A $2n^2 - \log_2(n) - 1$ LOWER BOUND FOR THE BORDER RANK OF MATRIX MULTIPLICATION

J.M. LANDSBERG AND MATEUSZ MICHALEK

Abstract. Let $M(n) \in \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2} \otimes \mathbb{C}^{n^2}$ denote the matrix multiplication tensor for $n \times n$ matrices. We use the border substitution method [2] [3] [6] combined with Koszul flattenings [8] to prove the border rank lower bound $R(M_{(n,n,w)}) \geq 2n^2 - \lfloor \log_2(n) \rfloor - 1$.

1. Introduction

Let A, B, C, U, V, W be vector spaces of dimensions a, b, c, u, v, w. The matrix multiplication tensor $M(u,v,w) \in (U^* \otimes V) \otimes (V^* \otimes W) \otimes (W^* \otimes U)$ is given in coordinates by

$$M_{(u,v,w)} = \sum_{i,j=1}^{u} \sum_{k=1}^{v} x_{ij}^k \otimes y_{jk}^k \otimes z_{ki}^k.$$

Ever since Strassen’s discovery [11] that the standard algorithm for multiplying matrices is not optimal, the matrix multiplication tensor has been a central object of study. We write $M(n) = M(m,n,n)$.

Let $T \in A \otimes B \otimes C$ be a tensor. The rank of T is the smallest r such that T may be written as a sum of rank one tensors (tensors of the form $a \otimes b \otimes c$ for $a \in A, b \in B, c \in C$). The border rank of T is the smallest r such that T may be written as a limit of rank r tensors. We write $R(T) = r$.

Border rank is a basic measure of the complexity of a tensor. For example, the exponent of matrix multiplication, the smallest ω such that $n \times n$ matrix multiplication can be computed with $O(n^\omega)$ arithmetic operations, satisfies $\omega = \lim_{n \to \infty} \log_n(\theta(M(n)))$. All modern upper and lower bounds for the complexity of matrix multiplication rely implicitly or explicitly on border rank. Strassen showed $R(M(n)) \geq \frac{3n^2}{2}$ [10] and Lickteig improved this to $R(M(n)) \geq \frac{3n^2}{2} + \frac{n}{2} - 1$ [7]. After that, progress stalled for nearly thirty years (other than showing $R(M(2)) = 7$ [3]), until in 2012 the first author and Ottaviani showed $R(M(n)) \geq 2n^2 - n - 1$ [7]. In 2016 we improved this to $R(M(n)) \geq 2n^2 - n + 1$ [7]. More important than the result in [7] was the method of proof - a border rank version of the substitution method [2] [3] [6]. We use this method in a more refined way to prove:

Theorem 1.1. Let $0 < m < n$. Then

$$R(M_{(n,n,w)}) \geq 2nw - w + m - \left\lfloor \frac{w(m-1)}{2n^2-n^2}\right\rfloor.$$

In particular, taking $w = n$ and $m = n - \lfloor \log_2(n) \rfloor - 1$,

$$R(M(n)) \geq 2n^2 - \lfloor \log_2(n) \rfloor - 1.$$
As can be seen in the proof, one can get a slightly better lower bound. Here are a few cases with optimal \(m \) and the improvement over the previous bound:

\(n \)	\(R(M_{(n)}) \)	improvement over \(2n^2 - n + 1 \)
4	29	0
5	47	1
6	69	2
7	95	3
8	122	3
9	158	4
10	196	6
100	19,992	92
1000	1,999,989	989
10,000	199,999,985	9985

The substitution and border substitution methods naïvely could be used to prove rank and border rank lower bounds up to \(3m - 3 \) for tensors in \(\mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m \). We show this is not quite possible for border rank. We define a variety \(X(a', b', c') \subseteq \mathbb{P}(A \otimes B \otimes C) \) that corresponds to tensors where the border substitution method fails to provide lower bounds beyond \(a + b + c - a' - b' - c' \). More precisely, \(X(a', b', c') \) is the variety of \((a', b', c') \)-compressible tensors, those for which there exists \(A' \subseteq A^*, B' \subseteq B^*, C' \subseteq C^* \), respectively of dimensions \(a', b', c' \), such that \(T \), considered as a linear form on \(A^* \otimes B^* \otimes C^* \), satisfies \(T|_{A' \otimes B' \otimes C'} = 0 \). We show:

Proposition 1.2. The set \(X(a', b', c') \subseteq \mathbb{P}(A \otimes B \otimes C) \) is Zariski closed. If

\[
\text{aa}' + \text{bb}' + \text{cc}' < (\text{a}')^2 + (\text{b}')^2 + (\text{c}')^2 + \text{a}'\text{b}'\text{c}'
\]

then \(X(a', b', c') \subseteq \mathbb{P}(A \otimes B \otimes C) \). In particular, in the range where \([\text{II}] \) holds, the substitution methods may be used to prove nontrivial lower bounds for border rank.

