On the Risk Management with Application of Econophysics Analysis in Central Banks and Financial Institutions.

Dimitri O. Ledenyov and Viktor O. Ledenyov

Abstract – The purpose of this research article is to discover how the econophysics analysis can complement the econometrics models in application to the risk management in the central banks and financial institutions, operating within the nonlinear dynamical financial system. We consider the modern risk management models and show the appropriate techniques to calculate the various existing risks in the finances. We make a few comments on the possible limitations in the models of statistical modeling of volatility such as the Autoregressive Conditional Heteroskedasticity (GARCH) model, because of the nonlinearities appearance in the nonlinear dynamical financial systems. We propose that the various types of nonlinearities, which can originate in the financial and economical systems, have to be taken to the detailed consideration during the Cost of Capital calculation in the finances and economics. We propose the new theory of nonlinear dynamic volatilities and the new nonlinear dynamic chaos (NDC) volatility model for the statistical modeling of financial volatility with the aim to determine the Value at Risk.

PACS numbers: 89.65.Gh, 89.65.-s, 89.75.Fb

Keywords: financial system, financial volatility, econophysics, econometrics, risk management, capital asset pricing model (CAPM), weighted average cost of capital (WACC), dynamic chaos theory, nonlinear dynamic volatilities theory, nonlinear dynamic chaos (NDC) volatility model, autoregressive conditional heteroskedasticity (ARCH) model, generalized autoregressive conditional heteroskedasticity (GARCH) model, value at risk (VaR).
The well designed, perfectly optimized and efficiently operated financial system is a main foundation of prosperous developed society with the market economy as it is explained in the political economy in Landes (1998); Hara (2012); Hirch (1896); Ledenyov V O, Foldvary F (1993-1994). The fact is that the present global financial system, which is established due to the evolution of the national and multinational banking in the UK and USA in Jones (1993, 2006); Friedman, Schwartz (1971); Rothbard (2002), can be characterized by the high volatilities in the capital markets and is classified as the nonlinear dynamical financial system.

The purpose of this article is to discover how the econophysics analysis can complement the econometrics models in Engle (1982, 2003); Davidson and MacKinnon (2004) with the aim to improve the risk management practices in the central banks and other financial institutions. Let us explain that the econophysics is an emerging scientific discipline that applies the research concepts and methodologies, that are originated in the field of physics, to understand the nature of problems in the fields of economics and finances, using the nonlinear dynamical analysis, statistical analysis, dynamic chaos analysis and probabilities theory. Aoyama, Fujiwara, Iyetomi, Sato (2012) write: “Econophysics was developed by researchers in several fields. In the 1960s, Mandelbrot began to investigate price movements of financial markets and established the important concept of fractals through inspiration provided by the observation of their fluctuations. In the 1980s, physicists began to investigate statistical properties of human behavior on the basis of socio-economic data. However, the availability of data was limited, and their resolution and coverage were bounded. In spite of these difficulties, the topics investigated by physicists eventually expanded to cover various aspects of financial markets and business activities. They further attempted to develop models to explain collective behavior observed in socio-econo-techno systems in terms of physical concepts, such as scaling, clustering, correlations, and more complicated concepts.” We will use the knowledge base, created during our advanced innovative research on the nonlinearities in microwave superconductivity in the microwave electronics and condensed matter physics with the purpose to understand the complex problems in the risk management in the finances in Ledenyov D O, Ledenyov V O (2012).

The simple concept of optimization of behaviour with the application of risk management has a long history in the economics in Engle (2003): “Markowitz (1952) and Tobin (1958) associated risk with the variance in the value of a portfolio. From the avoidance of risk they derived optimizing portfolio and banking behavior. Sharpe (1964) developed the implications, when all investors follow the same objectives with the same information. This theory is called the Capital Asset Pricing Model or CAPM, and shows that there is a natural relation between expected returns and variance. These contributions were recognized by Nobel prizes in 1981 and
1990. Black and Scholes (1972) and Merton (1973) developed a model to evaluate the pricing of options.”

