COHERENT STATES, TRANSITION AMPLITUDES AND EMBEDDINGS

S. Berceanu
Institute of Physics and Nuclear Engineering,
Department of Theoretical Physics,
P. O. Box MG-6, Bucharest-Magurele, Romania;
E-mail: Berceanu@Theor1.IFA.Ro; Berceanu@Roifa.IFA.Ro

Abstract
The transition amplitudes between coherent states on the coherent state manifold \(\tilde{M} \) are expressed in terms of the embedding of \(\tilde{M} \) into a projective Hilbert space \(\mathbb{P}L \). Consequences for the dimension of \(\mathbb{P}L \) and a simple geometric interpretation of Calabi’s diastasis follows.

0. Introduction and preliminaries
The coherent states [1] offer a powerful framework to formulate a link between classical and quantum mechanics [2, 3]. Simultaneously, the coherent state approach furnishes an appealing recipe [4] for the geometric quantization [5]. However, a “physical” motivation of the group theoretic generalisation of Heisenberg-Weyl’s group to arbitrary Lie groups due to Perelomov [6] is still missing. On the other side, a simple geometric description of the coherent states, and firstly of transition amplitudes and transition probabilities [7, 8], is well-suited. The proposed way to attain this goal is the embedding of the coherent state manifold into an adequate projective Hilbert space. The importance of this embedding was already emphasised [9, 10]. A very simple answer to these questions is obtained formulating the problem in the language of complex geometry [11], fibre bundles [12] and algebraic geometry [13].

In this talk we shall be concerned with the following topics: 1) the geometric meaning of the transition amplitudes; 2) angles, distances and coherent states; 3) the geometric meaning of Calabi’s diastasis; 4) Kodaira embedding and coherent states. Elsewhere [14] we have been concerned with the questions: 5) the relationship between geodesics and coherent states; 6) a geometric characterisation of the polar divisor, i.e. the set of coherent vectors orthogonal to a fixed vector. Putting the answers to all these questions together, we get a better understanding [15] of the coherent states. A full illustration of the problems 1)-6) in the case of the complex Grassmann manifold \(G_n(\mathbb{C}^{m+n}) \) is given in Ref. [16].
0.1. The coherent states

Let \(\pi \) be an unitary irreducible representation, \(G \) a Lie group and \(K \) a Hilbert space. Let the orbit \(\tilde{M} = \tilde{\pi}(G)|\psi_0> \), where \(|\psi_0> \in K \) and \(\xi : K \to PK \) is the projection \(\xi|\psi> = |\tilde{\psi}> \). Then there is the diffeomorphism \(\tilde{M} \approx G/K \), where \(K \) is the stationary group of \(|\psi_0> \). If \(\iota : \tilde{M} \hookrightarrow PL \) is an embedding, then \(\tilde{M} \) is called coherent state manifold. If \(|\psi_0> \equiv |j> \) is an extreme weight vector, then for compact connected simply connected Lie groups \(G \), \(\tilde{M} \) is a Kähler manifold and the celebrated Borel-Weil-Bott [17] theorem furnishes both the representation \(\pi_j \) and the representation space \(L_j = K^* \), where \(X^* \) denotes the dual of the vector space \(X \). If a local section \(\sigma : \tilde{M} \to S(K) \) in the unit sphere in \(K \) is constructed, then the holomorphic line bundle \(M' = \sigma(\tilde{M}) \) is associated by a holomorphic character \(\chi \) of the parabolic subgroup \(P \) of the complexification \(GC \) of \(G \).

The coherent vectors [6], which belong to the coherent vector manifold \(M \) [18], are introduced as

\[
|Z,j> = \exp \sum_{\varphi \in \Delta_n^+} (Z_\varphi F_\varphi^+) |j>, \quad |Z> = <Z|Z>^{-1/2} |Z> \in M,
\]

where \(\Delta_n^+ \) are the positive non-compact roots, \(Z \equiv (Z_\varphi) \in C^n \) are the local coordinates in neighbourhood of \(|j> \) corresponding to \(Z = 0 \) and \(n \) is the dimension of the manifold \(\tilde{M} \). We remember that \(F_\varphi^+ |j> \neq 0, F_\varphi^- |j> = 0, \varphi \in \Delta_n^+ \).

