Stability of an abstract–wave equation with delay and a Kelvin–Voigt damping

Kaïs Ammari

University of Monastir/UPSAY/LMV-UVSQ

Joint work with Serge Nicaise and Cristina Pignotti
Outline

1 Motivation
 - Problem
 - The idea
 - Stability

2 Existence results

3 The spectral analysis
 - The discrete spectrum
 - The continuous spectrum

4 Asymptotic behavior

5 Proof of the main result

6 Application to the stabilization of the wave equation with delay and a Kelvin–Voigt damping

7 Conclusion

8 References

Kaïs Ammari

20 October 2017, LJLL-GdT Contrôle
Outline

1. **Motivation**
 - Problem
 - The idea
 - Stability

2. **Existence results**

3. **The spectral analysis**
 - The discrete spectrum
 - The continuous spectrum

4. Asymptotic behavior

5. Proof of the main result

6. Application to the stabilization of the wave equation with delay and a Kelvin–Voigt damping

7. Conclusion

8. References
Outline

1 Motivation
 - Problem
 - The idea
 - Stability

2 Existence results

3 The spectral analysis
 - The discrete spectrum
 - The continuous spectrum

4 Asymptotic behavior

5 Proof of the main result

6 Application to the stabilization of the wave equation with delay and a Kelvin–Voigt damping

7 Conclusion

8 References
Outline

1 Motivation
 • Problem
 • The idea
 • Stability

2 Existence results

3 The spectral analysis
 • The discrete spectrum
 • The continuous spectrum

4 Asymptotic behavior

5 Proof of the main result

6 Application to the stabilization of the wave equation with delay and a Kelvin–Voigt damping

7 Conclusion

8 References
Outline

1. Motivation
 - Problem
 - The idea
 - Stability

2. Existence results

3. The spectral analysis
 - The discrete spectrum
 - The continuous spectrum

4. Asymptotic behavior

5. Proof of the main result

6. Application to the stabilization of the wave equation with delay and a Kelvin–Voigt damping

7. Conclusion

8. References
Outline

1 Motivation
 • Problem
 • The idea
 • Stability

2 Existence results

3 The spectral analysis
 • The discrete spectrum
 • The continuous spectrum

4 Asymptotic behavior

5 Proof of the main result

6 Application to the stabilization of the wave equation with delay and a Kelvin–Voigt damping

7 Conclusion

8 References
Problem

It is well-known that delay equations like the simplest one of parabolic type,

\[u_t(t; x) = \Delta u(t - \tau; x); \]

with a delay parameter \(\tau > 0 \), or of hyperbolic type,

\[u_{tt}(t; x) = \Delta u(t - \tau; x); \]

are not well-posed.

- Their instability is given in the sense that there is a sequence of initial data remaining bounded, while the corresponding solutions, at a fixed time, go to infinity in an exponential manner, see Jordan, Dai & Mickens and Dreher, Quintanilla & Racke.
The same phenomenon of instability is given for a general class of problems of the type

\[\frac{d^n u}{dt^n}(t) = Au(t - \tau); \]

\(n \in \mathbb{N}; \text{ fixed, whenever } (-A) \text{ is linear operator in a Banach space having} \]
a sequence of real eigenvalues \((\lambda_k)_k\) such that \(0 < \lambda_k \to \infty \text{ as } k \to \infty.\)
The so-called $\alpha - \beta$-system with delay,

$$\begin{cases} u_{tt}(t) + aAu(t - \tau) - bA^\beta \theta(t) = 0, \\ \theta_t(t) + dA^\alpha \theta(t) + bA^\beta u_t(t) = 0 \end{cases}$$

for functions $u, \theta : [0; +\infty) \to H$, with A being a self-adjoint operator in the Hilbert space H, having a countable complete orthonormal system of eigenfunctions $(\phi_j)_j$ with corresponding eigenvalues $0 < \lambda_j \to \infty$ as $j \to \infty$. The thermoelastic plate equations appear with $\alpha = \beta = \frac{1}{2}$ and $A = (-\Delta_D)^2$.
It was shown that we have a strong smoothing property for parameters \((\alpha; \beta)\) in the region

\[
\mathcal{A}_{sm} := \{ (\beta, \alpha); 1 - 2\beta < \alpha < 2\beta, \alpha > 2\beta - 1 \}, \ (\tau = 0).
\]

