ARTICLE
Genetics and Genomics

Long-term treatment with the PARP inhibitor niraparib does not increase the mutation load in cell line models and tumour xenografts

Ádám Póti1, Kinga Berta1, Yonghong Xiao2, Orsolya Pipek3, Gregory T. Klus4,5,6, Thomas Ried4, István Csabai3, Keith Wilcoxen2, Keith Mikule2, Zoltan Szallasi5,6,7,8 and Dávid Szüts1

BACKGROUND: Poly-ADP ribose polymerase (PARP) inhibitor-based cancer therapy selectively targets cells with deficient homologous recombination repair. Considering their long-term use in maintenance treatment, any potential mutagenic effect of PARP inhibitor treatment could accelerate the development of resistance or harm non-malignant somatic cells.

METHODS: We tested the mutagenicity of long-term treatment with the PARP inhibitor niraparib using whole-genome sequencing of cultured cell clones and whole-exome sequencing of patient-derived breast cancer xenografts.

RESULTS: We observed no significant increase in the number and alteration in the spectrum of base substitutions, short insertions and deletions and genomic rearrangements upon niraparib treatment of human DLD-1 colon adenocarcinoma cells, wild-type and BRCA1 mutant chicken DT40 lymphoblastoma cells and BRCA1-defective SUM149PT breast carcinoma cells, except for a minor increase in specific deletion classes. We also did not detect any contribution of in vivo niraparib treatment to subclonal mutations arising in breast cancer-derived xenografts.

CONCLUSIONS: The results suggest that long-term inhibition of DNA repair with PARP inhibitors has no or only limited mutagenic effect. Mutagenesis due to prolonged use of PARP inhibitors in cancer treatment is therefore not expected to contribute to the genetic evolution of resistance, generate significant immunogenic neoepitopes or induce secondary malignancies.
reporter assay in BRCA2 mutant Capan-1 cells. In HR-proficient cells, PARP inhibition increases sister chromatid exchange (SCE) formation and olaparib has also been shown to induce chromatid-type chromosome aberrations. In contrast with the above findings, preclinical toxicology results of clinically used PARP inhibitors reported no mutagenic effect in the bacterial Ames test, while carcinogenicity was not investigated. The Ames test is of limited relevance for this class of drugs, as prokaryotes do not have PARP enzymes involved in DNA repair. It was, therefore, important to obtain a comprehensive view of genomic changes elicited by PARP inhibitors. Whole-genome sequencing (WGS) of cultured cells following drug treatment offers a convenient method for this purpose, which we successfully used to determine and compare the mutagenic effect of several common anticancer cytotoxic agents, and demonstrate the mutagenicity of cisplatin. In this study, we subjected BRCA wild-type (WT) and BRCA mutant cell lines to long-term treatment with the PARP inhibitor niraparib. WGS analysis of post-treatment cell clones did not reveal increased mutagenesis, with subtle exceptions. The lack of mutagenic effect was confirmed in vivo using patient-derived breast cancer xenograft (PDX) tumours.

METHODS

Cell culture

The following cell lines were used: WT and BRCA1−/− DT40 as used previously, DLD-1 and 184BS (ATCC) and SUM149PT (Asterand Bioscience). All cell lines were tested for mycoplasma contamination, and validated using the WGS data obtained during this work. DT40 cells were cultured in RPMI-1640 medium (Lonza) supplemented with 7% foetal bovine serum and 3% chicken serum; DLD-1 and 184BS cells were cultured in RPMI-1640 medium supplemented with 10% foetal bovine serum; and SUM149PT cells were cultured in Ham’s F12 medium (Sigma) supplemented with 5% foetal bovine serum, 20 mM HEPES-NaOH (pH 7.4), 1 μg/ml hydrocortisone and 5 μg/ml insulin (all from Sigma). All cells were grown at 37 °C under 5% CO2.

PARP inhibitor treatments

Niraparib was obtained from Tesaro and dissolved in dimethyl sulfoxide (DMSO) at 10 mM. Cytotoxicity assays were performed in 96-well cell culture plates. DT40 cells were plated at 5000 cells/well, and niraparib was added at the time of seeding. Measurements were taken after 3 days on a Perkin-Elmer EnSpire instrument, 2h following the addition of 5% PrestoBlue reagent (Thermo Fischer Scientific) to the medium. DLD-1 and SUM149PT cells were plated at 1000 and 3000 cells/well, respectively. The treatment was started on day one after plating (day 0), and the medium was changed on days 3 and 6 with the inclusion of fresh niraparib. Measurements were taken on day 8 as above, except that the growth medium was replaced with phosphate-buffered saline containing 5% PrestoBlue. The data were evaluated using GraphPad Prism.

