THE W^*–CURVATURE TENSOR ON RELATIVISTIC SPACE-TIMES

H. M. ABU-DONIA, SAMEH SHENAWY, AND ABDULLAH A. SYIED

Abstract. This paper aims to study the W^*–curvature tensor on relativistic space-times. The energy-momentum tensor T of a space-time is semi-symmetric given that the W^*–curvature tensor is semi-symmetric whereas energy-momentum tensor T of a space-time having a divergence free W^*–curvature tensor is of Codazzi type. A space-time having a traceless W^*–curvature tensor is Einstein. A W^*–curvature flat space-time is Einstein. Perfect fluid space-times which admits W^*–curvature tensor are considered.

1. Introduction

In [12–16], the authors introduced some curvature tensors similar to the projective curvature tensor [9]. They investigated their geometrical properties and physical significance. These tensors have been recently studied in different ambient spaces [1, 4, 5, 11, 17, 18, 20]. However, we noticed that little attention is paid to the W^*–curvature tensor. This tensor is a $(0, 4)$ tensor defined as

$$W^*_3(U, V, Z, T) = R(U, V, Z, T) - \frac{1}{n-1} \left[g(V, Z) \text{Ric}(U, T) - g(V, T) \text{Ric}(U, Z) \right],$$

where $R(U, V, Z, T) = g(R((U, V) Z, T)$, $R(U, V) Z = \nabla_U \nabla_V - \nabla_V \nabla_U - \nabla_{[U, V]} Z$ is the Riemann curvature tensor, ∇ is the Levi-Civita connection, and $\text{Ric}(U, V)$ is Ricci tensor. For the simplicity, we will denote W^*_3 by W^*. In the local coordinates, it is

$$W^*_{ijkl} = R_{ijkl} - \frac{1}{n-1} \left[g_{jk} R_{il} - g_{jl} R_{ik} \right].$$

The W^*–curvature tensor does not have neither symmetry nor cyclic properties.

A semi-Riemannian manifold M is semi-symmetric [19] if

$$R(\zeta, \xi) \cdot R = 0,$$

where $R(\zeta, \xi)$ acts as a derivation on R. M is Ricci semi-symmetric [8] if

$$R(\zeta, \xi) \cdot \text{Ric} = 0,$$

where $R(\zeta, \xi)$ acts as a derivation on Ric. A semi-symmetric manifold is known to be Ricci semi-symmetric as well. The converse does not generally hold. On the same line of the above definitions we say that M has a semi-symmetric W^*–curvature tensor if

$$R(\zeta, \xi) \cdot W^* = 0,$$

where $R(\zeta, \xi)$ acts as a derivation on W^*.

2010 Mathematics Subject Classification. Primary 53C25, 53C50; Secondary 53C80, 53B20.

Key words and phrases. Einstein’s field equation, Perfect fluid space-times, Energy-momentum tensor, semi-symmetric curvature tensor.
This study was designed to fill this observed gap. The relativistic significance of the W^\star-curvature tensor is investigated. First, it is shown that space-times with semi-symmetric $W^\star_{jkl} = g^{il}W^\star_{ijkl}$ tensor have Ricci semi-symmetric tensor and consequently the energy-momentum tensor is semi-symmetric. The divergence of the W^\star-curvature tensor is considered and it is proved that the energy-momentum tensor T of a space-time M is of Codazzi type if M has a divergence free W^\star-curvature tensor. If M admits a parallel W^\star-curvature tensor, then T is a parallel. Finally, a W^\star-flat perfect fluid space-time performs as a cosmological constant. A dust fluid W^\star-flat space-time satisfies Einstein's field equation is a vacuum space.

2. W^\star-SEMI-SYMMETRIC SPACE-TIMES

A 4-dimensional relativistic space-time M is said to have a semi-symmetric W^\star-curvature tensor if

$$R(\xi, \eta) \cdot W^\star = 0,$$

where $R(\xi, \eta)$ acts as a derivation on the tensor W^\star. In local coordinates, one gets

$$
(\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) W^\star_{ijkl} = (\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) R_{ijkl} - \frac{1}{3} (g_{jk} (\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) R_{il} - g_{jl} (\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) R_{ik}).
$$

(2.1)

Contracting both sides with g^{il} yields

$$
(\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) W^\star_{jk} = \frac{4}{3} (\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) R_{jk},
$$

(2.2)

where $W^\star_{jk} = g^{il}W^\star_{ijkl}$. Thus we have the following theorem.

