Electron Induced Nanoscale Nuclear Spin Relaxation Probed by Hyperpolarization Injection

William Beaterz,
Arjun Pillai,
Otto Janes,
Dieter Suter,
Ashok Ajoy

1Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, USA
2Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
3Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
4CIFAR Azrieli Global Scholars Program, 661 University Ave, Toronto, ON MSG 1M1, Canada

(Received 14 July 2022; accepted 7 June 2023; published 7 July 2023)

We report on experiments that quantify the role of a central electronic spin as a relaxation source for nuclear spins in its nanoscale environment. Our strategy exploits hyperpolarization injection from the electron as a means to controllably probe an increasing number of nuclear spins in the bath and subsequently interrogate them with high fidelity. Our experiments are focused on a model system of a nitrogen vacancy center electronic spin surrounded by several hundred 13C nuclear spins. We observe that the 13C transverse spin relaxation times vary significantly with the extent of hyperpolarization injection, allowing the ability to measure the influence of electron-mediated relaxation extending over several nanometers. These results suggest interesting new means to spatially discriminate nuclear spins in a nanoscale environment and have direct relevance to dynamic nuclear polarization and quantum sensors and memories constructed from hyperpolarized nuclei.

Introduction.—Coupled electron-nuclear spin systems are highly relevant in quantum information science [1–3] and dynamic nuclear polarization (DNP) [4]. Consider an electronic spin centrally located (position $r = 0$) in a bath of nuclear spins within a magnetic field B_0 [see Figs. 1(a) and 1(b)]. The electrons are fast relaxing (short T_{1e}) and can serve as a relaxation source for the nuclear spins [5–7] [schematically shown in Fig. 1(c)]. Such electron induced nuclear relaxation is an important consideration for applications in quantum registers, memories, and sensors constructed out of nuclear spins [8–10]. It also plays a key role in determining rates of polarization transfer in DNP [11–13]. However, probing such relaxation influences, particularly in a spatially defined manner, is challenging. This is because experiments typically have very restricted access to spins in the bath, limiting the possibility of spatially distinguishing them [7,14–17]. Previous nanoscale quantum sensing experiments have, for instance, been limited to proximal central spin relaxation effects in small (< 20) spin networks [18,19].

In this Letter, we report on experiments that study the effects of an electronic spin on nuclei over wider length scales, spanning several nanometers, and involving several hundred nuclei. Our strategy [Fig. 1(d)] exploits controllable hyperpolarized spin injection from the electron to the nuclear bath. The hyperpolarization time τ is employed as a knob to tune length scales in the bath being probed; the polarization is carried over longer distances with increasing τ. Simultaneously, the nuclei are subject to a rf driving protocol that permits continuously tracking their magnetization over minute long periods with high signal-to-noise ratio (SNR) [23]. The measurements reveal, surprisingly, that ensemble-averaged nuclear lifetimes T_2' in the rotating frame increase dramatically with increasing polarization time τ. This constitutes a direct experimental signature of electron induced nuclear spin relaxation, allowing us to quantify its influence over several nanometers.

System and protocol.—Experiments are carried out in diamond, with central nitrogen vacancy (NV) [24,25] electronic spins surrounded by 13C nuclei [Figs. 1(a) and 1(b)]. NV centers (≈ 1 ppm) are separated by ≈ 12 nm and 13C nuclei appear with lattice density ≈ 0.92 spins/nm3, yielding a relative NV:13C ratio $\sim 1:10^3$ [26,27]. In addition, the lattice hosts randomly positioned paramagnetic impurities (P1 centers) at a concentration > 20 ppm, which can also serve as relaxation sources.