The proof and examples show that beyond this bound one expects \(X(a', b', c') = \mathbb{P}(A \otimes B \otimes C) \), so that the method cannot be used.

Note that if \(R(T) \leq a + b + c - (a' + b' + c') \) then there exists \(A' \subseteq A^*, B' \subseteq B^*, C' \subseteq C^* \) such that \(T|_{A' \otimes B' \otimes C'} = 0 \). Let \(\sigma_r(\text{Seg}(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C)) \subseteq \mathbb{P}(A \otimes B \otimes C) \) denote the variety of tensors of border rank at most \(r \), called the \(r \)-th secant variety of the Segre variety. The above remark may be restated as

Proposition 1.3.

\[
\sigma_{a+b+c-(a'+b'+c')} \text{Seg}(\mathbb{P}A \times \mathbb{P}B \times \mathbb{P}C) \subseteq X(a', b', c').
\]

We expect the inequality in Proposition [I.2] to be sharp or nearly so. For tensors in \(\mathbb{C}^m \otimes \mathbb{C}^m \otimes \mathbb{C}^m \) the limit of this method alone would be a border rank lower bound of \(3(m - \sqrt{3m + \frac{9}{4} + \frac{3}{2}}) \). However, it is unlikely the method alone could attain such a bound due to technical difficulties in proving an explicit tensor does not belong to \(X(a', b', c') \).

The state of the art for matrix multiplication is such that on one hand, for upper bounds on the exponent there does not appear to be a viable path proposed for proving the exponent is less than 2.3, but on the other, none of the existing techniques appear to be able to prove a border rank lower bound of \(2n^2 \) for matrix multiplication.
1.1. Acknowledgements. We thank Jason Starr and Math Overflow for help with Example \[\text{(3.5)}\] Michalek is a member of the AGATES group and is supported by the Foundation for Polish Science (FNP).

2. Preliminaries

Let \(A = U^* \otimes V, B = V^* \otimes W, C = U \otimes W^* \). For \(v \in V \), we write \(\hat{v} \subset V \) for the line it determines and \([v] \in \mathbb{P}V \) for the corresponding point in projective space.

Definition 2.1. For a tensor \(T \in V_1 \otimes \ldots \otimes V_n \) and let \(U \subset V_1 \), let \(T/U \in (V_1/U) \otimes V_2 \otimes \ldots \otimes V_n \) denote \(T|_{U \otimes V_2^* \otimes \ldots \otimes V_n^*} \), where we consider \(T \) as a linear form on \(V_1^* \otimes \ldots \otimes V_n^* \). Define

\[
B_k(T) := \{ [v] \in \mathbb{P}V_1 \mid R(T/\hat{v}) \leq k \}.
\]

Lemma 2.2. Let \(T \in V_1 \otimes \ldots \otimes V_n \) be a tensor, let \(G_T \subset \text{GL}(V_1) \times \cdots \times \text{GL}(V_n) \) denote its stabilizer and let \(G_1 \subset \text{GL}(V_1) \) denote its projection to \(\text{GL}(V_1) \). The set \(B_k(T) \) is:

1. Zariski closed,
2. a \(G_1 \)-variety.

Proof. (1) Let \(\mathcal{L} \) be the total space of the quotient bundle over \(\mathbb{P}V_1 \) tensored with \(V_2 \otimes \ldots \otimes V_n \), i.e. the fiber over \([v] \) is \((V_1/v) \otimes V_2 \otimes \ldots \otimes V_n \). We have a natural section \(s : \mathbb{P}V_1 \to \mathcal{L} \) defined by \(s([v]) := T/v \). Let \(X \subset \mathcal{L} \) denote the sub-bundle whose fiber over \([v] \in \mathbb{P}V_1 \) is the locus of tensors of border rank at most \(k \) in \((V_1/v) \otimes V_2 \otimes \ldots \otimes V_n \). The set \(B_k(T) \) is the projection to \(\mathbb{P}V_1 \) of the intersection of the image of the section \(s \) and \(X \).

