Search for CP Violation in the Decays $D^\pm \to K_s^0 K^\pm$, $D_s^\pm \to K_s^0 K^\pm$, and $D_s^\pm \to K_s^0 \pi^\pm$
We report a search for CP violation in the decay modes $D^+ \to K_0^{*}\pi^+$, $D^- \to K_0^{*}\bar{\pi}^-$, and $D_{s}^{\pm} \to K_{s}^{0}\pi^\pm$ using a data set corresponding to an integrated luminosity of 469 fb$^{-1}$ collected with the BABAR detector at the PEP-II asymmetric energy e$^{+}$e$^{-}$ storage rings. The decay rate CP asymmetries, $A_{CP}$, are determined to be $(+0.13 \pm 0.36$(stat) $\pm 0.25$(syst))%, $(0.05 \pm 0.23$(stat) $\pm 0.24$(syst))%, and $(+0.6 \pm 0.7$(stat) $\pm 0.3$(syst))%, respectively. These measurements are consistent with zero, and also with the standard model prediction $(-0.33 \pm 0.06)%$ for the $D^+ \to K_0^{*}\pi^+$ and $D^- \to K_0^{*}\bar{\pi}^-$ modes, and $(+0.33 \pm 0.06)%$ for the $D_{s}^{\pm} \to K_{s}^{0}\pi^\pm$ mode). They are the most precise determinations to date.

PACS numbers: 11.30.Er, 13.25.Ft, 14.40.Lb

I. INTRODUCTION

The search for CP violation (CPV) in charm decays provides a sensitive probe of physics beyond the Standard Model (SM). Owing to its suppression within the SM, a significant observation of direct CPV in charm decays would indicate the possible presence of new physics (NP) effects in the decay processes. In a previous article [1], we reported a precise measurement of the CP asymmetry in the $D^\pm \to K_0^{*}\pi^\pm$ mode, where the measured asymmetry was found to be consistent with the value expected from indirect CPV in the $K^0$ system. The LHCb and CDF Collaborations have recently reported evidence for CPV in charm decays by measuring the difference of CP asymmetries in the $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ channels [2,3], which is mainly sensitive to direct CPV. The size of the world average direct CP asymmetry difference, $(6.56 \pm 1.54) \times 10^{-3}$ [4], suggests either a significant enhancement of SM penguin amplitudes or of NP amplitudes (or both) in charm decays [9]. Improved measurements of the CP asymmetries in the individual two-body modes, along with measurements in other channels, are needed to determine the nature of the contributing amplitudes.

We present herein measurements of the decay rate CP asymmetry, $A_{CP}$, defined as

$$A_{CP} = \frac{\Gamma(D_{(s)}^{+} \to f) - \Gamma(D_{(s)}^{-} \to \bar{f})}{\Gamma(D_{(s)}^{+} \to f) + \Gamma(D_{(s)}^{-} \to \bar{f})},$$

(1)

in the decay modes $D^\pm \to K_0^{*}\pi^\pm$, $D^\pm \to K_0^{*}\bar{\pi}^-$, and $D_{s}^{\pm} \to K_{s}^{0}\pi^\pm$. Previous measurements of $A_{CP}$ in these channels have been reported by the CLEO-c [6] and Belle Collaborations [7]. As for the $A_{CP}$ measurement in $D^\pm \to K_0^{*}\pi^\pm$, we expect an $A_{CP}$ asymmetry of $(0.332 \pm 0.006)%$ [8] resulting from CPV in $K^0 - K^0$ mixing [9]. The sign of the $K^0$-induced asymmetry is positive (negative) if a $K^0$ ($\bar{K}^0$) is present in the corresponding tree-level Feynman diagram. Because it is identified by its $\pi^+\pi^-$ decay, the intermediate state is a coherent mix of $K_0^0$ and $K_0^{*}$ amplitudes. It has been shown in Ref. [10] that the $K_0^0 - K_0^{*}$ interference term gives rise to a measured CP asymmetry that depends on the range in proper time over which the decay rates are integrated, and on the efficiency for the reconstruction of the intermediate state as a function of its proper flight time.
II. THE \textsc{Babar} DETECTOR AND EVENT SELECTION

