The western diet and lifestyle and diseases of civilization

Pedro Carrera-Bastos¹
Maelan Fontes-Villalba¹
James H O’Keefe²
Staffan Lindeberg¹
Loren Cordain³

¹Center for Primary Health Care Research, Faculty of Medicine at Lund University, Malmo, Sweden;
²Mid America Heart and Vascular Institute/University of Missouri-Kansas City, Kansas City, Missouri, USA;
³Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA

Abstract: It is increasingly recognized that certain fundamental changes in diet and lifestyle that occurred after the Neolithic Revolution, and especially after the Industrial Revolution and the Modern Age, are too recent, on an evolutionary time scale, for the human genome to have completely adapted. This mismatch between our ancient physiology and the western diet and lifestyle underlies many so-called diseases of civilization, including coronary heart disease, obesity, hypertension, type 2 diabetes, epithelial cell cancers, autoimmune disease, and osteoporosis, which are rare or virtually absent in hunter-gatherers and other non-westernized populations. It is therefore proposed that the adoption of diet and lifestyle that mimic the beneficial characteristics of the preagricultural environment is an effective strategy to reduce the risk of chronic degenerative diseases.

Keywords: Paleolithic, hunter–gatherers, Agricultural Revolution, modern diet, western lifestyle and diseases

Introduction
The physical activity, sleep, sun exposure, and dietary needs of every living organism (including humans) are genetically determined. This is why it is being increasingly recognized in the scientific literature, especially after Eaton and Konner’s¹ seminal publication in 1985, that the profound changes in diet and lifestyle that occurred after the Neolithic Revolution (and more so after the Industrial Revolution and the Modern Age) are too recent on an evolutionary time scale for the human genome to have fully adapted.¹⁻²⁷

In fact, despite various alleles being targets of selection since the Agricultural Revolution,²⁸⁻⁴² most of the human genome comprises genes selected during the Paleolithic Era¹⁵ in Africa,⁴³⁻⁵⁹ a period that lasted from about 2.5 million years ago to 11,000 years ago.¹⁴ Indeed, anthropological and genetic studies suggest that all human beings living in Europe, Asia, Oceania, and the Americas share a common African Homo sapiens ancestor.⁴⁷⁻⁵⁷ This concept is corroborated by data showing that there is less genetic diversity throughout the world’s non-African population than there is within Africa itself.⁴⁴⁻⁴⁶,⁵³,⁵⁷,⁵⁸

Moreover, many of the selective pressures underlying these postagriculture alleles were not induced by changes in sleep, exercise, and diet but rather by pathogens, fatal diseases, and harsh environments,²⁸⁻³¹,³⁷⁻⁴⁰ with a few key exceptions.⁴¹,⁴² One of those exceptions pertains to alleles of the LCT gene (which codes for the enzyme lactase-phlorizin hydrolase [LPH]) that give rise to the phenotype of adult lactase persistence (ALP).⁶⁰ These LPH-encoding alleles were initially selected in populations with a long history of milk and dairying, such as north-western Europeans and some sub-Saharan
African and Bedouin pastoralists. Today, ALP occurs in about 35% of the world’s population.60

The impetus for these genetic changes was not to increase longevity and resistance to chronic degenerative diseases but rather to increase the probability of survival and reproductive success.27,61,62 Occasionally, mutations that had positive survival and reproductive value sometimes also caused adverse health effects in the postreproductive years.4,27,61,62 Furthermore, single gene mutations, although relevant for physicians when treating an individual patient, are imperfect models to prevent chronic degenerative diseases whose clinical symptoms normally affect the postreproductive years and involve numerous genes.61

Importantly, 11,000 years represent approximately 366 human generations,63 which comprise only 0.5% of the history of the genus Homo (Table 1).14,63–65 Indeed, the Industrial Revolution and the Modern Age, which mark the beginning of the western lifestyle, represent only seven and four human generations, respectively (Table 1),14,63–65 and were marked by rapid, radical, and still ongoing changes in lifestyle and diet,14,65 coupled with improved public health measures that greatly reduced mortality in the prereproductive years (and hence largely eliminated impaired reproductive fitness as a selection pressure).62,66 As such, it is highly unlikely that genetic adaptations that allow us to thrive on a western diet and lifestyle have occurred.

Health status of preagriculture traditional populations

The idea that modern Homo sapiens are still adapted to an ancestral environment is reinforced by data showing that hunter–gatherers, and other populations minimally affected by modern habits, exhibit superior health markers, body composition, and physical fitness compared with industrialized populations, including:

1. Low blood pressure in hunter–gatherers and horticulturalists (Table 2)26,67–69 when compared with current optimal values defined by health institutions (<120 mm Hg and <80 mm Hg for systolic blood pressure and diastolic blood pressure, respectively)70

2. Lack of association between blood pressure and age in hunter–gatherers (Table 3)69 and horticulturalists68 compared with in North Americans and Swedes26,68,70

3. Persisting excellent insulin sensitivity among middle-aged and older individuals in non-westernized traditional populations that maintain their ancestral lifestyle26,71–81

4. Lower fasting plasma insulin concentrations and higher insulin sensitivity (measured by the Homeostatic Model Assessment [HOMA] index) in the horticulturalists of Kitava (Papua New Guinea) compared with in healthy Swedes (Figures 1 and 2, respectively)74

5. Lower fasting plasma leptin in the horticulturalists of Kitava and the Ache hunter–gatherer Indians of Paraguay compared with in healthy Swedes82 (Figure 3) and North American male distance runners83 (Figure 4), respectively

6. Lower body mass index (BMI) in hunter–gatherers, traditional pastoralists, and horticulturalists26 compared with in westerners.26,84 For instance, as observed by Lindeberg,26 in Kitava, 87% of men and 93% of women aged 40–60 years had a BMI below 22 kg/m² and not a single individual in this age group was overweight or obese26

7. Lower waist (cm)/height (m) ratio in the horticulturalists of Kitava compared with in healthy Swedes (Figure 5)82

8. Lower tricipital skinfold (mm) in hunter–gatherers compared with in healthy Americans67 (Figure 6)

Table 1

Historical milestones	Generations	% total
Homo habilis	76,667	100.0
Homo erectus	60,000	78.2
Modern *Homo sapiens*	6666	8.7
Neolithic Revolution	366	0.48
Industrial Revolution	7	0.009
Food industry (junk food) and physical inactivity (Modern Age)	4	0.005

Table 2

Population	Men	Women		
	SBP	DBP	SBP	DBP
Bushmen	108	63	118	71
Yonomamo	104	65	102	63
Xingu	107	68	102	66
Kitava	113	71	121	71

Table 3

Age (years)	Men	Women
0–9	93/59	96/62
10–19	108/67	105/65
20–29	108/69	100/63
30–39	106/69	100/63
40–49	107/67	98/62
50+	100/64	106/64
9. Greater maximum oxygen consumption (VO₂ max) in hunter–gatherers and traditional pastoralists compared with in average Americans67 (Figure 7)
10. Better visual acuity in hunter–gatherers and other traditional populations minimally affected by western habits compared with in industrialized populations85
11. Better bone health markers in hunter–gatherers compared with in western populations and even traditional agriculturalists26,86-98
12. Lower fracture rates in non-westernized populations compared with in western populations.26,96-99

Another line of evidence supporting the superior health markers of hunter–gatherers and other traditional populations comes from the historical records of explorers, adventurers, and frontiersmen, which invariably described the populations they encountered as being healthy, lean, fit, and free of the signs of chronic degenerative diseases.26 But perhaps even more important than these observations are the medical and anthropological reports showing a low incidence of chronic degenerative diseases such as metabolic syndrome and type 2 diabetes,26,67,74,100 cardiovascular disease (CVD),26,65,67,68,100-112 cancer,26,67,113-118 acne,119 and even myopia85 in hunter–gatherers, traditional pastoralists, and horticulturalists compared with in western populations26,65,67,85,100,108,109,113,114,119,124 and even ancient Egyptians67,114,121-123 and medieval Europeans.114

Counterarguments

It has been argued that traditional populations may have been genetically protected against the chronic degenerative diseases that occur in industrialized countries, yet when non-westernized individuals adopt a more contemporary lifestyle, their risk for chronic degenerative diseases is similar or even increased compared with modern populations.26,67,78-80,108,109,124-144 Further, when they return to their original traditional lifestyle, many disease markers or symptoms return to normal.81,145 These data demonstrate that the superior health markers, body composition, and physical fitness of hunter–gatherers and other populations minimally affected by modern habits are not due primarily to genetics but first and foremost to the environment. These studies also indicate that few or no genetic adaptations have occurred to protect any population from chronic diseases that are elicited by modern diet and lifestyles.

Indeed, two different individuals when exposed to the same modern environment (eg, western diet, physical inactivity, insufficient and inadequate sleep, chronic psychological stress, insufficient or excessive sun exposure, use of recreational drugs, smoking, pollution) will probably express a suboptimal phenotype.27,65,146,147 This may or may not be considered pathological, depending on genetic variants (eg, haplotypes, single nucleotide polymorphisms, microsatellites, simple sequence repeats, insertion/deletion, copy number variations) and differences in gene expression regulation (such as epigenetic variations).27,62,146,148

Another common counterargument is the short average life expectancy at birth of hunter–gatherers. The problem with this marker is that it is influenced by fatal events (eg, accidents, warfare, infections, exposure to the elements) and childhood mortality. Today, average life expectancy is higher not because of a healthier diet and lifestyle but owing to better sanitation, vaccination, antibiotics, quarantine policies, medical care, political and social stability, and less physical trauma.66 Moreover, Gurven and Kaplan,149 in a recent assessment of the mortality profiles of extant hunter–gatherers for which sufficient high-quality demographic data exist, concluded that “modal adult life span is 68–78 years, and that it was not uncommon for individuals to reach these ages”.

