Jordan derivations on C^*-ternary algebras for a Cauchy-Jensen functional equation

Choonkil Park1, John Michael Rassias2 and Won-Gil Park3

1 Department of Mathematics, Research Institute for Natural Sciences
Hanyang University, Seoul, 133–791, Republic of Korea
2 Pedagogical Department, E.E., National and Capodistrian University of Athens 4, Agamemnonos Str., Aghia Paraskevi, Athens 15342, Greece
3 Department of Mathematics Education, College of Education Mokwon University, Daejeon 302-729, Republic of Korea

1baak@@hanyang.ac.kr, 2jrassias@@primedu.uoa.gr
and 3wgpark@@mokwon.ac.kr

Abstract

In this paper, we proved the generalized Hyers-Ulam stability of homomorphisms in C^*-ternary algebras and of derivations on C^*-ternary algebras for the following Cauchy- Jensen functional equation

$$3f\left(\frac{x+y+z}{3}\right) = 2f\left(\frac{x+y}{2}\right) + f(z).$$

These were applied to investigate isomorphisms between C^*-ternary algebras.
1 Introduction and preliminaries

Ternary structures and their generalization, the so-called \(n \)-ary structures, raise certain hopes in view of their applications in physics. Some significant physical applications are as follows (see [13, 14]):

(1) The algebra of ‘nonions’ generated by two matrices
\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\quad \&
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & \omega \\
\omega^2 & 0 & 0
\end{pmatrix}
\quad (\omega = e^{\frac{2\pi i}{3}})
\]

was introduced by Sylvester as a ternary analog of Hamilton’s quaternions (cf. [1]).

(2) The quark model inspired a particular brand of ternary algebraic systems. The so-called ‘Nambu mechanics’ is based on such structures (see [5]).

There are also some applications, although still hypothetical, in the fractional quantum Hall effect, the non-standard statistics, supersymmetric theory, and Yang–Baxter equation (cf. [1, 14, 46]).

A \(C^* \)-ternary algebra is a complex Banach space \(A \), equipped with a ternary product \((x, y, z) \mapsto [x, y, z] \) of \(A^3 \) into \(A \), which is \(C \)-linear in the outer variables, conjugate \(C \)-linear in the middle variable, and associative in the sense that \([x, y, [z, w, v]] = [x, y, z], w, v\] satisfies \(\| [x, y, z] \| \leq \| x \| \cdot \| y \| \cdot \| z \| \) and \(\| [x, x, x] \| = \| x \|^3 \) (see [2, 47]). Every left Hilbert \(C^* \)-module is a \(C^* \)-ternary algebra via the ternary product \([x, y, z] := \langle x, y \rangle z \).

If a \(C^* \)-ternary algebra \((A, [\cdot, \cdot, \cdot])\) has an identity, i.e., an element \(e \in A \) such that \(x = [x, e, e] = [e, e, x] \) for all \(x \in A \), then it is routine to verify that \(A \), endowed with \(x \circ y := [x, e, y] \) and \(x^* := [e, x, e] \), is a unital \(C^* \)-algebra. Conversely, if \((A, \circ)\) is a unital \(C^* \)-algebra, then \([x, y, z] := x \circ y \circ z \) makes \(A \) into a \(C^* \)-ternary algebra.

A \(C \)-linear mapping \(H : A \to B \) is called a \(C^* \)-ternary algebra homomorphism if
\[
H([x, y, z]) = [H(x), H(y), H(z)]
\]
for all \(x, y, z \in A \). If, in addition, the mapping \(H \) is bijective, then the mapping \(H : A \to B \) is called a \(C^* \)-ternary algebra isomorphism. A \(C \)-linear mapping \(\delta : A \to A \) is called a \(C^* \)-ternary derivation if
\[
\delta([x, y, z]) = [\delta(x), y, z] + [x, \delta(y), z] + [x, y, \delta(z)]
\]
for all \(x, y, z \in A \) (see [2], [15]–[18]).

In 1940, S. M. Ulam [45] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group \(G \) and a metric group \(G' \) with metric \(\rho(\cdot, \cdot) \). Given \(\epsilon > 0 \), does there exist a \(\delta > 0 \) such that if \(f : G \to G' \) satisfies
\[
\rho(f(xy), f(x)f(y)) < \delta
\]
for all \(x, y \in G \), then a homomorphism \(h : G \to G' \) exists with
\[
\rho(f(x), h(x)) < \epsilon
\]
for all \(x \in G \)?

In 1941, D. H. Hyers [8] considered the case of approximately additive mappings \(f : E \to E' \), where \(E \) and \(E' \) are Banach spaces and \(f \) satisfies Hyers inequality
\[
\|f(x + y) - f(x) - f(y)\| \leq \epsilon
\]
for all \(x, y \in E \). It was shown that the limit
\[
L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}
\]
exists for all \(x \in E \) and that \(L : E \to E' \) is the unique additive mapping satisfying
\[
\|f(x) - L(x)\| \leq \epsilon
\]
for all \(x \in E \).

In 1978, Th. M. Rassias [35] provided a generalization of the D. H. Hyers’ theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th. M. Rassias) Let \(f : E \to E' \) be a mapping from a normed vector space \(E \) into a Banach space \(E' \) subject to the inequality
\[
\|f(x + y) - f(x) - f(y)\| \leq \epsilon(\|x\|^p + \|y\|^p)
\]
for all \(x, y \in E \), where \(\epsilon \) and \(p \) are constants with \(\epsilon > 0 \) and \(p < 1 \). Then the limit
\[
L(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}
\]
exists for all \(x \in E \) and \(L : E \to E' \) is the unique additive mapping which satisfies
\[
\|f(x) - L(x)\| \leq \frac{2\epsilon}{2 - 2^p} \|x\|^p
\]
for all \(x \in E \). If \(p < 0 \) then inequality (1) holds for \(x, y \neq 0 \) and (2) for \(x \neq 0 \).

