A review of wind power generation utilizing statcom technology
Akhilesh Kumar¹, Jay Singh², P.K Sadhu³

¹Indian Institute of Tech. Dhanbad 826004 Jharkhand India
²G.LBajaj Instt. of Tech. & Mgmt Gr.Noida201306(U.P) India
³Indian Institute of Tech. Dhanbad 826004 Jharkhand India
¹iasakhil@rediffmail.com

Abstract
This paper provides overview of wind energy development from ancient period to present and focus on grid power generation as well as wind power generation. By comparing wind power generation, it has increased trice compared to last 3 dotages. Due to rapid requirement of wind power, power converter technology placed a major role in developing the wind power generation. Since the wind energy technology is very complex for developing wind energy effectively so in this paper we are focusing for an reactive power control method due to which the output power can be control very effectively by using Static Synchronous Compensator called COM. Since in wind power generation it is very essential to get variable output. And STATCOM can vary the output according the requirement by absorbing or generating the reactive power in the system. For recognizing the potential issues and planning a system to reduce them, an exhaustive know-how is required. Coordinating elevated amounts of wind control calls for additionally control and remunerating types of gear to encourage recuperation from framework unsettling influences with high level of seriousness. This paper tosses light into utilizing adequately, a Static Synchronous Compensator (STATCOM) for settling the matrix voltage following network side unsettling influences.

Keywords: energy, wind power projects, wind power operators

1. Introduction

The total populace is ascending at high rate because of the interest for vitality expanding. Age of vitality viewed as a vital piece of life as well as national progress. There will be an immediate connection amongst advancement and vitality utilization. Consequently, more vitality is needed forcing to relay upon more petroleum products. The utilization of petroleum derivatives expands the outflow of contaminations [1] for example, SO₂, NO₂, and carbon monoxide that detrimentally affect the earth. Thus, the utilization of exchange vitality sources, for example, wind, sunlight based, and hydrogen is picking up importance.

Wind has ended up being an extremely compelling wellspring of vitality because of innovative wealth, framework, and relative cost attractiveness.

Wind can offer a few focal points, for example, being boundless, contamination free, and requiring negligible or no fuel. Sustainable power source and particularly wind vitality does not emanate any CO₂ [2] in the air—therefore it shields us from a worldwide temperature alteration too. This is the motivation behind why numerous nations are utilizing wind vitality as a wellspring of energy. By creating so much energy by all nations, 33% of the total populace still lives without power. Wind vitality frameworks have made it conceivable to reap savvy control age. Wind turbines have generally been utilized for right around 200 years to produce electricity.
The utilization of twist turbines for sustainable power source has turned out to be a standout amongst the most feasible substitute wellsprings of energy age because of little remuneration [3] for example, being lucrative and eco-friendly. Numerous organizations, foundations, associations, and specialists have revealed that breeze turbines are expected to understand the vitality order. Nations that don't have characteristic supplies of fuel stock should be extremely watchful and mindful to the utilization of exchange wellsprings of vitality [4] including wind.

Wind essentialness is the most talented and potential wellspring of imperativeness, regardless of the way that its achievable quality changes from place to put [5]. Wind energy advancement look over by staggering differences over latest three centuries. Steady progression in development with twist appliance, for instance, control devices, ideal outline, and mechanical drive plan setup has made it a beneficial wellspring of imperativeness. The shortcoming is of disturbance defilement, which is generously not as much as other power plants [6].

The APC will balance out the circuit lattice by creating need and maintain the tediously of requirements. It gives total look and field to the requirements [7]. Analysts of NREL have demonstrated that breeze plants could win extra income by giving APC [8].

A simplified block diagram of wind energy management system is shown in Fig. 1. The figure shows the conversion of wind energy into electrical energy through a generator, coupled to wind turbine. The kinetic energy of the wind is converted into rotational motion which in turn is coupled with a generator.

Fig. 1 Conversion of Wind Energy into Electrical Energy

2. Wind Energy Advancement

Induction Generators (IG) that can convey variable speed operation have been chosen as WT under thought in this paper. An IG is furnished with a power electronic converter for controlling responsive power. A STATCOM was utilized for controlling the voltage at the transport and keeping up steady DC connect voltages at singular breeze turbine inverters amid aggravations. For re-enactments, the dynamic IG display Power has been utilized. Based on research of an accessible low limit STATCOM show, the STATCOM with a higher rating limit was planned.

The total power lattice broke down in this work is a blended contextual investigation of interconnected two breeze turbines, a synchronous generator, a STATCOM and a normal load, all of which shape transport framework. A consecutive converter is coupled between the rotor and IG. The real motivation behind the matrix side converter (GSC) is to keep up the DC interface voltage consistent. The receptive power keeps the power factor at solidarity. A rotor side converter (RSC) controls the stator dynamic and receptive forces, the machine speed and the stator responsive power. There is an immediate association between the stator of the IG and the network. Self-commutated converters encourage
the slip-rings of the rotor. By controlling the receptive power delivered or consumed by the RSC, it's conceivable to control voltage or responsive power at the matrix terminals.

The inland breeze vitality potential is extensive as paralleled to the aggregate politically influential nation utilization. The approaching of wind vitality relies upon angles, for example, normal breeze, dispersion, forces. In worldwide breeze vitality committee is working in the breeze vitality areas of a few nations. These members work in more than 100 nations [17] with more than 2501 associations engaged with equipment fabricate [18], venture improvement [19], control age [20], and back consultancy on a manufacture [21], work [22], and exchange premise [23]. These members are likewise associated with research and academics [24].

