The unextendible product bases of four qubits: Hasse diagrams

Lin Chen1,2,* and Dragomir Ž Đoković3,†

1School of Mathematics and Systems Science, Beihang University, Beijing 100191, China
2International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
3Department of Pure Mathematics and Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

(Dated: September 5, 2018)

We consider the unextendible product bases (UPBs) of fixed cardinality m in quantum systems of n qubits. These UPBs are divided into finitely many equivalence classes with respect to an equivalence relation introduced by N. Johnston. There is a natural partial order “\leq” on the set of these equivalence classes for fixed m, and we use this partial order to study the topological closure of an equivalence class of UPBs. In the case of four qubits, for $m = 8, 9, 10$, we construct explicitly the Hasse diagram of this partial order.

PACS numbers: 03.65.Ud, 03.67.Mn

*linchen@buaa.edu.cn (corresponding author)
†djokovic@uwaterloo.ca
CONTENTS

I. Introduction 2

II. Preliminaries 3

III. Partial order 4

IV. The closure of equivalence classes of UPBs 6

V. The four-qubit Hasse diagrams
 A. UOM[8, 4] 9
 B. UOM[9, 4] 10
 C. UOM[10, 4] 10
 D. UOM[12, 4] 10

Acknowledgements 11

References 11

A. Representatives of equivalence classes of UOMs of four qubits 13

B. Arrows of the Hasse diagrams of UOM[m, 4] 25

I. INTRODUCTION

Multiqubit systems of quantum physics have been physically realized in recent years. Investigating the properties of multiqubit states is both physically and mathematically meaningful. In particular, the multiqubit positive-partial-transpose (PPT) entangled states can be constructed using multiqubit unextendible product bases (UPBs) [4]. UPBs indicate the quantum nonlocality in the discrimination of product states by local operations and classical communication (LOCC). Further, the three-qubit PPT entangled state obtained from a UPB is a biseparable entangled state, i.e., it is separable w.r.t. any bipartition of the three systems [3]. It exhibits a fundamental difference between the bipartite and multipartite quantum systems.

We consider the UPBs of fixed cardinality m in quantum systems of n qubits. These UPBs are divided into finitely many equivalence classes with respect to an equivalence relation introduced by N. Johnston [11]. There is a natural partial order “≤” on the set of these equivalence classes for fixed m, and we use this partial order to study the topological closure of an equivalence class of UPBs. A UPB is called proper if it does not span the whole Hilbert space of the system.

Let \mathcal{U} and \mathcal{U}' be two m-state UPBs of an n-qubit system. We raise the question of deciding whether \mathcal{U}' lies in the closure of the equivalence class \mathcal{E} which contains \mathcal{U}. Roughly speaking this means whether \mathcal{U}' can be approximated (to an arbitrary small precision) by UPBs belonging to \mathcal{E}. We solve this problem by using the above mentioned partial order, see Eq. (6) and Proposition 10.

In the case of four qubits, it is known that the cardinality m of an UPB is one of the numbers 6, 7, 8, 9, 10, 12, 16. The construction of the proper UPBs (those with $m < 16$) has been completed in 2014 by N. Johnston [11]. He also classified these UPBs up to equivalence [11, 12]. There are in total 1446 equivalence classes of proper UPBs of four qubits. For $m \leq 10$ we describe the corresponding partial order “≤” explicitly by constructing all arrows of its Hasse diagram. Due to a large number of equivalence classes, only a partial result is obtained for $m = 12$. In all cases except $m = 16$ we have determined the number of connected components of the Hasse diagram as well as the maximal and minimal equivalence classes.

In our recent paper [13] we have introduced a novel method to study the n-qubit UPBs. In the next section we recall this method, give the definitions and cite some facts that we need. In particular, we define there the unextendible orthogonal matrices (UOMs). Every $m \times n$ UOM, say X, generates an infinite family of m-state n-qubit UPBs which we denote by \mathcal{F}_X. In Sec. III we define the partial order “≤”, introduce its Hasse diagram, recall the definition of decomposable orthogonal matrices and state some of their properties. In Sec. IV we investigate the closure of equivalence classes of UPBs. In Sec. V we describe the four-qubit Hasse diagrams of m-state UOMs for $m = 8, 9, 10, 12$, and identify the maximal and minimal equivalence classes of UOMs. In the Appendix we list the representatives of the equivalence classes of UOMs of four qubits that we use. The arrows of the Hasse diagrams are listed in Appendix B.
II. PRELIMINARIES

Let $\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ be the Hilbert space representing a quantum system A_1, \ldots, A_n consisting of n qubits. Each \mathcal{H}_j is a 2-dimensional Hilbert space. We fix an orthonormal basis $|0\rangle_j, |1\rangle_j$ of \mathcal{H}_j. Usually, the subscript j will be suppressed. We say that a vector $|v\rangle \in \mathcal{H}$ is a unit vector if $\|v\| = 1$. For any nonzero vector $|v_j\rangle \in \mathcal{H}_j$ we denote by $|v_j\rangle$ the 1-dimensional subspace of \mathcal{H}_j spanned by this vector. As a rule, we shall not distinguish two unit vectors which differ only in the phase. By using this convention, we can say that for any unit vector $|v_j\rangle \in \mathcal{H}_j$ there exists a unique unit vector $|v_j\rangle^\perp \in \mathcal{H}_j$ which is perpendicular to $|v_j\rangle$.

A product vector is a nonzero vector $|x\rangle = |x_1\rangle \otimes \cdots \otimes |x_n\rangle$, which will be written also as $|x\rangle = |x_1, \ldots, x_n\rangle$. If $\|x\| = 1$ we shall assume (as we may) that each $\|x_j\| = 1$. Two product vectors $|x\rangle = |x_1, \ldots, x_n\rangle$ and $|y\rangle = |y_1, \ldots, y_n\rangle$ are orthogonal if and only if $|y_j\rangle = |x_j\rangle^\perp$ for at least one index j. An orthogonal product set (OPS) is a set of pairwise orthogonal unit product vectors in \mathcal{H}. The cardinality of an OPS cannot exceed 2^n, the dimension of \mathcal{H}. We say that an OPS is an orthogonal product basis (OPB), if its cardinality is 2^n. As an example, the 2^n product vectors $|x_s\rangle = |s_1, \ldots, s_n\rangle$, where $s := (s_1, \ldots, s_n)$ runs through all binary $\{0,1\}$-sequences of length n, is an OPB. We refer to this OPB as the standard OPB. However, there are many other OPBs. A set of unit product vectors is called an unextendible product basis (UPB) if these vectors are orthogonal to each other and there is no product vector orthogonal to all of them $[4,3]$. Note that we allow the possibility that UPB spans the whole Hilbert space \mathcal{H}.

Our method uses formal matrices whose entries are vector variables represented by letters of an infinite countable alphabet X. Each $x \in X$ has its companion $x' \in X$ such that $x \neq x'$ and $(x')' = x$. We say that x' is the perpendicular of x. We say that a subset of X is independent if it does not contain any pair of the form $\{x, x'\}$. We say that two vector variables x and y are independent if $x \notin \{y, y'\}$.

By $\mathcal{M}(m, n)$ we denote the set of $m \times n$ matrices $X = [x_{ij}]$, $x_{ij} \in X$, such that if x occurs in some column of X then neither x nor x' occurs in any other column of X.

Let $x = [x_1, x_2, \ldots, x_n]$ and $y = [y_1, y_2, \ldots, y_n]$ be two row vectors with $x_j, y_j \in X$. We say that x and y are orthogonal to each other, $x \perp y$, if $y_j = x'_j$ for at least one index j.

We say that a matrix $X \in \mathcal{M}(m, n)$ is orthogonal if any two of its rows are orthogonal to each other. For two matrices X and Y with the same number of columns we say that they are orthogonal to each other ($X \perp Y$) if each row of X is orthogonal to each row of Y.

We denote by $\mathcal{O}(m, n)$ the subset of $\mathcal{M}(m, n)$ consisting of all orthogonal matrices. We also set $\mathcal{O}(n) := \mathcal{O}(2^n, n)$ for the special case $m = 2^n$.

The objects that we are interested in are the unextendible orthogonal matrices (UOM). We say that a matrix $X \in \mathcal{O}(m, n)$ is unextendible if there is no row which is orthogonal to X. The reader can easily verify that the following four small matrices are UOMs:

$$
\begin{bmatrix}
 a \\
 a'
\end{bmatrix},
\begin{bmatrix}
 a & b \\
 a' & b'
\end{bmatrix},
\begin{bmatrix}
 a & c & e \\
 a' & d' & f
\end{bmatrix},
\begin{bmatrix}
 x & y & z & w \\
 x' & b & d & e \\
 a' y' & d' & f \\
 a' c' & z' & e' \\
 a b' & d w' \\
 x' c' & d' & f' & x
\end{bmatrix}.
$$

(1)

We say that two matrices $X, Y \in \mathcal{M}(m, n)$ are equivalent if X can be transformed to Y by permuting the rows, permuting the columns, and by renaming the vector variables. The renaming must respect the orthogonality, i.e., we require that if a vector variable x is renamed to y then x' has to be renamed to y'. For $X \in \mathcal{M}(m, n)$ we shall denote by $[X]$ its equivalence class. Note that if $X \in \mathcal{O}(m, n)$ then $[X] \subseteq \mathcal{O}(m, n)$. Since X is infinite, there are infinitely many matrices in $\mathcal{M}(m, n)$. On the other hand, there are only finitely many equivalence classes in $\mathcal{M}(m, n)$.

For example, for the UOM $X = \begin{bmatrix}
 a \\
 a'
\end{bmatrix} \in \mathcal{M}(2, 1)$ the equivalence class $[X]$ consists of all matrices $\begin{bmatrix}
 x \\
 x'
\end{bmatrix}, x \in X$.

The equivalence of two multiqubit UPBs has been defined in [11, p. 4]. Let us recall that definition. Two multiqubit UPBs are equivalent if they have the same orthogonality graphs up to permuting the qubits and relabeling of vertices. For the definition of orthogonality graphs see [3, Definition 4] or [11, p. 3].

There is a natural one-to-one correspondence between the equivalence classes of UOMs and the equivalence classes of UPBs. To explain this correspondence, we need the concept of evaluations.

Given $X \in \mathcal{O}(m, n)$, we define an evaluation α of X to be a mapping which, for each $j = 1, 2, \ldots, n$, replaces each vector variable x_j in column j by a unit vector $\alpha(x_j)$ in the 2-dimensional Hilbert space \mathcal{H}_j of the jth qubit. It is mandatory that $\alpha(x_j') = \alpha(x_j)^\perp$ whenever x_j' also occurs in X. As a result of applying an evaluation α on X, we obtain an $m \times n$ matrix whose entries are unit vectors in the corresponding Hilbert spaces \mathcal{H}_j. We denote this matrix by $\alpha(X)$. After that we can form m product vectors by simply taking the tensor product of the unit vectors in a row of
\(\alpha(X) \). In this way we obtain an orthogonal set, \(\mathcal{U} \), of product vectors (OPS) in \(\mathcal{H} \). We refer to this OPS as the OPS of \(\alpha(X) \).

In general, even when \(X \) is a UOM, \(\mathcal{U} \) is not necessarily a UPB. To ensure that \(\mathcal{U} \) is a UPB, we have to require that if two independent vector variables, say \(x \) and \(y \), occur in the same column of \(X \), then \(\alpha(y) \neq \alpha(x) \) and \(\alpha(y) \neq \alpha(x)^\perp \). For an arbitrary \(X \in \mathcal{O}(m,n) \), we say that an evaluation \(\alpha \) of \(X \) satisfying this additional condition is generic. It is proved in [10, Lemma 2] that if \(X \) is a UOM and \(\alpha \) is a generic evaluation of \(X \) then the OPS of \(\alpha(X) \) is in fact a UPB.

