Comprehensive review into the challenges of gastrointestinal tumors in the Gulf and Levant countries

Rare Tumors GI Group, Fadi Farhat, Abdulaziz Al Farsi, Ahmed Mohieldin, Bassim Al Bahraani, Eman Sbaity, Hassan Jaffar, Joseph Kattan, Kakil Rasul, Khairallah Saad, Tarek Assi, Waleed El Morsi, Rafid A Abood

ORCID number: Fadi Farhat (0000-0002-8594-1701); Abdulaziz Al Farsi (0000-0003-2151-4951); Ahmed Mohieldin (0000-0002-1589-5789); Bassim Jaffar Al Bahraani (0000-0002-4834-9880); Eman Sbaity (0000-0003-2969-4782); Hassan Jaffar (0000-0002-3297-4390); Joseph Kattan (0000-0003-4576-6248); Kakil Rasul (0000-0003-2338-3047); Khairallah Saad (0000-0002-5151-8665); Tarek Assi (0000-0002-5579-5264); Waleed El Morsi (0000-0002-9721-9935); Rafid A Abood (0000-0002-8615-4099).

Author contributions: All authors equally contributed to this paper with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

Conflict-of-interest statement: Fadi Farhat, Abdulaziz Al Farsi, Ahmed Mohieldin, Hassan Jaffar, Joseph Kattan, Kakil Rasul, Khairallah Saad, Tarek Assi and Rafid A Abood have no conflicts of interest to declare. Bassim Al Bahraani received advisor honoraria from Merck, Roche, Amgen, AstraZeneca, Biocon, BMS, Hospira, Lilly, Sanofi, MSD, Pfizer, Novartis, Bayer, and AstraZeneca, Biocon, BMS, Hospira, Lilly, Sanofi, MSD, Pfizer, Novartis, Bayer, and speaker/chairperson honoraria from Amgen, AstraZeneca, BMS, GSK, Hospira, Lilly, Novartis, Pfizer, Roche, Sanofi, MSD, Newbridge. Waleed El Morsi is an employee of Pfizer. Travel expenses for physician attendance at the Rare Tumors GI Group meetings and medical writing support were funded by Pfizer.

Abstract

Although gastrointestinal stromal tumors (GISTs) are rare, with an incidence of 1/100000 per year, they are the most common sarcomas in the peritoneal cavity. Despite considerable progress in the diagnosis and treatment of GIST, about half of all patients are estimated to experience recurrence. With only two drugs, sunitinib and regorafenib, approved by the Food and Drug Administration, selecting treatment options after imatinib failure and coordinating multidisciplinary care remain challenging. In addition, physicians across the Middle East face some additional and unique challenges such as lack of...
Gastrointestinal stromal tumors (GISTs) are rare, with an incidence of 1/100000 per year[1]; nonetheless, they are the most common mesenchymal tumors of the GI tract[2]. Epidemiological data concerning GIST in the Gulf and Levant countries is scarce, with several studies describing cases within the region, including Kuwait[3], Qatar[4], Saudi Arabia[5] and Lebanon[6]. GIST is the most common sarcoma in the peritoneal cavity, and metastatic spread can be found in extravisceral locations such as the omentum, mesentery, and retroperitoneum[7,8]. Clinical signs and symptoms depend on the tumor’s location and size, with GI bleeding the most common symptom, followed by abdominal discomfort, pain, abdominal distention, and weight loss[9]. Small, asymptomatic, indolent GISTs are discovered incidentally, whereas highly malignant GISTs are typically large and symptomatic at the time of diagnosis[7,8].

In the past, malignant GISTs were misdiagnosed mainly as leiomyosarcomas, and were considered one of the tumor types most refractory to conventional chemotherapy and/or radiation therapy[10]. However, the development of imatinib led to a paradigm shift in the management of metastatic GIST, and imatinib became the treatment of choice in the metastatic setting, later being used in earlier stages[11]. Given the success with surgery and targeted therapy, it is estimated that the prevalence of GIST is likely to be 10 times that of the reported incidence, with the number of GIST survivors approaching 135-155 per million per year[12].

Published local data from clinical trials, national disease registries and regional scientific research, limited access to treatment, lack of standardization of care, and limited access to mutational analysis. Although global guidelines set a framework for the management of GIST, there are no standard local guidelines to guide clinical practice in a resource-limited environment. Therefore, a group of 11 experienced medical oncologists from across the Gulf and Levant region, part of the Rare Tumors Gastrointestinal Group, met over a period of one year to conduct a narrative review of the management of GIST and to describe regional challenges and gaps in patient management as an essential step to proposing local clinical practice recommendations.

Key words: Gastrointestinal stromal tumors; Diagnosis; Disease management; Treatment; Challenges; Middle East

Citation: Rare Tumors GI Group, Farhat F, Farsi AA, Mohieldin A, Bahrami BA, Sbaity E, Jaffar H, Kattan J, Rasul K, Saad K, Assi T, Morsi WE, Abood RA. Comprehensive review into the challenges of gastrointestinal tumors in the Gulf and Levant countries. World J Clin Cases 2020; 8(3): 487-503
URL: https://www.wjgnet.com/2307-8960/full/v8/i3/487.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i3.487
RATIONALE AND APPROACH

Despite the progress in treatment strategies, about half of all GIST patients will experience disease recurrence[9]. With only two drugs - sunitinib and regorafenib - approved by the Food and Drug Administration (FDA) for GIST after imatinib failure, managing patients with primary and secondary resistance or those with refractory disease poses a huge challenge[9]. Moreover, appropriate GIST management requires a multidisciplinary approach, as the correct characterization of the tumor at diagnosis requires a specialized endoscopist, radiologist, and nuclear medicine physician, with treatment potentially involving a surgeon and a clinical oncologist[10].

Patients and physicians across the Middle East face additional unique challenges, including the lack of published epidemiological data resulting in limited knowledge about unique disease features and molecular patterns. Challenges related to drug availability, lack of standardization of care, and limited access to mutational analysis further impede appropriate GIST management across the region.

Although global guidelines set a framework for management, there are no local practice guidelines that meet the practical needs of regional physicians in a resource-limited environment. A consensus on the diagnosis and management of GIST tumors for the Gulf and Levant countries is necessary to improve health education, diagnostic capabilities, patient identification and screening, treatment access, and disease monitoring. Such guidelines would reiterate the need for local clinical trials to generate data to help benchmark local disease biology and genetics relative to published global data.

Therefore, a group of 11 experienced medical oncologists practicing across the Gulf and Levant region created the Rare Tumors GI Group. Through a series of short meetings conducted over a period of 1 year (2016-2017), the Rare Tumors GI Group drafted a narrative review and placing this in the context of the local challenges could highlight the need to standardize care across the region. This paper aims to review current practices in the region and describe regional GIST management challenges; in preparation for proposing local clinical practice recommendations.

CLINICOPATHOLOGICAL FEATURES

Clinical features

GIST includes tumors with a wide biological spectrum at all sites of occurrence, with diverse patterns including nodular, cystic, and diverticular tumors[11]. GISTs are commonly seen in patients > 50 years of age[12]. GISTs are most commonly located in the stomach (60%-70%), followed by the duodenum (20%-25%), the anus and rectum (5%), and the esophagus and colon (< 5%)[7]. They are predominantly seen in women[1]. Signs and symptoms of GIST depend on the anatomic location and size of the tumor, with GI bleeding being the most common clinical manifestation. Pain due to tumor rupture, GI obstruction, or appendicitis can occur[11]. GIST commonly metastasizes to the abdominal cavity and the liver; uncommonly to the lymph nodes and lungs; and rarely to the bones, soft tissue, and skin[1].

Histopathological description

Microscopic features of GIST tumors depend on the site. They may be cellular or hypocellular, with most being spindle-cell tumors (70%-80%) and a minority being epithelioid or mixed spindle, epithelioid (20%-30%); or, rarely, pleomorphic[7,11,12]. GIST tumors may have prominent vascularity[7].

Immunohistochemistry

GIST tumors are immunohistochemically positive for KIT [cluster of differentiation (CD)117] (94.7%) and Discovered on GIST-1 (DOG1) (94.7%), and about 70%-80% co-express CD34[7,14]. GISTs may be positive for smooth-muscle actin (30%-40%), and rarely for S100 protein (5%), desmin and keratin (1%-2%)[12,13].

Molecular pathology

The clinicopathologic heterogeneity of GIST is associated with its molecular diversity, with the majority being spontaneous activating mutations in KIT (approximately 78.5%), and sometimes PDGFRA (5%-10%)[14]. About 10%-15% of GISTs do not harbor KIT/PDGFRA mutations and are known as wild type[14,15]. Given that the treatment of GIST depends on the mutations present, genotyping is integral to GIST management[14].
DIAGNOSIS

Tissue biopsy
For tumors suspected to be GIST, biopsy is necessary to confirm diagnosis for surgical planning and initiating tyrosine kinase inhibitor (TKI) therapy[7,12]. For tumors < 2 cm detected within the esophagus, stomach, or duodenum, excision is necessary to make a histological diagnosis, as endoscopic biopsy is difficult[1]. As the majority of GIST tumors < 2 cm are likely to be low risk, the standard approach includes endoscopic ultrasound assessment and follow-up, with further excision only for patients with growing or symptomatic tumors[1]. Endoscopic ultrasound is preferred over percutaneous biopsies due to potential intraperitoneal tumor spillage with the latter[1].

Tumors ≥ 2 cm in size are at a high risk of progression and biopsy excision is standard practice[1,13]. Multivisceral resection using multiple-core needle biopsies and endoscopic ultrasound guidance or an ultrasound-/computed tomography (CT)-guided percutaneous method is a common approach[1]. For patients presenting with metastatic disease, laparotomy for diagnostic purposes may not be necessary and a biopsy of the metastatic focus is sufficient[1].

Radiological findings
Plain abdominal imaging: Plain abdominal imaging is not specific for GIST diagnosis. Barium studies can suggest GIST by detecting a filling defect that is sharply demarcated and elevated compared with the surrounding mucosa[7].