Let us review the risk management practices, which are used to mitigate the risk, going from the principles of diversification, hedging and risk measurements. The actual risk management concept is reflected in the Economic Capital and Credit Modeling theories, and the risk and return are taken to the account during the calculation of the Cost of Capital in Ideas At Work (2006):

1. **Cost of Capital** is calculated using the Weighted Average Cost of Capital (WACC) model, which includes the following financial variables and ratios: Levered Beta, Debt/Total Capitalization, Tax Rate, Unlevered Beta, Targeted Capital Structure, Risk Free Rate, Market Risk Premium, Spread over Risk Free Rate. The Weighted Average Cost of Capital (WACC) is the weighted average of the marginal costs of all sources of capital. The formula for estimating WACC is as follows in Schnoor (2006):

\[
WACC = K_d (1 - T)D / V + K_e E / V + K_p P / V
\]

where:
- \(K_d\) = the pre-Tax Cost of Debt;
- \(T\) = the Marginal Tax Rate of the entity being valued;
- \(D/V\) = the Long-term target Net Debt to Total Capitalization;
- \(K_e\) = the market-determined Cost of Equity Capital;
- \(E/V\) = the Long-term target Market Value of Equity to Total Capitalization;
- \(K_p\) = the Cost of Traditional Preferred Stock;
- \(P/V\) = the Long-term target Market Value of Preferred Stock to Total Capitalization.

2. **Cost of Equity** is calculated using the Capital Asset Pricing Model (CAPM), which includes the following financial variables and ratios: Beta = Firm Specific Risk / Market Risk, Cost of Equity = Risk Free Rate + Beta, Multifactor Models of Asset Returns. In CAPM theory in Jarrow (1988), Lintner (1965), Sharpe (1964), Sharpe, Alexander, Bailey (1999), the beta is a measure of risk: a measure of stock price volatility relative to the overall benchmark market index. The beta changes from 0 to 2 (beta=0, risk=0; beta=1, then risk=average market risk (a stock moves up or down in the same proportion as the overall market); beta=2, then risk=well above average market risk). The company’s Cost of Equity, \(K_e\), is calculated using the Capital Asset Pricing Model (CAPM) in Schnoor (2006):

\[
K_e = R_f + \beta^* (Market \ Risk \ Premium)
\]

where:
- \(K_e\) = the market-determined Cost of Equity Capital;
- \(R_f\) = the Risk Free Rate;
\(\beta \) = the company’s beta. The beta is a measure of stock price volatility relative to the overall benchmark market index. In other words, the beta is the price volatility of a financial instrument relative to the price volatility of a market or index as a whole. Beta is most commonly used with respect to equities. A high-beta instrument is riskier than a low-beta instrument. If a stock moves up or down in the same proportion as the overall market, it has a Beta of 1.0. A stock with Beta of 1.2 is considered riskier than the overall market. Higgins (2007) states that the beta can also be considered as an angle of incline:

\[
\beta = \frac{P_{jm}y_i}{y_m}
\]

where \(P_{jm} \) is the non-diversified risk.

Bernanke (2009) specifies the four main categories of risk to consider by the banks to satisfy the Basel III capital requirements in Basel Committee on Banking Supervision (2006, 2009):

1. Market Risk;
2. Credit Risk;
3. Operational Risk;
4. Rollover Risk.

The additional categories of risk may include in Ledenyov V O, Ledenyov D O (2012):

1. Transaction risk;
2. Foreign exchange risk;
3. Reputation risk;
4. Emerging markets risk;
5. Environmental risk;
6. Geopolitical risk.

Also, let us note that the risk management is extensively used in the corporate capital budgeting and allocation models in the process of critically important decision-making about the capital distribution, using the following methods in Shinoda (2010):

1. Net Present Value (NPV) method;
2. Internal Rate of Return (IRR) method;
3. Simple Payback Period (SPP) method;
4. Discounted Payback Period (DPP) method;
5. Accounting Rate of Return (ARR) method, such as Return on Investment (ROI), and
6. Real Option (RO) method.

