Impact of the Spanish Smoking Law on Exposure to Secondhand Smoke in Offices and Hospitality Venues: Before-and-After Study

Manel Nebot,1,2,3 María J. López,1,3,4 Carles Ariza,1,3 Mónica Pérez-Ríos,3,5,6 Marcela Fu,7,8 Anna Schiaffino,8 Gloria Muñoz,9 Esteve Saltó,9 and Esteve Fernández,2,7 on behalf of the Spanish Smoking Law Evaluation Group1

1Public Health Agency, Barcelona, Spain; 2Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; 3Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER ESP), Spain; 4PhD Programme in Public Health and Methodology of Biomedical Research, Universitat Autònoma de Barcelona, Barcelona, Spain; 5Department of Preventive Medicine, and 6Department of Health, Xunta de Galicia, Santiago de Compostela, Spain; 7Catalan Institute of Oncology and Institute of Biomedical Research of Bellvitge, L’Hospitalet de Llobregat, Spain; 8Municipal Health Institute, City Council of Terrassa, Terrassa, Spain; 9Department of Health, Generalitat de Catalunya, Barcelona, Spain

BACKGROUND/OBJECTIVES: A smoking law was passed by the Spanish Parliament in December 2005 and was enforced by 1 January 2006. The law bans smoking in all indoor workplaces but only in some hospitality venues, because owners are allowed to establish a smoking zone (venues > 100 m²) or to allow smoking without restrictions (venues < 100 m²). The objective of the study is to assess the impact of the Spanish smoking law on exposure to secondhand smoke (SHS) in enclosed workplaces, including hospitality venues.

MATERIALS AND METHODS: The study design is a before-and-after evaluation. We studied workplaces and hospitality venues from eight different regions of Spain. We took repeated samples of vapor-phase nicotine concentration in 398 premises, including private offices (162), public administration offices (90), university premises (43), bars and restaurants (79), and discotheques and pubs (24).

RESULTS: In the follow-up period, SHS levels were markedly reduced in indoor offices. The median decrease in nicotine concentration ranged from 60.0% in public premises to 97.4% in private areas. Nicotine concentrations were also markedly reduced in bars and restaurants that became smoke-free (96.7%) and in the no-smoking zones of venues with separate spaces for smokers (88.9%). We found no significant changes in smoking zones or in premises allowing smoking, including discotheques and pubs.

CONCLUSIONS: Overall, this study shows the positive impact of the law on reducing SHS in indoor workplaces. However, SHS was substantially reduced only in bars and restaurants that became smoke-free. Most hospitality workers continue to be exposed to very high levels of SHS. Therefore, a 100% smoke-free policy for all hospitality venues is required.

KEY WORDS: evaluation, hospitality sector, secondhand smoke, smoking law, workplaces. Environ Health Perspect 117:344–347 (2009). doi:10.1289/ehp.11845 available via http://dx.doi.org/

Address correspondence to M. Nebot, Agència de Salut Pública de Barcelona, Plaza Lesseps 1, Barcelona 08023, Spain. Telephone: (34) 93-238-4562. Fax: (34) 93-217-3197. E-mail: mnebot@aspb.es

ªAgència de Salut Pública de Barcelona: M. Nebot, C. Ariza, M.J. López, F. Sánchez-Martínez, F. Cenich, G. Muñoz, E. Serrahima; Institut Català d’Onkologia: E. Fernández, M. Fu, J.M. Martínez-Sánchez, A. Martín, J.M. Borràs, S. Rània, J. Twose, A. Schiaffino; Generalitat de Catalunya: E. Saltó, A. Válverde, M. Faixedas, F. Abella, E. Rovira; Xunta de Galicia: M. Pérez-Ríos, B. Alonso, M.I. Santiago, M.J. García, S. Veiga; Govern de les Illes Balears: A. López, E. Tejera, M. Borraix, J.A. Ayensa, E. Pérez; Generalitat Valenciana: F. Carrión, P. Pont, J.A. Lluch; Gobierno de Cantabria: M.E. López, S. Álvarez, M.E. del Castillo, F. Martín, B.M. Benito; Junta de Extremadura: J.A. Riesco; Comunidad de Madrid: I. Marta, A. García, E. Estrada, V. Blanco; Gobierno de La Rioja: A. Estein, M.A. Hessel; Universidad del Minho: J. Precioso; Academia de Ciências Médiques d’Andorrua: M. Coll (study coordinator).

