10.1002/jcb.28199

198. Ma H, Wang X, Ha T, Gao M, Liu I, Wang R, et al. Microrna-125b Prevents Cardiac Dysfunction in Polymicrobial Sepsis by Targeting TRAF6-Mediated Nuclear Factor Kappa B Activation and P53-Mediated Apoptotic Signaling. *J Infect Dis* (2016) 214(11):1773–83. doi: 10.1093/infdis/jiw449

199. Liu J, Li Z, Zhang J-F, Zhang W, Lei Z-Q, Chen R-Y, et al. Microrna-494 Inhibition Alleviates Acute Lung Injury Through Nrf2 Signaling Pathway via NQO1 in Sepsis-Associated Acute Respiratory Distress Syndrome. *Life Sci* (2018) 210:1–8. doi: 10.1016/j.lfs.2018.08.037

200. Gao M, Wang X, Zhang X, Ha T, Ma H, Liu L, et al. Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by Microrna-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. *J Immunol* (2015) 195(2):872–82. doi: 10.4049/jimmunol.1403155

201. Benz F, Tacke F, Luedde M, Trautwein C, Luedde T, Koch A, et al. Microrna-MicroRNA-223 Serum Levels Do Not Predict Sepsis or Survival in Patients With Critical Illness. *Dis Markers* (2015) 2015: doi: 10.1155/2015/384208

202. Li Y, Ke J, Peng C, Wu F, Song Y, Microrna-300/NAMPT Regulates Inflammatory Responses Through Activation of AMPK/Mtor Signaling Pathway in Neonatal Sepsis. *Biomed Pharmacother* (2018) 108:271–9. doi: 10.1016/j.biopha.2018.08.064

203. Zhang X, Wang X, Fan M, Tu F, Yang K, Li T, et al. Endothelial HSPA12B Exerts Protection Against Sepsis-Induced Severe Cardiomyopathy via Suppression of Adhesion Molecule Expression by Mir-126. *Front Immunol* (2020) 11:566. doi: 10.3389/fimmu.2020.00566

204. Zheng G, Qiu G, Ge M, Meng J, Zhang G, Wang J, et al. Mir-10a in Peripheral Blood Mononuclear Cells Is a Biomarker for Sepsis and has Anti-Inflammatory Function. *Mediators Inflamm* (2020) 2020: doi: 10.1155/2020/4370983

205. Bai X, Zhang J, Cao M, Han S, Liu Y, Wang K, et al. Microrna-146a Protects Sepsis-Induced Myocardial Injury. *Shock* (2018) 50(1):112–8. doi: 10.1097/SHK.0000000000000978

206. Meng L, Cao H, Wang C, Jiang L. Mir-359-5p Alleviates Sepsis-Induced Acute Lung Injury by Targeting ROCK1. *Folia histochem cytobiollogica* (2019) 57 (4):168–78. doi: 10.5603/FHC.2019.0019

207. Liu J, Shi K, Chen M, Xu L, Hong J, Hu B, et al. Elevated Mir-155 Expression Induces Immunosuppression via CD39+-Regulatory T-Cells in Sepsis Patients. *Front Immunol* (2015) 40:135–41. doi: 10.3389/fimmu.2015.00701

208. Zhang J, Ding C, Shao Q, Liu F, Zeng Z, Niu C, et al. The Protective Effects of Transfected Microrna-146a on Mice With Sepsis-Induced Acute Lung Injury. *Zhonggu hua wei zhong bing ji jiu yi xue* (2015) 27(7):591–4. doi: 10.3760/cma.j.issn.2095-4355.2015.07.010

209. Zhang W, Jia J, Liu Z, Si D, Ma L, Zhang G. Circulating Micrnas as Biomarkers for Sepsis Secondary to Pneumonia Diagnosed via Sepsis 3.0. *RMc pulmonary Med* (2019) 19(1):1–8. doi: 10.1086/s12890-019-0836-4

210. Jiang Y, Zhou H, Ma D, Chen ZK, Cai X, Microrna-19a and CD22 Contribute a Feedback Loop for B Cell Response in Sepsis. *Med Sci monitor: Int Med J Exp Res* (2021) 25:154. doi: 10.21037/apm-20-1391

211. Zhao D, Li S, Cui J, Wang L, Ma X, Li Y. Plasma Mir-125a and Mir-125b in Sepsis: Correlation With Disease Risk, Inflammation, Severity, and Prognosis. *J Clin Lab Anal* (2020) 34(2):e23036. doi: 10.1002/jcla.23036
228. Zhou YP, Xia Q. Inhibition of Mir-103a-3p Suppresses Lipopolysaccharide-Induced Acute Lung Injury by Targeting High Mobility Group Box 1. J Surg Res (2020) 256:23-30. doi: 10.1016/j.jss.2020.05.011.