Theorem 1. M is Ricci semi-symmetric if and only if $W^\star_{jk} = g^{il}W^\star_{ijkl}$ is semi-symmetric.

The following result is a direct consequence of this theorem.

Corollary 1. M is Ricci semi-symmetric if the W^\star-curvature is semi-symmetric.

A space-time manifold is conformally semi-symmetric if the conformal curvature tensor C is semi-symmetric.

Theorem 2. Assume that M is a space-time admitting a semi-symmetric $W^\star_{jk} = g^{il}W^\star_{ijkl}$. Then, M is conformally semi-symmetric if and only if it is semi-symmetric i.e. $\nabla_{[\mu} \nabla_{\nu]} R_{ijkl} = 0 \Leftrightarrow \nabla_{[\mu} \nabla_{\nu]} C_{ijkl} = 0$.

The Einstein’s field equation is

$$
R_{ij} - \frac{1}{2} g_{ij} R + g_{ij} \Lambda = k T_{ij},
$$

(2.3)

where Λ, R, k are the cosmological constant, the scalar curvature, and the gravitational constant. Then

$$
(\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) R_{ij} = k (\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) T_{ij},
$$

(2.4)

i.e., M is Ricci semi-symmetric if and only if the energy-momentum tensor is semi-symmetric.

Theorem 3. The energy-momentum tensor of a space-time M is semi-symmetric if and only if $W^\star_{jk} = g^{il}W^\star_{ijkl}$ is semi-symmetric.
Remark 1. A space-time M with semi-symmetric energy-momentum tensor has been studied by De and Velimirovic in [2].

It is clear that $\nabla_\mu W_{ijkl}^\ast = 0$ implies $(\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) W_{ijkl}^\ast = 0$. Thus the following result rises.

Corollary 2. Let M be a space-time having a covariantly constant W^\ast–curvature tensor. Then M is conformally semi-symmetric and the energy-momentum tensor is semi-symmetric.

A space-time is called Ricci recurrent if the Ricci curvature tensor satisfies

$$\nabla_\mu R_{ij} = b_\mu R_{ij},$$

where b is called the associated recurrence 1–form. Assume that the Ricci tensor is recurrent, then

$$\nabla_\mu \nabla_\nu - \nabla_\nu \nabla_\mu) R_{ij} = \nabla_\mu (\nabla_\nu R_{ij}) - \nabla_\nu (\nabla_\mu R_{ij})$$

$$= \nabla_\mu (b_\nu R_{ij}) - \nabla_\nu (b_\mu R_{ij})$$

$$= (\nabla_\mu b_\nu) R_{ij} + b_\nu \nabla_\mu R_{ij} - (\nabla_\nu b_\mu) R_{ij} - b_\mu \nabla_\nu R_{ij}$$

$$= [\nabla_\mu b_\nu - \nabla_\nu b_\mu] R_{ij}. \quad (2.6)$$

Corollary 3. The following conditions on a space-time M are equivalent

1. The Ricci tensor is recurrent with closed recurrence one form,
2. T is semi-symmetric, and
3. $W_{jk}^\ast = g^{kl} W_{ijkl}^\ast$ is semi-symmetric.

3. Space-times admitting divergence free W^\ast–curvature tensor

The tensor W_{jkl}^\ast of type $(1, 3)$ is given by

$$W_{jkl}^\ast = g^{hi} W_{ijkl}^\ast$$

$$= R_{jkl} - \frac{1}{3} [g_{jk} R_{il} - g_{jl} R_{ik}].$$

Consequently, one defines its divergence as

$$\nabla_h W_{jkl}^\ast = \nabla_h R_{jkl} - \frac{1}{3} [g_{jk} \nabla_h R_{il} - g_{jl} \nabla_h R_{ik}]$$

$$= \nabla_h R_{jkl} - \frac{1}{3} [g_{jk} \nabla_l R - g_{jl} \nabla_k R]. \quad (3.1)$$

It is well known that the contraction of the second Bianchi identity gives

$$\nabla_h R_{jkl} = \nabla_l R_{jk} - \nabla_k R_{jl}.$$

Thus, Equation (3.1) becomes

$$\nabla_h W_{jkl}^\ast = \nabla_l R_{jk} - \nabla_k R_{jl} - \frac{1}{3} [g_{jk} \nabla_l R - g_{jl} \nabla_k R]. \quad (3.2)$$

