Research Article

Efficient Object Detection Algorithm in Kitchen Appliance Scene Images Based on Deep Learning

Manhuai Lu and Liqin Chen

1College of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528400, China
2School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 610000, China

Correspondence should be addressed to Liqin Chen; chenliqin_mail@163.com

Received 26 October 2020; Revised 18 November 2020; Accepted 1 December 2020; Published 17 December 2020

1. Introduction

Object detection is a fundamental issue in the field of computer vision and image processing and has been a hotspot of theoretical and applied research in recent years, with a wide range of applications. The main goal of object detection is to precisely predict the class and location information of various targets in an image or image sequence. The traditional target detection algorithm relies more on manually designed features. However, because of using a sliding window to select candidate bounding boxes, it has serious window redundancy problems and its feature extraction method has poor generalization performance. Moreover, twiddly steps of the traditional target detection algorithm will cause slow detection speed and poor real-time performance. With the rapid development of deep learning, deep learning-based target detection algorithms have proposed solutions to extract image features by using convolution neural networks. Therefore, both the detection accuracy and the detection speed have been greatly improved.

Object detection based on kitchen appliance scene not only attaches great importance to the natural scene object recognition that cannot be ignored, but it is also one of the most essential factors in the internet of things [1–5]. Object detection based on kitchen appliance scene images often faces different types and degrees of uncertainty interference, which seriously affects the accuracy of object detection. On the one hand, the scene itself has some internal interference such as invalid edges and pattern information unrelated to the object...
of interest. Specifically, these disturbances may be boundary boxes or intuitive patterns that express functional meaning. On the other hand, the scene is also subject to serious external interference, such as various levels of specular reflection, uneven lighting, and spurious lighting. In addition, kitchen appliance scenes as a typical application also need to complete the task of detecting arbitrary symbols, such as Chinese texts and rectilinear symbols, which are positioned in the form of arrays on two-dimensional surfaces. Moreover, the position spacing and aspect ratio between different object regions is not a fixed value. The proposed improved object detection methods aim to identify object regions scattered in various areas of complex appliance scenes with uncertain position spacing and aspect ratio quickly and automatically.

Inspired by some state-of-the-art object detection algorithms, we designed a text location algorithm based on improved faster R-CNN, which considers all line patterns as potential targets and specifically considers three categories of line patterns, including text instances (text), the plus symbol “+” (add), and the minus symbol “−” (sub), as illustrated in Figure 1.

In this paper, we improve the RPN in faster R-CNN. We call it D-RPN. The main contributions of D-RPN are two-folded: (1) feature enhancement module. We design a multiscale convolution network structure for feature extraction and reinforcement, which addresses the limitation of feature extraction capability of the RPN that used single-scale convolution. Concretely, the feature enhancement module adopts convolution kernel at different scales to the feature map and extracts features at different scales. Then, it fuses and concatenates these features on the channel dimension, ultimately strengthening the expression of features. (2) The design of U-shaped network reconstruction. Using those multiscale convolution network structures, we construct a U-shaped network by max pooling layers and upsampling. The U-shaped network introduces the idea of UNet’s [6] network architecture design. We replace the original RPN structure by concatenating multiple feature enhancement module in a U-shaped network structure. In this way, it not only deepens the depth of the network, extracts deeper features, but also learns more parameters.

However, we note that the field of target detection based on deep learning is presently well developed with numerous approaches, including R-CNN-based object detection methods, SSD-based object detection methods, and YOLO-based object detection methods. Therefore, we must first discuss these previous methods before outlining the presently proposed object detection method. Accordingly, related work is presented in Section 2, the proposed method is presented in Section 3, the results of experiments using kitchen appliance scene datasets are presented in Section 4, the expanded applications are presented in in Section 5, and the paper is concluded in Section 6.

