INTRODUCTION

Postoperative sore throat, post-extubation cough, and hoarse voice are the most common complications following anesthesia intubation. The incidence of these complications has been reported to be between 30% and 81% (1-4). In addition, the incidence of postoperative sore throat is between 14.4% and 50% (5, 6). These complications lead to anxiety and dissatisfaction in patients after surgery (7). In order to minimize the incidence and severity of these complications, various methods such as licorice gargle, fluticasone propionate inhalation, aspirin and benzydamine hydrochloride gargle, lidocaine spray, intracuff diluted lidocaine, magnesium, stellate ganglion block, and Dexamethasone and lidocaine injection have been used for controlling complications (4, 7-9). Despite their efficiency in reducing postoperative airway symptoms, these methods cause the same complications in patients due to their limited accessibility (8). The cuffed tracheal tube, lubricants used on the tracheal tube, cuff pressure, and various other factors can affect the incidence and severity of postoperative sore throat and cough (10). The etiology of postoperative cough is partially attributed to the stimulation and inflammation of mucus and airway mucus induced by tracheal tube; therefore, local anesthesia of mucus secretion increases the tolerance of tracheal tube during its contact with mucus (11). The administration of intravenous Dexamethasone is simple, effective, and available in the operating room. Preemptive Dexamethasone administration before anesthetic induction decreases the severity of postoperative sore throat (12, 13). In addition, the efficacy of intravenous Dexamethasone in reducing the probability of occurrence and severity of postoperative airway symptoms has been well-documented (14). Hitherto, the effect of intravenous and intracuff Dexamethasone administration on postoperative sore throat and cough has been assessed. However, since the preemptive effect of the two different routes of Dexamethasone administration (i.e., intravenous and intracuff) has been compared in only a few studies, the present study aimed to provide further insights with respect to the preemptive effect.
MATERIALS AND METHODS

This randomized, double-blind, clinical trial was performed on 96 patients who visited Al-Zahra Hospital in 2017-2018 and received general anesthesia using intubation and laryngoscopy. The inclusion criteria were as follows: patients were given general anesthesia by intubation and laryngoscopy, age range 18–65 years, ASA score 1 and 2, mouth openness >3.5 cm, and consent to participate in the study. Patients with a preoperative sore throat, asthma, hoarse voice, history of respiratory tract infection or sore throat in 2 weeks before surgery, history of cigarette smoking, history of taking analgesics or steroids in 12 h before surgery, and allergic to Dexamethasone were not included in the study. The patients were also excluded if the duration of the operation lasted for >300 min, more than one attempt was made for tracheal intubation, the method of anesthesia was altered for any reason, and the patient required postoperative mechanical ventilation in the intensive care unit.

After random selection using Random Allocation Software, the patients were divided into three groups: Groups 1, 2 and 3. In Group 1, before intubation, 4 mg intracuff Dexamethasone was administered in order to moisten the tracheal cuff wall. During intubation, it was reloaded into the sterilized syringe, and after intubation, it was re-injected into the cuff. Moreover, 4 mg intravenous normal saline was administered to the patient (15). In Group 2, before intubation, 4 mg Dexamethasone was administered intravenously to the patient, and 4 mg saline was injected into the tracheal tube cuff. During intubation, it was reloaded into the sterile syringe, and after intubation, it was again injected into the tracheal cuff (16). In Group 3 or placebo group, before intubation, the tracheal cuff wall was moistened with normal saline; in addition, 4 mg intravenous normal saline was administered. Notably, the anesthesiologist, surgeon, and person collecting information were unaware of the implementation of this study, and Dexamethasone was considered as statistically significant.

