Gastric Cancer: Identification of microRNAs Inhibiting Druggable Targets and Mediating Efficacy in Preclinical In Vivo Models

ULRICH H. WEIDLE1, FABIAN BIRZELE2, ULRICH BRINKMANN1 and SIMON AUSLAENDER1

1Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany; 2Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRed), Roche Innovation Center Basel, Basel, Switzerland

Abstract. In addition to chemotherapy, targeted therapies have been approved for treatment of locally advanced and metastatic gastric cancer. The therapeutic benefit is significant but more durable responses and improvement of survival should be achieved. Therefore, the identification of new targets and new approaches for clinical treatment are of paramount importance. In this review, we searched the literature for down-regulated microRNAs which interfere with druggable targets and exhibit efficacy in preclinical in vivo efficacy models. As druggable targets, we selected transmembrane receptors, secreted factors and enzymes. We identified 38 microRNAs corresponding to the criteria as outlined. A total of 13 miRs target transmembrane receptors, nine inhibit secreted proteins and 16 attenuate enzymes. These microRNAs are targets for reconstitution therapy of gastric cancer. Further target validation experiments are mandatory for all of the identified microRNAs.

Gastric cancer (GC) is the third-leading cause of cancer worldwide and is the fourth most common cancer with an annual death toll of 700,000 worldwide (1). From a molecular point of view the following subtypes have been characterized: Epstein–Barr virus, microsatellite instability, genomically stable and chromosomal instability subtypes, all correlate with differential prognosis (2). Of all GCs, 90% are adenocarcinomas which arise from the glandular epithelium (2). The only curative treatment is surgery. Neo-adjuvant and adjuvant treatment are integrated with chemotherapy and radiation, nevertheless the 5-year survival rate for patients with locally advanced disease is less than 30% and in the metastatic setting, the median survival is in the range of 1 year (3-5). Preferential organs of metastasis are the liver (48%), peritoneum (32%), lung (15%) and bone (12%) (6).

New treatment modalities have been introduced, such as trastuzumab in the subclass of patients with human epidermal growth factor receptor 2 (HER2)-positive tumors, and ramucirumab as second-line treatment or in combination with paclitaxel (3-5). More recently, immune-checkpoint inhibitory monoclonal antibodies (mAbs) against programmed cell death protein 1 (PD1), such as nivolumab and pembrolizumab, have been approved for patients with heavily pre-treated GC (3-6). Promising clinical studies are ongoing in claudin 18.2-positive GCs and in those with fibroblast growth factor receptor 2 (FGFR2) amplification (3-6). Nevertheless, there is an urgent need to identify new targets and treatment modalities which lead to durable responses and improved survival. Many of the recently identified targets, e.g., those involved in epigenetic modification or tumor suppressors, are undruggable or difficult to interfere with (7-9). In this review, we focus on microRNAs (miRs) which are down-regulated in GC and interfere with controllable targets (transmembrane receptors, secreted factors and enzymes) with demonstrated efficacy in GC-related preclinical in vivo models. The identified targets need to be validated for treatment of GC and concomitantly the identified miRs can be evaluated as tools for reconstitution therapy.

This article is freely accessible online.

Correspondence to: Ulrich Brinkmann or Ulrich H. Weidle, Roche Innovation Center Munich, Nonnenwald 2, D-82372 Penzberg, Germany. Tel: +49 88566013901, e-mail: ulrich.brinkmann@roche.com (UB), weidle49@t-online.de (UHW)

Key Words: Apoptosis, invasion, proliferation, microRNA mimetics, reconstitution therapy, transmembrane receptors, secreted factors and enzymes, target validation, xenograft models, review.
miRs in Cancer

miRs are synthesized in the nucleus as pri-miRs containing a hairpin loop, processed to pre-miR hairpin structures, and are finally exported to the cytoplasm (10, 11). Subsequently, pre-miRs are cleaved by endoribonuclease DICER to produce a 22-nucleotide miR duplex with 5’ phosphate and a two-nucleotide overhang at each end (10, 11). One strand of the 22-nucleotide duplex is maintained (guide strand), the other strand (passenger strand) is degraded (12, 13). Binding of the guide strand to the 3’-untranslated region of the corresponding mRNA leads to degradation or translational repression of the target mRNA (12, 13). In contrast to small interfering RNAs which target a single mRNA species, a single miR species may repress up to 100 mRNAs and vice versa each miR can be inhibited by up to 100 different miRs. This indicates the potential of miRs to modulate several pathways and cellular networks (14). In oncology, miRs can affect the whole cascade of oncogenic events from tumor initiation, tumor progression and metastasis, as well as angiogenesis, to interactions with the immune system and the tumor microenvironment (15-17). Several miRs may act as oncogenes or tumor suppressors in a context-dependent way, depending on the cell-type in which they are expressed (18). In a proof-of-concept (POC) experiment, genetic deletion of the miR-15/16 cluster in mice recapitulated the features of chronic lymphocytic leukemia, supporting their role as tumor suppressors (19). An oncogenic role was identified for miR-221 which induced hepatocellular carcinoma in transgenic mice after liver-specific expression and subsequently many other examples have followed (20). We recently summarized the role of miRs in metastasis of breast, ovarian, prostate, non-small-cell lung carcinoma and pancreatic cancer (21-25). In this review, we focus on miRs.

Transmembrane Receptor Tyrosine Kinases

miR-7 and miR-133. miR-7 (Figure 1A) was shown to be down-regulated in GC cell lines and its expression was inversely correlated with metastasis (26, 27). miR-7 suppressed migration of 9811-P GC cells in Matrigel-based transwell assays and tail vein injection of GC9811-P cells stably expressing miR-7 gave rise to reduced numbers of metastatic nodules in the liver of nude mice (26). miR-133a (Figure 1) was shown to inhibit proliferation of GC cell lines, their colony formation, migration, invasion, epithelial–mesenchymal transition (EMT), inducing apoptosis and repressing tumorigenicity of GC cell lines SGC-7901 and MGC-803 in nude mice (27). Both miRs target insulin-like growth-factor receptor 1 (IGF-1R), a transmembrane tyrosine kinase receptor which is overexpressed in many tumor types and acts as an oncogene by conferring anti-apoptotic, pro-survival and transforming properties (28). Expression of IGF-1R was shown to be positively correlated with poor prognosis in patients with GC (29). Clinical studies targeting IGF-1R with mAbs or small molecules are currently underway in several types of cancer (30-32). Data from The Cancer Genome Atlas (TCGA) indicated that the steady-state RNA level of miR-133 was down-regulated in GC tissues, however, miR-7 was up-regulated in tumor tissues (Figure 2).

miR-27-3p. miR-27-3p (Figure 1A) was shown to suppress cell proliferation and induce cell-cycle arrest in BGC-823 cells by targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1) (33). AGS GC cells co-transfected with a miR-27-3p inhibitor gave rise to larger tumors after subcutaneous implantation into nude mice (33). Tumorigenicity of BGC-823 cells was suppressed after transfection with a miR-27-3p mimic and subcutaneous implantation into nude mice (33). It was shown that ROR1 induces the Src/signal transducer and activator of transcription 3 (STAT3) signaling pathway, which activates c-MYC, cyclin D1 (CCND1) and subsequently proliferation of GC cells (33). ROR1 promoted the G0/G1 to G2/S transition in GC cells and was up-regulated in GC tissues compared to paired adjacent tissues (33). ROR1 is an oncofetal antigen for tumor therapy and acts as a survival factor for cancer cells (34). Hematological cancers have been the focus as a target indication of ROR1 inhibitors (35). ROR1 is highly expressed in GC (36). More comprehensive ROR1-related target assessment would provide a clearer picture of the validity of this target for the treatment of GC. Data from TCGA indicate that miR-27a was up-regulated in GC tissues in comparison to corresponding normal tissues (Figure 2).

miR-302b. miR-302b (Figure 1A) inhibited cell-cycle progression and Matrigel-based invasion of AGS and SGC-7901 GC cells by targeting transmembrane tyrosine kinase erythropoietin-producing hepatocellular carcinoma receptor A2 (EPHA2) (37). Down-regulation of EPHA2 by miR-302b suppressed EMT (37). miR-302b negatively regulated EPHA2/WNT/β catenin signaling (37). Smaller tumors were observed for SGC-7901 cells transfected with miR-320b after subcutaneous implantation into nude mice and after tail injection, and inhibition of lung metastasis was observed (37). Activation of EMT by EPHA2 in GC has been described independently (38). EPHA2 was shown to be associated with poor survival in patients with GC (39).