The data used for these measurements were recorded at or near the $\Upsilon(4S)$ resonance by the \textsc{Babar} detector at the PEP-II storage rings, and correspond to an integrated luminosity of 469 fb$^{-1}$. Charged particles are detected, and their momenta measured, by a combination of a silicon vertex tracker, consisting of 5 layers of double-sided detectors, and a 40-layer central drift chamber, both operating in a 1.5 T axial magnetic field. Charged-particle identification is provided by specific ionization energy loss measurements in the tracking system, and by the measured Cherenkov angle from an internally reflecting ring-imaging Cherenkov detector covering the central region of the detector. Electrons are detected by a CsI(Tl) electromagnetic calorimeter. The \textsc{Babar} detector, and the coordinate system used throughout, are described in detail in Refs. \cite{11,12}. We validate the analysis procedure using Monte Carlo (MC) simulation based on Geant4 \cite{13}. The MC samples include $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) events, simulated with JETSET \cite{14} and $B\bar{B}$ decays simulated with the EvtGen generator \cite{15}. To avoid potential bias in the measurements we finalize the event selection for each channel, as well as the procedures for efficiency correction, fitting, and the determination of the systematic uncertainties and possible biases in the measurements, prior to extracting the value of $A_{CP}$ from the data.

Signal candidates are reconstructed by combining a $K_S^0$ candidate, reconstructed in the decay mode $K_S^0 \rightarrow \pi^+\pi^-$, with a charged pion or kaon candidate. A $K_S^0$ candidate is reconstructed from two oppositely charged tracks with an invariant mass within a $\pm 10$ MeV/$c^2$ interval centered on the nominal $K_S^0$ mass \cite{6}, which is approximately $\pm 2.5 \sigma$ in the measured $K_S^0$ mass resolution. The $\chi^2$-probability of the $\pi^+\pi^-$ vertex fit must be greater than 0.1%. Motivated by MC studies, we require the measured flight length of the $K_S^0$ candidate to be at least three times greater than its uncertainty, to reduce combinatorial background. A reconstructed charged-particle track that has $p_T \geq 400$ MeV/$c$ is selected as a pion or kaon candidate, where $p_T$ is the magnitude of the momentum in the plane perpendicular to the $z$ axis (transverse plane). In our measurement, we require that a pion candidate not be identified as a kaon, a proton, or an electron, and that a kaon candidate be identified as a kaon, and not as a pion, a proton, or an electron. Identification efficiencies and misidentification rates for electron, pions, kaons, and protons with 2 GeV/$c$ momentum in the laboratory frame are reported in Table \ref{tab:effi}. The criteria used to select pion or kaon candidates are very effective in reducing the charge asymmetry from track reconstruction and identification, as inferred from studying the data control samples described below. A vertex fit to the whole decay chain, constraining the $D_{(s)}^\pm$ production vertex to be within the $e^+e^-$ interaction region, is then performed \cite{16}. We retain only $D_{(s)}^\pm$ candidates having a $\chi^2$-probability for this fit greater than 0.1%, and an invariant mass $m(K_{(s)}^0 h), h = \pi, K$, within a $\pm 65$ MeV/$c^2$ interval centered on the nominal $D_{(s)}^\pm$ mass \cite{5}, which is approximately equivalent to $\pm 8 \sigma$ in the measured $D_{(s)}^\pm$ mass resolution.

We require further that the magnitude of the $D_{(s)}^\pm$ candidate momentum in the $e^+e^-$ center-of-mass (CM) system, $p^*$, be between 2.6 and 5.0 GeV/$c$, in order to suppress combinatorial background from $B\bar{B}$ events. For the $D_{(s)}^\pm \rightarrow K_S^0 K^\pm$ mode, the MC simulated sample shows that retaining candidates with $p^*$ between 2.0 and 5.0 GeV/$c$ allows signal candidates from $B$-meson decays, without introducing an excessive amount of combinatorial background. Assuming that $CPT$ is conserved, there is no contribution to $A_{CP}$ from $CP$ violation in $B$ meson decays from Standard Model processes. Additional background rejection is obtained by requiring that the impact parameter of the $D_{(s)}^\pm$ candidate with respect to the beam-spot \cite{11}, projected onto the transverse plane, be less than 0.3 cm, and that the $D_{(s)}^\pm$ proper decay time, $t_{xy}$, be between $-15$ and 35 ps. The decay time is measured using $L_{xy}$, defined as the distance of the $D_{(s)}^\pm$ decay vertex from the beam-spot projected onto the transverse plane.

