High order recombination and an application to cubature on Wiener space

C. Litterer* and T. Lyons
Mathematical Institute and
Oxford-Man Institute of Quantitative Finance
University of Oxford
24-29 St Giles’, Oxford, OX1 3LB, UK

August 31, 2010†

Abstract

Particle methods are widely used because they can provide accurate descriptions of evolving measures. Recently it has become clear that by stepping outside the Monte-Carlo paradigm these methods can be of higher order with effective and transparent error bounds. A weakness of particle methods (particularly in the higher order case) is the tendency for the number of particles to explode if the process is iterated and accuracy preserved. In this paper we identify a new approach that allows dynamic recombination in such methods and retains the high order accuracy by simplifying the support of the intermediate measures used in the iteration. We describe an algorithm that can be used to simplify the support of a discrete measure and give an application to the cubature on Wiener space method developed by Lyons, Victoir [12].

1 Introduction

In pricing and hedging financial derivatives as well as in assessing the risk inherent in complex systems we often have to find approximations to expectations of functionals of solutions to stochastic differential equations (SDE). We consider a Stratonovich stochastic differential equation

\[d\xi_{t,x} = V_0(\xi_{t,x})dt + \sum_{i=1}^{d} V_i(\xi_{t,x}) \circ dB^i_t, \quad \xi_{0,x} = x \]

*Research supported by a grant of the Leverhulme trust (F/08772/E).
†Original version: June 7, 2007
defined by a family of smooth vector fields V_i and driven by Brownian motion. It is well known that computing $P_{T-t}f := E(f(\xi_{T-t,x}))$ corresponds to solving a parabolic partial differential equation (PDE). High dimension and hypoellipticity are common obstacles that arise when one calculates these quantities numerically. When facing these obstacles some classical computational methods become unstable and/or intractable.

There are many settings where one is interested in tracking the evolution of a measure over time in an effective numerical fashion. One example is the numerical approximation to the solution of a linear parabolic PDE. In this case one tracks the evolution of the heat kernel measure associated to the PDE. Another example is the filtering problem where one wishes to approximate the unnormalised conditional distribution of the signal, which is governed by a stochastic partial differential equation known as the Zakai equation.

An evolving measure can be viewed as a path in the space of measures. Thus, even if the underlying state space is finite dimensional, we potentially face an infinite dimensional problem. Particle approximations can in many cases provide good descriptions of evolving measures, see for example the survey articles [3, 4]. Higher order methods may allow us to take far fewer time steps than classical methods in the approximations. An example of a higher order particle method may be found in Kusuoka [8]. Although effective in practise (compare Ninomiya [14] and Ninomiya, Victoir [13]), these methods have the drawback that the number of particles can explode exponentially if the process is iterated and accuracy preserved, see for example Lyons, Victoir [12].

Sometimes the essential properties of a probability measure we care about can accurately be described and captured by the expectations of a finite set of test functions. If we can find such a family of test functions we can replace the original measure with a simpler measure with smaller support that integrates all test functions correctly and hence still has the right properties, provided of course the number of test functions is small compared to the cardinality of the support of the original measure. We will also insist that the reduced measure $\tilde{\mu}$ has $\text{supp}(\tilde{\mu}) \subseteq \text{supp}(\mu)$. This condition ensures that feasibility constraints imposed on the measure μ will also be satisfied by $\tilde{\mu}$. For a finite Borel measure μ on a polish space Ω and a set of integrable functions $\{p_1, \ldots, p_n\}$ we can show that such a reduced measure $\tilde{\mu}$ always exists with $\text{card}(\text{supp}(\tilde{\mu})) \leq n + 1$.

In this paper we present a simple algorithm that can be used to compute reduced measures for discrete measures μ. The runtime is polynomial in the size of the support of the measure μ. The algorithm relies on the observation that if P is the \mathbb{R}^n valued random variable $P(x) := (p_1(x), \ldots, p_n(x))$ and μ_P the law of P under the measure μ, then finding a reduced measure $\tilde{\mu}$ is equivalent to finding $\tilde{\mu}_P$, a discrete measure on \mathbb{R}^n with $\text{card}(\text{supp}(\tilde{\mu}_P)) = n + 1$ and the same centre of mass (CoM) as μ_P.

2
We describe an application to the Kusuoka-Lyons-Victoir (or KLV/cubature on Wiener space) method developed by Lyons, Victoir in [12], following Kusuoka [8]. It provides higher order approximations to $E(f(\xi_{T,x}))$, if the test function f is Lipschitz and the vector fields satisfy Kusuoka’s UFG condition (see [7]) which is weaker than the usual Hörmander condition. The expectation $E(f(\xi_{T,x}))$ might be viewed as an infinite dimensional integral against Wiener measure. The authors construct discrete cubature measures $Q_T = \sum_{i=1}^{n} \lambda_i \delta_{\omega_i,T}$ supported on continuous paths of bounded variation that approximate Wiener measure in the sense that they integrate iterated integrals up to a fixed degree correctly. The expectation of a Wiener functional $f(\xi_{T,x})$ against the discrete cubature measure may be obtained by computing the endpoints of the solution of the SDE along the paths in the support of Q_T. Thus the KLV method might be viewed as a discrete Markov kernel taking discrete measures on \mathbb{R}^N to discrete measures on \mathbb{R}^N. More explicitly we have

$$KLV(\delta_x, T) = \sum_{i=1}^{n} \lambda_i \delta_{\xi_{T,x}(\omega_i, T)}.$$

and

$$E_{Q_T} f(\xi_{T,x}) = E_{KLV(\delta_x, T)} f.$$

The bound on the error when replacing the Wiener measure with a cubature measure is given in terms of higher order derivatives of f, so in general will not be small as f is only assumed to be Lipschitz. The results in Kusuoka, Stroock [6] and Kusuoka [7] show that $P_T f$ will be smooth, at least in the direction of the vector fields V_i. This is resolved by applying the method iteratively over a partition of the time interval $[0, T]$. The operator corresponding to the iterated application of the KLV method is Markov and hence, the error of the approximation of $P_T f$ on the global time interval $[0, T]$ is the sum of the error of the approximations over the subintervals of the partition. So considering an uneven partition of the global time interval $[0, T]$ with time steps getting smaller towards the end, we can iteratively apply the cubature method over the subintervals and reduce the error in the approximation to any accuracy. If m is the degree of the cubature formula we can find a partition such that the error in the weak approximation is uniformly bounded by

$$Ck^{-(m-1)/2} \| \nabla f \|_{\infty},$$

where k is the number of time steps in the partition and C a constant independent of k and f.

The iterated KLV method might be viewed as a particle system on \mathbb{R}^N where the particles branch in an n-ary tree. Hence, the number of ODEs to solve grows exponentially in the number of iterations. In this paper we add recombination to the KLV method. After each application of the KLV operation we replace the intermediate measures by reduced measures. The property of the KLV measure we are targeting is to integrate $P_T f$, the heat kernel applied to f, correctly. We
have identified a finite set of test functions that ensures that the bound on the overall error of the approximation of $P_T f$ is only increased by a constant factor and hence the modified method has the same convergence properties. Moreover we can show that under the Hörmander condition for bounded vector fields the number of test functions required grows polynomially in the number of iterations.

We believe that the combination of the two ideas - higher order particle methods to describe the evolution of a measure on the one hand and simplifying the support of the measures used in the description, by characterising essential properties of a measure using the expectations of a finite set of test functions on the other hand - have more general applications than investigated so far. Applications to the stochastic filtering problem appear to be particularly promising, see Litterer, Lyons [9], [10] for an outline.

2 A reduction algorithm for the support of a discrete measure

Let us start the precise description of the reduction problem. The notation in this section is independent of the notation used in the description of the cubature method in the following sections. Consider a finite set of test functions

$$P_n = \{p_1, \ldots, p_n\}$$

on \((\Omega, \mu)\), a measure space with \(\mu\) a finite discrete measure

$$\mu = \sum_{i=1}^{\hat{n}} \lambda_i \delta_{z_i}, \quad \lambda_i > 0, z_i \in \Omega,$$

with large support. By this we mean that \(\hat{n}\) is at least of order \(n^2\). In the following we assume that \(\mu\) is a probability measure, i.e. the weights add up to one.

