Abstract: Superconformal field theories (SCFTs) occupy a central role in the study of many aspects of quantum field theory. In this white paper for the Snowmass process we give a brief overview of aspects of SCFTs in $3 \leq D \leq 6$ space-time dimensions, including classification efforts and some of the vast current research trends on the physical and mathematical structures generated by this rich class of physical theories.
1 Background and Motivation

A key problem in theoretical physics is to gain an analytical understanding of the dynamics of strongly-coupled quantum field theories. This understanding is needed to inform and constrain both the search for effective theories which go beyond the Standard Model of particle physics, and the search for effective descriptions of new collective behaviors in condensed matter systems. Among quantum field theories, conformal field theories (CFTs) play a central role. As possible UV and IR endpoints of renormalization group (RG) flows they provide launching points, via deformations, for exploring the broader space of quantum field theories. In addition, via the AdS/CFT correspondence, CFTs encode aspects of space-time in quantum gravity, and so their study may also illuminate physics outside of the framework of local quantum field theory.

Without any further assumptions beyond conformal invariance, locality, and unitarity, a systematic understanding of the landscape of CFTs remains largely out of reach. The \(\mathfrak{so}(D,2) \) conformal symmetry algebra together with unitarity implies useful but weak constraints on the allowed spins and dimensions of local operators in a CFT; see [1–6] and references therein. We will here limit our discussion to \(D > 2 \) spacetime dimensions. Following the landmark BPZ paper [7], many thousands of papers explored the rich realm of RG flows and CFTs in \(D = 2 \) spacetime dimensions and the special power of the enhancement of \(\mathfrak{so}(D,2) \) to the left and right Virasoro algebras; the subject of \(D = 2 \) is too rich, and too special to include here. Likewise, the \(\text{AdS}_{D+1}/\text{CFT}_D \) correspondence is too rich and vast to attempt to be properly represented in this brief overview, see e.g. [8].

As we increase \(D \), interactions are IR-weaker and UV-stronger, so interacting CFTs become less likely, and more challenging to find and analyze. In space-time dimensions \(D = 3 \) and \(D = 4 \) there are a few classes of CFTs which are perturbatively accessible (close to free field theory) [9–11]. There are also examples of perturbatively accessible asymptotically safe UV CFT fixed points [12]. \(D = 4 \) non-Abelian gauge theories have a conformal window of matter content that flows to a CFT in the IR, where the lower limit of the conformal window is a strong coupling question that is debated on a case-by-case basis in the lattice gauge theory community, see e.g. [13] and references therein. The bootstrap program [14], based on demanding the associativity of the product of local operators, gives numerical constraints on the existence of unitary CFTs with low values of conformal central charges (vaguely, a measure of the number of degrees of freedom or complexity of the CFT) but becomes increasingly difficult to implement as the central charges increase. The large \(N \) or large central charge limit of generic CFTs is generally challenging.

The existence and tractability of CFTs improves dramatically with the introduction of supersymmetry. Supersymmetry gives exact analytic control over a large set of important observables in supersymmetric QFTs, and the constraints and methods are profoundly extended for superconformal QFTs (SCFTs). The existence of SCFTs in \(D = 4 \) [15–22] and other \(D \) have thus attracted considerable attention from the high energy theory community over the past few decades, and has grown into a mature sub-field; see e.g. [23–26] for some reviews and references. For superconformal theories, \(\mathfrak{so}(D,2) \) is part of a superalgebra \(\mathfrak{S} \) whose fermionic supercharges are in the spinor representation. This is highly restrictive
and only possible for $D \leq 6$ \cite{15}. G also contains a bosonic R-symmetry subalgebra which is an internal global symmetry of the SCFT. The constraints on operator content coming from combining superconformal invariance with unitarity are substantially strengthened; see e.g. \cite{2, 27, 28} and references therein. SCFTs in $D = 2$ moreover typically have moduli spaces of supersymmetric vacua, where the theory becomes more weakly coupled, which greatly aid in their analysis.

In $D = 3$ and $D = 4$ (but not $D > 4$), there are many classes of SCFTs that come in continuous families, called “conformal manifolds”, labeled by dimensionless couplings for exactly marginal operators, and there can be strong-weak coupling dualities on such spaces. In many such classes, the conformal manifold has weakly-coupled regions, where perturbation theory can be applied \cite{29–45}. In dimensions 3, 4 and 6 and with enough supersymmetry, infinite subalgebras of the operator product algebra form 1D topological algebras or vertex operator algebras (VOAs) whose structure is tightly constrained and can be computed in many examples; see \cite{46} and references therein. Furthermore, knowledge of these subalgebras greatly enhances the reach of bootstrap techniques; see \cite{14}. The large N or large central charge limits of many classes of SCFTs can be understood using semi-classical supergravity or superstring techniques via the AdS/CFT correspondence.

For $D > 4$, all Lagrangian theories are IR free, so interacting SCFTs appear unlikely from a traditional QFT perspective. Nevertheless, infinite classes of strongly-coupled SCFTs in $D = 5$ and $D = 6$ dimensions have been constructed and explored by string / M- / F- theory compactifications or brane localizations which decouple gravity and preserve supersymmetry. The existence of $D > 4$ interacting SCFTs is a guide to developing deeper perspectives, and new methods, for understanding QFTs in all dimensions. The $D > 4$ SCFTs are interesting in their own right, and have also served as a gateway to understand and organize a wide variety of lower-dimensional strongly coupled phenomena.

Starting with 6D SCFTs as “master theories” one obtains field theories in $6 - k$ dimensions by compactification on a k-dimensional manifold X_k, relating in this way the properties of the lower dimensional theories with the geometric properties of X_k. Perhaps the best known example is the 2-torus, T^2, compactification of 6D $\mathcal{N} = (2,0)$ SCFTs, which yields 4D theories with sixteen supercharges, namely $\mathcal{N} = 4$ super Yang-Mills theories. These 4D $\mathcal{N} = 4$ gauge theories are conjectured to be S-dual \cite{47, 48} — their infinitely-strong coupling limits are equivalent to their weakly-coupled limits — a conjecture which seems too difficult to prove using 4D field theory techniques as it involves infinite-coupling limits. But from the 6D perspective, the complex structure of the torus under $\tau \rightarrow -1/\tau$ \cite{49}. Generalizations include the study of such 6D theories on other Riemann surfaces besides T^2, including the possibility of punctures \cite{50–57}, where global symmetries of the moduli space of the compactification again translate to highly non-trivial duality transformations in the 4D effective SCFT.

Similar insights have followed for compactifications on other spaces, including singular ones, leading to an illuminating correspondence between the structure of higher-dimensional theories and their lower-dimensional counterparts. This perspective has also been used to understand extended operators and higher-form symmetries of lower di-
dimensional theories. Moreover, the correspondence between higher- and lower-dimensional SCFTs can be used “in reverse” to inform the mathematical study of the geometry of singular spaces. See [58] for more about the wonderful synergy between QFT and mathematics, which has led to important new insights in both directions.

Organization In the rest of this white paper we provide a summary of the current state of knowledge and directions of active research. Section 2 provides an overview of the status of the systematic classification of SCFTs for each dimension starting from \(D = 6 \) to \(D = 3 \). Section 3 summarizes the numerous mathematical structures which the study of SCFTs has helped in understanding; we focus specifically on the implications for geometry, representation theory, and vertex operator algebras. Section 4 describes the latest developments in understanding the structure of extended operators in SCFTs, including their symmetry structure. While the first three sections focus on theories with eight or more supercharges, section 5 instead summarizes the state of our understanding of theories with less supersymmetry.

Given length limitations, this white paper inevitably leaves out numerous results which connect to the core themes discussed below. We apologize in advance for these omissions.

2 Classification

In this section we summarize classification efforts on SCFTs in various spacetime dimensions. We divide our discussion into the case of \(D > 4 \) SCFTs and \(D \leq 4 \) SCFTs. For \(D > 4 \), all Lagrangian interactions are irrelevant at weak coupling.

\(D > 4 \) SCFTs

As mentioned, SCFTs can exist only for \(D \leq 6 \) [15]. For \(D = 6 \) the classification of [15] allows \(\mathcal{N} = (n, 0) \), corresponding to \(N_Q = 8n \) real supercharges of the same chirality. For all \(D = 3, 4, 6 \) the infinite families admitted by [15] only admit sensible SCFTs for \(N_Q \leq 16 \) supercharges [28], so only \(\mathcal{N} = (1, 0) \) and \(\mathcal{N} = (2, 0) \) are possible 6D SCFTs. For \(D = 5 \), there is a unique superconformal algebra, and all such SCFTs have \(\mathcal{N} = 1 \) supersymmetry (i.e., eight real supercharges). Again, all Lagrangian interactions for \(D > 4 \) are irrelevant, so IR free, and the original arguments for the existence of non-trivial, interacting SCFTs in \(D = 5 \) [59] and \(D = 6 \) [60] dimensions included earlier hints from string theory brane constructions [61, 62].

The SCFTs have a moduli space of supersymmetric vacua where the theory is weakly coupled. Moduli spaces of SCFTs with \(N_Q = 8 \) supercharges are similar across dimensions for all \(3 \leq D \leq 6 \): there can be a Higgs branch, and a Coulomb branch, and in 6D the Coulomb branch is actually a tensor-branch, associated with a tensor multiplet rather than a vector multiplet. These branches touch at the origin, where there can be an interacting SCFT. In constructions based on string compactification, one considers a limit where gravity is switched off, and the background can be taken to be non-compact, with the field theory degrees of freedom localized at the singularities of the non-compact geometry. The string constructions for generic, non-singular configurations give the SCFT at a generic
point on the moduli space, where the theory is IR free. To get the interacting SCFT, one must tune the string constructions to singular configurations, corresponding to tuning the moduli fields to sit at the origin.

In $D = 6$, there are supersymmetry protected (BPS) strings whose tension is proportional to the vev of the scalar parameterizing the tensor branch (the $D = 6$ analog BPS W-bosons on the Coulomb branch), leading to “tensionless strings” as in [61, 62]. It was argued in [60] that these apparent tensionless strings can be understood (in the limit where gravity decouples) in terms of conventional QFT, associated with interacting SCFTs. There are by now many constructions of 6D SCFTs, which include both early and more recent efforts, including references [61–77]. An important comment here is that while some 6D SCFTs have a gauge theory description on the tensor branch, some do not, and in any case, all are defined by taking various singular limits in brane / geometric constructions.

The original examples of 5D interacting SCFTs were constructed by via $g^{-2} \rightarrow 0$ strong coupling limits of gauge theories [59], so the SCFTs have a relevant deformation, $\Delta \mathcal{L} \sim g^{-2} F_{\mu \nu} F^{\mu \nu} + \ldots$ which drive RG flows to the IR-free Lagrangian gauge theories; the IR-free gauge theories UV complete to the SCFTs. The g^{-2} relevant deformation of the SCFT is associated with a global symmetry (as are all supersymmetry-preserving, relevant deformations of 5D SCFTs), the instanton number $U(1)_{I}$ symmetry. As in the case of 6D SCFTs, there need not exist a gauge theory phase in the moduli space, and the SCFTs can be obtained by taking singular limits of brane and geometric constructions. See [59, 65, 78–97] for additional constructions of 5D SCFTs.

2.1 6D SCFTs

All known 6D SCFTs have a tensor branch moduli space of vacua, parametrized by the expectation value of a real scalar in the tensor multiplet, which contains a 2-form gauge field. There are BPS strings on this moduli space, and the SCFT is at the origin, where it seems that the tension of the effective strings goes to zero – such apparently tensionless string limits are actually interacting SCFTs [60]. Perhaps the best known example of a 6D SCFT is the A-type $\mathcal{N} = (2, 0)$ theory, as given by the worldvolume theory of coincident M5-branes [62]. In this case, the effective strings come from M2-branes which are stretched between M5-branes. One reason for the name “A-type” is that upon compactification on a T^2, this theory descends to $\mathcal{N} = 4$ super Yang-Mills theory with gauge symmetry algebra $\mathfrak{su}(N)$ for N M5-branes. There are also D- and E-type $\mathcal{N} = (2, 0)$ theories, and these can be obtained from considering type IIB string theory on an orbifold which preserves 16 supercharges. The ADE classification of such orbifold singularities fits with an ADE classification of $\mathcal{N} = (2, 0)$ theories, see e.g. [98, 99].

1Let us note that the strings appearing at non-singular points of the moduli space are not the fundamental strings of superstring theory. Rather, they are effective strings more akin to the QCD effective string.

2Compactification on a T^2 again gives rise to the corresponding $\mathcal{N} = 4$ theory with respective D- and E-type gauge symmetry algebra. Non-simply laced algebras can also be obtained by twisting by an outer automorphism of the symmetry algebra. Likewise, the global structure of the gauge group (rather than just the Lie algebra) is dictated by restricting the spectrum of extended objects compactified on the T^2. See,
There are many more constructions of 6D $\mathcal{N} = (1,0)$ SCFTs, as cited above. A systematic approach to a possible classification of $\mathcal{N} = (1,0)$ theories was undertaken in [75, 77, 101]. The main tool in this approach is to seek out the most general singular string backgrounds which could produce the requisite vanishing tension BPS strings. A powerful method for accomplishing this is via F-theory [66, 102, 103]. There are many reviews of F-theory, see, e.g., [104, 105]. For our purposes, the main point is that the 10D spacetime of type IIB strings is supplemented by the profile of the IIB axio-dilaton, and this is captured by a T^2 fibration over the 10D spacetime. To make a 6D $\mathcal{N} = (1,0)$ SCFT, one seeks out “elliptically fibered Calabi-Yau threefolds”, namely a space B of complex dimension two (i.e. real dimension four) and a T^2 which sits over each point of B such that the total space is Calabi-Yau, a structure which is essentially the string theory analog of a Seiberg-Witten geometry [50, 51]. In F-theory realizations of 6D SCFTs, the tensionless strings arise from D3-branes wrapped on collapsing two-cycles in the two complex-dimensional base B of the F-theory threefold $X \to B$. Earlier studies of related F-theory backgrounds include [68, 72, 106]. The classification of type II and M-theory AdS_7 vacua was carried out in references [107–110]. A full classification of such F-theory geometries was accomplished in [77]. It was subsequently realized that the same geometry can sometimes describe a “frozen phase” of F-theory, namely, the geometry could be related to different physical 6D SCFTs, requiring additional data to specify the SCFT [111–114]. For a more comprehensive review of 6D SCFTs, see reference [115].

Moving to a point in moduli space where all effective strings have finite tension is known as the “tensor branch” of the theory (because it is achieved by giving vevs to the real scalars of the 6D supermultiplet known as the tensor multiplet). Remarkably, the tensor branch of all such 6D SCFTs resembles a generalized quiver gauge theory with a single one-dimensional spine of gauge groups (and accompanying tensor multiplets) joined together by links known as “conformal matter” [76, 116]. Conformal matter with flavor symmetry algebra $g \oplus g$ with g a Lie algebra of ADE type is also realized by M5-branes probing the ADE singularity $\mathbb{C}^2/\Gamma_{ADE}$. One important use for this quiver picture is to extract the structure of zero-form global symmetries [117–121], as well as their anomalies. The explicit algorithm for computing these anomalies was established in references [121–128]. Another direct use for this quiver picture is in the study of the worldvolume of effective strings of the theory, as in [129–139].

In fact, all of the 6D SCFTs realized via F-theory can be obtained via a process of fission (Higgs branch and tensor branch deformations) and fusion (gauging a simple gauge group and adding a tensor multiplet), starting from a handful of progenitor theories based on M5-branes probing a Horava-Witten E_8 wall wrapping an ADE singularity [140]. This same analysis also serves to significantly constrain possible renormalization group flows. Supersymmetric deformations of 6D SCFTs are all triggered by operator vevs and are specified as Higgs branch deformations when the R-symmetry is broken, and tensor branch deformations when the R-symmetry is preserved [141, 142]. This is reflected in the geometry as complex structure deformations and Kahler deformations of the Calabi-Yau. Moreover,

e.g., [100] and references therein for further discussion on this point.
Higgs branch deformations are essentially classified by the hierarchical algebraic data associated with flavor symmetry breaking patterns [118, 121, 127, 143, 144]. Outstanding open problems in this direction include obtaining a full classification of possible renormalization group flows triggered by deformations of a fixed point, and using the quiver-like structure of these theories, (especially in the limit of a large number of gauge groups) to obtain additional data on the operator content of these theories (see, e.g., [145–149]). Another important goal in this direction is to completely establish a six-dimensional analog of the \(a \)-theorem for supersymmetric flows. Some of the differences compared with the 4D proof based on dilaton scattering [150] were noted in [151] and were further elaborated on in the supersymmetric setting in [152]. An analytic proof for the special case of moduli space flows was given in [99, 153] for \(\mathcal{N} = (2, 0) \) theories, and for tensor branch flows of \(\mathcal{N} = (1, 0) \) theories was established in [154]. A geometric study of more general flows was presented in [127], which served as a starting point for a “proof by brute force” of \(a/c \)-theorems for tensor branch and Higgs branch flows [155]. It remains an outstanding open problem to give an analytic proof of the \(a \)-theorem for supersymmetric Higgs branch as well as mixed branch flows. This may also shed light on how to establish the 6D \(a \)-theorem without the assumption of supersymmetry.

