FACTORIZATIONS OF INVERTIBLE OPERATORS
AND K-THEORY OF C^*-ALGEBRAS

SHUANG ZHANG

Abstract. Let \mathcal{A} be a unital C^*-algebra. We describe K-skeleton factorizations of all invertible operators on a Hilbert C^*-module $\mathcal{H}_\mathcal{A}$, in particular on $\mathcal{H} = l^2$, with the Fredholm index as an invariant. We then outline the isomorphisms $K_0(\mathcal{A}) \cong \pi_{2k}(GL^0(\mathcal{A}))$ and $K_1(\mathcal{A}) \cong \pi_{2k+1}(GL^0(\mathcal{A}))$ for $k \geq 0$, where $[p]$ denotes the class of all compact perturbations of a projection p in the infinite Grassmann space $Gr^\infty(\mathcal{A})$ and $GL^0(\mathcal{A})$ stands for the group of all those invertible operators on $\mathcal{H}_\mathcal{A}$ essentially commuting with p.

1. Introduction

Throughout, we assume that \mathcal{A} is any unital C^*-algebra. Let $\mathcal{H}_\mathcal{A}$ be the Hilbert (right) \mathcal{A}-module consisting of all l^2-sequences in \mathcal{A}; i.e., $\mathcal{H}_\mathcal{A} := \{\{a_i\} : \sum_{i=1}^\infty a_i^*a_i \in \mathcal{A}\}$, on which an \mathcal{A}-valued inner product and a norm are naturally defined by $\langle \{a_i\}, \{b_i\} \rangle := \sum_{i=1}^\infty a_i^*b_i$ and $\|\{a_i\}\| = \|\sum_{i=1}^\infty a_i^*a_i\|^{1/2}$. Let $\mathcal{L}(\mathcal{H}_\mathcal{A})$ stand for the C^*-algebra consisting of all bounded operators on $\mathcal{H}_\mathcal{A}$ whose adjoints exist, and let $\mathcal{K}(\mathcal{H}_\mathcal{A})$ denote the closed linear span of all finite rank operators on $\mathcal{H}_\mathcal{A}$, respectively. In case \mathcal{A} is the algebra \mathbb{C} of all complex numbers, $\mathcal{H}_\mathcal{A}$ is the separable, infinite-dimensional Hilbert space $\mathcal{H} = l^2$; correspondingly, $\mathcal{L}(\mathcal{H}_\mathcal{A})$ reduces to the algebra $\mathcal{L}(\mathcal{H})$ of all bounded operators on \mathcal{H}, and $\mathcal{K}(\mathcal{H}_\mathcal{A})$ reduces to the algebra \mathcal{K} of all compact operators on \mathcal{H}. Each element in $\mathcal{L}(\mathcal{H}_\mathcal{A})$ can be identified with an infinite, bounded matrix whose entries are elements in \mathcal{A} [Zh4, §1]. This identification can be realized by C^*-algebraic techniques and the two important $*$-isomorphisms $\mathcal{L}(\mathcal{H}_\mathcal{A}) \cong M(\mathcal{A} \otimes \mathcal{K})$ and $\mathcal{K}(\mathcal{H}_\mathcal{A}) \cong \mathcal{A} \otimes \mathcal{K} = (\lim_n M_n(\mathcal{A}))^\sim$; where $M(\mathcal{A} \otimes \mathcal{K})$ is the multiplier algebra of $\mathcal{A} \otimes \mathcal{K}$ [Kas]. For more information about multiplier algebras the reader is referred to [APT, Bl, Cu1, El, Br2, Pe1, OP, L, Zh4–5], among others. The set of projections $Gr^\infty(\mathcal{A}) := \{p \in \mathcal{L}(\mathcal{H}_\mathcal{A}) : p = p^2 = p^* \text{ and } p \sim 1 \sim 1 - p\}$

1991 Mathematics Subject Classification. Primary 46L05, 46M20, 55P10.

Received by the editors February 12, 1992. The main results of this article were presented at the AMS meeting at Springfield, Missouri, March 27–28, 1992

Partially supported by NSF
is called the infinite Grassmann space associated with A; where \(q \sim p \) is the well-known Murray-von Neumann equivalence of two projections; i.e., there exists a partial isometry $v \in \mathcal{L}(\mathcal{H}_A)$ such that $vv^* = p$ and $v^*v = q$. If $A = C$, then $Gr^\infty(A)$ reduces to the well-known Grassmann space $Gr^\infty(\mathcal{H})$ consisting of all projections on \mathcal{H} with an infinite dimension and an infinite codimension.

