GLOBAL A PRIORI ESTIMATES FOR THE INHOMOGENEOUS LANDAU EQUATION WITH MODERATELY SOFT POTENTIALS

STEPHEN CAMERON, LUIS SILVESTRE, AND STANLEY SNELSON

Abstract. We establish a priori upper bounds for solutions to the spatially inhomogeneous Landau equation in the case of moderately soft potentials, with arbitrary initial data, under the assumption that mass, energy and entropy densities stay under control. Our pointwise estimates decay polynomially in the velocity variable. We also show that if the initial data satisfies a Gaussian upper bound, this bound is propagated for all positive times.

1. Introduction

We consider the spatially inhomogeneous Landau equation, a kinetic model from plasma physics that describes the evolution of a particle density $f(t,x,v) \geq 0$ in phase space (see, for example, [4, 13]). It is written in divergence form as

$$
\partial_t f + v \cdot \nabla_x f = \nabla_v \cdot \left[\tilde{a}(t,x,v) \nabla_v f \right] + \tilde{b}(t,x,v) \cdot \nabla_v f + \tilde{c}(t,x,v)f,
$$

where $t \in [0,T_0]$, $x \in \mathbb{R}^d$, and $v \in \mathbb{R}^d$. The coefficients $\tilde{a}(t,x,v) \in \mathbb{R}^{d \times d}$, $\tilde{b}(t,x,v) \in \mathbb{R}^d$, and $\tilde{c}(t,x,v) \in \mathbb{R}$ are given by

$$
\tilde{a}(t,x,v) := a_{d,\gamma} \int_{\mathbb{R}^d} \left(I - \frac{w}{|w|} \otimes \frac{w}{|w|} \right) |w|^\gamma f(t,x,v-w) \, dw,
$$

$$
\tilde{b}(t,x,v) := b_{d,\gamma} \int_{\mathbb{R}^d} |w|^\gamma w f(t,x,v-w) \, dw,
$$

$$
\tilde{c}(t,x,v) := c_{d,\gamma} \int_{\mathbb{R}^d} |w|^\gamma f(t,x,v-w) \, dw,
$$

where γ is a parameter in $[-d, \infty)$, and $a_{d,\gamma}$, $b_{d,\gamma}$, and $c_{d,\gamma}$ are constants. When $\gamma = -d$, the formula for \tilde{c} must be replaced by $\tilde{c} = c_{d,\gamma} f$. Equation (1.1) arises as the limit of the Boltzmann equation as grazing collisions predominate, i.e. as the angular singularity approaches 2 (see the discussion in [2]). The case $d = 3, \gamma = -3$, corresponds to particles interacting by Coulomb potentials in small scales. The case $\gamma \in [-d,0)$ is known as soft potentials, $\gamma = 0$ is known as Maxwell molecules, and $\gamma > 0$ hard potentials. In this paper, we focus on moderately soft potentials, which is the case $\gamma \in (-2,0)$.

We assume that the mass density, energy density, and entropy density are bounded above, and the mass density is bounded below, uniformly in t and x:

$$
0 < m_0 \leq \int_{\mathbb{R}^d} f(t,x,v) \, dv \leq M_0,
$$

$$
\int_{\mathbb{R}^d} |v|^2 f(t,x,v) \, dv \leq E_0,
$$

$$
\int_{\mathbb{R}^d} f(t,x,v) \log f(t,x,v) \, dv \leq H_0.
$$

LS was partially supported by NSF grants DMS-1254332 and DMS-1362525. SS was partially supported by NSF grant DMS-1246999.

1
In the space homogeneous case, because of the conservation of mass and energy, and the monotonicity of the entropy, it is not necessary to make the assumptions (1.5), (1.6) and (1.7). It would suffice to require the initial data to have finite mass, energy and entropy. It is currently unclear whether these hydrodynamic quantities will stay under control for large times and away from equilibrium in the space inhomogeneous case. Thus, at this point, it is simply an assumption we make.

We now state our main results. Our first theorem makes no further assumption on the initial data \(f_{in} : \mathbb{R}^{2d} \to \mathbb{R} \) beyond what is required for a weak solution to exist in \([0, T_0]\).

Theorem 1.1. Let \(\gamma \in (-2, 0) \). If \(f : [0, T_0] \times \mathbb{R}^{2d} \to \mathbb{R} \) is a bounded weak solution of (1.1) satisfying (1.5), (1.6), and (1.7), then there exists \(K_0 > 0 \) such that \(f \) satisfies

\[
 f(t, x, v) \leq K_0 \left(1 + t^{-d/2} \right) (1 + |v|)^{-1},
\]

for all \((t, x, v) \in [0, T_0] \times \mathbb{R}^{2d} \). The constant \(K_0 \) depends on \(d, \gamma, m_0, M_0, E_0 \), and \(H_0 \).

Note that even though we work with a bounded weak solution \(f \), none of the constants in our estimates depend on \(||f||_{L^\infty} \). Note also that our estimate does not depend on \(T_0 \). We use a definition of weak solution for which the estimates in [8] apply, since that is the main tool in our proofs.

We will show in Theorem 4.23 that an estimate of the form (1.8) cannot hold with a power of \((1 + |v|)\) less than \(-(d + 2)\), which also implies there is no \textit{a priori} exponential decay. On the other hand, if \(f_{in} \) satisfies a Gaussian upper bound in the velocity variable, this bound is propagated:

Theorem 1.2. Let \(f : [0, T_0] \times \mathbb{R}^{2d} \to \mathbb{R} \) be a bounded weak solution of the Landau equation (1.1) such that \(f_{in}(x, v) \leq C_0 e^{-\alpha |v|^2} \), for some \(C_0 > 0 \) and a sufficiently small \(\alpha > 0 \). Then

\[
 f(t, x, v) \leq C_1 e^{-\alpha |v|^2},
\]

where \(C_1 \) depends on \(C_0, \alpha, d, \gamma, m_0, M_0, E_0 \) and \(H_0 \). The value of \(\alpha \) must be smaller than some \(\alpha_0 > 0 \) that depends on \(\gamma, d, m_0, M_0, E_0 \) and \(H_0 \).

This estimate is also independent of \(T_0 \). As a consequence of Theorem 1.2, we will show in Theorem 5.4 that in this regime, \(f \) is uniformly Hölder continuous on \([t_0, T_0] \times \mathbb{R}^{2d}\) for any \(t_0 \in (0, T_0) \).

Note that under some formal asymptotic regime, the hydrodynamic quantities of the inhomogeneous Landau equations converge to solutions of the compressible Euler equation [3], which is known to develop singularities in finite time. Should we expect singularities to develop in finite time for the inhomogeneous Landau equation as well? That question seems to be out of reach with current techniques. A more realistic project is to prove that the solutions stay smooth for as long as the hydrodynamic quantities stay under control (as in (1.5), (1.6) and (1.7)). The results in this paper are an important step forward in that program.

1.1. Related work. It was established in [14] that solutions to (1.1) become \(C^\infty \) smooth in all three variables conditionally to the solution being away from vacuum, bounded in \(H^8 \) (in the \(d = 3 \) case) and having infinitely many finite moments. It would be convenient to extend this conditional regularity result to have less stringent assumptions. In particular, the assumptions (1.5), (1.6) and (1.7) are a much weaker assumption, which is also in terms of physically relevant hydrodynamic quantities. In [8], the authors show how their local Hölder continuity result for linear kinetic equations with rough coefficients can be applied to solutions of the Landau equation provided that (1.5), (1.6) and (1.7) hold and in addition the solution \(f \) is assumed to be bounded. While we also assume boundedness of \(f \), our results do not quantitatively rely on this and in addition tell us some information about the decay for large velocities.

The local estimates for parabolic kinetic equations with rough coefficients play an important role in this work. Local \(L^\infty \) estimates were obtained in [19] using Moser iteration, and local Hölder
estimates were proven in [21, 22] using a weak Poincaré inequality. A new proof was given in [8] using a version of De Giorgi’s method.

Classical solutions for [11] have so far only been constructed in a close-to-equilibrium setting: see the work of Guo [10] and Mouhot-Neumann [15]. A suitable notion of weak solution, for general initial data, was constructed by Alexandre-Villani [2, 19].

The global L^∞ estimate we prove in Theorem 1.1 is similar to an estimate in [13] for the Boltzmann equation. The techniques in the proof are completely different. The propagation of Gaussian bounds that we give in Theorem 1.2 is reminiscent of the result in [7]. That result is for the space-homogeneous Boltzmann equation with cut-off, which is in some sense the opposite of the Landau equation in terms of the angular singularity in the cross section.

In order to keep track of the constants for parabolic regularization estimates (as in [8]) for large velocities, we describe a change of variables in Lemma 4.1. This change of variables may be useful in other contexts. It is related to one mentioned in the appendix of [12] for the Boltzmann equation.

For the homogeneous Landau equation, which arises when f is assumed to be independent of x in (1.1), the theory is more developed. The C^∞ smoothing is established for hard potentials in [9] and for Maxwell molecules in [20], under the assumption that the initial data has finite mass and energy. Propagation of L^p estimates in the case of moderately soft potentials was shown in [23] and [1]. Global upper bounds in a weighted $L^1(L^\gamma_2)$ space were established in [5], even for $\gamma = -3$, as a consequence of entropy dissipation. Global L^∞ bounds that do not depend on f_{in} and that do not degenerate as $t \to \infty$ were derived in [17] for moderately soft potentials, and this result also implies C^2 smoothing by standard parabolic regularity theory.

