Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture

Jia-Zhan Xin, Chen-Guang Fu*, Wu-Jun Shi, Guo-Wei Li, Gudrun Auffermann, Yan-Peng Qi, Tie-Jun Zhu, Xin-Bing Zhao, Claudia Felser

Received: 14 December 2017/Revised: 10 February 2018/Accepted: 12 March 2018/Published online: 7 April 2018
© The Author(s) 2018

Abstract Bismuth tellurohalides with Rashba-type spin splitting exhibit unique Fermi surface topology and are developed as promising thermoelectric materials. However, BiTeBr, which belongs to this class of materials, is rarely investigated in terms of the thermoelectric transport properties. In the study, polycrystalline bulk BiTeBr with intensive texture was synthesized via spark plasma sintering (SPS). Additionally, its thermoelectric properties above room temperature were investigated along both the in-plane and out-plane directions, and they exhibit strong anisotropy. Low sound velocity along two directions is found and contributes to its low lattice thermal conductivity. Polycrystalline BiTeBr exhibits relatively good thermoelectric performance along the in-plane direction, with a maximum dimensionless figure of merit (ZT) of 0.35 at 560 K. Further enhancements of ZT are expected by utilizing systematic optimization strategies.

Keywords Bismuth tellurohalides; BiTeBr; Thermoelectric properties; Texture

1 Introduction

Solid-state thermoelectric (TE) materials enable the direct conversion of waste heat into electric power and provide a possible solution for increased energy demands [1–6]. The efficiency of a TE material is generally gauged by its dimensionless figure of merit, $ZT = \alpha^2 \sigma / (\kappa_e + \kappa_L)$, where α denotes the Seebeck coefficient, σ denotes electrical conductivity, κ_e and κ_L denote the electronic and lattice contributions to the total thermal conductivity (κ), respectively, and T denotes the absolute temperature [2]. Extant studies aim to obtain higher ZT and mainly focus on two aspects. The first aspect involves engineering the electronic structure to enhance the power factor (PF = $\alpha^2 \sigma$) [7, 8], i.e., by increasing band degeneracy [9, 10], inducing resonant levels [11] and reducing band effective mass [12, 13]. The other aspect involves obtaining lower κ_L [14] by introducing multiscale phonon scattering centers [15–17] or pursuing new materials with intrinsically low κ_L [18–20].

Layered ternary bismuth tellurohalides (BiTeX with X = I, Br, Cl) with giant Rashba-type spin splitting have recently received widespread interest as future spintronic applications and have been explored as topological superconductors [21, 22]. Given the spin–orbital coupling and inversion asymmetry, BiTeX exhibits unique Fermi surface topology, reduced dimensionality for the electronic density of state, and thus unusual relativistic physical properties [23, 24]. A recent study indicated that unique Fermi surface and complex non-parabolic band structures are favorable for high TE performance [25]. Thus, semiconductor BiTeX with Rashba-type spin splitting displays promising TE transport properties.

With respect to the BiTeX system, BiTeI attracted maximum attention in terms of the TE transport
investigation, and this is partly due to the strongest Rashba-type spin splitting. Wu et al. [26] found a two-dimensional thermopower in BiTeI due to the spin-splitting-induced constant density of states, and this exceeds that in spin-degenerate bands. With increase in atomic number of the halogen element, the lattice thermal conductivity of BiTeX decreases due to the higher average atomic mass (κ_4, is approximately $1 \text{ W m}^{-1}\text{K}^{-1}$ at RT) [27, 28]. Nevertheless, with respect to the aforementioned three types, BiTeI is significantly affected by intrinsic point defects [29]. The electron concentration of single-crystalline BiTeI $(4.6 \times 10^{19} \text{ cm}^{-3})$ significantly exceeds the optimized value (approximately $5 \times 10^{18} \text{ cm}^{-3}$) [27] as estimated from the single parabolic band model [8, 30]. Additionally, additional defect scattering leads to relatively small carrier mobility, and thereby a low power factor (approximately $5 \mu\text{W cm}^{-1}\text{K}^{-2}$) [27, 29]. Wu et al. [29] indicated that Cu-intercalation in BiTeI substantially alters the equilibria of defect reactions and leads to increases in carrier mobility and consequently an enhanced power factor. Furthermore, the alloying of Br broadens the band gap of BiTeI and this leads to diminished thermally activated minority carriers and improved ZT at high temperatures [31]. In a single-crystalline form, BiTeCl was grown by using a topotactic method and its TE transport properties below room temperature were investigated. A maximum power factor corresponding to $18 \mu\text{W cm}^{-1}\text{K}^{-2}$ and ZT of 0.17 was reported [28]. However, the TE properties of BiTeCl were observed as deteriorating with respect to time, which indicates that the system is not stable [28]. The TE properties of BiTeI and BiTeBr single crystals were investigated below room temperature in which BiTeBr exhibits a value of ZT that is almost twice that of BiTeI [27].

