Experiencia inicial en Buenos Aires con la cirugía transoral robótica (TORS)
Initial experience with transoral robotic surgery (TORS) in Buenos Aires

Eduardo Busto , Marta Patrucco

Hospital Italiano de Buenos Aires. Argentina.

Los autores declaran no tener conflictos de interés.
Conflicts of interest
None declared.

Correspondencia |
Correspondence:
Eduardo Busto
e-mail: eduardo.busto@hospitalitaliano.org.ar

Antecedentes: la cirugía robótica es una alternativa a la cirugía abierta, microcirugía láser CO₂ o quimioradioterapia en vía aerodigestiva superior. El robot permite trasladar la técnica quirúrgica abierta a un abordaje mínimamente invasivo, con acceso por boca, para patología benigna y maligna. Actualmente se emplean diferentes terapéuticas con similares resultados oncológicos.

Objetivo: introducir una herramienta quirúrgica para abordaje bucal. Comunicar la experiencia inicial con el uso del robot. Evaluar la preservación de respiración y deglución. Analizar variables que determinaron una disminución en la hospitalización.

Material y métodos: 13 mujeres y 11 hombres. Edad entre 16 y 82 años, media de 55,08. Total 24 pacientes con enfermedad inflamatoria crónica (8), tumores benignos (4) y malignos (12).

Variables consideradas en cirugía robótica: tiempo y lugar de internación, complicaciones, estado respiratorio y deglutirlo, uso de técnicas reconstructivas. Se realizó videoendoscopia de deglución para objetivar la seguridad del método.

Resultados: tiempo medio de internación: 1,92 días. El 83,3% internado 1 día. El 79,9% en internación general. Unidad cerrada: 20,1%. Ninguna traqueostomía. Cicatrización del lecho por segunda. Sin complicaciones. Edema de lengua: 2 pacientes.

Conclusiones: la cirugía robótica favorece la exéresis con baja morbilidad y máxima preservación de tejidos sanos. Disminuye: edema posoperatorio, uso colgajos para reparar el lecho, traqueotomía por defecto, tiempo de internación. La videoendoscopia de deglución demuestra utilidad para determinar la deglución segura. Limitante del presente trabajo es el tamaño de la muestra. Es importante incrementar el número de pacientes para valorizar supervivencia y calidad de vida.

RESUMEN

Antecedentes: la cirugía robótica es una alternativa a la cirugía abierta, microcirugía láser CO₂ o quimioradioterapia en vía aerodigestiva superior. El robot permite trasladar la técnica quirúrgica abierta a un abordaje mínimamente invasivo, con acceso por boca, para patología benigna y maligna. Actualmente se emplean diferentes terapéuticas con similares resultados oncológicos.

Objetivo: introducir una herramienta quirúrgica para abordaje bucal. Comunicar la experiencia inicial con el uso del robot. Evaluar la preservación de respiración y deglución. Analizar variables que determinaron una disminución en la hospitalización.

Material y métodos: 13 mujeres y 11 hombres. Edad entre 16 y 82 años, media de 55,08. Total 24 pacientes con enfermedad inflamatoria crónica (8), tumores benignos (4) y malignos (12).

Variables consideradas en cirugía robótica: tiempo y lugar de internación, complicaciones, estado respiratorio y deglutirlo, uso de técnicas reconstructivas. Se realizó videoendoscopia de deglución para objetivar la seguridad del método.

Resultados: tiempo medio de internación: 1,92 días. El 83,3% internado 1 día. El 79,9% en internación general. Unidad cerrada: 20,1%. Ninguna traqueostomía. Cicatrización del lecho por segunda. Sin complicaciones. Edema de lengua: 2 pacientes.

Conclusiones: la cirugía robótica favorece la exéresis con baja morbilidad y máxima preservación de tejidos sanos. Disminuye: edema posoperatorio, uso colgajos para reparar el lecho, traqueotomía por defecto, tiempo de internación. La videoendoscopia de deglución demuestra utilidad para determinar la deglución segura. Limitante del presente trabajo es el tamaño de la muestra. Es importante incrementar el número de pacientes para valorizar supervivencia y calidad de vida.

Palabras clave: cirugía transoral robótica, TORS, cirugía transoral mínimamente invasiva, videoendoscopia de la deglución, FEESST, edema de lengua, traqueostomía, tiempo de internación, sitio de internación, complicaciones TORS.

ABSTRACT

Background: robotic surgery is an alternative to open surgery, CO₂ laser microsurgery, or chemoradiation for the upper aero-digestive tract. This system allows surgeons to use the open surgical technique in a minimally invasive approach through the mouth to treat benign and malignant disorders. Different treatments are currently used with similar oncologic outcomes.

Objective: the aim of this study was to introduce a surgical tool through transoral approach, report the initial experience with the use of the robotic system, evaluate respiratory and digestive functional preservation and analyze the variables associated with shorter hospital length of stay.

Material and methods: A total of 24 patients (13 women and 11 men, mean age 55.08 years [16-82]) were included. Eight patients had chronic inflammatory disease, four had benign tumors and 12 had cancer. The variables considered in robotic surgery were hospital length of stay, place of postoperative care, complications, respiratory and swallowing function and use of reconstructive techniques. Flexible endoscopic evaluation of swallowing was performed to document safe function.

Results: mean length of stay was 1.92 days; 83.3% stayed for one day; 79.9% were admitted to the general ward and 20.1% stayed in intensive or intermediate care units. None of the patients required tracheostomy. Healing of the surgical bed occurred by secondary intention. There were no complications. Tongue edema occurred in two patients.

Conclusions: robotic surgery favors tumor removal with low morbidity and maximum preservation of healthy tissues while reducing postoperative edema, use of flaps for reconstruction, temporary tracheostomy and hospital length of stay. Flexible endoscopic evaluation of swallowing is useful to determine safe swallowing function. The main limitation of our study is the sample size. It is important to increase the number of patients to evaluate survival and quality of life.

Keywords: transoral robotic surgery, TORS, minimally invasive transoral surgery, swallowing videoendoscopy, FEESST, tongue swelling, tracheostomy, length of hospital stay, transoral robotic surgery: adverse events.
Introducción

La cirugía transoral robótica (TORS) es una alternativa a la cirugía abierta, microscópica con láser de CO₂, o quimiorradioterapia.

La TORS presenta beneficios en la exérésis de lesiones oncológicas en estadíos T1 y T2, y también en tumores benignos. El método es ampliamente utilizado en tratamientos de cáncer de orofaringe, laringe supra-glótica e hipofaringe.

En 2006, O’Malley y Weinstein¹ puntualizaron que los componentes clave del sistema quirúrgico Da Vinci son:

1. La visualización 3D de alta definición, con aumentos de hasta 10 veces, que da al cirujano una visión sin igual para una máxima precisión.
2. La instrumentación EndoWrist® que provee al cirujano de 7 grados de libertad (que reproducen los movimientos de la muñeca) para una destreza quirúrgica y una precisión incomparables.
3. El movimiento intuitivo, que permite mantener el movimiento del cirujano, o aumentar su intensidad, replicándose con precisión, mientras que el temblor de la mano prácticamente se elimina.

Este sistema permite al cirujano trasladar la técnica quirúrgica abierta a un abordaje mínimamente invasivo que utiliza un puerto de acceso natural como es la cavidad oral y extender los beneficios de la cirugía TORS a una base de pacientes más amplia.

El objetivo de esta nueva técnica es el de mantener o mejorar las posibilidades de controlar el cáncer en el sitio primario. La tecnología ideal sería la que permita un abordaje con baja morbilidad y que mantenga las funciones a largo plazo, así como el control del cáncer.

La importancia de realizar estudios de calidad de vida, en pacientes con cáncer de cabeza y cuello, radica en que actualmente existen diferentes alternativas terapéuticas que ofrecen similares resultados, en cuanto a sobrevida y control locorregional de la enfermedad. Un mejor conocimiento de la funcionalidad y bienestar del paciente durante el tratamiento o posterior a él puede ser un factor importante a la hora de elegir una opción terapéutica. El concepto multidimensional adquirió mayor trascendencia en las últimas décadas, frente a la necesidad de evaluar mejor los desenlaces de la salud.

Objetivos

• Introducir una herramienta quirúrgica en el área de cabeza y cuello, para el tratamiento de la patología tumoral (benigna o maligna) y de las afecciones crónicas, a través de un abordaje bucal.

• Comunicar la experiencia inicial en el Servicio de Otorrinolaringología del Hospital Italiano de Buenos Aires (HIBA), con el uso del robot para abordaje transoral.

• Evaluar la preservación de la función respiratoria y digestiva en el posoperatorio de TORS.

• Analizar las variables que determinaron una disminución en la estancia hospitalaria.

Material y métodos

Se presenta la experiencia en el Servicio de Otorrinolaringología del HIBA. Se operaron 24 pacientes entre marzo de 2015 y marzo de 2019.

Fueron 13 mujeres y 11 hombres. La edad varió entre 16 y 82 años y la media fue de 55,08.

Los pacientes fueron tratados por enfermedad inflamatoria crónica, tumores benignos y malignos. Dieciséis pacientes fueron operados por patología tumoral (4 benignos y 12 tumores malignos), 7 por enfermedad inflamatoria crónica y uno por síndrome de apnea obstructiva del sueño (SAOS).

La localización de la patología en los 24 procedimientos fue 22 en orofaringe, 1 en hipofaringe y 1 en espacio parafaríngeo (Tabla 1).