On the other hand, in 1982-1989, J. M. Rassias generalized the Hyers stability result by presenting a weaker condition controlled by a product of different powers of norms. The following is according to the J. M. Rassias’ theorem.

Theorem 1.2. (J. M. Rassias) If it is assumed that there exist constants \(\Theta \geq 0 \) and \(p_1, p_2 \in \mathbb{R} \) such that \(p = p_1 + p_2 \neq 1 \), and \(f : E \to E' \) is a mapping from a normed space \(E \) into a Banach space \(E' \) such that the inequality

\[
\|f(x + y) - f(x) - f(y)\| \leq \epsilon\|x\|^{p_1}\|y\|^{p_2}
\]

for all \(x, y \in E \), then there exists a unique additive mapping \(T : E \to E' \) such that

\[
\|f(x) - L(x)\| \leq \frac{\Theta}{2 - 2^p}\|x\|^p
\]

for all \(x \in E \).

In 1990, Th. M. Rassias [36] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for \(p \geq 1 \). In 1991, Z. Gajda [6] following the same approach as in Th. M. Rassias [35], gave an affirmative solution to this question for \(p > 1 \). It was shown by Z. Gajda [6], as well as by Th. M. Rassias and P. Šemrl [41] that one cannot prove a Th. M. Rassias’ type theorem when \(p = 1 \). The counterexamples of Z. Gajda [6], as well as of Th. M. Rassias and P. Šemrl [41] have stimulated several mathematicians to invent new definitions of approximately additive or approximately linear mappings, cf. P. Găvruţa [7], S.-M. Jung [12], who among others studied the Hyers-Ulam stability of functional equations. The inequality (1) that was introduced for the first time by Th. M. Rassias [35] provided a lot of influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as generalized Hyers-Ulam stability of functional equations (cf. the books of P. Czerwik [4], D. H. Hyers et al. [9]).

P. Găvruţa [7] provided a further generalization of Th. M. Rassias’ Theorem. In 1996, G. Isac and Th. M. Rassias [11] applied the generalized Hyers-Ulam stability theory to prove fixed point theorems and study some new applications in Nonlinear Analysis. In [10], D. H. Hyers et al. studied the asymptoticity aspect of Hyers-Ulam stability of mappings. Several papers have been published on various generalizations and applications of Hyers-Ulam stability and generalized Hyers-Ulam stability to a number of functional equations and mappings, for example: quadratic functional equation, invariant means, multiplicative mappings - superstability, bounded n-th
differences, convex functions, generalized orthogonality functional equation, Euler-Lagrange functional equation introduced by J. M. Rassias in 1992-1998, Navier-Stokes equations. Several mathematician have contributed works on these subjects (see [3], [19]–[44]).

In Section 2, we prove the generalized Hyers-Ulam stability of homomorphisms in C^*-ternary algebras for the Cauchy-Jensen additive mappings.

In Section 3, we investigate isomorphisms between unital C^*-ternary algebras associated with the Cauchy-Jensen additive mappings.

In Section 4, we prove the generalized Hyers-Ulam stability of derivations on C^*-ternary algebras for the Cauchy-Jensen additive mappings.

2 Stability of homomorphisms in C^*-ternary algebras

Throughout this section, assume that A is a C^*-ternary algebra with norm $\| \cdot \|_A$ and that B is a C^*-ternary algebra with norm $\| \cdot \|_B$.

For a given mapping $f : A \to B$, we define

$$D_\mu f(x, y, z) := 3f\left(\frac{\mu x + \mu y + \mu z}{3}\right) - 2\mu f\left(\frac{x + y}{2}\right) - \mu f(z)$$

for all $\mu \in T^1 := \{ \lambda \in \mathbb{C} \mid |\lambda| = 1\}$ and all $x, y, z \in A$.

Lemma 2.1. Let $f : A \to B$ be a mapping such that

$$D_\mu f(x, y, z) = 0$$

for all $\mu \in T^1$ and all $x, y, z \in A$. Then f is \mathbb{C}-linear.

Proof. Letting $\mu = -1$ and $x = y = z = 0$ in (3), we gain $f(0) = 0$. Putting $\mu = 1$, $y = -x$ and $z = 2x$ in (3), we get $3f\left(\frac{x}{3}\right) = f(x)$ for all $x \in A$. So we have $3f(x) = f(3x)$ for all $x \in A$. Setting $\mu = 1$, $x = 0$ in (3), we gain

$$3f\left(\frac{y + z}{3}\right) = 2f\left(\frac{y}{2}\right) + f(z)$$

for all $y, z \in A$. So we get $f(y + z) = 2f\left(\frac{y}{2}\right) + f(z)$ for all $y, z \in A$. Taking $z = 0$ in the above equation, we have $f(y) = 2f\left(\frac{y}{2}\right)$ for all $y \in A$. Thus we obtain that $f(y + z) = f(y) + f(z)$ for all $y, z \in A$. Hence f is additive.

Letting $y = z = 0$ in (3), we gain $3f\left(\frac{\mu x}{3}\right) = 2\mu f\left(\frac{x}{3}\right)$ for all $\mu \in T^1$ and all $x \in A$. Since f is additive, $f(\mu x) = f\left(3\frac{\mu x}{3}\right) = 3f\left(\frac{\mu x}{3}\right) = 2\mu f\left(\frac{x}{3}\right)$ for all $\mu \in T^1$ and all $x \in A$. Now let $\lambda \in \mathbb{C}$ and M
an integer greater than $2|\lambda|$. Since $|\frac{\lambda}{M}| < \frac{1}{2}$, there is $t \in \left(\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $|\frac{\lambda}{M}| = \cos t = \frac{e^{it} + e^{-it}}{2}$. Now $\frac{\lambda}{M} = |\frac{\lambda}{M}| \mu$ for some $\mu \in \mathbb{T}^1$. Thus we have

$$f(\lambda x) = f \left(M \frac{\lambda}{M} x \right) = M f \left(\frac{\lambda}{M} x \right) = M f \left(\frac{\lambda}{M} \mu x \right)$$

$$= M f \left(\frac{e^{it} + e^{-it}}{2} \mu x \right) = \frac{1}{2} M f(e^{it} \mu x + e^{-it} \mu x)$$

$$= \frac{1}{2} M \left[e^{it} f(x) + e^{-it} f(x) \right] = \lambda f(x)$$

for all $x \in A$. So the mapping $f : A \to B$ is C-linear. \[\square \]

We prove the generalized Hyers-Ulam stability of homomorphisms in C^*-ternary algebras for the functional equation $D_\mu f(x, y, z) = 0$.

