A probabilistic view of latent space graphs and phase transitions

Suqi Liu∗ Miklós Z. Rácz∗

October 29, 2021

Abstract

We study random graphs with latent geometric structure, where the probability of each edge depends on the underlying random positions corresponding to the two endpoints. We focus on the setting where this conditional probability is a general monotone increasing function of the inner product of two vectors; such a function can naturally be viewed as the cumulative distribution function of some independent random variable. We consider a one-parameter family of random graphs, characterized by the variance of this random variable, that smoothly interpolates between a random dot product graph and an Erdős–Rényi random graph. We prove phase transitions of detecting geometry in these graphs, in terms of the dimension of the underlying geometric space and the variance parameter of the conditional probability. When the dimension is high or the variance is large, the graph is similar to an Erdős–Rényi graph with the same edge density that does not possess geometry; in other parameter regimes, there is a computationally efficient signed triangle statistic that distinguishes them. The proofs make use of information-theoretic inequalities and concentration of measure phenomena.

1 Introduction

Random graphs defined over some latent geometric space are widely used to model a large variety of real-life networks. Random dot product graphs are a natural family of random graphs with simple latent geometry where the probability of connection depends on the inner product of two vectors in a Euclidean space [1, 28]. For a graph on a set of vertices \(V = [n] := \{1, 2, \ldots, n\} \), we write \(i \sim j \) if vertices \(i \) and \(j \) are connected by an undirected edge. Let \(\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d \) be independent identically distributed random vectors. In the general setting of random dot product graphs, conditioned on the latent vectors \(\mathbf{x}_i \) and \(\mathbf{x}_j \), the event \(i \sim j \) happens with probability \(\sigma(\langle \mathbf{x}_i, \mathbf{x}_j \rangle) \), independently of everything else, where \(\langle \cdot, \cdot \rangle \) denotes the inner product and \(\sigma : \mathbb{R} \rightarrow [0, 1] \) is usually a monotone increasing function called the connection function. That is,

\[
\mathbb{P}(i \sim j \mid \mathbf{x}_1, \ldots, \mathbf{x}_n) = \sigma(\langle \mathbf{x}_i, \mathbf{x}_j \rangle).
\]

The distribution of the random graph is then specified by

\[
\mathbb{P}(G) = \mathbb{E} \left[\prod_{i<j} \sigma(\langle \mathbf{x}_i, \mathbf{x}_j \rangle)^{a_{i,j}} (1 - \sigma(\langle \mathbf{x}_i, \mathbf{x}_j \rangle))^{1-a_{i,j}} \right],
\]

where \(A = [a_{i,j}] \) is the adjacency matrix of the graph \(G \).

∗Princeton University, Princeton, NJ 08544, USA; Email: \{suqili, mracz\}@princeton.edu. Research supported in part by NSF grant DMS-1811724.
The properties of the connection function \(\sigma \) play a key role in the presence of geometry in the random graph. When \(\sigma \) is a threshold function, that is, \(\sigma(x) = 1\{x \geq t\} \), then such a graph is known simply as a random dot product graph [16]. At the other extreme, if \(\sigma \) is a constant, we have an Erdős–Rényi random graph, with no geometry. In between, intuitively, when the connection function is “steep”, the edges are related through the latent geometric space; when the connection function is “flat”, the edges become less dependent of each other. The flatness of the connection function can also be understood as the level of noise in a geometric graph: A connection function that is close to a constant implies large noise. The trade-off between noise and dimensionality in detecting geometry in random graphs was first studied by the authors [16], where a particular one-parameter family of connection functions, consisting of step functions, were studied. An immediate question is how does this trade-off generalize to other connection functions (in particular, smooth ones) that are widely used in practice? We attempt to answer this question by studying a natural one-parameter family of smooth connection functions that interpolates between the two extremes.

1.1 A probabilistic view of the connection function

We focus on the case when the latent positions are independent standard normal random vectors, that is, \(x_i \sim N(0, I_d) \) for \(1 \leq i \leq n \). We consider a broad class of connection functions bearing a probabilistic view. Observing that the connection function is usually monotone increasing between 0 and 1, it is natural to view it as the cumulative distribution function (CDF) of some random variable. Keeping this setup in mind, we seek a parametrization that characterizes the “flatness” of the function and interpolates between the geometric graph and the Erdős–Rényi model. A natural parameter is the variance of this random variable. If the variance is large, the CDF changes slowly. On the other hand, if the variance goes to zero, the random variable converges to a constant and the CDF becomes a threshold function. We formulate the idea as follows.

Suppose \(D(0, 1) \) is an arbitrary zero mean and unit variance distribution with the CDF denoted by \(F : \mathbb{R} \to [0, 1] \). Suppose the probability measure is absolutely continuous with respect to Lebesgue measure and let \(f \) be the probability density function (PDF). We assume that

\[
f(x) > 0, \quad \forall x \in \mathbb{R}. \tag{A0}
\]

We also assume that \(f \) is continuously differentiable and the derivative \(f' \) is bounded:

\[
\alpha := \sup_x |f'(x)| < \infty. \tag{A1}
\]

For technical reasons, we further assume that the second order derivative \(f'' \) exists and for any fixed Gaussian random variable \(X \),

\[
\mathbb{E}[|f''(X)|] < \infty. \tag{A2}
\]

We then create a one-parameter family of connection functions using \(F \). The process can be viewed as an affine transformation of a random variable following \(D(0, 1) \). The “flatness” of the connection function is parametrized by \(r \), which measures the deviation of the random variable from a constant. However, since the inner product of two \(d \)-dimensional standard normal random vectors has a variance of \(d \), we account for it by setting the variance to \(r^2d \). We also need to match the marginal probability of an edge in the graph, which is done by choosing an appropriate mean. Then, we can view the connection function as the CDF of the distribution \(D(\mu_{p,d,r}, r^2d) \):

\[
\sigma(x) := F\left(\frac{x - \mu_{p,d,r}}{r \sqrt{d}}\right), \tag{1.1}
\]

2
where $\mu_{p, d, r}$ is determined by setting the edge density in the graph to be equal to p:

$$
P(i \sim j) = \mathbb{E}[\sigma(\langle x_i, x_j \rangle)] = \mathbb{E}\left[F\left(\frac{\langle x_i, x_j \rangle - \mu_{p, d, r}}{r \sqrt{d}}\right)\right] = p.
$$

We denote the random graph constructed in this way by $G(n, p, d, r)$.

The edge generating process for $G(n, p, d, r)$ can also be viewed as follows. For each pair of vertices i and j, we draw an independent random variable $z_{i,j} \sim D(\mu_{p, d, r}, r^2 d)$. Then, conditioned on the latent positions x_i, x_j, and the random variable $z_{i,j}$, vertices i and j are connected if and only if $\langle x_i, x_j \rangle \geq z_{i,j}$. In other words, for a graph with adjacency matrix A,

$$
a_{i,j} = 1 \{i \sim j\} = 1 \{\langle x_i, x_j \rangle \geq z_{i,j}\}.
$$

In contrast, in the conventional definition of a random dot product graph, the connection between i and j is determined by comparing the inner product with a threshold that is a constant [16].

Canonical examples of the connection function, which satisfy the assumptions above, include:

- logistic (here $\alpha = \pi^2/(18 \sqrt{3})$):
 $$
 F(x) = \frac{1}{1 + \exp(-\pi x / \sqrt{3})},
 $$

- Gaussian (here $\alpha = 1/\sqrt{2e\pi}$):
 $$
 F(x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{y^2}{2}\right) dy.
 $$

The assumptions are also satisfied broadly by many more CDFs.

For a random graph with latent geometric structure, the only observables are the edges, while the underlying random vectors are invisible. It is natural to ask the question that for a given graph, whether geometry is reflected in the combinatorial structure. A canonical random graph model that does not possess geometry is the Erdős–Rényi graph $G(n, p)$, in which the edges are generated independently with probability p. Therefore, in this work, we focus on how $G(n, p, d, r)$ compares to $G(n, p)$. The detection of geometry can then be understood through bounds on the total variation distance between them which will be defined formally in Section 2. Roughly speaking, when the total variation distance is close to 0, there is no algorithm that can tell the difference.

1.2 Main result

Our main result is summarized as the following theorem.

Theorem 1.1. Let $G(n, p, d, r)$ be defined above with p fixed in $(0, 1)$ and $r \geq 1$.

(a) Assume (A1). If

$$
\frac{n^3}{r^3 d} \to 0,
$$

then $\text{TV}(G(n, p, d, r), G(n, p)) \to 0$.

(b) Additionally, assume (A0) and (A2). Suppose that $d/\log^2 d \gg r^6$ or $r/\log^2 r \gg d^{1/6}$. If

$$
\frac{n^3}{r^6 d} \to \infty,
$$

then $\text{TV}(G(n, p, d, r), G(n, p)) \to 1$.

3
Theorem 1.1 can be displayed graphically by a phase diagram in the space of the parameter r and the dimension d, as shown in Figure 1.

Remark 1.2. There is an intermediate regime that is not covered by the theorem. We believe the phase transitions happen at a certain power of r. We conjecture that Theorem 1.1(b) gives the actual threshold. In the proof of Theorem 1.1(a), a factor of r^2 might have been lost when applying Jensen’s inequality to the KL divergence (see Section 3).

Remark 1.3. The noisy high-dimensional random geometric graphs studied in [16] do not fall into the family of graphs considered in this work since the connection functions there are not continuously differentiable, which is crucial in the proofs. Nevertheless, we can draw some comparisons between them. We see that the signed triangle statistic gives the same detection boundary in both models. This could be understood as despite the discrepancies, the parameters are both a linear measurement of the deviation from a constant.

Remark 1.4. The theorem is stated in the case $r \geq 1$, which is the regime where there is an interplay between r and d. When $r = o(1)$, by the data processing inequality, the total variation distance between $G(n, p, d, r)$ and $G(n, p)$ is upper bounded by the Wishart to GOE transition, which gives the condition $d \gg n^3$ for the impossibility of detecting geometry [16]. At the same time, by the calculation in [16, Section 5], the detection power for the signed triangle statistic when $r \to 0$ (the connection function becomes an indicator function) is $d \ll n^3$. Combining these, we have that the phase transition is at $d \approx n^3$ regardless of the rate of r.

1.3 Related work

The study of random graphs generated from latent positions traces back to the work of Gilbert [12] in the early 1960s, illustrated by applications to communication networks. After several decades, a latent space model with great generality was proposed in [13] and applied to social network analysis, which popularized the modern study of latent space graphs in statistics. The inner product model was later generalized to a latent position graph model equipped with a continuous positive definite kernel in [24], where feature map estimation and universally consistent vertex classification were discussed. A recent work [17] studied a similar inner product model focusing on model fitting methods. We refer to [1] for a survey on such topics in random dot product graphs. Another family of random graphs with latent geometric structure is the random geometric graphs [19]. The soft variants wherein the connection probability depends on the distance of latent positions through a function were also investigated in [20].

The study of random geometric graphs in high dimensions originates from the pioneering work of Devroye, György, Lugosi, and Udina [8], where they used a multivariate central limit theorem to show that the graph becomes similar to an Erdős–Rényi graph when the dimension grows. Subsequent work of Bubeck, Ding, Eldan, and Rácz [6] determined that the dimension threshold is
\[d \approx n^3 \] at which the phase transition of losing geometry happens in dense random geometric graphs. In prior work, we generalized this phase transition phenomena to a noisy setting and studied the trade-off between noise and dimensionality for the first time [16]; this paper is the closest to the current one, see Remark 1.3 above for a discussion. An excellent recent survey [9] provides a detailed summary of progress and discussions of open questions on these problems (see also [21]).

Lying underneath the loss of geometry in random graphs is the Wishart to GOE transition in high dimensions, and a line of work explores this direction [5, 6, 15, 22]. In particular, the phase transition was shown for log-concave measures using entropy-based methods in [5]. This was further extended to an anisotropic setting [10]. In a recent work, masked Wishart matrices were considered and phase transitions were proven to matching orders in various types of combinatorial masks [4].

1.4 Organization

The rest of the paper is organized as follows. In Section 2, we introduce several notations and key facts used throughout the paper. Section 3 consists of the proof of Theorem 1.1(a), where several information-theoretic inequalities are used. Detecting geometry using the signed triangle statistic is presented in Section 4, where the main body consists of estimating the expectation of a signed triangle in \(G(n, p, d, r) \) in two different parameter regimes. Applying Chebyshev’s inequality with these estimates concludes the proof of Theorem 1.1(b).

2 Notations and preliminaries

A graph \(G = (V, E) \) is a tuple consisting of a set of vertices \(V = [n] := \{1, 2, \ldots, n\} \) and a set of edges \(E \subset \binom{[n]}{2} \), where the collection of all subsets of a set \(S \) with cardinality \(k \) is denoted by \(\binom{S}{k} \). We use \(\| \cdot \| \) to denote the Euclidean norm of a vector. For a random variable \(X \in \mathcal{X} \) and a measurable function \(f : \mathcal{X} \to \mathbb{R} \), \(\|f(X)\|_p \) denotes the \(L^p \)-norm of \(f \in L^p(\mathcal{X}) \).

Our proofs build upon various inequalities involving \(f \)-divergences, which are briefed here. To begin with, we state the definition of an \(f \)-divergence.\(^1\)

Definition 2.1 \((f\text{-divergence})\). Let \(\mathcal{P} \) and \(\mathcal{Q} \) be probability measures on the measurable space \((\Omega, \mathcal{F})\). Suppose that \(\mathcal{P} \) is absolutely continuous with respect to \(\mathcal{Q} \). For a convex function \(f \) such that \(f(1) = 0 \), the \(f \)-divergence of \(\mathcal{P} \) and \(\mathcal{Q} \) is defined as

\[
D_f(\mathcal{P} \parallel \mathcal{Q}) := \mathbb{E}_\mathcal{Q}\left[f\left(\frac{d\mathcal{P}}{d\mathcal{Q}}\right)\right] = \int_\Omega f\left(\frac{d\mathcal{P}}{d\mathcal{Q}}\right) d\mathcal{Q},
\]

where \(\frac{d\mathcal{P}}{d\mathcal{Q}} \) is the Radon–Nikodym derivative of \(\mathcal{P} \) with respect to \(\mathcal{Q} \).

Different choices of \(f \) lead to the following \(f \)-divergences encountered in the proofs.

Definition 2.2. Let \(\mathcal{P} \) and \(\mathcal{Q} \) be probability measures on the measurable space \((\Omega, \mathcal{F})\) such that \(\mathcal{P} \) is absolutely continuous with respect to \(\mathcal{Q} \).

