Results. A shared system list and communication tools used by ID physicians, nurses, and pharmacists were created. As soon as an inpatient is identified as an OPAT discharge, an OPAT “Plan of care” note is created by an ID fellow, note is sent to the OPAT team members (OPAT nurse, nurse practitioner, and ID pharmacist) and the patient is added to the shared list. An order set was built to facilitate accurate electronic prescribing of antimicrobials, supplies for home infusions, and pertinent laboratory tests. The order set sends an automatic message to OPAT team members, a back-up method for identifying OPAT patients. A comprehensive patient report, the “OPAT monitoring” view, was designed to facilitate patient care. The view displays OPAT relevant data from multiple sections of the patient chart onto one screen (ID notes, laboratory results, medications, appointments, free text box, etc.) without entering each patient’s chart. These EMR modifications significantly reduced the time needed for weekly case reviews and facilitates more efficient management of 90–100 patients weekly.

Conclusion. Modifications made to the Epic EMR at our institution have improved patient safety and efficiency of the OPAT program. Fewer patients are missed, patient monitoring is enhanced, clinician time is saved, and ordering is more accurate. Physician satisfaction was improved by creating tools that were designed with workflow efficiency in mind. These modifications were independent of and predate the recommendations made in the Epic “OPAT setup and support guide,” and provide more enhancements for efficient patient management, and could easily be made by other EMR systems.

Disclosures. All authors: No reported disclosures.

1945. Making the EMR Work for You: Modifications to Epic to Improve Management of Outpatient Parenteral Antibiotic Therapy (OPAT) Patients
Sonal Munsiff, MD,1 Erica Dobson, PharmD2 and Colleen Burgoyne, NP3
1Medicine & Infectious Diseases, University of Rochester Medical Center, Rochester, New York, 2University of Rochester Medical Center, Rochester, New York, 3Infectious Diseases, University of Rochester Medical Center, Rochester, New York

Session: 226. Clinical Practice Issues: OPAT
Saturday, October 6, 2018: 12:30 PM

Background. Our institution uses Epic as its electronic medical record (EMR) and managing the complex needs of OPAT patient’s has been challenging and also time-consuming with our EMR. It became imperative that the EMR be modified to capture all OPAT patients and manage them efficiently. We describe the development of EMR tools to facilitate OPAT management.

Methods. The infectious diseases (ID) physician and pharmacist identified multiple ways in which OPAT patient care could be improved by modifying the EMR. In 2016, a multidisciplinary team at URMC created software modifications in Epic to meet the needs of the OPAT program.

Disclosures. All authors: No reported disclosures.

1946. Heterogeneous Hospitalization Outcomes of People Who Use Drugs: The Type of Drug(s) Used Matters
Elisabeth Merchant, MD1; Deirdre Burke, MPH1; Chandelle Diaz, MD2; Joshua Barocas, MD3; Hansel Tookes III, MD MPH1 and Alyssse Wurcel, MD3
1Infectious Disease and Geographic Medicine, Tufts Medical Center, Tufts University, Boston, Massachusetts, 2Internal Medicine, Montefiore Medical Center, New York, New York, 3Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, University of Miami Miller School of Medicine, Alpert Medical School of Brown University/The Miriam Hospital, Providence, Rhode Island

Session: 226. Clinical Practice Issues: OPAT
Saturday, October 6, 2018: 12:30 PM

Background. US hospitals are experiencing an increase in admissions for persons who use drugs (PWUD). We examined predictors of two outcomes—leaving AMA and 30-day readmission—among PWUD.

Methods. We limited the 2013 National Readmissions Database to admissions of PWUD (age 18 to 65; ICD-9 codes for illicit drugs). Diagnoses and severity (Eluxhauser comorbidity index (ECCI)) were defined by ICD-9 codes. Uni- and multivariable logistic regression were performed.

