Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents

Michael Wink 1,*, Mohamed L. Ashour 2 and Mahmoud Zaki El-Readi 1,3

1 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
2 Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
3 Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt

INTRODUCTION

EVOLUTIONARY AND ECOLOGICAL BACKGROUND

Plants are sessile organisms which cannot run away when attacked by an herbivore nor do they have an immune system to combat infesting parasites, bacteria, fungi, or viruses. From early days of the evolution of land plants they had to cope with these environmental challenges. Plants developed a number of mechanical traits, such as resistant epidermal and bark tissues but also spines and thorns as defense tools. In addition, plants evolved a high diversity of defense chemicals, the so-called secondary metabolites (SM; Table 1). Besides defense, some SM function as signal compounds or protect against oxidative or UV stress (Wink, 1993, 2000). SM which interfere with proteins, such as polyphenols, biomembranes (saponins and other lipophilic terpenoids), or DNA (alkylating or intercalating mutagens) affect a wider range of organisms, including animals and microbes. In general, membrane and DNA active SM have cytotoxic properties. Affected cells usually undergo apoptosis (Wink, 2007). Several SM interfere with the neuronal signal transduction in animals and are thus potent neurotoxins (Wink, 1993, 2000).

A large number of SM have lipophilic properties which enable them to readily pass biomembranes in target organisms by simple diffusion. These SM are also dangerous for the producing plants. Therefore, they are usually stored in dead tissue away from living cells, such as resin ducts, oil cells, trichomes, or cuticles (Wink, 2010b). The absorption of polar SM is usually slower or does not

The structures of SM have been optimized during evolution in such a way that they can interfere with molecular targets in herbivores and microbes. The main group of targets include (1) proteins, (2) DNA, RNA, and (3) the biomembrane (Wink, 2008a,b; Wink and Schimmer, 2010). Neuronal signal transduction is a central and specific target in animals and many SM, especially alkaloids and amines are directed toward it (Wink, 1993, 2000). SM which interfere with proteins, such as polyphenols, biomembranes (saponins and other lipophilic terpenoids), or DNA (alkylating or intercalating mutagens) affect a wider range of organisms, including animals and microbes. In general, membrane and DNA active SM have cytotoxic properties. Affected cells usually undergo apoptosis (Wink, 2007). Several SM interfere with the neuronal signal transduction in animals and are thus potent neurotoxins (Wink, 1993, 2000).

A large number of SM have lipophilic properties which enable them to readily pass biomembranes in target organisms by simple diffusion. These SM are also dangerous for the producing plants. Therefore, they are usually stored in dead tissue away from living cells, such as resin ducts, oil cells, trichomes, or cuticles (Wink, 2010b). The absorption of polar SM is usually slower or does not

Abbreviations: ABC, ATP-binding cassette; BCRP, breast cancer resistance protein; MDR, multidrug resistance; MRP1, multidrug resistance-associate protein; P-gp, P-glycoprotein.
Table 1 | Structural types of secondary metabolites and known structures.

Class	Number of structures
WITH NITROGEN	
Alkaloids	21000
Non-protein amino acids (NPAA)	700
Amines	100
Cyanogenic glucosides	60
Glucosinolates	100
Alkamides	150
Lectins, peptides	2000
WITHOUT NITROGEN	
Monoterpenes (incl. iridoids)	2500
Sesquiterpenes	5000
Diterpenes	2500
Triterpenes, steroids, saponins	5000
Tetraterpenes	500
Phenylpropanoids, phenolic acids, coumarins, lignans	2000
Flavonoids, isoflavonoids, anthocyanins, stilbenoids, tannins, xanthones	10000
Polycetylenes, fatty acids, waxes	1500
Polypeptides (quinones, anthraquinones)	750
Carbohydrates, organic acids	400

Mechanisms of resistance in animals and humans are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as p-gp, which pump out lipophilic compounds that have entered a cell, (2) activation of cytochrome P450 oxidases (CYP) which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation with gluturonic acid, sulfate, or amino acids, and (3) activation of glutathione transferase (GST), which can conjugate xenobiotics with glutathione. The reactions of CYP, GST, and conjugation are well known in pharmacology and categorized as phase I and phase II reactions. These reactions are important in the metabolism of medicinal drugs and toxins. This evolutionary history also applies for humans which enables us to metabolize a large number of xenobiotics.

In phase I, a lipophilic SM is made more hydrophilic by introducing hydroxyl groups. This reaction is catalyzed by CYP and CYP1A1, CYP1A2, CYP3A4, and CYP2D6 are the most important enzymes. Furthermore, these CYP can cleave N-methyl, O-methyl, or methylene groups in order to obtain a more hydrophilic or better accessible substrate (Guengerich, 2001). In the human genome, about 57 active CYP genes are known (Ingelman-Sundberg and Gomez, 2010). A substantial polymorphism of CYPs exists which enables them to metabolize a wide range of xenobiotics. The regulation of the corresponding genes is only partly known. The genes encoding these enzymes, which occur in intestinal epithelia and in the liver, are inducible by SM that have entered the body. In phase II, the hydroxylated xenobiotics are conjugated with polar molecules, such as glutathione, sulfate, or glucuronic acid. These conjugates are eliminated via the kidneys and urine. That means, on exposure to lipophilic SM, genes which encode these enzymes are often induced and that activation can inactivate the toxins. Several SM carry methylenedioxy groups on their phenolic rings, such as in the isoquinoline alkaloids berberine and hydrastine, which are assumed to be inhibitors of CYP (Wink, 2007). Alkaloids which can inhibit CYP have been summarized by Wink (2007).

Resistance mechanisms in bacterial pathogens are even more evident because several pathogens already have evolved resistance against medicinally used antibiotics. The main mechanisms include:

- Direct inactivation of the antibiotic, e.g., by cleavage of the beta-lactam ring of penicillin by beta-lactams or acetylation, methylation of other antibiotics
- Target site modification: molecular change of the target molecule (proteins, rRNA) in such a way that the antibiotic cannot bind any longer
- Bypass or alteration of metabolic pathways in cases where an antibiotic blocks a pathway (e.g., as for sulfonamides)
- Prevention of drug uptake
- Export out of the cell by ABC transporters so that the intracellular concentration of an antibiotic (e.g., tetracycline) are reduced. In Bacteria, this is one of several factors responsible for multidrug resistance (MDR).

ABC TRANSPORTER

Resistance against defense chemicals can be obtained through the expression of ABC transporters that are present in most cells and organisms. They are especially active in epithelia of intestinal, liver, kidney, and endothelia (Twentyman and Bleehen, 1991; Nielsen and Skovsgaard, 1992; Nooter and Stoter, 1996; Steinbach et al., 2002; You and Morris, 2007).

Three types of ABC transporters have been studied in detail:

1. P-glycoprotein (P-gp; molecular weight 170 kDa) or MDR1 protein (multiple drug resistance protein) was the first cloned ABC transporter. It is encoded by the ABCB1 gene. P-gp is composed of two similar moieties and each half contains one transmembrane and one ATP-binding domain. P-gp is an efflux pump directed to the gut lumen. The substrate molecules bind to transmembrane domains and then are exported to extracellular space, driven by the energy of ATP hydrolysis. A wide range of lipophilic chemotherapeutic agents, such as anthrancenes, anthracyclines, epipodophyllotoxins, taxanes, and Vinca alkaloids, which can enter tumor cells by free diffusion, are substrates of P-gp and can be extruded by the transporter (Loo and Clarke, 2005).
Inhibition of ABC transporter

2. Multiple resistance-associated protein 1 (MRP1; 190 kD) is encoded by the ABCC1 gene. MRP1 transports drugs conjugated to glutathione (GSH), and also unmodified therapeutics in the presence of GSH (van der Kolk et al., 1999). MRP1 is structurally similar to P-gp, and can expel anthracenedione, anthracycline, epipodophyllotoxin, Vinca alkaloids, etc. (Wijnholds et al., 2000).

3. Breast cancer resistance protein (BCRP; 72 kD) is the product of the ABCG2 gene. It has one transmembrane domain and one ATP-binding domain and only functions after dimerization. BCRP confers resistance to doxorubicin, camptothecin, and mitoxantrone (Ambudkar et al., 1999; Schinkel and Jonker, 2003; Mao and Unadkat, 2005; Krishnamurthy and Schuetz, 2006).

Breast cancer resistance protein and P-gp are highly expressed at the apical membrane of blood–brain barrier (BBB), placenta, liver, intestine, and other organs (Schinkel and Jonker, 2003). These ATP-driven transporters can pump lipophilic compounds out of the cell, either back to the gut lumen or into the blood system, thus reducing the intracellular concentration of potentially toxic compounds.

ATP-binding cassette transporters are also important at the BBB. The BBB only allows the entry of small lipophilic substances by passive diffusion. However, the uptake of lipophilic compounds in the brain is relatively low due to the high activity of P-gp, MRP, and organic anion transporting polypeptides (OATPs). These transporters catalyze a rapid efflux of lipophilic xenobiotics from the CNS (Elsinga et al., 2004; Mahringer and Fricker, 2010).

Multidrug resistance was discovered during chemotherapy of cancer patients who developed resistance against a cytotoxic drug. It transpired that the tumor cells were able to pump out the lipophilic alkaloids (such as Vinca alkaloids, taxanes, and anthracycline derivatives) at almost the same speed as they were entering the tumor cells. Activated cells became resistant to vincristine but also to several other lipophilic drugs. This means that a cross-resistance or MDR had occurred. As a consequence, a major obstacle to the successful chemotherapy of tumors is MDR. Upon exposure to xenobiotics MDR genes can become upregulated. Overexpressed ABC transporters (P-gp, MRP1, or BCRP) can mediate resistance of tumor cells against a variety of anticancer drugs (Schinkel and Jonker, 2003). This phenomenon is called MDR, which is one of the most important reasons of chemotherapy failure (Gottesman, 2002).