2. Related Work

All object detection methods must address the inherent uncertainties associated with the size, direction, and structure of targets located within natural scene images. Numerous conventional methods have been developed for object detection in natural image scenes in the past, such as Viola Jones detectors [7, 8], histogram of oriented gradients (HOG) detector [9], and deformable part-based model (DPM) [10]. These methods mainly employ object features extracted manually for establishing the parameters of the algorithm. However, the rapid advancement of deep learning in recent years has led to the development of numerous object detection methods based on this advanced technology [11–22]. These methods have a demonstrated capability of accurately locating object regions within natural image scenes by appropriately training their network structures. These object detection methods can be divided into three categories: R-CNN-based object detection methods, SSD-based object detection methods, and YOLO-based object detection methods.

2.1. R-CNN-Based Object Detection Methods. R-CNN-based object detection methods are two-stage target detection methods. The first stage generates bounding boxes and the second stage identifies the bounding boxes to which the category belongs. R-CNN [11], as a precursor of a deep convolutional neural network target detection framework, obtained 0.66 mAP on experimental data from the PASCAL VOC2007 test set. However, the detection process is particularly time-consuming because it performs a ConvNet for about 2000 object proposal without sharing computation. Fast R-CNN [12] made improvements on R-CNN. It organically combines the two problems of target classification and border regression, using softmax classifiers instead of support vector machines. It allows multiple object proposals to share the output features of the previous layer network. Ren et al. [13] proposed an improved version of faster R-CNN based on the fast R-CNN model. It uses the region proposal network (RPN), which solves the inefficient selection problem of proposal regions in target detection tasks. In addition, some distinguished researchers [14, 15] proposed improved algorithms for the faster R-CNN. For example, feature pyramid networks (FPN) [14], compared to regular feature pyramids, proposed a feature pyramid structure which enables independent prediction at each level of pyramid. The architecture of FPN exhibits significant advantages as a generic feature extractor in several applications. However, R-CNN-based object detection methods have room to improve the precision in generating suggestion boxes.

2.2. SSD-Based Object Detection Methods. SSD-based object detection algorithm is a one-stage target detection algorithm trained on an improved VGG16 [23] network. It is not only close to the faster R-CNN algorithm in terms of accuracy but also comparable to YOLO in terms of detection speed. Single-shot multibox detection (SSD) [16] introduced feature pyramid structure, but it takes high-level and low-level feature of the ConvNet into account. It also allows further improvements in target detection accuracy, especially for small objects. However, it is not strong enough to characterize the feature map extracted at low-level feature. Therefore, Shen et al. [17]...
proposed deeply supervised object detectors (DSOD) based on SSD network structure. It puts forward an efficient network framework and a set of principles to learn object detectors without using pretrained models on ImageNet. In terms of detection accuracy and parameter number, DSOD outperforms some state-of-the-art detectors such as SSD and Faster R-CNN. Moreover, deconvolutional single-shot detector (DSSD) [18] combines ResNet-101 [24] with SSD and uses deconvolution instead of up-sampling, which obtained 81.5% mAP on VOC2007 test and 80% mAP on VOC2012 test. But these methods are blank in the study of feature pyramids using multiple convolutional kernels on the same feature maps.

2.3. YOLO-Based Object Detection Methods. YOLO [19] first proposed an end-to-end training model transforming object detection to a regression problem of bounding boxes and associated class probabilities. However, because each grid cell only predicts two boxes and can only have one class, it causes the detection to be not very accurate. To address these issues, YOLOv2 [20] improved the performance by adding batch normalization layers on all of the convolutional layers and a new bounding box regression method by removing the fully connected layers from YOLO. Inspired by the FPN, YOLOv3 [21] predicted a score for each bounding box by using logistic regression and set more candidate boxes. Therefore, multiscale prediction and multilabel classification both can be realized. In 2020, based on the original YOLOv3 object detection architecture, YOLOv4 [22] algorithm proposed a new backbone network, named CSPDarknet-53, using Mish activation function and puts forward mosaic data augmentation method in data processing. These all enable the model to reach the best match in terms of detection speed and accuracy so far. However, YOLO-based methods have not yet been applied to the field of target detection in the kitchen appliance scene.