We thank the Spanish Society of Epidemiology, the Spanish Ministry of Health, and the Public Health Directorate of each participating autonomous community.

This study was partially funded by the Ministry of Health Instituto de Salud Carlos III (FIS PI052293) and supported by the Department of Health of each participating autonomous region.

The authors declare they have no competing financial interests.

Received 23 June 2008; accepted 19 September 2008.
The private sector, samplers were placed in the reception area and offices (desk positions). In restaurants, samplers were placed in the main dining room.

We contacted the owners and managers of the selected facilities and venues either by telephone or by letter to explain the details of the study and to request permission. After obtaining permission, we arranged an appointment to place the samplers.

Vapor-phase nicotine. We measured vapor-phase nicotine using SHS passive samplers, following the method described and validated by Hammond (1993) and used in previous studies of SHS assessment in Europe (Nebot et al. 2005). The samplers consisted of a 37-mm-diameter plastic cassette containing a filter treated with sodium bisulfate. These samplers were manipulated by instructed personnel according to a common protocol and placed in all the settings studied except pubs and discotheques for 7 days. The samplers that had to hang freely in the air were not placed within 1 m of an area where there was a regular smoker or where air did not circulate (e.g., a corner, under a shelf, or buried in curtains). In discotheques and pubs, where the expected concentration of nicotine was higher and operating hours were mostly at night, we took samples from personal monitors for short periods ranging between 4 and 5 hr. Personal monitors were clipped to a shirt collar or lapel, with the windscreen facing out, away from the clothes. They were carried out by volunteers.

For each sample, we recorded the following data: the sample’s code, region, setting, location, date and time of placement and removal, and smoking policy (smoking allowed, completely banned, or partially banned in separate zones). We recorded information on sampling area, sampling volume, and ventilation in each establishment to evaluate extreme or inconsistent values. We assigned samples with nicotine concentrations below the quantification limit a value of 0.01 μg/m³, corresponding to half the value of quantification limit for one sample exposed over a 1-week period. For quality control purposes, blank filters were placed within sampling filters (1 filter in 20) and all had nicotine concentrations below the quantification limit. Nicotine analysis was conducted at the Laboratory of the Public Health Agency of Barcelona, using the gas chromatography/mass spectrometry method. The limit of quantification was 5 ng per filter. We estimated the time-weighted average nicotine concentration (micrograms per cubic meter) by dividing the amount of extracted nicotine by the volume of air sampled (estimated flow rate (24 mL/min) × the total number of minutes the filter had been exposed).

Statistical analysis. We restricted the analysis to places where we took nicotine measurements both at baseline and follow-up (paired samples). Given the skewed distribution of nicotine concentration, we used median and interquartile ranges (IQRs) to describe the nicotine concentration by setting. We compared paired differences using the nonparametric Wilcoxon signed rank test. We used SPSS (version 12.0.1; SPSS, Inc., Chicago, IL, USA) for all the analyses.

Results

Overall, we took 443 air samples at baseline in eight regions (autonomous communities) of Spain in the last trimester of 2005. We collected 398 samples (89.8%) again in the same venues at the 12-month follow-up. Table 1 shows the distribution by settings. According to the protocol, we took 162 samples in offices in the private sector, 90 in public administration offices (state, region, and city administration venues), 43 in university indoor premises, 79 in bars and restaurants, and 24 in discotheques and pubs.

