Simulated patients in medical education – a survey on the current status in Germany, Austria and Switzerland

Abstract

Objective: In German-speaking countries (Germany, Austria, Switzerland), simulated patients (SPs) have been a fixture for years and are used in teaching and examinations. As part of ongoing methodological standardization efforts and to support current and future faculty and curriculum developments, this exploratory study systematically investigates how and under what framework and conditions SPs are currently used in German-speaking countries.

Methodology: The online questionnaire developed in cooperation with the Committee for Simulated Patients of the Society for Medical Education comprises 58 questions covering the organization and administration, size and design of the SP pool, general conditions and minimum standards for the assignments of the SPs. All medical faculties from Germany, Austria and German-speaking Switzerland were invited to participate in the survey and a descriptive data analysis was performed.

Results: 38 responses from 45 faculties were included in the evaluation of the survey (response rate: 84.4%). Most SP programs are affiliated with the Office of the Dean of Studies and skills labs or training centers and funded by faculty resources. Both the working hours in the SP programs and the qualifications of the employees vary extensively. The same applies to the number and average age of the employed SPs. On average each faculty uses 1,290 SP hours per year (min=45, max=6,500). The majority of SPs are used in a teaching environment, together with lecturers. At all sites, SPs provide feedback to students. This is always based on a uniform standard. All SPs receive training, which predominantly focuses on playing their role and giving feedback.

Discussion: There are a variety of SP programs in German-speaking countries. While there are a few clear similarities (for example, feedback from SPs), many organizational and methodological aspects are handled differently. Although this allows innovation and flexibility, it also weakens the didactic SP method in its standardization and thus in the comparability of quality. A certain degree of standardization and high methodical quality is of great importance, especially in scientific and faculty internal discussions and with a view to the use of SPs in high-stakes examinations which must be improved in the future.

Keywords: Medical education, medical studies, SP program, simulated patients

1. Introduction

Simulated patients (SPs) are an established component of education, training and further education in national and international health care. The specially trained (lay) actors credibly [1] take on the role of patients and other roles in the health care system to facilitate teaching and examining scenarios in medical education [2]. First developed by Howard Barrows in the 1960s for the teaching of neurology [3], the method is now used worldwide across the whole range of health professionals and beyond [4]. One of the reasons for this wide adoption in medical education is due to the methodological advantages of SPs, which are widely described in the literature [5]. They include, among other things, flexible availability, repeatability and predictability of presentations, the ability to perform reliable examinations and the ethical acceptability of using SP even for difficult scenarios [6], [7], [8], [9].

In German-speaking countries SPs have occasionally been used since the 80s but they were not used frequently until after the year 2000 [5], [10], [11], [12]. Since then, they have been firmly established as a didactic element in teaching and examinations in many areas and the number of standardized patient programs in the D-A-CH region (Germany, Austria, Switzerland) has...
steadily increased. The planned or already implemented integration into the final medical examinations will further increase the importance of simulation patients and, with them, also the questions of institutional anchoring and actual methodological implementation at the various locations [13], [14].

As far back as 2004, Fröhmel et al. investigated the integration of simulated patients in medical education [10]. At that time, 13 out of 30 responding faculties reported working with SPs. Since the survey only referred to Germany and the data is already more than ten years old, the question arose as to how the existing SP programs in the entire D-A-CH region are currently positioned and how exactly they work with the SP method. It was therefore decided to assess the current state of SP programs through an exploratory study. This study was also an essential basis for the development of the position paper “Minimum Standards and Development Perspectives in the Use of Simulated patients” [15].

2. Methods

A digital survey was conducted in 2016 to collect the data. A standardized questionnaire was used, analogous to the study by Fröhmel et al. [10]. This was developed by the authors in a multi-stage process and is based on the guidelines of Döring and Bortz [16]. As a pre-test, the survey instrument was discussed critically in open workshops with SP experts at the GMA conference 2015 in Leipzig as well as at the International Skills-Lab Symposium 2016 in Essen and the face validity was checked. Then incomprehensible or ambiguous language was eliminated. The final questionnaire consisted of 58 individual questions on the topics:

- Organization of the SP program
- Design of the SP pool
- Existing framework conditions
- Minimum standards when using SPs

The questionnaire included both multiple-choice and open-ended questions to enable a more precise description of the diversity in the various faculties. The pre-test suggested that the questionnaire should be anonymous and ignore the question of faculty affiliation. This aspect as well as human resource issues excluded a qualitative survey (such as telephone interviews).

The questionnaire was sent to all 45 medical faculties in German-speaking countries on April 27, 2016. The link to the questionnaire was sent by email either directly to the known SP programs or to the Office of the Dean of Studies or other central teaching bodies. The recipients of the survey were asked in the cover email to complete only one questionnaire per SP program (see attachment 1). The survey was completed in August 2016. The survey was carried out using the online tool EvaSys. The data was then processed descriptively. For the evaluation of some open questions, a clustering procedure was chosen to categorize the heterogeneous answers. For this purpose, the answers were viewed separately by all authors, categories were formed and the results were finally brought together in a consensus process.

3. Results

In total, the questionnaire was filled in 38 times. It cannot be ruled out that there were multiple responses from a single faculty. However, examination of the data revealed that no dataset resembles another across multiple items in a conspicuous manner. Assuming that none of the 45 medical faculties submitted multiple responses during the survey phase, this equates to a response rate of 84%. Most answers come from employees of German faculties (32). There were five responses from Switzerland and one from Austria. All respondents indicated that their faculty has at least one SP program. 31.6% of respondents said that there are several SP programs at their faculty. On average, the responding faculties use 1,290 SP hours per year (min=45, max=6,500).

3.1. Organization of SP programs

The SP programs have different institutional affiliations. Organizationally, most of them belong to the Office of the Dean of Studies/Teaching Department and/or to the skills lab/training center (see figure 1). In some cases, SP programs are linked to several structural units.

25 respondents answered the question as to the source of the SP program funding at their site. Most frequently, the faculty’s budget was used as the funding base (see table 1). Because of many similarities in terminology (e.g. “study fees” and “study grants”), there is the possibility that different terms refer to the same concept. Multiple answers were possible. Almost every year since 2002, a new SP program has been established in German-speaking countries. Most of the respondents’ SP programs were established between 2004 and 2009 (22). One faculty has been working with SPs since 1980. The number of students at the faculties varies considerably. The “smallest” responding faculty enrolls 160 students per year, the largest 660 students (MW=316). 81% of respondents said that the SP program is well established in their faculty. However, only 61% of respondents said that there are people responsible for the SP program at their location who were explicitly employed for this purpose.

In total, 30 respondents provided information on the weekly hourly input into their SP program. The values range from 0.5 to 124 hours per week for the SP program (SD=29.9 hrs). The average number of working hours per SP program is 38.1 hours. According to the respondents, the SP programs mainly employ psychologists (22%) and physicians (20%). The remainder is made up of employees from a nursing background, theater pedagogy, speech and linguistics, archeology, the acting professions and tutors from health
professions. 18% of respondents said that their SP program employs people for coordination and team assistance. 65% of the respondents stated that the employees of the SP program receive special training for their job at their location. These are mainly SP coaching courses (see table 2). In addition, the employees of the SP programs have very heterogeneous other qualifications, for example in the areas of: Drama, psychodrama, naturopaths, systemic counseling, psychotherapy, Master of Medical Education, communication training, supervision, clowning.

