Comparison of topographic indices and corneal higher order aberrations in eyes with an extreme asymmetry of keratoconus with control eyes

ABSTRACT

Purpose: To compare topographic indices and anterior corneal higher order aberrations (HOAs) of forme fruste keratoconus (KC) (fellow eyes) with clinical KC and control eyes. **Setting:** Tertiary Eye Hospital, India. **Materials and Methods:** This study retrospectively reviewed 298 patients with KC. Patients were evaluated with placido-based topographer. KC was diagnosed according to Rabinowitz and McDonnell criteria and clinical sign. Twenty-one patients with clinical KC in one eye (Group A), fellow eye (Group B) with normal topography with no clinical sign, and 21 control eyes (Group C) were included in the study. Topographic indices (keratometry, inferior superior ratio, irregularity, shape factor, and eccentricity) and HOAs (trefoil, coma, spherical aberration, total root mean square [RMS], HOAs RMS of third to seventh order for 6 mm diameter) were obtained. Group B was compared with Groups A and C. **Results:** The prevalence of an extreme asymmetry of KC in our study population is 7.04% with mean age of 21.98 ± 7.39 years. All topographic indices were higher in Group A compared to Group B \((P < 0.01)\) and no significant difference was found between Groups B and C. All HOAs were higher in Group A compared to Group B \((P < 0.05)\). HOAs RMS, oblique trefoil and spherical aberration were significantly higher in Group B compared to Group C \((P < 0.02)\). Of these 21 patients, four had severe to advanced KC in one eye. **Conclusions:** Corneal HOAs changes are first to appear in fellow eyes of unilateral KC, which may makes them useful tool in monitoring progression and early detection of KC changes in fellow eyes.

Keywords: Corneal higher order aberrations, extreme asymmetry of keratoconus topography, forme fruste keratoconus

INTRODUCTION

Keratoconus (KC) is a progressive, noninflammatory, bilateral but asymmetric, corneal disorder characterized by an increase in the irregular curvature, thinning, and protrusion. KC usually presents at puberty and stabilizes around middle age.\(^1\) KC may have an extremely variable expression at the early stages, with subtle signs and borderline abnormal features that are difficult to identify with certainty.\(^1\)-\(^3\) Certain cases show significant asymmetric presentation (so called unilateral KC). The normal eye of unilateral KC eventually converted into bilateral KC.\(^4\) The fellow normal eye of unilateral KC called as forme fruste keratoconus (FFKC). The FFKC eyes does not reached the threshold of suspect KC but it may have some earlier KC changes.

The modern tomographer provides detail properties of anterior and posterior surface as well as elevation of the cornea. Several indices and artificial intelligence methods have been developed to help in early diagnose KC.\(^5\)-\(^7\) Various studies\(^8\)-\(^10\) shows importance of posterior surface and
pachymetry data in discriminating FFKC from normal eyes and others reported11,12 higher specificity and sensitivity of anterior corneal indices. Although various scheimpflug based and high definition tomographer are used by cornea specialist, corneal topography is still used in routine clinical practice to diagnose KC.

The purpose of our study is to compare topographic indices and anterior corneal higher order aberrations (HOAs) between FFKC (fellow) eyes with clinical KC and control eyes.

MATERIALS AND METHODS

The study followed the tenets of the Declaration of Helsinki and was approved by the Institutional Review Board. The patients with KC who visited a tertiary eye hospital were underwent a detailed ophthalmic examination. All the records of the patients were retrospectively reviewed. A total of 298 patients with KC visited between January 2014 and December 2018. Of these 298 patients, 21 had clinical and topographical KC in one eye and no topographical and clinical KC findings in the fellow eye were included in the study. Patients were divided into mild to moderate (<52.0 D) and severe to advanced (>52.0 D) group according to the severity of KC.