Several of human protozoal parasites (Plasmodium, Leishmania, Trypanosoma) can develop resistance against prophylactic and therapeutic agents, such as quinolines, naphthoquinones, sesquiterpene lactones, and others. The underlying mechanism includes membrane glycoproteins that are orthologous to human P-gp. These ABC transporters can also be induced and activated.

ATP-binding cassette transporters are also present in bacteria and fungi in which they confer resistance to antibiotics and fungalidal compounds (Steffens et al., 1996). A medicinally important issue is the increasing resistance of bacteria toward antibiotics, and ABC transporters can be involved in bacterial MDR (besides other mechanisms discussed above). Apparently, ABC transporters are an old invention of nature, which occur from E. coli to Homo sapiens.

OVERCOMING RESISTANCE CAUSED BY ABC TRANSPORTERS

Multidrug resistance reversal agents are also called chemosenstizers or modulators. They can inhibit the efflux activity of transporters and other relevant MDR targets (see above); in consequence they can potentiate cytotoxicity, and are therefore important alternatives to overcome MDR (Watanabe et al., 1995; Dantzig et al., 1996; Robert and Jarry, 2003).

Multi-resistant tumor cells frequently express different ABC transporters simultaneously, e.g., P-gp, MRP1, BCRP, and others (Annerceau et al., 2004; Gillet et al., 2004). Because the substrate spectra of ABC transporters only partly overlap, co-expression of transporters might produce more diverse resistance profiles than those of any one member alone. Thus broad-spectrum reversal agents are needed and some compounds exhibit this property (Hyafil et al., 1993; Maliepaard et al., 2001; Brooks et al., 2003).

A number of natural or synthetic compounds have been discovered that can inhibit P-gp and re-sensitize resistant tumor cells in vitro (Chauffert et al., 1990; Genne et al., 1992; He and Liu, 2002; Wink, 2007). Although these agents work successfully in some patients, most results of clinical trials were disappointing (Solary et al., 2000; Dantzig et al., 2001). Some of these reversal agents did not work in vivo or some had too severe side effects. Therefore, new and better reversal agents are still needed.

Most modulators of ABC transporters act by binding to membrane transport proteins (especially P-gp, MRP1, and BCRP) as competitive inhibitors, or by indirect mechanisms related to phosphorylation of the transport proteins, or the expression of the mdr1 and mrp1 genes. Other inhibitors not only act at the level of the transporter gene but influence their expression; for example, the alkaloid piperine lowered the expression levels of ABCB1, ABCC1, and ABCG2 genes which encode P-gp, MRP1, and BCRP (Li et al., 2011b).

INHIBITORS OF ABC TRANSPORTERS FROM PLANTS

For this review we carried out a comprehensive literature research. Table 2 summarizes the search results for SM from plants, which can serve as ABC transporter substrates and might be useful in strategies to reverse drug resistance in cancer cells, fungi, and parasites. Compounds affecting other resistance mechanisms, which are important and which were discussed above, were not considered in this review.

Lipophilic SM, such as monoterpenees, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes (carotenoids; Table 2) function as substrates for P-gp in cancer cells. The ABC transporter from fungi, AtrB (Andrade et al., 2000), or the NorA efflux pump in Staphylococcus aureus can also be affected (Smith et al., 2007). Because of their lipophilicity, these terpenoids most likely are substrates for P-gp and other ABC transporter. If administered as a chemosenstizer in combination with a cytotoxic agent they function as inhibitors competing for binding to the active site of the transporters.
Table 2 | Secondary metabolites from plants that can inhibit P-gp, MRP1, BCRP, bacterial, and fungal ABC transporters.

Natural product	Occurrence	Activities	Reference
TERPENOIDS			
Monoterpenes			
Citronellal, citronellol	*Zanthoxylum piperitum* (Rutaceae)	1	Yoshida et al. (2005)
Andrographolide	*Andrographis paniculata* (Acanthaceae)	2 (biphasic action)	Najar et al. (2010)
Jatrophone diterpene polyesters	*Euphorbia serrula*, *E. esula*, *E. salicifolia*, *E. peplus* (Euphorbiaceae)	3 in mouse lymphoma cells	Hohmann et al. (2002)
Latilagascene A, latilagascene B, latilagascene C (lathyrane diterpenes)	*Euphorbia lagascae* (Euphorbiaceae)	4, 5	Duarte et al. (2006)
Totarol	*Podocarpus totara* (Podocarpaceae)	Inhibits *Staphylococcus aureus* NorA efflux pump	Smith et al. (2007)
Triterpenes			
Aegicerin	*Clavija procera* (Theophrastaceae)	Reverses MDR in resistant *Mycobacterium tuberculosis* strains	Rojas et al. (2006)
Betulinic acid, pomolic acid	*Licania tomentosa*, *Chrysobalanus icaco*, (Chrysobalanaceae)	3 in leukemia cells	Fernandes et al. (2003)
Limonin, deacetylnomilin	*Citrus jambhiri*, *Citrus pyriformis*, *Phellodendron amurense* (Rutaceae)	6	Min et al. (2007), El-Readi et al. (2010)
Dyscusin A, cumingianol A–F, cumingianoside R	*Dysoxylum cumingianum* (Meliaceae)	3 in cancer cells; 7	Kurimoto et al. (2011a,b)
Euscaphic acid, tormentic acid, 2α-acetyl tormentic acid, 3β-acetyl tormentic acid	*Cecropia lyratiloba* (Moraceae)	3 in leukemia cell line	Rocha Gda et al. (2007)
Glycyrrhizin	*Glycyrhiza glabra* (Fabaceae)	2 (biphasic action)	Najar et al. (2010)
21α-Hydroxytaraxasterol and related triterpenes	*Euphorbia lagascae* (Euphorbiaceae)	6, 7	Duarte et al. (2009)
Obacunone, 12-alpha-hydroxylimonin	*Phellodendron amurense* (Rutaceae)	1 in MDR cancer cells	Min et al. (2007)
Phytolacca saponins N-1–N-5	*Phytolacca americana* (Phytolaccaceae)	3 in 2780 AD cells	Wang et al. (2008)
Sinocalycanchins E	*Sinocalycanthus chinensis* (Calycanthaceae)	Enhances colchicine-induced cytotoxicity in MDR KB cells	Kashiwada et al. (2011)
β-Amyrin, uvaol, oleolic acid	*Carpobrotus edulis* (Aizoaceae)	3 in mouse lymphoma cell line and Gram-positive bacteria	Martins et al. (2010), Ordway et al. (2003)
Steroids			
Cardenolides	*Nerium oleander* (Apocynaceae)	3 ovarian cancer 2780AD cells	Zhao et al. (2007)
Cycloartanes	*Euphorbia species* (Euphorbiaceae)	8	Madureira et al. (2004)
(9,19-cyclopentyl-triterpenes)	*Digitalis spp.* (Plantaginaceae)	2	de Lannoy and Silverman (1992), Cavet et al. (1996)
Digoxin, digitoxin	*Panax spp.* (Araliaceae)	4 in lymphoma cells	Berek et al. (2001)
Ginsenoside Rc, ginsenosides Rd, parishin C	*Tribulus terrestris* (Zygophyllaceae)	4 (doxorubicin)	Ivanova et al. (2009)
Methyloprototribestin	*Panax ginseng* (Araliaceae)	2, 4 in AML-2/D100 cells	Choi et al. (2003)
Natural product	Occurrence	Activities	Reference
---	-----------------------------------	--	--
Stigmasterol, β-sitosterol-β-glucoside	*Citrus jambhiri, Citrus pyniformis* (Rutaceae)	1 in Caco2 and leukemia cells	El-Readi et al. (2010)
Withaferin A	*Withania somnifera* (Solanaceae)	4 in K562/Adr cells	Suttana et al. (2010)
Tetra terpenes	*Capsicum annuum* (Solanaceae); *Daucus carota spp.* sativus (Apiaceae)	1, 9	Molnar et al. (2004), Kars et al. (2008), Gyemant et al. (2006)
PHENOLICS			
Phenol propanoids			
Chlorogenic acid	*Coffea arabica* (Rubiaceae) and many plants	1	Najar et al. (2010)
Curcumin, tetrahydrocurcumin	*Curcuma longa* (Zingiberaceae)	1, 5	Zhou et al. (2004), Limtrakul et al. (2007), Hou et al. (2008), Lu et al. (2012)
Flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, and related polyphenols			
Acacetin	Several families	1, 10 in human erythrocytes and breast cancer cells	Wesolowska et al. (2009)
Afromosin, robinin, amorphigenin	Several Fabaceae	1, 10	Gyemant et al. (2005)
Ampelopsin	*Hovenia dulcis* (Rhamnaceae)	1, 5 in K562/ADR cells	Ye et al. (2009)
Apigenin,	Several plants	1, 4, 9 in MES-SA/DXS cells; substrate for multidrug transporter in *Plasmodium falciparum*	Zhang et al. (2004), Leslie et al. (2001), Perez-Victoria et al. (1999), Wesolowska et al. (2009), Angelini et al. (2010)
Baicalein	*Scutellaria baicalensis* (Lamiaceae)	Substrate for Yorlp and Pdr5p transporters in yeast *Saccharomyces cerevisiae*	Kolaczkowski et al. (1998)
Biochanin A	Several families	1, 9	Chung et al. (2005), Zhang et al. (2004)
Calodenin B, dihydrocalodenin B, and other dimeric proanthocyanidins	*Ochna macrocalyx* (Ochnaceae)	Inhibit MDR in *Staphylococcus aureus* (RN4220, XU212, and SA-1199-B)	Tang et al. (2003)
Chrysosplenol-D, chrysoplenetin	*Artemisia annua* L. (Asteraceae)	Synergistic inhibition of MDR in *Staphylococcus aureus*	Stermitz et al. (2002)
Cyanidin, callistephin, pelargonin, ideanin, cyanin, pelargonidin, and related anthocyanidins		1	Molnár et al. (2008)
Daidzein	Several species	1, 2 (biphasic action), 9	Molnár et al. (2008), Gyemant et al. (2005), Zhou et al. (2004), Zhang et al. (2004), Crtchesfield et al. (1994), de Wet et al. (2001)
Chrysosplenol-D, chrysoplenetin	*Artemisia annua* L. (Asteraceae)	Synergistic inhibition of MDR in *Staphylococcus aureus*	Stermitz et al. (2002)
5,7-Dimethoxyflavone, kaempferide	*Kaempferia parviflora* (Zingiberaceae)	9 (in vitro and in vivo)	An et al. (2011)
Diosmin	*Citrus spp.* (Rutaceae)	2	Yoo et al. (2007)
Ellagic acid, tannic acid	Several species	Inhibit an efflux pump in *Acinetobacter baumannii* and enhances antibiotic activity	Chusri et al. (2009)
Epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate (EGCG)	*Camellia sinensis* (Theaceae); *Carpobrotus edulis* (Aizoaceae)	1 in MCF-7/Adr and mouse lymphoma cell line; 9, 10, 3 in Gram-positive bacteria	Martins et al. (2010), Zhang et al. (2004), Zhu et al. (2001), Gyemant et al. (2005), Mei et al. (2004), Wei et al. (2003)