Of more importance, these individuals reached age 60 years or beyond without the signs and symptoms of chronic degenerative diseases that afflict the majority of the elderly in industrialized countries.66 Furthermore, in western countries, various illnesses and conditions, such as obesity, type 2 diabetes, gout, hypertension, coronary heart disease (CHD), and epithelial cell cancers, which are rare or virtually absent in hunter–gatherers, horticulturalists, and traditional pastoralists, are now increasing in younger age groups.26,64-66 Finally, the fossil record suggests that when hunter–gatherer populations made the transition to an agricultural pattern of subsistence, their health status and lifespan decreased.26,109,150

The ancestral environment

With the help of anatomical, biomechanical, and isotopic analyses of various hominin skeletons, the archaeological
and geological evaluation of their habitats, and ethnographic studies of various hunter–gatherer societies (whose diet and lifestyle resembled the Palaeolithic diet and lifestyle), it was concluded that, despite the existence of different diets and lifestyles, which varied due to differences in geography, ecological niche, season, and glaciations, they all had the following characteristics:

- Regular sun exposure (except for the Inuit, whose very high intake of vitamin D3 from fish and marine mammals may have rendered the lack of ultraviolet-stimulated cutaneous vitamin D synthesis less relevant)
- Sleep patterns in synch with the daily variation in light exposure
- Acute as opposed to chronic stress
- Regular physical activity, as this was required to obtain food and water, to escape from predators, for social interaction, and to build shelters
- Lack of exposure to man-made environmental pollutants
- Universal fresh (generally unprocessed) food sources as depicted in Table 4

The Neolithic and industrial revolutions and their consequences
The Agricultural Revolution began about 11,000 years ago in the Middle East, later spread to other regions of the
The western diet and lifestyle
globe,14,65,154 and drastically altered the diet and lifestyle that had shaped the human genome for the preceding 2 million plus years. Some of the more significant dietary changes were the use of cereal grains as staple foods, the introduction of nonhuman milk, domesticated meats, legumes and other cultivated plant foods, and later widespread use of sucrose and alcoholic beverages.14,65

Nevertheless it was the Industrial Revolution (with the widespread use of refined vegetable oils, refined cereal grains, and refined sugars)14,65 and the Modern Age (with the advent of the “junk food” industry, generalized physical inactivity, introduction of various pollutants, avoidance of sun exposure, and reduction in sleep time and quality coupled with increased chronic psychological stress)14,38,65,146,153,152 that brought about the most disruptive and maladaptive changes, which may have serious pathophysiological consequences. For instance, chronic psychological stress, environmental pollution, and smoking are associated with low-grade chronic inflammation,161–165 which is one of the main causes of insulin resistance.161,164,165 Moreover, low-grade chronic inflammation is involved in all stages of the atherosclerotic process166 and is being increasingly recognized as a universal mechanism in various chronic degenerative diseases, such as autoimmune diseases, certain cancers, neuropsychiatric diseases, and osteoporosis.27,65,160,167 Furthermore, some environmental pollutants, including pesticides and various industrial chemicals, may act as endocrine disruptors, hence being suspected of playing a causal role in hormone-dependent cancers (such as breast and prostate cancer),168 insulin resistance169 and type 2 diabetes,169,170 obesity,171 and CVD.170,172

Insufficient sleep (fewer than 6 hours per 24-hour day) is also associated with low-grade chronic inflammation and worsening insulin resistance,165,173 as well as increased risks for obesity, type 2 diabetes, and CVD.165,174,175 This information is relevant in light of a recent cross-sectional

Table 4 Foods consumed during the Paleolithic Era14,64,65,154,155,157

Foods available	Foods not available
Insects, fish, shellfish and other marine animals, reptiles, birds, wild terrestrial mammals and eggs	Dairy (except for human milk during weaning)
Plant leaves, seaweed, sea grasses and algae	Cereal grains (with the exception of occasional intake in the upper Palaeolithic)
Roots	Legumes (except certain varieties that were consumed seasonally)
Tubers	Isolated sugar
Berries and wild fruits	Isolated oils
Nuts and seeds	Alcohol
Honey (occasional intake)	Refined salt (even sea salt would be available only for shore-based populations who may have dipped their food in sea water)
population-based study showing that 28% of US adults sleep 6 or less hours per 24-hour period. Moreover, social and work pressures, as well as exposure to artificial light at atypical biologic times (a very recent phenomenon in human evolutionary history), induce a disruption of the normal circadian rhythm, which is believed to play a key role in various diseases. As Vgontzas et al point out: “the idea that sleep or parts of it are optional should be regarded with caution”.

Perhaps even more important is the chronic vitamin D deficiency brought about by novel cultural and geographical changes in human behavior. As Homo sapiens left equatorial Africa and begun to occupy higher latitude regions, where the proportion of ultraviolet B wavelengths is decreased and of ultraviolet A vitamin D-destructive wavelengths is increased, previtamin D3 production became compromised (especially in the winter time). This may have increased the incidence of rickets, muscle weakness, and bacterial and viral infections, which impaired reproductive fitness and increased early mortality. Thus, it has been hypothesized that these were the main selective pressures for lighter skin pigmentation, which is a recent adaptation in human evolutionary history. Although natural selection for lighter skin pigmentation may have reduced the prevalence of rickets, muscle weakness, and bacterial and viral infections, it may not have assured an optimal vitamin D status, given the many functions now attributed to 1,25-dihydroxyvitamin D (1,25[OH]2D), the existence of vitamin D receptors, and the occurrence of 1,25[OH]2D synthesis in various cells.

Today, vitamin D status is further compromised by migrations of people with dark skin (adapted to equatorial and tropical regions) to higher latitudes, and by air pollution, ozone, clothing, indoor living and working habits, and sun protection. Other factors contributing to a lower vitamin D status in humans include certain medications, diseases, and conditions (such as obesity, liver and kidney disease, and conditions that affect fat absorption), and perhaps also modern dietary habits, such as a high intake of cereal grains. Epidemiological studies of populations consuming high levels of unleavened whole grain breads show rickets and vitamin D deficiency to be widespread, and high cereal diets can induce vitamin D deficiency in animals, including primates. Moreover, as pointed out by Cordain, a study of radiolabelled 25-hydroxyvitamin D3 (25[OH]D3) in humans consuming 60 g of wheat bran on a daily basis for 30 days showed an increased fecal elimination of 25(OH)D3, which may progressively reduce plasma 25(OH)D3 concentrations in humans.

Reduced plasma 25(OH)D concentrations may have serious health consequences. Indeed, there is an impressive body of evidence associating low vitamin D status (measured by plasma 25(OH)D) with an increased incidence of various types of cancer (including breast, prostate, and colon), autoimmune diseases, infectious diseases, muscle weakness, osteoporosis, hypertension, insulin resistance, cardiovascular, and all-cause mortality.

It should be mentioned that, except for fatty ocean fish, there is very little vitamin D in commonly consumed natural (ie, not artificially fortified) foods. As such, sensible sun exposure (adjusted to skin type, climate, time of year, and geographic region) and/or supplementation with vitamin D may often be pertinent in order to maintain serum 25(OH)D above 30 ng/mL (or preferably above 45 ng/mL).

Another important lifestyle change is physical inactivity, which Booth et al call “an ancient enemy”. They make a compelling case for its possible causal role in insulin resistance, dyslipidemia, obesity, hypertension, type 2 diabetes, coronary artery disease, angina, myocardial infarction, congestive heart failure, stroke, intermittent claudication, gallstones, various types of cancer, age-related cognitive dysfunction, sarcopenia, and osteopenia, among other diseases.

Regarding dietary changes, it should be mentioned that, in the US, dairy products, cereal grains (especially the refined form), refined sugars, refined vegetable oils, and alcohol make up to 70% of the total daily energy consumed. As pointed out by Cordain et al, these types of foods would have contributed little or none of the energy in the typical preagricultural hominin diet. These modern foods introduced during the Neolithic, Industrial, and Modern eras have adversely affected the following nutritional characteristics.

Micronutrient density

Calorie per calorie, fish, shellfish, meat, vegetables, and fruit present a higher micronutrient density than does milk (with the exception of calcium) and whole cereal grains (and several orders of magnitude higher than refined grains). Moreover, vegetable oils and refined sugars represent more than 36% of the energy in a typical US diet and are essentially devoid of micronutrients (except for vitamin E in some vegetable oils).

Therefore, current food choices, together with soil depletion and modern food transport and
potassium-poor foods, such as vegetable oils, refined sugars, whole grains, and dairy products.65

This inversion of potassium and sodium concentrations is a recent event in human evolutionary history.63–65,215 It is believed to contribute to hypertension, stroke, kidney stones, osteoporosis, gastrointestinal tract cancers, asthma, exercise-induced asthma, insomnia, air sickness, high-altitude sickness, and Meniere’s syndrome.65

Net acid load

After digestion, absorption, and metabolism, nearly all foods release either acid or base into the systemic circulation. Dairy products (especially hard cheeses), cereal grains, salt (because of the chloride ion), meats, fish, shellfish, and eggs are net acid yielding, whereas fresh fruit, vegetables, tubers, roots, and nuts are net base yielding.65,215

It was recently estimated that the diet of East African Homo sapiens during the Paleolithic era was predominantly net base producing,216 as opposed to the typical western diet, which is net acid yielding65,215 and hence leads to a chronic, low-grade metabolic acidosis, which elicits loss of calcium ions caused by mobilization of alkaline salts from bone to titrate some of the retained hydrogen ions.215 This calcium is lost in the urine without a compensatory increase in gastrointestinal absorption.215 Chronic, low-grade metabolic acidosis also induces the release of amino acids, including glutamine and amino acids that the liver can convert to glutamine.215 Glutamine is the major nitrogen source used by the kidney for synthesis of ammonia, thereby increasing the excretion of acid (as ammonium ion) in the urine and mitigating the severity of the acidosis.215 Accordingly, in the long term, a net acid-yielding diet may increase the risk for osteoporosis and sarcopenia.65,215

Furthermore, a net acid-yielding diet increases not only calcium excretion217 but also magnesium excretion.215 Finally, there is evidence that chloride (a key determinant of the diet’s net acid load219) may be a major cause of salt-induced hypertension.215

On a final note, this chronic, low-grade metabolic acidosis is exacerbated in elderly people who experience a decline in glomerular filtration rate and hence have a decreased renal acid excretion capacity,65 which is why correcting diet-induced chronic metabolic acidosis in this age group is even more important. Hence, we propose as a solution to this chronic, low-grade metabolic acidosis a decreased intake of sodium chloride and an increased consumption of unprocessed fruit and vegetables, at the expense of refined vegetable oils, refined sugars, cereal grains, hard cheeses, and processed foods.

Sodium/potassium ratio

The average potassium content (2620 mg/d) of the typical US diet is substantially lower than its sodium content (3271 mg/d), which is due to the use of table salt, a high intake of processed foods (with added salt), and the displacement of potassium-rich foods (eg, fruit and vegetables) by

stocking.187–189 are perhaps the main reasons why a significant percentage of the North American population does not reach the recommended daily allowance (RDA) of various vitamins and minerals.190,191 This problem is exacerbated by culinary methods,192–197 smoking (which causes vitamin C depletion198), and the use of certain foods as staples. For instance, using cereal grains as staple foods may compromise the status of various nutrients, such as vitamin B6 (because of low bioavailability154), biotin (perhaps because of antinutrients eliciting a depression of biotin metabolism154), magnesium, calcium, iron, and zinc (because their phytate content reduces intestinal absorption of these minerals154,189).

