Environmental Cadmium Exposure Promotes the Development, Progression and Chemoradioresistance of Esophageal Squamous Cell Carcinoma

Jiongyu Chen†, Zhangzhu Zhou‡, Xueqiong Lin§, Jiahui Liao†, Yujie Zhang¶, Bingmeng Xie† and Lin Peng†

1Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China, 2Department of Laboratory, Jiangmen Central Hospital, Jiangmen, China, 3Department of Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China, 4Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, China, 5Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China

Cadmium (Cd) exposure has been implicated in the etiology of esophageal squamous cell carcinoma (ESCC), albeit with inconsistent results from epidemiologic studies and without causal evidence. In this study, we explore the relationship of Cd exposure and the development, progression and therapeutic resistance of ESCC. A total of 150 ESCC patients and 177 matched controls from a coastal region with a high incidence of ESCC in China were included in the study. It was found that the median blood Cd level (BCL) was significantly higher in ESCC patients than that in the controls. Odds ratios for ESCC risk were 3.12 (95% CI 1.54-6.30) and 3.71 (95% CI 1.84-7.48) in the third and fourth quartiles of Cd distribution, respectively. Notably, BCL above 4.71 μg/L was strongly associated with shorter progression-free survival time compared to that below 1.60 μg/L (p < 0.001).

The chronic Cd-treated ESCC cells (CCT-ESCC) CCT-EC109 and CCT-EC9706 exhibited increased cell proliferation and tumorigenesis, enhanced migration and invasion, and upregulated EMT biomarkers following 12 weeks of exposure to 5 μM cadmium chloride. Furthermore, Cd treatment attenuated the efficacy of 5-fluorouracil, cisplatin and irradiation treatment in CCT-ESCC cells both in vitro and in vivo. Moreover, we revealed that Cd stimulated the cancer cell stemness and Wnt/β-catenin signaling pathway in the CCT-ESCC cells. Additionally, 5-aza-2-deoxy-cytidine treatment resulted in suppression of the Wnt/β-catenin signaling pathway and rescue of the Cd-induced cell radioresistance. These results offer new insights into the role of environmental Cd exposure in the development, progression and chemoradioresistance of ESCC.

Keywords: cadmium, esophageal squamous cell carcinoma, chemoradioresistance, cancer stem cell, Wnt/β-catenin

Abbreviations: ALDH, aldehyde dehydrogenase; BCL, blood cadmium level; CSC, cancer stem cell; DDP, cisplatin; EMT, epithelial–mesenchymal transition; ESCC, esophageal squamous cell carcinoma; 5-Fu, 5-Fluorouracil; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PFS, progression-free survival.
INTRODUCTION

Esophageal cancer is a malignant digestive tract cancer which ranks the seventh in incidence and is the sixth leading cause of cancer-related mortality (Sung et al., 2021). Esophageal squamous cell carcinoma (ESCC) accounts for 90% of all cases of esophageal cancer globally (Abnet et al., 2018). Therefore, understanding the etiology and tumor biology, as well as identifying risk factors for ESCC progression and therapeutic resistance, are of great importance.

Some epidemiological features, such as the varied ESCC incidence in gender and geographical regions, point to the possible role of environmental factors in the development of ESCC. Heavy drinking and smoking and their synergic effects are documented to be the major risk factors of ESCC in western countries. However, in lower income countries with a high-incidence of ESCC, the major risk factors for ESCC have yet to be elucidated, although dietary components (e.g., nutritional deficiencies or nitrosamines consumption) and environmental carcinogen exposure have been suspected (Ke et al., 2002; Li and Yu, 2003; Lin et al., 2017; McCormack et al., 2017; Smyth et al., 2017; Znaor et al., 2003). The definitive environmental carcinogen with strong evidence for a causative role in ESCC has not been established. The individual variability, which includes genes and lifestyle of each person, has to be taken into account in precision cancer medicine (Collins and Varmus, 2015). Nevertheless, little attention has been paid to the potential antagonistic effect of environmental factors in the therapeutic efficacy of cancer treatment.

Cadmium (Cd) is a ubiquitous environmental pollutant, whose biological half-life in humans is 10–35 years, thereby posing long-term health risks. Cd and its compounds have been designated as Group 1 carcinogens since 1993, by the International Agency for Research on Cancer (IARC), based on the strong epidemiological evidence that showed a causal connection with the development of lung cancer (IARC, 1993). Later, a positive association between Cd exposure and cancer of the kidney and prostate in human was subjected to further verification in clinical and experimental studies. Interestingly, an earlier preliminary study demonstrated that Cd prevented the cytotoxic effect of 5-fluorouracil (5-FU) on breast cancer cells by modifying the cell cycle and apoptotic profiles (Asara et al., 2012). Whether Cd could also cause an adverse impact on the sensitivity of ESCC cells to chemotherapeutic agents, and irradiation treatment, remains unknown.

In this study, we conducted a case-control study to explore the association between the risk and prognosis of ESCC and environmental Cd exposure in a general population from a region with a high incidence of ESCC. This area displayed 11.43 ESCC patients per 100,000 compared to the worldwide incidence of 5.2 per 100,000 (Tian et al., 2020). Furthermore, we investigated the cause-and-effect relationship between chronic Cd exposure and malignant progression and chemoradiosensitivity of ESCC cells both in vitro and in vivo. Lastly, we investigated the possible molecular mechanisms behind Cd carcinogenesis and chemoradioresistance in ESCC.

