Diagnosis of cognitive function changes in patients with abdominal neoplasms occurring in the early postsurgery period and management of those with neuroprotective drug

Dubivska S. S., ORCID: 0000-0003-0367-6279, e-mail: Dubovskaya@ukr.net
Hryhorov Yu. B., ORCID: 0000-0003-4185-8540, e-mail: Hrigorov@ukr.net
Kharkiv National Medical University, Kharkiv, Ukraine
Key words: oncosurgery, anesthesia, cognitive function, neuroprotective therapy, surgical concussion.

For citation: Dubivska SS, Hryhorov YuB. Diagnosis of cognitive function changes in patients with abdominal neoplasms occurring in the early postsurgery period and management of those with neuroprotective drug. Ukrainian Radiological and Oncological Journal. 2021;29(2):91–107. DOI: https://doi.org/10.46879/ukroj.2.2021.91-107

For correspondence: Dubivska Svitlana Stanislavivna, Emergency Medicine, Anesthesiology and Intensive Care Department; 4, Nauki Ave, Kharkiv, Ukraine, 61022; e-mail: Dubovskaya@ukr.net

© Dubivska S. S., Hryhorov Yu. B., 2021

ABSTRACT

Background. The issue of analysis of diagnostic criteria and adequate neuroprotective management of postsurgery cognitive dysfunction in abdominal oncosurgery, depending on the degree and structure of disorders, remains unresolved, determining its relevance.

Purpose – assessing the postsurgery cognitive dysfunction in patients with neoplasms of the abdominal cavity and management of possible disorders with citicoline depending on the level of general cognitive deficit.

Materials and methods. TThe study was conducted at the premises of departments for patients of surgical profile of Municipal Institution “Kharkov City Clinical Hospital of Ambulance and Emergency Care named after Professor O.I. Meshchaninov”. To achieve the aim of the study, 80 patients with abdominal neoplasms who underwent surgery under general anesthesia using propofol and fentanyl were examined.

Results and discussion. Based on the comprehensive clinical study and analysis of the mechanisms of formation of postsurgery cognitive dysfunction in patients of oncosurgical profile after surgery under general anesthesia, we suggested directions and schemes for managing postsurgery cognitive dysfunction by means of the developed clinical diagnostic criterion, which is essential in forming individual scheme of treating patients in postsurgery period.

Conclusions. Based on the analysis of data on the state of cognitive function changes, comparing the postsurgery period with the preoperative state, a differentiated approach to intensive neuroprotective therapy of postoperative cognitive dysfunction was developed. The technique of intensive neuroprotective therapy of postsurgery cognitive dysfunction in patients with abdominal neoplasms, undergoing surgery under general anesthesia, was suggested.

INTRODUCTION

Annually, lots of patients of all ages worldwide need surgery with the use of general anesthesia drugs. The corresponding human response to general anesthesia, surgical trauma and surgical concussion represents a universal comprehensive response [4, 23, 29].

Studying the impact of general anesthesia on the human brain activity is still a scientifically feasible issue, since the drugs administered as general anesthesia primarily affect...
доцільною проблемою, оскільки препарати, які використовуються для проведення загальної анестезії, першочергово впливають на головний мозок пацієнта. Загальна анестезія розглядается як фактор ризику виникнення або прискорення змін когнітивної функції. При цьому, структура та ступінь впливу препаратів для загальної анестезії на центральну нервову систему пов’язані з глибиною та тривалістю наркозу у кожному конкретному випадку [4, 7, 24, 41, 42, 49, 53, 56]. Загальна анестезія може бути фактором виникнення різних уражень нервової системи у післяопераційному періоді [28, 39, 42, 46, 62]. Їмовірно, перші відомості про наявність когнітивної дисфункції після загальної анестезії з’явилися у 1955 році [29, 38, 41]. Відкритим питанням є можливість ранньої діагностики післяопераційної когнітивної дисфункції та ранньої нейропротекторної терапії вже перших проявів когнітивної дисфункції. Частота виникнення ранніх проявів післяопераційної когнітивної дисфункції становить від 10 до 30% спостережень у пацієнтів після операції, стійкі прояви післяопераційної когнітивної дисфункції – від 1 до 10% [2, 18, 22, 34, 43, 55].

Переконливі дані були отримані у проспективному рандомізованому досліді International Study of Post-Operative Cognitive Dysfunction – ISPOCD1 (1998) та ISPOCD2 (2000), де було досліджено шляхом визначення наявність стійких проявів післяопераційної когнітивної дисфункції у 6,2% пацієнтів середнього віку та у 14% пацієнтів похилого віку [45, 55, 57].

Серед факторів ризику виникнення когнітивної дисфункції у даній групі пацієнтів є: відношення пацієнта до свого основного захворювання, вплив самих препаратів загальної анестезії, хірургічна напруга та травма, наявність супутніх хронічних цереброваскулярних змін на мозку, зміни в характері кровообігу, вплив загальної анестезії під час операційного втручання, вплив віку. Тому, автор Бунятян О.О. (1995 р.), визначив поняття “Операційний стрес” як сукупність патофізіологічних змін в організмі людини, що виникають на етапі аnestезії і базової реакції на операційну травму. Інші автори клинічні відомості, що пацієнти відіграють активну роль в активізації симпатичної нервової системи, секреції гормонів гіпофізі, інсульно-резистентність, продукції цитокінів, реакції гострої інфільтрації лейкоцитів [3, 30].

На виникнення когнітивних порушень у даних пацієнтів впливає багато біохімічних та патофізіологічних механізмів: метаболічні, гемореологічні, гіпоксичні, токсичні, що призводять до пошкодження структур цереброваскулярних судин на рівні мікрокрушувань [29, 50, 54, 61]. Відомо, що препарати для загальної анестезії викликають зміни перфузії головного мозку, які в подальшому призводять до різноманітних порушень вищої нервової системи в післяопераційному періоді [4, 5, 18, 26, 52]. Післяопераційні зміни когнітивної функції деякі автори пояснюють наслідком апоптозу під впливом препаратів для загальної анестезії, особливо при великих дозах та тривалих операціях [42, 22, 31, 38].

the patient’s brain. General anesthesia is considered as a risk factor for occurring or accelerating changes in cognitive function. In this case, the structure and degree of influence of general anesthesia drugs on the central nervous system is associated with the depth and duration of anesthesia in each case [4, 7, 24, 41, 42, 49, 53, 56]. General anesthesia can be a factor of occurrence of various lesions of the nervous system in the postsurgery period [28, 39, 42, 46, 62]. Probably, the first evidence of cognitive dysfunction after general anesthesia appeared in 1955 [29, 38, 41]. The question of the possibility of early diagnosis of postoperative cognitive dysfunction and early neuroprotective therapy of the first manifestations of cognitive dysfunction remains open. The frequency of early manifestations of postoperative cognitive dysfunction is observed in 10% to 30% of the patients after surgery, persistent manifestations of postoperative cognitive dysfunction – from 1% to 10% of patients after surgery [2, 18, 22, 34, 43, 55].

The convincing data were obtained via a prospective randomized study of the International Study of Post-Operative Cognitive Dysfunction – ISPOCD1 (1998) and ISPOCD2 (2000), which made it possible to reveal persistent manifestations of POCD in 6.2% of middle-aged and 14% of elderly patients [45, 55, 57].