Even moderate micronutrient deficiency leads to a wide spectrum of pathophysiological events, and it is an important risk factor for several chronic degenerative diseases.65,199–206 For instance, data from the National Health and Nutrition Examination Survey 2001–2002 show that magnesium intake for more than 50% of US adults was below the estimated average requirement.190 Multiple epidemiologic studies associate magnesium deficiency with an increased risk of metabolic syndrome201,202 and CVD.203–205 and this causal relationship is supported by intervention studies.206–209

Other nutrients whose status is compromised in a typical western diet are zinc, folate, and vitamins C, E, and K.190,199,200 the latter (especially the K2 form) gaining widespread acceptance as a possible player in CVD. Epidemiological studies associate higher vitamin K2 intake with a reduced CHD and coronary calcification incidence.210–212

Folic acid deficiency (which would not constitute a problem in hunter–gatherer diets that included green leafy vegetables and organ meats65) is also a case for concern in terms of CVD prevention, as it leads to an increase in plasma homocysteine, which, although no consensus has been reached, appears to be a CVD risk factor because it induces damage of the endothelial cell wall and abnormal arterial lipid deposition, reduces vasorelaxation, and impairs fibrinolytic action.213 Perhaps more important, folate, along with vitamin B6 and B12, choline, betaine, and methionine deficiency in utero, may result in an altered epigenetic programming,62 which ultimately leads to endothelial dysfunction,214 among other pathophysiological consequences.62,213
Antinutrient content and inflammatory potential

Alterations in gut microbiota220 and increased intestinal permeability221 are possible causes of low-grade chronic inflammation. Indeed, when the intestinal barrier is disrupted, it allows increased passage of gut luminal antigens derived from food, bacteria, and viruses221 into peripheral circulation (endotoxemia222). One particular antigen, lipopolysaccharide (LPS), from Gram-negative bacteria, is routinely used in animal experiments to induce acute immune stimulation.221 When LPS binds Toll-like receptor (TLR)4, it triggers the release of nuclear factor kappa-B (NF-kb) dimers that translocate into the cell nucleus, where they bind to DNA target sites, thereby inducing the expression of genes that code for various inflammatory enzymes, cytokines and chemokines, cell adhesion molecules, antiapoptotic and angiogenesis proteins, inducible nitric oxide synthase, and matrix-degrading enzymes224 that are involved in the atherosclerosis process.19,166,222,224 Moreover, these proinflammatory cytokines may disrupt insulin signaling, promoting insulin resistance.164 So a chronic low-grade endotoxemia may lead to low-grade chronic inflammation,222 which is at the root of various disorders.160,165–167,222,224

In this regard, recent evidence shows that certain western foods (dairy cream, butter, egg muffins, sausage muffins, hash browns, and sugar) allow increased passage of luminal antigens into peripheral circulation, leading to TLR2 and TLR4 activation.222,226–228 Interestingly, one study found that these events were prevented by a high intake of orange juice (perhaps because it contains flavonoids with reactive oxygen species [ROS] and inflammation-suppressive activities, such as naringenin and hesperidin),228 which opens the possibility that other fruit and vegetables may elicit similar effects.

Some factors contributing to increased intestinal permeability include nonsteroidal anti-inflammatory drugs,221 antacids,221 changes in gut microbiota,221 alcohol,229 lectins,221 saponins,230–233 and gliadin.236

It was recently found that gliadin, a prolamine in wheat (which is a novel food in the human diet in evolutionary terms86), increases gut permeability by means of zonulin production in the gut enterocytes.236 Zonulin causes disruption of the tight junction proteins that maintain the gut barrier function and leads to increased gut permeability.237 In addition, gliadin (which is resistant to heat and digestive enzymes154) is able to interact with gut-associated lymphoid tissue, stimulating the innate immune system in celiac and nonceliac individuals (whereas the adaptive immune response is exclusive of celiac patients).238,239 Gliadin may increase intestinal permeability and hence induce the production of proinflammatory cytokines, independent of one’s genetic predisposition to celiac disease (although, as expected, these effects are more marked in celiac disease).236,238–240 As such, we can deduce that chronic consumption of wheat, as happens in western countries, may lead to low-grade chronic inflammation. Of relevance, wheat gluten has been implicated in multiple sclerosis,154,241,242 type 1 diabetes,154,243 psoriasis,244 immunoglobulin (Ig)A nephropathy,154 and rheumatoid arthritis (RA).154,221 Moreover, rectal mucosal inflammatory response after gluten challenge has been observed in patients with Sjögren’s syndrome.245 Furthermore, a gluten-free vegan diet over 1 year significantly reduced disease activity and oxidized low-density lipoprotein cholesterol (LDL-C) in RA patients while raising natural atheroprotective antibodies against phosphorylcholine (anti-PC IgM).246 This may be relevant, as anti-PC IgM is negatively associated with atherosclerosis development in hypertensive individuals,247 and low levels of anti-PC IgM independently predict development of CVD.247 Interestingly, compared with in healthy Swedes, anti-PC IgM has been found to be significantly higher in the horticulturists of Kitava,248 who, at the time of measurement, followed a diet composed of fish, coconut, fruit, and tubers (and hence devoid of cereal grains, dairy products, separated fats, and sugars)248 and were virtually free of autoimmune diseases, osteoporosis, obesity, insulin resistance and type 2 diabetes, CVD, and acne.26,74,82,112,119

Similar to gliadin, many plant lectins are also a recent introduction to the human diet.154 Lectins are omnipresent proteins found in the plant kingdom and likely evolved as toxic defensive mechanisms to ward off predators.199 Most of these glycoproteins are believed to be benign and nontoxic to humans, but the ones that can bind gut tissue may be problematic, such as those found in cereal grains, legumes, and certain solanaceous plants (tomatoes and potatoes).154,221,249 Most plant lectins are relatively resistant to heat154 (unless cooked by pressure cooking250) and digestive enzymes154,221 and have been found intact in the gastrointestinal tracts of both animals and humans.154,221 Furthermore, in animal models, lectins from legumes and cereal grains disrupt intestinal barrier and immunological function when they bind surface glycans on gut epithelial cells, causing cellular disruption and increasing gut permeability.221 They may also facilitate the growth of Gram-negative bacteria strains,221 which could, in theory, contribute to endotoxemia221 and hence low-grade inflammation through TLR4 activation by LPS.225 Perhaps even more importantly, wheat germ agglutinin (WGA) (a lectin in wheat) and phytohemagglutinin (PHA) (a lectin...
found in beans) are rapidly transported across the gut wall into systemic circulation of animals,221 and tomato and peanut lectins have been found in systemic circulation in humans following consumption of tomato juice and roasted peanuts, respectively.249,251

These findings might be important, as virtually every cell in the body and every extracellular substance can be bound by lectins because of their ability to bind glycosylated structures.144 Of note, in vitro data have shown that WGA can bind insulin and leptin receptors,154,252 which could theoretically elicit insulin and leptin resistance.26,100,154 Moreover, lectins from lentils, kidney beans, peas, and wheat potently increase the production of inflammatory cytokines (interleukin [IL]-12, IL-2, and interferon γ) in cell cultures,253 and WGA also stimulates production of tumor necrosis factor (TNF-α) and IL-1β in vitro.254 Furthermore, WGA and PHA induce the production of metalloproteinases (MMPs) in leukocytes,255,256 and WGA directly causes the activation of platelets and potently increases their aggregation.257 This may be relevant because rupture of the fibrous cap and formation of the blood clot, which is mediated by MMPs and platelets, is a crucial mechanism involved in thrombus production. In this regard and although these chain of events have not to our knowledge been examined in vivo, it should be mentioned that peanut oil has unexpectedly been shown to be highly atherogenic in rats, rabbits, and primates,258 and reduction of its lectin content decreases its atherogenicity.258 Interestingly, one of the very few human-controlled dietary intervention trials with hard endpoints, DART (Diet And Reinfarction Trial), found a tendency toward increased cardiovascular mortality in the group advised to eat more fiber, the majority of which was derived from cereal grains.259 Of relevance is that this nonsignificant effect became statistically significant after adjustment for possible confounding factors (such as medication and health state).260

Another class of antinutrients that may increase intestinal permeability in humans and hence endotoxemia are saponins, which are present in some cereal grains, legumes, quillaja, alfalfa sprouts, and solanaceous plants such as potatoes and green tomatoes.230–235 These steroid glycosides or triterpenoids are formed by a sugar compound (glucuronic acid, glucose, or galactose, among others) and an aglycone (nonsugar molecule) portion.230,231 By binding the cholesterol molecule on gut cell membranes, the aglycone portion disrupts the gut barrier and increases intestinal permeability.231

Unfortunately, the effects of lectins and saponins on intestinal permeability, endotoxemia, and inflammation have been poorly studied in humans to allow us to draw significant conclusions.

Novel food processing procedures, such as extreme heating, irradiation, ionization, pasteurization, and sterilization, may also promote low-grade chronic inflammation by leading to the nonenzymatic glycation and oxidation of proteins and lipids in common consumed foods.261 This complex and heterogeneous group of compounds, called advanced glycation end products (AGEs) and advanced lipid oxidation end products (ALEs), once partially absorbed into the systemic circulation may have deleterious health effects261 by direct modification of proteins and lipids262,263 (such as LDL glycation and oxidation, for instance) and perhaps also indirectly via the receptor for AGEs (RAGE).261,262 Of relevance to chronic degenerative diseases is the possible interaction of AGEs and ALEs with RAGE, which may activate several intracellular signal transduction pathways that lead to various downstream events, such as the activation of NF-κb and activator protein-1 transcription factors,261,262 which increases the expression of endothelin-1, angiotensin II, adhesion molecules, inflammatory cytokines, and plasmin activator inhibitor-1.261,262

Indeed, in diabetic patients, a high AGE intake was associated with higher levels of C-reactive protein (CRP), TNF-α, and vascular cell adhesion molecule (VCAM-1).261 In contrast, low-AGE diets reduce serum AGE levels, as well as markers of inflammation and vascular dysfunction (CRP, TNF-α, and VCAM-1) in diabetic and renal failure patients.261,262 The effects of dietary AGEs and ALEs are obviously more pronounced in diabetics (who present an enhanced formation of endogenous AGEs due to hyperglycemia)261 and kidney failure patients (who have an impairment of AGE renal excretion).261 Nevertheless, in a cross-sectional study of healthy subjects of different ages, dietary AGE intake was an independent determinant of high-sensitivity CRP and of circulating AGEs, which, in turn, were associated with endogenous lipid peroxidation and HOMA index.263