Table 2 shows the change in nicotine concentration in workplaces other than hospitality venues at baseline and 12 months after the law was enacted. During the study period, there was a significant reduction in nicotine concentration, ranging from 60% in public administration to 97.4% in private sector offices. After the law, all medians were < 0.20 μg/m³.

Table 3 shows the changes in hospitality sector. The values are stratified according to setting.
to the option taken after the law came into force. We found a significant reduction (96.7%) in places that became smoke-free. In venues allowing a smoking zone, we observed a similar reduction (88.9%) in no-smoking zones, whereas in smoking areas the median concentration increased slightly (37.2%). Venues allowing smoking had a nonsignificant reduction of 19.4%. Discotheques and pubs showed a nonsignificant reduction (from 33.3 to 15.1 μg/m³).

Discussion

Overall, the results confirm the positive impact of the law in the indoor workplaces and hospitality premises that became smoke-free after the law. The median nicotine concentration decreased by 60.0% in public premises and by 97.4% in private workplaces. A major reduction (96.7%) also occurred in bars and restaurants that became smoke-free and in the no-smoking zones of venues where separate spaces were allowed (88.9%). In smoking zones and in premises allowing smoking, including discotheques and pubs, no significant changes occurred. As expected, the presence of SHS in bars allowing smoking, and in the smoking zones of those permitting separate zones, remained extremely high. Regarding differences in the proportions and nicotine levels between regions, stratifying by region, type of venue, and smoking regulation, the sample size in each stratum is too small to make statistically reliable comparisons.

The results of our study are consistent with those of previous studies that use nicotine in the air to evaluate the impact of smoking regulations. This method has proven to be both valid and sensitive and is therefore able to monitor changes in smoking policies with just a few samples. For example, seven discotheques and pubs were analyzed in Italy by Gorini et al. (2005), and 20 bars and pubs were studied in Ireland by Mulcahy et al. (2005). These studies found reductions in nicotine concentrations from 80% to 95% in bars that became smoke-free—percentages close to those found in our study.

Studies using other indicators have also detected changes. Some of these studies have used either other airborne markers such as particulate matter with aerodynamic diameters ≤ 2.5 μm (Goodman et al. 2007; Repace et al. 2006; Semple et al. 2007a; Valente et al. 2007) or biomarkers such as cotinine in saliva (Allwright et al. 2005; Semple et al. 2007b), and all have reported results very similar to ours. Furthermore, some of these studies used questionnaires to measure SHS exposure (Fong et al. 2006; Galán et al. 2007; Haw and Gruer 2007), although these studies cannot fully rule out some information bias.

A limitation common to many of the studies evaluating the impact of smoking policies is the short interval considered after the ban, in most cases only some weeks or months after the law was introduced. Only a few (Allwright et al. 2005; Goodman et al. 2007) have looked at the indicators 1 year after the law was enacted. As far as we know, only one study carried out in Italy (Gorini et al. 2008) evaluated the impact of the smoking policy 2 years after the implementation, showing an important decrease in nicotine concentrations even 2 years after the smoking ban. However, more studies are needed to rule out a possible “decay” effect of the smoking policies over the time.

This is the first study to show the impact of the Spanish law on SHS by using airborne markers and is among the few studies showing changes both in indoor workplaces and in hospitality sector venues. We have studied nearly 400 air samples, thus yielding by far the largest sample used in this kind of study. In pubs and discotheques, filters were exposed for shorter periods (4–5 hr) than in other settings, which may have impaired comparability with other settings. However, we chose these time periods because typically these venues have most clients on the weekends and some are open only at this time. Therefore, exposing a filter for a whole week would have underestimated the real exposure. Because nicotine concentrations in these settings during working hours is very high (López et al. 2004, 2008; Nebot et al. 2005), a minimum of 4 hr is sufficient to detect the presence of nicotine above the minimum detection limit. We made measurements using the same procedure both sampling periods (before and after measurements), thus ensuring accurate estimation of changes in nicotine concentrations.

