Pseudomonas aeruginosa DesB Promotes Staphylococcus aureus Growth Inhibition in Coculture by Controlling the Synthesis of HAQs

Sejeong Kim1, Yohan Yoon1*, Kyoung-Hee Choi2*

1 Department of Food and Nutrition, Sookmyung Women’s University, Seoul, Korea, 2 Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan, Korea

* yyoon@sookmyung.ac.kr (YY); kheechoi@wku.ac.kr (KHC)

Abstract

Pseudomonas aeruginosa is a pathogen that can cause serious infections and usually coexists with other pathogens, such as Staphylococcus aureus. Virulence factors are important for maintaining a presence of the organisms in these multispecies environments, and DesB plays an important role in P. aeruginosa virulence. Therefore, we investigated the effect of DesB on S. aureus reduction under competitive situation. Liquid cultures of P. aeruginosa wild type (WT) and its desB mutant were spotted on agar plates containing S. aureus, and the size of the clear zones was compared. In addition, interbacterial competition between P. aeruginosa and S. aureus was observed over time during planktonic coculture. The transcriptional profiles of the WT and desB mutant were compared by qRT-PCR and microarray to determine the role of DesB in S. aureus reduction at the molecular level. As a result, the clear zone was smaller for the desB mutant than for P. aeruginosa PAO1 (WT), and in planktonic coculture, the number of S. aureus cells was reduced in the desB mutant. qRT-PCR and microarray revealed that the expression of MvfR-controlled pqsA-E and phnAB operons was significantly decreased, but the mexEF-oprN operon was highly expressed. The results indicate that intracellular levels of 4-hydroxy-2-heptylquinoline (HHQ), a ligand of MvfR, are reduced due to MexEF-OprN-mediated efflux in desB mutant, resulting in the decrease of MvfR binding to pqsA-E promoter and the reduction of 4-hydroxy-2-alkylquinolines (HAQs) synthesis. Overexpression of mexEF-oprN operon in desB mutant was phenotypically confirmed by observing significantly increased resistance to chloramphenicol. In conclusion, these results suggest that DesB plays a role in the inhibition of S. aureus growth by controlling HAQ synthesis.

Introduction

The gram-negative opportunistic pathogen Pseudomonas aeruginosa is a causative agent of nosocomial and life-threatening infections in injured, burned, and immunocompromised patients [1]. This human pathogen produces multiple extracellular factors, such as elastases,
proteases, and rhamnolipids that break down host proteins, such as elastin and collagen, as well as phospholipids in the lungs, which consequently impair host tissue function [2]. In addition, the pathogen releases a variety of virulence factors, such as exotoxins, pyocyanin, proteases, hemolysins, and quorum sensing (QS) molecules, such as pseudomonas quinolone signal (PQS) to infect host cells or outcompete other microorganisms in mixed microbial communities [3,4,5].

In clinical settings, most microbes exist primarily in polymicrobial communities, which affect interspecies interaction and alter clinical outcomes. Bacterial pathogens such as *Staphylococcus aureus* and *Candida albicans* are commonly isolated from clinical samples along with *P. aeruginosa* [6,7,8]. In polymicrobial infections involving *P. aeruginosa*, synergistic, mutual interactions that contribute to disease pathogenesis are frequently observed. Microbes in mixed communities are capable of enhancing their own growth, virulence, and persistence [6]. Therefore, studies with single-species-based analysis are not relevant to clinical conditions. Mixed infections with *P. aeruginosa* and *S. aureus* are more virulent than single-species infections, cause more severe disease, and are frequently associated with chronic wound and lung infections [6,9,10]. Nevertheless, in this ecological niche, the relationship between *P. aeruginosa* and *S. aureus* is competitive rather than cooperative. *P. aeruginosa* secretes toxic substances, such as alkyl-hydroxyquinoline N-oxides, hydrogen cyanide, and pyocyanin, that impede the proliferation of *S. aureus* [6,11]. In addition, *P. aeruginosa* strains that produce LasA endopeptidase induce the lysis of *S. aureus* by cleaving specific bonds in its peptidoglycan, further promoting *P. aeruginosa* growth [12]. During *in vivo* coculture, lysed *S. aureus* cells provide useable iron for *P. aeruginosa* growth under low-iron conditions [13]. In addition, peptidoglycan released from *S. aureus* can stimulate the production of several virulence factors, including pyocyanin and elastase, by *P. aeruginosa* and enhances its virulence in a *Drosophila* infection model [14]. Therefore, in a polymicrobial community, *P. aeruginosa* exhibits increased virulence in the presence of *S. aureus*.

However, the growth of *S. aureus* is not completely inhibited by *P. aeruginosa*. *S. aureus* has defense mechanisms that help the organism outcompete *P. aeruginosa* in the same infection; thus, it coexists as a persister [15]. For example, 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) produced by *P. aeruginosa* inhibits the growth of *S. aureus* strains, and leads to the development of small-colony variants (SCVs) that are resistant to antibiotics and contribute to bacterial persistence [16,17].

Virulence factor production by *P. aeruginosa* is extremely important for growth and pathogenesis in multispecies environments. Our previous studies demonstrated that *P. aeruginosa* DesB, an aerobic desaturase, plays an important role in virulence [18]. A mutant harboring a transposon insertion in the *desB* gene exhibited significantly reduced production of various exoproducts, including pyocyanin, protease, elastase, and rhamnolipids, as well as decreased motility [18]. In addition, a *Caenorhabditis elegans* infection study demonstrated that DesB is involved in virulence [18]. Similarly, a study using transposon site hybridization (TraSH) method in a mouse infection model showed that *Mycobacterium bovis* DesA3, a membrane-bound aerobic desaturase, is also necessary for survival and pathogenesis [19]. However, the role of DesB in interspecies interactions during coculture with other pathogens has not yet been studied.

