Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: Scientific evidence and knowledge gaps

Prisila A Mkenda¹,²,³, Patrick A Ndakidemi¹, Ernest Mbega¹, Philip C Stevenson⁴,⁵, Sarah EJ Arnold⁴, Geoff M Gurr²,⁶, Steven R BelmainCorresp.⁴

¹Department of Sustainable Agriculture, Biodiversity and Ecosystems Management, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
²School of Agricultural and Wine Sciences, Charles Sturt University, NSW, Australia
³Department of Biosciences, Sokoine University of Agriculture, Morogoro, Tanzania
⁴Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
⁵Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
⁶Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China

Corresponding Author: Steven R Belmain
Email address: s.r.belmain@greenwich.ac.uk

Background. Field margin and non-crop vegetation in agricultural systems are potential ecosystem services providers because they offer semi-natural habitats for both below and above ground animal groups such as soil organisms, small mammals, birds and arthropods that are service supplying units. They are considered as a target area for enhancing farm biodiversity.

Methodology. To explore the multiple potential benefits of these semi-natural habitats and to identify research trends and knowledge gaps in the world, a review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A total of 235 publications from the year 2000 to 2016 in the Scopus and Web of Science databases were reviewed.

Results. The literature showed an increasing trend in the number of published articles over time with European studies leading in the proportion of studies conducted, followed by North America, Asia, South America, Africa and Australia. Several functional groups of organisms were studied from field margin and non-crop vegetation around agricultural lands including natural enemies (37%), insect pests (22%), birds (17%), pollinators (16%), soil macro fauna (4%) and small mammals (4%). Ecosystem services derived from the field margin included natural pest regulation, pollination, nutrient cycling and reduced offsite erosion. Some field margin plants were reported to host detrimental crop pests, a major ecosystem dis-service, potentially leading to increased pest infestation in the field.

Conclusion. The majority of studies revealed the importance of field margin and non-crop vegetation around arable fields in enhancing ecosystem biodiversity. Promotion of field margin plants that selectively enhance the population of beneficial organisms would support sustainable food security rather than simply boosting plant diversity. Our analyses also highlight that agro-ecological studies remain largely overlooked in some regions.
Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: Scientific evidence and knowledge gaps

Prisila A. Mkenda¹, ², ³, Patrick A. Ndakidemi¹, Ernest Mbega¹, Philip C. Stevenson⁴, ⁵, Sarah E.J. Arnold⁴, Geoff M. Gurr², ⁶ and Steven R. Belmain⁴*

¹Department of Sustainable Agriculture, Biodiversity and Ecosystems Management, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania;
²School of Agricultural and Wine Sciences, Charles Sturt University, NSW, Australia
³Department of Biosciences, Sokoine University of Agriculture, Morogoro, Tanzania,
⁴Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom;
⁵Royal Botanic Gardens, Kew, Richmond Surrey, United Kingdom
⁶Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China

Corresponding Author: Steven Belmain
Email address: s.r.belmain@gre.ac.uk
Abstract

Background. Field margin and non-crop vegetation in agricultural systems are potential ecosystem services providers because they offer semi-natural habitats for both below and above ground animal groups such as soil organisms, small mammals, birds and arthropods that are service supplying units. They are considered as a target area for enhancing farm biodiversity.

Methodology. To explore the multiple potential benefits of these semi-natural habitats and to identify research trends and knowledge gaps in the world, a review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A total of 235 publications from the year 2000 to 2016 in the Scopus and Web of Science databases were reviewed.

Results. The literature showed an increasing trend in the number of published articles over time with European studies leading in the proportion of studies conducted, followed by North America, Asia, South America, Africa and Australia. Several functional groups of organisms were studied from field margin and non-crop vegetation around agricultural lands including natural enemies (37%), insect pests (22%), birds (17%), pollinators (16%), soil macrofauna (4%) and small mammals (4%). Ecosystem services derived from the field margin included natural pest regulation, pollination, nutrient cycling and reduced offsite erosion. Some field margin plants were reported to host detrimental crop pests, a major ecosystem dis-service, potentially leading to increased pest infestation in the field.

Conclusion. The majority of studies revealed the importance of field margin and non-crop vegetation around arable fields in enhancing ecosystem biodiversity. Promotion of field margin plants that selectively enhance the population of beneficial organisms would support sustainable food security rather than simply boosting plant diversity. Our analyses also highlight that agro-ecological studies remain largely overlooked in some regions.

Introduction

The world population is currently 7.7 billion (UN, 2019) and it is projected to grow to 9.5 billion in 2050 (Lal, 2015) and more than 12 billion by the end of the 21st century, with most of the increase expected to occur in Africa (Gerland et al., 2014). Consequently, food demand will escalate (Valin et al., 2014); however, agricultural intensification through monocultured cropping systems is not a promising strategy for future needs due to adverse environmental effects (Jonsson et al., 2012; Robinson & Sutherland, 2002). In addition, conversion of natural...
and semi-natural habitats to arable farms with increased chemical inputs are among the threats to sustainable agriculture (Meehan et al., 2011). Agricultural intensification has replaced much of the native vegetation in the world, and it is estimated about 70% of tropical land is under agriculture and/or pasture modified systems (McNeely & Scherr, 2003; Ordway, Asner & Lambin, 2017). Intensive agricultural systems are associated with negative environmental impacts, including decreased biodiversity of wild plants and animals. This can lead to increased pest damage as a result of decline in natural pest control often caused by increased chemical inputs (Jonsson et al., 2012) whilst promoting pest abundance through monoculture cropping systems (Meehan et al., 2011). Various approaches can be taken to mitigate these impacts, including the adoption of intercropping (Martin-Guay et al., 2018). However, the focus on field manipulation might be insufficient to increase biodiversity of the farmland throughout the year unless it is supplemented with proper management of the field margins (Wiggers et al., 2016).

In most farmland, field margin vegetation may represent the key semi-natural habitat available to enhance biodiversity. Field margin abundance, location and management practices can determine the environmental benefits obtained. Field margins can be managed for provision of multiple ecosystem services such as medicinal products (Rigat et al., 2009), reduced soil erosion and/or nutrients runoff (Sheppard et al., 2006), increased litter decomposition (Smith et al., 2009), and reduced air and water pollution from runoff and pesticide spray drift (Sheppard et al., 2006). Other benefits include increased biodiversity of different plant and animal groups with various environmental benefits. Field margins at the boundary of sensitive features like watercourses can provide additional environmental benefits like protection of water sources from soil erosion and agricultural pollutants compared with field margin that separates two arable farms (Hackett & Lawrence, 2014). In addition, field margins can serve as habitat corridors to connect other remnant semi-natural habitat fragments such as woodlands (Marshall & Moonen, 2002). In terms of management, field margins can promote more diverse organisms when there is also reduced pesticide use, tillage and enhanced crop cover compared with a conventionally managed crop (Vickery, Feber & Fuller, 2009). Field margins can be designed to provide a particular benefit for a particular group of organisms. Increased numbers of aerial insects, which are the target food for Black-tailed Godwit chicks, can be supported through management of field margins of intensively managed grass fields (Wiggers et al. 2016). Likewise, Rouabah et al. (2015) and
Woodcock et al. (2008) observed positive responses of carabid beetle distribution and diversity as a result of different management levels of the field margins that increased sward architectural complexity through combinations of inorganic fertilizers, grazing and cutting at different heights and time. Ramsden et al. (2014) reported on the potential of field margins for food provisioning, overwintering sites and hosts to various predators and parasitoids for enhanced biological control services in agro-ecosystems. Several studies have reported on the importance of field margin management in arable fields for the provision of foraging habitats, nesting sites, food resources and shelter for invertebrates and vertebrates (Bianchi, Booij & Tscharntke, 2006; Gurr, Wratten & Luna, 2003; Landis, Wratten & Gurr, 2000; Marshall, 2004). These benefits can be particularly important after disturbances caused by agricultural practices like tillage, pesticide application and harvesting (Lee, Menalled & Landis, 2001). Field margin establishment and management is one of the affordable measure by a majority of the farmers due to the associated multiple benefits including biodiversity, conservation and functional values (Moorman et al., 2013). Understanding the various benefits of field margin and non-crop vegetation in agriculture and environment is particularly important for proper management.

Field margins comprise of native and/or non-native plants that separate the cropped area from hedgerows or other off crop features. Broadly, field margins are grouped under two major categories; cropped field margins and uncropped field margins (Vickery, Feber & Fuller, 2009). Cropped field margins contain sown arable crops that are identified using ecological and conservation principles. Margins can be managed using the existing field operations where the cultivated strip land is left to regenerate naturally or planting strips to provide food resources to insects. Uncropped field margins are set aside margins that are sown (with wild seed mixtures) or left to regenerate naturally without human manipulation. Both cropped and uncropped field margins can be maintained in various ways including cutting to reduce shading and invasion to the field.

Field margins may provide various environmental benefits depending on the establishment and management method employed (Bowie et al., 2014; Fritch et al., 2011; Huallacháin et al., 2014; Meek et al., 2002; Vickery, Carter & Fuller, 2002; Walker et al., 2007). For example, uncropped margin types were found to be more capable of supporting high plant density compared with
cropped field margins, due to the effect of competition from the crop (Walker et al., 2007).

Multiple benefits may be achieved where different margin types are incorporated at the same farm because no single field margin is capable of providing the required food and habitat resources to all plants and animal groups (Olson & Wäckers, 2007; Vickery, Feber & Fuller, 2009; Woodcock et al., 2009). Establishment and management method employed to the field margin in arable farmland (Figure 1) may significantly influence the long term conservation values (Smith et al., 2010). Therefore, the intention of integrating agronomic and biodiversity objectives may widely be achieved through field margin establishment and management.

Figure 1: Field margin management practices, undisturbed (left) and disturbed (right).

Undisturbed field margin vegetation around agricultural lands are useful in provision of nectar and habitat for beneficial arthropods thereby enhancing ecosystem services. Disturbed or cleared field margins are less efficient in enhancing beneficial arthropods.

Survey methodology
The objective of the study was to analyse the multifunctional role of field margin and non-crop vegetation in agriculture and to identify research trends and knowledge gaps in the world by review of published articles. The review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (Moher et al., 2009) and focused on both geographical and temporal distribution of the studies published in the year 2000 to 2016. The literature was accessed from Scopus scientific database using a series of key words: “field margin*” OR “non crop*” OR “margin plant*” OR “border plant*” OR “margin vegetation*” in the subject area of agricultural, biological and environmental sciences.

A total of 1,153 research articles, 63 review papers and 54 conference papers containing the key words in title, abstract or keywords were found. These items were trimmed to 204 research articles, 5 review papers and 8 conference papers, making a total of 217 publications based on the criterion that the search terms appeared in the title. A further search using the same key words in the title from Web of Science database led to 197 research articles and 10 proceedings papers. These publications were then crosschecked between the two databases to avoid duplications, adding 8 research articles and 10 conference papers/proceedings as the only
additional materials from the Web of Science database. This brought the total number of publications considered in this review to 235. Detailed analysis of the literature was done to extract information on the spatial data (study location), animal groups studied, and ecosystem services and disservices derived from the field margin biodiversity. Information on the impact of farming and management practices to the field margin flora and diversity was also analysed.

Results and discussion

There has been a marked increase in the numbers of publications from 2000 to 2016. These studies were largely conducted in European countries followed by North America then Asia, South America, Africa and Australia. The animal groups studied include arthropod natural enemies, insect pests, pollinators, birds, soil macrofauna and small mammals (Figure 2).

Figure 2: Animal groups that benefit from the field margin and non-crop vegetation around agricultural lands

Other studies assessed the environmental factors (such as landscape structure, hedge stand types and site conditions) that determine the flora composition of field margins (Guiller et al., 2016; Sitzia et al., 2013; Sitzia, Dainese & McCollin, 2014; Wrzesień & Denisow, 2016; Street et al., 2015). The role of field margins in preventing soil erosion (Ali & Reineking, 2016; Sheppard et al., 2006) and soil carbon losses (D’Acunto, Semmartin & Ghersa, 2014) were also studied. It was further reported that field margins are ecologically affected by the agronomic and management practices employed within the crop land like pesticide, herbicides and fertilizer application ((Alignier & Baudry, 2015; Hahn, Lenhardt & Brühl, 2014; Kang et al., 2013; Schmitz, Schäfer & Brühl, 2013; Schmitz, Hahn & Brühl, 2014a; Schmitz, Schäfer & Brühl, 2014b). The ecological effects of field margin plants to weed infestation in the field (De Cauwer et al., 2008; Reberg-Horton et al., 2011; Tarmi, Helenius & Hyvönen, 2011) and organic matter decomposition (Smith et al., 2009) were also investigated.

