Application of whole genome sequencing to query a potential outbreak of *Elizabethkingia anophelis* in Ontario, Canada

Lisa R. McTaggart¹, Patrick J. Stapleton¹₂, AliReza Eshaghi¹, Deirdre Soares¹, Sylvain Brisse³, Samir N. Patel¹₂ and Julianne V. Kus¹₂*

Abstract

Bioinformatic analysis of whole genome sequence (WGS) data is emerging as a tool to provide powerful insights for clinical microbiology. We used WGS data to investigate the genetic diversity of clinical isolates of the bacterial pathogen *Elizabethkingia anophelis* to query the existence of a single-strain outbreak in Ontario, Canada. The Public Health Ontario Laboratory (PHOL) provides reference identification of clinical isolates of bacteria for Ontario and prior to 2016 had not identified *E. anophelis*. In the wake of the Wisconsin outbreak of 2015–2016 for which a source was never elucidated, the identification of *E. anophelis* from clinical specimens from five Ontario patients gave reason to question the presence of an outbreak. Genomic comparisons based on core genome multi-locus sequence typing conclusively refuted the existence of an outbreak, since the 5 Ontario isolates were genetically dissimilar, representing at least 3 distinct sub-lineages scattered among a set of 39 previously characterized isolates. Further interrogation of the genomic data revealed multiple antimicrobial resistance genes. Retrospective reidentification via *rpoB* sequence analysis of 22 clinical isolates of *Elizabethkingia* spp. collected by PHOL from 2010 to 2018 demonstrated that *E. anophelis* was isolated from clinical specimens as early as 2010. The uptick in *E. anophelis* in Ontario was not due to an outbreak or increased incidence of the pathogen, but rather enhanced laboratory identification techniques and improved sequence databases. This study demonstrates the usefulness of WGS analysis as a public health tool to quickly rule out the existence of clonally related case clusters of bacterial pathogens indicative of single-strain outbreaks.

INTRODUCTION

Elizabethkingia species are aerobic, non-motile, Gram-negative bacilli that are ubiquitous in soil and freshwater [1]. Although characterized as environmental bacteria, they are occasionally isolated from hospital environments and clinical specimens. They do not normally inhabit the human body. Opportunistic infections are rare but problematic, as *Elizabethkingia* spp. are naturally resistant to a wide range of antimicrobial agents [1]. Following the original description of the type species *Elizabethkingia meningoseptica* (previously named *Flavobacterium meningosepticum* and *Chryseobacterium meningosepticum*) as the cause of a case of neonatal meningitis in 1959 [2], the genus has expanded to contain six species, including *Elizabethkingia miricola*, *Elizabethkingia anophelis* (including strains previously described as *Elizabethkingia endophytica*, *Elizabethkingia bruuniana*, *Elizabethkingia ursingii* and *Elizabethkingia occulta*) [3]. (The latter three names have no standing in the nomenclature.) Due to the increased incidence of *Elizabethkingia* bacteraemia over the past decade, *E. meningoseptica* and *E. anophelis* in particular are considered to be emerging pathogens [4, 5].

In 2015–2016, an outbreak involving 66 laboratory-confirmed infections of *E. anophelis* occurred in the US states of Wisconsin, Illinois and Michigan [6]. By far the largest documented *Elizabethkingia* outbreak, it was also unique in that most cases manifested in community settings, unlike

Received 10 January 2019; Accepted 21 February 2019; Published 24 April 2019

Author affiliations: ¹Public Health Ontario, 661 University Avenue, Toronto, ON, Canada M5G 1M1; ²Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; ³Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, F-75724 Paris, France.

Correspondence: Julianne V. Kus, julianne.kus@oahpp.ca

Keywords: *Elizabethkingia anophelis*; outbreak; whole genome sequence; core genome MLST; antimicrobial resistance.

Abbreviations: BLAST, basic local alignment search tool; cgMLST, core genome multi-locus sequence typing; CLSI, Clinical Laboratory Standards Institute; FAME, fatty acid methyl esters; GTA, greater Toronto area; MALDI-ToF MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; MIC, minimum inhibitory concentration; PHOL, Public Health Ontario Laboratory; UPGMA, unweighted pair group method with arithmetic mean; WGS, whole genome sequence.