Theorem 2.2. Let $r > 3$ and θ be positive real numbers, and let $f : A \to B$ be a mapping satisfying $f(0) = 0$ such that

\begin{align}
(4) \quad & \|D_\mu f(x, y, z)\|_B \leq \theta(\|x\|_A^r + \|y\|_A^r + \|z\|_A^r), \\
(5) \quad & \|f([x, y, z]) - [f(x), f(y), f(z)]\|_B \leq \theta(\|x\|_A^r + \|y\|_A^r + \|z\|_A^r)
\end{align}

for all $\mu \in \mathbb{T}^1$ and all $x, y, z \in A$. Then there exists a unique C^*-ternary algebra homomorphism $H : A \to B$ such that

\begin{align}
(6) \quad & \|f(x) - H(x)\|_B \leq \theta \frac{3^r + 2}{3^r - 3} \|x\|_A^r
\end{align}

for all $x \in A$.

Proof. Letting $\mu = 1$ and $y = -x$ and $z = 3x$ in (4), we obtain

\begin{align}
(7) \quad & \|3f(x) - f(3x)\|_B \leq \theta(2 + 3^r) \|x\|_A^r
\end{align}

for all $x \in A$. So we get

\begin{align}
\left\| f(x) - 3f \left(\frac{x}{3} \right) \right\|_B \leq \theta \left(\frac{2}{3^r} + 1 \right) \|x\|_A^r
\end{align}

for all $x \in A$. Thus we have

\begin{align}
\left\| 3^l f \left(\frac{x}{3^l} \right) - 3^m f \left(\frac{x}{3^m} \right) \right\|_B \leq \sum_{j=l}^{m-1} \left\| 3^j f \left(\frac{x}{3^j} \right) - 3^{j+1} f \left(\frac{x}{3^{j+1}} \right) \right\|_B \\
\leq \theta \left(\frac{2}{3^r} + 1 \right) \sum_{j=l}^{m-1} 3^{j(1-r)} \|x\|_A^r = \theta \frac{3^r + 2}{3^r - 3} [3^{l(1-r)} - 3^{m(1-r)}] \|x\|_A^r
\end{align}

for all nonnegative integers m and l with $m > l$ and all $x \in A$. It follows from (8) that the sequence $\{3^m f \left(\frac{x}{3^m} \right)\}$ is a Cauchy sequence for all $x \in A$.

Next we consider the case where $r = 1$. Since $\theta(2 + 3^r) \|x\|_A^r = \theta(2 + 3) \|x\|_A^r = \theta(2 + 2) \|x\|_A^r$, we obtain

\begin{align}
\left\| f(x) - 3f(x) \right\|_B \leq \theta(2 + 2) \|x\|_A^r
\end{align}

and the same conclusion holds as in (7).
Since B is complete, the sequence $\{3^n f(\frac{1}{3^n})\}$ converges for all $x \in A$. Hence one can define a mapping $H : A \to B$ by

$$H(x) := \lim_{n \to \infty} 3^n f\left(\frac{x}{3^n}\right)$$

for all $x \in A$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (8), we get (6).

It follows from (4) that

$$\left\| 3H\left(\frac{x + y + z}{3}\right) - 2H\left(\frac{x + y}{2}\right) - H(z) \right\|_B = \lim_{n \to \infty} 3^n \left\| 3f\left(\frac{x + y + z}{3^n+1}\right) - 2f\left(\frac{x + y}{2 \cdot 3^n}\right) - f\left(\frac{z}{3^n}\right) \right\|_B \leq \lim_{n \to \infty} 3^n(1-r)\theta(||x||_A + ||y||_A + ||z||_A) = 0$$

for all $x, y, z \in A$. So we get

$$3H\left(\frac{x + y + z}{3}\right) = 2H\left(\frac{x + y}{2}\right) + H(z)$$

for all $x, y, z \in A$. Since $f(0) = 0$, by the same methods as in proof of Lemma 2.1, the mapping $H : A \to B$ is additive.

By the same reasoning as in the proof of Theorem 2.1 in [21], the mapping $H : A \to B$ is C-linear. It follows from (5) and (8) that

$$\left\| H([x, y, z]) - [H(x), H(y), H(z)] \right\|_B = \lim_{n \to \infty} \left\| 3^n f\left(\frac{1}{3^n}[x, y, z]\right) - 3^n f\left(\frac{x}{3^n}\right), 3^n f\left(\frac{y}{3^n}\right), 3^n f\left(\frac{z}{3^n}\right) \right\|_B$$