DNA sequencing, mutation calling and data analysis

WGS was done at Novogene (Beijing, China). DNA sequencing was done at BGI Americas (Cambridge, MA, USA). The alignment of reads was done as described. The PDX-derived human and mouse sequences were separated during the alignment process. Independently arising SNVs and short indels were identified using IsoMut, using default settings adjusted for copy number for WGS, and the criteria of minimum three supporting reads and exonic location for PDX mutations. Short deletions were classified as repeat if the deleted sequence was present in at least two tandem copies, and as microhomology if the sequence at the two breakpoints contained at least one base pair of homology. Structural variations were detected using CREST with post-filtering steps (Supplementary Methods).

RESULTS

Modelling long-term PARP inhibitor treatment in cell lines

We modelled preclinical and clinical in vivo niraparib treatments in cell lines by continuous exposure to niraparib for 30 days. To avoid analysing non-independent cells derived from potential drug-resistant subclones that may emerge during the treatment, we isolated only a single-cell clone from each population for statistical comparisons.

Two-sided unpaired t tests were used for statistical comparisons of mutation numbers with no adjustments for multiple comparisons.

SCE assay

Niraparib and olaparib (Selleckchem) were added from 1 mM stock solutions in DMSO to produce a final concentration of 500 nM and a final DMSO concentration of 0.05%. SCE assays of DLD-1 and 184BS cells exposed to the various treatments were performed essentially as described, with a 5-bromo-2'-deoxyuridine (BrdU) exposure duration of 43 and 40 h, respectively, and with the BrdU exposure occurring at the same time as the treatments. Modifications to the above protocol were (i) the use of colcemid at 0.05 μg/ml for 90 min rather than at 0.02 μg/ml for 4 h; (ii) the preparation of metaphase spreads by the method described by Padilla-Nash et al., with the spreading of the cells on slides performed in a Cytogenetic Drying Chamber (Thermotron, Holland, MI 49423 USA) at approximately 23 °C and with the relative humidity of the chamber set at 47%.

PDX treatment

Outbred athymic (nu/nu) female mice (Hsd:Athymic Nude-Foxn1nu) weighing 18–25 g (Harlan Laboratories, Gannat, France) were subcutaneously implanted with HBCx xenografts. When tumours reached a size of 70–200 mm³, mice were assigned to homogeneous groups of five animals and were dosed by oral gavage daily at 50 mg/kg. A compound was prepared at least 48 h before administration by dissolution of powder by constant stirring (and sonication when it was necessary) in 0.5% methylcellulose at 10 mg/ml. Tumours were collected 4 h after the last dosing on day 28. Tumour volume was evaluated by measuring biweekly tumour diameters with a caliper. The formula tumour volume = (length x width2)/2 was used, where the length and the width were the longest and the shortest diameters of each tumour, respectively. Animals were euthanised if the tumour volume exceeded 2000 mm³. Extracted tumour samples were formalin-fixed and paraffin-embedded according to standard methods.

DNA sequencing, mutation calling and data analysis

WGS was done at Novogene (Beijing, China). DNA sequencing was done at BGI Americas (Cambridge, MA, USA). The alignment of reads was done as described. The PDX-derived human and mouse sequences were separated during the alignment process. Independently arising SNVs and short indels were identified using IsoMut, using default settings adjusted for copy number for WGS, and the criteria of minimum three supporting reads and exonic location for PDX mutations. Short deletions were classified as repeat if the deleted sequence was present in at least two tandem copies, and as microhomology if the sequence at the two breakpoints contained at least one base pair of homology. Structural variations were detected using CREST with post-filtering steps (Supplementary Methods).

Two-sided unpaired t tests were used for statistical comparisons of mutation numbers with no adjustments for multiple comparisons.
Long-term treatment with the PARP inhibitor niraparib does not increase...

Ádám Póti et al.

