Effect of transgenic *Leishmania major* expressing mLLO-Bax-Smac fusion gene in the apoptosis of the infected macrophages

Maryam Aghaei 1, Hossein Khanahmad 2, Akram Jalali 3, Shahrzad Aghaei 4, Manizheh Narimani 5, Sayed Mohsen Hosseini 6, Fatemeh Namdar 7, Seyed Hossein Hejazi 1,6*

1 Skin Diseases and Leishmaniasis Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
4 Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
5 Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
6 Department of Biostatistics & Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
7 Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
8 Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

ABSTRACT

Objective(s): Leishmaniasis is a complex infection against which no confirmed vaccine has been reported so far. Transgenic expression of proteins involved in macrophage apoptosis-like BAX through the parasite itself accelerates infected macrophage apoptosis and prevents *Leishmania* differentiation. So, in the present research, the impact of the transgenic *Leishmania major* including mLLO-BAX-SMAC proapoptotic proteins was assayed in macrophage apoptosis acceleration.

Materials and Methods: The coding sequence mLLO-BAX-Smac was designed and integrated into the pLexyNeo2 plasmid. The designed sequence was inserted under the 18srRNA locus into the *L. major* genome using homologous recombination. Then, mLLO-BAX-SMAC expression was studied using the Western blot, and the transgenic parasite pathogenesis was investigated compared with wild-type *L. major* in vitro and also in vivo.

Results: Western blot and PCR results approved mLLO-BAX-SMAC expression and proper integration of the mLLO-Bax-Smac fragment under the 18srRNA locus of *L. major*, respectively. The flow cytometry results revealed faster apoptosis of transgenic *Leishmania*-infected macrophages compared with wild-type parasite-infected macrophages. Also, the mild lesion with the less parasitic burden of the spleen was observed only in transgenic *Leishmania*-infected mice. The delayed progression of leishmaniasis was obtained in transgenic strain-injected mice after challenging with wild-type *Leishmania*.

Conclusion: This study recommended transgenic *L. major* including mLLO-BAX-SMAC construct as a pilot model for providing a protective vaccine against leishmaniasis.

> **Introduction**

One of the complex parasitic diseases in more than 102 countries is leishmaniasis which is caused by various species of *Leishmania*, a single-cellular kinetoplastid parasite (1-3). About 21 species of *Leishmania* parasites cause the main forms of leishmaniasis including Cutaneous, Muco-cutaneous, and Visceral (2). *Leishmania major* that causes CL, has a haploid genome (29–33 Mb in size) (4) including 36 chromosomes and 8272 coding genes involved in the surface glycoconjugates synthesis and pathogen-host interactions like proteolytic enzymes (5). The disease is transmitted by an infected phlebotomine sand-fly when it takes blood and injects mobile promastigotes into the host skin. The tissue macrophages of the host quickly capture the parasite, where *Leishmania* spp. within 12 to 24 hr differentiate into the non-motile amastigote to survive in macrophage phagolysosomes and once the macrophage collapses, released amastigotes infect new macrophages (6).

For disease resolution, macrophages attack *Leishmania* parasites through toxic oxygenated metabolite-products such as anion superoxide (O2-) and also present the *Leishmania* antigens to the TCD4+ cells. TCD4+ cell with the production of IFN-γ, stimulates nitric oxide production in infected macrophages for killing the *Leishmania* parasites, effectively (7). In contrast, *Leishmania* amastigotes inhibit macrophage function through down-regulating MHC class II and enhancing the production of the regulatory cytokine-like TGF-β and IL-10 (8).

Another way for the rapid deletion of *Leishmania* by macrophages is apoptosis (9). *Leishmania* induces cellular stress responses in macrophages and stress activates JNK and C-Jun/AP-1 signaling pathways (10). As in these signaling pathways, JNK induces c-Jun/AP-1 and enhances the death ligand FasL expression. Thus, cellular responses to stress lead to Fas-mediated apoptosis (extrinsic apoptotic pathway). In the presence of interferon-γ (IFN-γ), macrophages infected...
with L. major increase the Fas expression and become sensitive to cytotoxic T cells CD4 expressing FasL (11). Also, Fasl and IFN-γ enhance the killing of L. major by macrophages (12).

The parasites can delay macrophage apoptosis in different ways like activating Extracellular signal-regulated kinases (ERK1/2) (13) and Phosphoinositide 3-kinases/Acetate kinase (PIK3/ACK) pathways and preventing caspase 3 and 7 processes, inhibiting expression of BAX gene, stimulating anti-apoptotic signals, and secretion of cytochrome C (14).

