Measurement of Radon Concentration and Estimation of Its Emission of Coal-Fired Power Plants

Ye Zeng¹, Xin Tian¹ and Tao Lu¹

¹ Engineer, Beijing Aviation Meteorological Institute, Beijing, China
E-mail: zengye2019@126.com

Abstract. In the experiment, RAD7 multi-functional electronic radon meter was used to measure the radon (²²²Rn) concentration at key points in the production process of three typical coal-fired power plants in Hunan, Hubei and Jiangxi provinces along the Yangtze river in China. The results show that after the combustion of raw coal, the radon was released, which caused radon concentration after the boiler's gas system to be significantly higher than the air intake. Combined with the measurement and survey data, two different estimation methods of radon emission were established. First, based on radon concentration measured on site and the air volume at each inlet and outlet, the normalized radon emission of three coal fired power plants are calculated to be 10² GBq/GWa order of magnitude. The second one is using activity concentration of ²²⁶Ra in combination with actual coal use to calculate the emission, in this way, that typical value of normalize radon emission 151.3 GBq/GWa is obtained. This study provides data support for the construction of nuclear power plants in inland China.

1. Introduction
China's nuclear power has entered a rapid development period, the site selection of nuclear power rapidly increased, from the coast gradually extended to the inland. Studies have shown that under the safe operation, the increase of environmental radiation impact from inland nuclear power plants is much lower than the background radiation level, and it will not affect the environment and public health. However, the current data on the environmental impact of radiation caused by non-nuclear enterprises are very imperfect, which requires further investigation and monitoring.

Coal has long been used as raw material, fuel and domestic energy in China's power, metallurgy, chemical and other industries. From 1990 to 2016, in China's coal consumption constitution, the coal consumption for coal-fired power generation increased year by year, reaching 182.66 million tons in 2016 [1]. Data from China energy development report show that by 2020, 1.96~2.587 billion tons of raw coal will be needed for power generation, accounting for about 80% of China's total coal production [2].

While coal brings great contribution to social economy, it also brings environmental impact that can't be ignored. Coal contains trace natural radionuclides such as 238U, 232Th, 226Ra and their progeny, etc. With the combustion of coal, the emission of radionuclides and the gaseous progeny ²²²Rn of ²²⁶Ra to the environment will increase. The radioactive material will be released into the environment in gaseous or solid form, and spread over a large area around coal-fired power plants, producing a certain dose to the public. The project has measured ²²²Rn concentration of coal-fired power plants in three provinces along the Yangtze river, estimated ²²²Rn emission of the coal-fired power plant, providing data support for the construction of inland nuclear power plants in China. It is should be noted that radon, as mentioned below, specifically refers to ²²²Rn.
2. Methodology

2.1. Introductions of three coal-fired power plants

There are many coal-fired power plants along the Yangtze river. According to the data of the first national survey of pollution sources organized by the ministry of ecology and environment of China, there are 37 coal-fired power plants in Hunan, Hubei and Jiangxi. A typical coal-fired power plant was selected as the measurement object from each of the three provinces. The operating unit parameters of each coal-fired power plant during the measurement period are shown in table 1:

Coal-fired power Plants	Unit	Power (MW)	Annual load efficiency	Annual operating time (h)	Power generation (KWh)	Annual coal consumption (t)	Coal consumption per unit time (t/h)
Hunan	1#	300	67%	3500	6.5×10⁸	45.52×10⁴	129.77
	4#	630	67%	3500	26.5×10⁴	95.38×10⁴	272.52
Hubei	1#	330	77.4%	7861	20.05×10⁸	150×10⁴	45.38×10⁴
	3#	680	78.7%	7314	39.19×10⁸	160×10⁴	272.52
Jiangxi	5#	350	81.5%	4591	13.10×10⁸	64.27×10⁴	140
	7#	660	84.92%	6883	38.58×10⁸	172.07×10⁴	250

Figure 1. shows the common smoke and dust treatment process in China's coal-fired power plants. Raw coal is burned in a boiler to generate heat for power generation. The flue gas produced by combustion in boilers including various gases and particulates, enters into the flue gas treatment system, passes through the economizer first, then goes into the denitrification system, dust removal device (electrostatic precipitation technology, bag dust removal technology, etc.) and the desulfurization tower, finally is discharged into the atmosphere through the chimney.