Definition 1 We will call a discrete probability measure \(\tilde{\mu}\) a reduced measure with respect to \(\mu\) and \(P_n\) if it satisfies the following three conditions:

1. \(\text{supp}(\tilde{\mu}) \subseteq \text{supp}(\mu)\)
2. For all \(p \in P_n\)

\[
\int p(x)\tilde{\mu}(dx) = \int p(x)\mu(dx)
\]

3. \(\text{card}(\text{supp}(\tilde{\mu})) \leq n + 1\).

The first condition is more important than it looks as it ensures that feasibility constraints imposed on samples drawn from \(\mu\) will also be satisfied by \(\tilde{\mu}\). We wish to construct effective algorithms to compute the reduced measure.
Let P be the R^n valued random variable $P := (p_1, \ldots, p_n)$ defined on (Ω, μ). Then the law μ_P of P is the discrete measure on R^n

$$\mu_P = \sum_{i=1}^{\hat{n}} \lambda_i \delta_{x_i}, \quad x_i = (p_1(z_i), \ldots, p_n(z_i))^T \in R^n. \quad (1)$$

The centre of mass (CoM) for the measure μ_P is given by

$$\text{CoM}(\mu_P) = \sum_{i=1}^{\hat{n}} \lambda_i x_i. \quad (2)$$

To find a reduced measure we articulate an equivalent problem in terms of μ_P. The problem becomes to find a subset x_{i_k} of the points x_i and positive weights $\hat{\lambda}_{i_k}$ to produce a new probability measure $\tilde{\mu}_P$ such that $\text{CoM}(\tilde{\mu}_P) = \text{CoM}(\mu_P)$. A reduced measure $\tilde{\mu}$ is then easily obtained from $\tilde{\mu}_P$ by taking

$$\tilde{\mu} = \sum \hat{\lambda}_{i_k} \delta_{z_{i_k}},$$

with $z_{i_k} \in \text{supp}(\mu)$ satisfying $P(z_{i_k}) = x_{i_k}$.

Note that given any subset x_{i_k} there exist suitable weights $\hat{\lambda}_{i_k}$ if and only if $\text{CoM}(\mu_P)$ is contained in the convex hull of these points. Caratheodory’s theorem implies that in principle one can always find $\tilde{\mu}_P$ with support having cardinality at most $n + 1$ and the algorithm explained below provides a constructive proof to that.

By considering $x_i - \text{CoM}(\mu_P)$ in place of the x_i we may assume without loss of generality that $\text{CoM}(\mu_P)$ is at the origin. We may also assume that the x_i are all distinct, as we can otherwise eliminate points x_i from the original measure μ by sorting and combining them.

A first algorithm (Algorithm 1), communicated to us by Victoir [15], sequentially eliminates particles from the support of the measure. It is well known and has for example been used in constructive proofs of Tchakaloff’s theorem (Davis [5]).

Given any $n + 2$ points, the system given by

$$\sum_{i=1}^{n+2} u_i x_{k_i} = 0 \quad (3)$$

$$\sum_{i=1}^{n+2} u_i = 0$$

is a linear system with $n + 2$ variables, but only $n + 1$ constraints. Therefore it has a non-trivial solution, which may for example be determined using Gaussian
elimination. Thus we may either add
\[\min_{u_i < 0} \left(\frac{\lambda_i}{u_i} \right) \sum_{j=1}^{n+2} u_j x_{k_j} \]
to (2) or subtract
\[\min_{u_i > 0} \left(\frac{\lambda_i}{u_i} \right) \sum_{j=1}^{n+2} u_j x_{k_j} \]
from (2) leaving all weights in the result non-negative and their overall sum unchanged. In either case, by construction, the coefficient of some \(x_j \) vanishes.

We now have obtained a new probability measure with the same centre of mass and at least one point less in the support. Applying the procedure iteratively until there are only \(n + 1 \) points left we obtain a reduced measure. Clearly the method requires no more than \(\tilde{n} \) iterations of the above procedure.

Remark 2 If \(\tilde{n} \) is the dimension of the lowest dimensional (affine) subspace of \(\mathbb{R}^n \) containing the set \(\{(p_1(y), \ldots, p_n(y)) \mid y \in \text{supp}(\mu)\} \), we can continue to apply the elimination procedure described in Algorithm 1 until \(\text{card}(\text{supp}(\tilde{\mu})) \leq \tilde{n} + 1 \).

For improving the order of the overall algorithm we now look at suitable linear combinations instead of points.

To describe the algorithm we define an abstract Procedure \(A \) that takes a discrete probability measure \(\nu \) with \(2(n + 1) \) particles in its support and returns another discrete probability measure \(\tilde{\nu} \) with \((n + 1) \) particles in its support satisfying \(\text{CoM}(\nu) = \text{CoM}(\tilde{\nu}) \) and \(\text{supp}(\tilde{\nu}) \subseteq \text{supp}(\nu) \). Procedure \(A \) may for example be realised by \(n + 1 \) applications of the reduction procedure of Algorithm 1.

Main reduction algorithm (Algorithm 2):
1. Partition the support of \(\mu_p = \sum_{i=1}^{\tilde{n}} \lambda_i \delta_{x_i} \) into \(2(n + 1) \) sets of as near equal size as possible. Let these sets be denoted by \(I_j, 1 \leq j \leq 2(n + 1). \)
2. Compute the probability measure \(\nu = \sum_{\tilde{i}=1}^{2(n+1)} \nu_{\tilde{i}} \delta_{\tilde{x}_{\tilde{i}}} \) where
 \[\tilde{x}_{\tilde{j}} = E_{\mu_p} (x \mid x \in I_j) = \sum \frac{\lambda_i x_i}{\nu_j} \]
 and \(\nu_j = \mu_p(I_j) = \sum_{i : x_i \in I_j} \lambda_i \).
3. Apply Procedure \(A \) to compute a measure \(\tilde{\nu} = \sum_{\tilde{j}=1}^{n+1} \tilde{\nu}_{\tilde{j}} \delta_{\tilde{x}_{\tilde{j}}} \) with \(\text{CoM}(\nu) = \text{CoM}(\tilde{\nu}) \).
4. Repeat 1.-3. with
 \[\mu'_{p} = \sum_{\tilde{j}=1}^{n+1} \sum_{x_k \in I_{\tilde{j}}} \tilde{\nu}_{\tilde{j}} \frac{\lambda_k}{\nu_{\tilde{j}}} \delta_{x_k} \]
 for \(\mu_p \) until \(n + 1 \) particles are left in the support of \(\mu_p \).
Proposition 3 Given \(\mu \) and \(P_n \) the algorithm described above requires \(\lceil \lg(\hat{n}/n) \rceil \) iterations of Procedure A to compute a reduced measure.

Proof. We might interpret the points \(\hat{x}_j \) as the respective centre of masses of the individual subsets \(I_j \).

It is clear that \(\mu'_P \) has positive weights and support contained in the support of \(\mu_P \). Hence, we only need to show that \(\text{CoM}(\mu'_P) = \text{CoM}(\mu_P) \).

We have

\[
\text{CoM}(\mu'_P) = \sum_{j=1}^{n+1} \hat{\nu}_{ij} \sum_{x_k \in I_{ij}} \frac{\lambda_k x_k}{\nu_j} = \sum_{j=1}^{n+1} \hat{\nu}_{ij} \hat{x}_{ij}
\]

\[= \text{CoM}(\hat{\nu}) = \text{CoM}(\nu) = \sum_{j=1}^{2(n+1)} \nu_j \hat{x}_j = \sum_{j=1}^{n+1} \frac{2 \lambda_i x_i}{\nu_j} = \text{CoM}(\mu_P).
\]

As \(\hat{n} \leq n 2^{\lceil \lg(\hat{n}/n) \rceil} \) we may assume without loss of generality that \(\hat{n} = n 2^{\lceil \lg(\hat{n}/n) \rceil} \).