Los ocho pacientes con patología inflamatoria crónica hipertrófica correspondieron a 7 con compromiso bilateral de amígdalas palatinas y linguales de ambos lados, que provocaba un síndrome de apnea del sueño.

Los pacientes tratados por patología tumoral benigna fueron: 2 por adenoma pleomorfo, 1 de base de lengua y el otro del espacio parafaríngeo; 1 con papilomatosis de amígdala palatina y 1 paciente con quiste de valécula.

Los tratados por patología tumoral maligna fueron doce (12). De ellos, 11 con carcinoma epidermoide, 6 de base de lengua, 3 localizados en fosa amigdalina, 1 de pared posterior de orofaringe y 1 con carcinoma de seno piriforme. El restante era una paciente con linfoma de base de lengua (única localización), recaído a quimioterapia.

En todos los pacientes con carcinoma epidermoide...
moide se trató el cuello mediante vaciamiento cervical selectivo, o radical modificado, dos o tres semanas antes del abordaje transoral. Durante la linfadenectomía se realizó la ligadura de las arterias lingual, facial y faríngea ascendente, lo que disminuye el riesgo de sangrado intraoperatorio o posoperatorio inmediato. Asimismo, el abordaje cervical previo evita la eventual comunicación con la faringe durante el procedimiento endobucal.

Se realizó videoendoscopia de la deglución (FEESST, por sus siglas en inglés Flexible Endoscopic Evaluation of Swallowing with Sensory Testing)\(^2,3\), 24 a 72 horas después de la intervención, en 14 de los 24 pacientes operados mediante abordaje transoral robótico (58,3%), antes que el paciente comenzara con dieta por vía oral.

La FEESST consiste en la introducción de un fibroscopio flexible a través de la fosa nasal hasta el cavum (nasofaringe), con lo que se obtiene una visión directa de la faringolaringe.

La exploración incluye una valoración de la competencia del sello velofaríngeo, de la simetría del movimiento velar y de un posible reflejo nasal. Luego se sitúa el fibroscopio a la altura de la úvula y se explora visualmente la configuración de la hipofaringe, la simetría de la base lingual, la forma de la epiglotis, la morfología de los senos piriformes y el aspecto y la simetría de la laringe. La evaluación se realiza tanto en inspiración como en fonación, detectando anomalías morfológicas y funcionales. En el posquirúrgico permite evaluar el defecto resultante en la anatomía, la localización de las secreciones y la capacidad de liberarlas. Luego, se realiza la exploración de la deglución con alimentación con volúmenes crecientes (3, 5, 10, 15 y 20 cm\(^3\)) y en texturas blandas, néctar, líquida y sólida, observando el paso del alimento a la hipofaringe, la penetración y la aspiración, tanto sintomática como silente, y la capacidad del paciente para liberar los residuos de la vía respiratoria.

La penetración es el paso del contenido alimenticio al vestíbulo laringeo por encima de los pliegues vocales. La aspiración es el paso del contenido alimenticio a la vía respiratoria por debajo del nivel de los pliegues vocales.

El estudio se hizo a todos los operados por tumor maligno y en 2/4 de los operados por tumor benigno. No se consideró necesario en dos pacientes con lesiones pequeñas, una de fosa amigdalina y otra de valécula. Tampoco se realizó en los pacientes con patología inflamatoria crónica benigna, que no generaron ningún cambio anatómico importante en la encrucijada faringolaringea.

Se consideraron como variables el tiempo de hospitalización, lugar donde cursó el posoperatorio, complicaciones asociadas al procedimiento, estado respiratorio y deglutitorio, este último evaluado mediante la videoendoscopia de la deglución, y requerimiento de algún método reconstructivo.

Resultados

En el 58,4% (14/24) de los operados mediante TORS se realizó una FEESST, entre las 24 y 72 horas del posoperatorio. En el 14,3% (2/14) se observó penetración endolaringea, por lo que se colocó una sonda nasoyeyunal, para alimentación enteral. En ambos, la sonda se mantuvo entre 7 y 10 días. Los dos fueron operados por carcinoma de base de lengua, uno con extensión del tumor al polo inferior de la amígdala palatina, por lo que se amplió la exéresis a la fosa amigdalina. Una tercera paciente, intubada las primeras 24 horas por edema de lengua, mantuvo la sonda de alimentación hasta el tercer día posoperatorio, iniciando la alimentación por vía oral cuando se demostró la recuperación de la deglución normal con el estudio endoscópico.

La media de internación para la población tratada (n: 24) mediante abordaje TORS, fue de 1,92 días, con una variación entre 1 y 8 días. Entre los 8 tratados por patología inflamatoria crónica (33,3%), la media de internación fue de 1 día. El 66,7% restante (16/24), operados por patología tumoral (benigna y maligna), tuvieron una estadía hospitalaria media de 2,13 días (entre 1 y 8 días). La permanencia de los 4 operados por tumor benigno varió entre 1 y 3 días.

Los 12 tratados por tumor maligno (50%, 12/24) permanecieron internados entre 1 y 8 días, con una media de 2,75 días. El 66,7% (8/12) estuvo entre 1 y 2 días, el 16,7% (2/12) 4 días, el 8,3% (1/12) 7 días y el restante 8,3% (1/12) 8 días. De los dos últimos (7 y 8 días), el primero era un paciente con aflicación cardíaca que cursó el posoperatorio en la Unidad de Terapia Intensiva (UTI), en donde tuvo una fibrilación auricular y paro cardiorrespiratorio del que fue recuperado, permaneciendo 7 días internado. El otro paciente fue operado por recaída a quimiorradioterapia, de un T2 de base de lengua extendido al surco amigdalogloso. En la exéresis se incluyó la fosa amigdalina. Permaneció internado 8 días hasta la recuperación de la función deglutitoria.

Es importante señalar que el 83,3% de los pacientes tuvieron un tiempo de internación de hasta 2 días, y el 16,7% permanecieron internados entre 4 y 8 días.

Si se considera el sitio donde cursaron el posoperatorio, el 79,2% (19/24) lo hizo en Internación General (IG). Fueron 8 operados por patología inflamatoria crónica, 3 por tumor benigno y 8 por tumor maligno.

El 20,8% (5/24) estuvo en una unidad cerrada,
Los pacientes fueron uno tratado por tumor benigno y 4 por patología maligna (Tabla 2).

Se internaron en unidad cerrada por: edema posoperatorio de lengua (1 paciente), comorbilidades previas (2 pacientes) y recuperación anestesiológica (2 pacientes).

Ningún paciente requirió traqueostomía. La cicatrización del lecho quirúrgico fue por segunda, sin necesidad del uso de procedimientos reconstructivos.

No se produjeron complicaciones durante el procedimiento quirúrgico ni en el posoperatorio. En la recuperación anestésica se comprobó edema de lengua en dos operados, que resolvió con tratamiento médico en 48 horas.

Discusión

Las últimas décadas han estado marcadas por grandes avances en cirugía de cabeza y cuello y otorrinolaringología dirigidos especialmente al concepto de preservación de órganos.

Tradicionalmente, los abordajes quirúrgicos abiertos utilizados para los tumores de orofaringe, hipofaringe y laringe supraglótica implicaban abordajes transmandibular o transfaríngeo con una morbilidad significativa en algunos pacientes (mayor pérdida de sangre intraoperatoria, osteonecrosis, maloclusión, alteraciones de la deglución) y hospitalización prolongada.\(^4,5\)

La faringotomía, además, brinda un acceso limitado, y en ocasiones la visión inadecuada de la orofaringe puede provocar un compromiso en el resultado oncológico. Algunos estudios con pacientes tratados quirúrgicamente mediante acceso cervical transfaríngeo mostraron resultados promisorios, tanto oncológicos como funcionales, en comparación con el acceso transmandibular.

El desarrollo de la cirugía mínimamente invasiva se enmarca dentro de la historia reciente de la cirugía y es a partir de los años ochenta cuando vive su verdadero desarrollo y expansión.

La morbilidad en las enfermedades de cabeza y cuello se ha reducido en gran medida porque los abordajes a cielo abierto están siendo reemplazados por los mínimamente invasivos, que favorecen la conservación del órgano y su función.

Este concepto, sumado al conocimiento de las diferencias biológicas en el carcinoma epidermoide de orofaringe, con asociación viral o sin ella, produjo un cambio radical en la mayoría de las intervenciones terapéuticas\(^6-9\).

La cirugía endoscópica transoral de cabeza y cuello implica un desafío relacionado con la iluminación del campo quirúrgico, el control de los vasos sanguíneos y la manipulación y resección de los tejidos.

La microcirugía transoral con láser o la cirugía transoral robótica tienen un bajo índice de complicación posoperatoria, menor estancia hospitalaria y una recuperación funcional más rápida en comparación con la cirugía abierta. Estas técnicas tienen el potencial de controlar la enfermedad y preservar el órgano y la función, con disminución del costo del tratamiento.\(^10,11\)

La cirugía transoral láser fue propiciada por Steiner\(^12\) en 1984, para el tratamiento del cáncer temprano de laringe. Luego se extendió su uso para la vía aerodigestiva superior. Criticada en sus inicios por la fragmentación del tumor, terminó siendo aceptada sobre la base de los resultados oncológicos obtenidos, comparables con otros procedimientos.\(^10,11,14\)

El problema derivado del uso del láser está en relación con la visión lineal que ofrece el microcopio utilizado para la cirugía transoral, además de la carbonización que se produce en algunas oportunidades, la que podría dificultar la certeza de los estudios histológicos.

