Supersingularity of Motives with Complex Multiplication and a Twisted Polarization

ASVIN G*†

Let \(X \) be a smooth, projective variety over a finite field \(\mathbb{F}_q \). We say that its crystalline cohomology \(H^i_{\text{cris}}(X)/W(\mathbb{F}_q) \) is supersingular if all the eigenvalues for the action of the Frobenius \(\sigma_q \) on it are of the form \(q^{i/2} \zeta \) for \(\zeta \) a root of unity. In this note, we prove a criteria for supersingularity when the variety has a large automorphism group and a perfect bilinear pairing. This criteria unifies and extends many known results on the supersingularity of curves and varieties and in particular, applies to a large family of Artin-Schreier curves.

1 introduction

Informally, a smooth projective variety \(X/\mathbb{F}_q \) is said to be supersingular if for each \(i \), the Newton slopes of the motive \(H^i(X) \) are all equal to \(i/2 \). There are many (equivalent) ways of making this definition precise and in the case of Abelian varieties (and K3 surfaces), it is a well studied notion. For the purposes of this article, we will use the slightly non standard definition:

Definition 1. A smooth, projective variety \(X/\mathbb{F}_q \) is said to be supersingular in degree \(i \) if the eigenvalues of the Frobenius \(\sigma_q \) on the crystalline cohomology \(H^i_{\text{cris}}(X)/W(\mathbb{F}_q) \) are of the form \(q^{i/2} \zeta \) for \(\zeta \) a root of unity. We say \(X \) is supersingular if it is supersingular in every degree \(i \).

In this paper, we consider varieties \(X \) with a large automorphism group \(G \) so that \(H^i_{\text{ét}}(X, \mathbb{Q}_\ell) \) is a quotient of \(\mathbb{Q}_\ell[G] \) as \(G \) modules compatible with the Frobenius action ("complex multiplication") and an equivariant inner product

\[
H^i_{\text{ét}}(X, \mathbb{Q}_\ell) \otimes H^i_{\text{ét}}(X, \mathbb{Q}_\ell) \to \mathbb{Q}_\ell(-d).
\]

Theorem 1. If \(H^i_{\text{ét}}(X, \mathbb{Q}_\ell) \) is self-dual, i.e., for any character \(\chi \) of \(G \), the \(\chi^{-1} \)-isotypic eigenspace of \(H^i_{\text{ét}}(X, \mathbb{Q}_\ell) \) is in the Frobenius orbit of the \(\chi \)-isotypic eigenspace, then \(X \) is supersingular in degree \(i \). The converse is also true if \(d = 1 \).

The proof is elementary and it generalizes and unifies many old results proven by disparate methods. Some examples of this theorem are as follows. In each case \(n \) is a positive integer co-prime to the characteristic \(p \). An interesting feature of the proof is that while supersingularity is invariant under extending the base field, our necessity criterion is not. Therefore, the minimal field of definition of \(X \) becomes important for this direction.

* Department of Mathematics, University of Wisconsin, Madison.
† Email: gasvinseeker94@gmail.com
1. **Fermat varieties:** Hypersurfaces of dimension d defined by

$$F_{n,d} : X_0^n + \cdots + X_{d+1}^n = 0.$$

In this case, much is known by the results of Shioda [SK79] and our methods offer an alternate proof of some of their results. For Fermat Curves in particular ($d = 1$), we prove that $F_{n,1}$ is supersingular in characteristic p if and only if there exists some $s \geq 1$ such that $p^s \equiv -1 \pmod{n}$. In higher dimensions, we prove that the condition is sufficient while [SK79] also proves necessity. This also implies the supersingularity of quotients such as the Hurwitz curves [DFL+19] and superelliptic curves since they are quotients of Fermat curves.

