Small cell lung cancer (SCLC) is characterized by morphologic, epigenetic and transcriptomic heterogeneity. Subtypes based upon predominant transcription factor expression have been defined that, in mouse models and cell lines, exhibit potential differential therapeutic vulnerabilities, with epigenetically distinct SCLC subtypes also described. The clinical relevance of these subtypes is unclear, due in part to challenges in obtaining tumor biopsies for reliable profiling. Here we describe a robust workflow for genome-wide DNA methylation profiling applied to both patient-derived models and to patients’ circulating cell-free DNA (cfDNA). Tumor-specific methylation patterns were readily detected in cfDNA samples from patients with SCLC and were correlated with survival outcomes. cfDNA methylation also discriminated between the transcription factor SCLC subtypes, a precedent for a liquid biopsy cfDNA-methylation approach to molecularly subtype SCLC. Our data reveal the potential clinical utility of cfDNA methylation profiling as a universally applicable liquid biopsy approach for the sensitive detection, monitoring and molecular subtyping of patients with SCLC.
employed a bisulfite-free, enrichment-based next-generation sequencing (NGS) approach that incorporated an in-house library preparation method to allow sample multiplexing before enrichment (T7-MBD-seq) (Fig. 1a), which we demonstrated gave reproducible methylation profiles for DNA inputs as low as 1 ng (Fig. 1b). We initially tested this approach on DNA from 110 tissue samples; 97 from...
Fig. 2 | Generation of a DNA methylation classifier for sensitive tumor detection. a. Analysis workflow for the generation of the tumor/healthy classifier. b. Sensitivity and specificity metrics plotted against cutoff values for the median tumor prediction score output by the tumor/healthy classifier applied to held-out synthetic mixture sets (total of \(n = 1,951 \) mixture sets). Dotted lines indicate the cutoff value (0.25) that optimizes the balanced accuracy metric (average of sensitivity and specificity). c. Box plots of median tumor prediction scores from applying the tumor/healthy classifier to in silico serial dilutions of a fragmented SCLC cell line (H446) mixed with an NCC cfDNA sample, with varying proportions of the cell line in the mixture (\(x \)-axis). For each proportion, 11 independent in silico dilution experiments were carried out. Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top); whiskers extend to minimum and maximum points. Dotted line indicates the cutoff for the tumor/healthy classifier derived as above. Arrow indicates the lowest dilution of H446 with a median value (across the 11 in silico experiments) above this cutoff (0.22% tumor content).

Patient-derived xenografts (PDXs) or circulating tumor cell-derived explant (CDX) samples (from 50 preclinical models derived from 33 unique patients) and 13 samples of healthy lungs (Supplementary Table 1). Principal-component analysis (PCA) of the most significant differentially methylated regions (DMRs) between SCLC models and healthy controls showed distinct separation (Extended Data Fig. 1a). Consistent with previous reports, SCLC samples presented with more variable DNA methylation patterns compared to healthy lung, suggesting underlying epigenetic heterogeneity (Extended Data Fig. 1a). Overall, approximately 75% of DMRs mapped to CpG islands (CGIs), shores or shelves (Extended Data Fig. 1b). The majority of DMRs identified were hypermethylated in the tumor (69%), which is a likely consequence of using a methylation capture approach that favors enrichment of CpG dense regions\(^4\) (Extended Data Fig. 1c). Methylation profiles from CDX/PDX and healthy lung tissue correlated with previously described methylation patterns from SCLC primary tumor\(^4\) and healthy lung profiled on the Illumina Human Methylation 450k platform (Fig. 1c), confirming the discriminatory power of the T7-MBD-seq methodology.

We next applied our T7-MBD-seq approach to a total of 157 cfDNA samples; 78 from patients with SCLC (29 LS-SCLC and 49 ES-SCLC) and 79 noncancer controls (NCCs; 45 risk- and age-matched, 26 age-matched only and 8 unmatched) (Supplementary Tables 2 and 3). Despite the lower DNA input used for cfDNA samples (range 1.83–34.4 ng) compared to CDX/PDX samples (50 ng), methylation enrichment scores were comparable across all samples (Fig. 1d). PCA analysis of the most significant DMRs between SCLC and NCC cfDNA samples segregated the majority of SCLC from NCC cfDNA samples, with the level of separation dependent on tumor fraction (Extended Data Fig. 1d). A similar breakdown of genomic regions featuring a DMR as observed in preclinical models was also seen in cfDNA samples (Extended Data Fig. 1e,f). Tissue methylation profiles of eight SCLC CDX models were compared to a corresponding cfDNA sample collected at baseline from the same donor patient. For six of eight patients, tissues were collected at the same time (baseline) to derive the CDX model and assess cfDNA, for two of eight the CDX models were compared to a corresponding cfDNA sample collected at disease progression. In all cases cfDNA and tissue methylation profiles were highly concordant (Fig. 1e). In addition, recurrent SCLC-specific methylation patterns observed across 50 CDX/PDX models were recapitulated across 78 SCLC cfDNA samples in which 84% (5,404 of 6,443) of DMRs detected in cfDNA were also found in the CDX/PDX tumors (Fig. 1f). Collectively, these data suggest that our T7-MBD-seq approach provides reproducible and characteristic SCLC methylation profiles in tissue, which are also readily detected in cfDNA, prompting us
Fig. 3 | Methylation tumor prediction score applied to SCLC cfDNA samples. a, Box plots of classifier tumor prediction scores for 78 held-out SCLC cfDNA samples (29 limited stage and 49 extensive stage) and 41 held-out NCC cfDNA samples from applying the 100 classifiers trained on CDX/PDX synthetic spike-in samples. Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top); whiskers extend to minimum and maximum points. Dotted lines indicate the tumor prediction score cutoff value of 0.25. Inset plot shows tumor prediction scores for 20 out of 29 limited stage patients who had detailed staging information available. b, Scatter-plot showing median classifier tumor prediction scores against ichorCNA tumor fraction values (on a log scale) for the 78 SCLC and 41 NCC cfDNA samples. The classifier tumor prediction scores are correlated with ichorCNA tumor fraction (Spearman’s \(\rho = 0.72 \)). Dotted lines are indicating the cutoff for both measures. c, ROC curves and AUROC scores generated by using ichorCNA tumor fraction (CNA, green line) or median classifier tumor prediction score (methylation, purple line) to classify LS-SCLC (n=29) and NCC cfDNA (n=41) samples. P value is from a comparison of the AUROC scores using a two-sided DeLong’s test.

to extend our research efforts on cfDNA methylation as a potential biomarker for clinical application in patients with SCLC.

