A Non-cleavable UmuD Variant That Acts as a UmuD’ Mimic

Received for publication, October 12, 2005, and in revised form, January 31, 2006 Published, JBC Papers in Press, February 6, 2006, DOI 10.1074/jbc.M511101200

Penny J. Beuning1, Sharotka M. Simon1, Adam Zemla2, Daniel Barsky5, and Graham C. Walker4,2

From the 1Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and the 5Computations Directorate and 5Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550

UmuD2 cleaves and removes its N-terminal 24 amino acids to form UmuD’2, which activates UmuC for its role in UV-induced mutagenesis in Escherichia coli. Cells with a non-cleavable UmuD exhibit essentially no UV-induced mutagenesis and are hypersensitive to killing by UV light. UmuD binds to the β processivity clamp (“β”) of the replicative DNA polymerase, pol III. A possible β-binding motif has been predicted in the same region of UmuD shown to be important for its interaction with β. We performed alanine-scanning mutagenesis of this motif (KTFPLF18) in UmuD and found that it has a moderate influence on UV-induced mutagenesis but is required for the cold-sensitive phenotype caused by elevated levels of wild-type UmuD and UmuC. Surprisingly, the wild-type and the β-binding motif variant bind to β with similar Kd values as determined by changes in tryptophan fluorescence. However, these data also imply that the single tryptophan in β is in strikingly different environments in the presence of the wild-type versus the variant UmuD proteins, suggesting a distinct change in some aspect of the interaction with little change in its strength. Despite the fact that this novel UmuD variant is non-cleavable, we find that cells harboring it display phenotypes more consistent with the cleaved form UmuD’, such as resistance to killing by UV light and failure to exhibit the cold-sensitive phenotype. Cross-linking and chemical modification experiments indicate that the N-terminal arms of the UmuD variant are less likely to be bound to the globular domain than those of the wild-type, which may be the mechanism by which this UmuD variant acts as a UmuD’ mimic.

The umuDC gene products are induced as part of the SOS response and are responsible for much of the UV-induced mutagenesis in Escherichia coli (1). These gene products are subject to an elaborate set of controls that regulate their activity (1). The LexA repressor provides transcriptional control, and there are several proteolytic controls on both the umuD and umuC gene products (1). The homodimeric protein UmuD2 is the predominant species during the first about 20–30 min after SOS induction (2). UmuD2, together with UmuC, plays a role in DNA damage checkpoint, decreasing the rate of DNA synthesis and allowing time for accurate repair processes to act (2). This correlates with the cold-sensitive phenotype observed under conditions of overexpression of the umuDC gene products (2, 3). As the SOS response proceeds, UmuD2 binds the RecA/ssDNA nucleus protein filament. This stimulates the latent ability of UmuD2 to convert to UmuD’2 by cleaving off its N-terminal 24 amino acids, resulting in UmuD’2 becoming the predominant species. The RecA/ssDNA nucleoprotein filament serves to bring together the active site dyad residues Ser60 and Lys77, facilitating deprotonation of Ser60 by Lys77 (4). The activated Ser nucleophile then cleaves the peptide bond between Cys24 and Gly25 of UmuD2 (1).

The wealth of structural data and models available for UmuD2 and UmuD’2 provide insight into how the two forms of the umuDC gene products engage in multiple highly specific interactions (Fig. 1) (4–8), including with the α, β, and σ subunits of the replicative polymerase, pol III (9). Of the two forms, UmuD2 interacts more strongly with the β processivity clamp (also referred to as β or the β clamp) than does UmuD’2 (9, 10). In full-length UmuD2, the 39-amino acid N-terminal arms are stably bound to the globular C-terminal domain (4, 7) and form a distinct interaction surface. In the cleaved form of the protein, UmuD’2, the remaining approximately 15 amino acids at the N terminus appear unbound from the body of the protein and solvent-exposed (5, 6), revealing the buried portion of the C-terminal globular domain (4, 7). A series of truncations at the N-terminal arm of UmuD2 indicates that the first eight amino acids of UmuD2 are dispensable for the β clamp interaction, whereas deleting residues 2–18 results in a substantial decrease in, but not a complete loss of, cross-linking efficiency with the β clamp (10). Thus, the umuDC gene products interact with the β clamp via both the N-terminal arms of UmuD2 and the globular domain of UmuD2 and UmuD’2 (10). This differential interaction appears to control, at least in part, whether the umuDC gene products act as part of a DNA damage checkpoint or as a translesion polymerase (9, 10). These interactions with the β clamp are of particular interest because sliding clamps play a key role in coordinating the multiple DNA polymerases present in cells (11–15). The eukaryotic DNA sliding clamp proliferating cell nuclear antigen interacts with multiple proteins. These interactions are in part regulated by covalent modification of proliferating cell nuclear antigen with monoubiquitin or the small ubiquitin-like modifier, (SUMO) which is distinct from the role of polyubiquitination in proteolytic degradation (16–19). Duzen et al. (20) have suggested that UmuD2 and UmuD’2 play conceptually similar roles in modulating the various clamp interactions.

