Attachment tests of *Pasteuria penetrans* to the cuticle of plant and animal parasitic nematodes, free living nematodes and *srf* mutants of *Caenorhabditis elegans*

P. Mendoza de Gives¹,²,³*, K.G. Davies¹, M. Morgan² and J.M. Behnke²

¹Entomology and Nematology Department, IACR-Rothamsted, Harpenden, Herts, AL5 2JQ, UK: ²Department of Life Science, University of Nottingham, University Park, Nottingham, NG2 2RD, UK: ³Centro Nacional de Investigaciones Disciplinarias en Parasitologia Veterinaria, CENID-PAVET, Km 11.5 Carr. Fed.Cuernavaca-Cuautla, Col. Progreso, Municipio de Jiutepec, Estado de Morelos, Ap. Postal 206, CIVAC, Morelos, México, 62500

Abstract

Populations of *Pasteuria penetrans* isolated from root-knot nematodes (*Meloidogyne* spp.) and cyst nematodes (*Heterodera* spp.) were tested for their ability to adhere to a limited selection of sheathed and exsheathed animal parasitic nematodes, free living nematodes, including *Caenorhabditis elegans* wild type and several *srf* mutants, and plant parasitic nematodes. The attachment of spores of *Pasteuria* was restricted and no spores were observed adhering to any of the animal parasitic nematodes either with or without their sheath or to any of the free living nematodes including *C. elegans* and the *srf* mutants. All spore attachment was restricted to plant parasitic nematodes; however, spores isolated from cyst nematodes showed the ability to adhere to other genera of plant parasitic nematodes which was not the case with spores isolated from root-knot nematodes. The results are discussed in relationship to cuticular heterogeneity.

Introduction

The control of human and animal nematode infections is largely based on the administration of anthelmintic drugs. However, in response to the intensive use of anthelmintics, resistance has been reported (Waller, 1990; Jackson, 1993; De Clercq *et al.*, 1997; Reynoldson *et al.*, 1998) and this has led to a search for alternative strategies.

Nematophagous fungi are currently being evaluated for their potential to control plant parasitic (Kerry, 1993; Kerry & Bourne, 1996) and animal parasitic nematodes (Waller, 1993, Mendoza de Gives *et al.*, 1994; Wolstrup *et al.*, 1996; Morgan *et al.*, 1997; Llerandi-Juarez & Mendoza de Gives, 1998). However, to date, there are very few reports evaluating the use of bacteria to control these animal parasites. The *Pasteuria* group of Gram-positive endospore-forming bacteria are parasites of nematodes and water fleas (*Daphnia* spp.). Certain basic morphological types of spore, each with a variety of sub-types, have been identified and are found almost exclusively in Tylenchida and Dorylaimida; however, others have recently been found associated with Araeolaimida, Chromadorida, and Enoplida
Attachment of spores, of selected
istics of their cuticle.
are available which differ solely in the surface character-
dritis elegans
represents the latter catagory where mutants
animal parasitic or free living nematodes, and
Caenorhabditis
et al.,
and nematode cuticle (Davies
srf
nematodes and surface (sheath) and free living nematodes, to plant parasitic
different species of animal parasitic (with and without
proliferate throughout the pseudocoelom eventually
produce a germ tube which penetrates the nematode
spores have
germinated and penetrate the second-stage juvenile before the nematode has infected a plant
root, as in the case of spores adhering to the cuticle of
Heterodera avenae
(Sayre & Starr, 1985), or after
the nematode has infected a plant root and started feeding
(Sayre & Starr, 1985, 1988). In both cases, the spores each
produce a germ tube which penetrates the nematode
cuticle and produces a dichotomously branched micro-
colony. These microcolonies subsequently divide and
proliferate throughout the pseudocoelom eventually
killing the nematode and producing a cadaver filled with
spores (Sayre & Starr, 1988). Pasteuria spores have been
shown to differ in their ability to adhere to the
cuticle of plant parasitic nematodes (Davies et al., 1988; Stirling, 1991) and the interaction between the nematode
and Pasteuria is thought to involve a protein/carbo-
hydrate like mechanism between the spore and the
nematode cuticle (Davies et al., 1994). There are no reports
of isolates of the bacteria being tested against either
animal parasitic or free living nematodes, and Caenorhabditis
elegans represents the latter catagory where mutants
are available which differ solely in the surface character-
istics of their cuticle.

