A CLASSIFICATION OF PAIRS OF DISJOINT NONPARALLEL PRIMITIVES IN THE BOUNDARY OF A GENUS TWO HANDLEBODY

JOHN BERGE

Abstract. Embeddings of pairs of disjoint nonparallel primitive simple closed curves in the boundary of a genus two handlebody are classified. Briefly, two disjoint primitives either lie on opposite ends of a product $F \times I$, or they lie on opposite ends of a kind of “twisted” product $F \times e \times I$, where F is a once-punctured torus.

If one of the curves is a proper power of a primitive, the situation is simpler. Either the curves lie on opposite sides of a separating disk in the handlebody, or they bound a nonseparating essential annulus in the handlebody.

1. INTRODUCTION

Suppose H is a genus two handlebody. A simple closed curve α in ∂H is primitive in H if there exists a disk D in H such that $|\alpha \cap D| = 1$. Equivalently α is conjugate to a free generator of $\pi_1(H)$. A pair of disjoint properly embedded disks in H is a complete set of cutting disks of H if cutting H open along the pair of disks yields a 3-ball. A pair of disjoint simple closed curves (α, β) in ∂H is a primitive pair if both α and β are primitive in H. (Note that a “pair of primitives” is not generally a “primitive pair”.) A pair of nonseparating simple closed curves (α, β) in ∂H is separated in H if there exists a separating disk D embedded in H such that α and β lie on opposite sides of ∂D in ∂H.

2. PRELIMINARIES

This section recalls some of the basic properties of genus two Heegaard diagrams, their underlying graphs, and genus two R-R diagrams which will be helpful.

2.1. GENUS TWO HEegaRD DIAGRAMS AND THEIR UNDERLYING GRAPHS. Suppose α and β are disjoint nonparallel simple closed curves in the boundary of a genus two handlebody H, neither α nor β bound disks in H, and $\{D_A, D_B\}$ is a complete set of cutting disks of H. Cutting H open along D_A and D_B cuts α and β into sets of arcs $E(\alpha)$ and $E(\beta)$ respectively, and cuts H into a 3-ball W. Then ∂W contains disks D^+_A, D^-_A, D^+_B, and D^-_B such that gluing D^+_A to D^-_A and D^+_B to D^-_B reconstitutes α, β, and H.

Date: October 16, 2009.
The sets of arcs $E(\alpha)$ and $E(\beta)$ form the edges of Heegaard diagrams in ∂W with “fat”, i.e., disk rather than point, vertices D^+_A, D^-_A, D^+_B, and D^-_B. Let HD_α, HD_β, and $HD_{\alpha,\beta}$ be the Heegaard diagrams in ∂W whose edges are the arcs of $E(\alpha)$, $E(\beta)$, and $E(\alpha) \cup E(\beta)$ respectively.

If one ignores how D^+_A and D^+_B are identified with D^-_A and D^-_B to reconstitute H, the sets of arcs $E(\alpha)$, $E(\beta)$, and $E(\alpha) \cup E(\beta)$ also form the edges of graphs in ∂W with vertices D^+_A, D^-_A, D^+_B, and D^-_B. Let G_α, G_β, and $G_{\alpha,\beta}$ denote the graphs in ∂W whose edges are the arcs of $E(\alpha)$, $E(\beta)$, and $E(\alpha) \cup E(\beta)$ respectively. Then G_α is the graph underlying HD_α, and G_β is the graph underlying HD_β etc.. Note that these graphs are not just abstract graphs, since they inherit specific embeddings in the 2-sphere $S^2 \cong \partial W$ from the Heegaard diagrams which they underlie.

Remark 2.1. The notation HD_α, HD_β, and $HD_{\alpha,\beta}$, does not specify the set of cutting disks $\{D_A, D_B\}$. However, this shouldn’t lead to ambiguity because context will make it clear which set of cutting disks of H is playing the role of $\{D_A, D_B\}$.

Remark 2.2. In figures of G_α, G_β, or $G_{\alpha,\beta}$, the disks D^+_A, D^-_A, D^+_B, and D^-_B in ∂W are smashed to points denoted by A^+, A^-, B^+, and B^- respectively.

2.2. Genus two R-R diagrams.

R-R diagrams are a type of planar diagram related to Heegaard diagrams. These diagrams were originally introduced by Osborne and Stevens in [OS74]. They are particularly useful for describing embeddings of simple closed curves in the boundary of a handlebody so that the embedded curves represent certain conjugacy classes in π_1 of the handlebody.

Here is a description of the basics of genus two R-R diagrams, which is all we need. Suppose Σ is a closed orientable surface of genus two obtained by capping off the two boundary components of an annulus A with a pair of once-punctured tori F_A and F_B, so that $\Sigma = A \cup F_A \cup F_B$, $A \cap F_A = \partial F_A$, and $A \cap F_B = \partial F_B$. Following Zieschang [ZS8], the separating simple closed curves ∂F_A and ∂F_B in Σ are belt curves, and F_A and F_B are handles.

