Fourier Transform Infrared Spectroscopy Analysis of *Allium sativum* L. and *Nymphaea lotus* L.

Adenola Oluwasegun Jesse

Microbiology Department, Federal University of Technology, Akure, Nigeria.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJACR/2020/v6i230155

Editor(s):

1. Dr. Cheikh Sall, University of Thies, Senegal.
2. Dr. Azhari Hamid Nour, University Malaysia Pahang, Malaysia.
3. Dr. Endang Tri Wahyuni, Gadhah Mada University, Indonesia.

Reviewers:

1. B. Eswari, Sree Vidyanikethan Degree College, India.
2. Prasad Y. Lamrood, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/57610

ABSTRACT

The use of Fourier Transforms Infrared Spectroscopy (FTIR) in screening secondary metabolites provides valuable information on qualitative, quantitative and the pattern of the biologically active compounds. The present study was carried out to identify functional groups present in water, methanol and n-hexane extracts of *Allium sativum* and *Nymphaea lotus*. It was revealed that *Allium sativum* and *Nymphaea lotus* possess numerous secondary metabolites (*A. sativum* L. (isothiocynate, acid halide, conjugated aldehyde, imine/oxime, halo compound, conjugated amine, aliphatic primary amine, aldehyde, anhydride, α,β-unsaturated ketone, carboxylic acid, nitro compound, aromatic ester) and *N. lotus* L. (aliphatic primary amine, halo compound, anhydride, vinyl ether, cabocyclic acid, cyclic alkene, unsaturated ketone, aldehyde, aliphatic primary amine, aldehyde, alkane, benzene derivative, sulphide, alkene, akyr aryl ether, sulphonyl chloride, δ-lactone, imine/oxime, thiocyanate, amine salt, esters, alkene, nitro compound, sulphate, sulphone, akyr aryl ether, aromatic ester, fluoro compound, amine salt, sulphonyl chloride, tertiary alcohohol, α,β-unsaturated ketone, alkyne, allene, sulfonic acid, α,β-unsaturated ester, aliphatic primary amine, amine, sulphonyl chloride, vinyl ether, aromatic amine, aliphatic ketone, isothiocyanate, thiocynate, conjugated alkene and anhydride)) that may be biologically active which could be useful in production of antimicrobials and other medicinal products that can be of high benefits in proffering reliable alternative medicine to human and animal diseases.
1. INTRODUCTION

