Physicochemical properties and antioxidant activities of pumpkin seed oil as affected by different origins and extraction methods

Irnawati Irnawati, Sugeng Riyanto, Sudibyo Martono, Anjar Windarsih, Abdul Rohman
1Faculty of Pharmacy, Halu Oleo University, Kendari, Indonesia.
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
3Research Division for Natural Product Technology BPTBA, Indonesian Institute of Sciences LIPI, Yogyakarta, Indonesia.
4Center of Excellence, Institute for Halal Industry and Systems (IHIS), Universitas Gadjah Mada, Yogyakarta, Indonesia.

ABSTRACT
The properties of pumpkin seed oil (PSO) determined by the physical and chemical characteristics from different origins extracted using the hot pressing, Soxhlet, and ultrasound-assisted extraction methods were evaluated. The different extraction techniques of PSO were evaluated using physicochemical parameters such as yield, constants of acid, saponification, peroxide, iodine values (IVs), composition of fatty acids, and antioxidant activity. Total phenolic content was also investigated. The result showed that different extraction methods affected the physicochemical properties of PSO. PSO from Gunungkidul, Yogyakarta, extracted by hot pressing had the highest antioxidant activity against 2,2 diphenyl-1-picrylhydrazyl (DPPH) (98.71%) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)’ (88.08%). Meanwhile, PSO from Pati, Central Java, extracted by Soxhlet had the highest antioxidant activity based on the β-carotene bleaching method (73.28%). PSO from different origins extracted by different extraction methods has different total phenolic content. This study shows the potential antioxidant activities of PSO extracted using hot pressing with good physicochemical properties that would be suitable for industrial application.

INTRODUCTION
Pumpkin (Cucurbita moschata Duchesne), a member of the Cucurbitaceae family, is widely grown in tropical regions (Fig. 1a). Pumpkin flesh is cooked and consumed in many ways, such as cakes, candies, bread (Kim et al., 2012), jams, purées, juices, and alcoholic-derived beverages (Jiao et al., 2014). Pumpkin seeds can be considered as a potential source for obtaining some bioactive compounds with health benefits including tocopherol, phenolics, carotenoids, and sterols (Jiao et al., 2014; Nakić et al., 2006; Rezig et al., 2012, Rezig et al., 2018; Stevenson et al., 2007). The oil extracted from pumpkin seed, known as pumpkin seed oil (PSO), contains main fatty acid (FA) components including palmitic (C16:0), palmitoleic (C16:1), stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acids (Perez Gutierrez, 2016). In certain countries, including Argentina, Brazil, China, India, Korea, and Mexico, PSOs have been exploited as traditional medicine in folk remedies.

In recent years, PSO has received considerable attention because of its protective effects on human health (Murkovic et al., 2004). Numerous researches have reported about the beneficial effects of PSO (Rohman and Irnawati, 2020), such as improving urinary disorders in human overactive bladder (Nishimura et al., 2014), reducing postprandial glycemia (Cândido et al., 2018), protective effect against cytotoxicity and genotoxicity (Elfiky et al., 2012), cancer cell growth inhibition (Medjakovic et al., 2016), antidiabetic activity (Bharti et al., 2013), and antioxidant activity (Jiao et al., 2014; Stevenson et al., 2007).

In industrial production, PSO is produced by hydraulic cold pressing (Salgin and Korkmaz, 2011). Numerous researches have reported about the physical and chemical characterization of PSO extracted by cold pressing (Kulaitienė et al., 2018; Rezig et al., 2012), aqueous enzymatic extraction assisted by microwave (Jiao
et al., 2014), Soxhlet (Montesano et al., 2018), and supercritical CO₂ (Koubaa et al., 2017). The temperature during the extraction process could affect the oil properties and minor constituents with some biological activities which are useful for maintaining human health conditions (Khoddami et al., 2011). Rezig et al. (2018) have compared the physicochemical properties of PSO extracted using two different methods, namely solvent extraction and cold pressing. However, the comparison of physicochemical properties of PSO as affected by three extraction methods has not been reported. The objective of this research was to compare the physical and chemical characterization, the profiles of FAs, and the antioxidant activities of PSO obtained from different origins and extraction methods.

