CORRECTION TO "TOROIDAL AND KLEIN BOTTLE BOUNDARY SLOPES"

LUIS G. VALDEZ-SÁNCHEZ

Abstract. Let M be a compact, connected, orientable, irreducible 3-manifold and T_0 an incompressible torus boundary component of M such that the pair (M, T_0) is not cabled. In the paper "Toroidal and Klein bottle boundary slopes" [5] by the author it was established that for any \mathcal{K}-incompressible tori F_1, F_2 in (M, T_0) which intersect in graphs $G_{F_i} = F_i \cap F_j \subset F_i$, $\{i, j\} = \{1, 2\}$, the maximal number of mutually parallel, consecutive, negative edges that may appear in G_{F_i} is $n_j + 1$, where $n_j = |\partial F_j|$. In this paper we show that the correct such bound is $n_j + 2$, give a partial classification of the pairs (M, T_0) where the bound $n_j + 2$ is reached, and show that if $\Delta(\partial F_1, \partial F_2) \geq 6$ then the bound $n_j + 2$ cannot be reached; this latter fact allows for the short proof of the classification of the pairs (M, T_0) with M a hyperbolic 3-manifold and $\Delta(\partial F_1, \partial F_2) \geq 6$ to work without change as outlined in [5].

1. Introduction

Let M be a compact, connected, orientable, irreducible 3-manifold and T_0 an incompressible torus boundary component of M such that the pair (M, T_0) is not cabled and irreducible (that is, M is irreducible and T_0 is incompressible in M). A punctured torus $(F, \partial F) \subset (M, T_0)$ is said to be generated by a (an essential) Klein bottle if there is a (an essential, resp.) punctured Klein bottle $(P, \partial P) \subset (M, T_0)$ such that F is isotopic in M to the frontier of a regular neighborhood of P in M. We also say that F is \mathcal{K}-incompressible if F is either incompressible or generated by an essential Klein bottle.

The main purpose of the paper [5] was to establish an upper bound for the maximal number of mutually parallel, consecutive, negative edges that may appear in either graph of intersection G_{F_1}, G_{F_2} between \mathcal{K}-incompressible punctured tori F_1, F_2 in (M, T_0). In [5, Proposition 3.4] it is proved that for $\{i, j\} = \{1, 2\}$ and $n_j = |\partial F_j|$, if G_{F_i} contains such a collection of $n_j + 2$ negative edges then M is homeomorphic to the trefoil knot exterior or to one of the manifolds $P \times S^1/[m], \ m \geq 1$ constructed in [5, §3.4], none of which is a hyperbolic manifold; consequently, if M is not one of the manifolds listed in [5, Proposition 3.4], the upper bound for such a collection of negative edges was found to be $n_j + 1$.

In this paper we show that the list of options for the homeomorphism class of M given in [5, Proposition 3.4] is incomplete, so that if M is not one of the manifolds listed in [5, Proposition 3.4] then the correct bound for such families of negative edges in the graph G_{F_i} is $n_j + 2$, and that if the upper bound $n_j + 2$ is reached then (M, T_0) belongs to a certain family of examples each of which contains a separating essential twice punctured torus with boundary slope at distance 3 from that of F_j.

1
We will use the same notation set up in [5] except that polarized will be replaced by positive (see Section 2.1); in particular, the tori \(F_1, F_2 \) will now be denoted by \(S, T \), with \(s = |\partial S| \) and \(t = |\partial T| \). A graph \(G \) in a punctured surface \(F \) is a 1-submanifold properly embedded in \(F \) with vertices the components of \(\partial F \). The graph \(G \) is essential if no edge is parallel into \(\partial F \) and each circle component is essential in \(F \). The reduced graph \(\overline{G} \subset F \) of \(G \) is the graph obtained from \(G \) by amalgamating each maximal collection of mutually parallel edges \(e_1, \ldots, e_k \) of \(G \) into a single arc \(\overline{e} \subset F \); we then say that the size of \(\overline{e} \) is \(|\overline{e}| = k \). The symbol \((+g, b; \alpha_1/\beta_1, \ldots, \alpha_k/\beta_k)\) will be used to denote a Seifert fibered manifold over an orientable surface of genus \(g \geq 0 \) with \(b \geq 0 \) boundary components and \(k \geq 0 \) singular fibers of orders \(\beta_1, \ldots, \beta_k \).

The main technical result of this paper is the following.

Proposition 1.1. For each \(t \geq 4 \) there is an irreducible pair \((M_t, T_0)\) with \(\partial M_t = T_0 \) which contains properly embedded essential punctured tori \((S, \partial S)\) and \((T, \partial T) \subset (M, T_0)\) satisfying the following properties:

1. \(S \) is a separating twice punctured torus and \(T \) is a positive torus with \(|\partial T| = t \),
2. \(\Delta(\partial S, \partial T) = 3 \),
3. \(S, T \) intersect transversely and minimally in the essential graphs \(G_T = S \cap T \subset T \) shown in Figs. 16 and 17, where the reduced graph \(\overline{G}_S \) consists of 3 negative edges of sizes \(t + 2, t, t - 2 \),
4. \(M_t(\partial T) \) is a torus bundle over the circle with fiber \(\hat{T} \), and \(M_t \) is not homeomorphic to any of the manifolds \(P \times S^1/[m] \) constructed in [5] Proposition 3.4.

It is proved in [6] (preprint, in progress) that each manifold \(M_t \) in Proposition 1.1 is hyperbolic with \(M_t(\partial S) = (+0, 1 : \alpha_1/2, \alpha_2/(t+2)) \cup S(+0, 1 : \alpha_1/2, \alpha_2/(t-2)) \), so \(M_{t_1} \not\approx M_{t_2} \) for \(t_1 \neq t_2 \) and \(S \) is generated by a punctured Klein bottle iff \(t = 4 \).

The corrected version of [5, Proposition 3.4] can now be stated as follows.