Note that in the space homogeneous case our assumptions (1.5), (1.6) and (1.7) hold for all $t > 0$ provided that the initial data has finite mass, energy and entropy. Both Theorems 1.1 and 1.2 are new results even in the space homogeneous case. The previous results do not address the decay of the solution for large velocities.

1.2. Organization of the paper. In Section 2 we establish precise bounds on the coefficients \tilde{a}, \tilde{b}, and \tilde{c} in (1.1). In Section 3 we derive the local estimates we will use to prove Theorem 1.1 starting from the Harnack estimate of [8]. Section 4 contains the proof of Theorem 1.1 and a propagating lower bound that implies the exponent of $(1 + |v|)$ in (1.3) cannot be arbitrarily high. In Section 5 we prove Theorem 1.2 and the Hölder estimate, Theorem 5.4. In Appendix A we derive a convenient maximum principle for kinetic Fokker-Planck equations.

1.3. Notation. We say a constant is universal if it depends only on d, γ, m_0, M_0, E_0, and H_0. The notation $A \lesssim B$ means that $A \leq CB$ for a universal constant C, and $A \approx B$ means that $A \lesssim B$ and $B \lesssim A$. We will let $z = (t, x, v)$ denote a point in $\mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R}^d$. For any $z_0 = (t_0, x_0, v_0)$, define the Galilean transformation

$$S_{z_0}(t, x, v) := (t_0 + t, x_0 + x + tv_0, v_0 + v).$$

We also have

$$S_{z_0}^{-1}(t, x, v) := (t - t_0, x - x_0 - (t - t_0)v_0, v - v_0).$$

For any $r > 0$ and $z_0 = (t_0, x_0, v_0)$, let

$$Q_r(z_0) := (t_0 - r^2, t_0) \times \{x : |x - x_0 - (t - t_0)v_0| < r^3\} \times B_r(v_0),$$

and $Q_r = Q_r(0, 0, 0)$. The shift S_{z_0} and the scaling of Q_r correspond to the symmetries of the left-hand side of (1.1). We will sometimes write ∂_i or ∂_{ij}, and these will always refer to differentiation in v.

GLOBAL ESTIMATES FOR THE INHOMOGENEOUS LANDAU EQUATION 3
2. THE COEFFICIENTS OF THE LANDAU EQUATION

In this section we review various estimates of the coefficients \bar{a}, \bar{b} and \bar{c} in (1.1). In calculating these upper and lower bounds, the dependence of f on t and x is irrelevant, so in this section we will write $f(v)$ and $\bar{a}(v)$, etc.

Lemma 2.1. Let $\gamma \in [-2,0)$, and assume f satisfies (1.5), (1.6), and (1.7). Then there exist constants c and C depending on d, γ, m_0, M_0, E_0, and H_0, such that for unit vectors $e \in \mathbb{R}^d$,

\begin{align}
(2.1) \quad \bar{a}_{ij}(v)e_i e_j &\geq c \begin{cases}
(1 + |v|)^{\gamma}, & e \in \mathbb{S}^{d-1}, \\
(1 + |v|)^{\gamma+2}, & e \cdot v = 0,
\end{cases} \\
\end{align}

and

\begin{align}
(2.2) \quad \bar{a}_{ij}(v)e_i e_j &\leq C \begin{cases}
(1 + |v|)^{\gamma+2}, & e \in \mathbb{S}^{d-1}, \\
(1 + |v|)^{\gamma}, & e \cdot v = |v|,
\end{cases}
\end{align}

where $\bar{a}_{ij}(v)$ is defined by (1.2).

Proof. The lower bounds (2.1) are proven in [21] Lemma 3.1. For the upper bounds, the formula (1.2) implies

\[
\bar{a}_{ij}(v)e_i e_j = a_{d,\gamma} \int_{\mathbb{R}^d} \left(1 - \left(\frac{w \cdot e}{|w|}\right)^2\right) |w|^{\gamma+2} f(v-w) \, dw
\]

\[
\lesssim \int_{\mathbb{R}^d} |w|^{\gamma+2} f(v-w) \, dw
\]

\[
= \int_{\mathbb{R}^d} |v-z|^{\gamma+2} f(z) \, dz
\]

\[
\lesssim \int_{\mathbb{R}^d} (|v|^{\gamma+2} + |z|^{\gamma+2}) f(z) \, dz
\]

\[
\lesssim M_0 (1 + |v|^{\gamma+2}) + E_0,
\]

since $0 \leq \gamma + 2 \leq 2$.

The above bound is valid for all $e \in \mathbb{S}^{d-1}$. If e is parallel to v, then

\[
\int_{\mathbb{R}^d} \left(1 - \left(\frac{w \cdot e}{|w|}\right)^2\right) |w|^{\gamma+2} f(v-w) \, dw = \int_{\mathbb{R}^d} \left(1 - \left(\frac{(v-z) \cdot e}{|v-z|}\right)^2\right) |v-z|^{\gamma+2} f(z) \, dz
\]

\[
= \int_{\mathbb{R}^d} \left(|v-z|^2 - (|v|-|z|)^2\right) |v-z|^\gamma f(z) \, dz
\]

\[
= \int_{\mathbb{R}^d} (|z|^2 - (z \cdot e)^2) |v-z|^\gamma f(z) \, dz
\]

\[
= \int_{\mathbb{R}^d} |z|^2 \sin^2 \theta |v-z|^\gamma f(z) \, dz,
\]

where θ is the angle between v and z. Let $R = |v|/2$. If $z \in B_R(v)$, then $|\sin \theta| \leq |v-z|/|v|$, and

\[
\int_{B_R(v)} |z|^2 \sin^2 \theta |v-z|^\gamma f(z) \, dz \leq \int_{B_R(v)} |z|^2 |v|^{-2} |v-z|^\gamma f(z) \, dz
\]

\[
\leq \frac{|v|^\gamma}{2^{\gamma+2}} \int_{B_R(v)} |z|^2 f(z) \, dz \lesssim E_0 |v|^{\gamma}.
\]

If $|v-z| \geq R = |v|/2$, then $|v-z|^\gamma \lesssim |v|^\gamma$, and we have

\[
\int_{\mathbb{R}^d \setminus B_R(v)} |z|^2 \sin^2 \theta |v-z|^\gamma f(z) \, dz \lesssim |v|^\gamma \int_{\mathbb{R}^d \setminus B_R(v)} |z|^2 f(z) \, dz \lesssim E_0 |v|^{\gamma}.
\]
In the proof of Theorem 1.1, we will need to keep track of how the bounds on \bar{b} and \bar{c} in the next two lemmas depend on the local L^∞ norm of f. In Lemma 2.2 and Lemma 2.3, $\|f\|_{L^\infty(A)}$ means $\|f(t,x,\cdot)\|_{L^\infty(A)}$ for any set $A \subseteq \mathbb{R}^d$.

Lemma 2.2. Let f satisfy (1.5), (1.6), and (1.7). Then $\bar{c}(v)$ defined by (1.3) satisfies

\[
\bar{c}(v) \lesssim \begin{cases}
(1 + |v|)^\gamma (1 + \|f\|_{L^\infty(E)})^{-\gamma/d}, & -2d/d + 2 \leq \gamma < 0, \\
(1 + |v|)^{-2\gamma/d} (1 + \|f\|_{L^\infty(E)})^{-\gamma/d}, & -d < \gamma < -2d/d + 2,
\end{cases}
\]

where the constants depend on $d, \gamma, M_0,$ and B, and

\[
\rho = \begin{cases}
1, & |v| < 2, \\
|v|^{-2/d}, & |v| \geq 2.
\end{cases}
\]

Proof. Assume first $|v| \geq 2$. Let $r := |v|^{-2/d}(1 + \|f\|_{L^\infty(E)})^{-1/d} < \rho$. Consider

\[
I_1 = \int_{B_r} |v|^\gamma f(v-w)\,dw, \quad I_2 = \int_{B_{|v|/2} \setminus B_r} |v|^\gamma f(v-w)\,dw,
\]

\[
I_3 = \int_{\mathbb{R}^d \setminus B_{|v|/2}} |v|^\gamma f(v-w)\,dw.
\]

We have

\[
I_1 \lesssim \|f\|_{L^\infty(E)} r^d \lesssim |v|^{-2-d/\gamma} \|f\|_{L^\infty(E)}^{-\gamma/d},
\]

\[
I_2 \lesssim r^\gamma |v|^2 \int_{B_{|v|/2}} |v-w|^2 f(v-w)\,dw \lesssim E_0 |v|^{-2-2\gamma/d}(1 + \|f\|_{L^\infty(E)})^{-\gamma/d}.
\]

Finally, for $|w| \geq |v|/2$, we have $|w|^\gamma \lesssim |v|^\gamma$, and

\[
I_3 \lesssim |v|^\gamma \int_{\mathbb{R}^d \setminus B_{|v|/2}} f(v-w)\,dw \lesssim M_0 |v|^\gamma.
\]

Thus $\bar{c}(v) \lesssim (1 + \|f\|_{L^\infty(E)})^{-\gamma/d} |v|^{-2-2\gamma/d} + |v|^\gamma$ for $|v| > 2$.

When $\gamma \in \left(-d, -\frac{2d}{d+2}\right), -2 - 2\gamma/d > \gamma$ and we get

\[
\bar{c}(v) \lesssim (1 + \|f\|_{L^\infty(E)})^{-\gamma/d} |v|^{-2-2\gamma/d}.
\]

When $\gamma \in [-\frac{2d}{d+2}, 0)$, $\gamma > -2 - 2\gamma/d$ and we get

\[
\bar{c}(v) \lesssim (1 + \|f\|_{L^\infty(E)})^{-\gamma/d} |v|^\gamma.
\]

This completes the proof in the case $|v| > 2$.

