Content optimization of foxtail millet grain flour and pumpkin oil in cracker formula by targeted programming

A B Turalieva¹, M K Sadygova¹, T V Kirillova¹, M V Belova¹, T I Anikienko² and A V Kondrashova¹

¹Saratov State Agrarian University named after N.I. Vavilov, Bolshaya Sadovaya Str., Saratov, 410005, Russia
²Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, 49, Timiryazevskaya Str., Moscow, 127550, Russia

E-mail: sadigova.madina@yandex.ru

Abstract. The paper suggests safe regional raw materials – foxtail millet flour and pumpkin oil – for the use in the technology of healthy nutrition. Various research works have proved the prospect of their application. Foxtail millet is one of the most ancient cereal plants in East Asia. The work used the variety of foxtail millet Amber, selection of the Russian Research, Design and Technology Institute of Sorghum and Corn Federal State Government-Funded Scientific Institution and Saratov State Vavilov Agrarian University. It was sown in Povolzhye Research, Development and Production Facility of Engelsky region and the Russian Research Institute of Sorghum and Corn. The cracker recipe compounds were optimized by experimental and statistical methods. For target programming, finished products were analyzed by strength, water absorption, mass fraction of fat and fiber, organoleptic properties. The influence of factors and their interaction on the indicators was studied by multivariate analysis of variance. To construct mathematic models of response function dependence on input factors, a complete factorial experiment was used at two levels with additional experiments carried out in star points of the plan center. The target programming made it possible to establish that the optimal content of foxtail millet grain flour in the cracker formula is 20%, pumpkin oil – 24% to the flour weight.

1. Introduction
One of the priorities of scientific and technological development of Russia is effective processing of agricultural products, creation of safe and functional food products.

The problem could be solved by developing combined food technology using functional ingredients based on regional safe and high-quality raw materials. Since bakery and flour confectionery products have high consumer demand in Russia, their enrichment with functional additives will make a significant contribution to improvement of public health [1-4].

It is promising to use the grain of foxtail millet – a valuable agricultural crop – as a useful functional additive. Foxtail millet (Panicum italicum – Italian, Chinese or many-headed millet) is one of the oldest cereals known. Chemical composition and useful properties make it advisable to use foxtail millet grain processing products in healthy nutrition technology [5, 7].

The Moscow Institute of Hygiene and Nutrition proved that the concentration of linolic acid in foxtail millet oil exceeds 61.5% of the weight of all fatty acids. The combination of linolic, linolenic and
arachidonic acids, commonly known as the vitamin F, raises the indicator of the sum of these acids to 64% and already makes it possible to talk about the concentrate of this vitamine in the composition of foxtail millet grain [8].

According to Kuznetsova L.I. et al. (2019), the foxtail millet grain is environmentally friendly [6]. According to Belarusian scientists, the foxtail millet is perfectly suitable for use in ecological farming. It hardly accumulates heavy metals and poison in its composition [8].

Due to their special taste qualities and unique healing properties, pumpkin seeds are recognized in modern dietetics as one of the best products for medicinal and prophylactic food and child nutrition. Pumpkin seeds contain up to 40% of the most useful edible oil. Pumpkin seed oil contains vitamins A, В1, В2, В6, С, Е, K, Р, РР, phospholipids, carotenoids, tocopherols, flavonoids, as well as iron, magnesium, zinc, selenium, potassium, calcium and other useful elements. The main advantage of pumpkin oil is the presence of polyunsaturated fatty acids: Omega-3 and Omega-6, vitamin F. The purpose of the study is to optimize the content of foxtail millet grain and pumpkin oil in the cracker flour formula by targeted programming.

2. Methods
The work used the variety of foxtail millet Amber, selection of the Russian Research, Design and Technology Institute of Sorghum and Corn Federal State Government-Funded Scientific Institution and Saratov State Vavilov Agrarian University. It was sown in Povolzhye Research, Development and Production Facility of Engelssky region and the Russian Research Institute of Sorghum and Corn. The cracker recipe compounds were optimized by experimental and statistical methods.

The finished products were analyzed by strength, water absorption, mass fraction of fat and fiber, organoleptic properties using the Stroganov device. Water absorption was defined according to GOST 10114, mass fraction of fat – according to GOST 31902 2012, mass fraction of fiber – according to GOST 5903.

