Studies on the G Factors and Superhyperfine Parameters of the Tetragonal \([\text{Fe(CN)}_4\cdot(\text{CN})\text{Cl}]^{5-}\) Group in NaCl

Shao-Yi WU \(^1\text{a},\) Chang-Chun DING \(^1\text{b},\) Yong-Qiang XU \(^1\text{c}\)
and Li-Juan ZHANG \(^1\text{d}\)

\(^1\)Department of Applied Physics, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
\(^a\)wushaoyi@uestc.edu.cn, \(^b\)ccding626@163.com, \(^c\)qiangyongxu@163.com, \(^d\)ljzhang226@163.com

Abstract. The g factors and superhyperfine parameters of the tetragonal \([\text{Fe(CN)}_4\cdot(\text{CN})\text{Cl}]^{5-}\) group in NaCl are theoretically investigated from the perturbation formulas of these parameters for a tetragonally elongated octahedral low spin \((S=1/2)\) 3d\(^7\) cluster. This center is ascribed to the substitutional Fe\(^+\) on host Na\(^+\) site associated with one of the axial ligands CN\(^-\) replaced by Cl\(^-\). Since the crystal-fields arising from the axial Cl\(^-\) and CN\(^-\) ions are weaker than those of the four planar CN\(^-\), the impurity center is characterized as the tetragonally elongated octahedron. The calculated g factors and superhyperfine parameters show reasonable agreement with the measured values. The results are discussed.

1. Introduction

NaCl including iron cyanide has attracted wide interest due to the promising applications in integrated circuit industry \([1]\), electrodeposition \([2]\), biosensors \([3]\) and biosorbents \([4,5]\). Normally, the above applications are sensitively correlated to local structures of the dopants which can be conveniently investigated with the aid of electron paramagnetic resonance (EPR) technique. EPR measurements were carried out for \([\text{Fe(CN)}_6]^{4-}\)-doped NaCl subject to x- or \(\gamma\) irradiation at low temperature \([6]\), and the g factors and ligand \(35\text{Cl}^{-}\) superhyperfine parameters were measured for a tetragonal \([\text{Fe(CN)}_4\cdot(\text{CN})\text{Cl}]^{5-}\) group \([6]\). However, the above experimental results have not been satisfactorily interpreted until now. Usually, theoretical studies on g factors and superhyperfine parameters would be helpful to reveal the microscopic mechanisms of the EPR spectra and local behaviors of impurity iron in NaCl useful to understand properties this material with iron dopants. The studied \([\text{Fe(CN)}_4\cdot(\text{CN})\text{Cl}]^{5-}\) group belongs to the case of strong crystal-fields with low spin \((S=1/2)\) and \(g \sim 2\) \([8]\), quite dissimilar to the conventional case of intermediate crystal-fields with high spin \((S=3/2)\) and \(g \sim 4.3\) for 3d\(^7\) (e.g., Fe\(^+\), Co\(^{2+}\)) ions in chlorides \([7,8]\). Thus, further theoretical studies of the EPR spectra

* Corresponding author: wushaoyi@uestc.edu.cn
for the tetragonal [Fe(CN)₄·(CN)Cl]⁵⁻ group are of scientific significance. In this work, the g factors and superhyperfine parameters of this [Fe(CN)₄·(CN)Cl]⁵⁻ group in NaCl are theoretically investigated from the perturbation formulas of these parameters for a low spin (S=1/2) 3d⁷ ion in tetragonally elongated octahedra, by connecting the local structure with the EPR analysis.

2. Calculations

Dimagnetic Fe²⁺ (in form of [Fe(CN)₆]⁴⁻) doped into the lattice of NaCl can occupy the substitutional Na⁺ site and construct the octahedral [Fe(CN)₆]⁴⁻ group. Upon x- and γ-irradiation at low temperature, some diamagnetic Fe²⁺ can be reduced into paramagnetic Fe⁺(3d⁷) by capturing one electron with one axial CN⁻ replaced by Cl⁻ and form the tetragonal [Fe(CN)₄·(CN)Cl]⁵⁻ group. Since the crystal-fields arising from the axial Cl⁻ and CN⁻ ions are weaker than those arising from the four planar CN⁻ ions, this group exhibits a tetragonally elongated octahedron. Unlike the conventional case of intermediate crystal-fields with high spin (S=3/2) and higher g values (~ 4.3) for Fe⁺ or Co²⁺ in chlorides [7,8], the studied [Fe(CN)₄·(CN)Cl]⁵⁻ group belongs to the case of strong crystal-fields with low spin (S=1/2) and lower g values (~ 2) [6]. For a tetragonally elongated octahedral low spin 3d⁷ cluster, the original cubic ground state ²E₉g may split into two orbital singlets ⁰(²A₁g) and ³(²B₁g), the former lying lowest [11-13].

