 Orbital and periorbital migration of silicone oil associated with emphysema development after retinal detachment repair – Case report and literature review

Ahmed Algethami a, b, Silvana Artioli Schellini c, Sahar M. Elkhamary d, e, Mohammad A. Talea f, Valmore A. Semidey a, *

a Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
b Eye Center, King Abdullah Medical City, Makkah, Saudi Arabia
c Medical School, State University of Sao Paulo, Sao Paulo State, Brazil
d Diagnostic Imaging Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
e Department of Diagnostic Radiology - Mansoura Faculty of Medicine, Mansoura, Egypt
f Saudi German Hospital, Aseer, Saudi Arabia

ARTICLE INFO

Keywords:
Air-fluid exchange
Emphysema
Orbital
Pars plana vitrectomy
Periorbital
Retinal detachment
Silicone oil

ABSTRACT

Purpose: To report a very rare case of silicone oil (SO) migration and emphysema development in the orbit and periorbital tissue, including the lids and subconjunctival space, after a fourth pars plana vitrectomy (PPV) for retinal detachment (RD) treatment.

Observations: A 53-year-old woman with a recurrent rhegmatogenous RD in the right eye underwent a fourth PPV under local anesthesia and 23-gauge vitrectomy with fluid-air exchange and SO injection. Localized choroidal detachment occurred during fluid-air exchange near the end of the surgery. High-pressure infusion of air was used as a temporary control measure prior to SO injection. In the early postoperative period, the patient developed hemifacial and periorbital swelling and the air trapped in the upper lid was associated with lid ptosis and conjunctival chemosis. The emphysema resolved with clinical management, and the mechanical ptosis subsided after partial SO removal from the lid.

Conclusions and Importance: The SO migration and emphysema in our case were presumably related to the multiple previous sclerotomies. Periorbital emphysema can show spontaneous resolution, but the migrated SO requires surgical management.

1. Introduction

Silicone oil (SO) has been used as intraocular tamponade after vitrectomy to repair complex retinal detachment (RD) since the 1960s.1 This material is very stable, nontoxic, and insoluble in body fluids. However, the use of SO can lead to complications, including cataract, glaucoma, SO emulsification, corneal decompensation, subretinal SO migration, fibrous epiretinal or subretinal proliferations, and migration to the neck, nasopharynx, or through the optic nerve to the cerebral ventricles and subarachnoid space.2,3,4 Subcutaneous emphysema is another complication of vitrectomy. Emphysema is defined as gas or air trapped in the subcutaneous tissue plane. Air can escape from the eye during vitrectomy at the time of fluid-air exchange. However, orbital emphysema more frequently results from orbital/sinus fractures or can occur also after surgical procedures such as balloon dacryoplasty, orbital decompression, maxillofacial trauma repair, tracheostomy, dental or sinus procedures, positive-pressure mechanical ventilation, bronchopleural fistula, infections, and compressive air injuries.3,5 Although orbital emphysema can be potentially vision-threatening, periorbital subcutaneous emphysema is usually a self-limiting condition.

In patients who undergo SO injection after fluid-gas exchange in a vitrectomy, the SO may migrate with or without emphysema association. However, migration of the SO to the subconjunctival space reaching the periorbital tissues and lids is a very uncommon complication of retinal procedures. Only 13 previously reported cases have...
described SO migration to the lids, and only two were associated with emphysema-inducing lid mechanical ptosis. These cases are summarized in Table 1.

We present a literature review and describe the third case of diffuse migration of SO into the subconjunctival, orbital, periorbital, and upper lid spaces that was associated with orbital and hemifacial emphysema in a patient with a history of multiple pars-plana vitrectomies (PPVs). We also discuss the clinical aspects, pathogenic mechanisms, and outcomes after treatment.

