Polymorphisms in NFKB1 and TLR4 and Interaction with Dietary and Life Style Factors in Relation to Colorectal Cancer in a Danish Prospective Case-Cohort Study

Kopp, Tine Iskov; Andersen, Vibeke; Tjoøneland, Anne; Vogel, Ulla Birgitte

Published in:
PLOS ONE

Link to article, DOI:
10.1371/journal.pone.0116394

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kopp, T. I., Andersen, V., Tjoøneland, A., & Vogel, U. B. (2015). Polymorphisms in NFKB1 and TLR4 and Interaction with Dietary and Life Style Factors in Relation to Colorectal Cancer in a Danish Prospective Case-Cohort Study. PLOS ONE, 10(2), [e0116394]. https://doi.org/10.1371/journal.pone.0116394
Polymorphisms in \textit{NFKB1} and \textit{TLR4} and Interaction with Dietary and Life Style Factors in Relation to Colorectal Cancer in a Danish Prospective Case-Cohort Study

Tine Iskov Kopp\(^1\) *, Vibeke Andersen\(^2,3,4\), Anne Tjonneland\(^5\), Ulla Vogel\(^6\)

1 National Food Institute, Technical University of Denmark, 2860 Seborg, Denmark, 2 Organ Center, Hospital of Southern Jutland, 6200 Aabenraa, Denmark, 3 Institute of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark, 4 Medical Department, Regional Hospital Viborg, 8800 Viborg, Denmark, 5 Danish Cancer Society Research Center, 2100 Copenhagen, Denmark, 6 National Research Centre for the Working Environment, 2100 Copenhagen, Denmark

* tinis@food.dtu.dk

Abstract

Maintenance of a balance between commensal bacteria and the mucosal immune system is crucial and intestinal dysbiosis may be a key event in the pathogenesis of colorectal cancer (CRC). The toll-like receptor 4 (TLR4) is an important pattern-recognition receptor that regulates inflammation and barrier function in the gut by a mechanism that involves activation of the nuclear factor–κB (NF–κB) transcription factor. Dietary and lifestyle factors may impact these functions. We therefore used a Danish prospective case-cohort study of 1010 CRC cases and 1829 randomly selected participants from the Danish Diet, Cancer and Health cohort to investigate three polymorphisms in \textit{NFKB1} and \textit{TLR4} and their possible interactions with diet and lifestyle factors in relation to CRC risk. Homozygous carriage of the variant allele of the \textit{TLR4}/rs5030728 polymorphism was associated with increased risk of CRC (incidence rate ratio (IRR) = 1.30; 95% confidence interval (CI): 1.05–1.60; \(P = 0.02\) (gene-dose model); IRR = 1.24; 95%CI: 1.01–1.51; \(P = 0.04\) (recessive model)). Del-carriers of the \textit{NFKB1}/rs28362491 polymorphism had a 17% (95%CI: 1.03–1.34; \(P = 0.02\) increased risk of CRC compared to homozygous carriers of the ins-allele. However, none of these risk estimates withstood adjustment for multiple comparisons. We found no strong gene-environment interactions between the examined polymorphism and diet and lifestyle factors in relation to CRC risk.

Introduction

Colorectal cancer (CRC) is the third most common cancer type in men and the second in women worldwide [1]. Hereditary factors are estimated to contribute to only 35% of the risk [2] emphasizing the importance of environmental factors in the etiology of CRC. Indeed,
dietary and lifestyle factors have been intensively studied for their role in colorectal carcinogenesis; and alcohol, smoking, obesity and high meat intake are now established risk factors for CRC [3–5]. Intake of red and processed meat has the potential of inducing cancer by chemical carcinogens formed during cooking of meat at high temperatures [6], production of toxic fermentation compounds [7–9] or by inducing inflammation due to changes in bacterial composition [10]. Conversely, fibre, fruit and vegetables provide short-chain fatty acids (SCFAs) to the colonic epithelium by fermentation of unabsorbed dietary fibre and starch [11–15]. The SCFA butyrate is important for colonic integrity [14], inhibits growth of cancer cells in vitro [16,17] and has anti-inflammatory properties mainly by the inhibition of nuclear factor—κB (NF-κB) activation [18].

