Влияние концентрации хлорида лития на его нейропротекторные свойства при ишемическом инсульте у крыс

Р. А. Черпаков*, О. А. Гребенчиков

НИИ общей реаниматологии им. В. А. Неговского,
Федеральный научно-клинический центр реаниматологии и реабилитологии,
Россия, 107031, г. Москва, ул. Петровка, д. 2

Effect of Lithium Chloride Concentration on Its Neuroprotective Properties in Ischemic Stroke in Rats

Rostislav A. Cherpakov*, Oleg A. Grebenchikov

V. A. Negovsky Research Institute of General Reanimatology,
Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology,
25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia

Для цитирования: Р. А. Черпаков, О. А. Гребенчиков. Влияние концентрации хлорида лития на его нейропротекторные свойства при ишемическом инсульте у крыс. Общая реаниматология. 2021; 17 (5): 101–110. https://doi.org/10.15360/1813-9779-2021-5-101-110 [На русск. и англ.]

For citation: Rostislav A. Cherpakov, Oleg A. Grebenchikov. Effect of lithium chloride concentration on its neuroprotective properties in ischemic stroke in rats. Obshchaya Reanimatologiya = General Reanimatology. 2021; 17 (5): 101–110. https://doi.org/10.15360/1813-9779-2021-5-101-110 [In Russ. and Engl.]

Резюме

На сегодняшний день ряд экспериментальных исследований убедительно доказал наличие нейро-, кардио- и нефропротективных свойств у препаратов на основе лития хлорида.

Цель исследования. Оценить влияние различных концентраций хлорида лития на объем ишемического инсульта и перифокального отека у крыс после перенесенной ишемии головного мозга.

Методы исследования. В работе использовали беспородных крыс самцов массой 315±13,5 г. За основу взяли модель фокальной ишемии Лонга. Животных (n=35) разделили на 5 групп: ложно-оперированные, контрольная группа (модель ишемического инсульта с введением NaCl 0,9%) и три группы с введением хлорида лития в различных концентрациях (4,2 мг/кг, 21 мг/кг и 63 мг/кг). Хлорид лития вводили сразу после прекращения окклюзии средней мозговой артерии и далее каждые 24 ч до момента эвтаназии. Для оценки степени повреждения головного мозга на 2-е сутки животным выполнили магнитно-резонансную томографию (МРТ), а на 7-е сутки после эвтаназии произвели оценку срезов головного мозга, окрашенных 2,3,5-трифенилтетразолием хлоридом. Межгрупповые различия показателей оценивали при помощи критерия Манна–Уитни.

Результаты. По данным МРТ, хлорид лития в дозе 4,2 мг/кг значимо не влиял на объем ишемического инсульта и перифокального отека по отношению к контрольной группе через 2 суток (p=0,9). При использовании дозы 21 мг/кг объем инсульта (p=0,04) и перифокального отека был статистически значимо ниже (p=0,03), чем в контрольной группе (на 25 и 18% соответственно). Хлорид лития в дозе 63 мг/кг в большей степени уменьшал объем инсульта (на 45%, p=0,004) и перифокального отека (на 35%, p=0,007). При определении объема поражения на 7-е сутки данные были сопоставимы с результатами, полученными на 2-е сутки. При использовании дозы 21 мг/кг объем инсульта был ниже на 20% (p=0,04), чем в контрольной группе. Хлорид лития в дозе 63 мг/кг на 40% уменьшал объем инсульта (p=0,004).

Заключение. Таким образом, дозировка хлорида лития влияет на формирование некротического очага и проявления перифокального отека головного мозга после закупорки средней мозговой артерии. Максимальное уменьшение объема ишемического инсульта и перифокального отека отмечали при использовании концентрации 63 мг/кг.

Ключевые слова: хлорид лития; ишемический инсульт; нейропротекция; магнитно-резонансная томография; экспериментальное исследование

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Summary

Currently, a number of experimental studies have demonstrated compelling evidence of neuro-, cardio-, and nephroprotective properties of medications containing lithium chloride.

Aim of the study. To evaluate the effect of various concentrations of lithium chloride on ischemic stroke volume and perifocal edema in rats after cerebral ischemia.

Material and methods. Male mongrel rats weighing 315±13.5 g were used in the study. The focal ischemia model according to Longa et al. was employed. The animals (n=35) were divided into 5 groups: sham-operated, control group (ischemic stroke model with NaCl 0.9% administration) and three groups who received lithium chloride in different concentrations (4.2 mg/kg, 21 mg/kg and 63 mg/kg). Lithium chloride was administered immediately after cessation of middle cerebral artery occlusion and then every 24 h until euthanasia. To assess the degree of brain damage, the animals underwent magnetic resonance imaging (MRI) on day 2, and brain sections stained with 2,3,5-triphenyltetrazolium chloride were evaluated after euthanasia on day 7. Intergroup differences were assessed using the Mann–Whitney criterion.

