Dulce Digital: An mHealth SMS-Based Intervention Improves Glycemic Control in Hispanics With Type 2 Diabetes

Diabetes Care 2017;40:1349–1355 | https://doi.org/10.2337/dc17-0230

OBJECTIVE
Type 2 diabetes is growing in epidemic proportions and disproportionately affects lower-income, diverse communities. Text messaging may provide one of the most rapid methods to overcome the “digital divide” to improve care.

RESEARCH DESIGN AND METHODS
A randomized, nonblinded, parallel-groups clinical trial design allocated \(N = 126 \) low-income, Hispanic participants with poorly controlled type 2 diabetes to receive the Dulce Digital intervention or usual care (UC). Dulce Digital participants received up to three motivational, educational, and/or call-to-action text messages per day over 6 months. The primary outcome was HbA1c; lipids, blood pressure, and BMI were secondary outcomes. Satisfaction and acceptability were evaluated via focus groups and self-report survey items.

RESULTS
The majority of patients were middle-aged (mean age 48.43 years, SD 9.80), female (75%), born in Mexico (91%), and uninsured (75%) and reported less than a ninth-grade education level (73%) and mean baseline HbA1c 9.5% (80 mmol/mol), SD 1.3, and fasting plasma glucose 187.17 mg/dL, SD 64.75. A statistically significant time-by-group interaction effect indicated that the Dulce Digital group achieved a significantly greater reduction in HbA1c over time compared with UC (\(P = 0.03 \)). No statistically significant effects were observed for secondary clinical indicators. The number of blood glucose values texted in by participants was a statistically significant predictor of month 6 HbA1c (\(P < 0.05 \)). Satisfaction and acceptability ratings for the Dulce Digital intervention were high.

CONCLUSIONS
Use of a simple, low-cost text messaging program was found to be highly acceptable in this sample of high-risk, Hispanic individuals with type 2 diabetes and resulted in greater improvement in glycemic control compared with UC.

Type 2 diabetes is growing in epidemic proportions in the U.S. and worldwide. The International Diabetes Federation estimates that by 2040 there will be 642 million people living with diabetes worldwide, an increase of \(>50\% \) compared with the present day (1). The U.S. has the highest prevalence of diabetes among developed nations (i.e., 11% of the population between 20 and 79 years of age) (1), and individuals of ethnic/minority and low socioeconomic status are disproportionately affected (2,3). A

1Scripps Whittier Diabetes Institute, Scripps Health, San Diego, CA
2Department of Psychology, San Diego State University, San Diego, CA
3University of California, San Diego, San Diego, CA
4Neighborhood Healthcare, San Diego, CA

Corresponding authors: Athena Philis-Tsimikas, tsimikas.athena@scrippshealth.org, Linda C. Gallo, lgallo@mail.sdsu.edu, and James Schultz, jims@nhcare.org.

Received 30 January 2017 and accepted 11 May 2017.

Clinical trial reg. no. NCT01749176, clinicaltrials.gov.

This article contains Supplementary Data online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-0230/-/DC1.

© 2017 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.

See accompanying article, p. 1342.
recent study (4) in the 26 states and District of Columbia that expanded Medicaid under the Affordable Care Act found that diabetes diagnoses increased by 23% in 2014 compared with the previous year. Hispanic individuals in the U.S. experience higher rates of type 2 diabetes and, once diagnosed, exhibit poorer glycemic control than non-Hispanic white individuals (3,5).

Diabetes self-management education (DSME) and support is an effective method to improve clinical and cost outcomes (6,7) and can be successfully tailored for ethnically diverse populations (e.g., Philis-Tsimikas et al. [8]). However, many at-risk individuals are unable to access DSME and support because of practical (e.g., work, transportation, caregiving) and health care access barriers (9–12). In fact, in 2012 only 4.7% of the 21 million people with diagnosed diabetes accessed any accredited DSME program (9). To improve patient and practice performance outcomes, alternative methods must efficiently and effectively extend the reach of the care team to those in need of additional support to reach clinical targets. The widespread adoption of mobile phone technologies, including among low-income and older adults (13), highlights the potential for mobile health (mHealth) technology to circumvent the practical barriers inherent to traditional (e.g., face-to-face) visits.