Proposition 1.2. (Correction to [5] Proposition 3.4) Let \((M, T_0)\) be an irreducible pair which is not cabled, \((T, \partial T) \subset (M, T_0)\) a \(K \)-incompressible torus with \(t = |\partial T| \geq 1 \), and \(R \subset M \) a surface which intersects \(T \) in essential graphs \(G_R, G_T \), such that \(G_R \) has at least \(t + 2 \) mutually parallel, consecutive negative edges. Then \(T \) is a positive torus and one of the following holds:

1. the conclusion of [5] Proposition 3.4 holds, so \(M \) is homeomorphic to the trefoil knot exterior \((t = 1)\) or to one of the manifolds \(P \times S^1/[m] \ (t \geq 2) \),
2. \(t \geq 4 \) and \((M, T_0)\) is homeomorphic to one of the pairs \((M_t, T_0)\) of Proposition 1.1, and \(|\overline{e}| \leq t + 2 \) holds for any edge of the reduced graph \(G_R \),
3. \(t = 2 \) with \(M = (+0, 1; -1/4, -1/4) \) and \(M(\partial T) = (+0, 0; 1/2, -1/4, -1/4) \), or \(t = 3 \) with \(M = (+0, 1; -1/3, -1/6) \) and \(M(\partial T) = (+0, 0; 1/2, -1/3, -1/6) \), where in each case the essential annulus \(A \subset (M, T_0) \) satisfies \(\Delta(\partial T, \partial A) = 2 \).

The smaller bound of \(n_j + 1 \) allows for the short proof of the classification of hyperbolic manifolds \((M, T_0)\) with toroidal or Kleinian Dehn fillings at distance \(6 \leq \Delta \leq 8 \) given in [5] §4. The following result states that in the range \(6 \leq \Delta \leq 8 \) the bound \(n_j + 2 \) is never reached, which implies that the proofs in [5] §4 work as written.
Lemma 1.3. Suppose \((M, T_0)\) is a hyperbolic manifold and \(S, T \subset (M, T_0)\) are essential tori such that \(t = |\partial T| \geq 3\) and \(\Delta(\partial S, \partial T) \geq 6\); then \(|e| \leq t + 1\) holds in \(G_S\).

Our last lemma summarizes the bounds on the sizes of negative edges of reduced graphs like \(G_R\) obtained from the above results.

Lemma 1.4. Let \((M, T_0)\) be an irreducible pair which is not cabled, \((T, \partial T) \subset (M, T_0)\) a \(K\)-incompressible torus with \(t = |\partial T| \geq 1\), and \(Q \subset M\) a surface which intersects \(T\) in essential graphs \(G_Q = Q \cap T \subset Q, G_T = Q \cap T \subset T\). Then one of the following holds:

1. \(t \leq 3\) and \(M\) is one of the Seifert manifolds \((+0, 1; 1/2, 1/3)(t = 1), (+0, 1; -1/4, -1/4)(t = 2),\) or \((+0, 1; -1/3, -1/6)(t = 3),\)
2. \(t \geq 2\) and \(M\) is one of the manifolds \(P \times S^1/[m]\) constructed in \([5,\) Proposition 3.4],
3. \(t \geq 4\) and \(M\) is homeomorphic to one of the manifolds \(M_t\) of Proposition 1.1, in which case the bound \(|e| \leq t + 1\) holds for all negative edges of \(G_Q\),
4. the bound \(|e| \leq t + 1\) holds for all negative edges of \(G_Q\).

In Section 2 we review the notation and constructions given in \([5, \S 2, \S 3]\), with which we assume the reader is familiar. In Section 3 we construct the manifolds \(M_t\) for \(t \geq 4\) of Proposition 1.1 and establish the results needed to prove Proposition 1.2 and Lemmas 1.3 and 1.4.

2. Slidable and non-slidable bigons

2.1. Generalities. For any slope \(r \in T_0 \subset \partial M, M(r)\) denotes the Dehn filling \(M \cup_{T_0} S^1 \times D^2\), where \(r\) bounds a disk in the solid torus \(S^1 \times D^2\). We denote the core of \(S^1 \times D^2\) by \(K_r \subset M(r)\).

Let \(F\) be a surface properly embedded in \((M, T_0)\) with \(|\partial F| \geq 1\) and boundary slope \(r\). Then the surface \(\hat{F} \subset M(r)\) obtained by capping off the components of \(\partial F\) with a disjoint collection of disks in \(S^1 \times D^2\) is a closed surface, which we always assume to intersect \(K_r\) transversely and minimally in \(M(\partial F)\).

If \(F\) is orientable, we say that \(F\) is neutral if \(\hat{F} \cdot K_r = 0\) in \(M(\partial F)\), where \(\hat{F} \cdot K\) denotes homological intersection number, and that \(F\) is positive if \(|\hat{F} \cdot K_r| = |\hat{F} \cap K_r|\); the latter is equivalent to the term polarized used in \([5]\).

For surfaces \(F_1, F_2 \subset (M, T_0)\) with transverse intersection, for \(i = 1, 2\), \(G_{F_i} = F_1 \cap F_2 \subset F_i\) will denote the graph of intersection of \(F_1\) and \(F_2\) in \(F_i\) (with vertices the boundary components of \(F_i\)).

Following \([3]\), for \(i = 1, 2\) we orient the components of \(\partial F_i\) and coherently on \(T_0\) and say that an edge \(e\) of \(G_{F_i}\) is positive or negative depending on whether the orientations of the components of \(\partial F_i\) (possibly the same) around a small rectangular regular neighborhood of \(e\) in \(F_i\) appear as in Fig 3.

The following lemma summarizes some of the general properties of graphs of intersection of surfaces in \((M, T_0)\) that will be relevant in the sequel.

Lemma 2.1. Let \(F_1, F_2\) be properly embedded surfaces in \((M, T_0)\) with essential graphs of intersection \(G_{F_1} = F_1 \cap F_2 \subset F_1\) and \(G_{F_2} = F_1 \cap F_2 \subset F_2\).
positive edge

negative edge

Figure 1.

(a) Parity Rule: for \(\{i, j\} = \{1, 2\} \), an edge of \(F_1 \cap F_2 \) is positive in \(G_{F_i} \) (cf. [3]); moreover, if \((M, T_0) \) is not cabled,

(b) no two edges of \(F_1 \cap F_2 \) are parallel in both \(G_{F_1} \) and \(G_{F_2} \) ([1, Lemma 2.1]),

(c) if \(F_i \) is a torus and \(G_{F_j} \) has a family of \(n_i + 1 \) mutually parallel, consecutive, negative edges then \(F_i \) is a positive torus (cf. [5, Lemma 3.2]). \(\square \)

2.2. Review of constructions in [5, §2.3]. Suppose \((M, T_0), T, R \) satisfy the hypothesis in Proposition 1.2, so \((M, T_0) \) is an irreducible pair with \(T_0 \) a torus boundary component of \(M \) which is not cabled, \(T \) a \(K \)-incompressible torus in \((M, T_0) \), and \(R \) any surface properly embedded in \((M, T_0) \) which intersects \(T \) transversely in essential graphs \(G_T = R \cap T \subset T \) and \(G_R = R \cap T \subset R \).