(a) **Total variation distance** (corresponding to \(f(x) = \frac{1}{2}|x - 1| \)):

\[
TV(\mathcal{P}, \mathcal{Q}) := \sup_{A \in \mathcal{F}}|\mathcal{P}(A) - \mathcal{Q}(A)| = \frac{1}{2} \int_\Omega \left|\frac{d\mathcal{P}}{d\mathcal{Q}} - 1\right| d\mathcal{Q}.
\]

\(^1\)Note that the \(f \) in \(f \)-divergence should not be confused with the probability density function \(f \) in the description of \(G(n, p, d, r) \). In general, \(f \) is overloaded in this section, but the meaning of \(f \) will always be clear from the context.
(b) **Kullback–Leibler (KL) divergence** (corresponding to \(f(x) = x \log x \)):

\[
KL(\mathcal{P} \parallel \mathcal{Q}) := \mathbb{E}_\mathcal{P} \left[\log \frac{d\mathcal{P}}{d\mathcal{Q}} \right] = \int_{\Omega} \frac{d\mathcal{P}}{d\mathcal{Q}} \log \frac{d\mathcal{P}}{d\mathcal{Q}} d\mathcal{Q}.
\]

(c) **(Pearson) \(\chi^2 \)-divergence** (corresponding to \(f(x) = (x - 1)^2 \)):

\[
\chi^2(\mathcal{P} \parallel \mathcal{Q}) := \mathbb{E}_\mathcal{Q} \left[\left(\frac{d\mathcal{P}}{d\mathcal{Q}} - 1 \right)^2 \right] = \mathbb{E}_\mathcal{Q} \left[\left(\frac{d\mathcal{P}}{d\mathcal{Q}} \right)^2 \right] - 1.
\]

The \(f \)-divergences defined above are connected through the following inequalities (see [11]).

Proposition 2.3 (Pinsker’s inequality). Let \(\mathcal{P} \) and \(\mathcal{Q} \) be probability measures on the measurable space \((\Omega, \mathcal{F})\) such that \(\mathcal{P} \) is absolutely continuous with respect to \(\mathcal{Q} \). Then

\[
TV(\mathcal{P}, \mathcal{Q}) \leq \sqrt{\frac{1}{2} KL(\mathcal{P} \parallel \mathcal{Q})}.
\]

Proposition 2.4. Let \(\mathcal{P} \) and \(\mathcal{Q} \) be probability measures on the measurable space \((\Omega, \mathcal{F})\) such that \(\mathcal{P} \) is absolutely continuous with respect to \(\mathcal{Q} \). Then

\[
KL(\mathcal{P} \parallel \mathcal{Q}) \leq \log(1 + \chi^2(\mathcal{P} \parallel \mathcal{Q})).
\]

For KL divergence, a useful property is the chain rule, stated as the following proposition.

Proposition 2.5 (Chain rule). For joint distributions \(\mathcal{P}_{X,Y} = \mathcal{P}_{X|Y} \mathcal{P}_Y \) and \(\mathcal{Q}_{X,Y} = \mathcal{Q}_{X|Y} \mathcal{Q}_Y \), the chain rule for the KL divergence reads

\[
KL(\mathcal{P}_{X,Y} \parallel \mathcal{Q}_{X,Y}) = KL(\mathcal{P}_Y \parallel \mathcal{Q}_Y) + \mathbb{E}_{\mathcal{P}_Y} KL(\mathcal{P}_{X|Y} \parallel \mathcal{Q}_{X|Y}).
\] (2.1)

We show the following lemma for Lebesgue integrable functions with bounded derivatives.

Lemma 2.6. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is an integrable function on \(\mathbb{R} \) that is continuously differentiable. If \(f' \) is bounded, then \(f \) is bounded as well. Further, let \(M := \int_{\mathbb{R}} |f(x)| dx < +\infty \) and \(\alpha := \sup_x |f'(x)| \); then \(\sup_x |f(x)| \leq 2\sqrt{M\alpha} \).

Proof. For all \(a \in \mathbb{R} \) and \(b > 0 \), consider the integral

\[
\int_a^{a+b} |f(x)| dx \leq \int_{\mathbb{R}} |f(x)| dx = M.
\]

Let \(f_m := \inf_{x \in [a,a+b]} |f(x)| \). Since \(f_m \leq |f(x)| \) for \(x \in [a, a+b] \),

\[
bf_m = \int_a^{a+b} f_m dx \leq \int_a^{a+b} |f(x)| dx \leq M,
\]

which gives \(f_m \leq M/b \).

Since \(f \) is continuous, there exists a number \(c \in [a, a+b] \) such that \(|f(c)| = f_m \). The mean value theorem gives that for \(\xi \in [a, a+b] \),

\[
f(a) \leq f_m + |f'(\xi)| b \leq \frac{M}{b} + ab.
\]

If \(\alpha > 0 \), by choosing \(b = \sqrt{M/\alpha} \), the claim directly follows.

If \(\alpha = 0 \), then \(f \) is constant on \(\mathbb{R} \). Since \(f \) is integrable, \(f(x) = 0 \) for all \(x \in \mathbb{R} \). Thus, the claim is also true.
Applying Lemma 2.6 to a probability density function, we have the following corollary.

Corollary 2.7. Let \(f : \mathbb{R} \to \mathbb{R}_+ \) be a probability density function that is continuously differentiable. If \(\sup_x |f'(x)| \leq \alpha \), then \(\sup_x |f(x)| \leq 2\sqrt{\alpha} \).

For standard normal random variables, Stein’s lemma (also known as Gaussian integration by parts) provides a powerful tool and is frequently used in the proofs. The lemma, and Stein’s method built upon it, are broadly used in probability and statistics (see, e.g., [14, Example 13.13], also [7]). We state it as the following proposition.

Proposition 2.8. (Stein’s lemma [23, Lemma 1]) Let \(Y \) be a \(\mathcal{N}(0, 1) \) real random variable and let \(g : \mathbb{R} \to \mathbb{R} \) be an indefinite integral of the Lebesgue measurable function \(g' \), essentially the derivative of \(g \). Suppose also that \(\mathbb{E}[|g'(Y)|] < \infty \). Then,

\[
\mathbb{E}[g'(Y)] = \mathbb{E}[Y g(Y)].
\]

For a continuously differentiable function of a standard normal random vector, the following proposition provides a sharp bound for the variance, known as the Gaussian Poincaré inequality (see [2, Theorem 3.20]).

Proposition 2.9 (Gaussian Poincaré inequality). Suppose \(x = (x_1, \ldots, x_d) \) is a vector of i.i.d. standard Gaussian random variables. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be any continuously differentiable function. Then,

\[
\text{Var}[f(x)] \leq \mathbb{E}[\|\nabla f(x)\|^2].
\]

We also make frequent use of the properties of sub-exponential random variables. We state the definition in terms of the moment generating function and the equivalent tail bound, which appear in most texts (see, e.g., [26, Definition 2.7 and Proposition 2.9]).

Definition 2.10. A random variable \(X \) is sub-exponential if there are nonnegative parameters \((a, b)\) such that

\[
\log \mathbb{E}[e^{t(X - \mathbb{E}[X])}] \leq \frac{a^2 t^2}{2} \quad \text{for all } |t| < \frac{1}{b}.
\]

Proposition 2.11. Suppose \(X \) is sub-exponential with parameters \((a, b)\). Then,

\[
\mathbb{P}(X - \mathbb{E}[X] \geq t) \leq \begin{cases}
\exp\left(-\frac{t^2}{2a^2}\right) & \text{if } 0 \leq t \leq \frac{a^2}{b}, \\
\exp\left(-\frac{t}{2b}\right) & \text{for } t > \frac{a^2}{b}.
\end{cases}
\]

Equivalently,

\[
\mathbb{P}(X - \mathbb{E}[X] \geq t) \leq \exp\left(-\frac{1}{2} \min\left\{\frac{t^2}{a^2}, \frac{t}{b}\right\}\right).
\]

The following concentration lemma regarding the normal distribution is used in various proofs.

Lemma 2.12. Let \(f : \mathbb{R}^d \to \mathbb{R} \) be a continuously differentiable function. If the norm of the gradient satisfies \(\|\nabla f(x)\| \leq \|x\| \), then for \(x \sim \mathcal{N}(\mathbf{0}, I_d) \), \(f(x) \) is sub-exponential with parameters \((2\sqrt{d}, 1)\). In particular, the tails of \(f(x) \) satisfy

\[
\mathbb{P}(|f(x) - \mathbb{E}[f(x)]| \geq t) \leq \begin{cases}
2 \exp\left(-\frac{t^2}{8d}\right) & \text{if } 0 \leq t \leq 4d, \\
2 \exp\left(-\frac{t}{2}\right) & \text{for } t > 4d.
\end{cases}
\]
Proof. Without loss of generality, we may assume $\mathbb{E}[f(x)] = 0$.

For a nonnegative random variable Z, the *entropy* of Z is defined as

$$\text{Ent}(Z) := \mathbb{E}[\varphi(Z)] - \varphi(\mathbb{E}[Z]),$$

where $\varphi(x) = x \log x$ (see, e.g., [2]; note that this notion of entropy is not to be confused with the Shannon entropy).

By the Gaussian logarithmic Sobolev inequality (see, e.g., [2, Theorem 5.4]),

$$\text{Ent}(e^{tf(x)}) \leq 2 \mathbb{E}[\| \nabla e^{tf(x)/2} \|^2] = \frac{t^2}{2} \mathbb{E}[e^{tf(x)} \| \nabla f(x) \|^2] \leq \frac{t^2}{2} \mathbb{E}[\| x \|^2 e^{tf(x)}].$$

The duality formula of the entropy (see [2, Remark 4.4]) implies that for any random variable W such that $\mathbb{E}[e^W] < \infty$, the entropy of e^{tZ} for a random variable Z satisfies

$$\mathbb{E}[We^{tZ}] \leq \mathbb{E}[e^{tZ}] \log \mathbb{E}[e^W] + \text{Ent}(e^{tZ}).$$

Applying the inequality with $Z = f(x)$ and $W = \frac{e-1}{2e} \| x \|^2$, we have that

$$\mathbb{E}[\| x \|^2 e^{tf(x)}] \leq \frac{2e}{e-1} \mathbb{E}[e^{tf(x)}] \log \mathbb{E}\left[\exp\left(\frac{e-1}{2e} \| x \|^2 \right) \right] + \text{Ent}(e^{tf(x)}).$$

Since $x \sim \mathcal{N}(0, I_d)$, $\| x \|^2$ has a chi-squared distribution with d degrees of freedom. By the moment generating function of the chi-squared distribution, we have that

$$\log \mathbb{E}\left[\exp\left(\frac{e-1}{2e} \| x \|^2 \right) \right] = \log \left(1 - 2 \cdot \frac{e-1}{2e} \right)^{-d/2} = \frac{d}{2}.$$

Hence, by putting together the previous displays, we have that

$$\text{Ent}(e^{tf(x)}) \leq \frac{t^2}{2} \left(\frac{ed}{e-1} \mathbb{E}[e^{tf(x)}] + \text{Ent}(e^{tf(x)}) \right) \leq \frac{t^2}{2} \left(2d \mathbb{E}[e^{tf(x)}] + \text{Ent}(e^{tf(x)}) \right).$$

By rearranging this inequality, we have that

$$\text{Ent}(e^{tf(x)}) \leq \frac{dt^2}{1 - t^2/2} \mathbb{E}[e^{tf(x)}] \leq 2dt^2 \mathbb{E}[e^{tf(x)}],$$

where the second inequality holds for $|t| \leq 1$. Writing $M(t) := \mathbb{E}[e^{tf(x)}]$, note that $\text{Ent}(e^{tf(x)}) = tM'(t) - M(t) \log M(t)$. Therefore the inequality in the previous display becomes

$$tM'(t) - M(t) \log M(t) \leq 2dt^2 M(t).$$

Solving this equation exactly, and noting that $M(0) = 1$, gives that

$$\log \mathbb{E}[e^{tf(x)}] \leq 2dt^2.$$

By Definition 2.10, the claim is hence proved.

Further by Proposition 2.11, the tail bound directly follows. \qed

Remark 2.13. This lemma can also be derived from an exponential Poincaré inequality [25, problem 3.16], as pointed out by Ramon van Handel (personal communication).
Therefore, we have that first vector of the standard basis. Let Lemma 2.15.

Proof. Consider two independent random variables $X, Y \sim \mathcal{N}(0, 1)$. The moment generating function of their product satisfies

$$
E[e^{tXY}] = \int_0^\infty \int_0^\infty \frac{1}{2\pi} e^{txy} e^{-(x^2+y^2)/2} dx dy = \left| \begin{array}{cc} 1 & -t \\ -t & 1 \end{array} \right|^{-1/2} = \frac{1}{\sqrt{1-t^2}}.
$$

Since $(1-x)^{-1/2} \leq e^x$ for $0 \leq x \leq 1/2$, we have for $t^2 \leq 1/2$ that $E[e^{tXY}] \leq e^{t^2}$.

Consequently, for two independent standard normal random vectors $x, y \sim \mathcal{N}(0, I_d)$, we have that

$$
E[e^{t(x,y)}] = E[e^{t\sum_{i=1}^d x_i y_i}] = \prod_{i=1}^d E[e^{tx_i y_i}] \leq e^{t^2 d^2}
$$

for $t^2 \leq 1/2$.

We state a lemma concerning the concentration of the inner product of two independent random vectors uniformly distributed on the unit sphere S^{d-1}.

Lemma 2.15. For $x, y \in \mathbb{R}^d$ independently uniformly distributed on the unit sphere S^{d-1}, when $t \geq 1$ and $d \geq 2$,

$$
P\left(|\langle x, y \rangle| \geq \frac{t}{\sqrt{d}} \right) \leq 2 \exp\left(-\frac{t^2}{4} \right).
$$

Proof. By rotation invariance on the d-dimensional sphere, we can fix $y = e_1 := (1, 0, \ldots, 0)$, the first vector of the standard basis. Let $z \in \mathcal{N}(0, I_d)$, then $z/\|z\|$ is a uniform random point in S^{d-1}. Therefore, we have that

$$
P\left(|\langle x, y \rangle| \geq \frac{t}{\sqrt{d}} \right) = P\left(|z_1| \geq \frac{t}{\sqrt{d}} \right) = P\left(\sum_{i=1}^d z_i^2 \geq \frac{t^2}{d} \right).
$$

Since z_i's are i.i.d. standard normal random variables, $z_i^2/\sum_{i=1}^d z_i^2$ has a $\text{Beta}(\frac{1}{2}, \frac{d-1}{2})$ distribution. Hence, by the density function of a beta distribution, we have that

$$
P\left(\sum_{i=1}^d z_i^2 \geq \frac{t^2}{d} \right) = \frac{\Gamma\left(\frac{d}{2} \right)}{\Gamma\left(\frac{1}{2} \right) \Gamma\left(\frac{d-1}{2} \right)} \int_{\frac{t^2}{d}}^1 z^{-1/2} (1-z)^{(d-1)/2-1} dz.
$$

By Wendel’s double inequality (see [27, equation (7)], also [16, equation (3.15)]), we have that

$$
\frac{\Gamma\left(\frac{d}{2} \right)}{\Gamma\left(\frac{1}{2} \right) \Gamma\left(\frac{d-1}{2} \right)} \leq \sqrt{\frac{d-1}{2\pi}}.
$$

Additionally,

$$
\int_{\frac{t^2}{d}}^1 z^{-1/2} (1-z)^{(d-1)/2-1} dz \leq \frac{\sqrt{d}}{t} \int_{\frac{t^2}{d}}^1 (1-z)^{(d-1)/2-1} dz = \frac{\sqrt{d}}{t} \left(\frac{-2}{d-1} (1-z)^{(d-1)/2} \right)^{1/2}_{\frac{t^2}{d}} = \frac{2\sqrt{d}}{t(d-1)} \left(1 - \frac{t^2}{d} \right)^{(d-1)/2} \leq \frac{2\sqrt{d}}{t(d-1)} \exp\left(-\frac{(d-1)t^2}{2d} \right).
$$
Putting the previous displays together, we have for \(t \geq 1 \) and \(d \geq 2 \) that
\[
P_{p} \left(\left| \langle x, y \rangle \right| \geq \frac{t}{\sqrt{d}} \right) \leq \frac{2}{\sqrt{\pi}} \exp \left(- \frac{t^2}{4} \right).
\]

The claim directly follows. \(\square \)

Remark 2.16. The proof of Lemma 2.15 makes use of the explicit density function of a Beta distribution. The tails of Beta random variables have also been studied in recent years [18, 29], where sub-Gaussian and Bernstein-type bounds are given respectively in different parameter regimes.

