Electron doping and magnetic moment formation in N- and C-doped MgO

A. Droghettia) and S. Sanvito

School of Physics and CRANN, Trinity College, Dublin 2, Ireland

(Received 27 February 2009; accepted 20 May 2009; published online 22 June 2009)

The formation of the magnetic moment in C- and N-doped MgO is the result of a delicate interplay between Hund’s coupling, hybridization, and Jahn–Teller distortion. The balance depends on a number of environmental variables including electron doping. We investigate such a dependence by self-interaction corrected density functional theory and we find that the moment formation is robust with respect to electron doping. In contrast, the local symmetry around the dopant is more fragile and different geometries can be stabilized. Crucially the magnetic moment is always extremely localized, making any carrier mediated picture of magnetism in \(d^0\) magnets unlikely. © 2009 American Institute of Physics. [DOI: 10.1063/1.3152781]

In the last few years an intensive research effort has been devoted to synthesized doped semiconductors (DMSs) in the hope of finding a material with semiconducting properties and ferromagnetism at room temperature (RT). Standard DMS are produced by doping conventional semiconductors with transition metals,1 and the magnetic coupling usually originates from some carrier-induced mechanism. More recently two main experimental facts have challenged this “traditional” picture. First magnetism was claimed in oxides DMS on both sides of the metal insulator transition,2 indicating that carriers alone are not sufficient to explain the magnetism and that intrinsic defects play a crucial role.3 Second, defect-rich or intentionally \(p\)-doped oxides revealed the possible evidence for RT magnetism. This second class of phenomena has been named \(d^0\) magnetism, indicating that no ions with partially filled \(d\)-shells are at the origin of the magnetic moment. The examples of \(d^0\) magnets are many and include thin films of \(\text{HfO}_2\), \(\text{TiO}_2\), \(\text{In}_2\text{O}_3\), C-doped \(\text{ZnO}\), and nanoparticles of different materials.11 Furthermore studies over chemically synthesized powders suggest that \(d^0\) magnetism can be found in bulk materials and not only in surfaces.12,13

Usually the formation of the magnetic moment is explained in terms of spin-polarized holes localized either at cation vacancies molecular orbitals4,15 or at the \(p\)-orbitals of the doping impurity.15–18 However, a clear understanding of the driving mechanism behind \(d^0\) ferromagnetism is still unavailable. In order to understand its uniqueness we recall that the recorded Curie temperature \(T_C\) for GaAs:Mn (the DMS prototype) is 200 K,19 obtained for 8% Mn doping and the largest hole concentration achievable. Since cation vacancies in oxides hardly reach concentrations exceeding 1% and both C and N cannot be doped abundantly,16 one can conclude that a similar \(T_C\) in \(d^0\) magnets would require a magnetic interaction around ten times stronger than that between Mn in GaAs:Mn. Considering that our argument neglects any considerations about percolation and the fact that even the origin of the magnetic moment is not established with certainty, it is fair to say that any claim of \(d^0\) ferromagnetism should be considered exceptional.

In this arena almost all the theoretical predictions are based on density functional theory (DFT) using either the local spin density approximation (LSDA) or the generalized gradient approximation (GGA). These describe the ground state of \(d^0\) magnets as ferromagnetic and metallic, and in fact most of the time as half metallic. However strong electron correlations may play a fundamental role in the magnetic moment formation, which subtly depends on the interplay between covalency, Hund’s coupling, and polaronic distortion around the impurity.15 Corrections to the LSDA/GGA such as the LDA+\(U\) or the self-interaction correction (SIC) schemes often return an insulating ground state and no long range magnetism. For instance in rock-salt oxides (MgO, CaO, and SrO) doped with N substituting for O,15,17,18 one finds that the extra hole entirely localizes around one of the \(2p\) orbitals as a consequence of the coupling with phononic modes. Thus the physics of these materials reminds that of the manganites,20 with the difference that in \(d^0\) magnets, the moment is associated to the \(2p\) atomic shell.

In analogy with the manganites, one expects that the interplay between charge, spin, and orbital degrees of freedom may lead to a number of cooperative physical phenomena.20 In particular the long range magnetic order in \(d^0\) magnets is intimately related to the formation of the moment itself,16 with Stoner and spin-wave excitations probably competing. Thus both the moment and the magnetic couplings become sensitive to environmental variables such as doping, charge fluctuations, and temperature. In this work we investigate the effects of one of these variables, namely, electron doping, over the magnetic moment formation in C- and N-doped MgO. In particular we will answer two fundamental questions: (1) does the magnetic moment survive to electron doping? and (2) what is the response of the lattice to such an electron doping?