Table 1

Author	Age	Sex	Symptoms	Type of retina surgery	Previous eye surgery	Exams	Histological exam	Treatment	Source of tamponade migration	
Quintyn et al., 2003	57	M	Lump in the upper lid 19 years after retina surgery	Vitrectomy with external drainage of subretinal fluid and SO injection	Two previous RD surgeries	CT scan: homogeneous thickening of the eyelid with density identical to the vitreous cavity silicone	Silicone cysts surrounded by collagen fibrosis associated with fibro-collagen reaction	Debulking with ptosis improvement	Sclerotomy site for external drainage of subretinal fluid. Elevated IOP	
Donker et al., 2005	66	M	Swelling and redness of the upper lid 6 months after retina surgery	SO and scleral buckle removal	Vitrectomy with scleral buckle and SO injection 8 years prior	Many cysts in the orbicularis and pre- aponeurotic fat	Diffuse swelling, redness and upper lid ptosis. Cysts in the epibulbar conjunctiva	Histiocytic cells with foamy cytoplasm and vacuoles suggestive of histiocytic reaction to SO Lipogranulomatous inflammation in the lid tissues	Ptotis repair Blepharoplasty and debulking	Trapped SO in epibulbar space previously occupied by the buckle Leakage from sclerotomy during or after surgery
Santosella et al., 2011	48	F	Ptosis, edema, “Xanthelasma”	Phacoemulsification and SO removal	Vitrectomy with scleral buckling and 5000 centistoke SO injection	Cysts in the lid and subconjunctival space	Skin, orbicularis muscle, preaponeurotic fat and conjunctiva with vacuoles, scattered aggregations of histiocytic cells with foamy cytoplasm, suggestive for a histiocytic reaction to SO.	Cysts removal, ptosis repair	Not specified	
Damasceno et al., 2014	55	M	Crepation in soft tissues after retina surgery	23-gauge PPV with fluid-gas exchange	Traumatic orbital floor fracture	CT scan: bilateral emphysema in the face, orbit and mediastinum	Not done	Systemic antibiotics and steroids	High gas pressure during fluid exchange associated to orbital fracture Leakage of SO through melted sclera	
Lee et al., 2014	30	M	Pain and recidive of endophthalmitis suspected	Pars plana vitrectomy and SO injection	Endogenous endophthalmitis	MRI: shrinkage of the eyeball and large subconjunctival and orbital mass	SO globules with inflammatory cellular infiltration, with SO droplets surrounded by giant cells Granulomatous reaction. Macrophages with clear vacuoles and SO deposits. Fibrosis.	Exeresis of subconjunctival and orbital mass	Suturing site for scleral buckle fixation	
Deguchi et al., 2014	65	F	Swelling of the upper lid, ptosis and SO in the subconjunctival space 2 month after retina surgery	SO removal and cyst excision	Two 20-gauge vitrectomies with scleral buckling for RRD with PVR	Cyst in the peribulbar space, upper lid and subconjunctival	Not done	Observation	24-gauge needle perforation during peribulbar anesthesia	
Asmani et al., 2015	77	M	Crepation and bilateral face emphysema extending up the chest	Scleral buckle + PPV + SO injection	Globe perforation during peribulbar anesthesia with vitreous hemorrhage and RD	Face, neck and extending up the chest	Not done	Observation	24-gauge needle perforation during peribulbar anesthesia	
Osaki et al., 2015	63	F	Painless mass and ptosis upper lid	PPV + Silicone oil injection followed by 8 month previous SO removal.	ECCE + Congenital glaucoma	CT scan: hyperdense, lobulated lesions in the upper lid. Ultrasound biomicroscopy: cystic formations with anechoic content underneath the muscular layer of the upper eyelid	A well-delimited mass with pseudocysts and fibrosis within a fat tissue. Mild chronic inflammatory infiltrate. Probably pseudocysts were previously filled with SO.	Not addressed	Leakage of gas through scleratomies	
Iniesta Sanchez	40	F	Low visual acuity, upper lid ptosis, superior and inferior	Scleral buckle + 23-gauge PPV + 18% SF6	ECC + Congenital glaucoma	Not done	Hyperbaric oxygen therapy. Orbital	Not addressed	Leakage of gas through scleratomies	

2. Case report

A 53-year-old woman presented to our center, with a history of ocular surgery for phacoemulsification with intraocular lens implantation and three previous pars plana vitrectomies (PPVs) with SO injection for a recurrent RD in the right eye (OD). The best-corrected visual acuity (BCVA) after the third RD repair was 2/200 OD. She subsequently presented to the retina clinic with a recurrent RD in the setting of inferior proliferative vitreoretinopathy (PVR). A fourth surgery was planned for...
SO removal, PVR membrane peeling with fluid-air exchange, and SO reinjection.