According to the respondents, an average of 3.5 student assistants work on each SP program (min=0, max=40). The total number of hours invested by student assistants per SP program ranges from 0 to 44 hours per week. Most student assistants work on data entry (34%), tutoring (32%) and production of teaching materials (29%). Amongst others, they also perform the following tasks: Organization/coordination, designing classes, billing and public relations.

3.2. Information on the SPs used

47% of respondents said that the SPs from their SP program are also used in other disciplines (such as dentistry, nursing, psychology, economics) and 71% of respondents...
said that the SPs are also used in the continuing education of physicians or other health professionals. The SP programs of the responding faculties employ on average 61 SPs (min=8, max=260). The age range of the employed SPs ranges from 6 to 89 years. 71% of respondents said their SPs are contracted.

3.3. Framework and conditions of SP assignments

At the faculties surveyed SPs are used in almost all departments with patient contact. Most commonly in psychosomatic and internal medicine (both 58%), followed by medical sociology and psychology (50%) and psychiatry and surgery (both 47%).

Most respondents (95%) indicated that the SPs are deployed at their location alongside teaching staff, with 55% of respondents stating their SPs are also used alongside student tutors. It was reported that in 13% of the assignments, the SPs were alone with the students. Multiple answers were possible. In line with this, 8.1% of respondents stated that the SPs at their faculty are also engaged as teaching staff.

At all faculties which responded, SPs are used in simulations as patients with a focus on communication. Other types of assignments are for example communication as a relative (79%), production of (educational) films and physical examinations with role script (each 71%).

In teaching situations, the SPs at all faculties which responded give feedback; in exam situations, however, only up to 21%. All interviewees indicated that SPs’ feedback is always based on common standards (for example PID principle: perception – impact – desire).

61% of respondents stated that their SP program has clearly formulated policies for the protection of SPs. The protective measures are summarized in table 3. If compensation is paid to the SPs, it ranges between 5-75 Euros (6-80 CHF) per hour. The various SP programs differ considerably in how they stagger their remuneration rates, mostly according to the following criteria:

- Difficulty of the role
- Number of roles played by one SP
- Length of affiliation to the SP program
- Use with/without feedback
- Dialog/physical examination
- Journey distance of the SPs
- Type of assignment (training/examination/teaching/educational film production/photo shoot)

11% of respondents said that there are SPs in their faculty who are volunteers. Five respondents stated that their SP program reimburses travel expenses.

The administration of the SPs is software-based in 63% of the responding faculties, with mainly Microsoft Access and Excel being used as well as SimPat and Item Management System (IMS).

In order to render authentic simulations, 70% of the responding SP programs use opaque windows and 54% special simulation rooms (especially medical practice rooms, treatment or patient rooms). Two respondents indicated that an ICU was constructed for their simulations. One faculty uses a simulated dental practice. 58% of respondents said that they use makeup (for example realistic accident representation).

3.4. Minimum standards for SP assignments

All 38 respondents indicated that their faculty used a standard procedure to recruit SPs. Different priorities are set at the faculties (see table 4). Multiple answers were possible.

All 38 respondents said the SPs working at their medical school receive training. This is mainly in the form of role and feedback training (see table 5).

17 of the 38 respondents stated that they use tools to measure the quality of SP assignments and SP feedback (see table 6). Multiple answers may lead to overlaps in this section.

4. Discussion

The aim of the survey was to obtain an overview of the current state of the framework conditions and working principles of SP programs in German-speaking countries. Of the 45 medical schools contacted, we received 38 replies. The high response rate results in good explanatory power. Also, analysis of the data sets suggests that each data set represents a different SP program, even if multiple responses were received from one faculty (multiple SP programs at a faculty).

In summary, all responding medical schools have at least one SP program and SPs are used in teaching (with a focus on communication and the physical examination) and student assessment. In addition, the high number of hours per year show that the use of simulated patients is no exception but is a well-established high-performing teaching component in medical degree courses. In addition, SPs at half of the responding medical faculties are also used in teaching contexts outside of human medicine (for example, dentistry or health and nursing), demonstrating the didactic value of the SP method.

Nevertheless, the SP method is conducted or implemented very differently at each location. This is clear from the number of SP assignments, the way they are embedded into teaching and thus also the size of the SP programs, which vary greatly. The affiliation of SP programs within their institutions (mainly in Office of the Dean of Studies and skills labs of the faculties) and the fact that many disciplines with patient contact employ SPs suggests that intra-faculty development of the curricula towards more practical and simulated training and examinations has been established and that SP programs are seen as an integral part of education. This is also reflected in the fact that the SP programs are largely funded through the faculties’ budgets.

At the same time, the very different working conditions of the permanent employees in SP programs indicate
that the workplace is very heterogeneous and that in some cases sufficient institutional support is not always provided. This is clearly visible in the areas of working hours, activities and qualification measures. For example, all respondents refer to quality assurance tools, for example training for the SPs and continuing education for staff, however, only 61% of the respondents said that people responsible for the standardized patient program were hired explicitly, which makes focusing and long-term professional quality assurance more difficult. The collec-

Table 3: Protective Measures for SPs
Protective category
Number of assignments
Supervision of the SP
Do not portray your own illness or that of a loved one
Role entry and exit points
Breaks
Role change
Length of the assignments
Selection of SPs
Protection of privacy
Assignment only with role script
Free decision on assignments
Hygiene

Table 4: Recruitment Procedure for SPs
Recruitment procedures
Interview
Training
Audition
Questionnaire
Motivation letter
Physical examination
Other (for example ‘casting’ or ‘shadowing’)

Table 5: Training for SPs
Type of training
Role training
Feedback training
Initial training/SP training (content unspecified)
Acting/Improvisation training
Communication training
Supervision
Training for role development
Elective subject “Medical students as SP”
Table 6: Tools Used for Quality Assurance of Feedback from SPs

Tool (Sources supplemented by the authors)	Number of respondents using this tool
Self-developed tool	11
Fair-OSCE [17]	3
Aachen-Mannheim Checklist for Evaluation of SPs	1
MASP [18]	1
Feedback Checklist of the SP Committee [16]	1
Mannheim Checklist for Video Analysis [20]	1

ted data suggest that the SP programs at many medical faculties are coordinated by employees who actually have a job in a different area. It was observed that training of SPs (for example in the areas of presentation and feedback) was ubiquitous in all of these programs and that certain elements, such as the feedback given by SPs, have become standard in teaching situations. In exams with SPs (for example OSCE), only one in four responding faculties use feedback-giving SPs. Presumably, the rigidly timed examination procedures prevent incorporating SP feedback or there is disagreement over how to handle the impact of feedback on the exam objectivity.

Most SPs receive compensation for their work – even if it varies greatly. It should be seen critically that 11% of responding faculties employ SPs on a voluntary basis. From the perspective of the authors, this is not adequate considering the time cost and the emotional investment of SPs nor the quality requirements for role presentation and feedback. The same applies to SPs who receive a fee that is below the statutory minimum wage.

