Table 1: Phylogenies

Publication-ready versions of both the genome-scale GBDP tree and the 16S rRNA gene sequence tree can be customized and exported either in SVG (vector graphic) or PNG format from within the phylogeny viewers in your TYGS result page. For publications the SVG format is recommended because it is lossless, always keeps its high resolution and can also be easily converted to other popular formats such as PDF or EPS. Please follow the link provided above!

Table 2: Identification

The below list contains the result of the TYGS species identification routine.

Explanation of remarks that might occur in the below table:

remark [R1]: The TYGS type strain database is automatically updated on an almost daily basis. However, if a particular type strain genome is not available in the TYGS database, this can have several reasons which are detailed in the FAQ. You can request an extended 16S rRNA gene analysis via the 16S tree viewer found in your result page to detect not yet genome-sequenced type strains relevant for your study.

remark [R2]: > 70% dDDH value (formula \(d_4\)) and (almost) minimal dDDH values for gene-content formulae \(d_0\) and \(d_6\) indicate a potentially unreliable identification result and should thus be checked via the 16S rRNA gene sequence similarity. Such strong deviations can, in principle, be caused by sequence contamination.

remark [R3]: G+C content difference of > 1 % indicates a potentially unreliable identification result because within species G+C content varies no more than 1 %, if computed from genome sequences (PMID: 24505073).

Strain	Conclusion	Identification result	Remark
'Lc1252CHN'	belongs to known species	*Lactobacillus crispatus*	
'Lc2029'	belongs to known species	*Lactobacillus crispatus*	
'LcAB70'	belongs to known species	*Lactobacillus crispatus*	
'LcCIP104459'	belongs to known species	*Lactobacillus crispatus*	
'LcCRI4'	belongs to known species	*Lactobacillus crispatus*	
'LcCRI8'	belongs to known species	*Lactobacillus crispatus*	
'LcCRI10'	belongs to known species	*Lactobacillus crispatus*	
'LcCRI17'	belongs to known species	*Lactobacillus crispatus*	
'LcCTV05'	belongs to known species	*Lactobacillus crispatus*	
'LcJVV01'	belongs to known species	*Lactobacillus crispatus*	
'LcMV1AUS'	belongs to known species	*Lactobacillus crispatus*	
'LcMV3AUS'	belongs to known species	*Lactobacillus crispatus*	
'LcRL02'	belongs to known species	*Lactobacillus crispatus*	
'LcRL03'	belongs to known species	*Lactobacillus crispatus*	
'LcRL05'	belongs to known species	*Lactobacillus crispatus*	
Strain	Conclusion	Identification result	Remark
----------	-----------------------------	-----------------------------	--------
'LcRL06'	belongs to known species	*Lactobacillus crispatus*	
'LcRL07'	belongs to known species	*Lactobacillus crispatus*	
'LcRL08'	belongs to known species	*Lactobacillus crispatus*	
'LcRL09'	belongs to known species	*Lactobacillus crispatus*	
'LcRL10'	belongs to known species	*Lactobacillus crispatus*	
Table 3: Pairwise comparisons of user genomes vs. type-strain genomes

The following table contains the pairwise dDDH values between your user genomes and the selected type-strain genomes. The dDDH values are provided along with their confidence intervals (C.I.) for the three different GBDP formulas:

- formula \(d_0 \): length of all HSPs divided by total genome length
- formula \(d_4 \): sum of all identities found in HSPs divided by overall HSP length
- formula \(d_6 \): sum of all identities found in HSPs divided by total genome length

Note: Formula \(d_4 \) is independent of genome length and is thus robust against the use of incomplete draft genomes. For other reasons for preferring formula \(d_4 \), see the FAQ.