Thus, BiTeX systems are still not fully examined for their TE properties, especially in polycrystalline form and above room temperature. Additionally, the inter-layer interaction for BiTeX is due to the van der Waals force. Thus, strong anisotropy should exist for their transport properties, and this requires further investigation [29]. When compared to BiTeI, BiTeBr exhibits a higher band gap, and this acts to suppress the thermal activation of minority carrier. In the study, polycrystalline BiTeBr with intensive texture was synthesized by spark plasma sintering (SPS). The anisotropic TE properties along in-plane and out-plane directions were investigated. The results indicate that the in-plane direction of polycrystalline BiTeBr exhibits relatively good thermoelectric performance with a maximum dimensionless figure of merit ZT of approximately 0.35 at 560 K.

2 Experimental and theoretical methods

In the first set of experiments, BiTeBr$_{1-x}$Cl$_x$ (0 ≤ x ≤ 1) were synthesized and their TE transport properties were examined. The results indicate that the specimens with high Cl content are sensitive to moisture and cannot be kept in air for a long period. A similar phenomenon was also reported in a previous study on BiTeCl single crystal [28]. Therefore, in the following study, we only focused on investigating the TE transport properties of more stable BiTeBr and BiTeBr$_{0.75}$Cl$_{0.25}$. In the typical synthesis of polycrystalline specimens with nominal composition BiTeBr and BiTeBr$_{0.75}$Cl$_{0.25}$, stoichiometric amounts of elemental Bi (piece, 99.999%), Te (piece, 99.99%), BiBr$_3$ (powder, 99.9%) and BiCl$_3$ (powder, 99.8%) were weighed and loaded in quartz tubes in a glove box. The quartz tubes were sealed under partial Ar pressure and then placed into a furnace. The quartz tubes were first heated to 600 °C, kept for 10 h, then cooled down to 400 °C and kept for 7 days. The obtained ingots were manually crushed and then placed into graphite dies with an inner diameter of 8 mm. The dies were placed into a SPS instrument (Fuji, Japan) and compacted at 340 °C for 4 min under 80 MPa in vacuum. Finally, bulk samples with a diameter of 8 mm and a thickness of approximately 11 mm were obtained.

Powder X-ray diffraction (XRD) measurement was performed with Cu Kα radiation at room temperature to identify the phase purity and crystal structure by using an image-plate Huber G670 Guinier camera with a diffraction range of 10° ≤ 2θ ≤ 100° with a step of 0.005°. The microstructure of the samples was examined by using scanning electron microscope (SEM, FEI Quanta 200 F). Differential thermal analysis (DTA) and thermal gravimetric analysis (TG) were performed (DTA/TG, NETZSCH STA 449F3) to identify the thermal stability. The transport properties of the samples were measured both along the in-plane (ab plane) and out-plane (c axis) directions. The Seebeck coefficient and resistivity were measured by using an ULVAC ZEM-3 system. The thermal diffusivity was determined by using laser flash analysis (LFA 457, Netzsch). The thermal conductivity was calculated by using the equation $\kappa = D \rho C_p$, where D denotes the thermal diffusivity, ρ denotes the density and C_p denotes the specific heat that is estimated by using the Dulong–Petit value. The estimated measurement uncertainties are 3% for electrical conductivity, 7% for the Seebeck coefficient and 3% for thermal diffusivity. The Hall coefficients (R_H) at room temperature were determined from the slope of the Hall resistivity as a function of magnetic field measured by using the physical property measurement system (PPMS, Quantum Design). The carrier concentration (n_H) was calculated by using $n_H = 1/eR_H$ (estimated error within ± 10%), where e denotes the unit charge. The carrier
mobility (μ_I) was calculated by using $\mu_I = \sigma R_I$. Normal and shear ultrasonic measurements were performed at room temperature by using input from a Panometrics 5052 pulser/receiver with a filter at 0.03 MHz. The response was recorded via a Tektronix TDS5054B-NV digital oscilloscope. The high-resolution mode was employed for the longitudinal speed of sound (v_L), and an averaging mode (16 wave forms) was utilized for the transverse speed-of-sound (v_T) measurements. The Debye temperature (θ_D) was calculated by $\theta_D = \frac{\hbar v_s (6\pi^2 n)^{1/3}}{k_B}$, where \hbar denotes the reduced Planck constant, k_B denotes the Boltzmann constant, n denotes the atom number in a unit volume, and v_s denotes the average speed of sound calculated from $v_s = \frac{(v_L^3/3 + 2v_T^3/3)}{1/3}$. The measured sound velocity and the Debye temperature for all the specimens are shown in Table 1.