For $|v| \leq 2$, $\gamma \in (-d, 0)$, and any $R \in (0, 1]$ we have that

\[
\int_{\mathbb{R}^d} |w|^\gamma f(v-w)\,dw = \int_{B_R} |w|^\gamma f(v-w)\,dw + \int_{\mathbb{R}^d \setminus B_R} |w|^\gamma f(v-w)\,dw,
\]

\[
\lesssim R^{d+\gamma} \|f\|_{L^\infty(B_1(v))} + R^\gamma M_0.
\]

Choosing $R = (1 + \|f\|_{L^\infty(B_1(v))})^{-1/d}$, we then have

\[
\bar{c}(v) \lesssim \left(R^{d+\gamma} \|f\|_{L^\infty(E)} + R^\gamma M_0 \right) \lesssim (1 + \|f\|_{L^\infty(E)})^{-\gamma/d},
\]

for $|v| \leq 2$, completing the proof. \qed
Lemma 2.3. Let f satisfy (1.5), (1.6), and (1.7). Then $\overline{b}(v)$ defined by (1.3) satisfies the estimate
\[
|\overline{b}(v)| \lesssim \begin{cases}
(1 + |v|)^{\gamma + 1}(1 + \|f\|_{L^\infty(B_{\rho}(v))})^{-(\gamma + 1)/d}, & \gamma \in [-2, -1), \\
(1 + |v|)^{\gamma + 1}, & \gamma \in [-1, 0)
\end{cases}
\]
where the constants depend on $d, \gamma, M_0,$ and E_0, and
\[
\rho = \begin{cases}
1, & |v| < 2, \\
|v|^{-2/d}, & |v| \geq 2
\end{cases}
\]

Proof. Taking norms, we have
\[
|\overline{b}(v)| \lesssim \int_{R^d} |w|^{1+\gamma} f(v-w) \, dw.
\]
If $\gamma \in [-2, -1)$, then $0 > 1 + \gamma \geq -1 \geq -\frac{2d}{d+2}$ and the conclusion follows from Lemma 2.2. If $\gamma \in [-1, 0)$, we have
\[
|\overline{b}(v)| \lesssim \int_{R^d} (|v|^{\gamma + 1} + |v-w|^{\gamma + 1}) f(v-w) \, dw
\]
\[
\lesssim |v|^{\gamma + 1} M_0 + E_0^{(1+\gamma)/2} M_0^{(1-\gamma)/2} \lesssim (1 + |v|)^{\gamma + 1}.
\]

3. Local estimates

In this section we refine the local estimates in [16] and [8] for linear kinetic equations with rough coefficients. Essentially, we start from their results and apply scaling techniques to improve the local L^∞ estimates.

We will need the following technical lemma. See [11, Lemma 4.3] for the proof.

Lemma 3.1. Let $\eta(r) \geq 0$ be bounded in $[r_0, r_1]$ with $r_0 \geq 0$. Suppose for $r_0 \leq r < R \leq r_1$, we have
\[
\eta(r) \leq \theta \eta(R) + \frac{A}{(R-r)^\alpha} + B
\]
for some $\theta \in [0, 1)$ and $A, B, \alpha \geq 0$. Then there exists $c(\alpha, \theta) > 0$ such that for any $r_0 \leq r < R \leq r_1$, there holds
\[
\eta(r) \leq c(\alpha, \theta) \left(\frac{A}{(R-r)^\alpha} + B \right).
\]

Proposition 3.2. If $g(t, x, v) \geq 0$ is a weak solution of
\[
\partial_t g + v \cdot \nabla_x g = \nabla_v \cdot (A \nabla_v g) + B \cdot \nabla_v g + s
\]
in Q_1, with
\[
0 < \lambda I \leq A(t, x, v) \leq \Lambda I, \quad |B(t, x, v)| \leq \Lambda, \quad (t, x, v) \in Q_1,
\]
\[
s \in L^\infty(Q_1),
\]
then
\[
\sup_{Q_{1/2}} g \leq C \left(\|g\|_{L^\infty_t L^1_v(Q_1)} + \|s\|_{L^\infty(Q_1)} \right),
\]
with C depending only on $d, \lambda,$ and Λ.
Proof. It is proven in [3] that if \(g(t, x, v) \) solves (3.1) weakly with \(A, B, \) and \(s \) as in the statement of the proposition, then
\[
\|g\|_{L^\infty(Q_{1/2})} \leq C \left(\|g\|_{L^2(Q_1)} + \|s\|_{L^\infty(Q_1)} \right),
\]
with \(C \) depending on \(d, \lambda, \) and \(\Lambda \). Since \(\|g\|_{L^2(Q_1)} \leq \sqrt{\omega_d} \|g\|_{L^\infty_t L^2_x(Q_1)} \), where \(\omega_d = \mathcal{L}^d(B_1) \), we also have
\[
\|g\|_{L^\infty(Q_{1/2})} \leq C \left(\|g\|_{L^\infty_t L^2_x(Q_1)} + \|s\|_{L^\infty(Q_1)} \right).
\]
To replace \(\|g\|_{L^\infty_t L^2_x(Q_1)} \) with \(\|g\|_{L^\infty_t L^2_x(Q_1)} \), we use an interpolation argument. For \(0 < r \leq 1 \), define
\[
g_r(t, x, v) := g(r^2 t, r^3 x, rv), \quad s_r(t, x, v) := s(r^2 t, r^3 x, rv),
\]
\[
A_r(t, x, v) := A(r^2 t, r^3 x, rv), \quad B_r(t, x, v) := B(r^2 t, r^3 x, rv),
\]
and note that \(g_r \) satisfies
\[
\partial_t g_r + v \cdot \nabla_x g_r = \nabla_v \cdot (A_r \nabla_v g_r) + B_r \cdot \nabla_v g_r + r^2 s_r
\]
in \(Q_1 \). Since \(r \leq 1 \), we may apply (3.3) to \(g_r \), which gives
\[
\|g\|_{L^\infty(Q_{1/r}, r)} \leq C \left(\frac{1}{d/2} \|g\|_{L^\infty_t L^2_x(Q_r)} + r^2 \|s\|_{L^\infty(Q_r)} \right),
\]
for any \(r \in (0, 1) \). Now, for \(\theta, R \in (0, 1) \), apply (3.6) in \(Q_{(1-\theta)R}(z) \) for each \(z \in Q_{\theta R} \) to obtain
\[
\|g\|_{L^\infty(Q_{\theta R})} \leq C \left(\frac{1}{(1-\theta)R^{d/2}} \|g\|_{L^\infty_t L^2_x(Q_{\theta R})} + R^2 \|s\|_{L^\infty(Q_{\theta R})} \right)
\leq C \left(\frac{1}{(1-\theta)R^{d/2}} \|g\|_{L^\infty_t L^2_x(Q_{\theta R})} + \|s\|_{L^\infty(Q_{\theta R})} \right).
\]
By the Hölder and Young inequalities, we have
\[
\|g\|_{L^\infty(Q_{\theta R})} \leq C \left(\frac{1}{(1-\theta)R^{d/2}} \|g\|_{L^\infty_t L^2_x(Q_{\theta R})} \|s\|_{L^\infty(Q_{\theta R})} \right)
\leq C \left(\frac{1}{(1-\theta)R^{d/2}} \|g\|_{L^\infty_t L^2_x(Q_{\theta R})} + \|s\|_{L^\infty(Q_{\theta R})} \right).
\]
Define \(\eta(\rho) = \|g\|_{L^\infty(Q_{\theta R})} \) for \(\rho \in (0, 1) \). Then for any \(0 < r < R \leq 1 \), we have
\[
\eta(r) \leq C \|g\|_{L^\infty_t L^2_x(Q_{\theta R})} + \|s\|_{L^\infty(Q_{\theta R})}.
\]
Applying Lemma 3.1, we obtain
\[
\eta(r) \leq C \frac{1}{(R-r)^{d/2}} \|g\|_{L^\infty_t L^2_x(Q_{\theta R})} + \|s\|_{L^\infty(Q_{\theta R})}.
\]
Let \(R \to 1 \) and set \(r = \frac{1}{2} \) to conclude (3.2). \(\square \)

Lemma 3.3. Let \(g(t, x, v) \) solve (3.1) weakly in \(Q_R(z_0) \) for some \(z_0 \in \mathbb{R}^{2d+1} \) and \(R > 0 \), with
\[
0 < \lambda I \leq A(t, x, v) \leq \Lambda I, \quad (t, x, v) \in Q_R,
\]
\[
|B(t, x, v)| \leq |\lambda|/R, \quad (t, x, v) \in Q_R,
\]
\[
s \in L^\infty(Q_R).
\]
Then the improved estimate
\[
g(t_0, x_0, v_0) \leq C \left(\|g\|_{L^\infty_t L^2_x(Q_R)}^{2/(d+2)} \|s\|_{L^\infty(Q_R)}^{d/(d+2)} + R^{-d} \|g\|_{L^\infty_t L^2_x(Q_R)} \right)
\]
holds, with \(C \) depending only on \(d, \lambda, \) and \(\Lambda \).
Proof. By applying the change of variables

$$(t, x, v) \mapsto \left(\frac{t-t_0}{R^2}, \frac{x-x_0-(t-t_0)v_0}{R^3}, \frac{v-v_0}{R} \right)$$

to g and s, we may suppose $(t_0, x_0, v_0) = (0, 0, 0)$ and $R = 1$.

