Metabolic Syndrome in patients with type 2 diabetes and atherosclerotic cardiovascular disease: A post hoc analyses of the EMPA-REG OUTCOME trial

João Pedro Ferreira (jp7ferreira@hotmail.com)
Université de Lorraine https://orcid.org/0000-0002-2304-6138

Subodh Verma
Saint Michael's Hospital, Division of Cardiac Surgery, University of Toronto

David Fitchett
Division of Cardiology, St Michael's Hospital, University of Toronto

Anne Pemille Ofstad
Boehringer Ingelheim Norway Ks

Sabine Lauer
Boehringer Ingelheim Pharma GmbH & Co KG

Isabella Zwiener
Boehringer Ingelheim GmbH & Co KG

Jyothis George
Boehringer Ingelheim International GmbH

Christoph Wanner
Würzburg University Clinic

Bernard Zinman
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto

Silvio Inzucchi
Yale University School of Medicine

Original investigation

Keywords: type 2 diabetes mellitus, metabolic syndrome, empagliflozin, treatment effect, cardiovascular disease

DOI: https://doi.org/10.21203/rs.3.rs-64853/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Patients with type 2 diabetes (T2D) and metabolic syndrome (MetS) are at greater cardiovascular risk than those with T2D without MetS. In the current report we aim to study the characteristics, cardio-renal outcomes and the effect of empagliflozin in patients with MetS enrolled in the EMPA-REG OUTCOME trial.

Methods

A total of 7020 patients with T2D and atherosclerotic cardiovascular disease were treated with empagliflozin (10 mg or 25 mg) or placebo for a median of 3.1 years. The World Health Organization MetS criteria could be determined for 6985 (99.5%) patients. We assessed the association between baseline MetS and multiple cardio-renal endpoints using Cox regression models, and we studied the change in the individual component over time of the MetS using mixed effect models.

Results

MetS at baseline was present in 5740 (82%) patients; these were more often white and had more often albuminuria and heart failure, had lower eGFR and HDL-cholesterol, and higher blood pressure, body mass index, waist circumference, and triglycerides. In the placebo group, patients with MetS had a higher risk of all outcomes including cardiovascular death: HR = 1.73 (95%CI = 1.01–2.98), heart failure hospitalization: HR = 2.64 (95%CI = 1.22, 5.72), and new or worsening nephropathy: HR = 3.11 (95%CI = 2.17–4.46). The beneficial effect of empagliflozin was consistent on all cardio-renal outcomes regardless of presence of MetS.

Conclusions

A large proportion of the EMPA-REG OUTCOME population fulfills the criteria for MetS. Those with MetS had increased risk of adverse cardio-renal outcomes. Compared with placebo, empagliflozin improved cardio-renal outcomes in patients with and without MetS.

Clinical Trial Registration:

URL: https://www.clinicaltrials.gov. Unique identifier: NCT 01131676.

Introduction
Metabolic syndrome (MetS) comprises interrelated risk factors that, together, contribute to a cumulative risk of cardiovascular (CV) complications(1). The World Health Organization (WHO) defines MetS by the presence of insulin resistance (e.g. type 2 diabetes [T2D] or indications of abnormal glucose metabolism), together with at least two of the following factors: use of anti-hypertensive medication and/or high blood pressure (BP) ≥ 140 mmHg systolic or ≥ 90 mmHg diastolic, plasma triglycerides > 150 mg/dL, HDL cholesterol < 35 mg/dL in men or < 39 mg/dL in women, body mass index (BMI) > 30 kg/m² and/or waist-hip ratio > 0.9 in men, > 0.85 in women, and urinary albumin excretion rate ≥ 20 µg/min or albumin-creatinine ratio (UACR) ≥ 3.4 mg/mmol(2). A recent report demonstrated that even among patients with diabetes, those with uncontrolled components of the MetS, are at higher risk for adverse CV outcomes(3). Therefore, improving any or several of the factors defining MetS may improve CV outcomes in patients with diabetes.

