Myrothecium-like new species from turfgrasses and associated rhizosphere

Junmin Liang1,*, Guangshuo Li1,2,*, Shiyue Zhou3, Meiqi Zhao4,5, Lei Cai1,3

1 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing 100101, China 2 College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China 3 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4 College of Plant Protection, China Agricultural University, Beijing 100193, China 5 Forwardgroup Turf Service & Research Center, Wanning, Hainan Province, 571500, China

Corresponding author: Lei Cai (cail@im.ac.cn)

Academic editor: I. Schmitt | Received 27 November 2018 | Accepted 26 February 2019 | Published 18 April 2019

Citation: Liang J, Li G, Zhou S, Zhao M, Cai L (2019) Myrothecium-like new species from turfgrasses and associated rhizosphere. MycoKeys 51: 29–53. https://doi.org/10.3897/mycokeys.51.31957

Abstract

Myrothecium sensu lato includes a group of fungal saprophytes and weak pathogens with a worldwide distribution. Myrothecium s.l. includes 18 genera, such as Myrothecium, Septomyrothecium, Myxospora, all currently included in the family Stachybotryaceae. In this study, we identified 84 myrothecium-like strains isolated from turfgrasses and their rhizosphere. Five new species, i.e., Alfaria poae, Alf. humicola, Dimorphiseta acuta, D. obtusa, and Paramyrothecium sinense, are described based on their morphological and phylogenetic distinctions. Phylogenies were inferred based on the analyses of sequences from four DNA loci (ITS, cmdA, rpb2 and tub2). The generic concept of Dimorphiseta is broadened to include a third type of seta, i.e. thin-walled, straight with obtuse apices.

Keywords

Stachybotryaceae, soil fungi, turfgrass disease, multi-locus phylogeny, cup-shaped sporodochia

Introduction

Myrothecium was first introduced by Tode (1790) based on M. inundatum. The typical characters of these fungi are cup-shaped sporodochia covered by a mass of slimy, green to black conidia. The generic concept of Myrothecium has been emended several times

* These authors contributed equally to this study.
(Link 1809; von Höhnel 1905; Pidoplichko and Kirilenko 1971). Decock et al. (2008) reported that the genus *Myrothecium* is not monophyletic based on internal transcribed spacer regions and the intervening 5.8S rDNA (ITS). Chen et al. (2015) re-evaluated the phylogeny of *Myrothecium* based on ITS and elongation factor 1-alpha (EF1-α) gene sequences, suggesting the polyphyly of *Myrothecium* within Stachybotryaceae. These studies did not make taxonomic conclusions accordingly. Lombard et al. (2016) constructed a backbone tree of *Myrothecium* s.l. based on a multi-locus phylogeny and resolved *Myrothecium* s.l. to 18 genera including 13 new genera introduced. Under the current concept of *Myrothecium* sensu stricto, only two species were included, *M. inundatum* and *M. simplex* (Lombard et al. 2016).

Most myrothecium-like species are saprobes in soils (Ellis and Ellis 1985). Many species were named referring to their substrates such as *Alfaria terrestris*, *Albifimbria terrestris*, *Simorphiseta terrestris* and *Parvothecium terrestre*. Some species were also reported as weak plant pathogens. For instance, *Paramyrothecium roridum* (syn. *Myrothecium roridum*) can infect coffee plants, causing bark canker (Tullock 1972). *Albifimbria verrucaria* (syn. *Myrothecium verrucaria*) is pathogenic to mulberry causing leaf spot (Murakami et al. 2005). In addition, myrothecium-like species are also well-studied for their natural compounds, which are able to inhibit the activity of liver cancer and tumors (Pope 1944; Okunowo et al. 2010). Some myrothecium-like species can also produce a cocktail of secondary metabolites, which have strong antifungal and antibiotic activity (Kobayashi et al. 2004; Liu et al. 2006; Ruma et al. 2015). Hereto, more than 50 of these bioactive compounds have been reported from *P. roridum* and *Alb. verrucaria* (Wagenaar and Clardy 2001).

In a survey of turfgrass diseases from 2017, a number of myrothecium-like strains were collected from leaves and roots of turfgrasses and their rhizosphere. The aim of this study was to characterize these strains based on morphology and molecular phylogenetic analyses.

Materials and methods

Fungal isolates

From May 2017 to March 2018, turfgrass diseases were investigated on cold-season species in Beijing and on warm-season species in Hainan Province. A total of 130 samples were collected. Each sample was treated as an underground part of soil sample and a ground part of diseased grasses. Soil samples were isolated following the modified dilution plate method (Zhang et al. 2017). Five grams of each soil sample were suspended in 30 mL sterile water in a 50 mL bioclean centrifuge tube. The suspension was mixed thoroughly using Vortex-Genie 2 (Scientific Industries, New York) with maximum speed and then diluted to a series of concentration, i.e., 10^{-1}, 10^{-2}, 10^{-3} and 10^{-4}. The 100 μL suspensions of each concentration were spread on to antibiotic potato dextrose agar (PDA, 4 g potato starch, 5 g dextrose and 15 g agar, 50 mg ampicillin...
and streptomycin sulfate in 1 L sterile water). The first few samples suggested that 10^-2 was the best-diluted concentration for colony pickup. Diseased samples were isolated following a tissue isolation protocol (Chen et al. 2015). All plates were incubated at room temperature (23–25 °C) for 3–4 weeks, and from which all single colonies were picked up and transferred to clean PDA plates. Purified strains were stored at 4 °C for further studies. For phylogenetic analysis, associated sequences of 73 myrothecium-like strains and one outgroup strain were retrieved from GenBank (NCBI, https://www.ncbi.nlm.nih.gov/; Table 1).

Morphology and culture characteristics

Descriptions of macromorphological features are based on 7-d old materials incubated in the dark at room temperature (20–25 °C) and grown on potato dextrose agar (2% w/w; PDA), oatmeal agar (OA), cornmeal agar (CMA) and synthetic low-nutrient agar (SNA; Nirenberg 1981). Color description followed the color guide by Kornerup and Wanscher (1978). Digital images of colonies were made with a Nikon Eclipse 80i light microscope (Tokyo, Japan) with differential interference contrast (DIC) illumination and a LV2000 digital camera (Beijing, China). Slides mounted in clear lactic acid were also prepared to observe conidiogenesis, conidiophores and conidia.