![Diagram of long-term niraparib treatments](image)

Fig. 1 Long-term niraparib treatments. a A schematic outline of the long-term treatment experiments. Single-cell clones were expanded over a period of 20 days (DT40 cell lines) or 30 days (DLD-1 and SUM149PT cell lines). A sample was taken for sequencing as soon as a sufficient number of cells was available (“starting clone”). Further single-cell cloning was performed at the end of the treatment; one clone was sequenced from each treated cell population. b Doubling time of the indicated cell lines during continuous mock or niraparib treatment. The p values of significant changes are shown (t test). b A comparison of the niraparib sensitivity of WT and BRCA1−/− DT40 cell lines using cytotoxicity assays. c-e Measurement of the niraparib sensitivity of the experimental cell lines using cytotoxicity assays. The mean and SEM of three independent experiments is shown in b-e. NS not significant.

Table:

Cell line	Niraparib (nM)	Cell viability (%)
DT40 WT	0.1	100
DLD-1	0.1	100
SUM149PT	0.1	100

Text:

Long-term niraparib treatment concentrations were established using cytotoxicity assays. Niraparib selectively killed the BRCA1−/− DT40 cells, with IC50 concentrations for the WT and the BRCA1−/− mutant measured as 369 nM (95% confidence interval (CI): 154–796 nM) and 24 nM (95% CI: 11–51 nM), respectively (Fig. 1c). DLD-1 was insensitive to niraparib treatment, with an IC50 in excess of 4000 nM (Fig. 1d), and the BRCA1 mutant SUM149PT also showed fairly low sensitivity despite the presence of the 2288delT frameshift mutation, with an IC50 of 1841 nM (95% CI: 1426–2366 nM, Fig. 1e). We chose a treatment concentration of 500 nM for the treatment of WT DT40, DLD-1 and SUM149PT cells, which is around the peak plasma concentration measured in patients receiving a daily oral dose of 300 mg.25 and 50 nM for the DT40 BRCA1−/− cells. The treatments slightly slowed the growth of the SUM149PT and DT40 BRCA1−/− lines (Fig. 1b), and appeared to lead to reduced niraparib sensitivity in SUM149PT post-treatment cell clones, but not in the other cell lines (Supplementary Fig. S1). Significant cell death was observed during the treatment, suggesting that limited selection was involved in the isolation of the post-treatment clones.

Single-nucleotide variations in cell lines

Treatment-induced mutations were identified using the IsoMut tool20 using separately optimised mutation filters for genomic regions with distinct ploidy levels. We found that DT40 and DLD-1 were largely diploid, whereas the SUM149PT cell line was aneuploid, and most of the diploid regions showed loss of heterozygosity (Supplementary Fig. S2).

Any difference in SNVs between the mock-treated and niraparib-treated clones should show the mutagenic effect of the drug. We identified 102 ± 29 (SD) spontaneous base substitutions in mock-treated WT DT40 cells, not significantly different from 125 ± 11 SNVs found after niraparib treatment (Fig. 2a and Table S1, p = 0.15, t test). The number of spontaneous SNVs was about eight-fold higher in BRCA1−/− mutant cells (849 ± 93) in agreement with our earlier results,17 and again similar following niraparib treatment (Fig. 2a, b). The non-significant 12% decrease in the mean number of SNVs to 744 ± 31 (p = 0.077) may be connected to the slower growth of the niraparib-treated cell pools (Fig. 1b). DLD-1 cells showed a high level of spontaneous SNV mutagenesis with 9799 ± 1910 genomic mutations acquired over a 60-day culture period, which did not significantly change upon niraparib treatment (Fig. 2a and Table S1, p = 0.29). The BRCA1 mutant SUM149PT breast cancer cells had a lower mutation rate with 608 ± 146 acquired base substitutions, which again did not alter due to niraparib treatment (Fig. 2a and Table S1, p = 0.56). In contrast, weekly repeated treatments with 10 μM cisplatin were strongly mutagenic on WT DT40 cells (Supplementary Fig. S3), in agreement with our earlier results,16 and the same treatment regimen also resulted in a significant increase of SNVs in the case of BRCA1−/− mutant cells (Supplementary Fig. S3, p = 0.034, t test).

The triplet SNV spectra, showing each base substitution in the context of the neighbouring bases, also did not reveal any mutagenic effect of niraparib on either WT or BRCA1−/− mutant DT40 cells (Fig. 2b–e and Supplementary Fig. S4). A visualisation of the similarities of individual triplet spectra using t-distributed stochastic neighbour embedding (t-SNE) clearly separates spectra from different cell lines, but clusters the mock-treated and niraparib-treated samples together, again indicating a lack of mutagenic effect (Fig. 2f).