We denote by \(\mathcal{F}_X \) the set of all OPS of \(\alpha(X) \) where \(\alpha \) ranges over all evaluations of \(X \), and by \(\mathcal{F}_X^\# \) we denote the set of all OPS of \(\alpha(X) \) where \(\alpha \) ranges only over all generic evaluations of \(X \). If \(X \) is a UOM then it is easy to see that any two UPBs in \(\mathcal{F}_X^\# \) are equivalent to each other according to the definition of equivalence given above.

The equivalence class of UPBs which corresponds to the equivalence class \([X] \) of a UOM \(X \) is the equivalence class which contains the set \(\mathcal{F}_X^\# \). Explicitly, this equivalence class is the union

\[
\bigcup_{\sigma \in S_n} \mathcal{F}_{X^\sigma}^\#
\]

where \(\sigma \) runs over all permutations in the symmetric group \(S_n \), and \(X^\sigma \) is the UOM obtained by permuting the columns of \(X \) by \(\sigma \).

For \(X \in \mathcal{M}(m,n) \) we denote by \(\nu_i(X) \) the cardinality of a maximal independent subset of the set of all entries in column \(j \) of \(X \). (All maximal independent subsets have the same cardinality.) We also set \(\nu(X) = \sum \nu_i(X) \). If \(\nu(X) = l \) we say that \(X \) lies on level \(l \).

We define a binary relation “\(\prec \)” on \(\mathcal{M}(m,n) \) which is a slight modification but equivalent to the definition given in [19]. Let \(X \in \mathcal{M}(m,n) \) and \(1 \leq j \leq n \). Further, let \(x, y \) be independent vector variables such that \(x \) or \(x' \) and \(y \) or \(y' \) occur in column \(j \) of \(X \). Denote by \(Y \) the matrix obtained from \(X \) by replacing all occurrences (if any) of \(x \) and \(x' \) in \(X \) by \(y \) and \(y' \), respectively. Then we write \(Y \prec X \) and we say that \(Y \) is obtained from \(X \) by the identification \(y = x \). Note that \(X \) and \(Y \) differ only in column \(j \) and that \(\nu_j(Y) = \nu_j(X) - 1 \). We warn the reader that the expression “identification \(y = x \)” does not mean that the vector variables \(x \) and \(y \) are the same, it just means that we are getting rid of the variables \(y \) and \(y' \) in \(X \) and replacing them with \(x \) and \(x' \), respectively.

If \(Y \prec X \) and \(X \) is a UOM then \(Y \) is orthogonal but does not have to be a UOM. For instance this is the case for

\[
X = \begin{bmatrix}
a & c & e \\
a' & d' & f \\
b & c' & f' \\
b' & d & e'
\end{bmatrix}, \quad Y = \begin{bmatrix}
a & c & e \\
a' & d' & e \\
b & c' & e' \\
b' & d & e'
\end{bmatrix}.
\]

Indeed \(Y \prec X \) by the identification \(f = e \), and \(X \) is a UOM while \(Y \) is not as \([a \ c \ e] \perp \).

The relation \(\prec \) extends naturally to equivalence classes of UOMs. If \(\mathcal{X}, \mathcal{Y} \) are two equivalence classes of UOMs, we write \(\mathcal{Y} \prec \mathcal{X} \) if \(Y \prec X \) for some \(X \in \mathcal{X} \) and some \(Y \in \mathcal{Y} \).

III. PARTIAL ORDER

If \(X = [x_{i,j}] \in \mathcal{M}(m,n) \) and \(x \in \mathbf{X} \) we define the multiplicity, \(\mu(x, X) \), of \(x \) in \(X \) to be the number of pairs \((i,j)\) such that \(x_{i,j} = x \). Thus if \(x \) does not occur in \(X \) then \(\mu(x, X) = 0 \). When \(X \) is known from the context we shall simplify this notation by writing just \(\mu(x) \). Finally, we set \(\mu(X) = \max_{i,j} \mu(x_{i,j}, X) \).

Let \(X \in \mathcal{M}(m,n) \). If \(\mu(x, X) = \mu(x', X) \) for all vector variables \(x \) in column \(j \) of \(X \), then we say that the column \(j \) of \(X \) is balanced, and otherwise we say that it is imbalanced. We say that \(X \) is balanced if each of its columns is balanced, and otherwise we say that \(X \) is imbalanced. It is obvious that \(X \) is imbalanced if \(m \) is odd. We have shown in [18] that all UOM in \(\mathcal{O}(n) \) are necessarily balanced.

Next we recall from [19] the definition of the partial order “\(\leq \)” in \(\mathcal{M}(m,n) \). For two matrices \(X, Y \in \mathcal{M}(m,n) \), we say that \(Y \leq X \) if there exists a finite chain

\[
Y = Z_0 \prec Z_1 \prec \cdots \prec Z_k = X, \quad k \geq 0.
\]

We write \(Y \prec X \) if \(Y \leq X \) and \(Y \neq X \). Note that if \(X \in \mathcal{O}(m,n) \) then all the \(Z_i \) in the chain [19] belong to \(\mathcal{O}(m,n) \). Further, if \(X \) and \(Y \) in [19] are UOM then so are all the \(Z_i \). This follows immediately from [19, Lemma 17].

Let us also recall the definition of maximal and minimal UOMs.
Definition 1 We say that a UOM $X \in \mathcal{O}(m,n)$ is maximal if there is no UOM $Y \in \mathcal{O}(m,n)$ such that $X \prec Y$. Similarly, we say that a UOM $X \in \mathcal{O}(m,n)$ is minimal if there is no UOM $Y \in \mathcal{O}(m,n)$ such that $Y \prec X$. Further we say that a UOM is isolated if it is both maximal and minimal.

The definition of the partial order “≤” on $\mathcal{M}(m,n)$ extends naturally to equivalence classes of matrices in $\mathcal{M}(m,n)$. If \mathcal{X} and \mathcal{Y} are two equivalence classes of matrices in $\mathcal{M}(m,n)$ and $\mathcal{X} \leq \mathcal{Y}$ for some $\mathcal{X} \in \mathcal{X}$ and some $\mathcal{Y} \in \mathcal{Y}$, then we shall write $\mathcal{Y} \leq \mathcal{X}$. If $\mathcal{X} \leq \mathcal{Y}$ and $\mathcal{X} \neq \mathcal{Y}$ then we write $\mathcal{X} < \mathcal{Y}$. Further, we write $\mathcal{Y} \prec \mathcal{X}$ if $\mathcal{Y} \prec \mathcal{X}$ for some $\mathcal{X} \in \mathcal{X}$ and some $\mathcal{Y} \in \mathcal{Y}$.

We can also extend the definition of maximal and minimal UOM to the equivalence classes of UOMs. E.g. we say that an equivalence class $\mathcal{X} \subseteq \mathcal{O}(m,n)$ of UOMs is maximal if there is no equivalence class of UOMs $\mathcal{Y} \subseteq \mathcal{O}(m,n)$ such that $\mathcal{X} \prec \mathcal{Y}$.

Next, we say that a UOM X and its equivalence class $[X]$ are reducible if $\nu_j(X) = 1$ for at least one j. Otherwise we say that X, and $[X]$, are irreducible.

For convenience, we denote by $\text{UOM}^*[m,n]$ the set of equivalence classes of UOMs in $\mathcal{O}(m,n)$. This is a finite partially ordered set with partial order “≤”.

Definition 2 If $\mathcal{X}, \mathcal{Y} \in \text{UOM}^*[m,n]$ and $\mathcal{Y} \prec \mathcal{X}$ we shall write $\mathcal{X} \rightarrow \mathcal{Y}$ and refer to it as an arrow. The set $\text{UOM}^*[m,n]$ equipped with all arrows that exist between its members is the Hasse diagram of the partially ordered set $(\text{UOM}^*[m,n], \leq)$.

The Hasse diagram of $\text{UOM}^*[m,n]$ can be viewed as a graph by ignoring the direction of arrows. We shall refer to the connected components of this graph also as the connected components of the Hasse diagram.

The following construction has been introduced in [19]. Let $A \in \mathcal{M}(r,s)$ and $B \in \mathcal{M}(m,n-s)$, $n > s$, and assume that any vector variables x and y of A and B, respectively, are independent. Further, let B be partitioned into blocks $B_k \in \mathcal{M}(m_k,n-s)$, $k = 1, \ldots, r$.

$$B = \begin{bmatrix} B_1 \\ \vdots \\ B_r \end{bmatrix}.$$ Then we denote by $A \models (B_1, B_2, \ldots, B_r)$ the matrix $[\hat{A} \: B] \in \mathcal{M}(m,n)$, where \hat{A} is the $m \times s$ matrix obtained from A by replacing, for each k, the row k of A by m_k copies of that row. Note that if a vector variable x occurs in one of the blocks B_k then x or x' may occur in another block but necessarily in the same column.

For instance we have

$$\begin{bmatrix} x \\ x' \end{bmatrix} \models \begin{bmatrix} a \\ a' \end{bmatrix} \cdot \begin{bmatrix} b \\ b' \end{bmatrix} = \begin{bmatrix} x & a \\ x' & b \\ x' & b' \end{bmatrix}. \quad (5)$$

It is easy to see that if A and the B_k are orthogonal matrices, then the matrix $A \models (B_1, B_2, \ldots, B_r)$ is also orthogonal. It is shown in [13, Proposition 7] that the matrix $A \models (B_1, B_2, \ldots, B_r)$ is a UOM if and only if A and all the B_k are UOMs.

Definition 3 We say that a matrix $X \in \mathcal{M}(m,n)$ is decomposable if it is equivalent to a matrix $A \models (B_1, B_2, \ldots, B_r)$, $r \geq 1$.

Let X be a decomposable UOM, say $X = A \models (B_1, \ldots, B_r)$ where $A \in \mathcal{O}(r,s)$ and $B_k \in \mathcal{O}(m_k,n-s)$, $k = 1, 2, \ldots, r$, are UOMs and $\sum m_k = m$. Then we can easily decide whether X is maximal or minimal. The first lemma below is proved in [19, Lemma 18].

Lemma 4 X is maximal if and only if A and all B_k are maximal and no two of the blocks B_k have a vector variable in common. If X is not maximal then there exists a UOM Y such that $X \prec Y$ and Y is obtained from X by modifying a single column in either A or just one of the blocks B_k.

Lemma 5 X is minimal if and only if A and all B_k are minimal and for each $j \in \{1, 2, \ldots, n-s\}$ all vector variables which occur in column j of all the B_ks already occur in just one of the B_ks. If X is not minimal then there exists a UOM Y such that $Y \prec X$ and Y is obtained from X by making a single identification in either A or just one of the blocks B_k.

We omit the proof of this lemma as it is similar to the proof of [19, Lemma 18].
IV. THE CLOSURE OF EQUIVALENCE CLASSES OF UPBS

For convenience, let us denote by OPS_m the set of OPSs of cardinality m in \mathcal{H}, and by UPB_m the set of UPBs of cardinality m in \mathcal{H}. As mentioned in the introduction, for $X \in \mathcal{O}(m,n)$, we define

$$\mathcal{F}_X = \{\text{OPS of } \alpha(X) : \alpha \text{ evaluation of } X\},$$
$$\mathcal{F}_X^\# = \{\text{OPS of } \alpha(X) : \alpha \text{ generic evaluation of } X\}.$$

For an UOM $X \in \mathcal{O}(m,n)$, we have that $\mathcal{F}_X \subseteq \text{OPS}_m$ and $\mathcal{F}_X^\# \subseteq \text{UPB}_m$. By Lemma 3, each $\mathcal{U} \in \text{UPB}_m$ belongs to some \mathcal{F}_X. Moreover, from the proof of that lemma it follows easily that X can be recovered, uniquely up to row permutations and renaming of vector variables, from any $\mathcal{U} \in \mathcal{F}_X$. Thus we have

Proposition 6 When X runs through the set of representatives of the equivalence classes of UOMs in $\mathcal{O}(m,n)$, then the sets \mathcal{F}_X form a partition of UPB_m.

