Erosion studies of plasma sprayed WC-12%Co, Cr₃C₂-25%NiCr, 80%Ni-20%Cr, 87%Al₂O₃-13%TiO₂ coatings on ASTM A36 steel

Varun Panwar †, Neel Kanth Grover ‡ and Vikas Chawla †

1 Dept. of Mech. Engg, Lovely Professional University, Phagwara, Punjab-144411, India
2 Dept. of Mech. Engg, IKG PTU, Kapurthala, Punjab-144603, India
E-mail: neelkanthgrover@gmail.com

Keywords: erosion, plasma spray coating, WC-12%Co, Cr₃C₂-25%NiCr, 80%Ni-20%Cr, 87%Al₂O₃-13%TiO₂

Abstract
WC-12%Co, Cr₃C₂-25%NiCr, 80%Ni-20%Cr, 87%Al₂O₃-13%TiO₂ coatings were deposited by Air Plasma Spray (APS) technique on ASTM A36 steel. Erosion behaviour of sprayed coated samples were investigated at three different impact angles (45°, 60° and 90°). The mechanism of erosion was investigated on uncoated and coated samples. The rate of erosion of the substrate first increased with increasing angle of impact and then gradually decreased. But the erosion rate of the coated samples increased steadily. Substrate shows the higher metal removal whereas coating shows the higher erosion resistance. WC-12%Co coated samples performed well in erosion testing and offered best erosion resistance as compared to the substrate and all other coatings. Ductile fracture takes place on substrate material at higher impact angle. Overall, all the coated samples have shown less erosion propensity when compared to the bare one.

1. Introduction
Induced draft (ID) fans are the key parts of coal fired power plants, the blades are usually of ASTM A36 steel substrate which have excellent mechanical properties. However, at elevated temperatures solid particle erosion of blades takes place due to high pressure air flow. Thus, by enhancing the erosion properties of blades, its surface life can be extended. For providing the protective measures on blade surface, coating by plasma spraying method is an efficient and economic technique [1–5].

It is well known that cermet coatings have high hardness. In industries among all the cermet coatings, tungsten carbides, nickel, chromium and titanium based coatings are widely utilised for their high erosive-corrosive wear resistance [6–9]. A huge number of research studies have been conducted by the researchers by utilising the tungsten based and nickel based coatings to enhance the erosive wear properties [10–13]. Thus, it can also be utilised for coating of ID fan blades in severe corrosive conditions [14–17]. Many researchers believed different factors of coating like hardness, bond strength, toughness, different hard phases and binders have effect on erosion behaviour [18, 19]. Increasing the hardness will result in erosion resistance and improved surface properties [20, 21]. Lee [22], Arabi et al [23] and Zamani et al [24] concluded in their findings that the erosion resistance material must have continuous and hard matrix with consistent distribution of hard elements in its structure. This has become the spotlight for present study.

Plasma spraying process is widely utilised in industry for its special key feature of stable stream consisting of molten particles moving with high velocity which deposit the coatings efficiently [25]. However, plasma spray coating deposited structure tends to have micro cracks, porosity and lamellar structure [26, 27].

In this paper, the cermet coatings like tungsten carbides, nickel, chromium and titanium-based coating were deposited on ASTM A36 steel substrate via plasma spray coating technique. The effect of erosion resistance of all coatings was examined by air jet erosion tester. Erosion behaviour at different impact angles was investigated through morphologies. This will help in providing the characteristics and performance of coatings to improve the service life of I.D. fans in coal fired thermal power plants.

© 2020 The Author(s). Published by IOP Publishing Ltd
Figure 1. SEM/EDAX of coating powders; (a) Cr₂C₃-25%NiCr powder, (b) WC-12%Co powder, (c) Ni-20%Cr powder and (d) Al₂O₃-13%TiO₂ powder.
2. Experiment

