Estimation of samples relevance by their histograms.

Mikhail A. Antonets

1. Introduction.

Main object, discussed in the paper is a set R of the samples which are the functions on a finite set $T = \{1, 2, ..., |T|\}$ with values from a finite set V. We suppose, that these samples are the result of multiple registration of a dynamic system characteristics that evolve in a mode of operation. In the case, when the function f on the set T was got in a such manner but under conditions, that the mode of operation was not established exactly the following question may be formulated: is the function f relevant to the mode of operation presented by the set of samples R.

We suggest an answer to this question using the defined below set M of histograms:

for any function r from the set R its histogram m is the function on the set V defined by the relation

$$m(v) = |\{t: t \in T, r(s) = v\}|, v \in V$$

Any histogram m from the set satisfies M the equality

$$\sum_{v \in V} m(v) = |T|$$

(1)

Our solutions is based on the supporting and covering weights for the set M introduced in [1].

2. Supporting weights and covering weights .

Definition 1. A weight x on the set V is a nonnegative function such that

$$|x| = \sum_{v \in V} x(v) = 1$$

(2)

The set of all weights on the set V will be denoted by Δ_V.

For any functions x, m defined on the set V we set

$$(x, m)_V = \sum_{v \in V} x(v)m(v)$$

Definition 2. A weight x^M on the set V is supporting weight for the set M of the function on the set V if for any weight x on the set V the following inequalities hold

$$\min_{m \in M}(x^M, m)_V \geq \min_{m \in M}(x, m)_V$$

The set of supporting weights $\{x^M\}$ coincides with the set of solutions of the variational problem

$$\min_{m \in M}(x^M, m)_V = \max_{x \in \Delta_V} \min_{m \in M}(x, m)_V$$

(3)

As a quantitative estimation of the degree of relevance, i.e. the correspondence of the tested function f to the criteria for the formation of the set of functions R is based on, we propose the value
where \(\tilde{x}^M \) is the constructed weight and \(m_f \) is histogram of the function \(f \).

Definition 2. A weight \(\tilde{x}^M \) on a set \(V \) will be called covering one for a set of functions \(M \) if for any weight \(x \) on the set \(V \) it satisfies the inequality

\[
\max_{m \in M}(x^M, m)_V \leq \max_{m \in M}(\tilde{x}^M, m)_V
\]

The set of covering weights \(\{\tilde{x}^M\} \) coincides with the set of solutions of the variational problem

\[
\max_{m \in M}(x^M, m)_V = \min_{x \in \Delta_V} \max_{m \in M}(x, m)_V
\]

The weight \(\tilde{x}^M \) characterizes the irrelevance of the function \(f \) to the set of functions \(R \) by means of the value

\[
\tilde{s}^M(f) = \sum_{v \in V} m_f(v) \tilde{x}^M(v)
\]

which decreases with the relevance’s growth.

The below-formulated well-known Theorem 1 and Theorem 2 (see [2,3]) states that the discussed variational problems can be reduced to the following linear programming problems:

Theorem 1. Any supporting weight \(\bar{x}^M \) is a solution of the following problem:

find all the pairs \(\{\alpha^M, \tilde{x}^M\}, \quad \alpha^M \in \mathbb{R}, \quad \tilde{x}^M \in \Delta_V \), that maximize the value \(\alpha \) under the conditions

\[
x(v) \geq 0, \quad v \in V,
\]

and the inequalities

\[
\alpha - (x, m)_V \leq 0, \quad \forall m \in M
\]

Theorem 2. Any covering weight \(\bar{x}^M \) is a solution of the following problem:

Find all the pairs \(\{\bar{\alpha}^M, \bar{x}^M\}, \quad \bar{\alpha}^M \in \mathbb{R}, \quad \bar{x}^M \in \Delta_V \), that minimize the value \(\alpha \) under the conditions

\[
\alpha - (x, m)_V \geq 0, \quad \forall m \in M
\]

