PEARLS

A Case for Two-Component Signaling Systems As Antifungal Drug Targets

Erika Shor1, Neeraj Chauhan1,2*

1 Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America, 2 Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America

* chauhan1@njms.rutgers.edu

The Impact of Fungal Diseases

The recent outbreak of fungal meningitis caused by Exserohilum rostratum in patients receiving contaminated steroid injections resulted in 64 deaths, receiving a lot of press and briefly bringing into the public eye the difficulty of treating systemic fungal infections [1]. What is generally less well appreciated, however, is that there are several other, much more common fungal pathogens that pose a serious health threat. Indeed, currently more people die from these fungal diseases worldwide than from tuberculosis or malaria [2]. The fungal pathogens most frequently responsible for human mortality are: Aspergillus fumigatus, Candida spp. (predominantly C. albicans), Cryptococcus neoformans, Pneumocystis carinii, and dimorphic fungi that cause endemic mycoses (Coccidioides immitis, Histoplasma capsulatum, Blastomyces dermatitides, and Paracoccidioides brasiliensis). Fungal pathogens pose an especially high risk to individuals with compromised immunity, and this population of susceptible hosts is growing [3,4]. There has been a steady increase in the incidence of fungal infections over recent decades, primarily due to the AIDS pandemic, an increase in patients receiving cancer chemotherapy and allogeneic bone marrow transplants, a higher incidence of seriously ill patients in intensive care units, and the aging of the human population [3–8].

Despite the extensive list of fungal pathogens and the increasing frequency of their occurrence, we have at our disposal only a very limited number of antifungal drugs. The past two decades have seen the emergence of two classes of antifungals: those that target ergosterol synthesis (the azoles) and those that target cell wall β-1,3 glucan synthase (echinocandins). Of the azoles, the triazoles have gained importance as alternatives to the more toxic amphotericin B. Echinocandins are fungicidal and are the drug of choice for treating most fungal infections, but these drugs are not effective in treating infections caused by C. neoformans, and echinocandin resistance is increasing in some Candida species [9]. Clearly, there is an urgent need to discover new drug targets to meet the challenges posed by fungal infections.

Two-Component Signal Transduction Pathways in Fungal Pathogens as Potential Drug Targets

An ideal drug target is a fungal-specific protein that (1) functions as a virulence factor or is essential for fungal viability and (2) is absent from the host organism, such that its inhibition causes no toxicity in the host. The low number of drugs in our antifungal armamentarium is in
part due to the relative evolutionary relatedness of fungi and mammals and the resulting paucity of fungal-specific proteins that meet these criteria. One class of molecules that do fit both of these criteria is comprised of proteins that function in the so-called two-component signal transduction pathways. These signaling pathways are based on the transfer of phosphoryl groups among their components (phosphorelays) and are one of the primary means by which bacteria and fungi sense and respond to environmental cues. Two-component signal transduction pathways present attractive targets for antifungal drug discovery because they exist in prokaryotes, plants, and lower eukaryotes but not in mammalian cells. Furthermore, while the genes encoding two-component system proteins are frequently not essential for viability, multiple studies have demonstrated the importance of two-component signal proteins for virulence in fungal pathogens, including *A. fumigatus* [10], *C. albicans* [11–13], *C. neoformans* [14], *B. dermatitidis*, and *H. capsulatum* [15] (Table 1).

The term “two-component” is derived from bacterial systems where the phosphorelay generally involves two proteins: a histidine kinase (HK) and a response regulator (RR) protein (Fig. 1). In response to an environmental signal, the HK, which is frequently localized in the bacterial outer membrane, is autophosphorylated on a conserved histidine residue, followed by a transfer of the phosphoryl group to a cognate response regulator protein (RR) on a conserved aspartate residue. The phosphorylated RR then usually acts directly as a transcription factor to activate genes associated with chemotaxis, stress response, quorum sensing, sporulation, virulence factor expression, and antibiotic resistance [16]. Fungal two-component phosphorelays are more intricate in two respects (Fig. 1). First, the signaling cascade involves three proteins: HK, RR, and a histidine phosphotransferase (HPt) whose function is to shuttle the phosphate moiety from HK to RR [17]. Second, in fungi, the phosphorelay typically comprises four phosphorylation events: (1) the HK is autophosphorylated on a histidine residue within its histidine kinase domain; (2) the phosphate is transferred intramolecularly to an aspartate (His→Asp) in the HK receiver domain; (3) a third, intermolecular phosphotransfer occurs to the histidine residue present in the HPt domain on the transferase (His→Asp→His); and (4) the phosphoryl group is relayed to an aspartate on the RR protein (His→Asp→His→Asp). Thus, two-component–like phosphorelay systems are unusual in terms of mechanism: the amino acids that accept phosphoryl groups are either aspartate or histidine residues. These unique features may be exploited in designing specific inhibitors that would not affect the activity of conventional Ser/Thr/Tyr kinases more prevalent in mammalian systems.

