Supplement of

Occurrence and source apportionment of perfluoroalkyl acids (PFAAs) in the atmosphere in China

Deming Han et al.

Correspondence to: Jinping Cheng (jpcheng@sjtu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Supplementary material

CONTENT

Table S1. Physical and chemical properties of target PFAAs compounds...2
Table S2. The geographic information and annual temperature in different sampling sites of atmospheric PFAAs....3
Table S3. MS parameters, MDLs, LODs, LOQs values and recovery rates for individual compounds of PFAAs..... 5
Table S4. The measured abundances of PFAAs in this study (n=268)...7
Table S5. Correlation analysis of PFAAs in the atmosphere in China...8
Figure S1. Spatial distributions of 23 sampling sites of atmospheric PFAAs in China ..9
Figure S2. Temporal variations of PFAAs concentrations in selected four typical sites......................................10
Figure S3. The spatial distributions of fluoride related products manufacturers in China....................................11
Figure S4. The spatial distributions of fluoride related products manufacturers in Zhejiang site12
Figure S5. The backward trajectories of air mass extracted by Hysplit trajectory model.....................................14
Section S1. Sampling rate of XAD–PAS in this investigation..15
Section S2. PMF analysis and uncertainty assessment..16
Reference...18

NINETEEN pages: FIVE tables and FIVE figures, TWO sections.
Table S1. Physical and chemical properties of target PFAAs compounds

Component	Abbreviation	Molecular structure	Molecular weight	Bio–concentration factor	log\(K_{ow}\) \(^b\)	\(P_i\) (mmHg) \(^c\)
Perfluoroalkane carboxylic acids (PFCAs)						
Perfluoropentanoic acid	PFPeA	C4F9COOH	263.98	1.00	5.29	7.9±0.4
Perfluorohexanoic acid	PFHxA	C5F11COOH	313.98	1.00	5.97	3.1±0.5
Perfluoroheptanoic acid	PFHpA	C6F13COOH	363.97	1.00	6.86	0.5±0.6
Perfluorooctanoic acid	PFOA	C7F15COOH	413.97	1.90	7.75	0.3±0.7
Perfluorononanoic acid	PFNA	C8F17COOH	463.97	11.26	8.64	0.2±0.8
Perfluorodecanoic acid	PFDA	C9F19COOH	513.96	44.30	9.53	0.0±0.9
Perfluoroundecanoic acid	PFuDA	C10F21COOH	563.96	128.19	10.42	0.0±0.9
Perfluorododecanoic acid	PFDoA	C11F23COOH	613.95	235.68	11.31	0.0±1.0
Perfluorotridecanoic acid	PFTrDA	C12F25COOH	663.95	474.19	12.19	0.0±1.1
Perfluorotetradecanoic acid	PFTeDA	C13F27COOH	713.95	1903.40	13.08	0.0±1.2
Perfluoroalkane sulfonic acids (PFSAs)						
Perfluorobutane sulfonic acid	PFBS	C4F9SO3H	299.98	1.00	3.68	/ \(^d\)
Perfluorohexane sulfonic acid	PFHxS	C6F13SO3H	399.97	1.00	5.25	/
Perfluorooctane sulfonic acid	PFOS	C8F17SO3H	499.97	1.00	7.03	/

\(^a\): Predicted data are generated using the Advanced Chemistry Development, Inc. (Canada), cited from (Yu, Liu et al. 2018);

\(^b\): Predicted octanol–water partitioning coefficients from individual PFAAs structure, cited from (Buck, Franklin et al. 2011, Yu, Liu et al. 2018);

\(^c\): Predicted pure compound vapor pressure, unit of mmHg at 298 K, cited from (Buck, Franklin et al. 2011, Yu, Liu et al. 2018);

\(^d\): “/” means lack of related data.
Table S2. The geographic information and annual temperature in different sampling sites of atmospheric PFAAs