2. **Abelian varieties with CM by a cyclotomic field:** Let A_n / \mathbb{F}_q be an abelian variety with $\mu_n \subset \text{End}_{\mathbb{F}_q}(A_n)$ and $\dim A_n \leq n$. For instance A could be the reduction of an abelian variety in characteristic zero with CM by $\mathbb{Q}(\mu_n)$. In this case, we prove that A_n is supersingular if there exists a $s \geq 1$ such that $q^s \equiv -1 \pmod{n}$. If moreover q is a prime, i.e., the field of moduli is a prime field then the converse is also true. This is a special case of a known fact (Remark 1) although the method of proof is completely different.

3. **Artin-Schreier curves:** Let $C_{q,n}$ be the (smooth, projective models corresponding to the) degree n cyclic covers of \mathbb{P}^1 defined by the equation

$$y^q - y = x^n \text{ over } \mathbb{F}_p.$$

We prove that $C_{q,n}$ is supersingular if there exists $s \geq 1$ such that $p^s \equiv -1 \pmod{n}$. We suspect that the converse is also true but cannot prove it. This result in this generality is new to our knowledge although much is known about this question. Most notably, [Bla12] characterizes completely the $f(x)$ such that $y^p - y = f(x)$ is supersingular and our result (with $q = p$) is Corollary 3.7, (iii) of that paper. This proof is by an explicit examination of the p-adic valuations of the Gauss sums that appear as eigenvalues of the Frobenius in this case. By different methods, [VdGVdV92, Theorem 13.7] proves that $y^p - y = xR(x)$ is supersingular if $R(x)$ is an additive polynomial. This recovers the case $q = p, n = p + 1$ of our theorem. Notably, the proofs in both these preceding results are significantly more complicated than ours.

This result should also be contrasted with the main theorem of [IS91]. They show that the Jacobian of the smooth projective curve corresponding to the equation

$$y^p - y = f(x)$$

is superspecial, i.e., isomorphic to a product of supersingular elliptic curves exactly when $f(x) = x^n$ with $n|p + 1$. This is a strictly stronger condition than being supersingular, i.e., isogenous to a product of supersingular elliptic curves and the two results together produce a large family of Jacobian varieties that are supersingular but not superspecial.

As some motivation for considering supersingularity:

- Suppose q is a square. Then, supersingular curves are exactly the maximizers/minimizers of $|C(\mathbb{F}_q)|$ as C ranges over all smooth, projective curves of genus g by [GT07, Theorem 2.1].
- Supersingular abelian varieties are isogenous to a product of supersingular elliptic curves (over \mathbb{F}_q) by Honda-Tate theory.

1 Over a finite field, the field of moduli coincides with the field of definition.
• If the cycle class map is surjective, then X is supersingular in degree $2i$ and the converse is true if the Tate conjecture is true for the degree $2i$ cohomology.

• The Tate conjecture is known for supersingular $K3$ surfaces over a finite field (and indeed, the supersingular case is the hardest among all $K3$ surfaces) due to a series of papers by Charles, Kim, Madapusi Pera, and Maulik ([Cha13], [KP15], [MP15], [Mau14]). For a nice survey, see [Tot17]. In particular, supersingular $K3$ surfaces have Picard rank 22, the maximal possible.

• A conjecture due to Artin, Rudakov, Shafarevich and Shioda asserts that a $K3$ surface is supersingular if and only if it is unirational. Little is known about this conjecture [BL19, Section 1.2] except for Fermat surfaces and $K3$ surfaces with low Artin height.

• Fermat varieties

$$X^n_0 + \cdots + X^n_{2r+1} = 0$$

of even dimension $2r$ are unirational if they are supersingular and the converse is true for $r = 1$ and $m \geq 4$ by [SK79].

Acknowledgments. I would like to thank Rachel Pries for discussions about the paper and references in the literature.

2 Preliminary Definitions

We establish notation and definitions first. We will fix two distinct primes p, ℓ throughout and a prime power $q = p^r$ for some $r \geq 1$. We also fix a finite abelian group G (of size n) throughout. All objects considered in this paper come equipped with a “Frobenius” action σ_q. For varieties over \mathbb{F}_q, σ_q is the usual geometric Frobenius. For the group G, we denote the action by $g \to g^q$.