At the same time, the exact design of the SP programs as well as the standards or specifications used for aspects of SP assignments are very heterogeneous, especially in the area of minimum standards and quality assurance. The locations seem to have independently developed criteria and processes, an examination of which would be beyond the scope of this exploratory study. This, according to the authors, shows both the strength and weakness of the SP programs in the D-A-CH region: There is a great variety of SP methods practiced in medical teaching. Depending on the location and the individual needs, this allows flexible deployment and opens the door to innovations and further developments. While this may be acceptable with regards to organizational matters, it creates difficulties in the qualification of the SPs and the methodological framework for their assignments, unless minimum standards are met. As much as various other forms of teaching and examinations (such as OSCE) have attempted to enhance and refine their methodology in recent years, there seems to be a rather heterogeneous approach to professionalism when working with SPs. To put it bluntly: If each site can unilaterally implement the SP method, what remains of the method? And what is the scientific foundation which it requires, especially when it is used in testing or even final examinations? Based on these questions, the authors of this exploratory study dealt with the minimum requirements and development perspectives of SP programs and published them in a position paper [15]. Future work will have to show how on the one hand to maintain a variety of practice and on the other hand, how the SP method can be qualitatively enhanced at the same time in order to make it fit for use in high-stakes examinations.

5. Limitations

To capture the diversity of the reality of SP programs, an exploratory study was conducted with a correspondingly high number of open questions. Nevertheless, the quantitative data is of interest, for example on the qualifications of the people responsible for the SPs or forms of financing. In some cases, evaluation was difficult because free-form answers were not clearly classifiable. For this reason, the figures generated from it are only informative to a certain extent.

We received only one answer from Austria, so this cannot be seen as representative for the country. In Switzerland, only the German-speaking faculties were included in the survey, which calls transferability to the whole of Switzerland into question. Of the faculties which did not respond, it cannot be ascertained whether they do or do not have SP programs.

The feedback from colleagues at a workshop on the survey at the annual meeting of the Society for Medical Education in Bern in 2016 showed that the questions “Are there clearly formulated measures to protect SPs?” and “What measures are used to protect SPs? (for example: SPs perform a maximum of 3 times consecutively per day)” were understood very differently. On the one hand, there were differences in the understanding of the term “measures” and, on the other hand, there was disagreement as to the precise meaning of “clearly formulated”. The same applies to the question about the software used to administer the SPs. Since 37% of the respondents stated that they did not use any software, the authors suspect that the question regarding software was interpreted differently and in some cases was assumed to refer to specialized SP software.

Further research should take into account that in the D-A-CH region SP programs have also been implemented at other educational institutions (such as nursing or
physiotherapy training centers). This survey only focused on the SP programs at medical faculties.

Acknowledgements

Our sincere thanks to all individuals and locations who participated in the survey. We would also like to thank the members of the “Simulated Patients” committee for their constructive participation in the questionnaire.

Notes

The “Simulated Patients” committee of the Society for Medical Education (GMA) was renamed the “Simulated Persons” committee in February 2019. This text uses the old name because the article was developed prior to the name change.

Competing interests

The authors declare that they have no competing interests.

Attachments

Available from http://www.gms.de/en/journals/zma/2019-36/zma001235.shtml

1. Attachment_1.pdf (128 KB)
 Simulated Patients in Medical Education – a survey on the current status in Germany, Austria and Switzerland

References

1. Heim S, Gisler P, Heberle W, Lichtensteiger S, Robert SM, Metzenthin P, Watzek D. Schaupielkunst - oder die Fähigkeit, etwas als “echt” erscheinen zu lassen. In: Peters T, Thrien C, eds. Simulationspatienten. Handbuch für die Aus- und Weiterbildung in medizinischen und Gesundheitsberufen. Bern: Hogrefe; 2018. p.101-112.

2. Cleland JA, Abe K, Rethans JJ. The use of simulated patients in medical education: AMEE Guide No 42. Med Teach. 2009;31(6):477-486. DOI: 10.1080/01421590903002821

3. Barrows HS, Abrahamson S. The programmed patient: a technique for appraising clinical performance in clinical neurology. J Med Educ. 1964;39:802-805.

4. Hölzer H. Überregionale und internationale Standesvertretungen und Netzwerke. In: Peters T, Thrien C, eds. Simulationspatienten. Handbuch für die Aus- und Weiterbildung in medizinischen und Gesundheitsberufen. Bern: Hogrefe; 2018. p.257-264.

5. Peters T. Simulationspatientinnen und Simulationspatienten - Eine Einführung. In: Peters T, Thrien C, eds. Simulationspatienten. Handbuch für die Aus- und Weiterbildung in medizinischen und Gesundheitsberufen. Bern: Hogrefe; 2018. p.13-22.

6. Vu NV, Barrows HS. Use of standardized patients in clinical assessments: Recent developments and measurement findings. Educ Res. 1994;23(3):23-30. DOI: 10.3102/0013189X023003023

7. Bokken L, Linssen T, Scherbier A, Van Der Vleuten C, Rethans JJ. Feedback by simulated patients in undergraduate medical education: A systematic review of the literature. Med Educ. 2009;43(3):202-201. DOI: 10.1111/j.1365-2923.2008.03268.x

8. Ker JS, Dowie A, Dowell J, Dewar G, Dent JA, Ramsay J, Benvie S, Bracher L, Jackson C. Twelve tips for developing and maintaining a simulated patient bank. Med Teach. 2005;27(1):4-9. DOI: 10.1080/0142159040004882

9. Nestel D, Bearman M. Simulated Patient Methodology: Theory, Evidence and Practice. Chichester: John Wiley & Sons; 2015. DOI: 10.1002/9781118760673

10. Fröhmel A, Burger W, Ortwein H. Einbindung von Simulationspatienten in das Studium der Humanmedizin in Deutschland. Dtsch Med Wochenschr. 2007;132(11):549-554. DOI: 10.1055/s-2007-790375

11. Müller B. "Wir befinden uns in einer permanenten Reform (...)" - Reformen in der Medizinausbildung zwischen 1989 bis 2009. Stuttgart: Robert-Bosch-Stiftung; 2012.

12. Fichtner A Lernen für die Praxis: Das Skills-Lab. In: St, Pierre M, Breuer G, eds. Simulation in der Medizin. Heidelberg: Springer-Verlag; 2013. p.106-113. DOI: 10.1007/978-3-642-29436-5_10

13. Berendonk C, Schirlo C, Balestra G, Bonvin R, Feller S, Huber P, Jünger E, Monti M, Schnabel K, Beyeler C, Guttmenssen S, Huwendiek S. The new final Clinical Skills examination in human medicine in Switzerland: Essential steps of exam development, implementation and evaluation, and central insights from the perspective of the national Working Group. GMS Z Med Ausbild. 2015;32(4):Doc40. DOI: 10.3205/zma000982

14. Bundesministerium für Bildung und Forschung. Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Bildung und Forschung; 2017. Zugänglich unter/available from: https://www.bmbf.de/files/2017-03-31_Masterplan%20Beschlusstext.pdf

15. Peters T, Sommer M, Fritz AH, Korsch A, Thrien C. Mindeststandards und Entwicklungsperspektiven beim Einsatz von Simulationspatientinnen und Simulationspatienten. GMS J Med Educ. 2019;38(3):Doc26. DOI: 10.3205/zma001234

16. Döring N, Bortz J. Forschungsmethoden und Evaluation. Heidelberg: Springer-Verlag; 2016. p.398-405.

17. Brem B, Christen R, Richter S, Schnabel K. Anwendung einer Liste von Qualitätmerkmalen des Rollenspiels von SPs im Rahmen von OSCE Prüfungen. In: Gemeinsame Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA) und des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWLZ). Leipzig, 30.09.-03.10.2015. Düsseldorf: German Medical Science GMS Publishing House; 2015. DocP11-154. DOI: 10.3205/15gma295

18. Wind LA, Van Dalen J, Mulijens AM, Rethans JJ. Assessing simulated patients in an educational setting: the MaSP (Maastricht Assessment of Simulated Patients). Med Educ. 2004;38(1):39-44. DOI: 10.1111/j.1365-2923.2004.01686.x

19. Fritz AH, Thrien C, Strohmer R. Qualitätssicherung des Feedbacks von Simulationspatientinnen und Simulationspatienten. In: Peters T, Thrien C, eds. Simulationspatienten - Handbuch für die Aus- und Weiterbildung in der Medizin und anderen Gesundheitsberufen. Bern: Hogrefe Verlag; 2018.

