The N-terminal domain of the V-ATPase subunit ‘α’ is regulated by pH in vitro and in vivo

Reinhard Dechant and Matthias Peter
Institute of Biochemistry; Department of Biology; ETH Zürich; and Competence Center for Systems Physiology and Metabolic Diseases; Zürich, Switzerland

Regulation of the activity of vacuolar ATPase (V-ATPase) is a well known, yet poorly understood phenomenon, which might underlie the contribution of V-ATPases in various cellular signaling processes.1 In yeast, V-ATPase is regulated by glucose and contributes to activation of cAMP-dependent protein kinase A (PKA). We have recently shown that, in vivo, glucose regulates V-ATPase through cytosolic pH, suggesting that V-ATPase contains a pH sensitive subunit, which regulates assembly of the holo-complex.2 Here, we present the purification and biochemical characterization of the N-terminal domain of subunit ‘α’, Vph1N, which has been suggested to act as a pH sensor in mammalian cells.3 Interestingly, our studies demonstrate pH-dependent oligomerization of this domain in vivo and in vitro. Moreover, we identify a membrane proximal region that is required for the pH-dependent oligomerization and suggest a speculative model for the regulation of the V-ATPase holo-complex by pH.

Introduction

The vacuolar ATPases (V-ATPase) are highly conserved proton pumps, embedded in membranes of organelles of biosynthetic and endocytic pathways, thereby mediating intra-luminal acidification. V-ATPase activity is required for vacuolar protein turnover, vesicular trafficking and vacuolar fusion.1,4 In addition, recent findings indicate a role of V-ATPases in signal transduction in multiple systems.2,5,7 V-ATPases consist of a membrane bound V$_0$ sector (the proton channel) and the reversibly attached V$_1$ sector, which is responsible for ATP hydrolysis. Regulation of V-ATPase often affects the assembly state of the holo-complex. For example, V-ATPase assembly is regulated by glucose in yeast and mammalian cells.8,9 Various kinases have been implicated in the regulation of V-ATPase activity, but the underlying mechanism of regulation remains unclear.8,10-15

Interestingly, V-ATPase has been shown to interact with a downstream effector, the Rab-GEF ARNO, in an activity-dependent manner.16 Based on this work, it has been suggested that V-ATPases themselves act as pH sensors.3 Consistent with this idea, we have recently shown that, in vivo, V-ATPase assembly is regulated by cytosolic pH. Importantly, cytosolic pH is regulated by glucose levels, thereby identifying a molecular mechanism for V-ATPase regulation by glucose.2

More specifically, regulation and localization of V-ATPase is mediated by subunit ‘α’.2,5,7 Structural data indicate that this subunit consists of an N-terminal cytoplasmic domain, which is connected by a short linker to the membrane-bound C-terminal domain (Fig. 1A and B, reviewed in ref. 18). Moreover, a major structural rearrangement of this subunit accompanies V-ATPase disassembly,19 raising the possibility that pH-dependent regulation of this domain might mediate regulation of the V-ATPase holo-complex in response to glucose (Fig. 1A, ref. 2).

Results

To obtain biochemical evidence supporting this hypothesis, we aimed to
purify and characterize the N-terminal domain of Vph1p, which encodes the vacuolar isofrom of subunit 'a' in yeast. Therefore, we recombinantly expressed a fragment containing the first 418 amino acids, (Vph1N, Fig. 1B), which includes the entire cytoplasmic domain of Vph1p, but stops before the first transmembrane domain. In addition, we sought to address a potential role of the linker region, connecting the cytoplasmic and membrane-bound domains in the pH-dependent assembly of V-ATPase. Secondary structure predictions revealed a possible alpha helix at the C-terminal end of the expressed protein fragment (data not shown), which might be part of the flexible linker region observed in EM. Therefore, we also expressed a truncated form of Vph1N, which contains only amino acids 1–385, Vph1NΔL and thus eliminates the predicted helix.

Expression of these constructs as N-terminal fusions to Maltose binding protein (MBP) yielded sufficient amounts of proteins with good purity using a one-step affinity purification (Fig. 1C). Interestingly, reproducible purification was dependent on the use of phosphate buffer with high buffering capacity, already indicating a pH sensitivity of the protein.