The fourth PPV was performed under local anesthesia using 8 cc of a peribulbar block (bupivacaine + lidocaine + hyaluronidase) and a 25-gauge needle. The remaining peripheral vitreous was removed via a 23-gauge PPV, and the PVR membranes were removed. Fluid-air exchange was performed, and the subretinal fluid was drained through the 23-gauge PPV, and the PVR membranes were removed. Fluid-air reinjection.

SO removal, PVR membrane peeling with fluid-air exchange, and SO reinjection.

The fourth PPV was performed under local anesthesia using 8 cc of a peribulbar block (bupivacaine + lidocaine + hyaluronidase) and a 25-gauge needle. The remaining peripheral vitreous was removed via a 23-gauge PPV, and the PVR membranes were removed. Fluid-air exchange was performed, and the subretinal fluid was drained through the 23-gauge PPV, and the PVR membranes were removed. Fluid-air reinjection.

SO removal, PVR membrane peeling with fluid-air exchange, and SO reinjection.

The fourth PPV was performed under local anesthesia using 8 cc of a peribulbar block (bupivacaine + lidocaine + hyaluronidase) and a 25-gauge needle. The remaining peripheral vitreous was removed via a 23-gauge PPV, and the PVR membranes were removed. Fluid-air exchange was performed, and the subretinal fluid was drained through the 23-gauge PPV, and the PVR membranes were removed. Fluid-air reinjection.

SO removal, PVR membrane peeling with fluid-air exchange, and SO reinjection.

The fourth PPV was performed under local anesthesia using 8 cc of a peribulbar block (bupivacaine + lidocaine + hyaluronidase) and a 25-gauge needle. The remaining peripheral vitreous was removed via a 23-gauge PPV, and the PVR membranes were removed. Fluid-air exchange was performed, and the subretinal fluid was drained through the 23-gauge PPV, and the PVR membranes were removed. Fluid-air reinjection.

SO removal, PVR membrane peeling with fluid-air exchange, and SO reinjection.

The fourth PPV was performed under local anesthesia using 8 cc of a peribulbar block (bupivacaine + lidocaine + hyaluronidase) and a 25-gauge needle. The remaining peripheral vitreous was removed via a 23-gauge PPV, and the PVR membranes were removed. Fluid-air exchange was performed, and the subretinal fluid was drained through the 23-gauge PPV, and the PVR membranes were removed. Fluid-air reinjection.
was observed in the subconjunctival cysts, leading to the diagnosis of chronic granulomatous reaction secondary to SO injection.

Further examination after three months did not reveal any more air or swelling in the periorbital area, but the lid remained thicker, and the mild upper lid ptosis persisted. Another procedure for SO removal from the lid and subconjunctival space was performed. The eye was stabilized over time, and the retina was attached to a final visual acuity of hand motion for OD.

3. Discussion

We present a rare case of SO migration and emphysema affecting the right upper and lower lids, periorbita, orbit, and the OD subconjunctival space after a fourth vitrectomy to treat a recurrent RD. The emphysema regressed in one month, but even with lid debulking, the persistence of the migrated SO induced mild mechanical ptosis.

Our patient showed simultaneous SO migration and emphysema, which was shown to affect all tissues near the eye on the first postoperative day. A non-inflammatory, painless swelling, and yellowish mass in the upper lid that may or may not be associated with chemosis secondary to SO migration has been reported to persist from 6 months to 19 years after retinal or glaucoma surgery. The diffuse swelling and skin changes can show the appearance of a xanthelasma or pseudo-xanthelasma to the upper lid, and the infiltration of the lid tissues induces mechanical ptosis.

The crepitus observed in almost the entire hemiface of our patient was a sign of air in the tissues, but the severe chemosis prevented us from observing air in the subconjunctival space. Only two previous cases of orbital emphysema following vitreoretinal surgery have been reported, and both involved more overflow than in our case, which affected the orbit, mediastinum, and face or periorbita bilaterally and caused cervicofacial subcutaneous emphysema.

The SO and air migration in our case could have even occurred because of inadvertent eye perforation during the peribulbar anesthesia injection. However, we used a 25-gauge needle for anesthesia injection, which would have substantially limited the migration of heavy SO through the minimal opening. The large emphysema in our case also excludes the possibility of the migrated air originating from the peribulbar block or subconjunctival medication administered at the end of the procedure, since these syringes were carefully purged of air before administration.

