Chemical composition and larvicidal activity of essential oils from *Zingiber montanum* (J. Koenig) Link ex. A. Dietr. against three mosquito vectors

[Composición química y actividad larvicida de aceites esenciales de *Zingiber montanum* (J. Koenig) Link ex. A. Dietr. contra tres vectores de mosquitos]

Le T Huong¹, Trinh T Huong²,³, Nguyen TT Huong⁴,⁵, Nguyen H Hung⁶, Ngo X Luong⁷ & Isiaka A Ogunwande⁸

¹School of Natural Science Education, Vinh University, 182 Le Duan, Vinh City, Nghệ An Province, Vietnam
²Graduate University of Science and Technology, Vietnam Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
³Faculty of Natural Science, Hong Duc University, 565 Quang Trung, Đống P, Thanh Hoá City, Thanh Hoá Province, Vietnam
⁴Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Vietnam
⁵Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
⁶Department of Biotechnology, Nong Lam University, Ho Chi Minh City, Vietnam
⁷Center of Scientific Research and Practice, Tran Van On, Phu Hoa, Thu Dau Mot, Binh Duong province, Vietnam
⁸Foresight Institute of Research and Translation, 19, Eleye, Ibadan, Oyo State, Nigeria

Contactos | Contacts: Isiaka A OGUWANDE - E-mail address: isiakaogunwande@gmail.com

Abstract: The chemical composition and larvicidal activity of essential oils derived from the leaves and rhizomes of *Zingiber montanum* (J. Koenig) Link ex. A. Dietr. were reported. The main compounds in the leaf oil were β-pinene (13.8%), β-phellandrene (11.3%) and α-pinene (7.3%) while the rhizome oil was dominated by sabinene (41.1%), terpin-4-ol (22.7%) and (E)-nerolidol (14.3%). The minimum lethal concentration (larvicidal activity) LC₅₀ of the rhizome oil at 24 h against *Aedes albopictus* was 35.17 μg/mL, while LC₅₀ values of 32.20 μg/mL and 31.12 μg/mL were obtained against *Aedes aegypti* and *Culex quinquefasciatus* respectively. At 48 h the oil displayed larvicidal action with LC₅₀ values of 23.18 μg/mL, 25.58 μg/mL and 18.99 μg/mL respectively towards *Ae. albopictus*, *Ae. Aegypti* and *Cx. quinquefasciatus*. The leaf oil did not exhibit significant mortality and larvicidal action. The results indicate the potential of rhizome essential oil of *Z. montanum* as a source of larvicidal agent.

Keywords: *Zingiber montanum*; Essential oil; Monoterpenes; Mortality; Larvicidal activity

Resumen: En el presente trabajo se reportan la composición química y actividad larvicida de los aceites esenciales obtenidos de hojas y rizomas de *Zingiber montanum* (J. Koenig) Link ex. A. Dietr. Los principales compuestos en el aceite de hojas fueron β-pineno (13.8%), β-felandrene (11.3%) y α-pineno (7.3%); mientras que los más abundantes en el aceite de rizomas fueron sabineno (41.1%), terpin-4-ol (22.7%) y (E)-nerolidol (14.3%). La concentración letal mínima (actividad larvicida) LC₅₀ del aceite de rizomas ante *Aedes albopictus* fue 35.17 μg/mL, mientras que los valores de LC₅₀ de 32.20 μg/mL y 31.12 μg/mL fueron obtenidos ante *Aedes aegypti* y *Culex quinquefasciatus* respectivamente. A las 48 horas, el aceite mostró acción larvicida con valores de LC₅₀ de 23.18 μg/mL, 25.58 μg/mL y 18.99 μg/mL respectivamente, ante *Ae. albopictus*, *Ae. Aegypti* y *Cx. quinquefasciatus*. El aceite de hojas no mostró mortalidad ni acción larvicida significativa. Los resultados indican el potencial del aceite esencial de rizomas de *Z. montanum* como una fuente de agentes larvicidas.

Palabras clave: *Zingiber montanum*; Aceite esencial; Monoterpenos; Mortalidad; Actividad larvicida
INTRODUCTION

Vietnam is classified as a hyperendemic dengue country with present throughout the year and dengue fever epidemics have increased in frequency. Mosquitoes have been and continue to be the most deadly creatures on earth. Aedes albopictus, Aedes aegypti and Culex quinquefasciatus are the main vectors which transmits several diseases such as dengue fever and other related diseases (Hung et al., 2019). Chemical control of these vectors of diseases have an impact on the environment and humans, also burden a high cost. One of the efforts to reduce the negative impact of synthetic insecticide is to find out alternative natural insecticide from plant-based insecticides.

Zingiber Miller (Zingiberaceae) is distributed in tropical and warm-temperate Asia with the highest diversity in monsoonal parts of Asia. It is considered the largest genus in the subfamily Zingiberoideae with more than 200 names corresponding to approximately 100-150 species (Theillade & Mood, 2000). Zingiber montanum (J. Koenig) Link ex A.Dietr. (syn. Zingiber cassumunar Roxb.) is a rhizome forming perennial herb, with rather stout, leafy stem, up to 2 m high. The rhizome is yellow inside, strongly aromatic. The leaves are lance-shaped, 30-45 cm long, stalkless, velvet-hairy along midrib only on the lower surface with persistent red or purplish-brown colour. The pseudostem is cylindrically erect and enveloped by leafy sheaths reaching up to 1.2-1.8 m high. The purplish-brown flowering stem arises from the root, about 7-15 cm long. The flowers are pale yellow which tube which is about 2.5 cm long (Lim, 2016). The plant is used in ethnomedicine for the treatment of constipation, rheumatism, wounds, asthma, mosquito repellent among others (Singh et al., 2015).