Therefore, in this study, we aimed to determine if DesB plays a role in the relationship between *P. aeruginosa* and *S. aureus* during coculture, and if so, what role does it play.
Materials and Methods

Bacterial strains and culture conditions

The bacterial strains used in this study are listed in Table 1. All bacterial strains were kind gift. Among these strains, desA, desT, and fabA mutants are P. aeruginosa PAOl harboring each truncated gene, and desB mutant harbors an insertion of an ISlacZ/hah transposon in desB gene. The strains were routinely maintained on Luria-Bertani medium (LB; 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl; Difco) and grown at 37°C.

Lysis of S. aureus

S. aureus was incubated in LB broth at 37°C for 18h. This overnight culture was then diluted to 1:25 with fresh LB broth and incubated to mid-log growth phase. An aliquot of this subculture then was mixed with 2 mL of LB medium containing 0.8% agar to an optical density at 600 nm (OD600) of 0.2. After allowing the plate to solidify, 3 μL of an overnight culture of P. aeruginosa was spotted onto the plate, and it was incubated at 37°C for 24 h. After incubation, the plate was imaged using a universal digital camera.

Interspecies growth competition assay using planktonic cultures

The interbacterial competition assay was performed as described previously with minor modifications [22]. S. aureus and P. aeruginosa strains were streaked on LB agar plates and incubated at 37°C for 24 h. The next day, colonies of approximately the same size were selected from the plates, inoculated in 5 mL of LB broth, and incubated for 18 h. The overnight cultures were washed with 1 mL of PBS and resuspended to an OD600 of 1.0 and 2.5 for P. aeruginosa and S. aureus, respectively. P. aeruginosa and S. aureus were mixed at 1:1 (vol/vol). A 10-μL aliquot of the mixture was spotted on a cellulose acetate filter disc and placed on the LB agar plate, which was incubated at 37°C. The growth of individual bacterial species was analyzed by resuspending the filter disc in 0.5 mL of PBS and plating the suspension on Cetrimide agar (CA; Sigma, St. Louis, MO, USA) plates for P. aeruginosa and on Mannitol salt agar (MSA; Difco) plates for S. aureus.

Minimum inhibitory concentration (MIC) determination

P. aeruginosa strains were grown overnight (18 h) and subcultured in 5 mL of sterile LB broth to log phase (OD600 0.7–1.0). The culture was diluted with LB broth to OD600 0.1. Then, 100 μL aliquots of serial two-fold dilutions of chloramphenicol in LB broth were prepared in a 96-well plate at final concentrations of 0–512 μg/mL, and an equal volume of bacterial culture (at OD600 0.1) was added. After a 24-h incubation, inhibition of P. aeruginosa growth was assessed by measuring the OD600 using a microplate reader (Bio Tek Instruments, Inc., Winoo-ski, VT, USA). The MIC was defined as the concentration at which no growth was observed.

Serial dilution spotting assay

P. aeruginosa strains were cultured in LB broth at 37°C for 18 h, and then the overnight culture (approximately density: 10⁸ CFU/mL) was serially diluted (10-fold, 10⁶–10⁰ CFU/mL) in PBS. 2 μL of the diluents was vertically spotted on LB agar containing 0, 8, 16, 32, 64, or 128 μg/mL chloramphenicol. After 24 h of incubation at 37°C, spot formation was assessed, and the chloramphenicol resistance of the WT and desB mutant strain was compared.
Pseudomonas aeruginosa colonies freshly grown on LB agar plates were inoculated into 5 mL of LB broth and incubated at 37°C for 18 h. These overnight cultures were diluted 1:25 in fresh LB broth, and grown to an OD_{600} of 0.4–0.5. Total RNA was extracted from 1 mL cultures of *P. aeruginosa* strains using the Qiagen RNase mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Then, one U of RNase-free DNase I (Invitrogen, CA, USA) was added to one μg of extracted total RNA, and the reaction mixture was incubated for 15 min at room temperature. Next, the enzyme was inactivated by adding 1 μL of 25 mM EDTA, and heating the mixture at 65°C for 10 min. cDNA was synthesized from the RNA using the SuperScript III first-strand synthesis system (Invitrogen). The PCR reaction mixture (20 μL) contained 10 μL of VeriQuest SYBR Green qPCR master mix (USB, Affymetrix), 1 μL of 10 μM forward primer, 1 μL of 10 μM reverse primer, 2 μL of cDNA, and 6 μL of sterile distilled water. The reaction mixtures were denatured by incubation at 95°C for 10 min, which was followed by 35 cycles of 95°C for 15 s and at 60°C for 1 min. The target genes *mvfR*, *pqsA*, *mexE*, *mexF*, *mesT*, and *oprN* were amplified using the designed primers listed in Table 2. The constitutively expressed housekeeping gene *rpoD* was used to normalize gene expression. The relative expression of the genes was obtained from the calculated Ct values.

Table 1. Bacterial strains used in this study.

Strain	Relevant characteristics	Reference
P. aeruginosa		
PAO1	Prototroph	[20]
PAO482	PAO1 ΔdesT::FRT	[21]
PAO651	PAO1 ΔdesA::FRT	[21]
PAO652	PAO1 ΔfabA::FRT	[21]
13272	Tc'; PAO1 desB::IslacZ/hah	[21]
PAO739	Tc'; 13272 ΔfabA::FRT	[21]
S. aureus	ATCC25923	FDA strain, Seattle 1945

Abbreviations: r, resistant; Tc, tetracycline; FRT, FLP recognition target.

doi:10.1371/journal.pone.0134624.t001

Table 2. Primers used for qRT PCR.