Other Transmembrane Receptors

miR-7-5p. miR-7-5p (Figure 1A) was shown to be down-regulated in GC stem cells positive for cluster of differentiation 44 (40). Overexpression of miR-7-5p in GC
stem cells led to inhibition of colony formation and reduced invasion and tumor growth inhibition in a xenograft model in nude mice (40). Smoothened and transcription factor HES1 were identified as targets of miR-7-5p (40, 41). Smoothened has been identified as a G-protein-related transmembrane receptor which plays a role in neoplastic transformation, GC development and cancer–stroma interaction (42, 43).

miR-22. miR-22 (Figure 1A) was shown to be down-regulated in GC and associated with advanced clinical progression and lymph node metastasis (44). Metadherin (MTDH) was identified as a direct target of miR-22 (44). Expression of MTDH was inversely correlated with miR-22 levels in GC (44). miR-22 inhibited GC cell proliferation and invasion by targeting MTDH in SGC-7901 cells (44). SGC-7911 cells expressing miR-22 gave rise to less lung metastatic nodules after tail vein injection in nude mice (44). MTDH was shown to be overexpressed in several types of cancer and to modulate pathways such as phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, nuclear factor κB (NFκB), mitogen-activated protein kinase (MAPK) and WNT/β catenin signaling (45, 46). In GC, MTDH promoted the malignant phenotype and induced EMT (47). Data derived from TCGA did not confirm that miR-22 was down-regulated at the RNA level in GC tissues (Figure 2).

miR-29c. Expression of integrin β1 (ITGβ1) was found to be reduced in GC in comparison to corresponding normal tissues (48). Ectopic expression of miR-29c (Figure 1A) in
GC cell lines inhibited proliferation, adhesion, invasion, migration and suppressed xenograft tumor growth in nude mice (48). miR-29c expression stepwise decreased during hyperplasia–dysplasia transition in transgenic mice models of GC (48). Loss of ITGβ1 expression is an early step in GC carcinogenesis (48). ITGβ1 was shown to play an important role in angiogenesis, sustained proliferative signaling, resistance to cell death, evasion of immune destruction and metastasis of several types of cancer (49–51). Data derived from TGCA have confirmed that miR-29c was down-regulated in GC tissues at the RNA level in comparison to corresponding normal tissues (Figure 2).

miR-148a. miR-148a (Figure 1B) was shown to be down-regulated in GC tissues and cell lines in comparison to corresponding controls (52). miR-148a inhibits proliferation and migration in NCI-N87, SGC-7901 and MKN-45 GC cell lines (52). Ectopic expression of miR-148a attenuated tumorigenicity of GC cell lines after their subcutaneous implantation in nude mice (52). Receptor for cholecystokinin B (CCK-BR) was identified as a target for miR-148a (52). Its ligand, cholecystokinin B is a peptide hormone secreted by enteroendocrine cells which, together with gastrin, binds to CCK-AR and CCK-BR in the gastrointestinal-tract and the brain (53, 54). CCK-BR is overexpressed by many GCs and when activated by gastrin stimulates tumor growth by an autocrine mechanism (53, 54). Gastrin acting on CCK-BR induces cyclo-oxygenase 2 (COX2) and janus kinase 2 (JAK2)/STAT3/PI3K/AKT signaling (55). Data derived from TCGA did not reveal a difference in RNA steady-state levels of miR-148a in GC tissues in comparison to corresponding normal tissues (Figure 2).

miR-218. miR-218 (Figure 1B) was found to be decreased in GC, and was associated with advanced clinical stage, lymph node metastasis and poor patient prognosis (56). In MKN28 GC cells transfected with miR-218, no effect on proliferation or the cell cycle was noticed, however, cell migration and invasion were inhibited (56). After tail vein injection, complete inhibition of liver and lung metastases was observed in nude mice (56). Roundabout 1 (ROBO1) was identified as a direct target of miR-218 (56). ROBO1 is part of a gene family containing four members with five cytoplasmic immunoglobulin domains each, three fibronectin type III repeats, a transmembrane domain and four conserved motifs in the cytoplasmic domain. The ROBO- family interacts with three types of SLIT ligands (57). The SLIT/ROBO pathway is involved in axonal repulsion, axon guidance, neuronal migration in the nervous system and formation of the vascular system (57). ROBO1 was found to be overexpressed in cancer cells and to promote tumor angiogenesis and metastasis via interaction with SLIT ligands (58). In GC, contradictory
functions for SLIT/ROBO signaling have been reported by different groups (59, 60). The role of the SLIT/ROBO pathway as a target for development of anticancer drugs is under active investigation (61). Data derived from TCGA revealed that miR-218 is down-regulated in GC tissues in comparison to corresponding normal tissues (Figure 2).

miR-338. miR-338 (Figure 1B) was shown to be downregulated in GC tissues and cell lines (62). miR-338 directly targeted neuropilin1 (NRP1), inhibited proliferation, migration, invasion and promoted apoptosis in AGS and MKN-45 GC cells (62). miR-338 inhibited EMT and phosphorylation of extracellular regulated kinase 1/2 (ERK1/2), p38 MAPK and AKT via NRP1 (62). miR-338 ectopically expressed in AGS and MKN-45 GC cells reduced tumor growth which was restored by expression of NRP1 (62). NRP1 is a multifactor non-tyrosine kinase receptor which is involved in development of the nervous system and which acts as a receptor for VEGFA in both endothelial and tumor cells and affects tumor growth as a co-receptor for VEGF receptor and transforming growth factor β receptor 1 (TGFβRI) and TGFβRII, platelet-derived growth factor, receptor tyrosine kinase c-MET and semaphorin 3A. NRP1 promotes proliferation, migration, invasion and survival of tumors cells, as well as angiogenesis (63, 64). A mAb directed against NRP1 is presently in clinical studies in patients with solid tumors (65). Data derived from TCGA revealed that miR-338 was slightly down-regulated at the RNA level in GC tissues in comparison to corresponding normal tissues (Figure 2).

miR-381. miR-381 (Figure 1B) was found to be decreased in GC tissues and was associated with adverse clinicopathological features and poor prognosis (66). miR-381 inhibited proliferation, invasion and migration of AGS and BGC-823 GC cells, down-regulates the EMT phenotype and suppresses transforming growth factor β (TGFβ) signaling (66). Transmembrane channel 16A (TMEM 16A) has been identified as a target of miR-381 (66). In vivo, miR-381 inhibited tumor growth of AGS and BGC-823 GC cells after subcutaneous implantation into nude mice and lung metastasis after tail vein injection (66). TMEM 16A is a voltage-gated calcium-activated anion channel which acts as a chloride channel (67). TMEM 16A mediates cell invasion by induction of TGFβ secretion, EMT and MAPK signaling in GC and several types of cancer (68-70). TMEM 16A is also involved in cell proliferation, transepithelial iron transport, neuronal excitability and many other physiological functions. The structure of TMEM 16A has not yet been resolved (71). Data derived from TCGA revealed that miR-381 was slightly down-regulated at the RNA level in GC tissues in comparison to corresponding normal tissues (Figure 2).

miR-573. Knock-down of tetraspanin 1 (TSPAN1) led to inhibition of proliferation and invasion of BGC-23 and HGC-27 GC cells (72). BGC-823 and HGC-27 cells expressing miR-573 (Figure 1B) suppressed tumorigenicity after subcutaneous implantation into nude mice (72). TSPAN1 is up-regulated in GC and TSPANs plays a central role in this type of tumor (73, 74). TSPAN1 promoted EMT and metastasis of cholangiocarcinoma via PI3K/AKT signaling (75). TSPANs are associated with proliferative status and metastasis of cancer cells (76, 77). Targeting of TSPANs is subject of several drug discovery efforts (78). Data derived from TCGA indicated very low expression of miR-573 and equal RNA steady-state levels in GC tissues and corresponding normal tissues (Figure 2).

miR-874. miR-874 (Figure 1B) was shown to target aquaporin 3 (AQP3) and its ectopic expression in GC cell lines suppressed growth, migration, invasion and promotes apoptosis in vitro (79). In vivo, miR-874 suppressed tumorigenicity of GC cells after subcutaneous implantation into nude mice (79). Concomitantly, miR-874 downregulated BCL2 apoptosis regulator (BCL2), membrane-type matrix metalloproteinase 1 (MT1-MMP) and matrix metalloproteinases 2 and 9 (MMP2 and -9) (79). AQP3 consists of monomers possessing six transmembrane domains and form homotetramers mediating water transport, membrane permeability and energy homeostasis (79). AQP3 is found at the basolateral plasma membrane of human gastric mucosal tissues, mediates cancer cell proliferation, migration, angiogenesis, metastasis and promotes stem-like properties of human GC cells by activating WNT/β catenin signaling (80-82). AQP3 expression was associated with poor prognosis of GC (83). The downstream effects of AQP3 need to be resolved in more detail to identify markers for drug discovery projects. Data derived from TCGA indicate that miR-874 was slightly more highly expressed in GC tissues in comparison to corresponding normal tissues (Figure 2).