In order to further optimize the sensitivity of the $A_{CP}$ measurements, we construct a multivariate algorithm, based on seven discriminating variables for each $D_{(s)}^\pm$ candidate: $t_{xy}$, $L_{xy}$, $p^*$, the momentum magnitude and component in the transverse plane for the $K_S^0$ candidate, and also for the pion or kaon candidate. For the $D_{(s)}^\pm \rightarrow K_S^0 K^\pm$ and $D_{(s)}^\pm \rightarrow K_S^0 K^\pm$ modes the multivariate algorithm with the best performance is a Boosted De-

\begin{table}[h]
\centering
\caption{Identification efficiencies and misidentification rates for electron, pions, kaons, and protons with 2 GeV/$c$ momentum in the laboratory frame. The values for kaons on the third row refers to the identification criterion used to reject kaons from the pion sample, while the values on the fourth row to the criterion used in the kaon selection.}
\begin{tabular}{|c|c|c|c|}
\hline
Particle & Efficiency[\%] & Misid. rate[\%] \\
\hline
$e^\pm$ & 91 & 0.04 & $< 0.2$ \\
$\pi^\pm$ & 88 & – & 1 \\
$K^\pm$ (applied to $\pi^\pm$) & 91 & 1 & – \\
$K^\pm$ (applied to $K^\pm$) & 99 & 8 & – \\
$p^\pm$ & 80 & 0.2 & 0.2 \\
\hline
\end{tabular}
\end{table}
cision Tree \cite{17}, while for the $D^\pm \rightarrow K_S^0\pi^\pm$ mode the best algorithm is a Projective Likelihood method \cite{17}. The final selection criteria, based on the outputs of the multivariate selectors, are optimized using truth-matched signal and background candidates from the MC sample. For the optimization, we maximize the $S/\sqrt{S+B}$ ratio, where $S$ and $B$ are the numbers of signal and background candidates with invariant mass within $\pm 30\text{MeV}/c^2$ of the nominal $D^\pm$ mass, which is approximately $\pm 3\sigma$ in the measured mass resolution.

III. SIGNAL YIELD AND ASYMMETRY EXTRACTION

For each mode the signal yield is extracted using a binned maximum likelihood (ML) fit to the distribution of the invariant mass $m(K_S^0h)$ for the selected $D^\pm_{(s)}$ candidates. The total probability density function (PDF) is the sum of signal and background components. The signal PDF is modeled as a sum of two Gaussian functions for the $D^\pm_{(s)} \rightarrow K_S^0K^\pm$ modes, and as a single Gaussian function for the $D^\pm_{(s)} \rightarrow K_S^0\pi^\pm$ mode. The background PDF is taken as the sum of two components: a distribution describing the invariant mass of mis-reconstructed charm meson decays, and a combinatorial background modeling the mass distribution from other sources. For the $D^\pm \rightarrow K_S^0K^\pm (D^\pm \rightarrow K_S^0\pi^\pm)$ mode the charm background is mainly from the tail of the invariant mass distribution for $D^\pm_{(s)} \rightarrow K_S^0K^\pm (D^\pm \rightarrow K_S^0\pi^\pm)$ candidates. For the $D^\pm_{(s)} \rightarrow K_S^0K^\pm$ mode, the mis-reconstructed charm background originates mainly from $D^\pm \rightarrow K_S^0\pi^\pm$ decays for which the $\pi^\pm$ is misidentified as a $K^\pm$. Assigning the wrong mass to the pion shifts the reconstructed invariant mass, and the resulting distribution is a broad peak with mean value close to the $D^\pm$ mass. For each mode, the invariant mass distribution due to charm background is modeled using a histogram PDF obtained from a MC sample of simulated charm background decays. The combinatorial background is described by a first(second)-order polynomial for the $D^\pm_{(s)} \rightarrow K_S^0\pi^\pm$ mode ($D^\pm \rightarrow K_S^0K^\pm$ and $D^\pm_{(s)} \rightarrow K_S^0K^\pm$ modes). The fits to the $m(K_S^0h)$ distributions yield (159.4 $\pm$ 0.8) $\times 10^3$ $D^\pm \rightarrow K_S^0K^\pm$ decays, (288.2 $\pm$ 1.1) $\times 10^3$ $D^\pm \rightarrow K_S^0\pi^\pm$ decays, and (14.3 $\pm$ 0.31) $\times 10^3$ $D^\pm_{(s)} \rightarrow K_S^0\pi^\pm$ decays. The data and the fit results are shown in Fig. 1. All of the PDF parameters are extracted from fits to the data.

