Upper Limit on the Cosmological Gamma-ray Background

Yoshiyuki Inoue
Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305

Kunihito Ioka
Theory Center, Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801, Japan and The Graduate University for Advanced Studies (Sokendai), Oho 1-1, Tsukuba 305-0801, Japan

(Dated: July 3, 2012)

We show that the current extragalactic gamma-ray background (EGB) measurement below 100 GeV sets an upper limit on EGB itself at very high energy (VHE) above 100 GeV. The limit is conservative for the electromagnetic cascade emission from VHE EGB interacting with the cosmic microwave-to-optical background radiation not to exceed the current EGB measurement. The cascade component fits the measured VHE EGB spectrum rather well. However, once we add the contribution from known source classes, the Fermi VHE EGB observation exceeds or even violates the limit, which is approximated as $E^2dN/dE < 4.5 \times 10^{-5}(E/100\text{GeV})^{-0.7}$ MeV/cm2/s/sr. The upper limit above 100 GeV is useful in the future to probe the EGB origin and the new physics like axion-like particles and Lorentz-invariance violation.

I. INTRODUCTION

The origin of the unresolved extragalactic diffuse gamma-ray background (EGB) radiation has been a big puzzle in astrophysics and astroparticle physics. The EGB was first discovered by the SAS-2 satellite [1]. EGRET (Energetic Gamma-Ray Experiment Telescope) on board the Compton Gamma-Ray Observatory confirmed the EGB spectrum at 0.03-50 GeV [2]. Recently, LAT (Large Area Telescope) on board the Fermi Gamma-ray Space Telescope (Fermi) made a new measurement of the EGB spectrum from 0.2 to 100 GeV [3]. The observed integrated EGB flux ($E > 100$ MeV) is 1.03×10^{-5} photons/cm2/s/sr with a photon index of 2.41±0.05. This power-law spectrum extends up to 600 GeV based on the very recent preliminary EGB spectrum reported by the Fermi collaboration [4].

EGB is composed of various unresolved gamma-ray sources. Point sources detected by EGRET and Fermi are guaranteed to contribute to EGB. Those are namely blazars [e.g. 5], radio galaxies [6], starburst galaxies [e.g. 7, 8], high latitude pulsars [9], and gamma-ray bursts (GRBs) [10]. It is expected that blazars, radio galaxies, and starburst galaxies explain 22.5 ± 1.8% [3], 25$^{+8}_{-15}$% [6] and 4 ± 23% [7] of the unresolved EGB, respectively. Other extragalactic sources have also been discussed as the origin of EGB, although they are still not detected in gamma-ray [see 8, and references therein].

Very high energy (VHE; $\gtrsim 30$GeV) gamma-rays propagating through the universe experience absorption by the interaction with the extragalactic background light (EBL) via electron–positron pair production [e.g. 11]. As discussed in [5], if the EGB radiation originates from cosmological sources, the EBL absorption signature should appear in the spectrum above ~ 30 GeV. However, the measured EGB spectrum shows a single power-law up to 600 GeV [3, 4]. This may pose a serious problem for the current models.

Electron–positron pairs created by VHE gamma-rays with EBL scatter the cosmic microwave background (CMB) radiation via the inverse Compton (IC) scattering and generate secondary gamma-ray emission component (the so-called cascade emission) in addition to the absorbed primary emission [e.g. 12]. At redshift z, the scattered photon energy $E_{\gamma,c}$ appears at lower energy than the intrinsic photon energy $E_{\gamma,i}$, typically

$$E_{\gamma,c} \approx 0.8(1+z)\left(\frac{E_{\gamma,i}}{1\text{TeV}}\right)^2 \text{GeV.} \quad (1)$$

The cascade component is also expected to contribute to EGB [13, 14]. Recently Murase et al. (2012) [14] constrained the cosmic energy density of gamma-rays using the cascade component contribution to the EGB from the Fermi measurement.

In this paper, we generalize the argument in a conservative way for arbitrary cosmological sources, and set an upper limit on EGB by itself with the new Fermi EGB data. In particular, on VHE EGB by requiring the cascade emission not to exceed the currently observed EGB below ~ 30 GeV. Taking into account the guaranteed source’s contributions, we find that the current EGB measurement already self-limits the VHE EGB fluxes above 100 GeV to PeV as

$$E^2dN/dE < 4.5 \times 10^{-5} \left(\frac{E}{100\text{GeV}}\right)^{-0.7} \text{MeV/cm}^2/\text{s/sr} \quad (2)$$

for cosmological sources, which is inconsistent with the current EGB measurement by Fermi. We further discuss the requirements for possible origins of VHE EGB.