DNA extraction and PCR amplification

Genomic DNA was extracted from 1–2 weeks’ old cultures grown on potato dextrose agar (2% w/w; PDA) incubated at room temperature using a modified Cetyltrimethyl Ammonium Bromide (CTAB) method (Rogers and Bendich 1994). Partial sequences of four genes, ITS, RNA polymerase II second largest subunit (rpb2), β-tubulin (tub2) and calmodulin (cmdA) gene sequences were amplified using the following pairs of primers, ITS1 and ITS4 (White et al. 1990) for ITS, RPB2-5F2 and RPB2-7cR (O’Donnell et al. 2007) for rpb2, Br2a and Br2b (Glass and Donaldson 1995) for tub2 and CAL-228F (Carbone and Kohn 1999) and CAL2Rd (Groenewald et al. 2013) for cmdA. Amplification for each locus followed the PCR protocols as described in Lombard et al. (2016). The PCR was performed in a 25 μL reaction volume including 2.5 μL 10 × PCR Buffer (Dingguo, Beijing, China), 2 mM MgCl₂, 50 μM dNTPs, 0.1 μM of each primer, 0.5 U Taq DNA polymerase and 10 ng genomic DNA. PCR reactions were conducted in ProFlex™ PCR system (Applied Biosystems, California, USA) under the following reaction conditions: predenaturation at 94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 52 °C (for ITS) or 54 °C (for rpb2 and cmdA) or 56 °C (for tub2) for 40 s and elongation at 72 °C for 1 min, a final elongation at 72 °C for 5 min.

The purified PCR products were sequenced in both forward and reverse directions on an ABI-3730 XL DNA Analyzer (Applied Biosystems, California, USA). The se-
Table 1. Strains and NCBI GenBank accessions used in the phylogenetic analyses.

Species	Isolate no. *	Host/Substrate	Country	NCBI accession numbers			
Mycotoxicium simplex	CBS 582.93	Decaying agaric	Japan	KU846439 NR145079 KU846537 –			
	CBS 100287		Japan	KU846440 KU846457 KU846538 –			
M. inundatum	CBS 275.48*	*Rusula* nigricans	England	KU846435 KU846452 KU846533 –			
	CBS 116539	Agaric	Canada	KU846437 KU846454 KU846535 –			
Albosphinria lateralis	CBS117712	Unknown	USA	KU845865 KU845881 KU845957 KU845919			
Alb. terrestris	CBS 1261*6T	Soil in mopane woodlands	Namibia	KU845867 KU845883 KU845959 KU845921			
	CBS 109378*	Dead hardwood	USA	KU845866 KU845882 KU845958 KU845920			
	CBS 127838	Soil	Namibia	KU845868 KU845884 KU845960 KU845922			
	LC12196	rhizosphere soils of *Poa* sp.	China	MK500260 MK478879 MK500277 –			
Alb. verrucaria	CBS 328.52*	*Solanum* tuberorum	USA	KU845875 KU845893 KU845969 KU845931			
	CBS 189.46*	*Tubularia* tubulifera	Cyprus	KU845872 KU845889 KU845965 KU845927			
	LC12191	Rhizosphere soils of *Poa* sp.	China	MK500255 MK478874 MK500272 MK500264			
	LC12192	Rhizosphere soils of *Poa* sp.	China	MK500256 MK478875 MK500273 MK500265			
	LC12193	Rhizosphere soils of *Poa* sp.	China	MK500257 MK478876 MK500274 MK500266			
	LC12194	Rhizosphere soils of *Poa* sp.	China	MK500258 MK478877 MK500276 MK500267			
	LC12195	Rhizosphere soils of *Poa* sp.	China	MK500259 MK478878 MK500275 MK500268			
Alb. viridis	CBS 449.71*	Unknown	India	KU845879 KU845898 KU845974 KU845936			
	CBS 127346	Soil	USA	KU845880 KU845899 KU845975 KU845957			
Alfaria. uniformis	CBS 324.74*	Prairie soil	USA	KU845977 KU845984 KU846015 KU846002			
Alf. humicola sp. nov.	CGMCC3.19213*	Rhizosphere soils of *Poa* sp.	Beijing, China	MH885432 MH793291 MH793317 MH818829			
	LC12144	Rhizosphere soils of *Poa* sp.	Beijing, China	MH885434 MH793292 MH793318 MH818830			
Alf. poae sp. nov.	CGMCC3.19198*	Leaves of *Poa* sp.	Hainan, China	MH885419 MH793278 MH793314 MH818826			
	LC12141	Rhizosphere soils of *Poa* sp.	Hainan, China	MH885420 MH793279 MH793315 MH818828			
	LC12142	Rhizosphere soils of *Poa* sp.	Hainan, China	MH885421 MH793280 MH793316 MH818827			
Alf. putrefolia	CBS 112037*	Rotten leaf	Brazil	– KU845985 KU846016 KU846003			
	CBS 112038	Rotten leaf	Brazil	– KU845986 KU846017 KU846004			
Alf. terrestris	CBS 477.91*	Soil	Turkey	KU845979 KU845988 KU846019 KU846006			
Alf. thymi	CBS 447.83*	*Thymus* serpyllum	The Netherlands	KU845981 KU845990 KU846021 –			
Capito fimbia compacta	CBS 111739*	Decaying leaf	Brazil	KU846261 KU846287 KU846404 KU846349			
	MUCL 50238	Bark	Zimbabwe	– KU878556 KU878559 KU878558			
Dimorphospora terrestris	CBS 127345*	Soil collected in tallgrass prairie	USA	KU846284 KU846314 KU846431 KU846375			
	CGMCC3.19208*	Rhizosphere soils of *Poa* pratensis	Beijing, China	MH885429 MH793288 – MH818815			
D. acuta sp. nov.	LC12123	Leaves of *Digitaria* sanguinalis	Beijing, China	MH885417 MH793276 MH793300 MH818811			
	LC12124	Leaves of *Poa* pratensis	Beijing, China	MH885418 MH793277 MH793297 MH818812			
Species	Isolate no.	Host/Substrate	Country	NCBI accession numbers			
---------	-------------	----------------	---------	-----------------------			
D. acuta sp. nov.				cmdA	ITS	tub2	rpb2
LC12125	Rhizosphere soils of *Poa pratensis*	Beijing, China	MH885427	MH793286	MH793298	MH818813	
LC12126	Rhizosphere soils of *Poa pratensis*	Beijing, China	MH885428	MH793287	MH793299	MH818814	
LC12127	Rhizosphere soils of *Poa pratensis*	Beijing, China	MH885430	MH793289	MH793301	MH818820	
CGMCC3.19206	*Poa pratensis*	Beijing, China	MH885426	MH793285	MH793307	MH818816	
LC12129	Rhizosphere soils of *Agrostis tenuifolia*	Beijing, China	MH885415	MH793274	MH793303	MH818821	
LC12130	Rhizosphere soils of *Poa pratensis*	Beijing, China	MH885431	MH793290	MH793308	MH818817	
LC12131	Rhizosphere soils of *Poa sp.*	Beijing, China	MH885416	MH793275	MH793304	–	
LC12132	Rhizosphere soils of *Festuca arundinacea*	Beijing, China	MH885422	MH793281	MH793305	MH818818	
LC12133	Rhizosphere soils of *Poa pratensis*	Beijing, China	MH885423	MH793282	MH793306	MH818819	
LC12134	Roots of *Poa pratensis*	Beijing, China	MH885424	MH793283	MH793307	–	
D. obtusa sp. nov.				cmdA	ITS	tub2	rpb2
LC12135	Roots of *Poa pratensis*	Beijing, China	MH885425	MH793284	MH793308	MH818817	
Gregatothecium humicola	CBS 205.96c	Soil	Papua New Guinea	KU846285	KU846315	KU846432	KU846376
Peethambara sundara	CBS 646.77c	Dead twig	India	–	KU846471	KU846551	KU846509
Inaequalispora prestonii	CBS 175.73c	Forest soil	Malaysia	KU846286	KU846316	KU846433	KU846377
Myxospora masonii	CBS 148.73c	Leaves of *Glyceria sp.*	England	KU846445	KU846462	KU846543	KU846500
My. graminicola	CBS 116538c	Decaying grass leaf	USA	KU846444	KU846461	KU846542	KU846499
My. aptrootii	CBS 101263c	Leaf litter	China	KU846441	KU846458	KU846539	KU846496
My. mucae	CBS 265.71c	*Musa sp.*	Madagascar	–	KU846473	KU846544	KU846501
My. crassieta	CBS 731.73c	Tarsopterid lesion	South Africa	KU846446	KU846464	KU846545	KU846502
Panmyxothecium baniola	CBS 127295c	Soil collected in tallgrass prairie	USA	–	KU846295	KU846412	KU846356
P. parvum	CBS 257.35c	*Viola sp.*	United Kingdom	–	KU846298	KU846415	KU846359
P. foliicola	CBS 331.51c	*Foeniculum vulgare* leaf sheath	The Netherlands	–	KU846292	KU846409	KU846354
P. nigrum	CBS 116537c	Soil	Spain	KU846267	KU846296	KU846413	KU846357
P. terrestris	LC12188	Rhizosphere soils of *Poa sp.*	China	MK500025	MK78871	MK500269	MK500261
P. papuliferum	CBS 127790T	Surface soil in desert	Namibia	KU846264	KU846291	KU846408	KU846353
P. viridisporum	CBS 873.85c	Soil	Turkey	KU846278	KU846308	KU846425	KU846369
P. foliicola	CBS 113121c	Decaying leaf	Brazil	KU846266	KU846294	KU846411	–
	CBS 419.93c	Air	Caba	KU846265	KU846293	KU846410	KU846355
Species	Isolate no. *	Host/Substrate	Country	NCBI accession numbers			
----------------------	---------------	----------------	---------	------------------------			
P. brevistria	CBS 544.75†	Unknown	India	KU846262			
	CBS 357.89†	Gardenia sp.	Italy	KU846170			
	CBS 212.95	Water	The Netherlands	KU846260			
	CBS 372.50 = IMI 140050	Coffea sp.	Colombia	KU846361			
P. guangense	GUCC 201608501†	Soil	Guyang, China	KY169193			
	HGUP 2016-8001	Soil	Guyang, China	KY169192			
P. verrucatum	HGUP 2016-8006†	Soil	Guizhou, China	KY169197			
P. sinense sp. nov.	CGMGCC 3.19212† = LC12136	Rhizosphere soils of Par in virgin forest	Beijing, China	MH885437			
	LC12137	Rhizosphere soils of Par sp.	Beijing, China	MH885436			
	LC12138	Rhizosphere soils of Par sp.	Beijing, China	MH885433			
	LC12139	Rhizosphere soils of Par sp.	Beijing, China	MH885435			
Parroticium terrestris	CBS 198.89†	Soil in virgin forest	Brazil	KU846449			
Neomyrothecium hamicola	CBS 310.96†	Soil	Papua New Guinea	KU846448			
Gergotosticium hamicola	CBS 205.96†	Soil	Papua New Guinea	KU846425			
X. jollymannii	CBS 276.48* = MUCL 11830	Nicotiana tabacum	Malawi	KU847223			
	CBS 126168	Soil	Namibia	KU847224			
X. leucotricha	CBS 131.64* = IMI 105664 = ATCC 16686	Soil	India	KU847225			
	CBS 483.78	Soil	Colombia	KU847228			
Smagadinieta bitien	CBS 459.82†	Rotten bark	India	KU847206			
S. brachyporum	CBS 513.71† = IMI 115293	Dune sand	Iran	KU847209			
	CBS 131.71* = IMI 158441 = ATCC 22270	Soil	Ukraine	KU847207			
	LC12189	Rhizosphere soils of Par sp.	Beijing, China	MK500253			
	LC12190	Rhizosphere soils of Par sp.	Beijing, China	MK500254			
S. cinctum	CBS 932.69†	Soil	The Netherlands	KU847216			
	CBS 277.48* = IMI 001526	Soil	New Zealand	KU847213			
S. hamicola	CBS 388.97	Soil	Papua New Guinea	KU847217			
Tangerinosticium thalictroideae	CBS 317.61* = IMI 034815	Thalictrum flavum	UK	KU847219			
	CBS 598.80†	Halimeda sp.	Tonga	KU847221			
Virgatospora echinofibrosa	MUCL 39092 = ATCC 200437	Theobroma cacao	Ecuador	KU847220			
Fusarium sambucinum	CBS 146.95	Solarium taberum	UK	KM231391			