miR-993. miR-993 (Figure 1B) was found to be downregulated in GC and low expression was correlated with poor clinical outcome (84). miR-993 suppressed proliferation, invasion and migration of SGC-7901, MNK-45 and AGS GC cell lines in vitro (84). In an orthotopic xenograft model, miR-993 inhibited growth of miR-993-transfected SGC-7901 cells, attenuated phosphorylation of ERK1/2 and the rapidly accelerated fibrosarcoma (RAF)/MAPK kinase (MEK)/ERK pathway (84). Solute carrier family 34 member 2 (SLC34A2) was identified as a direct target of miR-993 (84). SLC34A2 is a transmembrane receptor and transports inorganic phosphate into epithelial cells via sodium ion cotransport (85). The oncogenic role of SLC34A2 remains to be resolved in more detail.
Secreted Factors

miR-24. miR-24 (Figure 3A) was shown to be down-regulated in GC tissues compared to non-matched tumor tissues (86). miR-24 expression in SGC-7901 cells inhibited proliferation, and led to cell-cycle arrest in G0/G1 phase and apoptosis (86). Regenerating island-derived protein (REG4) was identified as a direct target of miR-24 (86). miR-24 overexpression inhibited tumorigenicity of SGC-7901 cells after subcutaneous implantation into nude mice (86). REG4 is a small secretory protein expressed in gastrointestinal organs and up-regulated in gastrointestinal tumors (87, 88). REGs belong to the calcium-dependent lectin (C-type) superfamily and REG4 contains a single carbohydrate recognition domain (86). REG4 induces proliferation, regeneration, carcinogenesis, survival, activates epidermal growth factor receptor (EGFR)/AKT and is associated with poor prognosis in GC (87, 88). Identification of receptors and components of downstream signaling should be resolved for REG4 target validation in GC.

miR-26a/b. miR-26a/b (Figure 3A) was shown to be down-regulated in serum and tissues of patients with GC (89). miR-26a/b inhibited proliferation and migration of MGC-803 and SGC-7901 GC cells (89). Hepatocyte growth factor (HGF) was identified as a target of miR-26a/b (88). Overexpression of HGF in GC cells stimulated increase in VEGF expression (89), miR-26a/b ectopically expressed in MGC-803 GC cells inhibited tumorigenicity and vessel growth in nude mice after subcutaneous implantation, whereas HGF strongly boosted vessel and tumor growth (89). HGF–c-MET interaction plays a pivotal role in the growth, survival and invasiveness of GC and aberrant activation of this pathway is correlated with poor clinical outcome (90). Several mAbs directed against HGF and c-MET, as well as selective c-MET tyrosine kinase small-molecule inhibitors, are presently under clinical investigation in patients with GC (90-93).

miR-107. Transfection of SGC-7901 cells with miR-107 (Figure 3A) reduced cell proliferation, wound healing and migration in transwell assays, and inhibited tumor growth of these cells in nude mice after subcutaneous implantation (94). Brain-derived neurotrophic factor was identified as a target of miR-107 (94), interacts with tropomyosin receptor tyrosine kinase B and mediates cancer cell growth, proliferation, survival and EMT by stimulating PI3K, RAS/RAF/MAPK and phospholipase C signaling, and transactivation of EGFR (95). Several compounds targeting TRKB are under clinical investigation in several types of cancer (95).

miR-126. miR-126 (Figure 3A) inhibited proliferation of SGC-7901 GC cells and ectopic expression of miR-126 in SGC-7901 GC cells attenuated tumorigenesis in vivo (96). miR-126 was inversely correlated with VEGF-A protein and microvessel density in GC tissue (96). VEGF-A was identified as a direct target of miR-126 (96). In SGC-7901, MKN-28 and MKN-45 GC cells, miR-126 also was shown to inhibit VEGF-A downstream targets such as AKT, mechanistic target of rapamycin (mTOR) and ERK1/2 (96). VEGF-A affects division, proliferation and migration of endothelial cells (97, 98). Ramucirumab, which inhibits binding of VEGF-A, -C and -D to VEGF receptor 2, is approved for treatment of advanced and metastatic GC (99).
miR-148a. miR-148a (Figure 3B) reduced proliferation, invasion and migration of AGS, YCL3 and SCA GC cells (100). TGFβ2 and small mothers against decapentaplegic homolog 2 (SMAD2) were identified as direct targets of miR-148a (99). N-Methyl-N-9-nitro-N-nitrosoguanidine induced GC in rats and increased expression of TGFβ2 and SMAD2 in rat gastric tissues (100). Tumor growth of BGC-823 GC cells ectopically expressing miR-148a was reduced after subcutaneous implantation into nude mice (100). SMAD2 is a downstream effector of TGFβ2, therefore miR-148 increased inhibition of TGFβ2 signaling (101, 102). TGFβ1 and -2 play dual roles in gastrointestinal tumor development and progression and can act both as a tumor promoter and TS depending on the stage of carcinogenesis (103). Elevated levels of TGFβ1/2 were correlated with lymph node metastasis, poor prognosis and worse survival in patients with GC (104).

miR-195 and miR-590-5p. miR-195 (Figure 3B) inhibited migration and invasion by SNU-1 and KATO3 GC cell lines by targeting basic fibroblast growth factor (bFGF), also known as fibroblast growth factor 2 (105). Ectopically expressed miR-195 inhibited tumorigenesis in a xenograft mouse model, which was restored by re-expression of bFGF (105). An inverse correlation of expression has been noted between miR-195-5p and bFGF in human GC tissues (105). bFGF binds to FGF receptors 1, -2 and -4, acts as a mitogen for tumor and stromal cells, stimulates angiogenesis and activates rat sarcoma (RAS)/MAPK, PI3K/AKT, phospholipase Cγ and STATs (106, 107). bFGF has been identified as a prognostic factor for patients with GC and several antagonists (mAbs and small molecules) are identified as a prognostic factor for patients with GC and several antagonists (mAbs and small molecules) are presenty under clinical investigation in several types of cancer (106-108).

miR-590-5p inhibited proliferation of AGS and MKN28 GC cell lines (109). Xenograft formation was inhibited in miR-590-5p transfectants of these cell lines (109). FGF18 was identified as the target of miR-590-5p (109). Autocrine secretion of FGF18 promoted tumor growth of GC cell lines (109). FGF18 is a glycosylated protein which interacts with FGFR3 and FGFR4 and is abundant in GC (109). FGF18 is up-regulated in GC and is correlated with poor prognosis (109). FGF18 activates angiogenesis, NFXB, MEK-ERK signaling and SMAD2/3, key effectors of TGFβ signaling, resulting in cancer cell proliferation and migration (109-111). Several therapeutic approaches for inhibition of FGF signaling including receptor tyrosine kinase inhibitors, receptor neutralizing mAbs and FGF-ligand traps have been pre-clinically validated and are under clinical investigation (112-114).

miR-1288. miR-1288 (Figure 3B) was found to be increased in G0/G1 phase cells in GC cells and to reduce VEGF secretion (115). Conditioned media from miR-1288-overexpressing GC cells reduce the capacity and to promote endothelial cell migration and tube formation in comparison to the media of control cells (115). Macrophage inhibitory factor (MIF) was identified as a target of miR-1288 (115). In nude mice, coexpression of MIF with miR-1288 increased tumor growth and microvascular density (115). MIF interacts with cluster of differentiation 74 (CD74) as a receptor, forms a signaling complex with CD44 and SRC and activates ERK1/2, MAPK and WNT signaling, inhibits apoptosis and reduces expression of E-cadherin (116). Furthermore, MIF induces an antitumor immune response by increasing secretion of inflammatory cytokines such as tumor necrosis factor α, interferon-γ, interleukin-1β and -12 (116). MIF has at least two distinct catalytic activities as a keto-enol tautomerase and as a thiol-protein oxidoreductase, which are both druggable. The contribution of these activities to functions as described above needs to be resolved (116). MIF is a poor prognosis factor in GC and several MIF-inhibitory agents are under preclinical evaluation as anticancer agents, but for GC, more target validation experiments are required (117).

miRs Targeting Enzymes

Ser-Thr Kinases

miR-137. miR-137 (Figure 4A) was shown to be down-regulated in GC cells and clinical samples (118). miR-137 inhibited proliferation, migration and induces apoptosis of GC cell lines HGC-27 and SGC-7901 (118). miR-137 attenuated tumor growth of HGC-27 and SGC-7901 cells ectopically expressing miR-137 after subcutaneous implantation into nude mice and lung metastases after tail vein injection (118). v-AKT murine thymoma viral oncogene homolog 2 (AKT2) was identified as a direct target of miR-137 (118). miR-137 also down-regulated AKT2 effectors glycogen-synthase 3β and BCL2-antagonist-of-cell-death (BAD) (118). AKT2 is activated by PI3K or phosphoinosite-dependent kinases, as well as growth factors, inflammation and DNA damage, and is a mediator of survival, proliferation, migration and angiogenesis of tumor cells (119). Several small-molecule AKT inhibitors are undergoing clinical studies in cancer-related indications (119, 120).

