Thermodynamic functions of harmonic Coulomb crystals

D. A. Baiko, A. Y. Potekhin, and D. G. Yakovlev
Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
(Received 20 April 2001; accepted 17 August 2001)

Phonon frequency moments and thermodynamic functions (electrostatic and vibrational parts of the free energy, internal energy, and heat capacity) are calculated for bcc and fcc Coulomb crystals in the harmonic approximation with a fractional accuracy \(\lesssim 10^{-5} \). Temperature dependence of thermodynamic functions is fitted by analytic formulas with an accuracy of a few parts in \(10^5 \).

The static-lattice (Madelung) part of the free energy is calculated with an accuracy \(\sim 10^{-12} \). The Madelung constant and frequency moments of hcp crystals are also computed.

PACS numbers: 52.27.Gr, 52.25.Kn, 05.70.Ce, 97.20.Rp

I. INTRODUCTION

Coulomb crystals, introduced into theory by Wigner \cite{1}, have been studied by many authors. A thorough discussion was given, e.g., in Refs. \cite{2,3}. Ewald technique \cite{4,5} has been used to calculate shear constants \cite{6} and dispersion relations \cite{7} of such crystals. The thermodynamics in the harmonic-lattice approximation has been analyzed, e.g., in Refs. \cite{8,9}. Anharmonic corrections have been discussed in Refs. \cite{10,11,12}. Chabrier et al. \cite{13} have suggested an approximate analytic model of the harmonic Coulomb crystal, which is widely used in astrophysics (e.g., Refs. \cite{14,15,16}). However, precise numerical calculations of the thermodynamic functions, valid at any temperature \(T \), have not been published.

Here we report highly accurate calculations of phonon spectra and frequency moments of body-centered-cubic (bcc), face-centered-cubic (fcc), and hexagonal-close-packed (hcp) one-component Coulomb lattices in the harmonic approximation. We present also accurate calculations of thermodynamic functions for bcc and fcc lattices at any values of the quantum parameter \(\theta = T_p/T \), where \(T_p = h\omega_p/k_B \) is the ion plasma temperature and \(\omega_p = \sqrt{4\pi n_i Z^2 e^2/M} \) is the ion plasma frequency \((n_i, M, \text{and } Z e \text{ being the ion number density, mass, and charge, respectively}) \). The numerical results are given in the easy-to-use form of tables and fitting formulas.

II. PHONON SPECTRUM AND ELECTROSTATIC ENERGY

Consider a crystal of identical ions immersed in the uniform compensating background. The basic definitions are as follows (e.g., Ref. \cite{5}). Let us take an arbitrary ion as the origin of a Cartesian reference frame and specify the lattice basis \(l_1, l_2, l_3 \) generating direct lattice vectors \(l(n_1, n_2, n_3) = n_1 l_1 + n_2 l_2 + n_3 l_3 \), where \(n_1, n_2, n_3 \) are arbitrary integers. The vectors \(g(n_1, n_2, n_3) = n_1 g_1 + n_2 g_2 + n_3 g_3 \), where \(g_1 \cdot l_1 = 2\pi \delta_{ij} \), form the reciprocal lattice. Consider also the primitive cell, the parallelepiped \(\{\nu_1 l_1 + \nu_2 l_2 + \nu_3 l_3\} \) with \(0 \leq \nu_1, \nu_2, \nu_3 < 1 \). Let \(N_{cell} \) be the number of ions in the primitive cell enumerated with an index \(k \). The choice of the vectors \(l_i \) is not unique, and one can describe a given lattice using different \(N_{cell} \). We will adopt the standard convention and choose the primitive cell with the lowest \(N_{cell} \). The bcc and fcc lattices are simple (the lowest \(N_{cell} = 1 \)), whereas for the hcp lattice one has the lowest \(N_{cell} = 2 \).

Along with the primitive cell one usually considers the Wigner-Seitz (WS) cell, which is a polyhedron with faces crossing the lattice vectors at their midpoints at the right angle. The volume of the WS cell is equal to that of the primitive cell, \(N_{cell}/n_i \). A convenient measure of interparticle spacing is the ion-sphere radius \(a = (3/4\pi n_i)^{1/3} \). The WS cell of the reciprocal lattice is the first Brillouin zone (BZ); its volume equals \(V_{BZ} = (2\pi)^3 n_i \).