AGE and ALE content in food is greatly influenced by processing and cooking conditions, including temperature, time, and moisture.264 Consequently, the avoidance of processed foods and the use of steaming, poaching, boiling, and stewing as the main cooking methods, instead of frying, broiling, and grilling, may be a sensible way to decrease the formation of these compounds.261,264 Of interest, tobacco, by being processed in the presence of reducing sugars, represents another source of exogenous AGEs.262 Indeed, circulating AGE levels have been found to be significantly higher in smokers than in nonsmokers.265
Glycemic load, fiber, and fructose

During the Paleolithic period, most of the carbohydrate (CHO) sources were wild fruit, berries, vegetables (typically presenting low glycemic index [GI]26), and sometimes tubers, with cereal and honey intake being scarce.14,26,65

Today, most CHO come from processed foods such as refined sugars and refined cereal grains.65 Even whole grains possess a higher glycemic load (GL) than does most unprocessed fruit and vegetables.65 The GL takes into account both the GI and the amount of CHO in a given serving of a food. It is estimated that the GL of Paleolithic diets was significantly lower than the GL of western diets.65

This observation is relevant because chronic adoption of a high-GL diet may lead to hyperglycemia and hyperinsulinemia,266 which may contribute to dyslipidemia (elevated serum triglycerides, small-dense LDL-C, and reduced high-density lipoprotein [HDL]-C),266 hypertension,267 elevated plasma uric acid,267 and insulin resistance,266 the primary metabolic defect in metabolic syndrome.266 Moreover, by eliciting postprandial hyperglycemia, it may increase oxidative stress, proinflammatory cytokines, protein glycation, and procoagulant activity, thereby adversely affecting endothelial function, among other pathophysiological effects.266,268–270 Indeed, a recent meta-analysis of 37 prospective cohort studies suggests that diets with a high GI, high GL, or both may increase the risk of type 2 diabetes, heart disease, and gallbladder disease.270 Furthermore, intervention studies show that a low GL diet may be an effective strategy for overweight and obesity271,272 and confer better glucose, insulin, lipoprotein, and inflammatory cytokine profiles in overweight and type 2 diabetes patients.273 Finally, the chronic adoption of a high GL diet may lead to a number of hormonal changes (such as elevated insulin-like growth factor-1 [IGF-1]/insulin-like growth factor binding protein-3 [IGFBP-3] ratio and increased ovarian and testicular androgen synthesis, coupled with decreased sex hormone-binding globulin hepatic synthesis) that ultimately may result in polycystic ovary syndrome, epithelial cell cancers, acne, and juvenile myopia, among other diseases.85,119,266,273

Another nutritional change is fiber intake. Most Paleolithic diets had more fiber (>30 g/d), generally from fruit and vegetables,65 than did the typical western diet, where most of the fiber derives from cereal grains.65 Fruit and vegetables have, on a calorie per calorie basis, two and eight times more fiber than do whole grains.65 In addition, fruit and vegetables typically contain soluble fiber, whereas much fiber in cereal grains is of the insoluble type.26
fruit is not equivalent to consuming pure fructose, sucrose, or HFCS.

The simple fact that fructose presents a low GI, but yet because of its unique metabolism may have numerous adverse effects, combined with the fact that cereal grains and isolated sugars are the primary high-GL foods in the western diet, suggests that the historical focus on the GI and GL is incomplete and has to account for fructose and, perhaps more important, the food source of CHO.

Another food group that was not part of Paleolithic diets but is considered a staple today is dairy. Milk, yoghurt, and some lactose-containing cheeses, despite having a low GL, elicit a very high insulin response. The implications of these findings are not entirely known, because the epidemiological evidence is conflicting regarding the association of milk and dairy, insulin resistance, and metabolic syndrome, but a small dietary intervention study in young boys observed an increase of 103% and 75% in fasting plasma insulin concentrations and relative insulin resistance, respectively, after 7 days on a high-milk diet. Furthermore, epidemiologic and intervention studies in children and adults demonstrate that cow’s milk significantly increases plasma levels of IGF-1 and, perhaps more important, the IGF-1/IGFBP-3 ratio. Moreover, milk contains various hormones and growth factors that may have relevant implications for chronic degenerative diseases. Indeed, epidemiologic evidence suggests that milk may be implicated in acne and epithelial cell cancers, particularly prostate cancer. Most of these adverse effects are more likely to manifest in the postreproductive years and, as such, would not negatively affect the selection of ALP-associated alleles. Indeed, as indicated previously, genes that are important for early reproductive success can be selected despite potentially detrimental effects subsequent to their continued expression in later life, which is why ALP should not be viewed as genetic protection against potential adverse effects derived from long-term dairy intake.

It should be mentioned that reactive monosaccharides such as glucose and especially galactose (from dairy) and fructose (which are much more reactive than glucose) lead to AGE production and accumulate intra- and extracellurally. Moreover, chronic hyperglycemia is a well-known accelerator of endogenous AGE production. In this regard, the chronic consumption of a high intake of sucrose, fructose, and galactose and/or the adoption of a high GL diet may significantly contribute to the formation of AGES.

It can therefore be concluded that an increase in diet’s GL and insulinotropic potential, coupled with a higher fructose (and possibly galactose) intake and a reduction in vitamin C and dietary fiber consumption, may be another cause of the high incidence and prevalence in industrialized countries of epithelial cell cancers, obesity, metabolic syndrome, gout, CHD, acne, myopia, and various gastrointestinal problems, including constipation, irritable bowel syndrome, and diverticulitis.

Macronutrient distribution

The percentage of total food energy (en%) derived from macronutrients in Paleolithic diets would typically be different from current official dietary guidelines (protein = 15 en%; CHO = 55–60 en%, and dietary fat ≤ 30 en%). Cordain et al estimated that the diets of historically studied hunter–gatherer populations were higher in protein (19–35 en%), lower in CHO (22–40 en%), and equivalent or even higher in dietary fat (28–58 en%).

Even though the RDA for daily protein is 0.8 g/kg of bodyweight, there is evidence that athletes need higher amounts (in sports medicine, protein intake of 1.4–2 g/kg/d is increasingly being recommended). The elderly also need a higher protein intake to prevent or attenuate sarcopenia and osteopenia because dietary protein increases calcium absorption and has an anabolic effect on muscle and bone cells (especially in the context of a net base-yielding diet). Moreover, high-protein diets (>20% of caloric intake) have been shown to improve dyslipidemia and insulin sensitivity and are potential effective strategies for improving obesity, metabolic syndrome, and hypertension. Furthermore, a long-term high-protein intake does not appear to adversely affect renal function in individuals without pre-existing kidney disease. Nevertheless, there is a hepatic urea synthesis limit, which lies between 2.6 g/kg/d and 3.6 g/kg/d.

Regarding the lower CHO content of preagricultural diets, it should be mentioned that mounting evidence suggests that a reduced-CHO diet may be superior to a western-type low-fat, high-CHO diet, especially in metabolic syndrome patients, because it may lead to better improvement in insulin resistance, postprandial lipemia, serum triglycerides, HDL-C, total cholesterol/HDL-C (TC/HDL-C) ratio, LDL particle distribution, apolipoprotein (apo)B/apo A-1 ratio, postprandial vascular function, and certain inflammatory biomarkers (such as TNF-α, IL-6, IL-8, MCP-1, E-selectin, ICAM, and PAI-1). Nevertheless, because a low-CHO
diet is obviously lower in sugars (such as sucrose and fructose) and cereal grains and is often higher in protein, it is unlikely that all of its positive effects can be attributed solely to CHO restriction.

The concern that adopting a preagriculture-type diet may encourage a higher intake of dietary fat with a consequent increase in CVD risk is not justifiable, because the absolute amount of dietary fat consumed is probably much less important than is the type of fat consumed.4,108,319 For instance, the traditional diet of Crete, which served as a guiding template for the “Mediterranean Diet” used in clinical trials, had 35–40 en% from fat (especially cis monounsaturated fatty acids [cis MUFA] from olive oil and cis polyunsaturated fatty acids [cis PUFA] of the omega-3 family, supplied by fish, egg yolk, and wild plants such as purslane).319 The death rates from cancer and heart disease in this region of Greece were one-third the corresponding death rates in the US.319

Indeed, Mediterranean populations consuming diets rich in cis MUFA from virgin olive oil have lower CHD rates,319 and in a recent reconstructed East African Paleolithic diet,157 MUFA represented 6–19 en%. Furthermore, various observational studies have reported an inverse association between cis MUFA and CHD risk.24 Moreover, cis MUFA intake is associated with improved lipoprotein parameters, reduced LDL oxidation, improved insulin sensitivity, and reduced thrombogenesis,24 and when it replaces CHO it decreases triglycerides and total cholesterol/HDL-C ratio.320

A possible and widely available food source of cis MUFA (which in evolutionary terms is a novel but apparently beneficial food) is virgin olive oil321,322 that also contains vitamin E (especially α-, β-, and γ-tocopherol) and phenolic compounds, which may reduce LDL and DNA oxidation and increase plasma antioxidant capacity, resulting in less vascular damage by ROS.321,322 Furthermore, it may decrease the activation of NF-kB, inhibit endothelial adhesion molecule expression and platelet aggregation, and increase nitric oxide availability.321,322

In the reconstructed East African Paleolithic diet157 mentioned previously, the intake of saturated fatty acids (SFA) was estimated at 11–12 en%, and Cordain156 approximated that in historically studied hunter–gatherer populations around the globe, SFA comprised 10–15 en%. Although this is higher than the recommended intake (≤10%),65 it should be mentioned that even a 10 en% increase in SFA intake replacing complex CHO is estimated to raise total and LDL-C by only 20 mg/dL and 15 mg/dL (0.005 mmol/L and 0.004 mmol/L), respectively.322 In addition, replacement of SFA by refined CHO and sugars increases triglyceride levels and small LDL particles and reduces HDL-C.320,324 Moreover, not all SFA behave in the same manner. For instance, lauric acid has a more favourable effect on TC/HDL-C than does CHO and any other fatty acid, either saturated or unsaturated,320 whereas myristic and palmitic acids appear to have little effect on this CHD risk factor.320 Furthermore, a recent meta-analysis does not support the notion that SFA increase the risk of CHD, stroke, or CVD,325 and replacement of SFA with high GI CHO has actually been found to significantly increase the risk of myocardial infarction in a recent prospective cohort study including 53,664 women and men.326 Also, there are populations, such as the horticulturalists of Kitava and the natives of Tokelau (Pacific Island), with very high SFA intake from coconut (up to 45% of total energy in the case of Tokelau127) and apparently low CHD rates.68,112,327