2. Factorizations and K-theory

Let $p \in Gr^\infty(A)$. If x is any element in $\mathcal{L}(\mathcal{H}_A)$, with respect to the decomposition $p \oplus (1 - p) = 1$ one can write x as a 2×2 matrix, say $(a \ b; c \ d)$, where $a = pxp$, $b = px(1 - p)$, $c = (1 - p)xp$, and $d = (1 - p)x(1 - p)$. A unitary operator $u = (a \ b; c \ d)$ is called a K-skeleton unitary along A if b is some partial isometries in $A \otimes K$. An easy calculation shows that a unitary operator u is a K-skeleton unitary if and only if a is a Fredholm partial isometry on the submodule $p \mathcal{H}_A$ and d is a Fredholm partial isometry on the submodule $(1 - p)\mathcal{H}_A$; in other words, all $p - aa^*$, $p - a^*a$, $(1 - p) - dd^*$, $(1 - p) - d^*d$ are projections in $A \otimes K$. The term ‘K-skeleton’ is chosen, since $K_0(A)$ is completely described by the homotopy classes of all such unitaries.

Let $GL_p^\infty(A)$ be the topological group consisting of all those invertible operators in $\mathcal{L}(\mathcal{H}_A)$ such that $xp - px \in A \otimes K$, equipped with the norm topology from $\mathcal{L}(\mathcal{H}_A)$. Let $GL^\infty_p(A)$ stand for the path component of $GL^\infty_p(A)$ containing the identity; in the special case when $A = C$, we instead use the notation $GL^\infty_p(\mathcal{H})$ and $GL^\infty_p(\mathcal{H})$, respectively. Let $GL^\infty(A)$ and $GL^\infty_p(\mathcal{A})$ denote the group of all invertible elements in the unitization of $A \otimes K$ and its identity path component, respectively.

2.1. K-skeleton factorization theorem [Zh4]. (i) If $x \in GL^\infty_p(A)$, then there exist an element $k \in A \otimes K$, an invertible element $(\begin{smallmatrix} z_1 & 0 \\ 0 & z_2 \end{smallmatrix})$, and a K-skeleton unitary $(a \ b; c \ d)$ along p such that $1 + k \in GL^\infty_0(A)$ and

$$x = (1 + k) \begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

A factorization of x with the form above is called a K-skeleton factorization along p.

(ii) If two K-skeleton factorizations of x along p are given, say

$$x = x_0x_p \begin{pmatrix} a & b \\ c & d \end{pmatrix} = x_p'x' \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix},$$

then $[cc^*] - [bb^*] = [c'c'^*] - [b'b'^*] \in K_0(A)$; in other words, $[cc^*] - [bb^*]$ is an invariant independent of all (infinitely many) possible K-skeleton factorizations of x along p.

Outline of a proof. There is a shorter proof solely for this theorem. For the sake of clarifying some internal relations among $\pi_0(GL^\infty_p(A))$, $\pi_0([p]_0)$, and $K_0(A)$, we outline a proof as follows. First, every element in $GL^\infty_p(A)$ can be written as a product of the form x_0x_p for some invertible $x_0 \in GL^\infty_0(A)$ with $x_0 - 1 \in A \otimes K$ and another invertible x_p with $x_p = px_p$ [Zh4]. Secondly, write the polar decomposition $x = (xx^*)^{1/2}u$, where $(xx^*)^{1/2} \in GL^\infty_p(A)$ and u is a unitary in $GL^\infty_p(A)$. Then consider the following subsets of $Gr^\infty(A)$:

$$[wpu^*] := \{ wpuu^*w^* : w \in GL^\infty_0(A) \text{ with } wu^*u = w^*w = 1 \}$$
are two bijections, which induce the following isomorphisms:

\[[p]_0 := \{ vpu^* : v \in GL_r^p(A) \quad vv^* = v^*v = 1 \}. \]

Technical arguments show that \([upu^*]_r\) is precisely the path component of \([p]_0\) containing \(upu^*\). Thirdly, there is a representative in \([upu^*]_r\) with the form \((p - r_1) \oplus r_2\) for some projections \(r_1, r_2 \in A \otimes K\). It follows that there exists a unitary \(u_0 \in GL_0^\infty(A)\) such that

\[u^*_0 upu^*_0 = (p - r_1) \oplus r_2. \]

Then one obtains a \(K\)-skeleton unitary \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) such that \(u = u_0 \begin{pmatrix} a & b \\ c & d \end{pmatrix}\), where \(bb^* = r_1\) and \(cc^* = r_2\). Since \((xx^*)^{1/2}u_0 \in GL_0^\infty(A)\), we can rewrite it as a product in the desired form \(x_0(\begin{smallmatrix} z_1 & 0 \\ 0 & z_2 \end{smallmatrix})\). The details are contained in [Zh4].