229. Zhang W, Lu F, Xie Y, Lin Y, Zhao T, Tao S, et al. Mir-23b Negatively Regulates Sepsis-Induced Inflammatory Responses by Targeting ADAM10 in Human THP-1 Monocytes. Mediators Inflamm (2019) 2019. doi: 10.1155/2019/5306541.

230. Liu Q, Wang Y, Zheng Q, Dong X, Xie Z, Panayi A, et al. Microrna-150 Inhibits Myeloid-Derived Suppressor Cells Proliferation and Function Through Negative Regulation of ARG-1 in Sepsis. Life Sci (2021) 278:119626. doi: 10.1016/j.lfs.2021.119626.

231. Sheng B, Zhao L, Zang X, Zhen J, Chen W. Mir-375 Ameliorates Sepsis by Downregulating Mir-21 Level via Inhibiting JAK2-STAT3 Signaling. Biomed Pharmacother (2017) 86:254-61. doi: 10.1016/j.biopha.2016.11.147.

232. Zhan C-Y, Chen D, Luo J-L, Shi Y-H, Zhang Y-P. Protective Role of Downregulating MicroRNA-31 on Intestinal Barrier Dysfunction Through Inhibition of NF-κB/Hif-1α Pathway by Binding to HMOX1 in Rats With Sepsis. Mol Med (2019) 24(1):1-14. doi: 10.1016/s1008-0201-018-0053-2.

233. McClure C, Brudecki L, Ferguson DA, Yao ZQ, Moorman JP, McCall CE, et al. MicroRNA Fingerprints Identify Mir-150 as a Plasma Prognostic Marker in Patients With Sepsis. PLoS One (2019) 14(9):1798. doi: 10.1371/journal.pone.0205461.

234. Du X, Tian D, Wei J, Yan C, Hu P, Wu X, et al. Mir-199a-5p Exacerbated the Apoptosis of Renal Tubular Epithelial Cell via Targeting GJB2.

235. Su Y, Song X, Teng J, Zhou X, Dong Z, Li P, et al. Mesenchymal Stem Cells-Derived Extracellular Vesicles Carrying MicroRNA-17 Inhibits Macrophage Apoptosis in Lipopolysaccharide-Induced Sepsis. Int Immunopharmacol (2021) 95:107408. doi: 10.1016/j.intimp.2021.107408.
Yang W, Wu H, Zhang H, Liu H, Zhang J, et al. Mir-27a Plays a Role in the Development of Sepsis by Downregulating SMAD3 Expression and Induction of Curcumin Are Associated With Down Regulating MicroRNA-155 in LPS-Treated Macrophages and Mice. J Biol Chem (2017) 292(51):30653-61. doi: 10.1074/jbc.M117.833940

Yang W, Wu H, Zhang H, Liu H, Wei Y, Shi B. Prognostic Value of Picco in Sepsis-Induced Acute Kidney Injury. Mol Cell Biol (2021) 41(7):MCR.00016-21. doi: 10.1128/MCR.00016-21

Pang G, Wang J, Xue Y, Zhao J, Li D, Zhang S, et al. GSKJ4 Protects Mice Against Early Sepsis via Reducing Proinflammatory Factors and Up-Regulating Mir-146a. Front Immunol (2018) 9:2272. doi: 10.3389/fimmu.2018.02272

Liu Y, Cao D, Mo G, Zhang L. Effects of Mir-294 on Inflammation Levels Are Related to Coagulation Disorders in Sepsis Patients. Clin Chem Lab Med (CCLM) (2014) 52(6):927–33. doi: 10.1515/cclm-2013-0899

Xin Y, Tang L, Chen J, Chen D, Wen W, Han F. Inhibition of Mir-101–3p Protects Against Sepsis-Induced Myocardial Injury by Inhibiting MAPK and NF-κB Pathway Activation via the Upregulation of DUSP1. Int J Mol Sci (2021) 22(7):1-13. doi: 10.3390/ijms22074833

Pan W, Wei N, Xu W, Wang G, Gong F, Li N. MicroRNA-124 Alleviates the Lung Injury in Mice With Septic Shock Through Inhibiting the Activation of the MAPK Signaling Pathway by Downregulating MAPK14. Int Immunopharmacol (2017) 56:105835. doi: 10.1016/j.intimp.2017.10.058

Luo N, Gao H, Wang Y, Li H, Yi M. MicroRNA-924-5p Alleviates Septic Acute Kidney Injury by Targeting FOXO3. Eur Rev Med Pharmacol Sci (2020) 24 (11):6237–44. doi: 10.26355/eurrev_202006_15215