I.D.	Region	Province	Type	Location	Elevati on (m)	Monthly mean temperature (°C)	Gross Domestic Product (10^8 RMB)	Resident population (10^4) b	Crude plastic (10^4 tons) b
1	Northern of	Beijing	Urban	Haidian District	31	–5 – 24	127.75	2171	28014.94
2	China, NC	Tianjin	Urban	Jinnan District	3.3	–4 – 25	332.42	1557	18549.19
3	Shanxi	Rural	Linshui County, Jincheng city	376	–11 – 17	79.47	3702	15528.42	
4	Eastern of	Shanghai	Urban	Minhang District	4.5	5 – 28	364.04	2418	30632.99
5	China, EC	Zhejiang	Rural	Yinzhou District, Ningbo City	4	4 – 23	896.29	5657	51768.26
6	Jiangsu	Urban	Changzhou City	5	2 – 26	1175.39	8209	85869.76	
7	Anhui	Urban	Yinquanym District, Fuyang City	30	2 – 27	137.35	6225	27018	
8	Fujian	Urban	Huian Country, Quanzhou City	30	12 – 26	235.74	3911	32182.09	
10	Jiangxi	Urban	Jiujiang City	32.2	4 – 26	25.46	4622	20006.31	
9	Shandong	Urban	Laishan District, Yantai City	47	–1 – 24	710.42	10006	72634.15	
11	Southern of	Guangdong	Urban	Nanshan District, Shenzhen City	7	15 – 26	695.31	11169	89705.26
No.	Region	City	District/County	Meteorological Data					
-----	-------------------------	---------------	---------------------------	------------------------					
12	China, SC	Hainan	Meilan District, Haikou City	18 – 26, 19.67, 926, 4462.54					
13	Central of Hubei	Urban	Yunxi District, Shiyan City	1 – 24, 191.86, 5902, 35478.09					
14	China, CC	Henan	Gaoxin District, Zhenzhou City	–2 – 26, 232.47, 9559, 44552.83					
15	Hunan	Urban	Huaxin District, Hengyang City	7 – 27, 48.4, 6860, 33902.96					
16	Northwestern of Xinjiang	Urban	Tacheng City	–14 – 18, 621.72, 2445, 10881.96					
17	China, NW	Shaanxi	Beilin District, Xi’an City	–1 – 24, 478.63, 3835, 21898.81					
18	Gansu	Urban	Chengguang District, Lanzhou City	–7 – 19, 121.57, 2626, 7459.9					
19	Southwestern of Sichuan	Urban	Shuangliu District, Chengdu City	4 – 23, 214.94, 3789, 15901.68					
20	China, SW	Yunnan	Lanchang Country, Puer City	3 – 19, 319.76, 4369, 23409.24					
21	Guizhou	Urban	Xinren Country, Qiandongnan City	6 – 22, 127.75, 2171, 28014.94					
22	Northeastern of Heilongjiang	Urban	Beilin District, Suihua City	–22 – 19, 332.42, 1557, 18549.19					
23	China, NE	Liaoning	Rural	–12 – 21, 79.47, 3702, 15528.42					

\[a:\] Meteorological data originated from China Meteorological Administration, http://www.cma.gov.cn/;

\[b:\] Data originated from China Statistic Yearbook 2018, National Bureau of Statistics China, http://www.stats.gov.cn/tjsj/ndsj/;
Table S3. MS parameters, MDLs, LODs, LOQs values, recovery rates and blank values for individual compounds of PFAAs

