Efficacy of Alendronate in Preventing Periprosthetic Bone Loss after Implantation of a Primary Hip Endoprosthesis

Ilir Shabani*, Milan Samardziski, Viktor Kamnar, Nenad Atanasov, Milena Bogojevska-Doksevska, Danica Popovska, Anila Belchishta

Department of Orthopedic Surgery, University Clinic “Mother Theresa”, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia

Abstract

BACKGROUND: Total hip arthroplasty (THA) is now the gold standard for the surgical treatment of coxarthrosis. The appearance of bone loss after implantation of the hip endoprosthesis over time reduces the primary stability of the implant and leads to progressive loosening of the implant or periprosthetic fracture, which are considered to be the most common causes of hip revision.

AIM: The aim of this study is to evaluate the value of alendronate application in reducing periprosthetic osteolysis reduction after implantation of total cementless hip endoprosthesis.

METHODS: The study analyzed 50 patients operated on with implantation of a cementless THA. The first group of 25 patients received oral alendronate, calcium, and Vitamin D3 postoperatively. The second group of 25 patients was examined and followed postoperatively without any therapy. Patients were examined by RTG and dual energy X-ray absorption (DXA) methods at 6, 12, and 18 months.

RESULTS: The study showed a difference in the values of bone mineral density and bone mineral content in the interval of 6,12, and 18 months, using the DXA method.

CONCLUSION: Alendronate therapy after total hip implantation reduces periprosthetic bone loss, maintains bone mineralization, and strengthens the implant.

Introduction

Total hip arthroplasty (THA) is now the gold standard for surgical treatment of coxarthrosis[1],[2],[3]. The implantation of total hip endoprosthesis solves the following problems: Elimination of pain, correction of deformity, preservation of motility, equalization of the limb, etc. It is estimated that approximately 30% more patients will require primary THA worldwide by 2030 [4].

Periprosthetic bone resorption after THA is a well-known phenomenon [5]. The appearance of bone loss after implantation of the hip endoprosthesis over time reduces the primary stability of the implant and leads to progressive loosening of the implant or periprosthetic fracture, which are considered to be the most common causes of hip revision [6], [7], [8]. Compared to primary hip endoprosthetics, revision surgeries are more complex and have more complications locally and generally for the body, with less benefit to the patient [9]. Therefore, research to inhibit periprosthetic bone resorption and maintain bone marrow is necessary. Alendronate from the bisphosphonate family of drugs with potent antosteoclast activity has been widely used as a first line treatment for periprosthetic bone loss after total hip implantation [10]. Mass data have shown that alendronate inhibits bone resorption, increases their mineral density, and reduces the risk of periprosthetic fractures [11].

Treatment with alendronate at a therapeutic dose of 10mg per day plus 1000 mg of calcium and Vitamin D3 for 18 months provides opportunities for prevention of periprosthetic osteolysis, which is expected to make significant progress in post-implant stabilization of implanted endoprosthetic implants and the risk of all consequences [12], [13], [14], [15]. However, there was still controversy about the impact and mechanism of action of bisphosphonates on the inhibition of periprosthetic bone loss by THA. Some studies have shown that bisphosphonates do not have a significant effect on suppressing bone loss after THA [12], [13]. In contrast, the previous meta-analyses have suggested that BP may inhibit early bone resorption around the implant [14], [15], [16], [17].

In 2001, Wenesma et al. found that alendronate therapy results in a significant reduction in periprosthetic bone loss after primary hip implantation compared with the group of patients without therapy [18].

The aim of this study is to evaluate the value of alendronate application in reducing periprosthetic
osteoelastic after implantation of total cementless hip endoprostheses.

Materials and Methods

The clinical material consists of 50 patients treated at the clinic for orthopedic diseases with implantation of a total hip endoprosthesis due to degenerative diseases of the hip.

The age distribution of patients was 35–65 years, of which 35 were females and 15 were males. The first group of 25 patients was permanently treated with alendronate therapy, vitamin therapy, and calcium. The second group of 25 patients was without therapy in the role of a control group (CG).

Methodology

This study is based on a clinical trial using two diagnostic methods: Native hip radiography and dual energy X-ray absorption. Densitometric analysis refers to 7 Gruen zones of the femur, through which periprosthetic osteolysis formed in the femur after implantation of a total cementless hip prosthesis is assessed.