Let us consider the appropriate modern approaches to model the volatility and evaluate the market risk. The Autoregressive Conditional Heteroskedasticity (ARCH) model in Engle (1982, 2003) is used in the field of statistical modeling of volatility in Barone-Adesi,
Giannopoulos, Vosper (1999); McNeil A and Frey R (2000); Nelson D B. The ARCH enables to model the financial and economic variables, such as the interest rates and equity prices, by performing the Monte Carlo simulation, using the stochastic differential equations (SDE). The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) performs the modeling over the big window of sequential events, using the weighted averages and giving more weight to the recent events and less weight to the distant events in Bollerslev (1986). The GARCH volatility is proportional to the Value at Risk (VaR). Engle (2003) emphasized that the GARCH model presents the theory of dynamic volatilities. We apply the integrative thinking in Martin (2005-2009) to analyze the GARCH imperfections and limitations and conclude that the new volatility model, based on the theory of nonlinear dynamic volatilities, must be developed to describe the volatilities in the real world nonlinear dynamical financial system, going from the econophysical analysis of appearing nonlinearities during the interaction between the various business cycles in Ledenyov D O, Ledenyov V O (2012). We state that the simple nonlinear financial systems do not possess the simple dynamical properties, because the nonlinear dynamical systems are usually characterized by the self-interactions, self-organizations, spontaneous emergence of order, dissipative structures and nonlinear cooperative phenomena in Uechi, Akutsu (2012); Mosekilde (1996, 1996-1997); Kuznetsov (2001, 1996-1997); Kuznetsov A P, Kuznetsov S P, Ryskin N M (2002). For example, in the case of nonlinear financial system, the series of sequential events can have a point of crisis that could magnify the small changes and lead to the big nonlinearities, caused by the Butterfly effect with the strong dependence on the initial conditions of the nonlinear financial system. In other words, the simple nonlinear financial system has the very complex nonlinear dynamical properties, which can only be described, using the Dynamic Chaos theory. It means that the GARCH model together with the high frequency volatility model and high dimension volatility model in Engle (1982, 2003) do not take to the account the various nonlinearities during the statistical modeling of financial volatility, hence they are not accurate and have to be revised or disregarded.

We believe that it is necessary to improve the financial responsibility and risk management in the time of high volatilities in the capital markets in Cameron (2008). Therefore, we propose the new theory of nonlinear dynamic volatilities for the accurate statistical characterization and modeling of financial volatility, using the nonlinear stochastic differential equations (NSDE). Our new nonlinear dynamic chaos (NDC) volatility model, which is based on both the nonlinear dynamic volatilities theory and the dynamic chaos theory, applies the econophysical analysis to predict the nonlinearities appearance during the interaction between the various business and financial cycles with the different amplitudes, periods, phases. The NDC volatility model proved to be a useful model, which can be used to determine the VaR
precisely and perform the investment portfolio management accurately. The comprehensive discussion on the \textit{NDC volatility model} is beyond the scope of this short article and it can be found in our other research publications.

We conclude with the remark that we proposed the new \textit{theory of nonlinear dynamic volatilities} and the new \textit{nonlinear dynamic chaos (NDC) volatility model} for the statistical modeling of financial volatility with the aim to set the \textit{Value at Risk (VaR)} and manage the financial portfolio, applying the following techniques: 1) \textit{Risk aggregation}, which aims to get rid of non-systematic risks with diversification and 2) \textit{Risk decomposition}, which tackles risks one by one.

Authors are very grateful to the \textit{Yukawa Institute for Theoretical Physics} at Kyoto University, Kyoto, Japan and especially to Prof.s Hideaki Aoyama, Kyoto University; Yoshi Fujiwara, University of Hyogo; Hiroshi Iyetomi, University of Tokyo; Aki-Hiro Sato, Kyoto University for a kind opportunity to get an open access and analyze the research papers, presented at the \textit{YITP} workshop on “\textit{Econophysics 2011 — The Hitchhiker’s Guide to the Economy}.” We appreciate the Graduate School of Economics and Business Administration at Hokkaido University, Sapporo, Hokkaido, Japan for giving us a wonderful opportunity to conduct the research on the highly innovative research papers, written by the Japanese scientists. We thank Prof. Shigetoshi Ohshima from Graduate School of Science and Engineering at Yamagata University, Yonezawa, Japan for his strong research interest in the origin of nonlinearities in \textit{High Temperature Superconductors (HTS)} in \textit{Ultra High Frequency (UHF)} Electromagnetic Fields.

The first author appreciates Prof. Janina E. Mazierska, Electrical and Computer Engineering Department, School of Engineering and Physical Sciences, James Cook University, \textit{Australia} for an opportunity to make the advanced innovative research on the nonlinear dynamic microwave resonant systems in the field of superconducting electronics during more than 12 years.

The second author appreciates Profs. Roger L. Martin and John C. Hull for the presented opportunity to learn more about the integrative thinking and risk management in the finances and economics in North America in 1998-1999 and in 2005-2006. Profs. Roger L. Martin and John C. Hull valuable advices on the \textit{Bloomberg terminal} operation to obtain the \textit{Levered Beta} as one of the important inputs during the calculation of the \textit{Weighted Average Cost of Capital} in the various \textit{North American} companies at the \textit{Trading Lab at the Rotman School of Management} at \textit{University of Toronto}, Toronto, Canada in 2005-2006 are also acknowledged.
Lionel Barber, Editor-in-Chief, Financial Times is appreciated for the regular exchange by interesting opinions on the financial topics as well as his kind encouragements, including the numerous invitations to discuss the complex issues in the fields of finances and economics with more than one hundred global leaders, economists, financiers, professors and journalists in the FT in London in the UK in recent years.