Toll-like receptors (TLR) are important pattern-recognition receptors that regulate inflammation and barrier function in the gut thereby maintaining a balance between commensal bacteria and the mucosal immune system [19,20]. The receptor for gram-negative bacterial lipopolysaccharide (LPS), TLR4, regulates cell proliferation in response to cell injury through induction of cyclooxygenase 2 expression [21] in a cascade that involves activation of NF-κB and epidermal growth factor [22] suggesting that TLR4 is an important element in the transition from inflammation to neoplasia [19]. Indeed, increased expression of TLR4 has been linked to development of inflammation-associated neoplasia [23–26]. In addition, we have previously found evidence that inflammation may contribute to CRC carcinogenesis. Thus, genetically determined high IL-1β and COX-2 levels were associated with increased risk of CRC [27].

Dysbiosis in the gut may be a key event in the pathogenesis of both inflammatory bowel diseases (IBD) and CRC. Using functional single nucleotide polymorphisms (SNPs) and their interaction with diet and lifestyle may reveal important pathways for colorectal carcinogenesis [28]. Since TLR polymorphisms have been associated with IBD [29], we aimed to examine a possible mutual mechanism for IBD and CRC.

We have previously shown that carriage of the variant del-allele of the functional ins/del NFKB1/rs28362491 polymorphism is associated with increased risk of CRC and interacted with meat intake in a subset of the current study group [30] in agreement with results from two other studies also reporting increased risk of CRC among variant carriers of the polymorphism among a Malaysian [31] and a Swedish population [32], but not a Chinese study group [32]. A functional SNP in TLR4 (rs4986790) has been extensively studied and has been associated with neoplastic progression in vitro [33], aggressive human colon cancer [33], IBD [34–37] and CRC [38–40]. However others were not able to find an association between CRC and the SNP [41–43]. In a Canadian study [44], intake of dietary saturated fatty acids was inversely related to blood level of high density lipoprotein cholesterol in individuals homozygous for the TLR4/rs5030728 G-allele. TLR4/rs5030728 may therefore interact with dietary components in the gut.

Thus, we expected that inflammation is an important factor in colorectal carcinogenesis and thus examined whether diet and lifestyle factors (non-steroidal anti-inflammatory drugs (NSAID) and smoking) modify CRC risk by altering the mucosal immune response in the gut via interacting with TLR4 and NF-κB. We therefore evaluated three polymorphisms in NFKB1 and TLR4 and their possible interaction with diet and lifestyle factors in a prospective cohort of 1010 CRC cases and 1829 randomly selected participants from the Danish Diet, Cancer and Health Study.

Material and Methods

Studied subjects

The Diet, Cancer and Health study is an ongoing Danish cohort study designed to investigate the relation between diet, lifestyle and cancer risk [45]. The cohort consists of 57,053 persons,
recruited between December 1993 and May 1997. All the subjects were born in Denmark, and the individuals were 50 to 64 years of age and had no previous cancers at study entry. Blood samples and questionnaire data on diet and lifestyle were collected at study entry.

Follow-up and endpoints
Follow-up was based on population-based cancer registries. Between 1994 and 31st December 2009, 1010 CRC cases were diagnosed. A sub-cohort of 1829 persons was randomly selected within the cohort. 28 persons were both cases and sub-cohort due to the used study design [46]. 245 with missing genotype data and 16 with missing data on risk factors were excluded. All information on genotypes and diet and lifestyle factors was available for 915 CRC cases and 1719 sub-cohort members.