Finally, SFA, when consumed in the context of a higher-protein, reduced-CHO diet, are not metabolically equivalent to SFA in the context of the typical western diet or even in the context of a prudent low-fat, high-CHO diet. Indeed, a recent trial observed that a reduced-CHO diet led to a significant decrease in circulating SFA in triacylglycerols and cholesteryl ester, compared to a low-fat, high-CHO diet containing 3 times less dietary SFA.328

In light of that information, we propose increasing the intake of protein (in the form of fish, shellfish, meat from grass-fed and game animals, and eggs from free-range hens) and cis MUFA (through virgin olive oil, avocados, and nuts), decreasing CHO consumption (especially separated sugars and cereal grains), and maintaining a moderate intake of SFA. We also support an elimination of industrial trans fatty acids (TFA), which have no precedent in human history and are a recognized CHD risk factor;24,65 and perhaps replacing myristic and palmitic acids with lauric acid. This can be achieved through avoidance of fatty domesticated meats and dairy products and moderate consumption of virgin coconut oil, which presents antimicrobial properties,157 may promote a more pronounced reduction in abdominal obesity in the context of a hypocaloric diet,329 and may also decrease TC/HDL-C,320 LDL oxidation,330 and lipoprotein(a).331

Omega-6/omega-3 ratio

Kuipers et al157 estimated a total cis PUFA intake between 8.6 en% and 15.2 en% in East African Paleolithic diets. But more important is the balance between omega-6 and omega-3 cis PUFA. In this regard, the ancestral dietary intake of alpha-linolenic acid (ALA) and linoleic acid (LA) constituted 3.7–4.7 en% and 2.3–3.6 en%, respectively,157 whereas, in the US,24 ALA represents only 0.6 en% and LA 6–7 en%,
with similar intake having been reported in various western countries, leading to an unprecedented increase in the LA/ALA ratio of the western diet to greater than 10/1, mainly due to widespread use of LA-rich vegetable oils.

This practice may have important implications, because a high LA/ALA ratio is found in countries with a high CHD incidence and a high LA intake reduces the omega-3 index (defined as the percentage of eicosapentaenoic acid [EPA] + docosahexaenoic acid [DHA] in red blood cell membranes, relative to all other fatty acids), which has been proposed as a new CHD risk factor. Moreover, as reviewed by Calder, in vitro data from human endothelial cell studies demonstrate that LA activates NF-κB, leading to a subsequent production of proinflammatory cytokines such as IL-6 and TNF-α.

More important, the long-held notion that replacing SAFA with LA will reduce CHD risk has recently been challenged. As reviewed by Ramsden et al, only when SAFA and TFA were replaced by a combination of omega-6 and omega-3 cis PUFA was there a reduced risk of CHD in randomized controlled trials. In fact, LA-specific diets actually produced nonsignificant trends toward increased risks of all CHD endpoints in randomized controlled trials, with the increased risk of death from any cause approaching statistical significance. This data, coupled with a long-term multiple intervention trial with a diet of reduced omega-6 fatty acids and increased omega-3 fatty acids, which showed a 70% reduction in CHD events and mortality, strongly suggest that a high LA intake is not necessary to decrease CHD risk and may possibly increase it.

As for long-chain PUFA, Kuipers et al estimated that the intake of omega-3 fatty acids (EPA + DHA) and omega-6 arachidonic acid (AA) in East African Paleolithic diets was 1.7–14.2 g/d and 1.81–5.46 g/d, respectively. This figure contrasts with an EPA + DHA and AA mean intake of 0.11 g/d and 0.2 g/d, respectively, in the western diet.

If the omega-3 index becomes accepted as a CHD risk factor, then a reduced intake of omega-3 fatty acids (EPA + DHA) in the western diet is cause for serious concern. This observation is further supported by data showing that increased consumption of omega-3 fatty acids reduces the risk of cardiovascular mortality in both epidemiological and intervention studies. Many of these effects may derive from the fact that these fatty acids reduce ventricular arrhythmias and are naturally ligands for peroxisome proliferator-activated receptors (PPAR), sterol regulatory element-binding proteins (SREBP), and carbohydrate-responsive element-binding protein (ChREBP). Hence, these fatty acids modulate gene expression involved in lipid metabolism, lipogenesis, fatty acid oxidation, cholesterol metabolism, adipokine secretion, glucose metabolism, insulin sensitivity, and inflammation. Furthermore, they directly downregulate the transcription factor NF-κB, which has a major role in the induction of proinflammatory genes.

On a final note, it should be mentioned that although a Paleolithic-type diet would lead to a higher intake of AA and AA-derived eicosanoids, which initiate inflammation, AA also produces lipoxins that, together with resolvins from EPA and DHA and protectins and maresins from DHA, are involved in the resolution phase of inflammation. Accordingly, increasing the consumption of omega-3 fatty acids (EPA + DHA) from fatty fish and/or omega-3 supplements, choosing eggs and meats from grass-fed animals (which have a lower omega-6/omega-3 ratio than do grain-fed animal meat and eggs), and decreasing the consumption of LA-rich vegetable oils may be an effective strategy to reduce the risk of various chronic inflammatory diseases.

Conclusion

The adoption of diet and lifestyle that are very different from what shaped the human genome for more than 2 million years is a major factor in the widespread prevalence of chronic degenerative diseases that are epidemic in western countries. This conclusion strongly suggests that focusing on isolated dietary or lifestyle variables is not an appropriate preventive medicine strategy.

Indeed, the evolutionary template predicts that optimal gene expression, and ultimately an increase in health span (the number of years in good health), even if it would not affect average life expectancy, will not be achieved by any single dietary or lifestyle change but rather through the combination of several measures, such as regular physical exercise; stress management; sun exposure according to latitude and skin color (in order to maintain plasma 25[OH] D above 45 ng/mL and at the same time avoiding the adverse effects of excessive sun exposure); adequate sleep; avoidance of tobacco smoke; reduced exposure to pollutants, dietary AGEs, ALES, and other Maillard reaction compounds; and the adoption of a diet similar to that followed by Paleolithic hunter–gatherers. Giving support to this notion, four recent human intervention trials and one animal trial have demonstrated that a diet composed of meat, fish, shellfish, eggs, fresh fruit and vegetables, roots, tubers, nuts, and seeds may be superior to so-called healthy diets such as the Mediterranean diet.
Acknowledgments

We thank Mr Ricardo Reis Carvalho and Drs Christopher Ramsden and Stephan Guyenet for their critical contributions to this manuscript. We also express our gratitude to Professor Frits Muskiet for his enlightening comments regarding evolutionary medicine and the biochemistry of fatty acids.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Eaton SB, Konner M. Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med. 1985;312(5):283–289.
2. Shatin R. The transition from food-gathering to food production in evolution and disease. Vitalstoffe Zivilisationskrankheiten. 1967;12:104–107.
3. Abrams HL. The relevance of Paleolithic diet in determining contemporary nutritional needs. J Appl Nutr. 1979;31:43–59.
4. Nesse RM, Williams GC. Why we Get Sick: The New Science of Darwinian Medicine. New York; Times Books; 1994.
5. Broadhurst CL. Balanced intakes of natural triglycerides for optimum nutrition: an evolutionary and psychochemical perspective. Med Hypotheses. 1997;49(3):247–261.
6. Mann N. Dietary lean red meat and human evolution. Evo Nutr. 2000;39(2):71–79.
7. Boaz N. Evolving Health: The Origins of Illness and How the Modern World is Making us Sick. New York: John Wiley & Sons; 2002.
8. Chakravarty MV, Booth FW. Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol. 2004;96(1):3–10.
9. Halberg N, Henriksen M, Soderhamn N, et al. Effect of intermittent fasting and refeeding on insulin action in healthy men. J Appl Physiol. 2005;99(6):2128–2136.
10. Gluckman P, Hanson M. Mismatch: Why Our World No Longer Fits Our Bodies. Oxford: Oxford University Press; 2006.
11. De Graaf C. Effects of snacks on energy intake: an evolutionary perspective. Appetite. 2006;47(1):18–23.
12. Halperin ML, Cheema-Dhadli S, Lin SH, Kamel KS. Control of potassium excretion: a Paleolithic perspective. Curr Opin Nephrol Hypertens. 2006;15(4):430–436.
13. Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60(9):502–507.
14. Cordin L. Implications of Plio-Pleistocene hominin diets for modern humans. In: Ungar P, editor. Evolution of the Human Diet: The Known, the Unknown, and the Unknowable. New York: Oxford University Press; 2007:363–383.
15. Turner BL, Maes K, Sweeney J, Armelagos GJ. Human evolution, diet, and nutrition. In: Trevathan WR, Smith EO, McKenna JJ, editors. Evolutionary Medicine and Health: New Perspectives. Oxford: Oxford University Press; 2008:55–71.
16. Leonard WR. Lifestyle, diet, and disease: comparative perspectives on the determinants of chronic health risks. In: Stearns SC, Koella JC, editors. Evolution in Health and Disease. 2nd ed. New York: Oxford University Press; 2008:265–276.
17. Hood E, Jenkins KP. Evolutionary medicine: a powerful tool for improving human health. Evol Edu Outreach. 2008;1:114–120.
18. Osterdahl M, Kockturk T, Koochek A, Wändell PE. Effects of a short-term intervention with a Paleolithic diet in healthy volunteers. Eur J Clin Nutr. 2008;62(5):682–685.
19. Lamon BD, Hajjar DP. Inflammation at the molecular interface of atherosclerosis: an anthropological journey. Am J Pathol. 2008;173(5):1253–1264.
44. Underhill PA, Shen PD, Lin AA, et al. Y chromosome sequence variation and the history of human populations. Nat Genet. 2000;26:358–361.

45. Tishkoff S, Williams S. Genetic analysis of African populations: human evolution and complex disease. Nat Rev Genet. 2002;3:611–621.

46. Conrad D, Jakobsson M, Coop G, et al. A world-wide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet. 2006;38:1251–1260.

47. Cavalli-Sforza LL, Feldman MW. The application of molecular genetic approaches to the study of human evolution. Nat Genet. 2003;33:266–275.

48. White TD, Asfaw B, DeGusta D, et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature. 2003;423(6941):742–747.

49. McDougall I, Brown FH, Fleagle JG. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature. 2005;433:733–736.

50. Ramachandran S, Deshpande O, Rosenberg CC, et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci U S A. 2005;102(44):15942–15947.

51. Ray N, Currat M, Berthier P, Excoffier L. Recovering the geographic origin of early modern humans by realistic and spatially explicit simulations. Genome Res. 2005;15:1161–1167.

52. Liu H, Prugnolle F, Manica A, Balloux F. A geographically explicit genetic model of worldwide human-settlement history. Am J Hum Genet. 2006;79(2):230–237.

