PKCζ phosphorylates TRAF2 to protect against intestinal ischemia–reperfusion–induced injury

Wei Zhou1, Jihong Yao2, Guangzhi Wang1, Zhao Chen1, Zhenli Li1, Dongcheng Feng1, Yang Li1, Wasim Qasim1, Wenzhi Tan1, Shili Ning1 and Xiaofeng Tian1

Intestinal ischemia–reperfusion (I/R) is a common clinical problem that occurs during various clinical pathological processes. Excessive apoptosis has an indispensable role in intestinal I/R injury. Tumor necrosis factor receptor-associated factor 2 (TRAF2) and PKCζ have an essential role in apoptosis. Here, we aimed to investigate the effects of PKCζ and TRAF2 and to explore the correlation between PKCζ and TRAF2 in intestinal I/R injury. Mice were subjected to intestinal I/R injury in vivo. In vitro experiments were conducted by treating Caco-2 cells with hypoxia/reoxygenation (H/R) stimulation to simulate intestinal I/R. Intestinal tissue samples and Caco-2 cells were examined using various approaches. Intestinal I/R induced the membrane translocation and phosphorylation of PKCζ. Pretreatment with the PKCζ activator phosphatidylcholine remarkably attenuated gut injury by suppressing apoptosis. H/R induced PKCζ to combine with TRAF2, which was phosphorylated by PKCζ at Ser55, but not at Ser11, under intestinal I/R or H/R conditions. In addition, TRAF2 Ser55 phosphorylation increased cell survival by inhibiting cell apoptosis in the H/R model. Mechanistically, TRAF2 Ser55 phosphorylation promoted NF-κB activation but suppressed c-Jun activation in Caco-2 cells under H/R conditions. The results of this study demonstrate that the PKCζ/TRAF2 pathway represents a novel protective mechanism against intestinal I/R injury. Therefore, the PKCζ/TRAF2 pathway is a novel target for potential treatments of intestinal I/R injury–related diseases.

Cell Death and Disease (2017) 8, e2935; doi:10.1038/cddis.2017.310; published online 20 July 2017

Intestinal ischemia–reperfusion (I/R) occurs in a wide variety of clinical settings, including hemorrhagic shock, acute mesenteric ischemia, and organ transplantation,1 resulting in a high mortality rate.2 Although various therapeutic methods exist,1 including ischemic preconditioning, antioxidant therapy, anticomplement therapy, and antileukocyte therapy, no definite therapeutic strategy is available for intestinal I/R injury. We and others have shown that cell apoptosis is a significant contributor to intestinal I/R injury.3–5 However, the underlying mechanisms are not completely understood.

The protein kinase C (PKC) family consists of 12 structurally related members that function as serine/threonine kinases.6 PKC has essential roles in various fundamental cellular processes, including survival, proliferation, differentiation, and apoptosis.7 PKCζ is one member of the atypical protein kinase C (α PKC) subfamily,8 which is expressed in intestinal stem cells and colon cancer cells.9,10,11 PKCζ knockdown or dominant-negative PKCζ expression increases cell apoptosis,10,11,12 suggesting that PKCζ is an anti-apoptotic protein. Although one study found that PKCζ was involved in MAPK activation in H9c2 cells (an embryonic rat heart-derived cell line) subjected to reoxygenation after ischemic hypoxia,13 the role of PKCζ in intestinal I/R injury is unknown.

Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are adaptor molecules that associate the TNF receptor family with a variety of signaling pathways related to cell survival and cellular responses to stress.14 Previous studies revealed that TRAF2, which is a representative member of the TRAF family, promoted cell survival in response to TNF-α stimulation.15 In addition, TRAF2 depletion augmented hepatocyte apoptosis via Fas/CD95,16 implying that TRAF2 has a role in suppressing apoptosis in the liver. Research into myocardial I/R injury revealed that cardiac-restricted expression of dominant-negative TRAF2 significantly increased injury,17 indicating a role for TRAF2 as a cytoprotective factor in myocardial I/R. Furthermore, TRAF2 KO mice exhibited increased proinflammatory cytokine expression and colonic epithelial cell apoptosis, leading to the spontaneous development of inflammatory bowel disease (IBD).18 However, research has indicated that TRAF2 KO mouse embryonic fibroblasts (MEFs) are resistant to cell death induced by reactive oxygen species (ROS),19 suggesting that TRAF2 can promote ROS-induced cell death. Thus, TRAF2 has distinct roles in different cell systems and settings. Therefore, we speculated that TRAF2 may also be involved in intestinal I/R injury and were interested in exploring the specific effect of TRAF2 on intestinal I/R injury.