Depending on the system and the specific factors involved, the initial HK phosphorylation may occur either in response to stress or in response to removal of stress, with the ultimate outcome of either activating or down-regulating the transcription of stress response genes. A comprehensive list of all known fungal two-component signal transduction proteins and their roles in virulence-related processes can be found in Table 1. For a detailed discussion on the function of HKs and RRs in medically relevant fungi, the reader is directed to several excellent reviews [17–19].

High Throughput Screens for Fungal Two-Component System Inhibitors

Screening for inhibitors in vitro

Despite the acknowledged attractiveness of two-component systems as drug targets and their well-understood molecular mechanisms, thus far no two-component system inhibitor has reached the clinic, even though efforts to identify inhibitors of bacterial two-component systems stretch back approximately two decades. Most of the in vitro efforts to identify such inhibitors have focused on searching for compounds that could prevent HK phosphorylation.
activity [20]. However, many of the identified compounds did not exhibit competitive kinetics with ATP, inhibiting HK activity by other means, such as promoting HK aggregation [20]. These screens largely relied on detecting radioactively labeled phosphorylation substrates; however, phosphohistidines are highly unstable moieties [21], complicating these studies and making high-throughput screening difficult. Recently, a number of new tools have been developed to analyze HK activity, including an antibody that specifically recognizes phosphohistidine [22] and a fluorescent probe to detect histidine phosphorylation by HK in vitro [23]. The probe can label both the HK itself upon autophosphorylation and the downstream HK phosphorylation target [23], and can be thus used as a screening tool in identifying inhibitors of different steps of the phosphorelay. These tools, together with synthetic, natural, or peptide-based

Table 1. List of two-component signaling proteins and their functions in human fungal pathogens.

Organism	HK/HPt/RR	Gene name	Cellular role(s)	References
A. fumigatus	Histidine kinase	fos1	Virulence	[10]
	Histidine kinase	TcsB	Oxidative stress	[30]
	Histidine kinase	NikA/tcsC	Conidiation, hyphal growth, osmotic stress and fungicide resistance	[31]
	Transferase/HPt	Ypd1	uncharacterized	
	Response regulator	Ssk1	Phosphorylation ofSakA MAPK	[31]
	Response regulator	Skn7	Oxidative stress	[31]
	Response regulator	Rim15	uncharacterized	-
C. albicans	Histidine kinase	Chk1	Quorum sensing, cell wall biogenesis, virulence, morphogenesis, stress response	[11,32–34]
	Histidine kinase	Sln1	Osmosensing, virulence	[12]
	Histidine kinase	Nik1	Morphogenesis, virulence	[12,35]
	Transferase/HPt	Ypd1	Stress response, cell membrane integrity	[36]
	Response regulator	Ssk1	Stress response, adhesion and virulence	[37–39]
	Response regulator	Skn7	Oxidative stress response, morphogenesis	[40]
	Response regulator	Srr1	Stress response, morphogenesis, apoptosis, virulence	[13,36]
	Response regulator	Rim15	uncharacterized	-
	Histidine kinase	Tco1	Negative regulator of melanin production and virulence	[14]
	Histidine kinase	Tco2	Peroxide resistance	[14]
	Histidine kinase	Tco3–7	uncharacterized	[14]
	Transferase/HPt	Ypd1	Stress response, azole drug resistance and melanin biosynthesis	[41]
	Response regulator	Ssk1	Capsule and melanin production	[14]
	Response regulator	Skn7	Melanin production and virulence	[14,42]
C. neoformans	Histidine kinase	Drk1	Dimorphism and virulence	[15]
B. dermatitidis; H. capsulatum	Histidine kinase			
	Transferase/HPt	Ypd1	uncharacterized	-
	Response regulator	Ssk1	uncharacterized	-
	Response regulator	Skn7	uncharacterized	-

doi:10.1371/journal.ppat.1004632.t001
libraries, can facilitate rapid high-throughput screening of fungal HKs in vitro. The results of these screens can be combined with in vivo assays for two-component system activity described below.
Screening for inhibitors *in vivo*

