Differential geometry

On the rank of a product of manifolds

Sur le rang d’un produit de variétés

Francisco-Javier Turiel a,1, Arthur G. Wasserman b

a Geometría y Topología, Facultad de Ciencias, Campus de Teatinos, s/n, 29071, Málaga, Spain
b University of Michigan, Ann Arbor, MI 48109-1003, USA

1 The author is partially supported by MEC-FEDER grant MTM2013-41768-P, and JA grant FQM-213.

Article history:
Received 16 June 2016
Accepted after revision 30 August 2016
Available online 6 September 2016

Abstract
This note gives an example of closed smooth manifolds M and N for which the rank of $M \times N$ is strictly greater than rank $M + \text{rank } N$.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé
Cette note donne un exemple de deux variétés compactes M et N pour lesquelles le rang de $M \times N$ est strictement plus grand que rang $M + \text{rang } N$.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Milnor defined the rank of a smooth manifold M as the maximal number of commuting vector fields on M that are linearly independent at each point.

One of the questions raised by Milnor at the Seattle Topology Conference of 1963, and echoed by Novikov [2], was

$$\text{is rank}(M \times N) = \text{rank}(M) + \text{rank}(N)$$

whenever M and N are smooth closed manifolds?

In this note we give a negative answer to this question.

2. The main result

We need a simple result about mapping tori.
Let $f : X \to X$ be a diffeomorphism of a manifold X and let
\[
M(f) = \frac{I \times X}{(0, x)(1, f(x))}
\]
be the mapping torus of \(f \) where \(I = [0, 1] \).

Equivalently, \(M(f) = \frac{\mathbb{R} \times X}{\mathbb{Z}} \) where the action of \(\mathbb{Z} \) on \(\mathbb{R} \times X \) is given by \(\alpha(k)(t, x) = (t + k, f^k(x)) \). \(M(f) \) is a fiber bundle over \(S^1 \) with fiber \(X \). We note that \(\pi_1(M(f)) = \pi_1(X) * f \mathbb{Z} \) where * denotes the semi-direct product and \(f_* : \pi_1(X) \to \pi_1(X) \).

Proposition 2.1. Consider two periodic diffeomorphisms \(f : X \to X \) and \(g : Y \to Y \) with periods \(m \) and \(n \) respectively. Assume \(m \) and \(n \) are relatively prime, i.e., there are integers \(c, d \) such that \(mc + nd = 1 \).

Then \(M(f) \times M(g) \) is diffeomorphic to \(M(h) \) where \(h : S^1 \times X \to Y \) is defined by \(h(\theta, x, y) = (\theta, f^{-d}(x), g^c(y)) \). Moreover \(h^{m-n} = (id, f, g) \).

Proof. \(M(f) \times M(g) \) can be identified with the quotient of \(\mathbb{R}^2 \times X \times Y \) under the action of \(\mathbb{Z}^2 \) given by \(\beta(z)(u, x, y) = (u + z, f^z(x), g^z(y)) \), where \(z = (z_1, z_2) \in \mathbb{Z}^2, u = (u_1, u_2) \in \mathbb{R}^2 \) and \((x, y) \in X \times Y \).

Set \(\lambda = (m, n) \) and \(\mu = (-d, c) \). Since \(mc + nd = 1 \), \(B = \{\lambda, \mu\} \) is at the same time a basis of \(\mathbb{Z}^2 \) as a \(\mathbb{Z} \)-module and a basis of \(\mathbb{R}^2 \) as a vector space. On the other hand

\[
\beta(\lambda)(u, x, y) = (u + \lambda, x, y) \quad \text{and} \quad \beta(\mu)(u, x, y) = (u + \mu, f^{-d}(x), g^c(y)).
\]

Therefore the action \(\beta \) referred to the new basis \(B \) of \(\mathbb{Z}^2 \) and \(\mathbb{R}^2 \) is written now:

\[
\beta(k, r)(a, b, x, y) = (a + k, b + r, \varphi^k(x), \gamma^r(y))
\]

where \(\varphi = f^{-d} \) and \(\gamma = g^c \).

As the action of the first factor of \(\mathbb{Z}^2 \) on \(X \times Y \) is trivial, identifying \(S^1 \) with \(\mathbb{R} / \mathbb{Z} \) shows that \(M(f) \times M(g) \) is diffeomorphic to \(M(h) \).

Finally from \((-n)(-d) = 1 - cm \) and \(cm = 1 - dn \) follows that \(h^{m-n} = (id, f, g) \). \(\square \)

On the other hand:

Lemma 2.1. Let \(f : N \to N \) be a diffeomorphism and let \(X_1, \ldots, X_k \) be a family of commuting vector fields on \(N \) that are linearly independent everywhere. Assume \(f, X_i = \sum_{j=1}^k a_{ij} X_j, i = 1, \ldots, k \), where the matrix \((a_{ij}) \in GL(k, \mathbb{R}) \). Then rank(M(f)) \(\geq k \).

Proof. It suffices to construct \(k \) commuting vector fields \(\tilde{X}_1, \ldots, \tilde{X}_k \) on \(I \times N \) that are linearly independent at each point and such that every \(\tilde{X}_i(t, x) \) equals \(X_i(x) \) if \(t \) is close to zero and \(f, X_i(x) \) when \(t \) is close to 1 (\(X_1, \ldots, X_k \) are considered vector fields on \(I \times N \) in the obvious way).