A version of the canonical β clamp binding motif found in eubacterial polymerases as well as other proteins involved in DNA metabolism was postulated to be present in UmuD at residues 14–18 (Fig. 2) (21). A yeast two-hybrid experiment with the motif of UmuD showed, however, that these five amino acids are not sufficient for the interaction with the β clamp (21). Given the fact that this result was obtained utilizing only the five-amino acid motif in UmuD, and cross-linking experiments showed that the region of UmuD between residues 9 and 19 is important

1 Supported by a Cleo and Paul Schimmel Fellowship.
2 To whom correspondence should be addressed: 68-633, 77 Massachusetts Ave., Cambridge, MA 02139. Tel.: 617-253-6716; Fax: 617-253-2643; E-mail: gwalker@mit.edu.

The abbreviations used are: ssDNA, single-stranded DNA; CAPS, 3-(cyclohexylamino)propanesulfonic acid; BMH, bis-maleimidohexane; DTNB, 5,5'-dithiobis(2-nitrobenzoate).
A UmuD Variant that Mimics UmuD

for interactions with the β clamp (10), we undertook a site-directed mutagenesis analysis of this motif. These studies led to the unexpected discovery of a new class of UmuD variant proteins that fail to undergo cleavage but whose properties resemble those of the cleaved version, UmuD’.

MATERIALS AND METHODS

Homology Model of UmuD—The models of the UmuD homodimer were created by the combined use of the program LGA (22) for protein structure comparison and superposition and the AS2TS program (23) for homology model building. An initial model of the UmuD monomer (single chain) was constructed based on the crystal structure of UmuD’ (Protein Data Bank code 1ay9, chain A) (24). The missing N-terminal arm was modeled by the LGA loop building/grafiting procedure (22), using mainly the arm conformation in 1jhh_A, from the x-ray crystallographic structure of LexA (25) as well as the other LexA structures (1jhc, 1jhe, and 1jhf) as template structures to guide the local and overall conformation. In the final alignment (Fig. S1), UmuD Asp20 had to be inserted into the LexA template (between residues 80 and 81 of LexA), and this was done by the LGA loop building procedure (22). Finally, residues 1–14 are in an extended conformation (i.e. we make no prediction as to the placement of these residues; they are only modeled in a formal sense).

In creating the full UmuD homodimeric complex, we used LGA to superimpose our monomer model onto each of the template chains in the NMR structure of the UmuD’ homodimer (4) (1i4v, chains A and B, model 1), but some minor clashes occurred that were alleviated by following the LexA homodimer instead (25). This procedure creates a cis (non-domain swapped) conformation of the UmuD homodimer. Because there is a very small “shoulder” region at the top of the arms, the trans UmuD homodimer model could be constructed from the cis UmuD homodimer model by swapping the arms as follows: the first 39 residues in chain A of our trans model were taken from the chain B of the cis model, and vice versa. This process of “arm swapping” was completed after applying the LGA loop building procedure to residues 39–41 in the shoulder regions. Finally, the LexA structures appear as both “elbows up” (N-terminal arm unbound) and “elbows down” (N-terminal arm bound to C-terminal domain), allowing us to model both conformations (Fig. S1). Thus, we created four models, two cis and two trans, each with an elbows up and an elbows down conformation (it is possible that heterogeneous conformations also occur with one elbow up and one elbow down as in the 1jhh LexA structure). For all the cis and trans models of the UmuD homodimer, the conformations of side chains from residues either not present in 1ay9_A or that presented a steric clash after building the dimeric structures were modeled using the side chain placement program SCWRL (26).

Proteins, Strains, and Plasmids—A plasmid expressing UmuD-3A was constructed in pSG5 using mutagenic primers and the QuikChange kit (Stratagene) (27). Wild-type UmuD and UmuD-3A were purified according to the published procedure (27). Primers sequences are published in the supplementary materials.

Mutagenesis and Survival Assays—SOS mutagenesis assays were performed according to the published method (27). Briefly, cultures of GW8017 harboring various umuDC-expressing plasmids growing exponentially in LB were washed with 0.85% saline, exposed to 25 J/m² UV light from a germicidal lamp (General Electric), and then plated on M9 minimal plates with trace arginine (1 μg/ml). Colony-forming units were scored after 48 h of growth at 42 °C. Survival was determined by plating on M9 minimal plates with 40 μg/ml arginine. Non-UV irradiated cultures were treated identically to assess the spontaneous mutation frequency. The data represent the average of at least three determinations.

