The Active Galactic Nuclei in the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX). II. Luminosity Function

Chenxu Liu1, Karl Gebhardt1, Erin Mentuch Cooper1,2, Yechi Zhang3,4, Donald P. Schneider5,6, Robin Ciardullo5,6, Dustin Davis1, Daniel J. Farrow7,8, Steven L. Finkelstein9, Caryl Gronwall15,6, Gary J. Hill1,10, Lindsay House1, Donghui Jeong5,6, Wolfram Kollatschny11, Maja Lujan Niemeyer12, and Sarah Tuttle13
(The HETDEX Collaboration)

1 Department of Astronomy, The University of Texas at Austin, 2515 Speedway Boulevard, Austin, TX 78712, USA; lorenaustc@gmail.com
2 McDonald Observatory, The University of Texas at Austin, Austin, TX 78712, USA
3 Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwano, Kashiwa, Chiba 277-8582, Japan
4 Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
5 Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
6 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
7 University Observatory, Fakultät für Physik, Ludwig-Maximilians University Munich, Scheiner Strasse 1, D-81679 Munich, Germany
8 Max-Planck Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany
9 Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Austin, TX 78712, USA
10 McDonald Observatory, The University of Texas at Austin, 2515 Speedway, Austin, TX 78712, USA
11 Institut fuer Astrophysik, Universität Göttingen, Friedrich-Hund-Platz, D-37077, Göttingen, Germany
12 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany
13 Department of Astronomy, University of Washington, Seattle, Physics & Astronomy Building, Seattle, WA, 98195, USA

Received 2022 April 2; revised 2022 June 10; accepted 2022 July 10; published 2022 August 23

Abstract

We present the Lyα emission line luminosity function (LF) of the active galactic nuclei (AGN) in the first release of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) AGN catalog. The AGN are selected either by emission line pairs characteristic of AGN or by a single broad emission line, free of any photometric preselections (magnitude/color/morphology). The sample consists of 2346 AGN spanning 1.88 < z < 3.53, covering an effective area of 30.61 deg². Approximately 2.6% of the HETDEX AGN are not detected at >5σ confidence at r ~ 26 in the deepest r-band images we have searched. The Lyα line luminosity ranges from \(10^{42.3}\) to \(10^{45.9}\) erg s⁻¹. Our Lyα LF shows a turnover luminosity with opposite slopes on the bright end and the faint end: The space density is highest at \(L_{\text{Ly}\alpha} = 10^{43.4}\) erg s⁻¹. We explore the evolution of the AGN LF over a broader redshift range (0.8 < z < 3); constructing the rest-frame ultraviolet (UV) LF with the 1450 Å monochromatic luminosity of the power-law component of the continuum (\(M_{1450}\)) from \(M_{1450} = −18\) to −27.5. We divide the sample into three redshift bins (z ~ 1.5, 2.1, and 2.6). In all three redshift bins, our UV LFs indicate that the space density of AGN is highest at the turnover luminosity \(M_{1450} = 43.4\) with opposite slopes on the bright end and the faint end. The \(M_{1450}\) LFs in the three redshift bins can be well fit with a luminosity evolution and density evolution model: the turnover luminosity (\(M_{1450} = 43.4\)) increases, and the turnover density (\(\Phi^*\)) decreases with increasing redshift.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Luminosity function (942)

1. Introduction

Active galactic nuclei (AGN) are actively growing supermassive black holes (SMBHs) in the center of the galaxies. The strong observed correlation between the mass of the SMBHs and the velocity dispersion of their host galaxies implies that their evolution is correlated (Gebhardt et al. 2000; Tremaine et al. 2002; see Kormendy & Ho 2013 for a detailed review). The AGN population is believed to be a significant contributor to the ultraviolet (UV) background and the reionization of the universe (e.g., Giallongo et al. 2015; Haardt & Salvaterra 2015; Puchwein et al. 2019). The AGN luminosity function (LF) describes the space density of AGN at a given luminosity. Accurate measurements of the AGN LF, especially at intermediate redshifts (\(z \sim 1–3\)) when galaxies and SMBHs grow most rapidly, cannot only characterize and help understand the strong evolution of the SMBHs, but also help to better picture the evolution of galaxies and the universe.

The AGN LF is usually modeled with a double power-law profile with a steep bright-end slope and a shallow faint-end slope, with the characteristic break luminosity \(L^*\) and space density \(\Phi^*\) as shown by Equation (1) (e.g., Richards et al. 2006; Bongiorno et al. 2007; Hopkins et al. 2007; Ross et al. 2013; Palanque-Delabrouille et al. 2016; Shen et al. 2020).

\[
\Phi(L) = \frac{\Phi^*_L}{(L/L^*)^{-\alpha} + (L/L^*)^{-\beta}}.
\]

(1)

It can alternatively be rewritten with the number density of AGN per unit magnitude as Equation (2),

\[
\Phi(M) = \frac{\Phi^*_M}{10^{0.4(\alpha+1)(M-M^*)}+0.4(\beta+1)(M-M^*)}.
\]

(2)
The bright end of the AGN LF at intermediate redshifts (1 \lesssim z \lesssim 3) is well constrained by many large quasar (QSO) samples with consistent results. Most of these samples are pre-selected via their continuum brightness. For example, Richards et al. (2006) studied the AGN LF of 15,343 spectroscopically confirmed broad-line QSOs over 1622 deg^2 within 0 < z < 5 defined from the first and the second generation of the Sloan Digital Sky Survey (SDSS-II/III) down to i = 19.1 (z \lesssim 3) and i = 20.1 (z \gtrsim 3). Ross et al. (2013) measured the AGN LF of 22,301 spectroscopically confirmed AGN over 2236 deg^2 between 2.2 < z < 3.5 down to i = 21.8 from the third generation of SDSS Baryon Oscillation Spectroscopic Survey (SDSS-III; BOSS) Data Release Nine (DR9). Palanque-Delabrouille et al. (2016) studied the AGN LF of 13,876 AGN variability-selected from the fourth generation of SDSS (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) over 94.5 deg^2 in Stripe 82 at 0.68 < z < 4.0 down to g < 22.5.

1.2. Modeling the Faint End

Studies of the faint end of the AGN LF can help define the trigger mechanism(s) and the duty cycle of AGN. Hydrodynamical simulations show that mergers of gas-rich galaxies can lead to strong inflows of cold gas, feed central SMBHs, and thereby power bright AGN with high accretion rates (e.g., Di Matteo et al. 2005; Hopkins et al. 2008). The feedback of AGN can in return expel enough gas and shut down the star formation in the host and leave the galaxy passive, red, and elliptical. The timescale of merger events is \sim 1 Gyr, but for the majority of this time, AGN are heavily obscured by surrounding dust. They can only shine as optical AGN for \sim 100 Myr after enough dust is expelled. Low-luminosity AGN are more likely triggered by the secular evolution of galaxies with low accretion rates (see Alexander & Hickox 2012, for a detailed review of various triggering mechanisms of AGN). For example, asymmetric structures, such as bars, can help remove the angular momentum of gas and trigger AGN activity. Whether massive SMBHs mainly consist of short-lived bright QSOs under near Eddington accretion, or of long-lived low-luminosity AGN with lower accretion rates remains uncertain. The number density of low-luminosity AGN is a key piece of information on the duty cycle of AGN triggered by the secular evolution with low accretion rates.