Results

The analysis consists of a comparing the results for bone mineral density (BMD) and bone mineral content (BMC) obtained at different time points, 6, 12, and 18 months from the day of implant placement in both groups.

A group of 25 patients treated with 10 mg alendronate and 1000 mg calcium and Vitamin D3 and constituted the study group (SG), and 25 patients who constituted the CG and were not treated after this medication protocol. In terms of gender, structure was homogeneous (p = 0.76).

Six months after total hip prosthesis implantation, patients receiving alendronate and patients without any therapy have significantly different BMC the 4th Gruen zone (p = 0.034) (Table 1). The BMC parameter had a significantly lower mean age in this and the zone in the group of patients with drug therapy (median 1.87 vs. 3.58).

Six months after surgery (Table 2), no significant difference in BMD was found between the two groups in all seven Gruen zones of the femoral stem.

One year of surgical intervention (Table 3), the BMC was significantly different between the two groups in zone 2 (p = 0.008) in patients with alendronate therapy (median 2.92 vs. 1.53).

The control examination after 1 year of surgical treatment (Table 4) in the patients of alendronate therapy,

Table 1: BMC 6 months

Zone	Group	Mean ± SD	Median (IQR)	p-level
Z1	SG	4.19 ± 3.7	2.85 (1.23–7.11)	Z = 0.43 p = 0.67 ns
	CG	4.51 ± 3.6	3.25 (2.02–7.13)	
Z2	SG	3.51 ± 2.8	2.30 (1.12–5.31)	Z = 0.66 p = 0.051 ns
	CG	3.09 ± 2.7	1.85 (1.02–5.14)	
Z3	SG	3.05 ± 1.9	2.75 (1.63–3.42)	Z = 1.19 p = 0.23 ns
	CG	3.94 ± 2.3	3.65 (1.73–5.56)	
Z4	SG	2.45 ± 1.5	1.87 (1.23–3.54)	Z = 2.11 p = 0.034 sig
	CG	3.36 ± 1.7	3.58 (1.98–4.72)	
Z5	SG	2.67 ± 1.4	2.63 (1.45–3.36)	Z = 1.99 p = 0.057 ns
	CG	3.67 ± 1.9	3.06 (2.31–4.6)	
Z6	SG	3.72 ± 3.2	2.36 (1.35–3.97)	Z = 0.85 p = 0.39 ns
	CG	4.41 ± 3.3	3.12 (1.98–6.32)	
Z7	SG	3.41 ± 3.1	1.96 (1.23–6.02)	Z = 0.56 p = 0.57 ns
	CG	3.83 ± 2.9	2.76 (1.03–6.37)	

Table 2: BMD 6 months

Zone	Group	Mean ± SD	Median (IQR)	p-level
Z1	SG	0.97 ± 0.3	0.97 (0.76–0.99)	Z = 0.02 p = 0.98 ns
	CG	1.11 ± 0.7	0.89 (0.64–1.45)	
Z2	SG	1.27 ± 0.6	1.12 (0.91–1.35)	Z = 0.04 p = 0.97 ns
	CG	1.39 ± 0.7	1.23 (0.87–1.87)	
Z3	SG	1.40 ± 0.7	1.24 (1.12–1.63)	Z = 0.05 p = 0.96 ns
	CG	1.36 ± 0.7	1.24 (1.12–1.58)	
Z4	SG	1.41 ± 0.6	1.21 (0.98–1.32)	Z = 1.29 p = 0.19 ns
	CG	1.54 ± 0.7	1.28 (1.09–2.12)	
Z5	SG	1.65 ± 0.8	1.42 (1.11–1.82)	Z = 0.44 p = 0.65 ns
	CG	1.55 ± 0.7	1.23 (1.06–1.87)	
Z6	SG	1.93 ± 0.97	1.67 (1.24–2.09)	Z = 0.93 p = 0.35 ns
	CG	1.83 ± 1.1	1.43 (0.98–2.31)	
Z7	SG	2.01 ± 1.7	1.67 (1.25–1.83)	Z = 0.93 p = 0.35 ns
	CG	1.61 ± 0.8	1.4 (1.03–1.9)	