MATERIALS AND METHODS

Materials

The pumpkin fruits were collected from 10 regions in Central Java and Yogyakarta, Indonesia. The seeds were separated from the flesh, cleaned, washed, and air-dried at room temperature (3 × 24 hours) and then stored at −20°C until used for analysis and extraction.

Moisture content

The moisture content was determined based on the Indonesian Pharmacopeia (The Ministry of Health, 1979).

Microwave pretreatment

The pumpkin seed was previously subjected to pretreatment as mentioned in Irnawati et al. (2021). Inside the microwave model MR-5750 (Hitachi, Japan), 100 g of pumpkin seed samples was placed in an even layer in Pyrex petri dishes. The samples were subjected to microwave extraction by treating those for 240 seconds at a power of 50%.

Oil extraction

During the extraction of PSO, three extraction techniques (Soxhlet, hot pressing, and ultrasound-assisted) were employed. Using the hot pressing method, pumpkin seeds previously treated with microwave were extracted using mechanical pressing (Maksindo MKS-J03) in hot conditions (Dang and Bui, 2019). The obtained oil was then separated from its sediment using a centrifuge (Thermo Scientific, USA) at 2,500 rpm for 10 minutes and then stored at −20°C for further analysis. For Soxhlet extraction, pumpkin seed powder (33 g) was continuously extracted with 500 ml of n-hexane for eight cycles at a temperature of 80°C in a set of Soxhlet extraction apparatuses. Once the Soxhlet extraction was complete, n-hexane was evaporated at 50°C using a rotary evaporator (IKA-Werke KRV06-ML, Germany). The oil obtained was weighed to calculate the yield of oil extraction. In ultrasound-assisted extraction (UAE), PSO was extracted using ultrasonic cleaning (ELMA, T760/DH) according to the method described by Irnawati et al. (2020). Briefly, 50 g of pumpkin seed powder was mixed with 500 ml n-hexane and sonicated at 150 W for 15 minutes at a temperature lower than 40°C. The solvent was later separated from the sediment using a centrifuge (Thermo Scientific, USA) at 2,500 rpm for 10 minutes.

After that, the samples were treated as previously reported using Soxhlet extraction.

Physical and chemical characterization of PSO

Determination of some values (acid, saponification, peroxide, and iodine) of PSO was carried out according to the methods of AOAC (2000).

Evaluation of FA profiles

The FA profiles of PSO were analyzed according to Rezig et al. (2018) using gas chromatography (GC) with slight modifications. The nonvolatile FAs were subjected to derivatization by converting them into FA methyl esters (FAMEs). This derivatization was carried out by adding 0.4 g PSO with 1.5 ml of methanolic potassium hydroxide and 2 ml of boron trifluoride-methanol. The FAME in heptane was analyzed by GC (Agilent Technologies, 7890B) equipped with a capillary column of DB-WAX (30 m × 250 × 0.25 µm). The temperatures of the injection inlet and detector (flame ionization detector) were set at 250°C and 280°C, respectively. The initial temperature of the column was set at 50°C for 1 minute and then increased to 200°C at the rate of 25°C/minute and increased to 230°C at the rate of 3°C/minute with 18 minutes hold time. 1 µl solution containing FAME was injected. The flow rate of H₂ was set at 40 ml/minute with a split ratio of 50:1. FA identification was carried out by comparing the retention times of FAMEs in PSO samples with those in FAME standards consisting of 37 FAMEs (CRM47885 FAME Mix 37 Supelco).

Determination of antioxidant activity

The antioxidant activities in vitro of PSO samples were assessed using ABTS⁺ assay, DPPH assay, and bleaching assay of β-carotene.

Determination of antioxidant using DPPH assay

Antiradical activity using DPPH was carried out according to Brand-Williams et al. (1995) and Casoni et al. (2019). PSO samples (80 mg) were added to 1.0 ml of DPPH ethanolic solution at a concentration of 0.4 M and 3.9 ml of ethanol. The absorbance of evaluated samples was measured at 515 nm after an operational time of 30 minutes in darkness at ambient temperature. The absorbance measurement of evaluated samples was corrected with blank absorbance containing ethanol and the studied PSO sample. The scavenging activity (％) of the DPPH radical was calculated using

\[
DPPH \text{ radical scavenging activity (％)} = \frac{(\text{Abs}_{\text{control}} - \text{Abs}_{\text{sample}})}{\text{Abs}_{\text{control}}} \times 100 \quad (1)
\]