2.2 5D SCFTs

Much recent progress has also been made in the classification of 5D SCFTs. The early examples of these theories [59, 79, 81] have since been generalized to a number of complementary constructions involving branes at singularities, and singular limits of string compactification geometries. Again, the operating method for realizing a 5D SCFT is to start with an effective field theory with a moduli space of vacua which also has finite tension strings. Moving to a point in moduli space where these strings have vanishing tension then yields the requisite SCFT. The most flexible known framework which encompasses all known examples is based on M-theory on non-compact singular Calabi-Yau threefolds. Such backgrounds preserve eight real supercharges. To get a 5D SCFT, one requires a holomorphic divisor (i.e., a real four-dimensional subspace) which collapses to a point. An M5-brane wrapped on such a divisor generates an effective string in the 5D theory, and its tension goes to zero when the divisor collapses to zero size. A priori, this is a different point in moduli space from where particles become massless. Though not necessary to realize a 5D SCFT, many have a gauge theory phase, and a corresponding \(U(1)_I \) global symmetry which assigns an instanton number to the codimension-four gauge instanton configurations [156, 157] (its one-form current is dual to the second Chern class of the gauge fields). This provides an important constraint on the dynamics of effective strings in such models.

It is conjectured that all 5D SCFTs arise from collapsing configurations of divisors in Calabi-Yau threefolds, possibly accompanied by a quotient by a symmetry (i.e., an automorphism) of the Calabi-Yau geometry. This is closely related to the open mathematical question of classifying canonical singularities. In the case of a small number of collapsing surfaces, there is a complete classification of such theories [88, 158]. For higher rank theories, much of the analysis has centered on the special case obtained from compactification of 6D SCFTs on a circle, possibly accompanied by an automorphism twist.
In geometric terms, this occurs because 6D SCFTs arise from compactification of a canonical singularity of an elliptically fibered Calabi-Yau threefold, and so a further circle compactification, accompanied by Wilson lines and an automorphism twist, can flow to a 5D SCFT, as obtained from M-theory compactified on a Calabi-Yau threefold with a canonical singularity see e.g. [79, 81, 161–164].

One of the major open questions in this direction is to find all 5D SCFTs obtained from canonical singularities for non-compact Calabi-Yau threefolds. The analogous question for theories with a dual AdS_6 supergravity description has largely been answered implicitly in a series of papers [165–175]. The classification of all Calabi-Yau geometries which can produce a 5D SCFT is more challenging than the classification of 6D SCFTs because there is no general numerical criterion for determining when configurations of collapsing divisors will produce a 5D SCFT, and so examples are handled on a case by case basis. It has been conjectured, however, that all 5D SCFTs arise from circle compactification (with twists) from a 6D SCFT [87]. If this were true, the question would reduce to determining all possible moduli space flows in that more limited setting. Examples which resist an obvious embedding in an elliptically fibered Calabi-Yau threefold include orbifolds of the form \mathbb{C}^3/Γ for Γ a finite subgroup of $SU(3)$ [87, 96, 97, 161]. That said, these examples may be connected to other theories via a flow in moduli space.

$D \leq 4$ SCFTs

For $D \leq 4$ the gauge coupling is either marginal or relevant. Thus, gauge theories provide an extremely useful view into the space of interacting SCFTs in four dimensions or lower. Despite that, the landscape of SCFTs in $D \leq 4$ remains overwhelmingly populated by theories which do not have any Lagrangian description, though some can be obtained as IR fixed points of renormalization group flows, including some cases where supersymmetry is broken along the flow but restored or enhanced in the IR [176–180].

2.3 4D $\mathcal{N} \geq 2$ SCFTs

For 4D SCFTs with $\mathcal{N} = 2$ supersymmetry which have a gauge theory description, the gauge coupling is exactly marginal [181]. Associated with the Lagrangian descriptions of these $\mathcal{N} \geq 2$ gauge theories [182] are a set of techniques based on supersymmetric localization, special geometric structures on conformal manifolds, and large N and large R-charge limits, which permit the calculation of some more detailed observables — in particular, correlators of non-chiral Coulomb branch operators in these SCFTs [183–201]. In some cases these techniques have been extended to non-Lagrangian SCFTs via renormalization group flows from gauge theories [194, 197, 202]. Nevertheless, with the exception of the simplest set of theories, the so-called rank-1 theories [203–206], which have been completely classified, and partial progress for rank-2 theories [207, 208], the classification of $\mathcal{N} = 2$ theories in four dimensions remains an open problem.

Dimensional reduction works in a remarkably effective way to engineer superconformal fixed points in four dimensions. The class-S theories, i.e., those which can be engineered by compactifying $(2,0)$ 6D theories on a Riemann surface in the presence of codimension-two
defects [209–226] fill a vast landscape of SCFTs. More recently, a thorough understanding
of the worldvolume theory of D3 branes in F-theory probing both an S-fold [227, 228] — a generalization of an orientifold — and an exceptional 7-brane singularity, the so-called \(\mathcal{N} = 2 \) S-folds [228–233] has been used to move beyond class \(S \).\(^3\) This construction also realizes theories which had been predicted by the systematic analysis of rank-1 theories and which can be instead realized in the more general construction of twisted compactification of 6D \((1,0)\) theories [234]. The methods which worked to compile the classification in rank-1 are of limited use for higher ranks. Thus for general answers a variety of approaches have been employed: (a) leveraging singularity theory to perform a systematic analysis of \(\mathcal{N} = 2 \) SCFTs which can be engineered in type IIB on a Calabi-Yau threefold [235–239], (b) systematic study of the constraint of special Kähler geometry [240] constraining the set of allowed Coulomb branches [207, 208, 241–249], and (c) systematic understanding of Higgs branches of \(N_Q = 8 \) supercharge SCFTs as the Coulomb branch of 3D \(\mathcal{N} = 4 \) SCFT magnetic quivers (as 3D mirror symmetry [250]) for Higgs branches of \(D > 3 \) SCFTs[143, 148, 162–164, 251–256]. These approaches are helpful given the limited effectiveness of bootstrap methods in this context [257].

Much more progress can be made studying theories in 4D with \(\mathcal{N} \geq 3 \) supersymmetry [227, 228, 258–262]. In this case it can be shown that the Kähler metric is necessarily flat [142, 263] and thus isotrivial\(^4\) [241]. Further restricting to theories with freely generated Coulomb branch chiral ring [264, 265], the moduli space of \(\mathcal{N} \geq 3 \) theories in 4D are realized as orbifolds by crystallographic complex reflection groups [246, 266, 267]. Many of the consistent low-energy solutions, particularly those which are associated with exceptional crystallographic complex reflection groups, have not been realized in string theory and thus remain conjectural. Furthermore, an altogether new set of 4D SCFTs might arise upon lifting the assumption that the Coulomb branch chiral ring is freely generated; this would result in complex singularities in the moduli space of vacua [264, 268].

Given the availability of techniques allowing classification schemes for SCFTs in 4D which do not rely on string theory, it is intriguing to compare these results with those obtained from compactification of the aforementioned 5D and 6D theories. The analysis is complicated by the variety of compactifications which are allowed [234, 269] and there are currently only limited results in this direction. Preliminary evidence shows that many 4D SCFTs can indeed be obtained from SCFTs in higher dimensions [244], though many challenges remain, e.g. see the classification of [182] of 4D Lagrangian theories; many of the quivers there have no known stringy construction.\(^5\) Understanding these challenging examples would be of great value in testing the possible completeness of string theory constructions of SCFTs.

\(^3\)The “\(S \)” of an S-fold has no relation to the “\(S \)” of class \(S \) theories (which refers to Six dimensional).

\(^4\)On the Coulomb branch of an \(\mathcal{N} = 2 \) theory, the metric on the Coulomb branch is generated from \(\text{Im} \tau_{ij} \), and the condition that the metric is isotrivial is just the statement that \(\tau_{ij} \) is locally constant.

\(^5\)We thank Y. Tachikawa for this comment.
2.4 3D $\mathcal{N} \geq 4$ SCFTs

By reducing 4D $\mathcal{N} \geq 2$ SCFTs on a circle, we obtain $\mathcal{N} \geq 4$ theories in 3D. For 3D $\mathcal{N} = 4$ theories, the Coulomb branch has a hyperkahler structure which is similar to the one present on the Higgs branch. Indeed, this is compatible with 3D mirror symmetry duality [250], which exchanges the Higgs branch of theory \mathcal{T}^A with the Coulomb branch of \mathcal{T}^B — the mirror dual of \mathcal{T}^A — and vice versa. Recently there has been a flurry of activity which has improved our general understanding of mirror duals of Argyres-Douglas theories [270–275] as well as the identification of new mirror dualities altogether [276–278]. Further insights into mirror symmetry can also be obtained [279, 280] by exploiting the fact that 3D $\mathcal{N} = 4$ theories have a topological sector [281, 282], which descends from the vertex operator algebra (VOA) associated to $\mathcal{N} = 2$ 4D SCFTs [283, 284] (see below for additional details on the appearance of VOAs).

Despite all this recent progress, a systematic charting of $\mathcal{N} = 4$ 3D theories remains a vast challenge. The situation is more manageable upon restricting to $\mathcal{N} \geq 5$, see [285] for $\mathcal{N} = 5$ examples, for $\mathcal{N} \geq 6$ see [286–293] and, for $\mathcal{N} = 8$ maximally supersymmetric theories in 3D, see [294–299]. In particular there has been an intriguing proposal for a classification scheme of $\mathcal{N} \geq 6$ theories based on real and complex reflection groups [300]. If true, this predicts the existence of two new $\mathcal{N} = 8$ SCFTs. In three dimensions, $\mathcal{N} = 7$ supersymmetry necessarily implies $\mathcal{N} = 8$ supersymmetry [28, 301] and SCFTs with $N_Q > 16$ can exist but are necessarily free [28].

3 SCFTs and new mathematics

SCFTs have also been used as a powerful tool to glean insights in a variety of separate fields in mathematics. We will here just mention a few examples, leaving a fuller discussion on the intersection between quantum field theory and mathematics to [58].

3.1 Geometry and singularities

The close interplay between singular Calabi-Yau geometries and the resulting physical theories has been fruitful in both directions. In particular, physical considerations can predict new mathematical structures. The expectation that physical theories can be connected under renormalization group flows is manifested in the geometry as a hierarchical stratification of singular geometries according to a partially ordered set. As explicit examples, in 6D SCFTs, a number of flavor symmetry breaking patterns are captured by nilpotent orbits of elements in the flavor symmetry algebra [118, 140, 143, 302–307]. These in turn admit a partial ordering, which directly translates to smoothing deformations of the associated geometry. By the Jacobson-Morozov theorem, each nilpotent orbit defines a Lie algebra homomorphism $\mathfrak{sl}(2) \to \mathfrak{g}_{\text{flav}}$, in the obvious notation. Another application of related mathematical structures is the development of a geometric classification scheme for finite group homomorphisms from finite subgroups of $SU(2)$ to the Lie group E_8 [77, 308], which was even used to correct a few typos in the original list of examples presented in reference [309]! The common bridge connecting these seemingly different structures is via the 6D SCFT of
M5-branes probing an ADE singularity wrapped by a Horava-Witten nine-brane. An open problem here is to use the hierarchy of RG flows in physics to develop a partial ordering of such homomorphisms.

The same sort of geometric partial ordering also appears in Higgs branch deformations of 5D SCFTs [94, 95]. In the case of 6D SCFTs, the classification of canonical singularities for elliptically fibered Calabi-Yau threefolds was accomplished using physical methods in [77]. This was also recently joined by a mathematical classification scheme in [310]. The case of $D = 5$ SCFTs involves the mathematically far more challenging issue of classifying canonical singularities of non-compact Calabi-Yau threefolds, i.e., relaxing the condition that there is an elliptic fibration. See e.g. [162, 164] for studies of canonical singularities related to 4D and 5D SCFTs.

In lower-dimensional SCFTs, the possible geometric singularities which can be realized in the “internal” compactification directions can become significantly more intricate. For example, for Calabi-Yau spaces of complex dimension four and above, it is possible to have singularities which do not admit a crepant resolution. These figure prominently in the physics of S-folds (see, e.g., [28, 227, 228, 230–233, 259–261, 267, 311–330]), which have already led to the discovery of many new 4D $\mathcal{N} \leq 3$ SCFTs. What is currently unclear is how severe a singularity can be admitted whilst still retaining a physical SCFT interpretation. For recent discussion on the physical interpretation of terminal singularities, see, e.g., [162, 331].

3.2 Vertex operator algebras

To any four-dimensional $\mathcal{N} = 2$ SCFT \mathcal{T} one can canonically associate a two-dimensional non-unitary vertex operator algebra (VOA) $\chi[\mathcal{T}]$ [332] which arises as a cohomological reduction of the full OPE algebra of the four-dimensional theory, or equivalently, by introducing a certain Ω background that deforms the holomorphic-topological twist of the theory [333, 334]. $\chi[\mathcal{T}]$ carries many features of the 4D avatar: its central charge is $c_{2D} = -12c_{4D}$ and the 4D flavor symmetry gets enhanced to an affine Lie algebra and $k_{2D} = -k_{4D}/2$. Less directly $\chi[\mathcal{T}]$ is constrained by 4D unitarity [335–337] but it remains an open problem how to completely characterize it. Since the early days, it has been noticed that the structure of $\chi[\mathcal{T}]$ is deeply connected with the physics of the Higgs branch which conjecturally [338] arises as the associated variety [339] to the VOA. This conjecture, which has been shown [283] to imply a previous conjecture of Arakawa [340, Conjecture 1], carries deep implications: the VOAs which arise from the cohomological reduction of $\mathcal{N} = 2$ SCFTs would then be of a special type known as “quasi-lisse” [341], a property which ensures that their vacuum characters satisfy a linear modular differential equation [342–344]. The representation theory of $\chi[\mathcal{T}]$, which is seldomly rational, can be complicated and it remains an open problem to understand which characters participate in the modular property of the vacuum character; these and related issues have been recently investigated in [345–348]. In recent years a varieties of techniques have been employed to compute $\chi[\mathcal{T}]$ in a large set of examples [284, 342, 343, 349–360] and it is worthwhile noticing that surprisingly often, in the Argyres-Douglas case, $\chi[\mathcal{T}]$ is an affine Kac-Moody at boundary admissible level [353, 354, 361, 362].
The connection between VOA and Higgs branch physics might be even deeper than initially thought. In fact, inspired by [363], it has been recently shown that the low-energy effective theory on the Higgs branch provides a way to build free field realizations of χ[7] [267, 364–366]. This perspective might provide an interesting framework to leverage VOA constraints to classify allowed 4D SCFTs. The VOA is moreover connected [356] to the Lens index. Finally, tantalizing connections between chiral algebras and Coulomb branches have been noticed in a variety of examples [344, 367, 368]. It remains an open question whether this is a general property of VOAs, which would then be even more constrained than initially expected.

4 Extended operators and higher-form symmetries

Extended operators are important observables of QFT. For example, the spectrum of Wilson-'t Hooft line operators in 4D gauge theories is non-perturbative data which differentiates between otherwise perturbatively equivalent QFTs [258]. It is challenging to characterize the spectra of such operators, and compute their correlators, in general QFTs. See e.g. [369–379] for aspects of topological extended operators. Supersymmetry-protected (BPS) extended operators are better understood via techniques such as supersymmetric localization, and via their geometric realization as wrapped branes in string / M- / F-theory constructions [380–404].

For CFTs, a key simplification comes from focusing on “conformal extended operators” [405], i.e. those configurations which preserve a maximal subgroup of the conformal group. These are the flat or straight extended operators and their conformal transforms; in euclidean space they have planar or spherical world volumes. Our understanding of the constraints on the spectrum of extended operators coming from CFT unitarity and of the structure of the operator product algebra of conformal extended operators is rapidly developing [14, 406–423]. Challenges, such as generalizing the notions of primary and descendant operators for extended operators, may become more tractable by specializing to BPS conformal operators in SCFTs; some work along this direction is [374, 424–437]

Generalized, n-form global symmetries [438] can act on m-dimensional extended operators for $m \geq n$. Thus local operators are charged only under ordinary (0-form) symmetries, line operators may be charged under both 0- and 1-form symmetries, etc. n-form symmetry charges and transformations are captured by the insertion of $(d-n-1)$-dimensional extended operators in correlators. These symmetry operators are topological operators, and their action is sensitive only to the topological linking of their world volumes with the world volumes of other operators in the correlator. The generalized symmetry operators may themselves be charged under n-form symmetries, implying that different n-form symmetries may have an “extended group” structure. Moreover, n-form symmetries may be part of larger “non-invertible symmetries” consisting of the algebra of all topological operators in a theory. The characterization of higher-form and non-invertible symmetries in various QFTs is an area of active research, see [439].

Supersymmetry, and the moduli spaces of vacua, helps to determine these symmetry algebras and their action on the spectrum of operators. Superconformal symmetry provides
strong additional restrictions. Indeed, the representation theory of the superconformal algebra forbids higher-form conserved currents, so there can be no continuous higher-form symmetries in SCFTs [28]; see also [440] for similar restrictions without assuming supersymmetry. There can be continuous higher symmetry in non-conformal supersymmetric theories, and its presence is an obstruction to conformal invariance anywhere along the RG flow unless the symmetry is accidental in the IR and explicitly broken in the UV [128, 441]. SCFTs can have interesting discrete higher-form symmetries, and this has been an active area of recent research: recent work in six dimensions includes [162, 397, 442–446]; in five dimensions includes [97, 403, 445, 447, 448]; in four dimensions includes [404, 449–452]; and in three dimensions includes [453–459].

5 Theories with less supersymmetry \((8 > N_Q \geq 2) \)

Above we considered SCFTs with \(N_Q = 8 \) supercharges. Here we mention aspects of SCFTs with \(N_Q = 4 \) supercharges, namely 4D \(\mathcal{N} = 1 \) and 3D \(\mathcal{N} = 2 \) theories, where the superconformal algebra contains a \(U(1)_R \) symmetry. Many examples of 4D \(\mathcal{N} = 1 \) SCFTs were found starting in the mid 1990s, via singularities of the moduli space, dualities and ‘t Hooft anomaly matching, and a variety of other methods, see e.g. [23, 24, 460–465] and references therein. Additional checks of 4D \(\mathcal{N} = 1 \) dualities and the SCFT operator spectrum comes from superconformal indices, see e.g. [466–468]. In 4D \(\mathcal{N} = 1 \) finding the exact superconformal \(U(1)_R \) can require \(a \)-maximization [469].

