Weighted Well-Covered Graphs without Cycles of Length 4, 6 and 7

Vadim E. Levit and David Tankus
Department of Computer Science and Mathematics
Ariel University Center of Samaria, ISRAEL
{levitv, davidta}@ariel.ac.il

Abstract

A graph is well-covered if every maximal independent set has the same cardinality. The recognition problem of well-covered graphs is known to be co-NP-complete. Let \(w \) be a weight function defined on the vertices of \(G \). Then \(G \) is \(w \)-well-covered if all maximal independent sets of \(G \) are of the same weight. The set of weight functions \(w \) for which a graph is \(w \)-well-covered is a vector space. We prove that finding the vector space of weight functions under which an input graph is \(w \)-well-covered can be done in polynomial time, if the input graph does not contain cycles of length 4, 6 and 7.

1 Introduction

Throughout this paper \(G = (V, E) \) is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set \(V = V(G) \) and edge set \(E = E(G) \).

Let \(S \subseteq V \) be a set of vertices, and let \(i \in \mathbb{N} \). Then

\[
N_i(S) = \{w \in V \mid \min_{s \in S} d(w, s) = i\},
\]

where \(d(x, y) \) is the minimal number of edges required to construct a path between \(x \) and \(y \). If \(i \neq j \) then, obviously, \(N_i(S) \cap N_j(S) = \phi \). If \(S = \{v\} \) for some \(v \in V \), then \(N_i(\{v\}) \) is abbreviated to \(N_i(v) \).

A set of vertices \(S \subseteq V \) is independent if for every \(x, y \in S, x \) and \(y \) are not adjacent. It is clear that an empty set is independent. The independence number of a graph \(G \), denoted \(\alpha(G) \), is the size of a maximum cardinality independent set in \(G \). A graph is well-covered if every maximal independent set has the same cardinality, \(\alpha(G) \). Finding the independence number of an input graph is generally an NP-complete problem. However, if the input is restricted to well-covered graphs then the problem can be solved polynomially by applying the greedy algorithm.

A well-covered graph \(G \) is 1-well-covered if and only if for every vertex \(v \in G \), the graph \(G - \{v\} \) is well-covered and \(\alpha(G) = \alpha(G - \{v\}) \).

Let \(T \subseteq V \). Then \(S \) dominates \(T \) if \(S \cup N_1(S) \supseteq T \). If \(S \) and \(T \) are both empty, then \(N_1(S) = \phi \), and therefore \(S \) dominates \(T \). If \(S \) is a maximal independent set of \(G \), then it dominates the whole graph.
Two adjacent vertices, x and y, in G are said to be related if there is an independent set S, containing neither x nor y, such that $S \cup \{x\}$ and $S \cup \{y\}$ are both maximal independent sets in the graph. If x and y are related, then xy is a relating edge. It is proved in [1] that deciding whether an edge in an input graph is relating is an NP-complete problem.

Theorem 1.1 [1] The following problem is NP-complete:

Input: A graph $G = (V, E)$ and an edge $xy \in E$.

Question: Is xy a relating edge?

However, if the input graph contains neither C_4 nor C_6 then the problem is polynomial.

Theorem 1.2 [7] The following problem is polynomially solvable:

Input: A graph $G = (V, E)$, which does not contain simple cycles of length 4 and 6, and an edge $xy \in E$.

Question: Is xy a relating edge?

The recognition of well-covered graphs is known to be co-NP-complete. The problem remains co-NP-complete even when the input is restricted to $K_{1,4}$-free graphs [3]. However, the problem is polynomially solvable for $K_{1,3}$-free graphs [9][10], for graphs with girth at least 5 [4], for graphs that contain neither 4- nor 5-cycles [5], for graphs with a bounded maximal degree [2], or for chordal graphs [8]. Recognizing 1-well-covered graphs with no 4-cycles can be implemented in polynomial time [9].

Brown, Nowakowski and Zverovich investigated well-covered graphs with no cycles of length 4, and presented the following open problem.

Problem 1.3 [1] What is the complexity of determining whether an input graph with no cycles of length 4 is well-covered?