RESULTS

In the present study, since the patients fulfilled the inclusion criteria, none were excluded from the study. The patients were divided into three groups: the first was intracuff group (14 females and 18 males), the second was an intravenous group (15 females and 17 females), and the third was control group (17 males and 15 females). No significant difference was detected among the groups with respect to demographic information such as age and gender (P>0.05). In addition, no significant difference was observed between groups regarding systolic blood pressure, diastolic pressure, and heart rate before anesthesia, 3 min and 15 min after tracheal intubation, and 3 min after tracheal extubation (P>0.05). However, according to the repeated measure ANOVA, changes in systolic and diastolic blood pressure and heart rate were significant in the three groups at the time points mentioned above (P<0.001). Moreover, no significant difference was observed among the groups regarding the intubation time (P=0.68) (Table 1).

The incidence of patient’s cough was recorded by the nurse in PAR; it was significantly lower in the first, second,
Table 1. Demographic and clinical information of patients in three groups

Variable	Group 1	Group 2	Placebo	P-value
Gender				
Male	(43.8%) 14	(56.3%) 18	(53.1%) 17	0.58
Female	(56.3%) 18	(43.8%) 14	(46.9%) 15	
Systolic blood pressure (mmHg) (mean±SD)				
Before anesthesia	123.90±25.43	119.64±22.30	116.38±21.19	0.43
3 min after intubation	127.61±26.84	128.58±18.86	118.48±13.94	0.12
15 min after intubation	117.96±31.24	121.13±22.20	110.46±19.87	0.25
3 min after extubation	115.69±31.14	114.27±20.30	108.74±18.69	0.53
Diastolic blood pressure (mmHg) (mean±SD)				
Before anesthesia	77.87±19.17	74.37±17.91	74.96±11.93	0.67
3 min after intubation	78.75±17.50	81.87±15.99	77.25±16.21	0.52
15 min after intubation	72.15±13.43	76.34±13.63	69.81±18.54	0.23
3 min after extubation	61.15±16.36	61.53±15.75	57.87±13.50	0.57
Heart rate (n/min) (mean±SD)				
Before anesthesia	82.62±17.67	81.53±18.01	80.37±15.75	0.87
3 min after intubation	89.06±16.83	90.50±19.20	85.68±17.16	0.54
15 min after intubation	87.12±17.60	86.81±18.75	84.75±18.05	0.85
3 min after extubation	85.56±18.45	86.34±18.47	84.28±18.21	0.90
Duration of anesthesia with intubation (min) (mean±SD)	55.46±11.59	57.03±12.23	58.43±16.67	0.68

Abbreviations; min: minute, SD: standard deviation, mm Hg: millimeters of mercury

Table 2. Frequency of cough and sore throat

Variable	Group 1	Group 2	Placebo	P-value
Frequency of cough in recovery				
Male	(9.4%) 3	(15.6%) 5	(34.4%) 11	0.03
VAS (mean± SD)				
Immediate after entry in recovery	4.09±1.32	5.25±2.32	6.65±2.13	0.001>
1 h later	2.12±1.31	3.46±1.95	5.84±2.03	0.001>
24 h later	0.34±0.78	0.40±0.91	0.78±1.18	0.15

Abbreviations; VAS: visual analog scale, SD: standard deviation

DISCUSSION

Based on the results of this study and given the effect of intravenous and intracuff Dexamethasone administration on hemodynamic variables, no difference was detected between the two methods of administration. The frequency of cough and the severity of sore throat in the groups with intravenous and intracuff Dexamethasone administration were less than those in the placebo group. Typically, both intravenous and intracuff methods are effective and did not exhibit severe side effects in controlling postoperative sore throat and cough in patients undergoing general anesthesia with intubation. Studies have examined intravenous and intracuff methods of Dexamethasone administration in postoperative cough, but none of the studies have compared these two methods. To the best of our knowledge, this is the first study to compare intravenous and intracuff Dexamethasone administration along with a placebo group. Some results of the
study by Lee et al. were consistent while some were inconsistent with our findings. Lee et al. examined the effect of intravenous 0.1 and 0.2 mg Dexamethasone on the incidence of preoperative sore throat. They concluded that 6 and 24 h after extubation, the incidence of sore throat in the group receiving 0.1 mg/kg/h Dexamethasone was less than the group receiving 0.2 mg/kg. They also found that the incidence of sore throat was less in both groups than that in the placebo group.