Figure 1.1: Area of smoothing \(\mathcal{A}_{sm}\) (without delay)
The $\alpha - \beta$-system with delay is not well-posed in the region

$$\mathcal{A}^1_{in} := \left\{ (\beta, \alpha); 0 \leq \beta \leq \alpha \leq 1, \alpha \geq \frac{1}{2}, (\beta, \alpha) \neq (1, 1) \right\}.$$
A similar result will hold for the related system

\[
\begin{align*}
\left\{
\begin{array}{l}
 u_{tt}(t) + aAu(t) - bA^\beta \theta(t) = 0, \\
 \theta_t(t) + dA^\alpha \theta(t - \tau) + bA^\beta u_t(t) = 0
\end{array}
\right.
\end{align*}
\]

in the region

\[A_{in}^2 := \{(\beta, \alpha); 0 \leq \beta \leq \alpha \leq 1, (\beta, \alpha) \neq (1, 1)\}.\]
The idea

- Datko: The effect of a small delay

\[
\begin{aligned}
\ddot{w}(t) + A w(t) + BB^* \dot{w}(t - \tau) &= 0, \quad t \geq 0, \\
\dot{w}(0) &= w^0, \quad \dot{w}(0) = w^1, \\
\dot{w}(t) &= f_0(t), \quad t \in (-\tau, 0),
\end{aligned}
\]

\(\tau > 0\) is the time delay.
\begin{align*}
\ddot{w}(t) + A w(t) + \alpha_1 BB^* \dot{w}(t) + \alpha_2 BB^* \dot{w}(t - \tau) &= 0, \quad t \geq 0, \\
\dot{w}(0) &= w^0, \quad \dot{w}(0) = w^1, \\
\dot{w}(t) &= f_0(t), \quad t \in (-\tau, 0),
\end{align*}

\(\tau > 0 \) is the time delay.

\(0 < \alpha_2 < \alpha_1 \).
$u_{tt}(x, t) - \Delta u(x, t) + au_t(x, t - \tau) = 0, \quad x \in \Omega, \ t > 0, \quad (1)$

$u(x, t) = 0, \quad x \in \Gamma_0, \ t > 0 \quad (2)$

$\frac{\partial u}{\partial \nu}(x, t) = -ku_t(x, t), \quad x \in \Gamma_1, \ t > 0 \quad (3)$

$u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad x \in \Omega, \quad (4)$

$u_t(x, t) = g(x, t), \quad x \in \Omega, \ t \in (-\tau, 0), \quad (5)$

where ν stands for the unit normal vector of $\partial \Omega$ pointing towards the exterior of Ω and $\frac{\partial u}{\partial \nu}$ is the normal derivative. Moreover, the constant $\tau > 0$ is the time delay, a and k are two positive numbers and the initial data are taken in suitable spaces.
Theorem (A-Nicaise-Pignotti)

For any $k > 0$ there exist positive constants a_0, C_1, C_2 such that

$$E(t) \leq C_1 e^{-C_2 t} E(0),$$

for any regular solution of problem (29)-(31) with $0 \leq a < a_0$. The constants a_0, C_1, C_2 are independent of the initial data but they depend on k and on the geometry of Ω.
The opposite problem, that is to contrast the effect of a time delay in the boundary condition with a velocity term in the wave equation, is still, as far as we know, open and it seems to be much harder to deal with. However, there is a positive answer by Datko, Lagnese and Polis [6] in the one dimensional case for the problem