3.1 Multiple benefits of field margin and non-crop vegetation around arable farms

According to Smith et al. (2008), field margins play three major ecological roles including enhancing biodiversity, provision of habitat refuge for rare and endangered species and
promoting ecosystem services like natural pest regulation, pollination and nutrient cycling. These
three ecological benefits of the field margin may be categorized as biodiversity value,
conservation value and functional value respectively. This is apparent from the literature
reviewed as most of the studies were related to biodiversity and functional values while only a
few focussed on conservation value, particularly habitat and food resource provision to rare and
endangered bird species.

3.1.1 Enhancement of arthropod natural enemies and biological control of insect pests
From the literature review, natural enemies were the most studied in terms of the number of
publications compared with other groups. The most studied natural enemies were spiders and
ground beetles (Carabidae) since these organisms are regarded as biological indicators in
biodiversity and conservation assessments as well as indicators of change in terrestrial
ecosystems (Perner & Malt, 2003). Other natural enemies studied were ladybirds
(Coccinellidae), hover flies (Syrphidae), tachinid flies (Tachinidae), predatory bugs (including
Miridae, Reduviidae), parasitoid species of various families (Chalcidoidea, Ichneumonoidea,
Chrysidoidea and Proctotrupoidea), Neuroptera and ants (Formicidae) (Anderson et al., 2013;
Balzan, Bocci & Moonen, 2016; Bowie et al., 2014). The studies supported hypotheses about the
importance of increased diversity of field margin plants and landscape complexity to the
populations of different natural enemy groups and pest control (Atakan, 2010; Pluess et al., 2010,
Rouabah et al., 2015; Torretta & Poggio, 2013; Werling & Gratton, 2008). Strips and borders of
non-crop vegetation were found to increase the abundance and diversity of spider communities
and other natural enemies (Amaral et al., 2016; Ditner et al., 2013; Gurr et al., 2016; Pluess et al.,
2010). Field margin plants such as trees and shrubs are considered as refuge sites for increased
population of predatory insects (Burgio et al., 2004). It was found that field margins with several
plant species at local and landscape level are effective in managing pests compared with
simplified field margins (Bischoff et al., 2016). Field margins with sufficient flowering plants act
as reservoirs of beneficial insects to recolonize the crop field as observed in hoverflies and
tachinids (Inclán et al., 2016; Sutherland, Sullivan & Poppy, 2001). They are also regarded as
hotspots for other beneficial insects including ground beetles as an indicator species (Yu & Liu,
2006). Attractiveness of the flowers and presence of nectar are reported to be the major factors
that enhance the parasitoid population in the field margin plants (Bianchi & Wäckers, 2008).
Whiteflies are an example of one taxon found to be effectively controlled by parasitoids that were enhanced as a result of the floral nectar of non-crop vegetation around bean fields (Hernandez, Otero & Manzano, 2013). Non-crop habitats within arable lands thus significantly influence the abundance and diversity of natural enemies. From the literature reviewed, it was found even a very small area (tens of square metres) of non-crop habitat had a significant effect on the population of ground dwelling spiders (Knapp & Řezáč, 2015; Pluess et al., 2010; Jung et al., 2008) and carabid beetles (Knapp & Řezáč, 2015; Marasas, Sarandón & Cicchino, 2010; Werling & Gratton, 2008). Contradictory findings of a much weaker influence of non-crop vegetation on spider populations were reported by D’Alberto, Hoffmann & Thomson (2012), where other factors like crop characteristics (annual vs perennial) and regional differences appeared to play a larger role. Arthropod populations in field annual crops are highly dependent on the surrounding non-crop vegetation because of the periodic disturbances that occur within the field crop unlike the perennial plants where there is less disturbance. Another study by Noordijk et al. (2010) reported on the influence of the field margin age to invertebrate population where predators were found to decrease with increase in the age of the field margin as a result of decrease in plant species and species evenness. Generally, many natural enemies are enhanced by timely availability of three key resources: prey as a food resource, floral resources as additional food and shelter habitats and overwintering sites in case of disturbances (Ramsden et al., 2014). Some invertebrates move from the field margin to the field crop during the growing season when there is abundant food resources and later back to the margin when the resources are scarce or due to agronomic disturbances (Girard et al., 2011). This highlights the importance of margin vegetation as alternative shelter and food resource to beneficial insects around crop land.

Additionally, some field margin plants have pesticidal properties which apart from repelling the insect pests in the field, may also be extracted and used as biopesticides and sprayed to the crops to manage pests as reported by Mkenda et al. (2015). The advantage of natural pesticides from plant origin is that they are less likely to harm non-target organisms and the environment in general, particularly due to their low persistence in soil and on surfaces and lower toxicity (Amoabeng et al., 2013; Mkenda et al., 2015; Mkindi et al., 2017; Tembo et al., 2018). Many studies have reported on the ecological and economic benefits of botanical pesticides as
compared with synthetic pesticides (Isman, 2006; Kamanula et al., 2010; Prakash, Rao & Nandagopal, 2008; Stevenson et al., 2012; Stevenson, Isman & Belmain, 2017). Therefore, establishing field margins with pesticidal plants is an added advantage that may be particularly beneficial to resource-poor farmers in smallholder or subsistence systems.

Microbial enemies of insect pests in the field margin were also studied in addition to the natural enemies. The transmission of the entomopathogenic fungus (*Pandora neoaphidis*) in aphids was significantly higher in fields with margins containing several plant species compared with those with just one plant species (Baverstock, Clark & Pell, 2008; Baverstock et al. 2012). In addition, entomopathogenic fungi are more abundant in soils of organic farms as compared with conventional farms with no significant difference in their field margins (Klingen, Eilenberg & Meadow, 2002). Field margins can act as refuge areas during pesticide application in conventionally managed fields and they should be considered as potential habitats to enhance populations of natural enemies in the field for pest control.

3.1.2 Enhancement of insect pollinators

Pollinators play an important role in ensuring high yield through pollination services they provide. The most common pollinators studied across the literature reviewed were honey bees (*Apis* spp.), hoverflies, beetles, moths, butterflies and non-*Apis* bees. The importance of field margin vegetation to pollination was modelled in monoculture cropping systems and the models predicted that pollinator abundance in the margin would increase with the availability of different floral resources (Rands & Whitney, 2010). Butterflies were found to benefit from the grassy field margin as their potential corridors in agricultural landscapes with increased pollination service (Delattre et al., 2010). This is because field margins can act as corridors for pollinators to increase their pollination services (Altieri, 1999).

Generally, pollinators are more attracted by the flowering plants rich in nectar and pollen along the field margins compared with non-flower margin plants (Barbir et al., 2015; Carvell et al., 2007; Ricou et al., 2014; Bäckman & Tiainen, 2002), though preferences for certain resources do exist among different species. For example, *Apis* bees and non-*Apis* bees are reported to differ in terms of their preferences to floral resources and foraging distance (Rands & Whitney, 2011;
A study by Kütt et al. (2016) found linear habitats such as field margins and road verges to be less effective in providing quality flower-based ecosystem services because they were low in species richness as compared with permanent grasslands. According to Denisow & Wrzesien (2015), pollination services benefit from margin flower plants located at a distance of less than 1000 m, or if the field area is less than 10 ha. Availability of floral resources for nectar provision close to cropped land enhances pollinator abundance, with associated increased pollination service. The type of field margin, whether cropped or uncropped, may also influence the insect population in such habitats because of the differences in plant species composition. For example, uncropped field margins with several naturally regenerated wildflower plant species harboured more bumblebees and honey bees as compared with cropped margins (Kells, Holland & Goulson, 2001). This shows the need for more research on the influence of different margin characteristics to pollinators and the value of pollination service to crop yield where such studies are limited.

3.1.3 Increased survival of bird species

Some bird species which have been already identified as threatened species were observed in the field margin of agricultural lands in Europe (Wuczyński et al. 2014), flagging the importance of margin habitats. Several measures have been put in place to conserve the rare and endangered bird species, including non agri-biodiversity programs like Agri-Environment Schemes (AES) (Carvell et al., 2007; Field et al., 2007; Marshall, West & Kleijn, 2006; Merckx et al., 2009; Kleijn et al., 2001; Tarmi, Helenius & Hyvönen, 2011; Smith et al., 2008; Walker et al., 2007). However, the majority of AES are not performing well on biodiversity conservation and enhancing ecosystems services because many of them have considered the entire field and primarily the crop area, with less attention focused on the field margins (Wiggers et al., 2016). There is a need to combine both AES and proper field margin management to conserve bird population and diversity (Kuiper et al., 2013; Wiggers et al., 2016).

The benefits of the field margins to the survival of bird chicks are reported by several studies (Giacomo & Casenave, 2010; Kleijn et al., 2001; Kuiper et al., 2013; Vickery, Carter & Fuller, 2002; Wilson et al., 2010). This is because a large percentage of the plant species that are used as nesting sites are present in the field margin as compared with the field centre in temperate arable

PeerJ reviewing PDF | (2019:06:38726:2:0:NEW 17 Oct 2019)
farms. The increased plant diversity is associated with increased invertebrate biomass (Balzan, Bocci & Moonen, 2016; Hiron et al., 2015; Torretta & Poggio, 2013; Woodcock et al. 2007) which may be useful food resources for birds (Douglas, Vickery & Benton, 2009; Wiggers et al. 2015; Ottens et al., 2014; Perkins et al., 2002; Woodcock et al., 2009). It is also reported that most of the field margins that were established and managed to promote beneficial insects are used by bird species as overwintering and refuge habitats (Plush et al., 2013). The optimal age and size of the field margin are reported to affect the richness and breeding densities of bird species where species richness and territory density increased up to the age of 4 to 6 years of the field margin, thereafter it started to decline (Zollinger et al., 2013). The type of field margin vegetation and their characteristics is another potential factor that may influence bird species (Holt et al., 2010; Lemmers, Davidson & Butler, 2014; Zuria & Gates, 2013). Comparison of three types of field margin vegetation classified according to the volume of tall vegetation showed that a tree lined margin supported the highest abundance and diversity of bird species, followed by shrubs and lastly by open (herbaceous margin) habitats (Wuczyński et al., 2011).

Set-asides are the most preferred habitats for foraging of birds during breeding as compared with grassland or cereal crop margins (Zollinger et al., 2013). Despite the fact that the level of benefits differ between different types of field margin with different management approaches, presence of a field margin did significantly increase the avian biodiversity in arable farms (Marshall, West & Kleijn, 2006).

3.1.4 Enhanced survival of small mammals

Small mammals studied in the context of field margin and adjacent vegetation include the harvest mouse, Reithrodontomys megalotis (Canady, 2013; Sullivan & Sullivan, 2006), several mole species (Talpidae) (Zurawska-Seta & Barczak, 2012), house mouse, Mus musculus (Sullivan & Sullivan, 2006; Moorman et al., 2013), deer mouse, Peromyscus maniculatus, Great Basin pocket mouse, Perognathus parvus and various vole species (Sullivan & Sullivan, 2006).

These mammals took advantage of the established and well managed field margins that aimed to enhance beneficial insect abundance and diversity. Though they usually feed on crops and, thus, must be primarily considered as pest organisms, in a broader context, they may influence the abundance of vertebrate predators, especially the birds that feed on small mammals, serving as a foundation for many trophic interactions (Korpimaki et al., 2005; Meserve et al., 2003). In
addition to the ecological interaction they serve, they also help to reduce weed infestation in the
field by feeding on the undesirable weed seeds (Howe & Brown, 1999).

Most studies dealt with omnivorous rodents, but the European mole is an obligate carnivore,
feeding on earthworms and other invertebrates in the soil. Thus it is not considered as a crop pest
(Lund, 1976). The damage caused by mole is through burrowing activities which leads to
molehills that may affect vegetation composition of the area, and cause occasional damage to
silage (Atkinson, Macdonald & Johnson, 1994). Consequently, it is considered a pest more in
ornamental and amenity contexts than agriculture.

3.1.5 Promoting soil macrofauna and organic matter decomposition

Above-ground biodiversity was most commonly studied while only 5% of papers, all of which
were from Europe, considered the effect of field margin management on soil macrofauna such as
earthworms (Crittenden et al., 2015; Nuutinen, Butt & Jauhiainen, 2011; Roarty & Schmidt
2013). Earthworms are affected by agricultural disturbances such as tillage as it influences soil
moisture and, over a long time scale, organic matter (Kuntz et al., 2013; Pelosi et al., 2014;
Smith et al., 2008) both of which determine habitat favourability for terrestrial annelids. Several
studies (Crittenden et al., 2015; Nuutinen, Butt & Jauhiainen, 2011) reported an increase in
earthworm numbers in the field margin strips with reduced tillage as compared with adjacent
arable farms. In general, most of the studies reported that field margin management increased
underground soil macrofauna population in comparison with arable lands.