Garlic (*Allium sativum* L.) is a common spice with many health benefits, mainly due to its diverse bioactive compounds, such as organic sulfides, saponins, phenolic compounds, and polysaccharides. Garlic is commonly consumed and has a long history of being utilized as a traditional medicine in China [1]. Garlic is one of the universal plants with great healing power and an ability to protect the human body from a wide variety of diseases. It can boost the immune system to fight off potential disease and maintain health [2], has the ability to stimulate the lymphatic system which helps in removal of waste products from the body, it is an effective antioxidant that helps in eradicating free radicals that may damage the cells. Garlic also helps in preventing many kinds of cancer, heart disease, strokes and some viral infections. The sulfur-containing compounds present in garlic exert protection to human body by stimulating the production of certain beneficial enzymes [2]. The garlic serves as a potent source for discovery and production of new beneficiary drugs to mankind. One of the sulfur-containing compounds, Allinigen converted to the anti-microbial active alliinupon cutting of bruising of a bulb. Ajoene, a secondary degradation product of allin presumed to be the most active compound responsible for the antithrombotic activity [2]. Garlic is proved to be effective against gastrointestinal neoplasias, blood clots (antiplatelet action) due to the presence of alliin and ajoene which have fibrinolytic activity [3]. *N. lotus* a second plant of this study is an important component of Egyptian vascular aquatic plants and encountered frequently in the irrigation and drainage canals in the Nile delta [3]. The plant is a perennial aquatic plant used in traditional medicine system as an aphrodisiac, anodyne, astringent, cardiotonic, sedative, analgesic and as anti-inflammatory agent [4]. It has been receiving much attention from the ecological, medicinal and environmental points of view, in particular, due to its ability to absorb and accumulate heavy metals from polluted water. Apart from its ecological interest, water lilies appear to have also historical importance worldwide [5]. A lotus (*N. lotus* L.), is a floating aquatic herb with large leaves. This plant has been present in Egypt in ancient times as reported by Herodotus (484-425 B.C) who described the annual harvest of the plant during the flooding of the River Nile plains and especially encountered in the irrigation and drainage canals in the Nile delta. *N. lotus* is not only historically and ecologically important, but medicinally also. The herb is reported to cure liver diseases, as an antiepileptic, used against haematuria and jaundice, as a sedative and as a cooling herb. The roots were used as a stomach- tonic, cough sedative and for diarrhea. The syrup of the roots was used as an anti-inflammatory, in fever, and the seeds were used for hemorrhoids [6]. From the nutritional point of view, the tuberous rhizomes and seeds of the plant could be eaten after boiling or roasting, and also in baking [7]. Afolayan et al. [4] reported that *N. lotus* possess some amount of phytochemicals such as phenols, tannins, saponins, steroids, proanthocyanidins and flavonols. Chemicals obtained from plants are used worldwide for production of vital drugs [8]. Extensive researches has been carried out to evaluate and discover new antioxidant, antimicrobial and antifungal ingredients from different natural sources such as soil, microorganisms, animals, and plants. Systemic screening of these local herbs may result in the discovery of new effective bioactive compounds that may be useful in formulation of new antimicrobial medicine [2]. Amongst the techniques used to screen and fingerprint the bioactive chemical in plants such as HPLC with UV (DAD), ELSD, MS detection or GC-MS, HPLC densitometry, FT-MIR, NIR, NMR or a combination of these, UV-visible spectroscopy which offers a simple, technique to identify the main phytochemicals, discriminating between the lipophilic and hydrophilic molecules in relation to the polarity. Characterization of secondary metabolite fingerprint by chromatography and spectroscopy provide valuable information about qualitative and quantitative constituent of a plant species as well as their pattern of recognition by chemometry. The use of FT-IR spectroscopy technique demonstrated to be very useful in analysis of tissues, plants components, such as membranes, biomolecules like proteins, nucleic acids, polysaccharide as well as complex biological materials such as body fluids or cell cultures. This technique is reliable and widely used to identify chemical constituents, structural compounds in the sample [2]. Fourier transforms infrared spectroscopy is a high resolution analytical technique to identify the chemical constituents and elucidate the structure of compounds [2]. FTIR offers a rapid and nondestructive investigation to fingerprint plant extract or powders. Therefore, the aim of the

Keywords: *Nymphaea lotus; fourier transform; Allium sativum; animal diseases.*
present study was to screen functional groups present in water, methanol and n-hexane extracts of *A. sativum* and *N. lotus* using FT-IR spectroscopy.

2. MATERIALS AND METHODS

2.1 Materials Used in the Study

Fresh garlic (*Allium sativum*), water lily (*Nymphaea lotus*), conical flask, spatula, beakers, stirring rods, measuring cylinder, test tubes, test tube racks, hand gloves, cotton wool, paper tape, muslin clothes, ethanol, aluminum foil, Chloroform, syringe, micropipette, ice pack, nitrogen gas, ethanol, distilled water and n-hexane.

2.2 Collection of Garlic (*Allium sativum* L.)

Fresh garlic bulbs were purchased from Oba’s market, Akure, Ondo State, Nigeria. The plant was identified and authenticated by experts at the Crop, Soil and Pest Department, Federal University of Technology, Akure, Nigeria. The garlic cloves were separated and kept in a sterile containers, washed with running clean tap water and dried at room temperature. The garlic cloves were milled to a paste, and the paste was stored in an airtight container at 4°C temperature in a refrigerator until use.

2.3 Collection of Water Lily (*Nymphaea lotus* L.)

Water lily was collected from stagnant water body present at Okitipupa local government area of Ondo State, Nigeria. The plant was identified and authenticated by experts at the Crop, Soil and Pest Department, Federal University of Technology, Akure, Nigeria. The leaves, stems and roots were separated and kept in a sterile container, washed with running clean tap water and dried at room temperature. The dried leaves, stems and roots were milled to a fine powder, and stored in an airtight container at room temperature until use.

