Abstract
Deep learning, an area of machine learning, is set to revolutionize patient care. But it is not yet part of standard of care, especially when it comes to individual patient care. In fact, it is unclear to what extent data-driven techniques are being used to support clinical decision making (CDS). Heretofore, there has not been a review of ways in which research in machine learning and other types of data-driven techniques can contribute effectively to clinical care and the types of support they can bring to clinicians. In this paper, we consider ways in which two data driven domains—machine learning and data visualizations—can contribute to the next generation of clinical decision support systems. We review the literature regarding the ways heuristic knowledge, machine learning, and visualization are – and can be – applied to three types of CDS. There has been substantial research into the use of predictive modeling for alerts, however current CDS systems are not utilizing these methods. Approaches that leverage interactive visualizations and machine-learning inferences to organize and review patient data are gaining popularity but are still at the prototype stage and are not yet in use. CDS systems that could benefit from prescriptive machine learning (e.g., treatment recommendations for specific patients) have not yet been developed. We discuss potential reasons for the lack of deployment of data-driven methods in CDS and directions for future research.

Keywords: Machine learning; Visualization; Visual analytics; Clinical decision support
1. **Introduction**

Learning health systems hold the promise for providing more personalized, higher quality, safer, and efficient care.[1] The learning health systems pipeline involves systematically gathering clinical data, learning from that data and generating evidence, and feeding it back to clinicians in real-time to help with decision making. This process highly depends on the robust development, evaluation, and adoption of clinical decision support (CDS) in clinical care to deliver knowledge to the point of care. However, for CDS to help realize the goals of a learning health system, numerous challenges have to be addressed. Challenges to the effective use of CDS include not being sufficiently patient-specific, utilizing simplistic CDS logic, lacking generalizability, and failing to address human factor issues.[2] Leveraging the recent developments in machine learning and data visualization, especially in combination, could help overcome some of these challenges. Machine learning (ML) methods have the potential to enhance CDS tools by generating new knowledge from gathered data, providing better patient specificity, supporting the identification of complex patterns, and improving generalizability to different patients and conditions. Data and information visualization (dataVis) techniques, from static to interactive visualizations to more complex visual analytics, have the potential to assist with feeding back information to clinicians and improve the interpretability and transparency of CDS systems. Machine learning and data visualization provide complimentary benefits to CDS and may be synergistic in combination (Figure 1). Thus, there is a strong case for greater focus on leveraging machine learning and data visualization in combination to help the realization of a learning health system.
Figure 1. Synergy of data visualization, machine learning, and clinical decision support. This review is dedicated to describing and synthesizing the current state of the literature on machine learning and data visualization methods used for clinical decision support. The review also identifies lessons learned and points out opportunities to use machine learning and data visualization to improve CDS and to further the goals of a learning health system. The target audience for this review include informaticians, designers, machine learning experts, and practitioners interested in reading how synergies between machine learning and visualization could address the challenges of clinical decision systems.

2. **Materials and Methods**

This review is based on a survey of the CDS literature and literature describing methodology developed for CDS applications. Pool of papers was compiled through a search on PubMed for the terms “clinical decision support”, “machine learning”, or “visualization.” In addition, papers were compiled from machine learning for health conference proceedings (Machine Learning for Healthcare, NeurIPS Machine Learning 4 Health Workshops) and IEEE Visualization conference proceedings. We focused our search to publications from 2010 to 2019, but also included earlier seminal works dating back to 1959. Additional papers were identified through “pearl growing,” until we reached thematic saturation. We restricted our focus to papers describing clinician-facing clinical decision support, whether patient-specific or cohort-level, and utilizing EHR data collected through clinical documentation. In final count of papers included in this review is 244. Papers were classified into three general types of CDS, although lessons learned from analysis of current work in these CDS types should also generalize to other CDS types. The three CDS types, as identified by Musen and colleagues,[3] are referred to in this review as Infobutton, Content Aggregation and Organization, and Alert.

- **Infobuttons** are a type of a CDS developed to help clinicians retrieve external resources relevant to the care of their patients such as scientific publications and guidelines. As medical evidence is constantly generated and updated and as clinicians have less time at the point of care, Infobuttons make it easier to stay up to date and well informed.
• **Content Aggregation and Organization (CAO)** CDS is used to re-organize and present patient-level or cohort-level information to clinicians in a way that facilitates understanding, pattern recognition, and decision making. Current Electronic Health Record (EHR) systems contain large amounts of data even for single patients, making the tasks of information gathering and synthesis cognitively difficult and time consuming. CAO CDS aims to help centralize and crystalize patient data available for better and easier decision making.

• **Alert** CDS provides alerts, reminders, and recommendations in the context of patient data, clinician actions (such as medication orders), and clinical knowledge. Due to the high volume of data available in the EHR, limited clinician time, and evolving medical guidelines, clinicians may miss important information regarding a given patient that could lead to better and safer care. Alert CDS produces a single output such as a prediction, an alert, or a set of recommendations to clinicians in order to help direct action and prevent medical errors.

The following section of the review synthesizes previous work on each CDS type (Infobuttons, CAO CDS, and alert CDS) and the machine learning and data visualization methods utilized. Literature on each CDS type is grouped and described by the type of methods they utilize (Figure 2). We review how each CDS type has applied: (1) heuristics-based knowledge development methods (heuristics) defined to be expert curated rules or knowledge-based sources such as ontologies; (2) machine learning (ML) defined to be data-driven and learning-based methods for knowledge development; and (3) data visualization (dataVis) defined to be the advanced visual representation of data and information using static or interactive graphs, diagrams, or pictures to convey information; and (4) any combination of these three methods.
We refer to heuristics-based methods as rules that are expert-curated or that rely on knowledge sources such as ontologies. Machine-learning methods include clinical data-driven methods. Visualization methods include static, interactive, as well as advanced visual analytics from clinical data.

3. Results

The following section synthesizes the reviewed literature, identifying methods utilized in current CDS work in machine learning and data visualization. Sections 3.1, 3.2, and 3.3 are dedicated to each CDS type in turn, each including a table with methodological examples utilized in the CDS type. A discussion of research gaps and opportunities in how machine learning and visualization can support that CDS type is also present.

3.1 Infobutton Clinical Decision Support

Infobuttons are systems developed to help clinicians retrieve external resources such as scientific publications and guidelines that are relevant to their patients and informational needs. As medical evidence is constantly being generated and updated and with clinicians having less available time, Infobuttons make the task of accessing up to date medical evidence relevant to their clinical cases easier.
3.1.1 Types of Methods for Infobutton CDS

Of the three CDS types, Infobuttons represent the most common CDS implemented in the EHR.[3] Research on heuristics-based Infobuttons, with most work taking place in the 1990s, leverages a combination of ontological knowledge and rules to identify clinical concepts in patient records and construct relevant search queries to look for relevant resources in scientific article databases or online.[4–10]

Infobuttons leveraging machine learning largely focus on the personalization and summarization of the outside resources retrieved by the system and returned to clinicians. These systems largely represent experimental stand-alone systems that have not been integrated in EHR systems, as have traditional Infobuttons. General approaches of these works include context aware scientific article summarization, recommendation of outside resources based on patient data, learning to rank models of articles based on clinician search queries, and question-answering related to a patient’s clinical case.[11–16] Very limited works have leveraged data visualization for Infobutton CDS in isolation or in combination with machine learning. The limited work in this area has looked at an interactive citation screening system for improved clinical question answering.[17]

Table 1. Examples of Infobutton CDS by method type

Papers	Type of method utilized	Description
Powsner et al. 1989 [5]	Heuristics	Utilize rule-based Medline searched by clinical topic
Cimino et al. 1997 [9]	Heuristics	Use terminology knowledge (Medical Entities Dictionary) to select queries and resources
Elhadad et al. 2005 [11]	ML	Use Natural language processing to tailor summaries of scientific articles based on the clinical context of the patient. Evaluated vis user study of simulated clinical task compared effectiveness of tailored summary, to non-tailored summary and general article search
Monteiro et al. 2015 [12]	ML	Recommender system of reports and studies based on patient information and clinical context
Donoso-Guzmán & Parra 2018 [17]	ML+dataVis	Compare two relevance feedback algorithms, Rocchio and BM25, in an interactive visualization for citation screening. Evaluated efficiency and effectiveness of tool in citation screening in user group

More papers by method category:

- Heuristics: [4,6,10,18,19]
- ML: [14,15]
3.1.2 Gaps and Opportunities for ML and dataVis in Infobutton CDS

Results of heuristics-based Infobuttons may still return large amounts of content for clinicians to review in order to find relevant information for their patients. For instance, scientific literature about a specific clinical concept might return hundreds of highly relevant publications. Furthermore, most Infobuttons search resources for one piece of information in the patient record and does not consider combination of clinical concepts, potentially reducing the relevance and usefulness of the retrieved sources. One way to reduce the complexity and size of results is to curate content based on clinical expertise, but this might limit the scope of Infobuttons as well as their sustainability as new evidence emerges.