3. Proposed Method

In this section, the proposed method consists of three main parts: (1) data augmentation based on gamma corrections, adding salt-and-pepper noises, and Gaussian blur; (2) feature enhancement module with multiscale convolution kernel for target feature reinforcement; (3) design of deeper feature extraction structure based on the typical encoder and decoder network of U-Net [6], exerting a series of feature enhancement module.

3.1. Data Augmentation. In our experiments, the kitchen appliance control panel dataset we used is from an image collector. The dataset consists of control panel images of 28 different kitchen appliances without uniform plane size. Moreover, each of the images includes at least 15–20 object regions which scattered in various areas of complex appliance scenes with uncertain position spacing and aspect ratio.

In order to simulate both light and dark shooting environments, we first use gamma correction which is detailed as follows:

\[s = cr^\gamma, \]

Here, \(c \) is a zoom coefficient. \(r \) and \(s \) are the grayscale values of the input and output after normalization, respectively. When \(\gamma < 1.0 \), the gamma corrections can increase the overall brightness of the image; while \(\gamma > 1.0 \), the gamma correction will reduce the overall brightness, making the image darker. Thus, in our experiments, we set \(\gamma = 0.7 \) and \(\gamma = 1.3 \) to simulate both light and dark environments, respectively.

Second, we also add 1% salt-and-pepper noise to our dataset, which randomly generates some pixel positions within the image based on the signal-to-noise ratio (SNR) of the image and randomly assigns these pixels a value of 0 or 255.

Third, we use Gaussian blur to simulate a lens out of focus, which is detailed as follows:

\[f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \]
where μ is the mean and σ is the variance. In OpenCV (Open Source Computer Vision Library), σ is calculated according to the following formula:

$$\sigma = 0.3 \times ((k \text{ size} - 1) \times 0.5 - 1) + 0.8,$$

where k size is Gaussian kernel size. In our work, we set $\mu = 0$, k size $= 15$ ($\sigma = 2.6$). A three-dimensional view of the Gaussian function is shown in Figure 2(a).

Through three data augmentation methods, gamma correction, adding pretzel noise, and Gaussian blur, our data were augmented from the original 28 images to 336 images. This yielded a total of 5040–6720 object regions. Figures 2(b)–2(f) show some of the results of this data augmentation.

3.2. Overall Network Architecture. The overall framework we proposed is shown in Figure 3. In this subsection, we will briefly describe our overall framework and it is divided into the following four components.

3.2.1. Feature Extraction Network. This network consists of multiple convolution and pooling layers and is used to obtain feature information pertaining to appliance control panel images. First, the deep-layer features are perceived through a sliding window of the size of the convolution kernel. Next, the fine edge features of the panel are extracted initially, and redundant information is removed. Then, further dimensionality reduction and feature selection are conducted by the pooling operation. Commonly used feature extraction networks are VGG16 [23], ResNet-50 [24], and ResNet-101 [24]. In our work, we use VGG16 as our backbone feature extraction network.

3.2.2. D-RPN. This section is a central part of our overall framework. Feature enhancement module with multiscale convolution kernel and design of deeper feature extraction structure based on UNet are proposed in D-RPN. But both will be detailed in Sections 3.3 and 3.4, respectively. Functionally, D-RPN in this paper is similar to RPN in faster R-CNN. The D-RPN is used to generate region proposals from the image and accordingly generates nine anchors of three different sizes and three different aspect ratios on each pixel of the extracted feature map. A number of candidate object regions are obtained through a one-to-one mapping of the anchors on the original image. These candidate regions contain a wide variety of information, such as entire object regions, partial object regions, and strictly background regions. Therefore, confidence levels are calculated for each anchor box reflecting the level of certainty regarding whether the anchor box contains object regions requiring detection. The object regions within anchor boxes with high confidence levels are then placed within bounding boxes, and regression adjustment of the bounding box parameters is applied. Finally, a method based on NMS is used to filter out bounding boxes that have a relatively large number of intersections.

3.2.3. ROI Pooling Layer. The proposed regions are mapped onto the feature map in the ROI pooling layer, and the map is cropped accordingly. Then, the cropped region is divided into 7×7 segments of the same size by bilinear interpolation. Finally, maximum pooling is performed with a convolution kernel size of two to obtain the final feature map of each proposed region. As such, the process allows different region proposals to be output in the same dimension.

