Montaldo, S.; Oniciuc, C.; Ratto, A.
On the second variation of the biharmonic Clifford torus in S^4. (English) [Zbl 07601373]
Ann. Global Anal. Geom. 62, No. 4, 791-814 (2022)

Summary: The flat torus $T = S^1 \left(\frac{1}{2} \right) \times S^1 \left(\frac{1}{2} \right)$ admits a proper biharmonic isometric immersion into the unit 4-dimensional sphere S^4 given by $\Phi = i \circ \varphi$, where $\varphi : T \to S^4 \left(\frac{1}{\sqrt{2}} \right)$ is the minimal Clifford torus and $i : S^1 \left(\frac{1}{\sqrt{2}} \right) \to S^4$ is the biharmonic small hypersphere. The first goal of this paper is to compute the biharmonic index and nullity of the proper biharmonic immersion Φ. After, we shall study in the detail the kernel of the generalised Jacobi operator I_2^ϕ. We shall prove that it contains a direction which admits a natural variation with vanishing first, second and third derivatives, and such that the fourth derivative is negative. In the second part of the paper, we shall analyse the specific contribution of the equivariant second variation $\tilde{\Phi}$. We shall prove that it contains a direction which admits a natural variation with vanishing first, second and third derivatives, and such that the fourth derivative is negative. In the second part of the paper, we shall analyse the specific contribution of Φ to the biharmonic index and nullity of Φ. In this context, we shall study a more general composition $\Phi = i \circ \varphi$, where $\varphi : M^m \to S^{n-1} \left(\frac{1}{\sqrt{2}} \right)$, $m \geq 1$, $n \geq 3$, is a minimal immersion and $i : S^{n-1} \left(\frac{1}{\sqrt{2}} \right) \to S^n$ is the biharmonic small hypersphere. First, we shall determine a general sufficient condition which ensures that the second variation of Φ is nonnegatively defined on $\mathcal{C}(\tilde{\varphi}^{-1} T^{n-1} \left(\frac{1}{\sqrt{2}} \right))$. Then, we complete this type of analysis on our Clifford torus and, as a complementary result, we obtain the p-harmonic index and nullity of φ. In the final section, we compare our general results with those which can be deduced from the study of the equivariant second variation.

MSC:
58E20 Harmonic maps, etc.
53C43 Differential geometric aspects of harmonic maps

Keywords:
biharmonic immersions; second variation; index; nullity

Full Text: DOI arXiv

References:

[1] Alias, L.; Brasil, A. Jr; Perdomo, O., On the stability index of hypersurfaces with constant mean curvature in spheres, Proc. A.M.S., 135, 3685-3693 (2007) · Zbl 1157.53030 · doi:10.1090/S0002-9939-07-08886-7
[2] Balmuş, A.; Fetcu, D.; Oniciuc, C. (2011): Stability properties for biharmonic maps. Geometry-Exploratory Workshop on Differential Geometry and its Applications, Cluj Univ. Press, Cluj-Napoca, 1-19 · Zbl 1249.58009
[3] Barros, J.; do Carmo, M.; Espenchen, J., Stability of hypersurfaces with constant mean curvature in Riemannian manifolds, Math. Z., 197, 123-138 (1988) · Zbl 0653.53045 · doi:10.1007/BFb0064643
[4] Berger, M.; Gauduchon, P.; Mazet, E., Le spectre d’une variété riemannienne. Lecture Notes in Mathematics 194, 251 (1971), Springer-Verlag · doi:10.1007/BFb0064643
[5] Branding, V.; Montaldo, S.; Oniciuc, C.; Ratto, A., Higher order energy functionals, Adv. Math., 370, 107236, 60 (2020) · Zbl 1441.58013
[6] Chen, B-Y, Total mean curvature and submanifolds of finite type. Second edition. Series in Pure Mathematics, 27 (2015), Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd, Hackensack, NJ
[7] Ciraolo, G.; Vezzoni, L., Quantitative stability for hypersurfaces with almost constant mean curvature in the hyperbolic space, Indiana. Univ. Math. J., 69, 1105-1133 (2020) · Zbl 1447.53050 · doi:10.1512/iumj.2020.69.7952
[8] Eells, J.; Lemaire, L., Selected topics in harmonic maps. CBMS Regional Conference Series in Mathematics, 50 (1983), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0515.58011 · doi:10.1090/cbms/050
[9] Eells, J.; Sampson, JH, Variational theory in fibre bundles, 22-33 (1965), Kyoto: Proc. U.S.-Japan Seminar in Differential Geometry, Kyoto
[10] Eells, J.; Ratto, A., Harmonic maps and minimal immersions with symmetries. Annals of Math. Studies 130, 228 (1993), Princeton Univ. Press · Zbl 0783.58003
[11] Jiang, GY, 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A 7, (1986), 389-402. Translated from the Chinese by Hajime Urakawa, Note. Mat., 28, 209-232 (2009)