The BAX gene in the 19q13.3-q13.4 of the human genome is known as the first pro-apoptotic protein of the BCL-2 family (15, 16). The main form of BAX (BAXα) with 21 kDa exists at the mitochondrial outer membrane (MOM) for apoptosis induction (15, 16). It is present in the latent form in tissues like the spleen and breast and activates upon apoptosis induction (17). The active BAX interacts with BID and changes conformationally. Then, the oligomerized BAX intercalates into the MOM and opens the voltage-dependent anion channel (VDAC) in mitochondria. Furthermore, it forms an oligomeric pore of the mitochondrial apoptosis-induced channel (MAC) in MOM that results in the lack of mitochondrial membrane potential and extract of apoptogenic agents such as ROS and cytochrome C of the mitochondrial inter-membrane space into the cytosol (18, 19). The Second mitochondrial-derived activator of caspases (SMAC) is also a protein of inter-membrane space of mitochondria that promotes TNF receptor and cytochrome C-dependent activation of apoptosis through inhibiting the action of Inhibitor of Apoptosis Proteins (IAPs) (20). Afterward, cytochrome C assembles the apoptosome complex by joining to apoptotic peptidase activating factor 1 (APAF1). This complex perpetrates the cell to apoptosis through binding and activating the cascade of caspase (18).

Though, caspase 3 and BAX expression increase in cells infected with Leishmania by tumor suppressor p53 during 24 hr (21), research results show that Leishmania prohibits BAX homo-oligomerization resulting in impaired translocation of BAX to mitochondria (21). Also, apoptosis prevention is partly associated with equilibrium of BAX and BCL-2 gene expression. Hence, Leishmania opposes the macrophages’ apoptosis by up-regulating BCL-2 and down-regulating BAX (22).

The principal purpose of the current drugs like miltefosine is to induce parasite apoptosis (23) which is used after the appearance of the lesion and has side effects like toxicity to other cells (24). Therefore, new molecular approaches are required for the treatment of leishmaniasis (25). One of the late vaccination strategies is generating transgenic Leishmania. This haploid parasite can endure homologous recombination easily and hence deleting or integrating genes into Leishmania is possible (26). So far, the making of transgenic Leishmania has been done in 3 pathways, consisting of removing genes coding pathogenic factors, generating parasites expressing host immune factors, and parasite labeling (through fluorescence and biochemical reporter genes) for in vitro and in vivo post-infection examination (27).

One of Leishmania’s strategies to get away from the immune system of the host is delaying or inhibiting the macrophage apoptosis and also promoting pro-apoptotic proteins like BAK and BAX that can promote this natural process in the macrophage. So, the transgenic expression of pro-apoptotic genes through the parasite itself can enhance the percentage of macrophage apoptosis and stimulate less pathology through increased apoptosis of macrophages and without any side effects on the rest of the cells. We hypothesized that expression of BAX-SMAC proteins by transgenic L. major can be applied as an effective method to find the alternative to leishmanization against leishmaniasis.

As in this research, transgenic L. major expressing and secreting pro-apoptotic BAX and SMAC proteins of the mouse host was created through homologous recombination, and insertion of mentioned genes in the 18s rRNA region of the L. major genome was assayed. We found that this transgenic organism can reduce disease progression and induce protection versus virulent organisms through increasing infected macrophages’ apoptosis. So, this study suggested a new method for protection of susceptible individuals against the leishmaniasis disease.

Materials and Methods

Study area

This experimental research was done at the Department of Parasitology and Mycology, Isfahan University of Medical Sciences, Isfahan, Iran between 2015 and 2018, using a grant awarded by Research Vice-Presidency of Isfahan University of Medical Sciences, Isfahan, Iran.

Construction of the recombinant vector

The sequence of murine Bax gene (AF339055) along with mutated listeriolysin O (mLLO-L461T) (LLO lyses the phagosome membrane in pH7, while mLLO acts in pH<7) and Smac gene (8 a.a) that were placed at the 5’ and 3’ ends of the Bax gene, were codon-optimized. Moreover, the cleavage site of furin was considered between Bax-Smac and mLLO sequences. The mLLO-Bax-Smac sequence with 2292 bp size was ordered from GeneCust Company (Luxembourg) for synthesis and cloning into the pUC57 vector in the SalI and KpnI restriction sites. Next, the SalI-mLLO-Bax-Smac-KpnI fragment was sub-cloned into the identical place in the pLEXSY-Neo2 vector, under the Secreted Acid Phosphatase 1 (SAP1) signal sequence, and was ligated with the T4 DNA ligase enzyme (Thermo Fisher, USA) (Figure 1). Then, the ligated vector was transformed into the competent E. coli Top10 (28) and transformed bacteria were selected on ampicillin-Luria- Bertani (LB) agar medium.

The extraction of the plasmid

Transformed bacteria containing pLEXSY-Neo2-mLLO-Bax-Smac were cultured in ampicillin -LB broth medium,16 hr at 37 °C and 200 rpm (29). The plasmid DNA was extracted using SolGent (Korea). Next, the plasmid was linearized using the Swal restriction enzyme (Thermo Scientific, USA) and separated on a 1% agarose gel electrophoresis. Then, a smaller band including the mLLO-Bax-Smac+ flank of up and down of
Transgenic *L. major* expressing mLLO-Bax-Smac and apoptosis

The culture of parasite

L. major promastigotes (MRHO/IR/75/ER) were taken from the Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, and cultured in biphasic NNN medium. Next, the parasites were sub-cultured at 25 °C and in monophasic RPMI 1640 medium (Gibco, USA) supplemented with 10% fetal bovine serum (FBS) and 100 U/ml penicillin/ streptomycin (Gibco, Pen-Strep15140).