Published in Phys.Rev.D86:023003,2012 and arXiv:1206.2923.

Work supported in part by US Department of Energy under contract DE-AC02-76SF00515.
Hereafter we use the standard cosmology \((H_0, \Omega_M, \Omega_\Lambda) = (70.0 \, \text{km/s/Mpc}, 0.3, 0.7) \).

II. THE EGB SPECTRUM

The EGB spectrum in the unit of MeV/cm\(^2\)/s/steradian/MeV is calculated as

\[
E^2 \frac{dN}{dE} (E_{\text{obs}}) = \frac{c E_{\text{obs}}^2}{4\pi} \int_0^{z_{\text{max}}} dz \left| \frac{dt}{dz} \right| (1 + z) \times \frac{d\gamma}{dE_{\gamma}} \left[(1 + z) E_{\text{obs}}, z \right] \exp[-\tau_{\gamma\gamma}(E_{\text{obs}}, z)],
\]

where \(E_{\text{obs}} \) is the observed photon energy, \(c \) is the light speed, \(t \) is the cosmic time, \(\left| \frac{dt}{dz} \right| = H_0 (1 + z) \sqrt{\Omega_M (1 + z)^3 + \Omega_\Lambda} \), and \(\tau_{\gamma\gamma}(E_{\text{obs}}, z) \) is the gamma-ray opacity for \(E_{\text{obs}} \) from \(z \). We assume \(z_{\text{max}} = 5 \), which does not affect our results.

The comoving volume emissivity \(\frac{dJ}{dE_{\gamma}}(E_{\gamma}, z) \) [ph/s/MeV/cm\(^3\)] is given by the intrinsic plus cascade emission, \(j = j_{\text{int}} + j_{\text{cas}} \).

The intrinsic emissivity can be characterized by a few parameters,

\[
\frac{dJ_{\text{int}}}{dE_{\gamma}}(E_{\gamma}, z) = \begin{cases} \frac{J_0 E_{\gamma}^{-\Gamma_{\text{ph}}}(1 + z)^{\beta_{\text{evo}}}}{E_{\gamma} \leq E_{\text{max}},} \\ 0, \quad E_{\gamma} > E_{\text{max}}, \end{cases}
\]

where \(E_{\gamma} \) is the photon energy in the rest frame, the spectral shape is a power-law with a photon index \(\Gamma_{\text{ph}} \) and an cutoff at \(E_{\text{max}} \), the \(z \)-evolution is given by \(\beta_{\text{evo}} \), and \(J_0 \) is the normalization.

To give a conservative upper limit, we adopt the EBL model by \cite{11} as shown in Figure 1. The EBL intensity by \cite{11} is close to the galaxy counts which are the lower limit of the EBL. As the EBL density becomes higher, the EGB upper limit gets tighter.

III. CASCADE EMISSIVITY

Following \cite{12, 19}, we calculate the cascade emissivity \(\frac{dJ_{\text{cas}}}{dE_{\gamma}} \) as:

\[
\frac{dJ_{\text{cas}}}{dE_{\gamma}}(E_{\gamma}, z) = \int_{\gamma_{\text{e}, \text{min}}}^{\gamma_{\gamma, \text{max}}} d\gamma_{\gamma} \frac{dJ_{\gamma}}{d\gamma_{\gamma}} \frac{d^2N_{\gamma_{\gamma},\gamma}}{d\gamma_{\gamma} dtdE_{\gamma}},
\]

where \(t_{\text{IC}}(z) \) is the energy-loss time of an electron with a Lorentz factor \(\gamma_{\ell} \) and mass \(m_e \) by the inverse Compton (IC) emission in the local rest frame,

\[
t_{\text{IC}}(z) = \frac{3m_e c}{4\gamma_{\ell} \sigma_T u_{\text{CMB}}(z)} \approx 7.7 \times 10^{13} \left(\frac{\gamma_{\ell}}{10^6} \right)^{-1} (1 + z)^{-4} \text{s},
\]