Another possible limitation could be the absence of a control group. However, control groups in evaluative public health research are not always necessary (or even possible) due to the complexities of the interventions evaluated (Victora et al. 2004). In this case, the characteristics of the law regarding the hospitality sector (i.e., permitting bars to choose between being smoke-free or non-smoke-free) allow the possibility of having two groups with different behaviors after the law, enabling comparison between hospitality premises that allow smoking and those that were smoke-free. Furthermore, the present study is a before-and-after study, in which comparison between the measurements taken before and after the law provide a valid and reliable estimate of the impact of the law. Overall, this study shows the positive impact of the law in reducing SHS in indoor workplaces such as offices and provides a precise description of the law’s lack of effect in the hospitality venues that did not become smoke-free—a result that was largely anticipated by tobacco control advocates (Córdoba et al. 2006). In addition, this study shows the strong impact of smoke-free policies in the air of the few bars and restaurants banning smoking. In terms of public health, a large reduction in exposure has been achieved. However, workers in the hospitality sector remain exposed to very high levels of SHS, and therefore the situation cannot be considered satisfactory.

Assuming that approximately 80% (Martín-Luengo 2007) of hospitality workers in Spain (1,400,000) (Instituto Nacional de Estadística de Salud) had their workplace indoor air nicotine concentrations measured (from 33.3 to 15.1 μg/m³).

Table 2. Median nicotine concentration (μg/m³) in workplaces at baseline and at the 12-month follow-up.

Setting	Median nicotine concentration (IQR)	Baseline	12-month follow-up	Percent variation	p-Value*
Public administration	0.20 (0.06–0.57)	0.06 (0.01–0.18)	–60.0	< 0.001	
Local administration	0.46 (0.12–1.13)	0.13 (0.03–0.20)	–71.7	0.006	
Regional administration	0.12 (0.06–0.38)	0.08 (0.01–0.20)	–33.3	0.020	
National administration	0.20 (0.06–0.64)	0.05 (0.01–0.11)	–75.0	< 0.001	
Universities	0.21 (0.08–0.50)	0.07 (0.01–0.15)	–66.7	< 0.001	
Private sector	0.39 (0.07–1.28)	0.01 (0.01–0.16)	–97.4	< 0.001	
Small (<10 workers)	0.41 (0.05–1.40)	0.06 (0.01–0.18)	–85.4	< 0.001	
Medium (10–50 workers)	0.39 (0.08–1.30)	0.01 (0.01–0.15)	–97.4	< 0.001	

*Wilcoxon signed-rank test.

Table 3. Median nicotine concentration (μg/m³) in hospitality venues at baseline and at the 12-month follow-up.

Setting	Median nicotine concentration (IQR)	Baseline	12-month follow-up	Percent variation	p-Value*
Bars/Restaurants					
Smoking banned	2.71 (1.39–3.77)	0.09 (0.01–0.26)	–96.7	< 0.001	
Smoking permitted throughout the premises	7.07 (1.86–11.78)	5.70 (2.77–11.73)	–19.4	0.191	
Smoking permitted in designated areas	5.58 (2.42–12.42)	8.99 (5.28–15.61)	37.2	0.075	
Non-smoking area	5.58 (2.42–12.42)	0.62 (0.34–1.40)	–88.9	0.036	
Discotheques/pubs					
Smoking allowed	33.31 (10.79–79.65)	15.06 (6.77–56.92)	–54.79	0.241	

*Wilcoxon signed-rank test. *Smoking regulation after the law; at baseline, smoking was permitted in all venues.
2006) are still working in non-smoke-free hospitality venues and that the median nicotine concentration found in those venues in our study is associated with an excess lung cancer mortality risk of 98 per 100,000 (Repace and Lowrey 1993), the impact in terms of mortality burden could be as high as 1,000 deaths in hospitality-sector workers, if regularly exposed to this level of SHS for 40 years. Clearly, the results support a complete ban on smoking in all indoor places, including hospitality sector venues.