Data-driven methods can be used to organize further the results of Infobuttons, whether to condense and synthesize the evidence or to personalize and tailor the evidence to the clinician’s information needs and clinical context, thus making the information search quicker and more efficient for the clinician.[20] An additional promise for data-driven Infobuttons, rather than rule-driven ones is increased generalizability to different types of searches and concepts with less reliance on manual curation of content. Supervised solutions, however still require annotated datasets which in the clinical context can be time-consuming and expensive to obtain. It is also important to note that data-driven systems have so-far been mostly evaluated for accuracy and effectiveness in a laboratory setting outside of a deployed, real-world setting. More research is required to evaluate their utility and performance in the clinical setting.

The lack of integration of visualization in this line of research is also a missed opportunity. Work outside of the health domain has shown that data visualization can help users identify relevant information in information retrieval tasks and facilitate thematic analysis of large sets of documents.[21–24]

3.2 Clinical aggregation and organization (CAO) Clinical Decision Support

CAO clinical decision support systems either re-organize or summarize patient information. Dashboards, that select specific data points and presents them in a centralized
way, or summarizers which synthesize entire records belong to these types of CDS. These systems aim to help users with information that is difficult to digest in its original form in the EHR due to its volume, complexity, or it scattered nature in the EHR.

3.2.1 Type of methods for CAO decision support systems

Literature on CAO decision support largely leverage heuristics-based methods such as expert curated variable selection and knowledge-based sources to organize [25,26] or summarize the information.[27–35] These tools have mainly focused on extractive summaries [36] which extract selected information from the patient record into condensed tables,[27–33] with fewer works providing abstractive summaries[37] which reformulates the patient’s data, largely to automatically infer patient problem lists using structured data.[35,37,38]

Several data visualization technique have also been proposed in combination with heuristics-based CAO systems. Popular approaches for visual extractive summaries have been small visuals and patient data temporal views.[39–52] A few examples also exist of visualizations of abstractive summaries or reorganization of selected patient data.[53–63] Machine learning used for CAO systems have largely focused on generating abstractive summaries of the patient rather than extractive summaries. That is, reducing patient data dimensionality and complexity into more salient, condensed, and digestible form. These approaches have included automatically generating short narrative description of patients’ data and generating the patient’s problem list using natural language processing methods (NLP) and supervised machine learning methods.[64–71] Another machine learning approach that has been used to reducing patients’ data dimensionality is data-driven phenotyping. Although most commonly proposed for features engineering in predictive tasks, interpretable abstraction of patient’s clinical data from data driven phenotyping could also be used for patient summarization in clinical decision support.[72] Computational approaches that propose data-driven phenotyping include probabilistic models,[72–77] deep learning,[78–83] clustering,[84] and decision trees.[85]
Few examples in the literature have used a combination of machine learning and visualization methods for CAO systems. One group of works focus on leveraging machine learning and interactive visualization to showcase cohort visualizations aimed to assist clinicians with patient-level decision making. These works mostly divide into performing two tasks: 1) computation of patient sequence similarity using different clustering methods [86–88]; and 2) frequent patterns identification using advance association rules and latent model methods.[89–91] Another group of work leverage the machine learning and visualization for patient-level visualization. These works largely focus on generating abstractive summaries of patients’ data using semi-supervised and unsupervised methods and visualizing those abstractions.[92,93] Evaluation methods utilized for systems leveraging machine learning and visualization include usability studies by clinical experts,[86,88,89,91] interactivity performance,[86] and prediction performance using patient-level abstractions. [92,93]

Table 2. Examples of CAO Clinical decision support by method type.

Papers	Type of method utilized	Description
Alkesic et al. 2017 [26]	Heuristics	Organize clinical content using manual tagging of EHR content for chronic disease tracking
Meystre & Haug 2006 [34]	Heuristics	Infer patient problems using knowledge-based sources
Powsner & Tufte 1994[39]	dataVis	Patient record summary using small graphs showing laboratory results, medications, vitals, and imaging.
Bui et al. 2007 [53]	dataVis	Problem centered patient record temporal abstractive summary using knowledge-based source
Van Vleck & Elhadad 2010[69]	ML	Natural language processing and classification to predict problem relevance for clinical summarization. Automated patient problem summaries compared to expert generated gold standard
Joshi et al. 2016 [94]	ML	Learning identifiable patient phenotypes using non-negative matrix factorization. Qualitative evaluation of clinical expert of learned phenotypes and performance in mortality prediction
Guo et al. 2018 [91]	ML+dataVis	Use tensor decomposition to identify latent evolutions of care sequences. Present threads of latent sequences in treatment sequences
Joshi et al. 2012 [93]	ML+dataVis	Utilize novel clustering algorithm to generate layered-grouping of patient states. Real time visual of patient severity by organ system during ICU stay
More papers by method category:	Heuristics	[25,27,28,30–35]
	ML	[66,67,69–76,84,85,95–98]
	dataVis	[39–50,52–58,60–63,99–101]
	ML+dataVis	[86–88,90,92]
3.2.2 Gaps and Opportunities for ML and dataVis in CAO Clinical Decision Support

Heuristics-based CAO systems have been shown to improve physicians’ information retrieval capabilities, reduce information overload, improve patient outcomes, and guideline compliance.[25,27,29,30,102] However, these systems mostly focus on extractive summaries which may still contain overwhelming amount of information.[103] Furthermore, a lack visualization use can limit in the effectiveness of the proposed summaries.[104]

Introduction of machine learning methods, especially those that are unsupervised and high-throughput,[83,105–107] automate dimensionality reduction of complex patient data into abstractive summaries that utilize more information from the patient record relative to the extractive summaries with little or no human input. However, few works in this area have been investigated specifically for CAO systems and often do not provide output that is geared for use by clinicians.

The use of data visualization have been shown to support pattern identification across patient parameters and time.[108] While visual summaries of patients’ raw data preserves data provenance which can strengthen trust in the visuals,[109] they are limited in how many dimensions they can show [110] and may still lead to information overload.[103] Furthermore, previously proposed systems in this category have mostly been non-interactive which limit the capacity of the user to conduct exploratory analysis.[111] These systems fall short according to the Visual Information Seeking Mantra: Overview first, Zoom and Filter then Details-on-Demand.[112]

Works that combine both machine learning and data visualization methods are able to bypass some of the limitations seen in systems that only leverage one such methodology. However, most works leveraging both machine learning and data visualization methods have focused on cohort-level visualizations rather than patient-level visualizations.[86,88–91,113] Furthermore, like for data-driven Infobuttons, few of these systems have been evaluated for clinical utility. Methods outside of the health domain that can inform future
research include automatic visual summaries of temporal new stories and topic modeling.[114,115]

3.3 Alert Clinical Decision Support
Alert clinical decision support produces a focused output such as a prediction about a specific outcome, an alert, or a set of recommendations to clinicians in order to help direct action and prevent medical errors in the context of patient data.

3.3.1 Type of methods for Alert CDS
Of the three clinical decision support types, alert CDS has the most sustained interest in the literature. Early work on these systems date back to the late 1950’s and continued with a recent surge. Similar to the Infobutton systems, most mature systems implemented and used by clinicians today leverage knowledge sources and expert curated rules.[5,116–120] Heuristics-based CDS have largely underutilized visualization techniques. Existing examples of the use of visualization showcase patient data alongside the alert or recommendation.[121,122] Other work have proposed the use of visualization for knowledge base maintenance at the backend of alert systems but not for the use of clinicians.[123]

By contrast, the bulk of recent published work has focused on developing machine-learning methods that have the potential to assist in future alert CDS. Proposed machine learning methods have tackled a wide range of CDS applications and have leveraged a diverse set of approaches (Figure 3). Applications of machine learning methods developed for use in future alert CDS systems comprise disease and disease-stage prediction, optimal treatment prediction, and readmission and mortality prediction. The most popular machine learning approaches explored in recent years include deep learning and probabilistic methods.

Only a few systems leverage both machine learning and visualization. Systems that do utilize both methods motivate the use of visualization for added interpretability, model transparency, data provenance, and usability.[91,95,124–126]
Figure 3. Machine learning applications and approaches for alert CDS. Applications include disease classification or prediction,[83,98,106,123,127–172] disease progression,[84,137,143,154,166,172–185] hospital readmission,[186–188] mortality prediction,[94,188–191] treatment-response prediction,[80,90,107,192–197] treatment recommendation,[196–202] treatment identification,[177,205–209] and intervention prediction,[196, 203, 208–211]. Approaches include probabilistic methods,[128,134,141,143,152,164,178,184,185,205,210,214–219] deep learning,[80,130,134,153,155,157,160,161,166–168,171,173,175,180,183,204,207,208,220] support vectors,[134,142,150,164,170,173,175] regression,[129,136,150,156,159,179] decision trees,[147,150] collaborative filtering,[154] clustering,[193,221] reinforcement learning,[36,209,222] and outlier detection [223].

