THE LIE ALGEBRA OF TYPE G_2 IS RATIONAL OVER ITS QUOTIENT BY THE ADJOINT ACTION

DAVE ANDERSON, MATHIEU FLORENCE, AND ZINOYY REICHSTEIN

Abstract. Let G be a split simple group of type G_2 over a field k, and let \mathfrak{g} be its Lie algebra. Answering a question of J.-L. Colliot-Thélène, B. Kunyavskiǐ, V. L. Popov, and Z. Reichstein, we show that the function field $k(\mathfrak{g})$ is generated by algebraically independent elements over the field of adjoint invariants $k(\mathfrak{g})^G$.

Résumé. Soit G un groupe algébrique simple et déployé de type G_2 sur un corps k. Soit \mathfrak{g} son algèbre de Lie. On démontre que le corps des fonctions $k(\mathfrak{g})$ est transcendant pur sur le corps $k(\mathfrak{g})^G$ des invariants adjoints. Ceci répond par l'affirmative à une question posée par J.-L. Colliot-Thélène, B. Kunyavskiǐ, V. L. Popov et Z. Reichstein.

I. Introduction. Let G be a split connected reductive group over a field k and let \mathfrak{g} be the Lie algebra of G. We will be interested in the following natural question:

Question 1. Is the function field $k(\mathfrak{g})$ purely transcendental over the field of invariants $k(\mathfrak{g})^G$ for the adjoint action of G on \mathfrak{g}? That is, can $k(\mathfrak{g})$ be generated over $k(\mathfrak{g})^G$ by algebraically independent elements?

In [5], the authors reduce this question to the case where G is simple, and show that in the case of simple groups, the answer is affirmative for split groups of types A_n and C_n, and negative for all other types except possibly for G_2. The standing assumption in [5] is that $\text{char}(k) = 0$, but here we work in arbitrary characteristic.

The purpose of this note is to settle Question 1 for the remaining case $G = G_2$.

Theorem 2. Let k be an arbitrary field and G be the simple split k-group of type G_2. Then $k(\mathfrak{g})$ is purely transcendental over $k(\mathfrak{g})^G$.

Under the same hypothesis, and also assuming $\text{char}(k) = 0$, it follows from Theorem 2 and [5, Theorem 4.10] that the field extension $k(G)/k(G)^G$ is also purely transcendental, where G acts on itself by conjugation.

Apart from settling the last case left open in [5], we were motivated by the (still mysterious) connection between Question 1 and the Gelfand-Kirillov (GK) conjecture [9]. In this context $\text{char}(k) = 0$. A. Premet [11] recently showed that the GK conjecture fails for simple Lie algebras of any type other than A_n, C_n and G_2. His paper relies on the negative results of [5] and their characteristic p analogues ([11], see also [5, Theorem 6.3]). It is not known whether a positive answer to Question 1 for \mathfrak{g} implies the GK conjecture for \mathfrak{g}. The GK conjecture has been proved for algebras of type A_n (see [9]), but remains open for types C_n and G_2. While Theorem 2 does not settle the GK conjecture for type G_2, it puts the remaining two open cases—for algebras of type C_n and G_2—on equal footing vis-à-vis Question 1.

II. Twisting. Temporarily, let W be a linear algebraic group over a field k. (In the sequel, W will be the Weyl group of G; in particular, it will be finite and smooth.) We refer to [7, Section 3], [8, Section 2], or [5, Section 2] for details about the following facts.

D.A. was partially supported by NSF Grant DMS-0902967. Z.R. was partially supported by National Sciences and Engineering Research Council of Canada grant No. 250217-2012.
Let X be a quasi-projective variety with a (right) W-action defined over k, and let ζ be a (left) W-torsor over k. The diagonal left action of W on $X \times_{\text{Spec}(k)} \zeta$ (by $g.(x,z) = (xg^{-1}, gz)$) makes $X \times_{\text{Spec}(k)} \zeta$ into the total space of a W-torsor $X \times_{\text{Spec}(k)} \zeta \to B$. The base space B of this torsor is usually called the \emph{twist} of X by ζ. We denote it by ζX.

It is easy to see that if ζ is trivial then ζX is k-isomorphic to X. Hence, ζX is a k-form of X, i.e., X and ζX become isomorphic over an algebraic closure of k.

The twisting construction is functorial in X: a W-equivariant morphism $X \to Y$ (or rational map $X \dashrightarrow Y$) induces a k-morphism $\zeta X \to \zeta Y$ (resp., rational map $\zeta X \dashrightarrow \zeta Y$).