Determination of antioxidant using ABTS assay

ABTS⁺ assay was carried out according to Ortega-Ortega et al.’s (2017) study, with slight modification. ABTS⁺ radical cation was produced by reacting ABTS 7 mM with potassium persulfate 2.45 mM in darkness at an ambient temperature for 16 hours. The ABTS⁺ solution was diluted with deionized water to get the absorbance value of around 0.7 (0.63–0.77) at wavelength 753 nm. An aliquot of 40 mg of sample was added
with 4950 µl of diluted ABTS””, and the absorbance was measured after 7 minutes in darkness at an ambient temperature at 753 nm (spectrophotometer, model U-2900). The percentage (%) of radical scavenging of ABTS was calculated as follows:

\[
\text{ABTS radical scavenging activity (\%) = } \frac{(\text{Abs}_{\text{control}} - \text{Abs}_{\text{sample}})}{\text{Abs}_{\text{control}}} \times 100. \tag{2}
\]

β-Carotene bleaching assay

The assay of β-carotene bleaching was carried out as mentioned by Hsouna *et al.* (2013) and Takada *et al.* (2006). The mixture of β-carotene and linoleic acid was made by adding 25 mg of β-carotene with 10 ml chloroform, 250 µl of linoleic acid, and 2.0 g Tween-20. After that, chloroform was evaporated and added with 1.0 l of distilled water (oxygen saturated), and the mixture was shaken vigorously. 4.0 ml of this mixture was dispensed into the test tube and added with 10 µl PSO. The emulsion was subjected to incubation for 2 hours at a temperature 50°C. After that, the absorbance was measured at wavelength 459 nm. The antioxidant based on bleaching of β-carotene was computed as follows:

\[
\text{antioxidant activity} = \frac{(\text{degr}_{\text{control}} - \text{degr}_{\text{sample}})}{\text{degr}_{\text{control}}} \times 100, \tag{3}
\]

in which degradation rate was calculated as follows:

\[
\text{degradation rate (degr)} = (\text{Lu}[A_t/A_0]), \tag{4}
\]

where \(A_t\) is the absorbance value of the PSO sample at zero times and \(A_0\) is the absorbance of the sample after 2 hours of incubation.

Determination of total phenolic content

The total phenolic content of PSO was determined by using Folin–Ciocalteu’s reagent method as mentioned in Delfan-Hosseini *et al.*’s (2017) study with slight modification. 0.4 g PSO was dissolved in 1 ml n-hexane and the extraction procedure was carried out using 1 ml methanol:water (80%:20% v/v). 200 µl of methanol:water phase was mixed with 0.4 ml of Folin–Ciocalteu’s reagent and 4.0 ml Na₂CO₃ solution in a 10 ml volumetric flask and then was adjusted to volume with Aquadest. The measurement of absorbance was made at 750 nm after 60 minutes. The reference standard of gallic acid at 0.0625–4 µg/ml in methanol was applied for preparing the calibration curve.

RESULTS AND DISCUSSION

The moisture contents and extraction yield

Moisture analysis of pumpkin seeds showed that the contents of water and volatile matter were in the range of 6.72%–8.88% (Table 1). The low moisture of the samples before being subjected to microwave treatment can make them more brittle. As a consequence, the yield of PSO during extraction can be increased (Uquiche *et al.*, 2008). The yield of PSO extraction from different origins and extraction methods was expressed as the % of PSO obtained, as compiled in Table 2. The highest yield was obtained using the Soxhlet method compared to that obtained using the UAE and hot pressing methods. The high yield of PSO obtained by the Soxhlet method could be attributed to extended contact and repeated washing to eight cycles at high temperature (Ortega-Ortega *et al.*, 2017). The obtained results were in line with those reported for black seed oil (Khodami *et al.*, 2011), grape seed oil (Da Porto *et al.*, 2013), and purslane seed oil (Delfan-Hosseini *et al.*, 2017).