* ATCC: American Type Culture Collection, Manassas, USA; BCC: BIOTEC Culture Collection, National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok, Thailand; CBS: CBS-KNAW Fungal Diversity Centre, Utrecht, The Netherlands; CGMCC: China General Microbiological Culture Collection Center, Beijing, China; GUCC: Guizhou University Culture Collection, Guiyang, China; HGUP: Herbarium of the Department of Plant Pathology, Guizhou University, China; IMI: International Mycological Institute, England, UK; LC: Collection of Lei Cai, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; MUCL: Mycothèque de l'Université Catholique de Louvain, Belgium; NRRL: Northern Regional Research Laboratory, USA.
† Ex-type and ex-epitype cultures.
quences were checked and manually corrected where necessary. A consensus contig was assembled with BioEdit v. 7.0.9 (Hall 1999) and the reference sequences were downloaded from GenBank (Table 1). Sequences were aligned with MAFFT v. 7 (Kazutaka and Standley 2013) and manually trimmed to equal length by cutting the unaligned sequences at both ends.

Phylogenetic analyses

Phylogenetic analyses were based on Bayesian inference (BI) and Maximum Likelihood (ML). For BI analysis, the optimal evolutionary model was estimated in MrModeltest v. 2.3 (Nylander 2004) using the Akaike Information Criterion (AIC) for each locus. For the selected substitution models for each locus see Table 2. MrBayes v. 3.2.1 (Ronquist and Huelsenbeck 2003) was used to generate tree topology and a Markov Chain Monte Carlo (MCMC) algorithm of four chains was started with a random seed and a burn in of first 25% trees. The MCMC analysis lasted until the average standard deviation of split frequencies came below 0.01. The ML analysis was performed using RAxML servers (http://phylobench.vital-it.ch/raxml-bb/index.php), with a maximum likelihood bootstrap (LB) of 1,000 replicates, under the GTR-GAMMA model (Stamatakis 2006).