III. The split group of type G_2. We fix notation and briefly review the basic facts, referring to [13], [1], or [2] for more details. Over any field k, a simple split group G of type G_2 has a faithful seven-dimensional representation V. Following [2, (3.11)], one can fix a basis f_1, \ldots, f_7, with dual basis X_1, \ldots, X_7, so that G preserves the nonsingular quadratic norm $N = X_1X_7 + X_2X_6 + X_3X_5 + X_4^2$. (See [1, §6.1] for the case $\text{char}(k) = 2$. In this case V is not irreducible, since the subspace spanned by f_4 is invariant; the quotient $V/(k \cdot f_4)$ is the minimal irreducible representation. However, irreducibility will not be necessary in our context.) The corresponding embedding $G \hookrightarrow \text{GL}_7$ yields a split maximal torus and Borel subgroup $T \subset B \subset G$, by intersecting with diagonal and upper-triangular matrices. Explicitly, the maximal torus is

\begin{equation}
T = \text{diag}(t_1, t_2, t_1^{-1}t_2, 1, t_1^{-1}t_2^{-1}, t_2^{-1}, t_1^{-1}) ;
\end{equation}

cf. [2, Lemma 3.13].

The Weyl group $W = N(T)/T$ is isomorphic to the dihedral group with 12 elements, and the surjection $N(T) \to W$ splits. The inclusion $G \hookrightarrow \text{GL}_7$ thus gives rise to an inclusion $N(T) = T \times W \hookrightarrow D \rtimes_S 7$, where $D \subset \text{GL}_7$ is the subgroup of diagonal matrices. On the level of the dual basis X_1, \ldots, X_7, we obtain an isomorphism $W \cong S_3 \times S_2$ realized as follows: S_3 permutes the three ordered pairs $(X_1, X_7), (X_2, X_6)$ and (X_3, X_5), and S_2 exchanges the two ordered triples (X_1, X_5, X_6) and (X_7, X_3, X_2). The variable X_4 is fixed by W. For details, see [2, §A.3].

The subgroup $P \subset G$ stabilizing the isotropic line spanned by f_1 is a maximal standard parabolic, and the corresponding homogeneous space $P\backslash G$ is isomorphic to the five-dimensional quadric $Q \subset \mathbb{P}(V)$ defined by the vanishing of the norm, i.e., by the equation

\begin{equation}
X_1X_7 + X_2X_6 + X_3X_5 + X_4^2 = 0 .
\end{equation}

Note that the quadric Q is endowed with an action of T. An easy tangent space computation shows that P is smooth regardless of the characteristic of k.

Lemma 3. The group P is special, i.e., $H^1(l/P) = \{1\}$ for every field extension l/k. Moreover, P is rational, as a variety over k.

Proof. Since the split group of type G_2 is defined over the prime field, we may replace k by the prime field for the purpose of proving this lemma, and in particular, we can assume k is perfect. We begin by briefly recalling a construction of Chevalley [4]. The isotropic line $E_1 \subset V$ stabilized by P is spanned by f_1, and P also preserves an isotropic 3-space E_3 spanned by f_1, f_2, f_3; see, e.g., [2, §2.2]. There is a corresponding map $P \to \text{GL}(E_3/E_1) \cong \text{GL}_2$, which is a split surjection thanks to the block matrix described in [10, p. 13] as the image of \textquotedblleft B\textquotedblright in GL_7. The kernel is unipotent, and we have a split exact sequence corresponding to the Levi decomposition:

\begin{equation}
1 \to R_u(P) \to P \to \text{GL}_2 \to 1 .
\end{equation}

Combining the exact sequence in cohomology induced by (3) with the fact that both $R_u(P)$ and GL_2 are special (see [12, pp. 122 and 128]), shows that P is special.
Since P is isomorphic to $R_u(P) \times \text{GL}_2$ as a variety over k, and P is smooth, so is $R_u(P)$. A smooth connected unipotent group over a perfect field is rational [6, IV, §2(3.10)]: therefore $R_u(P)$ is k-rational, and so is P. \hfill \Box

IV. Proof of Theorem 2. Keep the notation of the previous section. By a W-model (of $k(Q)^T$), we mean a quasi-projective k-variety Y, endowed with a right action of W, together with a dominant W-equivariant k-rational map $Q \to Y$ which, on the level of function fields, identifies $k(Y)$ with $k(Q)^T$. Such a map $Q \to Y$ is called a (W-equivariant) rational quotient map. A W-model is unique up to a W-equivariant birational isomorphism; we will construct an explicit one below.

We reduce Theorem 2 to a statement about rationality of a twisted W-model, in two steps. The first holds for general split connected semisimple groups G.