The chemical constituents of essential oil from Z. montanum have been reported from a different origin. The main monoterpen compounds that featured prominently in the oil consist of α-pinene and β-pinene (Huong et al., 2017), sabinene, (Z)-ocimene and γ-terpinene (Chaiyana et al., 2017; Leelarungrayub et al., 2017; Bacha & Adelheid, 2018) and terpinen-4-ol (Vipada & Yingyoong, 2012; Chaiyana et al., 2017). The major sesquiterpene constituents comprised mainly caryophyllene (Kamazeri et al., 2012), valencene, eudesma-4(14),11-diene and germacrene D (Huong et al., 2017), caryophyllene oxide (Bhuiyan et al., 2008), 1(10),4-furanodien-6-one and curzerenone (Bordoloi et al., 1999). The non-terpene compounds consist of (E)-1(3,4-dimethylphenyl)butadiene, (E)-(3,4-dimethoxyphenyl) but-l-ene, (E)-4-(3,4-dimethoxyphenyl)but-3-ene-1-yl acetate and 2,6,9,9-tetramethyl-2,6,10-cycloundecatrien-1-one (Kamazeri et al., 2012; Leelarungrayub et al., 2017; Bacha & Adelheid, 2018; Verma et al., 2018). There are several other minor constituents which differ from one another depending on the origin of the sample being analyzed. Essential oils from Z. montanum have previously displayed antibacterial (Boonyanugomol et al., 2017), antioxidant (Manochai et al., 2010; Manochai et al., 2017) and anesthetic (Khamsopa et al., 2018) activities among others.

Previous studies have shown that Z. montanum essential oil reduces the biting rate of mosquitoes and displayed repellent and ovicidal actions (Phukerd & Soonwera, 2014) and exhibited mortality and larvicidal action against Cx. quinquefasciatus, Ae. albipictus and Ae. aegypti (Phukerd & Soonwera, 2013; Boonyuan et al., 2014; Crotchakaew & Soonwera, 2014). A previous report indicated that Z. montanum oil displayed larvicidal action against Ae. aegypti, Ae. albopictus and Culex quinquefasciatus with LC₅₀ of 84.95, 99.04 and 176.35 mg/L, respectively (Restu et al., 2017). However, the larvicidal activity of essential oil from Z. montanum grown in Vietnam has not been previously evaluated and reported.

The purpose of this research was to determine the killing power (mortality) and larvicidal activity of the leaf and rhizome essential oils of Z. montanum against the fourth-instant larvae of Ae. albopictus, Ae. aegypti and Cx quinquefasciatus. This is in continuation of our extensive research aimed at the characterization of the volatile constituents and biological activities of Zingiber species in particular (Huong et al., 2019; Huong et al., 2020) and the flora of Vietnam in general (Hung et al., 2019; Ban et al., 2020).

MATERIALS AND METHODS

Plant collection

The leaves and rhizomes of Z. montanum were collected from Bình Chúan Commune, Pù Hương, Natural Reserve, Nghe An Province, Vietnam, in August 2018. Botanical identical was conducted by Dr. L.T. Huong, Vinh University, Vinh City, Vietnam. A voucher specimen (TTH 734) was deposited at the Botany Museum, Vinh University, Vietnam. Plant samples were air-dried prior to extraction.
Hydrodistillation of essential oils
Two kilograms each of air-dried and pulverized sample of leaf and rhizome of *Z. montanum* were used for this experiment. The samples were carefully and separately introduced into 5 L flask, after which distilled water was added to cover the surface of the sample. Essential oils were obtained by hydrodistillation for 3 h at normal pressure, according to the established procedure (Vietnamese Pharmacopoeia, 2009) conducted in the Clevenger-type apparatus. The distilled oils were recovered into previous weighed sample bottle through the receiver arm of the distillation unit. The oils were kept under refrigeration until the moment of analysis. Analysis was done in triplicate.

Analysis of the essential oils
Gas chromatography (GC) analysis was performed on an Agilent Technologies HP 6890 Plus Gas chromatograph equipped with a FID and fitted with HP-5MS column (30 m x 0.25 mm, film thickness 0.25 μm, Agilent Technology). The analytical conditions were: carrier gas H₂ (1 mL/min), injector temperature (PTV) 250°C, detector temperature 260°C, column temperature programmed from 60°C (2 min hold) to 220°C (10 min hold) at 4°C/min. Samples were injected by splitting and the split ratio was 10:1. The volume injected was 1.0 μL. Inlet pressure was 6.1 kPa. Each analysis was performed in triplicate. The relative amounts of individual components were calculated based on the GC peak area (FID response).

An Agilent Technologies HP 6890N Plus Chromatograph fitted with a fused silica capillary HP-5 MS column (30 m x 0.25 mm, film thickness 0.25 μm) and interfaced with a mass spectrometer HP 5973 MSD was used for the GC/MS analysis, under the same conditions as those used for GC analysis. The conditions were the same as described above with He (1 mL/min) as a carrier gas. The MS conditions were as follows: ionization voltage 70 eV; emission current 40 mA; acquisitions scan mass range of 35-350 amu at a sampling rate of 1.0 scan/s. The MS fragmentation patterns were checked with those of other essential oils of known composition.

