Comparative genomic analysis of *Klebsiella pneumoniae* subsp. *pneumoniae* KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain

Taesoo Kwon†, Young-Hee Jung‡, Sanghyun Lee³, Mi-ran Yun³, Won Kim¹‡ and Dae-Won Kim³*‡

Abstract

Background: *Klebsiella pneumoniae* subsp. *pneumoniae* KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146.

Results: The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the *Klebsiella pneumoniae* species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: *bla*_{OXA-1} and *bla*_{SHV-28} in the chromosome, *bla*_{NDM-1} in plasmid 1, and *bla*_{OXA-232} in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.

Conclusions: Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.

Keywords: *Klebsiella pneumoniae*, OXA-232, NDM-1, Carbapenemases

Background

Klebsiella pneumoniae is a Gram-negative, non-motile, encapsulated, facultative anaerobic bacterium, which belongs to the family Enterobacteriaceae. *K. pneumoniae* is found in the normal flora of the mouth, skin, and intestines; however, this bacterium may act as an opportunistic pathogen, causing severe nosocomial infections such as septicemia, pneumonia, and urinary tract infections in hospitalized and immune-compromised patients with chronic ailments [1, 2].

Beta-lactam antibiotics, used as therapeutic agents against a broad range of bacteria, bind to the
penicillin-binding protein and inhibit biosynthesis of the bacterial cell membrane. However, the extended spectrum β-lactamases (ESBLs) and carbapenemases confer resistance to penicillin, cephalosporins, or carbapenem [3, 4]. The β-lactamases are divided into four classes on the basis of the Ambler scheme: class A (Klebsiella pneumoniae carbapenemase, KPC; imipenem-hydrolyzing β-lactamase, IMI; Serratia marcescens enzyme, SME; Serratia fonticola carbapenemase, SFC), class B (Verona integron-encoded metallo-β-lactamase, VIM; imipenem-resistant Pseudomonas, IMP; New Delhi metallo-β-lactamase, NDM), class C (AmpC-type β-lactamase, ACT; cephemycin-hydrolyzing β-lactamase, CMY), and class D (oxacillinase, OXA) [5] are composed of transposon, cassettes, and integrons and transferred within and between species by HGT (horizontal gene transfer). Numerous carbapenemase-producing bacteria similarly harbor resistance genes that are transferred to other strains by horizontal gene transfer [6, 7]; infections caused by such multi-drug-resistant bacteria are difficult to treat [8]. The emergence of the novel carbapenemase NDM-1 (the New Delhi metallo-β-lactamase) is of great concern, as no therapeutic agents are available to treat infections caused by NDM-1-producing bacterial strains [9]. NDM-1-producing K. pneumoniae strains were first isolated from a Swedish patient who had travelled to India in 2009 [10]. Since then, NDM-1 has been reported to be produced by various species of Enterobacteriaceae, such as K. pneumoniae, Escherichia coli, Enterobacter spp. and Acinetobacter spp., in numerous countries [11].

The carbapenem-hydrolyzing β-lactamase OXA-232, which was first reported in E. coli and two K. pneumoniae strains [12], belongs to the OXA-48-like family. Carbapenemase-producing Gram-negative bacteria are often multi-drug resistant [13]. K. pneumoniae isolates that coproduce OXA-48-like β-lactamase and NDM-1 have been isolated in numerous countries [14-16]. Recently, K. pneumoniae isolates coproducing two carbapenemases, blaNDM-1 and blaOXA-232, have been identified in several countries; of these, two isolates originating in India were recovered in the USA and Korea, in January 2013, and sequenced [16, 17] but not studied yet the characteristics in the context of genomic contents by comparing these isolates. In the present study, we performed a comparative analysis of the genomes of these isolates.

Methods

Isolation and serotyping of strains

In January 2013, a 32-year-old man was hospitalized in the Intensive Care Unit of a general hospital in Seoul, Korea, two days after suffering burns during a visit to India. K. pneumoniae was isolated from his wound and another patient in the same room became infected with the same strain [18]. The K. pneumoniae isolate was identified as the KP617 strain belonging to the sequence type (ST)14, and found to coproduce NDM-1 and OXA-232, which conferred resistance to ertapenem, doripenem, imipenem, and meropenem (MICs: >32 mg/L). The K. pneumoniae strains PittNDM01 [17], NUHL24835 [19], and ATCC BAA-2146 [20] were used as reference strains for comparative genomic analysis.

Library preparation and whole-genome sequencing

Whole-genome sequencing of KP617 was performed using three platforms: Illumina-HiSeq 2500, PacBio RS II, and Sanger sequencing (GnC Bio: Daejeon, Republic of Korea) [16]. Sanger sequencing was used for the construction of a physical map of the genome.

Genome assembly and annotation

A hybrid assembly was performed using the Celera Assembler (version 8.2) [21] and a fosmid paired-end sequencing map was used to confirm the assembly. The final assembly was revised using proovread (version 2.12) [22]. An initial annotation of the KP617 genome was generated using the RAST (Rapid Annotation using Subsystem Technology, version 4.0) server pipeline [23]. The genomes of three K. pneumoniae strains, PittNDM01, NUHL24835, and ATCC BAA-2146, were annotated using the RAST server pipeline. In order to compare the total coding sequences (CDSs) of KP617 with those of the three K. pneumoniae strains, the sequence-based comparison functionality of the RAST server was utilized.

