On the Zeta Functions of Supersingular Curves

Gary McGuire1 and Emrah Sercan Yılmaz2

School of Mathematics and Statistics
University College Dublin
Ireland

Abstract

In general, the L-polynomial of a curve of genus g is determined by g coefficients. We show that the L-polynomial of a supersingular curve of genus g is determined by fewer than g coefficients.

Keywords: Zeta Functions; L-polynomials; Supersingular Curves.

1 Introduction

Let p be a prime and $r \geq 1$ be an integer. Throughout this paper we let $q = p^r$. Let X be a projective smooth absolutely irreducible curve of genus g defined over \mathbb{F}_q. Consider the L-polynomial of the curve X over \mathbb{F}_q, defined by

$$L_{X/\mathbb{F}_q}(T) = L_X(T) = \exp \left(\sum_{n=1}^{\infty} \left(\#X(\mathbb{F}_{q^n}) - q^n - 1 \right) \frac{T^n}{n} \right)$$

where $\#X(\mathbb{F}_{q^n})$ denotes the number of \mathbb{F}_{q^n}-rational points of X. The L-polynomial is the numerator of the zeta function of X. It is well known that $L_X(T)$ is a polynomial of degree $2g$ with integer coefficients, so we write it as

$$L_X(T) = \sum_{i=0}^{2g} c_i T^i, \quad c_i \in \mathbb{Z}. \quad (1)$$

It is also well known that $c_0 = 1$ and $c_{2g-i} = q^{g-i} c_i$ for $i = 0, \cdots, g$. Let $\eta_1, \cdots, \eta_{2g}$ be the roots of the reciprocal of the L-polynomial of X over \mathbb{F}_q (sometimes called the Weil numbers

1email gary.mcguire@ucd.ie, Research supported by Science Foundation Ireland Grant 13/IA/1914
2Research supported by Science Foundation Ireland Grant 13/IA/1914
of X, or the Frobenius eigenvalues). For any $n \geq 1$ we have

$$\#X(\mathbb{F}_{q^n}) - (q^n + 1) = -\sum_{i=1}^{2g} \eta_i^n.$$ \hfill (2)

We refer the reader to [6] for all background on curves.

A curve X of genus g defined over \mathbb{F}_q is supersingular if any of the following equivalent properties hold.

1. All Weil numbers of X have the form $\eta_i = \sqrt{q} \cdot \zeta_i$ where ζ_i is a root of unity.
2. The Newton polygon of X is a straight line of slope $1/2$.
3. The Jacobian of X is geometrically isogenous to E^g where E is a supersingular elliptic curve.
4. If X has L-polynomial $L_X(T) = 1 + \sum_{i=1}^{2g} c_i T^i$ then

$$\text{ord}_p(c_i) \geq \frac{i r}{2}, \text{ for all } i = 1, \ldots, 2g.$$

Let $\sqrt{q} \cdot \zeta_1, \ldots, \sqrt{q} \cdot \zeta_{2g}$ be the Weil numbers of a supersingular curve X, where the ζ_i are roots of unity. By equation (2) for any $n \geq 1$ we have

$$-q^{-n/2}[\#X(\mathbb{F}_{q^n}) - (q^n + 1)] = \sum_{i=1}^{2g} \zeta_i^n.$$ \hfill (3)

The smallest positive integer $s = s_X$ such that $\zeta_i^s = 1$ for all $i = 1, \ldots, 2g$ will be called the period of X. The period depends on q, in the sense that $X(\mathbb{F}_{q^n})$ may have a different period to $X(\mathbb{F}_q)$. Note that this is slightly different from the period as defined in [1].

In this paper we will prove the following theorems. The first theorem is our main theorem.
Theorem 1. Let X be a supersingular curve of genus g defined over \mathbb{F}_q with period s. Let n be a positive integer, let $\gcd(n, s) = m$ and write $n = m \cdot t$. If q is odd, then we have

$$
\#X(\mathbb{F}_{q^n}) - (q^n + 1) = \begin{cases}
q^{(n-m)/2} \left[\#X(\mathbb{F}_{q^m}) - (q^m + 1) \right] & \text{if } m \cdot r \text{ is even,} \\
q^{(n-m)/2} \left[\#X(\mathbb{F}_{q^m}) - (q^m + 1) \right] \left(\frac{(-1)^{(t-1)/2}}{p} \right) & \text{if } m \cdot r \text{ is odd and } p \nmid t, \\
q^{(n-m)/2} \left[\#X(\mathbb{F}_{q^m}) - (q^m + 1) \right] & \text{if } m \cdot r \text{ is odd and } p \mid t.
\end{cases}
$$

If q is even, then we have

$$
\#X(\mathbb{F}_{q^n}) - (q^n + 1) = \begin{cases}
q^{(n-m)/2} \left[\#X(\mathbb{F}_{q^m}) - (q^m + 1) \right] & \text{if } m \cdot r \text{ is even,} \\
q^{(n-m)/2} \left[\#X(\mathbb{F}_{q^m}) - (q^m + 1) \right] \left(-1 \right)^{(t^2-1)/8} & \text{if } m \cdot r \text{ is odd.}
\end{cases}
$$

Theorem 2. Let X be a supersingular curve of genus g defined over \mathbb{F}_q with period s. Let $L_X(T) = \sum_{i=0}^{2g} c_i T^i$ be the L-polynomial of X. Assume we know c_j for $1 \leq j < l \leq g$ where $l \nmid s$. Then c_l is determined. In particular, if we know c_j for $1 \leq j \leq g$ where $j \mid s$, then all coefficients of the L-polynomial of X are determined.

