INVITED REVIEW

Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9)

Rainer Schulz · Klaus-Dieter Schlüter · Ulrich Laufs

Received: 4 December 2014 / Revised: 4 January 2015 / Accepted: 7 January 2015 / Published online: 20 January 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising treatment target to lower serum cholesterol, a major risk factor of cardiovascular diseases. Gain-of-function mutations of PCSK9 are associated with hypercholesterolemia and increased risk of cardiovascular events. Conversely, loss-of-function mutations cause low-plasma LDL-C levels and a reduction of cardiovascular risk without known unwanted effects on individual health. Experimental studies have revealed that PCSK9 reduces the hepatic uptake of LDL-C by increasing the endosomal and lysosomal degradation of LDL receptors (LDLR). A number of clinical studies have demonstrated that inhibition of PCSK9 alone and in addition to statins potently reduces serum LDL-C concentrations. This review summarizes the current data on the regulation of PCSK9, its molecular function in lipid homeostasis and the emerging evidence on the extra-hepatic effects of PCSK9.

Keywords PCSK9 · Heart · Cardiovascular disease · Cholesterol

Protein convertase–LDL receptor interaction

The main function of the proprotein convertase subtilisin/kexin (PCSK) type 9 (PCSK9) is the proteolytic maturation of secreted proteins such as hormones, cytokines, growth factors, and cell surface receptors [149]. The name PCSK9 stems from the relation to bacterial subtilisin and yeast kexin and the presence of nine secretory serine proteases. PCSK9 is expressed mainly in the liver, the intestine, the kidney, and the central nervous system [122].

PCSK9 is a 692 amino acid protein with a molecular weight of 72 kDa that consists of a prodomain (PD), a catalytic domain and a cysteine- and histidine-rich C-terminal domain (CHRD) [41] (Fig. 1). The best characterized function of PCSK9 relates to the binding to LDL-C receptors (LDLR). Pro-PCSK9 (72 kDa) is synthesized in the endoplasmic reticulum (ER) as is the precursor form (120 kDa) of the low-density lipoprotein (LDL) receptor (LDLR). The binding of pro-PCSK9 to the LDLR in the ER supports the transport of the LDLR from the ER [163] towards the Golgi complex, where the LDLR acquires its mature carbohydrate residues (160 kDa). Trafficking of pro-PCSK9 to the Golgi apparatus depends on the presence of the protein Sec24A [31]. Within the Golgi, the pro-domain of pro-PCSK9 is auto-catalytically cleaved off, but remains non-covalently bound to the mature PCSK9 assisting the folding of PCSK9, and blocking its catalytic activity [61]. Binding of pro-PCSK9 to the precursor form of the LDLR promotes PCSK9 auto-catalytic cleavage [163].

Some of the loss-of-function (LOF) mutations of PCSK9—as the exchange of amino acids C678X [15] or S462P [25]—abolish the release of PCSK9 from the ER as does loss of parts of its PD [49]. On its way through the Golgi and trans-Golgi complex, PCSK9 co-localizes with the protein sortilin; in sortilin-knockout mice the plasma PCSK9 concentration is decreased suggesting that such protein–protein interaction is required for cellular secretion of PCSK9 [66]. In healthy humans, circulating PCSK9...
levels directly correlate with plasma sortilin levels [66]. The exchange of amino acids S127R and D124G reduces secretion of PCSK9 from hepatocytes and increases the intracellular expression of PCSK9 [72]. It appears that partial proteolysis of PCSK9 is required prior to its cellular secretion [36]. Proteolysis of PCSK9 is regulated by phosphorylation at its residues serine 47 (PD) and serine 688 (CHRD) which occurs by a Golgi casein kinase-like kinase; an increase in epitope phosphorylation reduces proteolysis of PCSK9 [45].

Apart from acting as a chaperone to transport the precursor form of the LDLR from the ER, intracellular PCSK9 plays a role in regulating the expression of the mature LDLR by inducing intracellular degradation of the LDLR prior to its transport to the cell surface membrane. Given the fact that the mature LDLR and PCSK9 are found in the Golgi complex, it is likely that the LDLR degrading effect of PCSK9 occurs in or is initiated in the Golgi or trans-Golgi complex [107, 108]. The post-ER mechanism of LDLR degradation requires the catalytic activity of PCSK9 [13, 14].

If not degraded intracellularly, the mature LDLR is transported to the cell surface, where it resides in clathrin-coated pits because of its interaction with the low-density lipoprotein receptor adapter protein 1, which may cause autosomal recessive hypercholesterolemia (ARH). The LDLR undergoes endocytosis in the presence or absence of its ligand, entering the endocytic recycling compartment. The change in pH within this compartment allows dissociation of the LDLR from its ligand, which then becomes degraded in the lysosome while the LDLR recycles.

The main role of secreted extracellular PCSK9 is to post-translationally regulate the number of cell surface LDLR. Secreted PCSK9 binds to the epidermal growth factor repeat A (EGF-A) region of the LDLR [21, 32, 179]. For such binding, the catalytic activity of PCSK9 is not required [101, 115], but pH changes and changes in the positive [70] or negative [71] charges of PCSK9 epitopes affect its binding affinity to the LDLR [16, 62]. Mutations in the EGF-A binding domain of the LDLR associated with familial hypercholesterolemia increases PCSK9 binding [114]. The formed PCSK9–LDLR complex is internalized again by clathrin-mediated endocytosis [124, 130] and the complex is then routed to the sorting endosome/lysosome via a mechanism that does not require ubiquitination [172], but might involve interaction of the cytosolic tail of PCSK9 with the amyloid precursor protein like protein 2 [44]. At the acidic pH of the endosome/lysosome, an additional interaction between the ligand-binding domain of the LDLR and the C-terminal domain of PCSK9 occurs [49, 142]; as a consequence PCSK9 remains bound to the LDLR and the LDLR fails to adopt a closed conformation which is required for LDLR recycling. The failure of the LDLR to recycle appears to also involve ectodomain cleavage by a cysteine cathepsin in the sorting endosome [97]. Thus, by binding to the LDLR, PCSK9 disrupts the recycling of the LDLR leading to its degradation and subsequently a reduced number of available LDLRs. LDLR lacking its cytoplasmic domain are also degraded by PCSK9 [162] (Fig. 2).

PCSK9 undergoes self-assembly and forms PCSK9 dimers or trimers which have greater LDLR degrading activity [53]. One of the gain-of-function (GOF) mutations of PCSK9 (D374Y) is characterized by an enhanced PCSK9 self-assembly [53]. The main route of PCSK9 elimination is through LDLR binding [167], although LDLR-independent mechanisms of PCSK9 clearance must exist [24]. Up to 30 % of PCSK9 is bound to LDLR in mice [55, 167] and normolipidemic subjects [84]. In mice, PCSK9 is also bound to high-density lipoprotein (HDL) [55]. For the binding of PCSK9 to LDL-C the amino residues 31–52 of the PD are required [84].

PCSK9 is cleaved by furin as well as protein convertases (PC) 5/6 [15] between the amino acids Arg 218 and Gln 219 [52], and both forms of PCSK9 can be measured in human plasma [67]. Furin-cleaved PCSK9 (55 kDa) is still shown. The oxyanion hole is located at Asn317. Mutations associated with elevated plasma levels of LDL-C are depicted at the top (blue), mutations leading to reduced LDL-C at the bottom (green). The asterisk indicates mutations associated with elevated plasma LDL-C levels found only in families who also have mutations in the LDL receptor (modified from [75]).
active and binds to the LDLR, however, with a twofold reduced activity [104]. Indeed, injection of furin-cleaved PCSK9 into mice results in increased LDL-C, as LDLR are downregulated [104].

PCSK9 binds to a variety of other proteins (for review, see [178]), one of them being annexin A2 which is present in the nucleus, the cytosol and the cell membrane in a variety of cells. The N-terminal repeat R1 of annexin 2 binds to the CHRD region of PCSK9 and inhibits its extracellular LDLR degrading activity [109]. In annexin A2 knockout mice plasma PCSK9 levels are doubled resulting in reduced LDLR expression and an increase in LDL-C [151]; thus annexin A2 is viewed as endogenous inhibitor of PCSK9 [109].

In summary, PCSK9 regulates the concentration of circulating low-density lipoproteins by enhancing the degradation of the hepatic LDLR that is required for hepatic LDL-C clearance.

Plasma concentration of PCSK9

The plasma concentration of PCSK9 follows a diurnal rhythm similar to cholesterol synthesis [28], with an increased plasma concentration in the morning and a lower concentration in the afternoon [125]. The plasma PCSK9 concentration is higher in women compared to men [90], and the PCSK9 concentrations decrease with age in men, but increase in women [11], most likely because elevated estrogen levels reduce PCSK9 expression [126]. Plasma PCSK9 concentration varies over a 50–3,000 ng/ml range [30–3,000 ng/ml] and plasma PCSK9 concentration correlates to plasma LDL-C concentration [4, 90] even in newborn infants [6]; in adults a 100 ng/ml increase in the plasma PCSK9 concentration will increase LDL-C by 0.20–0.25 mmol/l [92]. Lipid apheresis reduces plasma PCSK9 levels by 50% [168], removing both the mature and the furin-cleaved form of PCSK9 [74].

Regulation of PCSK9 gene expression

A number of transcription factors or cofactors regulate the PCSK9 gene expression (Fig. 3), including sterol-response element binding proteins (SREBP-1/2). Since the PCSK9 gene is regulated by sterols through SREBP2, low dietary cholesterol concentrations potently suppresses its expression and PCSK9 protein levels decrease in the course of fasting and increase after feeding in animals [175] and humans [23]. SREBP2 also controls LDLR expression.

SREBP1 expression in hepatocytes is increased by insulin resulting in increased PCSK9 expression [39]. However, insulin can also activate the mammalian target of rapamycin complex 1 (mTORC1)/protein kinase δ pathway thereby inhibiting hepatocyte nuclear factor 1α (HNF1α) resulting in less PCSK9 expression in hepatocytes [2]. Indeed, in HepG2 cells, hyperinsulinemia decreases PCSK9 expression, an effect which is also observed in post-menopausal obese women [9]. On the contrary, in healthy men 24 h hyperinsulinemia did not alter plasma PCSK9 concentrations [80] and PCSK9 expression is similar in normal, pre- and Typ2-diabetic patients [22].
Thus, the overall effect of insulin on PCSK9 expression appears to be neutral.