*) This condensed version of our research article is submitted to The Financial Times, The Bodley Head and The Random House first annual essay competition in London in the UK in 2012.

*E-mail: dimitri.ledenyov@my.jcu.edu.au

References:
1. Landes D S 1998, 1998, 1999 The Wealth and Poverty of Nations W W Norton & Company, Inc USA, Little, Brown and Company UK, Abacus UK pp 1-650.
2. Hara G 2012 New Systems for the Realization of a Comfortable and Prosperous Society in the 21st Century Progress of Theoretical Physics Supplement No 194 pp 102-110.
3. Hirsch M 1896, 1985 Economic Principles A Manual of Political Economy The Russkin Press Pty Ltd 123 Latrobe Street Melbourne Australia pp 1-78.
4. Ledenyov V O, Foldvary F 1993-1994 Transition to Market Economies The Georgist Journal New York USA ISSN 0887-6290 no 82 pp 21-24.
5. Jones G G 1993 British Multinational Banking 1830-1990 Oxford University Press Oxford UK.
6. Jones G G 2006 Private Communications on Origin of Chaos in Finances Munk Centre for International Studies Trinity College University of Toronto Ontario Canada.
7. Friedman M, Schwartz A J 1971 A Monetary History of the United States, 1867-1960 Princeton University Press ISBN-10: 0691003548 ISBN-13: 978-0691003542 pp 1-888.
8. Rothbard M N 2002 A History of Money and Banking in the United States: The Colonial Era to World War II Ludwig Von Mises Institute ISBN-10: 0945466331 ISBN-13: 978-0945466338 pp 1-510.
9. Engle R F 1982 Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation Econometrica vol 50 pp 987–1008.
10. Engle R F 2003 Risk and Volatility: Econometrics Models and Financial Practice Nobel Lecture www.nobel.org pp 326-349.
11. Davidson R and MacKinnon J G 2004 Econometric Theory and Methods Oxford University Press Oxford UK.
12. Aoyama H, Fujiwara Y, Iyetomi H, Sato A-H 2012 Preface Progress of Theoretical Physics Supplement No 194 pp i-ii.
13. Ledenyov D O, Ledenyov V O 2012 Nonlinearities in Microwave Superconductivity Cornell University NY USA www.arxiv.org 1206.4426v1.pdf pp 1-903.
14. Markowitz H M 1952 Portfolio Selection Journal of Finance.
15. Tobin J 1958 Liquidity Preference as Behavior Towards Risk Review of Economic Studies vol 25 pp 65–86.
16. Sharpe W 1964 Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk Journal of Finance vol 19 pp 425–442.
17. Black F and Scholes M 1972 The Valuation of Option Contracts and a Test of Market Efficiency Journal of Finance vol 27 pp 399–417.
18. Merton R C (1973) Theory of Rational Options Pricing Bell Journal of Economics and Management Science vol 4 pp 141–183.
19. 2006 Ideas At Work Columbia University New York USA.
20. Schnoor I 2006 Comparable Analysis and Data Manipulation Tools The Marquee Group Toronto Canada.
21. Jarrow R A 1988 Finance Theory Prentice-Hall Inc USA.
22. Lintner J 1965 The Valuation of Risk Assets and the Selection of Risky Investments in Stocks Review of Economics and Statistics vol 14 pp 13-37.
23. Sharpe W F 1964 Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk Journal of Finance vol 19 pp 425-442.
24. Sharpe W F, Alexander G J, Bailey J V 1999 Investments, 6th ed Prentice-Hall Inc USA.
25. Higgins 2007 Private Communications Washington USA.
26. Bernanke B S 2009 On the Outlook for the Economy and Policy Bank for International Settlements Basel Switzerland http://www.bis.org/review/r091119a.pdf.
27. Bernanke B S 2009 The Federal Reserve's Balance Sheet – an Update Bank for International Settlements Basel Switzerland http://www.bis.org/review/r091013a.pdf.
28. Bernanke B S 2009 Regulatory Reform Bank for International Settlements Basel Switzerland http://www.bis.org/review/r091006a.pdf.
29. Bernanke B S 2009 Policy Responses to the Financial Crisis Public Lecture on 13.01.2009 London School of Economics London UK.
http://richmedia.lse.ac.uk/publicLecturesAndEvents/20090113_1300_policyResponsesToTheFinancialCrisis.mp3.
30. Basel Committee on Banking Supervision 2006 International Convergence of Capital Measurement and Capital Standards: A Revised Framework *Bank for International Settlements (BIS)* Switzerland. Available at http://www.bis.org/publ/bcbsca.htm.

