Research Article

Dynamic Mathematical Models’ System and Synchronization

Malik Bader Alazzam, Abdulsattar Abdullah Hamad, and Ahmed S AlGhamdi

1Faculty of Computer Science and Informatics, Amman Arab University, Balqa Governorate, Jordan
2College of Sciences, Tikrit University, Tikrit, Iraq
3Department of Computer Engineering, College of Computers and Information Technology, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Malik Bader Alazzam; m.alazzam@aau.edu.jo

Received 9 October 2021; Accepted 5 November 2021; Published 19 November 2021

Academic Editor: Naeem Jan

Copyright © 2021 Malik Bader Alazzam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We created the equilibrium, which includes sickness outcomes, health and risk behaviors, environmental factors, and health-related assets and delivery systems, and it should be incorporated in system Dyc (dynamic) modelling of chronic disease prevention. System Dyc has the ability to model a variety of interconnected illnesses and dangers, as well as the interaction between delivery systems and afflicted people, as well as state and national policies. This paper proposes a unique idea. Hybrid synchronization utilizes four positive LYP (Lyapunov) exponents based on state feedback management with two identical systems of the Lorenz system 6D HYCH system.

1. Introduction

In 1963, a Chaos, a fascinating occurrence in a dynamic, nonlinear system, encourages us to be prepared for anything. 3D Lorenz, an American meteorologist, was the first to notice these phenomena. LYP, Rössler introduced a new three-dimensional Dyc system in 1976. He had, at the period, six terms and only one polynomial nonlinearity. Many three-dimensional chaotic systems’ ideas may be found in [1–4]. The first four-dimensional model (4D) was proposed in 1979 and provided a system with two positive LYP formulas and real variables; since then, numerous 4D chaotic schemes have been identified in [5, 6]. The size of a HYCH system is proportional to the number of positive LYP chaotic system architectures which is four [7]. Even though a chaotic system only has one positive LYP opposite, a HYCH system has several positive LYP inverses [8–10]. The system’s size must be quadrupled to maximize the number of positive LYP derivations. Building 5D HYCH systems with three large LYP exponents has attracted a lot of attention since the Hu system [11–15]. The HYCH system with a multidimensional space is more effective and precompiled than the low dimension, and it surpasses typical 3D, 4D, and 5D systems due to its enhanced unpredictability and randomness. There have been an increasing number of articles on the development of new high-dimensional (9D) [16–20] systems with four basic components LYP exponents, as well as several papers on the development of new strong (6D) [21–25] systems with four test LYP coefficients. In [26–30], a six-dimensional HYCH system with four positive LYP exponents is constructed: LEA 1 = 0.5311, LEA 1 = 0.3100, LEA 3 = 0.1300, LEA 4 = 0.0780, LEA 5 = -0.0001, and LEA 5 = -12.5224, consisting of 14 terms; three terms are described. In [31], a new 7D HYCH system is built by A. A Hamad et al. in which points, stability, and LYP exponents are all important elements of a novel mechanism:

\[
\begin{align*}
\dot{u}_1(s) &= a(u_2 - u_1) + u_4 + ru_6, \\
\dot{u}_2(s) &= cu_1 - u_2 - u_1u_3 + u_5, \\
\dot{u}_3(s) &= -bu_4 + u_1u_5, \\
\dot{u}_4(s) &= du_4 + u_1u_3, \\
\dot{u}_5(s) &= -hu_3 + u_4, \\
\dot{u}_6(s) &= k_1u_1 + k_2u_2,
\end{align*}
\]

(1)
where \((u_1(s), u_6(s))\) \(\in \mathbb{R}^6\). Tiny changes in the starting values cause small variances in the sheer randomness of chaotic complex systems, according to this multidisciplinary hypothesis. With variable in system (1) and \(a, b, d, h \neq 0\), \(a, b, c\) are the constraints and \(d, h, r, k1,\) and \(k2\) are the control.