(2) Let \(g = (g_1, \ldots, g_n) \in G_T \). Then \(R(T/v) = R(gT/g_1v) = R(T/g_1v) \).

A tensor \(T \in A \otimes B \otimes C \) is \(A \)-concise if it is not contained in any \(A' \otimes B \otimes C \) where \(A' \not\subset A \).

Proposition 2.3. \([3][6]\) Let \(T \in A \otimes B \otimes C \) be \(A \)-concise. Fix \(a' \leq a \). Then

\[
R(T) \geq \min_{a' \in G(a',A')} R(T|_{A' \otimes B^* \otimes C^*}) + (a - a').
\]

Remark 2.4. The situation for rank is slightly better than for border rank in that one can choose \(A' \) at the price of making a suitable modification of \(T \), see \([2][6]\).

We will use the Koszul flattening of \([5]\): for \(T \in A \otimes B \otimes C \), define

\[
T_A^{\wedge p} : B^* \otimes \Lambda^p A \to \Lambda^{p+1} A \otimes C
\]

by first taking \(T_B \otimes \text{Id}_{A^p} : B^* \otimes \Lambda^p A \to \Lambda^p A \otimes A \otimes C \), and then projecting to \(\Lambda^{p+1} A \otimes C \). If \(\{a_i\}, \{b_j\}, \{c_k\} \) are bases of \(A, B, C \) and \(T = \sum_{i,j,k} t_{ijk} a_i \otimes b_j \otimes c_k \), then

\[
T_A^{\wedge p}(\beta \otimes f_1 \wedge \cdots \wedge f_p) = \sum_{i,j,k} t_{ijk} \beta(b_j) a_i \wedge f_1 \wedge \cdots \wedge f_p \otimes c_k.
\]

We have \([5]\):

\[
R(T) \geq \frac{\text{rank}(T_A^{\wedge p})}{(a-1)}.
\]

In practice the map \(T_A^{\wedge p} \) is used after specializing \(T \) to a subspace of \(A \) of dimension \(2p+1 \) to get a potential \(\frac{2p+1}{p+1} \) border rank lower bound.
3. Proof of Theorem 1.1

We first observe that the “In particular” assertion follows from the main assertion because, taking \(m = n - c \), we want \(c \) such that
\[
\frac{n^{(2n-1-c)}}{n^{(2n-2)}} < 1
\]
This ratio is
\[
\frac{(n - 1)\cdots(n - c)}{(2n - 2)(2n - 3)\cdots(2n - c)} = \frac{n - c - 1}{2^c - 1} \frac{n - 2}{2} \frac{n - 3}{2} \cdots \frac{n - c + 1}{2}
\]
so if \(c - 1 \geq \log_2(n) \) it is less than one.

For the rest of the proof, we first introduce notation: for a Young diagram \(\lambda \), we picture it Russian style, as we think of it as representing entries in the south-west corner of an \(n \times n \) matrix. More precisely for \((i, j) \in \lambda \) we number the boxes of \(\lambda \) by pairs (row, column) however we number the rows starting from \(n \), i.e. \(i = n \) is the first row. For example
\[
\begin{array}{c}
\begin{array}{|c|c|}
\hline
x & y \\
\hline
z & w \\
\hline
\end{array}
\end{array}
\]
is labeled \(x = (n, 1), y = (n, 2), z = (n - 1, 1), w = (n - 2, 1) \). Let \(U_\lambda := \text{span}\{u^i \otimes v_j \mid (i, j) \in \lambda\} \) and write \(M_{(n, n, w)} := M_{(n, n, w)}/U_\lambda \).

The proof consists of two parts. In the first, we prove by induction on \(k \) that for any \(k \leq n \) there exists a Young diagram \(\lambda \) with \(k \) boxes such that \(\text{R}(M_{(n, n, w)}^{\lambda}) \leq \text{R}(M_{(n, n, w)}) - k \).

In the second part we estimate \(\text{R}(M_{(n, n, w)}^{\lambda}) \) for any \(\lambda \) by reducing to the case when \(\lambda \) has just one row (or column).