Our calculations are performed by using a development version of the DFT code SIESTA,21 implementing the atomic SIC (ASIC) scheme.22 The core electrons are treated with norm-conserving Troullier–Martin pseudopotentials and the valence charge density is expanded over a numerical orbital basis set, including double-\(\zeta\) and polarized functions.21 The real space grid has an equivalent cutoff larger than 800 Ry. Calculations are performed with supercells of 96 atoms including \(k\)-point sampling over at least 25 points in the Bril- louin zone. Atomic coordinates are relaxed by conjugate gradient until the forces are smaller than 0.01 eV/Å.

a)Electronic mail: droghetta@tcd.ie.
As already mentioned when N or C replace O (NO and CO) the MgO local cubic symmetry is reduced. In both cases the bonds with Mg are longer than the Mg–O one as a consequence of the different ionic radii. However, for NO two of the three p-bonds contract and the hole localizes around the remaining long one (NO configuration). In contrast, for CO only one bond contracts and the two holes localize around the remaining two long bonds (CO configuration). In both cases the system is insulating with either one (CO) or two (NO) fully filled p orbitals. We now consider CO and add a fractional charge Δn to the supercell, with charge neutrality ensured by a compensating positive background. One then expects that the electronic structure and the relaxation becomes progressively similar to that of NO.

Our results are presented in Table I, where we list the Mg–C bond lengths, dMg−C, and the cell magnetic moment μ as a function of Δn. Importantly all the structural calculations turned out to be sensibly dependent on the initial conditions for the relaxation. In particular we find that all the relaxations initialized at the Δn=0 CO configuration converged to a local geometry presenting four long bonds and two short ones, i.e., still presenting the symmetry of CO. In contrast those initialized at the Δn=0 NO configuration converged to a local geometry with two long, two short, and two intermediate bonds.

The changes in the electronic structure as a function of electron doping are illustrated in the cartoon of Fig. 1 for the two obtained geometries. In both cases the additional charge remains localized at the dopant site and the magnetic moment varies as μ=(2−Δn)μB. The main difference between the electronic structures of the two geometries originates from their different orbital occupation. For the CO-relaxed structure the fractional charge progressively occupies the minority empty doublet associated to the four long bonds, spreading evenly among them [see Fig. 1(a)]. In contrast the p-orbitals of the NO-relaxed structure form a set of closely spaced singlets. Hence the additional fractional charge occupies the first of the available empty singlets and localized further along the direction of the bond of intermediate length [see Fig. 1(b)]. These differences persist up to Δn=1 where the CO-relaxed structure is metallic, while the NO-relaxed is insulating.

Unfortunately the ASIC functional, although constructs a valuable potential so that atomic relaxation can be carried out, does not provide accurate total energies. Therefore we cannot distinguish energetically between the two geometries found. We have performed additional ASIC total energy calculations at the unrelaxed CO and NO geometries, which seems to suggest a crossover between the two at a doping of Δn=0.5, however also, these calculations are affected by an intrinsic lack of accuracy and therefore the result must be taken with caution.

Given this uncertainty we decided to take a look at the theory for the local vibronic coupling. For manganites the Jahn–Teller distortion is driven by the coupling of doubly degenerate d-shell eg states to the only two normal modes having the same symmetry. In contrast the 2p levels of the N in MgO form a set of degenerate t1u levels, which are coupled with normal modes of symmetry eg and t2g. Importantly, in this case the eg modes tend to stabilize a tetragonal distortion, while the t2g is trigonal one resulting in a competition between the two. Furthermore, when anharmonic corrections are considered, a structure of C2 symmetry minimalizes the energy. It is notable that the highest occupied level for one hole over the impurity in this geometry is 1/\sqrt{2}(p_x±p_y) and could account for the orbital occupation found for the CO-relaxed structure at Δn=1. Unfortunately, our relaxations always end up with a tetragonal distortion and the symmetry around the impurity is never of C2-type. The vibronic theory then predicts that the ground state is the one with the hole localized on just one of the three p orbitals. Thus we conclude that simple symmetry arguments seem to support the relaxation initiated by the NO atomic coordinates, i.e., the one converging to a local geometry having two long, two short, and two intermediate bonds.