Query	Subject	\(d_0 \)	C.I. \(d_0 \)	\(d_4 \)	C.I. \(d_4 \)	\(d_6 \)	C.I. \(d_6 \)	Diff. G+C Percent			
'LcRL09.fna'	'LcRL10.fna'	98.4	[97.2 - 99.1]	99.9	[99.8 - 99.9]	99.3	[98.7 - 99.6]	0.16			
'LcRL02.fna'	'LcRL10.fna'	98.7	[97.7 - 99.2]	99.9	[99.8 - 99.9]	99.4	[99.0 - 99.7]	0.11			
'LcRL06.fna'	'LcRL07.fna'	99.6	[99.1 - 99.8]	99.9	[99.9 - 100.0]	99.8	[99.7 - 99.9]	0.0			
'LcRL02.fna'	'LcRL09.fna'	99.2	[98.5 - 99.6]	99.9	[99.9 - 100.0]	99.7	[99.4 - 99.9]	0.05			
'LcCRI17.fasta'	'LcRL07.fasta'	92.4	[89.5 - 94.5]	99.5	[99.2 - 99.7]	95.6	[93.8 - 96.9]	0.07			
'LcCRI17.fasta'	'LcRL06.fasta'	92.0	[89.1 - 94.2]	99.5	[99.1 - 99.7]	95.3	[93.5 - 96.7]	0.07			
'LcCRI8.fasta'	'LcRL07.fasta'	89.2	[85.9 - 91.9]	99.3	[98.9 - 99.6]	93.4	[91.1 - 95.1]	0.01			
'LcJVV01.fasta'	'LcMV1AUS.fasta'	81.7	[77.8 - 85.1]	99.2	[98.7 - 99.5]	87.6	[84.6 - 90.1]	0.02			
'LcCRI8.fasta'	'LcRL06.fasta'	88.8	[85.4 - 91.5]	99.2	[98.8 - 99.5]	93.0	[90.7 - 94.8]	0.01			
'LcCRI10.fasta'	'LcRL06.fasta'	92.3	[89.5 - 94.5]	99.1	[98.6 - 99.4]	95.5	[93.6 - 96.8]	0.06			
'LcCRI10.fasta'	'LcRL07.fasta'	92.8	[90.0 - 94.8]	99.1	[98.6 - 99.4]	95.7	[94.0 - 97.0]	0.06			
'LcRL07.fasta'	'LcRL08.fasta'	93.8	[91.3 - 95.7]	99.0	[98.5 - 99.4]	96.4	[94.9 - 97.5]	0.12			
'LcRL06.fasta'	'LcRL08.fasta'	93.5	[90.8 - 95.4]	99.0	[98.5 - 99.4]	96.2	[94.6 - 97.4]	0.12			
'LcCRI10.fasta'	'LcCRI17.fasta'	93.1	[90.4 - 95.1]	98.8	[98.2 - 99.2]	95.9	[94.2 - 97.2]	0.13			
'LcCRI17.fasta'	'LcRL08.fasta'	92.9	[90.2 - 95.0]	98.7	[98.0 - 99.1]	95.8	[94.1 - 97.1]	0.2			
'LcRL05.fasta'	'LcRL07.fasta'	81.7	[77.9 - 85.1]	98.6	[98.0 - 99.1]	87.5	[84.5 - 90.0]	0.46			
'LcRL05.fasta'	'LcRL06.fasta'	81.2	[77.3 - 84.6]	98.6	[98.0 - 99.1]	87.1	[84.0 - 89.6]	0.46			
'LcCRI17.fasta'	'LcRL05.fasta'	87.0	[83.4 - 89.9]	98.4	[97.7 - 98.9]	91.6	[89.0 - 93.6]	0.39			
'LcCRI4.fasta'	'LcRL02.fasta'	98.3	[97.1 - 99.0]	98.1	[97.2 - 98.7]	99.0	[98.4 - 99.4]	0.04			
'LcCRI8.fasta'	'LcCRI17.fasta'	91.2	[88.1 - 93.5]	98.1	[97.2 - 98.7]	94.5	[92.5 - 96.0]	0.06			
'LcCRI8.fasta'	'LcRL05.fasta'	79.9	[75.9 - 83.3]	98.1	[97.3 - 98.7]	85.8	[82.7 - 88.5]	0.45			
'LcCRI4.fasta'	'LcRL09.fasta'	98.0	[96.7 - 98.8]	98.0	[97.2 - 98.6]	98.9	[98.2 - 99.3]	0.09			
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent			
----------------	---------------	-------	------------	-------	------------	-------	------------	-------------------			
'LcCRI4.fasta'	'LcRL10.fna'	97.2	[95.6 - 98.3]	97.8	[96.8 - 98.4]	98.4	[97.5 - 99.0]	0.07			
'LcCRI10.fasta'	'LcRL08.fna'	96.0	[94.0 - 97.4]	97.8	[96.8 - 98.4]	97.7	[96.5 - 98.5]	0.06			
'LcCRI8.fasta'	'LcRL03.fna'	94.2	[91.7 - 96.0]	97.7	[96.7 - 98.4]	96.5	[94.9 - 97.6]	0.14			
'LcCRI17.fasta'	'LcRL03.fna'	82.4	[78.6 - 85.7]	97.6	[96.6 - 98.3]	87.8	[84.8 - 90.3]	0.02			
'LcCRI8.fasta'	'LcRL03.fna'	88.9	[85.5 - 91.6]	97.5	[96.5 - 98.2]	92.8	[90.5 - 94.6]	0.04			
'LcRL03.fna'	'LcRL06.fna'	84.3	[80.5 - 87.5]	97.5	[96.4 - 98.2]	89.3	[86.5 - 91.6]	0.05			
'LcRL05.fna'	'LcRL08.fna'	83.6	[79.8 - 86.8]	97.4	[96.4 - 98.2]	88.7	[85.8 - 91.1]	0.58			
'LcRL03.fna'	'LcRL07.fna'	84.9	[81.1 - 88.0]	97.4	[96.4 - 98.2]	89.7	[87.0 - 92.0]	0.06			
'LcCRI10.fasta'	'LcRL05.fna'	81.7	[77.8 - 85.0]	97.2	[96.1 - 98.0]	87.2	[84.1 - 89.7]	0.52			
'Lc2029.fna'	'LcCRI8.fasta'	95.3	[93.1 - 96.8]	97.0	[95.9 - 97.8]	97.2	[95.8 - 98.1]	0.13			
'LcJVV01.fna'	'LcRL02.fna'	87.3	[83.7 - 90.1]	97.0	[95.8 - 97.8]	91.5	[89.0 - 93.5]	0.08			
'LcJVV01.fna'	'LcRL09.fna'	86.6	[83.0 - 89.6]	96.9	[95.7 - 97.8]	91.0	[88.4 - 93.1]	0.03			
'LcCRI4.fasta'	'LcJVV01.fna'	89.5	[86.2 - 92.1]	96.9	[95.7 - 97.8]	93.2	[90.9 - 94.9]	0.12			
'Lc2029.fna'	'LcRL06.fna'	89.8	[86.6 - 92.4]	96.8	[95.6 - 97.7]	93.4	[91.1 - 95.1]	0.14			
'LcAB70.fna'	'LcRL06.fna'	88.1	[84.6 - 90.6]	96.7	[95.4 - 97.6]	92.0	[89.6 - 94.0]	0.28			
'LcAB70.fna'	'LcRL07.fna'	88.5	[85.1 - 91.2]	96.7	[95.5 - 97.6]	92.4	[90.0 - 94.3]	0.28			
'Lc2029.fna'	'LcRL07.fna'	90.2	[87.0 - 92.7]	96.7	[95.5 - 97.6]	93.6	[91.4 - 95.3]	0.14			
'LcJVV01.fna'	'LcRL10.fna'	85.5	[81.8 - 88.5]	96.6	[95.3 - 97.5]	90.1	[87.3 - 92.3]	0.19			
'LcCRI8.fasta'	'LcCRI10.fasta'	94.7	[92.3 - 96.3]	96.5	[95.3 - 97.5]	96.7	[95.2 - 97.7]	0.07			
'LcRL03.fna'	'LcRL05.fna'	74.1	[70.1 - 77.7]	96.5	[95.3 - 97.5]	80.5	[77.1 - 83.5]	0.4			
'Lc2029.fna'	'LcCRI17.fasta'	91.0	[87.9 - 93.4]	96.4	[95.1 - 97.4]	94.2	[92.1 - 95.7]	0.07			
'LcRL03.fna'	'LcRL08.fna'	87.2	[83.7 - 90.1]	96.3	[95.0 - 97.3]	91.4	[88.8 - 93.4]	0.18			
'LcAB70.fna'	'LcCRI17.fasta'	86.3	[82.7 - 89.3]	96.2	[94.8 - 97.2]	90.6	[88.0 - 92.6]	0.35			
'LcMV1AUS.fasta'	'LcRL02.fna'	84.8	[81.1 - 87.9]	96.0	[94.7 - 97.1]	89.5	[86.6 - 91.7]	0.1			
'Lc2029.fna'	'LcRL08.fna'	96.1	[94.0 - 97.4]	96.0	[94.6 - 97.0]	97.5	[96.3 - 98.4]	0.26			
'LcJVV01.fna'	'LcMV3AUS.fasta'	78.3	[74.4 - 81.6]	95.9	[94.5 - 97.0]	84.1	[80.9 - 86.9]	0.16			
'LcMV1AUS.fasta'	'LcRL09.fna'	85.4	[81.7 - 88.4]	95.8	[94.4 - 96.9]	89.9	[87.1 - 92.1]	0.05			
Query	Subject	d_0	C.I. d_0	d_s	C.I. d_s	d_t	C.I. d_t	Diff. G+C Percent			
----------------	------------------	-------	----------------	-------	----------------	-------	----------------	-------------------			
'Lc2029.fna'	'LcRL03.fna'	89.6	[86.3 - 92.2]	95.7	[94.3 - 96.8]	93.1	[90.8 - 94.8]	0.09			
'LcAB70.fna'	'LcRL08.fna'	91.2	[88.1 - 93.5]	95.6	[94.1 - 96.7]	94.2	[92.1 - 95.7]	0.16			
'LcCRI10.fasta'	'LcRL03.fna'	89.2	[85.9 - 91.8]	95.6	[94.1 - 96.7]	92.7	[90.4 - 94.6]	0.11			
'Lc2029.fna'	'LcRL05.fna'	79.9	[75.9 - 83.3]	95.6	[94.1 - 96.7]	85.4	[82.2 - 88.1]	0.32			
'LcAB70.fna'	'LcCRI10.fasta'	92.0	[89.1 - 94.2]	95.5	[94.0 - 96.6]	94.7	[92.8 - 96.2]	0.22			
'LcMV1AUS.fna'	'LcRL10.fna'	87.2	[83.6 - 90.1]	95.1	[93.5 - 96.3]	91.1	[88.5 - 93.2]	0.21			
'LcAB70.fna'	'LcRL05.fna'	76.5	[72.5 - 80.1]	95.1	[93.5 - 96.3]	82.4	[79.1 - 85.3]	0.74			
'Lc2029.fna'	'LcCRI10.fasta'	97.6	[96.1 - 98.5]	94.8	[93.1 - 96.0]	98.4	[97.4 - 99.0]	0.2			
'LcCRI4.fasta'	'LcMV1AUS.fna'	86.3	[82.7 - 89.3]	94.8	[93.2 - 96.1]	90.4	[87.7 - 92.6]	0.14			
'LcAB70.fna'	'LcCRI8.fasta'	92.7	[89.9 - 94.8]	94.7	[93.1 - 96.0]	95.1	[93.2 - 96.5]	0.29			
'Lc2029.fna'	'LcAB70.fna'	91.1	[88.0 - 93.4]	94.7	[93.1 - 96.0]	94.0	[91.8 - 95.6]	0.42			
'LcCRI8.fasta'	'LcCTV05.fna'	78.8	[74.8 - 82.2]	94.6	[92.9 - 95.9]	84.3	[81.0 - 87.1]	0.09			
'LcAB70.fna'	'LcRL03.fna'	85.5	[81.8 - 88.6]	94.5	[92.8 - 95.8]	89.8	[87.0 - 92.0]	0.33			
'LcCTV05.fna'	'LcRL06.fna'	80.4	[76.4 - 83.8]	94.4	[92.6 - 95.7]	85.6	[82.4 - 88.3]	0.08			
'LcMV1AUS.fna'	'LcMV3AUS.fna'	80.1	[76.2 - 83.5]	94.4	[92.7 - 95.7]	85.4	[82.2 - 88.1]	0.14			
'LcCTV05.fna'	'LcRL07.fna'	80.9	[77.0 - 84.3]	94.2	[92.5 - 95.6]	86.0	[82.9 - 88.6]	0.08			
'LcAB70.fna'	'LcCTV05.fna'	78.2	[74.2 - 81.7]	94.1	[92.3 - 95.5]	83.7	[80.4 - 86.5]	0.2			
'LcCRI17.fasta'	'LcCTV05.fna'	76.0	[72.0 - 79.6]	93.8	[92.0 - 95.2]	81.8	[78.4 - 84.7]	0.15			
'LcMV3AUS.fna'	'LcRL10.fna'	90.1	[86.8 - 92.6]	93.4	[91.6 - 94.9]	93.1	[90.8 - 94.8]	0.35			
'LcMV3AUS.fna'	'LcRL09.fna'	88.1	[84.6 - 90.9]	93.3	[91.4 - 94.8]	91.6	[89.0 - 93.6]	0.2			
'LcMV3AUS.fna'	'LcRL02.fna'	87.5	[84.0 - 90.4]	93.3	[91.5 - 94.8]	91.2	[88.6 - 93.2]	0.25			
'LcCTV05.fna'	'LcRL05.fna'	67.6	[63.7 - 71.2]	93.2	[91.3 - 94.7]	74.0	[70.5 - 77.2]	0.54			
'Lc1252CHN.fna'	'LcJV01.fna'	71.0	[67.0 - 74.6]	93.1	[91.2 - 94.7]	77.2	[73.7 - 80.3]	0.21			
'Lc2029.fna'	'LcCTV05.fna'	82.0	[78.1 - 85.3]	92.7	[90.7 - 94.3]	86.7	[83.6 - 89.3]	0.22			
'LcCTV05.fna'	'LcRL03.fna'	77.0	[73.0 - 80.5]	92.4	[90.4 - 94.0]	82.4	[79.1 - 85.3]	0.13			
'LcCRI4.fasta'	'LcMV3AUS.fna'	88.7	[85.3 - 91.4]	92.3	[90.3 - 93.9]	91.9	[89.4 - 93.9]	0.28			
'LcCTV05.fna'	'LcRL08.fna'	79.5	[75.6 - 83.0]	92.2	[90.1 - 93.8]	84.5	[81.3 - 87.3]	0.04			
Query	Subject	d_0	C.I. d_0	d_s	C.I. d_s	d_i	C.I. d_i	Diff. G+C Percent			
------------------------	--------------------------	--------	------------	--------	------------	--------	------------	------------------			
'Lc1252CHN.fna'	'LcMV1AUS.fna'	72.2	[68.3 - 75.9]	91.5	[89.3 - 93.2]	78.0	[74.6 - 81.1]	0.19			
'LcAB70.fna'	'LcRL02.fna'	86.7	[83.1 - 89.6]	91.4	[89.2 - 93.2]	90.2	[87.5 - 92.4]	0.29			
'LcAB70.fna'	'LcRL09.fna'	86.5	[82.9 - 89.5]	91.4	[89.3 - 93.2]	90.1	[87.4 - 92.3]	0.34			
'LcCRI10.fasta'	'LcCTV05.fasta'	84.7	[81.0 - 87.9]	91.2	[89.0 - 93.0]	88.7	[85.8 - 91.0]	0.02			
'LcAB70.fna'	'LcRL10.fna'	87.9	[84.4 - 90.7]	91.1	[88.9 - 92.9]	91.1	[88.5 - 93.2]	0.18			
'Lc1252CHN.fna'	'LcMV3AUS.fna'	70.8	[66.9 - 74.5]	91.0	[88.8 - 92.8]	76.7	[73.2 - 79.8]	0.05			
'LcMV3AUS.fna'	'LcRL06.fna'	78.6	[74.6 - 82.1]	90.8	[88.5 - 92.6]	83.5	[80.3 - 86.4]	0.26			
'Lc2029.fna'	'LcRL10.fna'	88.8	[85.4 - 91.5]	90.7	[88.5 - 92.6]	91.8	[89.2 - 93.7]	0.24			
'LcMV3AUS.fna'	'LcRL07.fna'	78.9	[75.0 - 82.4]	90.7	[88.4 - 92.5]	83.8	[80.6 - 86.6]	0.26			
'Lc2029.fna'	'LcRL02.fna'	86.5	[82.9 - 89.4]	90.6	[88.3 - 92.4]	89.9	[87.2 - 92.2]	0.13			
'Lc1252CHN.fna'	'LcCRI4.fasta'	77.5	[73.5 - 81.0]	90.5	[88.2 - 92.4]	82.5	[79.2 - 85.4]	0.33			
'Lc2029.fna'	'LcRL09.fna'	87.1	[83.6 - 90.0]	90.5	[88.2 - 92.3]	90.4	[87.7 - 92.6]	0.08			
'LcCRI8.fasta'	'LcRL02.fna'	84.4	[80.7 - 87.6]	90.4	[88.1 - 92.3]	88.3	[85.4 - 90.7]	0.0			
'Lc1252CHN.fna'	'LcRL02.fna'	76.9	[72.9 - 80.5]	90.3	[88.0 - 92.2]	82.0	[78.7 - 84.9]	0.29			
'Lc1252CHN.fna'	'LcRL09.fna'	77.3	[73.3 - 80.8]	90.2	[87.9 - 92.1]	82.3	[79.0 - 85.2]	0.24			
'LcCRI8.fasta'	'LcRL09.fna'	84.7	[81.0 - 87.8]	90.1	[87.8 - 92.0]	88.5	[85.6 - 90.9]	0.05			
'Lc1252CHN.fna'	'LcRL10.fna'	75.5	[71.5 - 79.1]	90.1	[87.8 - 92.0]	80.7	[77.4 - 83.7]	0.4			
'LcJVV01.fna'	'LcRL05.fna'	62.4	[58.7 - 66.0]	90.0	[87.7 - 91.9]	68.6	[65.1 - 71.8]	0.36			
'LcMV3AUS.fna'	'LcRL08.fna'	81.4	[77.5 - 84.8]	89.8	[87.5 - 91.7]	85.8	[82.6 - 88.4]	0.38			
'LcMV3AUS.fna'	'LcRL03.fna'	77.0	[73.0 - 80.6]	89.8	[87.4 - 91.7]	82.0	[78.7 - 84.9]	0.2			
'LcRL02.fna'	'LcRL06.fna'	87.7	[84.2 - 90.5]	89.6	[87.2 - 91.5]	90.7	[88.1 - 92.8]	0.01			
'LcJVV01.fna'	'LcRL08.fna'	73.5	[69.6 - 77.2]	89.6	[87.2 - 91.6]	78.9	[75.5 - 82.0]	0.22			
'LcJVV01.fna'	'LcRL07.fna'	77.8	[73.8 - 81.3]	89.6	[87.3 - 91.6]	82.6	[79.3 - 85.5]	0.1			
'LcCRI8.fasta'	'LcRL10.fna'	85.4	[81.7 - 88.4]	89.6	[87.2 - 91.5]	88.9	[86.0 - 91.2]	0.11			
'LcRL06.fna'	'LcRL10.fna'	85.7	[82.1 - 88.8]	89.5	[87.1 - 91.5]	89.2	[86.3 - 91.5]	0.1			
'LcMV1AUS.fna'	'LcRL07.fna'	72.8	[68.8 - 76.4]	89.5	[87.2 - 91.5]	78.2	[74.8 - 81.5]	0.11			
'LcRL02.fna'	'LcRL07.fna'	88.3	[84.8 - 91.0]	89.5	[87.2 - 91.5]	91.2	[88.6 - 93.2]	0.01			
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent			
---------------	-----------------------	-------	------------	-------	------------	-------	------------	-------------------			
'LcAB70.fna'	'LcCRI4.fasta'	86.5	[82.9 - 89.5]	89.5	[87.1 - 91.5]	89.8	[87.1 - 92.1]	0.25			
'LcCRI10.fasta'	'LcRL02.fna'	86.2	[82.6 - 89.2]	89.5	[87.2 - 91.5]	89.6	[86.8 - 91.8]	0.07			
'Lc2029.fna'	'LcMV3AUS.fna'	80.6	[76.7 - 84.0]	89.5	[87.1 - 91.5]	85.0	[81.8 - 87.7]	0.12			
'LcRL07.fna'	'LcRL10.fna'	86.3	[82.7 - 89.3]	89.5	[87.1 - 91.5]	89.6	[86.8 - 91.9]	0.1			
'Lc2029.fna'	'LcJVV01.fasta'	73.5	[69.5 - 77.1]	89.5	[87.2 - 91.5]	78.9	[75.5 - 82.0]	0.05			
'LcRL07.fna'	'LcRL09.fasta'	88.7	[85.3 - 91.4]	89.4	[87.1 - 91.4]	91.5	[88.9 - 93.5]	0.06			
'LcCRI10.fasta'	'LcRL09.fasta'	87.0	[83.4 - 89.9]	89.4	[87.0 - 91.4]	90.1	[87.4 - 92.3]	0.12			
'LcRL02.fna'	'LcRL03.fasta'	79.3	[75.3 - 82.7]	89.4	[87.0 - 91.4]	83.9	[80.6 - 86.7]	0.04			
'LcRL03.fna'	'LcRL10.fasta'	81.8	[77.9 - 85.1]	89.4	[87.1 - 91.4]	86.0	[82.9 - 88.6]	0.15			
'LcJVV01.fna'	'LcRL06.fasta'	77.1	[73.1 - 80.7]	89.4	[87.0 - 91.4]	82.0	[78.7 - 84.9]	0.09			
'LcRL06.fna'	'LcRL09.fasta'	88.1	[84.6 - 90.9]	89.4	[87.0 - 91.4]	91.0	[88.4 - 93.1]	0.06			
'LcCRI17.fasta'	'LcRL02.fasta'	81.2	[77.3 - 84.6]	89.3	[86.9 - 91.3]	85.5	[82.3 - 88.2]	0.06			
'LcMV3AUS.fna'	'LcRL05.fasta'	67.7	[63.9 - 71.4]	89.3	[86.9 - 91.3]	73.6	[70.1 - 76.8]	0.2			
'LcMV1AUS.fna'	'LcRL06.fasta'	72.0	[68.1 - 75.7]	89.3	[87.0 - 91.3]	77.5	[74.1 - 80.7]	0.11			
'LcCRI17.fasta'	'LcMV3AUS.fna'	77.0	[73.0 - 80.5]	89.2	[86.9 - 91.2]	81.9	[78.5 - 84.8]	0.19			
'LcJVV01.fna'	'LcRL03.fasta'	67.4	[63.6 - 71.1]	89.2	[86.8 - 91.2]	73.3	[69.8 - 76.5]	0.04			
'LcAB70.fna'	'LcMV3AUS.fna'	79.7	[75.7 - 83.1]	89.2	[86.8 - 91.2]	84.2	[80.9 - 87.0]	0.54			
'LcCRI10.fasta'	'LcRL10.fasta'	87.9	[84.4 - 90.7]	89.1	[86.7 - 91.1]	90.8	[88.1 - 92.9]	0.04			
'LcCRI8.fasta'	'LcJVV01.fasta'	75.6	[71.7 - 79.2]	89.1	[86.7 - 91.1]	80.7	[77.3 - 83.7]	0.08			
'LcRL03.fna'	'LcRL09.fasta'	80.8	[76.9 - 84.2]	89.1	[86.7 - 91.1]	85.1	[82.0 - 87.8]	0.01			
'LcCRI8.fasta'	'LcMV3AUS.fna'	77.6	[73.7 - 81.2]	89.1	[86.7 - 91.1]	82.4	[79.1 - 85.3]	0.25			
'LcCRI17.fasta'	'LcRL09.fasta'	81.7	[77.8 - 85.0]	89.1	[86.7 - 91.1]	85.8	[82.7 - 88.5]	0.01			
'LcCRI17.fasta'	'LcRL10.fasta'	82.7	[78.9 - 86.0]	88.9	[86.5 - 91.0]	86.7	[83.6 - 89.2]	0.17			
'Lc2029.fna'	'LcCRI4.fasta'	87.3	[83.7 - 90.1]	88.9	[86.5 - 90.9]	90.3	[87.6 - 92.5]	0.17			
'Lc1252CHN.fna'	'LcRL07.fasta'	69.8	[65.8 - 73.4]	88.9	[86.5 - 91.0]	75.4	[71.9 - 78.6]	0.31			
'LcCRI10.fasta'	'LcMV3AUS.fna'	81.2	[77.3 - 84.6]	88.8	[86.4 - 90.9]	85.4	[82.2 - 88.1]	0.32			
'LcMV1AUS.fna'	'LcRL05.fasta'	64.8	[61.0 - 68.5]	88.8	[86.4 - 90.9]	70.7	[67.3 - 74.0]	0.35			
Query	Subject	d₀	C.I. d₀	d₄	C.I. d₄	d₅	C.I. d₅	Diff G+C Percent			
--------------	--------------------	--------	---------	--------	---------	--------	---------	-----------------			
'LcRL08.fna'	'LcRL10.fna'	89.0	[85.7 - 91.7]	88.8	[86.4 - 90.9]	91.7	[89.1 - 93.6]	0.03			
'LcCRI4.fasta'	'LcCRI8.fasta'	84.4	[80.6 - 87.5]	88.8	[86.3 - 90.8]	88.0	[85.1 - 90.5]	0.04			
'LcRL02.fna'	'LcRL08.fna'	86.5	[82.8 - 89.4]	88.8	[86.4 - 90.9]	89.7	[86.9 - 91.5]	0.13			
'Lc1252CHN.fna'	'LcRL06.fna'	69.4	[65.5 - 73.0]	88.7	[86.3 - 90.8]	75.0	[71.5 - 78.2]	0.3			
'LcMV1AUS.fna'	'LcRL03.fna'	72.5	[68.5 - 76.1]	88.6	[86.1 - 90.6]	77.8	[74.3 - 80.9]	0.06			
'LcRL08.fna'	'LcRL09.fna'	87.4	[83.8 - 90.2]	88.6	[86.1 - 90.6]	90.3	[87.6 - 92.5]	0.19			
'LcCRI17.fasta'	'LcJVV01.fna'	74.2	[70.2 - 77.8]	88.4	[85.9 - 90.3]	79.3	[75.9 - 82.4]	0.02			
'LcRL02.fna'	'LcRL05.fna'	74.0	[70.1 - 77.7]	88.4	[86.0 - 90.5]	79.2	[75.8 - 82.2]	0.45			
'LcRL05.fna'	'LcRL10.fna'	72.7	[68.7 - 76.3]	88.4	[86.0 - 90.5]	77.9	[74.5 - 81.0]	0.56			
'LcCTV05.fna'	'LcRL02.fna'	75.0	[71.0 - 78.6]	88.4	[86.0 - 90.5]	80.0	[76.6 - 83.0]	0.09			
'LcRL05.fna'	'LcRL09.fna'	74.8	[70.8 - 78.4]	88.3	[85.9 - 90.4]	79.9	[76.5 - 82.9]	0.4			
'LcCTV05.fna'	'LcRL09.fna'	75.5	[71.5 - 79.0]	88.3	[85.8 - 90.4]	80.4	[77.0 - 83.4]	0.14			
'LcCRI4.fasta'	'LcRL07.fna'	86.8	[83.2 - 89.7]	88.2	[85.7 - 90.3]	89.8	[87.0 - 92.0]	0.02			
'LcCRI10.fasta'	'LcJVV01.fna'	73.9	[69.9 - 77.5]	88.2	[85.7 - 90.3]	79.0	[75.6 - 82.1]	0.15			
'LcAB70.fna'	'LcJVV01.fna'	76.4	[72.4 - 79.9]	88.2	[85.7 - 90.3]	81.2	[77.8 - 84.1]	0.37			
'LcCTV05.fna'	'LcJVV01.fna'	64.5	[60.7 - 68.1]	88.2	[85.7 - 90.3]	70.3	[66.8 - 73.5]	0.17			
'LcCRI4.fasta'	'LcRL06.fna'	86.2	[82.6 - 89.2]	88.1	[85.6 - 90.2]	89.4	[86.5 - 91.6]	0.03			
'LcCRI4.fasta'	'LcCRI10.fasta'	87.1	[83.5 - 90.0]	88.0	[85.4 - 90.1]	90.0	[87.3 - 92.2]	0.03			
'LcCTV05.fna'	'LcRL10.fna'	74.2	[70.2 - 77.8]	88.0	[85.5 - 90.1]	79.3	[75.9 - 82.3]	0.02			
'Lc2029.fna'	'LcMV1AUS.fna'	78.6	[74.6 - 82.1]	87.9	[85.4 - 90.1]	83.1	[79.8 - 85.9]	0.03			
'Lc1252CHN.fna'	'LcRL08.fna'	71.9	[68.0 - 75.6]	87.8	[85.2 - 89.9]	77.2	[73.7 - 80.3]	0.43			
'LcMV1AUS.fna'	'LcRL08.fna'	79.4	[75.5 - 82.9]	87.7	[85.1 - 89.8]	83.7	[80.5 - 86.6]	0.24			
'LcCRI4.fasta'	'LcRL08.fna'	86.7	[83.1 - 89.6]	87.7	[85.2 - 89.9]	89.7	[86.9 - 91.9]	0.1			
'LcCRI4.fasta'	'LcRL05.fna'	73.7	[69.7 - 77.3]	87.7	[85.2 - 89.8]	78.7	[75.3 - 81.8]	0.48			
'LcCRI4.fasta'	'LcCRI17.fasta'	80.8	[76.8 - 84.2]	87.7	[85.2 - 89.9]	84.9	[81.7 - 87.6]	0.1			
'Lc1252CHN.fna'	'Lc2029.fna'	71.8	[67.8 - 75.4]	87.6	[85.1 - 89.8]	77.0	[73.6 - 80.2]	0.16			
'Lc1252CHN.fna'	'LcRL03.fna'	63.5	[59.7 - 67.1]	87.6	[85.1 - 89.8]	69.3	[65.8 - 72.5]	0.25			
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_s	C.I. d_s	Diff. G+C Percent			
------------	-------------------	-------	------------	-------	------------	-------	------------	-------------------			
'LcCRI8.fasta'	'LcMV1AUS.fna'	79.8	[75.8 - 83.2]	87.5	[85.0 - 89.7]	84.0	[80.7 - 86.8]	0.1			
'LcCRI17.fasta'	'LcMV1AUS.fna'	74.7	[70.7 - 78.3]	87.5	[85.0 - 89.7]	79.6	[76.2 - 82.6]	0.04			
'LcCRI4.fasta'	'LcRL03.fasta'	79.9	[75.9 - 83.3]	87.3	[84.7 - 89.4]	84.0	[80.8 - 86.8]	0.08			
'Lc1252CHN.fna'	'LcRL05.fasta'	61.9	[58.2 - 65.4]	87.1	[84.5 - 89.3]	67.6	[64.2 - 70.8]	0.15			
'LcCTV05.fasta'	'LcMV1AUS.fna'	64.2	[60.5 - 67.9]	86.7	[84.1 - 88.9]	69.8	[66.4 - 73.1]	0.19			
'Lc1252CHN.fna'	'LcCRI17.fasta'	67.8	[63.9 - 71.4]	86.6	[84.0 - 88.9]	73.2	[69.7 - 76.4]	0.23			
'LcAB70.fasta'	'LcMV1AUS.fna'	78.1	[74.1 - 81.6]	86.6	[84.0 - 88.8]	82.4	[79.1 - 85.3]	0.39			
'Lc1252CHN.fna'	'LcCRI8.fasta'	73.8	[69.8 - 77.4]	86.5	[83.8 - 88.7]	78.6	[75.2 - 81.7]	0.29			
'LcCRI4.fasta'	'LcCTV05.fasta'	75.8	[71.8 - 79.4]	86.5	[83.9 - 88.8]	80.4	[77.0 - 83.4]	0.05			
'LcCTV05.fasta'	'LcMV3AUS.fna'	69.5	[65.6 - 73.1]	86.4	[83.7 - 88.6]	74.7	[71.3 - 77.9]	0.34			
'LcCRI10.fasta'	'LcMV1AUS.fna'	78.3	[74.3 - 81.8]	86.4	[83.8 - 88.7]	82.5	[79.2 - 85.4]	0.17			
'Lc1252CHN.fna'	'LcCRI10.fasta'	71.5	[67.6 - 75.2]	86.4	[83.8 - 88.7]	76.6	[73.1 - 79.7]	0.36			
'Lc1252CHN.fna'	'LcAB70.fasta'	76.5	[72.5 - 80.0]	84.6	[81.8 - 87.0]	80.7	[77.3 - 83.7]	0.58			
'Lc1252CHN.fna'	'LcCTV05.fasta'	62.2	[58.4 - 65.8]	84.3	[81.5 - 86.7]	67.5	[64.1 - 70.7]	0.38			
'LcCIP104459.fasta'	'Lactobacillus crispatus JCM 1185'	80.3	[76.4 - 83.7]	81.6	[78.7 - 84.2]	83.5	[80.2 - 86.3]	0.21			
'LcCIP104459.fasta'	'LcJVV01.fasta'	64.8	[61.0 - 68.4]	79.3	[76.4 - 82.0]	69.2	[65.8 - 72.5]	0.1			
'LcCIP104459.fasta'	'LcRL02.fasta'	71.8	[67.8 - 75.4]	79.2	[76.2 - 81.8]	75.6	[72.2 - 78.8]	0.18			
'LcCIP104459.fasta'	'LcMV1AUS.fasta'	65.5	[61.7 - 69.1]	79.1	[76.2 - 81.8]	69.9	[66.4 - 73.1]	0.08			
'LcCIP104459.fasta'	'LcRL09.fasta'	71.3	[67.3 - 74.9]	79.1	[76.1 - 81.8]	75.2	[71.7 - 78.4]	0.13			
'LcCIP104459.fasta'	'LcRL10.fasta'	69.9	[65.9 - 73.5]	78.8	[75.8 - 81.4]	73.8	[70.3 - 77.0]	0.29			
'LcCIP104459.fasta'	'LcMV3AUS.fasta'	63.0	[59.3 - 66.6]	78.7	[75.7 - 81.4]	67.4	[64.0 - 70.7]	0.07			
'LcAB70.fasta'	'LcCIP104459.fasta'	70.1	[66.2 - 73.7]	78.6	[75.7 - 81.3]	74.0	[70.5 - 77.2]	0.47			
'LcCIP104459.fasta'	'LcCRI4 fasta'	69.1	[65.2 - 72.7]	78.5	[75.6 - 81.2]	73.1	[69.6 - 76.3]	0.21			
'LcCIP104459.fasta'	'LcRL06.fasta'	67.5	[63.6 - 71.1]	78.4	[75.5 - 81.1]	71.6	[68.1 - 74.8]	0.19			
'LcCIP104459.fasta'	'LcRL07.fasta'	68.2	[64.3 - 71.8]	78.4	[75.4 - 81.1]	72.2	[68.7 - 75.4]	0.19			
'LcCIP104459.fasta'	'LcRL03.fasta'	62.9	[59.2 - 66.5]	78.3	[75.3 - 81.0]	67.3	[63.9 - 70.5]	0.14			
'Lc1252CHN.fasta'	'LcCIP104459.fasta'	63.5	[59.7 - 67.1]	78.2	[75.2 - 80.9]	67.8	[64.4 - 71.0]	0.11			
Query	Subject	d_0	C.I. d_0	d_1	C.I. d_1	d_2	C.I. d_2	Diff. G+C Percent			
-----------------------	-----------------------------	-------	------------	-------	------------	-------	------------	-------------------			
'LcCIP104459.fna'	'LcCRI17.fasta'	65.1	[61.3 - 68.7]	78.1	[75.1 - 80.8]	69.3	[65.9 - 72.6]	0.12			
'LcCIP104459.fna'	'LcRL05.fna'	59.6	[55.9 - 63.1]	78.1	[75.1 - 80.8]	64.1	[60.7 - 67.3]	0.27			
'Lc2029.fna'	'LcCIP104459.fna'	67.4	[63.6 - 71.1]	78.0	[75.0 - 80.7]	71.5	[68.0 - 74.7]	0.05			
'LcCIP104459.fna'	'LcCRI10.fasta'	67.1	[63.3 - 70.8]	78.0	[75.1 - 80.8]	71.2	[67.7 - 74.4]	0.25			
'LcCIP104459.fna'	'LcRL08.fasta'	69.3	[65.4 - 73.0]	77.8	[74.9 - 80.6]	73.2	[69.7 - 76.4]	0.31			
'LcCIP104459.fna'	'LcCRI8.fasta'	70.5	[66.5 - 74.1]	77.7	[74.8 - 80.5]	74.2	[70.7 - 77.4]	0.18			
'LcRL07.fna'	Lactobacillus crispatus	66.3	[62.4 - 69.9]	77.5	[74.6 - 80.3]	70.3	[66.9 - 73.5]	0.4			
'LcRL06.fna'	Lactobacillus crispatus	65.8	[61.9 - 69.4]	77.2	[74.2 - 79.9]	69.8	[66.3 - 73.0]	0.4			
'LcCIP104459.fna'	'LcCTV05.fasta'	58.3	[54.7 - 61.8]	76.7	[73.7 - 79.5]	62.6	[59.3 - 65.8]	0.27			
'LcMV3AUS.fna'	Lactobacillus crispatus	62.4	[58.7 - 66.0]	76.6	[73.6 - 79.4]	66.6	[63.2 - 69.8]	0.15			
'Lc2029.fna'	Lactobacillus crispatus	65.7	[61.9 - 69.4]	76.5	[73.5 - 79.3]	69.6	[66.2 - 72.9]	0.26			
'LcRL08.fna'	Lactobacillus crispatus	68.0	[64.1 - 71.6]	76.4	[73.4 - 79.1]	71.7	[68.2 - 74.9]	0.53			
'LcJVV01.fna'	Lactobacillus crispatus	64.0	[60.2 - 67.6]	76.2	[73.2 - 79.0]	68.0	[64.6 - 71.2]	0.31			
'Lc1252CHN.fna'	Lactobacillus crispatus	67.2	[63.3 - 70.8]	76.2	[73.2 - 78.9]	70.9	[67.4 - 74.1]	0.1			
'LcCRI17.fasta'	Lactobacillus crispatus	64.3	[60.5 - 67.9]	76.1	[73.1 - 78.8]	68.2	[64.8 - 71.4]	0.33			
'LcAB70.fasta'	Lactobacillus crispatus	69.9	[66.0 - 73.5]	76.1	[73.1 - 78.9]	73.4	[69.9 - 76.6]	0.68			
'LcRL03.fna'	Lactobacillus crispatus	59.9	[56.2 - 63.5]	76.0	[73.0 - 78.8]	64.0	[60.7 - 67.3]	0.35			
'LcRL05.fna'	Lactobacillus crispatus	58.7	[55.1 - 62.2]	76.0	[73.0 - 78.7]	62.9	[59.6 - 66.1]	0.06			
'LcCRI8.fasta'	Lactobacillus crispatus	69.4	[65.5 - 73.1]	75.7	[72.7 - 78.5]	72.9	[69.4 - 76.1]	0.39			
'LcCRI10.fasta'	Lactobacillus crispatus	67.3	[63.4 - 71.0]	75.5	[72.5 - 78.3]	70.9	[67.5 - 74.2]	0.46			
'LcMV1AUS.fna'	Lactobacillus crispatus	66.7	[62.9 - 70.4]	75.4	[72.3 - 78.1]	70.4	[66.9 - 73.6]	0.29			
'LcRL10.fna'	Lactobacillus crispatus	68.5	[64.7 - 72.2]	75.2	[72.2 - 78.0]	72.0	[68.5 - 75.2]	0.5			
'LcRL02.fna'	Lactobacillus crispatus	70.3	[66.4 - 73.9]	75.1	[72.1 - 77.9]	73.6	[70.1 - 76.6]	0.39			
'LcRL09.fna'	Lactobacillus crispatus	70.8	[66.8 - 74.4]	74.9	[71.9 - 77.7]	74.0	[70.5 - 77.2]	0.34			
'LcCRI4.fasta'	Lactobacillus crispatus	69.7	[65.8 - 73.3]	74.7	[71.7 - 77.5]	73.0	[69.5 - 76.2]	0.43			
'LcCTV05.fna'	Lactobacillus crispatus	57.8	[54.2 - 61.3]	74.6	[71.6 - 77.4]	61.8	[58.5 - 65.0]	0.48			
'Lc2029.fna'	Lactobacillus gallinarum	27.7	[24.3 - 31.3]	25.5	[23.2 - 28.0]	26.1	[23.2 - 29.2]	0.38			
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_i	C.I. d_i	Diff. G+C Percent			
----------------	--	-------	------------	-------	------------	-------	------------	------------------			
'LcCTV05.fna'	Lactobacillus gallinarum JCM 2011	28.3	[25.0 - 32.0]	25.1	[22.7 - 27.5]	26.5	[23.6 - 29.6]	0.6			
'LcCRI8.fasta'	Lactobacillus gallinarum JCM 2011	31.8	[28.5 - 35.4]	25.1	[22.7 - 27.5]	29.2	[26.3 - 32.3]	0.5			
'LcCRI17.fasta'	Lactobacillus gallinarum JCM 2011	31.5	[28.1 - 35.1]	25.1	[22.8 - 27.5]	29.0	[26.0 - 32.1]	0.44			
'LcAB70.fna'	Lactobacillus gallinarum JCM 2011	32.5	[29.1 - 36.0]	25.1	[22.8 - 27.6]	29.7	[26.8 - 32.8]	0.8			
'LcCRI10.fasta'	Lactobacillus gallinarum JCM 2011	31.3	[27.9 - 34.9]	25.1	[22.8 - 27.6]	28.8	[25.9 - 31.9]	0.58			
'LcRL05.fna'	Lactobacillus kefiranofaciens ATCC 43761	29.5	[26.2 - 33.2]	25.0	[22.7 - 27.5]	27.4	[24.5 - 30.5]	0.68			
'LcRL05.fna'	Lactobacillus gallinarum JCM 2011	29.3	[25.9 - 32.9]	25.0	[22.6 - 27.4]	27.2	[24.3 - 30.3]	0.06			
'LcRL03.fasta'	Lactobacillus gallinarum JCM 2011	29.2	[25.9 - 32.8]	24.9	[22.5 - 27.3]	27.2	[24.3 - 30.3]	0.46			
'Lc2029.fasta'	Lactobacillus amylolorus DSM 20531	28.8	[25.4 - 32.4]	24.9	[22.6 - 27.4]	26.9	[24.0 - 30.0]	0.92			
'LcCRI4.fasta'	Lactobacillus gallinarum JCM 2011	32.3	[28.9 - 35.9]	24.8	[22.5 - 27.3]	29.5	[26.5 - 32.6]	0.54			
'LcRL07.fna'	Lactobacillus gallinarum JCM 2011	31.4	[28.0 - 35.0]	24.8	[22.4 - 27.2]	28.8	[25.9 - 31.9]	0.52			
'LcRL06.fna'	Lactobacillus gallinarum JCM 2011	31.3	[27.9 - 34.8]	24.8	[22.5 - 27.3]	28.7	[25.8 - 31.8]	0.52			
'Lc2029.fasta'	Lactobacillus suntoryeus LMG 22464	27.6	[24.2 - 31.2]	24.8	[22.4 - 27.2]	25.8	[23.0 - 29.0]	0.33			
'Lc2029.fasta'	Lactobacillus sobrius DSM 16698	28.3	[24.9 - 31.9]	24.7	[22.4 - 27.2]	26.4	[23.5 - 29.5]	0.98			
'LcRL08.fasta'	Lactobacillus gallinarum JCM 2011	31.0	[27.7 - 34.6]	24.6	[22.3 - 27.1]	28.5	[25.6 - 31.6]	0.64			
'LcCRI4.fasta'	Lactobacillus amylolorus DSM 20531	32.2	[28.8 - 35.7]	24.6	[22.3 - 27.1]	29.3	[26.4 - 32.4]	0.76			
'Lc2029.fasta'	Lactobacillus kitasatonis JCM 1039	29.0	[25.6 - 32.6]	24.6	[22.3 - 27.1]	26.9	[24.0 - 30.0]	0.66			
'LcCRI17.fasta'	Lactobacillus kefiranofaciens ATCC 43761	30.6	[27.3 - 34.2]	24.6	[22.3 - 27.1]	28.2	[25.3 - 31.3]	0.3			
'LcRL02.fasta'	Lactobacillus amylolorus DSM 20531	31.3	[27.9 - 34.9]	24.5	[22.2 - 27.0]	28.7	[25.7 - 31.8]	0.79			
'LcCRI17.fasta'	Lactobacillus suntoryeus LMG 22464	29.7	[26.3 - 33.3]	24.5	[22.2 - 27.0]	27.4	[24.5 - 30.5]	0.39			
'LcRL07.fasta'	Lactobacillus suntoryeus LMG 22464	29.4	[26.0 - 33.0]	24.5	[22.2 - 26.9]	27.2	[24.3 - 30.3]	0.47			
'LcRL09.fasta'	Lactobacillus gallinarum JCM 2011	32.3	[28.9 - 35.9]	24.5	[22.2 - 27.0]	29.4	[26.5 - 32.5]	0.46			
'LcCRI10.fasta'	Lactobacillus suntoryeus LMG 22464	29.3	[25.9 - 32.9]	24.5	[22.2 - 27.0]	27.1	[24.2 - 30.2]	0.52			
'LcRL10.fasta'	Lactobacillus gallinarum JCM 2011	31.4	[28.1 - 35.0]	24.5	[22.2 - 27.0]	28.7	[25.8 - 31.9]	0.61			
'LcRL05.fasta'	Lactobacillus suntoryeus LMG 22464	27.5	[24.1 - 31.1]	24.5	[22.2 - 27.0]	25.7	[22.9 - 28.8]	0.01			
'LcCRI10.fasta'	Lactobacillus amylolorus DSM 20531	32.3	[29.0 - 35.9]	24.5	[22.2 - 27.0]	29.4	[26.5 - 32.5]	0.73			
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent			
----------------	--	-------	------------	-------	------------	-------	------------	-------------------			
'LcRL02.fna'	Lactobacillus gallinarum DSM 20075	32.3	[28.9 - 35.9]	24.5	[22.2 - 27.0]	29.4	[26.5 - 32.5]	0.51			
'LcRL09.fna'	Lactobacillus amylovorus DSM 20531	31.6	[28.2 - 35.2]	24.5	[22.2 - 27.0]	28.9	[25.9 - 32.0]	0.85			
'LcRL10.fna'	Lactobacillus amylovorus DSM 20531	31.0	[27.7 - 34.6]	24.5	[22.2 - 27.0]	28.4	[25.5 - 31.6]	0.69			
'LcRL03.fna'	Lactobacillus amylovorus DSM 20531	31.0	[27.7 - 34.6]	24.5	[22.2 - 27.0]	28.4	[25.5 - 31.6]	0.69			