MATERIALS AND METHODS

Case-Control Study

Study Population and Sample Collection

The case-control study was carried out in the Cancer Hospital and the First Affiliated Hospital of Shantou University Medical College. One hundred and fifty ESCC patients with an average age of 59 ± 10 years and 177 healthy controls with 57.47 ± 14.12 years old were included in the study. The cases were confirmed histopathologically and followed chemoradiotherapy. The inclusion criteria for the patients and controls were as follows: over 18 years old, of Teochew origin and living in the Chaoshan region for at least 10 years. Exclusion criteria were pregnancy, occupational Cd exposure history and a recent history of blood transfusion. Since the patients and controls have similar dietary style and lifestyle, they were matched primarily by frequency of geographic and social class status. A sample of 2 ml venous whole blood was collected from every participant and stored in K₂-EDTA metal-free vials at a −70°C refrigerator until analysis. All participants gave their written informed consents after receiving detailed explanations of the study and potential consequences prior to enrollment. This study was approved by the Ethical Committee of the Cancer Hospital of Shantou University Medical College.

Blood Sample Processing and Cd Level Analysis

Before analysis, blood samples were digested as previously described (Peng et al., 2015). A multi-element standard solution (10 μg/ml, Agilent Technologies) was used to establish the standard curve, then the Cd content was determined by an Agilent 7900 ICP-MS (Agilent Technologies, Santa Monica, CA, United States) with 99.999% Argon. The linear correlation coefficient of the standard calibration curve was 0.9997. Multiple-element standard stock solutions (100 μg/ml, Agilent Technologies) were used as internal standards and the trace elements of the whole blood (Serono,Billingstad, Norway) was determined for daily internal quality control. The limit of detection was 0.001 μg Cd/L.

In Vitro Study

Cell Lines and Culture

The human ESCC cell lines EC109 and EC9706 were gifts from Dr. Jing Yu and Dr. Xianbin (Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, China) (Peng et al., 2020; Yu et al., 2019). Cells were maintained in RPMI-1640 medium (HIMEDIA, Mumbai, India) with 10% fetal bovine serum (FBS; HyClone, Logan, UT, United States) in an atmosphere of 5% CO₂ at 37°C. To simulate environmental Cd exposure, 5 μM cadmium chloride (purity 99%; Sigma, St. Louis, MO, United States) was selected for continuous exposure based on previous studies (Pujik et al., 2017; Peng et al., 2019; Son et al., 2012; Wei and Shaikh, 2017) and the
LC₅₀ values. ESCC cells that were chronically treated (over 12 weeks) with Cd were named CCT-ESCC, specifically CCT-EC109 and CCT-EC9706 cells.

Cell Proliferation and Cytotoxicity Evaluation

Cell viability was quantitatively analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Sigma–Aldrich, St. Louis, MO, United States) using a Multiskan MK3 reader (Thermo Fisher Scientific, Inc.) as described previously (Peng et al., 2019). To determine cell survival, the value of relative cell viability for chemosensitivity analysis was normalized to cells without drug treatment, which was equivalent to 100% cell viability. Experiments were performed in triplicate.

Cell Migration and Invasion Assay

Transwell assays were used to analyze the influence of Cd on cell migration and invasion ability. The procedures have previously been described in detail (Peng et al., 2019). Experiments were independently performed in triplicate.

Drug and Irradiation Treatment

To investigate the response of CCT-ESCC cells to anti-cancer drugs, both CCT-ESCC cells and their parental cells were treated with 0, 0.5, 1, 5, 10, 20 μg/ml of 5-fluorouracil (5-FU) (Hainan Chioitec Pharmaceuticals Co., Ltd., Hainan, China) and 0, 0.1, 0.5, 1, 2.5, 5, 10 μg/ml of cisplatin (DDP, Hansoh Pharma Co. LTD., Jiangsu, China) for 48 h. To explore the role of DNA methylation in Wnt/β-catenin signaling and in Cd-induced radio-resistance, cells were treated with 50 mM 5-aza-2-deoxy-cytidine (5-aza-CdR, Santa Cruz, Dallas, Texas, United States), a demethylation agent for 48 h. For irradiation experiment, the cells were subjected to 6 MV X-ray irradiation using a linear accelerator (23EX; Varian, United States) at single doses of 0, 2, 4, 6 and 8 Gy with the following radiation characteristics: size of the radiation field, 30 cm × 30 cm; the source skin distance, 100 cm; and dose-rate, 285 cGy/min.

Clonogenic Cell Survival Assay

After X-ray radiation, the cells were cultured for 14 days, and the colonies were stained with Giemsa for 10 min following paraformaldehyde fixation. The number of colonies (≥50 cells per colony) was counted under a light microscope. The radiosensitivity was estimated in the form of percentage of survival fraction (SF) and the sensitization enhancement ratio (SER) was calculated by cell survival curve using the multi-target/single-hit model as previously described (Cai et al., 2019). All groups were assessed in triplicate.

Tumor Sphere Formation Assay

The tumor sphere formation assay was used to estimate the percentage of cancer stem/progenitor cells present in EC109, EC9706, CCT-EC109 and CCT-EC9706 cells according to a method previously described (Johnson et al., 2013). The sphere number (>50 cells) in each well was quantified from each replicate well under a microscope (Olympus, Japan).