Liu S, Liu C, Wang Z, Huang J, Zeng Q. MicroRNA-23a-5p Acts as a Potential Biomarker for Sepsis-Induced Acute Respiratory Distress Syndrome in Early Stage. Cell Mol Biol (2017) 63(5):126-31. doi: 10.1515/cmb-2017-0356

Ma J, Xu L-Y, Sun Q-H, Wan X-Y. Inhibition of MicroRNA-1298-5p Attenuates Sepsis Lung Injury by Targeting SOCS6. Mol Cell Biochem (2021) 476(1):1-12. doi: 10.1007/s11010-021-04170-w

Zheng G, Hu H, Li F, Ma W, Yang H. Propofol Attenuates Sepsis-Induced Acute Kidney Injury by Regulating Mir-290-5p/CCL-2 Signaling Pathway. Braz J Med Biol Res (2018) 51:1-12. doi: 10.1590/1414-431X20187655

Paik S, Choe JH, Choi E-G, Kim J-F, Song GY, et al. Rg6, a Rare Ginsenoside, Inhibits Systemic Inflammation Through the Induction of Interleukin-10 and MicroRNA-146a. Sci Rep (2019) 9(1):1-15. doi: 10.1038/s41598-019-40960-8

Wang X, Gu H, Qin D, Yang L, Huang W, Essandoh K, et al. Exosomal MicroRNA-223 Contributes to Mesenchymal Stem Cell-Elicted Cardioprotection in Polymicrobial Sepsis. Sci Rep (2015) 5:1-16. doi: 10.1038/srep13721

Gu W, Wen D, Lu H, Zhang A, Wang H, Du J, et al. Mir-608 Exerts Anti-Inflammatory Effects by Targeting ELANE in Monocytes. J Clin Immunol (2020) 40(1):147–57. doi: 10.1007/s10875-019-00702-8

Sun Y, Li Q, Gui H, Xu D-P, Yang Y-L, Su D-F, et al. MicroRNA-124 Mediates the Cholinergic Anti-Inflammatory Action Through Inhibiting the Production of Pro-Inflammatory Cytokines. Cell Res (2013) 23(11):1270–83. doi: 10.1093/cell/resrr133

Zhang J, Wang C, Tang X, Wei Y. Urinary MicroRNA-26b as a Potential Biomarker for Patients With Sepsis-Associated Acute Kidney Injury: A Chinese Population-Based Study. Eur Rev Med Pharmacol Sci (2018) 22(14):4604–10. doi: 10.26355/eurrev_201807_15518

Ni J, He J, Kang L, Zhong Z, Wang Z, Lin S. Effects of Dexamethasone Pretreatment on Rats With Sepsis-Induced Acute Kidney Injury and MicroRNA-146a Expression. Cell Mol Biol (2020) 66(2):93–8. doi: 10.14715/cmb.2020.66.2.15

Huo R, Dai M, Fan Y, Zhou J-Z, Li L, Zu J. Predictive Value of MicroRNA-29a and MicroRNA-10a-5p for 28-Day Mortality in Patients With Sepsis-Induced Acute Kidney Injury. Nan Fang Yi Ke Da Xue Xue Bao = J South Med Univ (2017) 37(5):466–51. doi: 10.3969/j.issn.1673-4254.2017.05.13

Cao Y-W, Yang Z, Wang Z-H, Jiang X-G, Lu W-H. Inhibition of MicroRNA-155 Alleviates Sepsis-Induced Inflammation and Intestinal Barrier Dysfunction by Inactivating NF-κB Signaling. Int Immunopharmacol (2021) 90:107218. doi: 10.1016/j.intimm.2020.107218

Ma F, Liu F, Ding L, You M, Yue H, Zhou Y, et al. Anti-Inflammatory Effects of Curcumin Are Associated With Down Regulating MicroRNA-155 in LPS-Treated Macrophages and Mice. Pharmacol Biol (2017) 55(1):1263–73. doi: 10.1016/j.pharmbiol.2015.07.051

Wu X-J, Chen Y-F, Wang H-D, Gao H-F. Expression of Plasma MicroRNA-497 in Children With Sepsis-Induced Myocardial Injury and Its Clinical Significance. Zhongguo dang dai er ke za zhi= Chin J Contemp Pediatr (2018) 20(1):32–6. doi: 10.7099/jissn.1008-8830.2018.01.007
292. Lou W, Yan J, Wang W. Downregulation of Mir-497-5p Improves Sepsis-Induced Acute Lung Injury by Targeting IL2Rb. BioMed Res Int (2021). doi: 10.1155/2021/6624702

