Some Supports of Fourier Transforms of Singular Measures are not Rajchman

Maria Roginskaya

Abstract. The notion of Riesz sets tells us that a support of Fourier transform of a measure with non-trivial singular part has to be large. The notion of Rajchman sets tells us that if the Fourier transform tends to zero at infinity outside a small set, then it tends to zero even on the small set. Here we present a new angle of an old question: Whether every Rajchman set should be Riesz.

Mathematics Subject Classification (2010). Primary 42A16; Secondary 43A05.

Keywords. Rajchman sets, Riesz sets, Riesz products, singular measures, support of Fourier transform.

1. Introduction

The consideration of the properties of measures and their Fourier transforms is a classical area of Harmonic Analysis. In particular the following is well known.

Theorem 1.1 (Rajchman, 1929 [4]). If for a finite measure μ on the unit circle T holds $\hat{\mu}(n) \to 0$ when $n \to -\infty$, then it holds also that $\hat{\mu}(n) \to 0$ when $n \to +\infty$.

This motivates the following.

Definition 1.2. We say that $\Lambda \subset \mathbb{Z}$ is a Rajchman set if as soon as $\hat{\mu}(n) \to 0$ when $|n| \to +\infty, n \in \mathbb{Z} \setminus \Lambda$, then $\hat{\mu}(n) \to 0$ when $|n| \to +\infty, n \in \Lambda$.

With this definition the Rajchman theorem says that the non-negative integers is a Rajchman set.

Now, given a (signed) Radon measure μ on the unit circle T, we can present it as $\mu = f \cdot m + \mu_s$, where m is the Lebesgue measure and μ_s is the

This work was accomplished with the support of Fondation Sciences Mathématiques de Paris.
singular with respect to Lebesgue measure part of the measure μ. We known
the following.

Theorem 1.3 (F. and M. Riesz’s, 1916, [5]). If a finite measure μ has the
property $\hat{\mu}(-n) = 0$ for $n = 1, \ldots$, then the measure is absolutely
continuous with respect to Lebesgue measure, i.e. $\mu = f \cdot m$, where $f \in L^1(\mathbb{T})$.

This result motivates the following definition.

Definition 1.4. We say that a subset $\Lambda \subset \mathbb{Z}$ is a Riesz set if it has the property,
that if $\text{supp}(\hat{\mu}) \subset \Lambda$ then μ has no singular part.

With this definition the F. and M. Riesz theorem says that the non-negative integers is a Riesz set.

Theorem 1.5 (Host, Parreau, 1978 [1]). A set $\Lambda \subset \mathbb{Z}$ is a Rajchman set iff
it doesn’t contain any shift of the Fourier support of a Riesz product, i.e. any
set $\Omega((n_j)) = \{\sum \epsilon_j n_j : \epsilon_j = -1, 0, 1; \sum |\epsilon_j| < \infty\}$, where (n_j) is an infinite sequence.

Thus, any set which is not Rajchman, contains the support of the Fourier
transform of a singular measure, and thus is not Riesz (or, without negations,
that every Riesz set is a Rajchman set).

A natural question is following: Is every Rajchman set a Riesz set? (i.e.
Do the classes of Riesz and Rajchman sets coincide?) As far to the author’s
knowledge, this question was first raised by Pigno, 1978 [3].

As we are unable to answer the question, we want to diversify it:

Definition 1.6. We say that a closed set $E \subset \mathbb{T}$ is a parisian set if for every
non absolutely continuous measure $\mu \in M(E)$, the support of it’s Fourier
transform is not a Rajchman set.

The original question thus becomes: Is \mathbb{T} a pariscian set?

While we are not able to answer the question above, we can show that
some pariscian sets do exist. As any subset of a pariscian set is pariscian, it
is clear that a positive answer on the original question would imply all the
results we prove here. Yet, there are good chances that the answer is negative
and a negative answer would give the study of the pariscian sets some interest.

It is natural to expect that the pariscian sets should be “small”. Thus
we try to construct a “big” pariscian set.

Main Theorem A. For any $\alpha < 1$ there exists a closed pariscian set E, such
that $\dim_H(E) \geq \alpha$, where $\dim_H(E)$ means the Hausdorff dimension of E.

Main Theorem B. For any $\alpha < 1$ there exists a Borel pariscian set E such
that it is an additive subgroup of \mathbb{T} and $\dim_H(E) \geq \alpha$.

Notations. In what follows we identify \mathbb{T} with $(-1, 1]$, so that the Fourier
coefficients are $\hat{\mu}(n) = \frac{1}{2} \int e^{i\pi nx} d\mu(x)$.

1It is actually proven in [1] not only for \mathbb{T} but for any compact group.
2. Construction of a big parisian set

Let us first introduce a test to establish that a set is parisian.