Proposition 4. Let G be a split connected semisimple group over k, with split maximal k-torus T. Let $K = k(t)^W$, $L = k(t)$, and let Q be the W-torsor corresponding to the field extension L/K. If the twisted variety $G\!/T_K$ is rational over K, then $k(g)$ is purely transcendental over $k(g)^G$.

Proof. Consider the $(G \times W)$-equivariant morphism

$$f: G/T \times_{\text{Spec}(k)} t \to g$$

given by $(\pi, t) \mapsto \text{Ad}(a)t$, where t is the Lie algebra of T, $\pi \in G/T$ is the class of $a \in G$, modulo T. Here G acts on $G/T \times t$ by translations on the first factor (and trivially on t), and via the adjoint representation on g. The Weyl group W naturally acts on t and G/T (on the right), diagonally on $G/T \times t$, and trivially on g.

The image of f contains the semisimple locus in g, so f is dominant and induces an inclusion $f^*: k(g) \hookrightarrow k(G/T \times t)$. Clearly $f^* k(g) \subset k(G/T \times t)^W$. We will show that in fact

$$f^* k(g) = k(G/T \times t)^W.$$

Write \overline{k} for an algebraic closure of k, and note that the preimage of a \overline{k}-point of g in general position is a single W-orbit in $(G/T \times t)_{\overline{k}}$. To establish (4), it remains to check that f is smooth at a general point (g, x) of $G/T \times t$. (In particular, when char($k) = 0$ nothing more is needed.) To carry out this calculation, we may assume without loss of generality that k is algebraically closed and (since f is G-equivariant) $g = 1$. Since $\dim(G/T \times t) = \dim(g)$, it suffices to show that the differential

$$df: T_{(1, x)}(G/T \times t) \to T_x(g)$$

is surjective, for any regular semisimple element $x \in t$. Equivalently, we want to show that $[x, g] + t = g$. Since x is regular, we have $\dim([x, g]) + \dim t = \dim g$. Thus it remains to show that $[x, g] \cap t = 0$. To see this, suppose $[x, y] \in t$ for some $y \in g$. Since x is semisimple, we can write $y = \sum_{i=1}^r y_{\lambda_i}$, where y_{λ_i} is an eigenvector for $\text{ad}(x)$ with eigenvalue λ_i. If $\lambda_1, \ldots, \lambda_r$ are distinct. Then $[x, y] = \sum_{i=1}^r \lambda_i y_{\lambda_i} \in t$ is an eigenvector for $\text{ad}(x)$ with eigenvalue 0. Remembering that eigenvectors of $\text{ad}(x)$ with distinct eigenvalues are linearly independent, we conclude that $[x, y] = 0$. This completes the proof of (4).

It is easy to see $k(G/T \times t)^G = k(t)^W$. Summarizing, f^* induces a diagram

$$\begin{array}{ccc}
\text{Spec}(k) \times_{k(t)^W} k(g) & \longrightarrow & k(g) \\
\downarrow & & \downarrow \\
\text{Spec}(k) \times_{k(t)^W} k(g) & \longrightarrow & k(g)^G.
\end{array}$$

\hfill \Box

□
where the top row is the \(G \)-equivariant isomorphism (4), and the bottom row is obtained from the top by taking \(G \)-invariants. Note that

\[
k(G/T \times_{\Spec(k)} t) \simeq K((G/T)_K \times_{\Spec(K)} \Spec L),
\]

where \(\simeq \) denotes a \(G \)-equivariant isomorphism of fields. (Recall that \(G \) acts trivially on \(t \) and hence also on \(L \) and \(K \).) Thus the field extension on the left side of our diagram can be rewritten as \(K(\zeta(G_K/T_K))/K \), where \(\zeta \) is the \(W \)-torsor \(\Spec(L) \rightarrow \Spec(K) \). By assumption, this field extension is purely transcendental; the diagram shows it is isomorphic to \(k(g)/k(g)^G \). \(\square \)

For the second reduction, we return to the assumptions of Section III.

Proposition 5. Let \(G \) be a split simple group of type \(G_2 \), with maximal torus \(T \) and Weyl group \(W \), and let \(Q \) be the quadric defined in Section III. Suppose that for a given \(W \)-model \(Y \) of \(k(Q)^T \), and for some \(W \)-torsor \(\zeta \) over some field \(K/k \), the twisted variety \(\zeta(Y_K) \) is rational over \(K \). Then the twisted variety \(\zeta(G_K/T_K) \) is rational over \(K \).

Proof. For the purpose of this proof, we may view \(K \) as a new base field and replace it with \(k \).