We will let R be either an extension of \mathbb{Q}_l or the Witt vectors \mathbb{Z}_q of a finite field \mathbb{F}_q. In the first case, σ_q acts trivially while in the second case, σ_q is the functorial lift of the Frobenius.

For us M will denote a finite free R-moduleootnote{When R is an extension of \mathbb{Z}_p, we will sometimes use W instead of M.} with an action of G and a semilinear action of σ_q, i.e.,

$$\sigma_q(rm) = \sigma_q(r)\sigma_q(m) \text{ for any } r \in R[G].$$

We define $\overline{M} = M \otimes_R \overline{R}$ and denote the eigenspace corresponding to the character χ by

$$M(\chi) := \{m \in M : g(m) = \chi(g)m\}.$$

The action of σ_q permutes the characters $\chi : G \to R(\mu_n)$ by

$$\chi \to \chi^{\sigma_q} := \chi \circ \sigma_q^{-1} : G \to R(\mu_n).$$

We will abuse notation and also denote by χ the linear extension

$$\chi : R[G] \to \overline{R},$$

$$\sum_{h \in H} a_h[h] \to \sum_{h \in H} a_h \chi(h).$$

When R is an extension of \mathbb{Z}_p, we assume further that n is co-prime to p and in either case, define the isotypic projections

$$\pi_\chi = \frac{1}{n} \sum_{h \in G} \chi^{-1}(h)h \in R(\mu_n)[G].$$

Note that $\sigma_q \circ \pi_\chi = \pi_\chi \sigma_q$. Finally, we denote by $R(-d)$ the one dimensional free module over R with G acting trivially and the action of σ_q twisted by q^d, i.e., $\sigma_q(m) = q^d$ for m some generator of $R(-d)$.

In this paper, we consider finite free modules M as above with the following three additional structures associated to it.
• The group G acts on it so that there exists a G-equivariant surjection $R[G] \to M$. Equivalently, every character of G appears at most once in M. We fix such a surjection and let m be the image of $1 \in R[G]$ and further define $m_\chi = \pi_\chi(m).

• By the above assumption, we can pick $a \in R[G]$ such that $\sigma_\chi(m) = am$. We observe here that σ_χ maps $M(\chi) \to M(\chi^d)$:

$$g \sigma_\chi(m_\chi) = \sigma_\chi \circ g_\sigma^{-1}(m_\chi) = \chi(g_\sigma^{-1})\sigma_\chi(m) = \chi^{\sigma_\chi}(g)\sigma_\chi(m_\chi).$$

Moreover,

$$\sigma_\chi(m_\chi) = \sigma_\chi \circ \pi_\chi(m) = \pi_{\chi^d} \circ \sigma_\chi(m) = \chi^{\sigma_\chi}(a)m_{\chi^d}. \quad (1)$$

• There is a G, σ_χ equivariant perfect pairing

$$\langle -,-\rangle : M \otimes_R M \to R(-d).$$

For two characters η, ρ of G and $g \in G$, we see that

$$g(m_\eta, m_\rho) = (gm_\eta, gm_\rho) = \eta(g)\rho(g)(m_\eta, m_\rho).$$

Since G acts trivially on $R(-d)$, $\langle m_\eta, m_\rho \rangle = 0$ unless $\rho = \eta^{-1}$. Since the pairing is perfect, this shows that for every character χ of G appearing in M, χ^{-1} also occurs in M and $\langle m_\chi, m_{\chi^{-1}} \rangle \neq 0$.

Definition 2. For M as above, we say that it is supersingular if all the eigenvalues of σ_χ (considered as a vector space over \mathbb{Z}_p or \mathbb{Q}_l) are of the form $q^e\zeta$ for $e \in \mathbb{Z}_{\geq 0}$ and ζ a root of a unity.