Density functional theory calculations (DFT) were performed by using the Vienna Ab-initio Simulation Package (VASP) [32] to investigate the electronic properties. The interactions between the valence electrons and ion cores were described by using the projector-augmented wave method [33, 34]. The exchange and correlation energy interactions between the valence electrons and ion cores were formulated by using the generalized gradient (GGA) with the Perdew–Burke–Ernzerhof scheme [35]. The plane-wave basis cutoff energy was set as 216 eV by default. The Γ-centered k points with 0.3 nm$^{-1}$ spacing were used for the first Brillouin-zone sampling. The spin-orbit coupling (SOC) was included in the calculation.

3 Results and discussion

3.1 Microstructure and thermal stability

XRD patterns of powder and bulk BiTeBr are shown in Fig. 1a. All major peaks are indexed to the 2H-CdI$_2$ type structure (space group No. 156, $P3m1$). The lattice parameter of BiTeBr is estimated as $a = 0.4251$ nm, $c = 0.6449$ nm, and this is consistent with those obtained in the previous experimental studies [36]. In the following section, we clarify this and define ab as referring to the specimens in which the in-plane direction is perpendicular to the SPS pressure direction, while the direction parallel to the SPS pressure is denoted as c. XRD pattern of the specimen in the bulk form is also shown in Fig. 1a and indicates an intensive texture. XRD intensity of (00l) peaks for the bulk specimen is several times higher than that of the powder XRD result. In order to quantitatively address the texture degree, the orientation factor (F) of (00l) planes is calculated based on the Lotgering method [37], as shown in Table 1. A significantly high F corresponding to 0.36 is obtained for BiTeBr, and this is comparable to that of hot-deformed Bi$_2$Te$_3$ [38, 39]. This type of an intensive texture is also observed in the SEM sectional views as shown in Fig. 1b, d. The layered topography of the sintered material is evident although it is twisted. Thin sheets with thickness corresponding to hundreds of nanometers are distinguished, as shown in Fig. 1c.

DTA and TG were performed to confirm the thermal stability of BiTeBr and BiTeCl and their working temperature range as TE materials. Similar curves are observed for both materials, as shown in Fig. 2. With respect to the BiTeCl specimen, the endothermic peak at 678 K corresponds to the decomposition of BiTeCl into Bi$_2$Te$_3$ and BiCl$_3$, and this is consistent with the result obtained in previous study [40]. As shown in TG curve, the BiTeCl specimen begins to decompose at approximately 600 K. Thus, the TE transport properties in the study were only measured up to 600 K. DTA result for BiTeBr exhibits a decomposition reaction at 746 K, while the previous result only indicates a melting point at 800 K during the heating process without any decomposition of BiTeBr prior to that [41].

3.2 Calculated band structure

The DFT calculated band structure for BiTeBr is shown in Fig. 3a. The energy band gap (E_g) is estimated as approximately 0.37 eV, and this is consistent with the value obtained from optical measurements [31]. The Rashba-type spin splitting is found near the band edge as

Composition	Lattice parameter (mm)	Orientation factor (F)	Hall carrier concentration (n_H)	Hall mobility, ab (μ_H)	Sound velocity, ab (v_{s})	Sound velocity, c (v_{T})	Debye temperature (θ_D)
BiTeBr	0.4251 0.6449 0.362	1.44	1.44	244	2633 1681	2138 1378	170 139
BiTeBr$_{0.75}$Cl$_{0.25}$	0.4255 0.6441 0.376	1.52	139	2333	2308 1111	137 115	111 115
indicated by the red dotted box. The Rashba energy (a quantitative description for the extent of Rashba-type spin splitting) for BiTeBr is approximately 0.03 eV, and this is lower than that of BiTeI (approximately 0.1 eV) [42]. Figure 3b shows the total density of state (DOS) of BiTeBr, and the partial DOS for all the related orbitals. As shown from the results, the valence band is dominated by the p-orbit of Te atom, while both the p-orbits of Bi and Te significantly contribute to the conduction band.