\[
\begin{align*}
 u_{tt}(x, t) - u_{xx}(x, t) + 2au_t(x, t) + a^2 u(x, t) &= 0, \quad 0 < x < 1, \quad t > 0, \\
 u(0, t) &= 0, \quad t > 0 \\
 u_x(1, t) &= -ku_t(1, t - \tau), \quad t > 0;
\end{align*}
\]
with a, k positive real numbers. Indeed, through a careful spectral analysis, in [6] the authors have shown that, for any $a > 0$, if k satisfies

$$0 < k < \frac{1 - e^{-2a}}{1 + e^{-2a}},$$

(11)

then the spectrum of the system (7)–(9) lies in $\Re \omega \leq -\beta$, where β is a positive constant depending on the delay τ.
Stabilization by switching time-delay

\[\ddot{w}(t) + Aw(t) = 0, \quad 0 \leq t \leq T_0, \quad (12) \]
\[\ddot{w}(t) + Aw(t) + \mu_1 BB^* \dot{w}(t) = 0, \quad (2i + 1)T_0 \leq t \leq (2i + 2)T_0, \quad (13) \]
\[\ddot{w}(t) + Aw(t) + \mu_2 BB^* \dot{w}(t - T_0) = 0, \quad (2i + 2)T_0 \leq t \leq (2i + 3)T_0, \quad (14) \]
\[w(0) = w_0, \dot{w}(0) = w_1, \quad (15) \]

where \(T_0 > 0 \) is the time delay, \(\mu_1, \mu_2 \) are real numbers and the initial datum \((w_0, w_1)\) belongs to a suitable space.
Examples

• Pointwise stabilization:

\[u_{tt}(x, t) - u_{xx}(x, t) = 0, \quad (0, \ell) \times (0, 2\ell), \quad (16) \]

\[u_{tt}(x, t) - u_{xx}(x, t) + a u_t(\xi, t - 2\ell) \delta_\xi = 0, \quad (0, \ell) \times (2\ell, +\infty), \quad (17) \]

\[u(0, t) = 0, \quad u_x(\ell, t) = 0, \quad (0, +\infty), \quad (18) \]

\[u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x), \quad (0, \ell), \quad (19) \]
Boundary stabilization:

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2}(x, t) - \frac{\partial^2 u}{\partial x^2}(x, t) &= 0 \quad (0, \ell) \times (0, +\infty), \\
\frac{\partial u}{\partial t}(0, t) &= 0, \quad (0, +\infty), \\
\frac{\partial u}{\partial x}(\ell, t) &= 0, \quad (0, 2\ell), \\
\frac{\partial u}{\partial x}(\ell, t) &= \mu_1 \frac{\partial u}{\partial t}(\ell, t), \quad (2(2i + 1)\ell, 2(2i + 2)\ell), \forall i \in \mathbb{N}, \\
\frac{\partial u}{\partial x}(\ell, t) &= \mu_2 \frac{\partial u}{\partial t}(\ell, t - 2\ell), \quad (2(2i + 2)\ell, 2(2i + 3)\ell), \forall i \in \mathbb{N}, \\
u(x, 0) &= u_0(x), \quad u_t(x, 0) = u_1(x), \quad (0, \ell),
\end{align*}
\]

where \(\ell > 0, \mu_1, \mu_2, a \) and \(\xi \in (0, \ell) \) are constants.
Theorem (A-Nicaise-Pignotti)

We suppose that \(\xi = \frac{\ell}{2} \). Then for any \(a \in (0, 2) \) \(\exists C_1, C_2 > 0 \) s.t. for all initial data in \(\mathcal{H} \), the solution of (29)-(30) satisfies

\[
E_p(t) \leq C_1 e^{-C_2 t}.
\] (26)