La cirugía transoral robótica supera algunas de las limitaciones de la cirugía con láser y amplía aún más la opción de cirugía mínimamente invasiva. Entre las ventajas puntualizadas por O’Malley y Weinstein\(^1\) se remarca la importancia de las imágenes tridimensionales de boca y orofaringe, que permiten al cirujano, mediante la utilización de instrumentos guiados por el robot, la exéresis del tumor con márgenes libres.

Además, se incorporó el láser de dióxido de carbono y tulíum para el robot Da Vinci\(^15\). La cirugía transoral robótica continúa evolucionando y avanzando, con nuevos sistemas y aplicaciones. El sistema robótico flexible con instrumental más pequeño permite una vía de abordaje a través de una cánula única, más angosta y curvada.\(^16,17\)

El resultado final permite al cirujano trasladar la técnica quirúrgica abierta a un abordaje mínimamente invasivo, extendiendo los beneficios de la cirugía transoral robótica a una base de pacientes más amplia.\(^18\)

Se coincide con los trabajos mencionados en que la introducción de la cirugía transoral robótica permite la mejor visualización de la patología para tratar, la preservación de los tejidos sanos y, por lo tanto, la dis-
minución de la morbilidad posoperatoria. La presente comunicación no considera el estatus VPH (+ o –) para analizar los resultados, que sí se tendrán en cuenta en una próxima publicación de los autores.

La exéresis del tumor con “margen oncológico”, a través de un orificio natural y evitando la cervicotomía, permite que el lecho operado pueda cicatrizar por segunda, sin el riesgo de fistula oro o faringocutánea. En la presente serie, la simplificación de la intervención, para casos seleccionados, por no requerir procedimientos reparadores/reconstructivos, permitió una recuperación funcional y general rápida, con escaso dolor. Esto determina la baja estadía hospitalaria, que fue de 1 día para el 70,8% de los pacientes.

En un análisis retrospectivo de la muestra hospitalaria a nivel nacional de 2008 a 2011, en los Estados Unidos de América, realizado por Chung y col.19, sobre 523 faringectomías con TORS, los pacientes tuvieron estancias hospitalarias más cortas que los pacientes operados por cirugía abierta (3,7 vs. 5,2 días). En el trabajo multicéntrico de Weinstein y col.20, de 2012, sobre 177 pacientes operados en tres diferentes centros hospitalarios de Estados Unidos, la media de internación fue de 4,2 días. En la serie presentada, la media de internación para todos los pacientes fue de 1,92 días, y para los operados por tumor maligno fue de 2,75 días. Coincidiendo con los autores mencionados, el tiempo de observación posoperatorio se incrementó por comorbilidades previas del enfermo, o cuando la exéresis fue más extendida.

De acuerdo con la recomendación realizada por O’Malley y Weinstein18, se consideró necesaria la evolución posoperatoria, en una unidad cerrada, de aquellos pacientes con comorbilidades previas (4/24) o edema importante de lengua (1/24). Además, contar con una unidad de control posanestésica, ubicada dentro del área de quirófanos, permite un seguimiento muy cercano del paciente después de finalizada la cirugía, determinando que solo algunos sean derivados a una unidad cerrada.

Las complicaciones asociadas a TORS son poco frecuentes19 e incluyen: sangrado posoperatorio, infecciones, traqueostomía por edema posoperatorio de la vía aérea, incompetencia nasofaringea, con rinolalia y regurgitación nasal, aspiración y traumatismos asociados a los instrumentos utilizados.

El sangrado posoperatorio es la complicación más temida19-28. En trabajos de metanálisis y de revisión sistemática, la incidencia de hemorragia posoperatoria en cirugía transoral robótica es variable, con cifras de 0 a 9%, para Yeh y col.29, o 18,5% para Aubry y col. En un análisis de Chia y col.30, sobre 2015 pacientes operados con TORS, la incidencia de sangrado fue del 3,1%. En la serie presentada no ocurrió ningún sangrado posoperatorio ni en posoperatorio alejado.

En la presente casuística no hubo complicaciones asociadas al procedimiento.

El edema de lengua presente en 2 pacientes es un resultado esperado y no una complicación del tratamiento.

La necesidad de realizar una traqueostomía para ventilación intraoperatoria o manejo posoperatorio del paciente también tiene cifras que varían entre el 1% para Chung19 en su revisión de 523 pacientes operados, al 14,8% para Pollei22, sobre 906 casos analizados. En la serie presentada no se requirió ninguna traqueostomía; esto podría deberse a la muestra poblacional, con pacientes T1-T2, en su mayoría de oroofaringe. No se trató con TORS ningún paciente con tumor supraglótico.

La cirugía de la encrucijada aerodigestiva puede provocar trastorno deglutorio en el posoperatorio inmediato, con la penetración de alimento en la vía aérea y el compromiso broncopulmonar secundario a dicha aspiración.

Para algunos autores19,20, el TORS se asoció a trastornos de la deglución y en ocasiones al requerimiento de una gastrostomía, situación no observada en la presente serie, ya que solo 2 pacientes requirieron una sonda para alimentación enteral. Se considera que al realizar la FEESST en el primer día del posoperatorio se objetiva tempranamente la presencia de aspiración o penetración, estableciendo las medidas adecuadas para una deglución segura. En estos casos, la fonadióloga especializada en trastornos deglutitorios supervisa las maniobras compensatorias y los ejercicios para restablecer la función.

Conclusiones

El TORS favorece la exéresis de patología tumoral o afecciones crónicas disminuyendo la morbilidad asociada a otros tratamientos, y el tiempo de internación.

Las técnicas mínimamente invasivas permiten la máxima preservación de tejidos sanos, disminuyen el edema posoperatorio, el uso de colgajos para la reparación del lecho quirúrgico, y la realización de una traqueostomía temporal.

La videoendoscopía de la deglución favoreció el restablecimiento temprano de la función deglutatoria en forma segura.

La principal limitante del presente trabajo es el tamaño de la muestra.

Se considera importante incrementar el número de pacientes tratados mediante esta técnica, para analizar resultados oncológicos y de calidad de vida.
Discusión en la Academia Argentina de Cirugía

Pedro A. Saco: Creo que es muy importante el aporte de los autores con esta técnica, en realidad con esta herramienta, que en los últimos años se considera de gran utilidad en el área de la cabeza y el cuello. En lo referente a los tumores malignos, que en la serie de los autores abarca casi la mitad de los pacientes que trataron, tal vez la ventaja más importante sea ofrecer un tratamiento unimodal, es decir, una sola herramienta de tratamiento les permite, especialmente en los tumores de orofaringe, evitar secuelas o complicaciones propias de los tratamientos bimodales, como son las combinaciones de quimio-radioterapia.

Eso en la medida en que uno pueda hacer resecciones con márgenes negativos, que no haya invasión perineural o que no hayan ganglios con invasión extraganglionar.

Por eso quería preguntarles a los autores, primero, cuál era el T de los tumores que trataron, porque, en general, las mejores ventajas se obtienen con tumores más bien chicos y que no requieren reconstrucción; y, segundo, cómo fueron los márgenes de resección. Porque no veo que en el trabajo hayan mencionado el estado de los márgenes y si tuvieron pacientes a quienes debieron agregarles radioesquema posoperatoria, porque, cuando uno tiene que agregar un tratamiento más, deja de tener la ventaja de ser un tratamiento unimodal.

Quiero preguntar, además, por qué la necesidad de hacer vaciamientos cervicales dos o tres semanas previas a la resección con el robot, cuando eventualmente pueden hacerse en simultáneo, como lo hacemos en el caso de resecciones con láser. Muchas gracias.

Eduardo Busto: Muchas gracias por las preguntas. Con respecto a la categoría T, tratamos pacientes T1 o T2. No fue objetivo del trabajo presentado, como tampoco se consideró la evolución, porque la muestra es pequeña y el tiempo no es suficiente como para evaluar tratamiento oncologico.

Previeamente quería comentar que la aprobación del empleo del robot por la FDA (de los Estados Unidos) se produjo en el año 2009, exclusivamente para T1 y T2. A medida que se fue adquiriendo experiencia en la técnica, el grupo de la Universidad de Pensilvania con Weinstein y O'Malley está operando incluso T4A con el robot. En la serie presentada hemos operado exclusivamente T1 y T2. Estamos haciendo nuestra experiencia inicial, por eso en esta etapa no consideramos utilizar esta nueva herramienta para operar tumores avanzados.

Con respecto a los márgenes, tampoco fue el objetivo de este trabajo, con una población limitada a 12 pacientes con tumores malignos. Con el incremento de los pacientes operados vamos a poder evaluar esa variable.

Lo que me interesa remarcar es que, mediante la técnica robótica, se cumple el precepto oncológico de la resección en bloque; en la cirugía podemos observar los límites del tumor y darle el margen necesario, porque lo estamos viendo como si estuviéramos sentados dentro del paciente, con visión ampliada y en 3D. Se trabaja con muchos aumentos, lo que nos permite ver la diferencia entre tejido sano y tejido tumoral. Pintamos el fondo con colorante, que es el mismo que utilizamos para marcar los bordes de la pieza. Con el patólogo se analizan los márgenes, para ampliar en ese mismo momento la exéresis en caso de margen comprometido o escaso. No somos partidarios de indicar tratamiento radiante para subsanar un margen escaso o comprometido.