A classifier for detection of SCLC from cfDNA methylation profiling. We initially explored the extent to which DNA methylation profiling could provide a sensitive approach for blood-based detection of disease in patient samples. We applied a machine-learning approach in which a tumor/healthy classifier was trained using 4,061 DMRs found between CDX/PDX models and either healthy lung samples or a training subset of 38 of our NCC cfDNA samples (Fig. 2a and Supplementary Table 4). To replicate the lower tumor fraction often seen in cfDNA, we generated 1,951 in silico spike-in synthetic spike-in samples. Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top); whiskers extend to minimum and maximum points. Dotted lines indicate the tumor prediction score cutoff value of 0.25. Inset plot shows tumor prediction scores for 20 out of 29 limited stage patients who had detailed staging information available. b, Scatter-plot showing median classifier tumor prediction scores against ichorCNA tumor fraction values (on a log scale) for the 78 SCLC and 41 NCC cfDNA samples. The classifier tumor prediction scores are correlated with ichorCNA tumor fraction (Spearman’s \(\rho = 0.72 \)). Dotted lines are indicating the cutoff for both measures. c, ROC curves and AUROC scores generated by using ichorCNA tumor fraction (CNA, green line) or median classifier tumor prediction score (methylation, purple line) to classify LS-SCLC (n=29) and NCC cfDNA (n=41) samples. P value is from a comparison of the AUROC scores using a two-sided DeLong’s test.

A prognostic cfDNA methylation score for SCLC. We next hypothesized that measuring the level of tumor-specific methylation in each sample could be of clinical utility as a reflection of tumor burden. Therefore, we derived an SCLC methylation score for each cfDNA sample based on the average levels of methylation detected across the genomic regions used by the tumor/healthy classifier and performed an exploratory analysis to assess the prognostic utility of cfDNA methylation for overall survival (OS; Methods). This methylation score correlated positively with stage (Extended Data Fig. 3a; two-sided Mann–Whitney \(U \) test, \(P < 0.0001 \)) and ichorCNA tumor fraction (Extended Data Fig. 3b; Pearson correlation \(R = 0.84 \), two-sided \(P < 0.0001 \)) and negatively with average DNA fragment size (Extended Data Fig. 3c; Pearson correlation \(R = -0.37 \), \(P = 0.00082 \)), as expected for a surrogate of tumor burden. Kaplan–Meier analysis of the methylation score, dichotomized into low and high groups using the median, showed that patients with low scores had significantly longer OS than patients with high
scores (Fig. 4a; median OS of 20.6 months and 8.5 months, respectively; two-sided log-rank test, \(P = 0.00015 \)). The methylation score (continuous or dichotomized) was also significant in univariable Cox regression analysis, as was clinical stage (Supplementary Table S5). In multivariable Cox regression analysis, methylation score as continuous or dichotomized (Fig. 4b and Supplementary Table 6) remained significantly associated with OS in a model adjusting for age, sex and stage (hazard ratio (HR) = 3.60; 95% CI = 1.11–11.68; \(P = 0.033 \) for the continuous score). Compared to a model with only age, sex and stage, the models also containing methylation score had lower Akaike’s information criteria and Bayesian information criteria values and higher concordance index values. Overall, these data indicate that cfDNA methylation profiling has potential clinical utility in SCLC by allowing sensitive blood-based tumor detection and providing prognostic information beyond clinical stage; however, further work is needed with increased sample sizes and independent validation data to determine an optimal and robust cutoff.

SCLC subtypes can be identified by cfDNA methylation. We next sought to determine whether cfDNA methylation profiling could be used to subtype SCLC samples and recapitulate the molecular subtyping of our CDX/PDX models. Although numerous SCLC subtypes have been reported in the literature (achaete–scute complex homolog-like (ASCL1); neurogenic differentiation factor 1 (NEUROD1); atonal bHLH transcription factor 1 (ATOH1); POU class 2 homeobox 3 (POU2F3); Yes1 associated transcriptional regulator (YAP1); inflamed);\(^6\) a recent analysis of 174 SCLC tissue samples revealed the predominance of ASCL1, NEUROD1 and double-negative subtypes in clinical samples.\(^7\) Therefore, we focused on classifying these three categories using methylation analysis. PCA applied to the top 50,000 most variable methylated regions in 33 CDX/PDX models with known molecular subtypes (RNA-seq) revealed accurate unsupervised segregation according to the three categories: NEUROD1 (high NEUROD1 expression with or without coexpression of ASCL1, \(n = 8 \)), ASCL1 (high ASCL1 expression, \(n = 24 \)) and double negative (low expression of ASCL1 and NEUROD1, \(n = 1 \)) (Fig. 5a) confirming methylation differences exist between SCLC subtypes. As we had only one example of the rarer double-negative subtype represented in our CDX/PDX model biobank, we utilized publicly available array methylation and expression data (National Cancer Institute Small Cell Lung Cancer Screening Project)\(^8\) from 59 previously characterized SCLC cell lines (43 ASCL1, 7 NEUROD1 and 9 double negative) as a training dataset to identify informative subtype-specific methylation. Initial work determined the feasibility of transforming array methylation data into normalized reads per million (nrpm) to build a subtype classifier applicable to our dataset. Good concordance was seen in CDX models processed through both platforms (Supplementary Table 7; Methods). Moreover, a joint PCA applied to the 59 cell lines together with 33 CDX/PDX models, using the top 50,000 most variable methylated regions according to the cell line samples only, showed concordance of the molecular subtypes identified independently in both datasets (Extended Data Fig. 4a). Using the transformed cell line array data, we identified 366 DMRs which discriminated between the three SCLC subtypes (Extended Data Fig. 4b and Supplementary Table 8). Clustering analysis of the 33 CDX/PDX models using the 366 subtype-specific DMRs found all models correctly clustered according to their transcriptional subtype (Fig. 5b). To build a cfDNA-based classifier, we applied a machine-learning approach that used the cell line-based subtype-specific DMRs and performed model training using in silico spike-ins of tumor reads derived from cell lines (5–40%) into NCC cfDNA samples (total of 1,787 mixture sets) (Fig. 5c). We analyzed sensitivity and specificity to derive optimal cutoffs to assign a sample as either NEUROD1, ASCL1 or double negative (Extended Data Fig. 4c; Methods). The validity of the classifiers was confirmed on CDX and PDX samples, which assigned all models correctly (Fig. 5d). To estimate the limit of detection of ASCL1 and NEUROD1 signal in cfDNA, we applied the classifiers to serial dilutions of CDXs representing the three categories and found positive signals for ASCL1 and NEUROD1 down to 3% and 4% tumor fraction, respectively (Extended Data Fig. 4d). Finally, we applied the classifiers to SCLC cfDNA samples with at least 4% tumor content (56 of 78), resulting in 10 of 11 samples with known subtypes (identified from a donor matched CDX model) correctly classified (Fig. 5e). Overall, 73% of the cfDNA samples were classified as ASCL1,
Fig. 5 | DNA methylation profiling identifies SCLC subtypes in both preclinical models and cfDNA samples. a, PCA plot of 33 CDX/PDX models (not including second models derived from the same patient), using β-values for the 50,000 most variable methylated regions across these models. CDX and PDX models segregated according to the expression of ASCL1, NEUROD1 (single or coexpressing with ASCL1) and POU2F3 (double negative). b, Hierarchical clustering heat map of β-values for 33 CDX/PDX models using 366 subtype-specific DMRs derived from publicly available DNA methylation data for 59 cell lines. Bars on the top show the expression values (variance-stabilizing transformation; VST) of ASCL1, NEUROD1, POU2F3 and YAP1 derived from RNA-seq data for each model. c, Analysis workflow for the generation of ASCL1 and NEUROD1 classifiers. d, ASCL1 and NEUROD1 classifier median prediction scores for 33 CDX/PDX models and 56 cfDNA samples with an estimated tumor fraction of at least 4%. Color fill of dots indicates known subtype. In e, only cfDNA samples from patients who also generated a CDX model (n=11) have known subtype. Dotted lines indicate classifier cutoff values. f, Bar plots of subtype distribution detected by cfDNA methylation (n=56 patients) compared to subtype distribution detected by immunohistochemistry (IHC) of SCLC tissue samples (n=159) from a previous study. In a, b, d data for each CDX model are averaged over tumors from up to three independent mice.
13% were classified as NEUROD1 and 14% were classified as being double negative, with the distribution of the subtypes correlating closely to previously published immunohistochemistry data from SCLC tissue samples (Fig. 5f; chi-squared test, $\chi^2 = 0.628$, d.f. = 2, $P = 0.73$). Next, we wanted to evaluate whether molecular subtyping of SCLC is feasible for longitudinal monitoring of the disease. We compared the prediction of the SCLC subtype in samples analyzed at baseline and after receiving chemotherapy (both CDX/PDX models and cfDNA) and found consistency of the predominant SCLC detected (Extended Data Fig. 5 and Supplementary Table 9). These data suggest that, with further evaluation in a larger cohort, cfDNA methylation profiling may provide a broadly applicable and accurate approach for molecular subtyping of patients with SCLC.