Flow Cytometry Assay

The CCT-EC109 and CCT-EC9706 cells and their parental cells were measured for cells expressing high levels of aldehyde dehydrogenase (ALDH), using an ALDEFLUOR Kit (STEMCELL Technologies, Canada) according to the manufacturer’s protocol. Furthermore, cells were treated with CD44 monoclonal antibody-PE conjugates and CD24 monoclonal antibody labeled with FITC (Becton Dickinson and Company, United States) for 2 h at room temperature. The flow cytometric analysis for CSC identification was performed using the C6 Flow Cytometer (Becton, Dickinson and Company, United States).

Western Blotting

Western blot was carried out according to standard procedures, as described previously (Peng et al., 2019). The following antibodies were used for EMT analysis: antibody against β-catenin, N-cadherin, vimentin and E-cadherin (1:1,000; Cell Signaling Technology, Beverly, MA, United States). The E/N cadherin switch was therefore evaluated with the E/N cadherin expression ratio.

Immunofluorescence Analysis

Immunofluorescence detection was performed for β-catenin and pGSK3β using primary anti-β-catenin (1:100, Cell Signaling Technology, United States), pGSK3β (1:100, Cell signaling Technology, United States) and secondary antibodies (1:2000, ZSGB-BIO, China) according to previously described methods (Peng et al., 2019). Nuclei were stained with DAPI. Fluorescence images were taken with a fluorescence microscope (Olympus BX51, Japan).

Quantitative Real-Time PCR

Total RNA was extracted from the cells using TRIzol (Invitrogen, Grand Island, NY, United States) and reversely transcribed using a reverse transcriptase PCR kit (Takara, Shiga, Japan). qPCR was performed using SYBR Green qPCR SuperMix (Bio-Rad, California, United States) and an ABI 7500 Fast Sequence Detection system (ABI, Foster, United States). The following primers were used for qPCR analysis for β-catenin signaling: cyclin D1 forward 5-TGTCCATTACCGCTCTCA-3 and reverse 5-CAGGGCTTCGATCTGCTC-3; cyclin E forward 5-AAAAGGTTTCAGGTATCAG-3 and reverse 5-TGTGGG TGCTGTATGTGTG-3; c-myc forward 5-GCCCCCTCAAGCT TAGCTTCA-3 and reverse 5- TTCGAGATATCCCTCGGCTGG-3; c-jun forward 5-AAGAATCGGAGACTCCTC-3 and reverse 5-CTCTGTGCATCTGCTACG-3; β-actin forward 5-AGCGAGCATCCCCCAAAGTT-3 and reverse 5-GGGCAG GAAGGCTCATCATT-3. Gene expression relative to β-actin was determined by the comparative CT method (2^{−ΔΔCT}). All experiments were performed in triplicate.

In Vivo Analysis

Xenograft Tumor Model

The study was conducted on 4-week-old BALB/c nude mice under pathogen-free conditions. The mice were obtained from
TABLE 1 | BCLs in the survey population and the associations between ESCC risk and BCLs.

Groups	Controls	Patients	Or (95% CI)	p		
	n	BCLs (µg/L), median (P25, P75)	n	BCLs (µg/L), median (P25, P75)		
Total	177	1.63 (1.14,3.07)	150	2.60 (1.60,4.71)	1.11 (1.01,1.21)	0.04a
<1.14	45	0.84 (0.57,0.96)	16	0.92 (0.72,1.06)	Reference	
1.14–1.63	44	1.31 (1.22,1.46)	23	1.43 (1.30,1.49)	1.49 (0.70,3.21)	0.30a
1.63–3.07	44	2.21 (1.95,2.43)	50	2.26 (1.82,2.64)	3.12 (1.54,6.30)	<0.01a
≥3.07	44	6.28 (4.95,7.51)	61	5.08 (3.97,7.01)	3.71 (1.84,7.48)	<0.001a

Blood cadmium levels (BCLs), Odds ratios (OR), 95% confidence intervals (CI), and p < 0.05 was considered statistically significant.

RESULTS

BCLs Are Associated With ESCC Risk and Prognosis

The BCLs in the patients and controls according to gender and age were shown in Table 1. The median concentration of BCL is higher in the ESCC patients (2.60, 1.60–4.71 µg/L) than in the controls (1.63,1.14–3.07 µg/L) (p < 0.001; Figure 1A), regardless of age (Figure 1B). BCLs were associated with increased risk of ESCC, based on an OR of 1.11 (95% CI 1.01, 1.21), and there was a dose-response relationship between the BCLs and ESCC risk by the trend test (p < 0.001), with the ORs of 3.12 (95% CI 1.54, 6.30) and 3.71 (95% CI 1.84, 7.48) in the third and fourth quartiles, respectively. In addition, male patients tended to have higher BCLs than the male controls, while there was no difference found in the female participants (p < 0.001, Figure 1C).

Using the median concentration of 2.61 µg/L in the controls as the threshold value of BCLs, the associations between clinicopathological features and subjects by Cd burden status (i.e., <2.61 µg/L vs. ≥2.61 µg/L) was evaluated by univariate and multivariate logistic regression (Table 2). In the univariate model analysis, male patients (p < 0.001), cases with a smoking history (p < 0.001) or alcohol consumption (p < 0.001), cases with no disease history (p = 0.05) or with low body mass index (BMI) (p = 0.02) tended to have more Cd accumulation. However, further multivariate logistic regression analysis excluded the role of tobacco (p = 0.34) or alcohol (p = 0.11) in BCLs.