La mayoría de los metanálisis establecen que todos los beneficios de la cirugía robótica quedan anulados cuando el paciente tiene margen positivo y debe ser tratado con algún otro método quirúrgico. El margen positivo en TORS es del 16,7%, que pareciera una incidencia alta, pero bastante menor que las publicadas en los metanálisis con cirugía no robótica, en los que Lee y col. comunican un 30% de márgenes positivos y Zevallos y col., en Estados Unidos, un 28,3%. O sea, que con TORS se está obte-
de la magnitud de una intervención como la robótica, no existe en ningún país del mundo una autoridad estatal que lo haga y, entonces, en Estados Unidos aceptaron que se realice el tratamiento a partir de un esquema planteado por Intuitive, que es la empresa que ha desarrollado o comprado el desarrollo Da Vinci® y lo comercializa en el mundo.

La formación se inicia con una primera etapa virtual, que hemos sufrido la mayoría de quienes nos entrenamos en TORS, que nos parecía inútil, que no servía para nada, y creo que si pudiéramos trasladar eso a todos los gestos quirúrgicos de nuestra práctica, sería mucho más beneficioso a nuestros pacientes, eliminando los otros modelos experimentales (animales de laboratorio). Ese software que nos permite trabajar en la computadora da mucha manualidad.

El robot tiene una mochila, con un software que permite remedar los mismos gestos que vamos a hacer en la cirugía, y lo estamos viendo en el monitor o en el visor de la consola del cirujano, y ahí aparecen al final de cada ejercicio los errores, cuánto nos demoramos, cuánto tiempo perdimos en clavar un vaso y demás. Después de esa etapa virtual se continúa con una etapa de visión de cirugía grabadas. Se sigue con la observación de cirugías en vivo. El entrenamiento continúa con la parte práctica con animales de experimentación donde ya se aplica el robot al modelo vivo (porcino), que es el más utilizado. Después de eso pasamos a hacer la parte de entrenamiento con modelos cadavéricos, eso fue en la Universidad de Pensilvania, finalizando con la participación de cirugías en vivo. En la misma semana, terminado el entrenamiento en Estados Unidos, volvimos a la Argentina, y teníamos preparados casos para operar en nuestra Institución, guiados por un protor propuesto por Intuitive, quien observó y nos ayudó en las cirugías. En nuestro caso operamos 8 pacientes en 3 días, habiendo adquirido las destrezas necesarias para continuar con el proyecto TORS. Es una metodología de entrenamiento muy interesante, sobre todo por ser secuencial, iniciado con un proceso virtual y finalizado con la cirugía.

Con respecto a los costos, obviamente que –si se parte de cero y hay que comprar un robot– resulta muy caro (el robot cuesta dos millones y medio de dólares aproximadamente). Su mantenimiento anual cuesta cien mil dólares. O sea que, si uno va a operar nada más que cirugía de cabeza y cuello, que es menos del 2% de todas las cirugías, el costo sería tan alto que no se justificaría. Los costos se reparten, fundamentalmente con urología, ginecología, algunas intervenciones de cirugía general y la cirugía transoral robótica. Pero la tasa de uso que siempre es de las más bajas. Los urólogos son quienes más intervenciones realizan. Cuantos más servicios puedan utilizar el equipo más disminuyen los costos por cirugía. Nuestro sistema de salud es especial: en cambio, países como Bélgica, que tiene una población muy reducida, tiene una cantidad de robots activos muy alta; ahí los costos son absorbidos por el Estado. En la Universidad de Namur, en Bélgica, calcularon que la cirugía láser cuesta de promedio 3460 euros con una variabilidad entre 3000 y 3600, y la cirugía transoral robótica casi 5600 euros, entre 4000 y 6000 euros cada una. Weinstein, quizá con un sesgo, dice que cues son absorbidos por el Estado.

Eduardo Busto: Muchas gracias, doctor Curutchet. Solamente me quería agregar, que hay un nuevo sistema Da Vinci®, que es el Single Port® (SP). Con el Da Vinci que tenemos se trabaja con tres brazos: uno sostiene la cámara y los otros dos, uno para el monopolar y el otro para una pinza Maryland, o el porta-agujas, pero son dos brazos y la cámara. El Single Port tiene un solo puerto de entrada o cánula por el que entran cuatro brazos; uno es una cámara y los otros tres pueden ser pinzas, fibra para bisturí láser, o un grasper, una pinza de Maryland o porta-agujas. El Single Port significa que es una sola cánula, un poco más gruesa, pero que tiene una mejor capacidad de penetrar aun en bolsas más chicas, con algunas alteraciones anatómicas; todos los instrumentos son flexibles. Toda la curva que nos permite el robot no está en la mano, no tienen ciertas universidades de Europa, Asia y Estados Unidos; lo están probando y le están buscando los defectos que pueda tener para llegar a un producto eficaz, y después recién empezar a venderlo. Creo que ese nuevo modelo nos va a permitir operar las laringes también con el robot; porque con el actual sistema, en la laringe podemos operar solo la región supraglótica, pero no la glotis, porque el instrumental (de 5 milímetros) es muy grande. En el SP, el instrumental es mucho más pequeño y permite realizar operaciones de toda la laringe, más allá de las laringectomías totales o parciales que también se pueden hacer por vía transoral.

Marcelo F. Figari: Deseo reconocerles al doctor Busto y a la doctora Patrucco la importancia que tiene esta presentación que, si bien es una continuación de la serie previamente presentada, es la más relevante y única al nivel nacional. Tienen muy buenos resultados, seguramente en relación con el cri-
terio de selección muy cuidadoso, y que son excelentes comparados con las series internacionales, tanto en términos funcionales como en complicaciones. Y que hablan a las claras de que no solo en la patología benigna (como la apnea de sueño) sino en los tumores pequeños de orofaringe se ha convertido en un gold standard. Coincido en que se va a ir generalizando poco a poco con el avance tecnológico y con el abaratamiento del uso del robot. En cirugía transoral, particularmente, no hay ninguna duda de que el hecho de poder evitar la morbilidad de un abordaje toraco-transmandibular o un abordaje transfaríngeo es de gran valor. Yo quería preguntarle al doctor Busto, con quien compartimos un comité de tumores y más de una vez hemos tenido algunas discusiones con nuestros colegas de quimioterapia y radioterapia, acerca de su primera reacción: si este paciente probablemente después también tenga que hacer radioterapia ¿por qué no tratarlo inicialmente con quimio-radioterapia? Sabemos que muchos de estos pacientes que inicialmente pueden ser operados, pueden tener luego una indicación de descalzamiento de la dosis radiante, basándose en los hallazgos histopatológicos. ¿Cuál ha sido su experiencia inicial de radioterapia posoperatoria en este grupo? ¿Se puede indicar un régimen algo más funcional que el que hubiera requerido un tratamiento inicial?

Eduardo Busto: Con el advenimiento de los esquemas de preservación de órgano, aplicados a la orofaringe, la cirugía fue perdiendo terreno para el tratamiento inicial de los tumores con esta localización. Los abordajes externos con grandes exéresis y la necesidad de reconstrucciones complejas generaron una tendencia hacia los esquemas de preservación de órgano. La radioterapia tiene una morbilidad importante: con el 50% de la dosis requerida se produce la afectación de los músculos faringeos; por lo tanto, un número grande de pacientes tendrán trastornos deglutitores permanentes. El trabajo más significativo fue el de Forastier, que demostró que la mitad de los pacientes, controlados en su enfermedad, requirieron alimentación por gastrostomía en forma permanente. Por lo tanto, si se puede controlar el tumor primario con márgenes negativos, aunque el paciente tenga indicación de tratamiento adyuvante con radioterapia o quimio-radioterapia por ganglios positivos cervicales, el no requerir sobre-dosar la orofaringe permitiría que el paciente se beneficie sin afectarse los músculos de la faringe, mejorando su calidad de vida.

Como los tratamientos quirúrgicos conservadores asistidos por robot están aún en una etapa inicial en nuestro país, con sensuar en una reunión de comité de tumores la posibilidad de disminuir la dosis de tratamiento radiante en el sitio primario de la lesión, que pudo resecarse con márgenes negativos, no es una tarea fácil en estos momentos. Creo que con el tiempo y la difusión de los beneficios de los abordajes mínimamente invasivos para algunas localizaciones de tumores de cabeza y cuello, tanto los oncólogos clínicos como los radioterapeutas aceptarán la posibilidad de eliminar la sobredosificación en el sitio primario.

Alfredo P. Fernández Marty: Doctor Busto, la experiencia en el Hospital de Gastroenterología en procedimientos transorales solamente está en el esófago cervical, fundamentalmente en el tratamiento del divertículo de Zenker. Me llama la atención que usted no tenga edema, que para nosotros es algo que se presenta en mayor o menor grado. ¿Qué recaudos toman, ya sea desde el punto de vista farmacológico o regulando la potencia de los elementos de energía, para no tener esa complicación de acuerdo con la estadística que ha presentado? Y segundo, de la cirugía robótica se dice que es muy precisa, que es segura y también que es más sencilla. Me interesaría saber su opinión sobre este último punto, si realmente es más sencilla.