In the EMPA-REG OUTCOME trial (4), the SGLT2 inhibitor empagliozin reduced the risk of CV death, hospitalization for heart failure (HF) and incident or worsening nephropathy compared with placebo in patients with T2D and atherosclerotic CV disease (ASCVD). Empagliozin also reduced HbA1c, BP, body weight and UACR (5–8). To extend these findings, we sought to explore whether the MetS confers higher risk of events in patients with diabetes and ASCVD, if empagliozin can positively impact the individual components of the MetS, and whether the cardiorenal benefits of empagliozin extended equally to those with vs. without MetS.

Materials And Methods

Study design

The design of EMPA-REG OUTCOME has been described previously (4). Briefly, the study population comprised patients with type 2 diabetes, established ASCVD, HbA1c 7.0–9.0% for drug-naïve patients and 7.0–10.0% for those on stable glucose-lowering therapy, and an estimated glomerular filtration rate (eGFR) (determined by the MDRD [Modification of Diet in Renal Disease] equation) ≥ 30 mL/min/1.73 m². Patients were randomized 1:1:1 to receive empagliozin 10 mg, empagliozin 25 mg, or placebo in addition to standard of care. The first 12 weeks, blood glucose lowering treatment was to be kept unchanged. Thereafter and throughout the trial, investigators were encouraged to adjust diabetes medication and treat cardiovascular risk factors to achieve optimal standard of care according to local guidelines. The trial was to continue until ≥ 691 patients had experienced an adjudicated event included in the primary outcome (3-point major adverse CV events [3P-MACE]: CV death, non-fatal myocardial infarction (MI), or non-fatal stroke).

Outcomes

In the current analyses we explore CV death, hospitalization for HF, CV death or hospitalization for HF (excluding fatal stroke), all-cause mortality, 3P-MACE, and incident or worsening nephropathy defined as progression to macroalbuminuria, doubling of the serum creatinine level accompanied by an eGFR of ≤
45 ml per minute per 1.73 m², initiation of continuous renal-replacement therapy, or death from renal disease (4, 8). All cardiovascular outcome events and deaths were prospectively adjudicated by two clinical events committees (for cardiac and neurological events).

Definition of metabolic syndrome

We used the WHO definition of MetS (2) where the first criteria (insulin resistance or diabetes) was present in all patients. Urinary albumin excretion rate and waist/hip-ratio were not assessed in the trial. Hence, at least two criteria of the following needed to be fulfilled to qualify a patient as having MetS: 1) use of antihypertensive medication and/or high BP (≥ 140 mmHg systolic or ≥ 90 mmHg diastolic), 2) plasma triglycerides > 150 mg/dL (≥ 1.7 mmol/L), 3) HDL cholesterol < 35 mg/dL (< 0.9 mmol/L) in men or < 39 mg/dL (< 1.0 mmol/L) in women, 4) BMI > 30 kg/m², and 5) UACR ≥ 3.4 mg/mmol. In the current analyses, we applied the cut-offs as given in mmol/L.

Statistical analyses

All analyses were undertaken in patients that were treated with at least one dose of study drug and had baseline information for assessment of MetS available. Descriptive data are given as mean ± standard deviation, or proportions (%). We split the population into two subgroups (with vs. without MetS at baseline) based on whether the criteria for MetS were fulfilled or not. Incidence rates per 1000 patient years of follow-up were calculated in the placebo group. The association of subgroup to outcomes and the treatment effect of pooled empagliflozin vs. placebo was explored by Cox proportional hazards models with terms for age, sex, geographic region, baseline HbA1c, baseline eGFR, treatment, subgroup and subgroup*treatment interaction. Treatment effects on the separate components of MetS (HbA1c, systolic BP, weight, waist circumference [WC], HDL-cholesterol, triglycerides, and UACR) were evaluated using mixed effect model repeat measurement (MMRM) models. The models included subject as a random effect, and baseline HbA1c plus the baseline value of the MetS component being explored as linear covariates along with their interaction with visit time (weeks). Additionally, baseline eGFR, baseline BMI and geographic region were also used as adjustment covariates in the models. The MMRM model also included a fixed categorical effect for ‘time of randomization’ to account for each patient’s theoretical ability to ‘reach’ certain weeks in this study arising from the study design. In addition, the model included the terms visit, treatment and MetS at baseline, as well as all two-and three-way interactions thereof. For UACR, values were assumed to be not normally distributed, such that values were logtransformed prior to analyses. All analyses were performed with SAS version 9.4.