If S is a set of pairwise disjoint simple closed curves in Σ, then, after isotopy, we may assume each curve $\zeta \in S$ is either disjoint from $\partial F_A \cup \partial F_B$, or ζ is cut by its intersections with $\partial F_A \cup \partial F_B$ into arcs, each properly embedded and essential in one of A, F_A, F_B. A properly embedded essential arc in F_A or F_B is a **connection**.

Two connections in F_A or F_B are **parallel** if they are isotopic in F_A or F_B via an isotopy keeping their endpoints in ∂F_A or ∂F_B. A collection of pairwise disjoint connections on a given handle can be partitioned into **bands** of pairwise parallel connections. Since each handle is a once-punctured torus, there can be at most three nonparallel bands of connections on a given handle.

Note that sets of pairwise nonparallel connections in a once-punctured torus are unique up to homeomorphism. In particular, if F and F' are once-punctured tori, $\Delta = \{\delta_1, \cdots, \delta_k\}$, is a set of pairwise nonparallel connections in F, and $\Delta' = \{\delta'_1, \cdots, \delta'_l\}$, $1 \leq i \leq 3$ is a set of pairwise nonparallel connections in F', then there is a homeomorphism $h: F \to F'$ which takes Δ to Δ'.

Remark 2.3. In practice, it is often inconvenient to have curves in S that lie completely in F_A or F_B. This situation can be avoided by relaxing the supposition that each curve in S has only essential intersections with the belt curves ∂F_A and ∂F_B. Then, if a curve $\zeta \in S$ lies completely in F_A or F_B, say F_B, ζ can be isotoped in Σ so that $\zeta \cap F_B$ consists of one properly embedded essential arc, while $\zeta \cap A$ is
an inessential arc in A, isotopic in A into ∂F_B, keeping its endpoints fixed. (In the R-R diagrams of this paper, the curve β is always displayed in this manner.)

Some simplifications can be made at this point without losing any information about the embedding of the curves of \mathcal{S} in Σ. For example, suppose F is either F_A or F_B, and let \mathcal{S}_A be the set of arcs in which curves of \mathcal{S} intersect A. Then each set of parallel connections on F can be merged into a single connection. (This also merges some endpoints of arcs in \mathcal{S}_A meeting ∂F.)

After such mergers, F carries at most 3 pairwise nonparallel connections. Continuing, after each set of parallel connections on F_A and F_B has been merged, additional mergers of sets of properly embedded parallel subarcs of \mathcal{S}_A can also be made; although now whenever, say, n parallel arcs are merged into one, this needs to be recorded by placing the integer n near the single arc resulting from the merger.

Merging parallel connections in F_A and F_B turns the set of pairwise disjoint simple closed curves in \mathcal{S} into a graph \mathcal{G} in Σ whose vertices are the endpoints of the remaining connections in F_A and F_B. Clearly \mathcal{G} and its embedding in Σ completely encodes the embedding of the curves of \mathcal{S} in Σ.

Understanding \mathcal{G} and the curves of \mathcal{S} it represents is complicated by the fact that \mathcal{G} is usually nonplanar. However, \mathcal{G} always has a nice immersion $I(\mathcal{G})$ in the plane \mathbb{R}^2, which we now describe. It is this immersion of \mathcal{G} in \mathbb{R}^2 which becomes an R-R diagram of the curves of \mathcal{S} in Σ.

To produce $I(\mathcal{G})$, first remove a small disk D, disjoint from \mathcal{G}, from the interior of \mathcal{A}. Then embed $\mathcal{A} - D$ in \mathbb{R}^2 so that ∂F_A and ∂F_B bound disjoint round disks, say \mathcal{F}_A and \mathcal{F}_B respectively, in \mathbb{R}^2.

Next, note that if δ and δ' are nonparallel connections on a handle F_X, with $X \in \{A, B\}$, the endpoints of δ separate the endpoints of δ' in the belt curve ∂F_X. It follows that, if u and v in ∂F_X are the endpoints of a connection δ in F_X, we may assume u and v bound a diameter d_δ of the disk F_X, and then δ can be embedded in F_X as the diameter d_δ of F_X. This results in each round disk F_X containing 0, 1, 2, or 3 diameters passing through its center X, with each diameter an image of a connection in F_X, where the number of such diameters depends upon whether F_X originally contained respectively 0, 1, 2, or 3 bands of parallel connections.

Also note that the immersion $I(\mathcal{G})$ still encodes the embedding of the curves in \mathcal{S} in Σ up to homeomorphism. This follows from the aforementioned fact that if $\Delta = \{\delta_1, \ldots, \delta_i\}$ and $\Delta' = \{\delta'_1, \ldots, \delta'_i\}$, 1 ≤ i ≤ 3 are each sets of pairwise nonparallel connections in a once-punctured torus F, then there is a homeomorphism of F which takes Δ to Δ'.

