Predicting stable binding modes from simulated dimers of the D76N mutant of β2-microglobulin

Nuno F.B. Oliveira a,b,1, Filipe E.P. Rodrigues a,b,1, João N.M. Vitorino a,b,1, Rui J.S. Loureiro a, Patrícia F.N. Faisca a,c,1, Miguel Machuqueiro a,b,1

a BioSI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, C211, Lisboa 1749-016, Portugal
b Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
1 Department of Physics, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal

ARTICLE INFO

Article history:
Received 14 July 2021
Received in revised form 2 September 2021
Accepted 2 September 2021
Available online 08 September 2021

2000 MSC:
0000
1111

Keywords:
Protein oligomerization
Folding intermediates
Molecular Dynamics
MM-PBSA
Configurational clustering

ABSTRACT

The D76N mutant of the β2-m protein is a biologically motivated model system to study protein aggregation. There is strong experimental evidence, supported by molecular simulations, that D76N populates a highly dynamic conformation (which we originally named I2) that exposes aggregation-prone patches as a result of the detachment of the two terminal regions. Here, we use Molecular Dynamics simulations to study the stability of an ensemble of dimers of I2 generated via protein–protein docking. MM-PBSA calculations indicate that within the ensemble of investigated dimers the major contribution to interface stabilization at physiological pH comes from hydrophobic interactions between apolar residues. Our structural analysis also reveals that the interfacial region associated with the most stable binding modes are particularly rich in residues pertaining to both the N- and C-terminals, as well residues from the BC- and DE-loops. On the other hand, the less stable interfaces are stabilized by intermolecular interactions involving residues from the CD- and EF-loops. By focusing on the most stable binding modes, we used a simple geometric rule to propagate the corresponding dimer interfaces. We found that, in the absence of any kind of structural rearrangement occurring at an early stage of the oligomerization pathway, some interfaces drive a self-limited growth process, while others can be propagated indefinitely allowing the formation of long, polymerized chains. In particular, the interfacial region of the most stable binding mode reported here falls in the class of self-limited growth.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Beta-2 microglobulin (β2-m) is a small protein whose native structure exhibits a typical immunoglobulin fold. The 99 residues that compose the wild-type (wt) form are arranged into two sheets of anti-parallel beta-strands forming a sandwich-like structure. One of the sheets comprises strands A-B-E-D, while the other is composed by strands C-F-G. The native structure is stabilized by a disulfide bridge linking residues Cys25 (strand B) and Cys80 (strand F) [1,2] (Fig. 1A-B).

The wt form is the causing agent of dialysis related amyloidosis (DRA), a conformational disorder associated with the formation of amyloid fibrils in the osteoarticular system of individuals undergoing long-term (>10 yrs) hemodialysis [3]. The ex-vivo amyloid fibrils of patients with DRA are composed of the wt form, and, to a lesser extend (30%), of a truncated structural variant lacking the six N-terminal residues, which is termed ΔN6 [4]. The wt form does not aggregate in vitro under physiological conditions, while the ΔN6 does [5,6]. For this reason, it has been extensively used as a model system to study β2-m aggregation. However, the biological significance of ΔN6 lacks consensus because it is not clear if the proteolytic cleavage of the terminal hexapeptide occurs before, or after, fibril assembly [7].

More recently, the D76N mutant, was identified as being the culprit of a rare systemic amyloidosis affecting visceral organs (liver, kidneys etc.) [8], which readily aggregates in vitro under physiological conditions [9]. This single point mutant thus appears to be a suitable model system to study the details of β2-m aggregation mechanism.

* Corresponding authors.
E-mail addresses: pffaisca@fc.ul.pt (P.F.N. Faisca), machuque@ciencias.ulisboa.pt (M. Machuqueiro).
1 Both authors contributed equally to this work.
The small size of β_{2m}, together with its biomedical significance, renders it an ideal target for in silico investigations framed on molecular simulations, and a plethora of interesting results has been reported in the literature (reviewed in [10]). In particular, some of us developed a three-stage approach that integrates information obtained from complementary simulation methodologies [11–13], to provide a probabilistic, structurally-resolved picture of the initial phase of the β_{2m} aggregation mechanism, which starts with the formation of dimers [14]. Specifically, we use discrete Molecular Dynamics (MD) of a full atomistic structure-based model [15,16] to explore the folding space of the monomer and detect intermediate states with aggregation potential. The identified intermediate states are then used as starting conformations in constant-pH MD simulations [17–19] to create ensembles of monomers representative of different environmental conditions. In the last stage of our procedure, we deploy an in–house protein–protein Monte Carlo ensemble docking method (MC-ED), to create ensembles of dimers whose statistical analysis allows predicting which regions of the monomer are more likely to self-associate into dimers, and identifying the so-called aggregation hot-spots, i.e., the residues that establish more intermolecular interactions in the interfacial region, being therefore critical to initiate the aggregation pathway.