The frequencies \(\omega_s \) and polarization vectors \(e_s \) of lattice vibrations \((s = 1, \ldots, 3N_{cell}) \) at any point \(\mathbf{q} \) of the BZ are determined by (e.g., Ref. \cite{5})

\[
\frac{\omega_s^2}{\omega_p^2} e^{\alpha k} - \sum_{k',\beta} D_{\alpha\beta}(k, k', \mathbf{q}) e^{\beta k'} = 0,
\]

where the summation is over three Cartesian coordinates (Greek indices) and over the ions in the primitive cell \((k') \);

\[
D_{\alpha\beta}(k, k', \mathbf{q}) = \frac{1}{3} \delta_{\alpha\beta} \delta_{kk'} - \frac{e_0^3}{3} \left(\frac{\partial^2}{\partial u_\alpha \partial u_\beta} \sum_{l} e^{-i\mathbf{q} \cdot \mathbf{r}} \mathbf{e}_l \right) \bigg|_{\mathbf{u} \to 0}
\]
is the dynamical matrix, \(r = 1 + \mathbf{x}(k) - \mathbf{x}(k') \), and \(\mathbf{x}(k) \) specifies the ion position within the primitive cell. The primed sum means that the term \(l = 0 \) is excluded if \(k = k' \).

The elements of the dynamical matrix can be calculated using the Ewald technique of theta-function transformations (e.g., Ref. [3]), which yields

\[
D_{\alpha\beta}(k, k', q) = \frac{1}{3} \delta_{\alpha\beta} \delta_{kk'} - \frac{4\rho^3 a^3}{9\sqrt{\pi}} \delta_{\alpha\beta} \delta_{kk'} - \sum_{l} \left[\frac{\rho^3 a^3}{2 \sqrt{\pi}} \frac{r_{\alpha\beta}^l}{r^3} e^{-r^2} \right. \\
+ \frac{\rho a^3}{3\rho^4} \left(3r_{\alpha}^r - \delta_{\alpha\beta} r^2 \right) \left(\frac{\text{erfc}(pr)}{pr^2} + \frac{2}{\sqrt{\pi}} e^{-r^2} \right) e^{-iq1} \\
+ \frac{1}{N_{\text{cell}}} \sum_{g} \frac{(g_\alpha - q_\alpha)(g_\beta - q_\beta)}{|g - q|^2} \exp \left(-\frac{|g - q|^2}{4\rho^2} - i \mathbf{g} \cdot \mathbf{x}(k) - \mathbf{x}(k') \right). \tag{3}
\]

The last sum is over all reciprocal lattice vectors, and \(\rho \) is a free parameter adjusted to yield equally rapid convergence of direct and reciprocal sums; a suitable choice is \(\rho a \approx 2 \). Numerical calculations according to Eq. (3) become unstable at \(qa \ll 1 \) (near the BZ center). In this region we replace \(D_{\alpha\beta} \) by an appropriate asymptote \(f \), whose coefficients have been recalculated with an accuracy \(\sim 10^{-8} \) using the Ewald technique.

The static-lattice binding energy of a Coulomb lattice is

\[
E_0 = K_M Z^2 e^2 / a, \tag{4}
\]

where the Madelung constant \(K_M \) can be written as:

\[
K_M = \frac{a}{2N_{\text{cell}}} \sum_{k, k'} \sum_{r} \text{erfc}(pr) - \frac{3}{8\rho^2 a^2} - \frac{\rho a}{\sqrt{\pi}} + \frac{3}{2N_{\text{cell}}} \sum_{k, k'} \sum_{g} \frac{1}{g^2 a^2} \exp \left(-\frac{g^2}{4\rho^2} + i \mathbf{g} \cdot \mathbf{x}(k) - \mathbf{x}(k') \right). \tag{5}
\]

Previously \(K_M \) was calculated, e.g., in Refs. [17,18]. Our calculated values of \(K_M \) for bcc, fcc, and hcp crystals are given in Table I.