Remark 2.17. We have seen in Proposition 2.14 that the inner product of two \(d \)-dimensional standard normal random vectors has sub-exponential tails, and since the moment generating function does not exist when \(t > 1 \), the exponential rate cannot be improved. In comparison, Lemma 2.15 gives sub-Gaussian tails when the random vectors are uniformly distributed on a sphere of the same dimension, which decays much faster. In other words, the inner product of independent high dimensional random vectors concentrates better on a sphere than in a Gaussian space.

3 Impossibility of detecting geometry

In this section, we show that \(\mathcal{G}(n, p, d, r) \) and \(\mathcal{G}(n, p) \) are indistinguishable when the dimension \(d \) or the parameter \(r \) is large, thus proving Theorem 1.1(a).

We first introduce several notations used in the proofs. We denote the adjacency matrix of \(\mathcal{G}(n, p, d, r) \) by \(A \). Let \(B \in \mathbb{R}^{n \times n} \) be a symmetric Bernoulli ensemble, that is, \(\{ b_{i,j} \}_{1 \leq i < j \leq n} \) are independent Bernoulli random variables with parameter \(p \). We also use the following shorthand notations in this section. For the matrices \(A, B \in \mathbb{R}^{n \times n} \), we denote their principal minor of order \(k \) by \(A_k \) and \(B_k \). The bold lower case letter \(a_k \) denotes the last row of \(A_k \). The \(k \) by \(d \) matrix consisting of the first \(k \) rows of the matrix \(X \in \mathbb{R}^{n \times d} \) is denoted by \(X_k \), and \(x_k \) denotes the \(k \)th row of \(X \).

Pinsker’s inequality (Proposition 2.3) gives
\[
\text{TV}(\mathcal{G}(n, p, d, r), \mathcal{G}(n, p)) \leq \sqrt{\frac{1}{2} \text{KL}(\mathcal{G}(n, p, d, r) \parallel \mathcal{G}(n, p))}.
\]

By the chain rule of KL divergence (Proposition 2.5) we have that
\[
\text{KL}(\mathcal{G}(n, p, d, r) \parallel \mathcal{G}(n, p)) = \sum_{k=0}^{n-1} \mathbb{E}_{A_k} \text{KL}(a_{k+1} \parallel A_{k+1}, B_k = A_k) = \sum_{k=0}^{n-1} \mathbb{E}_{A_k} \text{KL}(a_{k+1} \parallel b_{k+1}), \tag{3.1}
\]

where the last equality is due to the independence of \(b_{k+1} \) and \(B_k \). By convexity of the KL divergence (see, e.g., [16, Proposition 3.4]), Jensen’s inequality gives that
\[
\mathbb{E}_{A_k} \text{KL}(a_{k+1} \parallel A_k, b_{k+1}) \leq \mathbb{E}_{A_k, X_k} \text{KL}(a_{k+1} \parallel A_k, X_k, b_{k+1}) = \mathbb{E}_{X_k} \text{KL}(a_{k+1} \parallel X_k, b_{k+1}),
\]
where the last equality is because a_{k+1} and A_k are conditionally independent given X_k. The KL divergence is bounded from above by the χ^2 divergence (see Proposition 2.4):

$$
\mathbb{E}_{X_k} \text{KL}(a_{k+1} \mid X_k \parallel b_{k+1}) \leq \mathbb{E}_{X_k} [\log(1 + \chi^2(a_{k+1} \mid X_k \parallel b_k))] \\
\leq \log(1 + \mathbb{E}_{X_k} \chi^2(a_{k+1} \mid X_k \parallel b_k)) \\
= \log \mathbb{E}_{X,b_{k+1}} \left[\left(\frac{\mathbb{P}_{G(n,p,d,r)}(b_{k+1} \mid X_k)}{\mathbb{P}_{G(n,p)}(b_{k+1})} \right)^2 \right].
$$

(3.2)

where the second line is by Jensen’s inequality.

By the definition of $G(n,p,d,r)$, we have that

$$
\mathbb{P}_{G(n,p,d,r)}(b_{k+1} \mid X_k) = \mathbb{E}_{x_{k+1}} \left[\prod_{1 \leq i \leq k} \sigma((x_i, x_{k+1}))^{b_{i,k+1}}(1 - \sigma((x_i, x_{k+1})))^{1-b_{i,k+1}} \right].
$$

By an idea similar to the second moment method [3], we can write the square as the product of two expectations of independent copies and then apply Fubini’s theorem:

$$
\mathbb{P}_{G(n,p,d,r)}(b_{k+1} \mid X_k)^2 = \mathbb{E}_{x_{k+1}} \left[\prod_{1 \leq i \leq k} \sigma((x_i, x_{k+1}))^{b_{i,k+1}}(1 - \sigma((x_i, x_{k+1})))^{1-b_{i,k+1}} \right] \\
\times \mathbb{E}_{x_{k+1}^*} \left[\prod_{1 \leq i \leq k} \sigma((x_i, x_{k+1}'))^{b_{i,k+1}}(1 - \sigma((x_i, x_{k+1}')))^{1-b_{i,k+1}} \right] \\
= \mathbb{E}_{x_{k+1},x_{k+1}^*} \left[\prod_{1 \leq i \leq k} \sigma((x_i, x_{k+1}))\sigma((x_i, x_{k+1}'))^{b_{i,k+1}} \right] \\
\times \left(1 - \sigma((x_i, x_{k+1}))(1 - \sigma((x_i, x_{k+1}'))) \right)^{1-b_{i,k+1}}]
$$

where the last equality is by the independence of x_{k+1} and x_{k+1}'. Therefore, by interchanging the expectations and taking out the product by independence, we obtain that

$$
\mathbb{E}_{X_k,b_{k+1}} \left[\left(\frac{\mathbb{P}_{G(n,p,d,r)}(b_{k+1} \mid X_k)}{\mathbb{P}_{G(n,p)}(b_{k+1})} \right)^2 \right] \\
= \mathbb{E}_{x_{k+1},x_{k+1}'} \left[\prod_{1 \leq i \leq k} \mathbb{E}_{x_i,b_i,k+1} \left[\left(\frac{1}{p}\sigma((x_i, x_{k+1}))\sigma((x_i, x_{k+1}')) \right)^{b_{i,k+1}} \right] \\
\times \left(1 - \sigma((x_i, x_{k+1}))(1 - \sigma((x_i, x_{k+1}'))) \right)^{1-b_{i,k+1}} \right].
$$

(3.3)

Since each entry of B is an independent Bernoulli random variable with parameter p, we can compute the inner expectation over $b_{1,k+1}$ directly, obtaining that

$$
\mathbb{E}_{X_k,b_{k+1}} \left[\left(\frac{\mathbb{P}_{G(n,p,d,r)}(b_{k+1} \mid X_k)}{\mathbb{P}_{G(n,p)}(b_{k+1})} \right)^2 \right] \\
= \mathbb{E}_{x_{k+1},x_{k+1}'} \left[\prod_{1 \leq i \leq k} \left(1 + \frac{1}{p(1-p)} \mathbb{E}_{x_i}[(\sigma((x_i, x_{k+1}))-p)(\sigma((x_i, x_{k+1}'))-p)] \right) \right] \\
= \mathbb{E}_{x_{k+1},x_{k+1}'} \left[\left(1 + \frac{1}{p(1-p)} \mathbb{E}_{x_1}[(\sigma((x_1, x_{k+1}))-p)(\sigma((x_1, x_{k+1}'))-p)] \right)^k \right].
$$
where the last equality holds since all \(x_i\)'s are identically distributed.

Define
\[
\gamma(x, y) := \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\sigma(\langle x, z \rangle) - \mu_p, d_r](\sigma(\langle y, z \rangle) - p)].
\] (3.4)

We show the following lemma concerning \(\gamma(x, y)\).

Lemma 3.1. Let \(x, y \in \mathbb{R}^d\) be independent standard normal random vectors. Recall the definition of \(\sigma\), as well as the assumption (A1).

(a) The mean of \(\gamma(x, y)\) satisfies
\[
0 \leq \mathbb{E}[\gamma(x, y)] \leq \frac{\alpha^2}{r^4 d}.
\]

(b) The variance of \(\gamma(x, y)\) is upper bounded by
\[
\text{Var}[\gamma(x, y)] \leq \frac{68\alpha^2}{r^4 d}.
\]

(c) Let \(L := \sqrt{34\alpha/(r^2 d)}\). Then, \(\gamma(x, y)/L\) is sub-exponential with parameters \((2\sqrt{2d}, 1)\), that is,
\[
\log \mathbb{E}\left[\exp\left(\frac{t}{L} \gamma(x, y) - \mathbb{E}[\gamma(x, y)]\right)\right] \leq 4dt^2 \quad \text{for all} \ |t| \leq 1.
\]

Proof of Lemma 3.1(a). Let
\[
\eta(x) := \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\sigma(\langle x, z \rangle)] \quad \text{and} \quad \xi(x, y) := \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[\sigma(\langle x, z \rangle)\sigma(\langle y, z \rangle)].
\]

By the construction of \(\sigma\), we have that
\[
\mathbb{E}_{x \sim \mathcal{N}(0, I_d)}[\eta(x)] = \mathbb{E}[\sigma(\langle x, z \rangle)] = p.
\] (3.5)

Next, we bound the variance of \(\eta(x)\). Observe that
\[
\frac{\partial \eta(x)}{\partial x_i} = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}\left[\frac{\partial \sigma(\langle x, z \rangle)}{\partial x_i}\right] = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[z_i \sigma'(\langle x, z \rangle)].
\]

Thus by Stein’s lemma we have that
\[
\frac{\partial \eta(x)}{\partial x_i} = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}[z_i \sigma'(\langle x, z \rangle)] = \mathbb{E}_{z \sim \mathcal{N}(0, I_d)}\left[z_i \left[\frac{\partial \sigma'(\langle x, z \rangle)}{\partial z_i}\right]\right] = x_i \mathbb{E}[\sigma''(\langle x, z \rangle)],
\]

where \(z_{-i}\) denotes the rest of \(z\) except for \(z_i\). Hence, by the definition of \(\sigma\) in (1.1),
\[
||\nabla \eta(x)||^2 = \sum_{i=1}^{d} \left(\frac{\partial \eta(x)}{\partial x_i}\right)^2 = \frac{1}{r^4 d^2} \sum_{i=1}^{d} x_i^2 \mathbb{E}_{z}\left[f'(\langle x, z \rangle - \mu_p, d_r, r\sqrt{d})\right]^2 \\
\leq \frac{||x||^2}{r^4 d^2} \mathbb{E}_{z}\left[f'(\langle x, z \rangle - \mu_p, d_r, r\sqrt{d})\right]^2 \leq \frac{\alpha^2 ||x||^2}{r^4 d^2},
\]

where we used the assumption (A1) in the last inequality. The Gaussian Poincaré inequality (Proposition 2.9) thus gives
\[
\text{Var}[\eta(x)] \leq \mathbb{E}[||\nabla \eta(x)||^2] \leq \frac{\alpha^2}{r^4 d^2} \mathbb{E}[||x||^2] = \frac{\alpha^2}{r^4 d}.
\] (3.6)
Additionally, by interchanging the order of expectations we have that
\[E[\xi(x, y)] = E[E_z[\sigma((x, z))\sigma((y, z))]] = E[E_x[\sigma((x, z))] E_y[\sigma((y, z))]] = E[\eta(z)^2]. \quad (3.7) \]

Finally, expanding the product in the definition of \(\gamma(x, y) \) and putting together the expressions in (3.5), (3.6), and (3.7), we obtain that
\[E[\gamma(x, y)] = E[\xi(x, y)] - p E[\eta(x)] - p E[\eta(y)] + p^2 = E[\xi(x, y)] - p^2 = \text{Var}[\eta(z)] \leq \frac{\alpha^2}{r^4d}. \quad (3.8) \]

The nonnegativity of \(E[\gamma(x, y)] \) directly follows from it being a variance.

Recall the assumption \((A1) \), and note that Corollary 2.7 thus implies that \(f \) is bounded and
\[\sup_x |f(x)| \leq 2\sqrt{\alpha}. \quad (3.9) \]

Proof of Lemma 3.1(b) and Lemma 3.1(c). Taking the partial derivative with respect to \(x_i \), we have that
\[\frac{\partial \gamma(x, y)}{\partial x_i} = E_{z \sim N(0, I_d)} \left[\frac{\partial (\sigma((x, z)) - p)}{\partial x_i} (\sigma((y, z)) - p) \right] = E_{z \sim N(0, I_d)} [z_i \sigma'(\langle x, z \rangle) (\sigma((y, z)) - p)]. \]

By Stein’s lemma, we have that
\[\frac{\partial \gamma(x, y)}{\partial x_i} = E_{z_i \sim N(0, I_d)} [E_{z_i}[z_i \sigma'(\langle x, z \rangle) (\sigma((y, z)) - p)]] = E_{z_i} \left[\frac{\partial}{\partial z_i} (\sigma'(\langle x, z \rangle) (\sigma((y, z)) - p)) \right] \]
\[= y_i E_z[\sigma'((x, z)) (\sigma((y, z)))] + x_i E_z[\sigma''((x, z)) (\sigma((y, z)) - p)]. \]

Then, by the elementary inequality \((a + b)^2 \leq 2(a^2 + b^2) \) and Jensen’s inequality, we have that
\[\left(\frac{\partial \gamma(x, y)}{\partial x_i} \right)^2 \leq \frac{2y_i^2}{r^4d^2} E_z \left[f \left(\frac{\langle x, z \rangle - \mu_{p,d,r}}{r\sqrt{d}} \right) f \left(\frac{\langle y, z \rangle - \mu_{p,d,r}}{r\sqrt{d}} \right) \right]^2 \]
\[+ \frac{2x_i^2}{r^4d^2} E_z \left[f' \left(\frac{\langle x, z \rangle - \mu_{p,d,r}}{r\sqrt{d}} \right) (\sigma((y, z)) - p) \right]^2 \leq \frac{2y_i^2}{r^4d^2} E_z \left[f \left(\frac{\langle x, z \rangle - \mu_{p,d,r}}{r\sqrt{d}} \right)^2 \right] \]
\[+ \frac{2x_i^2}{r^4d^2} E_z \left[f' \left(\frac{\langle x, z \rangle - \mu_{p,d,r}}{r\sqrt{d}} \right)^2 (\sigma((y, z)) - p)^2 \right] \leq \frac{2\alpha^2(x_i^2 + 16y_i^2)}{r^4d^2}, \]

where in the last inequality we used \((A1) \) and (3.9). Hence, we obtain that
\[\|\nabla \gamma(x, y)\|^2 = \sum_{i=1}^d \left(\frac{\partial \gamma(x, y)}{\partial x_i} \right)^2 + \sum_{i=1}^d \left(\frac{\partial \gamma(x, y)}{\partial y_i} \right)^2 \leq \frac{34\alpha^2}{r^4d^2}(\|x\|^2 + \|y\|^2). \quad (3.10) \]

Taking expectation on both sides of the above display yields
\[E[\|\nabla \gamma(x, y)\|^2] \leq \frac{34\alpha^2}{r^4d^2} E[\|x\|^2 + \|y\|^2] = \frac{68\alpha^2}{r^4d}. \]
By the Gaussian Poincaré inequality we thus have that
\[
\mathbb{V}ar[\gamma(\mathbf{y}, \mathbf{z})] \leq \mathbb{E}[\|\nabla \gamma(\mathbf{y}, \mathbf{z})\|^2] \leq \frac{68\alpha^2}{r^4d}.
\]

Lemma 3.1(b) is hence proved.