UV survival curves were obtained after treating cells suspended in 0.85% saline in a Petri dish with the indicated doses of 254-nm light. Each sample was serially diluted and the dilutions were plated on M9 minimal media plates supplemented with 1% casamino acids, 0.005% tryptophan, and 1.5% agar. Plates were incubated overnight at 42 °C. Quantitative Transformation Assays—Transformation assays were performed essentially as described (27). Plasmids (0.1 μg) were added to 25–50 μl of competent AB1157 cells and incubated on ice for 10 min. After a 5-min heat shock at 37 °C, and a further 10-min incubation on ice, transformation mixtures were allowed to recover in 750 μl of LB at 37 °C for 1.5 h with gentle shaking. Equal volumes were plated on LB plates containing the appropriate antibiotics for incubation under different temperatures as indicated in the figure legends.

Immunoblots—To determine UmuD expression levels, cells were harvested from exponentially growing cultures in LB, lysed by boiling for 15 min, and loaded on 4–20% SDS-polyacrylamide gradient gels (Cambrex). Electrophoresed proteins were transferred to polyvinylidene difluoride membrane (Millipore) in 10 mM CAPS, pH 8, 10% methanol. After blocking, membranes were probed with anti-UmuD/D’, and antibody interactions were detected with SuperSignal substrate (Pierce). Antibodies to UmuD/D’ were raised against purified UmuD in rabbits (Imunodynamics, Inc., La Jolla, CA). For UV-induced expression and cleavage experiments, an aliquot of about 2.5 × 10¹⁰ cells from an exponentially growing culture at A₆₀₀ = 0.2–0.3 was harvested, washed in 0.85% saline, and UV-irradiated at 25 J/m². Irradiated cells were then transferred to LB and grown at 37 °C for the times indicated in the figure legends.

UmuD in Vitro Cleavage Assay—RecA/ssDNA nucleoprotein filament-facilitated UmuD cleavage was assayed (27, 29, 30) in LG buffer for 30 min. Reactions were quenched by addition of SDS-PAGE buffer to 1×, and products were analyzed on 4–12% gradient polyacrylamide gels. Alkaline cleavage of UmuD was carried out (27, 31) in 100 mM glycine, pH 10, 10 mM CaCl₂, 50 mM NaCl, 10 mM dithiothreitol, and 0.25 μg/ml bovine serum albumin for 48 h at 37 °C. Reaction products were analyzed by 14% polyacrylamide gel electrophoresis. The extent of UmuD cleavage was quantified using the Line Profile feature of the National Instruments Vision Assistant.

Cross-linking and Chemical Modification—Cross-linking was performed essentially as described (32) with bis-maleimidohexane (BMH, Pierce). Reactions were incubated at room temperature for the times indicated. For chemical modification with 5,5’-dithiobis(2-nitrobenzoate) (DTNB) (33), DTNB was dissolved at 2 mM final concentration in 50 mM HEPES, pH 7.5. Reactions were performed with 10–20 μM

TABLE 1

Strains and plasmids	Relevant genotype	Ref.
Strain		
AB1157	argE3	
GW8017	AB1157 ΔumuDC	
Plasmid		
pGY9738	o²₅ umuDC; pSC101-derived, Spec⁺	47
pGY9739	o²₅ umuDC; pSC101-derived, Spec⁺	47
pGR2	Vector; pSC101-derived, Spec⁺	48
pJS9	Ts λ repression, Kan⁺	49

9634 JOURNAL OF BIOLOGICAL CHEMISTRY

VOLUME 281 • NUMBER 14 • APRIL 7, 2006
DTNB and 10–20 μM UmuD proteins in 50 mM HEPES, pH 7.5. The concentration of accessible thiols was calculated with an extinction coefficient of 13,600 cm$^{-1}$ M$^{-1}$ at 412 nm. Several trials were performed, and representative data are shown.

Fluorescence Determination of Binding Constants—Binding constants between UmuD and β were determined essentially as described, with a PTI QM-20000–45E spectrophuorimeter (Lawrenceville, NJ) (27). The β clamp has a single Trp (residue 122), whereas UmuD has none. The β$_2$ concentration was constant at 25 μM. Emission from UmuD or UmuD-3A without β$_2$ was subtracted from emission of the complex, and the center of the spectral mass was calculated for each [UmuD]. Excitation was at 278 nm, and emission was monitored from 300 to 400 nm. Excitation and emission path polarizers were oriented perpendicularly. The data represent the average of at least three independent experiments ± 1 S.D.