Other groups of soil organisms that were enhanced by field margin management include soil
predators, herbivores and detritivores in different taxonomic groups as Haplotaxida, Isopoda,
Chilopoda, Diplopoda, and Coleoptera (Smith et al., 2008; Anderson et al., 2013). The age of the
field margin was also reported to influence soil detritivore communities, where richness and
diversity was positively related with the age of the field margin (Noordijk et al., 2010). The
biodiversity, conservation and functional values of soil macrofauna was enhanced by field
margins that were established and managed with the aim of increasing the arthropod population
in arable farmlands (Smith et al., 2008). This shows the existence of multiple benefits of field
margin plants and the need to maximize such benefits.
Soil biodiversity loss as a result of the expansion, intensification and mechanization of agriculture has been recognised as a major challenge to sustainability (Pulleman et al., 2012). The soil ecosystem includes many decomposer taxa that are key to soil formation and structure and play a significant role in nutrient cycling with clear consequences for plant growth and soil carbon storage (Aislabie & Deslippe, 2013). In intensive agricultural lands, the densities of soil organisms can be low due to use of agrochemicals and frequent agricultural disturbances, with deleterious effects of decomposition of soil organic matter (Coleman et al., 2002). A comparative study of litter decomposition by soil macrofauna revealed increased activity of soil organisms with increased litter decomposition along the field margins with less disturbance compared with the more disturbed areas (Smith et al., 2009). Field margins are, therefore, providing a contribution to both below and above ground populations of organisms, but undisturbed field margins have higher values in this respect.

3.1.6 Reduced soil erosion and nutrient loss

Though soil erosion is a natural process, it can be exacerbated by agricultural intensification that turns it into a major environmental challenge (Uri, 2000). While the rate of soil erosion in farming systems is very high it remains lower in well managed field margins and uncultivated areas (Pimentel et al., 1995). According to Zheng (2006), changes in vegetation composition like conversion of natural or semi natural habitats to crop land greatly influence soil erosion processes. Soil erosion leads to decreased soil nutrients which are important in plant growth thus affecting agriculture production (Lal, 2015). Apart from on-farm effects, soil erosion can have off-farm effects as well, including sedimentation in other areas and water pollution especially if the source is a cultivated area with agro chemical inputs (Uri, 2000; Van Oost et al., 2007). Soil erosion is severe in intensively cultivated land with high tillage practices, intensive chemical inputs and monoculture systems (Jonsson et al., 2012; Meehan et al., 2011; Robinson & Sutherland, 2002) due to loosening of the soil particles, rendering the surface susceptible to wind and rainfall erosion (Pimentel et al., 1995). The soil erosion in intensively managed agriculture land can be reduced through enhanced soil infiltration (a process in which water on the ground surface enters the soil) which can be achieved through vegetative field margins (Ali & Reineking, 2016; Zheng, 2006). Other measures that can also be employed to reduce soil erosion...
include conservation agriculture based on crop rotation (Sun et al., 2018), mulching (Lalljee, 2013), and cover crops (Durán Zuazo et al., 2006; Lal, 2015).

Field margins are considered effective in eliminating offsite erosion by trapping the sediments that otherwise could have been loaded in the lowland areas including water bodies (Duzant et al., 2010; Sheppard et al., 2006; Uri, 2000). This is also supported by Tsiouris et al. (2002) that, most of the fertilizer applied on wheat crops were filtered at the field margins leading to eutrophication of the margin habitats. They reduce the speed of surface runoff and increase soil infiltration depending on the characteristics of the field margin plants and the slope of the land. Different field margin types with different management levels and inclines are reported to have a potential influence of mitigating soil erosion (Ali & Reineking 2016). In intensively managed landscapes, riparian buffer zones (vegetated areas near water ways) play a similar role of filtering agricultural pollutants that could otherwise enter into water bodies thereby affecting the life of aquatic organisms and other associated ecosystem services.

3.2 Influence of field margin and non-crop vegetation on insect pests and plant viruses

Apart from supporting several beneficial insects and other ecosystem services, field margins have an influence on insect pest populations. They may provide habitat and food resources for both insect pests and their natural enemies in agricultural systems. Therefore, an understanding of their ecological interactions including prey-predator interactions, habitat preferences and mobility, as well as their impact on crop production is important for proper management of the field margins (Tindo et al., 2009). Fruit flies such as *Drosophila suzukii* (Diptera: Drosophilidae) are among the most studied insect pests of fruits and have several non-crop plant hosts. Consequently, a better understanding of fruit flies’ host ranges among plants of the field margin is essential for effective control strategies (Arnó et al., 2016; Kenis et al., 2016; Diepenbrock, Swoboda-Bhattarai & Burrack, 2016). Unlike fruit flies, spider mites in the *Tetranychus* genus have a narrower host range; nonetheless, their presence in the field crop was similarly found to be associated with the non-crop host plants around the farmland (Ohno et al., 2010). Consequently, concerning crops affected by this pest, thought must be given to whether potential hosts are present among the field margin vegetation.
One such example is the case of scale insects on cassava and the infestation dynamics with respect to non-crop vegetation. The insects (*Stictococcus vayssierei*: Stictococcidae) were recorded from several field margin host plants including both native and exotic plant species of the Congo basin (Tindo et al., 2009). Thus, field margin plants could be argued to increase the risk of pest outbreaks on the crop in this case. There is thus a strong need to establish and manage the field margin with plant species that selectively enhance the natural enemies and leave the crop less susceptible to insect pests. However, most of the studies that investigated the effect of well managed field margin vegetation on both beneficial and pest insects reported improved biological control of pest species with few, if any, observations of field margins promoting pest issues (Atakan, 2010; Balzan, Bocci & Moonen, 2016; Balzan & Moonen 2014; Eyre et al., 2011; Fusser et al., 2016; Holland et al., 2008). For example, aphid densities in broccoli plots surrounded by bare margin were found to be more than four times the aphid densities in plots surrounded by mixed weedy vegetation (Banks, 2000). This emphasizes the importance of the presence of diverse vegetation in field margins for biological control of insect pests in the field. The presence of prey in non-crop habitats such as field margins may promote the natural enemy population and hence biological control in the field crop. This is in agreement with the study by Bianchi & Werf (2004) who found the availability of non-pest aphids in the non-crop habitats leads to conservation of ladybirds for enhanced biological control. Thrips, aphids and stink bugs damage was reported to be reduced as a result of increased insect natural enemies in different field margin vegetation (Eyre et al., 2011; Alhmedi et al., 2011 and Pease & Zalom, 2010 respectively). Other insect pests like moth larvae (Balzan & Moonen, 2014) and olive psyllids (Paredes et al., 2013) were also found to be effectively managed through enhanced biological control attributed to the non-crop vegetation diversity. It is further reported that more than 90% of cereal aphids were effectively controlled in fields with wide margins by flying predators (Holland et al., 2008). Further studies on the effect of wildflower strips that were established at the field margin for enhancing beneficial insect population reported no effect on insect pest conservation (Hatt et al., 2018).

The information that some field margin plants may be the most preferred host of some pest species or plant disease vector is useful for selection of the most appropriate species of field
margin plants for a given system. There are some cases where field margin vegetation is unable
to enhance the biological control process due to some factors as summarized in Table 1 below;

Table 1

Field margin plants can also be used as trap crops of insect pests, useful in reducing pest
populations from the main crop in the field (Balzan & Moonen, 2014). Trap crops are plants
grown for the purpose of attracting and concentrating the damaging organisms like insect pests
and prevent them from reaching the target crop (Hokkanen, 1991; Shelton & Badenes-Perez,
2006). These trap crops can either be planted in rows within the main crop or planted as field
margin plants. In this case, proper selection of border plants is essential as also reported by
Schröder et al. (2015) in which border plants were used to attract aphids from the field crop and
thus reduced viral infection into the field. A particularly well documented example of the
importance of margin plant selection is that of push-pull studies where the insect pests are
pushed away from the main crop using a repellent intercrop, and on to the trap crop at the margin
(Cook, Khan & Pickett, 2007).

In addition to the influence of the field margin vegetation on insect pests, assessment of how
they may act as reservoirs of plant diseases like alfalfa mosaic virus and cucumber mosaic virus
and bean infection incidence was conducted by Mueller, Groves & Gratton (2012). The study
reported less influence of the alfalfa mosaic virus from the margin plants to bean crop and no
association was observed between cucumber mosaic virus in the non-crop and bean infestation in
the field. Insect pests are also known to be vectors of several plant diseases, especially those
which are caused by virus and bacteria (Manandhar & Hooks, 2011). For example, aphids are the
main vector in the spread of virus that cause plant disease. Movement behaviour of alate aphids
that is aided by wind increases the spreading of the virus and it is often high near the edge of the
field as compared with the field centre (Alderz, 1974; DiFonzo et al., 1996; Perring et al., 1992).
Therefore, manipulation of the field margin by planting an alternate crop that acts as a screen
around the main crop has been found to be effective in crop protection against non-persistent
viral diseases (Damicone et al., 2007). The effectiveness of the border plants in managing the
spread of disease depends on several factors including the height of the border plants in relation
to the main crop. The spread pattern of the virus and the level of preference between the border plant and the main crop by the disease vector may also affect the rate of spread of the disease (Fereres, 2000). The border plant may act as a sink or as a physical barrier to the plant virus. As a sink this may be where the infective vector loses the virus when probing non-crop plant species after landing on border plants, by cleansing the mouth parts and reducing the spread of the virus into the adjacent main crop (DiFonzo et al., 1996). As a physical barrier this is where the tall border plants simply reduce the possibility of the aphids landing on the adjacent main crop (Fajinmi & Odebode, 2010). Table 2 below summarizes some of plant borders that were found to be effective in reducing the spread of plant viral diseases into the main crop.

Table 2

3.3 Influence of field margin and non-crop vegetation on weed infestation in the field

Field margin and non-crop vegetation can become weeds if they spread into the field crop. Many farmers fear weed infestation from the margin to the field crop, a belief which is often not supported by evidence (Mante & Gerowitt, 2009). Reberg-Horton et al. (2011) found no evidence of field margin Amaranthus retroflexus, Cyperus esculentus, Urochloa platyphylla, Ipomoea sp., Digitaria sanguinalis, Mollugo verticilliata, Lamium amplexicaule, Sida spinosa or Senna abtusifolia spreading to adjacent maize (Zea mays L.) or peanut (Arachis hypogaea L.) fields in USA. The type of field margin, plant composition (including their dispersal traits) and distance to the field crop are important factors to consider on whether field margin plants will have an influence on weed infestation in the field. However, different weed species may respond differently to these factors, therefore necessitating the need for an understanding of the specific weed functional traits for effective management (Reberg-Horton et al., 2011). For example, the seeds of anemochorous species which are adapted to wind dispersal may disperse only over a short distance (Feldman & Lewis, 1990) though spreading of field margin plant seeds that are adapted to wind dispersal is thought to be high and over long distance compared with plant species with no specialized dispersal structure.

Nevertheless, the presence of weeds within the crop is regarded as one of the ways to enhance biodiversity in agro ecosystems (Clough, Kruess & Tscharntke, 2007). However, challenges
stemming from the competition with crops as well as difficulties during harvesting, especially if mechanized, may arise. From the literature reviewed, a major observation from several studies was that weed dissemination into the field largely depends on the type of margin and the way it is maintained throughout the year. De Cauwer et al. (2008) reported on the importance of sown field margin, which are managed through removal of the cuttings in suppression of weed spreading into the field. Similar findings on the importance of sown field margins with proper management for weed control are reported (West, Marshall & Arnold, 1997; Bokenstrand, Lagerlo & Torstensson, 2004, Boutin et al., 2001). This being the case, it can be concluded that field margin plants are not necessarily the source of weed infestation into the field, and that for weed control, the establishment and management practices on the fields matter most. Major benefits of field margin vegetation as well as possible unintended consequences and mitigation measures are summarised in Figure 3.