Phylogenetic analysis

Concatenated whole genomes of 44 K. pneumoniae strains, including KP617, and multi-locus sequence typing (MLST) of seven genes [24, 25] were used for the calculation of evolutionary distances. The seven genes used for MLST were as follows: gapA, infB, mdh, pgi, phoE, rpoB and tonB. Multiple sequence alignments were performed using Mugsy (version 1.2.3) [26]. The generalized time-reversible model [27] + CAT model [28] (FastTree Version 2.1.7) [29] was used to construct approximate maximum-likelihood phylogenetic trees. The resulting trees were visualized using FigTree (version 1.3.1) (http://tree.bio.ed.ac.uk/software/figtree/).

Comparison of genomic structure

The chromosome and plasmids of KP617 and the reference strains were compared using Easyfig (version 2.2.2) [30]. Whole-genome nucleotide alignments were generated using BLASTN to identify syntenic genes. The syntenic genes and genomic structures were visualized using Easyfig. A stand-alone BLAST algorithm was used to analyze the structure of the genes of interest, i.e. the OXA-232- and NDM-1 carbapenemase-encoding genes.
Identification of the antimicrobial resistance genes

We identified the antibiotic resistance genes using complete sequences of chromosomes and plasmids of four *K. pneumoniae* isolates: KP617, PittNDM01, NUHL24835 and ATCC BAA-2146 using ResFinder 2.1 (https://cge.cbs.dtu.dk/services/ResFinder/) [31].

Analysis of virulence factors and phage-associated regions

The virulence factor-encoding genes were searched against the virulence factor database (VFDB) [32] using BLAST with an e-value threshold of 1e-5. Homologous virulence factor genes with a BLAST Score Ratio (BSR) of ≥0.4 were selected. The BSR score was calculated using our in-house scripts. Phage-associated regions in the genome sequences of the four *K. pneumoniae* strains were predicted using the PHAST server [33]. Three scenarios for the completeness of the predicted phage-associated regions were defined according to how many genes/proteins of a known phage the region contained: intact (≥90 %), questionable (90–60 %), and incomplete (≤60 %).

Quality assurance

Genomic DNA was purified from a pure culture of a single bacterial isolate of KP617. Potential contamination of the genomic library by other microorganisms was assessed using a BLAST search against the non-redundant database.

Results and discussion

General features

A total of 316,881,346 (32,005,015,946 bp) paired-end reads were generated using Illumina-HiSeq 2500. Using the PacBio RS II platform, 46,134 (421,257,386 bp) raw reads were produced. The complete genome of KP617 consists of a 5,416,282-bp circular chromosome and two plasmids of 273,628 bp and 6141 bp in size. The genomic features of KP617 and the reference strains are summarized in Table 1. Based on a RAST analysis, 5024 putative open reading frames (ORFs) and 110 RNA genes on the circular chromosome (Figs. 1, 2; Additional file 1: Table S1), 342 putative ORFs on plasmid 1, and 9 putative ORFs on plasmid 2 were identified.

Comparison of KP617 and the reference strains based on sequence similarity (percent identity ≤80) showed that 32 genes are unique for KP617, and that most of the functional genes of this strain are also conserved in the reference strains. The genes unique to the KP617 strain, such as the SOS-response repressor and protease LexA (EC 3.4.21.88), integrase, and phage-related protein were identified as belonging to the genome of the prophage Salmonella phage SEN4 (GenBank accession: NC_029015). When the KP617 genome was compared with that of the PittNDM01 strain, which represents the closest neighbor of the former strain on the phylogenetic tree (Figs. 3a, b), 94 genes showed a percent similarity of below 80; most of these were phage protein-encoding genes. These results indicate that the presence of prophage DNA is an important feature of the KP617 genome.

Phylogenetic analysis

The whole-genome phylogenetic analysis indicated that KP617 is evolutionarily close to PittNDM01 and NUHL24835, and that the strains belong to the WGLW2 group. However, KP617 was found to be evolutionarily distant from ATCC BAA-2146 (Fig. 3). Concordantly, MLST-based phylogenetic analysis revealed that while KP617, PittNDM01, and NUHL24835 belong to the same group [sequence type (ST)14], ATCC BAA-2146 belongs to the HS11286 group, ST 11 [20]. The only difference between the whole-genome phylogenetic tree and the MLST-based phylogenetic tree was the divergence time within the same group; MLST-based phylogeny did not reveal the minor details of genomic evolution such as the divergence between KP617, PittNDM01 and NUHL24835 in the whole-genome phylogeny. The difference was attributed to horizontal gene transfer in regions not covered by the MLST genes.

Comparison of genome structures

The comparison of genomic structures of the chromosome indicated the presence of highly conserved structures in the KP617, NUHL24835, and PittNDM01 strains (Fig. 4a). Interestingly, a 1-Mb region (233,805–1,517,597) of the KP617 chromosome was inverted relative to its arrangement in the chromosome of PittNDM01 (1,500,972–225,619). Despite this inversion, KP617 and PittNDM01 exhibited a lower substitution rate (score 20) than NUHL24835 (score 30) (Fig. 3). However, the chromosomal structure of the ATCC BAA-2146 strain, which consisted of two large inverted regions, was significantly different from that of the other strains. In addition, a 71 Kb inversion was found in the sequence of plasmid 1 of KP617 (18,633–90,686) relative to plasmid 1 of

Strain	KP617	PittNDM01	NUHL24835	ATCC BAA-2146
Genome (Mb)	5.69	5.81	5.53	5.78
% GC (chromo-)	57.4	57.5	57.4	57.3
Total open reading frames	5375	4940	5191	5883
Plasmids	2	4	2	4

Table 1 Genomic features of *Klebsiella pneumoniae* KP617 and other strains
PittNDM01 (91,507–19,453); however, the two plasmids were highly homologous to each other (Fig. 4b).