Lemma 2.1. If there exist $\delta > 0$ and a sequence $(N_j)_{j=1}^\infty$ such that for every j the set E_j is a subset of $\frac{2}{N_j} \mathbb{Z} + [-1/2N_j^{1+\delta}, 1/2N_j^{1+\delta}]$, then the set E is parisian.

Proof. Let us fix $\mu \in M_s(E)$. We want to show that $\text{supp}(\hat{\mu})$ contains a shift of a set $\Omega((n_j))$. Up to a shift of the Fourier transform we may assume without loss of generality that $\hat{\mu}(0) \neq 0$.

Here we construct the sequence (n_j) as a subsequence of (N_j) inductively. Assume that $(k - 1)$ first terms of the sequence (n_j) are chosen. This means that for all combinations of ϵ_j the sum $\sum_{j=0}^{k-1} \epsilon_j n_j \in \text{supp}(\hat{\mu})$. Thus, we know that $\int e^{i\pi \sum_{j=1}^{k-1} \epsilon_j n_j x} \, d\mu(x) \neq 0$, for all combinations $(\epsilon_j = -1, 0, 1)_{j=1}^{k-1}$.

We can take γ_{k-1} to be the minimum of the absolute value of the 3^{k-1} non-zero numbers, so that $|\int e^{i\pi \sum_{j=1}^{k-1} \epsilon_j n_j x} \, d\mu(x)| \geq \gamma_{k-1}$. We want to show that for some sufficiently large $n_k = N_{jk}$ for all combinations of ϵ_j holds

$$\int e^{i\pi \sum_{j=1}^k \epsilon_j n_j x} \, d\mu(x) \neq 0.$$

Indeed, as $E \subset 2\mathbb{Z}/N_m + [-1/N_m^{1+\delta}, 1/N_m^{1+\delta}]$, we know that $|e^{i\pi (\pm N_m x)} - 1| \leq \frac{\pi}{N_m}$, when $x \in E$. Now we see that

$$|\int_E e^{i\pi \sum_{j=1}^k \epsilon_j n_j x} \, d\mu(x) - \int_E e^{i\pi \sum_{j=1}^{k-1} \epsilon_j n_j x} \, d\mu(x)| \leq \int_E |d\mu||e^{i\pi \pm N_m x} - 1| \leq \|\mu\| \frac{1}{N_m^\delta}.$$

Thus, for sufficiently large m we can be sure that the later is less than $\frac{1}{2} \gamma_{k-1}$.

Now, we see that by the triangle inequality $|\int_E e^{i\pi \sum_{j=1}^k \epsilon_j n_j x} \, d\mu(x)| \geq \frac{1}{2} \gamma_{k-1} > 0$ for all the combinations of $\epsilon_j = -1, 0, 1$, with $j = 1, \ldots, k$, and $n_k = N_m$. \square

A slight modification of the proof gives us the following.

Lemma 2.2. For an increasing sequence $(N_j) \subset \mathbb{N}$ and $\delta > 0$ the set $\tilde{E} = \{x \in \mathbb{T} : \sup_j (\text{dist}(x, 2\mathbb{Z}/N_j)/N_j^{1+\delta}) < \infty\}$ is a parisian set.

Proof. We start from observing that $\tilde{E} = \bigcup_{t \in \mathbb{N}} E_t$, where

$$E_t = \{x \in \mathbb{T} : \sup_j (\text{dist}(x, 2\mathbb{Z}/N_j)/N_j^{1+\delta}) \leq t\}$$

is an increasing sequence of closed sets.

Now, we start the proof exactly as the previous one, but after the choice of γ_{k-1} and before the choice of n_k we do one more step: We pick
t_k large enough that $\mu_k = \mu|_{E_k}$ satisfies $\|\mu - \mu_k\| < \frac{1}{3}\gamma_k - 1$. Then we see that $|\int e^{i\pi \sum_{j=1}^{k-1} \varepsilon_j n_j x} \, d\mu_k(x)| \geq \frac{2}{5}\gamma_k - 1$. We proceed in the same way as before with μ_k in place of μ, and find $n_k = N_{m_k}$ such that $|\int_E e^{i\pi \sum_{j=1}^{k} \varepsilon_j n_j x} \, d\mu_k(x)| \geq \frac{1}{3}\gamma_k - 1$. Then, $|\int_E e^{i\pi \sum_{j=1}^{k} \varepsilon_j n_j x} \, d\mu(x)| \geq \frac{1}{6}\gamma_k - 1 > 0$. □

Remark 2.3. The set \tilde{E} is obviously an additive subgroup of \mathbb{T} and thus either finite or dense in \mathbb{T}.