Figure 3: Potential benefits and dis-benefits derived from field margin vegetation

3.4 Agronomic and management factors influencing field margin plant composition

The various management techniques of the field margin and farming operations in the adjacent field have an impact on both field margin flora and fauna composition. Field margin establishment by fencing, application of sown flower mixtures or natural regeneration after the soil is tilled with rotating blades or rotavator (Fritch et al., 2011; Huallacháin et al., 2014) and their structural connectivity (Fridley, Senft & Peet, 2009; Kang et al., 2013) determine their vegetation structure and plant diversity. Field margins established through sowing seed mixtures led to the highest diversity of flora and fauna, especially in highly intensified land (Fritch et al., 2011). Subsequent management such as cutting (De Cauwer et al., 2008), grazing or mowing (Coulson et al., 2001; Fritch et al., 2011), coppicing, trimming and pollarding (Deckers, Hermy & Muys, 2004) and other techniques including agrochemical input applications (Schmitz, Hahn & Brühl, 2014a) have been found to influence the floral species composition as a result of disturbance or changes to the soil nutrient content. Field margins may also be affected by weed invasion, if it alters their vegetation structure and composition depending on establishment and management measures employed (Bokenstrand, Lagerlo & Torstensson, 2004; De Cauwer et al., 2008; Reberg-Horton et al., 2011; West, Marshall & Arnold, 1997). Other factors influencing the
vegetation structure and composition at the field margin include the ecological and biogeographical context of the area, as well as their historical seedbanks. Field margins have more seedbanks and hence are more species rich compared with the field centre (Jose-Maria & Sans, 2011).

Likewise, farming activities adjacent to the field margins such as the application of herbicides (Boutin, Elmegaard & Kjaer, 2004; Riemens et al., 2009), pesticides and fertilizers (Schmitz, Schäfer & Brühl, 2013; Schmitz, Schäfer & Brühl, 2014b) can be considered potential disturbances and may adversely affect the margin flora structure and composition. The effect of fertilizers and herbicides significantly affected the occurrence and frequency of several light feeder plant species that require less nitrogen and other nutrients leading to low diversity while few heavy feeders (plant species with high demand of nitrogen and other nutrients) were favoured by the applied fertilizer (Schmitz, Hahn & Brühl, 2014a). Though agrochemical inputs are typically applied in the crop, their effect can be observed in the field margin as a result of direct overspray or spray drift due to their proximity to the field (Firbank et al., 2008). The effects of pesticide drift or overspray are more pronounced in narrow field margins, particularly those less than 3m wide (Hahn, Lenhardt & Brühl, 2014). Therefore, field margin plant composition is greatly influenced by the agronomic and management practices which consequently determines faunal composition and hence ecosystem service/disservice.

Recommendations

Understanding the current status of the biological diversity of field margins and its integration in agriculture, as well as the influence of human agricultural activities on the various organisms within ecosystems is necessary. Only limited information relating to these processes for most tropical areas are available and in some areas the information has been limited to a few sites with relatively similar ecology and management practices (Gardner et al., 2010). Africa particularly is well known in terms of its biodiversity (Duruigbo et al., 2013), though very little research on the importance of biodiversity in agriculture has been carried out in this region. Despite all the reported benefits of field margin vegetation established mostly in American (Amaral et al., 2016; D’Acunto, Semmartin & Ghersa, 2014; Zuria & Gates, 2013) and European countries (Guiller et al., 2016; Balzan, Bocci & Moonen, 2016; Inclán et al., 2016; Knapp & Řezáč, 2015; Rouabah et
al., 2015), its adoption in other continents is still low (Ndemah, Schulthess & Nolte, 2006). In view of this, we recommend the following actions.

First, there is a need for increased research effort on effective techniques for enhancing on-farm biodiversity in order to promote ecosystem services for sustainability in agriculture across regions of the world where such research is still limited. From the literature reviewed, it was observed that field borders that were managed to promote the abundance and diversity of above ground beneficial insects were found to support other organisms like birds, soil macrofauna and small mammals as an additional benefit. Other reported benefits include regulation of water and nutrient content within the soil (Ndemah, Schulthess & Nolte, 2006), maintaining soil and water quality by preventing erosion and runoff (Ali & Reineking, 2016; Sheppard et al., 2006) and increased organic matter decomposition by soil organisms (Smith et al., 2009). The multiple benefits arising from field margins justify the need for more research and promotion of these habitats as part of sustainable agricultural intensification.

Second, raising awareness among the farmers on the ecological and economic effects associated with the misuse of synthetic pesticides. Many farming communities in developing countries are not aware of the hazards associated with the misuse of synthetic pesticides (Ngowi et al., 2007; Kariathi, Kassim & Kimanya, 2016). Consequently, they are unknowingly killing the natural enemies of insect pests and disrupting the natural pest regulation service with increased pest resistance to most pesticides. The effects of the pesticides applied on crops extends to the field margin plants due to the proximity of the field margins and the crop land and hence affecting the multiple services derived from the field margin (Firbank et al., 2008). It is therefore recommended that agrochemical inputs should be selectively applied or restricted completely in order to increase the diversity of both flora and fauna in agricultural landscapes.

Third, purposive efforts towards adoption of field margin establishment and management among the farmers should be employed. One of the obstacles existing among the farmers in the adoption of new technology is the fear that it might interfere with their normal farming practices, as well as the establishment cost of the technology (Wilson & Hart, 2000). However, extensive field margins are among the conservation measures that once established requires less efforts in
maintaining for multiple benefits. Two barriers in some regions may be insufficient knowledge on the ecological benefits of field margins and poor knowledge related to the design of appropriate field margins (Junge et al., 2009; Mante & Gerowitt, 2009; Morris, Mills & Crawford, 2000). These knowledge gaps have led to some difficulties in the acceptance of the intervention among the farmers. Social learning and economic incentives such as reduced production cost, more yield, market value or value-added environmental outcome are some of the factors that guarantee wide adoption of an innovation.

Fourth, fulfilling the potential of ecological benefits of semi natural habitats around the farm land for improved agriculture and environment requires involvement of various stakeholders (who may vary depending on country) such as farmers, local authorities, researchers, policy makers, NGOs, charities and land or estate owners in the discovery of the scientific knowledge for easy adoption. Understanding of their personal, social and economic dynamics in the context of innovation adoption is essential.

Conclusions

From the literature reviewed, the majority of studies demonstrate that field margin and non-crop vegetation around agricultural lands can provide various benefits including pest control, crop pollination, reduced offsite erosion, organic matter decomposition and nutrient cycling as well as enhancement of rare and endangered species, both above and below ground organisms. Several functional groups of beneficial organisms were reported to benefit from field margin and non-crop vegetation; the most commonly studied were natural enemies, birds, pollinators, soil macrofauna and small mammals. However, some of the field margin plants were reported to host detrimental pests, a major ecosystem dis-service, leading to increased pest infestation in the field. We also identify other factors that are associated with ineffective pest control of field margin vegetation such as lack of natural enemies in the area, intraguild predation, poor dispersal of the natural enemies to the field crop and the overall quality of the field margin vegetation. Therefore, the promotion of field margin plants that selectively enhance the population of beneficial organisms, together with integration of other techniques like use of non-susceptible crops and crop diversification through intercrop would be desirable for sustainability in agriculture.
Though many studies on the role of field margin and non-crop vegetation have been conducted, geographic distribution of the studies is highly skewed. The studies were largely conducted in some countries, especially in Western Europe, but are very limited in number and scope in many tropical countries. The limited research taking place on these semi natural habitats in the tropics may be due to the lack of research funds and poor knowledge on the ecological benefits of these habitats in the agriculture sector in low-income and smallholder farming systems. This calls for the need to raise awareness on the economic and ecological benefits of the semi natural habitats around agricultural fields for sustainable agriculture in areas where farm biodiversity has been given less attention.

Acknowledgements

We thank Charles Sturt University librarians for their support in this study by providing free access to the Scopus and Web of Science databases which were used to access the literature reviewed.

References

Aislabie J, Deslippe JR. 2013. Soil microbes and their contribution to soil services. Ecosystem services in New Zealand–conditions and trends. Manaaki Whenua Press, Lincoln, New Zealand, pp.143-161.

Alderz WC, 1974. Wind effects on spread of watermelon mosaic virus 1 from local virus sources to watermelon. *Journal of Economic Entomology* 67:361-364 DOI:10.1093/jee/67.3.361.

Alhmedi A, Haubruge E, D’Hoedt S, Francis F (2011). Quantitative food webs of herbivore and related beneficial community in non-crop and crop habitats. *BioControl* 58:103–112 DOI:10.1016/j.biocontrol.2011.04.005.

Ali HE, Reineking B. 2016. Extensive management of field margins enhances their potential for off-site soil erosion mitigation. *Journal of Environmental Management* 169:202–209 DOI:10.1016/j.jenvman.2015.12.031.

Alignier A, Baudry J. 2015. Changes in management practices over time explain most variation in vegetation of field margins in Brittany, France. *Agriculture, Ecosystems & Environment* 211:164–172 DOI:10.1016/j.agee.2015.06.008

Altieri MA. 1999. The ecological role of biodiversity in agroecosystems. *Agriculture, Ecosystems & Environment* 74:19–31 DOI:10.1016/S0167-8809(99)00028-6.
Amoabeng BW, Gurr GM, Gitau CW, Nicol HI, Munyakazi L, Stevenson PC. 2013. Tri-trophic insecticidal effects of African plants against cabbage pests. *PLoS ONE* 8(10): e78651. DOI:10.1371/journal.pone.0078651.

Amaral DSSL, Venzon M, dos Santos HH, Sujii ER, Schmidt JM, Harwood JD. 2016. Non-crop plant communities conserve spider populations in chili pepper agroecosystems. *BioControl* 103:69–77 DOI:10.1016/j.biocontrol.2016.07.007.

Anderson A, Carnus T, Helden AJ, Sheridan H, Purvis G. 2013. The influence of conservation field margins in intensively managed grazing land on communities of five arthropod trophic groups. *Insect Conservation and Diversity* 6:201–211 DOI:10.1111/j.1752-4598.2012.00203.x.

Arnó J, Solà M, Riudavets J, Gabarra R. 2016. Population dynamics, non-crop hosts, and fruit susceptibility of *Drosophila suzukii* in Northeast Spain. *Journal of Pest Science* 89:713–723 DOI:10.1007/s10340-016-0774-3.

Atakan E. 2010. Influence of weedy field margins on abundance patterns of the predatory bugs *Orius spp.* and their prey, the western flower thrips (*Frankliniella occidentalis*), on faba bean. *Phytoparasitica* 38:313–325 DOI:10.1007/s12600-010-0105-9.

Atkinson RPD, Macdonald DW, Johnson PJ. 1994. The status of the European mole *Talpa europaea* L. as an agricultural pest and its management. *Mammal Review* 24:73-90 DOI:10.1111/j.1365-2907.1994.tb00136.x.

Bäckman JPC, Tiainen J. 2002. Habitat quality of field margins in a Finnish farmland area for bumblebees (Hymenoptera: *Bombus* and *Psithyrus*). *Agriculture, Ecosystems & Environment* 89:53–68 DOI:10.1016/S0167-8809(01)00318-8.

Balzan MV, Bocci G, Moonen AC. 2016. Landscape complexity and field margin vegetation diversity enhance natural enemies and reduce herbivory by Lepidoptera pests on tomato crop. *BioControl* 61:141–154 DOI:10.1007/s10526-015-9711-2.

Balzan MV, Moonen AC. 2014. Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. *Entomologia Experimentalis et Applicata* 150:45–65 DOI:10.1111/eea.12142.

Banks JE. 2000. Effects of Weedy Field Margins on *Myzus Persicae* (Hemiptera : Aphididae) in a Broccoli Agroecosystem. *Pan-Pacific Entomologist* 76:95-101.

Barbir J, Badenes-Pérez FR, Fernández-Quintanilla C, Dorado J. 2015. Can floral field margins...
improve pollination and seed production in coriander *Coriandrum sativum* L. (Apiaceae)?

Agricultural and Forest Entomology 17:302–308 DOI:10.1111/afe.12108.

Baverstock J, Clark SJ, Pell JK. 2008. Effect of seasonal abiotic conditions and field margin habitat on the activity of *Pandora neoaphidis* inoculum on soil. *Journal of Invertebrate Pathology* 97:282–290 DOI:10.1016/j.jip.2007.09.004.

Baverstock J, Torrance MT, Clark SJ, Pell JK. 2012. Mesocosm experiments to assess the transmission of *Pandora neoaphidis* within simple and mixed field margins and over the crop-margin interface. *Journal of Invertebrate Pathology* 110:102–107 DOI:10.1016/j.jip.2012.02.012.

Bianchi FJJA, Wäckers FL. 2008. Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. *BioControl* 46:400–408 DOI:10.1016/j.biocontrol.2008.04.010.

Bianchi FJJA, Booij CJH, Tscharntke T. 2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. *Proceedings of the Royal Society* 273: 1715–1727 DOI:10.1098/rsbp.2006.3530.