Peroxisome proliferator-activated receptor (PPAR) regulates PCSK9 expression: PPARα reduces PCSK9 promoter activity thereby attenuating PCSK9 expression, while at the same time PPARα enhances furin/PC5/6 expression leading to increased cleavage of PCSK9 [85]. On the contrary, PPARγ increases PCSK9 expression in hepatocytes [50].

Other transcription factors or factors are the farnesoid X receptor (FXR, activated by bile acids, reduces PCSK9 expression) [93], the liver X receptor (LXR, activated by oxysterols, increases PCSK9 expression) [39, 148], and histone nuclear factor P (HINFP, increases PCSK9 expression) [100].

Also sirtuins 1 and 6 (SIRT1/6), critical histone deacetylases, suppress the PCSK9 gene [166], reduce PCSK9 secretion and increase hepatocyte LDLR expression [117] thereby modifying LDL-C homeostasis. Finally, the adipose tissue-derived adipokine resistin increases the PCSK9 expression and reduces LDLR expression in hepatocytes [116].

Ongoing studies will be instrumental for the understanding of the importance of the regulators of PCSK9 gene expression for serum LDL-C concentrations. In addition, further research is needed to address the expression of PCSK9 and its function in different compartments (e.g. blood, liver and intestine).

Fig. 3 Activation of PCSK9 expression can be mediated by activation of insulin receptors (Ins-R) and subsequent activation of the sterol-response element binding protein (SREBP) 1 and mammalian target of rapamycin (mTOR) pathways. Reduction of PCSK9 expression can be achieved by peroxisome proliferator-activated receptor alpha (PARα) and activation of SREBP2. Secretion of PCSK9 can be attenuated by annexin A2. Plasma concentration of PCSK9 can be reduced by PPARα-dependent cleavage (requiring furin). High concentrations of PCSK9 down-regulate LDLR expression and favor the formation of oxidized (ox)-LDL. See text for more details.

PCSK9 and inducible degrader of LDLR (IDOL)

IDOL is another protein which involved in the internalization and degradation of the LDLR [77, 144]. IDOL binds to the C-terminus of the LDLR [147, 148] and stimulates clathrin-independent endocytosis of the LDLR [147]. IDOL, which is activated through the LXR employs the endosomal sorting complex required for transport to traffic LDLR to the lysosomes [147]. IDOL can also stimulate SREBP2 thereby increasing PCSK9 expression again reducing LDLR expression. Individuals carrying an IDOL mutation (pArg266X) which results in a complete loss of IDOL function exhibit low serum LDL-C concentrations [156].

Drug-induced changes in PCSK9 expression

Given the number of transcription factors and co-factors regulating the PCSK9 gene it appears obvious that a number of drugs will affect PCSK9 expression (Table 1).

Statins increase the transcription factor SREBP2 [7] thereby increasing PCSK9 expression [7, 18, 138] dose-dependently [64] also in diabetic patients (otherwise having normal PCSK9 levels, see above) [29, 40, 120]. More recently, statins have been shown to increase HNF1α expression in hepatocytes, thereby increasing PCSK9 expression to a greater extent than LDLR expression [48].
Statins not only enhance the monomeric but also the heterodimeric form of PCSK9 [123]. The increase in PCSK9 expression following statin treatment is correlated to the statin-induced LDL-C decrease [10], and can be reversed by mevalonate treatment [51] or resistin treatment [116]. Such co-treatment therefore could enhance the LDL-C reducing effect of statins.

Fibrates activate PPARα thereby affecting PCSK9 expression [85]. Indeed, fibrates reduce PCSK9 expression in hepatocytes [110] and in patients [91]. However, the latter finding is controversial since fibrate treatment increased PCSK9 in another short-term patient study [169]; this discrepant finding can potentially be explained by the LDL-C lowering effect of fibrates leading to an increased PCSK9 expression (for review, see [12]).

Ezetimibe does not increase PCSK9 per se in healthy men [18]. However, ezetimibe through its plasma LDL-C concentration reducing effect might lead to a secondary increase of PCSK9 expression as measured in cynomolgus monkeys [68].

Cholesteryl ester transfer protein (CETP) inhibitors, in contrast downregulate PCSK9 and LDLR expression through decreases in SREBP2 expression in hepatocytes [47].

Glitazones activate the extracellular-regulated kinases (ERK) 1 and 2 resulting in phosphorylation of PPARγ thereby reducing its activity; as PPARγ increases PCSK9 mRNA and protein expression in the liver, glitazones attenuate secretion of PCSK9 from hepatocytes [50].

Rapamycin, as an immunosuppressant, attenuates mTORC1 activation thereby increasing HNF1α activity and subsequently PCSK9 expression [2].

Berberine treatment decreases PCSK9 in hepatocytes associated with an inhibition of the transcription factor HNF1α [26, 99]. Interestingly, in in vivo studies, berberine treatment reduces dyslipidemia induced by LPS treatment which was associated with a reduction in the plasma PCSK9 concentration [177].

Disease-induced changes of PCSK9 expression

Inflammation stimulates PCSK9 expression in hepatocytes [54] and the plasma PCSK9 concentration is correlated to white blood cell count [102] and fibrinogen concentration [181] in patients. In patients with an acute myocardial infarction, the plasma PCSK9 concentration is elevated compared to stable coronary artery disease patients [5]. Similarly in proteinuric patients [87] and those with a nephrotic syndrome [79] an increase in plasma PCSK9 concentration occurs; part of this effect, however, might relate to the statin treatment of these patients.

PCSK9 mutations and LDL-C concentration

Alterations in the PCSK9 gene and/or PCSK9 GOF mutations are responsible in part for familiar hypercholesterolemia (FH) [106], including the autosomal dominant form. GOF mutations of PCSK9 [1, 15, 72] lead to hypercholesterolemia while non-sense mutations [1] or LOF-mutations [15, 17, 34, 45] reduce the LDL-C concentration (Fig. 1). GOF mutations are sometimes related to reduced furin cleavage of PCSK9 [52] while LOF-mutations relate to lack of PCSK9 phosphorylation and subsequent increased proteolysis [45]. For review, please refer to [170].

PCSK9 and cardiovascular disease

The GOF-mutation (D374Y) of PCSK9 causes severe hypercholesterolemia and development of profound atherosclerotic lesions in mice [137] and pigs [3]. PCSK9 overexpression increases LDL-C concentration in mice and accelerates the development of atherosclerosis, the latter being absent in LDLR-knockout mice [41]. On the contrary, development of atherosclerosis is slowed down by...
inactivation of the PCSK9 gene in mice [41]. These data were supported by Kühnast et al. [86] treating mice with increased atherogenesis with different doses of a PCSK9 inhibitor alone and in combination with atorvastatin. Alirocumab dose-dependently decreased serum cholesterol, reduced atherosclerotic lesion size and improved plaque morphology. These effects were enhanced when atorvastatin was added [86] (Fig. 4) but beneficial effects require both the presence of the LDLR and apoprotein E [8].

Development of atherosclerosis involves endothelial cell apoptosis and accumulation of foam cells, both of which can be triggered by oxidized LDL-C (oxLDL-C) [154, 165, 174]. Indeed, oxLDL-C increases PCSK9 expression in macrophages [165] and the oxLDL-C induced apoptosis is reduced in human umbilical vein endothelial cells by silencing PCSK9, an effect being related to less caspase 9 and 3 activation [174]. Also cholesterol uptake of THP-1 macrophages and foam cell formation as well as oxLDL-C/ NfκB- induced inflammation are attenuated by PCSK9 silencing [165] (for review, see [154]). In line with the above cell and animal experiments, the plasma PCSK9 concentration correlates with the intima-media thickness in patients [96], and GOF mutations of PCSK9 increase not only the LDL-C concentration but also the intima-media thickness over time compared to normal subjects [121]. Plasma PCSK9 concentrations are predictive for 4-5 year major cardiovascular event rate [76] and PCSK9 serum concentrations correlate with cardiovascular risk [95]. In patients with stable coronary artery disease (Fig. 5), higher PCSK9 concentrations were associated with increased cardiovascular events and with female gender, hypertension, statin treatment, C-reactive protein, HbA1c, insulin, total cholesterol and fasting triglycerides, but not with LDL- or HDL-cholesterol. Interestingly, the association of PCSK9 levels with cardiovascular events was reduced after adjustment for fasting triglycerides [173].

With high-dose statin treatment, however, the predictive value of PCSK9 is lost [76]. Mutations of PCSK9 leading to reduced expression and or function of PCSK9 are associated with a reduced rate of coronary heart disease [37] (Fig. 6), myocardial infarction [63] and overall cardiovascular events [143], an effect being more pronounced in black as compared to white subjects [37].

Other receptors/channels/enzymes affected by PCSK9

Apart from its binding to LDLR, PCSK9 also interacts with other receptors such as the very low-density lipoprotein receptor (VLDLR) [88, 127], the LDLR-related protein 1 (LRP1) [27], the apoprotein E receptor (ApoER) as well as CD81 on hepatocytes (hepatitis C virus receptor) [89] and CD36 on macrophages (for review, see [154]). Some interactions of PCSK9 with receptors depend on an EGF-A binding domain (VLDLR) [152] or require the catalytic
activity of PCSK9 (LRP1). VLDLR and ApoER are also targeted by IDOL (for review, see [76]).

Lipoprotein (Lp) (a)

Clinical studies show that inhibition of PCSK9 potently lowers Lp(a), which is a strong cardiovascular risk factor [59, 159]. Currently, no drug treatment is available that lowers Lp(a) (with the exception of nicotinic acid in some countries). Interestingly, PCSK9 inhibition reduces Lp(a) in patients with homozygous FH despite their lack or dysfunction of the LDLR. This effect was observed even in patients that are LDLR negative [159]. Therefore, the question arises whether the regulation of Lp(a) by PCSK9 may be independent of the LDLR. From this perspective, the modulation of VLDLR by PCSK9 appears to be of great interest since Lp(a) clearance by hepatocytes appears to depend on VLDLR expression [73]. Thus, reducing PCSK9 expression or receptor binding activity may mediate the reduction of Lp(a). The underlying molecular mechanism(s) are not fully understood. The following pathways may contribute:

- Reduction of Apo(a) synthesis (in hepatocytes, release in circulation).
- Reduction of ApoB or assembly (at outer hepatocyte surface).
- Enhanced removal of Lp(a) in kidney, liver, peripheral tissues. Potential additional receptors for Lp(a) such as docking receptors, sorting receptors sortilin, endocytic receptors (syndecan-1 heparan sulfate proteoglycan).
- Intestinal lipoprotein metabolism (please see below).