Results

In this study, 603 fungal strains were isolated. Based on colony morphologies and preliminary sequence comparison of ITS via BLASTn in GenBank, 84 myrothecium-like strains were selected. Phylogenetic analyses of above 84 strains were performed on single locus and concatenated datasets (ITS, cmdA, tub2 and rpb2), with 70 strains in *Myrothecium* s.l. as reference and *Fusarium sambucinum* (CBS 146.95) as outgroup. After alignment, the concatenated datasets of four loci contained 569 characters (with gaps) for ITS, 318 for tub2, 732 for cmdA and 724 for rpb2. The characters of different alignments and statistics of phylogenetic analyses were shown in Table 2. The four single locus trees of all strains showed essentially similar topology (Supp. materials 1–4), with only minor differences affecting unsupported nodes on the trees. The resulting multi-locus ML tree was presented in Fig. 1 together with BI posterior probability values. Among 84 myrothecium-like strains, 14 strains were identified as four known species, *Albifimbria verrucaria* (10 strains), *Alb. terrestris* (1 strain), *Striaticonidium brachysporum* (2 strains) and *Paramyrothecium nigrum* (1 strain). The rest of them were grouped into five distinct clades with high supported values. Based on the morphological and phylogenetic distinctions, five novel species (i.e. *Alfaria humicola*, *Alf. poae*, *Dimorphiseta acuta*, *D. obtusa* and *Paramyrothecium sinense*) were described in this paper.
Figure 1. The ML consensus tree inferred from a four-locus concatenated alignment (ITS, cmdA, rpb2 and tub2). Bootstrap values (1,000 replicates) over 70% for ML and posterior probability (PP) over 0.95 are added to the left of a node (ML/PP). The type strains are labeled with “T”. Strains obtained from this study are in red. The tree is rooted using *Fusarium sambucinum* (CBS 146.95).
Figure 1. Continued.

Table 2. Characteristics of the different datasets and statistics of phylogenetic analyses used in this study.

Locus†	Number of sites*	Evolutionary model‡	Number of tree sampled in B	Maximum-likelihood statistics			
	Total	Conserved Ph	Phylogenetically	B unique	Number of	Best tree optimised	Tree length
			informative	patterns	tree sampled	likelihood	
ITS	569	334	193	247	7501	-32666.73	5.36
tub2	318	168	140	159	GTR+I+G		
cmdA	732	258	381	490	HKY+I+G		
rpb2	724	360	367	367	HKY+I+G		

† ITS, the internal transcribed spacer regions and 5.8S rRNA gene; tub2, β-tubulin; cmdA, calmodulin; rpb2: RNA polymerase II second largest subunit.

* B = Bayesian inference.
‡ G: Gamma distributed rate variation among sites. GTR: Generalised time-reversible. I: Proportion of invariable sites. HKY: Hasegawa-Kishino-Yano.
Taxonomy

Dimorphiseta L. Lombard & Crous., Persoonia. 36: 188. 2016. emend. J.M.Liang & L.Cai.

Dimorphiseta terrestris L. Lombard & Crous. Persoonia. 36: 188. 2016. (Type species)

Note. *Dimorphiseta* was a monotypic genus, introduced based on *D. terrestris*, which showed both type I (thin-walled, flexuous to circinate, narrowing to a sharp apex) and type II (thick-walled, straight to slightly curved, narrowing to a sharp apex) setae. Our study demonstrated that there is a third type of setae (type III: thin-walled, straight, terminating in an obtuse apex) in the genus.

Dimorphiseta acuta J.M. Liang, G.S. Li & L. Cai, sp. nov.

MycoBank MB 829693

Fig. 2

Type. China, Beijing, isolated from rhizosphere soils of *Poa pratensis*, 26 Aug 2017, J.M. Liang, holotype HMAS 247957, dried culture on PDA, ex-holotype culture CG-MCC3.19208 = LC12122.

Description. Colonies on PDA, CMA and OA approx. 7–8 cm diam. after 7 d at room temperature (approx. 25 °C), mycelium white and abundant, with conidiophores forming on the aerial mycelium, carrying slimy olivaceous green to black conidial masses, reverse on PDA buff. *Conidiomata* sporodochial, stromatic, superficial, cupulate to discoid, scattered, rarely gregarious, irregular in outline, 50–300 μm diam., 60–150 μm deep, consisting of bundles of parallel, longitudinal, closely compacted hyphae, terminating in whorls of 3–5 conidiogenous cells, covered by an olivaceous green to black slimy mass of conidia without marginal hyphae. *Stroma* poorly developed, hyaline, of a textura angularis. *Setae* arising from the conidial mass, thick-walled, subhyaline, smooth, 5–15-septate, tapering to sharp apices, 120–370 μm long, 10–13 μm wide at the broadest part, 2–4 μm wide at the apex. *Conidiophores* macronematous, irregularly, unbranched, smooth to lightly verrucose, arising from the basal stroma. *Conidiogenous cells* phialidic, subcylindrical, hyaline, smooth, 10–20 μm long, 2–3 μm wide. *Conidia* aseptate, smooth, hyaline, ellipsoidal, rounded at the base, pointed at the apex with a funnel-shaped appendage, 7–12 × 2–3 μm (av. 10 ± 0.7 × 3 ± 1.3 μm, n = 50).

Distribution. China.

Etymology. Name refers to the setae with tapered and sharp apices.

Additional isolates examined. China, Beijing, from leaves of *Digitaria sanguinalis*, 21 Aug 2017, J.M. Liang, LC12123; China, Beijing, from leaves of *Poa pratensis*, 21 Aug 2017, J.M. Liang, LC12124; China, Beijing, from rhizosphere soils of *P. pratensis*, 21 Aug 2017, J.M. Liang & G.S. Li, LC12125, 21 Jul 2017, J.M. Liang, LC12126, 25 Jul 2017, J.M. Liang, LC12127.
Myrothecium-like new species from turfgrasses and associated rhizosphere

Figure 2. *Dimorphiseta acuta* (from ex-type strain CGMCC3.19208) a–c colony on PDA, CMA, OA d conidiomata on SNA e conidiophores f conidiogenous cells g setae h–k conidia. Scale bars: 5 μm (e, f, h): 50 μm (g); 2 μm (i, j, k).

Notes. The multi-locus phylogenetic analyses indicated that *D. acuta* formed a sister clade to *D. terrestris*, but differs from the latter in the type and size of setae. *Dimorphiseta terrestris* produces both types of setae, the thin-walled and circinate type (Type I) and the thick-walled sharp-edged type (Type II), whereas *D. acuta* only produces the type I setae. In addition, the setae of *D. acuta* are much longer and wider than that in *D. terrestris* (120–370 μm × 10–13 μm vs. 70–95 × 3–4 μm) (Lombard et al. 2016). Morphologically, *D. acuta* should also be compared with *M. miconiae* and *M. xigazense*, which also produce sharp-edged setae. *Myrothecium miconiae*, however, differs from *D. acuta* in producing 1-septate conidia (Alves et al. 2010), while *M. xigazense* differs in producing conidia that are truncate at both ends (Wu et al. 2014).
Dimorphiseta obtusa J.M. Liang, G.S. Li & L. Cai, sp. nov.
MycoBank MB 829694

Type. China, Beijing, isolated from rhizosphere soils of *P. pratensis*, 23 Jun 2017, J.M. Liang, holotype HMAS 247954, ex-holotype culture CGMCC3.19206 = LC12128.