Results. According to MRI data, lithium chloride at a dose of 4.2 mg/kg had no significant effect on ischemic stroke volume and perifocal edema versus the control group on day 2 (P=0.9). With lithium chloride at 21 mg/kg, stroke volume and perifocal edema were significantly lower than in the control group (by 25%, P=0.04 and 18%, P=0.03, respectively). Lithium chloride at a dose of 63 mg/kg was more likely to reduce stroke volume (by 45%, P=0.004) and perifocal edema (by 35%, P=0.007). When determining lesion volume on day 7, the data were comparable to those obtained on day 2. With the 21 mg/kg dose, stroke volume was 20% lower than in the control group (P=0.04). Lithium chloride, 63 mg/kg, reduced stroke volume by 40% (P=0.004).

Conclusion. Lithium chloride dose affects necrotic focus formation and manifestations of perifocal cerebral edema after middle cerebral artery occlusion. The maximum reduction in the volume of ischemic stroke and perifocal edema was observed when the 63 mg/kg dose was used.

Keywords: lithium chloride; ischemic stroke; neuroprotection; magnetic resonance imaging; experimental study

Conflicts of interest. The authors declare no conflicts of interest.

DOI:10.15360/1813-9779-2021-5-101-110

Introduction

Of all the diseases of the cardiovascular system, stroke attracts particular attention. This is due to both high mortality in this disease [1] and persistent disability even in case of timely medical care [2, 3]. In addition, there is an increase in the incidence of this disease, in both young and the elderly population [4]. And if for persons over 65 years old the increase in rates of strokes is primarily related to the rise in life expectancy and average age in developed and developing countries [5], several factors can be identified when estimating the prevalence of this disease in the young age population [6]. Behavioral (low physical activity, smoking, alcohol and substance abuse) and age-related (pregnancy/postpartum period, taking oral contraceptives) ones are considered to be the main factors.

However, regardless of the causes leading to stroke [7], the prognosis for both young and elderly patients remain quite serious and depends on a variety of factors [8], which are either extremely difficult or impossible to control. These include the volume of damaged brain tissue, individual body reserves, collateral blood flow, and tolerance to ischemia [9]. The crucial factors of ischemic stroke outcome are timely diagnosis [10], timing of transportation to tertiary medical centers, and efficiency of reperfusion therapy [11]. The diversity of these issues determines the importance of searching for
всего, это объем поврежденной ткани головного мозга, индивидуальные резервы организма, степень развития коллатерального кровотока и толерантность к ишемии [9]. Решающими факторами исхода ишемического инсульта являются: своевременная диагностика [10], сроки транспортировки в специализированные медицинские учреждения и эффективность реперфузионной терапии [11]. Разнонаправленность данных проблем определяет важность поиска препаратов, способных если не предотвратить, то, по крайней мере, значимо снизить процент летальности и инвалидизации.

Из всех препаратов, обладающих выраженным нейропротективным эффектом, отдельно стоит выделить карбонат лития, более 60 лет успешно применяемый при таких заболеваниях, как маниакально-депрессивные психозы и биполярные расстройства [12, 13]. Выявленные в клинической практике нейропротекторные эффекты солей лития нашли подтверждение в недавних экспериментальных исследованиях как in vitro, так и in vivo (на моделях когнитивной дисфункции у крыс) [14, 15]. Особую значимость представляет работа Ming Ren (2003) и соавт. [16], где впервые коллективом авторов было показано влияние различных дозировок хлорида лития на объем объема повреждения головного мозга. В данной работе применялась модель фокальной ишемии головного мозга с перекрытием средней мозговой артерии в течение часа и дальнейшей реканализации поврежденного участка мозга животных подвергались гуманной эвтаназии. Объем повреждения головного мозга оценивался в остром эксперименте посмертно, что не давало полноценного представления о влияние хлорида лития на динамику формирования очага инсульта и drugs that can prevent or at least significantly reduce morbidity and mortality.