Discussion

The minority of patients with SCLC who are eligible for surgery or chemoradiation with curative intent (approximately 30% of cases) achieve a 5-year survival rate of up to 65% (ref. 3); however, most patients present with advanced, incurable, metastatic disease. Minimally invasive biomarker assays are needed that enable earlier detection and monitoring of this deadly disease and that molecularly subtype SCLC (and inform dynamic subtype plasticity) to facilitate optimal stratification and scheduling of personalized therapies. Here we show that tumor-specific methylation patterns are readily detected in SCLC cfDNA samples, including in six of six patients with stage I tumors for which, with a parallel cfDNA assay, we failed to detect CNAs. We also show that the levels of tumor methylation detected in cfDNA correlated with survival outcomes. The high sensitivity of our approach opens up new avenues where cfDNA methylation profiling, alongside other technologies, could be included in large-scale lung cancer early-detection programs with potential for improved SCLC clinical outcomes and earlier detection of disease progression after chemotherapy, where further treatments could be deployed sooner.

In what has been termed the ‘second golden age of SCLC research’10, the molecular subtyping of SCLC heralds new opportunities for stratified therapies. Several studies using cell line, engineered and patient-derived mouse models have shown differential therapeutic vulnerabilities across the SCLC molecular subtypes21–23. For instance, ASCL1-driven subtypes may be more susceptible to BCL2 apoptosis regulator and δ-like canonical Notch ligand 3 (DLL3) inhibitors, whereas NEUROD1-driven subtypes have been reported to be more sensitive to Aurora kinase inhibitors4–6,20. POU2F3-high cell lines are more resistant to chemotherapy compared to the other subtypes, but are sensitive to insulin like growth factor 1 receptor inhibition2–4. Clinical trials that enrolled patients with SCLC without molecular subtype stratification have been disappointing. Molecular profiling of SCLC tumors via a blood test could stratify patients and ultimately improve their clinical outcome.

This study shows that cfDNA methylation can identify molecular subtypes in SCLC, which warrants further validation in a larger independent patient cohort. A key advantage of blood-based molecular subtyping is circumventing the challenges often encountered in analyzing scant and often extensively necrotic tissue associated with SCLC tissue biopsies10,20. Methylation profiling also has the potential to bring insights into the biological behavior and clinical course of the different subtypes, including dynamic changes with disease progression.

We did not detect a switch of the predominant subtype after receiving treatment (Extended Data Fig. 5); however, the number of cfDNA samples analyzed is small ($n = 7$) and cannot exclude the presence of a subpopulation of cells with a different subtype emerging after treatment, which has been suggested in previous studies using single-cell RNA-seq7,20. In conclusion, circulating tumor DNA methylation may serve as a liquid biopsy to inform SCLC evolution, acquired resistance and future clinical trials of personalized treatment of patients with SCLC.
in vitro transcription (IVT) using a complementary T7 promoter oligonucleotide and T7 RNA polymerase (NEB, catalog no. E2040S) following the manufacturer’s instructions. After IVT, a third of amplified RNA was subjected to single-strand ligation of an oligonucleotide adaptor containing an Illumina read 2 sequencing primer-compatible sequence (NEB, catalog no. M0373L) followed by reverse transcription (Thermo Scientific, catalog no. 18-090-050) and indexing PCR library amplification (Roche, catalog no. 07958987001). Libraries were paired-end sequenced on an Illumina NextSeq 500 or NovaSeq 6000.

Read alignment. A nextflow1 (v.20.11.0) pipeline was generated to take the FASTQ files to analysis-ready quantitative sequencing enrichment analysis (QSEA) objects and is provided in the supplementary code. In this pipeline, FASTQ files were trimmed to all have the same initial length of 91 and 61 bp for R1s and R2s, respectively (including the 26-bp construct on R1), the UMI removed using umi-tools2 (v.1.0.1) and samples were demultiplexed and trimmed for adapter sequences using cutadapt (https://doi.org/10.1186/s13059-017-1200-z) (v3.10). Reads were aligned to the GRCh38 reference genome using bwa mem (https://arxiv.org/abs/1303.3997) (v0.7.17). Samples from mouse explants were also aligned to the mouse genome mm10 before using bamrmpv2 (v2.0) to remove those reads that align better to the mouse genome, using the alignment score metric. BAM files were deduplicated using umi-tools2 (v1.0.1), using the start position of R1 and the UMI, ignoring the template length (fragment length), followed by running samtools3 (v1.9) fixmate to assign mate quality scores.

QSEA analysis. The QSEA R package4 (v1.1.6) was used to analyze BAM files, with the use of a custom R package to extend QSEA (https://github.com/cruk-mi/sea). The entire genome was tiled into 300-bp non-overlapping windows, with the removal of windows lying within the genome exclusion list regions (v2) and a further set of 3,753 windows with overrepresentation in our initial non-enriched input samples. Reads were then uniquely assigned into these 8,956,617 bins with the use of a custom R package to extend QSEA (https://github.com/cruk-mi/sea) with a pooled reference sample of eight NCCs. Quality controls. FastQC (v0.11.7), Qualimap (v2.2.2) and Fastq-screen (v0.14) were used for quality control of sequencing data, all visualized within MultiQQC (v1.1.9).