The above definition matches the classical definition of supersingularity in the case where M is a F-crystal over R, i.e., $\mathbb{Z}_p \subset R$ and $\sigma_\chi : M \to M$ is an injective σ_χ-endomorphism. If X/F_χ is an algebraic variety, then the crystalline cohomology groups $H^i_{\text{cris}}(X)/W(F_\chi)$ is a F-crystal over the Witt vectors $R = W(F_\chi)$.

Definition 3. We say that X is supersingular if all the crystalline cohomology groups are supersingular and more specifically, we say that X is supersingular in degree i if $H^i_{\text{cris}}(X)/W(F_\chi)$ is supersingular.

By Katz-Messing [KM74, Theorem 1], X is supersingular in degree i if and only if the étale cohomology group $H^i_{\text{ét}}(X, \mathbb{Z}_l)$ is supersingular considered as a module over $R = \mathbb{Z}_l$ with σ_χ induced by the geometric Frobenius.

3 A SUFFICIENT CRITERION FOR SUPER SINGULARITY

Theorem 2. Let M be as above, defined over $R \supset \mathbb{Q}_l$. Suppose that for each character χ of G occurring in M, χ^{-1} is in the σ_χ orbit of χ. Then M is supersingular.

Proof. Since our theorem is insensitive to the base change $R \to R(\mu_r)$, we suppose that $\mu_r \subset R$. Let χ_1, \ldots, χ_r be an orbit of characters under the Frobenius action so that $\chi_{i+1} = \chi_i^{\sigma_\chi}$ for $1 \leq i < r$ and $\chi_1 = \chi_r^{\sigma_\chi}$. Then, $\sigma_\chi^{\sigma_\chi}$ acts as an endomorphism of $M(\chi_i)$ for each i and we will prove that its eigenvalue μ is given by $q^{r/2}$ so that the eigenvalues of σ_χ are given by $q^{r/2} \zeta^k$ for some k:

In terms of the $a \in R[G]$ defining the action of σ_χ, we see that $\langle a \rangle \sigma_\chi(m) = \sigma_\chi^{\sigma_\chi}(a) \ldots \sigma_\chi(a)am$ so that for $\chi \in \{\chi_1, \ldots, \chi_r\}$,

$$\sigma_\chi^{\sigma_\chi}(m_\chi) = \sigma_\chi^{\sigma_\chi} \pi_\chi(m) = \pi_\chi \sigma_\chi^{\sigma_\chi}(m) = \prod_{i=1}^r \chi_i(a)m \implies \mu = \prod_{i=1}^r \chi_i(a). \quad (2)$$
Moreover, using equation 1,
\[q^d \langle m_{X_i}, m_{X_i}^{-1} \rangle = \langle \tau_q m_{X_i}, \sigma_q m_{X_i}^{-1} \rangle = \left(\chi_{i+1}(a) m_{X_{i+1}}, \chi_{i+1}^{-1}(a) m_{X_{i+1}}^{-1} \right). \]
Rearranging, we obtain
\[\chi_{i+1}(a) \chi_{i+1}^{-1}(a) = q^d \frac{\langle m_{X_i}, m_{X_i}^{-1} \rangle}{\langle m_{X_{i+1}}, m_{X_{i+1}}^{-1} \rangle}. \] (3)

By our hypothesis, for every \(i \) there exists a \(j \) such that \(\chi_i^{-1} = \chi_j \). Taking a product over \(i = 1, \ldots, r \) of equation 3 yields (together with equation 2):
\[\mu^2 = \left(\prod_{i=1}^r \chi_i(a) \right)^2 = \frac{\prod_{i=1}^r q^d \langle m_{X_i}, m_{X_i}^{-1} \rangle}{\prod_{i=1}^r \langle m_{X_{i+1}}, m_{X_{i+1}}^{-1} \rangle} = q^{rd} \]
as required.

\[\square \]

4 A NECESSARY CRITERION FOR SUPERSINGULARITY

In this section, we prove a converse to the criterion of the previous section that will be applicable to curves (and their Jacobians). Note that supersingularity is insensitive to extending the ground field \(\mathbb{F}_q \to \mathbb{F}_q[m] \) but for \(q \) large enough and \(\chi \) any character of \(G \), \(\sigma_q \circ \chi = \chi \). Therefore we will need more stringent hypotheses.