31. Basel Committee on Banking Supervision 2009 Principles for Sound Stress Testing Practices and Supervision - Final Paper *Bank for International Settlements (BIS)* Switzerland. Available at: http://www.bis.org/publ/bcbs155.htm.

32. Ledenyov V O, Ledenyov D O 2012 Shaping the international financial system in century of globalization *Cornell University* NY USA www.arxiv.org 1206.2022.pdf pp 1-20.

33. Ledenyov V O, Ledenyov D O 2012 Designing the new architecture of international financial system in era of great changes by globalization *Cornell University* NY USA www.arxiv.org 1206.2778.pdf pp 1-18.

34. Shinoda T 2010 Capital Budgeting Management Practices in Japan *Economic Journal of Hokkaido University* vol 39 pp. 39 - 50.

35. Barone-Adesi G, Giannopoulos K, Vosper L (1999) VaR without Correlations for Non-Linear Portfolios *Journal of Futures Markets* vol 19 pp 583-602.

36. McNeil A and Frey R (2000) Estimation of Tail Related Risk Measure for Heteroscedastic Financial Time Series: An Extreme Value Approach *Journal of Empirical Finance* vol 7 pp 271-300.

37. Nelson D B Conditional Heteroskedasticity in Asset Returns: A New Approach *Econometrica* vol 59 pp 347-370.

38. Bollerslev T (1986) Generalized Autoregressive Conditional Heteroskedasticity *Journal of Econometrics* vol 31 pp 307–327.

39. Martin R L 2005-2006 Private Communications on Integrative Thinking *Rotman School of Management* University of Toronto Ontario Canada.

40. Martin R L 2006 Designing in Hostile Territory *Rotman Magazine* Rotman School of Management University of Toronto Ontario Canada pp 4-9.

41. Martin R L 2006 Prosperity: a Function of Trust *Rotman Magazine* Rotman School of Management University of Toronto Ontario Canada pp 4-7.

42. Martin R L 2007 Becoming an Integrative Thinker *Rotman Magazine* Rotman School of Management University of Toronto Ontario Canada pp 4-9.

43. Martin R L 2007 Designing the Thinker *Rotman Magazine* Rotman School of Management University of Toronto Ontario Canada pp 4-8.

44. Martin R L 2008 The Opposable Mind *Harvard Business Press* Cambridge Massachusetts USA.
45. Martin R L 2009 The Design of Business: Why Design Thinking is the Next Competitive Advantage *Harvard Business Press* Cambridge Massachusetts USA ISBN-10: 1422177807 ISBN-13: 978-1422177808 pp 1-256.

46. Ledenyov D O, Ledenyov V O 2012 On the new central bank strategy toward monetary and financial instabilities management in finances: Econophysical analysis of nonlinear dynamical financial systems *Cornell University* NY USA www.arxiv.org 1211.1897.pdf pp 1-8.

47. Uechi L, Akutsu T 2012 Conservation Laws and Symmetries in Competitive Systems *Progress of Theoretical Physics* Supplement No 194 pp 210 - 222.

48. Mosekilde E 1996 Topics in Nonlinear Dynamics Applications to Physics, Biology and Economic Systems World Scientific Publishing Pte Ltd Singapore pp 1 - 380.

49. Mosekilde E 1996-1997 Private Communications on Nonlinear Dynamics *Technical University of Denmark* Copenhagen Denmark.

50. Kuznetsov S P 2001 Dynamic Chaos *Izdatel’stvo Fiziko-Matematicheskoi Literatury* Moscow Russian Federation pp 1 - 296.

51. Kuznetsov S P 1996-1997 Private Communications on Dynamic Chaos *Technical University of Denmark* Copenhagen Denmark.

52. Kuznetsov A P, Kuznetsov S P, Ryskin N M 2002 Nonlinear Oscillations, *Izdatel’stvo Fiziko-Matematicheskoi Literatury* Moscow Russian Federation pp 1 - 309.

53. Cameron D 2008 Fiscal responsibility and the recession *Public Lecture on 09.12.2009* London School of Economics London UK http://richmedia.lse.ac.uk/publicLecturesAndEvents/20081209_1000_fiscalResponsibilityAndTheRecession.mp3.