miR-199b/1a-3p. Expression of miR-199b/1a-3p (Figure 4A) was shown to be reduced in GC compared to corresponding normal tissues and inhibited proliferation of MGC-803 and SGC-7901 GC cells (121). p21 activated kinase 4 (PAK4) was identified as a target of miR-199b/1a-3p (121). miR-199b/1a-3p mimics transfected into MGC-803 cells inhibited tumor growth and reduced the PAK4 level after subcutaneous transplantation into nude mice (121). miR-199b/1a-3p suppressed PAK4/MEK/ERK signaling in MGC-
PAK4 silencing inhibited proliferation of MGC-803 and SGC-7901 cells (121). Furthermore, it has been shown that PAK4 binds to translation elongation factor eEF1A1 to promote GC cell migration and invasion (122). PAK4 has been shown to mediate cancer cell proliferation, invasion, metastasis, EMT, drug resistance, WNT/β-catenin signaling, to activate cAMP response element-binding protein and to play a role in actin/cytoskeletal organization (123). In patients with GC, high PAK4 expression is associated with poorer disease-specific survival (124, 125).

miR-203. Expression of miR-203 (Figure 4A) was shown to be decreased in GC (126). Ectopic expression of miR-203 in SGC-7901 cells inhibited invasion and motility, and reduced expression of phospho-ERK1/2 and Slug (126). In nude mice, miR-203 inhibited peritoneal metastasis of SGC-7901 cells (126). ERK1/2 contributes to MEK-ERK-MAPK signaling, which plays a role in proliferation and progression of many types of tumors, and several inhibitors of this pathway have reached clinical trials (127, 128).

Non-receptor Tyrosine Kinases

miR-140-5p. miR-140-5p (Figure 4A) was shown to be downregulated in GC tissues and down-regulation was correlated with poor patient survival (129). miR-140-5p suppressed proliferation, invasion and migration of AGS and BGC-823 GC cells in vitro (129). Proto-oncogene tyrosine kinase 1 (YES1) was identified as a target of miR-140-5p (129). Reconstitution of YES1 rescued miR-140-5p-mediated inhibition of GC cells.
miR-146b and miR-338-3p. An inverse correlation between miR-146b (Figure 4B) and its target protein tyrosine phosphatase 1B (PTP-1B) has been uncovered in GC tissues (145). miR-146b inhibited growth of GC cells and induced apoptosis which can be reversed by PTP-1B (145). In xenografts of miR-146-expressing GC cells, tumor growth was inhibited and expression of PTP-1B reduced (145).

miR-338-3p (Figure 4B) has been shown to target PTP-1B, as well as attenuating migration and inducing apoptosis of GC cell lines MKN-45 and MGC-803 (146). In an orthotopic xenograft model in nude mice, tumor growth of MKN-45 cells transfected with miR-338-3p was inhibited. Metastasis of these cells was blocked in a dissemination model in nude mice after injection into the peritoneal cavity (146). In GC cells, PTP-1B overexpression elevated the levels of pAKT and pERK1/2 (146). PTP-1B is a non-membrane tyrosine phosphatase with tumor-suppressing and -promoting effects depending on the substrates involved and the cellular context (147). PTP-1B is a negative regulator of the insulin signaling pathway and is a potential target for treatment of type 2 diabetes (148). For GC, the role of PTP-1B remains to be worked out in more detail.

miR-1182, miR-1207-5p and miR-1266. miR-1182 (Figure 4B) targeted telomerase reverse transcriptase (TERT) by binding to its open reading frame, whereas miR-1207-5p and miR-1266 bind to its 3’-untranslated region (149, 150). These miRs inhibited proliferation, induced cell-cycle arrest in SGC-7901 and U2OS GC cells; these effects were rescued by their antagonors (149, 150). miR-1182 attenuated the proliferative and metastatic potential of SGC-7901 GC cells in nude mice (149). miR-1207-5p and -1266 inhibited growth of transplanted SGC-7901 cells in nude mice (149). An inverse correlation between miR-1182 and TERT expression has been noted in patients with GC (150). The telomerase complex consists of TERT and the RNA component. The loss of telomerase maintenance results in cell death and its inhibition led to improved outcomes in cancer-related xenograft models (151). The clinical development of small-molecule TERT inhibitors is hampered by efficacy issues (152, 153). Immunotherapeutic approaches such as vaccination against TERT are also being pursued (154). TERT expression in GC was found to have prognostic value because it is correlated with pathological variables and lymph node metastasis (155). Inhibition of TERT through reconstitution of miR-1182, miR-1207-5p or miR-1266 (Figure 4B) is an innovative approach for treatment of GC but more POC experiments should be performed.

Other Enzymes

miR-124 and miR330-3p. Sphingosin kinase 1 (SPHK1), the target of miR-124 was found to be up-regulated in GC tissues and to be associated with shorter survival of patients (156, 157). miR-124 (Figure 4B) was inversely correlated with SPHK1 expression in GC samples (156). miR-124 inhibited...
proliferation of GC cells in vitro and in vivo in nude mice (156). miR-124 induced downstream cell-cycle inhibitory proteins p21 and p27, suppressed AKT and enhanced the transcriptional activity of forkhead box O1 (156).

miR-330-3p (Figure 4B) was shown to target SPHK1 and sphingosin1-phosphate receptor 1 (S1PR1) (157). Ectopic expression of miR-330-3p inhibited proliferation, migration, in vitro invasion, and tumor growth of MKN1 GC cells after subcutaneous implantation into nude mice (157). In MKN1 and KATO3 cells, inhibition of SPHK1 by short-hairpin RNA suppressed c-MYC and increased expression of p21 and p27 (157). miR-330-3p inhibited the ERK/AKT pathway in GC cells (156). SPHK1 and S1PR1 were shown to be activated in GC (158). In cancer cells, ceramide and sphingosine inhibited cell proliferation and induce apoptosis, while S1P has the opposite effect (159, 160). However, the issue is complicated since S1P can bind to five G-protein-coupled receptors with different outcomes regarding cell invasion. The physiological function of S1P may therefore be dependent on the S1PR receptor profile of the corresponding tumor cell (159, 160). Therefore, for GC more target validation experiments are necessary concerning the role of SPHK1 as a therapeutic target.

miR-137. miR-137 (Figure 4B) was found to be underexpressed in patients with GC and cell lines in comparison to corresponding controls (161). miR-137 reduced cell proliferation, and impaired migration and invasion in MGC-803 and HGC-27 GC cell lines (161). miR-137 suppressed growth of MGC-803 xenografts (161). Cyclo-oxygenase 2 (COX2) has been identified as a direct target of miR-137 (161). Ectopic expression of miR-137 in GC cells suppressed expression of p-AKT (161). The COX2–prostaglandin pathway is activated in several types of cancer and is correlated with aggressiveness and metastasis (162). In GC, the COX2–prostaglandin pathway induces inflammatory cytokines such as IL11, chemokine (C-X-C) motif ligands 1, 2, 5 (CXCL1, 2, 5) which have tumor-promoting functions by different mechanisms (163). COX2 and miR-137 deserve further target validation in GC.

miR-516-3p. A highly metastatic variant of scirrhous GC, cell line 44As3, was used to identify sulfatase-1 (SULF1) as a direct target of miR-516-3p (Figure 4B), which shows reduced expression in GC tissues (164). Scirrhous GC exhibits a high frequency of metastasis to the peritoneum (165). Stable overexpression of miR-516-3p in 44As3 cells reduced proliferation, migration and invasion in vitro (164). Longer overall survival and less ascites fluid were noticed in orthotopic 44A3 tumors intratumorally injected with an expression vector for miR-516-3p (164). SULF1 is an extracellular sulfatase which removes internal glucosamine-6-sulfate from heparan sulfate proteoglycans, thereby modulating interactions with various signaling molecules (165, 166). SULF1 promotes WNT signaling by liberating WNT ligands which bind to frizzled receptors by an autocrine mechanism (167-169). Further target validation experiments for miR-516-3p and SULF1 in GC should be performed.

miR-5590-3p. miR-5590-3p (Figure 4B) was found to be down-regulated in GC tissues and to target portable ATP-dependent helicase DEAD box protein 5 (DDX5) (170). It suppressed GC cell proliferation in vitro and in vivo through the DDX5/AKT/mTOR pathway and inhibition of downstream CCND1 and cyclin-dependent kinase 2 expression (169). DDX5 is a member of the family of DEAD-box helicases (170, 171). DDX5 is involved in tumorigenesis, proliferation, metastasis and regulates several cancer-related pathways (172). DDX5 resolves G-quadruplexes and mediates c-MYC gene transcriptional activation (173). The role of miR-5590-3p and DDX5 in GC remains to be further elucidated and validated.

