A class of unbiased location invariant
Hill-type estimators for heavy tailed
distributions

Jiaona Li¹, Zuoxiang Peng¹ and Saralees Nadarajah²

¹School of Mathematics and Statistics, Southwest University, Chongqing, 400715
²School of Mathematics, University of Manchester, Manchester, United Kingdom

Abstract: Based on the methods provided in Caeiro and Gomes (2002) and Fraga Alves (2001), a new class of location invariant Hill-type estimators is derived in this paper. Its asymptotic distributional representation and asymptotic normality are presented, and the optimal choice of sample fraction by Mean Squared Error is also discussed for some special cases. Finally comparison studies are provided for some familiar models by Monte Carlo simulations.

AMS 2000 subject classifications: Primary 62G32; secondary 65C05.
Keywords and phrases: Asymptotic normality, Location invariant Hill-type heavy tailed index estimator, Second order regular variation.

Received July 2008.

1. Introduction

In this paper we study the asymptotic properties of a class of unbiased location invariant Hill-type heavy tailed index estimators. Let \(\{X_n, n \geq 1\} \) be an independent and identically distributed (i.i.d) sequence with distribution function (d.f) \(F(x) \) belonging to the domain of attraction of an extreme value distribution,

\[
G_\gamma(x) = \exp \left\{ - (1 + \gamma x)^{-1/\gamma} \right\}, \quad \gamma \in \mathbb{R} \text{ and } 1 + \gamma x > 0,
\]

i.e. there exist normalizing constants \(a_n > 0 \) and \(b_n \in \mathbb{R} \) such that

\[
F^n(a_n x + b_n) \rightarrow G_\gamma(x)
\]

as \(n \to \infty \) for all \(x \in \mathbb{R} \). We write \(F \in D(G_\gamma) \) if (1.1) holds and call \(\gamma \) the tail index.

The applications of the heavy tailed distributions may be found in many fields such as insurance, finance, climatology and environmental science (cf. Embrechts et al. (1997)), and the problem of estimating the heavy tailed index has been studied extensively. For positive \(\gamma \), Hill (1975) introduced the well known Hill estimator, which is

\[
\hat{\gamma}_{n,H}(k) = \frac{1}{k} \sum_{i=1}^{k-1} \ln X_{n-i,n} - \ln X_{n-k,n},
\]

829
where $X_{1,n} \leq X_{2,n} \leq \cdots \leq X_{n,n}$ are the order statistics of X_1, X_2, \cdots, X_n. As an extension of Hill-type estimator for general $\gamma \in \mathbb{R}$, Dekkers et al. (1989) proposed the following moment estimator

$$
\hat{\gamma}_n^{M}(k) = M_n^{(1)} + 1 - \frac{1}{2} \left(1 - \frac{M_n^{(1)}2}{M_n^{(2)}} \right)^{-1},
$$

where

$$
M_n^{(j)}(k) = \frac{1}{k} \sum_{i=0}^{k-1} (\ln X_{n-i,n} - \ln X_{n-k,n})^j, \quad j = 1, 2.
$$

In applications both Hill and moment estimators are sensitive to the threshold, say $X_{n-k,n}$, and these two estimators are not invariant to the affine transformation. Fraga Alves (2001) established the scale and location invariant Hill-type estimator given by

$$
\hat{\gamma}_n^{H}(k_0, k) = \frac{1}{k_0} \sum_{i=0}^{k_0-1} \ln \frac{X_{n-i,n} - X_{n-k,n}}{X_{n-k_0,n} - X_{n-k,n}},
$$

where the intermediate sequences k_0 and k satisfy

$$
k = k_n = o(n), \quad k_0 = o(k_n), \quad k_n \to \infty, \quad k_0 \to \infty, \quad \text{as } n \to \infty. \quad (1.2)
$$

The asymptotic properties of $\hat{\gamma}_n(k_0, k)$ have been considered when

$$
\frac{U(tx)/U(t) - x^\gamma}{a(t)} \to x^{x^\rho - 1}/\rho
$$

holds as $t \to \infty$, where $U(t) = F^{-1}(1 - 1/t), \; t \geq 1$, where $F^{-1}(x)$ denotes the inverse function of $F(x)$. Based on the methods provided in Fraga Alves (2001) and Dekkers et al. (1989), Ling et al. (2007a, 2007b) proposed a kind of location invariant moment-type tail index estimator and considered its asymptotic properties under some second order regular varying conditions.

Meanwhile the problem of searching for the unbiased estimators has been considered by many authors, see, e.g., Peng (1998), Beirlant et al. (2002), Caeiro and Gomes (2002), Gomes and Martins (2002, 2004), Peng and Qi (2006a, 2006b), Gomes et al. (2008), Gomes and Henrique (2008), and Qi (2008a, 2008b). Here we are interested in the class of semi-parametric heavy tail estimator introduced by Caeiro and Gomes (2002):

$$
\gamma_n^{(\alpha)}(k) = \frac{\Gamma(\alpha)}{M_n^{(\alpha-1)}(k)} \left(\frac{M_n^{(2\alpha)}(k)}{\Gamma(2\alpha + 1)} \right)^{1/2}, \quad \alpha \geq 1,
$$

where $\Gamma(\cdot)$ is the gamma function and

$$
M_n^{(\alpha)}(k) := \frac{1}{k} \sum_{i=1}^{k-1} (\ln X_{n-i,n} - \ln X_{n-k,n})^\alpha, \quad \alpha > 0.
$$
They considered the asymptotic distributional representation of $M_n^{(\alpha)}(k)$ and the choice of tuning parameter α such that $\gamma_n^{(\alpha)}(k)$ is asymptotically normal with asymptotic null bias under the assumptions that

$$\frac{\ln U(tx) - \ln U(t) - \gamma \ln x}{A(t)} \xrightarrow{P} \frac{x^\rho - 1}{\rho}, \quad x > 0$$

and $\sqrt{k}A(n/k) \rightarrow \lambda$, finite.

Motivated by the works of Fraga Alves (2001) and Caeiro and Gomes (2002), we propose a new class of location invariant estimators for a heavy tailed distribution based on the asymptotic distributional representation of the following statistic:

$$M_n^{(\alpha)}(k_0, k) = \frac{1}{k_0} \sum_{i=0}^{k_0-1} \left\{ \frac{\ln X_{n-i,n} - X_{n-k,n}}{X_{n-k_0,n} - X_{n-k,n}} \right\}^\alpha, \quad \alpha \in \mathbb{R}^+. \quad (1.3)$$

The asymptotic distributional representation of $M_n^{(\alpha)}(k_0, k)$ will be derived under the following second order regular variation condition:

$$\lim_{t \to \infty} \frac{U(tx) - U(t)}{A(t)} - \frac{\gamma - 1}{\gamma} = \Psi_{\gamma, \rho}(x) \quad \text{for all } x > 0, \quad (1.4)$$

where

$$\Psi_{\gamma, \rho}(x) = \begin{cases} \frac{x^{\gamma + \rho} - 1}{\gamma + \rho}, & \text{if } \gamma + \rho \neq 0, \\ \ln x, & \text{if } \gamma + \rho = 0. \end{cases}$$

and $\rho < 0$ is the second order parameter and $|A(t)| \in RV_\rho$ (cf. Corollary 2.3.5 of de Haan and Ferreira (2006)). Here, $f \in RV_\beta$ means $\lim_{t \to \infty} f(tx)/f(t) = x^\beta$ for all $x > 0$.

Based on the convergence $M_n^{(\alpha)}(k_0, k) \xrightarrow{P} \Gamma(\alpha+1)\gamma^\alpha$ as $k_0 \to \infty$, $k_0 = o(k)$, a location invariant Hill-type estimator for the heavy tailed index may be defined by

$$\hat{\gamma}_n^{(\alpha)}(k_0, k) = \frac{\Gamma(\alpha)}{M_n^{(\alpha-1)}(k_0, k)} \left[\frac{M_n^{(2\alpha)}(k_0, k)}{\Gamma(2\alpha + 1)} \right]^{\frac{1}{\gamma}}, \quad \alpha \geq 1, \quad (1.5)$$

which converges to γ in probability. Finite sample simulation shows that the positive tuning parameter α may be chosen appropriately to improve the performance of tail index estimation in applications.