The risk factors of cognitive dysfunction in this group of patients include: a patient’s attitude to his/her underlying disease, impact of general anesthesia, surgical stress and trauma, concomitant chronic cerebrovascular disease in a patient, duration of general anesthesia while surgery, age and education of a patient [6, 41, 47, 48, 62]. Thus, the author (Bunyatyan A.A., 1995) defined the concept of “Surgical stress” as a set of pathophysiological changes in the human body caused by changes in metabolism and inflammatory, immune reactions induced by surgical trauma. The systemic response of the human body to surgical trauma is activating the sympathetic nervous system, secretion of pituitary hormones, insulin resistance, cytokine production, acute phase reaction, neutrophil leukocytosis, lymphocyte proliferation [3, 30].

The occurrence of cognitive disorders in these patients is influenced by many biochemical and pathophysiological mechanisms: metabolic, hemorheological, hypoxic, toxic, leading to damage of the cerebral vessel walls at microcirculation level [29, 50, 54, 61]. By themselves, drugs for general anesthesia cause changes in brain perfusion, which subsequently result in various disorders of the higher nervous system in the postsurgery period in patients [4, 5, 18, 26, 52]. Postoperative changes in cognitive function are explained by a number of authors as a consequence of apoptosis, under the influence of drugs for general anesthesia, especially at high doses and long operations [42, 22, 31, 38].

In the study, cognitive dysfunction in these patients is mainly manifested by impaired memory, attention, speech, arithmetic, spatial orientation, reduced abstract thinking, slow thinking [4, 5, 18, 33, 38, 39, 44, 57].

The aging process itself is of great importance. Scientific studies show a discrepancy between the subjective complaints of elderly patients and memory
Під час дослідження було встановлено, що когнітивна дисфункція у пацієнтів проявляється переважно порушенням пам'яті, уваги, мови, рахування, простою орієнтації, зниженням можливостей до абстрактного мислення, уповільненням мислення [4, 5, 18, 33, 38, 39, 44, 57].

Велике значення має сам процес старіння людини. Наукові дослідження свідчать про невідповідність між суб'єктивними скаргами пацієнтів похилого віку на порушення пам'яті та реальною здатністю до запам'ятовування. При різних станах депресії можуть розиватися вторинні когнітивні порушення [5, 7, 22, 25, 34, 39, 40]. Під час старіння людини виникають відповідні обміни, структурні та функціональні зміни нейронів та поведінки людини [27, 31, 34, 37]. У 1994 р. Міжнародною психогеріатричною асоціацією при ВООЗ був запропонований термін “вікове когнітивне зниження” (англ. Aging-Associated cognitive decline) для визначення ослаблення пам'яті та уваги вікового характеру [5, 7, 22, 25, 27, 31, 34, 39, 40, 58]. Здатність до запам'ятовування в особі старше 50 років залежить від віку парадоксальним чином: значне погіршення пам'яті спостерігається на початковому етапі старіння, в подальшому ж (приблизно у віці від 65 до 75 років) літні люди демонструють більш вищу місцеву здатність, що наближається до значень рівня середнього віку [27, 31, 34, 39, 40, 58, 59, 60].

Післяоперативна когнітивна дисфункція різноманітна за клінічними проявами і значною мірою впливає на результати кожної операції. На жаль, на сучасному етапі питання етіології, патогенезу, діагностики, профілактики та лікування післяоперативної когнітивної дисфункції ще далекі від повного вирішення [8, 23, 26, 30, 32, 51].

Розуміння головних механізмів, що виникають після загальної анестезії під час оперативного втручання на стан когнітивної функції, дозволяє сформувати фармакологічні напрями підтримки у пацієнтів когнітивної функції, яка може погіршитися після операції. Завдання дослідження включають, що механізми, які призводять до пошкодження нейронів та які забезпечують нейрональну пластичність, мають відповідну послідовність. Такі знання вказують на можливість надання адекватної нейропротективи та стимуляції пластичності з використанням препаратів групи цитиколінів. Автори підкреслюють, що у даної категорії хворих необхідно використовувати цитиколін та холін. На сучасному етапі питання впливу на результати кожної операції. На жаль, на сучасному етапі питання етіології, патогенезу, діагностики, профілактики та лікування післяоперативної когнітивної дисфункції ще далекі від повного вирішення [8, 23, 26, 30, 32, 51].

Післяоперативна когнітивна дисфункція різноманітна за клінічними проявами і значною мірою впливає на результати кожної операції. На жаль, на сучасному етапі питання етіології, патогенезу, діагностики, профілактики та лікування післяоперативної когнітивної дисфункції ще далекі від повного вирішення [8, 23, 26, 30, 32, 51].

Мета роботи – оцінка стану післяоперативної когнітивної дисфункції у хворих з новоутвореннями черевної порожнини та корекція цитиколіном можливих порушень залежно від рівня показника загального когнітивного дефіциту.

Постійна дисфункція у пацієнтів у відносно зміни, які призводять до пошкодження нейронів та зниженням можливостей до абстрактного мислення, уповільненням мислення [4, 5, 18, 33, 38, 39, 44, 57].
МАТЕРІАЛО ТА МЕТОДИ ДОСЛІДЖЕННЯ
Дослідження є фрагментом науково-дослідної роботи кафедри медицини невідкладних станів, анестезіології та інтensивної терапії Харківського національного медичного університету Міністерства охорони здоров'я України.
Дослідження було проведено на базі відділень для пацієнтів хірургічного профілю комунального закладу «Харківська міська клінічна лікарня швидкої та невідкладної медичної допомоги імені професора О.І. Мещанінова» (2009–2019 рр.). Для досягнення мети дослідження було обстежено 80 пацієнтів з новоутвореннями черевної порожнини, яким проводили операції з використанням пропофолу та фентанілу.
Оперативне втручання досліджуваним пацієнтам проведено з приводу гострої кишкової непрохідності, зумовленої злоякісними пухлинами товстої кишки з різноманітної локалізації. Були виконані паліативні та радикальні операції.

Оцінка стану пацієнтів перед хірургічним втручанням з використанням звікованого анестезіологічного ризику (V.A. Gologorsky, 1982) оцінка стану пацієнтів була 2.B. Точками контролю обстеження були дії до операції та 1-ша, 7-ма, 30-та доба від моменту операції.

Всі пацієнти розподілялись на 2 групи в залежності від віку пацієнтів за шкалою ВООЗ, яким проводиться операція. Група 1 (n = 39) представляла молодих людей віком від 50 до 59 років; Група 2 (n = 41) середніх людей віком від 60 до 80 років.
Вік пацієнтів, результати інших факторів ризику, такі як фізичний стан пацієнтів, психофізіологічні дані, також були враховані.

Включають в групу пацієнтів, які діяла операція з використанням звікованого анестезіологічного ризику (V.A. Gologorsky, 1982). Критеріями включення були вік від 50 до 80 років, прийняття наркотиків, алкоголю, відмова пацієнта або його родичів від участі в дослідженні.