Short messaging service (SMS), or text messaging, is among the most frequently used mobile communication methods and has been adopted by an estimated three-quarters of mobile users worldwide (14). Text messaging is simple to implement and may provide one of the most rapid methods to overcome the recently implicated limitation of the “digital divide” (15) to improve care. In the U.S., texting among adults in 2011 was higher among Hispanics (83%) and African Americans (76%) than among non-Hispanic whites (70%) (16). Ninety-nine percent of received text messages are opened, and 90% are read within 3 min of receipt (17). Thus, text messaging represents an opportunity to provide frequent, daily, low-cost, and interactive communication that could prove beneficial for population-level diabetes interventions.

Recent research syntheses have shown that mHealth interventions improve adherence and clinical control in patients with type 2 diabetes (18–20). However, most studies were small and nonrandomized and resulted in limited clinical improvements (20–23). Further, few studies have examined the implications of integrating these mHealth technologies into care or the feasibility and acceptability of such approaches in underserved populations (19,24). The current study addresses these gaps by investigating the glycemic benefit and acceptability of a culturally tailored, SMS-based DSME and support intervention (Dulce Digital) among underserved Hispanics with poor control in federally qualified health centers in Southern California.

RESEARCH DESIGN AND METHODS

Study Sample and Setting

Between October 2012 and February 2014, 126 individuals consented and enrolled into the Dulce Digital study (Fig. 1). The sample included Spanish-speaking and English-speaking Hispanic men and women, 18–75 years of age, who were uninsured or underinsured (Medicaid) and had two diabetes and poor glycemic control (as indicated by an HbA1c level of $7.5% [58 mmol/mol]). Individuals with plans to move outside the region and those with a severe physical or mental condition that would interfere with participation were excluded. Participants were recruited from clinic sites within Neighborhood Healthcare, a network of federally qualified health centers in San Diego and Riverside counties that serves predominantly low-income...
individuals of an ethnic/racial minority. All procedures were approved by the Scripps Health Institutional Review Board.

Study Design and Intervention
The intervention was tested using a parallel-groups, nonblinded, randomized design. Blocked random assignment with equal allocation was used to assign participants to Dulce Digital or usual care (UC), using a randomly generated numbers sequence. Participants were informed of group assignment after the baseline assessment.

At the baseline visit, all participants viewed a 15-min diabetes educational video developed by Scripps. All participants received a blood glucose meter (OneTouch Verio Meter; LifeScan, Inc., Milpitas, CA), testing strips, and instructions on use. A physical assessment with fasting venous blood draw and study questionnaires were completed at baseline, month 3, and month 6. Assessments were performed by trained, bilingual research assistants at clinic sites in English and Spanish. Participants received an incentive at each assessment and continued to receive UC at the clinic for the study duration. UC services available to all patients included visits with a primary care physician, certified diabetes educator, and group DSME, although the use of the services was dependent on physician and patient initiative.

After randomization, participants assigned to Dulce Digital (n = 63) were provided with instructions on how to receive and send text messages. Participants who did not have a cell phone with texting capability were provided one (Kajeet, Inc., McLean, VA) (n = 22) at no cost for the duration of the study. Participants using their own phones had the costs of the additional texts covered by the study ($12/month). Content for the text messages was primarily derived from our cultural appropriate DSME curriculum (Project Dulce), which has been shown to improve clinical, behavioral, and cost outcomes in this population and others (8,25,26). In addition to the core educational messages derived from Project Dulce (e.g., “Use small plates! Portions will look larger and you may feel more satisfied after eating.”), the Dulce Digital intervention provided ongoing support via motivational messages (e.g., “It takes a team! Get the support you need—family, friends and support groups can help you succeed.”), medication reminders (e.g., “Tick, tock. Take your medication at the same time every day!”), and blood glucose monitoring prompts (e.g., “Time to check your blood sugar. Please text back your results.”). All content was converted into 119 brief, ≤160 character, text message-friendly format and sent out via a contracted patient health management technology platform (Rip Road LLC, New York, NY). Two to three messages a day were sent at study start, with frequency tapering over 6 months. Message timing was standardized across all participants and correlated with traditional meal or testing times. Blood glucose–monitoring prompts encouraged participants to text message in their next observed value; one value ≥250 or ≤70 mg/dL or three values between 181 and 250 mg/dL prompted a bilingual study coordinator to call the participant to assess possible reasons for hyperglycemia/hypoglycemia and to encourage as-needed follow-up with providers. The study coordinator also contacted the participant if there was no blood glucose value sent in for 1 week. Medical management was not provided by the coordinator.