3.3 Electrical properties

The temperature dependencies of electrical conductivity and Seebeck coefficient for the specimens are shown in Fig. 4. Typical degenerated semiconductor transport behavior is observed for all the specimens in which σ decreases, while the absolute value of z increases with the increase in the temperature (with the exception of the BiTeBr$_{0.75}$Cl$_{0.25}$ along the c direction above 470 K). A negative value of z indicates n-type conduction with electrons as the major carrier. Additionally, the emergence of obvious bipolar conduction in these specimens is absent as indicated by the temperature dependence of z. The σ decreases with the increase in temperature and follows a $T^{-1.35}$ relationship, indicating that acoustic phonon scattering dominates the electron transport [43].

The electrical conductivity along the ab direction is more than twice that in the c direction and indicates strong anisotropy for the sintered specimens. The Seebeck coefficient for these two directions differs slightly and is similar to the case for Bi$_2$Te$_3$ [44]. Additionally, the alloying of Cl in BiTeBr reduces the electrical conductivity. This is due to the enhanced alloying scattering. As seen in Table 1, the Hall electron mobility of BiTeBr$_{0.75}$Cl$_{0.25}$ is only half of
the value of BiTeBr though their electron concentrations are very close.

The power factor of all the specimens is shown in Fig. 4c. The BiTeBr specimen exhibits a maximum PF (approximately 8 μW cm$^{-1}$K$^{-2}$) along ab direction, and this exceeds that of state-of-art Cu-intercalated BiTeI [29]. This indicates that BiTeBr exhibits better electrical properties compared with BiTeI, although the Rashba energy of the former is lower [42]. This is only corresponding to the result for the pristine BiTeBr, and thus further enhancements in its power factor might be realized through carrier optimization or band engineering.

3.4 Thermal conductivity and ZT

The temperature dependencies of thermal conductivity for all the specimens are shown in Fig. 5a. Strong anisotropy is also found. The thermal conductivity along c direction is 50% lower than that along ab direction. The lattice thermal conductivity was calculated by deducing the electrical contribution, $\kappa_e = L\sigma T$, in which the Lorenz number (L) is estimated based on the single parabolic band model when acoustic phonon scattering dominates [43, 45]. The magnitude of the calculated L is approximately 1.8×10^{-8} V2K$^{-2}$. The lattice thermal conductivity follows a T^{-1} trend with increase in the temperature as shown in Fig. 5b, thereby, indicating that the three phonon Umklapp process dominates the phonon transport [15]. A low κ_L, corresponding to 0.8 W m$^{-1}$K$^{-1}$ at 560 K is obtained for BiTeBr specimen along ab direction. However, the reduction in lattice thermal conductivity along ab direction caused by Cl substitution is limited (10% reduction of κ_L at room temperature) and even negligible at elevated temperatures. With respect to c direction, BiTeBr displays a significantly lower κ_L compared to that along ab plane, and this is similar to other layered TE materials [46, 47]. The overall low κ_L in both the ab and c directions of BiTeBr is considered as partly related to its intrinsic low sound velocity, and this indicates weak chemical bonding in the system [20, 26]. The average sound velocity (v_s) of BiTeBr along the ab direction is 1850 m s$^{-1}$, and this is comparable to those of the other potentially promising TE materials with intrinsically low κ_L (e.g., v_s of MgAgSb \approx 1921 m s$^{-1}$ and v_s of Bi$_2$Te$_3$ \approx 2147 m s$^{-1}$) [20, 48]. The Debye temperature of BiTeBr is calculated as approximately 170 K.
The dependence of ZT as a function of temperature is shown in Fig. 5c. The ZT along \(ab \) direction is evidently exceeds that along \(c \) direction due to the higher electrical conductivity. The maximum figure of merit (ZT) of 0.35 is obtained for BiTeBr specimen at 560 K. It is possible to reach a higher peak ZT if the measurement temperature is increased further. However, given the possible thermal instability, this does not extend to higher temperatures. Although Cl alloying in BiTeBr lowers the thermal conductivity, it results in a deterioration in the electrical properties and does not contribute to improving the TE performance. To further enhance ZT of BiTeBr, reducing the carrier concentration to further enhance the power factor is a promising way. Furthermore, isoelectronic alloying by using Sb could be another effective way to suppress the lattice thermal conductivity and thus improve the TE performance.