If the W^\ast–curvature tensor is divergence free, then Equation (3.2) turns into

$$0 = \nabla_l R_{jk} - \nabla_k R_{jl} - \frac{1}{3} [g_{jk} \nabla_l R - g_{jl} \nabla_k R].$$

Multiplying by g^{jk} we have

$$\nabla_l R = 0. \quad (3.3)$$
Thus, the tensor R_{ij} is a Codazzi tensor and R is constant. Conversely, assume that the Ricci tensor is a Codazzi tensor. Then
\[
\nabla_h W_{ijkl}^{\star h} = -\frac{1}{3} [g_{jk} \nabla_{i} R - g_{jl} \nabla_{k} R]
\]
However, the last equation implies that $\nabla_{l} R = 0$. Consequently, the W^{\star}—curvature tensor has zero divergence.

Theorem 4. The W^{\star}—curvature tensor has zero divergence if and only if the Ricci tensor is a Codazzi tensor. In both cases, the scalar curvature is constant.

The divergence of the Weyl curvature C tensor is given by
\[
\nabla_h C_{ijkl} = \frac{n-3}{n-2} [\nabla_k R_{ij} - \nabla_j R_{ik}] + \frac{1}{2(n-1)} [g_{ij} \nabla_k R - g_{lk} \nabla_j R].
\]

Remark 2. Since divergence free of W^{\star}—curvature tensor implies that R_{ij} is a Codazzi tensor, the conformal curvature tensor has zero divergence.

Equation (2.3) yields
\[
\nabla_l R_{ij} - \frac{1}{2} g_{ij} \nabla_l R = k \nabla_l T_{ij},
\]
The above theorem now implies the following result.

Corollary 4. The energy-momentum tensor is a Codazzi tensor if and only if the W^{\star}—curvature tensor has zero divergence. In both cases, the scalar curvature is constant.

Einstein’s field equation infers
\[
(3.4) \quad k (\nabla_l T_{ij} - \nabla_i T_{lj}) = \nabla_l \left(R_{ij} - \frac{1}{2} g_{ij} R \right) - \nabla_i \left(R_{lj} - \frac{1}{2} g_{lj} R \right)
\]
\[
(3.5) \quad = \nabla_l R_{ij} - \nabla_i R_{lj} - \frac{1}{2} (g_{ij} \nabla_l R - g_{lj} \nabla_i R)
\]
\[
(3.6) \quad = \nabla_h W_{ijkl}^{\star h} - \frac{1}{6} (g_{ij} \nabla_l R - g_{lj} \nabla_i R).
\]
Now, it is noted that the above theorem may be proved using this identity.

4. W^{\star}—symmetric space-times

A space-time M is called W^{\star}—symmetric if
\[
\nabla_m W_{ijkl}^{\star m} = 0.
\]
Applying the covariant derivative on the both sides of equation (1.1), one gets
\[
\nabla_m W_{ijkl} = \nabla_m R_{ijkl} - \frac{1}{n-1} [g_{jk} \nabla_m R_{il} - g_{jl} \nabla_m R_{ik}].
\]
If M is a W^{\star}—symmetric space-time, then
\[
\nabla_m R_{ijkl} = \frac{1}{3} [g_{jk} \nabla_m R_{il} - g_{jl} \nabla_m R_{ik}].
\]
Multiplying the both sides by g^{il}, we get
\[
\nabla_m R_{jk} = \frac{1}{3} [g_{jk} \nabla_m R - \nabla_m R_{jk}],
\]
and hence
\((4.2) \quad \nabla_m R_{jk} = \frac{1}{4} g_{jk} \nabla_m R. \)

Now, the following theorem rises.

Theorem 5. Assume that \(M \) is a \(W^* \)-symmetric space-time, then \(M \) is a Ricci symmetric if the scalar curvature is constant.