Below \(<Z'|Z> \) denotes the hermitian scalar product of holomorphic sections in the line bundle \(M \) in different points of the manifold \(\tilde{M} \).

0.2. The manifold

The first study of compact homogeneous complex manifolds was done by H. C. Wang [19], who completely classified the \(C^- \) spaces, i.e. the simply connected compact homogeneous manifolds. If \(G \) is a connected semisimple Lie group, then a Kählerian \(C^- \) space is necessarily of the form \(G/C(T) \), where \(T \) is a toral subgroup of \(G \) and \(C(T) \) is the centralizer of \(T \) in \(G \). Then every compact homogeneous Kähler manifold is a Kählerian direct product of a Kählerian \(C^- \) space and a flat complex torus (cf. Matsushima’s theorem, see e.g. Note 24 pp. 373-375 in Ref. [20]).

The following theorem summarises some properties of flag manifolds with significance for the present paper [21].

Let \(X_c = GC/P \) be a complex manifold, where \(GC \) is a complex semisimple Lie group and \(P \) is a parabolic subgroup. The following conditions are equivalent:

a) \(X_c = GC/P \) is compact;

b) \(X_c \) is a complex connected Kähler manifold;

c) \(X_c \) is a projective variety;

d) \(X_c \) is a closed \(GC \) orbit in a projective representation;

e) \(X_c \) is a Hodge manifold and all homogeneous Hodge manifolds are of this type.

We remember that the manifold \(\tilde{M} \) is called a Hodge manifold (Kähler manifold of restricted type) if the Kähler two-form \(\omega \) is integral, i.e. \(\omega \in H^2(M,Z) \).
0.3. The embedding

A holomorphic line bundle \(M' \) on a compact complex manifold \(\widetilde{M} \) is said very ample \cite{22} if: the set of divisors is without base points, i.e. there exists a finite set of global sections \(s_1, \ldots, s_N \in \Gamma(\widetilde{M}, M') \) such that for each \(m \in \widetilde{M} \) at least one \(s_j(m) \) is not zero, and the holomorphic map \(\iota_{M'} : \widetilde{M} \hookrightarrow \mathbb{C}P^{N-1} \) given by

\[
\iota_{M'} = [s_1(m), \ldots, s_N(m)]
\]

is a holomorphic embedding. So, \(\iota_{M'} : \widetilde{M} \hookrightarrow \mathbb{C}P^{N-1} \) is an embedding if \cite{23}:

\(\mathcal{A}_1 \) the set of divisors is without base points;
\(\mathcal{A}_2 \) the differential of \(\iota \) is nowhere degenerate;
\(\mathcal{A}_3 \) \(\iota \) is one-one, i.e. for any \(m, m' \in \widetilde{M} \) there exists \(s \in H^0(\widetilde{M}, \mathcal{O}(M')) \) such that \(s(m) = 0 \) and \(s(m') \neq 0 \), where \(\mathcal{O} \) denotes the sheaf of holomorphic sections.

The line bundle \(M' \) is said to be ample if there exists a positive integer \(r_0 \) such that \(M'^r \) is very ample for all \(r \geq r_0 \). Note that if \(M' \) is an ample line bundle on \(\widetilde{M} \), then \(\widetilde{M} \) must be projective-algebraic by Chow’s theorem, hence \(\widetilde{M} \) is Kähler.

The holomorphic line bundle \(M' \) is said to be positive if on \(M' \) can be given a hermitian metric \(ds^2 \in C^\infty(\widetilde{M}, M'^* \times \overline{M'^*}) \) such that \(\sqrt{-1}\Theta \) is positive, where \(\Theta \) is the curvature form of the hermitian connection. If in local coordinates the two-form \(\omega \in \Lambda^{1,1} \) is \(\omega = \sqrt{-1}\sum g_{ik} dz_i \wedge d\overline{z}_k \), then \(\omega \) is positive if the matrix \([g_{ik}] \) is positive definite.