The results of Kaplan-Meier analysis showed that BCL, gender, age, clinical stage, and N classification were all associated with PFS (log-rank test; all p < 0.05; Figures 2A–E). PFS decreased with increasing clinical stage and N classification (p = 0.04; p = 0.03). Specifically, patients being male and young at diagnosis had a shorter PFS (p = 0.03; p = 0.02). With reference to quartile analysis, patients with the highest BCL quartile have a shorter PFS than that of the lowest quartile (>4.71 µg/L vs. <1.6 µg/L,log-rank test p = 0.04). No association was found in smoking or alcohol history, family history of cancer, disease history, T or M classification related to PFS (log-rank test; all p > 0.05; Supplementary Figure S1). The Cox proportional hazards model was used to analyze the association between BCL and PFS. The median concentration of BCL is higher in the ESCC patients (2.60, 1.60–4.71 µg/L) than in the controls (1.63,1.14–3.07 µg/L) (p < 0.001; Figure 1A), regardless of age (Figure 1B). BCLs were associated with increased risk of ESCC, based on an OR of 1.11 (95% CI 1.01, 1.21), and there was a dose-response relationship between the BCLs and ESCC risk by the trend test (p < 0.001), with the ORs of 3.12 (95% CI 1.54, 6.30) and 3.71 (95% CI 1.84, 7.48) in the third and fourth quartiles, respectively. In addition, male patients tended to have higher BCLs than the male controls, while there was no difference found in the female participants (p < 0.001, Figure 1C).

Using the median concentration of 2.61 µg/L in the controls as the threshold value of BCLs, the associations between clinicopathological features and subjects by Cd burden status (i.e., <2.61 µg/L vs. ≥2.61 µg/L) was evaluated by univariate and multivariate logistic regression (Table 2). In the univariate model analysis, male patients (p < 0.001), cases with a smoking history (p < 0.001) or alcohol consumption (p < 0.001), cases with no disease history (p = 0.05) or with low body mass index (BMI) (p = 0.02) tended to have more Cd accumulation. However, further multivariate logistic regression analysis excluded the role of tobacco (p = 0.34) or alcohol (p = 0.11) in BCLs.

The results of Kaplan-Meier analysis showed that BCL, gender, age, clinical stage, and N classification were all associated with PFS (log-rank test; all p < 0.05; Figures 2A–E). PFS decreased with increasing clinical stage and N classification (p = 0.04; p = 0.03). Specifically, patients being male and young at diagnosis had a shorter PFS (p = 0.03; p = 0.02). With reference to quartile analysis, patients with the highest BCL quartile have a shorter PFS than that of the lowest quartile (>4.71 µg/L vs. <1.6 µg/L,log-rank test p = 0.04). No association was found in smoking or alcohol history, family history of cancer, disease history, T or M classification related to PFS (log-rank test; all p > 0.05; Supplementary Figure S1). The Cox proportional hazards model was used to analyze the association between BCL and PFS. The median concentration of BCL is higher in the ESCC patients (2.60, 1.60–4.71 µg/L) than in the controls (1.63,1.14–3.07 µg/L) (p < 0.001; Figure 1A), regardless of age (Figure 1B). BCLs were associated with increased risk of ESCC, based on an OR of 1.11 (95% CI 1.01, 1.21), and there was a dose-response relationship between the BCLs and ESCC risk by the trend test (p < 0.001), with the ORs of 3.12 (95% CI 1.54, 6.30) and 3.71 (95% CI 1.84, 7.48) in the third and fourth quartiles, respectively. In addition, male patients tended to have higher BCLs than the male controls, while there was no difference found in the female participants (p < 0.001, Figure 1C).

Using the median concentration of 2.61 µg/L in the controls as the threshold value of BCLs, the associations between clinicopathological features and subjects by Cd burden status (i.e., <2.61 µg/L vs. ≥2.61 µg/L) was evaluated by univariate and multivariate logistic regression (Table 2). In the univariate model analysis, male patients (p < 0.001), cases with a smoking history (p < 0.001) or alcohol consumption (p < 0.001), cases with no disease history (p = 0.05) or with low body mass index (BMI) (p = 0.02) tended to have more Cd accumulation. However, further multivariate logistic regression analysis excluded the role of tobacco (p = 0.34) or alcohol (p = 0.11) in BCLs.
hazard regression model revealed that in addition to gender (HR = 3.09; 95% CI 1.18–8.11; p = 0.02), disease history (HR = 2.65; 95% CI 1.06–6.64; p = 0.004), age at diagnosis (HR = 0.39; 95% CI 0.21–0.74; p = 0.004), BCL (<1.60 vs. > 4.71 μg/L) (HR = 2.77; 95% CI 1.10–6.97; p = 0.03) was an independent prognostic factor for ESCC progression (Figure 2F).
FIGURE 2 | Compare the PFS of ESCC patients with Cd burden, gender, age, clinical stage, and N classification by Kaplan–Meier log-rank tests (A–E) and multivariate Cox analysis for the PFS risk related to different groups (F).
FIGURE 3 | Cell proliferation was determined by MTT assay in EC109 (left panel) and EC9706 (right panel) cells following 5 μM Cd treatment for 10 weeks (A). Comparison xenograft tumor growth between EC109 and CCT-EC109 xenograft mice (n = 5) (B). Invasion was determined by transwell assays with Matrigel (magnification ×100) (C1,D1) and migration was assessed by transwell assay without Matrigel (C2,D2). Representative Western blot image and the corresponding quantitative analyses for the expression of EMT biomarkers (E-cadherin, N-cadherin and vimentin) in ESCC cells with the presence and absence of Cd (E,F). The values are mean ± SD from three independent experiments. Results are presented as mean ± SD from three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001, compared with the controls.
FIGURE 4 | MTT assay on the relative cell viability of CCT-EC109 and CCT-EC9706 and their parental cells before and after treatment with DDP (A) or 5-FU (B) for 48 h. Representative colony formation for different cell groups following irradiation (C) and survival curves for different cell groups following irradiation at different doses were fitted according to the multi-target single-hit model (D). Representative photos (left panel of E) and growth curves (right panel of E) for xenograft tumors following injection with EC109 and CCT-EC109 cells combined with 10 Gy irradiation. Data represent mean ± SD of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001.
FIGURE 5 | Number of tumor spheres over 50 cells was counted in the Cd exposed and control groups (A) and flow cytometric analysis for CD44+/CD24−/Low (left panel of (B,C)) and ALDH (right panel of B&C) expression in CCT-ESCC cells and controls. Data present Mean ± SD from 3 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
Chronic Cd Exposure Promotes Proliferative and Metastatic Phenotypes of ESCC Cells Both in Vitro and in Vivo