It is obvious that each iteration halves the number of particles in the support of \(\mu_P \) and we require exactly \(\lceil \lg(\hat{n}/n) \rceil \) iterations. ■

Corollary 4 Using the main reduction algorithm we can compute a reduced measure with respect to \(\mu \) and \(P_n \) in

\[O(n \hat{n} + n \log(\hat{n}/n)C(n + 2, n + 1))\]

steps where \(C(n + 2, n + 1) \) represents the number of steps required to solve a system of linear equations with \(n + 2 \) variables and \(n + 1 \) constraints.

Proof. To compute the intermediate measures \(\nu \) we need to calculate \(n \)-dimensional linear combinations. The number of steps required for these additions is bounded above by the series

\[n \sum_{i=0}^{\infty} \hat{n} 2^{-i} = 2n\hat{n}.
\]

The procedure A may be realised by \(n+1 \) applications of the reduction procedure used in Algorithm 1 described above. ■

Remark 5 Note that the linear systems of equations we need to solve in the algorithm are singular. Hence, for a practical implementation we have used a method based on the singular value decomposition (SVD) to avoid numerical instability.\(^1\)

\(^1\)A dll with an implementation of a version of the algorithm and a Visual Studio project with a simple example for its use can currently be found at http://www.maths.ox.ac.uk/~tlyons/Recombination/reduce_dist.dll paper.zip
If the support of the measure \(\mu \) we wish to target is particularly large or possibly even infinite we can consider a different approach. If we can find a subset of points that with a reasonably high probability contains the CoM in its convex hull, we may use linear programming to check if a given set of points contains the CoM in its convex hull and reconstruct the weights. The results in Wendel \[16\] imply for example, that a collection of \(k \) uniform IID random variables on the unit sphere in \(R^N \) contains the origin with probability

\[
P_{N,k} = 1 - 2^{-k+1} \sum_{j=0}^{N-1} \binom{k-1}{j}.
\]

In particular this yields \(P_{N,2N} = 1/2 \).

3 Outline of the cubature algorithm

We describe the cubature method developed by Lyons and Victoir \[12\]. Throughout the paper \(C \) is a constant that may change from line to line, specific constants however will be indexed \(C_1, C_2, \ldots \). Let \(C^\infty_b (R^N, R^N) \) denote the smooth bounded \(R^N \) valued functions whose derivatives of any order are bounded. The \(V_i \in C^\infty_b (R^N, R^N), 0 \leq i \leq d \) may be regarded as vector fields on \(R^N \). We define a partial differential operator \(L = V_0 + \frac{1}{2} (V_1^2 + \ldots V_d^2) \) and consider the following parabolic partial differential equation (PDE)

\[
\frac{\partial u}{\partial t}(t, x) = -Lu(t, x),
\]

\[u(T, x) = f(x) \tag{4} \]

for a given Lipschitz function \(f \). The aim is to find an approximation of \(u(0, x) \) for a given \(x \). Consider the probability space \((C_0^0([0, T], R^d), \mathcal{F}, \mathbb{P})\), where \(C_0^0([0, T], R^d) \) is the space of \(R^d \) valued continuous functions starting at \(0 \), \(\mathcal{F} \) its usual Borel \(\sigma \)-field and \(\mathbb{P} \) the Wiener measure. Define the coordinate mapping process \(B_i^t(\omega) = \omega^i(t) \) for \(t \in [0, T] \), \(\omega \in \Omega \). Under Wiener measure, \(B = (B_1^t, \ldots, B_d^t) \) is a Brownian motion starting at zero. Furthermore let \(B_i^0(t) = t \). Let \(\xi_{t,x}, t \in [0, T], x \in R^N \) be a version of the solution of the Stratonovich stochastic differential equation (SDE)

\[
d\xi_{t,x} = \sum_{i=0}^d V_i(\xi_{t,x}) \circ dB_i^t, \quad \xi_{0,x} = x \tag{5}
\]

that coincides with the pathwise solution on continuous paths of bounded variation. In this case classical theory tells us that \(u(t, x) = E(f(\xi_{T-t,\cdot})) \) is the solution to (4).

We define the Ito functional \(\Phi_{T,x} : C_0^0([0, T], R^d) \rightarrow R^N \) by

\[
\Phi_{T,x}(\omega) = \xi_{T,x}(\omega). \tag{6}
\]
Denote by $R_m[X_1, \ldots, X_d]$ the space of polynomials in d variables having degree less or equal to m. Let μ be a positive Borel measure on \mathbb{R}^d. A discrete measure $\tilde{\mu}$

$$\tilde{\mu} = \sum_{i=1}^{n} \lambda_i \delta_{x_i}$$

with x_1, \ldots, x_n contained in $\text{supp}(\mu)$ satisfies a cubature formula of degree m if and only if for all polynomials $P \in R_m[X_1, \ldots, X_d]$,

$$\int_{\mathbb{R}^d} P(x) \mu(dx) = \int_{\mathbb{R}^d} P(x) \tilde{\mu}(dx) = \sum_{i=1}^{n} \lambda_i P(x_i).$$

It is well known that if all moments of μ up to degree m exist we can always find such a measure with

$$\text{card}(\text{supp}(\mu)) \leq \dim(R_m[X_1, \ldots, X_d]) + 1,$$

see e.g. Bayer, Teichmann [1]. More generally we have the following lemma, which we state without proof.

Lemma 6 Let Ω be a polish space, \mathcal{F} its Borel sets and μ a Borel probability measure on (Ω, \mathcal{F}). Let f_1, \ldots, f_n be a finite sequence of real valued Borel measurable functions on the probability space $(\Omega, \mathcal{F}, \mu)$ with $E(|f_i|) < \infty$ for $1 \leq i \leq n$. Moreover suppose that D is a Borel set with $\mu(D) = 1$. Then there exist points $w_1, \ldots, w_{n+1} \in D$ and a discrete measure

$$\tilde{\mu} = \sum_{i=1}^{n+1} \lambda_i \delta_{w_i}$$

such that

$$E_{\mu}(f_i) = E_{\tilde{\mu}}(f_i)$$

for $1 \leq i \leq n$.

In other words μ admits a reduced measure $\tilde{\mu}_P$ with respect to any finite set P of integrable functions. In connection with the use of the Taylor formula a cubature measure provides an effective tool for integration over finite dimensional spaces.

One can formulate an analogous condition to identify cubature measures on Wiener space. Here the role of polynomials is taken by iterated integrals of the form

$$\int_{0<t_1<\cdots<t_k<T} \circ dB_{t_1}^{i_1} \cdots \circ dB_{t_k}^{i_k}.$$

We identify this iterated integral by the multi-index (i_1, \ldots, i_k).

2 Any finite dimensional space of integrable and continuous functions could be used to define cubature. This extension can be helpful.
Define the set of all multi-indices A by
\[A = \bigcup_{k=0}^{\infty} \{0, \ldots, d\}^k \]
and let $\alpha = (\alpha_1, \ldots, \alpha_k) \in A$ be a multi-index. Furthermore we define a degree on a multi-index α by $\|\alpha\| = k + \text{card}(j : \alpha_j = 0)$ and let
\[A(j) = \{\alpha \in A : \|\alpha\| \leq j\}. \]
Moreover define A_1 by
\[A_1 = A \setminus \{\emptyset, (0)\} \]
and let $A_1(j) = \{\alpha \in A_1 : \|\alpha\| \leq j\}$.

It follows from the scaling property of Brownian motion that
\[
\int_{0 < t_1 < \cdots < t_k < T} \circ dB_{t_1}^{\alpha_1} \cdots \circ dB_{t_k}^{\alpha_k}.
\]
equals, in law,
\[
T^{\|\alpha\|/2} \int_{0 < t_1 < \cdots < t_k < T} \circ dB_{t_1}^{\alpha_1} \cdots \circ dB_{t_k}^{\alpha_k}.
\]

Definition 7 Fix a finite set of multi-indices $\tilde{A} \subseteq A$. We say that a discrete measure Q_T assigning positive weights $\lambda_1, \ldots, \lambda_n$ to paths $\omega_1, \ldots, \omega_n \in C_0([0, T], R^d)$
is a cubature measure, if for all $\langle i_1, \ldots, i_k \rangle \in \tilde{A}$,
\[
E\left(\int_{0 < t_1 < \cdots < t_k < T} \circ dB_{t_1}^{i_1} \cdots \circ dB_{t_k}^{i_k} \right) = \sum_{j=1}^{n} \lambda_j \int_{0 < t_1 < \cdots < t_k < T} d\omega_j^{i_1}(t_1) \cdots d\omega_j^{i_k}(t_k)
\]
where the expectation is taken under Wiener measure. If $\tilde{A} = A(m)$ we say that
\[
Q_T = \sum_{j=1}^{n} \lambda_j \delta_{\omega_j}
\]
is cubature measure of degree m.