For $r \in (0, 1]$ to be determined, we make the transformation (3.4) as in the proof of Proposition 3.2 and get a function g_r satisfying (3.5) in Q_1. Then Proposition 3.2 implies

$$g(0, 0, 0) \leq C \left(\|g_r\|_{L^C_{t,x,v}(Q_1)} + r^2 \|s_r\|_{L^\infty(Q_1)} \right)$$

for $r > 0$. Our bounds depend only on the estimates on the hydrodynamic quantities (1.5), (1.6) and (1.7). We also get that the solution will have certain polynomial decay in v for $t > 0$.

From Lemma 2.1 we see that the bounds on $\tilde{a}_{ij}(t, x, v)$ degenerate as $|v| \to \infty$. In the first lemma, we show how to change variables to obtain an equation with uniform ellipticity constants independent of $|v|$.

Lemma 4.1. Let $z_0 = (t_0, x_0, v_0) \in \mathbb{R}_+ \times \mathbb{R}^{2d}$ be such that $|v_0| \geq 2$, and let T be the linear transformation such that

$$Te = \begin{cases} |v_0|^{1+\gamma/2e}, & e \cdot v_0 = 0 \\ |v_0|^{\gamma/2e}, & e \cdot v_0 = |v_0|. \end{cases}$$

Let $\tilde{T}(t, x, v) = (t, Tx, Tv)$, and define

$$\mathcal{T}_{z_0}(t, x, v) := \mathcal{S}_{z_0} \circ \tilde{T}(t, x, v) = (t_0 + t, x_0 + Tx + tv_0, v_0 + Tv).$$

Then,

(a) There exists a constant $C > 0$ independent of $v_0 \in \mathbb{R}^d \setminus B_2$ such that for all $v \in B_1$,

$$C^{-1}|v_0| \leq |v_0 + Tv| \leq C|v_0|.$$

(b) If $f_T(t, x, v) := f(\mathcal{T}_{z_0}(t, x, v))$, then f_T satisfies

$$\partial_t f_T + v \cdot \nabla_x f_T = \nabla_v \left[A(z) \nabla_v f_T + B(z) \cdot \nabla_v f_T + C(z) f_T \right]$$
in Q_R for any $0 < R < \min\{\sqrt{r_0}, c_1|v_0|^{-1-\gamma/2}\}$, where c_1 is a universal constant, and

$$L \leq A(z) \leq L,''

$$|B(z)| \lesssim \begin{cases} |v_0|^{1+\gamma/2} \left(1 + \|f(t, x, \cdot)\|_{L^\infty(B_{\rho}(v))}\right)^{-(\gamma+1)/d}, & \gamma \in [-2, -1), \\
|v_0|^{1+\gamma/2}, & \gamma \in [-1, 0], \\
|v_0|^{-2-2\gamma/d} \left(1 + \|f(t, x, \cdot)\|_{L^\infty(B_{\rho}(v))}\right)^{-\gamma/d}, & -2 < \gamma < - \frac{2d}{d+2},
\end{cases}

$$|C(v)| \lesssim \begin{cases} \frac{|v_0|\gamma \left(1 + \|f(t, x, \cdot)\|_{L^\infty(B_{\rho}(v))}\right)^{-\gamma/d}, & -2d \leq \gamma < 0, \\
\|v_0\|^{-2-2\gamma/d} \left(1 + \|f(t, x, \cdot)\|_{L^\infty(B_{\rho}(v))}\right)^{-\gamma/d}, & -2 < \gamma < - \frac{2d}{d+2},
\end{cases}

with λ and Λ universal, and $\rho \lesssim 1 + |v_0|^{-2/d}$.

Proof. Since $|v| \leq 1$ and $|v_0| > 2$,

$$|v_0| - |v_0|^{1+\gamma/2} \leq |v_0| - |Tv| \leq |v_0 + Tv| \leq |v_0| + |Tv| \leq |v_0| + |v_0|^{1+\gamma/2}.

Thus, (a) follows since $\gamma \in (-2, 0)$.

For (b), by direct computation, f_T satisfies \eqref{global} with

$$A(z) = T^{-1}a(T_{\partial_0}(z) T)^{-1}, \quad B(z) = T^{-1}b(T_{\partial_0}(z)), \quad C(z) = c(T_{\partial_0}(z)).

In order to keep the proof clean, we let us write \tilde{a}_{ij} and A_{ij} instead of $\tilde{a}_{ij}(T_{\partial_0}(z))$ and $A_{ij}(z)$ for the rest of the proof.

Fix $z = (t, x, v) \in Q_R$, and let $\tilde{v} = \tilde{v} + Tv$. From part (a), we know that $|\tilde{v}| \approx |v_0|$. Applying Lemma \ref{lemma}, we have that for any unit vector e,

\begin{equation}
\tilde{a}_{ij} e_i e_j \lesssim \begin{cases} (1 + |v_0|)^{\gamma}, & e = \tilde{v}/|\tilde{v}|, \\
(1 + |v_0|)^{\gamma+2}, & e \in S^{d-1}.
\end{cases}
\end{equation}

and,

\begin{equation}
\tilde{a}_{ij} e_i e_j \gtrsim \begin{cases} (1 + |v_0|)^{\gamma}, & e \in S^{d-1}, \\
(1 + |v_0|)^{\gamma+2}, & e \cdot \tilde{v} = 0.
\end{cases}
\end{equation}

Our first step is to verify that we can switch \tilde{v} for v_0 in \eqref{4.2} and \eqref{4.3}.

Let us start with \eqref{4.2}. This is where the assumption $|v| < R \leq C|v_0|^{-1-\gamma/2}$ plays a role. We can choose c_1 so as to ensure that $|Tv| \leq 1$. Since $v_0 = \tilde{v} - Tv$ and using the fact that \tilde{a}_{ij} is positive definite,\n
$$\tilde{a}_{ij}(v_0)_i(v_0)_j \leq 2\tilde{a}_{ij} \tilde{v}_i \tilde{v}_j + 2\tilde{a}_{ij}(Tv)_i(Tv)_j \leq C/v_0|v_0|^{2+\gamma}.
\end{equation}

Let $e_0 = v_0/|v_0|$. The computation above tells us that $\tilde{a}_{ij}(e_0)_i(e_0)_j \lesssim |v_0|^{\gamma}$.

Let us now turn to \eqref{4.3}. We will show that

\begin{equation}
\tilde{a}_{ij} w_i w_j \gtrsim (1 + |v_0|)^{\gamma+2} |w|^2 \quad \text{if } w \cdot v_0 = 0.
\end{equation}

Note that $(1 + |v_0|)^{2+\gamma}$ and $(1 + |v_0|)^{\gamma}$ are comparable when $|v_0|$ is small, so we only need to verify \eqref{4.3} for $w \cdot v_0 = 0$ and $|v_0|$ arbitrarily large. For such vector w, we write $w = \eta \tilde{v} + w'$ with $w' \cdot \tilde{v} = 0$. Since $|\tilde{v} - v_0| = |Tv| \leq 1$, we have $|\eta| = |w \cdot \tilde{v}|/|\tilde{v}|^2 = |w \cdot (\tilde{v} - v_0)|/|\tilde{v}|^2 \leq |w|^2$. Moreover, $|w'| \approx |w|$.

Since \tilde{a}_{ij} is positive definite,\n
$$\tilde{a}_{ij}(\sqrt{2}\eta \tilde{v} - w'/\sqrt{2})(\sqrt{2}\eta \tilde{v} - w'/\sqrt{2}) \geq 0,$

then we have

$$\tilde{a}_{ij} w_i w_j \geq \frac{1}{2} \tilde{a}_{ij} w'_i w'_j - \eta^2 \tilde{a}_{ij} \tilde{v}_i \tilde{v}_j \geq \left(c(1 + |v_0|)^{\gamma+2} - (1 + |v_0|)^{\gamma}\right) |w|^2 \gtrsim (1 + |v_0|)^{\gamma+2} |w|^2,$$
as desired.

Let $w \in \mathbb{R}^d$ be arbitrary. We will estimate $A_{ij} w_i w_j$ from above. Writing $w = \mu e_0 + \tilde{w}$, with $\tilde{w} \cdot e = 0$.

$$A_{ij} w_i w_j = |v_0|^{-\gamma} \left(\mu^2 \bar{a}_{ij}(e_0)_i (e_0)_j + 2\mu |v_0|^{-1} \bar{a}_{ij}(e_0)_i \tilde{w}_j + |v_0|^{-2} \bar{a}_{ij} \tilde{w}_i \tilde{w}_j \right),$$

and using that \bar{a}_{ij} is positive definite,

$$A_{ij} w_i w_j \leq 2 |v_0|^{-\gamma} \left(\mu^2 \bar{a}_{ij}(e_0)_i (e_0)_j + |v_0|^{-2} \bar{a}_{ij} \tilde{w}_i \tilde{w}_j \right),$$

$$\leq C \left(\mu^2 + |\tilde{w}|^2 \right) =: A|w|^2.$$

This establishes upper bound $\{A_{ij}\} \leq \Lambda I$ for some $\Lambda > 0$.