Dimensional reduction from 6D SCFTs is an extremely useful tool in the construction and study of \(N_Q = 4 \) SCFTs. It is possible to obtain 4D \(\mathcal{N} = 1 \) SCFTs from compactification of \(\mathcal{N} = (2, 0) \) and \(\mathcal{N} = (1, 0) \) 6D SCFTs. To obtain an \(\mathcal{N} = 1 \) SCFT in the former case, one has to turn on fluxes for the global symmetries [470–475]. In the latter case instead it is possible to compactify on a generic Riemann surface [476–482], with additional boundary conditions for operators specified at marked points or “punctures” [55, 483–488]. Particularly tractable cases are theories obtained from compactification of the 6D E-string theory [489–491] and the theories of class \(S_k \) obtained from a stack of M5-branes probing an \(A_{k-1} \) singularity [492–498]. The interesting pattern that arises in many of these examples is that the simplicity of the parent 6D theory translates to the simplicity of the 4D \(\mathcal{N} = 1 \) SCFTs with a variety of minimal \(\mathcal{N} = (1, 0) \) theories having a simple quiver formulation [499]. For many other such \(\mathcal{N} = 1 \) SCFTs, it remains an outstanding open problem to determine if the SCFTs can also be defined in terms of RG flows from 4D Lagrangian theories. See also [500–505] for other examples of 4D \(\mathcal{N} = 1 \) SCFTs and dualities obtained via compactification; for efforts to charting the possible 4D \(\mathcal{N} = 1 \) SCFTs and their connections via RG flows and dualities see e.g. [506] where it is shown that even highly restricted UV starting points can lead to a remarkably rich landscape of SCFTs. See also [507] for a classification of rich classes of SCFTs obtained from simple gauge group with a large \(N \) limit with dense spectrum.

An another recently discovered intriguing phenomenon is the existence of a 4D \(\mathcal{N} = 1 \) conformal manifold for theories with higher supersymmetry, even in the absence of exactly marginal deformations fully preserving the supersymmetry of the original theory [508–510].
This observation has led to the discovery of new $\mathcal{N} = 1$ dualities [511, 512] as well as an $\mathcal{N} = 1$ Lagrangian for an inherently strongly coupled $\mathcal{N} = 3$ theory [329]. Finding the exact $U(1)_R$ symmetry in 3D $\mathcal{N} = 2$ theories can require Z-extremization [513, 514] (or τ_{RR} extremization [515], which applies for SCFTs in any D, see also [516–519]). In 3D there are also $\mathcal{N} = 3$ and $\mathcal{N} = 1$ supersymmetries with $N_Q = 6$ and $N_Q = 2$, respectively. Furthermore, compactifying to three dimensions allows for additional structure since the interactions are no longer constrained by asymptotic freedom bounds and there is the possibility of supersymmetrized Chern-Simons terms. The landscape of SCFTs and dualities in 3D $\mathcal{N} = 2$, and inter-connections with compactified higher dimensional theories, is thus quite rich, see e.g. [521, 525–532], and there is an active effort in fully characterizing 3D $\mathcal{N} = 2$ dualities beyond theories with $SU(N)$ gauge group and/or with matter in representations fundamental/adjoint representations [530, 533–537]. Relatedly, these dualities involve the non-trivial matching of electric and magnetic degrees of freedom on the two sides and it is particularly challenging to fully understand the properties of monopole operators [538–541]. Another challenge is that in 3D there are only discrete anomalies, e.g. the \mathbb{Z}_2-valued parity anomaly [542–544], which makes it challenging to provide definitive evidence for these dualities. Fortunately, computing exact operator dimensions and other exact results localization techniques in 3D $\mathcal{N} = 2$ [545] yield highly non-trivial evidence for the many conjectured 3D dualities, see e.g. [546–549].

Finally, there is an intriguing connection between 3D $\mathcal{N} = 2$ and the characterization of three manifolds. This is done by exploiting the fact that compactifying a 6D (2,0) theory on a three manifold \mathcal{M}_3 gives a 3D $\mathcal{N} = 2$ theory which can be then used as a quantum invariant of \mathcal{M}_3. This feature has been dubbed 3D-3D correspondence [550–552], and continues to be actively investigated [457, 553–569]. It is also possible to obtain 3D SCFTs via compactification of 5D SCFTs, see e.g. [532].

Acknowledgments

We thank Antonio Amariti, Fabio Apruzzi, Cyril Closset, Michele Del Zotto, Yale Fan, Simone Giacomelli, Neil Lambert, Craig Lawrie, Bengt E.W. Nilsson, Carlos Nunez, Shlomo Razamat, Tom Rudelius, Sakura Schafer-Nameki, Jaewon Song, Yuji Tachikawa, Alessandro Tomasiello, Peter West and Gabi Zafrir for helpful comments on the draft, and David Poland and Leonardo Rastelli for spearheading an effort to include hep-th areas in this year’s Snowmass process, and inviting us to submit this contribution. PCA is supported in part by DOE award DE-SC0011784. JJH is supported by DOE award DE-SC0013528. KI is supported by DOE award DE-SC0009919 and Simons Foundation awards 568420 and 888994. MM is supported in part by NSF grants PHY-1915093, by the Simons Foundation grant 815892 and STFC grant ST/T000759/1.

-- 14 --
References

[1] G. Mack, All unitary ray representations of the conformal group $SU(2,2)$ with positive energy, Commun. Math. Phys. 55 (1977) 1.

[2] S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783–851, [hep-th/9712074].

[3] F. A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303, [hep-th/0508031].

[4] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209–254, [hep-th/0510251].

[5] J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011, [arXiv:1112.1016].

[6] S. Rychkov, EPFL Lectures on Conformal Field Theory in $D>3$ Dimensions. SpringerBriefs in Physics. 1, 2016.

[7] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333–380.

[8] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183–386, [hep-th/9905111].

[9] A. A. Belavin and A. A. Migdal, Calculation of anomalous dimensions in non-abelian gauge field theories, Pisma Zh. Eksp. Teor. Fiz. 19 (1974) 317–320.

[10] W. E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to Two Loop Order, Phys. Rev. Lett. 33 (1974) 244.

[11] T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys. B 196 (1982) 189–204.

[12] D. F. Litim and F. Sannino, Asymptotic safety guaranteed, JHEP 12 (2014) 178, [arXiv:1406.2337].

[13] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong, Is $SU(3)$ gauge theory with 13 massless flavors conformal?, PoS LATTICE2018 (2018) 198, [arXiv:1811.05024].

[14] W. Landry, D. Poland, and D. Simons-Duffin, White paper on Numerical bootstrap and space of CFTs, to appear.

[15] W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149.

[16] M. F. Sohnius and P. C. West, Conformal Invariance in N=4 Supersymmetric Yang-Mills Theory, Phys. Lett. B 100 (1981) 245.

[17] L. Brink, O. Lindgren, and B. E. W. Nilsson, The Ultraviolet Finiteness of the N=4 Yang-Mills Theory, Phys. Lett. B 123 (1983) 323–328.

[18] M. T. Grisaru and W. Siegel, Supergraphity. 2. Manifestly Covariant Rules and Higher Loop Finiteness, Nucl. Phys. B 201 (1982) 292. [Erratum: Nucl.Phys.B 206, 496 (1982)].

[19] P. S. Howe, K. S. Stelle, and P. C. West, A Class of Finite Four-Dimensional Supersymmetric Field Theories, Phys. Lett. B 124 (1983) 55–58.

[20] A. Parkes and P. C. West, Finiteness in Rigid Supersymmetric Theories, Phys. Lett. B 138 (1984) 99–104.
[21] P. C. West, *The Yukawa beta Function in N=1 Rigid Supersymmetric Theories*, Phys. Lett. B 137 (1984) 371–373.

[22] A. J. Parkes and P. C. West, *Three Loop Results in Two Loop Finite Supersymmetric Gauge Theories*, Nucl. Phys. B 256 (1985) 340–352.

[23] K. A. Intriligator and N. Seiberg, *Lectures on supersymmetric gauge theories and electric-magnetic duality*, Nucl. Phys. B Proc. Suppl. 45BC (1996) 1–28, [hep-th/9509066].

[24] M. Chaichian, W. F. Chen, and C. Montonen, *New superconformal field theories in four-dimensions and N=1 duality*, Phys. Rept. 346 (2001) 89–341, [hep-th/0007240].

[25] Y. Tachikawa, *Lectures on 4d N=1 dynamics and related topics*, 12, 2018. arXiv:1812.08946.

[26] M. Akhond, G. Arias-Tamargo, A. Mininno, H.-Y. Sun, Z. Sun, Y. Wang, and F. Xu, *The Hitchhiker’s Guide to 4d N = 2 Superconformal Field Theories*, 12, 2021. arXiv:2112.14764.

[27] F. A. Dolan and H. Osborn, *On short and semi-short representations for four-dimensional superconformal symmetry*, Annals Phys. 307 (2003) 41–89, [hep-th/0209056].

[28] C. Cordova, T. T. Dumitrescu, and K. Intriligator, *Multiplets of Superconformal Symmetry in Diverse Dimensions*, JHEP 03 (2019) 163, [arXiv:1612.00809].

[29] J. M. Drummond, J. Henn, V. A. Smirnov, and E. Sokatchev, *Magic identities for conformal four-point integrals*, JHEP 01 (2007) 064, [hep-th/0607160].

[30] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, *Local Spacetime Physics from the Grassmannian*, JHEP 01 (2011) 108, [arXiv:0912.3249].

[31] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, and J. Trnka, *Unification of Residues and Grassmannian Dualities*, JHEP 01 (2011) 049, [arXiv:0912.4912].

[32] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, S. Caron-Huot, and J. Trnka, *The All-Loop Integrand For Scattering Amplitudes in Planar N=4 SYM*, JHEP 01 (2011) 041, [arXiv:1008.2958].

[33] N. Beisert et al., *Review of AdS/CFT Integrability: An Overview*, Lett. Math. Phys. 99 (2012) 3–32, [arXiv:1012.3982].

[34] J. L. Bourjaily, A. DiRe, A. Shaikh, M. Spradlin, and A. Volovich, *The Soft-Collinear Bootstrap: N=4Yang-Mills Amplitudes at Six and Seven Loops*, JHEP 03 (2012) 032, [arXiv:1112.6432].

[35] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, and J. Trnka, *Grassmannian Geometry of Scattering Amplitudes*. Cambridge University Press, 4, 2016.

[36] J. L. Bourjaily, S. Caron-Huot, and J. Trnka, *Dual-Conformal Regularization of Infrared Loop Divergences and the Chiral Box Expansion*, JHEP 01 (2015) 001, [arXiv:1303.4734].

[37] N. Arkani-Hamed and J. Trnka, *The Amplituhedron*, JHEP 10 (2014) 030, [arXiv:1312.2007].

[38] J. L. Bourjaily and J. Trnka, *Local Integrand Representations of All Two-Loop Amplitudes in Planar SYM*, JHEP 08 (2015) 119, [arXiv:1505.05886].
[39] J. L. Bourjaily, P. Heslop, and V.-V. Tran, Perturbation Theory at Eight Loops: Novel Structures and the Breakdown of Manifest Conformality in $N=4$ Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 116 (2016), no. 19 191602, [arXiv:1512.07912].

[40] J. L. Bourjaily, P. Heslop, and V.-V. Tran, Amplitudes and Correlators to Ten Loops Using Simple, Graphical Bootstraps, JHEP 11 (2016) 125, [arXiv:1609.00007].

[41] L. J. Dixon, J. Drummond, T. Harrington, A. J. McLeod, G. Papathanasiou, and M. Spradlin, Heptagons from the Steinmann Cluster Bootstrap, JHEP 02 (2017) 137, [arXiv:1612.08976].

[42] J. L. Bourjaily, E. Herrmann, and J. Trnka, Prescriptive Unitarity, JHEP 06 (2017) 059, [arXiv:1704.05460].

[43] J. Drummond, J. Foster, O. Gürdoğan, and G. Papathanasiou, Cluster adjacency and the four-loop NMHV heptagon, JHEP 03 (2019) 087, [arXiv:1812.04640].

[44] S. Caron-Huot, L. J. Dixon, F. Dulat, M. von Hippel, A. J. McLeod, and G. Papathanasiou, Six-Gluon amplitudes in planar $N=4$ super-Yang-Mills theory at six and seven loops, JHEP 08 (2019) 016, [arXiv:1903.10890].

[45] S. Caron-Huot, L. J. Dixon, F. Dulat, M. Von Hippel, A. J. McLeod, and G. Papathanasiou, The Cosmic Galois Group and Extended Steinmann Relations for Planar $N=4$ SYM Amplitudes, JHEP 09 (2019) 061, [arXiv:1906.07116].

[46] M. Lemos, Lectures on chiral algebras of $N \geq 2$ superconformal field theories, arXiv:2006.13892.

[47] P. Goddard, J. Nuyts, and D. I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125 (1977) 1–28.

[48] H. Osborn, Topological Charges for $N=4$ Supersymmetric Gauge Theories and Monopoles of Spin 1, Phys. Lett. B 83 (1979) 321–326.

[49] C. Vafa, Geometric origin of Montonen-Olive duality, Adv. Theor. Math. Phys. 1 (1998) 158–166, [hep-th/9707131].

[50] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD, Nucl. Phys. B431 (1994) 484–550, [hep-th/9408099].

[51] N. Seiberg and E. Witten, Electric - magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994) 19–52, [hep-th/9407087]. [Erratum: Nucl. Phys.B430,485(1994)].

[52] P. C. Argyres and M. R. Douglas, New phenomena in $SU(3)$ supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93–126, [hep-th/9505062].

[53] P. C. Argyres, M. R. Plesser, N. Seiberg, and E. Witten, New $N=2$ superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71–84, [hep-th/9511154].

[54] P. C. Argyres, M. R. Plesser, and N. Seiberg, The Moduli space of vacua of $N=2$ SUSY QCD and duality in $N=1$ SUSY QCD, Nucl. Phys. B471 (1996) 159–194, [hep-th/9603042].

[55] D. Gaiotto, $N=2$ dualities, JHEP 08 (2012) 034, [arXiv:0904.2715].

[56] D. Gaiotto, G. W. Moore, and A. Neitzke, Wall-crossing, Hitchin Systems, and the WKB Approximation, arXiv:0907.3987.
[57] P. C. Argyres and N. Seiberg, *S-duality in N=2 supersymmetric gauge theories*, JHEP 12 (2007) 088, [arXiv:0711.0054].

[58] I. Bah, D. Freed, G. Moore, N. Nekrasov, S. Razamat, and S. Shafer-Nameki, *White paper on New ideas in classical gravity from quantum fields and strings*, to appear.

[59] N. Seiberg, *Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics*, Phys. Lett. B 388 (1996) 753–760, [hep-th/9608111].

[60] N. Seiberg, *Nontrivial fixed points of the renormalization group in six-dimensions*, Phys. Lett. B 390 (1997) 169–171, [hep-th/9609161].

[61] E. Witten, *Some comments on string dynamics*, in STRINGS 95: Future Perspectives in String Theory, pp. 501–523, 7, 1995. [hep-th/9507121].

[62] A. Strominger, *Open p-branes*, Phys. Lett. B 383 (1996) 44–47, [hep-th/9512059].

[63] O. J. Ganor and A. Hanany, *Small E(8) instantons and tensionless noncritical strings*, Nucl. Phys. B 474 (1996) 122–140, [hep-th/9602120].

[64] N. Seiberg and E. Witten, *Comments on string dynamics in six-dimensions*, Nucl. Phys. B 471 (1996) 121–134, [hep-th/9603003].

[65] E. Witten, *Phase transitions in M theory and F theory*, Nucl. Phys. B 471 (1996) 195–216, [hep-th/9603150].

[66] D. R. Morrison and C. Vafa, *Compactifications of F theory on Calabi-Yau threefolds. 2.*, Nucl. Phys. B 476 (1996) 437–469, [hep-th/9603161].

[67] E. Witten, *Physical interpretation of certain strong coupling singularities*, Mod. Phys. Lett. A 11 (1996) 2649–2654, [hep-th/9609159].

[68] M. Bershadsky and A. Johansen, *Colliding singularities in F theory and phase transitions*, Nucl. Phys. B 489 (1997) 122–138, [hep-th/9610111].

[69] I. Brunner and A. Karch, *Branes at orbifolds versus Hanany Witten in six-dimensions*, JHEP 03 (1998) 003, [hep-th/9712143].

[70] J. D. Blum and K. A. Intriligator, *New phases of string theory and 6-D RG fixed points via branes at orbifold singularities*, Nucl. Phys. B 506 (1997) 199–222, [hep-th/9705044].

[71] J. D. Blum and K. A. Intriligator, *Consistency conditions for branes at orbifold singularities*, Nucl. Phys. B 506 (1997) 223–235, [hep-th/9705030].

[72] P. S. Aspinwall and D. R. Morrison, *Point-like instantons on K3 orbifolds*, Nucl. Phys. B 503 (1997) 533–564, [hep-th/9705104].

[73] K. A. Intriligator, *New string theories in six-dimensions via branes at orbifold singularities*, Adv. Theor. Math. Phys. 1 (1998) 271–282, [hep-th/9708117].

[74] A. Hanany and A. Zaffaroni, *Branes and six-dimensional supersymmetric theories*, Nucl. Phys. B 529 (1998) 180–206, [hep-th/9712145].