20. Strohmer R. Qualitätssicherung in Feedback und Performance. Mannheim: Medizinische Fakultät Mannheim, Universität Heidelberg; 2009.
Sommer et al.: Simulated patients in medical education – a survey ...
Simulationspatienten in der Medizinischen Ausbildung –
Eine Umfrage zum IST-Stand in Deutschland, Österreich und der Schweiz

Zusammenfassung

Zielsetzung: Im deutschsprachigen Raum (Deutschland, Österreich, Schweiz) sind Simulationspatientinnen und Simulationspatienten (SPs) seit Jahren eine feste Größe und werden in Lehre und Prüfungen eingesetzt. Im Rahmen laufender methodischer Standardisierungsbestrebungen und um aktuelle wie künftige Fakultäts- und Curriculumentwicklungen zu unterstützen, arbeitet die explorative Studie systematisch auf, wie und unter welchen Rahmenbedingungen SPs im deutschsprachigen Raum tatsächlich eingesetzt werden.

Methodik: Der in Kooperation mit dem Ausschuss Simulationspatienten der Gesellschaft für Medizinische Ausbildung entwickelte Onlinefragebogen umfasst 58 Fragen zu den Kategorien Organisation und Administration, Größe und Ausgestaltung des SP-Pools, Rahmenbedingungen und Mindeststandards bei den Einsatz der SPs. Alle Medizinischen Fakultäten aus Deutschland, Österreich und der deutschsprachigen Schweiz wurden zur Teilnahme an der Umfrage eingeladen. Die Daten wurden anschließend deskriptiv ausgewertet.

Ergebnisse: 38 Antworten von 45 Fakultäten flossen in die Auswertung der Umfrage ein (Rücklaufquote: 84,4%). Die meisten SP-Programme sind an den Studiendekanaten sowie Skills Labs bzw. Trainingszentren angegliedert und durch Haushaltsmittel der Fakultäten finanziert. Sowohl der Stellenumfang in den SP-Programmen als auch die Qualifikation der dortigen Mitarbeitenden fallen sehr unterschiedlich aus. Gleiches gilt für die Anzahl und den Altersdurchschnitt der eingesetzten SPs. Im Mittel werden an jeder Fakultät 1290 SP-Einsatzstunden pro Jahr geleistet (min. =45; max. =6500). Die Mehrheit der SPs wird zusammen mit Dozierenden in Lehrveranstaltungen eingesetzt. An allen Standorten geben SPs den Studierenden Feedback. Diesem liegt immer ein einheitlicher Standard zugrunde. Alle SPs erhalten Schulungen, die überwiegend Rollen- und Feedbacktrainings sind.

Diskussion: Es existiert eine große gelebte Vielfalt bei den SP-Programmen im deutschsprachigen Raum. Während es wenige klare Gemeinsamkeiten gibt (z.B. Feedback der SPs), werden viele organisatorische und methodische Aspekte unterschiedlich gehandhabt. Dies erlaubt zwar Innovation und Flexibilität, schwächt aber gleichzeitig die didaktische Methode SP in ihrer Standardisierung und damit in der Vergleichbarkeit der Qualität. Gerade bei wissenschaftlichen und fakultätsinternen Diskussionen und mit Blick auf den Einsatz von SPs in high-stakes-Prüfungen ist eine gewisse Standardisierung und eine methodisch hohe Qualität allerdings von großer Bedeutung, an der in Zukunft gearbeitet werden muss.

Schlüsselwörter: Medizinische Ausbildung, Medizinstudium, Simulationspatienten, SP-Programm, standardisierte Patienten

Michael Sommer1
Angelika Hiroko Fritz2
Christian Thrien3
Angelika Kursch4
Tim Peters5

1 Technische Universität Dresden, Medizinisches Methodik: Interprofessionelles Tristum (MITZ), Dresden, Deutschland
2 Universität Duisburg-Essen, Medizinische Fakultät, Simulations-Patienten-Pro gramm, Essen, Deutschland
3 Universität zu Köln, Kölner Interprofessionelles Skills Lab und Simulationszentrum KISS, Köln, Deutschland
4 Medizinische Hochschule Hannover, Forschungs- und Lehrinheit Med. Psychologie, Hannover, Deutschland
5 hsg Bochum, Department für Pflegewissenschaft, Bochum, Deutschland
1. Einleitung

Simulationspatientinnen und Simulationspatienten (SPs) sind im nationalen wie internationalen Gesundheitswesen ein etablierter Bestandteil der Aus-, Fort- und Weiterbildung. Die speziell geschulten (Laien-)Schauspielerinnen und Schauspieler übernehmen in glaubwürdiger Weise [1] die Rolle von Patientinnen und Patienten sowie anderer Akteure des Gesundheitssystems, um Übungs- und Prüfungsszenarien in der Lehre zu ermöglichen [2]. Entwickelt von Howard Barrows in den 1960er Jahren zunächst für den Neurologieunterricht [3], wird die Methode heute weltweit in der ganzen Breite der Gesundheitsberufe und darüber hinaus eingesetzt [4]. Nicht zuletzt ist die große Verbreitung in der medizinischen Lehre auf die methodischen Vorteile von SPs zurückzuführen, die in der Literatur breit beschrieben sind [5]. Sie umfassen unter anderem die flexible zeitliche Verfügbarkeit, die Wiederholbarkeit und Planbarkeit von Darstellungen, die Möglichkeit reliable Prüfungen durchführen zu können sowie die ethische Vertretbarkeit der SP-Einsätze auch bei schwierigen Themen [6], [7], [8], [9].

Im deutschsprachigen Raum wurden SPs vereinzelt seit den 80er Jahren, regelmäßig und in größerem Umfang aber erst ab dem Jahr 2000 eingesetzt [5], [10], [11], [12]. Seitdem sind sie als didaktisches Element in Lehre und Prüfung in vielen Bereichen fest verankert und die Zahl der Simulationspatientenprogramme in der DACH-Region (Deutschland, Österreich, Schweiz) hat stetig zugenommen. Durch die geplante oder schon durchgeführte Integration in die medizinischen Abschlussprüfungen gewinnen Simulationspatientinnen und Simulationspatienten weiter an Bedeutung und mit ihnen auch die Fragen nach der institutionellen Verankerung und der konkreten methodischen Umsetzung an den verschiedenen Standorten [13], [14].

Bereits im Jahr 2004 erhoben Fröhmel et al. die Einbindung von Simulationspatientinnen und Simulationspatienten in die medizinische Ausbildung [10]. Damals gaben 13 von 30 antwortenden Fakultäten an, mit SPs zu arbeiten. Da die Befragung sich nur auf Deutschland bezog und die Daten bereits über zehn Jahre alt sind, stellte sich die Frage, wie die bestehenden SP-Programme in der gesamten DACH-Region aktuell aufgestellt sind und wie genau sie mit der Methode SP arbeiten. Daher wurde beschlossen, den Ist-Zustand der SP-Programme mittels einer explorativen Studie zu erheben. Diese Studie war zudem eine wesentliche Grundlage für die Erarbeitung des Positionspapiers „Mindeststandards und Entwicklungsperspektiven beim Einsatz von Simulationspatientinnen und Simulationspatienten“ [15].