NGSCheckMate (v1.0.6) was used to verify that all samples matched as expected in the tool output, including with previous RNA-seq data for the CDX and PDX samples, as well as the corresponding cfDNA from the same patients.

To calculate the relative enrichment scores, we followed the MEDIPS R package9 (v1.42), calculating the total density of cytosine-guanine (CGs) contained within the mapped DNA positions (on the reference sequence) and dividing by the total density of CGs across the entire reference sequence. Samples with a relative enrichment <2.5 are excluded as being low quality.

Using a set of 805 windows that correspond to CpG sites that were shown to be always methylated in methylation array data from cancer and noncancer samples, we required at least 40% of these windows to have a β-value of 0.8 or above.

Differential methylation analysis. To calculate DMRs, we used the QSEA package, which implements a negative binomial generalized linear model, adjusting for the region CpG density. A minimum nrpm count >1 in at least one sample was required to consider a window for differential methylation and an FDR of 0.001 was applied. A difference between the average β-values for each class, Δβ, was calculated and a Δβ of 0.5 and 0.3 was used to identify the most significant DMRs in preclinical models and cfDNA samples, respectively. DMRs were annotated using the ChiPseeker R package10 and were mapped to CGIs, shores and shelves by using a list of CGIs (GRCh38) downloaded from Genome Browser2 annotation track database. CGIs were then extended by 2 kb using the pyranges R package11 (upstream and downstream) to identify shores and further 2 kb to identify shelves.

Dilution series. To estimate the tumor fraction required to correctly call samples with each classifier, we generated an in silico dilution series using fastq-tools (v0.8.3; https://github.com/dcjones/fastq-tools), mixing together raw, unfiltered reads between a cancer sample (H446 cell line or CDX) and a validation set NCC cfDNA at various proportions to make 20 million FASTQ read pairs, followed by our standard processing pipeline as detailed above. For the predictions, only those individual classifiers that had not been trained using the corresponding CDX (when relevant) were used.

Tumor/healthy classifier. We split the NCC cfDNA samples into training and validation sets, with 38 NCC cfDNA samples used for training of the classifiers and 41 NCC samples held for the validation set. To train the classifier, we generated 1,000 synthetic mixture sets by using the process described above to create synthetic samples, either CDX/PDX samples with a NCC cfDNA at proportions between 0.5–5% or a mixture of two NCC samples, all at varying numbers of fractions. A set of 4,061 SCLC-specific DMRs were identified that were differentially methylated between the CDX/PDX samples and both the healthy lung and the 38 paired NCC and SCLC cfDNA samples (both comparisons with a FDR of 0.001 and a Δβ ≥0.5).

An ensemble set of 100 classifiers was then built on these synthetic mixture sets and these windows, including mixtures built from 80% of the NCCs and 80% of the CDX/PDX samples in each individual classifier, using Extreme Gradient Boosting (xgb booster R package, v.1.3.2.1) within the R tidymodels (v0.1.3) framework, with default parameters (except trees, 500 and learn_rate, 0.02).

To derive a cutoff for the ensemble of classifiers from test data, we applied each of the classifiers to the remaining mixture sets that were not seen by that classifier during model training (together consisting of 20% of the NCC and 20% of the CDX/PDX samples). For each mixture set, we calculated the median of the 100 resulting prediction scores and used these as a threshold against the ground truth (NCC mixture or SCLC mixture). We took the value of the cutoff that optimizes the balanced accuracy metric (the average of sensitivity and specificity). This cutoff was given by 0.25 with a balanced accuracy of 0.95 (0.93 sensitivity and 0.96 specificity).

The ensemble of trained classifiers was then applied to the remaining 41 held-out NCC cfDNA samples and all 78 SCLC cfDNA samples as a validation set, giving a median prediction score as well as showing the variability between classifiers. For cfDNA samples with an associated CDX model, only classifiers that did not use that CDX sample were used. The associated cutoff was also applied to the median predictions to give a hard assignment of each validation sample as either NCC or SCLC. Feature importance was estimated for each classifier using the vip R package (v0.3.2; https://doi.org/10.32614/RJ-2020-013) and averaged over the ensemble (Supplementary Table 4).

Methylation score and survival analysis. The 4,061 DMRs used within the tumor/healthy classifier were used to compute a ‘methylation score’, defined as the average of the β-values across these windows. Univariable Cox proportional hazards regression analysis for OS was performed for the following variables: methylation score (continuous), dichotomized methylation score (using median as a cutoff), age, sex and clinical stage. Additionally, for the categorical variables, Kaplan–Meier curve analysis and log-rank tests were carried out. The proportional hazards assumption was investigated using Schoenfeld residuals. Multivariable Cox proportional hazards regression models were fitted with methylation score as a continuous variable, dichotomized methylation score (using median as a cutoff), age, sex and clinical stage. Additionally, for the categorical variables, methylation score (continuous), dichotomized methylation score (using median as a cutoff), age, sex and clinical stage. The expression levels of the genes YAP1, POU2F3 and NEUROD1 were used to assign subtypes to the cell lines (with a threshold of nine normalized β-values across these windows. Univariable Cox proportional hazards regression analysis for OS was performed for the following variables: methylation score (continuous), dichotomized methylation score (using median as a cutoff), age, sex and clinical stage. Additionally, for the categorical variables, methylation score (continuous), dichotomized methylation score (using median as a cutoff), age, sex and clinical stage. The expression levels of the genes YAP1, POU2F3 and NEUROD1 were used to assign subtypes to the cell lines (with a threshold of nine normalized β-values across these windows. Univariable Cox proportional hazards regression analysis for OS was performed for the following variables: methylation score (continuous), dichotomized methylation score (using median as a cutoff), age, sex and clinical stage. Additionally, for the categorical variables, methylation score (continuous), dichotomized methylation score (using median as a cutoff), age, sex and clinical stage.

Assess the feasibility of using cell line array data to generate a SCLC subtype classifier. SCLC cell lines methylation data (from Illumina Epic arrays1) and transcript data (from Affymetrix Exon Microarrays) for SCLC cell lines were downloaded from sclcelines.cancer.gov/sclc/downloads.html (data time-stamped as December 2019) as pre-processed β-values and gene expression data. The expression levels of the genes ASCL1, NEUROD1, POU2F3 and YAP1 were used to assign subtypes to the cell lines (with a threshold of nine normalized expression for each gene), giving 43 ASCL1-, 7 NEUROD1, 3 POU2F3- and 6 YAP1-expressing cell lines; excluding 7 that express both ASCL1 and NEUROD1. We termed the POU2F3 and YAP1-expressing samples as dual negative, as they were expressing neither ASCL1 nor NEUROD1.