In [12], the authors show that one can always find a cubature measure supported on at most $\text{card}(\tilde{A})$ continuous paths of bounded variation. More importantly they give an explicit construction of a degree 5 cubature formula with $O(d^3)$ paths in its support.

Suppose paths $\omega_1, \ldots, \omega_n$ and weights λ_i define a cubature measure for $T = 1$. It follows immediately from (7) that the measure supported on paths $\omega_{T,i}$ given by
\[
\omega_{T,i}^j = \sqrt{T} \omega_i^j(t/T), j = 1, \ldots, d
\]
and unchanged weights λ_i defines a cubature measure for general T. From now on suppose that the measure $Q := Q_1$ is a cubature measure of degree m.

The following proposition, taken from [12], is the key step in estimating the error E_T when one approximates the expectation of $f(\xi_{T,x})$ under the Wiener measure by its expectation against Q.

Proposition 8

$$ E_T := \sup_{x \in \mathbb{R}^n} \left| Ef(\xi_{T,x}) - \sum_{i=1}^{n} \lambda_i f(\Phi_{T,x}(\omega_{T,i})) \right| $$

$$ \leq C \sum_{j=m+1}^{m+2} T^{j/2} \sup_{(\alpha_1, \ldots, \alpha_j) \in A(j) \setminus A(j-1)} \| V_{\alpha_1} \cdots V_{\alpha_j} f \|_{\infty}, $$

where C is a constant that only depends on d, m and Q_1.

In general the right hand side of the inequality in Theorem 8 is not sufficient to directly obtain a good error bound for the approximation of the expectation, in particular if f is only assumed to be Lipschitz the estimate appears useless. So, instead of approximating

$$ P_T f(x) := E(f(\xi_{T,x})) $$

in one step, one considers a partition D of the interval $[0, T]$

$$ t_0 = 0 < t_1 < \ldots < t_k = T, $$

with $s_j = t_j - t_{j-1}$ and solves the problem over each of the smaller subintervals by applying the cubature method recursively. If τ and τ' are two path segments we denote their concatenation by $\tau \otimes \tau'$. For the approximation we consider all possible concatenations of cubature paths over the subintervals, i.e. all paths of the form $\omega_{s_1,i_1} \otimes \ldots \otimes \omega_{s_k,i_k}$. We define a corresponding probability measure ν by

$$ \nu = \sum_{i_1, \ldots, i_k=1}^{n} \lambda_{i_1} \cdots \lambda_{i_k} \delta_{\omega_{s_1,i_1} \otimes \cdots \otimes \omega_{s_k,i_k}}. $$

The following theorem taken from Lyons, Victoir [12] is the main error estimate for the iterated cubature method, which we in the following also refer to as the Kusuoka-Lyons-Victoir (KLV) method.

Theorem 9 The total error E_D for the approximation

$$ E_D := \sup_{x \in \mathbb{R}^N} \left| P_T f - E_{\nu}(f(\xi_{T,x})) \right| $$

$$ = \sup_{x \in \mathbb{R}^N} \left| P_T f(x) - \sum_{i_1=1}^{n} \cdots \sum_{i_k=1}^{n} \lambda_{i_1} \cdots \lambda_{i_k} f(\Phi_{T,x}(\omega_{s_1,i_1} \otimes \cdots \otimes \omega_{s_k,i_k})) \right| $$

11
is bounded by

\[C_1(T) \| \nabla f \|_\infty \left(s_{1/2}^k + \sum_{j=m}^{m+1} \sum_{i=1}^{k-1} \frac{s_j^{(j+1)/2}}{(T-t_i)^{j/2}} \right), \tag{9} \]

where \(C_1(T) \) is a constant independent of \(f \) and \(k \), the number of time steps in the partition of the time interval \([0, T]\).

To compute the expectation with respect to the measure \(\nu \) exactly requires one to solve \(n^{k+1} - 1 \) inhomogeneous ODEs - each corresponding to a path \(\omega_{s_1,i_1} \otimes \cdots \otimes \omega_{s_k,i_k} \) - where \(n \) denotes the number of paths in the support of the cubature measure \(Q \) and \(k \) the number of subintervals in the partition. Hence, the number of ODEs to solve grows exponentially in the number of iterations.

Following Kusuoka [7] we define for multi-indices \(\alpha = (\alpha_1, \ldots, \alpha_k), \beta = (\beta_1, \ldots, \beta_l) \in A \) a multiplication by

\[\alpha * \beta = (\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_l). \]

We inductively define a family of vector fields indexed by \(A \) by taking

\[V_{[\emptyset]} = 0, \quad V_{[i]} = V_i, \quad 0 \leq i \leq d \]
\[V_{[\alpha \ast \beta]} = [V_{[\alpha]}, V_{[\beta]}], \quad 0 \leq i \leq d, \alpha \in A. \]

The main ingredients used when obtaining the bound (9) are Proposition 8 and the following regularity result due to Kusuoka and Stroock [6] and Kusuoka [7], which says that even if \(f \) is not smooth \(P_t f \) is smooth in the directions of the vector fields \(V_i \). Let \(f \) be Lipschitz and \(\alpha_1, \ldots, \alpha_k \in A_1 \) then for all \(t \in (0, 1] \)

\[\| V_{[\alpha_1]} \cdots V_{[\alpha_k]} P_t f \|_\infty \leq \frac{C t^{1/2}}{k^{(\| \alpha_1 \| + \cdots + \| \alpha_k \|)/2}} \| \nabla f \|_\infty \tag{10} \]

provided the vector fields satisfies the UFG condition defined below.

Following Kusuoka [7] we introduce a condition on the vector fields

Definition 10 The family of vector fields \(V_i, i = 0, \ldots, d \) is said to satisfy the condition (UFG) if the Lie algebra generated by it is finitely generated as a \(C_0^\infty \) left module, i.e. there exists a positive \(k \) and \(u_{\alpha, \beta} \in C_0^\infty \) satisfying for all \(\alpha \in A_1 \),

\[V_{[\alpha]} = \sum_{\beta \in A_1(k)} u_{\alpha, \beta} V_{[\beta]} \tag{11} \]
The bounds for the error of the KLV method derived in Theorem 9 (see Lyons, Victoir [12] for details) assume that the system of vector fields \(V_i, i = 0, \ldots , d \) satisfies the UFG condition.

Definition 11 We define the (formal) degree of a vector field \(V_\alpha, \alpha \in A \) denoted by \(d_\alpha \) to be the minimal integer \(k \) such that \(V_\alpha \) may be written as

\[
V_\alpha = \sum_{\beta \in A(k)} u_{\alpha, \beta} V_\beta
\]

with \(u_{\alpha, \beta} \in C^\infty_b \).

Note that for \(\alpha \in A_1 \) we always have \(d_\alpha \leq \| \alpha \| \). It was pointed out in Crisan, Ghazali [2] that the analysis in Lyons, Victoir [12] for the bound in (9) requires \(V_0 \) to have formal degree at most 2. If the formal degree of \(V_0 \) is greater the bound in (12) changes and all bounds in the paper will change accordingly. For sake of simplicity we will in the following assume that \(V_0 \) has formal degree 2. The bounds can be improved in an obvious way if the degree is 1 or 0. For a generalised error estimate based on Kusuoka’s ideas ([8]) that does not require this additional condition see Litterer [11].

A trivial generalisation of Corollary 18 in Crisan, Ghazali [2] allows us to state a version of the Kusuoka and Stroock estimate in terms of the formal degree of a vector field. Let \(f \) be as above and \(\alpha_1, \ldots , \alpha_k \in A \) then for all \(t \in (0, 1] \)

\[
\| V_{[\alpha_1]} \cdots V_{[\alpha_k]} P_t f \|_\infty \leq \frac{Ct^{1/2}}{t^{(d_{\alpha_1} + \cdots + d_{\alpha_k})/2}} \| \nabla f \|_\infty .
\]

(12)

For the remainder of the paper when we consider recombination we are going to assume the following uniform Hörmander condition.