A large portion of the created nations are confronting difficulties to take care of the power demand because of the expansion in populace [25]. United Nations Bureau of power has given headings by advancement of vitality by wind [26]. Wind vitality innovation should financially savvy by expanding reasonability [27]. The supporting exploration is additionally directed in the zone of wind improvement innovation [28]. The power created by twist innovation without bounds should be practical and fit for contending with other vitality [29], for example, from coal and characteristic gas [30]. Updating conventional Wind Turbine [31], restore [32]. Introduce R&D is effective toward wind control improvement numerous nations have received it as a primary wellspring of vitality [33], and various development thinks about have been presented [34].

Wind vitality is known for its straightforwardness [35] and restricted space needy [36]. The vast majority and lodging edifices have free vitality generation office [37]. Seaward breeze control ventures have turned into a pattern in European countries [38]. For a spotless atmosphere, sustainable power source is an unquestionable requirement [39], and it will keep going for quite a while with less maintenance [40]. D. Inexhaustible Sustainable Energy In the advancement of sustainable power source, there are numerous obstructions including venture. Every one of these obstructions is not understood by just mechanical, social, political [41], or monetary components [42].

In the year 2015[43], the potential destinations for sunlight based and wind control age for three monetary and mechanical zones were anticipated in Iran [44]. This was anticipated based on partitioning the academic year in two periods [45]: April– September [46] as well as October– March [47]. Such investigation should be improved in the situation the whole world too [48].

China has seen a huge increment in sustainable power sources, particularly after 2007[49]. China has greatest development and wind vitality [50]. At 2013 the aggregate breeze vitality delivered in this country was 84,565 MW, and expanded to 990,764 Megawatts in 2015[51]. The estimation by the year of 2021it turns into the pioneer in wind power generation [52]. It has a set of objectives of seaward breeze advancement of 4 GW by 2016 as well as 31 GW by 2021[53]. A report has asserted that time of 2020 China have the capacity in creating power annually [54].

Germany is the biggest breeze energy creating nation in world [55]. The 2007 generation of power by wind vitality was 19,612MW, which in 2015 ended up plainly 39,155 MW; in this way Germany turned into the third biggest breeze energy delivering nation [56]. The objective set of the country is to create an aggregate 41% energy utilization which they wish to gradually accomplish by eliminating vitality generation by atomic power [57].

Spain is the nation with the fourth biggest breeze vitality generation on the planet [58]. In 2006 the limit was 11,631 MW, which relatively multiplied to 22,987 MW in 2015[59]. In spite of the fact that there are various budget issues in Spain [60].
3. Wind Energy Development in our country & Methodology

India is presently fourth among the few nations that deliver greater power from wind control. In India [61], MNRE and the IREDA work as a team with the express government's breeze vitality division [62]. Each state has breeze vitality office at different locations in India. It manages ID of wind potential destinations [63], asset appraisal [64], setting up government strategy [65], gainfulness [66], accessibility of gear [67], benefit [68], view of speculators [69], imperatives/obstructions and recommendations, et cetera. IREDA has set up Anemometry Masts all finished our country to quantify WPD.

In India, early wind vitality ventures begun in 1983 with almost of 69.5MW venture in different location in the country. Two years later, five breeze ranches were begun with a limit of 3.2 MW. The principal business of wind power age began in 1990 in Tamil Nadu which opened the door for commercial production. A number of breeze turbines were installed at Seaside regions of Tamil Nadu and its neighboring states. After 1997, India has seen soak development in wind control generation. In 2003, Asia's greatest and tallest breeze turbine came into existence in India.

IREDA under the direction of MNRE has drawn long haul arrangement for the global market to put resources in India for the advancement of wind control vitality. It has additionally, planned arrangement for neighborhood speculators in the sustainable power source advancement part. Over the most recent two decades, the development of twist vitality of Worldwide Wind Statistics 2013. Among Indian states, Tamil Nadu has the most elevated development in wind control vitality advancement and is delivering 6545.161 MW, which is 41.61% of aggregate breeze vitality improvement in the country by 2011 and 7,254 MW toward the finish of 2014. Among different neighboring states additionally accomplished critical development of 16.30%, 15.44%, and 12.51%, separately, toward the finish of 2014. The middle for wind vitality innovation) has distributed a breeze control thickness chart book of our country.

India right now has an introduced wind control age limit of 18,545 MW additionally, scarcely 9% of the aggregate of its age from sustainable sources. The staying 77% of energy relies upon vitality assets. Seaward breeze control approaches ought to be created. It expands the breeze control vitality. European nations, most outstandingly the UK and Germany, have received compelling seaward approaches. Settling our country for power demand the sustainable power source approaches must be moved forward.
TABLE I. DETAIL ESTIMATED GROSS POTENTIAL WIND POWER DENSITY