(Continued)
Natural product	Occurrence	Activities	Reference
Fisetin	Several species	2, 9 in breast cancer cells; 4 in MES-SA/DX5 cells; substrate for Yorlp transporters in yeast Saccharomyces cerevisiae	Chung et al. (2005), Kolaczkowski et al. (1998), Angelini et al. (2010)
Formononetin and other isoflavones	Several species of Fabaceae	1, 2, 10	Molnár et al. (2008), Gyemant et al. (2005)
Galangin	Several plant families	2 (biphasic action); 10	Zhou et al. (2004), Critchfield et al. (1994), de Vet et al. (2001)
Genistein and derivatives	Several species of Fabaceae	1, 2, 9, 10	Zhang et al. (2004), Taur and Rodriguez-Proteau (2008), Leslie et al. (2001), Versantvoort et al. (1994, 1996)
Hesperidin, neohesperidin, nobiletin, Tangeretin	Citrus jambhiri, Citrus pyriformis (Rutaceae)	1, 9	El-Readi et al. (2010), Zhang et al. (2001), Ofer et al. (2005)
Icarin	Epimedium grandiflorum (Berberidaceae)	1, 5	Liu et al. (2009)
Isobavachalcone	Dorstenia barteri (Moraceae)	Inhibits efflux pump in Gram-negative bacteria	Kuete et al. (2010)
Kaempferol, morin, taxifolin, spiraeoside, and related flavonoids	Several plants	2 (biphasic action); 1 and OCT, 9, 10	Zhou et al. (2004), Zhang et al. (2004), de Vet et al. (2001), Gyemant et al. (2005)
Luteolin and its glycosides	Several plants	1, 9, 10	Zhang et al. (2004), Nissler et al. (2004)
Mangiferin, norathyriol, and other xanthones	Mangifera indica (Anacardiaceae)	Modulate the function of MDR1/P-glycoprotein (P-gp ABCB1) multidrug transporter. (biphasic action)	[8, 34, 35], Najar et al. (2010), Chiel et al. (2010)
Naringin, naringenin, and derivatives	Euphorbia lagascae, Euphorbia tuckeyana (Euphorbiaceae); Citrus hybrids (Rutaceae)	1, 9, 10; substrate for MDR1 in Plasmodium falciparum	Chung et al. (2005), Zhang et al. (2004), Ofer et al. (2006), Leslie et al. (2001), Perez-Victoria et al. (1999, 2002), de Castro et al. (2007, 2008), Wesolowska et al. (2007), Duarte et al. (2010)
Pentagalloylglucose (gallotannin)	Several species	1 in MDR KB-C2 cells	Kitagawa et al. (2007)
Phloretin, phloridzin	Several species	1, 9	Molnár et al. (2008), Zhang and Morris (2003), Zhang et al. (2004), Gyemant et al. (2005)
Plagiochitin E	Marchantia polymorpha (Marchantiaceae)	Reverses the efflux pump in Candida albicans	Guo et al. (2008)
Quercetin, 3’,4’,7-trimethoxyquercetin, quercetagetin, hesperetin, isoquercitrin, myricetin, and derivatives	Several species	1 and OCT in MDR cancer cells; 9, 10; substrate for Yorlp in yeast Saccharomyces cerevisiae substrate for MDR1 in Plasmodium falciparum.	Scambia et al. (1994), Kolaczkowski et al. (1998), Shapiro and Ling (1997), Conseil et al. (1998), Cooray et al. (2004), Ofer et al. (2005), Ohtani et al. (2007), Leslie et al. (2001), Zhang et al. (2004)
Resveratrol	Several plants	7, 9	Cooray et al. (2004)
Rotenone	Derris spp., Tephrosia spp., Lonchocarpus spp. (Fabaceae)	1	Molnár et al. (2008), Gyemant et al. (2005)
Rutin	Several species	1 and OCT; substrate of MDR in Plasmodium falciparum	Ofer et al. (2005, 2006), Foster et al. (2001), Perez-Victoria et al. (1999)

(Continued)
Table 2 | Continued

Natural product	Occurrence	Activities	Reference	
Silymarin (isosilybin, silychristin, silydianin, silybin)	Silybum marianum (Asteraceae)	1, 4, 5, 9 in cancer cells	Zhou et al. (2004), Agarwal et al. (2006), Zhang and Morris (2003), Zhang et al. (2004), Trompier et al. (2003)	
Tiliroside	Platanaus orientalis (Platanaceae), Herissantia tiubae (Malvaceae)	5; inhibits (NorA) efflux protein in Staphylococcus aureus	Falcao-Silva et al. (2009)	
Tricin	Sasa borealis (Gramineae)	3 in adriamycin-resistant MCF-7/ADR cells	Jeong et al. (2007)	
3',4',6-Trihydroxy-2,4-dimethoxy-3(3''',4''''-dihydroxybenzyl) chalcone, and derivatives	Onyichium japonicum (Sinopteridaceae)	3 in MCF-7/ADR and Bel-7402/5-Fu cells	Li et al. (2011a)	
3,5,4'-Trimethoxy-trans-stilbene	Dalea versicolor (Fabaceae)	Enhances the antimicrobial effect of berberine against NorA S. aureus mutant strain	Belofsky et al. (2004)	
Quinones, anthraquinones, naphthoquinones	Aloe-emodin	Rheum palmatum (Polygonaceae); Aloe spp. (Asphodelaceae)	2	Cui et al. (2008)
Diospyrone (a naphthoquinone)	Diospyros canaliculata (Ebenaceae)	Inhibits efflux pump in Gram-negative bacteria	Kuete et al. (2010)	
Emodin	Rheum palmatum (Polygonaceae)	2; synergistic antimicrobial effect with ampicillin or oxacillin in MRSA	Lee et al. (2010), Cui et al. (2008)	
Rhein	Rheum palmatum (Polygonaceae)	2, 4	Cui et al. (2008), van Gorkom et al. (2002)	
Lignans	Syringaresinol	Sasa borealis (Gramineae)	1 in adriamycin-resistant MCF-7/ADR cells	Jeong et al. (2007)
Coumarins and furanocoumarins	Bergamottin, 6',7'-dihydroxybergamottin, 6',7'-epoxybergamottin	Citrus hybrids (Rutaceae)	1	de Castro et al. (2007, 2008)
Alkaloids	Acronycine	Bauerella australiana	2	Dorr et al. (1989)
Arborinine, evoxanthine	Ruta graveolens (Rutaceae)	1, 5 in cancer cells	Retney et al. (2008)	
Berberine	Berberis sp. (Berberidaceae)	2 in BBB and in Caco2 cells	He and Liu (2002)	
Berberine	Hydrastis canadensis (Ranunculaceae)	1, 2, 2 in BBB; 8 (bacterial) 2 in vascular smooth muscle cells (VSMCs)	Severina et al. (2001), He and Liu (2002), Efferth et al. (2005), Suzuki et al. (2010)	
Camptothecin	Camptotheca acuminata (Nyssaceae)	Substrate for ABC2 transporter in Botrytis cinerea; for PMR5 in Penicillium digitatum, AtrBp in Aspergillus nidulans; 11	Mattern et al. (1993), Lee et al. (2005), Nakaune et al. (2002), Andrade et al. (2000)	
Canthin-6-one, 8-hydroxy-canthin-6-one, 5zeta-Hydroxy-octadeca-6(E)-8(2)-dienoic acid	Allium neapolitanum (Amaryllidaceae), (Simaroubaceae), (Rutaceae)	Inhibits Mycobacterium, methicillin-resistant Staphylococcus aureus (MRSA); and a MDR strain of S. aureus	O’Donnell and Gibbons (2007)	
Capsaicin	Capsicum frutescens (Solanaceae)	2, 4	Okura et al. (2010)	
Catharanthine			2, 4 (vinblastine) in CEM/VLB1K cells	Beck et al. (1988), Zamora et al. (1988)