III. BZ INTEGRATION AND FREQUENCY MOMENTS

In many physical problems, one needs to average functions \(f(\omega) \) over phonon branches and wave vectors:

\[
\langle f \rangle = \frac{1}{3N_{\text{cell}}} \sum_{q} \tilde{f}, \quad \tilde{f} = \frac{1}{V_{\text{BZ}}} \int_{\text{BZ}} f(q) \, dq,
\]

where \(f(q) \equiv f(\omega_s(q)) \). In Eq. (6) we will use the Holas integration method considered in Ref. [13] for the bcc lattice:

\[
\tilde{f} = \int_{0}^{1} d\xi \int_{0}^{1} d\eta \int_{0}^{1} d\zeta \eta \zeta^2 \mathcal{F}\{f\}, \tag{7}
\]

where \(\xi, \eta, \) and \(\zeta \) are appropriate BZ coordinates. For the bcc crystal, \(\mathcal{F}\{f\} = 6f(q) \), with \(q \equiv (q_x, q_y, q_z) = (2 - \eta, \eta, \eta)\pi \xi/a_1 \), and the lattice constant \(a_1 \) is given by \(n_1a_1^3 = 2 \). We calculate the integrals in Eq. (7) by the Gauss method involving the nodes of the Jacobi polynomials \(\gamma_n^{(0,0)} \). The integral over \(\eta \) is alternatively treated by the generalized Gauss scheme with weight function \(\eta \), which involves the nodes of \(\gamma_n^{(1,1)} \).

This approach can be also developed for the fcc and hcp lattices. In both cases we come again to Eq. (7), but with different \(\mathcal{F}\{f\} \). For the fcc lattice, we have \(\mathcal{F}\{f\} = \frac{3}{2} \mathcal{F}\{f\} + \mathcal{F}\{f\} + f(q_1) \), where \(q_1 = \pi \xi/(2a_1) \), \(Q_1 = (2 + \eta, \eta, 2 - \eta, \eta, 2 - \eta, \eta) \), \(Q_2 = (2 + \eta, 2 - \eta, \eta, 2 - \eta, 2 - \eta, \eta) \), and \(n_1a_1^3 = 4. \)

For the hcp lattice, \(\mathcal{F}\{f\} = 2f(q_1)/\eta + 2f(q_2) \), where \(q_1 = Q_1; 2\pi \xi/3a_1 \), \(Q_1 = (\sqrt{3}, \zeta, \eta, \eta, \eta, \eta) \), \(Q_2 = (\eta \sqrt{3}, \eta, \eta, \eta, \eta, \eta) \), and \(n_1a_1^3 = \sqrt{2} \). Here, \(\sigma = \sqrt{8/3} \) is twice the ratio between the number of digits shown; it is the same or higher than the accuracy of the previous results (e.g., Refs. [11,17,18,20]), except only the value of \(\langle \omega/\omega_p \rangle \) for the hcp lattice, calculated more accurately in Ref. [21] \((\langle \omega/\omega_p \rangle_{\text{hcp}} = 0.5133368)\).
IV. THERMODYNAMIC FUNCTIONS

Free energy F of a harmonic Coulomb crystal consists of the static-lattice contribution E_0, contribution from zero-point ion vibrations, $\frac{3}{2} N\hbar \langle \omega \rangle$, and thermal free energy in the harmonic lattice approximation, F_{th}. Accordingly, the reduced free energy $f \equiv F/(Nk_B T)$ is

$$f = K_M \Gamma + 1.5 \langle w \rangle + f_{\text{th}},$$

where $f_{\text{th}}(\theta) = 3 \langle \ln (1 - e^{-w}) \rangle$, and

$$\Gamma = \frac{(Ze)^2}{ak_BT}, \quad w = \frac{\hbar \omega}{k_BT} = \theta \frac{\omega}{\omega_p}.$$ (8)

Thus, the reduced internal energy $u \equiv U/(Nk_BT) = -\partial f/\partial \ln T$ is

$$u = K_M \Gamma + 1.5 \langle w \rangle + u_{\text{th}},$$

where

$$u_{\text{th}}(\theta) = \frac{df_{\text{th}}}{d \ln \theta} = 3 \left\langle \frac{w}{e^w - 1} \right\rangle.$$ (9)