The partition of Σ into \mathcal{A}, F_A and F_B makes it easy to describe infinite families of parametrized embeddings of the curves of \mathcal{S} in the boundary of a genus two handlebody. To do this, consider Σ as 2-sided, with sides Σ^+ and Σ^-, and suppose the curves of \mathcal{S} lie in Σ^+. Then gluing a pair of disks D_A and D_B to Σ^- so that ∂D_A is glued to a nonseparating simple closed curve in F_A^{-1}, ∂D_B is glued to a nonseparating simple closed curve in F_B^-, and the resulting 2-sphere boundary component is capped off with a 3-ball, makes Σ the boundary of a genus two handlebody H.

Continuing, note that if δ and δ' are two nonparallel oriented connections in a once-punctured torus F, then the isotopy class of an oriented nonseparating simple closed curve γ in F is determined by its algebraic intersection numbers with δ and
This makes it possible to parametrize the isotopy classes of attaching curves of \(\partial D_A \) and \(\partial D_B \) in \(F_A \) and \(F_B \) by adding integer labels to the endpoints of the diameters of \(F_A \) and \(F_B \) which represent connections in \(F_A \) and \(F_B \). (There are minor restrictions on the values of these parameters; all related to similar restrictions on meridional and longitudinal coordinates of simple closed curves in \(H_1(\partial V) \), where \(V \) is a solid torus. Figure 1 illustrates these.)

\[\text{Figure 1. There is a simple closed curve in the once-punctured torus } F_A \text{ which intersects the bands of connections in Figures 1a, 1b, and 1c with the indicated intersection numbers if and only if: A) } \gcd(p, r) = 1 \text{ in Figure 1a. B) } \gcd(p, r) = 1 \text{ and } q = p + r \text{ in Figure 1b. C) } p \in \mathbb{Z} \text{ in Figure 1c. Figure 1d shows a variant labeling, useful when we wish to think of } F_A \text{ as carrying a meridional and longitudinal pair of simple closed curves, say } m \text{ and } l, \text{ meeting transversely at a single point. In this case, if } \delta \text{ is a connection with label } (p, q) \text{ in } F_A, \text{ so } [\delta] = p[l] + q[m] \text{ in } H_1(F_A, \partial F_A), \text{ then } ps - rq = \pm 1. \]

\[\text{Remark 2.4. In practice, given a set of curves } S \text{ in the boundary of a genus two handlebody } H, \text{ we usually reverse the order in which the partition of } \partial H \text{ into } A, F_A, \text{ and } F_B \text{ and a complete set of cutting disks } \{D_A, D_B\} \text{ are chosen by choosing a desired set of cutting disks } \{D_A, D_B\} \text{ first, and then choosing an appropriate compatible partition of } \partial H \text{ into } A, F_A, \text{ and } F_B \text{ with } \partial D_A \subset F_A \text{ and } \partial D_B \subset F_B. \]

3. The classification

Theorem 3.1. Suppose \(H \) is a genus two handlebody, and \(\alpha \) and \(\beta \) are a pair of disjoint nonparallel simple closed curves in \(\partial H \) such that both \(\alpha \) and \(\beta \) are primitive in \(H \). Then \(\alpha \) and \(\beta \) have an R-R diagram with the form of Figure 2, 3 or 4.

Proof. Recall that if \(\gamma \) is a primitive simple closed curve in the boundary of a genus two handlebody \(H \), then there is a unique cutting disk of \(H \) (up to isotopy) disjoint from \(\gamma \), while there are an infinite number of cutting disks of \(H \) that intersect \(\gamma \) transversely exactly once. Then given \((\alpha, \beta) \), let \(\{D_A, D_B\} \) be a complete set of cutting disks of \(H \) such that \(|\beta \cap \partial D_A| = 0 \), and such that \(\partial D_B \) intersects \(\alpha \) minimally subject to \(|\beta \cap \partial D_B| = 1 \). Now the goal is to show that if \(|\alpha \cap \partial D_B| = 0 \), \(|\alpha \cap \partial D_B| = 1 \), or \(|\alpha \cap \partial D_B| > 1 \), then \(\alpha \) and \(\beta \) have an R-R diagram with the form of Figure 2, 3 or 4 respectively.

Consider the first possibility \(|\alpha \cap \partial D_B| = 0 \). In this case, since \(\alpha \) is primitive in \(H \), we must have \(|\alpha \cap \partial D_A| = 1 \), and then the pair of disjoint primitives \((\alpha, \beta) \)
is also a pair of primitives in $\pi_1(H)$. It follows that the pair (α, β) has an R-R diagram with the form of Figure 2.

