New Extremal bounds for Reachability and Strong-Connectivity Preservers under failures

Keerti Choudhary

(Joint work with Diptarka Chakraborty)
What are Fault-tolerant Preservers?

A sparse subgraph “preserving” a given property of input graph even after bounded number of failures.

at most k
Example: Connectivity

Under NO Failures

Spanning tree T is sparse subgraph preserving connectivity

Under $k = 1$ Failures

“$G - (x, y)$” is connected

$T - (x, y)$ is NOT connected
Can we make structures fault-tolerant?
This Talk..

Sparsifying graphs “to preserve” strong-connectivity and pairwise-reachability after k-failures.
Fault-tolerant Strong-connectivity Preservers

- **Given**: digraph G, parameter k.

- **Aim**: to compute a *sparse* subgraph H of G such that for any set F of k failures:

 $\text{SCCs of } (G - F) = \text{SCCs of } (H - F)$

\[
(G - F) \quad \xrightarrow{\text{Diagram}} \quad (H - F)
\]
Fault-tolerant Strong-connectivity Preservers

Related Work: Connectivity in undirected graphs

| Undirected graphs (k failures) | $O(kn)$ edges |

Can we get $O(n^{2-\varepsilon})$ space for digraphs?
Fault-tolerant Strong-connectivity Preservers

Directed graphs (\(k\) failures)	\(\tilde{O}(k \ 2^k \ n^{2-1/k})\) edges

Our Results: Strong-Connectivity

\[O(n) \text{ for } k = 1 \]
Our Techniques: FT SCC Preserver

- **SCC in** $G - F$
 - **Small SCC in** $G - F$
 - **Large SCC in** $G - F$

Main Ideas:
- Color-coding technique (also used in FT-spanner construction by Dinitiz & Krauthgamer)
- Hitting set property of random sets.
Sample a random set J of size γ_1 and add to H. Take union of SCC certificates in $(G - J)$ and add to H. Repeat.
Large SCC in $G - F$

Sample a random set R of size γ_2

Take union of k-FT IN- and OUT-Reachability preserver of vertices in R, and add to H

k-FT OUT-Reachability Preserver of r

A sparse subgraph H^r s.t. for any set F of k failures:

Vertices reachable from r in $(G - F) = \text{Vertices reachable from } r \text{ in } (H^r - F)$

k-FT IN-Reachability Preserver of r

A sparse subgraph H^r s.t. for any set F of k failures:

Vertices having path to r in $(G - F) = \text{Vertices having path to } r \text{ in } (H^r - F)$

Number of edges in $H^r = O(2^k n)$
Fault-tolerant Pair-wise Reachability Preservers

- **Given**: digraph $G = (V, E)$, parameter k, pair-set $\mathcal{P} \subseteq (V \times V)$.

- **Aim**: to compute a sparse subgraph H of G such that for any set F of k failures:

 for each $(x, y) \in \mathcal{P}$:

 $$(G - F) \quad \quad (H - F)$$
What is known?

Under No Failures	$O(n + \min\{p\sqrt{n}, n^2p^2\})$ edges
Pair-set P of size p	

For \sqrt{n} pairs, size bound is $O(n)$.

k-FT Single Source Reachability ($\{s\} \times V$)	$O(2^k n)$ edges
k failures	

Size increases by 2, on increasing k by 1
For single failure, for **upto how many pairs** can we get $O(n)$ sized preserver?

How does size of preserver change when moving from single to dual failure?

Can we get $o(n^2)$ size preserver for sub-quadratic number of pairs?
OUR RESULTS

Upper Bound (k=1)

- **Pair-set \mathcal{P} of size p**
 - $O(n + \min\{p\sqrt{n}, n\sqrt{p}\})$ edges

Lower Bound (k=2)

- $\Omega(n^\epsilon)$ pairs
 - $\Omega(n^{1+\epsilon/8})$ edges

For \sqrt{n} pairs, size bound is $O(n)$.

For $o(n^2)$ pairs, size bound is $o(n^2)$.

Polynomial increment on increasing k by 1.

For polynomial-number of pairs, preserver has super-linear size.
Main Idea: $O(n + |\mathcal{P}| \sqrt{n})$ bound

How does paths in $\text{Preserver}(s, t)$ and $\text{Preserver}(s', t')$ interact?
Main Idea: \(O(n + |\mathcal{P}| \sqrt{n}) \) bound

\(H_{\text{opt}} = \text{optimal subgraph satisfying } (H_{\text{opt}} + H_{\text{scc}}) \text{ is Preserver for } \mathcal{P}. \)

Proposition 1: Only one edge out of \(h_1 \) and \(h_2 \) lies in \(H_{\text{opt}} \).
Main Idea: \(O(n + |\mathcal{P}| \sqrt{n}) \) bound

\(H_{opt} = \) optimal subgraph satisfying \((H_{opt} + H_{scc}) \) is Preserver for \(\mathcal{P} \).

Proposition 2: Only one edge out of \(h_1 \) and \(h_2 \) lies in \(H_{opt} \).
Main Idea: $O(n + |\mathcal{P}|\sqrt{n})$ bound

$H_{opt} = \text{optimal subgraph satisfying } (H_{opt} + H_{scc}) \text{ is Preserver for } \mathcal{P}.$

Key Property: Among all $s_i - t_i$ paths intersecting v with incident-edge in H_{opt}, at most two intersects $s - t$ path more than once.

Size of H_{scc} is $O(n)$.

Size of H_{opt} is $O(|\mathcal{P}|\sqrt{n})$.
Can we extend this to $k > 1$ failures?

NO

Preserver(s,t) \neq Union of $o(n)$ number of $s - t$ paths!
Future Work

FT-Reachability-Preserver: Sparseness under multiple failures?

FT-Reachability-Preserver: \(O(n + \min\{p\sqrt{n}, \ n^{2/3}p^{2/3}\}) \) size for \(k = 1 \)？

FT Strong-connectivity Preserver: Linear size for constant \(k(> 1) \)？