PKCζ phosphorylates TRAF2 at Ser55 in response to TNF-α stimulation, which allows the phosphorylated TRAF2 to suppress apoptosis, leading to inhibition of TNF-α-induced cell death in MEFs.20 Consequently, in this study, we sought to investigate the role of the PKCζ/TRAF2 signaling pathway in intestinal I/R injury.

1Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China and 2Department of Pharmacology, Dalian Medical University, Dalian 116044, China
*Corresponding author: X Tian, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
Tel/Fax +86 411 86110010, E-mail: txfdl@dmu.edu.cn
Received 23.3.17; revised 02.6.17; accepted 05.6.17; Edited by A Stephanou
Results

Intestinal I/R induces the membrane translocation and phosphorylation of PKCζ. We had previously confirmed the intestinal I/R-mediated membrane translocation and phosphorylation of PKCβ2, but not PKCβ1, PKDδ, or PKCε.21 To explore the protein expression of aPKC subfamily members (PKCζ and PKCδ) in intestinal I/R injury, we evaluated related membrane proteins in intestinal tissues subjected to 45 min of ischemia, followed by 60, 120 or 240 min of reperfusion. The selective membrane translocation of PKCζ, but not of PKCδ (the other member of the aPKC subfamily), was tested in the intestinal fraction after different reperfusion times (Figure 1a). The results indicated that PKCζ, but not PKCβ2, was particularly activated by intestinal I/R.

We examined PKCζ phosphorylation after a 120-min reperfusion and found a significant increase at the Thr410 residue, which resulted in a marked increase in the phosphorylated PKCζ:total PKCζ ratio (Figure 1b). Overall, these findings suggested that PKCζ translocates to the plasma membrane and is phosphorylated in response to intestinal I/R.

PKCζ attenuates the gut injury induced by intestinal I/R. To assess the function of PKCζ in the intestinal I/R model, we used the PKCζ activator phosphatidylcholine (PC) and the PKCζ inhibitor aurothiomalate (ATM).22,23 First, we examined the effect of exposure of PKCζ to PC or ATM. The data suggested that PC increased the expression and phosphorylation of PKCζ, whereas ATM had the opposite effect (Figures 2a and b). Next, we tested the effects of PC and ATM on histological changes in intestinal tissue in response to intestinal I/R injury. Compared with the sham group, the intestinal I/R group showed severe hyperemia and a loss of intestinal villi (Figure 2c). PC clearly reduced the intestinal injury and histopathology score, however, the group treated with ATM under intestinal I/R conditions displayed visibly worsened injury and an increased histopathology score (Figures 2c and d). Collectively, these findings suggest that an increase in PKCζ activation attenuated the gut injury induced by intestinal I/R.

PKCζ suppresses intestinal I/R injury by inhibiting gut apoptosis. To define the mechanism underlying the protective effect of PKCζ in intestinal I/R injury, we conducted a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay to evaluate if PKCζ affects apoptosis. Compared with the sham group, the intestinal I/R group presented a significant increase in apoptotic cells. Conversely, pretreatment with PC resulted in a distinct reduction in the number of apoptotic cells (Figure 3a). However, the number of apoptotic intestinal cells was increased in the group treated with ATM under intestinal I/R conditions (Figure 3a). Moreover, PC apparently suppressed the expression of the pro-apoptotic protein cleaved caspase-3 and increased the expression of the anti-apoptotic protein Bcl-2 (Figure 3b). Overall, the data suggested that an increase in PKCζ activation could alleviate the apoptosis induced by intestinal I/R.