Description. Colonies on PDA, OA and CMA approx. 5–6 cm diam. after 7 d at room temperature (approx. 25 °C), mycelium white and abundant, with conidiophores forming on the aerial mycelium, carrying slimy olivaceous green to black conidial masses, reverse on PDA pale luteous to buff. Conidiomata sporodochial, stro-

Figure 3. *Dimorphiseta obtusa* (from ex-type strain CGMCC3.19206) **a–c** colony on PDA, CMA, OA **d** conidioma on SNA **e** setae **f** conidiophores **g** conidiogenous cells **h–k** conidia. Scale bars: 50 μm (**e**); 10 μm (**f, g**); 5 μm (**h**); 2 μm (**i, j, k**).
Myrothecium-like new species from turfgrasses and associated rhizosphere

Matric, superficial, scattered, rarely gregarious, oval to elongate or irregular in outline, 60–280 μm diam., 40–120 μm deep, with a setose fringe surrounding green to black slimy mass of conidia. **Stroma** poorly developed, hyaline, smooth to verrucose, of textura angularis. **Setae** arising from the basal stroma, thin-walled, 3–6-septate, unbranched, hyaline, smooth, 80–250 μm long, 2–4 μm wide at the broadest, terminating in a blunt apex. **Conidiophores** macronematous, irregularly, unbranched, smooth to lightly verrucose, arising from the basal stroma, up to 18 μm long. **Conidiogenous cells** phialidic, hyaline, smooth to verrucose, cylindrical, 7–19 × 2–3 μm, becoming narrowed at the tip with collarette. **Conidia** aseptate, ellipsoidal or cylindrical, hyaline, smooth, rounded both ends, with a funnel-shaped apical appendage, 9–11 × 2–4 μm (av. 10 ± 0.5 × 3 ± 0.3 μm, n = 50).

Distribution. China.

Etymology. Named refers the setae with obtuse apices.

Additional isolates examined. China, Beijing, from rhizosphere soils of *Agrostis stolonifera*, 24 Jul 2017, J.M. Liang, LC12129; China, Beijing, from rhizosphere soils of *P. pratensis*, 25 Aug 2017, J.M. Liang & G.S. Li, LC12130, 19 Jul 2017, J.M. Liang, LC12133; China, Beijing, from rhizosphere soils of *Poa* sp., 19 Jul 2017, J.M. Liang, LC12131; China, Beijing, from rhizosphere soils of *Festuca arundinacea*, 19 Jul 2017, J.M. Liang, LC12132; China, Beijing, from leaves of *P. pratensis*, 23 Jun 2017, J.M. Liang, LC12134, LC12135.

Notes. *Dimorphiseta obtusa* formed a highly supported cluster with *D. terrestris* and *D. acuta*, but can be distinguished from the latter two by having setae with erect and obtuse apices. In addition, *D. obtusa* is also morphologically similar to two old un-sequenced *Myrothecium* taxa, i.e. *M. biforme* and *M. dimorphum*, but both of these two taxa have two types of conidia. *Myrothecium biforme* produces short cylindrical and ellipsoidal to navicular conidia (Jiang et al. 2014) and *M. dimorphum* has ovate and ellipsoidal conidia (Watanabe et al. 2003).

Alfaria humicola J.M. Liang, G.S. Li & L. Cai, sp. nov.

Mycobank MB 829696

Fig. 4

Type. China, Beijing, Olympic Park, from rhizosphere soil of *Poa* sp., 13 Dec 2017, S.Y. Zhou, holotype HMAS 247955, ex-holotype culture CGMCC3.19213 = LC12143.

Description. Colonies on PDA, CMA and OA approx. 7–8 cm diam. after 7 d at 25 °C. **Hyphae** hyaline, smooth, branched, 1–2 μm wide. **Conidiomata** sporodochial, stromatic, superficial, cupulate to discoid, scattered to gregarious, oval to elongate or irregular in outline, 50–200 μm diam., 70–150 μm deep, without setose hyphae, covered by a green to black agglutinated slimy mass of conidia. **Stroma** well-developed, hyaline, of textura globulose or textura angularis. **Setae** absent. **Conidiophores** arising from the basal stroma, unbranched or branched, initially hyaline and smooth, becoming pigmented and verrucose with age, 11–25 μm long.
Conidiogenous cells phialidic, cylindrical to allantoid, initially hyaline and smooth becoming pigmented and verrucose with age, 14–33 × 2–3 μm. Conidia aseptate, smooth, hyaline, elongated ellipsoidal to limoniform, straight, 7–9(–10) × 2–3 μm (av. 8 ± 0.6 × 3 ± 0.2 μm, n = 50).

Distribution. China.

Etymology. Name refers the substrate, soil, from which this fungus was isolated.

Additional isolate examined. China, Beijing, Olympic Park, from rhizosphere soil of *Poa* sp., 13 Dec 2017, S.Y. Zhou, LC12144.

Notes. *Alfaria humicola* represents another distinct lineage in *Alfaria* (Fig. 1). *Alfaria humicola* lacks setae, distinguishing it from *Alf. caricicola* and *Alf. thymi*. Furthermore, the conidiogenous cells of *Alf. humicola* (14–33 × 2–3 μm) are much longer than that of *Alf. arenosa* (5–10 × 1–2 μm), *Alf. ossiformis* (5–10 × 2–3 μm) and *Alf. terrestris* (5–11 × 1–3 μm). Compared with those old *Myrothecium* taxa lacking sequences, *Alf. humicola* is morphologically similar to *M. atrocarreum* (Berkeley & Broome, 1877), *M. conicum* (Fuckel, 1870), *M. ellipsosporum* (Fuckel, 1866), *M. fragostanum* (Saccardo, 1917), *M. leucomelas* (Höhnel, 1925) and *M. oryza* (Saccardo, 1917), but *Alf. humicola* produces limoniform conidia which makes it distinguishable. In addition, the conidiogenous cells of *Alf. humicola* show conspicuous collarettes which were not described in previous old taxa.
Alfaria poae J.M. Liang, G.S. Li & L. Cai, sp. nov.
MycoBank MB 829697

Fig. 5

Type. China, Hainan Province, Haikou, isolated from leaves of *Imperata cylindrica*, 10 Mar 2018, J.M. Liang and L. Cai, holotype HMAS 247953, ex-holotype culture CGMCC3.19198 = LC12140.