Ultrasonography: Abdominal ultrasonography, although not optimal for GIST diagnosis, can evaluate liver involvement and the presence of tumor necrosis. Endoscopic ultrasonography (EUS) is useful for characterizing and assessing localization of lesions, especially < 2 cm[9].

Computed tomography scanning of the abdomen and pelvis: CT is the method of choice for diagnosing and staging GISTs[19]. It provides comprehensive information regarding tumor size and multiplicity, presence of calcifications, irregular margins, ulcerations, heterogeneity, regional lymphadenopathy, evidence of extraluminal and mesenteric fat infiltration, location, and relationship to adjacent structures[20].

Magnetic resonance imaging (MRI): MRI provides similar information to CT but is more accurate in identifying rectal GISTs and liver metastasis, hemorrhage, and necrosis[8].

Positron emission tomography (PET) scanning with 2-(F-18)-fluoro-2-deoxy-D-glucose: PET scanning with 2-(F-18)-fluoro-2-deoxy-D-glucose can be used as an adjunct to CT scanning for preoperative staging work-up, to distinguish viable lesions from necrotic tissue, benign from malignant tissue, and scar tissue from recurrent tumor. PET scanning facilitates monitoring of early clinical responses to neoadjuvant therapies and identification of early recurrence[21].

Mutational analysis
In addition to tumor location, morphology, and immunohistochemistry, mutational analyses of KIT and PDGFRA genes are important for diagnosis[13]. About 80% of GIST tumors have an oncogenic mutation in the KIT tyrosine kinase domain, mostly encoded by KIT exon 11, although some occur in exons 9, 13, and 17[19]. A subset of GIST tumors typically demonstrating an epithelioid morphology and expressing little or no KIT may also have an activating mutation in the KIT-homologous tyrosine kinase PDGFRA but this can only be determined through molecular analysis[13]. An estimated 5%-7.5% of GIST tumors, predominantly in the stomach, harbor the PDGFRA mutation, with two-thirds of these having the PDGFRA D842V mutation[22].

The National Comprehensive Cancer Network (NCCN) strongly recommends undertaking mutational analysis, especially if imatinib therapy is required for unresectable or metastatic disease or in patients with primary disease, particularly for high-risk tumors[8]. The European Society for Medical Oncology (ESMO) recommends mutational analysis as standard practice in diagnostic work-up of all GISTs due to its prognostic value and ability to predict sensitivity to therapy[8].

Risk stratification
Risk classification systems have been developed and validated to predict the probability of postoperative relapse, including the National Institutes of Health (NIH) consensus classification (Fletcher’s criteria), Armed Forces Institute of Pathology criteria (Miettinen’s criteria), the “modified NIH” classification (Joensuu’s criteria), and the modified Fletcher risk classification[23-26].

Stratifying GISTs into low-, intermediate-, and high-risk categories is preferred to
classification into benign or malignant, as a small number of GISTs with a histologically benign appearance may recur or metastasize\[12\]. Such categorization helps select patients for adjuvant imatinib therapy\[24\]. Unlike other classification systems, the “modified NIH” classification includes “tumor rupture”, a prognostic indicator for predicting the benefit of further treatment with adjuvant imatinib therapy\[27\].

Tumor size and mitotic index are important prognostic features in risk stratification\[13\]. Assuming that all GISTs have malignant potential, Miettinen and colleagues demonstrated that the anatomic location of the tumor affects the risk of recurrence and progression\[14\].

TREATMENT

Management of primary, localized GIST

Surgery: Complete surgical resection with negative margins, without causing tumor rupture and with economic resection of the underlying organ, is the mainstay curative treatment for localized GIST\[12,28\]. This is feasible due to the exophytic growth pattern of these tumors. Negative margins can be easily achieved with organ-sparing segmental or wedge resections of the organ\[23,29,30\]. Furthermore, as lymphatic spread of the tumor is rare and lymph node dissection is generally not necessary, complete surgical resection can be achieved without sacrificing organ function\[23,29,30\].

Potential complications of surgery, especially for large tumors, include intraoperative bleeding and tumor rupture, resulting in spillage of tumoral contents into the peritoneal cavity\[24,29\].

Role of laparoscopic surgery: Surgeons have increasingly adopted a minimally invasive surgical approach. Evidence suggests that, in select patients, endoscopic or laparoscopic removal of GISTs yields recurrence rates comparable to open resection, improves long-term survival and enables better short-term postoperative outcomes\[24,29,30\].

The technical feasibility of performing an oncologically safe and effective laparoscopic or endoscopic procedure, without risk of rupture or incomplete removal, should be predetermined based on preoperative tumor evaluation\[28,29,30\]. The stomach is the only organ where either laparoscopic or endoscopic procedures can be performed safely and reliably in well-selected patients\[36\].

Although complete surgical resection of localized GISTs is successful in approximately 95% of cases, relapse affects approximately 40% of patients, particularly within the first 5 years after surgery\[26,29,30\]. The liver and peritoneum are the most common sites of recurrence\[29\]. Estimating tumor prognosis and the risk of postoperative recurrence is essential to tailoring patient management\[24,28,29\].

Imatinib adjuvant therapy: Depending on the risk of recurrence following complete surgical resection, adjuvant therapy should be initiated\[29\]. Traditional chemotherapy and radiotherapy are ineffective against GISTs\[35,36\]. Molecular targeted therapies, such as TKIs imatinib, sunitinib, and regorafenib have gained approval by the FDA for treatment of GIST\[27,28\]. Imatinib is an oral, selective TKI that inhibits KIT and PDGFRα, preventing tumor proliferation. It is regarded as the primary adjuvant treatment of GIST\[27,36\]. Imatinib adjuvant therapy:

Depending on the risk of recurrence following complete surgical resection, adjuvant therapy should be initiated\[29\]. Traditional chemotherapy and radiotherapy are ineffective against GISTs\[35,36\]. Molecular targeted therapies, such as TKIs imatinib, sunitinib, and regorafenib have gained approval by the FDA for treatment of GIST\[27,28\]. Imatinib is an oral, selective TKI that inhibits KIT and PDGFRα, preventing tumor proliferation. It is regarded as the primary adjuvant treatment of GIST\[27,36\].

Several clinical trials have confirmed the clinical benefits and acceptable safety profile of imatinib adjuvant treatment in surgically resected GIST patients with substantial risk of relapse. A randomized placebo-controlled study evaluated the impact of 1-year adjuvant imatinib therapy (400 mg daily) in patients with primary, localized, KIT-positive GIST (>3 cm) who had undergone gross surgical excision and had low, intermediate, or high risk of recurrence. A significant difference was observed in the 1-year recurrence-free survival (RFS) rates (imatinib 98% vs placebo 83%) but not for overall survival (OS)\[29\].

The efficacy of 2-year imatinib adjuvant therapy (400 mg daily) was investigated in surgically resected, KIT-positive GIST patients showing high or intermediate risk of recurrence. The 3-year RFS rates were higher in the adjuvant imatinib group (84%) vs placebo (66%), with no impact on survival outcomes\[30\].

A further trial demonstrated the efficacy of 3-year imatinib adjuvant treatment in GIST patients who had undergone tumor resection and had high risk of recurrence. At a median follow-up of 54 mo, 5-year RFS and OS were significantly greater in imatinib patients treated for 3 years vs 1 year (Figure 1A), with acceptable tolerability\[31\]. In a subset of patients with centrally confirmed GIST and without macroscopic metastases at study entry, with a median follow-up of 90 mo, 3-year
Rare Tumors GI Group et al. GIST management and challenges in Gulf and Levant countries

Postoperative follow-up: Postoperative follow-up is important for early detection and treatment of relapses[27]. Optimal follow-up timings remain undefined due to insufficient data on the frequency and intervals of routine postoperative follow-up visits[25]. Recurrences most commonly occur in the liver and/or the peritoneum; therefore, abdominal and pelvic contrast CT is adequate for detecting relapses. In young patients, MRI should be used to avoid the ionizing radiation risk associated with CT. The risk of relapse is particularly high during the first few years after surgery and following discontinuation of adjuvant imatinib therapy[27]. Therefore, treatment resulted in significantly higher RFS and OS than did 1-year treatment (Figure 1B)[46].

Therefore, adjuvant imatinib therapy in postoperative high-risk GIST patients improves RFS, with an acceptable tolerability profile. Length of imatinib treatment influences treatment response, with greater survival with 3 years of treatment vs 1 year. Therefore, 3-year adjuvant imatinib treatment is recommended to improve RFS and OS in high-risk GIST patients who have undergone complete surgical resection of the primary localized tumor[1,25,27].

Controversies surrounding the optimal treatment duration and its role in patients with intermediate risk continue[25,27,39]. As there are insufficient data available and a 10% risk of relapse, a standard recommendation cannot be made. A shared decision with the patients regarding adjuvant therapy is necessary for intermediate-risk patients[39].

Whilst the current standard of practice is 3-year adjuvant imatinib therapy in high-risk patients, further investigation of longer treatment duration and outcomes is ongoing. The PERSIST-5 trial, in high-risk GIST patients, demonstrated that 5-year adjuvant imatinib treatment achieves 5-year RFS and OS in 90% and 95% of patients, respectively, with an acceptable tolerability profile[31]. Further ongoing clinical trials aim to compare the efficacy and safety of 5- and 6-year adjuvant imatinib treatment with additional 3-year treatment in high-risk GIST patients, and the results will likely affect treatment recommendations[29].

The efficacy of imatinib varies with KIT/PDGFRα mutation type[25]. Clinical data suggest that adjuvant imatinib treatment improves RFS in GIST patients with deletions in KIT exon 11, but not in patients with some mutations in KIT exon 11 or 9[42,43]. Despite the absence of data in adjuvant studies, dose escalation up to 800 mg, instead of the standard 400 mg dose, could be beneficial in patients with KIT exon 9 mutations[8,34]. Furthermore, adjuvant imatinib treatment is not recommended in patients with the PDGFRα D842V mutation or those with GIST WT, as treatment is ineffective[1,25,27]. Therefore, in addition to the assessment of postoperative recurrence risk, mutation analysis should part of the decision-making process prior to imatinib adjuvant therapy initiation, as recommended by the ESMO and EUROCAN[1,25,29].