RESULTS

Mutations in the “β-Binding Motif” of UmuD Do Not Result in Complete Loss of Induced Mutagenesis—We used alanine-scanning mutagenesis to make single alanine mutations in the putative β-binding motif in UmuD (Figs. 1 and 2) and investigated the consequences of these variants on known phenotypes of UmuD. These plasmid-borne variants were assayed for their ability to complement a ΔumuDC null strain for UV-induced mutagenesis. In addition to single alanine variants of UmuD, we constructed one variant with alanines at the first and last two positions in the motif (UmuD-3A, Fig. 2), the positions most conserved among all β-binding motifs (21). In the case of UmuC, the analogous mutation in its β-binding motif results in a complete loss of UV-induced mutagenesis (11, 12). No single mutation or set of multiple mutations in this motif in UmuD failed completely to complement a ΔumuDC strain. However, plasmids expressing either the F18A UmuD variant, which is expected that these residues would play a role in properly positioning the arm in the active site for cleavage. Given their positions in the N-terminal arm (Fig. 1), it might be expected that these residues would play a role in properly positioning the arm in the active site for cleavage. We tested whether these mutations in the N-terminal arm of UmuD interfered with cleavage after UV exposure. The F15A and L17A mutants showed a slight decrease in cleavage and an ~1.5-fold decrease in induced mutagenesis compared with the wild-type (Figs. 2 and 3 and data not shown). The two UmuD variants (F18A and UmuD-3A) that showed essentially no cleavage up to 3 h after UV exposure (Fig. 3), or even after 14 h (data not shown), resulted in a substantial but not complete reduction in induced mutagenesis (about 15–20% of wild-type). This is in contrast to non-cleavable UmuD active site variants that have been assayed previously, which showed essentially complete loss of induced mutagenesis (the limit of detection of this assay is about 1000-fold, or 0.1% of wild-type) (34, 35). Thus, there are two groups of non-cleavable UmuD variants, one that renders cells partially mutable and the other that renders cells essentially non-mutable.

The wild-type and UmuD-3A variant proteins were purified to assess their efficiency in in vitro cleavage facilitated by the RecA/ssDNA nucleoprotein filament. Under these conditions, UmuD, is cleaved efficiently to form UmuD$^\gamma$, whereas UmuD-3A, exhibits little detectable cleavage (Fig. 3). Here again, the lack of cleavage is similar to that exhibited by the active site mutant of UmuD$^\gamma$, UmuD-S60A$_\gamma$ (34). We note that there is a lower band present in some of the samples incubated without the RecA/ssDNA nucleoprotein filament. This lower band is often observed in preparations of UmuD, and even in some preparations of UmuD-S60A$_\gamma$. However, in the case of UmuD-3A, the intensity of the lower band does not decrease after incubation with the RecA/ssDNA nucleoprotein filament.

UmuD forms exchangeable dimers (34), so wild-type UmuD$_2$ was combined with UmuD-3A$_2$, and cleavage was observed (Fig. 3). Because UmuD-3A cannot cleave its own arm, the observed cleavage is likely because of the active site catalytic dyad of UmuD-3A acting on the arm of the wild-type partner, although the reverse is also possible. In this experiment it is also possible that the cleavage observed is due entirely to
a small population of wild-type UmuD2 homodimers. To eliminate this possibility, UmuD-3A2 was incubated with the active site variant UmuD-S60A2, and some cleavage was still detected (Fig. 3). This slight cleavage must be due to the active site residues of UmuD-3A cleaving the arm of UmuD-S60A, which suggests that the active site of UmuD-3A is proficient for cleavage and that the cleavage defect is isolated to its arm. The mutations in UmuD-3A at the top of the arm may disrupt folding of the arm over the globular domain or may interfere with specific protein-protein contacts required to facilitate cleavage (Fig. 1).

To ensure that the cleavage defect was not because of defective interactions of UmuD-3A2 with the RecA/ssDNA nucleoprotein filament, we also carried out cleavage under alkaline conditions in the absence of the RecA/ssDNA nucleoprotein filament. The RecA/ssDNA nucleoprotein filament serves to facilitate deprotonation of Ser60 by a neutral Lys97 (4, 25). In the absence of the RecA/ssDNA nucleoprotein filament, the activation of Ser60 as a nucleophile can be accomplished under alkaline conditions. Under these conditions, UmuD2 cleavage is inefficient but can be detected (31). We found that cleavage of UmuD-3A2 was substantially decreased compared with that of the wild-type (Fig. 3). This suggests that the cleavage defect of UmuD-3A2 is due to a defect intrinsic to the UmuD-3A2 variant rather than deficient interactions with the RecA/ssDNA filament.