Continuous exposure of EC109 and EC9706 cells to 5 μM CdCl₂ for 12 weeks resulted in a marked increase in cell proliferation compared with the parental cells (Figure 3A, p < 0.001). Cd-stimulated tumorigenicity was also demonstrated by xenograft tumor experiments in which the nude mice injected with CCT-EC109 exhibited more rapid formation of tumors compared to that of EC109 cells, especially in the period from day 36 post injection (Figure 3B, p < 0.01).

Transwell assays were performed to assess cell migration and invasion. The results showed that the invasive capacity of CCT-EC109 and CCT-EC9706 cells was markedly increased with 1.72- (p < 0.01) and 1.54- (p < 0.01) fold of their parental controls, respectively (Figure 3C). Similarly, CCT-EC109 and CCT-EC9706 cells displayed robust migration as compared with the controls, as the number of transmigrated cells was 1.68 and 1.26 times greater than that of EC109 (p < 0.001) and EC9706 (p < 0.01) cells, respectively (Figure 3D). And the ratio of invasive cell number/migratory cell number Moreover, we observed the hallmark of EMT, E-cadherin/N-cadherin switch and vimentin upregulation in the CCT-EC109 and CCT-EC9706 cells (Figures 3E,F).

Epigenetic Regulation of Wnt/β-Catenin Involves in Cd Carcinogenesis and Therapeutic Resistance in ESCC Cells

Upregulation of β-catenin and p-GSK3β, as well as decreased expression of CK1α, was observed in both CCT-EC109 and CCT-EC9706 cells, as demonstrated by Western blotting (Figure 6A1) and immunofluorescence analyses (Figure 6B). Subsequent quantitative qRT–PCR analysis results confirmed the elevated transcription of target genes downstream of Wnt signaling pathway, including c-Myc, c-Jun, cyclin D1 and cyclin E, following chronic Cd exposure (Figure 6C). These results suggest that prolonged Cd exposure elevated the activity of the canonical Wnt signaling pathway in CCT-ESCC cells.

Since epigenetic deregulation of Wnt/β-catenin, especially promoter methylation of tumor suppressor genes, has been implicated in the molecular pathology of ESCC (Singh et al., 2019), as well as in CSC fate modulation (Deshmukh et al., 2017), we tested CCT-ESCC cells with the demethylating agent 5-aza-CdR to explore the role of DNA methylation in this CCT-ESCC model. The results, as shown in Figure 6A2, indicated that 5-aza-CdR was able to downregulate the expression of p-GSK3β and β-catenin (Figure 6A2) in both CCT-EC109 and CCT-EC9706 cells. Further analysis showed that demethylation repressed the transcription of target genes of β-catenin signaling in both the exposed cells and their parents (Figure 6D), but the alterations in exposed group showed more obviously. Importantly, 5-aza-CdR treatment significantly rescued the radiosensitivity in both CCT-EC109 and CCT-EC9706 cells while slight enhancement of radiosensitivity could be found in their parental cells with no significant differences (Figure 6E).

DISCUSSION

The present study indicates a significant association between elevated risk of ESCC and blood Cd burden among individuals without occupational exposure particularly in men and subjects with no
FIGURE 6 | Western blot analysis on the expression of CK1α, GSK3β, p-GSK3β and β-catenin in CCT-ESCC and their parental cells (A1), and with or without 5-aza-CdR treatment in CCT-ESCC cells (A2), and immunofluorescence staining of p-GSK3β, β-catenin and CK1α in the exposed and control cells (40×) (B). qRT-PCR results for relative transcript levels of Wnt signaling pathway target genes in CCT-ESCC cells and control cells (C), and with or without 5-aza-CdR treatment in CCT-ESCC cells and the controls (D). Gross view of colony formation (left panel) and corresponding quantitative analyses of the relative surviving fraction in CCT-ESCC cells and control cells (E). β-actin was used as the housekeeping gene and raw data was analyzed by the 2−ΔΔCt method. The surviving fraction was calculated as follows: (number of colonies/number of cells plated)irradiated/(number of colonies/number of cells plated)nonirradiated. Data represent mean ± SD of three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001.
In the current study, multivariate logistic regression analysis revealed that high BCLs in patients were associated with gender, disease history and BMI, while alcohol or tobacco consumption had no role in blood Cd burden. These results accord with earlier findings that tobacco and alcohol consumption were not significant factors in any of the major epidemic ESCC rural populations of the world whereas environmental and nutritional factors were accounted (Freedman et al., 2007; Kmet and Mahboubi, 1972; Rensburg, 2019; Tran et al., 2005). Also, the strong correlation between BCLs and male gender in current study is consistent with the gender difference with 2 to 3-fold increase in incidence and mortality of ESCC in males according to Global cancer statistics 2020 (Sung et al., 2021).