Experiments are conducted in three regimes [indicated in Fig. 1(d)]: (I) optically induced NV $\rightarrow ^{13}$C spin injection for period τ at low field ($B_{pol} = 36$ mT), (II) rapid transport to high field, and (III) 13C interrogation for time t at $B_0 = 7$ T. For hyperpolarization [Fig. 1(e)], we exploit a mechanism previously described in Refs. [20,21,28]. Distant spins are polarized by spin diffusion driven by the internuclear dipolar Hamiltonian [17,29,30], $\mathcal{H}_{dd} = \sum_{i<k} d_{jk}^{CC}(3I_j \cdot I_k - I_j \cdot \bar{I}_k)$, where I_j refer to jth spin-1/2 operators and 13C-13C (CC) coupling strengths $d_{jk}^{CC} \propto \gamma_n^2/r^3$, with magnetogyric ratio $\gamma_n = 10.7$ MHz/T, and r being the internuclear distance. Bulk averaged 13C hyperpolarization under maximal conditions is $\varepsilon \approx 0.3\%$.

DOI: 10.1103/PhysRevLett.131.010802
pulsing duty cycle, can be described by the unitary \(H \) free induction decay lifetimes \(v \)ival probability in the \([37]\). Signal obtained corresponds to measuring the sur-
nuclei are interrogated between pulses, allowing continu-
transverse axis \(\frac{1}{2} \). Since \(I_{13C} \) adiabatic with respect to the instantaneous \(^{13}\text{C} \) Larmor frequency, thereby preserving hyperpolarization \([31]\). Conversely, since \(I_{13C} \) rapidly loses hyperpolarization and ultimately returns to thermal levels (\(\approx 3\% \)) in regime III \([1\text{f}\text{]}\). Subsequently, the NV center predominantly serves as a point relaxation source for the nuclear bath \([1\text{c}\text{]}\).

Ensemble \(^{13}\text{C} \) readout (regime III) employs a protocol described in Refs.\([22,34]\). \(^{13}\text{C} \) spins are prepared along the transverse axis \(\hat{\mathbf{x}} \) (\(\rho_{\mathbf{x}} = e^{i \sum_{j} I_{jx}} \)) on the Bloch sphere, and a train of spin-locking \(\theta \) pulses are applied \([35,36]\). \(^{13}\text{C} \) nuclei are interrogated between pulses, allowing continuous tracking with high SNR (see Supplemental Material \([37]\)). Signal obtained corresponds to measuring the survival probability in the \(\hat{\mathbf{x}} \)-\(\hat{\mathbf{y}} \) plane. The sequence operation can be described by the unitary \(U(t) \). For sufficiently rapid pulsing duty cycle, \(U(t) \approx \exp(i \mathcal{H}^{(0)}_F t) \), such that the inter-
nuclear Hamiltonian is engineered to leading order in the Magnus expansion to \(\mathcal{H}^{(0)}_F \approx \sum_{j < k} \alpha C_{jk}^{CC} (3 \mathcal{H}_{H}^2 - \vec{I}_j \cdot \vec{I}_k) \), where \(\mathcal{H}_{H} = I_{jz}I_{kz} + I_{jy}I_{ky} \) is a flip-flop Hamiltonian \([22]\). Since \([\rho_{\mathbf{x}}, \mathcal{H}^{(0)}_F] = 0 \) commutes with the initial state, dipolar evolution is suppressed to leading order. As a result, \(^{13}\text{C} \) free induction decay lifetimes \(T_2^* \approx 1.5 \text{ ms} \) are significantly extended, here to \(T_2^* \gtrsim 65.5 \text{ s} \) \([see Fig. 2(a)\text{]}\).

Results.——Figure 2(a) describes our primary experimental result (see video \([38]\)), showing \(^{13}\text{C} \) NMR signal measured employing differing hyperpolarization periods \(\tau \) (varied every 1 s from \(\tau = 1 \) to \(\tau = 120 \) s). Each 36 s trace consists of \(\approx 369,000 \) pulses (see Fig. 3 for full data), and the \(^{13}\text{C} \) nuclei are interrogated after every pulse \([Fig. 1(f)\text{]}\). Surprisingly, we observe that the signals decay more slowly with increasing \(\tau \). Normalization of the signal profiles allows the ability to unravel the relative changes in the decay time constant \(T_2^* \), estimated from the \(1/e \) intercept [horizontal dashed line in Fig. 2(a)]. For example, comparing \(\tau = 2 \) and \(\tau = 120 \) s in Fig. 2(a), we observe a \(\approx 6.42\)-fold increase in \(T_2^* \) (from 10.2 to 65.5 s).

