Inverses of Motzkin and Schröder Paths

Heinrich Niederhausen
Florida Atlantic University, Boca Raton
May 2011

Abstract

We suggest three applications for the inverses: For the inverse Motzkin matrix we look at Hankel determinants, and counting the paths inside a horizontal band, and for the inverse Schrörder matrix we look at the paths inside the same band, but ending on the top side of the band.

1 Introduction

We adopt the convention that lattice paths without restrictions are called “Grand”; the Grand Catalan numbers (step set \{↑, ↓\}) are the number of paths from the origin, taking only \(↑\) and \(↓\) steps, and ending on the x-axis at \((2n, 0)\). The Grand Catalan numbers are the Central Binomial coefficients, \(\binom{2n}{n}\), with generating function \(1/\sqrt{1-4t} = \sum_{n \geq 0} \binom{2n}{n} t^{2n}\). The weighted Grand Motzkin numbers \(G_n\) take steps from \{↑, ↓, →\}, and end on the x-axis in \((n, 0)\). The horizontal steps get the weight \(\omega\). Their generating function is

\[g(t) := \sum_{n \geq 0} G_n t^n = 1/\sqrt{(1-\omega t)^2 - 4t^2}, \] (1)

and it is seen immediately that for \(\omega = 0\) the Grand Catalan numbers are recovered. If \(\omega = 2\), the \(1/\sqrt{(1-2t)^2 - 4t^2} = 1/\sqrt{1-4t}\) is again a generating function for the Grand Catalan numbers, but we get \(\sum_{n \geq 0} \binom{2n}{n} t^n\). The general Grand Motzkin numbers \(G(n, j)\) enumerate all paths to \((n, j)\), and the first few are given in the following table.
The general Grand Motzkin numbers \(G_n \) is given in row 0.

The lower half of the table is the mirror image of the top half; if we write the table in matrix form, \(G(n, j) \) stands in row \(n \) and column \(j \), and we obtain a Riordan matrix \(G \), because \(G(n+1, j+1) = G(n, j) + \omega G(n, j+1) + G(n, j+2) \) (see Rogers [9], and [6]). It follows that

\[
\sum_{n \geq j} G(n, j) t^n = \frac{1}{\sqrt{1 - \omega t}^2 - 4t^2} \left(\frac{1}{2t} \left(1 - t\omega - \sqrt{(\omega t - 1)^2 - 4t^2} \right) \right)^j
\]

\[
= g(t) \left(\frac{1}{2t} (1 - \omega t - 1/g(t)) \right)^j
\]

If we restrict the \(\{\nearrow, \searrow, \omega \} \)-paths to the first quadrant, they become Motzkin paths \(M(n, j) \). We will look at the inverse \((m_{i,j}) \) of the matrix \(M \),
and find it useful in some applications (see also A. Ralston and P. Rabinowitz, 1978 [8, p. 256]). Especially, the bounded Motzkin numbers \(M_{n;w}^{(k)} \), the number of Motzkin paths staying strictly below the parallel to the \(x \)-axis at height \(k \), have a generating function expressed by the inverse \(\binom{m}{i,j} \), through the inverse Motzkin polynomial \(m_k(t) = \sum_{i=0}^{k} m_{k,i} t^{k-i} \),

\[
\sum_{n \geq 0} M_{n;w}^{(k)} t^n = \frac{m_{k-1}(t)}{m_k(t)}
\]

(see [8]). That makes us wonder if paths with different lengths of the horizontal steps \((w,0)\) have similar properties. In the case of \(w = 2 \) (Schröder paths) and \(\omega = 1 \) we have a result,

\[
S_k^{(k)}(t) := \sum_{n \geq 0} S_{n}^{(k)} t^n = \left(1 - t\right) \frac{\sum_{i=0}^{(k-2)/2} (-1)^i s_{k-2-2i}(t) + (k \mod 2) \left(-1 \right)^{(k-1)/2} t^{k-1}}{\left(1 - t\right) \sum_{i=0}^{(k-1)/2} \left(-1 \right)^i s_{k-1-2i}(t) + ((k - 1) \mod 2) \left(-1 \right)^{k/2} t^k}
\]

where the Motzkin terms \((M \text{ and } m)\) are replaced by the corresponding Schröder terms \((S \text{ and } s)\), and \(s_i(t) \) is the inverse Schröder polynomial. Perhaps more interesting is the generating function identity described in Theorem [8]

\[
t^{-k} S_{k-1}^{(k)}(t) = t^{-k} S^{(k)}(t, k - 1)
\]

(as power series) where \(S^{(k)}(t, k - 1) \) is the generating function of the bounded Schröder number ending on \(y = k - 1 \), just below the upper boundary.

2 Motzkin Numbers

Leaving the Grand Motzkin numbers behind, we introduce the restriction of counting only paths that do not go below the \(x \)-axis. A general weighted Motzkin path is counted by the recursion

\[
M(n, m; \omega) = M(n - 1, m + 1; \omega) + \omega M(n - 1, m; \omega) + M(n - 1, m - 1; \omega)
\]

for \(m \geq 0 \), and \(M(n, m; \omega) = 0 \) if \(m < 0 \). The numbers \(M(n, m; \omega) \) are weighted counts of all such path from \((0,0)\) to \((n, m)\), and we give the special name \(M_{n;w} \) to the Motzkin numbers \(M(n, 0; \omega) \). These numbers (with weight \(\omega = 1 \)) have been studied by Th. Motzkin in 1946 [7].
The above table shows that for $\omega = 1$ the original Motzkin numbers are $1, 1, 2, 4, 9, 21, 51, 127, \ldots$ (sequence A001006 in the On-Line Encyclopedia of Integer Sequences (OEIS)).