In order to make sense of \(p \)-divisibility, we now switch to working with modules over \(R \) the Witt ring of a finite field. We assume that \(q = p, \gcd(n, p) = 1 \) and that \(d = 1 \) so that we have a perfect pairing (compatible with the \(G, \sigma_p \) action)
\[W \otimes_R W \to R(-1). \]

Theorem 3. If there exists a character \(\chi \) of \(G \) such that it appears in \(G \) but \(\chi^{-1} \) does not lie in the \(\sigma_p \) orbit of \(\chi \), then \(W \) is not supersingular.

Proof. Since the theorem is insensitive to the base change \(W \to W \otimes \mathbb{Z}_p[\mu_n] \), we can suppose that \(\mu_n \subset \mathbb{Z}_p \). We continue with the same notation as in Theorem 2 (with \(W \) replacing \(M \) throughout to emphasize the \(p \)-adic nature of it). Let \(\chi_1, \ldots, \chi_r \) be a Frobenius orbit of characters for \(G \). By our assumption, we can suppose that \(\chi_i \neq \chi_i^{-1} \) for any \(1 \leq i, j \leq r \).

Exactly as in Theorem 2, we see that
\[\chi_{i+1}(a) \chi_{i+1}^{-1}(a) = p \frac{\langle w_{X_i}, w_{X_i}^{-1} \rangle}{\langle w_{X_{i+1}}, w_{X_{i+1}}^{-1} \rangle} \]
and taking a product over \(i = 1, \ldots, r \), we have
\[\prod_{i=1}^r \chi_i(a) \prod_{i=1}^r \chi_i^{-1}(a) = p^r. \] (4)

Note that both the products on the left are eigenvalues of \(\sigma_p \) on \(W(\chi_i), W(\chi_i^{-1}) \) respectively. Since \(\sigma_p \) is an automorphism of \(G \), we have \(\sigma_p(g) = g^{m_g} \) for some \(m_g \) coprime to \(n \). Therefore, \(\chi_i(g) = \chi_i^{m_g^{-1}}(g) \) is Galois conjugate over \(\mathbb{Z}_p \) to \(\chi_1(g) \) (since \(\chi_1(g) \in \mu_n \)) and the \(\chi_i(a) \) are all Galois conjugates of \(\chi_1(a) \) (and similarly for \(\chi_i^{-1}(a) \) with respect to \(\chi_1^{-1}(a) \)) in the ring \(R \), and hence have the same \(p \)-adic valuation.
Let p^a be the highest power of p dividing $\chi_1(a)$ (and hence $\chi_i(a)$ for $i = 1, \ldots, r$) and p^β be the highest power dividing the $\chi_{i}^{-1}(a)$. Both $\alpha, \beta \geq 0$ since a is an integral element and are integers since \mathbb{Z}_q is unramified.

Comparing the p-adic valuation of the two sides of equation 4 then shows that $p^r = p^r(\alpha + \beta)$ and hence $\alpha + \beta = 1$ which implies that one of them is 1 and the other is 0. That is, the eigenvalues of σ_p^r come in pairs, exactly one of which is a p-adic unit. This implies that W is not supersingular.

5 EXAMPLES

We demonstrate several applications of the above theorems to the cohomology of varieties. We note that for every character σ this case μ is an injection: If χ supersingular. μ_χ and χ^{-1} are in the same σ_q orbit if and only if $q^s \equiv -1 \pmod{n}$ for some $s \geq 1$. Moreover, in this case $\sigma_q : \mu_\chi \to \mu_\chi$ is given by $g \mapsto g^q$.