Identification of the constituents of essential oils
The identification of constituents of essential oils of *Z. montanum* was performed on the basis of retention indices (RI) determined with reference to a homologous series of *n*-alkanes (C₆-C₄₀), under identical experimental conditions, co-injection with standards compounds. The mass spectra were compared with available library search (NIST, 2018) as described previously (Ban et al., 2020).

Mosquito larvae
Adults of the used mosquitoes were collected in Hoa Khanh Nam ward, Lien Chieu district, Da Nang city (16°03'14.9"N, 108°09'31.2"E). Adult mosquitoes were maintained in entomological cages (40 x 40 x 40 cm) and fed a 10% sucrose solution and were allowed to blood feed on mice. Eggs hatching were induced with tap water. Larvae were reared in plastic trays (24 x 35 x 5 cm). The larvae were fed on dog biscuits and yeast powder in the 3:1 ratio. All stages were held at 25 ± 2°C, 65-75% relative humidity, and a 12:12 h light-dark cycle at the Center for Entomology and Parasitology Research, Duy Tan University.

Larvicidal test
Larvicidal activity of the essential oils from *Z. montanum* was evaluated according to an established protocol (WHO, 2005) with slight modifications. For the assay, aliquots of the essential oils dissolved in EtOH (1% stock solution) was placed in a 200-mL beaker and added to water that contained 20 larvae (fourth instar). With each experiment, a set of controls using EtOH was also run for comparison. Mortality was recorded after 24 h and again after 48 h of exposure during which no nutritional supplement was added. The experiments were carried out at 25 ± 2°C. Each test was conducted with four replicates using four concentrations (100, 50, 25 and 12.5 μg/mL). Permethrin was used as a positive control.

The mortality rate was calculated according to the formula:

\[\text{Mc} = \frac{\text{Mo}}{\text{Mt}} \times 100 \]

Mo = number of larvae dead in the treated groups, Mt = number of larvae introduced and Mc = calculated mortality

Statistical analysis
The data obtained were subjected to log-probit analysis (Finney, 2009) to obtain LC₅₀ values, LC₉₀ values, 95% confidence limits, and chi square values using XLSTAT v. 2018.5 (Addinsoft, Paris, France). Statistical analysis (ANOVA) of the differences between mean values obtained for experimental groups were calculated as a mean of standard deviation (SD) of four independent measurements using Microsoft excel program 2003.
RESULTS AND DISCUSSION

Chemical constituents of the essential oils

The yield of essential oils was 0.18% ±0.01 and 0.31% ± 0.01 (v/w, leaf and rhizome respectively), calculated on a dry weight basis. Both samples of oils obtained from the hydrodistillation were light yellow coloured. As usual, ubiquitous terpenoids were identified in both essential oils, consistent with most data obtained for the essential of Zingiber genus analyzed from Vietnam and other parts of the world. Fifty-three compounds representing 87.1% of the oil contents were identified in the leaf of Z. montanum (Table No. 1). These comprised of monoterpenic hydrocarbons (43.4%), oxygenated monoterpenes (16.4%), sesquiterpene hydrocarbons (9.3%) and oxygenated sesquiterpenes (14.1%). The main constituents of the leaf oil were β-pinene (13.8%), β-phellandrene (11.3%) and α-pinene (7.3%). On the other hand, 27 constituents accounting for 98.8% of the total oil content were identified in the rhizome oil under study. The representative classes of compounds present in the oil were monoterpenic hydrocarbons (56.5%), oxygenated monoterpenes (26.3%) and oxygenated sesquiterpenes (14.3%). The significant compounds of the rhizome essential oil were sabinene (41.1%), terpinen-4-ol (22.7%) and (E)-nerolidol (14.3%). The main compounds of the leaf oil were identified in much lower amounts in the rhizome oil and vice versa. This seemingly differences and observation may be due to the fact that different plant organs stored different bioactive phytochemical. This may ultimately affect the ethnomedicinal uses as well as biological activities (Feduraev et al., 2019). The abundance of α-pinene and β-pinene in the leaf essential oil was in agreement with a previous report on leaf of Z. montanum from Vietnam (Huong et al., 2017). In addition, sabinene and caryophyllene oxide present in the leaf oil of samples from Bangladesh (Bhuiyan et al., 2008) were also identified in the Vietnam sample. However, 1(10),4-furanodien-6-one and curzerenone, the abundant compounds in the leaf oil of sample from India (Bordoloi et al., 1999) were conspicuously absent in the present oil sample. The high content of sabinene and terpinen-4-ol in the rhizome was consistent with findings for most of the reports on the volatile contents of this plant part (Vipada & Yingyoong, 2012; Chaiyana et al., 2017; Leelaarungrayub et al., 2017; Bacha & Adelheid, 2018). However, (E)-1-(3,4-dimethoxyphenyl)butfadiene, commonly reported for most samples in other parts of the world was not identified in the present study. This may be due to several factors such as environmental and climatic conditions, age and nature of the plants, parts of the plant being analyzed, handling procedure etc. (Sharifi-Rad et al., 2017).