The influence of factors and their interactions on the indicators were studied by means of a multivariate analysis of variance (Table 1). Three parallel experiments were conducted on each combination of the four factor levels.

Indicator	Input variable	Fisher’s variance ratio	Influence on output value
Mass fraction of fiber, %	x1 x2	368.0602 1.335358	Major influence No influence
Mass fraction of fat, %	x1 x2 x4	0.618608 16.34753	No influence
Mass fraction of fat, %	x1 x2 x3	6437.149 1.048026	Major influence Insignificant influence
Water absorption, %	x1 x2 x3	1340.926 1.34753	Major influence Insignificant influence
Strength, H	x1 x2 x3 x4	706.3105 286.2468	Major influence Major influence

To construct mathematic models of response function dependence on input factors, a complete factorial experiment was used at two levels with additional experiments carried out in star points of the plan center.

The regression equation in such planning is presented in a quadratic form:

\[Y = b_0 + b_1X_1 + b_2X_2 + b_3X_1X_2 + b_4X_1^2 + b_5X_2^2 \] (1)
The number of experiments within a two-factor experiment \((n = 2)\) equals \(N=13\). To the complete factorial experiment of \(2^2\) type, 5 experiments are added in the plan center and four “star” points with coordinates \((+a; 0); (-a;0); (0; +a);\) and \((0; -a)\). Here, \(a\) is the “star shoulder” equal to \(2^{\frac{n}{2}}\) (Figure 1).

![Figure 1. Area of experiment](image)

To calculate the coefficients of the regression equation (1) and the corresponding variance estimates the following constants (2)-(4) are found [1].

\[
A = \frac{1}{2B(n+2)B-n};
\]

\[
B = \frac{nN}{(n+2)(N-n_0)};
\]

\[
C = \frac{N}{N-n_0};
\]

Based on the results of the experiment, the following sums are found:

\[
S_0 = \sum_{j=1}^{N} y_j; \quad S_{jk} = \sum_{j=1}^{N} X_{ji}X_{jk} y_j; \quad S_i = \sum_{j=1}^{N} X_{ji} y_j; \quad S_{ii} = \sum_{j=1}^{N} X_{ji}^2 y_j
\]

The formulas for calculating the coefficients of the regression equation are as follows:

\[
b_0 = \frac{2AB}{N} \left[S_0 B(n+2) - C \sum_{i=1}^{n} S_{ii} \right];
\]

\[
b_i = \frac{CS_i}{N};
\]

\[
b_{ik} = \frac{C^2 S_{ik}}{BN};
\]

\[
b_{ii} = \frac{AC}{N} \left[S_{ii} C[B(n+2) - n] + C(1-B) \sum_{i=1}^{n} S_{ii} - 2BS_0 \right].
\]

The variance estimates in defining the coefficients of the regression equation are found by the formulas (10)-(13)

\[
\sigma_{b0}^2 = \frac{2AB(n+2)}{N} S_y^2
\]
\[s_{b_{ij}}^2 = \frac{S_y^2}{N - n_0} \] \hspace{2cm} (11)

\[S_{b_{ik}}^2 = \frac{C^2 S_y^2}{N} \] \hspace{2cm} (12)

\[S_{b_{ii}}^2 = \frac{AC^2 S_y^2}{N} \left[B(n+1) - (n-1) \right] \] \hspace{2cm} (13)

The variance estimates of reproducibility, which is related to experimental results in the center of the plan, is calculated by the formula:

\[S_y^2 = \frac{\sum_{u=1}^{n_0} (y_u - \bar{y}^0)^2}{n_0 - 1} \] \hspace{2cm} (14)

The significance of each coefficient of the regression equation is determined through the Student criterion by calculating its value

\[t_b = \frac{|p|}{\sqrt{\frac{S_y^2}{S_{b'}^2}}} \]

The adequacy of the obtained model is determined by the Fisher’s criterion by the formula (15):

\[F_p = \frac{\max \left\{ S_{ab}^2, S_{b}^2 \right\}}{\min \left\{ S_{ab}^2, S_{b}^2 \right\}} \] \hspace{2cm} (15)

where \(S_{ab}^2 \) – adequacy variance estimate (16):

\[S_{ab}^2 = \frac{\sum_{j=1}^{N} (y_j^2 - \bar{y}^0)^2 \frac{n_0 - 1}{n - (n+2)(n-1)/2}}{N - (n+2)(n-1)/2 - (n_0 - 1)} \] \hspace{2cm} (16)