The paper is organized as follows. In section 2, we provide the main results, i.e. the asymptotic distributional representations of (1.3) and (1.5), and the optimal choice of the sample fraction k_0 by mean squared error (MSE) for some special distributions. Related proofs are deferred to section 4. Simulation studies are performed in section 3.
2. The main results

Throughout this paper, we assume that X_1, X_2, \cdots, X_n are i.i.d random variables (r.v.s) with d.f $F(x)$, and denote by $X_{1,n} \leq X_{2,n} \leq \cdots \leq X_{n,n}$ the order statistics of X_1, \cdots, X_n. For the heavy tail distribution, i.e. $\gamma > 0$, we know that

$$F \in D(G_\gamma) \iff 1 - F \in RV_{-1/\gamma} \iff U \in RV_\gamma.$$

(2.1)

We need the following notations to simplify the statements of our main results:

$$\sigma_\alpha = \sqrt{\Gamma(2\alpha + 1) - \Gamma^2(\alpha + 1)},$$

$$\mu_\alpha(\rho) = \frac{\Gamma(\alpha) 1 - (1 - \rho)^\alpha}{\rho (1 - \rho)},$$

$$V_\alpha = \frac{1}{4} \left\{ \frac{\Gamma(4\alpha)}{\alpha \Gamma(2\alpha)^2} + \frac{4\Gamma(2\alpha - 1)}{\Gamma^2(\alpha)} - \frac{2\Gamma(3\alpha)}{\alpha \Gamma(2\alpha)} - 1 \right\}$$

(2.2)

and

$$b_\alpha(\gamma) = (1 + \gamma)^{1 - \alpha} - \frac{1}{2} (1 + \gamma)^{-2\alpha} - \frac{1}{2}.$$

(2.3)

The first result is about the asymptotic distributional representation of $M_n^{(\alpha)}(k_0, k)$.

Theorem 2.1. Suppose that (2.1) holds for $\gamma > 0$, and the intermediate k_0 and k satisfy (1.2). Then $M_n^{(\alpha)}(k_0, k)$ converges in probability to $\Gamma(\alpha + 1)\gamma^\alpha$. Furthermore, if the second order framework in (1.4) holds, we may obtain the following asymptotic distributional representation

$$M_n^{(\alpha)}(k_0, k) \overset{d}{=} \gamma^\alpha \Gamma(\alpha + 1) + \frac{\gamma^\alpha \sigma_\alpha}{\sqrt{k_0}} P_n^{(\alpha)} + \alpha \gamma^\alpha \mu_\alpha(-\gamma) \left(\frac{k_0}{k} \right)^\gamma (1 + o_P(1)) + B_n,$$

where $P_n^{(\alpha)}$ is an asymptotically standard normal r.v., and

$$B_n = \begin{cases} \frac{\alpha \gamma^\alpha \mu_\alpha(\rho)}{\gamma + \rho} A(n/k) \left(\frac{k_0}{k} \right)^{-\rho} (1 + o_P(1)), & \text{if } \gamma + \rho \neq 0, \\ \alpha \gamma^{\alpha+1} \mu_\alpha(-\gamma) A(n/k) \left(\frac{k_0}{k} \right)^\gamma \ln \left(\frac{k_0}{k} \right) (1 + o_P(1)), & \text{if } \gamma + \rho = 0. \end{cases}$$

Based on Theorem 2.1, we may derive the asymptotic distributional representation of the proposed estimator $\hat{\gamma}_n^{(\alpha)}(k_0, k)$ in (1.5), which is the following result.
Theorem 2.2. Under the conditions of Theorem 2.1, the following asymptotic
distributional representation
\[
\hat{\gamma}_n^{(\alpha)}(k_0, k) \equiv \gamma + \frac{\gamma \sqrt{V_\alpha}}{\sqrt{k_0}} T_n^{(\alpha)} + b_\alpha(\gamma) \left(\frac{k_0}{k} \right)^{\frac{\gamma}{a}} + o_P \left(\frac{1}{\sqrt{k_0}} \right) + R_n
\]
holds, where \(T_n^{(\alpha)} \) is asymptotically standard normal, and
\[
R_n = \begin{cases}
-\frac{\gamma}{\gamma + \rho} b_\alpha(-\rho) A(n/k) \left(\frac{k_0}{k} \right)^{-\rho} (1 + o_P(1)), & \text{if } \gamma + \rho \neq 0, \\
\gamma b_\alpha(\gamma) A(n/k) \left(\frac{k_0}{k} \right) \ln \left(\frac{k_0}{k} \right) (1 + o_P(1)), & \text{if } \gamma + \rho = 0.
\end{cases}
\]
Furthermore, if there exist finite \(\lambda_1 \) and \(\lambda_2 \) such that
\[
\sqrt{k_0} \left(\frac{k_0}{k} \right)^{\gamma} \to \lambda_1 \text{ and } \sqrt{k_0} A(n/k) \to \lambda_2,
\]
we have
\[
\sqrt{k_0} \left(\frac{k_0}{k} \right)^{\gamma} \to N(\lambda_1 b_\alpha(\gamma), \gamma^2 V_\alpha),
\]
where \(V_\alpha \) and \(b_\alpha(\gamma) \) are defined in (2.2) and (2.3), respectively. Consequently, for every \(\gamma > 0 \), there exists \(a_0 \) given by
\[
a_0 = a_0(\gamma) = \left(\frac{\ln \left(1 + \gamma + \sqrt{(\gamma + 1)^2} - 1 \right)}{\ln(1 + \gamma)} \right)
\]
such that \(b_{\alpha_0}(\gamma) = 0 \), i.e. \(\hat{\gamma}_n^{(\alpha_0)}(k_0, k) \) has asymptotic null bias, even when \(\sqrt{k_0}(k_0/k)^{\gamma} \to \lambda_1 \neq 0 \) and \(\sqrt{k_0} A(n/k) \to \lambda_2 \neq 0 \).

For special \(A(t) \), we will consider the optimal choice of the sample fraction \(k_0 \) as a function of \(k, \gamma, \rho \) and \(\alpha \) following the criterion of Fraga Alves (2001) to compute \(k_0 \equiv k_0^{opt} \) such that the asymptotic MSE (Fraga Alves, 2001) of \(\hat{\gamma}_n^{(\alpha)}(k_0, k) \) denoted by \(MSE_{\infty}(\hat{\gamma}_n^{(\alpha)}(k_0, k)) \) is minimal. Note that an asymptotic MSE is just
\[
\sqrt{a_n}(\hat{\theta}_n - \theta - b_n) \to N(\mu, \sigma^2) \text{ as } n \to \infty \text{ for some } a_n, b_n, \mu \text{ and } \sigma^2.
\]
Then the asymptotic MSE of \(\hat{\theta}_n \) denoted by \(MSE_{\infty}(\hat{\theta}_n) \) is simply \(\left\{ b_n - \mu / \sqrt{a_n} \right\}^2 + \sigma^2 / a_n \).

