Vortex Lattice Melting and H_{c2} in underdoped YBa$_2$Cu$_3$O$_y$

B. J. Ramshaw, 1 James Day, 1 Baptiste Vignolle, 2 David LeBoeuf, 2 P. Dosanjh, 1 Cyril Proust, 2, 3 Louis Taillefer, 4, 3 Ruixing Liang, 1, 3 W. N. Hardy, 1, 3 and D. A. Bonn 1, 3

1 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada, V6T 1Z1
2 Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-INSA-UJF-UPS, Toulouse, France
3 Canadian Institute for Advanced Research, Toronto, Canada
4 Département de Physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

(Dated: June 29, 2012)

Vortices in a type-II superconductor form a lattice structure that melts when the thermal displacement of the vortices is an appreciable fraction of the distance between vortices. In an anisotropic high-T_c superconductor, such as YBa$_2$Cu$_3$O$_y$, the magnetic field value where this melting occurs can be much lower than the mean-field critical field H_{c2}. We examine this melting transition in YBa$_2$Cu$_3$O$_y$ with oxygen content y from 6.45 to 6.92, and we perform the first quantitative analysis of this transition in the cuprates by fitting the data to a theory of vortex-lattice melting. The quality of the fits indicates that the transition to a resistive state is indeed the vortex lattice melting transition, with the shape of the melting curves being consistent with the known change in penetration depth anisotropy from underdoped to optimally doped YBa$_2$Cu$_3$O$_y$. We establish these fits as a valid technique for finding $H_{c2}(T=0)$ from higher temperature data when the experimentally accessible fields are not sufficient to melt the lattice at zero temperature (near optimal doping). From the fits we extract $H_{c2}(T=0)$ as a function of hole doping. The unusual doping dependence of $H_{c2}(T=0)$ points to some form of electronic order competing with superconductivity around 0.12 hole doping.

I. INTRODUCTION

Cuprate high-T_c superconductors are of great interest not only because of their high transition temperatures, but also because strong-correlation physics gives rise to peculiar normal-state properties. Ironically, however, the strength of the superconductivity in these high-T_c materials is what interferes with measurement of the normal state properties at low temperature. Applying high magnetic fields can overcome this and has led to the discovery of a small Fermi surface in underdoped YBa$_2$Cu$_3$O$_y$ via quantum oscillation measurements in pulsed fields. This discovery prompted a large experimental survey of the transport and thermodynamic properties of YBa$_2$Cu$_3$O$_y$ in high fields. The questions remain as to whether the high fields are revealing the normal-state properties of YBa$_2$Cu$_3$O$_y$, or are instead exposing a qualitatively different field-induced ground state, or whether one might still be in a regime dominated by superconducting pairing and the presence of vortices.

The idea of high magnetic fields revealing the normal state in cuprate superconductors is a contentious one, in part because the phase diagram of the cuprates differs qualitatively from that of conventional type-II superconductors. Owing to the short coherence length, low superfluid phase stiffness, and strong anisotropy, fluctuations play a dominant role in the phase diagram. There is evidence for 3D-XY critical fluctuations below and above T_c. Previous transport measurements on several cuprate compounds have shown that reaching the resistive state requires very high magnetic fields, and that the onset of resistivity as a function of field and temperature does not follow the conventional H_{c2} curve derived from Ginzburg-Landau theory, as it does in more conventional type-II superconductors. Instead, as is expected for a superconductor governed by strong thermal fluctuations, a vortex melting transition occurs with an extensive crossover regime to the normal state. Some Nernst effect experiments have been taken as evidence for the presence of superconducting pairing far above T_c, even in strong magnetic fields. With this in mind, it is important to consider at which field scale is superconductivity completely suppressed and the normal state recovered, especially with regard to quantum oscillation experiments which are purported to probe the “normal state” Fermi surface. In this paper we present, for the first time in the cuprates, a detailed comparison of the melting transition in YBa$_2$Cu$_3$O$_y$ with the theory of vortex-lattice melting.