By viewing \((\mathbf{x}, \mathbf{y})\) as a \((2d)\)-dimensional vector, (3.10) exactly gives the upper bound of the norm of the gradient in terms of the norm of the vector. Thus, by applying Lemma 2.12, the sub-exponential tails of \(\gamma(\mathbf{x}, \mathbf{y})\) in Lemma 3.1(c) directly follow.

With Lemma 3.1 in place, we return to bounding the KL divergence from above. Using the definition of \(\gamma(\mathbf{x}, \mathbf{y})\), we can express (3.3) with \(\gamma(\mathbf{x}, \mathbf{y})\) as

\[
\mathbb{E}_{\mathbf{X}_k, \mathbf{b}_{k+1}} \left[\left(\frac{\mathbb{P}_{\mathcal{G}(n,p,d,r)}(\mathbf{b}_{k+1} \mid \mathbf{X}_k)}{\mathbb{P}_{\mathcal{G}(n,p)}(\mathbf{b}_{k+1})} \right)^2 \right] = \mathbb{E} \left[\left(1 + \frac{1}{p(1-p)} \gamma(\mathbf{x}, \mathbf{y}) \right)^k \right] \leq \mathbb{E} \left[\exp \left(\frac{k}{p(1-p)} \gamma(\mathbf{x}, \mathbf{y}) \right) \right],
\]

where we use the fact that \(1 + x \leq \exp(x)\). Using Lemma 3.1(c) with \(t = Lk/(p(1-p))\), we have, for \(r^2d/k \geq \sqrt{3\alpha}/(p(1-p))\), that

\[
\mathbb{E} \left[\exp \left(\frac{k}{p(1-p)} (\gamma(\mathbf{x}, \mathbf{y}) - \mathbb{E}[\gamma(\mathbf{x}, \mathbf{y})]) \right) \right] \leq \exp \left(\frac{136\alpha^2}{p^2(1-p)^2} \cdot \frac{k^2}{r^4d} \right).
\]

Recall that we assume that \(n^3/(r^4d) \to 0\), which implies that \(r^2d/n \to \infty\), so the inequality in the display above holds eventually (uniformly for all \(k \leq n\)). Combined with Lemma 3.1(a), we thus have that

\[
\mathbb{E} \left[\exp \left(\frac{k}{p(1-p)} \gamma(\mathbf{x}, \mathbf{y}) \right) \right] = \exp \left(\frac{k}{p(1-p)} \mathbb{E}[\gamma(\mathbf{x}, \mathbf{y})] \right) \mathbb{E} \left[\exp \left(\frac{k}{p(1-p)} (\gamma(\mathbf{x}, \mathbf{y}) - \mathbb{E}[\gamma(\mathbf{x}, \mathbf{y})]) \right) \right] \leq \exp \left(\frac{\alpha^2}{p(1-p)} \cdot \frac{k}{r^4d} + \frac{136\alpha^2}{p^2(1-p)^2} \cdot \frac{k^2}{r^4d} \right).
\]

Putting the previous displays together and inserting the upper bound into (3.2), we obtain that

\[
\mathbb{E}_{\mathbf{X}_k} \text{KL}(\mathbf{a}_{k+1} \mid \mathbf{X}_k \parallel \mathbf{b}_{k+1}) \leq \frac{\alpha^2}{p(1-p)} \cdot \frac{k}{r^4d} + \frac{136\alpha^2}{p^2(1-p)^2} \cdot \frac{k^2}{r^4d}.
\]

Plugging the above display into (3.1), we conclude that

\[
\text{KL}(\mathcal{G}(n,p,d,r) \parallel \mathcal{G}(n,p)) = \text{KL}(\mathbf{A} \parallel \mathbf{B}) \leq \sum_{k=0}^{n-1} \left(\frac{\alpha^2}{p(1-p)} \cdot \frac{k}{r^4d} + \frac{136\alpha^2}{p^2(1-p)^2} \cdot \frac{k^2}{r^4d} \right) \leq \frac{\alpha^2}{2p(1-p)} \cdot \frac{n^2}{r^4d} + \frac{68\alpha^2}{3p^2(1-p)^2} \cdot \frac{n^3}{r^4d}.
\]

The asymptotic in Theorem 1.1(a) directly follows.

4 Detecting geometry using the signed triangle statistic

In this section, we show that the geometric structure in \(\mathcal{G}(n,p,d,r)\) can be detected in certain parameter regimes of \(d\) and \(r\) using the signed triangle statistic proposed in [6], thus proving Theorem 1.1(b).
Let A be the adjacency matrix of a sample graph G with edge probability p. The signed triangle over the vertices $\{i, j, k\}$ is defined as
\[
\tau_{\{i,j,k\}}(G) := (a_{i,j} - p)(a_{j,k} - p)(a_{k,i} - p).
\]
Then, the signed triangle statistic is the sum of all possible signed triangles in the graph:
\[
\tau(G) := \sum_{\{i,j,k\} \in \binom{[n]}{3}} \tau_{\{i,j,k\}}(G).
\]

In $\mathcal{G}(n, p)$, due to the independence of edges, the calculation of the mean and the variance of the signed triangle statistic is straightforward, which has been done in [6]. We state the results here as the following lemma.

Lemma 4.1. The signed triangle statistic in $\mathcal{G}(n, p)$ satisfies
\[
\mathbb{E}[\tau(\mathcal{G}(n, p))] = 0 \quad \text{and} \quad \text{Var}[\tau(\mathcal{G}(n, p))] \leq n^3.
\]

The main goal of this section is to estimate the mean and the variance of the signed triangle statistic in $\mathcal{G}(n, p, d, r)$.

4.1 Estimating the mean in the large variance regime

We start our discussion with the estimate for the mean in the regime when r is large, specifically $r/\log^2 r \gg d^{1/6}$. Before diving into the details, we first present a concentration result which provides a tail bound for the remainder of a linear approximation of σ.

Lemma 4.2. Suppose $x, y \in \mathbb{R}^d$ are independent standard normal random vectors. Denote $\eta := \mathbb{E}[\sigma'(\langle x, y \rangle)]$ and define the remainder of a linear approximation of σ as
\[
g(x) := \sigma(x) - p - \eta x.
\]
Then, the tails of $g(\langle x, y \rangle)$ satisfy that for $t \geq 6$,
\[
\mathbb{P}\left(|g(\langle x, y \rangle)| \geq \frac{3\alpha t}{2\tau^2} \right) \leq \exp\left(-\sqrt{\frac{t}{2\alpha}} \right).
\]

Proof. Let $x', y' \sim N(0, I_d)$ be independent copies of x, y. For ease of notation, denote $Z := \langle x, y \rangle$ and $Z' := \langle x', y' \rangle$. Then, by definition,
\[
p = \mathbb{E}[\sigma(Z')] \quad \text{and} \quad \eta = \mathbb{E}[\sigma'(Z')].
\]
Plugging them into $g(x)$ and by the triangle inequality, we have that
\[
|g(Z)| = |\sigma(Z) - \mathbb{E}[\sigma(Z')] - \mathbb{E}[\sigma'(Z')]Z| = |\mathbb{E}_Z[\sigma(Z) - \sigma(Z') - \sigma'(Z')(Z - Z')]| - \mathbb{E}[\sigma'(Z')Z']
\]
\[
\leq |\mathbb{E}_Z[\sigma(Z) - \sigma(Z') - \sigma'(Z')(Z - Z')]| + |\mathbb{E}[\sigma'(Z')Z']|.
\]
We first bound V_1 and V_2 from above and then utilize Gaussian hypercontractivity.

By Taylor’s theorem,
\[
\sigma(Z) - \sigma(Z') - \sigma'(Z')(Z - Z') = \frac{\sigma''(\xi)}{2}(Z - Z')^2
\]
for some ξ between Z' and Z. Then, we have that
\[
V_1 \leq \mathbb{E}_{Z'}[|\sigma(Z) - \sigma(Z') - \sigma'(Z')(Z - Z')|] = \mathbb{E}_{Z'}\left[\frac{|\sigma''(\xi)|}{2}(Z - Z')^2\right] = \mathbb{E}_{Z'}\left[\frac{|f'(\xi)|}{2r^2d}(Z - Z')^2\right]
\leq \frac{\alpha}{2r^2d} \mathbb{E}_{Z'}[(Z - Z')^2],
\]
where we used the assumption (A1) in the last inequality.

Since $Z' = \langle x', y' \rangle = \sum_{i=1}^{d} x_i' y_i'$, we have that $\mathbb{E}[Z'] = 0$ and $\mathbb{E}[Z'^2] = d$. Therefore,
\[
\mathbb{E}_{Z'}[(Z - Z')^2] = \mathbb{E}_{Z'}[Z^2 - 2ZZ' + Z'^2] = Z^2 + d.
\]
Hence, we obtain that
\[
V_1 \leq \frac{\alpha}{2r^2d}(Z^2 + d) = \frac{\alpha}{2r^2d}Z^2 + \frac{\alpha}{2r^2}.
\]

Turning to V_2, by the triangle inequality we have that
\[
V_2 = \|\mathbb{E}[\sigma'((x, y))(x, y)]\| = \left|\sum_{i=1}^{d} \mathbb{E}[\sigma'(x) x_i y_i]\right| \leq \sum_{i=1}^{d} \mathbb{E}[\sigma'(x) x_i y_i],
\]
Thus, by Stein’s lemma and Jensen’s inequality, we have that
\[
V_2 \leq \sum_{i=1}^{d} \left|\mathbb{E}\left[y_i \frac{\partial \sigma'((x, y))}{\partial x_i}\right]\right| = \sum_{i=1}^{d} \left|\mathbb{E}[y_i^2 \sigma''(x, y)]\right| \leq \sum_{i=1}^{d} \mathbb{E}[y_i^2 |\sigma''(x, y)|] \leq \frac{\alpha}{2r^2d} \mathbb{E}[\|y\|^2] = \frac{\alpha}{r^2}.
\]
Therefore, by the triangle inequality, we have for any $q \geq 1$ that
\[
\|g(Z)\|_q \leq \|T_1\|_q + \|T_2\|_q \leq \frac{\alpha}{2r^2d} \|Z^2\|_q + \frac{3\alpha}{2r^2}.
\]
Since $Z^2 = (\sum_{i=1}^{d} x_i y_i)^2$ is a fourth order polynomial of independent standard normal random variables, by Gaussian hypercontractivity (see [2, Corollary 5.21] for the univariate case and [14, Theorem 6.7] for a general argument), we have that
\[
\|Z^2\|_q \leq (q - 1)^2 \|Z^2\|_2.
\]
Since
\[
\mathbb{E}[Z^4] = \mathbb{E}\left[\left(\sum_{i=1}^{d} x_i y_i\right)^4\right] = 3 \sum_{i \neq j} \mathbb{E}[x_i^2] \mathbb{E}[x_j^2] \mathbb{E}[y_i^2] \mathbb{E}[y_j^2] + \sum_i \mathbb{E}[x_i^4] \mathbb{E}[y_i^4] = 3d^2 + 6d \leq 9d^2,
\]
we obtain that $\|Z^2\|_2 \leq 3d$ and so
\[
\|g(Z)\|_q \leq \frac{3\alpha}{2r^2}(q^2 - 2q + 2).
\]
By Markov’s inequality,
\[
P\left(|g(Z)| \geq \frac{3\alpha}{2r^2} t\right) \leq \left(\frac{3\alpha}{2r^2} t\right)^{-q} \mathbb{E}[|g(Z)|^q] \leq t^{-q}(q^2 - 2q + 2)^q = \exp(-q \log t + q \log(q^2 - 2q + 2)).
\]
For $t \geq 3$, by choosing $q = \sqrt{t/e - 1} + 1$, we have that
\[
P\left(|g(Z)| \geq \frac{3\alpha}{2r^2} t\right) \leq \exp\left(-\left(\sqrt{\frac{t}{e} - 1} + 1\right)\right).
\]
Hence, for $t \geq 6$,
\[
P\left(|g(Z)| \geq \frac{3\alpha}{2r^2} t\right) \leq \exp\left(-\sqrt{\frac{t}{2e}}\right).
\]
\[\square\]
Let
\[\lambda := \mathbb{E}\left[f\left(\frac{\langle x, y \rangle - \mu_{p,d,r}}{r\sqrt{d}} \right) \right]. \quad (4.1) \]
Then,
\[\mathbb{E}[\sigma'((x, y))] = \frac{\lambda}{r\sqrt{d}}. \quad (4.2) \]
We also have
\[0 \leq \lambda \leq \sup_{x} |f(x)| \leq 2\sqrt{\alpha}. \]
In the following lemma, we show that \(\lambda \) is bounded away from 0 uniformly for all \(r \) and \(d \).

Lemma 4.3. Let \(\lambda \) be defined in (4.1). For a fixed \(p \in (0,1) \), there exists a constant \(C_p > 0 \) that does not depend on \(r \) and \(d \) such that \(\lambda \geq C_p \).

Proof. Let
\[Z := \frac{\langle x, y \rangle - \mu_{p,d,r}}{r\sqrt{d}}. \]
By Proposition 2.14, we have
\[\mathbb{P}\left(Z - \mathbb{E}[Z] \geq \frac{t}{r\sqrt{d}} \right) \leq \exp\left(-\frac{1}{2} \min\left\{ \frac{t^2}{2d}, \frac{t}{\sqrt{2}} \right\} \right), \]
which gives
\[\mathbb{P}(Z - \mathbb{E}[Z] \geq t) \leq \exp\left(-\frac{1}{2} \min\left\{ \frac{t^2p^2}{2}, tr\sqrt{d} \right\} \right). \]
Since \(r \geq 1 \) and \(d \geq 1 \), we have for \(t \geq 1 \),
\[\mathbb{P}(Z - \mathbb{E}[Z] \geq t) \leq \exp\left(-\frac{t}{4} \right). \quad (4.3) \]
The lower tail directly follows from \(Z - \mathbb{E}[Z] \) being symmetric about zero.

Without loss of generality, we may assume \(p \in (0,1/2] \). (If \(p \in (1/2,1) \), we can consider the connection function \(1 - F(x) \), which shares the same properties with \(F(x) \).) Since \(F \) is strictly monotonic when \(F \in (0,1) \), the inverse \(F^{-1} \) exists in \((0,1)\). Let \(z_{p/2} := F^{-1}(p/2) \). We first show by contradiction that \(\mathbb{E}[Z] > z_{p/2} - 4\log\frac{4}{p} \). Suppose that it does not hold, that is, \(\mathbb{E}[Z] \leq z_{p/2} - 4\log\frac{4}{p} \).