3. Results and discussion
The planning matrix and results of the experiment are shown in Table 2. The test of significance of the model coefficients and the adequacy of the regression equation are shown in Table 3.
Table 2. Planning matrix and results of experiment (Ogonyok cracker)

No. experiment	Coded factor value	Natural factor value	Response function						
	x1, foxtail millet grain	x2, pumpkin	Y2 mass fraction of	Y3, water	Y4, strength,	Y5, integrated			
	flour content, %	oil content, %	fat, %	absorption, %	H	score			
1	-1	-1	15.0	20.0	4.5	22.8	142	760	80
2	+1	-1	25.0	20.0	4.9	23.1	160	760	70
3	-1	+1	15.0	30.0	4.5	32.6	138	620	70
4	+1	+1	25.0	30.0	4.9	33.0	157	610	65
5	0	-1.41	20.0	17.9	4.7	21.7	149	760	90
6	-1.41	0	12.9	25.0	4.1	27.5	140	700	90
7	0	1.414	20	32.1	4.7	35.1	136	590	70
8	+1.414	0	27.1	25.0	5.1	28.6	165	710	65
9	0	0	20.0	25.0	4.78	28.1	147	796	95
10	0	0	20.0	25.0	4.71	28.0	146	790	90
11	0	0	20.0	25.0	4.67	28.1	148	794	90
12	0	0	20.0	25.0	4.7	28.5	146.5	791	95
13	0	0	20.0	25.0	4.75	28.2	146.9	798	94

Table 3. Results of the test of significance of the model coefficients and the adequacy of the regression equation (Ogonyok cracker)

Response function	Coefficient value	Calculated Student criterion	Adequacy dispersion, Sad	Calculated Fisher’s variance ratio	
b_0	b_1	b_2 b_3 b_4 b_5 b_6	t_{b_0} t_{b_1} t_{b_2} t_{b_3} t_{b_4} t_{b_5} t_{b_6}	b_0 b_1 b_2 b_3 b_4 b_5 b_6	
Y_1, mass fraction of fiber, %	4.6984	-0.00063	0.00762	-0.17714	0.08199
Y_2, mass fraction of fat, %	27.88231	1.10923	1.38958	0.02492	-0.15879
Y_3, water absorption, %	145.33850	3.03491	4.23767	0.26262	-1.34700
Y_4, strength, H	765 3904	-11.8185	-14.9817	-2.48231	-3.59966
Y_5, integrated score	918.1629	-1.36926	-1.25026	-0.82015	-1.43570

Note: $F_{crit} = 2.7185$
Table 4. Response function dependencies on input factors (*Ogonyok* cracker)

Response function	Regression equation in coded variables
Y_1, mass fraction of fiber, %	$Y_1 = 4.69584 - 0.17714X_1^2$
Y_2, mass fraction of fat, %	$Y_2 = 27.88231 + 1.10923X_1 + 1.30958X_2 - 1.95879X_1^2 + 1.59729X_2^2$
Y_3, water absorption, %	$Y_3 = 145.328 + 3.02491X_1 + 4.23767X_2 - 1.3477X_1^2 + 1.59526X_2^2$
Y_4, strength, Н	$Y_4 = 785.389 - 11.8185X_1 - 14.9937X_2 - 35.1966X_1^2 - 74.436X_2^2$
Y_5, integrated score	$Y_5 = 91.8163 - 1.86923X_1 - 2.75026X_2 - 3.5978X_1^2 - 1464663X_2^2$

The comparison of each of the calculated values of the Student criterion with tabulated values at the level of significance $\alpha = 0.05$ and the number of degrees of freedom $N(n_0 - 1) = 16 \ (t_m = 1.7459)$ allows selecting significant regression coefficients.

The tabulated value of the Fisher criterion at the level of significance $\alpha = 0.05$ and the number of values of freedom of the numerator $f_1 = 3$ and denominator $f_2 = 4$ equals $F_t = 6.59$. The comparison of the calculated Fisher criterion and the tabulated one shows that the regression equations are adequate to the experimental data.