In Section 2 we present the background we will need, which includes some basic results on quadratic subfields of cyclotomic fields and Gauss sums. In Section 3 we present the proof of Theorem 1, and in Section 4 the proof of Theorem 2. Section 5 contains some applications of our results.

2 Quadratic Fields as Subfields of a Cyclotomic Field

Let n be a positive integer. Let w_n be a primitive n-th root of unity which we may take to be $e^{2\pi i/n}$. We call Φ_n be the n-th cyclotomic polynomial and the set of the roots of Φ_n is

$$
\{ w_n^i \mid 1 \leq i \leq n \text{ and } (i, n) = 1 \}.
$$

It is well-known that Φ_n is irreducible over \mathbb{Q}. For odd primes p, define

$$
\sqrt{p^*} = \begin{cases}
\sqrt{p} & \text{if } p \equiv 1 \mod 4, \\
\sqrt{-1} \cdot \sqrt{p} & \text{if } p \equiv 3 \mod 4.
\end{cases}
$$

The following propositions are useful for our proofs.

Proposition 1. Let n and m be positive integers with $(n, m) = d$. Then we have

$$
\mathbb{Q}(w_n) \cap \mathbb{Q}(w_m) = \mathbb{Q}(w_d).
$$
Proof. Let \(f \) be the least common multiple of \(n \) and \(m \). Then we have \(w_n, w_m \in \mathbb{Q}(w_f) \).
Since \(d = \frac{nm}{\text{gcd}(n, m)} \), there exists \(a, b \in \mathbb{Z} \) such that \(an + bm = \frac{nm}{d} \) or \(\frac{a}{m} + \frac{b}{n} = \frac{1}{f} \). Therefore \(w_f = w_n^a w_m^b \in \mathbb{Q}(w_n, w_m) \). Hence we have \(\mathbb{Q}(w_n, w_m) = \mathbb{Q}(w_f) \).

Since \(d \mid n, m \), we have \(w_d \in \mathbb{Q}(w_n) \cap \mathbb{Q}(w_m) \). Since \(\mathbb{Q}(w_n) \) is a normal extension over \(\mathbb{Q} \), we have \(\mathbb{Q}(w_d) \subseteq \mathbb{Q}(w_n) \cap \mathbb{Q}(w_m) \).

Proposition 2. If \(p \) is an odd prime, then
\[
\sqrt{p^e} = \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_p^j \in \mathbb{Q}(w_p).
\]
Moreover, if \(p \equiv 3 \mod 4 \), then \(\sqrt{p} \notin \mathbb{Q}(w_p) \).

Proof. The first statement is the quadratic Gauss sum result, see [7] for example.

Let \(p \equiv 3 \mod 4 \) and assume \(\sqrt{p} \in \mathbb{Q}(w_p) \). Since \(i \sqrt{p} \) is in \(\mathbb{Q}(w_p) \), then \(i \in \mathbb{Q}(w_p) \). On the other hand, \(\mathbb{Q}(w_d) \cap \mathbb{Q}(w_p) = \mathbb{Q}(w_2) = \mathbb{Q} \) by Proposition[1], which contradicts \(i \in \mathbb{Q}(w_p) \).

Lemma 3. Let \(p \equiv 1 \mod 4 \) be a prime and \(n \) be a positive integer. Then the element \(\sqrt{p} \) is in \(\mathbb{Q}(w_n) \) if and only if \(p \mid n \).

Proof. If \(p \) does not divide \(n \), we have \((n, p) = 1 \) and
\[
\mathbb{Q}(w_n) \cap \mathbb{Q}(w_p) = \mathbb{Q}
\]
by Proposition[1]. Moreover, we have
\[
\sqrt{p} = \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_p^j \in \mathbb{Q}(w_p)
\]
by Proposition[2]. Therefore
\[
\sqrt{p} \notin \mathbb{Q}(w_n).
\]
On the other hand, assume \(p \mid n \). Then we have
\[
\sqrt{p} = \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_p^j = \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} \in \mathbb{Q}(w_n)
\]
by Proposition[2].
Lemma 4. Let $p \equiv 3 \mod 4$ be a prime and n be a positive integer. Then the element \sqrt{p} is in $\mathbb{Q}(w_n)$ if and only if $4p \mid n$.

Proof. Assume $4p \mid n$. Since $-i$ and $i \sqrt{p}$ are in $\mathbb{Q}(w_n)$, we have $\sqrt{p} = -i \cdot i \sqrt{p} \in \mathbb{Q}(w_n)$.