Physicochemical properties of PSO

Table 3 shows the physicochemical properties of PSO from different origins extracted using different methods. The acid value (AV) and peroxide value (PV) were used as the most important characteristics for seed oil. Meanwhile, the saponification value (SV) and iodine value (IV) were used as quality parameters for seed oil. The AV represents the amount of free FAs in the oil. AVs of the PSO were within the range of 4.37–8.63 mg Potassium Hydroxide (KOH)/g oil. The similar results in AVs of PSO were reported by Rezig *et al.* (2012) in which the AV value obtained was 7.54 mg KOH/g oil and by Jiao *et al.* (2014) (6.97–7.08 mg KOH/g oil), but the reported AVs of PSO in this study were higher than that reported by Habib *et al.* (2015) (0.516 mg KOH/g oil). The difference was attributed to the sources of PSO used, namely unrefined oil (this study) and refined oil (Habib *et al.*, 2015). Based on the ANOVA and Tukey’s test, the hot press extracted oil had the lowest AVs but there is no significant difference between ultrasound-assisted extracted oil and that of Soxhlet (\(p > 0.05\)) and there are no significant effects on the different origins of PSO (\(p > 0.05\)).

The PV indicated the degree of oxidation of the oil. The low value of PV indicated the high resistance to oxidation (Haile *et al.*, 2019). PVs of PSO from different origins and different extraction methods were found to be in the range of 3.15–5.61 meq/kg. PVs of PSO showed a significant difference between extraction methods (\(p < 0.05\)). The highest PVs were found in PSOs extracted by the Soxhlet method which is attributed to the high temperature used during the extraction. The SV is an indicator of chain length and molecular weight of FAs composed of fats and oils. SVs of the PSO from different origins and extraction methods ranged from 145.28 to 195.27 mg KOH/g oil. SVs of PSO were also reported by Rezig *et al.*

No.	Origin	Moisture content (%)
1	Blora	6.72 ± 0.33
2	Cepu	7.47 ± 0.39
3	Gondomanan	7.02 ± 0.25
4	Gunung Kidul	8.88 ± 0.43
5	Kopeng	7.11 ± 0.03
6	Munitlan	7.96 ± 0.74
7	Palagan	8.66 ± 0.82
8	Parakan	7.27 ± 0.31
9	Pati	6.93 ± 0.33
10	Weleri	7.52 ± 0.48
The difference of SVs in this study and those reported by other researches may be attributable to different origins, cultivation age of pumpkin, and environmental conditions. SVs of PSOs showed a significant difference between extraction methods (p < 0.05). The IVs indicated the unsaturated bond present in fats and oils. The higher the IV, the greater the number of C = C double bonds (Aremu et al., 2006; Lixia et al., 2018). IVs of PSO from different extractions and different origins in this study were in the range of 81.47–113.61 g I$_2$/100 g oil. The IV of PSO extracted using hot pressing is higher than those of other oils (p < 0.05). These results were similar to those reported by Habib et al. (2015) (114.33 g I$_2$/g oil), Badr et al. (2011) (109 g I$_2$/g oil), and El-Adawy and Taha (2001) (109 g I$_2$/g oil).

The FA composition of PSOs from different origins extracted using the different methods is shown in Table 4. Four FAs were identified as dominant FAs in PSO, including palmitate, stearate, oleic, and linoleate (Fig. 1b). These results obtained also indicated that the different extraction methods have no effect on the FA composition of PSO (p > 0.05).

Antioxidant activity of PSO

The antioxidant activities of PSOs as evaluated by the DPPH radical scavenging assay, ABTS assay, and β-carotene bleaching are shown in Table 5. The highest antioxidant activity was found in PSO from Gunung Kidul extracted by hot pressing (98.71%) and ABTS assay (88.08%) with total phenolic content of 142.61 µg gallic acid equivalent/g.
Table 4. FA compositions of PSO from different origins and extraction methods as determined using GC with flame ionization detector**.