Levit and Tankus proposed the following.

Conjecture 1.4 [7] The following problem can be solved in polynomial time:

Input: A graph $G = (V, E)$ which does not contain cycles of length 4 and 6.

Question: Is G well-covered?

2 Generating Subgraphs

Let $G = (V, E)$ be a graph, and let $w : V \rightarrow R$ be a weight function defined on its vertices. The weight of a set $S \subseteq V$ is defined by: $w(S) = \sum_{s \in S} w(s)$. The graph G is w-well-covered if all maximal independent sets of G are of the same weight [2].

Let B be a complete bipartite induced subgraph of G, and denote its sides by B_X and B_Y. Then B is a generating subgraph of G if there exists an independent set S of G such that $S \cup B_X$ and $S \cup B_Y$ are both maximal independent sets of G. In this case B produces the constraint that B_X and B_Y are of the same weight. $B \approx K_{1,1}$ is a generating subgraph if and only if its two vertices are related. Hence the notion of related vertices introduced in [1], is an instance of a generating subgraph, for the case that this subgraph is isomorphic to $K_{1,1}$. The following theorem is a generalization of Theorem [1][2] for the case that the input graph does not admit a C_7.

2
Theorem 2.1 The following problem can be solved in polynomial time:

Input: A graph $G = (V, E)$ which does not contain cycles of length 4, 6 and 7, and a complete bipartite induced subgraph B of G.

Question: Is B a generating subgraph of G?

Proof. Let us recall that the sides of B are denoted by B_X and B_Y. Assume, without loss of generality, that $|B_X| \leq |B_Y|$. Notice that since the graph G does not contain cycles of length 4, the set B_X contains just one element, i.e., $|B_X| = 1$.

Let $B_X = \{x\}$ and $B_Y = \{y_1, ..., y_k\}$. The absence of cycles of length 4, 6 and 7 from the graph implies that:

- C_4: $\forall 1 \leq i < j \leq k$ \(N_1(y_i) \cap N_1(y_j) = \{x\} \).
- C_4, C_6: $\forall 1 \leq i < j \leq k \ N_2(y_i) \cap N_2(y_j) \cap N_3(x) = \phi$.
- C_4, C_7: For every $1 \leq i < j \leq k$ there are no edges between $N_2(y_i) \cap N_3(x)$ and $N_2(y_j) \cap N_3(x)$.
- C_4: For every $1 \leq i \leq k$, every connectivity component of $N_1(y_i) \cap N_2(x)$ contains at most one edge.
- C_4, C_6, C_7: Every connectivity component of $N_3(x)$ contains at most one edge.
- C_4, C_6: Every vertex of $N_3(x)$ is adjacent to exactly one vertex of $N_2(x)$.

For every $P \in \{B_X, B_Y\}$, let $Q = B - P$, and define

$$M_1(P) = N_1(P) \cap N_2(Q), M_2(P) = N_1(M_1(P)) - B.$$

The subgraph B is generating if and only if there exists an independent subset of the set $M_2(B_X) \cup M_2(B_Y)$, which dominates $M_1(B_X) \cup M_1(B_Y)$.

The fact that the graph G does not contain cycles of length 6 implies the following:

- There are no edges connecting vertices of $M_2(B_X)$ with vertices of $M_2(B_Y)$.
- The set $M_2(B_X) \cap M_2(B_Y)$ is independent.
- There are no edges between the vertices belonging to $M_2(B_X) \cap M_2(B_Y)$ and the other vertices of $M_2(B_X) \cup M_2(B_Y)$.

Consequently, if $S_x \subseteq M_2(B_X)$ and $S_y \subseteq M_2(B_Y)$ are independent, then $S_x \cup S_y$ is independent as well. Therefore, it is easy to prove that one can decide in polynomial time whether there exists an independent subset of the set $M_2(P)$ dominating $M_1(P)$, where $P \in \{B_X, B_Y\}$.