This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession numbers RSAV00000000, RSAW00000000, RSAX00000000, RSY00000000 and RSAZ00000000. The version described in this paper is the first version, RSAV01000000, RSAW01000000, RSAX01000000, RSY01000000, RSAZ01000000.
previous healthcare-associated outbreaks [7–9]. Despite extensive investigation, the source of the infection was never identified and the outbreak spontaneously resolved by the end of 2016 [6]. Whole-genome sequence (WGS) analysis was instrumental in confirming the outbreak by demonstrating the high degree of genetic similarity between outbreak strains, which suggested that it was caused by a single strain from a single source [6]

Prior to 2016, the Public Health Ontario Laboratory (PHOL), which is a reference laboratory for the province of Ontario (population 14.3 million), had never reported an isolate of *E. anophelis*, but between July 2016 and February 2018, five clinical isolates from patients located in the greater Toronto area were received and subsequently identified as *E. anophelis*. Given the seriousness of *Elizabethkingia* infections due to their intrinsic resistance to several antibiotics [10], the relatively close geographical proximity of Toronto, Ontario to the Wisconsin outbreak, and the uncertainly surrounding the source of the aforementioned outbreak, we sought to use WGS analysis to confirm or conclusively rule out the presence of an *Elizabethkingia* outbreak strain in Ontario. Furthermore, we performed a retrospective reidentification of all *Elizabethkingia* sp. isolates received by PHOL during the preceding years to determine whether the recent uptick in the number of *E. anophelis* clinical isolates was due to a potentially increased incidence of infection or due to the implementation of more accurate clinical laboratory bacterial identification methods and improved availability of nucleotide sequences of *E. anophelis* in public databases.

METHODS

Initial identification

PHOL, Toronto, Ontario received five clinical isolates (blood *n*=1, urine *n*=1, aspirate *n*=1, endoscopy specimen *n*=1, fluid *n*=1) of unknown Gram-negative bacteria, obtained from five individual patients in the greater Toronto area between July 2016 and February 2018 for identification and susceptibility testing. The isolates were originally identified by Bruker matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Bruker Daltonics, Billerica, MA, USA) using the MALDI Biotyper Reference Library v5 (isolate PHOL-090), v6 (isolate PHOL-515) or v7 (isolates PHOL-537, PHOL-104, PHOL-785) (Bruker Daltonics), with each isolate yielding match scores ≥2.0 to both *E. meningoseptica* and *E. miricola*. It is our experience, and the experience of others [3, 11], that the Bruker MALDI-TOF MS cannot differentiate between *Elizabethkingia* species; it frequently returns multiple species IDs with scores ≥2.0. Therefore, in our institution, all *Elizabethkingia* isolates are reflexed to partial 16S rDNA PCR and sequence analysis using primers 8FPL 5′-AGTTTGATCCTGGTGCTCAG-3′ and 806R 5′-GGACTACAGGTTATCCTAT-3′ to yield a 748 bp fragment for identification. 16S rDNA sequences were subjected to a BLAST search against the NCBI GenBank nucleotide database [12, 13] with the interpretation criteria described in the Clinical Laboratory Standards Institute (CLSI) document MM18-A [14] being used to identify the isolates. 16S rDNA sequence analysis determined these isolates to be *E. anophelis*. It is important to note that none of the MALDI BioTyper Reference Libraries used for the identification of these isolates contained spectra for *E. anophelis*.

Genome sequencing and analysis

In order to definitively identify the species, isolates underwent WGS analysis. Following DNA isolation using the Qiagen DNeasy Blood and Tissue kit (Qiagen, Germantown, MD, USA), libraries were constructed using the Nextera XT DNA library preparation kit (Illumina, Inc., San Diego, CA, USA) and sequenced on a MiSeq instrument using a 2×150 paired-end protocol. At least 30x average read depth coverage was achieved for all samples. *De novo* assemblies were generated with SPAdes v 3.9.1 [15] and annotated using Prokka v 1.13 [16]. This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession numbers RSAY00000000, RSAW00000000, RSA00000000, RSAY00000000 and RSAZ00000000. The version described in this paper is the first version, RSAY01000000, RSAW01000000, RSA01000000, RSAY01000000 and RSAY01000000. The assemblies were submitted to the publicly available core genome multi-locus sequence typing (cgMLST) database at the Institut Pasteur (http://bigd.dbpasteur.fr/elizabethkingia/). Core genome analysis involving 1546 genes and genomic comparison of the 5 Ontario isolates to a selection of 38 isolates of *E. anophelis* was performed using an unweighted pair group method with arithmetic mean (UPGMA) algorithm with 1000 bootstrap replicates based on allelic profiles as previously described [4, 6]. The 39 comparative isolates were chosen from among publicly available genomes, so that they would represent all previously described phylogenetic sublineages [4, 6] of *E. anophelis*.