2.4 Preparation of Extracts of *A. sativum*

A paste obtained from *A. sativum* cloves was extracted with water, ethanol and n-hexane separately using the method described by [9]. *A. sativum* extracts were prepared by chopping the garlic using pestle and mortar and was divided into three equal sizes in 3 sterile plastic containers respectively. Each of the three weighed chopped garlic was homogenized in sterile distilled water, ethanol and N-hexane at 200 g to 1 litre of solvent respectively. The homogenate were kept in a covered sterile container for three days. Sterile muslin cloth was used to remove the large particles from the homogenate and then filtered using Whatman No. 1 filter paper. Extracts obtained were then concentrated in a vacuum using rotary evaporator to remove the solvents [10]. The extraction efficiency was quantified by determining and comparing the weight of each of the extracts yield.

2.5 Preparation of Extracts from *N. lotus*

The plants were extracted with water, ethanol and N-hexane using the method described by [9]. Three equal sizes of finely grounded dried *N. lotus* leaves, *N. lotus* stem and *N. lotus* root were measured into 9 sterile plastic containers respectively. Each 200 g portion of the finely grounded *N. lotus* leaves, *N. lotus* stem and *N. lotus* root were homogenized separately in sterile distilled water, ethanol and n-hexane using 1 litre of each solvent respectively and then filtered using Whatman No. 1 filter paper. Extracts obtained were then concentrated in vacuum using rotary evaporator to remove the solvents [10]. The extraction efficiency was quantified by determining and comparing the weight of each of the extracts yield.

2.6 Storage of Stock Concentration of *A. sativum* and *N. lotus* Extracts

The 100% stock concentration extracts of *A. sativum* and *N. lotus* thus obtained was stored at 4°C in a well corked universal bottle. The stock was reconstituted with DMSO to a required concentration at each use.

2.7 Determination of the Chemical Properties and Functional Groups of Water, Ethanol and N-hexane Extracts of *A. sativum* and *N. lotus*

The chemical properties and functional groups of water, ethanol and n-hexane extracts of *A. sativum* and *N. lotus* were determined using Fourier Transform Infrared Spectroscopy analysis (FTIR) as described by Nagarajanand Ramesh (2017). A FT-IR spectrometer (Infrared spectrometer Varian 660 MidIR Dual
MCT/DTGS Bundle with ATR) was used to confirm the chemical structure of all samples. Before analysis, the samples were dried in an auto- desiccator for 24 hours. Samples were directly applied to a diamante crystal of ATR and resulting spectra of them were corrected for background air absorbance. Potassium bromide (KBrFT-IR grade, Sigma -Aldrich) disks were prepared from powdered samples mixed with dry KBr in the ratio of 1:100. The spectra were recorded in a transmittance mode from 4000 to 500/400 cm⁻¹ at a resolution of 4 cm. Infrared spectrum was Fourier transformed and recorded in the absorbance mode. The refractogram obtained from FT-IR spectroscopy between wave number and absorption is tabulated below. IR solution software is employed for getting the number and absorption is tabulated below. IR spectroscopy between wave numbers and their absorption is tabulated below. IR spectroscopy between wave numbers and their absorption is tabulated below.

The chemical compounds separated from extracts of Nymphaea lotus leaves had the highest number of peak (i.e. 24) and compounds in Allium sativum extracts, though they all (Aliphatic primary amine, alkane, aldehyde, isothiocyanate, anhydride, carboxylic acid, α,β-unsaturated ketone, Nitro compound, aldehyde, α,β-unsaturated ketone, Nitro compound, aldehyde, Aromatic ester, alkene and Halo compound, Acid halide, Conjugated aldehyde, Conjugated amine, alkene, imine/oxime, alcohol) have similar functional groups.

All the extracts of N. lotus had similar functional groups (Aliphatic primary amine, Halo compound, anhydride, Vinyl ether, alcohol, Cabocyclic acid, Cyclic alkene, Unsaturated ketone, aldehyde, alkyn, Carbon dioxide, Aliphatic primary amine, aldehyde, alkane, Benzene derivative, Secondary alcohol, sulphide, alken, Akyl aryl ether, Sulfonyl chloride, Aromatic compound, -lactone, Imine/oxime, alkane, alcohol, Thiocyanate, Amine salt, esters, alkene, Nitro compound, Sulphate, Sulphone, Akyl aryl ether, Aromatic ester, Fluoro compound, Amine salt, Sulphonyl chloride, Tertiary alcoho, α,β-unsaturated ketone, alkyne, allene, Sulfonyl acid, α,β-unsaturated ester, Aliphatic primary amine, amine, Sulfonyl chloride, Vinyl ether, Aromatic amine, Aliphatic ketone, isothiocyanate, thiocynate, conjugated alkene and anhydride).