Theorem 4. Let X/\mathbb{F}_q be a d dimensional variety with an abelian subgroup $G \subset \text{End}_{\mathbb{F}_q}(X)$ such that $H^d_{\text{et}}(X, \mathbb{Q}_\ell)$ is a quotient of $\mathbb{Q}_\ell[G]$. Suppose that for every character χ of G appearing in $H^d_{\text{et}}(X, \mathbb{Q}_\ell)$, χ^{-1} is in the Frobenius orbit of χ. Then, $H^d_{\text{et}}(X, \mathbb{Q}_\ell)$ is supersingular.

Proof. We apply Theorem 2 using the intersection pairing

$$H^d_{\text{et}}(X, \mathbb{Q}_\ell) \otimes H^d_{\text{et}}(X, \mathbb{Q}_\ell) \to H^{2d}_{\text{et}}(X, \mathbb{Q}_\ell) \cong \mathbb{Q}_\ell(-d).$$

Example 1. Examples of varieties satisfying the hypothesis are given by the Fermat varieties [And87]

$$X_0^n + \cdots + X_{d+1}^n = 0 \subset \mathbb{P}^{d+1}.$$ Our criterion is equivalent to the existence of an $i \in \mathbb{Z}$ such that $q^i \equiv -1 \pmod{n}$. [SK79, Theorem 2.1] proves a stronger result using an inductive argument and an explicit computation with Jacobi sums.

Theorem 5. Let A/\mathbb{F}_q be an abelian variety with an abelian subgroup $G \subset \text{End}_{\mathbb{F}_q}(A)$ such that $2 \dim A \leq |G|$. Suppose that for every character χ of G appearing in $H^1_{\text{et}}(A, \mathbb{Q}_\ell)$, χ^{-1} is in the Frobenius orbit of χ. Then, A is supersingular.

If moreover $p \nmid |G|$ and A is defined over \mathbb{F}_p, then A is supersingular only if χ^{-1} is in the σ_p orbit of χ for every character χ appearing in $H^1_{\text{et}}(A, \mathbb{Q}_\ell)$.

Proof. Since $H^1_{\text{et}}(A, \mathbb{Q}_\ell) = \wedge^1 H^1_{\text{et}}(A, \mathbb{Q}_\ell)$, supersingularity of A is equivalent to the supersingularity of $H^1_{\text{et}}(A, \mathbb{Q}_\ell)$. For $v \in H^1_{\text{et}}(A, \mathbb{Q}_\ell)$, note that the map

$$\mathbb{Q}_\ell[G] \to H^1_{\text{et}}(A, \mathbb{Q}_\ell)$$

$$f \to fv$$

is an injection: If $f \in \mathbb{Q}_\ell[G] \subset \text{End}_{\mathbb{F}_q}(A) \otimes \mathbb{Q}_\ell$ maps to 0, then $k\deg(f)$ for k arbitrarily large and consequently $f = 0$. Since $\dim_{\mathbb{Q}_\ell} H^1_{\text{et}}(A, \mathbb{Q}_\ell) = 2 \dim A \leq \dim_{\mathbb{Q}_\ell} \mathbb{Q}_\ell[G]$, $H^1_{\text{et}}(A, \mathbb{Q}_\ell)$ is a quotient of $\mathbb{Q}_\ell[G]$ and each character of G appears at most once.

For the forward implication, we apply Theorem 2 using the Weil pairing

$$H^1_{\text{et}}(A, \mathbb{Q}_\ell) \otimes H^1_{\text{et}}(A, \mathbb{Q}_\ell) \to \mathbb{Q}_\ell(-1).$$
To prove the necessity of the criterion, we apply Theorem 3 with $W = \tcrys^1(A/F_q)$ and the Cartier pairing ([Oda89, Theorem 1.1])

$$\tcrys^1(A) \otimes \tcrys^1(A) \to \mathbb{Z}_q(-1).$$

Note that since A is assumed to be defined over \mathbb{F}_p, in this case, $\sigma_p : W \to W$ is well defined.

\[\square\]

Example 2. Let A_n be the CM Abelian variety with CM by the cyclotomic field $\mathbb{Q}(\mu_n)$. Then our criterion applies to the reduction of A_n at any place of $\mathbb{Q}(\mu_n)$. We can take $G = \mu_n$ in the above theorem so that $2 \dim A = \phi(n) < n = |G|$. The above theorem then implies that the reduction A_n/F_q is supersingular if there exists some r such that $q^r \equiv -1 \pmod{n}$. If moreover the place splits completely, i.e., $q = p$ then the converse is also true.