Вулиця 25, Харків, Україна
показник загального когнітивного дефіциту для визна-чення доцільності нейропротекторної корекції. Про-вести корекцію когнітивних порушень цитиколіном та провести діагностику когнітивних змін у точках контролю, які відбувалися під впливом лікування.

Для оцінки стану когнітивної функції пацієнтів були використані нейропсихологічні тести: шкала MMSE (Mini-Mental State Examination, MMSE), методика запам'ятовування 10 слів А.Р. Лур'є, батарея лобної дисфункції (FAB), тест малювання годинника, методика Шульте [19, 24, 35].

Використовували запатентований нами розрахун-ковий метод – показник загального когнітивного дефі-циту. Визначення даного показника дає можливість отримати кількісну характеристику стану когнітивної сфери. Показник загального когнітивного дефіциту розраховується за середньою сумою значень процентного відхилення від норми результатів дослідження п’яти тестів когнітивних порушень. Визначаються величини процентних відхилень кожного результату дослідження від норми по кожному з п’яти нейропсихологічних тестів. Із суми отриманих результатів тестів отримується середнє арифметичне значення, яке є показником загального когнітивного дефіциту. Враховуючи діапазон нормальних значень нейропсихо-логочних тестів, який переважно має 20% відхилення, нами вказано діапазон зміни показника загального когнітивного дефіциту 20%, як критерій необхідності проведення лікувальної корекції у кожного конкретного пацієнта на кожному етапі дослідження [12–15].

Всі значення надані у вигляді M ± m. Для оцінки достовірності відмінностей використовували t-критерій Стьюдента, при p = 0.05 відмінності вважали статистично достовірними. Наявність кореляцій між отриманими показниками визначали за критерієм Пірсона. Всі математичні операції і графічні побудови проведені з використанням програмних пакетів «Microsoft Office XP»: «Microsoft XP Home» і «Microsoft Excel XP» (номери ліцензій: 00049153409442 та 7401764000010657664 відповідно).

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

У доопераційному періоді за допомогою тесту за шкалою MMSE встановлено, що результати в усіх пацієнтів були нижче на 9,7% від максимально ймовірного значення за тестом. У пацієнтів 1-ї групи – на 9,6%, 2-ї групи – на 15,4%. Динаміка змін показника тесту MMSE залежала від віку пацієнтів. В усіх пацієнтів у доопераційному періоді результати тесту FAB були на 7,5% нижче від максимально ймовірного значення за тестом. У пацієнтів 1-ї групи – на 3,8%, 2-ї групи – на 16,1%. Результати тесту FAB також змінювались залежно від віку пацієнтів.

В усіх пацієнтів результати тесту малювання годинника були на 4,0% нижче від максимально ймовірного значення. У пацієнтів 1-ї групи на 2,0% нижче від максимально ймовірного значення за тестом, у пацієнтів 2-ї групи – на 8,0%. Результати тесту малювання годинника залежали від віку пацієнтів, особливо у пацієнтів 2-ї групи.

RESULTS OF THE RESEARCH

In the preoperative period in the study of cognitive function using the MMSE test, the results in all patients were lower by 9.7% of the maximum probable value of the test. Patients of Group 1 by 9.6%, Group 2 – by 15.4%. The changes in the MMSE over time depended on the age of patients.

In all patients in the preoperative period, the results of the FAB test were 7.5% lower than the maximum probable value of the test. In patients of Group 1 – by 3.8%, Group 2 – by 16.1%. FAB test results also varied depending on the age of the patients.

In all patients, the results of the clock drawing test were 4.0% lower than the maximum probable value. Patients of Group 1 are 2.0% lower than the maximum probable value on the test, patients of Group 2 – by 8.0%. The results of the clock drawing test depended on the age of the patients, especially in patients of Group 2.

The results of A.R. Luria 10 words test had a significant dependence (p <0.02) and were 21.4% lower than the...
Результати тесту 10 слів А.Р. Лурія мали достовірну залежність (p<0,02) та були на 21,4% нижче від максимально ймовірного значення за тестом, у пацієнтів 1-ї групи на 19,0%, 2-ї групи – на 38,0%. Отримані показники тесту залежали від віку пацієнтів.

Отримані нами результати проби Шульте були достовірно (p<0,01) на 5,5% нижче від максимально ймовірного значення за тестом. У пацієнтів 1-ї групи – на 8,2% нижче, 2-ї групи – на 18,3% нижче. Отримані дані проби Шульте залежали від віку пацієнтів.

У пацієнтів у дооперативному періоді середній показник загального когнітивного дефіциту становив 14% (у пацієнтів 1-ї групи дорівнював 8,52%, у пацієнтів 2-ї групи – 19,38%).

Проведено аналіз результатів післяоперативної когнітивної функції у групах хворих після оперативного втручання (таблиця 1).

Показник / Index	Етапи / Stages	1 група / Group 1	2 група / Group 2
MMSE, бали	До операції Before surgery	26,9±0,9	25,3±1,5
	1 доба / day 1	25,6±1,1	19,2±1,7*
	7 доба / days 7	26,6±1,1	21,3±1,6*
	30 доба / days 30	26,9±1,1	23,6±1,3
FAB, бали / FAB, scores	До операції Before surgery	17,4±0,7	15,2±1,5
	1 доба / day 1	16,3±1,0	11,2±1,7*
	7 доба / days 7	17,0±0,9	12,5±1,1*
	30 доба / days 30	17,1±0,2	14,6±1,7
Тест малювання годинника / Clock drawing test	До операції Before surgery	9,7±0,2	9,1±0,8
	1 доба / day 1	8,2±1,0	7,1±0,9
	7 доба / days 7	8,6±0,9	8,0±,06
	30 доба / days 30	9,3±0,5	9,0±,06
Тест 10 слів А.Р. Лурія / A.R. Luria 10 words test	До операції Before surgery	8,0±0,6	6,1±0,6*
	1 доба / day 1	6,8±0,5*	4,9±0,6*
	7 доба / days 7	7,6±0,3*	5,6±0,8*
	30 доба / days 30	7,9±0,1*	6,0±0,5*
Проба Шульте, секунди / Schulte’s test, seconds	До операції Before surgery	54,2±1,4*	58,9±1,4*
	1 доба / day 1	70,0±1,1*	89,1±1,5*
	7 доба / days 7	62,6±1,4*	82,2±1,4*
	30 доба / days 30	54,0±1,1*	59,9±1,2*
Показник загального когнітивного дефіциту, % / General cognitive deficit, %	До операції Before surgery	8,7±0,3	19,1±0,3
	1 доба / day 1	21,1±0,4	45,6±0,4
	7 доба / days 7	15,9±0,4	35,9±0,3
	30 доба / days 30	10,4±0,3	25,9±0,2

Примітки: * – p < 0,01 при порівнянні з показниками до операції.
Notes: * – p <0,01 when compared with indicators before surgery.
На 1-шу добу після операції результати значень тесту MMSE значно погіршились порівняно зі значеннями до операції. Значення достовірні (p < 0.01) погіршення було у пацієнтів 2-ї групи – на 23,3% від значень до операції. Протягом 30 діб показники тесту MMSE достовірно (p < 0.01) покращилися, але повністю не відновилися (5,92% від значень до операції). Менше зниження значень тесту MMSE на 1-шу добу спостерігалося у пацієнтів 1-ї групи (1,4% від значень до операції), які повністю відновились протягом 30 діб після операції.