It is well-known that the general ω-weighted Motzkin numbers have the generating function

$$\mu(t; j, \omega) := \sum_{n \geq 0} M(n + j, j; \omega) t^n = \left(\frac{1 - \omega t - \sqrt{(1 - \omega t)^2 - 4t^2}}{2t^2} \right)^{j+1}$$

thus

$$\mu(t) := \sum_{n \geq 0} M_n t^n = \sum_{n \geq 0} M(n, 0; \omega) t^n = \frac{1 - \omega t - \sqrt{(1 - \omega t)^2 - 4t^2}}{2t^2}$$

is the generating function of the Motzkin numbers, satisfying the quadratic equation

$$\mu(t) = 1 + \omega t \mu(t) + t^2 \mu(t)^2$$

Hence

$$M_{n+2; \omega} - \omega M_{n+1; \omega} = \sum_{i=0}^{n} M_{i; \omega} M_{n-i; \omega}$$

a well-known identity, combinatorially shown by using the "First Return Decomposition". The generating function (in t^2) of the Catalan numbers C_n is easily obtained by setting $\omega = 0$ in (2), but it also follows from $\omega = 2$

$$\frac{1 - 2t - \sqrt{(1 - 2t)^2 - 4t^2}}{2t^2} = \frac{1 - 2t - \sqrt{1 - 4t}}{2t^2} = \sum_{n \geq 1} C_n t^{n-1}$$
(in \(t \)). Or we can choose \(\omega = 1 \) and get

\[
(1 + t) \sum_{n \geq 1} C_n \left(\frac{t}{1 + t} \right)^{n-1} = \sum_{n \geq 0} M_{n;1} t^n
\]

\[
M_{n;1} = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} C_{k+1}
\]

For general \(\omega \) follows from (2) the explicit expression

\[
M_{n;\omega} = \sum_{k=0}^{n/2} \binom{n}{2k} \frac{\omega^{n-2k}}{2k+1} \binom{2k+1}{k}.
\]

3 The Inverse

Define \(\phi (t) \) such that \(t/\phi (t) \) is the compositional inverse of \(t \mu (t) \) thus

\[
\phi (t \mu (t)) = \mu (t) = 1 + \omega t \mu (t) + t^2 \mu (t)^2
\]

by (3), and therefore

\[
\phi (t) = 1 + \omega t + t^2
\]

This simple form of the inverse is the reason for many special results for Motzkin numbers. Note that

\[
1/\phi (t) = (1 + \omega t + t^2)^{-1} = \sum_{n \geq 0} U_n (-\omega/2) t^n
\]

the generating function of the \textit{Chebychef polynomials} of the second kind.

Because of the inverse relationship between \(t \mu (t) \) and \(t/\phi (t) \) we have that the matrix inverse of \((M (i, j; \omega))_{n \times n} \) equals \((m_{i,j})_{n \times n} \),

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 \\
4 & 5 & 3 & 1 & 0 \\
9 & 12 & 9 & 4 & 1
\end{pmatrix}^{-1} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 & 0 \\
1 & 1 & -3 & 1 & 0 \\
-1 & 2 & 3 & -4 & 1
\end{pmatrix} = (m_{i,j})_{4 \times 4}
\]

Inverse Motzkin matrix when \(\omega = 1 \)

where

\[
\sum_{i \geq 0} m_{i,j} t^i = t^j \phi (t)^{-j-1}
\]

Note that \((m_{i,j})\) is also a \textit{Riordan matrix}. The above generating function for \(m_{i,j} \) implies that

\[
m_{i,j} = [t^j] \frac{1}{1 + \omega t + t^2} \left(\frac{t}{1 + \omega t + t^2} \right)^j = [t^{j-1}] (1 + \omega t + t^2)^{-j-1} = C_{i-j}^{j+1} (-\omega/2).
\]
The polynomials \(C_n^\lambda(x) = \sum_{k=0}^{n/2} \frac{(n-k+\lambda-1)}{n-k} \frac{(n-k)}{n-2k} (-1)^k (2x)^{n-2k} \) are the Gegenbauer polynomials, and therefore

\[
m_{i,j} = \sum_{l=0}^{(i-j)/2} \binom{i-l}{i-j-l} \binom{i-j-l}{l} (-1)^l (-\omega)^{i-j-2l}
\]

(4)

The recurrence relation for the (orthogonal) Gegenbauer polynomials

\[2x(n+\lambda)C_n^\lambda(x) = (n+2\lambda-1)C_{n-1}^\lambda + (n+1)C_{n+1}^\lambda(x)\]

gives us immediately a recurrence for the inverse numbers \(m_{i,j}, 0 \leq j \leq i-1, \)

\[(i-j) m_{i,j} = -\omega m_{i-1,j} - (i+j) m_{i-2,j}\]

with initial values \(m_{i,j} = \delta_{i,j} \) for \(j \geq i \).

We need later in the paper the following Motzkin polynomial

\[
\sum_{j=0}^{k} m_{k,j} t^{k-j} = \sum_{j=0}^{k} C_j^{k-j+1} (-\omega/2)^j t^{j} \\
= \sum_{l=0}^{k/2} \sum_{j=0}^{k-2l} \binom{k-l}{k-j-l} \binom{k-j-l}{k-j-2l} (-1)^l (-\omega)^{k-j-2l} t^{k-j} \\
= \sum_{l=0}^{k/2} \binom{k-l}{l} (-1)^l 2^l (1-\omega) t^{k-2l}
\]

(5)

From

\[
(M(i,j))_{0 \leq i,j \leq n}^{-1} = (m_{i,j})_{0 \leq i,j \leq n}
\]

follows

\[
\sum_{k=0}^{n} M(k,i;\omega) m_{k,j} = \delta_{i,j}.
\]

However, in the case of Motzkin matrices more than this simple linear algebra result holds.