Let us note that:

- Every vertex of $M_2(P)$ is adjacent to exactly one vertex of $M_1(P)$, or otherwise the graph G contains a C_4.
- Every connectivity component of $M_2(P)$ contains at most 2 vertices, or otherwise the graph G contains either a C_4 or a C_6 or a C_7.
Let $A_1, ..., A_k$ be the connectivity components of $M_2(P)$. Define a flow network

$$F_P = \{ G_F = (V_F, E_F), s \in V_F, t \in V_F, w: E_F \rightarrow R \}$$

as follows.

Let

$$V_F = M_1(P) \cup M_2(P) \cup \{ a_1, ..., a_k, s, t \},$$

where $a_1, ..., a_k, s, t$ are new vertices, s and t are the source and sink of the network, respectively.

The directed edges E_F are:

- the directed edges from s to each vertex of $M_1(P)$;
- all directed edges v_1v_2 s.t. $v_1 \in M_1(P)$, $v_2 \in M_2(P)$ and $v_1v_2 \in E$;
- the directed edges va_i, for each $1 \leq i \leq k$ and for each $v \in A_i$;
- the directed edges a_it, for each $1 \leq i \leq k$.

Let $w \equiv 1$. Invoke any polynomial time algorithm for finding a maximum flow in the network, for example, Ford and Fulkerson’s algorithm. Let S_P be the set of vertices in $M_2(P)$ in which there is a positive flow. Clearly, S_P is independent. The maximality of S_P implies that $|M_1(P) \cap N_1(S_P)| \geq |M_1(P) \cap N_1(S'_P)|$, for any independent set S'_P of $M_2(P)$.

Let us conclude the proof with the recognition algorithm for generating subgraphs.

For each $P \in \{ B_X, B_Y \}$, build a flow network F_P, and find a maximum flow. Let S_P be the set of vertices in $M_2(P)$ in which there is a positive flow. If S_P does not dominate $M_1(P)$ the algorithm terminates announcing that B is not generating. Otherwise, let S be any maximal independent set of $G - B$ which contains $S_{B_X} \cup S_{B_Y}$. Each of $S \cup B_X$ and $S \cup B_Y$ is a maximal independent set of G, and B is generating.

This algorithm can be implemented in polynomial time: One iteration of Ford and Fulkerson’s algorithm includes:

- Updating the flow function. (In the first iteration the flow equals 0.)
- Constructing the residual graph.
- Finding an augmenting path, if exists. The residual capacity of every augmenting path is equal to 1.

Each of the above can be implemented in $O(|V| + |E|)$ time. In each iteration the number of vertices in $M_2(P)$ with a positive flow increases by 1. Therefore, the number of iterations can not exceed $|V|$, and Ford and Fulkerson’s algorithm terminates in $O(|V| (|V| + |E|))$ time. Our algorithm invokes Ford and Fulkerson’s algorithm twice, and terminates in $O(|V| (|V| + |E|))$ time. ■
3 Hereditary Systems

A hereditary system is a pair $H = (S, F)$, where S is a finite set and F is a family of subsets of S, where $f \in F$ and $f' \subseteq f$ implies $f' \in F$. The members of F are called the feasible sets of the system.

A weighted hereditary system is a pair (H, w), where $H = (S, F)$ is a hereditary system, and $w : S \rightarrow R$ is a weight function on S. The weight of a set $S' \subseteq S$ is defined by:

$$w(S') = \sum_{s' \in S'} w(s').$$

A greedy weighted hereditary system is a weighted hereditary system (H, w) for which all maximal feasible sets are of the same weight.

Theorem 3.1 \[11\] Let

$$(H = (S, F), w : S \rightarrow R)$$

be a weighted hereditary system. Then (H, w) is not greedy if and only if there exist two maximal feasible sets, A and B, of F with different weights, $w(A) \neq w(B)$, such that for each $a \in A \setminus B$ and for each $b \in B \setminus A$, the set $(A \cap B) \cup \{a, b\}$ is not feasible.

Let $(G, w) = (V, E, w)$ be a weighted graph with the weighted function $w : V \rightarrow R$. Then the weighted graph (G, w) with the family of all its independent sets clearly forms a weighted hereditary system. This system is greedy if and only if G is w-well-covered.