The \(1/e \) intercept is blind to the instantaneous change of the decay profile and therefore provides only limited information. To more clearly observe the decay dynamics, we divide the curves in Fig. 2(a) into 36 segments of width \(\Delta t = 1 \text{ s} \), with one such segment shown in the gray window in Fig. 2(a). We fit the decay in each segment to a monoexponential [as in inset (i)] and extract the instantaneous time constants \(T_2^* (t) \), which are plotted in Fig. 2(b). The notation \(T_2^* \) (as opposed to \(T_2 \)) emphasizes that these are monoexponential constants. For each trace, the signals decay markedly slower with increasing time \(t \) (see also Fig. 3). Ultimately, the \(T_2^* \) times are remarkably long (\(T_2^* \approx 100 \text{ s} \)) at large \(r \). Increasing polarization time \(\tau \) makes the overall decay slower for any selected segment. Indeed, for the segment ending at \(t = 16 \text{ s} \) [vertical dashed line in Fig. 2(b)], the \(T_2^* \) value is increased by \(1.66\)-fold. To now emphasize the relative change in the \(T_2^* \) values for different segments, Fig. 2(c) shows the \(T_2^* \) lifetimes plotted against \(\tau \), where data corresponding to each segment in
FIG. 2. Effect of increasing hyperpolarization time \(\tau \). (a) Spin-lock decays for different hyperpolarization times \(\tau \) corresponding to color bar [regime I in Fig. 1(d)]. Single-shot data [obtained with \(t_{\text{acq}} = 32 \mu s \) and \(\theta \approx \pi/2 \) in Fig. 1(f)] is boxcar averaged over 97 ms and normalized after truncation at \(t = 9.7 \) ms. Dashed line represents \(1/e \) intercept. Inset (i): Enlarged representative 1 s segment [gray window in (a)]. Dashed line is a fitted piecewise monoeXponential. (b) Instantaneous lifetime \(T_2 \) measured along decay curve, extracted from slopes as in the inset of (a). Color bar [see (a)] represents \(\tau \). Dashed line shows exemplary segment ending at 16 s [gray window in (a)]. (c) Instantaneous \(T_2 \) plotted against \(\tau \). Points show \(T_2 \) lifetimes from (b) for exemplary 1 s segments ending at labeled \(t \) values. Lines are spline fits.

Figs. 2(a) and 2(b) form the lines. Figure 2(c) makes clear that the instantaneous \(T_2 \) increases for each segment with increasing \(t \) and within each segment with increasing \(\tau \). The maximum relative change occurs for short \(\tau \) and at early \(t \).

A clearer view of data in Fig. 2 can be obtained by noting that the decays approximately follow a stretched exponential of the form \(\exp\left[-(t/T_2)\alpha\right] \) with \(\alpha \approx 1/2 \) (see Fig. 3 and videos [39,40]). While similar behavior has been alluded to before [41–43], high SNR and rapid data collection here allows an unprecedentedly clear view. Figure 3(a) shows data from Fig. 2 plotted on a logarithmetic scale with respect to \(\sqrt{t} \). The signals then manifest as approximately straight lines, demonstrating stretched exponential character. \(T_2 \) lifetimes can now be extracted conveniently from the instantaneous slopes \(s \), as \(T_2 = 1/s_\text{av} \). High SNR and rapid data collection rates allow the unique ability to continuously observe the stretched exponential dynamics. We now focus attention on six segments along the decay curves [labeled (i)–(vi) in Fig. 3(a)]. Data reveal that the decay in segment (i) deviates from the stretched exponential behavior (especially for low hyperpolarization time \(\tau \)), as evidenced by the nonlinear traces in the log vs \(\sqrt{t} \) representation. In contrast, the traces at long time \(t \) are observed to be independent of \(\tau \) [evident from the approximately parallel profiles in segment (vi)]. To elucidate this further, segment (i) is enlarged in Fig. 3(b) on the same log scale for representative values of \(\tau \). The panel makes clear the apparent change in \(T_2^\text{app} \) with \(\tau \) (due to deviation from stretched exponential decay at short \(t \) and \(\tau \)).