53. Manica A, Amos W, Balloux F, Hanihara T. The effect of ancient bottlenecks on human phenotypic variation. Nature. 2007;448(7151):346–348.

54. Hudjashov G, Kivisild T, Underhill P, et al. Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis. PNAS. 2007;104:8726–8730.

55. Hellenthal G, Auton A, Falush D. Inferring human colonization history using a copying model. PLoS Genet. 2008;4(5):e1000078.

56. Deshpande O, Batzoglou S, Feldman MW, Cavalli-Sforza LL. A serial founder effect model for human settlement out of Africa. Proc Biol Sci. 2009;276(1655):291–300.

57. Campbell MC, Tishkoff SA. The evolution of human genetic and phenotypic variation in Africa. Curr Biol. 2010;20(4):R166–R173.

58. Jakobsson M, Scholz SW, Scheet P, et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature. 2008;451(7181):998–1003.

59. Green RE, Krause J, Briggs AW, et al. A draft sequence of the Neandertal genome. Science. 2010;328(5979):710–722.

60. Ingram CJ, Mulcare CA, Itan Y, et al. Lactose digestion and the evolution of the Western diet: health implications for the 21st century. J Intern Med. 1996;236:331–340.

61. Oliver WJ, Cohen EL, Neel JV. Blood pressure, sodium intake, and sodium related hormones in the Yanomamo Indians, a “no–salt” culture. Circulation. 1973;52(1):146–151.

62. National High Blood Pressure Education Program. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Bethesda (MD): National Heart, Lung, and Blood Institute (US); 2004

63. Merimee TJ, Rimoin DL, Cavalli-Sforza LL. Metabolic studies in the African pygmy. J Clin Invest. 1972;51:395–401.

64. Kuroshima A, Itoh S, Azuma T, Agishi Y. Glucose tolerance test in the Ainu. Int J Biometrol. 1972;16:193–197.

65. Spielmann RS, Fajans SS, Neel JV, et al. Glucose tolerance in two unacculturated Indian tribes of Brazil. Diabetologia. 1982;23:90–93.

66. Lindeberg S, Eliaissar M, Lindahl B, Ahren B. Low serum insulin in traditional Pacific Islanders: the Kitava study. Metabolism. 1999;48:1216–1219.

67. Lindgärde F, Widén I, Gebb M, Ahren B. Traditional versus agricultural lifestyle among Shuar women of the Ecuadorian Amazon: effects on leptin levels. Metabolism. 2004;53(10):1355–1358.

68. Pavan L, Casiglia E, Braga LM, et al. Effects of a traditional lifestyle on the cardiovascular risk profile: the Amdovalpa population of the Brazilian Amazon. Comparison with matched African, Italian and Polish populations. J Hypertens. 1999;17(6):749–756.

69. King H, Heywood P, Zimet P, et al. Glucose tolerance in a highland population in Papua New Guinea. Diabetes Res. 1984;1(1):45–51.

70. Martin FI, Wyatt GB, Grew AR, et al. Diabetes mellitus in urban and rural communities in Papua New Guinea. Studies of prevalence and plasma insulin. Diabetologia. 1980;18(5):369–374.

71. King H, Finch C, Collins A, et al. Glucose tolerance in Papua New Guinea: ethnic differences, association with environmental and behavioural factors and the possible emergence of glucose intolerance in a highland community. Med J Aust. 1989;151(4):204–210.

72. O’Dea K, Spargo RM, Akerman K. The effect of transition from traditional to urban life-style on the insulin secretory response in Australian aborigines. Diabetes Care. 1980;3(1):31–37.

73. O’Dea K. Marked improvement in carbohydrate and lipid metabolism in diabetic Australian aborigines after temporary reversion to traditional lifestyle. Diabetes. 1984;33(6):596–603.

74. Lindeberg S, Soderberg S, Ahren B, Olsson T. Large differences in serum lipids between non-Westernized and Westernized populations: the Kitava study. J Intern Med. 2001;249(4):553–558.

75. Bribiescas RG, Hickey MS. Population variation and differences in serum leptin independent of adiposity: a comparison of Ache Amerindian men of Paraguay and lean American male distance runners. Nutr Metab (Lond). 2006;3:34.

76. World Health Organization (WHO). Global Database on Body Mass Index. http://www.who.int/bmi/index.jsp. Accessed October 10, 2010.

77. Cordain L, Eaton SB, Brand Miller J, et al. Evolutionary analysis of the etiology and pathogenesis of juvenile-onset myopia. Proc Natl Acad Sci U S A. 1996;93(3):127–132.

78. Avila-Seva L, Maggini L, Janssen S, et al. Influence of age and life-style on the risk of osteoporosis: the Spanish National Nutrition and Health Survey. Nutr Res. 2006;26(6):447–453.

79. Eaton SB, Konner M, Shostak M. Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med. 1988;88(4):739–749.

80. Lindeberg S, Nilsson-Ehle P, Tertónt E, et al. Cardiovascular risk factors in a Melanesian population apparently free from stroke and ischaemic heart disease: the Kitava study. J Intern Med. 1994;236:331–340.
92. Ruff CB, Trinkaus E, Walker A, Larsen CS. Postcranial robusticity in Homo: I. Temporal trends and mechanical interpretation. Am J Phys Anthropol. 1993;91(1):21–53.

93. Ruff CB, Trinkaus E, Holliday TW. Body mass estimation in Olympic athletes and Pleistocene Homo. Am J Phys Anthropol. 1998;26:192–193.

94. Ruff CB. Body mass prediction from skeletal frame size in elite athletes. Am J Phys Anthropol. 2000;113:507–517.

95. Trinkaus E. Appendicular robusticity and the paleobiology of modern human emergence. Proc Natl Acad Sci U S A. 1997;94(24):13367–13373.

96. Kanis JA, Johnell O, De Laet C, et al. International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res. 2002;17(7):1237–1244.

97. Yoshimura N, Suzuki T, Hosoi T, Orimo H. Epidemiology of hip fracture in Japan: incidence and risk factors. J Bone Miner Metab. 2005;23 Suppl 78–80.

98. Palvainen M, Kannus P, Niemi S, Parkkari J. Secular trends in the osteoporotic fractures of the distal humerus in elderly women. Eur J Epidemiol. 1998;14(2):159–164.

99. Barss P. Fractured ribs in rural Melanesians: a nonepidemic. Trop Geogr Med. 1985;37(2):156–159.

100. Jonsson T, Olsson S, Ahren B, et al. Agrarian diet and diseases of affluence: do evolutionary novel dietary lectins cause leptin resistance? BMC Endocr Disord. 2005;5:10.

101. Arthaud JB. Causes of death in 339 Alaskan Eskimos as determined by autopsy. Arch Pathol. 1970;90:433–438.

102. Bang HO, Dyerberg J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. Adv Nutr Res. 1980;3:1–22.

103. Bjørgregaard P, Dyerberg J. Mortality from ischemic heart disease and cerebrovascular disease in Greenland. Int J Epidemiol. 1988;17:514–519.

104. Gottman AW. A report of one hundred and three autopsies in Alaskan natives. Arch Pathol. 1960;70:117–124.

105. Kromann N, Green A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Arch Pathol. 1988–2004.

106. Middaugh JP. Cardiovascular deaths among Alaskan natives, 1980–86. Adv Nutr Res. 2000;5:23 Suppl 78–80.

107. You TK, Moffatt MEK, O'Neil JD. Cardiovascular deaths among Alaskan natives. 1970;53(1):51–55.

108. Lindeberg S, Berntorp E, Carlsson R, et al. Haemostatic variables and determinants in adults and children. Int J Circumpolar Health. 2005;64(4):365–386.

109. O'Keefe JH Jr, Cordain L. Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: how to become a 21st-century hunter-gatherer. Mayo Clin Proc. 2004;79(1):101–108.

110. Lindberg S, Bertnort E, Carlson R, et al. Haemostatic variables in Pacific Islanders apparently free from stroke and ischaemic heart disease. Thromb Haemost. 1997;77:94–98.

111. Lindenburg S, Bertnort E, Nilsson-Ehle P, et al. Age relations of cardiovascular risk factors in a traditional Melanesian society: the Kitava study. Am J Clin Nutr. 1997;66:845–852.

112. Lindeberg S, Lundh B. Absent presence of stroke and ischaemic heart disease in a traditional Melanesian Island: a clinical study in Kitava. J Intern Med. 1993;213:269–275.

113. Eaton S, Pike M, Short R, et al. Women's reproductive cancers in evolutionary context. Q Rev Biol. 1994;69:353–367.

114. Capasso LL. Antiquity of cancer. Int J Cancer. 2005;113(1):2–13.

115. Bulkley JL. Cancer among primitive tribes. Cancer. 1927;4(4):289–295.

116. Riveros M. First observation of cancer among the Pampido Indians of the Paraguayan Chaco. Int Surg. 1970;53(1):51–55.

117. Hearsey H. The rarity of cancer among the aborigines of British Central Africa. Br Med J. 1906;1562–1563.

118. Dewaily E, Mulvd, G, Sloth Pedersen H, et al. Inuit are protected against prostate cancer. Cancer Epidemiol Biomarkers Prev. 2003;12(9):926–927.

119. Cordain L, Lindeberg S, Hurtado M, et al. Acne vulgaris: a disease of Western civilization. Arch Dermatol. 2002;138:1584–1590.

120. Narayan KM, Boyle JP, Geiss LS, et al. Impact of recent increase in incidence on future diabetes burden. US, 2005–2050. Diabetes Care. 2006;29(9):2114–2116.

121. Ruffer M. On arterial lesions found in Egyptian mummies. J Pathol Bacteriol. 1911;15:453–462.

122. Bruetwich WL. The earliest record of sudden death possibly due to atherosclerotic coronary occlusion. Circulation. 1959;20:438–441.

123. Cockburn A, Barraco RA, Reyma TA, Peck WH. Autopsy of an Egyptian mummy. Science. 1975;187:1155–1160.

124. Pollard TM. Western Diseases: An Evolutionary Perspective. Cambridge: Cambridge University Press; 2008.

125. Schaeffer O. When the Eskimo comes to town. Nutr Today. 1971;6:8–16.

126. O’Dea K, Patel M, Kubisch D, et al. Obesity, diabetes and hyperlipidaemia in a Central Australia Aboriginal community with a long history of acculturation. Diabetes Care. 1993;16:1004–1010.

127. Dowse GK, Spark RA, Mabo V, Hodge AM. Extraordinary prevalence of non-insulin-dependent diabetes mellitus and bimodal plasma glucose distribution in the Wanigela people of Papua New Guinea. Med J Aust. 1994;160:767–774.