Table No. 1

Chemical constituents of essential oils from the leaf and rhizome of Z. montanum

Sr. No	Rt (min)	Compounds*	RI (cal.)	RI (Lit)	Leafb	Rhizomeb	
1.	9.87	α-Thujene	930	921	-	0.4	
2.	10.14	α-Pinene	939	932	7.3	1.7	
3.	10.63	Camphene	955	954	1.5	0.2	
4.	11.34	Sabinene	979	976	1.9	41.1	
5.	11.51	β-Pinene	984	978	13.8	2.9	
6.	11.74	Myrcene	992	988	1.1	1.3	
7.	12.34	α-Phellandrene	1010	1008	0.2	-	
8.	12.74	α-Terpinene	1022	1022	-	1.9	
9.	13.02	α-Cymene	1030	1028	0.5	0.8	
10.	13.11	Limonene	1035	1030	2.0	0.5	
11.	13.22	β-Phellandrene	1036	1032	11.3	1.1	
12.	13.27	1,8-Cineole	1038	1034	-	0.5	
13.	13.31	(Z)-β-Ocimene	1039	1036	1.8	-	
14.	13.68	(E)-β-Ocimene	1049	1044	2.0	0.3	
15.	14.17	γ-Terpinene	1064	1056	-	3.4	
16.	14.52	cis-Sabine hydrate	1074	1077	-	0.7	
17.	15.22	Terpinolene	1095	1094	-	0.6	
18.	15.38	Rosefuran	1099	1098	0.2	-	
19.	15.53	Linalool	1104	1102	0.2	-	
20.	15.63	trans-Sabine hydrate	1106	1106	-	0.6	
No.	%M	Compound	%W	bp	dp	%I	%O
-----	----	--------------------------------------	-----	------	------	----	-----
21	15.61	Nonanal	1104	1106	0.4	-	
22	15.73	o-Guaiacol	1109	1110	0.3	-	
23	16.47	cis-p-Menthe-2-en-1-ol	1130	1132	-	0.5	
24	17.10	trans-p-Menthe-2-en-1-ol	1148	1148	1.3	0.4	
25	17.18	trans-Sabinol	1151	1150	0.5	-	
26	17.31	cis-Sabinol	1154	1152	0.2	-	
27	17.87	Camphor	1155	1154	1.8	-	
28	17.97	Pinocarvone	1173	1172	0.3	-	
29	18.48	Terpinen-4-ol	1187	1187	0.5	22.7	
30	18.80	Cryptone	1197	1199	4.2	-	
31	18.94	α-Terpineol	1201	1200	0.1	0.3	
32	19.11	cis-Piperitol	1205	1206	-	0.1	
33	19.18	Myrtenal	1208	1210	1.0	-	
34	19.50	trans-Piperitol	1217	1212	-	0.2	
35	20.67	Neral	1247	1245	1.5	-	
36	21.02	Cumaldehyde	1251	1248	1.1	-	
37	221.7	Bornyl acetate	1294	1292	0.4	-	
38	22.89	Isobornyl acetate	1297	1297	2.0	-	
39	22.39	Cumin alcohol	1301	1300	0.6	-	
40	23.47	4-hydroxy-Cryptone	1333	1340	0.5	-	
41	24.95	α-Terpinyl acetate	1357	1360	-	0.3	
42	25.80	cis-β-Elemene	1404	14105	0.3	-	
43	26.85	β-Caryophyllene	1437	1440	1.3	-	
44	27.42	β-Gurjunene	1450	1452	1.0	-	
45	27.59	(Z)-β-Farnesene	1461	1456	1.0	-	
46	27.94	α-Humulene	1472	1472	0.2	-	
47	28.47	3,4-Dimethoxybenzaldehyde	1489	1490	0.7	-	
48	28.83	β-Chamigrene	1500	1498	0.9	-	
49	28.92	Aristolochene	1502	1508	1.3	-	
50	29.02	α-Zingiberene	1504	1510	-	0.1	
51	29.21	α-Selinene	1513	1512	0.5	-	
52	29.36	β-Bisabolene	1518	1520	0.2	-	
53	29.87	β-Sesquiphellandrene	1535	1532	2.3	0.8	
54	29.96	7-epi-α-Selinene	1538	1540	0.3	-	
55	30.94	(E)-Nerolidol	1571	1571	1.0	14.3	
56	31.77	Spathulenol	1599	1590	1.8	-	
57	31.96	Caryophyllene oxide	1605	1610	2.2	-	
58	32.89	Humulene oxide I	1621	1630	1.1	-	
59	33.05	Humulene oxide II	1633	1634	1.4	-	
60	34.36	Apiole	1690	1700	0.5	-	
61	34.92	Cullen	1716	1712	3.2	-	
62	35.44	Asarone aldehyde	1729	1726	2.1	-	
63	36.89	Benzyl benzoate	1783	1770	0.7	-	
64	38.60	6,10,14-Trimethylpentadecan-2-one	1849	1847	0.6	-	
65	42.10	Phytol	2120	2119	2.4	1.1	
	Total				87.1		
		Monoterpenic hydrocarbons (Sr. No. 1-15, 17)		43.4	56.5		
		Oxygenated monoterpenes (Sr. No. 16, 18-20, 23-41)		16.4	26.3		
		Sesquiterpenic hydrocarbons (Sr. 42-46, 48-54)		9.3	0.9		
		Oxygenated sesquiterpenes (Sr. 55-59, 61-64)		14.1	14.3		
		Diterpenes (Sr. No. 65)		2.4	1.1		
		Non-terpenes (Sr. No. 21, 22, 47)		1.0	-		
		Phenylnpropene (Sr. No. 60)		0.5	-		
Mortality test
The mosquito larvicidal activity of the essential oils was determined against the mosquito vectors at concentrations of 12.5, 25, 50 and 100 µg/mL. The test periods were 24 h and 48 h. The percentage mortality as well as the minimum lethal concentrations is shown in Table No. 2. The rhizome essential oil demonstrated good larvicide activity towards the mosquito vectors. The highest mortality (100%) was obtained at 24 h and 48 h of exposure to *Ae. aegypti* (concentration 50 µg/mL) and *Ae. albopictus* (concentration 100 µg/mL). The highest mortality (100%) was observed towards *Cx. quinquefasciatus* at 48 h (concentration of 50 µg/mL) and at 24 h (concentration of 100 µg/mL). There was no mortality in the EtOH controls. The mortality test was found to be concentration dependent. Thus, the mortality rate was insignificant at lower concentrations of 12.5 µg/mL and 25.0 µg/mL when compared with other higher concentrations. The results in this study revealed that the rhizome essential oil of *Z. montanum* demonstrated potent mortality towards the fourth-instant larvae of *Ae. Albopictus, Ae. aegypti* and *Cx. quinquefasciatus* comparable with previous studies describing similar activity. The essential oil of *Z. montanum* was reported to reduce the biting rate of *Cx. quinquefasciatus* and *Ae. aegypti* (Cotchakaew & Soonwera, 2014; Phukerd & Soonwera, 2014; Restu et al., 2017) and *Ae. albipocitus* (Phukerd & Soonwera, 2013).