Theorem 3.2 Let (G, w) be a weighted graph. Then G is w-well-covered if and only if it obeys all the constrains produced by generating subgraphs of G.

Proof. Clearly, if G is w-well-covered and B is a generating subgraph of G, then the sides of B must have equal weights.

Assume that G is not w-well-covered. By Theorem 3.1 there exist two maximal independent sets, A and B, of G such that $w(A) \neq w(B)$ and the subgraph induced by $A \Delta B$ is complete bipartite. Let H be the complete bipartite subgraph of G induced by $A \Delta B$. The union of $A \cap B$ with either side of H is a maximal independent set of the graph. Therefore, H is generating.

4 The Vector Space

Let $G = (V, E)$ be a graph. The set of all weight functions $w : V \rightarrow R$ for which G is w-well-covered is a vector space \[2\]. Assume that G does not contain cycles of length 4, 6 and 7. In Section 1 we proved that for every complete bipartite subgraph B of G it is possible to decide in polynomial time whether B is generating. In Section 3 it was proved that the union of constrains produced by all generating subgraphs of G is the vector space of weight functions under which G is w-well-covered. However, the number of generating subgraphs of G is not necessarily polynomial. In this section we supply an algorithm to find the requested vector space in polynomial time.

For every $v \in V$, define L_v to be the vector space of weight functions of G obeying the union of all constrains produced by subgraphs B of G with $B_X = \{v\}$. Suppose w is a weight function defined on V. Then G is w-well-covered if and only if $w \in \bigcap_{v \in V} L_v$.

5
Theorem 4.1 Let $G = (V, E)$ be a graph that does not contain cycles of length 4, 6 and 7. For every $v \in V$ it is possible to find L_v in polynomial time.

Proof. Let $v \in V$. For every vertex $y \in N_1(v)$, define

$$M_1(y) = N_1(y) \cap N_2(v) \text{ and } M_2(y) = N_2(y) \cap N_3(v).$$

Let $D(v)$ be the set of all vertices y of $N_1(v)$ such that there exists an independent set of $M_2(y)$ which dominates $M_1(y)$. Note that $y \in D(v)$ if and only if v and y are related in the subgraph of G induced by $\{v, y\} \cup M_1(y) \cup M_2(y)$. Hence it is possible to find $D(v)$ by invoking the algorithm presented in the proof of Theorem 2.1 for each $y \in N_1(v)$.

Since G does not contain C_4, every connected component of $D(v)$ contains at most 2 vertices. For every $y \in D(v)$, let S_y be an independent set of $M_2(y)$ which dominates $M_1(y)$. Clearly, $\bigcup_{y \in D(v)} S_y$ is independent. Construct a bipartite graph B^* as follows: one side of B^* is $\{v\}$, and the other side contains exactly one vertex from every connected component of $D(v)$.

Define F_v to be the family of the following bipartite subgraphs of G:

- $B^* \in F_v.$
- If $B^* \neq K_{1,1}$ then $B^* - \{y\} \in F_v$, for every $y \in D(v)$.
- $B^* \Delta C \in F_v$, for every connectivity component C of $D(v)$ with 2 vertices.

For each member of F_v decide whether it is a generating subgraph of G, using the algorithm of Theorem 2.1. Define F_v^* to be the set of all generating members of F_v. Let B be a generating subgraph of G with $B_X = \{v\}$. Then every weight function of G obeying all constraints produced by F_v^*, obeys the constraint produced by B. The algorithm of finding a base of L_v is completed.

The complexity of the algorithm: For each $y \in N_1(v)$ the decision whether $y \in D(v)$ takes $O(|V| (|V| + |E|))$ time. Hence, $D(v)$ can be found in $O \left(|V|^2 \left(|V| + |E| \right) \right)$ time. The size of F_v is bounded by $|V|$, and for each member of F_v is it possible to decide whether it is generating in $O \left(|V| \left(|V| + |E| \right) \right)$ time. The total time required to find L_v is $O \left(|V|^2 \left(|V| + |E| \right) \right)$. \[\blacksquare\]

Theorem 4.2 Let $G = (V, E)$ be a graph that does not contain cycles of length 4, 6 and 7. Then it is possible to find in polynomial time the vector space of weight functions w under which the graph G is w-well-covered.