Because of the high level of antimicrobial resistance of *Elizabethkingia*, and as we had the whole genome sequences for each isolate, antimicrobial resistance markers were investigated. Antimicrobial resistance genes involving a protein homologue mechanism of resistance were identified using three methods: (1) the hmmscan function of HMMER3 v 3.1b2 (http://hmmer.org/) [17] against Core ResFams database v 1.2 [18], a curated database of antimicrobial resistance protein families and associated profile hidden Markov models; (2) the specialty genes for antibiotic resistance identified by PATRIC [19] following RAST annotation [20]; and/or (3) the Resistance Gene Identifier (Perfect and Strict hits only) of the Comprehensive Antimicrobial Resistance Database (CARD) [21, 22]. Antimicrobial resistance gene targets involving the protein variant mechanism of resistance were identified following gene annotation by Prokka v 1.13 [16] with sequence comparison in BioNumerics v 6.6 (Applied-Maths, Austin, TX, USA).

MALDI-ToF MS, rpoB sequencing and antimicrobial susceptibility testing

In order to determine whether the 5 *E. anophelis* isolates were indeed the first isolates of this species received by
PHOL from Ontario patients we examined an additional 17 *Elizabethkingia* sp. isolates received by the PHOL from 2010 to 2018. These historic isolates were originally identified by biochemical assays [23] or gas chromatographic analysis of fatty acid methyl esters (FAMEs) with the Sherlock Microbial Identification System (MIDI, Inc., Newark, DE, USA) (2010–2015) or MALDI-ToF MS and partial 16S rDNA sequence analysis (2015–2018). Retrospective reidentification was performed by Bruker MALDI-ToF MS against the MALDI Biotyper Reference Library v7 (Bruker Daltonics) using the ethanol/formic acid extraction protocol according to the manufacturer's instructions and partial *rpoB* sequencing and phylogenetic comparison to reference strains as described by Nicholson et al. [3] in BioNumerics v 6.6 (Applied Maths, Austin, TX, USA). Antimicrobial susceptibility testing of amikacin,
Antibiotic Group	Antibiotic	MIC (µg ml⁻¹)	Mechnism: resistance gene(s) (accession no.)			
	PHOL-090	PHOL-515	PHOL-537	PHOL-104	PHOL-785	
Penicillins	Piperacillin-tazobactam	≥128/4	≤16/4	≤16/4	≤16/4	Protein homologs: 1) β-lactamases (PER-1,2) class A, CME family (WP_009082631.1, WP_009085188.1) 2) β-lactamase subclass B3 (metallo-) β-lactamase, GOB family (WP_059155257.1) 3) β-lactamase subclass B1 (metallo-) β-lactamase, BlaB family (WP_029729912.1) 4) β-lactamase, sub-class B1 (metallo-) β-lactamase (WP_009085724.1)
		R	S	S	S	
Penicillins	Ticarcillin-clavulanic acid	≥128/2	≥128/2	≥128/2	≥128/2	
		R	R	R	R	
Cepohems	Ceftazidime	≥32	≥32	≥32	≥32	
		R	R	R	R	
Carbenems	Meropenem	≥16	≥16	≥16	≥16	
		R	R	R	R	
Aminoglycosides	Amikacin	≥64	≥64	≥64	≥64	Protein homolog: Aminoglycoside 6-nucleotidyltransferase (WP_009086755.1)
		R	R	R	R	
Gentamicin		≥16	≥16	8	≥16	
		R	R	I	R	
Tobramycin		≥16	≥16	≥16	≥16	
		R	R	R	R	
Tetracyclines	Tetracycline	≥16	≥16	≥16	≥16	Protein homolog: Tetracycline resistance major facilitator superfamily efflux pump (WP_009086585.1)
		R	R	R	R	
Fluorquinolones	Ciprofloxacin	2	1	≥4	1	Protein variant model: 1) DNA gyrase (gyrA (WP_016199819.1), gyrB (WP_007845201.1)) 2) topoisomerase IV (parC (WP_016199111.1), parE (WP_016199511.0))
		I	S	S	R	
Folate pathway	Trimethoprim-sulfamethoxazole	1/19	≤0.5/9.5	2/38	2/38	Protein variant model: drug sensitive 1) Dihydrofolate reductase (WP_016199885.1) 2) Dihydropteroate synthase (WP_016199462.1)
inhibitors		S	S	S	S	
Vancomycin		8	6	8	8	