Moreover, only a small number of subjects that received 0.1 and 0.2 mg/kg Dexamethasone had an average (moderate) sore throat severity at 1 and 24 h post-extubation. The incidence of hoarse voice at 1, 6, and 24 h after extubation was significantly lower in the group receiving 0.2 mg/kg Dexamethasone than in the placebo group. However, no significant difference was detected among the three groups regarding the incidence of postoperative cough (6). Kim et al. examined the effect of Dexamethasone (10 mg intravenous administration) as prophylaxis for the reduction of postoperative sore throat in 70 patients. They concluded that 1 and 6 h after the surgery, the mean score of postoperative sore throat severity in the group that received Dexamethasone before surgery was significantly lower than those who received Dexamethasone after intubation. However, no significant difference was detected regarding the score of sore throat between the two groups at 24 h after surgery (2). In another study consistent with the present study, 8 mg intravenous Dexamethasone was used, and the incidence of sore throat in the Dexamethasone group was significantly lower (22.4%) than that in the control group (57.5%) at 24 h. Moreover, the severity of postoperative sore throat based on VAS at 1, 3, 6, 12, and 24 h after surgery was significantly lower in the Dexamethasone group than in the control group (17). Some studies were conducted to study the effect of Dexamethasone and lidocaine combination on the complications of intubation after surgery. The study by Refiee et al. was inconsistent with the current study as it compared three drugs of intracuff saline, Dexamethasone, and lidocaine with respect to the complications of intubation. Consequently, a difference was noted among the three groups of drugs regarding the incidence and the severity of cough, and lidocaine reduced the incidence of cough while Dexamethasone reduced the severity of the cough. Moreover, no significant difference was detected among the groups regarding the hemodynamics (15). The study by Ruangsin et al., which is inconsistent with the current study, reported that intravenous Dexamethasone did not exert a significant effect on postoperative sore throat (18).

Another study that was consistent with the present study concluded that both intracuff lidocaine and Dexamethasone significantly reduce postoperative sore throat and cough (19). The study by Choubasz et al., which was inconsistent with our study, examined the effect of adding Dexamethasone to 2% lidocaine on the reduction of postoperative complications after general anesthesia. In the present study, the patients were divided into four groups: the first group received 2% lidocaine, the second group received 4 mg Dexamethasone, the third group received 2% lidocaine and 4 mg Dexamethasone, and the fourth was placebo group. Based on the results of the study, a significant difference was detected in the heart rate among the Dexamethasone and Dexamethasone-lidocaine with the placebo groups. In addition, the heart rate in the Dexamethasone group and Dexamethasone-lidocaine group was significantly lower than that in the placebo group. Moreover, a significant difference was observed in the sore throat among the groups, and the incidence of sore throat in the Dexamethasone-lidocaine group was higher than that in the other groups, while that in the lidocaine group was lower than that in the other groups. Also, Dexamethasone does not affect the reduction in postoperative respiratory complications (10).

CONCLUSION

According to the results of this study, the use of two methods of preoperative intravenous and intracuff Dexamethasone reduced the amount of postoperative cough and the severity of sore throat in patients. Moreover, these methods do not have a significant effect on hemodynamic variables and do not cause severe side effects. Nevertheless, this study had some limitations, such as lack of a specific criterion for assessing the severity of the cough. Therefore, additional studies with larger sample size are needed to substantiate the current findings.