If $4p$ does not divide n, then $(n, 4p)$ is 1, 2, 4, p or $2p$. If $(n, 4p)$ is 1, 2, p or $2p$, then

$$\mathbb{Q}(w_n) \cap \mathbb{Q}(w_{4p}) = \mathbb{Q}(w_{(n,4p)}) \subseteq \mathbb{Q}(w_{2p}) = \mathbb{Q}(w_p)$$

by Proposition 1. Since $\sqrt{p} \in \mathbb{Q}(w_{4p})$ and $\sqrt{p} \not\in \mathbb{Q}(w_p)$ by Proposition 2 we have $\sqrt{p} \not\in \mathbb{Q}(w_n)$.

So by Proposition 1. Since $\sqrt{p} \in \mathbb{Q}(w_{4p})$ and $\sqrt{p} \not\in \mathbb{Q}[i]$, we have $\sqrt{p} \not\in \mathbb{Q}(w_n)$. \square

Lemma 5. Let n be a positive integer. The element $\sqrt{2}$ is in $\mathbb{Q}(w_n)$ if and only if $8 \mid n$.

Proof. Assume 8 divides n and write $n = 8t$ where t is a positive integer. Then we have

$$\sqrt{2} = w_8 - w_8^3 = w_n^t - w_n^{3t} \in \mathbb{Q}(w_n).$$

On the other hand, assume 8 does not divide n. Then

$$\mathbb{Q}(w_n) \cap \mathbb{Q}(w_8) \subseteq \mathbb{Q}(w_4).$$

Since $\sqrt{2} \in \mathbb{Q}(w_8)$ and $\sqrt{2} \not\in \mathbb{Q}(w_4) = \mathbb{Q}[i]$, we have $\sqrt{2} \not\in \mathbb{Q}(w_n)$. \square

Lemma 6. Let p be a prime and n be a positive integer such that $\sqrt{p} \in \mathbb{Q}(w_n)$. Then the extension degree $[\mathbb{Q}(w_n) : \mathbb{Q}(\sqrt{p})]$ is $\frac{\phi(n)}{2}$.

Proof. Since $\sqrt{p} \in \mathbb{Q}(w_n)$, we have

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{p}) \subset \mathbb{Q}(w_n).$$

Hence the result follows by the equality

$$\phi(n) = [\mathbb{Q}(w_n) : \mathbb{Q}] = [\mathbb{Q}(w_n) : \mathbb{Q}(\sqrt{p})] \cdot [\mathbb{Q}(\sqrt{p}) : \mathbb{Q}] = 2 [\mathbb{Q}(w_n) : \mathbb{Q}(\sqrt{p})].$$

\square
Let p be an odd prime and n be an integer such that $\sqrt{p} \in \mathbb{Q}(w_n)$. Define the index sets I_n^+ and I_n^- as follows

$$I_n^+ = \left\{ k \mid (k, n) = 1, \left(\frac{(-1)^{(k-1)/2} k}{p} \right) = 1 \text{ and } 1 \leq k \leq n \right\}$$

and

$$I_n^- = \left\{ k \mid (k, n) = 1, \left(\frac{(-1)^{(k-1)/2} k}{p} \right) = -1 \text{ and } 1 \leq k \leq n \right\}.$$

In same manner, let $p = 2$ and n be an integer divisible by 8. Define the index sets I_n^+ and I_n^- as follows

$$I_n^+ = \left\{ k \mid (k, n) = 1, k \equiv \pm 1 \mod 8 \text{ and } 1 \leq k \leq n \right\}$$

and

$$I_n^- = \left\{ k \mid (k, n) = 1, k \equiv \pm 3 \mod 8 \text{ and } 1 \leq k \leq n \right\}.$$

Moreover, define $I_n = I_n^+ \cup I_n^-$. Define the polynomials Φ_n^+ and Φ_n^- as follows

$$\Phi_n^+(x) = \prod_{j \in I_n^+} (x - w_n^j) \quad \text{and} \quad \Phi_n^-(x) = \prod_{j \in I_n^-} (x - w_n^j).$$

Define G_n to be the Galois group $\text{Gal}(\mathbb{Q}(w_n)/\mathbb{Q})$. Define the group G_n^+ and the set G_n^- as follows

$$G_n^+: = \{ \sigma \in G_n | \sigma(w_n) = w_n^k \text{ where } k \in I_n^+ \}$$

and

$$G_n^-: = \{ \sigma \in G_n | \sigma(w_n) = w_n^k \text{ where } k \in I_n^- \}.$$

The following lemmas show that G_n^+ is a subgroup of the Galois group G_n of index 2 and shows that the subset G_n^- is the relative coset of G_n^+ inside G_n.

Lemma 7. Let $p \equiv 1 \mod 4$ be a prime and n be a positive integer divisible by p. Then the group G_n^+ fixes \sqrt{p} and G_n^- takes \sqrt{p} to $-\sqrt{p}$.

Proof. For a positive integer k we have $\left(\frac{(-1)^{(k-1)/2} k}{p} \right) = \left(\frac{k}{p} \right) \text{ since } \left(\frac{-1}{p} \right) = 1$.