Transfection of *L. major*

To generate transgenic *L. major*, 1×10⁸ parasites in the logarithmic phase (with OD=2) were harvested and the pellet was washed with cold transfection buffer (4 g NaCl, 2.5 g HEPES [pH 7.5], 0.05 g Na₂HPO₄, 0.594 g/l Glucose, and 0.185 g KCl) two times based on the Jena Bioscience protocol (Jena Bioscience, Germany). Then, the pellet was re-suspended in cold transfection buffer (450 μl) and combined with about 20 μg of extracted vector in a 4 mm cuvette and placed on ice for 10 min. After 10 minutes, 4 °C, 15 min, and solved in distilled water. Finally, cuvettes were returned on ice for 10 min and the transfected promastigotes were cultured in the FBS/RPMI1640/Antibiotics (pen/step) liquid media and placed for 48 hr at temperature room.

The selection of transgenic promastigotes

The transfected *L. major* promastigotes were centrifuged and selected in liquid media containing RPMI 1640, 10% FBS, 100 U/ml penicillin/ streptomycin, and 25 μg/ml Geneticin (Roche, Germany), and the selection was followed for two weeks by adding the Geneticin up to 100 μg/ml (30).

MTT test

The growth rate and viability of the transgenic parasites were determined using the MTT test. Briefly, 1×10⁶ transgenic and wild-type parasites were inoculated in 5 ml of medium) 50:50 (100 μl culture was harvested daily (up to 7 days) and loaded onto a 96-well plate and 20 μl MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma) added to wells for 2 hr at 25 °C. Then, to lyse cells, 100 μl of dimethyl sulfoxide (DMSO) was added for 30 min at 25 °C and in the dark condition. Finally, the plate at 550 nm was read using an ELISA plate reader (30).

PCRs method

To confirm the correct insertion of the mLLO-Bax-Smac cassette into the 18srRNA region of the transfected *L. major* genome by homologous recombination, genomic DNA of transfected promastigotes was extracted using a Genetbio kit (South Korea). Then, long-range PCR was carried out with forward primer hybridizing to the 18srRNA region upstream on *Leishmania* genomic DNA and reverse primer hybridizing to the expression cassette. Also, some parts of the mLLO-Bax-Smac segment and ITS-1 (Internal Transcribed Spacer 1 gene as a control) were amplified using primer pairs listed in Table1.

Protein preparation

The wild type and transgenic *L. major* were cultured in conditioned medium (serum and bicarbonate sodium-free-RPMI 1640 contain 100 U/ml penicillin/ streptomycin/gentamicin) at 25 °C for 48 hr. Next, the supernatants were processed in accordance with the Cuervo method with some modification. Briefly, the supernatants were centrifuged in two steps (2000 ×g, 1 hr, 4 °C). Then, the supernatants were centrifuged in two steps (2000 ×g, 10 minutes, 4 °C and 20,000×g, 1 hr, 4 °C). Then, TCA (trichloroacetic acid) with %10 and %20 concentrations were added, and for 60 min the solutions were incubated on ice. Finally, the supernatants were centrifuged in two steps (2000 ×g, 10 minutes, 4 °C and 20,000×g, 1 hr, 4 °C). Then, TCA (trichloroacetic acid) with %10 and %20 concentrations were added, and for 60 min the solutions were incubated on ice. Finally, the pellets were washed with cold acetone at 14000×g, 4 °C, 15 min, and solved in distilled water (31).

SDS-PAGE and Western blotting

Identical amounts of condensed proteins from both parasites were run on sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) 12% and transferred to the nitrocellulose membrane at 80 V and 4 °C for 90 min. Next, the membrane was blocked in skim milk 5% (W/V) for 2 hr at 25 °C and incubated in a diluted mouse anti-(6×His) HRP conjugated antibody (1:1000, Sigma, USA) for 16 hr. Finally, tetramethylbenzidine (TMB) substrate was added to visualize HRP-conjugated IgG bonded to the his-tagged fusion protein (32).

Hemolysis test

To survey the hemolysis by the transgenic *L. major* and wild-type *L. major* (as control), the linear culture was done on the blood agar media including defibrinated sheep blood, nutrient agar, ampicillin, rifampicin, and plates were placed for 7 days at 24-26 °C (33).

In vitro assay

To compare the acceleration of apoptosis in macrophages infected with transgenic and wild-type *L. major*, the J774 cell line was bought from Pasteur Institute of Iran, Tehran, Iran, and cultured in a medium containing RPMI 1640, FBS 10%, 100 U/ml penicillin/streptomycin at 37 °C and 5% CO₂. Then, macrophages were infected with transgenic and wild-type *L. major* promastigotes in late-stationary-phase, at a cell-to-parasite ratio of 1:10. Afterward, macrophage lysate and supernatants were harvested at 12, 24, and 48 hr post-infection. Next, necrosis and apoptosis percentages of both infected macrophages were assayed using the flow-cytometry method (BD Biosciences kit, Roche) at the mentioned times (34, 35). Also, the 8-hr macrophage culture was fixed with absolute methanol on the slide and stained with Wright-5% Giemsa stain for 3 min and observed by light microscopy (x1,000) (36). This test was performed with triple replications of each well (36).