'LcAB70.fna'	Lactobacillus suntoryeus LMG 22464	30.1	[26.7 - 33.7]	24.5	[22.2 - 27.0]	27.7	[24.8 - 30.9]	0.75			
'LcCTV05.fna'	Lactobacillus amylovorus DSM 20531	32.5	[29.1 - 36.0]	24.4	[22.1 - 26.8]	29.5	[26.5 - 32.6]	0.86			
'LcRL06.fna'	Lactobacillus amylovorus DSM 20531	30.1	[26.7 - 33.7]	24.5	[22.2 - 27.0]	27.7	[24.8 - 30.9]	0.75			
'LcRL06.fna'	Lactobacillus amylovorus DSM 20531	29.8	[26.4 - 33.4]	24.4	[22.1 - 26.9]	27.5	[24.6 - 30.6]	0.47			
'LcRL07.fna'	Lactobacillus amylovorus DSM 20531	31.2	[27.9 - 34.8]	24.4	[22.1 - 26.9]	28.6	[25.7 - 31.7]	0.78			
'LcRL05.fna'	Lactobacillus sobrius DSM 16698	28.9	[25.5 - 32.5]	24.3	[22.0 - 26.8]	26.8	[23.9 - 29.9]	1.3			
'LcRL05.fna'	Lactobacillus amylovorus DSM 20531	29.1	[25.8 - 32.8]	24.3	[22.0 - 26.8]	27.0	[24.1 - 30.1]	1.24			
'Lc2029.fna'	Lactobacillus helveticus DSM 20075	25.5	[22.2 - 29.2]	24.3	[22.0 - 26.8]	24.2	[21.3 - 27.3]	0.09			
'LcRL10.fna'	Lactobacillus helveticus DSM 20075	26.2	[22.9 - 29.9]	24.3	[22.0 - 26.8]	24.7	[21.9 - 27.8]	0.33			
'LcCRI4.fasta'	Lactobacillus kitasatonis JCM 1039	32.6	[29.2 - 36.1]	24.3	[22.0 - 26.8]	29.5	[26.6 - 32.6]	0.49			
'LcAB70.fna'	Lactobacillus amylovorus DSM 20531	33.0	[29.6 - 36.6]	24.3	[22.0 - 26.8]	29.9	[26.9 - 33.0]	0.5			
'LcRL05.fna'	Lactobacillus kitasatonis JCM 1039	28.6	[25.2 - 32.2]	24.3	[22.0 - 26.8]	26.6	[23.7 - 29.7]	0.97			
'LcRL08.fna'	Lactobacillus suntoryeus LMG 22464	29.7	[26.4 - 33.4]	24.3	[21.9 - 26.7]	27.4	[24.5 - 30.5]	0.59			
'LcCRI8.fasta'	Lactobacillus amylovorus DSM 20531	33.0	[29.6 - 36.5]	24.3	[22.0 - 26.8]	29.8	[26.9 - 32.9]	0.8			
'LcRL03.fna'	Lactobacillus suntoryeus LMG 22464	27.7	[24.3 - 31.3]	24.3	[22.0 - 26.8]	25.9	[23.0 - 29.0]	0.41			
'LcCRI4.fasta'	Lactobacillus suntoryeus LMG 22464	30.2	[26.8 - 33.8]	24.3	[22.0 - 26.8]	27.7	[24.8 - 30.9]	0.49			
'LcCRI10.fasta'	Lactobacillus sobrius DSM 16698	31.6	[28.2 - 35.2]	24.3	[22.0 - 26.7]	28.8	[25.9 - 31.9]	0.78			
'LcCRI10.fasta'	Lactobacillus kitasatonis JCM 1039	30.9	[27.5 - 34.4]	24.3	[22.0 - 26.7]	28.3	[25.3 - 31.4]	0.46			
'LcRL07.fna'	Lactobacillus sobrius DSM 16698	30.7	[27.4 - 34.3]	24.2	[21.9 - 26.6]	28.1	[25.2 - 31.2]	0.84			
'LcRL08.fna'	Lactobacillus amylovorus DSM 20531	32.0	[28.6 - 35.6]	24.2	[21.9 - 26.6]	29.1	[26.1 - 32.2]	0.66			
'LcRL06.fna'	Lactobacillus kitasatonis JCM 1039	31.6	[28.2 - 35.2]	24.2	[21.9 - 26.7]	28.8	[25.9 - 31.9]	0.51			
'LcRL09.fna'	Lactobacillus kitasatonis JCM 1039	32.1	[28.8 - 35.7]	24.2	[21.9 - 26.7]	29.2	[26.3 - 32.3]	0.58			
'LcRL10.fna'	Lactobacillus sobrius DSM 16698	31.1	[27.7 - 34.7]	24.2	[21.9 - 26.6]	28.4	[25.5 - 31.5]	0.74			
Query	Subject	d₀	C.I. d₀	d₄	C.I. d₄	d₅	C.I. d₅	Diff. G+C Percent			
-------------	---------------------------------------	-------	---------	-------	---------	-------	---------	-------------------			
'LcRL02.fna'	Lactobacillus sobrius DSM 16698	31.6	[28.2 - 35.2]	24.2	[21.9 - 26.7]	28.8	[25.8 - 31.9]	0.85			
'LcCRI4.fasta'	Lactobacillus sobrius DSM 16698	32.0	[28.6 - 35.6]	24.2	[21.9 - 26.7]	29.1	[26.2 - 32.2]	0.81			
'LcRL02.fna'	Lactobacillus kitasatonis JCM 1039	32.3	[28.9 - 35.8]	24.2	[21.9 - 26.7]	29.3	[26.3 - 32.4]	0.53			
'LcJVV01.fna'	Lactobacillus gallinarum JCM 1039	31.3	[27.9 - 34.9]	24.2	[21.9 - 26.7]	28.6	[25.7 - 31.7]	0.42			
'LcRL09.fna'	Lactobacillus sobrius DSM 16698	31.7	[28.4 - 35.3]	24.2	[21.9 - 26.7]	28.9	[26.0 - 32.0]	0.9			
'LcMV1AUS.fna'	Lactobacillus gallinarum JCM 1039	30.2	[26.9 - 33.8]	24.2	[21.9 - 26.7]	27.8	[24.9 - 30.9]	0.4			
'LcRL06.fna'	Lactobacillus sobrius DSM 16698	31.2	[27.8 - 34.8]	24.2	[21.9 - 26.7]	28.5	[25.6 - 31.6]	0.84			
'LcRL09.fna'	Lactobacillus suntoryeus LMG 22464	30.0	[26.7 - 33.6]	24.2	[21.9 - 26.7]	27.6	[24.7 - 30.7]	0.4			
'LcRL03.fna'	Lactobacillus amylovorus DSM 20531	29.7	[26.4 - 33.3]	24.2	[21.9 - 26.7]	27.4	[24.5 - 30.5]	0.84			
'LcAB70.fna'	Lactobacillus sobrius DSM 16698	32.7	[29.3 - 36.2]	24.2	[21.9 - 26.7]	29.6	[26.6 - 32.7]	0.56			
'LcRL10.fna'	Lactobacillus suntoryeus LMG 22464	29.2	[25.8 - 32.8]	24.2	[21.9 - 26.7]	27.0	[24.1 - 30.1]	0.56			
'LcRL02.fna'	Lactobacillus suntoryeus LMG 22464	30.0	[26.7 - 33.6]	24.2	[21.8 - 26.6]	27.6	[24.7 - 30.7]	0.46			
'LcRL07.fna'	Lactobacillus helveticus DSM 20075	27.1	[23.7 - 30.7]	24.2	[21.9 - 26.6]	25.4	[22.5 - 28.5]	0.24			
'LcJVV01.fna'	Lactobacillus amylovorus DSM 20531	31.3	[27.9 - 34.8]	24.2	[21.9 - 26.7]	28.5	[25.6 - 31.6]	0.88			
'LcRL07.fna'	Lactobacillus kitasatonis JCM 1039	31.3	[27.9 - 34.9]	24.2	[21.9 - 26.7]	28.6	[25.7 - 31.7]	0.51			
'LcCRI17.fasta'	Lactobacillus sobrius DSM 16698	31.7	[28.3 - 35.3]	24.2	[21.9 - 26.7]	28.9	[25.9 - 32.0]	0.91			
'LcRL05.fna'	Lactobacillus helveticus DSM 20075	25.4	[22.0 - 30.9]	24.1	[21.8 - 26.5]	24.0	[21.1 - 27.0]	0.22			
'LcAB70.fna'	Lactobacillus kitasatonis JCM 1039	31.4	[28.1 - 35.0]	24.1	[21.8 - 26.5]	28.6	[25.7 - 31.7]	0.23			
'LcRL03.fna'	Lactobacillus helveticus DSM 20075	25.2	[21.9 - 28.9]	24.1	[21.8 - 26.6]	23.9	[21.0 - 27.0]	0.18			
'LcMV3AUS.fna'	Lactobacillus kitasatonis JCM 1039	30.7	[27.3 - 34.3]	24.1	[21.8 - 26.5]	28.1	[25.2 - 31.2]	0.77			
'Lc1252CHN.fasta'	Lactobacillus amylovorus DSM 20531	31.6	[28.2 - 35.2]	24.1	[21.8 - 26.6]	28.7	[25.8 - 31.8]	1.09			
'LcCRI17.fasta'	Lactobacillus kitasatonis JCM 1039	30.8	[27.4 - 34.4]	24.1	[21.8 - 26.6]	28.2	[25.3 - 31.3]	0.59			
'LcRL03.fna'	Lactobacillus kitasatonis JCM 1039	30.5	[26.1 - 33.1]	24.1	[21.8 - 26.6]	27.2	[24.3 - 30.3]	0.57			
'LcRL03.fna'	Lactobacillus sobrius DSM 16698	29.1	[25.7 - 32.7]	24.1	[21.8 - 26.5]	26.9	[24.0 - 30.0]	0.89			
'LcRL09.fna'	Lactobacillus helveticus DSM 20075	27.0	[23.7 - 30.6]	24.1	[21.8 - 26.5]	25.3	[22.4 - 28.4]	0.17			
'LcCRI8.fasta'	Lactobacillus helveticus DSM 20075	27.1	[23.7 - 30.7]	24.1	[21.8 - 26.5]	25.3	[22.5 - 28.4]	0.22			
'LcCRI8.fasta'	Lactobacillus kitasatonis JCM 1039	31.5	[28.1 - 35.0]	24.1	[21.8 - 26.6]	28.7	[25.7 - 31.8]	0.53			
Query	Subject	d_o	C.I. d_o	d_a	C.I. d_a	d_i	C.I. d_i	Diff. G+C Percent			
--------------	-----------------------------	-------	------------	-------	------------	-------	------------	------------------			
LcJV01.fna	Lactobacillus kitasatonis	32.4	[29.0 - 35.9]	24.1	[21.8 - 26.6]	29.3	[26.4 - 32.4]	0.61			
Lc1252CHN.fna	Lactobacillus gallinarum	30.9	[27.5 - 34.5]	24.1	[21.8 - 26.6]	28.2	[25.3 - 31.4]	0.21			
Lc1252CHN.fna	Lactobacillus kitasatonis	32.2	[28.9 - 35.8]	24.1	[21.8 - 26.6]	29.2	[26.3 - 32.3]	0.82			
LcRL10.fna	Lactobacillus kitasatonis	31.9	[28.5 - 35.4]	24.1	[21.8 - 26.6]	29.0	[26.0 - 32.1]	0.42			
LcCIP104459.fna	Lactobacillus gallinarum	35.3	[31.9 - 38.8]	24.1	[21.8 - 26.6]	31.4	[28.5 - 34.5]	0.33			
LcCRI8.fasta	Lactobacillus sobrius DSM 16698	32.3	[28.9 - 35.9]	24.1	[21.8 - 26.6]	29.3	[26.4 - 32.4]	0.85			
LcMV1AUS.fna	Lactobacillus amylovorus DSM 20531	30.3	[26.9 - 33.9]	24.1	[21.8 - 26.6]	27.8	[24.9 - 30.9]	0.9			
LcCTV05.fna	Lactobacillus amylovorus DSM 20531	29.7	[26.3 - 33.3]	24.0	[21.7 - 26.5]	27.3	[24.4 - 30.4]	0.7			
LcRL02.fna	Lactobacillus helveticus DSM 20075	26.8	[23.4 - 30.4]	24.0	[21.7 - 26.5]	25.1	[22.2 - 28.2]	0.22			
LcRL06.fna	Lactobacillus helveticus DSM 20075	27.6	[24.3 - 31.3]	24.0	[21.7 - 26.5]	25.8	[22.9 - 28.9]	0.23			
LcMV3AUS.fna	Lactobacillus gallinarum DSM 22464	30.6	[27.2 - 34.2]	24.0	[21.7 - 26.5]	28.0	[25.1 - 31.1]	0.26			
LcMV1AUS.fna	Lactobacillus kitasatonis DSM 1039	31.7	[28.3 - 35.3]	24.0	[21.7 - 26.5]	28.8	[25.9 - 31.9]	0.63			
LcMV3AUS.fna	Lactobacillus suntorye DSM 22464	28.3	[25.0 - 31.9]	24.0	[21.7 - 26.5]	26.3	[23.4 - 29.4]	0.21			
LcAB70.fna	Lactobacillus helveticus DSM 20075	26.8	[23.4 - 30.4]	24.0	[21.7 - 26.5]	25.1	[22.2 - 28.2]	0.51			
LcMV3AUS.fna	Lactobacillus amylovorus DSM 20531	30.3	[27.0 - 33.9]	24.0	[21.7 - 26.5]	27.8	[24.9 - 30.9]	1.04			
LcCIP104459.fna	Lactobacillus suntorye DSM 22464	31.4	[28.0 - 35.0]	24.0	[21.6 - 26.4]	28.6	[25.7 - 31.7]	0.28			
LcMV1AUS.fna	Lactobacillus suntorye DSM 22464	28.8	[25.4 - 32.4]	24.0	[21.7 - 26.5]	26.6	[23.7 - 29.7]	0.35			
LcCRI17.fasta	Lactobacillus helveticus DSM 20075	27.0	[23.6 - 30.6]	24.0	[21.7 - 26.4]	25.2	[22.4 - 28.3]	0.16			
LcRL08.fna	Lactobacillus kitasatonis DSM 1039	31.8	[28.4 - 35.4]	24.0	[21.7 - 26.5]	28.9	[26.0 - 32.0]	0.39			
LcJV01.fna	Lactobacillus suntorye DSM 22464	29.5	[26.1 - 33.1]	24.0	[21.7 - 26.5]	27.1	[24.2 - 30.2]	0.37			
LcCRI4.fasta	Lactobacillus helveticus DSM 20075	27.0	[23.6 - 30.6]	24.0	[21.7 - 26.5]	25.3	[22.4 - 28.4]	0.26			
LcRL08.fna	Lactobacillus helveticus DSM 20075	26.9	[23.5 - 30.5]	24.0	[21.7 - 26.5]	25.2	[22.3 - 28.3]	0.36			
LcCRI10.fasta	Lactobacillus helveticus DSM 20075	26.7	[23.4 - 30.4]	24.0	[21.7 - 26.5]	25.0	[22.2 - 28.2]	0.29			
LcRL08.fna	Lactobacillus sobrius DSM 16698	31.3	[27.9 - 34.9]	24.0	[21.7 - 26.5]	28.5	[25.6 - 31.6]	0.71			
Lc1252CHN.fna	Lactobacillus suntorye DSM 22464	29.1	[25.7 - 32.7]	23.9	[21.6 - 26.4]	26.8	[23.9 - 29.9]	0.16			
LcMV1AUS.fna	Lactobacillus helveticus DSM 20075	26.0	[22.7 - 29.6]	23.9	[21.6 - 26.4]	24.5	[21.6 - 27.6]	0.12			
LcJV01.fna	Lactobacillus helveticus DSM 20075	26.5	[23.2 - 30.2]	23.9	[21.6 - 26.4]	24.9	[22.0 - 28.0]	0.14			
Query	Subject	d₀	C.L. d₀	d₄	C.L. d₄	d₅	C.L. d₅	Diff. G+C Percent			
----------------------	--	------	---------	------	---------	------	---------	------------------			
'LcMV3AUS.fna'	Lactobacillus helveticus DSM 20075	25.9	[22.6 - 29.6]	23.9	[21.6 - 26.3]	24.4	[21.6 - 27.5]	0.02			
'LcJVV01.fna'	Lactobacillus sobrius DSM 16698	30.9	[27.5 - 34.5]	23.9	[21.6 - 26.3]	28.2	[25.2 - 31.3]	0.93			
'Lc1252CHN.fna'	Lactobacillus helveticus DSM 20075	26.3	[23.0 - 30.0]	23.9	[21.6 - 26.4]	24.7	[21.9 - 27.8]	0.07			
'LcCIP104459.fna'	Lactobacillus helveticus DSM 20075	28.1	[24.7 - 31.7]	23.9	[21.6 - 26.4]	24.5	[21.6 - 27.6]	0.36			
'Lc2029.fna'	Lactobacillus kefiranofaciens ATCC 43761	26.0	[22.7 - 29.7]	23.8	[21.5 - 26.2]	25.3	[22.4 - 28.4]	0.43			
'LcCTV05.fna'	Lactobacillus kitasatonis JCM 1039	27.0	[23.7 - 30.7]	23.8	[21.5 - 26.2]	25.3	[22.4 - 28.4]	0.43			
'LcCTV05.fna'	Lactobacillus sobrius DSM 16698	28.7	[25.3 - 32.3]	23.8	[21.5 - 26.3]	26.5	[23.7 - 29.7]	0.76			
'LcRL07.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.5	[24.1 - 31.1]	23.7	[21.4 - 26.2]	25.6	[22.7 - 28.7]	0.22			
'LcMV1AUS.fna'	Lactobacillus sobrius DSM 16698	30.3	[26.9 - 33.9]	23.7	[21.4 - 26.2]	27.7	[24.8 - 30.8]	0.95			
'Lc1252CHN.fna'	Lactobacillus sobrius DSM 16698	31.0	[27.6 - 34.6]	23.7	[21.4 - 26.2]	28.2	[25.3 - 31.3]	1.14			
'LcCTV05.fna'	Lactobacillus helveticus DSM 20075	24.5	[21.2 - 28.1]	23.7	[21.4 - 26.2]	23.2	[20.4 - 26.3]	0.31			
'LcMV3AUS.fna'	Lactobacillus sobrius DSM 16698	30.2	[26.8 - 33.8]	23.7	[21.4 - 26.2]	27.6	[24.7 - 30.7]	1.1			
'LcCRI10.fasta'	Lactobacillus kefiranofaciens ATCC 43761	27.9	[24.6 - 31.6]	23.6	[21.3 - 26.1]	25.9	[23.0 - 29.0]	0.17			
'Lc2029.fna'	Lactobacillus ultunensis DSM 16047	25.9	[22.6 - 29.6]	23.6	[21.3 - 26.1]	24.4	[21.5 - 27.5]	0.92			
'Lc2029.fna'	Lactobacillus acidophilus NBRC 13951	25.8	[22.5 - 29.5]	23.6	[21.3 - 26.1]	24.3	[21.4 - 27.4]	2.25			
'Lc2029.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	26.3	[22.9 - 29.9]	23.6	[21.3 - 26.1]	24.6	[21.8 - 27.7]	0.57			
'LcRL07.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.8	[24.4 - 31.4]	23.6	[21.3 - 26.1]	25.8	[22.9 - 28.9]	0.43			
'LcCIP104459.fna'	Lactobacillus sobrius DSM 16698	32.8	[29.4 - 36.4]	23.6	[21.3 - 26.1]	29.5	[26.6 - 32.6]	1.03			
'LcCRI17.fasta'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.1	[24.7 - 31.7]	23.6	[21.3 - 26.0]	26.0	[23.1 - 29.1]	0.6			
'LcCIP104459.fna'	Lactobacillus amylovorus DSM 20531	33.5	[30.1 - 37.1]	23.6	[21.3 - 26.1]	30.0	[27.1 - 33.1]	0.97			
'LcCRI8.fasta'	Lactobacillus kefiranofaciens ATCC 43761	28.6	[25.3 - 32.3]	23.6	[21.3 - 26.0]	26.4	[23.5 - 29.5]	0.24			
'LcCTV05.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	24.4	[21.1 - 28.1]	23.5	[21.2 - 25.9]	23.2	[20.3 - 26.3]	0.35			
'LcCIP104459.fna'	Lactobacillus kitasatonis JCM 1039	35.6	[32.2 - 39.1]	23.5	[21.2 - 26.0]	31.5	[28.5 - 34.5]	0.7			
'LcRL05.fna'	Lactobacillus ultunensis DSM 16047	26.4	[23.1 - 30.1]	23.5	[21.2 - 25.9]	24.7	[21.9 - 27.8]	0.6			
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent			
--------------	--	-------	------------	-------	------------	-------	------------	-----------------			
'LcRL03.fna'	Lactobacillus kefiranofaciens ATCC 43761	26.1	[22.8 - 29.8]	23.5	[21.2 - 26.0]	24.5	[21.6 - 27.6]	0.28			
'LcRL05.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	26.9	[23.6 - 30.6]	23.5	[21.2 - 25.9]	25.1	[22.2 - 28.2]	0.89			
'LcCRI10.fasta'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.6	[24.3 - 31.3]	23.5	[21.2 - 26.0]	25.7	[22.8 - 28.8]	0.37			
'LcAB70.fna'	Lactobacillus kefiranofaciens ATCC 43761	28.8	[25.5 - 32.4]	23.5	[21.2 - 26.0]	26.6	[23.7 - 29.7]	0.06			
'LcRL07.fna'	Lactobacillus ultunensis DSM 16047	28.1	[24.7 - 31.7]	23.5	[21.2 - 26.0]	26.0	[23.1 - 29.1]	1.06			
'LcCTV05.fasta'	Lactobacillus kefiranofaciens ATCC 43761	25.1	[21.8 - 28.8]	23.5	[21.2 - 26.0]	23.7	[20.9 - 26.8]	0.14			
'LcRL06.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.8	[24.4 - 31.4]	23.5	[21.2 - 26.0]	25.8	[22.9 - 28.9]	0.22			
'LcRL08.fna'	Lactobacillus ultunensis DSM 16047	27.8	[24.4 - 31.4]	23.4	[21.1 - 25.8]	25.7	[22.8 - 28.8]	0.1			
'LcRL02.fna'	Lactobacillus ultunensis DSM 16047	28.4	[25.1 - 32.1]	23.4	[21.1 - 25.8]	26.2	[23.3 - 29.3]	1.05			
'LcAB70.fna'	Lactobacillus acidophilus NBRC 13951	28.8	[25.5 - 32.4]	23.4	[21.1 - 25.9]	26.5	[23.6 - 29.6]	2.68			
'LcRL06.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.1	[24.7 - 31.7]	23.4	[21.1 - 25.9]	26.0	[23.1 - 29.1]	0.43			
'LcRL07.fna'	Lactobacillus acidophilus NBRC 13951	27.9	[24.5 - 31.5]	23.4	[21.2 - 25.9]	25.8	[22.9 - 28.9]	2.4			
'LcCRI4.fasta'	Lactobacillus acidophilus NBRC 13951	29.4	[26.1 - 33.0]	23.4	[21.1 - 25.8]	27.0	[24.1 - 30.1]	2.42			
'LcAB70.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.5	[25.1 - 32.1]	23.4	[21.1 - 25.9]	26.3	[23.4 - 29.4]	0.15			
'LcCRI8.fasta'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.5	[25.1 - 32.1]	23.4	[21.1 - 25.9]	26.3	[23.4 - 29.4]	0.44			
'LcRL03.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	26.3	[23.0 - 29.9]	23.4	[21.1 - 25.8]	24.6	[21.7 - 27.7]	0.48			
'LcCRI4.fasta'	Lactobacillus kefiranofaciens ATCC 43761	28.5	[25.1 - 32.1]	23.4	[21.1 - 25.9]	26.3	[23.4 - 29.4]	0.2			
'LcRL10.fna'	Lactobacillus acidophilus NBRC 13951	28.5	[25.2 - 32.1]	23.4	[21.1 - 25.8]	26.3	[23.4 - 29.4]	2.49			
'LcRL09.fna'	Lactobacillus ultunensis DSM 16047	28.3	[24.9 - 31.9]	23.4	[21.1 - 25.9]	26.1	[23.3 - 29.2]	1.0			
'LcRL06.fna'	Lactobacillus ultunensis DSM 16047	28.8	[25.4 - 32.4]	23.4	[21.1 - 25.9]	26.5	[23.6 - 29.6]	1.06			
'LcRL10.fna'	Lactobacillus ultunensis DSM 16047	27.9	[24.6 - 31.5]	23.4	[21.1 - 25.9]	25.8	[23.0 - 28.9]	1.16			
'LcRL02.fna'	Lactobacillus acidophilus NBRC 13951	29.3	[25.9 - 32.9]	23.3	[21.0 - 25.8]	26.9	[24.0 - 30.0]	2.38			
'LcRL06.fna'	Lactobacillus acidophilus NBRC 13951	28.7	[25.3 - 32.3]	23.3	[21.0 - 25.7]	26.4	[23.5 - 29.5]	2.4			
Query	Subject	\(d_0 \)	C.I. \(d_0 \)	\(d_a \)	C.I. \(d_a \)	\(d_s \)	C.I. \(d_s \)	Diff G+C Percent			
-----------------------	---	-----------	----------------	-----------	----------------	-----------	----------------	-----------------			
'LcJVV01.fna'	Lactobacillus acidophilus NBRC 13951	29.2	[25.8 - 32.8]	23.3	[21.0 - 25.8]	26.8	[23.9 - 29.9]	2.3			
'LcRL08.fna'	Lactobacillus kefiranofaciens DSM 16047	28.0	[24.6 - 31.6]	23.3	[21.0 - 25.7]	25.9	[23.0 - 29.0]	0.31			
'LcRL08.fna'	Lactobacillus acidophilus DSM 16047	28.1	[24.8 - 31.8]	23.3	[21.0 - 25.7]	26.0	[23.1 - 29.1]	2.52			
'LcRL03.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.1	[23.7 - 30.7]	23.3	[21.0 - 25.7]	25.2	[22.3 - 28.3]	1.01			
'LcRL02.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.8	[24.5 - 31.4]	23.3	[21.0 - 25.8]	25.8	[22.9 - 28.9]	0.23			
'LcCRI17.fasta'	Lactobacillus ultunensis DSM 16047	28.1	[24.7 - 31.7]	23.3	[21.0 - 25.8]	25.9	[23.0 - 29.0]	0.99			
'LcCRI17.fasta'	Lactobacillus acidophilus DSM 16047	27.9	[24.6 - 31.6]	23.3	[21.0 - 25.7]	25.8	[23.0 - 29.0]	2.32			
'LcRL05.fna'	Lactobacillus acidophilus DSM 16047	26.4	[23.1 - 30.1]	23.3	[21.0 - 25.7]	24.7	[21.8 - 27.8]	1.94			
'LcMV1AUS.fna'	Lactobacillus acidophilus DSM 16047	28.8	[25.4 - 32.4]	23.3	[21.0 - 25.7]	26.5	[23.6 - 29.6]	2.28			
'LcMV3AUS.fna'	Lactobacillus acidophilus DSM 16047	27.8	[24.5 - 31.5]	23.3	[21.0 - 25.7]	25.8	[22.9 - 28.9]	2.14			
'LcCRI4.fasta'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.6	[25.2 - 32.2]	23.3	[21.0 - 25.8]	26.3	[23.4 - 29.4]	0.4			
'LcCRI4.fasta'	Lactobacillus ultunensis DSM 16047	28.8	[25.5 - 32.4]	23.3	[21.0 - 25.8]	26.5	[23.6 - 29.6]	1.08			
'LcCRI10.fasta'	Lactobacillus ultunensis DSM 16047	28.2	[24.8 - 31.8]	23.3	[21.0 - 25.7]	26.0	[23.2 - 29.2]	1.12			
'LcCIP104459.fna'	Lactobacillus ultunensis DSM 16047	29.8	[26.5 - 33.4]	23.3	[21.0 - 25.8]	27.2	[24.3 - 30.4]	0.87			
'LcRL10.fasta'	Lactobacillus kefiranofaciens ATCC 43761	27.7	[24.3 - 31.3]	23.3	[21.0 - 25.8]	25.6	[22.8 - 28.8]	0.13			
'LcRL09.fasta'	Lactobacillus kefiranofaciens ATCC 43761	28.3	[24.9 - 31.9]	23.3	[21.0 - 25.8]	26.1	[23.2 - 29.2]	0.29			
'LcCRI8.fasta'	Lactobacillus acidophilus DSM 16047 (ATCC 43761)	28.5	[25.2 - 32.2]	23.3	[21.0 - 25.8]	26.3	[23.4 - 29.4]	2.38			
'LcCRI8.fasta'	Lactobacillus ultunensis DSM 16047	28.7	[25.3 - 32.3]	23.3	[21.0 - 25.7]	26.4	[23.5 - 29.5]	1.05			
'LcCRI10.fasta'	Lactobacillus acidophilus DSM 16047	28.1	[24.8 - 31.7]	23.3	[21.0 - 25.8]	26.0	[23.1 - 29.1]	2.45			
'LcRL02.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.1	[24.7 - 31.7]	23.2	[20.9 - 25.7]	25.9	[23.1 - 29.0]	0.44			
'LcCIP104459.fna'	Lactobacillus acidophilus DSM 16047	32.0	[28.7 - 35.6]	23.2	[20.9 - 25.6]	28.8	[25.9 - 31.9]	2.21			
'LcAB70.fna'	Lactobacillus ultunensis DSM 16047	28.3	[25.0 - 31.9]	23.2	[20.9 - 25.7]	26.1	[23.2 - 29.2]	1.34			
'LcJVV01.fna'	Lactobacillus ultunensis DSM 16047	28.5	[25.1 - 32.1]	23.2	[20.9 - 25.7]	26.2	[23.4 - 29.4]	0.97			
'LcRL10.fasta'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.6	[24.3 - 31.2]	23.2	[20.9 - 25.7]	25.6	[22.7 - 28.7]	0.33			
'LcRL03.fasta'	Lactobacillus acidophilus DSM 16047	26.9	[23.5 - 30.5]	23.2	[20.9 - 25.7]	25.0	[22.2 - 28.1]	2.34			
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent			
------------------	--	-------	--------------	-------	--------------	-------	--------------	-------------------			
'LcRL09.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.4	[25.0 - 32.0]	23.2	[20.9 - 25.7]	26.1	[23.2 - 29.2]	0.49			
'LcRL08.fna'	Lactobacillus ultunensis DSM 16047	28.5	[25.2 - 32.2]	23.2	[20.9 - 25.7]	26.3	[23.4 - 29.4]	1.18			
'LcRL09.fna'	Lactobacillus acidophilus NBRC 13951	29.5	[26.1 - 33.1]	23.2	[20.9 - 25.7]	27.0	[24.1 - 30.1]	2.33			
'LcCTV05.fna'	Lactobacillus ultunensis DSM 16047	25.1	[21.7 - 28.7]	23.2	[20.9 - 25.7]	23.6	[20.8 - 26.7]	1.14			
'Lc1252CHN.fna'	Lactobacillus ultunensis DSM 16047	29.1	[25.7 - 32.7]	23.1	[20.8 - 25.6]	26.6	[23.8 - 29.8]	0.76			
'LcMV3AUS.fna'	Lactobacillus kefiranofaciens ATCC 43761	26.3	[23.0 - 30.0]	23.1	[20.8 - 25.5]	24.6	[21.7 - 27.7]	0.48			
'LcMV1AUS.fna'	Lactobacillus kefiranofaciens ATCC 43761	26.6	[23.2 - 30.2]	23.1	[20.8 - 25.6]	24.8	[21.9 - 27.9]	0.34			
'LcJVV01.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.6	[24.3 - 31.2]	23.1	[20.8 - 25.6]	25.6	[22.7 - 28.7]	0.52			
'LcMV1AUS.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.1	[23.8 - 30.8]	23.1	[20.8 - 25.6]	25.2	[22.3 - 28.3]	0.54			
'LcMV1AUS.fna'	Lactobacillus ultunensis DSM 16047	28.0	[24.7 - 31.7]	23.1	[20.8 - 25.5]	25.9	[23.0 - 29.0]	0.95			
'LcJVV01.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.2	[23.9 - 30.9]	23.1	[20.8 - 25.6]	25.3	[22.4 - 28.4]	0.32			
'Lc1252CHN.fna'	Lactobacillus acidophilus NBRC 13951	29.8	[26.4 - 33.4]	23.1	[20.8 - 25.6]	27.2	[24.3 - 30.3]	2.09			
'LcMV3AUS.fna'	Lactobacillus ultunensis DSM 16047	27.7	[24.4 - 31.3]	23.0	[20.7 - 25.5]	25.6	[22.7 - 28.7]	0.8			
'LcMV3AUS.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	26.9	[23.6 - 30.6]	23.0	[20.7 - 25.4]	25.0	[22.1 - 28.1]	0.69			
'Lc1252CHN.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.6	[24.3 - 31.3]	23.0	[20.7 - 25.4]	25.6	[22.7 - 28.7]	0.73			
'Lc1252CHN.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.3	[23.9 - 30.9]	23.0	[20.7 - 25.4]	25.3	[22.4 - 28.4]	0.53			
'LcCTV05.fna'	Lactobacillus acidophilus NBRC 13951	24.6	[21.3 - 28.3]	22.9	[20.7 - 25.4]	23.2	[20.4 - 26.3]	2.48			
'LcCIP104459.fna'	Lactobacillus kefiranofaciens ATCC 43761	30.3	[27.0 - 33.9]	22.9	[20.6 - 25.3]	27.5	[24.6 - 30.6]	0.41			
'LcCIP104459.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	31.1	[27.8 - 34.7]	22.8	[20.5 - 25.3]	28.1	[25.2 - 31.2]	0.62			
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID
---------------------------	----------------------	---	--	------------	-------------	--------------	-------------	----------------------	---------------------	-------------------	------------------
Lactobacillus suntoryeus LMG 22464	Cachat and Priest 2005	NCIMB 14005; SA	Lactobacillus suntoryeus	1760 061	36.5	1825	Gp0131240	PRJNA224116	SAMN02797793	GCF_001437535	
Lactobacillus kefiranofaciens ATCC 43761	Fujisawa et al. 1988 emend. Vancanneyt et al. 2004	LMG 19149; CCUG 32248; DSM 3016; JCM 6985; CIP 103307; strain WT-2B	Lactobacillus kefiranofaciens; Lactobacillus kefiranofaciens subsp. kefiranofaciens	2281 817	37.2	2367	Gp0099413	PRJNA257853	SAMN02983011	GCA_900103655	2597490363
Lactobacillus helveticus DSM 20075	(Orla-Jensen 1919) Bergey et al. 1925	LMG 13555; LMG 6413; NRRL B-4526; CCUG 30139; ATCC 15009; JCM 1120; IFO 15019; NBRC 15019; CIP 103146	Lactobacillus helveticus, Thermobacterium helveticum	1804 595	36.8	2078	Gp0003635	PRJNA34619	SAMN00139430	GCA_000160855	645951865
Lactobacillus ultunensis DSM 16047	Roos et al. 2005	LMG 22117; CCUG 48460; JCM 16177; Kx146C1	Lactobacillus ultunensis	2159 701	35.9	2210	Gp0003665	PRJNA31505	SAMN0001484	GCA_000159415	643886047
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID
----------------------	--------------------------------	--	---	------------	-------------	--------------	---------------	----------------------	---------------------	-------------------	-----------------
Lactobacillus acidophilus NBRC 13951	(Moro 1900) Hansen and Macquot 1970	LMG 13550; LMG 9433; BCR 10695; NRRL B-4495; CCUG 5917; DSM 20079; ATCC 4356; NCTC 12980; JCM 1132; IFO 13951; VKM B-1660; CIP 76.13	Bacillus acidophilus; Lactobacillus acidophilus	1955	34.6	1873	Gp0075770	PRJDB1353	SAMD00046914	GCA_001591845	
Lactobacillus kitasatonis JCM 1039	Mukai et al. 2003	KCTC 3155; DSM 16761	Lactobacillus kitasatonis	1902	37.5	2050	Gp0026726	PRJDB640	SAMD0016339	GCA_000615285	2565956592
Lactobacillus gallinarum JCM 2011	Fujisawa et al. 1992	LMG 9435; CCUG 30724; DSM 10532; ATCC 33199; CIP 103611; VPI 1294	Lactobacillus gallinarum	1918	36.5	2076	Gp0091989	PRJDB621	SAMD00003603	GCA_000614735	
Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	(Takizawa et al. 1994) Vancanneyt et al. 2004	LMG 15132; CCUG 39467; CCUG 49353; DSM 10550; ATCC 51647; CIP 104241; GCL 1701	Lactobacillus kefiranofaciens subsp. kefirgranum; Lactobacillus kefirgranum	2065	37.4	2918	Gp0093297	PRJDB772	SAMD00000473	GCA_001311335	
Lactobacillus crispatus JCM 1185	(Brygoo and Aladame 1953) Moore and Holdeman 1970	LMG 9479; CCUG 30722; DSM 20584; ATCC 33820; CIP 102990; CIPPP II; VPI 3199	Eubacterium crispatum; Lactobacillus crispatus	2033	36.6	3305	Gp0093095	PRJDB800	SAMD00000420	GCA_001311685	
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID
------------------------	--------------------------------	--	---------------------------	------------	-------------	--------------	------------	----------------------	-------------------	-------------------	---------------
Lactobacillus amyllovorus DSM 20531	Nakamura 1981	LMG 9496; NRRL B-4540; CCUG 27201; ATCC 33620; JCM 1126; CIP 102989; NCAIM B.01458	*Lactobacillus amyllovorus*	2016	37.8	2045	Gp0130192	PRJNA224116	SAMN02369422	GCF_001433985	
Lactobacillus sobrius DSM 16698	Konstantinov et al. 2006	1; NCCB 100067; OTU171-001	*Lactobacillus sobrius*	1992	37.8	1950	Gp0131222	PRJNA224116	SAMN02797775	GCF_001437365	
Lc1252CHN.fna				2305	36.7	2221					
Lc2029.fna				2397	36.8	3004					
LcAB70.fna				2367	37.3	2391					
LcCIP104459.fna				1993	36.8	2038					
LcCRI4.fasta				2376	37.0	2465					
LcCRI8.fasta				2330	37.0	2389					
LcCRI10.fasta				2418	37.0	2532					
LcCRI17.fasta				2384	36.9	2461					
LcCTV05.fna				2364	37.1	2425					
LcJVV01.fna				2221	36.9	2216					
LcMV1AUS.fna				2311	36.9	2339					
LcMV3AUS.fna				2437	36.7	2514					
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID
----------	-----------	----------------	----------	------------	-------------	--------------	------------	---------------------	-------------------	-------------------	---------
LcRL02.fna				2243/143	37.0	2447					
LcRL03.fna				2550/531	36.9	2886					
LcRL05.fna				2577/199	36.5	2857					
LcRL06.fna				2190/141	37.0	2483					
LcRL07.fna				2183/841	37.0	2454					
LcRL08.fna				2301/145	37.1	2622					
LcRL09.fna				2276/697	36.9	2526					
LcRL10.fna				2315/512	37.1	2579					
The genome sequence data were uploaded to the Type (Strain) Genome Server (TYGS), a free bioinformatics platform available at https://tygs.dsmz.de, for a whole genome-based taxonomic analysis [1]. The results were provided by the TYGS on 2020-05-25. In brief, the TYGS analysis was subdivided into the following steps:

Determination of closely related type strains

Determination of closest type strain genomes was done in two complementary ways: First, all user genomes were compared against all type strain genomes available in the TYGS database via the MASH algorithm, a fast approximation of intergenomic relatedness [2], and, the ten type strains with the smallest MASH distances chosen per user genome. Second, an additional set of ten closely related type strains was determined via the 16S rDNA gene sequences. These were extracted from the user genomes using RnAmmer [3] and each sequence was subsequently BLASTed [4] against the 16S rDNA gene sequence of each of the currently 11767 type strains available in the TYGS database. This was used as a proxy to find the best 50 matching type strains (according to the bitscore) for each user genome and to subsequently calculate precise distances using the Genome BLAST Distance Phylogeny approach (GBDP) under the algorithm 'coverage' and distance formula d_5 [5]. These distances were finally used to determine the 10 closest type strain genomes for each of the user genomes.

Pairwise comparison of genome sequences

All pairwise comparisons among the set of genomes were conducted using GBDP and accurate intergenomic distances inferred under the algorithm 'trimming' and distance formula d_5 [5]. 100 distance replicates were calculated each. Digital DDH values and confidence intervals were calculated using the recommended settings of the GGDC 2.1 [5].

Phylogenetic inference

The resulting intergenomic distances were used to infer a balanced minimum evolution tree with branch support via FASTME 2.1.4 including SPR postprocessing [6]. Branch support was inferred from 100 pseudo-bootstrap replicates each. The trees were rooted at the midpoint [7] and visualized with PhyD3 [8].

Type-based species and subspecies clustering

The type-based species clustering using a 70% dDDH radius around each of the 11 type strains was done as previously described [1]. The resulting groups are shown in Table 1 and 4. Subspecies clustering was done using a 79% dDDH threshold as previously introduced [9].

Results

Type-based species and subspecies clustering

The resulting species and subspecies clusters are listed in Table 4, whereas the taxonomic identification of the query strains is found in Table 1. Briefly, the clustering yielded 8 species clusters and the provided query strains were assigned to 1 of these. Moreover, user strains were located in 2 of 10 subspecies clusters.

Figure caption genome tree

Figure 1. Tree inferred with FastME 2.1.6.1 [6] from GBDP distances calculated from genome sequences. The branch lengths are scaled in terms of GBDP distance formula d_5. The numbers above branches are GBDP pseudo-bootstrap support values > 60 % from 100 replications, with an average branch support of 56.8 %. The tree was rooted at the midpoint [7].

Figure caption SSU tree

Figure 2. Tree inferred with FastME 2.1.6.1 [6] from GBDP distances calculated from 16S rDNA gene sequences. The branch lengths are scaled in terms of GBDP distance formula d_5. The numbers above branches are GBDP pseudo-bootstrap support values > 60 % from 100 replications, with an average branch support of 51.0 %. The tree was rooted at the midpoint [7].
References

[1] Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019;10: 2182. DOI: 10.1038/s41467-019-10210-3

[2] Ondov BD, Treangen TJ, Melsted P, et al. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17: 1–14. DOI: 10.1186/s13059-016-0997-x

[3] Lagesen K, Hallin P. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. Oxford Univ Press; 2007;35: 3100–3108. DOI: 10.1093/nar/gkm160

[4] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10: 421. DOI: 10.1186/1471-2105-10-421

[5] Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14: 60. DOI: 10.1186/1471-2105-14-60

[6] Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32: 2798–2800. DOI: 10.1093/molbev/msv150

[7] Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat. 1972;106: 645–667.

[8] Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: A phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics. 2017;33: 2946–2947. DOI: 10.1093/bioinformatics/btx324

[9] Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci. 2014;9: 2. DOI: 10.1186/1944-3277-9-2
Table 1: Phylogenies

Publication-ready versions of both the genome-scale GBDP tree and the 16S rRNA gene sequence tree can be customized and exported either in SVG (vector graphic) or PNG format from within the phylogeny viewers in your TYGS result page. For publications the **SVG format is recommended** because it is lossless, always keeps its high resolution and can also be easily converted to other popular formats such as PDF or EPS. Please follow the link provided above!

Table 2: Identification

The below list contains the result of the TYGS species identification routine.

Explanation of remarks that might occur in the below table:

remark **[R1]**: The TYGS type strain database is automatically updated on an almost daily basis. However, if a particular type strain genome is not available in the TYGS database, this can have several reasons which are detailed in the FAQ. You can request an extended 16S rRNA gene analysis via the 16S tree viewer found in your result page to detect **not yet genome-sequenced** type strains relevant for your study.

remark **[R2]**: >70% dDDH value (formula \(d_4\)) and (almost) minimal dDDH values for gene-content formulae \(d_0\) and \(d_6\) indicate a potentially unreliable identification result and should thus be checked via the 16S rRNA gene sequence similarity. Such strong deviations can, in principle, be caused by sequence contamination.

remark **[R3]**: G+C content difference of >1% indicates a potentially unreliable identification result because within species G+C content varies no more than 1%, if computed from genome sequences (PMID: 24505073).

Strain	Conclusion	Identification result	Remark
'LcRL11'	belongs to known species	**Lactobacillus crispatus**	
'LcRL13'	belongs to known species	**Lactobacillus crispatus**	
'LcRL14'	belongs to known species	**Lactobacillus crispatus**	
'LcRL15'	belongs to known species	**Lactobacillus crispatus**	
'LcRL16'	belongs to known species	**Lactobacillus crispatus**	
'LcRL17'	belongs to known species	**Lactobacillus crispatus**	see [R3]
'LcRL19'	belongs to known species	**Lactobacillus crispatus**	see [R3]
'LcRL20'	belongs to known species	**Lactobacillus crispatus**	
'LcRL21'	belongs to known species	**Lactobacillus crispatus**	
'LcRL23'	belongs to known species	**Lactobacillus crispatus**	
'LcRL24'	belongs to known species	**Lactobacillus crispatus**	
'LcRL25'	belongs to known species	**Lactobacillus crispatus**	
'LcRL26'	belongs to known species	**Lactobacillus crispatus**	
'LcRL27'	belongs to known species	**Lactobacillus crispatus**	
'LcRL28'	belongs to known species	**Lactobacillus crispatus**	
Strain	Conclusion	Identification result	Remark
----------	--------------------------------	----------------------------------	--------
'LcRL29'	belongs to known species	*Lactobacillus crispatus*	
'LcRL30'	belongs to known species	*Lactobacillus crispatus*	
'LcRL31'	belongs to known species	*Lactobacillus crispatus*	
'LcRL32'	belongs to known species	*Lactobacillus crispatus*	
'LcRL33'	belongs to known species	*Lactobacillus crispatus*	
Table 3: Pairwise comparisons of user genomes vs. type-strain genomes

The following table contains the pairwise dDDH values between your user genomes and the selected type-strain genomes. The dDDH values are provided along with their confidence intervals (C.I.) for the three different GBDP formulas:

- **formula** d_0 (a.k.a. GGDC formula 1): length of all HSPs divided by total genome length
- **formula** d_4 (a.k.a. GGDC formula 2): sum of all identities found in HSPs divided by overall HSP length
- **formula** d_6 (a.k.a. GGDC formula 3): sum of all identities found in HSPs divided by total genome length

Note: Formula d_4 is independent of genome length and is thus robust against the use of incomplete draft genomes. For other reasons for preferring formula d_4, see the FAQ.

Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_6	C.I. d_6	Diff. G+C Percent	
'LcRL21.fna'	'LcRL27.fna'	98.9	[98.1 - 99.4]	99.9	[99.7 - 99.9]	99.5	[99.2 - 99.7]	0.08	
'LcRL24.fna'	'LcRL26.fna'	95.0	[92.6 - 96.6]	99.9	[99.8 - 100.0]	97.3	[96.0 - 98.2]	0.68	
'LcRL19.fna'	'LcRL33.fna'	92.3	[89.4 - 94.4]	99.9	[99.7 - 99.9]	95.6	[93.8 - 96.9]	0.75	
'LcRL19.fna'	'LcRL24.fna'	94.4	[92.0 - 96.2]	99.9	[99.8 - 99.9]	97.0	[95.5 - 97.9]	0.92	
'LcRL24.fna'	'LcRL33.fna'	99.1	[98.3 - 99.5]	99.9	[99.8 - 99.9]	99.6	[99.3 - 99.8]	0.17	
'LcRL13.fna'	'LcRL28.fna'	99.4	[98.9 - 99.7]	99.9	[99.8 - 99.9]	99.8	[99.5 - 99.9]	0.14	
'LcRL31.fna'	'LcRL32.fna'	99.1	[98.4 - 99.5]	99.9	[99.9 - 100.0]	99.6	[99.3 - 99.8]	0.04	
'LcRL19.fna'	'LcRL26.fna'	98.1	[96.9 - 98.9]	99.9	[99.8 - 100.0]	99.1	[98.5 - 99.5]	0.24	
'LcRL26.fna'	'LcRL33.fna'	92.8	[90.0 - 94.8]	99.9	[99.8 - 99.9]	95.9	[94.2 - 97.1]	0.51	
'LcRL15.fna'	'LcRL30.fna'	99.4	[98.8 - 99.7]	99.8	[99.6 - 99.9]	99.7	[99.5 - 99.9]	0.25	
'LcRL26.fna'	'LcRL29.fna'	98.4	[97.2 - 99.1]	99.8	[99.7 - 99.9]	99.2	[98.7 - 99.9]	0.28	
'LcRL19.fna'	'LcRL29.fna'	98.0	[96.7 - 98.8]	99.8	[99.7 - 99.9]	99.0	[98.4 - 99.4]	0.52	
'LcRL29.fna'	'LcRL33.fna'	93.0	[90.3 - 95.1]	99.8	[99.7 - 99.9]	96.1	[94.4 - 97.3]	0.23	
'LcRL24.fna'	'LcRL29.fna'	94.7	[92.3 - 96.4]	99.8	[99.7 - 99.9]	97.1	[95.7 - 98.1]	0.4	
'LcRL23.fna'	'LcRL25.fna'	99.9	[99.8 - 100.0]	99.7	[99.6 - 99.9]	100.0	[99.9 - 100.0]	0.07	
'LcRL15.fna'	'LcRL17.fna'	96.6	[94.7 - 97.8]	99.6	[99.3 - 99.8]	98.2	[97.2 - 98.9]	1.18	
'LcRL11.fna'	'LcRL25.fna'	95.8	[93.8 - 97.2]	99.4	[99.0 - 99.6]	97.7	[96.6 - 98.5]	0.02	
'LcRL11.fna'	'LcRL33.fna'	90.4	[87.2 - 92.9]	99.4	[99.0 - 99.6]	94.2	[92.1 - 95.8]	0.03	
'LcRL23.fna'	'LcRL28.fna'	94.9	[92.5 - 96.5]	99.4	[99.0 - 99.6]	97.1	[95.8 - 98.1]	0.43	
'LcRL13.fna'	'LcRL33.fna'	89.9	[86.7 - 92.5]	99.4	[99.0 - 99.6]	93.9	[91.7 - 95.5]	0.22	
'LcRL25.fna'	'LcRL28.fna'	94.7	[92.3 - 96.4]	99.4	[99.1 - 99.7]	97.0	[95.6 - 98.0]	0.36	
'LcRL28.fna'	'LcRL33.fna'	89.4	[86.0 - 92.0]	99.4	[99.0 - 99.6]	93.5	[91.2 - 95.2]	0.36	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
-----------	-------------	--------	------------	--------	------------	--------	------------	-------------------	
'LcRL17.fna'	'LcRL30.fna'	97.4	[95.8 - 98.4]	99.4	[99.1 - 99.6]	98.7	[97.9 - 99.2]	1.43	
'LcRL11.fna'	'LcRL23.fna'	96.0	[94.0 - 97.4]	99.4	[99.0 - 99.6]	97.8	[96.7 - 98.6]	0.09	
'LcRL13.fna'	'LcRL25.fna'	95.1	[92.9 - 96.7]	99.3	[98.9 - 99.6]	97.3	[96.0 - 98.2]	0.22	
'LcRL19.fna'	'LcRL28.fna'	92.8	[90.0 - 94.9]	99.3	[98.9 - 99.5]	95.8	[94.1 - 97.1]	0.38	
'LcRL26.fna'	'LcRL28.fna'	93.4	[90.7 - 95.3]	99.3	[98.8 - 99.5]	96.2	[94.5 - 97.3]	0.15	
'LcRL13.fna'	'LcRL19.fna'	93.4	[90.7 - 95.3]	99.3	[98.8 - 99.5]	96.2	[94.5 - 97.3]	0.53	
'LcRL11.fna'	'LcRL19.fna'	93.8	[91.3 - 95.7]	99.3	[98.8 - 99.5]	96.5	[94.9 - 97.6]	0.72	
'LcRL11.fna'	'LcRL29.fna'	94.1	[91.6 - 95.9]	99.2	[98.7 - 99.5]	96.6	[95.1 - 97.7]	0.21	
'LcRL20.fna'	'LcRL28.fna'	86.8	[83.2 - 89.7]	99.2	[98.8 - 99.5]	91.6	[89.0 - 93.6]	0.74	
'LcRL28.fna'	'LcRL30.fna'	96.3	[94.4 - 97.6]	99.2	[98.8 - 99.5]	98.0	[97.0 - 98.7]	0.33	
'LcRL13.fna'	'LcRL24.fna'	89.0	[85.7 - 91.7]	99.2	[98.7 - 99.5]	93.2	[90.9 - 94.9]	0.39	
'LcRL11.fna'	'LcRL26.fna'	94.4	[92.0 - 96.2]	99.2	[98.8 - 99.5]	96.9	[95.4 - 97.9]	0.48	
'LcRL13.fna'	'LcRL29.fna'	93.6	[91.0 - 95.5]	99.2	[98.7 - 99.5]	96.3	[94.7 - 97.5]	0.01	
'LcRL13.fna'	'LcRL23.fna'	95.3	[93.1 - 96.9]	99.2	[98.8 - 99.5]	97.4	[96.2 - 98.3]	0.29	
'LcRL28.fna'	'LcRL29.fna'	93.1	[90.4 - 95.1]	99.2	[98.7 - 99.5]	96.0	[94.3 - 97.2]	0.13	
'LcRL11.fna'	'LcRL24.fna'	89.7	[86.5 - 92.3]	99.2	[98.7 - 99.5]	93.7	[91.5 - 95.3]	0.2	
'LcRL13.fna'	'LcRL26.fna'	93.9	[91.3 - 95.7]	99.2	[98.7 - 99.5]	96.5	[94.9 - 97.6]	0.29	
'LcRL17.fna'	'LcRL28.fna'	92.6	[89.7 - 94.7]	99.2	[98.8 - 99.5]	95.6	[93.9 - 96.9]	1.1	
'LcRL24.fna'	'LcRL28.fna'	88.5	[85.1 - 91.2]	99.2	[98.8 - 99.5]	92.8	[90.4 - 94.6]	0.53	
'LcRL15.fna'	'LcRL28.fna'	94.8	[92.5 - 96.5]	99.2	[98.8 - 99.5]	97.1	[95.7 - 98.1]	0.08	
'LcRL11.fna'	'LcRL17.fna'	93.5	[90.8 - 95.4]	99.2	[98.7 - 99.5]	96.3	[94.6 - 97.4]	1.44	
'LcRL11.fna'	'LcRL20.fna'	88.0	[84.6 - 90.8]	99.2	[98.7 - 99.5]	92.5	[90.0 - 94.3]	0.4	
'LcRL13.fna'	'LcRL20.fna'	87.5	[84.0 - 90.3]	99.2	[98.7 - 99.5]	92.0	[89.6 - 94.0]	0.6	
'LcRL11.fna'	'LcRL30.fna'	97.1	[95.4 - 98.2]	99.2	[98.8 - 99.5]	98.5	[97.6 - 99.0]	0.01	
'LcRL11.fna'	'LcRL15.fna'	95.9	[93.8 - 97.3]	99.2	[98.7 - 99.5]	97.8	[96.6 - 98.5]	0.26	
'LcRL11.fna'	'LcRL31.fna'	92.1	[89.2 - 94.3]	99.1	[98.5 - 99.4]	95.3	[93.5 - 96.7]	0.3	
'LcRL13.fna'	'LcRL17.fna'	93.1	[90.4 - 95.1]	99.1	[98.6 - 99.4]	96.0	[94.3 - 97.2]	1.24	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
------------	---------------	--------	-------------	--------	-------------	--------	-------------	-------------------	
'LcRL20.fna'	'LcRL25.fna'	81.3	[77.4 - 84.7]	99.1	[98.6 - 99.4]	87.2	[84.2 - 90.7]	0.38	
'LcRL28.fna'	'LcRL31.fna'	91.2	[88.2 - 93.6]	99.1	[98.6 - 99.4]	94.7	[92.7 - 96.2]	0.04	
'LcRL13.fna'	'LcRL15.fna'	95.3	[93.1 - 96.8]	99.1	[98.6 - 99.4]	97.4	[96.1 - 98.3]	0.06	
'LcRL28.fna'	'LcRL32.fna'	90.4	[87.2 - 92.9]	99.1	[98.5 - 99.4]	94.1	[92.0 - 95.7]	0.0	
'LcRL20.fna'	'LcRL23.fna'	81.6	[77.7 - 84.9]	99.1	[98.6 - 99.4]	87.4	[84.4 - 89.9]	0.31	
'LcRL13.fna'	'LcRL30.fna'	96.8	[95.0 - 97.9]	99.1	[98.7 - 99.4]	98.3	[97.3 - 98.9]	0.18	
'LcRL23.fna'	'LcRL26.fna'	88.9	[85.5 - 91.6]	99.0	[98.5 - 99.4]	93.1	[90.7 - 94.8]	0.58	
'LcRL11.fna'	'LcRL32.fna'	91.3	[88.3 - 93.7]	99.0	[98.5 - 99.4]	94.8	[92.8 - 96.2]	0.34	
'LcRL13.fna'	'LcRL32.fna'	90.9	[87.8 - 93.3]	99.0	[98.5 - 99.3]	94.5	[92.4 - 96.0]	0.14	
'LcRL19.fna'	'LcRL25.fna'	88.1	[84.6 - 90.9]	99.0	[98.5 - 99.4]	92.5	[90.1 - 94.3]	0.74	
'LcRL13.fna'	'LcRL31.fna'	91.8	[88.8 - 94.0]	99.0	[98.5 - 99.4]	95.1	[93.1 - 96.5]	0.1	
'LcRL25.fna'	'LcRL26.fna'	88.7	[85.3 - 91.4]	99.0	[98.4 - 99.3]	92.9	[90.6 - 94.7]	0.51	
'LcRL19.fna'	'LcRL23.fna'	88.3	[84.8 - 91.0]	99.0	[98.5 - 99.4]	92.6	[90.2 - 94.4]	0.81	
'LcRL23.fna'	'LcRL29.fna'	88.6	[85.1 - 91.3]	98.9	[98.4 - 99.3]	92.8	[90.4 - 94.6]	0.3	
'LcRL25.fna'	'LcRL29.fna'	88.3	[84.9 - 91.1]	98.9	[98.4 - 99.3]	92.6	[90.2 - 94.5]	0.23	
'LcRL11.fna'	'LcRL28.fna'	99.6	[99.2 - 99.8]	98.8	[98.3 - 99.2]	99.8	[99.6 - 99.9]	0.34	
'LcRL25.fna'	'LcRL32.fna'	84.8	[81.1 - 88.0]	98.7	[98.1 - 99.1]	89.9	[87.2 - 92.2]	0.36	
'LcRL23.fna'	'LcRL33.fna'	84.8	[81.0 - 87.9]	98.7	[98.1 - 99.2]	89.9	[87.1 - 92.1]	0.07	
'LcRL17.fna'	'LcRL25.fna'	88.2	[84.8 - 91.0]	98.7	[98.0 - 99.1]	92.5	[90.1 - 94.4]	1.46	
'LcRL17.fna'	'LcRL33.fna'	86.2	[82.6 - 89.2]	98.7	[98.0 - 99.1]	91.0	[88.4 - 93.1]	1.46	
'LcRL25.fna'	'LcRL30.fna'	92.3	[89.4 - 94.5]	98.7	[98.1 - 99.1]	95.4	[93.6 - 96.7]	0.03	
'LcRL23.fna'	'LcRL31.fna'	85.5	[81.8 - 88.0]	98.7	[98.1 - 99.2]	90.5	[87.8 - 92.0]	0.39	
'LcRL15.fna'	'LcRL25.fna'	91.0	[87.9 - 93.4]	98.7	[98.1 - 99.1]	94.5	[92.5 - 96.0]	0.28	
'LcRL25.fna'	'LcRL33.fna'	84.5	[80.8 - 87.7]	98.7	[98.1 - 99.2]	89.7	[86.9 - 92.0]	0.01	
'LcRL23.fna'	'LcRL32.fna'	85.0	[81.3 - 88.1]	98.7	[98.1 - 99.1]	90.1	[87.3 - 92.3]	0.43	
'LcRL25.fna'	'LcRL31.fna'	85.4	[81.6 - 88.4]	98.7	[98.1 - 99.1]	90.3	[87.6 - 92.5]	0.32	
'LcRL15.fna'	'LcRL23.fna'	91.3	[88.2 - 93.6]	98.6	[97.9 - 99.0]	94.7	[92.7 - 96.1]	0.35	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_7	C.I. d_7	Diff. G+C Percent	
------------	---------------	-------	------------	-------	------------	-------	------------	-------------------	
'LcRL17.fna'	'LcRL23.fna'	88.4	[85.0 - 91.2]	98.6	[97.9 - 99.0]	92.6	[90.2 - 94.5]	1.53	
'LcRL19.fna'	'LcRL31.fna'	94.4	[92.0 - 96.2]	98.6	[97.9 - 99.1]	96.8	[95.3 - 97.8]	0.43	
'LcRL23.fna'	'LcRL30.fna'	92.5	[89.7 - 94.6]	98.6	[87.9 - 99.1]	95.5	[93.7 - 96.8]	0.1	
'LcRL26.fna'	'LcRL31.fna'	94.9	[92.6 - 96.6]	98.6	[97.9 - 99.0]	97.1	[95.7 - 98.0]	0.19	
'LcRL19.fna'	'LcRL32.fna'	94.3	[91.8 - 96.0]	98.6	[97.9 - 99.0]	96.7	[95.2 - 97.7]	0.38	
'LcRL29.fna'	'LcRL31.fna'	94.7	[92.3 - 96.4]	98.6	[97.9 - 99.0]	96.9	[95.5 - 97.9]	0.09	
'LcRL26.fna'	'LcRL32.fna'	94.7	[92.3 - 96.3]	98.5	[97.8 - 99.0]	96.9	[95.5 - 97.9]	0.15	
'LcRL24.fna'	'LcRL31.fna'	90.4	[87.2 - 92.9]	98.5	[97.8 - 99.0]	94.0	[91.9 - 95.6]	0.49	
'LcRL24.fna'	'LcRL32.fna'	90.1	[86.8 - 92.6]	98.5	[97.8 - 99.0]	93.8	[91.6 - 95.4]	0.53	
'LcRL30.fna'	'LcRL33.fna'	90.7	[87.5 - 93.1]	98.5	[97.8 - 99.0]	94.2	[92.1 - 95.8]	0.04	
'LcRL32.fna'	'LcRL33.fna'	87.9	[84.4 - 90.7]	98.5	[97.7 - 99.0]	92.2	[89.8 - 94.1]	0.36	
'LcRL15.fna'	'LcRL33.fna'	89.4	[86.1 - 92.0]	98.5	[97.8 - 99.0]	93.4	[91.1 - 95.1]	0.28	
'LcRL31.fna'	'LcRL33.fna'	88.3	[84.8 - 91.0]	98.5	[97.8 - 99.0]	92.5	[90.1 - 94.4]	0.32	
'LcRL29.fna'	'LcRL32.fna'	94.4	[91.9 - 96.1]	98.5	[97.7 - 99.0]	96.7	[95.2 - 97.8]	0.13	
'LcRL13.fna'	'LcRL27.fna'	85.6	[82.0 - 88.7]	98.4	[97.6 - 98.9]	90.5	[87.8 - 92.7]	0.15	
'LcRL20.fna'	'LcRL30.fna'	89.7	[86.4 - 92.2]	98.4	[97.6 - 98.9]	93.5	[91.3 - 95.2]	0.41	
'LcRL19.fna'	'LcRL20.fna'	87.7	[84.2 - 90.5]	98.4	[97.6 - 98.9]	92.1	[89.6 - 94.0]	1.12	
'LcRL11.fna'	'LcRL27.fna'	86.0	[82.4 - 89.0]	98.4	[97.6 - 98.9]	90.8	[88.1 - 92.9]	0.34	
'LcRL23.fna'	'LcRL24.fna'	84.9	[81.2 - 88.0]	98.4	[97.6 - 98.9]	89.9	[87.2 - 92.2]	0.1	
'LcRL13.fna'	'LcRL21.fna'	86.0	[82.4 - 89.0]	98.4	[97.6 - 98.9]	90.8	[88.2 - 92.9]	0.07	
'LcRL27.fna'	'LcRL28.fna'	85.1	[81.4 - 88.2]	98.4	[97.6 - 98.9]	90.1	[87.4 - 92.3]	0.0	
'LcRL11.fna'	'LcRL21.fna'	86.5	[82.9 - 89.5]	98.4	[97.6 - 98.9]	91.2	[88.6 - 93.2]	0.26	
'LcRL21.fna'	'LcRL28.fna'	85.5	[81.8 - 88.6]	98.4	[97.7 - 98.9]	90.4	[87.7 - 92.6]	0.08	
'LcRL20.fna'	'LcRL26.fna'	88.4	[84.9 - 91.1]	98.4	[97.6 - 98.9]	92.6	[90.2 - 94.4]	0.89	
'LcRL20.fna'	'LcRL29.fna'	88.0	[84.5 - 90.8]	98.3	[97.6 - 98.9]	92.3	[89.9 - 94.2]	0.61	
'LcRL20.fna'	'LcRL33.fna'	84.7	[80.9 - 87.8]	98.3	[97.6 - 98.9]	89.8	[87.0 - 92.0]	0.37	
'LcRL24.fna'	'LcRL25.fna'	84.5	[80.8 - 87.7]	98.3	[97.6 - 98.9]	89.6	[86.8 - 91.9]	0.18	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
-------------	---------------	---------	------------	---------	------------	---------	------------	------------------	
LcRL17.fna	LcRL19.fna	92.8	[90.0 - 94.9]	98.3	[97.6 - 98.9]	95.7	[93.9 - 97.0]	0.71	
LcRL17.fna	LcRL20.fna	85.2	[81.4 - 88.2]	98.3	[97.6 - 98.9]	90.1	[87.4 - 92.3]	1.84	
LcRL20.fna	LcRL24.fna	83.7	[79.9 - 86.9]	98.3	[97.5 - 98.8]	89.0	[86.1 - 91.3]	0.2	
LcRL17.fna	LcRL26.fna	93.1	[90.4 - 95.1]	98.3	[97.5 - 98.8]	95.9	[94.1 - 97.1]	0.95	
LcRL16.fna	LcRL28.fna	82.5	[78.6 - 85.8]	98.2	[97.4 - 98.8]	88.0	[85.0 - 90.4]	0.69	
LcRL19.fna	LcRL30.fna	96.5	[94.6 - 97.7]	98.2	[97.3 - 98.7]	98.0	[96.9 - 98.7]	0.71	
LcRL17.fna	LcRL29.fna	92.8	[90.0 - 94.9]	98.2	[97.4 - 98.8]	95.7	[93.9 - 96.9]	1.23	
LcRL13.fna	LcRL16.fna	83.2	[79.3 - 86.4]	98.2	[97.4 - 98.7]	88.5	[85.6 - 90.9]	0.55	
LcRL30.fna	LcRL31.fna	94.8	[92.4 - 96.4]	98.2	[97.4 - 98.8]	97.0	[95.5 - 97.9]	0.28	
LcRL17.fna	LcRL24.fna	88.4	[85.0 - 91.2]	98.2	[97.4 - 98.8]	92.6	[90.2 - 94.4]	1.63	
LcRL11.fna	LcRL16.fna	83.6	[79.8 - 86.8]	98.2	[97.4 - 98.8]	88.9	[86.0 - 91.2]	0.35	
LcRL20.fna	LcRL27.fna	79.3	[75.4 - 82.8]	98.2	[97.4 - 98.7]	85.4	[82.2 - 88.1]	0.74	
LcRL15.fna	LcRL19.fna	95.5	[93.3 - 97.0]	98.2	[97.3 - 98.7]	97.4	[96.1 - 98.3]	0.47	
LcRL20.fna	LcRL21.fna	79.6	[75.6 - 83.0]	98.2	[97.4 - 98.8]	85.6	[82.4 - 88.2]	0.66	
LcRL15.fna	LcRL26.fna	96.0	[94.0 - 97.4]	98.1	[97.3 - 98.7]	97.7	[96.5 - 98.5]	0.23	
LcRL29.fna	LcRL30.fna	96.7	[94.9 - 97.9]	98.1	[97.2 - 98.7]	98.1	[97.1 - 98.8]	0.2	
LcRL26.fna	LcRL30.fna	96.9	[95.2 - 98.0]	98.1	[97.3 - 98.7]	98.3	[97.3 - 98.9]	0.47	
LcRL15.fna	LcRL24.fna	91.7	[88.8 - 94.0]	98.1	[97.2 - 98.7]	94.9	[93.0 - 96.3]	0.45	
LcRL15.fna	LcRL29.fna	95.7	[93.6 - 97.2]	98.1	[97.2 - 98.7]	97.5	[96.3 - 98.4]	0.05	
LcRL30.fna	LcRL32.fna	94.5	[92.0 - 96.2]	98.1	[97.3 - 98.7]	96.7	[95.2 - 97.8]	0.33	
LcRL15.fna	LcRL20.fna	88.5	[85.1 - 91.2]	98.1	[97.3 - 98.7]	92.6	[90.2 - 94.4]	0.66	
LcRL14.fna	LcRL33.fna	79.8	[75.9 - 83.3]	98.1	[97.2 - 98.7]	85.8	[82.6 - 88.4]	0.12	
LcRL24.fna	LcRL30.fna	92.7	[89.9 - 94.8]	98.1	[97.2 - 98.7]	95.6	[93.8 - 96.9]	0.21	
LcRL16.fna	LcRL20.fna	92.3	[89.4 - 94.5]	98.0	[97.1 - 98.6]	95.3	[93.4 - 96.6]	0.05	
LcRL20.fna	LcRL32.fna	88.6	[85.2 - 91.3]	97.8	[96.9 - 98.5]	92.6	[90.2 - 94.5]	0.74	
LcRL20.fna	LcRL31.fna	89.0	[85.6 - 91.6]	97.8	[96.9 - 98.5]	92.9	[90.6 - 94.7]	0.7	
LcRL16.fna	LcRL19.fna	86.7	[83.1 - 89.6]	97.8	[96.8 - 98.4]	91.2	[88.6 - 93.2]	1.08	
Query	Subject	d₀	C.I. d₀	d₄	C.I. d₄	d₅	C.I. d₅	Diff. G+C Percent	
--------------	---------------	--------	---------	--------	---------	--------	---------	------------------	
LcRL16.fna	LcRL29.fna	86.6	[83.0 - 89.6]	97.7	[96.7 - 98.4]	91.1	[88.5 - 93.2]	0.56	
LcRL16.fna	LcRL26.fna	87.1	[83.5 - 89.9]	97.7	[96.8 - 98.4]	91.5	[88.9 - 93.5]	0.84	
LcRL17.fna	LcRL31.fna	90.6	[87.5 - 93.1]	97.7	[96.7 - 98.4]	94.1	[92.0 - 95.7]	1.14	
LcRL15.fna	LcRL31.fna	93.8	[91.2 - 95.7]	97.7	[96.8 - 98.4]	96.3	[94.6 - 97.4]	0.04	
LcRL15.fna	LcRL32.fna	93.4	[90.8 - 95.4]	97.7	[96.7 - 98.4]	96.0	[94.3 - 97.2]	0.08	
LcRL23.fna	LcRL27.fna	81.0	[77.0 - 84.3]	97.6	[96.6 - 98.3]	86.6	[83.5 - 89.2]	0.43	
LcRL21.fna	LcRL23.fna	81.4	[77.5 - 84.7]	97.6	[96.6 - 98.3]	87.0	[83.9 - 89.5]	0.35	
LcRL17.fna	LcRL32.fna	90.5	[87.3 - 92.9]	97.6	[96.7 - 98.3]	94.0	[91.8 - 95.6]	1.1	
LcRL14.fna	LcRL20.fna	80.5	[76.5 - 83.9]	97.6	[96.6 - 98.3]	86.2	[83.1 - 88.8]	0.26	
LcRL16.fna	LcRL23.fna	88.8	[85.4 - 91.5]	97.5	[96.5 - 98.3]	92.7	[90.4 - 94.6]	0.26	
LcRL21.fna	LcRL25.fna	81.3	[77.4 - 84.6]	97.5	[96.5 - 98.3]	86.9	[83.8 - 89.4]	0.28	
LcRL16.fna	LcRL25.fna	88.6	[85.1 - 91.3]	97.5	[96.5 - 98.3]	92.6	[90.2 - 94.4]	0.33	
LcRL25.fna	LcRL27.fna	80.8	[76.9 - 84.2]	97.5	[96.5 - 98.3]	86.5	[83.4 - 89.1]	0.36	
LcRL14.fna	LcRL28.fna	84.1	[80.3 - 87.2]	97.4	[96.4 - 98.2]	89.1	[86.2 - 91.4]	0.48	
LcRL11.fna	LcRL14.fna	85.1	[81.4 - 88.2]	97.3	[96.3 - 98.1]	89.9	[87.1 - 92.1]	0.14	
LcRL13.fna	LcRL14.fna	84.7	[80.9 - 87.8]	97.3	[96.3 - 98.1]	89.6	[86.8 - 91.8]	0.34	
LcRL16.fna	LcRL31.fna	87.4	[83.9 - 90.3]	97.2	[96.1 - 98.0]	91.7	[89.1 - 93.7]	0.65	
LcRL16.fna	LcRL33.fna	80.7	[76.8 - 84.1]	97.2	[96.1 - 98.0]	86.4	[83.3 - 89.0]	0.33	
LcRL14.fna	LcRL19.fna	85.0	[81.3 - 88.1]	97.2	[96.0 - 98.0]	89.8	[87.0 - 92.0]	0.86	
LcRL16.fna	LcRL32.fna	87.2	[83.7 - 90.1]	97.1	[96.0 - 98.0]	91.5	[89.0 - 93.5]	0.69	
LcRL16.fna	LcRL30.fna	87.9	[84.4 - 90.7]	97.1	[96.0 - 97.9]	92.0	[89.5 - 93.9]	0.36	
LcRL14.fna	LcRL26.fna	85.4	[81.7 - 88.5]	97.1	[95.9 - 97.9]	90.1	[87.4 - 92.3]	0.63	
LcRL14.fna	LcRL29.fna	85.0	[81.2 - 88.1]	97.0	[95.9 - 97.6]	89.8	[87.0 - 92.0]	0.35	
LcRL16.fna	LcRL24.fna	83.1	[79.3 - 86.4]	96.9	[95.8 - 97.8]	88.3	[85.3 - 90.7]	0.16	
LcRL15.fna	LcRL16.fna	86.6	[83.0 - 89.6]	96.8	[95.6 - 97.7]	91.0	[88.4 - 93.1]	0.61	
LcRL16.fna	LcRL17.fna	83.7	[79.9 - 86.9]	96.8	[95.6 - 97.7]	88.7	[85.8 - 91.1]	1.79	
LcRL14.fna	LcRL24.fna	81.0	[77.1 - 84.4]	96.8	[95.6 - 97.7]	86.5	[83.5 - 89.1]	0.05	
Query	Subject	\(d_0\)	C.I. \(d_0\)	\(d_4\)	C.I. \(d_4\)	\(d_5\)	C.I. \(d_5\)	Diff. G+C Percent	
-----------	--------------	---------	--------------	---------	--------------	---------	--------------	------------------	
'LcRL21.fna'	'LcRL33.fna'	93.3	[90.7 - 95.3]	96.7	[95.5 - 97.6]	95.8	[94.1 - 97.1]	0.29	
'LcRL27.fna'	'LcRL31.fna'	86.9	[83.3 - 89.8]	96.7	[95.5 - 97.6]	91.2	[88.6 - 93.2]	0.05	
'LcRL27.fna'	'LcRL32.fna'	87.0	[83.4 - 89.9]	96.7	[95.4 - 97.6]	91.3	[88.7 - 93.3]	0.00	
'LcRL21.fna'	'LcRL32.fna'	86.8	[83.2 - 89.7]	96.7	[95.4 - 97.6]	91.1	[88.5 - 93.2]	0.08	
'LcRL21.fna'	'LcRL31.fna'	86.7	[83.1 - 89.6]	96.7	[95.4 - 97.6]	91.0	[88.4 - 93.1]	0.03	
'LcRL27.fna'	'LcRL33.fna'	92.9	[90.2 - 95.0]	96.7	[95.5 - 97.6]	95.6	[93.8 - 96.9]	0.37	
'LcRL21.fna'	'LcRL26.fna'	86.0	[82.3 - 89.0]	96.6	[95.3 - 97.5]	90.5	[87.8 - 92.6]	0.22	
'LcRL19.fna'	'LcRL21.fna'	85.7	[82.0 - 88.7]	96.6	[95.4 - 97.6]	90.2	[87.5 - 92.4]	0.46	
'LcRL19.fna'	'LcRL27.fna'	85.4	[81.7 - 88.4]	96.6	[95.4 - 97.5]	90.0	[87.2 - 92.2]	0.38	
'LcRL21.fna'	'LcRL30.fna'	87.8	[84.3 - 90.6]	96.6	[95.3 - 97.5]	91.8	[89.3 - 93.8]	0.25	
'LcRL27.fna'	'LcRL29.fna'	85.3	[81.6 - 88.3]	96.5	[95.2 - 97.4]	89.9	[87.1 - 92.1]	0.14	
'LcRL27.fna'	'LcRL30.fna'	87.4	[83.9 - 90.3]	96.5	[95.3 - 97.5]	91.6	[89.0 - 93.6]	0.33	
'LcRL21.fna'	'LcRL29.fna'	85.6	[81.9 - 88.6]	96.5	[95.2 - 97.5]	90.1	[87.4 - 92.3]	0.05	
'LcRL26.fna'	'LcRL27.fna'	85.7	[82.0 - 88.7]	96.5	[95.3 - 97.5]	90.2	[87.5 - 92.4]	0.14	
'LcRL14.fna'	'LcRL23.fna'	90.4	[87.2 - 92.6]	96.4	[95.1 - 97.3]	93.7	[91.5 - 95.4]	0.05	
'LcRL14.fna'	'LcRL32.fna'	87.3	[83.7 - 90.1]	96.4	[95.1 - 97.3]	91.4	[88.8 - 93.4]	0.48	
'LcRL15.fna'	'LcRL21.fna'	86.5	[82.9 - 89.5]	96.3	[95.0 - 97.3]	90.8	[88.2 - 92.9]	0.01	
'LcRL17.fna'	'LcRL27.fna'	83.5	[79.7 - 86.7]	96.3	[95.0 - 97.3]	88.5	[85.5 - 90.9]	1.09	
'LcRL17.fna'	'LcRL21.fna'	83.9	[80.1 - 87.1]	96.3	[95.0 - 97.3]	88.8	[85.9 - 91.1]	1.18	
'LcRL14.fna'	'LcRL31.fna'	87.3	[83.7 - 90.1]	96.3	[95.0 - 97.3]	91.4	[88.8 - 93.4]	0.44	
'LcRL14.fna'	'LcRL25.fna'	90.2	[87.0 - 92.7]	96.3	[95.0 - 97.3]	93.6	[91.4 - 95.3]	0.12	
'LcRL15.fna'	'LcRL27.fna'	86.1	[82.4 - 89.1]	96.3	[94.9 - 97.3]	90.5	[87.8 - 92.6]	0.09	
'LcRL14.fna'	'LcRL27.fna'	83.1	[79.3 - 86.3]	95.9	[94.4 - 96.9]	88.1	[85.1 - 90.5]	0.48	
'LcRL16.fna'	'LcRL27.fna'	77.2	[73.2 - 80.7]	95.9	[94.5 - 97.0]	83.1	[79.9 - 86.0]	0.7	
'LcRL16.fna'	'LcRL21.fna'	77.4	[73.4 - 80.9]	95.9	[94.5 - 97.0]	83.3	[80.1 - 86.2]	0.62	
'LcRL14.fna'	'LcRL21.fna'	83.2	[79.4 - 86.4]	95.8	[94.4 - 96.9]	88.1	[85.2 - 90.6]	0.4	
'LcRL24.fna'	'LcRL27.fna'	93.4	[90.7 - 95.3]	95.6	[94.1 - 96.7]	95.7	[93.9 - 97.0]	0.54	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C	Percent
---------	--------------------------------------	---------	------------	---------	------------	---------	------------	-----------	----------
'LcRL21.fna'	'LcRL24.fna'	93.8	[91.2 - 95.7]	95.6	[94.1 - 96.7]	96.0	[94.3 - 97.2]	0.46	
'LcRL14.fna'	'LcRL30.fna'	87.8	[84.3 - 90.6]	95.5	[94.0 - 96.6]	91.7	[89.2 - 93.7]	0.15	
'LcRL14.fna'	'LcRL15.fna'	86.6	[83.0 - 89.6]	95.2	[93.6 - 96.4]	90.7	[88.1 - 92.9]	0.4	
'LcRL11.fna'	'LcRL13.fna'	99.8	[99.5 - 99.9]	95.2	[93.6 - 96.4]	99.8	[99.6 - 99.9]	0.19	
'LcRL14.fna'	'LcRL17.fna'	83.5	[79.6 - 86.7]	95.1	[93.5 - 96.3]	88.2	[85.3 - 90.7]	1.58	
'LcRL14.fna'	'LcRL16.fna'	89.7	[86.4 - 92.3]	94.7	[93.1 - 96.0]	93.0	[90.6 - 94.8]	0.21	
'LcRL28.fna'	Lactobacillus crispatus JCM 1185	66.1	[62.3 - 69.8]	77.3	[74.3 - 80.0]	70.1	[66.7 - 73.4]	0.71	
'LcRL23.fna'	Lactobacillus crispatus JCM 1185	62.0	[58.3 - 65.6]	77.1	[74.1 - 79.8]	66.2	[62.9 - 69.5]	0.28	
'LcRL11.fna'	Lactobacillus crispatus JCM 1185	67.5	[63.6 - 71.2]	76.9	[73.9 - 79.7]	71.4	[67.9 - 74.6]	0.38	
'LcRL18.fna'	Lactobacillus crispatus JCM 1185	59.5	[55.8 - 63.0]	76.6	[73.7 - 79.4]	63.7	[60.4 - 66.9]	0.02	
'LcRL24.fna'	Lactobacillus crispatus JCM 1185	63.7	[60.0 - 67.3]	76.6	[73.6 - 79.3]	67.8	[64.4 - 71.0]	0.18	
'LcRL32.fna'	Lactobacillus crispatus JCM 1185	65.8	[62.0 - 69.4]	76.6	[73.6 - 79.3]	69.7	[66.3 - 73.0]	0.71	
'LcRL13.fna'	Lactobacillus crispatus JCM 1185	66.6	[62.8 - 70.2]	76.8	[73.8 - 79.5]	70.5	[67.0 - 73.7]	0.57	
'LcRL16.fna'	Lactobacillus crispatus JCM 1185	59.5	[55.8 - 63.0]	76.6	[73.7 - 79.4]	63.7	[60.4 - 66.9]	0.02	
'LcRL19.fna'	Lactobacillus crispatus JCM 1185	63.0	[59.2 - 66.6]	76.5	[73.5 - 79.3]	67.1	[63.7 - 70.3]	1.81	
'LcRL18.fna'	Lactobacillus crispatus JCM 1185	67.3	[63.4 - 70.9]	76.4	[73.4 - 79.2]	71.1	[67.6 - 74.3]	1.1	
'LcRL17.fna'	Lactobacillus crispatus JCM 1185	65.6	[61.7 - 69.2]	76.4	[73.4 - 79.2]	69.5	[66.0 - 72.7]	0.67	
'LcRL20.fna'	Lactobacillus crispatus JCM 1185	62.9	[59.2 - 66.5]	76.4	[73.4 - 79.2]	67.0	[63.6 - 70.2]	0.02	
'LcRL30.fna'	Lactobacillus crispatus JCM 1185	68.5	[64.6 - 72.1]	76.3	[73.3 - 79.1]	72.1	[68.7 - 75.3]	0.39	
'LcRL14.fna'	Lactobacillus crispatus JCM 1185	59.6	[56.0 - 63.2]	76.2	[73.2 - 79.0]	63.8	[60.5 - 67.0]	0.23	
'LcRL33.fna'	Lactobacillus crispatus JCM 1185	64.3	[60.5 - 67.9]	76.2	[73.2 - 79.0]	68.3	[64.8 - 71.5]	0.35	
'LcRL15.fna'	Lactobacillus crispatus JCM 1185	67.6	[63.8 - 71.3]	76.1	[73.1 - 78.8]	71.3	[67.9 - 74.6]	0.63	
'LcRL27.fna'	Lactobacillus crispatus JCM 1185	59.7	[56.0 - 63.2]	76.0	[73.0 - 78.8]	63.8	[60.5 - 67.1]	0.72	
'LcRL21.fna'	Lactobacillus crispatus JCM 1185	59.9	[56.3 - 63.5]	76.0	[73.0 - 78.8]	64.1	[60.7 - 67.3]	0.64	
'LcRL13.fna'	Lactobacillus gallinarum JCM 2011	31.8	[28.4 - 35.4]	25.0	[22.7 - 27.5]	29.1	[26.2 - 32.2]	0.68	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
-----------	---------------------------	--------	-----------	--------	-----------	--------	-----------	-------------------	
`LcRL11.fna`	Lactobacillus gallinarum JCM 2011	31.4	[28.1 - 35.0]	24.9	[22.6 - 27.4]	28.8	[25.9 - 31.9]	0.49	
`LcRL27.fna`	Lactobacillus gallinarum JCM 2011	29.3	[25.9 - 32.9]	24.9	[22.6 - 27.4]	27.2	[24.3 - 30.3]	0.83	
`LcRL20.fna`	Lactobacillus gallinarum JCM 2011	30.0	[26.6 - 33.6]	24.9	[22.6 - 27.4]	27.7	[24.8 - 30.8]	0.09	
`LcRL21.fna`	Lactobacillus gallinarum JCM 2011	29.4	[26.0 - 33.0]	24.9	[22.5 - 27.3]	27.3	[24.4 - 30.4]	0.75	
`LcRL14.fna`	Lactobacillus gallinarum JCM 2011	29.1	[25.7 - 32.7]	24.9	[22.5 - 27.3]	27.1	[24.2 - 30.2]	0.35	
`LcRL29.fna`	Lactobacillus gallinarum JCM 2011	31.7	[28.3 - 35.3]	24.9	[22.6 - 27.4]	29.1	[26.1 - 32.2]	0.7	