After having studied CO, we briefly take a look at NO under doping. This time we find that the unpaired singlet gradually fills upon electron doping, thus that the distortion gradually reduces to a perfectly cubic symmetry and the calculations fail due to a perfect cubic symmetry and the
ment follows $\mu = (1 - \Delta n) \mu_B$. Interestingly we find that the residual hole always localizes over the longer of the Mg–N bonds and that no magnetic coupling is found for every Δn, despite the material remains metallic.

In conclusion, we investigated the effects of electron doping on the magnetic moment formation of N- and C-doped MgO. We find that for all doping concentrations the impurity levels are deep in the MgO gap and the magnetic moment is stable against charge fluctuations. However, lattice distortion always promotes the localization of the doping hole, thus reducing the chance of long range magnetic coupling between impurities.

This work is sponsored by Science Foundation of Ireland. Computational resources have been provided by the HEA IITAC project managed by TCHPC and by ICHEC.

1T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
2A. J. Behan, A. Mokhtari, H. J. Blythe, D. Score, X.-H. Xu, J. R. Neal, A. M. Fox, and G. A. Gehring, Phys. Rev. Lett. 100, 047206 (2008).
3C. D. Pemmaraju, R. Hanafi, T. Archer, H. B. Braun, and S. Sanvito, Phys. Rev. B 78, 054428 (2008).
4M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature (London) 430, 630 (2004).
5S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, D. A. Arena, K. Ziener, C. Vittoria, and V. G. Harris, J. Phys.: Condens. Matter 18, L355 (2006).
6S. D. Yoon, Y. Chen, A. Yang, T. L. Goodrich, X. Zuo, K. Ziener, C. Vittoria, and V. G. Harris, J. Magn. Magn. Mater. 309, 171 (2007); 320, 597 (2008).
7A. K. Rumaiz, B. Ali, A. Ceylan, M. Boggs, T. Beebe, and S. I. Shah, Solid State Commun. 144, 334 (2007).
8R. P. Panguluri, P. Kharel, C. Sudakar, R. Naik, R. Suryanarayanan, V. M. Naik, A. G. Petukhov, B. Nadgorny, and G. Lawes, Phys. Rev. B 79, 165208 (2009).
9H. Pan, J. B. Yi, L. Shen, R. Q. Wu, J. H. Yang, J. Y. Lin, Y. P. Feng, J. Ding, L. H. Van, and J. H. Yin, Phys. Rev. Lett. 99, 127201 (2007).
10S. Zhou, Q. Xu, K. Potzger, G. Talut, R. Groetzelch, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, and H. Schmidt, Appl. Phys. Lett. 93, 232507 (2008).
11A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74, 161306(R) (2006).
12Q. Zhao, P. Wu, B. L. Li, Z. M. Lu, and E. Y. Jiang, J. Appl. Phys. 104, 073911 (2008).
13K. Potzger, S. Zhou, J. Helm, and J. Fassbender, Appl. Phys. Lett. 92, 182504 (2008).
14C. D. Pemmaraju and S. Sanvito, Phys. Rev. Lett. 94, 217205 (2005).
15A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Phys. Rev. B 78, 140404(R) (2008).
16G. Bouzerar and T. Ziman, Phys. Rev. Lett. 96, 207602 (2006).
17V. Pardo and W. E. Pickett, Phys. Rev. B 78, 134427 (2008).
18I. S. Elfimov, A. Rusydi, S. I. Csizsar, Z. Hu, H. H. Hsieh, H. J. Lin, C. T. Chen, R. Liang, and G. A. Sawatzky, Phys. Rev. Lett. 98, 137202 (2007).
19M. Wang, R. P. Campion, A. W. Rushforth, K. W. Edmounds, C. T. Foxon, and B. L. Gallagher, Appl. Phys. Lett. 93, 132103 (2008).
20E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
21J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
22C. D. Pemmaraju, T. Archer, D. Sanchez-Portal, and S. Sanvito, Phys. Rev. B 75, 045101 (2007).
23R. Engelman, The Jahn-Teller Effect in Molecules and Crystals (Wiley, London, 1972), p. 53.