Table 3: BMC 12 months

Zone	Group	Mean ± SD	Median (IQR)	p-level
Z1	SG	4.75 ± 3.7	3.64 (1.98–7.47)	Z = 0.95 p = 0.34 ns
	CG	3.96 ± 2.4	2.63 (2.0–5.45)	
Z2	SG	4.06 ± 2.7	2.92 (1.93–5.83)	Z = 2.67 p = 0.008 sig
	CG	2.33 ± 2.2	1.53 (0.95–3.12)	
Z3	SG	3.58 ± 1.8	3.21 (2.35–3.98)	Z = 1.03 p = 0.3 ns
	CG	3.21 ± 2.3	2.45 (1.25–4.11)	
Z4	SG	3.07 ± 1.5	2.65 (1.98–4.11)	Z = 1.31 p = 0.19 ns
	CG	2.57 ± 1.6	2.25 (1.32–3.03)	
Z5	SG	3.29 ± 1.4	3.11 (1.98–3.93)	Z = 1.31 p = 0.19 ns
	CG	2.73 ± 1.4	2.34 (1.63–3.85)	
Z6	SG	4.32 ± 3.1	3.12 (2.12–5.12)	Z = 1.37 p = 0.17 ns
	CG	3.53 ± 2.7	2.75 (1.9–5.11)	
Z7	SG	4.14 ± 2.9	2.94 (1.87–6.3)	Z = 1.44 p = 0.15 ns
	CG	3.04 ± 2.3	2.11 (0.02–5.37)	

The control examination after 1 year of surgical treatment (Table 4) in the patients of alendronate therapy,
Table 4: BMC 12 months

Zone	Group	Mean ± SD	Median (IQR)	p-level
Z1	SG	1.72 ± 0.7	1.43 (1.13 – 1.86)	Z = 3.87 p = 0.0001 sig
Z2	SG	2.02 ± 0.9	1.63 (1.35 – 2.34)	Z = 3.74 p = 0.0002 sig
Z3	SG	2.38 ± 1.5	1.88 (1.56 – 2.32)	Z = 4.59 p = 0.000004 sig
Z4	SG	2.26 ± 1.1	1.98 (1.63 – 2.43)	Z = 4.65 p = 0.000003 sig
Z5	SG	2.48 ± 1.2	2.12 (1.71 – 2.72)	Z = 4.76 p = 0.000002 sig
Z6	SG	2.63 ± 1.2	2.32 (1.87 – 3.13)	Z = 4.5 p = 0.000007 sig
Z7	SG	2.43 ± 1.0	2.10 (1.64 – 2.84)	Z = 5.05 p = 0.000000 sig

SG: Study group, CG: Control group

Table 5: BMC 18 months

Zone	Group	Mean ± SD	Median (IQR)	p-level
Z1	SG	5.18 ± 3.6	3.67 (2.34 – 8.13)	Z = 2.4 p = 0.014 sig
Z2	SG	2.65 ± 1.7	2.23 (1.12 – 4.12)	Z = 3.8 p = 0.00014 sig
Z3	SG	4.63 ± 2.9	3.12 (2.7 – 6.31)	Z = 4.8 p = 0.000002 sig
Z4	SG	1.57 ± 1.4	0.98 (0.31 – 2.12)	Z = 3.8 p = 0.00014 sig
Z5	SG	4.06 ± 1.9	3.32 (3.11 – 4.73)	Z = 3.8 p = 0.0000014 sig
Z6	SG	2.31 ± 1.8	1.98 (1.0 – 2.95)	Z = 3.8 p = 0.0000014 sig
Z7	SG	3.77 ± 1.6	3.33 (2.63 – 4.82)	Z = 4.6 p = 0.000004 sig
Z8	SG	1.71 ± 1.3	1.05 (0.93 – 2.18)	Z = 3.8 p = 0.0000014 sig
Z9	SG	3.91 ± 1.5	3.67 (2.73 – 4.63)	Z = 4.6 p = 0.000004 sig
Z10	SG	1.94 ± 1.2	1.67 (1.02 – 2.23)	Z = 3.8 p = 0.0000014 sig
Z11	SG	5.01 ± 3.1	3.97 (2.94 – 5.72)	Z = 3.6 p = 0.00003 sig
Z12	SG	2.48 ± 1.9	1.76 (1.12 – 3.87)	Z = 3.8 p = 0.0000014 sig
Z13	SG	5.04 ± 3.1	3.33 (2.81 – 6.46)	Z = 4.1 p = 0.00005 sig
Z14	SG	1.92 ± 1.6	1.02 (0.7 – 3.12)	Z = 3.8 p = 0.0000014 sig