Consequently, for UOMs X and Y we have $[X] = [Y]$ if and only if $\mathcal{F}_X^\# = \mathcal{F}_Y^\#$ for some $\sigma \in S_n$. One can also show (see Corollary 9) that $[X] = [Y]$ if and only if $\mathcal{F}_X^\# = \mathcal{F}_Y$ for some $\sigma \in S_n$.

Since we are identifying two unit product vectors if they differ only in phase, such product vectors are in fact points in the projective space $\mathcal{P}\mathcal{H}$ associated with \mathcal{H}. More precisely, these points lie on the Segre subvariety $\Sigma_n := \mathcal{P}\mathcal{H}_1 \times \cdots \times \mathcal{P}\mathcal{H}_n$ of $\mathcal{P}\mathcal{H}$. Consequently, after ordering the product vectors of a $\mathcal{U} \in \text{OPS}_m$, we obtain a point in Σ^m_n, the product of m copies of Σ_n. As an example, if $\{(|\psi_1\rangle, i\in\{1,2,3,4\}\}$ is an OPS in \mathcal{H} then the ordered quadruple $(|\psi_1\rangle, |\psi_2\rangle, |\psi_3\rangle, |\psi_4\rangle)$ can be viewed as a point of Σ^4_n. Since the product vectors of \mathcal{U} can be ordered in $m!$ ways and they are orthogonal to each other, we obtain in fact $m!$ different points of Σ^m_n.

The set OPS_m is closed in Σ^m_n because it is defined by the equations saying that its product vectors are orthogonal to each other. However, its subset UPB_m is not closed in general. For instance, in the case $m = 4, n = 3$ consider the set \mathcal{U}_t of the four pure product states

$$|\psi_1(t)\rangle = |0\rangle \otimes |0\rangle \otimes |0\rangle,$$
$$|\psi_2(t)\rangle = |1\rangle \otimes |e_-\rangle \otimes (\cos t\ |0\rangle + \sin t\ |1\rangle),$$
$$|\psi_3(t)\rangle = |e_+\rangle \otimes |1\rangle \otimes (-\sin t\ |0\rangle + \cos t\ |1\rangle),$$
$$|\psi_4(t)\rangle = |e_-\rangle \otimes |e_+\rangle \otimes |1\rangle,$$

where $|e_{\pm}\rangle = (|0\rangle \pm |1\rangle)/\sqrt{2}$ and t is a real parameter. For $t \in (0, \pi/2)$ the set \mathcal{U}_t is a UPB while for $t = 0$ it is an OPS which is not a UPB. As $\mathcal{U}_0 = \lim_{t \to 0} \mathcal{U}_t$, we see that \mathcal{U}_0 belongs to the closure of UPB_4.

Our main goal in this section is to describe the closure of any equivalence class of m-state UPBs viewed as a subset of the variety Σ^m_n. We first make the following observation.

Lemma 7 For any $X \in \mathcal{O}(m,n)$, the set $\mathcal{F}_X^\#$ is open in \mathcal{F}_X (with respect to the relative topology of \mathcal{F}_X).

Proof. Let (x,y) be a pair of independent vector variables which occur in the same column of X. Denote by $\mathcal{F}_X^{(x,y)}$ the subset of \mathcal{F}_X consisting of the OPS of $\alpha(X)$ where α runs through all evaluations of X subject to the condition that $\alpha(y) = \alpha(x)$ or $\alpha(y) = \alpha(x)^\perp$. Clearly, this is a closed subset of \mathcal{F}_X. The assertion now follows from the observation that

$$\mathcal{F}_X^# = \mathcal{F}_X \setminus \bigcup_{(x,y)} \mathcal{F}_X^{(x,y)},$$

where (x,y) runs through the finite set of all pairs of the kind mentioned above.

Theorem 8 If $X \in \mathcal{O}(m,n)$ then $\overline{\mathcal{F}_X^#} = \mathcal{F}_X$.

Proof. First we note that the set \mathcal{F}_X is a closed subset of Σ^m_n. This follows from the observation that \mathcal{F}_X, considered as a subset of Σ^m_n, is the image of a direct product of a finite number of copies of the projective spaces $\mathcal{P}\mathcal{H}_j$, $1 \leq j \leq n$, under a continuous map to Σ^m_n. Indeed let us select a maximal set V of independent vector variables that occur in the matrix X. If $x \in V$ occurs in column j of X, we denote by S_x a copy of $\mathcal{P}\mathcal{H}_j$. Finally we set $S := \times_{x \in V} S_x$. To any point $v := (|v_x\rangle)_{x \in V} \in S$ we attach an evaluation α_v of X as follows: if $x \in V$ then we set $\alpha_v(x) = |v_x\rangle$ and if x' occurs in X we also set $\alpha_v(x') = |v_x\rangle^\perp$. We can now define a continuous map $f : S \to \Sigma_n$ as follows: $f(v)$ is the OPS
of the matrix $\alpha_v(X)$. The image of f is precisely the subset F_X of Σ_m. Since S is compact, its image $f(S) = F_X$ is closed in Σ_m. As $F_X^\# \subseteq F_X$, it follows that $\overline{F_X^\#} \subseteq F_X$.

We shall now prove the opposite inclusion $F_X \subseteq \overline{F_X^\#}$. Let $U \in F_X$ be arbitrary. Then U is the OPS of the matrix $\alpha(X)$ for some evaluation α of X. It is easy to see that there exists a finite chain $\{i\}$ such that U is the OPS of $\beta(Y)$ where the evaluation β of Y is the restriction of α. Therefore it suffices to prove the assertion in the case where $Y \preceq X$. Thus Y can be obtained from X by an identification $x = y$ where x and y are independent vector variables such that x and at least one of y and y' occur in the same column of X, say in column j. We choose a continuous path $\sigma : [0,1] \to PH_j$ such that $\sigma(0) = \alpha(x)$ and $\sigma(1) = \alpha(y)$, and moreover $\sigma(t) \neq \alpha(z)$, $\alpha(z)^\perp$ for all $t \in (0,1)$ and all vector variables z in column j of X. Let us now define a continuous one-parameter family α_t, $0 \leq t < 1$, of evaluations of X by setting $\alpha_t(x) = \sigma(t)$, $\alpha_t(x') = \sigma(t)^\perp$, and $\alpha_t(z) = \alpha(z)$ for all $z \neq x, x'$. Then $\alpha_0 = \alpha$, $\alpha_1 = \beta$ and α_t is generic for $0 \leq t < 1$. Thus $\alpha_t(X) \in F_X^\#$ for $0 \leq t < 1$. Clearly we have $\beta(Y) = \lim_{t \to 1} \alpha_t(X)$. Since this limit belongs to the closure of $F_X^\#$, our assertion is proved.

Corollary 9 For $X, Y \in O(m,n)$, the equalities $F_X^\# = F_Y^\#$ and $F_X = F_Y$ are equivalent to each other.

Proof. Theorem 8 shows that the first equality implies the second one. We shall prove the converse.

Assume that $F_X = F_Y$. By Lemma 7, $F_X^\#$ is open in F_X and by the theorem it is also dense in F_X. Hence, both $F_X^\#$ and $F_Y^\#$ are dense open subsets of F_X. Therefore $F_X^\# = F_Y^\#$ cannot be disjoint, i.e., there exists $U \in F_X^\# \cap F_Y^\#$. As mentioned in the beginning of this section, X can be obtained from Y by permuting the rows and renaming the vector variables. Consequently $F_X = F_Y$.

Now let $X \in O(m,n)$ be any UOM. The corresponding equivalence class of m-state UPBs in H is given by the expression $\{i\}$. As explained above, we can consider this equivalence class as a subset of Σ_m. It follows immediately from Theorem 3 that the closure of this equivalence class is the union

$$\bigcup_{\alpha \in S_m} F_X^\#.$$

(6)

Proposition 10 For $X, Y \in O(m,n)$ we have

(i) $Y \preceq X \implies F_Y \subseteq F_X$;

(ii) $Y \preceq X \implies F_Y \subseteq F_X \setminus F_X^\#$.

Proof. (i) Since there is a chain $\{i\}$ from Y to X, it suffices to prove the assertion in the case where $Y \preceq X$. Then Y can be obtained from X by performing a single identification, say $y = x$. For $U \in F_Y$ there exists an evaluation β of Y such that U is the OPS of the matrix $\beta(Y)$. We can extend β to an evaluation α of X by setting $\alpha(y) = \beta(x)$ and $\alpha(y') = \beta(x)^\perp$. Then U is also the OPS of the matrix $\alpha(X)$, i.e., we have $U \in F_X$.

(ii) We shall use again the chain $\{i\}$. As $Y \preceq X$ the length k of this chain is at least 1. Thus we have $Y \preceq Z_{k-1}$. By using (i) we deduce that $F_Y \subseteq F_{Z_{k-1}}$. Hence, it suffices to prove (ii) in the case where $Y \preceq X$. By (i) we know that $F_Y \subseteq F_X$. It remains to show that $F_Y \cap F_X^\# = 0$.

Let $U \in F_Y$ be arbitrary. Then U is the OPS of $\beta(Y)$ for some evaluation β of Y. Since $Y \preceq X$, there is an identification $y = x$ which transforms X into Y. Let σ be any generic evaluation of X. Since x and y are independent vector variables, we must have $\alpha(y) \neq \alpha(x)$. Consequently $\beta(Y) \neq \alpha(X)$, and so $U \notin F_X^\#$. □

V. THE FOUR-QUBIT HASSE DIAGRAMS

We shall construct all the arrows of the Hasse diagram of UOM[$m,4$] for $m = 8,9,10$. In the case $m = 12$ we construct only the arrows connecting the irreducible equivalence classes. We shall also determine the maximal and minimal equivalence classes of UOMs in all four cases $m = 8,9,10,12$.

The cases $m = 6,7$ are omitted because each of them contains only one equivalence class. The case $m = 16$ is also omitted though for a different reason. In that case the equivalence classes have not been enumerated so far, only the maximal equivalence classes are known.

In the table below we show the distribution of the equivalence classes of UOMs in $O(m,n)$ over various levels $\nu = 7,8,\ldots,14$.

For a fixed value of m, the classes on the top level are maximal and those on the bottom level are minimal. For instance, in $O(10,4)$ both classes on level 11 are maximal and all 24 classes on level 8 are minimal.

Most of the proofs rely on the results of Johnston [11]. In particular we have used his classification of four qubit UPBs in order to construct the above table.
For a given UOM X, we refer to the quadruple $[\nu_1(X), \ldots, \nu_4(X)]$ as ν-numbers of X. We shall also use the μ-numbers $[\mu_1(X), \ldots, \mu_4(X)]$ of X, where $\mu_j(X)$ is the largest multiplicity of the vector variables in column j of X.

In Appendix A we have listed the representatives of the equivalence classes in UOM[$m, 4$] for $m = 8, 9, 10, 12$. For $m = 12$ we list only the representatives of the irreducible classes. These lists are extracted from [12]. (They are presented in a different format, suitable for this paper.) Our listing is by levels, starting from the top level and ending with the bottom level. We record one matrix per line by using the following conventions:

(i) the rows are listed one after the other and separated by white space;
(ii) we only use the vector variables a_j, b_j, c_j, d_j, $j = 1, 2, 3, 4$, and their perpendiculars which we denote here by capital letters A_j, B_j, C_j, D_j, respectively;
(iii) we omit the subscripts as they can be easily recovered: each vector variable in column j should have the subscript j;
(iv) we end each line by listing the ν-numbers of the matrix.

We denote by $X_{l,k}$ the kth matrix in the list of representatives on level l. Note that the number, m, of rows of the UOM is suppressed; it does not appear in the symbol $X_{l,k}$.