II. THEORY

The thermodynamic critical field H_c is the field at which superconductivity is destroyed in a type-I superconductor, and is directly related to the condensation energy of the superconducting ground state. In a type-II superconductor the magnetic field can penetrate the sample at a field lower than H_c. At this field, H_{c1}, the magnetic field penetrates the superconductor in the form of vortices, with each vortex being supercurrent running around a normal state core and containing a quantum of magnetic flux. The cores of these vortices, whose size is of order the superconducting coherence length ξ_0, are in the normal state; outside of the vortex cores, the strength of the magnetic field decays over the length scale of the penetration depth λ which, for strongly type-II super-
conductors such as the cuprates, is much larger than the coherence length. These vortices can form a two-dimensional lattice perpendicular to the applied field (a “vortex lattice”) and the lattice spacing shrinks in size as the magnetic field is increased. As long as the vortices remain pinned, the zero-resistance property is maintained in the material. When the vortex cores overlap at a second field scale H_{c2}, superconductivity is destroyed. In an isotropic, low-T_c type-II superconductor, such as Nb$_3$Sn, resistivity sets in at H_{c2} and the diamagnetic signal of superconductivity completely disappears. In terms of the mean-field Ginzburg-Landau coherence length ξ_0, this field scale is

$$\mu_0 H_{c2}(T=0) = \frac{\Phi_0}{2\pi \xi_0^2},$$

where Φ_0 is the flux-quantum in SI units ($H_{c2}(T=0)$ will henceforth be $H_{c2}(0)$).

The situation is more complicated in high-T_c materials, where the vortex lattice can melt into a vortex liquid well below H_{c2}. The Lindemann criterion for melting requires the thermal displacement of a lattice to be some fraction (defined c_L) of the average lattice constant. Using the Lindemann criterion for a vortex lattice, Houghton et al. [10] have shown that, because of the large anisotropy in the cuprates, the vortex lattice in a strongly type-II superconductor with a high T_c can melt at field values B_m well below H_{c2} for intermediate temperatures (away from 0 K and T_c). In these materials, H_{c2} represents a crossover from a vortex-liquid to the normal state. In the traditional picture the melting field B_m and $\mu_0 H_{c2}$ are equal at zero temperature, since there are no thermal fluctuations at zero temperature to melt the vortex lattice. The presence of strong quantum fluctuations could result in a vortex liquid persisting down to zero temperature. However, in order to compare our experimental data with the theory of vortex lattice melting, we use the assumption made by Houghton et al. [10], and others that $B_m(0) = \mu_0 H_{c2}(0)$.

Using the notation of Blatter et al. [13], the melting transition field B_m is given implicitly by

$$\frac{\sqrt{B_m(t)}}{1-b_m(t)} = t \left[\frac{4(\sqrt{2}-1)}{1-b_m(t)} + 1 \right] = 2\pi c_L^2 \sqrt{G_i},$$

The reduced field variable is $b_m = B_m/\mu_0 H_{c2}$, and $t = T/T_c$ is the reduced temperature. The Ginzburg number G_i, on the right hand side of Equation 2 is given by

$$G_i = \frac{1}{2} \left[\frac{k_B T_c \gamma}{\mu_0} \frac{(\mu_0 H_{c2}(T=0))^2 \xi_0^2}{\lambda_c^2} \right]^2$$

$$\approx (9.225 \times 10^8 [\text{Wb}^{-1}\text{K}^{-1}] \times \mu_0 H_{c2}(0) T_c \lambda_{ab} \lambda_c^2,$$

where γ is the anisotropy ratio $\gamma \equiv \lambda_{ab}/\lambda_c$, and the definition $H_{c2}(0) = \frac{\pi \lambda_{ab}^2(\mu_0 H_{c2}(T=0))^2}{\Phi_0}$ has been used (λ_{ab} and λ_c are the penetration depths parallel and perpendicular to the \hat{a}-\hat{b}-plane at zero temperature). As emphasized by Blatter et al. [13], this Ginzburg number should be thought of as a useful collection of parameters, and not as a number describing the width of fluctuations around T_c, as it is in more three-dimensional superconductors. The Lindemann number c_L appearing on the right hand side of Equation 2 represents the fraction of the vortex lattice parameter, $a_v \equiv \sqrt{\gamma T_c}$, that the thermal displacement must reach in order for the vortex lattice to melt. Attempts have been made to calculate c_L, with values between 0.2 and 0.4 obtained for the cuprates, depending on the specific model (see Blatter et al. [13] for a review), but c_L is probably better left as a fit parameter.