Bianchi FJJA, Van Der Werf W. 2004. Model evaluation of the function of prey in non-crop habitats for biological control by ladybeetles in agricultural landscapes. *Ecological Modelling* 171:177–193 DOI:10.1016/j.ecolmodel.2003.08.003.

Bischoff A, Pollier A, Lamarre E, Salvadori O, Cortesero AM, Le Ralec, A, Jaloux B. 2016. Effects of spontaneous field margin vegetation and surrounding landscape on *Brassica oleracea* crop herbivory. *Agriculture, Ecosystems & Environment* 223:135–143 DOI:10.1016/j.agee.2016.02.029

Blumenthal D, Jordan N. 2001. Weeds in field margins: A spatially explicit simulation analysis of Canada thistle population dynamics. *Weed Science* 49:509-519 DOI:10.1614/0043-1745(2001)049[0509:WIFMAS]2.0.CO;2.

Bokenstrand A, Lagerlo FJ, Torstensson PR. 2004. Establishment of vegetation in broadened field boundaries in agricultural landscapes. *Agriculture, Ecosystems & Environment* 101:21–29 DOI:10.1016/S0167-8809(03)00275-5

Boutin C, Jobin B, Bélanger L, Choinière L. 2001. Comparing weed composition in natural and planted hedgerows and in herbaceous field margins adjacent to crop fields. *Canadian Journal of Plant Science* 81: 313-324 DOI:10.4141/P00-048.
Boutin C, Elmegaard N, Kjaer C. 2004. Toxicity testing of fifteen non-crops plants species with six herbicides in a greenhouse experiment: Implications for risk assessment. *Ecotoxicology* 13:349–369.

Bowie MH, Klimaszewski J, Vink CJ, Hodge S, Wratten SD. 2014. Effect of boundary type and season on predatory arthropods associated with field margins on New Zealand farmland. *New Zealand Journal of Zoology* 41:268–284 DOI:10.1080/03014223.2014.953552

Burgio G, Ferrari R, Pozzati M, Boriani L. 2004. The role of ecological compensation areas on predator populations: An analysis on biodiversity and phenology of Coccinellidae (Coleoptera) on non-crop plants within hedgerows in Northern Italy. *Bulletin of Insectology* 57:1–10.

Canády A. 2013. Nest dimensions and nest sites of the harvest mouse (*Micromys minutus* pallas, 1771) from slovakia: A case study from field margins. *Zoology and Ecology* 23:253–259 DOI:10.1080/21658005.2013.853492.

Carvell C, Meek WR, Pywell RF, Goulson D, Nowakowski M. 2007. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. *Journal of Applied Ecology* 44: 29–40 DOI:10.1111/j.1365-2664.2006.01249.x.

Clough Y, Kruess A, Tscharntke T. 2007. Local and landscape factors in differently managed arable fields affect the insect herbivore community of a non-crop plant species. *Journal of Applied Ecology* 44: 22–28 DOI: 10.1111/j.1365-2664.2006.01239.x.

Coleman DC, Fu S, Hendrix P, Crossley DAJ. 2002. Soil foodwebs in agroecosystems: impacts of herbivory and tillage management. *European Journal of Soil Biology* 38:21–28 DOI:10.1016/S1164-5563(01)01118-9.

Cook SM, Khan ZR, Pickett J.A. 2007. The use of push-pull strategies in integrated pest management. *Annual Review of Entomology* 52:375–400 DOI:10.1146/annurev.ento.52.110405.091407.

Coulson SJ, Bullock JM, Stevenson MJ, Pywell RF. 2001. Colonization of grassland by sown species: dispersal versus microsite limitation in responses to management. *Journal of Applied Ecology* 38: 204–216 DOI:10.1046/j.1365-2664.2001.00585.x.

Crittenden SJ, Huerta E, de Goede RGM, Pulleman MM. 2015. Earthworm assemblages as affected by field margin strips and tillage intensity: An on-farm approach. *European Journal of Soil Biology* 66:49–56 DOI:10.1016/j.ejsobi.2014.11.007.
D’Acunto L, Semmartin M, Ghersa CM. 2014. Uncropped field margins to mitigate soil carbon losses in agricultural landscapes. *Agriculture, Ecosystems & Environment* 183:60–68. DOI:10.1016/j.agee.2013.10.022.

D’Alberto CF, Hoffmann AA, Thomson LJ. 2012. Limited benefits of non-crop vegetation on spiders in Australian vineyards: Regional or crop differences? *BioControl* 57: 541–552. DOI:10.1007/s10526-011-9435-x.

Damicone JP, Edelson JV, Sherwood JL, Myers LD, Motes JE. 2007. Effects of border crops and intercrops on control of cucurbit virus diseases. *Plant Disease* 91:509-516 DOI:10.1094/PDIS-91-5-0509.

De Cauwer B, Reheul D, Nijs I, Milbau A. 2008. Management of newly established field margins on nutrient-rich soil to reduce weed spread and seed rain into adjacent crops. *Weed Research* 48:102–112 DOI:10.1111/j.1365-3180.2007.00607.x.

Deckers B, Hermy M, Muys B. 2004. Factors affecting plant species composition of hedgerows: relative importance and hierarchy. *Acta Oecologica* 26: 23–37. DOI:10.1016/j.actao.2004.03.002.

Delattre T, Pichancourt JB, Burel F, Kindlmann P. 2010. Grassy field margins as potential corridors for butterflies in agricultural landscapes: A simulation study. *Ecological Modelling* 221:370–377 DOI:10.1016/j.ecolmodel.2009.10.010.

Denisow B, Wrzesien M. 2015. The importance of field-margin location for maintenance of food niches for pollinators. *Journal of Apicultural Science* 59:27–37 DOI:10.1515/jas-2015-0002.

Diepenbrock LM, Swoboda-Bhattarai KA, Burrack HJ. 2016. Ovipositional preference, fidelity, and fitness of *Drosophila suzukii* in a co-occurring crop and non-crop host system. *Journal of Pest Science* 89:761–769 DOI:10.1007/s10340-016-0764-5.

DiFonzo CD, Ragsdale DW, Radcliffe EB, Gudmestad,NC, Secor GA. 1996. Crop borders reduce potato virus Y incidence in seed potato. *Annals of Applied Biology* 129:289-302. DOI:10.1111/j.1744-7348.1996.tb05752.x.

Ditner N, Balmer O, Beck J, Blick T, Nagel P, Luka H. 2013. Effects of experimentally planting non-crop flowers into cabbage fields on the abundance and diversity of predators. *Biodiversity and Conservation* 22:1049–1061 DOI:10.1007/s10531-013-0469-5.

Douglas DJT, Vickery JA, Benton TG. 2009. Improving the value of field margins as foraging...
habitat for farmland birds. *Journal of Applied Ecology* 46:353–362 DOI:10.1111/j.1365-2664.2009.01613.x.

Durán Zuazo VH, Martínez JRF, Pleguezuelo CRR, Martínez Raya A, Rodríguez BC. 2006. Soil-erosion and runoff prevention by plant covers in a mountainous area (SE Spain): Implications for sustainable agriculture. *Environment* 26:309–319 DOI:10.1007/s10669-006-0160-4

Duruigbo CI, Okereke-Ejiogu EN, Nwokeji EM, Peter-Onoh CA, Ogwudire VE, Onoh PA. 2013. Integrated remediation strategies for sustaining agrobiodiversity degradation in Africa. *IOSR Journal of Agriculture and Veterinary Science* 3: 16-23 DOI: 10.9790/2380-0341623.

Duzant JH, Morgan RPC, Wood GA, Deeks LK. 2010. Modelling the Role of Vegetated Buffer Strips in Reducing Transfer of Sediment from Land to Watercourses. *Handbook of Erosion Modelling*. John Wiley & Sons, Ltd, pp. 249-262.

Eyre MD, Labanowska-Bury D, White R, Leifert C. 2011. Relationships between beneficial invertebrates, field margin vegetation, and thrip damage in organic leek fields in eastern England. *Organic Agriculture* 1:45–54 DOI:10.1007/s13165-010-0004-x.

Eyre MD, Sanderson RA, McMillan SD, Critchley CNR. 2016. Crop cover the principal influence on non-crop ground beetle (Coleoptera, Carabidae) activity and assemblages at the farm scale in a long-term assessment. *Bulletin of Entomological Research* 106:242–248 DOI:10.1017/S0007485315001054.

Fajinmi AA, Odebode CA. 2010. Evaluation of maize/pepper intercropping model in the management of pepper veinal mosaic virus, genus *Potyvirus*, family Potyviridae on cultivated pepper (*Capsicum annuum* L.) in Nigeria. *Archives of Phytopathology and Plant Protection* 43:1524-1533 DOI:10.1080/03235400802583677.

Falloon P, Falloon P, Powlson D, Smith P. 2004. Managing field margins for biodiversity and carbon sequestration: a Great Britain case study. *Soil Use and Management* 20:240–247 DOI:10.1079/SUM2004236.

Feldman SR, Lewis JP. 1990. Output and dispersal of propagules of *Carduus acanthoides* L. *Weed Research* 30:161–169 DOI:10.1111/j.1365-3180.1990.tb01700.x.

Fereres A. 2000. Barrier crops as a cultural control measure of non-persistently transmitted...
aphid-borne viruses. *Virus Research* 71:221-231 DOI:10.1016/S0168-1702(00)00200-8.

Field RG, Gardiner T, Mason CF, Hill J. 2007. Agri-environment schemes and butterflies: The utilisation of two metre arable field margins. *Biodiversity and Conservation* 16:465–474 DOI:10.1007/s10531-005-6202-2.

Firbank LG, Petit S, Smart S, Blain A, Fuller RJ. 2008. Assessing the impacts of agricultural intensification on biodiversity: a British perspective. *Philosophical Transaction of Royal Society B – Biological Sciences* 363: 777–787 DOI:10.1098/rstb.2007.2183.

Fischer C, Schlinkert H, Ludwig M, Holzschuh A, Gallé R, Tscharntke T, Batáry P. 2013. The impact of hedge-forest connectivity and microhabitat conditions on spider and carabid beetle assemblages in agricultural landscapes. *Journal of Insect Conservation* 17: 1027–1038 DOI:10.1007/s10841-013-9586-4.

Fridley AJD, Senft AR, Peet RK. 2009. Vegetation structure of Field Margins and Adjacent Forests in Agricultural Landscapes of the North Carolina Piedmont. *Castanea* 74:327–339. DOI:10.2179/08-057R1.1.

Fritch RA, Sheridan H, Finn JA, Kirwan L, hUallacháin DÓ. 2011. Methods of enhancing botanical diversity within field margins of intensively managed grassland: A 7-year field experiment. *Journal of Applied Ecology* 48:551–560 DOI:10.1111/j.1365-2664.2010.01951.x.

Fusser MS, Pfister SC, Entling MH, Schirmel J. 2016. Effects of landscape composition on carabids and slugs in herbaceous and woody field margins. *Agriculture, Ecosystems & Environment* 226:79–87 DOI:10.1016/j.agee.2016.04.007.

Gardner TA, Barlow J, Sodhi NS, Peres CA. 2010. A multi-region assessment of tropical forest biodiversity in a human-modified world. *Biological Conservation* 143(10):2293–2300 DOI:10.1016/j.biocon.2010.05.017.

Gerland P, Raftery AE, Sevcikova H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J. 2014. World population stabilization unlikely this century. *Science* 346: 234–237 DOI:10.1126/science.1257469.

Giacomo AS, Casenave JL. 2010. Use and importance of crop and field-margin habitats for birds in a Neotropical agricultural ecosystem. *The Condor* 112:283–293 DOI:10.1525/cond.2010.090039.

Girard J, Baril A, Mineau P, Fahrig L. 2011. Carbon and nitrogen stable isotope ratios differ...
among invertebrates from field crops, forage crops, and non-cropped land uses. *Écoscience* 18:98–109 DOI:10.2980/18-2-3390.

Guiller C, Affre L, Albert CH, Tatoni T, Dumas E. 2016. How do field margins contribute to the functional connectivity of insect-pollinated plants? *Landscape Ecology* 31:1747–1761 DOI:10.1007/s10980-016-0359-9.

Gurr GM, Wratten SD, Luna JM. 2003. Multi-function agricultural biodiversity: pest management and other benefits. *Basic Applied Ecology* 4:107–116 DOI:10.1078/1439-1791-00122

Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, Yao X, Cheng J, Zhu Z, Catindig JL, Villareal S, Chien HV, Cuong LQ, Channoo C, Chengwattana N, Lan LP, Hai LH, Chaiwong J, Nicol HI, Perovic DJ, Wratten SD, Heong, K. L. 2016. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. *Nature Plants* 2:22–25 DOI:10.1038/NPLANTS.2016.14.