Theorem 2.3. Suppose that (1.4) holds with \(A(t) \sim ct^p, \rho < 0 \) and \(c \neq 0 \). Set
\[
k_0^{(1)} = \left[\frac{\gamma V_\alpha}{2 b_\alpha^2(\gamma)} \right]^{\frac{1}{\gamma + 2}} \cdot k^{\frac{\gamma + 2}{\gamma + 1}};
\]
\[
k_0^{(2)} = \left[\frac{(\gamma + \rho)^2 V_\alpha}{-2 c^2 \theta b_\alpha^2(\gamma)} \right]^{\frac{1}{\gamma + 2}} \cdot n^{\frac{2}{\gamma + 2}} \cdot \rho^{\frac{\gamma - 2}{\gamma + 2}} \cdot k^{\frac{\gamma + 2}{\gamma + 1}} \cdot n^{\frac{\rho}{\gamma + 2}};
\]
\[
k_0^{(3)} = \left[\frac{c^2 b_\alpha(-\rho)}{(\gamma + \rho) b_\alpha(\gamma)} \cdot n^{\rho / (\gamma + 2)} \cdot \rho^{\frac{\gamma - 2}{\gamma + 2}} \cdot k^{\frac{\gamma + 2}{\gamma + 1}} \cdot n^{\rho / (\gamma + 2)} \cdot
ight.
\]
\[
\left. \right]^{\frac{1}{\gamma + 2}} \cdot \rho^{\frac{\gamma - 2}{\gamma + 2}} \cdot k^{\frac{\gamma + 2}{\gamma + 1}} \cdot n^{\rho / (\gamma + 2)};
\]
where V_α and $b_\alpha(\gamma)$ are defined as before. Then we may obtain the sequence k_0^{opt} that minimizes $MSE_{\infty}(\gamma_n^{(a)}(k_0, k))$.

i. For $\gamma \leq -\rho$, $k_0^{opt} = k_0^{(1)}$;

ii. For $\gamma > -\rho$,

(a) If $k < n^{-\rho(2 + 1)/\gamma(-2 + \rho + 1)}$, $k_0^{opt} = k_0^{(1)}$;

(b) If $k > n^{-\rho(2 + 1)/\gamma(-2 + \rho + 1)}$, $k_0^{opt} = k_0^{(2)}$ if $c b_\alpha(-\rho) b_\alpha(\gamma) < 0$ and $k_0^{opt} = k_0^{(3)}$ if $c b_\alpha(-\rho) b_\alpha(\gamma) > 0$;

(c). If $k \sim D n^{-\rho(2 + 1)/\gamma(-2 + \rho + 1)}$ with $D \neq 0$, then $k_0^{opt} \sim D n^{-2\rho/(-2 + \rho + 1)}$ with $D_1 \equiv D_1(\gamma, \rho, \alpha, c, D)$ satisfying

$$a_1 D_1^{2 + 1} + a_2 D_1^{\rho + 1} + a_3 D_1^{2 - \rho + 1} = \gamma^2 V_\alpha,$$

where $a_1 = 2 \gamma^2 b_\alpha^2(\gamma) D^{-2\gamma}$, $a_2 = [2c(\rho - \gamma)/(\gamma + \rho)]b_\alpha(\gamma)b_\alpha(-\rho) D^{-\gamma}$ and $a_3 = -2\rho[c b_\alpha(-\rho)/(\gamma + \rho)]^2$.

Corollary 2.1. Suppose (1.4) holds for $A(t) \sim c t^\rho$ with $\rho < 0$, $c \neq 0$, and the intermediate sequence k satisfies $k \to \infty$, $k/n \to 0$ as $n \to \infty$ for $\gamma \leq -\rho$; or $k \to \infty$, $kn^{-\rho(2 + 1)/\gamma(-2 + \rho + 1)} \to 0$ for $\gamma > -\rho$. Choosing $k_0 \sim k_0^{(1)} = [\gamma V_\alpha b_\alpha^2(\gamma)/2]^{1/(2 + 1)} : k_0^{2\gamma/(2 + 1)}$, we have

$$\sqrt{k_0^{(1)} (\gamma_n^{(a)}(k_0^{(1)}, k) - \gamma)} \to N (\lambda_1 b_\alpha(\gamma), \gamma^2 V_\alpha)$$

with $b_\alpha(\gamma)$ and V_α defined as before.

3. Simulation study

Firstly, we present some $\alpha_0(\gamma)$ for heavy index γ such that $b_\alpha(\gamma) = 0$.

Table 1 shows that $\alpha_0(\gamma)$ is a decreasing function of γ. Firstly we consider the effect of the tuning parameter α on the heavy tail index estimator proposed in this paper. We randomly select a sample from Fréchet $d.f$ $F(x) = \exp(-x^{-1/\gamma})$ with $\gamma = 1$. For $\gamma = 1$, choose $\alpha_0 = 1.90$ such that $b_\alpha(\gamma) = 0$ (cf. Table 1). We compare the sample paths of $\gamma_n^{(1)}$, $\gamma_n^{(1,90)}$ and $\gamma_n^{(3)}$ with sample size $n = 3000$. Figure 1 shows that $\gamma_n^{(1,90)}$ has a much smaller bias than others.

For the optimal sequence k_0, we denote $\tilde{k}_0 := \arg \min_k MSE(\hat{\gamma}_n^H(k_0, k))$ and $\hat{\gamma}_n := \arg \min_k MSE(\hat{\gamma}_n^{(a)}(k_0, k))$. Consequently, we get the following possible measure of asymptotic relative efficiency (AREF) of the proposed location invariant estimator $\hat{\gamma}_n^{(a)}(\tilde{k}_0(\alpha), k)$ to the Hill-type location invariant estimator $\hat{\gamma}_n^H = \tilde{\gamma}_n^H(k_0, k)$ (bias-corrected).

$$AREF(\gamma_n^{(a)} : \tilde{k}_0, \hat{\gamma}_n^{(a)} : \tilde{k}_0) = V_{\alpha}^{-\gamma/(2 + 1)} \cdot \gamma/\{ (1 + \gamma) b_\alpha(\gamma) \}^{1/(2 + 1)}$$

whenever $b_\alpha(\gamma) \neq 0$.

γ	0	0.1	0.5	0.75	1	1.5	2	2.5	3	4	∞
$\alpha_0(\gamma)$	∞	4.65	2.37	2.07	1.9	1.71	1.60	1.54	1.49	1.42	1
Figure 1. Sample paths of $\hat{\gamma}_{n}^{(1)}(k_0, k)$, $\hat{\gamma}_{n}^{(1.90)}(k_0, k)$ and $\hat{\gamma}_{n}^{(3)}(k_0, k)$ for Frechet (1) distribution with sample size $n = 3000$.

Figure 2. Asymptotic efficiency of $\hat{\gamma}_{n}^{(\alpha)}$ relative to $\tilde{\gamma}_{n}^{H}$ for $\gamma = 0.5$, 1 and 2. Simulation shows that for every γ, we may find some α on the left region of α_0 such that the AREFF in (3.1) is greater than one.

Next we compare the relative efficiency of the proposed location invariant Hill-type estimator and that of Fraga Alves (2001) in terms of average mean and MSE for finite sample size. We consider the following two models:

- Burr (α, β) distribution with d.f $F(x) = 1 - (1 + x^\alpha)^{-\beta}$, where $x \geq 0$, $\alpha > 0$ and $\beta > 0$.
- Pareto (γ) distribution with d.f $F(x) = 1 - x^{-1/\gamma}$, where $x > 0$ and $\gamma > 0$.
Fig 3. Mean value and MSE of $\tilde{\gamma}_n^H(k_0,k)$, $\hat{\gamma}_n^{(\alpha_0)}(k_0,k)$ and $\hat{\gamma}_n^{(1)}(k_0,k)$ for Burr (2,1) model with $\gamma = 0.5$ and sample size $n = 1500$.

Fig 4. Mean value and MSE of $\tilde{\gamma}_n^H(k_0,k)$, $\hat{\gamma}_n^{(\alpha_0)}(k_0,k)$ and $\hat{\gamma}_n^{(1)}(k_0,k)$ for Pareto model with $\gamma = 2$ and sample size $n = 1500$.