In vivo assay

30 Balb/c mice (inbred females, 4-6 weeks old) were bought from the animal breeding facility of Pasteur Institute of Iran and maintained in a conventional facility at Isfahan University of Medical Sciences. This research was verified by the Institutional Review Boards (IRB) of Isfahan University of Medical Sciences with IR.MUI.REC.1394.3.791 ethical approval number.

To assay the pathogenesis of the transgenic parasites, mice were grouped as 10 wild-type-infected mice (group 1), 10 transgenic *L. major*-infected mice (group 2), and also 10 mice infected with both transgenic and wild-type *L. major* (group 3). Groups 1 and 2 were inoculated with 1×10⁵ stationary phase promastigotes from wild-type and transgenic *L. major* subcutaneously at the tail base, respectively. Furthermore, group 3 was injected with both types of parasites (1×10⁴×1×10⁴). Disease flow was followed using a vernier caliper to measure ulcer size, twice weekly (30).

Re-infecting transgenic *L. major*-infected mice with wild-type *L. major*

To evaluate the potency of the transgenic parasites to protect Balb/c mice, un-ulcered mice of 2 and 3 groups (mice infected with transgenic *L. major* and both transgenic and wild-type parasites, respectively) were re-infected with 1×10⁵ wild-type promastigotes after 4 weeks, and the course of the disease was followed across 4 weeks (30).

The Parasite burden evaluation

After four weeks (day 30), the mice in all groups were sacrificed and their spleens were excised. The weighted piece of spleen of each mice (~20 mg) (37) was homogenized in 2 ml of Schneider’s medium (Sigma, Germany) containing gentamicin 0.1% and FBS 20%, in a sterile condition by a tissue grinder. The homogenized tissues were diluted with the same medium from 1 to 10⁻¹⁰ in a 96-well plate and maintained for 7 days at 27 °C. Then, the attendance of motile parasites in wells was surveyed using an inverted microscope (40 magnification). The end titer was the dilution with a minimum of one live promastigote. Finally, the parasite burden/mg of tissue was obtained using the below formula:

\[\text{Parasite burden} = \log_{10}(\text{parasite dilution/tissue weight}) \]

Statistical analysis

Data were shown as means±SEM (standard error of the mean) and calculated using ANOVA, Tukey, and Multivariate tests. Also, SPSS 16 software was used for statistical analysis and the *P*-value<0.05 was considered for significant differences.

Results

Cloning of mLLO-Bax-Smac sequence

In the present study, after subcloning the *mLLO-Bax-Smac* fragment in pLEXY-neo2, the correct integration of sequence was confirmed using *SalI/KpnI* restriction enzymes, as the results showed two 7911bp and 2292bp fragments of the backbone of the plasmid and *mLLO-Bax-Smac* CDS, respectively. Then, we integrated the expression cassette of the *mLLO-Bax-Smac* fusion gene of pLEXY-*mLLO-Bax-Smac* into *L. major* genome using transfection through homologous recombination. The pLEXY-neo2 vector is known as a common vector for transferring the gene in the 18srRNA region of the *Leishmania* genome through 5’uss and 3’uss and homologous recombination. 18srRNA promoter of *Leishmania* as well as signal peptide of SAP1 of pLEXY-neo2, were used for expression and secretion of the fusion gene. Also, His-tag (6× his) was embedded at the C-terminal of fragment encoding *mLLO-Bax-Smac* (Figure 1).

Furthermore, the gene script webserver was used to detect the CAI of the codon-optimized *mLLO-Bax-Smac* CDS, and increasing CAI from 0.58 to 0.91 showed a suitable index of expression.

Transfection of *L. major* with pLEXY-mLLO-Bax-Smac plasmid

To generate transgenic *Leishmania*, the pLEXY recombinant vector was digested using the *SwaI* restriction enzyme and desired fragment (7880 bp) consisting of pLEXY-*mLLO-Bax-Smac* was extracted from gel. Then, *Leishmania* was successfully transfected with a linear pLEXY-*mLLO-Bax-Smac* plasmid, as resistant organisms were grown in a liquid medium...
including Geneticin up to 100 μg/ml concentration. Furthermore, the results of the MTT test revealed the same growth curve of both the transgenic and wild-type parasites, and integration did not show an impact on the metabolic rate and replication of Leishmania (P = 0.876) (Figure 2).

Also, the correct integration of the mLLO-Bax-Smac expression cassette into the 18s rRNA ribosomal region of the L. major genome was confirmed after DNA extraction and PCRs analysis of the transfected Leishmania genome. The 1400pb band in long-range PCR showed upstream of the 18srRNA coding region on genomic DNA and some segments of the mLLO-Bax-Smac gene (Figure 3A). Moreover, the PCR analysis using specific primers of the mLLO-Bax-Smac sequence showed a 523 bp band that did not exist in control reactions (Figure 3).

Transgenic parasites express recombinant protein:

SDS–PAGE using the secretory protein of transgenic L. major showed a band ~23 kDa related to BAX fused to SMAC compared with the protein of wild-type parasite. Next, the Western blotting result showed a single band ~23 kDa related to the expression of BAX-SMAC-6-His fusion protein (Figure 4).

Hemolysis test result

The linear culture results revealed hemolysis on the blood agar plate of transgenic parasites compared with the wild-type L. major 7 days later (Figure 5).