3.2.4. Classification Layers. The classification layer is composed of fully connected layers and a softmax layer, which is used to classify each region proposal as either object or not-object and to output a confidence level. In addition, regression is performed to determine whether a bounding box includes an object region and to minimize deviations between the bounding boxes and the ground truth bounding boxes.

3.3. Feature Enhancement Module. In our main work, we propose the feature enhancement module, which network framework is shown in Figure 4.

The module is divided into four parts. First, the results of previous layer input a 1×1 convolution layer to adjust the number of channels. Then, it is divided into three branches and each of them is a convolution layer with kernel size of 3×3, 5×5, and 7×7, respectively. Whereupon it uses convolution layers with different kernel size to extract features from the feature map. In this part, we set the stride of the convolution to 1, using the padding mode and rectified linear unit (Relu) activation functions. This ensures that the output of each branch has the same height, width, and number of channels for stacking. Next, we stack the features extracted from the previous part and integrate the information from different scales to strengthen the features. Finally, the results of concatenation were input to a 1×1 convolution layer again to squeeze the number of channels.

By using a convolution layer with different kernel size, respectively, the module is structured as a feature pyramid which increases not only the thickness of the network but also its adaptability to scale. Small convolution kernels such as 3×3 are sensitive to microfeatures that tend to be less semantic and more noisy, while large convolution kernels such as 7×7 are sensitive to macroscopic features that have stronger semantic information and are insensitive to noise. Therefore, we use convolution kernels with different scales, including 3×3, 5×5, and 7×7 pixels, to acquire features from different spaces on the feature map, and then these features are fused and further enhanced. This structure can increase the depth of the network and improve performance.

But if using multiscale convolution alone is prone to overfitting. The solution of easy overfitting in GoogLeNet [25] is to reduce the number of parameters by adding a layer of 1×1 convolution following each different scale convolution layer. However, in the feature enhancement module proposed in this paper, we stack the results of each scale convolution before connecting a 1×1 convolution layer. Thus, in the experimental part, a contrast experiment adding a layer of 1×1 convolution after 3×3, 5×5, and 7×7.
convolution layers, respectively, will be designed to prove the effectiveness of the feature enhancement module proposed. In this contrast experiment, our approach is more accurate, and the corresponding comparative results will be presented in the experimental section.

3.4. The Design of U-Shaped Network Reconstruction. In this section, we design a deeper feature extraction structure followed the typical encoder and decoder design of UNet [6]. It replaces the original RPN structure by concatenating multiple feature enhancement module in a U-shaped network structure. The overall network architecture we proposed is shown in Figure 5.

As shown in Figure 5, the left side of the structure is the encoder, which consists of two blocks in total. Each block consists of feature enhancement module, Relu activation function, and max pooling layer, and the three parameters below the feature enhancement module correspond to the number of channels C1, C2, and C3 in Figure 4, respectively. The result after feature enhancement module is activated with the Relu function. Finally, a max pooling of 2×2 is applied and output to the next block; the bottom of the structure consists of three ordinary convolution layers (their convolution kernel sizes are 1×1, 3×3, and 1×1, and the number of channels is 128); the right side of the structure is the decoder, which also consists of two blocks. In each of the blocks, the input feature map will be up-sampled in order to

Figure 2: Data augmentation: (a) 3D view of the Gaussian function. (b) Original image. (c) Gamma correction ($\gamma = 0.7$) of (b). (d) Gamma correction ($\gamma = 1.3$) of (b). (e) Gaussian blur of (b). (f) 1% salt-and-pepper noise of (b).

Figure 3: Overall framework of our proposed method based on faster R-CNN structure. It mainly consists of feature extraction network, D-RPN, ROI pooling layer, and classification layers.

- ▽ Max pooling (2×2, \textit{padding})
- ▲ Up-sampling
ensure the up-sampled size is the same as that of the corresponding encoder. Then, by concatenation, the two are stacked on top of each other in the channel number dimension. It then goes through a feature enhancement module and finally outputs.