The faint end of the AGN LF is also important in understanding the evolution model of AGN, which is usually described with the evolution of the break point (L^* and \Phi^*) between the bright end and the faint end. The evolution of the AGN LF has been modeled with different models in various studies. Boyle et al. (2000) and Croom et al. (2004) found that the QSO sample (by < 20.85, 0 < z < 2.5) of the 2dF QSO Redshift Survey (2QZ; Croom et al. 2004) can be well fit by a pure luminosity evolution model (PLE; only L^* evolves with redshift while \Phi^* is constant). When going to higher redshifts, large QSO samples defined from SDSS show that the PLE model can only describe the QSO LF up to z \sim 2.2, above which, besides the evolution of L^*, \Phi^* decreases significantly with redshift (Richards et al. 2006; Ross et al. 2013; Palanque-Delabrouille et al. 2016). They introduced the luminosity evolution and density evolution model (LEDE; L^* and \Phi^* evolve with redshift independently) at z \gtrsim 2.2 in addition to the PLE model at z \lesssim 2.2 to fit the evolution of the QSO LF. Bongiorno et al. (2007) combined a faint AGN sample of 130 AGN (I_{AB} < 24; 0 < z < 5) selected from the VIMOS-VLT Deep Survey (VVDS) (Gavignaud et al. 2006) with the LF of bright QSOs of SDSS (Richards et al. 2006). They found that a luminosity-dependent and density evolution (LDDE) model, where \Phi^* evolves with redshift regulated by L^*, can best describe the evolution of AGN LF.

The faint end of the AGN LF at intermediate redshifts is still poorly constrained, especially in the UV/optical bands. X-ray observations are the most efficient method in identifying low-luminosity AGN as the X-ray emissions have strong penetration and low dilution from the host galaxies (see Brandt & Alexander 2015, for a recent review). Shen et al. (2020) studied the evolution of the AGN LF down to about three orders of magnitudes fainter than the break luminosity L^* (L_{\text{bol}} \sim 10^{45} \text{ erg s}^{-1} \text{ at } z \sim 2) from z = 0 to z = 7 with X-ray observations compiled by Hopkins et al. (2007) and updated by Shen et al. (2020). However, X-ray observations are usually limited by small sky coverage (<1 or a few square degrees) and limited sample sizes (<10^4). Infrared (IR) observations, especially mid-IR, provide a special approach to finding X-ray/optical obscured AGN and allow the study of the AGN LF down to \sim 1–2 orders of magnitude fainter than L^*. However, X-ray, IR, and UV/optical AGN may represent different phases of AGN. Therefore, deep UV/optical surveys of AGN are still a unique way of describing the evolution of AGN despite the various studies of AGN LF in other bands.

1.3. Early Faint UV/Optical AGN Samples

In the UV/optical bands, the measurements of the AGN LF fainter than the break magnitude (M^*) are still limited: Deep surveys of AGN usually have small sample sizes and small sky coverage, and large samples are not deep enough to extend to the low-luminosity region to constrain the faint end. Hunt et al. (2004) made the first direct measurement of the faint end of the AGN LF at z \sim 3 down to M_{1450} = -21 mag (~5 mag fainter than M_{1450}^*) using a sample of only 11 faint AGN discovered over 0.43 deg^2 in a survey for Lyman-break galaxies (LBG; Steidel et al. 2003). Their AGN are selected using multi-color selection criteria (the Lyman-break technique) and spectroscopic follow-up. The 2dF-SDSS LRG and QSO survey (2SLAQ; Croom et al. 2009b) provide measurements with a significantly larger (10,637 AGN) but much shallower (~1 mag fainter than the break magnitude) AGN sample covering 191.9 deg^2 (Croom et al. 2009a). Their AGN sample is also pre-selected using a multi-color method which primarily selects UV-excess objects. The AGN LF derived from the VVDS survey used a sample of 130 AGN (spanning 1.75 deg^2), which is larger than the LBG survey and deeper than the 2SLAQ survey (~2.5 mag fainter than the break magnitude) (Bongiorno et al. 2007). Their sample is free from color selection, but is still a magnitude-limited sample which requires the continuum to be brighter than I_{AB} < 24 in their deep fields and I_{AB} < 22.5 in their wide fields.

Liu et al. (2022) (Paper I) selected 5322 AGN at 0.25 < z < 4.2 over 30.61 deg^2 from the Hobby–Eberly Telescope Dark Energy Experiment survey (HETDEX; Hill et al. 2008; Gebhardt et al. 2021). This AGN sample is purely emission line selected, free of any photometric preselection (broadband magnitude/color/morphology). Our AGN selection is more effective in finding continuum faint AGN.
compared to the traditional photometric preselection with spectroscopic follow-ups. Cross-matching with various imaging surveys shows that 2.6% of the HETDEX AGN already reached the 5σ detection limit at $r \approx 26$ of HSC, which is the deepest imaging survey we searched. The median r-band magnitude of our AGN catalog is 21.6 mag, with 34% having $r > 22.5$. Our AGN sample goes down to $M_{1450} \sim -18$ mag. Both the sample size and the sky coverage of the HETDEX AGN are hundreds of times larger than those of the faint optical AGN samples of LBG and VVDS.

1.4. The Lyα LF

The two faint UV/optical AGN samples of the VVDS survey and the HETDEX survey introduced in Section 1.3 are both identified by their emission line features. Besides the continuum LF, a more direct way to evaluate the number density of AGN is the emission line LF. The Lyα emission is a well-studied emission feature that characterizes the young ($\lesssim 50$ Myr), low-mass ($\lesssim 10^{10} M_{\odot}$) galaxies with high star formation rates (SFR) of $1-100 M_{\odot}$ yr$^{-1}$ (e.g., Gawiser et al. 2006; Finkelstein et al. 2007, 2009). It is believed that the bright end ($L_{\text{Ly}\alpha} > 10^{43.3} \text{erg s}^{-1}$) of the Ly$\alpha$ LF is exclusively comprised of AGN (e.g., Spinosa et al. 2020). Studying the Lyα LF of AGN can help us better understand the contribution of AGN to each Lyα luminosity. It is also interesting to search for the possible connection between the emission line LF and the continuum LF.

In this paper, we present our measurements of the AGN LF based on the 5 K emission line selected AGN from the HETDEX survey. We briefly summarize the HETDEX survey and the AGN catalog in Section 2. Section 3 describes the estimation of the completeness corrections. We introduce the V_{max} method for the LF calculation in Section 4. We show the Lyα LF of the AGN sample in Section 5. We explore the evolution of the AGN UV LF in Section 6. In Section 7, we present the bolometric LF of our HETDEX AGN sample and compare it with the AGN LFs of other bands. We discuss the potential incompleteness of our AGN sample in the faint end and our efforts in correcting such selection effects in Section 8. We summarize this paper in Section 9. We use a flat Λ CDM cosmology with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_M = 0.3$, $\Omega_\Lambda = 0.7$ throughout this paper.

2. The HETDEX AGN Catalog

HETDEX (Hill et al. 2008; Gebhardt et al. 2021) is an ongoing spectroscopic survey (3500–5500 Å) without target preselection on the upgraded 10 m Hobby–Ebert Telescope (HET, Ramsey et al. 1998; Hill et al. 2021). It uses the Visible Integral field Replicable Unit Spectrograph (VIRUS; Hill et al. 2021) to record spectra of every object falling within its field of view. A typical exposure contains 34,944 spectra, most of which capture the sky or the background. The primary goal of this survey is to measure the cosmology at $z \sim 3$ using Lyα emitters (LAEs) as tracers of large-scale structures. The HETDEX survey is expected to be active from 2017 to 2024, and eventually will cover 540 deg2.

In this paper, we analyze the LF of 5322 AGN (0.25 $< z < 4.2$) identified from HETDEX observations from 2017 January 1 to 2020 June 26, covering an effective area of 30.61 deg2 (see Paper I for details of the HETDEX AGN sample). The AGN used for this analysis are identified solely based on their spectroscopic properties, free of any preselection based on imaging (magnitude, morphology, and color).

3. Completeness Correction

The complexity of our AGN detection algorithm (see Paper I) means that there are two separate contributors to the completeness of the AGN sample: the completeness of the HETDEX detection algorithm (C_{HETDEX} detailed in Section 3.1 and D. Farrow et al. 2022, in preparation), and the completeness of the AGN selection algorithm, (C_{AGN}, described in Section 3.2). In other words,

$$C = C_{\text{HETDEX}} \ast C_{\text{AGN}}. \quad (3)$$

3.1. Completeness of HETDEX Detection

As stated in Section 2, the HETDEX detection algorithm identifies emission line candidates and the continuum candidates separately. Therefore, the completeness of sources in the two candidate catalogs must be evaluated separately (Equation (4)):

$$C_{\text{HETDEX}} = \begin{cases} C_{\text{HETDEX,line}} & \text{emission line candidates} \\ C_{\text{HETDEX,cont}} & \text{continuum candidates} \end{cases}. \quad (4)$$

For the continuum candidates, we make a simple assumption that all continuum candidates would be automatically picked up by the pipeline, meaning $C_{\text{HETDEX,cont}} = 1$.