It follows from Theorem 2.1 that \(x \cdot GL_0^\infty(A) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot GL_0^\infty(A)\) (cosets) for each \(x \in GL_r^p(A)\). The invariant \([cc^*] - [bb^*]\) associated with the \(K\)-skeleton factorization of \(x \in GL_r^p(A)\) yields the bijection

\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot GL_0^\infty(A) \leftrightarrow [(p - bb^*) \oplus (cc^*)]_r. \]

It can be shown that \([(p - r_1) \oplus r_1^\prime \] \(= [(p - r_2) \oplus r_2^\prime]_r\) iff \([r_1^\prime] - [r_1] = [r_2^\prime] - [r_2] = 0\) in \(K_0(A)\). Therefore, we conclude the following theorem whose details are given in [Zh4].

2.2. Theorem [Zh4]. The maps defined by

\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot GL_0^\infty(A) \rightarrow [(p - r_1) \oplus r_2]_r \rightarrow [r_2] - [r_1] \]

are two bijections, which induce the following isomorphisms:

\[GL_r^p(A) / GL_0^\infty(A) \cong D_h([p]_0) \cong K_0(A), \]

where \(GL_r^p(A) / GL_0^\infty(A)\) is the quotient group with the induced multiplication and

\[D_h([p]_0) = \{ [upu^*]_r : u \in GL_r^p(A) \quad \text{with} \quad uu^* = u^*u = 1 \} \]

is the set of all path components of \([p]_0\). The group operation on \(D_h([p]_0)\) is defined by

\[[(p - r_1) \oplus r_1^\prime]_r + [(p - r_2) \oplus r_2^\prime]_r = [(p - r_1 - s_2) \oplus (r_1^\prime + s_2^\prime)]_r \]

for some projections \(s_2 \in p(A \otimes K)p\) and \(s_2^\prime \in (1 - p)(A \otimes K)(1 - p)\) such that \(s_2 \sim r_2, s_2r_1 = 0, s_2^\prime \sim r_2^\prime,\) and \(s_2^\prime r_1 = 0\).
2.3. Theorem. Let the base point of \([p]_0\) be \(p\) and the base point of \(GL_p^\infty(A)\) be the identity. Then

\[
\pi_{2k+1}([p]_0) \cong \pi_{2k+1}(GL_p^\infty(A)) \cong K_1(A),
\]

and

\[
\pi_{2k+2}([p]_0) \cong \pi_{2k+2}(GL_p^\infty(A)) \cong K_0(A) \quad \forall k \geq 0.
\]

Outline of a proof. Let \(U_\infty(A)\) be the unitary group of the unitization of \(A \otimes K\), and let \(U_p(A)\) be the subgroup of \(U_\infty(A)\) consisting of all those unitaries commuting with \(p\). First, the map \(\psi_p : U_\infty(A) \rightarrow [p]_r\) defined by \(\psi_p(u) = upu^*\) is a Serre (weak) fibration with a standard fiber \(U_p(A)\) [Zh6, §2]. Secondly, the long exact sequence of homotopy groups associated with this fibration breaks into short exact sequences [Zh6, 2.5, 2.8]:

\[
0 \rightarrow \pi_{k+1}([p]_r) \rightarrow \pi_k(U_p(A)) \rightarrow \pi_k(U_\infty(A)) \rightarrow 0 \quad (k \geq 0).
\]

Thirdly, by an analysis on this short exact sequence one concludes

\[
\pi_{2k+2}([p]_0) \cong K_0(A) \quad \text{and} \quad \pi_{2k+1}([p]_0) \cong K_1(A) \quad (k \geq 0).
\]

It is well known that the subgroup \(U_p^\infty(A)\) consisting of all unitary elements in \(GL_p^\infty(A)\) is homotopy equivalent to \(GL_p^\infty(A)\). We consider the maps \(U_p^\infty(A) \rightarrow [p]_0\) defined by \(\phi_p(u) = upu^*\). It can be shown that \(\phi_p\) is a weak fibration with a standard fiber \(U_p^p(A)\), where \(U_p(A)\) is the group consisting of all those unitaries in \(U_p^\infty(A)\) commuting with \(p\). An argument similar to that above applies to this fibration. One can show that \(\pi_{2k+1}(U_p^\infty(A)) \cong K_1(A)\) and \(\pi_{2k+2}(U_p^\infty(A)) \cong K_0(A)\) for \(k \geq 0\). The details are given in [Zh6, §4].