Among the drugs with a strong neuroprotective effect, lithium carbonate, which has been successfully used for more than 60 years for such diseases as bipolar disorder, is particularly noteworthy [12, 13]. The neuroprotective effects of lithium salts revealed in clinical practice have been confirmed in recent experimental studies both in vitro and in vivo (models of cognitive dysfunction in rats) [14, 15]. The work of Ming Ren (2003) et al. [16], who showed for the first time the effect of various doses of lithium chloride on ischemic stroke volume, is particularly relevant. In this study a model of focal cerebral ischemia after 1 hour long middle cerebral artery occlusion with subsequent reperfusion was used. Lithium chloride was administered in doses ranging from 0.5 mEq/kg (~21 mg/kg) to 3 mEq/kg (~127 mg/kg) immediately after reperfusion, followed by humane euthanasia 23 hours after recanalization of the damaged brain area. The volume of brain lesions was assessed by staining with 2% 2,3,5-triphenyltetrazolium chloride. In the control group, the stroke volume was 290±12.5 mm3, and the administration of even lowest of the studied doses significantly reduced the extent of brain damage. At a dose of 21 mg/kg, the stroke volume 24 hours post stroke was 210±14.5 mm3, which was significantly lower than in the control group (P<0.01). In the groups receiving 42 mg/kg, 84 mg/kg, and 127 mg/kg, stroke area was similarly significantly lower than in the control group (P<0.001). When studying the effects of lithium chloride in models of global cerebral ischemia [17] and hemorrhagic stroke [18] its neuroprotective effects were also clearly shown.

However, in earlier studies, the extent of damage was assessed postmortem in an acute experiment, which did not provide a complete view of the effect of lithium chloride on the evolution of stroke focus and perifocal edema, and also did not allow to estimate the delayed protective effects. Moreover, in 2003 [16], the 127 mg/kg dose which is nearly 4 times higher than the maximal tolerance dose for human use proved to be the most effective in terms of neuroprotection [19]. The «narrow therapeutic window» of lithium salts is well known, that is why it is so important, knowing their distinct dose-dependent effect, to determine its optimal concentration in blood plasma for neuroprotective properties on the one hand and to avoid toxic effects on the other hand. Therefore, the aim of our study was to investigate the effect of various concentrations of lithium chloride in the volume of ischemic stroke and perifocal edema in rats post cerebral ischemia.

Materials and Methods

We used non-pedigreed male white rats weighing 315±13.5 g. The model of endovascular occlusion of the
перифокального отека, а также не позволяло судить об отсроченных защитных эффектах. Кроме того, в работе 2003 года [16] наиболее эффективной в отношении нейропротекции показала себя доза 127 мг/кг, что почти в 4 раза превышало максимально разрешенную к применению дозу у человека [19]. Хорошо известно о достаточно «узком терапевтическом окне» у солей лития, поэтому так важно, зная их отчетливый дозозависимый эффект, определить его оптимальную концентрацию в плазме крови для реализации нейропротекторных свойств, с одной стороны, и возможности избегания токсических эффектов, с другой.

Цель исследования — изучение влияния различных концентраций хлорида лития на объем ишемического инсульта и перифокального отека у крыс после перенесенной ишемии головного мозга.

Материал и методы

В работе использовали беспородных самцов белых крыс массой 315±13,5 г. За основу взяли модель эндогенной окклюзии средней мозговой артерии (фокальная ишемия) по E. Z. Longa [20]. Для предотвращения влияния субъективного фактора при формировании экспериментальных групп общий набор животных осуществляли с помощью метода модифицированной блочной рандомизации. Все животных, включенных в исследование, случайным образом помещали в ячейки блока рандомизации. После этого, пользуясь генератором случайных чисел, формировали перечень данных с номерами ячеек с и соответствующие им номера групп, куда в дальнейшем были размещены крысы.

В учетную оценку входили только животные, выжившие на протяжении 7 дней. Животных, погибших в процессе эксперимента, не учитывали при анализе объема поражения головного мозга и исключали из группы.

На всех этапах животных маркировали посредством нанесения перманентным маркером отметки на основание хвоста. В соответствии с отметкой каждого включенного в исследование животному был присвоен соответствующий номер.

Животных разделили на 5 групп. Группа I (n=7, средняя масса 302,5±12,3 г) была представлена ложнооперированными животными, которым в качестве оперативного вмешательства выполнили срез нервной ткани, и шов обработали антисептическим раствором 5% brilliant green dye. After the operation, body temperature was maintained at 37±0.5°C using an electric heating pad. The average volume of blood loss and antiseptic treatment. Group 2 treated animals, which underwent a midline skin incision along the trachea projection line and whose artery was isolated as a surgical intervention with subsequent layered closure of the wound and antiseptic treatment. Group 2 was a control group (n=7, mean weight 306±11.2 г); the animals underwent focal cerebral ischemia by occluding the middle cerebral artery. Immediately after cessation of ischemia, the animals received intravenous 0.9% NaCl solution 1.5 ml/kg. Group 3 (n=7, mean weight 304±12.7 г) animals immediately after ischemia cessation animals received intravenous lithium chloride at a dose of 4.2 mg/kg, followed by the same dose of drug every 24 hours. Group 4 (n=7, mean weight 305±11.5 г) animals after removal of vascular clamp had lithium chloride 21 mg/kg injection, followed by the same dose of drug every 24 hours. Group 5 (n=7, mean weight 309±10.5 г) animals received intravenous lithium chloride, 63 mg/kg, immediately after cessation of focal ischemia and later once every 24 hours for 7 days.