This paper reports the results of tests to study the
attachment of spores, of selected Pasteuria isolates, to
different species of animal parasitic (with and without
sheath) and free living nematodes, to plant parasitic
nematodes and surface (srf) mutants of Caenorhabditis
elegans, the cuticles of which react differently to either
antibodies and/or lectins.

Material and methods
Nematodes

The plant-parasitic nematodes Meloidogyne spp. and
Rotylenchulus reniformis were obtained from plant cultures
maintained in the glasshouse at 25°C on tomato plants,
cv. Pixie, grown in a peat/sand (1:1, v/v) compost.
Pratylenchus spp. and Radopholus similis were obtained
from axenic maize root cultures (Hooper, 1986b). Nema-
todes were hatched from infected root material by placing
small samples of infected root material in tap water on a
small sieve in a tray of water at room temperature
(Hooper, 1986a). The juveniles of cyst forming nematodes
were obtained by incubating cysts at optimum tempera-
tures in tap water and, in the case of the two species of
cyst nematode, Globodera pallida and G. rostochien-
sis, in the presence of potato root diffusate. Aphelenchoides
sp. and Ditylenchus sp were obtained from axenic Petri
dish cultures of Botrytis cinerea maintained at room
temperature in the laboratory by washing the surface of
the agar with water (Hooper, 1986b). Samples of Anguina
tritici were obtained by breaking open infected grains of
wheat in a small drop of tap water to release the
nematodes (Hooper, 1986a).

Cultures of the animal parasitic nematodes Haemonchus
contortus, Ostertagia (Teladorsagia) circumcincta and
Trichostrongylus axei were provided by Drs E. Munn,
Babraham Institute, Cambridge, and R. Coop, The
Moredun Research Institute, Edinburgh. Ancylostoma
ceylanicum and Heligmosomoides polygyrus were obtained
from the faecal material of infected hamsters and mice
respectively (Garside & Behnke, 1989). Steinernema and
Heterorhabditis were cultured in Galleria larvae. The free-
living nematodes Panagrellus redivivus, Pelodera strongy-
loides, Diplogaster sp., Mesodiplogaster sp., Panagrolaimus
sp., and Radutilus sp. were obtained from axenic Petri
dish cultures maintained at room temperature in the
laboratory. The wild type culture of Caenorhabditis
elegans (N2) was provided by Dr Julie Arhinger, Medical
Research Council, Cambridge and the surface mutants
AT6, AT10 and CL261 (table 2) were obtained from Dr
Theresa Stiernagle, Caenorhabditis Genetics Center, Uni-
versity of Minnesota and were maintained in Petri dishes
seeded with E. coli strain OP50 following the method of
Wood (1988).

Bacterial cultures

Populations of Pasteuria were obtained from the species
of nematode from which they were originally isolated
growing on a suitable host plant. Either, the infected roots
were dried and the powder produced following the
method of Stirling & Wachtel (1980), or Pasteuria infected
nematode cadavers were collected from field soils. The
latter were recognized using a dissecting microscope and
identifying females present on or in roots but not
producing egg masses (Sharma & Davies, 1996). Suspen-
sions of spores were prepared by grinding either Pasteuria
infested root powder, or infected cadavers, in tap water
with a pestle and mortar. The spores were filtered with a
10 μm sieve, counted using a haemocytometer slide and
the concentrations of suspensions were adjusted to 10^9
spores/ml. Stock suspensions were stored frozen at
−20°C.