Turning to the second possibility, suppose $|\alpha \cap \partial D_B| = 1$. In this case, let C be a separating simple closed curve in ∂H, disjoint from ∂D_A, ∂D_B, and β, such that C separates ∂D_A and ∂D_B. Then let A be a small annular regular neighborhood of C in ∂H, chosen so that A is also disjoint from ∂D_A, ∂D_B, and β. Then $\partial H - \text{int}(A)$ is the union of two once-punctured tori F_A and F_B, with $\partial D_A \subset F_A$ and $\partial D_B \subset F_B$, and we may suppose that α has only essential intersections with A, F_A and F_B, as well as ∂D_A and ∂D_B. This partition of ∂H into $A \cup F_A \cup F_B$ provides a natural framework of the sort described in Subsection 2.2, which leads to an R-R diagram describing how α, β, ∂D_A, and ∂D_B, are configured in ∂H.

In this case, this is quite easy. Since α and β are disjoint, while $|\alpha \cap \partial D_B| = 1$, $\alpha \cap F_B$ must consist of a single connection. Then $\alpha \cap F_A$ must also consist of exactly one connection, which can be any connection in F_A. It follows that the pair (α, β) has an R-R diagram with the form of Figure 3.

Finally, consider the last possibility $|\alpha \cap \partial D_B| > 1$. In this case, Lemma 3.2 lays the foundation for the analysis by showing that the graph $G_{\alpha, \beta}$ underlying the Heegaard diagram $HD_{\alpha, \beta}$ has the form of Figure 5.

The same partition of ∂H into the union of α, F_A, and F_B, can be used to obtain an R-R diagram of α and β on ∂H as was used in the previous case. The R-R diagram will differ of course, because now α has more than one connection in each of F_A, F_B. We can determine what these connections of α can be by looking at the cyclic word which α represents in $\pi_1(H)$.

Theorem 3.3 below, which is the main result of [CMZ81], shows that, if α is primitive in H, then the cyclic word which α represents in $\pi_1(H)$ must have a particular form, and this provides what we need. To use Theorem 3.3 let A and B be generators of $\pi_1(H)$ chosen so that A and B are represented by simple closed curves in H dual to D_A and D_B respectively. Then, since α is primitive in H, and $G_{\alpha, \beta}$ has the form of Figure 5 with $|\alpha \cap \partial D_B| > 1$, Theorem 3.3 implies α represents a cyclic word in $\pi_1(H)$ of the form $w = A^{m_1}B \ldots A^{m_j}B$, with $\{m_1, \ldots, m_j\} = \{e, e + 1\}$ and $j > 1$. In addition, since $j > 1$ and α is a primitive rather than a proper power of a primitive in H, both e and $e + 1$ must appear as exponents of A in W.

It follows that the A-handle of an R-R diagram D describing the embedding of α and β in ∂H must have exactly two nonparallel types of connections bearing labels p and $p + \epsilon$, where $\epsilon = \pm 1$, and $\{p, p + \epsilon\} = \{e, e + 1\}$.

Next, let $a = |A^p B|$ and $b = |A^{p+\epsilon} B|$ be the number of subwords of the form $A^p B$ and $A^{p+\epsilon} B$ respectively in w. Then $a + b = |\alpha \cap \partial D_B| > 1$. And, since $c \geq a + b$ in Figure 5, the set of exponents $\{m_1, \ldots, m_j\}$ of A in w must satisfy $\{m_1, \ldots, m_j\} = \{e, e + 1\}$ with $e > 1$. So $\min\{p, p + \epsilon\} > 1$ in D. Finally, since $\{A^p B, A^{p+\epsilon} B\}$ is a set of free generators of $\pi_1(H)$, $\gcd(a, b) = 1$.

Then, putting this all together, it follows readily that the pair (α, β) has an R-R diagram with the form of Figure 4.

Lemma 3.2. Suppose α and β are disjoint nonparallel primitive simple closed curves in the boundary of a genus two handlebody H, and $\{D_A, D_B\}$ is a complete set of cutting disks of H such that $|\beta \cap \partial D_A| = 0$, $|\beta \cap \partial D_B| = 1$, and $|\alpha \cap \partial D_B| > 1$, where $|\alpha \cap \partial D_B|$ is minimal subject to $|\beta \cap \partial D_B| = 1$.

□
Then the graph $G_{\alpha,\beta}$ underlying the Heegaard diagram $HD_{\alpha,\beta}$ of α and β with respect to $\{D_A, D_B\}$ has the form of Figure 5 with $c \geq a + b > 1$.

Proof. Since α is primitive in H, there is a cutting disk D of H disjoint from α. This implies the subgraph G_α of $G_{\alpha,\beta}$ is either not connected, or has a cut vertex. We will show that the only way either of these alternatives can hold is if $G_{\alpha,\beta}$ has the form of Figure 5.