Let $\sigma \in G_n^+$. Then there exists an integer k with $(k, n) = 1$, $\left(\frac{k}{p} \right) = 1$ and $1 \leq k \leq n$ and $\sigma(w_n) = w_n^k$. Then

$$\sigma(\sqrt{p}) = \sigma \left(\sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} \right) = \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{kjn/p} = \sum_{j=0}^{p-1} \left(\frac{kj}{p} \right) w_n^{kjn/p}$$
= \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} = \sqrt{p}.

Let \(\sigma \in G_n^- \). Then there exists an integer \(k \) with \((k, n) = 1 \) and \(1 \leq k \leq n \) and \(\sigma(w_n) = w_n^k \). Then

\[
\sigma(\sqrt{p}) = \sigma \left(\sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} \right) = \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{kjn/p} = \sum_{j=0}^{p-1} \left(\frac{k}{p} \right) w_n^{kjn/p}
\]

\[
= -\sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} = -\sqrt{p}.
\]

\[\square\]

Lemma 8. Let \(p \equiv 3 \mod 4 \) be a prime and \(n \) be a positive integer divisible by \(4p \). Then the group \(G_n^+ \) fixes \(\sqrt{p} \) and \(G_n^- \) takes \(\sqrt{p} \) to \(-\sqrt{p} \).

Proof. Let \(\sigma \in G_n \). Then there exists an integer \(k \) with \((k, n) = 1 \) and \(1 \leq k \leq n \) and \(\sigma(w_n) = w_n^k \).

Since \(n \) is even, \(k \) is odd. Since \(n \) is divisible by \(p \), \(k \) is not divisible by \(p \).

Moreover, we have

\[
\sigma(-i) = -\sigma(i) = -\sigma(w_n^{n/4}) = -\sigma(w_n)^{n/4} = -(w_n^{n/4})^k = -i^k.
\]

If \(\left(\frac{k}{p} \right) = 1 \), we have

\[
\sigma(\sqrt{p}) = \sigma(-i \cdot i \sqrt{p}) = \sigma(-i) \cdot \sigma \left(\sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} \right) = -i^k \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{kjn/p}
\]

\[
= -i^k \sum_{j=0}^{p-1} \left(\frac{k}{p} \right) w_n^{kjn/p} = -i^k \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} = -i^k \cdot i \sqrt{p} = -i^{k+1} \sqrt{p} = (-1)^{(k-1)/2} \sqrt{p}
\]

and if \(\left(\frac{k}{p} \right) = -1 \), we have

\[
\sigma(\sqrt{p}) = \sigma(-i \cdot i \sqrt{p}) = \sigma(-i) \cdot \sigma \left(\sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} \right) = -i^k \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{kjn/p}
\]

\[
= -i^k \sum_{j=0}^{p-1} \left(\frac{k}{p} \right) w_n^{kjn/p} = -i^k \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} = -i^k \cdot i \sqrt{p} = -i^{k+1} \sqrt{p} = (-1)^{k/2} \sqrt{p}
\]
\[-i^k \sum_{j=0}^{p-1} \left(\frac{k}{j} \right) w_n^{kj/p} = i^k \sum_{j=0}^{p-1} \left(\frac{j}{p} \right) w_n^{jn/p} = -i^k \cdot i\sqrt{p} = i^{k+1} \sqrt{p} = -(-1)^{(k-1)/2} \sqrt{p}.\]

Now the result follows by the fact \(\left(\frac{-1}{p} \right) = -1.\)

Lemma 9. Let \(p = 2\) and \(n\) be a positive integer divisible by 8. Then the group \(G^+_n\) fixes \(\sqrt{2}\) and \(G^-_n\) takes \(\sqrt{2}\) to \(-\sqrt{2}\).

Proof. Let \(\sigma \in G^+_n\). Then there exists an integer \(k\) with \((k, n) = 1\), \(k \equiv \pm 1\) mod 8 and \(1 \leq k \leq n\) and \(\sigma(w_n) = w_n^k\). Then
\[
\sigma(\sqrt{2}) = \sigma(w_8^3 - w_8^8) = w_8^k - w_8^{3k} = \begin{cases} w_8^3 - w_8^8 & \text{if } k \equiv 1 \text{ mod } 8 \\ w_8^7 - w_8^5 & \text{if } k \equiv 7 \text{ mod } 8 \end{cases} = \sqrt{2}.
\]

Let \(\sigma \in G^-_n\). Then there exists an integer \(k\) with \((k, n) = 1\), \(k \equiv \pm 3\) mod 8 and \(1 \leq k \leq n\) and \(\sigma(w_n) = w_n^k\). Then
\[
\sigma(\sqrt{2}) = \sigma(w_8^3 - w_8^8) = w_8^k - w_8^{3k} = \begin{cases} w_8^3 - w_8^8 & \text{if } k \equiv 3 \text{ mod } 8 \\ w_8^7 - w_8^5 & \text{if } k \equiv 5 \text{ mod } 8 \end{cases} = -\sqrt{2}.
\]

Corollary 1. Let \(p\) be a prime and \(n\) be a positive integer such that \(\sqrt{p} \in \mathbb{Q}(w_n)\). The polynomials \(\Phi_n^+\) and \(\Phi_n^-\) are irreducible over \(\mathbb{Q}(\sqrt{p})\).