Epithelial ENaC

Expression at the cell surface is reduced by PCSK9. PCSK9—independent from its catalytic activity— the proteosomal degradation of ENaC prior to its membrane integration; interestingly and different from other receptor interactions, PCSK9 does not interfere with membrane-bound ENaC [153]. It has been speculated that GOF mutation of PCSK9 will therefore reduce membrane-bound ENaC expression leading to less sodium reabsorption and potentially less hypertension in the long-term. However, the clinical study programs of PCSK9 inhibiting antibodies have not shown signals of increased blood pressure to date.

Extra-hepatic expression and effects of PCSK9

Intestinal cholesterol absorption

Although the hepatic effects of PCSK9 appear to be the primary mechanism of action, PCSK9 in intestinal cells may play a very important role for the lipoprotein homeostasis. PCSK9 increases the expression of the apical cholesterol transporter (Niemann Pick C1 like 1, NPC1L1) in intestine epithelial cells [98]. Furthermore, PCSK9 enhances the intracellular expression of the apoprotein B48 (apoB48) [98, 135] and modifies the activities of the HMG-CoA reductase (decreased), the Acyl-CoA-Cholesterol-
Transferase (ACAT, decreased) and the microsomal transfer protein (MTP, increased). It also reduces the expression of the LDLR at the basolateral membrane of intestine epithelial cells [98]. PCSK9 promotes intestinal overproduction of triglyceride-rich apoB lipoproteins [135], and a reduction in PCSK9 leads to a reduced apoB48 expression, less triglycerides being transferred to apoB48 (via MTP inhibition) and prolonged storage and less secretion of triglycerides (via ACAT inhibition) from intestine epithelial cells. As a consequence postprandial triglyceridemia is reduced in PCSK9 knockout mice [95].

Furthermore, the transintestinal cholesterol excretion (TICE)—contributes up to 30% of fecal neutral sterols excretion—is modulated by PCSK9. TICE is fuelled by apoprotein B containing particles such as LDL and also to a minor extent by HDL. TICE involves the active transporter ATP binding cassette transporter B1 on the apical membrane of enterocytes and the LDLR at its basolateral membrane [94]. PCSK9 through decreasing LDLR expression reduces TICE, as it had no impact in LDLR-knockout mice [94]. These findings may explain the correlation of PCSK9 with triglycerides in the serum [173].

PCSK9 in the brain

PCSK9 was initially discovered as a protein up-regulated during apoptosis of neurons [150]. PCSK9, that was formerly known as NARC-1 is important for brain development, especially the cerebellum [128]. Here, PCSK9 is thought to interact primarily with VLDLR and ApoER which are coupled to relin signaling and pro-apoptotic signaling pathways [88], although an interaction of PCSK9 with ApoER in brain tissue was questioned more recently [105]. PCSK9 is present in the cerebrospinal fluid at remarkably constant concentrations [33]. Brain tissue PCSK9 expression is increased with cerebral ischemia [88] and in brain tissue with signs of neuronal apoptosis [19], the latter being induced for example by increased oxLDL-C concentrations [176]. A relation to vascular dementia and Alzheimer’s disease is controversial, PCSK9 may be involved in degradation of β-site amyloid precursor protein (APP)-cleaving enzyme 1 and the generation of amyloid β-peptide.

The location of the “loss-of-function” single-nucleotide polymorphism rs11591147 (more commonly called R46L) is depicted in Fig. 1. In the Atherosclerosis Risk in Communities study (ARIC), the R46L mutation was associated with lower LDL-C and a reduced prevalence of peripheral arterial disease as well as a reduced risk of coronary heart disease [17, 37, 57]. Recently, the effects of LDL-C lowering mediated by PCSK9 inhibition on cognitive function have become a matter of debate [http://digitool.library.mcgill.ca/webclient/StreamGate?folder_id=0&dvs=1420384772483 ~ 463]. Jukema et al. therefore assessed the PCSK9 R46L mutation within 5,777 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) [129]. R46L was associated with 10–16% lower LDL-C levels, but was not associated with cognitive performance, daily activities, or non-cardiovascular clinical events. The authors conclude “that lower cholesterol levels due to genetic variation in the PCSK9 gene are not associated with cognitive performance, functional status, or non-cardiovascular clinical events” [129].

PCSK9 in pancreatic β-cells

PCSK9 and LDLR are also expressed in β-cells. PCSK9-knockout mice carry more LDLR and less insulin in the pancreas, leading to hyperglycemia and glucose intolerance. β-cell islets of PCSK9-knockout mice inhibit signs of inflammation and apoptosis [112]. This phenotype is modulated by gender and age [111]. Glucose tolerance is one of the parameters that will be carefully monitored in the outcome trials with PCSK9 inhibitors, so far the phase II data do not suggest the presence of this potential off-target effect in humans.

PCSK9 in adipose tissue

PCSK9-knockout mice have more visceral adipose tissue. Individual adipocytes are hypertrophied, most likely as a result of increased expression of VLDLR [141].

PCSK9 and innate immune response

Pathogen-associated lipids such as lipopolysaccharide (LPS) activate innate immune receptors inducing an inflammatory response, e.g. during sepsis. Mammalian lipid transfer proteins bind pathogen lipids. Interestingly, PCSK9 inhibited LPS uptake in human liver cells [171]. Inhibition of PCSK9 improved survival and inflammation in murine sepsis. The PCSK9 effect was abrogated in LDLR receptor (LDLR) knockout mice. These data were confirmed in humans with PCSK9 loss-of-function genetic variants and in humans who are homozygous for an LDLR variant that is resistant to PCSK9. These data suggest that inhibition of PCSK9 mediates pathogen lipid clearance via the LDLR regulating systemic inflammatory response.

Therapeutic strategies to inhibit PCSK9

Anti-PCSK9 antibody treatment

Fully human antibodies directed against PCSK9 have been developed and are used in clinical trials (for detailed
Study name	Substance	Patients’ characteristics	Patient number	Analysis done at	Co-treatment	LDL reduction	Other lipid parameters	Reference
Odyssey alternative	Alirocumab (Ali)	Statin intolerant	Ali: 126 Ezetimibe (Eze): 125	24 weeks	Ali	Ali: 52 %	Ali: Lp(a)-27 %	AHA2014^a
Odyssey Combo 2	Alirocumab	High CV risk	Ali: 479 Eze: 241	52 weeks	Atorvastatin (Ator)	Ali + Ator: 50 %	Not presented	ESC2014^b
Odyssey FHI + FHII	Alirocumab	HeFH	735	52 weeks	Statins and/or Eze	FH I: 49 %	Not presented	ESC2014^b
Odyssey long-term	Alirocumab	HeFH or high CV risk	2,421	52 weeks	Ator and/or Eze	Ali: 56 %	Not presented	ESC2014^c
McKenney	Alirocumab	LDL-C > 100	183	12 weeks	Statins	Ali: 40–70 %, dose- and administration-dependent	Not presented	[113]
Roth	Alirocumab	LDL-C >100, <190 and moderate CV risk	103	24 weeks	Eze	Ali: 54 %	Not presented	[140]
Roth	Alirocumab	LDL-C <100 on atorvastatin (10 mg)	92	8 weeks	Ator 80 mg vs. Ali + Ator 10 mg	Ato: 17 %	Not presented	[139]
Stein	Alirocumab	HeFH	77	12 weeks	Statins or Eze	Ali: 29–68 %; dose-administration dependent	Not presented	[157]
Stein	Alirocumab	HeFH; LDL-C <100	51	12 weeks	Statins	Ali: 39–61 %; dose-administration dependent	Not presented	[160]
Meta analysis	Alirocumab	Some of the above study patients with hypercholesterolemia	186	12 weeks	Standard of care	Not presented	Lp(a): ~30 %	[59]
Mendel-1	Evolocumab (Evo)	LDL-C <190	406	12 weeks	Eze	Evo: 37–52 %	Not presented	[83]
Mendel-2	Evolocumab	LDL-C <190; Framingham score <10 %	614	12 weeks	Eze	Evo: 55–57 %	Not presented	[82]
GAUSS-1	Evolocumab	Statin intolerant	157	12 weeks	Eze	Evo: 26–47 %	Not presented	[164]
GAUSS-2	Evolocumab	Hypercholesterolemia Statin-intolerant	307	12 weeks	Eze	Evo: 53–56 %	Not presented	[35, 161]
Laplace-TIMI	Evolocumab	LDL-C >85 mg on statins and/or Eze	631	12 weeks	Statins	Evo: 42–62 %; dose-and administration-dependent	Evo: Lp(a)—18–23 %	[43, 60]
Laplace-TIMI	Evolocumab	High CV risk	282	12 weeks	Statins	Not presented	Not presented	[42]
LAPLACE 2	Evolocumab	Statins low dose LDL >115 high-dose LDL >90	2,067	12 weeks	Statins	Evo: 63–75 %; dose-administration dependent	Not presented	[136]
Rutherford	Evolocumab	HeFH	167	12 weeks	Statins and/or ezetimibe	Evo: 43–55 %	Not presented	[131]

^a AHA2014, ^b ESC2014, ^c ESC2014
Study name	Substance	Patients’ characteristics	Patient number	Analysis done at	Co-treatment	LDL reduction	Other lipid parameters	Reference
Rutherford 2	Evolocumab	HeFH	331	12 weeks	Statins	Evo: 59–61 %; dose-administration dependent	Not presented	[134]
Osler	Evolocumab	Mendel; Laplace; Gauss and Rutherford patients	1,104	52 weeks	Standard of care	Evo: on average 50 %	Not presented	[81]
YUKAWA	Evolocumab	High CV risk	310	12 weeks	Statins and/or ezetimibe	Evo: 52–68 %	Not presented	[69]
Dias	Evolocumab	META-analysis	113	12–16 weeks	Statins	Evo: 64–81 %; dose-administration dependent	Not presented	[46]
Blom	Evolocumab	Hypercholesterolemia	901	52 weeks	Diet (D), Eze, Ator	Evo + D: 56 %	Reduced ApoB, nonHDL-C, Lp(a), triglycerides	[20]
Stein	Evolocumab	Homozygous FH	6	12 weeks	Standard of care	Evo: 19–26 %	Not presented	[159]
Tesla	Evolocumab	Homozygous FH	49	12 weeks	Standard of care	Evo: 31 %	Not presented	[133]
Metaanalysis	Evolocumab	Some of the above study patients with hypercholesterolemia	1,359	12 weeks	Standard of care	Evo: 40–59 %	Evo: Lp(a) 25–30 %	[132, 158]