In the particular case of the D76N mutant, our studies predict the existence of an aggregation-prone intermediate state, termed I_2, that is structurally characterized by having two unstructured terminal regions, which are decoupled from (a well-preserved) protein core [12] (Fig. 1C–D). We found that this intermediate is more likely to self-associate via the DE-loop and EF-loop under physiological conditions, with the termini becoming more relevant as adhesion zones under acidic pH [13]. The detachment and unfolding of the terminal regions predicted by our structure-based model is consistent with the fact that the D76N substitution breaks an important network of electrostatic interactions distributed over a large number of residues including both termini. This is in a rather good agreement with results based on ssNMR, which shows that D76N sparsely populates a highly dynamic conformation that exposes aggregation-prone regions as a result of a loss of β-structure at the terminal strands, i.e., an intermediate state that is topologically equivalent to I_2 [20]. It has been suggested that the shear forces present in the extracellular fluid under physiological conditions may be enough to further unfold the intermediate termini and induce amyloid formation in vivo [21].

Our statistical analysis of the protein–protein interfaces based on MC-ED uses a full atomistic, but, nevertheless, rigid representation of the protein. This means, in particular, that it does not take into account the conformational changes that may occur upon binding, and which can go from local rearrangements of the side-chains, to large domain motions. Additionally, it uses a cost (or scoring) function based on square-well potentials that despite considering the three driving forces of protein self-association (shape, hydrophobic, and electrostatic complementarity that includes hydrogen bonds), does not explicitly take into account desolvation effects. Therefore, it provides a qualitative assessment on the stability of the interfaces of the dimers, i.e., of their binding energies. More precise methods, combining the atomic resolution of Molecular Mechanics with an implicit continuum solvent model, have been developed to quantitatively predict the binding energies of protein–protein complexes. In contrast to the docking scoring of single structures, an ensemble of complex conformations generated using MD is evaluated in Molecular Mechanics - Poisson–Boltzmann/surface area (MM-PBSA) or MM generalized Born/surface area (MM-GBSA) approaches [22]. Both these methods have been shown to successfully predict protein–protein binding constants [23] and are particularly useful when the relative energy values between conformers are targeted since, in these cases, the elusive entropic contribution to the binding free energy mostly cancels out [24].

In the present work, we study in detail an ensemble of dimers obtained from monomers of the I_2 intermediate state using the MC-ED method. In order to do so, we designed a protocol based on MD simulations that relaxes the dimer conformation/configuration, and is followed by an evaluation of the dimer binding energy using a novel, in–house implementation of the MM-PBSA method.
Having an ensemble of predicted dimer conformations, we sought to identify binding interfaces or binding modes (BMs) that conju-
gate energetic stability with unlimited growth, i.e., the ability to form long, elongated polymeric chains without having to undergo large structural rearrangements, and BMs that in the absence of large structural rearrangement are limited to grow into small oli-
gomers. The results reported in the present work may have impli-
cations regarding the understanding of the aggregation mechanism of $\beta_{2\mu}$ based on the D76N mutant.

2. Methods

2.1. Molecular Dynamics simulations

We started by considering an ensemble of 221 dimers formed by
monomers of the intermediate state I_s, populated by the
D76N mutant under physiological conditions (pH 7.2), which was
obtained through the MC-ED method [13]. The molecular dyna-
metics (MD) simulations of the dimers were performed using GRO-
Macs 2018.6 [25], the GROMOS 54A7 force field [26,27], and the
SPC water model [28]. The full system used in the simulations
comprises a dimer of two I_s monomers, ~20,000 water mole-
ules, and 2 Na$^+$ ions to keep the overall charge neutral. All ionizable resi-
dues in the protein were kept in their most probable protonation
state at neutral pH[29], including histidines which were all kept neutral.
In all production runs, the Particle-Mesh Ewald (PME)
electrostatics [30,31] was applied with a verlet scheme cutoff of
1.4 nm, a Fourier grid spacing of 0.12 nm, and an interpolation
order of 4 (cubic). Van der Waals interactions were treated with a
Lennard-Jones potential and were truncated above 1.4 nm. All
bonds were constrained using the LINCS algorithm [32] for the pro-
tein while SETTLE was used for the water molecules [33]. The
equations of motion were integrated every 2 fs with the neighbor
lists being updated every 10 steps.

The dimer conformations were subjected to a classical protocol
of energy minimization and MD initialization to ensure GROMOS
54A7 compatibility. A three-step protocol of energy minimization
was performed consisting of 10,000 steps with the steepest-des-
cent algorithm followed by 2,000 steps with the low-memory
Broyden-Fletcher-Goldfarb-Shanno (1-BFGS) algorithm without
constraints. Finally, the LINCS algorithm is activated on all bonds
in a shorter third step (\approx200 steps) using again the steepest-des-
cent algorithm. Any existent atomic clashes were removed in these
three energy minimization steps. However, to start the tempera-
ture (NVT) and pressure (NPT) couplings in the MD initialization
procedure, special attention to the position restraints is required.
In most cases the equilibrium properties converged relatively fast, but in a few cases the dimeric interfaces required longer equilibration times.
Therefore, we performed equilibrium analyses using only the last
20 ns of each MD segment.