Proof. By Lemma 7, 8 and 9 the Galois group \(Gal(\mathbb{Q}(w_n)/\mathbb{Q}(\sqrt{p}))\) is \(G^+_n\). The result follows by this fact.

Corollary 2. Let \(p\) be an odd prime and \(n\) be a positive integer such that \(\sqrt{p} \in \mathbb{Q}(w_n)\). Let \(\ell\) be an integer. There exist rational numbers \(a\) and \(b\) such that
\[
\sum_{j \in I^+_n} w_n^{j\ell} = a + b\sqrt{p} \quad \text{and} \quad \sum_{j \in I^-_n} w_n^{j\ell} = a - b\sqrt{p}.
\]

Proof. Since \(G^+_n\) fixes both sums, they are in \(\mathbb{Q}(\sqrt{p})\). In other words, there exist rational numbers \(a, b, c\) and \(d\) such that
\[
\sum_{j \in I^+_n} w_n^{j\ell} = a + b\sqrt{p} \quad \text{and} \quad \sum_{j \in I^-_n} w_n^{j\ell} = c + d\sqrt{p}.
\]

Since \(G^-_n\) sends one to the other, they are conjugate in \(\mathbb{Q}(\sqrt{p})\). Hence \(c = a\) and \(d = -b\).
3 Proof of Theorem 1

Let X be a supersingular curve of genus g defined over \mathbb{F}_q having period s. Let n be a positive integer and let $m = \gcd(s, n)$.

Since X is also a curve of genus g over \mathbb{F}_{q^m}, we will consider X on \mathbb{F}_{q^m}. Write $s = m \cdot u$. Then $\sqrt{q^m}$ times the roots of L_X/\mathbb{F}_{q^m} are u-th roots of unity, i.e., the period of X is u over \mathbb{F}_{q^m} because of equation (3).

Define $M_X(T)$ to be $L_X/\mathbb{F}_{q^m}(q^{-m/2}T)$. Then M_X is monic and the roots of M_X are $\zeta_1^{-m}, \cdots, \zeta_2^{-m}$ where ζ_i’s are in equation (3). Hence the smallest positive integer k such that $w^k = 1$ for all roots w of M is u.

Write $n = m \cdot t$. Then we have $(u, t) = 1$ and the extension degree $[\mathbb{F}_{q^n} : \mathbb{F}_{q^m}] = t$. In the proofs below, we will reduce the case $t > 1$ to the case $t = 1$. We will be using the fact that the roots of the polynomial $L_X/\mathbb{F}_{q^n}(q^{-n/2}T)$ of X/\mathbb{F}_{q^n} are the t-th powers of the roots of $M_X(T)$.

3.1 Proof of Theorem 1 for r or m even

Assume that either r or m is even. Then $M_X(T) \in \mathbb{Q}[T]$. Since the roots of M_X are u-th roots of unity and M_X is monic, the factorization of M_X in $\mathbb{Q}[T]$ is as follows:

$$M_X(T) = \prod_{d \mid u} \Phi_d(T)^{e_d}$$

(4)

where e_d is a non-negative integer for each $d \mid u$.

Since $(u, t) = 1$, the map $x \to x^t$ permutes the roots of Φ_d where $d \mid u$. Therefore, we have (by equations (3) and (4))

$$-q^{-n/2}[\#X(\mathbb{F}_{q^n}) - (q^n + 1)] = \sum_{d \mid u} \left(e_d \sum_{j \in I_d} w_d^{-jt} \right)$$

$$= \sum_{d \mid u} \left(e_d \sum_{j \in I_d} w_d^{-j} \right)$$

$$= -q^{-m/2}[\#X(\mathbb{F}_{q^m}) - (q^m + 1)].$$
3.2 Proof of Theorem 1 for \(r\) and \(m\) odd

Assume \(r\) and \(m\) are odd. Note that \(u\) must be even, because equality holds in the Hasse-Weil bound.

We have \(M_X(T) \in \mathbb{Q}(\sqrt{p})[T]\). Since the roots of \(M_X\) are \(u\)-th roots of unity, we can write \(M_X(T)\) as

\[
M_X(T) = \prod_{d|u, \sqrt{p} \in \mathbb{Q}(w_d)} \Phi_d^+(T)^{e_{d,1}} \Phi_d^-(T)^{e_{d,2}} \prod_{d|u, \sqrt{p} \notin \mathbb{Q}(w_d)} \Phi_d(T)^{e_d}
\]

(5)

where \(e_{d,1}, e_{d,2}\) and \(e_d\) are non-negative integers for each \(d|u\).

Since \((u, t) = 1\), the map \(x \to x^t\) permutes the roots of \(\Phi_d\) where \(d|u\).

Case A. When \(p\) does not divide \(t\).