Antimicrobial resistance genes

Nineteen antibiotic resistance genes were identified in the genome of KP617, 39 in the genome of PittNDM01, 29 in that of ATCC BAA-2146, and nine in that of the NUHL24385 strain (Table 2). The β-lactam resistance genes in the KP617 genome were \(\text{bla}_{\text{OXA-1}} \) and \(\text{bla}_{\text{SHV-28}} \) in the chromosome, \(\text{bla}_{\text{NDM-1}} \) in plasmid 1, and \(\text{bla}_{\text{OXA-232}} \) in plasmid 2; however, genes conferring resistance to colistin and tetracycline were not found (Table 2). Plasmid 2 of KP617, which includes the OXA-232-encoding gene, consists of a 6141-bp sequence; the sequence of this plasmid was identical to that of plasmid 4 of PittNDM01 (100 % coverage and similarity) and the plasmid of \(\text{E. coli} \) (coverage: 100 %, similarity: 99.9 %). Plasmid 2 of KP617, plasmid 4 of PittNDM01 and \(\text{E. coli} \) Mob gene cluster (GenBank accession: JX423831) [12] carried the OXA-232-encoding gene, and pKF-3 of \(\text{K. pneumoniae} \) carried the OXA-181-encoding gene. However, pKF-3 was identical to plasmid 2 of KP617, except that the insertion sequence \(\text{ISEcp1} \) was inserted upstream of OXA-181 and included in the transposon \(\text{Tn2013} \) [12, 34].

The structure of plasmid 1 (273,628 bp in size) of the KP617 strain was similar to that of plasmid 1 (283,371 bp in size) of PittNDM01. A region of about 40 kb in size within plasmid 1 of the KP617 strain, which included the NDM-1-encoding gene, was composed of various resistance genes such as \(\text{aadA2, armA, aac(3')-VI, dfrA12, msrE, mphE, sul1 and qnrB1} \), and identical (coverage: 100 %, homology: 100 %) to a 40-kb sequence of plasmid 1 of PittNDM01 (Fig. 4b). Adjacent to the NDM-1-encoding gene, a region of about 70 kb in size was inverted in plasmid 1 of KP617 relative to plasmid 1 of PittNDM01. In addition, the OXA-1-encoding gene was identified in PittNDM01 but not in KP617. Transposases were found in a part of the NDM-1-encoding gene cluster (about 10 kb) in plasmid 1 of KP617. Gram-negative bacteria are known to possess a diverse range of transposases; moreover, the sequence of the NDM-1-encoding gene cluster includes a transposon [35, 36]. The partial, or complete, transfer of NDM-1-harboring plasmids between \(\text{K. pneumoniae} \) and \(\text{E. coli} \), via conjugation, has been shown to result in the emergence of strains resistant to several antimicrobial agents [11, 32, 36, 37].

Following the initial identification of NDM-1 in a \(\text{K. pneumoniae} \) isolate from a patient who had travelled to India in 2008, most NDM-1-producing \(\text{K. pneumoniae} \) isolates have been recovered from patients associated with India; however, in some cases, these strains have been isolated from patients with no history of travelling abroad, or any association with India [38]. These observations suggest that the transfer of the NDM-1- and OXA-232-harboring plasmids between Gram-negative bacteria has resulted in the spread of carbapenem resistance and emergence of strong carbapenem-resistant strains outside the Indian subcontinent.

Virulence factors

\(\text{Klebsiella pneumoniae} \), a significant pathogen of human hosts, causes urinary tract infections, pneumonia,
septicemia, and soft tissue infections [1]. The clinical features of *K. pneumoniae* infections depend on the virulence factors expressed by the infecting strain [39]. Therefore, we investigated the virulence factors of the present strain and compared these with those of KP617 and the reference strains. A BLAST search was performed against VFDB to identify 117 virulence factors harbored by the KP617 strain (Table 3). All 117 virulence genes of KP617 were also harbored by the reference strains; KP617 did not possess any unique virulence factors. The PittNDM01 strain was also found to possess no unique virulence factors; however, NUHL24835 and

Fig. 2 Circular map of the KP617 chromosome. Circular map of the KP617 genome, generated using cgview (version 2.2.2); from outside to inside, the tracks display the following information: CDSs of KP617 on the + strand (1); CDSs of KP617 on the − strand (2); tblastx result against PittNDM01 (3), tblastx result against NUHL24835 (4), tblastx result against ATCC BAA-2146 (5), GC content (6), GC skew with + value (green) and − value (purple) (7)
ATCC BAA-2146 possessed 3 and 7 unique virulence factors, respectively. The 117 virulence genes of KP617 were classified into 31 the following categories: Iron uptake (30 genes), Immune evasion (12 genes), Endotoxin (11 genes), Adherence (10 genes), Fimbrial adherence determinants (8 genes), Toxin (7 genes), Antiphagocytosis (6 genes), Regulation (5 genes), Acid resistance (3 genes), Anaerobic respiration (2 genes), Cell surface components (2 genes) and Secretion system (2 genes). Among the 117 virulence genes identified, 8 genes were lipopolysaccharide [40]-related genes and 4 genes were capsular polysaccharide [41]-related.

KP617 and PittNDM01 were found to possess two virulence factors that were not present in the other two strains: invasion (encoded by \(\textit{ail} \), attachment invasion locus protein) [42] and Iron uptake (encoded by \(\textit{fyuA} \), Yersiniabactin siderophore) [43].