He heterozygous, FH familiar hypercholesterolemia, CV cardiovascular risk, LDL-C LDL-cholesterol presented in mg/dl

a Patrick M Moriarty; http://my.americanheart.org/idc/groups/ahamah-public/@wcm/@sop/@scon/documents/downloadable/ucm_469684.pdf
b Christopher Paul Cannon, Michel Farnier; http://www.escardio.org/congresses/esc-2014/congress-reports/Pages/707-3-Hotline3-ODYSSEY-COMBO-FH.aspx#.VHrMIsk2xJQ
c Jennifer Robinson; http://www.escardio.org/congresses/esc-2014/congress-reports/Pages/707-4-Hotline3-ODYSSEY-Long-term.aspx#.VHrMOsk2xJQ
review, see [78]). These antibodies dose-dependently reduce plasma LDL-C and also lower the plasma Lp(a) concentration. Results of published trials are given in Table 2. However, new strategies to modify the PCSK9-LDLR interaction are in development (Table 3).

Partial antibodies/fragment antigen binding

Antibodies to PCSK9, binding to epitopes adjacent to the ones required for LDLR binding, increase LDLR expression in hepatocytes. This antibody administered to mice results in a significant reduction in plasma LDL-C concentration which is not seen in LDLR-knockout mice. The effect of antibody treatment on LDL-C is even more pronounced and prolonged in monkeys [30]. Similar results are obtained with antibodies covering the catalytic domain of PCSK9 otherwise binding the EGF-A domain of the LDLR [119, 180]; such treatment reduces the free plasma PCSK9 and LDL-C concentrations in rhesus monkeys [146]. Similarly, antibodies against the C-terminal domain lower LDL-C in cynomolgus monkeys [145].

Similar to antibodies, molecular scaffolds binding to PCSK9 close to its LDLR binding epitopes reduce the free PCSK9 and subsequently the LDL-C concentration in cynomolgus monkeys [118]. Such a molecular scaffold is adnectin (11 kDa), which is derived from human fibronectin.

Apart from the interaction with secreted PCSK9, interference can occur at the gene or mRNA level. Induction of loss-of-function mutations in mice, using clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) genome editing, results in reduced plasma PCSK9 and LDL-C concentrations [155]. RNA interfering (RNAi) drugs attenuate PCSK9 synthesis and decrease plasma PCSK9 and LDL-C concentrations in rodents [58], primates [58] and healthy volunteers [56]. Locked nucleic acid (LNA) antisense oligonucleotide silences PCSK9 in vitro (hepatocytes) and in vivo (mice) subsequently reducing plasma PCSK9 and LDL-C concentrations [65]. Again, similar results are obtained in non-human primates where a single injection of LNA decreases LDL-C concentration for more than 4 weeks [103].

PCSK9 has both intracellular and extracellular functions which differ related to the cell type and organ. PCSK9 affects both receptor expression and intracellular enzyme function. Thus, antibodies directed against the secreted form of PCSK9—acting mainly extracellularly—will most likely lead to different results when compared to approaches resulting to LOF-mutation or gene knockout of PCSK9, both interfering PCSK9 intracellular and extracellular function. Epidemiological findings related to GOF- or LOF- mutations of PCSK9 may therefore not easily be transferred to recent antibody approaches.

In conclusion, effects of PCSK9 inhibitors in addition to the regulation of the LDLR expression clearly exist and may be beneficial. In the large on-going phase 3 programs using PCSK9 inhibitors, to date no “loss of safety”- signal has been observed. The primary effect of PCSK9 inhibition appears to be the up-regulation of hepatic LDLR but further basic science and clinical research will advance our understanding of how PCSK9 inhibition interferes with lipoprotein metabolism and improve cardiovascular outcome.

Conflict of interest Rainer Schulz: honoraria for lectures by AstraZeneca, OmniaMed, Recordati and Sanoﬁ. Klaus-Dieter Schlüter has no COI to declare. Ulrich Laufs: honoraria/reimbursements for lectures, participation in studies, scientific cooperation with Saarland University, consulting, travel, travel support of colleagues or support of scientific meetings via the Universität des Saarlandes within the

Table 3 PCSK9 inhibitors in development

Type	Compound	Company	Phase	Comments
mAb	Evolocumab AMG145	Amgen	3	PROFICIO
	Alirocumab REGN7272/SAR236553	Sanofi/regeneron	3	ODYSSEY
	Bococizumab RN-316;PF-04950615	Pfizer/rinat	3	SPIRE
	RG7652	Roche/genentech	2	On hold
	LY3015014	Eli Lilly	2	
	LGT209	Novartis	2	
Adnectin	Ad. BMS-962476	BMS-Adnexus	2	
siRNA	ALN-PCS	Alnylam Pharmaceuticals	1 (IV); preclinical (SC)	Cationic lipidoid formula
Small molecule	EGF-A peptide	Merck & Co.	Preclinical	
Mimetic peptide	Prodomain and C-terminal domain interaction disruption	School of Medicine, University of South Carolina, USA	Preclinical	Phase 1

last 5 years: ABDA, Amgen, AstraZeneca, Bayer, Berlin-Chemie, Boehringer-Ingelheim, Daiichi-Sankyo, DACH, DFG, EU, i-cor, Lilly, Medtronic, MSD, Pfizer, Roche, Sanofi, Servier, Stifterverband, Synlab.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Abifadel M, Rabes JP, Boileau C, Varret M (2007) After the LDL receptor and apolipoprotein B, autosomal dominant hypercholesterolemia reveals its third protagonist: PCSK9. Ann Endocrinol (Paris) 68:138–146. doi:10.1016/j.ando.2007.02.002

2. Ai D, Chen C, Han S, Ganda A, Murphy AJ, Haeseler R, Thorp E, Accili D, Horton JD, Tall AR (2012) Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J Clin Invest 122:1262–1270. doi:10.1172/JCI61919

3. Al-Mashhadi RH, Sorensen CB, Kragh PM, Mortensen MB, Tolbod LP, Tham D, Yu D, Li J, Liu Y, Mold B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk, Mikkel Jensen, Benton JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Trans Med 5:166ra1. doi:10.1126/scitranslmed.3004853

4. Albom WE, Cao G, Careskey HE, Qian YW, Subramaniam DR, Davies J, Conner EM, Konrad RJ (2007) Serum proprotein convertase subtilisin kexin type 9 is correlated directly with serum LDL cholesterol. Clin Chem 53:1814–1819. doi:10.1373/clinchem.2007.091280

5. Almontashiri NA, Vilmundarson RO, Ghasemzadeh N, Dandolo AE, Robert S, Quyyumi AA, Chen H, Stewart AF (2014) Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies. PLoS One 9:e106294. doi:10.1371/journal.pone.0106294

6. Araki S, Suga S, Miyake F, Ichikawa S, Kinjo T, Yamamoto Y, Kusuhara K (2014) Circulating PCSK9 levels correlate with the serum LDL cholesterol level in newborn infants. Early Hum Dev 90:607–611. doi:10.1016/j.earlhumdev.2014.07.013

7. Asan M, Tep S, Davis HR Jr, Xu Y, Tetzloff G, Galinski B, Soriano F, Dubinina N, Zhu L, Stefanf A, Wong KK, Tadin-Strapp M, Bartz SR, Hubbard B, Ranalletta M, Sachs AB, Flanagan WM, Strack A, Fukun LNA (2011) Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J Lipid Res 52:679–687. doi:10.1194/jlr.M013664

8. Asan M, van der Hoorn JW, Chan J, Lee E, Pieterman EJ, Nguyen KK, Di M, Shetterly S, Tang J, Yeh WC, Schwarz M, Levy E, Davignon J, Lambert M (2009) Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin Chem 55:1637–1645. doi:10.1373/clinchem.2009.126987

9. Beaudoin M, Lo KS, N’Diaye A, Rivas MA, Dube MP, Laplante N, Phillips MS, Rioux JD, Tardif JC, Lettre G (2012) Pooled DNA resequencing of 68 myocardial infarction candidate genes in French Canadians. Circ Cardiovasc Genet 5:547–554. doi:10.1161/CIRCGENETICS.112.963165

10. Benjannet S, Hamelin J, Chretien M, Seidah NG (2012) Loss-of and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem 287:33745–33755. doi:10.1074/jbc.M112.399725

11. Benjannet S, Rahinds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, Trillard M, Abifadel M, Dufour R, Attie AD, Rader DJ, Boileau C, Brissette L, Chretien M, Prat A, Seidah NG (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279:48865–48875. doi:10.1074/jbc.M409699200

12. Benjannet S, Rahinds D, Hamelin J, Cassou PY, Seidah NG (2006) The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem 281:30561–30572. doi:10.1074/jbc.M606495200

13. Benjannet S, Saavedra YG, Hamelin J, Asselin MC, Essalmani R, Pasquato A, Lemaire P, Duke G, Miao B, Duclos F, Parker R, Mayer G, Seidah NG (2010) Effects of the propeptide and pH on the activity of PCSK9: evidence for additional processing events. J Biol Chem 285:40965–40978. doi:10.1074/jbc.M110.154815

14. Benn M, Nordestgaard BG, Grande P, Schnohr P, Tybjaerg-Hansen A (2010) PCSK9 R46L, low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J Am Coll Cardiol 55:2833–2842. doi:10.1016/j.jacc.2010.02.044

15. Berthold HK, Seidah NG, Benjannet S, Gouni-Berthold I (2013) Evidence from a randomized trial that simvastatin, but not ezetimibe, upregulates circulating PCSK9 levels. PLoS One 8:e60095. doi:10.1371/journal.pone.0060095