No.	Origin*	C14:0^b	C16:0^b	C16:1^b	C18:0^b	C18:1^b	C18:2^b	C18:3^b	C20:0^b	C20:4^b	C20:5^b	C22:0^b	C22:2^b	C22:6^b	
1	Blora Press	0.29	20.86	0.42	6.61	39.69	30.87	0.28	0.39	0.17	0.13	0.19	0.10	Nd	
2	Blora Sox	0.30	21.04	0.40	6.70	39.67	30.48	0.34	0.40	0.17	0.11	0.14	0.24	Nd	
3	Blora UAE	0.30	20.88	0.14	6.67	39.70	30.73	0.36	0.38	0.15	0.17	0.12	0.15	0.28	0.16
4	Cepu Press	0.33	21.76	0.35	6.12	37.95	32.00	0.43	0.31	Nd	Nd	Nd	0.74	Nd	Nd
5	Cepu Sox	0.28	20.48	0.25	6.70	40.42	30.52	0.30	0.42	0.17	0.11	0.13	0.22	Nd	
6	Cepu UAE	0.28	21.48	Nd	6.45	39.78	30.29	0.35	0.37	0.17	0.12	0.15	0.43	0.13	
7	Gondom Press	0.18	21.22	0.28	6.30	33.83	36.73	0.29	0.29	0.14	0.13	0.18	0.13	0.31	
8	Gondom Sox	0.18	21.34	0.11	6.45	34.24	35.96	0.30	0.31	0.14	Nd	0.27	0.49	Nd	
9	Gondom UAE	0.19	21.09	0.35	6.23	33.84	36.67	0.37	0.15	0.18	Nd	0.35	0.28	Nd	
10	G. Kidul Press	0.25	22.94	Nd	2.81	23.50	48.86	0.81	0.15	Nd	0.16	0.30	Nd	0.36	
11	G. Kidul Sox	0.28	18.52	0.14	5.12	29.94	44.07	0.87	0.15	Nd	0.19	0.16	0.19	0.37	
12	G. Kidul UAE	0.27	18.71	0.14	4.88	30.29	43.71	0.92	0.16	0.16	0.18	0.21	Nd	0.38	
13	Kopeng Press	0.29	23.42	Nd	2.68	31.87	39.76	0.91	0.17	Nd	0.21	0.15	Nd	0.32	
14	Kopeng Sox	0.42	18.44	0.14	3.21	33.15	42.73	0.94	0.26	Nd	0.40	0.40	0.36	0.55	
15	Kopeng UAE	0.26	19.51	0.15	3.34	33.26	41.39	0.88	0.17	0.17	0.15	0.20	0.12	0.39	
16	Muntlian Press	0.26	18.52	Nd	4.24	32.38	42.97	0.97	0.18	0.14	Nd	Nd	Nd	0.62	
17	Muntlian Sox	0.24	20.33	0.13	4.53	27.15	45.30	0.76	0.14	0.11	0.35	0.12	0.10	0.36	
18	Muntlian UAE	0.25	20.34	0.13	4.11	28.67	44.06	0.79	0.14	Nd	0.35	0.13	0.38	0.40	
19	Palagan Press	0.13	22.19	0.26	7.20	23.39	45.62	0.22	0.26	Nd	0.22	0.35	0.14	Nd	
20	Palagan Sox	0.13	21.10	0.30	7.24	24.38	45.38	0.26	0.29	0.11	0.10	0.38	0.16	Nd	
21	Palagan UAE	0.14	20.99	0.18	6.89	23.99	45.93	0.28	0.24	0.13	0.20	0.12	0.50	0.30	
22	Parakan Press	0.14	17.19	Nd	3.47	32.36	45.32	0.66	0.14	Nd	0.12	Nd	Nd	0.45	
23	Parakan Sox	0.29	15.17	0.11	3.87	32.95	46.19	0.74	0.17	Nd	Nd	0.23	Nd	0.26	
24	Parakan UAE	0.26	15.60	0.11	3.53	34.04	44.97	0.76	0.18	Nd	0.16	Nd	Nd	0.37	
25	Pati Press	0.26	20.03	Nd	5.43	34.04	38.33	0.85	0.18	0.15	0.17	0.20	Nd	Nd	
26	Pati Sox	1.40	19.20	Nd	6.03	34.50	38.03	0.85	Nd	Nd	Nd	Nd	Nd	0.35	
27	Pati UAE	Nd	18.98		6.08	34.34	39.62	0.98	Nd	Nd	Nd	Nd	Nd	Nd	
28	Weleri Press	0.21	17.79	0.09	12.92	22.96	43.84	0.66	0.10	0.10	0.31	0.10	0.31	0.40	
29	Weleri Sox	0.33	17.87	Nd	12.81	23.50	43.66	0.74	0.28	Nd	0.29	0.12	Nd	0.39	
30	Weleri UAE	Nd	17.91	Nd	12.59	23.82	43.78	0.68	0.12	Nd	0.28	0.29	0.25	Nd	

*Press: hot pressing; Sox: Soxlet; UAE: ultrasound-assisted extraction.

aC14:0: myristate; C16:0: palmitate; C16:1: palmitoleate; C18:0: stearate; C18:1: oleic; C18:2: linoleate; C18:3: linolenic; C20:0: arachidate; C20:4: eicosatetranoate; C20:5: eicosapentaenoate; C22:0: docosanoate; C22:2: docosadienoic; C22:6: docohexaenoate.
Figure 1. (a) Example of pumpkin seeds (C. moschata Duchesne) used in this study. (b) FA composition of PSO from Palagan region, Yogyakarta. (c) Loading plot of principal component analysis for evaluating the correlation between antioxidant activities and phenolic compounds.