Converting methylation array data to QSEA objects. To use the array data to generate mixture sets with the CDX/PDX data above, we developed a pairwise conversion from the most significant of the CDX/PDX samples, either CDX/PDX samples with a NCC cfDNA at proportions between 0.5–5% or a mixture of two NCC samples, all at varying numbers of fractions. We then applied this lookup table to estimate how many reads would have been captured by our T7-MBD-seq method in each window. To do this, we used the array data as a cutoff, taking the maximum of the average across the five IgBEB probes located within each window. Supplementary Table 7 shows the correlation between eight CDX samples sequenced using T7-MBD-seq and the estimated normalized reads per million
from Infinium 450k array data of the same CDX models (restricted to the SCLC versus healthy lung DMRs), showing that matched samples have a high Spearman correlation.

Unsupervised DNA methylation analysis for SCLC molecular subtyping. PCA was used to perform an unsupervised analysis of the β-methylation values for 33 CDX/PDX models (not including second models derived from the same patient), averaging across replicates. To take account of differences in enrichment between experimental protocols, an FDR-corrected p-value threshold of 0.01 was used for the CDX/PDX samples. For each mixture set, the top 50 most hypermethylated and 50 most hypomethylated windows between a target class (ASCL1 or NEUROD1) and each of the other three subtypes used in the classifier for that target (300 windows in total). With windows between DMRs between a target class (ASCL1 or NEUROD1) and each of the other three subtypes, this gave 261 distinct windows for the NEUROD1 classifier and 277 windows for ASCL1. Due to overlaps between these two groups of windows, we had 366 windows in total.

Synthetic mixture sets were generated by mixing estimated read depths corresponding to the 59 cell line array β-values (as detailed above) with the 38 NCC cfDNA samples as before, at concentrations between 5–40% from the arrays as well as varying numbers of reads, for a total of 1,787 mixtures. Two sets of 100 classifiers were generated using these mixture sets, one for predicting whether a sample is ASCL1 and one for predicting NEUROD1. Each classifier uses mixture sets corresponding to 80% of the NEUROD1 and dual-negative samples, with a similar number of ASCL1 samples (undersampling for class balance), as well as 80% of the NCCs in the same way as the tumor/healthy classifier to provide variable learning for exactly which mixtures were used in each classifier. Each classifier was trained using the R package xgboost with default parameters except learning rate of 0.001. These DMRs were ranked by their Δβ-values, with the 50 most hypermethylated and 50 most hypomethylated windows between a target class (ASCL1 or NEUROD1) and each of the other three subtypes used in the classifier for that target (300 windows in total). With windows between DMRs between multiple subtypes, this gave 261 distinct windows for the NEUROD1 classifier and 277 windows for ASCL1. Due to overlaps between these two sets of windows, we had 366 windows in total.

Subtyping of CDX/PDX and corresponding cfDNA samples. For the CDX/PDX models, RNA-seq was processed as previously described followed by the calculation of variance-stabilized-transform values using the DESeq2 package. Subtypes were assigned based on the highest TF expression among ASCL1, NEUROD1 and POU2F3 (dual negative), except for CDX38, which expresses high values of both ASCL1 and NEUROD1 and so was assigned as NEUROD1 positive. This gave 37 ASCL1 CDX/PDXs (from 24 patients, with 7 matched cfDNA samples), 12 NEUROD1 CDX/PDXs (from 8 patients, with 3 matched cfDNA samples) and 1 POU2F3 CDX (with a matched cfDNA sample).

SCLC subtype classifier. Cell line DMRs were calculated between the subtypes (ASCL1, NEUROD1, YAP and POU2F3) using QSEA objects generated from arrays as detailed above with an FDR rate of 0.01. These DMRs were ranked by their Δβ-values, with the 50 most hypermethylated and 50 most hypomethylated windows between a target class (ASCL1 or NEUROD1) and each of the other three subtypes used in the classifier for that target (300 windows in total). With windows between DMRs between multiple subtypes, this gave 261 distinct windows for the NEUROD1 classifier and 277 windows for ASCL1. Due to overlaps between these two groups of windows, we had 366 windows in total.

As a validation set, the classifiers were then applied to the CDX/PDX samples and the SCLC cfDNA samples (with a tumor fraction estimated by ichorCNA of 0.94 specificity). We derived a cutoff for the NEUROD1 and ASCL1 ensemble classifiers in a similar way to the tumor/healthy classifier, using the mixture sets previously unseen during model training and calculating median prediction scores; however, here, the SCLC classifier cutoff was derived using only the samples that were not classified as NEUROD1 by the NEUROD1 classifier (the ASCL1 classifier cutoff was set after and was dependent on the NEUROD1 classifier cutoff). We considered a grid of cutoff values (with increments of 0.01) to jointly optimize the cutoffs for the two ensemble classifiers, using the average balanced accuracy across the two classifiers as the metric. This resulted in cutoffs of 0.16 for the NEUROD1 classifier and 0.76 for the ASCL1 classifier, with an optimal average balanced accuracy of 0.95 (NEUROD1 classifier, 0.95 balanced accuracy, 0.97 sensitivity and 0.94 specificity; and ASCL1 classifier, 0.95 balanced accuracy, 0.96 sensitivity and 0.94 specificity).

As a validation set, the classifiers were then applied to the CDX/PDX samples and the SCLC cfDNA samples (with a tumor fraction estimated by ichorCNA of at least 4% as suggested by our in silico dilutions) and hard predictions were made using the cutoffs derived on the mixture sets. Feature importance was estimated for each classifier using the vip package (v0.3.2; https://doi.org/10.32614/R-2020-013) and averaged separately over the two ensemble classifiers (Supplementary Table 8).

Statistics and reproducibility. Details of statistical analyses are provided throughout the text and in figure legends. All statistical tests were two-sided and, unless stated otherwise, results were considered significant at a P value threshold of 0.05. Multiple testing (FDR) correction was applied to P values arising from the DMR analysis. Most statistical tests used were nonparametric. For Pearson correlation hypothesis tests, data distributions were assumed to be normal but this was not formally tested. For Cox proportional hazards assumption testing, the proportional hazards assumption was investigated using Schoenfeld residuals. No statistical method was used to predetermine sample size but our sample sizes are similar to those reported in previous publications. Samples were chosen and processed based on the availability of tissue and plasma samples at the time of data generation. Data failing quality controls or NCCs with a later known cancer diagnosis were excluded. The investigators were not blinded to the cancer status or subtype of any of the samples. As NCC cfDNA samples were required for both classifier training and validation, they were randomly allocated into two subsets, stratifying for the collection source. One subset was used for training the classifiers (within mixture sets) and the other was used to form part of the tumor/healthy classifier validation set (along with all the SCLC cfDNA samples). All other samples (CDX/PDX, cell lines and SCLC cfDNA) were only used either in classifier training or in the validation set. The majority of PDX models have two technical replicates (Supplementary Table 1). Read counts for these technical replicates were merged within QSEA to provide a single combined sample that was used for analysis. CDX models have up to three biological replicates (from different mice). Supplementary material in Table 1: these were kept as separate entries or were averaged, as indicated in the text or figure legends. Plots were generated with GraphPad Prism (v9.2) and R (v4.0.3), using ggplot2 (v3.3.5) and heatmap (v1.0.12).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. T7-MBD-seq data and shallow WGS data that support the findings of this study have been deposited in the European Genome–Phenome Archive under accession no. EGAS00001005739. Processed QSEA R objects are deposited in Zenodo at https://doi.org/10.5281/zenodo.5569261. Previously published array methylation and expression data that were reanalyzed here are available under GSE14676 and GSE73160. Previously published RNA-seq data from the CDXs and PDXs studied here are available from ArrayExpress under accession code E-MTAB-8465 (CDXs) and the database of Genotypes and Phenotypes under accession no. phs012491.v1.p1 (PDXs). Source data have been provided as Source Data files. All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

Code availability. Scripts for the analyses used in this paper are available at github.com/cruk-mi/sclc-cfDNA-methylogy-profiling and the R package is available at github.com/cruk-mi/mesa.