16. Bingham B, Shen R, Kottis N, Lo CF, Ozonberger BA, Ghosh N, Kennedy JD, Jacobsen JS, Grenier JM, DiStefano PS, Chiang CW, Wood A (2006) Preapoptotic effects of NARC 1 (sPCSK9), the gene encoding a novel serine proteinase. Cytometry A 69:1123–1131. doi:10.1002/cyto.a.20346

17. Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, Ceska R, Roth E, Koren MJ, Ballantyne CM, Monsalvo ML, Tsirtonis K, Kim JB, Scott R, Wasserman SM, Stein EA (2014) A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med 370:1809–1819. doi:10.1056/NEJMoa1316222

18. Bottomley MI, Cirillo A, Orsatti L, Ruggeri L, Fisher TS, Santoro JC, Cummings RT, Cubbon RM, Lo SP, Calzetta A, Noto A, Baysarowich J, Mattu M, Talamo F, De FR, Sparrow CP, Stafano A, Cari A (2009) Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants. J Biol Chem 284:1313–1323. doi:10.1074/jbc.M808363200

19. Brouwers MC, Troudt JS, van Greevenbroek MM, Ferreira I, Feskens EJ, van der Kallen CJ, Schaper NC, Schalkwijk CG, Konrad RJ, Stehouwer CD (2011) Plasma proprotein convertase subtilisin kexin type 9 is not altered in subjects with impaired glucose metabolism and type 2 diabetes mellitus, but its relationship with non-HDL cholesterol and apolipoprotein B may be modified by type 2 diabetes mellitus: the CODAM study. Atherosclerosis 217:263–267. doi:10.1016/j.atherosclerosis.2011.03.023
23. Browning JD, Horton JD (2010) Fasting reduces plasma pro-protein convertase, subtilisin/kexin type 9 and cholesterol biosynthesis in humans. J Lipid Res 51:3359–3363. doi:10.1194/jlr.P009860

24. Cameron J, Bogsrud MP, Tveten K, Strom TB, Holven K, Berge KE, Leren TP (2012) Serum levels of proprotein convertase subtilisin/kexin type 9 in subjects with familial hypercholesterolemia indicate that proprotein convertase subtilisin/kexin type 9 is cleared from plasma by low-density lipoprotein receptor-independent pathways. Transl Res 160:125–130. doi:10.1016/j.trsl.2012.01.010

25. Cameron J, Holla OL, Laerdahl JK, Kulleth MA, Berge KE, Leren TP (2009) Mutation S462P in the PCSK9 gene reduces secretion of mutant PCSK9 without affecting the autotaxic cleavage. Atherosclerosis 203:161–165. doi:10.1016/j.atherosclerosis.2008.10.007

26. Cameron J, Ranheim T, Kulleth MA, Leren TP, Berge KE (2008) Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis 201:266–273. doi:10.1016/j.atherosclerosis.2008.02.004

27. Cariou B, Langhi C, Le BM, Langhi C, Le KA, Theytaz F, Le MC, Guyomarc’h-Delasalle B, Zair Y, Kreis R, Boesch C, Krempf M, Tappy L, Costet P (2013) Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr Metab (Lond) 10:4. doi:10.1186/1743-7075-10-4

28. Cariou B, Langhi C, Le BM, Langhi C, Le MC, Guyomarc’h-Delasalle B, Krempf M, Costet P (2010) Association between plasma PCSK9 and gamma-glutamyl transferase levels in diabetic patients. Atherosclerosis 211:700–702. doi:10.1016/j.atherosclerosis.2008.10.007

29. Cameron J, Holla OL, Laerdahl JK, Leren TP, Berge KE, Leren TP (2009) Mutation S462P in the PCSK9 gene reduces secretion of mutant PCSK9 without affecting the autotaxic cleavage. Atherosclerosis 203:161–165. doi:10.1016/j.atherosclerosis.2008.10.007

30. Cameron J, Bogsrud MP, Tveten K, Strom TB, Holven K, Berge KE, Leren TP (2012) Serum levels of proprotein convertase subtilisin/kexin type 9 in subjects with familial hypercholesterolemia indicate that proprotein convertase subtilisin/kexin type 9 is cleared from plasma by low-density lipoprotein receptor-independent pathways. Transl Res 160:125–130. doi:10.1016/j.trsl.2012.01.010

31. Chen YW, Wang H, Bajaj K, Zhang P, Meng ZX, Ma D, Bai Y, Krapivner S, Gigante B, Hellenius ML, de FU, Franco-Cereceda A, Syvanen AC, Troutt JS, Konrad T, Eriksson P, Hamsten A, van’t Hooft FM (2012) Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol 32:1526–1534. doi:10.1161/ATVBAHA.111.240549

32. Chen XW, Wang H, Bajaj K, Zhang P, Meng ZX, Ma D, Bai Y, Krapivner S, Gigante B, Hellenius ML, de FU, Franco-Cereceda A, Syvanen AC, Troutt JS, Konrad T, Eriksson P, Hamsten A, van’t Hooft FM (2012) Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol 32:1526–1534. doi:10.1161/ATVBAHA.111.240549

33. Chernogubova E, Strawbridge R, Mahdessian H, Malasarig A, Krapivner S, Gigante B, Hellenius ML, de FU, Franco-Cereceda A, Syvanen AC, Troutt JS, Konrad T, Eriksson P, Hamsten A, van’t Hooft FM (2012) Common and low-frequency genetic variants in the PCSK9 locus influence circulating PCSK9 levels. Arterioscler Thromb Vasc Biol 32:1526–1534. doi:10.1161/ATVBAHA.111.240549

34. Cho L, Rocco M, Colquhoun D, Sullivan D, Rosenson RS, Dent R, Yue A, Scott R, Wasserman SM, Stroes E (2014) Design and rationale of the GAUSS-2 study trial: a double-blind, ezetimibe-controlled phase 3 study of the efficacy and tolerability of evolocumab (AMG 145) in subjects with hypercholesterolemia who are intolerant of statin therapy. Clin Cardiol 37:131–139. doi:10.1002/clc.22248

35. Cherbjan JS, Shokat KM (2014) The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J Biol Chem 289:29030–29043. doi:10.1074/jbc.M114.594861

36. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272. doi:10.1056/NEJMoa054013

37. Colhoun HM, Robinson JG, Farrier M, Cariou B, Blom D, Kereiakes DJ, Lorenzato C, Pordy R, Chaudhari U (2014) Efficacy and safety of alirocumab, a fully human PCSK9 monoclonal antibody, in high cardiovascular risk patients with poorly controlled hypercholesterolemia on maximally tolerated doses of statins: rationale and design of the ODYSSEY COMBO I and II trials. BMC Cardiovasc Disord 14:121. doi:10.1186/1471-2261-14-121

38. Costet P, Cariou B, Lambert G, Lalanne F, Lardeux B, Jarnoux AL, Greffhorst A, Staels B, Krempf M (2006) Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem 281:6211–6218. doi:10.1074/jbc.M508582200

39. Costet P, Hoffmann MM, Cariou B, Guyomarc’h DB, Konrad T, Winkler K (2010) Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 212:246–251. doi:10.1016/j.atherosclerosis.2010.05.027

40. Costet P, Hoffmann MM, Cariou B, Guyomarc’h DB, Konrad T, Winkler K (2010) Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis 212:246–251. doi:10.1016/j.atherosclerosis.2010.05.027

41. Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Laude S, Seidah NG, Prat A (2012) Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 125:894–901. doi:10.1161/CIRCULATIONAHA.111.057406

42. Desai NR, Giugliano RP, Zhou J, Kohli P, Somaratne R, Hoffman E, Liu T, Scott R, Wasserman SM, Sabatine MS (2014) AMG 145, a monoclonal antibody against PCSK9, facilitates achievement of national cholesterol education program-adult treatment panel III low-density lipoprotein cholesterol goals among high-risk patients: an analysis from the LAPLACE-TIMI 57 trial (LDL-C assessment with PCSK9 monoclonal antibody inhibition combined with statin thErapy-thrombolysis in myocardial infarction 57). J Am Coll Cardiol 63:430–433. doi:10.1016/j.jacc.2013.09.048

43. Desai NR, Kohli P, Giugliano RP, O’Donoghue ML, Somaratne R, Zhou J, Hoffman EB, Huang F, Rogers WJ, Wasserman SM, Scott R, Sabatine MS (2013) AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE-Thrombolysis in Myocardial Infarction TIMI 57) trial. Circulation 128:962–969. doi:10.1161/CIRCULATIONAHA.113.001969

44. Devay RM, Shelton DL, Liang H (2013) Characterization of proprotein convertase subtilisin/kexin type 9 (PCSK9) trafficking reveals a novel lysosomal targeting mechanism via amyloid precursor-like protein 2 (APLP2). J Biol Chem 288:10805–10818. doi:10.1074/jbc.M113.453373