Part 1) First step: \(k = 1 \). By Proposition 2.3 there exists \(a \in B_{\text{R}(M_{(n, n, w)}^{\lambda})}(M_{(n, n, w)}) \) such that the reduced tensor drops border rank. The group \(GL(U) \times GL(V) \times GL(W) \) stabilizes \(M_{(n, n, w)}^{\lambda} \). By Lemma 2.2 with \(G_1 = GL(U) \times GL(V) \), we may act on \(a \) and pass to the limit. Hence, we may first reduce the rank of \(a \) to 1 and then make it equal \(u^a \otimes v_1 \).

Second step: We assume that \(\text{R}(M_{(n, n, w)}^{\lambda'}) \leq \text{R}(M_{(n, n, w)}) - k + 1 \), where \(\lambda' \) has \(k - 1 \) parts. Again by Proposition 2.3 there exists \(a \in B_{\text{R}(M_{(n, n, w)}^{\lambda'})}(M_{(n, n, w)}^{\lambda'}) \) such that when we reduce by it the border rank drops. We no longer have the full action of \(GL(U) \times GL(V) \). However, the product of Borel groups that stabilize the flags induced by \(\lambda' \) stabilizes \(M_{(n, n, w)}^{\lambda'} \). By the torus action and Lemma 2.2 we may assume that \(a \) has just one nonzero entry outside of \(\lambda \). Further, using the Borel action we can move the entry south-west to obtain the desired Young diagram \(\lambda \).

Part 2) We use (2) and recall that for the matrix multiplication operator, the Koszul flattening factors as \(M_{(n, n, w)} = M_{(n, n, 1)} \otimes \text{Id}_W \), so we apply the Koszul flattening to \(M_{(n, n, 1)} \in (U^* \otimes V) \otimes V^* \otimes U \), where \(u = v = n \). We need to show that for all \(\lambda \) of size \(m \),
\[
\text{R}(M_{(n, n, 1)}^{\lambda}) \geq 2n - 1 - \frac{n^{m-1}}{2n^{m-1}}
\]
We will accomplish this by projecting to a suitable \(p_{\tilde{A}}: A \rightarrow \tilde{A} \) of dimension \(2n - 1 \), such that
\[
\text{rank}([p_{\tilde{A}}(M_{(n, n, 1)}^{\lambda})])_{\tilde{A}}^{n-1} \geq \frac{2n - 1}{n - 1}(n - 1 + m)
\]
and then apply [4]. By our choice of basis we may consider $M_{(n,n)}^\lambda \in (A/U_\lambda) \otimes B \otimes C$ in $A \otimes B \otimes C$, with specific coordinates equal to 0. We need to show

$$\dim \ker([p_\lambda(M_{(n,n)})]_{\lambda}^{\Lambda(n-1)}) \leq \binom{n-1 + m}{m-1}.$$

Consider the map $\phi : A \rightarrow \mathbb{C}^{2n-1}$ given by $u^i \otimes v_j \mapsto e_{i+j-1}$. The rank of the reduced Young flattening $\Lambda^{\lambda} \mathbb{C}^{2n-1} \otimes V \rightarrow \Lambda^n \mathbb{C}^{2n-1} \otimes U$ could only go down. However, for $M_{(n,n)}$, as was shown in [5,7], the new map is surjective. We recall the argument from [7], as a similar argument will finish the proof.

Write $e_S = e_{s_1} \wedge \cdots \wedge e_{s_{n-1}}$, where $S \subset [2n-1]$ has cardinality $n - 1$. For $1 \leq \eta \leq n$ the reduced Koszul flattening is given by:

$$e_S \otimes v_\eta \mapsto \sum_{j=1}^{n} \phi(u^i \otimes v_\eta) \wedge e_S \otimes u_j = \sum_{j=1}^{n} e_{j+\eta-1} \wedge e_S \otimes u_j.$$

We index a basis of the source by pairs (S, k), with $k \in [n]$, and the target by (P, l) where $P \subset [2n-1]$ has cardinality n and $l \in [n]$. Define an order on the target basis vectors as follows: For (P_1, l_1) and (P_2, l_2), set $l = \min\{l_1, l_2\}$, and declare $(P_1, l_1) < (P_2, l_2)$ if and only if

1. In lexicographic order, the set of l minimal elements of P_1 is strictly after the set of l minimal elements of P_2 (i.e. the smallest element of P_2 is smaller than the smallest of P_1 or they are equal and the second smallest of P_2 is smaller or equal etc. up to l-th), or
2. the l minimal elements in P_1 and P_2 are the same, and $l_1 < l_2$.