As an example, in the case $m = 8$, the last matrix on level 11 is

$$X_{11,6} = \begin{bmatrix} a_1 & c_2 & c_3 & a_4 \\ a_1 & c'_2 & a_3 & c_4 \\ a_1 & a_2 & c'_3 & c'_4 \\ b_1 & a'_2 & a'_3 & a'_4 \\ a'_1 & b_2 & b_3 & a'_4 \\ a'_1 & b'_2 & a_3 & b_4 \\ a'_1 & a_2 & b'_3 & b'_4 \\ b'_1 & a'_2 & a'_3 & a'_4 \end{bmatrix}$$

and its ν-numbers are $[2, 3, 3, 3]$. Their sum is 11 and so this matrix lies on level 11. This is recorded as the first subscript of $X_{11,6}$. The second subscript 6 means that this matrix occupies the sixth place in our list of representatives on level 11.

In view of the large number of equivalence classes of UOMs, we had to examine many cases to find the arrows of the Hasse diagram. For that purpose we used computer programs that we wrote in Maple. We shall only sketch here the main steps of the search.

For a given UOM say $X = X_{l,r}$ on level l there are only finitely many matrices Y such that $Y \preceq X$. A computer program can easily generate all such matrices Y and it can also test whether Y is a UOM. If the test is negative, then Y is discarded. Otherwise Y is a UOM and we use another computer program which tests whether Y is equivalent to some UOM on level $l - 1$. In fact we know that this must be the case, there is a unique s such that Y is equivalent to $X_{l-1,s}$. Then we have found the arrow $X_{l,r} \rightarrow X_{l-1,s}$. The latter program is described in [19, Section 4]. Unfortunately when $m = 12$ or $m = 10$ this program fails in many cases because it uses too much time. Such cases have to be dealt with separately. After processing in this way all UOMs on level l, we can decide which UOMs on level $l - 1$ are maximal and which UOMs on level l are minimal.

The Appendix B consists of four subsections, one for each of the cases $m = 8, 9, 10, 12$. Each subsection contains several tables where we record the arrows of the Hasse diagram of UOM[$m, 4$]. Each of these tables contains the list

$\nu \setminus m$	6	7	8	9	10	12
14			2			
13	1		1			
12	1		46			
11	6	2	154			
10	1	29	1	17	332	
9	1	46	4	37	392	
8	1	46	24	227		
7	18			45		

Total 1 1 144 11 80 1209

Table I: The distribution of the equivalence classes of UOMs in $O(m, 4)$ over various levels.
of all arrows from level \(l \) to level \(l - 1 \) for fixed \(l \). For instance in the case \(m = 8 \) the first table lists the arrows from level 11 to 10. The second line of that table is:

\[
2 \to 4, 5 \quad d_4 = b_4, d_4 = B_4
\]

The meaning of \(2 \to 4, 5 \) is that we have two arrows: \(2 \to 4 \) and \(2 \to 5 \). More precisely, these arrows are \(X_{11,2} \to X_{10,4} \) and \(X_{11,2} \to X_{10,5} \) and they belong to the Hasse diagram of UOM\([8,4]\) since \(m = 8 \). The rest of that line contains two identifications: \(d_4 = b_4 \) and \(d_4 = B_4 \). These identifications allow us to verify the existence of the two arrows mentioned above. The first identification \(d_4 = b_4 \) justifies the first arrow \(2 \to 4 \), and \(d_4 = B_4 \) justifies \(2 \to 5 \). After performing the identification \(d_4 = b_4 \) on the matrix \(X_{11,2} \) we obtain say the matrix \(Y \). The verification of the arrow \(2 \to 4 \) is completed by showing that \(Y \) is equivalent to \(X_{10,4} \).

We now state the main results of our computations for each of the cases \(m = 8, 9, 10, 12 \).

A. UOM\([8,4]\)

UOM\([8,4]\) has cardinality 144 and occupies the levels 7 – 13. We start with some facts that can be proved directly without using the computer. Let us first show that there is an arrow from the class represented by \(X_{13,1} \) to the one represented by \(X_{12,1} \). Note that these two matrices have the same first column, and that the columns 2 and 3 of \(X_{13,1} \) are the same as the columns 3 and 4 of \(X_{12,1} \), respectively. Next we identify the variable \(c_4 \) to \(a_4 \), i.e., we set \(c_4 = a_4 \) and \(C_4 = A_4 \), in the last column of \(X_{13,1} \). (For the sake of clarity we use here subscripts which were omitted in the tables of Appendix A.) It is easy now to verify that this new matrix, let us call it \(\tilde{Y} \), is equivalent to \(X_{12,1} \). We just have to rename \(d_4 \) to \(c_4 \) (and \(D_4 \) to \(C_4 \)) in the last column of \(Y \) and then by permuting the columns we obtain the matrix \(X_{12,1} \).

Similarly one can verify that we have arrows \(X_{12,1} \to X_{11,k} \) for \(k = 1, 2, 3, 4, 5 \). On the other hand we claim that there is no arrow from \(X_{12,1} \) to \(X_{11,6} \). To prove this claim, it suffices to inspect their \(\nu \) numbers, \([1, 3, 4, 4] \) and \([2, 3, 3, 3] \), respectively. If \(Y \rlhd X_{12,1} \) is a UOM, then 3 of the \(\nu \)-numbers of \(Y \) must be the same as the corresponding \(\nu \)-numbers of \(X_{12,1} \). It follows that \(Y \) and \(X_{11,6} \) have different \(\nu \)-numbers, and so they are not equivalent. This proves our claim. We conclude that \(X_{12,1} \) is not minimal, the UOMs \(X_{11,k} \) are not maximal for \(k = 1, 2, 3, 4, 5 \), and that \(X_{11,6} \) is maximal.

The arrows from level \(l = 11 \) to level 10 are listed in the first table of Appendix B. The first line of that table indicates that there are four arrows emanating from the first UOM on level 11. Namely there exist arrows from \(X_{11,1} \) to \(X_{10,k} \), \(k = 1, 2, 3, 6 \). The existence of the first of these arrows can be verified as follows. First we identify the independent variables \(d_4 \) and \(a_4 \) in column 4 of \(X_{11,1} \) to obtain a matrix, say \(Y \). This means that we have to replace \(d_4 \) and \(D_4 \) with \(a_4 \) and \(A_4 \), respectively. After this is done we have to verify that \(Y \) is equivalent to \(X_{10,1} \). In this case this is very easy, we just switch the columns 3 and 4 of \(Y \) to obtain the matrix \(X_{10,1} \). Hence they are equivalent. (In this case one can identify two independent variables in the third column of \(X_{11,1} \) to obtain another proof that the arrow \(X_{11,1} \to X_{10,1} \) exists.) For the remaining three arrows emanating from \(X_{11,1} \) we use the identifications \(d_4 = B_4 \), \(d_4 = A_4 \), \(d_4 = b_4 \), respectively.

The following proposition follows from the above comments and the list of arrows given in Appendix B for \(m = 8 \).

Proposition 11 UOM\([8,4]\) has cardinality 144 and occupies the levels 7 to 13. There are 16 maximal and 23 minimal classes.

The representatives of the maximal classes are \(X_{13,1}, X_{11,6}, X_{10,17–19}, X_{10,22–29}, X_{9,46}, X_{8,24} \) and \(X_{8,30} \).

The minimal classes are the 18 classes on level 7 and the classes with representatives \(X_{8,25}, X_{8,34} \) and \(X_{9,26–28} \).

The Hasse diagram has four connected components. The three small components (shown on Fig. 7) have as vertices the classes of

\[
X_{10,17}, X_{9,26}; \\
X_{10,18}, X_{10,19}, X_{9,27}, X_{9,28}; \\
X_{10,22–23}, X_{9,29}, X_{9,[34–36]}, X_{8,25}, X_{8,34},
\]

respectively.
Figure 1: UOM[8, 4], Hasse diagrams of the three small connected components. The maximal classes are marked by bullets.

Figure 2: UOM[9, 4], Hasse diagram of equivalence classes. This is the whole Hasse diagram.

B. UOM[9, 4]

UOM[9, 4] has cardinality 11 and occupies only the levels 8-10.

Proposition 12 The Hasse diagram of UOM[9, 4] has exactly 10 arrows, see Appendix B and Fig. 2. It has two connected components, one of them consists of the isolated class [X_{8,6}]. The representatives of the maximal classes are: X_{10,1}, X_{9,1}, X_{9,2} and X_{8,6}. The minimal classes are all 6 classes on level 8.

C. UOM[10, 4]

UOM[10, 4] has cardinality 80 and occupies the levels 8-11.

Proposition 13 UOM[10, 4] has exactly 14 maximal equivalence classes. Their representatives are X_{11,1} and X_{11,2} on level 11, X_{10,8-17} on level 10, and X_{9,17} and X_{9,24} on level 9. The minimal equivalence classes are all 24 classes on level 8. The Hasse diagram has two connected components, the smaller component consisting of 20 classes is sketched on Figure 3.

Proof. All the assertions follow from the tables in Appendix B for m = 10 where all arrows of the Hasse diagram are listed. □

D. UOM[12, 4]

UOM[12, 4] has cardinality 1209 and occupies the levels 7 – 14. Among the 1209 classes only 161 are irreducible. The latter occupy the levels 8 – 12. There are 26, 64, 51, 18, 2 irreducible equivalence classes on these levels, respectively. For each of these levels l, the representatives of the irreducible equivalence classes are listed in Appendix A for m = 12.

Proposition 14 We consider here the equivalence classes of UOMs in O(12, 4).
(i) There are exactly 45 minimal classes, namely all the classes lying on level 7.

(ii) There are exactly 11 maximal classes. Three of them are reducible, two on level 14 and one on level 13. The eight irreducible maximal classes have as representatives the UOMs: $X_{12,1}$ and $X_{12,2}$ on level 12; $X_{11,1}$, $X_{11,2}$, $X_{11,17}$ and $X_{11,18}$ on level 11; and $X_{10,50}$ and $X_{10,51}$ on level 10.

Proof. Let $X \in O(12, 4)$ be a reducible UOM. Up to equivalence, we may assume that

$$X = \begin{bmatrix} x \nu \end{bmatrix} = (U, V),$$

where U and V are UOMs of 3 qubits. Since the UPBs of 3 qubits have cardinality 4 or 8, we may assume that $U \in O(8, 3)$ and $V \in O(4, 3)$. Note that V is unique up to equivalence and that its ν-numbers are $[2, 2, 2]$.

(i) Assume now that the above reducible UOM X is minimal. By Lemma 4, U must be minimal. By Corollary 15 and Figure 1], U is unique up to equivalence and its ν-numbers are $[1, 1, 1]$. By the same lemma, each vector variable in U must occur in V. Hence the ν-numbers of X are $[1, 2, 2, 2]$ and so $\nu(X) = 7$. Since there are no UOMs on level 6, all UOMs on level 7 are minimal.

The tables in Appendix B show that there are no irreducible minimal UOMs on levels higher than 8, and by using a computer program we have verified that the same is true for irreducible UOMs on level 8. This completes the proof of (i).

(ii) Let X be a reducible UOM given by the above formula and assume that it is maximal. Then, by Lemma 4, U and V must be maximal and they have no vector variable in common. Hence, we can assume that U is a representative of one of the three maximal equivalence classes of OPBs in $O(8, 3)$ (see Fig. 1]). Two of them, classes 1 and 2, have $\nu(U) = 7$ and the third one, class 6, has $\nu(U) = 6$. By permuting the last four rows of X, we may also assume that V is the third matrix displayed in (i). Since $\nu(X) = 1 + \nu(U) + \nu(V) = \nu(U) + 7$, we have $\nu(X) = 14$ in the first two cases and $\nu(X) = 13$ in the third case.

Note that there are no arrows from a reducible UOM to an irreducible UOM. Hence, the assertion about the irreducible maximal equivalence classes follows from the tables in Appendix B.

Lemma 3 (ii) implies that all reducible classes of UOMs in $O(12, 4)$ can be obtained from just the 3 maximal ones by applying the relation “\prec”.

ACKNOWLEDGEMENTS

LC was supported by the NNSF of China (Grant No. 11871089), Beijing Natural Science Foundation (4173076), and the Fundamental Research Funds for the Central Universities (Grant Nos. KG12040501, ZG216S1810 and ZG226S18C1). The second author was supported in part by the National Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant 5285.