Our study also provides the first characterisation of mutagenic processes in the DLD-1 and SUM149PT cell lines. The comparison of triplet SNV spectra with triplet mutation signatures derived...
from cancer genomes using t-SNE showed closest correlation of the WT DT40 spontaneous spectrum with the ageing-associated signature 1, whereas SNV mutagenesis in the DT40 BRCA1/−− cells was best correlated with signature 3 typical of BRCA1/2 mutant cancers (Fig. 2g) as published earlier. The calculation of Pearson correlations or hierarchical clustering supports these findings (Supplementary Fig. S5). In DLD-1 cells, the pattern of spontaneous mutagenesis best correlated with signature 6, followed by signatures 20 and 15 (Fig. 2g). These signatures were found to associate with defective DNA mismatch repair (MMR), and the correlation is explained by the presence of frameshift mutations in each allele of the key MMR gene MSH6 in the DLD-1 genome. Spontaneous SNV mutagenesis in the SUM149PT cell line showed best correlation with signatures 4 and 8 (Fig. 2g and Fig. S4). Unlike in the DT40 BRCA1/−− cells, mutagenesis in the BRCA1 mutant SUM149PT cells showed only weak or no correlation with the BRCA defect-associated signature 3. Therefore, despite the presence of the homozygous 2288delT BRCA1 mutation, SUM149PT cells do not have a BRCA1-deficient SNV mutagenesis phenotype. Together with the low sensitivity to niraparib, this suggests that suppressor mutations may have arisen in the tumour or the cell line, but an analysis of the coding mutations did not reveal any alterations in known HR-interacting genes to explain the limited BRCA1-like phenotype of SUM149PT.
Long-term treatment with the PARP inhibitor niraparib does not increase... Ádám Póti et al.

Indels and large rearrangements in cell lines
We catalogued all short indels up to 50 bp, and found no significant difference in the number of insertions or deletions between the mock-treated and niraparib-treated samples in the investigated cell lines apart from a small but significant increase in the number of deletions in DT40 BRCA1−/− (Fig. 3a, b and Table S1). We classified the deletions according to sequence context. The high level of short deletions at repeat sequences in the DLD-1 cell line confirmed its microsatellite instability phenotype (Fig. 3c). In the BRCA1−/− mutant DT40 cells, we found more deletions of each category than in the WT, in agreement with earlier results.17 In the BRCA1−/− cells we found a significant increase in events with one or more base pairs of microhomology between the ends of the deletion upon niraparib treatment (p < 0.0001, t test), though there was no similar effect in the other cell lines (Fig. 3c and Table S1). The increase in microhomology-mediated deletions was specific to the BRCA1 mutant DT40 cells, which might be due to an increased use of nonhomologous end joining in the absence of HR at double-strand breaks resulting from the collision of replication forks with trapped PARP enzymes.

There were few instances of larger insertions, deletions or chromosomal rearrangements in the sequenced genomes. In general, there was no significant difference between the control and the niraparib-treated samples, except for an increase in large deletions in DLD-1 samples upon niraparib treatment (p = 0.038, t test) (Fig. 4a).

SCEs are theoretically non-mutagenic rearrangements, and the documented elevation of SCE numbers upon PARP inhibition is likely due to increased HR providing a back-up for defective SSB repair. We tested whether the treatment conditions used in the in vitro experiments induce SCEs. Indeed, the treatment of either DLD-1 cells or the 184BS chemically immortalised non-malignant breast epithelial cell line with 500 nM niraparib or olaparib induced approximately four times more SCEs than seen in the untreated controls (Fig. 4b, c). Contrasting the high rate of SCE formation at about 40/cell cycle in niraparib-treated DLD-1 cells with the lack of observed SNV and indel mutagenesis over approximately 30 cell divisions indicates that the niraparib-induced formation of SCEs is essentially non-mutagenic.