(Continued)
Table 2 | Continued

Natural product	Occurrence	Activities	Reference
Cepharanthine	Stephania cepharantha (Menispermaceae)	4 (doxorubicin and vincristine)	Ikeda et al. (2005), Katsu et al. (2004), Nakajima et al. (2004)
Chelerythrine	Zanthoxylum clava-herculis (Rutaceae)	Reversal of drug resistance in methicillin-resistant *Staphylococcus aureus* (MRSA)	Gibbons et al. (2003)
Cinchonine, hydrocinchonine, quinidine	Cinchona pubescens (Rubiaceae)	4	Solary et al. (2000), Genne et al. (1994), Lee et al. (2011)
Colcemid, colchicine	Colchicum autumnale (Colchicaceae)	2	Elsinga et al. (2004)
Conoduramine	Reschiera laeta (Apocynaceae)	2, 4 in KB cells	You et al. (1994)
Coptisine	Several species of Ranunculaceae; Berberidaceae	2 in vascular smooth muscle cells (VSMCs)	Suzuki et al. (2010)
8-Oxocoptisine	*Coptis japonica* (Ranunculaceae)	1 in MES-SDX5 and HCT15 cells	Min et al. (2006b)
Coronaridine, heyneanine dippinine B and C	*Tabernanthe iboga* (Apocynaceae)	4 in vincristine-resistant KB cells	Kam et al. (2004)
Cycleanine	*Synclisia scabrida* (Menispermaceae)	6 in MCF-7/Adr and KBv200 cells	Tian and Pan (1997)
Cyclopamine	*Veratrum* spp. (Melanthiaceae)	1, 3	Lavié et al. (2001)
Daunorophrine	*Sinomenium acutum* (Menispermacae)	1 in MES-SDX5 and HCT15 cells	Min et al. (2006a)
Emetine	*Psychotria ipecacuanta* (Rubiaceae)	2, 11	Möller et al. (2006)
Ergotamine	*Claviceps purpurea* (Clavicipitaceae)	1 in MDR cells	Yasuda et al. (2002)
Fangchinoline	*Stephania tetrandra* (Menispermacae)	Reduces resistance to paclitaxel and actinomycin D in HCT15 cells	Choi et al. (1998), Wang et al. (2005)
Galanthamine	*Galanthus nivalis* (Amaryllidaceae)	1 at the BBB	Namanja et al. (2009)
Gamma-fagarine	*Pheliodendron amurense* (Rutaceae)	1 MDR cancer cells	Min et al. (2007)
Glaucine	*Glaucium flavum* (Papaveraceae)	1, 2	Ma and Wink (2009)
Harmine	*Peganum harmala* (Zyrophylaceae)	9	Ma and Wink (2010)
Homoharringtonine, cephalotaxine	*Cephalotaxus harringtonia* (Cephalotaxaceae)	2, 11	Zhou et al. (1995), Efferth et al. (2003)
Hydrastine	*Hydrastis canadensis* (Ranunculaceae)	2	Etheridge et al. (2007)
Iboagaine	*Tabernanthe iboga* (Apocynaceae)	5, 9	Tournier et al. (2010)
Indole-3-carbinol	Many species of Brassicaceae	Downregulation of upregulated P-gp; dietary adjuvant in MDR cancer treatment	Arora and Shukla (2003)
Insularine, insulanelirine	*Antizia miersiana* (Menispermacae)	9 in MCF-7/Adr and KBv200 cells	Tian and Pan (1997)
Kopsamaine, pleiocarpine, lahadinina A, kopsiflorine	*Kopsia dasyrachis* (Apocynaceae)	4	Kam et al. (1998)
Lobeline	*Lobelia inflata* (Campanulaceae)	4 in tumor cells	Ma and Wink (2008)
5-Methoxyhydnocarpine, pheophorbide A	*Hydrocarpus kurzii* (Flacourtiaceae), *Berberis* spp. (Berberidaceae)	Inhibitor of NorA MDR pump in *Staphylococcus aureus*	Stermitz et al. (2000a,b, 2001), Guz et al. (2001)
N-trans-feruloyl 4′-O-methyl-dopamine	*Mirabilis jalapa* (Nyctaginaceae)	Inhibits growth of *Staphylococcus aureus* overexpressing the multidrug efflux transporter NorA	Michalet et al. (2007)

(Continued)
Natural product	Occurrence	Activities	Reference
Oxyberberine, canthin-6-one, 4-methoxy-N-methyl-2-quinolone, oxypalmatine	*Phellodendron amurense* (Rutaceae)	1 in MDR cancer cells	Min et al. (2007)
Paclitaxel	*Taxus* spp. (Taxaceae)	2 in vascular smooth muscle cells (VSMCs); 8 (bacteria)	Distefano et al. (1997)
Palmitine	Several species of Ranunculaceae; Berberidaceae	1, 2, 3, 9 in cancer cells; inhibition of overexpressed mycobacterial putative efflux protein (Rv1258c)	Severina et al. (2001), Suzuki et al. (2010)
Piperine	*Piper nigrum* (Piperaceae)	2; 4 in vascular smooth muscle cells; inhibition of overexpressed mycobacterial putative efflux protein (Rv1258c)	Han et al. (2008), Bhawardaj et al. (2002), Li et al. (2011b), Sharma et al. (2010)
Quinine	*Cinchona pubescens* (Rubiaceae)	2; 4 in vascular smooth muscle cells; inhibition of overexpressed mycobacterial putative efflux protein (Rv1258c)	Genne et al. (1994), Zamora et al. (1998)
Rescinnamine	*Rauwolfia serpentina* (Apocynaceae)	3 of vinblastine; induces MDR1 and p-gp expression	Bhat et al. (1995)
Reserpine	*Rauwolfia serpentina* (Apocynaceae)	8 in bacteria; 3 in methicillin-resistant *Staphylococcus aureus* (MRSA) strains (NorA MDR pump); 2, 3 of vinblastine in CEM/VLB1K cells	Beck et al. (1988), Gibbons and Udo (2000), Markham et al. (1999)
Roemerine	*Annona senegalensis* (Annonaceae)	2; 4 in vascular smooth muscle cells; inhibition of overexpressed mycobacterial putative efflux protein (Rv1258c)	You et al. (1995)
Rutaecarpine	*Evodia rutaecarpa* (Rutaceae)	6 in p-gp overexpressing CEM/ADR5000 cells	Lee et al. (1995), Adams et al. (2007)
Sanguinarine	*Sanguinaria canadensis* (Papaveraceae)	4 in vascular smooth muscle cells; inhibition of overexpressed mycobacterial putative efflux protein (Rv1258c)	Ding et al. (2002), Weerasinghe et al. (2006)
Stemocurtisine, oxyystemokerrine	*Stemona aphylla* and *S. burkillii* (Stemonaceae)	P-gp modulator, enhance the cytotoxicity of vinblastine, paclitaxel, and doxorubicin in KB-V1 cells	Chanmahasathien et al. (2011)
Tetrandrine	*Stephania tetrandra* (Menispermaceae)	1; reduces resistance to paclitaxel and actinomycin D in HCT15 cells; 4 in MDR mice; 6 (in vitro and in vivo); 4 in cancer patients treated with doxorubicin, etoposide, and cytarabine	Choi et al. (1998), Xu et al. (2006), Zhu et al. (2005), Fu et al. (2002, 2004)
Thaliblastine	*Thalictrum* spp. (Ranunculaceae)	Reverses MDR by decreasing the overexpression of P-gp in MCF-7/Adr cells	Chen and Waxman (1995), Chen et al. (1993, 1996)
Tomatidine	*Solanum lycopersicum* (Solanaceae)	1, 2 in vascular smooth muscle cells; inhibition of overexpressed mycobacterial putative efflux protein (Rv1258c)	Lavie et al. (2001)
Trisphaeridine, pretazettine, 2-O-acetyllycorine, risperidone	Several species of Amaryllidaceae	1 and 3 in L5178 MDR mouse lymphoma cells	Zupko et al. (2009)
Vasicine acetate, 2-acetylbenzylamine	*Adhatoda vasica* (Acanthaceae)	Inhibit *Mycobacterium tuberculosis* and a MDR strain	Ignacimuthu and Shanmugam (2010)
Veragustin, veranigrine	*Veratrum lobelianum*, *Veratrum nigrum* (Melanthiaceae)	1 and 3 against doxorubicin	Ivanova et al. (2011)
Vincristine, Vinblastine	*Catharanthus roseus* (Apocynaceae)	2; 2 in BBB; 11	He and Liu (2002), Hu et al. (1995)
Vindoline	*Catharanthus roseus* (Apocynaceae)	2; reversal of vinblastine resistance in MDR human leukemic cell line and CEM/VLB1K cells	Beck et al. (1988)

(Continued)
Table 2 | Continued

Natural product	Occurrence	Activities	Reference
Voacamine	Peschiera laeta, Peschiera fuchsiaefolia (Apocynaceae)	1, 2 in BBB, reversal of vinblastine and doxorubicin resistance in MDR cancer cells by binding to P-glycoprotein	You et al. (1994), Meschini et al. (2003, 2005)
Yohimbine	Rauwolfia serpentina (Apocynaceae)	Reversal of vinblastine resistance in a MDR human leukemic cell line and CEM/VLB 100 cells	Zamora et al. (1988), Bhat et al. (1995)

Activities: 1: inhibits p-gp; 2: p-gp substrate; 3: reversal of MDR; 4: reversal of p-gp mediated MDR; 5: inhibition of MDR1 gene; 6: p-gp modulation in cancer cells; 7: induction of apoptosis; 8: substrate for ABC transporter; 9: blocks BCRP and increases in mitoxantrone accumulation; 10: MRP1 inhibitor; 11: induction of MDR overexpression.