The constant \(C_1 \) depends on the initial data, on \(\ell \) and on \(a \), while \(C_2 \) depends only on \(\ell \) and on \(a \).
For any μ_1, μ_2 satisfying one of the following conditions
\[1 < \mu_2 < \mu_1, \mu_1 < \mu_2 < 1, \]
\[\exists C_1, C_2 > 0 \text{ s.t. for all initial data in } \mathcal{H}, \text{ the solution of (20)–(25) satisfies} \]
\[E_b(t) \leq C_1 e^{-C_2 t}. \]

Where $E_p(t) = E_b(t) = \frac{1}{2} \int_0^\ell \{|u_x(x, t)|^2 + |u_t(x, t)|^2\} dx,$
and $\mathcal{H} = \{ u \in H^1(0, \ell), u(0) = 0 \} \times L^2(0, \ell).$
Stability of an abstract–wave equation with delay and Kelvin-Voigt damping

- We consider a stabilization problem for an abstract wave equation with delay and a Kelvin–Voigt damping.
- We prove an exponential stability result for appropriate damping coefficients by using a frequency–domain approach.
Our main goal is to study the internal stabilization of a delayed abstract wave equation with a Kelvin–Voigt damping. More precisely, given a constant time delay $\tau > 0$, we consider the system given by:

\[
 u''(t) + a BB^* u'(t) + BB^* u(t - \tau) = 0, \quad \text{in} \ (0, +\infty), \\
 u(0) = u_0, \quad u'(0) = u_1, \\
 B^* u(t - \tau) = f_0(t - \tau), \quad \text{in} \ (0, \tau),
\]
where \(a > 0 \) is a constant, \(B : D(B) \subset H_1 \to H \) is a linear unbounded operator from a Hilbert space \(H_1 \) into another Hilbert space \(H \) equipped with the respective norms \(\| \cdot \|_{H_1}, \| \cdot \|_H \) and inner products \((\cdot, \cdot)_{H_1}, (\cdot, \cdot)_H\), and \(B^* : D(B^*) \subset H \to H_1 \) is the adjoint of \(B \). The initial datum \((u_0, u_1, f_0)\) belongs to a suitable space. We suppose that the operator \(B^* \) satisfies the following coercivity assumption: there exists \(C > 0 \) such that

\[
\| B^* v \|_{H_1} \geq C \| v \|_H, \quad \forall v \in D(B^*). \tag{32}
\]

We set \(V = D(B^*) \) and we assume that it is closed with the norm \(\| v \|_V := \| B^* v \|_{H_1} \) and that it is compactly embedded into \(H \).
To restitute the well-posedness character and its stability we propose to add the Kelvin–Voigt damping term $a BB^* u'$.

Hence the stabilization of problem (29)–(31) is performed using a frequency domain approach combined with a precise spectral analysis.
We introduce the auxiliary variable

$$z(\rho, t) = B^* u(t - \tau \rho), \quad \rho \in (0, 1), \ t > 0. \quad (33)$$

Then, problem (29)–(31) is equivalent to

$$u''(t) + a B B^* u'(t) + Bz(1, t) = 0, \quad \text{in} \ (0, +\infty), \quad (34)$$

$$\tau z_t(\rho, t) + z_\rho(\rho, t) = 0 \quad \text{in} \ (0, 1) \times (0, +\infty), \quad (35)$$

$$u(0) = u_0, \quad u'(0) = u_1, \quad (36)$$

$$z(\rho, 0) = f_0(-\rho \tau), \quad \text{in} \ (0, 1), \quad (37)$$

$$z(0, t) = B^* u(t), \quad t > 0. \quad (38)$$
If we denote
\[U := (u, u', z)\top, \]
then
\[U' := (u', u'', z_t)\top = (u', -aBB^* u' - Bz(1, t), -\tau^{-1} z_\rho)\top. \]