Clinical KC was diagnosed when the following features were observed: asymmetric bow tie pattern with or without skewed axes, inferior or central steepening, mean keratometry (K) >47 diopters (D) or an inferior–superior (I-S) value >1.4 diopters, according to the Rabinowitz and McDonnell criteria, and at least one KC sign (e.g., stromal thinning, conical protrusion of cornea at apex, Fleischer ring, Vogt striae, or anterior stromal scar on slit lamp examination). Patients in whom clinical KC was diagnosed in one eye (Group A) and those whose fellow eye had normal topography (Group B; mean keratometry <47, I-S value ≤1.2 diopters with no slit lamp sign) were included in the study.

The right eyes of 21 control cases (Group C) were selected from a database of candidates for refractive surgery with normal corneas, myopia, and myopic astigmatism (Sphere <6.00 diopters [D]; cylinder <1.5 D). Eyes were considered normal if they had no ocular pathology, had not been previously operated upon, and had no irregular corneal pattern. Patients with a history of corneal surgery or contact lens wear, significant corneal scarring, and significant ophthalmic diseases that may potentially affect the outcomes were excluded from the study.

Corneal topography and HOAs measurements were obtained from the database of the Placido-based topography system (ATLAS 9000 corneal topography system, software version 3.0.0.39. Carl Zeiss Meditec AG, Jena, Germany). PathFinderTM II software in atlas analyzes 12 different corneal parameters and compares them to a comprehensive clinical database that contains reference values for normal, KC pattern and myopic or hyperopic laser vision correction. All the fellow eyes were showing normal probability on the software.

The central simulated flat (K1) and steep (K2) keratometry values, astigmatism power, I-S ratio, toric keratometric mean (TKM), shape factor (SF), corneal irregularity measurement (CIM), eccentricity, and HOAs (trefoil, coma, spherical aberration, total root mean square [RMS], and HOAs RMS of to sewventh order for a 6 mm diameter) were selected for statistical analysis. The fellow eyes were compared to the keratoconic and control eyes.

Statistical analysis

Statistical analysis was performed using the SPSS software (version 20.0. Armonk, NY: IBM corp.). The study data were evaluated using descriptive statistical methods (mean and standard deviation) as well as the independent-samples test for intergroup comparison of parameters with normal distribution and the Mann–Whitney U test for intergroup comparisons of parameters with abnormal distribution. The results were assessed within a 95% confidence interval and significance was accepted at $P < 0.05$.

RESULTS

Of 298 patients with clinical KC who visited the tertiary eye hospital, 21 patients were diagnosed with extreme asymmetry of KC (7.04%) at the time of presentation. Of the 21 patients, 15 were males and six were females. The mean age of patients was 21.98 ± 7.39 years (range: 12–37 years). Seventeen patients had mild to moderate KC in one eye [Figure 1] at the time of presentation with mean age 21.01 ± 6.02 years and only four patients [Figure 2] with mean age 26.07 ± 10.56 years had severe to advanced KC in one eye ($P = 0.206$).

Table 1 shows flat and steep keratometry, astigmatism, I-S ratio, TKM, CIM, and SF values in the three groups. All topographic indices were higher in Group A when compared to Group B ($P < 0.01$) and no significant difference was found between Group B and Group C ($P > 0.05$).

Table 2 shows trefoil, coma and spherical aberration, total RMS, and HOAs RMS values in the three groups. All HOAs were 3–4 times higher in Group A compared to Group B ($P < 0.05$).
Figure 1: Axial curvature maps of corneal topography pattern of mild to moderate keratoconus in one eye (<52D) with other eye showing normal topography.
The HOAs RMS, oblique trefoil Z (3, −3), and spherical aberration Z (4, 0) were found to be higher in Group B ($P < 0.05$) than in Group C.