Liu et al., The Astrophysical Journal, 935:132 (16pp), 2022 August 20
For the emission line candidates, the completeness simulations were first presented in Gebhardt et al. (2021), but we review the methodology here. We employ a set of simulations to carefully evaluate the completeness of the HETDEX detection algorithm by inputting simulated emission lines with known observed wavelengths (λ_{obs}), fluxes (flux_{obs}), and line widths (σ_{obs}) into each observed data cube. We then run the detection code and check how many of these artificial emission lines are recovered by the HETDEX detection algorithm. The detection rate is then the fraction of artificial sources recovered in the data cube. This experiment demonstrates that the completeness of the HETDEX algorithm for an emission line is a function of observed wavelength, flux, and line width. It also varies with location on the sky via dependencies related to an object's placement on an IFU (edge fibers have lower completeness compared to fibers near the IFU center) and the observational conditions at the time of the exposure. The completeness of each detection from the HETDEX detection algorithm is then a function of six parameters, as shown in Equation (5):

$$C_{\text{HETDEX,line}} = C(\lambda_{\text{obs}}, \text{flux}_{\text{obs}}, \sigma_{\text{obs}}, \text{R.A.}, \text{decl.}, S/N_{\text{th}}).$$ \hspace{1cm} (5)$$

where σ_{obs} is the line width of the emission fitted with a single Gaussian profile and S/N_{th} is the signal-to-noise ratio (S/N) threshold for detections. We make use of flux limit routines in the HETDEX API14 to evaluate Equation (5); details and tests of the implementation will be presented in D. Farrow et al. (2022, in preparation).

Figure 1 shows the simulated completeness of the HETDEX detection algorithm for the observation taken by the 13th exposure on the night of 2020 June 23 as a typical example. The completeness increases as a function of the observed emission line flux from 0 to about 1. The completeness of blue wavelengths is overall worse than that of the red wavelengths due to low throughput. The red line shows the simulation for a set of "broad" emission lines with $\sigma_{\text{obs}} = 8 \text{ Å}$; the black line shows the completeness for unresolved emission with $\sigma_{\text{obs}} = 2.2 \text{ Å}$. In all cases, the curve giving the completeness versus line flux for broad emission line objects increases more slowly than that for narrow emission lines. This is because the HETDEX line-detection algorithm is tuned to select Lyα emitting galaxies (LAEs), whose emission lines are unresolved (or barely resolved) at HETDEX resolution ($\sigma_{\text{obs}} = 2.2 \text{ Å}$). The detection of broad emission lines is therefore less efficient, and that leads to a shallow slope to the completeness curve. Based on simulations with different σ_{obs}, λ_{obs} and S/N_{th}, we find that the difference between the completeness curve of "broad" emission lines with σ_{obs} and that of the unresolved emission lines is only related to σ_{obs} and S/N_{th}. $C_{\text{HETDEX,line}}$ of a broad emission line candidate with σ_{obs} can be estimated with that of the unresolved emission line with $\sigma_{\text{obs}} = 2.2 \text{ Å}$ by dividing its observed flux (flux_{obs}) by $\sqrt{\sigma_{\text{obs}}/2.2}$ * (15.09 - S/N_{th}) * (0.098 - 0.0004σ_{obs} + 0.0004σ_{obs}^2).

3.2. Completeness of AGN Selection

The AGN selection also has two cases: one for objects selected via the presence of two AGN emission lines (2em; Section 3.2.1) and the other for sources found via a single, broad emission line (sBL; Section 3.2.2). The completeness function for each must be evaluated separately as Equation (6), as is introduced in Section 2 (see Paper I for more details):

$$C_{\text{AGN}} = \begin{cases} C_{\text{2em}} & \text{2em selected AGN} \smallskip \IEEEeqnarraymulticol{2}{l}{ C_{\text{sBL}} & \text{sBL selected AGN}.} \end{cases}$$ \hspace{1cm} (6)$$

3.2.1. Completeness of the 2em Selection

The 2em selection algorithm searched the HETDEX detection catalog for all emission line pairs characteristic of AGN. Such pairs include Lyα+C IV $\lambda 1549$, C IV $\lambda 1549 +$ C III] $\lambda 1909$, C III] $\lambda 1909 +$ Mg II $\lambda 2799$, etc. The algorithm requires that the S/N of the strongest emission line be greater than 5 ($S/N_{\text{em,1st}} > 5$) and that of the second most significant emission feature have an S/N greater than 4 ($S/N_{\text{em,2nd}} > 4$). Thus, the probability of an AGN detection is related to both $S/N_{\text{em,1st}}$ and $S/N_{\text{em,2nd}}$. To simplify the parameter space, we introduce the S/N over the full 3500–5500 Å range (S/N_{spec}) to take both $S/N_{\text{em,1st}}$ and $S/N_{\text{em,2nd}}$ into consideration with a single parameter. Since S/N_{spec} considers all emission lines and the continuum across 3500–5500 Å as the signal, it can be as large as ~100–300 for strong AGN.

The redshift is another key factor for calculating the completeness for the 2em selected AGN, as it regulates the observed wavelengths of the emission line pairs. At some redshifts, only one AGN emission line falls within the 3500–5500 Å wavelength range of the HETDEX survey, making it impossible to identify line pairs at these redshifts. Consequently, the completeness function for 2em selected AGN is a function of two variables: S/N_{spec} and the redshift.

To calculate this function, we simulate a series of AGN spectra. We first add various redshifts to the rest-frame composite spectrum obtained from the HETDEX AGN catalog in Paper I and cut the composite spectra in the observed frames with the HETDEX wavelength coverage (3500–5500 Å). Noises are then added to the simulated observed AGN spectra with controlled S/N_{spec}. We then run the 2em selection code and count how many of the simulated AGN would be identified as AGN in different ($S/N_{\text{spec}}, z$) bins, i.e.,

$$C_{\text{2em}} = C(S/N_{\text{spec}}, z).$$ \hspace{1cm} (7)$$

Since our simulated AGN spectra are based on the composite spectrum of the HETDEX AGN sample, they can reproduce the continuum and the relative line strength of different emission lines.

Figure 2 shows the completeness function for the 2em selected AGN in the S/N_{spec}–redshift space. The high completeness fractions near $z \sim 3.3, 2.3, 1.6, 0.9, 0.25$ shows the preference for identifying the line pairs (O IV $\lambda 1034 +$ Lyα), (Lyα + C IV $\lambda 1549$), (C IV $\lambda 1549 +$ C III] $\lambda 1909$), (C III] $\lambda 1909 +$ Mg II $\lambda 2799$), and (Mg II $\lambda 2799 +$ O II $\lambda 3727$). Different line pairs require different levels of S/N_{spec} to be identified due to their different line strengths. For example, the (Lyα + C IV $\lambda 1549$) line pair is stronger than the (C IV $\lambda 1549 +$ C III] $\lambda 1909$) line pair, so the high completeness region at $z \sim 2.3$ starts from $S/N_{\text{spec}} \sim 25$, while the high completeness region at $z \sim 1.6$ starts from a higher S/N_{spec} level at ~75. AGN at redshifts where the completeness is zero can only be identified by the single broad-line selection method (Section 3.2.2).