Niraparib treatment of breast cancer xenografts
To confirm the cell line-derived results in vivo, we subjected mice implanted with breast cancer-derived xenografts to 28 days of niraparib treatment, and performed WGS on the extracted tumour. Two BRCA1 WT PDX models were used, HBCx-31 derived from a triple-negative invasive ductal carcinoma28 and the oestrogen-dependent HBCx-34.29 Niraparib treatment slightly slowed the growth of each PDX, but did not decrease their size (Fig. 5a, b). Using IsoMut with permissive settings, we looked for subclonal mutations unique to each tumour sample; as such mutations would be expected to arise during the treatment. After careful...
separation of human and mouse sequences, we identified unique SNVs and indels with low allele frequency in all samples (Fig. 5d, e). There was no increase in the number of mutations or a change in mutation spectra when comparing control and niraparib-treated samples, indicating that niraparib treatment did not generate detectable subclonal mutations in vivo (Fig. 5f). Note that the spectrum of non-unique SNVs common to all samples of each PDX is substantially different from the spectrum of unique mutations (Fig. 5f–i), suggesting that the detection of unique subclonal mutations was not contaminated by variations present in the genome or the original tumour. The unique subclonal mutations, therefore, indeed reflect ongoing mutagenesis specific to the tumour, and could have reasonably been expected to show any potential mutagenic effect of niraparib. The approach of using high coverage WGS exome sequencing, necessary for the detection of low allele frequency subclonal mutations, precludes the analysis of subclonal structural variations in the investigated tumour samples. The results from these BRCA1 WT PDX models also serve to model mutagenesis in the somatic tissue of patients with BRCA-deficient tumours.

Discussion

This work demonstrated that continuous treatment of various cell lines and tumour xenografts with the PARP inhibitor niraparib does not induce genomic SNV mutations, and also does not induce small indels in BRCA-proficient cells. Genomic mutations can arise spontaneously during cell proliferation, or due to exogenous sources. Of the four investigated cell lines, WT DT40 has the lowest spontaneous mutation rate, similar to the spontaneous mutation rates reported in a number of organisms. The high sensitivity and specificity of the employed mutation detection methods were demonstrated earlier: with the IsoMut tool over 90% of SNVs and short indels can be detected with a near-zero false-positive rate when multiple whole genomes are analysed together. The assay was powered to detect an approximately 25% increase over this background level, but niraparib caused no significant increase, suggesting that clinical PARP inhibitor treatment could at most marginally increase spontaneous rates of mutagenesis. While the spontaneous mutation rates in the other cell lines were higher due to DNA repair defects, the results support the same conclusion.

The spontaneous mutations were acquired over a period encompassing over 100 cell divisions in DT40 cells, 50 cell division in DLD-1 cells and about 30 cell divisions in the slow growing SUM149PT cells. Some mutations typically take years to go through this number of divisions, and the correlation of cancer risk with stem cell divisions suggests that mutations are mainly acquired during active cell cycles, probably during DNA replication. With the assumption that this would also apply to niraparib-induced mutations, our experiments may have modelled years of treatment. In contrast with the lack of mutagenesis upon niraparib treatment, the same cell culture-based assay demonstrated a high level of mutagenesis over the same period due to the alkylating agents cisplatin, cyclophosphamide and methyl methanesulfonate, and a low level following etoposide treatment.

Moreover, our results showed an even stronger mutagenic effect for cisplatin in BRCA1-deficient cells. Currently, platinum agents precede PARP inhibitors in the treatment of ovarian cancer, and are also used to treat BRCA mutant triple-negative breast cancer. Replacing platinum by non-mutagenic alternatives such as PARP inhibitors will likely reduce the mutational load of tumour and normal cells and thus reduce both the level of toxicity and the incidence of secondary malignancies.

In preclinical models, PARP inhibitors showed synergistic activity with immune checkpoint inhibitors, which has led to several ongoing clinical trials combining these two promising new classes of cancer therapeutic agents (see e.g. clinical trial NCT02657889). Our results strongly suggest that this synergistic effect is not due to the induction of neoepitopes by PARP.

Fig. 4 Large rearrangements and sister chromatid exchanges generated during long-term niraparib treatment. a The mean number of structural variations (SV) per genome derived from CREST analysis, separately showing large insertions, large deletions, intrachromosomal rearrangements (ITX) and interchromosomal rearrangements (CTX). b The mean number of SCEs measured in DLD-1 cells b and 184B5 cells c following treatment with 500 nM niraparib or 500 nM olaparib is shown as SCEs per number of chromosomes in each cell. Black lines indicate the median and the lower and upper quartiles.
Long-term treatment with the PARP inhibitor niraparib does not increase... Ádám Póti et al.