2.1. Material preparation procedure

In present analysis, WC-12%Co, Cr₃C₂-25%NiCr, 80%Ni-20%Cr, 87%Al₂O₃-13%TiO₂ coating powders are utilised for surface coating on ASTM A36 steel (sample size: 25 mm × 25 mm × 5 mm). The compositions and their particle size of powders used as coating are listed in table 1. Figure 1 shows the SEM/EDAX morphologies of all powders used for coating on substrate material. The average coating powder particle size was nearly 5–45 μm. Before spraying the coating on substrate, the samples were pre-treated by polishing (grit paper utilised are P220, P400, P600, P800 and P1000 followed with 1/0 and 2/0 grades polishing papers), degreasing and grit blasting (the mentioned grit blasting process creates the surface roughness of about 9–12 μm Ra which was enough for the adhesion of the surface coatings). The coatings were developed at ‘Metallizing Equipment Co. Pvt. Ltd Jodhpur’ using Air Plasma Spray Technique (MPS).
The process parameters were optimized after conducting several trials as the morphology of the different coating powders selected was different. Table 2 shows the optimized parameters used for Air Plasma Spray coating technique. Coating powders morphology was obtained with SEM along with EDAX as revealed in figure 1.

Figure 3. SEM/EDAX morphology ASTM A36 steel coated with (a) Cr$_3$C$_2$-25%NiCr, (b) WC-12%Co, (c) Ni-20%Cr, and (d) Al$_2$O$_3$-13%TiO$_2$ coating.
2.2. Characterization of coated specimens

For the coated specimen, surface roughness (Ra) was measured with surface roughness tester (Mitutoyo SJ-201, Japan). Five measurements were taken at different locations and each value was reported with center line average method. The metal spray coating process is intermittent; therefore, some pores and voids tend to appear. In order to identify the porosity, images were captured by the PMP3 inverted metallurgical microscope. The

Figure 4. SEM back scattered micrograph for coating thickness of (a) Cr₃C₂-25%NiCr coating, (b) WC-12%Co coating, (c) Ni-20%Cr coating and (d) Al₂O₃-13%TiO₂ coating.

Table 2. Air plasma spray technique parameters.

Parameter	Specification
Working gases	Hydrogen and nitrogen
Fuel gas	Hydrogen
Carrier gas	Nitrogen
Pressure of fuel gas (Hydrogen)	8 bar
Pressure of carrier gas (Nitrogen)	8 bar
Consumption of working gases	
Hydrogen	5.5 ml min⁻¹
Nitrogen	40.1 ml min⁻¹
Water consumption rate	15–25 l/min
Diameter of barrel	6 mm
Coating thickness	200 μm
Coating capacity at the rate	2–10 Kg h⁻¹
System control	Manual/Semi auto
Power supply from mains	
Current	506 Amp
Voltage	63.7 V DC
Power	32.1 kW
magnification was selected in such a way that it allows the resolution of voids that provides the total percentage of porosity. Stereographic images were used systematically to identify the voids in the form of light gray contrast spots. The micro-hardness of the coatings was measured using micro 'Vicker hardness tester with model number: MVK-H2, Akashi, Japan'. Pull-off test was conducted as per ASTM C-633-2013 standards to measure the bond strength of coating at 'Metallizing Equipment Co. Pvt. Ltd Jodhpur'. In this test, coating is applied to the substrate fixture which is in the form of a cylinder. This coating substrate fixture is then glued with commercially available epoxy resin adhesive (a nominal strength about 70 MPa) provided by ‘Metallizing Equipment Co. Pvt. Ltd Jodhpur’ to another cylinder with same diameter. The resulting assembly was subjected to a normal force. Three test pieces were used for each type of coating and then calculated average value was taken as bond strength.

Table 3. Parameters for air jet erosion testing.

Erodent material	Alumina (Al₂O₃)
Size of erodent	50 μm
Erodent Velocity	30 m s⁻¹
Flow rate of erodent	2 gm min⁻¹
Impingement angle	45°, 60° and 90°
Nozzle diameter	1.5 mm
Test time	30 min
Test temperature	150 °C–Sample temperature
	180 °C–Air temperature

Figure 5. Macro images of coated and uncoated samples after erosion test.
2.3. Erosion testing with solid particles

To understand the solid particle erosion mechanism of the coatings, erosion studies of the bare as well as coated ASTM A36 steel were carried out using air jet erosion tester (TR-471-M10). The tests were conducted with certain set of conditions, the details are presented in table 3. The test rig comprised of pneumatic and electrical control box with compressor used for impact of erodent with velocity on specimen, mixing chamber for erodent uses motor through the timing belt, erodent feeding system which allows the erodent particles to move down due to gravity via throat and erodent collection chamber, furnace unit raise the temperature of chamber (room temperature to 1000°C), nozzle which conveys the stream of gas that contains the erodent particle, and specimen holder with different impact angles (45°, 60° and 90°) as shown in figure 2.