14 https://github.com/HETDEX/hetdex_api
Figure 1. The simulated completeness fraction of S/N > 4.8 emission line detections ($C_{\text{HETDEX, line}}$) for the 13th exposure on the night of 2020 June 23 as a function of the observed emission line flux in different wavelength intervals. The red circles are for the broad emission lines, which have line widths of $\sigma_{\text{obs}} = 8.0$ Å, and the red curve is the spline interpolation to the red circles. The black squares show the reference completeness function for unresolved emission lines ($\sigma_{\text{obs}} = 2.2$ Å), and the black curve is the spline interpolation of the black squares.
3.2.2. Completeness of the sBL Selection

The sBL selection identifies AGN with a single broad emission line (FWHM > 1000 km s\(^{-1}\)) within the wavelength range of the HETDEX survey as Type I AGN candidates. The single Gaussian fit for the emission lines of the HETDEX pipeline is primarily designed to search for the normal narrow emission line candidates and is usually not suitable for the broad emission lines for AGN. We then fit the broad emission line candidates independently with multi-Gaussian profiles for our sBL search to get more accurate measurements of FWHMs (see Paper I for more details). The sBL selection requires the S/N of the emission line from our multi-Gaussian fits (S/N\(_{\text{em}}\)) to be greater than 3.8. The completeness of the sBL selection is a function of the line widths and the emission line S/N\(_{\text{em}}\) (Equation (8)):

\[
C_{\text{sBL}} = C(\text{FWHM}, S/N_{\text{em}}).
\]

We again make simulate emission lines with known S/N\(_{\text{em}}\) and FWHM, run them through the sBL selection code, and plot the completeness fraction in the S/N\(_{\text{em}}\) - FWHM space, as is shown in Figure 3. As expected, the broader emission lines require a higher S/N\(_{\text{em}}\) to be identified. The region with intermediate line widths, 1000 km s\(^{-1}\) ≤ FWHM ≤ 1500 km s\(^{-1}\), also has lower completeness, as features of this width have a higher chance of being fit with FWHM < 1000 km s\(^{-1}\) templates and therefore misidentified as narrow emission line objects.

3.3. Total Completeness

We can combine the completeness curve of the HETDEX detection algorithm derived from simulations as described in Section 3.1, with the AGN completeness functions of Section 3.2 to compute the completeness applicable to every AGN in our catalog (i.e., Equation (3)). Figure 4 shows the distribution of the total completeness fraction in the upper left panel and the distributions of various components of the completeness in the other three panels. Note that in the upper left panel, there is a significant population of objects where completeness is smaller than 0.05. These are of lower confidence (larger completeness corrections) to be included in the statistics. Therefore, we require C > 0.05 in all LFs in the rest of this paper.

4. The \(V_{\text{max}}\) Method

All LFs in this paper are calculated with the \(1/V_{\text{max}}\) estimator (e.g., Schmidt 1968; Blanc et al. 2011). The space density in any luminosity bin can be calculated as:

\[
\Phi(\log_{10} L) = \frac{1}{\Delta \log_{10} L} \sum_{i} \frac{1}{V_{\text{max},i}},
\]

where \(\Delta \log_{10} L\) is the size of the bin, and \(V_{\text{max},i}\) is the maximum comoving volume within which the \(i\)th object would still be
Figure 5. The observed Lyα LF for various AGN samples. Red circles: HETDEX AGN that have Lyα emission within the wavelength range of the HETDEX survey ($1.88 < z < 3.53$). Magenta stars: HETDEX AGN with secure redshifts only ($z_{\text{flag}} = 1$) that have Lyα emission within the experiment’s wavelength range. The magenta stars are moved leftward by 0.05 dex for presentation purposes. The open red circles and the open magenta stars are the bins within which the completeness is lower than 0.15 (see Table 1 for the completeness of each luminosity bin). Cyan squares: the Lyα LF of the broad-line AGN selected from the overlap region between the HSC survey and the HETDEX survey in Zhang et al. (2021). Black solid triangles: the Lyα LF of the AGN in the J-PLUS survey at $z = 2.37$ (Spinoso et al. 2020). Black open pentagons: the Lyα LF of the SDSS DR14 QSOs (Pàris et al. 2018) at $z = 2.37$ estimated by Spinoso et al. (2020).

detected by the survey.

$$V_{\text{max},i} = \omega \int_{z_{\text{min}}}^{z_{\text{max}}} C_i(z) \frac{dV}{dz} dz,$$

(10)

where $C_i(z)$ is the completeness of the ith AGN estimated as Section 3, ω is the total angular coverage of the sample, which is 30.61 deg2 for this paper, $\frac{dV}{dz}$ is the differential comoving volume element, and z_{min} and z_{max} are the minimum redshift and the maximum redshift. The statistical uncertainty of $\Phi(\log_{10} L)$ is estimated with the 2nd derivative of the Poisson likelihood as follows:

$$\sigma(\Phi(\log_{10} L)) = \frac{1}{\Delta \log_{10} L} \left(\sum_i \frac{1}{V_{\text{max},i}^2} \right)^{1/2},$$

(11)

(e.g., Johnston 2011; Herenz et al. 2019).

5. The Emission Line LF of AGN

In this section, we explore the observed LF of the Lyα emission line associated with HETDEX AGN. This line is the most abundant emission line at $z \sim 2$–3. It is visible at 1.88 < z < 3.53 within the survey’s wavelength range (i.e., 3500–5500 Å). The median redshift of this AGN sample is 2.39.

Figure 5 shows the observed Lyα LF of the HETDEX AGN (red circles) and that of the subsample with secure redshifts only (magenta stars) as well as those in other studies. Details of the Lyα LF for HETDEX AGN in Figure 5, the space density, the number of AGN, and the completeness correction of each luminosity bin, are listed in Table 1. The completeness does not decrease with the observed Lyα luminosity monotonically, as it is a combination of C_{HETDEX} and C_{AGN}. C_{HETDEX} is not necessarily high for higher Lyα luminosities as it not only increases with the emission line flux, but also decreases with the line widths (Figure 1, more details can be found in Section 3.1). Lines with higher fluxes usually have larger line widths. C_{AGN} is also not necessarily high for AGN with higher Lyα luminosity. For the sBL-selected AGN, similar to C_{HETDEX}, C_{BL} is higher for narrower emission lines, as shown in Figure 3. For 2em selected AGN, the situation is more complicated as an AGN with low observed Lyα luminosity can have high S/N because the Lyα emission line is heavily contaminated by foreground absorption while S/N catches the other strong emission lines and the strong continuum as the signal across 3500–5500 Å. Figure 6 shows a typical example: $\text{agnid} = 2780$ has the observed Lyα luminosity measured as $\log_{10} L_{\text{Ly}\alpha}/(\text{erg s}^{-1}) = 42.59$, while its S/N is 143.4, which is high enough to locate it in the C$_{2em} = 1$ region in Figure 2. It is hard to reliably recover the intrinsic Lyα luminosity for such AGN. We decided to use their observed Lyα luminosity in our Lyα LF study.

Figure 5 shows that our Lyα LF of the HETDEX AGN (red circles) agrees well with that of the AGN in the Javalambre Photometric Local Universe Survey (J-PLUS; Cenarro et al. 2019) (black solid triangles) at the bright end (Ly$\alpha \gtrsim 10^{44.5}$ erg s$^{-1}$). Spinoso et al. (2020) extended the Lyα LF at $2.2 \lesssim z \lesssim 3.3$ above Ly$\alpha \sim 10^{44}$ erg s$^{-1}$ for the first time with J-PLUS. Spinoso et al. (2020) also estimated the Lyα LF of the SDSS DR14 QSOs (Pàris et al. 2018) (black open pentagons) by performing synthetic photometry of SDSS QSOs in J-PLUS footprint with J-PLUS filters for comparison. The LF of the SDSS QSOs shows a strong decline of the densities for fainter QSOs at $\log_{10} L_{\text{Ly}\alpha} < 10^{44.6} - 10^{44.1}$ erg s$^{-1}$, while the space density of the HETDEX AGN continues to increase for AGN within this luminosity range. This might be caused by the overestimated completeness of the SDSS QSOs in this luminosity range (see Kulkarni et al. 2019, for related discussions).