Figure 3(c) shows extracted \(T_2^\text{app} \) values for six segments (i)–(vi). \(T_2^\text{app} \) apparently grows significantly with increasing time \(\tau \), while \(T_2^\text{app} \) is flat and almost independent of \(\tau \). Additionally, the extracted \(T_2^\text{app} \) values for the different segments cross over at \(\tau \approx 32 \) s. Finally, Fig. 3(d) offers insight into variation from exact \(\alpha = 1/2 \) stretched exponential behavior with changing \(\tau \). At long times \(t \), the behavior follows a universal \(\alpha = 1/2 \) dependence (dashed lines). However, in the short time region (\(t \lesssim 36 \) s), there is a transition from convex to concave behavior around \(\alpha = 1/2 \). Crossover occurs at \(\tau \approx 32 \) s, similar to Fig. 3(c).

Theory.—To describe the experimental observations, we construct a semiquantitative model for nuclear polarization \(p(r,t) \) at coordinate \(r \) and time \(t \). We assume centrosymmetry, a good approximation given the ensemble average in our experiments. We then model the dynamics using the differential equation,

\[
\frac{\partial}{\partial t} p(r,t) = \frac{P_0}{r^6} - \frac{\kappa_0}{r^2} p(r,t) - \frac{1}{T_1} p(r,t) + D \nabla^2 p(r,t), \tag{1}
\]

following the Bloembergen model in nonconducting solids [44]. Here \(P_0 \) denotes the rate of hyperpolarization injection and \(\kappa_0 \) is the strength of spatially dependent relaxation due to the central NV center. The \(1/r^6 \) scaling of the \(P_0 \) term in Eq. (1) does not yield qualitatively different behavior compared to a \(1/r^3 \) scaling but makes the equation better conditioned near \(r = 0 \). In any case, the \(r \rightarrow 0 \) region and associated frozen core is not observable due to the relatively small \(^{13}\text{C} \) detection bandwidth (\(\approx 32 \) kHz) employed. In contrast to the NV center (at \(r = 0 \)), we assume that the relatively dense P1 centers serve as contributors to background relaxation of the \(^{13}\text{C} \) nuclei independent of their position; this is captured by the \(T_1 \) term in Eq. (1). Finally, the last term denotes spin diffusion, which we assume to be Fickian and Gaussian with a single constant \(D \) at all locations. This is a good approximation given the large number of \(^{13}\text{C} \) nuclei around every NV center [17]; e.g., a sphere of radius 4 nm contains \(\approx 247 \) nuclear spins.

We solve Eq. (1) separately in the three regimes of the experiment [Fig. 1(d)], with the solution for one regime setting the initial conditions for the next. Obtaining a precise estimate of the parameters in Eq. (1) is challenging and outside the scope of this Letter. We therefore make some simplifying assumptions. In regime I, we assume...
$P_0/\kappa_0 = 1$. In regimes I and III are assumed to differ by a factor of 2. We employ $T_1 = q^{-1}T_{1,LF}$ and $T_1 = q^{-1}T_{1,HF}$ in regime I and III, respectively, where $T_{1,LF} = 283$ s and $T_{1,HF} = 1520$ s are measured low and high field bulk 13C lifetimes at $\tau = 60$ s (see Supplemental Material [37]), and q is a scaling factor employed as a free parameter in the fits. For Fig. 4, we find good agreement with $q = 6.75$. The latter assumption can be rationalized by the fact that (1) contributions from P1 centers to T_1 relaxation are hard to separate in the bulk T_1 measurements; (2) we measure longitudinal $T_{1,HF}$, which only approximates transverse T_1 in Eq. (1); and (3) $T_{1,LF}$ is measured under dark conditions, but the corresponding T_1 in regime I is measured under optical illumination.