2.4. Measurement of rate of erosion

A non-contact type optical profilometer was used to measure the volume loss of material due to air jet erosion testing. This approach was utilized to evaluate surface properties, like: surface and depth topography along with erosion volume loss. ‘Veeco Wyko NT 1100 Optical Profiling System’ (Profilometer) of ‘Ducom, Bangalore (India)’ was utilized for measuring the mean erosive depth with a Veeco. This equipment characterizes and measures the volume of the scars caused by erosion wear and topographical features with a remarkable precision and accuracy. The digitized data acquired from a 3D interferogram is used to create a map of the surface at six different locations. The uneroded part of the tested specimen was used as a reference plane in order to find the depth of erosion (for calculating volumetric loss) on scar produced by impact of the erodent. The scar area of eroded surface was measured by utilizing the stereo microscope embedded with image analysis software -VUE-2014.

3. Results

3.1. Characterization of coatings

SEM/EDAX analysis of sprayed coated samples is illustrated in figure 3. The SEM images show the clear structure with some voids and pores between lamellas. EDS analysis shows the elemental composition of each sprayed coating with which coating powders and coating can be validated. It was indicated from the elemental composition that the inter diffusion of alloying elements occurred at the interface of substrate and coating from the cross-section SEM morphologies as shown in figure 4. It also shows the coating thickness, epoxy, and substrate.
Table 4 shows the porosity, bond strength, microhardness and surface roughness of the sprayed coatings. The surface roughness of WC-12%Co coated sample has the lesser surface roughness i.e. 2.52–4.28 μm and rest other three coating have almost same roughness of 4–7 μm. In that order, the porosity of the coated samples is very less in each coating which was less than 1%. The micro-hardness of coated samples reached to 1076Hv in WC-12%Co coating and rest all coatings have almost 700Hv. These measurements are in confirmation with the results of Heydarzadeh and Ghadami [28].

3.2. Solid particle erosion behavior
Erosion behaviour of any material is phenomena of removal of complex material from the surface which is namely solid particle erosion. The objective of this analysis is to identify and attempt to characterize response of coatings to solid particle erosion. Figure 5 shows the effect of erodent on the substrate and coated samples at...
three different impingement angles. During this investigation it was observed that the scars formed on the specimens due to continual strike of erodent material at different angle were of different shape. Elliptical shape was formed when the impingement angle was 45° and 60°, whereas circular scar was formed when the angle of impingement was 90°. The dark gray coloured ring can be visualised after the examination of specimens. It was also noticed that the area which was uneroded was having rough surface as compared to the eroded area. The comparison of volume (mm^3/g) erosion rate of bare sample with four different plasma coating materials Cr$_3$C$_2$-25%NiCr coating, WC-12%Co coating, Ni-20%Cr coating and Al$_2$O$_3$-13%TiO$_2$ coating eroded at three different impingement angle i.e., 45°, 60° and 90° are displayed in figure 6.

It can be observed that for uncoated ASTM A36 steel and Ni-20%Cr coated specimens, the volume erosion rates were highest at 45° angle of impingement and started reducing when increased to 60° and became minimum at 90°. The findings are in agreement with results available in literature [29–32]. On the other hand, for substrate coated with WC-12%Co showed a minimum volumetric erosion rate at 45° angle of impingement, highest at 60° and an intermediary value for 90°. This is nearer to the behaviour of ductile materials and is agreement with findings of Mruthunjaya and Parashivamurthy [33]. The substrates coated with WC-12%Co possess a advantageous combination of toughness and hardness due to remarkable WC hardness and binder phase (Co) toughness. Hardness has a considerable effect on erosion of materials through the modes of plastic deformation, although fracture toughness is a controlling factor in solid particle erosion comprising a brittle fracture. According to Hussainova et al [34] it is apparent that hardness alone is