State	20-25	25-30	30-35	350 & above	@ 50 M	@ 80 M	Achievement up to 2011	Achievement upto 2014
Andhra Pradesh	15	11	5	4	10.61	15.1	21.76	2405.6
Gujrat	27	8	2	3	8.6	19.5	17.62	2331.3
Karnataka	7	8	3	8	2.9	2.2	22.40	355.05
Madhya Pardesh	2	7	-	-	920	920	28.15	4024.6
Maharashtra	16	11	4	-	5.4	5.9	15.28	4024.6
Rajasthan	5	3	-	-	5.0	5.0	58.47	2009.5
Tamil Nadu	8	6	9	24	5.0	14.1	35.97	7.25
Others	7.8	0	11.5	5.87	49.13	10.7	14.07	20.9
Total					49.13	10.7	14.07	20.9

4. Building Cum Enabling Ecosystem

This isolates the breezy locales as per zones for ideal extraction, wind control activities, and site selection, Vitality Converse. Current breeze turbines are more proficient than past breeze turbines. Present day wind turbines create every year around 180 times more power at not as much as a large portion of the cost per unit (KWh) than it used to 20 years prior.

A climatic model produced for the country and national power showcase thinks about the relative adjust in sustainable and non-renewable vitality. It helps in the best possible assignment of assets and their use and in the improvement of a nation's more grounded economy and security. India has significant development in sustainable power source over the recent couple of years. Wind vitality is an uncontaminated, manageable, sustainable supply other than being non-polluting. Wind vitality is resolved to be the most abnormal amount of significance contrasted with other maintainable vitality
frames. New innovations have created to get ideal power from the base breeze with ideal design. By and by, our country is discharging Carbon dioxide of around one ton/year-per capita. To decrease this, our country is enthused about putting resources into sustainable power source advances. In the year 2011 interest in sustainable power source innovations was $12.3 billion contrasted with the venture made in the earlier year, a climb of almost 36% in the turnover. This amount is to be diminished by expanding the sustainable power source and diminishing the utilization of petroleum product.

5. Wind Energy Policies in India

India needs to manage a financial development of not less than 9% throughout the following 25 years in the event that it is to kill neediness and meet its bigger human improvement objectives. The essential vitality supply must increment at a rate of 5.8% every year for filling the development. Meeting this prerequisite is a test that should be tended to through a coordinated vitality strategy [70]. The wide vision behind the coordinated vitality strategy is to dependably take care of the demand for vitality administrations of all divisions, including the help vitality needs of family units in all parts of the nation with protected, clean, and advantageous vitality at low cost.

5.1 Generation-Based Incentive

The motivation behind this endowment/motivator was to move the instrument of instalment from establishment based to age based strategies for compensating wind ranches. Indeed, even before the GBI was presented, tax cuts as quickened deterioration were influenced accessible to the breeze to cultivate designers[71]. Be that as it may, this component neglected to urge the breeze ventures to create more power. GBI is an approach to support advancement of more proficient breeze ranches.

5.2 State wise Tariff for Wind Power

Discussing wind vitality in India, all began well with twist point that the finish of 2011 as it delighted in the advantages of quickened deterioration till April 2012. The age based motivation, reported in 2011, and was later suspended[72]. Presently the legislature has propelled its first breeze vitality mission to give a lift to the breeze vitality division and placing it in an indistinguishable association from the prominent sun powered mission. This may give an extraordinary lift to the breeze vitality area, which is encountering since 2011 ceaselessly.

5.3 Renewable Energy Certificate Scheme

Sustainable power sources are advanced by the MNRE, the focal specialist for all arrangements, controls, and endorsements identifying with sustainable power source. It is bolstered by the Ministry of Power and CERC manages the national network and interstate exchange/exchanging of energy, while SERCs oversee provincial circulation. These assume a key part in the advancement of sustainable power source as they have the sole specialist to learn and encourage in duties and other approach matters.

5.4 National Clean Energy Fund

In numerous region regions of the nation, the contamination level has achieved disturbing extents. While it must be guaranteed that the standard of “polluter pays” remains the fundamental controlling rule for contamination administration, there ought to likewise be a positive push for advancement of clean vitality. What's more, to expand on the reason for the NCEF, the administration of our country proposed to demand a spotless vitality process on coal created in our country.
5.5 Land Allocation Policy

The legislature of our country corrected the Wind Power Policy 2012, with a point of pulling in more financial specialists and offering lift to sustainable power source. The administration needs to guarantee a simple procedure for assignment of land and different customs for setting up wind control projects.

6. Wind Energy Development in different Methods Used in India

Different methods used in India are one of the country and states creating the most elevated measures of vitality by inexhaustible sources. It is in the second place in our country. The mean yearly breeze speed in Different methods used in India ranges from 5.0 m/s to 7.0 m/s. The point by point anticipated sustainable power source limit in five years is as shown in table II.

| TABLE II. RENEWABLE ENERGY IN MW |
|------------------|------------------|
| Sources | Total |
| Wind | Small Hydro |
| Wind | Bio mas s |
| Wind | Bio gas |
| Wind | Urban Water |
| Wind | Industries water |
| 45000 10924 160 160 17 17 797.2 |
| 45040 6000 7.4 1 7.4 1 3.5 3.5 78.52 |
| 10200 5804 4.9 0 4.9 0 20.6 20.6 9.00 |
| 42504 35.20 11.1 12.2 1.80 1.80 32.10 |

6.1 Demonstration of Wind Power Project in Tamil Nadu

Wind vitality producing is done by different offices; among them, there are three principle ones, to be specific (1) Different methods used in India Energy Development Agency, (2) Different methods used in India State Electricity Board, and (3) private organizations.