Attachment tests

Samples (250 μl) of spore suspensions of each of the
stock Pasteuria populations were placed in separate
cleanized Eppendorf tubes together with a 250 μl of a
suspension of the test nematode population containing
approximately 500 individuals. The nematodes and
spores were thoroughly mixed and an attachment
test performed by centrifugation (10,000 g for 5 min)
following the method of Hewlett & Dickson (1993). A
semi-quantitative score (0, no spores per nematode; +, 1–10 spores per nematode; ++, 11–40 spores per nema-
tode) was given for each population of nematode tested,
assessing a minimum of 25 nematodes for each nematode
population, using a light microscope (×400).
Results and discussion

No Pasteuria spores were observed adhering to any of the 3rd stage infective larvae of the animal parasitic nematodes either with or without their sheath (table 1) or to any of the free living nematodes including C. elegans and three srf mutants (table 2). All populations of Pasteuria used in these experiments had been isolated from plant parasitic nematodes and their attachment was restricted to plant parasitic nematodes (table 3). Attachment of those populations of spores isolated from root-knot nematodes (Meloidogyne spp.) was similarly restricted to root-knot nematodes, however, those isolated from the genus Heterodera appeared to have a broader range of hosts and all three Pasteuria populations, PPC, PPN and PPW also attached to Globodera. One population of spores, PPC, was also observed attaching to Pratylenchus, Radopholus, Rotylenchulus and Aphelenchoides; the attachment of these spores also exhibited interspecific variation between species within genera (table 3). It is interesting to note that the populations of Pasteuria from the apomictic populations of nematodes, i.e. the root-knot populations, appear to have a more restricted host range than those isolated from the cyst nematode populations which are amphimictic.

There are two fundamental problems in the deployment of Pasteuria as a biological nematicide, firstly, the inability to culture large populations of spores (Williams et al., 1989; Bishop and Ellar, 1991) and secondly, its host specificity (Stirling, 1985; Channer & Gowen, 1992; Davies et al., 1988). Populations of Pasteuria are found which parasitize all the major genera of plant parasitic nematodes (Sayre and Starr, 1988) and there have recently been reports of other populations which parasitize nematodes in other families and even orders (Sturhan, 1996). Monoclonal antibodies have shown that the surface of the spores of a Pasteuria isolate originating from M. incognita race 2 was highly heterogeneous, and baiting experiments showed that different sub-populations of spores adhere to different species and races of nematode (Davies et al., 1994). These and subsequent studies (Davies & Redden, 1997) have suggested that the surface properties of the spore are responsible for the virulence of the bacterium and suggest that similar heterogeneity will also be present in the nematode cuticle. As the bacterium infects other invertebrates such as the cladoceran Moina

Table 1. Animal parasitic nematodes, third stage larvae with and without sheath, to which no spores of the bacterial hyperparasite Pasteuria penetrans adhered.

Genus/species	Origin1	Pasteuria populations tested
Haemonchus contortus	BI	PP1, PP3O
Heligmosomoides polygyrus	UN	PP1, PP3A, PP3O, B7, PA
Ostertagia circumcincta	MRI	PP1, PP3O
Trichostrongylus axei	MRI	PP1, PP3O
Anguilluloma ceplanicum	UN	PP1, PP3A, PP3O, B7, PA
Steinernema feltiae	IACR	PP1, PP1, PPC
Heterorhabditis megidis	IACR	PP1, PPJ, PPC

1BI, Babraham Institute, Cambridge; UN, University of Nottingham; MRI, Moredun Research Institute, Edinburgh; IACR, Institute of Arable Crops Research.
2Spores originating from Meloidogyne incognita; 3spores originating from M. javanica; 4spores originating from M. arenaria; 5spores originating from Heterodera glycines.

Table 2. Free living nematodes, mixed stages, to which no spores of the bacterial hyperparasite Pasteuria penetrans adhered.