Coating powder	Roughness (Ra)	Porosity in %	Microhardness	Bond strength
Cr$_3$C$_2$-25%NiCr	4.08–4.78 μm	0.49	682–709 Hv	67.19 MPa
WC-12%Co	2.52–4.28 μm	0.23	997–1076 Hv	53.34 MPa
Ni-20%Cr	4.77–6.98 μm	0.89	660–670 Hv	69.15 MPa
Al$_2$O$_3$-13%TiO$_2$	2.94–3.76 μm	0.82	682–703 Hv	Pa

Figure 7. (Continued.)

Table 4. Surface roughness, microhardness, porosity and bond strength values of plasma spray coatings on ASTM A36 steel.
not the best guide to evaluate the erosion behaviour of WC-Co coatings but it also depends on the mechanisms of material removal, toughness and the microstructure [20]. The substrate coated with Cr3C2-25%NiCr showed highest volumetric erosion at 90° angle of impingement, with reduction at 60° and became minimum 45° in agreement with findings of Vicenzi [35] and Hawthorne et al [36]. Likewise, Al2O3-13%TiO2 coated substrate showed the similar behaviour of brittle materials in accordance with the results reported by Wang et al [37] and Matikainen et al [38].

Therefore, at impingement angles of 45°.

WC-12%Co coating performed best among its counterparts, whereas Ni-20%Cr Coating has shown higher erosion rate as compared to bare sample, Cr3C2-25%NiCr and Al2O3-13%TiO2 coatings have shown lesser erosion rates than bare sample but more than WC-12%Co Coating.

Moreover, at impingement angles of 60° and 90°.

WC-12%Co coating performed best among its counterparts, whereas Ni-20%Cr and Al2O3-13%TiO2 coatings have shown the higher erosion rates compared to bare sample, Cr3C2-25%NiCr coating has shown less erosion rate than bare sample but more than WC-12%Co Coating.

3.3. Solid particles erosion mechanism

To detect the erosion mechanism, surfaces of eroded bare and coated samples were anlaysed by SEM/EDAX.

SEM micrographs at an angle of 45° of bare specimen and coated specimens shown in figure 7 indicates the erodent material presence and removal of material, the formation of lip and craters with small cracks on bare specimen and Ni-20%Cr coated specimen. It can be deduced that the cutting and ploughing played the dominant role in erosion of materials which is characteristics wear behavior of ductile materials [39]. SEM micrographs at an angle of 60° of bare specimen and coated specimens shown in figure 8 indicates erodent material presence and removal of material, the formation of lip and craters with small cracks in bare specimen and Ni-20%Cr coated specimen. Moreover, the brittle fractures were observed in Al2O3-13%TiO2 coated specimens in comparison with the bare specimen. Therefore, it can be understood that the Cr3C2-25%NiCr and WC-12%Co both cermet coatings were still protecting the base material after the test was conducted.
The volumetric erosion of the Cr3C2-25%NiCr and Al2O3-13%TiO2 coated substrate pointed out that highest erosion took place at angle of impingement of impact angle of 90° indicating brittle behaviour of coating in accordance with the results of Guilemany et al [40]. Since these coatings are hard as well as brittle by nature, therefore brittle erosive behaviour is identified. The authors reported that in brittle materials, material loss on account of solid particle erosion takes place mostly by the creation and interaction of a subsurface micro crack network. Moreover, the authors suggested that in such type of materials, the removal of material is related to the creation and propagation of cracks. The cracks develop on the surface when the surface stresses attain a critical value to start micro cracking. Meanwhile, these cracks spread and intersect with the surface, the material is eroded. Thus, in brittle materials the erosive wear resistance is a function of its resistance to formation and propagation of cracks. In the present study, substrate material coated with Cr3C2-25%NiCr and Al2O3-13%TiO2 powders have shown brittle erosion behaviour due to cracking and chipping of the surface. On account of continual impingement of erodent material (alumina) the radial and lateral...
cracks were evolved and subsequently fractured and loosened pieces were eliminated. Ultimately numerous minor voids and pits were created. The volumetric erosion was higher at an impingement angle of 90°, moderate at an 60° and lowest 45°. The variation in volume erosive wear rates for oblique and normal impingement angles may be associated with the diverse material elimination modes in these two situations. At an impact angle of 45°, the micrographs as shown in figure 7 revealed the deformity on the surface resulting in the formation of craters, cracks, brittle fracture and chipping. At 90° again, the micrographs (shown in figure 9) revealed the deformation at the surface resulting in the formation of craters, cracks, brittle fracture, fractured splat and splat debonding at the upper surface layer of the coating material. At a higher angle of impingement, the kinetic energy of the striking erodent material contributes considerably to consecutive impact. The brittle nature of materials allows the cracks to propagate quickly. The subsequent impacts will easily remove the surface material through the elimination of the upper layer of coating material. Accordingly, the volumetric erosion was high at an impact angle of 90°.