PKCζ colocalizes with TRAF2 after H/R and TRAF2 is phosphorylated in response to intestinal I/R. To explore the mechanism by which PKCζ phosphorylation alleviated the apoptosis induced by intestinal I/R, human Caco-2 cells were treated with hypoxia/reoxygenation (H/R) to mimic the intestinal I/R model. We found that PKCζ and TRAF2 were recruited to the plasma membrane and combined with each other after H/R treatment (Figure 4a). Western blotting further verified the membrane translocation of PKCζ and TRAF2 in Caco-2 cells under H/R conditions (Figure 4b). Next, we conducted a co-immunoprecipitation experiment to examine the association between PKCζ and TRAF2. Membranes isolated from Caco-2 cells in the absence of H/R (control) showed colocalization of PKCζ and TRAF2 in the same immunocomplex, whereas H/R increased the appearance of TRAF2 in the PKCζ immunoprecipitates (Figure 4c).

We also examined TRAF2 phosphorylation in response to intestinal I/R. The results suggested that TRAF2 was phosphorylated at Ser55 but not Ser11, we knocked down endogenous PKCζ in Caco-2 cells under H/R conditions, and TRAF2 was activated through phosphorylation at both Ser55 and Ser11 in intestinal I/R.

TRAF2 is phosphorylated by PKCζ at Ser55 but not at Ser11 in response to intestinal I/R or H/R. To determine whether both Ser55 and Ser11 of TRAF2 were phosphorylated by PKCζ, we performed in vivo and in vitro experiments. The results of the in vivo experiment showed that p-TRAF2-Ser55 expression was markedly increased by pretreatment with PC, whereas TRAF2 phosphorylation at Ser55 was reduced in the groups treated with ATM (Figure 5a). However, no effect on p-TRAF2-Ser11 expression was observed regardless of pretreatment with PC or ATM (Figure 5a).

To confirm that PKCζ was involved in TRAF2 activation at Ser55 but not Ser11, we knocked down endogenous PKCζ in Caco-2 cells using a typical siRNA approach (Figures 5b and c). The siRNA-mediated knockdown of PKCζ significantly suppressed the expression of PKCζ and p-PKCζ in Caco-2 cells (Figure 5b). Notably, knockdown of PKCζ also reduced TRAF2 phosphorylation at Ser55 but had no effect on
phosphorylation at Ser^{11} in Caco-2 cells under H/R conditions (Figure 5c). Consequently, TRAF2 was targeted at Ser^{55}, but not at Ser^{11}, by PKC{ζ} after intestinal I/R or H/R.

Figure 2 Increased PKC{ζ} activation attenuated the gut injury induced by intestinal I/R. Prior to the sham or 45-min ischemia followed by 120-min reperfusion treatment, the mice were pretreated with either normal saline, PC, or ATM. (a) PKC{ζ} protein expression. (b) p-PKC{ζ} (Thr^{410}) protein expression. (c) Intestinal tissues were harvested and stained with hematoxylin and eosin and then examined with light microscopy at × 200 magnification. Representative images from the sham, sham+PC pretreatment, sham+ATM pretreatment, I/R, I/R+PC pretreatment, and I/R+ATM pretreatment groups. (d) Histological injury scores of intestines from the different groups. The data are shown as the means ± S.D., n=8 per group, **P<0.01 versus sham; ##P<0.01 versus I/R; @P<0.05 versus I/R.

