Interannual and Seasonal Cycles of CO₂ from GOSAT and AIRS

N YING 1, Q YE 1, J J XIA 2
1Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
2Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
*Corresponding author’s e-mail: yingna@mail.bnu.edu.cn

Abstract. In this paper, the spatiotemporal variations of carbon dioxide (CO₂) are examined using the CO₂ datasets retrieved from the Greenhouse Gases Observing Satellite (GOSAT) and Atmospheric Infrared Sounder (AIRS). These results demonstrate that the distribution of GOSAT CO₂ is strongly influenced by CO₂ emissions from human activities and natural processes, while the characteristics of AIRS CO₂ are concerned with both surface sources and large-scale circulation systems. Meanwhile, the spatial difference (GOSAT minus AIRS) ranges from 2–10 ppm, with a maximum value near the Greenland region (>8 ppm). The major pattern of both GOSAT and AIRS CO₂ variability exhibits a gradual increase globally. The dominant pattern of GOSAT is proportional to its average distribution, while the leading distributions of AIRS are relatively mixing homogeneity. Additionally, the seasonal amplitudes of GOSAT CO₂ are larger in Northeast Asia and Northeast North American (>10 ppm). The largest fluctuation of AIRS CO₂ occurs in the Arctic zone, which is dominated by the carbon cycle of the terrestrial biosphere. The seasonal fluctuation from the column-averaged CO₂ is more significant than that in the mid-tropospheric CO₂, possibly because of tropospheric adjustments of sensible and latent heat at the tropopause. These results regarding the spatial patterns of CO₂ at the global scale will help us to better understand the vertical transport of CO₂ and its impact on climate change.

1.Introduction
As a result of fossil fuel emissions, the concentrations of carbon dioxide (CO₂) in the atmosphere have increased from 280 ppm in the pre-industrial era to 405.1 ppm in 2016 [1]. Consistently increasing CO₂ concentrations in the atmosphere can significantly influence the radiative forcing and surface energy balance, leading to global warming [2–3]. To better understand the impacts of CO₂ on climate, it is essential to clarify the distribution and variability of CO₂ [4].

CO₂ concentrations have been monitored systematically at many places around the world since the mid-1950s. Furthermore, monitoring has since expanded to a global network of ground-based flask observations [5]. However, these measurements are too sparse to obtain information on regional or global distributions of CO₂ concentrations. Recently, satellite observation has become an effective approach to monitoring the spatial coverage of CO₂ on a continuous basis. Substantial progress has also been made in understanding the spatiotemporal patterns of atmospheric CO₂. Utilizing the mid-tropospheric CO₂ data from the Atmospheric Infrared Sounder (AIRS), it has been found that the variability of AIRS CO₂ is influenced by both surface factors [6] as well as large-scale circulation systems, such as the Madden–Julian Oscillation [7], El Niño–Southern Oscillation [8], and South-
Atlantic Walker circulation [9]. Additionally, important studies have also been conducted using Greenhouse Gases Observing Satellite (GOSAT) data to investigate the spatial distributions of anthropogenic emissions [10, 11] and identify net fluxes [2–3].

Presently, however, we still do not know enough about the characteristics of atmospheric CO2 in terms of its interannual and seasonal variations at large continental scales. More importantly, their spatial differences remain poorly understood. In the present study, GOSAT and AIRS datasets were used to analyse the temporal characteristics of trends and variations of CO2 over the globe. The primary objective of the work was to explore the temporal characteristics and correlations between column-averaged CO2 concentrations and mid-tropospheric CO2 changes.

2. DATA AND METHODS

2.1 CO2 data

GOSAT and AIRS data were employed to explore the spatial patterns. GOSAT was the first space-based orbiting to monitoring carbon dioxide (CO2) and methane (CH4), launched in January 2009 [14–15]. CO2 retrieval data (FTS SWIR Level 3 V02.26, bias corrected) are available from June 2009 to April 2014 and can be download from https://data2.gosat.nies.go.jp. The spatial resolution of GOSAT’s CO2 data is 2.5° latitude × 2.5° longitude.

AIRS was the first instrument to detect mid-tropospheric CO2 [16–17]. AIRS (V005 Level 3 Monthly) CO2 retrievals are available at a spatial resolution of 2° latitude × 2.5° longitude, from September 2002 to the present day. The data can be downloaded from https://disc.gsfc.nasa.gov/datasets/AIRS3C2M_V005/.

In this study, considering the continuous period of GOSAT, we selected the monthly-mean CO2 from July 2009 to April 2014 as the study period (total of 58 months). The AIRS data were interpolated to 2.5° × 2.5°. We excluded the regions around the South Pole (60°S–90°N), which are poorly covered by the retrievals or have large retrieval errors. The Mauna Loa (MLO) station record at the same time was also selected, to compare with the AIRS and GOSAT data.