2.2. Structural analysis

All structural analyses of the dimers were carried out using the
GROMACS package and other in–house tools. For the structural
alignments and Root Mean Square Deviation (RMSD) calculations,
only the Cx atoms from the protein core (namely, 23–27, 36–39,
51–55, 62–66, 78–82 of each monomer) were considered. In doing
so, we discard spurious structural variability due to loops, and
unstructured N- and C- terminal regions. The interfacial areas of
the dimers were calculated using the SAS values of both monomers
in the presence and absence of the partner [37]. This procedure
was also applied to each residue individually, with the final area
being normalized (converted into a percentage) by the maximum
SAS area of each residue type observed in all simulations. Residues
with interfacial area higher than 10%, were considered to be
located at the interface. All error bars indicate the standard error
of the mean calculated over pseudo-replicates obtained by splitting
the converging sampling into 3 segments of equal size. Images
were rendered using PyMOL [38].

2.3. Structural clustering

Due to the large number of dimer configurations explored in
this work, we applied a clustering protocol comprising 3 steps to
reduce structural variability and try to ensure that unique dimers,
representative of distinct BMs, are captured and characterized.
In the first step, we started by using the cluster tool of the GROMACS
package with the gromos clustering algorithm [39] to obtain a rep-
resentative (average) structure of each dimer. This initial step con-
voluted most of the conformational variability resulting from the
MD relaxation step into 212 representative conformations.

To reduce even further the structural similarity among the con-
formations selected in the previous step, a second clustering proce-
dure was applied. This second step required the calculation of an
RMSD matrix (212*211/2) that accounts for the dissimilarity
between dimer conformations. For the fit procedure and calcula-
tion of RMSD, we used the β-sheet core region to reduce the con-
tribution of spurious structural variability into the RMSD. Finally,
in the third step, we performed A/B to B/A monomer permutations
to ensure that the best fits (lowest RMSD configurations) were
chosen [40]. The final RMSD matrix was used with the clustering tool
available in the HADDOCK 2.2 software [41,42] to generate struc-
turally homogeneous clusters at a RMSD cutoff value of 4 Å and
using the gromos algorithm[39].

2.4. Calculation of binding energies with MM-PBSA

All binding free energy (E_{bind}) calculations were performed
using a new in–house implementation of the MM/PBSA method
[43,44], written in the programming language Python (https://
github.com/mms-fcul/mmpbsa). This method uses a single-
trajectory approach to calculate 4 distinct binding energy compo-
nents - 2 related to the MM energy in vacuum, namely Van der
Waals (E_{v}^{WW}) and Coulombic (E_{v}^{PW}) terms, and 2 related to the solu-
tion energy, polar ($SolV_{polar}$) and apolar ($SolV_{apolar}$) - using the
parameters of a specific force-field. In this method, E_{v}^{WW} and E_{v}^{PW}
are calculated using the equations representing the Coulomb and
Lennard-Jones potentials, respectively. DelPhi4Py (https://github.com/mms-fcul/De-
phi4Py [29]), a DelPhi [45] python wrapper, is used as Poisson–Boltzmann (PB) solver to calculate the $SolV_{polar}$
energy. The final energy component, $\text{Sol}V_{\text{polar}}$, is calculated using a widely used Solvent Accessible Surface Area Only model (SASA-Only) of the system. The E_{bind} is, thus, comprised of the sum of the 4 aforementioned energetic terms. The program is able to read simple GROMACS coordinate files (.gro), extracted from the MD final trajectories (.xtc), and calculate energies for each given frame. In this work, GROMOS 54A7 compatible parameters (atomic charges, atomic radii [46] and 12–6 Lennard-Jones intermolecular pair potentials) were used for the calculation of the 4 energy components. In the calculations of E_{out} and $\text{Sol}V_{\text{polar}}$, a dielectric constant of 4 was used for the protein interior [47,48]. In the P–B calculations, we used a grid scaling factor (scale) of 2 and a convergence criteria (convergence) of 0.01 kT/e [49]. We also used 500 and 50 linear (nliit) and non-linear (nonit) iterations, respectively. Additionally, the grid size (gsizes) and the grid center (acent) were dynamically calculated for each file in the following manner: gsizes was set as 2 times the maximum value of the atomic coordinates in the 3 axis, plus 1 if the final number is even; acent was set as the geometric center of all the atomic coordinates for a file. For each dimer, the MM-PBSA calculations were run on the full MD trajectories, every 100 ps, which resulted in 1000 frames per dimer.

3. Results

3.1. Stability analysis

An important goal of our work is to assess the stability of the 221 dimer conformations generated using the MC-ED protocol, and structurally characterise the most stable BMs. However, since the MC-ED cost function creates a few atomic clashes and artificially introduces entanglements at the dimer interface, we designed a MM/MD-based protocol to relax the conformations before evaluating their energetic stability. In particular, we performed multiple steps of energy minimization followed by several initialization MD segments where position restraints were applied to each monomer with decreasing force constants. A set of 212 dimer configurations, were further relaxed using an unrestrained MD segment (100 ns), while the remaining 9 were discarded due to the presence of artificial entanglements (Figure S1 of Supporting Information). The goal of performing this long MD segment is to relax the dimer interfaces and potentially achieve better packing through local rearrangements.