We have (by Equation 3 and 5)

\[
-q^{-n/2} \left[\#X(F_{q^n}) - (q^n + 1) \right] = \sum_{d|u, \sqrt{p} \in \mathbb{Q}(w_d)} \left(e_{d,1} \sum_{j \in I_d^+} w_d^{-jt} + e_{d,2} \sum_{j \in I_d^-} w_d^{-jt} \right)
\]

\[
+ \sum_{d|u, \sqrt{p} \notin \mathbb{Q}(w_d)} \left(e_d \sum_{j \in I_d} w_d^{-jt} \right).
\]

Case 1. Assume that \(t\) is a positive integer such that

\[
\left(\frac{(-1)^{(t-1)/2}}{p} \right) = 1 \quad \text{if } p \text{ is odd,}
\]

\[
t \equiv \pm 1 \mod 8 \quad \text{if } p = 2.
\]

By Lemmas 7, 8, and 9 the map \(x \to x^t\) permutes the roots of \(\Phi_d^+\) and permutes the roots of \(\Phi_d^-\).
where $d \mid u$. Hence we have

$$-q^{-n/2} \left[\# X(F_{q^n}) - (q^n + 1) \right] = \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1} \sum_{j \in I_d^+} w_d^{-jt} + e_{d,2} \sum_{j \in I_d^-} w_d^{-jt} \right)$$

$$+ \sum_{d \mid u, \sqrt{p} \not\in \mathbb{Q}(u_d)} \left(e_d \sum_{j \in I_d^+} w_d^{-jt} \right)$$

$$= \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1} \sum_{j \in I_d^+} w_d^{-j} + e_{d,2} \sum_{j \in I_d^-} w_d^{-j} \right)$$

$$+ \sum_{d \mid u, \sqrt{p} \not\in \mathbb{Q}(u_d)} \left(e_d \sum_{j \in I_d^+} w_d^{-j} \right)$$

$$= -q^{-m/2} \left[\# X(F_{q^m}) - (q^m + 1) \right].$$

Case 2. Assume that t is a positive integer such that

$$\left\{ \frac{(-1)^{(t-1)/2}}{t} \right\} = -1 \quad \text{if } p \text{ is odd},$$

$$t \equiv \pm 3 \mod 8 \quad \text{if } p = 2.$$

By Lemmas 7, 8 and 9 the map $x \to x^t$ sends the roots of Φ_d^+ to the roots of Φ_d^- and vice versa where $d \mid u$. Hence we have

$$-q^{-n/2} \left[\# X(F_{q^n}) - (q^n + 1) \right] = \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1} \sum_{j \in I_d^+} w_d^{-jt} + e_{d,2} \sum_{j \in I_d^-} w_d^{-jt} \right)$$

$$+ \sum_{d \mid u, \sqrt{p} \not\in \mathbb{Q}(u_d)} \left(e_d \sum_{j \in I_d^+} w_d^{-jt} \right)$$

$$= \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1} \sum_{j \in I_d^+} w_d^{-j} + e_{d,2} \sum_{j \in I_d^-} w_d^{-j} \right)$$

$$+ \sum_{d \mid u, \sqrt{p} \not\in \mathbb{Q}(u_d)} \left(e_d \sum_{j \in I_d^+} w_d^{-j} \right).$$

For any d with $d \mid u$, we write $\sum_{j \in I_d^+} w_d^{-j} = a_d + b_d \sqrt{p}$ where a_d and b_d are rational numbers (such rational numbers exist by Corollary 2). Then we have $\sum_{j \in I_d^-} w_d^{-j} = a_d - b_d \sqrt{p}$ by
Corollary 2. Therefore, we also have $\sum_{j \in I_d} w_d^{-j} = 2a_d$. Hence the last line

\[
\sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1} \sum_{j \in I^+_d} w_d^{-j} + e_{d,2} \sum_{j \in I^-_d} w_d^{-j} \right) + \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_d \sum_{j \in I_d} w_d^{-j} \right) = \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1}(a_d - b_d\sqrt{p}) + e_{d,2}(a_d + b_d\sqrt{p}) \right) + \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} (e_d \cdot 2a_d).
\]

We have therefore shown that

\[
-q^{-n/2}[\#X(F_{q^n}) - (q^n + 1)] = \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1}(a_d - b_d\sqrt{p}) + e_{d,2}(a_d + b_d\sqrt{p}) \right) + \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} (e_d \cdot 2a_d).
\]

Note that n is odd because s is even and m is odd. Also r is odd (where $q = p^r$) and $\#X(F_{q^n}) - (q^n + 1)$ is an integer, so $-q^{-n/2}[\#X(F_{q^n}) - (q^n + 1)]$ must have the form $d\sqrt{p}$ where d is a rational number. Therefore we must have

\[
-q^{-n/2}[\#X(F_{q^n}) - (q^n + 1)] = \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} ((e_{d,2} - e_{d,1})b_d\sqrt{p}). \tag{6}
\]

By the same argument as in the previous paragraph when $n = m$, we get that $-q^{-m/2}[\#X(F_{q^m}) - (q^m + 1)]$ has the form $c\sqrt{p}$ where c is a rational number.