Then, by the monotonicity of \(F \),
\[p = \mathbb{E}[F(Z)] = \mathbb{E}[F(Z) \mathbb{1}\{Z < z_{p/2}\}] + \mathbb{E}[F(Z) \mathbb{1}\{Z \geq z_{p/2}\}] \leq \frac{p}{2} + \mathbb{P}(Z \geq z_{p/2}) \]
\[\leq \frac{p}{2} + \mathbb{P}(Z \geq \mathbb{E}[Z] + 4\log\frac{4}{p}), \]
where the last inequality holds since \(\{Z \geq z_{p/2}\} \subset \{Z \geq \mathbb{E}[Z] + 4\log\frac{4}{p}\} \). Using (4.3), we have that
\[p \leq \frac{p}{2} + \frac{p}{4} = \frac{3}{4}p, \]
which is a contradiction since \(p > 0 \). Hence, \(\mathbb{E}[Z] > z_{p/2} - 4\log\frac{4}{p} \).

Similarly, we show that \(\mathbb{E}[Z] < z_{7p/4} + 4\log 3 \), where \(z_{7p/4} := F^{-1}(7p/4) \). Again suppose \(\mathbb{E}[Z] \geq z_{7p/4} + 4\log 3 \). Then, by the monotonicity of \(F \),
\[p = \mathbb{E}[F(Z)] \geq \mathbb{E}[F(Z) \mathbb{1}\{Z \geq z_{7p/4}\}] \geq \frac{7p}{4} \mathbb{P}(Z \geq z_{7p/4}) \geq \frac{7p}{4} \mathbb{P}(Z \geq \mathbb{E}[Z] - 4\log 3), \]
17
where the last inequality holds since \(\{ Z \geq z_{7p/4} \} \supset \{ Z \geq E[Z] - 4 \log 3 \} \). Therefore, by the lower tail bound,
\[
p \geq \frac{7p}{4} (1 - \mathbb{P}(Z < E[Z] - 4 \log 3)) \geq \frac{7p}{4} \left(1 - \frac{1}{3} \right) = \frac{7}{6} p,
\]
which is a contradiction since \(p > 0 \). Hence, \(E[Z] < z_{7p/4} + 4 \log 3 \).

Consider the interval \(I := [z_{p/2} - 4 \log \frac{4}{p} - 4, z_{7p/4} + 4 \log 3 + 4] \). The interval is bounded since \(F \) is a CDF. Since \(f \) is a continuous function and strictly positive in the closed interval by assumption (A0), using the extreme value theorem, we have that \(\inf_{x \in I} f(x) \geq f(\xi) = \epsilon_p > 0 \) for some \(\xi \in I \). Therefore,
\[
\mathbb{E}[f(Z)] \geq \mathbb{E}[f(Z) 1\{ Z \in I \}] \geq \epsilon_p \mathbb{P}(Z \in I)
= \epsilon_p \left(1 - \mathbb{P}(Z < z_{p/2} - 4 \log \frac{4}{p} - 4) - \mathbb{P}(Z > z_{7p/4} + 4 \log 3 + 4) \right)
\geq \epsilon_p (1 - \mathbb{P}(Z \leq E[Z] - 4) - \mathbb{P}(Z \geq E[Z] + 4)) \geq \left(1 - \frac{2}{e} \right) \epsilon_p.
\]
The claim directly follows. \(\square \)

For ease of notation, we use the shorthand
\[
\bar{\sigma}(t) : = \sigma(t) - p.
\]
Define the following events:
\[
A_1 := \left\{ \left| \bar{\sigma}(\langle x, y \rangle) - \frac{\lambda}{r \sqrt{d}} \langle x, y \rangle \right| \leq \frac{3\alpha t}{2r^2} \right\},
A_2 := \left\{ \left| \bar{\sigma}(\langle y, z \rangle) - \frac{\lambda}{r \sqrt{d}} \langle y, z \rangle \right| \leq \frac{3\alpha t}{2r^2} \right\},
A_3 := \left\{ \left| \bar{\sigma}(\langle z, x \rangle) - \frac{\lambda}{r \sqrt{d}} \langle z, x \rangle \right| \leq \frac{3\alpha t}{2r^2} \right\},
\]
and let \(A := A_1 \cap A_2 \cap A_3 \). Then, on the event \(A \) we have that
\[
\left| (\bar{\sigma}(\langle x, y \rangle) - \frac{\lambda}{r \sqrt{d}} \langle x, y \rangle) (\bar{\sigma}(\langle y, z \rangle) - \frac{\lambda}{r \sqrt{d}} \langle y, z \rangle) (\bar{\sigma}(\langle z, x \rangle) - \frac{\lambda}{r \sqrt{d}} \langle z, x \rangle) \right| \leq \frac{27\alpha^3 t^3}{8r^6}.
\]
Expanding the product, on the event \(A \) we have that
\[
\tau(x, y, z) := \bar{\sigma}(\langle x, y \rangle) \bar{\sigma}(\langle y, z \rangle) \bar{\sigma}(\langle z, x \rangle)
\geq \frac{\lambda^3}{r^3 d^{3/2}} \langle x, y \rangle \langle y, z \rangle \langle z, x \rangle - \frac{27\alpha^3 t^3}{8r^6}
+ \frac{\lambda}{r \sqrt{d}} (\langle x, y \rangle \bar{\sigma}(\langle y, z \rangle) \bar{\sigma}(\langle z, x \rangle) - \frac{\lambda}{r \sqrt{d}} \langle x, y \rangle \langle y, z \rangle \bar{\sigma}(\langle z, x \rangle))
+ \frac{\lambda}{r \sqrt{d}} (\langle y, z \rangle \bar{\sigma}(\langle x, y \rangle) \bar{\sigma}(\langle z, x \rangle) - \frac{\lambda}{r \sqrt{d}} \langle x, y \rangle \langle y, z \rangle \bar{\sigma}(\langle x, y \rangle))
+ \frac{\lambda}{r \sqrt{d}} (\langle z, x \rangle \bar{\sigma}(\langle x, y \rangle) \bar{\sigma}(\langle y, z \rangle) - \frac{\lambda}{r \sqrt{d}} \langle x, y \rangle \langle y, z \rangle \bar{\sigma}(\langle y, z \rangle)).
\]
The last three terms are identically distributed. Denote
\[
\xi(x, y, z) := \langle x, y \rangle \bar{\sigma}(\langle y, z \rangle) \bar{\sigma}(\langle z, x \rangle) - \frac{\lambda}{r \sqrt{d}} \langle x, y \rangle \langle y, z \rangle \bar{\sigma}(\langle z, x \rangle).
\]
Then, by taking the expectation on the event A, we have that

$$
\mathbb{E}[\tau(x, y, z) \, 1_A] \geq \frac{\lambda^3}{r^2 d^{3/2}} \mathbb{E}[\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle \, 1_A] - \frac{27\alpha^3 r^3}{8r^6} \mathbb{E}[1_A] + \frac{3\lambda}{r\sqrt{d}} \mathbb{E}[\xi(x, y, z) \, 1_A]
$$

$$
\geq \frac{\lambda^3}{r^2 d^{3/2}} \mathbb{E}[\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle] - \frac{\lambda^3}{r^2 d^{3/2}} |\mathbb{E}[\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle \, 1_A]| - \frac{27\alpha^3 r^3}{8r^6}
$$

$$
- \frac{3\lambda}{r\sqrt{d}} \mathbb{E}[\xi(x, y, z)] - \frac{3\lambda}{r\sqrt{d}} \mathbb{E}[\langle x, y \rangle \tilde{\sigma}(\langle y, z \rangle) \tilde{\sigma}(\langle z, x \rangle) \, 1_A]
$$

$$
- \frac{3\lambda^2}{r^2 d} \mathbb{E}[\langle x, y \rangle \langle y, z \rangle \tilde{\sigma}(\langle z, x \rangle) \, 1_A].
$$

As we will see, the first term in the above display is equal to $\lambda^3/(r^3 \sqrt{d})$, while all other terms vanish when r is large. The rest of this subsection is devoted to bounding them.

By independence of the random vectors and their coordinates, we have that

$$
\mathbb{E}[\langle x, y \rangle] = \mathbb{E} \left[\sum_{i=1}^{d} x_i y_i \right] = \sum_{i=1}^{d} \mathbb{E}[x_i] \mathbb{E}[y_i] = 0,
$$

$$
\mathbb{E}[\langle x, y \rangle \langle y, z \rangle] = \mathbb{E} \left[\left(\sum_{i=1}^{d} x_i y_i \right) \left(\sum_{j=1}^{d} y_j z_j \right) \right] = \sum_{i,j=1}^{d} \mathbb{E}[x_i y_i y_j z_j] = 0,
$$

$$
\mathbb{E}[\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle] = \mathbb{E} \left[\left(\sum_{i=1}^{d} x_i y_i \right) \left(\sum_{j=1}^{d} y_j z_j \right) \left(\sum_{k=1}^{d} z_k x_k \right) \right] = \sum_{i=1}^{d} \mathbb{E}[x_i^2 y_i^2 z_i^2] = d.
$$

By similar combinatorial calculations, we also have that

$$
\mathbb{E}[(\langle x, y \rangle)^2] = \sum_{i} \mathbb{E}[x_i^2 y_i^2] = d,
$$

$$
\mathbb{E}[(\langle x, y \rangle \langle y, z \rangle)^2] = \sum_{i,j} \mathbb{E}[x_i^2 y_i^2 y_j^2 z_j^2] = \sum_{i,j} \mathbb{E}[y_i^2 y_j^2] = d^2 + 2d \leq 3d^2,
$$

$$
\mathbb{E}[(\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle)^2] = \sum_{i,j,k} \mathbb{E}[x_i^2 x_k^2] \mathbb{E}[y_i^2 y_j^2] \mathbb{E}[z_j^2 z_k^2] + \sum_{i \neq j} \mathbb{E}[x_i^2] \mathbb{E}[x_j^2] \mathbb{E}[y_i^2] \mathbb{E}[y_j^2] \mathbb{E}[z_i^2] \mathbb{E}[z_j^2]
$$

$$
= d^3 + 10d^2 + 16d \leq 27d^3.
$$

Then, by Cauchy–Schwarz inequality, we obtain that

$$
|\mathbb{E}[\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle \, 1_A]| \leq \sqrt{\mathbb{E}[\langle x, y \rangle \langle y, z \rangle \langle z, x \rangle]^2} \mathbb{E}[1_A] \leq 3d^{3/2} \sqrt{3} \mathbb{P}(AC),
$$

$$
|\mathbb{E}[\langle x, y \rangle \langle y, z \rangle \tilde{\sigma}(\langle z, x \rangle) \, 1_A]| \leq \sqrt{\mathbb{E}[\langle x, y \rangle \langle y, z \rangle]^2} \mathbb{E}[\tilde{\sigma}(\langle z, x \rangle)^2] \mathbb{E}[1_A] \leq d \sqrt{3} \mathbb{P}(AC),
$$

$$
|\mathbb{E}[\langle x, y \rangle \tilde{\sigma}(\langle y, z \rangle) \tilde{\sigma}(\langle z, x \rangle) \, 1_A]| \leq \sqrt{\mathbb{E}[\langle x, y \rangle]^2} \mathbb{E}[\tilde{\sigma}(\langle y, z \rangle)^2] \tilde{\sigma}(\langle z, x \rangle)^2 \mathbb{E}[1_A] \leq \sqrt{d} \mathbb{P}(AC).
$$

As the last step, we bound $|\mathbb{E}[\xi(x, y, z)]|$ from above. By Stein’s lemma, we have that

$$
\mathbb{E}[\langle x, y \rangle \tilde{\sigma}(\langle y, z \rangle) \tilde{\sigma}(\langle z, x \rangle)] = \sum_{i=1}^{d} \mathbb{E}[x_i y_i \tilde{\sigma}(\langle y, z \rangle) \tilde{\sigma}(\langle z, x \rangle)] = \sum_{i=1}^{d} \mathbb{E}[\mathbb{E}_{x_i} [x_i \tilde{\sigma}(\langle y, z \rangle)] \mathbb{E}_{y_i} [y_i \tilde{\sigma}(\langle z, x \rangle)]]
$$

$$
= \sum_{i=1}^{d} \mathbb{E}[z_i^2 \sigma'((y, z)) \sigma'((z, x))] = \mathbb{E}[\|z\|^2 \sigma'((y, z)) \sigma'((z, x))].
$$
Since

Hence, we obtain that by Gaussian Poincaré inequality,

we have that

Additionally with independence, we have that

Therefore, by Cauchy–Schwarz inequality,

Putting all the estimates together, we have that

A union bound gives

\[
P(A^C) \leq \sum_{i=1}^{3} P(A^C_i) \leq 3 \exp \left(-\sqrt{\frac{t}{2e}}\right),
\]
where the tail bounds come directly from Lemma 4.2. By choosing $t = 512 \log^2 r$, we have that
\[
\mathbb{P}(A^C) \leq \frac{3}{r^{16}}.
\]
To conclude,
\[
\mathbb{E}[\tau(x, y, z)] \geq \frac{\lambda^3}{r^3 \sqrt{d}} - \frac{12 \sqrt{6} \alpha^2}{r^4 \sqrt{d}} - \frac{27 (256 \alpha \log 2)^3 \log^6 r}{r^6} - \frac{30 \alpha^2 r^6}{r^8}.
\]
Therefore, by assuming $r/\log^2 r \gg d^{1/6}$, there exists a constant $C_\alpha > 0$ such that for $r \geq C_\alpha$,
\[
\mathbb{E}[\tau(x, y, z)] \geq \frac{\lambda^3}{2r^3 \sqrt{d}}.
\]
Combining the above display with Lemma 4.3, we obtain the following lemma.

Lemma 4.4. For $r/\log^2 r \gg d^{1/6}$, there exist constants $C_\alpha, C_p > 0$ such that for $r \geq C_\alpha$,
\[
\mathbb{E}[\tau(G(n, p, d, r))] \geq \frac{C_p n^3}{r^3 \sqrt{d}}.
\]

4.2 Estimating the mean in the high dimension regime

In this part, we focus on the case when $d/\log^2 d \gg r^6$, which complements the parameter regime discussed in the previous subsection.

We start by bounding the probability of the following two events in $G(n, p, d, r)$:
\[
\Lambda := \{1 \sim 2, 1 \sim 3\} \quad \text{and} \quad \Delta := \{1 \sim 2, 2 \sim 3, 3 \sim 1\}.
\]

Since
\[
\mathbb{P}(\Lambda) = \mathbb{E}[a_{1,2}a_{1,3}] = \mathbb{E}[\sigma(\langle x_1, x_2 \rangle)\sigma(\langle x_1, x_3 \rangle)],
\]
we directly have the following lemma as a consequence of (3.8).