Genus/species	Origin1	Pasteuria populations tested
Caenorhabditis elegans N2	MRC	PP1, PP3O, B7, PNG, PPN
Surface mutants	CGC	PP1, PP3O
AT6	CGC	PP1, PP3O
AT10	CGC	PP1, PP3O
CL261	CGC	PP1, PP3O
Panagrellus redivivus	IACR	PP1, PP3O, B7, PNG, PPN
Pelodera strongyloides	IACR	PP1, PP3O, B7, PNG, PPN
Diplodaster sp.	IACR	PP1, PP3O, B7, PNG, PPN
Mesodiopodaster sp.	IACR	PP1, PP3O, B7, PNG, PPN
Panagrolaimus sp.	IACR	PP1, PP3O, B7, PNG, PPN
Rhabditis sp.	IACR	PP1, PP3O, B7, PNG, PPN

1MRC, Medical Research Council, Cambridge; CGC, Caenorhabditis Genetics Center, Minnesota.
2Spores originating from Meloidogyne incognita; 3spores originating from M. javanica; 4spores originating from M. arenaria; 5spores originating from Heterodera glycines.
Table 3. Attachment of spores of six populations of Pasteuria (PP1, PPA, PPJ, PPC, PPN, PPW) to the cuticle of second-stage juveniles of plant parasitic nematodes (0, no attachment; +, 1–10 spores; ++, >10 spores; –, not available; based on a mean of 25 individual nematodes).

Genus/species	Origin1	PP12	PPA2	PPJ3	PPC4	PPN5	PPW6
Meloidogyne incognita	IACR	++	++	++	0	0	0
M. javanica	IACR	+	++	++	0	+	+
M. arenaria	IACR	+	+	+	0	0	0
M. hapla	IACR	+	+	0	0	0	0
Heterodera avenae	IACR	0	0	0	–	–	++
H. schachtii	IACR	0	0	0	++	+	+
H. glycines	IACR	0	–	+	+	+	–
H. cajani	ICRISAT	0	0	0	++	+	–
Globodera rostochiensis	IACR	0	0	0	++	0	0
G. pallida	IACR	0	0	0	++	+	–
Pratylenchus crenatus	IACR	0	0	0	0	0	0
P. neglectus	IACR	0	0	0	0	+	0
P. coffeae	IIP	0	0	0	+	0	–
Radopholus similis	IIP	0	0	0	+	–	–
Rotylenchulus reinformis	ICRISAT	0	0	0	–	–	–
Anguina tritici	IACR	0	0	0	0	–	–
Aphelenchoides sp.	IACR	0	0	0	+	–	–
Ditylenchus sp.	IACR	0	0	0	0	–	–

1IACR, Institute of Arable Crops Research; ICRISAT, International Crop Research Institute for the Semi-Arid Tropics; IIP, International Institute of Parasitology.
2Spores originating from Meloidogyne incognita; 3spores originating from M. javanica; 4spores originating from H. cajani; 5spores, P. nishizawae, originating from H. avenae; 6spores originating from H. glycines.

(Sayre et al., 1977; Ebert et al., 1996) it would seem likely that similar bacteria will be found infecting animal parasitic nematodes, especially those which have to spend prolonged periods of their life cycle in soil before infecting their respective animal hosts, and these infective stages will also exhibit a high level of cuticular heterogeneity. The challenge for the future will therefore be to isolate such bacteria targeting animal and human parasitic nematodes, and to evaluate their potential as tools for the biological control of important human and livestock diseases.

Acknowledgements

P. Mendoza de Gives and M. Morgan were financially supported by Consejo Nacional de Ciencia y Tecnología, México and Lawes Agricultural Trust respectively. IACR-Rothamsted receives grant-aided support from the Biotechnological and Biological Sciences Research Council of the United Kingdom.