In vitro assay results

The Giemsa staining results of macrophages infected with wild-type and transgenic L. major parasites showed significant infection of the J744 cells (Figure 6). Furthermore, in statistical analysis of flow cytometry data, the mean of apoptosis percentage among 3 groups was different at 12, 24, and 48 hr (P-value<0.000), and revealed accelerated and higher apoptosis rate of macrophages infected with transgenic L. major versus the non-infected macrophages and macrophages infected with wild-type L. major. There was no significant difference between macrophages infected with wild-type L. major and non-infected macrophages at mentioned times (P=0.695, 0.207, and 0.958, respectively) (Figures 7 and 8).

Less pathology in susceptible BALB/c mice infected with transgenic L. major

The appearance of lesions at the tail base of all 10 mice of 1 group during 7-10 days after injection confirmed the CL infection with wild-type parasit (Figure 9A), as the mean of ulcer size increased over time. During 40 days of follow-up, no nodules or lesions were observed in 10 mice injected with transgenic parasites (group 2)
Established protection by transgenic \textit{L. major} against re-infection with wild-type parasites

Three weeks after re-infecting with the WT parasites, 3 of the 7 non-ulcered mice of the group injected with both transgenic and wild-type \textit{L. major} (group 3) developed small nodules (without an ulcer), while none of the mice injected with transgenic parasites (group 2) showed lesions or nodules.

Results of the parasite burden assessment

The ANOVA test results showed the different parasitic burdens (\(P\)-value<0.000) in the spleen of mice infected with the transgenic parasite in comparison with mice infected with wild-type parasites and both wild-type and transgenic parasite. Also, the Tukey test showed a significant difference in spleen parasitic burden between groups 1 and 2 (\(P\)-value<0.000), groups 1 and 3 (\(P\)-value<0.000), and groups 2 and 3 (\(P\)-value<0.000) (Figure 11).

Discussion

Over the years, researchers have found that Leishmania as an intracellular organism can be resolved from the vertebrate host body exactly via induction of the cellular immune system. In this way, some physiologic properties of the macrophages can be used to accelerate this process. It seems that activation of early apoptosis of macrophages and the endosomal escape of intracellular pathogens like \textit{Leishmania} could be a potent strategy to protect the human host. The first experiment for endosomal escape was performed by Kaufman \textit{et al.} (39, 40) that developed a \(\Delta\)ureC hly+ rBCG and evaluated the potency and safety of this transgene organism against tuberculosis.

In this study, the \textit{mlLO-Bax-Smac} fusion gene was inserted in \textit{L. major} 18sRNA promoter using transfection. Leucine 461 in the \textit{LLO} gene appears to be responsible for its high activity at pH<7. Replacement of non-polar leucine 461 with polar threonine eliminates the functional dependence of this enzyme on pH<7 by creating additional hydrogen bonds and reducing hydrophobicity, so the mutant enzyme can function in both neutral and acidic pH. Also, the cleavage site of furin was embedded to cut \textit{mlLO} from \textit{BAX-SMAC} using host phagosome furin. The designed sequence was codon-optimized based on the codon usage of \textit{L. major}, as CAI (0.91) supported the efficient expression of \textit{mlLO-BAX-SMAC} by \textit{L. major} (41). Moreover, the molecular weight of the designed sequence was estimated at about 84 kDa.
Transgenic L. major expressing mLLO-Bax-Smac and apoptosis

Comparing the mean of spleen parasitic burden among three groups. 1: Mice infected with wild-type Leishmania major. 2: Mice infected with transgenic L. major. 3: Mice infected with transgenic and wild-type L. major. Group 2 showed a lower mean of spleen parasitic burden than groups 1 and 3. Furthermore, group 3 showed a lower mean of spleen parasitic burden than group 1.

and the Western blotting detected a band ~23kDa that belonged to BAX-SMAC-6×His. It proposes that probably the furin-like proteases have made incisions in the furin cleavage site of the fusion protein and decreased the protein size from 84 to 23 kDa.

Thus, expression of the C-terminal fragment of the fusion protein (BAX-SMAC) confirmed the N-terminal fragment expression (mLLO). Furthermore, the observed hemolysis of transgenic L. major versus wild-type L. major confirmed the mLLO expression.

The appearance of 1400 bp and 523 bp bands using PCR also verified proper replacement of the target sequence into the 18s rRNA region of L. major via homologous recombination. Field et al. (30) also, constructed the transgenic L. major expressing the CD40L extracellular portion, and similar to our study, they showed the integration in the 18s rRNA gene did not affect the viability, as the growth curve for transgenic parasite was the same as wild-type L. major.

Although, according to Jena Bioscience codon optimization increases expression (42), in this research, the secretory protein concentration of transgenic L. major was detected about 1.4 mg/ml which is a relatively low concentration in comparison with previous studies’ amounts like the Kianmehr et al. study (29). However, in another study on the mLLO-Bax-Smac expression by transgenic L. infantum, we found a similar amount (1.5 mg/ml) of protein expression (27) which could be caused by lower copy number of the gene inserted in the host’s genome. Thus, further optimization of expression conditions such as the culture method probably could enhance the recombinant protein production.