For each channel, we determine $A_{CP}$ by measuring the signal yield asymmetry $A$ defined as:

$$A = \frac{N_{D^+_{(s)}} - N_{D^-_{(s)}}}{N_{D^+_{(s)}} + N_{D^-_{(s)}}},$$

where $N_{D^+_{(s)}}$ ($N_{D^-_{(s)}}$) is the number of $D^+_{(s)}$ ($D^-_{(s)}$) decays determined from the fit to the invariant mass distribution. The asymmetry $A$ contains two contributions in addition to $A_{CP}$, namely the forward-backward (FB) asymmetry ($A_{FB}$), and a detector-induced component. We measure $A_{FB}$ together with $A_{CP}$ using the selected dataset, while we correct the data for the detector-induced component using coefficients derived from a control sample.

IV. CORRECTION OF DETECTOR-RELATED ASYMMETRIES

We use a data-driven method, described in detail in Ref. \cite{1}, to determine the charge asymmetry in track reconstruction as a function of the magnitude of the track momentum and its polar angle in the laboratory frame. The method exploits the fact that $\Upsilon(4S) \rightarrow B\bar{B}$ events provide a sample evenly populated with positive and negative tracks, free of any physics-induced asymmetries. The off-resonance momentum distribution is subtracted from the on-resonance one, to remove any contribution from continuum, for which there is a FB asymmetry in the CM frame. This sample is used to compute the detector-related asymmetries in the reconstruction of charged-particle tracks. Starting from a sample of $50.6 \text{fb}^{-1}$ of data collected at the $\Upsilon(4S)$ resonance and an off-resonance data sample of $44.8 \text{fb}^{-1}$, we obtain a large sample of charged-particle tracks, and apply the same charged pion or kaon track selection criteria used in the reconstruction of the $D^\pm_{(s)} \rightarrow K_S^0K^\pm$ and $D^\pm_{(s)} \rightarrow K_S^0\pi^\pm$ modes. Then, after subtracting the off-resonance contribution from the on-resonance sample, we obtain a sample of more than 120 million pion candidates, and 40 million kaon candidates, originating from $\Upsilon(4S)$ decays. We use the full off-resonance sample and an equivalent luminosity for the on-resonance sample, because, due to the subtraction procedure, including additional data in the on-resonance sample does not improve the statistical error on the correction ratios mentioned below. These candidates are then used to compute the efficiency ratios for positive and negative pions and kaons. The ratio values and their statistical errors for pions and kaons are shown in Fig. 2 and Fig. 3, respectively. For the $D^\pm_{(s)} \rightarrow K_S^0K^- (D^\pm_{(s)} \rightarrow K_S^0\pi^-)$ modes, the $D^-_{(s)}$ ($D^0_{(s)}$) yields, in intervals of kaon (pion) momentum and cosine of its polar angle, $\cos \theta$, are weighted with the kaon (pion) efficiency ratios to correct for the detection efficiency differences between $K^+$ and $K^-$ ($\pi^+$ and $\pi^-$). Momentum and cosine of its polar angle intervals are not uniform in order to have similar statistics, and therefore similar correction uncertainty, in each interval. Interval sizes vary from (0.05 GeV/c, 0.06) to (4.4 GeV/c, 0.96), where the first number is the momentum interval, and the second its cosine of polar angle interval. The largest correction is approximately 1% for pions and 2% for kaons. After correcting the data for the detector-induced component only $A_{FB}$ and $A_{CP}$ contribute to the measured asymmetry $A$. 