Eduardo Busto: Cuando indicamos un procedimiento quirúrgico deberíamos pensar no solo desde el punto de vista del cirujano, sino de las posibilidades reales del paciente. Una solicitud para realizar TORS puede provocar un recurso de amparo concedido por un juez, y que el paciente se opere porque lo ordena la Justicia. Ese paciente después de tratado tiene que pasar por un proceso judicial con su sistema de salud. Como cirujanos acostumbrados a operar en contacto directo con el paciente, con este nuevo procedimiento debemos asumir que estamos a dos o tres metros de la mesa de cirugía, y ni siquiera nos ponemos guantes. No podremos tocar con nuestros dedos el tumor, sentir los latidos de una arteria, ni “separar con una mano”. Estamos sentados, muy cómodos; cuando queremos parar la cirugía, sacamos la frente de la consola y, al instante, el robot se queda congelado; si está tomando una arteria, no la va a soltar. El robot obedece, tampoco es un robot en realidad, sino un sistema “cirujano-esclavo”, en donde el robot hace lo que el cirujano le está indicando en tiempo real. Puede ocurrir que el ayudante, que está en contacto con el paciente, tenga que clinar un vaso y no esté entrenado, y entonces tengamos que levantarnos, dejar la consola, acercarnos al paciente, ponernos los guantes y colocar el clip. También es posible que haya que convertir el procedimiento y transformarlo en un abordaje abierto; no nos ocurrió a nosotros, pero en la casuística esta descripto. El robot tiene que ser nada más que una herramienta, y el cirujano no puede ser un operador robótico solamente. Se necesita un gran conocimiento de cirugía, de oncología, de cirugía oncológica, cirugía de cabeza y cuello, y usar el robot cuando considere que es la mejor herramienta para ese caso en particular. Técnicamente es muy interesante, creo que es el futuro para muchas cirugías, necesitamos nada más poder aceptarlo mentalmente, y que nuestro país tenga las condiciones económicas adecuadas para que no esté solamente en uno o dos hospitales, y su incorporación se realce acorde con los requerimientos por complejidad del centro de salud. La doctora Patrucker, en este momento, trabaja en el Hospital Churruca y el Ministerio de Seguridad, e incorporó un robot para dicho hospital. En relación con el edema, se produce por compresión con el bajalenguas, que al momento de soltarlo genera la rehidratación y produce el edema. Por eso dicen que no es una complicación, sino un evento esperado. La realidad es que, si el procedimiento se prolonga, lo ideal es aflojar el bajalenguas una hora de cirugía. Se debe seleccionar adecuadamente cada paciente: quienes tienen un Mallampati 3, una apertura pequeña, o una lengua muy grande (características frecuentes de pacientes con SAHOS) pueden presentar edema posoperatorio con más frecuencia. Cuando se produce el edema, lo recomendado es liberar el bajalenguas, sacamos la frente de la consola y, al instante, el robot está en uno o dos hospitales, y su incorporación se realce acorde con los requerimientos por complejidad del centro de salud. La doctora Patrucker, en este momento, trabaja en el Hospital Churruca y el Ministerio de Seguridad, e incorporó un robot para dicho hospital. En relación con el edema, se produce por compresión con el bajalenguas, que al momento de soltarlo genera la rehidratación y produce el edema. Por eso dicen que no es una complicación, sino un evento esperado. La realidad es que, si el procedimiento se prolonga, lo ideal es aflojar el bajalenguas una hora de cirugía. Se debe seleccionar adecuadamente cada paciente: quienes tienen un Mallampati 3, una apertura pequeña, o una lengua muy grande (características frecuentes de pacientes con SAHOS) pueden presentar edema posoperatorio con más frecuencia. Cuando se produce el edema, lo recomendado es liberar el bajalenguas, sacamos la frente de la consola y, al instante, el robot está.
Introduction

Transoral robotic surgery (TORS) is an alternative to open surgery, CO₂ laser microsurgery, or chemoradiation.

The benefits of TORS have been demonstrated in T1-T2 stage cancers and in benign tumors. The method is widely used for treating oropharyngeal, supraglottic and hypopharyngeal cancer.

In 2006, O’Malley and Weinstein established the key components of the da Vinci surgical system:
• 1. Three-dimensional high-definition visualization, with up to 10 times magnification, provides surgeons with unparalleled precision.
• 2. EndoWrist® instrumentation provides surgeons with seven degrees of freedom (which reproduce wrist movements) for incomparable surgical dexterity and precision.
• 3. Intuitive motion maintains the surgeon’s movement or increases its intensity, replicating movements with precision as hand tremor is virtually suppressed.

This system allows surgeons to use the open surgical technique with a minimally invasive approach using natural orifices as the oral cavity and extend the benefits of TORS to more patients.

The aim of this new technique is to maintain or improve the chances of controlling cancer at the primary site of origin. The ideal technology would be the one with an approach with low morbidity while maintaining long-term function and cancer control.

The importance of evaluating quality of life in patients with head and neck cancer lies in the fact that there are currently different therapeutic alternatives that offer similar results in terms of survival and locoregional disease control. A better understanding of patients’ performance and well-being during or after treatment can be an important factor when choosing a treatment option. The multidimensional concept has become more important in recent decades in view of the need to better evaluate health outcomes.

Objectives

The aims of this study are to:
• Introduce a tool for head and neck surgery for the treatment of benign and malignant tumors and chronic conditions through a transoral approach.
• Communicate the initial experience with the use of robotic surgery for the transoral approach in the Department of Otolaryngology of the Hospital Italiano de Buenos Aires (HIBA).
• Evaluate respiratory and digestive functional preservation after TORS.
• Analyze the variables associated with shorter hospital length of stay.

Material and methods

We report the experience of the Department of Otolaryngology of the Hospital Italiano de Buenos Aires (HIBA). Twenty-four patients (13 women and 11 men) underwent TORS between March 2015 and March 2019; mean age was 55.08 years (16-82).

The patients were treated due to chronic inflammatory disease, and benign and malignant tumors. Sixteen patients underwent surgery due to tumors (four benign tumors and 12 cancers), seven had chronic inflammatory disease and one patient had obstructive sleep apnea syndrome (OSAS).

Twenty-two lesions were in the oropharynx, one in the hypopharynx and one in the parapharyngeal space (Table 1).

The eight patients with hypertrophic chronic inflammatory disorders corresponded to seven with bilateral involvement of the palatine and lingual tonsils causing OSAS.

Patients with benign tumors included one with pleomorphic adenoma of the tongue base, one with pleomorphic adenoma of the parapharyngeal space, one with palatine tonsil papilloma and one with vallecular cyst.

Twelve patients were treated for cancer: 11 had squamous cell carcinoma located in the tongue base (n = 6), tonsillar fossa (n = 3); posterior wall of oropharynx (n = 1) and pyriform sinus (n = 1). The remaining patient

Table 1
Distribution by lesion and anatomic site
Location
Tongue base;
Tonsillar fossa
Posterior wall
Tongue base-tonsillar fossa
Vallaca
Parapharyngeal space
Hypopharynx
presented lymphoma of the base of the tongue (single location) that recurred after chemotherapy.

All the patients with squamous cell carcinoma underwent selective or modified radical cervical lymph node resection two or three weeks before the transoral approach. During lymph node resection, the lingual, facial and ascending pharyngeal arteries were ligated to reduce the risk for intraoperative or immediate postoperative bleeding. In addition, lymph node resection before TORS prevents the eventual connection with the pharynx during the transoral procedure.

Flexible endoscopic evaluation of swallowing with sensory testing (FEESST) 2, 3 was performed 24-72 hours after the intervention in 14 of the 24 patients undergoing robotic transoral approach (58.3%) before initiating oral diet.

FEESST involves the passing of a flexible scope through the nose to the cavum (nasopharynx), obtaining direct visualization of the pharynx and larynx.

The examination includes assessment of velopharyngeal closure, symmetry of velar movement and a possible nasal regurgitation. The fiberscope is then placed at the level of the uvula to visually explore the configuration of the hypopharynx, the symmetry of the base of the tongue, the shape of the epiglottis, the morphology of the pyriform sinuses and the appearance and symmetry of the larynx. The evaluation is carried out in inspiration and phonation, to detect morphological and functional anomalies. In the postoperative period, FEESST can evaluate the resulting defect in the anatomy, the location of secretions and the ability to manage them. Then, swallowing is explored with boluses of food with increasing volumes (3, 5, 10, 15 and 20 cm³) and textures (soft, nectar, liquid and solid), observing the passage of food into the hypopharynx, the penetration and symptomatic or silent aspiration, and the patient’s ability to release the waste from the airway.

Laryngeal penetration is the passage of material into the laryngeal vestibule above the vocal folds. Aspiration is the passage of material into the laryngeal vestibule above the vocal folds. FEESST was performed to all the patients with cancer (50%, 12/24), mean hospital length of stay was 2.75 days (1-8 days): 66.7% (8/12) between one and two days, 16.7% (2/12) four days, 8.3% (1/12) seven days and the remaining 8.3% (1/12) eight days. In the four patients with benign tumors, length of stay ranged between one and three days.

The 12 patients treated due to cancer (50%, 12/24), mean hospital length of stay was 2.75 days (1-8 days): 66.7% (8/12) between one and two days, 16.7% (2/12) four days, 8.3% (1/12) seven days and the remaining 8.3% (1/12) eight days. The patient hospitalized for seven days had a history of cardiovascular disease and required admission to the intensive care unit (ICU) due to atrial fibrillation and cardiac arrest successfully recovered. The other patient had stage T2 carcinoma of the tongue with extension to the glosstonsillar sulcus that relapsed after chemotherapy. The resection included the tonsillar fossa. The patient remained hospitalized for seven days until full recovery of swallowing was achieved.

It should be noted that length of stay was not > two days in 83.3% of the patients while 16.7% were hospitalized between 4 and 8 days.

Nineteen patients (79.2%) were hospitalized in the general ward: 8 were operated on for chronic inflammatory diseases, three for benign tumors and eight for cancer.