CD-spectra of the purified MBP fusion protein confirmed proper folding with mostly alpha helical properties (Fig. 1D), which was consistent with previous observations and secondary structure predictions (ref. 20 and data not shown). Recording of CD-spectra in buffers at different pH values did not reveal any detectable differences (Fig. 1D), demonstrating that reduced pH does not lead to major changes in the secondary structure of Vph1N.

However, when characterized in gel-filtration experiments, Vph1N eluted in two major peaks from Sepharose 6 columns, suggesting that Vph1N forms homo-oligomers in vitro (Fig. 2A). Estimation of the sizes of these peaks using size standards was most consistent with the elution of monomers and octameric complexes. Moreover, incubation of the protein in buffers with lower pH significantly increased the octameric fraction (Fig. 2A and B), demonstrating pH-dependent oligomerization of Vph1N in vitro.

Surprisingly, the truncated protein, Vph1NΔL, mostly eluted as monomeric protein under all conditions tested (Fig. 2A), suggesting that the predicted helix is required for oligomerization and possibly contributes to its pH regulation.

To examine whether Vph1N is also regulated by pH in vivo, we expressed the same fragments in yeast and followed

Figure 1. Recombinant expression of the N-terminal domain of V-ATPase subunit 'a'. (A) Model for pH regulation of V-ATPase by subunit 'a' (indicated in green) and (B) schematic representation of the domain structure of subunit 'a', VPH1. L: linker domain. Fragments expressed as MBP- or HA-fusions are indicated. (C) Aliquots of the purified proteins were separated by SDS-PAGE and stained using coomassie to assess purity of the samples. (D) CD-spectra of Vph1N recorded after equilibration to pH 7.4 (high pH) and pH 6.0 (low pH). The mean molar ellipticity (θ) is plotted as a function of the wavelength.
pH-dependent oligomerization in total cell extracts. As shown in Figure 1C, Vph1N was detected in two major peaks following gel filtration and decreasing pH shifted the ratio towards the high molecular weight form. In contrast, no significant differences in the elution profile were observed for Vph1NAL at different pH, thus recapitulating the data obtained with the recombinant proteins in vitro. Therefore, we conclude that Vph1N undergoes pH-dependent regulation in vitro and in vivo, strongly supporting the notion that the N-terminal domain of subunit ‘a’ mediates pH-dependent regulation of V-ATPase assembly.

Discussion

In an attempt to further understand pH regulation of the V-ATPase holo-complex, we sought to biochemically characterize the cytoplasmic domain of the V-ATPase subunit ‘a’ from yeast. Indeed, we observed a pH-dependent oligomerization of the purified Vph1N domain in vitro and after overexpression in vivo.

Our data confirm and extend a previously published analysis of the mammalian a2 subunit. Similar to our study, Merkulova and co-workers found that the mammalian a2 subunit consists of mostly alpha helical fold and elutes in multiple peaks from a gel-filtration column, consistent with oligomerization of this domain. Strikingly, the protein was stabilized at high pH, indicating similar pH-dependent properties. However, the mammalian a2 fragment was stabilized in the presence of detergents and interacted with liposomes, thereby displaying properties of a membrane-bound protein. In contrast, Vph1N could be purified in the absence of detergents in solutions with high buffer capacity as an MBP fusion. It is likely that MBP acts as a solubility tag, overcoming the hydrophobicity of the domain. Indeed, Vph1N was largely insoluble as a His-tagged protein under the same conditions (data not shown).

pH-dependent regulation of this domain could readily explain the regulation of V-ATPase assembly in response to glucose. While our studies indicate oligomerization of Vph1N, it remains to be examined if regulated oligomerization indeed contributes to V-ATPase assembly in vivo. Structural EM studies have only indicated one ‘a’-subunit per V-ATPase holo-complex, thereby arguing against oligomerization within a single V-ATPase holo-complex in cis. Thus, homotypic interaction between cytosolic domains of subunit ‘a’ would have to occur in trans, linking two or more V-ATPase complexes.