2.4. Special case. Let \(A = C(X)\). In particular, if \(A\) is taken to be the commutative \(C^*\)-algebra \(C(X)\) consisting of all complex-valued continuous functions on a compact Hausdorff space \(X\), then each element in \(\mathcal{L}(H_{C(X)})\) can be identified with a norm-bounded, \(*\)-strong continuous map from \(X\) to \(\mathcal{L}(H)\) [APT]. Here \(\mathcal{L}(H) \supset \{x_\lambda\}\) converges to \(x\) in the \(*\)-strong operator topology iff

\[
||((x_\lambda - x)k|| + ||k(x_\lambda - x)|| \rightarrow 0 \quad \text{for any} \ k \in K.
\]

Obviously, \(\mathcal{L}(H_{C(X)})\) contains the \(C^*\)-tensor product \(\mathcal{L}(H) \otimes C(X)\) consisting of all norm-continuous maps from \(X\) to \(\mathcal{L}(H)\) as a \(C^*\)-subalgebra. Then Theorems 2.1 and 2.2 in this special case are interpreted as follows.

2.5. Corollary. Let \(GL^\infty(H)\) be the group of all invertible operators in \(\mathcal{L}(H)\).

(i) If \(f : X \rightarrow GL^\infty(H)\) is a norm-bounded, \(*\)-strong continuous map and \(p\) is a projection in the infinite Grassmann space \(Gr^\infty(H)\) such that \(pf - fp \in K \otimes C(X)\), then \(f\) can be factored as the following product of three invertible maps

\[
f(.) = \begin{pmatrix}
1 + k_{11}(.) & k_{12}(.) \\
k_{21}(.) & 1 + k_{22}(.)
\end{pmatrix}
\begin{pmatrix}
g_1(.) & 0 \\
0 & g_2(.)
\end{pmatrix}
\begin{pmatrix}
a(.) & b(.) \\
c(.) & d(.)
\end{pmatrix};
\]
where \(k_{ij}(\cdot)'s \) are norm-continuous maps from \(X \) to \(K \), \(g_1(\cdot) \oplus g_2(\cdot) \) is a norm-bounded, *-strong continuous map from \(X \) to \(GL^\infty(\mathcal{H}) \), \(a(\cdot), d(\cdot) \) are *-strong continuous maps from \(X \) to the set of Fredholm partial isometries on \(pH \) and \((1-p)\mathcal{H} \), respectively, and \(c(\cdot), b(\cdot) \) are norm-continuous maps from \(X \) to the set of partial isometries in \(K \). Furthermore,

\[
[c(\cdot)c(\cdot)^*] - [b(\cdot)b(\cdot)^*] \in K_0(C(X)) \; (\cong K^0(X))
\]
is an invariant independent of all possible factorization with the above form.

(ii) The groups \([X,GL_p^s(\mathcal{H})], [X,[p]_0], \text{and } K_0(C(X))\) are isomorphic, where \([X,\cdot]\) is the set of homotopy classes of norm-bounded, *-strong continuous maps from \(X \) to \(\cdot \).

2.6. **Invertible dilations of a Fredholm operator.** Let us illustrate a \(K \)-skeleton factorization of any invertible dilation of a Fredholm operator \(x \in \mathcal{L}(\mathcal{H}_A) \). There are of course infinitely many invertible \(2 \times 2 \) matrices with the form

\[
D_2(x) := \begin{pmatrix} x & y_1 \\ y_2 & z \end{pmatrix} \in M_2(\mathcal{L}(\mathcal{H}_A)).
\]