Definition 12 We say that a collection of smooth vector fields \(V_i, i = 0, \ldots , d \) satisfies the uniform Hörmander condition (UH) if there is an integer \(p \) such that

\[
\inf \left\{ \sum_{\alpha \in A_1(p)} \langle V_{[\alpha]}(x), \xi \rangle^2 ; x, \xi \in R^N, |\xi| = 1 \right\} := M > 0.
\]

Note that the uniform Hörmander condition implies the UFG condition. Under this stronger assumption it is straightforward to show in addition that \(P_t f \) is a smooth function on \(R^N \) with explicit bounds on its derivatives. We outline an argument below that follows Kusuoka [7] and gives bounds on the regularity of \(P_t f \), which we will use in the following section when we apply recombination to the cubature method.
Following Kusuoka [7] let \(F(x) \in C^\infty_b(R^N; R^N \otimes R^N) \) be given by

\[
F(x) = \sum_{\alpha \in A_1(p)} V_{[\alpha]}(x) \otimes V_{[\alpha]}(x), \quad x \in R^N,
\]

and \(\lambda_0 : R^N \to [0, \infty) \) be the continuous function

\[
\lambda_0(x) = \inf \{ \langle F(x)y, y \rangle; y \in R^N, |y| = 1 \}, \quad x \in R^N.
\]

Note that

\[
\langle F(x)y, y \rangle = \sum_{\alpha \in A_1(p)} \langle V_{[\alpha]}(x), y \rangle^2
\]

and hence under the Hörmander condition (UH) we have \(\lambda_0(x) \geq M > 0 \) for all \(x \in R^N \). As in Kusuoka [7] let \(e_i = \{ \delta_{ij} \}_{i=1}^N \) and \(a_{\alpha,i} : R^N \to R \), \(\alpha \in A_1(p), i = 1, \ldots, N \), be given by

\[
a_{\alpha,i}(x) = \langle e_i, F(x)^{-1}V_{[\alpha]}(x) \rangle, \quad x \in R^N
\]

and observe that

\[
\frac{\partial}{\partial x_i} = \sum_{\alpha \in A_1(p)} a_{\alpha,i}V_{[\alpha]}.
\]

The following lemma may be found in Kusuoka [7] (p.274)

Lemma 13 Let \(\alpha \in A_1(p), i, i_1, \ldots, i_k \in \{1, \ldots, N\} \). Then \(a_{\alpha,i} \) defined as in (13) satisfies

\[
\left| \frac{\partial^k}{\partial x_{i_1} \ldots \partial x_{i_k}} a_{\alpha,i}(x) \right| \leq C N \lambda_0(x)^{-k+1} \leq C N \max(M^{-(k+1)}, 1),
\]

for all \(x \) in \(R^N \).

The lemma shows that the functions \(a_{\alpha,i} \) are in \(C^\infty_b(R^N) \). Together with (14) this immediately implies that the vector fields \(\frac{\partial}{\partial x_i}, i = 1, \ldots, N \) have finite formal degree no greater than \(p \). Just like identity (12) the following corollary is a trivial generalisation of Corollary 18 in [2], the result is also implicit in Kusuoka [7] (Proposition 14)

Corollary 14 Suppose the vector fields \((V_i, i = 0, \ldots, d) \) satisfy the uniform Hörmander condition. Then for any \(j \geq 1 \) there is a constant \(C_2 > 0 \) independent of \(f \) and \(t \) such that

\[
\sup_{i_1, \ldots, i_j \in \{1, \ldots, N\}} \left\| \frac{\partial}{\partial x_{i_1}} \ldots \frac{\partial}{\partial x_{i_j}} P_t f \right\|_\infty \leq C_2 t^{-(j-1)p/2} \| \nabla f \|_\infty
\]

for all \(t \in (0, 1], f \in C^\infty_b(R^N) \).

We point out that the constant \(C_2 \) does (via the constant \(M \) in the Hörmander condition) depend on the underlying family of vector fields \(V_i \).
4 Application to cubature on Wiener space

4.1 The reduction operation

In the iterated KLV method (Section 3) the total error E_D over the interval of approximation $[0, T]$ is bounded by the sum of the individual errors E_{s_i} over smaller time intervals. The KLV method is sequential. Starting with a unit mass particle at a single point in space time the measures evolve through time by replacing each particle at time t_i with a family of particles at time t_{i+1}. Together these new particles have the same mass as their parent particle and are carefully positioned to provide a high order approximation to the diffusion of the underlying SDE. The algorithms introduced in section 2 can be used very effectively to perform a global redistribution of the mass on the particles alive at time t_i so that an essentially minimal number of particles has positive mass. At the same time we do not increase the one step errors E_{s_i} significantly or affect the order of the approximation. In this way we obtain (see Section 4.2) a global error bound over $[0, T]$ for this algorithm that is of the same order (in the number of time steps) as the unmodified KLV method. On the other hand the blow up in the number of particles is radically reduced.

The property of the intermediate measures we are targeting is to integrate $P_t f$ correctly. To approximate the integral of a smooth function such as $P_t f$ with respect to a discrete measure we need to find uniform functional approximation schemes that apply to smooth functions on the support of this measure. By definition smooth functions can always be well approximated on balls by polynomials. However, only after one has set a fixed error bound ε and a degree for the polynomials the size of the balls on which the approximation holds becomes clear. The main idea will be to localise the intermediate particle measures Q into measures Q_i, where each Q_i has its support in such a good ball. We then replace - using the algorithms of Section 2 - the measures Q_i by reduced measures \tilde{Q}_i that integrate polynomial test functions of degree at most r correctly. In that way one knows that for a smooth function g

$$\sum_i \int g d\tilde{Q}_i$$

is a good approximation to $\int g dQ$. We subsequently prove that we can choose the localisation of the measure Q in a way that ensures that we increase the overall bound on the error of the approximation only by a constant factor and examine how well we can cover the support of the intermediate measures Q by balls for the localisation.

A main idea for estimating ε is to consider Taylor expansions of the function $P_t f$. We define p to be the minimal integer k such that the vector fields $\{V_\alpha, \alpha \in A_1(k)\}$ uniformly span R_N at each point of $x \in R_N$ (as in the UH condition). For g a smooth function on R_N let $dg : R_N \to \text{Hom}(R_N, R)$ denote the full derivative of g. The second order derivative d^2g is then mapping $R_N \to \text{Hom}(R_N, \text{Hom}(R_N, R)) \cong \text{Hom}(R_N \otimes R_N, R)$.

15
The higher order derivatives can similarly be regarded as sections of
\[\text{Hom} \left((\mathbb{R}^N)^{\otimes k}, \mathbb{R} \right). \]

We define the \(r \)th degree Taylor approximation of \(g \) centred at \(x_0 \in \mathbb{R}^N \) to be
\[\text{Tay}_r(g, x_0)(y) = \sum_{i=0}^{r} (d^i g)(x_0) \frac{(y - x_0)^{\otimes i}}{i!}. \]
(16)

and the remainder \(R_r(g, x_0)(y) \) by
\[R_r(g, x_0)(y) = g(y) - \text{Tay}_r(g, x_0)(y). \]

It is clear that the \(r \)th degree Taylor approximation centred at \(x_0 \) is a polynomial of degree at most \(r \).

Given \(u > 0 \) and \(y \in \mathbb{R}^N \) let \(B(y, u) \) denote the Euclidean ball of radius \(u > 0 \) centred at \(y \). Our estimate for the remainder of the polynomial approximation is the following:

Lemma 15 Let \(t \in (0, 1] \). The remainder function \(R_r(P_t f, x_0)(y) \) is uniformly bounded on \(B(x_0, u) \), i.e.

\[\| R_r(P_t f, x_0)|_{B(x_0, u)} \|_{\infty} \leq C_4 \frac{u^{r+1}}{t^{r+2/2}} \| \nabla f \|_{\infty}, \]

where \(C_4 = C_2 C_3 \) is a constant independent of \(f, u \) and \(t \).