Table 1. FTIR spectral peak values and functional groups obtained for water extract of N. lotus leaves

Run	Peak (cm⁻¹)	Functional group	Interpretation
1	3643.56	O-H Stretching vibration	Alcohol
2	3351.34	N-H Stretching vibration	Aliphatic primary amine
3	2917.10	C-H stretching	Alkane
4	2806.34	H-C=O; C–H stretch	Aldehyde
5	2445.54	C=O stretching	Unidentified
6	2347.47	O=C=O stretching	Carbon dioxide
7	2102.56	C≡C	Alkyne
8	1741.30	C=O stretching	Aldehyde
9	1622.20	C=C stretching	Unsaturated ketone
10	1604.54	C=C stretching	Cyclic alkene
11	1443.76	O-H bending,	Cabocyclic acid
12	1420.63	O-H bending,	Alcohol
13	1247.03	C-O stretching	Vinyl ether
14	1050.29	CO-O-CO stretching	Anhydride
15	645.22	C-I stretching	Halo compound
16	601.21	PO₂ Stretching	Unidentified
17	563.24	C-O Stretching O-H	Unidentified
18	504.26	C-O stretching	Unidentified
Table 2. FTIR spectral peak values and functional groups obtained for ethanol extract of *N. lotus* leaves

Run #	Peak (cm⁻¹)	Functional group	Interpretation
1	3943.02	O-H Stretching vibration (Non bonded)	alcohol
2	3900.23	O-H stretching vibration (Bonded)	alcohol
3	3870.23	O-H stretching vibration (Bonded)	alcohol
4	3723.06	O-H stretching vibration (Bonded)	Alcohol
5	3650.54	N-H bending vibration	Primary amine
6	3457.56	N-H stretching	Alcohol
7	3432.43	O-H stretching	Alcohol
8	2926.07	C-H stretching	Alkane
9	2862.43	O–H stretch, H–bonded	Carboxylic acid
10	2800.75	N-H Stretching	Amine salt
11	2631.17	O-H stretching	Carboxylic acid
12	2432.09	C-N Stretching	unidentified
13	2454.37	O-H bend, alcoholic group	unidentified
14	2296.23	C = C group	unidentified
15	2143.11	S-C≡N stretching	Thiocyanate
16	1844.99	C-H bending	Aromatic compound
17	1742.72	C=O stretch	δ-lactone
18	1641.43	C≡N stretching	Imine/oxime
19	1447.64	C-H bending, O–H stretch	Alkane
20	1413.55	O–H bendng	Alcohol
21	1383.63	S=O stretching	Sulfonyl chloride
22	1372.56	S=O stretching	sulphonate
23	1230.36	C–O stretch, C-O-H stretching in carboxylic acid, O-H Stretching vibration	Amyl aryl ether
24	1100.23	C–O stretch, C-O-H stretching in carboxylic acid, O-H Stretching vibration	Secondary alcohol
25	1093.09	C–O stretch, C-O-H stretching in carboxylic acid, O-H Stretching vibration	Secondary alcohol
26	1038.71	S=O stretching	sulphide
27	843.72	C-CL	Halo compound
28	832.72	C=C bending	Alkene
29	704.05	C=O stretch	Benzene derivative
30	571.67	–CH (CH2)vibration,	unidentified
31	545.76	PO₂ Stretching	unidentified
32	537.20	C–O stretching	unidentified
33	472.58	O–H bend	unidentified
34	465.21	=C–H bend	unidentified
Table 3. FTIR spectral peak values and functional groups obtained for n-hexane extract of *N. lotus* leaves

Run #	Peak (cm⁻¹)	Functional group	Interpretation
1	3945.52	O-H Stretching vibration	unidentified
2	3906.50	O-H stretching	unidentified
3	3825.97	O-H stretching	alcohol
4	3742.13	O-H stretching	O=H stretching
5	3429.93	O-H stretching	alcohol
6	2874.04	C-H Stretching	alkane
7	2107.30	C≡C	alkyne
8	1741.80	C=O stretching	esters
9	1636.67	C=O Stretching, C=C Stretching	alkene
10	1514.49	N-O stretching	Nitro compound
11	1432.21	O-H bending	Carboxylic acid
12	1415.61	S=O	Sulphate
13	1306.52	S=O	sulphone
14	1243.30	C-O stretching	Akyl aryl ether
15	1255.71	C-O Stretching O=H	Aromatic ester
16	1013.32	C-F stretching	Fluoro compound
17	843.26	C-Cl Stretching	Halo compound
18	571.92	C=O stretch	unidentified
19	562.36	C-O asymmetric , C-O-C Stretching	unidentified
20	542.02	O-H Stretching	unidentified
21	531.41	PO₃ stretching	unidentified
22	518.32	C=O stretching	unidentified
23	487.05	O-H bend	unidentified
24	475.61	C-I, C-Cl stretch, C-Br stretch	unidentified