[1] N. Alon and L. Lovsz, Unextendible product bases. J. Combinatorial Theory, Ser. A, 95, 169179 (2001).
[2] K. Feng, Unextendible product bases and 1-factorization of complete graphs. Discrete Appl. Math., 154, 942949 (2006).
[3] S. B. Bravyi, Unextendible Product Bases and Locally Unconvertible Bound Entangled States, Quantum Information Processing, 3, 309 (2004).
[4] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Unextendible product bases and bound entanglement, Phys. Rev. Lett. 82, 5385 (1999).
[5] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Unextendible product bases, uncompletable product bases and bound entanglement, Commun. Math. Phys. 238, 379-410 (2003).
[6] L. Chen and D. Ž. Đoković, Orthogonal product bases of four qubits, J. Phys. A: Math. Theor. 50, 395301 (2017).
[7] L. Chen and D. Ž. Đoković, Separability problem for multipartite states of rank at most 4, J. Phys. A: Math. Theor. 46, 275304 (2013).
[8] L. Chen and D. Ž. Đoković, Qubit-qudit states with positive partial transpose, Phys. Rev. A 86, 062332 (2012).
[9] Y. Feng and Y. Shi, Characterizing locally indistinguishable orthogonal product states, IEEE Trans. Inform. Theory 55, 2799 (2009).
[10] N. Johnston, The minimum size of qubit unextendible product bases. In Proceedings of the 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC) (2013).
[11] N. Johnston, The structure of qubit unextendible product bases, J. Phys. A. Math. Theor. 47, 424034 (2014).
[12] N. Johnston, 2014, Complete characterization of all unextendible product bases on 4 qubits. www.njohnston.ca/4qubitupbs.txt
[13] Jianxin Chen and Nathaniel Johnston, The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases), Commun. Math. Phys. 333, 351-365 (2015).
[14] Lin Chen and D.Ž. Đoković, Distillability and PPT entanglement of low rank quantum states, J. Phys. A: Math. Theor. 44, 285303 (2011).
[15] J. Tura, R. Augusiak, P. Hyllus, M. Kus, J. Samsonowicz, M. Lewenstein, Four-qubit entangled symmetric states with positive partial transpositions, Phys. Rev. A 85, 060302 (2012).
[16] Otfried Gühne, and Michael Seevinck, Separability criteria for genuine multiparticle entanglement, New J. Phys. 12, 053002 (2010).
[17] Kyung Hoon Han and Seung-Hyeok Kye, Construction of multi-qubit optimal genuine entanglement witnesses, J. Phys. A 49, 175303 (2016).
[18] L. Chen and D. Ž. Đoković, Nonexistence of n-qubit unextendible product bases of size $2^n - 5$, Quantum. Inf. Process. 17, 24 (2018).
[19] L. Chen and D. Ž. Đoković, Multiqubit UPB: The method of formally orthogonal matrices, J. Phys. A, 51, 265302 (2018).
Appendix A: Representatives of equivalence classes of UOMs of four qubits

1. Representatives of UOM[8, 4]

Level 13	1	addd aDcc acDC aCCD Abbb AaBa ABaA AAAB [1, 4, 4, 4]
Level 12	1	accd aaDc aAcd aCCC AbbB AaaB AABa ABAA [1, 3, 4, 4]
----------	---	---
Level 11	1	abdd aACd aBCC Abbb AaaB ABaB AAAB [1, 2, 4, 4]
	2	abdd aACd aBCC Abbb AaaB ABaB AAAB [1, 2, 4, 4]
	3	acad aacD aCCc AbAb Aaaa ABaB ABBa [1, 3, 3, 4]
	4	acad aacD aCCc Abbb AaaB ABAa AABAA [1, 3, 3, 4]
	5	acad aacD aCCc Abbb AaaB ABAa AABAA [1, 3, 3, 4]
	6	acca aCac aaCC bAAA Abba ABab AaBB BAAA [2, 3, 3, 3]
Level 10	1	abab aacD aAAc aBCC Abbb AaaB ABaB AAAB [1, 2, 3, 4]
	2	abab aacD aBCC Abbb AaaB AAaa ABBA [1, 2, 3, 4]
	3	abad aaAc aAcD aBCC Abbb AaBa AAAB ABAa [1, 2, 3, 4]
	4	abad aaAc aAcD aBCC Abbb AaBa AAAB ABAa [1, 2, 3, 4]
	5	abad aaAc aAcD aBCC Abbb AaBa AAAB ABAa [1, 2, 3, 4]
	6	abad aaAc aAcD aBCC Abbb AaBa AAAB ABAa [1, 2, 3, 4]
	7	acca aCac aaAA aACC AAbb AbaB ABAa [1, 3, 3, 3]
	8	acca aCac aaAA aACC Aabb Aaaa AbAB ABBa [1, 3, 3, 3]
	9	acca aCac aaAA aACC AAbb Aaaa AbAB ABBa [1, 3, 3, 3]
	10	acca aCac aaAA aACC AAbb Aaaa AbAB ABBa [1, 3, 3, 3]
	11	acaa aaca aAAc aCCC AbbB AaBA AABa AABa [1, 3, 3, 3]
	12	acaa aaca aAaC aCCC AbbB AaBA AABa AABa [1, 3, 3, 3]
	13	acaa aaca aAaC aCCC AbbB AaBA AABa AABa [1, 3, 3, 3]
	14	acaa aaca aAaC aCCC AbbB AaBA AABa AABa [1, 3, 3, 3]
	15	acaa aaca aAaC aCCC AbbB AaBA AABa AABa [1, 3, 3, 3]
	16	acaa aaca aAaC aCCC AbbB AaBA AABa AABa [1, 3, 3, 3]
	17	acac aaAc aAaC aBBc baAb bABD Abad ABbA BbAb [2, 2, 2, 4]
	18	aaad aacaD aAab aaAA bbAa baaA Acac ABCB BABA [2, 2, 2, 4]
	19	aaac aaAb baAa bAba bAbB Abad ABCB BABA [2, 2, 2, 4]
	20	aaCc aBab baca bAba BabA AABA BaaC BaaC BaaA [2, 2, 2, 4]
	21	aaCc aBab baca bAba BabA AABA BaaC BaaC BaaA [2, 2, 2, 4]
	22	aAbb abAB baad bAAB bAAA bAdA Baacc Baab [2, 2, 2, 4]
	23	aaca aabA aaCa bAac bAAb AbAc AdAb BAAA [2, 2, 3, 3]
	24	aBAb aBAb bbbd bbbD AABA AABA Baac BaAc [2, 2, 2, 4]
	25	aBAb aBAb bbbd bbbD AABA AABA Baac BaAc [2, 2, 2, 4]
	26	aABA aACa bbaA bAAA AABA ABaC ABaC BaAb BaAb [2, 2, 2, 4]
	27	aBAb aBAb bbaA bAAA AABA ABaC BaAb BaAb [2, 2, 2, 4]
	28	aBAb aBAb bbbd bAAA AABA Bbba BaaC [2, 2, 2, 4]
	29	aAAd aBaC bbbd baBa AABB ABBa Bbab BaAa [2, 2, 2, 4]
Level 9
1 abbd aBac aaAD aABC Abbb ABaa AaAB AABA [1, 2, 2, 4]
2 abbd aBac aaAD aABC Abbb ABaa AABB AaBA [1, 2, 2, 4]
3 abbd aaBc aAaD aBAC AbBb Aaba AAAB AbaA [1, 2, 2, 4]
4 abbd aaBc aAaD aBAC Abab AaaA AABb ABBA [1, 2, 2, 4]
5 abbd aaBc aAaD aBAC Abab AaBB AAAa AbBA [1, 2, 2, 4]
6 abbd aaBc aAaD aBAC Abab AaAa AABB AbBA [1, 2, 2, 4]
7 abca aaaa aACc aBAC AbAb AaaA AAbB ABBA [1, 2, 3, 3]
8 abca aACc aBAC AbAb AaaA AAbB ABBA [1, 2, 3, 3]
9 abca aACc aBAC Abbb AaaA AAbB ABBA [1, 2, 3, 3]
10 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
11 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
12 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
13 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
14 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
15 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
16 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
17 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
18 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
19 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
20 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
21 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
22 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
23 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
24 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
25 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
26 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
27 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
28 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
29 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
30 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
31 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
32 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
33 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
34 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
35 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
36 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
37 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
38 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
39 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
40 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
41 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
42 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
43 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
44 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
45 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
46 abca aACc aBAC Abbb AaaA AABB Abaa [1, 2, 3, 3]
Level 7

1. abbb aBaa aaBA aAAB Abb aBaa AaBA AAAB [1, 2, 2, 2]
2. abbb aBaa aaAB aBA Aabb ABaa AaAb AABA AABa [1, 2, 2, 2]
3. abbb aBaa aaAB aABA AbbB ABaa AaBA AAAB [1, 2, 2, 2]
4. abbb aBaa aaAB aABA Abbb AaaB ABaa AaAB AaBA [1, 2, 2, 2]
5. abbb aBaa aaAB aABA Abbb ABaa AaBA [1, 2, 2, 2]
6. abbb aAaB aAaB ABaa Aaaa AABa AABA AAAB [1, 2, 2, 2]
7. abbb aAaB aAaB Abba Aaaa AABa AABA AAAB [1, 2, 2, 2]
8. abbb aAaB aAaB Abba Aaaa AABa AABA AAAB [1, 2, 2, 2]
9. abbb aAaB aAaB Abba Aaaa AABa AABA AAAB [1, 2, 2, 2]
10. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]
11. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]
12. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]
13. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]
14. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]
15. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]
16. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]
17. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]
18. abbb aAaB aAaB AbBa Aaaa AABa AABA AAAB [1, 2, 2, 2]

2. Representatives of UOM[9, 4]

Level 10

1. aaca aaCa abBA bAaa bBAA Aaaac AaaC AbAB BAbb [2, 2, 3, 3]

Level 9

1. aaac aacC aaAc aAaAb AaBa Aaaa AABb AbbB BBAB [2, 2, 2, 3]
2. aaAa aAAb baaC baaC bAaB aAaa AbAb Baab Bbba BAAB [2, 2, 2, 3]
3. aaac aaAC aAAb bAaA bAaB AbAA Aaab AbbA BbBA [2, 2, 2, 3]
4. aaac aaAC aAAb bAaA bAaB AbAA Aaab AbbA BbBA [2, 2, 2, 3]

Level 8

1. aaAA aAAa AbAb bAaa bAAB Aaaa AaAa AAbB BBBA [2, 2, 2, 2]
2. abaa aBaa aBAb baAa bAAB AbBA AbBa AaAb BbBA [2, 2, 2, 2]
3. aaAA aAbB bAaA bAaB Aaaa AbAb Baab Bbba BABA [2, 2, 2, 2]
4. abAA aAbB bAaA bAaA bAAA BaAa AbaA Bbba BbBb [2, 2, 2, 2]
5. aaAA aAAa aAbB bAaA bAAB AbaA ABaA ABaA BbaA [2, 2, 2, 2]
6. abAA aAbB bAaA bAAA AAbB AbBA AaAb BbBB [2, 2, 2, 2]

Level 11

1. aabd aabD aabC aABc aABC aAAb bAaa Aaaa AAbB ABcA BAcB [2, 2, 3, 4]
2. aaad aaaaD aAAc aACc aACc Abba Abba AbBB AbcA BAcB [2, 2, 3, 4]
Level 10