With these assumptions, Figs. 4(a) and 4(b) show the simulated system dynamics, where we plot the polarization contained in a shell at radius r, $P = 4\pi r^2 p$. Figure 4(a) first shows $P(r, \tau)$ with increasing hyperpolarization time τ in regime I, assuming a 1 s shutting period in regime II. Simulation parameters are set to obtain good qualitative agreement with experiment (here $D = 0.0135$ mm2/s and $P_0 = 6.75$ s$^{-1}$). With increasing τ, spin diffusion leads to a spread of polarization; this is evidenced by the movement of the “centroid” of $P(r, \tau)$ with increasing τ toward greater r in Fig. 4(a). Notably, however, replenishment of polarization from the NV in regime I makes $P(r, \tau)$ skew toward the left. In a complementary manner, Fig. 4(b) elucidates $P(r, \tau)$ during regime III, starting with the $\tau = 120$ s distribution in Fig. 4(a). The strong relaxing effect of the NV center yields the polarization “hole” close to $r = 0$ and manifests as the steep wall of growing polarization in Fig. 4(b). Additionally, the centroid of $P(r, \tau)$ moves toward larger r and homogenizes as τ increases; the shift with r is greater here because there is no polarization replenishment and relaxation is slower for larger r.

Figure 4(c) displays the net polarization $\int P(r, \tau) \, dr$ during the readout period [from trajectories as in Fig. 4(b)], but for varying τ. Normalizing the traces shows that relaxation is slower with increasing τ, matching experiments in Fig. 2(a). This arises because the shifting centroid of P makes electron-mediated relaxation less effective. Interestingly, we find that the decays in Fig. 4(c) also follow an $\alpha = 1/2$ stretched exponential. This is shown by again plotting the data on a log vs \sqrt{t} scale in Fig. 4(d), where we observe a behavior similar to experiments in Fig. 3(a). We hypothesize that the stretched exponential decay at long times t results from the relatively flat distribution of polarization across shells. However, we again see a deviation from stretched exponential decay at short times t and τ (also observed experimentally).
We attribute this early time behavior to relaxation from NV centers: the deviation is larger at low \(t\) and \(\tau\) when the polarization is localized near the NV centers than at long \(t\) and \(\tau\) when the centroid of \(P\) is further from the NVs [verified by distributions in Figs. 4(a) and 4(b)]. The emergence of a stretched exponential distribution from a large sum of individually monoexponential decays is verified numerically.

As shown in experiments in Fig. 3, the relaxation profile is independent of \(\tau\) at long readout periods \(t\) [evidenced by distributions in Figs. 4(a) and 4(b)]. The emergence of a stretched exponential distribution from a large sum of individually monoexponential decays is verified numerically.

As shown in experiments in Fig. 3, the relaxation profile is independent of \(\tau\) at long readout periods \(t\) [evidenced by the approximately parallel traces in segment (vi) of Fig. 4(d)]. Figure 4(b) allows us to verify that this is indeed because the polarization has spread far from the NV center and the decay is instead predominantly due to background \(1/T_1\) relaxation. Indeed, as shown in Fig. 4(e), upon taking segments (i)–(vi) along the decay curves in Fig. 4(d) and extracting their \(T_2^*\) values, we observe a progressive flattening of the \(T_2^*\) values with increasing \(\tau\), agreeing with experimental data in Fig. 3(c) (overlapped here).

Outlook.—Figure 4 suggests that spin-lock control enables the ability to peer into nuclear polarization localized at different positions \(r\) with respect to the central electron. Moving through time \(t\) in the decay curve corresponds to shifting the sensitive region in the lattice being probed. This suggests a (nonlinear) means to map from \(t\) to an effective \(r\) coordinate, suggesting a method of discriminating nuclei in the electronic environment. Furthermore, Fig. 3 indicates that nuclear spins can probe electronic relaxation processes, potentially offering a view into the phonon density of states that dominate these relaxation mechanisms [33,45–47]. This is relevant to molecular systems [48–51] and in DNP, wherein the concentration and identity of electron spins can vastly affect nuclear polarization levels [52,53].