The concepts of ampleness and positivity for line bundles coincide. The following theorem \cite{22} summarises the properties of ample line bundles that are needed in this paper.

Let \(M' \) be a holomorphic line bundle on a compact complex manifold \(\widetilde{M} \). The following conditions are equivalent:

a) \(M' \) is positive;

b) for all coherent analytic sheaves \(S \) on \(\widetilde{M} \) there exists a positive integer \(m_0(S) \) such that \(H^i(\widetilde{M}, S \otimes M'^m) = 0 \) for \(i > 0 \), \(m \geq m_0(S) \) (the vanishing theorem of Kodaira);

c) there exists a positive integer \(m_0 \) such that for all \(m \geq m_0 \), there is an embedding \(\iota_M : \widetilde{M} \hookrightarrow \mathbb{C}P^{N-1} \) for some \(N \geq n \) such that \(M = M'^m \) is projectively induced, i.e. \(M = \iota^*[1] \);

d) \(M \) is a Hodge manifold (the embedding theorem of Kodaira);

e) in particular, if \(\widetilde{M} \) is also homogeneous, then \(\widetilde{M} \) is a flag manifold.

In the condition of case e), i.e. when \(\widetilde{M} \) is a homogeneous Kähler manifold, the exact description of the embedding \(\iota_M : \widetilde{M} \hookrightarrow \mathbb{C}P^{N-1} \) is furnished by the Borel-Weil-Bott theorem \cite{17}. The dimension of the representation is given by the Riemann-Roch-Hirzebruch theorem. The same result can be obtained using the coherent states, as will be seen later in Proposition \cite{4}. Here [1] denotes the hyperplane bundle.

Now we discuss the construction of the embedding \(\iota : \widetilde{M} \hookrightarrow \mathbb{P}L \) for noncompact manifolds. Then the projective Hilbert space is infinite dimensional \cite{23}.

Let \(F \) be the Hilbert space of square integrable holomorphic \(n \)-forms on \(\widetilde{M} \). Then \(L = F^* \). Let \(z = (z_1, \ldots, z_n) \) be a local coordinate system. Let \(\iota' \) be the mapping which sends \(z \) into an element \(\iota'(z) \) of \(L \) defined by the paring \(\langle \iota'(z), f \rangle = f^*(z) \), where \(f(z_1, \ldots, z_n) = f^*dz_1 \wedge \cdots \wedge dz_n \wedge d\overline{z}_1 \wedge \cdots \wedge d\overline{z}_n \). Then \(\iota'(z) \neq 0 \) if a condition analogous to condition \(\mathcal{A}_1 \) in the noncompact case is satisfied. Then \(\iota = \xi \circ \iota' \) is independent of local coordinates and is continuous and complex analytic.

If \(K \) is the kernel \(2n \)-form on \(\widetilde{M} \times \mathbb{C}L \) then the Kähler metric of Kodayashi \cite{24} is

\[
ds^2 = \sum \partial^2 \log K^*/\partial z_i \overline{\partial z_j} dz_i \wedge d\overline{z}_j,
\]

where \(K(z, \overline{z}) = K^*(z, \overline{z})dz_1 \wedge \cdots \wedge dz_n \wedge d\overline{z}_1 \wedge \cdots \wedge d\overline{z}_n \).
The analogous of conditions $\tilde{A}_1)$-\tilde{A}_3) used by Kobayashi in the noncompact case are:

A_1) for any $z \in \tilde{M}$, there exists a square integrable $n-$form f such that $f(z) \neq 0$;

A_2) for every holomorphic vector Z at z there exists a square integrable $n-$form f such that $f(z) = 0$ and $Z(f^*) \neq 0$;

A_3) if z and z' are two distinct points of \tilde{M}, then there is a $n-$form f such that $f(z) = 0$ and $f(z') \neq 0$.

Kobayashi has shown that condition A_1) implies $ds^2 = \iota^* (ds^2_{FS})$, while A_2) and A_3) imply that ι is also an embedding.