DISCUSSION

The front surface of the cornea is the major refractive component in the eye, and it is strongly distorted in eyes with KC. Corneal topography is a valuable tool for diagnosing KC. Corneal wavefront technology provides a detailed model of the cornea’s optical properties. Analysis of HOAs of the anterior cornea was shown to be an effective tool for detecting and grading KC. Previous studies have reported that patients with unilateral KC, who have similar genetic makeup, will eventually develop KC in the fellow eye. Thus, the fellow eyes of patients with unilateral KC are affected early and by

Table 1: Comparison of topographic indices of fellow eyes with keratoconus and control group ($n=21$)

Indices	Keratoconus Group A	Fellow Group B	Control Group C	P
Flat K (D)	46.39±5.08	43.52±1.04	43.09±1.29	0.002**
Steep K (D)	51.16±7.13	44.43±0.99	43.81±1.43	0.147
AST (D)	4.78±3.34	0.91±0.59	0.75±0.44	0.001**
I-S (D)	5.22±5.32	0.65±0.45	0.43±0.35	0.001**
TKM (D)	48.59±13.05	44.78±1.03	44.11±1.29	0.001**
CIM (μm)	3.41±1.58	0.78±0.19	0.71±0.13	0.001**
Eccentricity	0.65±0.07	0.55±0.07	0.52±0.06	0.001**
SF	0.74±0.19	0.39±0.14	0.35±0.08	0.001**

Table 2: Comparison of trefoil, coma, spherical aberrations, and root mean square of fellow eyes with keratoconus and control group ($n=21$)

Indices (μm)	Keratoconus Group A	Fellow Group B	Control Group C	P
Z(3, −3) OT	0.540±0.814	−0.025±0.138	−0.125±0.084	0.003**
Z (3, −1) VC	−1.281±1.936	−0.141±0.190	−0.038±0.119	0.013*
Z (4, 0) SA	−0.816±1.066	0.196±0.111	0.265±0.045	0.001**
Z (5, −3) Trefoil II	−0.115±0.247	−0.003±0.024	0.000±0.020	0.005**
Z (5, −1) Coma II	0.131±0.679	−0.036±0.026	0.003±0.024	0.024*
Z (6, 0) SA II	0.129±0.437	0.006±0.026	−0.003±0.019	0.037*
Z (7, −3) Trefoil III	0.027±0.147	0.003±0.018	0.000±0.017	0.045*
Z (7, −1) Coma III	−0.044±0.250	−0.007±0.024	−0.003±0.014	0.016*
HOAs RMS	3.053±1.841	0.519±0.197	0.405±0.074	0.001**
Total RMS	5.870±3.005	1.224±0.762	0.929±0.369	0.001**

*Student’s t-test, **Mann-Whitney U-test. *P* < 0.01. K – Keratometry, AST – Astigmatism, I-S – Inferior superior ratio, TKM – Toric keratometric mean, CIM – Corneal irregularity measurement, SF – Shape factor, D – Dioptrds, SD – Standard deviation, HOAs – Higher order aberrations.
the mildest form of the disease. These fellow eyes are ideal model to study earlier changes in KC.

CIM highlights irregular astigmatism that may result in visual distortions. Aksoy et al.\cite{24} found a twice higher surface irregularity index in fellow normal eyes with unilateral KC. Wei et al.\cite{25} reported that irregularities of 3 and 5 mm on the receptor operator characteristic can discriminate between fellow normal eyes and control eyes. In contrast to these studies, we could not find any significant difference in CIM between control (0.71 ± 0.13 µm) and fellow eyes (0.78 ± 0.19 µm). However, KC eyes showed a higher irregularity (3.41 ± 1.59 µm) compared to fellow eyes.

The I-S value quantifies the I-S dioptic asymmetry of the cornea. Values <1.4 are considered normal, while values above 1.9, if associated with other clinical symptoms, are classified as KC. Gordon-Shaag et al.\cite{26} found that the traditional corneal topographic values, such as the I-S asymmetry, remain important predictors for identifying possible KC. Rabinowitz and Rasheed\cite{40} initially proposed using a cut-off value of 1.2 D to diagnose subclinical KC. In our study, fellow eyes and control eyes had mean I-S values <0.75 D, while the mean I-S values for KC eyes were three to five times higher (5.22 ± 5.32 D) compared to fellow eyes.