An alternative explanation might be provided by structural predictions of Vph1N, which we have obtained by ab initio structure predictions. While Vph1N and Vma5p, which encodes the ‘C’ subunit of V-ATPase, do not share significant sequence similarity at the primary sequence level, Vph1N could be readily modeled based on the published crystal structure of Vma5p (Fig. 2D, ref. 21) using an alignment based on secondary structure predictions (http://meta.bioinfo.pl). Vma5p reversibly associates with both the V6 and the V5 sector upon V-ATPase assembly. Interestingly, it directly interacts with Vph1p based on crosslinking experiments. Thus, in vivo, Vph1N and Vma5p might form hetero-dimers based on a topologically similar interaction that can lead to homo-oligomerization of Vph1N in vitro. It will therefore be interesting to further characterize binding of Vph1N and Vma5p both in vivo and in vitro and determine if regulation of this interaction might contribute to the assembly of the V-ATPase holo-complex.

In any case, identifying the pH sensitive residues that mediate the pH-dependent regulation of Vph1N will be crucial to further elucidate the mechanism of V-ATPase regulation. Based on the pKa values for free amino-acids in solution, only histidine residues are likely to change the protonation state under physiological conditions. However, pKa values for the side-chains of amino acids are strongly dependent on their local environment within the protein, thereby complicating predictions of potential candidates based on primary sequence. For example, regulated protonation of aspartate side-chains has been shown to mediate the regulation of pH-sensitive ion-channels.

Recently, we have screened for mutations in Vph1p that alter pH-sensitive assembly of V-ATPase in vivo. Interestingly, we identified a single substitution, D329N that affected V-ATPase disassembly upon starvation. Unfortunately, using our in vitro assay for pH-sensitive oligomerization of Vph1N, we did not observe any change in the pH sensitivity of the mutant protein (data not shown), suggesting that protonation of this residue is not regulating V-ATPase assembly in vivo. Rather, D329 might be required to transduce a conformational change upon protonation within Vph1N to mediate V-ATPase holo-complex assembly in vivo. Consistent with this finding, vph1-D329N mutations only delayed, but did not abolish V-ATPase regulation by glucose. Conversely, as C-terminal truncation of Vph1N prevents oligomerization in vitro and in vivo, residues within the very C-terminus of Vph1N might be good candidates for future studies. Ultimately however, determination of the Vph1N structure will be crucial to resolve the molecular details of pH-dependent regulation of V-ATPase assembly.

Materials and Methods

Protein expression and gel-filtration. Plasmids used in this study are listed in Table 1. Proteins were expressed as N-terminal MBP fusions in BL21* cells. Cells were lysed in 125 mM NaPO4 buffer (pH 7.4) supplemented with 2 mM DTT, 5% Glycerol and 2 mM EDTA. Fusion proteins were purified using Amylose beads (NEB), eluted with maltose and dialyzed into PBS (10 mM NaPO4, 150 mM NaCl, pH 7.4) supplemented with 20% glycerol and 2 mM DTT. After purification, aliquots of the protein were adjusted to different pH by addition of NaPO4, and incubated at 30°C for 30 min to allow for equilibration of oligomers. Gel filtration was performed using a Superose 6 column (Amersham) and proteins were detected by UV absorption. Size calibration of the column was performed using commercial size standards (Amersham) and peaks were integrated using ImageJ software (http://rsb.info.nih.gov/ij/). CD-spectroscopy was performed on a Jasco J-710 (OmniLab) instrument.

Yeast extracts were prepared in 125 mM NaPO4 buffer (pH 6.0 or pH
Figure 2. Vph1N oligomerizes in a pH-dependent manner in vitro and in vivo. (A) Representative chromatograms of three independent experiments of gel filtration experiments of Vph1N (left part) and Vph1NΔL (right part) adjusted to the indicated pH. Elution volumes and molecular mass of proteins (in kDa) used as size standards are shown above the chromatograms. (B) The octamer-to-monomer ratio of purified Vpn1 was quantified and plotted as a function of pH. (C) Representative western blots of three independent experiments of selected fractions from gel-filtration experiments with yeast strains expressing the indicated constructs. Extracts were prepared with buffer of indicated pH. (D) Structural model of the Vph1N fragment (aa 57–365) derived by ab initio structure predictions using the published structure of Vma5p (pdb accession 1u7L) as a template for modeling.