The second Bianchi identity for \(W^* \)-curvature tensor is
\[
\nabla_m W_{ijkl}^* + \nabla_k W_{ijlm}^* + \nabla_l W_{ijmk}^* = -\frac{1}{3} [g_{jk} (\nabla_m R_{il} - \nabla_l R_{im}) + g_{jl} (\nabla_k R_{im} - \nabla_m R_{ik})] - \frac{1}{3} g_{jm} (\nabla_l R_{ik} - \nabla_k R_{il}).
\]
(4.3)

If the Ricci tensor satisfies \(\nabla_m R_{il} = \nabla_l R_{im} \), then
\[(4.4) \quad \nabla_m W_{ijkl}^* + \nabla_k W_{ijlm}^* + \nabla_l W_{ijmk}^* = 0. \]

Conversely, if the above equation holds, then Equation (4.3) implies
\[(4.5) \quad g_{jk} (\nabla_m R_{il} - \nabla_l R_{im}) + g_{jl} (\nabla_k R_{im} - \nabla_m R_{ik}) + g_{jm} (\nabla_l R_{ik} - \nabla_k R_{il}) = 0. \]

Multiplying the both sides with \(g^{ik} \), then we have
\[(4.6) \quad \nabla_m R_{jl} = \nabla_l R_{jm}, \]
which means that the Ricci tensor is of Codazzi type.

Theorem 6. The Ricci tensor satisfies \(\nabla_m R_{il} = \nabla_l R_{im} \) if and only if the \(W^* \)-curvature tensor satisfies Equation (4.4).

For a purely electro-magnetic distribution, Equation (2.3) reduces to
\[(4.7) \quad R_{ij} = k T_{ij}. \]

Its contraction with \(g^{ij} \) gives
\[(4.8) \quad R = -k T. \]

In this case, it is \(T = R = 0 \). Thus Equation (4.2) yields \(\nabla_m T_{jk} = 0. \)

Theorem 7. The energy-momentum tensor of a \(W^* \)-symmetric space-time obeying Einstein’s field equation for a purely electro-magnetic distribution is locally symmetric.

5. \(W^* \)-FLAT SPACE-TIMES

Now, we consider \(W^* \)-flat space-times. Multiplying both sides of Equation (1.1) by \(g^{il} \) yields
\[
W_{jk}^* = g^{il} W_{ijkl}^* = \frac{4}{3} \left(R_{jk} - \frac{R}{4} g_{jk} \right).
\]
(5.1)
Thus, a \(W_{jk}^* \)-curvature flat space-time is Einstein, i.e.,
\[
R_{jk} = \frac{R}{4} g_{jk}.
\]

Now, Equation (1.1) becomes
\[
W_{ijkl}^* = R_{ijkl} - \frac{R}{12} [g_{ik} g_{jl} - g_{jl} g_{ik}].
\]
Theorem 8. A space-time manifold M is Einstein if and only if $\mathcal{W}^*_jk = 0$. Moreover, a \mathcal{W}^*--flat space-time has a constant curvature.

A vector field ξ is said to be a conformal vector field if

$$L_\xi g = 2\phi g,$$

where L_ξ denotes the Lie derivative along the flow lines of ξ and ϕ is a scalar. ξ is called Killing if $\phi = 0$. Let T_{ij} be the energy-momentum tensor defined on M. ξ is said to be a matter inheritance collineation if

$$L_\xi T = 2\phi T.$$

The tensor T_{ij} is said to have a symmetry inheritance property along the flow lines of ξ. ξ is called a matter collineation if $\phi = 0$. A Killing vector field ξ is a matter collineation. However, a matter collineation is not generally Killing.

Theorem 9. Assume that M is a \mathcal{W}^*--flat space-time. Then, ξ is conformal if and only if $L_\xi T = 2\phi T$.

Proof. Using Equations (5.1) and (2.3), we have

$$(5.2) \quad \left(\Lambda - \frac{R}{4}\right) g_{ij} = k T_{ij}.$$

Then

$$(5.3) \quad \left(\Lambda - \frac{R}{4}\right) L_\xi g = k L_\xi T.$$

Assume that ξ is conformal. The above two equations lead to

$$2\phi \left(\Lambda - \frac{R}{4}\right) g = k L_\xi T$$

$$2\phi T = L_\xi T.$$

Conversely, suppose that the energy-momentum tensor has a symmetry inheritance property along ξ. It is easy to show that ξ is a conformal vector field. □

Corollary 5. Assume that M is a \mathcal{W}^*--flat space-time. Then, M admits a matter collineation ξ if and only if ξ is Killing.