Table 6: BMD 18 months

Zone	Group	Mean ± SD	Median (IQR)	p-level
Z1	SG	2.59 ± 0.99	2.34 (2.13 – 2.93)	Z = 5.8 p = 0.0000 sig
Z2	SG	0.71 ± 0.4	0.53 (0.41 – 1.01)	Z = 3.8 p = 0.0000 sig
Z3	SG	3.32 ± 1.8	2.64 (2.11 – 3.87)	Z = 6.1 p = 0.0000 sig
Z4	SG	0.75 ± 0.3	0.71 (0.46 – 0.98)	Z = 3.8 p = 0.0000 sig
Z5	SG	3.42 ± 1.7	3.11 (2.35 – 3.83)	Z = 5.9 p = 0.0000 sig
Z6	SG	0.88 ± 0.5	0.6 (0.03 – 0.98)	Z = 3.8 p = 0.0000 sig
Z7	SG	3.31 ± 1.3	3.12 (2.35 – 3.9)	Z = 5.9 p = 0.0000 sig
Z8	SG	0.82 ± 0.4	0.85 (0.63 – 1.01)	Z = 3.8 p = 0.0000 sig
Z9	SG	3.61 ± 1.6	3.23 (2.54 – 4.01)	Z = 6.0 p = 0.0000 sig
Z10	SG	0.81 ± 0.4	0.76 (0.52 – 1.01)	Z = 3.8 p = 0.0000 sig
Z11	SG	3.78 ± 2.2	3.01 (2.76 – 4.31)	Z = 5.9 p = 0.0000 sig
Z12	SG	0.85 ± 0.3	0.89 (0.76 – 1.02)	Z = 3.8 p = 0.0000 sig
Z13	SG	3.53 ± 1.5	3.11 (2.63 – 3.64)	Z = 6.1 p = 0.0000 sig
Z14	SG	0.73 ± 0.3	0.74 (0.54 – 0.97)	Z = 3.8 p = 0.0000 sig

SG: Study group, CG: Control group

Table 5: BMD 18 months

Discussion

Lin et al. [17] in their meta-analysis of 14 patients comparing bisphosphonate treatment with significantly higher values of the BMD parameter were measured in all seven Gruen zones.

At the end of the follow-up of the patients, 18 months postoperatively, in all Gruen zones, a significantly different BMC is being registered between the patients from the examined and the CG. The results show that alendronate therapy after 12 months of implantation of a total cementless prosthesis on the hip had a significant effect on BMC in all Gruen zones (Table 5).

Table 6: BMD 18 months

Conclusion

Alendronate is a proven inhibitor of periprosthetic bone loss that occurs after primary implantation of a total cementless hip endoprosthesis. Our study reaffirms the effect of bisphosphonate therapy as an inhibitor of periprosthetic bone loss and aseptic implant loosening.

References

1. Harris WH, Sledge CB. Total hip and total knee replacement. N Engl J Med. 1990;323(11):7. https://doi.org/10.1056/nejm199009133231106
2. Engh CA, Culpepper WJ, Engh CA, Virginia A. Long-term results of use of the anatomic medullary locking prosthesis in total hip arthroplasty. J Bone Joint Surg. 1997;79(2):177-84. https://doi.
3. Xenos JS, Callaghan JJ, Heekin RD, Hopkinson WJ, Savory CG, Moore MS. The porous-coated anatomic total hip prosthesis, inserted without cement. A prospective study with a minimum of ten years of follow-up. J Bone Joint Surg. 1999;81(1):74-82. https://doi.org/10.2106/00004633-199901000-00011 PMid:9973057

4. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty for primary osteoarthritis. The porous-coated anatomic total hip prosthesis, inserted without cement. A prospective study with a minimum of ten years of follow-up. J Bone Joint Surg. 2005;87:10. https://doi.org/10.1016/j.arth.2004.08.011 PMid:15687150

