Star Products with Separation of Variables
Admitting a Smooth Extension

ALEXANDER KARABEGOV
Department of Mathematics, Abilene Christian University, ACU Box 28012, Abilene, TX 79699-8012, USA. e-mail: axk02d@acu.edu

Received: 25 December 2010 / Revised: 30 March 2012 / Accepted: 1 April 2012
Published online: 21 April 2012 – © Springer 2012

Abstract. Given a complex manifold M with an open dense subset Ω endowed with a pseudo-Kähler form ω which cannot be smoothly extended to a larger open subset, we consider various examples where the corresponding Kähler–Poisson structure and a star product with separation of variables on (Ω, ω) admit smooth extensions to M. We give a simple criterion of the existence of a smooth extension of a star product and apply it to these examples.

Mathematics Subject Classification. 53D55, 53D17, 53B35.

Keywords. deformation quantization with separation of variables, Levi-nondegenerate hypersurface, Kähler–Poisson manifolds.

1. Introduction

A formal differential star product on a Poisson manifold $(M, \{\cdot, \cdot\})$ is an associative product on the space $C^\infty(M)[[\nu]]$ of smooth complex-valued formal functions on M given by the formula

$$f \ast g = \sum_{r \geq 0} \nu^r C_r(f, g),$$

where C_r are bidifferential operators on M, $C_0(f, g) = fg$ and $C_1(f, g) - C_1(g, f) = i \{f, g\}$ (see [1]). It was proved by Kontsevich [8] that deformation quantizations exist on any Poisson manifold.

We will assume that the unit constant function 1 is the unity with respect to the star product: $f \ast 1 = 1 \ast f = f$ for all $f \in C^\infty(M)[[\nu]]$. Given functions $f, g \in C^\infty(M)[[\nu]]$, we will denote by L_f and R_g the left star multiplication operator by f and the right star multiplication operator by g, respectively, so that $f \ast g = L_f g = R_g f$. The associativity of the star product \ast is equivalent to the statement that $[L_f, R_g] = 0$ for all $f, g \in C^\infty(M)[[\nu]]$. A star-product on a Poisson manifold M can be restricted to any open subset of M.
We call a Poisson tensor on a complex manifold M a Kähler–Poisson tensor if it is of type $(1,1)$ with respect to the complex structure. In local coordinates $\{z^k, \bar{z}^l\}$ it is written as g^{lk}. The tensor g^{lk} defines a global Poisson bivector field $ig_{kl}\frac{\partial}{\partial z^k} \wedge \frac{\partial}{\partial \bar{z}^l}$ and the corresponding Poisson bracket $\{\cdot, \cdot\}$ on M. If a Kähler–Poisson tensor g^{lk} is nondegenerate, the inverse matrix g_{kl} is a pseudo-Kähler metric tensor which defines a pseudo-Kähler form $\omega = ig_{kl}dz^k \wedge d\bar{z}^l$. We call a complex manifold M endowed with a Kähler–Poisson tensor a Kähler–Poisson manifold. Any pseudo-Kähler manifold is a Kähler–Poisson manifold. In this paper, we give several examples of Kähler–Poisson manifolds with the Kähler–Poisson tensor degenerate on the complement of an open dense subset.

A star product (\star) on a Kähler–Poisson manifold defines a deformation quantization with separation of variables if the operators C_r differentiate their first argument in antiholomorphic directions and the second argument in holomorphic ones. Under the assumption that the unit constant 1 is the unity with respect to the star product, the condition of separation of variables can be equivalently stated as follows: for any local holomorphic function a and a local antiholomorphic function b the identities $a \star f = af$ and $f \star b = bf$ hold. Otherwise speaking, $L_a = a$ and $R_b = b$ are pointwise multiplication operators. In this case,

$$C_1(u, v) = g^{lk} \frac{\partial u}{\partial \bar{z}^l} \frac{\partial v}{\partial z^k}.$$

It is not known whether there exists a star product with separation of variables on an arbitrary Kähler–Poisson manifold. However, star products with separation of variables exist on any pseudo-Kähler manifold M (see [2,5]).

Given a star product with separation of variables \star on a Kähler–Poisson manifold M, the formal Berezin transform of the star product \star is a formal differential operator $B = 1 + \nu B_1 + \nu^2 B_2 + \cdots$ globally defined on M by the condition that

$$B(ab) = b \star a$$

for any local holomorphic function a and a local antiholomorphic function b. In particular,

$$B_1 = g^{lk} \frac{\partial^2}{\partial z^k \partial \bar{z}^l}$$

is a Laplace–Beltrami operator. A star product with separation of variables can be recovered from its Berezin transform.

A deformation quantization with separation of variables on a pseudo-Kähler manifold M equipped with a pseudo-Kähler form ω is called standard if its restriction to any contractible coordinate chart $(U, \{z^k\})$ has the property that

$$L_{\frac{\partial}{\partial z^k}} = \frac{\partial \Phi}{\partial z^k} + \nu \frac{\partial \Phi}{\partial z^k} \quad \text{and} \quad R_{\frac{\partial}{\partial \bar{z}^l}} = \frac{\partial \Phi}{\partial \bar{z}^l} + \nu \frac{\partial \Phi}{\partial \bar{z}^l},$$