Since for the uniformly distributed weight \(x_0(v) \equiv \frac{1}{|V|} \) on the set \(V \) the following equalities holds

\[
\sum_{v \in V} m(v)x_0(v) = \frac{|\Gamma|}{|V|}
\]

then the following inequality hold
\[\alpha^M \geq \frac{|\mathcal{V}|}{|\mathcal{V}|-1} \]
\[\bar{\alpha}^M \leq \frac{|\mathcal{V}|}{|\mathcal{V}|-1} \]

3. Reduction of dimension of variation problems

Theorem 3. For an element \(w \) from the set \(\mathcal{V} \) and an arbitrary finite set \(M \) of nonnegative functions on the set \(\mathcal{V} \) the following statements hold:

1) if for any function \(m \) from the set \(M \) the following inequality take place

\[m(w) < \frac{1}{|\mathcal{V}|-1}\sum_{v \in \mathcal{V}, v \neq w} m(v) \]
then for any supporting weight \(\chi^M \) the following equality holds

\[\chi^M (w) = 0 \]

2) if for any function \(m \) from the set \(M \) the following inequality take place

\[m(w) > \frac{1}{|\mathcal{V}|-1}\sum_{v \in \mathcal{V}, v \neq w} m(v) \]
then for any covering weight \(\bar{\chi}^M \) the following equality holds

\[\bar{\chi}^M (w) = 0 \]

Proof. To prove the assertion 1) for given supporting weight \(\chi^M \) let us construct the weight \(\bar{\chi} \), assuming that

\[\bar{\chi}(w) = 0 \]

and

\[\bar{\chi}(v) = \chi^M (v) + \frac{\chi^M (w)}{|\mathcal{V}|-1} \]

for any \(v, v \neq w \).

Then

\[\sum_{v \in \mathcal{V}, v \neq w} \bar{\chi}(v) = 1 \]

and for arbitrary function \(m \) from the set \(M \) the following relations hold

\[(\bar{\chi}, m)_V = (\chi^M , m)_V - \sum_{v \in \mathcal{V}, v \neq w} m(v)(\chi^M (v) + \frac{\chi^M (w)}{|\mathcal{V}|-1}) - \sum_{v \in \mathcal{V}} \chi^M (v)m(v) = \]

\[= \chi^M (w)(\sum_{v \in \mathcal{V}, v \neq w} m(v)\frac{1}{|\mathcal{V}|-1} - m(w)) \]
and by virtue inequality (11) the inequality

\[(\bar{x}, m)_V - (\bar{x}^M, m)_V > 0\] \hspace{1cm} (13)

takes place when

\[\bar{x}^M(w) \neq 0\]

in contradiction with supporting weight definition. The proof of the assertion 2) is similarly. The theorem is proved.

Corollary. In the case when the set \(M\) is a set of histogram, generated by functions on the set \(T\) with the values in the set \(V\) there is the equality

\[\frac{1}{|V| - 1} \sum_{v \in V, w \in W} m(v) - m(w) = \frac{1}{|V| - 1} (|T| - m(w)) - m(w) = \frac{1}{|V| - 1} (|T| - |V| m(w))\]

and inequality (11) takes the form

\[m(w) < \frac{|T|}{|V|}\] \hspace{1cm} (13)

and inequality (12) takes the form

\[m(w) > \frac{|T|}{|V|}\] \hspace{1cm} (14)

4. **Classification of the set of histograms for** \(V = \{0, 1\}\).

The sets \(R\) of samples with values from the set \{0,1\} gives the most simple examples of the histogram. Any histogram in this case is the pair of natural numbers \(\{m(0), m(1)\}\) satisfying the equality

\[m(0) + m(1) = |T|\] \hspace{1cm} (15)

The weights \(\bar{x}^M\), \(\bar{x}^M\) and its dual weights \(\bar{x}^\mathcal{V}\), \(\bar{x}^\mathcal{V}\), \(\mathcal{V} = \{\mathcal{v} : \mathcal{v} \in V\}\), where

\[\mathcal{v} : M \rightarrow V, \mathcal{v}(m) = m(\mathcal{v})\]

(see [1]) may be constructed in the explicit form.