2. Methodisches Vorgehen

Für die Erfassung der Daten wurde 2016 eine elektronische Umfrage durchgeführt. Analog zur Studie von Fröhmel et al. [10] wurde mit einem standardisierten Fragebogen gearbeitet. Dieser wurde von den Autorinnen und Autoren in einem mehrstufigen Prozess erarbeitet und orientiert sich an den Maßgaben von Döring und Bortz [16], Als Pretest wurde das Erhebungsinstrument in öffnen Workshops mit SP-Expertinnen und -Experten auf der GMA-Tagung 2015 in Leipzig sowie dem Internationalen Skills-Lab Symposium 2016 in Essen kritisch diskutiert und die face validity überprüft. Daraufhin wurden unverständliche bzw. missverständliche Formulierungen beseitigt. Der finale Fragebogen bestand aus 58 Einzelfragen zu den Themen:

- Organisation des SP-Programmes
- Ausgestaltung des SP-Pools
- Vorhandene Rahmenbedingungen
- Mindeststandards beim Einsatz von SPs

Der Fragebogen umfasste sowohl Multiple-Choice-Fragen als auch mehrere Freifallbereiche, da eine große Diversität an den Fakultäten vermutet wurde. Der Pretest ergab die Empfehlung, den Fragebogen anonym zu gestalten und auf die Abfrage der Fakultätszugehörigkeit zu verzichten. Dieser Aspekt sowie personelle Ressourcen schlossen eine qualitative Erhebung (z.B. Telefoninterviews) aus.

Der Versand des Fragebogens erfolgte am 27. April 2016 an alle 45 Medizinischen Fakultäten im deutschsprachigen Raum. Dabei wurde der Link zum Fragebogen per E-Mail entweder direkt an die schon bekannten SP-Programme oder an die Studiendekanate bzw. andere zentrale Lehreinrichtungen versandt. Die Empfängerinnen und Empfänger der Umfrage wurden im Anschreiben darauf hingewiesen, pro SP-Programm nur einmal den Fragebogen auszufüllen (siehe Anhang 1). Die Umfrage wurde im August 2016 abgeschlossen. Die Realisierung der Befragung erfolgte über das Online-Tool EvaSys. Anschließend wurden die Daten deskriptiv aufbereitet. Für die Auswertung einer von den offenen Fragen wurde ein Clusteringverfahren gewählt, um die heterogenen Antworten zu kategorisieren. Hierfür wurden die Antworten von allen Autorinnen und Autoren getrennt gesichtet, Kategorien gebildet und die Ergebnisse abschließend in einem Konsensprozess zusammengeführt.

3. Ergebnisse

Insgesamt wurde der Fragebogen 38 Mal beantwortet. Es lässt sich nicht ausschließen, dass von einer Faktualität mehrere Antworten vorliegen. Die Sichtung der Daten ergab allerdings, dass sich keine Datensätze auffallend über mehrere Items hinweg ähnlichen. Unter der Annahme, dass von keiner der 45 Medizinischen Fakultäten während der Umfragephase eine doppelte Antwort vorliegt, ergibt sich eine Rücklaufquote von 84%. Die meisten Antworten stammen von Mitarbeitenden deutscher Fakultäten (32). Aus der Schweiz kamen fünf Rückmeldungen und aus Österreich eine. Alle Antworten gaben an, dass an ihrer Fakultät mindestens ein SP-Programm vorhanden ist. 31,6% der Befragten sagten, dass es an ihrer Fakultät mehrere SP-Programme gibt. Im Durch-
schnitt werden an den antwortenden Fakultäten 1290 SP-Einsatzstunden pro Jahr durchgeführt (min.=45; max.=6500).

3.1. Organisation der SP-Programme

Die SP-Programme sind institutionell unterschiedlich angegliedert. Die meisten gehören organisatorisch zum Studiendekanat/Referat Lehre und/oder zum Skills-Lab/Trainingszentrum (siehe Abbildung 1). Teilweise sind SP-Programme an mehrere Struktureinheiten angebunden.

Auf die offene Frage, aus welchen Mitteln das SP-Programm an ihrem Standort finanziert wird, antworteten 25 Befragte. Am häufigsten wurden Haushaltsmittel der Fakultät als Finanzierungsgrundlage angegeben (siehe Tabelle 1). Aufgrund vieler Begriffsähnlichkeiten (z.B. „Studiengebühren“ und „Studienzuschüsse“) ist zu vermuten, dass oft ein anderer Begriff angegeben wurde, aber damit das Gleiche gemeint ist. Mehrfachnennungen waren möglich.

Nahezu in jedem Jahr seit 2002 wurde ein SP-Programm im deutschsprachigen Raum neu gegründet. Die meisten SP-Programme der Befragten wurden zwischen 2004 und 2009 etabliert (22). An einer Fakultät wird bereits seit 1980 mit SPs gearbeitet.

Die Studierendenzahlen an den Fakultäten streuen stark. Die „kleinste“ antwortende Fakultät immatrikuliert 160 Studierende pro Jahr, die größte 660 Studierende (MW=316).

81% der Befragten gaben an, dass das SP-Programm an ihrer Fakultät fest etabliert ist. Allerdings sagten nur 61% der Befragten, dass es an ihrem Standort Verantwortliche gibt, die explizit für das SP-Programm angestellt sind. Insgesamt machten 30 Befragte Angaben zum Stellenumfang in ihrem SP-Programm. Die Werte liegen zwischen 0,5 bis 124 Arbeitsstunden pro Woche für das SP-Programm (SD=29,9 h). Der Mittelwert des Stellenumfangs pro SP-Programm liegt bei 38,1 Stunden.

Laut den Befragten sind in den SP-Programmen hauptsächlich Psychologinnen und Psychologen (22%) sowie Ärztinnen und Ärzte (20%) beschäftigt. Des Weiteren sind Pflegende, Beschäftigte aus der Theaterpädagogik, der Sprech- und Sprachwissenschaft, der Archäologie, dem Schauspielberuf sowie Lehrkräfte für Gesundheitsberufe als Mitarbeitende vertreten. 18% der Befragten sagten, dass für ihr SP-Programm Personen für die Koordination und Teamassistenz tätig sind. 65% der Befragten gaben an, dass die Mitarbeitenden des SP-Programmes an ihrem Standort spezielle Fortbildungen für ihre Tätigkeit erhalten. Dies sind vor allem SP-Trainer-Lehrgänge (siehe Tabelle 2). Darüber hinaus haben die Mitarbeitenden an den SP-Programmen sehr heterogene sonstige Qualifikationen, beispielsweise aus den Bereichen: Schauspiel, Psychodrama, Heilpraktiker, systemische Beratung, Psychotherapie, Master of Medical Education, Kommunikationstraining, Supervision, Clownerie.

Laut den Angaben der Befragten arbeiten an jedem SP-Programm durchschnittlich 3,5 studentische Hilfskräfte (min.=0; max.=40). Das Gesamtstundenkontingent der studentischen Hilfskräfte pro SP-Programm reicht von 0 bis 44 Wochenstunden. Die meisten studentischen Hilfskräfte sind mit Dateneingabe (34%), Tutorentätigkeit (32%) und Erstellung von Lehrmaterialien (29%) beschäftigt. Des Weiteren übernehmen sie unter anderem folgende Aufgaben: Organisation/Koordination, Konzeption von Lehrveranstaltungen, Abrechnung und Öffentlichkeitsarbeit.