Fig. 1. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of water extract of *N. lotus* leaves
Fig. 2. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of ethanol extract of *N. lotus* leaves

Table 4. FTIR spectral peak values and functional groups obtained for water extract of *N. lotus* stem

Run #	Peak (cm⁻¹)	Functional group	Interpretation
1	3918.33	O-H Stretching vibration	alcohol
2	3708.41	O-H Stretching vibration	alcohol
3	2964.28	C-H stretching	alkane
4	2910.50	C-H stretching	alkane
5	2815.71	N-H stretching	Amine salt
6	2735.46	C-H stretch	aldehyde
7	1748.72	C=O stretching	aldehyde
8	1496.13	C=O stretching	
9	1410.65	S=O stretching	Sulphonyl chloride
10	1250.00	C-O stretching	Aromatic ester
11	1108.31	C-O Stretching, O-H	Tertiary alcohol
12	748.96	C-CL	Halo compound
Fig. 3. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of N-Hexane extract of *N. lotus* leaves

Table 5. FTIR spectral peak values and functional groups obtained for ethanol extract *N. lotus* stem

Run #	Peak (cm⁻¹)	Functional group	Interpretation
1	3924	O-H Stretching vibration	unidentified
2	3758.16	O-H stretching vibration (Bonded)	alcohol
3	3708.63	CH₂ symmetric stretching	alcohol
4	3210.74	O-H Stretching	Carboxylic acid
5	2964.41	C-H stretching	alkane
6	2910.50	N-H bending vibration	Amine salt
7	2812.39	C-O Stretching, O-H bending vibration	unidentified
8	2735.21	C-H Stretching	aldehyde
9	2618.30	C-O asymmetric C-O-C Stretching	unidentified
10	2205.03	C≡C stretching	alkynne
11	1748.81	C=O stretch	unidentified
12	1610.65	C≡C stretching	α,β-unsaturated ketone
13	1496.13	C-H bending, O-H stretch	unidentified
14	1250.16	C-O group	Akyl Aryl ether
15	1196.58	C-O stretch, C-O-H stretching in carboxylic acid, O-H Stretching vibration	Tertiary alcohol
16	1108.40	C-O stretch, C-O-H stretching in carboxylic acid, O-H Stretching vibration	Secondary alcohol
17	748.96	C-Cl stretching	Halo compound
18	710.31	C-O stretching	unidentified
Table 6. FTIR spectral peak values and functional groups obtained for n-hexane extract of *N. lotus* stem

Run #	Peak (cm⁻¹)	Functional group	interpretation
1	3910	O-H Stretching vibration	alcohol
2	3730.60	O-H stretching	alcohol
3	3425.73	O-H stretching	unidentified
4	2958.40	N-H₁+stretching	unidentified
5	2920.01	C=O stretching	unidentified
6	2832.54	N-H bending vibration	Amine salt
7	2698.77	C-O Stretching, O-H bending vibration	Alcohol
8	1730.26	C=O stretch	α,β-unsaturated ester
9	1610.09	C=C stretching	α,β-unsaturated ketone
10	1482.73	C-O-C asymmetrical Stretching	unidentified
11	1386.25	C-H bending	aldehyde
12	1308.64	S=O Stretching	Sulfonic acid
13	1260.32	C-O asymmetric, C-O-C Stretching	Akyl Aryl ether
14	1955.21	C=C=C Stretching	allene
15	768.74	C-CL Stretching	Halo compound
16	742.00	C-CL stretching	Halo compound
17	700.35	C=C	alkene

Fig. 4. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of water extract of *N. lotus* stem
Table 7. FTIR spectral peak values and functional groups obtained for water extract of *N. lotus* root