Demographic and Outcome Measures
Participants self-reported sociodemographic characteristics. Information regarding prescribed medications was extracted from electronic health records. HbA1c and lipids (total cholesterol, LDL cholesterol, HDL cholesterol, and triglycerides) were conducted by the laboratories of Quest Diagnostics (West Hills, CA), which adhere to guidelines set forth by the College of American Pathologists. Systolic and diastolic blood pressure were measured with a standardized protocol according to guidelines using a standard digital sphygmomanometer (HEM-907XL; Omron). Body weight and height were measured using a traditional balance scale and stadiometer to the nearest 0.1 lb and 0.2 inch, respectively. Finally, Dulce Digital participants (only) completed self-report items at the month 6 assessment visit to evaluate intervention feasibility and acceptability. To obtain further detail regarding participants’ perceptions of Dulce Digital, two 90-min focus groups were conducted with a randomly selected 20% of intervention group participants.

Statistical Analysis
Data analysis was performed using IBM SPSS Statistics for Windows, version 23.0 (IBM Corporation, Armonk, NY) and Hierarchical Linear and Nonlinear Modeling software (HLM7; Scientific Software International, Lincolnwood, IL) by A.L.F. Descriptive statistics were obtained, and distributions were examined for normality. The triglyceride variable was significantly skewed as was the natural log transformed to normalize the distribution; however, because no appreciable differences between analyses using transformed versus untransformed variables were observed, results are presented for untransformed data only.

Mixed models were used to examine whether the two groups evidenced differential rates of change over time for HbA1c and secondary outcomes (i.e., time-by-group interactions). To evaluate a possible dosage effect on the primary outcome in Dulce Digital, the number of text messages and the number and duration of study coordinator phone calls were examined as predictors of month 6 HbA1c level while controlling for baseline HbA1c level. All analyses controlled for age and sex.

RESULTS
Participant Characteristics
The majority of patients were middle-aged, female, born in Mexico, and uninsured and reported less than a ninth-grade education (Table 1). At baseline, the overall sample (N = 126) exhibited poor glycemic control (mean HbA1c 9.5% [80 mmol/mol], SD 1.3; fasting plasma glucose 187.17 mg/dL, SD 64.75); mean lipid values were close to target, and blood pressure averages were in the normal range. No between-group differences were observed in clinical outcomes at baseline (P values >0.10).

Thirteen (10.3%) participants were lost to follow-up (Fig. 1). At baseline, these participants reported higher annual incomes (P = 0.002) and were less likely to own a cell phone (P = 0.04) than those who completed at least one follow-up assessment; no other statistically significant differences were observed (P values >0.05).

Clinical Control Outcomes
Using an intent-to-treat approach, all N = 126 participants were included in multilevel modeling analyses examining differences in the rates of change over time between the groups. Group means for all indicators at baseline, month 3, and month 6 are shown in Table 2. A statistically significant time-by-group interaction
Table 1—Baseline characteristics for the Dulce Digital and UC groups