We introduce the idea of encoder and decoder in UNet into our structure. In our deeper feature extraction structure, the left side is the down-sampling layer and the right side is the up-sampling layer. During the down-sampling process, the receptive field expands step by step, which is equivalent to the meanings that the image will be compressed and the region per unit area perceived will become larger. In this way, the low-frequency information of the image is detected more frequently. Besides, up-sampling was added to the decoder process, from which the information and size of the feature map is recovered and that ensures the most critical operations (feature fusion by concatenating) can proceed successfully. In addition, a concatenation feature fusion approach will be used in our deeper feature extraction structure. Each feature map obtained at each down-sampling layer of the network is concatenated to the corresponding up-sampling layer, which creates a thicker feature map.
other words, the feature fusion approach facilitates the integration of the information of the various stages of the down-sampling in the up-sampling process. That is, the structural information of each layer is combined during the up-sampling process.

4. Experiments and Results

4.1. Implementation and Evaluation Methods. The proposed improved model was implemented in TensorFlow with one NVIDIA GTX 1650 GPU. Our dataset first randomly selects 80% of the data for training and the remaining 20% is used as a testing dataset. Furthermore, the training data is divided into a training dataset and a validation dataset in the proportion 7:3. For training, the learning rate was initialized to 0.001 and a weight decay of 0.0001, and the stochastic gradient descent (SGD) with momentum is set to 0.9. Training iterations are set to 20,000.

During training, the cross-entropy loss function was used for the classification task and the SmoothL1 loss function [12] was used for the regression task. For RPN training, we set up nine anchor boxes with three different aspect ratios and sizes. After generating the boxes, the subscripts refer to the aspect ratios and sizes. fK_he process of mapping these boxes according to the confidence levels of predicted bounding boxes, where the subscripts refer to the aspect ratios and sizes. fK_he probability pi of predicting the object was calculated according to the intersection over portion of overlap between an anchor and a ground truth box. Accordingly, the loss function is defined as follows:

\[
L(p_i, t_i) = L_{\text{class}}(p_i, t_i^*) + L_{\text{regression}}(t_i, t_i^*),
\]

\[
L_{\text{class}}(p_i, t_i^*) = \frac{1}{N_{\text{cls}}} \sum_i - \log[p_i(t) + (1 - p_i^*)(1 - p_i)],
\]

\[
L_{\text{regression}}(t_i, t_i^*) = \lambda \frac{1}{N_{\text{reg}}} \sum_i p_i^* \text{Smooth}_{L_1}(t_i - t_i^*),
\]

\[
\text{Smooth}_{L_1}(x) = \begin{cases}
0.5 \cdot (|x|)^2, & \text{if } |x| < 1, \\
|x| - 0.5, & \text{otherwise}
\end{cases}
\]

Here, N_{cls} is the minimum number of each input batch of predicted bounding boxes, \(\lambda \) is a balancing parameter that both \(N_{cls} \) and \(N_{reg} \) terms are approximately equally weighted. We set it to the default value of 10, and \(N_{reg} \) is the number of anchor boxes. Furthermore, the elements of \(t_i \) and \(t_i^* \) are subject to the following special definitions:

\[
t_x = \frac{(x - x_a)}{w_a},
\]

\[
t_y = \frac{(y - y_a)}{h_a},
\]

\[
t_w = \log\left(\frac{w}{w_a}\right),
\]

\[
t_h = \log\left(\frac{h}{h_a}\right).
\]

Here, all terms with the subscript a represent the standard parameters of an anchor box. Minimizing the loss function yields predicted bounding box parameters that are arbitrarily close to ground truth box parameters.

In this paper, we use mean average precision (mAP) to evaluate the performance of the model. It contains two very important evaluation measures: precision and recall. They are defined as follows:

\[
\text{Precision} = \frac{TP}{TP + FP},
\]

\[
\text{Recall} = \frac{TP}{TP + FN},
\]

where TP, FP, and FN are true positive, false positive, and false negative, respectively. With precision and recall, P – R curve for a category is plotted and then we calculate the area under the curve to get the average precision (AP) value for that category. The mAP is a measure of the detection accuracy of the model by calculating the mean AP of all classifications. It is defined as follows:

\[
\text{mAP} = \frac{1}{m} \sum_{i=1}^{m} \text{AP}(i),
\]

where m is the number of categories in the dataset. The higher the mAP value, the better the overall performance of
the model and the more accurate the prediction for each class will be.