Run #	Peak (cm⁻¹)	Functional group interpretation
1	4633.02	O-H Stretching vibration (Non bonded) unidentified
2	4538.65	O-H Stretching vibration (Non bonded) alcohol
3	4334.69	O-H Stretching vibration (Non bonded) alcohol
4	3984.93	O-H Stretching vibration (Non bonded) alcohol
5	3873.06	C=O stretching unidentified
6	3383.14	N-H stretching vibration Alphatic primary amine
7	2934.66	C-H stretching, alkane
8	2156.42	S-C≡N stretching thiocinate
9	1583.56	N-H bend amine
10	1404.18	S=O stretching Sulfonyl chloride
11	1072.42	C=O stretch Vinyl ether
12	1047.35	C=O stretch Vinyl ether
13	754.17	C-Cl Stretching Halo compound
14	607.58	C-Cl Stretching Halo compound
15	557.43	C-Cl Stretching Halo compound

Table 8. FTIR spectral peak values and functional groups obtained for ethanol extract of *N. lotus* root

Run #	Peak (cm⁻¹)	Functional group interpretation
1.	3942.52	O-H Stretching vibration (Non bonded) Alcohol
2.	3880.76	O-H Stretching vibration (Non bonded) Alcohol
3.	3765.05	O-H Stretching vibration (Non bonded) Alcohol
4.	3317.56	O-H stretching Unidentified
5.	3248.13	N-H bending vibration Unidentified
6.	3055.34	C-H Stretching alkene
7.	2924.95	CH₂ asymmetric stretching Unidentified
8.	2854.65	O-H stretch, H-bonded Unidentified
9.	2661.77	O-H stretching Carboxylic acid
10.	2569.59	O-H stretching Unidentified
11.	2422.18	C-O Stretching, O-H Unidentified
12.	2353.15	C=O Stretching vibration Unidentified
13.	2314.99	C=O-H stretching Unidentified
14.	2175.70	S-C≡N stretching thioynate
15.	2066.38	N=C=S stretching isothiocyanate
16.	1982.82	C=C=C Stretching allene
17.	1936.53	C-O stretching Unidentified
18.	1851.68	Aromatic C-H bending Aromatic compound
19.	1712.29	C=O stretch Alphatic ketone
20.	1651.07	C=N stretching Imine/amine
21.	1442.75	C-H bending, O-H stretch Unidentified
22.	1381.06	S=O stretching Sulfonyl chloride
23.	1327.03	C-N stretch Aromatic amine
24.	1265.50	C-O group Aromatic ester
25.	1195.87	C-O Stretching ester
26.	1087.85	C=O stretch, C=O-H stretching in carboxylic acid, O-H stretching vibration Secondary alcohol
27.	1049.23	C=O stretch, C=O-H stretching in carboxylic acid, O-H stretching vibration Unidentified
28.	879.54	=C–H bend Unidentified
29.	802.59	para directing benzene ring Unidentified
30.	709.80	C-H bend, C-Cl Stretching Unidentified
Fig. 5. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of ethanol extract of *N. lotus* stem

Fig. 6. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of n-hexane extract of *N. lotus* stem
Fig. 7. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of water extract of *N. lotus* root

Fig. 8. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of ethanol extract of *N. lotus* root
Table 9. FTIR spectral peak values and functional groups obtained from n-hexane extract of *N. lotus* root

Run #	Peak (cm⁻¹)	Functional group	Interpretation
1	3888.49	O-H Stretching vibration (Non bonded)	unidentified
2	3348.42	O-H stretching vibration (Bonded)	alcohol
3	2924.08	CH₂ asymmetric stretching	alkane
4	2854.66	CH₂ symmetric stretching	unidentified
5	2522.89	O-H Stretching vibration	Carboxylic acid
6	2422.58	O-H Stretching vibration	unidentified
7	2345.34	C= N stretching	unidentified
8	2276.00	C≡N stretch	unidentified
9	2137.13	Triple bond in alkene	alkene
10	2090.37	C-O-C asymmetrical Stretching	unidentified
11	1990.54	N-C-S Stretching,	isothiocinate
12	1851.68	C=O Stretching vibration (esters and amino acids)	unidentified
13	1643.30	C=C stretching	conjugated alkene
14	1481.34	C=O stretching, C=CC Aromatics	unidentified
15	1381.11	C-H symmetric stretching	alkane
16	1226.74	C-O Stretching	Aromatic ester
17	1041.62	CO-O-CO Stretching	anhydride