45. Dewpzura T, Raymond A, Hamelin J, Seidah NG, Mbkay M, Chretien M, Mayne J (2008) PCSK9 is phosphorylated by a Golgi casein kinase-like kinase ex vivo and circulates as a
phosphoprotein in humans. FEBS J 275:3480–3493. doi:10.1111/j.1742-4658.2008.06495.x
46. Dias CS, Shaywitz AJ, Wasserman SM, Smith BP, Gao B, Stolman DS, Crispino CP, Smirnakis KV, Emery MG, Colbert A, Gibbs JP, Retter MW, Cooke BP, Uy ST, Matson M, Stein EA (2012) Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol 60:1888–1898. doi:10.1016/j.jacc.2012.08.986
47. Dong B, Wu M, Cao A, Li H, Liu J (2011) Suppression of Idol expression is an additional mechanism underlying statin-induced up-regulation of hepatic LDL receptor expression. Int J Mol Med 27:103–110. doi:10.3892/ijmm.2010.559
48. Dong B, Wu M, Li H, Kraemer FB, Adeli K, Seidah NG, Park SW, Liu J (2010) Strong induction of PCSK9 gene expression through HNF1α and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res 51:1486–1495. doi:10.1194/jlr.M035366
49. Du F, Hui Y, Zhang M, Linton MF, Fazio S, Fan D (2011) Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. J Biol Chem 286:43054–43061. doi:10.1074/jbc.M111.350181
50. Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Bernier L, Prat A (2004) Statins upregulate PCSK9, the gene controlling, phase 1 trial. Lancet 383:60–68. doi: 10.1016/S0140-6736(13)61914-5
51. Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Park SW, Liu J (2010) Strong induction of PCSK9 gene expression through HNF1α and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res 51:1486–1495. doi:10.1194/jlr.M035366
52. Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah NG, Bernier L, Prat A (2004) Statins upregulate PCSK9, the gene encoding the proprotein convertase neutral apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 24:1454–1459. doi:10.1161/01.ATV.0000134621.14315.43
53. Essalmani R, Susan-Resiga D, Chamberland A, Abifadel M, Creemers JW, Boileau C, Seidah NG, Prat A (2011) In vivo evidence that furin from hepatocytes inactivates PCSK9. J Biol Chem 286:4257–4263. doi:10.1074/jbc.M110.192104
54. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C (2008) Inflammation stimulates the expression of PCSK9. Biochim Biophys Acta 1781:3431–3439. doi:10.1016/j.bbapap.2008.05.001
55. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C (2008) Inflammation stimulates the expression of PCSK9. Biochim Biophys Acta 1781:3431–3439. doi:10.1016/j.bbapap.2008.05.001
56. Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C (2008) Inflammation stimulates the expression of PCSK9. Biochim Biophys Acta 1781:3431–3439. doi:10.1016/j.bbapap.2008.05.001
57. Fitzgerald K, Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Ainke A, Butler D, Charisie K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaraksh KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de FA, Vorholcher HP, Langer R, Anderson DG, Manoharan M, Ko-telianys V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–11920. doi:10.1073/pnas.0805434105
58. Frank-Kamenetsky M, Greenthalor A, Anderson NN, Racie TS, Bramlage B, Ainke A, Butler D, Charisie K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaraksh KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de FA, Vorholcher HP, Langer R, Anderson DG, Manoharan M, Kobalianys V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–11920. doi:10.1073/pnas.0805434105
59. Gaudet D, Kereiakes DJ, McKenney JM, Roth EM, Hanotin C, Gipe D, Du Y, Ferrand AC, Ginsberg HN, Stein EA (2014) Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am J Cardiol 114:711–715. doi:10.1016/j.amjcard.2014.05.060
60. Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, Liu T, Mohanavelu S, Hoffman EB, McDonald ST, Abrahamsen TE, Wasserman SM, Scott R, Sabatine MS (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380:2007–2017. doi:10.1016/ S0140-6736(12)61770-X
61. Grozdanov PN, Petkov PM, Karagyozyov LK, Dabeva MD, (2006) Expression and localization of PCSK9 in rat hepatic cells. Biochem Cell Biol 84:80–92. doi:10.1139/f05-055
62. Gupta N, Fisker N, Asselin MC, Lindholm M, Rosenbohm C, Stolman DS, Crispino CP, Smirnakis KV, Emery MG, Colbert A, Butler D, Charisie K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaraksh KN, Maier M, Nechev L, Rajeev KG, Read T, Rohl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de FA, Vorholcher HP, Langer R, Anderson DG, Manoharan M, Koteliansky V, Horton JD, Fitzgerald K (2008) Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–11920. doi:10.1073/pnas.0805434105
63. Guo YL, Liu J, Xu RX, Zhu CG, Wu NQ, Jiang LX, Li JJ (2013) Short-term impact of low-dose atorvastatin on serum proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380:2007–2017. doi:10.1016/ S0140-6736(12)61770-X
64. Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede V, Buttenschon H, Mors O, Bentzon JF, Madsen P, Nykjaer A, Glorup S (2014) The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab 19:310–318. doi:10.1016/j.cmet.2013.12.006
65. Han B, Eichl P, Kriener MD, Troutt JS, Konrad RJ, Yu X, Schroeder KM (2014) Isolation and characterization of the circulating truncated form of PCSK9. J Lipid Res 55:1342–1349. doi:10.1194/jlr.M010009
66. Hentze H, Jensen KK, Chia SM, Johns DG, Shaw RJ, Davis HR Jr, Shih SJ, Wong KK (2013) Inverse relationship between LDL cholesterol and PCSK9 plasma levels in dyslipidemic cynomolgus monkeys: effects of LDL lowering by ezetimibe in the absence of statins. Atherosclerosis 231:84–90. doi:10.1016/j.atherosclerosis.2013.08.028
67. Hirayama A, Honarpour N, Yoshida M, Yamashita S, Huang F, Wasserman SM, Teramoto T (2014) Effects of evolocumab (AMG 145), a monoclonal antibody to PCSK9, in...
hypercholesterolemic, statin-treated Japanese patients at high cardiovascular risk—primary results from the phase 2 YUKAWA study. Circ J 78:1073–1082 (DN/JST.JSTAGE/circj/CJ-14-0130 [pii])

70. Holla OL, Cameron J, Tveten K, Strom TB, Berge KE, Laerdahl JK, Leren TP (2011) Role of the C-terminal domain of PCSK9 in degradation of the LDL receptors. J Lipid Res 52:1787–1794. doi:10.1194/jlr.M018093

71. Holla OL, Laerdahl JK, Strom TB, Tveten K, Cameron J, Berge KE, Leren TP (2011) Removal of acidic residues of the prodomain of PCSK9 increases its activity towards the LDL receptor. Biochem Biophys Res Commun 406:234–238. doi:10.1016/j.bbrc.2011.02.023

72. Homer VM, Marais AD, Charlton F, Laurie AD, Hurndell N, Scott R, Mangili F, Sullivan DR, Barter PJ, Rye KA, George PM, Lambert G (2008) Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa. Atherosclerosis 196:659–666. doi:10.1016/j.atherosclerosis.2007.07.022

73. Hoover-Plow J, Huang M (2013) Lipoprotein(a) metabolism: potential sites for therapeutic targets. Metabolism 62:479–491. doi:10.1016/j.metabol.2012.07.024

74. Hori M, Ishihara M, Yuasa Y, Makino H, Yanagi K, Tamanaha T, Kishimoto I, Kujiraoka T, Hattori H, Harada-Shiba M (2014) Removal of plasma mature and furin-cleaved proprotein convertase subtilisin/kexin 9 (PCSK9) by low-density lipoprotein-apheresis in familial hypercholesterolemia: development and application of a new assay for PCSK9. J Clin Endocrinol Metab. doi:10.1210/jc.2014-3066

75. Horton JD, Cohen JC, Hobbs HH (2007) Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 32:71–77. doi:10.1016/tibbs.2006.12.008

76. Huigen R, Boekholdt SM, Arsenault BJ, Bao W, Davinelle N, Scott R, Mangili F, Sullivan DR, Barter PJ, Rye KA, George PM, Lambert G (2007) The molecular biology of PCSK9. FEBS Lett 582:949–955. doi:10.1016/j.febslet.2008.02.038

77. Ishibashi M, Masson D, Westerterp M, Wang N, Sayers S, Li R, Welch CL, Tall AR (2010) Reduced VLDL clearance in Apoe(–/–)Npc1(–/–) mice is associated with increased Pcsk9 and Idol expression and reduced hepatic LDL-receptor levels. J Lipid Res 51:2655–2663. doi:10.1194/jlr.M006163

78. Jelassi A, Najah M, Slimani A, Iqurim I, Slimane MN, Varret M (2013) Autosomal dominant hypercholesterolemia: needs for early diagnosis and cascade screening in the tunisian population. Curr Genomics 14:25–32. doi:10.2174/138920213804999200

79. Jin K, Park BS, Kim YW, Vaziri ND (2014) Plasma PCSK9 in nephrotic syndrome and in peritoneal dialysis: a cross-sectional study. Am J Kidney Dis 63:584–589. doi:10.1053/j.ajkd.2013.10.042

80. Kappelle PJ, Lambert G, Dullaart RP (2011) Plasma proprotein convertase subtilisin/kexin type 9 does not change during 24 h insulin infusion in healthy subjects and type 2 diabetic patients. Atherosclerosis 214:432–435. doi:10.1016/j.atherosclerosis.2010.10.028

81. Koren MJ, Giugliano RP, Raal FJ, Sullivan D, Bolognese M, Langaele G, Civeira F, Somananda K, Nelson P, Liu T, Scott R, Wasserman SM, Sabatine MS (2014) Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercholesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation 129:234–243. doi:10.1161/CIRCULATIONAHA.113.007012

82. Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, Kim JB, Scott R, Wasserman SM, Bays H (2014) Anti-PCSK9 monotherapy for hypercholesterolemia: The MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol 63:2531–2540. doi:10.1016/j.jacc.2014.03.018

83. Koren MJ, Scott R, Kim JB, Knusel B, Liu T, Lei L, Bolognese M, Wasserman SM (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolemia (MENDEL-): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 380:1995–2006. doi:10.1016/S0140-6736(12)61771-1

84. Kosenko T, Golder M, Leblond G, Weng W, Lagace TA (2013) Low density lipoprotein binds to proprotein convertase subtilisin/kexin type 9 (PCSK9) in human plasma and inhibits PCSK9-mediated low density lipoprotein receptor degradation. J Biol Chem 288:8279–8288. doi:10.1074/jbc.M112.241730

85. Kouris-Argyros A, Kappelle PJ, Lambert G, Slagman MC, Waanders F, Laverman GD, Petrides F, Dikkenschei BD, Nasis G, Dullaart RP (2013) Proprotein convertase subtilisin-kexin type 9 is elevated in proteinuric subjects: relationship with lipoprotein response to antiproteinuric treatment. Atherosclerosis 226:459–465. doi:10.1016/j.atherosclerosis.2012.11.009

86. Kyesenius K, Muggalla P, Matlik K, Arumaa U, Huttenen JH (2012) PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cell Mol Life Sci 69:1903–1916. doi:10.1007/s00018-012-0797-6

87. Labonte P, Begley S, Guevin C, Asselin MC, Nassoury N, Mayer G, Prat A, Seidah NG (2009) PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50:17–24. doi:10.1002/hep.22911

88. Lakoski SG, Lagace TA, Cohen JC, Horton JD, Hobbs HH (2009) Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab 94:2537–2543. doi:10.1210/jc.2009-0141

89. Lambert G, Ancellin N, Charlton F, Comas D, Pilot J, Kreech A, Patel S, Sullivan DR, Cohn JS, Rye KA, Barter PJ (2008) Plasma PCSK9 concentrations correlate with LDL and total cholesterol in diabetic patients and are decreased by fenofibrate treatment. Clin Chem 54:1038–1045. doi:10.1373/clinchem.2007.099747