III. EXPERIMENT

All of the samples used in this study were fully-detwinned, single-crystal YBa$_2$Cu$_3$O$_y$, grown in barium zirconate crucibles and annealed in oxygen to the desired concentration. Gold contacts were evaporated onto the a-b faces for a four-point c-axis resistivity geometry, and the gold was partially diffused into the sample near 500°C to obtain sub-ohm contacts. The chain oxygen was then ordered into superstructures (ortho-II for YBa$_2$Cu$_3$O$_{6.45}$ through YBa$_2$Cu$_3$O$_{6.59}$, ortho-VIII for YBa$_2$Cu$_3$O$_{6.67}$, ortho-III for YBa$_2$Cu$_3$O$_{6.75}$, and ortho-I for YBa$_2$Cu$_3$O$_{6.86}$ and YBa$_2$Cu$_3$O$_{6.92}$) by annealing the samples just below the superstructure transition temperature. Figure 1 shows a typical set of c-axis resistivity curves up to 60 tesla, from 1.5 to 200 K for YBa$_2$Cu$_3$O$_{6.59}$. We define the resistive vortex-melting transition as the magnetic field where the resistance is 1/100th of its value at 60 tesla. The definition of B_m from resistivity curves is somewhat uncertain because of the width of the resistive transition (see upper panel of Figure 2). An alternative definition would be the intersection of a line tangent to the steepest part of the resistive transition with the temperature axis. This would lead to small offsets (one tesla at most) in B_m, but would not otherwise affect the conclusions of this paper. However, it is important that a consistent definition across different doping levels be used.

The upper panel of Figure 2 shows the vortex lattice melting transition from 1.2 K up to T_c for YBa$_2$Cu$_3$O$_{6.59}$, one of the underdoped samples in which the melting transition is accessible even at low temperatures. The concave upwards shape is characteristic of a vortex melting transition, as seen before in YBa$_2$Cu$_3$O$_y$ and in other cuprates and differs qualitatively from the concave downwards curvature of $H_{c2}(T)$ in conventional superconductors. This form has been observed in a number of cuprates and but a systematic comparison to Equation 2 across the underdoped regime of the cuprates has not been performed. Here we present data for YBa$_2$Cu$_3$O$_y$ from oxygen content 6.45 to 6.92, with T_c...
Resistance ranging from 44.5 to 93.5 K, and identify trends that arise as a function of doping. Characteristic curves for several other dopings are shown in Figure 3, all with an upwards curvature, although that shape becomes less pronounced for the higher T_c samples.

Equation 2 can be expanded about T_c and solved for B_m as shown in Blatter et al.[13] but if the full temperature range from 1.5 K to T_c is to be used then it is more accurate to fit to the full implicit expression for B_m. The use of Equation 2 requires both the in and out-of-plane zero-temperature penetration depths, as well as the T_c: these values are also listed along with the hole doping (estimated using Liang et al.[26] in Table 1. The in-plane penetration depth values, λ_{ab}, come from electron-spin resonance (ESR) measurements[21] and from muon-spin rotation experiments[22] both performed on comparable YBa$_2$Cu$_3$O$_y$ crystals grown at UBC. In the case of the ESR values, the geometric mean of λ_a and λ_b was taken. Out-of-plane penetration depth values, λ_c, come from infrared reflectance measurements[23] also performed on UBC crystals. Interpolated values for the penetration depth were used when the exact doping values were not available. The penetration depth values and the interpolation are shown in the upper panel of Figure 4.

With λ_c, λ_{ab}, and T_c experimentally determined, the data at each doping can be fit using only two parameters: c_L and $H_{ab}(0)$. The fits in the lower panel of Figure 2 and in Figure 3 clearly show that three-dimensional vortex melting describes the in-field resistive transition in YBa$_2$Cu$_3$O$_y$ from $y = 6.45$ to 6.92. The penetration depth anisotropy, $\gamma = \lambda_{ab}/\lambda_c$, changes from ~ 50 at 6.45 to ~ 16 at 6.92: this results in decreased curvature of the melting line as oxygen content (and hole doping) increases. This is the same behaviour seen in several different cuprates of varying anisotropy, reported in Ando et al.[6]. The c_L and $H_{ab}(0)$ values extracted this way are given in Table 1 for all of the dopings measured. The fact that the Lindemann number remains relatively constant as a function of doping means that the shape of the melting curve is determined primarily by the penetration depths, which are becoming less anisotropic as hole doping increases. The Lindemann number and the penetration depths appear only as the ratio $\lambda_{ab}^2/\lambda_c^3$ in Equation 2, and we plot this ratio in the lower panel of Figure 4. The increase of $\lambda_{ab}^2/\lambda_c^3$ with hole doping is what is controlling the changing curvature as a function of doping. With this parameter setting the shape, $H_{ab}(0)$ corresponds to the $T = 0$ intercept of the melting curve.