Results

Baseline characteristics

Of the 7020 patients randomized and treated in the trial, 6985 (99.5%) had baseline information available to evaluate the MetS criteria. Of these, 5740 (82%) had MetS (1902/3838 in placebo/empagliflozin groups, respectively). Baseline characteristics comparing patients with and without MetS are shown in
Table 1. As expected those with MetS were more often white and had more often albuminuria, had lower eGFR and HDL-cholesterol, and higher blood pressure, BMI, WC, and triglycerides. Furthermore, they used more BP lowering drugs, and had a HF diagnosis more often than those without MetS.

Cardiorenal, mortality and HF outcomes
Table 1
Baseline characteristics in the treatment groups separately in patients with versus those without metabolic syndrome at baseline

	With metabolic syndrome	Without metabolic syndrome
	Placebo,	Empa
n = 1902		n = 3838
Female	546 (28.7)	1119 (29.2)
	104 (24.4)	228 (27.8)
Ethnicity		
White	1423 (74.8)	2891 (75.3)
	251 (58.9)	491 (60.0)
Black/African American	101 (5.3)	187 (4.9)
	19 (4.5)	48 (5.9)
Asian	359 (18.9)	723 (18.8)
	151 (35.4)	276 (33.7)
Native Hawaiian	3 (0.2)	5 (0.1)
	1 (0.2)	1 (0.1)
American Indian, Alaskan	16 (0.8)	31 (0.8)
	4 (0.9)	3 (0.4)
Missing	0	1 (<0.1)
	0	0
Age, years	63.1 ± 8.7	63.1 ± 8.5
	63.7 ± 9.1	63.2 ± 8.9
T2D duration, years		
≤1	46 (2.4)	106 (2.8)
	6 (1.4)	21 (2.6)
>1 to 5	309 (16.2)	579 (15.1)
	61 (14.3)	126 (15.4)
>5 to 10	474 (24.9)	986 (25.7)
	95 (22.3)	186 (22.7)
>10	1073 (56.4)	2167 (56.5)
	264 (62.0)	486 (59.3)
Medication		
Metformin*	1415 (74.4)	2840 (74.0)
	315 (73.9)	599 (73.1)
Insulin*	967 (50.8)	1912 (49.8)
	166 (39.0)	324 (39.6)
Beta blocker	1268 (66.7)	2579 (67.2)
	227 (53.3)	459 (56.0)

Data are n (%) or mean ± SD

*background medication at baseline

ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; ALAT, aspartate amino transferase; ASAT, aspartate amino transferase; BMI, body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; PAD, peripheral artery disease; SBP, systolic blood pressure; T2D, type 2 diabetes; UACR, urine albumin-creatinine ratio
	With metabolic syndrome	Without metabolic syndrome
Diuretics	871 (45.8)	116 (27.2)
ACEi/ARBs	1571 (82.6)	293 (68.8)
Statins	1431 (75.2)	338 (79.3)
eGFR, ml/min/1.73 m²	72.83 ± 21.25	78.25 ± 19.66
Prior stroke	448 (23.6)	104 (24.4)
Prior CAD	1444 (75.9)	315 (73.9)
Prior MI	895 (47.1)	186 (43.7)
Prior PAD	387 (20.3)	90 (21.1)
Heart failure	219 (11.5)	25 (5.9)
Retinopathy	429 (22.6)	93 (21.8)
BMI, kg/m²	31.65 ± 5.17	26.28 ± 2.71
Weight, kg	89.46 ± 19.13	74.15 ± 12.53
Waist circumference, cm	107.2 ± 13.8	95.2 ± 9.6
SBP, mmHg	136.8 ± 17.4	131.4 ± 16.0
DBP, mmHg	77.3 ± 10.3	74.8 ± 9.3
HbA1c, %	8.10 ± 0.85	7.97 ± 0.80
UACR		
Normal (< 30 mg/g)	971 (51.1)	407 (95.5)
Micro (30–300 mg/g)	663 (34.9)	12 (2.8)
Macro (> 300 mg/g)	254 (13.4)	6 (1.4)
Missing	14 (0.7)	1 (0.2)
Uric acid, mg/dl	6.11 ± 1.68	5.51 ± 1.50