Hackett M, Lawrence A. 2014. Multifunctional role of field margins in arable farming. Report for European Crop Protection Association by Cambridge Environmental Assessments, Report Number CEA.1118

Hahn M, Lenhardt PP, Brühl CA. 2014. Characterization of field margins in intensified agro-ecosystems-why narrow margins should matter in terrestrial pesticide risk assessment and management. *Integrated Environment Assessment and Management* 10:456–462 DOI:10.1002/ieam.1535.

Hatt S, Boeraeve F, Artru S, Dufrêne M, Francis F. 2018. Spatial diversification of agroecosystems to enhance biological control and other regulating services: An agroecological perspective. *Science of Total Environment* 621:600–611 DOI:10.1016/j.scitotenv.2017.11.296.

Hernandez LM, Otero JT, Manzano MR. 2013. Biological control of the greenhouse whitefly by *Amitus fuscipennis*: Understanding the role of extrafloral nectaries from crop and non-crop vegetation. *BioControl* 67:227–234 DOI:10.1016/j.biocontrol.2013.08.003.

Hiron M, Berg Å, Eggers S, Berggren Å, Josefsson J, Pärt T. 2015. The relationship of bird diversity to crop and non-crop heterogeneity in agricultural landscapes. *Landscape Ecology* 30:2001–2013 DOI:10.1007/s10980-015-0226-0.

Hokkanen HMT. 1991. Trap cropping in pest management. *Annual Review of Entomology*
Holland JM, Oaten H, Southway S, Moreby S. 2008. The effectiveness of field margin enhancement for cereal aphid control by different natural enemy guilds. *BioControl* 47: 71–76 DOI:10.1016/j.biocontrol.2008.06.010.

Holt CA, Atkinson PW, Vickery JA, Fuller RJ. 2010. Do field margin characteristics influence songbird nest-site selection in adjacent hedgerows? *Bird Study* 57:392–395 DOI:10.1080/00063651003674938.

Howe HF, Brown JS. 1999. Effects of birds and rodents on synthetic tallgrass communities. *Ecology* 80:1776–1781 DOI:10.2307/176568

Huallacháin DÓ, Anderson A, Fritch R, McCormack S, Sheridan H, Finn JA. 2014. Field margins: A comparison of establishment methods and effects on hymenopteran parasitoid communities. *Insect Conservation and Diversity* 7:289–307 DOI:10.1111/icad.12053.

Inclán DJ, Dainese M, Cerretti P, Paniccia D, Marini L. 2016. Spillover of tachinids and hoverflies from different field margins. *Basic Applied Ecology* 17:33–42 DOI:10.1016/j.baae.2015.08.005.

Isman MB. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. *Annual Review of Entomology* 51: 45–66 DOI:10.1146/annurev.ento.51.110104.151146.

Jayasena KW, Randles JW. 1985. The effects of insecticides and a plant barrier row on aphid populations and spread of bean yellow mosaic potyvirus and subterranean clover red leaf luteovirus in *Vicia faba* in South Australia. *Annals of Applied Biology* 107:355-364 DOI:10.1111/j.1744-7348.1985.tb03152.x.

Jonsson M, Buckley HL, Case BS, Wratten SD, Hale RJ, Didham RK. 2012. Agricultural intensification drives landscape context effects on host-parasitoid interaction in agroecosystems. *Journal of Applied Ecology* 49:706-714 DOI:10.1111/j.1365-2664.2012.02130.x.

Jose-maria L, Sans FX. 2011. Weed seedbanks in arable fields: effects of management practices and surrounding landscape. *Weed Research* 51:631–640 DOI:10.1111/j.1365-3180.2011.00872.x.

Jung MP, Kim ST, Kim H, Lee JH. 2008. Biodiversity and community structure of ground-dwelling spiders in four different field margin types of agricultural landscapes in Korea.
Junge X, Jacot KA, Bosshard A, Lindemann-Matthies P. 2009. Swiss people’s attitudes towards field margins for biodiversity conservation. *Journal for Nature Conservation* 17:150–159 DOI:10.1016/j.jnc.2008.12.004.

Kamanula J, Sileshi GW, Belmain SR., Sola P, Mvumi BM, Nyirenda GK, Stevenson PC. 2010. Farmers’ insect pest management practices and pesticidal plant use in the protection of stored maize and beans in Southern Africa. *International Journal of Pest Management* 57:41–49 DOI:10.1080/09670874.2010.522264.

Kang W, Hoffmeister M, Martin EA, Steffan-Dewenter I, Han D, Lee D. 2013. Effects of management and structural connectivity on the plant communities of organic vegetable field margins in South Korea. *Ecological Research* 28: 991–1002 DOI:10.1007/s11284-013-1081-6.

Kariathi V, Kassim N, Kimanya M. 2016. Pesticide exposure from fresh tomatoes and its relationship with pesticide application practices in Meru district. *Cogent Food and Agriculture* 2:1196808 DOI:10.1080/23311932.2016.1196808.

Kells AR, Holland JM, Goulson D. 2001. The value of uncropped field margins for foraging bumblebees. *Journal of Insect Conservation* 5:283–291.

Kenis M, Tonina L, Eschen R, van der Sluis B, Sancassani M, Mori N, Haye T, Helsen, H. 2016. Non-crop plants used as hosts by *Drosophila suzukii* in Europe. *Journal of Pest Science* 89:735–748 DOI:10.1007/s10340-016-0755-6.

Kleijn D, Berendse F, Smit R, Gilissen N. 2001. Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. *Nature* 413:723-725.

Klingen I, Eilenberg J, Meadow R. 2002. Effects of farming system, field margins and bait insect on the occurrence of insect pathogenic fungi in soils. *Agriculture, Ecosystems & Environment* 91:191–198 DOI:10.1016/S0167-8809(01)00227-4.

Knapp M, Řezáč M. 2015. Even the smallest non-crop habitat islands could be beneficial: Distribution of carabid beetles and spiders in agricultural landscape. *PLoS ONE* 10: 1–20 DOI:10.1371/journal.pone.0123052.

Korpimaki E, Norrdahl K, Huitu O, Klemola T. 2005. Predator induced synchrony in population oscillations of coexisting small mammal species. *Proceedings of Biological Science* 272:193–202 DOI:10.1098/rspb.2004.2860.
Kuiper MW, Ottens HJ, Cenin L, Schaffers AP, van Ruijven J, Koks BJ, Berendse F, de Snoo GR. 2013. Field margins as foraging habitat for skylarks (Alauda arvensis) in the breeding season. *Agriculture, Ecosystems & Environment* 170:10–15 DOI:10.1016/j.agee.2013.03.001.

Kuntz M, Berner A, Gattinger A, Scholberg JM, Mäder P, Pfiffner L. 2013. Influence of reduced tillage on earthworm and microbial communities under organic arable farming. *Pedobiologia* 56:251–260 DOI:10.1016/j.pedobi.2013.08.005.

Kütt L, Löhmus K, Rammi IJ, Paal T, Paal J, Liira J (2016). The quality of flower-based ecosystem services in field margins and road verges from human and insect pollinator perspectives. *Ecological Indicators* 70:409–419 DOI:10.1016/j.ecolind.2016.06.009.

Lal R. 2015. Restoring soil quality to mitigate soil degradation. *Sustainability (Switz)* 7:5875–5895 DOI:10.3390/su7055875.

Lalljee B. 2013. Mulching as a mitigation agricultural technology against land degradation in the wake of climate change. *International Soil and Water Conservation Research* 1:68–74 DOI:10.1016/S2095-6339(15)30032-0.

Landis DA, Wratten SD, Gurr GM. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. *Annual Review of Entomology* 45:175–201 DOI:10.1146/annurev.ento.45.1.175.

Lee JC, Menalled FB, Landis DA. 2001. Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. *Journal of Applied Ecology* 38:472–483 DOI:10.1046/j.1365-2664.2001.00602.x.

Lemmers P, Davidson MM, Butler RC. 2014. Relative abundance of introduced European birds varies with field margin type on arable farms in Canterbury, New Zealand. *New Zealand Journal of Zoology* 41:203–209 DOI:10.1080/03014223.2014.893893.

Lund M. 1976. Control of the European mole, Talpa europaea. *Proceedings of the 7th Vertebrate Pest Conference* 32:125–130.

Lomer C, Bateman R, Johnson D, Langewald J, Thomas M. 2001. Biological control of locusts and grasshoppers. *Annual Review of Entomology* 1:667–702 DOI:10.1146/annurev.ento.46.1.667

Manandhar R, Hooks CR. 2011. Using protector plants to reduce the incidence of Papaya ringspot virus-watermelon strain in zucchini. *Environmental Entomology* 40:391-398
Mante J, Gerowitt B. 2009. Learning from farmers’ needs: Identifying obstacles to the successful implementation of field margin measures in intensive arable regions. *Landscape and Urban Planning* 93:229–237 DOI:10.1016/j.landurbplan.2009.07.010.

Marasas ME, Sarandón SJ, Cicchino A. 2010. Semi-natural habitats and field margins in a typical agroecosystem of the argentinean pampas as a reservoir of carabid beetles. *Journal of Sustainable Agriculture* 34:153–168 DOI:10.1080/10440040903482563.

Marshall EJP. 2004. Agricultural landscapes: field margin habitats and their interaction with crop production. *Journal of Crop Improvement* 12:365–404 DOI:10.1300/J411v12n01_05.

Marshall EJP, West TM, Kleijn D. 2006. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. *Agriculture, Ecosystems & Environment* 113: 36–44 DOI:10.1016/j.agee.2005.08.036.

Martin-Guay MO, Paquette A, Dupras J, Rivest D. 2018. The new Green Revolution: Sustainable intensification of agriculture by intercropping. *Science of Total Environment* 615: 767–772 DOI:10.1016/j.scitotenv.2017.10.024.

Martin EA, Reineking B, Seo B, Steffan-Dewenter I. 2013. Natural enemy interactions constrain pest control in complex agricultural landscapes. *Proceedings of the National Academy of Sciences of the United States of America* 110: 5534-5539.

McNeely JA, Scherr SJ. 2003. Ecoagriculture: strategies for feed the world and save wild biodiversity. Island Press, Washington, DC.

Meehan TD, Werling BP, Landis DA, Gratton C. 2011. Agricultural landscape simplification and insecticide use in the Midwestern United States. *Proceedings of the National Academy of Sciences of the United States of America* 108:11500-11505.

Meek B, Loxton D, Sparks T, Pywell R, Pickett H, Nowakowski M. 2002. The effect of arable field margin composition on invertebrate biodiversity. *Biological Conservation* 106:259–271 DOI:10.1016/S0006-3207(01)00252-X.

Merckx T, Feber RE, Dulieu RL, Townsend MC, Parsons MS, Bourn NAD, Riordan P, Macdonald DW. 2009. Effect of field margins on moths depends on species mobility: Field-based evidence for landscape-scale conservation. *Agriculture, Ecosystems & Environment* 129:302–309 DOI:10.1016/j.agee.2008.10.004

Meserve PL, Kelt DA, Milstead WB, Gutierrez JR. 2003. Thirteen years of shifting top-down
and bottom-up control. *BioScience* 53:633–646 DOI:10.1641/0006–3568(2003)053[0633:TYOSTA]2.0.CO;2.

Mkenda P, Mwanauta R, Stevenson PC, Ndakidemi P, Mtei K, Belmain SR. 2015. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. *PloS one* 10: e0143530 DOI:10.1371/journal.pone.0143530.

Mkindi AG, Mpumi N, Tembo Y, Stevenson PC, Ndakidemi PA, Mtei K, Machunda R, Belmain SR. 2017. Invasive weeds with pesticidal properties as potential new crops. *Industrial Crops and Products* 110:113 122 DOI:10.1016/j.indcrop.2017.06.002.

Moher D, Liberati A, Tetzlaff J, Altman DG. 2009. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Med* 6:e1000097 DOI:10.1371/journal.pmed.1000097.

Moorman CE, Plush CJ, Orr DB, Reberg-Horton C, Gardner B. 2013. Small mammal use of field borders planted as beneficial insect habitat. *Wildlife Society Bulletin* 37:209–215 DOI:10.1002/wsb.226.

Morris J, Mills J, Crawford IM. 2000. Promoting farmer uptake of agri-environment schemes: the Countryside Stewardship Arable Options Scheme. *Land Use Policy* 17:241–254 DOI:10.1016/S0264-8377(00)00021-1.