Continued
ceftazidime, ciprofloxacin, gentamicin, levofloxacin, mero-
openem, piperacillin/tazobactam, tetracycline, tobramycin
and trimethoprim/sulfamethoxazole was performed by the
agar diffusion method according to CLSI guidelines (CLSI
M07-A10) [24] on all isolates. The minimum inhibitory
concentrations (MICs) were interpreted based on CLSI
breakpoints for other non-Enterobacteriaceae (CLSI M100-
S25) [25]. Although typically reserved for Gram-positive
bacteria, vancomycin has been used as a treatment for
Elizabethkingia bacteraemia [26, 27]. Therefore, suscepti-
bility to vancomycin was determined by Etest (bioMérieux,
Inc. Canada, St-Laurent, QC, Canada).

RESULTS AND DISCUSSION

The 2015–2016 Wisconsin outbreak of *E. anophelis* was
unprecedented in its scale, with 66 laboratory-confirmed
cases resulting in 19 deaths over 3 US states. According
to WGS analysis, the outbreak isolates were genetically
similar, suggesting a single source for these predomi-
nantly community-acquired cases that was never identi-
fied. *E. anophelis* had not previously been identified at
our institution by conventional biochemical assays and/or
MALDI-ToF MS. In light of the aforementioned outbreak,
the identification of five isolates of *E. anophelis* from
clinical specimens by PHOL was concerning. Given that
these isolates were submitted from four different health-
care centres in the Greater Toronto Area (GTA), there
was concern that these isolates could possibly represent
an extension of the outbreak in Wisconsin, geographically
located only approximately 690 kilometres away, with
one outbreak case in Michigan, which borders Ontario.
Alternatively, the isolates could possibly signify a separate
outbreak, or not be related.

WGS analysis was instrumental in confirming and charac-
terizing the 2015–2016 Wisconsin *E. anophelis* outbreak [4, 6].
Therefore, we sought to use WGS analysis to determine the
clonal diversity of isolates to query the existence of a single-
strain *E. anophelis* outbreak in Ontario. Genomic comparison
analysis of cgMLST demonstrated that the Ontario isolates
were not genetically similar to each other, and nor were
they similar to the Wisconsin outbreak isolates. Two of
the 5 Ontario isolates represented distinct sublineages, not
previously encountered among a set of 39 representatives
of formerly described sublineages of *E. anophelis* from
several world regions. The remaining three were genetically
dissimilar members of sublineage 8 (Fig. 1). Sublineages with
multiple isolates are strongly supported, but their relative
deep branching order is not. Therefore, we conclusively ruled
out the presence of a single-strain *E. anophelis* outbreak in
Ontario.

With the exception of the single isolate that was resistant
to piperacillin/tazobactam, the antimicrobial susceptibility
profiles of the five Ontario *E. anophelis* isolates were similar
to each other and to those of the Wisconsin outbreak
isolates [6]. Resistance to penicillins (except piperacillin/
tazobactam), cephems, carbapenems, aminoglycosides and

Antibiotic Group	Antibiotic	MIC (µg ml⁻¹)	Mechanism: resistance gene(s) (accession no.)				
PHOL-090	Chloramphenicol	PHOL-515	PHOL-104	PHOL-537	PHOL-785	PHOL-114	
	Chloramphenicol	Various	PHOL-090	PHOL-515	PHOL-537	PHOL-785	PHOL-114
Table 1. Continued							
a	The antibiotic criteria applied were those of CLSI for non-Enterobacteriaceae (CLSI M100-S25) [25].						
b	Accession numbers of PHOL-104.						
c	Protein homology of resistance genes were identified using the hmmm function of HMMER3 (http://hmmer.org/) against the Core Res:Fams database [18].						
d	Protein variant model antibiotic resistance gene targets were identified following gene annotation by Prokka [16]. d. All isolates had a serine at position 83 conferring susceptibility to fluoroquinolones [6, 28].						