[75] J. J. Heckman, D. R. Morrison, and C. Vafa, *On the Classification of 6D SCFTs and Generalized ADE Orbifolds*, JHEP 05 (2014) 028, [arXiv:1312.5746]. [Erratum: JHEP 06, 017 (2015)].

[76] M. Del Zotto, J. J. Heckman, A. Tomasiello, and C. Vafa, *6d Conformal Matter*, JHEP 02 (2015) 054, [arXiv:1407.6359].
[77] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa, Atomic Classification of 6D SCFTs, *Fortsch. Phys.* 63 (2015) 468–530, [arXiv:1502.05405].

[78] S. H. Katz and C. Vafa, Matter from geometry, *Nucl. Phys. B* 497 (1997) 146–154, [hep-th/9606086].

[79] D. R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, *Nucl. Phys. B* 483 (1997) 229–247, [hep-th/9609070].

[80] M. R. Douglas, S. H. Katz, and C. Vafa, Small instantons, Del Pezzo surfaces and type I-prime theory, *Nucl. Phys. B* 497 (1997) 155–172, [hep-th/9609071].

[81] K. A. Intriligator, D. R. Morrison, and N. Seiberg, Five-dimensional supersymmetric field theories and degenerations of Calabi-Yau spaces, *Nucl. Phys. B* 497 (1997) 56–100, [hep-th/9702198].

[82] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, *Nucl. Phys. B* 504 (1997) 239–271, [hep-th/9704170].

[83] O. Aharony, A. Hanany, and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, *JHEP* 01 (1998) 002, [hep-th/9710116].

[84] D.-E. Diaconescu and R. Entin, Calabi-Yau spaces and five-dimensional field theories with exceptional gauge symmetry, *Nucl. Phys. B* 538 (1999) 451–484, [hep-th/9807170].

[85] O. Bergman and D. Rodríguez-Gómez, 5d quivers and their AdS(6) duals, *JHEP* 07 (2012) 171, [arXiv:1206.3503].

[86] O. Bergman, D. Rodríguez-Gómez, and G. Zafrir, 5d superconformal indices at large N and holography, *JHEP* 08 (2013) 081, [arXiv:1305.6870].

[87] M. Del Zotto, J. J. Heckman, and D. R. Morrison, 6D SCFTs and Phases of 5D Theories, *JHEP* 09 (2017) 147, [arXiv:1703.02981].

[88] P. Jefferson, S. Katz, H.-C. Kim, and C. Vafa, On Geometric Classification of 5d SCFTs, *JHEP* 04 (2018) 103, [arXiv:1801.04036].

[89] C. Closset, M. Del Zotto, and V. Saxena, Five-dimensional SCFTs and gauge theory phases: an M-theory/type IIA perspective, *SciPost Phys.* 6 (2019), no. 5 052, [arXiv:1812.10451].

[90] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Rank one, *JHEP* 07 (2019) 178, [arXiv:1809.01650]. [Addendum: JHEP 01, 153 (2020)].

[91] L. Bhardwaj and P. Jefferson, Classifying 5d SCFTs via 6d SCFTs: Arbitrary rank, *JHEP* 10 (2019) 282, [arXiv:1811.10616].

[92] L. Bhardwaj, P. Jefferson, H.-C. Kim, H.-C. Tarazi, and C. Vafa, Twisted Circle Compactifications of 6d SCFTs, *JHEP* 12 (2020) 151, [arXiv:1909.11666].

[93] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki, and Y.-N. Wang, 5d Superconformal Field Theories and Graphs, *Phys. Lett. B* 800 (2020) 135077, [arXiv:1906.11820].

[94] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki, and Y.-N. Wang, Fibers add Flavor, Part I: Classification of 5d SCFTs, Flavor Symmetries and BPS States, *JHEP* 11 (2019) 068, [arXiv:1907.05404].

[95] F. Apruzzi, C. Lawrie, L. Lin, S. Schäfer-Nameki, and Y.-N. Wang, Fibers add Flavor, Part II: 5d SCFTs, Gauge Theories, and Dualities, *JHEP* 03 (2020) 052, [arXiv:1909.09128].

[96] J. Tian and Y.-N. Wang, 5D and 6D SCFTs from \mathbb{C}^3 orbifolds, [arXiv:2110.15129].
[97] M. Del Zotto, J. J. Heckman, S. N. Meynet, R. Moscrop, and H. Y. Zhang, Higher Symmetries of 5d Orbifold SCFTs, arXiv:2201.08372.

[98] M. Henningson, Self-dual strings in six dimensions: Anomalies, the ADE-classification, and the world-sheet WZW-model, Commun. Math. Phys. 257 (2005) 291–302, [hep-th/0405056].

[99] C. Cordova, T. T. Dumitrescu, and X. Yin, Higher derivative terms, toroidal compactification, and Weyl anomalies in six-dimensional (2, 0) theories, JHEP 10 (2019) 128, [arXiv:1505.03850].

[100] Y. Tachikawa, On the 6d origin of discrete additional data of 4d gauge theories, JHEP 05 (2014) 020, [arXiv:1309.0697].

[101] L. Bhardwaj, Classification of 6d \(\mathcal{N} = (1, 0) \) gauge theories, JHEP 11 (2015) 002, [arXiv:1502.06594].

[102] C. Vafa, Evidence for F theory, Nucl. Phys. B 469 (1996) 403–418, [hep-th/9602022].

[103] D. R. Morrison and C. Vafa, Compactifications of F theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74–92, [hep-th/9602114].

[104] J. J. Heckman, Particle Physics Implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237–265, [arXiv:1001.0577].

[105] T. Weigand, F-theory, PoS TASI2017 (2018) 016, [arXiv:1806.01854].

[106] D. R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072–1088, [arXiv:1201.1943].

[107] F. Apruzzi, M. Fazzi, D. Rosa, and A. Tomasiello, All AdS\(_7\) solutions of type II supergravity, JHEP 04 (2014) 064, [arXiv:1309.2949].

[108] F. Apruzzi, M. Fazzi, A. Passias, A. Rota, and A. Tomasiello, Six-Dimensional Superconformal Theories and their Compactifications from Type IIA Supergravity, Phys. Rev. Lett. 115 (2015), no. 6 061601, [arXiv:1502.06616].

[109] D. Gaiotto and A. Tomasiello, Holography for (1,0) theories in six dimensions, JHEP 12 (2014) 003, [arXiv:1404.0711].

[110] F. Apruzzi and M. Fazzi, AdS\(_7\)/CFT\(_6\) with orientifolds, JHEP 01 (2018) 124, [arXiv:1712.03235].

[111] Y. Tachikawa, Frozen singularities in M and F theory, JHEP 06 (2016) 128, [arXiv:1508.06679].

[112] L. Bhardwaj, M. Del Zotto, J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa, F-theory and the Classification of Little Strings, Phys. Rev. D 93 (2016), no. 8 086002, [arXiv:1511.05665]. [Erratum: Phys.Rev.D 100, 029901 (2019)].

[113] L. Bhardwaj, D. R. Morrison, Y. Tachikawa, and A. Tomasiello, The frozen phase of F-theory, JHEP 08 (2018) 138, [arXiv:1805.09070].

[114] L. Bhardwaj, Revisiting the classifications of 6d SCFTs and LSTs, JHEP 03 (2020) 171, [arXiv:1903.10503].

[115] J. J. Heckman and T. Rudelius, Top Down Approach to 6D SCFTs, J. Phys. A 52 (2019), no. 9 093001, [arXiv:1805.06467].
[116] J. J. Heckman, *More on the Matter of 6D SCFTs*, Phys. Lett. B 747 (2015) 73–75, [arXiv:1408.0006]. [Erratum: Phys.Lett.B 808, 135675 (2020)].

[117] M. Bertolini, P. R. Merkx, and D. R. Morrison, *On the global symmetries of 6D superconformal field theories*, JHEP 07 (2016) 005, [arXiv:1510.08056].

[118] J. J. Heckman, T. Rudelius, and A. Tomasiello, *6D RG Flows and Nilpotent Hierarchies*, JHEP 07 (2016) 082, [arXiv:1601.04078].

[119] D. R. Morrison and T. Rudelius, *F-theory and Unpaired Tensors in 6D SCFTs and LSTs*, Fortsch. Phys. 64 (2016) 645–656, [arXiv:1605.08045].

[120] S.-J. Lee, D. Regalado, and T. Weigand, *6d SCFTs and U(1) Flavour Symmetries*, JHEP 11 (2018) 147, [arXiv:1803.07998].

[121] F. Apruzzi, M. Fazzi, J. J. Heckman, T. Rudelius, and H. Y. Zhang, *General prescription for global U(1)’s in 6D SCFTs*, Phys. Rev. D 101 (2020), no. 8 086023, [arXiv:2001.10549].

[122] J. A. Harvey, R. Minasian, and G. W. Moore, *NonAbelian tensor multiplet anomalies*, JHEP 09 (1998) 004, [hep-th/9808060].

[123] K. Intriligator, *6d, N = (1, 0) Coulomb branch anomaly matching*, JHEP 10 (2014) 162, [arXiv:1408.6745].

[124] K. Ohmori, H. Shimizu, and Y. Tachikawa, *Anomaly polynomial of E-string theories*, JHEP 08 (2014) 002, [arXiv:1404.3887].

[125] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura, *Anomaly polynomial of general 6d SCFTs*, PTEP 2014 (2014), no. 10 103B07, [arXiv:1408.5572].

[126] M. Del Zotto, J. J. Heckman, D. R. Morrison, and D. S. Park, *6D SCFTs and Gravity*, JHEP 06 (2015) 158, [arXiv:1412.6526].

[127] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa, *Geometry of 6D RG Flows*, JHEP 09 (2015) 052, [arXiv:1505.00009].

[128] C. Cordova, T. T. Dumitrescu, and K. Intriligator, *2-Group Global Symmetries and Anomalies in Six-Dimensional Quantum Field Theories*, JHEP 04 (2021) 252, [arXiv:2009.00138].

[129] B. Haghighat, A. Iqbal, C. Koççaz, G. Lockhart, and C. Vafa, *M-Strings*, Commun. Math. Phys. 334 (2015), no. 2 779–842, [arXiv:1305.6322].

[130] B. Haghighat, C. Koççaz, G. Lockhart, and C. Vafa, *Orbifolds of M-strings*, Phys. Rev. D 89 (2014), no. 4 046003, [arXiv:1310.1185].

[131] B. Haghighat, G. Lockhart, and C. Vafa, *Fusing E-strings to heterotic strings: E+H*, Phys. Rev. D 90 (2014), no. 12 126012, [arXiv:1406.0850].

[132] B. Haghighat, A. Klemm, G. Lockhart, and C. Vafa, *Strings of Minimal 6d SCFTs*, Fortsch. Phys. 63 (2015) 294–322, [arXiv:1412.3152].

[133] A. Gadde, B. Haghighat, J. Kim, S. Kim, G. Lockhart, and C. Vafa, *6d String Chains*, JHEP 02 (2018) 143, [arXiv:1504.04614].

[134] F. Apruzzi, F. Hassler, J. J. Heckman, and I. V. Melnikov, *UV Completions for Non-Critical Strings*, JHEP 07 (2016) 045, [arXiv:1602.04221].
[135] H.-C. Kim, S. Kim, and J. Park, 6d strings from new chiral gauge theories, arXiv:1608.03919.

[136] H. Shimizu and Y. Tachikawa, Anomaly of strings of 6d $\mathcal{N} = (1, 0)$ theories, JHEP 11 (2016) 165, [arXiv:1608.05894].

[137] M. Del Zotto and G. Lockhart, On Exceptional Instanton Strings, JHEP 09 (2017) 081, [arXiv:1609.00310].

[138] F. Apruzzi, F. Hassler, J. J. Heckman, and I. V. Melnikov, From 6D SCFTs to Dynamic GLSMs, Phys. Rev. D 96 (2017), no. 6 066015, [arXiv:1610.00718].

[139] M. Del Zotto and G. Lockhart, Universal Features of BPS Strings in Six-dimensional SCFTs, JHEP 08 (2018) 173, [arXiv:1804.09694].

[140] J. J. Heckman, T. Rudelius, and A. Tomasiello, Fission, Fusion, and 6D RG Flows, JHEP 02 (2019) 167, [arXiv:1807.10274].

[141] J. Louis and S. Lüist, Supersymmetric AdS$_7$ backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP 10 (2015) 120, [arXiv:1506.08040].

[142] C. Cordova, T. T. Dumitrescu, and K. Intriligator, Deformations of Superconformal Theories, JHEP 11 (2016) 135, [arXiv:1602.01217].

[143] A. Bourget, S. Cabrera, J. F. Grimminger, A. Hanany, M. Sperling, A. Zajac, and Z. Zhong, The Higgs mechanism — Hasse diagrams for symplectic singularities, JHEP 01 (2020) 157, [arXiv:1908.04245].

[144] A. Bourget, J. F. Grimminger, A. Hanany, and Z. Zhong, The Hasse Diagram of the Moduli Space of Instantons, arXiv:2202.01218.

[145] C. Núñez, J. M. Peñín, D. Roychowdhury, and J. Van Gorsel, The non-Integrability of Strings in Massive Type IIA and their Holographic duals, JHEP 06 (2018) 078, [arXiv:1802.04269].

[146] K. Filippas, C. Núñez, and J. Van Gorsel, Integrability and holographic aspects of six-dimensional $\mathcal{N} = (1, 0)$ superconformal field theories, JHEP 06 (2019) 069, [arXiv:1901.08598].

[147] O. Bergman, M. Fuzzi, D. Rodríguez-Gómez, and A. Tomasiello, Charges and holography in 6d (1, 0) theories, JHEP 05 (2020) 138, [arXiv:2002.04036].

[148] F. Baume, J. J. Heckman, and C. Lawrie, 6D SCFTs, 4D SCFTs, Conformal Matter, and Spin Chains, Nucl. Phys. B 967 (2021) 115401, [arXiv:2007.07262].

[149] J. J. Heckman, Qubit Construction in 6D SCFTs, Phys. Lett. B 811 (2020) 135891, [arXiv:2007.08545].

[150] Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099, [arXiv:1107.3987].

[151] H. Elvang, D. Z. Freedman, L.-Y. Hung, M. Kiermaier, R. C. Myers, and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011, [arXiv:1205.3994].

[152] J. J. Heckman, S. Kundu, and H. Y. Zhang, Effective field theory of 6D SUSY RG Flows, Phys. Rev. D 104 (2021), no. 8 085017, [arXiv:2103.13395].

[153] T. Maxfield and S. Sethi, The Conformal Anomaly of M5-Branes, JHEP 06 (2012) 075, [arXiv:1204.2002].
[154] C. Cordova, T. T. Dumitrescu, and K. Intriligator, *Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories*, JHEP 10 (2016) 080, [arXiv:1506.03807].

[155] J. J. Heckman and T. Rudelius, *Evidence for C-theorems in 6D SCFTs*, JHEP 09 (2015) 218, [arXiv:1506.06753].

[156] N. Lambert, C. Papageorgakis, and M. Schmidt-Sommerfeld, *Instanton Operators in Five-Dimensional Gauge Theories*, JHEP 03 (2015) 019, [arXiv:1412.2789].

[157] Y. Tachikawa, *Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories*, PTEP 2015 (2015), no. 4 043B06, [arXiv:1501.01031].

[158] P. Jefferson, H.-C. Kim, C. Vafa, and G. Zafrir, *Towards Classification of 5d SCFTs: Single Gauge Node*, [arXiv:1705.05836].

[159] F. Apruzzi, L. Lin, and C. Mayrhofer, *Phases of 5d SCFTs from M-/F-theory on Non-Flat Fibrations*, JHEP 05 (2019) 187, [arXiv:1811.12400].

[160] F. Apruzzi, S. Schafer-Nameki, and Y.-N. Wang, *5d SCFTs from Decoupling and Glaubing*, JHEP 08 (2020) 153, [arXiv:1912.04264].

[161] D. Xie and S.-T. Yau, *Three dimensional canonical singularity and five dimensional N = 1 SCFT*, JHEP 06 (2017) 134, [arXiv:1704.00799].

[162] C. Closset, S. Schafer-Nameki, and Y.-N. Wang, *Coulomb and Higgs Branches from Canonical Singularities: Part 0*, JHEP 02 (2021) 003, [arXiv:2007.15600].

[163] C. Closset, S. Giacomelli, S. Schafer-Nameki, and Y.-N. Wang, *5d and 4d SCFTs: Canonical Singularities, Trinions and S-Dualities*, JHEP 05 (2021) 274, [arXiv:2012.12827].

[164] C. Closset, S. Schäfer-Nameki, and Y.-N. Wang, *Coulomb and Higgs Branches from Canonical Singularities, Part 1: Hypersurfaces with Smooth Calabi-Yau Resolutions*, arXiv:2111.13564.

[165] A. Brandhuber and Y. Oz, *The D-4 - D-8 brane system and five-dimensional fixed points*, Phys. Lett. B 460 (1999) 307–312, [hep-th/9905148].

[166] A. Passias, *A note on supersymmetric AdS$_6$ solutions of massive type IIA supergravity*, JHEP 01 (2013) 113, [arXiv:1209.3267].

[167] Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez, and K. Sfetsos, *Supersymmetric AdS$_6$ via T Duality*, Phys. Rev. Lett. 110 (2013), no. 23 231601, [arXiv:1212.1043].

[168] F. Apruzzi, M. Fazzi, A. Passias, D. Rosa, and A. Tomasiello, *AdS$_6$ solutions of type II supergravity*, JHEP 11 (2014) 099, [arXiv:1406.0852]. [Erratum: JHEP 05, 012 (2015)].

[169] E. D’Hoker, M. Gutperle, A. Karch, and C. F. Uhlemann, *Warped AdS$_5 \times S^2$ in Type IIB supergravity I: Local solutions*, JHEP 08 (2016) 046, [arXiv:1606.01254].