Gene (Product size)	Primer name	Sequence (5′-3′)
pqsA (71 bp)	pqsA-F	CTGGACGCAACCAAGATCCCT
	pqsA-R	ATTGCGAGGGAACATGTC
mvfR (96 bp)	mvfR-F	GGTACGTGTGGACTTTC
	mvfR-R	ATATTGCCGGTCGTTTCA
mexE (88 bp)	mexE-F	GACCCCGAACACAGAAC
	mexE-R	CGGGTAGCAGGCTTGGT
mexF (100 bp)	mexF-F	TCTAGCACCACCATCCTTC
	mexF-R	AGGAACAGGATCAACCAAG
mexT (80 bp)	mexT-F	GCCGCGCCGCAACTTACTT
	mexT-R	CAATTCGTCGTTGATAGCGT
oprN (87 bp)	oprN-F	GCAACCGAGGACAGGAC
	oprN-R	CGCGCGAGTACGTGAG
rpoD (75 bp)	rpoD-F	CGCGGAGGACAGAGGAC
	rpoD-R	CGCGGAGGACAGAGGAC

doi:10.1371/journal.pone.0134624.t002

Quantitative RT-PCR (qRT-PCR)

P. aeruginosa colonies freshly grown on LB agar plates were inoculated into 5 mL of LB broth and incubated at 37°C for 18 h. These overnight cultures were diluted 1:25 in fresh LB broth, and grown to an OD_{600} of 0.4–0.5. Total RNA was extracted from 1 mL cultures of *P. aeruginosa* strains using the Qiagen RNase mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Then, one U of RNase-free DNase I (Invitrogen, CA, USA) was added to one μg of extracted total RNA, and the reaction mixture was incubated for 15 min at room temperature. Next, the enzyme was inactivated by adding 1 μL of 25 mM EDTA, and heating the mixture at 65°C for 10 min. cDNA was synthesized from the RNA using the Super-Script III first-strand synthesis system (Invitrogen). The PCR reaction mixture (20 μL) contained 10 μL of VeriQuest SYBR Green qPCR master mix (USB, Affymetrix), 1 μL of 10 μM forward primer, 1 μL of 10 μM reverse primer, 2 μL of cDNA, and 6 μL of sterile distilled water. The reaction mixtures were denatured by incubation at 95°C for 10 min, which was followed by 35 cycles of 95°C for 15 s and at 60°C for 1 min. The target genes *mvfR*, *pqsA*, *mexE*, *mexF*, *mesT*, and *oprN* were amplified using the designed primers listed in Table 2. The constitutively expressed housekeeping gene *rpoD* was used to normalize gene expression. The relative expression of the genes was obtained from the calculated Ct values.
Microarray analysis

Total RNA was prepared from the *P. aeruginosa* strains using the same as procedure as described for qRT-PCR, except that a greater volume of culture was used. The quality of the purified RNA was confirmed using an Agilent 2100 Bioanalyzer System. cDNA was generated and labeled using the Bioprime labeling kit (Invitrogen), and the microarray hybridization was performed using Hybridization solution (MYcroarray.com). The microarray data were normalized and analyzed using Genowiz 4.0 (Ocimum Biosolutions, India). Total 5544 genes were analyzed, and among these, the comparative transcriptional profile of HAQ-related genes between WT and *desB* mutant was used for data interpretation.

Statistical analysis

Interspecies growth competition assay was repeated with two samples in each repeat, and MIC assay was repeated with six samples in each repeat. The bacterial cell counts (log CFU mL⁻¹) and OD values at several timepoints or chloramphenicol concentrations were analysed by the mixed model procedure (SAS Institute, Cary, NC, USA). Pairwise t-tests were performed for comparisons of least squares means among the interactions at alpha = 0.05. All experiments except for microarray analysis were performed in replicate, but microarray data were confirmed by qRT-PCR.

Results and Discussion

DesB is involved in *S. aureus* reduction

Other microbes are usually detected in *P. aeruginosa* infections. It was previously shown that *P. aeruginosa* lyses *S. aureus* during coculture [23]. *P. aeruginosa* and *S. aureus* affect each other, and interspecies communication is required for the expression of various virulence factors [24]. Certain virulence factors obstruct the proliferation of *S. aureus* by lysis or growth inhibition. Schweizer and Choi [18] found that DesB, an aerobic desaturase expressed by *P. aeruginosa*, is closely associated with the production of virulence factors, particularly elastase, rhamnolipids, and pyocyanin. Therefore, we hypothesized that DesB also plays a role in *S. aureus* reduction under mixed culture conditions. Accordingly, we conducted comparative analyses of the virulence of WT and *desB* mutant strains during coculture with *S. aureus*. In addition to *desB*, genes involved in unsaturated fatty acids (UFAs) synthesis, such as *desA*, *desT*, and *fabA* was also evaluated in order to investigate if UFA synthesis is involved in *S. aureus* reduction. In the spot assay, the *desB* mutant showed clear zones with smaller diameters than those surrounding the WT strain (Fig 1), whereas the *desA* (phospholipid acyl desaturase) and *desT* (TetR family transcriptional regulator) mutants showed clear zones of similar diameter to those surrounding the WT strain. In addition, the *fabA* mutant showed slightly lower activity of cell number decrease than the WT strain, and the *fabA desB* double mutant showed no *S. aureus* reduction (Fig 1). The *P. aeruginosa* fabA gene encodes β-hydroxydecanoyl-ACP dehydrase, which is involved in fatty acid synthesis under aerobic and anaerobic conditions [25]. In our previous study, we found that the *fabA* mutant used in the present study has a very low growth rate compared to other mutants, including *desA*, *desB*, and *desT* mutants [21]. Therefore, the decreased *S. aureus* reduction ability of the *fabA* mutant, and the zero-activity of the *fabA desB* double mutant are not due to a deficiency of FabA activity but result from the slow-growth phenotype of the *fabA* mutant. This result indicates that DesB is an important factor for *S. aureus* reduction.