UmuD-3A Fails to Exhibit the Cold-sensitive Phenotype—Strains with elevated levels of the umuDC gene products exhibit a cold-sensitive phenotype that correlates with a DNA damage checkpoint (2, 3). Cells harboring plasmids overexpressing the cleavable umuD variants T14A and F15A (+wild-type umuC) were also cold-sensitive, whereas those overexpressing the L17A variant displayed an intermediate phenotype. The T14A and F15A variants behave similarly to wild-type in terms of their ability to exert the cold-sensitive phenotype, to be cleaved to UmuD', and to act in UV-induced mutagenesis. The cold-sensitive phenotype is substantially enhanced in cells overexpressing the noncleavable variant UmuD-S60A (Fig. 4) (36). Thus, we were surprised to find that strains harboring plasmids expressing the noncleavable umuD arm variants (UmuD-F18A and UmuD-3A) failed to display this cold-sensitive phenotype (Figs. 1 and 4).

We hypothesized that the loss of the cold-sensitive phenotype was due to the specific arm mutations of UmuD, regardless of their cleavage defect. To test this, we combined in single constructs either the UmuD-F18A or UmuD-3A arm mutations with the S60A mutation that renders UmuD catalytically inactive. Even though they are not cleavable, the arm mutations F18A and UmuD-3A alleviated the extreme cold sensitivity exhibited by strains with elevated levels of UmuD-S60A (Fig. 4). Although strains harboring plasmids overexpressing the UmuD F18A/S60A double mutant display a cold-sensitive phenotype that is interme-
diate between that of cells with each corresponding single mutant, the cold-sensitive phenotype of cells overexpressing UmuD-S60A is suppressed by 2 orders of magnitude by the presence of only a single mutation in the N-terminal arm, F18A. These arm variants must disrupt a specific molecular interaction necessary to cause the cold-sensitive phenotype that is independent of whether they can be cleaved.

TABLE 2

Loss of synthetic lethality due to mutations in UmuD β-binding motif
AB1157 pSJS9
37 °C, per μg DNA
pGY9739 (WT)
pGY9739 (WT)
pGR2 (vector)
pGY9739-UmuD-3A

Simultaneously elevated levels of the umuD, umuC, and dnaN (which codes for the β clamp) gene products cause a lethal phenotype, which has been interpreted as an exaggeration of the cold-sensitive phenotype (37). A strain harboring a plasmid expressing UmuD-3A and UmuC, when combined with high levels of the β clamp, fails to exhibit the synthetic lethal phenotype (Table 2). This suggests that a critical aspect of this complex formation with β is disrupted in the UmuD-3A variant.

Sensitivity to UV Exposure—

Given the cleavage defect of the UmuD-3A and F18A N-terminal arm variants, we decided to look more closely at the curious lack of a correlation between UV mutability and survival after exposure to UV that we had noted earlier for cells expressing the F18A and UmuD-3A variants. It is known that E. coli strains harboring a non-cleavable UmuD variant are hypersensitive to killing by UV light and are non-mutable (2, 34) (Fig. 5). To determine whether this is also true of the non-cleavable UmuD F18A and UmuD-3A variants, strains harboring plasmid-borne umuD variants were assayed for their resistance to UV light. Strains with plasmids expressing either of the non-cleavable variants F18A or UmuD-3A showed a similar level of resistance to UV light as those expressing wild-type UmuD or a synthetic construct of UmuD (37). We suspected that the resistance to killing by UV of the F18A and UmuD-3A variants was because of a specific feature of the arm mutants, unrelated to their cleavage defect. Cells with plasmids expressing the non-cleavable arm variants constructed in the context of the UmuD-S60A active site variant were assayed for their resistance to UV light. Strains with plasmids expressing either the F18A or UmuD-3A arm variants combined with UmuD-S60A exhibited a striking resistance to UV light that was similar to strains with wild-type UmuD (Fig. 5). This suggests that alterations in the N-terminal arm of UmuD are able to suppress the extreme UV-sensitive phenotype of non-cleavable UmuD-S60A, even though they are also non-cleavable. In light of the dramatic changes in the phenotypes of cells expressing the UmuD-3A variant compared with those with previously characterized non-cleavable variants of UmuD (34), we investigated the conforma-
A UmuD Variant that Mimics UmuD

functional consequences of the UmuD-3A variant compared with the wild-type.