For many dimers, a few nanoseconds was enough to relax their binding interfaces, while others, which were more dynamic, took a longer time to equilibrate. Several properties were used to monitor the equilibration procedure, including RMSD (vs. the initial and final structures), radius of gyration, secondary structure content, size of the interfacial area, etc (Figure S2 of Supporting Information). Since some dimers are more structurally unstable than others, we decided to take a conservative approach and discarded the initial 80 ns of the long MD segments. Therefore, all analyses performed and presented in what follows focused exclusively on the final 20 ns segments.

We observed significantly high values of the interfacial surface area in the ensemble of dimers comprising all relaxed conformations of the 212 MD simulations (Fig. 2A), and an average value of ~5.8 nm². High interfacial area values are usually correlated with shape-complementarity, which is one of the major drivers of protein self-association taken into account in the docking protocol. Since all dimer conformations were relaxed during long MD segments, we also evaluated how much of their equilibrated interfaces diverged from the initial ones (Fig. 2B). Most dimers (~75%) retained more than 50% of the original binding interface generated in the MC-ED, which suggests a high stability, and confirms the predicting ability of the MC-ED method.

To characterize the nature of the interactions governing/underlying dimer stability, we investigated the formation of cross-β structures or other less specific intermolecular hydrogen bonds (Figure S3 of Supporting Information). No significant differences were observed between the β structure content distributions of the full dimers and the sum of monomers, showing that the amount of cross-β is residual. The average number of intermolecular hydrogen bonds observed is also relatively modest with no preference between main chain and side chains.

Next, we evaluated dimer stability by means of the MM-PBSA approach, which provides binding energies. The binding energies calculated for the relaxed portion of our 212 MD simulations follow a normal distribution with an average \sim-40 kcal mol⁻¹ and a total range spanning from 100 to 0 kcal mol⁻¹ (Fig. 3A). These low binding energies confirm that the interfaces obtained from MC-ED and relaxed using the MD protocol are very stable, which is consistent with the high interfacial area observed for most conformations. In the MM-PBSA formalism, the binding energy is usually decomposed in vacuum and solvation terms, or in polar and apolar contributions. By separating the polar from the apolar terms to the total energy, we observe that the apolar interactions are the main contributors to dimer stability (Fig. 3B and Figure S4 of Supporting Information), suggesting that affinity and selectivity are not driven by polar contacts but rather by contact surface and shape complementarity.
We were intrigued by the positive polar energy contributions and tested the impact of changing the dielectric constant in the MM/PBSA methodology. This is an important parameter that despite being system-dependent, has been adjusted to fit different experimental data \([48,50–52]\) with the value of 4 leading to the desorption of polar energy contributions using the best results \([47,48,50,51]\). Nevertheless, we repeated the calculations of all 212 dimers and the resulting probability histogram predicts several hot-spots that are located at both the N- and C-termini, as well as at the DE-loop (Figure S6 of Supporting Information). Nevertheless, this analysis does not allow one to distinguish between residues that actively stabilize the dimer interface from bystanders, i.e., residues that are highly likely to be present but do not establish any stabilizing role. With this idea in mind, we used the MM-PBSA data to sort all dimers in our ensemble according to their binding energies and constructed two data sets: one containing the best (i.e. more stable) interfaces, and another containing the worst (i.e. less stable) interfaces (10% cutoff). By subtracting from the probability of being present in the best (worst) interfaces \(P_{W}(P_{W}\text{ PW})\), the probability \(P\) mentioned above, we identified enriched regions of the protein (i.e. regions where the probability difference, \(\Delta P = P_{W} - P > 0\) and impoverished regions of the protein (i.e. regions where the probability difference, \(\Delta P = P_{W} - P < 0\) in the best and worst interfaces (Fig. 4). For the most stable interfaces, the enriched regions comprise the N-terminus, the BC-loop, the DE-loop and the C-terminus. Interestingly, these regions correspond to the impoverished regions for the less stable interfaces, which further supports their stabilizing role in self-association. In contrast, for the less stable dimer interfaces the enriched protein regions comprise the CD-loop and EF-loop, which are the impoverished regions for the more stable interfaces. These results suggest that the more stable interfaces may trigger an aggregation pathway, which is different from that triggered by the less stable ones.

3.2. Identification and structural characterization of stable binding modes

After determining potential aggregation-prone regions of the D76N mutant of \(\beta_{2}m\), we set out to identify the most stable BMs. We started by applying a clustering protocol to ensure that only unique interfaces, corresponding to different BMs were selected. By using this approach, we obtained 161 individual BMs (clusters) from the 212 representative dimer conformations. Using the MM-PBSA binding energy values, we ranked these BMs according to their stability, and the top scorers were used in further analyses (Table 1).