We assume there is a collection \(E = \{e_1, e_2, \ldots, e_{t+1}, e_{t+2}\} \) of mutually parallel, consecutive, negative edges in \(G_R \). By Lemma 2.1(c), the torus \(T \) is actually positive and hence incompressible in \(M \).

The torus \(T \) has orientation vector \(\vec{N} \) shown in Fig. 3 and each vertex of \(T \) is given the orientation induced by \(\vec{N} \) (see Fig. 3). Recall that the vertices of \(G_T, G_R \) are the components of \(\partial T, \partial R \) respectively; we denote the vertices of \(T \) by \(v_i \)'s and those of \(R \) by \(w_k \)'s. Any two edges \(e, e' \) of \(G_T \) that are incident to the oriented vertex \(v \) split \(v \) into two open subintervals \((e, e') \subset v \) and \((e', e) \subset v \), where \((e, e) \) is the open subinterval whose left and right endpoints, as defined by the orientation of \(v \), come from \(e \) and \(e' \), respectively.

The collection of edges \(E \) induces a permutation \(\sigma \) of the form \(x \mapsto x + \alpha \) with \(1 \leq \alpha \leq t \), where \(\gcd(t, \alpha) = 1 \) by [5, Lemma 3.2]; the definition of \(\sigma \) requires that a common orientation be given to the edges of \(E \), and reversing the orientation of such edges replaces \(\sigma \) with its inverse, hence \(\alpha \) with \(t - \alpha \).

Cutting \(M \) along \(T \) produces an irreducible manifold \(M_T = \text{cl}(M \setminus N(T)) \) with copies \(T^1, T^2 \subset \partial M_T \) of \(T \) on its boundary and strings \(I'_{1,2}, I'_{2,3}, \ldots, I'_{t,1} \subset \partial M_T \) such that \(M_T/\psi = M \) for some orientation preserving homeomorphism \(\psi : T^1 \to T^2 \), where \(T^1, T^2 \) are oriented by normal vectors \(\vec{N}^1, \vec{N}^2 \) as shown in Fig. 4.

We assume that the edges of \(E \) and \(T^1 \cap R, T^2 \cap R \) are arranged in \(G_R \) as shown in Fig. 2. Each edge \(e_i \) of \(E \) and vertex \(v_i \) of \(T \) gives rise to two copies of itself \(e_i^1, v_i^1 \subset T^1 \) and \(e_i^2, v_i^1 \subset T^2 \) such that \(\psi(e_i) = e_i^2 \) and \(\psi(v_i^1) = v_i^2 \).
The collection E also gives rise to two essential cycles in T, $\gamma_1 = e_1 \cup e_2 \cup \cdots \cup e_t$ and $\gamma_2 = e_2 \cup e_3 \cup \cdots \cup e_t \cup e_{t+1}$, such that $\Delta(\gamma_1, \gamma_2) = 1$ holds in \hat{T}. The edges $e_1^1 \cup e_2^1 \cup \cdots \cup e_t^1$ form the essential cycle γ_1^1 in T^1, while $e_2^2 \cup e_3^2 \cup \cdots \cup e_{t+1}^2$ form the essential cycle γ_2^2 in T^2, such that the bigon faces F_1', F_2', \ldots, F_t' bounded by $e_1, e_2, \ldots, e_{t+1}$ in $R \cap M_T$ form an essential annulus A in $M_T(\partial T)$ as shown in Fig. 4. For simplicity, we refer to the union of the bigons F_1', F_2', \ldots, F_t' in M_T also as the annulus A.

The next result describes the embedding of $A \cup F_{t+1}'$ in M_T and the structures of M_T and $M_T(\partial T)$; its proof follows immediately from the arguments of [5, Lemma 3.3].

Lemma 2.2. ([5, Lemma 3.3]) Up to homeomorphism, the bigons F_1', \ldots, F_{t+1}' lie in M_T as shown in Fig. 4. In particular, $M_T \approx T \times I$ is a genus $t + 1$ handlebody with F_1', \ldots, F_{t+1}' a complete disk system, $\partial M = T_0$, and $M(\partial T)$ is a torus bundle over the circle with fiber \hat{T}. \hfill \Box

Finally, we construct auxiliary circles μ_i in T having the same slope in \hat{T} as the cycle $e_1 \cup e_{t+1}$, oriented and labeled as shown in Fig. 3. The counterparts $\mu_i^1 \subset T^1$ of the μ_i's are shown in Fig. 4, while the circles $\mu_i^2 \subset T^2$ are represented abstractly in Fig. 4 since the location of the edge $e_i^1 \subset T^2$ is not given yet.

2.3. Review of the argument of [5, Proposition 3.4]. At this point the argument used in the proof of [5, Lemma 3.6] states that, for $t \geq 2$,
... the faces F'_1 and F'_{t+1} can be isotoped in M_T to construct an annulus $A_1 \subset M_T$ with boundary the circles $\mu^1_1 \cup \mu^2_2$, which under their given orientations remain coherently oriented relative to A_1. Via the product structure $M_T = T \times I$, it is not hard to see that each pair of circles μ^1_k, μ^2_{k+1} cobounds such an annulus $A_k \subset M_T$ for $1 \leq k \leq t$, with the oriented circles μ^1_k, μ^2_{k+1} coherently oriented relative to A_k; these annuli A_k can be taken to be mutually disjoint and I-fibered in $M_T = T \times I$. Since $\psi(\mu^1_1) = \mu^2_2$ (preserving orientations), the union $A_1 \cup A_2 \cdots \cup A_t$ yields a closed nonseparating torus T'' in M, on which the circles $\mu_1, \mu_2, \ldots, \mu_t$ appear consecutively in this order and coherently oriented.

The problem with the above argument is that it is assumed from the beginning that the boundary of the annulus A_1 must necessarily be $\mu^1_1 \cup \mu^2_2$, which, as we shall see next, is not the case and leads to the present correction to [5, Proposition 3.4].

The isotopy of F'_1 and F'_{t+1} in M_T mentioned in the above quote can be thought of as the result of a sliding process, where the corners of the face F'_{t+1} are slid onto the face F'_1 so as to coincide with each other, at which point the isotoped face F'_{t+1} becomes the annulus A_1 properly embedded in M_T with boundary the circles $\mu^1_1 \cup \mu^2_2$.