A previous study indicated that the mortality from all cancers and esophageal cancer in a Chinese population living around a multi-metal sulphide mine were elevated compared with the lower levels of Zn and Se found in the scalp hair samples, the mean concentrations of arsenic, nickel and Cd were significantly higher in the cases as compared to the controls (Kazi et al., 2015). Some evidence from environmentally disadvantaged regions indicated the correlation between high levels of Cd in drinking water and the high prevalence of esophageal cancer (Amer et al., 1990; Mannyrbayev et al., 2016). Nevertheless, a disease-mapping study from Norwich, a city that was exposed to zinc Cd sulfide during the cold war reported conflicting data suggesting environmental pollution unlikely influence esophageal cancer risk (Beale et al., 2010). The current study results were consistent with our earlier study displaying Cd and lead exposure increased the gastrointestinal cancer risk in the Chaoshan population. It showed the median BCL in gastrointestinal cancer patients was significantly higher than that of controls (2.12 vs. 1.47 μg/L, p < 0.001) and individuals with BCLs >2.12 μg/L had higher risk of gastrointestinal cancers (Lytle et al., 2018). These findings indicated that assessment of the Cd burden in the general population might help early identification of subjects with potential of high risk for ESCC. Moreover, our results with reference to quartile analyses indicate that a significant association between BCLs and ESCC risk might exist at high Cd exposure levels, suggesting that Cd exposure above the threshold might become a concern.

Recently, an experimental study suggested that CDK6 upregulation resulting in inhibition of human esophageal epithelial cell apoptosis might involve in the etiological mechanism of Cd-induced esophageal cancer (Yang et al., 2020). However, it is worth noting that the exposure model used was based on short-term Cd exposure below 24 h and therefore no malignant transformation could be observed. It has been indicated that prolonged Cd treatment in bronchial, lung, prostate or breast epithelial cells induced malignant transformation with hyperproliferation and increased potential to invade and migrate (Achanzar et al., 2001; Benbrahim-Tallaa et al., 2009; Person et al., 2013). Similarly, exposure of breast cancer cells and nasopharyngeal carcinoma cells to Cd promoted cell malignant phenotypes (Achanzar et al., 2001; Benbrahim-Tallaa et al., 2009; Peng et al., 2019; Person et al., 2013; Wei and Shaikh, 2017). Consistent with the literature, the present research also observed chronic Cd exposure conferred ESCC cells a growth advantage and metastasis-associated phenotype, as evidenced by enhanced proliferation, invasion and migration. These results established a cause-and-effect association between chronic low-level Cd exposure and ESCC progression, showing Cd not only conferred ESCC cells a growth advantage in vitro and in vivo, but also stimulated metastasis-associated phenotype, as evidenced by enhanced invasion and migration along with EMT, characterized by cadherin switch. These results corroborate the findings of previous work in neoplastic transformation of non-cancer epithelial cells induced by Cd, which showed chronic Cd exposure induced epithelial cells into a more invasive and migratory phenotype by inducing EMT (Vanlaeys et al., 2020). EMT program has been shown to be crucial in tumor initiation, metastasis, cancer stemness and resistance to chemotherapy and radiation, and been associated with inferior cancer survival rate as well (Cheung et al., 2011; Loh et al., 2019; Roy et al., 2021). Combined with our earlier observations in chronic Cd-treated nasopharyngeal carcinoma cell model (Peng et al., 2019), these findings strongly suggest the carcinogenic and tumor-promoting effect of chronic Cd exposure in various human cancers.

Precision medicine is an emerging approach taking into account of individual variability in genes, environment, and lifestyle factors (Saadeh et al., 2019). A previous investigation on possible connection between Cd and chemosensitivity was conducted in breast cancer cells exposed to Cd for several days, which demonstrating that 5-FU cytotoxicity on the MCF-7 breast cancer cell line could be reduced by Cd treatment for 24 h (Asara et al., 2012). The present research suggests that long-term Cd treatment not only prevents the cytotoxic effect of 5-FU and DDP on CCT-EC109 and CCT-EC9706 cells, but also enhances the radiation resistance in both CCT-ESCC cells and CCT-CNE1 and CCT-CNE2 cells as well. To the best of our knowledge, this is the first study to demonstrate Cd exposure confers radio-resistance in cancer cells. These results suggest that Cd exposure is likely to be related to chemoradioresistance, which may help us understand the role of environmental factors in inter-individual variability in responses to antineoplastic drugs and radiation. Generally, acquisition of chemo- or radio-resistance ultimately results in esophageal cancer relapse and therefore poor prognosis. Thus, these findings may explain previous reports that ESCC patients exposed to long-term environmental Cd had an increased risk of mortality (Wang et al., 2011). It may also
The effects of Cd on cancer stem cell-related signaling pathways have been addressed in Cd treated-MCF-7 and HepG2 cells, i.e. the activation of Ras/Raf/MEK/ERK signaling cascade (Ju et al., 2017) and the activation of MAPK/ERK signaling pathway in human lung adenocarcinoma cells (Huff et al., 2016). It is clear that hyperactivated Wnt signaling plays critical role in the pathogenesis of esophageal cancer, cancer progression and chemo- and radio-resistance (Su et al., 2016; Wei et al., 2021).