\(\sigma_T \) is the Thomson scattering cross section, and \(u_{\text{CMB}}(z) \) is the CMB energy density at \(z \). We consider the CMB photons only here, since the EBL energy density is two orders magnitudes lower than that of CMB. \(\frac{dJ_{\ell}}{d\gamma_{\gamma}} \) is the electron injection spectrum:

\[
\frac{dJ_{\ell}}{d\gamma_{\gamma}} = 2 \frac{dE_{\gamma,\ell}}{d\gamma_{\gamma}} \left[1 - e^{-\tau_{\gamma\gamma}(E_{\gamma,\ell}, (1+z), z)} \right],
\]

and \(d^2N_{\gamma_{\gamma},\gamma}/dtdE_{\gamma} \) is the scattered photon spectrum per unit time by the IC scattering:

\[
\frac{d^2N_{\gamma_{\gamma},\gamma}}{dtdE_{\gamma}} = \frac{3\sigma_T c}{4\gamma_{\gamma}^2} \int dx \frac{1}{x} \frac{dN_{\text{CMB}}}{d\epsilon}(\epsilon, z) f(x)
\]

with \(f(x) = 2x \ln(x) + x + 1 - 2x^2, \quad (0 < x < 1) \) and \(x = E_{\gamma}/4\gamma_{\ell}^2 \).

The integration region over the Lorentz factor, \(\gamma_{\ell} \), is \(\gamma_{\ell, \text{min}} < \gamma_{\ell} < \gamma_{\ell, \text{max}} \). \(\gamma_{\ell, \text{max}} = E_{\text{max}}/2m_e c^2 \) and \(\gamma_{\ell, \text{min}} = (E_{\gamma}/\epsilon)^{1/2}/2 \). Since the cooling time \(t_{\text{IC}} \) is usually shorter than the comoving time, we assume that pairs generate photons at the pair creation site. Because of this fast cooling, the low energy photon spectrum below 100 MeV becomes \(\Gamma_{\text{ph}} = 1.5 \). We do not take into account this spectral effect since it does not affect the VHE spectrum.

We iteratively calculate Eq. (5) by substituting \((2dJ_{\text{cas}}/d\gamma_{\gamma})(1 - e^{-\tau_{\gamma\gamma}}) \) for \(dJ_{\ell}/d\gamma_{\gamma} \) in order to include IC scatterings due to pairs from reabsorption of cascade photons \cite{19}.

The intergalactic magnetic field (IGMF) effect is not important in this study. Although IGMF bends motion of created charged pairs and some fraction of beamed emission is lost, off-axis sources complement this loss. The synchrotron cooling is also not effective for pairs typically created outside galaxies.
The hardest photon index in the diffusive shock conservative limit on EGB, Γ_{ph}, and β_{evo} are known to show no or negative evolution, respectively. Hereafter, we study F_{ph} the cascade emission not to exceed the data observed by Fermi. Given $(\Gamma_{\text{ph}}, \beta_{\text{evo}}, E_{\text{max}}) = (1.5, 0.0, 60 \text{ TeV})$, we can only adjust the normalization of EGB by requiring the cascade emission not to exceed the data observed by Fermi (cascade-limit case). Then we obtain the upper limit above 100 GeV, well approximated as

$$E^2 \frac{dN}{dE} < 1.1 \times 10^{-4} \left(\frac{E}{100 \text{ GeV}} \right)^{-0.5} \text{ MeV/cm}^2/\text{s}/\text{sr}. \quad (9)$$

This is still consistent with the current observation. The normalization of the EGB upper limit is determined by the observed EGB data at \sim10 GeV. Although \sim60 TeV emission from extragalactic sources has not been observed yet, we adopt $E_{\text{max}} = 60 \text{ TeV}$ here to constrain the VHE EGB. We show the cases with different maximum energies and spectral models later. Here we do not include the guaranteed source classes’ contribution to EGB. As shown below, the limit violates the observation once we take into account the known source’s contribution such as flat spectrum radio quasars (FSRQs), BL Lacs, radio galaxies, and starburst galaxies.