Lemma 1 For all nonnegative integers \(i \) and \(k \) holds

\[
M(i,j;\omega) = \sum_{k=0}^{j} m_{j,k} M_{i+k;\omega}
\]

and

\[
m_{i,j} = \sum_{k=0}^{i-j} m_{i+1,j+1+k} M_{k;\omega}
\]
The proof can be done via generating functions. Note that
\[
\sum_{n \geq 0} \sum_{j \geq 0} x^j t^n M(n, j; \omega) = \frac{\mu(t)}{1 - xt\mu(t)} = \frac{1}{1 + \omega x + x^2 - x/t} \left(\mu(t) - \frac{x}{t} \right)
\]
and
\[
\sum_{j \geq 0} x^j \sum_{i \geq j} m_{i,j} t^i = \sum_{j \geq 0} x^j t^j \phi(t)^{j+1} = \frac{\phi(t)}{1 - xt\phi(t)} = \frac{1}{1/\phi(t) - xt} = \frac{1}{1 + \omega t + t^2 - xt}.
\]
Replace \(t \) by \(x \) and \(x \) by \(1/t \) in the above generating function for the inverse \(m_{i,j} \) to get the Laurent series
\[
\sum_{j \geq 0} t^{-j} \sum_{i \geq j} m_{i,j} x^i = \frac{1}{1 + \omega x + x^2 - x/t}
\]
hence
\[
\sum_{n \geq 0} \sum_{j \geq 0} x^j t^n M(n, j; \omega) = \left(\mu(t) - \frac{x}{t} \right) \sum_{j \geq 0} t^{-j} \sum_{i \geq j} m_{i,j} x^i
\]
Now both sides must be power series in \(x \) and \(t \). This condition gives the Lemma. The Lemma also has the
\[
\sum_{k=0}^{j} m_{j,k} M_{i+k,w} = \delta_{i,j} \text{ for } 0 \leq i \leq j \tag{6}
\]
because \(M(i, j; \omega) = \delta_{i,j} \) for all \(0 \leq i \leq j \).

4 Two applications of the inverse Motzkin matrix

The Lemma says that
\[
(m_{i,j})_{0 \leq i,j \leq n} = (M_{i+j;\omega})_{0 \leq i,j \leq n} = (M(i, j; \omega))_{0 \leq i,j \leq n}
\]
which gives a direct way of calculating the first Hankel determinant
\[
\det (M_{i+j;\omega})_{0 \leq i,j \leq n} = \frac{1}{\det (m_{i,j})} \det (M(i, j; \omega)) = 1 \tag{7}
\]
However, subsequent Hankel determinants are more complicated; we want to show a way how to calculate a determinant proposed by Cameron and Yip [2]. For a broader theory of Hankel determinants in lattice path enumeration see [3].
4.1 The Hankel determinant \(|\alpha M_{i+j,\omega} + \beta M_{i+j+1,\omega}|_{0 \leq i,j \leq n-1}\)

The Hankel determinant of \((\alpha M_{i+j,\omega} + \beta M_{i+j+1,\omega})_{0 \leq i,j \leq n-1}\) equals for \(\omega = 1\)

\[
\begin{vmatrix}
\alpha + 2\beta & 2\alpha + 4\beta & 4\alpha + 7\beta & \ldots & \alpha M_{n-1;1} + \beta M_{n;1} \\
2\alpha + 4\beta & 4\alpha + 7\beta & 7\alpha + 9\beta & \ldots & M_{n;1} \\
4\alpha + 7\beta & 7\alpha + 9\beta & 4\alpha + 7\beta & \ldots & \vdots & \vdots \\
7\alpha + 9\beta & 9\alpha + 21\beta & 9\alpha + 21\beta & \ldots & \ldots & \ldots \\
\alpha M_{n-1;1} + \beta M_{n;1} & \alpha M_{n;1} + \beta M_{n+1;1} & \alpha M_{n+1;1} + \beta M_{n+2;1} & \alpha M_{2n-2;1} + \beta M_{2n;1} \\
\end{vmatrix}
\]

\[
= (M_{i+j;1})_{0 \leq i,j \leq n-1}
\]

because the last column in the matrix on the right when multiplied with the \(i\)-th row of the matrix on the left gives \(\alpha M_{i+n-1;\omega} - \beta \sum_{k=0}^{n-1} m_{n,k} M_{i+k;\omega} = \alpha M_{i+n-1;\omega} + \beta M_{i+n;\omega} - \beta \delta_{i,n}\) by Corollary 2. Now

\[
= \alpha^{-n} \left(\begin{array}{cccc}
\alpha & 0 & 0 & \ldots & -\beta m_{n,0} \\
\beta & \alpha & 0 & \ldots & -\beta m_{n,1} \\
0 & \beta & \alpha & \ldots & -\beta m_{n,2} \\
\vdots & & & & \\
0 & 0 & \ldots & \alpha & -\beta m_{n,n-2} \\
0 & 0 & \ldots & \beta & \alpha - \beta m_{n,n-1} \\
\end{array} \right)
\]

\[
= \alpha^{-n} \left(\begin{array}{cccc}
\alpha & 0 & 0 & \ldots & -\beta m_{n,0} \\
\alpha \beta & \alpha^2 & 0 & \ldots & -\alpha^2 \beta m_{n,1} \\
0 & \alpha^2 \beta & \alpha^3 & \ldots & -\alpha^3 \beta m_{n,2} \\
\vdots & & & & \\
0 & 0 & \ldots & \alpha^{n-1} \beta & -\alpha^{n-1} \beta m_{n,n-2} \\
0 & 0 & \ldots & \alpha^{n-1} \beta & \alpha^{n-1} - \alpha^{n-1} \beta m_{n,n-1} \\
\end{array} \right)
\]

\[
= \alpha^{-n} \left(\begin{array}{cccc}
\alpha & 0 & 0 & \ldots & -\beta m_{n,0} \\
0 & \alpha^2 & 0 & \ldots & \beta^2 m_{n,0} - \alpha \beta m_{n,1} \\
0 & 0 & \alpha^3 & \ldots & -\beta^3 m_{n,0} + \alpha \beta^2 m_{n,1} - \alpha^2 \beta m_{n,2} \\
\vdots & & & & \\
0 & 0 & \ldots & \alpha^{n-1} & -\sum_{i=0}^{n-2} (-1)^{n-2-i} \beta^{n-1-i} \alpha^i m_{n,i} \\
0 & 0 & \ldots & 0 & \alpha^n - \sum_{i=0}^{n-1} (-1)^{n-1-i} \beta^{n-i} \alpha^i m_{n,i} \\
\end{array} \right)
\]