REFERENCES

1. Kalil DM, Silvestro LS, Austin PN. Novel preoperative pharmacologic methods of preventing postoperative sore throat due to tracheal intubation. AANA J. 2014;82(3):188-97
2. Park S-y, Kim SH, Lee A-r, Cho S-H, Chae WS, Jin HC, et al. Prophylactic effect of dexamethasone on reducing postoperative sore throat. Korean J Anesthesiol. 2010;58(1):15-9
3. Tanaka Y, Nakayama T, Nishimori M, Sato Y, Furuya H. Lidocaine for preventing postoperative sore throat. Cochrane Database Syst Rev. 2015;17(4):CD004081
4. D’Aragon F, Beaudet N, Gagnon V, Martin R, Sansoucy Y. The effects of lidocaine spray and intracuff alkalized lidocaine on the occurrence of cough at extubation: a double-blind randomized controlled trial. Can J Anesth. 2013;60(4):370-6
5. Maruyama K, Sakai H, Miyazawa H, Toda N, Inumya Y, Mochizuki N, et al. Sore throat and hoarseness after total intravenous anaesthesia. Br J Anaesth. 2004;92(4):541-3.
6. Lee SH, Lee YC, Lee JH, Choi SR, Lee S-C, Lee JH, et al. The prophylactic effect of dexamethasone on postoperative sore throat in prone position surgery. Korean J Anesthesiol. 2016;69(3):255-61
7. Macario A, Weinger M, Carney S, Kim A. Which clinical anesthesia outcomes are important to avoid? The perspective of patients. Anesth Analg. 1999;89(3):652
8. Agarwal A, Gupta D, Yadav G, Goyal P, Singh PK, Singh U. An evaluation of the efficacy of licorice gargle for attenuating postoperative sore throat: a prospective, randomized, single-blind study. Anesth Analg. 2009;109(1):77-81
9. Takekawa K, Yoshimi S, Kinoshita Y. Effects of intravenous lidocaine prior to intubation on postoperative airway symptoms. J anesth. 2006;20(1):44-7
10. Choubsaz M, Amirifard N, Sadeghi M, Sadeghi E, Johari Z. The effect of adding dexamethasone to intracuff lidocaine 2% on decreasing the respiratory complications after general anesthesia: a randomized, double blind, clinical trial. J App Pharm Sci. 2016;6(5):152-5
11. Safavi M, Honarmand A, Fariborzifar A, Attari M. Intravenous dexamethasone versus ketamine gargle versus intravenous dexamethasone combined with ketamine gargle for evaluation of post-operative sore throat and hoarseness: A randomized, placebo-controlled, double blind clinical trial. Adv Biomed Res. 2014;3:212
12. Thomas S, Beevi S. Dexamethasone reduces the severity of postoperative sore throat. Can J anesth. 2007;54(11):897-901
13. Park S-H, Han S-H, Do S-H, Kim J-W, Rhee K-y, Kim J-H. Prophylactic dexamethasone decreases the incidence of sore throat and hoarseness after tracheal extubation with a double-lumen endobronchial tube. Anesth Analg. 2008;107(6):1814-8
14. Soltani H-A, Aghadavoudi O. The effect of different lidocaine application methods on postoperative cough and sore throat. J clin anesth. 2002;14(1):15-8
15. Rafiei MR, Arjanpour N, Rezvani M, Ebrahim A. Effects of intracuff dexamethasone on post-extubation reactions. J Res Med Sci. 2012;17(4):338
16. Bagchi D, Mandal MC, Das S, Sahoo T, Basu SR, Sarkar S. Efficacy of intravenous dexamethasone to reduce incidence of postoperative sore throat: A prospective randomized controlled trial. J anaesthesiol clin pharmacol. 2012;28(4):477
17. Haider HS, Al-Ali BT. The role of dexamethasone in reducing the severity of postoperative sore throat. Iraqi Acad Sci J. 2013;12(3):454-9
18. Ruangsins S, Wanasuwannakul T, Pataravit N, Asim W. Effectiveness of a preoperative single dose intravenous dexamethasone in reducing the prevalence of postoperative sore throat after endotracheal intubation. J Med Assoc Thai. 2012;95(5):657
19. Kee K, Nadia M, Melvin K, Muhammad M, Raha A, Nurliya Y. Post-Intubation Airway Related Adverse Effects: A Comparison between Intra-Cuff Dexamethasone and Intra-Cuff Alkalized Lignocaine. J Surg Acad. 2013;3(2):26-31