5. Kobayashi S, Saito N, Horiuchi H, Iorio R, Takaoka K. Poor bone quality or hip structure as risk factors affecting survival of total hip arthroplasty. Acta Orthop. 2000;71(4):17-23. https://doi.org/10.1080/000164700317393321 PMid:11028881

6. Lindahl H. Epidemiology of periprosthetic femur fracture around a total hip arthroplasty. Injury. 2007;38(6):651-4. https://doi.org/10.1016/j.injury.2007.02.048 PMid:17477925

7. Havelin LI, Engesæter LB, Espehaug B, Furnes O, Lie SA, Vollset SE. The Norwegian arthroplasty register 11 years and 73,000 arthroplasties. Acta Orthop Scand. 2000;71(4):17. https://doi.org/10.1080/000164700317393321 PMid:11028881

8. de Steiger RN, Miller LN, Proszer GH, Graves SE, Davidson DC, Stanford TE. Poor outcome of revised resurfacing hip arthroplasty. Acta Orthop. 2010;81(1):72-6. https://doi.org/10.3109/17453871003687176 PMid:20170416

9. Wolfs AD, Åkesson K. Preventing fractures in elderly people. Br Med J. 2003;327(7406):89-95. PMid:12855529

10. Wells VM, Hearn TC, McCaul KA, Anderton SM, Wigg AE, Graves SE. Changing incidence of periprosthetic hip and knee arthroplasty for primary osteoarthritis. J Arthroplast. 2002;17(3):267-73. https://doi.org/10.1054/jarth.2002.30414

11. Sibanda N, Copley LP, Lewsey JD, Borroff M, Gregg P, MacGregor AJ, et al. Revision rates after primary hip and knee replacement in England between 2003 and 2006. PLoS Med. 2008;5(9):11. https://doi.org/10.1371/journal.pmed.0050179 PMid:19385000

12. Zhao X, Hu D, Qin J, Mohanan R, Chen L. Effect of bisphosphonates in preventing femoral periprosthetic bone resorption after primary cementless total hip arthroplasty: A meta-analysis. J Orthop Surg Res. 2015;10:65. https://doi.org/10.1186/s13018-015-0206-8 PMid:25962791

13. Knusten AR, Ebrahimzadeh E, Longjohn DB, Sangiorgio SN. Systematic analysis of bisphosphonate intervention on periprosthetic BMD as a function of stem design. J Arthroplast. 2014;29(6):1292-7. https://doi.org/10.1016/j.arth.2014.01.015 PMid:24703781

14. Bhandari M, Bajammal S, Guyatt GH, Griffith L, Busse JW, Schunemann H, et al. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg. 2005;87:10. https://doi.org/10.2106/jbjs.d.01177 PMid:15687150

15. Tapaninen TS, Venesmaa PK, Jarvelin JS, Miettinen HJ, Kröger HP. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty-a 5-year follow-up of 16 patients. Scand J Surg. 2010;99(1):6. https://doi.org/10.1177/145749691009900108 PMid:20501356

16. Eberhardt C, Habermann B, Muller S, Schwarz M, Bauss F, Kurth AH. The bisphosphonate ibandronate accelerates osseointegration of hydroxyapatite-coated cementless implants in an animal model. J Orthop Sci. 2007;12(1):61-6. https://doi.org/10.1007/s00776-006-1081-2 PMid:17260119

17. Enemark JJ, Heekin RD, Hopkinson WJ, Savory CG, Moore MS. The porous-coated anatomic total hip prosthesis, inserted without cement. J Bone Joint Surg. 2005;87:10. https://doi.org/10.1007/s00198-006-1797-5 PMid:21932113

18. Friedl R, Stihsen C, Rehak P, Aigner R, Windhageret R. The effect of a single infusion of zoledronic acid on early implant migration in total hip arthroplasty. A randomized, double-blind, controlled trial. J Bone Joint Surg. 2009;91(2):274-81. https://doi.org/10.2106/jbjs.d.01772 PMid:19181970

19. Shabani I, Gavrilovski A, Velkovski V, Atanassov N, Memeti S, Belchishta A. Influence of alendronate therapy on the results of densitometric examination after implantation of total hip endoprosthesis. Arch Public Health. 2021;13(1):5994. https://doi.org/10.3889/aph.2021.5994