The dosages of lithium chloride used were selected based on the available data on acute and chronic toxicity of the drug [13].

Induction anesthesia was performed by injecting 12% chloral hydrate solution 300 mg/kg into the peritoneum. The surgical field was sterilized with 0.05% chlorohexidine solution. After that, a midline incision was made in the neck, and the common carotid artery (CCA), external carotid artery (ECA), and internal carotid artery (ICA) were isolated from the right side. The CCA was clamped with a vascular clip, and a 3–0 Vicryl ligature was placed to the ICA. The ECA was cut with scissors 3–5 mm from the bifurcation. A 0.25 mm nylon thread coated with silicone and treated with heparin solution was inserted through a section of ECA into ICA to the depth of 19–21 mm (until the MCA was occluded) and fixed with a vascular clip (MCA occlusion). The blood flow was blocked by 60 min, then the suture was extracted, which restored the blood supply in the MCA region. After that, the ECA stump was coagulated to complete tightness and the vascular clips were subsequently removed. At the end of the operation, the incision was sutured with 4–0 Vicryl and treated with 5% brilliant green dye. After the operation, body temperature monitoring was performed at maintaining physiological values using infrared lamps until independent thermoregulation was restored in the animal. During the operation the body temperature was maintained at 37±0.5°C using an electric heating pad. The av-
Использовали следующие импульсные последовательности с диаметром 72 мм, для детекции РЧ-сигнала — по-видимому, фантомах. Для передачи радиочастотного (РЧ) сигнала предварительно отработали и оптимизировали на морегуляции. Все импульсные последовательности позиционирования с системой стереотаксиса и терморегуляции у животного. Во время операции температуру тела поддерживали на уровне 37±0,5°С с помощью электрической грелки. В последующие дни эксперимента препарат вводили однократно сразу после прекращения фокальной ишемии, и далее в течение 7 суток один раз в 24 часа вводили хлорид лития в дозе 63 мг/кг.

Применяемые дозировки хлорида лития были подобраны на основании имеющихся данных об осторожной и хронической токсичности препарата [13].

Вводную анестезию проводили путем инъекции в брюшную 12% раствора хлоралгидрата в дозе 300 мг/кг. Поле операции обрабатывали раствором хлоргексицина 0,05%. После этого выполняли следующий разрез в области шеи, с правой стороны выделяли общую сонную артерию (ОСА), внешнюю сонную артерию (ВНА) и внутреннюю сонную артерию (ВСА). ОСА пережимали сосудистой клизмой, на ВСА накладывали лигатуру из викрила № 3. ВНА перерезали ножницами на расстоянии 3–5 мм от бифуркации. Нейлоновую нить диаметром 0,25 мм, покрытую силиконом и обработанную раствором гепарина, ввели через отрезок ВНА во ВСА на глубину 19–21 мм (до момента перекрытия СМА) и фиксировали сосудистой клизмой (ОСМА). Кровоток перекрывали на 60 мин, после чего нить извлекали, что восстанавливало кровоснабжение в бассейне ВСА. После этого кульцу ВСА закрывали коагуляцией до полной герметичности и в дальнейшем снимали сосудистые клизмы.

В конце операции разрез ушивали викрилом №4 и обрабатывали раствором 0,25% сульфата лития в дозе 21 мг/кг с последующим введением указанной дозы раз в 24 часа.

После операции выполняли непрерывную терморегуляцию с системой стереотаксиса и терморегуляции в бассейне СМА. После этого животное помещали в устройство седации путем ингаляции 1,5–2,0 об% 0,25% сульфата лития в дозе 21 мг/кг с последующим введением указанной дозы раз в 24 часа.

После эвтаназии (на 7-е сутки) животных проводили с использованием магнитно-резонансной томографии лабораторным животным пронизывали с использованием магнитно-резонансной томографии (на 2-е сутки) и с помощью скалеров выделяли общую сонную артерию (ОСА), внешнюю сонную артерию (ВНА) и внутреннюю сонную артерию (ВСА). ОСА пережимали сосудистой клизмой, на ВСА накладывали лигатуру из викрила № 3. ВНА перерезали ножницами на расстоянии 3–5 мм от бифуркации. Нейлоновую нить диаметром 0,25 мм, покрытую силиконом и обработанную раствором гепарина, ввели через отрезок ВНА во ВСА на глубину 19–21 мм (до момента перекрытия СМА) и фиксировали сосудистой клизмой (ОСМА). Кровоток перекрывали на 60 мин, после чего нить извлекали, что восстанавливало кровоснабжение в бассейне ВСА. После этого кульцу ВСА закрывали коагуляцией до полной герметичности и в дальнейшем снимали сосудистые клизмы. В последующие дни эксперимента препарат вводили один раз в 24 часа после снятия сосудистых клизм.