[170] E. D’Hoker, M. Gutperle, and C. F. Uhlemann, *Holographic duals for five-dimensional superconformal quantum field theories*, Phys. Rev. Lett. 118 (2017), no. 10 101601, [arXiv:1611.09411].

[171] J. Gutowski and G. Papadopoulos, *On supersymmetric AdS$_6$ solutions in 10 and 11 dimensions*, JHEP 12 (2017) 009, [arXiv:1702.06048].

[172] E. D’Hoker, M. Gutperle, and C. F. Uhlemann, *Warped AdS$_5 \times S^2$ in Type IIB supergravity II: Global solutions and five-brane webs*, JHEP 05 (2017) 131, [arXiv:1703.08186].
[173] M. Gutperle, A. Trivella, and C. F. Uhlemann, Type IIB 7-branes in warped AdS_6: partition functions, brane webs and probe limit, JHEP 04 (2018) 135, [arXiv:1802.07274].

[174] C. F. Uhlemann, Exact results for 5d SCFTs of long quiver type, JHEP 11 (2019) 072, [arXiv:1909.01369].

[175] A. Legramandi and C. Nunez, Electrostatic description of five-dimensional SCFTs, Nucl. Phys. B 974 (2022) 115630, [arXiv:2104.11240].

[176] K. Maruyoshi and J. Song, Enhancement of Supersymmetry via Renormalization Group Flow and the Superconformal Index, Phys. Rev. Lett. 118 (2017), no. 15 151602, [arXiv:1606.05632].

[177] P. Agarwal, K. Maruyoshi, and J. Song, $\mathcal{N}=1$ Deformations and RG flows of $\mathcal{N}=2$ SCFTs, part II: non-principal deformations, JHEP 12 (2016) 103, [arXiv:1610.05311]. [Addendum: JHEP 04, 113 (2017)].

[178] P. Agarwal, A. Sciarappa, and J. Song, $\mathcal{N}=1$ Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 211, [arXiv:1707.04751].

[179] S. Giacomelli, RG flows with supersymmetry enhancement and geometric engineering, JHEP 06 (2018) 156, [arXiv:1710.06469].

[180] S. Beucventuri and S. Giacomelli, Lagrangians for generalized Argyres-Douglas theories, JHEP 10 (2017) 106, [arXiv:1707.05113].

[181] D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa, and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106, [arXiv:1005.3546].

[182] L. Bhardwaj and Y. Tachikawa, Classification of 4d $\mathcal{N}=2$ gauge theories, JHEP 10 (2013) 100, [arXiv:1309.5160].

[183] S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, Three point functions of chiral operators in $D=4$, $\mathcal{N}=4$ SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697–718, [hep-th/9806074].

[184] K. Papadodimas, Topological Anti-Topological Fusion in Four-Dimensional Superconformal Field Theories, JHEP 08 (2010) 118, [arXiv:0910.4963].

[185] M. Baggio, V. Niarchos, and K. Papadodimas, tt^* equations, localization and exact chiral rings in 4d $\mathcal{N}=2$ SCFTs, JHEP 02 (2015) 122, [arXiv:1409.4212].

[186] M. Baggio, V. Niarchos, and K. Papadodimas, Exact correlation functions in $SU(2)\mathcal{N}=2$ superconformal QCD, Phys. Rev. Lett. 113 (2014), no. 25 251601, [arXiv:1409.4217].

[187] M. Baggio, V. Niarchos, and K. Papadodimas, On exact correlation functions in $SU(N)\mathcal{N}=2$ superconformal QCD, JHEP 11 (2015) 198, [arXiv:1508.03077].

[188] E. Gerchkovitz, J. Gomis, N. Ishitaique, A. Karasik, Z. Komargodski, and S. S. Pufu, Correlation Functions of Coulomb Branch Operators, JHEP 01 (2017) 103, [arXiv:1602.05971].

[189] D. Rodriguez-Gomez and J. G. Russo, Large N Correlation Functions in Superconformal Field Theories, JHEP 06 (2016) 109, [arXiv:1604.07416].

[190] M. Baggio, V. Niarchos, K. Papadodimas, and G. Vos, Large-N correlation functions in $\mathcal{N}=2$ superconformal QCD, JHEP 01 (2017) 101, [arXiv:1610.07612].

[191] A. Bourget, D. Rodriguez-Gomez, and J. G. Russo, A limit for large R-charge correlators in $\mathcal{N}=2$ theories, JHEP 05 (2018) 074, [arXiv:1803.00580].
[192] N. Seiberg, Y. Tachikawa, and K. Yonekura, Anomalies of Duality Groups and Extended Conformal Manifolds, PTEP 2018 (2018), no. 7 073B04, [arXiv:1803.07366].

[193] M. Beccaria, On the large R-charge \(N = 2 \) chiral correlators and the Toda equation, JHEP 02 (2019) 009, [arXiv:1809.06280].

[194] A. Grassi, Z. Komargodski, and L. Tizzano, Extremal correlators and random matrix theory, JHEP 04 (2021) 214, [arXiv:1908.10306].

[195] M. Beccaria, M. Billò, F. Galvagno, A. Hasan, and A. Lerda, \(N = 2 \) Conformal SYM theories at large \(N \), JHEP 09 (2020) 116, [arXiv:2007.02840].

[196] S. Hellerman, S. Maeda, and M. Watanabe, Operator Dimensions from Moduli, JHEP 10 (2017) 089, [arXiv:1706.05743].

[197] S. Hellerman, S. Maeda, D. Orlando, S. Reffert, and M. Watanabe, Universal correlation functions in rank 1 SCFTs, JHEP 12 (2019) 047, [arXiv:1804.01536].

[198] M. Beccaria, F. Galvagno, and A. Hasan, \(N = 2 \) conformal gauge theories at large \(R \)-charge: the SU\((N)\) case, JHEP 03 (2020) 160, [arXiv:2001.06645].

[199] S. Hellerman, On the exponentially small corrections to \(N = 2 \) superconformal correlators at large \(R \)-charge, arXiv:2103.09312.

[200] A. Bissi, F. Fucito, A. Manenti, J. F. Morales, and R. Savelli, OPE coefficients in Argyres-Douglas theories, arXiv:2112.11899.

[201] P. C. Argyres, M. Lotito, Y. Lü, and M. Martone, Geometric constraints on the space of \(N = 2 \) SCFTs. Part II: construction of special Kähler geometries and RG flows, JHEP 02 (2018) 002, [arXiv:1601.00011].

[202] P. Argyres, M. Lotito, Y. Lü, and M. Martone, Geometric constraints on the space of \(N = 2 \) SCFTs. Part III: enhanced Coulomb branches and central charges, JHEP 02 (2018) 003, [arXiv:1609.04404].

[203] P. C. Argyres, M. Lotito, Y. Lü, and M. Martone, Expanding the landscape of \(N = 2 \) rank 1 SCFTs, JHEP 05 (2016) 088, [arXiv:1602.02764].

[204] P. Argyres, M. Lotito, Y. Lü, and M. Martone, Geometric constraints on the space of \(N = 2 \) SCFTs. Part I: physical constraints on relevant deformations, JHEP 02 (2018) 001, [arXiv:1505.04814].

[205] M. Martone, Testing our understanding of SCFTs: a catalogue of rank-2 \(N = 2 \) theories in four dimensions, arXiv:2102.02443.

[206] J. Kaidi and M. Martone, New rank-2 Argyres-Douglas theory, Phys. Rev. D 104 (2021), no. 8 085004, [arXiv:2104.13929].

[207] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099, [arXiv:1008.5203].

[208] O. Chacaltana and J. Distler, Tinkertoys for the \(D_N \) series, JHEP 02 (2013) 110, [arXiv:1106.5410].
[211] O. Chacaltana, J. Distler, and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d $\mathcal{N}=(2,0)$ theories, Int. J. Mod. Phys. A 28 (2013) 1340006, [arXiv:1203.2930].

[212] O. Chacaltana, J. Distler, and Y. Tachikawa, Gaiotto duality for the twisted A_{2N-1} series, JHEP 05 (2015) 075, [arXiv:1212.3952].

[213] O. Chacaltana, J. Distler, and A. Trimm, Tinkertoys for the Twisted A_2 Series, JHEP 05 (2015) 075, [arXiv:1212.3952].

[214] O. Chacaltana, J. Distler, and A. Trimm, Tinkertoys for the E_6 Theory, JHEP 09 (2015) 007, [arXiv:1403.4604].

[215] O. Chacaltana, J. Distler, and A. Trimm, A Family of 4D $\mathcal{N} = 2$ Interacting SCFTs from the Twisted A_{2N} Series, arXiv:1412.8129.

[216] O. Chacaltana, J. Distler, and A. Trimm, Tinkertoys for the Twisted E_6 Theory, arXiv:1501.00357.

[217] O. Chacaltana, J. Distler, and A. Trimm, Tinkertoys for the Z_3-twisted D_4 Theory, arXiv:1601.02077.

[218] O. Chacaltana, J. Distler, A. Trimm, and Y. Zhu, Tinkertoys for the E_7 theory, JHEP 09 (2015) 007, [arXiv:1403.4604].

[219] O. Chacaltana, J. Distler, A. Trimm, and Y. Zhu, Tinkertoys for the Twisted E_8 Theory, arXiv:1802.09626.

[220] J. Distler, B. Ergun, and A. Shehper, Nonabelian Twists of the D_4 Theory, arXiv:2112.10227.

[221] D. Xie, Network, cluster coordinates and $N = 2$ theory II: Irregular singularity, arXiv:1207.6112.

[222] C. Beem and W. Peelaers, Argyres-Douglas Theories in Class S Without Irregularity, arXiv:2005.12282.

[223] D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100, [arXiv:1204.2270].

[224] Y. Wang and D. Xie, Classification of Argyres-Douglas theories from M5 branes, Phys. Rev. D 94 (2016), no. 6 065012, [arXiv:1509.00847].

[225] Y. Wang and D. Xie, Codimension-two defects and Argyres-Douglas theories from outer-automorphism twist in 6d $(2, 0)$ theories, Phys. Rev. D 100 (2019), no. 2 025001, [arXiv:1805.08839].

[226] Y. Tachikawa, Y. Wang, and G. Zafrir, Comments on the twisted punctures of A_{even} class S theory, JHEP 06 (2018) 163, [arXiv:1804.09143].

[227] I. Garcia-Etxebarria and D. Regalado, $\mathcal{N} = 3$ four dimensional field theories, JHEP 03 (2016) 083, [arXiv:1512.06434].

[228] O. Aharony and Y. Tachikawa, S-folds and 4d $\mathcal{N}=3$ superconformal field theories, JHEP 06 (2016) 044, [arXiv:1602.08638].

[229] F. Apruzzi, S. Giacomelli, and S. Schäfer-Nameki, 4d $\mathcal{N} = 2$ S-folds, Phys. Rev. D 101 (2020), no. 10 106008, [arXiv:2001.00533].

[230] S. Giacomelli, C. Meneghelli, and W. Peelaers, New $\mathcal{N} = 2$ superconformal field theories from S-folds, JHEP 01 (2021) 022, [arXiv:2007.00647].
[231] J. J. Heckman, C. Lawrie, T. B. Rochais, H. Y. Zhang, and G. Zoccarato, \textit{S-folds, string junctions, and }$\mathcal{N} = 2$\textit{ SCFTs}, \textit{Phys. Rev. D} \textbf{103} (2021), no. 8 086013, [\texttt{arXiv:2009.10090}].

[232] S. Giacomelli, M. Martone, Y. Tachikawa, and G. Zafrir, \textit{More on }$\mathcal{N} = 2$\textit{ S-folds, JHEP} \textbf{01} (2021) 054, [\texttt{arXiv:2010.03943}].

[233] A. Bourget, S. Giacomelli, J. F. Grimminger, A. Hanany, M. Sperling, and Z. Zhong, \textit{S-fold magnetic quivers}, \textit{JHEP} \textbf{02} (2021) 054, [\texttt{arXiv:2010.05889}].

[234] K. Ohmori, Y. Tachikawa, and G. Zafrir, \textit{Compactifications of 6d }$\mathcal{N} = (1, 0)$\textit{ SCFTs with non-trivial Stiefel-Whitney classes, JHEP} \textbf{04} (2019) 006, [\texttt{arXiv:1812.04637}].

[235] D. Xie and S.-T. Yau, \textit{4d }$\mathcal{N} = 2$\textit{ SCFT and singularity theory Part I: Classification, arXiv:1510.01324}.

[236] B. Chen, D. Xie, S.-T. Yau, S. S. T. Yau, and H. Zuo, \textit{4D }$\mathcal{N} = 2$\textit{ SCFT and singularity theory. Part II: complete intersection, Adv. Theor. Math. Phys.} \textbf{21} (2017) 121–145, [\texttt{arXiv:1604.07843}].

[237] Y. Wang, D. Xie, S. S. T. Yau, and S.-T. Yau, \textit{4d }$\mathcal{N} = 2$\textit{ SCFT from complete intersection singularity, Adv. Theor. Math. Phys.} \textbf{21} (2017) 801–855, [\texttt{arXiv:1606.06306}].

[238] B. Chen, D. Xie, S. S. T. Yau, S.-T. Yau, and H. Zuo, \textit{4d }$\mathcal{N} = 2$\textit{ SCFT and singularity theory Part III: Rigid singularity, Adv. Theor. Math. Phys.} \textbf{22} (2018) 1885–1905, [\texttt{arXiv:1712.00464}].

[239] D. Xie and D. Zhang, \textit{Mixed Hodge structure and }$\mathcal{N} = 2$\textit{ Coulomb branch solution, arXiv:2107.11180}.

[240] D. S. Freed, \textit{Special Kahler manifolds, Commun. Math. Phys.} \textbf{203} (1999) 31–52, [\texttt{hep-th/9712042}].

[241] S. Cecotti, M. Del Zotto, M. Martone, and R. Moscrop, \textit{The Characteristic Dimension of Four-dimensional }$\mathcal{N} = 2$\textit{ SCFTs, arXiv:2108.10884}.

[242] M. Martone, \textit{Towards the classification of rank-r }$\mathcal{N} = 2$\textit{ SCFTs. Part I. Twisted partition function and central charge formulae, JHEP} \textbf{12} (2020) 021, [\texttt{arXiv:2006.16255}].

[243] P. C. Argyres and M. Martone, \textit{Towards a classification of rank r }$\mathcal{N} = 2$\textit{ SCFTs. Part II. Special Kahler stratification of the Coulomb branch, JHEP} \textbf{12} (2020) 022, [\texttt{arXiv:2007.00012}].

[244] M. Martone and G. Zafrir, \textit{On the compactification of 5d theories to 4d, JHEP} \textbf{08} (2021) 017, [\texttt{arXiv:2106.00686}].

[245] P. Argyres and M. Martone, \textit{Construction and classification of Coulomb branch geometries, arXiv:2003.04954}.

[246] M. Caorsi and S. Cecotti, \textit{Geometric classification of 4d }$\mathcal{N} = 2$\textit{ SCFTs, JHEP} \textbf{07} (2018) 138, [\texttt{arXiv:1801.04542}].

[247] P. C. Argyres, C. Long, and M. Martone, \textit{The Singularity Structure of Scale-Invariant Rank-2 Coulomb Branches, JHEP} \textbf{05} (2018) 086, [\texttt{arXiv:1801.01122}].

[248] M. Caorsi and S. Cecotti, \textit{Special Arithmetic of Flavor, JHEP} \textbf{08} (2018) 057, [\texttt{arXiv:1803.00531}].

[249] M. Caorsi and S. Cecotti, \textit{Homological classification of 4d }$\mathcal{N} = 2$\textit{ QFT. Rank-1 revisited, JHEP} \textbf{10} (2019) 013, [\texttt{arXiv:1906.03912}].

-- 27 --
K. A. Intriligator and N. Seiberg, *Mirror symmetry in three-dimensional gauge theories*, *Phys. Lett. B* **387** (1996) 513–519, [hep-th/9607207].

S. Cabrera, A. Hanany, and F. Yagi, *Tropical Geometry and Five Dimensional Higgs Branches at Infinite Coupling*, *JHEP* **01** (2019) 068, [arXiv:1810.01379].

A. Bourget, S. Cabrera, J. F. Grimminger, A. Hanany, and Z. Zhong, *Brane Webs and Magnetic Quivers for SQCD*, *JHEP* **03** (2020) 176, [arXiv:1909.00667].

S. Cabrera, A. Hanany, and R. Kalveks, *Quiver Theories and Formulae for Slodowy Slices of Classical Algebras*, *Nucl. Phys. B* **939** (2019) 308–357, [arXiv:1807.02521].

A. Bourget, J. F. Grimminger, A. Hanany, M. Sperling, G. Zafrir, and Z. Zhong, *Magnetic quivers for rank 1 theories*, *JHEP* **09** (2020) 189, [arXiv:2006.16994].

A. Bourget, J. F. Grimminger, M. Martone, and G. Zafrir, *Magnetic quivers for rank 2 theories*, [arXiv:2110.11365].

A. Bourget, J. F. Grimminger, A. Hanany, R. Kalveks, and Z. Zhong, *Higgs Branches of U/SU Quivers via Brane Locking*, [arXiv:2111.04745].

C. Beem, M. Lemos, P. Liendo, L. Rastelli, and B. C. van Rees, *The N = 2 superconformal bootstrap*, *JHEP* **03** (2016) 183, [arXiv:1412.7541].

O. Aharony, N. Seiberg, and Y. Tachikawa, *Reading between the lines of four-dimensional gauge theories*, *JHEP* **08** (2013) 115, [arXiv:1305.0318].