First, note that if there are no edges of HD_α connecting D_A^+ to either D_B^+ or D_B^-, then $|\alpha \cap \partial D_B| \leq 1$, contrary to hypothesis. So there must be edges of G_α connecting A^+ to either B^+ or B^-. However, if there are edges of G_α connecting A^+ to both B^+ and B^-, then G_α is connected and has no cut vertex. So, up to swapping A^+ and A^- or B^+ and B^-, we may assume A^+ is connected to B^+, and A^+ is not connected to B^- in G_α.

Continuing, if edges of HD_α only connect D_A^+ to D_B^-, and D_A^- to D_B^+, then the bandsum of D_A and D_B along one of these edges is a cutting disk D'_B of H such that $\{D_A, D'_B\}$ is a complete set of cutting disks of H, $|\beta \cap \partial D'_B| = 1$, and $|\alpha \cap \partial D_B| < |\alpha \cap \partial D'_B|$. This contradicts the assumed minimality of $|\alpha \cap \partial D_B|$.

It follows that there are edges of G_α connecting A^+ to A^-. And then, since G_α must have a cut vertex, no edges of G_α connect B^+ to B^-.

Finally, if $c < a + b$ in Figure 5 then, as before, the bandsum of D_A and D_B along an edge of HD_α connecting D_A^+ to D_B^- is a cutting disk D'_B of H such that $\{D_A, D'_B\}$ is a complete set of cutting disks of H, $|\beta \cap \partial D'_B| = 1$, and $|\alpha \cap \partial D_B| < |\alpha \cap \partial D'_B|$. This again contradicts the assumed minimality of $|\alpha \cap \partial D_B|$. It follows that $G_{\alpha,\beta}$ has the form shown in Figure 5. \qed

3.1. Recognizing primitives. The following result of Cohen, Metzler, and Zimmermann makes it possible to determine if a cyclically reduced word in a free group of rank two is primitive.

Theorem 3.3 (CMZ81). Suppose a cyclic conjugate of

$$w = A^{m_1}B^{n_1} \cdots A^{m_j}B^{n_j}$$

is a member of a basis of $F(A, B)$, where $j \geq 1$ and each indicated exponent is nonzero. Then, after perhaps replacing A by A^{-1} or B by B^{-1}, there exists $e > 0$ such that:

$$m_1 = \cdots = m_j = 1, \quad \text{and} \quad \{n_1, \ldots, n_j\} = \{e, e + 1\},$$

or

$$\{m_1, \ldots, m_j\} = \{e, e + 1\}, \quad \text{and} \quad n_1 = \cdots = n_j = 1.$$

Note that if w in $F(A, B)$ has the form $w = AB^{n_1} \cdots AB^{n_j}$, say, with $j \geq 1$ and $\{n_1, \ldots, n_j\} = \{e, e + 1\}$, then the automorphism $A \mapsto AB^{-e}$ of $F(A, B)$ reduces the length of w, so repeated applications of such automorphisms can be used to determine if a given word w in $F(A, B)$ is a primitive.

3.2. Ends of (twisted) products.

Definition 3.4. Suppose F is a once-punctured torus. Then $F \times I$ is a genus two handlebody H, and the surfaces $F \times 0$ and $F \times 1$ in ∂H are the ends of the product $F \times I$. Suppose δ is a nonseparating simple closed curve lying in $F \times 0$ or $F \times 1$. If δ is pushed into the interior of $F \times I$ by an isotopy and Dehn surgery is performed on δ, the result is another genus two handlebody H'. Then H' is a
Figure 2. If H is a genus two handlebody, (α, β) is a pair of disjoint nonparallel primitives in ∂H, and \{\(D_A, D_B\)\} is a complete set of cutting disks of H such that $|\beta \cap \partial D_A| = 0$, $|\beta \cap \partial D_B| = 1$, and $|\alpha \cap \partial D_B| = 0$, then α and β have an R-R diagram with the form of this figure. Here (α, β) represents (A, B) in $\pi_1(H)$.

Figure 3. If H is a genus two handlebody, (α, β) is a pair of disjoint nonparallel primitives in ∂H, and \{\(D_A, D_B\)\} is a complete set of cutting disks of H such that $|\beta \cap \partial D_A| = 0$, $|\beta \cap \partial D_B| = 1$, and $|\alpha \cap \partial D_B| = 1$, then α and β have an R-R diagram with the form shown in this figure. Here the parameters p and q are intersection numbers of the connection $\alpha \cap F_A$ with ∂D_A and a simple closed longitudinal curve l on F_A with $|l \cap \partial D_A| = 1$. Then $p \in \mathbb{Z}$, $\gcd(p, q) = 1$, and (α, β) represents (A^p, B) in $\pi_1(H)$.

twisted product $F \times I$, and the two surfaces $F \times 0$ and $F \times 1$ in $\partial H'$ are the ends of the twisted product $F \times I$.