Proof. By Taylor’s theorem we have for \(y \in B(x_0, u) \)
\[|R_r(P_t f, x_0)(y)| \leq \frac{\|d^{r+1} g\|_{\infty}}{(r+1)!} \|y - x_0\|^{r+1} \]
and we note that
\[\|d^{r+1} g\|_{\infty} \leq C_3(r, N) \sup_{i_1 + \ldots + i_N = r+1} \left\| \frac{\partial^{i_1}}{\partial x_1^{i_1}} \ldots \frac{\partial^{i_N}}{\partial x_N^{i_N}} P_t f(y) \right\|_{\infty} \]
for some constant \(C_3 \) that only depends on \(r \) and \(N \). From Corollary 14 we see that
\[\sup_{i_1 + \ldots + i_N = r+1} \left\| \frac{\partial^{i_1}}{\partial x_1^{i_1}} \ldots \frac{\partial^{i_N}}{\partial x_N^{i_N}} P_t f \right\|_{\infty} \leq C_2 t^{-r p/2} \| \nabla f \|_{\infty} \]
where \(C_2 \) is the constant from Corollary 14 and the claim follows.

The bound on the remainder of the Taylor expansion of \(P_t f \) implies that cubature measures which integrate polynomials up to degree \(r \) correctly provide good approximations provided the support of the measure we are targeting is contained in a sufficiently small patch.
Proposition 16 Suppose the uniform Hörmander condition is satisfied. Let $t \in (0, 1]$ and μ be a positive measure on \mathbb{R}^N with finite mass v satisfying $\text{supp}(\mu) \subseteq B(x_0, u)$ for some $u > 0, x_0 \in \mathbb{R}^N$. Suppose a measure $\tilde{\mu}$ is a degree r cubature measure for μ (a reduced measure with respect to μ and the polynomials of degree at most r). Then

$$|E_\mu P_t f - E_{\tilde{\mu}} P_t f| \leq C_4 v^{r+1} \frac{u}{t^{r/2}} \|\nabla f\|_{\infty},$$

where C_4 is the constant from Lemma 15 and independent of t, f, x_0 and u.

Proof. We have

$$E_\mu P_t f - E_{\tilde{\mu}} P_t f = (E_\mu - E_{\tilde{\mu}})(Tayr(P_t f, x_0)) + E_\mu R_r(P_t f, x_0) - E_{\tilde{\mu}} R_r(P_t f, x_0)$$

Since $\tilde{\mu}$ is a cubature measure and integrates polynomials of degree at most r correctly the first term of the sum vanishes. Lemma 15 gives us the required bounds on the remaining terms.

Let μ be a discrete probability measure on \mathbb{R}^N and $(U_j)_{j=1}^\ell$ be a collection of balls of radius u on \mathbb{R}^N that covers the support of μ. Then there exists a collection of positive measures $\mu_j, 1 \leq j \leq \ell$ such that $\mu_i \perp \mu_j$ for all $i \neq j$ (i.e. the measures have disjoint support),

$$\mu = \sum_{i=1}^\ell \mu_i$$

and $\text{supp}(\mu_j) \subseteq U_j \cap \text{supp}(\mu)$. We call such a collection (U_j, μ_j) a localisation of μ to the cover $(U_j)_{j=1}^\ell$ and say u is the radius of the localisation.

Definition 17 We say that a measure $\tilde{\mu}$ is a reduced measure with respect to the localisation $(U_j, \mu_j)_{j=1}^\ell$ and a finite set of integrable test functions P if there exists a localisation $(U_j, \tilde{\mu}_j)_{j=1}^\ell$ of $\tilde{\mu}$ such that for $1 \leq j \leq \ell$ the measures $\tilde{\mu}_j$ are reduced measures (see Definition 17) with respect to μ_j and P.

Note that the localisation of the reduced measure $\tilde{\mu}$ is with respect to the same cover as the original measure μ. It is trivial to show that reduced measures $\tilde{\mu}$ exist for any localisation $(U_j, \mu_j)_{j=1}^\ell$ of a discrete probability measure μ and any finite set of integrable test functions P. Moreover the number of particles in the support of $\tilde{\mu}$ is bounded above by $(\text{card}(P) + 1) \ell$. The following corollary is an immediate consequence of Proposition 16. Let P in the following be a basis for the space of polynomials on \mathbb{R}^N with degree at most r.

Corollary 18 Let $t < 1$, μ be a discrete probability measure on \mathbb{R}^N and $(U_j, \mu_j)_{j=1}^\ell$ a localisation of radius u. If $\tilde{\mu}$ is a reduced measure with respect
to \((U_j, \mu_j)_{j=1}^L\) and \(P\) we have

\[
|E_\mu f - E_{\tilde{\mu}} f| \leq C_4 \frac{u^{r+1}}{t^{r/2}} \|\nabla f\|_\infty,
\]

where \(C_4\) is the constant from Lemma 15 and independent of \(t, f, u\) and the localisation of radius \(u\).

We define the Kusuoka-Lyons-Victoir transition \(KLV\) over a specified time interval \([0, s]\), based on the cubature on Wiener space approach, and already used in the iterative method in Section 3. The transition \(KLV\) takes discrete measures on \(\mathbb{R}^N\) to discrete measure on \(\mathbb{R}^N\) and may be interpreted as a discrete Markov kernel. Given a measure \(\mu = \sum_{i=1}^n \mu_i \delta_{x_i}\) on \(\mathbb{R}^N\) the new measure is obtained by solving differential equations along any path in the support of the cubature measure

\[
\sum_{i=1}^n \lambda_i \delta_{\omega_i}
\]

starting from any particle in the support of \(\mu\). We define

\[
KLV(\mu, s) = \sum_{j=1}^L \sum_{i=1}^n \mu_j \lambda_i \delta_{\Phi_{s,x_j}(\omega_i)}.
\]

We are ready to consider recombination for the iterated \(KLV\) method. Let \(D\) be a \(k\) step partition \(t_0 = 0 < t_1 < \ldots < t_k = T\) of \([0, T]\) the global time interval of the approximation and recall that \(s_j = t_j - t_{j-1}\). We also let \(u = (u_2, \ldots, u_{k-1}) \in \mathbb{R}^{k-2}\) where each \(u_j > 0\). Let \(P\) be a basis for the space of polynomials on \(\mathbb{R}^N\) with degree at most \(r\). For each time step \(s_j\) we first apply the \(KLV\) method to move particles forward in time to a measure \(Q\). We then localise the measure \(Q\) and use the algorithm of Section 2 to compute a reduced measure with respect to the localised measure and replace \(Q\) by this reduced measure. The \(u_j\) determine the radius of the balls in the localisation of the measure in the \(j\)th iteration of the method. The polynomials in \(P\) serve as the test function in the reduction.

More precisely we define two interrelated families \(Q_{D,u}^{(i)}(x)\) and \(\tilde{Q}_{D,u}^{(i)}(x)\) of measures. As base case we have the measures obtained by applying twice the \(KLV\) operation starting from the point mass at \(x\).

\[
Q_{D,u}^{(1)}(x) := KLV(\delta_x, s_1) \quad Q_{D,u}^{(2)}(x) := KLV(Q_{D,u}^{(1)}(x), s_2)
\]

(17)

For the recursion the measure \(\tilde{Q}_{D,u}^{(i)}(x)\) is defined to be a reduced measure with respect to any fixed localisation \(\left(U_j, Q_{D,u}^{(i)}(x)\right)\) of the measure \(Q_{D,u}^{(i)}(x)\) with radius \(u_j\) and the set of test functions \(P\) (polynomials of degree at most \(r\)). We define \(Q_{D,u}^{(i+1)}(x)\) by the relation

\[
Q_{D,u}^{(i+1)}(x) := KLV(\tilde{Q}_{D,u}^{(i)}(x), s_{i+1})
\]

(18)
functions \(\tilde{Q}^{(i)}_{D,u} (x) \) are not unique even after we fix a localisation of \(Q^{(i)}_{D,u} (x) \) and a reduced measure may be computed using the reduction algorithms of Section 2.