Після операції на 1-шу добу результати значень тесту FAB достовірно (p < 0.01) погіршилися порівняно зі значеннями до операції, більш значно у пацієнтів 2-ї групи (25,8% від рівня до операції). Протягом 30 діб стат показників тесту FAB достовірно (p < 0.01) покращився (4,63% від значень до операції), спостерігалося більш швидке покращення на 7-му добу і зберігалося протягом 30 діб (1,15% від значень до операції). На 30-ту добу дослідження найкраще відновлення показників тесту до доопераційного рівня було у пацієнтів 1-ї групи. Показники тесту FAB з 1-ї доби поступово відновлювалися у кожній групі, з майже повним відновленням до доопераційних значень у пацієнтів 1-ї групи. Показники тесту FAB після операції мали пропорційну залежність від віку – на 1-шу добу 10,0% та 37,7% – відповідно, на 7-му добу 5,0%, 30,5% та через 30 діб 5,0%, 20,0% відповідно.

На 1-шу добу після операції результати тесту малювання годинника погіршилися порівняно зі значеннями до операції, і більш значно у пацієнтів 2-ї групи – 22,8%. Показники тесту малювання годинника з 1-ї доби поступово відновлювалися у кожній групі, але майже повного відновлення до значень, які були до операції, у пацієнтів не відбулося. Показники тесту малювання годинника після операції від максимальної ймовірного результату в усі строки дослідження мали пропорційну залежність від віку – на 1-шу добу 14,0%, 29,0% відповідно по групах, на 7-му добу 12,0%, 19,0%, через 30 діб 7,0%, 10,0% відповідно. У пацієнтів усіх груп в усі строки спостерігали суттєві різниці швидкості відновлення не спостерігалось, відновлення було поступовим, але не повним.

За результатами тесту 10 слів А.Р. Лурія на 1-шу добу бачимо достовірне (p < 0.01) погіршення результатів від значень з тестом до операції, і також більш суттєво у пацієнтів 2-ї групи (19,8% від рівня до операції). На 30-ту добу дослідження достовірне (p < 0.01) відновлення показників було у пацієнтів обох груп. Показники тесту 10 слів А.Р. Лурія з 1-ї доби поступово відновлювалися у кожній групі, але повністю відновлювались до доопераційних значень у пацієнтів 1-ї групи. Ці показники після операції в усі строки дослідження мали пропорційну залежність від віку пацієнтів – на 1-шу добу (32,0%, 51,0% відповідно груп пацієнтів), на 7-му добу (26,0%, 44,0%), на 30-ту – (21,0%, 40,0% відповідно). У пацієнтів обох груп у короткі строки спостерігали суттєві різниці швидкості відновлення показників за тестом не було, воно було поступовим, з повним відновленням до показників за даним тестом на рівень показників до операції.

On the 1st day after the operation, the results of the MMSE test values significantly deteriorated from the values before the operation. Significant (p < 0.01) deterioration was in patients of Group 2 – by 23.3% of the values before surgery. Within 30 days, the MMSE test significantly improved (p < 0.01), but did not fully recover (5.92% of preoperative values). The smallest decrease in MMSE test values on the 1st day was observed in patients of Group 1 (1.4% of the values before surgery) and completely recovered within 30 days after surgery.

After the operation on the 1st day, the results of the FAB test values significantly (p < 0.01) worsened from the values before the operation, more significantly in patients of Group 2 (25.8% of the level before the operation). Within 30 days, the condition of the FAB test significantly (p < 0.01) improved (4.63% of preoperative values). But a faster improvement was observed on the 7th day and persisted for 30 days (1.15% of preoperative values). On the 30th day of the study, the best recovery of the test level to the level before surgery was in patients of Group 1. Deterioration of FAB test scores from day 1 gradually recovered in each group, with almost complete recovery to preoperative values in patients of Group 1. FAB test scores after surgery were proportional to age in all periods of the study, on the 1st day: 10.0% and 37.7% – respectively, on the 7th day: 5.0%, 30.5% and through 30 days: 5.0%, 20.0%, respectively.

On the 1st day after surgery, the results of the clock drawing test deteriorated from the values before surgery, more significantly in patients of Group 2 – 22.8%. Deterioration of the clock drawing test from the 1st day was gradually restored in each group, but almost complete recovery to the values that were before surgery in patients did not occur. Indicators of the test of drawing the clock after surgery from the maximum probable result in all terms of the study were proportional to age on the 1st day: 14.0%, 29.0%, respectively, by groups, on the 7th day: 12.0%, 19.0% , 0%, after 30 days: 7.0%, 10.0%, respectively. In patients of all groups at all times of observation, no significant difference in the rate of recovery was observed, recovery was gradual but not complete.

According to the results A.R. Luria 10 words test on the 1st day there is a significant (p <0.01) deterioration of the results from the values of the test before surgery, more significantly in patients of Group 2 (19.8% of the level before surgery). On the 30th day of the study, significant (p <0.01) recovery was in patients of the 1st and 2nd groups.

Deterioration of A.R. Luria 10 words test scores from the 1st day was gradually restored in each group, but completely recovered to preoperative values in patients of Group 1. The scores of A.R. Luria 10 words test after surgery in all periods of the study were proportional to the age of patients on the 1st day (32.0%, 51.0%, respectively, groups of patients), on the 7th day (26.0%, 44.0%), on the 30th – (21.0%, 40.0%, respectively). In patients of both groups in short terms of supervision there was no essential difference of speed of recovery of indicators on the test, it was gradual, with full recovery to indicators on the given test on level before operation.
У дослідженні результатів прохи Шульте на 1-шу добу після операції можна виділити достовірне (р < 0,01) погіршення результатів від значень до операції, більш виразно у пацієнтів 2-ї групи (51,2% від рівня до операції). Показники прохи Шульте з 1-ї доби поступово відновлювалися у кожній групі, але майже повністю достовірно (р < 0,01) відновились у пацієнтів 2-ї групи. Показники прохи Шульте після операції відрізнялися від максималььно ймовірного результату за тестом в усі строки дослідження та мали пропорційну залежність від віку пацієнтів – на 1-шу добу (40,2%, 78,8% відповідно груп), на 7-му добу (24,8%, 64,8%), на 30-ту добу – (7,8%, 38,2% відповідно). У пацієнтів усіх груп в короткі строки спостерігали суттєве зниження швидкості відновлення показників прохи Шульте не було, воно було поступовим, з повним відновленням до рівнів когнітивних порушень за даним тестом на рівень показників до операції.

Проведено аналіз результатів ефективності лікування цитиколіном післяоперативної когнітивної функції у групах хворих після оперативного втручання (табл. 2).