In [7] we showed that when one orders the basis as above, the reduced Koszul flattening for $M_{(n)}$ has an upper triangular structure. More explicitly, let $P = (p_1, \ldots, p_n)$ with $p_i < p_{i+1}$. Identifying basis vectors with their indices, the image of $(P \setminus \{p_i\}, 1 + p_i - l)$ is $\pm (P, l)$ plus smaller terms in the order. The crucial part is to control how the projection of $M_{(n,n,w)}$ to the complement of $u^i \otimes v_{n+1-i}$ effects the reduced Koszul flattening.

Note that (P, l) will not appear as the leading term any more if and only if $l = j$ and $n + 1 - i + j - 1 = p_i$. Hence, the number of additional zeros on the diagonal equals the number of n element subsets of $[2n-1]$ that have the j-th entry equal to $n - i + j$, which is $\binom{n-i+j-1}{j} \binom{n+i-j}{i-1} = g(i, j)$. So it is enough to prove that $\sum_{(i,j) \in \lambda} g(i, j) \leq \binom{n-1+m}{m-1}$. Note that $\sum_{i=1}^{n} g(i, 1) = \sum_{j=1}^{n} g(1, j) = \binom{n+m}{m}$. Thus we have to prove that the Young diagram that maximizes $f_\lambda = \sum_{(i,j) \in \lambda} g(i, j)$ has one row or column. We prove it inductively on the size of λ, the case $|\lambda| = 1$ being trivial.

Suppose now that $\lambda = \lambda' + (i, j)$. By induction it is sufficient to show that:

$$g(1, ij) = \binom{n-1+i+j-1}{i-1} \geq \binom{n-j+i-1}{i-1} \binom{n-i+j-1}{j-1} = g(i, j),$$

where $n > i$. Without loss of generality we may assume $2 \leq i \leq j$. For $j = 2, 3$ the inequality is straightforward to check, so we assume $j \geq 4$. We prove the inequality [5] by induction on n. For $n = ij$ the inequality follows from the combinatorial interpretation of binomial coefficients and the fact that the middle one is the largest.

We have $\binom{n+1+i+j-1}{ij-1} = \binom{n-i+j-1}{i-1} \binom{n+j-1}{j-1}$ and $\binom{n+1+j+i-1}{i-1} = \binom{n+j-1}{i-1} \binom{1+j-1}{j-1}$. By induction it is enough to prove that:

$$\frac{n-1+i+j}{n} \geq \frac{n-j+i-n-i+j}{n-j+1-n-i+1}.$$
This is equivalent to:

\[
ij - 1 \geq \frac{n(i - 1)}{n - j + 1} + \frac{n(j - 1)}{n - i + 1} + \frac{n(i - 1)(j - 1)}{(n - j + 1)(n - i + 1)}.
\]

As the left hand side is independent from \(n\) and each fraction on the right hand side decreases with growing \(n\), we may set \(n = ij\) in inequality \([4]\). Thus it is enough to prove:

\[
2 - \frac{1}{ij} \geq (1 + \frac{i - 1}{ij - j + 1})(1 + \frac{j - 1}{ij - i + 1}).
\]

Then the inequality is straightforward to check for \(i = 2\), so we assume \(i \geq 3\). Then:

\[
(1 + \frac{i - 1}{ij - j + 1})(1 + \frac{j - 1}{ij - i + 1}) \leq (1 + \frac{j - 1}{j^2 - j + 1})(1 + \frac{j - 1}{3j - 2}) \leq \frac{16}{13} \cdot \frac{4}{3} = \frac{64}{39}.
\]

However,

\[
\frac{64}{39} \leq 2 - \frac{1}{12} \leq 2 - \frac{1}{3j} \leq 2 - \frac{1}{ij},
\]

which finishes the proof.

Remark 3.1. Note that we made two kinds of restrictions:

1. projecting \(A\) to \(A/U_3\) and
2. projecting \(A/U_\lambda\) to \(A\).

The first one corresponds to deleting rows (specified by \(\lambda\)) in the matrix representation of \(M_{(n,n,1)}\). The second one takes \(2n - 1\) linear combinations of rows as explained below.

Since linear projections commute, one might try to first apply the second projection and then the first one. This is not feasible for two reasons. First, after applying the second projection we lose symmetry. Second, our method removes whole rows in the matrix representation of the tensor in the first projection (not just specific entries). Hence it is much better to first remove rows (when the matrix has mostly zeros) and then use the second projection, than to remove rows when the matrix is dense (after the second projection).