Figure 3 Increased activation of PKC{ζ} by PC inhibited intestinal apoptosis after intestinal I/R. (a) Paraffin-embedded intestinal tissue sections were stained using TUNEL and examined under light microscopy at × 200 magnification (left panels). Quantification of TUNEL staining (right panel). (b) cleaved caspase-3 and Bcl-2 protein expression. The data are presented as the means ± S.D., n=3 per group, **P<0.01 versus sham; ##P<0.01 versus I/R.
We constructed two phospho-mutant TRAF2 plasmids: TRAF2-S55A, in which Ser55 was mutated to alanine to abolish phosphorylation, and TRAF2-S55D, in which Ser55 was mutated to aspartic acid to mimic phosphorylation. By performing western blotting, we found that the expression of p-TRAF2-Ser55 was markedly lower in Caco-2 cells transfected with TRAF2-S55A than that of the empty plasmid, while TRAF2-S55D transfection played the opposite role (Supplementary Figure S1). Caco-2 cells were transfected with TRAF2-WT, TRAF2-S55A, or TRAF2-S55D and then subjected to H/R or left untreated. Based on the cell morphology and cell viability assay, pretreatment with TRAF2-S55D reduced cell death (Figures 6a and b). To clarify the underlying mechanism, we
conducted a TUNEL assay. The results showed that transfection with TRAF2-S55D reduced cell apoptosis compared with the other groups (Figure 6c). Moreover, the western blotting results confirmed that Caco-2 cells treated with TRAF2-S55D exhibited reduced cleaved caspase-3 expression and increased Bcl-2 expression (Figure 6d). In summary, the data suggested that TRAF2 Ser 55 phosphorylation increased cell survival by inhibiting cell apoptosis in Caco-2 cells under H/R conditions.

TRAF2 Ser55 phosphorylation promotes NF-κB activation but suppresses c-Jun activation under H/R conditions.

To assess the underlying anti-apoptotic mechanism of TRAF2 Ser55 phosphorylation in Caco-2 cells under H/R conditions, Caco-2 cells were transfected with TRAF2-WT, TRAF2-S55A, or TRAF2-S55D and then subjected to H/R or left untreated. Luciferase reporter gene assays in Caco-2 cells revealed that TRAF2-S55D transfection increased NF-κB activity compared with TRAF2-S55A transfection (Figure 7a). To further evaluate the effect of TRAF2 Ser55 phosphorylation on NF-κB activation, we examined the expression of NF-κB-related target genes by real-time PCR in Caco-2 cells under untreated or H/R conditions. Consistent with the luciferase reporter gene assay result, Caco-2 cells transfected with TRAF2-S55D had obviously promoted expression of cIAP1 and IP-10 in response to H/R compared with cells transfected with TRAF2-S55A (Figures 7b and c). In contrast, western blotting showed that TRAF2-S55D transfection reduced the phosphorylation of c-Jun compared with TRAF2-S55A transfection (Figure 7d). Taken together, these data suggested that phosphorylation of TRAF2 at Ser55 promoted NF-κB activation but suppressed c-Jun activation in Caco-2 cells under H/R conditions.

Discussion

Intestinal ischemia and subsequent reperfusion injuries give rise to oxidative stress and the release of inflammatory mediators, such as TNF-α and IL-6, resulting in a high mortality rate that ranges from 70 to 80%. We previously verified that intestinal I/R induced the expression of ROS and TNF-α, resulting in a high mortality rate that ranges from 70 to 80%. We previously verified that intestinal I/R induced the expression of ROS and TNF-α, although the molecular basis is complex. The protective effects of PKCζ in myocardial I/R have been confirmed in in vivo experiments. In addition, the protective role of TRAF2 in myocardial I/R has been verified in in vitro experiments.
However, the underlying mechanisms remain unclear. The results of the present study demonstrated that the PKCζ-TRAF2 signaling pathway alleviates intestinal I/R injury by suppressing apoptosis.

Although PKCβ1, PKCδ, and PKCε protein expression was examined in intestinal tissues, only the level of PKCβ2 expression increased in response to intestinal I/R. Similarly, in this study, we found that PKCζ, but not PKCα, was selectively enhanced in response to reperfusion for various times (Figure 1a). According to research on the TC10 pathway, TC10 recruits PKCζ to the plasma membrane after insulin stimulation. However, one investigation of myocardial I/R injury suggested that PI3K activated PKCζ and then translocated to the nucleus from the cytoplasm. In our study, PKCζ displayed membrane translocation in response to intestinal I/R (Figure 1a). These data suggested that PKCζ presents distinct tissue-specific functions.