Figure 2. General view of response surface Y_1

Figure 3. Two-dimensional sections of response surface Y_1 opening surface (numbers on curves – values of fiber mass fraction, %)
Figure 4. General view of response surface Y_2

Figure 5. Two-dimensional sections of response surface Y_2 (numbers on curves – values of fat mass fraction, %)

Figure 6. General view of response surface Y_3

Figure 7. Two-dimensional sections of response surface Y_3 (numbers on curves – values of water absorption, %)

Figure 8. General view of response surface Y_4

Figure 9. Two-dimensional sections of response surface Y_4 (numbers on curves – values of strength, %)
The designed regression models can be used to optimize the cracker formulation. To determine the ratio of components, let us build a mathematical model of optimization according to five criteria:

\[
\begin{align*}
4.69584 - 0.17714X_1^2 & \rightarrow \text{max} ; \\
27.88231 + 1.10923X_1 + 1.30958X_2 - 1.95879X_1^2 + 1.59729X_2^2 & \rightarrow \text{min} ; \\
145.328 + 3.02491X_1 + 4.23767X_2 - 1.3477X_1^2 + 1.59526X_2^2 & \rightarrow \text{max} ; \\
785.389 - 11.8185X_1 - 14.9937X_2 - 35.1966X_1^2 - 74.4361X_2^2 & \rightarrow \text{max} \\
91.8163 - 1.86923X_1 - 2.75026X_2 - 3.5978X_1^2 - 1464663X_2^2 & \rightarrow \text{max}
\end{align*}
\]

under constraints \(X_1^2 + X_2^2 \leq 2\);

Here \(X_1, X_2\) – coded values of factors associated with the natural values of \(x_i\) ratios:

\[
X_1 = \frac{x_1 - 20}{5} ; \\
X_2 = \frac{x_2 - 25}{5}.
\]

The multi-objective optimization problem by target programming is converted into a single-objective problem of minimizing the sum of deviations with some indicator \(p\):

\[
G = \left(\sum_{k=1}^{K} w_k \left| f_k(x, y, z) - \tilde{f}_k \right|^{\frac{1}{p}} \right)^{\frac{1}{p}} \rightarrow \text{min} ,
\]

where \(w_k\) – some weighting factors characterizing the importance of a particular criterion, \(\tilde{f}_1, \tilde{f}_2, ..., \tilde{f}_k\) – values of target functions on the optimal plan for each criterion, \(p\) – parameter, \(k\) – number of target functions.
At \(p=2 \) and \(w_k = 1 \) we get the following minimization problem with criteria and constraints:

\[
G = \left(\sum_{k=1}^{5} w_k \left(\frac{f_k(x, y, z) - \bar{f}_k}{\bar{f}_k} \right)^2 \right)^{\frac{1}{2}} \rightarrow \min ; \quad x_1^2 + x_2^2 \leq 2;
\]

where \(\bar{f}_1 \) – maximum of the first criterion, \(\bar{f}_2 \) – minimum of the second criterion, \(\bar{f}_3 \) – maximum of the third criterion, where \(\bar{f}_4 \) – maximum of the fourth criterion, \(\bar{f}_5 \) – maximum of the fifth criterion.

The optimization problem for each criterion is solved in MS Excel using the Find Solution procedure. Table 5 shows the solution results.

Table 5. Results of optimization problems

Optimal design criterion	Coded factor value	Natural factor value		
	\(x_1 \)	\(x_2 \)	\(x_1 \), foxtail millet grain flour content, %	\(x_2 \), pumpkin oil content, %
\(\bar{f}_1 = 5.1 \)	+1.414	0	24	25.0
\(\bar{f}_2 = 23.0 \)	-1.2	-0.748331477	14	21,25834
\(\bar{f}_3 = 158 \)	1	1	25	30
\(\bar{f}_4 = 780 \)	0	0	20	25
\(\bar{f}_5 = 95 \)	0	-0.2	20	24
\(G = 0.19312 \)	0	-0.2	20	24

4. Conclusion
The optimal solution to the single-objective problem is the point \(x_1 = 20, x_2 = 24 \). The optimal content of foxtail millet grain flour and pumpkin oil in the cracker formula is 20% and 24%, respectively.