Таблиця 2. Показники стану когнітивної функції у хворих з новоутвореннями черевної порожнини після лікування цитиколіном

Показник / Index	Етапи / Stages	1 група / Group 1	2 група / Group 2
MMSE, бали / MMSE, scores	До операції / Before surgery	26,9±0,9	25,3±1,5
	1 доба / day 1	26,6±1,5	21,7±1,3*
	7 доба / days 7	27,6±0,9	24,6±1,3
	30 доба / days 30	27,6±1,1	26,7±1,0
FAB, бали / FAB, scores	До операції / Before surgery	17,4±0,7	15,2±1,5
	1 доба / day 1	16,8±0,5	13,9±0,5*
	7 доба / days 7	17,3±0,6	14,6±0,6*
	30 доба / days 30	17,1±0,5	15,6±0,4*
Тест малювання годинника / Clock drawing test	До операції / Before surgery	9,7±0,2	9,1±0,8
	1 доба / day 1	9,3±0,3	7,6±0,6*
	7 доба / days 7	9,4±0,2	8,4±0,6
	30 доба / days 30	9,4±0,2	9,4±0,3
Тест 10 слів А.Р. Лур'я / A.R. Luria 10 words test	До операції / Before surgery	8,0±0,6	6,1±0,6*
	1 доба / day 1	7,7±0,5	5,3±0,3*
	7 доба / days 7	8,0±0,5	6,0±0,5*
	30 доба / days 30	8,8±0,5	6,7±0,3*
Проба Шульте, секунди / Schulte’s test, seconds	До операції / Before surgery	54,2±1,4*	58,9±1,4*
	1 доба / day 1	69,3±1,1*	83,5±1,4*
	7 доба / days 7	59,4±1,3*	77,3±1,4*
	30 доба / days 30	54,2±1,5*	60,1±1,2*

Показник загального когнітивного дефіциту, % / General cognitive deficit, % | До операції / Before surgery | 8,7±0,3 | 19,1±0,3 |
	1 доба / day 1	17,3±0,4	39,8±0,6
	7 доба / days 7	10,9±0,6	30,9±0,3
	30 доба / days 30	7,4±0,4	17,6±0,4

Примітки: * – р < 0,01 при порівнянні з показниками до операції.
Notes: * – p < 0,01 when compared with indicators before surgery.
У пацієнтів на фоні проведеної схеми лікування цитиколіном на 1-шу добу після операції результати значень тесту MMSE погіршилися від значень до операції. Суттєве достовірне (p<0,013) погіршення значень тесту було у пацієнтів 2-ї групи (14,2% від значень до операції). Вже на 7-му добу стан показників тесту MMSE у пацієнтів покращився, але у пацієнтів 2-ї групи повністю не відновився (4,7% від значень до операції). У пацієнтів 1-ї групи результат став краще від значень до операції на 1,8%. На 30-ту добу стан показників тесту MMSE покращився, і слід відзначити, що у пацієнтів 1-ї та 2-ї груп він становив від значень до операції (2,6% та 6,3% відповідно по групах).

Показники тесту MMSE з 1-ї доби поступово відновлювалися у кожній групі, відзначалося їх покращення від доопераційних значень в обох групах пацієнтів. Показники тесту MMSE після операції відрізнялися від максимально ймовірного результату за даним тестом на 7-му добу на 8,0%, 19,6% відповідно по групах, на 30-ту добу на 7,3%, 10,3%, після операції вони мали пропорційну залежність від віку пацієнтів, а на 1-шу добу не мали пропорційної залежності від віку пацієнтів. У пацієнтів 1-ї групи на фоні схеми лікування динаміка погіршення стану когнітивної функції спостерігалась меншою мірою, зі швидким відновленням та покращенням.

Під час дослідження було виявлено, що у пацієнтів на фоні схеми лікування цитиколіном на 1-шу добу після операції результати тесту FAB достовірно (p<0,01) погіршилися від значень до операції, більш значно у пацієнтів 2-ї групи (9,2% від рівня до операції), на 7-му добу достовірно (p<0,01) покращилися (3,3% від значень до операції). Показники тесту FAB у пацієнтів 1-ї групи покращення показника на 7-му добу після операції збільшилося і на 30-ту добу. Показники тесту FAB після операції на фоні призначення нейропротекторної терапії відрізнялися від максимально ймовірного результату за тестом у вусі строки дослідження та мали пропорційну залежність від віку пацієнтів – на 1-шу добу на 6,1%, 23,8% нижче відповідно по групах, на 7-му добу на 4,4%, 18,8%, на 30-ту добу на 4,4%, 12,7% відповідно.

Отримані зміни когнітивної функції на фоні нейропротекторної терапії за результатами даного тесту можливо пов’язані з віковими особливостями пластичності когнітивної функції та виснаженням компенсаторних можливостей.

На 1-шу добу після операції на фоні нейропротекторної терапії результати значень тесту малювання годинника погіршилися від значень до операції, достовірно (p<0,01) більше у пацієнтів 2-ї групи (22,0% від рівня до операції), на 30-ту добу достовірно (p<0,01) значення відновилися до рівня до операції. Показники тесту малювання годинника після операції на фоні призначення нейропротекторного препарату відрізнялися від максимально ймовірного результату у вусі строки дослідження та мали пропорційну залежність від віку пацієнтів – на 1-шу добу на 6,0%, 22,0% відповідно, на 7-му добу на 5,0%, 18,0% та на 30-ту добу на 4,0%, 5,0% відповідно. У пацієнтів обох груп в усі терміни спостережень на фоні нейропротекторної терапії результати значень тесту малювання годинника після операції зберігалися і на 30-ту добу значення тесту відновилися до рівня до операції. Суттєве достовірне (p<0,013) погіршення значень тесту FAB після операції на фоні проведеної схеми лікування цитиколіном на 1-шу добу після операції результати значень тесту FAB достовірно (p<0,01) покращились (3,3% значення до операції), на 30-ту добу достовірно (p<0,01) покращились (3,3% від доопераційних значень в обох групах).

У пацієнтів 1-ї групи результат став краще від значень до операції на 1,8%. Показники тесту MMSE после операції на фоні нейропротекторної терапії за результатами даного тесту могли бути пов’язані з віковими особливостями пластичності когнітивної функції та іншими компенсаторними можливостями.

The study analyzed the results of treatment effectiveness against the background of the inclusion of a neuroprotective drug in the standard scheme of postoperative intensive care.

In patients on the background of the treatment regimen on the 1st day after surgery, the results of MMSE test values deteriorated from pre-surgery values. Significant (p<0,013) deterioration of test values was in patients of Group 2 (14,2% of pre-surgery values). Already on the 7th day, the condition of the MMSE test in patients improved, but did not fully recover in patients of Group 2 (4,7% of pre-surgery values). In patients of Group 1 the result was better from the values before surgery by 1,8%. On the 30th day, the condition of MMSE test indicators improved, which should be noted, in patients of Group 1 and Group 2 it became higher than the values before surgery (2,6% and 6,3%, respectively, by groups).

Deterioration of MMSE test scores from day 1 gradually recovered in each group, with improvement from preoperative values in both groups of patients. The indicators of the MMSE test after surgery differed from the maximum probable result of this test on the 7th day by: 8,0%, 19,6%, respectively, by groups and on the 30th day by: 7,3%, 10,3%, after surgery, they were proportional to the age of the patients, and on the 1st day they were not proportional to the age of the patients. In patients of Group 1 against the background of the treatment regimen, the dynamics of deterioration of cognitive function was observed to a lesser extent, with rapid recovery and improvement.