PKCζ is activated mainly through three different mechanisms: phosphorylation at Thr560, auto-phosphorylation at Thr560, and release of the pseudo-substrate sequence via a conformational change. Recent research has indicated that lyso-PC, a product of the hydrolysis of PC, could effectively activate PKCζ in melanocytes, NK cells, and intestinal tissue. Specifically, lyso-PC stimulates PKCζ activation in melanocytes or NK cells through the mechanism involving phosphorylation or auto-phosphorylation, respectively. In the results presented here, phosphorylation of PKCζ was increased after treatment of mice with PC (Figure 2b). To further evaluate the effect of PKCζ on intestinal I/R injury, we treated mice with the PKCζ inhibitor ATM, which is currently in phase I clinical testing for non-small cell lung cancer (NSCLC). The PB1 functional domain has a crucial role in regulating the activity of the aPKC subfamily members. In addition, the PB1 domain is intimately related to cell proliferation and cell survival. ATM has an anti-tumor role in pancreatic cancer and NSCLC through the highly selective targeting of Cys-68 within the PB1 domain of PKCζ or Cys-69 within the PB1 domain of PKCε. Our results showed that ATM pretreatment could decrease the expression of PKCζ in vivo and in vitro, we verified that PKCζ phosphorylated TRAF2 at Ser55, but not at Ser11, in response to intestinal I/R injury, and then translocated to the nucleus from the cytoplasm. In contrast, one study claimed that TRAF2 significantly promoted ROS-induced cell death. In this study, we showed that TRAF2 Ser55 phosphorylation clearly attenuated cell death (Figures 6a and b).
ultimately demonstrated that the mechanism underlying the protective effects of TRAF2 involved the suppression of cell apoptosis (Figures 6c and d). Therefore, we believe that TRAF2 can decrease cell death by inhibiting apoptosis in Caco-2 cells subjected to I/R.

The mechanism underlying TRAF2-mediated suppression of apoptosis is complex. Some research has confirmed that TRAF2 functions in the regulation of the NF-κB and c-Jun signaling pathways.15,20 Moreover, NF-κB has a vital role in inhibiting apoptosis,45 whereas c-Jun is crucial in the pro-apoptosis cascade.46 The anti-apoptotic effect of NF-κB may be related to Bcl-2, a key target gene of NF-κB,47,48 and overexpression of Bcl-2 can rescue cells from I/R- and H/R-induced apoptosis.49,50 Noteworthy, a recent study about the sexual differentiation of the anteroventral periventricular nucleus (AVPV), which is thought to occur through apoptosis,51 confirmed that TRAF2-inhibiting protein could downregulate apoptosis cascade.46 The anti-apoptotic effect of NF-κB may be related to Bcl-2, a key target gene of NF-κB,47,48 and overexpression of Bcl-2 can rescue cells from I/R- and H/R-induced apoptosis.49,50

Plasmid construction and transient transfection. The TRAF2-WT plasmid, phospho-mutant TRAF2 plasmids (TRAF2-Ser55A and TRAF2-Ser55D) and the empty vector plasmid were synthesized by GenePharma. Caco-2 cells were transfected with 2 μg of the TRAF2-WT, TRAF2-Ser55A or TRAF2-Ser55D plasmid or the empty vector plasmid using Lipofectamine 3000 according to the manufacturer’s instructions.