Concentration (µg/mL)	24 h	48 h	24 h	48 h	24 h	48 h
12.5	0	0	0	2.5 ± 0.577	16.3 ± 1.258	25 ± 0.816
25	25 ± 4.546	56.3 ± 5.909	25 ± 3.464	47.5 ± 6.245	25 ± 2.582	56.3 ± 4.992
50	63.7 ± 2.363	96.3 ± 0.957	75 ± 1.633	100 ± 0.000	96.3 ± 0.957	100 ± 0.000
100	100 ± 0.000	100 ± 0.000	100 ± 0.000	100 ± 0.000	100 ± 0.000	100 ± 0.000

Table No. 2 Percentage mortality and larvicidal action of *Z. montanum* essential oil

Parameters	24 h	48 h	24 h	48 h	24 h	48 h
LC₅₀	35.17	32.20	32.58	31.12	18.99	
LC₉₀	56.02	45.64	31.20	52.25	31.18	

Larvicidal test
The rhizome essential oil showed larvicidal efficacy against *Ae. albopictus* with minimum lethal concentrations LC₅₀ value of 35.17 µg/mL and LC₉₀ value of 56.02 µg/mL at 24 h period. However, LC₅₀ of 32.20 µg/mL and LC₉₀ of 45.64 µg/mL were recorded against *Ae. aegypti* at 24 h. The rhizome oil after 24 h displayed larvicidal action towards *Cx. quinquefasciatus* with LC₅₀ of 31.12 µg/mL and LC₉₀ of 52.25 µg/mL. However, at 48 h test period, LC₅₀ of 23.18 µg/mL and LC₉₀ of 35.12 µg/mL were recorded against *Ae. albopictus*. In addition, rhizome oil exhibited a larvicide effect at 48 h towards *A. aegypti* (LC₅₀ = 25.58 µg/mL and LC₉₀ = 31.20 µg/mL) and *Cx. quinquefasciatus* (LC₅₀ = 18.99 µg/mL; LC₉₀ = 31.18 µg/mL). Permethrin, the standard drug used as control displayed qualitative larvicidal activity against the three mosquito vectors. The leaf oil displayed no significant mortality and larvicidal action. The results revealed that the rhizome essential oil of *Z. montanum* showed potent larvicidal action against the fourth-instant larvae of *Ae. Albopictus, Ae. aegypti* and *Cx. quinquefasciatus* when compared with similar studies. The rate of susceptibility of the vectors towards the rhizome oil of *Z. montanum* was *Ae. albopictus* < *Cx. quinquefasciatus* < *Ae. aegypti*. From Table No. 3, the model summary indicated that 78.3%, 86.8% and 88.7% of latave of *Ae. albopictus, Cx. quinquefasciatus* and *Ae. aegypti* were killed. The essential oil of *Z. montanum* was reported to showed larvicidal activity towards *Ae. aegypti, Ae. albipocitus* and *Cx. quinquefasciatus* and (Restu et al., 2017).
Table No. 3
Table of ANOVA

Model	Sum of Squares	df	Mean Square	F	Sig
Ae. aegypti					
Regression	934.322	1	934.322	119.263	.000
1 Residual	109.678	14	7.834		
Total	1044.000	15			
Ae. albopictus					
Regression	808.769	1	808.769	58.015	.000
1 Residual	195.169	14	13.941		
Total	1003.938	15			
Cx. quinquefasciatus					
Regression	872.763	1	872.763	99.349	.000
1 Residual	122.987	14	8.785		
Total	995.750	15			