Zhang et al. (2021) combined the HETDEX spectra with the HSC r-band imaging and identified broad-line AGN independently. The overlap region between the two surveys is only 11.4 deg2 (less than 40% of the present study). Moreover, Zhang et al. (2021) extracted spectra from the HETDEX database at the positions of HSC r-band sources detected at more than 5σ significance; the emission line signals were then identified with S/N > 5.5 and characterized as narrow-line emitters or broad-line AGN. Our AGN selection is purely based on blind spectroscopic observations, with no requirements for the continuum strengths based on photometric surveys, so our catalog is more complete for the AGN with faint continuum levels. In addition, there are no cut-on-the-line widths in our 2em selection, so our AGN catalog additionally contains a number of narrow-line AGN.

There is a strong discrepancy between the AGN LF of this work (red circles) and that of Zhang et al. (2021) (cyan squares) at intermediate luminosities ($\log_{10} L_{\text{Ly}\alpha} \sim 10^{43} - 10^{44}$ erg s$^{-1}$) in Figure 5: the Lyα LF from Zhang et al. (2021) has a dip compared to that of ours. This discrepancy can be explained by our improved modeling of the completeness, which includes the effects of the AGN selection. When we remove the completeness correction from our AGN selection and only use the completeness from the HETDEX pipeline, our Lyα LF agrees well with that of Zhang et al. (2021) in this intermediate luminosity region.
At Ly$\alpha \lesssim 10^{43}$ erg s$^{-1}$, our LF is slightly lower compared to that of Zhang et al. (2021). This could result from the different ways of measuring the FHWMs of emission lines. Zhang et al. (2021) measure the FHWM using a single Gaussian model while we measure the FHWM with our best-fitting multi-Gaussian model (Paper I). We find that the FHWM of Lyα can be easily over-estimated with a single Gaussian model as the Lyα emission region is usually complicated due to strong foreground narrow absorption lines, asymmetric profiles, blends with the nearby N V λ1241 emission, etc. Our multi-Gaussian fit can better handle these effects. In addition, there is a significant fraction of low-luminosity AGN identified by Zhang et al. (2021) that have FHWMs lower than 1000 km s$^{-1}$ in our multi-Gaussian fits. Since Zhang et al. (2021) focused on bridging between normal LAEs and bright AGNs, as long as there is a strong emission line in the spectrum, it did not matter whether the object was called a broad-line AGN or a normal LAE. These low line width objects are rejected in our AGN selection. Finally, the Zhang et al. (2021) analysis assumes all broad, single-line detections in the HETDEX survey to be Lyα. Their LF may therefore suffer contamination from lower-redshift C IV λ1549, C III] λ1909 emitters or Mg II λ2799 emitters.

We additionally fit the Lyα LF of our HETDEX AGN sample at $z \sim 2$ with a triple power-law model. There are two turnover points in the triple power fit: the break point between the bright end and the intermediate luminosities (L_B^*, Φ_B^*) and the turnover point between the intermediate luminosities and the faint end (L_F^*, Φ_F^*). We list our best-fit turnover points in Table 2. In both LFs, the space density of AGN is highest at L_B^* with opposite slopes on both sides. We will further discuss the potential underestimated incompleteness of the decreased space density for the faintest AGN ($L < L_B^*$) in Section 8.

In Figure 7 we show the evolution of the Lyα LF of the HETDEX AGN at $z \sim 2.25$ (blue), 2.37 (orange), 2.54 (green), and 3.24 (red) and compare our results with those of the J-PLUS and SDSS QSOs surveys (Spinoso et al. 2020). The four redshifts have been chosen to facilitate comparison with the four bluest narrow bands of the J-PLUS survey. There are 232, 388, 443, and 294 HETDEX AGNs in the redshift bins of [2.20, 2.29], [2.29–2.46], [2.46–2.70], and [2.95–4.25]. The J-PLUS AGN LFs only have data brighter than Ly$\alpha \sim 10^{43.3}$ erg s$^{-1}$ and in this range, our HETDEX AGN LFs agree well with their LFs at all four redshift bins (within 1σ confidence regions of their LFs, see Figure 14 in Spinoso et al. 2020 for their confidence regions). At fainter luminosities ($Ly\alpha \lesssim 10^{43.3}$ erg s$^{-1}$), there is a strong discrepancy between the HETDEX and J-PLUS LFs. This is not surprising since, for these luminosities, the J-PLUS LFs are only an extrapolation to their SDSS AGN $L < L_B^*$ flag. We list our best-fit turnover points in Table 2. In both LFs, the space density of AGN is highest at L_B^* with opposite slopes on both sides. We will further discuss the potential underestimated incompleteness of the decreased space density for the faintest AGN ($L < L_B^*$) in Section 8.
AGN selection continuum windows used to error bars are the observed point (Figure 6. The Astrophysical Journal, the rest frame 1450 Å continuum and get an estimation of f_{HETDEX} survey, we extrapolate the best-LF. In fact, in the highest redshift among the bins does not necessarily mean a lack of evolution in ~ 0.2 Gyr of cosmic time, so the lack of strong evolution among the bins does not necessarily mean a lack of evolution in the LF. In fact, in the highest redshift ($z \sim 3.24$) bin, the space density of AGN is significantly lower than that at the other three redshifts, especially at the faint end. A similar trend can also be found with the SDSS QSOs. This might indicate that the AGN density is lower at higher redshifts. The possible evolution of the LFs of the AGN should be better explored with more separated redshifts in a wider redshift range.

6. UV LF as a Function of Redshift

Lyα is only visible within a relatively small redshift range ($1.88 < z < 3.53$), as the wavelength coverage of HETDEX only extends from 3500 to 5500 Å. However, the full HETDEX AGN catalog covers $0.25 < z < 4.2$ via the detection of other emission lines. For these objects, we can measure the LF of the AGN UV continuum. In this paper, we choose the monochromatic luminosity of the power-law continuum at 1450 Å (M_{1450}) to study the evolution of the AGN LF. For AGN with the rest frame 1450 Å out of the wavelength range of the HETDEX survey, we extrapolate the best-fit power-law continuum and get an estimation of M_{1450}.

The UV continuum of an AGN contains power-law emission from the AGN itself, starlight from the AGN’s host galaxy, and broad Fe II emission from the AGN’s broad-line region. In most studies, the continuum of bright QSOs is dominated by the AGN component, so the broadband magnitude can be directly adopted to represent the AGN luminosity without decomposition. However, the AGN in our study are emission line selected, and their continua may be much fainter than those of continuum-selected objects. For these low-luminosity AGN, the contribution from the host galaxy cannot be ignored. To determine the host galaxy contribution, we fit each AGN’s spectrum with the publicly available code PyQSOFit (Gou et al. 2018). This program fits the continuum from the host galaxy using the stellar library of Bruzual & Charlot (2003), and Fe II emission is modeled using a series of templates for different rest-frame wavelengths: Vestergaard & Wilkes (2001) for 1000–2200 Å, Salvianer et al. (2007) for 2200–3090 Å, and the contributions from the host galaxy and AGN are estimated with the publicly available code PyQSOFit (Gou et al. 2018).

Sample	L_v^*	Φ_v^*	L_B^*	Φ_B^*
all AGN	2.37E+43	2.14E-5	3.06E+44	4.57E-6
zflag = 1	3.86E+43	1.23E-5	4.32E+44	3.26E-6

Table 2

The Best-fit Turnover Points of the Triple Power-law Profile for the HETDEX AGN

Figure 6. An example of a 2em selected AGN (agnid = 2780) with low observed Lyα luminosity $\log_{10} L_{\text{Ly}\alpha}/(\text{erg s}^{-1}) = 42.59$, but high completeness from our AGN selection ($C_{2em} = 1$) due to its high S/N_{spec} at 143.4. The low observed Lyα luminosity is caused by heavy foreground absorption. The black data points with error bars are the observed flux and the associated error. The red solid line shows our best-fit model to the observed spectrum. The green shaded areas are the continuum windows used to fit the continuum. The cyan dashed line is our best-fit continuum model.