Conclusion and Perspectives

In this review, we did not discuss down-regulated miRs targeting MMPs with efficacy in preclinical in vivo models of GC because studies of MMP inhibitors in cancer-related indications have devalidated these targets. Identification of a down-regulated miR defines targets for therapeutic intervention which can be inhibited with small molecules, mAb-related moieties or immunological intervention. We identified 38 miRs covering tractable targets such as transmembrane receptors (n=13), secreted factors (n=9) and enzymes (n=16). All of the identified targets need more target-validation experiments to support their role as targets for treatment of GC. A critical issue is that several targets have tumor-promoting as well as tumor-suppressive functions in a context-dependent manner as described in the preceding sections. An important issue is the reconstitution of functions such as proliferation, invasion and survival in GC cell lines ectopically expressing the corresponding miRs through reconstitution of expression of the corresponding targets. Investigation of target-related pathways for identification of pharmaco-kinetic and pharmaco-dynamic markers is another crucial issue. The prevalence of expression of the identified targets should also be investigated in more detail.

Another option is therapeutic intervention by reconstitution therapy resulting in expression of the corresponding miR or synthetic double-stranded miR mimics in GC tumors. miRs can be administered intra-tumorally, systemically in appropriate formulations, or as plasmids or viral vectors (13, 174-176). Adeno-associated virus-based vectors have emerged as preferred vehicles for replacement
therapy (177, 178). POC experiments in mouse lung cancer models have shown that reconstitution of Let-7 (179), miR-29b (180) and miR-708-5p (181) inhibits tumor growth. Clinical approaches for reconstitution therapy have relied on miR-34a and miR-16. miR-34 inhibits crucial oncogenic pathways such as EMT, NOTCH, WNT and TGFβ/SMAD and its reconstitution leads to inhibition of tumor growth in several xenograft models (182). However, a clinical phase I trial in patients with different tumors involving administration of lipid nanoparticles filled with miR-34 mimetics had to be closed due to immune-related side-effects (182, 183). In another clinical study, EGFR-coated bacterial micells expressing miR-16 mimics were injected into patients with metastatic pleural mesothelioma (184). In a phase I study with 27 patients with malignant pleural mesothelioma, one objective response and stabilization of disease in 15 patients was observed (185). Taken together, clinical POC for miR reconstitution therapy has not yet been achieved in patients with cancer.

From a preclinical point of view, many critical issues have to be resolved. These issues have to be tackled case-by-case and are not discussed in detail in this review. Among the critical issues are: The development of efficient delivery systems, pharmaco-kinetic and pharmaco-dynamic issues, cytokine-release syndrome, hematological and hepatic toxicity, removal of complexed nucleic acids by the reticulo-endothelial system, entry into the target cell and endosomal escape (12, 186-192).

The next couple of years will tell us whether POC of miR-based reconstitution therapy in patients with cancer can be achieved in a clinical setting.

Conflicts of Interest

FB, SA and UB are employees of Roche; UHW has been an employee of Roche.

Authors’ Contributions

FB, SA, UB and UHW jointly prepared the article and the corresponding Figures.

References

1. Van Cutsem E, Sagae X, Topal B, Haustermans K and Prenen H: Gastric cancer. Lancet 388(10060): 2654-2664, 2016. PMID: 27156933. DOI: 10.1016/S0140-6736(16)30554-3
2. Sohn BH, Hwang JE, Jang HJ, Lee HS, Oh SC, Shim JJ, Lee KW, Kim EH, Yim SY, Lee SH, Cheong JH, Jeong W, Cho KY, Kim J, Chae J, Lee J, Kang WK, Kim S, Noh SH, Ajantha JA and Lee JS: Clinical significance of four molecular subtypes of gastric cancer identified by The Cancer Genome Atlas Project. Clin Cancer Res, 2017. PMID: 28747339. DOI: 10.1158/1078-0432.CCR-16-2211
3. Pellino A, Riello E, Nappo F, Brignola S, Murgioni S, Djaballah SA, Lonardi S, Zagonel V, Rugge M, Loupakis F and Fassan M: Targeted therapies in metastatic gastric cancer: Current knowledge and future perspectives. World J Gastroenterol 25(38): 5773-5788, 2019. PMID: 31636471. DOI: 10.3748/wjg.v25.i38.5773
4. Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, Andreozzi F, Ventriglia J, Savastano B, Mabilia A, Lieto E, Ciardiello F and De Vita F: Treatment of gastric cancer. World J Gastroenterol 20(7): 1635-1649, 2014. PMID: 24587643. DOI: 10.3748/wjg.v20.i7.1635
5. Bonelli P, Borrelli A, Tuccillo FM, Silvestro L, Palia R and Buonaguro FM: Precision medicine in gastric cancer. World J Gastrointest Oncol 11(10): 804-829, 2019. PMID: 31662821. DOI: 10.4251/wjgo.v11.i10.804
6. Rhihimäki M, Hemminki A, Sundquist K, Sundquist J and Hemminki K: Metastatic spread in patients with gastric cancer. Oncotarget 7(32): 52307-52316, 2016. PMID: 27447571. DOI: 10.18632/oncotarget.10740
7. Tahara E: Genetic alterations in human gastrointestinal cancers. The application to molecular diagnosis. Cancer 75(6 Suppl): 1410-1417, 1995. PMID: 7889467. DOI: 10.1002/1097-0142(19950315)75:6<1410::aid-cncr2820751504>3.0.co;2-o
8. Saha A, Wittmeyer J and Cairns BR: Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7(6): 437-447, 2006. PMID: 16723979. DOI: 10.1038/nrm1945
9. Yaniv M: Chromatin remodelling: from transcription to transcription. Cancer Genet 207(9): 352-357, 2014. PMID: 24825771. DOI: 10.1016/j.cancergen.2014.03.006
10. Valencia-Sanchez MA, Liu J, Hannon GJ and Parker R: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5): 515-524, 2006. PMID: 16510870. DOI: 11.101101/gad.1399806
11. Lin S and Gregory RI: MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6): 321-333, 2015. PMID: 25998712. DOI: 10.1038/nrc3932
12. Li Z and Rana TM: Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8): 622-638, 2014. PMID: 25011539. DOI: 10.1038/nrd4359
13. Rupaimoole R and Slack FJ: MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3): 203-222, 2017. PMID: 28209991. DOI: 10.1038/nrd.2016.246
14. Di Leva G, Garofalo M and Croce CM: MicroRNAs in cancer. Annu Rev Pathol 9: 287-314, 2014. PMID: 24079833. DOI: 10.1146/annurev-pathol-012513-104715
15. Hashemi A and Gorji-Bahri G: MicroRNA: Promising roles in cancer therapy. Curr Pharm Biotechnol 21(12): 1186-203, 2020. PMID: 32310047. DOI: 10.2174/138920102166200420101613
16. McManus MT: MicroRNAs and cancer. Semin Cancer Biol 13(4): 253-258, 2003. PMID: 14563119. DOI: 10.1016/s1044-579x(03)00038-5
17. Leone P, Buonaguro F, Mabilia A, Lieto E, Ciardiello F and De Vita F: Targeted therapies in metastatic gastric cancer. J Clin Med 8(12): 2030, 2019. PMID: 31757094. DOI: 10.3390/jcm8122030
18. Wen R, Umeano AC, Essegian DJ, Sabitaiylevich UY, Wang K and Farooqi AA: Role of microRNA-410 in molecular...
oncology: A double edged sword. J Cell Biochem 119(11): 8737-8742, 2018. PMID: 30086210. DOI: 10.1002/jcb.27251

9 Pekarsky Y and Croce CM: Role of mir-15/16 in CLL. Cell Death Differ 22(1): 6-11, 2015. PMID: 24971479. DOI: 10.1038/cdd.2014.87

10 Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Fornari F, Giacomelli L, D’Abundo L, Ferracin M, Bassi C, Zagatti B, Corrà F, Miotto E, Lupini L, Bolondi L, Gramantieri L, Croce CM, Sabbioni S and Negri M: Liver tumorigenesis promoted by microRNA-221 in a mouse transgenic model. Hepatology 56(3): 1025-1033, 2012. PMID: 22473819. DOI: 10.1002/hep.25747

11 Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F and Brinkmann U: The role of micro RNAs in breast cancer metastasis: preclinical validation and potential therapeutic targets. Cancer Genomics Proteomics 15(1): 17-39, 2018. PMID: 29275360. DOI: 10.21873/cgp.20062

12 Weidle UH, Birzele F, Kollmorgen G and Nopora A: Potential microRNA-related targets for therapeutic intervention with ovarian cancer metastasis. Cancer Genomics Proteomics 15(1): 1-15, 2018. PMID: 29275359. DOI: 10.21873/cgp.20061