Table 5. Antioxidant activity of PSO from different origins and extraction methods.

No.	Origin	DPPH (%)	ABTS (%)	β-Carotene bleaching (%)	Total phenolic content (µg g⁻¹ oil)
1	Blora Press	44.20 ± 0.07	45.41 ± 0.16	51.35 ± 11.14	110.99 ± 1.44
2	Blora Sox	23.93 ± 0.22	32.14 ± 0.18	60.02 ± 12.59	60.24 ± 2.50
3	Blora UAE	24.02 ± 0.20	37.48 ± 0.00	64.19 ± 12.34	41.93 ± 1.44
4	Cepu Press	50.67 ± 0.75	55.31 ± 0.32	38.28 ± 8.03	71.05 ± 5.20
5	Cepu Sox	32.26 ± 0.78	37.48 ± 0.41	53.33 ± 0.51	31.12 ± 1.44
6	Cepu UAE	30.01 ± 0.13	38.15 ± 0.09	52.79 ± 3.47	51.92 ± 2.50
7	Gondomanan Press	48.04 ± 0.82	51.84 ± 0.09	25.98 ± 2.62	26.96 ± 0.00
8	Gondomanan Sox	28.37 ± 0.27	47.85 ± 0.45	38.29 ± 6.88	61.07 ± 1.44
9	Gondomanan UAE	36.27 ± 0.82	49.87 ± 0.39	36.82 ± 2.02	27.79 ± 3.81
10	Gunung Kidul Press	98.71 ± 0.00	88.08 ± 0.18	15.48 ± 11.37	142.61 ± 1.44
11	Gunung Kidul Sox	57.44 ± 0.23	60.34 ± 0.00	46.51 ± 2.96	51.08 ± 1.44
12	Gunung Kidul UAE	59.29 ± 0.37	55.37 ± 0.27	68.68 ± 2.40	135.95 ± 3.81
13	Kopeng Press	58.95 ± 0.07	54.54 ± 0.32	48.10 ± 15.44	51.92 ± 0.00
14	Kopeng Sox	30.83 ± 0.82	38.83 ± 1.17	69.30 ± 12.75	35.28 ± 5.26
15	Kopeng UAE	33.33 ± 0.54	42.20 ± 0.09	73.01 ± 7.75	50.25 ± 3.81
16	Muntilan Press	64.77 ± 0.20	68.43 ± 0.31	16.91 ± 1.83	98.51 ± 1.44
No.	Origin	DPPH (%)	ABTS (%)	β-Carotene bleeding (%)	Total phenolic content (µg g⁻¹ oil)
-----	----------------	----------------	----------------	-------------------------	-------------------------------------
17	Muntilan Sox	61.66 ± 0.07a	65.37 ± 0.48a	61.57 ± 6.17bcdefg	46.09 ± 1.44a
18	Muntilan UAE	63.99 ± 0.07a	69.36 ± 0.16a	59.69 ± 6.06bcdefg	81.87 ± 7.49a
19	Palagan Press	61.23 ± 0.33a	40.95 ± 0.09c	29.45 ± 8.93cdefg	45.26 ± 5.20ad
20	Palagan Sox	31.18 ± 0.22a	55.42 ± 0.39c	54.06 ± 8.59bcdefg	39.44 ± 2.59bcdefg
21	Palagan UAE	40.32 ± 0.97a	57.13 ± 1.09a	68.79 ± 15.74bc	46.15 ± 9.99a
22	Parakan Press	54.51 ± 0.27a	46.35 ± 0.00ab	31.85 ± 4.95bcdefg	59.40 ± 0.00c
23	Parakan Sox	46.31 ± 0.00a	43.86 ± 0.31c	68.32 ± 4.08bc	76.88 ± 0.00d
24	Parakan UAE	46.83 ± 0.00ab	46.66 ± 0.00ab	42.28 ± 10.08bcdefg	51.08 ± 2.88bc
25	Pati Press	60.67 ± 0.00a	58.48 ± 0.16a	26.62 ± 14.41cdefg	33.61 ± 1.44bcdefg
26	Pati Sox	28.16 ± 0.07a	38.10 ± 0.41ab	73.28 ± 1.26bc	27.79 ± 1.44bc
27	Pati UAE	39.67 ± 0.58a	42.20 ± 0.24c	56.51 ± 6.94bcdefg	35.28 ± 2.88bcdefg
28	Weleri Press	67.62 ± 0.20a	62.31 ± 0.50a	41.63 ± 12.63bcdefg	87.69 ± 3.81c
29	Weleri Sox	37.56 ± 0.52a	41.21 ± 0.00a	63.19 ± 1.08bc	103.50 ± 1.44bc
30	Weleri UAE	40.62 ± 0.81a	46.60 ± 0.09bc	56.50 ± 4.83bcdefg	36.11 ± 3.81bcdedefg