128. Szathmary EJE. Non-insulin dependent diabetes mellitus among aboriginal North Americans. Annu Rev Anthropol. 1994;23:457–482.

129. Hodge AM, Dowse GK, Koki G, et al. Modernity and obesity in coastal and Highland Papua New Guinea. Int J Obes Relat Metab Disord. 1995;19(3):154–161.

130. Ebbesson SO, Schraer CD, Risica PM, et al. Diabetes and impaired glucose tolerance in three Alaskan Eskimo populations: the Alaska-Siberia Project. Diabetes Care. 1998;21:563–569.

131. Daniel M, Rowley KG, McDermott R, et al. Diabetes incidence in an Australian aboriginal population: an 8-year follow-up study. Diabetes Care. 1999;22:1993–1998.

132. Dowse GK, Spark RA, Mabo V, Hodge AM. Extraordinary prevalence of non-insulin-dependent diabetes mellitus and bimodal plasma glucose distribution in the Wanigela people of Papua New Guinea. Med J Aust. 1994;160:767–774.

133. Kaler SN, Ralph-Campbell K, Pohar S, et al. High rates of the metabolic syndrome in a First Nations Community in Western Canada: prevalence and determinants in adults and children. Int J Circumpolar Health. 2006;65(5):389–402.

134. Yu CH, Zimman B. Type 2 diabetes and impaired glucose tolerance in aboriginal populations: a global perspective. Diabetes Res Clin Pract. 2000;50(Suppl 2):S3–S7.

135. Kaler SN, Walsh-Keller P, Kohn S, et al. High rates of the metabolic syndrome in a First Nations Community in Western Canada: prevalence and determinants in adults and children. Int J Circumpolar Health. 2006;65(5):389–402.

136. Yu CH, Zimman B. Type 2 diabetes and impaired glucose tolerance in aboriginal populations: a global perspective. Diabetes Res Clin Pract. 2000;50(Suppl 2):S3–S7.

137. Johnson RJ, Perez-Pozo SE, Sautin YY, et al. Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev. 2009;30(1):96–116.

138. Ebbesson SO, Schraer CD, Risica PM, et al. Diabetes and impaired glucose tolerance in three Alaskan Eskimo populations: the Alaska-Siberia Project. Diabetes Care. 1998;21:563–569.

139. Daniel M, Rowley KG, McDermott R, et al. Diabetes incidence in an Australian aboriginal population: an 8-year follow-up study. Diabetes Care. 1999;22:1993–1998.

140. Cockram CS. Diabetes mellitus: perspective from the Asia-Pacific region. Diabetes Res Clin Pract. 2000;50(Suppl 2):S3–S7.

141. Kalter SN, Walsh-Keller P, Kohn S, et al. High rates of the metabolic syndrome in a First Nations Community in Western Canada: prevalence and determinants in adults and children. Int J Circumpolar Health. 2006;65(5):389–402.

142. Yu CH, Zimman B. Type 2 diabetes and impaired glucose tolerance in aboriginal populations: a global perspective. Diabetes Res Clin Pract. 2000;50(Suppl 2):S3–S7.
144. Hildes JA, Schaefer O. The changing picture of neoplastic disease in the Western and Central Canadian Arctic (1950–1980). Can Med Assoc J. 1984;130:25–32.

145. Robinson EJ, Gebre Y, Pickering JL, et al. Effect of bush living on aboriginal Canadians of the Eastern James Bay region with non-insulin-dependent diabetes mellitus. Chronic Dis Can. 1995;16:144–148.

146. Booth FW, Chakravarthy MV, Gordon SE, Spangenburg EE. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J Appl Physiol. 2002;93(1):3–30.

147. Booth FW, Lees SJ. Fundamental questions about genes, inactivity, and chronic diseases. Physiol Genomics. 2007;28(2):146–157.

148. Booth FW, Laye MJ. The future: genes, physical activity and health. Acta Physiol (Oxf). 2010;199(4):549–556.

149. Angel LJ. Health as a crucial factor in the changes from hunting to farming in the Western and Central Canadian Arctic (1950–1980).

150. Angel LJ. Health as a crucial factor in the changes from hunting to farming in the Western and Central Canadian Arctic (1950–1980).

151. Vieth R. What is the optimal vitamin D status for health?

152. Angel LJ. Health as a crucial factor in the changes from hunting to farming in the Western and Central Canadian Arctic (1950–1980).

153. Cordain L, Gotshall RW, Eaton SB, Eaton SB 3rd. Physical activity, food consumption, and chronic diseases. J Nutr. 2007;137(4):1110–1114.

154. Grant WB. In defense of the sun: an estimate of changes in mortality rates in the United States if mean serum 25-hydroxyvitamin D levels were raised to 45 ng/mL by solar ultraviolet-B irradiance. Dermaendoocrinol. 2009;1(4):207–214.

155. Bohn T, Davidson L, Walczyk T, Hurrell RF. Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr. 2004;79(5):418–423.

156. Melzer D, Rice NE, Lewis C, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300(11):1303–1310.

157. Kuhnlein HV, Receveur O. Local cultural animal food contributes high levels of nutrients for Arctic Canadian indigenous adults and children. Proc Nutr Soc. 2005;352:1658–1695.

158. Soto AM, Sonnenschein C. Environmental causes of cancer: endocrine disruptors as carcinogens. Nat Rev Endocrinol. 2010;6(7):363–370.

159. Nadal A, Alonso-Magdalena P, Soriano S, et al. The pancreatic beta-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol. 2009;304(1–2):63–68.

160. Lang IA, Galloway TS, Scarlett A, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300(11):1303–1310.

161. Grün F, Blumberg B. Endocrine disruptors as obesogens. Mol Cell Endocrinol. 2009;304(1–2):19–29.

162. Angel LJ. Health as a crucial factor in the changes from hunting to farming in the Western and Central Canadian Arctic (1950–1980).

163. Vardavas CI, Panagiotakos DB. The causal relationship between physical activity and health. Acta Physiol (Oxf). 2010;199(4):549–556.

164. Angel LJ. Health as a crucial factor in the changes from hunting to farming in the Western and Central Canadian Arctic (1950–1980).

165. Kolb H, Mandrup-Poulsen T. The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. J Clin Endocrinol Metab. 2004;89:2119–2126.

166. Hanson KJ. Altered bone metabolism in inflammatory disease: role for nutrition. Proc Nutr Soc. 2008;67(2):196–205.

167. Kahn RC, Flier JS. The pathophysiology of the metabolic syndrome. N Engl J Med. 2004;351(6):664–677.

168. Angel LJ. Health as a crucial factor in the changes from hunting to farming in the Western and Central Canadian Arctic (1950–1980).

169. Kuhnlein HV, Receveur O. Local cultural animal food contributes high levels of nutrients for Arctic Canadian indigenous adults and children. Proc Nutr Soc. 2005;352:1658–1695.
191. Kant AK. Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The Third National Health and Nutrition Examination Survey, 1988–1994. *Am J Clin Nutr.* 2000;72(4):929–936.

192. Rumm-Kreuter D, Demmel I. Comparison of vitamin losses in vegetables due to various cooking methods. *J Nutr Sci Vitaminol (Tokyo).* 1990;36 Suppl 1:S7–S14.

193. Kimura M, Itokawa Y. Cooking losses of minerals in foods and its nutritional significance. *J Nutr Sci Vitaminol (Tokyo).* 1990;36 Suppl 1:S25–S32.

194. McKillop DJ, Pentieva K, Daly D, et al. The effect of different cooking methods on folate retention in various foods that are amongst the major contributors to folate intake in the UK diet. *Br J Nutr.* 2002;88(6):681–688.

195. Agte V, Tarwadi K, Mengale S, et al. Vitamin profile of cooked foods: how healthy is the practice of ready-to-eat foods? *Int J Food Sci Nutr.* 2002;53(3):197–208.

196. Jiménez-Monreal AM, García-Diz L, Martínez-Tomé M, et al. Influence of cooking methods on antioxidant activity of vegetables. *J Food Sci.* 2009;74(3):H97–H103.

197. Agte V, Tarwadi K, Mengale S, et al. Ascorbate is depleted by various cooking methods. *Nahrung.* 2000;44(4):451–453.

198. Mikellot DJ, Pentieva K, Daly D, et al. The effect of different cooking methods on vitamin C losses in some frozen vegetables due to various cooking methods. *Nahrung.* 2000;44(4):451–453.

199. Ames BN. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. *Proc Natl Acad Sci U S A.* 2006;103(47):17589–17594.

200. McCann JC, Ames BN. Vitamin K, an example of triage theory: is its nutritional significance. *Int J Food Sci Nutr.* 2010;61(5):224–230.

201. He K, Song Y, Belin RJ, Chen Y. Magnesium intake and the metabolic syndrome: epidemiologic evidence to date. *J Cardiometab Syndr.* 2006;15(5):351–355.

202. Ford ES, Li C, McGuire LC, et al. Intake of dietary magnesium and the prevalence of the metabolic syndrome among US adults. *Obesity (Silver Spring).* 2007;15(5):1139–1146.

203. Rylander R. Environmental magnesium deficiency as a cardiovascular risk factor. *J Cardiovasc Risk.* 1996;3:4–10.

204. Rubenowitz E, Molin I, Axelsson G, Rylander R. Magnesium in drinking water in relation to morbidity and mortality from acute myocardial infarction. *Epidemiology.* 2000;11:416–421.

205. Al-Delaimy WK, Rimm EB, Willett WC, et al. Magnesium intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet. *Am J Physiol Renal Physiol.* 2007;293(2):F521–F525.

206. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. *Diabetes.* 2008;57(6):1470–1481.

207. Cordain L, Tooty LH, Smith MJ, Hickey MS. Modulation of immune function by dietary lectins in rheumatoid arthritis. *Br J Nutr.* 2000;83(3):207–217.

208. Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. *Am J Clin Nutr.* 2007;86(5):1286–1292.

209. cree S, McFer MN, Kusinski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. *Am J Physiol Endocrinol Metab.* 2007;292(3):E740–E747.

210. Monaco C, Paleolog E. Nuclear factor kappaB: a potential therapeutic target in atherosclerosis and thrombosis. *Cardiovasc Res.* 2004;61(4):671–682.

211. Hotamisligil GS. Inflammation and metabolic disorders. *Nature.* 2006;444(7121):860–867.

212. Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signalling-3. *Diabetes Care.* 2010;33(5):991–997.

213. Ghanim H, Abuaysheh S, Sia CL, et al. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signalling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. *Diabetes Care.* 2009;32(12):2281–2287.

214. Ghanim H, Sia CL, Upadhyay M, et al. Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and Toll-like receptor expression. *Am J Clin Nutr.* 2010;91(4):940–949.