Table 1. Plasmids used in this study

Plasmid no	Genotype	Source
pMALc2	MBP	NEB
prD6	MBP-Vph1N (1–418)	This study
prD7	MBP-Vph1NΔL (1–385)	This study
prD8	pRS416-ADH-HA3-Vph1N (1–418)	This study
prD9	pRS416-ADH-HA3-Vph1N (1–385)	This study

Acknowledgements
The authors wish to thank Fabian Rudolf for help with protein purification and constant support throughout the project and Daniel Burschowsky for the introduction to CD spectroscopy. Work in the Peter lab is supported by the Swiss National Science Foundation (SNF), the Swiss Initiative in Systems Biology SystemX (RTD projects YeastX and LiverX) and the ETH Zürich.

References
1. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 2007; 8:917-29.
2. Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M. Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 2010; 29:2515-26.
3. Marshansky V. The V-ATPase a2-subunit as a putative endosomal pH-sensor. Biochem Soc Trans 2007; 35:1092-9.
4. Kane PM. The where, when and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 2006; 70:177-91.
5. Li G, Yang Q, Krishnan S, Alexander EA, Borkan SC, Schwartz JH. A novel cellular survival factor—the B2 subunit of vacuolar H+-ATPase inhibits apoptosis. Cell Death Differ 2006; 13:2109-17.
6. Yan Y, Denf N, Schupbach T. The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 2009; 17:387-402.
7. Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, et al. Requirement of protein receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 2010; 327:459-63.
8. Sautin YY, Lu M, Gaugler A, Zhang L, Glück SL. Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 2005; 25:575-89.
9. Patra KJ, Kane PM. Reversible association between the V_i and V_i domains of yeast vacuolar H_i-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 1998; 18:7064-74.
10. Voss M, Schmidt R, Walz B, Baumann O. Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands. Cell Tissue Res 2009; 335:657-62.
11. Dames P, Zimmermann B, Schmidt R, Rein J, Voss M, Schewe B, et al. cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands. Proc Natl Acad Sci USA 2006; 103:3926-31.
12. Paunescu TG, Ljubojevic M, Russo LM, Winter C, McLaughlin MM, Wagner CA, et al. cAMP stimulates apical V-ATPase accumulation, microvillus elongation and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol Renal Physiol 2010; 298:F643-54.
13. Gong F, Alzamora R, Smolak C, Li H, Naveed S, Neumann D, et al. Vacuolar H+-ATPase apical accumulation in kidney intercalated cells is regulated by PKA and AMP-activated protein kinase. Am J Physiol Renal Physiol 2010; in press.
14. Hallows KR, Alzamora R, Li H, Gong F, Smolak C, Neumann D, et al. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells. Am J Physiol Cell Physiol 2009; 296:C672-81.
15. Rein J, Voss M, Blenau W, Walz B, Baumann O. Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein kinase A. Am J Physiol Cell Physiol 2008; 294:F65-66.
16. Hurdado-Lorenzo A, Skinner M, El Annan J, Furtai M, Sun-Wada GH, Bourgoin S, et al. V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 2006; 8:124-36.
17. Kawasaki-Nishi S, Nishi T, Forgac M. Yeast V-ATPase complexes containing different isoforms of the 100 kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 2001; 276:17941-8.
18. Wilkens S, Zhang Z, Zheng Y. A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 2005; 36:109-26.
19. Wilkens S, Forgac M. Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy. J Biol Chem 2001; 276:44064-8.
20. Merkulova M, McKee M, Dip PV, Gruber G, Marshansky V. N-terminal domain of the V-ATPase α2-subunit displays integral membrane protein properties. Protein Sci 2010.
21. Droy O, Frolow F, Nelson N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 2004; 5:1148-52.
22. Kane PM, Parra KJ. Assembly and regulation of the yeast vacuolar H+-ATPase. J Exp Biol 2000; 203:81-7.
23. Inoue T, Forgac M. Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. J Biol Chem 2005; 280:27896-903.
24. Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 2007; 449:316-23.
25. Eswar N, Eramian D, Webb B, Shen MY, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol 2008; 426:145-59.