Lemma 4.5. Let Λ be defined above. Then,
\[
\mathbb{P}(\Lambda) \leq p^2 + \frac{\alpha^2}{r^4 \sqrt{d}}.
\]

The probability of a triangle in $G(n, p, d, r)$ is given by
\[
\mathbb{P}(\Delta) = \mathbb{E}[a_{1,2}a_{2,3}a_{3,1}] = \mathbb{E}[\sigma(\langle x_1, x_2 \rangle)\sigma(\langle x_2, x_3 \rangle)\sigma(\langle x_3, x_1 \rangle)].
\]

We have the following estimate for the lower bound of the probability of a triangle.

Lemma 4.6. Suppose $d/\log^2 d \gg r^6$. There exists a constant $C_\alpha > 0$ such that for $d \geq C_\alpha$,
\[
\mathbb{P}(\Delta) \geq p^3 + \frac{\lambda^3}{4r^3 \sqrt{d}}.
\]

Before proceeding to the proof of Lemma 4.6, we first show several technical results regarding the normal distribution.

Consider $x, y, z \in \mathbb{R}^d$. Suppose $z \sim \mathcal{N}(0, I_d)$. Conditioned on x, y, the inner products $\langle x, z \rangle$ and $\langle y, z \rangle$ jointly have a bivariate normal distribution with mean 0 and covariance matrix
\[
\Sigma = \begin{bmatrix}
\|x\|^2 & \langle x, y \rangle \\
\langle x, y \rangle & \|y\|^2
\end{bmatrix}.
\]
Let \(\rho := \frac{\langle x, y \rangle}{\|x\| \|y\|} \)

be the correlation. Then, the joint density can be written as

\[
g(a, b) = \frac{1}{2\pi \|x\| \|y\| \sqrt{1 - \rho^2}} \exp \left(-\frac{1}{2(1 - \rho^2)} \left(\frac{a^2}{\|x\|^2} + \frac{b^2}{\|y\|^2} - 2\rho \frac{ab}{\|x\| \|y\|} \right) \right). \tag{4.4}
\]

By the elementary inequality \(\exp(x) \geq 1 + x \),

\[
g(a, b) \geq \frac{1}{2\pi \|x\| \|y\| \sqrt{1 - \rho^2}} \exp \left(-\frac{1}{2(1 - \rho^2)} \left(\frac{a^2}{\|x\|^2} + \frac{b^2}{\|y\|^2} \right) \right) \left(1 + \frac{\rho}{1 - \rho^2} \frac{ab}{\|x\| \|y\|} \right)
\]

\[
= \frac{1}{\|x\| \|y\| \sqrt{1 - \rho^2}} \left(\frac{a}{\|x\| \sqrt{1 - \rho^2}} \varphi \left(\frac{b}{\|y\| \sqrt{1 - \rho^2}} \right) \right)
\]

\[
+ \frac{\rho}{\|x\|^2 \|y\|^2 (1 - \rho^2)^{3/2}} \frac{ab}{\|x\| \|y\|} \varphi \left(\frac{a}{\|x\| \sqrt{1 - \rho^2}} \right) \varphi \left(\frac{b}{\|y\| \sqrt{1 - \rho^2}} \right),
\]

where \(\varphi \) is the probability density function of the standard normal distribution.

Consider a differentiable function \(\sigma \). By a change of variables \(a' = a / \|x\| \sqrt{1 - \rho^2} \),

\[
\int \sigma(a) \varphi \left(\frac{a}{\|x\| \sqrt{1 - \rho^2}} \right) da = \|x\| \sqrt{1 - \rho^2} \int \sigma(a')\|x\| \sqrt{1 - \rho^2} \varphi(a') da'
\]

\[
= \|x\| \sqrt{1 - \rho^2} \mathbb{E}_{a' \sim \mathcal{N}(0,1)} [\sigma(a'\|x\| \sqrt{1 - \rho^2})]
\]

\[
= \|x\| \sqrt{1 - \rho^2} \mathbb{E}_{z \sim \mathcal{N}(0,I_0)} [\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})].
\]

Similarly,

\[
\int \sigma(a) a \varphi \left(\frac{a}{\|x\| \sqrt{1 - \rho^2}} \right) da = \|x\|^2 (1 - \rho^2) \int \sigma(a')\|x\|^2 (1 - \rho^2) a' \varphi(a') da'
\]

\[
= \|x\|^2 (1 - \rho^2) \mathbb{E}_{a' \sim \mathcal{N}(0,1)} [\sigma(a'\|x\| \sqrt{1 - \rho^2})].
\]

By Stein’s lemma,

\[
\mathbb{E}_{a' \sim \mathcal{N}(0,1)} [\sigma(a'\|x\| \sqrt{1 - \rho^2})] = \mathbb{E}_{a' \sim \mathcal{N}(0,1)} \left[\frac{\partial}{\partial a'} \sigma(a'\|x\| \sqrt{1 - \rho^2}) \right]
\]

\[
= \|x\| \sqrt{1 - \rho^2} \mathbb{E}_{a' \sim \mathcal{N}(0,1)} [\sigma'(a'\|x\| \sqrt{1 - \rho^2})]
\]

\[
= \|x\| \sqrt{1 - \rho^2} \mathbb{E}_{z \sim \mathcal{N}(0,I_0)} [\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})].
\]

Putting them together, we have that

\[
\mathbb{E}_z[\sigma(\langle x, z \rangle)\sigma(\langle y, z \rangle)] \geq \sqrt{1 - \rho^2} \mathbb{E}_z[\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle \sqrt{1 - \rho^2})]
\]

\[
+ (1 - \rho^2)^{3/2} \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_{z'}[\sigma'(\langle y, z' \rangle \sqrt{1 - \rho^2})]. \tag{4.5}
\]

Using (4.5), we have that

\[
\mathbb{P}(\Delta) = \mathbb{E}[\sigma(\langle x, y \rangle)\sigma(\langle x, z \rangle)\sigma(\langle y, z \rangle)] = \mathbb{E}[\sigma(\langle x, y \rangle)] \mathbb{E}_z[\sigma(\langle x, z \rangle)\sigma(\langle y, z \rangle)]
\]

\[
\geq \mathbb{E}[\sqrt{1 - \rho^2} \sigma(\langle x, y \rangle)] \mathbb{E}_z[\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle \sqrt{1 - \rho^2})]
\]

\[
+ \frac{\mathbb{E}[(1 - \rho^2)^{3/2} \sigma(\langle x, y \rangle)] \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_{z'}[\sigma'(\langle y, z' \rangle \sqrt{1 - \rho^2})]}{\sqrt{r_1}}. \tag{4.6}
\]
The rest of the section is devoted to bounding T_1 and T_2 from below.

By Lemma 2.15, we have that
\[
P\left(\rho^2 \geq \frac{t^2}{d}\right) \leq 2 \exp\left(-\frac{t^2}{4}\right). \tag{4.6}
\]

The following lemma gives a lower bound of T_1.

Lemma 4.7. For a constant $C_\alpha > 0$, when $d \geq C_\alpha$,
\[
T_1 \geq p^3 - \frac{C_\alpha \log d}{d}.
\]

Proof. Denote the event
\[
A := \left\{ \rho^2 \geq \frac{t^2}{d} \right\}. \tag{4.7}
\]

Since σ is nonnegative,
\[
T_1 \geq \mathbb{E}[\sqrt{1 - \rho^2} \sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle \sqrt{1 - \rho^2})] \mathbb{1}_A].
\]

Since $\sup_x |f(x)| \leq 2\sqrt{\alpha}$ by (3.9), σ is $\frac{2\sqrt{\alpha}}{r\sqrt{d}}$-Lipschitz. Therefore,
\[
|\sigma(\langle x, z \rangle \sqrt{1 - \rho^2}) - \sigma(\langle x, z \rangle)| \leq \frac{2\sqrt{\alpha}}{r\sqrt{d}}(1 - \sqrt{1 - \rho^2})|\langle x, z \rangle| \leq \frac{2\sqrt{\alpha}}{r\sqrt{d}}\rho^2|\langle x, z \rangle|,
\]
where the last inequality is due to
\[
1 - \sqrt{1 - \rho^2} = \frac{\rho^2}{1 + \sqrt{1 - \rho^2}} \leq \rho^2.
\]

Conditioned on x, the inner product $\langle x, z \rangle$ is distributed as $\mathcal{N}(0, \|x\|^2)$. Then, by the property of a folded normal distribution, $\mathbb{E}_x[\|x\|] = \|x\|\sqrt{2/\pi} \leq \|x\|$. Taking the expectation with respect to z, and by Jensen’s inequality, we have that
\[
|\mathbb{E}_z[\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})] - \mathbb{E}_z[\sigma(\langle x, z \rangle)]| \leq \mathbb{E}_z[|\sigma(\langle x, z \rangle \sqrt{1 - \rho^2}) - \sigma(\langle x, z \rangle)|]
\]
\[
\leq \frac{2\sqrt{\alpha}}{r\sqrt{d}}\rho^2\mathbb{E}_z[\|\langle x, z \rangle\|] \leq \frac{2\rho^2\sqrt{\alpha}}{r\sqrt{d}}\|x\|.
\]

The same bound holds if we replace x with y. Hence, by combining them, we have that
\[
|\mathbb{E}_z[\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})] - \mathbb{E}_z[\sigma(\langle x, z \rangle)]| |\mathbb{E}_{z'}[\sigma(\langle y, z' \rangle \sqrt{1 - \rho^2})] - \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]| \leq \frac{4\rho^4\alpha}{r^2d}\|x\|\|y\|.
\]

Expanding the product and using the triangle inequality, we obtain that
\[
|\mathbb{E}_z[\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle \sqrt{1 - \rho^2})] - \mathbb{E}_z[\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]|
\]
\[
\leq \frac{4\rho^4\alpha}{r^2d}\|x\|\|y\| + \mathbb{E}_z[|\sigma(\langle x, z \rangle)|] (|\mathbb{E}_{z'}[\sigma(\langle y, z' \rangle \sqrt{1 - \rho^2})] - \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]|)
\]
\[
+ \mathbb{E}_{z'}[|\sigma(\langle y, z' \rangle)|] (|\mathbb{E}_z[\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})] - \mathbb{E}_z[\sigma(\langle x, z \rangle)]|)
\]
\[
\leq \frac{4\rho^4\alpha}{r^2d}\|x\|\|y\| + \frac{2\rho^2\sqrt{\alpha}}{r\sqrt{d}}(\|x\| + \|y\|).
\]

23
Therefore, by putting them together, we have that
\[T_1 \geq \mathbb{E}[\sqrt{1 - \rho^2}\sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle \sqrt{1 - \rho^2})] 1_A] \]
\[\geq \left(1 - \frac{t^2}{d} \right) \mathbb{E}[\sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]] 1_A \]
\[- \frac{4\alpha^4}{r^2d^3} \mathbb{E}[||x||||y||\sigma(\langle x, y \rangle)] - \frac{2t^2\sqrt{\alpha}}{rd^{3/2}} (\mathbb{E}[||x||\sigma(\langle x, y \rangle)] + \mathbb{E}[||y||\sigma(\langle x, y \rangle)]) \]
\[\geq \mathbb{E}[\sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]] 1_A - \frac{t^2}{d} \mathbb{E}[\sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]] \]
\[- \frac{4\alpha^4}{r^2d^3} \mathbb{E}[||x||\mathbb{E}[||y||]] - \frac{2t^2\sqrt{\alpha}}{rd^{3/2}} (\mathbb{E}[||x||] + \mathbb{E}[||y||]) \]
\[\geq \mathbb{E}[\sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]] - \mathbb{P}(A^C) - \frac{t^2}{d} - \frac{4\alpha^4}{r^2d^3} \mathbb{E}[||x||] \mathbb{E}[||y||] \]
\[- \frac{2t^2\sqrt{\alpha}}{rd^{3/2}} (\mathbb{E}[||x||] + \mathbb{E}[||y||]). \]

By (4.6) and \(\mathbb{E}[||x||] \leq \sqrt{\mathbb{E}[||x||^2]} \leq \sqrt{d}, \)
\[T_1 \geq \mathbb{E}[\sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]] - 2\exp\left(-\frac{t^2}{4} \right) - \frac{t^2}{d} - \frac{4t^2\sqrt{\alpha}}{rd} - \frac{4\alpha^4}{r^2d^2}. \]

By Fubini’s theorem, we can interchange the expectation over \(x \) and \(z \):
\[\mathbb{E}[\sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]] = \mathbb{E}[\mathbb{E}_x[\sigma(\langle x, y \rangle)\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]]]. \]

Recall the definitions of \(\eta \) and \(\xi \) in the proof of Lemma 3.1(b). By the triangle inequality, we have
\[||\mathbb{E}_x[\sigma(\langle x, y \rangle)\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]] - p^3|| = ||\mathbb{E}[\xi(\langle y, z \rangle)\eta(\langle y \rangle)] - p^3|| \]
\[= ||\mathbb{E}[\xi(\langle y, z \rangle) - \mathbb{E}[\xi(\langle y, z \rangle)]\eta(\langle y \rangle)] + p(\mathbb{E}[\xi(\langle y, z \rangle) - p^2])|| \]
\[\leq ||\mathbb{E}[\xi(\langle y, z \rangle) - \mathbb{E}[\xi(\langle y, z \rangle)]\eta(\langle y \rangle)] + p|\mathbb{E}[\xi(\langle y, z \rangle) - p^2]|. \]

By Jensen’s inequality, we have
\[||\mathbb{E}[\xi(\langle y, z \rangle) - \mathbb{E}[\xi(\langle y, z \rangle)]\eta(\langle y \rangle)] \leq \sqrt{\text{Var}[\xi(\langle y, z \rangle)]}, \]
where we also used \(0 \leq \eta(\langle y \rangle) \leq 1. \)

Similar to Lemma 3.1(b), we also have
\[\text{Var}[\xi(\langle y, z \rangle)] \leq \frac{68\alpha^2}{r^3d}. \]

By (3.8), we have
\[||\mathbb{E}[\xi(\langle y, z \rangle)] - p^2|| \leq \frac{\alpha^2}{r^3d}. \]

Putting them together, we obtain that
\[\mathbb{E}[\sigma(\langle x, y \rangle) \mathbb{E}_z[\sigma(\langle x, z \rangle)] \mathbb{E}_{z'}[\sigma(\langle y, z' \rangle)]] \geq p^3 - \frac{69\alpha^2}{r^3d}. \]
Therefore,
\[
T_1 \geq p^3 - \frac{69\alpha^2}{r^4d} - 2\exp\left(-\frac{t^2}{4}\right) - \frac{t^2}{d} - \frac{4t^2\sqrt{\alpha}}{rd} - \frac{4\alpha t^4}{r^2d^2}.
\]

By taking \(t = \sqrt{\log d} \), we conclude that
\[
T_1 \geq p^3 - \frac{69\alpha^2}{r^4d} - \frac{2(2\log d + 1)}{d} - \frac{16\sqrt{\alpha}\log d}{rd} - \frac{64\alpha \log^2 d}{r^2d^2}.
\]

The claim directly follows. \(\square \)

The following lemma gives a lower bound of \(T_2 \).

Lemma 4.8. There exists a constant \(C_\alpha \) such that when \(d \geq r^4 \) and \(d \geq C_\alpha \),
\[
T_2 \geq \frac{\lambda^3}{2r^3\sqrt{d}}.
\]

Before proving Lemma 4.8, we show the following simple fact.