2.2 Methods

To isolate the prominent patterns of CO2 and their temporal variability, empirical orthogonal function (EOF) analysis has been performed [18]. We decomposed the data into EOFs, which define the spatial patterns and the accompanying principal components (PCs) characterizing the temporal behavior of these patterns. They were determined here using the singular value decomposition code available in Matlab. Prior to computing the EOFs, we removed the seasonality of the data by subtracting the calendar-month mean from each grid point, so that the calculated EOFs referred to the tendency distribution:

\[C_i^y(m) = C_i^y(m) - \text{mean}(C_i^y(m)) \]

Where \(y \) indexes the year and \(i \) indexes the nodes. The CO2 anomaly time series, \(C_i^y(m) \), is constructed by removing the seasonal cycle.

3. RESULTS AND DISCUSSION

3.1 Spatiotemporal characteristics of CO2

The time series of monthly global-mean CO2 concentrations from AIRS, MLO and GOSAT is shown in figure 1. Each data source shows predominant rising trends and seasonal variations of CO2. The 58-month averages of GOSAT, AIRS and MLO CO2 are 389 ppm, 392 ppm and 392.3 ppm, respectively. The global mean CO2 concentration retrieved from AIRS is about 3 ppm higher than that from GOSAT. As described in the GOSAT Validation Report [19], GOSAT CO2 data are, on average, 1.2 ppm lower than Total Carbon Column Observing Network (TCCON) data. So, 40% of the observed bias (1.2 ppm/3 ppm) can be explained by the biases inherent to the GOSAT product.
The peak-to-trough variation amplitude of the AIRS CO₂ matches the MLO data, as they have the same retrieved height. The spatial distribution of GOSAT CO₂ has a clear north–south gradient [Fig. 1(b)]. Higher concentrations occur in East and West Asia, the Southeast U.S., Central South America, Central Africa, and West Europe. The spatial pattern of AIRS CO₂ is characterized by a strong contrast between the Northern Hemisphere (NH) and Southern Hemisphere (SH). In the NH, large enhancements occur over a belt from 35°N to 45°N and in the northern Polar Regions.

We further quantified the spatial pattern of the difference between the GOSAT and AIRS CO₂ [Fig. 1(d)]. The results show that the difference (GOSAT minus AIRS) varies from 2 to 10 ppm, and the greater discrepancy is concentrated at higher latitudes (above 60°N). More specifically, the largest difference occurs over the Arctic region (>6 ppm), especially over the Greenland region (>8 ppm). We also find that the negative values (<2 ppm) are concentrated over the northern tropical Pacific Ocean.

![Figure 1.](image)

Figure 1. (a) Time–series of monthly average AIRS, MLO and GOSAT CO₂ concentrations for the studied period; (b) The spatial distribution of monthly mean GOSAT CO₂; (c) The spatial distribution of monthly mean AIRS CO₂; (d) Differences between AIRS CO₂ and GOSAT CO₂ (AIRS minus GOSAT). Units: ppm

3.2 Methods Interannual variations of CO₂

The first mode of deseasonalized GOSAT and AIRS CO₂ explains 90.3% and 85.3% of the variability [Table 1]. The EOF-1 of the GOSAT CO₂, shown in Fig. 2(a), displays a global increase, with maximum values over land regions. The EOF-1 of the AIRS CO₂ [Fig. 2(b)] exhibits a global rising mode, with significant enhancement over the Middle East and the Mediterranean. The second EOF (2.68% of the variability) of GOSAT displays opposite polarity between the Arctic region and southern regions [Fig. 2(c)]. The EOF-2 of AIRS [Fig. 2(d)] is similar to that of GOSAT, with a large area in North Asia. The PCs corresponding to EOF-1 are separately shown in Fig. 2(e). The PC-1 time series is remarkably linear in their increase, and oscillates with annual periodicities. The PC-2 displays semi-annual and annual variability.

CO₂	λ₁	λ₂	λ₃	λ₄	λ₅
GOSAT	90.3%	2.68%	0.94%	0.66%	0.51%
AIRS	85.3%	3.3%	2.08%	1.06%	0.98%

Table 1. Variances (in %) accounted for by the first five PCs of the AIRS and GOSAT CO₂.
Figure 2. The CO$_2$ EOFs and the corresponding normalized PCs of the CO$_2$ (in ppm). The first modes of GOSAT CO$_2$ (a) and AIRS CO$_2$ (b); the second modes of GOSAT CO$_2$ (c) and AIRS CO$_2$ (d). The normalized PC–1 (e) and PC–2 (f) of the GOSAT and AIRS CO$_2$.