In the study in patients on the background of the treatment regimen on the 1st day after surgery, the results of the FAB test significantly (p<0,01) deteriorated from pre-surgery values, more significantly in patients of Group 2 (9,2% of pre-surgery levels), on the 7th day significantly (p<0,01) improved (3,3% of preoperative values). In patients of Group 1, the improvement on the 7th day after surgery was maintained on the 30th day. FAB test scores after surgery on the background of neuroprotective therapy differed from the maximum probable test result in all periods of the study and had a proportional dependence on the age of patients on the 1st day by: 6,1%, 23,8% lower, respectively, by groups, on the 7th day by: 4,4%, 18,8%, on the 30th day by: 4,4%, 12,7%, respectively.

The obtained changes in cognitive function on the background of neuroprotective therapy according to the results of this test may be associated with age-related features of the plasticity of cognitive function and the depletion of compensatory capacity.

On the 1st day after surgery on the background of neuroprotective therapy, the results of the clock drawing test deteriorated from the values before surgery, significantly (p<0,01) more in patients of Group 2 (22,0% of the level before surgery), by 30-th day significantly (p<0,01) values were restored to the level before surgery. The indicators of the test of drawing the clock after surgery on the background of the appointment of a neuroprotective drug differed from the maximum probable result in all periods of the study and had a proportional dependence on the age of patients on day 1: 6,0%, 22,0%, respectively, groups on the 7th days by: 5,0%, 18,0% and on the 100
терапії спостерігався свій шлях перебудь післяопераційної когнітивної дисфункції: часткове відновлення у пацієнтів 1-ї групи; достовірне (p<0,01) покращення у пацієнтів 2-ї групи від значень до операції за даним тестом.

На 1-щу добу після операції на фоні призначения нейропротекторної терапії до стандартної схеми введення післяопераційного періоду результати значень тесту 10 слів А.Р. Лурия погіршилися від значень до операції, достовірно (p<0,01) більше у пацієнтів 2-ї групи (9,8% від від значень до операції) з достовірним (p<0,01) покращенням на 30-ту добу. У пацієнтів 1-ї групи спостерігалось більш швидке покращення порівняно зі значеннями до операції та повне відновлення до значень до операції на 7-му добу у пацієнтів 2-ї групи. На 30-ту добу дослідження покращення показників тесту було у пацієнтів обох груп. Показники тесту 10 слів А.Р. Лурия у пацієнтів після операції на фоні нейропротекторної терапії відрізнялися від максимально ймовірного результату за тестом у всі строки дослідження та мали пропорційну залежність від віку пацієнтів – на 1-щу добу на 21,0%, 45,0% відповідно по групах, на 7-му добу на 13,0%, 40,0%, на 30-ту добу на 9,0%, 31,0% відповідно. За результатами тесту 10 слів А.Р. Лурия у пацієнтів 2-ї групи в короткі строки відбувалось відновлення показників до значень до операції.

На 1-щу добу після операції результати пробы Шульте достовірно (p<0,01) погіршилися від значень до операції, більш значно у пацієнтів 2-ї групи (41,6% від від значень до операції) та на 30-ту добу достовірно (p<0,01) покращення. Показники пробы Шульте на фоні включення нейропротекторної терапії після операції відрізнялися від максимально ймовірного результату в усі строки дослідження та мали пропорційну залежність від віку пацієнтів – на 1-щу добу на 39,2%, 67,4% відповідно по групах, на 7-му добу в пацієнтів 1-ї групи – 55,0% та на 30-ту добу у пацієнтів 1-ї та 2-ї груп на 8,4%, 20,6% відповідно.

Протягом усіх періодів дослідження на фоні нейропротекторної терапії спостерігалась зміна показника загального когнітивного дефіциту з покращенням у пацієнтів 1-ї групи на 21,3% від показника до операції, а у пацієнтів 2-ї групи показник покращився на 17,4% від значень до операції.

Таким чином, показник загального когнітивного дефіциту розроблено як єдиний узагальнюючий кількісний показник змін когнітивної функції у пацієнтів різного віку на різних етапах дослідження. Показник загального когнітивного дефіциту дає можливість оцінити адекватність лікарської тактики та порівняти динаміку змін зі станом когнітивної функції до операції та з різних етапах після операції у кожному окремому випадку. Даний показник є єдиним критерієм для призначення адекватного індивідуального лікування по корекції можливих порушень когнітивної функції, які виникають або погіршуються після загальної анестезії при хірургічних втручаннях у пацієнтів онкохірургічного профілю.
ВІСНОВКИ
Під час дослідження нами було визначено, що післяопераційна когнітивна дисфункція у хворих з новоутвореннями черевної порожнини знаходиться в пропорційній залежності від віку.
У пацієнтів середнього віку, на фоні включення цитиколіну до інтенсивної терапії, покращення когнітивної функції спостерігалось на 7-му добу після операції з відновленням до наступного строку спостереження. У пацієнтів похилого та старечого віку показники когнітивної функції прокращувались протягом 30 діб.
Протягом усіх періодів дослідження на фоні прийому цитиколіну спостерігалася зміна показника загального когнітивного дефіциту з достовірним (р<0,05) покращенням у пацієнтів 1-ї групи – 6,6 %, 2-ї групи – 15,9 %.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ
1. Антонюк Т. Роль цитиколіну при когнітивних нарахуваннях. Нейропреч. 2016. № 1(75). С. 24–26.
2. Басенко І. Л., Владика А .С., Тарабрин О. О. Аnestезіологія, інтенсивна терапія та невідкладні стани: навчальний посібник для лікарів-інтернів. Суми: Університетська книга. 2017. 584 с.
3. Бунятян А. А. Руководство по анестезиологии. Практическое пособие. Москва: Медицина. 1994. 656 с.
4. Войцеховский Д. В., Аверьянов Д. А., Щеголев А. В., Коноплицький В. С. Профілактика й реабілітація на післяопераційному стадії. Київ: Клінічна хірургія. 2017. № 1(74). С. 35–40.
5. Гонський Я. И. Біохімія людини. Тернопіль: Укрмедкнига. 2017. 732 с.
6. Дмитрієв Д. В., Коноплицький В. С. Профілактика післяоперативної гіпералгезії на основі морфологічного обґрунтування методу аналгезії. Клінічна хірургія. 2016. № 3. С. 39–40.
7. Дубівська С. С. Вивчення впливу Церебролізину на післяоперативну когнітивну дисфункцію. Міжнародний неврологічний журнал. 2017. №4(90). С. 57–59.
8. Дубівська С. С., Григоров Ю. Б. Віддалені наслідки післяоперативної когнітивної дисфункції. Вісник проблем біохімії та медицини. 2019. Вип. 3(152). С. 93–97. DOI: https://doi.org/10.29254/2017-4214-2019-3-152-93-97
9. Дубівська С. С. Динаміка результатах тесту за шкалою MMSE на тлі нейропротекторної терапії післяоперативної когнітивної дисфункції. Медицина сьогодні і завтра. 2019. № 1(82). С. 81–86. DOI: https://doi.org/10.35339/msz2019.82.01.11

Висновки
Протягом усіх періодів дослідження на фоні прийому цитиколіну спостерігалася зміна показника загального когнітивного дефіциту з достовірним (р<0,05) покращенням у пацієнтів 1-ї групи – 6,6 %, 2-ї групи – 15,9 %.