Let us now construct a set E of large Hausdorff dimension which satisfies the hypothesis of the Lemma 2.1, and is thus parianian. As the constructed set is a subset of \tilde{E} it will also give us the estimate on the Hausdorff dimension of \tilde{E}. Fix $\alpha \in (0, 1)$, and choose $\delta > 0$ so that $\delta = 1 - \alpha$. We will construct a rapidly increasing sequence $\{N_j\}$, and related sequence of closed sets $C_j \subset (-1, 1)$, such that the sets C_j is the union of the closed intervals with centrum in $2\mathbb{Z}/N_j$, of length $1/N_j^{1+\delta}$ which are entirely contained in $\bigcap_{k=1}^{j-1} C_k$. We will let then the set $E = \bigcap_j C_j$, which is obviously closed. The set constructed in such a way is a Cantor-type set, and we show that provided the sequence N_j grows quickly enough the dimension of such a set is at least α.

Lemma 2.4. $\dim_H(E) \geq \alpha$.

Proof. In order to prove that the Hausdorff dimension of E is at least α we will show that it is at least s for any $0 < s < \alpha$, and to do so we construct a finite measure μ supported on E such that $\mu(I) \leq c_s |I|^s$ for any interval I (it is a standard fact of Geometric Measure Theory that a measure satisfying such an estimate should have support of Hausdorff dimension at least s, see for example [2]).

Let us take a subset D_k of $\bigcap_{j=1}^{k} C_j$, which is a collection of intervals of length $1/N_k^{1+\delta}$. This collection is defined inductively: we know that every interval of length $1/N_k^{1+\delta}$ contains at least $N_k/2N_k^{1+\delta} - 1$ points of $2\mathbb{Z}/N_k$. Thus, every interval of D_{k-1} contains (entirely) at least $M_k = N_k/2N_k^{1+\delta} - 3$ intervals with centrum in $2\mathbb{Z}/N_k$ and length $1/N_k^{1+\delta}$. (To make the estimates more simple we assume (N_k) to grow so rapidly that $M_k \geq N_k/4N_k^{1+\delta}$.)

We pick from each interval of D_{k-1} exactly M_k such intervals. All together we will have picked $M_k \prod_{j=1}^{k-1} M_j$ intervals of length $1/N_k^s$. Then we take the probability measure μ_k equally distributed on the $\prod_{j=1}^{k} M_j$ intervals of D_k.

This estimate is well known, but we give the proof for the sake of completeness.
We introduce μ as a weak limit point of μ_k (which has to be a probability measure supported by $E = \cap C_j$).

Let us estimate $\mu(I)$ where $1/N_{k-1} > |I| \geq 1/N_k$. The interval can intersect at most $N_k|I|/2 + 3$ intervals of D_k (as $N_k|I| \geq 1$, we may use that it is at most $4N_k|I|$ intervals). As the measure of each interval of D_k is $1/\prod_{j=1}^{k-1} M_j = (N_k/N_1)/(4^{k-1}(\prod_{j=1}^{k-1} N_j)^{\delta})$.

Thus, $\mu(I) \leq N_1 4^k (\prod_{j=1}^{k-1} N_j)^{\delta}|I| = N_1 4^k (\prod_{j=1}^{k-1} N_k)^{\delta}|I|^{1-s}|I|^s$.

Our task is fulfilled if we show that $c_{k,s} = N_1 4^k (\prod_{j=1}^{k-1} N_j)^{\delta}|I|^{1-s}$ is bounded above independently from k. We know that $|I| < 1/N_{k-1}$, and, as $\delta = 1 - \alpha$, we see that $c_{k,s} \leq N_1 4^k (\prod_{j=1}^{k-2} N_j)^{\delta}/N_{k-1}^{\alpha-s}$. It remains to take the sequence (N_k) such that $(N_1 N_k^{k+2} (\prod_{j=1}^{k} N_j)^{\delta})^k < N_{k+1}$. For any fixed s the sequence $c_{k,s}$ tends to zero, and so is bounded. (Notice that the bound $c_s = \sup_k \{c_{k,s}\}$ grows as $s \to \alpha$, but we only need it to be finite.)

\begin{flushright}
\square
\end{flushright}

References

[1] B. Host, F. Parreau, *Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à linfini.* Colloq. Math. 41 (1979), no. 2, 285-289.

[2] P. Mattila, *Geometry of Sets and Measures in Euclidean Spaces.* Cambridge University Press, 1995.

[3] L. Pigno, *Fourier-Stieltjes transforms which vanish at infinity off certain sets.* Glasg. Math. J. 19 (1978), 49–56.

[4] A. Rajchman, *Une classe de series trigonometriques* Math. Ann. 101 (1929), 686–700.

[5] F. Riesz, M. Riesz, *Über Rantenwerte einer analytischen Funktionen.* Quatrième Congrès des Math. Scand. Stockholm (1916), pp. 27–44

Maria Roginskaya
Mathematical Sciences
Chalmers University of Technology
SE-41296, Gothenburg, Sweden

Mathematical Sciences
Gothenburg University
SE-41296, Gothenburg, Sweden
e-mail: maria.roginskaya@chalmers.se

Received: April 28, 2010.
Revised: November 16, 2010.
Accepted: November 25, 2010.