Оценку объема повреждения тканей головного мозга проводили с использованием магнитно-резонансной томографии (на 2-е сутки) и с помощью скалеров выделяли общую сонную артерию (ОСА), внешнюю сонную артерию (ВНА) и внутреннюю сонную артерию (ВСА). ОСА пережимали сосудистой клизмой, на ВСА накладывали лигатуру из викрила № 3. ВНА перерезали ножницами на расстоянии 3–5 мм от бифуркации. Нейлоновую нить диаметром 0,25 мм, покрытую силиконом и обработанную раствором гепарина, ввели через отрезок ВНА во ВСА на глубину 19–21 мм (до момента перекрытия СМА) и фиксировали сосудистой клизмой (ОСМА). Кровоток перекрывали на 60 мин, после чего нить извлекали, что восстанавливало кровоснабжение в бассейне ВСА. После этого кульцу ВСА закрывали коагуляцией до полной герметичности и в дальнейшем снимали сосудистые клизмы.

В конце операции разрез ушивали викрилом №4 и обрабатывали раствором 0,25% сульфата лития в дозе 21 мг/кг с последующим введением указанной дозы раз в 24 часа.

После операции выполняли непрерывную терморегуляцию с системой стереотаксиса и терморегуляции в бассейне СМА. После этого животное помещали в устройство седации путем ингаляции 1,5–2,0 об% 0,25% сульфата лития в дозе 21 мг/кг с последующим введением указанной дозы раз в 24 часа.

После операции выполняли непрерывную терморегуляцию с системой стереотаксиса и терморегуляции в бассейне СМА. После этого животное помещали в устройство седации путем ингаляции 1,5–2,0 об% 0,25% сульфата лития в дозе 21 мг/кг с последующим введением указанной дозы раз в 24 часа.

После операции выполняли непрерывную терморегуляцию с системой стереотаксиса и терморегуляции в бассейне СМА. После этого животное помещали в устройство седации путем ингаляции 1,5–2,0 об% 0,25% сульфата лития в дозе 21 мг/кг с последующим введением указанной дозы раз в 24 часа.
Специскумент: GENERAL REANIMATOLOGY, 2021, 17; 5

Таблица 1. Объем зон повреждения головного мозга на 2-е и 7-е сутки после инсульта при различных концентрациях хлорида лิตия, Q2 (Q1–Q3).

Table 1. Volume of brain damage zones on day 2 and day 7 after stroke at various doses of lithium chloride, Q2 (Q1–Q3).

Group	Stroke volume, mm³	Perifocal edema volume, mm³	Stroke volume, mm³	Perifocal edema volume, mm³
Control	235.0 (180.5–261.0)	—	110.0 (101.5–118.0)	—
Lithium chloride 4.2 mg/kg	218.0 (199.5–250.5)	0.9	104.0 (100.5–109.0)	0.9
Lithium chloride 21 mg/kg	175.5 (154.5–180.0)	0.04*	89.5 (79.5–95.0)	0.03*
Lithium chloride 63 mg/kg	128.3 (119.0–143.5)	0.004*	71.0 (68.0–78.0)	0.007*

Note. * Differences versus controls are significant (Mann–Whitney U-test) at P<0.05.

Примечание. Values on the study stages — значения на этапах исследования; stroke volume — объем ишемического очага и объем перифокального отека. * — различия в сравнении с контролем статистически значимы (U-критерий Манна–Уитни) при P<0.05.

Результаты и обсуждение

The MRI performed on day 2 after ischemia episode showed that the stroke volume significantly differed from the control group only when lithium chloride was administered at doses of 21 mg/kg and 63 mg/kg.

The results obtained when assessing the volume of brain damage on day 2 are presented in Table 1. Stroke volume in the 4.2 mg/kg group was 7.8% lower than in the control group, and perifocal edema volume was 5.7% lower. In the group receiving the drug at 21 mg/kg, the stroke volume was reduced by 25.5% and perifocal edema by 18.6%. In the group receiving lithium chloride at a dose of 63 mg/kg, the stroke volume was reduced by 43.5% and perifocal edema by 35.4%.

The brain lesion areas on MRI on day 2 are shown in Figure.