Description. Colonies on PDA, CMA and OA with white aerial mycelium, approx. 6–7 cm diam. after 7 d at 25 °C, giving rise to dark green or blank sporodochia scattered or gregarious on the surface, covered by olivaceous green pillars of conidia.
reverse on PDA sienna. *Hyphae* hyaline, smooth, branched, 1–2 μm wide. *Conidiomata* synnematous, solitary, 60–250 μm high, 30–80 μm wide at the base, 60–150 μm at the apex, with setose hyphae surrounding a green agglutinated mass of conidia. *Stroma* well developed, hyaline, of textura angularis. *Setae* absent. *Conidiophores* arising from the basal stroma, branched, initially hyaline and becoming pigmented and verrucose with age covered by an olivaceous green mucoid layer, up to 30 μm long. *Conidiogenous cell* phialidic, clavate to cylindrical, hyaline, smooth, 5–10 × 1–2 μm, becoming pigmented and verrucose with age, with conspicuous collarettes and periclinal thickenings. *Conidia* aseptate, smooth, hyaline, ellipsoidal to fusiform, 6–8 × 2–3 μm (av. 7 ± 0.4× 2 ± 0.2 μm, n = 50).

Distribution. China.

Etymology. Name refers the host, *Poa* sp., from which this fungus was isolated.

Additional isolate examined. China, Hainan, from leaves of *Imperata cylindrica*, 10 Mar 2018, J.M. Liang & Lei Cai, LC12141, LC12142.

Notes. *Alfaria poae* formed a well-supported clade in *Alfaria* (Fig. 1). Similar to *Alf. ossiformis* and *Alf. terrestris*, *Alf. poae* does not produce setae surrounding the sporodochia, distinguishing it from *Alf. caricicola* and *Alf. thymi*. *Alfaria poae* produces ellipsoidal to fusiform conidia, which are different from the ossiform conidia produced by *Alf. ossiformis* (Lombard et al. 2016). The conidia of *Alf. terrestris* have basal hilum which was not observed in *Alf. poae*. In addition, *Alf. poae* shares morphological characters with several un-sequenced *Myrothecium* taxa, such as *M. atrocarneum* (Berkeley & Broom, 1877), *M. conicum* (Fuckel, 1870), *M. ellipsosporum* (Fuckel, 1866) and *M. leucomelas* (Höhnel, 1925). Because the descriptions of *M. atrocarneum*, *M. conicum* and *M. ellipsosporum* were not elaborate enough, these old species are not distinct from *Alf. poae* yet. Future comparisons should be made when these old species are epitypified by fresh collections. Although *M. leucomelas* (host: *Sumbaviae rottleroidis*; location: Bulacan, Luzon) had a detailed description, it cannot be epitypified by *Alf. Poae*, because *Alf. poae* was collected from a distinct location and plant host. Taking the above special characters into account, we considered introducing a new species, *Alfaria poae*.

Paramyrothecium sinense J.M. Liang, G.S. Li & L. Cai, sp. nov.

Mycobank MB 829698

Type. China, Beijing, Olympic Park, from rhizosphere soil of *Poa* sp., 13 Dec 2017, S.Y. Zhou, holotype HMAS 247956, ex-holotype culture CGMCC3.19212 = LC12136.

Description. Colonies on PDA, CMA and OA approx. 5–6 cm diam. after 7 d at 25 °C. *Hyphae* white, hyaline, smooth, branched, 1–2 μm wide, reverse on PDA pale luteous. *Conidiomata* sporodochial, stromatic, cupulate, superficial, scattered or gregarious, oval or irregular in outline, 80–600 μm diam., 50–150 μm deep, with a white setose fringe surrounding an olivaceous green to black agglutinated slimy mass
Myrothecium-like new species from turfgrasses and associated rhizosphere

Conidiomata of conidia. Stroma poorly developed, hyaline, of textura angularis. Setae arising from stroma, thin-walled, hyaline, 1–3-septate, straight to flexuous, 45–90 μm long, 1–3 μm wide, tapering to an acutely rounded apex. Conidiophores arising from the basal stroma, consisting of a stipe and a penicillately branched conidiogenous apparatus; stipes unbranched, hyaline, septate, smooth, 20–30 × 2–3 μm; primary branches aseptate, unbranched, smooth, 13–40 × 2–3 μm; secondary branches aseptate, unbranched, smooth, 8–15 × 2–3 μm; terminating in a whorl of 3–6 conidiogenous cells; conidiogenous cell phialidic, cylindrical to subcylindrical, hyaline, smooth, straight to slightly curved, 7–16 × 1–3 μm, with conspicuous collarettes and periclinal thickenings. Conidia aseptate, hyaline, smooth, cylindrical, 6–7 × 2–3 μm (av. 7 ± 0.3 × 2 ± 0.2 μm, n = 40), rounded at both ends.

Distribution. China.

Figure 6. Paramyrothecium sinense (from ex-type CGMCC3.19212) a–c colony on PDA, CMA, OA d conidiomata on SNA e sporodochial conidioma f setae g conidia h conidiogenous cells. Scale bars: 20 μm (e, f); 10 μm (g); 5 μm (h).
Etymology. Named after the country of collection, China.

Additional isolate examined. China, Beijing, Olympic Park, from rhizosphere soils of *Poa* sp., 13 Dec 2017, S.Y. Zhou, LC12137, LC12138, LC12139.

Notes. Lombard et al. (2016) introduced a new genus, *Paramyrothecium*, based on an epitype of *Myrothecium roridum* Tode, 1790. Gams (2016) pointed out that *Myrotheciella catenuligera*, the type species of *Myrotheciella* was listed as a synonym of *P. roridum* by Lombard et al. (2016), thus *Paramyrothecium* is illegitimate and *Myrotheciella* should be the correct name for *Paramyrothecium*. However, the original description of *Myrotheciella catenuligera* suggested that it lacks seta (Spegazzini 1911), thus is clearly different from the morphological circumscription of *P. roridum*. Therefore, we do not agree with the treatment of Lombard et al. (2016) of listing *Myrotheciella catenuligera* as a synonym of *P. roridum*.

Paramyrothecium sinense formed a highly supported distinct clade closely related to *P. humicola*. The setae of this species are terminated with obtuse apices, dissimilar to the acute apices in *P. humicola*. In addition, the conidiophore stipes (20–30 μm long) and primary branches (13–40 μm long) of *P. sinense* are much longer than those of *P. humicola* (stipe, 12–22 μm long; primary branches, 7–17 μm long) (Lombard et al. 2016). Among old un-sequenced taxa in *Myrothecium*, only *M. biforme* and *M. dimorphum* show seta with obtuse apices, but both taxa produce two types of conidia (Jiang et al. 2014; Watanabe et al. 2003).

Discussion

The ITS has been shown to be insufficient to delineate the myrothecium-like species. With the additions of partial sequences of *rpb2*, *cmdA* and *tub2*, phylogenetic relationships within Stachybotryaceae could be better resolved (Lombard et al. 2016). In this study, we isolated fungi from rhizosphere soils, leaves and roots of several turfgrasses, and our phylogenetic analyses based on concatenated four loci together with the morphological characters supported the recognition of five novel species in Stachybotryaceae.