`LcRL31.fna`	Lactobacillus gallinarum JCM 2011	30.9	[27.5 - 34.5]	24.9	[22.6 - 27.4]	28.5	[25.5 - 31.6]	0.79	
`LcRL28.fna`	Lactobacillus gallinarum JCM 2011	31.6	[28.2 - 35.2]	24.9	[22.6 - 27.4]	29.0	[26.0 - 32.1]	0.83	
`LcRL33.fna`	Lactobacillus gallinarum JCM 2011	30.5	[27.1 - 34.1]	24.9	[22.6 - 27.4]	28.1	[25.2 - 31.2]	0.46	
`LcRL32.fna`	Lactobacillus gallinarum JCM 2011	31.0	[27.7 - 34.6]	24.8	[22.5 - 27.3]	28.5	[25.6 - 31.6]	0.83	
`LcRL19.fna`	Lactobacillus gallinarum JCM 2011	31.3	[27.9 - 34.9]	24.8	[22.5 - 27.3]	28.7	[25.8 - 31.8]	1.21	
`LcRL30.fna`	Lactobacillus gallinarum JCM 2011	31.2	[27.8 - 34.8]	24.8	[22.4 - 27.2]	28.6	[25.7 - 31.7]	0.5	
`LcRL16.fna`	Lactobacillus gallinarum JCM 2011	29.1	[25.8 - 32.7]	24.8	[22.5 - 27.3]	27.1	[24.2 - 30.2]	0.14	
`LcRL26.fna`	Lactobacillus gallinarum JCM 2011	31.3	[28.0 - 34.9]	24.7	[22.4 - 27.2]	28.7	[25.8 - 31.8]	0.97	
`LcRL17.fna`	Lactobacillus gallinarum JCM 2011	29.9	[26.5 - 34.9]	24.7	[22.3 - 27.1]	27.6	[24.7 - 30.7]	1.93	
`LcRL24.fna`	Lactobacillus gallinarum JCM 2011	30.3	[26.9 - 33.9]	24.6	[22.3 - 27.1]	27.9	[25.0 - 31.0]	0.29	
`LcRL15.fna`	Lactobacillus gallinarum JCM 2011	31.0	[27.7 - 34.6]	24.6	[22.3 - 27.1]	28.5	[25.6 - 31.6]	0.75	
`LcRL23.fna`	Lactobacillus gallinarum JCM 2011	31.1	[27.7 - 34.7]	24.6	[22.3 - 27.1]	28.5	[25.6 - 31.6]	0.4	
`LcRL25.fna`	Lactobacillus gallinarum JCM 2011	31.1	[27.8 - 34.7]	24.6	[22.3 - 27.1]	28.6	[25.6 - 31.7]	0.47	
`LcRL27.fna`	Lactobacillus suntoryeus LMG 22464	27.5	[24.2 - 31.2]	24.4	[22.1 - 26.9]	25.8	[22.9 - 28.9]	0.78	
`LcRL11.fna`	Lactobacillus suntoryeus LMG 22464	30.3	[26.9 - 33.9]	24.4	[22.0 - 26.8]	27.9	[25.0 - 31.0]	0.44	
`LcRL11.fna`	Lactobacillus amylovorus DSM 20531	32.4	[29.0 - 35.9]	24.4	[22.0 - 26.8]	29.4	[26.5 - 32.5]	0.81	
`LcRL28.fna`	Lactobacillus suntoryeus LMG 22464	30.1	[26.7 - 33.7]	24.4	[22.1 - 26.9]	27.7	[24.8 - 30.8]	0.78	
`LcRL16.fna`	Lactobacillus suntoryeus LMG 22464	27.8	[24.5 - 31.5]	24.4	[22.0 - 26.8]	26.0	[23.1 - 29.1]	0.09	
`LcRL26.fna`	Lactobacillus suntoryeus LMG 22464	29.6	[26.2 - 33.2]	24.4	[22.1 - 26.9]	27.3	[24.4 - 30.4]	0.92	
`LcRL33.fna`	Lactobacillus suntoryeus LMG 22464	29.0	[25.7 - 32.7]	24.4	[22.1 - 26.9]	26.9	[24.0 - 30.0]	0.41	
`LcRL14.fna`	Lactobacillus suntoryeus LMG 22464	27.4	[24.1 - 31.1]	24.4	[22.1 - 26.9]	25.7	[22.8 - 28.8]	0.3	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
---------	--------------------------------------	-------	------------	-------	------------	-------	------------	------------------	
'LcRL13.fna'	Lactobacillus amylovorus LMG 22464	30.2	[26.9 - 33.8]	24.4	[22.1 - 26.9]	27.9	[24.0 - 30.9]	0.63	
'LcRL20.fna'	Lactobacillus amylovorus DSM 20531	29.7	[26.4 - 33.3]	24.3	[22.0 - 26.7]	27.4	[24.5 - 30.5]	0.45	
'LcRL33.fna'	Lactobacillus amylovorus DSM 20531	31.5	[28.1 - 35.0]	24.3	[22.0 - 26.8]	28.7	[25.8 - 31.8]	0.84	
'LcRL22.fna'	Lactobacillus amylovorus DSM 20531	28.7	[25.3 - 32.3]	24.3	[22.0 - 26.7]	26.6	[23.7 - 29.7]	1.16	
'LcRL21.fna'	Lactobacillus amylovorus DSM 20531	27.6	[24.2 - 31.2]	24.4	[22.0 - 26.6]	25.8	[22.9 - 28.9]	0.7	
'LcRL18.fna'	Lactobacillus amylovorus DSM 20531	32.9	[29.5 - 36.4]	24.3	[22.0 - 26.8]	29.8	[26.8 - 32.9]	0.62	
'LcRL24.fna'	Lactobacillus amylovorus DSM 20531	31.7	[28.3 - 35.2]	24.2	[21.9 - 26.7]	29.2	[25.9 - 31.9]	0.47	
'LcRL23.fna'	Lactobacillus amylovorus DSM 20531	32.2	[28.8 - 35.8]	24.3	[22.0 - 26.8]	29.3	[26.3 - 32.4]	0.33	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_s	C.I. d_s	Diff. G+C Percent	
---------	--------------------------------	-------	------------	-------	------------	-------	------------	------------------	
LcRL3.fna	Lactobacillus sobrius DSM 16698	31.7	[28.3 - 35.3]	24.2	[21.9 - 26.7]	28.8	[25.9 - 32.0]	0.67	
LcRL21.fna	Lactobacillus amylovorus DSM 20531	30.0	[26.6 - 33.6]	24.2	[21.9 - 26.7]	27.6	[24.7 - 30.7]	0.55	
LcRL23.fna	Lactobacillus amylovorus DSM 20531	31.6	[28.2 - 35.2]	24.2	[21.9 - 26.7]	28.8	[25.8 - 31.9]	0.9	
LcRL11.fna	Lactobacillus sobrius DSM 16698	31.6	[28.2 - 35.1]	24.2	[21.8 - 26.6]	28.7	[25.8 - 31.8]	0.86	
LcRL27.fna	Lactobacillus amylovorus DSM 20531	29.7	[26.3 - 33.3]	24.2	[21.9 - 26.7]	27.4	[24.4 - 30.5]	0.47	
LcRL25.fna	Lactobacillus amylovorus DSM 20531	31.6	[28.3 - 35.2]	24.2	[21.9 - 26.6]	28.8	[25.9 - 31.9]	0.83	
LcRL31.fna	Lactobacillus amylovorus DSM 20531	31.5	[28.1 - 35.1]	24.2	[21.9 - 26.7]	28.7	[25.8 - 31.8]	0.51	
LcRL16.fna	Lactobacillus kitasatonis JCM 1039	29.2	[25.8 - 32.8]	24.1	[21.8 - 26.6]	27.0	[24.1 - 30.1]	0.89	
LcRL25.fna	Lactobacillus kitasatonis JCM 1039	31.0	[27.7 - 34.6]	24.1	[21.8 - 26.5]	28.3	[25.4 - 31.5]	0.56	
LcRL15.fna	Lactobacillus amylovorus DSM 20531	31.8	[28.5 - 35.4]	24.1	[21.8 - 26.6]	28.9	[26.0 - 32.0]	0.55	
LcRL14.fna	Lactobacillus kitasatonis JCM 1039	29.4	[26.0 - 33.0]	24.1	[21.8 - 26.6]	27.1	[24.2 - 30.2]	0.68	
LcRL32.fna	Lactobacillus kitasatonis JCM 1039	31.2	[27.8 - 34.8]	24.1	[21.8 - 26.6]	28.5	[25.6 - 31.6]	0.2	
LcRL23.fna	Lactobacillus kitasatonis JCM 1039	31.1	[27.8 - 34.7]	24.1	[21.8 - 26.6]	28.4	[25.5 - 31.5]	0.63	
LcRL28.fna	Lactobacillus kitasatonis JCM 1039	32.1	[28.7 - 35.6]	24.1	[21.8 - 26.6]	29.1	[26.2 - 32.2]	0.2	
LcRL19.fna	Lactobacillus helveticus DSM 20075	26.9	[23.5 - 30.5]	24.1	[21.7 - 26.5]	25.2	[22.3 - 28.3]	0.93	
LcRL26.fna	Lactobacillus helveticus DSM 20075	27.0	[23.6 - 30.6]	24.1	[21.8 - 26.6]	25.3	[22.4 - 28.4]	0.69	
LcRL19.fna	Lactobacillus sobrius DSM 16698	31.0	[27.6 - 34.6]	24.1	[21.8 - 26.5]	28.3	[25.4 - 31.4]	0.14	
LcRL21.fna	Lactobacillus helveticus DSM 20075	25.2	[21.9 - 28.9]	24.1	[21.8 - 26.6]	23.9	[21.1 - 27.0]	0.47	
LcRL28.fna	Lactobacillus helveticus DSM 20075	27.3	[23.9 - 30.9]	24.1	[21.8 - 26.6]	25.5	[22.6 - 28.6]	0.55	
LcRL29.fna	Lactobacillus kitasatonis JCM 1039	31.6	[28.2 - 35.2]	24.1	[21.8 - 26.6]	28.8	[25.9 - 31.9]	0.33	
LcRL16.fna	Lactobacillus sobrius DSM 16698	29.2	[25.8 - 32.8]	24.1	[21.8 - 26.5]	26.9	[24.0 - 30.0]	1.22	
LcRL33.fna	Lactobacillus kitasatonis JCM 1039	30.7	[27.3 - 34.3]	24.1	[21.8 - 26.5]	28.1	[25.2 - 31.2]	0.57	
LcRL20.fna	Lactobacillus helveticus DSM 20075	26.1	[22.8 - 29.7]	24.1	[21.8 - 26.5]	24.6	[21.7 - 27.7]	0.19	
LcRL31.fna	Lactobacillus kitasatonis JCM 1039	31.0	[27.6 - 34.6]	24.1	[21.8 - 26.5]	28.3	[25.4 - 31.4]	0.25	
LcRL26.fna	Lactobacillus kitasatonis JCM 1039	31.5	[28.1 - 35.1]	24.1	[21.8 - 26.6]	28.7	[25.8 - 31.8]	0.06	
LcRL20.fna	Lactobacillus sobrius DSM 16698	30.0	[26.7 - 33.6]	24.1	[21.8 - 26.5]	27.6	[24.7 - 30.7]	1.27	
LcRL14.fna	Lactobacillus sobrius DSM 16698	29.3	[25.9 - 32.9]	24.1	[21.7 - 26.5]	27.0	[24.1 - 30.1]	1.01	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
--------------	-------------------------------------	---------	------------	---------	------------	---------	------------	-------------------	
LcRL17.fna	Lactobacillus amylovorus DSM 20531	30.8	[27.4 - 34.4]	24.1	[21.8 - 26.6]	28.2	[25.3 - 31.3]	0.63	
LcRL13.fna	Lactobacillus kitasatonis JCM 1039	32.0	[28.6 - 35.5]	24.1	[21.8 - 26.6]	29.0	[26.1 - 32.1]	0.35	
LcRL27.fna	Lactobacillus helveticus DSM 20075	25.1	[21.8 - 28.8]	24.1	[21.8 - 26.6]	23.8	[21.0 - 26.9]	0.55	
LcRL24.fna	Lactobacillus helveticus DSM 20075	30.5	[27.1 - 34.1]	24.1	[21.8 - 26.6]	27.9	[25.0 - 31.1]	0.74	
LcRL13.fna	Lactobacillus kitasatonis JCM 1039	27.4	[24.0 - 31.0]	24.1	[21.8 - 26.6]	25.6	[22.7 - 28.7]	0.4	
LcRL11.fna	Lactobacillus helveticus DSM 20075	27.6	[24.2 - 31.2]	24.1	[21.8 - 26.6]	25.7	[22.8 - 28.8]	0.21	
LcRL33.fna	Lactobacillus sobrius DSM 16698	30.5	[27.1 - 34.1]	24.1	[21.7 - 26.6]	27.9	[25.0 - 31.0]	0.89	
LcRL14.fna	Lactobacillus helveticus DSM 20075	25.3	[22.0 - 29.0]	24.1	[21.8 - 26.6]	24.0	[21.1 - 27.1]	0.07	
LcRL19.fna	Lactobacillus kitasatonis JCM 1039	31.2	[27.8 - 34.8]	24.1	[21.8 - 26.6]	28.5	[25.6 - 31.6]	0.18	
LcRL21.fna	Lactobacillus kitasatonis JCM 1039	29.4	[26.1 - 33.0]	24.1	[21.8 - 26.6]	27.1	[24.2 - 30.2]	0.28	
LcRL27.fna	Lactobacillus sobrius DSM 16698	29.1	[25.7 - 32.7]	24.1	[21.8 - 26.6]	26.9	[24.0 - 30.0]	0.52	
LcRL27.fna	Lactobacillus kitasatonis JCM 1039	29.3	[25.9 - 32.9]	24.1	[21.8 - 26.6]	27.0	[24.1 - 30.1]	0.2	
LcRL17.fna	Lactobacillus helveticus DSM 20075	26.1	[22.7 - 29.7]	24.0	[21.7 - 26.5]	24.6	[21.7 - 27.7]	1.65	
LcRL17.fna	Lactobacillus sobrius DSM 16698	30.1	[26.8 - 33.8]	24.0	[21.7 - 26.4]	27.7	[24.7 - 30.8]	0.57	
LcRL31.fna	Lactobacillus helveticus DSM 20075	26.5	[23.2 - 30.2]	24.0	[21.7 - 26.5]	24.9	[22.0 - 28.0]	0.5	
LcRL20.fna	Lactobacillus kitasatonis JCM 1039	30.8	[27.4 - 34.4]	24.0	[21.7 - 26.5]	28.1	[25.2 - 31.3]	0.94	
LcRL30.fna	Lactobacillus sobrius DSM 16698	31.1	[27.7 - 34.7]	24.0	[21.7 - 26.5]	28.4	[25.5 - 31.5]	0.85	
LcRL32.fna	Lactobacillus helveticus DSM 20075	26.7	[23.4 - 30.4]	24.0	[21.7 - 26.5]	25.1	[22.2 - 28.2]	0.55	
LcRL17.fna	Lactobacillus kitasatonis JCM 1039	30.6	[27.2 - 34.2]	24.0	[21.7 - 26.5]	28.0	[25.1 - 31.1]	0.9	
LcRL25.fna	Lactobacillus sobrius DSM 16698	30.9	[27.5 - 34.5]	24.0	[21.7 - 26.5]	28.2	[25.3 - 31.3]	0.89	
LcRL21.fna	Lactobacillus sobrius DSM 16698	29.2	[25.8 - 32.8]	24.0	[21.7 - 26.5]	27.0	[24.1 - 30.1]	0.6	
LcRL24.fna	Lactobacillus sobrius DSM 16698	30.4	[27.0 - 34.0]	24.0	[21.7 - 26.5]	27.9	[25.0 - 31.0]	1.06	
LcRL30.fna	Lactobacillus helveticus DSM 20075	26.8	[23.4 - 30.4]	24.0	[21.7 - 26.5]	25.1	[22.2 - 28.2]	0.22	
LcRL29.fna	Lactobacillus helveticus DSM 20075	27.3	[23.9 - 30.9]	24.0	[21.7 - 26.5]	25.5	[22.6 - 28.6]	0.42	
LcRL29.fna	Lactobacillus sobrius DSM 16698	31.4	[28.0 - 35.0]	24.0	[21.7 - 26.5]	28.6	[25.7 - 31.7]	0.66	
LcRL26.fna	Lactobacillus sobrius DSM 16698	31.3	[27.9 - 34.9]	24.0	[21.7 - 26.5]	28.5	[25.6 - 31.6]	0.38	
LcRL16.fna	Lactobacillus helveticus DSM 20075	25.7	[22.3 - 29.3]	24.0	[21.7 - 26.5]	24.2	[21.4 - 27.3]	0.15	
Query	Subject	d₀	C.I. d₀	d₄	C.I. d₄	d₅	C.I. d₅	Diff. G+C Percent	
---------------	--	------------	-----------	------------	-----------	------------	-----------	------------------	
'LcRL23.fna'	Lactobacillus sobrius DSM 16698	31.2	[27.8 - 34.8]	24.0	[21.7 - 26.5]	28.4	[25.5 - 31.5]	0.96	
'LcRL32.fna'	Lactobacillus sobrius DSM 16698	31.0	[27.6 - 34.6]	24.0	[21.7 - 26.4]	28.3	[25.4 - 31.4]	0.53	
'LcRL31.fna'	Lactobacillus sobrius DSM 16698	30.9	[27.5 - 34.5]	24.0	[21.7 - 26.5]	28.2	[25.3 - 31.4]	0.57	
'LcRL15.fna'	Lactobacillus kitasatonis JCM 1039	31.5	[28.1 - 35.1]	24.0	[21.7 - 26.5]	28.7	[25.8 - 31.8]	0.28	
'LcRL24.fna'	Lactobacillus helveticus DSM 20075	26.4	[23.0 - 30.0]	24.0	[21.7 - 26.5]	24.8	[21.9 - 27.9]	0.01	
'LcRL23.fna'	Lactobacillus helveticus DSM 20075	26.8	[23.5 - 30.5]	24.0	[21.7 - 26.4]	25.1	[22.2 - 28.2]	0.12	
'LcRL25.fna'	Lactobacillus helveticus DSM 20075	26.9	[23.6 - 30.5]	24.0	[21.7 - 26.4]	25.2	[22.3 - 28.3]	0.19	
'LcRL33.fna'	Lactobacillus helveticus DSM 20075	26.5	[23.2 - 30.1]	24.0	[21.7 - 26.5]	24.9	[22.0 - 28.0]	0.18	
'LcRL15.fna'	Lactobacillus helveticus DSM 20075	26.7	[23.4 - 30.4]	24.0	[21.7 - 26.5]	25.1	[22.2 - 28.2]	0.46	
'LcRL30.fna'	Lactobacillus kitasatonis JCM 1039	31.7	[28.3 - 35.3]	24.0	[21.7 - 26.5]	28.8	[25.9 - 31.9]	0.53	
'LcRL15.fna'	Lactobacillus sobrius DSM 16698	31.1	[27.8 - 34.7]	23.9	[21.6 - 26.4]	28.4	[25.5 - 31.5]	0.61	
'LcRL11.fna'	Lactobacillus ultunensis DSM 16047	28.3	[25.0 - 32.0]	23.5	[21.2 - 25.9]	26.2	[23.3 - 29.3]	1.03	
'LcRL26.fna'	Lactobacillus kefiranofaciens ATCC 43761	28.0	[24.6 - 31.6]	23.5	[21.2 - 26.0]	25.9	[23.1 - 29.0]	0.23	
'LcRL16.fna'	Lactobacillus kefiranofaciens ATCC 43761	26.3	[23.0 - 30.0]	23.5	[21.2 - 25.9]	24.7	[21.8 - 27.8]	0.6	
'LcRL33.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.5	[24.1 - 31.1]	23.5	[21.2 - 26.0]	25.5	[22.7 - 28.6]	0.28	
'LcRL27.fna'	Lactobacillus kefiranofaciens ATCC 43761	26.2	[22.9 - 29.9]	23.5	[21.2 - 26.0]	24.6	[21.7 - 27.7]	0.09	
'LcRL11.fna'	Lactobacillus kefiranofaciens ATCC 43761	28.2	[24.8 - 31.8]	23.5	[21.2 - 26.0]	26.1	[23.2 - 29.2]	0.25	
'LcRL29.fna'	Lactobacillus ultunensis DSM 16047	28.6	[25.3 - 32.3]	23.5	[21.2 - 26.0]	26.4	[23.5 - 29.8]	1.24	
'LcRL29.fna'	Lactobacillus kefiranofaciens ATCC 43761	28.5	[25.1 - 32.1]	23.5	[21.2 - 25.9]	26.3	[23.4 - 29.4]	0.04	
'LcRL28.fna'	Lactobacillus kefiranofaciens ATCC 43761	28.2	[24.8 - 31.8]	23.5	[21.2 - 26.0]	26.1	[23.2 - 29.2]	0.09	
'LcRL21.fna'	Lactobacillus kefiranofaciens ATCC 43761	26.3	[22.9 - 29.9]	23.5	[21.2 - 25.9]	24.6	[21.7 - 27.7]	0.01	
'LcRL13.fna'	Lactobacillus kefiranofaciens ATCC 43761	28.2	[24.9 - 31.8]	23.5	[21.2 - 26.0]	26.1	[23.2 - 29.2]	0.06	
'LcRL19.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.8	[24.5 - 31.5]	23.5	[21.2 - 25.9]	25.8	[22.9 - 28.9]	0.47	
'LcRL13.fna'	Lactobacillus ultunensis DSM 16047	28.4	[25.0 - 32.0]	23.5	[21.2 - 25.9]	26.2	[23.3 - 29.3]	1.23	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
---------------	--	-------	------------	-------	------------	-------	------------	------------------	
'LcRL31.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.6	[24.3 - 31.3]	23.4	[21.1 - 25.9]	25.6	[22.8 - 28.7]	0.05	
'LcRL28.fna'	Lactobacillus ultunensis DSM 16047	28.3	[25.0 - 32.0]	23.4	[21.1 - 25.9]	26.2	[23.3 - 29.3]	1.37	
'LcRL32.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.7	[24.4 - 31.4]	23.4	[21.1 - 25.9]	25.7	[22.8 - 28.8]	0.09	
'LcRL26.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.2	[24.9 - 31.9]	23.4	[21.1 - 25.9]	26.1	[23.2 - 29.2]	0.03	
'LcRL24.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.2	[23.9 - 30.8]	23.4	[21.1 - 25.9]	25.3	[22.4 - 28.4]	0.45	
'LcRL20.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.1	[23.7 - 30.7]	23.4	[21.1 - 25.9]	25.2	[22.3 - 28.3]	0.65	
'LcRL33.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.7	[24.3 - 31.3]	23.4	[21.1 - 25.8]	25.7	[22.8 - 28.8]	0.48	
'LcRL28.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.5	[25.1 - 32.1]	23.4	[21.1 - 25.8]	26.3	[23.4 - 29.4]	0.12	
'LcRL29.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.7	[25.3 - 32.3]	23.4	[21.1 - 25.8]	26.4	[23.5 - 29.5]	0.25	
'LcRL30.fna'	Lactobacillus kefiranofaciens ATCC 43761	27.8	[24.4 - 31.4]	23.4	[21.1 - 25.8]	25.7	[22.9 - 28.8]	0.24	
'LcRL11.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.5	[25.1 - 32.1]	23.4	[21.1 - 25.9]	26.3	[23.4 - 29.4]	0.46	
'LcRL13.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.7	[25.3 - 32.3]	23.4	[21.1 - 25.9]	26.4	[23.5 - 29.5]	0.26	
'LcRL16.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	26.6	[23.3 - 30.3]	23.4	[21.1 - 25.8]	24.9	[22.0 - 28.0]	0.81	
'LcRL33.fna'	Lactobacillus ultunensis DSM 16047	27.9	[24.5 - 31.5]	23.4	[21.1 - 25.8]	25.8	[22.9 - 28.9]	1.01	
'LcRL27.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	26.4	[23.0 - 30.0]	23.4	[21.1 - 25.8]	24.7	[21.8 - 27.8]	0.11	
'LcRL14.fna'	Lactobacillus kefiranofaciens ATCC 43761	26.3	[23.0 - 30.0]	23.4	[21.1 - 25.9]	24.6	[21.8 - 27.7]	0.39	
'LcRL20.fna'	Lactobacillus acidophilus NBRC 13951	27.5	[24.2 - 31.2]	23.3	[21.0 - 25.7]	25.5	[22.6 - 28.6]	1.97	
'LcRL31.fna'	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.8	[24.5 - 31.5]	23.3	[21.0 - 25.8]	25.8	[22.9 - 28.9]	0.16	
'LcRL24.fna'	Lactobacillus ultunensis DSM 16047	27.9	[24.6 - 31.6]	23.3	[21.0 - 25.7]	25.8	[23.0 - 28.9]	0.84	
'LcRL32.fna'	Lactobacillus ultunensis DSM 16047	28.5	[25.1 - 32.1]	23.3	[21.0 - 25.8]	26.2	[23.3 - 29.3]	1.37	
'LcRL26.fna'	Lactobacillus acidophilus NBRC 13951	28.4	[25.0 - 32.0]	23.3	[21.0 - 25.7]	26.2	[23.3 - 29.3]	2.85	
'LcRL16.fna'	Lactobacillus ultunensis DSM 16047	26.8	[23.5 - 30.5]	23.3	[21.0 - 25.8]	25.0	[22.1 - 28.1]	0.68	
'LcRL26.fna'	Lactobacillus ultunensis DSM 16047	28.7	[25.3 - 32.3]	23.3	[21.1 - 25.8]	26.4	[23.5 - 29.5]	1.52	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
--------------	---	--------	------------	--------	------------	--------	------------	------------------	
'LcRL13.fna'	*Lactobacillus acidophilus* NBRC 13951	28.8	[25.4 - 32.4]	23.3	[21.0 - 25.7]	26.5	[23.6 - 29.6]	2.56	
'LcRL17.fna'	*Lactobacillus kefiranofaciens* ATCC 43761	27.1	[23.7 - 30.7]	23.3	[21.0 - 25.8]	25.2	[22.3 - 28.3]	1.19	
'LcRL24.fna'	*Lactobacillus kefiranofaciens* subsp. kefiranum JCM 8572	27.5	[24.1 - 31.1]	23.3	[21.0 - 25.8]	25.5	[22.6 - 28.6]	0.65	
'LcRL14.fna'	*Lactobacillus ultunensis* DSM 16047	27.0	[23.6 - 30.6]	23.3	[21.0 - 25.8]	25.1	[22.2 - 28.2]	0.89	
'LcRL19.fna'	*Lactobacillus ultunensis* DSM 16047	28.4	[25.1 - 32.1]	23.3	[21.0 - 25.8]	26.2	[23.3 - 29.3]	1.76	
'LcRL21.fna'	*Lactobacillus ultunensis* DSM 16047	26.9	[23.6 - 30.6]	23.3	[21.0 - 25.7]	25.1	[22.2 - 28.2]	1.29	
'LcRL27.fna'	*Lactobacillus ultunensis* DSM 16047	26.8	[23.5 - 30.5]	23.3	[21.0 - 25.8]	25.0	[22.2 - 28.1]	1.38	
'LcRL30.fna'	*Lactobacillus kefiranofaciens* subsp. kefiranum JCM 8572	28.0	[24.7 - 31.7]	23.3	[21.0 - 25.7]	25.9	[23.0 - 29.0]	0.45	
'LcRL20.fna'	*Lactobacillus kefiranofaciens* subsp. kefiranum JCM 8572	27.3	[23.9 - 30.9]	23.3	[21.0 - 25.8]	25.3	[22.5 - 28.4]	0.86	
'LcRL21.fna'	*Lactobacillus kefiranofaciens* subsp. kefiranum JCM 8572	26.5	[23.1 - 30.1]	23.3	[21.0 - 25.7]	24.7	[21.9 - 27.8]	0.2	
'LcRL28.fna'	*Lactobacillus acidophilus* NBRC 13951	28.8	[25.5 - 32.5]	23.3	[21.0 - 25.7]	26.5	[23.6 - 29.6]	2.71	
'LcRL23.fna'	*Lactobacillus kefiranofaciens* ATCC 43761	27.5	[24.2 - 31.2]	23.3	[21.0 - 25.8]	25.5	[22.7 - 28.6]	0.34	
'LcRL15.fna'	*Lactobacillus kefiranofaciens* ATCC 43761	27.8	[24.4 - 31.4]	23.3	[21.0 - 25.8]	25.7	[22.9 - 28.8]	0.01	
'LcRL32.fna'	*Lactobacillus kefiranofaciens* subsp. kefiranum JCM 8572	28.0	[24.6 - 31.6]	23.3	[21.0 - 25.8]	25.9	[23.0 - 29.0]	0.12	
'LcRL31.fna'	*Lactobacillus ultunensis* DSM 16047	28.1	[24.8 - 31.7]	23.3	[21.0 - 25.7]	26.0	[23.1 - 29.1]	1.33	
'LcRL11.fna'	*Lactobacillus acidophilus* NBRC 13951	28.9	[25.5 - 32.5]	23.3	[21.0 - 25.7]	26.5	[23.7 - 29.7]	2.37	
'LcRL14.fna'	*Lactobacillus kefiranofaciens* subsp. kefiranum JCM 8572	26.6	[23.3 - 30.3]	23.3	[21.0 - 25.8]	24.8	[22.0 - 27.9]	0.6	
'LcRL19.fna'	*Lactobacillus kefiranofaciens* subsp. kefiranum JCM 8572	28.1	[24.7 - 31.7]	23.3	[21.0 - 25.8]	25.9	[23.1 - 29.1]	0.27	
'LcRL25.fna'	*Lactobacillus kefiranofaciens* ATCC 43761	27.7	[24.3 - 31.3]	23.3	[21.0 - 25.8]	25.7	[22.8 - 28.8]	0.27	
'LcRL20.fna'	*Lactobacillus ultunensis* DSM 16047	27.5	[24.1 - 31.1]	23.3	[21.0 - 25.8]	25.5	[22.6 - 28.6]	0.63	
'LcRL14.fna'	*Lactobacillus acidophilus* NBRC 13951	26.6	[23.2 - 30.2]	23.2	[20.9 - 25.7]	24.8	[21.9 - 27.9]	2.23	
'LcRL25.fna'	*Lactobacillus kefiranofaciens* subsp. kefiranum JCM 8572	28.0	[24.7 - 31.7]	23.2	[20.9 - 25.7]	25.9	[23.0 - 29.0]	0.48	
'LcRL21.fna'	*Lactobacillus acidophilus* NBRC 13951	26.9	[23.5 - 30.8]	23.2	[20.9 - 25.7]	25.0	[22.2 - 28.1]	2.63	
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent	
------------	--	-------	------------	-------	------------	-------	------------	------------------	
LcRL19.fna	Lactobacillus acidophilus NBRC 13951	28.4	[25.1 - 32.0]	23.2	[20.9 - 25.7]	26.2	[23.3 - 29.3]	3.09	
LcRL30.fna	Lactobacillus ultunensis DSM 16047	28.4	[25.1 - 32.1]	23.2	[20.9 - 25.7]	26.2	[23.3 - 29.3]	1.04	
LcRL25.fna	Lactobacillus acidophilus NBRC 13951	28.3	[25.0 - 31.9]	23.2	[20.9 - 25.7]	26.1	[23.2 - 29.3]	2.35	
LcRL15.fna	Lactobacillus acidophilus NBRC 13951	28.1	[24.7 - 31.7]	23.2	[20.9 - 25.7]	25.9	[23.1 - 29.0]	2.63	
LcRL33.fna	Lactobacillus acidophilus DSM 16047	28.5	[25.1 - 32.1]	23.2	[20.9 - 25.7]	26.2	[23.4 - 29.4]	0.94	
LcRL17.fna	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.4	[24.1 - 31.1]	23.2	[20.9 - 25.7]	25.4	[22.6 - 28.5]	0.98	
LcRL31.fna	Lactobacillus acidophilus NBRC 13951	28.2	[24.8 - 31.8]	23.2	[20.9 - 25.6]	26.0	[23.1 - 29.1]	2.66	
LcRL24.fna	Lactobacillus acidophilus NBRC 13951	27.9	[24.5 - 31.5]	23.2	[21.0 - 25.7]	25.8	[22.9 - 28.9]	2.17	
LcRL33.fna	Lactobacillus acidophilus NBRC 13951	28.0	[24.6 - 31.6]	23.2	[20.9 - 25.7]	25.8	[23.0 - 28.9]	2.34	
LcRL25.fna	Lactobacillus ultunensis DSM 16047	28.2	[24.8 - 31.8]	23.2	[21.0 - 25.7]	26.0	[23.1 - 29.1]	1.01	
LcRL29.fna	Lactobacillus acidophilus NBRC 13951	28.8	[25.4 - 32.4]	23.2	[20.9 - 25.7]	26.5	[23.6 - 29.6]	2.58	
LcRL27.fna	Lactobacillus acidophilus NBRC 13951	26.7	[23.3 - 30.3]	23.2	[20.9 - 25.7]	24.9	[22.0 - 28.0]	2.71	
LcRL32.fna	Lactobacillus acidophilus NBRC 13951	28.3	[24.9 - 31.9]	23.2	[20.9 - 25.6]	26.1	[23.2 - 29.2]	2.71	
LcRL23.fna	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	27.9	[24.5 - 31.5]	23.2	[20.9 - 25.7]	25.8	[22.9 - 28.9]	0.55	
LcRL17.fna	Lactobacillus ultunensis DSM 16047	27.5	[24.2 - 31.2]	23.2	[20.9 - 25.7]	25.5	[22.7 - 28.6]	2.47	
LcRL33.fna	Lactobacillus acidophilus NBRC 13951	28.5	[25.2 - 32.1]	23.2	[20.9 - 25.6]	26.2	[23.4 - 29.4]	2.28	
LcRL30.fna	Lactobacillus acidophilus NBRC 13951	28.1	[24.8 - 31.8]	23.2	[20.9 - 25.7]	26.0	[23.1 - 29.1]	2.38	
LcRL16.fna	Lactobacillus acidophilus NBRC 13951	26.5	[23.2 - 30.1]	23.2	[20.9 - 25.7]	24.7	[21.9 - 27.8]	2.02	
LcRL17.fna	Lactobacillus acidophilus NBRC 13951	27.3	[23.9 - 30.9]	23.2	[20.9 - 25.7]	25.3	[22.5 - 28.4]	3.81	
LcRL15.fna	Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	28.1	[24.8 - 31.7]	23.2	[20.9 - 25.7]	26.0	[23.1 - 29.1]	0.2	
LcRL15.fna	Lactobacillus ultunensis DSM 16047	28.4	[25.0 - 32.0]	23.2	[20.9 - 25.7]	26.2	[23.3 - 29.3]	1.29	
Table 4: Strains in your dataset