3.3. Type I and Type II pairs of disjoint primitives.

Definition 3.5. Suppose (α, β) is a pair of disjoint nonparallel primitive simple closed curves in the boundary of a genus two handlebody H. The pair (α, β) is a Type I pair if there is a cutting disk D of H such that $|\alpha \cap \partial D| = 1$ and $|\beta \cap \partial D| = 1$. The pair (α, β) is a Type II pair if there is a once-punctured torus F and a homeomorphism $h: H \to F \times I$ such that $h(\alpha) \subset F \times 1$ and $h(\beta) \subset F \times 0$. (Somewhat loosely, Type I pairs are twisted pairs, while Type II pairs are untwisted pairs.)

The remaining results of this section show that pairs of disjoint nonparallel primitives on the boundary of a genus two handlebody either lie on disjoint ends
Figure 4. If H is a genus two handlebody, (α, β) is a pair of disjoint nonparallel primitives in ∂H, and $\{D_A, D_B\}$ is a complete set of cutting disks of H with $|\beta \cap \partial D_A| = 0$, $|\beta \cap \partial D_B| = 1$, and $|\alpha \cap \partial D_B| = s > 1$, with s minimal subject to $|\beta \cap \partial D_B| = 1$, then α and β have an R-R diagram with the form shown in this figure with parameters which satisfy $\gcd(a, b) = 1$, $a + b > 1$, $\epsilon = \pm 1$, and $\min\{p, p + \epsilon\} > 1$.

Figure 5. Lemma 3.2 shows that if $|\alpha \cap \partial D_B| > 1$ in Theorem 3.1, then, up to swapping A^+ and A^- or B^+ and B^-, the graph $G_{\alpha, \beta}$ of the Heegaard diagram $HD_{\alpha, \beta}$ has the form shown here with $c \geq a + b$ and $a + b = |\alpha \cap \partial D_B|$.

We begin with the following lemma which characterizes (α, β) pairs which lie on disjoint ends of a product, $F \times I$, where F is a once-punctured torus.

Lemma 3.6. Suppose H is a genus two handlebody, α and β are two disjoint nonparallel simple closed curves in ∂H, each of which is primitive in H, and A and B are a pair of free generators of $\pi_1(H)$. Then there is a once-punctured torus F and a homeomorphism $h: H \to F \times I$ such that $h(\alpha) \subset F \times 1$ and $h(\beta) \subset F \times 0$ if and only if there exists a simple closed curve Γ in ∂H separating α and β such that Γ represents the cyclic word $ABA^{-1}B^{-1}$ or its inverse in $\pi_1(H)$.

of an ordinary product $F \times I$, or on disjoint ends of a twisted product $F_\sim \times I$, where F is a once-punctured torus.
Figure 6. This figure shows the pair of disjoint primitives (α, β) of Figure 2 separated by a simple closed curve Γ such that Γ represents $ABA^{-1}B^{-1}$ in $\pi_1(H)$. (The existence of Γ shows that in addition to being separated and a Type I pair, (α, β) is also a Type II pair.)

Figure 7. This figure and Lemma 3.6 show that, if (α, β) is a pair of disjoint primitives in ∂H with an R-R diagram of the form shown in Figure 4, then there exists a curve Γ in ∂H, separating α and β, and a once-punctured torus F, such that H is homeomorphic to $F \times I$, under a homeomorphism which takes $\partial F \times I$ to a regular neighborhood of Γ in ∂H. This follows from Lemma 3.6, since Γ represents $A^\epsilon B^{-1}A^{-\epsilon}B$ in $\pi_1(H)$ with $\epsilon = \pm 1$.

Proof. The proof follows directly from the well-known fact, see Proposition 5.1 of [LS77], that any automorphism of the free group of rank two $F(A, B)$ carries the cyclic word represented by the commutator $ABA^{-1}B^{-1}$ onto itself or its inverse.

Suppose there is a once-punctured torus F and a homeomorphism $h: H \to F \times I$ such that $h(\alpha) \subset F \times 1$ and $h(\beta) \subset F \times 0$. Let X and Y be a pair of free generators of $\pi_1(F)$. Then the simple closed curve $\Gamma = h^{-1}(\partial F \times \frac{1}{2})$ in ∂H separates α and β and Γ represents a cyclic word in $\pi_1(H)$ equal to the commutator $h^{-1}(XYX^{-1}Y^{-1})$ or its inverse in $\pi_1(H)$.
Figure 8. This R-R diagram shows that if α and β have an R-R diagram with the form of Figure 3 and Γ is a simple closed curve in ∂H, separating α and β, such that Γ represents a cyclic word in $\pi_1(H)$ with no more than four syllables, then α, β, and Γ have an R-R diagram with the form of this figure. Here the pairs of parameters (p, q) and (r, s) are intersection numbers of connections on the A-handle of this R-R diagram with ∂D_A and a simple closed longitudinal curve l on the A-handle. (By twisting l around ∂D_A when $p \neq 0$, we may assume $|r| < |p|$.) Note $|l \cap \partial D_A| = 1$ if and only if $ps - rq = \pm 1$. Then, by Lemma 3.6, (α, β) is a Type II pair if and only if $r = \pm 1$, and this occurs if and only if $q = \pm (ps + 1)$.