$$= \lim_{n \to \infty} \left[\left\| 3^n f\left(\frac{1}{3^n}[x, y, z]\right) - 3^{2n} f\left(\frac{1}{3^{2n}}[x, y, z]\right) \right\|_B + \left\| 3^{2n} f\left(\frac{1}{3^{2n}}[x, y, z]\right) - 3^{3n} f\left(\frac{1}{3^{3n}}[x, y, z]\right) \right\|_B + \left\| 3^{3n} f\left(\frac{x}{3^n}, \frac{y}{3^n}, \frac{z}{3^n}\right) - 3^n f\left(\frac{x}{3^n}\right), 3^n f\left(\frac{y}{3^n}\right), 3^n f\left(\frac{z}{3^n}\right) \right\|_B \right]$$
\[
\leq \lim_{n \to \infty} \left[\theta \left(\frac{2}{3^r} + 1 \right) \sum_{j=n}^{2n-1} 3^j(1-r) \|[x, y, z]\|_A^r \\
+ \theta \left(\frac{2}{3^r} + 1 \right) \sum_{j=2n}^{2n-1} 3^j(1-r) \|[x, y, z]\|_A^r \\
+ 3^n(3-r) \theta \left(\|x\|_A^r + \|y\|_A^r + \|z\|_A^r \right) \right] \\
= \theta \left(\frac{3^r + 2}{3^r - 3} \|[x, y, z]\|_A^r \right) \lim_{n \to \infty} \left[3^n(1-r) - 3^{3n(1-r)} \right] \\
+ \theta \left(\|x\|_A^r + \|y\|_A^r + \|z\|_A^r \right) \lim_{n \to \infty} 3^n(3-r) \\
= 0
\]
for all \(x, y, z \in A\). So
\[
H([x, y, z]) = [H(x), H(y), H(z)]
\]
for all \(x, y, z \in A\).

Now, let \(T : A \to B\) be another additive mapping satisfying (6). Then we have
\[
\|H(x) - T(x)\|_B = 3^n \left[\left\|H \left(\frac{x}{3^n} \right) - T \left(\frac{x}{3^n} \right) \right\|_B \right. \\
\leq 3^n \left[\left\|H \left(\frac{x}{3^n} \right) \right\|_B + \left\|T \left(\frac{x}{3^n} \right) \right\|_B \right] \\
\leq \frac{2\theta}{3^n} \frac{3^r + 2}{3^r - 3} \|[x]\|_A^r,
\]
which tends to zero as \(n \to \infty\) for all \(x \in A\). So we can conclude that \(H(x) = T(x)\) for all \(x \in A\). This proves the uniqueness of \(H\). Thus the mapping \(H : A \to B\) is a unique \(C^*\)-ternary algebra homomorphism satisfying (6). \(\square\)

J. M. Rassias presents the following counterexample modified by the well-known counterexample of Z. Gajda [6] for the following Cauchy-Jensen functional equation:
\[
3f \left(\frac{x + y + z}{3} \right) = 2f \left(\frac{x + y}{2} \right) + f(z).
\]
Fix \(\theta > 0\) and put \(\mu := \frac{\theta}{6}\). Define a function \(f : \mathbb{R} \to \mathbb{R}\) given by
\[
f(x) := \sum_{n=0}^{\infty} \frac{\phi(2^n x)}{2^n}
\]
C. PARK, J. M. RASSIAS AND W.-G. PARK

for all \(x \in \mathbb{R} \), where

\[
\phi(x) := \begin{cases}
\mu & \text{if } x \geq 1 \\
\mu x & \text{if } -1 < x < 1 \\
-\mu & \text{if } x \leq -1
\end{cases}
\]

for all \(x \in \mathbb{R} \). It was proven in [6] that

\[
|f(x + y) - f(x) - f(y)| \leq \theta(|x| + |y|)
\]

for all \(x, y \in \mathbb{R} \). From the above inequality, one can obtain that

\[
|f(x + y + z) - f(x) - f(y) - f(z)|
\]

\[
\leq \frac{1}{3} \left[|f(x + y + z) - f(x + y) - f(z)| + |f(x + y + z) - f(x + z) - f(y)| + |f(x + y + z) - f(y + z) - f(x)| + |f(x + y) - f(x) - f(y)| + |f(x + z) - f(x) - f(z)| + |f(y + z) - f(y) - f(z)| \right]
\]

\[
\leq \frac{5}{3} \theta(|x| + |y| + |z|)
\]

and

\[
|2f\left(\frac{x + y}{2}\right) - f(x) - f(y)|
\]

\[
\leq 2 \left| f\left(\frac{x}{2} + \frac{y}{2}\right) - f\left(\frac{x}{2}\right) - f\left(\frac{y}{2}\right) \right| + \left| f\left(\frac{x}{2} + \frac{y}{2}\right) - f\left(\frac{x}{2}\right) - f\left(\frac{x}{2}\right) \right| + \left| f\left(\frac{y}{2} + \frac{y}{2}\right) - f\left(\frac{y}{2}\right) - f\left(\frac{y}{2}\right) \right|
\]

\[
\leq 2\theta(|x| + |y|)
\]

for all \(x, y, z \in \mathbb{R} \). By the inequality (9), we see that

\[
|3f\left(\frac{x + y + z}{3}\right) - f(x) - f(y) - f(z)|
\]
\[\leq 3 \left| f\left(\frac{x}{3} + \frac{y}{3} + \frac{z}{3}\right) - f\left(\frac{x}{3}\right) - f\left(\frac{y}{3}\right) - f\left(\frac{z}{3}\right) \right| \\
+ \left| - \left[f\left(\frac{x}{3} + \frac{y}{3} + \frac{z}{3}\right) - f\left(\frac{x}{3}\right) - f\left(\frac{y}{3}\right) - f\left(\frac{z}{3}\right) \right] \right| \\
+ \left| - \left[f\left(\frac{x}{3} + \frac{y}{3} + \frac{y}{3}\right) - f\left(\frac{x}{3}\right) - f\left(\frac{y}{3}\right) - f\left(\frac{y}{3}\right) \right] \right| \\
+ \left| - \left[f\left(\frac{z}{3} + \frac{z}{3} + \frac{z}{3}\right) - f\left(\frac{z}{3}\right) - f\left(\frac{z}{3}\right) - f\left(\frac{z}{3}\right) \right] \right| \\
\leq \frac{10}{3} \theta (|x| + |y| + |z|) \\
\]

for all \(x, y, z \in \mathbb{R} \). From the inequalities (10) and (11), we obtain that