13 Weidle UH, Epp A, Birzele F and Brinkmann U: The functional role of prostate cancer metastasis-related micro-RNAs. Cancer Genomics Proteomics 16(1): 1-19, 2019. PMID: 30587496. DOI: 10.21873/cgp.20108

14 Weidle UH, Birzele F and Nopora A: MicroRNAs as potential targets for therapeutic intervention with metastasis of non-small cell lung cancer. Cancer Genomics Proteomics 16(2): 99-119, 2019. PMID: 30850362. DOI: 10.21873/cgp.20116

15 Weidle UH, Birzele F and Nopora A: Pancreatic ductal adenocarcinoma: MicroRNAs affecting tumor growth and metastasis in preclinical in vivo models. Cancer Genomics Proteomics 16(6): 451-464, 2019. PMID: 31659100. DOI: 10.21873/cgp.20149

16 Zhao X, Dou W, He L, Liang S, Tie J, Liu C, Li T, Lu Y, Mo P, Shi Y, Wu K, Nie Y and Fan D: MicroRNA-7 functions as an anti-metastatic microRNA in breast cancer by targeting insulin-like growth factor-1 receptor. Oncogene 32(11): 1363-1372, 2013. PMID: 22614005. DOI: 10.1038/onc.2012.156

17 Gong Y, Ren J, Liu K and Tang LM: Tumor suppressor role of miR-133a in gastric cancer by repressing IGF1R. World J Proteomics 8(10): 2949-2958, 2015. PMID: 25780292. DOI: 10.3748/wjgp.v21.i10.2949

18 Hartog H, Wesseling J, Boezem HM and van der Graaf WT: The Hedgehog signaling pathway: emerging new paradigms. Genes Cancer 7(1): 189-204, 2016. PMID: 27624760. DOI: 10.1016/j.ejca.2007.05.021

19 Ge J, Chen Z, Wu S, Chen J, Li X, Li J, Yin J and Chen Z: Expression levels of insulin-like growth factor-1 and multidrug resistance-associated protein-1 indicate poor prognosis in patients with gastric cancer. Digestion 80(3): 148-158, 2009. PMID: 19713703. DOI: 10.1159/000226089

20 Osher E and Macaulay VM: Therapeutic targeting of the IGF axis. Cells 8(8): 895, 2019. PMID: 31416218. DOI: 10.3390/cells8080895

21 Werner H, Sarfstein R and Bruchim I: Investigational IGFR1 inhibitors in early stage clinical trials for cancer therapy. Expert Opin Investig Drugs 28(12): 1101-1112, 2019. PMID: 31731883. DOI: 10.1080/13543784.2019.1694660

22 Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U and Bogenrieder T: Insulin-like growth factor (IGF) pathway targeting in cancer: role of the IGF axis and opportunities for future combination studies. Target Oncol 12(5): 571-597, 2017. PMID: 28815409. DOI: 10.1007/s11523-017-0514-5

23 Tao J, Zhi X, Zhang X, Fu M, Huang H, Fan Y, Guan W and Zou C: miR-27b-3p suppresses cell proliferation through targeting receptor tyrosine kinase like orphan receptor 1 in gastric cancer. J Exp Clin Cancer Res 34: 139, 2015. PMID: 26576539. DOI: 10.1186/s13046-015-0253-3

24 Hozoj-Farsangi M, Moshfegh A, Daneshmanesh AH, Khan AS, Mikaelsson E, Osterborg A and Mellstedt H: The receptor tyrosine kinase ROR1—an oncofetal antigen for targeted cancer therapy. Semin Cancer Biol 29: 21-31, 2014. PMID: 25068995. DOI: 10.1016/j.semcancer.2014.07.005

25 Karvonen H, Niininen W, Murumäki A and Ungureanu D: Targeting ROR1 identifies new treatment strategies in hematological cancers. Biochem Soc Trans 43(5): 457-464, 2017. PMID: 28408486. DOI: 10.1042/BST20160272

26 Chang H, Jung WY, Kang Y, Lee H, Kim A and Kim BH: Expression of ROR1, pAkt, and pCREB in gastric adenocarcinoma. Ann Diagn Pathol 19(5): 330-334, 2015. PMID: 26245996. DOI: 10.1016/j.anndiagpath.2015.06.010

27 Huang J, He Y, Mcleod HL, Xie Y, Xiao D, Hu H, Chen P, Shen L, Zeng S, Yin X, Ge J, Li L, Tang L, Ma J and Chen Z: miR-302b inhibits tumorigenesis by targeting EphA2 via Wnt/β-catenin/EMT signaling cascade in gastric cancer. BMC Cancer 17(1): 886, 2017. PMID: 29273006. DOI: 10.1186/s12885-017-3875-3

28 Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, Hou F, Ge J, Zhong M, Tang Y, Xia X and Chen Z: EphA2 promotes epithelial-mesenchymal transition through the Wnt/β-catenin pathway in gastric cancer cells. Oncogene 33(21): 2737-2747, 2014. PMID: 23752181. DOI: 10.1038/onc.2013.238

29 Inokuchi M, Nakagawa M, Baogok N, Takagi Y, Tanioka T, Gokita K, Okuno K and Kojima K: Prognostic significance of high EphA1-4 expression levels in locally advanced gastric cancer. Anticancer Res 38(3): 1685-1693, 2018. PMID: 29491103. DOI: 10.21873/anticancerres.12402

30 Xin L, Liu L, Liu C, Zhou LQ, Zhou Q, Yuan WY, Li SH and Zhang HT: DNA-methylation-mediated silencing of miR-7-5p promotes gastric cancer stem cell invasion via increasing Smo and Hes1. J Cell Physiol 235(3): 2643-2654, 2020. PMID: 31517391. DOI: 10.1002/jcp.29168

31 Dhanesh SB, Subashini C and James J: Hes1: the maestro in neurogenesis. Cell Mol Life Sci 73(21): 4019-4042, 2016. PMID: 27233500. DOI: 10.1007/s00018-016-2277-z

32 Akylid AI and Peppelenbosch MP: Gastric cancer and Hedgehog signaling pathway: emerging new paradigms. Genes Cancer 9(1-2): 1-10, 2018. PMID: 29725500. DOI: 10.18632/genesandcancer.168

33 Yang Z, Ly Y, Wang L, Chen Y, Han J, Zhao S and Liu W: Inhibition of hedgehog pathway reveals the regulatory role of SMO in gastric cancer cells. Tumour Biol 39(7): 1010428317715546, 2017. PMID: 28675107. DOI: 10.1177/1010428317715546

34 Tang Y, Liu X, Su B, Zhang Z, Zeng X, Lei Y, Shan J, Wu Y, Tang H and Su Q: microRNA-22 acts as a metastasis suppressor by targeting metadherin in gastric cancer. Molecular Medicine Reports 11(1): 454-460, 2018. DOI: 10.3892/mmr.2014.2682
57 Bisiak F and McCarthy AA: Structure and function of roundabout receptors. Subcell Biochem 93: 291-319, 2019. PMID: 31939155. DOI: 10.1007/978-3-030-28151-9_9

58 Seth P, Lin Y, Hanai J, Shivalingappa V, Duyao MP and Sukhatme VP: Magic roundabout, a tumor endothelial marker: expression and signaling. Biochem Biophys Res Commun 332(2): 533-541, 2005. PMID: 15894287. DOI: 10.1016/j.bbrc.2005.03.250

59 Shi R, Yang Z, Liu W, Liu B, Xu Z and Zhang Z: Knockdown of Slit2 promotes growth and motility in gastric cancer cells via activation of AKT/ß-catenin. Oncol Rep 31(2): 812-818, 2014. PMID: 24297051. DOI: 10.3892/or.2013.2887

60 Wang SM, Tie J, Wang WL, Hu SJ, Yin JP, Yi XF, Tian ZH, Zhang XY, Li MB, Li ZS, Nie YZ, Wu KC and Fan DM: POU2F2-oriented network promotes human gastric cancer metastasis. Gut 65(9): 1427-1438, 2016. PMID: 26019213. DOI: 10.1136/gutjnl-2014-308932

61 Gara RK, Kumar S, Ganju A, Yallapu MM, Jaggi M and Chauhan SC: Slit/Robo pathway: a promising therapeutic target for cancer. Drug Discov Today 20(1): 156-164, 2015. PMID: 25245168. DOI: 10.1016/j.drudis.2014.09.008

62 Peng Y, Liu YM, Li LC, Wang LL and Wu XL: MicroRNA-338 inhibits growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. PLoS One 9(4): e94422, 2014. PMID: 24736504. DOI: 10.1371/journal.pone.0094422

63 Niland S and Eble JA: Neuropilins in the context of tumor vasculature. Int J Mol Sci 20(3): 639, 2019. PMID: 30717262. DOI: 10.3390/jmips20030063