Each such \(2 \times 2 \) invertible matrix is called an invertible dilation of \(x \). Specific constructions of such a dilation were given by P. Halmos [Ho, 222] and A. Connes [Co]. For each invertible dilation of \(x \) it follows from the \(K \)-skeleton Factorization Theorem 2.1 that

\[
\begin{pmatrix} x & y_1 \\ y_2 & z \end{pmatrix} = \begin{pmatrix} 1 + a_{11} & a_{12} \\ a_{21} & 1 + a_{22} \end{pmatrix} \begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} \begin{pmatrix} v & 1 - vv^* \\ 1 - v^*v & -v^* \end{pmatrix},
\]

where \(a_{ij}'s \) are some elements in \(A \otimes K \), \(z_1, z_2 \in GL^\infty(\mathcal{A}) \), and the above matrix on the right, say \(w \), is a familiar unitary matrix occurring in the index map in \(K \)-theory [Bl, 8.3] in which \(v \) is a Fredholm partial isometry in \(\mathcal{L}(\mathcal{H}_A) \). Set \(p = \text{diag}(1,0) \). It is well known that

\[
[1 - v^*v] - [1 - vv^*] \in K_0(\mathcal{A})
\]
is precisely the Fredholm index \(\text{Ind}(v) = \text{Ind}(pxp) \) (on \(p\mathcal{H}_A \)). It follows from Theorem 2.1(ii) that those \(K \)-skeleton unitaries associated with all possible invertible dilations of \(x \) in \(M_2(\mathcal{L}(\mathcal{H}_A)) \) only differ from \(w \) by a factor in \(GL_{2n}(\mathcal{A}) \).

3. **Factorizations of invertible operators with integer indices**

Now we consider some special cases such that \(K_0(\mathcal{A}) \cong Z \) (the group of all integers); for example, \(\mathcal{A} = \mathbb{C} \), or \(\mathcal{A} = C(S^{2n+1}) \) where \(S^m \) is the standard \(m \)-sphere, or \(\mathcal{A} = \mathcal{O}_\infty \), the Cuntz algebra generated by isometries \(\{s_i\}_{i=1}^\infty \subset \mathcal{L}(\mathcal{H}) \) such that \(\sum_{i=1}^\infty s_i s_i^* \leq 1 \).

Let \(p \) be any projection in \(G_{r}^\infty(\mathcal{H}) \subset G_{r}^\infty(\mathcal{A}) \) [the inclusion holds because \(\mathcal{H} \subset \mathcal{H}_A \) and \(\mathcal{L}(\mathcal{H}) \subset \mathcal{L}(\mathcal{H}_A) \)]. Let \(\{\xi_i\}_{i=0}^\infty \) be any orthonormal basis of the subspace \(p\mathcal{H} \) and \(\{\xi_i\}_{i=-\infty}^{-1} \) be any orthonormal basis of the subspace \((1-p)\mathcal{H} \). Then \(\{\xi_i\}_{i=-\infty}^\infty \) is an orthonormal basis of both \(\mathcal{H} \) and \(\mathcal{H}_A \). Let \(u_0 \) denote the bilateral shift associated with the basis \(\{\xi_i\}_{i=-\infty}^\infty \) of \(\mathcal{H} \), defined by \(u_0(\xi_i) = \xi_{i+1} \) for all \(i \in Z \). Clearly, \(u_0 \) is a \(K \)-skeleton unitary of \(\mathcal{L}(\mathcal{H}_A) \) along \(p \). Applying the \(K \)-skeleton Factorization Theorem 2.1 to the above special cases, we have the following factorizations of invertible operators orientated by the integer-valued Fredholm index:
3.1. **Corollary.** Suppose that $K_0(\mathcal{A}) \cong \mathbb{Z}$ is generated by $[1]$ where 1 is the identity of \mathcal{A}. If x is an invertible operator on $\mathcal{H}_\mathcal{A}$ such that $px - xp \in \mathcal{A} \otimes \mathcal{K}$, then $x = (1 + k)x_{p}u_{n}$, where $k \in \mathcal{A} \otimes \mathcal{K}$, x_{p} is an invertible operator commuting with p, and the integer n is the Fredholm index of pxp on the submodule $p\mathcal{H}_\mathcal{A}$, say $\text{Ind}(pxp)$, which is independent of the choice of $\{\xi_i\}^\infty_{i=0}$, $\{\xi_i\}^{-\infty}_{-\infty}$ and all possible factorizations along p with the same form above.

Outline of a proof. It is obvious that $\text{Ind}(pu_0^n p) = -n$. Let G be the group $\{u_i^n : n \in \mathbb{Z}\}$ in which every element is a K-skeleton unitary along p. As a special case of Theorem 2.1 one can show that the map from G to $GL^p(\mathcal{A})/GL^p_{\infty}(\mathcal{A})$ defined by $u_0^n \mapsto u_0^n \cdot GL^p_{\infty}(\mathcal{A})$ is a group isomorphism. It follows that $\pi_0(GL^p(\mathcal{A})) = \{u_0^n \cdot GL^p_{\infty}(\mathcal{A}) : n \in \mathbb{Z}\}$. Then the factorization follows. The reader may want to consider the extreme case $\mathcal{A} = \mathbb{C}$ and then generalize the conclusion to a larger class of C^*-algebras.