Pulverized coal combustion requires a great deal of air, which is supplied by an induced draft fan (also called a primary fan) and a supply fan (also called a secondary fan). A boiler is usually equipped with one or two secondary fans each. The primary air is to send coal powder into the burner combustion. Secondary air plays a combustion supporting role, which can supplement the air needed for pulverized
coal combustion, ensure the full combustion of pulverized coal, and promote the full mixing of pulverized coal and air.

2.2. Measurement methods and experimental equipment

The RAD7 multi-function electronic radon measuring instrument produced by American company DURRIDG was used in this experiment. Four instruments used in the experiment were calibrated in the Standard Radon Laboratory of Nanhua University (IAEA Regional coordinating laboratory for radon metrology, Asia). The calibration coefficients of four RAD7 instruments are shown in Table 2.

Serial number	RAD7-1410	RAD7-3399	RAD7-3583	RAD7-3584
Calibration coefficients	1	0.97	1.04	0.98

Based on preliminary field research, the experimental measurement scheme is designed according to the requirements of the instrument. The specific method is shown in Figure 2 (taking the measurement of radon concentration in chimneys as an example). The measurement method of radon concentration in air of coal-fired power plant is based on the requirements of GB/T 14582-1993 (Standard Measurement Method for Radon in Ambient Air) and GBZT 182-2006 (Standard Code for Measuring Radon and Its Decay Products in Indoor).

![Figure 2. Method of radon concentration measurement in chimneys](image)

3. Results and discussion

3.1. Radon concentration

As can be seen from Figure 1, in the production process of coal-fired power plants, there are four air inlets: the primary and secondary air inlets, oxidized air inlet under desulfurization tower and positive pressure air inlet at dust removal place. The air outlets are chimneys, dust removal bags on the top of ash depots and slag discharge outlets. According to the distribution of air inlets and outlets, radon concentration was measured at the key points of the three selected coal-fired power plants. Among them, although the denitrification device is set up in Hunan coal-fired power plant, it is not used all year round, so the denitrification inlet is not considered in the measurement. The radon concentration of plant
environment, pulverized coal separator and other devices do not contribute to the calculation of emission. Therefore, specific measurements are only made at these points in Hunan coal-fired power plant for comparison. Compared with Hunan coal-fired power plant, Hubei coal-fired power plant has added denitrification equipment in the flue gas treatment process, therefore, the radon concentration at the outlet was measured. The measurement results are shown in Table 3, 4.

Table 3. The radon concentration of Hunan coal-fired power plant, Bq/m³

Area	location	Value
External environment comparison point	The upwind of the power plant chimney, 5km away and 1.2m high	19.8
	Pulverized coal separator-out of operation	10.5
1#300MW	Pulverized coal separator-in operation	34.0
	Chimney	17.8
	The primary and secondary air inlets, 3m high	15.4
	The south side of boiler, 13m high	11.8
	Coal mill	14.5
	Flue gas system	24.2
	Pulverized coal separator	
	Flue after boiler	20.7
4#630MW	Desulfurization oxidized air inlet	18.8
	Chimney	17.3
Ash blowing system	Fine dust removal bags on the top of ash depot	35.2
	Raw dust removal bags on the top of ash depot	18.2
Slag discharge system	Boiler slag discharge port	8.6
	Near the coal pile	15.3

Table 4. The radon concentration of Hubei and Jiangxi coal-fired power plant, Bq/m³

Plants	Area	Value					
	The primary and secondary air inlets	Denitrification inlet	Desulfurization oxidized air inlet	Chimney	Ash removal air compressor	Top of ash depots	
Hubei	1#330MW	12.6	19.9	12.3	17.6	7.8	11.4
	3#680MW	8.00	28.7	12.3	22.1		
Jiangxi	5#350MW	6.6	9.5	-	13.6	7.6	7.0
	7#660MW	8.7	13.5	-	11.0		

According to the measurement results, in the flue gas system, the gas after the boiler has a large amount of radon which is released by coal burning, therefore, the radon concentration at the denitrification inlet is relatively higher. While the flue gas at the chimney is diluted by the air at desulfurization and oxidation inlet, the radon concentration decreases to a certain extent, so it is lower than the denitrination inlet. The radon concentration in intakes and outlets of Jiangxi coal-fired power plant is relatively lower than that in Hunan and Hubei, it is mainly affected by the regional background radon concentration and the difference of activity concentration of 226Ra in different types of coals.