Furthermore, a time-course growth competition assay between *P. aeruginosa* and *S. aureus* was conducted to confirm the deficiency phenotype of *S. aureus* reduction in the *desB* mutant.
in planktonic culture. Mutation of the desB gene did not influence the growth of P. aeruginosa; however, it did affect the extent of S. aureus reduction in coculture (Fig 2). The total S. aureus cell count decreased after 10 h of coculture with the WT strain, whereas a decrease in the number of S. aureus cells was observed after 12 h of coculture with the desB mutant strain, suggesting that S. aureus reduction by the desB mutant was retarded due to the lack of functional DesB. In addition, a greater number of S. aureus cells were maintained in a coculture with the desB mutant than in a coculture with WT over the same incubation period. However, comparatively smaller difference between two strains was observed at the 24 h timepoint than at the 10 h and 12 h timepoints. It can be inferred that the phenotype of desB mutant at this timepoint was attributed to delayed production of lysis- or growth inhibition-associated virulence factors.

Also, it may be possible that S. aureus responds to WT or desB mutant in terms of SCV formation in S. aureus under coculture condition. Pyocyanin stimulates SCV selection in S. aureus and the SCVs appeared after 24h of cocultivation [11]. Since desB mutant displayed reduced pyocyanin production [18], SCVs may be formed less in desB mutant than in WT. However, SCVs were not found in this study because coculture experiment was conducted until 24 h of coculture.

This indicated that P. aeruginosa DesB is involved in S. aureus reduction. P. aeruginosa produces various extracellular antimicrobial substances associated with a decrease in S. aureus cell number that are mostly regulated by the pqsA-E operon [26–28]. In addition, P. aeruginosa secretes LasA protease, which lyases S. aureus, and transcription of the lasA gene is controlled by LasR [23,29]. Thus, we assumed that the reduction of S. aureus cells may result from correlation between DesB and production of these factors. However, it should be pointed out that the desB mutant retains some reduction ability. This finding could be explained by the presence of DesB-independent factors that participate in S. aureus reduction even in the absence of DesB activity [14,27,30]. It was discussed more detailedly later in this paper.

Fig 1. Spot assay for Staphylococcus aureus reduction. Overnight cultures of Pseudomonas aeruginosa PAO1 strains (wild type [1] and various mutants ΔdesT [2], ΔdesA [3], desB [4], ΔfabA [5], and ΔfabA desB [6]) were spotted onto an LB agar plate containing Staphylococcus aureus ATCC25923. After incubation at 37°C for 24 h, the diameter of the clear zone was measured.
DesB positively regulates the transcription of the MvfR-regulated genes *pqs* and *phn*

qRT-PCR and microarray analyses were conducted to determine the possible molecular mechanism underlying DesB-involved *S. aureus* reduction. Mashburn et al. [13] reported that a *P. aeruginosa* *pqsA* mutant exhibited reduced *S. aureus* lysis during coculture, indicating that *PqsA* or anthranilate-coenzyme A ligase [31] is essential for complete *S. aureus* lytic activity. Thus, we investigated the possibility of a correlation between *desB* and two other genes, *pqsA* and its regulator *mvfR*. The results showed that in the *desB* mutant, the transcription of *mvfR* was slightly reduced, whereas *pqsA* expression was reduced approximately 50-fold compared to the levels in WT (Fig 3). This result suggested that DesB plays a significant role in *P. aeruginosa*-catalyzed *S. aureus* reduction in mixed culture by controlling *pqsA* gene expression. *PqsA* is required for HAQ synthesis, which regulates the production of the cell-to-cell communication factors and virulence factors of *P. aeruginosa*, including elastase and pyocyanin [32,33]. However, from this result, we could not predict how DesB regulates *pqsA* expression at the molecular level. Consequently, a microarray analysis was performed to elucidate the molecular mechanism underlying DesB-related *S. aureus* reduction. Based on the fact that DesB controls...
transcriptional levels of HAQ-related genes including QS genes in WT and desB mutant were compared. The expression patterns of pqsA and mvfR in the qRT-PCR analysis were also consistent with microarray data (Table 3). The levels of all the pqs genes, including pqsA, were significantly reduced in the desB mutant, whereas the expression levels of two other S. aureus lysis-related genes, lasA (encoding LasA protease) and lasR (required for lasA transcription) in the desB mutant and WT strains were similar.

Recently, Beaume et al [34] reported that lasA is involved in S. aureus lysis, whereas pqs is responsible for S. aureus growth inhibition rather than lysis. Therefore, this indicates that desB mutant have reduced ability in S. aureus growth inhibition by a considerable decrease in pqs expression. Also, microarray analysis revealed that LasA plays a role in S. aureus lysis as a DesB-independent factor in the absence of functional DesB. In addition, Beaume et al. [34] demonstrated that a carB gene, involved in pyrimidine biosynthesis, is required for S. aureus growth inhibition without any influence on PQS synthesis. Thus, CarB also contributes to S. aureus growth inhibition in a DesB-independent manner [34].