If tumor rupture, an unfavorable prognostic factor, occurs before or during surgery, adjuvant imatinib therapy should be initiated due to the high risk of peritoneal relapse, which has significant impact on progression-free survival (PFS)[44]. Patients with gastric GIST with KIT exon 11 mutation (codon 557 and 558) are at increased risk of tumor rupture[44]. The optimal duration of treatment in these cases remains undetermined[1].

Imatinib neoadjuvant therapy for localized GIST: Neoadjuvant imatinib should be considered in patients with initially unresectable or borderline resectable bulky tumors. A prospective phase 2 trial evaluated an 8-12 wk short course of 600 mg neoadjuvant imatinib in 63 GIST KIT+ or recurrent resectable tumors[48]. The estimated 5-year PFS and OS rates for localized disease were 55% and 77%, respectively, with only 7% achieving a partial remission (PR)[48]. A multinational phase 2 study involving patients with gastric GISTs ≥ 10 cm demonstrated that neoadjuvant imatinib therapy (400 mg once daily) for 6-9 mo allowed a substantial proportion of patients to undergo R0 surgery (90%)[45]. Furthermore, 2-year PFS and OS rates of 89% and 98% were achieved, respectively, over a median follow-up of 32 mo[46].

Based on the encouraging findings from clinical studies, neoadjuvant imatinib treatment is indicated if reducing the tumor bulk prior to surgery would permit less-mutilating organ-preserving surgery with R0 margins and reduce the risk of intraoperative tumor rupture and bleeding or if achievement of microscopically negative margins is not feasible. Administering imatinib for approximately 3-12 mo, depending on the strictness of radiological follow-up and the burden of tumor, is advised to limit surgical morbidity. Functional imaging is advised to assess response to treatment, and unresponsive patients should undergo surgery without delay[41]. Furthermore, mutational analysis can identify patients with imatinib-resistant forms, such as PDGFRα D842V, or those who require higher doses of imatinib in order to prevent delays in surgery.
Management of non-localized GIST

Role of surgery: The role of complete surgical resection of localized GIST is well established; however, for patients with locally advanced, metastatic GIST, responding to imatinib therapy, the role of surgery is unclear[47]. A small Chinese trial of 41 GIST patients demonstrated higher 2-year PFS and OS rates in the surgery with imatinib group (88%; not reached) vs the imatinib group (58%; 49 mo). Despite this uncertainty, surgery in patients with advanced GIST has the potential to be used as an adjunct to imatinib in responding patients with metastases or recurrent disease in an effort to improve disease-free survival and OS[48]. Ideally, surgery should be avoided in those with imatinib-resistant disease unless for emergency palliative intervention[48].

Although patients with advanced unresectable or metastatic GIST may achieve PR or stable disease while on imatinib, about half are highly likely to develop secondary resistance within 2 years[47]. Cytoreductive surgery may be considered in patients with metastatic GIST who respond to imatinib, especially if R0/R1 resection can be achieved. In patients with multifocal progression, surgery leads to poor outcomes[47]. In patients with metastatic GIST treated with sunitinib, surgery may be feasible; however, resections are commonly incomplete, associated with complications and have unclear survival benefit[47]. Imatinib should be continued even if the surgical resection is complete.

First line: Imatinib, at the standard dose of 400 mg per day, has demonstrated efficacy in advanced, metastatic GIST with an average prolongation of median PFS time of 24 mo[49,50]. Higher doses have largely shown no clinical benefit. In two phase 3 trials, clinical benefit rates for imatinib 400 mg and 800 mg per day in patients with
Table 1 Monitoring frequency based on risk of recurrence

Risk	Monitoring frequency
High-risk tumors	Every 3 to 6 mo for the first 3 yr of adjuvant therapy
	Every 3 mo for 2 yr after stopping adjuvant imatinib, then every 6 mo for 5 yr, then once a year for 5 yr
Low-risk tumors	Every 6 to 12 mo for 5 yr
Very low-risk tumors	Routine follow-up may not be necessary; however, risk of recurrence is not nil

metastatic GIST were approximately 90% and 88%, respectively\(^{40,51}\). However, this benefit can vary according to GIST mutation. Pooled analysis of 768 patients across four clinical trials revealed that patients with mutations in \(KIT\) exon 11 and 9 and those with GIST WT, had objective response rates (complete or partial response) of 72%, 38%, and 28%, respectively\(^{42,43}\). A dose-dependent improvement in response was, however, seen in patients with \(KIT\) exon 9 mutations\(^{49}\). GIST mutational status can also contribute to differences in overall OS and time to progression (TTP) events. Patients testing positive for \(KIT\) exon 11 and 9 mutations and WT GIST genotypes had TTPs of 25, 17, and 12.8 mo, respectively. The corresponding OS improvement in these patients was 60, 38, and 49 mo, respectively\(^{44}\). Patients with GISTS harboring the \(PDGFRA\) D842V mutation appear to be resistant to imatinib\(^{49}\). Furthermore, GIST patients with \(SDH\) deficiency or \(NFI\) mutation rarely respond to imatinib\(^{45,46}\). Imatinib treatment interruption poses a threat to control of metastatic disease, as discontinuation has resulted in disease progression that may not be fully reversed by rechallenge\(^{46,57}\).

Cytoreductive surgery, following a response to imatinib, has improved survival\(^{48,59}\). In fact, no evidence of disease was found after the procedure in 78% of patients who had achieved stable disease before surgery. The 12-mo OS and PFS rates in these patients were 95% and 80%, respectively.

These findings suggest testing patient genotype before starting treatment for metastatic GIST. In patients intolerant to or who progress on imatinib therapy, second-line therapy with sunitinib may be considered. Before progressing to second-line options, however, physicians should ensure patient compliance with imatinib therapy for at least 2 additional months with modification of the timing of tablet intake\(^{49}\). Furthermore, imatinib plasma levels can be checked; if low (< 1000 ng/mL) increasing the dose to 800 mg daily may be beneficial; if high, switching to second-line therapy is recommended\(^{49}\). Physicians should carefully consider potential drug interactions with imatinib: proton pump inhibitors are known to decrease imatinib plasma levels to subtherapeutic levels\(^{49,52}\).

Second line: Sunitinib, an FDA-approved multtargeted TKI, is indicated in imatinib-refractory or imatinib-intolerant GIST patients\(^{43,54}\). This indication was approved following an international phase 3 trial of sunitinib vs. placebo in 312 GIST patients after imatinib failure. Patients receiving sunitinib had longer TTP (27 mo) vs placebo (6 mo), despite low objective response rates (7%) and an absence of OS benefits over time. Sunitinib is recommended at a daily dose of 50 mg for 4 wk followed by a 2-wk rest interval; lower (37.5 mg), continuous daily dosing can also be used\(^{49,59}\).

Response to sunitinib may also be driven by mutation type. Clinical benefit was observed to be higher in patients with \(KIT\) exon 9 mutation and GIST WT (58% and 56%) than with \(KIT\) exon 11 mutation (34%). After initial progression to imatinib, TTP was 19 mo in patients with \(KIT\) exon 9 or \(PDGFRA\) mutation vs 5 mo in patients with \(KIT\) exon 11 mutation. In patients with secondary \(KIT\) exon 13 and 14 mutations, both OS and PFS were significantly longer than in those with \(KIT\) exon 17 or 18 mutations.

Common side effects relating to sunitinib include renal toxicity (proteinuria), hematological effects (myelosuppression, thrombotic microangiopathy), thyroid dysfunction (hypothyroidism), hypertension, and GI bleeding or perforation.

Third line: Regorafenib, at a daily dose of 160 mg taken for 21 d in 28-d cycles, has been approved for the treatment of patients with unresectable or metastatic GIST after failure of or intolerance to imatinib and sunitinib therapy. A phase 2 trial of 34 GIST patients who experienced failure of imatinib and sunitinib demonstrated 26 patients with a clinical benefit with regorafenib (four had partial response), with a median PFS of 10 mo. In a confirmatory phase 3 trial of 129 GIST patients, PFS was higher for regorafenib (4.8) than placebo (0.9), without OS benefit\(^{49}\). In contrast to sunitinib, regorafenib may be beneficial for patients with metastatic and/or unresectable GIST harboring \(KIT\) exon 11 mutations, and \(SDH\)-deficient GIST, but not GIST with secondary \(KIT\) exon 17 mutations\(^{49}\). The most common side effects associated with
Figure 2 Algorithm for the management of localized primary gastrointestinal stromal tumors. CT: Computed tomography; GI: Gastrointestinal; GIST: Gastrointestinal stromal tumors; MRI: Magnetic resonance imaging; R0: No residual tumor; R1: Microscopic residual tumor.

Figure 2 Algorithm for the management of localized primary gastrointestinal stromal tumors. CT: Computed tomography; GI: Gastrointestinal; GIST: Gastrointestinal stromal tumors; MRI: Magnetic resonance imaging; R0: No residual tumor; R1: Microscopic residual tumor.

regorafenib include hypertension, hand-foot syndrome, and diarrhea.

According to the NCCN guidelines, later lines of therapy after failure of the three FDA-approved drugs (imatinib, sunitinib, and regorafenib) include sorafenib and third generation TKIs such as pazopanib, nilotinib, ponatinib, or dasatinib. Sorafenib, at a dose of 400 mg twice daily, has also demonstrated efficacy in patients with metastatic GIST who have progressed on imatinib and sunitinib therapy[69]. In contrast, in the multicenter, phase 2 trial of sorafenib including 38 KIT-expressing GIST patients, the disease control rate was 68%, median PFS 5.2 mo, and median OS 11.6 mo[70].