The harmonic constituent of the reduced heat capacity, $c_V = (Nk_B)^{-1} \partial U/\partial T = u + \partial u/\partial \ln T$, is

$$c_V(\theta) = u_{\text{th}} - \frac{du_{\text{th}}}{d \ln \theta} = 3 \left\langle w^2 e^{-w} / (1 - e^{-w})^2 \right\rangle.$$ (10)

Using the results of Secs. IV and V, we have calculated $f_{\text{th}}(\theta)$, $u_{\text{th}}(\theta)$, and $c_V(\theta)$ for bcc and fcc crystals as corresponding BZ averages. The mean numerical error is estimated as $\sim 10^{-6}$, and it is a few times larger at $\theta \gg 1$. Let us discuss possible analytic approximations. The model of Chabrier et al. assumes the linear dispersion law for two acoustic (Debye-type) modes, $\omega_1 = \omega_0 q/q_B$, and an optical (Einstein-type) mode, $\omega_2 = \gamma \omega_p$. The known phonon spectrum moments of a Coulomb crystal are approximately reproduced with the choice $\alpha \approx 0.4$, $\gamma \approx 0.9$. In this model,

$$f_{\text{th}} = 2 \ln (1 - e^{-\alpha \theta}) + \ln (1 - e^{-\gamma \theta}) - \frac{2}{3} D_3(\alpha \theta),$$

where $D_3(z) \equiv (3/z^3) \int_0^z t^3 / (e^t - 1) \, dt$ is the Debye function. This model reproduces numerical values of f_{th}, u_{th}, and c_V with an accuracy of $\sim 10\%$.

A heuristic generalization of Eq. (12) provides a convenient fitting formula to f_{th}. Introducing three logarithmic terms (according to three phonon modes) and replacing D_3 by an arbitrary rational-polynomial function possessing the correct asymptote $\propto \theta^{-3}$ at large θ, we obtain:

$$f_{\text{th}} = \sum_{n=1}^3 \ln (1 - e^{-\alpha_n \theta}) - \frac{A(\theta)}{B(\theta)},$$

where

$$A(\theta) = \sum_{n=0}^8 \alpha_n \theta^n, \quad B(\theta) = \sum_{n=0}^7 b_n \theta^n + \alpha_6 a_6 \theta^9 + \alpha_8 a_8 \theta^{11},$$

and the parameters α_n, a_n, and b_n are given in Table IV.

Calculation of the harmonic thermal energy and heat capacity from Eq. (13) using Eqs. (10) and (11) yields:

$$u_{\text{th}} = \sum_{n=1}^3 \frac{\alpha_n \theta}{e^{\alpha_n \theta} - 1} - \theta \frac{A'(\theta) B(\theta) - A(\theta) B'(\theta)}{B^2(\theta)},$$

$$c_V = \sum_{n=1}^3 \frac{\alpha_n^2 \theta^2}{(e^{\alpha_n \theta} - e^{-\alpha_n \theta})^2} + \theta^2 \frac{A'' B^2 - 2 A' B' B + 2 A B' B'' - A B^2 B''}{B^3},$$

(15) and (16)
where the first and second derivatives $A', A'', B', \text{ and } B''$ are readily obtained from Eq. (14).

The approximations (13), (15), and (16) have a fractional accuracy within 5×10^{-6}, 2×10^{-5}, and 5×10^{-5}, respectively.

In the classical limit $\theta \to 0$, the exact expansion of f_{th} is

$$f_{th} = 3 \ln \theta + 3 \left(\ln \left(\frac{\omega}{\omega_p} \right) - \frac{3}{2} \left(\frac{\omega}{\omega_p} \right) \right) \theta + \frac{1}{24} \theta^2 + \ldots$$

(17)

Note that the term $-\frac{3}{2} \langle \omega/\omega_p \rangle \theta$ cancels the zero-point energy in Eq. (8). Our fit (13) reproduces the logarithmic, constant, and linear terms of Eq. (17) exactly (by construction), whereas the last (quadratic) term is reproduced with the relative accuracy of 5×10^{-6} and 10^{-5} for bcc and fcc lattices, respectively. Although we do not present calculations of the thermal thermodynamic functions for hcp crystals, our analysis reveals that they do not deviate from the functions for fcc crystals by more than a few parts in 10^3.