Figure 9. SEM/EDAX of eroded samples at 90° impact angle: (a) bare ASTM A36 steel, (b) Cr3C2-25%NiCr, (c) WC-12%Co, (d) Ni-20%Cr and (e) Al2O3-13%TiO2.
4. Conclusions

- Microhardness of plasma sprayed Cr$_3$C$_2$-25%NiCr, WC-12%Co, 80%Ni-20%Cr, 87%Al$_2$O$_3$-13%TiO$_2$ coatings was 682–709 Hv, 997–1076 Hv, 660–670 and 682–703 Hv. It signifies the higher the hardness higher the erosion resistance.

- The porosity of each coating was less than 1% which represents that the coating powder deposition on substrate is almost homogenous and powder particles are melted vibrantly through plasma gun.

- Volume erosion rate of Cr$_3$C$_2$-25%NiCr, WC-12%Co coated specimens have better erosion resistance property than 80%Ni-20%Cr, 87%Al$_2$O$_3$-13%TiO$_2$ coatings at 45°, 60° and 90° impact angle and protected the base material from erosion.

- Volume erosion rate of Cr$_3$C$_2$-25%NiCr, WC-12%Co coated specimens have better erosion resistance property than 80%Ni-20%Cr, 87%Al$_2$O$_3$-13%TiO$_2$ coatings at 45°, 60° and 90° impact angle and protected the base material from erosion.

- 80%Ni-20%Cr coating has higher erosion volume rate as compared to ASTM A36 steel at 45°, 60° and 90° impact angle. Therefore unable to protect the base material from erosion.

- 87%Al$_2$O$_3$-13%TiO$_2$ coating has lesser erosion volume rate at 45° and gradually increases at 60° and maximum at 90°. On the other hand, substrate material shows the opposite behaviour as of 87%Al$_2$O$_3$-13%TiO$_2$ coating.

- Erosion behaviour at impingement angles of 45°: WC-12%Co Coating performed best among the counterparts, whereas Ni-20%Cr Coating shown the high erosion rate than bare sample, Cr$_3$C$_2$-25%NiCr Coating and Al$_2$O$_3$-13%TiO$_2$ Coating shown less erosion rate than bare sample but more than WC-12%Co Coating.

- Erosion behaviour at impingement angles of 60° and 90°: WC-12%Co Coating performed best among the counterparts, whereas Ni-20%Cr Coating and Al$_2$O$_3$-13%TiO$_2$ Coating shown the high erosion rate than
bare sample, Cr$_3$C$_2$-25%NiCr Coating shown less erosion rate than bare sample but more than WC-12%Co Coating.

ORCID iDs

Varun Panwar https://orcid.org/0000-0003-4208-9202

Neel Kanth Grover https://orcid.org/0000-0002-8633-6378

Vikas Chawla https://orcid.org/0000-0002-0331-9231

References

[1] Mann B S and Arya V 2003 HVOF coating and surface treatment for enhancing droplet erosion resistance of steam turbine blades Wear 254 652–67

[2] Wu H, Li Y, Tang X, Hussain G, Zhao H, Li Q and Adedotun K 2015 Nano-mechanical characterization of plasma surface tungstenized layer by depth-sensing nano-indentation measurement Appl. Surf. Sci. 324 160–72

