The complete mitochondrial genome of the African leaf butterfly *Kallimoides rumia* (Insecta: Lepidoptera: Nymphalidae)

Josephine E. Payment, Jeffrey M. Marcus and Melanie M. L. Lalonde

Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada

ABSTRACT

The African leaf butterfly *Kallimoides rumia* Doubleday, 1849 (Nymphalidae), lives in the understory of Afrotropical primary forests. Genome skimming with Illumina sequencing of *K. rumia* permitted assembly of a complete circular mitogenome of 15,234 bp consisting of 80.9% AT nucleotides, 22 tRNAs, 13 protein-coding genes, 2 rRNAs and a control region. *Kallimoides rumia* COX1 features an atypical start codon (CGA). Genes ATP6, COX1, COX2, ND2, ND4 and ND5 feature incomplete stop codons, completed by adding 3’ A residues to the mRNA. Phylogenetic reconstruction places *K. rumia* as a distinct lineage, not closely related to *Kallima*, consistent with previous phylogenetic hypotheses.

The African leaf butterfly, *Kallimoides rumia*, is native to the understory of Afrotropical primary forests (Nyafwono et al. 2014). Shirózu and Nakaniishi (1984) reclassified *K. rumia* from the leaf-mimicking Asian butterfly genus *Kallima* Doubleday (1849) into the monotypic genus *Kallimoides* based on morphology, but further phylogenetic placement within subfamily Nymphalinae has been uncertain (Larsen 2005). More recent molecular phylogenetic work places *Kallimoides* as sister to the monotypic African genus *Vanessula* (Wahlberg et al. 2009). Here we report the complete mitochondrial genome sequence of *K. rumia* from specimen Krum 2016.1, collected in Abiak Owo, Nigeria (GPS 4.689 N, 8.267E) in June 2016, that was pinned, spread and deposited in the Walls Roughley Museum of Entomology, University of Manitoba (voucher WRME050773).

DNA was prepared from a specimen leg using a DNEasy Blood and Tissue kit (Qiagen, Düsseldorf, Germany) with slight modifications to the standard protocol as described in McCullagh and Marcus (2015). DNA was sheared by sonication and a fragment library was prepared as previously described (Peters and Marcus 2017), before sequencing by Illumina NovaSeq6000 (San Diego, California) (Marcus 2018). Mitogenome assembly of *K. rumia* (Genbank accession MT704827) was performed in Geneious 10.1.2, by mapping the resulting sequence library to a *Junonia stygia* (Lepidoptera: Nymphalidae) reference mitogenome (MN623383) (Living Prairie Mitogenomics Consortium 2020) using 5 iterations of the medium sensitivity settings of Geneious 10.1.2. The mitogenome contains five protein-coding genes (COX1, COX2, ND2, ND4, ND5) with single-nucleotide (T) stop codons, and one protein-coding gene (*ATP6*) with a two-nucleotide (TA) stop codon completed by post-transcriptional addition of 3’ A residues. The locations and structural determinations of tRNAs used ARWEN v.1.2 (Laslett and Canback 2008), tRNAs have typical cloverleaf secondary structures except for *tRNA* (AGN) where a loop replaced the dihydrouridine arm. The mitochondrial rRNAs and control region are typical for Lepidoptera (McCullagh and Marcus 2015).

Phylogenetic reconstruction used complete mitogenomes from *K. rumia*, and 38 additional mitogenomes from tribes Junonini, Kallimini, Nymphalini, and outgroup Melitaeini within subfamily Nymphalinae (Hamilton et al. 2020; Lalonde and Marcus 2019a, 2019b; Lalonde and Marcus 2020; McCullagh and Marcus 2015; Peters and Marcus 2017). Mitogenome sequences were aligned in CLUSTAL Omega (Sievers et al. 2011) using the default settings. The aligned sequences were then analyzed by parsimony and maximum
likelihood searches performed in PAUP* 4.0b8/4.0d78 (Swofford 2002) (Figure 1). For the maximum likelihood analysis, a GTR + G optimal model (G = 0.2250) was identified by jModeltest 2.1.7 software (Darriba et al. 2012), followed by a likelihood ratio test (Huelsenbeck and Rannala 1997).

Phylogenetic analysis places *K. rumia* within its own monotypic genus and supports the hypothesis of Shirōzu and Nakanishi (1984) that separated *Kallimoides* from *Kallima*. Hypotheses grouping *Kallimoides* with *Vanessa* could not be addressed due to lack of mitogenome data from *Vanessa* (Kodandaramaiah and Wahlberg 2007; Wahlberg et al. 2005).