8
Therefore \(\det \left(\alpha M_{i+j;\omega} + \beta M_{i+j+1;\omega} \right)_{0 \leq i,j \leq n-1} = \alpha^n - \sum_{i=0}^{n-1} (-1)^{n-1-i} \beta^{n-i} \alpha^i m_{n,i} = \sum_{i=0}^{n} (-\beta)^{n-i} \alpha^i m_{n,i} = \sum_{i=0}^{n} (-\beta)^{n-i} \alpha^i P^*_{n-i} \left(\frac{-\omega}{2} \right) \). This can be written explicitly as \(\det \left(\alpha M_{i+j;\omega} + \beta M_{i+j+1;\omega} \right)_{0 \leq i,j \leq n-1} = \)

\[
(-\beta)^n \sum_{k=0}^{n/2} (-\alpha/\beta)^k m_{n,k}
= (-\beta)^n U_n \left(\frac{-\alpha/\beta - \omega}{2} \right) = (-\beta)^n \sum_{k=0}^{n/2} \binom{n-k}{k} (-1)^k (-\alpha/\beta - \omega)^{n-2k}
= \sum_{k=0}^{n/2} \binom{n-k}{k} (-1)^k \beta^{2k} (\alpha + \beta \omega)^{n-2k}
= \frac{2^{-n-1}}{\sqrt{(\alpha + \omega \beta)^2 - 4\beta^2}} \times \left(\left(\sqrt{(\alpha + \omega \beta)^2 - 4\beta^2 + \alpha + \omega \beta} \right)^{n+1} + \left(\sqrt{(\alpha + \omega \beta)^2 - 4\beta^2 - \alpha - \beta \omega} \right)^{n+1} \right)
\]

If \(\alpha = \beta = 1 \), then \(\det \left((M_{i+j;\omega} + M_{i+j+1;\omega})_{0 \leq i,j \leq n-1} \right) = \)

\[
\frac{1}{2^{n+1}(\omega + 1)^2 - 4} \left(\left(1 + \omega + \sqrt{(\omega + 1)^2 - 4} \right)^{n+1} - \left(1 + \omega - \sqrt{(\omega + 1)^2 - 4} \right)^{n+1} \right)
= \sum_{k=0}^{n} (-1)^{n-k} \binom{k}{n-k} (\omega + 1)^{2k-n}
\]

which approaches \(n + 1 \) if \(\omega \to 1 \). In the case of Dyck path, we obtain \(\delta_{0,n} \) for this determinant of the sum of matrices. If \(\beta = 1 \) and \(\alpha = 0 \), then the determinant is the second Hankel determinant of the Motzkin numbers,

\[
det \left((M_{i+j+1;\omega})_{0 \leq i,j \leq n-1} \right) = \sum_{k=0}^{n/2} \binom{n-k}{k} (-1)^k \omega^{n-2k}
\]

If \(\alpha = 1 \) and \(\beta = 0 \) then \(\det (M_{i+j;\omega})_{0 \leq i,j \leq n-1} = 1 \), independent of \(\omega \) (see (7). The same approach also shows the recursion

\[
|M_{i+j+2;\omega}|_{0 \leq i,j \leq n-1} = |M_{i+j+2;\omega}|_{0 \leq i,j \leq n-2} + |M_{i+j+1;\omega}|_{0 \leq i,j \leq n-1}
\]
4.2 Motzkin in a band

The number of Motzkin paths staying strictly below the line \(y = k \) for \(k > 0 \) is known to have the generating function [4, Proposition 12]

\[
\sum_{n \geq 0} M_n^{(k)} t^n = \mu(t) \frac{1 - (t\mu(t))^{2k}}{1 - (t\mu(t))^{2(k+1)}} = \frac{1}{t} \left(\frac{1}{t\mu(t)} \right)^{k+1} - \frac{(t\mu)^{k+1}}{t}
\]

\(k \)	0	1	2	3	4	5	6	7	8	\(n \)
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	4	9	21	51	127	323	835
2	0	1	3	9	25	69	189	518	1422	
3	0	1	4	14	44	133	392	1140		
4	0	1	5	20	69	217	657	2002		
5	0	1	6	28	102	369	1257	4017		
6	0	1	7	38	140	546	1968	6725		

Thus \(M_n^{(k)} \) is given in row 0.

From \(\mu(t) (1 - \omega t) - 1 = t^2 \mu(t)^2 \) (see [4]) follows

\[
\begin{align*}
\mu_{1,2}(t) &= \left(1 - \omega t \pm \sqrt{(1 - \omega t)^2 - 4t^2} \right) / (2t^2) \\
t\mu_{1,2}(t) &= \left(1 - \omega t \pm \sqrt{(1 - \omega t)^2 - 4t^2} \right) / (2t)
\end{align*}
\]

thus

\[
\mu_1 + \mu_2 = (1 - \omega t) / t^2 \text{ and } \mu_1 \mu_2 = 1 / t^2
\]

Hence

\[
\sum_{n \geq 0} M_n^{(k)} t^n = \frac{1}{t} \frac{(t\mu_1)^{k} - (t\mu_2)^{k}}{(t\mu_1)^{k+1} - (t\mu_2)^{k+1}} = \frac{1}{t} \frac{(t\mu_2)^{k} - (t\mu_1)^{k}}{(t\mu_2)^{k+1} - (t\mu_1)^{k+1}}
\]

\[
\begin{align*}
&= \sum_{j=0}^{(k-1)/2} \frac{(1)^j (k-1-2j) (1-\omega t)^{k-1-2j}}{1} \\
&= \sum_{j=0}^{k/2} (1)^j (k-j) (1-\omega t)^{k-2j} \\
&= \frac{\sum_{i=0}^{k} m_{k-i} t^{k-i}}{\sum_{i=0}^{k} m_{k-i} t^{k-i}}
\end{align*}
\]

(see [5]). The OEIS lists many special cases for \(k \); here are a few, with \(\omega = 1 \).

1. \(\sum_{n \geq 0} M_n^{(1)} t^n = \frac{1}{1-t} \leftrightarrow 1, 1, 1, 1, \ldots \)

2. \(\sum_{n \geq 0} M_n^{(2)} t^n = \frac{1-t}{(1-t)^2} = 1 + t + 2t^2 + 4t^3 + 8t^4 + 16t^5 \ldots \) thus \(1, 1, 2, 4, 8, 16, 32, 64, \ldots \) the powers of 2.