3.2. Angaben zu den eingesetzten SPs

47% der Befragten sagten, dass die SPs aus ihrem SP-Programm auch in anderen Fachgebieten (z.B. Zahnmedizin, Krankenpflege, Psychologie, Wirtschaftswissenschaften) eingesetzt werden und 71% der Befragten gaben an, dass die SPs auch in der Weiterbildung von Ärztinnen und Ärzten oder Beschäftigten anderer Gesundheitsberufe zum Einsatz kommen.

Die SP-Programme der antwortenden Fakultäten beschäftigen durchschnittlich 61 SPs (min.=8; max.=260). Die Altersspanne der eingesetzten SPs reicht von 6 bis 89 Jahren. 71% der Befragten gaben an, dass ihre SPs einen Vertrag erhalten.

3.3. Rahmenbedingungen beim Einsatz von SPs

SPs werden an den befragten Fakultäten in nahezu allen Fachbereichen mit Patientenkontakt eingesetzt; am häufigsten in der Psychosomatik und der Inneren Medizin (jeweils 58%), gefolgt von Medizinischer Soziologie und Psychologie (50%) sowie Psychiatrie und Chirurgie (jeweils 47%).

Die meisten Befragten (95%) gaben an, dass die SPs an ihrem Standort zusammen mit den Lehrenden eingesetzt werden, wobei 55% der Befragten auch einen Einsatz der SPs zusammen mit studentischen Tutors sowie 13% den Einsatz der SPs allein mit den Studierenden bejahten. Hierbei waren Mehrfachnennungen möglich. Dazu passt, dass 8,1% der Befragten angaben, dass die SPs an ihrer Fakultät auch die Rolle von Lehrenden übernehmen. An allen Fakultäten, von denen Antworten eingingen, werden SPs in Simulationen als Patientinnen und Patienten mit Fokus auf Kommunikation eingesetzt. Weitere Arten des Einsatzes sind z.B. Kommunikation als Angehörige (79%), Produktion von (Lehr-)Filmen und körperliche Untersuchung mit Rollenskript (jeweils 71%).

In Lehrsituationen geben die SPs an allen antwortenden Fakultäten Feedback; in Prüfungs situationen jedoch nur zu 21%. Alle Befragten gaben an, dass dem Feedback der SPs immer einheitliche Standards zugrunde liegen (z.B. WWW-Prinzip: Wahrnehmung – Wirkung – Wunsch). 61% der Befragten sagten, dass es in ihrem SP-Programm klar formulierte Maßnahmen zum Schutz von SPs gibt. Eine Kategorisierung der angegebenen Schutzmaßnahmen befindet sich in Tabelle 3.
Wenn eine Vergütung an die SPs gezahlt wird, so liegt diese im Bereich von 5-75 Euro (6-80 CHF) pro Stunde. Die einzelnen SP-Programme staffeln sehr heterogen ihre Vergütungssätze, u.a. nach folgenden Kriterien:

- Schwierigkeit der Rolle
- Anzahl der von einer/m SP gespielten Rollen
- Dauer der Zugehörigkeit zum SP-Programm
- Einsatz mit/ohne Feedback
- Gesprächsführung/körperliche Untersuchung
- Anreiseweg der SPs
- Art des Einsatzes (Training/Prüfung/Lehre/Lehrfilmproduktion/Fotoshooting)

11% der Antwortenden sagten, dass es an ihrer Fakultät SPs gibt, die ehrenamtlich im Einsatz sind. Fünf Antwortende gaben an, dass ihr SP-Programm Reisekosten vergütet.

Die Administration der SPs läuft an 63% der antwortenden Fakultäten softwaregestützt, wobei vor allem Microsoft Access und Excel sowie SimPat und das Item Management System (IMS) genutzt werden. Um die Simulationen authentisch zu gestalten, nutzen 70% der antwortenden SP-Programme halbdurchsichtige Scheiben und 54% spezielle Simulationsräume (vor allem ärztliche Praxisräume, Behandlungs- oder Patientenzimmer). Zwei Antwortende gaben an, dass für die Simulatio-
nen eine Intensivstation nachgebildet wurde. Eine Fakultät nutzt eine nachgebildete zahnärztliche Praxis. 58% der Befragten gaben an, dass sie Schminke einsetzen (z.B. zur realistischen Unfalldarstellung).

3.4. Mindeststandards beim Einsatz von SPs

Alle 38 Antwortenden sagten, dass die an ihrer Fakultät arbeitenden SPs Schulungen erhalten. Dies sind vor allem Rollen- und Feedbacktrainings (siehe Tabelle 5). Mehrfachnennungen waren möglich. Alle 38 Antwortenden sagten, dass die an ihrer Fakultät arbeitenden SPs Schulungen erhalten. Dies sind vor allem Rollen- und Feedbacktrainings (siehe Tabelle 5).

17 der 38 Antwortenden gaben an, dass sie Instrumente einsetzen, um die Qualität von SP-Einsätzen und SP-Feedback zu messen (siehe Tabelle 6). Durch Mehrfachnennungen kann es hier zu Überschneidungen kommen.

4. Diskussion

Die Befragung hatte zum Ziel, einen Überblick über den Ist-Zustand der Rahmenbedingungen und Arbeitsgrundlagen der SP-Programme in deutschsprachigem Raum zu erlangen. Von den 45 angefragten Medizinischen Fakultäten erhielten wir 38 Antworten. Somit ermöglicht die hohe Rücklaufquote eine gute Aussagekraft. Auch lässt die Analyse der Datensätze den Schluss zu, dass jeder Datensatz für ein anderes SP-Programm spricht, selbst wenn mehrere Antworten von einer Fakultät eingegangen sind (mehrere SP-Programme an einer Fakultät). Zusammenfassend lässt sich sagen, dass alle anfragenden Medizinischen Fakultäten mindestens über ein SP-Programm verfügen und dass SPs in der Lehre (mit Fokus auf Kommunikation und körperlicher Untersuchung) und in Prüfungen eingesetzt werden. Zudem zeigen die hohen Einsatzstunden pro Jahr, dass der Einsatz von Simulationspatientinnen und Simulationspatienten keine Ausnahmescheinung darstellt, sondern ein fest etablierter Bestandteil mit einer hohen Lehrleistung innerhalb des Medizinstudiums ist. Darüber hinaus werden SPs an der Hälfte der anfragenden Fakultäten auch in anderen Ausbildungsbereichen als der Humanmedizin eingesetzt (z.B. Zahnmedizin oder Gesundheits- und Krankenpflege), was den didaktischen Wert der SP-Methode verdeutlicht.