[3] Wen Z H, Bai Y, Yang J F, Huang J and Zhang L 2015 Effect of vacuum remelting on the solid particles erosion behavior of Ni60-NiCrMoY composite coatings prepared by plasma spraying Mater. Sci. Eng. A 134 73–82

[4] Ghadami F and Sabour Rouh Aghdam A 2019 Improvement of high velocity oxy-fuel spray coatings by thermal post-treatments: a critical review Thin Solid Films 678 12–52

[5] Sreekumar Rajesh T and Venkata Rao R 2018 Experimental investigation and parameter optimization of Al$_2$O$_3$–40% TiO$_2$ atmospheric plasma spray coating on SS316 steel substrate Mater. Today Proc. 5 9012–20

[6] Wen Z H, Bai Y, Yang J F, Huang J and Zhang L 2015 Effect of vacuum remelting on microstructure and wear resistance of NiCrMoY coatings deposited by supersonic atmospheric plasma spraying Surf. Coatings Technol. 281 62–72

[7] Jones M and Waag U 2011 The influence of carbide dissolution on the erosion–corrosion properties of cast tungsten carbide/Ni-based PTAW overlays Wear 271 1314–24

[8] Katsich C and Badisch E 2011 Effect of carbide degradation in a Ni-based hardfacing under abrasive and combined impact/abrasive conditions Surf. Coatings Technol. 206 1002–8

[9] Yizhou S, Haijun T, Yuebin L, Xiaofei Z, Tao W, Jie T and Lei P 2017 Fabrication and wear resistance of TiO$_2$/Al$_2$O$_3$ coatings by micro-arc oxidation Rare Met. Mater. Eng. 46 23–7

[10] Praveen A S, Sarangan J, Shrestha S and Channabasappa BH 2016 Optimization and erosion wear response of NiCrSiB/WC–Co HVOF coating using Taguchi method Ceram. Int. 42 1094–104

[11] Liu L and Xu J 2011 A study of the erosion–corrosion behavior of nano–Cr$_2$O$_3$ particles reinforced Ni-based composite alloying layer in aqueous slurry environment Vacuum 85 687–700

[12] Suresh K, Yugewswaran S, Rao K P, Kobayashi A and Shum P W 2013 Sliding wear behavior of gas turbine type plasma sprayed Ni-based metallic glass composite coatings Vacuum 88 114–7

[13] Li Z, Li Y, Li J, Li J, Lu H, Du J, Ran X and Zhang X 2019 Effect of NiCr content on the solid particle erosion behavior of NiCr$_2$C$_3$$_3$$_3$ coatings deposited by atmospheric plasma spraying Surf. Coatings Technol. 381 125144

[14] Liu J, Byeon J W and Sohn Y H 2006 Effects of phase constituents/microstructure of thermally grown oxide on the failure of EB-PVD thermal barrier coating with NiCoCrAlY bond coat Surf. Coatings Technol. 200 5869–76

[15] Shrestha S, Hodgkiss T and Neville A 2001 The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating part I: microstructure /corrosion behavior relationships J. Therm. Spray Technol. 10 470–9

[16] Yuan J, Zhang P, Liang Z and Ma L 2008 Effect of Mo and CeO$_2$ on microstructure and properties of laser cladding nickel-base alloy coatings Rare Met. Mater. Eng. 37 147–51

[17] Gang D, Yan B and Deng Q 2011 Effect of niobium on the microstructure and wear resistance of nickel-base alloy coating by laser cladding Rare Met. Mater. Eng. 40 973–7

[18] Wang J, Niu X, Zhang F and Zhang W 2011 Study on microstructure and properties of new NiCrY alloy coating Hot Work. Technol. 40 115–8

[19] Ghadami F, Sohli M H and Ghadami S 2015 Effect of bond coat and post-treatment heat on the adhesion of air plasma sprayed WC-Co coatings Surf. Coatings Technol. 261 97–104

[20] Kulo P, Hussainova I and Veintihal R 2005 Solid particle erosion of thermal sprayed coatings Wear 258 488–96

[21] Zhou R, Jiang Y and Lu D 2003 The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites Wear 255 134–8

[22] Lee K, Lee S, Kim Y, Hong H S, Oh Y and Kim S 2003 The effects of additive elements on the sliding wear behavior of Fe-base hardfacing alloys Wear 255 481–8