Neglecting higher-order terms that contain $A_{CP}$ and $A_{FB}$, the resulting asymmetry can be expressed simply as the sum of the two. Given that $A_{FB}$ is an odd function of $\cos \theta_D^*$, where $\theta_D^*$ is the polar angle of the $D_{(s)}^*$ candidate momentum in the CM frame, $A_{CP}$ and $A_{FB}$ can be written as a function of $|\cos \theta_D^*|$ as follows:

$$A_{CP} (|\cos \theta_D^*|) = \frac{A (+ |\cos \theta_D^*|) + A (- |\cos \theta_D^*|)}{2}$$

(3)

and

$$A_{FB} (|\cos \theta_D^*|) = \frac{A (+ |\cos \theta_D^*|) - A (- |\cos \theta_D^*|)}{2}.$$  

(4)

where $A (+ |\cos \theta_D^*|)$ $(A (- |\cos \theta_D^*|))$ is the measured asymmetry for the $D_{(s)}^*$ candidates in a positive (negative) $\cos \theta_D^*$ interval.

A simultaneous ML fit to the $D_{(s)}^+$ and $D_{(s)}^-$ invariant mass distributions is carried out to extract the signal yield asymmetry in each of ten equally spaced $\cos \theta_D^*$ intervals, starting with interval 1 at $[-1.0, -0.8]$. The PDF model that describes the distribution in each sub-sample is the same as that used in the fit to the full sample, but the following parameters are allowed to float separately in each sub-sample (referred to as split parameters): the yields for signal, charm background and combinatorial candidates; the asymmetries for signal and combinatorial candidates; the width, and the fraction of the Gaussian function with the larger contribution to the

FIG. 1: Invariant mass distribution for (a) $D^+ \rightarrow K^0 S$, (b) $D^+ \rightarrow K^0 S$, and (c) $D^+_s \rightarrow K^0 \pi^+$ candidates (points with error bars). The solid curve shows the result of the fit to the data. The dashed curve represents the sum of all background contributions, while the dotted curve indicates combinatorial background only.

FIG. 2: (top) The ratio between the detection efficiency for $\pi^+$ and $\pi^-$, and (bottom) the corresponding statistical errors. The values are computed using the numbers of $\pi^+$ and $\pi^-$ tracks in the selected control sample.

FIG. 3: (top) The ratio between the detection efficiency for $K^+$ and $K^-$, and (bottom) the corresponding statistical errors. The values are computed using the numbers of $K^+$ and $K^-$ tracks in the selected control sample.

V. EXTRACTION OF $A_{CP}$ AND $A_{FB}$
signal PDF; and the first-order coefficient of the polynomial that models the combinatorial background. For the \( D^\pm \to K^0_s K^\pm \) mode, the yields for the charm background candidates in intervals 1, 2, and 3 were fixed to 0 to obtain a fully convergent fit. Since interval 10 contains the smallest number of candidates, we use a single Gaussian function to model the signal PDF for the \( D^\pm \to K^0_s K^\pm \) modes. For the \( CP \) asymmetry of charm background candidates we use the same floating parameters as for the signal candidates, because the largest source of \( CP \) asymmetry for both samples is due to CPV in \( K^0 - \bar{K}^0 \) mixing. For the \( D^\pm \to K^0_s \pi^\pm \) mode, where the primary charm background channel, \( D^\pm \to K^0_s \pi^\pm \), has the same magnitude but opposite-sign asymmetry due to \( K^0 - \bar{K}^0 \) mixing, we use a separate parameter for the asymmetry of the charm background candidates. To achieve a more stable fit, if the fit results for a split parameter are statistically compatible between two or more sub-samples, the parameter is forced to have the same floating value among those sub-samples only. For the \( D^\pm \to K^0_s \pi^\pm \) mode the width of the first Gaussian function for the signal PDF is set to the same floating value in intervals 1, 2, 3, and 4. The first-order coefficient of the polynomial describing the combinatorial background is set to the same floating value in intervals 4 to 8 (\( D^\pm \to K^0_s K^\pm \)), in intervals 4 to 8 (\( D^\pm \to K^0_s K^\pm \)), and in intervals 2 to 7 (\( D^\pm \to K^0_s \pi^\pm \)). The final fit contains 70, 80, and 64 free parameters for the \( D^\pm \to K^0_s K^\pm \), \( D^\pm \to K^0_s K^\pm \), and \( D^\pm \to K^0_s \pi^\pm \) modes, respectively.