Among the structurally heterogenous group of alkaloids, a large number of the more lipophilic substances from the classes of isoquinoline, protoberberine, quinoline, indole, monoterpenone indole, and steroidal alkaloids (Table 2) can serve as substrates whereas the more polar alkaloids with a tropane, quinolizidine, piperidine, and pyrrolizidine skeleton do not bind to ABC transporters (Wink, 2007). Similar to the situation of terpenoids, the active alkaloids probably function as competitive inhibitors of P-gp and BCRP in cancer cells, and NorA in bacteria and fungi (Table 2).

It is remarkable on the first sight that also quite a large number of more polar phenolic SM (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) inhibit P-gp, MRP1, BCRP, and OATP in cancer cells with MDR. Some of them can reverse MDR when given in combination with cytotoxic agents (Table 2). Bacteria and fungi appear to be sensitive as well (Guz et al. 2001; Falcao-Silva et al., 2009). Some of these phenolics are lipophilic enough to be competitive inhibitors of ABC transporters.

Polyphenols are exciting tethering compounds of proteins. They can effectively interact directly with proteins by forming hydrogen and ionic bonds with amino acid side chains. They can thus interfere with the 3D structure of proteins (conformation) and inhibit their activities (details in Wink, 2008b; Wink and Schimmer, 2010). We speculate therefore, that the inhibition seen in polyphenols is caused by a direct binding and complex formation (not necessarily the active side) of ABC transporters. Since many polyphenols have no or very low toxicity (e.g., many of them are ingredients of our food, such as flavonoids or tannins), they might be excellent candidates as reversal agents, both in chemotherapy and in agriculture.

We have focused on ABC transporters in this review. But as mentioned above, resistance can be due to other mechanisms as well and is often multifactorial. Faria et al. (2011) and Kim et al. (2007, 2010) have successfully employed thymol (a phenolic monoterpen), salicyl aldehyde, and the alkaloid berberine to enhance the activity of fungicides in Candida, Aspergillus, Penicillium, and Cryptococcus. These experimental data can be regarded as a proof of concept that plant secondary products can be interesting candidates for chemosensitization (even if they not interfere with ABC transporters) of pathogenic fungi in agriculture and food technology to improve the fungicidal activity of certain fungicides.

CONCLUSION

This review summarizes the evidence that selected SM of plants can be interesting candidates to inhibit ABC transporters in MDR cancer cells or to chemosensitize pathogenic fungi and other microbes for treatment with antimicrobial agents. Whereas lipophilic terpenoids and alkaloids appear to be substrates of P-gp, MRP1, or BCRP and thus competitive inhibitors, the more polar phenolic compounds (flavonoids, tannins, quinones) can bind to the transporter proteins and inhibit their activity by disturbing protein conformation. A combination of a cytotoxic agent, antibiotic, or fungicide with a natural chemosensitizer (not necessarily an inhibitor of ABC transporters) might provide an interesting strategy to overcome MDR in cancer patients and to improve antibiotic or antifungal efficacy in medicine, agriculture, or food industry.

REFERENCES

Adams, M., Mahringer, A., Kunert, O., Fricker, G., Efferth, T., and Bauer, R. (2007). Cytotoxicity and p-glycoprotein modulating effects of quinolones and indoquinolines from the Chinese herb Evodia rutaecarpa. Planta Med. 73, 1554–1557.
Agarwal, R., Agarwal, C., Ichikawa, H., Singh, R. P., and Aggarwal, B. B. (2006). Anticancer potential of silymarin, from bench to bed side. Anticancer Res. 26, 4457–4498.
Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I., and Gottesman, M. M. (1999). Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39, 361–398.
An, G., Wu, F., and Morris, M. E. (2011). 5,7-Dimethoxyflavone and multiple flavonoids in combination alter the ABCG2-mediated tissue distribution of mitoxantrone in mice. Pharm. Res. 28, 1090–1099.
Andrade, A. C., Del Sorbo, G., Van Nistelrooy, I. G., and Waard, M. A. (2000). The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146, 1987–1997.
Angelini, A., Di Ilio, C., Castellani, M. L., Conti, P., and Cucurullo, F. (2010). Modulation of multidrug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin-resistant sarcoma cells (MES-SA/DX-5), implications for natural sedatives as chemosensitizing agents in cancer therapy.
Channamahaththi, W., ampsawe, C., Gregor, H., and Limtrakul, P. (2011). "Stemonal alkaloids, from traditional Thai medicine, increase chemosen- sitivity via P-glycoprotein-mediated multidrug resistance. Phytomedicine 18, 199–204.

Chauvett, B., Pelletier, H., Corda, C., Solay, E., Bedenne, L., Caillot, D., and Martin, F. (1990). Potential usefulness of quinine to circum- vent the anthracycline resistance in clinical practice. Br. J. Cancer 62, 395–397.

Chen, G., Ramachandran, C., and Krish- han, A. (1993). Thalbidamia, a plant alkaloid, circumsents multidrug resistance by direct binding to P-glycoprotein. Cancer Res. 53, 2544–2547.

Chen, C., Teicher, B. A., and Frei, E. (1996). Differential interactions of Pgp inhibitor thalbidamia with adriamycin, etoposide, taxol and anthrapyrrole C94 in sensitive and multidrug-resistant human MCF-7 breast cancer cells. Anti- cancer Res. 16, 3499–3505.

Chen, G., and Waxman, D. J. (1995). Complete reversal by thalbidamia of 490-fold adriamycin resistance in multidrug-resistant (MDR) human breast cancer cells. Evidence that multiple biochemical changes in MDR cells need not correspond to multiple functional determinants for drug resistance. J. Pharmacol. Exp. Ther. 274, 1271–1277.

Chieli, E., Romiti, N., Rodeiro, I., and Garrido, G. (2010). In vitro modulation of ABCB1/P-glycoprotein expression by indole-3-carbinol. Mol. Cancer Ther. 9, 395–397.

Chung, S. Y., Sung, M. K., Kim, N. H., Jang, J. O., Go, E. J., and Lee, H. J. (2005). Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch. Pharm. Res. 28, 823–828.

Chusri, S., Villanueva, I., Voravuthikunchai, S. P., and Davies, I. (2009). Enhancing antibotic activity, a strat- egy to control Acinetobacter infec- tions. J. Antimicrob. Chemother. 64, 1203–1204.

Conseil, G., Baubichon-Cortay, H., Dayan, G., Jult, M. J., Barron, D., and Di Pietro, A. (1998). Flavonoids, a class of modulators with bifunc- tional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 95, 9831–9836.

Cowguy, H. C., Janviller, T., van Veen, H. W., Hladky, S. B., and Barrand, M. A. (2004). Interaction of the breast cancer resistance protein with plant polyphenols. Biochem. Biophys. Res. Commun. 317, 269–275.

Critchfield, J. W., Welsh, C. J., Phang, J. M., and Yeh, G. C. (1994). Modula- tion of adriamycin accumula- tion and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mech- anism. Biochem. Pharmacol. 48, 1437–1445.

Cui, X. R., Tsukada, M., Suzuki, N., Shimamura, T., Gao, L., Koyanagi, J., Komada, F., and Saito, S. (2008). Comparison of the cytotoxic activ- ities of naturally occurring hydrox- yanthraquinones and hydroxynaph- thoquinones. Eur. J. Med. Chem. 43, 1206–1215.

dantz, A. H., Law, K. L., Cao, I., and Starling, J. L. (2001). Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr. Med. Chem. 8, 39–50.

dantz, A. H., Shepard, R. L., Cao, I., Law, K. L., Elhardt, W. J., Baugh- man, T. M., Bumol, T., and Starling, J. J. (1996). Reversal of P-glycoprotein- mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res. 56, 4171–4179.

de Castro, W. V., Mertens-Talcott, S., Derendorf, H., and Butterweck, V. (2007). Grapefruit juice–drug interactions, grapefruit juice and its components inhibit P-glycoprotein (ABC11) mediated transport of talinolol in Caco-2 cells. J. Pharm. Sci. 96, 2808–2817.

de Castro, W. V., Mertens-Talcott, S., Derendorf, H., and Butterweck, V. (2008). Effect of grapefruit juice, naringin, naringenin, and berg- amottin on the intestinal carrier- mediated transport of talinolol in rats. J. Agric. Food Chem. 56, 4840–4845.

de Lannoy, I. A., and Silverman, M. (1992). The MDR1 gene product, P- glycoprotein, mediates the transport of the cardiac glycoside, digoxin.

Biochem. Biophys. Res. Commun. 189, 351–357.

det, H., McIntosh, D. B., Conse- il, G., Baubichon-Cortay, H., Ried, T., Jult, M. J., Daskiewicz, I. B., Barron, D., and Di Pietro, A. (2001). Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain of mouse P-glycoprotein, structure-activity relationships for flavonoid binding. Biochemistry 40, 10382–10391.

Ding, Z., Tang, S. C., Weersasinghe, P., Yang, X., Pater, A., and Liepins, A. (2002). The alkaloid sanguinarine is effective against multidrug resis- tance in human cervical cells via biroidal cell death. Biochem. Phar- macol. 63, 1415–1421.

Dsilvane, M., Saini, G., Ferlini, C., Gaggini, C., Gavino, V., Denc, R., Riva, A., Bombardelli, E., Ojima, I., Fattotossi, A., Panici, P. B., and Mancuso, S. (1997). Anti- proliferative activity of a new class of taxanes (14beta-hydroxy-10-deacetylbaeastatin III derivatives) on multidrug-resistance-positive human cancer cells. Int. J. Cancer 72, 844–850.