O. Aharony and M. Evtikhiev, *On four dimensional N = 3 superconformal theories*, *JHEP* **04** (2016) 040, [arXiv:1512.03524].

T. Bourton, A. Pini, and E. Pomoni, *4d N = 3 indices via discrete gauging*, *JHEP* **10** (2018) 131, [arXiv:1804.05396].

I. n. García-Etxebarria and D. Regalado, *Exceptional N = 3 theories*, *JHEP* **12** (2017) 042, [arXiv:1611.05769].

I. n. García-Etxebarria and D. Regalado, *N = 3 four dimensional field theories*, *PoS CORFU2016* (2017) 101, [arXiv:1708.03906].

P. C. Argyres, A. Bourget, and M. Martone, *On the moduli spaces of 4d N = 3 SCFTs I: triple special Kähler structure*, [arXiv:1912.04926].

P. C. Argyres and M. Martone, *Coulomb branches with complex singularities*, *JHEP* **06** (2018) 045, [arXiv:1804.03152].

A. Bourget, A. Pini, and D. Rodriguez-Gómez, *Gauge theories from principally extended disconnected gauge groups*, *Nucl. Phys. B* **940** (2019) 351–376, [arXiv:1804.01108].

P. C. Argyres, A. Bourget, and M. Martone, *Classification of all N ≥ 3 moduli space orbifold geometries at rank 2*, *SciPost Phys.* **9** (2020), no. 6 083, [arXiv:1904.10969].

F. Bonetti, C. Meneghelli, and L. Rastelli, *VOAs labelled by complex reflection groups and 4d SCFTs*, *JHEP* **05** (2019) 155, [arXiv:1810.03612].

P. C. Argyres, Y. Lü, and M. Martone, *Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated*, *JHEP* **06** (2017) 144, [arXiv:1704.05110].

G. Zafrir, *Compactifications of 5d SCFTs with a twist*, *JHEP* **01** (2017) 097, [arXiv:1605.08337].
[270] E. Beratto, S. Giacomelli, N. Mekareeya, and M. Sacchi, 3d mirrors of the circle reduction of twisted A_{2N} theories of class S, JHEP 09 (2020) 161, [arXiv:2007.05019].

[271] S. Giacomelli, N. Mekareeya, and M. Sacchi, New aspects of Argyres–Douglas theories and their dimensional reduction, JHEP 03 (2021) 242, [arXiv:2012.12852].

[272] F. Carta, S. Giacomelli, N. Mekareeya, and A. Mininno, Conformal manifolds and 3d mirrors of Argyres-Douglas theories, JHEP 08 (2021) 015, [arXiv:2105.08064].

[273] D. Xie, 3d mirror for Argyres-Douglas theories, arXiv:2107.05258.

[274] F. Carta, S. Giacomelli, N. Mekareeya, and A. Mininno, Conformal Manifolds and 3d Mirrors of (D_n, D_m) Theories, arXiv:2110.06940.

[275] A. Dey, Higgs Branches of Argyres-Douglas theories as Quiver Varieties, arXiv:2109.07493.

[276] A. Nedelin, S. Pasquetti, and Y. Zenkevich, $T[SU(N)]$ duality webs: mirror symmetry, spectral duality and gauge/CFT correspondences, JHEP 02 (2019) 176, [arXiv:1712.08140].

[277] F. Aprile, S. Pasquetti, and Y. Zenkevich, Flipping the head of $T[SU(N)]$: mirror symmetry, spectral duality and monopoles, JHEP 04 (2019) 138, [arXiv:1812.08142].

[278] A. Dey, Three dimensional mirror symmetry beyond ADE quivers and Argyres-Douglas theories, JHEP 07 (2021) 199, [arXiv:2004.09738].

[279] M. Dedushenko, Y. Fan, S. S. Pufu, and R. Yacoby, Coulomb Branch Operators and Mirror Symmetry in Three Dimensions, JHEP 04 (2018) 037, [arXiv:1712.09384].

[280] Y. Fan and Y. Wang, Non-Abelian mirror symmetry beyond the chiral ring, Phys. Rev. D 101 (2020), no. 8 085008, [arXiv:1912.05108].

[281] S. M. Chester, J. Lee, S. S. Pufu, and R. Yacoby, Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap, JHEP 03 (2015) 130, [arXiv:1412.0334].

[282] C. Beem, W. Peelaers, and L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions, Commun. Math. Phys. 354 (2017), no. 1 345–392, [arXiv:1601.05378].

[283] M. Dedushenko, From VOAs to short star products in SCFT, Commun. Math. Phys. 384 (2021), no. 1 245–277, [arXiv:1911.05741].

[284] M. Dedushenko and Y. Wang, 4d/2d \rightarrow 3d/1d: A song of protected operator algebras, arXiv:1912.01006.

[285] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, $N=5,6$ Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002, [arXiv:0806.4977].

[286] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, $N=6$ superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091, [arXiv:0806.1218].

[287] O. Aharony, O. Bergman, and D. L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043, [arXiv:0807.4924].

[288] J. H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078, [hep-th/0411077].
J. Bagger and N. Lambert, *Gauge symmetry and supersymmetry of multiple M2-branes*, Phys. Rev. D **77** (2008) 065008, [arXiv:0711.0955].

A. Gustavsson, *Algebraic structures on parallel M2-branes*, Nucl. Phys. B **811** (2009) 66–76, [arXiv:0709.1260].

X. Chu and B. E. W. Nilsson, *Three-dimensional topologically gauged N=6 ABJM type theories*, JHEP **06** (2010) 057, [arXiv:0906.1655].

X. Chu, H. Nastase, B. E. W. Nilsson, and C. Papageorgakis, *Higgsing M2 to D2 with gravity: N=6 chiral supergravity from topologically gauged ABJM theory*, JHEP **04** (2011) 040, [arXiv:1012.5969].

U. Gran, J. Greitz, P. S. Howe, and B. E. W. Nilsson, *Topologically gauged superconformal Chern-Simons matter theories*, JHEP **12** (2012) 046, [arXiv:1204.2521].

U. Gran and B. E. W. Nilsson, *Three-dimensional N = 8 superconformal gravity and its coupling to BLG M2-branes*, JHEP **03** (2009) 074, [arXiv:0809.4478].

B. E. W. Nilsson, *Critical solutions of topologically gauged N = 8 CFTs in three dimensions*, JHEP **04** (2014) 107, [arXiv:1304.2270].

N. B. Agmon, S. M. Chester, and S. S. Pufu, *A new duality between N = 8 superconformal field theories in three dimensions*, JHEP **06** (2018) 005, [arXiv:1708.07861].

O. Bergman, Y. Tachikawa, and G. Zafrir, *Generalized symmetries and holography in ABJM-type theories*, JHEP **07** (2020) 077, [arXiv:2004.06350].

D. J. Binder, S. M. Chester, and M. Jerdee, *ABJ Correlators with Weakly Broken Higher Spin Symmetry*, JHEP **04** (2021) 242, [arXiv:2103.01969].

L. F. Alday, S. M. Chester, and H. Raj, *ABJM at Strong Coupling from M-theory, Localization, and Lorentzian Inversion*, arXiv:2107.10274.

Y. Tachikawa and G. Zafrir, *Reflection groups and 3d N ≥ 6 SCFTs*, JHEP **12** (2019) 176, [arXiv:1908.03346].

D. Bashkirov, *A Note on N ≥ 6 Superconformal Quantum Field Theories in three dimensions*, arXiv:1108.4081.

S. Cremonesi and A. Tomasiello, *6d holographic anomaly match as a continuum limit*, JHEP **05** (2016) 031, [arXiv:1512.02225].

A. Hanany and R. Kalveks, *Quiver Theories for Moduli Spaces of Classical Group Nilpotent Orbits*, JHEP **06** (2016) 130, [arXiv:1601.04020].

N. Mekareeya, T. Rudelius, and A. Tomasiello, *T-branes, Anomalies and Moduli Spaces in 6D SCFTs*, JHEP **10** (2017) 158, [arXiv:1612.06399].

F. Apruzzi, F. Hassler, J. J. Heckman, and T. B. Rochais, *Nilpotent Networks and 4D RG Flows*, JHEP **05** (2019) 074, [arXiv:1808.10439].

F. Hassler, J. J. Heckman, T. B. Rochais, T. Rudelius, and H. Y. Zhang, *T-Branes, String Junctions, and 6D SCFTs*, Phys. Rev. D **101** (2020), no. 8 086018, [arXiv:1907.11230].

F. Baume, M. J. Kang, and C. Lawrie, *Two 6d origins of 4d SCFTs: class S and 6d (1,0) on a torus*, arXiv:2106.11990.

D. D. Frey and T. Rudelius, *6D SCFTs and the classification of homomorphisms Γ_{ADE} → E_8*, Adv. Theor. Math. Phys. **24** (2020), no. 3 709–756, [arXiv:1811.04921].
[309] D. D. Frey, *Conjugacy of Alt_5 and $\text{SL}(2,5)$-subgroups of $E_6(\mathbb{C})$*, Mem. Amer. Math. Soc. 634 (1998) 133.

[310] G. Di Cerbo and R. Svaldi, *Birational boundedness of low-dimensional elliptic calabi–yau varieties with a section*, Compositio Mathematica 157 (Jul, 2021) 1766–1806.

[311] T. Nishinaka and Y. Tachikawa, *On 4d rank-one $\mathcal{N} = 3$ superconformal field theories*, JHEP 09 (2016) 116, [arXiv:1602.01803].

[312] Y. Imamura and S. Yokoyama, *Superconformal index of $\mathcal{N} = 3$ orientifold theories*, JHEP 09 (2016), no. 43 435401, [arXiv:1602.01503].

[313] Y. Imamura, H. Kato, and D. Yokoyama, *Supersymmetry Enhancement and Junctions in S-folds*, JHEP 10 (2016) 150, [arXiv:1606.07186].

[314] P. Agarwal and A. Amariti, *Notes on S-folds and $\mathcal{N} = 3$ theories*, JHEP 09 (2016) 032, [arXiv:1607.00313].

[315] M. Lemos, P. Liendo, C. Meneghelli, and V. Mitev, *Bootstrapping $\mathcal{N} = 3$ superconformal theories*, JHEP 04 (2017) 032, [arXiv:1612.05646].

[316] A. Amariti, L. Cassia, and S. Penati, *Surveying 4d SCFTs twisted on Riemann surfaces*, JHEP 06 (2017) 056, [arXiv:1703.08201].

[317] Y. Tachikawa and K. Yonekura, *Why are fractional charges of orientifolds compatible with Dirac quantization?*, SciPost Phys. 7 (2019), no. 5 058, [arXiv:1805.02772].

[318] B. Assel and A. Tomasiello, *Holographic duals of 3d S-fold CFTs*, JHEP 06 (2018) 019, [arXiv:1804.06419].

[319] I. Garozzo, G. Lo Monaco, N. Mekareeya, and M. Sacchi, *Supersymmetric Indices of 3d S-fold SCFTs*, JHEP 08 (2019) 008, [arXiv:1905.07183].

[320] A. Amariti and G. Formigoni, *A note on 4d $\mathcal{N} = 3$ from little string theory*, Nucl. Phys. B 958 (2020) 115108, [arXiv:2003.05983].
[329] G. Zafrir, An $\mathcal{N} = 1$ Lagrangian for an $\mathcal{N} = 3$ SCFT, JHEP 01 (2021) 062, [arXiv:2007.14955].

[330] Y. Kimura, Four-dimensional $\mathcal{N} = 1$ theories, S-fold constraints on T-branes, and behaviors in IR and UV, JHEP 05 (2021) 016, [arXiv:2011.04460].

[331] A. Grassi and T. Weigand, On topological invariants of algebraic threefolds with (\mathbb{Q}-factorial) singularities, arXiv:1804.02424.

[332] C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli, and B. C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015), no. 3 1359–1433, [arXiv:1312.5344].

[333] S. Jeong, SCFT/VOA correspondence via Ω-deformation, JHEP 10 (2019) 171, [arXiv:1904.00927].

[334] J. Oh and J. Yagi, Chiral algebras from Ω-deformation, JHEP 08 (2019) 143, [arXiv:1903.11123].

[335] P. Liendo, I. Ramírez, and J. Soo, Stress-tensor OPE in $\mathcal{N} = 2$ superconformal theories, JHEP 02 (2016) 019, [arXiv:1509.00033].

[336] M. Lemos and P. Liendo, $\mathcal{N} = 2$ central charge bounds from 2d chiral algebras, JHEP 04 (2016) 004, [arXiv:1511.07449].

[337] C. Beem, Flavor Symmetries and Unitarity Bounds in $\mathcal{N} = 2$ Superconformal Field Theories, Phys. Rev. Lett. 122 (2019), no. 24 241603, [arXiv:1812.06099].

[338] C. Beem and L. Rastelli, Vertex operator algebras, Higgs branches, and modular differential equations, JHEP 08 (2018) 114, [arXiv:1707.07679].

[339] T. Arakawa, Associated varieties of modules over Kac-Moody algebras and C(2)-cofiniteness of W-algebras, arXiv:1004.1554.

[340] T. Arakawa, Rationality of W-algebras: principal nilpotent cases, Annals of Mathematics (2015) 565–604, [arXiv:1211.7124].

[341] T. Arakawa and K. Kawasetsu, Quasi-lisse vertex algebras and modular linear differential equations, arXiv:1610.05886.

[342] M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J. Phys. A 49 (2016), no. 1 015401, [arXiv:1505.05884].

[343] M. Buican and T. Nishinaka, Argyres-Douglas Theories, the Macdonald Index, and an RG Inequality, JHEP 02 (2016) 159, [arXiv:1509.05402].

[344] C. Cordova and S.-H. Shao, Schur Indices, BPS Particles, and Argyres-Douglas Theories, JHEP 01 (2016) 040, [arXiv:1506.00265].

[345] M. J. Kang, C. Lawrie, and J. Song, Infinitely many 4D $\mathcal{N}=2$ SCFTs with $a=c$ and beyond, Phys. Rev. D 104 (2021), no. 10 105005, [arXiv:2106.12579].

[346] Y. Pan, Y. Wang, and H. Zheng, Defects, modular differential equations, and free field realization of $\mathcal{N} = 4$ VOAs, arXiv:2104.12180.

[347] Y. Pan and W. Peelaers, The exact Schur index in closed form, arXiv:2112.09705.

[348] C. Beem, S. S. Razamat, and P. Singh, Schur Indices of Class S and Quasimodular Forms, arXiv:2112.10715.
C. Beem, W. Peelaers, L. Rastelli, and B. C. van Rees, *Chiral algebras of class S*, JHEP **05** (2015) 020, [arXiv:1408.6522].

M. Lemos and W. Peelaers, *Chiral Algebras for Trinion Theories*, JHEP **02** (2015) 113, [arXiv:1411.3252].

D. Xie and W. Yan, *4d \(\mathcal{N} = 2\) SCFTs and lisse \(W\)-algebras*, JHEP **04** (2021) 271, [arXiv:1910.02281].

D. Xie and W. Yan, *Schur sector of Argyres-Douglas theory and \(W\)-algebra*, SciPost Phys. **10** (2021), no. 3 080, [arXiv:1904.09094].

D. Xie and W. Yan, *Chiral algebra of the Argyres-Douglas theory from M5 branes*, Phys. Rev. D **103** (2021), no. 6 065003, [arXiv:1604.02155].

M. Buican and T. Nishinaka, *Conformal Manifolds in Four Dimensions and Chiral Algebras*, J. Phys. A **49** (2016), no. 46 465401, [arXiv:1603.00887].

M. Fluder and J. Song, *Four-dimensional Lens Space Index from Two-dimensional Chiral Algebra*, JHEP **07** (2018) 073, [arXiv:1710.06029].

J. Song, *Macdonald Index and Chiral Algebra*, JHEP **08** (2017) 044, [arXiv:1612.08956].

J. Song, *Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT*, JHEP **02** (2016) 045, [arXiv:1509.06730].

M. Dedushenko and M. Fluder, *Chiral Algebra, Localization, Modularity, Surface defects, And All That*, J. Math. Phys. **61** (2020), no. 9 092302, [arXiv:1904.02704].

P. Agarwal, E. Andriolo, G. Kántor, and C. Papageorgakis, *Macdonald indices for four-dimensional \(N=3\) theories*, Phys. Rev. D **103** (2021), no. 12 L121701, [arXiv:2103.00985].

D. Xie and W. Yan, *W algebras, cosets and VOAs for 4d \(\mathcal{N} = 2\) SCFTs from M5 branes*, JHEP **04** (2021) 076, [arXiv:1902.02838].

V. G. Kac and M. Wakimoto, *A remark on boundary level admissible representations*, 2016.

D. Adamovic, *A Construction of admissible A**(1)(1) modules of level -4/3*, math/0401023.

C. Beem, C. Meneghelli, and L. Rastelli, *Free Field Realizations from the Higgs Branch*, JHEP **09** (2019) 058, [arXiv:1903.07624].

C. Beem, C. Meneghelli, W. Peelaers, and L. Rastelli, *VOAs and rank-two instanton SCFTs*, Commun. Math. Phys. **377** (2020), no. 3 2553–2578, [arXiv:1907.08629].

C. Beem and C. Meneghelli, *Geometric free field realization for the genus-two class S theory of type a1*, Phys. Rev. D **104** (2021), no. 6 065015, [arXiv:2104.11668].

L. Fredrickson, D. Pei, W. Yan, and K. Ye, *Argyres-Douglas Theories, Chiral Algebras and Wild Hitchin Characters*, JHEP **01** (2018) 150, [arXiv:1701.08782].

M. Dedushenko, S. Gukov, H. Nakajima, D. Pei, and K. Ye, *3d TQFTs from Argyres–Douglas theories*, J. Phys. A **53** (2020), no. 43 43LT01, [arXiv:1809.04638].