Now we will prove the lower bound for A_{ij}. Again, we write $w = \mu e_0 + \tilde{w}$ with $e_0 \cdot \tilde{w} = 0$. We need to analyze the quadratic form associated with the coefficients \bar{a}_{ij} more closely. From (4.2), we have that for some universal constant $c > 0$,

$$c |v_0|^\gamma (\mu^2 + |\tilde{w}|^2) \leq \bar{a}_{ij} w_i w_j = \mu^2 \bar{a}_{ij}(e_0)_i (e_0)_j + 2\mu \bar{a}_{ij}(e_0)_i \tilde{w}_j + \bar{a}_{ij} \tilde{w}_i \tilde{w}_j.$$

Moreover, (4.2) implies that there is a universal constant $\delta > 0$ so that

$$c |v_0|^\gamma (\mu^2 + |\tilde{w}|^2) \geq \delta \mu^2 \bar{a}_{ij}(e_0)_i (e_0)_j + \delta |v_0|^{-2} \bar{a}_{ij} \tilde{w}_i \tilde{w}_j.$$

Subtracting the two inequalities above,

$$\left(1 - \delta \right) \mu^2 \bar{a}_{ij}(e_0)_i (e_0)_j + 2\mu \bar{a}_{ij}(e_0)_i \tilde{w}_j + \left(1 - \delta |v_0|^{-2} \right) \bar{a}_{ij} \tilde{w}_i \tilde{w}_j \geq 0.$$

The same inequality holds if we replace $w = \mu e_0 + \tilde{w}$ with $w = (1 - \delta / 2)^{-1/2} \mu e_0 + (1 - \delta / 2)^{-1/2} |v_0|^{-1} \tilde{w}$, therefore

$$\frac{1 - \delta}{1 - \delta / 2} \mu^2 \bar{a}_{ij}(e_0)_i (e_0)_j + 2\mu |v_0|^{-1} \bar{a}_{ij}(e_0)_i \tilde{w}_j + \left(1 - \delta |v_0|^{-2} \right) |v_0|^{-2} \bar{a}_{ij} \tilde{w}_i \tilde{w}_j \geq 0.$$

Recalling the formula above for $A_{ij} w_i w_j$, and replacing it in the left hand side, we get

$$A_{ij} w_i w_j - \left(1 - \frac{1 - \delta}{1 - \delta / 2} \right) |v_0|^{-\gamma} \mu^2 \bar{a}_{ij}(e_0)_i (e_0)_j - (1 - \delta / 2)(1 - \delta |v_0|^{-2}) |v_0|^{-2-\gamma} \bar{a}_{ij} \tilde{w}_i \tilde{w}_j \geq 0.$$

Therefore, using (4.3) and (4.4),

$$A_{ij} w_i w_j \geq \left(1 - \frac{1 - \delta}{1 - \delta / 2} \right) |v_0|^{-\gamma} \mu^2 \bar{a}_{ij}(e_0)_i (e_0)_j + (1 - \delta / 2)(1 - \delta |v_0|^{-2}) |v_0|^{-2-\gamma} \bar{a}_{ij} \tilde{w}_i \tilde{w}_j,$$

for some universal constant $\lambda > 0$. This establishes the lower bound $\{A_{ij}\} \geq \lambda I$.

To derive the bound on $B(z)$, Lemma 2.3 and conclusion (a) imply

$$|B(z)| \lesssim \|T^{-1} \| \tilde{b}(T_0(z)) \|
\lesssim \left\{ \begin{array}{ll}
(1 + |v_0|)^{\gamma / 2 + 1}(1 + \|f\|_{L^\infty(B_{\rho}(\tilde{v}))})^{-(\gamma + 1)/d}, & \gamma \in (-2, -1), \\
(1 + |v_0|)^{\gamma / 2 + 1}, & \gamma \in [-1, 0],
\end{array} \right.$$

where $\rho \equiv |\tilde{v}|^{-2/d}$. From the triangle inequality, we have that $B_{\rho}(\tilde{v}) \subset B_{\rho}(v_0)$, with $\rho \lesssim (1 + |v_0|)^{-2/d} + R(1 + |v_0|)^{(\gamma + 2)/2} \leq 1 + (1 + |v_0|)^{-2/d}$. The bound on $C(z)$ follows in a similar manner, using Lemma 2.2.

The key lemma in the proof of Theorem 1.1 is the following pointwise estimate on f:

Lemma 4.2. Let $\gamma \in (-2, 0)$, $T_0 > 0$, and let $f : [0, T_0] \times \mathbb{R}^d \to \mathbb{R}_+$ solve the Landau equation (1.1) weakly. If

$$f(t, x, v) \leq K(1 + t^{-d/2})(1 + |v|)^{-\alpha}$$
in \([0, T_0] \times \mathbb{R}^{2d}\) for some \(\alpha \in [0, 1]\) and \(K \geq 1\), then

\[(4.5)\quad f(t, x, v) \leq C \left((K(1 + t^{-d/2}))(d-\gamma)/(d+2)(1 + |v|)^{P(d, \alpha, \gamma)} + K^{Q(\gamma)}(1 + t^{-d/2})(1 + |v|)^{-1} \right),\]

for some \(C\) universal and

\[
P(d, \alpha, \gamma) = \begin{cases} -1 - d(1 + \alpha)/(d+2), & \gamma \in \left[-\frac{2d}{d+2}, 0\right], \\ -[d(1 + \gamma) + 2 + 2\gamma + \alpha d]/(d+2), & \gamma \in \left(-2, -\frac{2d}{d+2}\right), \end{cases}
\]

\[
Q(\gamma) = \begin{cases} 0, & \gamma \in [-1, 0] \\ -(1 + \gamma), & \gamma \in (-2, -1). \end{cases}
\]

Proof. Case 1: \(\gamma \in [-1, 0]\). Let \(z_0 = (t_0, x_0, v_0)\) be such that such that \(|v_0| \geq 2\). Define \(r_0 = \min\{1, \sqrt{t_0}\}\), and note that \(r_0^{-d} \approx (1 + t_0^{-d/2})\). Letting \(f_T\) be as in Lemma 4.1 we will estimate \(f_T(t, x, v)\) in \(Q_R\), where

\[
R := c_1(r_0/2)(1 + |v_0|)^{-2(2+\gamma)/2},
\]

with \(c_1\) as in Lemma 4.1(b). We have that \(f_T\) solves (4.1) in \(Q_R\), and by Lemma 4.1(a) and our assumption on \(f\),

\[(4.6)\quad f_T(t, x, v) \lesssim K r_0^{-d}(1 + |v_0|)^{-\alpha}\]

in \(Q_R\). Feeding (4.6) into Lemma 4.1(b), we have

\[
0 < \lambda I \leq A(z) \leq \Lambda I,
\]

\[(4.7)\quad |B(z)| \lesssim (1 + |v_0|)^{(2+\gamma)/2},
\]

\[(4.8)\quad |C(z)| \lesssim (K r_0^{-d})^{-\gamma/d}(1 + |v_0|)^{\gamma},
\]

in \(Q_R\).

Let \(Q_{T,R}\) be the image of \(Q_R\) under \(z \mapsto T_{z_0}(z)\), and note that

\[
\|f_T\|_{L^\infty_t L_x^1(Q_{T,R})} = \det(T^{-1})\|f\|_{L^\infty_t L_x^1(Q_R)}
\]

\[
= (1 + |v_0|)^{-(d-1)(2+\gamma)/2 + 2(2+\gamma)/2} \|f\|_{L^\infty_{T,x} L^1_v(Q_{T,R})}
\]

\[
\leq (1 + |v_0|)^{-(1+d(2+\gamma)/2)} E_0,
\]

(4.9)

where the last inequality comes from the energy bound (1.9) and Lemma 4.1(a).

By (4.7), and our choice of \(R\), we can apply Lemma 3.3 in \(Q_R\) with \(g = f_T\) and \(s = C(z) f_T\) to obtain

\[
f(t_0, x_0, v_0) \leq C \left(\|f_T\|_{L^\infty_{T,x} L^1_v(Q_{T,R})}^{2/(d+2)} \|C(z) f_T\|_{L^\infty_{T,x} L^1_v(Q_R)}^{d/(d+2)} + r_0^{-d}(1 + |v_0|)^{(2+\gamma)/2} \|f_T\|_{L^\infty_{T,x} L^1_v(Q_{T,R})} \right)
\]

\[
\leq C \left((K r_0^{-d})^{(d-\gamma)/(d+2)} (1 + |v_0|)^{-1-d(1+\alpha)/(d+2)} + r_0^{-d}(1 + |v_0|)^{1-\gamma} \right),
\]

using (4.6), (4.8), and (4.9). Note that we derived (4.10) assuming that \(|v_0| \geq 2\). When \(|v_0| \leq 2\), the matrix \(\tilde{a}_{ij}(z)\) is uniformly elliptic and we can apply Lemma 3.3 directly to \(f\) to obtain (4.10) in this case as well.

Case 2: \(\gamma \in (-2, -1]\). The argument is the same as in Case 1, but the estimates are quantitatively different as a result of the different bounds on \(B(z)\) and \(C(z)\) in Lemma 4.1. The changes are as follows: the radius \(R\) of the cylinder \(Q_R\) is chosen to be

\[
R := K^{(1+\gamma)/d}(r_0/2)(1 + |v_0|)^{-(2+\gamma)/2},
\]

the bound on \(B(z)\) becomes

\[
|B(z)| \lesssim K^{-1+\gamma/d} r_0^{1+\gamma}(1 + |v_0|)^{(2+\gamma)/2} \leq \Lambda/R, \quad z \in Q_R,
\]
and for $C(z)$ we have

$$|C(z)| \lesssim \begin{cases} (Kr_0^{-d})^{-\gamma/d}(1 + |v_0|)^\gamma, & \gamma \in \left[\frac{-2d}{d+2}, -1\right], \\ (Kr_0^{-d})^{-\gamma/d}(1 + |v_0|)^{-2-2\gamma/d}, & \gamma \in \left(-2, \frac{-2d}{d+2}\right), \end{cases}$$

for $z \in Q_R$. After applying Lemma 3.3 and (4.9), we obtain

$$f(t_0, x_0, v_0) \leq C \left[(Kr_0^{-d})^{(d-\gamma)/(d+2)}(1 + |v_0|)^{P(d, \alpha, \gamma)} + K^{-(1+\gamma)r_0^{-d}}(1 + |v_0|)^{-1}\right],$$

as desired, with $P(d, \alpha, \gamma)$ as in the statement of the lemma.