Lithium chloride at doses of 21 mg/kg and 63 mg/kg significantly reduced the volume of the damage, whereas no significant difference was observed, when a dose of 4.2 mg/kg was administered.

The results obtained when assessing the stroke volume on day 7 are presented in Table 1.

In animals receiving lithium chloride at a dose of 4.2 mg/kg, the damaged area was 5.7% smaller than in the control group. The volume of damaged tissue was 21% less with the dose of 21 mg/kg and 41% less when the the dose of 63 mg/kg was used.

When determining the concentration of lithium chloride in the blood of animals, we found that the dose of 63 mg/kg was associated with the borderline toxic blood level (2.5 mmol/L) 5 minutes after administration. However, as early as one hour later, the blood concentration of the drug decreased again to a safe level. Separately, it should...
Экспериментальные исследования

Оценка препарата в плазме животных с целью определения безопасной дозировки исходя из имеющихся данных о пороговой токсической концентрации для человека (2,5 ммоль/л).

Для статистического анализа использовали программы Statistica 10.0 (StatSoft, Inc.) и MedCalc 12.5.0.0 (MedCalc Software bvba). Количественные данные представляли медианой (Q2) и межквартильным интервалом (Q3-Q1). Межгрупповые различия показателей оценивали при помощи U-критерия Уитни–Манна и принимали значимыми при p<0,05.

Результаты и обсуждение

При оценке результатов магнитно-резонансной томографии на 2-e сутки после перенесенной ишемии объем инсульта значительно отличался от контрольной группы только при введении хлорида лития в дозах 21 мг/кг и 63 мг/кг.

Результаты, полученные при оценке объема повреждения головного мозга на 2-e сутки, представлены в табл. 1. Объем инсульта в группе 4,2 мг/кг был на 7,8% меньше, чем в контрольной группе, а объем перифокального отека — на 5,7%. При использовании концентрации 21 мг/кг объем инсульта снижался на 25,5%, а перифокальный отек — на 18,6%. В группе хлорида лития в дозе 63 мг/кг объем инсульта снижался на 43,5%, а перифокального отека — на 35,4%.

Зоны поражения головного мозга на МРТ-изображениях через 2 суток представлены на рисунке.

Хлорид лития в дозах 21 мг/кг и 63 мг/кг значительно уменьшал объем повреждения, в то время как при введении дозы 4,2 мг/кг значимой разницы не отмечали.

Результаты, полученные при оценке объема инсульта на 7-e сутки, представлены в табл. 1. В группе хлорида лития в дозе 4,2 мг/кг зона повреждения была на 5,7% меньше, чем в контрольной группе. При использовании дозы 21 мг/кг объем поражения был меньше на 21%, а при дозе 63 мг/кг — на 41%.

При определении концентрации хлорида лития в крови животных выявили, что при используемых в рамках эксперимента концентрациях только доза 63 мг/кг через 5 минут после введения достигала пограничного токсического значения (2,5 ммоль/л). Однако уже спустя час концентрация в крови вновь снижалась до безопасной. Отдельно стоит указать, что от применения хлорида лития в дозе 84 мг/кг было решено воздержаться в виду превышения пороговой токсической концентрации как спустя 5 минут, так и спустя 1 час.

Концентрация хлорида лития в плазме животных представлена в табл. 2.

В ходе эксперимента отдельно оценивали летальность в группах, однако ее анализ не
явились приоритетной целью в данном исследовании. В контрольной группе она составила 58,8% (из 17 животных погибло 10). В группе III из 16 животных погибло 9 (56,25%, $\chi^2=0,022$, $p=0,882$ по отношению к контрольной группе). Летальность в группе IV составила 36,3% (из 11 животных погибло 4, $\chi^2=1.348$, $p=0,246$ по отношению к контрольной группе), в группе V она была минимальной и составила 30% (погибло 3 из 10 животных, $\chi^2=2,095$, $p=0,148$ по отношению к контрольной группе).

На сегодняшний день достаточно хорошо известны молекулярные механизмы нейропротекторного эффекта солей лития. [10]. Первый механизм — это прямое ингибирование основного фермента в реализации механизма ишемического и фармакологического прекондиционирования — гликоген-синтазы-киназы 3бета (GSK-3β) [21]. Второй механизм — инактивация NMDA-рецепторов, что приводит к снижению активности проапоптотического белка р53 и повышению активности анти-апоптотических белков Bcl2 [13]. Третий механизм — активация сигнального пути PI3K/Akt, отвечающего за выживание клетки [22].