The main result of the section is the following:

Theorem 19 For any choice of localisations \(\left(U_j, Q^{(i)}_{D,u} (x) \right) \) with radius \(u_i \) and any reduced measures \(\tilde{Q}^{(i)}_{D,u} (x) \) with respect to \(\left(U_j, Q^{(i)}_{D,u} (x) \right) \) and test functions \(P_i \), \(2 \leq i \leq k - 1 \), we have

\[
E_{D,k} := \sup_x \left| P_T f(x) - E^{(k)}_{Q_{D,u} (x)} f \right|
\leq \left(C_1 (T) \left(s_k^{1/2} + \sum_{i=1}^{k-1} \sum_{j=m_i}^{s_j^{(i)+1}/2} \right) + C_5 (T) \sum_{i=2}^{k-1} \frac{u_i^{r+1}}{(T-t_i)^{r/2}} \right) \| \nabla f \|_{\infty},
\]

where \(C_1 (T) \) and \(C_5 (T) \) are constants independent of \(f \) and the choice localisations with radius \(u_i \). The constant \(C_5 (T) \) can be taken equal to \(C_4 \) if \(T - t_1 \leq 1 \).

Proof. The global error is bounded by

\[
\left| P_T f(x) - E^{(k)}_{Q_{D,u} (x)} f \right| \leq \left| P_T f(x) - E^{(1)}_{Q_{D,u} (x)} P_{T-t_1} f \right|
+ \sum_{j=1}^{k-1} \left[E^{(1)}_{Q_{D,u} (x)} P_{T-t_j} f - E^{(2)}_{Q_{D,u} (x)} P_{T-t_2} f \right]
+ \sum_{j=2}^{k-1} \left[E^{(j)}_{Q_{D,u} (x)} P_{T-t_j} f - E^{(j-1)}_{Q_{D,u} (x)} P_{T-t_{j-1}+1} f \right]
\]

The first two terms and the terms in the second sum are the errors introduced by the KLV operation and can be bounded as in the proof of Theorem 9. The terms in the first sum may each be bounded by using Corollary 18.

The bounds for the error derived in this section assume that the function \(f \) is Lipschitz. If \(f \) has more regularity it is clear different estimates can be applied to estimate the derivatives of \(P_T f \) giving alternate bounds for \(E_{D,k} \).

A smaller number of balls in the localisations of the measures \(Q^{(i)}_{D,u} (x) \) reduces the computational complexity of the method. We have not discussed yet how to choose the localisation and the degree \(r \) in the reduction to optimise the computational complexity of the method (see Section 4.3).
4.2 Examples for the rate of convergence of the recombining KLV method

In this subsection we consider some particular choices of parameters for the recombining KLV method and examine their rate of convergence. We first fix for the remainder of this section a (family of) partitions D for the time interval $[0, T]$. We recall a family of uneven partitions from Lyons, Victoir [12] which has smaller time steps towards the end and is given by

$$t_j = T \left(1 - \left(1 - \frac{j}{k}\right)^\gamma\right). \tag{20}$$

For $\gamma > m - 1$ the results in [12] (see also Kusuoka [8]) show that

$$s_k^{1/2} + \sum_{i=1}^{k-1} \sum_{j=m}^{m+1} \frac{s_i^{(j+1)/2}}{(T - t_i)^{j/2}} \leq C_6(m, \gamma) T^{1/2} k^{-(m-1)/2}, \tag{21}$$

while for the case $0 < \gamma < m - 1$ one obtains

$$s_k^{1/2} + \sum_{i=1}^{k-1} \sum_{j=m}^{m+1} \frac{s_i^{(j+1)/2}}{(T - t_i)^{j/2}} \leq C_7(m, \gamma) T^{1/2} k^{-\gamma/2}.$$

In the following two examples we work with the partition defined in (20) and the notation of Theorem 19. Using this particular choice of partitions ensures that the bound on the KLV error is of high order in the number of iterations k.

Example 20 Let $\gamma > m-1$, $r = \lceil m/p \rceil$ and $u_j = s_j^{p/2-a}$, where $a := \frac{p-1}{2(m/p) + 1} \geq 0$. Then

$$\sup_x \left| P_T f(x) - E_{Q_n(x)} f(x) \right| \leq \left(C_1(T) \left(s_k^{1/2} + \sum_{i=1}^{k-1} \sum_{j=m}^{m+1} \frac{s_i^{(j+1)/2}}{(T - t_i)^{j/2}} \right) + C_5(T) \sum_{i=2}^{k-1} \frac{s_i^{([m/p]+1)/2}}{(T - t_i)^{([m/p]+1)/2}} \right) \| \nabla f \|$$

$$\leq C_8 k^{-(m-1)/2} T^{1/2} \| \nabla f \|_\infty \tag{22}$$

where $C_8 = C_6(m, \gamma) (C_1(T) + C_5(T))$.

Note that $0 \leq p/2 - a \leq p/2$ for all positive integers p and m and that for $s_j \leq 1$ we have $u_j \geq s_j^{p/2}$. In the next example we choose the radius of the balls in the reduction operation such that at each step in the iteration the bound on the recombination error matches the bound on the KLV error.

Example 21 Let $\gamma > m - 1$, $m = r$, i.e. the degree of the polynomials used in the reduction operation equals the degree of the cubature in the KLV method. Let
\(u_j, j = 2, \ldots, k - 1 \) be given by

\[
 u_j = \left(\frac{s_j^{m+1}}{(T-t_j)^{m-r}} \right)^{\frac{1}{2m+1}}.
\]

Then

\[
 \sup_x \left| P_T f(x) - E_{Q^{(u)}}(x) f \right|
 \leq \left(C_1(T) \left(s_k^{1/2} + \sum_{j=m}^{k-1} \sum_{i=1}^{j+1} \frac{s_i^{(m+1)/2}}{(T-t_i)^{m/2}} \right) + C_5(T) \sum_{i=2}^{k-1} \frac{s_i^{(m+1)/2}}{(T-t_i)^{m/2}} \right) \| \nabla f \|
 \leq C_9 k^{-(m-1)/2} T^{1/2} \| \nabla f \|_\infty,
\]

where \(C_9 = C_6(m, \gamma) (C_1(T) + C_5(T)) \).

As before if \(T - t_1 < 1 \) the constants \(C_8 \) and \(C_9 \) can be taken to be \(C_5(m, \gamma) (C_1(1) + C_4) \). The parameters chosen in the above examples guarantee high order convergence, but are not necessarily computationally optimal. In the following section we examine how for a fixed error \(\varepsilon \) the choice of \(r \) and \(u \) can be varied to be closer to the optimal computational effort in the recombination operation.

4.3 An optimisation

This paper establishes stable higher order particle approximation methods where the computational effort involved grows polynomially with the number of time steps when the number of steps is large and the underlying system remains compact (see section 4.4). In concrete examples, an optimisation of the different aspects of this algorithm, under the constraint of fixed total error, leads to even more effective approaches - although we expect that different problems would benefit from different distributions of the computational effort. For example there is a trade off between the degree of the polynomials that are used as test functions and the size of the balls used to define the localisation of the measure for the recombination (smaller patches if we use higher degree polynomials in the test functions and we fix the error of the approximation).

Specifically, suppose we are given a discrete measure \(\mu \) and the property we care about is the integral of \(\mu \) against a smooth function \(g \). As in our application to the KLV method we consider a reduced measure \(\tilde{\mu} \) (Definition 4) with respect to the polynomials of degree at most \(r \) and a localisation of \(\mu \) with radius at most \(\delta \). The number of balls of radius \(\delta \) required to cover the support of \(\mu \) is at most of order \(\left(\frac{D}{\delta} \right)^N \), where \(D \) is the diameter of \(\text{supp}(\mu) \). Let \(\varepsilon \) be the error of the approximation of \(\int g d\mu \) by \(\int g d\tilde{\mu} \).