References

Allworth S, Paul G, Greiner B, Mulally BJ, Pursell L, Kelly A, et al. 2005. Legislation for smoke-free workplaces and health of bar workers in Ireland: before and after study. BMJ 331(7526):1117–1122.

Borland R, Pierce JP, Burns DM, Gilpin E, Johnson M, Bal D. 1992. Protection from environmental tobacco smoke in California. The case for a smoke-free workplace. JAMA 268(6):749–752.

California Environmental Protection Agency. 1997. Health Effects of Exposure to Environmental Tobacco Smoke. Sacramento, CA: California Environmental Protection Agency. Office of Environmental Health Hazard Assessment, Reproductive and Cancer Hazard Assessment Section and Air Toxicology and Epidemiology Section.

Chapman S, Borland R, Scull M, Browson RC, Dimitriou A, Woodward S. 1999. The impact of smoke-free workplaces on declining cigarette consumption in Australia and the United States. Am J Public Health 89(7):1018–1023.

Cordoba R, Villalobos JL, Salvador T, Lopez-Garcia V. 2006. Spain’s process of passing effective smoking prevention legislation [in Spanish]. Rev Esp Salud Publica 80(6):631–645.

Eisner MD, Yelin EH, Henke J, Shiboski SC, Blanc PD. 1998. Environmental tobacco smoke and adult asthma. The impact of changing exposure status on health outcomes. Am J Respir Crit Care Med 158(1):170–175.

Fernandez E. 2008. Spain: going smoke free. Tob Control 15:79–80.

Fong GT, Hyland A, Borland R, Hammond D, Hastings G, McNeill A, et al. 2007. Impact of the “Tobacco control law” on exposure to environmental tobacco smoke in Spain. BMC Public Health 7:224.

Goodman P, Agnew M, McCaffrey M, Paul G, Clancy L. 2007. Effects of the Irish smoking ban on respiratory health of bar workers and air quality in Dublin pubs. Am J Respir Crit Care Med 176(9):840–845.

Gorini G, Chellini E, Galeone D. 2007. What happened in Italy? A brief summary of studies conducted in Italy to evaluate the impact of the smoking ban. Ann Oncol 18(10):1620–1622.

Gorini G, Gasparini A, Fondevilla MC, Costantini AS, Centrich F, Lopez MJ, et al. 2005. Environmental tobacco smoke (ETS) exposure in Florence hospitality venues before and after the smoking ban in Italy. J Occup Environ Med 47(1):1268–1270.

Gorini G, Moshammer H, Shroplö L, Gasparini A, Nebot M, Neuberger M, et al. 2004. Italy and Austria before and after study: second-hand smoke exposure in hospitality premises before and after 2 years from the introduction of the Italian smoking ban. Indoor Air 14(4):328–334.

Hammond SK. 1993. Evaluating exposure to environmental tobacco smoke. In: Sampling and Analysis of Airborne Pollutants (Winograd EA, ed). Boca Raton, FL:CRC Press, 319–327.

Haw SJ, Gruer L. 2007. Changes in exposure of adult nonsmokers to secondhand smoke after implementation of smoke-free legislation in Scotland: national cross sectional survey. BMJ 335(7619):549–552.

Heloma A, Jaakkola MS. 2003. Four year follow-up of smoke exposure, attitudes and smoking behavior following enactment of Finland’s national smoke-free work-place law. Addiction 98(11):1117–1111.

Instituto Nacional de Estadística. 2006. Encuesta de población activa. Absolutos y porcentajes respecto del total de cada sexo [in Spanish]. Madrid: Instituto Nacional de Estadistica. Available: http://www.060.es/tse_ayudamos_a/legislacion/ disposiciones/34038-ides-idweb.html [accessed 25 May 2008].