Eccentricity describes the rate of corneal flattening from the center to the periphery. The value for eccentricity in normal adults ranges from 0.4 to 0.6.\cite{27, 28, 29} Dao et al.\cite{30} proposed corneal eccentricity as a tool for diagnosing KC, and they found that values >0.8 were suggestive of KC. In the present study, the fellow eyes and control group had eccentricity values of 0.55 and 0.52, respectively, while the KC group had a higher eccentricity value of 0.65.

In our study, the topographic indices of fellow eyes and control eyes were comparable. Previous studies\cite{19, 26} have reported that combining corneal topography with corneal wavefront aberrations when diagnosing KC may result in higher detection rates. Therefore, for the early detection of KC, we also compared HOAs between the groups.

Corneal aberrations describe the optical quality of the eye. Various studies\cite{18, 19, 26, 31} have demonstrated that keratoconic corneas exhibit increased wavefront aberrations compared to normal corneas. In these studies, since different equipment and techniques were used to measure the HOAs, it is difficult to directly compare the zernike values. Similar to previous studies, all HOAs were found to be significantly higher in our KC group.

KC progresses rapidly between the ages of 15 and 20 years.\cite{33} In our study, the ages of patients with unilateral KC ranged from 12 to 37 years at the time of presentation. In the present study, only four subjects had severe to advanced unilateral KC. The mean age of advances KC were higher (26.07 ± 10.56 years) than with mild to moderate KC (21.01 ± 6.02). This suggest that patients with mild to moderate unilateral KC may eventually progress to bilateral KC.