Joint dataset of automatically determined closest type strains (if this mode was chosen), manually selected type strains (if selected accordingly) and the provided user strains, if provided (marked in yellow).

Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID
Lactobacillus suntoryeus LMG 22464	Cachat and Priest 2005	NCIMB 14005; SA	Lactobacillus suntoryeus	1760	36.5	1825	Gp0131240	PRJNA224116	SAMN02797793	GCF_001437535	
Lactobacillus kefiranofaciens ATCC 43761	Fujisawa et al. 1988 emend. Vancanneyt et al. 2004	LMG 19149; CCUG 32248; DSM 3016; JCM 6985; CIP 103307; strain WT-2B	Lactobacillus kefiranofaciens; Lactobacillus kefiranofaciens subsp. kefiranofaciens	2281	37.2	2367	Gp0099413	PRJNA257853	SAMN02983011	GCA_900103655	2597490363
Lactobacillus helveticus DSM 20075	(Orla-Jensen 1919) Bergey et al. 1925	LMG 13555; LMG 6413; NRRL B-4526; CCUG 30139; ATCC 15009; JCM 1120;IFO 15019; NBRC 15019; CIP 103146	Lactobacillus helveticus, Thermobacterium helveticum	1804	36.8	2078	Gp0003635	PRJNA34619	SAMN00139430	GCA_000160855	645951865
Lactobacillus ultunensis DSM 16047	Roos et al. 2005	LMG 22117; CCUG 48460; JCM 16177; Kr146C1	Lactobacillus ultunensis	2159	35.9	2210	Gp0003665	PRJNA31505	SAMN00001484	GCA_000159415	643886047
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID
---	---	--	---	------------	-------------	--------------	---------------	----------------------	--------------------	---------------------	------------------
Lactobacillus acidophilus	Moro 1900 Hansen and Mocquot 1970	LMG 13550; LMG 9433; BCRC 10695; NRRL B-4495; CCUG 5917; DSM 20079; ATCC 4355; NCTC 12980; JCM 1132; IFO 13951; VKM B-1660; CIP 76.13	Bacillus acidophilus; Lactobacillus acidophilus	1955	34.6	1873	Gp0075770	PRJDB1353	SAMD00046914	GCA_001591845	
Lactobacillus kitasatonis	Mukai et al. 2003	KCTC 3155; DSM 16761	Lactobacillus kitasatonis	1902	37.5	2050	Gp0026726	PRJDB640	SAMD00016339	GCA_000615285	2565956592
Lactobacillus gallinarum	Fujisawa et al. 1992	LMG 9435; CCUG 30724; DSM 10532; ATCC 33199; CIP 103611; VPI 1294	Lactobacillus gallinarum	1918	36.5	2076	Gp0091989	PRJDB621	SAMD00003603	GCA_000614735	
Lactobacillus kefiranofaciens subsp. kefirgranum	(Takizawa et al. 1994) Vancanneyt et al. 2004	LMG 15132; CCUG 39467; CCUG 49353; DSM 10550; ATCC 51647; CIP 104241; GCL 1701	Lactobacillus kefiranofaciens subsp. kefirgranum; Lactobacillus kefirgranum	2065	37.4	2918	Gp0093297	PRJDB772	SAMD00000473	GCA_001311335	
Lactobacillus crispatus	(Brygoo and Aladame 1953) Moore and Holdeman 1970 emend. Cato et al. 1983	LMG 9479; CCUG 30722; DSM 20584; ATCC 33820; CIP 102990; CIP 3199	Eubacterium crispatum; Lactobacillus crispatus	2033	36.6	3305	Gp0093095	PRJDB800	SAMD00000420	GCA_001311685	
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID
------------------------------	--------------------	--	---------------------------	------------	-------------	--------------	-------------	----------------------	---------------------	-------------------	---------------
Lactobacillus amylovorus DSM 20531	Nakamura 1981	LMG 9496; NRRL B-4540; CCUG 27201; ATCC 33620; JCM 1126; CIP 102989; NCAIM B.01458	*Lactobacillus amylovorus*	2016	37.8	2045	Gp0130192	PRJNA224116	SAMN02369422	GCF_001433985	
Lactobacillus sobrius DSM 16698	Konstantinov et al. 2006	1; NCCB 100067; OTU171-001	*Lactobacillus sobrius*	1992	37.8	1950	Gp0131222	PRJNA224116	SAMN02797775	GCF_001437365	
LcRL11.fna				2184	37.0	2409					
LcRL13.fna				2245	37.2	2560					
LcRL14.fna				2607	36.8	2971					
LcRL15.fna				2327	37.2	2634					
LcRL16.fna				2597	36.6	2918					
LcRL17.fna				2462	38.4	2961					
LcRL19.fna				2310	37.7	2668					
LcRL20.fna				2439	36.6	2736					
LcRL21.fna				2569	37.2	2953					
LcRL23.fna				2327	36.9	2558					
LcRL24.fna				2392	36.8	2631					
LcRL25.fna				2350	36.9	2594					
Strain	Author	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID
-----------	---------	----------------	----------	------------	-------------	--------------	------------	----------------------	---------------------	-------------------	--------
LcRL26.fna				2274027	37.4	2638					
LcRL27.fna				2602691	37.3	3030					
LcRL28.fna				2240036	37.3	2550					
LcRL29.fna				2248310	37.2	2559					
LcRL30.fna				2322358	37.0	2654					
LcRL31.fna				2396657	37.3	2826					
LcRL32.fna				2373341	37.3	2770					
LcRL33.fna				2401588	36.9	2771					
Methods, Results and References

The genome sequence data were uploaded to the Type (Strain) Genome Server (TYGS), a free bioinformatics platform available under https://tygs.dsmz.de, for a whole genome-based taxonomic analysis [1]. The results were provided by the TYGS on 2020-05-25. In brief, the TYGS analysis was subdivided into the following steps:

Determination of closely related type strains

Determination of closest type strain genomes was done in two complementary ways: First, all user genomes were compared against all type strain genomes available in the TYGS database via the MASH algorithm, a fast approximation of intergenomic relatedness [2], and, the ten type strains with the smallest MASH distances chosen per user genome. Second, an additional set of ten closely related type strains was determined via the 16S rDNA gene sequences. These were extracted from the user genomes using RNAmmer [3] and each sequence was subsequently BLASTed [4] against the 16S rDNA gene sequence of each of the currently 11767 type strains available in the TYGS database. This was used as a proxy to find the best 50 matching type strains (according to the bitscore) for each user genome and to subsequently calculate precise distances using the Genome BLAST Distance Phylogeny approach (GBDP) under the algorithm 'coverage' and distance formula \(d \) [5]. These distances were finally used to determine the 10 closest type strain genomes for each of the user genomes.

Pairwise comparison of genome sequences

All pairwise comparisons among the set of genomes were conducted using GBDP and accurate intergenomic distances inferred under the algorithm 'trimming' and distance formula \(d \) [5]. 100 distance replicates were calculated each. Digital DDH values and confidence intervals were calculated using the recommended settings of the GGDC 2.1 [5].

Phylogenetic inference

The resulting intergenomic distances were used to infer a balanced minimum evolution tree with branch support via FASTME 2.1.4 including SPR postprocessing [6]. Branch support was inferred from 100 pseudo-bootstrap replicates each. The trees were rooted at the midpoint [7] and visualized with PhyD3 [8].

Type-based species and subspecies clustering

The type-based species clustering using a 70% dDDH radius around each of the 11 type strains was done as previously described [1]. The resulting groups are shown in Table 1 and 4. Subspecies clustering was done using a 79% dDDH threshold as previously introduced [9].

Results

Type-based species and subspecies clustering

The resulting species and subspecies clusters are listed in Table 4, whereas the taxonomic identification of the query strains is found in Table 1. Briefly, the clustering yielded 8 species clusters and the provided query strains were assigned to 1 of these. Moreover, user strains were located in 1 of 10 subspecies clusters.

Figure caption genome tree

Figure 1. Tree inferred with FastME 2.1.6.1 [6] from GBDP distances calculated from genome sequences. The branch lengths are scaled in terms of GBDP distance formula \(d \). The numbers above branches are GBDP pseudo-bootstrap support values > 60 % from 100 replications, with an average branch support of 38.1 %. The tree was rooted at the midpoint [7].

Figure caption SSU tree

Figure 2. Tree inferred with FastME 2.1.6.1 [6] from GBDP distances calculated from 16S rDNA gene sequences. The branch lengths are scaled in terms of GBDP distance formula \(d \). The numbers above branches are GBDP pseudo-bootstrap support values > 60 % from 100 replications, with an average branch support of 37.8 %. The tree was rooted at the midpoint [7].
[1] Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019;10: 2182. DOI: 10.1038/s41467-019-10210-3

[2] Ondov BD, Treangen TJ, Melsted P, et al. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17: 1–14. DOI: 10.1186/s13059-016-0997-x

[3] Lagesen K, Hallin P. RNAmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. Oxford Univ Press; 2007;35: 3100–3108. DOI: 10.1093/nar/gkm160

[4] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10: 421. DOI: 10.1186/1471-2105-10-421

[5] Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14: 60. DOI: 10.1186/1471-2105-14-60

[6] Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32: 2798–2800. DOI: 10.1093/molbev/msv150

[7] Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat. 1972;106: 645–667.

[8] Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: A phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics. 2017;33: 2946–2947. DOI: 10.1093/bioinformatics/btx324

[9] Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of \textit{Escherichia coli}, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci. 2014;9: 2. DOI: 10.1186/1944-3277-9-2
Table 1: Phylogenies

Publication-ready versions of both the genome-scale GBDP tree and the 16S rRNA gene sequence tree can be customized and exported either in SVG (vector graphic) or PNG format from within the phylogeny viewers in your TYGS result page. For publications the SVG format is recommended because it is lossless, always keeps its high resolution and can also be easily converted to other popular formats such as PDF or EPS. Please follow the link provided above!

Table 2: Identification

The below list contains the result of the TYGS species identification routine.

Explanation of remarks that might occur in the below table:

Remark [R1]: The TYGS type strain database is automatically updated on an almost daily basis. However, if a particular type strain genome is not available in the TYGS database, this can have several reasons which are detailed in the FAQ. You can request an extended 16S rRNA gene analysis via the 16S tree viewer found in your result page to detect not yet genome-sequenced type strains relevant for your study.

Remark [R2]: > 70% dDDH value (formula \(d_4\)) and (almost) minimal dDDH values for gene-content formulae \(d_0\) and \(d_6\) indicate a potentially unreliable identification result and should thus be checked via the 16S rRNA gene sequence similarity. Such strong deviations can, in principle, be caused by sequence contamination.

Remark [R3]: G+C content difference of > 1% indicates a potentially unreliable identification result because within species G+C content varies no more than 1%, if computed from genome sequences (PMID: 24505073).

Strain	Conclusion	Identification result	Remark
'LcSJ3CUS'	belongs to known species	Lactobacillus crispatus	
'LcV4'	belongs to known species	Lactobacillus crispatus	
'LcVMC1'	belongs to known species	Lactobacillus crispatus	
'LcVMC2'	belongs to known species	Lactobacillus crispatus	
'LcVMC3'	belongs to known species	Lactobacillus crispatus	
'LcVMC4'	belongs to known species	Lactobacillus crispatus	
'LcVMC5'	belongs to known species	Lactobacillus crispatus	
'LcVMC6'	belongs to known species	Lactobacillus crispatus	
'LcVMC7'	belongs to known species	Lactobacillus crispatus	
'LcVMC8'	belongs to known species	Lactobacillus crispatus	
The following table contains the pairwise dDDH values between your user genomes and the selected type-strain genomes. The dDDH values are provided along with their confidence intervals (C.I.) for the three different GBDP formulas:

- formula d_0 (a.k.a. GGDC formula 1): length of all HSPs divided by total genome length
- formula d_4 (a.k.a. GGDC formula 2): sum of all identities found in HSPs divided by overall HSP length
- formula d_6 (a.k.a. GGDC formula 3): sum of all identities found in HSPs divided by total genome length

Note: Formula d_4 is independent of genome length and is thus robust against the use of incomplete draft genomes. For other reasons for preferring formula d_4, see the FAQ.