215. Purohit V, Bode JC, Bode C, et al. Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. *Alcohol.* 2008;42(5):349–361.

216. Patel B, Schute R, Sporns P, et al. Potato glycoalkaloids adversely affect intestinal permeability and aggravate inflammatory bowel disease. *Inflamm Bowel Dis.* 2002;8(5):340–346.

217. Keukens EA, de Vrije T, van den Boom C, et al. Molecular basis of glycoalkaloid induced membrane disruption. *Biochim Biophys Acta.* 1995;1240(2):216–228.
232. Gee JM, Wortley GM, Johnson IT, et al. Effects of saponins and glycoalkaloids on the permeability and viability of mammalian intestinal cells and on the integrity of tissue preparations in vitro. Toxicol In Vitro. 1996;10(2):117–128.

233. Alvarez JR, Torres-Pinedo R. Interactions of soybean lectin, soyasaponin, and glycacin with rabbit jejunal mucosa in vitro. Pediatr Res. 1982;16(9):728–731.

234. Chao AC, Nguyen JV, Broughall M, et al. Enhancement of intestinal model compound transport by DS-1, a modified Quillaja saponin. J Pharm Sci. 1998;87(11):1395–1399.

235. Story JA, LePage SL, Petrov MS, et al. Interactions of alfalfa plant saponins and sprout saponins with cholesterol in vitro and in cholesterol-fed rats. Am J Clin Nutr. 1984;39(6):917–929.

236. Dragos S, El Asmar R, Di Pierro M, et al. Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41(4):408–419.

237. Visser J, Rozing J, Saponie A, et al. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Nutr Metab (Lond). 2007;4:7.

238. Bernardo D, Garrote JA, Fernández-Salazar L, et al. Is gliadin really a multiple-hit agent? Proc Nutr Soc. 2003;62(4):427–434.

239. Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, and advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–916.e12.

240. Peppa M, Raptis SA. Advanced glycation end products and cardiovascular disease. J Gerontol A Biol Sci Med Sci. 2004;59(11):A480–A486.

241. De Faire U, Frostegård J. Natural antibodies against phosphorylcholine antibodies of IgM subclass are decreased in patients with primary Sjögren’s syndrome. Br J Dermatol. 2000;142(1):44–51.

242. Micháelsson G, Gerdén B, Hagforsen E, et al. Psoriasis patients with rheumatoid arthritis: a randomized study. Arthritis Res Ther. 2007;9(6):R34.

243. Chao AC, Nguyen JV, Broughall M, et al. Contribution of lectin receptor N-linked glycans to lectin binding. Biochem J. 2008;410(3):595–604.

244. Michaëlsson G, Gerdén B, Hagforsen E, et al. The long-term effect of dietary advice in men with coronary disease: follow-up of the Diet And Reinfarction Trial (DART). Eur J Clin Nutr. 2002;56(6):512–518.

245. Kilpatrick DC, Pusztai A, Grant G, et al. Tomato lectin resists digestion in the mammalian alimentary canal and binds to intestinal villi and intestinal cell lines. J Clin Immunol. 2009;29(1):29–37.

246. Doberty M, Barry RE. Gluten-induced mucosal changes in subjects without overt small-bowel disease. Lancet. 1981;1(8219):517–520.

247. Rechelt KL, Jensen D. IgA antibodies against gliadin and gluten in multiple sclerosis. Acta Neurol Scand. 2004;110(4):239–241.

248. Xavier RK, Zhang Q, Turka LA, et al. A functional polymorphism in TNF-α modulates the risk of inflammatory bowel disease. Cell. 2001;106(2):213–220.

249. Barbeau WE, Bassaganya-Riera J, Hontecillas R. Putting the pieces of the puzzle together: a series of hypotheses on the etiology and pathogenesis of type 1 diabetes. Ann N Y Acad Sci. 2004;1022:1–9.

250. Burr ML, Fehily AM, Gilbert JT, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinforcement: Diet And Reinforcement Trial (DART) [see comments]. Lancet. 1989;2:757–761.

251. Liu S, Roberts CK. Effects of glycemic load on metabolic health and chronic disease risk: a meta-analysis of observational studies. Comp Biochem Physiol A Physiolog. 2007;145A(1):1–10.

252. Sodhi A, Kesherwani V. Production of TNF-alpha, IL-1beta, IL-12 and IFN-gamma in murine peritoneal macrophages on treatment with wheat germ agglutinin in vitro: involvement of tyrosine kinase pathways. Glycoconjugate J. 2007;24(9):573–582.

253. Saja K, Chatterjee U, Chatterjee BP, Sudhakaran PR. Activation dependent expression of MMPs in peripheral blood mononuclear cells involves protein kinase A. Mol Cell Biochem. 2007;296(1–2):185–192.

254. Barbeau WE, Bassaganya-Riera J, Hontecillas R. The long-term effect of dietary advice in men with coronary disease: follow-up of the Diet And Reinfarction Trial (DART). Eur J Clin Nutr. 2002;56(6):512–518.

255. Kanková K. Diabetic threesome (hyperglycaemia, renal function and nutrition) and advanced glycation end products: evidence for the multiple-hit agent? Proc Nutr Soc. 2008;67(1):60–74.

256. Burr ML, Fehily AM, Gilbert JT, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinforcement: Diet And Reinforcement Trial (DART) [see comments]. Lancet. 1989;2:757–761.

257. Peppa M, Raptis SA. Advanced glycation end products and cardiovascular disease. Circulation. 2010;121(8):911–916.e12.

258. Saja K, Chatterjee U, Chatterjee BP, Sudhakaran PR. Activation dependent expression of MMPs in peripheral blood mononuclear cells involves protein kinase A. Mol Cell Biochem. 2007;296(1–2):185–192.

259. Barbeau WE, Bassaganya-Riera J, Hontecillas R. Putting the pieces of the puzzle together: a series of hypotheses on the etiology and pathogenesis of type 1 diabetes. Ann N Y Acad Sci. 2004;1022:1–9.
317. Westman EC, Feinman RD, Mavropoulos JC, et al. Low-carbohydrate nutrition and metabolism. *Am J Clin Nutr*. 2007;86(2):276–284.

318. Volek JS, Fernandez ML, Feinman RD, et al. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. *Prog Lipid Res*. 2008;47:307–318.

319. Stimpoulos AP. The Mediterranean diets: what is so special about the diet of Greece? The scientific evidence. *J Nutr*. 2001;131:306S–308S.

320. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. *Am J Clin Nutr*. 2003;77(5):1146–1155.

321. Carluccio MA, Massaro M, Scoditti E, De Caterina R. Vasculo-protective potential of olive oil components. *Mol Nutr Food Res*. 2007;51(10):1225–1234.

322. Cicerale S, Lucas L, Keast R. Biological activities of phenolic compounds present in virgin olive oil. *Int J Mol Sci*. 2010;11(2):458–479.

323. Clarke R, Frost C, Collins R, et al. Dietary lipids and blood cholesterol: quantitative meta-analysis of metabolic ward studies. *BMJ*. 1997;314:112–117.

324. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. *Curr Atheroscler Rep*. 2010;12(6):384–390.

325. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. *Am J Clin Nutr*. 2010;91(3):535–546.

326. Jakobsen MU, Dethlefsen C, Joensen AM, et al. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: importance of the glycemic index. *Am J Clin Nutr*. 2010;91(6):1764–1768.

327. Stanhope JM, Sampson VM, Prior IA. The Tokelau Island Migrant Study: serum lipid concentration in two environments. *J Chronic Dis*. 1981;34(2–3):45–55.

328. Forsythe CE, Phinney SD, Fernandez ML, et al. Comparison of low fat and low carbohydrate diets on circulating fatty acid composition and markers of inflammation. *Lipids*. 2008 Jan;43(1):65–77.

329. Assunção ML, Ferreira HS, dos Santos AF, et al. Effects of dietary coconut oil on the biochemical and anthropometric profiles of women presenting abdominal obesity. *Lipids*. 2009;44(7):593–601.

330. Nevin KG, Rajamohan T. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. *Clin Biochem*. 2004;37(9):830–835.

331. Muller H, Lindman AS, Blomfeldt A, et al. A diet rich in coconut oil reduces diurnal postprandial variations in circulating tissue plasminogen activator antigen and fasting lipoprotein (a) compared with a diet rich in unsaturated fat in women. *J Nutr*. 2003;133(11):3422–3427.

332. Pella D, Dubrov G, Singh RB, et al. Effects of an Indo-Mediterranean diet on the omega-6/omega-3 ratio in patients at high risk of coronary artery disease: the Indian paradox. *World Rev Nutr Diet*. 2003:92:74–80.

333. Dubrov G, Berry EM. Omega-6/omega-3 fatty acid ratio: the Israeli paradox. *World Rev Nutr Diet*. 2003:92:81–91.

334. Ramsden CE, Hibbeln JR, Lands WE. Letter to the Editor re: linoleic acid and coronary heart disease. *Prostaglandins Leukot Essent Fatty Acids*. 2009;80(1):77.

335. Harris WS. The omega-3 index: clinical utility for therapeutic intervention. *Curr Cardiol Rep*. 2010;12(6):503–508.

336. Calder PC. The 2008 ESPEN Sir David Cuthbertson Lecture. Fatty acids and inflammation: from the membrane to the nucleus and from the laboratory bench to the clinic. *Clin Nutr*. 2010;29(1):5–12.

337. Ramsden CE, Hibbeln JR, Majchrzak SF, Davis JM. N-6 fatty acid-specific and mixed polysaturated dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials. *Br J Nutr*. 2010;104(11):1586–1600.

338. de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. *Lancet*. 1994;343(8911):1454–1459.

339. Muskiet FAJ. Pathophysiology and evolutionary aspects of dietary fats and long-chain polysaturated fatty acids across the life cycle. In: Montemayor JP, le Coutre J, editors. *Fat Detection: Taste, Texture, and Post Ingestive Effects*. Boca Raton, FL: CRC Press; 2010:19–79.

340. Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? *Am J Pathol*. 2010;177(4):1576–1579.

341. Lindeberg S, Jönsson T, Granfeldt Y, et al. A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. *Diabetologia*. 2007;50(9):1795–1807.

342. Jönsson T, Granfeldt Y, Ahrén B, et al. Beneficial effects of a Palaeolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. *Cardiovasc Diabetol*. 2009;8:35.

343. Jönsson T, Ahrén B, Pacini G, et al. A Palaeolithic diet confers higher insulin sensitivity, lower C-reactive protein and lower blood pressure than a cereal-based diet in domestic pigs. *Nutr Metab (Lond)*. 2006;3:39.