Acknowledgments

We thank Mackenzie Alexiuk, and Rayna Hamilton for their constructive criticism on this manuscript and Genome Quebec for assistance with library preparation and sequencing.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work received support from NSERC under [Grants RGPIN386337-2011 and RGPIN-2016-06012] and from the University of Manitoba under the University Research Grants Program.

ORCID

Josephine E. Payment http://orcid.org/0000-0003-0819-1246
Jeffrey M. Marcus http://orcid.org/0000-0001-6605-3437
Melanie M. L. Lalonde http://orcid.org/0000-0003-0523-014X

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference numbers MT704827 and MT704830.

References

Cao YQ, Ma C, Chen JY, Yang DR. 2012. The complete mitochondrial genomes of two ghost moths, *Thitarodes renzhiensis* and *Thitarodes*...
yunnanensis: the ancestral gene arrangement in Lepidoptera. BMC Genomics. 13:276.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 9(8):772.

Hamilton RV, Marcus JM, Lalonde MML. 2020. The complete mitochondrial genome of the black dead leaf butterfly Doleschallia melanana (Insecta: Lepidoptera: Nymphalidae). Mitochondr DNA B Resour. 5:3306–3308.

Huelsenbeck JP, Rannala B. 1997. Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science. 276(5310):227–232.

Kodandaramaiah U, Wahlberg N. 2007. Out-of-Africa origin and dispersal-mediated diversification of the butterfly genus Junonia (Nymphalidae: Nymphalinae). J Evol Biol. 20(6):2181–2191.

Lalonde MML, Marcus JM. 2019a. The complete mitochondrial genome of the Madagascar banded commodore butterfly Precis andremiaja (Insecta: Lepidoptera: Nymphalidae). Mitochondr DNA B Resour. 4(1):277–279.

Lalonde MML, Marcus JM. 2019b. The complete mitochondrial genome of the Malagasy clouded mother-of-pearl butterfly Protonigrionomorpha ancardii duprei (Insecta: Lepidoptera: Nymphalidae). Mitochondr DNA B Resour. 4(1):296–298.

Lalonde MML, Marcus JM. 2020. The complete mitochondrial genome of the Malagasy clouded mother-of-pearl butterfly Protonigrionomorpha ancardii duprei (Insecta: Lepidoptera: Nymphalidae). Mitochondr DNA B Resour. 5:3261–3263.

Larsen TB. 2005. Butterflies of West Africa. Stenstrup, Denmark: Apollo.

Laslett, D, Canback, B 2008. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 24:172–175.

Liao F, Wang L, Wu S, Li Y-P, Zhao L, Huang G-M, Niu C-J, Liu Y-Q, Li M-G. 2010. The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). Int J Biol Sci. 6(2):172–186.

Living Prairie Mitogenomics Consortium 2020. The complete mitochondrial genome of the brown pancy butterfly, Junonia stygia (Aurivillius, 1894), (Insecta: Lepidoptera: Nymphalidae). Mitochondr DNA B Resour. 5:41–43.

Marcus JM. 2018. Our love-hate relationship with DNA barcodes, the Y2K problem, and the search for next generation barcodes. AIMS Genet. 5(1):1–23.

McCullagh BS, Marcus JM. 2015. The complete mitochondrial genome of Lemon Pansy, Junonia lemonias (Lepidoptera: Nymphalidae: Nymphalinae. J Asia-Pacific Ent. 18(4):749–755.

Nyafwono M, Valtonen A, Nyeko P, Roininen H. 2014. Fruit-feeding butterfly communities as indicators of forest restoration in an Afro-tropical rainforest. Biol Conserv. 174:75–83.

Peters MJ, Marcus JM. 2017. Taxonomy as a hypothesis: testing the status of the Bermuda buckeye butterfly Junonia coenia bergi (Lepidoptera: Nymphalidae. Syst Entomol. 42(1):288–300.

Shirōzu T, Nakanishi A. 1984. A Revision of the Genus Kallima DOUBLEDAY (Lepidoptera, Nymphalidae): I. Generic classification. Tyō to Ga (Lepidoptera Science). 34:97–110.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7:539.

Swofford DL. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, Massachusetts, USA: Sinauer Associates.

Wahlberg N, Brower AVZ, Nylin S. 2005. Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae. Biol J Linn Soc. 86(2):227–251.

Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S, Freitas AVL, Brower AVZ. 2009. Nymphalid butterflies diversify following near demise at the Cretaceous/tertiary boundary. Proc Biol Sci. 276(1677):4295–4302.