4. Compression of tensors: the limits of the substitution method

Consider the product of Grassmannians \(G := G(a', A^*) \times G(b', B^*) \times G(c', C^*)\) with three projections \(\pi_i\). Let \(\mathcal{E} = \mathcal{E}(a', b', c') := \bigotimes_{i=1}^3 \pi_i^* (S_i)\) be the vector bundle that is the tensor product of the pullbacks of universal subspace bundles \(S_i\). Let \(P \to G\) denote the projective bundle with fiber over \((A', B', C')\) equal to \(Seg(\mathbb{P} A' \times \mathbb{P} B' \times \mathbb{P} C')\), so \(P \subset \mathbb{P} \mathcal{E}\).

Definition 4.1. A tensor \(T \in A \otimes B \otimes C\) is \((a', b', c')\)-compression generic (cg) if there are no subspaces \(A' \subset A^*, B' \subset B^*, C' \subset C^*\) of respective dimensions \(a', b', c'\) such that \(T|_{A' \otimes B' \otimes C'} = 0\), i.e., for all \((A', B', C') \in G\), \(A' \otimes B' \otimes C' \notin T^\perp\), where \(T^\perp \subset (A \otimes B \otimes C)^*\) is the hyperplane annihilating \(T\).

Let \(X(a', b', c')\) be the set of all tensors that are not \((a', b', c')\)-cg.

Proof of Proposition 4.2. Let

\[
Y := \{(y, [T]) \in G \times \mathbb{P}(A \otimes B \otimes C) \mid \mathcal{E}_y \subset T^\perp\}.
\]

Each fiber of the projection \(Y \to G\) is a projective space of dimension \(abc - a'b'c' - 1\), so

\[
\dim Y := (abc - a'b'c' - 1) + (a - a')a' + (b - b')b' + (c - c')c'.
\]

On the other hand \(X(a', b', c')\) is the projection of \(Y\) to \(\mathbb{P}(A \otimes B \otimes C)\), which proves both claims. \(\square\)
Corollary 4.2.

(1) If \(\text{(1)} \) holds then a generic tensor is \((a', b', c')\)-cg.

(2) If \(\text{(1)} \) does not hold then rank \(\mathcal{E}^* \leq \dim G(a', A^*) \times G(b', B^*) \times G(c', C^*) \). If the top Chern class of \(\mathcal{E}^* \) is nonzero, then no tensor is \((a', b', c')\)-cg.

Proof. The first assertion is a restatement of Proposition \(\text{(1.2)} \).

For the second, notice that \(T \) induces a section \(\tilde{T} \) of the vector bundle \(\mathcal{E}^* \to G \). The zero locus of \(\tilde{T} \) is \(\{(a', b', c') \in G \mid A' \otimes B' \otimes C' \subset T^1\} \). In particular, \(\tilde{T} \) is non-vanishing if and only if \(T \) is \((a', b', c')\)-cg. If the top Chern class is nonzero, there cannot exist a non-vanishing section. \(\square \)

Example 4.3. Let \(a = b = c \) and \(a' = b' = c' \). Then we get non-trivial equations as long as

\[
a' \geq \left\lfloor \sqrt{3a + \frac{9}{4} - \frac{3}{2}} \right\rfloor.
\]

Thus by this method alone, one potentially gets border rank equations in \(\mathbb{C}^a \otimes \mathbb{C}^a \otimes \mathbb{C}^a \) up to

\[
3(a - \left\lfloor (3a + \frac{9}{4} - \frac{3}{2}) \right\rfloor).
\]

For example, if \(a = 9 \), we may take \(a' = 4 \) and get equations up to \(\sigma_{15} \).

Example 4.4. Let \(a = b = c = 3 \). As pointed out by Kileel, the variety \(X(2, 2, 3) \) equals the trifocal variety. By the results of Aholt-Oeding \(\text{(1)} \) the ideal of this variety is defined by 10 cubics, 81 quintics and 1980 sextics.

In each particular case when there are a finite number of \(A' \otimes B' \otimes C' \) annihilating a generic \(T \), we may explicitly compute how many different \(A' \otimes B' \otimes C' \) a generic hyperplane may contain as follows: The Chern polynomial of the dual of the universal bundle is \(\sum_{j=0}^{k} p_{1j} t^j \), where \(p_{1j} \) is the class corresponding to the Young diagram \(1^j \). These classes multiply by the Littlewood-Richardson rule (in our cases this is the iterated Pieri rule).