Figures 3 and 4 show the simulated mean value and MSE of $\tilde{\gamma}_n^H(k_0,k)$, $\hat{\gamma}_n^{(1)}(k_0,k)$ and $\hat{\gamma}_n^{(\alpha_0)}(k_0,k)$ for the distributions just mentioned. For both distributions, $\hat{\gamma}_n^{(\alpha_0)}(k_0,k)$ has a small bias and is closer to the real extreme value index value (see Figures 3 and 4).
Lastly we compare the coverage probability and the confidence length based on the asymptotic normality of the two location invariant Hill estimators. Note that Corollary 2.2 of Fraga Alves (2001) provides us the $1 - \theta$ asymptotic confidence interval of γ, i.e.

$$I_N(1 - \theta) = \left\{ \frac{\tilde{\gamma}_n^H(k_0, k)}{1 + z_{\theta/2}/\sqrt{k_0}}, \frac{\tilde{\gamma}_n^H(k_0, k)}{1 - z_{\theta/2}/\sqrt{k_0}} \right\}. \tag{3.2}$$

We can also construct a new asymptotic confidence interval of γ based on Corollary 2.1 by choosing α_0 such that $b_{\alpha_0}(\gamma) = 0$ for given γ. The asymptotic confidence interval of γ is defined by

$$I_N(1 - \theta) = \left\{ \frac{\tilde{\gamma}_n^{(\alpha_0)}(k_0, k)}{1 + (V_{\alpha_0/k_0})^{1/2} z_{\theta/2}}, \frac{\tilde{\gamma}_n^{(\alpha_0)}(k_0, k)}{1 - (V_{\alpha_0/k_0})^{1/2} z_{\theta/2}} \right\}, \tag{3.3}$$

where k_0 in (3.3) is the same as the one in (3.2) and $z_{\theta/2}$ is the critical value of the standard normal distribution at level $\theta/2$; that is, $1 - \Phi(z_{\theta/2}) = \theta/2$. We drew 2000 random samples from the Fréchet (1), Burr (2,1) and Pareto (2) distributions. The simulation was repeated 2000 times, we computed the coverage probabilities and interval lengths for $n = 200, 300, \ldots, 2000$. These coverage probabilities and interval lengths are reported in Tables 2 and 3.

We may conclude that the two estimators have comparable coverage probabilities only for Pareto distribution. Generally, the proposed estimator $\tilde{\gamma}_n^{(\alpha_0)}(k_0, k)$
Table 3
Average length comparison for 95% confidence levels based on (3.2) and (3.3).

n	Burr (2,1)	Burr (2,1)	Fréchet (1)	Fréchet (1)	Pareto (2)	
200	0.6680	0.4595	0.0672	0.4281	1.1188	3.4414
300	0.5360	2.9143	0.5378	2.9436	0.9174	2.5042
400	0.4670	2.1501	0.4681	2.1292	0.8098	2.1103
500	0.4206	1.7727	0.4236	1.7903	0.7366	1.8655
600	0.3895	1.5558	0.3879	1.5590	0.6826	1.7042
700	0.3643	1.4038	0.3637	1.4130	0.6461	1.5912
800	0.3442	1.2775	0.3423	1.2887	0.6120	1.4909
900	0.3291	1.2146	0.3305	1.2292	0.5856	1.4322
1000	0.3148	1.1447	0.3138	1.1255	0.5616	1.3519
1100	0.3034	1.0865	0.3030	1.1009	0.5484	1.3237
1200	0.2928	1.0485	0.2948	1.0595	0.5282	1.2601
1300	0.2840	1.0014	0.2839	0.9973	0.5134	1.2306
1400	0.2754	0.9784	0.2762	0.9698	0.5013	1.1996
1500	0.2685	0.9418	0.2693	0.9373	0.4871	1.1606
1600	0.2625	0.9182	0.2618	0.9084	0.4755	1.1283
1700	0.2551	0.8808	0.2568	0.8926	0.4648	1.1024
1800	0.2505	0.8671	0.2502	0.8478	0.4572	1.0817
1900	0.2460	0.8543	0.2452	0.8363	0.4482	1.0618
2000	0.2407	0.8337	0.2409	0.8234	0.4395	1.0421

has better coverage probability than that of $\tilde{\gamma}_H^n(k_0, k)$. But it has a wider confidence interval length than that of $\tilde{\gamma}_H^n(k_0, k)$ especially when the sample size n is small. Meanwhile, Figure 2 tells us that there exists α_0 such that $\hat{\gamma}(\alpha_0)$ has asymptotic null bias and better asymptotic efficiency than $\tilde{\gamma}_H^n(k_0, k)$. This new location invariant Hill type estimator may be useful in empirical analysis.

4. Proofs

Before proving the main results, we need some lemmas.

Lemma 4.1. Suppose that (1.4) holds for $\gamma > 0$ and $\rho < 0$, then for any ε, $\delta > 0$, there exists $t_0 = t_0(\varepsilon, \delta)$ such that for all $t > t_0$ and $x > 1$,

$$\left| \ln \frac{U(t) - U(t)}{\alpha(t)} - \ln D_\gamma(x) - B_{\gamma, \rho}(x) \right| \leq \varepsilon \left(1 + \frac{\gamma^{\gamma + \rho + \delta}}{x^{\gamma - 1}} \right),$$

where $D_\gamma(x) = (x^{\gamma} - 1)/\gamma$ and

$$B_{\gamma, \rho}(x) = \begin{cases} \gamma - x^{\gamma + \rho - 1}, & \text{if } \gamma + \rho \neq 0, \\ \gamma + \rho - x^{\gamma - 1}, & \text{if } \gamma + \rho = 0. \end{cases}$$
Proof. We only consider the case of \(\gamma + \rho \neq 0 \). Note that by (1.4) we have
\[
\frac{U(tx) - U(t)}{a(tx)D_\gamma(x)} - 1 = \frac{\gamma}{\gamma + \rho} \frac{x^{\gamma + \rho} - 1}{x^\gamma - 1}.
\]
This implies
\[
\lim_{t \to \infty} \frac{\ln \frac{U(tx) - U(t)}{a(tx)D_\gamma(x)} - \ln D_\gamma(x)}{\ln D_\gamma(x)} = B_{\gamma, \rho}(x) \quad \text{(4.1)}
\]
under the condition of Lemma 4.2.

Moreover, for any \(\varepsilon, \delta > 0 \), there exists \(t_0 = t_0(\varepsilon, \delta) \) such that for all \(t > t_0 \) and \(x > 1 \),
\[
\left| \frac{U(tx) - U(t)}{a(tx)D_\gamma(x)} - D_\gamma(x) - \Psi_{\gamma, \rho}(x) \right| \leq \varepsilon x^{\gamma + \rho + \delta}.
\]
Hence,
\[
\left| \frac{\ln \frac{U(tx) - U(t)}{a(tx)D_\gamma(x)} - \ln D_\gamma(x)}{\ln D_\gamma(x)} - B_{\gamma, \rho}(x) \right|
\]
\[
= \left| \ln \frac{\frac{U(tx) - U(t)}{a(tx)D_\gamma(x)} - \ln D_\gamma(x)}{\ln D_\gamma(x)} - \frac{U(tx) - U(t)}{a(tx)D_\gamma(x)} - D_\gamma(x) - \Psi_{\gamma, \rho}(x) \right|
\]
\[
\leq \varepsilon \left(1 + \frac{x^{\gamma + \rho + \delta}}{x^\gamma - 1} \right).
\]
The proof is complete. \(\square \)