Figure 7. The Lyα LF at $z \sim 2.25$ (blue), 2.37 (orange), 2.54 (green), and 3.24 (red). Data points shown as blue squares, orange stars, green circles, and red pentagons are for the HETDEX AGN at $z \sim 2.25, 2.37, 2.54$, and 3.24, respectively. Open data points are again for the luminosity bins within which the completeness is lower than 0.15. The solid lines are the best-fit model for the AGN in the J-PLUS survey (Spinoso et al. 2020). The dotted lines are for QSOs in the SDSS survey. The LFs of the SDSS QSOs are also taken from the estimation in Spinoso et al. (2020).
Tsuzuki et al. (2006) for 3090–3500 Å, and Boroson & Green (1992) for the longer optical wavelengths. Figure 8 shows one example of a PyQSOFit modeled spectrum at $z = 1.754$.

For reliable measurement of the AGN UV continuum, we require the AGN sample used in this study to be between 0.83 < z < 3.04. At redshifts higher than z = 3.04, there are not enough data points within the continuum window redward of Lyα emission, and the windows blueward of Lyα emission are usually heavily contaminated by foreground absorptions. Our low redshift cut of $z = 0.83$ is set by the visibility of the C III λ1909 emission line within the wavelength coverage of the HETDEX survey. Below this redshift, AGN are identified in Paper I by a single broad Mg II feature that may be broadened by strong stellar winds from star formation rather than AGN activities. In our 0.83 < z < 3.04 redshift range, there are 3124 AGN that satisfy our C > 0.05 criterion. To guarantee that there are enough AGN (N ~ 1000) within each redshift interval, we define three bins: 0.83 < z ≤ 1.80, 1.80 < z ≤ 2.33, and 2.33 < z ≤ 3.04.

Figure 9 shows the M_{1450} LF of the HETDEX AGN in three redshift bins in the upper left panel. Table 3 lists details of each data point. Similar to our explanations for Table 1 in Section 5, the completeness does not necessarily decrease monotonically with the emission line luminosity. And continuum faint AGN are not always emission line weak (see some examples in Figure 12 of Paper I). Therefore, the completeness does not decrease monotonically for continuum faint AGN in Table 3.

Points containing fewer than 20 AGN or the binned completeness lower than 0.15 are shown as open dots in Figure 9. In all three redshift bins, our AGN sample is not sensitive to the traditional break point between the bright end and the intermediate luminosities at $M_{1450}^* \sim -26$ for $z \sim 2$ AGN because we do not have enough reliable solid LF data points brighter than $M_{1450} \sim -26$. Thus, we decide to only fit a simple double power-law profile as described in Equation (2): M^* and Φ^* fit the turnover point where the space density is highest, with α and β fitting the slope of the faint end and that of intermediate luminosities.

A strong evolution can be seen: as the redshift increases from $z \sim 1.5$ to $z \sim 2.6$, the turnover luminosity increases while the turnover space density decreases. We fit this evolution with a simple LEDE model, using second-order polynomials for both M^* and Φ^*, as shown in Equations (12) and (13). Besides the evolution of the turnover point, the faint-end slope also changes significantly as a function of the redshift and we fit the evolution with a simple linear form (Equation (14)):

$$M^*(z) = M^*_{z=0} - 2.5 \cdot (k_{1m} \cdot z + k_{2m} \cdot z^2)$$

$$\Phi^*(z) = \Phi^*_{z=0} \cdot 10^{k_p z + k_p z^2}$$

$$\alpha(z) = \alpha_{z=0} + A \cdot z.$$
decreased space density for fainter AGN during their fitting, as they believe these trends are suspicious and could be caused by over-estimated completeness. These data points are excluded by eye, not based on cuts such as the number of AGN per bin or the completeness. Our HETDEX AGN LFs have more solid data points in the faint end and are therefore more reliable in the faint end than the bright end (see the upper left panel of Figure 9 and the related caption, and Table 3). Similar to the K19 AGN LFs in all other redshift intervals, our HETDEX AGN LFs at z ~ 1.5, 2.1, and 2.6 also show decreased space density for fainter AGN at the faint ends. This might again suggest that this trend is real, and there is probably a turnover luminosity (L^*) that is favored by the AGN at different redshifts, below which it is more difficult for the AGN activity to be triggered.

7. L_{bol} LF

There are many studies that compile AGN selected by different bands over a wide redshift range and explore the evolution of the bolometric LF of AGN, such as Hopkins et al. (2007), Shankar et al. (2009), Shen et al. (2020), etc. The faint end, especially at $L_{bol} \lesssim 10^{45}$ erg s$^{-1}$, consists exclusively of the X-ray identified AGN and the mid-IR identified AGN in these studies. We show their bolometric LF of AGN at $z = 2.0$ and compare it with that of the HETDEX AGN (red circles) in Figure 11. The bolometric luminosity of the HETDEX AGN are estimated with their 1450 Å monochromatic luminosity following the correction in Shen et al. (2020). Both the HETDEX AGN and the evolution models are plotted at $z = 2.0$, so that they can be compared with the LFs of the AGN of the Deep Extragalactic Visible Legacy Survey (DEVILS; Davies et al. 2018) (gray squares). Thorne et al. (2022) identified AGN from the DEVILS survey with the spectral energy distribution (SED) fitting to 22 broad bands spanning from far-ultraviolet to far-infrared (1500 Å–500 μm). There are strong differences between our LF and the LFs in Hopkins et al. (2007) and Shen et al. (2020) at the faint end, where our LF shows a strong decline of the space density while their LFs show moderate increment of the space density for fainter AGN. This might suggest that AGN selected by different bands represent different phases of the AGN activity. X-ray, mid-IR,
and optical AGN can have very different space density. The optical phase may have a shorter timescale compared to the X-ray phase and the mid-IR phase, especially for the fainter AGN, which are not powerful enough to expel the surrounding dust quickly and allow the AGN observed in optical.

Similar to our LF based on emission line identified AGN from HETDEX, the LF of the SED-identified AGN from the DEVILS survey also shows decreased space density for fainter AGN at the faint end \((L_{\text{bol}} \lesssim 10^{43} \text{ erg s}^{-1}) \). \(f_{\text{AGN}} \) is the fraction of the mid-IR luminosity contributed by AGN. Our LF agrees well with their LF for the \(f_{\text{AGN}} > 0.9 \) AGN, while it shows a lower space density compared to their LF for the \(f_{\text{AGN}} > 0.1 \) AGN at the faint end. This might suggest that objects with low AGN fraction can only be observed by mid-IR or X-ray observations, and are hard to observe as optical AGN.

8. Discussion

In Sections 5 and 6, we show that there is a turnover luminosity \((L^*) \) where the space density is highest for our pure emission line identified AGN from the HETDEX survey in both the emission line LF and the continuum LF. At the faint end, \(L < L^* \), the space density decreases for fainter AGN. One major concern about the observed low space density at the faint end is that fainter AGN are more heavily influenced by selection effects. In this section, we discuss the potential selection effects of our AGN identification and explain our efforts in correcting such selection effects with the complete-ness corrections in terms of EW (Section 8.1), line width (Section 8.2), and host galaxy contamination (Section 8.3).

8.1. Equivalent Width

For the emission line identified sample, there is a general concern that the low-EW population whose emission line is not strong enough to make it into the sample can be missed by the selection, as an emission line identified sample is similar to the narrow-band drop-out selected sample. The missing low-EW population problem of the narrow-band drop-out selection can make the space density of the faint end underestimated compared to the continuum-selected sample (see Figure 8 of Gronwall et al. 2007 for an example). However, the emission line identified sample and the narrow-band drop-out selected sample are not identical: the emission line identification relies more on the S/N of emission lines, while the narrow-band drop-out method relies more on the equivalent widths. We will discuss whether our emission line identified sample is biased against low-EW sources in this subsection using the Ly\(\alpha \) emission line as an example. After similar analysis of other emission lines, we found that the following results are general and can also be applied to other lines.