Now we apply the same reasoning as above when $n = m$. We get

\[
-q^{-m/2}[\#X(F_{q^m}) - (q^m + 1)] = \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1} \sum_{j \in I^+_d} w_d^{-j} + e_{d,2} \sum_{j \in I^-_d} w_d^{-j} \right) + \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_d \sum_{j \in I_d} w_d^{-j} \right) = \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} \left(e_{d,1}(a_d + b_d\sqrt{p}) + e_{d,2}(a_d - b_d\sqrt{p}) \right) + \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} (e_d \cdot 2a_d) = \sum_{d \mid u, \sqrt{p} \in \mathbb{Q}(u_d)} ((e_{d,1} - e_{d,2})b_d\sqrt{p}).
\]
Comparing this last expression with (6) we see that
\[-q^{-n/2}[\#X(\mathbb{F}_q^n) - (q^n + 1)] = -q^{-m/2}[\#X(\mathbb{F}_q^m) - (q^m + 1)] \cdot (-1).\]

Case B. When \(p \) divides \(t \).

Since \((t, u) = 1\) and \(p \mid t \), we have \(p \nmid u \). Therefore, \(\sqrt{p} \notin \mathbb{Q}(w_d) \) for each \(d \mid u \) and so
\[M_X(z) = \prod_{d \mid u} \Phi_d(z)^{e_d} \tag{7}\]
where \(e_d \)'s are non-negative integers. Hence, we have (by Equation 3 and 7)
\[-q^{n/2}[\#X(F_{q^n}) - (q^n + 1)] = \sum_{d \mid u} \left(e_d \sum_{j \in I_d} w_d^{-j} \right) = \sum_{d \mid u} \left(e_d \sum_{j \in I_d} w_d^{-j} \right) = -q^{m/2}[\#X(F_{q^m}) - (q^m + 1)].\]

4 Proof of Theorem 2

In this section we will give the proof of Theorem 2. The following well-known proposition will be useful to prove the theorem (see [6] for example).

Proposition 3. Let \(X \) be a supersingular curve of genus \(g \) defined over \(\mathbb{F}_q \). Let \(L_X(T) = \sum_{i=0}^{2g} c_i T^i \) be the \(L \)-polynomial of \(X \) and let \(S_n = \#X(\mathbb{F}_{q^n}) - (q^n + 1) \) for all integers \(n \geq 1 \). Then \(c_0 = 1 \) and
\[ic_i = \sum_{j=0}^{i-1} S_{i-j} c_j \]
for \(i = 1, \ldots, g \).

Proof of Theorem 2 By Proposition 3 we have \(S_1 = c_1 \) and
\[S_i = ic_i - \sum_{j=1}^{i-1} S_{i-j} c_j\]
for \(2 \leq i \leq g\). Since \(c_1, \ldots, c_{l-1}\) are known, we can inductively find \(S_1, \ldots, S_{l-1}\) by above expression. Since \(d = (l, s) < l\) and since we know what \(S_d\) is, we can find \(S_l\) by Theorem 1. Therefore, since

\[
c_l = \frac{1}{l} \sum_{j=0}^{l-1} S_{l-j} c_j
\]

by Proposition 5 and since \(c_0, c_1, \ldots, c_{l-1}\) and \(S_1, \ldots, S_l\) are known, we can find \(c_l\). \qed

5 Applications

In this section we present a few applications of our results.

5.1 An Example

The usefulness of Theorems 1 and 2 is shown by an example. Let is consider the curve \(C : y^5 - y = x^6\) over \(\mathbb{F}_5\) and calculate its L-polynomial. This curve is actually the curve denoted \(B_1^{(5)}\) in [3], and is a curve of genus 10. By Corollary 1 in [3] the roots of the L-polynomial are \(\sqrt{5}\) times a 4-th root of unity (i.e., the period \(s\) is 4). Write \(L_C\) as

\[
L_C(T) = \sum_{i=0}^{20} c_i T^i.
\]

Normally the values \(c_i\) for \(1 \leq i \leq 10\) have to be computed, and then the L-polynomial is determined. We will show using Theorem 2 that only three of the \(c_i\) need to be computed in order to determine the entire L-polynomial.

The three values needed are \(c_1\), \(c_2\) and \(c_4\), because 1, 2, and 4 are the divisors of the period. We calculate \(c_1 = 0\), \(c_2 = -10\) and \(c_4 = -75\). In order to find \(L_C\) we have to find \(c_3, c_5, c_6, c_7, c_8, c_9\) and \(c_{10}\).

Let us apply the recursion in Theorem 2. Firstly, we have \(S_1 = c_1 = 0\) and \(S_2 = 2s_2 - S_1 c_1 = -20\).

Next, we may apply Theorem 1 to get \(S_3\) since \((3, 4) = 1\). Thus by Theorem 1 applied with the values \(s = 4, n = 3, m = 1, r = 1, t = 3\), we get

\[
S_3 = 5^{(n-m)/2} \left(\frac{(-1)^{(t-1)/2} t}{5} \right) S_1 = 0.
\]
Since we have
\[3c_3 = S_3c_0 + S_2c_1 + S_1c_2 \]
by Proposition 3, we get \(c_3 = 0 \).