We found a significant increase of microhomology-mediated deletions in niraparib-treated BRCA1/−/− DT40 cells. This effect may be related to the HPRT mutagenesis seen in BRCA2 mutant Capan-1 cells. If PARP inhibition has a weak selective mutagenic effect on BRCA1/−/− deficient cells only, this may accelerate the development of resistance in existing BRCA-deficient tumours, but would not contribute to the induction of secondary malignancies. We did observe an induction of SCEs as also reported for olaparib treatment, but this was not accompanied by mutagenesis. Apart from an increase in the number of large deletions in DLD-1...
cells, we did not see an induction of chromosomal rearrangements, which might be an expected consequence of chromosome aberrations also reported for olaparib, but our assay here was of limited power for these rare events due to the low number of sequenced clones and the inability of the employed CREST algorithm to detect rearrangements with unmappable breakpoints.

A genetic loss of PARP-1 has been shown to accelerate the induction of mammary tumours in mice. PARP-1 deletion is not equivalent to inhibition by niraparib, which efficiently traps the enzyme on DNA, but further experiments would be helpful to test whether long-term in vivo PARP inhibitor treatment has a detectable carcinogenic effect.

The results also have a direct relevance to the evolution of resistance to PARP inhibitors. Two genetic mechanisms of emerging PARP inhibitor resistance in HR-deficient cells and tumours have been documented in the literature: suppressor mutations in genes such as 53BP1 and REV7 or secondary mutations that restore the function of the originally mutated HR genes such as BRCA1, RAD51C or RAD51D. We did not observe the evolution of resistance by either mechanism, though the large deletion in BRCA1 in DT40 cells precluded genetic reversion. Importantly, mutagenic therapy can elicit such reversion mutations, both in tumours and in vitro within the 1-month timescale of cell culture model experiments. Our results suggest that unlike platinum agents, PARP inhibitor treatment will not induce mutations responsible for treatment resistance, and therefore the spontaneous mutagenic processes of the tumour and the choice of additional therapeutic agents will be most relevant to the rate of the evolution of PARP inhibitor resistance.

In conclusion, our comprehensive results revealed no mutagenic effect of niraparib apart from an increase in microhomology-mediated deletions in BRCA1 mutant cells and an increase in large deletions in one cell type. While the long-term clinical relevance of such changes needs further study, our results suggest that niraparib treatment is unlikely to have more than a minor mutagenic effect on somatic and tumour cells.

ACKNOWLEDGEMENTS

We gratefully acknowledge the experimental work of Judit Baunoch at the Institute of Enzymology. This work was supported by the Hungarian Academy of Sciences (Momentum Grant LP2011-015 to D.S.); the National Research, Development and Innovation Fund of Hungary (FIKEP_16-1-2016-0005 to D.S., O.P. and I.C.); the Breast Cancer Research Foundation (to Z.S.); and the Novo Nordisk Foundation Interdisciplinary Synergy Programme Grant (NNF15OC0016584 to Z.S., O.P. and I.C.).

AUTHOR CONTRIBUTIONS

K.B., Y.X. and G.T.K. carried out the experiments; A.P. and O.P. performed the bioinformatic analysis; A.P., I.C., K.M., Z.S. and D.S. analysed the mutation data; K.W., K.M., Z.S. and D.S. conceived the study; D.S., Z.S., K.M., T.R. and I.C. participated in the coordination of the study; D.S. wrote the manuscript; all authors helped drafting the current version.

DATA AVAILABILITY

Raw sequence data has been deposited with the European Nucleotide Archive under study accession number PRJEB28820.

ADDITIONAL INFORMATION

Supplementary Information is available for this paper at https://doi.org/10.1038/s41416-018-0312-6.

Competing interests: This work was partially funded by Tesaro, Y.X., K.W. and K.M. hold Tesaro stock. The other authors declare no competing interests.