3.3 Seasonal variations of CO$_2$

The difference between the maximum and minimum months of monthly CO$_2$ is utilized to explain the amplitude of the seasonal cycle. The long-term increasing trend was removed before calculation of the difference between the maximum and minimum concentrations in a year. Although the global average peaks in April, regional differences still exist. The seasonal amplitude of the GOSAT CO$_2$ is shown in Fig. 3(a). In the NH, a larger CO$_2$ seasonal amplitude can be clearly seen over northeast Asia (>12 ppm), northeast North America (>10 ppm), and the northern tropical Pacific Ocean (>6 ppm). Conversely, in the SH tropics, we see significantly lower levels of CO$_2$, with lower seasonal variability that correlates well with tropical rainforest regions.

Figure 3(b) shows the seasonal amplitude of the AIRS CO$_2$. Higher variations are observed in the transition zone across the Aleutian Islands and Alaskan Gyre (≥8 ppm). The transition region witnesses these seasonal variations with a maximum and minimum in April and November, respectively. This region is a large sink for atmospheric CO$_2$, where CO$_2$ uptake dominates from April through November. Moreover, we also see a large enhancement over the Greenland region (≥12 ppm). It can be discerned that the seasonal signals of CO$_2$ reach a maximum in April and minimum in July. The seasonal amplitude of AIRS shows similar results to GOSAT in the SH. In the NH, the GOSAT measurements exhibit strong amplitude, due to their sensitivity to the near-surface CO$_2$, where the impact of the seasonal summer uptake by vegetation and the ocean sink are more pronounced [20].
4. CONCLUSION

In this study, we analysed the temporal and spatial variations of satellite-derived, column-averaged and mid-tropospheric CO$_2$, and associated the observed variability with known atmospheric transport processes, as well as sources and sinks of CO$_2$.

The GOSAT CO$_2$ data and AIRS mid-tropospheric CO$_2$ data show consistency with the MLO observations. We have shown that the distribution of the GOSAT CO$_2$ is strongly influenced by CO$_2$ emissions from human activities and natural processes. The characteristics of the AIRS CO$_2$ are related to both surface sources and large-scale circulation systems [21–22], such as convection and eddy mixing. The monthly average bias between GOSAT and AIRS is 3 ppm, while their spatial difference (GOSAT minus AIRS) ranges from 2–10 ppm. The distribution suggests a dominant transport pathway for lifting pollution from the column average (GOSAT) into the middle and upper troposphere [23]. The dominant modes of the GOSAT and AIRS CO$_2$ explain 90.3% and 85.3% of the variability, respectively. The leading pattern from GOSAT displays a global increase over land regions, while the AIRS pattern exhibits a relatively homogeneous rising mode.

Additionally, the distribution of seasonal amplitudes was also analysed. The significant GOSAT CO$_2$ seasonal amplitudes were found to occur in northeast Asia, northeast North America, and over the northern tropical Pacific Ocean. The distributions are dominated by the carbon cycle of the terrestrial biosphere [24] and the long-range transport of pollutants from Asia to the Asian Pacific region [25]. Moreover, the centre of the AIRS seasonal variations is located in the transition zone across the Aleutian Islands and Alaskan Gyre (≥ 8ppm) and Greenland region (≥ 12 ppm). The seasonal variations present significant differences in the Arctic regions, indicating the function of tropospheric adjustments of sensible and latent heat at the tropopause [26].

Lastly, it is important to note that, since no 3-D transport model was used in this study, the origins of the CO$_2$ concentrations and the feedback of the spatial distribution of CO$_2$ to climate change need further and more detailed study.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFA0602503). We thank the members of the GOSAT Project for providing the GOSAT Level 3 data products, and NASA for providing the AIRS CO$_2$ datasets.

References

[1] World Meteorological Organization, WMO Greenhouse Gas Bulletin No.13, 2016. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through. http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbULLETIN.html.

[2] Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Midgley, P.M. (2013) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Climate change 2013: the physical science basis: 1535–1535.

[3] Feldman, D.R., Collins, W.D., Gero, P.J., Tom, M.S., Mlawer, E.J., Shippert, T.R. (2015) Observational determination of surface radiative forcing by CO$_2$ from 2000 to 2010. Nature, 519: 339–343.
[4] Keeling, C.D., J. A.A. Jr, C. A.E. Jr, Guenther, P.R. (1976) Atmospheric CO₂ variations at the South Pole. Tellus, 28: 552–564.

[5] Cooperative Global Atmospheric Data Integration Project. 2013, updated annually. Multi-laboratory compilation of synchronized and gap-filled atmospheric carbon dioxide records for the period 1979-2012 (obspack_co2_1_GLOBALVIEW-CO2_2013_v1.0.4_2013-12-23). Compiled by NOAA Global Monitoring Division: Boulder, Colorado, U.S.A. Data product accessed at http://dx.doi.org/10.3334/Obspack/1002

[6] Pagano, T.S., Olsen, E.T., Nguyen, H., Ruzmaikin, A., Jiang, X., Perkins, L. (2014) Global variability of midtropospheric carbon dioxide as measured by the atmospheric infrared sounder. J. Appl. Remote Sens., 8: 4480–4494.