Means with different lowercase letters within a column in each origin and extraction method are significantly different (p < 0.05). Values are mean ± SD of triplicate.

Press: hot pressing; Sox: Soxhlet; UAE: ultrasound-assisted extraction.

Oil. Meanwhile, the highest β-carotene bleaching was found in PSO from Pati, Central Java, extracted by the Soxhlet method. Figure 1c shows the relationship between antioxidant activities and total phenolic content of PSO as evaluated using the loading plot of principal component analysis.

CONCLUSION

Comparing the three extraction methods, the PSO extracted by the hot pressing extraction method presented a lower yield but good physicochemical properties and higher antioxidant activities as evaluated by the DPPH radical scavenging assay, ABTS assay, and β-carotene bleaching assay. PSO collected from different origins showed different physicochemical properties. PSOs have the potential to be used in food industries especially for functional food oil applications.

ACKNOWLEDGMENTS

The authors acknowledge Universitas Gadjah Mada (UGM) for financial support through scheme of Program Post-Doctoral Tahun 2021 with contract number: 6162/UN1/DITLIT/DIT-LIT/PT/2021 Awarded to Prof. Dr. Abdul Rohman.

AUTHORS’ CONTRIBUTIONS

Irnawati carried out the research activities, data acquisition, data interpretation, statistical analysis, and prepared the manuscript. Anjar Windarsih prepared the manuscript. Sugeng Riyanto, Sudibyo Martono, and Abdul Rohman conceptualized and designed the research and critically analyzed the manuscript. Anjar Windarsih prepared the manuscript. Sugeng Riyanto, Sudibyo Martono, and Abdul Rohman conceptualized and designed the research and critically analyzed the manuscript.

CONFLICTS OF INTEREST

The authors report no financial or any other conflicts of interest in this work.

ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.

PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES

AOAC. The official methods of analysis. 17th edition, AOAC, Rockville, MD, 2000.

Aremu MO, Olaofe O, Akintayo ET. Chemical composition and physicochemical characteristics of two varieties of barbama groundnut (Vigna subterrenea) flours. J Appl Sci, 2006; 6:1900–3.

Badr SEA, Shaaban M, Elkholey YM, Helal MH, Hamza AS, Masoud MS, Safty MMEl. Natural product research: formerly natural product letters chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats. Nat Prod Res, 2011; 25:204–9.

Bharti SK, Kumar A, Sharma NK, Prakash O, Jaiswal SK, Krishnan S, Gupta AK, Kumar A. Tocopherol from seeds of pumpkin fruits (Cucurbita pepo) against diabetes: validation by in vivo experiments supported by computational docking. J Formos Med Assoc, 2013; 112:676–90.

Brand-Williams W, Cuvelier ME, Berser C. Standard calibration techniques. Lebensm Wiss Technol, 1995; 28:25–30.

Cândido FG, de Oliveira FCE, Lima MFC, Pinto CA, da Silva LL, Martino HSD, Santos MH dos, Allenas RdeCG. Addition of pooled PSOs has the potential to be used in food industries especially for functional food oil applications.