Rawnsley [9] has globalized the definition of coherent states including also the non-homogeneous Kähler manifolds. He has shown that $\omega_{\tilde{M}} - \iota^* \omega_{FS} = \frac{1}{2\pi i} \partial \bar{\partial} \eta$, where ω_{FS} is the fundamental two-form on the complex projective space. So, if η is harmonic, then ι is Kählerian and an immersion. For regular hermitian line bundle, in particular for homogeneous Kähler manifolds and homogeneous quantization, η is constant and ω is the pull-back of ω_{FS}. For the complex torus $T = \mathbb{C}^n/\Gamma$, T is Hodge if and only if the Riemann conditions are satisfied [11]. The projectively induced line bundles correspond to ι an embedding.

1. The geometric meaning of the transition amplitude

Topic 1: find a geometric meaning of the transition probability on coherent state manifold.

Proposition 1 Let $|Z>$ as in (1.1), where Z parametrizes the coherent state manifold in the $\mathcal{V}_0 \subset \tilde{M}$ and let us suppose that the coherent state manifold admits the embedding $\iota: \tilde{M} \hookrightarrow \mathbb{P}\mathbb{L}$. Then the angle

$$\theta \equiv \arccos | <Z'|Z> |,$$

(1.1)

is equal to the Cayley distance on the geodesic joining $\iota(Z'), \iota(Z)$, where $Z', Z \in \mathcal{V}_0$,

$$\theta = d_c(\iota(Z'), \iota(Z)).$$

(1.2)

More generally, it is true the following relation (Cauchy formula)

$$<Z'|Z> = \frac{\langle \iota(Z'), \iota(Z) \rangle}{\|\iota(Z')\|\|\iota(Z)\|}.$$

Proof: We discuss here the case of compact manifolds. The embedding (1.2) is realised in the case of the coherent state manifold \tilde{M} by the formula

$$\iota(Z) = [|Z>].$$

(1.3)

Because the manifold \tilde{M} admits a embedding into the projective Hilbert space $\mathbb{P}\mathbb{L}$, the line bundle M' is a positive one. The theorem from Section 0.3 is applied. It follows that there is a power m_0 of the positive line bundle M' such that the coherent vector manifold verifies the relation $M = M'^{m_0}$. The holomorphic line bundle M of coherent vectors is the pull-back ι^* of the hyperplane bundle $[1]$ of $\mathbb{P}\mathbb{L}$, the dual bundle of the tautological line bundle of $\mathbb{P}\mathbb{K}^*$, i.e. $M = \iota^*[1]$. The analytic line bundle M is projectively induced (see p. 139 in Ref. [13]).
In the Proposition 1, (\cdot,\cdot) is the scalar product in \mathbb{K}. If $\xi : \mathbb{K}\setminus\{0\} \to \mathbb{P}\mathbb{K}$, $\xi : \omega \to [\omega]$, then the elliptic hermitian Cayley distance is
\[
d_c([\omega'],[\omega]) = \arccos \frac{|(\omega',\omega)|}{\|\omega'\|\|\omega\|}.
\] (1.4)

The noncompact case is treated similarly.

For completeness, we remember here the notion of tautological line bundle \[1\] = \[1_n\] is the \mathbb{C}^\star-bundle defined by the cocycle \[
\{g_{ij}\} = \{z_j z_i^{-1}\},
\] where $[z_0, \ldots, z_n]$ are the homogeneous coordinates for the complex projective space \mathbb{CP}^n. $\mathbb{CP}^n+1 \setminus \{0\}$ is a principal bundle with structure group \mathbb{C}^\star which is associated to the $U(1)$-bundle $[1_n]^{-1} = [-1_n]$. The principal bundle $U(n+1)/U(n)$ over the Grassmann manifold $G_1(\mathbb{C}^n+1) = \mathbb{CP}^n = SU(n+1)/S(U(n) \times U(1))$ is associated to the tautological (universal) bundle over \mathbb{CP}^n.