Our earlier observations in prolonged Cd-treated nasopharyngeal carcinoma cells showed that chronic Cd exposure aggravates malignant phenotypes of nasopharyngeal carcinoma by activating the Wnt/β-catenin signaling pathway via hypermethylation of the casein kinase 1α promoter (Peng et al., 2019). Similarly, the present research revealed Cd exposure induced aberrant activation of Wnt/β-catenin pathway in ESCC cells. Prior studies that have noted treatment of esophageal cancer cells with 5-aza-CdR could suppress the Wnt/β-catenin signaling activation (Sun et al., 2021) and resensitize cells to irradiation (Sakakura et al., 2007). In present, we explored the stemness induced by Cd in ESCC initiation and development, further studies with more focus on Cd orchestrating CSC-like properties in esophageal epithelial cells is suggested.

There are some limitations in this study. Firstly, we used blood Cd concentrations but not urinary Cd to estimate the heavy metal burden in participants. It is generally believed that dietary intake is one of the major environmental sources of Cd exposure in the general population (Hartwig, 2013). A literature-based survey on population with no occupational exposure indicates that Cd levels in urine and blood are related to diet Cd intake with the correlation coefficients of 0.570 (p < 0.01) and 0.792 (p < 0.01), respectively. This study suggests the possibility of estimating dietary Cd burden from Cd in blood for the general population (Ikeda et al., 2011). In another recent case-control study, BCL was proposed as a valuable indicator for early lung cancer detection (Lener et al., 2021). Furthermore, the identification for environmental sources or dietary exposure to Cd were not included in this investigation, hence we were not able to adjust for other confounders which could determine Cd exposure. Thirdly, having in mind that other trace elements especially heavy metals can contribute to ESCC susceptibility, progression and treatment resistance, evaluation of trace elements profile in subjects and the complex interaction among trace elements might help to better understand the implication of Cd in ESCC progression. Lastly, the present study focuses on cancer stemness and the Wnt signaling pathway involved in the mechanism of Cd-induced ESCC progression and chemoradioresistance. Further studies are needed to clarify whether these mechanisms involved in Cd-induced malignant transformation in normal esophageal epithelial cells.

CONCLUSION

The current work elucidates the association between chronic Cd exposure and the development and progression of ESCC. Additionally, our study expands the body of knowledge concerning Cd exposure in cancer chemo- and radio-resistance. Our study suggests that screening for body Cd burden by monitoring BCLs could be used to identify patients with high-risk of ESCC, and to predict outcomes prior to treatment. In clinical practice, monitoring the body Cd level for evaluation of ESCC patients warrants further research.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethical Committee of the Cancer Hospital of Shantou University Medical College. The patients/participants provided their written informed consent to participate in this study. The animal study was reviewed and approved by the
Ethical Committee of the Cancer Hospital of Shantou University Medical College.

AUTHOR CONTRIBUTIONS

JC, ZZ, JL, and YZ carried out the experiments. XL contributed to blood sample collection and database management. BX carried out the data analysis. LP designed the work, supervised the overall project and wrote the original draft. YH co-designed the work and revised the manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (81602886); the National Natural Science Foundation of Guangdong Province (2020A1515010945, 2016A030313062); the Science and Technology Innovation Strategy Foundation of Guangdong Province (180918114960704); the Science and Technology Planning Project of Shantou City, China ((2018) 121-12); and the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (2020.KSFG04.A).

ACKNOWLEDGMENTS

We are grateful to all the volunteers for participating in the study. We thank Stanley Lin for his constructive comments and language editing.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.792933/full#supplementary-material
Lytle, N. K., Barber, A. G., and Rey, T. (2018). Stem Cell Fate in Cancer Growth, Progression and Therapy Resistance. *Nat. Rev. Cancer* 18 (11), 669–680. doi:10.1038/s41568-018-0056-x

Mamyrbaev, A., Djarkenov, T., Dusobyayev, A., Dusembayeva, N., Shpakov, A., Umarova, G., et al. (2016). The Incidence of Malignant Tumors in Environmentally Disadvantaged Regions of Kazakhstan. *Asian Pac. J. Cancer Prev.* 17 (12), 5203–5209. doi:10.22034/apjcp.2016.17.12.5203

McCormack, V. A., Menya, D., Munishi, M. O., Dramalala, C., Gasmelseed, N., Leon Roux, M., et al. (2017). Informing Etiologic Research Priorities for Squamous Cell Esophageal Cancer in Africa: A Review of Setting-specific Exposures to Known and Putative Risk Factors. *Int. J. Cancer* 140 (2), 259–271. doi:10.1002/ijc.30292

Peng, J., Jing, X., Wu, J., Hong, D., Hu, X., Wang, Q., et al. (2020). Metformin’s Effects on Apoptosis of Esophageal Carcinoma Cells and Normal Esophageal Epithelial Cells: An In Vitro Comparative Study. *Biosmed. Res. Int.* 2020, 1–10. doi:10.1155/2020/1068671

Peng, L., Huang, Y.-T., Chen, J., Zhuang, Y.-X., Zhang, F., Chen, J.-Y., et al. (2018). Cadmium Exposure Aggravates Malignant Phenotypes of Nasopharyngeal Carcinoma by Activating the Wnt/β-Catenin Signaling Pathway via Hypomethylation of the Casein Kinase 1a Promoter. *Cancer* 11 (2), 81–93. doi:10.2147/CMAJ.S171200