It should be emphasized that in Equation 2

$$\lim_{T \rightarrow 0} B_m(T) = \mu_0 H_{ab}(0),$$

and so the values of $H_{ab}(0)$ derived from fits to Equation 2 are determined mostly by the zero-temperature intercept of the data for B_m vs. T, and are essentially independent of the penetration depth values chosen. The penetration depths and the Lindemann number always enter Equation 2 as the ratio $\lambda_{ab}^2/\lambda_c^3$, and so errors in the
phase diagram of YBa$_2$Cu$_3$O$_{6+y}$ is close to stoichiometry. This disorder pushes the depinning transition away from the upper panel of Figure 4. The uncertainties come from the width of the resistive transition and the proximity of the lowest data point to $T = 0$ K. The hole doping is obtained from the T_c curve, using Equation 3 and 4.

All of the data points were acquired in the same manner as described in the caption of Figure 2.

The extracted values for $H_{c2}(0)$ and c_L as obtained by fitting the vortex lattice melting curves to Equation 2 for ξ_0 and $\mu_0H_{c2}(0)$, c_L are plotted with the phase diagram of YBa$_2$Cu$_3$O$_y$ in Figure 5 and show an anomaly around 0.12 hole doping. The solid blue line in Figure 5 is the function

$$1 - T_c/T_c^{max} = 82.6(p - 0.16)^2,$$

where T_c^{max} is the maximum T_c of the material (equal to 94.3 K for YBa$_2$Cu$_3$O$_y$). This function has been found to describe T_c as a function of p in the cuprates, except for the suppression of T_c around 1/8th hole doping. The green circles in Figure 5 are the absolute difference between the actual T_c and the fit of Equation 6, and the suppression of T_c is clearly correlated with a suppression of $H_{c2}(0)$. Suppression of the melting transition in this region was reported for a few different doping levels in LeBoeuf et al. (20).

IV. DISCUSSION

The suppression of T_c in the underdoped region of the phase diagram was mapped in detail by Liang et al. (20). In the same work, Liang et al. correlated the c-axis lattice parameter with the hole doping of the copper-oxygen planes, showing a smooth evolution of hole doping with increased oxygen content. This demonstrates that the suppression of T_c is not due to some peculiarity of the copper-oxygen chain doping mechanism in YBa$_2$Cu$_3$O$_y$, but is in fact inherent to the electronic properties of the material. It was supposed that the suppression of T_c may be due to a competition of superconductivity with stripe formation, as has been demonstrated explicitly in the lanthanum cuprates (24).

The phase diagram in Figure 5 shows a clear correlation between the suppression of T_c near 0.12 hole doping and a suppression in the $T = 0$ melting field and hence a suppression of $H_{c2}(0)$. This further strengthens...
the case that the anomaly in T_c is related to a weakening of superconductivity. The corresponding maximum in coherence length—recall that $\xi_0 \propto [H_{c2}(0)]^{-1/2}$—has also been seen in μSR26 and in the fluctuation-magnetoconductance20–22.

Recent NMR28 and x-ray diffraction29–31 experiments have indicated the possibility of charge order in underdoped YBa$_2$Cu$_3$O$_y$. In all three x-ray diffraction experiments, the charge order was seen to drop in intensity below T_c. Additionally, Chang \textit{et al.}30 found that the intensity of the charge-order peaks could be increased with an applied magnetic field below T_c. These experiments give further evidence for a close competition between superconductivity and the charge ordered state. This is in agreement with the minimum in $H_{c2}(0)$ we observe near 0.12 hole doping.

V. CONCLUSION

The onset of finite resistivity in a magnetic field coincides with the vortex melting transition in YBa$_2$Cu$_3$O$_y$. This melting transition can be substantially below mean-field H_{c2} at temperatures between 0 K and T_c.12 Using a Lindemann criterion for melting produces good agreement between theory and experiment, with a Lindemann number c_L between 0.3 and 0.4. These values are consistent with theoretical predictions, which vary between 0.2 and 0.4 for highly anisotropic materials.13 Because this model agrees well with the data across such a wide range of dopings (and anisotropies) where $H_{c2}(0)$ is experimentally accessible, it is reasonable to assume that the extrapolations to zero temperature at higher doping levels gives a reasonable determination of $H_{c2}(0)$.