The 6-D sports’ system, which represents the driving system, is

\[
\begin{align*}
\dot{u}_1 &= a(u_2 - u_1) + u_4, \\
\dot{u}_2 &= cu_1 - u - uu_3 + u_6, \\
\dot{u}_3 &= -bu + uu, \\
\dot{u}_4 &= hu - uu_3 - u, \\
\dot{u}_5 &= qu_2 - pu_5 - gu_1, \\
\dot{u}_6 &= gu_2 - qu_6,
\end{align*}
\]

(2)

It can be written as

\[
A = \begin{bmatrix}
-a & a & 0 & 0 & 0 & 0 \\
c & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & -b & 0 & 0 & 0 \\
0 & 0 & 0 & h & -1 & 0 \\
-g & q & 0 & 0 & -p & 0 \\
0 & g & 0 & 0 & 0 & -q
\end{bmatrix},
B = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -b \\
0 & 0 & h \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
C = \begin{bmatrix}
-u_1 u_3 \\
u_1 u_2 \\
-u u_3
\end{bmatrix}.
\]

The error is calculated for the Dyc system using the previous relationship as follows:

\[
\begin{align*}
\dot{e}_1 &= e_1, \\
\dot{e}_2 &= e_2, \\
\dot{e}_3 &= A_{11} e + F + B D + e_4, \\
\dot{e}_4 &= e_4, \\
\dot{e}_5 &= e_5, \\
\dot{e}_6 &= e_6.
\end{align*}
\]

(3)

The error is calculated for the Dyc system using the previous relationship as follows:

\[
\begin{align*}
\dot{e}_1 &= -2au_2 - 2u_4, \\
\dot{e}_2 &= -2u_5 u_2, \\
\dot{e}_3 &= -2u_5 - 2v_1 u_3, \\
\dot{e}_4 &= -2qu_2, \\
\dot{e}_5 &= -v_1 e_3 + u_3 e_1, \\
\dot{e}_6 &= -v_1 e_3 + u_3 e_1.
\end{align*}
\]

(4)

The error is calculated for the Dyc system using the previous relationship as follows:

\[
\begin{align*}
\dot{e}_1 &= -2au_2 - 2u_4, \\
\dot{e}_2 &= -2u_5 u_2, \\
\dot{e}_3 &= -2u_5 - 2v_1 u_3, \\
\dot{e}_4 &= -2qu_2, \\
\dot{e}_5 &= -v_1 e_3 + u_3 e_1, \\
\dot{e}_6 &= -v_1 e_3 + u_3 e_1.
\end{align*}
\]

(5)

Using the method of linear approximation for Dyc system error (1), postcontrol is

\[
\lambda^6 + \frac{330}{15} \lambda^5 - \frac{1011}{10} \lambda^4 - \frac{42421}{15} \lambda^3
\]

\[
-\frac{279607}{30} \lambda^2 - \frac{27080}{19} \lambda + \frac{7379}{3} = 0,
\]

\[
\lambda_1 = 5, \\
\lambda_2 = 10.8034, \\
\lambda_3 = 0.2616, \\
\lambda_4 = 1.6352, \\
\lambda_5 = -8.0034, \\
\lambda_6 = -22.8264.
\]

(6)

Now, we design several controllers based on the Lebanon methods and linear approximation.

2. Result and Discussion

Theorem 1. If system U control is (I), the following design is taken:
a hybrid synchronization between the two systems (4).

Proof. After (5) control compensation in Dyc system error (4), we obtain

\[
\begin{aligned}
\dot{e}_1 &= ae_2 - ae_1 + e_4 - ce_2 - u_3e_2 + u_2e_3 - u_3e_4 + ge_5, \\
\dot{e}_2 &= ce_1 - e_2 - v_1e_3 + u_6e_1 + e_6 - ae_1 - u_3e_3 - qe_5 - ge_6, \\
\dot{e}_3 &= -be_3 - xhe_1 + u_1e_2 + v_1e_3 + v_1e_4, \\
\dot{e}_4 &= -he_4 - v_1e_3 + u_7e_1 - e_5 - e_1, \\
\dot{e}_5 &= qe_2 - pe_5 - ge_1 + e_5, \\
\dot{e}_6 &= -qe_5 + ge_2 - e_2.
\end{aligned}
\]

(7)

First, using the linear approximation method,

\[
\begin{aligned}
\lambda^6 + \frac{330}{15} \lambda^5 + \frac{5698}{30} \lambda^4 + \frac{355690}{60} \lambda^3 \\
+ \frac{5527045}{240} \lambda^2 + \frac{3276318}{80} \lambda + \frac{934851}{30} &= 0,
\end{aligned}
\]

we obtain

\[
\begin{align*}
\lambda_1 &= -\frac{5}{3}, \\
\lambda_2 &= -7.0017, \\
\lambda_3 &= -1.5007 - i, \\
\lambda_4 &= -4.5979 + 19.0319i, \\
\lambda_5 &= -4.6979 - 19.0319i, \\
\lambda_6 &= -1.5002 + 1.2442i.
\end{align*}
\]

(9)

It is clear that the linear approximation method achieves a hybrid synchronization between the two systems (4).