Peng, L., Wang, X., Huo, X., Xu, X., Lin, K., Zhang, J., et al. (2015). Blood Cadmium burden and the Risk of Nasopharyngeal Carcinoma: a Case-Control Study in Chinese Chao Shan Population. *Environ. Sci. Pollut. Res.* 22 (16), 12323–12331. doi:10.1007/s11356-015-4533-4

Person, R. J., Tokar, E. J., Xu, Y., Orihuela, R., Ngalame, N. N. O., and Waalkes, M. P. (2013). Chronic Cadmium Exposure In Vitro Induces Cancer Cell Characteristics in Human Lung Cells. *Toxicol. Appl. Pharmacol.* 273 (2), 281–288. doi:10.1016/j.taap.2013.06.013

Qu, W., Tokar, E. J., Kim, A. J., Bell, M. W., and Waalkes, M. P. (2012). Chronic Cadmium Exposure In Vitro Causes Acquisition of Multiple Tumor Cell Characteristics in Human Pancreatic Epithelial Cells. *Environ. Health Perspect.* 120 (9), 1265–1271. doi:10.1289/ehp.1205082

Rensburg, S. V. (2019). Esophageal Squamous Cell Cancer Susceptibility: Environmental and Nutritional Associations Reveal a Universally Applicable Pathogenesis Scenario (Review). *World Acad. Sci. J. Technol.* 26 (3), 306–321. doi:10.5644/ama2006-124.235

Roy, S., Sunkara, R. R., Parmar, M. Y., Shaikh, S., and Waghmare, S. K. (2021). EMT Impairs Cancer Stemness and Plasticity: New Perspectives and Therapeutic Potential. *Front. Biosci.* 26, 238–265. doi:10.2741/4893

Saadeh, C., Bright, D., and Rustem, D. (2019). Precision Medicine in Oncology Practice. *Pharmacoeconomics Pharmacy Practice. ama* 48 (1), 90–104. doi:10.1044/ama2006-124.246

Sakacura, C., Miyagawa, K., Fukuda, K.-L., Nakashima, S., Yoshikawa, T., Kin, S., et al. (2007). Frequent Silencing of RUNX3 in Esophageal Squamous Cell Carcinomas Is Associated with Radioreistance and Poor Prognosis. *Oncogene* 26 (40), 5927–5938. doi:10.1038/sj.onc.1210403

Saxena, S., Singh, V., Singh, A., Sharma, I., Singh, L., Sharma, J., et al. (2018). Epigenetic Deregressions of Wnt/β-Catenin and Transforming Growth Factor Beta-Smad Pathways in Esophageal Cancer: Outcome of DNA Methylation. *J. Can. Res. Ther.* 15 (1), 192–203. doi:10.4103/jcrt.JCRT_63_17

Smyth, E. C., Lagergren, J., Fitzgerald, R. C., Lordick, F., Shah, M. A., Lagergren, P., et al. (2017). Oesophageal Cancer. *Perspect. World Acad. Sci. J. Pharm. Bio. Sci.* 271. doi:10.1289/ehp.1205082

Son, Y.-O., Wang, L., Poyil, P., Buddhraja, A., Hitron, J. A., Zhang, Z., et al. (2012). Cadmium Induces Carcinogenesis in BEAS-2B Cells through ROS-dependent Activation of PI3K/AKT/GSK-3β-catenin Signaling. *Toxicol. Appl. Pharmacol.* 264 (2), 153–160. doi:10.1016/j.taap.2012.07.028

Su, H., Lin, F., Deng, X., Shen, L., Fang, Y., Fei, Z., et al. (2016). Profiling and Bioinformatics Analyses Reveal Differential Circular RNA Expression in Radioresistant Esophageal Cancer Cells. *J. Transl. Med.* 14 (1), 225. doi:10.1186/s12976-016-0977-7

Sun, C.-X., Zhu, F., and Qi, L. (2021). Demethylated mir-216a Regulates High Mobility Group Box 3 Promoting Growth of Esophageal Cancer Cells through Wnt/β-Catenin Pathway. *Front. Oncol.* 11, 622073. doi:10.3389/fonc.2021.622073

Yang, J., Guo, T., Liang, X., Zhai, Y., Cheng, Y., Sun, H., et al. (2020). Cadmium Exposure Inhibits Apoptosis of Human Esophageal Epithelial Cells by Upregulating CDK6. *Ecotoxicology Environ. Saf.* 205, 111146. doi:10.1016/j.ecoenv.2020.111146

Yu, J., Wu, R., Wang, Z., Chen, S., Chen, S., Guo, G., et al. (2019). Cyclopamine Suppresses Human Esophageal Carcinoma Cell Growth by Inhibiting Glioma-Associated Oncogene Protein-1, a Marker of Human Esophageal Carcinoma Progression. *Med. Sci. Monit.* 25, 1518–1525. doi:10.12659/msm.912858

Znaor, A., Brennan, P., Gajalakshmi, V., Mathew, A., Shanta, V., Varghese, C., et al. (2003). Independent and Combined Effects of Tobacco Smoking, Chewing and Betel Nut Use on Oesophageal Cancer in Indian Men. *Int. J. Cancer* 105 (3), 681–686. doi:10.1002/ijc.11114

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Chen, Zhou, Lin, Xiao, Zhang, Xie, Huang and Peng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.