P. aeruginosa produces S. aureus growth inhibition-associated materials, such as 4-hydroxy-2-alkylquinolines (HAQs), which have antimicrobial activity. These HAQs include 4-hydroxy-2-heptylquinoline (HHQ), 4-hydroxy-2-nonylquinoline (HNQ), pseudomonas quinolone signal (PQS), and 4-hydroxy-2-heptylquinoline N-oxide (HQNO) [35]. Synthesis of these HAQs is mainly controlled by the P. aeruginosa pqs system, which comprises pqsA-E and pqsH. PqsA-D catalyzes the synthesis of HHQ molecules, which are converted to PQS by PqsH. The pqsA-E genes are expressed under the control of the transcriptional regulator MvfR,
whereas pqsH is regulated by LasR, but not by MvfR. Thus, the transcriptional pattern of pqsA-E is distinct from that of pqsH in the desB mutant. The PQS system is interlinked with two quorum-sensing systems, las and rhl [36]. MvfR, a regulator of the pqs system, is positively controlled by LasR and negatively regulated by RhlR [37]. Comparative transcriptional analysis showed that in the desB mutant, expression of the pqs operon was reduced, whereas the rhl and las QS genes were normally expressed, indicating that rhlR and lasR are not involved in the reduced pqs expression observed in the desB mutant. However, rhlI expression was reduced by desB mutation compared to the levels in WT. Since, according to McKnight et al. [38], rhlI

Table 3. Selected microarray analytical data to compare the expression of HAQ-related genes in WT and desB mutant.

desB /WT	Name	Product	Locus_tag
S. aureus lysis	lasR	Transcriptional regulator LasR	PA1430
1.1			
1.0	lasA	LasA protease precursor	PA1871
Anthranilate synthesis	trpE	Anthranilate synthetase component I	PA0609
-1.4			
1.0	trpG	Anthranilate synthase component II	PA0649
-17.5	phnA	Anthranilate synthase component I	PA1001
-6.5	phnB	Anthranilate synthase component II	PA1002
1.0	kynU	Hypothetical protein	PA2080
-1.2	kynB	Kynurenine formamidase, KynB	PA2081
1.6	kynA	Hypothetical protein	PA2579
QS-regulatory systems	vfr	Transcriptional regulator Vfr	PA0652
-1.1			
1.1	lasR	Transcriptional regulator LasR	PA1430
-1.6	rsaL	Regulatory protein RsaL	PA1431
1.2	lasI	Autoinducer synthesis protein LasI	PA1432
1.5	qscR	Quorum-sensing control repressor	PA1898
-1.1	gacA	Response regulator GacA	PA2586
-3.0	rhlI	Autoinducer synthesis protein RhlI	PA3476
-1.8	rhlR	Transcriptional regulator RhlR	PA3477
-8.8²	pqsA	Probable coenzyme A ligase	PA0996
-6.9	pqsB	Homologous to beta-keto-acyl-acyl-carrier	PA0997
-10.5	pqsC	Homologous to beta-keto-acyl-acyl-carrier	PA0998
-6.2	pqsD	3-oxoacyl-[acyl-carrier-protein] synthase III	PA0999
-5.8	pqsE	Quinolone signal response protein	PA1000
-17.5	phnA	Anthranilate synthase component I	PA1001
-6.5	phnB	Anthranilate synthase component II	PA1002
-1.2	mvfR	Transcriptional regulator	PA1003
-1.8	pqsH	Probable FAD-dependent monoxygenase	PA2587
Efflux pump	mexS	Probable oxidoreductase	PA2491
10.8			
1.2	mexT	Transcriptional regulator MexT	PA2492
61.4	mexE	Resistance-nodulation-cell division (RND)	PA2493
1.6	mexF	Resistance-nodulation-cell division (RND)	PA2494
9.0	oprN	Multidrug efflux outer membrane protein OprN	PA2495

¹ Fold change is reported as relative gene expression of desB mutant compared to WT (= 1).
² The gene for more than 2-fold change in expression is bold.

doi:10.1371/journal.pone.0134624.t003
expression is positively regulated by PQS, we could assume that the decreased rhlI transcription observed in the desB mutant may be attributed to reduced levels of PQS.

In addition, expression of phnA and phnB in the desB mutant was significantly lower than that in WT. In addition to the pqs operon, transcription of the phnAB genes is also under the control of MvfR. The phnAB-encoded proteins are responsible for conversion of shikimic acid to anthranilate, which is continually used in HAQs synthesis catalyzed by PqsA-D. TrpE and TrpG also catalyze anthranilate synthesis from chorismic acid, and the anthranilate produced by this pathway is known to be utilized for either tryptophan or HAQ synthesis [39]. In addition to the PhnAB pathway, there is an alternative anthranilate synthesis pathway, called the kynurenine pathway, which consists of KynA, KynB, and KynU, and catalyzes the conversion of tryptophan to anthranilate. However, dissimilar to pqs expression, transcriptional expression of kynA, kynB, kynU, and trpEG was not reduced in the desB mutant. Consequently, the above results indicate that anthranilate synthesis is controlled by DesB, and that only MvfR-regulated phnAB expression is associated with this regulation (Table 3). Although pqsA-E and phnAB are co-regulated by MvfR [40], only a small difference in mvfR expression between the desB mutant and WT was observed in the microarray analysis. This phenomenon could be explained by MvfR activation. HHQ functions as a ligand for the LasR-type transcriptional regulator MvfR and enhances MvfR binding to the pqsA-E promoter [41], thereby activating the pqsABCDE and phnAB operons, which is followed by increased production of HAQs. Therefore, in the desB mutant, HHQ was not sufficient to stimulate MvfR binding to the promoter, even if mvfR was expressed at a similar level to that in the WT strain; thus, resulting in decreased MvfR-governed activation of the downstream pqs and phn genes in the desB mutant and reduced production of HAQs.

In addition, the amounts of crude PQS produced by WT and desB mutant were indirectly measured by spot assay for S. aureus growth inhibition in order to compare PQS levels between two strains. As a result, extract of desB mutant exhibited the considerable decrease of S. aureus growth inhibition compared to the one of WT, meaning that desB mutant produced much less PQS than WT (data not shown).