We will say that the bigon F'_{t+1} is slidable (relative to the annulus A) whenever the annulus A_1 produced by the above isotopy of F'_{t+1} satisfies $\partial A_1 = \mu^1_1 \cup \mu^2_2$, and otherwise that F'_{t+1} is non-slidable. Equivalently, F'_{t+1} is slidable iff the cycles $\psi(e^1_1 \cup e^2_{t+1}) = e^1_2 \cup e^2_{t+1} \subset T^2$ and $e^2_2 \cup e^2_{t+2} \subset T^2$ have the same slope in \hat{T}, that is iff the cycles $e_1 \cup e_{t+1}$ and $e_2 \cup e_{t+2}$ have the same slope in \hat{T}.

As we shall see in the next section, there are two combinatorially different embeddings of the edge e^2_1 in T^2 which correspond to the annulus A_1 being slidable or not; the generic embeddings $e^2_1 \subset T^2$ are shown in Fig. 11, the slidable case which produces the circles $\mu^2_i \subset T^2$ shown in Fig. 11, and Fig. 12 the non-slidable case.
Using this notation we summarize [5] Proposition 3.4 as follows:

Lemma 2.3. [5 Proposition 3.4]

1. If \(t = 1 \) then \(M \) is the exterior of the trefoil knot \((+0, 1/2, 1/3)\).
2. If \(t \geq 2 \) and \(T_{t+1} \) is slidable then \(M \) is homeomorphic to one of the manifolds \(P \times S^1/[m] \) constructed in [5 §3.4], in which case \(M \) is not Seifert fibered and contains a closed nonseparating torus.

We shall see below that in most cases, which include those with \(t \geq 4 \) and \(\alpha \neq \pm 1 \mod t \), the bigon \(F_{t+1} \) is slidable, and that the exceptions with \(t \geq 4 \) form the family \(M_t \) of Proposition 1.1.

3. Main results

In this section we assume that \((M, T_0), T, R \) satisfy the hypothesis of Proposition 1.2, also, the mutually parallel edges \(E = \{e_1, e_2, \ldots, e_{t+1}, e_{t+2}\} \) in \(G_R \) are labeled as in Fig. 2; moreover, the cycles \(\gamma^1_{\alpha} = e_1 \cup e_2 \subset T^1 \) and \(\gamma^2_{\alpha} = e_3 \cup e_4 \subset T^2 \) and the bigon \(F'_3 \) cobounded by \(e_3, e_4 \) may be assumed to lie in \(M_T \) as shown in Fig. 4. The case \(t = 1 \) is considered in Lemma 2.3(1).

3.1. The cases \(t = 2, 3 \).

Lemma 3.1. If \(t = 2, 3 \) then \((M, T_0)\) satisfies the conclusion of [5 Proposition 3.4] or of Proposition 1.2(3).

Proof. For \(t = 2 \) we must have \(\alpha = 1 \); for \(t = 3 \) we may also assume that \(\alpha = 1 \) after reversing the orientation of the edges of \(E \) if necessary.

We begin with a detailed analysis of the case \(t = 2 \). Fig. 5(a) shows the edges \(e_1 \) and bigons \(F'_1 \) of \(E \) in \(G_R \). By Lemma 2.2, up to homeomorphism, the annulus \(A \) cobounded by the cycles \(\gamma^1 = e_1 \cup e_2 \subset T^1 \) and \(\gamma^2 = e_3 \cup e_4 \subset T^2 \) and the bigon \(F'_3 \) cobounded by \(e_3, e_4 \) may be assumed to lie in \(M_T \) as shown in Fig. 5(b) or (c); for simplicity, the upper labels in the edges will not be shown in the figures representing \(M_T \).

Notice that the embeddings of the edges \(e_2 \) and \(e_3 \) are determined in both \(T^1 \) and \(T^2 \) at this point, but that the embeddings of \(e_1 \) and \(e_4 \) are so far determined only in \(T^1 \) and \(T^2 \), respectively.

To determine the possible embeddings of \(e_1 \) and \(e_4 \) we observe that either in Fig. 5(b),(c) the endpoint of \(e_1 \) in \(v_1 \) lies in the interval \((e_3, e_4)\), and that the same statement holds for the endpoint of \(e_1 \) in \(v_2 \). Since \(\psi \) maps each \(v_1 \subset T^1 \) to \(v_2 \subset T^2 \) and each \(e_1 \subset T^1 \) to \(e_4 \subset T^2 \), the endpoints of \(e_1 \) in \(v_1 \) and \(v_2 \) must also lie in the corresponding intervals \((e_3, e_4)\). As the edge \(e_1 \) is already embedded in \(T^2 \) and its endpoint on \(v_2 \) lies in \((e_3, e_4)\), it follows that the endpoint of \(e_1 \) in \(v_2 \) must lie in one of the intervals \((e_3, e_4)\) or \((e_1, e_2)\).

The first option is represented in Fig. 5(b); the placement of \(e_1 \) in \(T^2 \) is then uniquely determined using the fact that no two edges of \(E \) are mutually parallel in \(T \). Since the cycles \(e_1 \cup e_3 \) and \(e_1 \cup e_4 \) have the same slope in \(T^2 \), the bigon \(F'_3 \) is slidable and so by Lemma 2.3 the
Figure 5.
The second option is represented in Fig. 5(c), and here we have that $\Delta(\partial T, \partial A) \neq 2$ so F'_3 is not slidable. The endpoints of e'_3 in both vertices v'_1, v'_2 are now located in the intervals (e'_1, e'_2), so the endpoints of e'_1 in both vertices v'_1, v'_2 must also be located in the intervals (e'_3, e'_4); the endpoints of e'_1 are indicated in Fig. 5(c) by open circles in v'_1, v'_2. The only possible embedding of the edge e'_4 in T^1 is shown in Fig. 6(a).

Now, by Lemma 2.2 the bigons F'_1, F'_2, F'_3 form a complete disk system of the handlebody M_T. Observe that the endpoints of e'_4 can be connected via arcs c_1, c_2 along the strings $I'_{1,2}, I'_{2,1}$ that are disjoint from the corners of the bigons F'_1, F'_2, F'_3. It follows that the circle $e'_1 \cup e'_2 \cup c_1 \cup c_2 \subset \partial M_T$ is disjoint from F'_1, F'_2, F'_3 and hence bounds a disk F'_4 in M_T disjoint from F'_1, F'_2, F'_3. It is not hard to see that the quotient $A = (F'_1 \cup F'_2 \cup F'_3 \cup F'_4)/\psi$ is a surface in (M, T_0) which intersects T transversely and minimally with $\Delta(\partial T, \partial A) = 2$ and $G_{T,A} = T \cap A \subset T$ the essential graph of Fig. 6(b). Since T is positive, by the parity rule A must be a neutral annulus, hence each face of $G_{T,A}$ is necessarily a Scharlemann cycle of length 4, and since M is irreducible it follows that A must separate M into two
solid tori whose meridian disks, that is the faces of $G_{T,A}$, each intersect A coherently in 4 arcs. Therefore M is a Seifert fibered manifold over the disk with two singular fibers of indices $4, 4$, so $M(\partial T)$ is a Seifert fibered torus bundle over the circle with horizontal bundle fiber \hat{T}. By the classification of such torus bundles (cf [2, §2.2]), it follows that $M(\partial T) = (+0, 0; 1/2, -1/4, -1/4)$ and hence that $M = (+0, 1; -1/4, -1/4)$.