3. \(\sum_{n \geq 0} M_n^{(3)} t^n = \frac{2t-1}{(1-t)(2t+2t^2-t^3)} \) thus \(1, 1, 2, 4, 9, 21, 50, 120, \ldots \) (A171842)
4. \(\sum_{n \geq 0} M^{(4)}_{n,1} t^n = \frac{(1 - 3t + t^2 + t^3)}{(1 - 4t + 3t^2 + 2t^3 - t^4)} \), thus 1, 1, 2, 4, 9, 21, 51, 127, 322, 826, \ldots: (A005207), generating function by Alois P. Heinz.

The special form of the generating function
\[
\sum_{n \geq 0} M^{(k)}_{n,\omega} t^n = \sum_{i=0}^{k} \frac{m_{k-1,i} t^{k-i}}{m_{k,i} t^{k-i}}
\] (8)
works with weight \(\omega \), for all \(k = 1, 2, \ldots \). It is equivalent to the recursion
\[
\sum_{j=0}^{n} M^{(k)}_{n-j} m_{k,k-j} = 0 \quad \text{for all } n \geq k, \text{ with initial values } \sum_{j=0}^{n} M^{(k)}_{n-j} m_{k,k-j} = m_{k-1,k-1-n} \text{ for all } n = 0, \ldots, k - 1.
\]

5 **Horizontal steps of length** \(w \)

A “natural” generalization of Motzkin paths is a lattice path \(W \) that takes horizontal steps of some positive length \(w \), weighted by \(\omega \). We would like to see similar results as (8) in such cases. However, we have a result only for the case \(w = 2 \), the Schröder paths.

\(n \)	\(\omega \)	\(\mu_w (t; \omega) \)
0	1	0
1	0	6
2	10	26
3	14	52
4	20	108
5	28	192
6	35	288
7	48	384
8	63	512

\(\mu_w (t; \omega) \) is well known,
\[
\sum_{n \geq 0} W_{n,\omega} t^n = \frac{1 - \omega t^w - \sqrt{(1 - \omega t^w)^2 - 4t^2}}{2t^2} := \mu_w (t; \omega)
\] (9)
The recursion can be reformulated as
\[W(n, j; \omega) = W(n + 1, j - 1; \omega) - W(n, j - 2; \omega) - \omega W(n + 1 - w, j - 1; \omega) \quad \text{for} \ m \geq n \]

We find the generating function identity
\[\sum_{i \geq 0} W(i, j; \omega) t^i = \]
\[-\omega \sum_{i \geq w-1} W(i + 1 - w, j - 1; \omega) t^i \]
\[= \sum_{i \geq 0} W(i + 1, j - 1; \omega) t^i - \omega \left(\sum_{i \geq 1} W(i + 1, j - 1; \omega) t^{i+1+w-1} \right) \]
\[-\sum_{i \geq 0} W(i, j - 2; \omega) t^i \]
\[= t^{-1} \sum_{i \geq 0} W(i + 1, j - 1; \omega) t^{i+1} - \omega t^{w-1} \left(\sum_{i \geq 1} W(i + 1, j - 1; \omega) t^{i+1} \right) \]
\[-\sum_{i \geq 0} W(i, j - 2; \omega) t^i \]
\[= (t^{-1} - \omega t^{w-1}) \left(\sum_{i \geq 0} W(i, j - 1; \omega) t^i - \delta_{j,1} \right) - \sum_{i \geq 0} W(i, j - 2; \omega) t^i \]

Let \(\mathcal{W}(t, j; \omega) = \sum_{i \geq 0} W(i, j; \omega) t^i \). In this notation,
\[\mathcal{W}(t, j; \omega) = \frac{1 - \omega t^w}{t} \mathcal{W}(t, j - 1; \omega) - \mathcal{W}(t, j - 2; \omega) \quad \text{for} \ j > 1 \quad (10) \]
\[\mathcal{W}(t, 1; \omega) = \frac{1}{t} \left((1 - \omega t^w) \mathcal{W}(t, 0; \omega) - 1 \right) \]

For example,
\[\mathcal{W}(t, 2; \omega) = \frac{(1 - \omega t^w)}{t} \mathcal{W}(t, 1; \omega) - \mathcal{W}(t, 0; \omega) = \frac{(1 - \omega t^w)}{t} \left((1 - \omega t^w) \mathcal{W}(t, 0; \omega) - 1 \right) - \mathcal{W}(t, 0; \omega) \]
\[= \left(\frac{(1 - \omega t^w)^2}{t^2} - 1 \right) \mathcal{W}(t, 0; \omega) - \frac{(1 - \omega t^w)}{t^2}, \quad \text{and} \quad \mathcal{W}(t, 0; \omega) = \mu_w(t; \omega) \text{ is given in} \] (10).

\[\mathcal{W}(t, 3; \omega) = \frac{(1 - \omega t^w)}{t} \mathcal{W}(t, 2; \omega) - \mathcal{W}(t, 1; \omega) \]
\[= \frac{(1 - \omega t^w)}{t^2} \left(\left(\frac{(1 - \omega t^w)^2}{t^2} - 1 \right) \mathcal{W}(t, 0; \omega) - \frac{(1 - \omega t^w)}{t^2} \right) - \frac{t}{t^2} \left((1 - \omega t^w) \mathcal{W}(t, 0; \omega) - 1 \right) \]
\[= \left(\frac{(1 - \omega t^w)^2}{t^2} - 2 \right) \frac{(1 - \omega t^w)}{t^2} \mu_w(t; \omega) + \frac{1}{t^2} - \frac{(1 - \omega t^w)^2}{t^2} \]

We find an explicit expression for \(\mathcal{W}(t, j; \omega) \) in the next section.

5.2 Solution to Recursion for \(\mathcal{W} \) and \(\mathcal{W}^{(k)} \)

The linear recursion (10) is called Fibonacci-like. It is of the form
\[\sigma_n = u \sigma_{n-1} + v \sigma_{n-2} \]
with \(u = \frac{1 - \omega t^w}{t^w} \) and \(v = -1 \), for \(n > 1 \). We know the initial values \(\sigma_0 \) and \(\sigma_1 = u \sigma_0 - 1 / t \).