Table 3. Examples of alert CDS by method type

Papers	Type of method utilized	Description
Warner et al. 1972, Warner 1979; Kuperman et al. 1991 [116,120,224]	Heuristics	Rule-based logical operators to assist with diagnosis
Miller et al. 1982; 1989[119,225]	Heuristics	Knowledge-based system that can construct and resolve differential diagnoses. Evaluated for accuracy compared to human experts. Evaluated for clinical utility
Goldstein et al. 2000; Gennari et al. 2003 [121,122]	Heuristics+ dataVis	Guidelines and ontology-based treatment recommendation system for chronic disease. presents the patients raw data related to the chronic problem such as the patient’s blood pressure readings over time
Authors	Methodology	Description
---------------------------------	-------------	---
Warner et al. 1964 [128]	ML	Use Bayes’ Theorem to the diagnosis of congenital heart disease. Compared accuracy of system to that of clinical experts
Wang et al. 2014 [174]	ML	Use unsupervised probabilistic model to model disease progression.
Tsoukalas et al. 2015 [95]	ML+DataVis	Partially observable markov decision process model. interactive graphical interface for optimal treatment for Sepsis. Includes visual of patient vital history over time, state transition probabilities, patient state history, and optimal action. Evaluate generalized error of approach and in external tasks of mortality prediction and length of stay prediction
Jeffery et al. 2017 [124]	ML+DataVis	Mobile app to showcase the predicted probability of cardiac arrest overtime, including forecasted risk for the next 24 hours. Evaluate tool for usability in a lab setting with target audience
More papers by method category:	Heuristics:	[117,118]
	ML	127,129–133,136–140,106,141,206,174,142–152,173,175–177,192,193,197,199,218,154–160,163,178,154,179,180,219,80,195,196,198,210,211,207,161,220,164–172,214,181–185,226,194,107,208,209,205,212,213,201–204,83,98
	ML+DataVis	125,126,227

3.3.2 Gaps and Opportunities for ML and dataVis in Alert CDS

Heuristics-based alert CDS have been found to improve healthcare processes, but that there is still little robust evidence of leading to improvements in clinical outcomes, costs, workload and efficiencies.[228,229] Commonly cited limitations of heuristics-based alert systems pertain to their narrow clinical focus, most likely due to the need for manual curation of clinical expertise in the systems. Few systems are ‘high-throughput’ or able to assist on wide range of conditions and patient types. In practice, this can translate in multiple CDS systems, each relevant to a specific subset of patients, with a need to deploy and manage them each to support diverse types of patients and clinical contexts. This can lead to ‘alert overload’, with too many systems firing alerts to clinicians, each with little awareness of the others.

Adding data visualizations to heuristics-based alert CDS can help with interpretability and data provenance, leading to higher confidence in the system and usability. However very few works have explored this research space.

Introducing machine-learning techniques into alert CDS can help generate evidence directly from gathered clinical data, reducing the need for clinical knowledge to be codified manually by experts.[106,131,138] Moreover, machine learning methods can also handle many more predictors and complex relationships such as non-linearity, interactions, and temporality that would be hard to codify in knowledge-based systems.[138,176,230]
Machine learning methods can also handle data with missingness, sparsity, noise, and irregular sampling.[226,231,232] However, machine learning methods intended for CDS have often been criticized as uninterpretable, prone to data biases, and dependent on the data they are evaluated on.[145,233–235] This can make the comparison of models problematic when evaluated on different data and also be regarded as ‘too risky’ to incorporate into clinical decision making. Other significant limitations of data-driven alert CDS is their lack of alignment with clinical workflows, with few proposed methods evaluating clinical utility with clinically meaningful metrics, and they have not been deployed to clinical settings.[236,237] For instance, some approaches which ignore when data are generated in the clinical workflow, can lead to data leakage when predicting outcomes and would not be possible to implement.

While alert CDS that introduce data visualization for the end user are often more mindful of clinical workflow they attempt to support, they too have largely been evaluated on model accuracy, face validity of visualization, and interface usability in a laboratory setting.[124,126,177,227,238] The need for interpretable and transparent learning methods has also been recognized outside of the health domain. Several reports have cited the integration of data visualization for the interpretation and understanding of machine learning methods and their results as key.[239,240]

4. Discussion and directions for future work

Implemented CDS have largely utilized heuristic methods such as knowledge sources and expert-driven rules to deliver decision support to clinicians. Machine learning and visualization techniques have been leveraged to various degrees depending on the type of CDS. Some work in machine learning has been used for Infobuttons; CAO systems have integrated data visualization techniques for information presentation, and a large body of work exists on machine learning methods that can contribute to alert CDS.

Opportunities abound for the expanded use of machine learning and data visualization methods for clinical decision support. Reviewed work suggests data-driven approaches can be effectively leveraged for robust information abstraction whether for more tailored

Preprint under review.
information retrieval, outcome prediction, or patient record summarization. Visualization has been shown to provide better representation and interpretability for users. Used in combination, machine learning and advanced data visualization could help unleash the full potential of next-generation clinical decision support. We identify the following key items that are critical to investigate to translate their success into practice.

- **Bringing advanced techniques into clinical practice.** Although a fair amount of research has been dedicated to innovative CDS tools and methods, bringing them into clinical practice is still an outstanding challenge. It is commonly reported that developed tools are mismatched with the actual clinical workflow they are meant to support.[236,241] This sentiment is echoed for many CDS types but mostly regarding analytic tools meant to assist with clinical decision making (i.e., statistical or machine-learning tools).[236] Close collaborations between researchers and clinical partners early on and not just at the evaluation stage may help remedy this disconnect. Motivating new innovative methods and systems with actual clinical needs can lead to higher adoption rates of new CDS in clinical practice.

Another open challenge to bringing CDS research into practice is gaining practitioners’ trust and fostering use of new visual analytics and ML-based CDS tools. More evidence regarding the effectiveness of such tools in clinical settings could sway sentiments in the right direction. Evaluation metrics for proposed CDS systems need to be ones that clinicians care about rather than benchmark metrics (such as high AUC scores) leveraged in unrealistic evaluation tasks and settings. Only after undertaking these steps can new CDS tools be adopted and potentially have positive impact on health of patients.

- **Aligning techniques towards an impact on care.** Machine learning research in the field has largely focused on predictive modeling. These models focus on predicting a single outcome given the data available, mostly at one point in time in a patient’s health trajectory. Very few work investigate generating longer-term, more holistic trajectories of patients’ potential states of health, with and without different interventions.[84,196,242,243] Future work should assure that clinical value will be garnered from such systems. As robustness and generalizability of data-driven techniques expand the realm of clinical decision support systems, further research
should also examine whether other, not-yet explored clinical tasks can benefit from these techniques.

Moreover, beyond prediction tasks, characterization and descriptive tasks using learning techniques could propel CDS forward. The applications that describe and show what has happened to a patient in time can be helpful beyond CAO tools, and help reduce the complexity of EHR data, as a further way to help with interpretability and explainability of models. Finally, prescriptive modeling, while not yet investigated in the clinical domain, may prove critically useful at the point of care. Such tools could propose action recommendations and optimal treatment options. For these tools to be effective, they would require high levels of trust from clinicians. Trust could be fostered using data visualization methods for greater interpretability and model transparency as well as rigorous evaluation for clinical utility.

- **Moving from CDS to learning health systems.** Several works using machine learning and data visualization have been dedicated to large cohort analysis. While these can be useful when managing large panels of patients, most day-to-day work of clinicians pertains to caring for individual patients. There is a lot to gain if previously proposed cohort-level tools could be adapted to provide personalized insights for individual patients at the point of care.

 In the reverse direction, future work should examine if care for individuals can inform guidelines applied to population’s health. Currently, medical knowledge is largely integrated into CDS through the manual codification of guidelines. Previous work has shown that these guidelines are not always adhered to, not always available, and may become out of date.\[244\] For a truly learning health system, collected data needs to be analyzed to generate insight and up-to-date knowledge that is then fed back into the health system through CDS for clinicians to use.

5. **Conclusion**

To work towards a learning health system, CDS systems need to play a major role. To do so they need to be able to learn from gathered data, assist in generating new insight, showcase results to practitioners, gain the trust of users, and be well adapted to clinical workflows. This review demonstrates that the complimentary nature of machine learning
and visualization methods for CDS can further these goals. While machine learning and visualization have been integrated in various types of CDS their combination is still an open and promising research direction.

6. Acknowledgements
This work was supported by NLM T15 LM007079 (GL) and NSF award #1344668 (NE).

Conflict of interest
No conflict of interest was declared.

References
1 Learning Health Systems. Agency Healthc. Res. Qual. https://www.ahrq.gov/professionals/systems/learning-health-systems/index.html.

2 Greenes RA, Bates DW, Kawamoto K, et al. Clinical decision support models and frameworks: Seeking to address research issues underlying implementation successes and failures. J Biomed Inform 2018;78:134–43.