Analogues	Parent ions (m/z)	Daughter ions (m/z)	Declustering potential (V)	Collision energy (eV)	Retention time (s)	MDLs (pg/m³)	LODs (pg/m³)	LOQs (pg/m³)	Recovery rate (%)	Filed bank (pg/m³)	Laboratory blank (pg/m³)	Internal Standards
PFCAs												
PFPeA	263	219	-40	-34	3.16	0.41	0.31	1.05	96±17	0.41±0.14	0.22±0.17	1,2–13C₂–PFHxA
PFHxA	313	269	-35	-36	3.42	0.18	0.14	0.47	108±22	0.48±0.06	0.37±0.39	1,2–13C₂–PFHxA
PFHpA	363	319→169	-55	-28	3.70	0.22	0.16	0.55	93±16	0.62±0.07	0.22±0.32	1,2,3,4–13C₃–PFOA
PFOA	413	369→169	-45	-39	3.99	0.33	0.26	0.87	91±13	0.93±0.11	0.41±0.29	1,2,3,4–13C₄–PFOA
PFNA	463	419→219	-40	-44	4.32	0.61	0.46	1.53	89±17	0.57±0.20	0.20±0.25	1,2,3,4,5–13C₅–PFNA
PFDA	513	469→219	-50	-47	4.67	0.56	0.42	1.39	93±11	0.35±0.19	0.28±0.22	1,2–13C₃–PFDA
PFUdA	563	519→269	-45	-61	5.02	0.28	0.21	0.70	88±16	0.31±0.09	0.31±0.13	1,2–13C₂–PFUdA
PFDoA	613	569→169	-45	-65	5.35	0.28	0.21	0.70	94±18	0.44±0.09	0.15±0.18	1,2–13C₂–PFDoA
PFTrDA	663	619→169	-50	-59	5.64	0.34	0.26	0.87	102±17	0.09±0.11	0.05±0.11	1,2–13C₂–PFDa
PFTeDA	713	669→169	-65	-57	5.94	0.14	0.31	1.03	97±21	0.12±0.14	0.06±0.13	1,2–13C₂–PFDa
PFSAs												
--------	--------	--------	------	--------	--------	--------	--------	--------	----------------------	----------------------		
PFBS	299	80→99	-45	-64	3.19	0.25	0.20	0.66	81±25	0.11±0.08	0.27±0.46	18O2–PFHxS
PFHxS	399	80→99	-55	-87	3.70	0.16	0.12	0.40	86±13	0.16±0.05	0.42±0.27	18O2–PFHxS
PFOS	499	80→99	-55	-98	4.31	0.24	0.19	0.63	95±15	0.75±0.08	0.54±0.61	1,2,3,4–13C4–PFOS

Internal Standards

1,2–13C2–PFHxA	315	270	-75	-41	3.40	/	/	/	/	/	/	/
1,2,3,4–13C4–PFOA	417	372	-40	-41	3.99	/	/	/	/	/	/	/
1,2,3,4,5–13C5–PFNA	468	423	-84	-52	4.34	/	/	/	/	/	/	/
1,2–13C2–PFDA	515	470	-87	-51	4.69	/	/	/	/	/	/	/
1,2–13C2–PFUdA	565	520	-79	-61	5.02	/	/	/	/	/	/	/
1,2–13C2–PFDoA	615	570	-66	-55	5.35	/	/	/	/	/	/	/
18O2–PFHxS	403	103	-55	97	3.72	/	/	/	/	/	/	/
1,2,3,4–13C4–PFOS	503	80	-80	97	4.31	/	/	/	/	/	/	/

a: cited from Karásková et al., 2018.

b: cited from Karásková et al., 2018 and Liu et al., 2015.
Analogues	Detection frequency (%)	Average value (pg/m³)	Standard deviation (pg/m³)	Minimum value (pg/m³)	Maximum value (pg/m³)	Median value (pg/m³)
PFCAs						
PFPeA	84.8	4.96	4.77	BDL	35.2	3.55
PFHxA	92.1	5.36	7.17	BDL	79.7	3.73
PFHpA	94.7	3.42	3.71	BDL	28.9	2.39
PFOA	100	8.19	8.03	0.36	70.4	6.24
PFNA	96.6	3.07	2.77	BDL	22.7	2.52
PFDA	96.2	4.13	3.74	BDL	30.5	3.36
PFUdA	75.6	1.24	1.32	BDL	6.72	0.86
PFDoA	63.5	0.56	0.50	BDL	3.18	0.45
PFTrDA	37.3	0.58	0.56	BDL	3.57	0.47
PFTeDA	41.7	0.19	0.25	BDL	2.25	0.11
PFSAs						
PFBS	62.2	1.96	1.85	BDL	9.39	1.37
PFHxS	71.6	0.99	1.38	BDL	13.2	0.56
PFOS	100	5.20	4.30	0.34	25.5	3.87

BDL: below detection limit.
Table S5. Correlation analysis of PFAAs in the atmosphere in China

	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUdA	PFDoA	PFTrDA	PFTcDA	PFBS	PFHxS
PFHxA	0.70"											
PFHpA	0.12	0.31'										
PFOA	0.69"	0.77"	0.68"									
PFNA	0.66"	0.66"	0.65"	0.70"								
PFDA	0.54"	0.67"	0.72"	0.84"	0.61"							
PFUdA	0.16	0.32	0.15	0.2	0.14	0.23						
PFDoA	0.39'	0.33	0.27	0.38	0.31	0.32	0.61"					
PFTrDA	0.53'	0.48"	0.3	0.42	0.44	0.51"	0.65"	0.62"				
PFTcDA	0.21	0.4	0.39'	0.36'	0.27	0.39	0.72"	0.59"	0.79"			
PFBS	0.68"	0.26	0.15	0.15	0.39	0.14	0.23	0.28	0.18			
PFHxS	0.57'	0.69"	0.27	0.42'	0.57"	0.64"	0.3	0.43'	0.54'	0.38'	0.28	
PFOS	0.69"	0.42'	0.32	0.33	0.36	0.37'	0.25	0.41'	0.46'	0.38	0.63"	0.40'