*Predictors: (Constant), Y; Dependent Variable, X

The larvicidal activity of essential oils from some other Zingiber plants grown in Vietnam and other parts of the world has been reported in the literature. For example, the rhizome essential oil of Z. zerumbet from Vietnam exhibited larvicidal activity towards *Cx. quinquefasciatus* and *Ae. albopictus* with median lethal concentrations, *LC*$_{50}$ values of 33.28 µg/mL and 55.75 µg/mL, respectively after 24 h (Huong et al., 2019). In addition, the rhizome of *Z. collinsii* from Vietnam also displayed larvicidal activity against *Ae. albopictus* (*LC*$_{50}$ = 25.51 µg/mL) and *Cx. quinquefasciatus* (*LC*$_{50}$ = 50.11 µg/mL) after 24 h (Huong et al., 2020). Table No. 4 indicates the larvicidal potential of some Zingiber essential oils analyzed from Vietnam and other parts of the world. The essential oil of *Z. montanum* in this study exhibited larvicidal activity against *A. aegypti* with *LC*$_{50}$ value much lower than previously reported Zingiber oil samples. On the other hand, the oil displayed activity slightly higher than *Z. collinsii* against *Ae. albopictus* and *Cx. quinquefasciatus*. Variations in toxicity of essential oils against different species of mosquitoes are common due to qualitative and quantitative variations of chemicals constituents (Ammers & Mehlhorn, 2006). This might have been responsible for the observed differences in the larvicidal action of the various Zingiber oils towards the different mosquito vectors.

Since the WHO has not established a standard criterion for determining the larvicidal activity of natural products, several authors (Komalamisra et al., 2005; Kiran et al., 2006; Magalhães et al., 2010) have developed individual criteria to characterize the potency of mosquito larvicides developed from natural products. For example, Komalamisra et al. (2005) considered products showing *LC*$_{50}$ ≤ 50 mg/L to be active, 50 mg/L < *LC*$_{50}$ ≤ 100 mg/L to be moderately active, 100 mg/L < *LC*$_{50}$ ≤ 750 mg/L to be effective, and *LC*$_{50}$ > 750 mg/L to be inactive. It should be stressed that these criteria must be directly correlated with the time of exposure and the origin of larvae, which are variables that can alter the *LC*$_{50}$ values. The results obtained in this study showed that the essential oil of *Z. montanum* rhizome had promising effects, according to the criterion established previously (Magalhães et al., 2010), exhibiting larvicidal activity against *Ae. albopictus* (*LC*$_{50}$ = 35.17 µg/mL), *Ae. aegypti* (*LC*$_{50}$ = 32.20 µg/mL) and *Cx. quinquefasciatus* (*LC*$_{50}$ = 31.12 µg/mL) after 24 h of exposure. Overall results in this study showed that essential oils of *Z. montanum* possessed good mortality and larvicidal activity on the mosquito vectors used in this study.
The larvicidal activity of *Z. montanum* was likely caused by the wide variety of phytochemicals and volatile composites present in the oil. The observed mosquito larvicidal activity of the rhizome essential oil may be due to the synergistic actions of the major compounds or some minor compounds present in the oil. Compounds such as sabinene (Cheng et al., 2013), terpinen-4-ol (Govindarajan et al., 2015) and (E)-nerolidol (Magalhães et al., 2010; Hung et al., 2019), play an important role in increasing the potential toxicity of essential oils against targeted insect vectors. These compounds have previously demonstrated larvicidal activity against mosquito vectors. Therefore, *Z. montanum* essential oils and their constituents could be developed as control agents against mosquito larvae.

Table No. 4
Larvicidal activity of essential oils of some *Zingiber* plants

Essential oil	Origin	Parts	LC-so 24 h	References
Z. collinsii	Vietnam	Rhizome	-	Huong et al., 2020
Z. zerumbet	**,**	**,**	-	Huong et al., 2019
,	Malaysia	**,**	-	Jantan et al., 2003
,	Thailand	**,**	-	Sutthanont, et al., 2010
,	Malaysia	**,**	-	Restu et al., 2017
Z. officinale	Malaysia	**,**	-	Jantan et al., 2003
Z. cernuum	India	**,**	-	Rajeswary et al., 2018
Z. officinale	Malaysia	**,**	-	Restu et al., 2017
Z. spectabile	**,**	**,**	-	Restu et al., 2017
Z. officinale	**,**	**,**	-	Rabba et al., 2016
Z. officinale	Thailand	**,**	-	Pushpanathan et al., 2008
,	India	**,**	-	Kalaivani et al., 2012
,	Brazil	**,**	-	Dias and Moraes, 2013
Z. nimmonii	Thailand	**,**	-	Govindarajan et al., 2016
Z. montanum	Malaysia	**,**	-	Restu et al., 2017
,	Vietnam	**,**	-	This study

CONCLUSION

In this study, the chemical composition of essential oil of the leaf and rhizome of *Z. montanum* were evaluated by GC and GC-MS. This allowed the identification of ubiquitous mono- and sesquiterpene compounds in both oil samples. The major compounds were: α-pinene, β-pinene, sabine, terpinen-4-ol and (E)-nerolidol. The rhizome oil exhibited larvicidal activity against larvae of *Ae. albopictus*, *Ae. aegypti* and *Cx. quinquefasciatus* after 24 h and 48 h.

ACKNOWLEDGMENTS

This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number: 106.03-2017.328.