[23] Arabi Jeshvaghani R, Harati E and Shaminarian M 2011 Effects of surface alloying on microstructure and wear behavior of ductile iron surface-modified with a nickel-based alloy using shielded metal arc welding Mater. Des. 32 1531–6

[24] Zamani M, Sedighi S and Nazif H R 2017 Erosion of natural gas elbows due to rotating particles in turbulent gas-solid flow J. Nat. Gas Sci. Eng. 40 91–113

[25] Bai Y, Han Z H, Li H Q, Xu C, Xu X L, Ding C H and Yang J F 2011 Structure–property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings Surf. Coatings Technol. 205 3835–9

[26] Stewart S, Ahmed R and Isukaitchi T 2004 Contact fatigue failure evaluation of post-treated WC–NiCrB$_2$ functionally graded thermal spray coatings Wear 257 962–83

[27] Robert T M and Talabazad M 2003 Acoustic emission monitoring of fatigue crack propagation J. Constr. Steel Res. 59 695–712

[28] Heydarzadeh Sohi M and Ghadami F 2010 Comparative tribological study of air plasma sprayed WC–12%Co coating versus conventional hard chromium electrodeposited Tribol. Int. 43 882–6

[29] Das S K, Godiwalla K M, Mehrtra S P, Sastry K K M and Dey P K 2006 Analytical model for erosion behaviour of impacted fly-ash particles on coal-fired boiler components Sadhana 31 383–95

[30] Kosa E and Goksuneli A 2015 Effect of impact angle on erosive abrasive wear of ductile and brittle materials Int. J. Mech. Machanotronics Eng. 9 1638–42
[31] Levin B F, Vecchio K S, DuPont J N and Marder A R 1999 Modeling solid-particle erosion of ductile alloys Metall. Mater. Trans. A 30 1763–74
[32] Sundararajan G and Roy M 1997 Solid particle erosion behaviour of metallic materials at room and elevated temperatures Tribol. Int. 30 339–59
[33] Mruthunjaya M and Parashivamurthy K I 2014 Microstructural study and tribological behavior of WC-Co coatings on stainless steel produced by hvof spray technique Int. J. Mech. Eng. Technol. 5 132–9
[34] Hussainova I, Pirso J, Antonov M, Juhani K and Letunovits S 2007 Erosion and abrasion of chromium carbide based cermets produced by different methods Wear 263 905–11
[35] Vicenzi J, Marques C M and Bergmann C P 2008 Hot and cold erosive wear of thermal sprayed NiCr-based coatings: influence of porosity and oxidation Surf. Coatings Technol. 202 3688–97
[36] Hawthorne H M, Arsenault B, Immarigeon J P, Legoux J G and Parameswaran V R 1999 Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings Wear 225–229 825–34
[37] Wang D, Tian Z, Wang S, Shen L and Huang Y 2015 Solid particle erosion behaviour of plasma-sprayed conventional and nanostructured Al2O3–13 wt% TiO2 ceramic coatings Trans. Indian Ceram. Soc. 74 90–6
[38] Matikainen V, Niemi K, Koivuluoto H and Vuoristo P 2014 Abrasion, erosion and cavitation erosion wear properties of thermally sprayed alumina based coatings Coatings 4 18–36
[39] Murthy J K N and Venkataraman B 2006 Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes Surf. Coatings Technol. 200 2642–52
[40] Guilemany J M, Espallargas N, Suegama P H and Benedetti A V 2006 Comparative study of Cr3C2–NiCr coatings obtained by HVOF and hard chromium coatings Corros. Sci. 48 2998–3013
[41] Branco J R T, Gansert R, Sampath S, Berndt C C and Herman H 2004 Solid particle erosion of plasma sprayed ceramic coatings Mater. Res. 7 147–53
[42] Wang B Q and Lee S W 1997 Elevated temperature erosion of several thermal-sprayed coatings under the simulated erosion conditions of in-bed tubes in a fluidized bed combustor Wear 203–204 580–7
[43] Xu H H K and Jahanmir S 1996 Transitions in the mechanism of material removal in abrasive wear of alumina Wear 192 228–32