Data are n (%) or mean ± SD

*background medication at baseline

ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; ALAT, aspartate amino transferase; ASAT, aspartate amino transferase; BMI, body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; PAD, peripheral artery disease; SBP, systolic blood pressure; T2D, type 2 diabetes; UACR, urine albumin-creatinine ratio
	With metabolic syndrome	Without metabolic syndrome
ASAT, U/L	23.07 ± 10.65	22.05 ± 8.75
ALAT, U/L	26.74 ± 15.85	24.13 ± 12.25
HDL-C, mg/dl	42.6 ± 10.8	50.6 ± 11.3
LDL-C, mg/dl	85.6 ± 36.0	81.6 ± 32.3
Triglycerides, mg/dl	185.8 ± 128.4	103.6 ± 35.6

Data are n (%) or mean ± SD

*background medication at baseline

ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; ALAT, aspartate amino transferase; ASAT, aspartate amino transferase; BMI, body mass index; CAD, coronary artery disease; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction; PAD, peripheral artery disease; SBP, systolic blood pressure; T2D, type 2 diabetes; UACR, urine albumin-creatinine ratio

Patients with MetS had increased risk of all outcomes with incidence rates in the placebo group of approximately 1.5 to 3-fold higher than the rates observed in patients without MetS in the placebo group (Fig. 1). The increase in risk was highest for incident or worsening nephropathy with a hazard ratio (HR) of 3.11 (2.17, 4.46), p < 0.0001 (Fig. 2). Empagliflozin reduced the risk of all of these outcomes and was consistent in those patients with MetS and without MetS (all interaction p-values > 0.05) (Fig. 3).

Effects on metabolic outcomes

Empagliflozin reduced HbA1c, SBP, weight, and WC similarly in those with and without metabolic syndrome (Fig. 4). There was a small increase in HDL-C with empagliflozin in both those with or without MetS, whereas triglycerides were not clinically relevantly changed by empagliflozin. UACR was reduced in patients with MetS, whereas in those without MetS, UACR hardly changed over time in any treatment group.

Discussion

The current analyses show that the majority of the patients included in the EMPA-REG OUTCOME trial fulfilled the WHO criteria for MetS. This is not surprising since MetS is a risk factor for T2D as well as CV disease, both of which constituted inclusion criteria for the trial. Those participants with MetS in fact were at higher risk of adverse CV outcomes. Nonetheless, empagliflozin reduced CV and HF events as well as new or worsening nephropathy irrespective of the MetS status. Importantly, empagliflozin reduced many components of the MetS over time, including WC, SBP, weight, and UACR (only triglycerides were not reduced). Each of these may be viewed as positive cardiometabolic effects of empagliflozin - some of which may contribute to the SGLT2 inhibitor’s cardiorenal benefits.
Metabolic syndrome is a clustering of interrelated metabolic factors that are associated with increased risk of CV disease and mortality (9). Insulin resistance/T2D are incorporated in the definition of MetS and, accordingly, patients with T2D have a high prevalence of the MetS. Moreover, patients with T2D have an additive poorer prognosis when multiple components of the MetS are concomitantly present (10–12). Our study supports that the MetS has prognostic implications in patients with T2D and established ASCVD. In EMPA-REG OUTCOME, patients with both T2D and MetS had a 1.5- to 3-fold higher incidence of cardiorenal outcomes including CV mortality. In particular the relative risk of new or worsening nephropathy was high among those with the MetS. This finding is supported by a previous study showing that the MetS was associated with an increased risk of albuminuria progression and worsening of renal function (13). Moreover, a report from the Dallas Heart Study demonstrated that both the MetS and T2D were independently associated with higher atherosclerotic burden, evaluated by the content of coronary artery calcium and abdominal aortic atherosclerotic plaques (14). We have also found that the presence of the MetS was associated with an increased risk of HF hospitalization. The association of the MetS with HF has been reported in other studies and insulin resistance/T2D likely play a major role in HF progression, supporting our findings (15–17).