In the 10 most stable BMs captured by our protocol, we noticed BM-4 as an outlier since the percentage of initial interface upon relaxation was overwhelmingly low, as a result of a large conformational rearrangement. Even though this BM was not predicted by the MC-ED, the high stability still makes it worth investigating. Overall, the top BMs obtained from our clustering analysis have low binding energies spanning from \(-83\) to \(-67\) kcal/mol and, as expected, they also display high interfacial areas, with the most stable BM having the highest interfacial area. However, there is no clear correlation between the size of the interface and the final binding energies, indicating that the nature of the residues involved in the intermolecular interactions is also important. We used these 10 BMs to calculate a probability histogram for the presence of residues in the interfacial region, which confirmed the results reported previously that considered the ensemble of 212 dimers (Figure S7 of Supporting Information).

The three-dimensional structural representation of the most stable BMs highlights a remarkable diversity of dimerization interfaces (Fig. 5), which suggests a complex and heterogeneous
interfacial area was calculated using our SASA-based protocol. The initial interface percentage was obtained comparing the presence of the individual residues at the dimer interface. Binding energies and dimer interface details for the top 10 best clusters/BMs. The binding energy contributions were obtained directly from the MM-PBSA calculation and the structural elements to allow for further oligomerization. Therefore, it is likely that the two terminal regions will play a role in the oligomerization pathway for the D76N mutant of \(\beta_2 \)-m. By visual inspection, one can easily recognize the aggregation-prone regions (highlighted as colored patches) that were previously identified (Figure S7 of Supporting Information). In particular, the N- or the C-ter are present in the interfaces of all the BMs reported in Fig. 5. Since the BC- and DE-loops are usually located on the same side of the monomeric form of \(\beta_2 \)-m, binding through this interface (as in the case of BM-1, 6, and 7) should not be limited two these structural elements to allow for further oligomerization. Therefore, it is likely that the two terminal regions will play a role in the oligomerization process, by providing alternative BMs.

3.2.2. Oligomerization of stable binding modes

In order to explore how early protein–protein interactions may determine the formation of specific aggregate arrangements, we designed a simple molecular visualization protocol that generates larger oligomers by propagating the initial dimerization interface of a selected BM. In particular, we generated 6-mers by adding 4 dimeric units to a starting dimer representative of a stable BM (Fig. 6).

The oligomers thus obtained can be classified into limited and unlimited growth oligomers, depending on whether the addition of more units leads to an oligomeric chain that closes upon itself, or, in alternative, a chain that may sustain further growth. Limited growth oligomers are usually obtained when the interfaces of each monomer are oriented in such a way that the addition of further units leads to closed structures. The simplest case is a head–to–head arrangement, in which both monomers have the same residues in the interface. BMs 5 and 6 are examples of limited growth dimers in which both monomers interact via the same regions (BM-5: Nter + CDloop + Cter; BM-6: BCloop + DEloop + Cter). BM-1, the most stable BM reported here, led to close trimers with an interface involving the Nter + BCloop + DEloop from one monomer and the BCloop + DEloop + Cter from the other.

The unlimited growth oligomers can be further classified into linear (BM 2, 3, 8, and 10) and helical oligomers (BM 4, 7, and 9). All these BMs have contact interfaces where the monomers interact via different regions and residues. This leads to the generation of free contact surfaces that permit further oligomerization. The relative orientation of monomers at the interfaces is what determines the formation of linear or helical aggregates. For these BMs, only a small rearrangement of the interfacial/contact regions is required to accommodate another monomer, which suggests an efficient oligomerization process.

This simple analysis shows that, in the absence of major conformational rearrangements, the relative orientation of the monomers in the initial interfacial region is thus key to determine the shape and size of the final aggregates. The limitation to grow beyond a certain size can be overcome by mixing different BMs, or if the final oligomer is prone to undergo a major conformational change compatible with further growth.

4. Discussion and Conclusion

Protein aggregation is a remarkably complex process, where the formation of molecular structures of varying size and timescales is highly dependent on environmental conditions. Solving the aggregation mechanism, requires determining the size, distribution and structures of the oligomeric assemblies, filaments, protofibrils and fibrils that populate the amyloid pathway, as well as the rate constants associated with every transition [53]. In the case of \(\beta_2 \)-m it is even a bigger challenge since the wt form does not aggregate in vitro under physiological conditions. Despite these difficulties, progress has been made regarding the initial phase of the aggregation mechanism (reviewed in [10]), as well as in determining the structure of amyloid fibrils [54]. In particular, research carried out by several research groups indicate that the first phase of the \(\beta_2 \)-m aggregation mechanism is the dimerization of aggregation prone monomers [10].

Here, we studied in detail an ensemble of dimers that resulted from the association of an aggregation-prone monomeric state populated by the D76N natural mutant of \(\beta_2 \)-m. This mutant has attracted considerable attention in the last years because, contrary to the wt form, it aggregates readily in vitro in physiological conditions [8,21]. The monomeric intermediate state was previously reported in a molecular simulation study based on discrete MD
simulations of a full-atomistic structure-based model [12,13,55]. It is structurally characterized for having the two terminal regions unstructured and detached from a well-preserved core. An intermediate state sharing the same topology was later reported in a study that combined ss-NMR with MD simulations [20]. An intermediate state sharing the same topology was later reported in a study that combined ss-NMR with MD simulations [20]. More recently, the occurrence of an highly-energetic intermediate state, exhibiting a smaller loss of beta structure than that populated by the D76N mutant was reported for the wt form based on a similar methodological approach [56]. The observation that the murine β2m does not populate intermediate states is in line with its considerable lower ability to oligomerize, and incapacity to form amyloid fibrils [57]. These findings thus reinforce the importance of intermediate states as triggers of protein self-association.