\[\left| 3f\left(\frac{x+y+z}{3}\right) - 2f\left(\frac{x+y}{2}\right) - f(z) \right| \]

\[\leq \left| 3f\left(\frac{x+y+z}{3}\right) - f(x) - f(y) - f(z) \right| \]

\[+ \left| - \left[2f\left(\frac{x+y}{2}\right) - f(x) - f(y) \right] \right| \]

\[\leq \frac{2}{3} \theta (8|x| + 8|y| + 5|z|) \leq \frac{16}{3} \theta (|x| + |y| + |z|) \]

for all \(x, y, z \in \mathbb{R} \). But we observe from [6] that

\[\frac{f(x)}{x} \to \infty \text{ as } x \to \infty \]

and so

\[\frac{|f(x) - g(x)|}{|x|} (x \neq 0) \text{ is unbounded,} \]

where \(g : \mathbb{R} \to \mathbb{R} \) is the function given by

\[g(x) := \lim_{n \to \infty} 3^n f\left(\frac{x}{3^n}\right) \]

for all \(x \in \mathbb{R} \). Thus the function \(f \) provides an example to the effect that Theorem 2.2 fails to hold for \(r = 1 \).

Theorem 2.3. Let \(r < 1 \) and \(\theta \) be positive real numbers, and let \(f : A \to B \) be a mapping satisfying (4), (5) and \(f(0) = 0 \). Then there exists a unique \(C^* \) -ternary algebra homomorphism \(H : A \to B \) such that

\[\|f(x) - H(x)\|_B \leq \theta \frac{2 + 3^r}{3 - 3^r} \|x\|^r_A \]

for all \(x \in A \).

Proof. It follows from (7) that

\[\left\| f(x) - \frac{1}{3} f(3x) \right\|_B \leq \theta \frac{2 + 3^r}{3} \|x\|^r_A \]
for all \(x \in A \). So

\[
\left\| \frac{1}{3^j} f(3^j x) - \frac{1}{3^m} f(3^m x) \right\|_B \leq \sum_{j=l}^{m-1} \left\| \frac{1}{3^j} f(3^j x) - \frac{1}{3^{j+1}} f(3^{j+1} x) \right\|_B
\]

(13)

\[
\leq \theta \frac{2 + 3^r}{3} \sum_{j=l}^{m-1} 3^{j(r-1)} \| x \|_A^r = \theta \frac{2 + 3^r}{3 - 3^r} \left[3^{(r-1)} - 3^{m(r-1)} \right] \| x \|_A^r
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in A \). It follows from (13) that the sequence \(\left\{ \frac{1}{3^j} f(3^j x) \right\} \) is a Cauchy sequence for all \(x \in A \). Since \(B \) is complete, the sequence \(\left\{ \frac{1}{3^j} f(3^j x) \right\} \) converges for all \(x \in A \). So one can define the mapping \(H : A \to B \) by

\[
H(x) := \lim_{n \to \infty} \frac{1}{3^n} f(3^n x)
\]

for all \(x \in A \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (13), we get (12).

By similar arguments to the proof of Theorem 2.2, the mapping \(H : A \to B \) is \(\mathbb{C} \)-linear. It follows from (5) and (13) that

\[
\| H([x, y, z]) - [H(x), H(y), H(z)] \|_B \\
\leq \theta \frac{2 + 3^r}{3 - 3^r} \| [x, y, z] \|_A^r \lim_{n \to \infty} \left[3^{n(r-1)} - 3^{3n(r-1)} \right] \\
+ \theta (\| x \|_A^r + \| y \|_A^r + \| z \|_A^r) \lim_{n \to \infty} 3^{n(r-3)} \\
= 0
\]

for all \(x, y, z \in A \). So

\[
H([x, y, z]) = [H(x), H(y), H(z)]
\]

for all \(x, y, z \in A \). Now, let \(T : A \to B \) be another additive mapping satisfying (12). Then we have

\[
\| H(x) - T(x) \|_B \leq 2 \theta 3^{3n(r-1)} \frac{2 + 3^r}{3 - 3^r} \| x \|_A^r,
\]

which tends to zero as \(n \to \infty \) for all \(x \in A \). So we can conclude that \(H(x) = T(x) \) for all \(x \in A \). This proves the uniqueness of \(H \). Thus the mapping \(H : A \to B \) is a unique \(C^* \)-ternary algebra homomorphism satisfying (12). □

Theorem 2.4. Let \(r > \frac{1}{3} \) and \(\theta \) be positive real numbers, and let \(f : A \to B \) be a mapping satisfying \(f(0) = 0 \) such that

(14) \[
\| D_\mu f(x, y, z) \|_B \leq \theta \cdot \| x \|_A^r \cdot \| y \|_A^r \cdot \| z \|_A^r,
\]

(15) \[
\| f([x, y, z]) - [f(x), f(y), f(z)] \|_B \leq \theta \cdot \| x \|_A^r \cdot \| y \|_A^r \cdot \| z \|_A^r
\]
for all $\mu \in T^1$ and all $x, y, z \in A$. Then there exists a unique C^*-ternary algebra homomorphism $H : A \to B$ such that

\[(16) \quad \|f(x) - H(x)\|_B \leq \frac{3^r \theta}{27^r - 3} \|x\|_A^{3r}\]

for all $x \in A$.