3.2. Estimation based on actual measurement results

In this study, two methods are used to estimate radon emission of coal-fired power plants: The first method is based on radon concentration measured on site and the air volume at each inlet and outlet; The second one is using activity concentration of 226Ra in combination with actual coal use to calculate the emission. In this section, the first method will be described.
Actual radon emission from coal-fired power plants: actual radon concentration in the chimney multiplied by the total air intake volume without considering the background value of the air at the inlet of the flue gas system.

\[Q_i = C_i \times (V_i + V_2) \times t \]
(1)

In the equation, \(Q_i \) is actual radon emission from chimney, Bq; \(C_i \) is radon concentration of chimney, Bq/m\(^3\); \(V_1 \) is total boiler air intake volume, m\(^3\)/h; \(V_2 \) is desulfurization oxidized air intake volume, m\(^3\)/h; \(t \) is annual operating time, h. Therefore, the actual normalized radon emission from the chimney is the ratio of the actual radon emission from chimney to power generation, that is

\[Q_0 = \frac{Q_i}{W} \]
(2)

In the equation, \(Q_0 \) is actual normalized radon emission from chimney, GBq/GWa; \(W \) is radon concentration of chimney, GW.

Radon emission from the flue gas system: the difference between the measured radon concentration in the chimney and the representative value of the total intake radon concentration, multiplied by the total annual air intake volume of the flue gas system, that is:

\[Q_2 = (C_1 - C_2) \times (V_1 + V_2) \times t \]
(3)

In the equation: \(Q_2 \) is radon emission from flue gas system after boiler, Bq; \(C_1 \) is radon concentration of chimney, Bq/m\(^3\); \(C_2 \) is the total radon concentration, it is composed of radon concentration at the primary and secondary fan inlets, radon concentration at the oxidative desulfurization air inlet in air volume weighted, Bq/m\(^3\); \(V_1 \) is the total air intake volume of boiler, m\(^3\)/h; \(V_2 \) is the desulfurized oxidized air intake volume, m\(^3\)/h; \(t \) is annual operating time, h.

Radon emission from positive pressure dust removal system of one unit: the difference between radon concentration at the outlet and inlet of the positive pressure dust removal system, multiply by the air volume of the positive pressure dust removal of a unit, that is:

\[Q_3 = (C_3 - C_4) \times V_3 \times t \]
(4)

In the equation: \(Q_3 \) is radon emission from positive pressure dust removal system, Bq; \(C_3 \) is radon concentration at the outlet, Bq/m\(^3\); \(C_4 \) is radon concentration at the inlet, Bq/m\(^3\); \(V_3 \) is air volume of the positive pressure dust removal, m\(^3\)/h; \(t \) is annual operating time, h.

Additional normalized radon emission from coal combustion: the ratio of the sum of radon emission of each system to the generation of electricity, that is:

\[Q = \frac{Q_0 + Q_2}{W} \]
(5)

In the equation: \(Q \) is additional normalized radon emission from coal combustion, GWa; \(Q_2 \) is radon emission from flue gas system after boiler, Bq; \(Q_3 \) is radon emission from positive pressure dust removal system, Bq; \(W \) is radon concentration of chimney, GW.