We claim that the left action of \(P \) on \(G/T \) is generically free. Since \(G \) has trivial center, the (characteristic-free) argument at the beginning of the proof of [5, Lemma 9.1] shows that in order to establish this claim it suffices to show that the right \(T \)-action on \(Q = P^7G \) is generically free. The latter action, given by restricting the linear action (1) of \(T \) on \(\mathbb{P}^6 \) to the quadric \(Q \) given by (2), is clearly generically free.

Let \(Y \) be a \(W \)-model. The \(W \)-equivariant rational map \(G/T \dashrightarrow Y \) induced by the projection \(G \rightarrow P\backslash G = Q \) is a rational quotient map for the left \(P \)-action on \(G/T \); cf. [5, p. 458]. Since the \(P \)-action is generically free, this map is a \(P \)-torsor over the generic point of \(Y \); see [3, Theorem 4.7]. By the functoriality of the twisting operation, after twisting by a \(W \)-torsor \(\zeta \), we obtain a rational map \(\zeta(G/T) \dashrightarrow \zeta Y \), which is a \(P \)-torsor over the generic point of \(\zeta Y \). This torsor has a rational section, since \(P \) is special; see Lemma 3. In particular, \(\zeta(G/T) \) is \(k \)-birationally isomorphic to \(P \times \zeta Y \). Since \(P \) is \(k \)-rational (once again, by Lemma 3), \(\zeta(G/T) \) is rational over \(\zeta Y \). Since \(\zeta Y \) is rational over \(k \), we conclude that so is \(\zeta(G/T) \), as desired. \(\square \)

It remains to show that the hypothesis of Proposition 5 holds. As before, we may replace the field \(K \) with \(k \). The following lemma completes the proof of Theorem 2.

Lemma 6. Let \(Y \) be a \(W \)-model. The twisted variety \(\zeta Y \) is rational over \(k \), for every \(W \)-torsor \(\zeta \) over \(k \).

Proof. We begin by constructing an explicit \(W \)-model. The affine open subset \(Q^{\text{aff}} = \{ x_1x_7 + x_2x_6 + x_3x_5 + 1 = 0 \} \subset \mathbb{A}^6 \) (where \(X_4 \neq 0 \)) is \(N(T) \)-invariant. Here the affine coordinates on \(\mathbb{A}^6 \) are \(x_i := X_i/X_4 \), for \(i \neq 4 \). The field of rational functions invariant for the \(T \)-action on \(Q^{\text{aff}} \) is \(k(y_1, y_2, y_3, z_1, z_2) \), where the variables

\[
y_1 = x_1x_7, \quad y_2 = x_2x_6, \quad y_3 = x_3x_5, \quad z_1 = x_1x_5x_6, \quad \text{and} \quad z_2 = x_2x_3x_7
\]

are subject to the relations \(y_1 + y_2 + y_3 + 1 = 0 \) and \(y_1y_2y_3 = z_1z_2 \). Thus we may choose as a \(W \)-model the affine subvariety \(\Lambda_1 \) of \(\mathbb{A}^5 \) given by these two equations, where \(W = S_2 \times S_3 \) acts on the coordinates as follows: \(S_2 \) permutes \(z_1, z_2 \), and \(S_3 \) permutes \(y_1, y_2, y_3 \). (Recall the \(W \)-action defined in Section III, and note that the field \(k(Q) \) is recovered by adjoining the classes of variables \(x_1 \) and \(x_2 \).) We claim that \(\Lambda_1 \) is \(W \)-equivariantly birationally isomorphic to

\[
\begin{align*}
\Lambda_2 &= \{ (Y_1 : Y_2 : Y_3 : Z_0 : Z_1 : Z_2) : Y_1 + Y_2 + Y_3 + Z_0 = 0 \text{ and } Y_1Y_2Y_3 = Z_1Z_2Z_0 \} \subset \mathbb{P}^5, \\
\Lambda_3 &= \{ (Y_1 : Y_2 : Y_3 : Z_1 : Z_2) : Y_1Y_2Y_3 + (Y_1 + Y_2 + Y_3)Z_1Z_2 = 0 \} \subset \mathbb{P}^4, \text{ and} \\
\Lambda_4 &= \{ (Y_1 : Y_2 : Y_3 : Z_1 : Z_2) : Z_1Z_2 + Y_2Y_3 + Y_1Y_3 + Y_1Y_2 = 0 \} \subset \mathbb{P}^4,
\end{align*}
\]
where W acts on the projective coordinates $Y_1, Y_2, Y_3, Z_1, Z_2, Z_0$ as follows: S_2 permutes Z_1, Z_2, S_3 permutes Y_1, Y_2, Y_3, and every element of W fixes Z_0. Note that $\Lambda_2 \subset \mathbb{P}^5$ is the projective closure of $\Lambda_1 \subset \mathbb{A}^5$; hence, using \simeq to denote W-equivariant birational equivalence, we have $\Lambda_1 \simeq \Lambda_2$. The isomorphism $\Lambda_2 \simeq \Lambda_3$ is obtained by eliminating Z_0 from the system of equations defining Λ_2. Finally, the isomorphism $\Lambda_3 \simeq \Lambda_4$ comes from the Cremona transformation $\mathbb{P}^4 \dashrightarrow \mathbb{P}^4$ given by $Y_i \rightarrow 1/Y_i$ and $Z_j \rightarrow 1/Z_j$ for $i = 1, 2, 3$ and $j = 1, 2$.