Note that

\[
 \varepsilon = \frac{\delta^{r+1} c_{r+1}}{(r+1)!},
\]
for some $c_{r+1} \leq \sum_{i_1 + \ldots + i_N = r+1} \left\| \frac{\partial^i_{x}}{\partial x_{i_1} \cdots \partial x_{i_N}} q \right\|_{\infty}$. Fixing the error ε gives a simple relation for δ and r

$$\delta = \left(\frac{\varepsilon (r+1)!}{c_{r+1}} \right)^{1/(r+1)}.$$ \hspace{1cm} (24)

Let \hat{n} be the number of particles in the support of μ. The computational complexity of the recombination operation as a function of δ, \hat{n} and r is at most of order

$$\left(\frac{D}{\delta} \right)^N \left(\frac{r + N}{N} \right)^4 \log \hat{n} + \hat{n} \left(\frac{r + N}{N} \right)$$

which may be optimised subject to the constraint (24).

Note that in our application to cubature on Wiener μ corresponds to $Q^{(j)}_{D,u}(x)$ and the function g is given by $P_{T-t_i} f$. The calculation above also allows us to decide after each step of the iteration if it is of computational benefit to carry out a (full) recombination operation.

4.4 Simple bounds on the number of test functions - covering the support of the particle measures

In this section we obtain upper bounds for the number of ODEs required to solve in the recombining KLV method with k iterations. For this it is sufficient to bound the number of balls in the cover of the localisations of the particle measures uniformly for all k iterations. We first find a large ball $B(x, \rho)$ that covers $\text{supp}(Q^{(j)}_{D,u}(x))$, $j = 1, \ldots, k-1$ and then estimate the number of balls that are required to cover $B(x, \rho)$. The balls in the covers of the localisations will have to be sufficiently small to preserve the high order accuracy of the method. We can show that under the assumption that the vector fields V_i are bounded and satisfy the UH condition we have a high order method and the computational complexity is polynomial in k the number of iterations. Similar results can be obtained if the underlying system remains compact.

The following theorem demonstrates that we can achieve the same rate of convergence in the number of iterations k as in Kusuoka’s algorithm and the vanilla KLV method, but control the complexity of the method by an explicit polynomial in k. This compares to exponential growth in the vanilla KLV method without recombination, which despite its exponential growth leads to numerically highly effective algorithms (see e.g. Ninomiya, Victoir [13]). The estimates in this section are not designed to be optimal and can be improved. Closer to optimal choices for the radius u_i and degree r in the reduction operation have been discussed in Section 4.3 and may be used to decide if it is computationally efficient to recombine the particle measure at time t_i.

22
Theorem 22 Suppose the uniform Hörmander condition is satisfied and the vector fields V_i are uniformly bounded by some constant $M' > 0$. We can achieve
\[
E_{D,k} = \sup_{x \in \mathbb{R}^N} \left| P_T f(x) - E_{Q^{(k)}_{D,u}}(x) f \right| \leq C_k (-m-1)/2 T^{1/2} \| \nabla f \|_\infty, \tag{25}
\]
while the number of test functions in the reduction operation, and hence the number of elementary ODEs to solve, grows polynomially in k.

Proof. Let $m > 0$ be the degree of the cubature in the KLV method. Fix the partition D to (20) for some $\gamma > m - 1$. As in Example 20 let $r = [m/p]$ and $u_j = s_j^{p/2-a}$, $a = \frac{r-1}{m/p+1} > 0$ in the reduction operation. We note that the error $E_{D,k}$ satisfies (25) and it remains to show that the number of particles in the support of the measures $Q^{(k)}_{D,u}(x)$ grows polynomially in k, which is equivalent to the number of balls in the localisations growing polynomially in k.

Note that if $\omega \in C_0^0([0,1], \mathbb{R}^d)$ is a continuous path of bounded variation of length L we have
\[
|x - \Phi_{1,x}(\omega)| \leq M'L,
\]
where Φ is the Ito functional defined in (6), i.e. $\Phi_{1,x}(\omega)$ is the point we obtain by solving the equation (5) along the path ω starting at x. Let L be given by
\[
L = \max_{i=1,\ldots,n} \text{length}(\omega_i),
\]
the maximum of the lengths of the paths in the support of the degree m cubature formula on Wiener space over the unit time interval. Observe that by construction any particle in the support of the measures $Q^{(j)}_{D,u}(x)$ (compare the definition of the measures in (18)) may be written as
\[
\Phi_{\sum_{i=1}^{j} s_i, x}(\omega_{s_1, i_1} \otimes \cdots \otimes \omega_{s_j, i_j})
\]
some $i_1, \ldots, i_j \in \{1, \ldots, n\}$, the $\omega_{s,i}$ are the rescaled paths defined in (8) and \otimes denotes to the concatenation of paths. For k sufficiently large we may assume $s_i < 1$ and we deduce that
\[
supp(Q^{(j)}_{D,u}(x)) \subseteq B \left(x, M'L \sum_{i=1}^{j} s_i^{1/2} \right) \subseteq B \left(x, M'Lt^{1/2} \right).
\]
In the reduction operations we consider a basis of the polynomials of degree at most $\lceil m/p \rceil$ and the measure is localised by balls of radius u_j which need to cover $\text{supp}(Q^{(j)}_{D,u}(x))$. For $s_j < 1$, i.e. for k sufficiently large, we have $u_j \geq s_j^{p/2}$ and for our uneven family of partitions $\min_{j=2,\ldots,k-1} s_j^{p/2} < s_k^{p/2} = (T/k\gamma)^{p/2}$. Thus, the number of particles in each of the reduced measures is uniformly bounded above by $(\lceil m/p \rceil + N)^N$ times the number of balls of radius $(T/k\gamma)^{p/2}$ required to cover the ball $B \left(x, M'Lt^{1/2} \right)$ in N dimensional space, which is a polynomial of degree at most $N \left(\gamma p/2 + 1 \right)$ in k.

Similarly we can derive a result analogous to Theorem 22 if the underlying system remains compact.
References

[1] C. Bayer, J. Teichmann: The proof of Tchakaloff’s theorem , Proc. Amer. Math. Soc. 134 (2006), no. 10, 3035–3040

[2] D. Crisan, S. Ghazali: On the convergence rates of a general class of weak approximations of SDEs, Stochastic Differential Equations - Theory and Applications, 221- 248, 2007.

[3] D. Crisan: Numerical methods for solving the stochastic filtering problem, In: Lyons,T.J., Salisbury,T.S., editor, Providence, R.I., American Mathematical Society. (2002) Pages: 1-20.

[4] D. Crisan, A. Doucet, A survey of convergence results on particle filtering methods for practitioners, IEEE T SIGNAL PROCES. 50(2002) 736 - 746.

[5] Davis, Philip J. A construction of nonnegative approximate quadratures. Math. Comp. 21 1967 578–582.

[6] S. Kusuoka, D. Stroock: Application of the Malliavin calculus III J. Fac. Sci. Univ. Tokyo 1A 34, 391-442

[7] S. Kusuoka: Malliavin Calculus Revisited J. Math. Sci. Univ. Tokyo 10 (2003), 261-277

[8] S. Kusuoka: Approximation of Expectation of Diffusion Process and Mathematical Finance Advanced Studies in Pure Mathematics, Taniguchi Conference on Mathematics Nara ’98, 147-165

[9] C. Litterer, T. Lyons: Cubature on Wiener space continued, Stochastic Processes and Application to Mathematical Finance, Proceedings of the 6th Ritsumeikan International Symposium

[10] C. Litterer, T. Lyons: Introducing Cubature of Filtering, In D. Crisan and B. Rozovsky, eds. Oxford Handbook of Non-Linear Filtering, Oxford University Press, Forthcoming

[11] C.Litterer: The Signature in Numerical Algorithms, DPhil Thesis, University of Oxford, 2008

[12] T. Lyons, N. Victoir: Cubature on Wiener space Proc. R. Soc. Lond. A (2004) 460, 169-198

[13] S. Ninomiya, N. Victoir:Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing, Applied Mathematical Finance, Vol. 15, Issue 2, 2008 , 107 - 121

[14] S. Ninomiya: A partial sampling method applied to the Kusuoka approximation, Monte Carlo Methods and Appl. Vol.9, No.1, 27-38 (2003)

[15] N. Victoir: Private communication
[16] J.G. Wendel, A problem in geometric probability *Math Scand* 11 (1962), 109-111