[7] Li, K.F., Tian, B., Waliser, D.E., Yung, Y.L. (2010) Tropical mid–tropospheric CO₂ variability driven by the Madden–Julian Oscillation. Proc. Nat. Acad. Sci. USA, 107: 19171–19175.

[8] Jiang, X., Chahine, M.T., Olsen, E.T., Chen, L.L., Yung, Y.L. (2010) Interannual variability of mid–tropospheric CO₂ from Atmospheric Infrared Sounder. Geophys. Res. Lett., 37: L13801–L13801.

[9] Jiang, X., Olsen, E.T., Pagano, T.S., Su, H., Yung, Y.L. (2015) Modulation of midtropospheric CO₂ by the South Atlantic Walker Circulation. J. Atmos. Sci., 72: 2241–2247.

[10] Kort, E.A., Frankenberg, C., Miller, C.E., Oda, T. (2012) Space–based observations of megacity carbon dioxide. Geophys. Res. Lett., 39: 17806–17806.

[11] Keppel–Aleks, G., Wennberg, P.O., O’Dell, C.W., Wunch, D. (2013) Towards constraints on fossil fuel emissions from total column carbon dioxide. Atmos. Chem. Phys., 13: 4349–4357.

[12] Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I. (2013) Global CO₂ fluxes estimated from GOAST retrievals of total column CO₂. Atmos. Chem. Phys., 13: 8695–8717.

[13] Maksyutov, S., Takagi, H., Kim, H., Zhuravlev, R., Saeki, T., Belikov, D. (2013) Regional CO₂ flux estimates for 2009–2010 based on GOSAT and ground–based CO₂ observations. Atmos. Chem. Phys., 12: 29235–29288.

[14] Yokota, T., Yoshida, Y., Eguchi, N., Ota, Y., Tanaka, T., Watanabe, H., Maksyutov, S. (2009) Global concentrations of CO₂ and CH₄ retrieved from GOSAT: First preliminary results. SOLA, 5: 160–163.

[15] Kuze, A., Suto, H., Nakajima, M., Hamazaki, T. (2009) Thermal and near infrared sensor for carbon observation fourier–transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring. Appl. Opt., 48: 6716–6733.

[16] Chahine, M.T., Chen, L., Dimotakis, P., Jiang, X., Li, Q., Olsen, E.T., Yung, Y.L. (2008) Satellite remote sounding of mid–tropospheric CO₂. Geophys. Res. Lett., 35: 179–190.

[17] Chahine, M., Barnet, C., Olsen, E.T., Chen, L., Maddy, E. (2005) On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO₂. Geophys. Res. Lett., 32: 154–164.

[18] Lian, T., Chen, D. (2012) An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J. Clim., 25(15): 5361–5373.

[19] NIES GOSAT Project (2012) Summary of GOSAT Level 2 Data Product Validation Activity. https://data2.gosat.nies.go.jp/doc/documents/ValidationResult_FTSSWIRL2_V02_xx_GU_en.pdf

[20] Lindqvist, H., O’Dell, C., Basu, S., Boesch, H., Chevallier, F., Deutscher, N. (2015) Does GOAST capture the true seasonal cycle of carbon dioxide? Atmo. Chem. Phys., 15: 16461–16503.

[21] Stohl, A., Eckhardt, S., Forster, C., James, P., Spichtinger, N. (2002) On the pathways and timescales of intercontinental air pollution transport. J. Geophys. Res., 107: 4684–4684.

[22] Zhang, L., Jacob, D.J., Bowman, K.W., Logan, J.A., Solène Turquety, Hudman, R.C. (2006) Ozone–co correlations determined by the tes satellite instrument in continental outflow regions. Geophys. Res. Lett., 33: L18804–L18804.
[23] Shia, R.L., Liang, M.C., Miller, C.E., Yung, Y.L. (2006) CO$_2$ in the upper troposphere: influence of stratosphere–troposphere exchange. Geophys. Res. Lett., 33: 289–289.
[24] Shim, C., Lee, J., Wang, Y. (2013) Effect of continental sources and sinks on the seasonal and latitudinal gradient of atmospheric carbon dioxide over East Asia. Atmos. Environ., 79: 853–860.
[25] Liang, Q., Jaeglé, L., Jaffe, D.A., Weiss–Penzias, P., Heckman, A., Snow, J.A. (2004) Long–range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide. J. Geophys. Res. Atmos., 109: 1–18.
[26] Shia, R.L., Liang, M.C., Miller, C.E., Yung, Y.L. (2006) CO$_2$ in the upper troposphere: Influence of stratosphere–troposphere exchange. Geophys. Res. Lett., 33: 289–289.