REFERENCES

Amer A. MehlhornH. 2006. Persistency of larvicidal effects of plant extracts under different storage conditions. *Parasitol Res* 99: 478 - 490. https://doi.org/10.1007/s00436-006-0183-2

Ban PH, Dinh LD, Huong LT, Hoi TM, Hung NH, Dai DN, Oguwande IA. 2020. Mosquito larvicidal activity on *Aedes albopictus* and constituents of essential oils from *Manglietia dandyi* (Gagnep.) dandyi. *Rec Nat Prod* 14: 201 - 206. https://doi.org/10.25135/rnp.151.19.07.1325

Bancha Y, Adelheid B. 2018. Boosting the essential oil yield from the rhizomes of cassumunar ginger by an eco-friendly solvent-free microwave extraction combined with central composite design. *J Essent Oil Res* 30: 409 - 420. https://doi.org/10.1080/10412905.2018.1503099

Bhuiyan MNI, Chowdhury JU, Begum J. 2008. Volatile constituents of essential oils isolated from leaf and rhizome of *Zingiber cassumunar* Roxb. *Bangladesh J Pharmacol* 3: 69 - 73. https://doi.org/10.3329/bjp.v3i2.844
Boonyanugomol W, Kraisriwattana K, Rukseree K, Boonsam K, Narachai P. 2017. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health 10: 586 - 592. https://doi.org/10.1016/j.jiph.2017.01.008

Boonyuan W, Grieco JP, Bangs MJ, Prabariapi A, Tantakom S, Chareonviriyaphap T. 2014. Excito repellency of essential oils against an Aedes aegypti (L.) field population in Thailand. J Vector Ecol 39: 112 - 122. https://doi.org/10.1111/j.1948-7134.2014.12077.x

Bordoloi AK, Spkerova J, Leclercq PA. 1999. Essential oils of Zingiber cassumunar Roxb. From northeast India. J Essent Oil Res 11: 441 - 445. https://doi.org/10.1080/10412905.1999.9701179

Chaiyana W, Anuchapreeda S, Leelapornpisid P, Phongpradist R, Viernstein H, Mueller M. 2017. Development of microemulsion delivery system of essential oil from Zingiber cassumunar Roxb, rhizome for improvement of stability and anti-inflammatory activity. AAPS PharmSci Tech 18: 1332 - 1342. https://doi.org/10.1208/s12249-016-0603-2

Cheng SS, Lin CY, Chung MJ, Liu YH, Huang CG, Chang ST. 2013. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind Crops Prod 47: 310 - 315. https://doi.org/10.1016/j.indcrop.2013.03.016

Cotchakaew N, Soonvera M. 2009. Toxicity of several botanical essential oils and their combinations against females of Aedes albopictus (Skuse) and Anopheles minimus (Theobald): oviposition deterrent, ovicidal and adulticidal efficacies. Parasitol Res 9: 29 - 39. https://doi.org/10.1007/s00436-003-3687-6

Finney D. 2009. Probit analysis. Reissue Ed., Cambridge University Press, Cambridge, UK.

Feduraev P, Chupakhina G, Maslennikov P, Tacenko N, Skrypnik L. 2019. Variations in phenolic and antioxidant activity of different plant organs from Rumex crispus L. and Rumex obtusifolius at different growth stages. Antioxidant (Basel) 8: 237 https://doi.org/10.3390/antiox8070237

Govindarajan M, Rajeswary M, Hoti SL, Benelli G. 2015. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephenisi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res Vet Sci 104: 77 - 82. https://doi.org/10.1016/j.rvsc.2015.11.011

Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G. 2016. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol Res 115: 1807 - 1816. https://doi.org/10.1007/s00436-016-4920-x

Hung NH, Satyal P, Hieu HV, Chuong NHH, Dai DN, Huong LT, Tai TA, Setzer WN. 2019. Mosquito larvicidal activity of the essential oils of Erechtites species growing wild in Vietnam. Insects 10: 47 - 57. https://doi.org/10.3390/insects10020047

Hung TT, Huong NTT, Dai DN. 2017. Volatile oil constituents of Zingiber montanum (Koehig) Dietrich in Nghe An Province. Proceedings of the 7th National Scientific Conference on Ecology and Biological Resources, Agricultural Publishing House, Hanoi, Vietnam.

Huong LT, Huong TT, Huong NTT, Hung NH, Dat PTT, Luong NX, Ogunwande IA. 2020. Mosquito larvicidal activities of the essential oil of Zingiber collinsii against Aedes albopictus and Culex quinquefasciatus. J Oleo Sci 69: 153 - 160. https://doi.org/10.5650/jos.ess19175

Huong LT, Chinh HV, An NTG, Viet NT, Hung NH, Thuong NTH, Ogunwande IA. 2019. Antimicrobial activity, mosquito larvicidal activity and chemical compositions of the essential oils of Zingiber zerumbet in Vietnam. Eur J Med Plants 30: 1 - 12. https://doi.org/10.9734/ejmp/2019/v30i30197

Jantan I, Ping WO, Sheila DV, Ahmad NW. 2003. Larvicidal activity of the essential oils and methanol extracts of Malaysian plants on Aedes aegypti. Pharm Biol 41: 234 - 236. https://doi.org/10.1076/phbi.41.4.234.15665

Kalaivani K, Senthil-Nathan S, Marugesan AG. 2012. Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 110: 1261 - 1268. https://doi.org/10.1007/s00436-011-2623x

Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas/577
Kamazeri SA, Abd Samah O, Muhammad T, Deny S, Haitham Q. 2012. Antimicrobial activity and essential oils of Curcuma aeruginosa, Curcuma mangga, and Zingiber cassumunar from Malaysia. Asia Pacific J Trop Med 5: 202 - 209. https://doi.org/10.1016/S1995-7645(12)60025-X

Khamsope N, Vanichanon A, Sukrakanchana N. 2018. Efficacy of essential oils from clove (Syzygium aromaticum) and cassumunar ginger (Zingiber montanum) as anesthetic agents for fruit fly (Drosophila melanogaster). Thaksin Univ J 21: 58 - 64.