Results. Predictors of AMA included younger age, male gender, bacterial infection, overdose, and use of more than one drug. Use of opioids with stimulants was associated with the highest rate of AMA discharge (AOR 1.81, 95% CI 1.76–1.86). Leaving AMA was not found to be associated with 30-day readmission (OR 0.99, 95% CI 0.96–1.03).

Conclusion. PWUD represent a heterogeneous patient population with hospital outcomes influenced by different patterns of drug use. Further exploration into these differences could have implications for predicting and intervening to prevent AMA discharges as well as 30-day readmissions, which are associated with worse outcomes and significant healthcare costs.

Disclosures. All authors: No reported disclosures.

Median (IQR) or N (%)	AMA, N = 1,211,883*	30-Day Readmission, N = 1,211,883*	
OR	**AOR**	**OR**	**AOR**
Age			
44 (32, 53)	0.98 (0.96, 0.98)	0.983 (0.98, 0.98)	0.999 (0.99, 1.00)
Female	0.71 (0.70, 0.72)	0.64 (0.63, 0.66)	0.93 (0.91, 0.95)
Bacterial infection	1.15 (1.13, 1.17)	1.15 (1.12, 1.17)	0.99 (0.97, 1.02)
Overdose	1.18 (1.15, 1.21)	1.15 (1.11, 1.19)	0.91 (0.88, 0.95)
AMA	NA	NA	0.99 (0.96, 1.03)
Death during first admission	NA	NA	NA
Drug used			
Opioids only	REF	REF	REF
Stimulants only	0.91 (0.89, 0.93)	0.94 (0.92, 0.96)	1.06 (1.03, 1.10)
Opioids/alcohol	1.14 (1.12, 1.14)	1.14 (1.11, 1.18)	0.97 (0.92, 1.01)
Opioids/sedatives	1.41 (1.37, 1.46)	1.37 (1.32, 1.41)	1.02 (1.07, 1.07)
Opioids/stimulants	1.96 (1.89, 2.03)	1.81 (1.76, 1.86)	0.84 (0.80, 0.88)
Eluxhauser Comorbidity Index	0–1	REF	REF
2–3	0.87 (0.86, 0.88)	0.90 (0.88, 0.92)	1.02 (1.00, 1.04)
>3	0.66 (0.64, 0.67)	0.70 (0.68, 0.73)	1.05 (1.02, 1.08)

*Patients who died during index admission were removed from the logistic regression.
1947. Influenza Vaccination via Oral Tablet is Protective and Induces a Unique Mucosal Immune Response
Nikita Kolanchar, PhD; Keith Gottlieb, PhD; Kassandra Kasparek, BS; Katie Hodgson, BS; Sean Tucker, PhD and David Liebowitz, MD, PhD; Vaxart, Inc., South San Francisco, California
Session: 227. Clinical Trials
Saturday, October 6, 2018: 12:30 PM

Background. Oral vaccines delivered as tablets offer several advantages over traditional vaccine-based formats including ease of distribution and administration as well as temperature-stable formulation options. Oral vaccination is also advantageous because it directly induces a strong mucosal response, which is thought to be critical for preventing future infections. Here we present results from a phase II clinical challenge study comparing efficacy of an oral recombinant adenovirus-based vaccine expressing hemagglutinin (HA) from A/California 04/09 to that of a commercial injectable quadrivalent (QIV) influenza vaccine.

Methods. In this 2016-2017 clinical trial (NCT02918006), subjects were immunized with either oral vaccine, QIV, or placebo and then challenged 90 days post-immunization with wildtype influenza A H1 virus to measure vaccine efficacy and durability. Protection was assessed by measuring changes in HAI titers, microneutralization, and IgA/IgG ASC assays. Additionally, exploratory flow cytometry evaluated quantitative and qualitative aspects of immunogenicity including markers of activation and mucosal homing on B cells. Analysis was performed on days 0 and 7 post-immunization and 0 and 6 days post-viral challenge. Plasmablasts sorted from PBMCs were then isolated for genomic DNA and sequenced for heavy chain receptor sequencing using NGS analysis.