Lemma 4.2. Under the condition of Lemma 4.1, for \(x > 1, y > 1 \) we have
\[
\lim_{t \to \infty} \frac{\ln \frac{U(tx) - U(t)}{U(ty) - U(t)}}{\ln \frac{y^{\gamma - 1}}{y^\gamma - 1}} = F_{\gamma, \rho}(x, y).
\]
Moreover, for any \(\varepsilon, \delta > 0 \), there exists \(t_0 = t_0(\varepsilon, \delta) \) such that for all \(t > t_0 \) and \(x > y > 1 \),
\[
\left| \ln \frac{U(tx) - U(t)}{U(ty) - U(t)} - \ln \frac{D_\gamma(x)}{D_\gamma(y)} - F_{\gamma, \rho}(x, y) \right| \leq T_{\gamma, \rho}(x, y),
\]
where
\[
F_{\gamma, \rho}(x, y) = \begin{cases}
\gamma & \text{if } \gamma + \rho \neq 0, \\
\frac{\gamma}{\gamma - 1} \ln x - \frac{\gamma}{y^\gamma - 1} \ln y & \text{if } \gamma + \rho = 0
\end{cases}
\]
and
\[
T_{\gamma, \rho}(x, y) = \varepsilon(2 + \gamma x^{\gamma + \rho + \delta} + y^{\gamma + \rho + \delta}) / (y^\gamma - 1).
\]
Proof. We only consider the case of $\gamma + \rho \neq 0$, similar arguments for $\gamma + \rho = 0$. Note that (4.1) implies
\[
\lim_{t \to \infty} \frac{\ln \frac{U(t) - U(t)}{U(y) - U(t)}}{A(t)} - \frac{\gamma}{\gamma + \rho} \left(\frac{x^{\gamma + \rho} - 1}{x^{\gamma} - 1} - \frac{y^{\gamma + \rho} - 1}{y^{\gamma} - 1} \right)
\]
for $x > 1$, $y > 1$. For any $\varepsilon, \delta > 0$, there exists $t_0 = t_0(\varepsilon, \delta)$ such that for all $t > t_0$ and $x > y > 1$,
\[
\begin{align*}
\left| \ln \frac{U(t_x) - U(t)}{a(t)} - \ln D_{\gamma}(x) - F_{\gamma,\rho}(x, y) \right| & = \left| \ln \frac{U(t_x) - U(t)}{a(t)} - \ln D_{\gamma}(x) - \ln \frac{U(t_y) - U(t)}{a(t)} - \ln D_{\gamma}(y) - F_{\gamma,\rho}(x, y) \right| \\
& \leq \left| \ln \frac{U(t_x) - U(t)}{a(t)} - \ln D_{\gamma}(x) - F_{\gamma,\rho}(x) \right| \\
& \quad + \left| \ln \frac{U(t_x) - U(t)}{a(t)} - \ln D_{\gamma}(y) - F_{\gamma,\rho}(y) \right| \\
& \quad + |B_{\gamma,\rho}(x) - B_{\gamma,\rho}(y) - F_{\gamma,\rho}(x, y)| .
\end{align*}
\]
By using Lemma 4.1, we get the desired result. \(\square\)

Proof of Theorem 2.1. For the asymptotic distributional representation of $M_n^{(\alpha)}(k_0, k)$, we only consider the case of $\gamma + \rho \neq 0$. By Lemma 4.2, we have
\[
\begin{align*}
\ln \frac{U(t_x) - U(t)}{U(t_y) - U(t)} & = \ln \frac{x^{\gamma} - 1}{y^{\gamma} - 1} + \frac{\gamma}{\gamma + \rho} \left[\frac{x^{\gamma + \rho} - 1}{x^{\gamma} - 1} - \frac{y^{\gamma + \rho} - 1}{y^{\gamma} - 1} \right] A(t) (1 + o(1)) \\
& = \gamma \ln \frac{x}{y} + \ln \left(1 + \frac{y^{\gamma} - x^{\gamma}}{1 - y^{-\gamma}} \right) \\
& \quad + \frac{\gamma}{\gamma + \rho} \left[\frac{x^{\rho} - x^{-\gamma}}{1 - x^{-\gamma}} - \frac{y^{\rho} - y^{-\gamma}}{1 - y^{-\gamma}} \right] A(t) (1 + o(1)) .
\end{align*}
\]
Let Y_1, Y_2, \cdots, Y_n be i.i.d Pareto r.v.s with $F_Y(y) = 1 - 1/y, y \geq 1$ and let $Y_{1,n} \leq Y_{2,n} \leq \cdots \leq Y_{n,n}$ denote the order statistics of Y_1, Y_2, \cdots, Y_n. Now replace t by $Y_{n-k,n}$, x by $Y_{n-i,n}/Y_{n-k,n}$ and y by $Y_{n-k,n}/Y_{n-k,n}$, respectively, and note that $\{X_i\}_{i=1}^n \overset{d}{=} \{U(Y_i)\}_{i=1}^n$, $(Y_{n-i,n} / Y_{n-k,n})^{-\gamma} < (Y_{n-k,n} / Y_{n-k,n})^{-\gamma} \to 0$ in probability uniformly for $i = 0, 1, \cdots, k_0 - 1$, and $\{Y_{n-i,n}/Y_{n-k,n}\}_{i=1}^{k_0-1} \overset{d}{=} \{Y_{k_0-i,k_0}\}_{i=1}^{k_0-1}$. So,
\[
\ln \frac{X_{n-i,n} - X_{n-k,n}}{X_{n-k_0,n} - X_{n-k,n}} \\
= \ln \frac{U(Y_{n-i,n}) - U(Y_{n-k,n})}{U(Y_{n-k_0,n}) - U(Y_{n-k,n})} \\
= \gamma \ln \frac{Y_{n-i,n}}{Y_{n-k_0,n}} + \left(\frac{Y_{n-k_0,n}}{Y_{n-k,n}} \right)^{-\gamma} \left[1 - \left(\frac{Y_{n-i,n}}{Y_{n-k_0,n}} \right)^{-\gamma} \right] \left(1 + o_P(1) \right) \\
+ \frac{\gamma}{\gamma + \rho} \left[\left(\frac{Y_{n-k_0,n}}{Y_{n-k,n}} \right)^{-\gamma} \left(1 - \left(\frac{Y_{n-i,n}}{Y_{n-k_0,n}} \right)^{-\gamma} \right) \right] A(n/k) \left(1 + o_P(1) \right)
\]

By Taylor's expansion, we may get
\[
M_n^{(\alpha)}(k_0, k) \\
= \frac{1}{k_0} \sum_{i=1}^{k_0} \left\{ \gamma \ln Y_{k_0-i, k_0} \right\}^\alpha \\
+ \alpha \gamma \sum_{i=1}^{k_0} \left\{ \gamma \ln Y_{k_0-i, k_0} \right\}^{\alpha-1} \left(\frac{k_0}{k} \right)^{\gamma} \left(1 + o_P(1) \right) \\
+ \frac{\alpha \gamma}{\gamma + \rho} \sum_{i=1}^{k_0} \left\{ \gamma \ln Y_{k_0-i, k_0} \right\}^{\alpha-1} \left(1 - \frac{Y_{k_0-i, k_0}}{k} \right)^{\gamma} \left(\frac{k_0}{k} \right)^{\gamma} \left(1 + o_P(1) \right) \\
+ A^2(n/k)O_P \left(\frac{k_0}{k} \right)^{2\gamma} + \left(\frac{k_0}{k} \right)^{-2\rho} \left(\frac{k_0}{k} \right)^{\gamma-\rho} \right).\]

Note that \(E[(\ln Y_1)^\alpha] = \Gamma(\alpha + 1) \), \(\text{Var}[(\ln Y_1)^\alpha] = \sigma_\alpha \) and
\[
E \left[(\ln Y_1)^{\alpha-1} (Y_1^\rho - 1) / \rho \right] = \mu_\alpha(\rho).
\]

So,
\[
\rho_n^{(\alpha)} = \frac{1}{k_0} \sum_{i=1}^{k_0} (\ln Y_i)^\alpha - \Gamma(\alpha + 1) \xrightarrow{d} N(0, 1).
\] (4.2)
By (4.2) and the law of large numbers, the asymptotic distribution representation of $M_n(\alpha)(k_0, k)$ is

$$M_n(\alpha)(k_0, k) \xrightarrow{d} \Gamma(\alpha + 1)\gamma^\alpha + \gamma^\alpha \frac{\sigma_\alpha}{\sqrt{k_0}} P_n(\alpha) + \alpha \gamma^\alpha \mu_\alpha(-\gamma) \left(\frac{k_0}{k}\right)^\gamma (1 + o_P(1))$$

$$+ \frac{\alpha \gamma^\alpha \rho}{\gamma + \rho} \mu_\alpha(\rho) A(n/k) \left(\frac{k_0}{k}\right)^{-\rho} (1 + o_P(1)), \quad (4.3)$$

which is the desired result.