Lemma 4.9. Let \(f \) be an \(L \)-Lipschitz function. Then, the function \(g : \mathbb{R}^d \rightarrow \mathbb{R} \) given by
\[
g(x) = \mathbb{E}_{z \sim \mathcal{N}(0,I_d)}[f(\langle x, z \rangle)]
\]
(4.8)
is \(\sqrt{\frac{2}{\pi}} \) \(L \)-Lipschitz, that is,
\[
|g(x) - g(y)| \leq \sqrt{\frac{2}{\pi}} L \|x - y\|.
\]

Proof. An application of Jensen’s inequality yields
\[
|g(x) - g(y)| = |\mathbb{E}_z[f(\langle x, z \rangle) - f(\langle y, z \rangle)]| \leq \mathbb{E}_z[|f(\langle x, z \rangle) - f(\langle y, z \rangle)|] \leq L \mathbb{E}_z[|\langle x - y, z \rangle|].
\]
Conditioned on \(x \) and \(y \), \(\langle x - y, z \rangle \) is distributed as \(\mathcal{N}(0,\|x - y\|^2) \). Therefore, by the mean of a folded normal distribution,
\[
|g(x) - g(y)| \leq \sqrt{\frac{2}{\pi}} L \|x - y\|. \quad \square
\]

By Lemma 4.9, since \(\sigma' \) is \(\frac{\alpha}{r\sqrt{d}} \)-Lipschitz,
\[
|\mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1-\rho^2})] - \mathbb{E}_z[\sigma'(\langle x, z \rangle)]]| \leq \sqrt{\frac{2}{\pi}} \cdot \frac{\alpha}{r\sqrt{d}} \|x\||1 - \sqrt{1-\rho^2}|
\]
\[
= \sqrt{\frac{2}{\pi}} \cdot \frac{\alpha}{r\sqrt{d}} \|x\| \frac{\rho^2}{1 + \sqrt{1-\rho^2}} \leq \frac{\alpha \rho^2}{r\sqrt{d}} \|x\|.
\]

We have the following lemma which states the sub-Gaussian tails of \(\mathbb{E}_z[\sigma'(\langle x, z \rangle)] \).

Lemma 4.10. The tails of \(\mathbb{E}_z[\sigma'(\langle x, z \rangle)] \) satisfy
\[
\mathbb{P}
\left(
\frac{\mathbb{E}_z[\sigma'(\langle x, z \rangle)] - \lambda}{r\sqrt{d}} \geq \frac{\alpha t}{r^2d}\right) \leq 2 \exp\left(-\frac{t^2}{2}\right).
\]

25
Proof. Recall the definition of λ in (4.1):

$$\lambda := \mathbb{E}\left[f\left(\frac{(x, y) - \mu_{p,d,r}}{r\sqrt{d}}\right)\right].$$

Consider the function

$$h(x) := \mathbb{E}_z[\sigma'(\langle x, z \rangle)].$$

We have $\mathbb{E}[h(x)] = \lambda/(r\sqrt{d})$.

Taking the partial derivative of $h(x)$ with respect to x_i, we have that

$$\frac{\partial h(x)}{\partial x_i} = \frac{1}{r^2d} \mathbb{E}_z \left[z_i f'(\frac{(x, z) - \mu_{p,d,r}}{r\sqrt{d}}) \right] = \frac{x_i}{r^3d^{3/2}} \mathbb{E}_z \left[f''\left(\frac{(x, z) - \mu_{p,d,r}}{r\sqrt{d}}\right)\right].$$

Let

$$Y := \langle x, z \rangle - \mu_{p,d,r}.$$

Then, if we fix x, Y is distributed as $\mathcal{N}(-\mu_{p,d,r}/(r\sqrt{d}), ||x||^2/(r^2d))$. Therefore, since we assume (A2), by Stein's lemma,

$$\left| \mathbb{E}_z \left[f''\left(\frac{(x, z) - \mu_{p,d,r}}{r\sqrt{d}}\right)\right] \right| = \left| \mathbb{E}_Y [f''(Y)] \right| = \frac{1}{\sqrt{\text{Var}[Y]}} \mathbb{E} \left[\left(Y + \frac{\mu_{p,d,r}}{r\sqrt{d}} \right) f'(Y) \right] \leq \frac{1}{\sqrt{\text{Var}[Y]}} \sqrt{\text{Var}[Y]} \mathbb{E} [f'(Y)^2] \leq \frac{\alpha \sqrt{d}}{\|x\|},$$

where the first inequality is by Cauchy–Schwarz.

Hence, we have that

$$\|\nabla h(x)\|^2 = \sum_{i=1}^{d} \frac{x_i^2}{r^6d^3} \mathbb{E}_z \left[f''\left(\frac{(x, z) - \mu_{p,d,r}}{r\sqrt{d}}\right)\right]^2 \leq \|x\|^2 \frac{\alpha^2 r^2 d}{r^6d^3} = \frac{\alpha^2}{r^4d^2}.$$

Therefore, by the classical Gaussian concentration inequality (see, e.g., [2, Theorem 5.5]), the claim directly follows.

With Lemma 4.9 and Lemma 4.10 in place, we now turn to proving Lemma 4.8.

Proof of Lemma 4.8. A standard χ^2 concentration (see, e.g., [26, Example 2.11]) gives

$$P(||x||^2 - d \geq 2t\sqrt{d}) \leq 2 \exp\left(-\frac{t^2}{8}\right).$$

Denote the events

$$A_0 := \left\{ \rho^2 \leq \frac{t^2}{d} \right\},$$

$$A_1 := \{ ||x||^2 - d \leq 2t\sqrt{d} \},$$

$$A_2 := \{ ||y||^2 - d \leq 2t\sqrt{d} \},$$

$$A_3 := \left\{ \mathbb{E}_z[\sigma'(\langle x, z \rangle)] - \frac{\lambda}{r\sqrt{d}} \leq \frac{\alpha t}{r^2d} \right\}.$$
and let $A := A_0 \cap A_1 \cap A_2 \cap A_3$. Then, on the event A, by the triangle inequality and using (4.9),

\[
\left| \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] - \frac{\lambda}{r \sqrt{d}} \right| \\
\leq \left| \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] - \mathbb{E}_z[\sigma'(\langle x, z \rangle)] \right| + \left| \mathbb{E}_z[\sigma'(\langle x, z \rangle)] - \frac{\lambda}{r \sqrt{d}} \right| \\
\leq \frac{\alpha \rho^2}{r \sqrt{d}} \|x\| + \frac{\alpha t}{r^2 d} \leq \frac{\alpha t^2}{r \sqrt{d}} \left(1 + \frac{2t}{\sqrt{d}} \right) + \frac{\alpha t^2}{r^2 d}.
\]

Hence for $1 \leq t \leq \sqrt{d}$,

\[
\left| \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] - \frac{\lambda}{r \sqrt{d}} \right| \leq \frac{3\alpha t^2}{r \sqrt{d}}.
\]

Since the same bound also holds for y, by combining them, we have

\[
\left| \left(\mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] - \frac{\lambda}{r \sqrt{d}} \right) \left(\mathbb{E}_z'[\sigma'(\langle y, z' \rangle \sqrt{1 - \rho^2})] - \frac{\lambda}{r \sqrt{d}} \right) \right| \leq \frac{9\alpha t^4}{r^2 d^2}.
\]

Expanding the product and by the triangle inequality, we get that

\[
\left| \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_z'[\sigma'(\langle y, z' \rangle \sqrt{1 - \rho^2})] - \frac{\lambda^2}{r^2 d} \right| \\
\leq \frac{9\alpha t^4}{r^2 d^2} + \frac{\lambda}{r \sqrt{d}} \left| \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] - \frac{\lambda}{r \sqrt{d}} \right| + \frac{\lambda}{r \sqrt{d}} \left| \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] - \frac{\lambda}{r \sqrt{d}} \right| \\
\leq \frac{9\alpha t^4}{r^2 d^2} + \frac{6\alpha \lambda t^2}{r^2 d^{3/2}}.
\]

For simplicity of notation, let

\[
h(x, y) := (1 - \rho^2)^{3/2} \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_z'[\sigma'(\langle y, z' \rangle \sqrt{1 - \rho^2})].
\]

Then, on the event A, we have that

\[
\left| h(x, y) - \frac{\lambda^2}{r^2 d} \right| \leq (1 - \rho^2)^{3/2} \left| \mathbb{E}_z[\sigma'(\langle x, z \rangle \sqrt{1 - \rho^2})] \mathbb{E}_z'[\sigma'(\langle y, z' \rangle \sqrt{1 - \rho^2})] - \frac{\lambda^2}{r^2 d} \right| \\
+ \frac{\lambda^2}{r^2 d} \left(1 - (\rho^2)^{3/2} - 1 \right) \\
\leq \frac{9\alpha t^4}{r^2 d^2} + \frac{6\alpha \lambda t^2}{r^2 d^{3/2}} + \frac{\lambda^2}{r^2 d} \left(1 - (\rho^2)^{3/2} - 1 \right).
\]

By the elementary inequality $(1 - x)^a \geq 1 - ax$ for $a \geq 1$,

\[
1 - (1 - \rho^2)^{3/2} \leq \frac{3\rho^2}{2}.
\]

Therefore, additionally with $\lambda \leq 2\sqrt{\alpha}$, on the event A, we have that

\[
\left| h(x, y) - \frac{\lambda^2}{r^2 d} \right| \leq \frac{9\alpha t^4}{r^2 d^2} + \frac{6\alpha \lambda t^2}{r^2 d^{3/2}} + \frac{3\lambda^2 t^2}{2r^2 d^2} \leq \frac{9\alpha t^4}{r^2 d^2} + \frac{12\alpha^3 t^2}{r^2 d^{3/2}} + \frac{6\alpha t^2}{r^2 d^2}.
\]
By Jensen’s inequality,
\[\left| E[(x, y)\sigma((x, y))h(x, y)\mathbb{1}_A] - \frac{\lambda^2}{r^2d} E[(x, y)\sigma((x, y))\mathbb{1}_A] \right| \leq E \left[\left| (x, y)\sigma((x, y))(h(x, y) - \frac{\lambda^2}{r^2d}) \right| \mathbb{1}_A \right] \leq E \left[|h(x, y) - \frac{\lambda^2}{r^2d}| \cdot |(x, y)\sigma((x, y))| \mathbb{1}_A \right] \]
\[\leq \left(\frac{9\alpha^2t^4}{r^2d^2} + \frac{12\alpha^{3/2}t^2}{r^2d^3/2} + \frac{6\alpha t^2}{r^2d^2} \right) E[|x, y||]. \]

By Jensen’s inequality, we have \(E[|(x, y)||] \leq \sqrt{E[(x, y)]^2} = \sqrt{d}. \) Hence, we obtain that
\[\left| E[(x, y)\sigma((x, y))h(x, y)\mathbb{1}_A] - \frac{\lambda^2}{r^2d} E[(x, y)\sigma((x, y))\mathbb{1}_A] \right| \leq \frac{9\alpha^2t^4}{r^2d^2} + \frac{12\alpha^{3/2}t^2}{r^2d^3/2} + \frac{6\alpha t^2}{r^2d^2}. \] (4.10)

Since conditioned on \(x, (x, y) \sim \mathcal{N}(0, \|x\|^2) \), by Stein’s lemma,
\[E_y[(x, y)\sigma((x, y))] = \|x\|^2 E_y[\sigma'(x, y)]. \]

Hence, we have that
\[E[(x, y)\sigma(x, y))] \geq E[\|x\|^2 E_y[\sigma'(x, y))] \mathbb{1}_A] \geq (d - 2\sqrt{d}) E[(x, y)\mathbb{1}_A] \]
\[= (d - 2\sqrt{d})(E[\sigma'(x, y)] - E[\sigma'(x, y) \mathbb{1}_A]) \]
\[\geq \frac{\lambda\sqrt{d}}{r} - \frac{2\sqrt{\alpha d}}{r} \mathbb{P}(A^C). \]

By Cauchy–Schwarz inequality,
\[\left| E[(x, y)\sigma((x, y)) \mathbb{1}_A] \right| \leq \sqrt{E[(x, y)]^2 \sigma((x, y))^2 \mathbb{P}(A^C)} \leq \sqrt{E[(x, y)]^2} \mathbb{P}(A^C) = \sqrt{d} \mathbb{P}(A). \]

Therefore, we have that
\[E[(x, y)\sigma((x, y)) \mathbb{1}_A] = E[(x, y)\sigma((x, y))] - E[(x, y)\sigma((x, y)) \mathbb{1}_A] \]
\[\geq E[(x, y)\sigma((x, y))] - |E[(x, y)\sigma((x, y)) \mathbb{1}_A]| \]
\[\geq \frac{\lambda\sqrt{d}}{r} - \frac{2\sqrt{\alpha d}}{r} \mathbb{P}(A^C) - \sqrt{d} \mathbb{P}(A^C). \] (4.11)

Similarly, by Cauchy–Schwarz inequality,
\[\left| E[(x, y)\sigma((x, y))h(x, y)\mathbb{1}_A] \right| \leq \sqrt{E[(x, y)]^2 \sigma((x, y))^2 h(x, y)^2 \mathbb{P}(A^C)} \]
\[\leq \frac{2\sqrt{\alpha}}{r\sqrt{d}} \sqrt{E[(x, y)]^2 \mathbb{P}(A^C)} = \frac{2\alpha}{r} \sqrt{\mathbb{P}(A^C)}. \] (4.12)

By a union bound,
\[\mathbb{P}(A^C) = \mathbb{P}((A_0 \cap A_1 \cap A_2 \cap A_3) \cap \mathbb{C}) \leq \mathbb{P}(A_0^C) + \mathbb{P}(A_1^C) + \mathbb{P}(A_2^C) + \mathbb{P}(A_3^C) \]
\[\leq 2 \left(\exp \left(-\frac{l_1^2}{4} \right) + \exp \left(-\frac{l_2^2}{8} \right) + \exp \left(-\frac{l_3^2}{8} \right) + \exp \left(-\frac{l_4^2}{2} \right) \right). \]
Taking \(t = 2\sqrt{6\log d} \), we have that
\[
\mathbb{P}(A_1^C) \leq \frac{2}{d^3} \quad \text{and} \quad \mathbb{P}(A_2^C) \leq \frac{8}{d^3}.
\]
Using the above display and putting (4.10), (4.11), and (4.12) together, we have that
\[
T_2 = \mathbb{E}[(x, y)\sigma((x, y))h(x, y)] \geq \mathbb{E}[(x, y)\sigma((x, y))h(x, y)] - |\mathbb{E}[(x, y)\sigma((x, y))h(x, y)A]|\]
\[
\geq \frac{\lambda^3}{r^3\sqrt{d}} - \frac{5184\alpha^2 \log^2 d}{r^2d^{3/2}} - \frac{288\alpha^{3/2} \log d}{r^2d^2} - \frac{144\alpha \log d}{r^2d^{3/2}} - \frac{32\alpha^{3/2} \sqrt{6} \log d}{r^3d} - \frac{4\alpha^{3/2}}{r^3d^{7/2}} - \frac{4\sqrt{2\alpha}}{r^2d^2} - \frac{4\sqrt{2\alpha}}{r^3d^{3/2}},
\]
where we also used \(\lambda \leq 2\sqrt{\alpha} \).