4 Conclusion

In summary, polycrystalline BiTeBr-based bulk materials with intensive texture were successfully synthesized by using SPS and their thermoelectric properties above temperature were reported. Intensive texture results in anisotropic electrical and thermal transport properties. Overall, the ZT value along the in-plane direction exceeds that along the out-plane direction due to higher electrical conductivity. Low sound velocity along two directions is found in polycrystalline BiTeBr and contributes to its low lattice thermal conductivity. A maximum figure of merit (ZT) of 0.35 is obtained for BiTeBr specimen at 560 K. An increase in TE performance is expected for the new material system by further optimizing the transport properties.

Acknowledgements

Open access funding provided by Max Planck Society. This study was financially supported by the European Research Council (ERC Advanced Grant No. 291472 “Idea Heusler”), the National Science Fund for Distinguished Young Scholars (No. 51725102) and the National Natural Science Foundation of China (No. 61534001). The authors thank Horst Borrmann, Steffen Hückmann and Yurii Prots for assistance in the powder XRD measurements, Susann Scharsach and Marcus Schmidt for the DTA/TG analysis, Igor Veremchuk for assistance in using the SPS instrument and transport measurements. C. Fu acknowledges financial support from the Alexander von Humboldt Foundation.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science. 2017;357(6358):eaak9997.
[2] Zhu T, Liu Y, Fu C, Heremans JP, Snyder JG, Zhao X. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14):1605884.
[3] Yang J, Xi L, Qiu W, Wu L, Shi X, Chen L, Yang J, Zhang W, Uher C, Singh DJ. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective. NPJ Comput Mater. 2016;2:15015.
[4] Zhang X, Zhao LD. Thermoelectric materials: energy conversion between heat and electricity. J Materiomics. 2015;1(2):92.
[5] Liu W, Yin K, Zhang Q, Uher C, Tang X. Eco-friendly high-performance silicide thermoelectric materials. Natl Sci Rev. 2017;4(4):616.
[6] Graf T, Felser C, Parkin SSP. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem. 2011;39(1):1.
[7] Mehdizadeh Dehkordi A, Zebbarjadi M, He J, Tritt TM. Thermoelectric power factor: enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater Sci Eng R Rep. 2015;97:1.
[8] Fu C, Bai S, Liu Y, Tang Y, Chen L, Zhao X, Zhu T. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat Commun. 2015;6:8144.
[9] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.

Rare Met. (2018) 37(4):274–281
Xin J, Wu H, Liu X, Zhu T, Yu G, Zhao X. Mg vacancy and phonon engineering in Mg\textsubscript{2}Si\textsubscript{1−x}Sb\textsubscript{x} based thermoelectric materials. Energy Environ Sci. 2012;5(7):7963–9.

Fu C, Zhu T, Liu Y, Xie H, Zhao X. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit \(z\tau > 1\). Energy Environ Sci. 2014;8(1):216.

Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. J Mater Chem. 2011;21(40):15843.

Fu C, Zhu T, Liu Y, He J, Zhao X, Zhu T. Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Adv Sci. 2016;3(8):1600035.

Zhao LD, Chang C, Tan G, Kanatzidis MG. SnSe: a remarkable new thermoelectric material. Energy Environ Sci. 2016;9(10):3044.

Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ. Copper ion-liquid-like thermoelectrics. Nat Mater. 2012;11(5):422.

Ying P, Li X, Wang Y, Yang J, Fu C, Zhang W, Zhao X, Zhu T. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in \(\alpha\)-MgAgSb\textsubscript{2} thermoelectric materials. Adv Funct Mater. 2017;27(1):1604145.

Qi Y, Shi W, Naumov PG, Kumar N, Sankar R, Schnelle W, Shekhar C, Chou F, Felser C, Yan B, Medvedev S. Topological quantum phase transition and superconductivity induced by pressure in the bismuth tellurohalide BiTeI. Adv Mater. 2017;29(18):1605965.

Bahrampy MS, Ogawa N. Bulk Rashba semiconductors and related quantum phenomena. Adv Mater. 2017;29(25):1605911.

Ishizaka K, Bahrampy MS, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame T, Taniguchi M, Arita R, Nagaoa N, Kobayashi K, Murakami Y, Kumi K, Kaneko N, Onose Y, Tokura Y. Giant Rashba-type spin splitting in bulk BiTeI. Nat Mater. 2011;10(7):521.

Cappelluti E, Grimaldi C, Marsiglio F. Topological change of the fermi surface in low-density rashba gases: application to superconductivity. Phys Rev Lett. 2007;98(16):167002.