Conversely, suppose there exists a simple closed curve Γ in ∂H separating α and β, and a pair of free generators A and B of $\pi_1(H)$ such that Γ represents the cyclic word $ABA^{-1}B^{-1}$ or its inverse in $\pi_1(H)$. Then there exists a complete set of cutting disks $\{D_A, D_B\}$ of H such that $|\partial D_A \cap \Gamma| = |\partial D_B \cap \Gamma| = 2$. It follows readily that there exists a once-punctured torus F, together with a pair of nonparallel connections δ_A, δ_B in F, and a homeomorphism $h: H \to F \times I$ such that $D_A = h^{-1}(\delta_A \times I)$, $D_B = h^{-1}(\delta_B \times I)$, and $\Gamma = h^{-1}(\partial F \times \frac{1}{2})$. So, in particular, either $h(\alpha) \subset F \times 1$ and $h(\beta) \subset F \times 0$, or $h(\beta) \subset F \times 1$ and $h(\alpha) \subset F \times 0$. □

Corollary 3.7. If H is a genus two handlebody and (α, β) is a pair of disjoint primitives in ∂H with an R-R diagram of the form of Figure 4, then α and β lie on disjoint ends of a product $F \times I$, where F is a once-punctured torus.

Proof. Figure 7 shows that, if α and β have an R-R diagram with the form of Figure 4 then there exists a simple closed Γ in ∂H separating α and β such that Γ represents $A^\epsilon B^{-1}A^{-\epsilon}B$ in $\pi_1(H)$ with $\epsilon = \pm 1$. Then Lemma 3.6 implies the claim. □

Lemma 3.8. Suppose H is a genus two handlebody and (α, β) is a pair of disjoint primitives in ∂H with an R-R diagram of the form of Figure 3.

(1) If $r = 0$, α and β are separated and also have an R-R diagram with the form of Figure 2.

(2) If $|r| = 1$, then α and β lie on disjoint ends of a product $F \times I$, where F is a once-punctured torus.
(3) If $|r| > 1$, then α and β lie on disjoint ends of a twisted product $F \times I$, where F is a once-punctured torus.

Proof. Figure 8 shows that, if α and β have an R-R diagram with the form of Figure 4, then there exists a simple closed Γ in ∂H separating α and β such that Γ represents $A^r B^{-1} A^{-r} B$ in $\pi_1(H)$. If $r = 0$, Γ bounds a separating disk in H. So α and β are separated. Otherwise, if $|r| = 1$, Lemma 3.6 shows α and β lie on disjoint ends of a product $F \times I$.

This leaves the case $|r| > 1$. In this case, there is a nonseparating simple closed curve λ in F_A such that $|\Gamma \cap \lambda| = 2$. Then there is a Dehn surgery on a core curve of the A-handle of H which turns H into another genus two handlebody H' in which λ bounds a cutting disk and, by Lemma 3.6, α and β lie on disjoint ends of a product $F \times I$. From this it is easy to see that α and β lie on disjoint ends of a twisted product $F \times I$. \square

This next result characterizes the cyclic words in $\pi_1(H)$ which are represented by the separating simple closed curves Γ in Figures 7 and 8.

Proposition 3.9. Suppose H is a genus two handlebody with a pair of disjoint nonparallel simple closed curves α and β in ∂H such that both α and β are primitive in H. Then there is a simple closed curve Γ in ∂H separating α and β, and a complete set of cutting disks $\{D_A, D_B\}$ of H, such that either $|\Gamma \cap \partial D_A| = 2$, or $|\Gamma \cap \partial D_B| = 2$. In particular, up to replacing A with A^{-1}, B with B^{-1}, or perhaps exchanging A and B, there is an integer n such that Γ represents the cyclic word $A^n B A^{-n} B^{-1}$ in $\pi_1(H)$.

Proof. Examination of the curve Γ in Figures 6, 7, and 8 shows that, in each case, Γ separates α and β and $|\Gamma \cap \partial D_B| = 2$. It follows that Γ represents a cyclic word in $\pi_1(H)$ of the claimed form. \square

Finally, the following theorem restates the classification in terms of Type I and Type II pairs.

Theorem 3.10. If (α, β) is a pair of disjoint nonparallel primitive simple closed curves in the boundary of a genus two handlebody H, then (α, β) is either a Type I or Type II pair. In particular:

1. (α, β) is a Type I pair if α and β have an R-R diagram with the form of Figure 4.