Pazopanib achieved favorable 4-mo PFS rates in a phase 2 trial compared with placebo (45% vs 18%, respectively; P = 0.03) [71]. Ponatinib has been shown to suppress all KIT secondary mutations with the exception of V654A[72]. The clinical benefit rate achieved with ponatinib therapy was 55% in heavily pretreated (including regorafenib) patients with GIST harboring primary KIT exon 11 mutation[73]. Dasatinib has proven to be active against KIT WT tumors, particularly PDGFRA D842V, which is normally resistant to imatinib[74]. Further details on these emerging therapies are provided in Table 2.

Emerging treatment options
Clinical trials for GIST are based on recent advances and understanding of molecular differences. Several new pathways have been targeted, alone or in combination, in clinical trials to overcome primary and/or secondary acquired resistance to existing GIST treatment. Table 2 outlines potential key therapeutic targets for GIST.

LOCAL CHALLENGES AND GAPS IN PATIENT MANAGEMENT

Diagnosis
Correct characterization of GIST at the time of initial diagnosis is crucial to the proper management of these tumors. Clinical decision making is based on histopathology, immunohistochemistry, and molecular diagnosis of the cancer subtype. Therefore, a multidisciplinary team at a comprehensive cancer care center is necessary for formulating patient care plans based on the best-available published evidence. Before a diagnostic and therapeutic strategy is initiated, suspected GIST patients require a discussion with a multidisciplinary tumor board, including sarcoma experts in medical oncology, surgical oncology, radiation oncology, radiology, and pathology. The development of local and national multidisciplinary meetings in the Middle
Table 2 Promising therapeutic agents in development for the treatment of advanced gastrointestinal stromal tumor

Target	Class of agent (specific activity)	Drug(s)	Trial number/ study phase	Results	Ref.
KIT/PDGFRA	Multitargeted TKI (KIT exon 17 D816-mutant kinases)	Ponatinib	NCT01874665 Phase 2	37% CBR at 16 weeks	[78]
	KIT exon 13 resistance mutations	Ponatinib	NCT03171389 Phase 2	Awaited	[79]
	Multitargeted TKI (PDGFRA D842V)	Dasatinib	Phase 2	32% PR; 21% PFS at 6 months	[84]
	Multitargeted TKI	Crenolanib	NCT01243346 Phase 1/2 study	31% CBR	[81]
	KIT D816V/PDGFRA D842V inhibitor	BLU285	NCT02098352 Phase 1	ORR 84% in PDGFRA D842V GIST and ORR 20% for fourth-line or later; tumor reduction 98% in PDGFRA D842V and 60% in fourth-line or later	[82,83]
	KIT exon 9, 11, 13, 14, 17, and 18 inhibitor	DCC-2618	NCT02571036 Phase 1	ORR 14%, 3-month DCR 22%, mPFS at 24 weeks 56%	[84]
PI3K	PI3K inhibitor	BYL719	NCT01735968 Phase 1	Awaited	[85]
	Selective PI3K catalytic p110α subunit inhibitor	Buparlisib	NCT01468688 Phase 1	Awaited	[89]
BRAF V600E	BRAF inhibitor	Vemurafenib	NCT02304809 Phase 2	Awaited	[87]
MEK	MEK inhibitor	Binimetinib	NCT01991379 Phase 1b/2 (+ imatinib)	33% PR	[86]
MET	Dual MET and KIT small-molecule inhibitor	Cabozantinib	Phase 1	Long-lasting SD as best response	[88]
FGFR	Pan-FGFR inhibitor	BGJ398	NCT02216578 Phase 2	Awaited	[91]
IGF1R	IGF1R inhibitor	Linsitinib	NCT01560260 Phase 2	45% CBR; 52% PFS; 80% OS at 9 months	[92]
HSP90	Non-ansamycin HSP90 inhibitor	Onalespib	NCT01560260 Phase 1	36% CBR	[93]
CTLA4	Anti-CTLA4 antibody	Ipilimumab	NCT01249402 Phase 2 (+ imatinib)	Awaited	[94]
CDK	CDK4/6 inhibitor	Palbociclib	NCT01907607 Phase 2	Awaited	[96]

CBR: Clinical benefit rate; CDK: Cyclin-dependent kinase; CTLA4: Cytotoxic T-lymphocyte-associated protein 4; DCR: Disease control rate; FGFR: Fibroblast growth factor receptor; GIST: Gastrointestinal stromal tumor; HSP: Heat shock protein; IGF1R: Insulin-like growth factor 1; MEK: Mitogen-activated protein kinase; NCT: ClinicalTrials.gov identifier; ORR: Objective response rate; OS: Overall survival; PDGFRA: Platelet-derived growth factor receptor A; (m)PFS: (Median) progression-free survival; PI3K: Phosphoinositide 3-kinase; PR: Partial remission; SD: Stable disease; TKI: Tyrosine kinase inhibitor.

Eastern region is mandatory but faces several obstacles, mainly the private medical system.

Pretreatment biopsy of large tumors is mandatory in order to prevent unnecessary measures. Specialized endoscopists, diagnostic/intervention radiologists, and sarcoma surgeons are integral to the process of tumor sampling and staging. A tumor tissue sample helps ascertain subtype for a GIST diagnosis. Lack of experience and proper tools at a non-cancer facility contribute to poor tumor sampling and poor fixation and preservation of tumor structure. Therefore, training programs and awareness campaigns for medical doctors and surgeons on the proper management of GIST patients are essential to decrease the removal of uncharacterized tumors that might benefit from medical therapy only, such as lymphomas.
Another challenge is the lack of experts in pathological analysis of different types of sarcomas including GIST. First, without a wide immunostaining panel and molecular analyses, it is difficult to differentiate GIST from other pathologies. Proper pathological assessment with wide molecular profiling should be implemented through medical societies and regional groups. There is a lack of histopathologists with proper expertise in sarcoma in the Middle Eastern region, which highlights the need to implement targeted formations for specialists, with special focus on sarcomas and on different diagnostic methods (molecular analysis in GIST). Recent data have demonstrated the importance of next-generation DNA sequencing in identifying all possible mutations within a tumor sample and determining the correct treatment. However, next-generation sequencing is expensive, has a long runtime, and requires technical and interpretational expertise.

The final diagnostic challenge is the limited access to radiological assessments such as PET scans due to their high cost and limited availability, presenting a significant hurdle to proper diagnosis and subsequent management.

Current management

Surgery is critical to GIST management and remains the only potentially curative treatment for resectable GIST; however, oncologic surgery is still in its nascent stage and onco-surgeons are often inappropriately trained. The lack of harmony between the onco-/general surgeon and the medical oncologist is another challenge in defining the steps before and after diagnosis and staging. For those with locally advanced GISTs, preoperative imatinib mesylate for 6–9 mo to shrink the tumor, followed by complete cytoreductive surgery, is the optimal plan; early surgery by a general surgeon carries an increased risk of surgery-related morbidity and worse oncological outcomes. Most patients are managed by surgeons and gastroenterologists with limited expertise in oncology.

There is a lack of radiological availability in some regions (CT scans, MRIs, or PET scans), which may limit the initiation of neoadjuvant therapy or the optimal follow-up of GIST during therapy. In addition, health authorities across the Gulf region do not have access to any guidelines that regulate management of cancer patients at general hospitals or in the private sector. This has the potential to lead to poor management of patients outside a specialized cancer center by a non-specialized team. Comprehensive cancer care centers can guarantee the availability of specialized manpower and access to latest technology.

Access to treatment

Medication access and local formulary approvals are a big challenge and need to be optimized to enable optimal treatment of GIST patients. The medical systems in the region do not allow all patients full access to recently developed TKIs or even clinical trials. For example, the Arabian Gulf, which has a population of 20 million, has a healthcare system that is publicly funded. The treatment of GIST with TKIs represents a new era of molecular targeted therapy. Expensive drugs such as TKIs are reimbursed by the national health insurance system for its citizens; however, non-citizen residents have to find alternative methods to pay for treatment, which varies based on the Gulf country they reside in. For instance, in the United Arab Emirates, third-party insurance can cover treatment-related expenses within an annual budget; in Kuwait, surgery for cancer patients is allowed in the private sector but anti-cancer treatment is not allowed to be prescribed outside the Ministry of Health Cancer Center. Charities, such as the Patients Helping Fund Society in Kuwait takes the lead to reimburse treatment for non-citizen residents after a long process of financial assessment. Across the Gulf region, imatinib is reimbursed up to a dose of 400-800 mg orally per day for metastatic disease and for up to 3 years for adjuvant treatment of high-risk GISTs. Sunitinib can be prescribed and is reimbursed after imatinib failure, and regorafenib has recently become available for routine use, except in Iraq where it is not a formulary drug. In Lebanon, where the drug is reimbursed by all insurers including the Ministry of Public Health, the challenge is the sub-standard generics that might be included in the therapeutic arsenal. In some other countries, due to economic restrictions or war situations, such drugs might not be reimbursed.

The importance of setting guidelines in this region is to offer physicians an insight into proper management and drug usage with the available amenities. Another important drawback in the management of GIST patients is the limited access to international clinical trials in which patients might benefit from the latest treatment novelties without added costs.

Patient challenges

On the patient level, a better understanding of the risks associated with poor treatment compliance is needed. Early discontinuation of imatinib has severe
consequences with an increase in relapse rates (up to 49% of early discontinuation rates in the PERSIST trial). Frequent physician visits and closer follow-up are recommended to ensure optimal compliance of TKI intake.

The Middle Eastern society is traditionally conservative with strong religious and cultural beliefs[9]. Cancer diagnosis is still considered, in some regions, as a death certificate and family bonds have an impact on limiting patients’ access to information about their health status[9]. Up to 40% of patients are unaware of their diagnosis, which could also impact their compliance with treatment[7]. In general, patients are apt to discontinue oral medications because of a lack of information concerning their initial diagnosis and prognosis. These limitations can be overcome by empowering the physician-patient relationship.