The \( A_{CP} \) and \( A_{FB} \) values for the five \( |\cos \theta_D^\pm| \) bins are shown in Table I[2] for the three decay modes. The weighted average of the five \( A_{CP} \) values is \((0.16 \pm 0.36)\%\) for the \( D^\pm \to K^0_s K^\pm \) mode, \((0.00 \pm 0.23)\%\) for the \( D^\pm \to K^0_s K^\pm \), and \((0.6 \pm 2.0)\%\) for the \( D^\pm \to K^0_s \pi^\pm \), where the errors are statistical only.

We perform two tests to validate the analysis procedure for each channel. The first involves generating 500 toy MC experiments with a statistics equal to data using the PDF and the parameters obtained from the fit to data. After extracting \( A_{CP} \) from each experiment, for the \( D^\pm \to K^0_s K^\pm \) and \( D^\pm \to K^0_s K^\pm \) modes, we deduce from the mean of the \( A_{CP} \) pull distributions the presence of a small bias in the fitted value of each fit parameter (the means are \(-0.036\pm0.014\) and \(+0.041\pm0.014\), respectively). To account for this effect we apply a correction to the final values equal to \(+0.013\%\) for the \( D^\pm \to K^0_s K^\pm \) mode, and \(-0.01\%\) for the \( D^\pm \to K^0_s K^\pm \) mode. The \( A_{CP} \) pull distributions show that the fit provides an accurate estimate of the statistical error for all the modes. The second test involves fitting a large number of MC events from the full \( \text{BaBar} \) detector simulation. We measure \( A_{CP} \) from this MC sample to be consistent with the generated value of zero.

VI. SYSTEMATICS

The main sources of systematic uncertainty are listed in Table I[2] for each decay mode, together with the overall uncertainties. The primary sources of systematic uncertainty are the detection efficiency ratios used to weight the \( D(n) \) yields, and the contributions from mis-identified particles in the data control sample used to determine the charge asymmetry in track reconstruction efficiency.

The technique used to remove the charge asymmetry due to detector-induced effects produces a small systematic uncertainty in the measurement of \( A_{CP} \) due to the statistical error in the relative efficiency estimation. This systematic uncertainty depends only on the type of charged particle (pion or kaon) in the final state, and not on the initial state. To estimate the systematic uncertainty on \( A_{CP} \) resulting from this source, the relative charged-particle efficiency in each interval of momentum and \( \cos \theta \) is randomly drawn from a Gaussian distribution whose mean is the nominal relative efficiency in that interval, and where the root-mean-squared (r.m.s.) deviation is the corresponding statistical error. For each mode, we generate 500 such charged-particle relative-efficiency distributions, and use them to obtain 500 \( A_{CP} \) values, following the procedure described earlier to determine the nominal value of \( A_{CP} \). The r.m.s. deviation of these 500 values from the nominal \( A_{CP} \) is taken to be the systematic uncertainty. For the \( D^\pm \to K^0_s K^\pm \) modes, the estimated systematic uncertainty is 0.23%. For the \( D^\pm \to K^0_s \pi^\pm \) mode, we assign the same systematic uncertainty, 0.06%, as that estimated for the \( D^\pm \to K^0_s \pi^\pm \) mode in Ref. [2].

The small fraction of misidentified particles in the generic track sample can introduce small biases in the estimation of the efficiencies, and subsequently in the \( A_{CP} \) measurements. Because of the good agreement between data and MC samples, we can use the simulated MC candidates to measure the shift in the \( A_{CP} \) value from the fit when the corrections are applied, and when they are not. Again, this contribution depends only on the type of the charged-particle track. Hence, for the \( D^\pm \to K^0_s \pi^\pm \) mode, we assume the same shift obtained in Ref. [2], namely +0.05%. By fitting the \( D^\pm \to K^0_s K^\pm \) MC sample when the corrections are applied, and again when not, we obtain a shift of +0.05% and we assume this for both the \( D^\pm \to K^0_s K^\pm \) and \( D^\pm \to K^0_s K^\pm \) modes. For all the modes, we shift the measured \( A_{CP} \) by this correction value and then, conservatively, include the magnitude of this shift as a contribution to the systematic uncertainty.