Proof of Theorem 2.2. Note that both $\{X_i\}_{i=1}^n \overset{d}{=} \{U(Y_i)\}_{i=1}^n$ and $\{Y_{n-i,n} \mid Y_{n-k_0,n}\}_{i=1}^{k_0-1} \overset{d}{=} \{Y_{n-k_0,k_0}\}_{i=1}^{k_0-1}$ hold. For $\gamma + \rho \neq 0$, by using the conditions of Theorem 2.2, following joint expansion in distribution,

$$\left(\frac{M_n(\alpha)(k_0, k)}{\Gamma(2\alpha + 1)} \right)^{1/2}, \frac{\Gamma(\alpha)}{M_n(\alpha-1)(k_0, k)} \xrightarrow{d} (W_n, Z_n) \quad (4.4)$$

holds, where

$$W_n = \gamma^\alpha \left[1 + \left(\frac{\sigma_\alpha}{2\Gamma(2\alpha + 1)} \frac{P_n(\alpha)}{\sqrt{k_0}} + \frac{\mu_\alpha(-\gamma)}{2\Gamma(2\alpha)} \left(\frac{k_0}{k}\right)^\gamma \right) \right]$$

and

$$Z_n = \gamma^{1-\alpha} \left[1 - \left(\frac{\sigma_{\alpha-1} P_n(\alpha-1)}{\Gamma(\alpha)} \sqrt{k_0} + \frac{\mu_{\alpha-1}(-\gamma)}{\Gamma(\alpha-1)} \left(\frac{k_0}{k}\right)^{\gamma} \right) \right].$$

Note that (4.4) may be deduced from Wold device and Delta-method, as for arbitrary $a, b \in \mathbb{R}$, we have

$$a \left(\frac{M_n(\alpha)(k_0, k)}{\Gamma(2\alpha + 1)}\right)^{1/2} + b \Gamma(\alpha) \left(\frac{M_n(\alpha-1)(k_0, k)}{\Gamma(2\alpha + 1)}\right)^{-1} \overset{d}{=} a \left(\frac{1}{\Gamma(2\alpha + 1)} \frac{1}{k_0} \sum_{i=1}^{k_0-1} \ln \left(\frac{U(Y_{n-i,n}) - U(Y_{n-k_0,n})}{U(Y_{n-k_0,n}) - U(Y_{n-k_0,n})} \right)^{2\alpha} \right)^{1/2}$$

$$+ b \Gamma(\alpha) \left(\frac{1}{k_0} \sum_{i=1}^{k_0-1} \ln \left(\frac{U(Y_{n-i,n}) - U(Y_{n-k_0,n})}{U(Y_{n-k_0,n}) - U(Y_{n-k_0,n})} \right)^{\alpha-1} \right)^{-1} \overset{d}{=} a \left(\frac{Q_n^2}{\Gamma(2\alpha + 1)}\right)^{1/2} + b \Gamma(\alpha) \left(\frac{Q_n(\alpha-1)}{\Gamma(2\alpha + 1)}\right)^{-1}$$

$$= aW_n + b\gamma^{1-\alpha} \frac{1}{1 + (1 - Z_n^{\alpha-1})} = aW_n + bZ_n.$$
The last step follows since \(Z_n \xrightarrow{P} \gamma^{1-\alpha} \) and \(h(1 - Z_n \gamma^{\alpha-1}) - h(0) = h'(0) (1 + o_P(1)) (1 - Z_n \gamma^{\alpha-1}) \) with \(h(x) = 1/(1 + x) \), where

\[
Q_n^{(\beta)} = \frac{1}{k_0} \sum_{i=1}^{k_0-1} \left\{ \left(\gamma \ln Y_{k_0-i,k_0} \right)^{\beta} + \beta \gamma^\beta (\ln Y_{k_0-i,k_0})^{\beta-1} \left[1 - \frac{Y_{k_0-i,k_0}^{-\gamma}}{\gamma} \right] \left(\frac{k_0}{k} \right) (1 + o_P(1)) \right. \\
+ \left. \frac{\beta \gamma^\beta}{\gamma + \rho} \left(\ln Y_{k_0-i,k_0} \right)^{\beta-1} \left[(1 - Y_{k_0-i,k_0}^{-\gamma}) \left(\frac{k_0}{k} \right)^\gamma - (1 - Y_{k_0-i,k_0}^{-\gamma}) \left(\frac{k_0}{k} \right)^{\rho} \right] A(n/k) (1 + o_P(1)) \right\} \\
+ A^2 (n/k) o_P \left(\left(\frac{k_0}{k} \right)^{2\gamma} + \left(\frac{k_0}{k} \right)^{-2\rho} + \left(\frac{k_0}{k} \right)^{\gamma-\rho} \right)
\]

for \(\beta \geq 1 \). So,

\[
\hat{\gamma}_n^{(\alpha)} (k_0, k) \overset{d}{=} Z_n W_n \\
= \gamma \left[1 + \frac{1}{\sqrt{k_0}} \left(\frac{\sigma_{2\alpha}}{2\Gamma(2\alpha + 1)} - \frac{\sigma_{\alpha-1}}{\Gamma(\alpha)} \right) \right] \\
+ \left(\frac{\mu_{2\alpha}(-\gamma)}{2\Gamma(2\alpha)} - \frac{\mu_{\alpha-1}(-\gamma)}{\Gamma(\alpha-1)} \right) \left(\frac{k_0}{k} \right)^\gamma \\
+ \frac{\rho}{\gamma + \rho} \left(\frac{\mu_{2\alpha}(\rho)}{2\Gamma(2\alpha)} - \frac{\mu_{\alpha-1}(\rho)}{\Gamma(\alpha-1)} \right) A \left(\frac{n}{k} \right) \left(\frac{k_0}{k} \right)^{-\rho} (1 + o_P(1)) \\
+ o_P \left(\frac{1}{\sqrt{k_0}} \right) + o_P \left(\left(\frac{k_0}{k} \right)^\gamma \right).
\]

Denote

\[
Q_n^{(\alpha)} = \frac{\sigma_{2\alpha}}{2\Gamma(2\alpha + 1)} P_n^{(2\alpha)} - \frac{\sigma_{\alpha-1}}{\Gamma(\alpha)} P_n^{(\alpha-1)}, \quad T_n^{(\alpha)} = \frac{Q_n^{(\alpha)}}{\sqrt{\text{Var}(Q_n^{(\alpha)})}}
\]

Let \(f_{k_0}(t) \) denote the characteristic function of \(Q_n^{(\alpha)} \). Noting the expression of \(P_n^{(\alpha)} \) in (4.2) and that of \(V_n \) in (2.2), we have

\[
f_{k_0}(t) = E \exp \left\{ t \left(\frac{\sigma_{2\alpha}}{2\Gamma(2\alpha + 1)} P_n^{(2\alpha)} - \frac{\sigma_{\alpha-1}}{\Gamma(\alpha)} P_n^{(\alpha-1)} \right) \right\} \\
= E \exp \left\{ \frac{t}{\sqrt{k_0}} \sum_{j=1}^{k_0} \frac{(\ln Y_j)^{2\alpha} - \Gamma(2\alpha + 1)}{2\Gamma(2\alpha + 1)} \right. \\
- \left. \frac{t}{\sqrt{k_0}} \sum_{j=1}^{k_0} \frac{(\ln Y_j)^{\alpha-1} - \Gamma(\alpha)}{\Gamma(\alpha)} \right\}
\]
\[\prod_{j=1}^{k_0} E \exp \left\{ \frac{it}{\sqrt{k_0}} \left(\frac{(\ln Y_j)^{2\alpha} - \Gamma(2\alpha + 1)}{2\Gamma(2\alpha + 1)} - \frac{(\ln Y_j)^{\alpha - 1} - \Gamma(\alpha)}{\Gamma(\alpha)} \right) \right\} \]
\[= \prod_{j=1}^{k_0} \left\{ 1 - \frac{t^2}{2k_0} E \left(\frac{(\ln Y_j)^{2\alpha} - \Gamma(2\alpha + 1)}{2\Gamma(2\alpha + 1)} - \frac{(\ln Y_j)^{\alpha - 1} - \Gamma(\alpha)}{\Gamma(\alpha)} \right)^2 \right\} + o \left(\frac{1}{k_0} \right) \]
\[= \left\{ 1 - \frac{t^2}{2k_0} V_\alpha + o \left(\frac{1}{k_0} \right) \right\}^{k_0} \rightarrow \exp(-t^2V_\alpha/2). \]