CONCLUSION

Overall, the lack of sufficient clinical trials, national disease registries, and regional scientific research into GIST epidemiology, tumor characteristics, prognostic features, tolerance to treatment, and quality of life of patients highlights the long road ahead in establishing standards of care that are consistent across treatment centers irrespective of geographical reach[6].

Counseling of patients and their family members concerning the value of preoperative treatment remains a challenge faced by some oncologists due to the risk of primary resistance to the treatment and the possibility of disease progression. Multiple challenges remain for recurrent/metastatic disease management, including limited affordability of care, lack of proper testing of resistance to imatinib mesylate failure, and limited availability of subsequent lines of therapy after imatinib mesylate failure.

ACKNOWLEDGEMENTS

Medical writing support in the development of this manuscript was provided by Leris D’Costa of OPEN Health Dubai.

REFERENCES

1. Casali PG, Abecassis N, Ari HT, Bauer S, Biagini R, Bielack S, Bonvalot S, Boukouvis I, Bovee JVMG, Brodowicz T, Broto JM, Buonadonna A, De Alava E, Del Tos AP, Del Muro XG, Dileo P, Eriksson M, Fedenko A, Ferraresi V, Ferrari A, Ferrari S, Frezza AM, Gasperoni S, Gelderblom H, Gil T, Grignani G, Gronchi A, Haas RL, Hassan B, Hohenberger P, Isserl S, Joensuu H, Jones RL, Judson I, Jutte P, Kaal S, Kasper B, Kopeckova K, Kriukov DA, Le Cesne A, Lugowska I, Merimsky O, Montemurro M, Pantaleo MA, Piana R, Picci P, Piperno-Neumann S, Pousa AL, Reichardt P, Robinson MH, Rutkowski P, Safwat AA, Schöffski P, Stelljes S, Stachowiak S, Sundby Hall K, Unk M, Van Coevorden F, van der Graaf WTA, Whelan J, Wardelmann E, Zaikova O, Blay JY, ESOMO Guidelines Committee and EURACAN. Gastrointestinal stromal tumours: ESOMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 29: iv68-iv78 [PMID: 29846513 DOI: 10.1093/annonc/mdy057]

2. Sereide K, Sandvik OM, Soreide JA, Giljaca V, Jureckova A, Bulusu VR. Global epidemiology of gastrointestinal stromal tumours (GIST): A systematic review of population-based cohort studies. Cancer Epidemiol 2016; 40: 39-46 [PMID: 26618334 DOI: 10.1016/j.canep.2015.10.031]

3. Makar RR, al-Waheeb S, John B, Junaid TA. Gastrointestinal stromal tumours: clinicopathological and immunohistochemical features. Med Princ Pract 2002; 11: 93-99 [PMID: 12123110 DOI: 10.1159/000058014]

4. Al-Thani H, El-Menayar A, Rasul KI, Al-Sulaiti M, El-Mabrok J, Hajaji K, Elgharhy H, Tabea A. Clinical presentation, management and outcomes of gastrointestinal stromal tumours. Int J Surg 2014; 12: 1127-1133 [PMID: 25152441 DOI: 10.1016/j.ijsu.2014.08.351]

5. Bokhary RY, Al-Maghrabi JA. Gastrointestinal stromal tumours in western Saudi Arabia. Saud Med J 2010; 31: 437-441 [PMID: 20383424]

6. El Rassy E, Naar F, Assi T, Ibrahim T, Rassy N, Bou Jaoude J, Massoud M, Chahine G. Epidemiology and Survival Analysis of Gastrointestinal Stromal Tumors in Lebanon: Real-life study from a Hospital tumor registry 2000-2015. Gulf J Oncol 2017; 1: 38-42 [PMID: 28915514 DOI: 10.1016/j.gjol.2017.06.001]

7. Levy AD, Manning MA, Al-Refaie WB, Miettinen MM. Soft-Tissue Sarcomas of the Abdomen and Pelvis: Radiologic-Pathologic Features, Part 1-Common Sarcomas: From the Radiologic Pathology Archives. Radiographics 2017; 37: 462-483 [PMID: 28287938 DOI: 10.1148/rg.2017160157]

8. Li H, Ren G, Cai R, Chen J, Wu X, Zhao J. A correlation research of Ki67 index, CT features, and risk stratification in gastrointestinal stromal tumor. Cancer Med 2018; 7: 4467-4474 [PMID: 30123969 DOI: 10.1002/cam4.1737]

9. Mei L, Du W, Idowu M, van Mehnren M, Boikos SA. Advances and Challenges on Management of Gastrointestinal Stromal Tumors. Front Oncol 2018; 8: 135 [PMID: 29868467 DOI: 10.3389/fonc.2018.00135]

10. Sanchez-Hidalgo JM, Duran-Martinez M, Molero-Payan R, Rufian-Peña S, Arjona-Sanchez A, Casado-Adam A, Cosano-Alvarez A, Briceno-Delgado J. Gastrointestinal stromal tumours: A multidisciplinary challenge. World J Gastroenterol 2018; 24: 1925-1941 [PMID: 29760538 DOI: 10.3748/wjg.v24.i6.1925]
Rare Tumors GI Group et al. GIST management and challenges in Gulf and Levant countries

10.3748/wjg.v24.i18.1925

Miettinen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 2006; 130: 1466-1478 [PMID: 17090188]

Levy AD, Remotti HE, Thompson WM, Saltz LH, Miettinen M. Gastrointestinal stromal tumors: radiologic features with pathologic correlation. Radiographics 2003; 23: 283-304, 456; quiz 532 [PMID: 12640147 DOI: 10.1148/rad.232025146]

Demetri GD, Benjamin RS, Blankie CD, Blay JY, Casali P, Choi H, Corless CL, Debiec-Rychter M, DeMatteo RP, Eltinger DS, Fisher GA, Fletcher CD, Gronchi A, Hohenberger P, Hughes M, Joensuu H, Judson I, Le Conne A, Maki RG, Morse M, Pappo AS, Pisters PW, Raut CP, Reichardt P, Tyler DS, Van den Abbeele AD, von Mehren M, Wayne JD, Zalberg J; NCCN Task Force. NCCN Task Force report: management of patients with gastrointestinal stromal tumor (GIST)–update of the NCCN clinical practice guidelines. J Natl Compr Canc Netw 2007; 5 Suppl 2: S1-29;quiz S30 [PMID: 17624289]

Charville GW, Longacre TA. Surgical Pathology of Gastrointestinal Stromal Tumors: Practical Implications of Morphologic and Molecular Heterogeneity for Precision Medicine. Adv Anat Pathol 2017; 24: 336-353 [PMID: 28820740 DOI: 10.1097/PAP.0000000000000166]

Wada R, Arai H, Kure S, Peng WX, Naito Z. "Wild type" GIST: Clinicopathological features and clinical practice. Pathol Int 2016; 66: 431-437 [PMID: 27427358 DOI: 10.1111/pin.12431]

Sunes Z, Thway K, Fischer C, Bulusu R, Constantindou A, Benson C, van der Graaf WT, Jones RL. Molecular subtypes of gastrointestinal stromal tumors and their prognostic and therapeutic implications. Future Oncol 2017; 13: 93-107 [PMID: 27660498 DOI: 10.2217/fon-2016-0192]

Yamashita F, Sasatomi E, Kiyama M, Fukumori K, Yano Y, Kato O, Sakai T, Kyornouski K, Hirose N, Yamamoto H, Tokunaga G, Tanaka M, Toyonaga A, Sata M. Radiographic observation of a case of gastrointestinal stromal tumor in stomach. Karume Med J 2001; 48: 233-236 [PMID: 11689040 DOI: 10.2739/kurumemedj.48.233]

Vanucci F, Taibbi A, Picone D, LA Grutta L, Midiri M, Lagalla R, Lo Re G, Bartolotta TV. Imaging of Gastrointestinal Stromal Tumors: From Diagnosis to Evaluation of Therapeutic Response. Anticancer Res 2016; 36: 2639-2648 [PMID: 2727272]

Lanke G, Lee JH. How best to manage gastrointestinal stromal tumor. World J Clin Oncol 2017; 8: 135-144 [PMID: 2843944 DOi: 10.5306/wjco.v8.i2.135]

Belloni M, De Fiori E, Mazzarol G, Curti A, Crosta C. Endoscopic ultrasound and computed tomography in gastric stromal tumors. Radiol Med 2002; 103: 65-73

Stroobants S, Goememine J, Seegers M, Dimitrijevic S, Dupont P, Neyt J, Martins M, Van den Borne B, Cole P, Sciorti E. 18 FDG-poiotom emission tomography for the early prediction of response to advanced soft tissue sarcoma treated with imatinib mesylate (Glivece®). Eur J Cancer 2003; 39: 12-2020 [DOI: 10.1095/so95-8049(G)0073-X]

Heinrich MC, Corless CL, Demetri GD, Blankie CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer S, Fletcher CD, Silberman S, Dimitrijevic S, Fletcher JA. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21: 4342-4349 [PMID: 14664523 DOI: 10.1200/JCO.2003.04.190]

Akahoshi K, Oya M, Koga T, Shirsutchi Y. Current clinical management of gastrointestinal stromal tumors.World J Gastroenterol 2015; 24: 2806-2817 [PMID: 26161201 DOI: 10.3748/wjg.v24.i26.2806]

Lim KT. Surgical treatment of gastrointestinal stromal tumors of the stomach: current status and future perspective. Transl Gastroenterol Hepatol 2017; 2: 104 [PMID: 29354761 DOI: 10.21037/tgh.2017.12.01]

Duffaud F, Le Conne A. Recent advances in managing gastrointestinal stromal tumor. F1000Res 2017; 6: 1689 [PMID: 28928697 DOI: 10.12688/f1000research.11118.1]

Poveda A, del Muro XG, Lopez-Guerrero JA, Martinez V, Romero I, Valverde C, Martín-Poveda A, IV, Petrova VV, Nepomniashchaia SL, Klimov AS. Technical success and short-term results of surgical treatment of gastrointestinal stromal tumors: a single center experience. J Gastrointest Oncol 2014; 5: 336-353 [PMID: 28820749 DOI: 10.3748/wjg.v5.i2.336]