Therefore, problem (34)–(38) can be rewritten as
\[
\begin{aligned}
U' &= AU, \\
U(0) &= (u_0, u_1, f_0(-\cdot \tau))\top,
\end{aligned}
\] (39)
where the operator \mathcal{A} is defined by

\[
\mathcal{A} \begin{pmatrix} u \\ v \\ z \end{pmatrix} := \begin{pmatrix} v \\ -aB B^* v - Bz(\cdot, 1) \\ -\tau^{-1} z_\rho \end{pmatrix},
\]

with domain

\[
D(\mathcal{A}) := \left\{ (u, v, z)^T \in D(B^*) \times D(B^*) \times H^1(0, 1; H_1) : aB^* v + z(1) \in D(B), B^* u = z(0) \right\},
\]

in the Hilbert space

\[
\mathcal{H} := D(B^*) \times H \times L^2(0, 1; H_1),
\]

equipped with the standard inner product

\[
((u, v, z), (u_1, v_1, z_1))_{\mathcal{H}} = (B^* u, B^* u_1)_{H_1} + (v, v_1)_H + \xi \int_0^1 (z, z_1)_{H_1} \, d\rho,
\]

where $\xi > 0$ is a parameter fixed later on.
We will show that \mathcal{A} generates a C_0 semigroup on \mathcal{H} by proving that $\mathcal{A} - cld$ is maximal dissipative for an appropriate choice of c in function of ξ, τ and a. We prove the next result.

Lemma

If $\xi > \frac{2\tau}{a}$, then there exists $a^ = \left(\frac{1}{a} + \frac{\xi}{2\tau}\right)^{-1} > 0$ such that $\mathcal{A} - a^{-1}_* ld$ is maximal dissipative in \mathcal{H}.***
We have then the following result.

Proposition

The system (29)–(31) is well-posed. More precisely, for every $(u_0, u_1, f_0) \in \mathcal{H}$, there exists a unique solution $(u, v, z) \in C(0, +\infty, \mathcal{H})$ of (39). Moreover, if $(u_0, u_1, f_0) \in D(A)$ then $(u, v, z) \in C(0, +\infty, D(A)) \cap C^1(0, +\infty, \mathcal{H})$ with $v = u'$ and u is indeed a solution of (29)–(31).
The spectral analysis

- As $D(B^*)$ is compactly embedded into H, the operator $BB^* : D(BB^*) \subset H \rightarrow H$ has a compact resolvent.

- Hence let $(\lambda_k)_{k \in \mathbb{N}^*}$ be the set of eigenvalues of BB^* repeated according to their multiplicity (that are positive real numbers and are such that $\lambda_k \rightarrow +\infty$ as $k \rightarrow +\infty$) and denote by $(\varphi_k)_{k \in \mathbb{N}^*}$ the corresponding eigenvectors that form an orthonormal basis of H.
Lemma

If $\tau \leq a$, then any eigenvalue λ of A satisfies $\Re \lambda < 0$.
If $a < \tau$, we show that there exist some pairs of (a, τ) for which the system (29)–(31) becomes unstable. Hence the condition $\tau \leq a$ is optimal for the stability of this system.

Lemma

There exist pairs of (a, τ) such that $0 < a < \tau$ and for which the associated operator \mathcal{A} has a pure imaginary eigenvalue.
Recall that an operator T from a Hilbert space X into itself is called singular if there exists a sequence $u_n \in D(T)$ with no convergent subsequence such that $\|u_n\|_X = 1$ and $Tu_n \to 0$ in X.

T is singular if and only if its kernel is infinite dimensional or its range is not closed.
Let $\Sigma := \{ \lambda \in \mathbb{C}; \ a\lambda + e^{-\lambda \tau} = 0 \}$. The following results hold:

Theorem

1. If $\lambda \in \Sigma$, then $\lambda I - \mathcal{A}$ is singular.
2. If $\lambda \notin \Sigma$, then $\lambda I - \mathcal{A}$ is a Fredholm operator of index zero.
Lemma

If $\tau \leq a$, then

$$\Sigma \subset \{\lambda \in \mathbb{C} : \Re \lambda < 0\}.$$
Corollary

It holds

\[\sigma(A) = \sigma_{pp}(A) \cup \Sigma, \]

and therefore if \(\tau \leq a \)

\[\sigma(A) \subset \{ \lambda \in \mathbb{C} : \Re \lambda < 0 \}. \]
Asymptotic behavior

- We show that if $\tau \leq a$ and $\xi > \frac{2\tau}{a}$, the semigroup e^{tA} decays to the null steady state with an exponential decay rate.