Remark 1. The above example is also a special case of the fact that if A is a CM Abelian variety with endomorphism algebra K and totally real subfield K^+, and if every prime in K^+ over some p is inert in K, then A is supersingular over the reductions of these primes. In the case where $K = \mathbb{Q}(\mu_n)$, this criterion is exactly equivalent to there existing some r such that $p^r \equiv -1 \pmod{n}$.

Example 3. We note that the above theorem also applies for curves C with the same hypothesis since $\tcrys^1(A, K)$ can be canonically identified with $\tcrys^1(A, \mathbb{Q}_l)$. A family of examples is given by the Fermat curves and their quotients. An alternate characterization of these curves is as abelian covers of \mathbb{P}^1 ramified over three points.

Theorem 2 does not apply to the Artin-Schreier curves $C_{q,n}$:

$$y^q - y = x^n \text{ over } \mathbb{F}_p$$

even though $G = \mathbb{F}_q \times \mu_n$ acts on $C_{q,n}$ so that its cohomology $\tcrys^1(C, \mathbb{Q}_l)$ is a quotient of $\mathbb{Q}_l[G]$. Since σ_q fixes the first factor $\mathbb{F}_q \subset G$, it is never the case that the inverse of every character χ of G appearing in $\tcrys^1(C, \mathbb{Q}_l)$ is in the Frobenius orbit of χ. Nevertheless, we can modify the above proof.

Theorem 6. The curves $C_{q,n}/\mathbb{F}_p$ (with $\gcd(n, p) = 1$) are supersingular if there exists some s such that $p^s \equiv -1 \pmod{n}$.

Proof. For any prime ℓ (including $\ell = p$), let $K_\ell = \mathbb{Q}_\ell(\zeta_{\ell p}, \zeta_n)$ be the minimal extension over which the characters of G split. As in the proof of Theorem 5, we can use either étale cohomology ($\ell \neq p$) $M_\ell = \tcrys^1(C_{q,n}, \mathbb{Q}_l)$ or crystalline cohomology ($\ell = p$) $M_p = \tcrys^1(C_{q,n})$ to compute the eigenvalues of σ_p.

As before, we suppose that σ_p acts on M_ℓ by $a_\ell \in \mathbb{Z}_\ell[G]$ after fixing a generator $m \in M$. Let us fix a character $\theta = (\psi, \chi)$ of $G = \mathbb{F}_q \times \mu_n$ so that ψ is non trivial and χ is primitive and let r be the size of its orbit $\theta = 1, \ldots, r$ under the Frobenius σ_p so that σ_p^r fixes the eigenspace of θ in M and the eigenvalues of σ_p^r are given by

$$\mu^r = \prod_{i=1}^r \theta_i(a_\ell) \in K_\ell.$$ (5)

In this case, since the σ_p action fixes the ψ component of θ, it is never the case that θ^{-1} is in the orbit of θ.