3 Musen MA, Middleton B, Greenes RA. Clinical Decision-Support Systems. In: Biomedical Informatics. London: Springer London 2014. 643–74.

4 Stead WW, Hammond WE. Computer-based medical records: the centerpiece of TMR. MD Comput Comput Med Pract 1988;5:48–62.

5 Powsner SM, Riely CA, Barwick KW, et al. Automated bibliographic retrieval based on current topics in hepatology: hepatopix. Comput Biomed Res 1989;22:552–64.

6 Powsner SM, Miller PL. Automated online transition from the medical record to the psychiatric literature. Methods Inf Med 1992;31:169–74.

7 Miller RA, Gieszczykiewicz FM, Vries JK, et al. CHARTLINE: providing bibliographic references relevant to patient charts using the UMLS Metathesaurus.
Knowledge Sources. In: *Symposium on Computer Applications in Medical Care Proc*. 1992. 86–90.

8 Cimino JJ, Socratous SA, Clayton PD. Internet as clinical information system: application development using the World Wide Web. *JAMIA* 1995;2:273–84.

9 Cimino JJ, Elhanan G, Zeng Q. Supporting infobuttons with terminological knowledge. In: *AMIA Annual Symposium Proc*. American Medical Informatics Association 1997. 528–32.

10 Cimino JJ, Johnson SB, Peng P. Generic queries for meeting clinical information needs. *Bull Med Libr Assoc* 1993;81:95–206.

11 Elhadad N, McKeown K, Kaufman D, *et al.* Facilitating physicians’ access to information via tailored text summarization. In: *AMIA Annual Symposium Proc*. 2005. 226–30.

12 Monteiro E, Valente F, Costa C, *et al.* A recommender system for medical imaging diagnostic. *Stud Health Technol Inform* 2015;210:461–3.

13 Lin J, Demner-Fushman D. Automatically evaluating answers to definition questions. In: *Human Language Technology and Empirical Methods in Natural Language Proc*. Morristown, NJ, USA: Association for Computational Linguistics 2005. 931–8.

14 Demner-Fushman D, Lin J. Answer extraction, semantic clustering, and extractive summarization for clinical question answering. In: *International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics Proc*. 2006. 841–8.

15 Goodwin TR, Harabagiu SM. Medical Question Answering for Clinical Decision Support. *ACM Int Conf Inf Knowl Manag Proc* 2016;2016:297–306.
16 Alsulmi M, Carterette B. Improving medical search tasks using learning to rank. In: *2018 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)*. 2018. 1–8.

17 Donoso-Guzmán I, Parra D. An Interactive Relevance Feedback Interface for Evidence-Based Health Care. In: *Proceedings of the 2018 Conference on Human Information Interaction & Retrieval - IUI ’18*. New York, New York, USA: ACM Press 2018. 103–14.

18 Cimino JJ, Johnson SB, Aguirre A, et al. The MEDLINE Button. In: *Symposium on Computer Applications in Medical Care Proc*. American Medical Informatics Association 1992. 81–5.

19 Loonsk JW, Lively R, TinHan E, et al. Implementing the Medical Desktop: tools for the integration of independent information resources. In: *Symposium on Computer Applications in Medical Care Proc*. 1991. 574–7.

20 Elhadad N, McKeown K, Kaufman D, et al. Facilitating physicians’ access to information via tailored text summarization. In: *AMIA Annu Symp Proc*. 2005. 226–30.

21 Yanhua Chen Y, Lijun Wang L, Ming Dong M, et al. Exemplar-based Visualization of Large Document Corpus (InfoVis2009-1115). *IEEE Trans Vis Comput Graph* 2009;15:1161–8.

22 Herrmannova D, Knoth P. Visual Search for Supporting Content Exploration in Large Document Collections. -Lib Mag 2012;18.

23 Veerasamy A, Belkin NJ. Evaluation of a Tool for Visualization of Information Retrieval Results. In: *Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*. New York, NY, USA: ACM 1996. 85–92.
Sherkat E, Nourashrafeddin S, Milios EE, et al. Interactive Document Clustering Revisited: A Visual Analytics Approach. In: 23rd International Conference on Intelligent User Interfaces. New York, NY, USA: ACM Knowledge. 281–292.

Zeng Q, Cimino JJ, Zou KH. Providing concept-oriented views for clinical data using a knowledge-based system: an evaluation. JAMIA 2002;9:294–305.

Aleksić D, Rajković P, Vučković D, et al. Data summarization method for chronic disease tracking. J Biomed Inform 2017;69:188–202.

JL R, OM H, RA W. Automating the medical record: emerging issues. In: Annu Symp Comput Appl Med Care. 1979. 255–63.

O’Keefe QEW, Simborg DW. Summary Time Oriented Record (STOR). Annu Symp Comput Appl Med Care 1980;2:1175.

Wilcox AB, Jones SS, Dorr DA, et al. Use and impact of a computer-generated patient summary worksheet for primary care. AMIA Annu Symp Proc 2005;2005:824–8.

Were MC, Shen C, Bwana M, et al. Creation and evaluation of EMR-based paper clinical summaries to support HIV-care in Uganda, Africa. Int J Med Inf 2010;79:90–6.

Lo Y-S, Lee W-S, Chen G-B, et al. Improving the work efficiency of healthcare-associated infection surveillance using electronic medical records. Comput Methods Programs Biomed 2014;117:351–9.

Pickering BW, Dong Y, Ahmed A, et al. The implementation of clinician designed, human-centered electronic medical record viewer in the intensive care unit: A pilot step-wedge cluster randomized trial. Int J Med Inf 2015;84:299–307.

Liu H, Friedman C. CliniViewer: a tool for viewing electronic medical records based on natural language processing and XML. Stud Health Technol Inform 2004;107:639–43.

Preprint under review.
34 Meystre S, Haug PJ. Natural language processing to extract medical problems from electronic clinical documents: Performance evaluation. *J Biomed Inform* 2006;39:589–99.

35 McCoy JA, McCoy AB, Wright A, *et al.* Automated Inference of Patient Problems from Medications using NDF-RT and the SNOMED-CT CORE Problem List Subset. In: *AMIA Annual Symposium Proc.* 2011.

36 Radev DR, Hovy E, McKeown K. Introduction to the Special Issue on Summarization. *Comput Linguist* 2002;28:399–408.

37 Meystre SM, Haug PJ. Randomized controlled trial of an automated problem list with improved sensitivity. *Int J Med Inf* 2008;77:602–12.

38 Wright A, Pang J, Feblowitz JC, *et al.* A method and knowledge base for automated inference of patient problems from structured data in an electronic medical record. *JAMIA* 2011;18:859–67.

39 Powsner S. Graphical summary of patient status. *The Lancet* 1994;344:386–9.

40 Bauer DT, Guerlain S, Brown PJ. The design and evaluation of a graphical display for laboratory data. *JAMIA* 2010;17:416–24.

41 Koopman RJ, Kochendorfer KM, Moore JL, *et al.* A diabetes dashboard and physician efficiency and accuracy in accessing data needed for high-quality diabetes care. *Ann Fam Med* 2011;9:398–405.

42 Plaisant C, Milash B, Rose A, *et al.* LifeLines: visualizing personal histories. In: *Human factors in computing systems common ground.* New York, New York, USA: ACM Press 1996. 221-ff.

43 Aigner W, Miksch S. CareVis: Integrated visualization of computerized protocols and temporal patient data. *Artif Intell Med* 2006;37:203–18.

Preprint under review.
44 David Wang T, Plaisant C, Quinn AJ, et al. Aligning Temporal Data by Sentinel Events: Discovering Patterns in Electronic Health Records. In: Human Factors in Computing Systems. 2008. 457–66.

45 Wongsuphasawat K, Guerra Gómez JA, Plaisant C, et al. LifeFlow: Visualizing an Overview of Event Sequences. In: Human factors in computing systems. New York, New York, USA: ACM Press 2011. 1747.

46 Gschwandtner T, Aigner W, Kaiser K, et al. CareCruiser: Exploring and visualizing plans, events, and effects interactively. In: IEEE Pacific Visualization Symposium. IEEE 2011. 43–50.

47 Spry KC. An infographical approach to designing the problem list. In: 2nd ACM SIGHIT symposium on International health informatics Proc. New York, New York, USA: ACM Press 2012. 791.

48 Malik S, Du F, Monroe M, et al. Cohort Comparison of Event Sequences with Balanced Integration of Visual Analytics and Statistics. In: 20th International Conference on Intelligent User Interfaces Proc. 2015. 38–49.

49 Lee S, Kim E, Monsen KA. Public health nurse perceptions of Omaha System data visualization. Int J Med Inf 2015;84:826–34.

50 Zhu X, Cimino JJ. Clinicians’ evaluation of computer-assisted medication summarization of electronic medical records. Comput Biol Med 2015;59:221–31.

51 Kopanitsa G. Evaluation Study for an ISO 13606 Archetype Based Medical Data Visualization Method. J Med Syst 2015;39:82.