McTaggart et al., Access Microbiology 2019;1
tetracyclines was observed, while the isolates remained susceptible to fluoroquinolones, especially levofloxacin, and the folate pathway inhibitor trimethoprim/sulfamethoxazole (Table 1). Interrogation of the genomes revealed multiple antimicrobial resistance genes (Table 1) as previously reported [4, 6, 9, 28]. These included two class A β-lactamases, three class B (metallo-) beta-lactamases, an aminoglycoside 6-nucleotidyltransferase, a chloramphenicol acetyltransferase and multiple efflux systems, all of which were present in each of the five Ontario isolates (Table 1). We identified the DNA gyrase and topoisomerase IV genes gyra, gyrb, parC and parE, the target genes for fluoroquinolones in which mutations are often associated with resistance. Although the protein variants of these genes conferring fluoroquinolone resistance are likely not fully characterized, all five Ontario isolates contained a serine at position 83 of gyra, which is associated with susceptibility, consistent with the phenotype of the isolates (Table 1) [6, 28]. Presumably, the protein variants of dihydrofolate reductase and dihydropteroate synthase found among the Ontario isolates confer susceptibility to trimethoprim/sulfamethoxazole, in accordance with their MICs (Table 1).

As vancomycin has been used to treat Elizabethkingia infections [26, 27], we performed in vitro vancomycin MIC testing of the five Ontario E. anophelis isolates. The MICs ranged from 6 to 8 µg ml⁻¹, but the clinical significance of

Table 2. Isolates of Elizabethkingia (n=22) received by PHOL from 2010 to 2018 identified by biochemical assay/FAME analysis or 16S rDNA Sanger sequence analysis (original ID), Bruker MALDI-ToF MS and partial rpoB Sanger sequence analysis

Year	Original ID	MALDI-ToF MS ID	rpoB ID
2010	E. meningoseptica	E. meningoseptica/E. miricola	E. anophelis
2010	E. meningoseptica	E. meningoseptica/E. miricola	E. anophelis
2011	E. meningoseptica	E. meningoseptica	E. anophelis
2011	E. meningoseptica	E. meningoseptica/E. miricola	E. anophelis
2011	E. meningoseptica	E. meningoseptica/E. miricola	E. anophelis
2013	E. meningoseptica	E. meningoseptica/E. miricola	E. anophelis
2013	E. meningoseptica	E. meningoseptica/E. miricola	E. anophelis
2014	E. meningoseptica	E. meningoseptica	E. miricola
2015	E. meningoseptica	E. meningoseptica	E. miricola
2015	E. miricola/meningoseptica	E. meningoseptica/E. miricola	E. meningoseptica
2016	E. miricola/meningoseptica	E. meningoseptica/E. miricola	'E. bruuniana'
2016	E. anophelis	E. meningoseptica/E. miricola	E. anophelis
2017	E. miricola	E. meningoseptica/E. miricola	E. anophelis
2017	E. anophelis	E. meningoseptica/E. miricola	E. anophelis
2017	E. miricola/meningoseptica	E. meningoseptica/E. miricola	E. miricola
2018	E. anophelis	E. meningoseptica	E. anophelis
2018	Elizabethkingia sp	E. meningoseptica/E. miricola	E. anophelis
2018	E. miricola	E. meningoseptica/E. miricola	E. anophelis
2018	Elizabethkingia sp	E. meningoseptica/E. miricola	E. anophelis

a, The MALDI-ToF MS ID was generated by comparison of Bruker MALDI-ToF mass spectra obtained using the ethanol/formic acid extraction protocol against the MALDI Biotyper Reference Library v7 (Bruker Daltonics).
b, The rpoB ID was performed by partial rpoB Sanger sequencing and phylogenetic comparison to reference strains as described by Nicholson et al. [3].
c, Original identification was performed using biochemical assays and FAME analysis.
d, Original identification was performed by Bruker MALDI-TOF MS and partial 16S rDNA sequence analysis; 16S rDNA sequence analysis was considered to be the ‘gold standard’ method.
this remains unclear since interpretative breakpoints for *Elizabethkingia* spp. to vancomycin do not exist.