We are now in a position to prove our main theorem.

Proof of Theorem 1.1. Define

$$K := \sup_{(0, T_0] \times \mathbb{R}^d} \min\{t^{d/2}, 1\} f(t, x, v).$$

First, we will show that $K \leq K_*$, where K_* is universal. We can assume $K > 1$. For each $\gamma \in (-2, 0]$, define $p_\gamma : (1, \infty) \to \mathbb{R}$ by

$$(4.11) \quad p_\gamma(K) = \begin{cases} C \left(\frac{K}{(d+2)}(1 + |v_0|)^{\gamma/(d+2)} + 1\right), & \gamma \in (-1, 0], \\ C \left(\frac{K}{(d+2)}(1 + |v_0|)^{\gamma/(d+2)} + (K)^{-(1+\gamma)}\right), & \gamma \in (-2, -1], \end{cases}$$

where C is the appropriate constant from Lemma 4.2 for each γ. Then since $-(1+\gamma) < 1$ and $\frac{d - \gamma}{d + 2} < 1$ for $\gamma > -2$, there is a $K_0 > 1$ such that

$$K_* = p_\gamma(K_*),
\quad K > p_\gamma(K), \quad \text{if } K > K_*. $$

Let $\varepsilon > 0$. By the definition of K, there exists some $(t_0, x_0, v_0) \in (0, T] \times \mathbb{R}^d$ such that $f(t_0, x_0, v_0) > (K - \varepsilon) \max\{t_0^{-d/2}, 1\}$. Therefore, Lemma 4.2 implies that

$$K - \varepsilon \leq p_\gamma(K).$$

Since this is true for all $\varepsilon > 0$, we have that $K \leq K_*$. If $\gamma \in \left[\frac{-2d}{d+2}, 0\right]$, we apply Lemma 4.2 with $\alpha = 0$ to conclude (1.8) with $K_0 = CK_*$. If $\gamma \in \left(-2, \frac{-2d}{d+2}\right)$, Lemma 4.2 with $\alpha = 0$ implies

$$f(t, x, v) \leq CK \left(1 + t_0^{-d/2}\right) (1 + |v_0|)^{-\frac{d(4+\gamma)}{(d+2)}},$$

so we can apply Lemma 4.2 again with $\alpha = \frac{d(4 + \gamma) + 2 + 2\gamma}{(d + 2)}$. We iterate this step, and since for any $\alpha \in (0, 1]$, we have $\alpha \leq 1 < d(4 + \gamma)/2 + 1 + \gamma$, the gain of decay at each step, $-P(d, \alpha, \gamma) - \alpha$, is bounded away from 0. Therefore, after finitely many steps (with the number of steps depending only on d and γ), we obtain (1.8) for some K_0.

The next result shows that the generating decay in Theorem 1.1 cannot be improved to polynomial decay with power greater than $d + 2$, or to exponential decay. Note that since $\ddot{b}_i = -\partial_j \ddot{a}_{ij}$, for smooth solutions (4.11) may be written equivalently in non-divergence form as

$$(4.12) \quad \partial_t f + v \cdot \nabla_x f = \ddot{a}(t, x, v) D_x^2 f + \ddot{c}(t, x, v) f.$$
Theorem 4.3. Let $\gamma \in [-2,0]$ and $p > d + 2$. Assume f solves (1.1) in $[0,T_0] \times \mathbb{R}^d$ with
\begin{equation}
|f_{in}(x,v)| \geq c_0(1 + |v|)^{-p}
\end{equation}
for $v, x \in \mathbb{R}^d$, for some $c_0 > 0$. Then there exist $c_1 > 0$ and $\beta > 0$ such that
\begin{equation}
|f(t,x,v)| \geq c_1 e^{-\beta t}(1 + |v|)^{-p}
\end{equation}
for all $|v| \geq 1, x \in \mathbb{R}^d$, and $t \in [0,T_0]$.

Proof. Let $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ be a smooth, decreasing function such that $\eta(r) = 2$ when $r \in [0, \frac{1}{2}]$ and $\eta(r) = r^{-p}$ when $r \in [1, \infty)$. Note $\eta(r) \approx (1 + r)^{-p}$. Let us define $\psi(t,x,v) = e^{\beta t} \eta(|v|)$ with β to be chosen later. Choose an arbitrary $R_0 > 1$, and recall from Lemma 2.1 that $a_{ij} \partial_{ij} \psi \geq -C(1 + |v|)^{\gamma+2} |D^2 \psi|$. (Throughout this proof, \tilde{a}_{ij} and \tilde{c} are defined in terms of f.) From our choice of η, it is clear that $|D^2 \psi|/\psi$ is uniformly bounded from above in $\mathbb{R}^+ \times \mathbb{R}^d \times \{v : |v| \leq R_0 + 1\}$, so for $\beta \geq \beta_1$ sufficiently large, we have
\begin{align*}
-\partial_t \psi + \tilde{a}_{ij} \partial_{ij} \psi + \tilde{c} \psi &\geq \beta \psi - C(1 + |v|)^{\gamma+2} |D^2 \psi| \geq 0, \quad |v| \leq R_0 + 1.
\end{align*}

For $|v| \geq R_0$, we estimate $\tilde{a}_{ij} \partial_{ij} \psi$ more carefully. Since $|v| \geq 1$, we have
\begin{align*}
\partial_{ij} \psi &= \frac{\partial_{xx} \psi}{|v|^2} v_i v_j + \frac{\partial_x \psi}{|v|} \left(\delta_{ij} - \frac{v_i v_j}{|v|^2} \right) = \left[p(p+1)|v|^{-4} v_i v_j - p|v|^{-2} \left(\delta_{ij} - \frac{v_i v_j}{|v|^2} \right) \right] e^{-\beta t}|v|^{-p},
\end{align*}
and Lemma 2.1 implies
\begin{align*}
-\partial_t \psi + \tilde{a}_{ij} \partial_{ij} \psi &\geq \beta \psi + \left[p(p+1)C_1 |v|^{-2+\gamma} - pC_2 |v|^\gamma \right] \psi \geq (\beta - C|v|^{\gamma}) \psi.
\end{align*}
For $\beta \geq \beta_2$ sufficiently large, the right-hand side is positive for all $|v| \geq R_0$. Since $\tilde{c}(t,x,v) \geq 0$, this implies $\psi(t,x,v) = e^{-\beta t} \eta(|v|)$ with $\beta = \max(\beta_1, \beta_2)$ is a subsolution of $(-\partial_t + \tilde{a}_{ij} \partial_{ij} + \tilde{c}) g = 0$ in the entire domain $\mathbb{R}^+ \times \mathbb{R}^d$. By (4.13), there is some $c_1 \geq c_0$ so that $f_{in}(x,v) \geq c_1 \psi(0,x,v)$ in \mathbb{R}^d. Now we can apply the maximum principle (see Appendix A) to $c_1 \psi - f$ to conclude (4.14). \hfill \Box

Remark. The bound on the energy $\int_{\mathbb{R}^d} |v|^2 f(t,x,v) \, dv < E_0 \leq \infty$ implies that $f_{in}(x,v)$ cannot be bounded below by $c_0 |v|^{-p}$ with $p \leq d + 2$ as $|v| \to \infty$.

Remark. In particular, Theorem 4.3 tells us that there is no generation of moments when $\gamma \in [-2,0]$.

5. Gaussian bounds

We show the propagation of Gaussian upper bounds. The first lemma says that a sufficiently slowly decaying Gaussian is a supersolution of the linear Landau equation for large velocities. As above, the coefficients \tilde{a}_{ij} and \tilde{c} in (5.1) are defined in terms of f.

Lemma 5.1. Let $\gamma \in (-2,0]$. Let f be a bounded function satisfying (1.3), (1.4), and (1.7). Let \tilde{a} and \tilde{c} be given by (1.2) and (1.3) respectively. If $\alpha > 0$ is sufficiently small, then there exists $R_0 > 0$ and $C > 0$, depending on α, d, γ, M_0, m_0, E_0, H_0 and $\|f\|_{L^\infty}$, such that
\[\phi(v) := e^{-\alpha |v|^2} \]
satisfies
\begin{equation}
\tilde{a}_{ij} \partial_{ij} \phi + \tilde{c} \phi \leq -C|v|^{\gamma+2} \phi,
\end{equation}
for $|v| \geq R_0$.

Proof. Since ϕ is radial, we have
\begin{align*}
\partial_{ij} \phi &= \frac{\partial_{rr} \phi}{|v|^2} v_i v_j + \frac{\partial_r \phi}{|v|} \left(\delta_{ij} - \frac{v_i v_j}{|v|^2} \right) = \left[4\alpha^2 |v|^2 - 2\alpha \right] \left(\delta_{ij} - \frac{v_i v_j}{|v|^2} \right) e^{-\alpha |v|^2},
\end{align*}
and the bounds \((2.1)\) and \((2.2)\) imply
\[
\bar{a}_{ij} \partial_{ij} \phi \leq \left[(4\alpha^2|v|^2 - 2\alpha C_1 |v|^\gamma - 2\alpha C_2 |v|^\gamma + 2) \right] e^{-\alpha|v|^2} \\
= ((4\alpha^2 C_1 - 2\alpha C_2) |v|^\gamma + 2 - 2\alpha C_1 |v|^\gamma) e^{-\alpha|v|^2} \\
\leq -C|v|^\gamma + 2 \phi(v),
\]
for \(|v|\) sufficiently large, provided \(\alpha < C_2/(2C_1)\). With Lemma 2.2 (this is the point where \(\|f\|_{L^\infty}\) plays a role), this implies
\[
\bar{a}_{ij} \partial_{ij} \phi + \bar{c} \phi \leq \left[-C|v|^\gamma + 2 + C|v|^{-2-2\gamma/d} \right] \phi(v).
\]

For \(-2 < \gamma \leq 0\), the first term on the right-hand side will dominate for large \(|v|\), since \(\gamma + 2 > 0 > -2-2\gamma/d\).