The consistent treatment effect of empagliozin on mortality and cardiorenal and HF outcomes regardless of the MetS status expands previous findings demonstrating consistent CV benefit across various subgroups. For example, it has been shown that empagliozin reduced the risk of cardiorenal and mortality outcomes across subgroups based on the TIMI secondary prevention risk score as well as in those with or without HF and presumed resistant hypertension (5, 18, 19).

The improvement of the individual components of the MetS over time in patients treated with empagliozin is clinically relevant, as uncontrolled but potentially modifiable MetS risk factors (e.g., blood pressure, HbA1c, cholesterol, and albuminuria) are incrementally associated with adverse outcomes, and patients with T2D with an optimal risk-factor control might have a similar risk of adverse CV outcomes as people of the same sex and age without T2D (3).

Limitations

Our study has some limitations. These are post-hoc data and thus only hypothesis generating. Furthermore, since the population studied in the EMPA-REG OUTCOME trial had ASCVD we do not know if our results might extend to a general, lower risk T2D population.

Conclusions

A large proportion of the EMPA-REG OUTCOME population fulfills the criteria for MetS. Those with MetS have increased risk of adverse cardio-renal outcomes. Compared with placebo, empagliozin improved the individual components of the MetS, as well as mortality and cardio-renal outcomes in patients with and without MetS.
Abbreviations

ASCVD – atherosclerotic cardiovascular disease
BMI – body mass index
BP – blood pressure
CV – cardiovascular
eGFR – estimated glomerular filtration rate
HF – heart failure
HR – hazard ratio
MDRD - Modification of Diet in Renal Disease
MetS – metabolic syndrome
MI – myocardial infarction
MMRM – mixed model repeated measurement
T2D – type 2 diabetes mellitus
UACR – urinary albumin-creatinine ratio
WC – waist circumference
WHO – world health organization
3P-MACE- 3-point major adverse cardiovascular events

Declarations

Ethics approval and consent to participate

The trial was conducted in accordance with the principles of the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practice guidelines and was approved by local authorities. An independent ethics committee or institutional review board approved the clinical protocol at every participating center.

Consent for publication

All patients provided written informed consent before study entry.
Availability of data and materials

The sponsor of the EMPA-REG OUTCOME Trial (Boehringer Ingelheim) is committed to responsible sharing of clinical study reports, related clinical documents, and patient level clinical study data. Researchers are invited to submit inquiries via the following website: https://trials.boehringer-ingelheim.com

Competing interests

J.P.F. has received travelling fees from Behringer Ingelheim.

S.V. is President of the Canadian Medical and Surgical Knowledge Translation Research Group, a federally incorporated not-for-profit physician organization; holds a Tier 1 Canada Research Chair in Cardiovascular Surgery; S.V. has also received grants and personal fees for speaker honoraria and advisory board participation from AstraZeneca, Bayer, Boehringer Ingelheim, Janssen, and Merck. He has received grants and personal fees for advisory board participation from Amgen, grants from Bristol-Myers Squibb, personal fees for speaker honoraria and advisory board participation from Eli Lilly, Novo Nordisk and Sanofi, and personal fees for speaker honoraria from EOCl Pharmacomm Ltd, Novartis, Sun Pharmaceuticals and Toronto Knowledge Translation Working Group.

D.H.F. has received honoraria from Amgen, AstraZeneca, BI, Eli Lilly and Company, Merck & Co., and Sanofi.

C.W. has received honoraria for consultancy and lecturing from AstraZeneca, Bayer, BI, GlaxoSmithKline, Eli Lilly and Company, Merck Sharp & Dome, Mundipharma, Sanofi Genzyme, and Takeda.