2. (α, β) is a Type II pair if α and β have an R-R diagram with the form of Figure 4.

3. (α, β) is both a Type I pair and a Type II pair if and only if α and β are separated in H, or α and β have an R-R diagram with the form of Figure 3 in which α wraps around the A-handle of the R-R diagram p times longitudinally and q times meridionally with $q = ps \pm 1$ for some integer s. (See Figure 8.)

Proof. This follows from the other results of this section. Details omitted. \square

4. **Pairs in which β is a proper power and α is a primitive or proper power**

A nonseparating simple closed curve β in the boundary of a genus two handlebody H is a proper power if β is disjoint from an essential separating disk in H, β
does not bound a disk in H, and β is not primitive in H. With the classification of α, β pairs in which both α and β are primitives finished, it seems natural to generalize slightly to the situation in which one or both of α, β are proper powers of primitives.

Here, as promised in the abstract, the situation is simpler and completely described by the following theorem.

Theorem 4.1. Suppose H is a genus two handlebody, and α and β are two disjoint nonparallel simple closed curves in ∂H such that β is a proper power in H and α is primitive or a proper power in H. Then either α and β are separated in H, or α and β bound a nonseparating annulus in H.

Proof. Suppose $\{D_A, D_B\}$ is a complete set of cutting disks of H with the property that $|\beta \cap (\delta D_A \cup \delta D_B)|$ is minimal, and also $|\alpha \cap (\delta D_A \cup \delta D_B)|$ is as small as possible among the complete sets of cutting disks of H minimizing $|\beta \cap (\delta D_A \cup \delta D_B)|$.

Then, since β is a proper power in H, one of D_A, D_B, say D_A, is disjoint from β. And then $|\beta \cap \delta D_B| = s$ with $s > 1$.

Claim 1. α intersects only one of ∂D_A, ∂D_B.

Proof of Claim 1. We use the notation of Subsection 2.1. Then, since α is disjoint from a disk in H, G_α is either not connected, or it has a cut vertex. And, of course, the graph G_β is not connected, since all s of its edges connect D_A^+ to D_B^-.

Now the proof of Claim 1 breaks into two cases depending upon whether there are nonparallel edges in G_β.

Case 1: There are edges of G_β which are not parallel.

In this case, the vertices D_A^+ and D_A^- of G_β lie in different faces of G_β. Since α and β are disjoint, this implies there are no edges of G_α connecting D_A^+ to D_A^- in G_α. It follows that, up to exchanging D_A^+ and D_A^- or D_B^+ and D_B^-, G_α has the form of Figure 6.

If $a = 0$ in Figure 6 the claim holds. So suppose $a > 0$ in Figure 6. Then the band sum of D_A and D_B, along a subarc of a representing one of the a edges of G_α connecting D_A^+ to D_B^-, is a disk D'_B of H such that $\{D_A, D'_B\}$ is a complete set of cutting disks of H, $|\beta \cap \delta D'_B| = s$, and $|\alpha \cap \delta D'_B| < |\alpha \cap \delta D_B|$, contrary to hypothesis. It follows that $a = 0$ in Figure 6 and the claim holds in this case.

Case 2: Any two edges of G_β are parallel.

In this case, since any two edges of G_β are parallel, there is a once-punctured torus F in ∂H which contains ∂D_B and β. If α and ∂F are disjoint, then α and ∂D_B are disjoint and the claim holds. So suppose the set of connections $F \cap \alpha$ is nonempty, and δ is a connection in $F \cap \alpha$. Then, since α and β are disjoint, $|\delta \cap \partial D_B| = s > 1$. This implies the graph G_α also has the form of Figure 6 in this case. Then the argument of Case 1 shows the claim also holds here. This finishes the proof of Claim 1.

To finish the proof of Theorem 4.1 observe that if α only intersects ∂D_A, then clearly α and β are separated in H. On the other hand, if α only intersects ∂D_B, then both α and β are disjoint from D_A, and so α and β bound an annulus A in the solid torus obtained by cutting H open along D_A. Finally, A must be nonseparating in H since α and β are not parallel in ∂H. \(\Box\)
PAIRS OF DISJOINT PRIMITIVES

Figure 9. The graph G_α of the proof of Theorem 4.1.

References

[CMZ81] M. Cohen, W. Metzler and A. Zimmerman, *What does a basis of $F(a,b)$ look like?*, Math. Ann. 257 (1981) 435–445.

[LS77] R. Lyndon and P. Schupp, *Combinatorial group theory*, Springer Verlag, Berlin, 1977.

[OS74] R. Osborne and R. Stevens, *Group presentations corresponding to spines of 3-manifolds I*, Amer. J. Math. 96 (1974), 454–471.

[Z88] H. Zieschang, *On Heegaard Diagrams of 3-Manifolds*, Asterisque, 163–164 (1988), 147–280.