Chemical Cross-linking and Modification of UmuD Homodimers—We hypothesized that these non-cleaveable UmuD variants are able to confer resistance to UV light, as well as to suppress the cold-sensitive phenotype, by mimicking the conformation of UmuD*. To examine this possibility, we analyzed the conformation of the N-terminal arm of the UmuD-3A variant compared with that of the wild-type UmuD. UmuD, which possesses a C2 axis of symmetry, has a single Cys residue, Cys24, at the cleavage site in the N-terminal arm. To determine whether UmuD-3A is a UmuD’ mimic with respect to the position of its arms, cross-linking was performed with the thiol-specific homobifunctional 16-Å cross-linker BMH. Our model allows us to put a lower limit of 20 Å on the distance between these two Cys thiols. This lower limit represents an implausible path for the cross-linker, because it is the direct distance between the two Cys thiols (Fig. 1). Thus, cross-linking should only be detected when the arms are “up,” i.e., not bound to the C-terminal globular domain of UmuD. UmuD-3A was more readily cross-linked by BMH than either wild-type UmuD or UmuD-S60A (Fig. 6), suggesting that the arms of UmuD-3A are less likely to be bound to the globular domain of UmuD. Therefore they are more often close enough to be cross-linked.

One of the models of UmuD that we have proposed (“trans, elbows down,” see Fig. 1 and supplemental Fig. S1) predicts that the thiol group of the single Cys24 residue is partially buried under the peptide backbone of the N-terminal arm. However, if the UmuD arms are in an “up,” or more flexible, conformation, then the Cys should be more accessible to a thiol-specific reagent. We performed a titration of the Cys residue at the Cys24–Gly25 cleavage site with DTNB. The thiol moiety of UmuD-3A was more reactive to DTNB and therefore slightly more accessible than that of the wild-type UmuD (Fig. 6). We determined that there is 1.0 reactive Cys residue per wild-type UmuD2 and 1.2 reactive Cys residues per UmuD-3A2, supporting the idea that in the UmuD-3A variant, the N-terminal arms undergo a shift in equilibrium to a less bound, arms-up state.

Determination of Kd of UmuD and the β Clamp—To quantify the binding of UmuD and the UmuD-3A variant to the β clamp, we determined the Kd for this interaction. Surprisingly, we found that although the Kd is similar for β to either wild-type UmuD (5.5 ± 0.8 μM) or UmuD-3A (6.1 ± 0.5 μM), the mode of binding is different for each protein. Namely, the fluorescence emission from the tryptophan in β shifts to a longer wavelength upon binding to UmuD, whereas the shift is to a shorter wavelength in the presence of UmuD-3A (Fig. 7). Tryptophan fluorescence emission peaks at a longer wavelength in a polar environment and at a shorter wavelength in a hydrophobic one, indicating that the partially exposed tryptophan in β (Fig. 7B) becomes more solvent exposed upon binding to wild-type UmuD and buried upon binding to UmuD-3A (38). Accordingly, unlike canonical β-binding motifs (11, 12, 39, 40), this motif in UmuD is not responsible for the strength of the interaction with β, but rather is associated with different mode of binding.

DISCUSSION

Although this work was initiated to determine the role of the putative β-binding motif (14TFPLF18) in UmuD function, we found that alterations in the motif do not prevent binding to the β clamp, unlike corresponding mutations in UmuC, DinB, and the pol III α subunit (11, 12, 21, 39, 40). Instead, we show here that the UmuD-3A variant alters the N-terminal arm conformation in a way that dramatically changes UmuD activity, and seems to exhibit properties of UmuD’, particularly with respect to resistance to killing by exposure to UV light and lack of the cold-sensitive phenotype when overexpressed together with UmuC. The UmuD-3A variant shows no defect in survival but decreases UV mutagenesis. This suggests that this variant may allow selective bypass of T:T cyclobutane pyrimidine dimers but not (6–4)-photoproducts, because lethality is associated with T:T cyclobutane pyrimidine dimers and mutagenesis with (6–4)-photoproducts (1).

How could an uncleaved UmuD mimic the cleaved form, UmuD’? Current evidence suggests that the N-terminal arms of UmuD are usually bound to the C-terminal globular domain of the protein, i.e., it is usually in the elbows down conformation (7). Even when the arms are covalently bound to the globular domain, UmuD can be cross-linked to the β clamp with almost no decrease in efficiency (10). When UmuD is cleaved to UmuD’, the remainder of the N-terminal arm (residues 25–39) is able to move relatively freely (5, 24). The UmuD-3A variant
A UmuD Variant that Mimics UmuD

seems to have enough flexibility in its arms that it is at least a partial mimic of UmuD'. Although residues 14–18 of UmuD are predicted from our model to be only partially buried (Fig. 1), the UmuD-3A variant may disrupt optimal packing of the arm against the globular domain. The mutations in UmuD-3A are at the point of the N-terminal arm that begins a downward turn over the C-terminal globular domain, and disruption of this turn is consistent with the more extended UmuD' arm structure. In addition, the cleavage of UmuD exposes a different surface of UmuD' for protein-protein interactions. Thus, the cleavage reaction serves the dual function of removing a portion of the N-terminal arms and presenting a dramatically different surface of the protein for interactions.