Плейотропный механизм реализации нейропротекторного эффекта солей лития позволяет надеяться, что его использование улучшит результаты лечения ишемического инсульта. Так же стоит отметить, что в отношении карбоната лития уже накоплен достаточно обширный клинический опыт. Применения карбоната лития в рамках терапии маниакально-депрессивных состояний позволило весьма подробно оценить его влияние на частоту развития инсультов в данной группе пациентов, которая, по имеющимся данным, значительно выше, нежели у остальных людей [23]. При сравнении с группами пациентов, принимающих стандартную терапию на основе антисипотиков и антидепрессантов, частота развития инсульта среди получавших терапию карбонатом лития была значительно ниже. По данным проведенных исследований в случае стандартной терапии инсульт развивался у 5,4% пациентов, в то время как на фоне приема карбоната лития его частота не превышала 2,8%, что было статистически значимо ниже [24, 25].

Data on plasma lithium chloride concentration are shown in Table 2.

During the experiment, mortality was evaluated separately in the groups, but its analysis was not a priority of our study. In the control group the mortality rate was 58.8% (10 out of 17 animals died). In group 3, 9 animals out of 16 died (56.25%, $\chi^2=0.022$, $p=0.882$ versus the control group). The mortality rate in group 4 was 36.3% (4 out of 11 animals died, $\chi^2=1.348$, $P=0.246$ versus the control group), in group 5 it was minimal and reached 30% (3 out of 10 animals died, $\chi^2=2.095$, $P=0.148$ versus the control group).

Currently, the molecular mechanisms of the neuroprotective effect of lithium salts are well known [10]. The first mechanism is the direct inhibition of glycogen synthase kinase 3beta (GSK-3β), the main enzyme in ischemic and pharmacological preconditioning [21]. The second mechanism is inactivation of NMDA-receptors, which leads to decrease of pro-apoptotic protein p53 activity and increase in anti-apoptotic proteins Bcl2 activity [13]. The third mechanism is the activation of PI3K/Akt signaling pathway responsible for cell survival [22].

The multifaceted mechanism of realization of the neuroprotective effect of lithium salts suggests that its use will improve the results of treatment of ischemic stroke. Moreover, there is a considerable clinical experience with lithium carbonate use. Administration of lithium carbonate in bipolar disorders has allowed to estimate its effect on stroke incidence in this group of patients, which, Whitney-acording to available data, is much higher than in other populations [23]. When compared with patients on standard therapy based on antipsychotics and antidepressants, the incidence of stroke among those receiving lithium carbonate therapy was significantly lower. According to studies, with standard therapy, stroke developed in 5.4% of patients, while in those on lithium carbonate its incidence did not exceed 2.8%, which was significantly lower ($P<0.05$) [24, 25]. Also, Mohammadianinejad S. E. [26] and Sun Y. R. [27] have shown improvement of motor functions in post stroke patients administered with lithium carbonate.
значимо ($p<0.05$) меньше. [24, 25]. Так же в работах S. E. Mohammadianinejad [26] и Y. R. Sun [27] было отмечено улучшение моторных функций у пациентов, перенесших инсульт и принимающих после этого карбонат лития.

Заключение

Полученные результаты позволяют сделать два вывода. Во-первых, хлорид лития обладает нейропротекторным действием, как в раннем (2-е сутки), так и в отсроченном (7-е сутки) постинсультном периоде, значимо уменьшая размер инсульта и перифокального отека. Во-вторых, данный эффект является дозозависимым, в полной мере проявляясь при использовании концентрации 21 мг/кг и 63 мг/кг, и никак не влияя на объем поражения в дозе 4,2 мг/кг.

В то же время при сравнении с ранее исследуемыми концентрациями [16] было показано, что реализация нейропротекторного эффекта хлорида лития возможна без превышения токсической концентрации. Кроме того, в ранее проведенных работах [23, 28, 29] оптимальные дозы для реализации кардио- и нейропротекторного эффекта составили 30 мг/кг. Хорошо известно о достаточно «узком терапевтическом окне» у солей лития, поэтому так важно, зная их отчетливый дозозависимый эффект, определить оптимальную концентрацию солей лития в плазме крови для реализации их нейропротекторных свойств, с одной стороны, и возможны предупреждения токсических эффектов — с другой.