4.2. Comparison of Different Networks. First of all, we evaluated the predication performance of different networks: faster R-CNN with VGG16 [23], SSD, YOLOv3, and YOLOv4, and all these networks were trained with same dataset segmentation strategy. Table 1 shows the performance of different networks under the same evaluation criteria. We can observe that our proposed improved network significantly outperforms the other networks in detecting categories, add and sub. Although the AP value is slightly lower than that of the SSD model when detecting category, text, the mAP value of our method is higher. This indicates the overall better performance of our model.

To validate the advantages of our proposed feature enhancement module and design of deeper feature extraction structure, the comparison of the visualized detection results based on the same testing dataset between our improved method and the unimproved method (faster R-CNN) is shown in Figure 6. The results demonstrate that the unimproved method also has the phenomenon of omission inspection and erroneous inspection, such as undetected text object and treating patterns as text in the image. But our improved algorithm gains better performance. Therefore, our study is of relevance.

4.3. Effect of Feature Enhancement Module. Our module is essentially a multiscale detection method. So, we further explored the effect of our proposed multiscale module. We compare five variants: our proposed feature enhancement module, module only using 3×3 convolution layer, module only using 5×5 convolution layer, module only using 7×7 convolution layer, and our proposed multiscale module which adds 1×1 convolution layers following 3×3 convolution layer, 5×5 convolution layer, and 7×7 convolution layer, respectively.

All these variants were trained under the same condition. In Table 2, it can be learned that our proposed multiscale module is superior to other structures. This illustrates that multiscale convolution is more effective for the network to extract feature information at different scales, and the fusion of this feature information can play the role of feature enhancement.

5. Expanded Applications

Based on the high-precision detection effect of our proposed method, our detection results can also be applied to text recognition. So, in this article, we give some extended experiments on text recognition. The experiment consists of a total of two stages, character segmentation, and character recognition, each of which is described as follows.

5.1. Character Segmentation. The character segmentation stage applies a projection-based text character segmentation method to segment the extracted text instances into independent character instances. As illustrated in Figure 8, projection-based character segmentation obtains pixel distribution information in the vertical or horizontal direction by projecting a binary image vertically or horizontally and segments characters in the detected text region based on the characteristic peaks and valleys in the pixel distribution. Here, the Otsu [26] binarization method is applied to the text region in Figure 8(a) detected in the previous step to generate the binary image in Figure 8(b), which assigns background pixels a value of 0 and foreground pixels representing text a value of 1. The vertical projection of Figure 8(b) is shown in Figure 8(c), from which a statistical pixel distribution map is obtained. The peaks and valleys in the pixel distribution map are then employed to obtain the character segmentation shown in Figure 8(d).

Networks	Text	Add	Sub	mAP
Faster R-CNN	0.9091	0.9131	0.7597	0.8606
SSD	0.8449	0.9432	0.6295	0.8059
YOLOv3	0.9923	0.7907	0.6503	0.8111
YOLOv4	0.8565	0.6743	0.6257	0.7188
Our	0.9085	0.9986	0.7882	0.8984

5.2. Character Recognition. The character recognition stage applies a deep CNN to recognize the character instances extracted in the previous stage. Each of the abovementioned character segments obtained in the previous step is then classified using a D-CNN with the structural framework illustrated in Figure 9. Here, convolution and pooling are again employed for feature extraction, and a softmax layer is applied for calculating the probability for each category outcome, and the corresponding categories are output according to the established probabilities.