If \(|a_{ij}| > 0 \) consider an interval \([a, b] \subset (0, 1) \) and a (differentiable) map \((\varphi_{ij}) : I \to GL(k, \mathbb{R}) \) such that \(\varphi_{ij}([0, a]) = \delta_{ij} \) and \(\varphi_{ij}([b, 1]) = a_{ij} \), and set \(\tilde{X}_i(t, x) = \sum_{j=1}^k \varphi_{ij}(t) X_j(x) \).

When \(|a_{ij}| < 0 \) first take an interval \([c, d] \subset (0, 1/2) \) and a function \(\rho : [0, 1/2] \to \mathbb{R} \) such that \(\rho([0, c]) = 1, \rho([d, 1/2]) = -1 \), and on \([0, 1/2] \times N \) set \(\tilde{X}_i(t, x) = \rho(t) X_i(x) + (1 - \rho^2(t)) \frac{\partial}{\partial t} \) and \(\tilde{X}_i(t, x) = X_i(x), i = 2, \ldots, k \).

The matrix of coordinates of \(f, X_1, \ldots, f, X_k \) with respect to the basis \(\{-X_1, X_2, \ldots, X_k\} \) has positive determinant, so by doing as before we can extend \(\tilde{X}_1, \ldots, \tilde{X}_k \) to \([1/2, 1) \times N \) by means of an interval \([a, b] \subset (1/2, 1) \) and a suitable map \((\tilde{\varphi}_{ij}) : [1/2, 1) \to GL(k, \mathbb{R}) \). \(\square \)

Proposition 2.1 and **Lemma 2.1** quickly yield a counterexample.

Assume \(X \) is a torus \(\mathbb{T}^k = \mathbb{R}^k / \mathbb{Z}^k \) and \(f \) is the map induced by a nontrivial element of \(GL(k, \mathbb{Z}) \). Then by the above lemma applied to \(\frac{\partial}{\partial t} \), \(j = 1, \ldots, k \), rank\((M(f)) \geq k \). But \(M(f) \) has non-Abelian fundamental group, so it is not a torus and rank\((M(f)) = k \). (If \(M \) is a closed connected \(n \)-manifold of rank \(n \), then \(M \) is diffeomorphic to the \(n \)-torus.)

For the same reason, if \(Y = \mathbb{T}^r \) and \(g \) is induced by a nontrivial element of \(GL(r, \mathbb{Z}) \), then rank\((M(g)) = r \).

If \(f \) and \(g \) are periodic with relatively prime periods \(m \) and \(n \), respectively, then by **Proposition 2.1**, \(M(f) \times M(g) = M(h) \) where \(h : \mathbb{T}^{k+r+1} \to \mathbb{T}^{k+r+1} \) is induced by a nontrivial element of \(GL(k + r + 1, \mathbb{Z}) \). Moreover rank\((M(h)) = k + r + 1 \). Therefore:

\[
\text{rank}(M(f) \times M(g)) > \text{rank}(M(f)) + \text{rank}(M(g)).
\]

For instance, set \(k = r = 2 \) and consider \(f, g \) induced by the elements in \(SL(2, \mathbb{Z}) \subset GL(2, \mathbb{Z}) \)

\[
\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}
\]

respectively, so \(M(f) \) and \(M(g) \) are orientable. Then the period of \(f \) is 2 and that of \(g \) equals 3.
An even simpler but non-orientable counterexample can be constructed as follows. Take \(r \) and \(g \) as before, \(k = 1 \) and \(f \) induced by \((-1)\). Then \(M(f) \) is the Klein bottle which has rank 1 and \(M(g) \) has rank 2; however, \(M(f) \times M(g) \) is diffeomorphic to \(M(h) \) and hence has rank 4.

Remark 1. The *file* of a manifold \(M \) was defined by Rosenberg [3] to be the largest integer \(k \) such that \(\mathbb{R}^k \) acts locally free on \(M \). When \(M \) is closed file(\(M \)) equals rank(\(M \)) but file(\(\mathbb{R} \times S^2 \)) = 1, [3], while rank(\(\mathbb{R} \times S^2 \)) = 3.

The analog of Milnor's question for the file of a product of noncompact manifolds also fails. Indeed, let \(\mathbb{R}^4_\text{e} \) be any exotic \(\mathbb{R}^4 \). Then file(\(\mathbb{R}^4_\text{e} \)) \(\leq 3 \) otherwise \(\mathbb{R}^4_\text{e} \times \mathbb{R}^4 = \mathbb{R}^4 \). But \(\mathbb{R}^4_\text{e} \times \mathbb{R} = \mathbb{R}^5 \), because there in no exotic \(\mathbb{R}^5 \), so file(\(\mathbb{R}^4_\text{e} \times \mathbb{R} \)) \(= 5 > \) file(\(\mathbb{R}^4_\text{e} \)) + file(\(\mathbb{R} \)).

Orientable closed connected \(n \)-manifolds of rank \(n - 1 \) are completely described in [4,1,5].

References

[1] G. Chatelet, H. Rosenberg, Manifolds which admit \(\mathbb{R}^n \) actions, Publ. Math. Inst. Hautes Études Sci. 43 (1974) 245–260.
[2] S.P. Novikov, The topology summer institute, in: Seattle, USA, 1963, Russ. Math. Surv. 20 (1965) 145–167, http://www.mi.ras.ru/~snovikov/16.pdf.
[3] H. Rosenberg, Singularities of \(\mathbb{R}^2 \) actions, Topology 7 (1968) 143–145.
[4] H. Rosenberg, R. Roussarie, D. Weil, A classification of closed oriented 3-manifold of rank two, Ann. of Math. (2) 91 (1970) 449–464.
[5] D. Tischler, Manifolds \(M^n \) of rank \(n - 1 \), Proc. Amer. Math. Soc. 94 (1985) 158–160.