Comment 1 (The distances in Quantum Mechanics: variations on a theme by Cayley)

The Cayley distance (1.4) has been used independently in Quantum Mechanics by many authors [26, 27, 28]. The Cayley distance (1.4) is useful in the geodesic approach. The elliptic hermitian distance d_c of two points given by eq. (1.4) is one half the arc of the great circle connecting the corresponding points on the Riemann sphere [29]. Some authors [30] prefer instead of eq. (1.4) the definition
\[
d'_c([\omega'],[\omega]) = 2 \arccos \frac{|(\omega',\omega)|}{\|\omega'\|\|\omega\|}.
\] (1.5)

The (Bargmann [8]) distance d_b, used by Prevost and Vallée [31] in the context of coherent states,
\[
d_b^2([\omega'],[\omega]) = 2(1 - \cos d_c([\omega'],[\omega])),
\] is equivalent with $d_c : 2\sqrt{2}/\pi d_c \leq d_b \leq d_c$.

Defining the inner product $(\alpha|\beta)$ of two rays as the absolute value of the scalar product $<\alpha|\beta>$, a “distance” $\rho_{\alpha\beta}$ between two rays is introduced by formula (2) at page 232 in Ref. [26]:
\[
\cos \left(\frac{1}{2} \rho_{\alpha\beta}\right) = (\alpha|\beta) = |<\alpha|\beta>|, \quad 0 \leq \rho_{\alpha\beta} \leq \pi.
\] (1.6)

The connection between geodesics in the space of rays and probability transition is commented in § “Some remarks on ray space” of Ref. [26]. One shows that if α and β are not orthogonal ($\rho_{\alpha\beta} < \pi$) a condition for γ, stronger than linear dependence, is that γ should lie on the geodesic arc connecting α to β and in this case
\[
\rho_{\alpha\beta} = \rho_{\alpha\gamma} + \rho_{\gamma\beta}.
\] (1.7)

Formula (1.6) is identical with eq. (6) in Ref. [28] :
\[
|<\psi|\phi>|^2 = \cos^2 \left(\frac{1}{2} \theta\right),
\] (1.8)
where $|\psi>, |\phi>$ are points in \mathbb{C}^{n+1} and θ is the distance joining $\xi(|\psi>)$ and $\xi(|\phi>)$.

In fact, formula (1.8) of Anandan and Aharonov [28] and respectively formula (1.4) of Wick [27] were known from the last century (see Ref. [25] pp. 584, 590). So, formula (1.8) is nothing else than the definition (1.4) of the distance on the projective space.
2. Angles, distances and coherent states

Topic 2: find those manifolds \tilde{M} for which the angle given by eq. (1.1) is a distance on \tilde{M}.

Proposition 2 Let \tilde{M} be a coherent state manifold parametrized as in (0.1). Then the angle given by eq. (1.1) is a distance on \tilde{M} iff \tilde{M} is a symmetric space of rank 1.

Proof: The problem is reduced to that of two-point homogeneous spaces, which are known [32].

Comment 2 Generally, the distance δ on a manifold is greater than the angle θ defined by eq. (1.1), $\delta \geq \theta$, but infinitesimally, $d\delta = d\theta$.

3. The geometric meaning of Calabi’s diastasis

Topic 3: find a geometric meaning of Calabi’s diastasis $[\delta]$, used by Cahen, Gutt, Rawnsley [32] in the context of coherent states, $D(Z',Z) = -2 \log |<Z'|Z>|$.

Proposition 3 The diastasis distance $D(Z',Z)$ between $Z', Z \in \mathcal{V}_0 \subset \tilde{M}$ is related to the geodesic distance $\theta = d_c(\iota(Z'),\iota(Z))$, where $\iota : \tilde{M} \hookrightarrow \mathbb{P}L$, by

$$D(Z',Z) = -2 \log \cos \theta. \quad (3.1)$$

If \tilde{M}_n is noncompact and $\iota' : \tilde{M}_n \hookrightarrow \mathbb{C}P^{N-1}$, let δ_n be the length of the geodesic joining $\iota'(Z'), \iota'(Z)$ (resp. $\iota(Z'), \iota(Z)$), then

$$\cos \theta_n = (\cosh \delta_n)^{-1} = e^{-D/2}. \quad (3.2)$$

Proof: The proposition is a direct consequence of Proposition 4.