REFERENCES

1. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).
2. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).
3. O’Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell 60, 547–560 (2015).
4. Livraghi, L. & Gabber, J. E. PARP inhibitors in the management of breast cancer: current data and future prospects. Bmc. Med. 13, 188 (2015).
5. Sonnenblick, A., de Azambuja, E., Azim, H. A. J. & Piccart, M. An update on PARP inhibitors—moving to the adjuvant setting. Nat. Rev. Clin. Oncol. 12, 27–41 (2015).
6. Ang, Y. L. E. & Tan, D. S. P. Development of PARP inhibitors in gynecological malignancies. Curr. Probl. Cancer 41, 273–286 (2017).
7. Helleday, T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol. 5, 387–393 (2011).
8. Bryant, H. E. et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28, 2601–2615 (2009).
9. Ray Chaudhuri, A. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012).
10. Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, S558–S559 (2012).
11. Jones, P. et al. Discovery of 2(1H-(3S)-piperidin-3-yl)phenyl-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumours. J. Med. Chem. 52, 7170–7185 (2009).
12. Patel, A. G., Sarkaria, J. N. & Kaufmann, S. H. Nonhomologous end joining does not mediate poly(ADP-ribose)polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl Acad. Sci. USA 108, 3406–3411 (2011).
13. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).
14. Ito, S., Murphy, C. G., Doubrovin, E., Jasim, M. & M oy nahan, M. E. PARP inhibitors in clinical use induce genomic instability in normal human cells. PLoS ONE 11, e0159341 (2016).
15. Okawa, A., Tohda, H., Kanai, M., Miwa, M. & Sugimura, T. Inhibitors of poly(adenosine diphosphate ribose) polymerase induce sister chromatid exchanges. Biochem. Biophys. Res. Commun. 97, 1311–1316 (1980).
16. Szikriszt, B. et al. A comprehensive survey of the mutagenic impact of common cancer cytotoxicities. Genome Biol. 17, 99 (2016).
17. Zamborszky, J. et al. Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions. Oncogene 36, 746–755 (2017).
18. Stults, D. M., Killen, M. W. & Pierce, A. J. The sister chromatid exchange (SCE) assay. Methods Mol. Biol. 1105, 439–455 (2014).
19. Padilla-Nash, H. M., Barenboim-Stampleton, L., Dillipantionio, M. J. & Ried, T. Spectral karyotyping analysis of human and mouse chromosom es. Nat. Protoc. 1, 3129–3142 (2006).
20. Pipek, O. et al. Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut. BMC Bioinform. 18, 73 (2017).
21. Wang, J. et al. CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat. Methods 8, 652–654 (2011).
22. Umar, A. et al. Correction of hypermutability, N-methyl-N-nitro-N-nitrosoguanidine resistance, and defective DNA mismatch repair by introducing chromosome 2 into human tumor cells with mutations in MSH2 and MSH6. Cancer Res. 57, 3949–3955 (1997).
23. Elsrodt, F. et al. BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants. Cancer Res. 66, 41–45 (2006).

Long-term treatment with the PARP inhibitor niraparib does not increase…

Adám Póti et al.
Long-term treatment with the PARP inhibitor niraparib does not increase...

Adám Póti et al.

24. Thompson, E. G., Fares, H. & Dixon, K. BRCA1 requirement for the fidelity of plasmid DNA double-strand break repair in cultured breast epithelial cells. Environ. Mol. Mutagen. 53, 32–43 (2012).

25. van Andel, L. et al. Human mass balance study and metabolite profiling of 14C-niraparib, a novel poly(ADP-ribose) polymerase (PARP)-1 and PARP-2 inhibitor, in patients with advanced cancer. Invest. New Drugs 35, 751–765 (2017).

26. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

27. COSMIC. COSMIC: Signatures of Mutational Processes in Human Cancer http://cancer.sanger.ac.uk/cosmic/signatures. Accessed on 5 January 2016.

28. Reyal, F. et al. Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 14, R11 (2012).

29. Cottu, P. et al. Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res. Treat. 133, 595–606 (2012).

30. Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

31. Ledermann, J. A. et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24(Suppl. 6), vi24–vi32 (2013).

32. Higuchi, T. et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol. Res. 3, 1257–1268 (2015).

33. Jiao, S. et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin. Cancer Res. 23, 3711–3720 (2017).

34. Tong, W. M. et al. Poly(ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice. Oncogene 26, 3857–3867 (2007).

35. Jaspers, J. E. et al. Loss of S1BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3, 68–81 (2013).

36. Xu, G. et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521, 541–544 (2015).

37. Swisher, E. M. et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).

38. Sakai, W. et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 69, 6381–6386 (2009).

39. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

40. Kondrashova, O. et al. Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 7, 984–998 (2017).