In order to investigate the EPR spectra of this tetragonal Fe⁺ center, the perturbation formulas of g factors and superhyperfine parameters for a tetragonally elongated octahedral low spin 3d⁷ group are adopted here. In view of significant covalency of the system, the ligand orbital and spin-orbit coupling contributions are taken into account, and the ligand unpaired spin densities are quantitatively determined from the cluster approach in a consistent way. Thus, we have [9]:

\[
g_{//} = g_s + 2k' \zeta' / E_{1//}^2 - 4k \zeta (1/E_{2//} - 1/E_{5//})
\]

\[
g_{\perp} = g_s + 2k' \zeta'^2 / E_{1\perp}^2 + 3k \zeta / E_{\perp} - k' \zeta' (1/E_{2\perp} - 1/E_{5\perp}),
\]

\[
A' = A_s + 2A_o + 2(1-\lambda_e^2) [1 + 12 <r^2> / (7R^2) + 30 <r^4> / (7R^4)] A_D ,
\]

\[
B' = A_s - A_o - (1-\lambda_e^2) [1 + 12 <r^2> / (7R^2) + 30 <r^4> / (7R^4)] A_D ,
\]

with

\[
1/E_{\perp} = 1/E_{3\perp} + 1/E_{4\perp} + 0.38 (1/E_{3\perp} - 1/E_{4\perp}) .
\]

Here the denominators Eᵢ (i =1-5) are the energy separations between the excited ⁴T₁g[τ₂⁺e⁻(⁴A₂)], ⁵T₁g[τ₂⁺e⁻(⁵A₂)], ⁴T₁g[τ₂⁺e⁻(⁴E)], ⁵T₂g[τ₂⁺e⁻(⁵E)] and ⁵T₂g[τ₂⁺e⁻(⁵A₁)] and the ground ²A₁₈ states under tetragonal crystal-fields. The subscripts α (//= and \⊥) denote the two components of the tetragonal splittings for the above energy separations. They are expressed from the energy matrices for a 3d⁷ ion under tetragonal symmetry in terms of the cubic and tetragonal field parameters Dq, Ds and Dt and Racah parameters B and C [9]:

\[
E_{1//} = 10 Dq - 4 B - 4 C ,
\]

\[
E_{1\perp} = 10 Dq - 4 B - 4 C - 3 Ds + 5Dt ,
\]

\[
E_{2//} = 10 Dq + 2 B - C ,
\]

\[
E_{2\perp} = 10 Dq + 2 B - C + 3Ds - 5Dt ,
\]

\[
E_{3//} = 10 Dq + 6 B - C - 3 Ds + 5 Dt ,
\]

\[
E_{3\perp} = 10 Dq + 14 B + C - 3 Ds + 5 Dt ,
\]

\[
E_{5//} = 10Dq + 6 B - C ,
\]
E_{±} = 10Dq + 6B - C + 3Ds - 5Dt . (3)

ζ and ζ’ are the spin-orbit coupling coefficients, and k and k’ are the orbital reduction factors. Based on the cluster approach, these quantities can be expressed as [9]:

\[\zeta = N_t (\zeta_d^0 + \lambda \zeta_p^0 / 2) , \quad \zeta' = (N_t N_e)^{1/2} (\zeta_d^0 - \lambda \zeta_p^0 / 2) , \]
\[k = N_t (1 + \lambda \psi / 2) , \quad k' = (N_t N_e)^{1/2} [1 - \lambda \zeta_p / \zeta_e + \psi / 2] . \] (4)

Here the subscripts t and e denote the cubic irreducible representations γ = T2g and Eg, ζ_d^0 and ζ_p^0 are the spin-orbit coupling coefficients of the free 3d^7 and ligand ions, respectively. N_t and λγ (or λ_e) are, respectively, the normalization factors and the orbital admixture coefficients. A stands for the integral \(R | \partial / \partial y | n \rho_y \), with the reference distance R. The molecular orbital coefficients N_t and λγ (or λ_e) are usually obtained from the normalization conditions and the approximate relationships [9] in terms of the group overlap integrals and covalency factor N. Here, the proportionality relationship \(\rho = \lambda / S_{dp} \approx \lambda / S_{ds} \) between the orbital admixture coefficients and the related group overlap integrals is adopted, with the proportionality factor \(\rho \) taken as an adjustable parameter.