Mueller EE, Groves RL, Gratton C. 2012. Crop and Non-Crop Plants as Potential Reservoir Hosts of *Alfalfa mosaic virus* and *Cucumber mosaic virus* for Spread to Commercial *Snap Bean*. *Plant Disease* 96:506–514 DOI:10.1094/PDIS-02-11-0089.

Murphy JF, Mosjidis J, Eubanks MD, Masiri J. 2008. Inter-row soil cover to reduce incidence of aphid-borne viruses in pumpkin. *International Journal of Vegetable Science* 14:290-303 DOI:10.1080/19315260802212555.

Ndemah R, Schulthess F, Nolte C. 2006. The effect of grassy field margins and fertilizer on soil water, plant nutrient levels, stem borer attacks and yield of maize in the humid forest zone of Cameroon. *Annales de La Societe Entomologique de France* 42:461–470 DOI:10.1080/00379271.2006.10697480.

Ngowi AVF, Mbise TJ, Ijani ASM, London L, Ajayi OC. 2007. Pesticides use by smallholder farmers in vegetable production in Northern Tanzania. *Crop Protection* 26: 1617 DOI:10.1016/j.cropro.2007.01.008.
Noordijk J, Musters CJM, van Dijk J, de Snoo GR. 2010. Invertebrates in field margins: Taxonomic group diversity and functional group abundance in relation to age. *Biodiversity and Conservation* 19:3255–3268 DOI:10.1007/s10531-010-9890-1.

Nuutinen V, Butt KR, Jauhiainen L. 2011. Field margins and management affect settlement and spread of an introduced dew-worm (*Lumbricus terrestris* L.) population. *Pedobiologia* 54:S167–S172 DOI:10.1016/j.pedobi.2011.07.010.

Ohno S, Miyagi A, Ganaha-Kikumura T, Gotoh T, Kijima K, Ooishi T, Moromizato C, Haraguchi D, Yonamine K, Uezato T. 2010. Non-crop host plants of *Tetranychus* spider mites (Acari: *Tetranychidae*) in the field in Okinawa, Japan: Determination of possible sources of pest species and inference on the cause of peculiar mite fauna on crops. *Applied Entomology and Zoology* 45:465–475 DOI:10.1303/aez.2010.465.

Olson DM, Wäckers FL. 2007. Management of field margins to maximize multiple ecological services. *Journal of Applied Ecology* 44:13–21 DOI:10.1111/j.1365-2664.2006.01241.x.

Ordway EM, Asner GP, Lambin EF. 2017. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. *Environmental Research Letters* 12:044015 DOI:10.1088/1748-9326/aa6509.

Ottens HJ, Kuiper MW, Flinks H, van Ruijven J, Siepel H, Koks BJ, Berendse F de Snoo GR. 2014. Do field margin enrich the diet of the Eurasian Skylark (*Alauda arvensis*) on Intensive farmland? *Ardea* 102:161-174 DOI:10.5253/arde.v102i2.a6.

Paredes D, Cayuela L, Gurr GM, Campos M. 2013. Effect of non-crop vegetation types on conservation biological control of pests in olive groves. *PeerJ* 1: e116 DOI:10.7717/peerj.116

Pease CG, Zalom FG. 2010. Influence of non-crop plants on stink bug (Hemiptera: Pentatomidae) and natural enemy abundance in tomatoes. *Journal of Applied Entomology* 134:626–636 DOI:10.1111/j.1439-0418.2009.01452.x.

Pelosi C, Pey B, Hedde M, Caro G, Capowiez Y, Guernion M, Peigne J, Piron D, Bertrand M, Cluzeau D. 2014. Reducing tillage in cultivated fields increases earthworm functional diversity. *Applied Soil Ecology* 83:79–87 DOI:10.1016/j.apsoil.2013.10.005.

Perkins AJ, Whittingham MJ, Morris AJ, Bradbury RB. 2002. Use of field margins by foraging yellowhammers *Emberiza citrinella*. *Agriculture, Ecosystems & Environment* 93:413–420 DOI:10.1016/S0167-8809(01)00306-1.
Perner J, Malt S. 2003. Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conservation of arable land into grassland. *Agriculture, Ecosystems & Environment* 98:169–181 DOI:10.1016/S0167-8809(03)00079-3.

Perring TM, Farrar CA, Mayberry K, Blua MJ. 1992. Research reveals pattern of cucurbit virus spread. *California Agriculture* 46:35-40.

Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, Crist S, Shpritz L, Fitton L, Saffouri R, Blair R. 1995. Environmental and economic costs of soil erosion and conservation benefits. *Science* 267:1117e1123 DOI:10.1126/science.267.5201.1117.

Pluess T, Opatovsky I, Gavish-Regev E, Lubin Y, Schmidt-Entling MH. 2010. Non-crop habitats in the landscape enhance spider diversity in wheat fields of a desert agroecosystem. *Agriculture, Ecosystems & Environment* 137:68–74 DOI:10.1016/j.agee.2009.12.020.

Plush CJ, Moorman CE, Orr DB, Reberg-Horton C. 2013. Overwintering sparrow use of field borders planted as beneficial insect habitat. *Journal of Wildlife Management* 77:200–206 DOI:10.1002/jwmg.436.

Prakash A, Rao J, Nandagopal V. 2008. Future of botanical pesticides in rice, wheat, pulses and vegetables pest management. *Journal of Biopesticides* 1:154–169.

Pulleman M, Creamer R, Hamer U, Helder J, Pelosi C, Péres G, Rutgers M (2012). Soil biodiversity, biological indicators and soil ecosystem services—an overview of European approaches. *Current Opinion in Environmental Sustainability* 4:529-538 DOI:10.1016/j.cosust.2012.10.009

Ramsden MW, Menéndez R, Leather SR, Wäckers F. 2014. Optimizing field margins for biocontrol services: The relative role of aphid abundance, annual floral resources, and overwinter habitat in enhancing aphid natural enemies. *Agriculture, Ecosystems & Environment* 199:94–104 DOI:10.1016/j.agee.2014.08.024.

Rands SA, Whitney HM. 2010. Effects of pollinator density-dependent preferences on field margin visitations in the midst of agricultural monocultures: A modelling approach. *Ecological Modelling* 221:1310–1316DOI:10.1016/j.ecolmodel.2010.01.014.

Rands SA, Whitney HM. 2011. Field margins, foraging distances and their impacts on nesting pollinator success. *PLoS ONE* 6:10 DOI:10.1371/journal.pone.0025971.

Reberg-Horton SC, Mueller JP, Mellage SJ, Creamer NG, Brownie C, Bell M, Burton MG.
2011. Influence of field margin type on weed species richness and abundance in conventional crop fields. *Renewable Agriculture and Food Systems* 26:127–136 DOI:10.1017/S1742170510000451.

Ricou C, Schneller C, Amiaud B, Plantureux S, Bockstaller C. 2014. A vegetation-based indicator to assess the pollination value of field margin flora. *Ecological Indicators* 45:320–331 DOI:10.1016/j.ecolind.2014.03.022.

Riemens MM, Dueck T, Kempenaar C, Lotz LAP, Kropff MJJ. 2009. Sublethal effects of herbicides on the biomass and seed production of terrestrial non-crop plant species, influenced by environment, development stage and assessment date. *Environmental Pollution* 157:2306–2313 DOI:10.1016/j.envpol.2009.03.037.

Rigat M, Bonet MÁ, Garcia S, Garnatje T, Vallés J. 2009. Ethnobotany of food plants in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula): Non-crop food vascular plants and crop food plants with medicinal properties. *Ecology of Food and Nutrition* 48:303–326 DOI:10.1080/03670240903022320.

Roarty S, Schmidt O. 2013. Permanent and new arable field margins support large earthworm communities but do not increase in-field populations. *Agriculture, Ecosystems & Environment* 170:45–55 DOI:10.1016/j.agee.2013.02.011.

Robinson RA, Sutherland WJ. 2002. Post-war changes in arable farming and biodiversity in Great Britain. *Journal of Applied Ecology* 39:157–176 DOI:10.1046/j.1365-2664.2002.00695.x.

Rollin O, Bretagnolle V, Decourtje A, Aptel J, Michel N, Vaissière BE, Henry M. 2013. Differences of floral resource use between honey bees and wild bees in an intensive farming system. *Agriculture, Ecosystems & Environment* 179:78–76 DOI:10.1016/j.agee.2013.07.007.

Rouabah A, Villerd J, Amiaud B, Plantureux S, Lasserre-Joulin F. 2015. Response of carabid beetles diversity and size distribution to the vegetation structure within differently managed field margins. *Agriculture, Ecosystems & Environment* 200:21–32 DOI:10.1016/j.agee.2014.10.011.

Schmitz J, Hahn M, Brühl CA. 2014a. Agrochemicals in field margins - An experimental field study to assess the impacts of pesticides and fertilizers on a natural plant community. *Agriculture, Ecosystems & Environment* 193:60–69 DOI:10.1016/j.agee.2014.04.025.
Schmitz J, Schäfer K, Brühl CA. 2013. Agrochemicals in field margins-assessing the impacts of herbicides, insecticides, and fertilizer on the common buttercup (Ranunculus acris). Environmental Toxicology and Chemistry 32:1124–1131 DOI:10.1002/etc.2138.

Schmitz J, Schäfer K, Brühl CA. 2014b. Agrochemicals in field margins—Field evaluation of plant reproduction effects. Agriculture, Ecosystems & Environment 189:82–91 DOI:10.1016/j.agee.2014.03.007.

Schröder ML, Glinwood R, Webster B, Ignell R, Krüger K. 2015. Olfactory responses of Rhopalosiphum padi to three maize, potato, and wheat cultivars and the selection of prospective crop border plants. Entomologia Experimentalis et Applicata 157:241–253 DOI:10.1111/eea.12359.

Shelton AM, Badenes-Perez FR. 2006. Concepts and application of crop trapping in pest management. Annual Review of Entomology 51:285–308 DOI:10.1146/annurev.ento.51.110104.150959.

Sheppard SC, Sheppard MI, Long J, Sanipelli B, Tait J. 2006. Runoff phosphorus retention in vegetated field margins on flat landscapes. Canadian Journal of Soil Science 86:871–884 DOI:10.4141/S05-072.

Simmons JN. 1957. Effects of insecticides and physical barriers on field spread of pepper veinbanding mosaic virus. Phytopathology 47:139-145.

Sitzia T, Dainese M, McCollin D. 2014. Environmental factors interact with spatial processes to determine herbaceous species richness in woody field margins. Plant Ecology 215:1323–1335 DOI:10.1007/s11258-014-0390-3.

Sitzia T, Trentanovi G, Marini L, Cattaneo D, Semenzato P. 2013. Assessment of hedge stand types as determinants of woody species richness in rural field margins. IForest 6:201–208 DOI:10.3832/ifor0749-006.

Smith H, Feber RE, Morecroft MD, Taylor ME, Macdonald DW. 2010. Short-term successional change does not predict long-term conservation value of managed arable field margins. Biological Conservation 143:813–822 DOI:10.1016/j.biocon.2009.12.025.

Smith J, Potts SG, Woodcock BA, Eggleton P. 2008. Can arable field margins be managed to enhance their biodiversity, conservation and functional value for soil macrofauna? Journal of Applied Ecology 45:269–278 DOI:10.1111/j.1365-2664.2007.01433.x.

Smith J, Potts SG, Woodcock BA, Eggleton P. 2009. The impact of two arable field margin
management schemes on litter decomposition. *Applied Soil Ecology* 41:90–97

DOI:10.1016/j.apsoil.2008.09.003.

Sorribas J, González S, Domínguez-Gento A, Vercher R. 2016. Abundance, movements and biodiversity of flying predatory insects in crop and non-crop agroecosystems. *Agronomy for Sustainable Development* 36: 34 DOI:10.1007/s13593-016-0360-3.

Stevenson PC, Isman MB, Belmain SR (2017). Pesticidal plants in Africa: A global vision of new biological control products from local uses. *Industrial Crops and Products* 110:2-9

DOI:10.1016/j.indcrop.2017.08.034.

Stevenson PC, Kite GC, Lewis GP, Forest F, Nyirenda SP, Belmain SR, Sileshi GW, Veitch NC. 2012. Distinct chemotypes of *Tephrosia vogelii* and implications for their use in pest control and soil enrichment. *Phytochemistry* 78:135–146 DOI:10.1016/j.phytochem.2012.02.025.

Street TI, Prentice HC, Hall K, Smith HG, Olsson O. 2015. Removal of woody vegetation from uncultivated field margins is insufficient to promote non-woody vascular plant diversity. *Agriculture, Ecosystems & Environment* 201: 1–10 DOI:10.1016/j.agee.2014.11.020.