The mexEF-oprN operon is overexpressed in the desB mutant

We hypothesized that the low levels of HHQ and concomitant decrease of PQS might lead to the reduced S. aureus growth inhibition via a yet unknown regulatory mechanism. Interestingly, we showed, both by qRT-PCR and by microarray analyses, that the mexEF-oprN operon was highly overexpressed in the desB mutant compared to the levels in WT (Table 3, Fig 3). Although the mexF expression levels in the microarray analysis appear to differ from the levels in the qRT-PCR analysis due to the relatively lower accuracy of microarray data compared to qRT-PCR, the same tendency for transcriptional expression of mexEF-oprN was shown in the results of both methods. The mexEF-oprN operon in P. aeruginosa encodes a resistance-nodulation-cell division (RND)-type efflux pump, MexEF-OprN. The MexEF-OprN system is not induced in most P. aeruginosa strains, thereby allowing the expression of QS-regulated virulence determinants [42]. The mexEF-oprN multidrug efflux operon is highly expressed in the presence of antibiotics, nitrosative stress, or disulfide stress [43,44]. Expression of the mexEF-oprN operon is known to be positively regulated by MexT, which is encoded by a gene located immediately upstream of the mexEF-oprN operon, and the mexT gene is negatively regulated by MexS, an oxidoreductase [45,46]. This pump is an important factor for antibiotic resistance, and it transports various molecules, such as chloramphenicol, fluoroquinolones, triclosan, and trimethoprim [47]. Fukuda et al. [48] reported a norfloxacin-resistant mutant of P. aeruginosa PAO1, called an nfxC-type mutant, and showed that an nfxC-type mutant overexpresses the
MexEF-OprN efflux pump. Kohler et al. [49] reported that the nfxC-type mutant shows decreased rhlI expression, and the resulting overexpression of the efflux system negatively affects cell-to-cell signaling in *P. aeruginosa*. The transcriptional profile of the desB mutant is similar to that of the nfxC-type mutant in terms of the levels of pqsA, phnAB, and type III secretion system-related gene expression [50], but different in terms of lasB and rhlAB expression. The wild-type PA01 strain used in this study contains a 8-bp insertion in mexT, which encodes an inactive and uninducible protein, whereas its isogenic nfxC mutant harbors a deletion of the 8-bp insert and produces functional MexT [42]. However, our transcriptional analyses revealed that the mexEF-oprN operon was greatly overexpressed in desB mutant, even if mexT expression was not altered due to suppression via increased mexS expression (Table 3, Fig 3). According to Kohler et al. [45], nfxC-type mutant produces the effector of MexT, thus causing MexT activation at the posttranslational level and consequently constant overexpression of the mexEF-oprN operon. In addition, MexT also positively regulates several other genes such as PA1744, PA1970, PA2759, PA3229, PA4623, and PA4881 [51], and our transcriptional analysis revealed that these genes were highly expressed in desB mutant (data not shown). Hence, we could assume that posttranslationally activated MexT contributes to the overexpression of mexEF-oprN and other additional genes. Alternatively, the results suggest that mexEF-oprN overexpression in the desB mutant is MexT independent. Kumar and Schweizer [52] observed that large colony variants lacking several efflux pumps exhibited mexEX-oprN overexpression, even though they harbor nonfunctional MexT [52]. This finding suggested that metabolic stress due to the fitness impairment of the variants caused overexpression of the MexEF-OprN efflux pump via a yet uncharacterized regulatory mechanism in the absence of MexT activation [52]. Likewise, our findings could be explained by a disruption of normal metabolism due to the desB mutation, which affects cell fitness and facilitates MexEF-OprN overexpression in the absence of MexT-controlled regulation.

In order to confirm the phenotype of mexEF-oprN efflux pump overexpression in the desB mutant, we determined the MIC of chloramphenicol, a representative substrate for MexEF-OprN and performed serial dilution-spotting assays. The results showed that the desB mutant was considerably more resistant to chloramphenicol than the WT, and the MIC of the desB mutant was greater than 512 μg/mL, compared to 128 μg/mL for WT (Fig 4A). In the serial dilution-spotting assay, all ten-fold dilutions of the desB mutant grew normally up to 128 μg/mL of chloramphenicol, whereas growth of WT was reduced starting at 16 μg/mL (Fig 4B). This result demonstrated that the desB mutant is highly resistant to antibiotics due to MexEF-OprN overexpression. Lamarche and Deziel [53] demonstrated that besides antibiotics, the MexEF-OprN efflux pump also exports HHQ, which results in low levels of HHQ and PQS inside the bacterial cells. Likewise, overexpressed MexEF-OprN in the desB mutant also led to reduced production of HAQs. In addition, Olivares et al. [50] reported that PQS in *P. aeruginosa* overexpressing mexEF-oprN was not detected in early stationary phase but PQS was produced in late stationary phase. Thus, it can be explained that reduced *S. aureus* growth inhibition in desB mutant comes from delayed PQS production (Fig 2).

Conclusion

This study demonstrated that the desB mutation results in overexpression of MexEF-OprN, which subsequently contributes to 1) decreased HAQs levels inside the cells, 2) reduced MvfR binding to the pqsA-E promoter, and 3) suppression of HAQ synthesis. Ultimately, these events lead to impaired production of the virulence factors involved in *S. aureus* growth inhibition (Fig 5). In other words, *P. aeruginosa* DesB is very involved in *S. aureus* growth inhibition in...
mixed microbial communities. However, further studies are needed to determine how desB mutation is linked to MexT-independent mexEF-OprN expression at the molecular level.
Supporting Information

S1 Appendix. Microarray data comparing gene expression of *P. aeruginosa* PAO1 (WT) and its desB mutant (*desB* mutant).

(PDF)

Author Contributions

Conceived and designed the experiments: KHC YY. Performed the experiments: SK. Analyzed the data: SK. Contributed reagents/materials/analysis tools: YY KHC. Wrote the paper: SK YY KHC.