Results

FEESST was performed in 58.4% (14/24) of the patients undergoing TORS between 24 and 72 hours following the procedure. Laryngeal penetration was observed in 14.4% (2/14) of the patients and a nasojejunal feeding tube was thus inserted and was in use between 7 and 10 days. Both patients were operated on for carcinoma of the tongue base; in one of them with extension to the lower pole of the palatine tonsil, resection involved the tonsillar fossa. In a third patient, a tube was inserted within the first 24 hours due to edema of the tongue. The feeding tube was used until postoperative day three and oral feeding was initiated when normal swallowing was evidenced by videoendoscopy.

Mean length of stay for the entire population (n = 24) undergoing TORS was 1.92 days (range: 1-8 days). In the eight patients with chronic inflammatory disease (33.3%) mean length of stay was one day. In the remaining 66.7% (16/24) with benign tumors and cancer, mean length of stay was 2.13 days (1-8 days). In the four patients with benign tumors, length of stay ranged between one and three days.

Place of postoperative care and condition	General ward (%)	Intensive Care Unit (%)	Intermediate Care Unit (%)	
Chronic inflammatory disease	8	100	-	
Benign tumor	4	75	25	
Cancer	12	66.7	16.5	16.65
The remaining five patients (20.8%) remained in intensive care unit or intermediate care unit: one was treated due to a benign tumor and four due to cancer (Table 2). The reasons for admission were postoperative edema of the tongue (n = 1), previous comorbidities (n = 2) and recovery from anesthesia (n = 2).

None of the patients required tracheostomy. Healing of the surgical bed occurred by secondary intention, without the need for reconstructive procedures.

There were no intraoperative or postoperative complications. Two patients developed tongue edema that resolved with medical treatment after 48 hours.

Discussion

The past few decades have been characterized by significant progress in head and neck surgery and otolaryngology, with a focus on the concept of organ preservation.

Traditionally, open surgical approaches used for orolaryngeal, hypolaryngeal and supraglottic tumors involved transmandibular or transpharyngeal approaches with significant morbidity in some patients (increased intraoperative bleeding, osteonecrosis, malocclusion, swallowing disorders) and prolonged hospitalization.

In addition, pharyngotomy provides limited access, and inadequate visualization of the oropharynx can compromise cancer outcome. Some studies with patients undergoing surgery through transpharyngeal access showed better oncological and functional results compared to the transmandibular approach.

The development of minimally invasive surgery falls within the recent history of surgery and has experienced significant development and expansion since the eighties.

Minimally invasive approaches are replacing open surgery, favoring organ preservation and function and thus reducing morbidity in head and neck diseases.

This concept, together with the understanding of the biological differences in oropharyngeal squamous cell carcinoma, with or without viral association, produced a radical change in most therapeutic interventions.

Transoral endoscopic surgery for head and neck lesions involves a challenge related to illumination of the surgical field, blood vessel control, and tissue manipulation and resection.

Transoral CO₂ laser microsurgery or transoral robotic surgery are associated with a low rate of postoperative complications, lower hospital length of stay and rapid functional recovery than open surgery. These techniques offer disease and functional organ preservation, with a reduction in treatment costs.

Transoral laser surgery was pioneered by Steiner in 1984 for the treatment of early-stage laryngeal cancer and was then applied to the removal of tumors of the upper aero-digestive tract. Initially, this technique was criticized because of tumor fragmentation, but was finally accepted based on the oncological results obtained, which were comparable to other procedures.

The problem associated with the use of laser is related to the straight line of sight offered by the microscope used for transoral surgery and to occasional carbonization, which could hinder the accuracy of the histological examination.

Transoral robotic surgery overcomes many limitations of laser surgery and further expands the option of minimally invasive surgery. O'Malley and Weinstein remarked the importance of three-dimensional visualization of the mouth and oropharynx, which allows successful surgical resections with negative margins using robotic instruments.

In addition, carbon dioxide and thulium laser were incorporated to the da Vinci system. Transoral robotic surgery continues to evolve and advance, with new systems and applications. Flexible robotic systems with smaller instruments allow the approach through a single, narrower and more curved cannula.

The result allows surgeons to use the open surgical technique in a minimally invasive approach, extending the benefits of TORS to more patients.

We agree with the mentioned papers that the introduction of transoral robotic surgery allows a better visualization of the lesion to treat and the preservation of healthy tissues reducing postoperative morbidity. This paper does not consider tumor HPV status (+ or -) to analyze the results; this information will be included in a future publication by the authors.

Tumor resection through a natural orifice with negative margins and avoiding a neck incision allows healing of the surgical bed by secondary intention, without the risk of orocutaneous or pharyngocutaneous fistulas. In the present series, the simplification of the intervention without need for corrective/reconstructive procedures for selected cases allowed rapid functional and general recovery with minimal pain. In consequence, hospital length of stay was short, one day for 70.8% of the patients.

In a retrospective analysis of the nationwide inpatient sample of the United States, Chung et al. reported that of 523 patients undergoing transoral robotic pharyngectomies between 2008 and 2011, hospital length of stay was shorter compared to those operated on by open surgery (3.7 vs. 5.2 days). In a multicenter study conducted by Weinstein et al. in 2012, mean length of stay of 177 patients operated on...
in three different institution in the United States was 4.2 days. In the series presented, mean hospital length of stay was 1.92 days for all patients, and 2.75 days for those with cancer. In line with the above-mentioned authors, hospital length of stay was higher in patients with previous comorbidities or when larger tumors were resected.

As O’Malley and Weinstein 18 recommended, patients with previous comorbidities (4/24) or significant tongue edema (1/24) were admitted to intensive care or intermediate care units. The availability of a post-anesthesia care unit attached to operating room suites allows close monitoring of patients after surgery, while only a few patients will be admitted to intensive or intermediate care units.

The complications associated with TORS are rare 19 and include: postoperative bleeding, infections, postoperative airway edema requiring tracheostomy, nasopharyngeal incompetence with rhinolalia and nasal regurgitation, aspiration and trauma provoked by the instruments used.

Postoperative bleeding is the most threatening complication19-28. The incidence of postoperative bleeding after transoral robotic surgery is variable in meta-analyses and systematic reviews, ranging from 0 to 9% for Yeh et al.29, or 18.5% for Aubry et al. Chia et al.30, reported an incidence of postoperative bleeding of 3.1% after TORS. In the series presented, none of the patients presented immediate or late postoperative bleeding or procedure-related complications.

Tongue edema developed in two patients is an expected event and not a complication of surgery.

The need to perform a tracheostomy for intraoperative ventilation or postoperative management of the patient varied from 1% in the review by Chung31 with 523 patients, to 14.8% in a case series of 906 patients by Pollei32. In our series, none of the patients required tracheostomy, probably since most patients had T1-T2 oropharyngeal cancer. We did not perform TORS to any patient with supraglottic tumor.

Surgery of the aero-digestive carrefour can cause an immediate post-operative swallowing disorder, with penetration of food into the airway and bronchopulmonary involvement secondary to aspiration.

For some authors19,20 TORS was associated with swallowing disorders and occasionally required gastrostomy, a situation that was not observed in our series, as only two patients required a feeding tube for enteral nutrition. The presence of aspiration or penetration can be early detected when FEESST is performed on the first postoperative day, establishing the appropriate measures for safe swallowing. In these cases, the speech therapist specialized in swallowing disorders supervises the compensatory maneuvers and exercises to restore function.

Conclusions

Transoral robotic surgery favors the removal of tumors or chronic conditions, decreasing the morbidity associated with other treatments and hospital length of stay.

Minimally invasive techniques allow maximum preservation of healthy tissue and decrease postoperative edema, the use of flaps for surgical bed repair and the need for temporary tracheostomy.

Flexible endoscopic evaluation of swallowing facilitated the early restoration of safe swallowing function.

The main limitation of our study is the sample size. It is important to increase the number of patients treated by this technique in order to analyze the oncological outcomes and quality of life.

Discussion at the Argentine Academy of Surgery

Pedro A. Sacco: I think that the contribution of the authors with this technique, with this tool, is very important, which in the last years is considered very useful in head and neck surgery. With regard to malignant tumors, which in the authors’ series were almost half of the patients treated, perhaps the most important advantage is to offer a unimodal treatment: a single treatment tool, especially in oropharyngeal tumors, to avoid typical consequences or complications of bimodal treatments, such as combinations of chemoradiotherapy. This applies in case one can perform resections with negative margins, without perineural invasion, lymph node involvement or extranodal invasion. That is why I would like to ask the authors first, about the T stage of the tumors they treated, because, in general, the best advantages are obtained with rather small tumors that do not require reconstruction; and second, about the surgical margins. Because in the paper I don’t see they have mentioned the state of the margins and whether they had patients who needed postoperative radiotherapy, because the advantage of a unimodal treatment is lost when you have to add another treatment. I would also like to ask why it is necessary to perform neck dissection two or three weeks before robotic resection, if both surgeries can be performed simultaneously, as we do in the case of laser resection. Thank you very much.

Eduardo Busto: Thank you for the questions. In response to tumor staging, we treated patients with T1 or T2 tumors. It was not the aim of the study presented, and even the outcome was not considered, because the sample is small, and the period of time is not long enough to evaluate the oncological treatment. I would first like to mention that the FDA (of the United States) approved the use of the robotic system in 2009, exclusively for T1 and T2 tumors. As further experience was acquired in the technique, the group from
the University of Pennsylvania with Weinstein and O’Malley are even operating T4A tumors with the robotic system. In the series presented, we only operated T1 and T2 tumors. We are making our initial experience, so at this stage we are not considering using this new tool for advanced tumors. Regarding surgical margins, this was not the aim of this work either, with a population limited to 12 patients with malignant tumors. We will be able to evaluate this variable when the number of patients treated has increased.