Moreover, the flow cytometry results revealed acceleration and increase of apoptosis rate in macrophages infected with transgenic L. major. Statistically, a significant difference was seen in the mean of apoptosis percentages of macrophages infected with transgenic parasites versus the wild-type parasite-infected macrophages at 12, 24, and 48 hr.

According to the hemolysis test results, it can be proposed that the mutated LLO protein lyases the endocytic vesicles before developing secondary lysosomes with acidic pH. The study of Glomski et al. (43) revealed bacteria expressing natural and mutated LLO could destruct J774A macophages within 8 and 5 hr post-infection, respectively. So, a significant difference in the apoptosis rate between transgenic and wild-type L. major parasites could be because of the secreted mutant LLO of the transgenic strain that demolishes the phagosomal membrane and facilitates the accession of the parasite antigens and phagosomal proteases into the cytosol.

SMAC as an adjuvant to BAX protein along with BAX-SMAC fusion protein and other lysosomal proteases (like cathepsin) secretes from the phagolysosomes into cytosol which results in caspase activation, internal pathway induction, and enhanced apoptosis of macrophages infected with transgenic L. major. Hence, it could be suggested that apoptosis is not only due to BAX-SMAC protein expression (40). Similar to our study, Esseiva et al. (44) concluded that mammalian BAX expression induces trypanosomatid apoptosis (T. brucei), although contrary to our results the events mentioned in their study were temporary and also reversible.

Furthermore, in vivo experiments revealed that integration of mLLO-Bax-Smac fragment into L. major genome affects the biomarkers and capability of the parasite to replicate and also induce infection in sensitive Balb/c mice. Contrary to the mice infected with wild-type parasite which showed lesions at the tail base, no nodules or lesions did appear in the transgenic L. major-infected mice. Probably, the suitable function of mLLO in perforating the phagosomal membrane and facilitating BAX-SMAC transfer into the host cell cytosol causes accelerated and enhanced apoptosis and also apoptotic body formation that finally result in TCD8+ and dendritic cell activation, the process referred to as cross-priming (40, 45). So, T cell-associated cellular immunity inhibits parasitic infection and lesion formation by preventing the promastigote differentiation into amastigote that finally led to a loss of nodule or lesion in this group. Also, only 1/3 of mice infected with both wild-type and transgenic L. major revealed small and delayed lesions in comparison with mice infected with wild-type L.
major. Furthermore, the spleen parasitic burden of the control was higher than groups receiving transgenic parasites and transgenic plus wild-type parasites. Similar to our study, researchers (46) by generating transgenic L. major expressing murine chemokine monocyte chemoattractant protein 1 (MCP-1), showed that infection of C57BL/6, BALB/c, or MCP-1 knockout (KO) mice with these transgenic Leishmania caused small lesions with fewer parasites in the infected foot, spleen, and lymph node versus mice infected with the wild-type. Also, Field et al. (30) found that BALB/c mice infected with transgenic L. major encoding CD40L presented fewer lesions with lower parasites than animals infected with wild-type L. major.

Also, we did not see any lesion or nodule after re-infecting mice protected with the transgenic parasite, whereas after re-infecting mice infected with wild-type plus transgenic L. major, small nodules were seen. It showed that BAX expressed by transgenic parasites is unable to act with complete efficiency due to the presence of wild-type parasites’ anti-apoptosis mechanisms. In agreement with our results, researchers (47) assayed the immunogenicity in C57BL/6 mice vaccinated with transgenic L. major encoding the thymidine kinase gene of Herpes Simplex Virus type 1 (HSV-TK) and cytosine deaminase gene of Saccharomyces cerevisiae (Se-cd), as suicide genes. They concluded that the next re-infect in vaccination prevented disease progression which was due to inducible expression of the suicide genes and high level of immunity. Despite the limitations of this study, including long time and cost, this study is the first to make a transgenic L. major that expresses proapoptotic proteins (BAX-SMAC) that could be used as a protective agent or vaccine alternative to leishmanization against CL in endemic areas in the future.

Conclusion

In this study, the persistent replacement of the mLL0-Bax-Smac gene into the L. major genome was done successfully. Also, secretion and expression of recombinant protein were verified and we found that transgenic L. major could enhance the macrophage apoptosis rate and induce less pathogenicity and more immunization in comparison with wild-type organisms.

So, it seems that these findings can be proposed as an experimental model for creating a protective anti-leishmaniasis vaccine.

Acknowledgment

The authors would like to express their gratitude to all participants of this project, the personnel of the Department of Parasitology and Mycology, and the Leishmaniasis and Skin Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

Authors’ Contributions

MA contributed to the conception of the work, conducting the study, drafting and revising the draft, and approval of the final version of the manuscript. HKh contributed to the conception of the work, conducting the study, and approval of the final manuscript. AJ contributed to conducting part of the experiments. ShA contributed to conducting the study, drafting and revising the draft, and approval of the final version of the manuscript. MN contributed to conducting part of the experiments. SMH analyzed study-obtained data. FN contributed to conducting part of the experiments. SHH directed the study and revised and approved the final version of the manuscript.