The case $t = 3$ is handled in a similar way: Fig. 7(a) shows the labeling of the edges $E = \{e_1, \ldots, e_5\}$ and the bigon faces F'_1, \ldots, F'_4 they cobound in G_R, while Fig. 7(b) shows

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Figure 7.}
\end{figure}
the embedding of the bigons F'_1, \ldots, F'_6 in M_T, up to homeomorphism. Again there are only two possible embeddings for the edge e^2_1 in T^2 depending on whether the endpoint of e^2_1 in v^2_2 lies in (e^2_4, v^2_5) or (e^2_5, v^2_3). In the first case the bigon F'_4 is again slidable; we now sketch the details for the case corresponding to the later option, where F'_4 is non-slidable.

Fig. 6(b) shows the embedding of $e^2_4 \subset T^2$ which makes the bigon F'_4 non-slidable and forces the embedding of $e^2_5 \subset T^1$. At this point all the edges in $E^2 = \{e^2_1, \ldots, e^2_6\}$ have been embedded in T^2. Fig. 6(c) shows the embedding of a 6th edge e^2_6 in T^2 with endpoints on the intervals $(e^2_4, e^2_5) \subset v^2_5$ and $(e^2_5, e^2_1) \subset v^2_3$ and which is disjoint from and not parallel in T^2 to any of the edges $e^2_1, e^2_2, \ldots, e^2_5$. These properties imply that $e^2_6 = \psi^{-1}(e^2_6)$ must be the edge in T^1 sketched in Fig. 6(c).

As before, it is possible to connect the endpoints of e^2_5 and e^2_6 via corners $c_1 \subset I'_{2,3}$ and $c_2 \subset I'_{3,1}$, and the endpoints of e^1_3 and e^2_1 via corners $c_3 \subset I'_{3,1}$ and $c_4 \subset I'_{1,2}$, so that the circles $e^1_3 \cup e^2_1 \cup e^2_2 \cup c_1 \cup c_2 \subset \partial M_T$ and $e^1_1 \cup e^2_2 \cup e^2_3 \cup c_3 \cup c_4 \subset \partial M_T$ bound disks $F'_1 \subset M_T$ and $F'_6 \subset M_T$, respectively, with the property that the enlarged collection of disks F'_1, \ldots, F'_6 is disjoint (see Fig. 6(c)).

It follows that $A = (F'_1 \cup F'_2 \cup \cdots \cup F'_6)/\psi$ is a neutral annulus in (M, T_0) which intersects T transversely and minimally with $G_{T,A}$ the essential graph of Fig. 6 and $\Delta(\partial T, \partial A) = 2$. Since $|\partial A| = 2$, each face of $G_{T,A}$ is necessarily a Scharlemann cycle and hence A must separate M into two solid tori with meridian disks the faces of $G_{T,A}$. As $G_{T,A}$ has two trigon faces on one side of A and a 6-sided face in the other side of A, we must have that M is a Seifert manifold over the disk with two singular fibers of indices 3, 6, which by the classification of such torus bundles (cf [2 §2.2]) implies that $M(\partial T) = (+0, 1/2, -1/3, -1/6)$ and hence that $M = (+0, 1; -1/3, -1/6)$. The lemma follows.

3.2. The generic case $t \geq 4$. Here we assume that $t \geq 4$; we first show that for most values of α the bigon F'_{t+1} is slidable.

Lemma 3.2. If $\alpha \not\equiv \pm 1 \mod t$ then the bigon F'_{t+1} is slidable.

Proof. If $t = 4$ then $\alpha \equiv \pm 1 \mod t$. For $t \geq 5$ the condition $\alpha \not\equiv \pm 1 \mod t$ is equivalent to saying that the pairs of strings $\{I'_{1,2}, I'_{1+\alpha,2+\alpha}\}$ and $\{I'_{2,3}, I'_{2+\alpha,3+\alpha}\}$ are disjoint. These four
strings are shown in Fig. 9 along with the embeddings of the faces F'_1, \ldots, F'_{t+1} from Fig. 11. As e_{t+2}^2 has one endpoint on the interval $(e_{2-\alpha}, e_2^2) \subset v_2^2$ and the other on $(e_{2+\alpha}, e_2^3) \subset v_2^{2+\alpha}$, the endpoints of $e_{t+2}^1 = \psi^{-1}(e_{t+2}^2)$ must lie on $(e_{2-\alpha}, e_2^1) \subset v_2^1$ and $(e_{2+\alpha}, e_2^3) \subset v_2^{1+\alpha}$. Therefore the edge e_{t+2}^1 must be embedded in T^1 as shown in Fig. 9 which implies that the cycles $e_1 \cup e_{t+1}$ and $e_2 \cup e_{t+2}$ have the same slope in \widehat{T} and hence that F'_{t+1} is slidable.

From here on we assume that $\alpha \equiv \pm 1 \mod t$, and after reversing the orientation of the edges of E, if necessary, we will take $\alpha = 1$.

Lemma 3.3. If $\alpha = 1$ and $t \geq 4$ then, up to homeomorphism, the bigons and edges of E are embedded in M_T and T, respectively, as shown in Fig. 11(a),(b) if F'_{t+1} is slidable, or Fig. 12(a),(b) if F'_{t+1} is nonslidable. In the latter case, if $\overline{\tau} \subset \overline{G}_R$ is the negative edge that contains the edges of E then $\overline{\tau} = E$, so $|\overline{\tau}| = t + 2$.

Proof. By the argument of [5, Lemma 3.6] (see in particular [5, Fig. 11]) with $\alpha = 1$ we may assume that, up to homeomorphism, the bigons of E are embedded in M_T as shown in Fig. 10 where $t \geq 4$. Notice that the embedding of the bigons of E in M_T only determines the embeddings of the edges $e_1, e_2, \ldots, e_{t+1}$ in T^1 and of $e_2, e_3, \ldots, e_{t+2}$ in T^2. To determine the possible embeddings of e_1 in T^2 and e_{t+2} in T^1 we proceed as follows.