1. aaad aaaaD aaAb aAbb bBAB Aaac AaaC AAaa AbAa BABA [2, 2, 4]
2. aaad aaaaD aAaA ahAA baAa bABa Aaac AaaC AAbb BBAB [2, 2, 4]
3. aaad aaaaD abAA baAa bABA Aaac AaaC AAbB BAbA BBAb [2, 2, 4]
4. aacc aaAa aaAA aacC Aaca bAbA AabA Abca ABBB BACb [2, 2, 3, 3]
5. aabc aBaA aaBA aacC aAAA aAaA bAcA Aaab AbAa ABCB BAbB [2, 2, 2, 3]
6. aaba aBaA aacA aaCA aAAc bAab Aaab AbAc ABbB BABC [2, 2, 3, 3]
7. aaba aBaA aabA aaBA aAAc bAab Aaab AbAc ABCB BAcC [2, 2, 3, 3]
8. aaca aCaA aAba abBA bABb Aaac AaAa AaaC AaaB BBAA [2, 2, 2, 3]
9. aacc aAaA aaca aAAb bAAa bAaA Aaco AaCa ABBA BAbB [2, 2, 2, 3]
10. abbA aaca aCaC aAba bABB AbAb Aaac AaaC Aaab BBAA [2, 2, 3, 3]
11. aAcC aAaC aAAb bacA baca baAa AAaa ABCA Baaa BbAB [2, 2, 3, 3]
12. aaAc aAaC aAAb bbad bbaD bBaa AaAa ABBA Bbab BAbB [2, 2, 2, 4]
13. aBab aAaC aAaC bbad bbaD bAaA AaAa ABBA Bbab BAbB [2, 2, 2, 4]
14. aaAb aaAB bbad bbaD bBaa AaAa ABBA Bbac BAbC [2, 2, 2, 4]
15. aAab aAaB baca baCa babA bAAa Aaaa ABBA Babc BbAC [2, 2, 3, 3]
16. aAac aAaC aAAb baca babA baCa aAab AbBA BaaB BBAB [2, 2, 3, 3]
17. abaa aAaA aBac aBaC baAA bAAB Aaac AoCa AAbb BbBA [2, 2, 3, 3]
| Level 9 | 1 | aaaa aaaa aabb aabb bBAB Aaaac AaaAa AaaAb AbaA BabAb BABA [2, 2, 2, 3] |
| | 2 | aaaa aaaa aaaa aaaa bBAA AaaaA AaaAb AbAAb BABB [2, 2, 2, 3] |
| | 3 | aaaa aaaa aaaa aaaa bABC AaaaA AaaAa AbAb AbBAb BABB [2, 2, 2, 3] |
| | 4 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 5 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AbAb AbBAb BABB [2, 2, 2, 3] |
| | 6 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 7 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 8 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 9 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 10 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 11 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 12 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 13 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 14 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 15 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 16 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 17 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 18 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 19 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 20 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 21 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 22 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 23 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 24 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 25 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 26 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 27 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 28 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 29 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 30 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 31 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 32 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 33 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 34 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 35 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 36 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
| | 37 | aaaa aaaa aaaa aaaa bAAA AaaaA AaaAa AaaAb AbABB BBAB [2, 2, 2, 3] |
In $O(12, 4)$ there are 1209 equivalence classes of UOMs of which only 161 are irreducible. While all the equivalence classes occupy the levels 7-14, the irreducible ones occupy only the levels 8-12. We list below the representatives of the 161 irreducible classes.

4. Representatives of irreducible classes in UOM$[12, 4]$
Level 11

1. aAaa aAcA aACA baaab babB baBB BAaC AbAb BaaD BAAa [2, 2, 3, 4]
2. acaB abAa aCaa aBAB bAaA Aaba AACA AAcA AaBc AaBC BbBa [2, 3, 3, 3]
3. aaaa aAae aAaE aabA aABA bAAb Aaad Aaaa AAcA AaAC AbAB BAAa [2, 2, 2, 5]
4. aAed aAaD aABb baaa babA baBA AAac AAcC AbAa Baee Baee BBAa [2, 2, 2, 5]
5. aaca aaaS aBaC abAA aBAA bAob Aaad AaAD AaAc AaAC AaAB BAAa [2, 2, 3, 4]
6. aaca aobA aAcA abBA bBBA bAAa Aaad AaaD AaAc AaAC Aaab BAbB [2, 2, 3, 4]
7. aaab aaAd aaAD abaB aBaB bAAC Aaca AaaA AaAA AaAC AAbC BAAb [2, 2, 3, 4]
8. aaab aaAd aaAD abaB aBaB bAAC Aaca AabA AaBA AaCa AABC BABB [2, 2, 3, 4]
9. aaba aaaS aAAa abBa bBBA Aaad AaAD AaAc AaAC AAcB BACA [2, 2, 3, 4]
10. aaaa aAAd aaAD abAa aBaA bAAb Aaba AabA AaBc AaBC AAcB BACA [2, 2, 3, 4]
11. aaab aaAd aaAD abaB aBaB bAAA Aaba AabA AaBc AaBC AAcA BACb [2, 2, 3, 4]
12. aaab aaAd aaAD abaB aBaB bAAC Aaba AabA AaBa AaBA AAcC BACb [2, 2, 3, 4]
13. aaaa aAaA aaAA abAa aBaA bAAb Aabd AabD AaBC AAcC BCAa [2, 2, 3, 4]
14. aaab aAaA aaAA abB aBaB bAAA Aabd AabD AaBc AaBC AAcA BACb [2, 2, 3, 4]
15. aaab aAaA aaAA abB aBaB bAAC Aaba AabA AaBd AaBD AAcC BACb [2, 2, 3, 4]
16. aaca aABa aaBA abCa aBCa bABA Aaad AaAc AaAC AaaD AAbb BACB [2, 2, 3, 4]
17. aaca aacA aAaA aAAc aAAC aCaa baAa Abab AABb ABBA BaAa [2, 3, 3, 3]
18. aaac aAaa abAa aAcA aaAA aACA aACa BBAa Acab ACbA AbBB BBAa [2, 3, 3, 3]
43 aaab aaAa aaAA abaB aBaB bAcb Aaba AaBa AabA AaBA AACc BAAC [2, 2, 3, 3]
44 aaaa aaAa aaAA abAA aBaA bAca Aacb AaBa AaBB AaBC AACc BAAC [2, 2, 3, 3]
45 aooA aaAa aaaB abAA abBB AaBa AaBA AabB AACc BAoC [2, 2, 3, 3]
46 aacA aaCA abAa aBAA baAA bAab AaaA AaAC AaBB BabB BABA [2, 2, 3, 3]
47 aoAa aabA aBBA aBBA baaa bAca AaAc AaaA AaAC AACb BabB BabB [2, 2, 3, 3]
48 aoAa aoCA aABA aaaA baaA bAbb AaAc AaaA AaAC AAAB Bbbaa Bbbaa [2, 2, 3, 3]
49 aoAa aoCA aAAB baAA bAbb AaAc AaaA AaAC AABA Bbaa Bbaa [2, 2, 3, 3]
50 aAad abAd aBAB aBABB baaa bbbD AAbb AaAd AABc AABC BaaB BaaB [2, 2, 2, 4]
51 abAa aAaa aBAC aBAC baAA bbbA AaAa AACA AACa AABA Baab Baab [2, 2, 3, 3]
24

1 aAa aAb aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
2 aAa aAb aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
3 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
4 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
5 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
6 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
7 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
8 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
9 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
10 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
11 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
12 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
13 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
14 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
15 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
16 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
17 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
18 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
19 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
20 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
21 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
22 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
23 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
24 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
25 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
26 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]

Level 8

1 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
2 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
3 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
4 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
5 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
6 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
7 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
8 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
9 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
10 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
11 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
12 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
13 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
14 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
15 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
16 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
17 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
18 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
19 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
20 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
21 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
22 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
23 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
24 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
25 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
26 aAa aAa aAa aAa bba bAa bBa BaA Baa aBa BAa Bbb [2, 2, 2, 2]
Appendix B: Arrows of the Hasse diagrams of UOM\([m, 4]\)

For UOM\([m, 4]\), \(m = 8, 9, 10\), we list all the arrows from level \(l\) to \(l - 1\), for all appropriate levels \(l\). In the case \(m = 12\) we list only the arrows which join irreducible equivalence classes.

5. The case \(m = 8\)

Arrows from level 11 to 10:

\[
\begin{align*}
1 \to 1, 2, 3, 6 & \quad d_4 = a_4, d_4 = B_4, d_4 = A_4, d_4 = b_4 \\
2 \to 4, 5 & \quad d_4 = b_4, d_4 = B_4 \\
3 \to 1, 5, 8, 9, & \quad c_3 = B_3, c_3 = b_3, c_4 = A_4, c_4 = a_4, \\
3 \to 13, 15, 16 & \quad d_4 = a_4, d_4 = b_4, d_4 = B_4 \\
4 \to 2, 3, 4, 5, 9, & \quad c_2 = B_2, c_3 = b_3, c_3 = B_3, c_2 = b_2, c_4 = b_4, \\
4 \to 10, 12, 13, 14, 15 & \quad c_4 = B_4, d_4 = b_4, c_4 = A_4, d_4 = A_4, d_4 = a_4, \\
5 \to 4, 6, 7, 10, & \quad c_3 = b_3, c_3 = B_3, c_4 = B_4, c_4 = b_4, \\
5 \to 11, 13, 14 & \quad d_4 = A_4, c_4 = a_4, d_4 = a_4, \\
6 \to 7, 20, 21 & \quad b_1 = a_1, c_4 = b_4, c_4 = B_4.
\end{align*}
\]

Arrows from level 10 to 9:

\[
\begin{align*}
1 \to 4, 6, 11, 12, 14, 18 & \quad c_3 = b_3, c_3 = B_3, d_4 = a_4, d_4 = A_4, d_4 = b_4, d_4 = B_4 \\
2 \to 2, 3, 17, 18, 19, 20 & \quad c_3 = b_3, c_3 = B_3, d_4 = b_4, d_4 = a_4, d_4 = A_4, d_4 = B_4 \\
3 \to 3, 6, 12, 13, 15, 19 & \quad c_3 = B_3, c_3 = b_3, d_4 = a_4, d_4 = A_4, d_4 = b_4, d_4 = B_4 \\
4 \to 5, 7, 9, 10, 21, 22, 24 & \quad c_3 = b_3, c_3 = B_3, d_4 = b_4, c_4 = A_4, c_4 = a_4, d_4 = A_4, d_4 = B_4, d_4 = a_4 \\
5 \to 5, 6, 8, 9, 22, 23, 24, 25 & \quad c_3 = b_3, d_4 = a_4, c_4 = A_4, c_4 = a_4, d_4 = b_4, d_4 = a_4, d_4 = A_4, d_4 = B_4 \\
6 \to 1, 2, 14, 15, 16, 17 & \quad c_3 = b_3, c_3 = B_3, d_4 = a_4, d_4 = A_4, d_4 = b_4, d_4 = B_4 \\
7 \to 7, 16 & \quad c_2 = b_2, c_4 = B_4 \\
8 \to 8, 11 & \quad c_2 = B_2, c_2 = b_2 \\
9 \to 9, 12, 20, 25 & \quad c_3 = B_3, c_3 = b_3, c_2 = B_2, c_2 = b_2 \\
10 \to 10, 13, 17, 22 & \quad c_3 = B_3, c_3 = b_3, c_2 = B_2, c_2 = b_2 \\
11 \to 10, 16 & \quad c_2 = b_2, c_2 = B_2 \\
12 \to 19, 24 & \quad c_2 = b_2, c_2 = B_2 \\
13 \to 14, 15, 18, 21, 23, 24 & \quad c_2 = b_2, c_3 = b_3, c_4 = b_4, c_3 = B_3, c_4 = B_4, c_2 = B_2 \\
14 \to 7, 9, 13, 17 & \quad c_3 = b_3, c_2 = B_2, c_3 = B_3, c_2 = b_2 \\
15 \to 8, 12, 20, 22 & \quad c_2 = B_2, c_3 = B_3, c_2 = b_2, c_3 = b_3 \\
16 \to 11, 25 & \quad c_2 = B_2, c_2 = b_2 \\
17 \to 26 & \quad c_4 = A_4 \\
18 \to 27 & \quad d_4 = A_4 \\
19 \to 27, 28 & \quad c_4 = A_4, c_4 = b_4 \\
20 \to 16, 30, 31 & \quad b_2 = a_2, c_3 = b_3, c_3 = B_3 \\
21 \to 7, 31, 33 & \quad b_2 = a_2, c_3 = B_3, c_3 = b_3 \\
22 \to 34, 35, 36 & \quad b_4 = A_4, d_4 = c_4, c_4 = a_4 \\
23 \to 29, 34, 35 & \quad c_3 = a_3, c_4 = B_4, c_3 = b_3 \\
24 \to 37 & \quad b_4 = a_4 \\
25 \to 30, 37, 39, 40 & \quad b_3 = a_3, c_4 = b_4, c_4 = B_4, c_3 = b_3 \\
26 \to 32, 41, 43 & \quad b_4 = a_4, c_4 = b_4, c_4 = B_4 \\
27 \to 38, 39, 41 & \quad c_4 = a_4, d_4 = c_4, b_4 = a_4 \\
28 \to 1, 40, 42, 43 & \quad b_1 = a_1, b_4 = a_4, c_4 = a_4, b_4 = A_4 \\
29 \to 3, 44, 45 & \quad b_1 = a_1, b_4 = a_4, b_4 = A_4
\end{align*}
\]
Arrows from level 9 to 8:

\[1 \rightarrow 1, 2, 6 \quad d_4 = a_4, c_4 = a_4, c_4 = A_4\]
\[2 \rightarrow 5, 7, 8, 9 \quad c_4 = a_4, c_4 = A_4, d_4 = a_4, d_4 = A_4\]
\[3 \rightarrow 10, 21, 22, 23 \quad d_4 = A_4, c_4 = A_4, c_4 = a_4, d_4 = a_4\]
\[4 \rightarrow 12, 19, 20 \quad c_4 = a_4, d_4 = a_4, d_4 = A_4\]
\[5 \rightarrow 3, 4, 11, 15, 16 \quad c_4 = a_4, c_4 = b_4, c_4 = B_4, d_4 = A_4, d_4 = a_4\]
\[6 \rightarrow 13, 14, 17, 18 \quad c_4 = a_4, c_4 = A_4, d_4 = A_4, d_4 = a_4\]
\[7 \rightarrow 5, 11 \quad c_3 = B_3, c_3 = b_3\]
\[8 \rightarrow 4, 18 \quad c_3 = B_3, c_3 = b_3\]
\[9 \rightarrow 7, 11, 16, 17 \quad c_4 = B_4, c_3 = B_3, c_4 = b_4, c_3 = b_3\]
\[10 \rightarrow 5, 15 \quad c_3 = B_3, c_3 = b_3\]
\[11 \rightarrow 18, 19 \quad c_3 = B_3, c_3 = b_3\]
\[12 \rightarrow 17, 18, 20, 21 \quad c_4 = B_4, c_3 = b_3, c_4 = b_4, c_3 = B_3\]
\[13 \rightarrow 17, 22 \quad c_3 = b_3, c_3 = B_3\]
\[14 \rightarrow 1, 8, 12, 13 \quad c_3 = b_3, c_3 = B_3, c_4 = b_4, c_4 = B_4\]
\[15 \rightarrow 1, 9, 13, 23 \quad c_3 = b_3, c_3 = B_3, c_4 = b_4, c_4 = B_4\]
\[16 \rightarrow 2, 5 \quad c_3 = b_3, c_3 = B_3\]
\[17 \rightarrow 5, 6, 7, 22 \quad c_4 = b_4, c_3 = b_3, c_3 = B_3, c_4 = B_4\]
\[18 \rightarrow 8, 12, 14, 23 \quad c_3 = b_3, c_4 = b_4, c_4 = B_4, c_3 = B_3\]
\[19 \rightarrow 9, 10, 14 \quad c_3 = b_3, c_3 = B_3, c_4 = b_4\]
\[20 \rightarrow 7, 21 \quad c_3 = b_3, c_3 = B_3\]
\[21 \rightarrow 3, 8 \quad c_3 = B_3, c_3 = b_3\]
\[22 \rightarrow 4, 7, 15, 17 \quad c_3 = B_3, c_3 = b_3, c_4 = b_4, c_4 = B_4\]
\[23 \rightarrow 3, 13 \quad c_3 = b_3, c_3 = B_3\]
\[24 \rightarrow 3, 9, 14 \quad c_3 = b_3, c_4 = B_4, c_3 = B_3\]
\[25 \rightarrow 16, 18 \quad c_3 = b_3, c_3 = B_3\]
\[29 \rightarrow 25 \quad c_4 = B_4\]
\[30 \rightarrow 2, 26, 27 \quad b_3 = a_3, c_4 = b_4, c_4 = B_4\]
\[31 \rightarrow 5, 27, 28 \quad b_3 = a_3, c_4 = b_4, c_4 = B_4\]
\[32 \rightarrow 6, 29, 33 \quad b_3 = a_3, c_4 = B_4, c_4 = b_4\]
\[33 \rightarrow 11, 28, 32 \quad b_3 = a_3, c_4 = b_4, c_4 = B_4\]
\[34 \rightarrow 25, 34 \quad c_4 = a_4, c_4 = b_4\]
\[35 \rightarrow 34 \quad c_4 = B_4\]
\[36 \rightarrow 25 \quad b_4 = A_4\]
\[37 \rightarrow 26, 37 \quad b_4 = a_4, c_1 = b_4\]
\[38 \rightarrow 27, 33, 41 \quad c_4 = a_4, b_4 = a_4, c_4 = b_4\]
\[39 \rightarrow 27, 38 \quad b_4 = a_4, c_4 = b_4\]
\[40 \rightarrow 2, 37, 38 \quad b_3 = a_3, c_4 = b_4, c_4 = B_4\]
\[41 \rightarrow 33, 38 \quad b_4 = a_4, c_4 = B_4\]
\[42 \rightarrow 1, 29, 36, 42 \quad b_1 = a_1, b_4 = A_4, c_4 = B_4, c_4 = b_4\]
\[43 \rightarrow 6, 29, 38, 39 \quad b_1 = a_1, b_4 = a_4, c_4 = b_4, c_4 = B_4\]
\[44 \rightarrow 22, 23, 42, 43 \quad b_2 = A_2, c_4 = b_4, c_4 = B_4\]
\[45 \rightarrow 10, 21, 31, 40, 43 \quad b_2 = A_2, b_1 = a_1, b_4 = A_4, c_4 = b_4, c_4 = B_4\]
\[46 \rightarrow 28, 35 \quad c_4 = B_4, b_4 = a_4\]
Arrows from level 8 to 7:

1 → 9, 17	\(c_4 = b_4, c_4 = B_4\)	22 → 3, 4	\(c_4 = B_4, c_4 = b_4\)
2 → 1, 2	\(c_4 = b_4, c_4 = B_4\)	23 → 17, 18	\(c_4 = b_4, c_4 = B_4\)
3 → 10, 11	\(c_4 = B_4, c_4 = b_4\)	24 → 5	\(b_4 = A_4\)
4 → 5, 13	\(c_4 = b_4, c_4 = B_4\)	26 → 1	\(b_4 = a_4\)
5 → 2, 6	\(c_4 = b_4, c_4 = B_4\)	27 → 2	\(b_4 = a_4\)
6 → 2, 3	\(c_4 = b_4, c_4 = B_4\)	28 → 6	\(b_4 = a_4\)
7 → 4, 6	\(c_4 = B_4, c_4 = b_4\)	29 → 3	\(b_4 = A_4\)
8 → 11, 16	\(c_4 = B_4, c_4 = b_4\)	30 → 10	\(b_4 = A_4\)
9 → 11, 18	\(c_4 = b_4, c_4 = B_4\)	31 → 8	\(b_4 = A_4\)
10 → 8, 18	\(c_4 = B_4, c_4 = b_4\)	32 → 12	\(b_4 = a_4\)
11 → 6, 12	\(c_4 = B_4, c_4 = b_4\)	33 → 2	\(b_4 = A_4\)
12 → 16, 17	\(c_4 = B_4, c_4 = b_4\)	35 → 6	\(b_4 = A_4\)
13 → 9, 11	\(c_4 = b_4, c_4 = B_4\)	36 → 9	\(b_4 = A_4\)
14 → 11, 18	\(c_4 = b_4, c_4 = B_4\)	37 → 1	\(b_1 = a_1\)
15 → 5, 6	\(c_4 = B_4, c_4 = b_4\)	38 → 2	\(b_1 = a_1\)
16 → 12, 13	\(c_4 = b_4, c_4 = B_4\)	39 → 3	\(b_4 = a_4\)
17 → 4, 13	\(c_4 = b_4, c_4 = B_4\)	40 → 7, 8	\(b_4 = A_4, b_1 = A_1\)
18 → 13, 14	\(c_4 = b_4, c_4 = B_4\)	41 → 2	\(b_1 = a_1\)
19 → 14, 15	\(c_4 = B_4, c_4 = b_4\)	42 → 3, 17	\(b_1 = a_1, b_2 = a_2\)
20 → 7, 14	\(c_4 = b_4, c_4 = B_4\)	43 → 4, 18	\(b_3 = A_3, b_4 = A_4\)
21 → 4, 7	\(c_4 = b_4, c_4 = B_4\)		

6. The case \(m = 9\)

The UOMs occupy the levels 8 – 10. There are only two arrows from level 10 to 9:

\[1 \rightarrow 3, 4 \quad c_3 = b_3, c_3 = a_3 \]

and eight arrows from level 9 to 8:

\[1 \rightarrow 1, 3 \quad c_4 = a_4, c_4 = b_4 \quad 3 \rightarrow 2, 5 \quad c_4 = b_4, c_4 = a_4 \]
\[2 \rightarrow 3, 4 \quad c_4 = a_4, c_4 = b_4 \quad 4 \rightarrow 1, 5 \quad c_4 = a_4, c_4 = b_4 \]

7. The case \(m = 10\)

Arrows from level 11 to 10:

\[1 \rightarrow 1, 3, 5, 7 \quad b_3 = a_3, c_3 = B_3, c_4 = a_4, d_4 = c_4 \]
\[2 \rightarrow 2, 4, 6, 7 \quad b_3 = a_3, c_4 = a_4, c_4 = b_4, d_4 = c_4 \]
Arrows from level 10 to 9:

1 \rightarrow 1, 2, 3 \quad d_4 = a_4, d_4 = b_4, d_4 = c_4
\quad 2 \rightarrow 4, 5, 6, 7, 8 \quad c_4 = a_4, c_4 = b_4, d_4 = a_4, d_4 = b_4, d_4 = c_4
\quad 3 \rightarrow 11, 12, 13 \quad d_4 = a_4, d_4 = b_4, d_4 = c_4
\quad 4 \rightarrow 3, 4, 6, 9 \quad c_4 = a_4, b_3 = a_3, b_3 = A_3, c_4 = b_4
\quad 5 \rightarrow 1, 2, 8, 10, 11, 12 \quad b_3 = A_3, b_3 = a_3, c_4 = a_4, c_4 = b_4, c_3 = B_3, c_3 = b_3
\quad 6 \rightarrow 5, 7, 9, 13 \quad b_4 = A_4, b_4 = a_4, c_3 = a_3, c_3 = b_3
\quad 7 \rightarrow 3, 8, 13 \quad b_3 = a_3, b_4 = a_4, c_3 = B_3
\quad 8 \rightarrow 2, 14, 15, 16 \quad c_4 = a_4, c_3 = a_3, c_3 = b_3, c_4 = b_4
\quad 9 \rightarrow 6, 14, 18, 19 \quad c_4 = a_4, c_3 = A_3, c_4 = b_4, c_3 = b_3
\quad 10 \rightarrow 20, 21 \quad c_4 = a_4, c_3 = b_3
\quad 11 \rightarrow 15, 25 \quad b_3 = a_3, c_3 = b_3
\quad 12 \rightarrow 27, 28 \quad d_4 = b_4, d_4 = c_4
\quad 13 \rightarrow 29, 30, 31 \quad d_4 = a_4, d_4 = b_4, d_4 = c_4
\quad 14 \rightarrow 25, 26, 32, 33, 34 \quad b_4 = a_4, d_4 = a_4, c_4 = b_4, d_4 = b_4, d_4 = c_4
\quad 15 \rightarrow 16, 22, 26, 35 \quad b_4 = a_4, c_3 = a_3, c_3 = b_3, c_4 = b_4
\quad 16 \rightarrow 21, 23, 27, 30 \quad c_3 = a_3, c_4 = a_4, c_4 = b_4, c_3 = b_3
\quad 17 \rightarrow 18, 22, 36, 37 \quad c_4 = a_4, c_3 = a_3, c_4 = b_4, c_3 = B_3