Comment 3 The remark [14] that polar divisor = cut locus for manifolds \tilde{M} of symmetric type gives a geometric description of the domain of definition of Calabi’s diastasis.

4. Kodaira embedding and coherent states

Topic 4: characterise the relationship of the smallest number N in the Kodaira embedding $\iota : \tilde{M} \hookrightarrow \mathbb{C}P^{N-1}$ and the compact complex manifold \tilde{M}.

Proposition 4 For coherent state manifolds $\tilde{M} \approx G/K$ which have a flag manifold structure, the following 7 numbers are equal:

1) the maximal number of orthogonal coherent vectors on \tilde{M};
2) the number of holomorphic global sections in the holomorphic line bundle M with base \tilde{M};
3) the dimension of the fundamental representation in the Borel-Weil-Bott theorem;
4) the minimal N appearing in the Kodaira embedding theorem, $\iota : \tilde{M} \hookrightarrow \mathbb{C}P^{N-1}$;
5) the number of critical points of the energy function f_H attached to a Hamiltonian H linear in the generators of the Cartan algebra of G, with unequal coefficients;
6) the Euler-Poincaré characteristic of $\tilde{M} \approx G/K$, $\chi(\tilde{M}) = |W_G|/|W_H|$, where $[W_G] = \text{card} W_G$, and W_G is the Weyl group of G;
7) the number of Borel-Morse cells which appear in the CW-complex decomposition of \tilde{M}.

Proof: Use theorems 1, 2 in Ref. \[18\] where it is proved that f_H is a perfect Morse function, the Cauchy formula and the Borel-Weil-Bott theorem \[17\]. Remark that $\chi(G/K) > 0$ iff $\text{Rank} G = \text{Rank} K$, cf. to a classical result of Hopf and Samelson \[35\].

Comment 4 The Weil prequantization condition is the condition to have a Kodaira embedding, i.e. the algebraic manifold to be Hodge.

The author expresses his thanks to the Organising Committee to invite him to the XIV Workshop on Geometrical Methods in Physics at Białowieża. Discussions during the Workshop, especially with Professors M. Cahen, J. Klauder, W. Lisiecki, M. Schlichenmaier and T. Wurzbacher are acknowledged. The constant interest of Professor L. Boutet de Monvel is kindly acknowledged.

References

[1] Coherent States, edited by J. R. Klauder and B. S. Skagerstam (Word Scientific, Singapore, 1985).

[2] S. Berceanu, “From quantum mechanics to classical mechanics and back, via coherent states”, in Quantization and Infinite-Dimensional Systems edited by J-P. Antoine, S. T. Ali, W. Lisiecki, I. Mladenov and A. Odzijewicz, (Plenum, New York, 1994), p. 155.

[3] S. Berceanu and L. Boutet de Monvel, “Linear dynamical systems, coherent state manifolds, flows and matrix Riccati equation”, J. Math. Phys. 34 2353 (1993).

[4] F. A. Berezin, “Quantization” Math. USSR. Izvestija 8 1109 (1978).

[5] B. Kostant, “Quantization and unitary Representations”, in Lecture Notes in Mathematics, Vol. 170, edited by C. T. Taam (Springer-Verlag, Berlin 1970), p. 87.

[6] A. M. Perelomov, “Coherent states for arbitrary Lie groups”, Commun. Math. Phys. 26, 222 (1972).

[7] E. P. Wigner, Group Theory and its Applications in Quantum Mechanics of Atomic Spectra (Academic Press, London, 1959).

[8] V. Bargmann, “On unitary ray representations of continuous groups”, Ann. of Math. 59 1 (1954).

[9] J. R. Rawnsley, “Coherent states and Kähler manifolds”, Quart. J. Math. Oxford 28 403 (1977).