Second: using the Lebanon method,

\[
V(x) = \frac{1}{2} \sum_{i=1}^{6} e_i^T P e_i,
\]

(10)

\[
P = \text{diag}(0.5, 0.5, 0.5, 0.5, 0.5, 0.5).
\]

By differentiating, we obtain

\[
\begin{aligned}
\dot{V}(e) &= e_1 (ae_2 - ae_1 + e_4 - ce_2 - u_3e_2 + u_2e_3 - u_3e_4 + ge_5) \\
&\quad + e_2 (ce_1 - e_2 - v_1e_3 + u_6e_1 + e_6 - ae_1 - u_3e_3 - qe_5 - ge_6) \\
&\quad + e_3 (-be_3 - u_2e_1 + u_1e_2 + v_1e_3 + v_1e_4) \\
&\quad + e_4 (-he_4 - v_1e_3 + u_7e_1 - e_5 - e_1) \\
&\quad + e_5 (qe_2 - pe_5 - ge_1 + e_5) + e_6 (-qe_5 + ge_2 - e_2),
\end{aligned}
\]

(11)

The Lebanon formula achieved a hybrid synchronization between the two systems:

\[
Q_{\delta} = \text{diag}(a, 1, b, p, q).
\]

(12)

Figure 1 illustrates the results numerically depending on the initial values \((14, 3, 0, -1, -3, 0) \ (-13, -10, -8, 5, 0, -5)\), respectively.

Theorem 2. Let us have the nonlinear U control of Dyc system error (7) as follows:

\[
\begin{aligned}
\dot{u}_1 &= 2au_2 + 2u_4 - ce_2 - u_3e_2 + u_2e_3 - u_3e_4 + 6e_5, \\
\dot{u}_2 &= -ae_1 - 2cu_1 + 2v_1u_3 - u_1e_3 - ge_6, \\
\dot{u}_3 &= v_1e_2 + 2u_1u_2 - e_1e_2 + v_1e_4, \\
\dot{u}_4 &= -e_1 - 2he_4 + 2v_1u_3 + 2u_5 + e_5, \\
\dot{u}_5 &= -qe_2 + 2qu_2, \\
\dot{u}_6 &= -e_6.
\end{aligned}
\]

(13)

System (4) can achieve the phenomenon of hybrid synchronization with system (5) in two ways.

Proof. By substituting control (8) in system (7), we obtain

\[
\begin{aligned}
\dot{e}_1 &= ae_2 - ae_1 + e_4 - ce_2 - u_3e_2 + u_2e_3 - u_3e_4 + 6e_5, \\
\dot{e}_2 &= ce_1 - e_2 - v_1e_3 + u_6e_1 + e_6 - ae_1 - u_3e_3 - qe_5 - ge_6, \\
\dot{e}_3 &= -be_3 - u_2e_1 + u_1e_2 + v_1e_3 + v_1e_4, \\
\dot{e}_4 &= -he_4 - v_1e_3 + x_3e_1 - e_1, \\
\dot{e}_5 &= -pe_5 - ge_1, \\
\dot{e}_6 &= -qe_5 + ge_2 - e_2.
\end{aligned}
\]

(14)

The first method is linear approximation:
The hybrid synchronization of the two systems was achieved using the linear approximation approach.

The Lebanov technique is the second method. The Lebanov derivative with control (10) is as follows:

\[
\dot{V}(\epsilon) = -ae^2_1 - \epsilon^2_2 - be^2_3 - he^2_4 - pe^2_5 - qe^2_6 + e_1e_5(6 - g)
\]

\[
= -\epsilon^T Q_{b_4} \epsilon.
\]

And, the resulting matrix is

\[
Q_{b_4} = \begin{bmatrix}
a & 0 & 0 & \frac{(g - 6)}{2} & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & b & 0 & 0 \\
0 & 0 & 0 & h & 0 \\
\frac{(g - 6)}{2} & 0 & 0 & 0 & p \\
0 & 0 & 0 & 0 & q \\
\end{bmatrix}
\]

The matrix \(Q_{b_4}\) is nondiagonal.