References
[1] Derkanosova N M, Zhuravlev A A and Sorokina I A 2011 Modeling and optimization of food production processes. Tutorial [Text]: Study guide (Voronezh: VSTA)
[2] Koryachkin S Ya 2013 Innovative technologies of bakery, pasta and confectionery products: Kosov an A.P. Conditions and patterns of innovative development in bakery industry Russian Bakery Industry 4 4-5
[3] Velichko N A et al 2013 Analysis of potential of Krasnoyarsk Krai for formation of thematic cluster on the production of functional food products KrasSAU Bulletin 12 252-258
[4] Ponomareva E I, Lukina S I and Sadygova M K 2016 Development of cupcake for specialized nutrition and assessment of its quality KrasSAU Bulletin 6 84-88
[5] Ponomareva E I, Popov V I, Lukina S I, Esaulenko I E and Alekhina N N 2017 Gingerbreads of increased nutritional value with non-traditional raw materials Issues of nutrition 86 (5) 75-81
[6] Zharkova I M, Zvyagin A A, Miroshnenco L A, Slepokurova Yu I, Roslyakov Yu F, Koryachkina S Ya and Gustinovich V G 2017 Optimization of gluten-free diet with new products Issues of children dietetics 15(6) 59-65

[7] Foxtail millet: composition and useful properties, available at: https://agronomu.com/bok/4481-chto-takoechumiza.html

[8] Kuznetsova L I et al. 2018 Safety and quality of regional raw materials for healthy production 21st century: results of the past and problem of the present 7 (3(43)) 70-74

[9] Kuznetsova L I, Sadygova M K, Bashinskaya O S, Selivanov N I and Buyanova I V 2018 Technological solutions in the production of bakery products with the use of foxtail millet processing products Journal of KrasSAU 3 176-181

[10] Korzun O S et al. 2011 Cultivation of millet crops in the Republic of Belarus: monograph (Grodno: GSAU) 189

[11] Shevtsova L P and Shyurova N A 2017 Foxtail millet – valuable culture of multilateral use and its high yield technology Collection of articles of the International Scientific and Practical Conference dedicated to the 130th anniversary of the birth of academician N.I. Vavilov pp 439-443

[12] Shevtsova L P, Shyurova N A and Bashinskaya O S 2016 Agrobiological assessment of single-species and mixed crops in Saratov right bank Vavilov’s readings – 2016: Collection of articles of the International Scientific and Practical Conference dedicated to the 129th anniversary of the birth of academician N.I. Vavilov. 24-26 November 2016 Saratov: Saratov SAU

[13] Shevtsova L P, Shyurova N A and Bashinskaya O S 2016 Improvement of foxtail millet cultivation technology in Saratov left bank Vavilov’s readings – 2016: Collection of articles of the International Scientific and Practical Conference dedicated to the 129th anniversary of the birth of academician N.I. Vavilov. 24-26 November 2016 Saratov: Saratov SAU

[14] Kosovan A P 2013 Conditions and patterns of innovative development of the bakery industry Baking of Russia 4 pp. 4-5.

[15] Tertychnaya T N, Fonina N N, Manukovskaya E Yu, Orobinsky V I and Mazhulina I V 2014 Optimization of the bread cookie recipe with the use of promising plant enriching agents Bread products 9 55-57

[16] Velichko N A, Gubanenko G A, Rechkina E A, Rubchevskaya L P and Mashanov A I 2013 Analysis of potential of Krasnoyarsk Krai for the formation of thematic cluster for functional food production Journal of KrasSAU 12 252-258

[17] Ponomaryova E I, Lukina S I and Sadygova M K 2016 Development of a cupcake for specialized nutrition and its evaluation Journal of KrasSAU 6 84-88

[18] Turalieva A B et al. 2018 Prospects for the use of foxtail millet grain flour in bakery technology Contribution of young scientists to agrarian science: materials of the International Scientific and Practical Conference (Kinel: RIO SGSHA) 419-421

[19] Erinc H, Mert B and Tekin A 2018 J Food Sci Technol 55 3960. https://doi.org/10.1007/s13197-018-3321-9