Using MC simulation, we evaluate an additional systematic uncertainty of \( \pm0.01\% \) due to a possible charge asymmetry present in the control sample before applying the selection criteria. Another source of systematic uncertainty is due to the choice of the \( \cos \theta_D^\pm \) interval-size in the simultaneous ML fit. The systematic uncertainty is taken to be the largest absolute difference between the nominal \( A_{CP} \) extracted using ten \( \cos \theta_D^\pm \) intervals and that obtained when the fit is performed using either 8
FIG. 4: $CP$ asymmetry, $A_{CP}$, for (a) $D^\pm \to K^0 L^\pm$, (b) $D^+_s \to K^0 L^+_s$, and (c) $D^+_s \to K^0 \pi^+_s$ as a function of $|\cos{\theta_D^*}|$ in the data sample. The solid line represents the central value of $A_{CP}$ and the gray band is the $\pm 1 \sigma$ interval, both obtained from a $\chi^2$-minimization assuming no dependence on $|\cos{\theta_D^*}|$. The corresponding forward-backward asymmetries, $A_{FB}$, are shown in (d), (e), and (f).

TABLE II: Summary of the systematic uncertainty contributions for the $A_{CP}$ measurement in each mode. The values are absolute uncertainties, even though given as percentages. The total value corresponds to the sum in quadrature of the individual contributions.

| Systematic uncertainty        | $D^\pm \to K^0 L^\pm$ | $D^+_s \to K^0 L^+_s$ | $D^+_s \to K^0 \pi^+_s$ |
|-------------------------------|-------------------------|-------------------------|-------------------------|
| Efficiency of PID selectors   | 0.05%                   | 0.05%                   | 0.05%                   |
| Statistics of the control sample | 0.23%                 | 0.23%                   | 0.06%                   |
| Misidentified tracks in the control sample | 0.01%                 | 0.01%                   | 0.01%                   |
| $\cos{\theta_D^*}$ interval size | 0.04%                 | 0.02%                   | 0.27%                   |
| $K^0 - \bar{K}^0$ regeneration | 0.05%                 | 0.05%                   | 0.06%                   |
| $K^0_0 - \bar{K}^0_0$ interference | 0.015%               | 0.014%                  | 0.008%                  |
| Total                         | 0.25%                   | 0.24%                   | 0.29%                   |

or 12 intervals in $\cos{\theta_D^*}$. This is the dominant source of systematic uncertainty for the $D^\pm \to K^0 \pi^\pm$ mode, as shown in Table II.

We also consider a possible systematic uncertainty due to the regeneration of neutral kaons in the material of the detector. The $K^0$ and $\bar{K}^0$ mesons produced in the decay processes can interact with the material in the tracking volume before they decay. Following a method similar to that described in Ref. [18], we compute the probability for a $K^0$ or a $\bar{K}^0$ meson to interact inside the $B$abar tracking system, and estimate systematic uncertainties of $0.05\%$ ($D^\pm \to K^0 L^\pm$) and $0.06\%$ ($D^+_s \to K^0 \pi^+_s$).

Although the intermediate state is labelled as a $K^0$, we apply a correction term to the measured $A_{CP}$ to include the effect of $K^0_0 - \bar{K}^0_0$ interference in the intermediate state [19]. This correction term depends on the proper time range over which decay distributions are integrated, and on the efficiency of the reconstruction of the $\pi^+ \pi^-$...
TABLE III: Summary of the $A_{CP}$ measurements. Where reported, the first uncertainty is statistical, and the second is systematic.