52 Powsner SM, Thftte ER. Summarizing clinical psychiatric data. Psychiatr Serv 1997;48:1458–1461.

53 Bui AAT, Aberle DR, Kangarloo H. TimeLine: Visualizing Integrated Patient Records. IEEE Trans Inf Technol Biomed 2007;11:462–73.

Preprint under review.
Hallett C. Multi-modal presentation of medical histories. In: *3th international conference on Intelligent user interfaces Proc*. 2008. 80–9.

Bashyam V, Hsu W, Watt E, *et al.* Problem-centric Organization and Visualization of Patient Imaging and Clinical Data. *RadioGraphics* 2009;29:331–43.

Hsu W, Taira RK, El-Saden S, *et al.* Context-Based Electronic Health Record: Toward Patient Specific Healthcare. *IEEE Trans Inf Technol Biomed* 2012;16:228–34.

Cousins SB, Kahn MG. The visual display of temporal information. *Artif Intell Med* 1991;3:341–57.

Bade R, Schlechtweg S, Miksch S. Connecting Time-Oriented Data and Information to a Coherent Interactive Visualization. In: *Human Factors in Computing Systems*. 2004. 105–12.

Chittaro L. Information visualization and its application to medicine. *Artif Intell Med* 2001;22:81–8.

Wongsuphasawat K, Shneiderman B. Finding Comparable Temporal Categorical Records: A Similarity Measure with an Interactive Visualization. In: *IEEE Symposium on Visual Analytics Science and Technology*. 2009.

Hirsch JS, Tanenbaum JS, Lipsky Gorman S, *et al.* HARVEST, a longitudinal patient record summarizer. *JAMIA* 2014;22:263–74.

Shahar Y, Cheng C. Knowledge-based visualization of time-oriented clinical data. *AMIA Annu Symp Proc* 1998;:155–9.

Glueck M, Hamilton P, Chevalier F, *et al.* PhenoBlocks: Phenotype Comparison Visualizations. *IEEE Trans Vis Comput Graph* 2016;22:101–10.
64 Hunter J, Freer Y, Gatt A, et al. Summarising complex ICU data in natural language. In: *AMIA Annual Symposium Proc*. American Medical Informatics Association 2008. 323–7.

65 van der Meulen M, Logie RH, Freer Y, et al. When a graph is poorer than 100 words: A comparison of computerised natural language generation, human generated descriptions and graphical displays in neonatal intensive care. *Appl Cogn Psychol* 2010;24:77–89.

66 Cao H, Chiang MF, Cimino JJ, et al. Automatic Summarization of Patient Discharge Summaries to Create Problem Lists using Medical Language Processing. In: *MEDINFO*. 2004.

67 Solti I, Aaronson B, Fletcher G, et al. Building an automated problem list based on natural language processing: lessons learned in the early phase of development. *AMIA Annu Symp Proc* 2008;:687–91.

68 Tsou C-H, Devarakonda M, Liang JJ. Toward Generating Domain-Specific / Personalized Problem Lists from Electronic Medical Records. In: *AAAI 2015 Fall Symposium Proc*. 2015.

69 Van Vleck TT, Elhadad N. Corpus-Based Problem Selection for EHR Note Summarization. *AMIA Annu Symp Proc* 2010;2010:817–21.

70 Devarakonda M V, Mehta N, Tsou C-H, et al. Automated problem list generation and physicians perspective from a pilot study. *Int J Med Inf* 2017;105:121–9.

71 Cao H, Markatou M, Melton GB, et al. Mining a clinical data warehouse to discover disease-finding associations using co-occurrence statistics. In: *AMIA Annu Symp Proc*. 2005. 106–10.

72 Pivovarov R, Perotte AJ, Grave E, et al. Learning probabilistic phenotypes from heterogeneous EHR data. *J Biomed Inform* 2015;58:156–65.

Preprint under review.
Arnold CW, El-Saden SM, Bui AAT, et al. Clinical Case-based Retrieval Using Latent Topic Analysis. In: *AMIA Annual Symposium Proc*. American Medical Informatics Association 2010. 26–30.

Arnold C, Speier W. A Topic Model of Clinical Reports. In: *SIGIR Proc*. 2012.

Arnold CW, Oh A, Chen S, et al. Evaluating topic model interpretability from a primary care physician perspective. *Comput Methods Programs Biomed* 2016;124:67–75.

Cohen R, Aviram I, Elhadad M, et al. Redundancy-Aware Topic Modeling for Patient Record Notes. *PLoS ONE* 2014;9:e87555.

Hu C, Henao R, Frank T, et al. Computational Phenotyping via Scalable Bayesian Tensor Factorization. In: *NIPS Workshop on Machine Learning for Health*. 2015.

Miotto R, Li L, Kidd BA, et al. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. *Nature* Published Online First: 2016.

Baytas IM, Xiao C, Zhang X, et al. Patient Subtyping via Time-Aware LSTM Networks. In: *International Conference on Knowledge Discovery and Data Mining Proc*. New York, New York, USA: ACM Press 2017. 65–74.

Suresh H, Szolovits P, Ghassemi M. The Use of Autoencoders for Discovering Patient Phenotypes. In: *NIPS Workshop on Machine Learning for Health*. 2016.

Shickel BP, Tighe PJ, Bihorac A, et al. Deep EHR: A Survey of Recent Advances on Deep Learning Techniques for Electronic Health Record (EHR) Analysis. *IEEE J Biomed Health Inform* 2017.

Lipton ZC, Kale DC, Wetzel RC. Phenotyping of Clinical Time Series with LSTM Recurrent Neural Networks. In: *MLHC Proc*. 2017.
Choi E, Bahadori MT, Searles E, et al. Multi-layer Representation Learning for Medical Concepts. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM 2016. 1495–1504.

Schulam P, Wigley F, Saria S. Clustering longitudinal clinical marker trajectories from electronic health data: Applications to phenotyping and endotype discovery. In: Twenty-Ninth AAAI Conference on Artificial Intelligence Proc. AI Access Foundation 2015. 2956–64.

Che Z, Purushotham S, Khemani R, et al. Distilling Knowledge from Deep Networks with Applications to Healthcare Domain. ArXiv Prepr 2015.

Stubbs B, Kale DC, Das A. SimTwentyFive: an interactive visualization system for data-driven decision support. AMIA Annu Symp Proc 2012;2012:891–900.

Wongsuphasawat K, Gotz D. Exploring Flow, Factors, and Outcomes of Temporal Event Sequences with the Outflow Visualization. IEEE Trans Vis Comput Graph 2012;18:2659–68.

Perer A, Gotz D. Data-driven exploration of care plans for patients. In: Human Factors in Computing Systems. New York, New York, USA: ACM Press 2013. 439.

Perer A, Wang F. Frequence: Interactive Mining and Visualization of Temporal Frequent Event Sequences. In: 19th international conference on Intelligent User Interfaces Proc. 2014. 153–62.

Perer A, Wang F, Hua J. Mining and exploring care pathways from electronic medical records with visual analytics. J Biomed Inform 2015;56:369–78.

Guo S, Xu K, Zhao R, et al. EventThread: Visual Summarization and Stage Analysis of Event Sequence Data. IEEE Trans Vis Comput Graph 2018;24:56–65.
92 Bernard J, Sessler D, Bannach A, et al. A visual active learning system for the assessment of patient well-being in prostate cancer research. In: Visual Analytics in Healthcare Workshop Proc. New York, New York, USA: ACM Press 2015. 1–8.

93 Joshi R, Szolovits P. Prognostic physiology: modeling patient severity in Intensive Care Units using radial domain folding. AMIA Annu Symp Proc 2012;2012:1276–83.

94 Joshi S, Gunasekar S, Sontag D, et al. Identifiable Phenotyping using Constrained Non–Negative Matrix Factorization. In: MLHC Proc. 2016.

95 Tsoukalas A, Albertson T, Tagkopoulos I. From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis. JMIR Med Inform 2015;3:e11.

96 Marlin B, Kale DC, Khemani RG, et al. Unsupervised Pattern Discovery in Electronic Health Care Data Using Probabilistic Clustering Models. In: 2nd ACM SIGHIT International Health Informatics Symposium Proc. 2012. 389–98.

97 Schulam P, Saria S. Integrative Analysis using Coupled Latent Variable Models for Individualizing Prognoses. J Mach Learn Res 2016;17:1–35.

98 Ranganath R, Blei DM. Correlated Random Measures. J Am Stat Assoc 2018;113:417–30.

99 Shahar Y, Goren-Bar D, Boaz D, et al. Distributed, intelligent, interactive visualization and exploration of time-oriented clinical data and their abstractions. Artif Intell Med 2006;38:115–35.

100 Kopanitsa G, Veselib H, Yampolskya V. Development, implementation and evaluation of an information model for archetype based user responsive medical data visualization. J Biomed Inform 2015;55:196–205.

101 Chittaro L. Visualization of Patient Data at Different Temporal Granularities on Mobile Devices. In: Conference on Advanced visual interfaces. 2006.