A 23-gauge trocar system was used to perform the PPV. SO migration has been reported after PPV using 20,23,11 and 23-gauge needles, but most cases involved more than one previous intraocular surgical procedure, similar to the present case. In addition, SO leakage can result from inadequate or improper closure of sclerotomies, as observed in one
case of suture-less vitrectomy and migration of SO from the vitreous space to the orbit. However, in the present case, all the sclerotomies were secured because the patient was undergoing her fourth surgery, with at least nine previous sclerotomies and the sclera may have been thinner as a result.

The intraoperative choroidal elevation observed in the posterior pole during the air-fluid exchange and the scleral depressed revision of the peripheral retina almost at the end of our surgery subsided once SO was injected inside the eye. Although fluid-air exchange is an essential step in PPV, the infusion of positive air pressure of 30–35 mmHg during flushing of gas into the vitreous cavity and the subsequent injection of SO can allow air or SO to directly escape from the vitreous cavity to the sub-tenon space through the opening of previous sclerotomies, or from a scleral rupture in an occult scleral weak area, leading to emphysema and SO migration. The gradually expandable SF6 tamponade or a mixture of 18% octa-fluor-propane (C3F8) gas can also result in the eventual leakage of microbubbles through sclerotomies toward the periorbital and intracranial space.

The migrated substances in our patient were detected by CT scans and were shown to have reached the subconjunctival space, orbit, periorbita, and lids. CT scans are also important to determine the possibility of suprachoroidal/retrobulbar hemorrhage or endophthalmitis, which can be other complications after ocular surgery.

Treatment was not necessary for emphysema, which spontaneously resolved in the first postoperative month in the present case. The air was reabsorbed slowly, and the hemifacial and lid edema progressively disappeared. Although periorbital subcutaneous emphysema is a self-resolving condition and may not require any active intervention, orbital emphysema can be potentially vision-threatening and shows the potential to spread into deeper tissue planes such as the retropharyngeal space. Compressive optic neuropathy, central retinal artery compression, pneumomediastinum and airway obstruction are other ocular and life-threatening complications of emphysema.

On the other hand, the migrated SO in this case required removal. After one month, the SO persisted, leading to a thickened lid, and we decided to debulk the lid and periorbital tissues. During the procedure, we observed several small inert round translucent cysts infiltrating all layers of the lids and nearby tissues, as confirmed by the histological examination. SO cysts in the periorbital tissues have already been reported, and they are known to result in granulomatous reactions characterized by macrophages with clear vacuoles containing SO and marked fibrosis. SO is known to cause only minor inflammatory reactions. However, this chronic reaction can occur because SO leakage from the vitreous cavity can possibly trigger tissue granulation, with the possibility of evolving into an inflammatory granulomatous process and persistent lymphoedema. The remaining SO in the orbit can continue to migrate to the lids with the possibility of chronic granulomatous reaction with edema, lymphedema, and persistent mechanical ptosis, which can have an indolent and chronic evolution.

4. Conclusion

We report a rare case of SO migration and emphysema infiltrating the hemiface, mainly the periorbita, orbit, lid, and subconjunctival space, in a patient after the fourth vitrectomy for retinal detachment. Air and SO probably escaped through an old sclerotomy or a potentially occult scleral defect as a result of high infusion pressure and scleral depression. The risk of SO and air migration increased with multiple sclerotomies, thin sclera, or inadvertent globe perforation/rupture, and surgeons must review these risk factors prior to surgery. Self-limited periorbital emphysema can resolve spontaneously unless intervention is indicated in severe cases. Options for a migrated SO include removal of the collected material since its retention can lead to chronic edema in the region.

Research ethics

Approval was obtained from the Institutional Review Board of King Khaled Eye Specialist Hospital. This report does not contain any personal information that can lead to patient identification.

Patient consent

Written consent to publish this case was not obtained. This report did not contain any personal information.

Funding sources

This study did not receive any funding.

Authorship

All authors attest that they meet the current International Committee of Medical Journal Editors (ICMJE) criteria for authorship. Contributions of authors are as follows: Algethami A – data acquisition and interpretation; Elkhamary SM – evaluation and revision of the image examinations; Schellini SA – assisted the patient performing debulking and revised the paper critically; Talea MA – assistant physician; Semidey VA, information analysis, drafting, and approval of the final manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

We would like to acknowledge Dr. Azza Maktabi for providing us with histopathology slides.