In prepossessing, we specifically prepare the dataset for character recognition. It consisted of screenshots of characters in the open source Chinese character dataset collected from natural scene images and four Chinese typeface font libraries (Arial, msyh, msyh, and STLTI). All images were enhanced according to the same process applied to the dataset in the object detection stage. The training time of the D-CNN was streamlined by selecting 57 categories of Chinese characters during the training phase and converting all images to normalized grayscale images composed strictly of 32×32 pixels, which yielded a total of 21463 images.

In training, dataset in character recognition was randomly shuffled, and 60% of the characters in the dataset were employed for the training dataset, while the remaining 40% were evenly divided among the validation dataset and testing dataset. The learning rate was initially set to 0.0001 and the number of training iterations was limited to 500. Taking into account the computing power available during D-CNN training, a tensor of 64 images was input at each iteration. In addition, a multiclass cross-entropy function (as shown in the table).
equation (8)) was employed owing to the multiclass classification task involved. Finally, we adopted Adam optimization \[27\] during training, which can adaptively adjust the learning rate of each parameter, using estimations of the first moment and second moment of the gradient, to allow for relatively stable variations in the parameters.

\[
\text{Loss} = \frac{1}{N} \left\{ \sum_{i} \left[-\sum_{j} y_{ij} \log(p_{ij}) \right] \right\}.
\]

(8)

The loss obtained by the proposed character classifier from equation (8) during training and validation and its accuracy values obtained during training, validation, and testing are, respectively, presented in Figures 10(a) and 10(b) with respect to the number of iterations. We note from Figure 10(a) that the loss of our character classifier decreases very rapidly to nearly 0 after only about 100 iterations for both the training and validation datasets. Correspondingly, we also note from Figure 10(b) that the accuracy values rapidly approach 99.89%, 96.30%, and 97.99% with increasing iterations for the training dataset, validation dataset, and testing dataset, respectively, where values are presented in the latter case only for every 5th iteration.

6. Summary

This paper addressed the unique challenges associated with the application of object detection for kitchen appliance scene images by proposing an improved network based on faster R-CNN. We put forward D-RPN structure that improved RPN in the faster R-CNN. It consists of a series of feature enhancement modules and these modules reconstructed a U-shaped network structure. Proposed feature enhancement modules use the multiscale feature reinforcement method that fuses features extracted from \(3 \times 3\), \(5 \times 5\), and \(7 \times 7\) convolution layers, respectively. The multiscale feature enhancement module outperforms the other module using single-scale such as only \(3 \times 3\), \(5 \times 5\), and \(7 \times 7\) convolution layers. In addition, experiments show that our D-RPN structure...
Figure 7: Structural diagram of four variants we set: (a) module only using 3×3 convolution layer; (b) module only using 5×5 convolution layer; (c) module only using 7×7 convolution layer; (d) our proposed multiscale module which adds 1×1 convolution layers following 3×3 convolution layer, 5×5 convolution layer, and 7×7 convolution layer.

Figure 8: Projection-based character segmentation: (a) object region detected in the previous object localization step; (b) binary image of (a); (c) pixel distribution map obtained from the vertical projection of (b); (d) character segmentation obtained according to the peaks and valleys in the pixel distribution map in (c).

Figure 9: Structural framework of the D-CNN employed for classifying the character segments obtained during the previous character segmentation step.
acquires 0.8984 mAP value and performs better compared to other state-of-the-art object detection methods such as faster R-CNN, SSD, YOLOv3, and YOLOv4. Ultimately, our high-precision target detection method can also be applied to text recognition, also with good results.

Although we have achieved satisfactory results with our proposed approach, there are a lot of works to be done. In terms of dataset, we need more data of kitchen appliance control panel to improve the generalizability of the model and reduce the risk of overfitting. In terms of feature extraction, VGG16 is not necessarily the best backbone feature extraction network. Therefore, we need to research the influence of other backbone feature extraction networks on the accuracy of the model, for example, ResNet-50 and ResNet-101. Finally, there is a data imbalance problem in our dataset. For instance, the text symbols (text) always have much more than the plus symbols (add) and minus symbols (sub). However, we tried to use the focal loss function but did not get the results we expected, so we still need to study the data imbalance problem in our future work.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Acknowledgments

This study was funded by the National Social Science Fund of China (20BGL141).