I would like to emphasize that the oncological rule of en bloc resection is fulfilled with the robotic technique; during surgery we can see the limits of the tumor and give it the necessary margin, because we see it as if we were sitting inside the patient, with three-dimensional magnified vision. The use of magnification allows differentiating between healthy tissue and tumor tissue. We paint the base of the tumor with the same color used to mark the edges of the specimen. We analyze the margins with the pathologist in order to extend the resection at that very moment in case of a positive or close margin. We do not advocate radiotherapy in case of a close or positive margin.

Most meta-analyses state that all the benefits of robotic surgery are lost when the patient has a positive margin and must be treated with some other non-surgical method. The incidence of positive margin in TORS is 16.7%, which seems to be high, but much lower than that published in the meta-analyses with non-robotic surgery, in which Lee et al. reported 30% of positive margins and Zevallos et al., in the United States, 28.3%. In other words, the percentage of negative margins obtained with TORS is higher than with other surgical methods, whether open or transoral laser surgery.

Which is the reason to perform neck dissection before? This strategy was pioneered by G. Weinstein in the University of Pennsylvania. Initially, previous ligation (performed during neck resection) of the facial, lingual and ascending pharyngeal arteries was considered safer to prevent immediate intraoperative or postoperative bleeding.

In tumors extending into the parapharyngeal space, neck resection in the same operation would increase the risk for fistula or require pharyngeal reconstruction in the same surgical procedure. Nowadays, Weinstein is performing neck resection and transoral surgery for T4A tumors (avoiding mandibulotomy) with placement of a revascularized free flap in the same surgical act. In this initial experience we continued to perform neck resection two weeks before, to control the vascular pedicles. The lingual artery is observed during TORS; as the number of operations performed increases, it is possible to identify it when it is still covered by a thin layer of tissue, which warns the assistant, who will place the vascular clips (not less than 5 on each side), to section the vessel with the monopolar scalpel.

Manuel R. Montesinos: It is obviously an important and very useful tool. It is welcome that the work is read here at the Academia, I believe that it is the first report made in Argentina on this subject, and it will surely continue developing over time. Probably, the low rate of complications has also been the result of a careful choice of cases because, as in any initial technique, one takes great care of the cases. When one feels more confident, one chooses a case with a more advanced stage and that is when the complications begin to appear, as in other more numerous series. The truth is that most of the questions have been answered before by Dr. Gonzalez Aguilier and Dr. Saco’s question.

Two questions: how long does the surgery take and how much does it cost? Because you have to consider that the robotic system must be used within an institution for many more procedures besides the transoral treatment, otherwise it would not be profitable. And the last question, which you have already answered, is where were you trained, and how much time was your training necessary to be able to do this with confidence? Thank you very much.

Eduardo Busto: Thank you for the question. Operative time is measured in our institution. The anesthesia record is recorded in the electronic medical record. This allows us to know exactly when the patient enters, when anesthesia begins, when the surgery begins, when the surgery ends, the anesthesia, and when the patient leaves. It is very interesting to see, at the beginning of the learning curve, how difficult it is to position the robotic system in the patient’s place, setting the correct location of the arms. In the first patient who had a tonsillectomy for benign hypertrophy, the surgery lasted 6 hours. On the same day for the second surgery, exactly the same procedure was performed in 3 hours, that is, the mere fact of placing the robotic system next to the patient took less time decreased the surgical time. As the number of patients increases, the operative time decreases.

Training is still on debate in many countries. Who should regulate the surgeon’s training? We believe that there must be a national authority that, together with the society of the corresponding specialty, advises and regulates how this training is carried out. When a new technology such as robotics appears, there is no state agency regulating training in any part of the world. Training in the United States was accepted based on a model proposed by Intuitive, the company that developed or bought the da Vinci® system and commercialized it worldwide.

The first step is online training, which most of us who were trained in TORS have experienced, which seemed completely useless, and I think that if we could transfer this to all the surgical gestures of our profession it would be much safer to apply to our patients, eliminating the other experimental models (laboratory animals). That software that allows us to work on the computer improves our manual skills. The robot has a backpack, with a software that allows us to mimic the same gestures performed in surgery, and we are watching them on the monitor or on the screen of the surgeon’s console, and at the end of each exercise the mistakes appear, how long it took us, how much time we lost in clipping a vessel and so on. This online phase is followed by observation of recorded surgeries. The next step is observation in the operating room. Training continues with practice with experimental animals using the robot on the live model, generally on pigs. Then, training continues with cadaveric models at the University of Pennsylvania, and we continued to perform neck resection at the end of each exercise. In the first patient who had a neck resection we continued with live surgeries. In the same week, once training in the United States was over, we returned to Argentina, and we had scheduled surgeries in our institution, guided by a proctor proposed by Intuitive, who observed and helped us in the surgeries. In our case, we operated eight patients in three days, acquiring the necessary skills to continue with the TORS project. It is an interesting sequential training method that starts with an online process and ends with surgery.

Costs are very high as the robotic system costs about two and a half million dollars. Maintenance costs a hundred thousand dollars a year. So, if only head and neck surgeries will be performed, which is less than 2% of all surgeries, the cost would be so high that it would not be justified. Costs are shared, mainly with urology, gynecology, some general surgery interventions and transoral robotic surgery. But the utilization rate for TORS is always among the lowest. Most interventions are performed by urologists or gynecologists. Costs per surgery decrease as more surgical specialties can use the system. Our health care system is special; however, countries like Belgium, which has a very small population and where costs are covered by the State, have many robotic systems in operation. The University of Namur in Belgium calculated that laser surgery costs 3460 euros on average with a range between 3000 and 3600, and transoral robotic surgery almost 5600 euros, between 4000 and 6000 euros. Weinstein, perhaps with a bias, says that
they cost only 200 euros per patient because it is the use of the instruments. In our institution, for each low complexity procedure, the cost is about $200,000 to compensate for the equipment expenses.

With respect to benign tumors, in the area of otolaryngology we also treat patients with obstructive sleep apnea/hypopnea syndrome with hypertrophy of the oropharynx, and these patients benefit from these surgical treatments; we have categorized this condition as a chronic inflammatory disease. H. Pablo Curutchet: A very brief comment because you have already said everything that needed to be said. Congratulations to you, Dr. Busto, because it is really a very interesting work and denotes the initiative and merit to introduce advanced technology in our country. Obviously, anyone who has ever handled a robotic system, either experimentally or in live surgery, realizes that it is an instrument with a completely different operation from that of a surgeon. Three-dimensional visualization is extraordinary, the possibility to turn a full 360 degrees is perfect, reaching the hidden spots (Subepithelial larynx). The Da Vinci system has the ability to hold the camera and the other two hold the monopolar instruments (5 millimeters) are very large. In the SP, the instrument is considerably smaller and allows surgery on the entire larynx, beyond the total or partial laryngectomies that can also be performed transorally.

Marcelo F. Figari: I would like to acknowledge to Dr. Busto and Dr. Patrucco the importance of this presentation which, although it is a continuation of the series previously presented, is the most relevant and unique at a national level. You have very good results, certainly in relation to the very careful selection criteria. I considered the experience compared to the international series, both in terms of function and complications. The technique become a gold standard not only for benign conditions (such as sleep apnea) but also for small oropharyngeal tumors.

I agree that this approach will gradually become more common as technology advances and robotic systems become cheaper. Particularly in transoral surgery, there is no doubt that avoiding the morbidity of a transmandibular or transmandibular approach that can has us to visualize complex anatomical structures intraoperatively much better than with our eyes. In other words, I believe that this technique has come to stay and, as it continues to evolve and minimize the problem of cost, it will be a tool initially indicated in small tumors or in organs where greater surgical precision is required. I understand that surgery is being attempted for intraoral T4a stage tumors, perhaps with too much technical ambition for the time being. As long as there is no experience and more technological development, it will be possibly indicated, as endoscopic resection of the tumor is very safe and allows us more accurate appreciation of the peritumoral reaction margins, resection of inadequate margins and preservation of vascular or nerve structures despite radical resection. Another aspect is its introduction for the treatment of benign conditions, especially in sleep apnea, where it has been demonstrated to be most useful. Weinstein’s studies show a large percentage of cases with this condition successfully treated with an anatomically controlled resection of the tongue base hypertrophy or peritonsillar hypertrophy. I do not have much more to say, other than to congratulate you and reaffirm that, in surgery, one must never say that something cannot be done or that it seems to be an unrealistic fantasy. We have witnessed many things that we initially denied, and the evidence and the future of surgery have shown us that they were not only very useful but that they have surpassed all expectations. Congratulations to you, Dr. Busto, because it is really a very interesting work and denotes the initiative and merit to introduce advanced technology in our country. Obviously, anyone who has ever handled a robotic system, either experimentally or in live surgery, realizes that it is an instrument with a completely different operation from that of a surgeon.

Dr. Busto, the experience at...
would be interested to know your opinion on this latter point, if it is simpler.

Eduardo Busto: When we indicate a surgical procedure, we should think not only from the surgeon's point of view, but from the real possibilities of the patient. A request to perform TORS may result in an appeal for legal protection granted by a judge, and the patient will undergo surgery because it is ordered by the judge. After treatment, that patient must go through a legal process with their health care system.