Western blotting analysis. Membranous or total proteins were extracted from intestinal tissue and Caco-2 cells using a commercial protein isolation kit (KeyGEN Biotech, Nanjing, China). Equal amounts of protein were analyzed using 10–15% SDS-PAGE (Bio-Rad, Hercules, CA, USA) and were transferred to PVDF membranes (Millipore, Bedford, MA, USA). The membranes were incubated overnight at 4 °C with the following corresponding primary antibodies: PKCζ, phospho-PKCζ (Thrζ18), and TRAF2 (Santa Cruz Biotechnology, Santa Cruz, CA, USA); phospho-TNFα-2-MF (Cell Signaling Technologies, CST, MA, USA); PKCζ (R&D Systems, MN, USA); cleaved caspase-3, Bcl-2, Na, K-ATPase, and Jun (Proteintech, Wuhan, China); phospho-Jun (Thr91+Thr93) (BIOS, Beijing, China); β-actin (ZSGB-Bio, Beijing, China); and a phospho-TRAF2-Ser55 antibody that was custom made by GL Biochem (Shanghai, China). Then, the cells were incubated with homologous secondary antibodies for 2 h at 37 °C. The bands were exposed using enhanced chemiluminescence-plus reagents (Beyotime Institute of Biotechnology, China). The images were documented using a BioSpectrum-410 multispectral imaging system, and the signals were analyzed using a Gel-Pro Analyzer (Version 5.0; Media Cybernetics, Rockville, MD, USA).

Immunofluorescence. Caco-2 cells were fixed using 4% paraformaldehyde for 30 min, washed three times with PBS, permeabilized with 0.2% Triton X-100 for 10 min, and then blocked with 2% bovine serum albumin in PBS at 37 °C for 30 min. The specimen slides were incubated with the primary anti-PKCζ or anti-TRAF2 antibody at 4 °C overnight, subsequently washed three times with PBS, and then incubated with FITC- (ZSBG-Bio) and Alexa Fluor 594-conjugated secondary antibodies (Proteintech) at 37 °C for 1 h. After additional washes with PBS, the specimen slides were counterstained with the nuclear stain 4,6-diamidino-2-phenylindole (DAPI; Beyotime, Shanghai, China) at room temperature for 10 min. An 80 Nikon microscope (Tokyo, Japan) was used to examine the immunofluorescent images.

Co-immunoprecipitation. Membranes were extracted from the Caco-2 cells as described above. An equal amount of anti-PKCζ antibody was added to 500 μg of protein and gently shaken at 4 °C overnight. Immunocomplexes were acquired by adding 40 μl of protein A+G agarose beads (Beyotime Institute of Biotechnology, Shanghai, China); then, the mixtures were gently shaken at 4 °C for 4 h. The mixture was centrifuged at 1000 x g for 5 min at 4 °C, and then the supernatant was discarded. The sediment was washed five times using ice-cold PBS. To separate the immunocomplexes from the beads, the immunocomplexes were boiled in sodium dodecyl sulfate sample buffer for 5 min. Then, the specimens were examined via western blotting with anti-PKCζ and anti-TRAF2 antibodies according to the manufacturer’s instructions.

Histological and TUNEL staining. For the histological and TUNEL analyses, intestinal tissue was fixed in 4% formalin and then paraffin-embedded. Sections 4 μm in thickness were stained using hematoxylin and eosin. The histopathological scores of the intestinal tissues were determined according to the
method of Chiu. TUNEL staining was performed using an apoptosis detection kit (Roche, Branchnj, NJ, USA) according to the manufacturer’s instructions.

Luciferase gene reporter assays. Caco-2 cells were cotransfected with NF-κB firefly luciferase reporter plasmid (GenePharma, Shanghai, China) and TRAF2-WT, TRAF2-Ser55A, TRAF2-Ser55D or an empty vector plasmid (2 μg/well) using Lipofectamine 3000. Reporter assays were performed 36 h after transfection. Luciferase activity was tested with a Double-Luciferase Reporter Assay Kit (TransGen Biotech, Beijing, China) using the Dual-Light Chemiluminescent Gene Assay System (Berthold, Germany) and was normalized to Renilla luciferase activity.