Литература

1. Thrift A.G., Thayabaranathan T., Howard G., Howard V.J., Rothwell P.M., Feigin V.L., Norrving B., Donnan G.A., Cadilhac D.A. Global stroke statistics. Int J Stroke. 2017; 12 (1): 13-32. DOI: 10.1177/1747493016676265 PMID: 27794133
2. Cui W, Mueller C, Li YJ, Shen WD, Stewart R. Post stroke depression and risk of stroke recurrence and mortality: A systematic review and meta-analysis. Ageing Res Rev; 2019; 50: 102–109. DOI: 10.1016/j.arr.2018.12.003
3. Парфенов А.Л., Петрова М.В., Пичугина И.М., Лузина Е.В. Формирование коморбидности у пациентов с тяжелым повреждением мозга и исходом в хроническое критическое состояние (обзор). Общая реаниматология. 2020; 16 (4): 72-89. DOI: 10.15360/1813-9779-2020-4-72-89
4. Hall E.W., Vaughan A.S., Ritchey M.D., Schieb L., Casper M. Thalidomide in the elderly. Handb Clin Neurol. 2019; 167: 393–418. DOI: 10.1016/B978-0-12-804766-8.00021-2 PMID: 31753145
5. Hathidara M.Y., Saini V., Malik A.M. Stroke in the Young: a Global Update. Curr Neurol Neurosci Rep. 2019; 19 (11): 91. DOI: 10.1007/s11910-019-1004-1 PMID: 3176860
6. Golubev A.M. Модели ишемического инсульта (обзор). Общая реаниматология. 2020; 16 (3): 59-72 DOI: 10.15360/1813-9779-2020-3-59-72
7. Wu Q, Tang A.J., Zeng L., Niu S.Z., Tian M.M., Jin A.P, Yang H.Y., Chen J.F., Xiao-Ping Z., Shi Y. Prognosis of Neurological Improvement in In-patient Acute Ischemic Stroke Survivors: A Propensity Score Matching Analysis. J Stroke Cerebrovasc Dis. 2021; 30 (1): 105437. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105437 PMID: 33197800
8. Senfält S., Philsgård M., Norrving B., Ullberg T., Peterson J. Ischemic stroke patients with prestroke dependency: Characteristics and long-term prognosis. Acta Neurol Scand. 2021; 143 (1): 78-88. DOI: 10.1111/ane.13328 PMID: 32738814

Conclusion

The results have led us to two conclusions. First, lithium chloride has a neuroprotective effect both in the early (day 2) and in the delayed (day 7) poststroke period, significantly reducing the size of the stroke and perifocal edema. Secondly, this effect is dose-dependent, being fully manifested at doses of 21 mg/kg and 63 mg/kg and having no effect on the brain lesion volume when administered at a dose of 4.2 mg/kg.

At the same time, when comparing with the previously studied plasma concentrations [16], the neuroprotective effect of lithium chloride was shown to develop without exceeding the toxic concentration. Moreover, in earlier studies [23, 28, 29], the optimal doses for implementation of cardio- and nephroprotective effect were 30 mg/kg. The «narrow therapeutic window» of lithium salts is well known, so in view of their distinct dose-dependent effect it is important to determine the optimal plasma concentration of lithium salts to implement their neuroprotective properties on the one hand and prevent toxic effects on the other hand.

The newly obtained knowledge warrants the prospects for developing a novel drug formulation (intravenous lithium chloride) for the treatment of cerebrovascular accidents.

Полученные новые знания позволяют, как нам представляется, рассмотреть перспективы создания нового лекарственного средства (раствор лития хлорида для внутривенного введения) для лечения острых церебральных катастроф.

References

1. Thrift A.G., Thayabaranathan T., Howard G., Howard V.J., Rothwell P.M., Feigin V.L., Norrving B., Donnan G.A., Cadilhac D.A. Global stroke statistics. Int J Stroke. 2017; 12 (1): 13-32. DOI: 10.1177/1747493016676265 PMID: 27794133
2. Cui W, Mueller C, Li YJ, Shen WD, Stewart R. Post stroke depression and risk of stroke recurrence and mortality: A systematic review and meta-analysis. Ageing Res Rev; 2019; 50: 102–109. DOI: 10.1016/j.arr.2018.12.003
3. Parmenov A.L., Petrova M.V., Pichugin I.M., Lugina E.V. Comorbidity Development in Patients with Severe Brain Injury Resulting in Chronic Critical Condition (Review). Obshchaya Reanimatologiya-General Reanimatology. 2020; 16 (4): 72-89 [In Russ.]. DOI 10.15360/1813-9779-2020-4-72-89
4. Hall E.W., Vaughan A.S., Ritchey M.D., Schieb L., Casper M. Stagnating National Declines in Stroke Mortality Mask Widespread County-Level Increases, 2010-2016. Stroke. 2019; 50 (12): 3355–3359. DOI: 10.1161/STROKEAHA.119.026695 PMID: 31694505
5. Parfenov A.L., Petrov M.V., Pichugin I.M., Lugina E.V. Comorbidity Development in Patients with Severe Brain Injury Resulting in Chronic Critical Condition (Review). Obshchaya Reanimatologiya-General Reanimatology. 2020; 16 (4): 72-89 [In Russ.]. DOI 10.15360/1813-9779-2020-4-72-89