As surgeons who are used to operate in direct contact with the patient, with this new procedure we must assume that we are two or three meters away from the operating table, and we do not even wear gloves. We won't be able to touch the tumor with our fingers, feel the heartbeat of an artery, or “separate with one hand”.

We are seated, very comfortable; when we want to stop the surgery, we take the forehead off the console and, instantly, the robot freezes; if it is holding an artery, it will not release it. The robot obeys; it is not really a robot either, but a “surgeon-slave” where the robot does what the surgeon is telling it to do in real time.

It may happen that if the assistant, who is in contact with the patient, has to apply a vessel clip and is not trained, then we have to get up, leave the console, approach the patient, put on the gloves and apply the clip. It is also possible to be necessary to convert the procedure into open surgery; this did not happen to us, but some cases have been reported. The robotic system is only a tool, and the surgeon cannot be just the operator of the robotic system. Deep knowledge of surgery, oncology, oncological surgery, head and neck surgery are required, and the robotic system should be used when it is considered the best tool for that particular case. It is technically very interesting, I think it is the future for many surgeries, we just need to be able to accept it in our minds, and our country needs an adequate economic situation for its incorporation, not just in one or two hospitals according to the requirements of the health center. Dr. Patrucco is now working at the Hospital Churruca where the Ministry of Security incorporated a robotic system.

Tongue edema is produced by compression with the tongue depressor, which when released generates rehydration and produces edema. Therefore, it is considered an expected event and not a complication. If the procedure is prolonged, the ideal situation is to release the tongue depressor every hour during surgery.

Each patient should be properly selected: those with a Mallampati score 3, a small opening, or a very large tongue (common characteristics of patients with OSAS) may present postoperative edema more frequently. In case of edema, the patient should be transferred with the orotracheal tube to the intensive care unit for 24 hours, where it usually resolves. In the series presented with very selected cases, we had less tongue edema.

Osvaldo Gonzalez Aguilar: Indeed, the aim of this presentation was to stimulate this debate, which has been very enriching. I must say that this has been a productive afternoon, Mr. President, listening to this work and, above all, because of the debate that has taken place. From my point of view, this work places the Hospital Italiano de Buenos Aires at the head of the procedure and Dr. Busto as its pioneer. While you were talking, I recalled Jorge de Decoud’s work, when he presented the first 100 laparoscopic cholecystectomies at this Academia. We were all surprised and did not believe in that; however, today there is no patient who is not operated by laparoscopy.

So, thank you very much for allowing me to describe this work.

Alfredo P. Fernández Martí: I believe this afternoon has been a productive for all of us. We are grateful to Dr. Busto and Dr. Patrucco for presenting this novel study.

Referencias bibliográficas

1. O’Malley Jr BW, Weinstein GS, Hockstein NG, et al. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope. 2006;116:1465-72.

2. Aviv JE, Martin JH, Keen MS, Debell M, Blitzer A. Air-pulse quantification of supraglottic and pharyngeal sensation: a new technique. Ann Otol Rhinol Laryngol. 1993;102:777-80.

3. Langmore SE, Kenneth SMA, Olsen N. Fiberoptic endoscopic examination of swallowing safety. A new procedure. Dysphagia. 1988;2:216-9. https://doi.org/10.1007/BF02414429.

4. Agrawal A, Wenig BL. Resection of cancer of the tongue base and tonsil via the transhyoid approach. Laryngoscope. 2000;110(11):1802-6. https://doi.org/10.1097/00005537-200011000-00005.

5. Weinberg GS, O’Malley BS, Desai SC, Quon H. Transoral robotic surgery: does the ends justify the means? Curr Opin Otolaryngol Head and Neck Surg. 2009;17:126-31.

6. Masterson S, Sorgeloos F, Winder D, Lechner M, Blitzer A. Deregulation of SYCP2 predicts early stage HPV+ oropharyngeal carcinoma - a prospective whole transcriptome analysis. Cancer Sci. 2015;106(11):1568-75.

7. Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marit SJ, et al. Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res. 2007; 67:4605-15.

8. Slebos RJ, Yi E, Ely K, Carter J, Evjen A, Zhang X, et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Cancer Res. 2006;66(3):701-9.

9. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, Pinto H, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100(4):261-9.

10. Haughen SR, Hinmi ML, Salassa JR, Hayden RE, Grant DG, Rich JT, et al. Transoral laser microsurgery as primary treatment for advanced stage oropharyngeal cancer: a United States Multicentre Study. Head and Neck. 2011; 33 (12):1683-94. [DOI: 10.1002/ hed.21669]

11. Moore EJ, Olsen KD, Kasperbauer JL. Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasibility and functional outcomes. Laryngoscope. 2009;119:2156-64.

12. Steiner W. Endoscopic therapy for early laryngeal cancer. Indications and results. In: Wigmund ME, Steiner W, StellPM (eds). Functional partial laryngectomy. Berlin, Heidelberg, New York: Springer; 1984. Pp. 253-64.

13. Holsinger FC, Ferris RL. Transoral endoscopic head and neck surgery and its role within the multidisciplinary treatment paradigm of oropharynx cancer: robotics, lasers and clinical trials. J Clin Oncol. 2015; 33(29):3285-92.

14. Grant DG, Salassa JR, Hinmi ML, Pearson BW, Perry WC. Carcinoma of the tongue base treated by transoral laser microsurgery, part one: untreated tumors, a prospective analysis of oncologic and functional outcomes. Laryngoscope. 2006; 116(12):2150-5. https://doi.org/10.1097/01.mlg.0000244159.64179.fo.

15. Solares CA, Strome M. Transoral robotic-assisted CO2 laser supraglottic laryngectomy: experimental and clinical data. Laryngoscope. 2007;117:817-20.;

16. Remacle M, Prasad MN, Lawson G, Plisson L, Bachy V, Van der Vorst S. Transoral robotic surgery (TORS) with the Medrobotics FlexTM System: first surgical application on humans. Eur Arch Otorhinolaryngol. 2015; 272(6):1451-5. https://doi.org/10.1007/s00405-015-3532-x.

17. Schuler PJ, Duvvuri U, Friedrich DT, Rotter N, Scheithauer MO, Hoffmann TK. First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope. 2015;125(3):645-8. https://doi.org/10.1002/lary.24957.

18. Genden EM, O’Malley BW Jr, Weinstein GS, Stucken CL, Selber JC, Rinaldo A, et al. Transoral robotic surgery: role in the management of upper aerodigestive tract tumors. Head and Neck. 2012;34(6):886-93.

19. Chung TK, Rosenthal EL, Magnuson JS, Carroll WR. Transoral
Robotic Surgery for Oropharyngeal and Tongue Cancer in the United States. Laryngoscope. 2015; 125(1):140-5. doi:10.1002/lary.24870.

20. Weinstein GS, O’Malley Jr BW, Magnuson JS, Carroll WR, Olsen KD, Daio L, et al. Transoral Robotic Surgery: A Multicenter Study to Assess Feasibility, Safety, and Surgical Margins. Laryngoscope. 2012;122:1701-7.

21. Moore EJ, Olsen KD, Kasperbauer JL. Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasibility and functional outcomes. Laryngoscope. 2009;119(11):2156-64. [DOI: 10.1002/lary.20647].

22. Pollei TR, Hinni ML, Moore EJ, et al. Analysis of postoperative bleeding and risk factors in transoral surgery of the oropharynx. JAMA Otolaryngol Head Neck Surg. 2013;139(11):1212-8. https://doi.org/10.1001/jamaoto.2013.5097.

23. De Almeida JR, Byrd JK, Wu R, Stucken CL, Duyyuri U, Goldstein DP, et al. A systematic review of transoral robotic surgery and radiotherapy for early oropharynx cancer: a systematic review. Laryngoscope. 2014;124(9):2096-102. doi: 10.1002/lary.24712.

24. Asher SA, et al. Hemorrhage after transoral robotic-assisted surgery. Otolaryngol Head Neck Surg. 2013; 149(1):112-7. [PubMed: 23585156].

25. Mandal R, et al. Analysis of post-transoral robotic-assisted surgery hemorrhage: Frequency, outcomes, and prevention. Head and Neck. 2016; 38(Suppl 1):E776–82. [PubMed: 25916790].

26. Aubry K, et al. Morbidity and mortality review of the French group of transoral robotic surgery: a multicentric study. J Robot Surg. 2016;10(1):63-7. [PubMed: 26559537].

27. Hay A, Migliacci J, Karassawa Zanoni D, Boyleb JO, Singh B, RJ, Patel SG, and Ganly I. Hemorrhage following Transoral Robotic Surgery (TORS). Clin Otalaryngol. 2018;43(2): 638-44. doi:10.1111/coa.13041.

28. Ibrahim AS, Civantos FJ, Leibowitz JM, et al. Meta-analysis comparing outcomes of different transoral surgical modalities in management of oropharyngeal carcinoma. Head and Neck. 2019;1–11. https://doi.org/10.1002/hed.25647.

29. Yeh DH, et al., Transoral robotic surgery vs. radiotherapy for management of oropharyngeal squamous cell carcinoma. A systematic review of the literature, Eur Surg Oncol , 2015;41(12):1603-14. http://dx.doi.org/10.1016/j.ejso.2015.09.007.

30. Chia SH, Gross ND, Richmon JD. Surgeon experience and complications with Transoral Robotic Surgery (TORS). Otolaryngol Head Neck Surg. 2013; 14.