References

1. Van Delden C, Iglewski BH. Cell-to-cell signaling and *Pseudomonas aeruginosa* infections. Emerg Infect Dis. 1998; 4: 551–560. PMID: 9866731
2. Prithviraj B, Bais HP, Weir T, Suresh EH, Dayakar BV, et al. Down regulation of virulence factors of *Pseudomonas aeruginosa* by salicylic acid attenuates its virulence on *Arabidopsis thaliana* and *Caenorhabditis elegans*. Infect Immun. 2005; 73: 5319–5328. PMID: 16113247

3. Byng GS, Eustice DC, Jensen RA. Biosynthesis of phenazine pigments in mutant and wild-type cultures of *Pseudomonas aeruginosa*. J Bacteriol. 1979; 138: 846–852. PMID: 110770

4. Sage AE, Vasi ML. Osmoprotectant-dependent expression of *pich*, encoding the hemolytic phospholipase C, is subject to novel catabolite repression control in *Pseudomonas aeruginosa* PAO1. J Bacteriol. 1997; 179: 4874–4881. PMID: 9244277

5. Schuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in *Pseudomonas aeruginosa*. Int J Med Microbiol. 2006; 296: 73–81. PMID: 16475659

6. DeLeon S, Clinton A, Fowler H, Everett J, Horswill AR, Rumbaugh KP. Synergistic Interactions of *Pseudomonas aeruginosa* and *Staphylococcus aureus* in an in vitro wound model. Infect Immun. 2014; 82: 4718–4728. doi: 10.1128/IAI.02198-14 PMID: 25156721

7. Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, et al. Candida albicans ethanol stimulates *Pseudomonas aeruginosa* WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLOS Pathog. 2014; 10: e1004480. doi: 10.1371/journal.ppat.1004480 PMID: 25340349

8. Baldan R, Cigan C, Testa F, Bianconi I, De Simone M, Pellin D, et al. Adaptation of *Pseudomonas aeruginosa* in Cystic Fibrosis airways influences virulence of *Staphylococcus aureus* in vitro and murine models of co-infection. PLOS One. 2014; 9: e89614. doi: 10.1371/journal.pone.0089614 PMID: 24603807

9. Pastar I, Nusbaum AG, Gil J, Patel SB, Chen J, Valdes J, et al. Interactions of methicillin resistant *Staphylococcus aureus* USA300 and *Pseudomonas aeruginosa* in polymicrobial wound infection. PLOS One. 2013; 8(2): e56846. doi:10.1371/journal.pone.0056846 PMID: 23451098

10. Rosenbluth DB, Wilson K, Ferkol T, Schuster DP. Lung function decline in cystic fibrosis patients and *Pseudomonas aeruginosa*. J Bacteriol. 2015; 197: 1064. doi: 10.1128/JB.01211-09 PMID: 19717621

11. Biswas L, Biswas R, Schlag M, Bertram R, Götz F. Small-colony variant selection as a survival strategy for *Pseudomonas aeruginosa* in the presence of *Pseudomonas aeruginosa*. Appl Environ Microbiol. 2009; 75: 6910–6912. doi: 10.1128/AEM.01211-09 PMID: 19717621

12. Kessler E, Safrin M, Olson JC, Ohman DE. Secreted LasA of *Pseudomonas aeruginosa* is a staphylytic protease. J Biol Chem. 1993; 268: 7503–7506. PMID: 1471-2180-10-33 PMID: 20113519