In the formulas of superhyperfine parameters, \(A_s \) stands for the isotropic contributions from the ligand 3s orbitals. \(A_p \) and \(A_D \) denote the anisotropic contributions from the admixture between Fe^+ 3d and Cl^- 3p orbitals and the dipole-dipole interactions between central ion electrons and ligand nucleus, respectively. \(<r^2> = (n = 2, 4)\) are the expectation values of the square and quartic of Fe^+ 3d^7 radial wave function. The isotropic and anisotropic parts of superhyperfine parameters can be expanded as [10]:

\[A_s = f_s A_s^0 , \quad A_p = f_p A_p^0 , \quad A_D = gB \mu_B | n / R^3 \] . (5)

Here \(f_s = N_c \lambda_c^2 / 3 \) and \(f_p = N_c \lambda_c^2 / 3 \) are the unpaired spin densities for the ligand 3s and 3pσ orbitals related to the corresponding molecular orbital coefficients from the cluster approach [9]. \(A_s^0 = (8 \pi / 3) \mu_B \mu_n \lambda_n \phi(0)^2 \) and \(A_p^0 = g_s \mu_B \mu_n \lambda_n \phi(0)^2 \) are the related nuclear parameters of ligand ^35Cl^- . \(\mu_n \) is the nuclear g value. \(\mu_B \) and \(\mu_n \) are the electron Bohr magneton and nuclear magneton. \(\phi(0) \) is the wave function of chlorine 3s orbital at the nucleus. \(<r^{-3}>3p \) is the expectation value of the inverse cube of Cl^- 3p radial wave function. For the dipole-dipole interaction term, the g factor is conveniently taken as the average \([g_c + 2g_s] / 3 \) of those in Eq. (1).

The tetragonal field parameters are determined from the local structure of the [Fe(CN)_4^3-][CN]Cl^- group using the superposition model [11]:

\[Ds = 2 [\bar{A}_2 (CN) - \bar{A}_2 (Cl)] / 7 \]
\[Dt = 8 [\bar{A}_4 (CN) - \bar{A}_4 (Cl)] / 21 \] . (6)

Here \(\bar{A}_2 (L) \) and \(\bar{A}_4 (L) \) are the intrinsic parameters for the distinct ligands L (= CN^- and Cl^-). For 3d^7 ions in octahedra, the relationships \(\bar{A}_4 (L) \approx (3 / 4) Dq(L) \) and \(\bar{A}_2 (L) \approx 10.8 \bar{A}_4 (L) \) were proved valid in many crystals [8] and are suitably adopted here. In the above expressions, the tetragonal field parameters relevant to the local structure are quantitatively correlated to the g factors, especially the g anisotropy \(\Delta g (= g_\perp - g_\parallel) \).

Utilizing the reference metal-ligand distance \(R = 2.814 \text{Å} \) [12]) for NaCl, the group overlap integrals \(S_{dp} \approx 0.0042, S_{ds} \approx 0.0165, S_{dk} \approx 0.0076 \) and \(A \approx 1.4196 \) are calculated from the Slater-type self-consistent field functions [13,14]. From the optical spectral studies
for Fe⁺ in chlorides and nitrides [15], the spectral parameters Dq (CN⁻) ≈ 1780 cm⁻¹, Dq (Cl⁻) ≈ 800 cm⁻¹ and N ≈ 0.725 are acquired for the studied [Fe(CN)₄⁺(CN)Cl]⁵⁻ group. The total cubic field parameter is expressed as: Dq ≈ [5Dq(CN) + Dq(Cl)]/6. The molecular orbital coefficients can be determined from the cluster approach [9] if the proportionality factor ρ is known. In view i) that the 3s orbital is usually more compact than the 3p one for the same ligand Cl⁻ and ii) that the reference distance R is long for the studied group, the admixture of Fe⁺ - 3d with Cl⁻ - 3s orbitals may be much less than that with Cl⁻ - 3p orbitals. Thus, the proportionality factor should be significantly lower than unity, and one can take ρ ≈ 0.43 here. Then the related molecular orbital coefficients N₁ ≈ 0.728, Nₑ ≈ 0.742, λ₄ ≈ 0.618, λₑ ≈ 0.486 and λₙ ≈ 0.169 are obtained. Using the free-ion values ζ_d⁰ ≈ 356 cm⁻¹ [16] for Fe⁺ and ζ_p⁰ ≈ 587 cm⁻¹ [17] for Cl⁻, the spin-orbit coupling coefficients ζ ≈ 341 cm⁻¹, ζ_p ≈ 168 cm⁻¹ and the orbital reduction factors k ≈ 0.868 and kₑ ≈ 0.575 are also acquired from Eq. (4). It is noted that the spin-orbit coupling contributions of ligand CN⁻ are neglected here due to the much smaller ζ_p⁰ ≈ 75 cm⁻¹ for nitrogen [18]. As regards superhyperfine parameters, the expectation values are <r²> ≈ 1.774 a.u. and <r⁴> ≈ 8.385 a.u., respectively, for Fe⁺ 3d⁷ radial function [7]. In the energy denominators, the Racah parameters B and C can be determined from the free-ion parameters B₀ ≈ 869 cm⁻¹ and C₀ ≈ 3638 cm⁻¹ of Fe⁺ [16]. The nuclear parameters are A₄⁰ ≈ 1570 × 10⁻⁴ and Aₚ⁰ ≈ 46.8 × 10⁻⁴ cm⁻² for 3⁵Cl⁻ [19]. Substituting the relevant quantities into Eq. (1), the theoretical g factors and superhyperfine parameters (Calc. ⁵) are calculated and listed in Table 1. In order to analyze importance of covalency (or the ligand contributions), the calculated g factors (Calc. ⁶) based on omission of the ligand contributions (i.e., taking k = kₑ = N and ζ = ζ_p = Nζ_p⁰) are also collected in Table 1. Meanwhile, the g factors (Calc. ⁷) based on the simple second-order g formulas using various adjustable parameters and the superhyperfine parameters based on the fitted f₁ ≈ 0.6% and f₂ ≈ 3.2% in the previous studies [6] are also given in Table 1.