Preprint under review.
Farri O, Pieckiewicz DS, Rahman AS. A qualitative analysis of EHR clinical document synthesis by clinicians. In: AMIA Annual Symposium Proc. 2012. 1211–20.

Du F, Shneiderman B, Plaisant C, et al. Coping with Volume and Variety in Temporal Event Sequences: Strategies for Sharpening Analytic Focus. IEEE Trans Vis Comput Graph 2017;23:1636–1649.

Chittaro L. Information visualization and its application to medicine. Artif Intell Med 2001;22:81–8.

Pivovarov R, Perotte AJ, Grave E, et al. Learning probabilistic phenotypes from heterogeneous EHR data. J Biomed Inform 2015;58:156–65.

Ho JC, Ghosh J, Steinhubl SR, et al. Limestone: High-throughput candidate phenotype generation via tensor factorization. J Biomed Inform 2014;52:199–211.

Kim Y, Sun J, Yu H, et al. Federated Tensor Factorization for Computational Phenotyping. In: International Conference on Knowledge Discovery and Data Mining Proc. 2017. 887–895.

David Wang T, Plaisant C, Quinn AJ, et al. Aligning Temporal Data by Sentinel Events: Discovering Patterns in Electronic Health Records. In: Human Factors in Computing Systems. 2008. 457–466.

Sacha D, Senaratne H, Kwon BC, et al. The Role of Uncertainty, Awareness, and Trust in Visual Analytics. IEEE Trans Vis Comput Graph 2016;22:240–249.

Gotz D, Stavropoulos H. DecisionFlow: Visual Analytics for High-Dimensional Temporal Event Sequence Data. IEEE Trans Vis Comput Graph 2014;20:1783–1792.

Rind A, Wang T, Aigner W. Interactive Information Visualization to Explore and Query Electronic Health Records. Found Trends® Human–Computer Interact 2013;5:207–298.
112 Shneiderman B. The eyes have it: a task by data type taxonomy for information visualizations. In: Proc 1996 IEEE Symposium on Visual Languages. IEEE Comput. Soc. Press 336–343.

113 Wongsuphasawat K, Gotz D. Exploring Flow, Factors, and Outcomes of Temporal Event Sequences with the Outflow Visualization. IEEE Trans Vis Comput Graph 2012;18:2659–2668.

114 Shahaf D, Guestrin C, Horvitz E. Metro maps of information. ACM SIGWEB Newsl 2013;:1–9.

115 Cui W, Liu S, Tan L, et al. TextFlow: Towards Better Understanding of Evolving Topics in Text. IEEE Trans Vis Comput Graph 2011;17.

116 Warner HR, Olmsted CM, Rutherford BD. HELP–a program for medical decision-making. Comput Biomed Res 1972;5:65–74.

117 Shortliffe EH, Lindberg DA. Foreword. In: Computer-Based Medical Consultations: Mycin. 1976. xvii–xxii.

118 Barnett GO, Cimino JJ, Hupp JA, et al. DXplain. JAMA 1987;258:67.

119 Miller RA, Pople HE, Myers JD. Internist-I, an Experimental Computer-Based Diagnostic Consultant for General Internal Medicine. N Engl J Med 1982;307:468–476.

120 Kuperman GJ, Gardner RM, Pryor TA. Help: a dynamic hospital information system. Secaucus, NJ: Springer-Verlag 1991.

121 Goldstein MK, Hoffinan BB, Coleman RW, et al. Implementing clinical practice guidelines while taking account of changing evidence: ATHENA DSS, an easily modifiable decision-support system for managing hypertension in primary care. In: AMIA Annual Symposium Proc. American Medical Informatics Association 2000. 300–4.
122 Gennari JH, Musen MA, Fergerson RW, et al. The evolution of Protégé: an environment for knowledge-based systems development. *Int J Hum-Comput Stud* 2003;58:89–123.

123 Liu GC, Odell JD, Whipple EC, et al. Data visualization for truth maintenance in clinical decision support systems. *Int J Pediatr Adolesc Med* 2015;2:64–69.

124 Jeffery AD, Novak LL, Kennedy B, et al. Participatory design of probability-based decision support tools for in-hospital nurses. *JAMIA* 2017;34:493–502.

125 Xu K, Guo S, Cao N, et al. ECGLens: Interactive Visual Exploration of Large Scale ECG Data for Arrhythmia Detection. In: *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*. New York, NY, USA: ACM 2018. 663:1–663:12.

126 Jahja M, Lizotte DJ. Visualizing Clinical Significance with Prediction and Tolerance Regions. In: *MLHC Proc*. 2017.

127 Ledley RS, Lusted LB. Reasoning Foundations of Medical Diagnosis. *Science* 1959;130:9–21.

128 Warner HR, Toronto AF, Veasy LG. Experience with Baye’s Theorem for Computer Diagnosis of Congenital Heart Disease. *Ann N Y Acad Sci* 1964;115:558–67.

129 Pozen MW, D’Agostino RB, Selker HP, et al. A Predictive Instrument to Improve Coronary-Care-Unit Admission Practices in Acute Ischemic Heart Disease. *N Engl J Med* 1984;310:1273–1278.

130 Cohen ME, Hudson DL, Deedwania PC. Combining ECG analysis with clinical parameters for diagnosis of heart failure. In: *International Conference of the IEEE Engineering in Medicine and Biology Society Proc*. IEEE 1997. 50–53.

131 Lisboa PJ, Taktak AFG. The use of artificial neural networks in decision support in cancer: A systematic review. *Neural Netw* 2006;19:408–415.

Preprint under review.
132 Saria S, Rajani AK, Gould J, et al. Integration of early physiological responses predicts later illness severity in preterm infants. *Sci Transl Med* 2010;2:48ra65.

133 Yu C-N, Greiner R, Lin H-C, et al. Learning Patient-Specific Cancer Survival Distributions as a Sequence of Dependent Regressors. In: *Advances in Neural Information Processing Systems Proc*. 2011.

134 Martis RJ, Krishnan MMR, Chakraborty C, et al. Automated Screening of Arrhythmia Using Wavelet Based Machine Learning Techniques. *J Med Syst* 2012;36:677–688.

135 Wall DP, Kosmicki J, DeLuca TF, et al. Use of machine learning to shorten observation-based screening and diagnosis of autism. *Transl Psychiatry* 2012;2:e100.

136 Douali N, Abdennour M, Sasso M, et al. Noninvasive diagnosis of nonalcoholic steatohepatitis disease based on clinical decision support system. *Stud Health Technol Inform* 2013;192:1178.

137 Fong S, Zhang Y, Fiaidhi J, et al. Evaluation of Stream Mining Classifiers for Real-Time Clinical Decision Support System: A Case Study of Blood Glucose Prediction in Diabetes Therapy. *BioMed Res Int* 2013;2013:1–16.

138 Johnson AEW, Kramer AA, Clifford GD. A New Severity of Illness Scale Using a Subset of Acute Physiology and Chronic Health Evaluation Data Elements Shows Comparable Predictive Accuracy. *Crit Care Med* 2013;41:1711–1718.

139 Shirts BH, Bennett ST, Jackson BR. Using Patients Like My Patient for Clinical Decision Support: Institution-Specific Probability of Celiac Disease Diagnosis Using Simplified Near-Neighbor Classification. *J Gen Intern Med* 2013;28:1565–1572.

140 Huang SH, LePendu P, Iyer SV, et al. Toward personalizing treatment for depression: predicting diagnosis and severity. *JAMIA* 2014;21:1069–1075.

Preprint under review.
141 Mani S, Ozdas A, Aliferis C, et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. *JAMIA* 2014;21:326–336.

142 Thomas M, Brabanter KD, Suykens JA, et al. Predicting breast cancer using an expression values weighted clinical classifier. *BMC Bioinformatics* 2014;15:411.

143 Wu ST, Juhn YJ, Sohn S, et al. Patient-level temporal aggregation for text-based asthma status ascertainment. *JAMIA* 2014;21:876–884.

144 Zieba M. Service-Oriented Medical System for Supporting Decisions With Missing and Imbalanced Data. *IEEE J Biomed Health Inform* 2014;18:1533–1540.

145 Caruana R, Lou Y, Gehrke J, et al. Intelligible Models for HealthCare. In: *International Conference on Knowledge Discovery and Data Mining Proc.* New York, New York, USA: ACM Press 2015. 1721–1730.

146 Che Z, Purushotham S, Khemani R, et al. Distilling Knowledge from Deep Networks with Applications to Healthcare Domain. *ArXiv Prepr* Published Online First: 2015.

147 Dugan TM, Mukhopadhyay S, Carroll A, et al. Machine Learning Techniques for Prediction of Early Childhood Obesity. *Appl Clin Inform* 2015;6:506–520.

148 Dyagilev K, Saria S. Learning (Predictive) Risk Scores in the Presence of Censoring due to Interventions. *Mach Learn J* 2015;1–26.