Example 4.5. Let \(a = b = c = 5 \) and \(a' = 2, b' = 1, c' = 5 \). The bundle \(\mathcal{E}^* \) has rank ten: it is tensor product of a rank 2 bundle (for \(a' \)), rank 1 bundle (for \(b' \)) and the trivial rank 5 bundle (for \(c' \)). This example already appeared in \(\text{(1)} \). Here \(G = G(2, 5) \times \mathbb{P}^5 \) as the last Grassmannian degenerates to a point. The second Chern class of the tensor product of pull-backs equals:

\[
c_2(\pi_1^*(S_1) \otimes \pi_2^*(S_2)) = (\begin{array}{c} \square \end{array}) + (\begin{array}{c} \square \end{array}) + (1, \square)^2,
\]

where respective Young diagrams represent Schubert classes on \(G(2, 5) \) and \(\mathbb{P}^5 \). E.g. \((1, \square) \) is \(G(2, 5) \) times a hyperplane in \(\mathbb{P}^5 \). To compute the top Chern class of \(\mathcal{E}^* \) we need to compute the 5-th power of the above expression. It will be proportional to the class of a point \((\square) \). We get the following contributions:

- \(5(\square, 1)(\square, \square)^4 = 5 \cdot 2 = 10 \). Indeed, on the second coordinate corresponding to \(\mathbb{P}^5 \) we just have to fill, one by one starting from left, the diagram \(\ldots \). On \(G(2, 5) \) we must start by filling the two left most entries, by the contribution of \((\square, 1) \) obtaining:
The remaining square (filled with o before) has to be filled with four unit squares. There are two ways to do this: \[\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array} \] and \[\begin{array}{cc}
1 & 3 \\
2 & 4
\end{array} \].

- \[5 \binom{4}{3} \left(\begin{array}{c}
1 \\
2
\end{array} \right)^2 \left(\begin{array}{c}
3 \\
4
\end{array} \right)^2 = 30 \], because there is a unique way here,

- \[\binom{5}{2} \] corresponding to \(\begin{array}{c}
1 \\
2
\end{array} \left(\begin{array}{c}
3 \\
4
\end{array} \right)^4 \).

This gives the grand total of 50. Hence, in this case the map \(Y \to \mathbb{P}(A \otimes B \otimes C) \) is surjective, finite with generic fiber of degree 50.

References

1. Chris Aholt and Luke Oeding, *The ideal of the trifocal variety*, Math. Comp. 83 (2014), no. 289, 2553–2574. MR 3223346

2. Boris Alexeev, Michael A. Forbes, and Jacob Tsimerman, *Tensor rank: some lower and upper bounds*, 26th Annual IEEE Conference on Computational Complexity, IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 283–291. MR 3025382

3. M. Bläser and V. Lysikov, *On degeneration of tensors and algebras*, ArXiv e-prints (2016).

4. Shinobu Hosono and Hiromichi Takagi, *Mirror symmetry and projective geometry of Reye congruences I*, J. Algebraic Geom. 23 (2014), no. 2, 279–312. MR 3166392

5. J. M. Landsberg, *The border rank of the multiplication of 2 \times 2 matrices is seven*, J. Amer. Math. Soc. 19 (2006), no. 2, 447–459. MR 2188132 (2006j:68034)

6. J. M. Landsberg and M. Michalek, *Abelian Tensors*, ArXiv e-prints, to appear in JMPA (2015).

7. J. M. Landsberg, *On the geometry of border rank algorithms for matrix multiplication and other tensors with symmetry*, ArXiv e-prints (2016).

8. Joseph M. Landsberg and Giorgio Ottaviani, *New lower bounds for the border rank of matrix multiplication*, Theory Comput. 11 (2015), 285–298. MR 3376667

9. Thomas Lickteig, *A note on border rank*, Inform. Process. Lett. 18 (1984), no. 3, 173–178. MR 86c:68040

10. V. Strassen, *Rank and optimal computation of generic tensors*, Linear Algebra Appl. 52/53 (1983), 645–685. MR 85b:15039

11. Volker Strassen, *Gaussian elimination is not optimal*, Numer. Math. 13 (1969), 354–356. MR 40 #2223

Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX 77843-3368, USA

E-mail address: jml@math.tamu.edu

Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warsaw, Poland

E-mail address: wajcha2@poczta.onet.pl