We check whether our HETDEX AGN sample is biased against low-EW sources by comparing the distribution of the rest-frame EW of the Ly\(\alpha \) emission of our HETDEX AGN and that of the latest SDSS QSOs (Pâris et al. 2018; Rakshit et al. 2020) in Figure 14 of Paper I. The median EW\(_{\text{Ly}\alpha,{\text{rest}}} \) of our HETDEX AGN sample (124 Å) is higher than that of the SDSS QSO sample (106 Å), but there is no systematic bias toward higher EW\(_{\text{Ly}\alpha,{\text{rest}}} \). In fact, our HETDEX AGN sample contains more low-EW AGN (see Figure 6 for one example). The higher median EW\(_{\text{Ly}\alpha,{\text{rest}}} \) of our HETDEX AGN sample is the result of our higher sensitivity to the extremely high EW AGN, which have strong emission lines and weak continua (see Figure 12 of Paper I for some examples) instead of missing low-EW AGN.

Our pure emission line-based AGN selection is directly regulated by the various S/Ns of the emission lines as detailed...
in Section 3 rather than EW. Figure 12 shows that there is no direct correlation between the S/N and the EW, using the Lyα emission line as a typical example. In Figure 13, we show an example AGN with not high EW_{Lyα,rest} = 16.6 Å and high S/N_{Lyα} = 68.4. The blue triangle is another random example of AGN (agnid = 849) with high EW_{Lyα,rest} = 173 Å and not very high S/N_{Lyα} = 17.1. We show their spectra in Figure 13.

Another concern is that the 2em selection could be biased by detecting more stronger emission lines compared to the weaker emission lines. For example, the Lyα emission line is stronger than all other emission lines, such as C IV λ1549, C III] λ1909, Mg II λ2799, etc. The completeness of AGN identified by different emission lines should be different. Our completeness estimations for the 2em selected AGN properly correct this selection effect by using the composite spectrum of AGN as the template to make simulated spectra, as detailed in Section 3.2.1. Stronger line pairs are of higher completeness (smaller completeness correction) in Figure 2. For example, the (Lyα + C IV λ1549) line pair, shown as the high completeness region at z ∼ 2.3, is stronger than the (C IV λ1549 + C III] λ1909) line pair, shown as the high completeness region at

α_{z=0}	A	β	M^*_{z=0}	k_{1m}	k_{2m}	Φ^*_{z=0}	k_{1p}	k_{2p}
-0.45	-0.078	-3.00	-22.95	0.000	0.062	2.72E-05	-0.266	0.000

Figure 10. The M_{1450} LF of AGN from z ∼ 0 to z ∼ 4. The solid lines are the LEDE model in our HETDEX AGN catalog. The dashed lines are taken from Kulkarni et al. (2019) (K19). The black dotted line is from Hao et al. (2005) (H05).

Figure 11. The bolometric LF of AGN at z ∼ 2. The red circles are the optical spectroscopically identified HETDEX AGN in Paper I. The grey squares are the SED-identified AGN from the DEVILS survey (Thorne et al. 2022). f_{AGN} is the fraction of the mid-IR luminosity contributed by AGN. The open square is for the AGN with f_{AGN} > 0.1, and the solid squares are for the AGN with f_{AGN} > 0.9. The solid grey squares are moved leftward by 0.05 dex for presentation purpose. The open orange triangles are taken from Shankar et al. (2009), which compiled AGN selected from multi-bands and studied the evolution of the AGN LF. The black solid line shows the AGN LF based on the evolution model of Hopkins et al. (2007). The blue dashed lines show the evolution model of Shen et al. (2020).

Figure 12. S/N ratio vs. the EW of the Lyα emission line of the HETDEX AGN sample. The red star is a random example AGN (agnid = 3118) with not high EW_{Lyα,rest} = 16.6 Å and high S/N_{Lyα} = 68.4. The blue triangle is another random example of AGN (agnid = 849) with high EW_{Lyα,rest} = 173 Å and not very high S/N_{Lyα} = 17.1. We show their spectra in Figure 13.
8.3. Host Galaxy Contamination

There are many ways that the host galaxy contamination can affect the LF of AGN. In this section, we briefly discuss the possible effects of the AGN host decomposition in Section 8.3.1, the potential contamination from star-forming galaxies in Section 8.3.2, and Seyferts dominated by host galaxies in Section 8.3.3.

8.3.1. AGN Host Decomposition

Proper AGN host decomposition is important in evaluating the AGN contribution to the observed luminosity and calculating the intrinsic AGN LF.

For the Ly\(\alpha\) LF study, we do not perform AGN host decomposition as the decomposition can introduce more problems than correcting the contribution from host galaxies. Therefore, the observed emission line luminosity is a combination of the contribution from the star formation of the host galaxies and the emission of AGN. This can cause an overestimate of the completeness of AGN hosted by galaxies with a high star formation rate. The space density of the low-luminosity bins can be underestimated due to the lack of the AGN host decomposition of emission lines.

For the continuum LF study, we carry out the AGN host decomposition for the continuum of the spectrum with the publicly available code PyQSOFit. However, such decomposition with HETDEX spectra of a short wavelength coverage of 3500–5500 Å can fail for sources with a faint continuum and the spectrum is then fit with a pure power-law continuum. The AGN contribution is then over-estimated in this way, causing over-estimated completeness and underestimated space density at the faint end.

8.3.2. Potential Contamination from Star-forming Galaxies

In this subsection, we discuss the potential contamination from the star-forming galaxies to our AGN sample. We have two approaches to identify AGN from HETDEX—the 2em method that identifies the emission line pair characteristic of AGN and the sBL method that identifies the single broad emission line as broad-line AGN candidates. If the sBL identified AGN are matched with previous catalog(s), they are flagged with zflag = 1; otherwise, they are only broad-line AGN candidates with our best redshift estimates (details of the redshift estimates can be found in Paper I). Therefore, there could be some star-forming galaxies whose emission lines are broadened by strong stellar winds misidentified as broad-line AGN for the zflag = 0 sBL identified AGN candidates. The difference between the red circles and the magenta stars in Figure 5 shows the contribution of the zflag = 0 sBL identified AGN candidates. The difference between the red circles and the magenta stars in Figure 5 shows the contribution of the zflag = 0 AGN to the Ly\(\alpha\) LF. There is no difference between the bright end and the intermediate luminosities. The contamination from the mis-identified star-forming galaxies, if there is, can cause an over-estimated space density of the faint end of the LF.

8.3.3. Seyferts Dominated by Host Galaxies

We have discussed that our emission line identified AGN catalog is not biased against low-EW sources in Section 8.1. However, the catalog could possibly be biased against Seyferts dominated by host galaxies, because the broad line of Seyferts with low AGN contribution can hardly be resolved from the observed emission line and identified by our sBL selection.
This can cause an underestimate of the space density of AGN at the faint end.

9. Summary

In this paper, we present our study of the AGN LF of the HETDEX AGN sample, which is purely spectroscopically selected from the 3500–5500 Å spectra, and free of photometric preselections, such as broadband magnitude cuts, color selections, and/or point-like morphology. We explored the emission line LF with the Lyα emission (Section 5), the UV LF with the 1450 Å monochromatic luminosity of the power-law component of the continuum (Section 6), and the bolometric LF (Section 7). In all three kinds of LFs, we find significant decl. of the space density for fainter AGN at the faint end for our AGN sample. This suggests that there is a turnover luminosity (L_*) of the double power-law fitted M_{1450} LF of AGN in Section 6. We find that the evolution from $z \sim 1.5$ to $z \sim 2.6$ can be well fitted with a simple LEDE model, where L_* and Φ_* evolves with redshift independently. At lower redshifts, the number density of AGN peaks at lower luminosity.