6.2 Wind Monitoring and Power Project of MSEB

Another administration office MSEB has likewise gone into wind control age and executed the tasks at different places and dispatched them effectively.

6.3 Private Wind Power Project in Madhya Pradesh

To enhance government approaches [73], appropriations [74], state budgetary motivations [75], and different strategies must be developed [76]. The Different methods used in India government gives sponsorships for the improvement of private activities [77], which are fruitful in introducing wind control stations. Private undertakings are effectively introduced in nine regions of Different methods used in India with 955 breeze turbines and a limit of creating 392.825 MW [78]. Our country has one of the most astounding picked up wind control establishments on the planet among the creating nations [79]. This is accomplished on account of privatization in the breeze control segment [80]. Our country has dissected completely the clean and earth benevolent advancement of vitality [81]. More significance is
given toward improvement of vitality by practical techniques for the advancement of the nation's economy [82].

6.4 Declared Wind Sites in Uttar Pradesh

Wind vitality age relies upon ecological factors, for example, wind speed, temperature, weight, precipitation, and lightning, which will straightforwardly way influence vitality delivered. The saltiness of the climate in a specific district will influence the static and dynamic weights on the breeze turbine [83] parts and result in cyclic warm situations that deliver the disappointment of hardware and transmission line segments. In our country, distinctive states have diverse arrangements for wind vitality generation. The information of the considerable number of states are gathered and assembled in a precise organization, and the dissemination of advancement hypothesis is utilized to anticipate development and to rank the states [84]. The state-level breeze control information is utilized to build up the model called the dispersion display. This model incorporates the parameters, for example, arrive accessibility, particular taxes, haggling, outsider deals, and state-particular motivating forces. This model can be utilized to foresee the future development of twist vitality in various states [85]. Restore. In Different methods used in India there are 26 pronounced blustery destinations in various regions at around 20–25 m height, and their points of interest are classified [86].

6.5 Wind Power Production Capacity in Gujarat

There are 13 destinations distinguished in different spots of different methods used in India, where, at a specific rise, the breeze turbine can be introduced with suitable breeze energy.

7. Implementation Mechanism

The investigation of information at different locations on the planet within India and in the provinces uses different methods. These methods demonstrate that the nation is confronting the test of supporting its fast-financial development [87]. The risk of atmosphere emerges from the emanations of ozone depleting substances transmitted from persistent age of vitality from non-sustainable sources, serious mechanical development, and high ingestion ways of life. While drew in with the worldwide group to mutually and steadily manage this peril, the country needs a national way to deal with, to begin with, adapt to environmental change and, second, to additionally increase the natural supportability of our country's growth way [88].
Environmental change may antagonistically influence our country's normal assets and furthermore the work of its kin. This environmental change will influence agribusiness, water, and ranger service. In diagramming the improvement in our country [89], the above information investigation obviously shows that our country has a more extensive range of decisions in the manageable advancement of vitality since it is at a beginning period of advancement and that breeze vitality would be one of the feasible choices.

Our country and electric supply framework comprises of a unified age framework. These days an incorporated framework isn't equipped for dealing with every one of the issues identified with customary vitality. It is troublesome for the experts to visit every last site and settle on the choice. Therefore, the work will back off and get deferred. This incorporated power supply framework is to be decentralized with the specialist of the choice on the advancement of ordinary vitality.

This electric utility has been rebuilt into various sub controlling experts fit for settling on choices on the advancement of little scale ventures [90]. These days the assets are being used through little and secluded vitality frameworks known as circulated age framework in view of sustainable power source assets. In the course of the recent years, wind control has risen as encouraging sustainable hotspot for fast advancements orders, for example, optimal design, auxiliary flow, mechanics and additionally control hardware. Regardless of the sensational development and advancement in the most recent decades, the WT business continues pushing ahead keeping in mind the end goal to expand the productivity. The present breeze control offer of the world's power age is of 1.6%, however a greater offer up to 9.5%was demonstrated by the conjectures and the expectations introduced in. Expected increment in EU`s offer of power gave by twist control because of this situation, abnormal state of wind control (>30%) ought to be incorporated into vast between associated control frameworks and significant issues can show up if the current power frameworks are not appropriately upgrade.

It can be watched that in future, numerous nations around the globe are probably going to encounter comparative entrance levels, as wind control is an intriguing financial option in territories with suitable breeze speeds. Today, present day vitality industry faces a developing mindfulness with respect to the effect of regular power age on nature [91]. An issue, for example, constrained petroleum derivative stores, environmental change because of CO₂ outflows, conveys to consideration elective innovations to create power in a more reasonable way. As worldwide vitality request is continually ascending, there is an incredible duty regarding society to build up the green innovations for decreasing its effect on the earth.

Segments performance of AWT with defects in SYSTEM speed wind turbines delivered settled speed wind turbines. Right now, composed lattice codes command that breeze turbines ought to have the quality to maintain voltage aggravations without separated. This is named as the LVRT ability of the breeze turbine. The LVRT orders that a WT doesn't trip regardless of whether the voltage drops to 0.05 for every unit for around 0.534 seconds. In the event that the power dips under the esteem in view of blame, the breeze turbine can be stumbled until the point that the framework is re-established and the breeze turbine resynchronized. This paper focuses essentially on the low voltage.