Query	Subject	d_0	C.I. (d_0)	d_4	C.I. (d_4)	d_6	C.I. (d_6)	Diff. G+C Percent				
'LcSJ3CUS.fna'	'LcV4.fna'	91.5	[88.5 - 93.8]	97.8	[96.9 - 98.5]	94.7	[92.7 - 96.2]	0.27				
'LcSJ3CUS.fna'	'LcVMC1.fna'	95.5	[93.3 - 97.0]	97.4	[96.4 - 98.2]	97.3	[96.0 - 98.2]	0.05				
'LcV4.fna'	'LcVMC1.fna'	87.3	[83.7 - 90.1]	96.9	[95.7 - 97.8]	91.5	[88.9 - 93.5]	0.22				
'LcVMC1.fna'	'LcVMC5.fna'	91.7	[88.7 - 93.9]	96.8	[95.7 - 97.7]	94.7	[92.7 - 96.2]	0.1				
'LcSJ3CUS.fna'	'LcVMC8.fna'	84.6	[80.9 - 87.8]	96.2	[94.9 - 97.2]	89.4	[86.5 - 91.6]	0.08				
'LcSJ3CUS.fna'	'LcVMC5.fna'	91.8	[88.8 - 94.0]	96.2	[94.8 - 97.2]	94.7	[92.7 - 96.2]	0.16				
'LcSJ3CUS.fna'	'LcVMC2.fna'	90.5	[87.4 - 93.0]	96.1	[94.7 - 97.1]	93.8	[91.6 - 95.4]	0.13				
'LcV4.fna'	'LcVMC2.fna'	87.6	[84.1 - 90.5]	95.8	[93.4 - 96.0]	91.6	[89.1 - 93.6]	0.14				
'LcSJ3CUS.fna'	'LcVMC6.fna'	87.1	[83.5 - 89.9]	95.5	[94.0 - 96.6]	91.1	[88.5 - 93.2]	0.04				
'LcV4.fna'	'LcVMC8.fna'	80.5	[76.6 - 83.9]	95.4	[93.9 - 96.6]	85.9	[82.8 - 88.5]	0.19				
'LcVMC1.fna'	'LcVMC8.fna'	82.9	[79.1 - 86.2]	95.3	[93.8 - 96.5]	87.8	[84.8 - 90.3]	0.03				
'LcVMC1.fna'	'LcVMC6.fna'	86.4	[82.8 - 89.4]	95.1	[93.6 - 96.3]	90.6	[87.9 - 92.7]	0.01				
'LcV4.fna'	'LcVMC6.fna'	82.2	[78.4 - 85.5]	94.9	[93.3 - 96.1]	87.2	[84.2 - 89.7]	0.23				
'LcVMC6.fna'	'LcVMC8.fna'	94.2	[91.7 - 96.0]	94.6	[92.9 - 95.9]	96.1	[94.5 - 97.5]	0.04				
'LcV4.fna'	'LcVMC5.fna'	87.5	[84.0 - 90.4]	94.6	[92.9 - 95.9]	91.3	[88.8 - 93.4]	0.12				
'LcVMC1.fna'	'LcVMC2.fna'	91.6	[88.6 - 93.9]	94.5	[92.8 - 95.8]	94.3	[92.2 - 95.9]	0.08				
'LcVMC5.fna'	'LcVMC6.fna'	87.1	[83.6 - 90.0]	94.4	[92.7 - 95.7]	91.0	[88.4 - 93.1]	0.12				
'LcVMC2.fna'	'LcVMC6.fna'	86.8	[83.2 - 89.7]	94.1	[92.3 - 95.5]	90.7	[88.1 - 92.8]	0.09				
'LcVMC4.fna'	'LcVMC7.fna'	90.1	[86.8 - 92.6]	94.0	[92.2 - 95.4]	93.1	[90.8 - 94.9]	0.15				
'LcVMC5.fna'	'LcVMC8.fna'	88.4	[85.0 - 91.2]	93.6	[91.7 - 95.0]	91.9	[89.4 - 93.8]	0.08				
'LcVMC2.fna'	'LcVMC5.fna'	93.4	[90.7 - 95.3]	93.5	[91.6 - 95.0]	95.4	[93.6 - 96.8]	0.02				
'LcVMC2.fna'	'LcVMC8.fna'	88.4	[85.0 - 91.1]	92.7	[90.7 - 94.2]	91.7	[89.2 - 93.7]	0.05				
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_i	C.I. d_i	Diff. G+C Percent				
---------------	------------------	---------	------------	---------	------------	---------	------------	------------------				
'LcSJ3CUS.fna'	'LcVMC7.fna'	86.7	[83.1 - 89.6]	90.5	[88.3 - 92.4]	90.1	[87.3 - 92.3]	0.12				
'LcV4.fna'	'LcVMC7.fna'	79.1	[75.1 - 82.5]	90.4	[88.1 - 92.2]	83.9	[80.6 - 86.7]	0.39				
'LcSJ3CUS.fna'	'LcVMC4.fna'	84.5	[80.7 - 87.6]	90.3	[88.0 - 92.2]	88.3	[85.4 - 90.7]	0.03				
'LcVMC6.fna'	'LcVMC7.fna'	76.7	[72.8 - 80.3]	90.0	[87.7 - 92.0]	81.8	[78.5 - 84.7]	0.16				
'LcVMC4.fna'	'LcVMC6.fna'	80.5	[76.6 - 83.9]	89.9	[87.6 - 91.8]	85.0	[81.8 - 87.7]	0.01				
'LcVMC1.fna'	'LcVMC4.fna'	81.8	[77.9 - 85.1]	89.9	[87.6 - 91.8]	86.0	[82.9 - 88.7]	0.02				
'LcVMC1.fna'	'LcVMC7.fna'	82.5	[78.7 - 85.8]	89.7	[87.4 - 91.7]	86.7	[83.6 - 89.2]	0.17				
'LcVMC5.fna'	'LcVMC7.fna'	80.3	[76.4 - 83.7]	89.5	[87.1 - 91.5]	84.8	[81.6 - 87.5]	0.28				
'LcVMC7.fna'	'LcVMC8.fna'	73.2	[69.2 - 76.8]	88.5	[86.1 - 90.6]	78.4	[75.0 - 81.5]	0.2				
'LcVMC2.fna'	'LcVMC7.fna'	77.7	[73.8 - 81.3]	87.9	[85.4 - 90.0]	82.3	[79.0 - 85.2]	0.25				
'LcV4.fna'	'LcVMC4.fna'	85.3	[81.6 - 88.4]	86.9	[84.3 - 89.1]	88.4	[85.5 - 90.8]	0.24				
'LcVMC4.fna'	'LcVMC8.fna'	77.1	[73.1 - 80.6]	85.6	[82.9 - 87.9]	81.4	[78.0 - 84.3]	0.05				
'LcVMC4.fna'	'LcVMC5.fna'	85.8	[82.1 - 88.8]	85.3	[82.6 - 87.7]	88.6	[85.7 - 91.0]	0.12				
'LcVMC2.fna'	'LcVMC4.fna'	84.2	[80.4 - 87.3]	85.3	[82.6 - 87.7]	87.3	[84.2 - 89.8]	0.1				
'LcVMC1.fna'	'LcVMC3.fna'	69.2	[65.3 - 72.9]	83.6	[80.8 - 86.1]	74.1	[70.6 - 77.3]	0.24				
'LcVMC3.fna'	'LcVMC7.fna'	70.2	[66.3 - 73.9]	83.5	[80.7 - 86.0]	74.9	[71.5 - 78.1]	0.07				
'LcVMC3.fna'	'LcVMC4.fna'	67.0	[63.2 - 70.7]	83.2	[80.4 - 85.7]	71.9	[68.5 - 75.2]	0.22				
'LcV4.fna'	'LcVMC3.fna'	64.6	[60.8 - 68.2]	83.2	[80.4 - 85.7]	69.6	[66.2 - 72.8]	0.46				
'LcVMC3.fna'	'LcVMC5.fna'	66.1	[62.2 - 69.7]	82.9	[80.0 - 85.4]	71.0	[67.5 - 74.2]	0.35				
'LcSJ3CUS.fna'	'LcVMC3.fna'	71.7	[67.8 - 75.4]	81.9	[79.1 - 84.5]	76.0	[72.6 - 79.2]	0.19				
'LcVMC3.fna'	'LcVMC8.fna'	61.8	[58.1 - 65.4]	81.7	[78.8 - 84.2]	66.7	[63.3 - 70.0]	0.27				
'LcVMC3.fna'	'LcVMC6.fna'	62.9	[59.2 - 66.5]	81.6	[78.7 - 84.1]	67.8	[64.4 - 71.0]	0.23				
'LcVMC2.fna'	'LcVMC3.fna'	64.7	[60.9 - 68.3]	81.2	[78.3 - 83.8]	69.4	[66.0 - 72.7]	0.32				
'LcVMC1.fna'	Lactobacillus crispatus JCM 1185	71.9	[67.9 - 75.5]	77.8	[74.8 - 80.5]	75.5	[72.0 - 78.6]	0.22				
'LcV4.fna'	Lactobacillus crispatus JCM 1185	66.2	[62.4 - 69.9]	77.8	[74.8 - 80.5]	70.3	[66.9 - 73.5]	0.44				
'LcSJ3CUS.fna'	Lactobacillus crispatus JCM 1185	73.5	[69.5 - 77.1]	77.3	[74.3 - 80.0]	76.8	[73.4 - 80.0]	0.17				
'LcVMC5.fna'	Lactobacillus crispatus JCM 1185	68.0	[64.1 - 71.6]	77.2	[74.2 - 80.0]	71.9	[68.4 - 75.1]	0.32				
Query	Subject	d₀	C.I. d₀	d₄	C.I. d₄	d₉	C.I. d₉	Diff G+C Percent				
----------------	--	-----	---------------	-----	---------------	-----	---------------	------------------				
'LcVMC2.fna'	Lactobacillus crispatus JCM 1185	66.9	[63.1 - 70.6]	76.9	[73.9 - 79.6]	70.8	[67.4 - 74.1]	0.3				
'LcVMC6.fna'	Lactobacillus crispatus JCM 1185	63.8	[60.0 - 67.4]	76.8	[73.8 - 79.5]	67.9	[64.5 - 71.1]	0.21				
'LcVMC8.fna'	Lactobacillus crispatus JCM 1185	63.9	[60.1 - 67.5]	76.8	[73.8 - 79.5]	68.0	[64.6 - 71.2]	0.25				
'LcVMC4.fna'	Lactobacillus crispatus JCM 1185	68.8	[64.9 - 72.4]	75.6	[72.6 - 78.4]	72.3	[68.8 - 75.5]	0.2				
'LcVMC7.fna'	Lactobacillus crispatus JCM 1185	70.6	[66.6 - 74.2]	75.5	[72.5 - 78.3]	73.9	[70.4 - 77.1]	0.05				
'LcVMC3.fna'	Lactobacillus crispatus JCM 1185	73.1	[69.1 - 76.7]	75.4	[72.4 - 78.2]	76.1	[72.7 - 79.3]	0.02				
'LcSJ3CUS.fna'	Lactobacillus gallinarum JCM 2011	33.0	[29.6 - 36.6]	24.5	[22.2 - 27.0]	29.9	[27.0 - 33.0]	0.28				
'LcVMC4.fna'	Lactobacillus amylovorus DSM 20531	31.0	[27.6 - 34.6]	24.3	[22.0 - 26.7]	28.3	[25.4 - 31.4]	0.99				
'LcVMC4.fna'	Lactobacillus gallinarum JCM 2011	31.1	[27.7 - 34.7]	24.3	[22.0 - 26.8]	28.4	[25.5 - 31.5]	0.31				
'LcVMC3.fna'	Lactobacillus amylovorus DSM 20531	32.9	[29.5 - 36.5]	24.3	[22.0 - 26.8]	29.8	[26.8 - 32.9]	1.21				
'LcSJ3CUS.fna'	Lactobacillus synomial DSM 1324	31.2	[27.8 - 34.8]	24.3	[21.9 - 26.7]	28.5	[25.6 - 31.6]	0.23				
'LcVMC1.fna'	Lactobacillus gallinarum JCM 2011	31.3	[27.9 - 34.9]	24.3	[22.0 - 26.8]	28.6	[25.7 - 31.7]	0.33				
'LcVMC7.fna'	Lactobacillus gallinarum JCM 2011	31.6	[28.2 - 35.2]	24.3	[22.0 - 26.8]	28.8	[25.9 - 31.9]	0.16				
'LcVMC8.fna'	Lactobacillus gallinarum JCM 2011	30.0	[26.7 - 33.6]	24.3	[22.0 - 26.8]	27.7	[24.7 - 30.8]	0.36				
'LcVMC5.fna'	Lactobacillus gallinarum JCM 2011	31.0	[27.7 - 34.6]	24.2	[21.9 - 26.7]	28.4	[25.5 - 31.5]	0.44				
'LcVMC8.fna'	Lactobacillus synomial DSM 1324	28.8	[25.4 - 32.4]	24.2	[21.9 - 26.6]	26.7	[23.8 - 29.8]	0.31				
'LcVMC2.fna'	Lactobacillus gallinarum JCM 2011	30.5	[27.1 - 34.1]	24.2	[21.9 - 26.6]	28.0	[25.1 - 31.1]	0.41				
'LcV4.fna'	Lactobacillus gallinarum JCM 2011	31.7	[28.3 - 35.3]	24.2	[21.9 - 26.7]	28.9	[26.0 - 32.0]	0.55				
'LcVMC4.fna'	Lactobacillus kitasatoniis JCM 1039	31.6	[28.2 - 35.2]	24.2	[21.9 - 26.7]	28.8	[25.8 - 31.9]	0.72				
'LcVMC3.fna'	Lactobacillus kitasatoniis JCM 1039	33.3	[29.9 - 36.8]	24.1	[21.8 - 26.6]	30.0	[27.0 - 33.1]	0.94				
'LcSJ3CUS.fna'	Lactobacillus amylovorus DSM 20531	34.0	[30.6 - 37.5]	24.1	[21.8 - 26.6]	30.5	[27.5 - 33.6]	1.02				
'LcVMC5.fna'	Lactobacillus synomial DSM 1324	29.7	[26.3 - 33.3]	24.1	[21.8 - 26.6]	27.3	[24.4 - 30.4]	0.39				
'LcVMC3.fna'	Lactobacillus gallinarum JCM 2011	33.2	[29.9 - 36.8]	24.1	[21.8 - 26.5]	29.9	[27.0 - 33.0]	0.09				
'LcVMC1.fna'	Lactobacillus kitasatoniis JCM 1039	32.5	[29.1 - 36.1]	24.1	[21.8 - 26.6]	29.4	[26.5 - 32.5]	0.7				
'LcVMC6.fna'	Lactobacillus gallinarum JCM 2011	31.3	[27.9 - 34.9]	24.1	[21.8 - 26.6]	28.5	[25.6 - 31.6]	0.32				
'LcVMC7.fna'	Lactobacillus amylovorus DSM 20531	30.7	[27.3 - 34.3]	24.1	[21.8 - 26.6]	28.1	[25.2 - 31.2]	1.14				
'LcSJ3CUS.fna'	Lactobacillus sobrius DSM 16698	32.9	[29.6 - 36.5]	24.0	[21.7 - 26.4]	29.7	[26.8 - 32.8]	1.07				
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_5	C.I. d_5	Diff. G+C Percent				
------------------	--	-------	------------	-------	------------	-------	------------	-------------------				
'LcSJ3CUS.fna'	Lactobacillus kitasatoris JCM 1039	33.2	[29.8 - 36.7]	24.0	[21.7 - 26.4]	29.9	[26.9 - 33.0]	0.75				
'LcVMC8.fna'	Lactobacillus amylovorus DSM 20531	30.8	[27.5 - 34.4]	24.0	[21.7 - 26.5]	28.2	[25.3 - 31.3]	0.94				
'LcVMC3.fna'	Lactobacillus helveticus DSM 20075	27.9	[24.5 - 31.5]	24.0	[21.7 - 26.4]	25.9	[23.0 - 29.0]	0.19				
'LcVMC2.fna'	Lactobacillus kitasatoris JCM 1039	31.9	[28.5 - 35.5]	24.0	[21.7 - 26.4]	29.0	[26.0 - 32.1]	0.62				
'LcVMC4.fna'	Lactobacillus suntoryeus LMG 22464	29.4	[26.0 - 33.0]	24.0	[21.7 - 26.5]	27.1	[24.2 - 30.2]	0.26				
'LcVMC1.fna'	Lactobacillus amylovorus DSM 20531	32.2	[28.8 - 35.8]	24.0	[21.7 - 26.5]	29.2	[26.3 - 32.3]	0.97				
'LcVMC4.fna'	Lactobacillus helveticus DSM 20075	26.7	[23.4 - 30.3]	24.0	[21.7 - 26.5]	25.0	[22.2 - 28.1]	0.03				
'LcVMC6.fna'	Lactobacillus suntoryeus LMG 22464	29.1	[25.7 - 32.7]	24.0	[21.7 - 26.5]	26.9	[24.0 - 30.0]	0.27				
'LcVMC5.fna'	Lactobacillus helveticus DSM 20075	27.0	[23.6 - 30.6]	24.0	[21.7 - 26.5]	25.2	[22.4 - 28.4]	0.16				
'LcV4.fna'	Lactobacillus suntoryeus LMG 22464	30.3	[26.9 - 33.9]	24.0	[21.7 - 26.5]	27.8	[24.9 - 30.9]	0.5				
'LcVMC7.fna'	Lactobacillus kitasatoris JCM 1039	32.6	[29.2 - 36.2]	24.0	[21.7 - 26.5]	29.5	[26.6 - 32.6]	0.87				
'LcVMC6.fna'	Lactobacillus amylovorus DSM 20531	31.1	[27.7 - 34.7]	24.0	[21.7 - 26.4]	28.3	[25.4 - 31.4]	0.98				
'LcVMC8.fna'	Lactobacillus helveticus DSM 20075	26.3	[22.9 - 29.9]	24.0	[21.7 - 26.5]	24.7	[21.9 - 27.8]	0.08				
'LcSJ3CUS.fna'	Lactobacillus helveticus DSM 20075	28.2	[24.8 - 31.8]	24.0	[21.7 - 26.5]	26.2	[23.3 - 29.3]	0.0				
'LcVMC6.fna'	Lactobacillus kitasatoris JCM 1039	31.2	[27.8 - 34.7]	23.9	[21.6 - 26.4]	28.4	[25.5 - 31.5]	0.71				
'LcVMC3.fna'	Lactobacillus sobrius DSM 16698	32.7	[29.3 - 36.2]	23.9	[21.6 - 26.4]	29.5	[26.6 - 32.6]	1.26				
'LcVMC4.fna'	Lactobacillus sobrius DSM 16698	30.7	[27.3 - 34.3]	23.9	[21.6 - 26.4]	28.1	[25.1 - 31.2]	1.04				
'LcV4.fna'	Lactobacillus amylovorus DSM 20531	33.4	[30.1 - 37.0]	23.9	[21.5 - 26.3]	30.0	[27.1 - 33.1]	0.75				
'LcV4.fna'	Lactobacillus kitasatoris JCM 1039	32.5	[29.1 - 36.0]	23.9	[21.6 - 26.3]	29.3	[26.4 - 32.4]	0.48				
'LcVMC2.fna'	Lactobacillus suntoryeus LMG 22464	29.4	[26.0 - 33.0]	23.9	[21.6 - 26.4]	27.1	[24.2 - 30.2]	0.36				
'LcVMC2.fna'	Lactobacillus amylovorus DSM 20531	31.4	[28.0 - 34.9]	23.9	[21.6 - 26.4]	28.5	[25.6 - 31.6]	0.89				
'LcVMC7.fna'	Lactobacillus suntoryeus LMG 22464	30.3	[27.0 - 33.9]	23.9	[21.6 - 26.4]	27.8	[24.9 - 30.9]	0.11				
'LcVMC3.fna'	Lactobacillus suntoryeus LMG 22464	30.7	[27.4 - 34.3]	23.9	[21.6 - 26.4]	28.1	[25.2 - 31.2]	0.04				
'LcVMC1.fna'	Lactobacillus suntoryeus LMG 22464	30.4	[27.0 - 34.0]	23.9	[21.6 - 26.4]	27.8	[24.9 - 30.9]	0.28				
'LcVMC8.fna'	Lactobacillus kitasatoris JCM 1039	30.5	[27.1 - 34.1]	23.9	[21.6 - 26.3]	27.9	[25.0 - 31.0]	0.67				
'LcVMC5.fna'	Lactobacillus amylovorus DSM 20531	31.8	[28.5 - 35.4]	23.9	[21.6 - 26.4]	28.9	[26.0 - 32.0]	0.86				
'LcVMC7.fna'	Lactobacillus helveticus DSM 20075	27.1	[23.8 - 30.8]	23.9	[21.6 - 26.4]	25.3	[22.5 - 28.5]	0.12				
Query	Subject	\(d_0\)	C.I. \(d_0\)	\(d_4\)	C.I. \(d_4\)	\(d_5\)	C.I. \(d_5\)	Diff. G+C Percent				
---------------	--	---------	--------------	---------	--------------	---------	--------------	-----------------				
'LcVMC1.fna'	Lactobacillus sobrius DSM 16698	32.2	[28.8 - 35.8]	23.8	[21.5 - 26.2]	29.1	[26.2 - 32.2]	1.02				
'LcVMC5.fna'	Lactobacillus kitasatonis JCM 1039	31.7	[28.3 - 35.3]	23.8	[21.5 - 26.3]	28.7	[25.8 - 31.8]	0.59				
'LcVMC1.fna'	Lactobacillus helveticus DSM 20075	27.4	[24.0 - 31.0]	23.8	[21.5 - 26.3]	25.5	[22.6 - 28.6]	0.05				
'LcVMC7.fna'	Lactobacillus sobrius DSM 16698	30.6	[27.3 - 34.2]	23.8	[21.5 - 26.2]	28.0	[25.1 - 31.1]	1.19				
'LcVMC6.fna'	Lactobacillus helveticus DSM 20075	26.5	[23.1 - 30.1]	23.8	[21.5 - 26.3]	24.8	[22.0 - 27.9]	0.04				
'LcVMC8.fna'	Lactobacillus sobrius DSM 16698	30.6	[27.2 - 34.2]	23.8	[21.5 - 26.3]	28.0	[25.0 - 31.1]	0.99				
'LcVMC2.fna'	Lactobacillus helveticus DSM 20075	26.9	[23.5 - 30.5]	23.8	[21.5 - 26.3]	25.1	[22.3 - 28.2]	0.13				
'LcV4.fna'	Lactobacillus sobrius DSM 16698	32.1	[28.7 - 35.6]	23.7	[21.4 - 26.2]	29.0	[26.1 - 32.1]	0.8				
'LcVMC5.fna'	Lactobacillus sobrius DSM 16698	31.6	[28.3 - 35.2]	23.7	[21.4 - 26.1]	28.7	[25.8 - 31.6]	0.92				
'LcV4.fna'	Lactobacillus helveticus DSM 20075	27.5	[24.1 - 31.1]	23.7	[21.4 - 26.2]	25.6	[22.7 - 28.7]	0.27				
'LcVMC6.fna'	Lactobacillus sobrius DSM 16698	31.2	[27.8 - 34.8]	23.7	[21.4 - 26.2]	28.4	[25.4 - 31.5]	1.03				
'LcVMC2.fna'	Lactobacillus sobrius DSM 16698	31.0	[27.6 - 34.6]	23.7	[21.4 - 26.2]	28.2	[25.3 - 31.3]	0.94				
'LcV4.fna'	Lactobacillus acidophilus NBRC 13951	29.3	[25.9 - 32.9]	23.3	[21.0 - 25.8]	26.8	[23.9 - 29.9]	2.43				
'LcVMC1.fna'	Lactobacillus acidophilus NBRC 13951	29.3	[25.9 - 32.9]	23.3	[21.0 - 25.7]	26.8	[23.9 - 29.9]	2.21				
'LcVMC4.fna'	Lactobacillus acidophilus NBRC 13951	28.5	[25.1 - 32.1]	23.3	[21.0 - 25.8]	26.3	[23.4 - 29.4]	2.19				
'LcVMC8.fna'	Lactobacillus acidophilus NBRC 13951	27.6	[24.3 - 31.3]	23.3	[21.0 - 25.8]	25.6	[22.7 - 28.7]	2.24				
'LcSJ3CUS.fna'	Lactobacillus kefirgranaci ATCC 43761	29.2	[25.8 - 32.8]	23.3	[21.0 - 25.8]	26.8	[23.9 - 29.9]	0.46				
'LcVMC5.fna'	Lactobacillus acidophilus NBRC 13951	28.5	[25.1 - 32.1]	23.3	[21.0 - 25.7]	26.2	[23.3 - 29.3]	2.32				
'LcVMC2.fna'	Lactobacillus acidophilus NBRC 13951	28.7	[25.3 - 32.3]	23.3	[21.0 - 25.7]	26.4	[23.5 - 29.5]	2.29				
'LcVMC8.fna'	Lactobacillus kefirgranaci ATCC 43761	27.2	[23.8 - 30.8]	23.2	[21.0 - 25.7]	25.2	[22.4 - 28.3]	0.38				
'LcVMC8.fna'	Lactobacillus kefirgranaci subsp. kefirgranum JCM 8572	27.4	[24.0 - 31.0]	23.2	[20.9 - 25.7]	25.4	[22.5 - 28.5]	0.59				
'LcVMC7.fna'	Lactobacillus acidophilus NBRC 13951	29.1	[25.7 - 32.7]	23.2	[21.0 - 25.7]	26.7	[23.8 - 29.8]	2.04				
'LcVMC3.fna'	Lactobacillus acidophilus NBRC 13951	30.9	[27.5 - 34.5]	23.2	[20.9 - 25.6]	28.0	[25.1 - 31.1]	1.97				
'LcSJ3CUS.fna'	Lactobacillus kefirgranaci subsp. kefirgranum JCM 8572	29.6	[26.2 - 33.2]	23.2	[20.9 - 25.7]	27.1	[24.2 - 30.2]	0.67				
'LcSJ3CUS.fna'	Lactobacillus acidophilus NBRC 13951	30.3	[26.9 - 33.9]	23.2	[20.9 - 25.7]	27.6	[24.7 - 30.7]	2.16				
'LcVMC4.fna'	Lactobacillus kefirgranaci ATCC 43761	27.4	[24.0 - 31.0]	23.2	[20.9 - 25.6]	25.4	[22.5 - 28.5]	0.43				
Query	Subject	d₀	C.I. d₀	d₁	C.I. d₁	d₄	C.I. d₄	d₅	C.I. d₅	Diff. G+C Percent		
---------------------------	--	------	---------	------	---------	------	---------	------	---------	------------------		
'LcSJ3CUS.fna'	Lactobacillus ultunensis DSM 16047	29.7	[26.3 - 33.3]	23.2	[20.9 - 25.7]	27.1	[24.2 - 30.2]	0.82				
'LcV4.fna'	Lactobacillus ultunensis DSM 16047	28.9	[25.6 - 32.6]	23.1	[20.8 - 25.5]	26.5	[23.7 - 29.7]	1.1				
'LcVMC7.fna'	Lactobacillus kefirgranum DSM 8572	27.7	[24.3 - 31.3]	23.1	[20.8 - 25.5]	25.6	[22.7 - 29.7]	0.78				
'LcVMC5.fna'	Lactobacillus kefirgranum DSM 8572	28.4	[25.0 - 32.0]	23.1	[20.8 - 25.5]	26.1	[23.2 - 29.2]	0.51				
'LcVMC1.fna'	Lactobacillus kefirgranum DSM 8572	27.7	[24.4 - 31.3]	23.1	[20.8 - 25.5]	25.6	[22.8 - 28.7]	0.58				
'LcMC4.fna'	Lactobacillus kefirgranum ATCC 43761	27.6	[24.2 - 31.2]	23.1	[20.9 - 25.6]	25.5	[22.7 - 28.6]	0.63				
'LcVMC6.fna'	Lactobacillus kefirgranum ATCC 43761	27.5	[24.2 - 31.1]	23.1	[20.8 - 25.6]	25.5	[22.6 - 28.6]	0.42				
'LcVMC2.fna'	Lactobacillus kefirgranum ATCC 43761	28.2	[24.8 - 31.8]	23.1	[20.8 - 25.5]	26.0	[23.1 - 29.1]	0.86				
'LcVMC1.fna'	Lactobacillus ultunensis DSM 16047	29.2	[25.8 - 32.8]	23.1	[20.8 - 25.6]	26.8	[23.9 - 29.9]	0.88				
'LcVMC6.fna'	Lactobacillus acidophilus NBRC 13951	28.7	[25.3 - 32.3]	23.1	[20.8 - 25.6]	26.3	[23.4 - 29.4]	0.98				
'LcVMC2.fna'	Lactobacillus ultunensis DSM 16047	28.4	[25.0 - 32.0]	23.1	[20.8 - 25.6]	26.1	[23.2 - 29.2]	0.96				
'LcVMC8.fna'	Lactobacillus ultunensis DSM 16047	27.7	[24.3 - 31.3]	23.1	[20.8 - 25.6]	25.6	[22.7 - 28.7]	0.9				
'LcVMC5.fna'	Lactobacillus kefirgranum DSM 8572	28.1	[24.7 - 31.7]	23.1	[20.9 - 25.6]	25.9	[23.0 - 29.0]	0.3				
'LcMC4.fna'	Lactobacillus ultunensis DSM 16047	28.3	[25.0 - 32.0]	23.1	[20.8 - 25.6]	26.1	[23.2 - 29.2]	0.86				
'LcVMC6.fna'	Lactobacillus kefirgranum DSM 8572	27.9	[24.5 - 31.5]	23.0	[20.7 - 25.4]	25.7	[22.8 - 28.8]	0.63				
'LcV4.fna'	Lactobacillus kefirgranum DSM 8572	28.6	[25.3 - 32.3]	23.0	[20.7 - 25.5]	26.3	[23.4 - 29.4]	0.39				
'LcVMC2.fna'	Lactobacillus kefirgranum DSM 8572	27.5	[24.1 - 31.1]	23.0	[20.7 - 25.5]	25.4	[22.6 - 28.5]	0.53				
'LcV4.fna'	Lactobacillus kefirgranum ATCC 43761	28.1	[24.8 - 31.7]	23.0	[20.7 - 25.4]	25.9	[23.0 - 29.0]	0.19				
'LcVMC3.fna'	Lactobacillus ultunensis DSM 16047	28.6	[25.2 - 32.2]	23.0	[20.7 - 25.5]	26.2	[23.3 - 29.3]	0.7				
'LcVMC7.fna'	Lactobacillus ultunensis DSM 16047	29.9	[26.5 - 33.5]	23.0	[20.7 - 25.5]	27.2	[24.3 - 30.3]	0.63				
'LcVMC1.fna'	Lactobacillus kefirgranum DSM 8572	28.9	[25.5 - 32.5]	22.9	[20.6 - 25.3]	26.4	[23.5 - 29.5]	0.61				
Query	Subject	d_0	C.I. d_0	d_4	C.I. d_4	d_6	C.I. d_6	Diff. G+C Percent				
----------------	---	-------	------------	-------	------------	-------	------------	------------------				
'LcVMC1.fna'	*Lactobacillus kefiranofaciens* ATCC 43761	28.1	[24.7 - 31.7]	22.9	[20.6 - 25.4]	25.9	[23.0 - 29.0]	0.41				
'LcVMC3.fna'	*Lactobacillus kefiranofaciens* subsp. kefirgranum JCM 8572	29.8	[26.4 - 33.4]	22.8	[20.5 - 25.2]	27.1	[24.2 - 30.2]	0.86				
'LcVMC3.fna'	*Lactobacillus kefiranofaciens* ATCC 43761	29.0	[25.6 - 32.6]	22.8	[20.5 - 25.3]	26.5	[23.6 - 29.6]	0.65				
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID	
---	-----------------------------	--	--	------------	-------------	--------------	---------------	---------------------	---------------------	-------------------	-------------------	
Lactobacillus suntoryeus LMG 22464	Cachat and Priest 2005	NCIMB 14005; SA	Lactobacillus suntoryeus	1760	36.5	1825	Gp0131240	PRJNA224116	SAMN02797793	GCF_001437535		
Lactobacillus kefiranofaciens ATCC 43761	Fujisawa et al. 1988 emend.	Vancanneyt et al. 2004	Lactobacillus kefiranofaciens; Lactobacillus kefiranofaciens subsp. kefiranofaciens	2281	37.2	2367	Gp0099413	PRJNA257853	SAMN02983011	GCA_900103655	2597490363	
Lactobacillus helveticus DSM 20075	(Orla-Jensen 1919) Bergey et al. 1925	LMG 13555; LMG 6413; NRRL B-4526; CCUG 30139; ATCC 15009; JCM 1120; IFO 15019; NBRC 15019; CIP 103146	Lactobacillus helveticus, Thermobacterium helveticum	1804	36.8	2078	Gp0003635	PRJNA34619	SAMN00139430	GCA_000160855	645951865	
Lactobacillus ultunensis DSM 16047	Roos et al. 2005	LMG 22117; CCUG 48460; JCM 16177; Kx146C1	Lactobacillus ultunensis	2159	35.9	2210	Gp0003665	PRJNA31505	SAMN00001484	GCA_000159415	643886047	
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	IMG OID	
---	---	---------------------------	--	------------	-------------	--------------	---------------	----------------------	---------------------	---------------------	------------------	
Lactobacillus acidophilus NBRC 13951	(Moro 1900) Hansen and Morquot 1970	LMG 13350; LMG 9433; BCRB 10695; NRRL B-4495; CCUG 5917; DSM 20079; ATCC 4355; NCTC 12980; JCM 1132; IFO 13951; VKM B-1660; CIP 76.13	Bacillus acidophilus; Lactobacillus acidophilus	1955	34.6	1873	Gp0075770	PRJDB1353	SAMD00046914	GCA_001591845		
Lactobacillus kitasatonis JCM 1039	Mukai et al. 2003	KCTC 3155; DSM 16761	Lactobacillus kitasatonis	1902	37.5	2050	Gp0026726	PRJDB640	SAMD00016339	GCA_000615285	2565956592	
Lactobacillus gallinarum JCM 2011	Fujisawa et al. 1992	LMG 9435; CCUG 30724; DSM 10532; ATCC 33199; CIP 103611; VPI 1294	Lactobacillus gallinarum	1918	36.5	2076	Gp0091989	PRJDB621	SAMD00003603	GCA_000614735		
Lactobacillus kefiranofaciens subsp. kefirgranum JCM 8572	(Takizawa et al. 1994) Vancanneyt et al. 2004	LMG 15132; CCUG 39467; CCUG 49353; DSM 10550; ATCC 51647; CIP 104241; GCL 1701	Lactobacillus kefiranofaciens subsp. kefirgranum; Lactobacillus kefirgranum	2065	37.4	2918	Gp0093297	PRJDB772	SAMD00000473	GCA_001311335		
Lactobacillus crispatus JCM 1185	(Brygoo and Aladame 1953) Moore and Holdeman 1970, emend. Cato et al. 1983	LMG 9479; CCUG 30722; DSM 20584; ATCC 33820; CIP 102990; CIPP II; VPI 3199	Eubacterium crispatum; Lactobacillus crispatus	2033	36.6	3305	Gp0093095	PRJDB800	SAMD00000420	GCA_001311685		
Strain	Authority	Other deposits	Synonyms	Base pairs	Percent G+C	No. proteins	Goldstamp	Bioproject accession	Biosample accession	Assembly accession	Assembly accession	IMG OID
---------------------------	----------------------	----------------	--	------------	-------------	--------------	--------------	---------------------	--------------------	-------------------	-------------------	-----------------
Lactobacillus amylovorus DSM 20531	Nakamura 1981	LMG 9496; NRRL B-4540; CCUG 27201; ATCC 33620; JCM 1126; CIP 102989; NCAIM B.01458	*Lactobacillus amylovorus*	2016 257	37.8	2045	Gp0130192	PRJNA224116	SAMN02369422			GCF_001433985
Lactobacillus sobrius DSM 16698	Konstantinov et al. 2006	1; NCCB 100067; OTU171-001	*Lactobacillus sobrius*	1992 054	37.8	1950	Gp0131222	PRJNA224116	SAMN02797775			GCF_001437365
LcSJ3CUS.fna				2087 874	36.7							
LcV4.fna				2091 889	37.0							
LcVMC1.fna				2074 052	36.8							
LcVMC2.fna				2201 962	36.9							
LcVMC3.fna				2201 463	36.6							
LcVMC4.fna				2314 219	36.8							
LcVMC5.fna				2242 963	36.9							
LcVMC6.fna				2343 949	36.8							
LcVMC7.fna				2101 584	36.6							
LcVMC8.fna				2332 118	36.8							
Methods, Results and References

The genome sequence data were uploaded to the Type (Strain) Genome Server (TYGS), a free bioinformatics platform available under https://tygs.dsmz.de, for a whole genome-based taxonomic analysis [1]. The results were provided by the TYGS on 2020-05-25. In brief, the TYGS analysis was subdivided into the following steps:

Determination of closely related type strains

Determination of closest type strain genomes was done in two complementary ways: First, all user genomes were compared against all type strain genomes available in the TYGS database via the MASH algorithm, a fast approximation of intergenomic relatedness [2], and, the ten type strains with the smallest MASH distances chosen per user genome. Second, an additional set of ten closely related type strains was determined via the 16S rDNA gene sequences. These were extracted from the user genomes using RNAmmer [3] and each sequence was subsequently BLASTed [4] against the 16S rDNA gene sequence of each of the currently 11767 type strains available in the TYGS database. This was used as a proxy to find the best 50 matching type strains (according to the bitscore) for each user genome and to subsequently calculate precise distances using the Genome BLAST Distance Phylogeny approach (GBDP) under the algorithm 'coverage' and distance formula \(d_5 \) [5]. These distances were finally used to determine the 10 closest type strain genomes for each of the user genomes.

Pairwise comparison of genome sequences

All pairwise comparisons among the set of genomes were conducted using GBDP and accurate intergenomic distances inferred under the algorithm 'trimming' and distance formula \(d_5 \) [5]. 100 distance replicates were calculated each. Digital DDH values and confidence intervals were calculated using the recommended settings of the GGDC 2.1 [5].

Phylogenetic inference

The resulting intergenic distances were used to infer a balanced minimum evolution tree with branch support via FASTME 2.1.4 including SPR postprocessing [6]. Branch support was inferred from 100 pseudo-bootstrap replicates each. The trees were rooted at the midpoint [7] and visualized with PhyD3 [8].

Type-based species and subspecies clustering

The type-based species clustering using a 70% dDDH radius around each of the 11 type strains was done as previously described [1]. The resulting groups are shown in Table 1 and 4. Subspecies clustering was done using a 79% dDDH threshold as previously introduced [9].

Results

Type-based species and subspecies clustering

The resulting species and subspecies clusters are listed in Table 4, whereas the taxonomic identification of the query strains is found in Table 1. Briefly, the clustering yielded 8 species clusters and the provided query strains were assigned to 1 of these. Moreover, user strains were located in 1 of 10 subspecies clusters.

Figure caption genome tree

Figure 1. Tree inferred with FastME 2.1.6.1 [6] from GBDP distances calculated from genome sequences. The branch lengths are scaled in terms of GBDP distance formula \(d_5 \). The numbers above branches are GBDP pseudo-bootstrap support values > 60 % from 100 replications, with an average branch support of 69.7 %. The tree was rooted at the midpoint [7].

Figure caption SSU tree

Figure 2. Tree inferred with FastME 2.1.6.1 [6] from GBDP distances calculated from 16S rDNA gene sequences. The branch lengths are scaled in terms of GBDP distance formula \(d_5 \). The numbers above branches are GBDP pseudo-bootstrap support values > 60 % from 100 replications, with an average branch support of 49.3 %. The tree was rooted at the midpoint [7].
References

[1] Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019;10: 2182. DOI: 10.1038/s41467-019-10210-3

[2] Ondov BD, Treangen TJ, Melsted P, et al. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17: 1–14. DOI: 10.1186/s13059-016-0997-x

[3] Lagesen K, Hallin P. RNAmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. Oxford Univ Press; 2007;35: 3100–3108. DOI: 10.1093/nar/gkm160

[4] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10: 421. DOI: 10.1186/1471-2105-10-421

[5] Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14: 60. DOI: 10.1186/1471-2105-14-60

[6] Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32: 2798–2800. DOI: 10.1093/molbev/msv150

[7] Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat. 1972;106: 645–667.

[8] Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: A phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics. 2017;33: 2946–2947. DOI: 10.1093/bioinformatics/btx324

[9] Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci. 2014;9: 2. DOI: 10.1186/1944-3277-9-2