A. A. acknowledges funding from ONR (N00014-20-1-2806), AFOSR (22RT0619) and CIFAR Azrieli Global Scholars Fellowship (GS23-013). W. B. acknowledges support from the NSF Graduate Research Fellowship.

*ashokaj@berkeley.edu

[1] N. V. Prokof’ev and P. C. E. Stamp, Theory of the spin bath, Rep. Prog. Phys. 63, 669 (2000).
[2] T. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature (London) 464, 45 (2010).
[3] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
[4] A. Abragam and M. Goldman, Principles of dynamic nuclear polarization, Rep. Prog. Phys. 41, 395 (1978).
[5] W. M. Witzel and S. Das Sarma, Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment, Phys. Rev. B 74, 035322 (2006).
[6] N. Bloembergen, E. Purcell, and R. Pound, Nuclear magnetic relaxation, Nature (London) 160, 475 (1947).
[7] W. Blumberg, Nuclear spin-lattice relaxation caused by paramagnetic impurities, Phys. Rev. 119, 79 (1960).
[8] R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, and D. D. Awschalom, Coherent dynamics of a single spin interacting with an adjustable spin bath, Science 320, 352 (2008).
[9] A. Reiserer, N. Kalb, M. S. Blok, K. J. M. van Bemmelen, T. H. Taminiau, R. Hanson, D. J. Twitchen, and M. Markham, Robust Quantum-Network Memory Using Decoherence-Protected Subspaces of Nuclear Spins, Phys. Rev. X 6, 021040 (2016).
[10] J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ardavan, T. Schenkel, E. E. Haller, J. W. Ager, and S. A. Lyon, Solid-state quantum memory using the 31p nuclear spin, Nature (London) 455, 1085 (2008).
[11] T. A. Siaw, M. Fehr, A. Lund, A. Walker, D. T. Edwards, and S.-I. Han, Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance, Phys. Chem. Chem. Phys. 16, 18694 (2014).
[12] E. P. Saliba, E. L. Sesti, F. J. Scott, B. J. Albert, E. J. Choi, N. Alaniva, C. Gao, and A. B. Barnes, Electron decoupling with dynamic nuclear polarization in rotating solids, J. Am. Chem. Soc. 139, 6310 (2017).
[13] A. Sarkar, B. Blankenship, E. Druga, A. Pillai, R. Nirodi, S. Singh, A. Oddo, P. Reshetikhin, and A. Ajoy, Rapidly Enhanced Spin Polarization Injection in an Optically Pumped Spin Ratchet, Phys. Rev. Appl. 18, 034079 (2022).
[14] D. Tse and S. Hartmann, Nuclear Spin-Lattice Relaxation via Paramagnetic Centers without Spin Diffusion, Phys. Rev. Lett. 21, 511 (1968).
[15] E. P. Horvitz, Nuclear spin diffusion induced by paramagnetic impurities in nonconducting solids, Phys. Rev. B 3, 2868 (1971).
[16] Q. Stern, S. F. Cousin, F. Mentink-Vigier, A. C. Pinon, S. J. Elliott, O. Cala, and S. Jannin, Direct observation of hyperpolarization breaking through the spin diffusion barrier, Sci. Adv. 7, eabc5735 (2021).
[17] C. Ramanathan, Dynamic nuclear polarization and spin diffusion in nonconduction solids, Appl. Magn. Reson. 34, 409 (2008).
[18] A. Dréau, P. Jamonneau, O. Gazzano, S. Kosen, J.-F. Roch, J. R. Maze, and V. Jacques, Probing the Dynamics of a Nuclear Spin Bath in Diamond through Time-Resolved Central Spin Magnetometry, Phys. Rev. Lett. 113, 137601 (2014).
[19] M. Abobeih, J. Randall, C. Bradley, H. Bartling, M. Bakker, M. Degen, M. Markham, D. Twitchen, and T. Taminiau, Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor, Nature (London) 576, 411 (2019).