References

[1] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “Factors that influence the acceptance of internet of things services by customers of telecommunication companies in Jordan,” *Journal of Organizational and End User Computing*, vol. 30, no. 4, pp. 51–63, 2018.

[2] I. Kitouni, D. Benmerzoug, and F. Lezzar, “Smart agricultural enterprise system based on integration of internet of things and agent technology,” *Journal of Organizational and End User Computing*, vol. 30, no. 4, pp. 64–82, 2018.

[3] K. Srinivasa, B. Sowmya, A. Shikhar, R. Utkarsha, and A. Singh, “Data analytics assisted internet of things towards building intelligent healthcare monitoring systems: iot for healthcare,” *Journal of Organizational and End User Computing (JOEUC)*, vol. 30, pp. 83–103, 2018.

[4] S. K. Biswas, D. Devi, and M. Chakraborty, "A hybrid case based reasoning model for classification in internet of things (iit) environment," *Journal of Organizational and End User Computing*, vol. 30, no. 4, pp. 104–122, 2018.

[5] M. R. Reddy, K. G. Srinivasa, and B. E. Reddy, “Smart vehicular system based on the internet of things,” *Journal of Organizational and End User Computing*, vol. 30, no. 3, pp. 45–62, 2018.

[6] O. Ronneberger, P. Fischer, and T. Brox, "U-net: convolutional networks for biomedical image segmentation," in *Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention*, pp. 234–241, Lima, Peru, October 20.

[7] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in *Proceedings Of The 2001 Ieee
P. Viola and M. J. Jones, "Robust real-time face detection," *International Journal of Computer Vision*, vol. 57, no. 2, pp. 137–154, 2004.

N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in *Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05)*, pp. 886–893, San Diego, CA, USA, September 2005.

E. Hsiao, P. Felzenszwalb, D. McAllester, and D. Ramanan, "A discriminatively trained, multiscale, deformable part model," in *Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition*, Anchorage, AK, USA, June 2008.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 580–587, Seattle, WA, USA, June 2014.

R. Girshick, "Fast r-cnn," in *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1440–1448, Santiago, CL, USA, December 2015.

S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: towards real-time object detection with region proposal networks," in *Proceedings of the Advances in Neural Information Processing Systems*, pp. 91–99, Montreal, Canada, December 2015.

T.-Y. Lin and P. Dollr, Feature pyramid networks for object detection," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2117–2125, Seattle, WA, USA, June 2017.

Z. Liu, Y. Lyu, L. Wang, and Z. Han, "Detection approach based on an improved faster rcnn for brace sleeve screws in high-speed railways," *IEEE Transactions on Instrumentation and Measurement*, vol. 69, 2019.

W. Liu, D. Anguelov, D. Erhan et al., "Ssd: single shot multibox detector," in *Proceedings of the European Conference on Computer Vision*, pp. 21–37, Glasgow, UK, August 2016.

Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, "Dsod: learning deeply supervised object detectors from scratch," in *Proceedings of the IEEE International Conference on Computer Vision*, pp. 1919–1927, Venice, Italy, October 2017.

C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, "Dsod: Deconvolutional Single Shot Detector," 2017, http://arxiv.org/abs/1701.06659.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: unified, real-time object detection," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 779–788, Seattle, WA, USA, June 2016.

J. Redmon and A. Farhadi, "Yolo9000: better, faster, stronger," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 7263–7271, Seattle, WA, USA, June 2017.

J. Redmon and A. Farhadi, "Yolov3: an incremental improvement," 2018, http://arxiv.org/abs/1804.02767.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: optimal speed and accuracy of object detection," 2020, http://arxiv.org/abs/2004.10934.

K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," 2014, http://arxiv.org/abs/1409.1556.

K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 770–778, Seattle, WA, USA, June 2016.

N. Otsu, "A threshold selection method from gray-level histograms," *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 9, no. 1, pp. 62–66, 1979.

D. P. Kingma and J. Ba, "Adam: a method for stochastic optimization," 2014, http://arxiv.org/abs/1412.6980.