From Fig. 10 the endpoints of e_1^1 in T^1 are located in the intervals $(e_{t+1}^1, e_1^1) \subset v_1^1$ and $(e_{t+1}^3, e_1^3) \subset v_1^2$; since $\psi(T^1) = T^2$, it follows that the endpoints of e_1^2 in T^2 must be located in the intervals $(e_{t+1}^2, e_1^2) \subset v_2^1$ and $(e_{t+1}^4, e_1^4) \subset v_2^2$.

The interval $(e_{t+1}^2, e_1^2) \subset v_2^2$ is split into the two subintervals (e_{t+1}^2, e_{t+2}^2) and (e_{t+2}^2, e_1^2) by the endpoint of e_{t+2}^1 in v_2^2, which gives rise to two possible locations of the endpoint of e_1^2 in v_2^2. The endpoints of e_1^2 are denoted by open circles in $v_1^2, v_2^2 \subset T^2$ in Fig. 11. Since all faces of the graphs on T^1, T^2 of Fig. 10 are disks, the embedding of e_1^2 in T^2 is completely determined by the location of its endpoints; therefore there are exactly two possible embeddings of e_1^2 in T^2.
Case 1. The endpoint of e_1^2 in v_2 lies in (e_{t+1}^2, e_{t+2}^2).

This case is represented in Fig. 11(a). Now the endpoints of e_{t+2}^2 in T^2 lie in the intervals $(e_1^2, e_2^2) \subset v_2$ and $(e_3^2, e_4^2) \subset v_3$, and so the endpoints of $e_{t+2}^2 = \psi^{-1}(e_{t+2}^2)$ in T^1 must lie in $(e_1^1, e_2^1) \subset v_1$ and $(e_3^1, e_4^1) \subset v_3$. Therefore e_{t+2}^1 must be the edge in T^1 shown in Fig. 11(a). The graph in T produced by the edges of E is shown in Fig. 11(b); as the cycles $e_1 \cup e_{t+1}$ and $e_2 \cup e_{t+2}$ have the same slope in \hat{T}, the bigon F'_{t+1} is slidable.

Case 2. The endpoint of e_1^2 in v_2 lies in (e_{t+1}^2, e_{t+2}^2).

The embedding of e_1^2 in T^2 is shown in Fig. 12(a). The endpoints of e_{t+2}^2 in T^2 lie in the intervals $(e_{t+1}^2, e_1^2) \subset v_2$ and $(e_3^2, e_4^2) \subset v_3$, so the endpoints of e_{t+2}^1 in T^1 lie in $(e_{t+1}^1, e_1^1) \subset v_1$ and $(e_3^1, e_4^1) \subset v_3$; thus e_{t+2}^1 must lie in T^1 as shown in Fig. 12(a). The graph in T produced by the edges of E is shown in Fig. 12(b); this time the cycles $e_1 \cup e_{t+1}$ and $e_2 \cup e_{t+2}$ have slopes in \hat{T} at distance 1 and so the bigon F'_{t+1} is nonslidable.

Suppose there is a negative edge $e_0 \in \bar{\tau} \setminus E$ in G_R which cobounds a bigon F_0 with e_1, so that $F_0' \subset M_R$ is cobounded by the edges $e_0^1 \subset T^1$ and $e_1^2 \subset T^2$. Since e_1^2 has endpoints in $(e_{t+1}^2, e_1^2) \subset v_2$ and $(e_{t+2}^2, e_3^2) \subset v_3$, the corners of F_0' must lie in the strings I_{t+1}' and I_{t+2}' and so the endpoints of e_0^1, represented by squares in Fig. 12, necessarily must lie in $(e_{t+1}^1, e_1^1) \subset v_1$ and $(e_{t+2}^1, e_3^1) \subset v_1$. This is impossible since such endpoints are separated by the edge $e_{t+2} \subset T$ (see Fig. 12(a),(b)), so no such edge e_0 exists in $\bar{\tau}$. A similar argument shows that $\bar{\tau} \setminus E$ does not contain any edge adjacent to e_{t+2}. Therefore $E = \bar{\tau}$ and so $|\tau| = t + 2$.

Corollary 3.4. If $t \geq 4$ and M is not homeomorphic to any of the manifolds $P \times S^1/[m]$ then $|\tau| \leq t + 2$ holds for any negative edge τ of \overline{G}_R.

Proof. Let τ be any negative edge of \overline{G}_R with $|\tau| \geq t + 2$, and let $E = \{e_1, \ldots, e_{t+2}\}$ be any collection of $t + 2$ consecutive edges in τ. Since M is not any of the manifolds $P \times S^1/[m]$,
by Lemmas 2.3 and 3.2 the permutation induced by E must be of the form $x \to x \pm 1$, and hence $|\tau| = t + 2$ holds by Lemma 3.3.

We now prove Lemma 1.3:

Proof of Lemma 1.3. If $t = 3$ the bound $|\tau| \leq t + 1$ holds for any negative edge τ of \overline{G}_S by Lemma 3.1, so we will assume that $t \geq 4$. Since none of the manifolds $P \times S^1/[m]$ is hyperbolic (cf \cite{5}, Proposition 3.4), by Corollary 3.4 the bound $|\tau| \leq t + 2$ holds for any negative edge τ of \overline{G}_S.

Suppose now there is an edge τ in \overline{G}_S with $|\tau| = t + 2$, so that T is a positive surface and hence, by the parity rule, in G_S all edges are negative, so any cycle in G_S is even sided.

By \cite{5} Lemma 2.2(b), the reduced graph \overline{G}_S has a vertex u of degree $n \leq 4$. Counting endpoints of edges of G_S around v yields the relations

$$6t \leq \Delta \cdot t \leq n \cdot (t + 2),$$

which along with the restriction $n \leq 4$ imply that $n = t = 4$, $\Delta = 6$, and that each of the 4 edges $\overline{\tau}_1, \overline{\tau}_2, \overline{\tau}_3, \overline{\tau}_4$ incident to u in \overline{G}_S has size $t + 2 = 6$, as shown in Fig. 13. We orient the edges of $\overline{\tau}_1, \overline{\tau}_2$ away from u as indicated in Fig. 13.
By Lemma 3.2, reversing the orientation of the vertices of G_S and relabeling the vertices of G_T, if necessary, we may assume that the permutation induced by the oriented edge $e_1 = \{e_1, \ldots, e_6\}$ around u is of the form $x \mapsto x + 1$, while the permutation induced by the oriented edge $e_2 = \{a_1, \ldots, a_6\}$ is of the form $x \mapsto x \pm 1$.