Importantly, since *E. anophelis* had not been previously identified at PHOL, we questioned whether this signalled a potential increased incidence in *E. anophelis* infections or was a manifestation of improved bacterial identification techniques and improved sequence databases. Therefore, we performed a retrospective reidentification of an additional 17 isolates of *Elizabethkingia* received from 2010 to 2018; during this timeframe several identification methods were used. According to partial *rpoB* sequence analysis, which is considered to be preferable to 16S rDNA sequence analysis for discrimination to the species level for these organisms [3], clinical isolates of *E. anophelis* were in fact received by PHOL as early as 2010 (Table 2) but had not been identified correctly. In addition to 12 *E. anophelis*, we retrospectively identified clinical isolates of *E. meningoseptica* (n=2), *E. miricola* (n=2), *E. bruuniana* (n=5) and *E. ursingii* (n=1) (Table 2), which had previously been identified as *E. meningoseptica*, *E. miricola* or *Elizabethkingia* sp. As previously described [3, 11], Bruker MALDI-ToF MS in conjunction with their MALDI Biotyper Reference Library v7 was unable to discriminate *Elizabethkingia* spp. (Table 2), since scores >2.0 to multiple different species of *Elizabethkingia* were frequently obtained. Expansion of the spectrum database to include spectra from each species may allow for the differentiation of *E. anophelis* and *E. meningoseptica* in the future, but probably not *E. miricola*, *E. bruuniana*, *E. ursingii* and *E. occulta* [3].

Due to large phenotypic variability among *Elizabethkingia* strains of the same genomospecies, phenotypic testing is not recommended for species differentiation [3]. Although 16S rDNA sequencing was employed in our laboratory as a routine method for the identification of clinical bacterial isolates with ambiguous MALDI-ToF MS identifications during the timeframe of this study, we recognize retrospectively that it is not optimal for the species identification of *Elizabethkingia* due to sequence ambiguities deriving from multiple distinct 16S rDNA gene variants in a single genome and incongruences between 16S rDNA sequences and species determinations based on WGS data [3]. Retrospective reidentification of PHOL isolates suggested that the incidence of *E. anophelis* infections did not increase from 2010 to 2018, but rather that the bacterial identification techniques and algorithms improved, allowing for more accurate species determinations. Additionally, consistent with other reports [6, 11], most *Elizabethkingia* isolates demonstrated *in vitro* susceptibility to levofloxacin, piperacillin/tazobactam and trimethoprim/sulfamethoxazole, but were resistant to amikacin, tobramycin, ceftazidime, meropenem and tetracycline (Table 3).

In conclusion, we used genome sequencing to demonstrate that a multiclonal population of *E. anophelis* caused infections in Ontario patients, thus conclusively refuting the existence of a single-strain outbreak. Because of its powerful predictive value, WGS will undoubtedly be used with increasing frequency to rapidly investigate case clusters to either confirm or rule out single-strain outbreaks, as well as for genomic characterization of other emerging trends in clinical microbiology laboratory science. Additionally, the identification of *Elizabethkingia* to the species level remains a challenge, even with improved technologies. In lieu of WGS analysis, targeted *rpoB* sequence analysis may represent the best option for discriminating *Elizabethkingia* to the species level [3].

Antibiotic	*E. anophelis* (n=12)	*E. meningoseptica* (n=2)	*E. bruuniana* (n=5)	*E. miricola* (n=2)	*E. ursingii* (n=1)
Amikacin	100	100	100	100	100
Cefazidime	100	100	100	100	100
Ciprofloxacin	41.7	50	40	50	0
Gentamicin	100	100	100	100	100
Levofloxacin	8.3	50	0	50	0
Meropenem	100	100	100	100	100
Piperacillin/tazobactam†	8.3	0	0	0	100
Tetracycline	100	100	100	100	100
Tobramycin	100	100	100	100	100
Trimethoprim/sulfamethoxazole‡	0	0	0	0	0

*The interpretive criteria applied were those of CLSI for non-Enterobacteriaceae (CLSI M100-S25) [25].
†The concentration of tazobactam was 4 µg ml⁻¹ constant.
‡The ratio of trimethoprim to sulfamethoxazole was 1 to 19.

Funding information
The authors received no specific grant from any funding agency.
Author contributions
Project conceptualization was provided by J.K. and S.P. D.S. provided bacterial isolates as study resources. L.M. and A.E. conducted the research and investigation, L.M., P.S., A.E. and S.B. performed WGS data analysis. L.M. and J.K. co-authored the manuscript. All authors reviewed, edited and approved the final draft of the manuscript.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Ethical statement
This project was reviewed by Public Health Ontario’s Research and Ethics Services; it did not require research ethics committee approval. This project was reviewed by Public Health Ontario’s Research and Ethical statement.