Let ζ be a W-torsor over k. It remains to be shown that $\zeta \Lambda_4$ is k-rational. Since Λ_4 is a W-equivariant quadric hypersurface in \mathbb{P}^4, and the W-action on \mathbb{P}^4 is induced by a linear representation $W \rightarrow \text{GL}_5$, Hilbert’s Theorem 90 tells us that $\zeta \mathbb{P}^4$ is k-isomorphic to \mathbb{P}^4, and $\zeta \Lambda_4$ is isomorphic to a quadric hypersurface in \mathbb{P}^4 defined over k; see [7, Lemma 10.1]. It is easily checked that Λ_4 is smooth over k, and therefore so is $\zeta \Lambda_4$. The zero-cycle of degree 3 given by $(1 : 0 : 0 : 0 : 0) + (0 : 0 : 1 : 0 : 0)$ in Λ_4 is W-invariant, so it defines a zero-cycle of degree 3 in $\zeta \Lambda_4$. By Springer’s theorem, the smooth quadric $\zeta \Lambda_4$ has a k-rational point, hence is k-rational.

Acknowledgement. We are grateful to J.-L. Colliot-Thélène for stimulating conversations.

References

[1] D. Anderson, *Degeneracy loci and G_2 flags*, Ph. D. thesis, University of Michigan, 2009, http://deepblue.lib.umich.edu/handle/2027.42/62415.

[2] D. Anderson, “Chern class formulas for G_2 Schubert loci,” *Trans. Amer. Math. Soc.* **363** (2011), no. 12, 6615–6646.

[3] G. Berhuy, G. Favi, *Essential Dimension: A Functorial Point of View (after A. Merkurjev)*, Documenta Math. **8** (2003), 279–330.

[4] C. Chevalley, “Les Groupes de type G_2,” Séminaire Claude Chevalley, tome 2 (1956-1958), reprinted in *Classification des Groupes Algébriques Semi-Simples*, Springer, 2005.

[5] J.-L. Colliot-Thélène, B. Kunyavskii, V. L. Popov, and Z. Reichstein, “Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?” *Compositio Math.* **147** (2011), 428–466.

[6] M. Demazure and P. Gabriel, *Groupes algébriques, Tome I*, Masson & Cie, Paris, 1970.

[7] A. Duncan, Z. Reichstein, “Versality of algebraic group actions and rational points on twisted varieties,” *J. Alg. Geom.*, to appear, arXiv:1109.6093.

[8] M. Florence, “On the essential dimension of cyclic p-groups,” *Invent. Math.* **171** (2008), no. 1, 175–189.

[9] I. M. Gelfand, A. A. Kirillov, “Sur les corps liés aux algèbres enveloppantes des algèbres de Lie,” *IHES Publ. Math.* **31** (1966), 5–19.

[10] J. Heinloth, “Bounds for Behrend’s conjecture on the canonical reduction,” *Int. Math. Res. Not. IMRN* (2008), no. 14, Art. ID rnm045, 17 pp.

[11] A. Premet, “Modular Lie algebras and the Gelfand-Kirillov conjecture,” *Invent. Math.* **181** (2010), no. 2, 395–420.

[12] J.-P. Serre, *Galois cohomology*, Springer-Verlag, Berlin, 1997.

[13] T. A. Springer and F. D. Veldkamp, *Octonions, Jordan Algebras, and Exceptional Groups*, Springer, 2000.

Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, RJ 22460-320 Brasil

E-mail address: dave@impa.br

Institut de Mathématiques de Jussieu, Université Paris 6, place Jussieu, 75005 Paris, France

E-mail address: florence@math.jussieu.fr

Department of Mathematics, University of British Columbia, BC, Canada V6T 1Z2

E-mail address: reichst@math.ubc.ca