Dissimilar to gas, coal and oil assets which in future will turn out to be rare, and for which the innovations ended up plainly develop decades back, the breeze vitality is copious and new enhancements on streamlined features and power electronic gadgets are still to come. In this manner by 2030 power generation from wind will unavoidably end up noticeably less expensive than some other wellsprings of vitality, as of now having a high piece of the pie [92]. There is a decent connection between breeze turbines costs and their sizes. Dissimilar to sunlight-based boards, which stay at a similar cost paying little mind to cluster estimate, wind turbines end up noticeably less expensive with expanded framework measure. The reasonable clarification is that the power conveyed by the breeze turbine relies upon the square of the rotor distance across. Fig. 3 demonstrates the development of wind turbine estimate regarding year of creation. It is seen that over the most recent 20 years the rotor distance across
has expanded by a factor of 10. Today cutting-edge twist turbines, with 126 m for rotor breadth, create 5 to 6 MW of energy.

![Annual wind power installed (MW)](image)

This context gives us a chance to fluctuate its yield, with the goal that specific particular parameters of the electric power framework can be kept up or managed. Controlling the stage and extent of the STATCOM yield voltage helps viable control on the power trade between the air conditioner framework and the STATCOM.

So as to better control increasingly wind control bolstered into the system, these MW extend wind turbines are generally associated together either inland or seaward to frame a breeze cultivate.

The essential model of a STATCOM is introduced. It is connected with the air conditioner framework transport through a coupling transformer.

![Grid Voltage Magnitude Versus Time](image)

Be that as it may, including bigger (several MW) twist ranches into the network, will increase the breeze control entrance to a time when it will significantly affect control framework operation [93].
Officially some administrative assignments required for framework dependability, are being performed by wind control plants [94]. With the regularly expanding of twist control in the vitality blend, Transmission System Operators (TSO) [95] are compelled to force new prerequisites on the breeze ranches for the well-working of the power framework arrange [96].

8. Wind Turbine Control Scheme Basic Structure of the DFIG Wind Power Generation System

The term 'doubly bolstered' alludes to the way that the voltage on the stator is connected from the lattice and the voltage on the rotor is incited by the rotor-side converter[98]. This framework permits a variable-speed operation over an expansive, however confined, run [99].

The theoretical power generated by WTG is expressed as

\[P = \frac{1}{2} C_p \rho V^3 A \]

Where \(P \) = Power (W); \(C_p \) = power coefficient; \(\rho \) = air density (1.225Kg/m\(^3\)); \(V \) = wind velocity (m/sec) and \(A \) = swept area of rotor disc (m\(^2\)).
9. Result

Execution of IG twists amid framework blame. Two circumstance are examined which are with and without STATCOM application. With a specific end goal to give the network code prerequisites and constant breeze turbine association with the matrix, the IG ought not to expel from the power framework amid voltage plunge so the STATCOM is utilized to give the required receptive energy to voltage plunge pay and speedier recuperation after the blame.

10. Conclusion

It is fundamental that spotless vitality be created in expansive sums at sensibly less cost. One method for doing this is to utilize nonconventional vitality sources, for example, wind vitality. This survey has examined in detail the present position of twist vitality in our country with an attention on the circumstance in the province of Different methods used in India. The information of present establishments, their ability, and breezy destinations alongside wind-control thickness has been given in detail. A point by point writing review has been done, and adequate applicable data has been given. The review paper has dynamic execution of twist cultivates in a power matrix can be upgraded by using a STATCOM and enhanced result as well. The STATCOM helps in giving enhanced voltage qualities amid extreme shortcomings for example, symmetrical three-stage flaws. With the utilization of STATCOM a continuous operation and control of voltage at PCC amid blame condition had been accomplished.

References

[1] U.S. Department of Energy, Monthly Energy Review, Energy Information Association. March 26, 2015.
[2] American Wind Energy Association. U.S. Wind Industry Fourth Quarter 2014 Market Report. January 2015
[3] U.S. EIA Monthly Energy Review, December 2014.
[4] Elliott, D Schwartz, M.; Haymes, S.; Heimiller, D.; Scott, G.; Flowers, L.; Brower, M.; Hale, E.; Phelps, B. (2010). 80 and 100 Meter Wind Energy Resource Potential for the United States (Poster).1 p.; NREL Report No.PO-550-48036.
[5] Marc Schwartz, Donna Heimiller, Steve Haymes, and Walt Musial. Assessment of Offshore Wind Energy Resources for the United States.NREL.NREL/TP-500-45889. June 2010.
[6] United States-Land-based and Offshore Annual Average Wind Speed at 100m.
[7] The Clean Air Benefits of Wind Energy. White Paper. Washington, DC: American Wind Energy Association, May 2014.
[8] Wind Vision: A New Era for Wind Power in the United States. DOE GO-102015-4557. March 2015.
[9] Zayas J., Derby M., Gilman P., Ananthan S., Lantz E., Cotrell J., Beck F., and R. Tusing. Enabling Wind Power Nationwide, U.S. Department of Energy. May 2015, DOE/EE-1218.
[10] U.S. Department of Energy. 2015. Monthly Energy Review. Energy Information Administration.
[11] Wind Vision: A New Era for Wind Power in the United States. DOE GO-102015-4557. March 2015.
[12] Wind Power: Systematic Review and Harmonization. National Renewable Energy Laboratory. Journal of Industrial Ecology, Volume 16, Issue Supplement S1. March 2012.
[13] American Wind Energy Association. U.S. Wind Industry Fourth Quarter 2014 Market Report. January 2015.
[14] R. Ruegg and P. Thomas. Linkages from DOE’s Wind Energy Program R&D to Commercial Renewable Power Generation.U.S. DOE. September 2009.
[15] DOE, U.S. Offshore Wind: Advanced Technology Demonstration
[16] Bureau of Ocean Energy Management (BOEM) Fact Sheet: Renewable Energy on the Outer Continental Shelf. Accessed 3/5/15.
[17] Interagency field test & evaluation of wind turbine – radar interference mitigation technologies.
[18] Barthelmie, R.; Frandsen, S. T.; Rathmann, O.; Hansen, K.; Politis, E. S.; Prospathopoulos, J.; Cabezon, D.; Rados, K.; van der Pijl, S. P.; Schepers, J. G.; Schlez, W.; Phillips, J.; Neubert, A. “Flow and Wakes in Large Wind Farms in Complex Terrain and Offshore.” In European Wind Energy Conference, 2008.