Shi H, Parker D, Du MH, Singh DJ. Connecting thermoelectric performance and topological-insulator behavior: Bi\textsubscript{2}Te\textsubscript{3} and Bi\textsubscript{2}Te\textsubscript{2}Se from first principles. Phys Rev Appl. 2015;3(1):014004.

Wu L, Yang J, Wang S, Wei P, Yang J, Zhang W, Chen L. Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI. Phys Rev B. 2014;90(19):195210.

Kulbachinskii VA, Kytin VG, Kudyatov AA, Kuznetsov AN, Shevelkov AV. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI\textsubscript{3} and CuI. J Solid State Chem. 2012;193(Suppl C):154.

Jacinovic J, Mettan X, Pisoni A, Gaal R, Katrych S, Demko L, Akrap A, Forro L, Berger H, Bugnon P, Magrez A. Enhanced low-temperature thermoelectrical properties of BiTeCl\textsubscript{2} grown by topotactic method. Scr Mater. 2014;76(Suppl C):69.

Wu L, Yang J, Chi M, Wang S, Wei P, Zhang W, Chen L, Yang J. Enhanced thermoelectric performance in Cu-intercalated BiTeI by compensation weakening induced mobility improvement. Sci Rep. 2015;5:14319.

Martin C, Mun ED, Berger H, Zapf VS, Tanner DB. Quantum oscillations and optical conductivity in Rashba spin-splitting BiTeI. Phys Rev B. 2013;87(4):041104.

Wu L, Yang J, Zhang T, Wang S, Wei P, Zhang W, Chen L, Yang J. Enhanced thermoelectric performance in the Rashba semiconductor BiTeI through band gap engineering. J Phys Condens Matter. 2016;28(8):085801.

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953.

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758.

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(8):3865.

Shevelkov AV, Dikarev EV, Shapanchenko RV, Popovkin BA. Crystal structures of bismuth tellurohalides BiTeX (\(X = Cl, Br, I\)) from X-ray powder diffraction data. J Solid State Chem. 1995;114(2):379.

Lotgering FK. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. I. J Inorg Nucl Chem. 1959;2(2):113.

Tang Z, Hu L, Zhu T, Liu X, Zhao X. High performance n-type bismuth telluride based alloys for mid-temperature power generation. J Mater Chem C. 2015;3(40):10597.

Zhu T, Hu L, Zhao X, He J. New insights into intrinsic point defects in \(V_2V_3\) thermoelectric materials. Adv Sci. 2016;3(7):1600004.

Petasch U, Hennig C, Oppermann H. Investigations on the pseudobinary system Bi\textsubscript{2}Te\textsubscript{2}/BiCl\textsubscript{3}. J Nat Res B. 1999;54(2):234.

Petasch U, Oppermann H. Investigations on the pseudobinary system Bi\textsubscript{2}Te\textsubscript{2}/BiBr\textsubscript{3}. J Nat Res B. 1999;54(4):487.

Sakano M, Bahrampy MS, Katayama A, Shimojima T, Murakawa H, Kaneko Y, Malae B, Shiu S, Ono K, Kumigashira H, Arita R, Nagaoa N, Hwang HY, Tokura Y, Ishizaka K. Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors. Phys Rev Lett. 2013;110(10):107204.

Liu X, Zhu T, Wang H, Hu L, Xie H, Jiang G, Snyder GJ, Zhao X. Low electron scattering potentials in high performance Mg\textsubscript{2}Si\textsubscript{0.45}Sn\textsubscript{0.55} based thermoelectric solid solutions with band convergence. Adv Energy Mater. 2013;3(9):1238.

Yan X, Poudel B, Ma Y, Liu WS, Joshi G, Wang H, Lan Y, Wang D, Chen G, Ren ZF. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi\textsubscript{2}Te\textsubscript{2}–Se\textsubscript{0.3,3}. Nano Lett. 2010;10(9):3373.

May A, Snyder G. Introduction to modeling thermoelectric transport at high temperatures. In: Rowe DM, editor. Materials, Preparation, and Characterization in Thermoelectrics. Boca Raton: CRC Press; 2012. 1.

Xu P, Fu T, Xin J, Liu Y, Ying P, Zhao X, Pan H, Zhu T. Anisotropic thermoelectric properties of layered compound SnSe\textsubscript{2}. Sci Bull. 2017;62(24):1663.

Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe\textsubscript{2}. Nature. 2014;508(7496):373.
[48] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008; 320(5876):634.