We consider in detail the case where e_2 induces the permutation $x \mapsto x - 1$; the case where this permutation is $x \mapsto x + 1$ follows by a similar argument. We may assume that the endpoints of the edges in e_1, e_2 are labeled as in Fig. 13. We may also assume that the edges of e_1 lie in T as shown in Fig. 14; this figure is obtained from the graph of Fig. 12(b) with $t = 4$, except here T is shown cut along the edges e_1, e_5 of e_1.

The edges a_2, a_6 of e_2 are parallel in G_S and have endpoints on the vertices v_3, v_4 of G_T, so by Lemma 2.1(b) for some $i \in \{2, 6\}$ the edge a_i is not parallel in T to e_3; it is not hard to see that there is only one embedding of a_i in T, as shown in Fig. 14.

Let F be the bigon of e_2 cobounded by a_{i-1} and a_i; from the point of view of M_T, the edge a_{i-1} of F lies in T^1 while the edge a_i lies in T^2. Since the edge $a_2^2 \subset T^2$ has one endpoint in the interval $(e_2^2, e_6^2) \subset v_3^2$ and its other endpoint in the interval $(e_4^2, e_3^2) \subset v_2^2$, represented by open circles in Fig. 14 by following the corners of F up along the strings $I_{2,3}'$ and $I_{3,4}'$ in Fig. 12(a) (with $t = 4$) we can see that $a_{i-1}^1 \subset T^1$ has one endpoint in the interval $(e_1^1, e_5^1) \subset v_2^1$ and its other endpoint in the interval (e_3^1, e_2^1) of v_3^1. The possible locations of the endpoints of a_{i-1} around v_2 and v_3 are indicated by open squares in Fig. 14; this situation is
impossible since the edges of $\overline{e_1} \cup \{a_i\} \subset T$ separate the endpoints of a_{i-1}. This contradiction shows that $|\overline{e}| \leq t + 1$ holds in G_S.

\[\square\]

3.3. **The manifolds** (M_t, T_0), $t \geq 4$. For each $t \geq 4$ let T be a t-punctured torus and M_t the manifold M_T/ψ, where $M_T = T \times I$ is the solid handlebody with complete disk system $F'_1, F'_2, \ldots, F'_{t+1}$ of Fig. 12(a) considered in Case 2 of Lemma 3.3 and $\psi : T^1 = T \times 0 \to T^2 = T \times 1$ is the homeomorphism uniquely determined up to isotopy by the conditions $\psi(v_i^1) = v_i^2$ for $1 \leq i \leq t$ and $\psi(e_j^1) = e_j^2$ for $1 \leq j \leq t + 1$. The basic properties of M_t are summarized in the next lemma.
Lemma 3.5. The manifold M_t is orientable and ∂M_t is a torus T_0. Moreover, the pair (M_t,T_0) is irreducible and $T = T^1/\psi$ is a properly embedded essential punctured torus in (M_t,T_0).

Proof. If $T^1 \subset \partial M_T$ and $T^2 \subset \partial M_T$ are oriented by the normal vectors \vec{N}^1, \vec{N}^2 in Fig. 14 then the conditions $\psi(v^1_i) = v^2_i$ for $1 \leq i \leq t$ and $\psi(e^1_j) = e^2_j$ for $1 \leq j \leq t + 1$ imply that the homeomorphism $\psi : T^1 \to T^2$ is orientation preserving, hence M_t is orientable. Clearly, $\partial M_t = (I'_{1,2} \cup I'_{2,3} \cup \cdots \cup I'_{t,1})/\psi$ is a single torus T_0, and hence $T = T_1/\psi$ is a properly embedded torus in (M_t,T_0).

If $T = T_1/\psi$ compresses in $M_t = M_T/\psi$ then, as M_T is obtained by cutting M_t along T, it follows that T^1 or T^2 compresses in M_T, which is not the case since $M_T = T \times I$. Therefore T is incompressible in M_t.

Since M_T is a handlebody, hence irreducible, it now follows that M_t is also irreducible. So, if T_0 compresses in M_t then M_t must be a solid torus, contradicting the fact that T is incompressible in M_t. Therefore T_0 is incompressible and T is essential in (M_t,T_0).

We now show that the bigons in the complete disk system of M_T give rise to a twice-punctured torus S embedded in (M_t,T_0).

Lemma 3.6. For each $t \geq 4$ there is a separating, essential, twice-punctured torus S in (M_t,T_0) such that $\Delta(\partial T, \partial S) = 3$ and $G_S = S \cap T \subset S$, $G_{T,S} = S \cap T \subset T$ are the graphs shown in Figs. 16 and 17.

Proof. Let $t \geq 4$, and consider the faces F'_1, \ldots, F'_{t+1} and the edges e^1_j for $1 \leq j \leq t + 2$, $i = 1,2$, embedded in the handlebody $M_T = T \times I$ and T^i, respectively, as shown in Fig. 12(a), with $\psi(e^1_j) = e^2_j$ for all j. We add the following objects to M_T as indicated in Fig. 15:

- one bigon face parallel to F'_i for $i = 2, t$,
- two bigon faces parallel to F'_i for $3 \leq i \leq t - 1$,
- one more edge parallel to each of the edges e^2_3, e^3_3 and e^1_1, e^1_{t+1}.

Therefore, in T, the edges e_1, e_{t+2} get no parallel edges, each of the edges e_i for $i = 2, t + 1$ gets one parallel edge denoted by e'_i, and each of the edges e_i for $3 \leq i \leq t$ gets two parallel edges denoted e'_i, e''_i. The new collections of edges e_i, e'_i, e''_i produce graphs $G_i \subset T^i$ for $i = 1, 2$ isomorphic to the graph in Fig. 16 such that, after a slight isotopy of the edges e'_i, e''_i if necessary, satisfy $\psi(G^1) = G^2$.

Now connect all the old and newly added edges of T^1, T^2 via mutually disjoint corners as shown in Fig. 15. Observe that the 6-cycle C in ∂M_T containing the edges $e^2_1, (e'_1)^1, (e'_3)^2, e^1_{t+2}, (e'_2)^2, (e''_1)^1$ is disjoint from the complete disk system F'_1, \ldots, F'_{t+1} of M_T, hence C bounds a 6-sided disk ‘face’ F'_C in M_T disjoint from all the other bigons in M_T.