Our results can be used in any applications which require a fast and accurate evaluation of the thermodynamic functions of the Coulomb crystals.

ACKNOWLEDGMENTS

This work has been partly supported by RFBR Grant No. 99-02-18099. A.P. thanks the theoretical astrophysics group at the Ecole Normale Supérieure de Lyon and the Department of Energy’s Institute for Nuclear Theory at the University of Washington for their hospitality and partial support during the completion of this work.

[1] E. P. Wigner, Phys. Rev. 46, 1002 (1934).
[2] A. E. Kugler, Ann. Phys. (N.Y.) 33, 133 (1969).
[3] E. L. Pollock and J. P. Hansen, Phys. Rev. A 8, 3110 (1973).
[4] P. P. Ewald, Ann. Physik (Leipzig) 64, 253 (1921).
[5] M. Born and K. Huang, *Dynamical Theory of Crystal Lattices* (Clarendon Press, Oxford, 1954).
[6] K. Fuchs, Proc. R. Soc. London, Ser. A 151, 585 (1935); 151, 622 (1935); 157, 444 (1936).
[7] C. B. Clark, Phys. Rev. 109, 1133.
[8] W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961).
[9] G. Chabrier, Astrophys. J. 414, 695 (1993).
[10] R. C. Albers and J. E. Gubernatis, Phys. Rev. B 33, 5180 (1986).
[11] D. H. E. Dubin, Phys. Rev. A 42, 4972 (1990).
[12] R. T. Farouki and S. Hamaguchi, Phys. Rev. E 47, 4330 (1993).
[13] G. Chabrier, N. W. Ashcroft, and H. E. DeWitt, Nature 360, 48 (1992).
[14] L. Segretain, G. Chabrier, M. Hernanz, E. García-Berro, J. Isern, and R. Mochkovitch, Astrophys. J. 434, 641 (1994).
[15] J. A. Panei, L. G. Althaus, and O. G. Benvenuto, Mon. Not. R. Astron. Soc. 312, 531 (2000).
[16] M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955).
[17] R. A. Coldwell-Horsfall and A. A. Maradudin, J. Math. Phys. 1, 395 (1960).
[18] S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys. 45, 2102 (1966).
[19] R. C. Albers and J. E. Gubernatis, Los Alamos Scientific Laboratory Report LA–8674–MS, 1981 (unpublished).
[20] T. Nagai and H. Fukuyama, J. Phys. Soc. Jpn. 52, 44 (1983).

lattice type	K_M	$\langle(\omega/\omega_p)^{-2}\rangle$	$\langle(\omega/\omega_p)^{-1}\rangle$	$\langle(\omega/\omega_p)\rangle$	$\langle(\omega/\omega_p)^3\rangle$	$\langle\ln(\omega/\omega_p)\rangle$
bcc	−0.895 929 255 682	12.972	2.798 55	0.511 3875	0.250 31	−0.831 298
fcc	−0.895 873 615 195	12.143	2.719 82	0.513 1940	0.249 84	−0.817 908
hcp	−0.895 838 120 459	12.015	2.702 6	0.513 33	0.249 84	−0.815 97
TABLE II. Parameters of the analytic approximation [13] to the thermal free energies of bcc and fcc Coulomb lattices. Powers of 10 are given in square brackets.

n	α_n	a_n	b_n	α_n	a_n	b_n
0	--	1	261.66	--	1	303.20
1	0.932446	0.1839	0	0.916707	0	0
2	0.334547	0.593586	7.07997	0.365284	0.532535	7.7255
3	0.265764	5.4814[-3]	0	0.257591	0	0
4	--	5.01813[--4]	0.0409484	--	3.76545[--4]	0.0439597
5	--	3.97355[--4]	0	--	0	1.14295[--4]
6	4.757014[--3]	3.9247[--7]	5.11148[--5]	4.92387[--3]	2.63013[--7]	5.63434[--5]
7	--	2.19749[--6]	--	--	0	1.36488[--6]
8	4.7770935[--3]	5.8356[--11]	--	4.37506[--3]	6.6318[--11]	--