References

Bishop, A.H. & Ellar, D.J. (1991) Attempts to culture Pasteuria penetrans in vitro. Biocontrol Science and Technology 1, 101–114.
Channer, A.G. De R. & Gowen, S.R. (1992) Selection for increased resistance and increased pathogen specificity in the Meloidogyne–Pasteuria penetrans interaction. Fundamental and Applied Nematology 15, 331–339.
Davies, K.G. & Redden, M. (1997) Diversity and partial characterisation of putative virulence determinants in Pasteuria penetrans, the hyperparasitic bacterium of root-knot nematodes (Meloidogyne spp.) Journal of Applied Microbiology 83, 227–235.
Davies, K.G., Kerry, B.R. & Flynn, C.A. (1988) Observations on the pathogenicity of Pasteuria penetrans, a parasite of root-knot nematodes. Annals of Applied Biology 112, 491–501.
Davies, K.G., Flynn, C.A., Laird, V. & Kerry, B.R. (1990) The life-cycle, population dynamics and host specificity of a parasite of Heterodera avenae, similar to Pasteuria penetrans. Revue de Nematologie 13, 303–309.
Davies, K.G., Pearson, T. & Redden, M. (1994) Endospore heterogeneity in Pasteuria penetrans related to adhesion to plant parasitic nematodes. Letters in Applied Microbiology 19, 370–373.
De Clercq, D., Sacko, M., Behnke, J., Gilbert, F., Dorny, P. & Vercreusse, J. (1997) Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. American Journal of Tropical Medicine and Hygiene 57, 25–50.
Ebert, D., Rainey, P., Embley, M. & Scholz, D. (1996) Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa Metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus. Philosophical Transactions of the Royal Society London B 351, 1689–1701.
Garside, P. & Behnke, J.M. (1989) Ancylostoma ceylanicum: observations on host–parasite relationship during primary infection. Parasitology 98, 283–289.
Hewlett, T.E. & Dickson, D.W. (1993) A centrifugation method for attaching endospores of Pasteuria spp. to nematodes. Journal of Nematology 25 (Supplement), 785–788.
Hooper, D.J. (1986a) Extraction of nematodes from plant...
Attachment of Pasteuria penetrans to nematode cuticle

Mendoza de Gives, P., Zavaleta-Mejia, E., Herrera-Llerandi-Juarez, R.D. & Mendoza-de Gives, P. (1998) The importance of microbial agents for the control of plant parasitic nematodes. Ministry of Agriculture Fisheries and Food, London, HMSO.

Hooper, D.J. (1986b) Culturing nematodes and related experimental techniques. pp. 133–137 in Southey, J.F. (Ed.) Laboratory methods for work with plant and soil nematodes. Ministry of Agriculture, Fisheries and Food, London, HMSO.

Jagger, F. (1993) Anthelmintic resistance – the state of play. British Veterinary Journal 149, 123–138.

Kerry, B.R. (1996) The use of microbial agents for the control of plant parasitic nematodes. pp. 81–104 in Jones, D.G. (Ed.) Exploitation of microorganisms. London, Chapman & Hall.

Kerry, B.R. & Bourne, J.M. (1996) The importance of rhizosphere interactions in the biologic control of plant parasitic nematodes a case study using Verticillium chlamydosporium. Pesticide Science 47, 69–75.

Reynoldson, J.A., Behnke, J.M., Pallant, L.J., MacNish, M.G., Gilbert, F. & Thompson, R.C.A. (1998) Failure of pyrantel to control hookworms in Australia. Acta Tropica (in press).

Sayre, R.M. & Starr, M.P. (1985) Pasteuria penetrans (ex Thorne, 1940) nom. rev., comb. n., sp. n., a mycelial endospore-forming bacterium parasitic in plant-parasitic nematodes. Proceedings of the Helminthological Society of Washington 52, 149–165.

Sayre, R.M. & Starr, M.P. (1988) Bacterial diseases and antagonisms of nematodes. pp. 69–101 in Poinar, G.O., Jr. & Jansson, H.B. (Eds) Diseases of nematodes, Vol. 1. Boca Raton, USA, CRC Press .