Gleichwohl wird die Methode SP an den Standorten sehr unterschiedlich gelebt bzw. umgesetzt. Dies wird deutlich an der Anzahl der SP-Einsätze, der Verankerung in der Lehre und damit auch der Größe der SP-Programme, die stark variieren. Die institutionelle Verortung der SP-Programme, überwiegend in den Studiendekanaten und Skills Labs der Fakultäten, sowie die Tatsache, dass viele Fachbereiche mit Patientenkontakt mit SPs arbeiten, lässt vermuten, dass sich eine fakultätsinterne Entwicklung der Curricula zu mehr praktischer sowie simulierter Ausbildung und Prüfung etabliert hat und dass mit SP-Programmen in der Lehre derzeit fest geplant wird. Dies zeigt sich auch darin, dass die SP-Programme zum großen Teil über Haushaltsmittel der Fakultäten finanziert werden.
Tabelle 4: Einstellungsverfahren für SPs

Einstellungsverfahren	Anzahl der Befragten, die dieses Verfahren nutzen
Interview	31
Schulung	28
Probespiel	24
Fragebogen	12
Motivationsschreiben	6
ärztliche Untersuchung	4
sonstiges (z.B. “Casting” oder “Hospitalisation”)	12

Tabelle 5: Schulungen für SPs

Art der Schulung	Anzahl der Befragten, die diese Schulungsart nutzen
Rollentraining	27
Feedbacktraining	24
Initialschulung/SP-Training (Inhalte nicht spezifiziert)	9
Schauspiel-/Improvisationstraining	4
Kommunikationstraining	3
Supervision	2
Schulung zur Rollenentwicklung	1
Wahltatisch “Medizinstudierende als SP”	1

Tabelle 6: Eingesetzte Instrumente zur Qualitätssicherung des Feedbacks von SPs

Instrument (Quellen von der Redaktion ergänzt)	Anzahl der Befragten, die dieses Instrument nutzen
Selbst entwickeltes Instrument	11
Fair-OSCE [15]	3
Aachen-Mannheimer Checkliste zur Auswertung der SPs	1
MASP [16]	1
Feedback-Checkliste des SP-Ausschusses [17]	1
Mannheimer Checkliste zur Videoanalyse [18]	1

Gleichzeitig weisen die sehr unterschiedlichen Arbeitsverhältnisse der fest angestellten Mitarbeitenden in den SP-Programmen darauf hin, dass sehr heterogen gearbeitet und möglicherweise in Einzelfällen nicht immer ausreichend institutionell unterstützt wird. Dies wird in den Bereichen Arbeitsstunden, Tätigkeiten und Qualifikationsmaßnahmen deutlich sichtbar. So werden beispielsweise von allen Antwortenden Instrumente der Qualitätssicherung genannt, z.B. Schulungen für die SPs und Weiterbildungen für die Mitarbeitenden, jedoch geben nur 61% der Befragten an, dass Verantwortliche explizit für den Aufgabenbereich Simulationspatientenprogramm eingesetzt wurden, was eine Fokussierung und eine langfristige professionelle Qualitätssicherung erschwert. Die erhobenen Daten lassen vermuten, dass an vielen Medizinischen Fakultäten das SP-Programm von Mitarbeitenden koordiniert wird, die eigentlich eine Arbeitsstelle in einem anderen Fachbereich haben.

Es zeigt sich, dass eine Ausbildung von SPs (z.B. in den Bereichen Darstellung und Feedback) überall stattfindet und dass gewisse Elemente, wie zum Beispiel das Feedbackgebot durch SPs, zu einem Standard in Lehrsituationen geworden sind. In Prüfungen mit SPs (z.B. OSCE) ist nur an jeder vierten antwortenden Fakultät ein Feedback von SPs vorgesehen. Vermutlich verhindern die eng getakteten Prüfungsabläufe die Einbindung von SP-Feedback oder es besteht Uneinigkeit darüber, wie mit dem Einfluss der Feedbackgabe auf die Objektivität der Prüfung umzugehen ist.

Die meisten SPs erhalten für ihre Tätigkeit eine Entlohnung – auch wenn diese sehr unterschiedlich ausfällt. Es ist kritisch zu bewerten, dass 11% der antwortenden Fakultäten SPs ehrenamtlich beschäftigen. Aus Sicht der Autorinnen und Autoren wird dies nicht dem hohen zeitlichen und emotionalen Aufwand sowie den Qualitätsanforderungen an Rollendarstellung und Feedback der SPs gerecht.
gerecht. Gleiches gilt für SPs, die ein Honorar erhalten, welches unterhalb des gesetzlichen Mindestlohnes liegt. Gleichzeitig sind die genaue Ausgestaltung der SP-Programme sowie die genutzten Maßstäbe oder Vorgaben für Aspekte der SP-Einsätze sehr heterogen, insbesondere im Bereich Mindeststandards und Qualitätsicherung. Die Standorte scheinen unabhängig voneinander Kriterien und Prozesse entwickelt zu haben, die im Rahmen dieser explorativen Studie quantitativ kaum zu fassen sind. Hier zeigt sich nach Sicht der Autorinnen und Autoren zugleich die Stärke und Schwäche der SP-Programme in der DACH-Region: Es existiert eine große gelebte Vielfalt der Methode SP in der medizinischen Lehre. Dies erlaubt je nach Standort und den individuellen Bedürfnissen flexible Einsätze und öffnet Innovationen und Weiterentwicklungen die Tür. Mag dies in organisatorischen Belangen noch akzeptabel sein, so führt es aber spätestens bei mindeststandards nicht eingehalten werden. So sehr sich verschiedene andere Lehr- und Prüfungsformen (z.B. OSCE) in den letzten Jahren um eine methodische Schärfung und Profilierung bemüht haben, so scheint es bei der Art der SPs eher heterogene Professionalisierungsansätze zu geben. Überspitzt gesagt: Wenn jeder Standort die Methode SP beliebig umsetzen kann, was macht die Methode dann eigentlich noch aus? Und was ist ihre wissenschaftlich fundierte Basis, die sie braucht, gerade wenn sie in Prüfungen oder gar in Abschlussprüfungen eingesetzt wird? Aufgrund dieser Fragen haben sich die Autorinnen und Autoren der explorativen Studie mit Mindestanforderungen und Entwicklungsperspektiven von SP-Programm beschäftigt und diese in einem Positionspapier publiziert [15].

Künftige Arbeiten werden zeigen müssen, wie einerseits eine gelebte Vielfalt beibehalten und andererseits die Methode SP gleichzeitig qualitativ geschärft werden kann, um sie damit für den Einsatz in high-stakes-Prüfungen „fit“ zu machen.

5. Limitationen

Um die Vielfalt der Realität der SP-Programme zu erfassen, wurde eine explorative Studie mit einer entsprechend hohen Zahl offener Fragen durchgeführt. Gleichwohl sind quantitative Daten z.B. über die Qualifikation der SPs und die methodischen Rahmenbedingungen für ihre Einsätze zu Schwierigkeiten, sofern Mindeststandards nicht eingehalten werden. So sehr sich verschiedene andere Lehr- und Prüfungsformen (z.B. OSCE) in den letzten Jahren um eine methodische Schärfung und Profilierung bemüht haben, so scheint es bei der Arbeit mit SPs eher heterogene Professionalisierungsansätze zu geben. Überspitzt gesagt: Wenn jeder Standort die Methode SP beliebig umsetzen kann, was macht die Methode dann eigentlich noch aus? Und was ist ihre wissenschaftlich fundierte Basis, die sie braucht, gerade wenn sie in Prüfungen oder gar in Abschlussprüfungen eingesetzt wird? Aufgrund dieser Fragen haben sich die Autorinnen und Autoren der explorativen Studie mit Mindestanforderungen und Entwicklungsperspektiven von SP-Programm beschäftigt und diese in einem Positionspapier publiziert [15].