Hence \(\sigma_n = [t^n] \frac{\sigma_0 + (\sigma_1 - u \sigma_0)t}{1 - u - v t} = [t^n] \frac{\sigma_0 - \sigma_1}{1 - u - v t} \) in this case, or \(\sigma_n = [t^n] \left(\frac{\sigma_0 - \sigma_1}{t} \right) \sum_{i=0}^{\infty} \binom{i}{j} (-1)^j \omega^{i-j} t^{j+2j} \)

\[
= \sigma_0 \sum_{j=0}^{n} \binom{n-j}{j} (-1)^j \left(\frac{1 - \omega t^w}{t} \right)^{n-2j} - \frac{1}{t} \sum_{j=0}^{n-1} \binom{n-1-j}{j} (-1)^j \left(\frac{1 - \omega t^w}{t} \right)^{n-1-2j}
\]

Let us define

\[
p_n(t) := \sum_{j=0}^{n} \binom{n-j}{j} \left(\frac{1 - \omega t^w}{t} \right)^{n-2j} (-1)^j
\]

Hence

\[
\mathcal{W}(t, j; \omega) = \left(\frac{1 - \omega t^w - \sqrt{(1 - \omega t^w)^2 - 4t^2}}{2t^2} \right) p_j(t) - p_{j-1}(t) / t
\]

where \(p_j = 0 \) for all \(j < 0 \).

The generating function \(\mathcal{W}^{(k)}(t, j; \omega) = \sum_{n \geq 0}^{(k)} W^{(k)}(n, j; \omega) t^n \) is generating the case where the lattice paths stay strictly below \(y = k \); the numbers \(W^{(k)}(n, j; \omega) \) are the number of paths with \(\omega \)-weighted horizontal steps of length \(w \), and diagonal up and down steps, that do not reach the line \(y = k \), and stay above the \(x \)-axis. That means, \(0 \leq j < k \). We also know \(\mathcal{W}^{(k)}(t, 0; \omega) \)

\[
= \sum_{n \geq 0} W^{(k)}_n t^n = \mu_w(t; \omega) \frac{1 - (t\mu_w(t; \omega))^{2k}}{1 - (t\mu_w(t; \omega))^{2(k+1)}}
\]

\[
= \frac{1 - \omega t^w - \sqrt{(1 - \omega t^w)^2 - 4t^2}}{2t^2} \frac{1 - \left(\frac{1 - \omega t^w - \sqrt{(1 - \omega t^w)^2 - 4t^2}}{2t} \right)^{2(k+1)}}{1 - \left(\frac{1 - \omega t^w - \sqrt{(1 - \omega t^w)^2 - 4t^2}}{2t} \right)^{2(k+1)}}
\]

The recursion is the same as for \(\mathcal{W}(t, j; \omega) \). Only the initial values have changed (see \(\mathcal{W}^{(k)}(t, 0; \omega) \) above).

We get

\[
\mathcal{W}^{(k)}(t, j; \omega) = \left(\mu_w(t; \omega) \frac{1 - (t\mu_w(t; \omega))^{2k}}{1 - (t\mu_w(t; \omega))^{2(k+1)}} \right) p_j(t) - p_{j-1}(t)
\]

and \(\sum_{n \geq 0} W^{(k)}_n t^n \)
The power series \(\sum_{n=0}^{\infty} S(n,j;\omega) t^j \) is given in (12). For the compressed Schröder numbers this equation says

\[
S(t,j;\omega) = \sum_{n=0}^{\infty} S(n,j;\omega) t^j = \left(\frac{1 - \omega t - \sqrt{(1-\omega t)^2 - 4t}}{2t} \right) p_j(t) - p_{j-1}(t)/t
\]
where

\[p_n(t) = t^{-n} \sum_{j=0}^{n} \binom{n-j}{j} t^j (1 - \omega t)^{n-2j} (-1)^j \] \hspace{1cm} (15)

All references to Schröder numbers will from now on mean the compressed Schröder numbers. Note that

\[S^{(k)}(t; \omega) = \sum_{n \geq 0} S_n^{(k)} t^n = \frac{p_{k-1}(t)}{t p_k(t)} \] \hspace{1cm} (16)

by (14).

6.1 Inverse Schröder numbers

From (14) we see that

\[\mu_s(t) = 1 + \omega t^2 \mu_s(t) + t^2 \mu_s(t)^2. \]

Hence

\[\phi(t \mu_s(t)) = \mu_s(t) = 1 + \omega t^2 \mu_s(t) + t^2 \mu_s(t)^2 \]

\[\phi(t) = 1 + \frac{\omega t^2}{\phi(t)} + t^2 \]

thus \(\phi(t) = \frac{1}{2} + \frac{1}{2} t^2 + \frac{1}{2} \sqrt{(1 + t^2)^2 + 4t^2 \omega}, \) a power series in \(t^2. \) We let \(\xi = t^2 \)

and get

\[\phi(\xi) = \frac{1}{2} + \frac{1}{2} \xi + \frac{1}{2} \sqrt{(1 + \xi)^2 + 4\xi \omega} \]

\[\mu_s(\xi) = 1 + \omega \xi \mu_s(t) + \xi \mu_s(\xi)^2 \]

\[= \frac{1 - \omega \xi - \sqrt{(1 - \omega \xi)^2 - 4\xi}}{2 \xi} \]

Lagrange inversion tells us that for all \(0 \leq i \leq k \) holds

\[(i + 1) \left[\mu_s^{-k-1} \right]_{k-i} = (k + 1) \left[\phi^{-i-1} \right]_{k-i} = (k + 1) s_{k,i} \]
and therefore

\[s_{k,j} = [\mu_{s}^{-k-1}]_{k-j} = \frac{j+1}{k+1} \sum_{m=0}^{k-j} \left(\frac{1 - \omega t - \sqrt{(1 - \omega t)^2 - 4t}}{2t} \right)^{k-j} \]

\[= \frac{j+1}{k+1} \sum_{m=0}^{k-j} \left(\frac{1 - \omega t + \sqrt{(1 - \omega t)^2 - 4t}}{4t} \right)^{k-j} \]

\[= \frac{j+1}{k+1} \left(-1 \right)^{k-j} \sum_{m=0}^{k-j} \frac{(k+1-2m)}{(k-j-m)} \frac{j+1}{k-m+1} \left(\frac{1 - \omega t}{n} \right)^{k-j-m}, \]

the compressed weighted inverse Schröder numbers. We need the following polynomials: \(s_{n,k} t^{n-k} \)

\[= \sum_{n=0}^{\infty} \frac{1}{n-m+1} \left(\frac{n-m+1}{n-k} \right) \left(\frac{n+1-2m}{n-k-m} \right) t^{n-k} (-1)^{n-k} \frac{1}{n-m+1} \left(\frac{n-m+1}{n-k-m} \right) \left(\frac{n+1-2m}{n-k-m} \right) t^{n-k} \]

\[= t^{n} \sum_{m=0}^{n} \frac{1}{n-m+1} \left(\frac{n-m+1}{n-k} \right) \left(\frac{n+1-2m}{n-k-m} \right) (-1)^{n+1} \left(1 - \omega t \right)^{n-2m} t^{m} \]