A similar proof yields the following alternative factorization of x as a product of three invertibles under the same assumptions as of Corollary 3.1:

$$x = \begin{cases} (1 + k_1)x_1 & \text{if } \text{Ind}(pxp) = 0, \\ (1 + k_2)x_2(u_1 \oplus u_2 \oplus \cdots \oplus u_{-n} \oplus w_1) & \text{if } \text{Ind}(pxp) = n < 0, \\ (1 + k_3)x_3(u_1^* \oplus u_2^* \oplus \cdots \oplus u_n^* \oplus w_2) & \text{if } \text{Ind}(pxp) = n > 0, \end{cases}$$

where u_i is a bilateral shift on a subspace \mathcal{H}_i of \mathcal{H} for $1 \leq i \leq n$, w_j’s are unitary operators on $(\bigoplus_{i=1}^n \mathcal{H}_i)^\perp$, $k_j \in \mathcal{A} \otimes \mathcal{K}$, and x_j’s are invertible operators commuting with p.

3.2. **Corollary.** Suppose that $K_0(\mathcal{A}) \cong \mathbb{Z}$ is generated by $[1]$. If x is an arbitrary element $\mathcal{L}(\mathcal{H}_\mathcal{A})$ and $p \in G^{r\infty}(\mathcal{H})$ (as above) such that $px - xp \in \mathcal{A} \otimes \mathcal{K}$, then there exists a unique norm-continuous map $x(\lambda)$ from $C \setminus (\sigma(x) \cup \{0\})$ to $GL^p_{\infty}(\mathcal{A})$, where $\sigma(x)$ is the spectrum of x, such that $x - \lambda = x(\lambda)u_0^{-n}$, where $n_i = \text{Ind}(p(x - \lambda_i)p)$ and λ_i is any complex number in the ith path component O_i of $C \setminus \sigma(x)$. An alternative K-skeleton factorization of $x - \lambda$ for $\lambda \in O_i$ is as follows (when $n_i \neq 0$):

$$x - \lambda = \begin{cases} y_i(\lambda)(u_1 \oplus u_2 \oplus \cdots \oplus u_{n_i} \oplus w_i) & \text{if } \text{Ind}(p(x - \lambda_i)p) = n_i < 0, \\ y_i(\lambda)(u_1^* \oplus u_2^* \oplus \cdots \oplus u_n^* \oplus v_i) & \text{if } \text{Ind}(p(x - \lambda_i)p) = n_i > 0, \end{cases}$$

where u_i’s are bilateral shifts on mutually orthogonal closed subspaces \mathcal{H}_i’s of \mathcal{H}, w_i’s, v_i’s are unitary operators on the subspace $(\bigoplus_{i=1}^{n_i} \mathcal{H}_i)^\perp$, and $y_i(\lambda), y_i^*(\lambda)$ are norm-continuous maps from O_i to $GL^p_{\infty}(\mathcal{A})$.

3.3. **Winding numbers of invertible operators.** Using the first factorization in Corollary 3.2, we assign an integer n_i to each path component O_i of $C \setminus \sigma(x)$, which is precisely the minus winding number of w_0^{-n} as a continuous map from S^1 to S^1 (via the Gel’fand transformation). We call n_i the *winding number of x along p over O_i*. As a particular case, if x is an operator whose essential spectrum, the spectrum of $\pi(x)$ in the generalized Calkin algebra $\mathcal{L}(\mathcal{H}_\mathcal{A})/K(\mathcal{H}_\mathcal{A})$, does not separate the plane, then all winding numbers of x along any $p \in G^{r\infty}(\mathcal{A})$ are zero as long as $px - xp \in \mathcal{A} \otimes \mathcal{K}$. There is another way to describe the integer n_i.

3.4. **Corollary.** Let $G_i(x)$ denote the subgroup of $GL^p(\mathcal{A})$ generated by $GL^p_{\infty}(\mathcal{A})$ and $x - \lambda_i$ where $\lambda_i \in O_i$. Then $G_i(x)/GL^p_{\infty}(\mathcal{A}) \cong \mathbb{Z}_{n_i}$, and hence $GL^p(\mathcal{A})/G_i(x) \cong \mathbb{Z}_{n_i}$, the finite cyclic group of order n_i.
In particular, one can apply the above factorizations to an invertible dilation of a pseudodifferential operator of order zero on a compact manifold and classical multiplication operators. Let us spend few lines to look at the following familiar examples.