Künftige Arbeiten werden zeigen müssen, wie einerseits eine gelebte Vielfalt beibehalten und andererseits die Methode SP gleichzeitig qualitativ geschärft werden kann, um sie damit für den Einsatz in high-stakes-Prüfungen „fit“ zu machen.

Danksagung

Unser herzlicher Dank gilt allen Personen und Standorten, die sich an der Umfrage beteiligt haben. Zudem danken wir den Mitgliedern des GMA-Ausschusses Simulationspatienten für die konstruktive Mitarbeit am Fragebogen.

Anmerkung

Der Ausschuss „Simulationspatienten“ der Gesellschaft für Medizinische Ausbildung (GMA) wurde im Februar 2019 in Ausschuss „Simulationspersonen“ umbenannt. In diesem Text wird noch die alte Bezeichnung verwendet, da der Artikel vor der Umbenennung eingereicht wurde.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Anhänge

Verfügbar unter http://www.gms.de/en/journals/zma/2019-36/zma001235.shtml
1. Anhang_1.pdf (118 KB)
 Simulationspatienten in der Medizinischen Ausbildung - eine Umfrage zum IST-Stand in Deutschland, Österreich und der Schweiz
Literatur

1. Heim S, Gisler P, Heberle W, Lichtensteiger S, Robert SM, Metzenthin P, Watzek D. Schauspielkunst - oder die Fähigkeit, etwas als "echt" erscheinen zu lassen. In: Peters T, Thrien C, eds. Simulationspatienten. Handbuch für die Aus- und Weiterbildung in medizinischen und Gesundheitsberufen. Bern: Hogrefe; 2018. p.101-112.

2. Cleland JA, Abe K, Rethans JJ. The use of simulated patients in medical education: AMEE Guide No 42. Med Teach. 2009;31(6):477-486. DOI: 10.1080/01421590903002821

3. Barrows HS, Abrahamson S. The programmed patient: a technique for appraising clinical performance in clinical neurology. J Med Educ. 1964;39:802-805.

4. Hölzer H. Überregionale und internationale Standesvertretungen und Netzwerke. In: Peters T, Thrien C, eds. Simulationspatienten. Handbuch für die Aus- und Weiterbildung in medizinischen und Gesundheitsberufen. Bern: Hogrefe; 2018. p.257-264.

5. Peters T. Simulationspatientinnen und Simulationspatienten - Eine Einführung. In: Peters T, Thrien C, eds. Simulationspatienten. Handbuch für die Aus- und Weiterbildung in medizinischen und Gesundheitsberufen. Bern: Hogrefe; 2018. p.13-22.

6. Vu NV, Barrows HS. Use of standardized patients in clinical assessments: Recent developments and measurement findings. Educ Res. 1994;23(3):23-30. DOI: 10.3102/0013189X023003023

7. Bokken L, Linssen T, Scherpier A, Van Der Vleuten C, Rethans JJ. Feedback by simulated patients in undergraduate medical education: A systematic review of the literature, Med Educ. 2009;43(3):202-201. DOI: 10.1111/j.1365-2923.2008.03268.x

8. Ker JS, Dowie A, Dowell J, Dewar G, Dent JA, Ramsay J, Benvie S, Bracher L, Jackson C. Twelve tips for developing and maintaining a simulated patient bank. Med Teach. 2005;27(1):4-9. DOI: 10.1080/0142159040004882

9. Nestel D, Bearman M. Simulated Patient Methodology: Theory, Evidence and Practice. Chichester: John Wiley & Sons; 2015. DOI: 10.1002/9781118760673

10. Fröhmel A, Burger W, Ortwein H. Einbindung von Simulationspatienten in das Studium der Humanmedizin in Deutschland. Dtsch Med Wochenschr. 2007;132(11):549-554. DOI: 10.1055/s-2007-970375

11. Müller B. "Wir befinden uns in einer permanenten Reform (..)" - Reformen in der Medizinerausbildung zwischen 1989 bis 2009. Stuttgart: Robert-Bosch-Stiftung; 2012.

12. Fichtner A. Lernen für die Praxis: Das Skills-Lab. In: St. Pierre M, Breuer G, eds. Simulation in der Medizin. Heidelberg: Springer-Verlag; 2013. p.106-113. DOI: 10.1007/978-3-642-29436-5_10

13. Berendonk C, Schirlo C, Balestra G, Bonvin R, Feller S, Huber P, Jünger E, Monti M, Schnabel K, Beyeler C, Guttormsen S, Huwendiek S. The new final Clinical Skill examination in human medicine in Switzerland: Essential steps of exam development, implementation and evaluation, and central insights from the perspective of the national Working Group. GMS J Med Educ. 2015;38(3):Doc27. DOI: 10.3205/zma001235

14. Bundesministerium für Bildung und Forschung. Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Bildung und Forschung; 2017. Zugänglich unter/available from: https://www.bmbf.de/files/2017-03-31_Masterplan%20Beschlusstext.pdf

15. Peters T, Sommer M, Fritz AH, Kursch A, Thrien C. Mindeststandards und Entwicklungsperspektiven beim Einsatz von Simulationspatientinnen und Simulationspatienten. GMS J Med Educ. 2019;36(3):Doc26. DOI: 10.3205/zma001234

16. Döring N, Bortz J. Forschungsmethoden und Evaluation. Heidelberg: Springer-Verlag; 2016. p.398-405.

17. Brem B, Christen R, Richter S, Schnabel K. Anwendung einer Liste von Qualitätsmerkmalen des Rollenspiels von SPs im Rahmen von OSCE Prüfungen. In: Gemeinsame Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA) und des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWLZ). Leipzig, 30.09.-03.10.2015. Düsseldorf: German Medical Science GMS Publishing House; 2015. DocP11-154. DOI: 10.3205/15gma295

18. Wind LA, Van Dalen J, Muïtjens AM, Rethans JJ. Assessing simulated patients in an educational setting: the MaSP (Maastricht Assessment of Simulated Patients). Med Educ. 2004;38(1):39-44. DOI: 10.1111/j.1365-2923.2004.01686.x

19. Fritz AH, Thrien C, Strohmer R. Qualitätssicherung des Feedbacks von Simulationspatientinnen und Simulationspatienten. In: Peters T, Thrien C, eds. Simulationspatienten - Handbuch für die Aus- und Weiterbildung in der Medizin und anderen Gesundheitsberufen. Bern: Hogrefe Verlag; 2018.

20. Strohmer R. Qualitätssicherung in Feedback und Performance. Mannheim: Medizinische Fakultät Mannheim, Universität Heidelberg: 2009.

Korrespondenzadresse:
Dipl.-Komm.-Psych. (FH) Michael Sommer Technische Universität Dresden, Medizinisches Interprofessionelles Trainingszentrum (MITZ), Fetscherstr. 74, 01307 Dresden, Deutschland
michael.sommer@uniklinikum-dresden.de

Bitte zitieren als
Sommer M, Fritz AH, Thrien C, Kursch A, Peters T. Simulated patients in medical education – a survey on the current status in Germany, Austria and Switzerland. GMS J Med Educ. 2019;36(3):Doc27. DOI: 10.3205/zma001235

Artikel online frei zugänglich unter http://www.ejgms.de/en/journals/zma/2019-36/zma001235.shtml

Eingereicht: 16.11.2018
Überarbeitet: 14.02.2019
Angenommen: 15.03.2019
Veröffentlicht: 16.05.2019

Copyright ©2019 Sommer et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.

GMS Journal for Medical Education 2019, Vol. 36(3), ISSN 2366-5017