Proof. Letting $\mu = 1$ and $y = -x$ and $z = 3x$ in (14), we get

\[(17) \quad \|f(3x) - 3f(x)\|_B \leq 3^r \theta \|x\|_A^{3r}\]

for all $x \in A$. So

\[
\left\| f(x) - 3f\left(\frac{x}{3}\right) \right\|_B \leq \frac{\theta}{9^r} \|x\|_A^{3r}
\]

for all $x \in A$. Hence

\[
\left\| 3^l f\left(\frac{x}{3^l}\right) - 3^m f\left(\frac{x}{3^m}\right) \right\|_B \leq \sum_{j=l}^{m-1} \left\| 3^j f\left(\frac{x}{3^j}\right) - 3^{j+1} f\left(\frac{x}{3^{j+1}}\right) \right\|_B
\]

\[
\leq \frac{\theta}{9^r} \sum_{j=l}^{m-1} 3^{j(1-3r)} \|x\|_A^{3r} = \frac{\theta}{9^r - 3^{1-3r}} \left[3^{l(1-3r)} - 3^{m(1-3r)} \right] \|x\|_A^{3r}
\]

for all nonnegative integers m and l with $m > l$ and all $x \in A$. It follows from (18) that the sequence $\{3^n f\left(\frac{x}{3^n}\right)\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\{3^n f\left(\frac{x}{3^n}\right)\}$ converges. So one can define the mapping $H : A \to B$ by

\[H(x) := \lim_{n \to \infty} 3^n f\left(\frac{x}{3^n}\right)\]

for all $x \in A$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (18), we get (16).

The rest of the proof is similar to the proof of Theorem 2.2. □

Theorem 2.5. Let $r < \frac{1}{3}$ and θ be positive real numbers, and let $f : A \to B$ be a mapping satisfying (14), (15) and $f(0) = 0$. Then there exists a unique C^*-ternary algebra homomorphism $H : A \to B$ such that

\[(19) \quad \|f(x) - H(x)\|_B \leq \frac{3^r \theta}{3 - 27^r} \|x\|_A^{3r}\]

for all $x \in A$.

Proof. It follows from (17) that

\[
\left\| f(x) - \frac{1}{3} f(3x) \right\|_B \leq 3^{r-1} \theta \|x\|_A^{3r}
\]
for all $x \in A$. So

\[
\left\| \frac{1}{3^l} f(3^l x) - \frac{1}{3^m} f(3^m x) \right\|_B \leq \sum_{j=l}^{m-1} \left\| \frac{1}{3^j} f(3^j x) - \frac{1}{3^{j+1}} f(3^{j+1} x) \right\|_B
\]

(20)

\[
\leq 3^{r-1} \frac{\theta}{3^{3r-1}} \sum_{j=l}^{m-1} 3^j \|x\|^{3r} = \frac{3^{r-1} \theta}{1 - 3^{3r-1}} [3^{l(3r-1)} - 3^{m(3r-1)}] \|x\|^{3r}
\]

for all nonnegative integers m and l with $m > l$ and all $x \in A$. It follows from (20) that the sequence $\left\{ \frac{1}{3^m} f(3^m x) \right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{ \frac{1}{3^m} f(3^m x) \right\}$ converges for all $x \in A$. So one can define the mapping $H : A \to B$ by

\[
H(x) := \lim_{n \to \infty} \frac{1}{3^n} f(3^n x)
\]

for all $x \in A$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (20), we get (19).

The rest of the proof is similar to the proof of Theorem 2.2. □

3 Isomorphisms between C^*-ternary algebras

Throughout this section, assume that A is a unital C^*-ternary algebra with norm $\| \cdot \|_A$ and unit e, and that B is a unital C^*-ternary algebra with norm $\| \cdot \|_B$ and unit e'.

We investigate isomorphisms between C^*-ternary algebras associated with the functional equation $D_\mu f(x, y, z) = 0$.

Theorem 3.1. Let $r > 1$ and θ be positive real numbers, and let $f : A \to B$ be a bijective mapping satisfying (4) and $f(0) = 0$ such that

(21)

\[
f([x, y, z]) = [f(x), f(y), f(z)]
\]

for all $x, y, z \in A$. If $\lim_{n \to \infty} 3^n f(x) = e'$, then the mapping $f : A \to B$ is a C^*-ternary algebra isomorphism.

Proof. By the same argument as in the proof of Theorem 2.2, one can obtain a \mathbb{C}-linear mapping $H : A \to B$ satisfying (6). The mapping H is given by

\[
H(x) := \lim_{n \to \infty} 3^n f \left(\frac{x}{3^n} \right)
\]

for all $x \in A$.

Since \(f([x, y, z]) = [f(x), f(y), f(z)] \) for all \(x, y, z \in A \),

\[
H([x, y, z]) = \lim_{n \to \infty} 3^n f \left(\frac{1}{3^n} [x, y, z] \right) = \lim_{n \to \infty} 3^n f \left(\left[\frac{x}{3^n}, \frac{y}{3^n}, \frac{z}{3^n} \right] \right)
\]

\[
= \lim_{n \to \infty} \left[3^n f \left(\frac{x}{3^n} \right), 3^n f \left(\frac{y}{3^n} \right), 3^n f \left(\frac{z}{3^n} \right) \right]
\]

\[= [H(x), H(y), H(z)]\]

for all \(x, y, z \in A \). So the mapping \(H : A \to B \) is a \(C^* \)-ternary algebra homomorphism.

It follows from (21) that

\[
H(x) = H([e, e, x]) = \lim_{n \to \infty} 3^n f \left(\frac{e}{3^n}, e, x \right) = \lim_{n \to \infty} 3^n f \left(\left[\frac{e}{3^n}, \frac{e}{3^n}, x \right] \right)
\]

\[
= \lim_{n \to \infty} \left[3^n f \left(\frac{e}{3^n} \right), 3^n f \left(\frac{e}{3^n} \right), f(x) \right] = [e', e', f(x)] = f(x)
\]

for all \(x \in A \). Hence the bijective mapping \(f : A \to B \) is a \(C^* \)-ternary algebra isomorphism. \(\square \)

Theorem 3.2. Let \(r < 1 \) and \(\theta \) be positive real numbers, and let \(f : A \to B \) be a bijective mapping satisfying (4), (21) and \(f(0) = 0 \). If

\[
\lim_{n \to \infty} 3^n f \left(\frac{1}{3^n} e \right) = e',
\]

then the mapping \(f : A \to B \) is a \(C^* \)-ternary algebra isomorphism.