A. Kapustin and E. Witten, *Electric-Magnetic Duality And The Geometric Langlands Program*, Commun. Num. Theor. Phys. **1** (2007) 1–236, [hep-th/0604151].
[370] S. Gukov and E. Witten, *Gauge Theory, Ramification, And The Geometric Langlands Program*, hep-th/0612073.

[371] S. Gukov, *Gauge theory and knot homologies*, Fortsch. Phys. 55 (2007) 473–490, [arXiv:0706.2369].

[372] A. Kapustin and N. Saulina, *The Algebra of Wilson-'t Hooft operators*, Nucl. Phys. B 814 (2009) 327–365, [arXiv:0710.2097].

[373] S. Gukov and E. Witten, *Rigid Surface Operators*, Adv. Theor. Math. Phys. 14 (2010), no. 1 87–178, [arXiv:0804.1561].

[374] D. Gaiotto, *Surface Operators in N = 2 4d Gauge Theories*, JHEP 11 (2012) 090, [arXiv:0911.1316].

[375] M.-C. Tan, *Notes on the 'Ramified' Seiberg-Witten Equations and Invariants*, JHEP 01 (2012) 067, [arXiv:0912.1891].

[376] M.-C. Tan, *Integration Over The u-Plane In Donaldson Theory With Surface Operators*, JHEP 05 (2011) 007, [arXiv:0912.4261].

[377] M.-C. Tan, *Supersymmetric Surface Operators, Four-Manifold Theory And Invariants In Various Dimensions*, Adv. Theor. Math. Phys. 15 (2011), no. 1 71–129, [arXiv:1006.3313].

[378] U. Bruzzo, W. y. Chuang, D. E. Diaconescu, M. Jardim, G. Pan, and Y. Zhang, *D-branes, surface operators, and ADHM quiver representations*, Adv. Theor. Math. Phys. 15 (2011), no. 3 849–911, [arXiv:1012.1826].

[379] H. Kanno and Y. Tachikawa, *Instanton counting with a surface operator and the chain-saw quiver*, JHEP 06 (2011) 119, [arXiv:1105.0357].

[380] N. R. Constable, J. Erdmenger, Z. Guralnik, and I. Kirsch, *Intersecting D-3 branes and holography*, Phys. Rev. D 68 (2003) 106007, [hep-th/0211222].

[381] E. I. Buchbinder, J. Gomis, and F. Passerini, *Holographic gauge theories in background fields and surface operators*, JHEP 12 (2007) 101, [arXiv:0710.5170].

[382] J. Gomis and S. Matsuura, *Bubbling surface operators and S-duality*, JHEP 06 (2007) 025, [arXiv:0704.1657].

[383] V. Pestun, *Localization of gauge theory on a four-sphere and supersymmetric Wilson loops*, Commun. Math. Phys. 313 (2012) 71–129, [arXiv:0712.2824].

[384] N. Drukker, S. Giombi, R. Ricci, and D. Trancanelli, *More supersymmetric Wilson loops*, Phys. Rev. D 76 (2007) 107703, [arXiv:0704.2237].

[385] N. Drukker, S. Giombi, R. Ricci, and D. Trancanelli, *Wilson loops: From four-dimensional SYM to two-dimensional YM*, Phys. Rev. D 77 (2008) 047901, [arXiv:0707.2699].

[386] N. Drukker, S. Giombi, R. Ricci, and D. Trancanelli, *Supersymmetric Wilson loops on S**3*, JHEP 05 (2008) 017, [arXiv:0711.3326].

[387] E. Koh and S. Yamaguchi, *Holography of BPS surface operators*, JHEP 02 (2009) 012, [arXiv:0812.1420].

[388] N. Drukker, J. Gomis, and S. Matsuura, *Probing N=4 SYM With Surface Operators*, JHEP 10 (2008) 048, [arXiv:0805.4199].

[389] E. Koh and S. Yamaguchi, *Surface operators in the Klebanov-Witten theory*, JHEP 06 (2009) 070, [arXiv:0904.1460].
[390] V. Pestun, *Localization of the four-dimensional N=4 SYM to a two-sphere and 1/8 BPS Wilson loops*, JHEP **12** (2012) 067, [arXiv:0906.0638].

[391] S. Giombi and V. Pestun, *The 1/2 BPS ‘t Hooft loops in N=4 SYM as instantons in 2d Yang-Mills*, J. Phys. A **46** (2013) 095402, [arXiv:0909.4272].

[392] S. Giombi and V. Pestun, *Correlators of local operators and 1/8 BPS Wilson loops on S**2** from 2d YM and matrix models*, JHEP **10** (2010) 033, [arXiv:0906.1572].

[393] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, *Loop and surface operators in N=2 gauge theory and Liouville modular geometry*, JHEP **01** (2010) 113, [arXiv:0909.0945].

[394] T. Dimofte, S. Gukov, and L. Hollands, *Vortex Counting and Lagrangian 3-manifolds*, Lett. Math. Phys. **98** (2011) 225–287, [arXiv:1006.0977].

[395] F. Passerini, *Gauge Theory Wilson Loops and Conformal Toda Field Theory*, JHEP **03** (2010) 125, [arXiv:1003.1151].

[396] J. Gomis and B. Le Floch, *M2-brane surface operators and gauge theory dualities in Toda*, JHEP **04** (2016) 183, [arXiv:1407.1852].

[397] M. Del Zotto, J. J. Heckman, D. S. Park, and T. Rudelius, *On the Defect Group of a 6D SCFT*, Lett. Math. Phys. **106** (2016), no. 6 765–786, [arXiv:1503.04806].

[398] S. K. Ashok, M. Billò, E. Dell’Aquila, M. Frau, V. Gupta, R. R. John, and A. Lerda, *Surface operators, chiral rings and localization in N =2 gauge theories*, JHEP **11** (2017) 137, [arXiv:1707.08922].

[399] Y. Pan and W. Peelaers, *Chiral Algebras, Localization and Surface Defects*, JHEP **02** (2018) 138, [arXiv:1710.04306].

[400] S. K. Ashok, S. Ballav, M. Billò, E. Dell’Aquila, M. Frau, V. Gupta, R. R. John, and A. Lerda, *Surface operators, dual quivers and contours*, Eur. Phys. J. C **79** (2019), no. 3 278, [arXiv:1807.06316].

[401] S. S. Razamat, *Flavored surface defects in 4d N = 1 SCFTs*, Lett. Math. Phys. **109** (2019), no. 6 1377–1395, [arXiv:1808.09509].

[402] L. Bianchi, G. Bliard, V. Forini, L. Griguolo, and D. Seminara, *Analytic bootstrap and Witten diagrams for the ABJM Wilson line as defect CFT*1, JHEP **08** (2020) 143, [arXiv:2004.07849].

[403] D. R. Morrison, S. Schäfer-Nameki, and B. Willett, *Higher-Form Symmetries in 5d*, JHEP **09** (2020) 024, [arXiv:2005.12296].

[404] F. Albertini, M. Del Zotto, I. n. García Etxebarria, and S. S. Hosseini, *Higher Form Symmetries and M-theory*, JHEP **12** (2020) 203, [arXiv:2005.12831].

[405] A. Kapustin, *Wilson-‘t Hooft operators in four-dimensional gauge theories and S-duality*, Phys. Rev. D **74** (2006) 025005, [hep-th/0501015].

[406] M. Billò, V. Gonçalves, E. Lauria, and M. Meineri, *Defects in conformal field theory*, JHEP **04** (2016) 091, [arXiv:1601.02883].

[407] A. Gadde, *Conformal constraints on defects*, JHEP **01** (2020) 038, [arXiv:1602.06354].

[408] N. Drukker, D. Martelli, and I. Shamir, *The energy-momentum multiplet of supersymmetric defect field theories*, JHEP **08** (2017) 010, [arXiv:1701.04323].
S. Giombi, R. Roiban, and A. A. Tseytlin, *Half-BPS Wilson loop and AdS$_2$/CFT$_1*, Nucl. Phys. B **922** (2017) 499–527, [arXiv:1706.00756].

M. Kim, N. Kiryu, S. Komatsu, and T. Nishimura, *Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop*, JHEP **12** (2017) 055, [arXiv:1710.07325].

M. Fukuda, N. Kobayashi, and T. Nishioka, *Operator product expansion for conformal defects*, JHEP **01** (2018) 013, [arXiv:1710.11165].

M. Beccaria, S. Giombi, and A. Tseytlin, *Non-supersymmetric Wilson loop in $N=4$ SYM and defect 1d CFT*, JHEP **03** (2018) 131, [arXiv:1712.06874].

E. Lauria, M. Meineri, and E. Trevisani, *Radial coordinates for defect CFTs*, JHEP **11** (2018) 148, [arXiv:1712.07668].

M. Lemos, P. Liendo, M. Meineri, and S. Sarkar, *Universality at large transverse spin in defect CFT*, JHEP **09** (2018) 091, [arXiv:1712.08185].

N. Kobayashi and T. Nishioka, *Spinning conformal defects*, JHEP **09** (2018) 134, [arXiv:1805.05967].

S. Guha and B. Nagaraj, *Correlators of Mixed Symmetry Operators in Defect CFTs*, JHEP **10** (2018) 198, [arXiv:1805.12341].

E. Lauria, M. Meineri, and E. Trevisani, *Spinning operators and defects in conformal field theory*, JHEP **08** (2019) 066, [arXiv:1807.02522].

L. Di Pietro, D. Gaiotto, E. Lauria, and J. Wu, *3d Abelian Gauge Theories at the Boundary*, JHEP **05** (2019) 091, [arXiv:1902.09567].

L. Bianchi, *Marginal deformations and defect anomalies*, Phys. Rev. D **100** (2019), no. 12 126018, [arXiv:1907.06193].

E. Lauria, P. Liendo, B. C. Van Rees, and X. Zhao, *Line and surface defects for the free scalar field*, JHEP **01** (2021) 060, [arXiv:2005.02413].

C. P. Herzog and A. Shrestha, *Two point functions in defect CFTs*, JHEP **04** (2021) 226, [arXiv:2010.04995].

S. Giombi, E. Helfenberger, Z. Ji, and H. Khanchandani, *Monodromy Defects from Hyperbolic Space*, arXiv:2102.11815.

L. Bianchi, A. Chalabi, V. Procházká, B. Robinson, and J. Sisti, *Monodromy defects in free field theories*, JHEP **08** (2021) 013, [arXiv:2104.01220].

J. Gomis, T. Okuda, and D. Trancanelli, *Quantum ’t Hooft operators and S-duality in N=4 super Yang-Mills*, Adv. Theor. Math. Phys. **13** (2009), no. 6 1941–1981, [arXiv:0904.4486].

D. Gaiotto, L. Rastelli, and S. S. Razamat, *Bootstrapping the superconformal index with surface defects*, JHEP **01** (2013) 022, [arXiv:1207.3577].

A. Gadde and S. Gukov, *2d Index and Surface operators*, JHEP **03** (2014) 080, [arXiv:1305.0266].

D. Gaiotto, S. Gukov, and N. Seiberg, *Surface Defects and Resolvents*, JHEP **09** (2013) 070, [arXiv:1307.2578].

C. Cordova, D. Gaiotto, and S.-H. Shao, *Infrared Computations of Defect Schur Indices*, JHEP **11** (2016) 106, [arXiv:1606.08429].
[429] A. Gorsky, B. Le Floch, A. Milekhin, and N. Sopenko, Surface defects and instanton–vortex interaction, Nucl. Phys. B 920 (2017) 122–156, [arXiv:1702.03330].

[430] C. Cordova, D. Gaiotto, and S.-H. Shao, Surface Defect Indices and 2d-4d BPS States, JHEP 12 (2017) 078, [arXiv:1703.02525].

[431] C. Cordova, D. Gaiotto, and S.-H. Shao, Surface Defects and Chiral Algebras, JHEP 05 (2017) 140, [arXiv:1704.01955].

[432] N. Drukker, I. Shamir, and C. Vergu, Defect multiplets of $\mathcal{N} = 1$ supersymmetry in 4d, JHEP 01 (2018) 034, [arXiv:1711.03455].

[433] L. Bianchi, M. Lemos, and M. Meineri, Line Defects and Radiation in $\mathcal{N} = 2$ Conformal Theories, Phys. Rev. Lett. 121 (2018), no. 14 141601, [arXiv:1805.04111].

[434] T. Nishinaka, S. Sasa, and R.-D. Zhu, On the Correspondence between Surface Operators in Argyres-Douglas Theories and Modules of Chiral Algebra, JHEP 03 (2019) 091, [arXiv:1811.11772].

[435] L. Bianchi and M. Lemos, Superconformal surfaces in four dimensions, JHEP 06 (2020) 056, [arXiv:1911.05082].

[436] N. B. Agmon and Y. Wang, Classifying Superconformal Defects in Diverse Dimensions Part I: Superconformal Lines, arXiv:2009.06650.

[437] Y. Wang, Surface defect, anomalies and b-extremization, JHEP 11 (2021) 122, [arXiv:2012.06574].

[438] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172, [arXiv:1412.5148].

[439] C. Cordova, T. Dumitrescu, K. Intriligator, and S.-H. Shao, White paper on Generalized symmetries and IR phases, to appear.

[440] Y. Lee and Y. Zheng, Remarks on compatibility between conformal symmetry and continuous higher-form symmetries, Phys. Rev. D 104 (2021), no. 8 085005, [arXiv:2108.00732].

[441] C. Córdova, T. T. Dumitrescu, and K. Intriligator, Exploring 2-Group Global Symmetries, JHEP 02 (2019) 184, [arXiv:1802.04790].

[442] J. J. Heckman and L. Tizzano, 6D Fractional Quantum Hall Effect, JHEP 05 (2018) 120, [arXiv:1708.02250].

[443] M. Del Zotto and K. Ohmori, 2-Group Symmetries of 6D Little String Theories and T-Duality, Annales Henri Poincare 22 (2021), no. 7 2451–2474, [arXiv:2009.03489].

[444] F. Apruzzi, M. Dierigl, and L. Lin, The Fate of Discrete 1-Form Symmetries in 6d, arXiv:2008.09117.

[445] L. Bhardwaj and S. Schäfer-Nameki, Higher-form symmetries of 6d and 5d theories, JHEP 02 (2021) 159, [arXiv:2008.09600].

[446] F. Apruzzi, L. Bhardwaj, D. S. W. Gould, and S. Schäfer-Nameki, 2-Group Symmetries and their Classification in 6d, arXiv:2110.14647.

[447] L. Bhardwaj, M. Hubner, and S. Schäfer-Nameki, Liberating Confinement from Lagrangians: 1-form Symmetries and Lines in 4d $\mathcal{N}=1$ from 6d $\mathcal{N}=(2,0)$, arXiv:2106.10265.
F. Apruzzi, L. Bhardwaj, J. Oh, and S. Schafer-Nameki, *The Global Form of Flavor Symmetries and 2-Group Symmetries in 5d SCFTs*, arXiv:2105.08724.

M. Del Zotto, I. n. García Etxebarria, and S. S. Hosseini, *Higher form symmetries of Argyres-Douglas theories*, JHEP 10 (2020) 056, [arXiv:2007.15603].

L. Bhardwaj, M. Hubner, and S. Schafer-Nameki, *1-form Symmetries of 4d N=2 Class S Theories*, SciPost Phys. 11 (2021) 096, [arXiv:2102.01693].

L. Bhardwaj, *2-Group Symmetries in Class S*, arXiv:2107.06816.

L. Bhardwaj, S. Giacomelli, M. Hübner, and S. Schäfer-Nameki, *Relative Defects in Relative Theories: Trapped Higher-Form Symmetries and Irregular Punctures in Class S*, arXiv:2201.00018.

A. Kapustin and R. Thorngren, *Anomalies of discrete symmetries in three dimensions and group cohomology*, Phys. Rev. Lett. 112 (2014), no. 23 231602, [arXiv:1403.0617].

F. Benini, P.-S. Hsin, and N. Seiberg, *Comments on global symmetries, anomalies, and duality in (2 + 1)d*, JHEP 04 (2017) 135, [arXiv:1702.07035].

F. Benini, C. Córdova, and P.-S. Hsin, *On 2-Group Global Symmetries and their Anomalies*, JHEP 03 (2019) 118, [arXiv:1803.09336].

P.-S. Hsin, H. T. Lam, and N. Seiberg, *Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d*, SciPost Phys. 6 (2019), no. 3 039, [arXiv:1812.04716].

J. Eckhard, H. Kim, S. Schafer-Nameki, and B. Willett, *Higher-Form Symmetries, Bethe Vacua, and the 3d-3d Correspondence*, JHEP 01 (2020) 101, [arXiv:1910.14086].

E. Beratto, N. Mekareeya, and M. Sacchi, *Zero-form and one-form symmetries of the ABJ and related theories*, arXiv:2112.09531.

M. Cvetic, J. J. Heckman, E. Torres, and G. Zoccarato, *Reflections on the matter of 3D N=1 vacua and local Spin(7) compactifications*, Phys. Rev. D 105 (2022), no. 2 026008, [arXiv:2107.00025].

N. Seiberg, *Exact results on the space of vacua of four-dimensional SUSY gauge theories*, Phys. Rev. D 49 (1994) 6857–6863, [hep-th/9402044].

K. A. Intriligator and N. Seiberg, *Phases of N=1 supersymmetric gauge theories in four-dimensions*, Nucl. Phys. B 431 (1994) 551–568, [hep-th/9408155].

N. Seiberg, *Electric - magnetic duality in supersymmetric nonAbelian gauge theories*, Nucl. Phys. B 435 (1995) 129–146, [hep-th/9411149].

D. Kutasov, *A Comment on duality in N=1 supersymmetric nonAbelian gauge theories*, Phys. Lett. B 351 (1995) 230–234, [hep-th/9503086].