That is, the matrix is negatively defined, and we can check this by looking for inequalities in the above matrix’s determinants.

\[
1. a > 0,
\]

\[
2. b > 0,
\]

\[
3. h > 0,
\]

\[
4. q > 0,
\]

\[
5. a > \frac{(g - 6)^2}{4p}.
\]
Figure 2: Convergence of the system.

Figure 3: Hybrid synchronization between the two systems (u_1, \ldots, u_6 and v_1, \ldots, v_6).

Figure 4: Convergence of the system (healthcare).
Because the fifth inequality is faulty, the control system was unable to establish hybrid synchronization between the two systems. Q_{s6} is negatively defined. Now, we update the P-matrix with the same control as the following:

$$P_{s6} = \text{diag}\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right).$$

(19)

The derivative of Lebanov becomes as follows:

$$\dot{V}(e_i) = -ae^2_i - e^2_i - be_i^2 - he_i^2 - 12pe_i^2 - qe_i^2 = -e^TQ_{s7}e,$n

(20)

which leads to $Q_{s7} = \text{diag}(9.5, 1, 5/3, 1, 4.8, 8)$; it is a positively specified matrix, resulting in hybrid synchrony between system (8) and system (7) with the control unit (7), as shown in Figures 1 and 2.

3. Conclusion

Utilizing four positive LYP coefficients and state feedback control, this work creates a unique hybrid synchrony between two identical Lorenz system 6D HYCH systems (Figures 3 and 4). Equilibrium point, stability, and LYP coefficients are all evaluated as significant properties of a new mechanism. According to computer modelling, the new system shows complex Dycal characteristics such as chaotic, stochastic, and periodic.

Data Availability

The data underlying the results presented in the study are available within the manuscript.

Conflicts of Interest

The authors declare not conflicts of interest.

Acknowledgments

This study was supported by Taif University researchers supporting project no. TURSP-2020/311, Taif University, Taif, Saudi Arabia.