Equations (5.1) and (2.3) imply

$$(5.4) \quad \left(\Lambda - \frac{R}{4}\right) g_{ij} = k T_{ij}.$$

Taking the covariant derivative of (5.4) we get

$$(5.5) \quad \nabla_i T_{ij} = \frac{1}{k} \nabla_i \left(\Lambda - \frac{R}{4}\right) g_{ij}.$$

Since a \mathcal{W}^*--curvature flat space-time has $\nabla_i R = 0$, $\nabla_i T_{ij} = 0$.

Theorem 10. The energy-momentum tensor of a \mathcal{W}^*--flat space-time is covariantly constant.

Let M be a space-time and $\mathcal{W}^*_{klm} = g^{ij} \mathcal{W}^*_{jkil}$ be a (1, 3) curvature tensor. According to [3], there exists a unique traceless tensor \mathcal{B}^i_{klm} and three unique (0, 2) tensors \mathcal{C}_{kl}, \mathcal{D}_{kl}, \mathcal{E}_{kl} such that

$$\mathcal{W}^*_{klm} = \mathcal{B}^i_{klm} + \delta^i_k \mathcal{C}_{lm} + \delta^i_l \mathcal{D}_{km} + \delta^i_m \mathcal{E}_{kl}.$$
All of these tensors are given by

\[C_{ml} = \frac{1}{33} \left[10W_{tml}^{st} - 2 (W_{mtl}^{st} + W_{lmt}^{st}) \right] = 0, \]

\[D_{km} = \frac{1}{33} \left[-2 (W_{tkm}^{st} + W_{mtk}^{st}) + 10W_{ktm}^{st} \right] = \frac{1}{9} \left[R_{km} - \frac{g_{km}}{4} R \right], \]

and

\[E_{kl} = \frac{1}{33} \left[10W_{tkl}^{st} - 2 (W_{tlk}^{st} + W_{ltk}^{st}) \right] = -\frac{1}{9} \left[R_{kl} - \frac{g_{kl}}{4} R \right]. \]

Assume that the \(W^s \)–curvature tensor is traceless. Then

\[C_{kl} = D_{kl} = E_{kl} = 0, \]

and consequently

\[R_{ml} = \frac{g_{ml}}{4} R. \]

Theorem 11. Assume that \(M \) is a space-time admitting \(W^s \)–curvature tensor. Then, \(M \) is an Einstein space-time.

For a perfect fluid space-time with the energy density \(\mu \) and isotropic pressure \(p \), it is

\[T_{ij} = (\mu + p) u_i u_j + p g_{ij}, \]

where \(u_i \) is the velocity of the fluid flow with \(g_{ij} u_i u_j = u_i u^{i} = -1 \) \([6, 7, 10]\). In \([2, \text{Theorem 2.2}]\), a characterization of such space-times is given. This result leads us to.

Theorem 12. Assume that the perfect fluid space-time \(M \) is \(W^s \)–semi-symmetric. Then, \(M \) is regarded as inflation and this fluid acts as a cosmological constant. Moreover, the perfect fluid represents the quintessence barrier.

Using Equations (5.2), we have

\[\left(\Lambda - kp - \frac{R}{4} \right) g_{ij} = k (\mu + p) u_i u_j. \]

Multiplying the both sides by \(g^{ij} \) we get

\[R = 4\Lambda + k (\mu - 3p). \]

For \(W^s \)–curvature flat space-times, the scalar curvature is constant and consequently

\[\mu - 3p = \text{constant}. \]

Again, a contraction of Equation (5.7) with \(u^i \) leads to

\[R = 4 (k\mu + \Lambda). \]

The comparison between (5.8) and (5.10) gives

\[\mu + p = 0, \]
i.e., the perfect fluid performs as a cosmological constant. Then Equation (5.6) infers
\[T_{ij} = p g_{ij}. \]

For a \mathcal{W}^*-flat space-time, the scalar curvature is constant. Thus $\mu = \text{constant}$ and consequently $p = \text{constant}$. Therefore, the covariant derivative of equation (5.12) implies $\nabla_l T_{ij} = 0$.

Theorem 13. Let M be a perfect fluid \mathcal{W}^*-flat space-time obeying Equation (2.3), then the μ and p are constants and $\mu + p = 0$ i.e. the perfect fluid performs as a cosmological constant. Moreover, $\nabla_l T_{ij} = 0$.

The following results are two direct consequences of being \mathcal{W}^*-curvature flat.