Ethical Approval

Experimental protocols of this study as a PhD thesis (No.394791) were approved by the Institutional Research and Ethics Committee of Medical Sciences, Isfahan University of Medical Science, Isfahan, Iran. The code of ethical approval for the study is IR.MUI.REC.1394.3.791.

Funding

The study was performed using a grant awarded by the Vice Presidency of Research of Isfahan University of Medical Sciences, Isfahan, Iran.

Data Access Statement

The data associated with this study are available upon reasonable request.

Conflicts of Interest

None declared.

References

1. Doudz M, Hejazi SH, Razavi MR, Narimani M, Khandani S, Esfami G. Comparative molecular epidemiology of Leishmania major and Leishmania tropica by PCR-RFLP technique in hyper endemic cities of Isfahan and Bam, Iran. Med Sci Monit 2010;16:530-535.

2. Georgiadou SP, Malarkitisis KP, Dalekos GN. Leishmaniasis revisited: current aspects on epidemiology, diagnosis and treatment. J Transl Int Med 2015;3:43-50.

3. Dubie T, Mohammed Y. Review on the role of host immune response in protection and immunopathogenesis during cutaneous leishmaniasis infection. J Immunol Res 2020;2020:2496713.

4. Samarasinghe SR, Kariyawasam Ul, Sirivardana YD, Imamura H, Karunaweera ND. Genomic insights into virulence mechanisms of Leishmania donovani: evidence from an atypical strain. BMC Genomics 2018;19:1-18.

5. Ivanus AC, Peacock CS, Worthy EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the karyoplastid parasite, Leishmania major. Science. 2005;309:436-442.

6. Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 2001;55:453-483.

7. Assreu J, Cunha FQ, Epperlein M, Noronha-Dutra A, O’Donnell CA, Liew FY, et al. Production of nicotin oxide and superoxide by activated macrophages and killing of Leishmania major. Eur J Immunol 2014;24:672-676.

8. Alexander J, Russell DG. The interaction of Leishmania species with macrophages. Adv Parasitol 1992;31:175-254.

9. Chow SH, Deo P, Naderer T. Macrophage cell death in microbial infections. Cell Microbiol 2016;18:466-474.

10. Filardy AA, Costa-da Silva AC, Koeller CM, Guimarães-Pinto K, Ribeiro-Gomes PL, Lopes MF, et al. Infection with Leishmania major induces a cellular stress response in macrophages. PLoS One. 2014;9:e85715.

11. Conceição-Silva F, Hahne M, Schröter M, Louis J, Tschopp J. The resolution of lesions induced by Leishmania major in mice requires a functional Fas (APO-1, CD 95) pathway of cytotoxicity. Eur J Immunol 1998;28:237-245.