13. Brito N, Falcon MA, Carnicero A, Gutierrez-Navarro AM, Mansito. Purification and peptidase activity of a bacteriolytic extracellular enzyme from *Pseudomonas aeruginosa*. Res Microbiol. 1989; 140: 125–137. PMID: 2598200
24. Duan K, Dammel C, Stein J, Rabin H, Surette MG. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular Microbiol. 2003; 50: 1477–1491.
25. Hoang TT, Schweizer HP. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabA8 operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB). J Bacteriol. 1997; 179: 5326–5332. PMID: 9286984
26. Haba E, Pinazo A, Jauregui O, Esqueny MJ, Infante MR, Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2. NCBIM40044. Biotechnol Bioeng. 2003; 81: 316–322. PMID: 12474254
27. Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R. 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 1992; 30: 615–623. PMID: 1493979
28. Morse SA, Jones BV, Lyso PG. Pyocin inhibition of Neisseria gonorrhoeae: mechanism of action. Antimicrob Agents Chemother. 1980; 18: 416–423. PMID: 6775595
29. Gambello MJ, Kaye S, Iglewski BH. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun. 1993; 61: 1180–1184. PMID: 8454322
30. Barequet IS, Ben Simon GJ, Safrin M, Ohman DE, Kessler E. Pseudomonas aeruginosa LasA protease in treatment of experimental staphylococcal keratitis. Antimicrob. Agents Chemother. 2004; 38: 1681–1687.
31. Coleman JP, Hudson LL, McKnight SL, Farrow JM 3rd, Cafee MW, Lindsey CA, Pesci EC. Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol. 2008; 190: 1247–1255. PMID: 18083812
32. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 1999; 96: 11229–11234.
33. Diggie SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, et al. The Pseudomonas aeruginosa 4-Quinolone Signal Molecules HHQ and PQS play Multifunctional Roles in Quorum Sensing and Iron Entrapment. Chem Biol. 2007; 14: 87–96. PMID: 17254955
34. Hays EE, Wells IC, Katzman PA, Cain CK, Jacobs FA, Thayer SA, et al. Antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem. 1945; 159: 725–749.
35. Beaume M, Kohler T, Fontana T, Tognon M, Renzoni A, Delden C. Metabolic pathway s of Pseudomonas aeruginosa in competition with respiratory bacterial pathogens. Front Microbiol. 2015; 6: article 321.
36. Deziel E, Lepine F, Milot S, He J, Mindrinos M, Tompkins R, et al. Analysis of Duan K, Dammel C, Stein J, Rabin H, Surette MG. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular Microbiol. 2003; 50: 1477–1491.
25. Hoang TT, Schweizer HP. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabA8 operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB). J Bacteriol. 1997; 179: 5326–5332. PMID: 9286984
26. Haba E, Pinazo A, Jauregui O, Esqueny MJ, Infante MR, Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2. NCBIM40044. Biotechnol Bioeng. 2003; 81: 316–322. PMID: 12474254
27. Machan ZA, Taylor GW, Pitt TL, Cole PJ, Wilson R. 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J Antimicrob Chemother 1992; 30: 615–623. PMID: 1493979
28. Morse SA, Jones BV, Lyso PG. Pyocin inhibition of Neisseria gonorrhoeae: mechanism of action. Antimicrob Agents Chemother. 1980; 18: 416–423. PMID: 6775595
29. Gambello MJ, Kaye S, Iglewski BH. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun. 1993; 61: 1180–1184. PMID: 8454322
30. Barequet IS, Ben Simon GJ, Safrin M, Ohman DE, Kessler E. Pseudomonas aeruginosa LasA protease in treatment of experimental staphylococcal keratitis. Antimicrob. Agents Chemother. 2004; 38: 1681–1687.
31. Coleman JP, Hudson LL, McKnight SL, Farrow JM 3rd, Cafee MW, Lindsey CA, Pesci EC. Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol. 2008; 190: 1247–1255. PMID: 18083812
32. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 1999; 96: 11229–11234.
33. Diggie SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, et al. The Pseudomonas aeruginosa 4-Quinolone Signal Molecules HHQ and PQS play Multifunctional Roles in Quorum Sensing and Iron Entrapment. Chem Biol. 2007; 14: 87–96. PMID: 17254955
34. Hays EE, Wells IC, Katzman PA, Cain CK, Jacobs FA, Thayer SA, et al. Antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem. 1945; 159: 725–749.
35. Beaume M, Kohler T, Fontana T, Tognon M, Renzoni A, Delden C. Metabolic pathway s of Pseudomonas aeruginosa in competition with respiratory bacterial pathogens. Front Microbiol. 2015; 6: article 321.
36. Deziel E, Lepine F, Milot S, He J, Mindrinos M, Tompkins R, et al. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Chem Biol. 2007; 14: 87–96. PMID: 17254955
37. Wade DS, Cafee MW, Rocha ER, Ling EA, Enquist E, Coleman JP, et al. Regulation of Pseudomonas aeruginosa quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol. 2005; 187: 4372–4380. PMID: 15968046
38. McKnight SL, Iglewski BH, Pesci EC. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 2000; 182: 2702–2708. PMID: 10781536
39. Essar DW, Eberly L, Hadero A, Crawford IP. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: Interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol. 1990; 172: 884–900. PMID: 2153661
40. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol. 2002; 184: 6472–6480. PMID: 12426334
41. Xiao G, Deziel E, He J, Lepine F, Lesic B, Castonquay MH, et al. MvrR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol. 2006; 62: 1689–1699. PMID: 17083468
42. Maseda H, Saito K, Nakajima A, Nakae T. Variation of the mexF gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol Lett. 2000; 192: 107–112. PMID: 11040437
43. Fargier E, Mac Agaín M, Mool MJ, Woods DF, Morrissey JP, Dobson AD, et al. MexF functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol. 2012; 194: 3502–3511. doi: 10.1128/JB.06632-11 PMID: 22544265
44. Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR, Poole K. mexEF-oprN multidrug efflux operon of *Pseudomonas aeruginosa*: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother. 2011; 55: 508–514. doi: 10.1128/AAC.00830-10 PMID: 21078928

45. Kohler T, EPP S, Curty LK, Pechere JC. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of *Pseudomonas aeruginosa*. J Bacteriol. 1999; 181: 63200–6305

46. Sobel ML, Neshat S, Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of *Pseudomonas aeruginosa*. J Bacteriol. 2005; 187: 1246–1253. PMID: 15687188

47. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med. 2007; 39: 162–176. PMID: 17457715

48. Fukuda H, Hosaka M, Hirai K, Iyobe S. New norfloxacin resistance gene in *Pseudomonas aeruginosa* PAO. Antimicrob Agents Chemother. 1990; 34: 1757–1761. PMID: 2126688

49. Kohler T, Delden C, Curty LK, Hamzehpour MM, Pechere JC. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in *Pseudomonas aeruginosa*. J Bacteriol. 2001; 183: 5213–5222. PMID: 11514502

50. Olivares J, Alvarez-Ortega C, Linares JF, Fojo F, Kohler T, Martinez JL. Overproduction of the multidrug efflux pump MexEF-OprN does not impair *Pseudomonas aeruginosa* fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol. 2012; 14: 1968–1981. doi: 10.1111/j.1462-2920.2012.02727.x PMID: 22417660

51. Tian ZX, Fargier E, Aogain MM, Adams C, Wang YP, O’Gara F. Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in *Pseudomonas aeruginosa*. Nucleic Acids Res. 2009; 37: 7546–7559. doi: 10.1093/nar/gkp828 PMID: 19846594

52. Kumar A, Schweizer HP. Evidence of MexT-independent overexpression of MexEF-OprN multidrug efflux pump of *Pseudomonas aeruginosa* in presence of metabolic stress. PLOS One. 2011; 6(10): e26520. doi: 10.1371/journal.pone.0026520 PMID: 22039504

53. Lamarche MG, Déziel E. MexEF-OprN efflux pump exports the *Pseudomonas* quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). PLOS One. 2011; 6(9): e24310. doi: 10.1371/journal.pone.0024310 PMID: 21957445