Phage-associated regions

Prophages contribute to the genetic and phenotypic plasticity of their bacterial hosts [44] and act as vehicles for the transfer of antimicrobial resistance genes [45] or virulence factors [46]. Six phage-associated regions (KC1–KC5) of the KP617 chromosome and one phage-associated region (KP1) in plasmid 1 of the KP617 strain were identified using the PHAST algorithm (Table 4). With regard to the reference strains, six phage-associated regions were identified in the PittNDM01 strain, six in NUHL24835, and 12 in ATCC BAA-2146.

Three of the six phages, KC1, KC2 and KC3, in the KP617 strain were intact, whereas the remaining prophages were incomplete (KC5 and KP1) or questionable (KC4) and had a low PHAST score of below 90. Based on the sequence similarity of their genomes,
KP617 and PittNDM01 were found to have high similarity to each other (Figs. 2, 3a, b). Concordantly, the profile of prophage DNA in their genomes, as determined via a BLAST search, was similar, and the two strains shared four of the six prophages, whereas two phage regions, KC2 (Entero_HK140) and KC3 (Salmon_SEN4), were specific to the KP617 genome. Furthermore, it was found that one phage-associated region of KP617, namely KC2 (Entero_HK140), exhibited a high similarity to the phage-associated region of the NUHL24835 strain, NC1, with 60% query coverage and 99% identity. It should be noted that the strains compared in the present study, i.e. KP617 and the reference strain, ATCC BAA-2146, had no prophages in common.

Investigation of the antimicrobial resistance genes harbored by the strains, which was performed using ResFinder, and comparison with the prophage-associated region, as predicted using PHAST, did not reveal the presence of a prophage-delivered beta-lactamase-encoding gene in the KP617 genome, indicating that prophages did not act as a vehicle for the transfer of antimicrobial resistance genes in this strain. This finding is consistent with previous observations that beta-lactamase-encoding genes are borne by transposons [35,
Table 2: Antimicrobial resistance genes of KP617 and the reference strains

Antibiotics	Resistance gene	% identity	Query/HSP length	Predicted phenotype	Accession number	Position*
					KP617 PttNDM01 BAA-2146 NHUL24385	
Aminoglycosides	aacA4	100	555/555	Aminoglycoside	KM278199	P3_115183.115737
	aac(3)-Ila	99.77	861/861		XS1534	P2_41114.41974
	aac(3)-IId	99.88	861/861		EU022314	P3_64003.64863
	aac(6)’Ib	100	606/606		M21682	P3_2456.3061
	aadA1	100	789/789		JQ480156	P3_3131.3919
	aadA2	99.75	792/792		JQ414041	P3_44412.45203
	qph(3)’-Vla	98.46	780/780		X68227	P3_2297697.2298476
	armA	100	774/774		AY220558	P3_2297134.277907
	rmC	100	804/804		AF321551	P3_22970.30010
	strA	99.88	837/837		M96392	P3_22970.30846
	strB	100	837/837		M96392	P3_22970.30846
	aac(6)’Ib-cr	100	600/600	Fluoroquinolone and	DQ303918	C_1122863.1123462
	β-lactams			aminoglycoside		P1_136136.136762
	blaOXA-1	100	831/831	Beta-lactam	J02967	P1_136136.136762
	blaOXA-9	100	840/840	resistance	JF703130	P3_3964.4803
	blaOXA-232	100	798/798		JX423831	P3_3878.4675
	blaNDM-1	100	813/813		FN396876	P4_3878.4675
	blaNDM-5	100	813/813		JN104597	P1_7770.8582
	blaCTX-M-15	100	876/876		DQ302097	P3_122191.123003
	blaTEM-1A	100	861/861		HM749666	P3_68389.69264
	blaTEM-1B	100	861/861		JF910132	P3_5503.6363
	blaSHV-11	100	861/861		GQ407109	P3_57446.58306
	blaSHV-2B	100	861/861		HM751101	C_1078475.1079335
	blaCMY-6	100	1146/1146		AJ011293	P3_72203.73348
Table 2 continued

Antibiotics	Resistance gene	% identity	Query/HSP length	Predicted phenotype	Accession number	Positiona					
						KP617	PittNDM01	BAA-2146	NHUL24385		
Fluoroquinolones	aac(6)’/Ib-cr	100	600/600	Fluoroquinolone and aminoglycoside resistance	DQ303918	C_612688	612327	C_1122863	1123462		
		99.42	519/519		EF636461	P1_136163	136762	P3_2543	3061		
		99.61				P2_82742	83260	P3_115219	115737		
QnrB1		99.85	682/681	Quinolone resistance	EF682133	P1_130519	130120	P1_130247	130928		
QnrB58		98.68	681/681		JX529319	P2_26062	26742	C_4169699	4170874		
oqxA		100	1176/1176		EU730913	C_4847144	4848319	C_4793024	4794199		
		99.23				P2_26062	26742	C_4843968	4847120		
		98.79	3153/3153		EU730913	C_4843968	4847120	C_4789848	4793000		
		98.79				P2_26062	26742	C_4170898	4174050		
		98.79				C_4849531	4850706				
Fosfomycin	fpaA	97.38	420/420	Fosfomycin resistance	NZ_AFB001000747	C_2957629	2958048	C_2903507	2903926		
		97.14				C_667959	668378				
MLS—macrolide,	etr(A)	95.11	1227/1227	Macrolide resistance	AF099140	P3_45289	46515	P1_16503	17408		
lincosamide and	mph(A)	100	906/906		D16251	P3_45289	46515	P1_16503	17408		
streptogramin B	mph(E)	99.89	885/885		EU294228	P1_271994	272878	P1_281737	282621		
	mrr(E)	100	1476/1476	Macrolide, Lincosamide and Streptogramin B resistance	EU294228	P1_270463	271938	P1_280206	281681		
						C_4846355	4849507				
Phenicol	catB3	100	442/633	Phenicol resistance	AJ009818	C_614386	614827	C_1121323	1121764		
		99.13				P1_137861	138302	P2_39809	40250		
RIFAMPICIN	cmrA1	100	453/453	Rifampicin resistance	AB212941	P3_45289	46515	P1_16503	17408		
TETRACYCLINES	tet(A)	100	1200/1200	Tetracycline resistance	AJ517790	P1_137861	138302	P2_39809	40250		
Sulphonamides	sul1	100	927/927	Sulphonamide resistance	CP002151	P1_263120	264046	P3_116160	117086		
	sul2	100	837/837		CP002151	P1_263120	264046	P3_116160	117086		
		99.59	816/816		GO421466	P1_263120	264046	P3_116160	117086		
Trimmethoprim	dfrA1	100	474/474	Trimethoprim resistance	X00926	C_3627607	3628080	C_3573485	3573958		
	dfrA12	100	498/498		AB571791	P1_261006	261503	P1_270749	271246	P1_52145	532450
	dfrA14	99.59	483/483		DQ388123	P1_144525	145007	P2_82728	78574		