	Dulce Digital (n = 63)	UC (n = 63)
Age, years, mean (SD)	47.8 (9.0)	49.1 (10.6)
Sex		
Female	46 (73)	48 (76)
Male	17 (27)	15 (24)
Country of origin		
Mexico	59 (93)	55.0 (89)
U.S.	2 (3)	4.0 (6)
Other	2 (3)	3.0 (5)
Preferred Language		
Spanish	59 (94)	57 (91)
English	4 (6)	6 (9)
Education		
Less than ninth-grade education	46 (76)	44 (70)
Ninth-grade education or higher	17 (24)	19 (30)
Insurance coverage		
Insured	15 (24)	16 (25)
Uninsured	48 (76)	47 (75)
Household monthly income		
<$1,000/month	18 (29)	23 (37)
$1,000 to $1,999/month	35 (55)	33 (52)
$2,000/month	10 (16)	7 (11)
Marital status		
Married or living with partner	45 (72)	44 (69.8)
Unmarried	18 (28)	19 (30.2)
Cell phone use		
Own cell phone	54 (86)	51 (81)
Use text messaging	39 (62)	44 (66)
Age of diabetes diagnosis, mean (SD)		
	38.6 (9.2)	40.7 (10.5)
Prescribed medications		
Oral medication*	46 (73)	40 (64)
Insulin*	2 (3)	5 (8)
Combination therapy (oral plus insulin)	15 (24)	14 (22)

Data are reported as n (%), unless otherwise noted. Data are based on all individuals who completed a baseline assessment (N = 126). *Indicates a statistically significant difference between groups (P < 0.05). §Education, income, insurance, and marital status categories were collapsed for ease of presentation.

Feasibility and Acceptability
In response to the subset of self-report items administered in the Dulce Digital group (only) at month 6, the vast majority of participants indicated that the text messages helped them to manage their diabetes “a lot” (96%), that they would continue receiving Dulce Digital text messages if given the choice (96%), and that they would recommend Dulce Digital to a friend or family member with diabetes (97%). Consistent with these findings, focus group participants (n = 12) indicated high acceptability; common themes that emerged indicated that text messages were sufficient in frequency and easy to understand. However, individuals who were provided with a separate study phone reported that it was inconvenient to carry two phones.

CONCLUSIONS
To our knowledge, this is the first randomized controlled trial using a text message-based DSME and support intervention to demonstrate significantly greater improvements in glycemic control compared with UC in a high-risk, underserved, Hispanic population. These findings suggest that, if implemented on a wider scale, simple, low-cost, text message–based mHealth approaches such as Dulce Digital have the potential to achieve a significant public health benefit in diabetes, a chronic health condition that is rapidly increasing in the Hispanic and other underserved populations.

In this study, all patients had an initial HbA1c level ≥7.5%, with the majority (61.9%) exhibiting an HbA1c level ≥9%,
Table 2—Clinical outcome means for the Dulce Digital and UC groups

Clinical indicator	Baseline	Month 3	Month 6			
HbA1c*%						
Dulce Digital	63	9.5 (1.2)	50	8.5 (1.2)	50	8.5 (1.2)
UC	63	9.6 (1.4)	57	9.3 (1.9)	59	9.4 (2.0)
Dulce Digital	63	80 (13.1)	57	69 (13.1)	50	69 (13.1)
UC	63	81 (15.3)	57	78 (20.8)	50	78 (20.8)
Fasting blood glucose (mg/dL)						
Dulce Digital	63	184.0 (63.2)	50	164.6 (46.4)	50	161.3 (49.7)
UC	63	190.3 (66.7)	57	186.5 (66.8)	59	186.5 (68.5)
Total cholesterol (mg/dL)						
Dulce Digital	63	178.9 (38.1)	50	170.3 (32.4)	50	175.2 (33.1)
UC	63	193.7 (48.2)	57	193.7 (44.0)	59	192.6 (39.6)
HDL (mg/dL)	63	44.5 (11.5)	50	42.9 (12.1)	50	42.3 (10.5)
Dulce Digital	63	48.0 (14.6)	57	48.3 (13.0)	59	46.4 (10.7)
UC	63	58.7 (13.2)	53	58.2 (12.8)	54	57.5 (12.8)
LDL (mg/dL)	63	96.7 (32.8)	48	91.2 (28.0)	48	95.9 (29.8)
Dulce Digital	58	108.1 (32.2)	53	106.2 (28.4)	54	107.5 (33.8)
UC	63	122.8 (15.9)	46	120.6 (14.3)	45	122.4 (10.5)
SBP (mmHg)	63	178.9 (144.9)	57	207.9 (172.3)	59	204.6 (129.6)
Dulce Digital	58	152.7 (21.9)	46	131.4 (15.9)	45	132.4 (17.2)
UC	63	174.7 (10.8)	52	172.7 (9.1)	53	172.3 (10.4)
DBP (mmHg)	63	75.1 (9.6)	46	72.9 (8.5)	45	73.7 (11.1)
Dulce Digital	58	74.7 (10.8)	52	72.7 (9.1)	53	72.3 (10.4)
UC	63	31.5 (5.2)	49	31.7 (5.2)	50	31.9 (5.4)
BMI (kg/m²)	63	32.2 (6.6)	49	32.0 (6.1)	58	32.1 (6.6)
Weight (lb)	63	173.1 (34.6)	49	176.2 (33.0)	50	174.1 (27.8)
Dulce Digital	63	176.4 (41.6)	57	174.2 (39.7)	58	175.2 (41.6)