Dorr, R. T., Liddi, J. J., Von Hoff, D. D., Soble, M., and Osborne, C. K. (1989). Antitumor activity and murine pharmacokinetics of par- enteral acrornycin. Cancer Res. 49, 340–344.

Dute, N., Gremant, N., Abreu, P. M., Molnar, J., and Ferreira, M. I. (2006). New macrocyclic lathyrate diterpenes, from Euophorbia lagascae, as inhibitors of multidrug resistance of tumour cells. Planta Med. 72, 162–168.

Duarte, N., Lage, H., Abrantes, M., and Ferreira, M. J. (2010). Phe- nolic compounds as selective anti- neoplastic agents against multidrug- resistant human cancer cells. Planta Med. 76, 975–980.

Duarte, N., Ramalhete, C., Varga, A., Molnar, J., and Ferreira, M. I. (2009). Multidrug resistance modu- lation and apoptosis induction of cancer cells by terpenic compounds isolated from Euophorbia species. Anticancer Res. 29, 4467–4472.

Effth, T., Chen, Z., Kaina, B., and Ag, W. (2005). Molecular determinants of response of tumor cells to berber- ine. Cancer Genomics Proteomics 2, 115–123.

Effth, T., Sauerbrey, A., Halatsch, M. E., Ross, D. D., and Gebhart, E. (2003). Molecular modes of action of cephalotaxine and homoharring- tine from the coniferous tree Cephalotaxus hainanensis in human
tumor cell lines. Nauturn Schmiede-berg Arch. Pharmacol. 367, 56–67.
El-Readi, M. Z., Hamdan, D., Farrag, N., El-Shabby, A., and Wink, M. (2010). Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. Eur. J. Pharmacol. 626, 139–145.
Elshag, P. H., Hendrikse, N. H., Bart, J., Vlaalburg, W., and van Waarde, A. (2004). PET studies on P-glycoprotein function in the blood-brain barrier, how it affects uptake and binding of drugs within the CNS. Curr. Pharm. Des. 10, 1493–1503.
Etheridge, A. S., Black, S. R., Patel, P. R., So, I., and Mathews, J. M. (2002). In vitro evaluation of cytotoxic P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents. Planta Med. 73, 731–741.
Falcão-Silva, V. S., Silva, D. A., Souza Mde., E., and Siqueira-Junior, J. P. (2009). Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Heris-santia tubae (Malvaceae). Phytother. Res. 23, 1367–1370.
Faria, N. C. G., Kim, J. H., Goncalves, L., Martins, M., Chan, K. L., and Campbee, B. (2011). Enhanced activity of antifungal drugs using natural phe-noles against yeast strains of Can-dida and Cryptococcus. Lett. Appl. Microbiol. 5, 506–513.
Fernández, J., Castiño, R. O., da Costa, M. R., Wagner-Souza, K., Coelho Kaplan, M. A., and Gattass, C. R. (2003). Pentacyclic triterpenes from Chrysobalanus species, cytotox-icity on multidrug resistant and sen-sitive leukaemia cell lines. Cancer Lett. 190, 165–169.
Foster, B. C., Foster, M. S., Vanden-hoek, S., Krantis, A., Budzinski, J. W., Arnason, J. T., Gallicano, K. D., and Choudri, S. (2001). An in vitro evaluation of human cytochrome P450 3A4 and P-glycoprotein inhibition by garlic. J. Pharm. Pharmacol. Sc. 4, 176–184.
Fu, L., Liang, Y., Deng, L., Ding, Y., Chen, L., Ye, Y., Yang, X., and Pan, Q. (2004). Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Chemother. Phar-macol. 53, 349–356.
Fu, L. W., Zhang, Y. M., Liang, Y. J., Yang, X. P., and Pan, Q. C. (2002). The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/dr resistance. Eur. J. Cancer 38, 418–426.
Genne, P., Dimanche-Boitrel, M. T., Mavournay, R. Y., Gutierrez, G., Duchamp, O., Petit, J. M., Martin, F., and Chaufttell, B. (1992). Chinchone, a potent efflux inhibitor to circumvent anthracycline resistance in vivo. Cancer Res. 52, 2797–2801. Genne, P., Duchamp, O., Solary, E., Pinard, D., Belon, J. P., Dimanche-Boitrel, M. T., and Chaufttell, B. (1994). Comparative effects of quinine and cinchonine in reversing multidrug resistance on human leukaemic cell line K562/ADM. Leukemia 8, 160–164.
Gibbons, S., Leimkugel, J., Olowutuyi, S. H., and Heinrich, M. (2003). Activity of Zanthoxylum clava-herculis extracts against multi-drug resistant methcillin-resistant Staphylococcus aureus (mdr-MRSA). Phytother. Res. 17, 274–275.
Gibbons, S., and Udo, E. E. (2000). The effect of reserpine, a modula-tor of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methi-cillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determi-nant. Phytomther. Res. 14, 139–140.
Gillet, J., P., Effert, T., Steinbach, D., Hamel, J., de Longueville, F., Bert-holet, V., and Remacle, J. (2004). Microarray-based detection of mul-tidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res. 64, 8987–8993.
Gottsmann, M. M. (2002). Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627.
Guengerich, F. P. (2001). Uncommon P450-catalyzed reactions. Curr. Drug Metab. 2, 93–115.
Guo, X. L., Leng, P., Yang, Y., Lu, G., and Lou, H. X. (2008). Plagiochin E, a botanic-derived pheno-lic compound, reverses fungal resis-tance to fluconazole relating to the multidrug-resistant cell line. Br. J. Cancer 71, 931–936.
Hayatî, F., Vergely, C., Du Vignaud, P., and Grand-Perret, T. (1993). In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53, 4595–4602.
Ignacimuthu, S., and Shanmugam, N. (2010). Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adha-toda vasica Nees. J. Ethnopharmacol. 35, 565–570.
Ikeeda, R., Che, X. F., Yamaguchi, T., Ushiyama, M., Zheng, C. L., Oku-mura, H., Takeda, Y., Shibayama, Y., Nakamura, K., and Jeung, H. C. (2005). Cepharanthine potently enhances the sensitivity of anti-cancer agents in K562 cells. Cancer Sci. 96, 372–376.
Ingeleim-Sundberg, M., and Gomez, A. (2010). The past, present and future of pharmacoeconomics. Pharma-racogenomics 11, 625–662.
Ivanova, A., Serly, J., Christov, V., Stam-boliyska, B., and Molnar, J. (2011). Alkaloids derived from genus Ver-atrum and Pyeganum of Mongol-ian origin as multidrug resistance inhibitors of cancer cells. Fitoterapia 82, 570–575.
Ivanova, A., Serly, J., Dinech, D., Ocsovski, L., Kostova, I., and Mol-nar, J. (2009). Screening of some saponins and phenolic components of Tribulus terrestris and Simalux extracts on MDR modulators. In vivo 23, 545–550.
Jeong, Y. H., Chung, S. Y., Han, A. R., Sung, M. K., Jang, D. S., Lee, J., Kwon, Y., Lee, H. J., and Seo, E. K. (2007). P-glycoprotein inhibitory activity of two phenolic compounds, (-)-syringaresinol and tricin from Sasa bornealis. Chem. Biodivers. 4, 12–16.
Kam, T. S., Sim, K. M., Pang, H. S., Koyano, T., Hayashi, M., and Komiyama, K. (2004). Cytotoxic effects and reversal of multidrug resistance by ibogain and related indole alka-oids. Bioorg. Med. Chem. Lett. 14, 4487–4489.
Kam, T. S., Subramaniam, G., Sim, K. M., Yogathan, K., Koyano, T., Toyoshima, M., Rho, C. M., Hayashi, M., and Komiyama, K. (1998). Reversal of multidrug resis-tance (MDR) by aspidfractin-nine-type indole alkaloids. Bioorg. Med. Chem. Lett. 8, 2769–2772.
Kars, M. D., Iseri, O. D., Gunduz, U., and Molnar, J. (2008). Reversal of multidrug resistance by syn-thetic and natural compounds in drug-resistant MCF-7 cell lines. Chemotherapy 54, 194–200.
Kashiwada, Y., Nishimura, K., Kuri-moto, S., and Takaishi, Y. (2011). New 29-nor-cycloartanes with a 3,4-seco- and a novel 2,3-seco-structure from the leaves of Sinocalycanthus chinensis. Bioorg. Med. Chem. 19, 2790–2796.
Katsui, K., Kuroda, M., Wang, Y., Komatsu, M., Himei, K., Takemoto, M., Akaki, S., Asumi, J., Kanazawa, S., and Hiraki, Y. (2004). Cepha-ranthine enhances adriamycin sensi-tivity by synergistically accelerating apoptosis for adriamycin-resistant osteosarcoma cell lines, Saos2-AR and Saos2-FA. Int. J. Oncol. 25, 47–56.
Wink et al. Inhibition of ABC transporter

Kim, J. H., Campbell, B. C., Mahoney, N., Chan, K. L., and Molyneux, R. J. (2010). Chemosensitization of allatoxogenic fungi to antymycin A and streptomycin using salicylaldehyde, a volatile natural compound targeting cellular antioxidant system. Myco-pathologia 171, 291–298.

Kim, J. H., Campbell, B. C., Mahoney, N., Chan, K. L., Molyneux, R. J., and May, G. (2007). Enhanced activity of streptomycin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Lett. Appl. Microbiol. 45, 134–141.