Dietary and lifestyle questionnaire
Information on diet, lifestyle, weight, height, medical treatment, environmental exposures, and other socio-economic factors were collected at enrolment using questionnaires and interviews and has been described in details elsewhere [27,47–49]. In short, the food-frequency questionnaire, diet consumption was assessed in 12 categories of predefined responses, ranging from ‘never’ to ‘eight times or more per day’. The daily intake was then calculated by FoodCalc [45]. Smoking status was classified as never, past or current. Persons smoking at least 1 cigarette daily during the last year were classified as smokers. NSAID use (“Aspirin”, “Paracetamol”, “Ibuprofen”, or “Other pain relievers”) was assessed as ≥ 2 pills per month during one year at baseline.

Genotyping
Buffy coat preparations were stored at minus 150°C until use. DNA was extracted as described [50]. The DNA was genotyped by LGC KBioscience (LGC KBioscience, Hoddesdon, United Kingdom) by PCR-based KASP genotyping assay (Error! Hyperlink reference not valid. www.lgcgenomics.com/). NFKB1/rs28362491 was analysed and reported for a subset of the current study group [30]. Two of the polymorphisms (NFKB1/rs28362491 and TLR4/rs4986790) were chosen based on known functionality and their association with CRC [30–33] and IBD [34–37] from a literature search. The TLR4/rs5030728 polymorphism, on the other hand, has no known functionality. However, TLR4/rs4986790 is tightly linked with TLR4/rs5030728 (D’: 1.0; r²: 0.017) using Haploview version 4.2 (Broad Institute of MIT and Harvard, Cambridge) [51] with HapMap3 Genome Browser release #2 (Phase 3) [52]; and since TLR4/rs5030728 has a higher minor allele frequency in Caucasians than TLR4/rs4986790 (0.305 vs. 0.035), this polymorphism is more suitable for gene-environment interaction analyses. To confirm reproducibility, genotyping was repeated for 10% of the samples yielding 100% identity.

Statistical analysis
Deviations from Hardy-Weinberg equilibrium was assessed using a Chi-square test. Incidence rate ratios (IRR) and 95% Confidence Interval (CI) were calculated according to the principles for analysis of case-cohort studies using an un-weighted approach [46]. Age was used as the time scale in the Cox regression models. Tests and confidence intervals were based on Wald’s tests using the robust estimate of the variance-covariance matrix for the regression parameters in the Cox regression models [53] as previously described [27,46,48,54–61].

All models were adjusted for baseline values of risk factors for colorectal cancer such as body mass index (BMI) (kg/m², continuous), use of hormone replacement therapy (HRT) (never/past/current, among women), intake of dietary fibre (g/day, continuous), and red meat
and processed meat (g/day, continuous) and in addition to suspected risk factors such as NSAID use (yes/no) and smoking status (never/past/current). Cereals, fibre, fruit and vegetables were also entered linearly. All analyses were stratified by gender, so that the basic (underlying) hazards were gender specific. For all the polymorphisms, IRR was calculated separately for heterozygous and homozygous variant allele carriers. For TLR4/rs4986790 and NFKB1/rs28362491, variant allele carriers were subsequently grouped for interaction analyses since no recessive effects were observed. TLR4/rs5030728 was inferred both in a gene-dose and a recessive mode in the subsequent analyses.

Moreover, we assessed weekly use of NSAID based on the results of a study of colorectal cancer within the Diet, Cancer and Health cohort [62] reporting that long-term consistent use of Aspirin or Non-Aspirin NSAID appears necessary to achieve a protective effect. However, there were no differences in risk estimates between monthly or weekly use, consequently, to maintain the statistical power in the strata; we used monthly NSAID use in the analyses.

The likelihood ratio test was used for interaction analyses between the studied polymorphisms and intake of red and processed meat, dietary fibre, cereals, fish, fruits, vegetables, alcohol intake, smoking status and NSAID use. In interaction analyses where the dietary factors were entered as categorical variables, tertile cutpoints were based on the empirical distribution among male and female cases, respectively. The possible interactions were investigated using the likelihood ratio test.

All analyses were performed using SAS version 9.3 (SAS Institute Inc., Cary, NC). A p < 0.05 was considered to be significant. Moreover, to test for multiple comparisons, Bonferroni correction was used.