B.Z. has received research grants awarded to his institution from BI, AstraZeneca and Novo Nordisk, and honoraria from Janssen, Sanofi, Eli Lilly and Company, BI, Novo Nordisk and Merck Sharp & Dome.

S.E.I. has consulted and/or served on Clinical Trial Steering/Executive/Publications Committees for Boehringer Ingelheim (BI), AstraZeneca, Novo Nordisk, Sanofi/Lexicon Pharmaceuticals, Merck and Abbott. A.P.O, I.Z. and J.T.G. are employees of Boehringer Ingelheim.

S.L. has received honoraria for consultancy from BI and F. Hoffmann La Roche.

Funding

The EMPA-REG OUTCOME trial was funded by the Boehringer Ingelheim & Eli Lilly and Company Diabetes Alliance.

Authors' contribution

S.E.I., S.V. and J.P.F. conceived the idea. A.P.O. and J.P.F. drafted the manuscript. S.L. and I.Z. provided the statistical expertise. All authors critically reviewed the manuscript, provided feedback and approved the
Acknowledgements

The authors thank the investigators, coordinators, and patients who participated in this trial. Editorial assistance, limited to the preparation of tables and figures and supported financially by Boehringer Ingelheim, was provided by Paul Lidbury of Elevate Scientific Solutions.

References

1. Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017;183:57–70.
2. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.
3. Rawshani A, Franzen S, Sattar N, Eliasson B, Svensson AM, Zethelius B, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018;379(7):633–44.
4. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.
5. Ferreira JP, Fitchett D, Ofstad AP, Kraus BJ, Wanner C, Zwiener I, et al. Empagliflozin for Patients with Presumed Resistant Hypertension: a Post Hoc Analysis of the EMPA-REG OUTCOME Trial. Am J Hypertens. 2020.
6. Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93.
7. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J, et al. Empagliflozin and Clinical Outcomes in Patients With Type 2 Diabetes Mellitus, Established Cardiovascular Disease, and Chronic Kidney Disease. Circulation. 2018;137(2):119–29.
8. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016;375(4):323–34.
9. Galassi A, Reynolds K, He J. Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. Am J Med. 2006;119(10):812–9.
10. Ipadeola A, Adeleye JO. THE metabolic syndrome and accurate cardiovascular risk prediction in persons with type 2 diabetes mellitus. Diabetes Metab Syndr. 2016;10(1):7–12.
11. Song SH, Hardisty CA. Diagnosing metabolic syndrome in type 2 diabetes: does it matter? Qjm. 2008;101(6):487–91.
12. Scott R, O’Brien R, Fulcher G, Pardy C, D’Emden M, Tse D, et al. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome. J Intern Med. 2013;274(5):463–75.
metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care. 2009;32(3):493–8.

13. Chuang SM, Shih HM, Chien MN, Liu SC, Wang CH, Lee CC. Risk factors in metabolic syndrome predict the progression of diabetic nephropathy in patients with type 2 diabetes. Diabetes Res Clin Pract. 2019;153:6–13.

14. Chen K, Lindsey JB, Khera A, De Lemos JA, Ayers CR, Goyal A, et al. Independent associations between metabolic syndrome, diabetes mellitus and atherosclerosis: observations from the Dallas Heart Study. Diab Vasc Dis Res. 2008;5(2):96–101.

15. Li C, Ford ES, McGuire LC, Mokdad AH. Association of metabolic syndrome and insulin resistance with congestive heart failure: findings from the Third National Health and Nutrition Examination Survey. J Epidemiol Community Health. 2007;61(1):67–73.

16. Wang J, Sarnola K, Ruotsalainen S, Moilanen L, Lepisto P, Laakso M, et al. The metabolic syndrome predicts incident congestive heart failure: a 20-year follow-up study of elderly Finns. Atherosclerosis. 2010;210(1):237–42.

17. Ingelsson E, Amlov J, Lind L, Sundstrom J. Metabolic syndrome and risk for heart failure in middle-aged men. Heart. 2006;92(10):1409–13.