Fig. 9. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of n-hexane extract of *N. lotus* root
Table 10. FTIR spectral peak values and functional groups obtained from water extract of *A. sativum*

Run #	Peak (cm⁻¹)	Functional group	Interpretation
1.	3608.37	O-H Stretching vibration	unidentified
2.	2980.31	C-H stretching	alkane
3.	2780.43	O-H stretching	alcohol
4.	2700.36	C≡N stretch	unidentified
5.	2307.52	C= N stretching	unidentified
6.	2055.11	N=C=S stretching	isothiocynate
7.	1812.30	C=O stretching	Acid halide
8.	1703.92	C=O stretching	Conjugated aldehyde
9.	1644.25	C=N stretching	Imine/oxime
10.	1608.43	CH₂ symmetric stretching	unidentified
11.	1543.92	N-O Stretching	Nitro compound
12.	1306.24	C-O stretching	Aromatic ester
13.	1091.12	C-O stretching	Secondary alcohol
14.	1008.26	C-O-H stretch	unidentified
15.	952.99	C-O stretching	unidentified
16.	910.08	C=C bending	alkene
17.	897.95	C-O stretching	unidentified
18.	843.16	C-Cl Stretching	Halo compound
19.	620.54	C-Br Stretching	Halo compound

Fig. 10. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of water extract of *A. sativum*
Fig. 11. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of ethanol extract of *A. sativum*

Table 11. FTIR spectral peak values and functional groups obtained for ethanol extract of *A. sativum*

Run #	Peak (cm⁻¹)	Functional group	Interpretation
1	3608.24	O-H Stretching vibration (Non bonded)	alcohol
2	3365.11	O-H stretching vibration (Bonded)	alcohol
2	2984.36	C-H stretching	alkane
3	2780.43	O-H stretch, H-bonded	alcohol
4	2700.36	O-H stretching	alcohol
5	2310.31	C=O stretching	unidentified
6	2057.26	N=C=S stretching	isothiocyanate
7	1806.42	C=O stretching	Acid halide
8	1700.84	C=O stretch	Conjugated aldehyde
9	1600.26	C=N stretching	Conjugated amine
10	1543.92	N-O stretching	Nitro compound
11	1382.61	C-H bending	alkane
12	1303.77	C–N stretch	Aromatic ester
13	1098.36	C-O-H stretching in carboxylic acid	unidentified
14	1008.24	C-O stretch, C-O-H stretching, O-H Stretching	unidentified
		vibration	
15	957.18	C-O stretching	unidentified
16	910.22	C=C Stretching	alkene
17	897.95	=C–H bend	unidentified
18	843.16	C-CL Stretching	Halo compound
Fig. 12. Fourier Transform Infrared Spectrophotometer (FTIR) spectra of n-hexane extract of *A. sativum*

Run #	Peak (cm⁻¹)	Functional group	Interpretation
1	3910.63	O-H Stretching	alcohol
2	3372.08	N-H stretching	Alphatic primary amine
3	2982.61	C-H Stretching	alkane
4	2780.43	C=O stretching	unidentified
5	2707.24	C-H Stretching	aldehyde
6	2310.31	C=O Stretching, O-H bending vibration	unidentified
7	2057.26	N=C=S	isothiocyanate
8	1812.30	C=O Stretching	anhydride
9	1706.94	C=O Stretching	carboxylic acid
10	1648.03	C=O Stretching vibration	unidentified
11	1610.21	C=C stretching	α,β-unsaturated ketone
12	1543.92	N-O stretching	Nitro compound
13	1382.74	C-H bending	aldehyde
14	1306.24	C-O stretching	Aromatic ester
15	1008.24	C-OH out of plane bending	unidentified
16	957.18	C=C Stretching	alkene
17	620.54	C-L Stretching	Halo compound