Theorem 1.1 gives us an upper bound for a solution \(f\) to the Landau equation which is useful away from \(t = 0\). If the initial data \(f(0, x, v)\) is a bounded function, we can improve our upper bound for small values of \(t\) using the upper bound for \(f(0, x, v)\). That is the purpose of the next lemma.

Lemma 5.2. Let \(f : [0, T_0] \times \mathbb{R}^d \to \mathbb{R}\) be a solution of the Landau equation \((1.1)\) for some \(\gamma \in (-2, 0]\), and suppose that \(g : [0, T_0] \times \mathbb{R}^d \to \mathbb{R}\) is bounded from above and a subsolution to the equation
\[
\partial_t g(t, x, v) + v \cdot \nabla_x g(t, x, v) \leq \bar{a}_{ij}(t, x, v) \partial_{ij} g(t, x, v) + \bar{c}(t, x, v)g(t, x, v),
\]
where \(\bar{a}_{ij}\) and \(\bar{c}\) are defined in terms of \(f\) as in \((1.2)\) and \((1.3)\). Let \(\kappa(t)\) be defined by
\[
\kappa(t) = \begin{cases}
\frac{\beta}{1+\gamma/2}, & 0 \leq t \leq 1 \\
\frac{\beta}{1+\gamma/2} + \beta(t-1), & t \geq 1
\end{cases},
\]
where \(\beta > 0\) depends only on \(d, \gamma, m_0, M_0, E_0,\) and \(H_0\). Then
\[
\sup_{[0, T_0] \times \mathbb{R}^d} e^{-\kappa(t)} g_+(t, x, v) = \sup_{\mathbb{R}^d} g_+(0, x, v).
\]

Proof. By Theorem 1.1 we have that \(f(t, x, v) \leq K_0 v^{-d/2}\) for \(0 < t < 1\). Hence by Lemma 2.2 we have that \(\bar{c}(t, x, v) \leq t^{-\gamma/2}\). Since \(\gamma > -2\), for some universal \(\beta > 0\), \(\kappa(t)\) satisfies \(\bar{c}(t, x, v) \leq \kappa'(t)\) for all \(t \geq 1\). Thus \(\tilde{g}(t, x, v) = e^{-\kappa(t)} g(t, x, v)\) satisfies
\[
\partial_t \tilde{g}(t, x, v) + v \cdot \nabla_x \tilde{g}(t, x, v) \leq \tilde{a}_{ij}(t, x, v) \partial_{ij} \tilde{g}(t, x, v) + (\bar{c}(t, x, v) - \kappa'(t)) \tilde{g}(t, x, v)
\]
\[
\leq \tilde{a}_{ij}(t, x, v) \partial_{ij} \tilde{g}(t, x, v).
\]

We apply Lemma A.2 from the Appendix to \(\tilde{g}(t, x, v) - \sup_{\mathbb{R}^d} g(0, x, v)\) to conclude \((1.4)\).

Proof of Theorem 1.2. Applying Lemma 5.2 with \(g = f\) and \(t \in [0, 1]\) and Theorem 1.1 for \(t > 1\), we have that there is some constant \(C_2\) (depending on \(C_0, d, \gamma, M_0, m_0, E_0,\) and \(H_0\)) so that \(f(t, x, v) \leq C_2\) for all \(t \geq 0, x \in \mathbb{R}^d\) and \(v \in \mathbb{R}^d\).

Let \(\phi(v) := e^{-\alpha|v|^2}\). From Lemma 5.1 we have that there is a \(C\), depending on \(C_2, d, \gamma, M_0, m_0, E_0,\) and \(H_0\), such that
\[
\sup_{(0, T_0] \times \mathbb{R}^d} \tilde{a}_{ij} \partial_{ij} \phi + \tilde{c} \phi \leq C \phi.
\]

Thus \(C_0 e^{C_1 t} \phi(v)\) is a supersolution of the equation and \(f(t, x, v) \leq C_0 e^{C_1 t} \phi(v)\) for all \(t > 0, x \in \mathbb{R}^d\) and \(v \in \mathbb{R}^d\).
This upper bound is good for small values of t. We see that there is some time $t_0 > 0$ so that $C_0 e^{Ct_0} \phi(v) > C_2$ for $|v| < R_0$. Here C_2 is the upper bound for f mentioned above and R_0 is the radius from Lemma [5.1]. Thus, the function
\[g(t, x, v) := \left[f(t_0 + t, x, v) - C_0 e^{Ct_0} \phi(v) \right]_+ \]
is a supersolution of
\[g_t + v \cdot \nabla g \leq \bar{a}_{ij} \partial_{ij} g + \bar{c} g. \]
Applying the maximum principle (Lemma A.2), we have that $g \leq 0$ for all $t > 0$, so $f(t, x, v) \leq C_0 e^{t_0} C \phi(v)$ for all $t > t_0$, and we conclude the proof. \qed

By combining Theorem 1.2 with the local Hölder estimates proved in [8] or [22], we derive a global Hölder estimate for solutions of (1.1) under the assumption that $f_{in}(x, v) \leq C_0 e^{-\alpha |v|^2}$. The following local estimate is essentially the same as Theorem 2 of [8]:

Theorem 5.3. Let f be a weak solution of
\begin{equation}
\partial_t f + v \cdot \nabla f = \nabla_v \cdot (A \nabla_v f) + B \cdot \nabla_v f + s
\end{equation}
in Q_1, with $\lambda I \leq A \leq \Lambda I$, $|B| \leq \Lambda$, and $s \in L^\infty(Q_1)$. Then f is Hölder continuous with respect to (t, x, v) in $Q_{1/2}$, and
\[|f(z_1) - f(z_2)| \leq C \left(\|f\|_{L^2(Q_1)} + \|s\|_{L^\infty(Q_1)} \right), \]
for all $z_1, z_2 \in Q_{1/2}$, where β and C depend on d, λ, and Λ.

To state our theorem as a global Hölder estimate, we will need an appropriate notion of distance in $\mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d$ which is invariant by Galilean transformations. A natural choice is the following
\[d_{P}(z_1, z_2) := \min \left\{ r : \exists z \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d : z_1 \in Q_r(z) \text{ and } z_2 \in Q_r(z) \right\}. \]
We can easily estimate the value of $d_{P}(z_1, z_2)$ by the simpler formula
\[d_{P}(z_1, z_2) \approx |t_1 - t_2|^{1/2} + |x_1 - x_2 - (t_1 - t_2)(v_1 + v_2)/2|^{1/3} + |v_1 - v_2|. \]

It turns out that we need to deform this distance using the transformation T_z described in Lemma 4.1. We define
\[d_{L}(z_1, z_2) := \min \left\{ |v|^{1+\gamma/2} r : z \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d : T_{z_1}^{-1} z_1 \in Q_r \text{ and } T_{z_2}^{-1} z_2 \in Q_r \right\}. \]
(Here, we make the convention that $T_z = S_z$ when $|v| < 2$.) An explicit expression for $d_{L}(z_1, z_2)$ is messy. It involves the affine transformation T which is anisotropic and affects both the x and v variables. In the case that we compare two points with identical values of t and x, it is straightforward to check that when $d_{L}((t, x, v_1), (t, x, v_2)) < 1$, then d_{L} is equivalent to the metric introduced by Gressman-Strain [9] in their study of the Boltzmann equation.

Theorem 5.4. Under the assumptions of Theorem 1.2 there exist $C > 0$ and $\beta \in (0, 1)$ depending on $C_0, \alpha, d, \gamma, m_0, M_0, E_0$, and H_0, such that for any $z_1, z_2 \in [0, T_0] \times \mathbb{R}^d$, one has
\[|f(z_1) - f(z_2)| \leq C \left(e^{-\alpha |v_1|^2} + e^{-\alpha |v_2|^2} \right) \min \left\{ 1, \left(1 + t_1^{-\beta/2} + t_2^{-\beta/2} \right) d_{L}(z_1, z_2)^{\beta} \right\}. \]

Proof. If $|v_1| \leq 2$ or $|v_2| \leq 2$, the result follows by applying Theorem 5.3 directly to f, noting that $1 \leq e^{-\alpha |v_1|^2} + e^{-\alpha |v_2|^2}$. So, we can assume that $|v_1| > 2$ and $|v_2| > 2$.

Let $\tilde{z} := (\tilde{t}, \tilde{x}, \tilde{v})$ be the point achieving the minimum in the definition of $d_{L}(z_1, z_2)$. Thus $\tilde{z}_1 := T_{\tilde{z}}^{-1} z_1 \in Q_\delta$ and $\tilde{z}_2 := T_{\tilde{z}}^{-1} z_2 \in Q_\delta$, where $\delta = |\tilde{v}|^{-1-\gamma/2} d_{L}(z_1, z_2)$. Let $r := \min \left\{ t_1^{1/2}, t_2^{1/2}, (1 + |\tilde{v}|)^{-1-\gamma/2} \right\}$. If $\delta \geq r/2$, then we simply estimate $|f(z_1) - f(z_2)| \leq C_1 (e^{-\alpha |v_1|^2} + e^{-\alpha |v_2|^2})$ from Theorem 1.2. We need to concentrate on the case $\delta < r/2$.