Sayre, R.M., Wergin, W.P. & Davis, R.E. (1977) Occurrence in Moina rectirostis (Cladocera: Daphnidia) of a parasite morphologically similar to Pasteuria ramosa (Metchnikoff, 1888). Canadian Journal of Microbiology 23, 1573–1579.

Sayre, R.M., Gherna, R.L. & Wergin, W.P. (1983) Morphological and taxonomic reevaluation of Pasteuria ramosa Metchnikoff 1888 and Bacillus penetrans Mankau 1975. International Journal of Systematic Bacteriology 33, 636–649.

Sayre, R.M., Wergin, W.P., Schmidt, J.M. & Starr, M.P. (1991) Pasteuria nishizawae sp. nov., a mycelial and endospore-forming bacterium parasitic on cyst nematodes of genera Heteroderia and Globodera. Research in Microbiology 142, 551–564.

Sharma, R. & Davies, K.G. (1996) A comparison of two sympatry species of Pasteuria isolated from a tropical vertisol soil. World Journal of Microbiology and Biotechnology 12, 361–366.

Stirling, G.R. (1985) Host specificity of Pasteuria penetrans within the genus of Meloidogyne. Nematologica 31, 203–209.

Stirling, G.R. & Wachtel, M.F. (1980) Mass production of Bacillus penetrans for the biological control of root-knot nematodes. Nematologica 26, 308–312.

Surhan, D. (1996) Diversity and host specificity in Pasteuria bacteria. Nematropica 26, 226, 1996.

Waller, P.J. (1990) Resistance in nematode parasites of livestock to the benzimidazole anthelmintics. Parasitology Today 6, 127–129.

Waller, P.J. (1993) Nematophagous fungi: prospective biological control agents of animal parasitic nematodes? Parasitology Today 9, 429–431.

Williams, A.B., Stirling, G.R., Hayward, A.C. & Perry, J. (1989) Properties and attempted culture of Pasteuria penetrans, a bacterial parasite of root-knot nematodes (Meloidogyne javanica). Journal of Applied Bacteriology 67, 145–156.

Wolstrup, P., Nansen, P., Gronvold, J., Henriksen, S.A. & Larsen, M. (1996) Toward practical biological control of parasitic nematodes in domestic animals. Journal of Nematology 28, 129–132.

Wood, W.B. (1988) The nematode Caenorhabditis elegans. Cold Spring Harbor, New York.

(Accepted 15 July 1998)

© CAB INTERNATIONAL, 1999
helminthology, protozoology, entomology, arbovirology, rickettsiology & mycology...

ParasiteCD covers parasitology in its broadest sense, encompassing helminthology, protozoology, medical and veterinary entomology and mycology. It contains bibliographic citations and abstracts from the scientific literature on all aspects of the biology and control of parasites and vector-borne diseases of humans and domestic and wild animals (including fishes). Coverage includes nematodes, cestodes, digeneans, monogeneans, acanthocephalans, parasitic protozoa, ectoparasitic and haematophagous arthropods (insects, ticks, mites and crustaceans), and pathogenic fungi, as well as vector-borne viruses and bacteria.

Abstracts are drawn principally from the CAB ABSTRACTS database, supplemented by records from the CAB HEALTH database. The CD-ROM includes the entire coverage of Helminthological Abstracts, Protozoological Abstracts, Review of Medical and Veterinary Entomology and Review of Medical and Veterinary Mycology.

Over 400,000 records are included covering the period 1973 to the present. Updated quarterly.

ParasiteCD

CABI Publishing
A division of CAB INTERNATIONAL

To obtain a free 30-day trial of ParasiteCD contact: Tania Fisher, CABI Publishing, CAB International, Wallingford, Oxon, OX10 8DE, UK
Tel: +44 (0)1491 832111 Fax: +44 (0)1491 829292 Email publishing@cabi.org