Kitagawa, S., Nabekura, T., Nakamura, Y., Takahashi, T., and Kashvadi, Y. (2007). Inhibition of P-glycoprotein function by tannic acid and penta-gallate. J. Pharm. Pharmacol. 59, 965–969.

Kolaczkowski, M., Kolaczowska, A., Luczynski, J., Witk, S., and Gof- feau, A. (1998). In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb. Drug Resist. 4, 143–158.

Krishnamurthy, P., and Schuetz, J. D. (2006). Role of ABCG2/BCRP in biology and medicine. Annu. Rev. Pharmacol. Toxicol. 46, 381–410.

Kuwet, V., Ngameni, B., Kangou, J. G., Goll, B. M., Albert-Franco, C., Ngadjui, B. T., and Pages, J. M. (2010). Efflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyrone. Antimicrob. Agents Chemother. 54, 1749–1752.

Kurimoto, S., Kashiwada, Y., Lee, K. H., and Takaiishi, Y. (2011a). Triterpenes and a triterpene glucoside from Dysoxylum cumingianum. Phytocenchesis 72, 2025–2211.

Kurimoto, S., Kashiwada, Y., Morris-Natschke, S. L., Lee, K. H., and Takaiishi, Y. (2011b). Dycuscin A-C, three new steroids from the leaves of Dysoxylum cumingianum. Chem. Pharm. Bull. 59, 1303–1306.

Lavie, Y., Haral-Orbital, T., Gaffield, W., N., and Liscowitch, M. (2001). Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells. Anticancer Res. 21, 1189–1194.

Lee, S. W., Hwang, B. Y., Kim, S. E., Kim, H. M., Kim, Y. H., Lee, K. S., Lee, J. J., and Ro, I. S. (1995). Inhibition of modulators for multidrug resistance from the fruits of Evodia officinalis. Korean J. Physiol. Pharmacol. 26, 344–348.

Lee, S. Y., Rhee, Y. H., Jeong, S. I., Lee, H. J., Jung, M. H., Kim, S. H., Lee, E. O., and Ahn, K. S. (2011). Hydrocinchonine, cinchonine, and quinidine potentiate paclitaxel-induced cytotoxicity and apoptosis via multidrug resistance reversal in MES-SA/DX5 uterine sarcoma cells. Environ. Toxicol. 26, 424–431.

Lee, Y.-Y., Yamamoto, K., Hamamoto, H., Nakane, R., and Hibi, T. (2005). A novel ABC transporter gene ABC2 involved in multidrug susceptibility but not pathogenicity in rice blast fungus, Magnaporthe grisea. Pestic. Biochem. Physiol. 81, 13–23.

Lee, Y. S., Kang, O. H., Choi, J. G., Oh, Y. C., Keum, J. H., Kim, S. B., Jeong, G. S., Kim, Y. C., Shin, D. W., and Kwon, D. Y. (2010). Synergistic effect of emodin in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Pharm. Biol. 48, 1285–1290.

Lei, S. Y., Luo, M., Yang, M. C., Lee, K. H., Choi, S. U., and Lee, K. R. (2006a). Aporphine alkaloids and their multidrug resistance reversal in MES-SA/DX5 resistant K562/A02 cells. Mol. Cell. Biochem. 360, 253–260.

Ma, X., and Wink, M. (2008). Lobeline, a piperidine alkaloid from Lobelia can reverse P-gp dependent multidrug resistance in tumor cells. Phytomedicine 15, 754–758.

Ma, Y., and Wink, M. (2009). “Reversal of multidrug resistance (MDR) by the isooquinoline alkaloid glaucine,” in Multiple Drug Resistance, eds A. Meszaros and G. Balogh (Haus- pauge: Nova Science Publishers), 1–19.

Ma, Y., and Wink, M. (2010). The beta-carbolaline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin. Phytother. Res. 24, 859–864.

Mahringer, A., and Fricker, G. (2010). BCRP at the blood-brain barrier, generic regulation by 17β-estradiol. Mol. Pharm. 7, 1835–1847.

Maliepaard, M., van Gastelen, M. A., Tohgo, A., Hausser, F. H., van Waardenburg, R. C., de Jong, L. A. P., Pluim, D., Beijnen, J. H., and Schellens, J. H. (2001). Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin. Cancer Res. 7, 935–941.

Mao, Q., and Unadkat, J. D. (2005). Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J. 7, E118–E133.

Markham, P. N., Westhaus, E., Klyachko, K., Johnson, M. E., and Neyfakh, A. A. (1999). Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother. 43, 2404–2408.

Martins, A., Vanas, A., Schelz, Z., Viveros, M., Molnar, J., Hohmann, J., and Amaral, L. (2010). Constituents of Carpobrotus edulis inhibit P-glycoprotein of MDR1-transfected mouse lymphoma cells. Anticancer Res. 30, 829–835.

Mattern, M. R., Hofmann, G. A., Pol- sky, R. M., Funk, L. R., McCabe, F. L., and Johnson, R. K. (1993). In vitro and in vivo effects of clinically important camptothecin analogues on multidrug-resistant cells. Oncol. Res. 5, 467–474.

Mei, Y., Qian, F., Wei, D., and Liu, J. (2004). Reversal of cancer multidrug resistance by green tea polyphenols. J. Pharm. Pharmacol. 56, 1307–1314.

Meschini, S., Marra, M., Calcabrini, A., Federici, E., Galeffi, C., and Arancia, G. (2003). Voacamine, a bisindolic alkaloid from Psechiara fuchsiaefolia, enhances the cytotoxic effect of doxorubicin on multidrug-resistant tumor cells. Int. J. Oncol. 23, 1503–1513.

Michelot, S., Cartier, G., David, B., Mariotte, A. M., Djouy-Franca, M. G., Kattz, G. W., Stavri, M., and Gibbons, S. (2007). N-caffeoylphenylalanamide derivatives as bacterial efflux pump inhibitors. Bioorg. Med. Chem. Lett. 17, 1755–1758.

Min, Y. D., Choi, S. U., Lee, K. H., and Takaiishi, Y. (2006a). Aporphine alkaloids and their reversal activity of multidrug resistance (MDR) from the stems and rhizomes of Sinomenium acu- tum. Arch. Pharm. Res. 29, 627–632.

Min, Y. D., Yang, M. C., Lee, K. H., Kim, K. R., Choi, S. U., and Lee, K. R. (2006b). Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino. Arch. Pharm. Res. 29, 757–761.

Möller, M., Weiss, J., and Wink, M. (2006). Reduction of cytotoxicity of the alkaloid emetine through P-glycoprotein (MDR1/ABCB1) in human Caco-2 cells and leukaemia cell lines. Planta Med. 72, 1121–1126.

Molnár, J., Engi, H., Gyémánt, N., Schelz, Z., Schprominger, G., Szúcás, M., Hohmann, J., Szabo, M., and Tanács, L. (2008). “Multidrug resistance reversal in cancer cells by selected carotenoids, flavonoids and anthocyanins,” in Bioactive Hetero- cycles VI. Vol. 15, ed. N. Motobashi (Berlin: Springer), 133–159. [Topics in Heterocyclic Chemistry].

Molnar, J., Gyemant, N., Musci, L., Molnar, A., Szabo, M., Kortveleysi,
T. Varga, A., Molnar, P., Toth, G. (2004). Modulation of multidrug resistance and apoptosis of cancer cells by selected carbeneoids. In vivo 18, 237–244.

Najar, I. A., Sachin, B. S., Sharma, S. C., Satti, N. K., Suri, K. A., and Johri, R. K. (2010). Modulation of P-glycoprotein ATPase activity by some phytoconstituents. Phytother. Res. 24, 454–458.

Nakajima, A., Yamamoto, Y., Taura, K., Hata, K., Fukumoto, M., Uchimaru, H., Yonezawa, K., and Yamaoka, Y. (2004). Beneficial effect of cepharanthine on overcoming drug-resistance of hepatocellular carcinoma. Int. J. Oncol. 24, 633–645.

Nakaune, R. N., Hamamoto, H. H., Kohyama, N., Morimoto, S., Yamaoka, Y., and Iwamoto, S. (1996). Mol. Biochem. Biophys. 33, 253–259.

Ordway, D., Hohmann, J., Viveiros, M., Viveiros, A., Molnar, J., Leandro, C., Arroz, M. J., Gracio, M. A., and Amaral, L. (2003). Carpobrotus edulis methanol extract inhibits the MDR efflux pumps, enhances killing of phagocytosed S. aureus and reverses doxorubicin accumulation. Phytother. Res. 17, 512–519.

Perez-Victoria, J. M., Chiquerio, M. J., Consil, G., Dayan, G., Di Pietro, A., Barron, D., Castsans, Y., and Gamarno, F. (1999). Correlation between the affinity of flavonoids binding to the cytosolic site of Leishmania tropica multidrug transporter and their efficiency to revert parasite resistance to daunomycin. Biochemistry 38, 1734–1743.

Rethy, B., Hohmann, J., Minorics, R., Varga, A., Osocvski, I., Molnar, J., Juhasz, K., Falkay, G., and Zupko, E. (2008). Antimutour properties of acridone alkaloids on a murine lymphoma cell line. Anticancer Res. 28, 2733–2743.

Robert, J., and Jarry, C. (2003). Multidrug resistance reversal agents. J. Med. Chem. 46, 4805–4817.

Roba Gd, G., Simoes, M., Lucio, A. O., Oliveira, R. R., Coelho Kaplan, M. A., and Gattass, C. R. (2007). Natural triterpenoids from Cecropia lyrata are cytotoxic to both sensitive and multidrug resistant leukemia cell lines. Bioorg. Med. Chem. 15, 7753–7760.