Let us consider the function f_T as in Lemma 4.1, with base point \tilde{z}. By our choice of r, f_T satisfies an equation of the form (5.9) in Q_r, and since Theorem 1.2 gives us a bound on
We have used Theorem 1.2 to estimate the L^∞ norm of \tilde{f}_T in Q_1. Rewriting this estimate, we obtain

$$|f(z_1) - f(z_2)| \lesssim r^{-\beta} |\tilde{v}|^{-\beta(1+\gamma/2)} d_L(z_1, z_2)^{\beta} e^{-\alpha|\tilde{v}|^2} \lesssim \left(1 + t_1^{-\beta/2} + t_2^{-\beta/2} \right) d_L(z_1, z_2)^{\beta} \left(e^{-\alpha|\tilde{v}_1|^2} + e^{-\alpha|\tilde{v}_2|^2}\right).$$

\[\Box\]

Appendix A. Maximum Principle for Weak Solutions to Kinetic Fokker-Planck Equations

In this appendix, we give a proof of the maximum principle in a form that is convenient for our purposes.

The following proposition is perhaps a classical result. We prove it here, since we could not find any easy reference and also for completeness. The result is for equations on a bounded domain with general coefficients (not necessarily defined by integrals as above).

Proposition A.1. Let $Q = [0, T_0] \times \Omega$, where $\Omega \subset \mathbb{R}^{2d}$ is a bounded domain, and assume that g is a subsolution of the equation

\[\partial_t g + v \cdot \nabla_x g \leq \nabla_v \cdot [a(t, x, v) \nabla_v g] + b(t, x, v) \cdot \nabla_v g + c(t, x, v) g,\]

in the weak sense in Q, where a is uniformly elliptic in Q with constants λ and Λ, and b and c are uniformly bounded in Q.

If $g \leq 0$ on the parabolic boundary of Q, then $g \leq 0$ in Q.

Proof. Choosing the test function $\phi = g_+$, the weak formulation of (A.1) gives

$$\int_Q g_+ \left(\partial_t g + v \cdot \nabla_x g\right) \, dx \, dv \, dt \leq \int_Q \left(-a \nabla_v g \nabla_v g_+ - g_+ b \cdot \nabla g + cg_+^2\right) \, dx \, dv \, dt,$$

or

$$\int_Q \frac{1}{2} \frac{d}{dt} (g_+)^2 \, dx \, dv \, dt \leq \int_Q \left(-\lambda |\nabla_v g_+|^2 - bg \nabla g_+ + cg_+^2\right) \, dx \, dv \, dt \leq \left(\frac{\|b||L^\infty}{4\lambda} + \|c||L^\infty\right) \int_Q g_+^2 \, dx \, dv \, dt,$$

by Young’s inequality. We apply Gronwall’s Lemma to $\int_Q (g_+)^2 \, dx \, dv$ on $[0, T_0]$ to conclude $g_+ \equiv 0$ in Q. \[\Box\]

Next, we derive a maximum principle on the whole space for subsolutions of a Landau-type equation without a zeroth-order term:
Lemma A.2. Let g be a bounded function on $[0, T_0] \times \mathbb{R}^d$ that satisfies
\begin{equation}
\partial_t g + v \cdot \nabla_x g \leq \bar{a}(t, x, v) D_v^2 g,
\end{equation}
in the weak sense. Here, $\bar{a}(t, x, v)$ is defined as in \eqref{eq:A.2} in terms of a function f satisfying \eqref{eq:A.1}, \eqref{eq:A.0}, and \eqref{eq:A.7}. If $g(0, x, v) \leq 0$ in \mathbb{R}^d, then $g(t, x, v) \leq 0$ in $[0, T_0] \times \mathbb{R}^d$.

Proof. By the bounds on \bar{a} given in Lemma 2.1 we have
$$
\bar{a}_{ij} \partial_{ij}(1 + |v|) \leq C_1 (1 + |v|)^{1+\gamma},
$$
for some constant C_1, and thus $\phi(t, v) := e^{C_1 t}(1 + |v|)$ satisfies
$$
\partial_t \phi - \bar{a} \partial_{ij}(t, x, v)\partial_{ij} \phi(t, v) \geq 0,
$$
whenever $|v| < R_1$. Finally, for $\varepsilon_2 > 0$ arbitrary, we define
$$
g(t, x, v) := [g(t, x, v) + \varepsilon_1 \phi(t, v) - \varepsilon_2 \phi(t, x)]^+.
$$
It is clear that \tilde{g} is a subsolution as in \eqref{eq:A.1} with $c \equiv 0$, whenever $|v| < R_1$. For $R(\varepsilon_2)$ sufficiently large, we have that $g - \varepsilon_1 \phi - \varepsilon_2 \phi_2 < 0$ for $|x| \geq R(\varepsilon_2)$ or $|v| \geq R(\varepsilon_1)$. Then for any $R_2 > R(\varepsilon_2)$, we have that $\tilde{g} = 0$ on the parabolic boundary of $[0, T_0] \times B_{R_2} \times B_{R_1}$, so Proposition A.1 applied to \tilde{g} gives
$$
g - \varepsilon_1 \phi_1 - \varepsilon_2 \phi_2 \leq 0, \quad |v| < R_1, \quad |x| < R_2.
$$
Take $R_2 \to \infty$ and $\varepsilon_2 \to 0$ to conclude
$$
g - \varepsilon_1 \phi_1 \leq 0, \quad |v| < R_1.
$$
Take $R_1 \to \infty$ and $\varepsilon_1 \to 0$, and the proof is complete. \hfill \Box

References

[1] R. Alexandre, J. Liao, and C. Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. *Kinet. Relat. Models*, 8(4):617–650, 2015.
[2] R. Alexandre and C. Villani. On the Landau approximation in plasma physics. *Annales de l’Institut Henri Poincaré (C) Non Linear Analysis*, 21(1):91 – 125, 2004.
[3] C. Bardos, F. Golse, and D. Levermore. Fluid dynamic limits of kinetic equations. I. Formal derivations. *J. Statist. Phys.*, 63(1-2):323–344, 1991.
[4] S. Chapman and T. G. Cowling. *The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases*. Cambridge University Press, 3rd edition, 1970.
[5] L. Desvillettes. Entropy dissipation estimates for the Landau equation in the Coulomb case and applications. *Journal of Functional Analysis*, 269(5):1359 – 1403, 2015.
[6] L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials part I: existence, uniqueness and smoothness. *Communications in Partial Differential Equations*, 25(1-2):179–259, 2000.
[7] I. M. Gamba, V. Panferov, and C. Villani. Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. *Arch. Ration. Mech. Anal.*, 194(1):253–282, 2009.
[8] F. Golse, C. Imbert, C. Mouhot, and A. Vasseur. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. *arXiv preprint arXiv:1607.08068*, 2016.
[9] P. T. Gressman and R. M. Strain. Global classical solutions of the Boltzmann equation without angular cut-off. *J. Amer. Math. Soc.*, 24(3):771–847, 2011.
[10] Y. Guo. The Landau equation in a periodic box. *Communications in Mathematical Physics*, 231(3):391–434, 2002.
[11] Q. Han and F.-H. Lin. *Elliptic partial differential equations*. Courant Lecture Notes. Courant Institute of Mathematical Sciences, New York University, 2nd edition, 2011.
[12] C. Imbert and L. Silvestre. Weak Harnack inequality for the Boltzmann equation without cut-off. *arXiv preprint arXiv:1608.07571*, 2016.
E. M. Lifshitz and L. P. Pitaevskii. Physical Kinetics, volume 10 of Course of Theoretical Physics. Butterworth-Heinemann, 1st edition, 1981.

S. Liu and X. Ma. Regularizing effects for the classical solutions to the Landau equation in the whole space. *Journal of Mathematical Analysis and Applications*, 417(1):123 – 143, 2014.

C. Mouhot and L. Neumann. Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. *Nonlinearity*, 19(4):969, 2006.

A. Pascucci and S. Polidoro. The Moser’s iterative method for a class of ultraparabolic equations. *Communications in Contemporary Mathematics*, 06(03):395–417, 2004.

L. Silvestre. Upper bounds for parabolic equations and the Landau equation. *arXiv preprint, arXiv:1511.03248*, 2015.

L. Silvestre. A new regularization mechanism for the Boltzmann equation without cut-off. *Comm. Math. Phys.*, 348(1):69–100, 2016.

C. Villani. On the Cauchy problem for Landau equation: sequential stability, global existence. *Adv. Differential Equations*, 1(5):793–816, 1996.

C. Villani. On the spatially homogeneous Landau equation for Maxwellian molecules. *Mathematical Models and Methods in Applied Sciences*, 08(06):957–983, 1998.

W. Wang and L. Zhang. The C^1 regularity of a class of non-homogeneous ultraparabolic equations. *Science in China Series A: Mathematics*, 52(8):1589–1606, 2009.

W. Wang and L. Zhang. The C^1 regularity of weak solutions of ultraparabolic equations. *Discrete Contin. Dyn. Syst.*, 29(3):1261–1275, 2011.

K.-C. Wu. Global in time estimates for the spatially homogeneous Landau equation with soft potentials. *Journal of Functional Analysis*, 260(5):3134 – 3155, 2014.