All analyses controlled for age and sex; however, unadjusted means are reported. DBP, diastolic blood pressure; SBP, systolic blood pressure. *Indicates a statistically significant time-by-group interaction effect (P < 0.05).
majority reporting practical barriers that are commonly experienced in underserved populations (e.g., no transportation, work conflict, caregiving responsibilities, other time conflict). Thus, it is expected that by introducing the Dulce Digital program as part of routine clinic care, program reach could be expanded to individuals who could not attend additional (research-required) visits. Finally, this trial was not designed to examine cost-effectiveness. However, with respect to sustainability and scalability of an intervention such as Dulce Digital compared with other low-resource settings, the promise of text message-based programs is great. There is no additional cost for the technical infrastructure whether it is delivered to 400 or 4,000 individuals. The cost to the patient/user is only related to the text messages, and for Dulce Digital (in particular) a smartphone is not required. In other research, a significant population-level cost savings was attributed to a text-messaging program designed to facilitate diabetes care coordination in a predominantly African American population (22). This study included a care management component facilitated by nurses or medical assistants.

Dulce Digital offers a potential solution to the burgeoning primary care demand-capacity imbalance to better address the complex needs of the growing number of individuals with type 2 diabetes. Text-messaging approaches are attractive as a chronic disease public health intervention for a number of reasons, including their frequent use, enormous reach, low cost, and relative simplicity. Mobile phone and texting use is high among Hispanics (16), a group that experiences disparate diabetes prevalence and outcomes. Moreover, the present investigation indicated that the Dulce Digital approach was highly acceptable in this population. This model is flexible, lending itself to adaptation for other chronic conditions (e.g., arthritis, chronic pain) and for delivery by other personnel to address the health needs of underserved populations across the nation. Future investigations should examine the sustainability of the improvements in glycemic control beyond 6 months; expanding intervention content to target additional populations at risk for diabetes and other cardiometabolic indicators that are central to diabetes control (e.g., blood pressure, lipids); and individualizing text message content and delivery timing and frequency to each patient’s unique needs and progress.

Figure 2—A: HbA1c means and 95% CIs for the Dulce Digital and UC groups at baseline, month 3, and month 6. B: Association between the number of blood glucose values texted in by participants with a change in HbA1c level from baseline to month 6 in the Dulce Digital group. Values adjacent to error bars represent the mean number of texts for each quintile. Note: The texting variable was analyzed as a continuous variable but was binned into quintiles for graphical presentation. Although HbA1c change is represented on the y-axis for ease of interpretation, the month 6 HbA1c level was used as the outcome variable (with control for baseline HbA1c level) in regression analyses. Because of the curvilinear appearance of this relationship, the texting predictor was also examined using a quadratic term; however, the quadratic variable was not statistically significant.

Acknowledgments. The authors thank the staff and participants of the Dulce Digital study for their important contributions and the administration and staff at Neighborhood Healthcare for their partnership in this investigation. The authors also thank peer educator Magdalena Hernandez, an employee of Scripps Whittier Diabetes Institute, for recruitment and cohort maintenance support.