The ensemble of dimers investigated here was prepared with an in house protein–protein docking protocol that optimizes the interfacial region for shape, electrostatic and hydropathic complementarity [13]. While the docking method provides a qualitative characterization of the dimerization interfaces, it cannot be used to assess their stability in a quantitative manner. For this reason, in the present study we designed a simulation protocol that combines classical MD with MM-PBSA to relax the dimer interfaces and accurately estimate their binding energies. We further designed a structural clustering protocol that allowed us to isolate unique dimer configurations representative of distinct BMs. Our analysis shows that the major driving force of interface stabilization are

Fig. 5. Structural representation of the 10 most stable β2m dimer binding modes. A schematic representation of the secondary structure and color code is also shown. The N- and C-terminus, and the BC- and DE-loop are colored in blue, red, yellow and green, respectively. The structures are aligned by the monomer represented with a surface, while the other monomer is represented with cartoon.
interactions between apolar residues. This is perhaps not surprising taking into account the fact that in its functional form \(\beta_2m \) is docked onto the \(\beta_3 \) domain of the major histocompatibility complex (MHC-I) through the four-stranded (A-B-E-D) beta-sheet, and that the four aromatic, bulky residues Phe56, Trp60, Phe62, and Tyr63 and the aliphatic Leu65, which are shielded from the solvent in the quaternary structure of the MHC, become highly solvent-exposed in the monomeric form, thus being able to act as sticky patches in intermolecular association. In line with this observation, we find that the interfaces of the most stable binding modes are particularly rich in residues pertaining to both the N- and C-terminus, as well residues from the BC- and DE-loops. We highlight Trp60 from the DE-loop, which is classically recognized as an aggregation hot-spot for \(\beta_2m \) [10]. On the other hand, the less stable interfaces are stabilized by intermolecular interactions involving residues from the CD- and EF-loops.

Since there is no clear relation between dimer stability and aggregation potential [58], in the present work, instead of focusing on the most stable dimer, we considered an ensemble of dimers. The three-dimensional structural representation of the most stable BMs revealed a remarkable variability of dimerization interfaces. In order to investigate the early protein–protein interactions that establish at the dimer level and can determine the specific aggregate arrangements, we devised a simple geometric rule combined with a visualization protocol that propagates the interfaces of the 10 most stable BMs. Perhaps not surprisingly, we found that in the absence of major conformational rearrangements, the relative orientation of the monomers in the initial interfacial region is key to determine the shape and size of the final aggregates. Moreover, the dimerization interfaces in which the participating monomers contribute with the same residues (e.g. in a head-to-head arrangement) limit the growth of relatively small oligomers, while more heterogeneous dimeric interfaces in which monomers interact via different regions and residues have a potential to be propagated leading to larger oligomeric chains.

The model oligomers predicted in this work share no structural resemblance with the mature amyloid fibrils reported by Radford and co-workers [58]. It is possible that a conformational change occurring at some stage of fibril growth will lead to amyloid fibrils with a final different structural fingerprint. However, it is unlikely that the latter will share a resemblance with that reported in [58] for two major reasons. First, the amyloid structure reported therein is for the wt form of \(\beta_2m \), while the structural models predicted here refer to the D76N mutant. Secondly, the latter were built from monomers that were relaxed with constant pH MD simulations at neutral pH 7.2, while the wt amyloid fibrils were obtained under
acidic conditions. Thus, it is not only the model systems that are different, but the environmental conditions of both studies also differ, with aggregation being strongly dependent on environmental conditions.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We acknowledge Diogo Vila-Viçosa, Pedro Reis, and Tomás Silva for valuable discussions. António M. Baptista is also acknowledged for developing the fixbox tool, which was used to correct the periodic boundary conditions in the dimer trajectories. We acknowledge financial support from a Ciência e a Tecnologia through grant CEECIND/02300/2017 and projects UIDP/04046/2020. T. Eichner, A.P. Kalverda, G.S. Thompson, S.W. Homans, S.E. Radford, Hawkins PN, Chiti F, Rolandi R, Taylor GW, Pepys MB, Stoppini M, Bellotti V. Conformational Conversion during Amyloid Formation at Atomic Resolution, J Biol Chem 290 (16) (2015) 9951–9958. doi:10.1074/jbc.R115.639799. *J Biol Chem 290 (16) (2015) 9951–9958. doi:10.1074/jbc.R115.639799.