International Agency for Research on Cancer. 2004. Tobacco Smoke and Involuntary Smoking. IARC Monogr Eval Carcinog Risk Hum 83.

Jossens L, Raw M. 2006. The Tobacco Control Scale: a new scale to measure country activity. Tob Control 15(3):247–253.

López MJ, Nebot M, Alberini M, Birkiu P, Centrich F, Chudzikova M, et al. 2008. Secondhand Smoke Exposure in Health Venues in Europe. Environ Health Perspect 116:1469–1472.

López MJ, Nebot M, Salles J, Serrahima E, Centrich F, Juárez G, et al. 2004. Medición de la exposición al humo ambiental de tabaco en centros de enseñanza, centros sanitarios, medios de transporte y lugares de ocio [in Spanish]. Gac Sanit 18(6):451–457.

López MJ, Pérez-Ríos M, Schiaffino, Nebot M, Montes A, Ariza C, et al. 2007. Mortality attributable to passive smoking in Spain (2002). Tob Control 16(6):373–377.

Marín-Liendo IA. 2007. 500 días de la ley contra el tabaquismo [in Spanish]. Gac Sanit 20:1–3.

McCaffrey M, Paul G, Clancy L. 2007. Effects of the Irish smoking ban on respiratory health of bar workers and air quality in Dublin pubs. Am J Respir Crit Care Med 175(9):840–845.

Mulcahy M, Evans DS, Hammond SK, Repace JL, Byrne M. 2005. Secondhand smoke exposure and risk following the Irish smoking ban: an assessment of salivary cotinine concentrations in hotel workers and air nicotine levels in bars. Tob Control. 14(6):384–388.

Nebot M, López MJ, Gorini G, Neuberger M, Axelson S, Pilali M, et al. 2005. Environmental tobacco smoke exposure in public places of European cities. Tob Control 14(1):60–63.

Repache JL, Hyde JN, Brugge D. 2006. Air pollution in Boston bars before and after a smoking ban. BMC Public Health 7:266.

Repache JL, Lowrey AH. 1980. Indoor air pollution, tobacco smoke, and public health. Science 208(4433):464–472.

Rothberg MA, Svinhufvud J, Kähkönen E, Reijula K. 1998. Measurement and analysis of nicotine and other VOC in indoor air as an indicator of passive smoking. Am Occup Hyg 60(2):123–124.

Sánchez-Martínez F, López MJ, Nebot M, Ariza C. 2007. Exposicion al humo ambiental de tabaco en centros de trabajo antes de la entrada en vigor de la Ley 26/2005 de medidas sanitarias frente al tabaquismo [in Spanish], Med Clin (Barc) 16(12):310–113.

Semple S, Creely KS, Naij A, Miller BG, Ayres JG. 2007a. Secondhand smoke levels in Scottish pubs: the effect of smoke-free legislation. Tob Control 16(2):127–132.

Semple S, Maccalman L, Naji AA, Dempsey S, Hilton S, Miller BG, et al. 2007b. Bar workers’ exposure to second-hand smoke: the effect of Scottish smoke-free legislation on occupational exposure. Am Occup Hyg 51(7):511–518.

Swinhufvud J. 2007. An enforceable indoor air quality standard for environmental tobacco smoke in the workplace. Risk Anal 27(4):463–475.

http://www.ine.es/jaxi/tabla.do?type=pcaxis&path=/i28/ p004x2000/00f8f6e-0201005.pn [Accessed 24 Jun 2007].

Victora CG, Habicht JP, Bryce J. Evidence-based public health: moving beyond randomized trials. Am J Public Health 94(3):400–405.

Villalobos JL. 2006. De las propuestas del movimiento de preven- ción al consenso político: la ley de medidas sanitarias contra el tabaquismo [in Spanish]. Gac Sanit 20:1–3.