[19] Barthelmie, R. J.; Pryor, S. C.; Frandsen, S. T.; Hansen, K. S.; Schepers, J. G.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L. E.; Neckelmann, S. “Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms.” Journal of Atmospheric and Oceanic Technology (27:8), 2010; pp. 1302-1317.

[20] Churchfield, M. J.; Lee, S.; Moriarty, P. J.; Martinez, L. A.; Leonardi, S.; Vijayakumar, G.; Brasseur, J. G. “Large-Eddy Simulation of WindPlant Aerodynamics: Preprint.” 21 pp.; NREL Report No.CP-5000-53554. Journal of Atmospheric and Oceanic Technology (27:8), 2012; pp. 1302-1317.

[21] Lew, D.; Milligan, M.; Jordan, G.; Piwko, R. (2011). Value of Wind Power Forecasting.13 pp.; NREL Report No.CP-5500-50814.

[22] Barthelmie, R. J.; Frandsen, S. T.; Rathmann, O.; Hansen, K.; Politis, E. S.; Prospathopoulos, J.; Cabezon, D.; Rados, K.; van der Pijl, S. P.; Schepers, J. G.; Schlez, W.; Phillips, J.; Neubert, A. “Flow and Wakes in Large Wind Farms in Complex Terrain and Offshore.” In European Wind Energy Conference, 2008.

[23] Barthelmie, R. J.; Pryor, S. C.; Frandsen, S. T.; Hansen, K. S.; Schepers, J. G.; Rados, K.; Schlez, W.; Neubert, A.; Jensen, L. E.; Neckelmann, S. “Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms.” Journal of Atmospheric and Oceanic Technology (27:8), 2010; pp. 1302-1317.

[24] Bailey, B.; et al (2013). Internal AWS TruePower Memo and Workshop Discussion. December 2013. 22nd Wind Forecast Improvement Project.

[25] Vaisala and US Department of Energy to Improve Wind Forecasting in Complex Terrain through $2.5M Study. Accessed 4/16/15.

[26] 24 January 2015 workshop held under the Atmosphere to Electrons (A2e) effort, a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms.

[27] Chris Townsend, The Case for Breakthrough Innovation. September 2013. Accessed December 3, 2014.

[28] Jesse Jenkins, Devon Swezey, Yael Borofsky. Where Good Technologies Come From: Case Studies in American Innovation. The Breakthrough Institute. Oakland, CA. December 2010.

[29] XPRIZE Foundation.

[30] A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. DOE/GO-102011-2988. February 2011.

[31] U.S. Offshore Wind: Advanced Technology Demonstration Projects

[32] Internal DOE analysis based on Wind Barriers Impact Analysis.

[33] Zayas, J., Derby, M., Gilman, P., Ananthan, S., Lantz, E., Cotrell, J., Beck, F., and R. Tusing. Enabling Wind Power Nationwide, U.S. Department of Energy, May 2015, DOE/EE-1218.

[34] DOE WINDExchange website.

[35] J. Charles Smith, Mark O’Malley, Dale Osborn, Richard Piwko, Robert J. Thomas, “R&D Requirements for Integration of Wind Generation”, IEEE, 45th Hawaii International Conference on Systems Sciences, 2012.

[36] National Renewable Energy Laboratory, “Western Wind and Solar Integration Study”, Golden, Colorado, May, 2010.

[37] National Renewable Energy Laboratory, “Eastern Wind Integration and Transmission Study”, Golden, Colorado, February, 2011.

[38] Wind Vision: A New Era for Wind Power in the United States. DOE/GO-102015-4557. March 2015.

[39] DOE (Department of Energy). 2008. 20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply. Washington D.C.: U.S. Department of Energy.

[40] Wiser, R, Bolinger, M. 2014 Wind Technologies Market Report. U.S. Department of Energy. August 2015; DOE/GO-102015-4702.