[20] A. Ajoy, K. Liu, R. Nazaryan, X. Lv, P. R. Zangara, B. Safvati, G. Wang, D. Arnold, G. Li, A. Lin et al., Orientation-independent room temperature optical 13C hyperpolarization in powdered diamond, Sci. Adv. 4, eaar5492 (2018).
[21] A. Ajoy, R. Nazaryan, K. Liu, X. Lv, B. Safvati, G. Wang, E. Druga, J. Reimer, D. Suter, C. Ramanathan et al., Enhanced dynamic nuclear polarization via swept microwave frequency combs, Proc. Natl. Acad. Sci. U.S.A. 115, 10576 (2018).
[22] W. Beatrez, O. Janes, A. Akkiraju, A. Pillai, A. Oddo, P. Reshetikhin, E. Druga, M. McAllister, M. Elo, B. Gilbert, D. Suter, and A. Ajoy, Floquet Prethermalization with Lifetime Exceeding 90 s in a Bulk Hyperpolarized Solid, Phys. Rev. Lett. 127, 170603 (2021).
[23] O. Sahin, H. A. Asadi, P. Schindler, A. Pillai, E. Sanchez, M. Elo, M. McAllister, E. Druga, C. Fleckenstein, M. Bukov et al., Continuously tracked, stable, large excursion trajectories of dipolar coupled nuclear spins, arXiv:2206.14945.
[24] F. Jelezko and J. Wrachtrup, Single defect centres in diamond: A review, Phys. Status Solidi (a) 203, 3207 (2006).
[25] N. B. Manson, J. P. Harrison, and M. J. Sellars, Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics, Phys. Rev. B 74, 104303 (2006).
[26] A. Ajoy, B. Safvati, R. Nazaryan, J. Oon, B. Han, P. Raghavan, R. Nirodi, A. Aguilar, K. Liu, X. Cai et al., Hyperpolarized relaxometry based nuclear T1 noise spectroscopy in diamond, Nat. Commun. 10, 5160 (2019).
[27] J. Van Wyk, E. Reynhardt, G. High, and I. Kiflawi, The dependences of ESR line widths and spin-spin relaxation times of single nitrogen defects on the concentration of nitrogen defects in diamond, J. Phys. D 30, 1790 (1997).
[28] A. Ajoy, R. Nazaryan, E. Druga, K. Liu, A. Aguilar, B. Han, M. Gierth, J. T. Oon, B. Safvati, R. Tsang et al., Room temperature “optical nanodiamond hyperpolarizer”: Physics, design, and operation, Rev. Sci. Instrum. 91, 023106 (2020).
[29] A. Karabanov, D. Wiśniewski, I. Lesanovsky, and W. Kückenberger, Dynamic Nuclear Polarization as Kinetically Constrained Diffusion, Phys. Rev. Lett. 115, 020404 (2015).
[30] Y. Hovav, A. Feintuch, and S. Vega, Theoretical aspects of dynamic nuclear polarization in the solid state—the solid effect, J. Magn. Reson. 207, 176 (2010).
[31] A. Ajoy, X. Lv, E. Druga, K. Liu, B. Safvati, A. Morabe, M. Fenton, R. Nazaryan, S. Patel, T. F. Sjoland, J. A. Reimer, D. Sakellariou, C. A. Meriles, and A. Pines, Wide dynamic range magnetic field cycler: Harnessing quantum control at low and high fields, Rev. Sci. Instrum. 90, 013112 (2019).
[32] I. Popa, T. Gaebel, M. Domhan, C. Wittmann, F. Jelezko, and J. Wrachtrup, Energy levels and decoherence properties of single electron and nuclear spins in a defect center in diamond, Phys. Rev. B 70, 201203(R) (2004).
[33] A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D. Budker, Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond, Phys. Rev. Lett. 108, 197601 (2012).
[34] A. Ajoy, R. Nirodi, P. Reshetikhin, E. Druga, A. Akkiraju, M. McAllister, G. Mainieri, S. Le, A. Lin, A. M. Souza,
C. A. Meriles, B. Gilbert, D. Suter, J. A. Reimer, and A. Pines, Dynamical decoupling in interacting systems: Applications to signal-enhanced hyperpolarized readout, arXiv:2008.08323.