Theorem (A-Nicaise-Pignotti)

If $\xi > \frac{2\tau}{a}$ and $\tau \leq a$, then there exist constants $C, \omega > 0$ such that the semigroup e^{tA} satisfies the following estimate

$$\|e^{tA}\|_{\mathcal{L}(\mathcal{H})} \leq C e^{-\omega t}, \forall \ t > 0.$$

(42)
Proof of the main result

To obtain this, our technique is based on a frequency domain approach and combines a contradiction argument to carry out a special analysis of the resolvent.

We will employ the following frequency domain theorem for uniform stability of a C_0 semigroup on a Hilbert space:
Lemma

A C_0 semigroup $e^{t\mathcal{L}}$ on a Hilbert space \mathcal{H} satisfies

$$\|e^{t\mathcal{L}}\|_{\mathcal{L}(\mathcal{H})} \leq C e^{-\omega t},$$

for some constant $C > 0$ and for $\omega > 0$ if and only if

$$\Re \lambda < 0, \forall \lambda \in \sigma(\mathcal{L}), \quad (43)$$

and

$$\sup_{\Re \lambda \geq 0} \| (\lambda I - \mathcal{L})^{-1} \|_{\mathcal{L}(\mathcal{H})} < \infty. \quad (44)$$

where $\sigma(\mathcal{L})$ denotes the spectrum of the operator \mathcal{L}.
According to Corollary 9 the spectrum of \mathcal{A} is fully included into $\Re \lambda < 0$, which clearly implies (43). Then the proof of Theorem 10 is based on the following lemma that shows that (44) holds with $\mathcal{L} = \mathcal{A}$.

Lemma

The resolvent operator of \mathcal{A} satisfies condition

$$
\sup_{\Re \lambda \geq 0} \| (\lambda I - \mathcal{L})^{-1} \|_{\mathcal{L}(\mathcal{H})} < \infty.
$$

(45)
Suppose that condition (45) is false. By the Banach-Steinhaus Theorem, there exists a sequence of complex numbers λ_n such that $\Re \lambda_n \geq 0$, $|\lambda_n| \to +\infty$ and a sequence of vectors $Z_n = (u_n, v_n, z_n)^t \in D(A)$ with

$$\|Z_n\|_H = 1$$

(46)

such that

$$\|(\lambda_n I - A)Z_n\|_H \to 0 \quad \text{as} \quad n \to \infty,$$

(47)

i.e.,

$$\lambda_n u_n - v_n \equiv f_n \to 0 \quad \text{in} \quad D(B^*),$$

(48)

$$\lambda_n v_n + a B(B^* v_n + z_n(1)) \equiv g_n \to 0 \quad \text{in} \quad H,$$

(49)

$$\lambda_n z_n + \tau^{-1} \partial_\rho z_n \equiv h_n \to 0 \quad \text{in} \quad L^2((0, 1); H_1).$$

(50)
Our goal is to derive from (47) that $\|Z_n\|_{\mathcal{H}}$ converges to zero, that furnishes a contradiction. We notice that from (48) we have

$$\|(\lambda_n I - A)Z_n\|_{\mathcal{H}} \geq |\Re ((\lambda_n I - A)Z_n, Z_n)_{\mathcal{H}} |$$

$$\geq \Re \lambda_n - a_*^{-1} \|B^* u_n\|_{H_1}^2 + \left(\frac{\xi}{2\tau} - \frac{1}{a} \right) \|z_n(1)\|_{H_1}^2 + \frac{a}{2} \|B^* v_n\|_{H_1}^2$$