Results. Of the subjects immunized with Vaxart’s oral tablet vaccine, 48% were protected against 38% of influenza virus infections. Of the Vaxart subjects who developed influenza infection compared with 44% of QIV subjects and 71% of placebo subjects. While both vaccines induced a humoral immune response, FACS analysis and NGS revealed that Vaxart subjects had more activated plasmablasts expressing surface markers, favored homing and long-lived B cell responses over QIV subjects.

Conclusion. Vaxart’s oral influenza vaccine tablet protected against influenza infection as well or better than injectable QIV. However, the mechanism of protection appears to be unique to the route of immunization; oral vaccination allows for specific homing of influenza-specific B cells to sites of infection and produces a more diverse antibody repertoire.

Disclosures. N. Kolhanchar, Vaxart, Inc.: Employee, Salary. K. Gottlieb, Vaxart, Inc.: Employee, Salary. K. Kasparek, Vaxart, Inc.: Employee, Salary. K. Hodgson, Vaxart, Inc.: Employee, Salary. S. Tucker, Vaxart, Inc.: Employee, Salary. D. Liebowitz, Vaxart, Inc.: Employee and Investigator, Salary.

1948. A Host-Response Assay Distinguishes Between Simple Influenza Patients and Influenza Patients With Bacterial Coinfection
Meital Paz, BSc1; Kirir Oved, PhD1; Tanya Gottlieb, PhD2; Asi Cohen, PhD2; Roy Naron, MSc2; Nity Marthoom, BSc1; Ellen Bamberger, MD3,4; Tom Friedman, MD3; Liat Eshelh, MD3; Ola Igbo, PhD1; Isaac Srugo, MD2; Irina Chustkova, MD3,4; Adi Klein, MD3; Israel Potsamian, MD, FIDSA1; Ezra Eden, PhD1; and Liran Shani, MD2; MeMed Diagnostics, Tirat Carmel, Israel, 1Department of Pediatrics, Bnai Zion Medical Center, Haifa, Israel, 2Rambam Health Care Campus, Haifa, Israel, 3Department of Pediatrics, Hillel Yaffe Medical Center, Hadera, Israel, 4Infectious Diseases, Bnai Zion Medical Center, Haifa, Israel
Session: 227. Clinical Trials
Saturday, October 6, 2018: 12:30 PM

Background. Identifying bacterial coinfection in influenza patients can be difficult as the symptoms of simple influenza vs. mixed infections are often similar, leading to overuse of broad-spectrum antibiotics. Here we sought to evaluate its ability to differentiate between simple influenza and influenza with bacterial coinfection.

Methods. The study population included 653 febrile pediatric and adult patients prospectively recruited in the “Curiosity” study. Patient etiology (simple viral vs. mixed infection) was determined by unanimous expert adjudication based on comprehensive clinical, laboratory and radiological assessment. Influenza strains (A or B) were detected using multiplex PCR applied to nasopharyngeal swabs. We compared the level of three proteins (TRAIL, IP-10, and CRP) that integrates the levels of three proteins (TRAIL, IP-10, and CRP) was shown to exhibit high performance in distinguishing between bacterial and viral disease in two double-blind validation studies. Here we sought to evaluate its ability to differentiate between simple influenza and influenza with bacterial coinfection.

Results. Of the 653 patients, 51 had positive influenza detection and unanimous adjudication studies. Here we sought to evaluate its ability to differentiate between simple influenza patients and patients with bacterial coinfection.

Conclusion. The host–response assay can differentiate between simple influenza and influenza patients with bacterial coinfection, with potential to reduce antibiotic overuse. Utility studies are warranted to demonstrate that the assay can safely assist physicians in correct management of influenza patients.

Disclosures. All authors: No reported disclosures.

Figure 1. Flow through of febrile patients with positive influenza detection.

Patient detainee, TN: positive; TR: positive; FN: false-negative.
The index test is available in Europe as ImmunoXpert®, CE-IVD, not yet cleared by the FDA.