Casoni D, Simion IM, Sârbu C. A comprehensive classification of edible oils according to their radical scavenging spectral profile evaluated by advanced chemometrics. Spectrochim Acta A Mol Biomol Spectros, 2019; 213:204–9.

Candió TQ, Bui HQH. Effect of roasting and microwave heating on the yield, quality, total phenolics and antioxidant capacity of oil from red pumpkin seed. Ec Nutrition, 2019; 8:588–96.

Da Porto C, Porretto E, Decorti D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and...
polyphenols from grape (*Vitis vinifera* L.) seeds. Ultrason Soconochem, 2013; 20:1076–80.

Delfan-Hosseini S, Nayebehzadeh K, Mirmoghtadaie L, Kavosi M, Hosseini SM. Effect of extraction process on composition, oxidative stability and rheological properties of purslane seed oil. Food Chem, 2017; 222:61–6.

El-Adawy TA, Taha KM. Characteristics and composition of watermelon, pumpkin, and paprica seed oils and flours. J Agric Food Chem, 2001; 49:1253–9.

Elifyk SA, Elelaimy IA, Hassan AM, Ibrahim HM, Elsayad RI. Protective effect of pumpkin seed oil against genotoxicity induced by azathioprine. JOBZ, 2012; 65:289–98.

Habib A, Biswas S, Siddique AH, Manirajjaman M, Uddin B, Hasan, S, Khan MMH, Uddin M, Islam M, Hasan M, Rahman M, Asaduzzaman M, Sohanur RM, Khatun M, Islam MA, Rahman, M. Nutritional and lipid composition analysis of pumpkin seed (*Cucurbita maxima* Linn.). Nut Food Sci, 2015; 05:1–5.

Haile M, Duguma HT, Chameno G, Kuyu CG. Effects of location and extraction solvent on physico chemical properties of *Moringa stenopetala* seed oil. Heliyon, 2019; 5:1–5.

Hsouna AB, Hamdi N, Halima NB, Abdelkafi S. Characterization of essential oil from *Citrus aurantiun* L. flowers: antimicrobial and antioxidant activities. J Oleo Sci, 2013; 62:763–72.

Irnavati, Riyanto S, Martono S, Rohman A. The optimization of ultrasonic method for the extraction of pumpkin seed (*Cucurbita maxima*). Indonesian J Chemom Pharm Anal, 2020; 1:23–32.

Irnavati, Riyanto S, Martono S, Rohman A. The employment of FTIR spectroscopy and chemometrics for the classification and prediction of antioxidant activities of pumpkin seed oils from different origins. J Appl Pharm Sci, 2021; 11(05):100–7.

Jiao J, Li ZG, Gai QY, Li XJ, Wei FY, Fu YJ, Ma W. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chem, 2014; 147:17–24.

Khodami A, Ghazali HM, Yassoralipour A, Ramakrishnan Y, Ganjloo A. Physicochemical characteristics of *Nigella* seed (*Nigella sativa* L.) oil as affected by different extraction methods. J Am Oil Chem Soc, 2011; 88:533–40.

Kim MY, Kim EJ, Kim YN, Choi C, Lee BH. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and nuts. Nutr Res Pract, 2012;6:21–7.

Koubai M, Memidi H, Barba FJ, Angelotti A, Bouaziz F, Chabouni SE, Vorobiev E. Seed oil extraction from red prickly pear using hexane and supercritical CO2: assessment of phenolic compound composition, antioxidant and antibacterial activities. J Sci Food Agric, 2017; 97:613–20.

Kulatiëně J, Ėrniauskiëně J, Jarienė E, Danilčenko H, Levickienė D. Antioxidant activity and other quality parameters of cold pressing pumpkin seed oil. Not Bot Hort Agrobot Cuj, 2018; 46:161–6.

Lixia H, Cuicui L, Jiang Q. Comparison of the physicochemical characteristics of *Pinus koraiensis* L. nut oils from different extraction technologies. GOST, 2018; 1:113–8.

Medjakovic S, Hobiger S, Ardjomand-Woelkart K, Bucar F, Jungbauer A. Pumpkin seed extract: cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia, 2016; 110:150–6.

Montesano D, Blasi F, Simonetti MS, Santini A, Cossignani L. Chemical and nutritional characterization of seed oil from *Cucurbita maxima* L. (Var. Berrettina) pumpkin. Foods, 2018; 7:30.