4. DISCUSSION

The results of Fourier Transform Infrared Spectroscopy analysis of *N. lotus* and *A. sativum* extracts indicates that n-hexane extract of *A. sativum* has the highest number of peak (24) and bioactive compound in *Allium sativum* extracts, though they all (Alphatic primary amine, ...
alkane, aldehyde, isothiocynate, anhydride, carboxylic acid, α,β-unsaturated ketone, Nitro compound, aldehyde, atic ester, isotheiocynate, anhydride, carboxylic acid, α,β-unsaturated ketone, Nitro compound, aldehyde, Aromatic ester, alkene and Halo compound, Acid halide, Conjugated aldehyde, Conjugated amine, alkene, imine/oxime, alcohol) have similar functional groups. These results are in accordance with the findings of [2]. All the extracts of *Nymphaea lotus* had similar functional groups (Aliphatic primary amine, Halo compound, anhydride, Vinyl ether, alcohol, Cabocyclic acid, Cyclic alkene, Unsaturated ketone, aldehyde, alkyne, Carbon dioxide, Aliphatic primary amine, aldehyde, alkane, Benzene derivative, Secondary alcohol, sulphide, alkene, Akyl aryl ether, Sulfonyl chloride, Aromatic compound, β-lactone, Imine/oxime, alkane, alcohol, Thiocyanate, Amine salt, esters, alkene, Nitro compound, Sulphate, Sulphone, Akyl aryl ether, Aromatic ester, Fluoro compound, Amine salt, Sulphonyl chloride, Tertiary alcohols, α,β-unsaturated ketone, alkyne, allene, Sulfonic acid, α,β-unsaturated ester, Alphatic primary amine, amine, Sulfonyl chloride, Vinyl ether, Aromatic amine, Alphatic ketone, isothiocynatate, thiocynate, conjugated alkene and anhydride). Ethanol extract of *Nymphaea lotus* leaves had the highest number of peaks (34) and compounds. This is in accordance with the findings of [11].

5. CONCLUSION

The findings from this study suggest that the functional groups from extracts of *Allium sativum* and *Nymphaea lotus* may be biologically active which is subjected to further confirmation by other advanced techniques such as NMR etc. Some of the biologically active functional groups are useful in production of antimicrobials and other medicinal products that can be of high benefits in proffering reliable alternative medicine to human and animal diseases caused by multidrug resistant enteric bacteria.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Ao S, Shi-Yu C, Xiao-Yu X, Ren-You G, Guo-Yi T, Harold C, Vuyo M, Hua-Bin L. Bioactive compounds and biological functions of garlic (*Allium sativum* L.). Foods. 2019;8:248.
2. Nagarajan D, Ramesh Kumar T. Fourier transform infrared spectroscopy analysis of garlic (*Allium*). International Journal of Zoology Studies. 2017;2(6):11-14.
3. Rajam K, Rajendran S, Saranya R. *Allium sativum* (Garlic) extract as nontoxic corrosion inhibitor. Hindawi Publishing Corporation. Journal of Chemistry. 2012;743807:4.
4. Afolayan A, Sharaibi O, Kazeem M. Phytochemical analysis and *in vitro* antioxidant activity of *N. lotus* L. International Journal of Pharmacology. 2013;9:297-304.
5. Zahran MA, Willis AJ. Plant life in the River Nile in Egypt. Published by Mars Publishing House, Saudi Arabia. 2003;531.
6. Ayyad S. Egyptian plants. A photographic guide: Part 1: Trees, shrubs, ornamentals, weeds and desert plants. Akhbar El-Youm Press, Cairo; 1999.
7. Zein A. Mohamed, Mamdouh S. Serag. Ecology and anatomy of *N. lotus* L. in the Nile Delta. Journal of Environmental Sciences. 2003;26(2):1-20.
8. Debnath CP, Bisen PS. Micropropagation M. a tool for the production of high-quality plant-based medicines. Curr Pharm Biotechnol. 2006;7:33-49.
9. Olukunle OF, Adenola OJ. Comparative antimicrobial activity of lemon grass (*Cymbopogon citratus*) and Garlic (*Allium sativum*) extracts on *Salmonella typhi*. Journal of Advances in Medical and Pharmaceutical Sciences. 2019;20(2):1-9.
10. Oluduro AO. Evaluation of antimicrobial properties and nutritional potentials of *Moringa oleifera* Lam. leaf in South Western Nigeria. Malaysian Journal of Microbiology. 2012;8(2):59-67.
11. Adelakun Kehinde Moruff, Mustapha Moshood Keke, Muazu Mohammed Muazu, Omotayo Olabode Lawrence, Olaoye Olanrewaju. Phytochemical screening and antibacterial activities of crude extract of *Nymphaea lotus* (water lily) against fish pathogens. Journal of Biomedical Sciences. 2015;2(4):38-42.

© 2020 Jesse; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/57610