149 Emad A, Varshney KR, Malioutov DM, et al. Learning Interpretable Clinical Prediction Rules using Threshold Group Testing. In: *NIPS Workshop on Machine Learning for Health.* 2015.

150 Fraccaro P, Nicolo M, Bonetto M, et al. Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach. *BMC Ophthalmol* 2015;15:10.

Preprint under review.
151 Kuusisto F, Dutra I, Elezaby M, et al. Leveraging Expert Knowledge to Improve Machine-Learned Decision Support Systems. In: AMIA Joint Summits on Translational Science Proc. 2015. 87–91.

152 Hu C, Henao R, Frank T, et al. Computational Phenotyping via Scalable Bayesian Tensor Factorization. In: NIPS Workshop on Machine Learning for Health. 2015.

153 Li H, Li X, Jia X, et al. Bone disease prediction and phenotype discovery using feature representation over electronic health records. In: Conference on Bioinformatics, Computational Biology and Health Informatics - BCB ’15. New York, New York, USA: ACM Press 2015. 212–221.

154 Hao F, Blair RH. A comparative study: classification vs. user-based collaborative filtering for clinical prediction. BMC Med Res Methodol 2016;16:172.

155 Miotto R, Li L, Kidd BA, et al. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep 2016;6:26094.

156 Nie Z, Gong P, Ye J. Predict Risk of Relapse for Patients with Multiple Stages of Treatment of Depression. In: International Conference on Knowledge Discovery and Data Mining Proc. 2016. 1795–1804.

157 Razavian N, Marcus J, Sontag D. Multi-task Prediction of Disease Onsets from Longitudinal Lab Tests. In: MLHC Proc. 2016.

158 Szlosek DA, Ferretti JM. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems. EGEMs Gener Evid Methods Improve Patient Outcomes 2016;4:5.

159 Wiens J, Guttag J, Horvitz E. Patient Risk Stratification with Time-Varying Parameters: A Multitask Learning Approach. J Mach Learn Res 2016;17:1–23.
160 Yang Y, Fasching PA, Wallwiener M, et al. Predictive Clinical Decision Support System with RNN Encoding and Tensor Decoding. ArXiv Prepr Published Online First: 2016.

161 Baytas IM, Xiao C, Zhang X, et al. Patient Subtyping via Time-Aware LSTM Networks. In: International Conference on Knowledge Discovery and Data Mining Proc. New York, New York, USA: ACM Press 2017. 65–74.

162 Choi E, Biswal S, Malin B, et al. Generating Multi-label Discrete Patient Records using Generative Adversarial Networks. In: MLHC Proc. 2017.

163 Henao R, Lu JT, Lucas JE, et al. Electronic Health Record Analysis via Deep Poisson Factor Models. J Mach Learn Res 2016;17:1–32.

164 Horng S, Sontag DA, Halpern Y, et al. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLOS ONE 2017;12:e0174708.

165 Ling Y, Hasan SA, Datla V, et al. Diagnostic Inferencing via Improving Clinical Concept Extraction with Deep Reinforcement Learning: A Preliminary Study. In: MLHC Proc. 2017.

166 Lipton ZC, Kale DC, Wetzel RC. Phenotyping of Clinical Time Series with LSTM Recurrent Neural Networks. In: MLHC Proc. 2017.

167 Ma F, Chitta R, Zhou J, et al. Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks. In: International Conference on Knowledge Discovery and Data Mining Proc. New York, New York, USA: ACM Press 2017. 1903–1911.

168 Øyvind Mikalsen K, Soguero-Ruiz C, Jensen K, et al. Computer Methods and Programs in Biomedicine Using anchors from free text in electronic health records to diagnose postoperative delirium. Comput Methods Programs Biomed 2017;152:105–114.
Perros I, Papalexakis EE, Wang F, et al. SPARTan: Scalable PARAFAC2 for Large & Sparse Data. In: *International Conference on Knowledge Discovery and Data Mining Proc*. New York, New York, USA: ACM Press 2017. 375–384.

Reamaroon N, Sjoding MW, Najarian K. Accounting for diagnostic uncertainty when training a machine learning algorithm to detect patients with the Acute Respiratory Distress Syndrome. In: *MLHC Proc*. 2017.

Wang Q, Sun M, Zhan L, et al. Multi-Modality Disease Modeling via Collective Deep Matrix Factorization. In: *International Conference on Knowledge Discovery and Data Mining Proc*. New York, New York, USA: ACM Press 2017. 1155–1164.

Yang Y, Fasching PA, Tresp V. Modeling Progression Free Survival in Breast Cancer with Tensorized Recurrent Neural Networks and Accelerated Failure Time Models. In: *MLHC Proc*. 2017.

Kim SY, Moon SK, Jung DC, et al. Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network. *Korean J Radiol* 2011;12:588.

Wang X, Sontag D, Wang F. Unsupervised Learning of Disease Progression Models. In: *International Conference on Knowledge Discovery and Data Mining Proc*. 2014.

Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis and prediction. *Comput Struct Biotechnol J* 2015;13:8–17.

Lehman LH, Adams RP, Mayaud L, et al. A Physiological Time Series Dynamics-Based Approach to Patient Monitoring and Outcome Prediction. *IEEE J Biomed Health Inform* 2015;19:1068–1076.

Tsoukalas A, Albertson T, Tagkopoulos I. From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis. *JMIR Med Inform* 2015;3:e11.
178 Elibol HM, Nguyen V, Linderman S, et al. Cross-Corpora Unsupervised Learning of Trajectories in Autism Spectrum Disorders. *J Mach Learn Res* 2016;17:1–38.

179 Luo Y, Szolovits P, Dighe AS, et al. Using Machine Learning to Predict Laboratory Test Results. *Am J Clin Pathol* 2016;145:778–788.

180 McCarthy A, Williams CKI. Predicting Patient State-of-Health using Sliding Window and Recurrent Classifiers. In: *NIPS Workshop on Machine Learning for Health*. 2016.

181 Bergquist SL, Brooks GabrielABrooks GA, Keating NL, et al. Classifying Lung Cancer Severity with Ensemble Machine Learning in Health Care Claims Data. In: *MLHC Proc*. 2017.

182 Conroy B, Xu-Wilson M, Rahman A. Patient Similarity Using Population Statistics and Multiple Kernel Learning. In: *MLHC Proc*. 2017.

183 Futoma J, Hariharan S, Heller K, et al. An Improved Multi-Output Gaussian Process RNN with Real-Time Validation for Early Sepsis Detection. In: *MLHC Proc*. 2017.

184 Islam KT, Shelton CR, Casse JJ, et al. Marked Point Process for Severity of Illness Assessment. In: *MLHC Proc*. 2017.

185 Shen S, Han SX, Petousis P, et al. A Bayesian model for estimating multi-state disease progression. *Comput Biol Med* 2017;81:111–120.

186 Futoma J, Morris J, Lucas J. A comparison of models for predicting early hospital readmissions. *J Biomed Inform* 2015;56:229–238.

187 Avati A, Jung K, Harman S, et al. Improving Palliative Care with Deep Learning. In: *IEEE International Conference on Bioinformatics and Biomedicine*. 2017.

188 Forte JC, Wiering MA, Bouma HR, et al. Predicting long-term mortality with first week post-operative data after Coronary Artery Bypass Grafting using Machine Learning models. In: *Machine Learning for Healthcare Conference*. 2017. 39–58.

Preprint under review.
189 Marlin B, Kale DC, Khemani RG, et al. Unsupervised Pattern Discovery in Electronic Health Care Data Using Probabilistic Clustering Models. In: 2nd ACM SIGHIT International Health Informatics Symposium Proc. 2012. 389–398.

190 Grnarova P, Schmidt F, Hyland SL, et al. Neural Document Embeddings for Intensive Care Patient Mortality Prediction. ArXiv Prepr 2016.

191 Taylor RA, Pare JR, Venkatesh AK, et al. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Acad Emerg Med 2016;23:269–278.

192 Howard R, Rattray M, Prosperi M, et al. Distinguishing Asthma Phenotypes Using Machine Learning Approaches. Curr Allergy Asthma Rep 2015;15:38.

193 Liu J, Brodley CE, Healy BC, et al. Removing confounding factors via constraint-based clustering: An application to finding homogeneous groups of multiple sclerosis patients. Artif Intell Med 2015;65:79–88.

194 Pourzanjani AA, Bo Wu T, Jiang RM, et al. Understanding Coagulopathy using Multi-view Data in the Presence of Sub-Cohorts: A Hierarchical Subspace Approach. In: MLHC Proc. 2017.

195 Ordoñez P, Schwarz N, Figueroa-Jiménez A, et al. Learning stochastic finite-state transducer to predict individual patient outcomes. Health Technol 2016;6:239–245.

196 Xu Y, Xu Y, Saria S. A Bayesian Nonparametric Approach for Estimating Individualized Treatment-Response Curves. In: MLHC Proc. 2016.