References

[1] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.
[2] X. Gómez-Mont, J. J. Flores-Godoy, and G. Fernandez-Anaya, “Some attractors in the extended complex Lorenz model,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 23, no. 9, pp. 1–15, 2013.
[3] E. E. Mahmoud, “Generation and suppression of a new hyperchaotic nonlinear model with complex variables,” Applied Mathematical Modelling, vol. 38, no. 17-18, pp. 4445–4459, 2014.
[4] R. Khader and D. Eleyan, “Survey of DoS/DDoS attacks in IoT,” Sustainable Engineering and Innovation, vol. 3, no. 1, pp. 23–28, 2021.
[5] A. Yildiz, S. Džakmić, and M. Ahmed Saleh, “A short survey on next generation 5G wireless networks,” Sustainable Engineering and Innovation, vol. 1, no. 1, pp. 57–66, 2019.
[6] E. Džaferović, A. Sokol, A. A. Almisreb, and S. Mohd Norzeli, “DoS and DDoS vulnerability of IoT: a review,” Sustainable Engineering and Innovation, vol. 1, no. 1, pp. 43–48, 2019.
[7] M. Tripathi, “Facial image noise classification and denoising using neural network,” Sustainable Engineering and Innovation, vol. 3, no. 2, pp. 102–111, 2021.
[8] S. J. Mohammed, “Simulation study of back surface and electron transport layers on Sb2Se3 solar Cell,” Tikrit Journal of Pure Science, vol. 25, no. 6, pp. 103–113, 2020, p.
[9] B. Komnay, S. Kotey, G. Adem-Bamfi, and E. T. Tchao, “Lossy codecs for digital image signatures,” Sustainable Engineering and Innovation, vol. 3, no. 2, pp. 92–101, 2021.
[10] A. S. Nori and A. O. Abdulmajied, “Design and implementation of Threefish cipher algorithm in PNG file,” Sustainable Engineering and Innovation, vol. 3, no. 2, pp. 79–91, 2021.
[11] T. H. Jasim and I. A. Aiad, “Some topological concepts via graph theory,” Tikrit Journal of Pure Science, vol. 25, no. 4, pp. 117–122, 2020, p.
[12] M. Tripathi, “Facial image denoising using AutoEncoder and UNET,” Heritage and Sustainable Development, vol. 3, no. 2, pp. 89–96, 2021.
[13] K. Temur and S. T. Imeci, “Tri resonance multi slot patch antenna,” Heritage and Sustainable Development, vol. 2, no. 1, pp. 30–37, 2020.
[14] A. Puran and S. T. Imeci, “Design and analysis of compact dual resonance patch antenna,” Heritage and Sustainable Development, vol. 2, no. 1, pp. 38–45, 2020.
[15] L. M. Thivagar and S. G. Ahmed, “Conforming dynamics in the metric spaces,” Journal of Information Science and Engineering, vol. 36, no. 2, pp. 279–291, 2020.
[16] H. M. Ahmed and Y. Djeriri, “Robust nonlinear control of wind turbine driven doubly fed induction generators,” Heritage and Sustainable Development, vol. 2, no. 1, pp. 17–29, 2020.
[17] A. W. Aidoo, “The impact of access to credit on process innovation,” Heritage and Sustainable Development, vol. 1, no. 2, pp. 48–63, 2019.
[18] A. Husejnović and M. Husejnović, “Adoption of internet banking in Bosnia and Herzegovina,” Heritage and Sustainable Development, vol. 3, no. 1, pp. 23–33, 2021.
[19] B. Duraković and S. Mešetović, “Thermal performances of glazed energy storage systems with various storage materials: an experimental study,” Sustainable Cities and Society, vol. 45, pp. 422–430, 2019.
[20] L. T. Maria Antony and A. Abdullah Hamad, “A theoretical implementation for a proposed hyper-complex chaotic system,” Journal of Intelligent and Fuzzy Systems, vol. 38, no. 3, pp. 2585–2590, 2020.
[21] N. A. Noori and A. A. Mohammad, “Dycal approach in studying GJR-GARCH (Q, P) models with application,” Tikrit Journal of Pure Science, vol. 26, no. 2, pp. 145–156, 2021, p. 3.
[22] G. Zhang, Z. Guo, Q. Cheng, I. Sanz, and H. Abdulsattar Abdullah, “Multi-level integrated health management model for empty nest elderly people’s to strengthen their lives,” Aggression and Violent Behavior, vol. 13, no. 1, pp. 101–128, 2018.
[23] B. M. Jandary and A. N. Saleh, “Simulation of CZTSe single solar cells by AFORS-HET software,” Tikrit Journal of Pure Science, vol. 25, no. 2, pp. 71–80, 2020.
[24] N. J. Khalid and N. E. Arif, “Chromatic number and some properties of pseudo-von neumann regular graph of cartesian product of rings,” Tikrit Journal of Pure Science, vol. 25, no. 3, pp. 135–140, 2020, p.
[25] Y. H. Mahmood, F. S. Atallah, and O. K. Zedan, “Fabrication of small size wind turbine and studying its characterization,” *Tikrit Journal of Pure Science*, vol. 25, no. 4, pp. 75–79, 2020.

[26] Z. B. Mohammed, N. K. Hussein, and Z. M. Abdullah, “A modified three-term conjugate gradient method for large-scale optimization,” *Tikrit Journal of Pure Science*, vol. 25, no. 3, pp. 116–120, 2020.

[27] S. S. Noon, “Estimation the variogram function indicator which represent the transmissivity coefficient in the groundwater,” *Tikrit Journal of Pure Science*, vol. 25, no. 5, pp. 110–118, 2020.

[28] W. A. Saeed and J. Abdulghafoor, “Salim. Convergence solution for some harmonic stochastic differential equations with application,” *Tikrit Journal of Pure Science*, vol. 25, no. 5, pp. 119–123, 2020.

[29] B. Durakovic, G. Yildiz, and M. Yahia, “Comparative performance evaluation of conventional and renewable thermal insulation materials used in building envelops,” *Tehnicki Vjesnik - Technical Gazette*, vol. 27, no. 1, pp. 283–289, 2020.

[30] R. N. Salih and M. A. Al-jawaherry, “Finding minimum and maximum values of variables in mathematical equations by applying firefly and PSO algorithms,” *Tikrit Journal of Pure Science*, vol. 25, no. 5, pp. 99–109, 2020.

[31] M. L. Thivagar, A. A. Hamad, B. Tamlarasan, and G. K. Antony, “A novel seven-dimensional HYCH,” in *Proceedings of Second Doctoral Symposium on Computational Intelligence*, pp. 329–340, Lucknow, India, March 2021.