Hence

\[s_{n}(t) = \sum_{k \geq 0} s_{n,k} t^{n-k} \]

\[= \sum_{m=0}^{n} \left(\frac{t \omega m}{n-m+1} - 1 \right) \left(\frac{n-m+1}{m} \right) (-1)^{m+1} \left(1 - \omega t \right)^{n-2m} t^{m} \]

\[
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 & 0 & 0 \\
2 & -4 & 1 & 0 & 0 & 0 \\
-2 & 8 & -6 & 1 & 0 & 0 \\
2 & -12 & 18 & -8 & 1
\end{array}
\]

The compressed inverse \((s_{n,k})\) for \(\omega = 1\)
This matrix is A080246 in the OEIS. At the same reference we find the generating function of the k-th column,

$$\sum_{n \geq k} s_{n,k} t^n = \left(\frac{1 - t}{1 + t}\right)^k.$$

Also,

$$\sum_{n \geq 0} \sum_{k=0}^n s_{n,k} t^{n-k} = \sum_{k=0}^\infty t^{-k} \left(\frac{1 - t}{1 + t}\right)^k = \frac{t(1 + t)}{2t + t^2 - 1}.$$

Example: $\sum_{n \geq 0} s_{4,k} t^{4-k} = s_4(t) = 1 - 8t + 18t^2 - 12t^3 + 2t^4$.

6.2 Delannoy numbers

The numbers $D(n,k) = \sum_{l=0}^n \binom{k}{l} \binom{n+k-l}{k} \omega^l$ are the Delannoy numbers; the numbers $D(n,n+j)$ are counting all weighted Grand Schröder paths to $(2n+j,j)$. Hence they satisfy the recursion

$$D(n+1,n+j) = \omega D(n-1,n-1+j) + D(n,n+j-1) + D(n-1,n+j)$$ \hspace{1cm} (18)

j	1	0	7 + 6ω	6 + 5ω	21 + 30$\omega + 10\omega^2$	129		
5	1	0	4 + 3ω	0	15 + 20$\omega + 6\omega^2$	0		
4	1	0	3 + 2ω	0	10 + 12$\omega + 3\omega^2$	0		
3	1	0	5 + 4ω	0	6 + 6$\omega + \omega^2$	63		
2	1	0	0	0	0	7		
1	1	0	0	0	0	0		
0	1	2	2 + ω	0	6 + $\omega + \omega^2$	0		
$n \to$	0	1	2	3	4	5	6	7

Uncompressed Grand Schröder numbers ($\omega = 1$)

The generating function

$$\sum_{n=0}^\infty \sum_{l=0}^n \binom{k}{l} \binom{n+k-l}{n-l} \omega^l t^n = \frac{1}{1 - t} \left(\frac{1 + t\omega}{1 - t}\right)^k$$

shows that $D(n,k)$ is a Sheffer polynomial of degree n in k. The Delannoy polynomial is of the form

$$d_k(t) = \sum_{j=0}^{k} D(k-j,j) t^j = \sum_{j=0}^{k} \sum_{l=0}^{k-j} \binom{j}{l} \binom{k-l}{j} \omega^l t^j = \sum_{l=0}^{k} \binom{k-l}{l} \omega^l t^l (1 + t)^{k-2l}$$ \hspace{1cm} (17)
and has generating function
\[
\sum_{k=0}^{\infty} d_k(t)x^k = \frac{1}{1 - x - t(x + \omega x^2)}.
\]

From (18) follows for \(\omega = 1\) that
\[
d_{k-1}(t) = td_{k-1}(t) + td_{k-2}(t) + d_k(t)
\]
Also for \(\omega = 1\) holds
\[
p_k(t) = t^{k-1} \sum_{l=0}^{k} \binom{k-l}{l} t^l (1 - t)^{k-2l} \omega = t^{k-1} d_k(-t)
\]
(see (15)). Hence
\[
S^{(k)}(t; 1) = \sum_{n \geq 0} S_n^{(k)} t^n = \frac{d_{k-1}(-t)}{tp_k(t)} = \frac{d_{k-1}(-t)}{d_k(-t)}
\]
(19)
by (16). This shows an intimate connection between the generating function of the Schröder numbers in a band and the Delannoy polynomials, when \(\omega = 1\).

The Delannoy polynomials at negative argument, \(d_k(-t)\), satisfy for \(\omega = 1\) the same recursion as \(d_k(t)\),
\[
d_{k-1}(-t) = td_{k-1}(-t) + td_{k-2}(-t) + d_k(-t).
\]
This follows again from (18).