References

[1] C.H. Trinh, D.P. Smith, A.P. Kalverda, S.E.V. Phillips, S.E. Radford, Crystal structure of monomeric human β2-microglobulin reveals clues to its amyloidogenic properties, Proc Natl Acad Sci USA 99 (15) (2002) 9771–9776. arXiv:https://www.pnas.org/content/99/15/9771.full.pdf, doi:10.1073/pnas.152337399, doi:10.1073/pnas.151957999.
[2] K. Iwata, T. Matsuura, K. Sakurai, A. Nakagawa, Y. Goto, High-resolution Crystal Structure of β2-Microglobulin Formed at pH 7.0, J Biochem 142 (3) (2007) 413–419. arXiv:https://www.jbc.org/content/jbc/142/3/413.long, doi:10.1093/jbc/mnm148, doi:https://doi.org/10.1093/jbc/mnm148.
[3] G. Esposito, R. Michelleti, G. Verdone, P. Vignolo, H.H. Ández, C.V. Robinson, A. Amoresano, F.D. Piaz, M. Monti, P. Pucci, P. Mangione, M. Stoppini, G. Merlini, G. Ferri, V. Bellotti, Removal of the n-terminal hexapeptide from human β2-microglobulin facilitates protein aggregation and fibril formation, Protein Sci. 9 (5) (2000) 831–845. arXiv:https://onlinelibrary.wiley.com/doi/10.1002/1056-1977(200005)9:5<831::AID-PROS831>3.0.CO;2-I, doi:10.1002/1056-1977(200005)9:5<831::AID-PROS831>3.0.CO;2-I.
[4] T. Eichner, A.P. Kalverda, C.S. Thompson, S.W. Homans, S.E. Radford, Conformational Conversion during Amyloid Formation at Atomic Resolution, Mol Cell 41 (2) (2011) 161–172. doi:10.1016/j.molcel.2010.11.028. doi:10.1016/j.molcel.2010.11.028.
[5] M. Monti, S. Principi, S. Giorgetti, P. Mangione, G. Merlini, A. Clark, V. Bellotti, A. Amoresano, P. Pucci, Topological investigation of amyloid fibrils obtained from β2-microglobulin, Proteins Struct Funct Bioinf 85 (11) (2017) 2152337399. doi:10.1002/prot.25358. doi:10.1002/prot.25358.
[6] Loureiro RJS, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Fais PN. The Early Phase of β2-Microglobulin Aggregation: An Integrative Computational Study Framed on the D76N Mutant and the ΔN6 Variant. Biomolecules 2019;9(8). doi:10.3390/biom9080085.
[7] Loureiro RJS, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Fais PN. The Early Phase of β2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Front Mol Biol 2020;7:278. https://doi.org/10.3389/fmolb.2020.578433. doi:https://www.frontiersin.org/article/10.3389/fmolb.2020.578433.
[8] S.G. Estácio, H. Krobath, D. Vila-Viçosa, M. Machuqueiro, E.I. Shakhnovich, P.F.N. Fais, A simulated intermediate state for folding and aggregation provides insights into β2-microglobulin amyloidogenic behavior, PLOS Comp Biol 10 (5) (2014) 1–17. doi:10.1371/journal.pcbi.1003606. doi:10.1371/journal.pcbi.1003606.
[9] Mangione PP, Esposito G, Relini A, Raimondi S, Porcari R, Giorgetti S, Corazza A, Raimondi S, Valleix, J.D. Gillmore, F. Bridoux, P.P. Mangione, A. Dogan, B. Nedelec, M. Boimard, G. Touchard, J.-M. Goujon, C. Lacombe, P. Lozeron, D. Adams, C. Lacroix, T. Maisonneuve, V. Planté-Bordeneuve, J.A. Vrana, J.D. Theis, S. Giorgetti, R. Porcari, S. Ricagno, M. Bolognesi, M. Stoppini, D. Melpech, M.P. Pepy, P.N. Hawkins, V. Bellotti, Hereditary Systemic Amyloidosis Due to Asp76Asn Variant β2-Microglobulin, N. Engl. J Med. 366 (24) (2012) 2276–2283. doi:10.1056/NEJMoa1201356. doi:10.1056/NEJMoa1201356.
[10] Martin JA, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Fais PN. The Early Phase of β2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Front Mol Biol 2020;7:278. https://doi.org/10.3389/fmolb.2020.578433. doi:https://www.frontiersin.org/article/10.3389/fmolb.2020.578433.
Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new

Cawood EE, Guthertz N, Ebo JS, Karamanos TK, Radford SE, Wilson AJ.

Iadanza MG, Silvers R, Boardman J, Smith HI, Karamanos TK, Debelouchina GT,

Genheden S, Ryde U. The mm/pbsa and mm/gbsa methods to estimate ligand-

Kumari R, Consortium OSDD, Lynn A. g_mmpbsa–a gromacs tool for high-

Sala BM, Le Marchand T, Pintacuda G, Camilloni C, Natalello A, Ricagno S.

Nosé S, Klein ML. Constant pressure molecular dynamics for molecular

Wang C, Nguyen PH, Pham K, Huynh D, Wang H, Ren P, Luo R. Calculating protein-ligand binding affinities with mmpbsa: Method and error analysis. J Comput Chem 2016;37(27):2436–46.