197 Unertl KM, Weinger MB, Johnson KB, et al. Describing and Modeling Workflow and Information Flow in Chronic Disease Care. JAMIA 2009;16:826–836.

198 Chen JH, Goldstein MK, Asch SM, et al. Predicting inpatient clinical order patterns with probabilistic topic models vs conventional order sets. JAMIA 2016;24:ocw136.
199 Chen JH, Altman RB. Data-Mining Electronic Medical Records for Clinical Order Recommendations: Wisdom of the Crowd or Tyranny of the Mob? In: *AMIA Joint Summits on Translational Science Proc*. 2015. 435–9.

200 Chen JH, Podchiyska T, Altman RB. OrderRex: clinical order decision support and outcome predictions by data-mining electronic medical records. *JAMIA* 2016;23:339–348.

201 Das A, Thorbergosson L, Griogorenko A, *et al.* Using Machine Learning to Recommend Oncology Clinical Trials. *MLHC Proc* Published Online First: 2017.

202 Gong JJ, Naumann T, Szolovits P, *et al.* Predicting Clinical Outcomes Across Changing Electronic Health Record Systems. In: *International Conference on Knowledge Discovery and Data Mining Proc*. New York, New York, USA: ACM Press 2017. 1497–1505.

203 Gräber F, Beckert S, Küster D, *et al.* Therapy Decision Support Based on Recommender System Methods. *J Healthc Eng* 2017;2017:1–11.

204 Zhang Y, Chen R, Tang J, *et al.* LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity. In: *International Conference on Knowledge Discovery and Data Mining Proc*. New York, New York, USA: ACM Press 2017. 1315–1324.

205 Hughes MC, Hope G, Weiner L, *et al.* Prediction-Constrained Topic Models for Antidepressant Recommendation. In: *NIPS workshop on Machine Learning for Health*. 2017.

206 Klann JG, Szolovits P, Downs SM, *et al.* Decision support from local data: Creating adaptive order menus from past clinician behavior. *J Biomed Inform* 2014;48:84–93.

207 Nemati S, Ghassemi MM, Clifford GD. Optimal medication dosing from suboptimal clinical examples: A deep reinforcement learning approach. In: *IEEE Engineering in Medicine and Biology Society (EMBC)*. IEEE 2016. 2978–2981.

Preprint under review.
208 Raghu A, Komorowski M, Celi LA, et al. Continuous State-Space Models for Optimal Sepsis Treatment: a Deep Reinforcement Learning Approach. In: *MLHC Proc.* 2017.

209 Weng W-H, Gao M, He Z, et al. Representation and Reinforcement Learning for Personalized Glycemic Control in Septic Patients. In: *NIPS workshop on Machine Learning for Health.* 2017.

210 Hughes MC, Elibol HM, McCoy T, et al. Supervised topic models for clinical interpretability. In: *NIPS Workshop on Machine Learning for Health.* 2016.

211 Jones CL, Kakade SM, Thornblade LW, et al. Canonical Correlation Analysis for Analyzing Sequences of Medical Billing Codes. In: *NIPS Workshop on Machine Learning for Health.* 2016.

212 Suresh H, Hunt N, Johnson A, et al. Clinical Intervention Prediction and Understanding with Deep Neural Networks. In: *MLHC Proc.* 2017.

213 Haq HU, Ahmad R, Hussain SU. Intelligent EHRs: Predicting Procedure Codes From Diagnosis Codes. In: *NIPS workshop on Machine Learning for Health.* 2017.

214 Zheng K, Gao J, Ngiam KY, et al. Resolving the Bias in Electronic Medical Records. In: *International Conference on Knowledge Discovery and Data Mining Proc.* New York, New York, USA: ACM Press 2017. 2171–2180.

215 de Dombal FT, Leaper DJ, Staniland JR, et al. *Computer-Aided Diagnosis Of Acute Abdominal Pain.* BMJ 1972.

216 Warner HR, Haug P, Bouhaddou O, et al. ILIAD as an Expert Consultant to Teach Differential Diagnosis. *Annu Symp Comput Appl Med Care* 1988;:371.

217 Saria S, Koller D, Penn A. Learning individual and population level traits from clinical temporal data. In: *NIPS Workshop on Machine Learning for Health.* 2010.

Preprint under review.
218 Wang Y, Chen R, Ghosh J, et al. Rubik: Knowledge Guided Tensor Factorization and Completion for Health Data Analytics. In: *International Conference on Knowledge Discovery and Data Mining Proc*. 2015.

219 Schulam P, Saria S. Integrative Analysis using Coupled Latent Variable Models for Individualizing Prognoses. *J Mach Learn Res* 2016;17:1–35.

220 Choi E, Bahadori MT, Song L, et al. GRAM: Graph-based Attention Model for Healthcare Representation Learning. In: *International Conference on Knowledge Discovery and Data Mining Proc*. New York, New York, USA: ACM Press 2017. 787–795.

221 Lorenzi EC, Brown SL, Heller K. Predictive Hierarchical Clustering: Learning clusters of CPT codes for improving surgical outcomes. In: *MLHC Proc*. 2017.

222 Parbhoo S, Bogojeska J, Zazzi M, et al. Combining Kernel and Model Based Learning for HIV Therapy Selection. In: *AMIA Joint Summits on Translational Science Proc*. American Medical Informatics Association 2017. 239–248.

223 Hauskrecht M, Visweswaran S, Cooper GF, et al. Conditional Outlier Approach Detection of Unusual Patient Care Actions for. In: *Twenty-Seventh AAAI Conference on Artificial Intelligence Proc*. 2013.

224 Warner HR. *Computer-assisted medical decision-making*. Academic Press 1979.

225 Miller RA, Masarie FE. Use of the Quick Medical Reference (QMR) program as a tool for medical education. *Methods Inf Med* 1989;28:340–5.

226 Soleimani H, Hensman J, Saria S. Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction. *IEEE Trans Pattern Anal Mach Intell* 2017.

227 Du F, Plaisant C, Spring N, et al. EventAction: Visual analytics for temporal event sequence recommendation. In: *IEEE Conference on Visual Analytics Science and Technology (VAST)*. IEEE 2016.
228 Garg AX, Adhikari NKJ, McDonald H, et al. Effects of Computerized Clinical Decision Support Systems on Practitioner Performance and Patient Outcomes. *JAMA* 2005;293:1223.

229 Bright TJ, Wong A, Dhurjati R, et al. Effect of Clinical Decision-Support Systems. *Ann Intern Med* 2012;157:29.

230 Obermeyer Z, Emanuel EJ. Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. *N Engl J Med* 2016;375:1216–1219.

231 Hripcsak G, Albers DJ, Perotte A. Parameterizing time in electronic health record studies. *J Am Med Inform Assoc JAMIA* 2015;22:794–804.

232 Zhang J, Chu H, Hong H, et al. Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness. *Stat Methods Med Res* 2017;26:2227–43.

233 Walsh C, Hripcsak G. The effects of data sources, cohort selection, and outcome definition on a predictive model of risk of thirty-day hospital readmissions. *J Biomed Inform* 2014;52:418–426.

234 Hripcsak G, Knirsch C, Zhou L, et al. Bias associated with mining electronic health records. *J Biomed Discov Collab* 2011;6:48–52.

235 Weber GM, Adams WG, Bernstam EV, et al. Biases introduced by filtering electronic health records for patients with “complete data”. *JAMIA* 2017;24:1134–1141.

236 Wears RL, Berg M. Computer Technology and Clinical Work: still waiting for Godot. *JAMA* 2005;293:1261.

237 Paxton C, Niculescu-Mizil A, Saria S. Developing predictive models using electronic medical records: challenges and pitfalls. In: *AMIA Annual Symposium Proc*. American Medical Informatics Association 2013. 1109–15.
238 Shamir RR, Dolber T, Noecker AM, et al. Machine Learning Approach to Optimizing Combined Stimulation and Medication Therapies for Parkinson’s Disease. *Brain Stimulat* 2015;8:1025–1032.

239 Wongsuphasawat K, Smilkov D, Wexler J, et al. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow. *IEEE Trans Vis Comput Graph* 2018;24:1–12.

240 Vellido A, Martín-Guerrero JD, Lisboa PJG. Making machine learning models interpretable. In: *In Proc. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning*. 2012.

241 Greenes RA, Bates DW, Kawamoto K, et al. Clinical decision support models and frameworks: Seeking to address research issues underlying implementation successes and failures. *J Biomed Inform* 2018;78:134–143.

242 Ranganath R, Perotte A, Elhadad N, et al. The Survival Filter: Joint Survival Analysis with a Latent Time Series. In: *Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence*. Arlington, Virginia, United States: AUAI Press 2015. 742–751.

243 Schulam P, Saria S. A Framework for Individualizing Predictions of Disease Trajectories by Exploiting Multi-Resolution Structure. In: *International Conference on Neural Information Processing Systems Proc*. 2015.

244 *Crossing the Quality Chasm: A New Health System for the 21st Century*. Washington (DC): National Academies Press (US) 2001.

Preprint under review.