KP617: C, CP012753.1; P1, CP012754.1, P2, CP012755.1
PittNDM01: C, CP006798.1; P1, CP006799.1, P2, CP006800.1; P3, CP006801.1, P4, CP006802.1
ATCC BAA-2146: C, CP006659.2; P1 (PCuAs), CP006663.1, P2 (PHg), CP006662.2, P3, CP006660.1, P4, CP006661.1
NUHL24385: C, CP014004.1; P1, CP014005.1, P2, CP014006.1

a C chromosome, P plasmid
Strains	Category	Subcategory	Name
KP617, PittNDM01, NUHL24385 and ATCC BAA-2146	Acid resistance	Urease	ureA, ureB, ureF, ureG, ureH
Adherence	Cell wall associated fibronectin binding protein		
Adherence	CFAI fimbriae		
Adherence	Flagella	fliN, fliR, fliS	
Adherence	Hsp60		
Adherence	Intercellular adhesin	icaA, icaR	
Adherence	Listeria adhesion protein	lap	
Adherence	OapA	oapA	
Adherence	Omp89	omp89	
Adherence	P fimbriae	papX	
Adherence	PEB1/CBF1	pebA	
Adherence	Phosphoethanolamine modification		
Adherence	Type I fimbriae	fimB, fimE, fimG	
Adherence	Type IV pili	comE/pilQ	
Adherence	Type IV pili biosynthesis	pilM, pilW	
Adherence	Type IV pili twitching motility related proteins	chpD, chpE	
Adhesin	Laminin-binding protein	lmb	
Adhesin	Streptococcal lipoprotein rotamase A	slrA	
Adhesin	Streptococcal plasmin receptor/GAPDH		
Adhesin	Type IV pili	pilD, pilN, pilR, pilS, pilT	
Amino acid and purine metabolism	Glutamine synthesis	glnA1	
Amino acid and purine metabolism	Leucine synthesis	leuD	
Amino acid and purine metabolism	Lysine synthesis	lysA	
Amino acid and purine metabolism	Proline synthesis	proC	
Amino acid and purine metabolism	Purine synthesis	purC	
Amino acid and purine metabolism	Tryptophan synthesis	trpD	
Anaerobic respiration	Nitrate reductase	narG, narH, narI	
Anaerobic respiration	Nitrate/nitrite transporter	narK2	
Anti-apoptosis factor	NuoG	nuoG	
Antimicrobial activity	Phenazines biosynthesis	phzE1, phzF1, phzG1, phzS	
Antiphagocytosis	Alginate regulation	algQ, algR, algU, algW, algZ, mucB, mucC, mucD, mucP	
Antiphagocytosis	Capsular polysaccharide	cpsB, wblT, wblW, wcB, wodB, wcD, wcE, wza, wzc	
Antiphagocytosis	Capsule	cpsF	
Antiphagocytosis	Capsule I	gmrA, wcBN, wcBF, wcBR, wcBT, wzt2	
Cell surface components	GPL locus	fadES, fmt, rmlB	
Cell surface components	MymA operon	adhD, fadD13, sadH, tgs4	
Cell surface components	PDIM (phthiocerol dimycocerosate) and PGL (phenolic glycolipid) biosynthesis and transport	ddrA, mas, ppsC, ppsE	
Cell surface components	Potassium/proton antipporter	kelB	
Cell surface components	Proximal cyclopropane synthase of alpha mycolates	pcaA	
Cell surface components	Trehalose-recycling ABC transporter	lpaY, sugA, sugB, sugC	
Chemotaxis and motility	Flagella	flaA, flaB	
Efflux pump	FarAB	farA, farB	
Table 3 continued