Proof. By the same argument as in the proof of Theorem 2.3, one can obtain a \(\mathbb{C} \)-linear mapping \(H : A \to B \) satisfying (12).

The rest of the proof is similar to the proof of Theorem 3.1. \(\square \)

Theorem 3.3. Let \(r > \frac{1}{3} \) and \(\theta \) be positive real numbers, and let \(f : A \to B \) be a bijective mapping satisfying (14), (21) and \(f(0) = 0 \). If

\[
\lim_{n \to \infty} 3^n f \left(\frac{e}{3^n} \right) = e',
\]

then the mapping \(f : A \to B \) is a \(C^* \)-ternary algebra isomorphism.

Proof. By the same argument as in the proof of Theorem 2.4, one can obtain a \(\mathbb{C} \)-linear mapping \(H : A \to B \) satisfying (16).

The rest of the proof is similar to the proof of Theorem 3.1. \(\square \)

Theorem 3.4. Let \(r < \frac{1}{3} \) and \(\theta \) be positive real numbers, and let \(f : A \to B \) be a bijective mapping satisfying (14), (21) and \(f(0) = 0 \). If

\[
\lim_{n \to \infty} 3^n f \left(\frac{1}{3^n} e \right) = e',
\]

then the mapping \(f : A \to B \) is a \(C^* \)-ternary algebra isomorphism.

Proof. By the same argument as in the proof of Theorem 2.5, one can obtain a \(\mathbb{C} \)-linear mapping \(H : A \to B \) satisfying (19).
The rest of the proof is similar to the proof of Theorem 3.1.

4 Stability of C^*-ternary derivations on C^*-ternary algebras

Throughout this section, assume that A is a C^*-ternary algebra with norm $\| \cdot \|_A$.

We prove the generalized Hyers-Ulam stability of C^*-ternary derivations on C^*-ternary algebras for the functional equation $D_\mu f(x, y, z) = 0$.

Theorem 4.1. Let $r > 3$ and θ be positive real numbers, and let $f : A \to A$ be a mapping satisfying $f(0) = 0$ such that

\[
\| D_\mu f(x, y, z) \|_A \leq \theta(\| x \|_A^r + \| y \|_A^r + \| z \|_A^r),
\]

\[
\| f(x, y, z) - [f(x), y, z] - [x, f(y), z] - [x, y, f(z)] \|_A \leq \theta(\| x \|_A^r + \| y \|_A^r + \| z \|_A^r)
\]

for all $\mu \in \mathbb{T}^1$ and all $x, y, z \in A$. Then there exists a unique C^*-ternary derivation $\delta : A \to A$ such that

\[
\| f(x) - \delta(x) \|_A \leq \theta \frac{3^r + 2}{3^r - 3} \| x \|_A^r
\]

for all $x \in A$.

Proof. By the same argument as in the proof of Theorem 2.2, one can obtain a \mathbb{C}-linear mapping $\delta : A \to B$ satisfying (24). The mapping δ is given by

\[
\delta(x) := \lim_{n \to \infty} 3^n f\left(\frac{x}{3^n}\right)
\]

for all $x \in A$.

By the same reasoning as in the proof of Theorem 2.1 of [21], the mapping $\delta : A \to A$ is \mathbb{C}-linear.

It follows from (23) that

\[
\| \delta([x, y, z]) - [\delta(x), y, z] - [x, \delta(y), z] - [x, y, \delta(z)] \|_A
= \lim_{n \to \infty} 3^n f\left(\frac{x, y, z}{3^n}\right) - 3^n f\left(\frac{x}{3^n}, \frac{y}{3^n}, \frac{z}{3^n}\right)
\]

\[
-3^n f\left(\frac{x}{3^n}, \frac{y}{3^n}, \frac{z}{3^n}\right) - 3^n f\left(\frac{x}{3^n}, \frac{y}{3^n}, \frac{z}{3^n}\right)
\]

\[
\leq \lim_{n \to \infty} 3^{n(3-r)} \theta(\| x \|_A^r + \| y \|_A^r + \| z \|_A^r) = 0
\]

for all $x, y, z \in A$. So

\[
\delta([x, y, z]) = [\delta(x), y, z] + [x, \delta(y), z] + [x, y, \delta(z)]
\]
for all $x, y, z \in A$.

By the same argument as in the proof of Theorem 2.2, the uniqueness of δ is proved. Thus the mapping δ is a unique C^*-ternary derivation satisfying (24).

Theorem 4.2. Let $r < 1$ and θ be positive real numbers, and let $f : A \to A$ be a mapping satisfying (22), (23) and $f(0) = 0$. Then there exists a unique C^*-ternary derivation $\delta : A \to A$ such that

$$(25) \quad \|f(x) - \delta(x)\|_A \leq \frac{\theta \cdot 2 + 3^r}{3 - 3^r} \|x\|^r_A$$

for all $x \in A$.

Proof. By the same argument as in the proof of Theorem 2.3, one can obtain a C^*-linear mapping $\delta : A \to B$ satisfying (25).

The rest of the proof is similar to the proof of Theorem 4.1. \qed

Theorem 4.3. Let $r > \frac{1}{3}$ and θ be positive real numbers, and let $f : A \to A$ be a mapping satisfying $f(0) = 0$ such that

$$(26) \quad \|D_\mu f(x, y, z)\|_A \leq \theta \cdot \|x\|^r_A \cdot \|y\|^r_A \cdot \|z\|^r_A,$$

$$\|f([x, y, z]) - [f(x), y, z] - [x, f(y), z] - [x, y, f(z)]\|_A \leq \theta \cdot \|x\|^r_A \cdot \|y\|^r_A \cdot \|z\|^r_A$$

for all $\mu \in \mathbb{T}^1$ and all $x, y, z \in A$. Then there exists a unique C^*-ternary derivation $\delta : A \to A$ such that

$$(27) \quad \|f(x) - \delta(x)\|_B \leq \frac{3^r \theta}{3 - 27^r} \|x\|^3$$

for all $x \in A$.