Real-time PCR. Total RNA was extracted from Caco-2 cells using TRIzol (TaKaRa, Dalian, China). cDNA was synthesized using the TransScript All-in-One First-Strand cDNA Synthesis SuperMix for qPCR Kit (TransGen Biotech), and target cDNA was amplified with the corresponding primers (Invitrogen). The primer sequences were as follows: ciAP1, forward (F) 5′-GCCGATGCCTGAGAATCTG-3′; reverse (R) 5′-GCCGAGCAAGAGAACTGCAATGG-3′; IP-10, forward (F) 5′-CTAC TGAGGCTGATGCTTCTCTGAG-3′; and reverse (R) 5′-GTACCTTTGGAGAAGGAAAG-3′; J-actin, forward (F) 5′-TCCAGCAAACTCTCCACAC-3′ and reverse (R) 5′-TGGGATGGCAGGAGGCAC-3′. The resulting cDNA was then subjected to quantitative real-time PCR using a TransStart Top Green qPCR SuperMix kit (TransGen Biotech). A 7500 Fast Real-time PCR System (Applied Biosystems) was used to analyze the specimens.

Cell viability assay. The tetrazolium salt Cell Counting Kit-8 (Dojindo TransGen Biotech). A 7500 Fast Real-time PCR System (Applied Biosystems) was reviewed and approved the manuscript. WZ, GW, ZC, DF, ZL, and JY analyzed and interpreted the data. XT and XT, WZ, and JY designed the study. WZ, DF, ZL, YL, and WT performed the experiments. WZ, DF, ZL, YL, and WT performed the experiments. WZ, DF, ZL, YL, and WT performed the experiments.

Statistical analysis. Values are presented as the means ± S.D. Comparisons between two groups were performed using a two-tailed Student's t-test. One-way analysis of variance and the Student-Newman-Keuls test were used to compare the means among multiple groups. All data analyses were performed with GraphPad Prism 5.0 (GraphPad Prism Software, La Jolla, CA, USA). P < 0.05 was considered significant.

Conflict of Interest. The authors declare no conflict of interest.

Acknowledgements. This work was supported by grants from the National Natural Science Foundation of China (No. 81671954 to Xiaofeng Tian, No. 81600411 to Guangzhi Wang and No. 81500406 to Zhao Chen).

Author contributions. XT, WZ, and JY designed the study. WZ, DF, ZL, and YT performed the experiments. WZ, GW, ZC, DF, and ZL, and JY analyzed and interpreted the data. XT and WZ wrote and revised the manuscript. XT provided financial support. All authors reviewed and approved the manuscript.

1. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001; 94: 1133–1138.
2. Mallick IH, Yang XW, Winstead RC, Sellelman AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Digest Dis Sci 2004; 49: 1359–1377.
3. Ikeda H, Suzuki Y, Suzuki M, Koike M, Tamura J, Tong J et al. Apoptosis is a major mode of cell death caused by ischemia and ischemia/reperfusion injury to the rat intestinal epithelium. Gut 1998; 42: 530–537.
4. Wang GZ, Yao JH, Li ZL, Zou G, Feng DC, Shan W et al. miR-34a-5p inhibition alleviates atypical protein kinase C signaling inhibits pancreatic cancer cell transformed growth and invasion. OncoTarget 2015; 6: 15297–15310.
5. Siddiqi S, Mannbach CM 2nd. Dietary and biliary phosphatidylcholine activates PKCζ in rat intestine. J Lipid Res 2015; 56: 859–870.
6. Chen Y, Liu VC, Rocjen NW, Tam PIK. Depletion of intestinal resident macrophages prevents ischemia reperfusion injury in gut. Gut 2004; 53: 1772–1780.
7. Wu B, Qiu W, Wang P, Yu H, Chen T, Zametti GP et al. p53 independent induction of PUMA mediates intestinal apoptosis in response to ischemia-reperfusion injury. Gut 2007; 56: 654–664.
8. Zhou J, Huang WQ, Li C, Wu GY, Li YS, Wen SH et al. Intestinal ischemia/reperfusion enhances microbial activation and induces cerebral injury and memory dysfunction in rats. Crit Care Med 2012; 40: 2438–2448.
9. Higuchi S, Wu R, Zhou M, Marin CP, Rawikumar TS, Wang P. Gut hyperpermiability after ischemia and reperfusion: attenuation with adrenomedullin and its binding protein treatment. Int J Clin Exp Pathol 2013; 6: 403–413.
10. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001; 94: 1133–1138.
11. Wang GZ, Yao JH, Li ZL, Zou G, Feng DC, Shan W et al. miR-34a-5p inhibition alleviates atypical protein kinase C signaling inhibits pancreatic cancer cell transformed growth and invasion. OncoTarget 2015; 6: 15297–15310.
12. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001; 94: 1133–1138.
13. Wang GZ, Yao JH, Li ZL, Zou G, Feng DC, Shan W et al. miR-34a-5p inhibition alleviates atypical protein kinase C signaling inhibits pancreatic cancer cell transformed growth and invasion. OncoTarget 2015; 6: 15297–15310.
Targeting TRAF2 regulates gut ischemia–reperfusion
W Zhou et al