Received: 31 January 2022; Accepted: 28 June 2022; Published online: 8 August 2022

References
1. Rudin, C. M., Brambilla, E., Faivre-Finn, C. & Sage, J. Small-cell lung cancer. Nat. Rev. 7, 3 (2021).
2. Dingermans, A. C. et al. Small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 32, 839–853 (2021).
3. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).
4. Gazdar, A. F., Carney, D. N., Nau, M. M. & Minna, J. D. Characterization of variant subclasses of cell lines derived from small cell lung cancer having distinctive biochemical, morphological, and growth properties. Cancer Res. 45, 2924–2930 (1985).
5. Rudin, C. M. et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer 19, 289–297 (2019).
6. Lim, J. S. et al. Intratumoral heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature 545, 360–364 (2017).
7. Simpson, K. L. et al. A biobank of small cell lung cancer CDX models elucidates inter- and intratumoral phenotypic heterogeneity. Nat. Cancer 1, 437–451 (2020).
8. Ireland, A. S. et al. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell 38, 60–78 (2020).
9. Gay, C. M. et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39, 346–360 (2021).
10. Chalilshazar, M. D. et al. MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clin. Cancer Res. 25, 5107–5121 (2019).
11. Blackhall, F. et al. Will liquid biopsies improve outcomes for patients with small-cell lung cancer? Lancet Oncol. 19, e470–e481 (2018).
12. Mohan, S. et al. Profiling of circulating free DNA using targeted and genome-wide sequencing in patients with SCLC. J. Thorac. Oncol. 15, 216–230 (2020).
13. Gazdar, A. F., Bunn, P. A. & Minna, J. D. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat. Rev. Cancer 17, 725–737 (2017).
14. Poirier, J. T. et al. DNA methylation in small cell lung cancer defines distinct disease subtypes and correlates with high expression of EZH2. Oncogene 34, 5869–5879 (2015).

15. Bhattacherjee, R., Moriam, S., Umer, M., Nguyen, N. T. & Shiddky, M. J. DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst 143, 4802–4818 (2018).

16. Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).

17. Baine, M. K. et al. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: a comprehensive immunohistochemical and histopathologic characterization. J. Thorac. Oncol. 15, 1823–1835 (2020).

18. Polley, E. et al. Small cell lung cancer screen of oncology drugs, investigational agents, and gene and microRNA expression. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djx122 (2016).

19. Zhao, X. et al. Surgical resection of SCLC: prognostic factors and the tumor microenvironment. J. Thorac. Oncol. 14, 914–923 (2019).

20. Klein, E. A. et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 32, 1167–1177 (2021).

21. Tlemsani, C. et al. SCLC-CellMiner: a resource for small cell lung cancer cell line genomics and pharmacology based on genomic signatures. Cell Rep. 33, 108296 (2020).

22. Schwenkewien, A. et al. Molecular profiles of small cell lung cancer subtypes: therapeutic implications. Mol. Ther. Oncolytics 20, 470–483 (2021).

23. Poirier, J. T. et al. New approaches to SCLC therapy: from the laboratory to the clinic. J. Thorac. Oncol. 15, 520–540 (2020).

24. Cardnell, R. J. et al. Protein expression of TTF1 and cMYC define distinct molecular subgroups of small cell lung cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 targeting, and other targeted therapies. Oncotarget 8, 73419–73432 (2017).

25. Augustine, A. et al. ACX1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1410419111 (2014).

26. Mollaouglu, G. et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell 31, 270–283 (2017).

27. Huang, Y. H. et al. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 32, 915–928 (2018).

28. Pisapia, P., Malapelle, U. & Troncone, G. Liquid biopsy and lung cancer. Acta Cytologica 63, 489–496 (2019).

29. Stewart, C. A. et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat. Cancer 1, 423–436 (2020).

30. Gardner, E. E. et al. Chemoresistant relapse in small cell lung cancer proceeds through an EZH2–SLFN11 axis. Cancer Cell 31, 286–299 (2017).

31. Hodgkinson, C. L. et al. Tumorigenicity and genetic profiling of circulating tumor cells in non-small cell lung cancer. Nat. Med. 20, 897–903 (2014).

32. Huang, J., Soupir, A. C. & Wang, L. Cell-free DNA methylome profiling by MBD-seq with ultra-low input. Epigenetics 17, 239–252 (2012).

33. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

34. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 32, 489–496 (2019).

35. Stewart, C. A. et al. Single-cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small-cell lung cancer. Nat. Cancer 1, 423–436 (2020).

36. Liu, H. et al. The sequence alignment/map format and SAM tools. Bioinformatics 25, 2076–2078 (2009).

37. Lienhard, M. et al. qSEQA-modelling of genome-wide DNA methylation from sequencing enrichment experiments. Nucleic Acids Res. 45, e44 (2017).

38. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

39. Shah, S. P. et al. Integrating copy number polymorphisms into array CGH analysis using a robust HMM. Bioinformatics 22, e341–e349 (2006).

40. Okonechnikov, K., Conesa, A. & Garcia-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–294 (2016).

41. Wingett, S. W. & Andrews, S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Research 7, 1338 (2018).

42. Ewels, P., Magnusson, M., Lundin, S. & Kelley, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

43. Lee, S. et al. NGSCheckMate: software for validating sample identity in next-generation sequencing studies within and across data types. Nucleic Acids Res. 45, e10 (2017).

44. Lienhard, M., Grimm, C., Morkel, M., Herwig, R. & Chavez, L. MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics 30, 284–286 (2014).

45. Edgar, R., Tan, P. P. C., Portales-Casamayor, E. & Pavlidis, P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin 7, 8 (2014).

46. Yu, G., Wang, L.-G. & He, Q.-Y. ChiPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).

47. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

48. Lee, S., Cook, D. & Lawrence, M. pylyranges: a grammar of genomic data transformation. Genome Biol. 20, 4 (2019).

49. Chen, T. & Guestrin, C. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

50. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

51. Pearseall, S. M. et al. The rare YAP1 subtype of SCLC revisited in a biobank of 39 circulating tumor cell patient-derived explant models: a brief report. J. Thorac. Oncol. 15, 1836–1843 (2020).

52. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

53. Nuzzo, P. V. et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat. Med. 26, 1041–1043 (2020).

54. Nassiri, F. et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat. Med. 26, 1044–1047 (2020).
Extended Data Fig. 1 | SCLC methylation patterns in preclinical models and cfDNA samples.

a, PCA plot of CDX/PDX models (n=50 models from 33 patients, \(\beta \)-values were averaged over up to three independent mice for each model) and normal lung tissue samples (n=13 individuals), from PCA applied to \(\beta \)-values for the 6,793 most significant DMRs detected between CDX/PDX and normal lung.

b, Distribution of the 6,793 DMRs over regulatory regions (CpG Islands, shores and shelves) in CDX/PDX vs normal lung comparison.

c, Bar plot showing the percentage of the 6,793 DMRs detected as hypermethylated and hypomethylated in CDX/PDX vs normal lung comparison.

d, PCA plot of SCLC cfDNA (n=78 patients) and NCC cfDNA (n=79 individuals), from PCA applied to \(\beta \)-values for the 6,443 most significant DMRs detected between SCLC cfDNA and NCC cfDNA.

e, Distribution of the 6,443 DMRs over regulatory regions (CpG Islands, shores and shelves) in SCLC cfDNA versus NCC cfDNA comparison.

f, Bar plot showing the percentage of the 6,443 DMRs detected as hypermethylated and hypomethylated in SCLC cfDNA versus NCC cfDNA comparison.
Extended Data Fig. 2 | Sensitivity and specificity of the tumor/normal classifier. a, b, ROC curves from applying the 100 individual tumor/normal classifiers to 29 limited stage SCLC cfDNA samples and 41 NCC cfDNA samples (a), and to 49 extensive stage SCLC cfDNA samples and 41 NCC cfDNA samples (b).
Extended Data Fig. 3 | The methylation score as a surrogate of tumor burden. a, Box plot showing the methylation score (calculated as the average β-value across the 4,061 genomic regions used by the tumor/normal classifier) for cfDNA samples from limited or extensive stage patients. Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top). Whiskers extend to the most extreme value within 1.5-fold of interquartile range. Individual data points also shown. P value calculated by two-sided Mann-Whitney U test. b,c Scatter plots between the methylation score (as in a) and the copy-number estimated tumor fraction from ichorCNA (b), and median DNA fragment size (across the whole genome) from paired-end sequencing reads (c). Pearson correlation (R value) and two-sided P value are indicated. Black, dashed line shows linear regression fit. a–c, n = 78 cfDNA samples from independent SCLC patients (n = 29 limited stage and n = 49 extensive stage).
Extended Data Fig. 4 | See next page for caption.
Extended Data Fig. 4 | Identification of SCLC subtype-specific DMRs. a, PCA plot showing the 59 SCLC cell lines (43 ASCL1, 7 NEUROD1, 9 dual negative) and 33 CDX/PDX models (24 ASCL1, 8 NEUROD1, 1 dual negative; second models derived from the same patient were excluded), from PCA applied to β-values for the 50,000 most variable methylated regions according to the cell lines. β-values for each CDX model were averaged over up to three independent mice. b, Hierarchical clustering heatmap showing 366 subtype-specific DMRs derived by publicly available DNA methylation data from 59 cell lines. Bars on the top show the normalized expression values of ASCL1, NEUROD1, POU2F3 and YAP1 derived from Affymetrix Exon Microarrays for each cell line. c, Heatmaps showing sensitivity and specificity for varying cutoff values applied to the median prediction scores output by applying the ASCL1 and NEUROD1 classifiers to mixture sets in held-out test data (total of n = 1,787 mixture sets). Red crosses indicate the cutoffs (0.16 for NEUROD1; 0.76 for ASCL1) that jointly optimize the balanced accuracy metric (average of sensitivity and specificity) across both classifiers. d, Box plots of classifier prediction scores for n = 100 individual ASCL1 classifiers (top) or n = 100 individual NEUROD1 classifiers (bottom), applied to in silico serial dilutions of a POU2F3 (left), NEUROD1 (middle) or ASCL1 (right) CDX model mixed with an NCC cfDNA sample, with varying proportions of the CDX model in the mixture (x-axis). Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top). Whiskers extend to the most extreme value within 1.5-fold of interquartile range. Points lying outside the whiskers are plotted individually. Horizontal lines show the cutoffs for ASCL1 and NEUROD1 classifiers derived above.
Extended Data Fig. 5 | See next page for caption.
Extended Data Fig. 5 | Prediction of SCLC subtype in post-treatment samples. Box plots showing prediction scores from n = 100 individual ASCL1 and NEUROD1 classifiers for a panel of paired CDX and PDX models, and paired cfDNA samples. CDX models were derived longitudinally from patients at baseline and post-treatment while paired PDX models were generated in vivo (as described in ref. 30). cfDNA samples were isolated from patients at baseline and again at post-treatment. Horizontal dotted lines show the median cutoffs for ASCL1 and NEUROD1 classifiers, 0.76 and 0.16 respectively. Colored regions indicate the predicted SCLC subtype. Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top). Whiskers extend to the most extreme value within 1.5-fold of interquartile range. Points lying outside the whiskers are plotted individually. Data for CDX models are averaged over tumors from up to three independent mice.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

No software was used for data collection.

Data analysis

Custom R scripts for the analysis presented in this paper are available at gitlab.com/cruk-mi/scl-cfDNA-methylome-profiling.

The following tools were used:

- BWA (v0.7.17)
- samtools (v1.9)
- unixtools (v1.0.1)
- fastQC (v0.11.7)
- qualimap (v2.2)
- bamrmp (v2.0)
- multiQC (v1.9)
- fastqscreen (v0.14)
- cutadapt (v3.0)
- NGSCheckmate (v1.0.0)
- R (v4.0.3)
- RStudioWorkbench (v1.14.1717-3)
- NextFlow (v20.11.0)
- fastq-tools (v0.8.3)

R packages:

- BiocParallel (v1.24.1)
For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

T7-MBD-seq data and shallow whole genome sequencing data that support the findings of this study have been deposited in the European Genome-phenome Archive (EGA) under the accession number EGAS000001005739. Processed rna seq data and expression data that were reanalysed here are available under GSE45156 and GSE73160. Previously published RNAseq data from the CDx's and PDOx's studied here are available from ArrayExpress under accession code E-MTAB-8460 (CDx) and the database of Genotypes and Phenotypes (dbGaP) under accession number phs001249.v1.p1 (PDOx).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- [] Life sciences
- [X] Behavioural & social sciences
- [] Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/er-reporting-summary-list.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

No statistical methods were used to predetermine sample size. All CDx/PDX models with available tissue samples were profiled through T7-MBDseq. All SCLC cases with plasma samples available at the time of data generation were used. Non cancer control samples collected under the Community Lung Health Study were selected if deemed to be cancer-negative by CT scan performed at the time of blood draw.