Therefore, when \(d \geq r^4 \), there exists a constant \(C_\alpha > 0 \) such that for \(d \geq C_\alpha \),
\[
T_2 \geq \frac{\lambda^3}{2r^3\sqrt{d}}.
\]
Lemma 4.8 is hence proved. \(\square \)

Combining Lemma 4.7 and Lemma 4.8, we conclude that when \(d/\log^2 d \gg r^6 \) there exists a constant \(C_\alpha > 0 \) such that for \(d \geq C_\alpha \),
\[
\mathbb{P}(\Delta) \geq T_1 + T_2 \geq p^3 + \frac{\lambda^3}{2r^3\sqrt{d}} - \frac{C_\alpha \log d}{d}.
\]
Lemma 4.6 directly follows.

Lemma 4.11. Assume \(d/\log^2 d \gg r^6 \). Then, there exist constants \(C_p, C_\alpha \geq 0 \), for \(d \geq C_\alpha \),
\[
\mathbb{E}[\tau_{1,2,3}] \geq \frac{C_p}{r^3\sqrt{d}}.
\]

Proof. The expected signed triangle can be written as
\[
\mathbb{E}[\tau_{1,2,3}] = \mathbb{E}[(a_{1,2} - p) (a_{2,3} - p) (a_{3,1} - p)]
\]
\[
= \mathbb{E}[a_{1,2}a_{2,3}a_{3,1}] - p(\mathbb{E}[a_{1,2}a_{2,3}] + \mathbb{E}[a_{1,2}a_{3,1}] + \mathbb{E}[a_{2,3}a_{3,1}])
\]
\[
+ p^2(\mathbb{E}[a_{1,2}] + \mathbb{E}[a_{2,3}] + \mathbb{E}[a_{3,1}]) - p^3
\]
\[
= \mathbb{P}(\Delta) - 3p\mathbb{P}(\Lambda) + 2p^2.
\]
By Lemma 4.5 and Lemma 4.6, we have that for \(d \geq C_\alpha \),
\[
\mathbb{E}[\tau_{1,2,3}] \geq \frac{\lambda^3}{4r^3\sqrt{d}} - \frac{3pa^2}{r^4d}.
\]
Additionally with Lemma 4.3, the claim follows directly. \(\square \)

The expected signed triangle statistic in \(G(n, p, d, r) \) satisfies
\[
\mathbb{E}[\tau(G(n, p, d, r))] := \mathbb{E}\left[\sum_{\{i,j,k\} \in \binom{[n]}{3}} \tau_{i,j,k} \right] = \sum_{\{i,j,k\} \in \binom{[n]}{3}} \mathbb{E}[\tau_{i,j,k}] = C_3 \mathbb{E}[\tau_{1,2,3}].
\]
Putting them together, we have the following lemma.

Lemma 4.12. When \(d/\log^2 d \gg r^6 \), there exist constants \(C_p, C_\alpha > 0 \) such that for \(d \geq C_\alpha \),
\[
\mathbb{E}[\tau(G(n, p, d, r))] \geq \frac{C_p n^3}{r^3\sqrt{d}}.
\]
4.3 Estimating the variance

The variance of the signed triangle statistic in $G(n, p, d, r)$ can be written as

$$\text{Var}[\tau(G(n, p, d, r))] = \sum_{\{i,j,k\},\{i',j',k'\} \subset [n]} V_{\{i,j,k\},\{i',j',k'\}}$$

where $V_{\{i,j,k\},\{i',j',k'\}}$ is the covariance of two signed triangles defined by

$$V_{\{i,j,k\},\{i',j',k'\}} := \mathbb{E}_{G(n,p,d,r)}[\tau_{\{i,j,k\}} \tau_{\{i',j',k'\}}] - \mathbb{E}_{G(n,p,d,r)}[\tau_{\{i,j,k\}}]^2.$$

Since two triangles that do not share a vertex are independent,

$$V_{\{1,2,3\},\{4,5,6\}} = \mathbb{E}[\mathbb{E}[\tau_{\{1,2,3\}} \mid x_1, x_2, x_3] \mathbb{E}[\tau_{\{4,5,6\}} \mid x_4, x_5, x_6]] - \mathbb{E}[\tau_{\{1,2,3\}}] \mathbb{E}[\tau_{\{4,5,6\}}] = 0.$$

For a signed triangle, $\mathbb{E}_{G(n,p,d,r)}[\tau_{\{1,2,3\}}^2] \leq 1$. Then, we have that

$$V_{\{1,2,3\},\{1,2,3\}} \leq \mathbb{E}_{G(n,p,d,r)}[\tau_{\{1,2,3\}}^2] \leq 1.$$

Before proceeding to bounding the other two covariances, we present the following lemma which directly follows from the results of previous parts.

Lemma 4.13. Let $x, y, z \sim N(0, I_d)$ be independent standard normal random vectors. Then, there exists a constant C_α such that

$$\mathbb{E}[\mathbb{E}_z[(\sigma((x, z)) - p)(\sigma((y, z)) - p)]^2] \leq \frac{C_\alpha}{r^4d}.$$

Proof. From the definition in (3.4),

$$\mathbb{E}_z[(\sigma((x, z)) - p)(\sigma((y, z)) - p)] = \gamma(x, y).$$

By Lemma 3.1(a) and Lemma 3.1(b), we have that

$$\mathbb{E}[\gamma(x, y)^2] = \text{Var}[\gamma(x, y)] + \mathbb{E}[\gamma(x, y)^2] \leq \frac{68\alpha^2}{r^4d} + \frac{\alpha^4}{r^8d^2} \leq \frac{68\alpha^2 + \alpha^4}{r^4d},$$

where we used that $r, d \geq 1$. \hfill \Box

Lemma 4.14. There exists a constant $C_\alpha > 0$ such that

$$\mathbb{E}[\tau_{\{1,2,3\}}^2 \tau_{\{1,2,4\}}] \leq \frac{C_\alpha}{r^4d}.$$

Proof. For simplicity of notation, denote

$$\sigma_{i,j} := \sigma((x_i, x_j)) - p.$$

Then,

$$\mathbb{E}[\tau_{\{1,2,3\}}^2 \tau_{\{1,2,4\}}] = \mathbb{E}[(\sigma_{1,2}^2 \sigma_{1,3} \sigma_{2,3} \sigma_{1,4} \sigma_{2,4})] \leq \mathbb{E}[\sigma_{1,3} \sigma_{2,3} \sigma_{1,4} \sigma_{2,4}]$$

$$= \mathbb{E}[\mathbb{E}_{x_2}[(\sigma_{1,3} \sigma_{2,3}) \mathbb{E}_{x_4}[(\sigma_{1,4} \sigma_{2,4})]] = \mathbb{E}[\mathbb{E}_{x_3}[(\sigma_{1,3} \sigma_{2,3})^2]].$$

The claim then follows directly from Lemma 4.13. \hfill \Box
By Lemma 4.14 we thus have that
\[V_{1,2,3}\{1,2,4\} \leq \mathbb{E}[\tau_{1,2,3}\tau_{1,2,4}] \leq \frac{C_\alpha}{r^4d}. \]

Lemma 4.15. There exists a constant $C_\alpha > 0$ such that
\[\mathbb{E}[\tau_{1,2,3}\tau_{1,4,5}] \leq \frac{C_\alpha}{r^4d}. \]

Proof. By the definition of the signed triangle,
\[
\mathbb{E}[\tau_{1,2,3}\tau_{1,4,5}] = \mathbb{E}[\bar{\sigma}_{1,2}\bar{\sigma}_{2,3}\bar{\sigma}_{3,1}\sigma_{1,4}\sigma_{2,3}\sigma_{3,1}] = \mathbb{E}[\mathbb{E}_{x_2,x_3}[\bar{\sigma}_{1,2}\bar{\sigma}_{2,3}\bar{\sigma}_{3,1}] \mathbb{E}_{x_4,x_5}[\sigma_{1,4}\sigma_{2,3}\sigma_{3,1}]]
\]

Combining Lemma 4.4 Concluding the proof

where the last equality holds since (x_2, x_3) and (x_4, x_5) are identically distributed.

By Jensen’s inequality,
\[
\mathbb{E}_{x_2,x_3}[\bar{\sigma}_{1,2}\bar{\sigma}_{2,3}\bar{\sigma}_{3,1}]^2 = \mathbb{E}_{x_2}[\bar{\sigma}_{1,2}\mathbb{E}_{x_3}[\bar{\sigma}_{2,3}\bar{\sigma}_{3,1}]]^2 \leq \mathbb{E}_{x_2}[\bar{\sigma}_{1,2}^2 \mathbb{E}_{x_3}[\sigma_{2,3}\sigma_{3,1}]] \leq \mathbb{E}_{x_2}[\mathbb{E}_{x_3}[\bar{\sigma}_{2,3}\bar{\sigma}_{3,1}]]^2.
\]

Therefore, by Lemma 4.13,
\[
\mathbb{E}[\tau_{1,2,3}\tau_{1,4,5}] \leq \mathbb{E}[\mathbb{E}_{x_3}[\bar{\sigma}_{2,3}\bar{\sigma}_{3,1}]]^2 \leq \frac{C_\alpha}{r^4d}.
\]

By Lemma 4.15 we thus have that
\[V_{1,2,3}\{1,4,5\} \leq \mathbb{E}[\tau_{1,2,3}\tau_{1,4,5}] \leq \frac{C_\alpha}{r^4d}. \]

Putting these bounds together, we have the following lemma.

Lemma 4.16. There exists a constant $C_\alpha > 0$ such that
\[\forall \text{Var}[\tau(G(n,p,d,r))] \leq n^3 + \frac{C_\alpha n^5}{r^4d}. \]

4.4 Concluding the proof

Combining Lemma 4.4, Lemma 4.12, and Lemma 4.16, we have for $d, r \geq C_\alpha$ that when $d/\log^2 d \gg r^6$ or $r/\log^2 r \gg d^{1/6},$
\[
|\mathbb{E}[\tau(G(n,p,d,r))]| - \mathbb{E}[\tau(G(n,p))]| \geq \frac{C_p n^3}{r^3 \sqrt{d}}
\]

and
\[
\max\{\text{Var}[\tau(G(n,p,d,r)), \text{Var}[\tau(G(n,p))]| \leq n^3 + \frac{C_\alpha n^5}{r^4d}.
\]

Therefore, by Chebyshev’s inequality,
\[
\text{TV}(G(n,p,d,r), G(n,p)) \geq 1 - \left(\frac{C_p' r^6 d}{n^3} + \frac{C_p' \alpha^2}{n} \right)
\]

for some constants $C_p', C_p' \alpha > 0.$ Notice that $r^6 d/n^3 \to 0$ implies $r^2/n \to 0.$ Theorem 1.1(b) is hence proved.

31
Acknowledgements

We thank Ramon van Handel for insightful comments on several results and Jiacheng Zhang for suggesting the proofs of Lemma 2.6 and Lemma 4.3. The authors acknowledge the generous support from NSF grant DMS-1811724.

References

[1] Avanti Athreya, Donniell E Fishkind, Minh Tang, Carey E Priebe, Youngser Park, Joshua T Vogelstein, Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L Sussman. Statistical inference on random dot product graphs: a survey. Journal of Machine Learning Research, 18(226): 1–92, 2018.

[2] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, 2013.

[3] Matthew Brennan, Guy Bresler, and Dheeraj Nagaraj. Phase transitions for detecting latent geometry in random graphs. Probability Theory and Related Fields, 178(3):1215–1289, 2020.

[4] Matthew Brennan, Guy Bresler, and Brice Huang. De Finetti-Style Results for Wishart Matrices: Combinatorial Structure and Phase Transitions. arXiv preprint arXiv:2103.14011, 2021.

[5] Sébastien Bubeck and Shirshendu Ganguly. Entropic CLT and phase transition in high-dimensional Wishart matrices. International Mathematics Research Notices, 2018(2):588–606, 2016.

[6] Sébastien Bubeck, Jian Ding, Ronen Eldan, and Miklós Z Rácz. Testing for high-dimensional geometry in random graphs. Random Structures & Algorithms, 49(3):503–532, 2016.

[7] Louis H.Y. Chen, Larry Goldstein, and Qi-Man Shao. Normal Approximation by Stein’s Method. Probability and Its Applications. Springer, Berlin, Heidelberg, 2011.

[8] Luc Devroye, András György, Gábor Lugosi, and Frederic Udina. High-dimensional random geometric graphs and their clique number. Electronic Journal of Probability, 16:2481–2508, 2011.

[9] Quentin Duchemin and Yohann De Castro. Random geometric graph: Some recent developments and perspectives. Preprint, 2021.

[10] Ronen Eldan and Dan Mikulincer. Information and dimensionality of anisotropic random geometric graphs. In Geometric Aspects of Functional Analysis, pages 273–324. Springer, 2020.

[11] Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics. International Statistical Review / Revue Internationale de Statistique, 70(3):419–435, 2002.

[12] Edward N Gilbert. Random plane networks. Journal of the Society for Industrial and Applied Mathematics, 9(4):533–543, 1961.

[13] Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network analysis. Journal of the American Statistical Association, 97(460):1090–1098, 2002.

[14] Svante Janson. Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics. Cambridge University Press, 1997.
[15] Tiefeng Jiang and Danning Li. Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations. *Journal of Theoretical Probability*, 28:804–847, 2015.

[16] Suqi Liu and Miklós Z. Rácz. Phase transition in noisy high-dimensional random geometric graphs. arXiv preprint arXiv:2103.15249, 2021.

[17] Zhuang Ma, Zongming Ma, and Hongsong Yuan. Universal latent space model fitting for large networks with edge covariates. *J. Mach. Learn. Res.*, 21:4–1, 2020.

[18] Olivier Marchal and Juyan Arbel. On the sub-Gaussianity of the Beta and Dirichlet distributions. *Electronic Communications in Probability*, 22:1–14, 2017.

[19] Mathew Penrose. *Random Geometric Graphs*. Oxford University Press, 2003.

[20] Mathew D. Penrose. Connectivity of soft random geometric graphs. *The Annals of Applied Probability*, 26(2):986–1028, 2016.

[21] Miklós Z. Rácz and Sébastien Bubeck. Basic models and questions in statistical network analysis. *Statistics Surveys*, 11:1–47, 2017.

[22] Miklós Z Rácz and Jacob Richey. A smooth transition from Wishart to GOE. *Journal of Theoretical Probability*, 32(2):898–906, 2019.

[23] Charles M. Stein. Estimation of the mean of a multivariate normal distribution. *The Annals of Statistics*, 9(6):1135 – 1151, 1981.

[24] Minh Tang, Daniel L Sussman, and Carey E Priebe. Universally consistent vertex classification for latent positions graphs. *The Annals of Statistics*, 41(3):1406–1430, 2013.

[25] Ramon van Handel. Probability in high dimension. APC 550 Lecture Notes (Princeton University), 2016.

[26] Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

[27] JG Wendel. Note on the gamma function. *The American Mathematical Monthly*, 55(9):563–564, 1948.

[28] Stephen J Young and Edward R Scheinerman. Random dot product graph models for social networks. In *International Workshop on Algorithms and Models for the Web-Graph*, pages 138–149. Springer, 2007.

[29] Anru R Zhang and Yuchen Zhou. On the non-asymptotic and sharp lower tail bounds of random variables. *Stat*, 9(1):e314, 2020.