Strains	Category	Subcategory	Name
Efflux pump	MtrCDDE	mtrC, mtrD	
Endotoxin	LOS	gmrA/lpcA, kdaA, kpsF, lgtF, licA, lpxH,	
Endotoxin	LPS	msbA, opsX/rfaC, orfM, rfaD, rfaE, rfaF,	
	LPS-modifying enzyme	pagP	
Exoenzyme	Cysteine protease	spbP	
Exoenzyme	Streptococcal enolase	eno	
Fimbrial adherence determinants	Agf/Csg	csgD	
Fimbrial adherence determinants	Fim	fimA, fimC, fimD, fimF, fimH, fimI	
Fimbrial adherence determinants	Lpf	lpfB, lpfC	
Fimbrial adherence determinants	Stg	stgA	
Fimbrial adherence determinants	Sth	sthA, sthB, sthC, sthD, sthE	
Fimbrial adherence determinants	Sti	stiB	
Glycosylation system	N-linked protein glycosylation	pgI	
Host immune evasion	Exopolysaccharide	galE, galU, manA, mrsA/glmM, pgi	
Host immune evasion	LPS glucosylation	gntB	
Host immune evasion	Polyglutamic acid capsule	capD	
Immune evasion	LPS	acpX, hirB, lpxA, lpxB, lpxC, lpxD, lpxK,	
Intra cellular survival	LigA	ligA	
Intra cellular survival	Lipoate protein ligase A1	lplA1	
Intra cellular survival	Mip	mip	
Intra cellular survival	Oligopeptide-binding protein	oppA	
Intra cellular survival	Post-translocation chaperone	prsA2	
Intra cellular survival	Sugar-uptake system	hpt	
Invasion	Ail	ail	
Invasion	Cell wall hydrolase	iap/cwhA	
Iron acquisition	Cytochrome c muturation (ccm) locus	ccmA, ccmB, ccmC, ccmE, ccmF	
Iron acquisition	Ferrous iron transport	feoA, feoB	
Iron acquisition	Iron acquisition/assimilation locus	iarB	
Iron and heme acquisition	Haemophilus iron transport locus	hitA, hitB, hitC	
Iron and heme acquisition	Heme biosynthesis	hemA, hemB, hemC, hemD, hemE, hemG, hemH, hemI, hemM, hemN, hemX, hemY	
Iron uptake	ABC transporter	fagD	
Iron uptake	ABC-type heme transporter	hmuZ, hmuU, hmuV	
Iron uptake	Achromobactin biosynthesis and transport	acsB, cbrB, cbrD	
Iron uptake	Aerobactin transport	iutA	
Iron uptake	ciu iron uptake and siderophore biosynthesis system	ciuD	
Iron uptake	Enterobactin receptors	igrA	
Iron uptake	Enterobactin synthesis	entE, entF	
Iron uptake	Enterobactin transport	fepA, fepB, fepC, fepD, fepG	
Iron uptake	Heme transport	shU	
Iron uptake	Hemin uptake	chuS, chuT, chuY	
Iron uptake	Iron-regulated element	ireA	
Iron uptake	Iron/managanease transport	sitA, sitB, sitC, sitD	
Iron uptake	Periplasmic binding protein-dependent ABC transport systems	viuC	
Strains	Category	Subcategory	Name
-------------------------------	---------------------------------	--------------------------------------	------------------------------------
Iron uptake	Pyochelin	pchA, pchB, pchR	
Iron uptake	Pyoverdine	pvdE, pvdH, pvdJ, pvdM, pvdN, pvdO	
Iron uptake	Salmochelin synthesis and transport	iroE, iroN	
Iron uptake	Vibriobactin biosynthesis	vibB	
Iron uptake	Vibriobactin utilization	viuB	
Iron uptake	Yersiniabactin siderophore	ybtA, ybtP	
Iron uptake systems	Ton system	exbB, exbD	
Lipid and fatty acid metabolism	FAS-II	kasB	
Lipid and fatty acid metabolism	Isocitrate lyase	icl	
Lipid and fatty acid metabolism	Pantothenate synthesis	panC, panD	
Lipid and fatty acid metabolism	Phospholipases C	plcD	
Macrophage inducible genes	Mig-5	mig-5	
Magnesium uptake	Mg2+ transport	mgtB	
Mammalian cell entry (mce)	Operons	mce3	
Metal exporters	Copper exporter	ctpV	
Metal uptake	ABC transporter	irtB	
Metal uptake	Exochelin (smegmatis)	fxbA	
Metal uptake	Herme uptake	mmp2, 11	
Metal uptake	Magnesium transport	mgtC	
Metal uptake	Mycobactin	fadE14, mbtH, mbtI	
Motility and export apparatus	Flagella	flhH, flhG, flhT	
Nonfimbrial adherence determi-	SinH	sinH	
nants	Other adhesion-related proteins	EF-Tu	tuf
Other adhesion-related proteins	PDH-B	pdhB	
Others	MspB2	mspB2	
Others	Nuclease	nuc	
Others	VirK	virK	
Phagosome arresting	Nucleoside diphosphate kinase	ndk	
Protease	Trigger factor	tig/ropA	
Proteases	Proteasome-associated proteins	mpa	
Quorum sensing	Autoinducer-2	luxS	
Quorum sensing systems	Acylhomoserine lactone synthase	hdtS	
Quorum sensing systems	N-(butanoyl)-L-homoserine lactone QS system	rhlR	
Regulation	Alternative sigma factor RpoS	rpoS	
Regulation	AtxA	atxA	
Regulation	BvrRS	bvrR	
Regulation	Carbon storage regulator A	csrA	
Regulation	DevR/S	devR/dosR	
Regulation	GacS/GacA two-component system	gacA, gacS	
Regulation	LetA/LetS two component	letA	
Regulation	LisR/LisK	lisK	
Regulation	MprA/B	mprA, mprB	
Regulation	PhoP/R	phoR	
Regulation	RegX3	regX3	
Regulation	RelA	relA	
Regulation	SenX3	senX3	
Regulation	Sigma A	sigA/rpoV	
Table 3 continued