Funding. The current research was supported by McKesson Foundation grant 115M803379 and National Center for Advancing Translational Sciences grant NCATS 1UL1 TR001114-01. The Investigator-Initiated Study Program of LifeScan, Inc., provided glucose testing meters and strips for all participants.

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. A.L.F. researched and analyzed data and wrote and reviewed the manuscript. L.C.G. contributed to the conduct of research and data analysis and wrote and reviewed the manuscript. S.D.-S., J.A.E., T.C., and J.Sk. contributed to the research and data analysis and reviewed the manuscript. M.I.G. contributed to the conduct of research and data analysis and wrote and reviewed the manuscript. A.P.-T. contributed to the research development, conduct of research, and research analysis and wrote and reviewed the manuscript.

Author Contributions. A.L.F. researched and analyzed data and wrote and reviewed the manuscript. L.C.G. contributed to the conduct of research, development of research, and data analysis and wrote and reviewed the manuscript. S.D.-S., J.A.E., T.C., and J.Sk. contributed to the research and data analysis and reviewed the manuscript. M.I.G. contributed to the conduct of research, development of research, and data analysis and wrote and reviewed the manuscript. A.P.-T. contributed to the research development, conduct of research, and research analysis and wrote and reviewed the manuscript.
A.P.-T. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Prior Presentation. Parts of this study were presented in abstract form at the 74th Scientific Sessions of the American Diabetes Association, San Francisco, CA, 13–17 June 2014.

References
1. International Diabetes Federation (IDF). IDF Diabetes Atlas [Internet], 2015. 7th ed. Brussels, Belgium, International Diabetes Federation. Available from http://www.diabetesatlas.org. Accessed 2 January 2017

2. Beckles GL, Chou CF. Disparities in the prevalence of diagnosed diabetes—United States, 1999-2002 and 2011-2014. MMWR Morb Mortal Wkly Rep 2016;65:1265–1269

3. Centers for Disease Control and Prevention (CDC). National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States [article online], 2014. Atlanta, GA, Centers for Disease Control and Prevention. Available from https://www.cdc.gov/diabetes/data/statistics/2014statisticsreport.html. Accessed 2 January 2017

4. Kaufman HW, Chen Z, Fonseca VA, McPhaul MJ. Surge in newly identified diabetes among medicaid patients in 2014 within medicaid expansion States under the affordable care act. Diabetes Care 2015;38:833–837

5. Campbell JA, Walker RJ, Smalls BL, Egede LE. Glucose control in diabetes: the impact of racial differences on monitoring and outcomes. Endocrine 2012;42:471–482

6. Powers MA, Bardsley J, Cypress M, et al. Diabetes self-management education and support in type 2 diabetes: a joint position statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Diabetes Care 2015;38:1372–1382

7. Haas L, Maryniuk M, Beck J, et al.; 2012 Standards Revision Task Force. National standards for diabetes self-management education and support. Diabetes Care 2013;36(Suppl. 1):S100–S108

8. Phlips-Tsimakis A, Fortmann A, Llave-Ocana L, Walker C, Gallo LC. Peer-led diabetes education programs in high-risk Mexican Americans improve glycemic control compared with standard approaches: a Project Dulce promotora randomized trial. Diabetes Care 2011;34:1926–1931

9. National Center for Chronic Disease Prevention and Health Promotion. Emerging Practices in Diabetes Prevention and Control: Medicaid Coverage for Diabetes Self-Management Education [Internet]. 2015. Atlanta, GA, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention. Available from https://www.cdc.gov/diabetes/pdfs/programs/stateandlocal/emerging_practices-dsme.pdf. Accessed 2 January 2017

10. American Diabetes Association. 1. Strategies for improving care. Diabetes Care 2016;39(Suppl. 1):S6–S12

11. Horgan G, Davies M, Findlay-White F, Chaney D, Coates V. Reasons why patients referred to diabetes education programmes choose not to attend: a systematic review. Diabet Med 2017;34:14–26

12. Schwennesen N, Henriksen JE, Willaing I. Patient explanations for non-attendance at type 2 diabetes self-management education: a qualitative study. Scand J Caring Sci 2016;30:187–192