Figure 3 is the same as Figure 2 but for $\Gamma_{\text{ph}} = 1.0$, 1.5, and 2.0. Even if we increase the normalization of the input EGB or take $\Gamma_{\text{ph}} < 1.5$ to explain the VHE EGB data, the cascade flux increases at the same time. Then the limit becomes stronger than the case with $\Gamma = 1.5$. The model with $\Gamma_{\text{ph}} = 2.0$ shows a typical example that EGB is limited by the primary component (primary-limit case). Softer input spectrum results in a stronger upper limit. This is because the VHE EGB spectrum is determined by the absorbed component alone, not by the cascade component, although the cascade spectral shape is almost independent of the primary spectrum. Thus, $\Gamma_{\text{ph}} = 1.5$ is the most conservative case.
Figure 4 shows the upper limits on EGB for $\Gamma_{ph} = 1.5$ with various β_{evo} and E_{max}. Negative evolution with $\beta_{evo} < 0$ eases the upper limit on EGB. In the negative evolution case, the dominant EGB contribution comes from low redshift and the absorption effects are small. Since a large fraction of VHE emitting sources locates inside the gamma-ray horizon without suffering the EBL attenuation, the contribution of cascade emission becomes minor. The maximum energy as low as $E_{max} = 0.6$ TeV also eases the upper limit. This is because the cascade emission appears only at ~ 0.3 GeV following Eq. (1). However, there are no known sources that have a large contribution to EGB and a spectral cutoff at \simTeV. For example, imaging atmospheric Cherenkov telescopes (IACTs) detects > 0.6 TeV emission from several nearby blazars [e.g. 24].

Each curve in Fig. 4 gives the EGB upper limit in each energy band for a fixed β_{evo} because the limit is basically set by the original flux before absorption at the maximum energy. For $\beta_{evo} = 0$, the limit is approximated by Eq. (9). Note that $\Gamma_{ph} \approx 1.5$ is the most conservative case as discussed above.

With $\beta_{evo} = 2.0$, i.e. positive evolution, the upper limit violates the EGB measurement for $(\Gamma_{ph}, E_{max}) = (1.5, 60 \text{ TeV})$. To avoid the inconsistency with the measured EGB, the VHE emissivity beyond the gamma-ray horizon should be turned off or less than that inside the horizon. Therefore, if the EGB origin is cosmological, the source might have high spectra and show a no or negative cosmological evolution. Recent Fermi analysis shows that FSRQs have $\beta = 5.7$ [22]. No or negative-evolution sources reported in gamma-ray or in other wavelength are HBLs [21], elliptical galaxies [22] and clusters of galaxies [23]. Gamma-ray emission from latter two has not been confirmed yet and is not likely enough for EGB at least in the case of cluster of galaxies [26].

Fig. 5 shows the upper limits for non-power-law spectral models in the case of no evolution. Here we show a Mrk 421-like spectrum and a blackbody shape spectrum. For a Mrk 421-like spectrum, we use a log-parabola function as

$$\frac{d\nu_I}{dE_{\gamma}}(E_{\gamma}, z) \propto \left(\frac{E_{\gamma}}{E_{br}}\right)^{-\Gamma_{ph} + \delta \log \left(\frac{E_{\gamma}}{E_{br}}\right)} \times (1 + z)^{\beta_{evo}}, \quad (10)$$

where we use the best fit parameters for Mrk 421 as $E_{br} = 0.3 \text{ TeV}$, $\Gamma_{ph} = 2.48$, and $\delta = 0.33$ [24]. For a blackbody shape spectrum, we adopt

$$\frac{d\nu_I}{dE_{\gamma}}(E_{\gamma}, z) \propto \frac{E_{\gamma}^2}{\exp(E_{\gamma}/E_{BB}) - 1} \times (1 + z)^{\beta_{evo}}, \quad (11)$$

where we set $E_{BB} = 1 \text{ TeV}$. The upper limits for both of a Mrk 421-like spectrum and a blackbody spectrum models comes lower than that for $\Gamma = 1.5$ spectral model. Therefore, $\Gamma \approx 1.5$ is the most conservative case even if we consider these non-power-law spectral models.

Fig. 6 shows the upper limit for $(\Gamma_{ph}, \beta_{evo}, E_{max}) = (1.5, 0.0, 60 \text{ TeV})$. Here we show the contribution from each redshift ranges. At VHE region, only sources at $z < 0.5$ can contribute to the EGB due to the EBL suppression. This means that the dominant VHE EGB contribution at each energy roughly comes from inside the gamma-ray horizon by EBL attenuation. Therefore, we
can constrain the VHE emissivity of the universe at each energy by future VHE EGB measurements.

B. Self-Limitation method with known sources’ contribution

There are guaranteed source classes that contribute to EGB detected by EGRET or Fermi. It is expected that blazars, radio galaxies, and starburst galaxies explain 22.5 ± 1.8% [8], 25.3 ^\pm 3.8% [6] and 4 – 23% [7] of the unresolved EGB, respectively. Then, ~70% of EGB will be explained by known source classes. We need to subtract them to evaluate the VHE EGB upper limit, since the residual is the only room for the cascade plus absorbed emission from VHE EGB.