Strains	Category	Subcategory	Name
Regulation	Two-component system	bvgA, bvgS	
Secreted proteins	Antigen 85 complex	fbpB, fbpC	
Secretion system	Accessory secretion factor	secA2	
Secretion system	Bsa T3SS	bprC	
Secretion system	Flagella (cluster I)	fliZ	
Secretion system	Mxi-Spa TTSS effectors controlled by MxiE	ipaH, ipaH2.5	
Secretion system	P. aeruginosa TTSS	exsA	
Secretion system	P. syringae TTSS effectors	hopA, hopAN1, hopI	
Secretion system	TTSS secreted proteins	bopD	
Secretion system	Type III secretion system	bscS	
Secretion system	Type VII secretion system	essC	
Secretion system	VirB/VirD4 type IV secretion system & translocated effector Beps	bepA	
Serum resistance	BrkAB system	brkAB	
Stress adaptation	AhpC	ahpC	
Stress adaptation	Catalase-peroxidase	katG	
Stress adaptation	Pore-forming protein	ompA	
Stress protein	Catalase	katA	
Stress protein	Manganese transport system	mntA, mntB, mntC	
Stress protein	Recombinational repair protein	recN	
Stress protein	SodCl	sodCl	
Surface protein anchoring	Lipoprotein diacylglyceryl trans-ferase	lgt	
Surface protein anchoring	Lipoprotein-specific signal peptidase II	ispA	
Toxin	Beta-hemolysin/cytolysin	cylG	
Toxin	Enterotoxin	entA, entB, entC, entD	
Toxin	Hydrogen cyanide production	hcnC	
Toxin	Phytotoxin phaseolysin	argD, argK, csqC1	
Toxin	Streptolysin S	sagA	
Toxins	Alpha-hemolysin	hlyA	
Toxins	Enterotoxin SenB/TieB	senB	
Two-component system	PhoPQ	phoP, phoQ	
Type I secretion system	ABC transporter for dispersin	aatC	
Antiphagocytosis	Capsular polysaccharide	cpsA	
Cell surface components	GPL locus	pks	
Cell surface components	Mycolic acid trans-cyclopropane synthetase	cmaA2	
Endotoxin	LOS	lgtA	
Iron uptake	Pyoverdine receptors	fpvA	
Iron uptake	Vibriobactin biosynthesis	vibA	
Iron uptake	Yersiniabactin siderophage	ipr1, ipr2, ybrE, ybrQ, ybrS, ybrT, ybrU, ybrX	
Secretion system	EPS type II secretion system	epsG	
Secretion system	Trw type IV secretion system	trwE	
Secretion system	VirB/VirD4 type IV secretion system & translocated effector Beps	virB11, virB4, virB9	
Toxin	RTX toxin	rtxA, rtxB	
Bacteriophages are applicable to phage therapy. In particular, bacteriophages have been used as a potential therapeutic agent to treat patients infected with multidrug resistant bacteria [47] and have been used for serological typing for diagnostic and epidemiological typing in *K. pneumoniae* [48]. However, because we did not

Table 3 continued

Strains	Category	Subcategory	Name
KP617 and PittNDM01	Adhesin	Streptococcal collagen-like proteins	sCIB
	Chemotaxis and motility	Flagella	fHc
	Iron uptake	Yersiniabactin siderophore	fYuA
not characterize the phages in KP617, we are not sure whether or not they are active.

Future directions

Klebsiella pneumoniae subsp. *pneumoniae* KP617, which is strongly pathogenic, is known to cause severe nosocomial infections. This strain, as well as the PittNDM01 and NUH124835 strains in the WGLW2 group, belongs to the sequence type ST14. In this study, we investigated specific antimicrobial resistance genes, virulence factors, and prophages related to pathogenicity and drug resistance in *K. pneumoniae* subsp. *pneumoniae* KP617 via a comparative analysis of the genome of this strain and those of PittNDM01, NUH124835, and ATCC BAA-2146. Significant homology was observed in terms of the genomic structure, gene content, antimicrobial resistance genes and virulence factors between KP617 and the reference strains; phylogenetic analysis indicated that KP617 is next to PittNDM01, despite the presence of large inversions. Moreover, KP617 shares 98.3% of its genes with PittNDM01. Despite the similarity in genome sequences and content, there were differences in phage-related genes, plasmids, and plasmid-harborized antimicrobial resistance genes. PittNDM01 harbors two more plasmids and 21 more antimicrobial resistance genes than KP617. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.

Availability of supporting data

Nucleotide sequence accession numbers The complete genome sequence of *K. pneumoniae* KP617 has been deposited in DDBJ/EMBL/GenBank under the accession numbers CP012753, CP012754, and CP012755 [49].

Additional file

Additional file 1. Annotated genes of KP617 and comparison of their sequences with those of the reference strains by using the RAST server.

Abbreviations

BSR: BLAST score ratio; CDS: coding DNA sequences; HGT: horizontal gene transfer; MLST: multi-locus sequence typing; NDM-1: New Delhi metallo-beta-lactamase 1; RAST: Rapid Annotation using Subsystem Technology; ST: sequence type; str: strain; substr: substring.

Authors’ contributions

DWK and WK designed and led the project and contributed to the interpretation of the results. DWK drafted the manuscript. YHJ and TK interpreted the results. YHJ, SHL, MRY, and TK performed the gene annotation and bioinformatics analysis. TK and YHJ wrote the manuscript. All authors read and approved the final manuscript before submission.