*: represent p <0.05;

**: represent p< 0.01.
Figure S1. Spatial distributions of 23 sampling sites of atmospheric PFAAs in China (including 20 urban sites, red circles; and three rural site, green triangles).
Figure S2. Temporal variations of PFAAs concentrations in selected four typical sites: Shanghai, Beijing, Xinjiang and Tianjin.
Figure S3. The spatial distributions of fluoride related products manufacturers in China and the different geographical conditions (note that the fluoride related manufacturers including textiles, crude plastic, paint coating, packaging materials, while part of fluoride related industries were not included in this figure)
Figure S4. The spatial distributions of fluoride related products manufacturers in Zhejiang site (a small village in Ningbo City)
Pu’er, Yunnan; Summer
Chengdu, Sichuan; Summer
Beijing; Summer
Suihua, Heilongjiang; Summer

Pu’er, Yunnan; Winter
Chengdu, Sichuan; Winter
Beijing; Winter
Suihua, Heilongjiang; Winter

Figure S5. The backward trajectories of air mass extracted by Hysplit trajectory model
Section S1. Sampling rate of XAD–PAS in this investigation

Sampling rate of XAD–PAS is a crucial factor to derive air concentrations from the amounts of chemicals accumulated in the XAD resin. Previous literature suggested the sampling rate of XAD–PAS of 3.5–4.5 m³/d for PFASs (Li, Vento et al. 2011, Liu, Zhang et al. 2015, Tian, Yao et al. 2018). However, the actual sampling rate is dynamically variable, and affected by several factors. In this study, a standard solution containing mass labeled 1,2,3,4–13C4–PFOA and 1,2,3,4–13C4–PFOS (20 ng/mL) was spiked directly onto the upper XAD resin in the Shanghai sampling site (Floor of 5-story building of School of Environmental Science and Engineering in Shanghai Jiao Tong University) for one month in April 2017, to account for analyte losses during sampling. The sampling rate was calculated as flowing formulas:

\[R = -\ln\left(\frac{C_t}{C_0}\right) \times d \times A \times \left(\frac{K_{XAD}}{t}\right) = -\ln\left(\frac{C_t}{C_0}\right) \times V \times \left(\frac{K_{XAD}}{t}\right) \]

(S1)

\[\log K_{XAD} = 0.6366 \times \log \left(\frac{K_{OW}}{S_W/S_A}\right) \]

(S2)

\[S_A = \frac{P_L}{(RT)} \]

(S3)

where \(C_t/C_0 \) represents the measured recoveries of 1,2,3,4–13C4–PFOA and 1,2,3,4–13C4–PFOS; \(V \) represents absorbent volume, 207.7 (cm³); \(K_{XAD} \) represent 13C8–PFOA partition coefficient between air and XAD; \(t \) represents sampling time, 30 d; \(K_{OW}, S_W, \) and \(S_A \), represent octanol–air partition coefficient (6.3), water solubility, and air solubility, respectively; \(P_L \) and \(R \) represent liquid vapor pressure and gas constant (8.314 J/(mol·K)), respectively.

The \(\log P_L, \) and \(\log S_W \) values was set as 1.3(Pa), and 0.24 (mg/L) in the present study.

The sampling rate of XAD–PAS was calculated as 3.2 m³/d in the selected geographical site. However, higher temperature and wind speed were suggested to have positive effect on sampler uptake efficiency, while negative effect on the sorption capacity. Although the sampling rate of PFAAs were proposed of site-specific under different meteorological conditions, we have not conduct the depuration compounds loss test in all the 23 sampling sites.