Proof. According to Theorem 3.2, the vector space of weight functions of G under which the graph is w-well-covered is the maximum linear subspace satisfying all the constraints produced by generating subgraphs of G. Since G does not contain cycles of length 4, one of the sides of every generating subgraph comprises only one vertex. Hence, the required vector space is $\bigcap_{v \in V} L_v$.

By Theorem 4.1 for every $v \in V$ it is possible to find L_v in $O \left(|V|^2 \left(|V| + |E| \right) \right)$ time. Consequently, $\{L_v\}_{1 \leq i \leq |V|}$ can be found in $O \left(|V|^3 \left(|V| + |E| \right) \right)$ time. In order to find the intersection $\bigcap_{v \in V} L_v$, which is the vector space of weight functions under which the graph is w-well-covered, one has to apply the Gaussian elimination procedure to a matrix of size
\[\left(\sum_{i=1}^{|V|} g_i \right) \cdot |V|, \] where \(g_i \) is the number of generating subgraphs of \(G \) belonging to \(F_{v_i} \). Since \(\sum_{i=1}^{|V|} g_i \leq |V|^2 \), the time complexity of the Gaussian elimination procedure for this matrix is bounded by \(O\left(|V|^4\right) \). Finally, \(\bigcap_{v \in V} L_v \) may be constructed in \(O\left(|V|^3(|V| + |E|)\right) \). \[\blacksquare \]

5 Open Problem

Our main conjecture reads as follows.

Conjecture 5.1 The following problem can be solved in polynomial time:

Input: A graph \(G \) which does not contain cycles of length 4 or 6.

Question: Find the vector space of weight functions \(w \) under which the graph \(G \) is \(w \)-well-covered.

References

[1] J. I. Brown, R. J. Nowakowski, I. E. Zverovich, *The structure of well-covered graphs with no cycles of length 4*, Discrete Mathematics 307 (2007) 2235 – 2245.

[2] Y. Caro, N. Ellingham, G. F. Ramey, *Local structure when all maximal independent sets have equal weight*, SIAM Journal on Discrete Mathematics 11 (1998) 644-654.

[3] Y. Caro, A. Sebő, M. Tarsi, *Recognizing greedy structures*, Journal of Algorithms 20 (1996) 137-156.

[4] A. Finbow, B. Hartnell, R. Nowakowski, *A characterization of well-covered graphs of girth 5 or greater*, Journal of Combinatorial Theory Ser. B. 57 (1993) 44-68.

[5] A. Finbow, B. Hartnell, R. Nowakowski *A characterization of well-covered graphs that contain neither 4- nor 5-cycles*, Journal of Graph Theory 18 (1994) 713-721.

[6] B. Hartnell, *A characterization of the 1-well-covered graphs with no 4 cycles*, Graph Theory Trends in Mathematics (2006) 219-224.

[7] V. Levit, D. Tankus, *On relating edges in well-covered graphs without cycles of length 4 and 6*, Graph Theory, Computational Intelligence and Thought: Essays Dedicated to Martin Charles Golumbic on the Occasion of His 60th Birthday, Lecture Notes in Computer Science 5420 (2009) 144-147.

[8] E. Prisner, J. Topp and P. D. Vestergaard, *Well-covered simplicial, chordal and circular arc graphs*, Journal of Graph Theory 21 (1996), 113–119.

[9] D. Tankus, M. Tarsi, *Well-covered claw-free graphs*, Journal of Combinatorial Theory Ser. B. 66 (1996) 293-302.

[10] D. Tankus, M. Tarsi, *The structure of well-covered graphs and the complexity of their recognition problems*, Journal of Combinatorial Theory Ser. B. 69 (1997) 230-233.

[11] D. Tankus, M. Tarsi, *Greedily constructing Hamiltonian paths, Hamiltonian cycles and maximum linear forests*, Discrete Mathematics 307 (2007) 1833-1843.