Nishida T, Blay JY, Hirota S, Kitagawa Y, Kang YK. The standard diagnosis, treatment, and follow-up of gastrointestinal stromal tumors based on guidelines. Gastric Cancer 2016; 19: 3-14 [PMID: 26276866 DOI: 10.1007/s10120-015-0526-8]

Thacoor A, Park SI, Dimitrijevic S, Dupont P, Neyt J, Martins M, Van den Borne B, Cole P, Sciorti E. 18 FDG-PET/CT for the early prediction of response to advanced soft tissue sarcoma treated with imatinib mesylate (Glivece®). J Radiother 2017; 24: 233-236 [PMID: 11689040 DOI: 10.2739/kurumemedj.48.233]

Poikus E, Petrik P, Petrik E, Lipnickas V, Stanaitis J, Strupas K. Surgical management of gastrointestinal stromal tumors: a single center experience. Wiadoczke Inne Techni Maloznajwzydne 2014; 9: 71-82 [PMID: 24729813 DOI: 10.5114/witmi.2014.40987]

Koumarianou A, Economopoulos P, Katsanos P, Laschos K, Aparantoni-Dadioti P, Martikos G, Rogdakis A, Tranakis N, Boukovinas I. Gastrointestinal Stromal Tumors (GIST): A Prospective Analysis and an Update on Biomarkers and Current Treatment Concepts. Biomark Cancer 2016; 9: 1-7 [PMID: 26065505 DOI: 10.2147/BIC.S250495]

Bambou KM, DeMatteo RP. Metastascenomy for gastrointestinal stromal tumors. J Surg Oncol 2014; 109: 23-27 [PMID: 2415153 DOI: 10.1002/jso.23451]

Reichardt P, Blay JY, Boukovinas I, Brodowczyk B, Broto JM, Casali PG, Decatris M, Eriksson M, Eltinger DS, Fisher GA, Fletcher CD, Gronchi A, Hohenberger P, Hughes M, Joensuu H, Judson I, Le Conne A, Maki RG, Morse M, Pappo AS, Pisters PW, Raut CP, Reichardt P, Tyler DS, Van den Abbeele AD, von Mehren M, Wayne JD, Zalberg J; NCCN Task Force. NCCN Task Force report: management of patients with gastrointestinal stromal tumor (GIST)–update of the NCCN clinical practice guidelines. J Natl Compr Canc Netw 2007; 5 Suppl 2: S1-29;quiz S30 [PMID: 17624289]

von Mehren M, Randall RL, Benjamin RS, Boles S, Bui MM, Ganjoon KN, George S, Gonzalez RJ, Heslin MJ, Kane JM, Keedy V, Kim E, Koon H, Mayerson J, McCarter M, McGarry SV, Meyer C, Morris ZS, D’Onorrell J, Pappo AS, Paz IB, Petersen IA, Pfeifer JD, Riedel LP, Ruo B, Schuetze S, Tap WD, Wayne JD, Bergman MA, Scavone JL. Soft Tissue Sarcoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2018; 16: 536-563 [PMID: 29752328 DOI: 10.6004/jnccn.2018.0317]
Rare Tumors GI Group et al. GIST management and challenges in Gulf and Levant countries

53

Eur J Cancer 2006; 42:1093-1103 [PMID: 16624552 DOI: 10.1016/j.ejca.2006.01.030]

Vranck H, Scurr M, Hagemeijer A, van Glabbeke M, van Oosterom AT; EORTC Soft Tissue and Bone Sarcoma Group. Vascular permeability and imatinib resistance in gastrointestinal stromal tumor cell lines. J Clin Oncol 2005; 23:1743-1750 [PMID: 15754981 DOI: 10.1200/JCO.2005.01.369]

Wang D, Zhang Q, Blanke CD, Demetri GD, Heinrich MC, Watson JC, Hoffman JP, Okuno S, Kane JM, von Mehren M, Eisenberg BL. Phase II trial of neoadjuvant/adjuvant imatinib mesylate for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumors: long-term follow-up results of Radiation Therapy Oncology Group 0132. Ann Surg Oncol 2012; 19:1074-1080 [PMID: 22020158 DOI: 10.1245/s10434-011-2190-5]

Eisenberg BL, Harris J, Blanke CD, Demetri GD, Heinrich MC, Watson JC, Hoffman JP, Okuno S, Kane JM, von Mehren M. Phase II trial of neoadjuvant/adjuvant imatinib mesylate (IM) for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumors: long-term follow-up of CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol 2008; 26:5360-5367 [PMID: 18955451 DOI: 10.1200/JCO.2008.17.4284]

Zalckberg JR, Verweij J, Baselga J, Heinrich MC, von Mehren M, Eisenberg BL, von Mehren M. Adjuvant imatinib for high-risk gastrointestinal stromal tumors: Results of the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-39 trial. J Clin Oncol 2004; 22:4276-4283 [PMID: 15370669 DOI: 10.1200/JCO.2004.1.64.304]

Ford SJ, Dorr J, Daniel RG, Lipton A, Appella E, Ford J, Eilber FR, Farivar A, Leung DW, Pilch PK, Ratafia CM, Staud JL, Ten Haken RK, Rowinsky EK, War Err, Blay JY, DeMatteo RP. Neoadjuvant imatinib for high-risk GIST: The PERSIST-5 study. J Clin Oncol 2016; 34:244-250 [PMID: 26527782 DOI: 10.1200/JCO.2015.62.9170]

Raut CP, Espat NJ, Maki RG, Araujo DM, Williams TF, Wolf JE, DeMatteo RP. Extended treatment with imatinib (IM) for patients (pts) with high-risk primary gastrointestinal stromal tumor (GIST). The PERSIST-5 study. J Clin Oncol 2017; 35:11096-11099 [DOI: 10.1200/JCO.2017.35.15_suppl.11099]

Corless CL, Ballman KV, Antonescu CR, Kolesnikova V, Maki RG, Pisters PW, Blackstein ME, Blanke CD, Demetri GD, Heinrich MC, von Mehren M, Patel S, McCarter MD, Orazw K, DeMatteo RP. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9091 trial. J Clin Oncol 2014; 32:1563-1570 [PMID: 24638003 DOI: 10.1200/JCO.2013.51.2046]

Joensuu H, Wardelmann E, Sihto H, Eriksson M, Sundby Hall K, Reichardt A, Hartmann JT, Pink D, Cameron S, Hohenberger P, Al-Batran SE, Schlemmer M, Bauer S, Wangerman E, Nilsson B, Sihto H, Bono P, Kallio R, Junnula J, Alvegard T, Reichardt P. Adjuvant Imatinib for High-Risk GI Stromal Tumor: Analysis of a Randomized Trial. J Clin Oncol 2016; 34:244-250 [PMID: 26527782 DOI: 10.1200/JCO.2015.62.9170]

Boye K, Berner JM, Hompland I, Bruland OS, Stoldt S, Sundby Hall K, Bjerkhekagen B, Helmebakk T. Genotype and risk of tumor rupture in gastrointestinal stromal tumour. Br J Surg 2018; 105: e169-e175 [PMID: 29411477 DOI: 10.1002/bjs.10743]

Wang D, Zhang Q, Blanke CD, Demetri GD, Heinrich MC, Watson JC, Hoffman JP, Okuno S, Kane JM, von Mehren M, Eisenberg BL. Phase II trial of neoadjuvant/adjuvant imatinib mesylate for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumors: long-term follow-up results of Radiation Therapy Oncology Group 0132. Ann Surg Oncol 2012; 19:1074-1080 [PMID: 22020158 DOI: 10.1245/s10434-011-2190-5]

Eisenberg BL, Harris J, Blanke CD, Demetri GD, Heinrich MC, Watson JC, Hoffman JP, Okuno S, Kane JM, von Mehren M. Phase II trial of neoadjuvant/adjuvant imatinib mesylate (IM) for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumor (GIST): early results of RTOG 0132/ACRIN 6665. J Surg Oncol 2009; 99:42-47 [PMID: 18942073 DOI: 10.1002/jso.21160]

Krasuski RA, Alter BP, Aviles M, Burt ME, Champouret ML, FItnas GJ, Farrelly M, Ford S, Fornage M, Galski LM, Gershon RL, Goodrich RK, Hackett DJ, Halt J, Harrington DJ, Hauck WW, Iannicelli J, Jensen TR, Johnson JS, Kipnes SM, Kusne S, Leblanc RM, Lee AL, Liapis Ch, Lyons J, Ma P, Marshall PJ, Matthews C, McCollum C, McRae LE, Moskowitz C, Narasek R, Nguyen LT, Nelson DF, Nieves J, Ostrander M, Palmieri T, Parikh D, Pessar SR, Poon A, Reifsnider J, Remmele W, Ropper J, Romero K, Rubenstein A, Satterwhite P, Singla P, Smith C, Sullivan N, Trushin A, Underhill D, Uyemura K, Uzan S, Vadeh EM, Yeh S, Young M, Zavala K, Zelante L. Pathologic and molecular features correlate with long-term outcome after adjuvant Therapy of resected primary GI stromal tumor: the ACOSOG Z9091 trial. J Clin Oncol 2014; 32:1563-1570 [PMID: 24638003 DOI: 10.1200/JCO.2013.51.2046]

Joensuu H, Wardelmann E, Sihto H, Eriksson M, Sundby Hall K, Reichardt A, Hartmann JT, Pink D, Cameron S, Hohenberger P, Al-Batran SE, Schlemmer M, Bauer S, Wangerman E, Nilsson B, Sihto H, Bono P, Kallio R, Junnula J, Alvegard T, Reichardt P. Adjuvant Imatinib for High-Risk GI Stromal Tumor: Analysis of a Randomized Trial. J Clin Oncol 2016; 34:244-250 [PMID: 26527782 DOI: 10.1200/JCO.2015.62.9170]