By comparing the topologies of the four single-locus trees, incomplete lineage sorting was discovered in *Dimorphiseta*. Based on the single-locus trees of ITS and *rpb2*, *D. acuta*, *D. obtusa* and *D. terrestris* grouped together (Supp. materials 1, 4). Whereas in the single-locus phylogenetic analyses based on *tub2* and *cmdA*, *D. obtusa* grouped distantly from *D. acuta* and *D. terrestris*, but close to *Myxospora* and *Albifimbria* species (Supp. materials 2, 3). Three *Dimorphiseta* species are similar in the conidial shape and size (7–19 μm long), which are distinct from the shorter conidia in *Albifimbria* (4–8 μm long) and *Myxospora* (4–6 μm long) species (Tulloch 1972; Lombard et al. 2016). Conidia with a funnel-shaped apical appendage are a distinct feature of three *Dimorphiseta* species, but they are absent in all *Myxospora* species and most *Albifimbria* species (Lombard et al. 2016). Furthermore, the *rpb2* and 28S ribosomal DNA combined dataset, which was suggested to delimit generic boundaries of myrothecium-like
species (Lombard et al. 2016) revealed that the three Dimorphiseta species clustered together (Supp. material 6: Table S1, Supp. material 5).

In the multi-locus sequence analysis of Myrothecium s.l. by Lombard et al. (2016), thirteen new genera were introduced including several monotypic genera, such as Dimorphiseta, Capitofimbria, Gregatothecium and Neomyrothecium. In this study, we reported two new species in Dimorphiseta (D. acuta and D. obtusa). With this addition, the generic concept of Dimorphiseta is slightly expanded for including a third type of setae. Hereto, Dimorphiseta is the genus with the most variable types of setae among Myrothecium s.l., which might be useful in the generic delimitation in Myrothecium s.l. (Lombard et al. 2016).

Lombard et al. (2016) narrowed the concept of Myrothecium s.s. to only include species with sporodochia or mononematous conidiophores producing conidia shorter than 5 μm in green slimy masses without mucoid appendages. Whether or not a conidial size should be defined in the generic concept remained debatable. Because many Myrothecium published recently produced much longer conidia, e.g. M. chiangmaense (4–7 μm) (Dai et al. 2017), M. uttaraditense (10–15 μm) (Dai et al. 2017), M. thailandicum (6.5–10 μm) (Dai et al. 2017), M. septentrionale (8.5–12 μm) (Tibpromma et al. 2017), M. variabile (12.5–16.5 μm) (Wu et al. 2014) and M. xigazense (2.5–15 μm) (Wu et al. 2014). These above species were identified, either based on morphology only or with a single molecular locus (ITS), and should be better confirmed for their generic placement when more data are available. Currently, there are 90 records of Myrothecium in Index Fungorum (Jan 10, 2019), and 25 names have been successively transferred to other genera, i.e., Capitofimbria, Melanconis, Striaticonidium, Xepicula (Lombard et al. 2016), Digitiseta (Gordillo and Decock 2018). Only a limited number of the remaining species in Myrothecium have available molecular data (Dai et al. 2017; Tibpromma et al. 2017), as most of these taxa have no living cultures. We agree with Gams (2016) that these unvisited taxa are still important when the original descriptions are sufficiently clear to recognize a species. They should be epitypified in future studies when fresh collections with living cultures are available, and before that, descriptions of new taxa in this group should be made carefully with the inclusion of these un-sequenced taxa in morphological comparisons.

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (NSFC 31600405).

References

Alves JL, Barreto RW, Pereira OL, Soares DJ (2010) Additions to the mycobiota of the invasive weed Miconia calvescens (Melastomataceae). Mycologia, 102(1):69–82. https://doi.org/10.3852/09-070
Berkeley MJ, Broome CE (1877) Supplement to the enumeration of fungi of Ceylon. Botanical Journal of the Linnean Society. 15: 82–86. https://doi.org/10.1111/j.1095-8339.1876.tb00225.x

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.2307/3761358

Chen Q, Zhang KE, Zhang G, Cai L (2015) A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China. Phytotaxa 197: 267–281. https://doi.org/10.11646/phytotaxa.197.4.4

Dai DQ, Phookamsak R, Wijayawardene NN (2017) Bambusicolous fungi. Fungal Diversity 82: 1–105. https://doi.org/10.1007/s13225-016-0367-8

Decock C, Huret S, Bivort C (2008) Anamorphic fungi from French Guyana. Septomyrothecium sp. nov. and S. setiramosum comb. nov. (anamorphic Hypocreales, Ascomycota). Cryptogamie Mycologie 29: 321–331. https://doi.org/10.1093/ml/gcm091

Ellis MB, Ellis JP (1985) Microfungi on Land Plants-An Identification Handbook. Bulletin of the Torrey Botanical Club 113: 61. https://doi.org/10.2307/2996241

Fuckel L (1866) Fungi Rhenani exsiccati Cent. 12–17 (2), no 1450–1632. Hedwigia. 5: 23–30.

 Fuckel L. (1870) Symbolae mycologicae. Beiträge zur Kenntniss der Rheinischen Pilze. Jahrbücher des Nassauischen Vereins für Naturkunde. 23–24: 1–459.

Glass NL, Donaldson G (1995) Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. https://doi.org/10.0000/PMID7747954

Gams W (2016) Are old taxa without living authenticated cultures losing their status? IMA Fungus. 7(2): 72–73.

Gordillo A, Decock C (2018) Myrothecium-like (Ascomycota, Hypocreales) species from tropical areas: Digitiseta gen. nov. and additions to Inaequalispora and Parvothecium. Mycological Progress 17: 179–190. https://doi.org/10.1007/s11557-017-1302-4

Groenewald JZ, Nakashima C, Nishikawa J, Shin HD, Park JH, Jama AN, Groenewald M, Braun U, Crous PW (2013) Species concepts in Cercospora: spotting the weeds among the roses. Studies in Mycology 75: 115–170. https://doi.org/10.3114/sim0012

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. https://doi.org/10.1021/bk-1999-0734.ch008

Höhnel (1925) Mitt. Bot. Inst. Techn. Hochsch. Wien 2(3): 96.

Jiang YL, Wang HF, Pan HQ, Zhang TY (2014) Myrothecium (Hyphomycetes): three new species, one new variety and a key to species and varieties of the genus known from soils in China. Mycosystems, 33(1): 7–14.