CONCLUSIONS
In the study, we have determined that postoperative cognitive dysfunction in patients with abdominal neoplasms is proportional to age.

In patients of Group 1, on the background of the inclusion of citicoline in intensive care, the improvement of cognitive function was observed on the 7th day after surgery with recovery until the next term of the study. In patients of Group 2, the cognitive function values tended to improve for 30 days.

During all periods of the study, on the background of citicoline intake, there was a change in the overall cognitive deficit with a significant (р <0.05) improvement in patients of Group 1 – 6.6%, Group 2 – 15.9%.

REFERENCES
1. Antonyuk T. Role of citicoline in cognitive impairment. Neuronews. 2016;1(75):24–6. (In Russian).
2. Basenko IL, Vladyka AS, Tarabrin OO. Anesthesiology, intensive care and emergencies: a textbook for interns. Sumy: University Book. 2017. 584 c. (In Ukrainian).
3. Bunyatyan AA. Guide to anesthesiaology. A practical guide. Moscow: Medicine. 1994;656. (In Russian).
4. Voitskhovsky DV, Averyanov DA, Shechegolev AV, Sivistov DV. Effect of deep anesthesia on the occurrence of postoperative cognitive dysfunction. Bulletin of anesthesiology and resuscitation. 2018;15(1):5–9. (In Russian). DOI: https://doi.org/10.21292/2078-5658-2018-15-1-5-9
5. Volkov OO. Influence of the general anesthesia on cognitive functions of parturients after cesarean section. Bukovynian Medical Bulletin. 2015;2(74):35–40. (In Ukrainian).
6. Gonsky JI. Human biochemistry. Ternopil: Ukrmed-knyha. 2019;732. (In Ukrainian).
7. Damulin IV. Alzheimer’s disease and vascular dementia. Ed. N.N. Yakhno. Moscow: Medicine. 2002;85. (In Russian).
8. Dmitriev DV, Konopilsky VS. Prevention of postoperative hyperalgesia on the basis of morphological substantiation of the method of analgesia. Clinical surgery. 2016;3:39–40. (In Ukrainian).
9. Dubivska SS. Vivochemistry. Lviv: University Book. 2019;732. (In Ukrainian).
10. Dubivska SS, Grigorov YuB. Long-term consequences of postoperative cognitive dysfunction. Bulletin of problems of biology and medicine. 2019;3(152):93–7. (In Ukrainian). DOI: https://doi.org/10.29254/2017-4214-2019-3-152-93-97
11. Dubivska SS. Dynamics of test results on the MMSE scale against the background of neuroprotective therapy of postoperative cognitive dysfunction. Medicine today and tomorrow. 2019;1(82):81–6. (In Ukrainian). DOI: https://doi.org/10.35339/msz2019.82.01.11
Оригінальні дослідження

25. Ляшенко Е. А., Иванова Л. Г., Чимагомедова А. Ш.
Постоперационная когнитивная дисфункция. Журнал неврологии и психиатрии им. С. С. Корсакова. 2020. № 120(10–2). С. 39–45. DOI: https://doi.org/10.17116/jnevro202012010239

26. Макаренко А. Н., Савосько С. И. Влияние тиопентала натрия на состояние энергетического обмена в головном мозге. Вісник проблем біології та медицини. 2016. Вип.2,1(128). С. 56–59.

27. Малева О. В., Трубникова О. А., Кухарева И. Н. и др. Динамика когнитивного статуса при одномоментном выполнении коронарного шунтирования и каротидной эндартерэктомии. Грудная и сердечно-сосудистая хирургия. 2018. № 60(4). С. 317–324. DOI: https://doi.org/10.24022/0236-2791-2018-60-4-317-324

28. Неймарк М. И., Шмелев В. В., Симагин В. Ю. и др. Оценка степени мозгового повреждения при общей анестезии в реконструктивной хирургии сонных артерий. Сборник докладов IV съезда анестезиологов и реаниматологов Запада России. 2007. С. 138–139.

29. Овезов А. М., Лобов М. А., Надкина Е. Д. и др. Цитиколин в профилактике послеоперационной когнитивной дисфункции при тотальной внутричерепной анестезии. Аналиты клинической и экспериментальной неврологии. 2013. № 7(2). С. 27–32.

30. Овечкин А. М. Хирургический стресс – ответ, его патофизиологическая значимость и способы модуляции. Регионарная анестезия и лечение острой боли. 2008. № 2(2). С. 49–62.

31. Павлов О. О., Луцк С. А. Попередники розвитку післяоператійного дельіру у пацієнтів похилого віку та шляхи терапевтичної тактики. Медицина неотложных состояний. 2016. № 8. С. 64–68. URL: http://nbuf.gov.ua/UJRN/Medns_2016_8_10

32. Полушин О.Ю., Янишевский С.Н., Маслевцов Д.В., Кризов В. О., Бескровная О. В., Молчан Н. С. Эффективность профилактики послеоперационной когнитивной дисфункции при кардиохирургических вмешательствах с применением церебролизина. Журнал неврологии и психиатрии им. С.С. Корсакова. 2017. № 12. С. 37–45. DOI: https://doi.org/10.17116/jnevro201711712137-45

33. Полушин Ю. С., Полушин А. Ю., Юкина Г. Ю., Кожемякина М. В. Послеперационная когнитивная дисфункция – что мы знаем и куда двигаться далее. Вестник анестезиологии и реаниматологии. 2019. № 16(1). С. 19–28. DOI: https://doi.org/10.21292/2078-5658-2019-16-1-19-28

34. Попугаев К. А., Савин И. А., Лубинин А. Ю., Горячев А. С. Делирий в реаниматологической практике. Обзор литературы. Анестезиология и реаниматология. 2012. № 4. С. 19–27.

35. Lyashenko EA, Ivanova LG, Chimagomedova ASh. Postoperative cognitive dysfunction. Journal of neurologists and psychiatry them. S.S. Korsakov. 2020;120(10–2):39–45. (In Russian). DOI: https://doi.org/10.17116/jnevro202012010239

36. Makarenko AN, Savosko SI. Influence of sodium thiopental on the state of energy metabolism in the brain. Bulletin of problems of biology and medicine. 2016;2(1):56–9. (In Russian).

37. Maleva OV, Trubnikova OA, Kukhareva IN et al. Dynamics of cognitive status in case of simultaneous coronary artery bypass grafting and carotid endarterectomy. Breast and cardiovascular surgery. 2018;60(4):317–24. (In Russian). DOI: https://doi.org/10.24022/0236-2791-2018-60-4-317-324

38. Neimark MI, Shmelev VV, Simagin VYu et al. Assessment of the degree of brain damage during general anesthesia in reconstructive surgery of the carotid arteries. Collection of reports of the IV Congress of anesthesiologists and resuscitators of the West of Russia. 2007;138–9. (In Russian).

39. Ovezov AM, Lobov MA, Nadkina ED et al. Citicoline in the prevention of postoperative cognitive dysfunction with total intravenous anesthesia. Annals of ClinicallandExperimentalNeurology. 2013;7(2):27–32. (In Russian).