As before, we can use the Weil pairing or the Cartier pairing (in the cases $\ell \neq p$ and $\ell = p$ respectively) to show that

$$\mu^r \mu^{-1} = p^r.$$ (6)

The Frobenius acts on μ_n by $g \to g^q$ for $g \in \mu_n$. Since $\chi(g) \in \mu_N$, it is Galois conjugate to $\chi^{q^r}(g) = \chi^{-p}(g)$. By assumption, χ^{-1} is in the Frobenius orbit of χ so that $\theta^{-1}(a_p)$ is Galois conjugate

3 The cyclotomic field $\mathbb{Q}(\mu_n)$ has degree $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$ over \mathbb{Q} and the dimension of the corresponding CM abelian variety is equal to half this degree.
to $\theta(a_p)$ considered as elements of K_p/Q_p. Equation 5 then shows that μ_θ and $\mu_{\theta-1}$ are conjugate to each other and thus have the same p-adic valuation. Equation 6 then implies that $\mu_\theta, \mu_{\theta-1}$ are both divisible by $p^{1/2}$ for each θ as above.

In particular, $p^{-1/2} \mu_\theta$ is a p-adic unit and equation 6 shows also that it is a ℓ-adic unit for all ℓ. Therefore, it is an algebraic unit and so are all its Galois conjugates (since these Galois conjugates correspond to other θ as above). The only such numbers are roots of unity and therefore, $C_{q,n}$ is supersingular.

The theorem also shows the necessity of (at least some of) the hypothesis in Theorem 3.

Remark 2. We do not know of an exact characterization of supersingularity for Artin-Schreier curves. Numerical evidence suggests that the converse of our Theorem is also true.

REFERENCES

[And87] Greg W Anderson. Torsion points on Fermat Jacobians, roots of circular units and relative singular homology. Duke Mathematical Journal, 54(2):501–561, 1987.

[BL19] Daniel Bragg and Max Lieblich. Perfect points on genus one curves and consequences for supersingular K_3 surfaces. arXiv preprint arXiv:1904.04803, 2019.

[Bla12] Régis Blache. Valuation of exponential sums and the generic first slope for artin–schreier curves. Journal of Number Theory, 132(10):2336–2352, 2012.

[Cha13] François Charles. The Tate conjecture for K_3 surfaces over finite fields. Inventiones mathematicae, 194(1):119–145, 2013.

[DFL+19] Erin Dawson, Henry Frauenhoff, Michael Lynch, Amethyst Price, Seamus Somerstep, Eric Work, Dean Bisogno, and Rachel Pries. The supersingularity of Hurwitz curves. Involve, a Journal of Mathematics, 12(8):1293–1306, Oct 2019.

[GT07] Arnaldo Garcia and Saeed Tafazolian. Certain maximal curves and Cartier operators. Niedersächsische Staats-und Universitätsbibliothek, 2007.

[IS91] Susumu Irokawa and Ryuji Sasaki. A remark on Artin-Schreier curves whose Hasse-Witt maps are the zero maps. Tsukuba journal of mathematics, 15(1):185–192, 1991.

[KM74] Nicholas M Katz and William Messing. Some consequences of the riemann hypothesis for varieties over finite fields. Inventiones mathematicae, 23(1):73–77, 1974.

[KP15] Wansu Kim and Keerthi Madapusi Pera. 2-adic integral canonical models and the Tate conjecture in characteristic 2. arXiv preprint arXiv:1512.02540, 2015.

[Mau14] Davesh Maulik. Supersingular K_3 surfaces for large primes. Duke Mathematical Journal, 163(13):2357–2425, 2014.

[MP15] Keerthi Madapusi Pera. The Tate conjecture for K_3 surfaces in odd characteristic. Inventiones mathematicae, 201(2):625–668, 2015.

[Oda69] Tadao Oda. The first de rham cohomology group and dieudonné modules. In Annales scientifiques de l’École Normale Supérieure, volume 2, pages 63–135, 1969.

[SK79] Tetsuji Shioda and Toshiyuki Katsura. On Fermat varieties. Tohoku Mathematical Journal, Second Series, 31(1):97–115, 1979.
[Tot17] Burt Totaro. Recent progress on the Tate conjecture. *Bulletin of the American Mathematical Society*, 54(4):575–590, 2017.

[VdGVdV92] Gerard Van der Geer and Marcel Van der Vlugt. Reed-Muller codes and supersingular curves. I. *Compositio Mathematica*, 84(3):333–367, 1992.