Author details

1 School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea. 2 Division of Antimicrobial Resistance, Korea National Institute of Health, Cheongju 363-951, Republic of Korea. 3 Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju 363-951, Republic of Korea.

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by a grant from the Marine Biotechnology Program (Genome Analysis of Marine Organisms and Development of Functional Applications) funded by the Ministry of Oceans and Fisheries.

Received: 17 April 2016 **Accepted:** 16 June 2016 **Published online:** 11 July 2016

References

1. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.
2. Yinnon AM, Butnaru A, Raviah D, Jerassy Z, Rudensky B. Klebsiella bacteraemia: community versus nosocomial infection. QJM. 1996;89(12):933–41.
3. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60–7.
4. Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in *Klebsiella pneumoniae*. Antimicrob Agents Chemother. 2004;48(1):15–22.
5. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440–58.
6. Rogers BA, Sidjabat HE, Silvey A, Anderson TL, Perera S, Li J, Paterson DL. Treatment options for New Delhi metallo-beta-lactamase-harbouring enterobacteriaceae. Microb Drug Resist. 2013;19(2):100–3.
7. Gyles C, Boerlin P. Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet Pathol. 2014;51(2):328–40.
8. Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014;20(9):821–30.
9. Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791–8.
10. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12):5046–54.
11. Qu H, Wang X, Ni Y, Liu J, Tan R, Huang J, Li L, Sun J. NDM-1-producing Enterobacteriaceae in a teaching hospital in Shanghai, China: IncX3-type plasmids may contribute to the dissemination of blaNDM-1. Int J Infect Dis. 2015;34:8–13.
12. Potron A, Rondinaud E, Poirel L, Belmonte O, Boyer S, Camiade S, Nordmann P. Genomic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D beta-lactamase from Enterobacteriaceae. Int J Antimicrob Agents. 2013;41(4):325–9.
13. Evans BA, Amyes SG. OXA beta-lactamases. Clin Microbiol Rev. 2014;27(2):241–63.
14. Balm MN, La AW, Krishnan P, Jureen R, Lin RT, Teo JW. Emergence of Klebsiella pneumoniae co-producing NDM-type and OXA-181 carbapenemases. Clin Microbiol Infect. 2013;19(9):E421–3.
15. Doi Y, O’Hara JA, Lando JF, Querry AM, Townsend BM, Pasculle AW, Muto CA. Co-production of NDM-1 and OXA-232 by Klebsiella pneumoniae. Emerg Infect Dis. 2014;20(1):163–5.
16. Kwon T, Yang JW, Lee S, Yun NR, Yoo WG, Kim HS, Cha JO, Kim DW. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae KP617, Coproducing OXA-232 and NDM-1 Carbapenemases, isolated in South Korea. Genome Announc. 2016;4(1):e01550–15.
Hudson CM, Bent ZW, Meagher RJ, Williams KP. Resistance determinants.

Liu PP, Liu Y, Wang LH, Wei DD, Wan LG. Draft genome sequence of an NDM-5-producing Klebsiella pneumoniae sequence type 1 strain of serotype K2. Genome Announc. 2016; 4(2):e01610–15.

Hackl T, Hedrich R, Schultz J, Forster F. proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics. 2014;30(21):3004–11.

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formisano K, Gerdes S, Glass EM, Kubal M, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 2008;9:75.

Khan NH, Ahsan M, Yoshizawa S, Hosoya S, Yokota A, Kogure K. Multilocus sequence typing and phylogenetic analyses of Pseudomonas aeruginosa isolates from the ocean. Appl Environ Microbiol. 2008;74(20):6194–205.

Glaser EP, Kampfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol. 2015;38(4):237–45.

Angiolu SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics. 2011;27(3):334–42.

Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986;17:57–86.

Stamatakis A. Phylogenetic models of rate heterogeneity: a high performance computing perspective. In: Parallel and distributed processing symposium, 2006 IPDPS 2006 20th international. 2006.

Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641–50.

Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualization bioinformatics tool. Bioinformatics. 2011;27(7):1009–10.

Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.

Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33(Database issue):D325–8.

Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39(Wb Server issue):W347–52.

Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, Lee HS, Yoo HS. Characterization of TEM-, SHV- and AmpC-type beta-lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int J Food Microbiol. 2008;124(2):183–7.

Brovedan M, Marchiafava PM, Moran-Barrio J, Cameranesi M, Cera G, Rinaudo M, Viale AM, Limansky AS. Complete sequence of a bla(NDM-1)-harboring plasmid in an Acinetobacter baumannii clinical strain isolated in Argentina. Antimicrob Agents Chemother. 2015;59(10):6667–9.

Kim SY, Rhee JY, Shin SY, Ko KS. Characteristics of community-onset NDM-1-producing Klebsiella pneumoniae isolates. J Med Microbiol. 2014;63(Pt 1):86–9.

Campos JC, da Silva MJ, dos Santos PR, Barros EM, Pereira Mde O, Seco MA, Maegnem CM, Leiriz LK, de Oliveira TG, da Faria-Junior C, et al. Characterization of plasmid pIs3000, a transposon responsible for blaNDM-1 dissemination among Enterobacteriaceae in Brazil, Nepal, Morocco, and India. Antimicrob Agents Chemother. 2015;59(12):7387–95.

Kim MN, Yong D, An D, Chung HS, Woo JH, Lee K, Chong Y. Nosocomial characterisation of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol. 2012;50(6):1433–6.

Yu VL, Hansen DS, Ko WC, Saginmenu A, Klugman KP, von Gottberg A, Goossens H, Wagener MM, Benedi VI, International Klebsiella Study AG. Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis. 2007;13(7):986–93.