We were able to create models of the UmuD homodimer in both the elbows up and the elbows down conformation because both conformations are observed in the LexA structures (25). The LexA structure is in a cis conformation (non-domain swapped) with respect to the positioning of the arms (25). We have noticed, however, that in the UmuD_2 structures the truncated arms point in the trans direction, suggesting that perhaps the trans conformation is actually preferred for UmuD (5, 6). It has been shown that UmuD can undergo cleavage in trans (Fig. 3) (5, 41). The model of UmuD most consistent with the available biochemical evidence is one in which the arms are in the trans conformation (7).

In constructing the UmuD-3A variant, we have made a version of UmuD that binds to the β clamp with a similar affinity as the wild-type, but with a subtle change in the specific interaction as evidenced by the strikingly different tryptophan fluorescence emission spectra. This change would not have been detected by many of the techniques commonly used to detect protein-protein interactions, such as co-immunoprecipitation or two-hybrid analysis. Recent evidence suggests that the domains of the sliding clamps are rigid bodies joined by flexible linker regions (42). The single tryptophan of UmuD is on a long flexible loop between rigid Domains I and II (Fig. 7) (43), so UmuD binding at a distal position (5, 6). It has been shown that UmuD can undergo cleavage in trans (25). We have noticed, however, that in the UmuD structures (25). The LexA structure is in a cis conformation (non-domain swapped) with respect to the positioning of the arms (25). We have noticed, however, that in the UmuD structures (25).

Acknowledgments—We thank Prof. Robert Sauer (MIT) and members of his laboratory for use of the fluorimeter and for technical advice. We also thank Prof. Charles McHenry for pSIS9 and helpful discussions. We thank Prof. Mike O’Donnell (Rockefeller University) for the plasmid expressing His-HMK-B, Daniel Jarosz for assistance in preparing Fig. 7, and Michael Simon and members of the Walker laboratory for careful reading of the manuscript.

REFERENCES

1. Friedberg, E. C., Walker, G. C., Siede, W., Wood, R. D., Schultz, R. A., and Ellenberger, T. (2005) DNA Repair and Mutagenesis, Second Ed., ASM Press, Washington, D.C.
2. Opperman, T., Muzli, S., Smith, B. T., and Walker, G. C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 9218–9223.
3. Sutton, M. D., and Walker, G. C. (2001) J. Bacteriol. 183, 1215–1224.
4. Ferentz, A. E., Walker, G. C., and Wagner, G. (2001) EMBO J. 20, 4287–4298.
5. Ferentz, A. E., Opperman, T., Walker, G. C., and Wagner, G. (1997) Nat. Struct. Biol. 4, 979–983.
6. Peat, T. S., Frank, E. G., McDonald, J. P., Levine, A. S., Woodgate, R., and Hendrickson, W. A. (1996) Nature 380, 727–730.
7. Sutton, M. D., Guazzo, A., Narumi, I., Costanzo, M., Altenbach, C., Ferentz, A. E., Hubbell, W. L., and Walker, G. C. (2002) DNA Repair 1, 77–93.
8. Shen, X., Woodgate, R., and Goodman, M. F. (2003) J. Biol. Chem. 278, 52546–52550.
9. Sutton, M. D., Opperman, T., and Walker, G. C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 12373–12378.
10. Sutton, M. D., Narumi, I., and Walker, G. C. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5307–5312.
11. Becherel, O. J., Fuchs, R. P., and Wagner, J. (2002) DNA Repair 1, 703–708.
12. Beuning, P. J., Barsky, D., Sawicka, D., and Walker, G. C. (2006) Mol. Microbiol. 59, 460–474.
13. Fuji, S., and Fuchs, R. P. (2004) EMBO J. 23, 4342–4352.
14. Indiani, C., Mcinerney, P., Georgescu, R., Goodman, M. F., and O’Donnell, M. (2005) Mol. Cell 19, 805–815.
15. Yang, J., Zhuang, Z., Roccacesa, R. M., Trakselis, M. A., and Benkovic, S. J. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 8289–8294.
16. Kannouche, P. L., Wing, J., and Lehmann, A. R. (2004) Mol. Cell 14, 491–500.
17. Gill, G. (2004) Genes Dev. 18, 2046–2059.
18. Vivona, J. B., and Kelman, Z. (2003) Fears Lett. 546, 167–172.
19. Warbrick, E. (2000) Bioessays 22, 997–1006.
20. Dunen, J. M., Walker, G. C., and Sutton, M. D. (2004) DNA Repair 3, 301–312.
21. Dalrymple, P. B., Kongwuan, K., Wijfelfs, G., Dison, N. E., and Jennings, P. A. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 11627–11632.
22. Zemla, A. (2003) Nucleic Acids Res. 31, 3370–3374.
23. Zemla, A., C. E. Z., Slezak, T., Kuczynsksi, T., Rama, D., Torres, C., Sawicka, D., and Barsky, D. (2005) Nucleic Acids Res. 33, W111–W115.
24. Peat, T. S., Frank, E. G., McDonald, J. P., Levine, A. S., Woodgate, R., and Hendrickson, W. A. (1996) Structure 4, 1401–1412.
25. Luo, Y., Pfeutzenr, R. A. Mosimann, S., Paetzel, M., Frey, E. A., Cherry, M., Kim, B., Little, J. W., and Strynadka, N. C. J. (2001) Cell 106, 585–594.
26. Bower, M., Cohen, F. E., and Dunbrack, R. L., Jr. (1997) J. Mol. Biol. 267, 1268–1282.
27. Beuning, P. J., Simon, S. M., Godoy, V. G., Jarosz, D. F., and Walker, G. C. (2006) Methods Enzymol. 408, 318–340.
28. Turner, J., Hirgomas, M. M., Kelman, Z., and O’Donnell, M. (1999) EMBO J. 18, 771–783.
29. Guzzo, A., Lee, M. H., Oda, K., and Walker, G. C. (1996) J. Bacteriol. 178, 7295–7303.
30. Lee, M. H., Guzzo, A., and Walker, G. C. (1996) J. Bacteriol. 178, 7304–7307.
31. Kulaeva, O. I., Wootton, J. C., Levine, A. S., and Woodgate, R. (1995) J. Bacteriol. 177, 2737–2743.
32. Lee, M. H., Oda, T., and Walker, G. C. (1994) J. Bacteriol. 176, 4825–4837.
33. Wright, S. K., and Viola, R. E. (1998) Anayl. Biochem. 265, 8–14.
34. Battista, J. R., Oda, T., Kohmi, T., Sun, W., and Walker, G. C. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7190–7194.
35. Kohmi, T., Battista, J. R., Oda, T., and Walker, G. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 1816–1820.
A UmuD Variant that Mimics UmuD