D. Kutasov and A. Schwimmer, *On duality in supersymmetric Yang-Mills theory*, Phys. Lett. B 354 (1995) 315–321, [hep-th/9505004].

K. A. Intriligator, R. G. Leigh, and M. J. Strassler, *New examples of duality in chiral and nonchiral supersymmetric gauge theories*, Nucl. Phys. B 456 (1995) 567–621, [hep-th/9506148].

F. A. Dolan and H. Osborn, *Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N=1 Dual Theories*, Nucl. Phys. B 818 (2009) 137–178, [arXiv:0801.4947].
[467] V. P. Spiridonov and G. S. Vartanov, *Elliptic Hypergeometry of Supersymmetric Dualities*, Commun. Math. Phys. 304 (2011) 797–874, [arXiv:0910.5944].

[468] C. Closset, H. Kim, and B. Willett, *N = 1 supersymmetric indices and the four-dimensional A-model*, JHEP 08 (2017) 090, [arXiv:1707.05774].

[469] K. A. Intriligator and B. Wecht, *The Exact superconformal R symmetry maximizes a*, Nucl. Phys. B 667 (2003) 183–200, [hep-th/0304128].

[470] F. Benini, Y. Tachikawa, and B. Wecht, *Sicilian gauge theories and N=1 dualities*, JHEP 08 (2017) 090, [arXiv:1707.05774].

[471] I. Bah, C. Beem, N. Bobev, and B. Wecht, *Four-Dimensional SCFTs from M5-Branes*, JHEP 06 (2012) 005, [arXiv:1203.0303].

[472] C. Beem and A. Gadde, *The N = 1 superconformal index for class S fixed points*, JHEP 04 (2014) 036, [arXiv:1212.1467].

[473] P. Agarwal, K. Intriligator, and J. Song, *Infinitely many N = 1 dualities from m + 1 − m = 1*, JHEP 10 (2015) 035, [arXiv:1505.00255].

[474] M. Fazzi and S. Giacomelli, *N = 1 superconformal theories with D_N blocks*, Phys. Rev. D 95 (2017), no. 8 085010, [arXiv:1609.08156].

[475] E. Nardoni, *4d SCFTs from negative-degree line bundles*, JHEP 08 (2018) 199, [arXiv:1611.01229].

[476] D. R. Morrison and C. Vafa, *F-theory and N = 1 SCFTs in four dimensions*, JHEP 08 (2016) 070, [arXiv:1604.03560].

[477] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, *E-String Theory on Riemann Surfaces*, Fortsch. Phys. 66 (2018), no. 1 1700074, [arXiv:1709.02496].

[478] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, *Compactifications of ADE conformal matter on a torus*, JHEP 09 (2018) 110, [arXiv:1806.07620].

[479] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, *D-type Conformal Matter and SU/USp Quivers*, JHEP 06 (2018) 058, [arXiv:1802.00620].

[480] F. Apruzzi, J. J. Heckman, D. R. Morrison, and L. Tizzano, *4D Gauge Theories with Conformal Matter*, JHEP 09 (2018) 088, [arXiv:1803.00582].

[481] S. S. Razamat and E. Sabag, *Sequences of 6d SCFTs on generic Riemann surfaces*, JHEP 01 (2020) 086, [arXiv:1910.03603].

[482] C. Hwang, S. S. Razamat, E. Sabag, and M. Sacchi, *Rank Q E-String on Spheres with Flux*, arXiv:2103.09149.

[483] D. Xie, *M5 brane and four dimensional N = 1 theories I*, JHEP 04 (2014) 154, [arXiv:1307.5877].

[484] I. Bah and N. Bobev, *Linear quivers and N = 1 SCFTs from M5-branes*, JHEP 08 (2014) 121, [arXiv:1307.7104].

[485] P. Agarwal and J. Song, *New N=1 Dualities from M5-branes and Outer-automorphism Twists*, JHEP 03 (2014) 133, [arXiv:1311.2945].

[486] P. Agarwal, I. Bah, K. Maruyoshi, and J. Song, *Quiver tails and N = 1 SCFTs from M5-branes*, JHEP 03 (2015) 049, [arXiv:1409.1908].
[487] J. J. Heckman, P. Jefferson, T. Rudelius, and C. Vafa, Punctures for theories of class S, JHEP 03 (2017) 171, [arXiv:1609.01281].

[488] F. Hassler and J. J. Heckman, Punctures and Dynamical Systems, Lett. Math. Phys. 109 (2019), no. 3 449–495, [arXiv:1711.03973].

[489] B. Nazzal and S. S. Razamat, Surface Defects in E-String Compactifications and the van Diejen Model, SIGMA 14 (2018) 036, [arXiv:1801.00960].

[490] S. Pasquetti, S. S. Razamat, M. Sacchi, and G. Zafrir, Rank Q E-string on a torus with flux, SciPost Phys. 8 (2020), no. 1 014, [arXiv:1908.03278].

[491] S. S. Razamat and E. Sabag, SQCD and pairs of pants, JHEP 09 (2020) 028, [arXiv:2006.03480].

[492] D. Gaiotto and S. S. Razamat, $N=1$ theories of class S_k, JHEP 07 (2015) 073, [arXiv:1503.05159].

[493] I. Coman, E. Pomoni, M. Taki, and F. Yagi, Spectral curves of $\mathcal{N} = 1$ theories of class S_k, JHEP 06 (2017) 136, [arXiv:1512.06079].

[494] S. Franco, H. Hayashi, and A. Uranga, Charting Class S_k Territory, Phys. Rev. D 92 (2015), no. 4 045004, [arXiv:1504.05988].

[495] A. Hanany and K. Maruyoshi, Chiral theories of class S, JHEP 12 (2015) 080, [arXiv:1505.05053].

[496] S. S. Razamat, C. Vafa, and G. Zafrir, $4d$ $\mathcal{N} = 1$ from $6d$ $(1, 0)$, JHEP 04 (2017) 064, [arXiv:1610.09178].

[497] I. Bah, A. Hanany, K. Maruyoshi, S. S. Razamat, Y. Tachikawa, and G. Zafrir, $4d$ $\mathcal{N} = 1$ from $6d$ $\mathcal{N} = (1,0)$ on a torus with fluxes, JHEP 06 (2017) 022, [arXiv:1702.04740].

[498] T. Bourton, A. Pini, and E. Pomoni, The Coulomb and Higgs branches of $\mathcal{N} = 1$ theories of Class S_k, JHEP 02 (2021) 137, [arXiv:2011.01587].

[499] S. S. Razamat and G. Zafrir, Compactification of $6d$ minimal SCFTs on Riemann surfaces, Phys. Rev. D 98 (2018), no. 6 066006, [arXiv:1806.09196].

[500] A. Gadde, K. Maruyoshi, Y. Tachikawa, and W. Yan, New $N=1$ Dualities, JHEP 06 (2013) 056, [arXiv:1303.0836].

[501] A. Gadde, S. S. Razamat, and B. Willett, "Lagrangian" for a Non-Lagrangian Field Theory with $N = 2$ Supersymmetry, Phys. Rev. Lett. 115 (2015), no. 17 171604, [arXiv:1505.05834].

[502] P. Agarwal, K. Maruyoshi, and J. Song, A “Lagrangian” for the E_7 superconformal theory, JHEP 05 (2018) 193, [arXiv:1802.05268].

[503] E. Sabag, Non minimal D-type conformal matter compactified on three punctured spheres, JHEP 10 (2020) 139, [arXiv:2007.13567].

[504] J. Chen, B. Haghighat, S. Liu, and M. Sperling, $4d$ $N=1$ from $6d$ D-type $N=(1,0)$, JHEP 01 (2020) 152, [arXiv:1907.00536].

[505] G. Zafrir, On the torus compactifications of Z_2 orbifolds of E-string theories, JHEP 10 (2019) 040, [arXiv:1809.04260].

[506] K. Maruyoshi, E. Nardoni, and J. Song, Landscape of Simple Superconformal Field Theories in $4d$, Phys. Rev. Lett. 122 (2019), no. 12 121601, [arXiv:1806.08353].
P. Agarwal, K.-H. Lee, and J. Song, *Classification of large N superconformal gauge theories with a dense spectrum*, JHEP 10 (2021) 049, [arXiv:2007.16165].

K. Maruyoshi and J. Song, *N = 1 deformations and RG flows of N = 2 SCFTs*, JHEP 02 (2017) 075, [arXiv:1607.04281].

S. S. Razamat and G. Zafrir, *N = 1 conformal dualities*, JHEP 09 (2019) 046, [arXiv:1906.05088].

S. S. Razamat, E. Sabag, and G. Zafrir, *Weakly coupled conformal manifolds in 4d*, JHEP 06 (2020) 179, [arXiv:2004.07097].

G. Zafrir, *An N = 1 Lagrangian for the rank 1 E_6 superconformal theory*, JHEP 12 (2020) 098, [arXiv:1912.09348].

S. S. Razamat and G. Zafrir, *N = 1 conformal duals of gauged E_n MN models*, JHEP 06 (2020) 176, [arXiv:2003.01843].

D. L. Jafferis, *The Exact Superconformal R-Symmetry Extremizes Z*, JHEP 05 (2012) 159, [arXiv:1012.3210].

C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski, and N. Seiberg, *Contact Terms, Unitarity, and F-Maximization in Three-Dimensional Superconformal Theories*, JHEP 10 (2012) 053, [arXiv:1205.4142].

E. Barnes, E. Gorbatov, K. A. Intriligator, M. Sudano, and J. Wright, *The Exact superconformal R-symmetry minimizes tau(RR)*, Nucl. Phys. B 730 (2005) 210–222, [hep-th/0507137].

C. Closset, T. T. Dumitrescu, G. Festuccia, and Z. Komargodski, *Supersymmetric Field Theories on Three-Manifolds*, JHEP 05 (2013) 017, [arXiv:1212.3388].

T. Nishioka and K. Yonekura, *On RG Flow of τ_{RR} for Supersymmetric Field Theories in Three-Dimensions*, JHEP 05 (2013) 165, [arXiv:1303.1522].

A. Amariti and A. Guecchi, *3D τ_{RR}-minimization in AdS_4 gauged supergravity*, JHEP 07 (2016) 006, [arXiv:1511.08214].

A. Amariti and A. Guecchi, *τ_{RR} minimization in presence of hypermultiplets*, arXiv:2107.01195.

A. Kapustin, B. Willett, and I. Yaakov, *Tests of Seibery-like dualities in three dimensions*, JHEP 08 (2020) 114, [arXiv:1012.4021].

A. Giveon and D. Kutasov, *Seibery Duality in Chern-Simons Theory*, Nucl. Phys. B 812 (2009) 1–11, [arXiv:0808.0360].

N. Kubo and K. Nii, *3d N = 3 Generalized Giveon-Kutasov Duality*, arXiv:2111.13366.

D. Gaiotto, Z. Komargodski, and J. Wu, *Curious Aspects of Three-Dimensional N = 1 SCFTs*, JHEP 08 (2018) 004, [arXiv:1804.02018].

F. Benini and S. Benvenuti, *N = 1 dualities in 2+1 dimensions*, JHEP 11 (2018) 197, [arXiv:1803.01784].

J. de Boer, K. Hori, and Y. Oz, *Dynamics of N=2 supersymmetric gauge theories in three-dimensions*, Nucl. Phys. B 500 (1997) 163–191, [hep-th/9703100].

O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. J. Strassler, *Aspects of N=2
supersymmetric gauge theories in three-dimensions, *Nucl. Phys. B* **499** (1997) 67–99, [hep-th/9703110].

[527] O. Aharony, *IR duality in d = 3 N=2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories*, *Phys. Lett. B* **404** (1997) 71–76, [hep-th/9703215].

[528] F. Benini, C. Closset, and S. Cremonesi, *Comments on 3d Seiberg-like dualities*, *JHEP* **10** (2011) 075, [arXiv:1108.5373].

[529] K. Intriligator and N. Seiberg, *Aspects of 3d N=2 Chern-Simons-Matter Theories*, *JHEP* **07** (2013) 079, [arXiv:1305.1633].

[530] A. Amariti and M. Fazzi, *Dualities for three-dimensional \(\mathcal{N} = 2 \) SU(\(N_c \)) chiral adjoint SQCD*, *JHEP* **11** (2013) 030, [arXiv:2007.01323].

[531] S. Benvenuti, O. Sela, and G. Zafrir, *On the 3d compactifications of 5d SCFTs associated with SU(N+1) gauge theories*, arXiv:2111.12745.

[532] M. Sacchi, O. Sela, and G. Zafrir, *Compactifying 5d superconformal field theories to 3d*, *JHEP* **09** (2021) 149, [arXiv:2105.01497].

[533] F. Benini, S. Benvenuti, and S. Pasquetti, *SUSY monopole potentials in 2+1 dimensions*, *JHEP* **08** (2017) 086, [arXiv:1605.02391].

[534] A. Amariti, I. Garozzo, and N. Mekareeya, *New 3d \(\mathcal{N} = 2 \) dualities from quadratic monopoles*, *JHEP* **11** (2018) 035, [arXiv:1806.01356].

[535] S. Benvenuti, *A tale of exceptional 3d dualities*, *JHEP* **03** (2019) 125, [arXiv:1809.03925].

[536] A. Amariti, C. Csáki, M. Martone, and N. R.-L. Lorier, *From 4D to 3D chiral theories: Dressing the monopoles*, *Phys. Rev. D* **93** (2016), no. 10 105027, [arXiv:1506.01017].
C. Closset, H. Kim, and B. Willett, Seifert fibering operators in 3d $N = 2$ theories, JHEP 11 (2018) 004, [arXiv:1807.02328].

C. Closset and H. Kim, Three-dimensional $N = 2$ supersymmetric gauge theories and partition functions on Seifert manifolds: A review, Int. J. Mod. Phys. A 34 (2019), no. 23 1930011, [arXiv:1908.00875].

D. Jain and A. Ray, 3d $N = 2$ $\hat{A}\hat{D}\hat{E}$ Chern-Simons quivers, Phys. Rev. D 100 (2019), no. 4 046007, [arXiv:1902.10498].

T. Dimofte, D. Gaiotto, and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys. 325 (2014) 367–419, [arXiv:1108.4389].

T. Dimofte, D. Gaiotto, and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys. 17 (2013), no. 5 975–1076, [arXiv:1112.5179].

S. Cecotti, C. Cordova, and C. Vafa, Braids, Walls, and Mirrors, arXiv:1110.2115.

H.-J. Chung, T. Dimofte, S. Gukov, and P. Sulkowski, 3d-3d Correspondence Revisited, JHEP 04 (2016) 140, [arXiv:1405.3663].

T. Dimofte, Complex Chern–Simons Theory at Level k via the 3d–3d Correspondence, Commun. Math. Phys. 339 (2015), no. 2 619–662, [arXiv:1409.0857].

S. Gukov and D. Pei, Equivariant Verlinde formula from fivebranes and vortices, Commun. Math. Phys. 355 (2017), no. 1 1–50, [arXiv:1501.01310].

D. Pei and K. Ye, A 3d-3d appetizer, JHEP 11 (2016) 008, [arXiv:1503.04809].

D. Gang, N. Kim, and L. A. Pando Zayas, Precision Microstate Counting for the Entropy of Wrapped M5-branes, JHEP 03 (2020) 164, [arXiv:1905.01559].

D. Gang and N. Kim, Large N twisted partition functions in 3d-3d correspondence and Holography, Phys. Rev. D 99 (2019), no. 2 021901, [arXiv:1808.02797].

D. Gang, Y. Tachikawa, and K. Yonekura, Smallest 3d hyperbolic manifolds via simple 3d theories, Phys. Rev. D 96 (2017), no. 6 061701, [arXiv:1706.06292].

L. F. Alday, P. Benetti Genolini, M. Bullimore, and M. van Loon, Refined 3d-3d Correspondence, JHEP 04 (2017) 170, [arXiv:1702.05045].

D. Gang, N. Kim, M. Romo, and M. Yamazaki, Aspects of Defects in 3d-3d Correspondence, JHEP 10 (2016) 062, [arXiv:1510.05011].

S. Gukov, D. Pei, P. Putrov, and C. Vafa, BPS spectra and 3-manifold invariants, J. Knot Theor. Ramifications 29 (2020), no. 02 2040003, [arXiv:1701.06567].

J. Eckhard, S. Schäfer-Nameki, and J.-M. Wong, An $\mathcal{N} = 1$ 3d-3d Correspondence, JHEP 07 (2018) 052, [arXiv:1804.02368].

M. C. N. Cheng, S. Chun, F. Ferrari, S. Gukov, and S. M. Harrison, 3d Modularity, JHEP 10 (2019) 010, [arXiv:1809.10148].

M. C. N. Cheng, S. Chun, B. Feigin, F. Ferrari, S. Gukov, S. M. Harrison, and D. Passaro, 3-Manifolds and VOA Characters, arXiv:2201.04640.

H.-J. Chung, Index for a Model of 3d-3d Correspondence for Plumbed 3-Manifolds, Nucl. Phys. B 965 (2021) 115361, [arXiv:1912.13486].
[567] M. C. N. Cheng, F. Ferrari, and G. Sgroi, *Three-Manifold Quantum Invariants and Mock Theta Functions*, Phil. Trans. Roy. Soc. Lond. **378** (2019), no. 2163 20180439, [arXiv:1912.07997].

[568] S. Chun, S. Gukov, S. Park, and N. Sopenko, *3d-3d correspondence for mapping tori*, JHEP **09** (2020) 152, [arXiv:1911.08456].

[569] Y. Fan, *3D–3D correspondence from Seifert fibering operators*, J. Phys. A **54** (2021), no. 22 225401, [arXiv:2008.13202].