The radon emission estimation results of three coal-fired power plants in Hunan, Hubei and Jiangxi are shown in Table 5. Jiangxi coal fired plant did not carry out the monitoring and estimating of radon in dust removal system. However, the radon emission from the positive pressure dust removal system is several orders of magnitude lower than that from the chimney, so the impact on the total emissions can be ignored. According to the estimation results, it can be known that:

i) The actual annual radon emission from the chimney is at the level of \(10^{11} \), which is about one order of magnitude higher than that from the flue gas system due to the influence of background radon concentration. The normalized radon emission is basically on \(10^2 \) GBq/GWa order of magnitude.

ii) The emission of different units in coal-fired power plants are different, which are mainly affected by raw coal varieties (\(^{226}\)Ra activity concentration varies greatly among different types of coal), coal consumption and background concentration level in coal-fired power plants.

| Table 5. The radon emission estimation results based on actual measurement |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Plants | Installed capacity | Emission | Actual radon emission | Additional radon emission from coal combustion |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| ... | ... | ... | ... |
| ... | ... | ... | ... |
| ... | ... | ... | ... |
| ... | ... | ... | ... |
| ... | ... | ... | ... |

5
Flue gas system Positive pressure dust removal system

	Annual emission	Normalized emission	Normalized emission
Hunan	2.1 × 10^{11} Bq/a	6.7 × 10^{10} Bq/a	3.5 × 10^{9} Bq/a
	711 GBq/GWa	223 GBq/GWa	
330MW	1.5 × 10^{11} Bq/a	4.2 × 10^{10} Bq/a	5.1 × 10^{9} Bq/a
	641 GBq/GWa	182 GBq/GWa	
Hubei	3.4 × 10^{11} Bq/a	2.2 × 10^{11} Bq/a	6.2 × 10^{9} Bq/a
680MW	761 GBq/GWa	494 GBq/GWa	
	1.0 × 10^{11} Bq/a	5.3 × 10^{10} Bq/a	-
350MW	667 GBq/GWa	355 GBq/GWa	
Jiangxi	1.9 × 10^{11} Bq/a	4.0 × 10^{10} Bq/a	-
680MW	431 GBq/GWa	90.9 GBq/GWa	

3.3. Theoretical estimation based on 226Ra activity concentration

In this section, the third method will be described. Based on the equilibrium of 226Ra →222Rn, and assuming that all 222Rn in coal is released after combustion, the maximum annual radon emission of coal-fired power plants is:

$$A_{Rn} = A_{Ra} \times M$$

In the equation: A_{Rn} is annual radon emission, Bq; A_{Ra} is 226Ra activity concentration, Bq/kg; M is annual coal consumption of the power plant.

Research has shown that China’s coal-fired power plant has a large and wide distribution of raw coal [3]. In some reference papers, the 226Ra activity concentration of raw coal used in coal-fired power plants of different regions in China are listed, according to these data, the arithmetic mean value of 226Ra in raw coal of China's coal-fired power plants is 32.5 Bq/kg (gangue coal is not taken into account). China institute of atomic energy has established the "National radionuclides database in coal mines". The radionuclides activity concentrations in coal samples from different areas of China were collected in detail in the database. Through statistical analysis of the database, the average 226Ra activity concentration in China's coal samples was obtained, as shown in table 6.

According to the survey data in the past years, the electric energy production and coal consumption of coal fired power plants varies from time to time. Therefore, the latest available query data, 4437.1 bill. KWh electric energy production and 1826.66 mill. tons of thermal coal, is selected for estimation.

Calculation method of 226Ra	226Ra activity concentration (Bq/kg)	Normalized coal consumption (x10^7 kg/GWa)	Normalized radon emission (GBq/GWa)
Values of this survey	32.5	360.6	117.2
Thermal coal	33	360.6	119.0
Weighted values by number of samples	53	360.6	190.8

Table 6. The radon emission estimation results based on 226Ra activity concentration
Weighted values by production

	49.4	360.6	178.1
Typical			151.3

4. References

[1] *China statistical yearbook 2018* (Energy: coal balance table) ed Dong G (Beijing: China Statistics Press) pp 101-20.

[2] Mingxuan C *China energy development report 2009* ed Dongtao Z (Beijing: Social Sciences Academic Press) pp 36-41.

[3] Guan X 2012 *Brief analysis of China's coal economy* (China's economy of land and resources) pp 34-5.

Acknowledgments

The experimental equipment was provided by School of nuclear science and technology, we really appreciate their support and guidance for the experiment.