Kiran RS, Bhavani K, Devi SP, Rao RBR, Reddy JK. 2006. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Biore Technol 97: 2481 - 2484. https://doi.org/10.1016/j.biortech.2005.10.003

Komalamisra N, Trongtokit Y, Rongsriyam Y, Apipathanorn C. 2005. Screening for larvicidal activity of four Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health 36: 1412 - 1422.

Leelarungrayub J, Manorsoi J, Manorsoi A. 2017. Anti-inflammatory activity of niosomes entrapped with Plai oil (Zingiber cassumunar Roxb.) by therapeutic ultrasound in a rat model. Int J Nanomed 29: 2469 - 2476. https://doi.org/10.2147/IJN.S12931.eollection2017

Lim TK. 2016. Zingiber montanum. In: Edible medicinal and non-medicinal plants. Springer, Cham, Germany.

Magalhães LAM, da Paz Lima M, Marques MOM, Facanali R, da Silva Pinto AC, Tadei WP. 2010. Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules 15: 5734 - 5741. https://doi.org/10.3390/molecules1508734

Manochai B, Paisookantivatana Y, Kim MJ, Hong JH. 2017. Antioxidant activity and total volatile oil content of cassumunar ginger (Zingiber montanum Roxb.) at various rhizome ages. Food Sci Biotechnol 16: 290 - 293.

Manochai B, Paisookantivatana Y, Choi H, Hong JH. 2010. Variation in DPPH scavenging activity and major volatile oil components of cassumunar ginger, Zingiber montanum (Koenig), in response to water deficit and light intensity. Sci Hortic 126: 462 - 466.

NIST [National Institute of Science and Technology]. 2018. Chemistry Web Book. Data from NIST Standard Reference Database 69.

Phukerd U, Soonwera M. 2014. Repellency of essential oils extracted from Thai native plants against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). Parasitol Res 113: 3333 - 3340. https://doi.org/10.1007/s00436-014-3996-4

Phukerd U, Soonwera M. 2013. Larvicidal and pupicidal activities of essential oils from Zingiberaceae plants against Aedes aegypti (Linn.) and Culex quinquefasciatus Say mosquitoes. Southeast Asian J Trop Med Public Health 44: 761 - 771. https://doi.org/10.2990/017007-6

Pushpanathan T, Jебanesan A, Govindarajan M. 2008. The essential oil of Z. officinalis Linn (Zingiberaceae) as a mosquito larvicald and repellent agent against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 102: 1289 - 1291.

Rabha P, Gopalakrishnan R, Baruah I, Singh L. 2016. Larvicidal activity of some essential oil hydrolates against dengue and filariasis vectors. E3 J Med Res 1: 14 - 16.

Rajeswary M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. 2018. Zingiber cernuum (Zingiberaceae) essential oil as effective larvicide and oviposition deterrent on six mosquito vectors, with little non-target toxicity on four aquatic mosquito predators. Environ Sci Pollut Res 25: 10307 - 10316. https://doi.org/10.1007/s11356-017-9093-3

Restu WM, Halijah INAH, Awang K. 2017. Efficacy of four species of Zingiberaceae extract against vectors of dengue, chikungunya and filariasis. Trop Biomed 34: 375 - 387.

Sharifi-Rad M, Elena MV, Bahare S, Sharifi-Rad J, Karl RM, Seyed AA, Farzad K, Salam AI, Dima M, Zainul AZ, Sharifi-Rad M, Zubaida Y, Marcello I, Adriana B, Daniela R. 2017. Plants of the genus Zingiber as source of antimicrobial agents: from tradition to pharmacy. Molecules 22: 2145 - 2162. https://doi.org/10.3390/molecules22122145

Singh CB, Manlembi N, Swapana N, Chanu SB. 2015. Ethnobotany, phytochemistry and pharmacology of Zingiber cassumunar Roxb. (Zingiberaceae). J Pharmacog Phytochem 4: 1 - 6.

Sutthanont N, Wej C, Benjawatan T, Anuluck J, Atchariya J, Udom C, Doungrat R, Benjawatan P. 2010. Chemical composition and larvicidal activity of edible plant-derived essential oils against the pyrethroid-susceptible and -resistant strains of Aedes aegypti (Diptera: Culicidae). J Vector Ecol 35:106 - 115. https://doi.org/10.1111/j.1948-7134.2010.00036.x

Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas/578
Theillade, I, Mood II. 2000. Validation of Zingiber collinsii (Zingiberaceae) from Vietnam. Nordic J Bot 20: 30 - 32. https://doi.org/10.1111/j.1756-1051.2000.tb00728x
Verma RS, Joshi N, Rajendra CP, Ved RS, Prakash G, Sajendra KV. Et al. 2018. Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger. J Sci Food Agric 98: 321 - 327. https://doi.org/10.1002/jsfs.8474
Vietnamese Pharmacopoeia. 2009. Medical Publishing House, Hanoi, Vietnam.
Vipada K, Yingyong P. 2012. Antioxidant activity and selected chemical components of 10 Zingiber spp. in Thailand. J Develop Sustainable Agric 7: 89 - 96. https://doi.org/10.11178/jdsa.7.89
WHO. 2005. Guidelines for laboratory and field testing of mosquito Larvicides. WHO/CDS/WHOPES/GCDPP, Geneva, Switzerland.