40. Ovechkin AM. Surgical stress is a response, its pathophysiological significance and modulation methods. Regional anesthesia and treatment of acute pain. 2008;2(2):49–62. (In Russian).

41. Pavlov OO, Lutsyk SA. Precursors of postoperative delirium development in elderly patients and ways of therapeutic tactics. Emergency medicine. 2016;8:64–68. (In Ukrainian). URL: http://nbuf.gov.ua/UJRN/Medns_2016_8_10

42. Polushin AYu, Yanishevs’ky SN, Masleevs’ov DV, Krivov VO, Beskrovnaya OYu, Molchan NS. Efficiency of prevention of postoperative cognitive dysfunction during cardiac surgery with the use of cerebrolysin. Journal of Neurology and Psychiatry. S. S. Korsakov. 2017;12:37–45. (In Russian). DOI: https://doi.org/10.17116/jnevro201711712137-45

43. Polushin YuS, Polushin AYu, Yukina GYu, Kozhemyakina MV. Postoperative cognitive dysfunction – what we know and where to go next. Bulletin of anesthesiology and resuscitation. 2019;16(1):19–28. (In Russian). DOI: https://doi.org/10.21292/2078-5658-2019-16-1-19-28

44. Popugaev KA, Savin IA., Lubnin AYu, Goryachev AS. Delirium in intensive care practice. Literature review. Anesthesiology and Reanimatology. 2012;4:19–27. (In Russian).

45. Rimsky SA. Almanac of psychological tests: collection. 2nd ed. Moscow: KSP. 1996;398. (In Russian).

46. Semenenko AI, Sursaev YuE, Datsyuk AI. Study of the effect of Gliaton (choline alfoscenate) on the degree of brain damage during general anesthesia. Emergency medicine. 2016;2(73):75–8. (In Russian).
35. Римский С. А. Альманах психологических тестов: сборник. 2-е изд. Москва: КСП. 1996. 398 с.
36. Семененко А. И., Сурсаев Ю. Е., Дацюк А. И. Изучение влияния Глиятона (холина альфосцената) на течение послеоперационного периода у больных после общей анестезии. Медицина неотложных состояний. 2016. № 2(73). С. 75–78.
37. Стаценко И. А., Стегалов С. В., Лебедева М. Н., Первухин С. А. Современный взгляд на проблему остrego послеоперационного делирия у пациентов травматолого-ортопедического профиля в условиях отделения реанимации и интенсивной терапии. Бюллетень сибирской медицины. 2018. № 17(1). С. 211–219.
38. Усенко Л. В., Ризк Шади Эйд, Криштафор А. А. Профилактика и коррекция послеоперационных когнитивных дисфункций у больных пожилого возраста. Международный неврологический журнал. 2008. № 3(19). С. 99–110, продолжение: 2008. № 4(20). C. 87–94.
39. Федоров С. А., Большедворов Р. В., Лихванцев В. В. Причины ранних расстройств психики больного после операций, выполненных в условиях общей анестезии. Вестник интенсивной терапии. 2007. № 4. С. 17–25.
40. Фролькис В. В. Физиологические механизмы старения. Ленинград: Наука. 1982. 618 с.
41. Шайдев Н. А. Роль и место фармакологической церебропротекции в профилактике и коррекции когнитивной недостаточности: гипотезы и доказательства. Здоровьё в Украине. 2007. № 3(160). С. 29–30.
42. Шайдев Н. А., Салина А. Б. Неврологические осложнения общей анестезии. Красноярск: КрасГМА. 2004. 383 с.
43. Яхно Н. Н., Захранов В. В., Коберская Н. Н. «Предумеренные» (субъективные и легкие) когнитивные расстройства. Неврологический журнал. 2017. № 22(4). С. 198–204.
44. Яхно Н. Н., Преображенская И. С., Захранов В. В. Распространенность когнитивных нарушений при неврологических заболеваниях (анализ работы специализированного амбулаторного приема). Неврология, нейропсихиатрия, психосоматика. 2012. № 2. С. 30–35.
45. Abildstrom H., Rasmussen L. S., Rentowl P. et al. Cognitive dysfunction 1–2 years after non-cardiac surgery in the elderly. ISPOCD group. International Study of Post-Operative Cognitive Dysfunction. Acta anaesthesiologica Scandinavica. 2000;44(10):1246–51. (In English).
46. Avelino-Silva TJ, Campora F, Curiati JA, Jacob-Filho W. Association between delirium superimposed on dementia and mortality in hospitalized older adults: a prospective cohort study. PLoS medicine. 2017;14(3):e1002264. (In English). DOI: https://doi.org/10.1371/journal.pmed.1002264
47. Berger M, Nadler J, Browndyke J et al. Postoperative Cognitive Dysfunction: Minding the Gaps in our Knowledge of A Common Postoperative Complication in the Elderly. Anesthesiology clinics. 2015.
Перспективи подальших досліджень

Подальше дослідження змін вищої мозкової діяльності в онкохірургічних хворих на різних етапах їх лікування, вивчення залежності змін когнітивної функції на різних етапах хірургічного лікування. Перспективним є дослідження когнітивної функції на усіх етапах протоколу лікування кожного конкретного хворого для досягнення збереження якості життя.

Конфлікт інтересів

Автори рукопису свідомо засвідчують відсутність фактичного або потенційного конфлікту інтересів щодо результатів цієї роботи з фармацевтичними компаніями, виробниками біомедичних пристроїв, іншими організаціями, чи продукти, послуги, фінансова підтримка можуть бути пов’язані з предметом наданих матеріалів, або які спонсорували проведені дослідження.

Інформація про фінансування

Фінансування видатками Державного бюджету України.

Prospects for further research

Further studying the changes in higher brain activity in cancer patients at different stages of treatment, the dependence of changes in cognitive function at different stages of surgical treatment. Studying the cognitive function at all stages of the treatment protocol of each patient to achieve quality of life is promising.

Conflict of interest

The authors of the manuscript knowingly acknowledge the absence of actual or potential conflict of interest regarding the results of this paper with pharmaceutical companies, manufacturers of biomedical devices, other organizations whose products, services, financial support may be related to the subject matter or sponsored.

Funding information

Financed by the State Budget of Ukraine.

INFORMATION ABOUT AUTHORS

Dubivska Svitlana Stanislavivna – Doctor of Medical Sciences, Associate Professor, Professor of Emergency Medicine, Anesthesiology and Intensive Care Department, Kharkiv National Medical University; 4 Nauky Ave., Kharkiv, Ukraine, 61022; e-mail: Dubovskyaya@ukr.net
mob.: +38 (067) 787-94-07

Author’s contribution: concept and design of the study, analysis of the results and effectiveness of the drug used, statistical data processing.

Hryhorov Yuriy Borysovych – Doctor of Medical Sciences, Professor of Surgery Department No 1 of Kharkiv National Medical University; 4 Nauky Ave., Kharkiv, Ukraine, 61022; e-mail: Hrigorov@ukr.net
mob.: +38 (099) 377-32-72

Author’s contribution: applying fundamental changes, adjusting the paper, processing the literature.