Teixeira VH, Vila-Vicosa D, Baptista AM, Machuqueiro M. Protonation of dmpc in a bilayer environment using a linear response approximation. J Chem Theory Comput 2014;10(5):2176–84.

H. Sun, Y. Li, S. Tian, L. Xu, T. Hou. Assessing the performance of mm/pbsa and mm/gbsa methods. 4. accuracies of mm/pbsa and mm/gbsa methodologies evaluated by various simulation protocols using pdbbind data set, Phys Chem Chem Phys 16 (2014) 16719–16729. doi:10.1039/C4CP01383C. doi:10.1039/C4CP01383C.

Sun H, Li Y, Shen M, Tian S, Xu L, Pan P, Guan Y, Hou T. Assessing the performance of mm/pbsa and mm/gbsa methods. 5. improved docking performance using high solute dielectric constant mm/pbsa and mm/pbsa rescoring. Phys Chem Chem Phys 2014;16:22035–45. https://doi.org/10.1039/C4CP01728R.

Y. Li, Y. Cong, G. Feng, S. Zhong, J.Z.H. Zhang, H. Sun, L. Duan. The impact of interior dielectric constant and entropic change on hiv-1 complex binding free energy prediction. Struct Dyn 5 (6) (2018) 064101. arXiv:https://doi.org/10.1063/1.5058172, doi:10.1063/1.5058172. doi:10.1063/1.5058172.

C.M. Gomes, P.F.N. Faísca, Protein Folding: An Introduction, Springer International Publishing, Cham, 2019, pp. 1–63. doi:10.1007/978-3-319-00882-0_1. doi:10.1007/978-3-319-00882-0_1.

Iadanza MG, Silvers R, Boardman J, Smith HI, Karamanos TK, Debelauchita GT, Su Y, Griffin KG, Ranson NA, Radford SE. The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nature Commun 2018;9(1):4517.

Morand J, Nunes A, Faisca PFN. The folding space of protein beta. 2-microglobulin is modulated by a single disulfide bridge. Physical Biology 2021;18(056001).

Sala BM, Le Marchand T, Pintacuda G, Camilloni C, Natalello A, Ricagno S. Conformational stability and dynamics in crystals recapitulate protein behavior in solution. Biophys J 2020;119(5):978–88.

Achour A, Broggi L, Ha X, Sun R, Santambrogio C, Buratto J, Visentin C, Barbierioli A, De Luca CMG, Sormanni P, et al. Biochemical and biophysical comparison of human and mouse beta-2 microglobulin reveals the molecular determinants of low amyloid propensity. FEBS J 2020;287(3):546–60.

Cawood EE, Gutzherz N, Ebo JS, Karamanos TK, Radford SE, Wilson AJ. Modulation of amyloidogenic protein self-assembly using tethered small molecules. J Am Chem Soc 2020;142(49):20845–54.

[31] Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995;103(19):8577–93.

[32] Hess B. P-lincs: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 2008;4(1):116–22.

[33] Miyamoto S, Kollman PA. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 1992;13(8):952–62.

[34] Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007;126(1):014101.

[35] Parrinello M, Rahman A. Polymeric transitions in single crystals: A new molecular dynamics method. J Appl Phys 1981;52(12):7182–90.

[36] Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Mol Phys 1983;50(5):1055–76.

[37] Magalhães PR, Machuqueiro M, Almeida JG, Melo A, Cordeiro MND, Cabo Verde C4CP01388C.

[38] C.M. Gomes, P.F.N. Faísca, Protein Folding: An Introduction, Springer International Publishing, Cham, 2019, pp. 1–63. doi:10.1007/978-3-319-00882-0_1. doi:10.1007/978-3-319-00882-0_1.

[39] Daux X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE. Peptide folding: When simulation meets experiment. Angew Chem Int Ed 1999;38(1–2):236–40.

[40] Filipe LC, Machuqueiro M, Baptista AM. Unfolding the conformational behavior of peptide dendrimers: insights from molecular dynamics simulations. J Am Chem Soc 2011;133(13):5042–52.

[41] Dominguez C, Boelens R, Bonvin AMJJ. Haddock: A protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 2003;125(7):1731–7.

[42] de Vries SJ, van Dijk ADJ, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AMJJ. Haddock versus haddock: New features and performance of haddock2.0 on the capri targets. Proteins Struct Funct Bioinf 2007;69(4):726–33.

[43] Kumari R, Consortium OSDD, Lynn A. g_mmpbsa–a gromacs tool for high-throughput mm-pbsa calculations. J Chem Inf Model 2014;54(7):1591–62.

[44] Genhedem S, Ryde U. The mm/pbsa and mm/gbsa methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015;10(5):449–61.

[45] Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies. Applications to the molecular systems and geometric objects. J Comput Chem 2002;23(1):128–37.

[46] Teixeira VH, Cunha CA, Machuqueiro M, Oliveira ASF, Victor BL, Soares CM, Baptista AM. On the use of different dielectric constants for computing individual and pairwise terms in poisson- boltzmann studies of protein ionization equilibrium. J Phys Chem B 2005;109(30):14691–706.