Raut CP, Espat NJ, Maki RG, Araujo DM, Williams TF, Wolf JE, DeMatteo RP. Extended treatment with imatinib (IM) for patients (pts) with high-risk primary gastrointestinal stromal tumor (GIST). The PERSIST-5 study. J Clin Oncol 2017; 35:11096-11099 [DOI: 10.1200/JCO.2017.35.15_suppl.11099]

Corless CL, Ballman KV, Antonescu CR, Kolesnikova V, Maki RG, Pisters PW, Blackstein ME, Blanke CD, Demetri GD, Heinrich MC, von Mehren M, Patel S, McCarter MD, Orazw K, DeMatteo RP. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: the ACOSOG Z9091 trial. J Clin Oncol 2014; 32:1563-1570 [PMID: 24638003 DOI: 10.1200/JCO.2013.51.2046]

Joensuu H, Wardelmann E, Sihto H, Eriksson M, Sundby Hall K, Reichardt A, Hartmann JT, Pink D, Cameron S, Hohenberger P, Al-Batran SE, Schlemmer M, Bauer S, Wangerman E, Nilsson B, Sihto H, Bono P, Kallio R, Junnula J, Alvegard T, Reichardt P. Adjuvant Imatinib for High-Risk GI Stromal Tumor: Analysis of a Randomized Clinical Trial. JAMA Oncol 2017; 3:602-609 [PMID: 28334365 DOI: 10.1001/jamaoncol.2016.5751]

Boye K, Berner JM, Hompland I, Bruland OS, Stoldt S, Sundby Hall K, Bjerkhekagen B, Helmebakk T. Genotype and risk of tumor rupture in gastrointestinal stromal tumour. Br J Surg 2018; 105: e169-e175 [PMID: 29411477 DOI: 10.1002/bjs.10743]
Rare Tumors GI Group et al. GIST management and challenges in Gulf and Levant countries

54 Mussi C, Schildhaus HU, Gronchi A, Wardemann E, Hohenberger P. Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. *Clin Cancer Res* 2008; 14: 4550-4555 [PMID: 18628470 DOI: 10.1158/1078-0432.CCR-08-0081]

55 Boiko SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB, George S, Trent JC, von Mehren M, Wright JA, Schiffman JD, Raygada M, Pacak K, Meltzer PS, Miettinen MM, Stratakis C, Janeway KA, Helman LJ. Molecular Subtypes of KIT/PDGFRα Wild-Type Gastrointestinal Stromal Tumors: A Report From the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. *JAMA Oncol* 2016; 2: 922-928 [PMID: 26110366 DOI: 10.1001/jamaoncol.2016.0256]

56 Le Cesne A, Ray-Coquard I, Bui BN, Adenis A, Rios M, Bertucci F, Duffaud F, Chevreau C, Cupissol D, Cioffi A, Emile JF, Chabaud S, Pérol D, Blay JY; French Sarcoma Group. Discontinuation of imatinib in patients with advanced gastrointestinal stromal tumours after 3 years of treatment: an open-label multicentre randomised phase 3 trial. *Lancet Oncol* 2010; 11: 942-949 [PMID: 20864406 DOI: 10.1016/S1470-2045(10)70222-9]

57 Patrikidou A, Chabaud S, Ray-Coquard I, Bui BN, Adenis A, Rios M, Bertucci F, Duffaud F, Chevreau C, Cupissol D, Domont J, Pérol D, Blay JY, Le Cesne A; French Sarcoma Group. Influence of imatinib interruption and rechallenge on the residual disease in patients with advanced GIST: results of the BFRI14 prospective French Sarcoma Group randomised, phase III trial. *Ann Oncol* 2013; 24: 1087-1093 [PMID: 23175622 DOI: 10.1093/annonc/mdt557]

58 Raut CP, Posner M, Desai J, Morgan JA, George S, Zahrieh D, Fletcher CD, Demetri GD, Bertagnolli MM. Surgical management of advanced gastrointestinal stromal tumours after treatment with targeted systemic therapy using kinase inhibitors. *J Clin Oncol* 2006; 24: 2325-2331 [PMID: 16710031 DOI: 10.1200/JCO.2005.05.3437]

59 Rutkowski P, Nowacki Z, Nyckowski P, Dziewirski W, Grzesiauskas U, Nasierrowska-Gutmejner A, Krawczewy M, Ruka W. Surgical treatment of patients with initially inoperable and/or metastatic gastrointestinal stromal tumors (GIST) during therapy with imatinib mesylate. *J Surg Oncol* 2006; 93: 304-311 [PMID: 16496358 DOI: 10.1002/jso.20466]

60 Patrikidou A, Domont J, Chabaud S, Ray-Coquard I, Coindre JM, Bui Nguyen B, Adenis A, Rios M, Bertucci F, Duffaud F, Chevreau C, Cupissol D, Pérol D, Emile JF, Blay JY, Le Cesne A; French Sarcoma Group. Long-term outcome of molecular subgroups of GIST patients treated with standard-dose imatinib in the BFRI14 trial of the French Sarcoma Group. *Eur J Cancer* 2016; 52: 173-180 [PMID: 26867836 DOI: 10.1016/j.ejca.2015.10.069]

61 Demetri GD, Wang Y, Wehrle E, Racine A, Nikolova Z, Blanke CD, Joensuu H, von Mehren M. Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumours. *J Clin Oncol* 2009; 27: 3141-3147 [PMID: 19451435 DOI: 10.1200/JCO.2008.20.4818]

62 van Leeuwen RWF, Jansman FGA, Hunfeld NG, Peric R, Reynolds AKL, Imholte AL, Brouwers JRBJ, Aerts JG, van Gelder T, Mathijssen RHJ. Tyrosine Kinase Inhibitors and Proton Pump Inhibitors: An Evaluation of Treatment Options. *Clin Pharmacokinet* 2017; 56: 683-688 [PMID: 28101705 DOI: 10.1007/s40262-016-0503-3]

63 Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J, McArthur G, Judson IR, Heinrich MC, Morgan JA, Desai J, Fletcher CD, George S, Bello CL, Huang X, Baum CM, Casali PG. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. *Lancet* 2006; 368: 1329-1339 [PMID: 17040465 DOI: 10.1016/S0140-6736(06)69446-4]

64 Demetri GD, Garrett CR, Schilfissi P, Shah MH, Verweij J, Leyvraz S, Hurwitz HI, Poussla AL, Le Cesne A, Goldstein D, Paz-Ares L, Blay JY, McArthur GA, Xu QC, Huang X, Harison CS, Tassell V, Cohen DP, Casali PG. Complete longitudinal analyses of the randomized, placebo-controlled, phase III trial of sunitinib in patients with gastrointestinal stromal tumour following imatinib failure. *Clin Cancer Res* 2012; 18: 3170-3179 [PMID: 22661587 DOI: 10.1158/1078-0432.CCR-11-3005]

65 George S, Blay JY, Casali PG, Le Cesne A, Stephenson P, Deprimo SE, Harmon CS, Law CN, Morgan JA, Ray-Coquard I, Tassell V, Cohen DP, Demetri GD. Clinical evaluation of continuous daily dosing of sunitinib malate in patients with advanced gastrointestinal stromal tumour after imatinib failure. *Eur J Cancer* 2009; 45: 1959-1968 [PMID: 19281209 DOI: 10.1016/j.ejca.2009.06.007]

66 Heinrich MC, Maki RG, Corless CL, Antonescu CR, Harlow A, Griffith D, Town A, McKinley A, Oue WB, Fletcher JA, Fletcher CD, Huang X, Cohen DP, Baum CM, Demetri GD. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumour. *J Clin Oncol* 2008; 26: 5352-5359 [PMID: 18955459 DOI: 10.1200/JCO.2007.15.7461]

67 Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, Hohenberger P, Leahy M, von Mehren M, Joensu J, Badalamenti G, Blackstein M, Le Cesne A, Schilfissi P, Maki RG, Baurer S, Nguyen BB, Xu J, Nishida T, Chung J, Kappeler C, Kuss I, Laurent D, Casali PG. GRID study investigators. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. *Lancet* 2013; 381: 295-302 [PMID: 23177515 DOI: 10.1016/S0140-6736(12)65871-7]

68 George S, Wang Q, Heinrich MC, Corless CL, Zhu M, Batyrzynski JE, Morgan JA, Wagner AJ, Choy E, Tap WD, Yap JT, Van den Abbeele AD, Manola JB, Solomon SM, Fletcher JA, von Mehren M, Demetri GD. Efficacy and safety of regorafenib in patients with gastrointestinal stromal tumour following imatinib and sunitinib: a multicenter phase II trial. *J Clin Oncol* 2012; 30: 2401-2407 [PMID: 22649707 DOI: 10.1200/JCO.2011.39.3994]

69 Park SH, Ryu MH, Ryoo BY, Im SA, Kwon HC, Lee SS, Park SR, Kang KY, Kang YK. Sorafenib in patients with metastatic gastrointestinal stromal tumours who failed two or more prior tyrosine kinase inhibitors: a phase II study of Korean gastrointestinal stromal tumour study group. *Invest New Drugs* 2012; 30: 2377-2383 [PMID: 22270258 DOI: 10.1007/s10637-012-9795-9]

70 Kindler HL, Campbell NP, Wroblewski K, Maki RG, D’Adamo DR, Chow WA, Gandara DR, Antonescu C, Stadler WM, Vokes EE. Sorafenib (SOR) in patients (pts) with imatinib (IM) and sunitinib (SU)-resistant (RES) gastrointestinal stromal tumors (GIST): Final results of a University of Chicago Phase II Consortium trial. *J Clin Oncol* 2011; 29: 10009-10009 [PMID: 21292915 suppl 10009]