Theorem 4. For any set of histogram \(M\) generated by the set \(R\) of all functions on the finite set \(T\) and the set of value \(V = \{0, 1\}\) the following assertions are:

1) Let for any histogram \(m\) from the set \(M\) the following inequality hold

\[m(0) > m(1)\] \hspace{1cm} (16)

then the following equality take place.

\[\bar{a}^M = \min_{m \in M} m(0)\] \hspace{1cm} (17)
\(x^M = \{1,0\} \) \hspace{1cm} (18)

\(\overline{\alpha}^M = \max_{m \in M} m(1) \) \hspace{1cm} (19)

\(\overline{x}^M = \{0,1\} \) \hspace{1cm} (20)

2) if the set \(M \) contains such histograms \(m', m'' \) that the following inequality take place

\[
\begin{align*}
m'(1) & \geq m'(0) \quad (21) \\
m''(1) & \leq m''(0) \quad (22)
\end{align*}
\]

then the following equalities hold

\[
\begin{align*}
\overline{\alpha}^M & = \overline{\alpha}^M = \frac{|T|}{2} \hspace{1cm} (23) \\
\overline{x}^M & = \overline{x}^M = \left\{ \frac{1}{2}, \frac{1}{2} \right\} \hspace{1cm} (24)
\end{align*}
\]

Proof. In the case 1) it follow from the condition (16) that to maximize the sum

\[
m(0)x(0) + m(1)x(1)
\]

for any function \(m \) from the set \(M \) it is necessary put \(x(1) = 0 \) that lead us to equality (17).

In the case 2) by virtue inequalities (21), (22) it follows that the value \((x, m')_V \) no decrease and the value \((x, m'')_V \) no increase when the values \(x(1) \) grows. Therefore the equalities (15) and

\[
\left(\left\{ \frac{1}{2}, \frac{1}{2} \right\}, m' \right) = \left(\left\{ \frac{1}{2}, \frac{1}{2} \right\}, m'' \right) = \frac{|T|}{2}
\]

lead to relations (23), (24). The theorem is proved.

The principle of complementary slackness for the weight \(\overline{x}_V^\hat{\beta} \) gives in the case 1) the relation

\[
\sum_{m \in M} m(0)\overline{x}_V^\hat{\beta}(m) = \min_{m \in M} m(0)
\]

That implies that the set of covering weights for the set of functions \(\hat{\nu} \) consist of all weights vanishing outside the set of all functions from the set \(M \) that reach the value \(\min_{m \in M} m(0) \).

Similarly we get that the set of supporting weights for the set of functions \(\hat{\nu} \) consist of all weights vanishing outside the set of all functions from the set \(M \) that reach the value \(\max_{m \in M} m(1) \).

In the case 2) the principle of complementary slackness for the weight \(\overline{x}_V^\hat{\beta} \) gives the relation

\[
\sum_{m \in M} m(j)\overline{x}_V^\hat{\beta}(m) = \frac{|T|}{2} \hspace{1cm} j = 0,1
\]

For any pair functions \(u = \{m', m''\}, m', m'' \in M \) satisfying the condition (21), (22), there exists a solution \(\overline{x}_V^\hat{\beta}, u \) of the system of two linear equations (25), belonging to the set of covering weight for the set \(\hat{\nu} \):
\[\bar{x}_u^\varphi (m) = 0 \text{ for all } m \text{ distinct from } m', m'' \]
\[\bar{x}_u^\varphi (m') = \frac{m''(0) - \frac{1}{2}\overline{T}}{m''(0) - m'(0)} = \frac{\frac{1}{2}|T|-m''(1)}{m'(1) - m''(1)} \]
\[\bar{x}_u^\varphi (m'') = \frac{\frac{1}{2}|T|-m'(0)}{m''(0) - m'(0)} = \frac{m'(1) - \frac{1}{2}|T|}{m'(1) - m''(1)} \]

References.

1. Antonets, M.A.; Kogan, G.P. (2016) The variational principle for weights characterizing the relevance. arXiv:1609.01533

2. Dantzig G.B. A proof of the equivalence of the programming and the game problem. Activity Analysis of Production and Allocation, ed. By Koopmans T. C., Cowles Commission Monograph, № 13, New York, Wiley, 1951. p.330-335.

3. Ferguson T.S. Game theory http://www.gametheory.net/books/online.html