For FSRQs, we adopt the model by [22] (hereafter MA12). For BL Lacs, we use the model by [3] (hereafter Fermi10). Since the EBL absorption effect is not taken into account in [8], we include the EBL attenuation model [11] by assuming \(\beta_{\text{evo}} = 0 \) for BL Lacs. For radio galaxies, we use the model by [6] (hereafter YI11). For starburst galaxies, we use the IR luminosity function model from [8] (hereafter SV11) and the power law model from [7] (hereafter Fermi12). We renormalize the SV11 model by a factor of 0.8 to avoid the total (FSRQ+BL Lacs+radio galaxy+starburst galaxy) contribution exceeding the observed EGB data, or the VHE upper limit becomes zero.

Figs. 7 and 8 shows the upper limit on the EGB taking into account the known sources’ contributions where we use the SV11 model and the Fermi12 model for starburst galaxies, respectively. Here we show the case of \((\Gamma_{\text{ph}}, \beta_{\text{evo}}, E_{\text{max}}) = (1.5, 0.0, 60 \text{ GeV}) \). The upper limit on EGB is derived from the sum of the VHE EGB cascade and guaranteed sources’ contribution. When we try to explain the EGB below 10 GeV by guaranteed sources as in Fig. 7 the EGB measurement violates the upper limit above 100 GeV. The limit is approximated by Eq. 2. If we take \(\beta_{\text{evo}} = -4 \), the upper limit becomes consistent with the measured spectrum with 1-sigma difference. However, there are no known sources showing such a strongly negative evolution in any wavelengths. In the case of \(E_{\text{max}} = 6 \text{ TeV} \), \(\beta_{\text{evo}} < -6 \) is required. Therefore, the VHE emissivity at redshift \(z \gtrsim 0.5 \) should be low. On the other hand, when we try to make the upper limit consistent with the VHE EGB data as in Fig. 8 the total EGB contribution from cosmological sources is ~2 sigma below the measured EGB below 10 GeV. In this case, the limit is approximated by 1.6 times Eq. 2.

V. DISCUSSION AND CONCLUSION

There are a few possible scenarios to explain VHE EGB. (i) Sources have hard spectra \(\Gamma_{\text{ph}} \approx 1.5 \) with a cutoff at 60 TeV and a strongly negative evolution \(\beta_{\text{evo}} \lesssim -4 \) in Eq. 4. If a cutoff is at 6 TeV, \(\beta_{\text{evo}} \lesssim -6 \) is required. (ii) More transparent EBL generates weaker absorption effect and eases the limit. However we use the EBL model close to the minimum (integrated flux of galaxies). Even if we use it, the upper limit is still below the observation. (iii) Pair production process could be affected by new physics such as Lorentz-invariance violation [27] and axion-like particles [28]. (iv) Dark matter annihilation/decay in the local group [24, 30] can avoid the EBL absorption effect. (v) Sources only contributing to EGB at \(\lesssim 10 \text{ GeV} \) may complement the residual between data and model in Fig. 8. High latitude pulsars and radio-quiet AGNs are possible candidates. First, pulsars observed in gamma-ray have a cutoff at \(\sim 5 \text{ GeV} \) [31]. Second, radio-quiet AGNs may contribute to the EGB at \(\lesssim 10 \text{ GeV} \) [32], although Fermi does not see radio-quiet AGNs [33, 34]. If non-thermal electrons exist in a corona above the accretion disk, a power-law tail will appear in hard X-ray and gamma-ray band [32]. (vi) The EGB measurement has uncertainties. The EGB is deduced by subtracting the foreground emission from our Galaxy which is still not fully understood. For example, in the analysis in [8], the Fermi bubble [35] is not subtracted.

In the scenario (i), we can reject known Fermi gamma-ray source classes as the origin of VHE EGB. First, blazars and radio galaxies detected by Fermi do not show negative cosmic evolution [3, 6]. Second, gamma-ray observed galaxies do not show \(\Gamma_{\text{ph}} = 1.5 \) [36]. Even if they can create such hard spectra, TeV emission is internally absorbed by the interstellar radiation [37]. Third, pulsars will not contribute at VHE band as discussed above. Although a power-law tail in the VHE band have been recently reported for the Crab pulsar [38], the photon index \(\Gamma_{\text{ph}} = 3.8 \) is softer than that of the observed VHE EGB \(\Gamma_{\text{ph}} = 2.41 \).