IRan J Basic Med Sci, Vol. 24, No. 12, Dec 2021

1673
12. Chakour R, Guler R, Bugnon M, Allenbach C, Garcia I, Mael J et al. Both the Fas ligand and inducible nitric oxide synthase are needed for control of parasite replication within lesions in mice infected with Leishmania major whereas the contribution of tumor necrosis factor is minimal. Infect Immun 2003;71:5209-5215.
13. Kamir D, Zierow S, Leng L, Cho Y, Diaz Y, Griffith J et al. A Leishmania ortholog of macrophage migration inhibitory factor modulates host macrophage responses. J Immunol 2008;180:8250-8261.
14. Akarid K, Arnon D, Micic-Polianski J, Sif J, Estaque J. Ameisen JC. Leishmania major-mediated prevention of programmed cell death induction in infected macrophages is associated with the repression of mitochondrial release of cytochrome c. J Leukoc Biol 2004;76:95-103.
15. OlvalZN, MillimanCL, KorsmeyerSJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. cell 1993;74:609-619.
16. Apte SS, Mattei M-G, Olsen BR. Mapping of the human BAX gene to chromosome 19q13. 3-q13. 4 and isolation of a novel alternatively spliced transcript, BAXδ. Genomics 1995;26:592-596.
17. Huret J-L, Ahmad M, Arshaban M, Berheim A, Cigna J, Desangles F et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res 2012;41:920-924.
18. Weng C, Li Y, Xu D, Shi Y, Tang H. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem 2005;280:10491-10500.
19. Cartron P-F, Oliver L, Martin S, Moreau C, LeCabellec M-T, Jezequel P et al. The expression of a new variant of the pro-apoptotic molecule, Bax, Baxδ, is correlated with an increased survival of glioblastoma multiforme patients. Hum Mol Genet 2002;11:675-687.
20. McNeish I, Bell S, McKay T, Tenev T, Marani M, Lemoine N. Expression of Smac/DIABLO in ovarian carcinoma cells induces apoptosis via a caspase-9-mediated pathway. Exp Cell Res 2003;286:186-198.
21. Moshrefi M, Spotin A, Kafil HS, Mahami-Oskouei M, Baradaran B, Ahmadpour E et al. Tumor suppressor p53 induces apoptosis of host lymphocytes experimentally infected by Leishmania major, by activation of Bax and caspase-3: A possible survival mechanism for the parasite. Parasitol Res 2017;116:2159-2166.
22. Ganciulli A, Porro C, Calvello R, Trotta T, Panaro MA. Resistance to apoptosis in Leishmania infantum-infected human macrophages: a critical role for anti-apoptotic Bcl-2 protein family members. Exp Lung Res 2015;41:1033-1044.
23. Lasjerdi Z, Ghanbarian H, Yeganeh S, Hoseini MHM, Haghighi A, Aghaei M et al. The expression of a new variant of the pro-apoptotic molecule, Bax, Baxδ, is correlated with an increased survival of glioblastoma multiforme patients. Hum Mol Genet 2002;11:675-687.
24. Darlo TP, Balasegaram M, Beijnen JH, de Vries PJ, Milkofosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 2012;67:2576-2597.
25. Ghomaremaei Z, Rouhani S, Mohabat M, Mohammadi-Yeganeh S, Hoseini MHH, Haghhighi A et al. MicroRNAs expression induces apoptosis of macrophages in response to Leishmania major (MRHO/IR/75/ER): An in-vitro and in-vivo study. Iran J Parasitol 2020;15:332.
26. Beattie L, Evans K, Kaye P, Smith D. Transgenic Leishmania and the immune response to infection. Parasite Immunol 2008;30:255-266.
27. Aghaee M, Khanahmad H, Aghaee S, Hosseini SM, Farahmand M, Hejazi SH. Evaluation of transgenic Leishmania infantum expressing mLLO-BAX-SMAC in the apoptosis of the infected macrophages in vitro and in vivo. Parasite Immunol 2020;42:e12726.
28. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual: Cold spring harbor laboratory pres. 1989.
29. Maniatis T, Fritsch Et. andd. Sambrook 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 1982.
30. Field AE, Wagage S, Conrad SM, Mosser DM. Reduced pathology following infection with transgenic Leishmania major expressing murine CD40 ligand. Infect Immun 2007;75:3140-3149.
31. Cuervo P, De Jesus JI, Saboia-Vahia L, Mendonca-Lima L, Domont GB, Cupollollio E. Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. J Proteomics 2009;73:79-92.
32. Sambrook J, Fritsch T, Maniatis T. Molecular cloning: a laboratory manual, second edition, vols. 1 and 3. molecular cloning: a laboratory manual second edition vols. 1 2 and 3. molecular cloning: a laboratory manual: Cold spring harbor laboratory pres. 1989;2(2).
33. Datta AR, Wentz BA, Russell J. Cloning of the listeriolysin O gene and development of specific gene probes for Listeria monocytogenes. Appl Environ Microbiol 1990;56:3874-3877.
34. Singh N, Gupta R, Jaiswal AK, Sundar S, Dube A. Transgenic Leishmania donovani clinical isolates expressing green fluorescent protein constitutively for rapid and reliable ex vivo drug screening. J Antimicrob Chemother 2009;64:370-374.
35. Rieser AM, Nelson KL, Konovalchuk JD, Barada DR. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp 2011;50:2597.
36. Rabbi I, Rabbi B, Ben-Othman R, Rasche A, Daskalaki A, Trentin B, et al. Transcriptional signature of Leishmania infected mice macrophages: a metabolic point of view. PLoS Negl Trop Dis 2012;6:1763.
37. Melby PC, Yang Y-Z, Cheng J, Zhao W. Regional differences in the cellular immune response to experimental cutaneous or visceral infection with Leishmania donovani. Infect Immun 1998;66:18-27.
38. Saljoughian N, Taher S, Zahediadif F, Taslimy I, Doustdari B, Bolhasanni A, et al. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis. PLoS Negl Trop Dis 2013;7:2174.
39. Hara H, Kawamura I, Nomura T, Tomina T, Tsuchiya K, Mitsuyma M. Cytolsin-dependent escape of the bacterium from the phagosome is required but not sufficient for induction of the Th1 immune response against Listeria monocytogenes infection: distinct role of listeriolysin O determined by cytolysin gene replacement. Infect Immun 2007;75:3791-3801.
40. Grohe L, Seiler P, Baumann S, Hess J, Brinkmann V, Eddine AN, et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 2005;115:2472-2479.
41. Yadava A, Ockenhouse CE. Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infect Immun 2003;71:4961-4969.
42. Kianmehr A, Golavar R, Rouintan M, Mahrooz A, Fard- Esfahani P, Oladnabi M, et al. Cloning and expression of codon-optimized recombinant darbepoetin alfa in Leishmania tarentolae T7-TR. Protein exp Purif 2016;118:120-125.
43. Glomski IJ, Gedde MM, Tsang AW, Swanson JA, Portnoy DA. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 2002;156:1029-1038.
44. Esseiva AC, Chanez AL, Bochud-Allemann N, Martinou JC, Hemphill A, Schneider A. Temporal dissection of Bax-induced programmed cell death in vivo. J Biol Chem 2002;277:21924-21930.
45. Oliveira SC, Splitter GA. CD8+ type 1 CD44hi CD45 RBlo T cells. J Biol Chem 2005;280:10491-10500.
DM. Leishmania-derived murine monocyte chemotactant protein 1 enhances the recruitment of a restrictive population of CC chemokine receptor 2-positive macrophages. Infect Immun 2007;75:653-665.

47. Dousti A, Davoudi N. Vaccination of C57BL/6 mice with transgenic *Leishmania Major*. 2008.