293. Wang Y, Li T, Wu B, Liu H, Luo J, Feng D, et al. STAT1 Regulates MD-2 Expression in Monocytes of Sepsis via Mir-30a. Inflammation (2014) 37 (6):1903–11. doi: 10.1007/s10575-014-9922-1

294. Ma Y, Liu Y, Hou H, Yao Y, Meng H. Mir-150 Predicts Survival in Patients With Sepsis and Inhibits LPS-Induced Inflammatory Factors and Apoptosis by Targeting NF-kB in Human Umbilical Vein Endothelial Cells. Biochem Biophys Res Commun (2018) 500(3):382–37. doi: 10.1016/j.bbrc.2018.04.168

295. Brudecki L, Ferguson DA, McCall CE, El Gazzar M. Mir-146a and RMBM4 Form a Negative Feedback-Loop That Disrupts Cytokine Mrna Translation Following TLK4 Responses in Human THP-1 Monocytes. Immunol Cell Biol (2013) 91(8):532–40. doi: 10.1038/icb.2013.37

296. Banerjee S, Meng J, Das S, Krishnan A, Haworth J, Charboneau R, et al. Morphine Induced Excavation of Sepsis Is Mediated by Tempering Endotaxon Tolerance Through Modulation of Mir-146a. Sci Rep (2013) 3 (1):1–12. doi: 10.1038/srep01977

297. Yang Q, Zhang D, Li Y, Li Y, Li Y. Paclitaxel Alleviated Liver Injury of Septic Mice by Alleviating Inflammatory Response via MircoRna-27a/TAB3/NF-kB Signaling Pathway. Biomed Pharmacother (2018) 97:1424–33. doi: 10.1016/j. biopharm.2017.11.006

298. Wang J-F, Yu M-L, Yu G, Bian J-J, Deng X-M, Wan X-J, et al. Serum MiR-15a and MiR-223 as Potential New Biomarkers for Sepsis. Biochem Biophys Res Commun (2010) 394(1):184–8. doi: 10.1016/j.bbrc.2010.02.145

299. Mei L, He M, Zhang C, Mao J, Wen Q, Liu X, et al. Paeonol Attenuates Sepsis-Associated Acute Kidney Injury by Regulating Mir-9-3p/SMG1/Inflammation Pathway. Front Mol Biosci (2021) 8. doi: 10.3389/fmolb.2021.660269

300. Hong X, Li S, Wang J, Zhao Z, Feng Z. Circular RNA Circfadb2 Is Overexpressed in Sepsis and Suppresses LPS-Induced Lung Cell Apoptosis by Inhibiting the Maturation of Mir-15a-5p. BMC Immunol (2021) 22(1):1–7. doi: 10.1186/s12865-021-00419-7

301. Tan M, Bei R. Circ_{0091702} Serves as a Sponge of Mir-545-3p to Attenuate Inflammation and Oxidative Stress in Rats With Acute Kidney Injury Induced by Sepsis. Mol Med (2021) 27(1):1–15. doi: 10.1186/s10753-021-01303-5

302. Li H, Zhang X, Wang P, Zhou X, Liang H, Li C. Knockdown of Circ-FANCA Inhibits Sepsis-Induced Acute Lung Injury by Targeting MiR-330. Sci Rep (2019) 9(1):1–15. doi: 10.1038/s41598-019-55980-4

303. Geng X, Jia Y, Zhang Y, Shi L, Li Q, Zang A, et al. Circular RNA: Biogenesis, Degradation, Functions and Potential Roles in Mediating Resistance to Anticarcinogens. Epigenomics (2020) 12(3):267–83. doi: 10.2217/epi-2019-1295

304. Jiang WY, Ren J, Zhang XH, Lu ZL, Feng HJ, et al. Circular RNA PRKCI and Microrna-545 Relate to Sepsis Risk, Disease Severity and 28-Day Mortality. Scand J Clin Lab Invest (2020) 80 (8):659–66. doi: 10.1080/00365513.2020.1827291

305. Liu S, Zhang D, Liu Y, Zhou D, Yang H, Zhang K, et al. Circular RNA Circ_{0011015} Protects the Intestinal Barrier of Septic Rats by Inhibiting Inflammation and Oxidative Damage and YAP1 Expression. Gene (2020) 755:144897. doi: 10.1016/j.gene.2020.144897

306. Ma Z, Zhu G, Jiao T, Shao F. Effects of Circular RNA Ttc3/Mir-148a/Rcan2 Axis on Inflammation and Oxidative Stress in Rats With Acute Sepsis. Life Sci (2021) 272:119233. doi: 10.1016/j.lfs.2021.119233

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.