Arrows from level 9 to 8:

1 \rightarrow 1, 3 \quad c_4 = a_4, c_4 = b_4 \quad 20 \rightarrow 13, 14 \quad c_4 = a_4, c_4 = b_4
\quad 2 \rightarrow 1, 2 \quad c_4 = a_4, c_4 = b_4 \quad 21 \rightarrow 14, 16 \quad c_4 = a_4, c_4 = b_4
\quad 3 \rightarrow 1 \quad c_4 = a_4 \quad 22 \rightarrow 9, 17 \quad c_4 = a_4, c_4 = b_4
\quad 4 \rightarrow 1, 4 \quad c_4 = a_4, c_4 = b_4 \quad 23 \rightarrow 14, 18 \quad c_4 = a_4, c_4 = b_4
\quad 5 \rightarrow 5, 6 \quad c_4 = a_4, c_4 = b_4 \quad 24 \rightarrow 15, 19 \quad c_4 = a_4, c_4 = b_4
\quad 6 \rightarrow 1, 5 \quad c_4 = a_4, c_4 = b_4 \quad 25 \rightarrow 10, 20 \quad c_4 = a_4, c_4 = b_4
\quad 7 \rightarrow 4, 6 \quad c_4 = a_4, c_4 = b_4 \quad 26 \rightarrow 10, 21 \quad b_4 = a_4, c_4 = b_4
\quad 8 \rightarrow 1, 6 \quad b_4 = a_4, c_4 = b_4 \quad 27 \rightarrow 16, 22 \quad c_4 = a_4, c_4 = b_4
\quad 9 \rightarrow 4, 5 \quad c_4 = a_4, c_4 = A_4 \quad 28 \rightarrow 16 \quad b_4 = a_4
\quad 10 \rightarrow 2, 3, 7, 8 \quad b_3 = A_4, b_4 = a_4, c_4 = B_4, c_4 = b_4 \quad 29 \rightarrow 18, 23 \quad c_4 = a_4, c_4 = b_4
\quad 11 \rightarrow 6, 8 \quad c_4 = a_4, c_4 = b_4 \quad 30 \rightarrow 18, 22 \quad c_4 = a_4, b_4 = a_4
\quad 12 \rightarrow 6, 7 \quad c_4 = a_4, c_4 = b_4 \quad 31 \rightarrow 18 \quad c_4 = a_4
\quad 13 \rightarrow 6 \quad c_4 = a_4 \quad 32 \rightarrow 19, 21 \quad c_4 = a_4, c_4 = b_4
\quad 14 \rightarrow 1, 9 \quad c_4 = a_4, c_4 = b_4 \quad 33 \rightarrow 10, 19 \quad b_4 = a_4, c_4 = A_4
\quad 15 \rightarrow 2, 10 \quad c_4 = a_4, c_4 = b_4 \quad 34 \rightarrow 19, 20 \quad c_4 = a_4, c_4 = b_4
\quad 16 \rightarrow 9, 10 \quad c_4 = a_4, c_4 = b_4 \quad 35 \rightarrow 17, 21 \quad c_4 = a_4, c_4 = b_4
\quad 17 \rightarrow 11, 13 \quad c_4 = b_4, c_4 = a_4 \quad 36 \rightarrow 17, 24 \quad c_4 = a_4, c_4 = b_4
\quad 18 \rightarrow 9, 12 \quad c_4 = b_4, c_4 = a_4 \quad 37 \rightarrow 12, 24 \quad c_4 = a_4, c_4 = b_4
\quad 19 \rightarrow 5, 12 \quad c_4 = a_4, c_4 = b_4

8. The case $m = 12$

Arrows from level 12 to 11:

1 \rightarrow 3, 4, 10, 11 \quad b_3 = a_3, c_3 = b_3, d_4 = a_4, d_4 = b_4
\quad 2 \rightarrow 5, 6, 7, 8 \quad b_3 = a_3, c_3 = a_3, c_4 = a_4, c_4 = b_4
\quad 2 \rightarrow 9, 12, 13, 16 \quad d_3 = a_3, d_4 = c_4, d_3 = b_3, d_3 = c_3
Arrows from level 11 to 10:

1 → 1, 4, 5, 6, 19
2 → 2, 3, 5, 31
3 → 7, 8, 9
3 → 10, 11, 12
4 → 16, 17, 18, 19, 20
4 → 21, 22, 23, 24
5 → 9, 13, 25, 26
5 → 27, 28, 29
6 → 14, 21, 30, 31, 32
7 → 11, 15, 25, 34
7 → 35, 36, 37, 38
8 → 15, 20, 26, 30
8 → 31, 41, 42
9 → 9, 14, 36, 41, 43
10 → 7, 9, 16, 18
10 → 33, 39, 45
11 → 8, 10, 17, 19
11 → 32, 33, 40, 42
12 → 11, 12, 20, 29
12 → 32, 44
13 → 9, 37, 42, 44
14 → 10, 22, 39, 40
15 → 11, 12, 23, 24
15 → 37, 40, 43, 45
16 → 13, 14, 38
17 → 27, 46
18 → 25, 36, 47, 48, 49

\[c_3 = b_1, d_4 = A_4, d_4 = b_4, d_4 = c_4, c_3 = a_3 \]
\[c_4 = b_4, c_2 = a_2, c_2 = b_2, c_4 = a_4 \]
\[c_4 = a_4, c_4 = b_4, e_4 = a_4, \]
\[e_4 = b_4, e_4 = c_4, e_4 = d_4 \]
\[c_4 = a_4, c_4 = b_4, d_4 = a_4, d_4 = b_4, d_4 = c_4, \]
\[e_4 = a_4, e_4 = b_4, e_4 = c_4, e_4 = d_4 \]
\[c_3 = a_3, c_3 = b_3, c_4 = a_4, c_4 = b_4, \]
\[d_4 = a_4, d_4 = b_4, d_4 = c_4, \]
\[c_3 = a_3, c_3 = b_3, c_4 = b_4, d_4 = b_4, d_4 = c_4 \]
\[c_3 = a_3, c_3 = b_3, b_3 = a_3, c_4 = a_4, \]
\[c_4 = b_4, d_4 = b_4, d_4 = c_4, \]
\[c_3 = a_3, d_4 = a_4, d_4 = b_4, d_4 = c_4, \]
\[d_3 = A_3, b_3 = a_3, c_3 = B_3, c_3 = b_3, \]
\[c_4 = b_4, d_4 = b_4, d_4 = c_4, \]
\[c_4 = b_4, d_4 = b_4, d_4 = c_4, \]
\[c_3 = a_3, b_3 = a_3, c_4 = a_4, \]
\[b_4 = a_4, c_4 = A_4, d_4 = a_4, d_4 = b_4 \]
\[c_3 = a_3, b_3 = a_3, c_4 = a_4, \]
\[c_2 = a_2, c_2 = b_2, \]
\[b_2 = a_2, c_4 = a_4, c_3 = b_3, c_2 = a_2, c_2 = A_2 \]
Arrows from level 10 to 9:

1 → 2, 3, 4
2 → 1, 3
3 → 1, 5, 6, 29, 34
4 → 2, 6, 8, 41, 46
5 → 3, 6, 7, 40, 48
6 → 4, 6, 54
7 → 9, 11, 17
8 → 10, 12, 19
9 → 9, 12, 13, 15, 18
10 → 10, 11, 14, 15, 20
11 → 9, 10, 16, 18, 20
12 → 13, 14, 16, 17, 19
13 → 21, 22, 23, 24, 25
14 → 26, 27, 28, 29, 30
15 → 31, 32, 33, 34, 35, 36, 37
16 → 38, 41, 44, 50, 57
17 → 40, 42, 43, 45, 53
18 → 38, 42, 47, 51, 56
19 → 40, 41, 46, 48, 54
20 → 38, 40, 49, 52, 55
21 → 45, 48, 52, 56, 57
22 → 43, 44, 46, 47, 55
23 → 43, 49, 51, 54, 57
24 → 46, 49, 50, 53, 56
25 → 9, 13, 21, 31
26 → 15, 22, 32, 38
27 → 9, 23, 32
28 → 12, 24, 31, 38
29 → 13, 18, 24, 38
30 → 27, 33, 40, 45
31 → 29, 34, 40, 48
32 → 10, 30, 40, 52
33 → 12, 39, 41, 42, 52
34 → 10, 28, 33, 56
35 → 10, 26, 34, 57
36 → 9, 13, 16, 26, 28, 35
37 → 9, 13, 18, 36, 56, 57
38 → 20, 21, 23, 26, 28, 37
39 → 11, 25, 30, 39, 44
40 → 12, 14, 35, 39, 43, 46
41 → 12, 15, 27, 29, 49, 51
42 → 12, 15, 31, 45, 52
43 → 16, 18, 30, 49
44 → 18, 52
45 → 17, 18, 39, 50, 51
46 → 23, 32, 59
47 → 21, 31, 35, 58, 60, 64
48 → 26, 61
49 → 28, 60
50 → 62, 64
51 → 5, 61, 63, 64

\[d_4 = a_4, d_4 = b_4, d_4 = c_4 \]
In the table below all identifications take place in column 4 of the matrices $X_{9,4}$ and so we shall omit the subscript 4.

Arrows from level 9 to 8:

Level 9	Level 8	Identifications
1 → 2,3	$c = a, c = b$	33 → 17, 18
2 → 3,5	$c = a, c = b$	34 → 18, 19
3 → 3,4	$c = a, c = b$	35 → 8, 16
4 → 3	$c = a$	36 → 9, 18
5 → 2,16	$c = b, c = a$	37 → 12, 16
6 → 3,15,19	$c = b, b = a, c = a$	38 → 10, 14
7 → 4,20	$c = b, c = a$	39 → 10, 21
8 → 5,22	$c = b, c = a$	40 → 15, 20
9 → 6,8	$c = a, c = b$	41 → 19, 22
10 → 7,10	$c = a, c = b$	42 → 18, 21
11 → 8,11	$c = a, c = b$	43 → 15, 21
12 → 9,11	$c = a, c = b$	44 → 14, 22
13 → 6,9	$c = a, c = b$	45 → 18, 20
14 → 7,11	$c = a, c = b$	46 → 15, 22
15 → 8,10	$c = a, c = b$	47 → 14, 21
16 → 6,7	$b = a, c = a$	48 → 19, 20
17 → 6,11	$b = a, c = b$	49 → 10, 15
18 → 6,10	$b = a, c = b$	50 → 10, 22
19 → 7,9	$b = a, c = b$	51 → 10, 21
20 → 7,8	$b = a, c = b$	52 → 10, 20
21 → 7,8	$c = b, c = a$	53 → 15, 18
22 → 13,14	$c = a, c = b$	54 → 15, 19
23 → 8,13	$c = a, c = b$	55 → 14, 15
24 → 12,14	$c = a, c = b$	56 → 10, 18
25 → 8,14	$b = a, c = b$	57 → 10, 19
26 → 7,16	$c = a, c = b$	58 → 12, 24
27 → 15,17	$b = c, b = a$	59 → 13, 23
28 → 7,17	$c = a, c = b$	60 → 17, 25
29 → 15,16	$b = c, c = a$	61 → 16, 24
30 → 7,15	$b = a, c = b$	62 → 1, 24, 26
31 → 9,12	$c = a, c = b$	63 → 2, 26
32 → 8,13	$c = a, c = b$	64 → 24, 26