Kazutaka K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Kobayashi M, Sato I, Abe F, Nitta K, Hashimoto M, Fujie A, Hino M (2004) FR227244, a new antifungal antibiotic from Myrothecium cinctum No. 002 I. Taxonomy, fermentation, isolation and physio-chemical properties. Journal of Antibiotics 57: 780–787. https://doi.org/10.7164/antibiotics.57.788
Kornerup A, Wanscher JH (1978) Methuen Handbook of Colour. Methuen.
Krisai-Greilhuber I, Chen Y, Jabeen S, ... Yu JY (2017) Fungal systematics and evolution: FUSE 3. Sydowia, 69: 229–264. https://doi.org/10.12905/0380.sydowia69-2017-0229
Link HF (1809) Observationes in ordines plantarum naturales. Dissertatio I.3: 3–42.
Liu JY, Huang LL, Ye YH, Zou WX, Guo ZJ, Tan RX (2006) Antifungal and new metabolites of Myrothecium sp. Z16, a fungus associated with white croaker Argyromosum argentatus. Journal of Applied Microbiology 100: 195–202. https://doi.org/10.1111/j.1365-2672.2005.02760.x
Lombard L, Houbraken J, Decock C, Samson R.A, Meijer M, Réblová M, Groenewald JZ, Crous PW (2016) Generic hyper-diversity in Stachybotriaceae. Persoonia 36: 156–246. https://doi.org/10.3767/003158516X691582
Murakami R, Kobayashi T, Takahashi K (2005) Myrothecium leaf spot of mulberry caused by Myrothecium verrucaria. Journal of General Plant Pathology 71: 153–155. https://doi.org/10.1007/s10327-004-0178-8
Nirenberg HI (1981) A simplified method for identifying Fusarium spp. occurring on wheat. Canadian Journal of Botany 59: 1599–1609. https://doi.org/10.1139/b81-217
Nylander JAA (2004) MrModelTest (program distributed by the author). Evolutionary Biology Centre, Uppsala University.
O’Donnell K, Sarver BA, Brandt M, Chang DC, Noble-Wang J, Park BJ, Sutton DA, Benjamin L, Lindsley M, Padhye A, Geiser DM, Ward TJ (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. Journal of Clinical Microbiology 45: 2235–2248. https://doi.org/10.1128/JCM.00533-07
Okunowo WO, Gbenle GO, Osuntoki AA, Adekunle AA, Ojokuku SA (2010) Production of cellulolytic and xylanolytic enzymes by a phytopathogenic Myrothecium roridum and some avirulent fungal isolates from water hyacinth. African Journal of Biotechnology 9: 1074–1078. https://doi.org/10.5897/AJB09.1598
Pidoplichko NM, Kirilenko TS (1971) On the taxonomy of the genus Myrothecium. In: Pidoplichko NM (Ed.) Metabolites of soil micromycetes. Dumka, Naukova, Kiev, Ukraine, 157–171.
Pope S (1944) A new species in Metarrhizium active in decomposing cellulose. Mycologia 36: 343–350. https://doi.org/10.2307/3754750
Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (Eds) Plant Molecular Biology Manual. Springer, Dordrecht, 183–190. https://doi.org/10.1007/978-94-011-0511-8_12
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
Ruma K, Sunil K, Kini KR, Prakash HS (2015) Genetic diversity and antimicrobial activity of endophytic Myrothecium spp. isolated from Calophyllum apelatum and Garcinia morella. Molecular Biology Reports 42: 1533–1543. https://doi.org/10.1007/s11033-015-3884-8
Saccardo PA (1917) Notae mycologicae series XXIII. Fungi Philippinenses. Atti della Accademia Scientifica Veneto-Trentino-Istriana. 10: 57–94.
Spegazzini C (1911) Mycetes Argentinenses (Series V). Anales del Museo Nacional de Historia Natural Buenos Aires. ser. 3, 13: 329–467.
Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688. https://doi.org/10.1093/bioinformatics/btl446
Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ et al. (2017) Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83: 1–261 https://doi.org/10.1007/s13225-017-0378-0
Tulloch M (1972) The genus *Myrothecium* Tode ex Fr. Mycological Papers 130: 1–42.
Von Höhnel FV (1905) Über *Myrothecium* und Formverwandte Gattungen. Annales Mycologici 3: 559–560.
Wagenaar MM, Clardy J (2001) Two new roridins isolated from *Myrothecium* sp. The Journal of Antibiotics 54: 517. https://doi.org/10.7164/antibiotics.54.517
Watanabe T, Watanabe Y, Nakamura K (2003) *Myrothecium dimorphum* sp. nov. a soil fungus from beach sand in the Bonin (Ogasawara) Islands, Japan. Mycoscience, 44(4):283–286. https://doi.org/10.1007/s10267-003-0112-5
White TJ, Burns T, Lee S, Taylor F, White TJ, Lee S-H, Taylor L, Shawe-Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ et al. (Eds) PCR protocols: a guide to methods and applications: 282–287. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Wu YM, Jiang YL, Ma YN Zhang TY (2014) Two new species of *Myrothecium* from the Qinghai-Tibet Plateau Area, China. Mycotaxon 129: 403–406. https://doi.org/10.5248/122.171
Zhang ZF, Liu F, Zhou X, Liu X.Z, Liu S.J, Cai L (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39: 1–31. https://doi.org/10.3767/persoonia.2017.39.01

Supplementary material 1

Figure S1. The ML consensus tree inferred based on *ITS* partial sequence with bootstrap values for ML (> 70%) and posterior probability (PP) (PP > 0.95) labeled to the left of a node (ML/PP)
Authors: Junmin Liang, Guangshuo Li, Shiyue Zhou, Meiqi Zhao, Lei Cai
Data type: phylogenetic data
Explanation note: The type strains were labeled with “T”. Strains obtained from this study are in red.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.51.31957.suppl1
Supplementary material 2

Figure S2. The ML consensus tree inferred based on *tub2* partial sequence with bootstrap values for ML (> 70%) and posterior probability (PP) (PP > 0.95) labeled to the left of a node (ML/PP)
Authors: Junmin Liang, Guangshuo Li, Shiyue Zhou, Meiqi Zhao, Lei Cai
Data type: phylogenetic data
Explanation note: The type strains were labeled with “T”. Strains obtained from this study are in red.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.51.31957.suppl2

Supplementary material 3

Figure S3. The ML consensus tree inferred based on *cmdA* partial sequence with bootstrap values for ML (> 70%) and posterior probability (PP) (PP > 0.95) labeled to the left of a node (ML/PP)
Authors: Junmin Liang, Guangshuo Li, Shiyue Zhou, Meiqi Zhao, Lei Cai
Data type: phylogenetic data
Explanation note: The type strains were labeled with “T”. Strains obtained from this study are in red.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.51.31957.suppl3
Supplementary material 4

Figure S4. The ML consensus tree inferred based on rpb2 partial sequence with bootstrap values for ML (> 70%) and posterior probability (PP) (PP > 0.95) labeled to the left of a node (ML/PP)
Authors: Junmin Liang, Guangshuo Li, Shiyue Zhou, Meiqi Zhao, Lei Cai
Data type: phylogenetic data
Explanation note: The type strains were labeled with “T”. Strains obtained from this study are in red.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.51.31957.suppl4

Supplementary material 5

Figure S5. The ML consensus tree inferred based on LSU and rpb2 partial sequences with bootstrap values for ML (> 70%) and posterior probability (PP) (PP > 0.95) labeled to the left of a node (ML/PP)
Authors: Junmin Liang, Guangshuo Li, Shiyue Zhou, Meiqi Zhao, Lei Cai
Data type: phylogenetic data
Explanation note: The type strains were labeled with “T”. Strains obtained from this study are in red.
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.51.31957.suppl5
Supplementary material 6

Table S1. NCBI GenBank accessions of 28S ribosomal DNA large-subunit sequences (LSU) used in the phylogenetic analyses
Authors: Junmin Liang, Guangshuo Li, Shiyue Zhou, Meiqi Zhao, Lei Cai
Data type: phylogenetic data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/mycokeys.51.31957.suppl6