| $A_{CP}$ value from the fit | $D^\pm \rightarrow K_S^0 K^\pm$ | $D_s^\pm \rightarrow K_S^0 K^\pm$ | $D_s^\pm \rightarrow K_S^0 \pi^\pm$ |
|---------------------------|-------------------------------|-------------------------------|-------------------------------|
|                          | $(+0.155 \pm 0.360)\%$        | $(0.00 \pm 0.23)\%$           | $(+0.6 \pm 2.0)\%$           |
| Correction for the bias from toy MC experiments | +0.013% | -0.01% | - |
| Correction for the bias in the PID selectors | -0.05% | -0.05% | -0.05% |
| Correction for the $K_S^0-K_L^0$ interference ($\Delta A_{CP}$) | +0.015% | +0.014% | -0.008% |
| $A_{CP}$ final value | $(+0.13 \pm 0.36 \pm 0.25)\%$ | $(-0.05 \pm 0.23 \pm 0.24)\%$ | $(+0.6 \pm 2.0 \pm 0.3)\%$ |
| $A_{CP}$ contribution from $K^0-L^0$ mixing | $(-0.332 \pm 0.006)\%$ | $(-0.332 \pm 0.006)\%$ | $(+0.332 \pm 0.006)\%$ |
| $A_{CP}$ final value (charm only) | $(+0.46 \pm 0.36 \pm 0.25)\%$ | $(+0.28 \pm 0.23 \pm 0.24)\%$ | $(+0.3 \pm 0.2 \pm 0.3)\%$ |

In conclusion, we measure the direct $CP$ asymmetry, $A_{CP}$, in the $D^\pm \rightarrow K_S^0 K^\pm$, $D_s^\pm \rightarrow K_S^0 K^\pm$, and $D_s^\pm \rightarrow K_S^0 \pi^\pm$ modes using approximately 159 000, 288 000, and 14 000 signal candidates, respectively. The measured $A_{CP}$ value for each mode is reported in Table III, where the first errors are statistical and the second are systematic. In the last row of the table, we also report the $A_{CP}$ values after subtracting the expected $A_{CP}$ contribution for each mode due to $K^0-L^0$ mixing. The results are consistent with zero, and with the SM prediction, within one standard deviation.

VIII. ACKNOWLEDGEMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BaBar. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA).

[1] P. del Amo Sanchez et al. (BaBar Collaboration), Phys. Rev. D 83, 071103(R) (2011).
[2] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 108, 111602 (2012).
[3] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 109, 111801 (2012).
[4] Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1207.1158 [hep-ex]; for a more recent update see http://www.slac.stanford.edu/xorg/hfag/
[5] G. Isidori, J. F. Kamenik, Z. Ligeti and G. Perez, Phys. Lett. B 711, 46 (2012). H.-Y. Cheng and C.-W. Chi, Phys. Rev. D 85, 034036 (2012) [Erratum-ibid. D 85, 079903 (2012)]. B. Bhattacharya, M. Gronau and J. L. Rosner, Phys. Rev. D 85, 054014 (2012). G. F. Gu-
dice, G. Isidori and P. Paradisi, JHEP 1204, 060 (2012). E. Franco, S. Mishima and L. Silvestrini, JHEP 1205, 140 (2012). J. Brod, Y. Grossman, A. L. Kagan and J. Zupan, JHEP 1210, 161 (2012).

[6] S. Dobbs et al. (CLEO Collaboration), Phys. Rev. D 76, 112001 (2007).

[7] B. R. Ko et al. (Belle Collaboration), Phys. Rev. Lett. 104, 181602 (2010).

[8] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

[9] H. J. Lipkin and Z. -z. Xing, Phys. Lett. B 450, 405 (1999).

[10] Ya. I. Azimov and A. A. Iogansen, Sov. J. Nucl. Phys. 33(2), 205-210 (1981).

[11] B. Aubert et al. (BABAR Collaboration), Nucl. Instr. Methods Phys. Res., Sect. A 479, 1 (2002).

[12] W. Menges, IEEE Nucl. Sci. Symp. Conf. Rec. 5, 1470 (2006).

[13] S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instr. Methods Phys. Res., Sect. A 506, 250 (2003).

[14] T. Sjostrand, S. Mrenna and P. Z. Skands, JHEP 0605, 026 (2006).

[15] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).

[16] W. D. Hulsbergen, Nucl. Instrum. Meth. A 552, 566 (2005).

[17] P. Speckmayer, A. H"ocker, J. Stelzer and H. Voss, J. Phys. Conf. Ser. 219, 032057 (2010).

[18] B. R. Ko, E. Won, B. Golob and P. Pakhlov, Phys. Rev. D 84, 111501(R) (2011).

[19] Y. Grossman and Y. Nir, JHEP 1204, 002 (2012).

[20] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 85, 031102(R) (2012); Erratum-ibid. D 85, 099904(E) (2012).