36. Qiu RG, Abo A, Steven Martin G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζeta signaling and cell transformation. Curr Biol 2000; 10: 697–707.

37. Grünsteid HH, Spitaler M, Mwanjewe J, Schwaiger W, Jenny M, Ueberrall F. Regulation of cell survival by atypical protein kinase C isozymes. Adv Enzyme Regul 2003; 43: 213–228.

38. Murray NR, Jamieson L, Yu W, Zhang J, Gokmen-Polar Y, Sier D et al. Protein kinase Cota is required for Ras transformation and colon carcinogenesis in vivo. J Cell Biol 2004; 164: 797–802.

39. Erdogan E, Lamark T, Stallings-Mann M, Lee J, Pellecchia M, Thompson EA et al. Aurothiomalate inhibits transformed growth by targeting the PB1 domain of protein kinase Cota. J Biol Chem 2006; 281: 28450–28459.

40. Li S, Wang L, Dorf ME. PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination. Mol Cell 2003; 33: 33–42.

41. Shen RR, Zhou AY, Kim E, Lim E, Habelhah H, Hahn WC. IkappaB kinase epsilon ligase complex. J Biol Chem 2012; 32: 4756–4768.

42. Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG et al. Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene 2007; 26: 1386–1397.

43. Zhou AY, Shen RR, Kim E, Lock YJ, Xu M, Chen ZJ et al. I KK epsilon-mediated tumorigenesis requires K63-linked polyubiquitination by a cIAP1/cIAP2/TRAF2 E3 ubiquitin ligase complex. Cell Rep 2013; 3: 724–733.

44. Petersen SL, Chen TT, Lawrence DA, Mansters SA, Gonzalez F, Ashkenazi A. TRAF2 is a biologically important necroptosis suppressor. Cell Death Differ 2015; 22: 1846–1857.

45. Tai DI, Tsai SL, Chen YM, Chuang YL, Peng CY, Sheen IS et al. Activation of nuclear factor kappaB in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis. Hepatology 2000; 31: 656–664.

46. Lin S, Hoffmann K, Gao C, Petrellis M, Herr I, Schemmer P. Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma. J Pineal Res 2017; 62.

47. Tracey L, Perez-Rosado A, Artiga MJ, Camacho FJ, Rodriguez A, Martinez N et al. Expression of the NF-kappaB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol 2005; 206: 123–134.

48. Turco MC, Romano MF, Petrella A, Bisogni R, Tassone S, Venuta S. NF-kappaB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 2004; 18: 11–17.

49. Imahashi K, Schneider MD, Steenbergen C, Murphy E. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res 2004; 95: 734–741.

50. Tanaka M, Nakae S, Terry RD, Mokhtan GK, Gunawan F, Balsam LB et al. Cardiomycocyte-specific Bcl-2 overexpression attenuates ischemia-reperfusion injury. immune response during acute rejection, and graft coronary artery disease. Blood 2004; 104: 3769–3796.

51. Krishnan S, Intlekofer KA, Aggisom LK, Petersen SL. Central role of TRAF-interacting protein in a new model of brain sexual differentiation. Proc Natl Acad Sci USA 2009; 106: 16692–16697.

52. Baud V, Liu 2G, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 1999; 13: 1297–1308.

53. Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurun F. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg 1970; 101: 478–483.

© The Author(s) 2017

Supplementary Information accompanies this paper on Cell Death and Disease website (http://www.nature.com/cddis)