CONCLUSIONS

That unilateral KC is rare and the prevalence of extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases. HOAs may be a useful tool for the early detection of KC in fellow eyes and for monitoring its progression. Evaluation of posterior surface indices and the elevation data of fellow eyes with extreme asymmetry in our population is 7.04% of cases.
Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998;42:297-319.
2. Klyce SD. Chasing the suspect: Keratoconus. Br J Ophthalmol 2009;93:845-7.
3. Saad A, Gatinel D. Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci 2010;51:5546-55.
4. Li X, Rabinowitz YS, Rasheed K, Yang H. Longitudinal study of extreme asymmetry of keratoconus. Ophthalmology 2004;111:440-6.
5. Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci 1997;38:2290-9.
6. Rabinowitz YS, Rasheed K. KISA% index: A quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Refract Surg 1999;25:1327-35.
7. Klyce SD, Karon MD, Smolek MK. Screening patients with the corneal navigator. J Refract Surg 2005;21:S617-22.
8. Awad EA, Abou Samra WA, Torky MA, El-Kannishy AM. Objective and subjective diagnostic parameters in the fellow eye of unilateral keratoconus. BMC Ophthalmol 2017;17:186.
9. Muftuoglu O, Ayar O, Ozuilken K, Ozyol E, Akıncı A. Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract Refract Surg 2013;39:1348-57.
10. Bae GH, Kim JR, Kim CH, Lim DH, Chung ES, Chung TY. Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using Pentacam. Am J Ophthalmol 2014;157:103-90.
11. Lena I, Romero P, Mato JL, Feijoó ED. Corneal descriptive indices in the fellow eye of unilateral keratoconus. Eye Contact Lens 2009;35:65-8.
12. Shajari M, Jaffary I, Herrmann K, Grunwald C, Steinwender G, Mayer WJ, et al. Early tomographic changes in the eyes of patients with keratoconus. J Refract Surg 2018;34:254-9.
13. Maguire LJ, Bourne WM. Corneal topography of early keratoconus. Am J Ophthalmol 1989;108:107-12.
14. Tomidoskoro A, Oshika T, Amano S, Higaki S, Maeda N, Miyata K. Changes in anterior and posterior corneal curvatures in keratoconus. Ophthalmology 2000;107:1328-32.
15. Hemenger RP, Tomlinson A, Oliver K. Corneal optics from videokeratographs. Ophthalmic Physiol Opt 1995;15:63-8.
16. Hemenger RP, Tomlinson A, Oliver K. Optical consequences of asymmetries in normal corneas. Ophthalmic Physiol Opt 1996;16:124-9.
17. Schwiegerling J, Greivenkamp JE. Using corneal height maps and polynomial decomposition to determine corneal aberrations. Optom Vis Sci 1997;74:906-16.
18. Alió JL, Shabayek MH. Corneal higher order aberrations: A method to grade keratoconus. J Refract Surg 2006;22:539-45.
19. Gobe M, Guillon M. Corneal wavefront aberration measurements to detect keratoconus patients. Cont Lens Anterior Eye 2005;28:57-66.
20. Barbero S, Marcos S, Merayo‑Lloves J, Moreno‑Barriuso E. Validation of the estimation of corneal aberrations from videokeratography in keratoconus. J Refract Surg 2002;18:263‑70.
21. Delgado S, Velazo J, Delgado Pelayo RM, Ruiz‑Quintero N. Correlation of higher order aberrations in the anterior corneal surface and degree of keratoconus measured with a Scheimpflug camera. Arch Soc Esp Oftalmol 2016;91:316‑9.
22. Rabinowitz YS, Nesburn AB, McDonnell PJ. Videokeratography of the fellow eye in unilateral keratoconus. Ophthalmology 1993;100:181‑6.
23. Holland DR, Maeda N, Hannush SB, Riveroll LH, Green MT, Klyce SD, et al. Unilateral keratoconus. Incidence and quantitative topographic analysis. Ophthalmology 1997;104:1409‑13.
24. Aksoy S, Akkaya S, Özkurt Y, Kurna S, Açıklar N, Şengör T. Topography and higher order corneal aberrations of the fellow eye in unilateral keratoconus. Turk J Ophthalmol 2017;47:249‑54.
25. Wei RH, Zhao SZ, Lin L, Tan DT. Incidence and characteristics of unilateral keratoconus classified on corneal topography. J Refract Surg 2011;27:745‑51.
26. Gordon‑Shaag A, Millodot M, Ifrah R, Shneor E. Aberrations and topography in normal, keratoconus‑suspect, and keratoconic eyes. Optom Vis Sci 2012;89:411‑8.
27. Vinciguerra P, Camesasca FL. Treatment of hyperopia: A new ablation profile to reduce corneal eccentricity. J Refract Surg 2002;18:S315‑7.
28. Jorge J, Almeida JB, Parafita MA. Refractive, biometric and topographic changes among Portuguese university science students: A 3‑year longitudinal study. Ophthalmic Physiol Opt 2007;27:287‑94.
29. Heydarian S, Hashemi H, Shokrollahzadeh F, Yekta AA, Ostadimoghaddam H, Derakshian A, et al. The normal distribution of corneal eccentricity and its determinants in two rural areas of north and south of Iran. J Curr Ophthalmol 2018;30:147‑51.
30. Dao CL, Kok JH, Brinkman CJ, van Mil CJ. Corneal eccentricity as a tool for the diagnosis of keratoconus. Cornea 1994;13:339‑44.
31. Colak HN, Kantarci FA, Yıldırım A, Tatar MG, Göker H, Uslu H, et al. Comparison of corneal topographic measurements and high order aberrations in keratoconus and normal eyes. Cont Lens Anterior Eye 2016;39:380‑4.
32. Bühren J, Kühne C, Kohnen T. Defining subclinical keratoconus using corneal first‑surface higher‑order aberrations. Am J Ophthalmol 2007;143:381‑9.
33. Millodot M, Ortenberg I, Lahav‑Yaacov K, Behrman S. Effect of ageing on keratoconic corneas. J Optom 2016;9:72‑7.