71 Mir O, Croteau C, Toulmonde M, Cesne AL, Molinard M, Bompas E, Cassier P, Ray-Coquard I, Rios M, Adenis A, Italiano A, Bouché O, Chauzit E, Duffaud F, Bertucci F, Isambert N, Gautier J, Blay JY, Pérol D. PAZOGIST study group of the French Sarcoma Group-Groupe d’Etude des Tumeurs Osseuses (GFSF-GETO). Pazopanib plus best supportive care versus best supportive care alone in advanced gastrointestinal stromal tumours resistant to imatinib and sunitinib (PAZOGIST): a randomised, multicentre, open-label
phase 2 trial. *Lancer Oncol* 2016; 17: 632-641 [PMID: 27068858 DOI: 10.1016/S1470-2045(16)00075-9]

72 Garner AP, Gozgit JM, Amnur R, Vodala S, Schrock A, Zhou T, Serrano C, Eilers G, Zha M, Ketzer J, Wardwell S, Ning T, Song Y, Kohlmann A, Wang F, Clackson T, Heinrich MC, Fletcher JA, Bauer S, Rivera VM. Ponatinib inhibits polyomavirus drug-resistant Kit oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. *Clin Cancer Res* 2014; 20: 5745-5755 [PMID: 25239608 DOI: 10.1181/1078-0332.CCR-14-1397]

73 Heinrich MC, von Mehren M, Demetri GD, Fletcher JA, Sun J, Hodgson JG, Rivera VM, Turner CD, George S. A phase 2 study of ponatinib in patients (pts) with advanced gastrointestinal stromal tumors (GIST) after failure of tyrosine kinase inhibitor (TKI) therapy: initial report. *J Clin Oncol* 2014; 32: 10506-10506 [DOI: 10.1200/jco.2014.32.15_suppl.10506]

74 Treat JC, Watson K, Mehren MV, Samuels BL, Staddon AP, Chey E, Buttrynski JE, Chugh R, Chow WA, Rushing DA, Forscher CA, Baker LH, Schuetze S, Collaboration SARfRt. A phase II study of dasatinib for patients with imatinib-resistant gastrointestinal stromal tumor (GIST). *J Clin Oncol* 2011; 29: 10006-10006 [DOI: 10.1200/jco.2011.29.15_suppl.10006]

75 Farhat F, Othman A, El Baba G, Kattan J. Revealing a cancer diagnosis to patients: attitudes of patients, families, friends, nurses, and physicians in Lebanese-results of a cross-sectional study. *Curr Oncol* 2015; 22: e264-e272 [PMID: 26300877 DOI: 10.3743/22.2351]

76 Assi T, El Rassy E, Tabchi S, Ibrahim T, Moussa T, Chebib R, El Karak F, Farhat F, Chahine G, Nafe F, Ghosn M, Kattan J. Treatment of cancer patients in their last month of life: aimless chemotherapy. *Support Care Cancer* 2016; 24: 1603-1608 [PMID: 26391890 DOI: 10.1007/s00520-015-2959-3]

77 Tabchi S, El Rassy E, Khazaka A, El Karak F, Kourie HR, Chebib R, Assi T, Ghor M, Naamani L, Richa S, Ghosn M, Kattan J. Validation of the EORTC QLQ-C25 questionnaire in Lebanese cancer patients: Is ignorance a bliss? *Qual Life Res* 2016; 25: 1597-1604 [PMID: 26859898 DOI: 10.1007/s11136-015-1201-6]

78 Takeda. A Phase 2 trial of ponatinib in participants with metastatic and/or unresectable gastrointestinal stromal tumor (GIST). In: *ClinicalTrials.gov* [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01874665 ClinicalTrials.gov Identifier: NCT01874665

79 Bauer S. POETIG trial - Ponatinib After ErSisTance to Imatinib in GIST (POETIG). In: *ClinicalTrials.gov* [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT03171389 ClinicalTrials.gov Identifier: NCT03171389

80 Shoushtari AN, D'Angelo SP, Keohan ML, Dickson MA, Gounder MM, Abraham AK, Ernjer JP, Bluth MJ, Ustoyev Y, Conde MM, Streicher H, Takebe Y, Meek J, DeMatteo RP, Schwartz GK, Tap WD, Carvajal RD. Combined KIT and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas. *J Clin Oncol* 2014; 32: 10521-10521 [DOI: 10.1200/jco.2014.32.15_suppl.10521]

81 Mehren MV, Tetzelaff ED, Macaraeg M, Davis J, Agarwal V, Ramachandran A, Heinrich MC. Dose escalating study of crenolanib besylate in advanced GIST patients with PDGFRA Activating mutations. *J Clin Oncol* 2016; 34: 11010-1110 [DOI: 10.1200/jco.2016.34.15_suppl.11010]

82 Blueprint Medicines Corporation. (NAVIGATOR) study of BLU-285 in patients with gastrointestinal stromal tumors (GIST) and other relapsed and refractory solid tumors. In: *ClinicalTrials.gov* [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT02508532 ClinicalTrials.gov Identifier: NCT02508532

83 Heinrich M, von Mehren M, Jones RL, Bauer S, Kang YK, Schofski P, Eksens F, Serrano C, Cassier P, Mir O, Tap WD, Rutkowski P, Trent J, Patel S, Chowla SP, Zhou T, Lauer T, Schmidt-Kittler O, Mamlok KK, Wolf BB, George S. Avapritinib is highly active and well-tolerated in patients (PTS) with advanced GIST driven by diverse variety of oncogenic mutations in KIT and PDGFRA. Connective Tissue Oncology Society. 2018; Annual Meeting; 2018 Nov 15; Rome, Italy

84 George S, Heinrich M, Chi P, Razak A, von Mehren M, Gordon M, Ghanou K, Somaiah N, Trent JC, George S, Heinrich M, Chi P, Razak A, von Mehren M, Gordon M, Ghanou K, Somaiah N, Trent JC, Rodon Ahnert J, Wolf B, Ruiz-Soto R, Rosen O, Jank J. Initial results of phase I study of DCC-2618, a broad-spectrum KIT and PDGFRa inhibitor, in patients (pts) with gastrointestinal stromal tumor (GIST) by number of prior regimens. ESMO Congress. 2018; Ann Oncol, 2018: viii576-viii595

85 Novartis. A dose-finding study of a combination of imatinib and BYL719 in the treatment of 3rd line GIST patients. In: *ClinicalTrials.gov* [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01735968 ClinicalTrials.gov Identifier: NCT01735968

86 Novartis. A dose-finding study of a combination of imatinib and BYL719 in the treatment of 3rd line GIST patients. In: *ClinicalTrials.gov* [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01468688 ClinicalTrials.gov Identifier: NCT01468688

87 Blay J-Y, Labouret NH, Creput C, Mazieres J, Nowak F, Roux T, Louchard X, Foncalie J, Lejeune C, Charles J, Dalle S, Maubec E, Leboulleux S, Malka D, Arnulf B, Flechon A, Coquard IR, Perol D, Pezzella V, Jimenez M, Buzyn A. Biomarker-driven access to vemurafenib in BRAF-positive cancers: Second study of the French National AcSe Program. *J Clin Oncol* 2016; 34: TPS11620-TPS11620 [DOI: 10.1200/jco.2016.34.15_suppl.TPS11620]

88 Chi P, Qin L-X, D'Angelo SP, Dickson MA, Gounder MM, Keohan ML, Shoushtari AN, Conde MM, Komen T, Fruinoff A, DeMatteo RP, Singer S, Hwang AE, DeMatteo RP, Singer S, Hwang AE, DeMatteo RP, Singer S, Hwang AE, Antonescu CR. A phase IIb randomized study of MEK162 (binimetinib [BNI]) in combination with imatinib in patients with advanced gastrointestinal stromal tumor (GIST). *J Clin Oncol* 2015; 33: 10507-10507 [DOI: 10.1200/jco.2015.33.15_suppl.10507]

89 Nokihara H, Yamamoto N, Nakamichi S, Wakui H, Yamada Y, Nguyen L, Tamura T. O2–026A phase 1 study of crenolanib besylate in advanced gastrointestinal stromal tumor (GIST). *Clin Cancer Res* 2015; 21: 5745-5755 [DOI: 10.1158/1078-0332.CCR-14-1397]

90 European Organisation for Research and Treatment of Cancer – EORTC. Ph I CABOGIST in GIST. In: *ClinicalTrials.gov* [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT02216578 ClinicalTrials.gov Identifier: NCT02216578

91 Memorial Sloan Kettering Cancer Center. BG3938 in combination with imatinib mesylate in patients with untreated advanced gastrointestinal stromal tumor (GIST). In: *ClinicalTrials.gov* [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT02257541 ClinicalTrials.gov Identifier: NCT02257541

92 Mehren MV, George S, Heinrich MC, Schuetze S, Belinsky MG, Janeway KA, Rink L, Ganjoo KN, Yu JQ, Yap JT, Wright JJ, Abbece ADVD. Results of SARC 022, a phase II multicenter study of linifanib in pediatric and adult wild-type (WT) gastrointestinal stromal tumors (GIST). *J Clin Oncol* 2014; 32: 10507-
Shapiro GI, Kwak E, Dezube BJ, Yule M, Ayrton J, Lyons J, Mahadevan D. First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. *Clin Cancer Res* 2015; 21: 87-97 [PMID: 25336693 DOI: 10.1158/1078-0432.CCR-14-0979]

Astex Pharmaceuticals, Inc. A study to investigate the safety and efficacy of AT13387, alone or in combination with imatinib, in patients with GIST. In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01294202 ClinicalTrials.gov Identifier: NCT01294202

Reilley MJ, Bailey A, Subbiah V, Janku F, Naing A, Falchook G, Karp D, Pha-Paul S, Tsimeridou A, Fu S, Lim J, Bean S, Bass A, Montez S, Vence L, Sharma P, Allison J, Meric-Bernstam F, Hong DS. Phase I clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. *J Immunother Cancer* 2017; 5: 35 [PMID: 28428884 DOI: 10.1186/s40425-017-0238-1]

Bergonié I. Efficacy and safety of PD-0332991 in patients with advanced gastrointestinal stromal tumors refractory to imatinib and sunitinib. In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://ClinicalTrials.gov/show/NCT01907607 ClinicalTrials.gov Identifier: NCT01907607