In this way we obtain a collection \mathcal{F} of $3t - 2$ disjoint disk faces embedded in M_T: $2(3) + 3(t - 3) = 3t - 3$ bigons and one 6-sided disk face. The condition $\psi(G^1) = G^2$ guarantees that $S = \mathcal{F}/\psi \subset (M,T_0)$ is a properly embedded surface which intersects T transversely in the graph $G_{T,S} = T \cap S \subset T$ of Fig. 16. Moreover, the collection of corners of faces in \mathcal{F} whose
endpoints are capped with a small closed disk in Fig. [15] form one boundary component $\partial_1 S$ of S, while the remaining corners form a second boundary component $\partial_2 S$; thus $|\partial S| = 2$.

Therefore all faces of the graph $G_S = S \cap T \subset S$ are disks, and G_S has 2 vertices, $3t$ edges, and $|F| = 3t - 2$ faces, so \hat{S} is a surface with Euler number 0; since each vertex of $G_{T,S}$ has degree 6, it follows that $\Delta(\partial S, \partial T) = 3$.

Now, the faces of $G_{T,S}$ can be colored black or white as shown in Fig. [16] and this coloring induces a corresponding black and white coloring of the components of $M_T \setminus \cup F$ such that each face in \mathcal{F} is adjacent to opposite colored components, which implies that S separates M_t and hence that S is a 2-punctured separating torus. We denote by S^B, S^W the closures of the components of $M_t \setminus S$.

The graph G_S can be determined by following the boundary circle $\partial_1 S$ in Fig. [15] in the direction of increasing labels; starting at the endpoint of e_1^1 in $v_1 \subset \partial T$ we find that the collections of edges \{\begin{align*} e_1, \ldots, e_{t+2} \end{align*}\}, \{\begin{align*} e_2', \ldots, e_{t+1}' \end{align*}\}, and \{\begin{align*} e_3'', \ldots, e_t'' \end{align*}\} form distinct parallelism...
classes in T and are read in this order as we traverse the circle $\partial_1 S$ in Fig. 15, and so G_S must be the graph shown in Fig. 17.

For each $\ast \in \{B,W\}$ the manifold S^\ast is irreducible with ∂S^\ast a genus two surface. Notice that $G_{T,S}$ contains Scharlemann cycle disk faces in S^\ast of distinct lengths; any such Scharlemann cycle disk face is nonseparating in S^\ast, whence S^\ast is a genus two handlebody with complete disk system any pair of Scharlemann cycle disk faces of $G_{T,S}$ in S^\ast of different sizes.

For S^B we can take as complete disk system the bigon x of $G_{T,S}$ containing the edge e_2 and the t-sided face y containing e_{t+2}, so that $\pi_1(S^B) = \{x, y \mid \} \text{ and } \partial_1 S \subset \partial S^B$ is represented by the word in $\pi_1(S^B)$ obtained by reading the consecutive intersections of $\partial_1 S$ with the disks x and y. Following $\partial_1 S$ around in Fig. 15 we can see that $\partial_1 S = (yx)^2y^{t-2}$, which is not a primitive word in $\pi_1(S^B) = \{x, y \mid \}$; therefore S is incompressible in S^B by [4, Lemma 5.2]. Similarly, in S^W we can take as complete disk system the white bigon X in $G_{T,S}$ with corners along v_3 and v_4 and the white $t+4$-sided face Y containing e_{t+2}; we then compute that $\partial_1 S \subset \partial S^W$ is represented by the word $Y^{t+3}XYX$ in $\pi_1(S^W) = \{X, Y \mid \}$, which is not primitive, so S is incompressible in S^W too. Therefore S is incompressible, hence essential, in M_t. \hfill \Box

We now complete the proofs of the remaining main results of this paper.

Proof of Proposition 1.1. Parts (1), (2) and (3) follow immediately from Lemmas 3.5 and 3.6. By Lemma 2.2, the manifold $M_t(\partial T)$ is a torus bundle over a circle with fiber \tilde{T}. Finally, by [5] Proposition 3.4(c), if $(P \times S^1/[m], T_0)$ contains two \mathcal{K}-incompressible tori T, T'
then $\Delta(T, T') \in \{0, 1, 2, 4\}$; since M_t contains the essential torus S with $\Delta(\partial T, \partial S) = 3$, it follows that M_t is not homeomorphic to any of the manifolds $P \times S^1/[m]$, so part (4) holds.

Proof of Proposition 1.2: That T is positive follows from Lemma 2.1(c). Suppose (M, T_0) does not satisfy parts (1) and (3) of the proposition. By Lemmas 2.3(1) and 3.1 we then have that $t \geq 4$, and so by Lemmas 2.3(2), 3.2, 3.3 and the definition of M_t, we have that (M, T_0) is homeomorphic to (M_t, T_0). Since, by Proposition 1.1 M_t is not a manifold of the form $P \times I/[m]$, the bound $|\tau| \leq t+2$ holds for all negative edges τ of G_R by Corollary 3.4. Therefore part (2) holds.

Proof of Lemma 1.4: Assume parts (1), (2) and (4) of the lemma do not hold; then $t \geq 4$ and $(M, T_0) \approx (M_t, T_0)$ by Proposition 1.2(2), and there is a negative edge in G_Q of length $|\tau| \geq t + 2$. By Corollary 3.4 we then have that $|\tau| = t + 2$, so the lemma holds.

References

[1] C. M. Gordon, Boundary slopes of punctured tori in 3-manifolds, Trans. Amer. Math. Soc. 350 (5) (1998) 1713–1790.
[2] A. Hatcher, Notes on basic 3-manifold topology, Available at http://www.math.cornell.edu/hatcher/3M/3Mdownloads.html (2000).
[3] S. Lee, S. Oh, M. Teragaito, Reducing Dehn fillings and small surfaces, Proc. London Math. Soc. 92 (1) (2006) 203–223.
[4] L. G. Valdez-Sánchez, Seifert Klein bottles for knots with common boundary slopes, in: Proceedings of the Casson Fest, Vol. 7 of Geom. Topol. Monogr., Geom. Topol. Publ., Coventry, 2004, pp. 27–68 (electronic).
[5] L. G. Valdez-Sánchez, Toroidal and Klein bottle boundary slopes, Topology Appl. 154 (3) (2007) 584–603.
[6] L. G. Valdez-Sánchez, Toroidal boundary slopes at distance 3: the positive case, preprint, in progress.

Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA

E-mail address: valdez@math.utep.edu