$$= \Re \lambda_n - a_*^{-1} \left\| \frac{B^* v_n + B^* f_n}{\lambda_n} \right\|_{H_1}^2 + \left(\frac{\xi}{2\tau} - \frac{1}{a} \right) \|z_n(1)\|_{H_1}^2 + \frac{a}{2} \|B^* v_n\|_{H_1}^2 ,$$

where $a^* = \left(\frac{1}{a} + \frac{\xi}{2\tau} \right)^{-1}$.
Hence using the inequality

$$\| B^* v_n + B^* f_n \|_{H_1}^2 \leq 2 \| B^* v_n \|_{H_1}^2 + 2 \| B^* f_n \|_{H_1}^2,$$

we obtain that

$$\| (\lambda_n I - A) Z_n \|_{\mathcal{H}} \geq \Re \lambda_n - 2a_*^{-1} |\lambda_n|^{-2} \| B^* f_n \|_{H_1}^2 + \left(\frac{\xi}{2 \tau} - \frac{1}{a} \right) \| z_n(1) \|_{H_1}^2$$

$$+ \left(\frac{a}{2} - 2a_*^{-1} |\lambda_n|^{-2} \right) \| B^* v_n \|_{H_1}^2.$$
Hence for n large enough, say $n \geq n^*$, we can suppose that

$$\frac{a}{2} - 2a^{-1}_* |\lambda_n|^{-2} \geq \frac{a}{4}.$$

and therefore for all $n \geq n^*$, we get

$$\|(\lambda_n I - A)Z_n\|_{\mathcal{H}} \geq \Re \lambda_n - 2a^{-1}_* |\lambda_n|^{-2} \|B^* f_n\|^2_{H_1} +$$

$$\left(\frac{\xi}{2\tau} - \frac{1}{a}\right) \|z_n(1)\|_{H_1}^2 + \frac{a}{4} \|B^* v_n\|_{H_1}^2.$$ (51)
By this estimate, (47) and (48), we deduce that

\[z_n(1) \rightarrow 0, \quad B^* v_n \rightarrow 0, \quad \text{in } H_1, \text{ as } n \rightarrow \infty, \]

(52)

and in particular, from the coercivity (32), that

\[v_n \rightarrow 0, \quad \text{in } H, \text{ as } n \rightarrow \infty. \]

This implies according to (48) that

\[u_n = \frac{1}{\lambda_n} v_n + \frac{1}{\lambda_n} f_n \rightarrow 0, \quad \text{in } D(B^*), \text{ as } n \rightarrow \infty, \]

(53)

as well as

\[z_n(0) = B^* u_n \rightarrow 0, \quad \text{in } H_1, \text{ as } n \rightarrow \infty. \]

(54)
By integration of the identity (50), we have

\[z_n(\rho) = z_n(0) e^{-\tau \lambda_n \rho} + \tau \int_0^\rho e^{-\tau \lambda_n (\rho - \gamma)} h_n(\gamma) \, d\gamma. \tag{55} \]

Hence recalling that \(\mathcal{R} \lambda_n \geq 0 \)

\[
\int_0^1 \|z_n(\rho)\|^2_{H_1} \, d\rho \leq 2\|z_n(0)\|^2_{H_1} + \\
2\tau^2 \int_0^1 \int_0^\rho \|h_n(\gamma)\|^2_{H_1} \, d\gamma \, d\rho \to 0, \text{ as } n \to \infty.
\]

All together we have shown that \(\|Z_n\|_{\mathcal{H}} \) converges to zero, that clearly contradicts \(\|Z_n\|_{\mathcal{H}} = 1 \).
Application to the wave equation