Disclosures. M. Paz, MeMed Diagnostics: Employee, Salary. K. Oved, MeMed Diagnostics: Board Member, Employee and Shareholder, Salary. T. Gottlieb, MeMed Diagnostics: Employee, Salary. R. Naron, MeMed Diagnostics: Employee, Salary. N. Mastboim, MeMed Diagnostics: Employee, Salary. E. Bamberger, MeMed Diagnostics: Employee, Salary. T. Friedman, MeMed Diagnostics: Employee, Salary. L. Etstein, MeMed Diagnostics: Employee, Salary. D. Boiser, MeMed Diagnostics: Employee, Salary. I. Etstein, MeMed Diagnostics: Holding stock options, Stock options. E. Eden, MeMed Diagnostics: Board Member, Employee and Shareholder, Salary. L. Shani, MeMed Diagnostics: Employee, Salary.

1949. Safety and Efficacy of Ambulatory Outpatient Treatment of Febrile Neutropenia in Children With Cancer in Mexico: A Multicenter Randomized Controlled Trial
Martha Avilés, MD, MSc1; Marta Zapata, MD, MSc2; Rómulo Rosales, MD3; Francisco Otero, MD3; Amílcar Valencia, MD3; José Péñaloza, MD4 and Alfonso Reyes-Lopez, MSc5; Infectious Diseases, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico. 1Onkology, Instituto Nacional de Pediatría, Mexico City, Mexico, 2Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico, 3Infectious Diseases, Instituto Nacional de Pediatría, Mexico City, Mexico, 4Infectious Diseases, Hospital Juárez de México, Mexico City, Mexico, 5Onkology, Hospital Juárez de México, Mexico City, Mexico, 6Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico. Mexico, 5Onkology, Hospital Juárez de México, Mexico City, Mexico, 6Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
Session: 227. Clinical Trials
Saturday, October 6, 2018: 12:30 PM

Background. Fever and neutropenia (FN) are frequent complications in children with cancer who receive chemotherapy. Although there is evidence of the efficacy of outpatient treatment, inpatient treatment is the standard of care in Mexico City. We aimed to determine whether sequential parenteral-oral outpatient treatment is non-inferior to intravenous inpatient treatment for children with FN in a middle-income setting.

Methods. Randomized controlled clinical trial in subjects 1 to 18 years old with low-risk FN in three hospitals in Mexico City. After 48 to 72 hours of cefepime inpatient treatment, subjects were eligible to participate if they were afebrile for at least 24 hours, had negative cultures and no source of infection. Subjects were randomly assigned to either continue receiving cefepime (inpatient arm) or start receiving cefixime (outpatient arm). Primary end point was treatment failure define as new onset fever, new source of infection or necessity of change antibiotic. Estimated sample size was 68 FN episodes per group. Parametric and nonparametric statistical analyses were performed for comparisons between groups.

Results. Between July 2015 and September 2017, a total of 1,237 episodes of FN were evaluated, of which 469 episodes were eligible. From these, 388 were excluded: 337 due to not meeting the inclusion criteria, eight parents refused to participate, four were evaluated after 72 hours of treatment and three were excluded for other reasons. Of the 117 randomized episodes, 59 were allocated into the outpatient arm and 58 into the inpatient arm. After randomization, demographic and clinical variables did not differ between groups. Treatment failure occurred in 6.9% (4) of patients in the inpatient arm vs. 0% in the outpatient arm (P = 0.05). Failures were associated to influenza B infection, catheter related blood stream infection and fever without a source. Mean duration of antibiotics was 4.6 days [SD (standard deviation) 4.5 days, CI 95% 3.5–5.8 days] in the outpatient arm and 4.4 days (SD 2.5 days, CI 95%, 3.7–5.0 days) in the inpatient arm (P = 0.70).

Conclusion. In our population, outpatient sequential, parenteral-oral treatment with cefixime seems to be as safe and efficacious as parenteral inpatient treatment of low-risk FN episodes.

Disclosures. All authors: No reported disclosures.