Data exclusions

T7-MBDseq samples were excluded if they met any of the following criteria:

1. Relative methylation enrichment score [ReLin] of less than 2.5.
2. Less than 40% of 805 hypermethylated regions have a beta value of 0.8 or above.
3. For NCC samples collected through the Community Lung Health Study, a known later cancer diagnosis was given.

Cell lines which expressed both ASCL1 and NEUROD1 were excluded from analysis.

Replication
Where possible, three independent replicate tumours for CDX models and two technical replicates for PDX models were used. Methylation profiles were found to be concordant between replicates and also correlated with previously described methylation patterns in SCLC tissue. We also found agreement between methylation patterns in tissue and in cfDNA.

Classifiers were trained on synthetic mixture sets of CDX/PDX samples and a subset of non-cancer controls (tumour/normal classifiers), or cell lines and a subset of non-cancer controls (ASCL1/NEUROD1 classifiers). To guard against overfitting, cut-offs associated to each classifier were derived by applying each of the classifiers to the remaining mixture sets which were not seen by that classifier during model training (together comprising 20% of the NCC and 20% of the CDX/PDX samples or cell lines). Ensembles of 100 tumour/normal classifiers and 100 ASCL1/NEUROD1 classifiers were trained to ensure robustness and reproducibility. cfDNA samples from non-cancer controls (the subset not used in training) and from cancer individuals were used as an independent validation set for the tumour/normal classifier. The cfDNA samples from cancer individuals were also used for the independent validation set for the ASCL1/NEUROD1 classifier, together with the CDX/PDX models, since these were not used for training of the ASCL1/NEUROD1 classifiers.

The performance of both classifiers was not replicated in additional cfDNA samples since the aim of this study was to assess the feasibility of using cfDNA methylation profiling for detection and subtyping of SCLC. A further validation in a larger independent patient cohort will be performed.

Randomization
For classifier development, samples were randomized where necessary to ensure no overlap between training, test and validation sets. Importantly, since non-cancer control cfDNA samples were required for both classifier training and validation, they were randomly allocated into two subsets, stratifying for the collection source. One subset was used for training the classifiers (within mixture sets) and the other was used to form part of the tumour/normal classifier validation set (along with all the SCLC cfDNA samples). All other samples (CDX/PDX, cell lines and SCLC cfDNA) were only used either in classifier training or in the validation set.

Blinding
Due to the exploratory nature of this study, aiming to assess the feasibility of using cfDNA methylation profiling for detection and subtyping of SCLC, the investigators were not blinded to the cancer status or subtype of any of the samples.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a involved in the study	n/a involved in the study
☑ Antibodies	☑ ChiP seq
☑ Eukaryotic cell lines	☑ Flow cytometry
☑ Palaeontology and archaeology	☑ MRI-based neuroimaging
☑ ☑ Animals and other organisms	
☑ Human research participants	
☑ Clinical data	
☑ Dual use research of concern	

Animals and other organisms
Policy information about studies involving animals: ARRIVE guidelines recommended for reporting animal research

Laboratory animals
For CDXs, CT26s enriched from patients with SCLC were injected into the flank of a 6-8 weeks old nonobese diabetic (NOD) severe combined immunodeficient (SCID) interleukin-2 receptor γ-deficient (NSG) mouse 7. Tumours were harvested once tumour volume reached 1,200 mm3, maximal tumour size was not exceeded. Female 6-8 weeks old NSG mice were used to generate PDXs from primary tumours 30. Tumour sizes were measured twice weekly and harvested once tumour volume reached 2,000 mm3, maximal tumour size was not exceeded. All procedures were carried out in accordance with Home Office Regulations [UK], the UK Coordinating Committee on Cancer Research guidelines and by approved protocols (Home Office Project license 40-3306/70-8252, Memorial Sloan Kettering Cancer Center Animal Care and Use Committee Protocol 04-03-009 and the Cancer Research UK Manchester Institute Animal Welfare and Ethical Review Advisory Board). In vivo studies have been reported in accordance with ARRIVE Guidelines 2.0. No new animal models were generated for this study.

Wild animals
This study did not involve wild animals.

Field-collected samples
This study did not involve field-collected samples.

Ethics oversight
As stated above, all procedures were carried out in accordance with Home Office Regulations [UK], the UK Coordinating Committee on Cancer Research guidelines and by approved protocols (Home Office Project license 40-3306/70-8252 and Cancer Research UK Manchester Institute Animal Welfare and Ethical Review Advisory Board).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
Human research participants

Policy information about studies involving human research participants

Population characteristics

The patient data relating to this study can be found Extended Data table 1-3 which include sex, age, stage and smoking history. The SCLC cfDNA cohort comprises 38 male and 40 female patients with a median age of 67, 29 and 49 were limited and extensive stage patients, respectively. The non-cancer control cfDNA cohort comprises 39 male and 40 female individuals with a median age of 63.

Recruitment

Patients with a diagnosis of SCLC were recruited by physician referral according to ethically approved protocols shown below. Non-cancer controls were locally collected (n=8), commercially bought from Cambridge Biosciences (n=26) or part of the Community Lung Health Study trial (n=45) as detailed in the methods.

Selection bias may have been introduced due to the availability of patient samples, and the requirement of sufficient cfDNA in a sample to pass our quality control steps may lead to a bias towards patients with more severe disease. Limited stage SCLC samples were predominantly collected at Vanderbilt Ingram Cancer Center, which may have caused a bias due to differing underlying populations. More extensive stage than limited stage samples were collected, as is typical for diagnosis of SCLC. To aid interpretation, we have presented results separately for extensive stage and limited stage where appropriate.

Our non-cancer control cfDNA samples are predominantly risk- and age-matched (45 samples vs 26 age-matched only samples and 8 unmatched samples). However, we see no evidence of bias in the tumour/normal classifier performance; we present results for each sample separately and find similar performance on all three groups.

Ethics oversight

Non-cancer-control samples were collected under the Community Lung Health Study (ethically approved study REC reference: 17/L0415) or within the University of Manchester (University of Manchester ethics committee approval no. 2017-2761-4606) or purchased through Cambridge Bioscience (ethics committee approval no. 2019-7920-11797). Blood samples from patients with SCLC (ChemORe trial) were collected after receipt of informed consent and according to ethically approved protocols: European Union CHEMOREPS FPE Contract number LSHC-CT-2007-037665 (NHS Northwest 9 Research Ethical Committee). Blood samples from Memorial Sloan-Kettering Cancer Center (MSKCC) IRB protocol (IRB#-14-192 A [4]) were collected after receipt of informed consent that met the requirements of the Code of Federal Regulations and the Institutional Review Board/Privacy Board.

Note that full information on the approval of the study protocol must also be provided in the manuscript.