HETDEX is led by the University of Texas at Austin McDonald Observatory and Department of Astronomy with participation from the Ludwig-Maximilians-Universität München, Max-Planck-Institut für extraterrestrische Physik (MPE), Leibniz-Institut für Astrophysik Potsdam (AIP), Texas A&M University, The Pennsylvania State University, Institut für Astrophysik Göttingen, The University of Oxford, Max-Planck-Institut für Astrophysik (MPA), The University of Tokyo, and Missouri University of Science and Technology. In addition to Institutional support, HETDEX is funded by the National Science Foundation (grant AST-0926815), the State of Texas, the US Air Force (APRL FA9451-04-2-0355), and generous support from private individuals and foundations.

The Hobby–Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

VIRUS is a joint project of the University of Texas at Austin, Leibniz-Institut für Astrophysik Potsdam (AIP), Texas A&M University, Max-Planck-Institut für extraterrestrische Physik, Ludwig-Maximilians-Universität München, Pennsylvania State University, Institut für Astrophysik Göttingen, University of Oxford, and the Max-Planck-Institut für Astrophysik.

The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing high-performance computing, visualization, and storage resources that have contributed to the research results reported in this paper. URL: http://www.tacc.utexas.edu.

The Institute for Gravitation and the Cosmos is supported by the Eberly College of Science and the Office of the Senior Vice President for Research at the Pennsylvania State University.

References

Ahumada, A., AlSayyad, Y., Ando, M., et al. 2019, PASI, 71, 114
Ahumada, A., Arimoto, N., Armstrong, R., et al. 2018, PASI, 70, S4
Alexander, D. M., & Hickox, R. C. 2012, NewAR, 56, 93
Blanc, G., Adams, J. J., Gebhardt, K., et al. 2011, ApJ, 736, 31
Bongiorno, A., Zamorani, G., Gavignaud, N., et al. 2007, A&A, 472, 443
Boson, T. A., & Green, R. F. 1992, ApJS, 80, 109
Boyle, B. J., Shanks, T., Croom, S. M., et al. 2000, MNRAS, 317, 1014
Brandt, W. N., & Alexander, D. M. 2015, A&ARv, 23, 1
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Cenarro, A. J., Moles, M., Cristóbal-Hornillos, D., et al. 2019, A&A, 625, A176
Croom, S. M., Richards, G. T., Shanks, T., et al. 2009a, MNRAS, 399, 1755
Croom, S. M., Richards, G. T., Shanks, T., et al. 2009b, MNRAS, 392, 19
Croom, S. M., Smith, R. J., Boyle, B. J., et al. 2004, MNRAS, 349, 1397
Davies, L. J. M., Robotham, A. S. G., Driver, S. P., et al. 2018, MNRAS, 480, 768
Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nat, 433, 604
Finkelstein, S. L., Rhoads, J. E., Malhotra, S., & Grogin, N. 2009, ApJ, 691, 465
Finkelstein, S. L., Rhoads, J. E., Malhotra, S., Pirzkal, N., & Wang, J. 2007, ApJ, 660, 1023
Gavignaud, N., Bongiorno, A., Paltani, S., et al. 2006, A&A, 457, 79
Gawiser, E., van Dokkum, P. G., Gronwall, C., et al. 2006, ApJ, 642, L13
Gebhardt, K., Bender, R., Bower, G., et al. 2000, ApJL, 539, L13
Gebhardt, K., Mentuch Cooper, E., Ciardullo, R., et al. 2021, ApJ, 923, 217
Giavalisco, E., Grazian, A., Fiore, F., et al. 2015, A&A, 578, A83
Glikman, E., Djorgovski, S. G., Stern, D., et al. 2011, ApJL, 728, L26
Gronwall, C., Ciardullo, R., Hickey, T., et al. 2007, ApJ, 667, 79
Guo, H., Shen, Y., & Wang, S. 2018, pyQSOFit: Python code to fit the spectrum of quasars, Astrophysics Source Code Library, ascl:1809.008
Haardt, F., & Salvaterra, R. 2015, A&A, 575, L16
Hao, L., Strauss, M. A., Fan, X., et al. 2005, AJ, 129, 1795
Herenz, E. C., Wisotzki, L., Saust, R., et al. 2019, A&A, 621, A107
Hill, G. J., Gebhardt, K., Komatsu, E., et al. 2008, in ASP Conf. Ser. 399, The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX): Description and Early Pilot Survey Results, ed. T. Kodama, T. Yamada, & K. Aoki (San Francisco, CA: ASP), 115
Hill, G. J., Lee, H., MacQueen, P. J., et al. 2021, AI, 162, 298
Hopkins, P. F., Hernquist, L., Cox, T. J., & Kereš, D. 2008, ApJS, 175, 356
Hopkins, P. F., Richards, G. T., & Hernquist, L. 2007, ApJL, 654, 731
Hunt, M. P., Steidel, C. C., Adelberger, K. L., & Shapley, A. E. 2004, ApJL, 605, 625
Johnston, R. 2011, A&ARv, 19, 41
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
Kulkarni, G., Worseck, G., & Hennawi, J. F. 2019, MNRAS, 488, 1035
Liu, C., Gebhardt, K., Mentuch Cooper, E., et al. 2022, ApJS, 261, 24
Palanque-Delabrouille, N., Magneville, C., Yèche, C., et al. 2016, A&A, 587, A41
Pâris, I., Petitjean, P., Aubourg, É., et al. 2018, A&A, 613, A51

ORCID iDs

Chenxi Liu @https://orcid.org/0000-0001-5561-2010
Karl Gebhardt @https://orcid.org/0000-0002-8433-8185
Erin Mentuch Cooper @https://orcid.org/0000-0002-2307-0146
Yechi Zhang @https://orcid.org/0000-0003-3817-8739
Donald P. Schneider @https://orcid.org/0000-0001-7240-7449
Robin Ciardullo @https://orcid.org/0000-0002-1328-0211
Dustin Davis @https://orcid.org/0000-0002-8925-9769
Daniel J. Farrow @https://orcid.org/0000-0003-2575-0652
Steven L. Finkelstein @https://orcid.org/0000-0001-8519-1130
Caryl Gronwall @https://orcid.org/0000-0001-6842-2371
Gary J. Hill @https://orcid.org/0000-0001-6717-7685
Donghui Jeong @https://orcid.org/0000-0002-8434-979X
Maja Luuj Nienmeyer @https://orcid.org/0000-0002-6907-8370
Sarah Tuttle @https://orcid.org/0000-0002-7327-565X

Liu et al.
Puchwein, E., Haardt, F., Haehnelt, M. G., & Madau, P. 2019, MNRAS, 485, 47
Rakshit, S., Stalin, C. S., & Kotilainen, J. 2020, ApJS, 249, 17
Ramsey, L. W., Adams, M. T., Barnes, T. G., et al. 1998, Proc. SPIE, 3352, 34
Richards, G. T., Strauss, M. A., Fan, X., et al. 2006, AJ, 131, 2766
Ross, N. P., McGreer, I. D., White, M., et al. 2013, ApJ, 773, 14
Salviander, S., Shields, G. A., Gebhardt, K., & Bonning, E. W. 2007, ApJ, 662, 151
Schmidt, M. 1968, ApJ, 151, 393
Schneider, D. P., Richards, G. T., Hall, P. B., et al. 2010, AJ, 139, 2360
Shankar, F., Weinberg, D. H., & Miralda-Escudé, J. 2009, ApJ, 690, 20
Shen, X., Hopkins, P. F., Faucher-Giguère, C.-A., et al. 2020, MNRAS, 495, 3252
Spinoso, D., Orsi, A., López-Sanjuan, C., et al. 2020, A&A, 643, A149
Steidel, C. C., Adelberger, K. L., Shapley, A. E., et al. 2003, ApJ, 592, 728
Thorne, J. E., Robotham, A. S. G., Davies, L. J. M., et al. 2022, MNRAS, 509, 4940
Tremaine, S., Gebhardt, K., Bender, R., et al. 2002, ApJ, 574, 740
Tsuzuki, Y., Kawara, K., Yoshii, Y., et al. 2006, ApJ, 650, 57
Vestergaard, M., & Wilkes, B. J. 2001, ApJS, 134, 1
Zhang, Y., Ouchi, M., Gebhardt, K., et al. 2021, ApJ, 922, 167