Since our calculated XAD–PAS rate value was very close to the recommended rate of 3.5–4.5 m³/d for PFAAs, the rate value of 3.2 m³/d was used in the present study.
Section S2. PMF analysis and uncertainty assessment

Positive matrix factorization (PMF) is considered an advanced algorithm among various receptor models, which has been successfully applied for source identification of environmental pollutants (Han, Fu et al. 2018; Han Fu et al. 2019). PMF has the following advantages: each data point is given an uncertainty–weighting; the factors in PMF are not necessarily orthogonal to each other and there is no non–negativity constraint with PMF. In the present study, PMF 5.0 (US EPA) was used to apportion the contributions of different sources to PFAAs in the atmosphere. The matrix X represents an ambient data set in which i represents the number of samples and j the number of chemical species. The goal of multivariate receptor modeling is to identify sources (p), the species profile (f) of each source and the amount of mass (g) contributed by each source to each individual sample as well as the residuals (eij), as following equation:

\[X_{ij} = \sum_{k=1}^{p} g_{ik} f_{kj} + e_{ij} \] \hspace{1cm} (S1)

The PMF solution minimizes the objective function Q based on these uncertainties (u):

\[Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[\frac{x_{ij} - \sum_{k=1}^{p} g_{ik} f_{kj}}{u_{ij}} \right]^2 \] \hspace{1cm} (S2)

The input data files of PMF consist of concentrations and uncertainty matrices, and the uncertainty data were calculated as Equation (S3) as suggested by PMF User Guide. The missing values were represented by average values, while measurements below MDL (method detection limit) were replaced by two times of the corresponding MDL values. The “weak” variables were down–weighted, while “bad” variables were omitted form the analysis process.

\[
\begin{align*}
\text{Unc}_{i} &= \frac{5}{2} \times \text{MDL}_{i} \quad \text{if } C_{i} \leq \text{MDL}_{i} \\
\text{Unc}_{i} &= \sqrt{(C_{i} \times \text{Error Fraction})^2 + \left(\frac{5}{2} \times \text{MDL}_{i}\right)^2} \quad \text{if } C_{i} > \text{MDL}_{i}
\end{align*}
\] \hspace{1cm} (S3)

The model was run 20 times with 49 random seeds to determine the stability of goodness–of–fit values. If the number of sources is estimated properly, the theoretical Q value should be approximately the number of degrees of freedom or the total number of data points. Three to six factors were examined, and four factors were found to be the most appropriate
and most reasonably interpretable. Q (True) is the goodness–of–fit parameter calculated including all points, while Q (Robust) is the goodness–of–fit parameter calculated excluding points not fit by the model, Q (Robust) and Q (True) were 21672.9 and 25935, respectively, with $Q_{\text{true}}/Q_{\text{exp}}$ value of 12.56. Additionally, approximately 97% of the residuals calculated by PMF were within the range of −3 to 3, indicating a good fit of simulated results. The factor did not show oblique edges, suggesting there were little rotation for the solution. All these features implied the model simulation result was acceptable.
Reference

Buck, R. C., et al. (2011). "Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins." Integr Environ Assess Manag 7(4): 513–541.

Han, D., et al. (2018). "Non–polar organic compounds in autumn and winter aerosols in a typical city of eastern China: size distribution and impact of gas–particle partitioning on PM2.5 source apportionment." Atmos. Chem. Phys. 18(13): 9375–9391.

Han D, et al. (2019). "Investigate the impact of local iron–steel industrial emission on atmospheric mercury concentration in Yangtze River Delta, China." Environmental Science Pollution and Research. 26(6): 5862–5872.

Karášková, P. et al. (2018). A critical assessment of passive air samplers for per- and polyfluoroalkyl substances, Atmos. Environ., 185, 186-195.

Li, J., et al. (2011). "Perfluorinated Compounds in the Asian Atmosphere." Environmental Science & Technology 45(17): 7241.

Liu, B., et al. (2015). "Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and health risk assessment." Chemosphere 138: 511–518.

Tian, Y., et al. (2018). "Occurrence and Phase Distribution of Neutral and Ionizable Per– and Polyfluoroalkyl Substances (PFASs) in the Atmosphere and Plant Leaves around Landfills: A Case Study in Tianjin, China." Environmental Science & Technology 52(3): 1301.

Yu, S., et al. (2018). "Characteristics of perfluoroalkyl acids in atmospheric PM10 from the coastal cities of the Bohai and Yellow Seas, Northern China." Environmental Pollution 243: 1894–1903.

Hu, X. C., et al. (2016). "Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants." Environ Sci Technol Lett 3(10):
344-350.