| TABLE 1 THE G FACTORS AND SUPERHYPERFINE PARAMETERS (IN 10⁻⁴ CM⁻¹) FOR THE TETRAGONAL [Fe(CN)₄⁺(CN)Cl]⁵⁻ GROUP IN NACL. |
|--------------------------|-----------------|--------------|--------|
| | gᵢ | gₑ | A' | B' |
| Calc. ⁵ | 2.0023 | 2.159 | 12.4 | 7.9 |
| Calc. ⁶ | 2.021 | 2.264 | - | - |
| Calc. ⁷ | 2.009 | 2.086 | 15.6 | 8.5 |
| Expt. [6] | 2.001 | 2.075 | 13.8 | 9.4 |

Calculation of g factors based on the simple second-order g formulas and the superhyperfine parameters based on the fitted f₁ ≈ 0.6% and f₂ ≈ 3.2% in the previous studies [6].

Calculation of g factors from the conventional crystal-field model formulas without the ligand contributions (i.e., taking k = kₑ = N and ζ = ζ_p = Nζ_p⁰). Calculations based on Eq. (1) containing the ligand contributions in this work.

3. Discussion

One can find from Table 1 that the theoretical g factors and superhyperfine parameters (Calc. ⁵) are in reasonable agreement with the experimental data for [Fe(CN)₄⁺(CN)Cl]⁵⁻ group in NaCl, and the EPR spectra of this system are suitably interpreted here.

The positive anisotropy Δg is attributed to the lowest ²A₁g state for a low spin 3d⁷ ion under tetragonally elongated octahedra. The tetragonal elongation distortion arises mainly from the weaker crystal-fields of the axial Cl⁻ and CN⁻ ions than those of the four planar CN⁻ ions. Remarkably, this low spin [Fe(CN)₄⁺(CN)Cl]⁵⁻ group with different axial and perpendicular ligands and low g value (≈ 2.0 [6]) is quite unlike the isoelectronic high spin
(S=3/2) [FeF₆]⁵⁻ group in NaF with the impurity off-center displacement and high g value (≈ 4.135 [20]).

The g factors (Calc. ⁵) containing the ligand orbital and spin-orbit coupling contributions are in better agreement with the experimental data than those (Calc. ⁷) in the absence of these contributions and those (Calc. ⁶) based on the simple second-order g formulas using various adjustable parameters of the previous work [6]. Because of significant covalency and ligand contributions, the anisotropy Δg and the average [=(g // + 2gₚ)/3] (Calc. ⁵) without the ligand contributions are larger than the observed values. This point is further illustrated by the low covalency factor N (≈ 0.725 < 1), the obvious orbital admixture coefficients (≈ 0.2 - 0.6) and the relative deviations (anisotropies) of 51% and 103% for the orbital reduction factors and the spin-orbit coupling coefficients from the cluster approach calculations. The proportionality factor ρ (≈ 0.43 << 1) reveals a significant (about 60%) decrease for the ratio λ₀/Sₗ₉ as compared to λ₀/Sₚₑ. In fact, the admixture of Fe⁺ - 3d orbital with Cl⁻ - 3s orbital can be much less than that with Cl⁻ - 3p orbital, because the 3s orbital is usually more compact than the 3p one for the same ligand. The unpaired spin densities f₁ ≈ 0.7% and f₂ ≈ 5.8% obtained from the present cluster approach treatments are comparable with those (≈ 0.6% and 3.2% [6]) by fitting the experimental superhyperfine parameters in the previous work [6] and those (≈ 1.1% and 8.6% [21]) for the isoelectronic tetragonal Rh²⁺(4d⁷) center in AgCl and can be regarded as suitable.