Sullivan TP, Sullivan DS. 2006. Plant and small mammal diversity in orchard versus non-crop habitats. *Agriculture, Ecosystems & Environment* 116:235–243

DOI:10.1016/j.agee.2006.02.010.

Sun L, Wang S, Zhang Y , Li J, Wang X, Wang R, Lyu W, Chen N, Wang Q. 2018. Conservation agriculture based on crop rotation and tillage in the semi-arid Loess Plateau, China: Effects on crop yield and soil water use. *Agriculture, Ecosystems & Environment* 251:67–77 DOI:10.1016/j.agee.2017.09.011.

Sutherland JP, Sullivan MS, Poppy GM. 2001. Distribution and abundance of aphidophagous hoverflies (Diptera : Syrphidae) in wild flower patches and field margin habitats. *Agricultural and Forest Entomology* 3:57-64 DOI:10.1046/j.1461-9563.2001.00090.x.

Tarmi S, Helenius J, Hyyönen T. 2011. The potential of cutting regimes to control problem weeds and enhance species diversity in an arable field margin buffer strip. *Weed Research* 51:641–649 DOI:10.1111/j.1365-3180.2011.00888.x.

Tembo Y, Mkindi AG, Mkenda PA, Mpumi N, Mwanauta R, Stevenson PC, Ndakidemi PA and Belmain SR. 2018. Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. *Frontiers in Plant Science* 9:1425

DOI:10.3389/fpls.2018.01425.
Tindo M, Hanna R, Goergen G, Zapfack L, Tata-Hangy K, Attey A. 2009. Host plants of *Stictococcus vayssierei* Richard (Stictococcidae) in non-crop vegetation in the Congo Basin and implications for developing scale management options. *International Journal of Pest Management* 55:339–345 DOI:10.1080/09670870902934864.

Torretta JP, Poggio SL. 2013. Species diversity of entomophilous plants and flower-visiting insects is sustained in the field margins of sunflower crops. *Journal of Natural History* 47:139–165 DOI:10.1080/00222933.2012.742162.

Tsiouris SE, Mamolos AP, Kalburtji KL, Alifrangis D. 2002. The quality of runoff water collected from a wheat field margin in Greece. *Agriculture, Ecosystems & Environment* 89:117–125 DOI:10.1016/S0167-8809(01)00323-1.

United Nations, Department of Economics and Social Affairs (2019). World population prospects (2019): Highlights. https://population.un.org/wpp/Publications/Files/WPP2019_10KeyFindings.pdf.

Uri ND. 2000. Agriculture and the Environment – The Problem of Soil Erosion. *Journal of Sustainable Agriculture* 16:71-94 DOI:10.1300/J064v16n04_07.

Valin H, Sands RD, Van der Mensbrugghe D, Nelson GC, Ahammad H, Blanc E, Bodirsky B, Fujimori S, Hasegawa T, Havlik P, Heyhoe E, Kyle P, Mason-D'Croz D, Paltsev S, Rolinski S, Tabeau A, van Meijl H, von Lampe M, Willenbockel D. 2014. The future of food demand: understanding differences in global economic models. *Agricultural Economics* 45:51-67.

Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G. 2007. The impact of agricultural soil erosion on the global carbon cycle. *Science* 318:626e629 DOI:10.1126/science.1145724.

Vickery J, Carter N, Fuller RJ. 2002. The potential value of managed cereal field margins as foraging habitats for farmland birds in the UK. *Agriculture, Ecosystems & Environment* 89:41–52 DOI:10.1016/S0167-8809(01)00317-6.

Vickery JA, Feber RE, Fuller RJ. 2009. Arable field margins managed for biodiversity conservation: A review of food resource provision for farmland birds. *Agriculture, Ecosystems & Environment* 133:1–13 DOI:10.1016/j.agee.2009.05.012.

Walker KJ, Critchley CNR, Sherwood AJ, Large R, Nuttall P, Hulmes S, Rose R, Mountford JO. 2007. The conservation of arable plants on cereal field margins: An assessment of new agri-
environment scheme options in England, UK. Biological Conservation 136:260–270
DOI:10.1016/j.biocon.2006.11.026.
Werling BP, Gratton C. 2008. Influence of field margins and landscape context on ground beetle
diversity in Wisconsin (USA) potato fields. Agriculture, Ecosystems & Environment
128:104–108 DOI:10.1016/j.agee.2008.05.007.
West TM, Marshall EJP, Arnold GM. 1997. Can sown field boundary strips reduce the ingress of
aggressive field margin weeds? In: Proceedings of the 1997 Brighton Crop Protection
Conference-Weeds, Brighton, UK, pp. 985–990.
Wiggers JMR, van Ruijven J, Schaffers AP, Berendse F, de Snoo GR. 2015. Food
availability for meadow bird families in grass field margins. Ardea 103:17–26
DOI:10.5253/arde.v103i1.a2.
Wiggers JMRH, van Ruijven J, Berendse F, de Snoo GR. 2016. Effects of grass field margin
management on food availability for Black-tailed Godwit chicks. Journal for Nature
Conservation 29:45–50 DOI:10.1016/j.jnc.2015.11.001.
Wilson GA, Hart K. 2000. Financial imperative or conservation concern? EU farmers’
motivations for participation in voluntary agri-environmental schemes. Environment and
Planning A 32:2161–2185 DOI:10.1068/a3311.
Wilson MW, Gittings T, Kelly TC, O’Halloran J. 2010. The importance of non-crop vegetation
for bird diversity in Sitka spruce plantations in Ireland. Bird Study 57:116–120
DOI:10.1080/00063650903150676
Woodcock BA, Potts SG, Pilgrim E, Ramsay AJ, Tscheulin T, Parkinson A, Smith REN,
Gundrey AL, Brown VK, Tallowin JR. 2007. The potential of grass field margin
management for enhancing beetle diversity in intensive livestock farms. Journal of Applied
Ecology 44:60–69 DOI:10.1111/j.1365-2664.2006.01258.x.
Woodcock BA, Potts SG, Tscheulin T, Pilgrim E, Ramsay AJ, Harrison-Cripps J, Brown VK,
Tallowin JR. 2009. Responses of invertebrate trophic level, feeding guild and body size to
the management of improved grassland field margins. Journal of Applied Ecology 46:920–
929 DOI:10.1111/j.1365-2664.2009.01675.x.
Woodcock BA, Westbury DB, Tscheulin T, Harrison-Cripps J, Harris SJ, Ramsay AJ, Brown
VK, Potts SG. 2008. Effects of seed mixture and management on beetle assemblages of
arable field margins. Agriculture, Ecosystems & Environment 125:246–254
Wrzesień M, Denisow B. 2016. The effect of agricultural landscape type on field margin flora in South Eastern Poland. *Acta Botanica Croatica* 75:217–225 DOI:10.1515/botcro-2016-0027.

Wuczyński A, Dajdok Z, Wierzcholska S, Kujawa K. 2014. Applying red lists to the evaluation of agricultural habitat: Regular occurrence of threatened birds, vascular plants, and bryophytes in field margins of Poland. *Biodiversity and Conservation* 23:999–1017 DOI:10.1007/s10531-014-0649-y.

Wuczyński A, Kujawa K, Dajdok Z, Grzesiak W. 2011. Species richness and composition of bird communities in various field margins of Poland. *Agriculture, Ecosystems & Environment* 141:202–209 DOI:10.1016/j.agee.2011.02.031.

Yu Z, Liu Y. 2006. Field margins as rapidly evolving local diversity hotspots for ground beetles (Coleoptera: Carabidae) in Northern China. *The Coleopterists Bulletin* 60:135–143 DOI:10.1649/854.1.

Zheng FL. 2006. Effect of vegetation changes on soil erosion on the loess plateau. *Pedosphere* 16:420e427 DOI:10.1016/S1002-0160(06)60071-4.

Zollinger JL, Birrer S, Zbinden N, Korner-Nievergelt F. 2013. The optimal age of sown field margins for breeding farmland birds. *Ibis* 155: 779–791DOI:10.1111/ibi.12072.

Zurawska-Seta E, Barczak T. 2012. The influence of field margins on the presence and spatial distribution of the European mole *Talpa Europaea* L. within the agricultural landscape of northern Poland. *Archives of Biological Sciences* 64:971–980 DOI:10.2298/ABS1203971Z.

Zuria I, Gates JE. 2013. Community composition, species richness, and abundance of birds in field margins of central Mexico: Local and landscape-scale effects. *Agroforestry Systems* 87:377–393 DOI:10.1007/s10457-012-9558-9.
Figure 1

Field margin management practices, undisturbed (A) and disturbed (B).

Undisturbed field margin vegetation around agricultural lands are useful in provision of nectar and habitat for beneficial arthropods thereby enhancing ecosystem services. Disturbed or cleared field margins are less efficient in enhancing beneficial arthropods.

Photo credit: Patrick Ndakidemi
Figure 2

Animal groups that benefit from the field margin and non-crop vegetation around agricultural lands
Figure 3

Potential benefits and dis-benefits derived from field margin vegetation

- **Increased agricultural production**
 - Nutrient cycling
 - Pollination and pest control

- **Nature conservation**
 - Habitat for soil organisms
 - Habitat for rare and endangered species

- **Environmental protection**
 - Habitat for beneficial insects
 - Reduced offsite erosion, flooding, leaching etc.

- **Unintended consequences and mitigation**
 - Weed invasion
 - Proper management
 - Non susceptible plants

- **Insect pests and disease host**
Table 1 (on next page)

Factors accounting for ineffective pest regulation of field margin vegetation
Table 1: Factors accounting for ineffective pest regulation of field margin vegetation

Influencing factors	Explanation	Example of species studied	Reference
Lack of effective natural enemy in the area	Invasive pest species may arrive in an area without their biological control agents, unless they are introduced in the area where they can be enhanced by the vegetation diversity	Migratory locust, *Locusta migratoria*	Lomer *et al*. (2001)
Intraguild predation	Predation of the biological control agents by other natural enemies lead to more pest outbreak regardless of the vegetation diversity in the area	Insectivorous birds and wasps	Martin *et al*. (2013)
Natural enemy dispersal ability	Field margin vegetation are good in harbouring the natural enemies, but poor dispersal of the natural enemies may lead to ineffective pest control within the crop land	Carabid beetles	Fischer *et al*. (2013)
Margins with non-crop hosts	Host plants (susceptible plants) at the field margins may provide habitat to insect pests and act as a source of pests in the field	*Drosophila suzukii* and *Stictococcus vayssierei*	Arnó *et al*. (2016); Kenis *et al*. (2016) and Tindo *et al*. (2009)
Planting of susceptible crop variety	Planting of susceptible crop varieties with little or no crop diversification may lead to high pest infestation regardless of the presence of margin vegetation	Pegion pea (*Cajanus cajan*) genotypes and maize	Dasbak *et al*. (2012); Poveda *et al*. (2008)
Field margin with substitutional resource	Depends on the degree to which the alternative resource is complementary or substitutional for the prey. This may limit pest control in the field	Adult lacewing and aphids	Robinson *et al*. (2002)
Improved margin (sown species-rich margin)	Improved (undisturbed) field margin may provide favourable habitats for survival and reproduction of some pests	Slugs	Eggenschwiler *et al*. (2013)
The quality of field margin	The quality of plant resource mediates positive or negative effects	Big-eyed bug (*Geocoris*)	Eubanks and Denno (2000)
plants to pest suppression within the crop	*punctipes*	and	
--	-------------	-----	
land		pea aphids	
Table 2 (on next page)

Reduced spread of plant viral diseases using border plants as protector plants
Table 2: Reduced spread of plant viral diseases using border plants as protector plants

Border plants	Main crop	Disease controlled	Reference
Sunflower	Pepper	Potato Virus Y (PVY)	Simmons (1957)
Maize	Potatoes	Potato Virus Y (PVY)	Schröder et al. (2015)
Sorghum, soybean and wheat	Potatoes	Potato Virus Y (PVY)	DiFonzo et al. (1996)
Bushclover and sunn hemp	Pumpkin	Watermelon Mosaic Virus (WMV) and *Papaya ringspot virus* (PRSV)	Murphy et al. (2008)
Barley	Broad bean	Bean Yellow Mosaic Virus	Jayasena and Randles (1985)
Sorghum, corn and vetch	Peppers	Cucumber Mosaic Virus (CMV) and PVY	Fereres 2000
Sorghum	Pumpkin	Watermelon Mosaic Virus (WMV) and *Papaya ringspot Virus type-W*	Damicone et al. (2007)