While in vitro screens can identify compounds that act via a desired molecular mechanism, these compounds may not be active in cellular or organismal context. For example, several identified HK inhibitors with good activity in vitro failed to inhibit bacterial growth in vivo because they were sequestered in membranes and other lipid-rich compartments [20]. Another potential benefit of in vivo screens is that they can target any component of the two-component pathway, not just the HK. To identify compounds that inhibit two-component systems in vivo, several approaches have been used in both bacteria and fungi. One set of studies focused on fungal HK Nik1 because it belongs to one of six highly conserved HK families, suggesting that its inhibition may have broad spectrum antifungal activity. In particular, one study looked for compounds that specifically inhibited the growth of a *Saccharomyces cerevisiae* strain heterologously expressing *C. albicans* Nik1 [24]. However, while this work identified two new fungicidal compounds, it also showed that these compounds did not act via inhibition of Nik1 [24].

A conceptually different type of in vivo screening approach applied in both bacteria and fungi uses a strain where the function of a particular pathway is compromised by mutation; as a result, the screen strain shows exacerbated sensitivity relative to the wild-type strain to compounds that specifically inhibit this pathway [25,26]. Because two-component system genes are not essential, in this instance, growth rate or viability may not be informative screening end points. Rather, it may be worthwhile to screen for small molecules that significantly sensitize the screen strain to oxidative stress because two-component systems are necessary for normal oxidative stress resistance in various fungi (Table 1). In a diploid fungus, such as *C. albicans*, compromising the two-component system can be achieved by deleting one of the two copies of the gene encoding a HK or RR, creating a heterozygous mutant. In a haploid fungus, such as *Candida glabrata*, a temperature-sensitive allele of a two-component system gene can be utilized for the same purpose. This approach has been used to identify compounds that affect a variety of cellular pathways, including ergosterol biosynthesis, the actin cytoskeleton, and protein folding [26], and can be readily adapted to screen for two-component system inhibitors.

Another in vivo approach can take advantage of the fact that two-component signal transduction systems regulate gene expression, either via activating downstream MAP kinase cascades or by RR proteins acting as transcription factors [19]. Thus, it should be possible to screen for pathway-specific inhibitors using a reporter whose activation or repression depends on the functionality of the two-component system pathway. Recent studies examining the effects of two-component pathways on gene expression suggest that cell-wall–maintenance genes are strongly induced by a response to stress and that this induction requires two-component systems in several fungi, including *C. albicans*, *S. cerevisiae*, and *C. neoformans* [27–29]. Thus, promoters of individual cell-wall–maintenance genes may be fused to fluorescent markers and used as reporters in high-throughput screens for inhibitors. This approach would likely not be specific to the two-component pathway, but will also identify inhibitors of downstream signaling events, such as other steps in the corresponding MAP kinase cascade.

Concluding Remarks

The limited data available from studies of two-component proteins in fungal pathogens have revealed the critical functions of these proteins in adaptation to stress, regulation of virulence factors, and sensitivity to antifungal drugs, underscoring the importance of these signaling pathways in fungal pathogenesis. These features, together with the absence of two-component pathways in animals, make these proteins very attractive targets for antifungal drug discovery. Because two-component systems are found in all major fungal pathogens, drugs targeting these factors may have broad spectra. Recently developed tools for phosphohistidine analysis are
likely to facilitate in vitro screening efforts, while complementary searches for pathway-based inhibitors may identify compounds that specifically inactivate two-component signal transduction in vivo.

Acknowledgments

The authors gratefully acknowledge support of all past and present members of the Chauhan laboratory. The authors sincerely apologize to colleagues whose work could not be cited due to space limitations.