13. Pew Research Center. Closing the digital divide: Latinos and technology adoption [article online]. 2013. Washington, DC, Pew Research Center. Available from http://www.pewhispanic.org/2013/03/07/iell-phone-use/. Accessed 6 January 2017

14. Pew Research Center. Global digital communication: texting, social networking popular worldwide [article online]. 2011. Washington, DC, Pew Research Center. Available from http://www.pewglobal.org/files/2011/12/Pew-Global-Attitudes-Technology-Report-FINAL-December-20-2011.pdf. Accessed 2 January 2017

15. Dorsey ER, Topol EJ. State of Telehealth. N Engl J Med 2016;375:154–161

16. Zickuhr K, Smith A. Digital differences [article online]. 2012. Washington, DC, Pew Research Center. Available from http://www.pewinternet.org/2012/04/13/digital-differences/. Accessed 2 January 2017

17. Johnson D. SMS open rates exceed 99% [article online]. 2013. Seattle, WA, Tattango Learning Center. Available from https://www.tattango.com/blog/sms-open-rates-exceed-99/. Accessed 2 January 2017

18. Pal K, Eastwood SV, Michie S, et al. Computer-based interventions to improve self-management in adults with type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2014;37:1759–1766

19. Holtz B, Lauckner C. Diabetes management via mobile phones: a systematic review. Telemed J E Health 2012;18:175–184

20. Hall AK, Cole-Lewis H, Bernhardt JM. Mobile text messaging for health: a systematic review of reviews. Ann Rev Public Health 2015;36:393–415

21. Shetty AS, Chamukuttan S, Nanditha A, Raj RK, Ramachandran A. Reinforcement of adherence to prescription recommendations in Asian Indian diabetes patients using short message service (SMS)—a pilot study. J Assoc Physicians India 2011;59:711–714

22. Nundy S, Dick JJ, Chou CH, Nocon RS, Chin MH, Peek ME. Mobile phone diabetes project led to improved glycemic control and net savings for Chicago plan participants. Health Aff (Millwood) 2014;33:265–272

23. de Jongh T, Guroi-Urganci I, Vodopivec-Jamsek V, Car J, Atun R. Mobile phone messaging for facilitating self-management of long-term illnesses. Cochrane Database Syst Rev 2012;12:CD007459

24. El-Gayar O, Tsimina P, Nawar N, Eid W. Mobile applications for diabetes self-management: status and potential. J Diabetes Sci Technol 2013;7:247–262

25. Gilmer TP, Phlips-Tsimakis A, Walker C. Outcomes of Project Dulce: a culturally specific diabetes management program. Ann Pharmacother 2005;39:817–822

26. Phlips-Tsimakis A, Walker C, Rizard L, et al.; Project Dulce. Improvement in diabetes care of underserved patients enrolled in project dulce: a community-based, culturally appropriate, nurse case management and peer education diabetes care model. Diabetes Care 2004;27:110–115

27. Chrvala CA, Sherer D, Lipman RD. Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ Couns 2016;99:926–943

28. Greenwood DA, Young HM, Quinn CC. Telehealth remote monitoring systematic review: structured self-monitoring of blood glucose and impact on A1C. J Diabetes Sci Technol 2014;8:378–389

29. Sherrifali D, Nerenberg K, Pullenayegum E, Cheng JE, Gerstein HC. The effect of oral antidiabetic agents on A1C levels: a systematic review and meta-analysis. Diabetes Care 2010;33:1859–1864

30. Inzucchi SE, Bergenstal RM, Buse JB, et al.; American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD). Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012;35:1364–1379

31. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2015;38:140–149

32. Heller SR; ADVANCE Collaborative Group. A summary of the ADVANCE Trial. Diabetes Care 2009;32(Suppl. 2):S357–S361

33. Strutton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405–412

34. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853

35. Norris SL, Engelgau MM, Narayan KM. Effectiveness of self-management training in type 2 diabetes: a systematic review of randomized controlled trials. Diabetes Care 2001;24:561–587