One of the most likely source classes is TeV selected
HBL (TeV HBL) which is not detected by Fermi but by the current IACTs [39]. Although their cosmological evolution is still unknown, their spectrum is hard and could have a cut-off at ~ 10 TeV. Interestingly these hard TeV emission can be explained by high energy cosmic-ray induced intergalactic cascade [40]. A new IACT array Cherenkov Telescope Array (CTA) [41] is expected to detect > 100 blazars including TeV HBLs [42]. CTA will enable us to statistically study their evolution and contribution to VHE EGB.

Low luminosity (LL) GRBs may also explain VHE EGB, although LL GRBs have not been detected in gamma-ray. LL GRBs might show a negative cosmological evolution since LL GRBs are only discovered at low redshift [e.g. 43]. The total energy budget of LL GRBs is large enough to explain Ultra-High Energy Cosmic Rays (UHECRs) [44]. The UHECR intensity is $\sim 1.0 \times 10^{-5}$ MeV/cm2/s/ster at $\sim 10^{19}$ eV [45] which is comparable to the observed EGB intensity $\sim 3.0 \times 10^{-5}$ MeV/cm2/s/ster at 600 GeV [4].

It is important to measure VHE EGB more precisely and at higher energy, such as by Fermi, CTA and CALET (CALorimetric Electron Telescope) [46]. Our upper limit above 600GeV will help future measurements to unveil the EGB origin. Just by detecting the EGB above TeV, we can put a meaningful lower limit on the number density of the EGB sources because a source should reside in the gamma-ray horizon that is small at high energy. For example, if CTA measures the EGB at 60 TeV, the gamma-ray horizon is ~ 40 Mpc and the EGB source number in the entire sky should be larger than $N_{\text{min}} = 4\pi F_{\text{EGB}(60\text{TeV})}/F_{\text{CTA}(60\text{TeV})} \sim 6[F_{\text{EGB}(60\text{TeV})}/3 \times 10^{-7}$ MeV/cm2/s/ster] [see also 14, 47], where we assume CTA sensitivity as $F_{\text{CTA}(60\text{TeV})} = 1.0 \times 10^{-12}$ erg/cm2/s. [41]. We note that the total emissivity within the gamma-ray horizon may have a large dispersion (such as Poisson fluctuation) at high energy because of the small horizon size, which may lead to a violation of our upper limits. In other words, the number of sources within the gamma-ray horizon may be larger at high energy region than our expectation due to the local distribution fluctuation.

Anisotropy in the VHE EGB above 30 GeV is an alternative key to understand VHE EGB, since the monopole peak depends on sources [48]. The anisotropy below 50 GeV has already been investigated [49].

The effect of IGMF to the cascade component is not critical in this study. However, with weak strength of IGMF, Fermi may have already detected the cascade emission alone from some sources and classified them into unassociated sources [50]. If their contribution had been already subtracted from the EGB, the upper limit on the VHE EGB would be eased. If the cascade emission alone had been detected, the absorbed VHE flux would be brighter than the Fermi’s νF_ν sensitivity. Then, the current IACTs should have detected these VHE emission, since their sensitivity in νF_ν in the VHE region is comparable to that of Fermi in the GeV region. However, TeV HBLs have not been detected by Fermi yet [39]. Therefore, there would be no sources whose cascade component alone is resolved.

Strong IGMF would also ease the upper limit on the VHE EGB. When the IGMF strength is above 3.26 μG, the magnetic energy density takes over the CMB en-
ergy density in the Thomson regime. Then, the synchrotron cooling is more effective than the IC cooling. The strong IGMF will suppress the cascade emissivity in gamma-ray. It is, however, also known that the magnetic field strength of lobes of AGN is typically 1µG [51]. Thus, the strength of IGMF may be smaller than 1µG with the scale of AGNs’ lobes ∼ 100kpc [51]. This scale is shorter than the mean free path of pair creation ∼ 20 Mpc(n_{EBL}(z)/0.1cm^2/s)^-1. Therefore, strong IGMF would not affect the cascade emissivity in gamma-ray significantly.

The upper limit is also applied to the EGB produced by the UHECRs via the intergalactic cascade [see e.g. 62]. In order to explain the VHE EGB by the UHECR cascade with known sources’ contribution to EGB, a negative evolution may be necessary for the UHECR sources.