References

1. Biswas J, Bhende PS, Gopal L, Parikh S, Badrinath SS. Subconjunctival cysts following silicone oil injection: a clinicopathological study of five cases. Indian J Ophthalmol. 1999;47(3):177-180. PMID: 10858773.
2. Dehghani A, Rezaei I, Tahavoli A, Dashtborzian B. Upper eyelid silicone oil migration after sutureless 23-gauge vitrectomy. Adv Biomed Res. 2017;6(5):58. https://doi.org/10.4103/2277-9175.206698. PMID:28584812. PMCID: PMC5404546.
3. Damasceno EF, Damasceno N, Horowitz S, Rodrigues MM. Emphysema following vitreoretinal surgery with fluid-gas exchange: description of a rare complication. Clin Ophthalmol. 2014;8(4):401-403. https://doi.org/10.2147/OPHT.S56083. PMID:24610998. PMCID: PMC3929265.
4. Anani HT, Mehta VC, Nair AG, Jain V. Bilateral periorbital and cervicofacial emphysema following retinal surgery and fluid gas exchange in a case of inadvertent globe perforation. Indian J Ophthalmol. 2015;63(6):541-542. https://doi.org/10.4103/0303-4738.162615. PMID:26265649. PMCID: PMC4550992.
5. Iniesta-Sanchez DL, Romero-Caballero F, Aguirre-Alvarez A, Rebollo-Hurtado V, Velez-Montoya R. Management of orbital emphysema secondary to rhegmatogenous retinal detachment repair with hyperbaric oxygen therapy. Am J Ophthalmol Case Rep. 2016;1(1):26–30. https://doi.org/10.1016/j.ajoc.2016.03.002. PMID:29503885. PMCID: PMC5757338.
6. Powers MA, Wood EH, Erickson BP, Singh K, Sanidio SR, Kosner AL. Orbital, eyelid, and nasopharyngeal silicone oil granuloma presenting as ptosis and pseudo- xanthelasma. Am J Ophthalmol Case Rep. 2018;11(1):45–48. https://doi.org/10.1016/j.ajoc.2018.05.003. PMID:29978139. PMCID: PMC6026769.
7. Quinty JC, Genevski O, Rantsy ML, Retout A. Silicone oil migration in the eyelid after vitreoretinal surgery for retinal detachment. Am J Ophthalmol. 2003;136(3):540–542. https://doi.org/10.1016/s0002-9394(03)00385-4. PMID:12967812.
8. Donker DL, Paridaens D, Mooy CM, van den Bosch WA. Blepharoptosis and upper eyelid swelling due to lipogranulomatous inflammation caused by silicone oil. Am J Ophthalmol. 2005;140(5):934–936. https://doi.org/10.1016/j.ajo.2005.05.028. PMID:16310482.
9. Santella RM, Nj JD, Wilson DJ. Carbon dioxide laser-induced combustion of extravasated intraocular silicone oil in the eyelid mimicking xanthelasma. Ophthalmic Plast Reconstr Surg. 2017;32(6):e163–e165. https://doi.org/10.1097/ IOP.0b013e31821b0348. PMID:21346669.
10. Lee JH, Kim YD, Woo KI, Kong M. Subconjunctival and orbital silicone oil granuloma (siliconoma) complicating intravitreal silicone oil tamponade. Case Rep
11. Deguchi Y, Maeno T, Hori Y, Hiruta N, Sasai D, Sato Y. Migration of intraocular silicone oil from the vitreous cavity into the upper eyelid causing ptosis. *Case Rep Ophthalmol*. 2014;18(2):226–230. https://doi.org/10.1159/000365647. PMID: 25202267. PMCID: PMC4152929.

12. Osaki TH, Osaki MH, Allmann N, Osaki T. Silicone migration: an unusual eyelid complication following intraocular surgery. *Aesthetic Surg J*. 2016;36(1):NP20–N22. https://doi.org/10.1093/asj/sjv155. PMID: 26254428.

13. Alrashed SH, Alkatan HM, Alsuhaibani AH. Granulomatous reaction to migrating silicone oil clinically mimicking a xanthelasma: a case report. *Int J Surg Case Rep*. 2020;70:182–184. https://doi.org/10.1016/j.ijscr.2020.04.071. PMID: 32417735. PMCID: PMC7229421.