90. Lambert G, Petrides F, Chatelais M, Blom DJ, Choque B, Tabet F, Wang G, Rye KA, Hooper AJ, Burnett JR, Barter PJ, Marais AD (2014) Elevated plasma PCSK9 level is equally detrimental for patients with nonfamilial hypercholesterolemia and heterozygous familial hypercholesterolemia, irrespective of low-density lipoprotein receptor defects. J Am Coll Cardiol 63:2365–2373. doi:10.1016/j.jacc.2014.02.538

91. Langhi C, Le MC, Kouris-Argyros A, Caron S, Staels B, Krempl M, Costet P, Cariou B (2008) Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. PLOS Lett 582:949–955. doi:10.1038/feblet.2008.02.038

92. Le MC, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Langslet G, Civeira F, Somaratne R, Nelson P, Liu T, Scott R, Wasserman SM (2014) Anti-PCSK9 monoclonal antibody for hypercholesterolemia: The MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol 63:2531–2540. doi:10.1016/j.jacc.2014.03.018

93. Le MC, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, Collet X, Cariou B, Costet P (2013) Transistential cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 33:1484–1493. doi:10.1161/ATVBAHA.112.300263
95. Le MC, Kourimate S, Langhi C, Chetiveaux M, Jarry A, Comera C, Collet X, Kuipers F, Krempt M, Cariou B, Coste P (2009) Proprotein convertase subtilisin/kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol 29:684–690. doi:10.1161/ATVBAHA.108.181586

96. Lee CJ, Lee YH, Park SW, Kim KJ, Park S, Youn JC, Lee SH, Kang SM, Jang Y (2013) Association of serum proprotein convertase subtilisin/kexin type 9 with carotid intima media thickness in hypertensive subjects. Metabolism 62:845–850. doi:10.1016/j.metabol.2013.01.005

97. Leren TP (2004) Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 65:419–422. doi:10.1111/j.0009-9163.2004.0238.x

98. Levy E, Ben Djoudi OA, Saphis S, Sane AT, Garofalo C, Grenier E, Emonnot L, Yara S, Couture P, Beaulieu JF, Menard D, Seidah NG, Elshebly M (2013) PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 227:297–306. doi:10.1016/j.atherosclerosis.2013.01.023

99. Li H, Dong B, Park SW, Lee HS, Chen W, Liu J (2009) Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 atherosclerosis. 2013.01.023

100. Li H, Liu J, Tumanut C, Gavigan JA, Huang WJ, Hampton EN, Tumanut R, Sirois F, Gyamera-Acheampong C, Wang GS, Rippstein P, Chen A, Mayne J, Scott FW, Chretien M (2014) Variable effects of gender and Western diet on lipid and glucose homeostasis in aged PCSK9-deficient C57BL/6 mice. J Diabetes. doi:10.1111/1753-0407.12139

101. Li J, Tumanut C, Gavigan JA, Huang WJ, Hampton EN, Tumanut R, Suen KF, Trauger JW, Spraggon G, Lesley SA, Liau DG, Witmer M, Miao B, Ho SP, Khan J, Parker RA (2014) Discovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor secretion mediated in part by proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 59:2344–2353. doi:10.1016/j.jacc.2012.03.007

102. Li S, Guo YL, Xu RX, Zhang Y, Zhu CG, Sun J, Qing P, Wu NQ, Jiang LX, Li J (2014) Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234:441–445. doi:10.1016/j.atherosclerosis.2014.04.001

103. Lindholm MW, Elmen J, Fisker N, Hansen HF, Persson R, Moller MR, Rosenbohm C, Orum H, Straup EM, Koch T (2012) PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther 20:376–381. doi:10.1038/mth.2011.170.5

104. Lipari MT, Li W, Moran P, Kong-Beltran M, Sai T, Lai J, Lin SJ, Kolumam G, Zavala-Solorio J, Izraelevitz D, Amott D, Wang J, Peterson AS, Kirchhofer D (2012) Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J Biol Chem 287:43482–43491. doi:10.1074/jbc.M112.380618

105. Liu M, Wu G, Baysarowich J, Kavana M, Addona GH, Bierilo KK, Mudgett JS, Pavlovic G, Sitlani A, Renger JH, Hubbard BK, Fisher TS, Zerbinati CV (2010) PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain. J Lipid Res 51:2611–2618. doi:10.1194/jlr.M006635

106. Mabuchi H, Nohara A, Noguchi T, Kobayashi J, Kashiwara MI, Inoue T, Mori M, Tada H, Nakanishi C, Yagi K, Yamagishi M, Inoue T, Mori M, Nakanishi C, Yagi K, Yamagishi M (2014) Metabolism 62:845–850. doi:10.1016/j.metabol.2013.01.005

107. Maxwell KN, Breslow JL (2004) Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci USA 101:7100–7105. doi:10.1073/pnas.0402133101

108. Maxwell KN, Fisher EA, Breslow JL (2005) Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci USA 102:2069–2074. doi:10.1073/pnas.0409736102

109. Mayer G, Poirier S, Seidah NG (2008) Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J Biol Chem 283:31791–31801. doi:10.1074/jbc.M805971200

110. Mayne J, Dewpura T, Raymond A, Cousins M, Chaplin A, Lahey KA, Lahaye SA, Mibikay M, Ooi TC, Chretien M (2008) Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis 7:22. doi:10.1186/1476-511X-7-22

111. Mbikay M, Sirois F, Gyamera-Acheampong C, Wang GS, Rippstein P, Chen A, Mayne J, Scott FW, Chretien M (2014) Protective activity of annexin A2 and annexin A5 against cholesterol and LDL receptor degradation independently of proteolytic activity. Biochem J 466:203–207. doi:10.1042/BJ20070664

112. Mbikay M, Sirois F, Mayne J, Wang GS, Chen A, Dewpura T, Prat A, Seidah NG, Chretien M, Scott FW (2010) PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBBS Lett 584:701–706. doi:10.1016/j.febsi.2009.12.018

113. McKenney JM, Koren MJ, Kereiakes DJ, Hanotin C, Ferrand AC, Stein EA (2012) Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol 59:2344–2353. doi:10.1016/j.jacc.2012.03.007

114. McNutt MC, Kwon HJ, Chen C, Chen JR, Horton JD, Lagace TA (2009) Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem 284:10561–10570. doi:10.1074/jbc.M808820220

115. McNutt MC, Lagace TA, Horton JD (2007) Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J Biol Chem 282:20799–20803. doi:10.1074/jbc.C700095200

116. Melone M, Wilsie L, Palyha O, Strack A, Rashid S (2012) Recovery of a new role of human resistin in hepatocyte low-density lipoprotein receptor suppression mediated in part by proprotein convertase subtilisin/kexin type 9. J Am Coll Cardiol 59:2344–2353. doi:10.1016/j.jacc.2012.03.007

117. Mitchell T, Chao G, Sitkoff D, Lo F, Monshizadegan H, Meyers D, Low S, Russo K, DiBella R, Denhez F, Gao M, Myers J, Duke G, Wittmer M, Miao B, Ho SP, Khan J, Parker RA (2014) Pharmacologic profile of the adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J Pharmacol Exp Ther 350:412–424. doi:10.1124/jpet.114.214221

118. Ni YG, Di MS, Condra JH, Peterson LB, Wang W, Wang F, Pandit S, Hammond HA, Rosa R, Cummings RT, Wood DD, Liu X, Bottomley MJ, Shen X, Cubbon RM, Wang SP, Johns DG, Volpari C, Hamuro L, Chin J, Huang L, Zhao JZ, Vitelli S, Haytko P, Wisniewski D, Mintaum LJ, Sparrow CP, Hubbard B, Carli A, Sitlani A (2011) A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res 52:78–86. doi:10.1194/jlr.M011445
120. Noguchi T, Kobayashi J, Yagi K, Nohara A, Yamagishi N, Sugihara M, Ito N, Oka R, Kawashiri MA, Tada H, Takata M, Inaz A, Yamagishi M, Mabuchi H (2011) Comparison of effects of bezafibrate and fenofibrate on circulating proprotein convertase subtilisin/kexin type 9 and adipocytokine levels in dyslipidemic subjects with impaired glucose tolerance or type 2 diabetes mellitus: results from a crossover study. Atherosclerosis 217:165–170. doi:10.1016/j.atherosclerosis.2011.02.012

121. Norata GD, Garlaschelli K, Grigore L, Raselli S, Tramontana S, Noguchi T, Kobayashi J, Yagi K, Nohara A, Yamaaki N, Persson L, Cao G, Stahle L, Sjoberg BG, Troutt JS, Konrad RJ, Nozue T, Hattori H, Ishihara M, Iwasaki T, Hirano T, Kawashiri (2014) Targeting PCSK9 for hypercholesterolemia. Annu Rev Pharmacol Toxicol 54:273–293. doi:10.1146/annurev-pharm-tox-011613-140025

122. Norata GD, Tibolla G, Catapano AL (2014) Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol 34:1891–1898. doi:10.1161/ATVBAHA.114.303617

123. Nassoury N, Mayer H, Nimpf J, Prat A, Seidah NG (2008) The Cys-His-rich domain (CHRD) of PCSK9 protein is needed for receptor-mediated endocytosis. J Lipid Res 49:2984–3000. doi:10.1194/jlr.P033969

124. Qian YW, Schmidt RJ, Zhang Y, Chu S, Lin A, Wang H, Wang X, Beyer TP, Bensch WR, Li W, Ehsani ME, Lu D, Konrad RJ, Eacho PI, Moller DE, Karathanasis SK, Cao G (2007) Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res 48:1488–1498. doi:10.1194/jlr.M070071-JLR200

125. Raal FJ, Giugliano RP, Sabatine MS, Koren MJ, Langsetg G, Bays H, Blom D, Eriksson M, Dent R, Wasserman SM, Huang F, Xue A, Albizem M, Scott R, Stein EA (2014) Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J Am Coll Cardiol 63:1278–1288. doi:10.1016/j.jacc.2014.01.006

126. Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, Wasserman SM, Stein EA (2014) Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. doi:10.1016/S0140-6736(14)61374-X

127. Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, Langsetg G, Scott R, Olsson AG, Sullivan D, Hovingh GK, Cariou B, Gouni-Berthold I, Somarate R, Bridges I, Scott R, Wasserman SM, Gaudet D (2014) PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet. doi:10.1016/S0140-6736(14)61399-4

128. Rashid S, Tavori H, Brown PE, Linton MF, He J, Gianzioni I, Fazio S (2014) Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation 130:431–441. doi:10.1161/CIRCULATIONAHA.113.067220

129. Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, Somarate R, Legg JC, Nelson P, Scott R, Wasserman SM, Weiss R (2014) Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA 311:1870–1882. doi:10.1001/jama.2014.4030

130. Roche-Molina M, Sanz-Rosa D, Cruz FM, Garcia-Prieto J, Lopez S, Abia R, Muriana FJ, Fuster V, Ibanez B, Bernal JA (2014) Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol 35:50–59. doi:10.1161/ATVBAHA.114.303617

131. Romano M, Di Taranto MD, D’Agostino MN, Marotta G, Gentile M, Abate G, Mirabelli P, Di NR, Del VL, Rubba P, Fortunato G (2010) Identification and functional characterization of LDLR mutations in familial hypercholesterolemia patients from Southern Italy. Atherosclerosis 210:493–496. doi:10.1016/j.atherosclerosis.2009.11.051

132. Roth EM, McKenney JM, Hanotin C, Asset G, Stein EA (2012) Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N Engl J Med 367:1891–1900. doi:10.1056/NEJMoa1201832

133. Roth EM, Taskinen MR, Ginsberg LN, Kastelein JJ, Colhoun HM, Robinson JG, Merlet L, Pordy R, Baccara-Dinet MT (2014) Monotherapy with the PCSK9 inhibitor alirocumab versus ezetimibe in patients with hypercholesterolemia: Results of a 24 week, double-blind, randomized Phase 3 trial. Int J Cardiol 176:55–61. doi:10.1016/j.ijcard.2014.06.049

134. Roubssova A, Munkonda MN, Awan Z, Marcinkiewicz J, Chamberland A, Lazure C, Cianflone K, Seidah NG, Prat A (2011) Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler Thromb Vasc Biol 31:785–791. doi:10.1161/ATVBAHA.110.220988

135. Saavedra YG, Day R, Seidah NG (2012) The M2 module of the Cys-His-rich domain (CHRD) of PCSK9 protein is needed for
the extracellular low-density lipoprotein receptor (LDLR) degradation pathway. J Biol Chem 287:43492–43501. doi:10.1074/jbc.M112.394023

143. Saavedra YG, Dufour R, Davignon J, Baass A (2014) PCSK9 R46L, lower LDL, and cardiovascular disease risk in familial hypercholesterolemia: A cross-sectional cohort study. Atheroscler Thromb Vasc Biol. doi:10.1161/ATVBAHA.114.304406

144. Sasaki M, Terao Y, Ayaori M, Uto-Kondo H, Iizuka M, Yogo M, Hagisawa K, Takiguchi S, Yakuishi E, Nakaya K, Ogura M, Komatsu T, Ikewaki K (2014) Hepatic overexpression of iodin increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways. Atheroscler Thromb Vasc Biol 34:1171–1178. doi:10.1161/ATVBAHA.113.302670

145. Schiele F, Park J, Redemann N, Luippold G, Nar H (2014) An antibody against the C-terminal domain of PCSK9 lowers LDL cholesterol levels in vivo. J Mol Biol 426:843–852. doi:10.1016/j.jmb.2013.11.011

146. Schroeder CI, Swedberg JE, Witthka JM, Rosengren KJ, Akcan M, Clayton DJ, Daly NL, Cheneval O, Borzilleri KA, Griffor M, Stock I, Colless B, Walsh P, Sunderland P, Reyes A, Dullea R, Ammirati M, Liu S, McClure KF, Tu M, Bhattacharyya SK, Liras S, Price DA, Craik DJ (2014) Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem Biol 21:284–294. doi:10.1016/j.chembiol.2013.11.014

147. Scotti E, Calamai M, Goulbourne CN, Zhang L, Hong C, Lin RR, Choi J, Pilch PF, Fong LG, Zhou P, Ting AY, Pavone FS, Young SG, Tontonoz P (2013) IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol Cell Biol 33:1503–1514. doi:10.1128/MCB.01716-12

148. Scotti E, Hong C, Yoshinaga Y, Tu Y, Hu Y, Zelcer N, Boyadjian R, de Jong PJ, Young SG, Fong LG, Tontonoz P (2011) Targeted disruption of the idol gene alters cellular regulation of the low-density lipoprotein receptor by sterols and liver x receptor agonists. Mol Cell Biol 31:1885–1893. doi:10.1128/MCB.01469-10

149. Seidah NG (2011) The proprotein convertases, 20 years later. Methods Mol Biol 768:23–57. doi:10.1007/978-1-61779-204-5_3

150. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M (2003) The secretory protein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 100:928–933. doi:10.1073/pnas.0335507100

151. Seidah NG, Poirier S, Denis M, Parker R, Miao B, Mapelli C, Prat A, Wassel H, Davignon J, Hajjar KA, Mayer G (2012) Annexin A2 is a natural antiatherosclerotic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One 7:e41865. doi:10.1371/journal.pone.0041865

152. Shan L, Pang L, Zhang R, Murgolo NJ, Lan H, Hedrick JA (2008) PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem Biophys Res Commun 375:69–73. doi:10.1016/j.bbrc.2008.07.106

153. Sharotri V, Collier DM, Olson DR, Zhou R, Snyder PM (2012) EGFR-A peptides that restore LDL-R recycling in the presence of PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet 380:29–36. doi:10.1016/S0140-6736(12)60771-5

154. Stein EA, Giugliano RP, Koren MJ, Raafl RA, Roth EM, Weiss R, Sullivan D, Wasserman SM, Somaratne R, Kim JB, Yang J, Liu T, Albizem M, Scott R, Sabatine MS (2014) Efficacy and safety of evolocumab (AMG 145), a fully human monoclonal antibody to PCSK9, in hyperlipidaemic patients on various background lipid therapies: pooled analysis of 1359 patients in four phase 2 trials. Eur Heart J. doi:10.1093/eurheartj/ehu085

155. Stein EA, Honapour N, Wasserman SM, Xu F, Scott R, Raafl FJ (2013) Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128:2113–2120. doi:10.1161/CIRCULATIONAHA.113.004678

156. Sorrentino V, Foucheir SW, Motazacker MM, Nelson JK, Defesche JC, Dallinga-Thie GM, Kastelein JJ, Kees HG, Zelcer N (2013) Identification of a loss-of-function inducible degrader of the low-density lipoprotein receptor variant in individuals with low circulating low-density lipoprotein. Eur Heart J 34:1292–1297. doi:10.1093/eurheartj/ehs472

157. Tao R, Xiong X, DePinho RA, Deng CX, Dong XC (2013) FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Posk9) gene expression. J Biol Chem 288:29252–29259. doi:10.1074/jbc.M113.481473

158. Tavoori H, Fan D, Blakemore JL, Yancey PG, Ding L, Linton MF, Fazio S (2013) Serum proprotein convertase subtilisin/kexin type 9 and cell surface low-density lipoprotein receptor: evidence for a reciprocal regulation. Circulation 127:2403–2413. doi:10.1161/CIRCULATIONAHA.113.001592

4 Page 18 of 19 Basic Res Cardiol (2015) 110:4
168. Tavori H, Giunzioni I, Linton MF, Fazio S (2013) Loss of plasma proprotein convertase subtilisin/kexin 9 (PCSK9) after lipoprotein apheresis. Circ Res 113:1290–1295. doi: 10.1161/CIRCRESAHA.113.302655

169. Troutt JS, Alborn WE, Cao G, Konrad RJ (2010) Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J Lipid Res 51:345–351. doi:10.1194/jlr.M000620

170. Urban D, Poss J, Bohm M, Laufs U (2013) Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol 62:1401–1408. doi:10.1016/j.jacc.2013.07.056

171. Walley KR, Thain KR, Russell JA, Meyer NJ, Ferguson JF, Christie JD, Nakada TA, Fjell CD, Thair SA, Cirstea MS, Boyd JH (2014) PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med 6:25843. doi:10.1126/scitranslmed.3008782

172. Wang Y, Huang Y, Hobbs HH, Cohen JC (2012) Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J Lipid Res 53:1932–1943. doi:10.1194/jlr.M028563

173. Werner C, Hoffmann MM, Winkler K, Bohm M, Laufs U (2014) Risk prediction with proprotein convertase subtilisin/kexin type 9 (PCSK9) in patients with stable coronary disease on statin treatment. Vascul Pharmacol 62:94–102. doi:10.1016/j.vph.2014.03.004

174. Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS, Liu LS (2012) PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem 359:347–358. doi:10.1007/s11010-011-1028-6

175. Wu M, Dong B, Cao A, Li H, Liu J (2012) Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters. Atherosclerosis 224:401–410. doi:10.1016/j.atherosclerosis.2012.08.012

176. Wu Q, Tang ZH, Peng J, Liao L, Pan LH, Wu CY, Jiang ZS, Wang GX, Liu LS (2014) The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer’s disease progression (Review). Biomed Rep 2:167–171. doi:10.3892/br.2013.213

177. Xiao HB, Sun ZL, Zhang HB, Zhang DS (2012) Berberine inhibits dyslipidemia in C57BL/6 mice with lipopolysaccharide induced inflammation. Pharmacol Rep 64:889–895

178. Xu W, Liu L, Hornby D (2012) c-IAP1 binds and processes PCSK9 protein: linking the c-IAP1 in a TNF-alpha pathway to PCSK9-mediated LDLR degradation pathway. Molecules 17:12086–12101. doi:10.3390/molecules171012086

179. Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, Cohen JC, Hobbs HH (2007) Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 282:18602–18612. doi:10.1074/jbc.M702027200

180. Zhang Y, Eigenbrot C, Zhou L, Shia S, Li W, Quan C, Tom J, Moran P, Di LP, Skelton NJ, Kong-Beltran M, Peterson A, Kirchofer D (2014) Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J Biol Chem 289:942–955. doi:10.1074/jbc.M113.514067

181. Zhang Y, Zhu CG, Xu RX, Li S, Guo YL, Sun J, Li JJ (2014) Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J Clin Lipidol 8:494–500. doi:10.1016/j.jacl.2014.07.001