In this paper, we develop a new method to constrain the cosmological EGB by using the EGB itself. VHE photons propagating the universe are absorbed by EBL and create electron–positron pairs. Created pairs generate secondary gamma-ray emission via the IC scattering of secondary gamma-ray. It is, however, also known that the magnetic field strength of lobes of AGNs’ lobes ∼ 20 Mpc(2000); D. Yan, H. Zeng, and L. Zhang, ArXiv e-prints (2012), 1205.5755. Therefore, strong IGMF would not affect the cascade emissivity in gamma-ray significantly.

We show that the current EGB measurement sets an upper limit of \(E^2 dN/dE < 4.5 \times 10^{-5}(E/100 \text{ GeV})^{-0.7} \text{ MeV/cm}^2/\text{s}/\text{sr}\) to the VHE EGB above 100 GeV from cosmological sources, where we take into account the known sources’ contributions. The current EGB measurement by \(Fermi\) [4] violates the predicted upper limit. In order to make consistent with the observed EGB data in the cosmological origin scenario, possible origins should show strongly negative cosmological evolution, hard spectrum, and a cut-off at ∼ 10 TeV. This kind of sources, however, has never been reported yet neither in gamma-ray nor in other wavelength.

Acknowledgments

We thank the anonymous referee for useful comments and suggestions. We thank Marco Ajello and Keith Bechtol for useful discussions and providing their models. We also thank Kohta Murase and Hajime Takami for useful discussions. YI acknowledges support by the Research Fellowship of the Japan Society for the Promotion of Science (JSPS), and KI by the Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, 21684014, 22244019, 22244030.