64 Hu C and Jiang X: Role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis. Target Oncol 11(4): 501-505, 2016. PMID: 26916409. DOI: 10.1007/s10637-014-0422-0

65 Weekes CD, Beeram M, Tolcher AW, Papadopoulos KP, Gore L, Hegde P, Xin Y, Yu R, Shih LM, Xiang H, Brachmann RK and Patnaik A: A Phase I study of the human monoclonal anti-NRP1 antibody MNRP1685A in patients with advanced solid tumors. Invest New Drugs 32(4): 653-660, 2014. PMID: 24604265. DOI: 10.1007/s10637-014-0071-z

66 Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W and Wang L: MicroRNA-381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. J Exp Clin Cancer Res 36(1): 29, 2017. PMID: 28193228. DOI: 10.1186/s13046-017-0499-z

67 Kunzelmann K, Tian Y, Martins JR, Faria D, Kongsuphol P, Ousingsawat J, Thevenod F, Roussa E, Rock J and Schreiber R, Sukhatme VP: Magic roundabout, a tumor endothelial marker: unknown structure and confusing functions. J Mol Biol 427(1): 509
84 Zhang JX, Xu Y, Gao Y, Chen C, Zheng ZS, Yun M, Weng HW, Marks J: The role of SLC34A2 in intestinal phosphate absorption and phosphate homeostasis. Pflugers Arch 471(1): 165-173, 2019. PMID: 30343332. DOI: 10.1007/s00424-018-2221-1
85 Duan Y, Hu L, Liu B, Yu B, Li J, Yan M, Yu Y, Li C, Su L, Zhu Z, Xiang M, Liu B and Yang Q: Tumor suppressor miR-24 restrains gastric cancer progression by downregulating RegIV. Mol Cancer 13: 127, 2014. PMID: 24886316. DOI: 10.1186/1476-4598-13-127
86 Zhang YW, Ding LS and Lai MD: Reg gene family and human diseases. World J Gastroenterol 9(12): 2635-2641, 2003. PMID: 14669303. DOI: 10.3734/wjg.v9.i12.2635
87 Numata M and Oshima T: Significance of regenerating islet-derived type IV gene expression in gastroenterological cancers. World J Gastroenterol 18(27): 3502-3510, 2012. PMID: 22626614. DOI: 10.3734/wjg.v18.i27.3502
88 Si Y, Zhang H, Ning T, Bai M, Wang Y, Yang H, Wang X, Li, Ying G and Ba Y: miR-26a/b inhibit tumor growth and angiogenesis by targeting the HGF-VEGF axis in gastric carcinoma. Cell Physiol Biochem 42(4): 1670-1683, 2017. PMID: 28738343. DOI: 10.1159/000479412
89 Anestis A, Zoi I and Karamouzis MV: Current advances of targeting HGF/c-Met pathway in gastric cancer. Ann Transl Med 6(12): 247, 2018. PMID: 30069449. DOI: 10.21037/atm.2018.04.42
90 Gholamini S, Fuji H, Mafteou M, Mirhafez R, Shandiz FH and Avan A: Targeting c-MET/HPG signaling pathway in upper gastrointestinal cancers: rationale and progress. Curr Drug Targets 15(14): 1302-1311, 2014. PMID: 25382190. DOI: 10.2174/138945101566614107105456
91 Kawakami H and Okamoto I: MET-targeted therapy for gastric cancer: the importance of a biomarker-based strategy. Gastric Cancer 19(1): 687-695, 2016. PMID: 26690587. DOI: 10.1007/s10120-015-0585-x
92 Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Kawkaja HA, Lawler M, Johnston PG, Van Schaeybroeck S and MErCuRIC consortium: Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat Rev Clin Oncol 14(9): 562-576, 2017. PMID: 28374784. DOI: 10.1038/nrclinonc.2017.40
93 Cheng F, Yang Z, Huang F, Yin L, Yan G and Gong G: microRNA-107 inhibits gastric cancer cell proliferation and metastasis by targeting PI3K/AKT pathway. Microb Pathog 121: 110-114, 2018. PMID: 29715534. DOI: 10.1016/j.micpath.2018.04.060
94 Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Merck-Bernstam F and Hong DS: Targeting TRK family proteins in gastrointestinal cancers: rationale and progress. Curr Drug Targets 15(14): 1302-1311, 2014. PMID: 25382190. DOI: 10.2174/138945101566614107105456
95 Avan A: Targeting c-MET/HGF signaling pathway in upper gastrointestinal cancers: the importance of a biomarker-based strategy. Gastric Cancer 19(1): 687-695, 2016. PMID: 26690587. DOI: 10.1007/s10120-015-0585-x
96 Carmeliet P: VEGF as a key mediator of angiogenesis in cancer. Nat Med 9(6): 669-676, 2003. PMID: 12778165. DOI: 10.1038/nm0603-669
97 Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Merck-Bernstam F and Hong DS: Targeting TRK family proteins in gastrointestinal cancers: rationale and progress. Curr Drug Targets 15(14): 1302-1311, 2014. PMID: 25382190. DOI: 10.2174/138945101566614107105456
98 Chen H, Li L, Wang S, Lei Y, Ge Q, Lv N, Zhou X and Chen C: Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget 5(23): 11873-11885, 2014. PMID: 25428912. DOI: 10.18632/oncotarget.2662
99 Ferrara N, Gerber HP and LeCouter J: The biology of VEGF and its receptors. Nat Med 9(6): 669-676, 2003. PMID: 12778165. DOI: 10.1038/nm0603-669
100 Carmeliet P: VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3): 4-10, 2005. PMID: 16301830. DOI: 10.1159/000088478
101 Khan U and Shah MA: Ramucirumab for the treatment of gastric or gastro-esophageal junction cancer. Expert Opin Biol