Corollary 6. A \mathcal{W}^*-flat space-time M obeying Equation (4.7) is a Euclidean space.

Corollary 7. Let M be a dust fluid \mathcal{W}^*-flat space-time satisfying Equation (2.3) (i.e. $T_{ij} = \mu u_i u_j$). Then M is a vacuum space-time (i.e. $T_{ij} = 0$).

References

[1] Zafar Ahsan and Musavvir Ali, *Curvature Tensor for the Spacetime of General Relativity*, Int. J. Geom.Meth. Mod. Phys. 14(5), 1750078(2017).

[2] De, U. C., and Ljubica Velimirovic *Spacetimes with Semisymmetric Energy-Momentum Tensor*’ International Journal of Theoretical Physics 54, no. 6 (June 2015): 1779–83.

[3] D. Krupka, *The trace decomposition of tensors of type (1,2) and (1,3)*, In: L. Tamassy and J. Szenthe (eds.), New Developments in Differential Geometry, 243-253(1996).

[4] S. Mallick and U. C. De, *Space-times admitting \mathcal{W}_2-curvature tensor*, Int. J. Geom.Meth. Mod. Phys. 11(4), 145003(2014).

[5] Sahanoous Mallick; Young Jin Suh; Uday Chand De, *A spacetime with pseudo-projective curvature tensor*, Journal of Mathematical Physics, 57,062501(2016).

[6] Carlo Alberto Mantica and Young Jin Suh, *Pseudo Z Symmetric Riemannian Manifolds with Harmonic Curvature Tensors*, International Journal of Geometric Methods In Modern Physics, Vol. 9, No. 1 (2012) 1250004 (21 pages.)

[7] Carlo Alberto Mantica and Young Jin Suh, *Pseudo Z Symmetric Space-times*, Journal of Mathematical Physics 55, 042502 (2014).

[8] V. A. Mirzoyan, *Ricci semisymmetric submanifolds* (Russian), Itogi Nauki i Tekhniki. Ser. Probl. Geom. 23, 29–66 (1991). VINITI, Moscow

[9] R. S. Mishra, *Structures on Differentiable Manifold and Their Applications*, Chandrama Prakashan, Allahabad, 1984.

[10] B. O’Neill, *Semi-Riemannian Geometry*, Academic Press, New York, 1983.

[11] F. Ozen Zengin, *On Riemannian manifolds admitting W_2-curvature tensor*, Miskolc Math. Notes, 12, 289–296(2011).

[12] G. P. Pokhariyal and R. S. Mishra, *The curvature tensor and their relativistic significance*, Yokohama Math. J. 18, 105–108(1970).

[13] G. P. Pokhariyal and R. S. Mishra, *Curvature tensor and their relativistic significance II*, Yokohama Math. J. 19, 97–103(1971).

[14] G. P. Pokhariyal, *Curvature tensor and their relativistic significance III*, Yokohama Math. J. 20, 115–119(1972).

[15] G. P. Pokhariyal, *Relative significance of curvature tensors*, Int. J. Math. Math. Sci. 5, 133–139(1982).

[16] G. P. Pokhariyal, *Curvature tensors on A-Einstein Sasakian manifolds*, Balkan J. Geom. Appl. 6, 45–50(2001).

[17] Sach, R. K. and Hu, W., *General Relativity for Mathematician*, Springer Verlag, New York, 1977.

[18] S. Shenawy and Bulent Unal, *The W_2—curvature tensor on warped product manifolds and applications*, Int. J. Geom.Meth. Mod. Phys. 13(7), 1650099(2016).
[19] Z. I. Szabo, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, J. Diff. Geom. 17, 531–582 (1982).

[20] A. Taleshian and A. A. Hosseinzadeh, On W_2-curvature tensor of $N(k)$-quasi-Einstein manifolds, J. Math. Comput. Sci. 1(1) 28–32 (2010).

Department of Mathematics, Faculty of Science, Zagazig, University, Egypt,
E-mail address: donia_1000@yahoo.com

(S. Shenawy) Basic Science Department, Modern Academy for Engineering and Technology, Maadi, Egypt,
E-mail address: drenawy@myunmail.com

(A. A. Syied) Department of Mathematics, Faculty of Science, Zagazig, University, Egypt,
E-mail address: a.a.syied@yahoo.com