36. Opperman, T., Murli, S., and Walker, G. C. (1996) *J. Bacteriol.* 178, 4400–4411
37. Sutton, M. D., Farrow, M. F., Burton, B. M., and Walker, G. C. (2001) *J. Bacteriol.* 183, 2897–2909
38. Harris, D. A. (1996) *Light Spectroscopy*, BIOS Scientific Publishers, Ltd., Oxford, UK
39. Dohrmann, P. R., and McHenry, C. S. (2005) *J. Mol. Biol.* 350, 228–239
40. Wagner, J., Fujii, S., Gruz, P., Nohmi, T., and Fuchs, R. P. (2000) *EMBO Rep.* 1, 484–488
41. McDonald, J. P., Frank, E. G., Levine, A. S., and Woodgate, R. (1998) *Proc. Natl. Acad. Sci. U. S. A.* 95, 1478–1483
42. Kazmirski, S. L., Zhao, Y., Bowman, G. D., O’Donnell, M., and Kuriyan, J. (2005) *Proc. Natl. Acad. Sci. U. S. A.* 102, 13801–13806
43. Kong, X.-P., Onrust, R., O’Donnell, M., and Kuriyan, J. (1992) *Cell* 69, 425–437
44. Bunting, K. A., Roe, S. M., and Pearl, L. H. (2003) *EMBO J.* 22, 5883–5892
45. Jeruzalmi, D., Yurieva, O., Zhao, Y., Young, M., Stewart, J., Hingorani, M., O’Donnell, M., and Kuriyan, J. (2001) *Cell* 106, 417–428
46. Wijffels, G., Dalrymple, B. P., Prosselkov, P., Kongsuwan, K., Epa, V. C., Lilley, P. E., Jergic, S., Buchardt, J., Brown, S. E., Alewood, P. F., Jennings, P. A., and Dixon, N. E. (2004) *Biochemistry* 43, 5661–5671
47. Sommer, S., Boudsocq, F., Devoret, R., and Bailone, A. (1998) *Mol. Microbiol.* 28, 281–291
48. Churchward, G., Belin, D., and Nagamine, Y. (1984) *Gene (Amst.)* 31, 165–171
49. Johanson, K. O., Haynes, T. E., and McHenry, C. S. (1986) *J. Biol. Chem.* 261, 11460–11465
50. Humphrey, W., Dalke, A., and Schulten, K. (1996) *J. Mol. Graph.* 14, 33–38