4. Acknowledgement

This work was financially supported by the Fundamental Research Funds for the Central Universities [ZYGX2014J136] and the Sichuan Province Academic and Technical Leaders Support Fund [Y02028023601032].

References

1. E.Y. Yazici, H. Deveci, Cupric chloride leaching (HCl–CuCl₂–NaCl) of metals from waste printed circuit boards (WPCBs), Int. J. Miner. Proc. 134 (2015) 89-96.
2. J.G. Qian, T. Zhao, Electrodeposition of Ir on platinum in NaCl-KCl molten salt, Transactions of Nonferrous Metals Society of China 22 (2012) 2855-2862.
3. N. Bouyahia, M.L. Hamlaoui, M. Hnaien, F. Lagarde, N. Jaffrezic-Renault, Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor, Bioelectrochem. 80 (2011) 155-161.
4. T. Rennert, T. Mansfeldt, Sorption and desorption of iron–cyanide complexes in deposited blast furnace sludge, Water Research 36 (2002) 4877-4883.
5. C. Abdelmalek, K. Rabah, J. Guy-Alain, Biosorption of hexacyanoferrate (III) complex anion to dead biomass of the basidiomycete Pleurotus mutilus: Biosorbert characterization and batch experiments, Chem. Engin. J. 147 (2009) 150-160.
6. S.C. Jain, K.V. Reddy, T.R. Reddy, EPR of low spin d⁷ Fe⁺, Co²⁺ and Ni³⁺ cyanide complexes in NaCl and KCl, J. Chem. Phys. 62 (1975) 4366-4372.
7. A. Abragam, B. Bleaney: Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London, 1986.
8. A. Edgar, Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts, J. Phys. C 9 (1976) 4303-4314.
9. H.M. Zhang, S.Y. Wu, X.F. Wang, Y.X. Hu, Investigations on the g factors and the
superhyperfine parameters for the tetragonal Pd$^{3+}$ centers in AgX (X= Cl, Br), Int. J. Mod. Phys. B 25 (2011) 1833-1843.

10. J. Owen, J.H.M. Thornley, Covalent bonding and magnetic properties of transition metal ions, Rep. Prog. Phys. 29 (1966) 675-728

11. D.J. Newman, B. Ng, The superposition model of crystal fields, Rep. Prog. Phys. 52 (1989) 699-763

12. R.C. Weast: CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton 1989, p. B196.

13. E. Clementi, D.L. Raimondi, Atomic Screening Constants from SCF Functions, J. Chem. Phys. 38 (1963) 2686-2690

14. E. Clementi, D.L. Raimondi, W.P. Reinhardt, Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons, J. Chem. Phys. 47 (1967) 1300-1308

15. A.S. Chakravarty: Introduction to the Magnetic Properties of Solids, Wiley-Interscience Publication, New York, 1980

16. J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London, 1964.

17. G.L. McPherson, R.C. Kach, G.D. Stucky, Electron spin resonance spectra of V$^{2+}$, Mn$^{2+}$, and Ni$^{2+}$ in single crystals of CsMgBr$_{3}$ and CsMgI$_{3}$, J. Chem. Phys. 60 (1974) 1424-1432

18. D.W. Smith, Relationship between electron spin resonance g-values and covalent bonding in tetragonal copper(II) compounds, J. Chem. Soc. A (1970) 3108-3120

19. R.S. Eachus, R.E. Graves, EPR spectroscopic investigations of metal halides doped with transition metal ions. II. Iridium (III) -doped AgCl and AgBr, J. Chem. Phys. 65 (1976) 1530-1538

20. A.K. Garrison, Electron paramagnetic resonance of NaF:Fe$^{3+}$, Mater. Res. Bull. 2 (1967) 155-164.

21. J.R. Shock, M.T. Rogers, ESR studies of [RhCl$_{6}$]$^{4-}$ in various matrices, J. Chem. Phys. 62 (1975) 2640-2646.