18. Januzzi J, Ferreira JP, Bohm M, Kaul S, Wanner C, Brueckmann M, et al. Empagliflozin reduces the risk of a broad spectrum of heart failure outcomes regardless of heart failure status at baseline. Eur J Heart Fail. 2019;21(3):386–8.

19. Fitchett D, Inzucchi SE, Cannon CP, McGuire DK, Scirica BM, Johansen OE, et al. Empagliflozin Reduced Mortality and Hospitalization for Heart Failure Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial. Circulation. 2019;139(11):1384–95.

Figures
*Excluding fatal stroke
Abbreviations: CV, cardiovascular; HHF, hospitalization for HF; PY, patient years

Figure 1

Incidence rates of outcomes in the placebo group in those with versus those without metabolic syndrome at baseline

Outcome	MetS: Yes	MetS: No
CV death	122/1902	15/426
HHF	88/1902	74/426
CV death* or HHF	180/1902	184/426
All-cause mortality	166/1902	25/426
Incident or worsening nephropathy	354/1641	334/15

p-value for interaction
0.0464
0.0140
0.0025
0.0668
<0.0001

*Excluding fatal stroke
Cox models include terms for baseline age, sex, HbA1c, eGFR, geographical region, treatment, MetS at baseline and treatment*MetS at baseline interaction.
CV, cardiovascular; HHF, hospitalization for heart failure; MetS, metabolic syndrome

Figure 2

Association of metabolic syndrome at baseline and outcomes in the placebo group (patients without metabolic syndrome is reference group).
Figure 3

Consistent treatment effect of empagliflozin vs. placebo in those with and without metabolic syndrome at baseline

	Pooled empagliflozin	Placebo	HR (95% CI)	p-value for interaction				
	n/N	%	Incidence rate/1000 py	n/N	%	Incidence rate/1000 py		
CV death								
All patients	1724867	3.7	12.4	1372333	0.9	20.2	0.62 (0.49, 0.77)	0.4055
MetS No	22819	3.7	18.9	19666	3.5	11.8	0.77 (0.68, 1.88)	0.0327
HHF								
All patients	1294687	2.7	9.4	952333	4.1	14.5	0.65 (0.59, 0.72)	0.552
MetS Yes	1165358	3.1	16.8	881902	4.6	16.6	0.64 (0.59, 0.69)	0.672
MetS No	7819	0.9	2.9	7483	1.6	5.6	0.51 (0.41, 1.66)	0.6228
CV death or **HHF**								
All patients	2094667	5.7	19.7	1902333	8.5	30.3	0.66 (0.55, 0.79)	0.6528
MetS Yes	2305303	0.1	21.5	1001902	9.5	34.0	0.64 (0.53, 0.77)	0.6947
MetS No	26819	3.2	10.7	19626	4.2	14.4	0.75 (0.61, 1.36)	0.9159
All-cause mortality								
All patients	3954687	5.7	15.4	1542333	8.3	28.6	0.68 (0.57, 0.81)	0.9729
MetS Yes	2315303	6.0	26.5	1021902	8.9	30.7	0.67 (0.56, 0.81)	0.9159
MetS No	34819	4.2	13.8	25426	5.9	19.6	0.71 (0.43, 1.20)	0.9729

*Excluding fatal stroke
Cox models include terms for baseline age, sex, HbA1c, eGFR, geographical region, treatment, MetS at baseline and treatment*MetS at baseline interaction.

p-values for treatment-by-subgroup interaction were obtained from tests of homogeneity of treatment group differences among subgroups with no adjustment for multiple testing.
CV, cardiovascular; HHF, hospitalization for heart failure; MetS, metabolic syndrome; py, patient-years.

Figure 3

Consistent treatment effect of empagliflozin vs. placebo in those with and without metabolic syndrome at baseline.
Figure 4

Change from baseline in metabolic outcomes in those with (left panel) vs without (right panel) metabolic syndrome at baseline: a) HbA1c, b) SBP, c) weight, d) triglycerides, e) HDL, f) log(UACR), g) waist circumference. Results from MMRM models as described in methods section.