3.5. Multiplication operators. Let \(M_f \) be the invertible multiplication operator with symbol \(f \) in \(L^\infty(S^1) \), where \(S^1 \) is the unit circle; i.e., \(M_f(g) = fg \) for any \(g \in L^2(S^1) \). If \(p \) is a projection on \(L^2(S^1) \) such that \(\dim(p) = \text{codim}(1 - p) = \infty \), and \(pM_f - M_f p \) is a compact operator, then it follows from Corollary 3.1 that \(M_f = (1 + k)x_pu_0^{-n} \), where \(n = \text{Ind}(pM_f p) \), \(k \) is a compact operator on \(L^2(S^1) \), \(x_p \) is an invertible operator on \(L^2(S^1) \) commuting with \(p \), and \(u_0 \) is a bilateral shift operator associated with a fixed orthonormal basis of \(L^2(S^1) \). It is well known that \(pM_f p \) is a familiar Toeplitz operator on the subspace \(pL^2(S^1) \).

3.6. Restricted loop group along \(p \in Gr^\infty(H) \). Consider the following restricted loop group along \(p \) consisting of all norm-bounded, \(*\)-strong continuous maps from \(S^1 \) to \(GL_p(H) \), denoted by \(\text{Map}(S^1, GL_p(H))_\beta \). Since \(K_0(C(S^1)) = Z \), each \(f \in \text{Map}(S^1, GL_p(H))_\beta \) can be factored as \(f = (1 + f_0)f_1u_0^{-n} \), where \(n = \text{Ind}(pfp) \), \(f_0 \) is a norm-continuous map from \(S^1 \) to \(K \), \(f_1 \) is a \(*\)-strong continuous map from \(S^1 \) to \(GL_\infty(H) \) such that \(f_1(z)p = pf_1(z) \) for any \(z \in S^1 \), and \(u_0 \) is a bilateral shift with respect to a fixed orthonormal basis of \(H \). If \(f \) is norm-continuous, then \(f_1 \) is also norm continuous. Furthermore, \([S^1, GL_p(H)] \cong [X, [p]_0] \cong Z \). The same conclusions also hold, if \(S^1 \) is replaced by \(S^{2n+1} \) for any \(n \geq 1 \).

3.7. Remarks. (i) Theorems 2.1–2.3 still hold, if \(A \) is any stably unital \(C^* \)-algebra; i.e., \(A \otimes K \) has an approximate identity consisting of a sequence of projections \([B1, 5.5.4; Z Hab7]\).

(ii) Let \(\text{Index}(x, p) \) denote the invariant \([cc^*] - [bb^*] \in K_0(A) \) in Theorem 2.1(ii). If \(p \) is fixed, then \(\text{Index}(x, p) \) is precisely the Fredholm index of \(pxp \) as an operator on \(pH_A \) and fits into the established theory of the \(K_0(A) \)-valued Fredholm index. However, some new results do arise from invariants of \(\text{Index}(x, p) \) as the variable \(p \) runs in \(\{ p \in Gr^\infty(A) : xp - px \in A \otimes K \} \) or as \(x \) and \(p \) jointly change \([Zhab7]\). As a matter of fact, \(\text{Index}(x, p) \) is an invariant under homotopy and perturbation by elements in \(A \otimes K \) with respect to both variables \(x \) and \(p \). For example, by the combination of the \(K \)-skeleton Factorization Theorem and certain invariants of \(\text{Index}(x, p) \), we proved \([Zhab7]\) the following:

Theorem.

\[
\pi_0(GL(M_n(C)c)_e) \cong \{ k \in K_0(A) : n \cdot k = 0 \} \quad \text{for any } n \geq 2;
\]

where \(GL(M_n(C)c)_e \) denotes the group of all invertibles in the essential commutant \(M_n(C)c \) of \(M_n(C) \) which is naturally embedded in \(M_n(L(H_A)) \).

(iii) The reader may want to compare (3.1)–(3.3) and the famous BDF theory \([BDF1, 2]\) to see their obvious relations; we work with invariants on \(H_A \), while the BDF theory dealt with Fredholm operators.

(iv) In \([PS]\) Pressley and Segal have studied the restricted general linear group

\[
GL_{res}(H) := \{ x \in GL^\infty(H) : xp - px \text{ is Hilbert-Schmidt} \}
\]

and given some applications to the Kdv equations. It is a hope that our results will shed some light in the same direction.
REFERENCES

[APT] C. A. Akemann, G. K. Pedersen, and J. Tomiyama, Multipliers of C*-algebras, J. Funct. Anal. 13 (1973), 277–301.