So, \(Q_n^{(\alpha)} \) converges in distribution to a normal r.v. with null bias and variance \(V_\alpha \) and \(T_n^{(\alpha)} \) is an asymptotically standard normal r.v. Noting \(\gamma/\mu_{2\alpha}(\gamma) / \{2\Gamma(2\alpha)\} - \mu_{\alpha - 1}(\gamma) / \Gamma(\alpha - 1) = b_\alpha(\gamma) \) and \(\{\gamma \rho / (\gamma + \rho)\} / \{2\Gamma(2\alpha)\} - \mu_{\alpha - 1}(\rho) / \Gamma(\alpha - 1) = - \{\gamma / (\gamma + \rho)\} b_\alpha(-\rho) \), we obtain the asymptotic distributional representation of \(\hat{\gamma}_n^{(\alpha)}(k_0, k) \). The remaining part of Theorem 2.2 is immediate. \(\square \)

Proof of Theorem 2.3. Assume that \(A(t) \sim ct^\rho \) with \(c \neq 0 \) and \(\rho < 0 \), then according to the range of the pair \((\gamma, \rho)\), we need to consider the following two cases.

(i). The \(\gamma < -\rho \) case. Combining (2.4) and Theorem 2.2, we have \(R_n = o((k_0/k)^\gamma) \) and

\[\hat{\gamma}_n^{(\alpha)}(k_0, k) \overset{d}{=} \gamma + \frac{\gamma \sqrt{V_\alpha}}{k_0} T_n^{(\alpha)} + b_\alpha(\gamma) \left(\frac{k_0}{k} \right)^\gamma + o_P \left(\frac{1}{\sqrt{k_0}} \right) + o_P \left(\left(\frac{k_0}{k} \right)^\gamma \right) \]

and

\[MSE_\infty(\hat{\gamma}_n^{(\alpha)}(k_0, k)) = \frac{\gamma^2 V_\alpha}{k_0} + b_\alpha^2(\gamma) \left(\frac{k_0}{k} \right)^{2\gamma}. \]

So, the sequence of \(k_0(n) \) that minimizes \(MSE_\infty(\hat{\gamma}_n^{(\alpha)}(k_0, k)) \) is

\[k_0^{opt} = k_0^{(1)} = \left[\frac{\gamma V_\alpha}{2b_\alpha^2(\gamma)} \right]^{\frac{1}{2+\gamma}} \cdot k \cdot k_0^{2\gamma/(\gamma+1)}. \]

(ii). The \(\gamma > -\rho \) case. Noting the expression of \(R_n \) in (2.4), we have \(R_n - c_\gamma b_\alpha(-\rho)/(\gamma + \rho) (k_0/n)^{-\rho} (1 + o_P(1)) \) and

\[\hat{\gamma}_n^{(\alpha)}(k_0, k) \overset{d}{=} \gamma + \frac{\gamma \sqrt{V_\alpha}}{k_0} T_n^{(\alpha)} + b_\alpha(\gamma) \left(\frac{k_0}{k} \right)^\gamma - \frac{c_\gamma b_\alpha(-\rho)}{\gamma + \rho} \left(\frac{k_0}{n} \right)^{-\rho} \]
\[+ o_P \left(\frac{1}{\sqrt{k_0}} \right) + o_P \left(\left(\frac{k_0}{k} \right)^\gamma \right) + o_P \left(\left(\frac{k_0}{n} \right)^{-\rho} \right). \]

We need to investigate the related weights in (4.5). Consider any sequence \(k_0 \) satisfying \(k_0 = O(k^{\gamma/(\gamma + \rho)} \cdot n^\rho/(\gamma + \rho)) \), then \((k_0/k)^\gamma = O((k_0/n)^{-\rho}) \). Moreover,
if \(k_0 \ll k^{\gamma/(\gamma + \rho)} \cdot n^{\rho/(\gamma + \rho)} \), then \((k_0/k)^\gamma \ll (k_0/n)^{-\rho}\); if \(k_0 \gg k^{\gamma/(\gamma + \rho)} \cdot n^{\rho/(\gamma + \rho)} \), then \((k_0/k)^\gamma \gg (k_0/n)^{-\rho}\). In order to obtain the optimal choice of \(k_0 \), we have to consider the relationship of \(k \) and \(n \).

(a). Firstly, suppose \(k^{2\gamma/(2\gamma + 1)} \ll n^{-2\rho/(-2\rho + 1)} \), then
\[
k^{\gamma\rho/\rho} \cdot n^{\frac{\rho}{\gamma + \rho}} \ll k^{\frac{2\gamma}{2\gamma + 1}} \left(\ll n^{-\frac{2\rho}{-2\rho + 1}} \right).
\]

If the sequence \(k_0 \) satisfies \(k_0 = O(k^{2\gamma/(2\gamma + 1)}) \), then \(1/\sqrt{k_0} = O((k_0/k)^\gamma) \). Moreover, if \(k_0 \ll k^{2\gamma/(2\gamma + 1)} \), then \(1/\sqrt{k_0} \gg (k_0/k)^\gamma \), \(1/\sqrt{k_0} \gg (k_0/n)^{-\rho} \), and \(MSE_\infty(\widehat{\gamma}_n^{(\alpha)}(k_0, k)) = \gamma^2 V_\alpha/k_0 \) is a decreasing function of \(k_0 \). If \(k_0 \gg k^{2\gamma/(2\gamma + 1)} \), then \((k_0/k)^\gamma \gg 1/\sqrt{k_0} \), \((k_0/k)^\gamma \gg (k_0/n)^{-\rho} \) and \(MSE_\infty(\widehat{\gamma}_n^{(\alpha)}(k_0, k)) = b_0^2(\gamma) \) \((k_0/k)^{2\gamma}\) is an increasing function of \(k_0 \). So, we choose \(k_0 = O(k^{2\gamma/(2\gamma + 1)}) \) in order to balance the bias and variance of the estimator \(\widehat{\gamma}_n^{(\alpha)}(k_0, k) \), hence \(MSE_\infty(\widehat{\gamma}_n^{(\alpha)}(k_0, k)) = \gamma^2 V_\alpha/k_0 + b_0^2(\gamma)(k_0/k)^{2\gamma} \) and
\[
k_{0}^{opt} \equiv k_0^{(1)} = \left[\frac{\gamma V_\alpha}{2b_0^2(\gamma)} \right]^{\frac{1}{2\gamma + 1}} \cdot k \cdot \frac{2\gamma}{2\gamma + 1}.
\]

(b). If \(k^{2\gamma/(2\gamma + 1)} \gg n^{-2\rho/(-2\rho + 1)} \), we have
\[
k^{\gamma\rho/\rho} \cdot n^{\frac{\rho}{\gamma + \rho}} \gg k^{\frac{2\gamma}{2\gamma + 1}} \left(\gg n^{-\frac{2\rho}{-2\rho + 1}} \right).
\]