References
1. Bruun B, Bernardet J. Elizabethkingia. In: Whitman WB (editor). Bergey’s Manual of Systematics of Archaea and Bacteria, [book on the Internet]. Athens, GA: Bergey’s Manual Trust; 2015.
2. King EO. Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol 1959;31:241–247.
3. Nicholson AC, Gulkiv CA, Whitney AM, Humrighouse BW, Graziano J et al. Revisiting the taxonomy of the genus Elizabethkingia using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel Elizabethkingia species: Elizabethkingia bruuni ana sp. nov., Elizabethkingia ursingii sp. nov., and Elizabethkingia occulta sp. nov. Antonie Van Leeuwenhoek 2018;111:55–72.
4. Breurec S, Criciulco A, Diancourt L, Rendueles O, Vandenbogaert M et al. Genomic epidemiology and global diversity of the emerging bacterial pathogen Elizabethkingia anophelis. Sci Rep 2016;6:30379.
5. Jean SS, Lee WS, Chen FL, Ou TY, Hsieh PR. Elizabethkingia meningoseptica: an important emerging pathogen causing healthcare-associated infections. J Hosp Infect 2014;86:244–249.
6. Perrin A, Larsson Breurec S, Brunet A, Criciulco A, Edwards DJ, Gundlach K et al. Evolutionary dynamics and genomic features of the Elizabethkingia species. Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun 2017;8:15483.
7. Balm MN, Salmon S, Jureen R, Teo C, Mahdi R et al. Bad design, bad practices, bad bugs: frustrations in controlling an outbreak of Elizabethkingia meningoseptica in intensive care units. J Hosp Infect 2013;85:134–140.
8. Moore LS, Owens DS, Jepson A, Turton JF, Ashworth S et al. Waterborne Elizabethkingia meningoseptica in Adult Critical Care. Emerg Infect Dis 2016;22:9–17.
9. Teo J, Tan SY, Liu Y, Tay M, Ding Y et al. Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis. Genome Biol Evol 2014;6:1158–1165.
10. Lau SK, Chow WN, Foo CH, Curreem SQ, Lo GC et al. Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality. Sci Rep 2016;6:26045.
11. Han MS, Kim H, Lee Y, Kim M, Ku NS et al. Relative Prevalence and Antimicrobial Susceptibility of Clinical Isolates of Elizabethkingia Species Based on 16S rRNA Gene Sequencing. J Clin Microbiol 2017;55:274–280.
12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410.
13. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J et al. GenBank. Nucleic Acids Res 2016;44:D41–D47.
14. CLSI. Interpretive Criteria for Identification of Bacteria and fungi by DNA target sequencing, 2nd ed. CLSI document MM18-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477.
16. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069.
17. HMNER. HMNER: biosequence analysis using profile hidden Markov models v3.1b2. [Internet]. New York: Howard Hughes Medical Institute, 2015.
18. Gibson MK, Forsberg KJ, Dantas G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 2015;9:207–216.
19. Wawam AR, Abraham D, Daly O, Disz TL, Driscoll T et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014;42:D581–D591.
20. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.
21. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P et al. Card 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 2017;45:D566–D573.
22. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013;57:3348–3357.
23. Weyant RS, Wayne C, Weaver RE, Hollis DG, Jordan JG et al. Identification of Unusual Pathogenic gram-negative aerobic and facultatively anaerobic bacteria. Baltimore, MD: Williams & Wilkins; 1996. Flavo-bacterium meningosepticum and similar strains. 348–349.
24. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 10th ed. CLSI document M07-A10. Wayne, PA: Clinical Laboratory Standards Institute; 2015.
25. CLSI. Performance standards for antimicrobial susceptibility testing, 25th ed. CLSI document M100-S25. Wayne, PA: Clinical Laboratory Standards Institute; 2015.
26. Jean SS, Hsieh TC, Ning YZ, Hsieh PR. Role of vancomycin in the treatment of bacteraemia and meningitis caused by Elizabethkingia meningoseptica. Int J Antimicrob Agents 2017;50:507–511.
27. Figueroa Castro CE, Johnson C, Williams M, VanDerSlik A, Graham MB et al. Elizabethkingia anophelis: clinical experience of an academic health system in Southeastern Wisconsin. Open Forum Infect Dis 2017;4:ofx251.
28. Lin JN, Lai CH, Yang CH, Huang YH, Lin HH. Genomic features, phylogenetic relationships, and comparative genomics of Elizabethkingia anophelis strain EM361-97 isolated in Taiwan. Sci Rep 2017;7:14317.