[41] Caduff M., Hujibregts M.A.J, Althaus H.J., Koehler A. and Hellweg S. 2012 Environmental Science & Technology (ACS) 46 4725-4733 Crossref

[42] Perez J.M.P., Marquez F.P.G., Tobias A. and Papaelias M. 2013 Wind turbine reliability analysis Renewable and Sustainable Energy Reviews (Elsevier) 23 463-472 Crossref

[43] Márquez F.P.G., Tobias A., Pérez J.M.P. and Papaelias M. 2012 Condition monitoring of wind turbines: Techniques and methods Renewable Energy (Elsevier) 46 169-178

[44] Edenhofer, o al 2012 IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (Cambridge University Press)
[45] The International Renewable Energy Agency (IRENA) 2015 Renewable power generation costs in 2014.

[46] Ladenburg J. and Dubgaard A. 2007 Willingness to pay for reduced visual disamenities from offshore wind farms in Denmark Energy Policy (Elsevier) 35 4059-4071.Crossref

[47] Zimmerling J.R., Pomeroy A.C., d’ Entremont M.V. and Francis C.M. 2013 Canadian estimate of bird mortality due to collision and direct habitat loss associated with wind turbine developments Avian Conservation and Ecology 8 10 Art

[48] Calvert A.M.C., Bishop C.A., Elliot R.D., Krebs E.A., Kydd T.M., Machtans C.S. and Robertson G.J. 2013 A synthesis of human-related avian mortality in Canada Avian Conservation and Ecology 8 11 Art

[49] Andersen N. 2015 Wind turbine end of life: characterization of waste material 14-15 Master ThesisUniversity of Gavle

[50] IEA World energy outlook 2012 Renewable energy outlook OECD/IEA 2012

[51] Totaro P. and Totaro& Associates Six trends shaping future turbine designs Wind Power Engineering06 May 2011

[52] Pelosi R. The next generation in wind power technology Renewable Energy World 30 March 2016

[53] Bilgili, M.; Sahin, B. Electrical Power Plants and Electricity Generation in Turkey. Energy Sources part B, 2010, 5, 81–92.[Taylor & Francis Online]

[54] SedarGenc, M.; Gokcek, M. Evaluation of Wind Characteristics and Energy Potential in Taurus, S. Turkey. J. Energy Eng. 2009, 135, 33–43.

[55] Demirbas, A. Biomass and the Other Renewable and Sustainable Energy Options for Turkey in Twenty-First Century. Energy Sources 2001, 23, 177–187.

[56] Fung, K. T.; Scheffler, R. L; Stolpe, J. Wind Energy: A Utility Perspective. IEEE Trans. Power Appar.Sys. 1981, 100, 1176–1182.

[57] Ezio, S.; Claudio, C. Exploitation of Wind as an Energy Source to Meet the World’s Electricity Demand. Wind Eng. 1998, 74, 375–387.

[58] Mustafa, S. G. Economic Viability of Water Pumping Systems Supplied by Wind Energy Conversion and Diesel Generator Systems on North Central Anatolia, Turkey. J. Energy Eng. 2011, 33, 21–35. DOI:10.1061/(ASCE)EY.1943-7897.0000033.

[59] SedarGenc, M. Economic Analysis of Large-Scale Wind Energy Conversion Systems in Central Anatolia, Turkey. In Clean Energy Systems and Experiences; Eguchi, K., Ed.; Sciyo: Rijeka, Croatia, 2010; pp. 131–154.

[60] Cavallo, A. J.; Grubb, M. J. Renewable Energy Sources for Fuels and Electricity; London: Earthscan Publications, 1993. DOI:10.1016/S0038-092X (96)00087-4.

[61] Celik, A. N. A Simplified Model for Estimating the Monthly Performance of Autonomous Wind Energy Systems With Battery Storage. Renew. Energy 2003, 28, 561–572.

[62] Gokcek, M., SedarGenc, M. Evaluation of Electricity and Energy Cost of Wind Energy Conversion Systems (WECSs) in Central Turkey. Appl. Energy 2009, 86, 2731–2739

[63] Hansen, A. D.; Iov, F.; Blaabjerg, F.; Hansen, L. H. Review of Contemporary Wind Turbine Concepts and Their Market Penetration. J. Wind Eng. 2004, 28, 247–263.

[64] Keith, D. W. The Influence of Large-Scale Wind Power on Global Climate. Proc. National Acad. Sci. Washington DC 1987, 101, 12–56.

[65] Musgrove, P. J. Wind Energy Conversion: Recent Progress and Future Prospects. Sol. Wind Tech. 1987, 4, 37–49.

[66] Hansen, A.; Sorensen, D.; Iov, P.; Blaabjerg, F. Centralized Power Control of Wind Farm With Doubly Fed Induction Generators. J. Renew. Energy 2006, 31, 935–951.

[67] Sahin, B.; Bilgili, M. Wind Characteristics and Energy Potential in Belen-Hatav, Turkey. Int. J. Green Energy 2009, 6, 157–172.

[68] Nair Gopalkrishan, K.; Thyagarajan, K. Optimization Studies on Integrated Wind Energy Systems. Renew. Energy. Energy 1999; 16, 940–943.

[69] U.S. Department of Energy Report. 2012 Strategic Sustainability Performance Plan; United States Department of Energy: Washington, DC, 2012.

[70] Calvert, S.; Thresher, R.; Hock, S.; Laxson, A.; Smith, B. U.S. Department of Energy Wind Energy Research Program for Low Wind Speed Technology of the Future—Discussion. J. Solar Energy Eng.—Trans. ASME 2002, 124, 455–463.