In this situation, if \(k_0 = O(n^{-2\rho/(-2\rho + 1)}) \), then \(1/\sqrt{k_0} = O((k_0/n)^{-\rho}) \). Moreover, if \(k_0 \ll n^{-2\rho/(-2\rho + 1)} \), then \(1/\sqrt{k_0} \gg (k_0/n)^{-\rho} \gg (k_0/k)^\gamma \) and \(MSE_\infty(\widehat{\gamma}_n^{(\alpha)}(k_0, k)) = \gamma^2 V_\alpha/k_0 \). If \(n^{-2\rho/(-2\rho + 1)} \ll k_0 \ll k^{\gamma/(\gamma + \rho)} \cdot n^{\rho/(\gamma + \rho)} \), then \((k_0/n)^{-\rho} \gg 1/\sqrt{k_0} \), \((k_0/k)^\gamma \gg (k_0/n)^{-\rho} \) and \(MSE_\infty(\widehat{\gamma}_n^{(\alpha)}(k_0, k)) = \frac{c_\gamma b_0(-\rho)}{\gamma + \rho} \left(k_0/n \right)^{-2\rho} \). If \(k_0 \gg k^{\gamma/(\gamma + \rho)} \cdot n^{\rho/(\gamma + \rho)} \), then \((k_0/k)^\gamma \gg (k_0/n)^{-\rho} \gg 1/\sqrt{k_0} \).

Choosing the sequence \(k_0 = O(n^{-2\rho/(-2\rho + 1)}) \) to balance the bias and variance is possible. Then
\[
MSE_\infty(\widehat{\gamma}_n^{(\alpha)}(k_0, k)) = \gamma^2 V_\alpha/k_0 + \left[\frac{c_\gamma b_0(-\rho)}{\gamma + \rho} \right]^2 \left(\frac{k_0}{n} \right)^{-2\rho}.
\]

We get the locally minimized MSE for the sequence
\[
k_{0}^{opt} = k_0^{(2)} = \left[\frac{(\gamma + \rho)^2 V_\alpha}{-2c_\gamma^2 b_0^2(-\rho)} \right]^{\frac{1}{2\gamma + 1}} \cdot n^{-\frac{2\rho}{-2\rho + 1}}.
\]

But if any sequence \(k_0 = O(k^{\gamma/(\gamma + \rho)} \cdot n^{\rho/(\gamma + \rho)}) \) and

\[
MSE_\infty(\widehat{\gamma}_n^{(\alpha)}(k_0, k)) = \left[b_0(\gamma) \left(\frac{k_0}{k} \right)^\gamma - \frac{c_\gamma b_0(-\rho)}{\gamma + \rho} \left(\frac{k_0}{n} \right)^{-\rho} \right]^2,
\]

we need to see the sign of \(cb_0(\gamma)b_0(-\rho) \). Note that if \(cb_0(\gamma)b_0(-\rho) < 0 \), (4.6) is an increasing function of \(k_0 \), and \(k_{0}^{opt} = k_0^{(2)} \) is the solution to the optimization
problem. On the other hand, suppose $c\alpha_b(\gamma)b_\alpha(-\rho) > 0$, let $k_0^{(3)}$ be such that $MSE_\infty(\gamma_n^{(\alpha)}(k_0, k)) = 0$ in (4.6). Then, the optimal sample fraction is

$$k_0^{(3)} = \left[\frac{c\gamma b_\alpha(-\rho)}{(\gamma + \rho)b_\alpha(\gamma)} \right]^{\frac{1}{\gamma + \rho}} \cdot \frac{1}{\sqrt{k_0}} \cdot n^{\frac{1}{\gamma + \rho}}. \tag{c}$$

Lastly, we consider $k \sim D_n n^{-\rho/(2\gamma+1)}$ with $D \neq 0$, i.e. $k^2/(2\gamma+1)$. We derive that $k_0^{(3)} = \left[\frac{1}{\gamma + \rho} \left(\frac{k_0}{n} \right) \right]^{\frac{1}{\gamma + \rho}} \cdot n^{\frac{1}{\gamma + \rho}}.$ Hence, $k_0^{(3)}$ must be the sequence such that $MSE_\infty(\gamma_n^{(\alpha)}(k_0, k)) = \left(\frac{c\gamma b_\alpha(-\rho)}{(\gamma + \rho)b_\alpha(\gamma)} \right)^2 \cdot k_0^{(3)^{2\gamma+1}} + a_2 D_1^{2\gamma+1} + a_3 D_1^{-\rho+1} = \gamma^2 V_\alpha,$

where $a_1 = 2\gamma^2 b_\alpha(\gamma) D^{-2\gamma}, a_2 = [2c\gamma(\rho - \gamma)/(\gamma + \rho)]b_\alpha(\gamma)b_\alpha(-\rho)D^{-\gamma}$ and $a_3 = -2\rho[c\gamma b_\alpha(-\rho)/(\gamma + \rho)]^2.$

Acknowledgments

The authors would like to thank the Editor and the referee for carefully reading the paper and for their comments which greatly improved the paper.

References

Beirlant, J., Dierckx, G., Guillou, A. and Stărică, C. (2002). On exponential representations of log-spacings of extreme order statistics. Extremes, 5, 157–180. MR1965977

Caeiro, F. and Gomes, M. I. (2002). A class of asymptotically unbiased semiparametric estimators of the tail index. Sociedad de Estadistica e Investigacion Operativa, 11, 345–364. MR1947602

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory. Springer, New York. MR2234156

Dekkers, A. L. M., Einmahl, J. H. J. and de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. Annals of Statistics, 4, 1833–1855.

Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer, New York. MR1458613

Fraga Alves, M. I. (2001). A location invariant Hill-type estimator. Extremes, 4, 199–217. MR1907061

Gomes, M. I., de Haan, L. and Henriques Rodrigues, L. (2008). Tail index estimation through the accomodation of bias in the weighted log-excesses. Journal of the Royal Statistical Society B, 70, 31–53.
Gomes, M. I. and Henriques Rodrigues, L. (2008). *Tail index estimation for heavy tails: accommodation of bias in the excesses over a high threshold*. Extremes, doi 10.1007/s10687-008-0059-1.

Gomes, M. I. and Martins, M. J. (2002). “*Asymptotically unbiased*” estimators of the tail index based on external estimation of the second order parameter. *Extremes*, 5, 5–31. MR1947785

Gomes, M. I. and Martins, M. J. (2004). *Bias reduction and explicit estimation of the tail index*. *Journal of Statistical Planning Inference*, 124, 361–378. MR2080370

Hill, B. M. (1975). *A simple general approach to inference about the tail of a distribution*. Annals of Statistics, 3, 1163–1174. MR0378204

Ling C. X., Peng, Z. and Nadarajah, S. (2007a). *A location invariant moment-type estimator (I)*. *Theory Probability and Mathematical Statistics*, 76, 22–30. MR2368736

Ling C. X., Peng, Z. and Nadarajah, S. (2007b). *A location invariant moment-type estimator (II)*. *Theory Probability and Mathematical Statistics*, 77, 167–178.

Peng, L. (1998). *Asymptotically unbiased estimator for the extreme-value index*. *Statistics and Probability Letters*, 2, 107–115. MR1627906

Peng, L. and Qi, Y. (2006a). *A new calibration method of constructing empirical likelihood-based confidence intervals for the tail index*. *Australian and New Zealand Journal of Statistics*, 48, 59–66. MR2234779

Peng, L. and Qi, Y. (2006b). *Confidence regions for high quantiles of a heavy tailed distribution*. Annals of Statistics, 4, 1964–1986. MR2283723

Qi, Y. (2008a). *On the tail index of a heavy tailed distribution*. Annals of the Institute of Statistical Mathematics. To appear.

Qi, Y. (2008b). *Bootstrap and empirical likelihood methods in extremes*. Extremes, doi 10.1007/s10687-007-0049-8.