CANCER GENOMICS & PROTEOMICS 18: 497-514 (2021)
100 Zhang W and Li Y: MicroRNA-195 inhibits human gastric cancer by directly targeting basic fibroblast growth factor. Clin Transl Oncol 19(11): 1320-1328, 2017. PMID: 28500362. DOI: 10.1007/s12094-016-1688-4
101 Wang J, Li L, Jiang M and Li Y: MicroRNA-195 inhibits the fibroblast growth factor (FGF) pathway: the current understanding of its role in gastric cancer. Front Mol Biosci 25: 426, 2018. PMID: 30594036. DOI: 10.1016/j.tfon.2018.11.010
102 Hu WQ, Wang LW, Yuan JP, Yan SG, Li JD, Zhao HL, Peng CW, Yang GF and Li Y: High expression of transforming growth factor alpha 1 in gastric cancer confers worse outcome: results of a cohort study on 184 patients. Hepatogastroenterology 61(129): 245-250, 2014. PMID: 24895830.
103 Wang J, Li L, Jiang M and Li Y: MicroRNA-195 inhibits human gastric cancer by directly targeting basic fibroblast growth factor. Clin Transl Oncol 19(11): 1320-1328, 2017. PMID: 28500362. DOI: 10.1007/s12094-016-1688-4
104 Akl MR, Nagpal P, Ayoub NM, Tai B, Prabhu SA, Capac CM, Gilsman M, Goy A and Suh KS: Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget 7(28): 44735-44762, 2016. PMID: 27007053. DOI: 10.18632/oncotarget.8203
105 Ornitz DM and Itoh N: The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 7(2): 44735-44762, 2016. DOI: 10.1002/wdev.176
106 Wang Z, Chu YQ, Ye ZY, Zhao ZS and Tao HQ: Expression of hepatocyte growth factor and basic fibroblast growth factor as prognostic indicators in gastric cancer. Anat Rec (Hoboken) 293(2): 1114-1121, 2009. PMID: 19533745. DOI: 10.1002/ar.20934
107 Zeng B, Shi W and Tan G: MiR-199a/b-3p inhibits gastric cancer cell proliferation via down-regulating PAK4/MEK/ERK signaling pathway. BMC Cancer 18(1): 34, 2018. PMID: 29304764. DOI: 10.1186/s12885-017-3949-2
108 Li X, Li J and Li F: P21 activated kinase 4 binds translation elongation factor eEF1A1 to promote gastric cancer cell proliferation. Cell Death Dis 9(12): 1, 2018. PMID: 29157254. DOI: 10.1038/cddis.2018.202
109 Kobayashi K, Inokuchi M, Takagi Y, Sato Y, Yanaka Y, Higuchi K, Aburatani T, Tomii C, Uetake H, Kojima K and Kawano T: Prognostic significance of FGF4 expression in gastric cancer. J Clin Pathol 69(7): 580-585, 2016. PMID: 26614788. DOI: 10.1136/jclinpath-2015-203330
110 Li D, Zhang Y, Li Z, Wang X, Qu X and Liu Y: Activated Pak4 expression correlates with poor prognosis in human gastric cancer patients. Tumour Biol 36(2): 9431-9436, 2015. PMID: 26124003. DOI: 10.1007/s13277-015-3368-4
111 Gao P, Wang S, Jing F, Zhan J and Wang Y: microRNA-203 suppresses invasion of gastric cancer cells by targeting ERK1/2/Slug/ E-cadherin signaling. Cancer Biomark 19(1): 11-20, 2017. PMID: 28269747. DOI: 10.3233/CBM-160617
112 Blackwell C, Sherk C, Fricco M, Ganji G, Barnette M, Hoang B, Tustinied J, Skedzielewski T, Alsaied H, Jucker BM, Minthorn E, Kumar R and DeYoung MP: Inhibition of FGF/FGFR autocrine signaling in mesothelioma with the FGF ligand trap, FP-1039/GSK3052230. Oncotarget 7(26): 39861-39871, 2016. PMID: 27223434. DOI: 10.18632/oncotarget.9515
113 Saicaehan C, Ariyawutyakorn W and Varella-Garcia M: Fibroblast growth factor receptors: from the oncogenic pathway to targeted therapy. Curr Mol Med 16(1): 40-62, 2016. PMID: 26695695. DOI: 10.2174/15665240166615122214423
114 Jia L, Chen J, Xie C, Shao L, Xu Z and Zhang L: microRNA-1228' impairs the pro-angiogenic activity of gastric cancer cells by targeting macrophage migration inhibitory factor. Life Sci 180: 9-16, 2017. PMID: 28465246. DOI: 10.1016/j.lifes.2017.04.022
115 Bloom J, Sun S and Al-Abed Y: MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 20(12): 1463-1475, 2016. PMID: 27762152. DOI: 10.1080/14728222.2016.1251582
116 Shariati M and Meric-Bernstam F: Targeting AKT for cancer therapy. Expert Opin Investig Drugs 28(11): 977-988, 2019. PMID: 31594388. DOI: 10.1080/13543784.2019.1676762
117 Song M, Bode AM, Dong Z and Lee MH: AKT as a therapeutic target for cancer. Cancer Res 79(6): 1019-1031, 2019. PMID: 30808672. DOI: 10.1158/0008-5472.CAN-18-2738
118 Saichaemchan S, Ariyawutyakorn W and Varella-Garcia M: Fibroblast growth factor receptors: from the oncogenic pathway to targeted therapy. Curr Mol Med 16(1): 40-62, 2016. PMID: 26695695. DOI: 10.2174/15665240166615122214423
119 Roskoski R Jr: Targeting ERK1/2 protein-serine/threonine kinase inhibitors and drug targets. Curr Med Chem 25(28): 34, 2018. PMID: 29304764. DOI: 10.1007/s12885-017-3949-2
120 Guda MR, Rashid MA, Asuthkar S, Jalasutram A, Caniglia JL, Bloom J, Sun S and Al-Abed Y: MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin Ther Targets 20(12): 1463-1475, 2016. PMID: 27762152. DOI: 10.1080/14728222.2016.1251582
121 Zeng B, Shi W and Tan G: MiR-199a/b-3p inhibits gastric cancer cell proliferation via down-regulating PAK4/MEK/ERK signaling pathway. BMC Cancer 18(1): 34, 2018. PMID: 29304764. DOI: 10.1186/s12885-017-3949-2
122 Li X, Li J and Li F: P21 activated kinase 4 binds translation elongation factor eEF1A1 to promote gastric cancer cell proliferation. Cell Death Dis 9(12): 1, 2018. PMID: 29157254. DOI: 10.1038/cddis.2018.202
123 Kobayashi K, Inokuchi M, Takagi Y, Sato Y, Yanaka Y, Higuchi K, Aburatani T, Tomii C, Uetake H, Kojima K and Kawano T: Prognostic significance of FGF4 expression in gastric cancer. J Clin Pathol 69(7): 580-585, 2016. PMID: 26614788. DOI: 10.1136/jclinpath-2015-203330
124 Li D, Zhang Y, Li Z, Wang X, Qu X and Liu Y: Activated Pak4 expression correlates with poor prognosis in human gastric cancer patients. Tumour Biol 36(2): 9431-9436, 2015. PMID: 26124003. DOI: 10.1007/s13277-015-3368-4
125 Gao P, Wang S, Jing F, Zhan J and Wang Y: microRNA-203 suppresses invasion of gastric cancer cells by targeting ERK1/2/Slug/ E-cadherin signaling. Cancer Biomark 19(1): 11-20, 2017. PMID: 28269747. DOI: 10.3233/CBM-160617
126 Roskoski R Jr: Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res 42: 151-168, 2019. PMID: 30794926. DOI: 10.1016/j.phrs.2019.01.039
Wang Z, Qu H, Gong W and Liu A: Up-regulation and tumor-promoting role of SPHK1 were attenuated by miR-330-3p in gastric cancer. IUBMB Life 70(11): 1164-1176, 2018. PMID: 30281914. DOI: 10.1002/iub.1934

Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Kloczok SG, Neganova ME, Mangoni AA, Aliev G and Bishayee A: Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 207: 107464, 2020. PMID: 31863815. DOI: 10.1016/j.pharmthera.2019.107464

Pyne NJ and Pyne S: Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10(7): 489-503, 2010. PMID: 20555359. DOI: 10.1038/nrc2875

Maceyke M, Payne SG, Milstien S and Spiegel S: Sphingosine 1-phosphate and cancer. Nat Rev Cancer 4(11): 775-789, 2004. PMID: 15546507. DOI: 10.1038/nrc1525

Cheng Y, Li Y, Liu D, Zhang R and Zhang J: miR-137 effects on gastric carcinogenesis are mediated by targeting Cox-2-activated PI3K/AKT signaling pathway. FEBS Lett 588(17): 3274-3281, 2014. PMID: 25064845. DOI: 10.1016/j.febslet.2014.07.012

Misra S and Sharma K: COX-2 signaling and cancer: new players in old arena. Curr Drug Targets 15(3): 297-309, 2014. PMID: 24467618. DOI: 10.2174/1389450145666140127102919

Takemura S, Yashiro M, Sunami T, Tendo M and Hirakawa K: Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S and Echizen K, Hirose O, Maeda Y and Oshima M: Inflammation signaling pathway, positively regulate growth and metastasis and pathway regulation of human malignancies. Biochim Biophys Acta Rev Cancer 1871(1): 85-98, 2019. PMID: 30419318. DOI: 10.1016/j.bbr.2018.11.003

Wang Z, Qu H, Gong W and Liu A: Up-regulation and tumor-suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38(1): 53, 2019. PMID: 30717802. DOI: 10.1186/s13046-019-1059-5

Weidle et al: Gastric Cancer – miRs and Druggable Targets (Review)
Cooper WA, Kritharides L, Ridley L, Pattison ST, MacDiarmid J, Brahmbhatt H and Reid G: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18(10): 1386-1396, 2017. PMID: 28870611. DOI: 10.1016/S1470-2045(17)30621-6

185 Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, Boyer M and van Zandwijk N: Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8(8): 1079-1085, 2016. PMID: 27185582. DOI: 10.2217/epi-2016-0035

186 MacLeod AR and Crooke ST: RNA therapeutics in oncology: advances, challenges, and future directions. J Clin Pharmacol 57(Suppl 10): S43-S59, 2017. PMID: 28921648. DOI: 10.1002/jcph.957

187 Garofalo M, Leva GD and Croce CM: MicroRNAs as anti-cancer therapy. Curr Pharm Des 20(33): 5328-5335, 2014. PMID: 24479801. DOI: 10.2174/1381612820666140128211346

188 Malek A, Merkel O, Fink L, Czubayko F, Kissel T and Aigner A: In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI-PEG/siRNA complexes. Toxicol Appl Pharmacol 236(1): 97-108, 2009. PMID: 19371615. DOI: 10.1016/j.taap.2009.01.014

189 Wang AZ, Langer R and Farokhzad OC: Nanoparticle delivery of cancer drugs. Annu Rev Med 63: 185-198, 2012. PMID: 21888516. DOI: 10.1146/annurev-med-040210-162544

190 Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, Hagstrom JE and Wolff JA: Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA 104(32): 12982-12987, 2007. PMID: 17652171. DOI: 10.1073/pnas.0703778104

191 Copolovici DM, Langel K, Eriste E and Langel Ü: Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3): 1972-1994, 2014. PMID: 24559246. DOI: 10.1021/nn4057269

192 Thorén PE, Persson D, Isakson P, Goksör M, Onfelt A and Nordén B: Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochem Biophys Res Commun 307(1): 100-107, 2003. PMID: 12849987. DOI: 10.1016/s0006-291x(03)01135-5

Received March 25, 2021
Revised April 30, 2021
Accepted May 5, 2021

CANCER GENOMICS & PROTEOMICS 18: 497-514 (2021)