Rojas, R., Caviedes, L., Aponte, J. C., Vaisberg, A. J., Lewis, W. H., Lamas, G., Saracasa, C., Gilman, R. H., and Hammond, G. B. (2006). Aegicerin, the first oleane triterpene with wide-ranging antimycobacterial activity, isolated from Clavija procuta. J. Nat. Prod. 69, 845–846.

Scambia, G., Ranelliti, F. O., Panici, P. B., De Vincenzo, R., Bonanno, G., Ferrandina, G., Piantelli, M., Bussa, S., Rumi, C., and Canfiglia, M. (1994). Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line, P-glycoprotein as a possible target. Cancer Chemother. Pharmacol. 34, 459–464.

Schnikel, A. H., and Monker, J. W. (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family, an overview. Adv. Drug Deliv. Res. 55, 3–29.

Severina, I. L., Muntany, M. S., Lewis, K., and Skulachev, V. P. (2001). Transfer of cationic antibacterial agents berberine, palmitine, and benzalkonium through bimolecular planar phospholipid film and Staphylococcus aureus membrane. IUMRM Life 52, 321–324.

Shapiro, A. B., and Ling, V. (1997). Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem. Pharmacol. 53, 587–596.

Sharma, S., Kumar, M., Nargotra, A., Koul, S., and Khan, I. A. (2010). Piperine as an inhibitor of Rvl258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65, 1694–1701.

Smith, E. C., Kaatz, G. W., Seo, S. M., Wareham, N., Williamson, E. M., and Gibbons, S. (2007). The phenolic diterpene tetterol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 4480–4483.

Solary, E., Mannone, L., Moreau, D., Caillot, D., Casasnovas, R. O., Guy, H., Grandjean, M., Wolf, J. E., Andre, F., and Fenaux, P. (2000). Phase I study of cinchonine, a multidrug resistance-reversing agent, combined with the CHVP regimen in relapsed and refractory lymphoproliferative syndromes. Leukemia 14, 2085–2094.

Steifens, J. J., Pell, E. J., and Tien, M. (1996). Mechanisms of fungicide resistance in phytopathogenic fungi. Curr. Opin. Biotechnol. 7, 348–355.

Steinbach, D., Sell, W., Voigt, A., Hermann, J., Zintl, F., and Sauerbrey, A. (2002). BCRP gene expression sitization of P-glycoprotein overexpressing K562/Adr cells by verapamil and the A TP binding cassette (ABC) transporter: a critical review of current multidrug resistant cell-lines. Biochim. Biophys. Acta 1139, 169–183.

Sturm, J. S., and Rodriguez-Proteau, R. (2008). Effects of dietary flavonoids on the transport of cimetidine via P-glycoprotein and cationic transporters in Caco-2 and LLC-PK1 cell models. Xenobiotica 38, 1356–1360.

Taur, J. S., and Rodrigues-Brito, A. (2010). Effects of dietary flavonoids on the transport of cimetidine via P-glycoprotein and cationic transporters in Caco-2 and LLC-PK1 cell models. Xenobiotica 38, 1356–1360.

Tian, H., and Pan, O. C. (1997). Modulation of multidrug resistance by three bishenyl-isoquinolines in comparison with verapamil. Zhongguo Yao Li Xue Bao 18, 455–458.

Tournier, N., Chevillard, L., Megabrange, P., Pirnay, S., Scherrmann, J. M., and Decleves, X. (2010). Interaction of drugs of abuse and maintenance treatment with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int. J. Neuropsychopharmacol. 13, 905–915.

Trompier, D., Daubion-Cortay, H., Chang, X. B., Maitrejean, M., Barron, D., Riordon, J. R., and Di Pietro, A. (2003). Multiple flavonoid-binding sites within multidrug resistance protein MRPI. Cell. Mol. Life Sci. 60, 2164–2177.

Wink et al. Inhibition of ABC transporter

Frontiers in Microbiology | Fungi and Their Interactions April 2012 | Volume 3 | Article 130 | 14
novel non-immunosuppressive cyclosporin. Eur. J. Cancer 27, 1639–1642.

van der Kolk, D. M., Vellenga, E., Müller, M., and De Vries, E. G. E. (1999). Multidrug resistance protein MRP1, glutathione, and related enzymes – their importance in acute myeloid leukemia. Adv. Exp. Med. Biol. 457, 187–198.

gorkoen, B. A., Timmer-Bosscha, H., de Jong, S., van der Kolk, D. M., Kleibeuker, J. H., and de Vries, E. G. (2002). Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1. Br. J. Cancer 86, 1494–1500.

Versantvoort, C. H., Broxtermann, H. J., Lankelma, J., Feller, N., and Pinedo, H. M. (1994). Competitive inhibition by genistein and ATP dependen-
tance of daunorubicin transport in intact MRPI overexpressing human small cell lung cancer cells. Biochem. Pharmacol. 48, 1129–1136.

Versantvoort, C. H., Rhodes, T., and Twentymann, P. R. (1996). Acceleration of MRP-associated efflux of rhodamine 123 by genistein and related compounds. Br. J. Cancer 74, 1949–1954.

Wang, F. P., Wang, L., Yang, J. S., Nomura, M., and Miyamoto, K. (2005). Reversal of P-glycoprotein-dependent resistance to vinblin-
tine by newly synthesized bisben-
sylsuxoilnoline alkaloids in mouse leukemia P388 cells. Biol. Pharm. Bull. 28, 1979–1982.

Wang, L., Bai, L., Nagasawa, T., Hasegawa, T., Yang, X., Sakai, J., Bai, Y., Kataoka, T., Oka, S., and Hirose, K. (2008). Bioactive triter-
pene saponins from the roots of Phy-
toloxia americana. J. Nat. Prod. 71, 1949–1954.

Watanabe, T., Tsuge, H., Oh-Hara, T., Naito, M., and Tsuruo, T. (1995). Comparative study on reversal effi-
cacy of SDZ PSC 833, cyclosporin A and verapamil on multidrug resistance in vitro and in vivo. Acta Oncol 34, 235–241.

Weerasinghe, P., Hallock, S., Tang, S. C., Trumpy, K. P., and Liepins, A. (2006). Sanguinarine overcomes P-
glycoprotein-mediated multidrugresistance via induction of apop-
tosis and oncisin CEM- VLB 1000 cells. Exp. Toxicol. Pathol. 58, 21–30.

Wei, D., Mei, Y., and Liu, J. (2003). Quantification of doxorubicin and validation of reperfusion of tea polyphenols on multidrug resistance in human carcinoma cells. Biotech-
nol. Lett. 25, 291–294.

Wink, M. (2008a). Plant secondary metabolites from the roots of *H. M.*, Vol. 39. Chichester: Wiley-Blackwell.

Wink, M. (2007). Molecular modes of action of multi-component mix-
tage and molecular modes of action of monoterpenoids contained in *P. R.* (1996). Acceler-
cation and molecular phylogenetic per-
tence of tetrandrine on the rever-
sal of P-glycoprotein-mediated drug efflux in human intestinal Caco-2 cells. J. Agric. Food Chem. 55, 7620–7625.

Yoshida, N., Takagi, A., Kitazawa, H., Kawakami, J., and Adachi, I. (2005). Inhibition of P-glycoprotein-mediated transport by extracts of *Zanthoxylum fraxinoides*. Toxicol. Appl. Pharmacol. 209, 167–173.

You, G., and Morris, M. E. (2007). Drug Transporters: Molecular Character-
ization and Role in Drug Disposition. Hoboken, NJ: Wiley-Interscience.

You, M., Ma, X., Mukherjee, R., Farnsworth, N. R., Cordell, G. A., Kinghorn, A. D., and Pezzuto, J. M. (1994). Indole alka-
loids from *Pesciera laeta* that enhance vinblastine-mediated cyto-
toxicity with multidrug-resistant cells. J. Nat. Prod. 58, 599–604.

Zamora, J. M., Pearce, H. L., and Beck, W. T. (1988). Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Phar-
macol. 33, 446–462.

Zhang, S., and Morris, M. E. (2003). Effects of the flavonoids biochanin A, morin, phloretin, and silimarvin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 304, 1258–1267.

Zheng, Y., and Liu, D. (2009). Reversal effect and its mechanism of ampelopsin on multidrug resistance in K562/ADR cells. *Zhongguo Zhong Yao Za Zhi* 34, 261–265.

Zhu, A., Wang, X., and Guo, Z. (2001). Study of tea polyphenol as a revers-
al agent for carcinoma cell lines' multidrug resistance (study of TP as a MDR reversal agent). *Nucl. Med. Biol.* 28, 735–740.

Zhu, X., Sui, M., and Fan, W. (2005). In vitro and in vivo characteriza-
tions of tetrandrine on the revers-
al of P-glycoprotein-mediated drug resistance to paclitaxel. *Anticancer Res.* 25, 1953–1962.

Zupko, L., Rethy, B., Hohmann, J., Molnar, J., Ocsovszki, L., and Falkay, G. (2009). Antitumor activ-
ity of alkaloids derived from *Amaryllidaceae* species. In vivo 23, 41–48.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-
mmercial or financial relationships that could be construed as a potential con-
lict of interest.

Received: 12 January 2012; accepted: 19 March 2012; published online: 23 April 2012.

Citation: Wink M, Ashour ML and El-
Readi MZ (2012) Secondary metabolites from plants inhibiting ABC transporters and reversing resistance of cancer cells and microbes to cytotoxic and antinecro-
sidal agents. Front. Microbiol. 3:130. doi:
10.3389/fmicb.2012.00130

This article was submitted to Frontiers in Fungi and Their Interactions, a specialty of Frontiers in Microbiology.

Copyright © 2012 Wink, Ashour and El-Readi. This is an open-access article