[71] Bet, F.; Grassmann, H. Upgrading Conventional Wind Turbines. Renew. Energy 2003, 28, 71–78.

[72] Thor, S. E.; Taylor, P. W. Long-Term Research and Development Needs for Wind Energy for the Time Frame 2000–2020. Wind Energy 2002, 5, 73–75.

[73] Sun, X.; Huang, D.; Wu, G. The Current State of Offshore Wind Energy Technology Development. Energy 2014, 41, 298–312.
[74] Pechak, O.; Mavrotas, G.; Diakoulaki, D. Role and Contribution of the Clean Development Mechanisms to the Development of Wind Energy. Renewable Sustainable Energy Rev. 2011, 7, 75–85.

[75] Richards, G.; Noble, B.; Beicher, K. Barriers to Renewable Energy Development: A Case Study in Saskatchewan, Canada. Energy Policy 2012, 42, 691–698.

[76] Michalak, P.; Jimmy, J. Wind Energy Development in the World: Europe and Poland from 1995 to 2009: Current Status and Future Prospective. Renew. Sustain. Energy Rev. 2011, 15, 2330–2341.

[77] Mohammadi, K.; Motafei, A.; Sabzpooshani, M. Assessment of Solar and Wind Energy Potentials for Three Economic and Industrial Zones of Iran. Energy 2014, 67, 117–128.

[78] Auld, T., McHenry, M. P.; Whale, J. U.S. Military, Airspace, and Meteorological Radar System Impacts From Utility Class Wind Turbines: Implications for Renewable Energy Targets and the Wind Industry. Renew. Energy 2013, 55, 24–30. DOI:10.1016

[79] Global Wind Energy Council. Global Wind Statistics 2012; Global Wind Energy Council: Brussels, Belgium, 2013.

[80] Global Wind Energy Council. Global Wind Report Annual Market Update 2013; Global Wind Energy Council: Brussels, Belgium, 2013.

[81] Global Wind Energy Council. Global Wind Statistics 2014; Global Wind Energy Council: Brussels, Belgium, 2015. (accessed October 21, 2015).

[82] Global Wind Energy Council. Global Wind Report Annual Market Update 2014; Global Wind Energy Council: Brussels, Belgium 2014

[83] Junfeng, L., et al. China Wind Power Outlook, GWEC, Greenpeace and CREIA, Beijing, 2010

[84] Global Wind Energy Council (GWEC). VDMA/BWE: The German Wind Industry Takes a Breather; Global Wind Energy Council: Brussels, Belgium, 2014.

[85] Global Wind Energy Council Spain (GWEC) Spain Market Overview; International Renewable Energy Agency: Masdar City, Abu Dhabi, United Arab Emirates.

[86] Global Wind Energy Council. Global Wind Report Annual Market Update 2012; Global Wind Energy Council: Brussels, Belgium, 2012

[87] Indian Wind Power, volume 1, issue 2, February–March 2015.

[88] Mani, S.; Dhingra, T. Policies to Accelerate the Growth of Offshore Wind Energy Sector in our country. Renew. Sustain. Energy Rev. 2013, 24, 473–482.

[89] Marimuthu, C.; Kirubakaran, V. Carbon Payback Period for Solar and Wind Energy Project Installed in our country: A Critical Review Article. Renew. Sustain. Energy Rev. 2013, 23, 80–90.

[90] Sharma, A.; Srivastava, J.; Kar, S. K.; Kuma, A. Wind Energy Status in our country: A Short Review. Renew. Sustain. Energy Rev. 2008, 12, 1157–1164.

[91] Mabel, C. M.; Fernandez, E. Growth and future trends of wind energy in our country. Renew. Sustain. Energy Rev. 2008, 12, 1745–1757.

[92] Mani, S.; Dhingra, T. Critique of Offshore Wind Energy Policies of the UK and Germany—What Are the Lessons for our country. Energy Policy 2013, 63, 900–909.

[93] Mani, S.; Dhingra, T. Offshore Wind Energy Policy for our country—Key Factors to Be Considered. Energy Policy 2013, 56, 672–683.

[94] Ramachandra, T.V.; Shruth, B.V. Wind Energy Potential Mapping in Karnataka, our country, Using GIS. Energy Convers. Manage. 2005, 46, 1561–1578.

[95] Golait, N.; Moharil, R. M.; Kulkarni, P. S. Wind Electric Power in the World and Perspectives of Its Development in our country. Renew. Sustain. Energy Rev. 2009, 13, 233–247.

[96] Chattopadhya, D. Modeling Renewable Energy Impact on the Electricity Market in our country. Renew. Sustain. Energy Rev. 2012, 3, 9–22.

[97] Chattopadhya, D. Modeling Renewable Energy Impact on the Electricity Market in our country. Renew. Sustain. Energy Rev. 2012, 3, 9–22.

[98] Mahesh, A.; JasminShoba, K.S. Role of Renewable Energy Investment in our country: An Alternative to CO2Mitigation. Renew. Sustain. Energy Rev. 2013, 4, 414–424.

[99] Global Wind Energy Council. our country Wind Energy Outlook 2012; Global Wind Energy Council: Brussels, Belgium, 2012.

[100] Global Wind Energy Council. Global Wind Energy Outlook, 2014; Global Wind Energy Council.

[101] Renewable Energy Atlas. www.mahaurja.com/Atlas%20Sale.html (accessed September 9, 2015).