[10] A. Odzijewicz, “Coherent states and geometric quantization”, Commun. Math. Phys. 150 85 (1992).

[11] S. S. Chern, Complex Manifolds without Potential Theory (Van Nostrand, Princeton, 1967).

[12] D. Husemoller, Fibre Bundles (Mc Graw-Hill, New York 1966).

[13] F. Hirzebruch, Topological Methods in Algebraic Geometry (Springer-Verlag, Berlin, 1966).

[14] S. Berceanu, “Coherent states and global Differential Geometry”, in Quantization, Coherent States, and complex Structures, edited by J-P. Antoine, S. T. Ali, W. Lisiecki, I. Mladenov and A. Odzijewicz, Plenum (1996) p. 131; “Coherent states and geodesics: cut locus and conjugate locus”, J. Geom. Phys. 21 149 (1997).

[15] S. Berceanu, “The coherent states: old geometrical methods in new quantum clothes”, presented at the XIème Congrès International de Physique Mathématique, Paris, 18-23 Juillet (1994); preprint Bukarest, Institute of Atomic Physics, FT-398-1994 and preprint Universität Bielefeld BiBoS Nr. 664/11/94.
[16] S. Berceanu, “On the Geometry of complex Grassmann manifold, its noncompact dual and coherent states”, Bull. Belg. Math. Soc. 4 205 (1997).

[17] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups (Springer, Berlin, 1972), Vol. 1, pp. 198-203.

[18] S. Berceanu and A. Gheorghe, “On the construction of perfect Morse functions on compact manifolds of coherent states”, J. Math. Phys. 28 2899 (1987).

[19] H. C. Wang, “Closed manifolds with homogeneous complex structure”, Amer. J. Math. 76 1 (1954).

[20] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II. (Interscience, New York, 1969).

[21] J. A. Wolf, “The action of a real semisimple Lie group on a complex flag manifold 1: Orbit structure and holomorphic arc components”, Bull. Am. Math. Soc. 75 1121 (1969).

[22] B. Shiffman and A. J. Sommese, Vanishing Theorems on Complex Manifolds, Progress in Mathematics, Vol. 56 (Birkhäuser, Boston, 1985).

[23] P. Griffith and J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978).

[24] S. Kobayashi, “On the Geometry of bounded domains”, Trans. Amer. Math. Soc. 92 267 (1959).

[25] A. Cayley, “A sixth memoir upon quantics”, Phil. Trans. Royal. Soc. London 149 61 (1859), in Collected Mathematical Papers, Vol. II (Cambridge U. P., Cambridge, 1889), p. 561.

[26] G. K. Wick, “On symmetry transformations”, in Preludes in Theoretical Physics, In honour of V. F. Weisskopf, edited by A. De-Shalit, H. Feshbach and L. Van Hove (North-Holland, Amsterdam, 1966), p. 231.

[27] D. I. Fivel, “A new approach to the axiomatic foundations of Quantum Mechanics”, Technical Report No. 73-102, March, 1973.

[28] J. Anandan and Y. Aharonov, “Geometry of quantum evolution”, Phys. Rev. Lett. 65 1697 (1990).

[29] J. L. Coolidge, “Hermitian metrics”, Ann. of Math. 22 11 (1921).

[30] E. Study, “Kürzeste wege im complexe gebiete”, Math. Ann. 60 321 (1905).

[31] J. P. Provost and G. Vallée, “Riemannian structures on manifolds of quantum states”, Commun. Math. Phys. 76 289 (1980).

[32] J. A. Wolf, Spaces of constant Curvature, (Mc Graw Hill, New York, 1972).

[33] E. Calabi, “Isometric imbedding of complex manifolds”, Ann. of Math. 58 1 (1953).

[34] M. Cahen, S. Gutt and J. Rawnsley, “Quantization on Kähler manifolds”, ll, Trans. Math. Soc. 337 73 (1993).

[35] H. Hopf and H. Samelson, “Ein Satz über die Wirkungsräume geschlossener Lischer Gruppen”, Comment. Math. Helv. 13 240 (1941).