Since we know \(c_4 = -75 \) we get
\[S_4 = 4c_4 - S_3c_1 - S_2c_2 - S_1c_1 = -500. \]

In a similar way to \(S_3 \) we find all \(S_i \) for \(i = 5, \cdots, 10 \) by Theorem 1. These numbers are
\[S_5 = S_7 = S_9 = 0, \quad S_6 = -500, \quad S_8 = S_{10} = -12500. \]

Then we can find all \(c_i \) for \(i = 5, \cdots, 10 \) by Theorem 2 inductively using the Equation (8). We get \(c_5 = c_7 = c_9 = 0 \) and
\[c_6 = \frac{1}{6} \sum_{j=0}^{5} S_{6-j}c_j = 1000, \quad c_8 = \frac{1}{8} \sum_{j=0}^{7} S_{8-j}c_j = 1250, \quad c_{10} = \frac{1}{10} \sum_{j=0}^{9} S_{10-j}c_j = -37500. \]

Therefore the L-polynomial of \(C \) over \(\mathbb{F}_5 \) is
\[
1 - 10T^2 - 75T^4 + 1000T^6 + 1250T^8 - 37500T^{10} \\
+ 31250T^{12} + 625000T^{14} - 1171875T^{16} - 3906250T^{18} + 9765625T^{20}.
\]

5.2 Families of Curves

The authors have used the two main theorems of this paper in [3] to calculate the exact number of rational points on curves \(y^p - y = x^{p^k+1} \) and \(y^p - y = x^{p^k+1} + x \) over all extensions of \(\mathbb{F}_p \). The same techniques can be used for other supersingular curves.

Another example of applying these results can be found in our preprint [4]. There we calculated the exact number of points on \(y^q - y = x^{q+1} - x^2 \) in order to count the number of irreducible polynomials with the first two coefficients fixed (providing another proof of a result of Kuzmin).

5.3 Point Counting

The results of this paper imply a speedup for point counting algorithms for supersingular curves, at least in theory. In general, to calculate the L-polynomial of a curve defined over \(\mathbb{F}_q \), one needs
to compute the number of \mathbb{F}_{q^i}-rational points for all $i = 1, 2, \ldots, g$. However, Theorem 2 means that not all of these values are needed for supersingular curves. The values that are needed are the number of \mathbb{F}_{q^i}-rational points where i divides s. As seen in the example above, we only needed four values ($i = 1, 2, 4$) instead of ten values.

6 Value of the Period

To apply the results of this paper one needs to know the period s (or a multiple of s) of a supersingular curve X of genus g. It is sometimes possible to find the period without finding the L-polynomial. This is often the case for Artin-Schreier curves of the form $y^p - y = xL(x)$ where $L(x)$ is a linearized polynomial. Indeed, this is what the authors did in [3] for the curves $y^p - y = x^{p^k+1}$ and $y^p - y = x^{p^k+1} + x$. Another example of this is provided in [2] with the hyperelliptic curves $y^2 = x^{2g+1} + 1$ where $(p, 2g + 1) = 1$. The period is shown to be the smallest k such that $p^k \equiv -1 \pmod{4g+2}$.

For a simple supersingular abelian variety, we have $\phi(s) = 2g$ or $4g$ (see [5]) where ϕ is the Euler phi-function. Therefore if the Jacobian of X is simple, we know that $\phi(s) = 2g$ or $4g$. This can be used to make a list of possible values of s. If the Jacobian of X is not simple it is isogenous to a product of simple abelian varieties of smaller dimension.

We call $X(\mathbb{F}_{q^n})$ minimal if all the Weil numbers are $\sqrt{q^n}$. Equivalently, $X(\mathbb{F}_{q^n})$ is minimal if and only if $L_X(T) = (1 - \sqrt{q^n}T)^{2g}$. Thus, for a supersingular curve X defined over \mathbb{F}_q, the period is the smallest extension degree over which X is minimal.

References

[1] V. Karemaker R. Pries, Fully maximal and fully minimal abelian varieties, preprint, https://arxiv.org/abs/1703.10076

[2] Kodama, T. and Washio, T., A Family of Hyperelliptic Function Fields with Hasse-Witt Invariant Zero. J. Number Theory 36 187-200

[3] G. McGuire, E. S. Yılmaz, Divisibility of L-Polynomials for a Family of Artin-Schreier Curves, preprint, https://arxiv.org/abs/1803.03511

16
[4] G. McGuire, E. S. Yılmaz, The Number of Irreducible Polynomials with the First Two Coefficients Fixed over Finite Fields of Odd Characteristic, preprint, https://arxiv.org/abs/1609.02314

[5] V. Singh, G. McGuire, A. Zaytsev, Classification of Characteristic Polynomial of Simple Supersingular Abelian Varieties over Finite Fields, Functiones et Approximatio Commentarii Mathematici, 51 (2014) no.2, 415-436.

[6] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag Berlin Heidelberg, 2009.

[7] Lawrence C. Washington. Introduction to Cyclotomic Fields. EBL-Schweitzer. Springer-Verlag New York, 1997.