We study the internal stabilization of a delayed wave equation. More precisely, we consider the system given by:

\[
\begin{align*}
 u_{tt}(x, t) - a \Delta u_t(x, t) - \Delta u(x, t - \tau) &= 0, \quad \text{in} \quad \Omega \times (0, +\infty), \\
 u &= 0, \quad \text{on} \quad \partial\Omega \times (0, +\infty), \\
 u(x, 0) &= u_0(x), \quad u_t(x, 0) = u_1(x), \quad \text{in} \quad \Omega, \\
 \nabla u(x, t - \tau) &= f_0(t - \tau), \quad \text{in} \quad \Omega \times (0, \tau),
\end{align*}
\]

where \(\Omega\) is a smooth open bounded domain of \(\mathbb{R}^n\) and \(a, \tau > 0\) are constants.
This problem enters in our abstract framework with

\[H = L^2(\Omega), \quad B = - \text{div} : D(B) = H^1(\Omega)^n \to L^2(\Omega), \]

\[B^* = \nabla : D(B^*) = H^1_0(\Omega) \to H_1 := L^2(\Omega)^n, \]

the assumption (32) being satisfied owing to Poincaré’s inequality.
The operator \mathcal{A} is then given by

$$
\mathcal{A} \begin{pmatrix} u \\ v \\ z \end{pmatrix} := \begin{pmatrix} v \\ a\Delta v + \text{div } z(\cdot, 1) \\ -\tau^{-1}z_{\rho} \end{pmatrix},
$$

with domain

$$
D(\mathcal{A}) := \left\{ (u, v, z)^{\top} \in H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \times L^{2}(\Omega; H^{1}(0, 1)) : a\nabla v + z(\cdot, 1) \in H^{1}(\Omega), \nabla u = z(\cdot, 0) \text{ in } \Omega \right\},
$$

in the Hilbert space $\mathcal{H} := H_{0}^{1}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Omega \times (0, 1))$.
Corollary

If $\tau \leq a$, the system (56)–(59) is exponentially stable in \mathcal{H}, namely for $\xi > \frac{2\tau}{a}$, the energy

$$
E(t) = \frac{1}{2} \left(\int_{\Omega} (|\nabla u(x, t)|^2 + |u_t(x, t)|^2) \, dx + \xi \int_{\Omega} \int_{0}^{1} |\nabla u(x, t - \tau \rho)|^2 \, dx \, d\rho \right),
$$

satisfies

$$
E(t) \leq Me^{-\omega t} E(0), \ \forall \ t > 0, \ \forall \ (u_0, u_1, f_0) \in D(A),
$$

for some positive constants M and ω.
Conclusion

By a careful spectral analysis combined with a frequency domain approach, we have shown that the system (29)–(31) is exponentially stable if $\tau \leq a$ and that this condition is optimal. But from the general form of (29), we can only consider interior Kelvin-Voigt dampings.

Hence an interesting perspective is to consider the wave equation with dynamical Ventcel boundary conditions with a delayed term and a Kelvin-Voigt damping.
References

E. M. Ait Ben Hassi, K. Ammari, S. Boulite and L. Maniar, Feedback stabilization of a class of evolution equations with delay, Journal of Evolution Equations, 1 (2009), 103–121.

K. Ammari, S. Nicaise and C. Pignotti, Stability of abstract–wave equation with delay and a Kelvin–Voigt damping, Asymptotic Analysis, 95 (2015), 21–38.

K. Ammari and S. Nicaise, Stabilization of elastic systems by collocated feedback, Lecture Notes in Mathematics, 2124, Springer, Cham, 2015.

K. Ammari, S. Nicaise and C. Pignotti, Stabilization by switching time-delay, Asymptotic Analysis, 83 (2013), 263–283.
R. Datko, *Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks*, SIAM J. Control Optim., 26 (1988), 697—713.

R. Datko, J. Lagnese and P. Polis, *An exemple on the effect of time delays in boundary feedback stabilization of wave equations*, SIAM J. Control Optim., 24 (1985), 152-156.

S. Nicaise and C. Pignotti, *Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks*, SIAM J. Control Optim., 45 (2006), 1561–1585.

R. Racke, *Instability of coupled systems with delay*, Commun. Pure Appl. Anal., 11 (2012), 1753–1773.
Thank you for your attention