Another connection exists with the inverse polynomial \(s_n(t)\); from (17)
\[
s_n(t) = \sum_{k \geq 0} s_{n,k} t^{n-k} =
\]
t\(\omega \sum_{m=1}^{n} \binom{n-m}{m-1} (-1)^{m+1} (1 - \omega t)^{n-2m} t^m - \sum_{m=0}^{n} \binom{n-m+1}{m} (-1)^{m+1} (1 - \omega t)^{n-2m} t^m
\]
follows for \(\omega = 1\)
\[
s_n(t) = \frac{t^2}{1-t} d_{n-1}(-t) + d_{n+1}(-t) / (1-t).
\]
(20)
and vice-versa,
\[
d_{n+1}(-t) = (1-t) s_n(t) - t^2 d_{n-1}(-t)
\]
\[
= (1-t) \sum_{i=0}^{n/2} t^{2i} (-1)^{i} s_{n-2i}(t) + (n \mod 2) (-1)^{(n+1)/2} t^{n+1}
\]
Hence the generating function of the bounded Schröder numbers can for \(\omega = 1\) be written as
\[
S^{(k)}(t; 1) = \sum_{n \geq 0} S_n^{(k)} t^n = \frac{(1-t) \sum_{i=0}^{(k-2)/2} t^{2i} (-1)^{i} s_{k-2i-2}(t) + (k \mod 2) (-1)^{(k-1)/2} t^{k-1}}{(1-t) \sum_{i=0}^{(k-1)/2} t^{2i} (-1)^{i} s_{k-1-2i}(t) + ((k-1) \mod 2) (-1)^{k/2} t^{k}}
\]
7 Schröder in a Band

From (19) follows for \(\omega = 1 \) the generating function of the (compressed) bounded (by \(k \)) Schröder numbers,

\[
S^{(k)}(t; 1) = \frac{d_{k-1}(-t)}{d_k(t)}
\]

(21)

Example: \(S^{(4)}(t; 1) = \frac{d_3(-t)}{d_4(t)} = \frac{1-5t+5t^2-t^3}{1-7t+13t^2-7t^3+t^4} \)

\[
= 1 + 2t + 6t^2 + 22t^3 + 89t^4 + 377t^5 + 1630t^6 + 7110t^7 + 31130t^8 + 136513t^9 + 599041t^{10} + 2629418t^{11} + 11542854t^{12} + 50674318t^{13} + 222470009t^{14} + 976694489t^{15} + 4287928678t^{16} + O(t^{17})
\]

The compressed bounded (\(k = 4 \)) Schröder numbers (\(\omega = 1 \))

\[
\begin{array}{cccccccccc}
\uparrow m \\
k=4 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 1 & 7 & 36 & 168 & 756 & 3353 \\
2 & 1 & 6 & 29 & 132 & 588 & 2597 & 11430 \\
1 & 1 & 4 & 16 & 67 & 288 & 1253 & 5480 & 24020 \\
0 & 1 & 2 & 6 & 22 & 89 & 377 & 1630 & 7110 & 31130 \\
\end{array}
\]

From the recursion (13) follows that

\[
d_{k-1}(-t) = td_{k-1}(-t) + td_{k-2}(-t) + d_k(-t)\]

and therefore

\[
d_{k-1}(-t) = \frac{t}{1-t}d_{k-2}(-t) + \frac{1}{1-t}d_k(-t)
\]

Hence

\[
d_{k-1}(-t) - td_{k-2}(-t) = \frac{t^2}{1-t}d_{k-2}(-t) + \frac{1}{1-t}d_k(-t) = s_{k-1}(t)
\]

(see (20)) and

\[
\frac{d_{k-1}(-t)}{d_k(-t)} \left(d_{k-1}(-t) - td_{k-2}(-t) \right) - \frac{d_{k-1}(-t)}{d_k(-t)} s_{k-1}(t) = 0
\]

Therefore

\[
\frac{d_{k-1}(-t)}{d_k(-t)} s_{k-1}(t) = S^{(k)}(t, k-1; 1) - (d_{k-2}(-t) - td_{k-3}(-t))
\]

(see (21)).

Theorem 3 The power series part of \(t^{-k}S^{(k)}(t; 1) s_{k-1}(t) \) equals \(t^{-k}S^{(k)}(t, k-1; 1) \).

Example: (a) \(t^{-4}S^{(4)}(t; 1) s_3(t) = \frac{(t-1)(2t^2-8t^2+6t-1)(1-4t^2)}{(1-4t^2+7t^3-7t^4+7t^5)t^4} \)

\[
= (t^{-4} - 4t^{-3} + 2t^{-2}) + 1 + 7t + 36t^2 + 168t^3 + 756t^4 + 3353t^5 + 14783t^6 +
\]
\[65016t^7 + 285648t^8 + 1254456t^9 + 5508097t^{10} + 24183271t^{11} + 106173180t^{12} + O(t^{13}) \]
\[(b) \ t^{-4} S^{(4)}(t, 4 - 1; 1) = t^{-4} \frac{1-5t+5t^2-t^3}{1-7t+13t^2-7t^3+t^4} \left(1 - 6t + 8t^2 - 2t^3 \right) - \frac{2t^2+1-4t}{t^4} = \]
\[1 + 7t + 36t^2 + 168t^3 + 756t^4 + 3353t^5 + 14783t^6 + 65016t^7 + 285648t^8 + 1254456t^9 + 5508097t^{10} + 24183271t^{11} + 106173180t^{12} + O(t^{13}) \]

References

[1] Bernhart, F. R. (1999) Catalan, Motzkin, and Riordan numbers. *Discrete Math.* **204**, 73 – 112.

[2] Cameron, N. T. and Yip, A. C. (2010) Hankel Determinants of Sums of Consecutive Motzkin Numbers. *Linear Algebra and its Appl.* **434**, 712–722.

[3] J. Cigler and C. Krattenthaler (2011) Some determinants of path generating functions, *Adv. Appl. Math.* **46**, 144-174.

[4] Flajolet, P. (1980), Combinatorial aspects of continued fractions. *Discrete Math.* **32**, 125 –161.

[5] Gould, H.W. (1972) *Combinatorial Identities*, Morgantown, W. Va.

[6] Merlini, D., Rogers, D. G., Sprugnoli, R., and Verri, M.C. (1997). On some alternative characterizations of Riordan arrays. *Canadian J. Math.* **49**, 301-320.

[7] Motzkin, T. (1948) Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. *Bull. Amer. Math. Soc.* **54**, Number 4 , 352-360.

[8] Ralston, A. and Rabinowitz, P. (1978), *A First Course in Numerical Analysis*, Mcgraw-Hill, ISBN 0070511586

[9] Rogers, D.G. (1978). Pascal triangles, Catalan numbers and renewal arrays, *Discrete Math.* **22**, 301-310.

[10] Schröder, E. (1870) Vier kombinatorische Probleme. *Z. Math. Phys.* **15**, 361 – 376.