References

1. Pappas PG (2013) Lessons learned in the multistate fungal infection outbreak in the United States. Curr Opin Infect Dis 26: 545–550. doi: 10.1097/QCO.000000000000013 PMID: 24152763
2. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, et al. (2012) Hidden killers: human fungal infections. Sci Transl Med 4: 165rv113. doi: 10.1126/scitranslmed.3004404 PMID: 23253612
3. Hof H (2010) Mycoses in the elderly. Eur J Clin Microbiol Infect Dis 29: 5–13. doi: 10.1007/s10096-009-0822-5 PMID: 19911208
4. Pfaffer MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20: 133–163. PMID: 17223626
5. Ascioglu S, Rex JH, de Pauw B, Bennett JE, Bille J, et al. (2002) Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis 34: 7–14. PMID: 11731939
6. Pfaffer MA, Castanheira M, Messer SA, Moet GJ, Jones RN (2010) Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008–2009). Diagn Microbiol Infect Dis 68: 278–283. doi: 10.1016/j.diagmicrobio.2010.06.015 PMID: 20846808
7. Wenzel RP (1995) Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis 20: 1531–1534. PMID: 7548504
8. Wispelinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, et al. (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39: 309–317. PMID: 15306996
9. Perlin DS (2014) Echinocandin resistance, susceptibility testing and prophylaxis: implications for patient management. Drugs 74: 1573–1585. doi: 10.1007/s40265-014-0286-5 PMID: 25255923
10. Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA (2002) fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 40: 259–262. PMID: 12146755
11. Calera JA, Calderone R (1999) Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology 145 (Pt 6): 1431–1442.
12. Yamada-Okabe T, Mio T, Ono N, Kashima Y, Matsui M, et al. (1999) Roles of three histidine kinase genes in hyphal development and virulence of the pathogenic fungus Candida albicans. J Bacteriol 181: 7243–7247. PMID: 10572127
13. Desai C, Mavrianos J, Chauhan N (2011) Candida albicans SRR1, a putative two-component response regulator gene, is required for stress adaptation, morphogenesis, and virulence. Eukaryot Cell 10: 1370–1374. doi: 10.1128/EC.005188-11 PMID: 21841121
14. Bahn YS, Kojima K, Cox GM, Heitman J (2006) A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Mol Biol Cell 17: 3122–3135. PMID: 16672377
15. Nemecsek JC, Wuthrich M, Klein BS (2006) Global control of dimorphism and virulence in fungi. Science 312: 583–588. PMID: 16645097
16. Mascher T, Helmmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70: 910–938. PMID: 17158704
17. Fassler JS, West AH (2013) Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. Eukaryot Cell 12: 1052–1060. doi: 10.1128/EC.00083-13 PMID: 23771905
18. Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2: 1151–1161. PMID: 14665450
19. Chauhan N, Latge JP, Calderone R (2006) Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol 4: 435–444. PMID: 16710324

20. Kurosu M, Begari E (2010) Bacterial Protein Kinase Inhibitors. Drug Development Research 71: 168–187.

21. Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7: 44–51. doi: 10.1021/cb200445w PMID: 22148577

22. Kee JM, Oslund RC, Perlman DH, Muir TW (2013) A pan-specific antibody for direct detection of protein histidine phosphorylation. Nat Chem Biol 9: 416–421. doi: 10.1038/nchembio.1259 PMID: 23708076

23. Wilke KE, Francis S, Carlson EE (2012) Activity-based probe for histidine kinase signaling. J Am Chem Soc 134: 9170–9174. doi: 10.1021/ja307406s PMID: 22966464

24. Wilke KE, Francis S, Carlson EE, Uppal A, Liang X, et al. (2013) Activity-based kinase inhibitor-like probe for histidine kinases. J Am Chem Soc 135: 7996–7999. doi: 10.1021/ja402935q PMID: 23919176

25. Okada A, Gotoh Y, Watanabe T, Furuta E, Yamamoto K, et al. (2007) Targeting two-component signal transduction: a novel drug discovery system. Methods Enzymol 422: 386–395. PMID: 17628150

26. Xu D, Jiang B, Ketela T, Lemieux S, Veillette K, et al. (2007) Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3: e92. PMID: 17604452

27. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

28. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

29. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

30. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

31. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

32. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

33. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

34. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

35. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

36. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

37. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

38. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

39. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873

40. Ko Y, Yen PM, Lin CC, Lee WC, Ma HC, et al. (2007) Bacterial histidine kinase inhibitors that block two-component signal transduction. J Am Chem Soc 129: 12275–12276. doi: 10.1021/ja0731887 PMID: 17884873
41. Lee JW, Ko YJ, Kim SY, Bahn YS (2011) Multiple roles of Ypd1 phosphotransfer protein in viability, stress response, and virulence factor regulation in Cryptococcus neoformans. Eukaryot Cell 10: 998–1002. doi: 10.1128/EC.05124-11 PMID: 21642509

42. Wormley FL Jr., Heinrich G, Miller JL, Perfect JR, Cox GM (2005) Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect Immun 73: 5022–5030. PMID: 16041017