[35] W.-K. Rhim, D. Burum, and D. Elleman, Multiple-Pulse Spin Locking in Dipolar Solids, Phys. Rev. Lett. 37, 1764 (1976).

[36] W.-K. Rhim, D. D. Elleman, and R. W. Vaughan, Analysis of multiple pulse NMR in solids, J. Chem. Phys. 59, 3740 (1973).

[37] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.131.010802 for further experimental details.

[38] Video showing full dataset of Fig. 2(a): https://www.youtube.com/watch?v=GEdVRV2cXH4 (2021).

[39] Video showing full dataset of Fig. 3(a): https://www.youtube.com/watch?v=b8Be0R2etZQ (2021).

[40] Video showing unnormalized dataset of Fig. 3(a): https://www.youtube.com/watch?v=5tirO0yE4zg (2021).

[41] H. Lock, G. E. Maciel, and C. E. Johnson, Natural-abundance 13C dynamic nuclear polarization experiments on chemical vapor deposited diamond film, J. Mater. Res. 7, 2791 (1992).

[42] J. S. Hartman, A. Narayanan, and Y. Wang, Spin-lattice relaxation in the 6h polytype of silicon carbide, J. Am. Chem. Soc. 116, 4019 (1994).

[43] P. M. Henrichs and M. Linder, Carbon-13 spin diffusion in the determination of intermolecular structure in solids, J. Magn. Reson. (1969) 58, 458 (1984).

[44] N. Bloembergen, On the interaction of nuclear spins in a crystalline lattice, Physica (Amsterdam) 15, 386 (1949).

[45] S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D. Awschalom, Quenching Spin Decoherence in Diamond through Spin Bath Polarization, Phys. Rev. Lett. 101, 047601 (2008).

[46] J.-C. Jaskula, K. Saha, A. Ajoy, D. J. Twitchen, M. Markham, and P. Cappellaro, Cross-Sensor Feedback Stabilization of an Emulated Quantum Spin Gyroscope, Phys. Rev. Appl. 11, 054010 (2019).

[47] M. P. Ledbetter, K. Jensen, R. Fischer, A. Jarmola, and D. Budker, Gyroscopes based on nitrogen-vacancy centers in diamond, Phys. Rev. A 86, 052116 (2012).

[48] S. Bayliss, D. Laorenza, P. Mintun, B. Kivos, D. Freedman, and D. Awschalom, Optically addressable molecular spins for quantum information processing, Science 370, 1309 (2020).

[49] A. Henstra and W. T. Wenckebach, Dynamic nuclear polarisation via the integrated solid effect I: Theory, Mol. Phys. 112, 1761 (2014).

[50] K. Tateishi, M. Negoro, S. Nishida, A. Kagawa, Y. Morita, and M. Kitagawa, Room temperature hyperpolarization of nuclear spins in bulk, Proc. Natl. Acad. Sci. U.S.A. 111, 7527 (2014).

[51] N. Niketic, B. Brandt, W. T. Wenckebach, J. Kohlbrecher, and P. Hautle, Polarization analysis in neutron small-angle scattering with a novel triplet dynamic nuclear polarization spin filter, J. Appl. Crystallogr. 48, 1514 (2015).

[52] S. Lange, A. H. Linden, Ü. Akbey, W. T. Franks, N. M. Loening, B.-J. van Rossum, and H. Oschkinat, The effect of biradical concentration on the performance of DNP-MAS-NMR J. Magn. Reson. 216, 209 (2012).

[53] A. Capozzi, T. Cheng, G. Boero, C. Roussel, and A. Comment, Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates, Nat. Commun. 8, 15757 (2017).