[1] C. E. Fichtel, G. A. Simpson, and D. J. Thompson, Astrophys. J. 222, 833 (1978).
[2] P. Sreekumar et al., Astrophys. J. 494, 523 (1998).
[3] A. A. Abdo et al., Physical Review Letters 104, 101101 (2010).
[4] M. Ackermann et al., TeV Particle Astrophysics 2011 (2011).
[5] A. A. Abdo et al., Astrophys. J. 720, 435 (2010).
[6] Y. Inoue and T. Totani, Astrophys. J. 733, 66 (2011).
[7] M. Ackermann et al., eprint arXiv:1206.1340 (2012), 1206.1346.
[8] F. W. Stecker and T. M. Venter, Astrophys. J. 736, 40 (2011).
[9] C. Faucher-Giguère and A. Loeb, JCAP 1, 5 (2010).
[10] S. Casanova, B. L. Dingus, and B. Zhang, Astrophys. J. 656, 306 (2007).
[11] J. D. Finke, S. Razzaque, and C. D. Dermer, Astrophys. J. 712, 238 (2010).
[12] Y. Z. Fan, Z. G. Dai, and D. M. Wei, A&A 415, 483 (2004).
[13] P. S. Coppi and F. A. Aharonian, ApJ 487, L9 (1997); T. M. Kneiske and K. Mannheim, A&A 479, 41 (2008); Y. Inoue and T. Totani, Astrophys. J. 702, 523 (2009); T. M. Venter, Astrophys. J. 710, 1530 (2010); D. Yan, H. Zeng, and L. Zhang, ArXiv e-prints (2012), 1202.4250.
[14] K. Murase, J. F. Beacom, and H. Takami, ArXiv e-prints (2012), 1205.5755.
[15] T. M. Kneiske, T. Bretz, K. Mannheim, and D. H. Hartmann, A&A 413, 807 (2004); A. Franceschini, G. Rodighiero, and M. Vaccari, A&A 487, 837 (2008); F. W. Stecker, M. A. Malkan, and S. T. Scully, ArXiv e-prints (2012), 1205.5168.
[16] P. Madau and L. Pozzetti, MNRAS 312, L9 (2000); J. P. Gardner, T. M. Brown, and H. C. Ferguson, ApJ 542, L79 (2000); D. Elbaz, C. J. Cesarsky, P. Chanan, H. Aussel, A. Franceschini, D. Fadda, and R. R. Charry, A&A 384, 848 (2002); C. Papovich et al., ApJS 154, 70 (2004); G. G. Fazio et al., ApJS 154, 39 (2004); H. Dole et al., A&A 451, 417 (2006); D. T. Frayer et al., ApJ 647, L9 (2006); C. K. Xu et al., ApJ 619, L11 (2005); S. Berta et al., A&A 532, A49 (2011).
[17] E. L. Wright, New A Rev. 48, 465 (2004); D. P. Finkbeiner, M. Davis, and D. J. Schlegel, Astrophys. J. 544, 81 (2000); R. A. Bernstein, Astrophys. J. 666, 663 (2007); T. M. Brown, R. A. Kimble, H. C. Ferguson, J. P. Gardner, N. R. Collins, and R. S. Hill, AJ 120, 1153 (2000); Y. Matsukawa, N. Ienaka, K. Kawara, and S. Oyabu, Astrophys. J. 736, 119 (2011); T. Matsumoto et al., Astrophys. J. 626, 31 (2005); S. Matsuura et al., Astrophys. J. 737, 2 (2011); J. Edelstein, S. Bowyer, and M. Lampton, Astrophys. J. 539, 187 (2000).
[18] J. Albert et al., Science 320, 1752 (2008).
[19] K. Murase, K. Asano, and S. Nagataki, Astrophys. J. 671, 1886 (2007).
[20] M. A. Malkov and L. O’C Drury, Reports on Progress in Physics 64, 429 (2001).
[21] P. Padovani, P. Giommi, H. Landt, and E. S. Perlman, Astrophys. J. 662, 182 (2007).
[22] M. Im et al., Astrophys. J. 571, 136 (2002).
[23] C. R. Mullis et al., Astrophys. J. 607, 175 (2004).
[24] A. A. Abdo et al., Astrophys. J. 736, 131 (2011).
[25] M. Ajello et al., Astrophys. J. 751, 108 (2012).
[26] S. Gabici and P. Blasi, Astroparticle Physics 19, 679 (2003).
[27] U. Jacob and T. Piran, Phys. Rev. D 78, 124010 (2008).
[28] D. Horns and M. Meyer, ArXiv e-prints (2012), 1201.4711.
[29] L. Pieri and E. Branchini, Phys. Rev. D 69, 043512 (2004).
[30] Y. B. Zeldovich, A. A. Klypin, M. Y. Khlopov and V. M. Chechetkin, Sov. J. Nucl. Phys. 31, 664 (1980) [Yad. Fiz. 31, 1286 (1980)].
[31] A. A. Abdo et al., ApJS 187, 460 (2010).
[32] Y. Inoue, T. Totani, and Y. Ueda, ApJ 672, L5 (2008).
[33] S. H. Teng, R. F. Mushotzky, R. M. Sambruna, D. S. Davis, and C. S. Reynolds, Astrophys. J. 742, 66 (2011).
[34] M. Ackermann et al., Astrophys. J. 747, 104 (2012), 1109.4678.
[35] M. Su, T. R. Slatyer, and D. P. Finkbeiner, Astrophys. J. 724, 1044 (2010).
[36] A. A. Abdo et al., ApJ 709, L152 (2010).
[37] Y. Inoue, Astrophys. J. 728, 11 (2011).
[38] E. Aliu et al., Science 334, 69 (2011); T. Saito, ArXiv e-prints (2011), 1105.3400.
[39] A. A. Abdo et al., Astrophys. J. 707, 1310 (2009).
[40] K. Murase, C. D. Dermer, H. Takami, and G. Migliori, Astrophys. J. 749, 63 (2012).
[41] M. Actis et al., Experimental Astronomy 32, 193 (2011).
[42] Y. Inoue, T. Totani, and M. Mori, PASJ 62, 1005 (2010); H. Sol et al. (in preparation).
[43] S. Campana et al., Nature (London) 442, 1008 (2006).
[44] K. Murase, K. Ioka, S. Nagataki, and T. Nakamura, ApJ 651, L5 (2006).
[45] K. Kotera and A. V. Olinto, ARA&A 49, 119 (2011).
[46] S. Torii and the CALET Collaboration, Journal of Physics Conference Series 120, 062020 (2008).
[47] K. Murase, and J. F. Beacom, ArXiv e-prints (2012), 1206.2595.
[48] S. Ando, E. Komatsu, T. Narumoto, and T. Totani, Phys. Rev. D 75, 063519 (2007).
[49] M. Ackermann et al., ArXiv e-prints (2012), 1202.2856.
[50] D. Yan, H. Zeng, and L. Zhang, ArXiv e-prints (2012), 1202.4250.
[51] F. Massaro and M. Ajello, ApJ 729, L12 (2011).
[52] M. Ahlers, L. A. Anchordoqui, M. C. Gonzalez-Garcia, F. Halzen, and S. Sarkar, Astroparticle Physics 34, 106 (2010).