Within the framework we used for flux-line-lattice melting7,12,13 B_m is required to approach $\mu_0 H_{c2}$ as $T \to 0$. The agreement between our data and this theory suggests that $\mu_0 H_{c2}(0) = B_m(0)$, in contrast to previous suggestions.9,22,34 This means that the quantum oscillations seen in underdoped YBa$_2$Cu$_3$O$_y$ would occur in a state free of vortices (superconducting fluctuations may still be present35 of course, as detected in the Nernst signal36 for example.) This absence of vortices is consistent with the lack of a field-dependent scattering term needed to fully describe the quantum oscillations.37

Below optimal doping, $H_{c2}(0)$ is rapidly suppressed with decreasing hole doping, reaching a minimum of 24.5 tesla at $p = 0.116$ holes. At lower hole doping $H_{c2}(0)$ recovers—even as T_c continues to decrease—indicating the presence of a phase that competes with superconductivity, a phase which is strongest between 0.11 and 0.13 holes.

VI. ACKNOWLEDGEMENTS

The authors acknowledge support from the Canadian Institute for Advanced Research, the Natural Sciences
and Engineering Research Council of Canada, the Canada Foundation for Innovation, and Euromagnet II.

L.T. Acknowledges a Canada Research Chair and Fonds Québécois de la Recherche sur la Nature.

1. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007).
2. S. Kamal, D. A. Bonn, N. Goldenfeld, P. J. Hirschfeld, R. Liang, and W. N. Hardy, Phys. Rev. Lett. 73, 1845 (1994).
3. V. Pasler, P. Schweiss, C. Meingast, B. Obst, H. Wühl, A. I. Rykov, and S. Tajima, Phys. Rev. Lett. 81, 1904 (1998).
4. H. Xu, S. Li, S. M. Anlage, C. J. Leob, M. C. Sullivan, K. Segawa, and Y. Ando, Phys. Rev. B 80, 104518 (2009).
5. R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. Lett. 76, 835 (1996).
6. Y. Ando, G. S. Boebinger, A. Passner, L. F. Schneemeyer, T. Kimura, M. Okuys, S. Watauchi, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa, and S. Uchida, Phys. Rev. B 60, 12475 (1999).
7. D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991).
8. H. Safar, P. L. Gammel, D. A. Huse, D. J. Bishop, J. P. Rice, and D. M. Ginsberg, Phys. Rev. Lett. 69, 824 (1992).
9. Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).
10. A. A. Abrikosov, Soviet Physics JETP-USSR 5, 1174 (1957).
11. All formulae in this paper have been converted to SI units. Factors of \(\mu_0 \) that may seem redundant, such as in Equation 3 and Equation 4, have been left un-cancelled in order to keep the conversion to SI units transparent.
12. A. Houghton, R. A. Pelcovits, and A. Sudbo, Phys. Rev. B 40, 6763 (1989).
13. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).
14. G. C. Kim and Y. C. Kim, Applied Superconductivity 4, 151 (1996).
15. R. Liang, D. Bonn, and W. Hardy, Physica C: Superconductivity 304, 105 (1998).
16. B. Ramshaw, Shubnikov-de Haas Measurements and the Spin Magnetic Moment of \(\text{YBa}_2\text{Cu}_3\text{O}_y \), Ph.D. thesis, University of British Columbia (2012).
17. M. Von Zimmermann, J. Schneider, T. Frello, N. Andersen, J. Madsen, M. Kall, H. Poulsen, R. Liang, P. Dosanjh, and W. Hardy, Physical Review B 68, 104515 (2003).
18. Lake, B and Ronsnow, HM and Christensen, N and Aeppli, G and Lefmann, K and McMorrow, DF and Vorderwissh, P and Smeibidl, P and Mangkorntong, N and Sasaigawa, T and Nohara, M and Takagi, H and Mason, TE, Nature 415, 299 (2002).
19. D. LeBoeuf, N. Doiron-Leyraud, B. Vignolle, M. Sutherland, B. J. Ramshaw, J. Levallois, R. Daou, F. Laliberté, O. Cyr-Choinière, J. Chang, Y. J. Jo, L. Balicas, R. Liang, D. A. Bonn, W. N. Hardy, C. Proust, and L. Taillefer, Phys. Rev. B 83, 054506 (2011).
20. R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 73, 180505 (2006).
21. T. Perez-Barnea, P. J. Turner, R. Harris, G. K. Mullins, J. S. Bobowski, M. Raussepp, R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 69, 184513 (2004).
22. J. E. Sonier, J. H. Brewer, R. F. Kiedl, D. A. Bonn, S. R. Dunsiger, W. N. Hardy, R. Liang, W. A. MacFarlane, R. I. Miller, T. M. Riseman, D. R. Noakes, C. E. Stronach, and M. F. White, Phys. Rev. Lett. 79, 2875 (1997).
23. C. Homes, T. Timusk, D. Bonn, R. Liang, and W. Hardy, Physica C: Superconductivity 254, 265 (1995).
24. J. Tranquada, B. Sternlieb, J. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
25. J. E. Sonier, S. A. Sabok-Sayr, F. D. Callaghan, C. V. Kaiser, V. Pacradouni, J. H. Brewer, S. L. Stubbs, W. N. Hardy, D. A. Bonn, R. Liang, and W. A. Atkinson, Phys. Rev. B 76, 134518 (2007).
26. In both of these experiments, the peak in coherence length was reported near oxygen 6.70, which would appear to be above where the peak occurs in Figure 5. However, the oxygen content values reported may be shifted due to the different standards used for determining zero chain oxygen content, so that \(T_c \) is a better indicator of the hole doping. The peak in Figure 5 of Ando and Segawa appears near \(T_c = 60.5 \) K, with the next data point at \(T_c = 69.5 \) K. The peak in Figure 5 of this current work occurs near \(T_c = 64.5 \) K; these peaks are therefore consistent with each other. Similarly for Sonier et al. using \(T_c \) as a means of computing hole doping reveals that their peak in \(\xi_c \) corresponds to the same doping as our minimum in \(H_{c2}(0) \).
27. Y. Ando and K. Segawa, Phys. Rev. Lett. 88, 167005 (2002).
28. T. Wu, H. Mayaffre, S. Kraemer, M. Horvatic, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M.-H. Julien, Nature 477, 191 (2011).
29. G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa, C. Mazzoli, N. B. Brooks, G. M. De Luca, A. Frano, D. G. Hawthorn, F. He, T. Loew, M. M. Sala, D. C. Peets, M. Saluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke, B. Keimer, and L. Braicovich, Science 337, 821 (2012).
30. J. Chang, A. T. Blackburn, N. B. Holmes, J. Christensen, J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmerman, E. M. Forgan, and S. M. Hayden, Nature Physics (2012), 10.1038/nphys2456.
31. A. J. Achkar, R. Sutarto, X. Mao, P. He, A. Frano, S. Blanco-Canosa, M. Le Tacon, G. Ghiringhelli, L. Braicovich, M. Minola, M. Moretti Sala, C. Mazzoli, R. Liang, D. A. Bonn, W. N. Hardy, B. Keimer, G. A. Sawatzky, and D. G. Hawthorn, Phys. Rev. Lett. 109, 167001 (2012).
32. Y. Wang, N. P. Ong, Z. A. Xu, T. Kakeshita, S. Uchida, D. A. Bonn, R. Liang, and W. N. Hardy, Phys. Rev. Lett. 88, 257003 (2002).
33. Y. Wang, S. Ono, Y. Onose, G. Gu, Y. Ando, Y. Tokura, S. Uchida, and N. P. Ong, Science 299, 86 (2003).
34. S. C. Riggs, O. Vafek, J. B. Kemper, J. B. Betts, A. Migliori, F. F. Balakirev, W. N. Hardy, R. Liang, D. A. Bonn, and G. S. Boebinger, *Nature Physics* **7**, 332 (2011).

35. J. Chang, N. Doiron-Leyraud, O. Cyr-Choinière, G. Grissonnanche, F. Laliberté, E. Hassinger, J.-P. Reid, R. Daou, S. Pyon, T. Takayama, H. Takagi, and L. Taillefer, *Nature Physics* **8**, 751–756 (2012).

36. J. Chang, R. Daou, C. Proust, D. LeBoeuf, N. Doiron-Leyraud, F. Laliberté, B. Pingault, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, H. Takagi, A. B. Antunes, I. Sheikin, K. Behnia, and L. Taillefer, *Phys. Rev. Lett.* **104**, 057005 (2010).

37. B. J. Ramshaw, B. Vignolle, J. Day, R. Liang, W. N. Hardy, C. Proust, and D. A. Bonn, *Nature Physics* **7**, 234 (2011).