Proof. By the same argument as in the proof of Theorem 2.4, one can obtain a C^*-linear mapping $\delta : A \to B$ satisfying (27).

The rest of the proof is similar to the proof of Theorem 4.1. \qed

Theorem 4.4. Let $r < \frac{1}{3}$ and θ be positive real numbers, and let $f : A \to A$ be a mapping satisfying (26), (27) and $f(0) = 0$. Then there exists a unique C^*-ternary derivation $\delta : A \to A$ such that

$$(28) \quad \|f(x) - \delta(x)\|_B \leq \frac{3^r \theta}{3 - 27^r} \|x\|^3$$

for all $x \in A$.

Proof. By the same argument as in the proof of Theorem 2.5, one can obtain a \(\mathbb{C} \)-linear mapping \(\delta : A \to B \) satisfying (29).

The rest of the proof is similar to the proofs of Theorems 4.1. \(\square \)

References

[1] V. Abramov, R. Kerner and B. Le Roy, Hypersymmetry: a \(\mathbb{Z}_3 \)-graded generalization of supersymmetry, J. Math. Phys. 38 (1997), 1650–1669.

[2] M. Amyari and M. S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys. 77 (2006), 1–9.

[3] C. Baak and M. S. Moslehian, On the stability of \(J^* \)-homomorphisms, Nonlinear Anal.–TMA 63 (2005), 42–48.

[4] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.

[5] Y. L. Daletskii and L. Takhtajan, Leibniz and Lie algebra structures for Nambu algebras, Lett. Math. Phys. 39 (1997), 127–141.

[6] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431–434.

[7] P. Găvruța, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.

[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.

[9] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.

[10] D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), 425–430.

[11] G. Isac and Th. M. Rassias, Stability of \(\psi \)-additive mappings : Applications to non-linear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219–228.

[12] S.-M. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996), 221–226.

[13] R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity 14 (1997), A203–A225.

[14] R. Kerner, Ternary algebraic structures and their applications in physics, arXiv:math-ph/0011023v1.

[15] M. S. Moslehian, Almost derivations on \(C^* \)-ternary rings, Bull. Belgian Math. Soc.–Simon Stevin 14 (2007), 135–142.

[16] M. S. Moslehian, Approximate \(C^* \)-ternary ring homomorphisms, Bull. Brazilian Math. Soc. 38 (2007), 611–622.

[17] M. S. Moslehian, Ternary derivations, stability and physical aspects, Acta Appl. Math. 100 (2008), 187–199.

[18] M. S. Moslehian and L. Székelyhidi, Stability of ternary homomorphisms via generalized Jensen equation, Result. Math. 49 (2006), 289–300.
[19] A. Najati, C. Park and J. R. Lee, Homomorphisms and derivations in C^*-ternary algebras, Abstract Appl. Anal. 2009 (2009), Article ID 612392.

[20] A. Najati and A. Ranjbari, On homomorphisms between C^*-ternary algebras, J. Math. Inequal. 1 (2007), 387–407.

[21] C. Park, Homomorphisms between Poisson JC^*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97.

[22] C. Park, Isomorphisms between C^*-ternary algebras, J. Math. Anal. Appl. 327 (2007), 101–115.

[23] C. Park, Generalized Hyers-Ulam stability of C^*-ternary algebra homomorphisms, Dynam. Contin. Discrete Impuls. Systems Ser. A 16 (2009), 67–79.

[24] C. Park and J. Cui, Generalized stability of C^*-ternary quadratic mappings, Abstract Appl. Anal. 2007 (2007), Article ID 23282.

[25] C. Park and Th. M. Rassias, Homomorphisms in C^*-ternary algebras and JB*-triples, J. Math. Anal. Appl. 337 (2008), 13–20.

[26] K.-H. Park and Y.-S. Jung, Perturbations of higher ternary derivations in Banach ternary algebras, Commun. Korean Math. Soc. 23 (2008), 387–399.

[27] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126–130.

[28] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445–446.

[29] J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), 268–273.

[30] J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (1992), 185–190.

[31] J. M. Rassias, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28 (1994), 231–235.

[32] J. M. Rassias, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math. 29 (1996), 755–766.

[33] J. M. Rassias, Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal. Appl. 220 (1998), 613–639.

[34] J. M. Rassias and H.-M. Kim, Approximate homomorphisms and derivations between C^*-ternary algebras, J. Math. Phys. 49 063507 (2008).

[35] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.

[36] Th. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292–293; 309.

[37] Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352–378.

[38] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264–284.

[39] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23–130.

[40] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
[41] Th. M. Rassias and P. Šemrl, *On the behaviour of mappings which do not satisfy Hyers–Ulam stability*, Proc. Amer. Math. Soc. **114** (1992), 989–993.

[42] M. B. Savadkouhi, M. E. Gordji, J.M. Rassias and N. Ghobadipour, *Approximate ternary Jordan derivations on Banach ternary algebras*, J. Math. Phys. **50** (2009), Article ID 042303.

[43] M. B. Savadkouhi, M. E. Gordji and N. Ghobadipour, *Stability of homomorphisms and derivations in \(C^* \)-ternary algebras* (preprint).

[44] F. Skof, *Proprietà locali e approssimazione di operatori*, Rend. Sem. Mat. Fis. Milano **53** (1983), 113–129.

[45] S. M. Ulam, *A Collection of the Mathematical Problems*, Interscience Publ. New York, 1960.

[46] L. Vainerman and R. Kerner, *On special classes of n-algebras*, J. Math. Phys. **37** (1996), 2553–2565.

[47] H. Zettl, *A characterization of ternary rings of operators*, Adv. Math. **48** (1983), 117–143.