[At] M. F. Atiyah, K-theory, Benjamin, New York, 1967.

[Ar] W. Arveson, Notes on extensions of C*-algebras, Duke Math. J. 44 (1977), 329–355.

[Bl] B. Blackadar, K-theory for operator algebras, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, and Tokyo, 1987.

[Br1] L. G. Brown, Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific J. Math. 71 (1977), 335–348.

[Br2] L. G. Brown, Semicontinuity and multipliers of C*-algebras, Canad. J. Math. 40 (1989), 769–887.

[BDF1] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, Heidelberg, 1977.

[BDF2] ———, Extensions of C*-algebras and K-homology, Ann. of Math. (2) 105 (1977), 265–324.

[Co] A. Connes, Non-commutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1986), 257–360.

[Cu1] J. Cuntz, A class of C*-algebras and topological Markov chains II: Reducible chains and the Ext-functor for C*-algebras, Invent. Math. 63 (1981), 25–40.

[Cu2] ———, K-theory for certain C*-algebras, Ann. of Math. (2) 131 (1981), 181–197.

[EK] E. G. Effros and J. Kaminker, Some homotopy and shape calculations for C*-algebras, Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics, MSRI Publication No. 6, Springer-Verlag, New York, 1987.

[E1] G. A. Elliott, Derivations of matroid C*-algebras. II, Ann. of Math. (2) 100 (1974), 407–422.

[Ho] P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, NJ, 1967.

[Ka] M. Karoubi, K-theory: an introduction, Springer-Verlag, Berlin, Heidelberg, and New York, 1978.

[Kas] G. G. Kasparov, Hilbert C*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 3 (1980), 133–150.

[L] H. Lin, Simple C*-algebras with continuous scales and simple corona algebras, Proc. Amer. Math. Soc. 112 (1991), 871–880.

[MF] A. Miscenko and A. Fomenko, The index of elliptic operators over C*-algebras, Math. USSR Izv. 15 (1980), 87–112.

[Mi] J. A. Mingo, K-theory and multipliers of stable C*-algebras, Trans. Amer. Math. Soc. 299 (1987), 255–260.

[Pe1] G. K. Pedersen, SAW*-algebras and corona C*-algebras, contributions to non-commutative topology, J. Operator Theory 15 (1986), 15–32.

[Pe2] ———, C*-algebras and their automorphism groups, Academic Press, London, New York, and San Francisco, 1979.

[Ph] N. C. Phillips, Classifying algebras for the K-theory of σ-C*-algebras, Canad. J. Math. 41 (1989), 1021–1089.

[PS] A. Pressley and G. Segal, Loop groups, Oxford Science Publications, Clarendon Press, Oxford, 1986.

[PPV] M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous C*-extensions of C(X) ⊗ K(H), J. Operator Theory 1 (1979), 55–108.

[OP] C. L. Olsen and G. K. Pedersen, Corona C*-algebras and their applications to lifting problems, Math. Scand. (to appear).

[SSU] A. Sheu, N. Salinas, and H. Upmeier, Toeplitz operators on pseudoconvex domains and foliation C*-algebras, Ann. of Math. (2) 130 (1989), 531–565.

[Ta] M. Takesaki, Theory of operator algebras. I, Springer-Verlag, Berlin, Heidelberg, and New York, 1979.

[Zh1] S. Zhang, Certain C*-algebras with real rank zero and their corona and multiplier algebras, Part II, K-theory (to appear).

[Zh2] ———, On the homotopy type of the unitary group and the Grassmann space of purely infinite simple C*-algebras, K-Theory (to appear).
[Zh3] Exponential rank and exponential length of operators on Hilbert C*-module, Ann. of Math. (2) (to appear).

[Zh4] K-theory, K-skeleton factorizations and bi-variable index $\text{Index}(x, p)$, Part I, Part II, Part III, preprints.

[Zh5] K-theory and bi-variable index $\text{Index}(x, [p]_\omega)$: properties, invariants and applications, Part I, Part II, Part III, preprints.

[Zh6] K-theory and homotopy of certain groups and infinite Grassmann spaces associated with C*-algebra, preprint.

[Zh7] Torsion of K-theory, bi-variable index and certain invariants of the essential commutant of $M_n(C)$. I, II, preprints.

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025

E-mail address: szhang@ucbeh.san.uc.edu