Ethics statement

All participants gave verbal and written informed consent. The Diet, Cancer and Health study was approved by the National Committee on Health Research Ethics (journal nr. (KF) 01–345/93) and the Danish Data Protection Agency.

Results

Baseline characteristics of the study population are presented in Table 1. Among sub-cohort members, the genotype distribution of the SNPs did not deviate from Hardy-Weinberg equilibrium (results not shown).

Associations between polymorphisms and CRC

Homozygous variant carriers of the TLR4/rs5030728 polymorphism were at 1.30-fold (95%CI: 1.05–1.60) increased risk of CRC in a gene-dose model and at 1.24-fold (95%CI: 1.01–1.51) increased risk of CRC compared to wild type and heterozygous carriers in a recessive model (Table 2). Moreover, carriers of the NFKB1 del-allele had a 17% (95%CI: 1.03–1.34) increased risk of CRC compared to homozygous carriers of the ins-allele (Table 2). These risk estimates did not, however, reach statistically significance after Bonferroni correction. There was no interaction between the two risk genotypes TLR4/rs5030728 and NFKB1/rs28362491 but on the other hand, there was no additive effect of being homozygous carrier of both variant alleles (S1 Table).

Gene-environment analyses

We found no interaction between any of the dietary factors and the studied polymorphisms in relation to risk of CRC in the linear analyses (S2 Table). In the tertile analyses, there was weak interaction between TLR4/rs5030728 and intake of vegetables (Gene-dose model: P-value for
Moreover, a borderline statistically significant interaction between meat intake and the NFKB1/rs28362491 polymorphism \((P_{\text{int}} = 0.06) \) was found (Table 3). For ins-carriers, risk estimates were comparable across tertiles of meat intake. Conversely, among del-carriers, intake of meat in the second \((\text{IRR} = 1.46; 95\% \text{CI}: 1.17–1.83) \) and third tertile \((\text{IRR} = 1.24; 95\% \text{CI}: 0.99–1.56) \) was associated with risk of CRC, whereas del-allele carriers were not at risk in the first tertile with low meat intake \((\text{IRR} = 0.98; 95\% \text{CI}: 0.78–1.23) \). With regard to alcohol, variant carriers of NFKB1/rs28362491 and homozygous A-allele carriers of TLR4/rs5030728 were associated with CRC risk compared to the homozygous wild type carriers among participants with a low intake of alcohol. Furthermore, for variant carriers of all three polymorphisms, a low intake (first tertile) of alcohol was associated with the highest CRC risk compared with moderate (second tertile) intake—which was associated with the lowest risk—and high alcohol intake (third tertile) (Table 3).

There was no interaction between NSAID use or smoking status and the studied genotypes (S3 and S4 Tables). Among non-smokers (S4 Table), however, the TLR4/rs5030728

Table 1. Baseline characteristics of the study participants by selected demographic and established CRC risk factors.

Variable	Cases	Sub-cohort	IRR\(^a\) (95% CI)
	n (%) Median (5–95%)	n (%) Median (5–95%)	
Total	915 (100) 1719 (100)	1.03 (1.00–1.06)\(^a\)	
Sex			
Men	515 (56) 920 (54)	1.04 (0.88–1.23) \(^b\)	
Women	400 (44) 799 (46)	1.11 (0.94–1.30) \(^b\)	
Age at inclusion (years)	58 (51–64) 56 (50–64)		
BMI (kg/m\(^2\))	26.3 (20.7–34.3) 25.6 (20.5–33.0)	1.03 (1.00–1.06)\(^a\)	
Food intake (g/day)			
Alcohol\(^b\)	15.1 (1.0–71.6) 14.2 (1.2–65.3)	1.03 (1.00–1.07)\(^a\)	
Dietary fibre	19.9 (10.8–32.9) 20.7 (10.7–34.2)	0.88 (0.80–0.97)\(^f\)	
Red and processed meat	113.1 (47.4–233.4) 108.9 (41.5–235.4)	1.03 (1.00–1.06)\(^a\)	
Smoking status			
Never	274 (30) 572 (33)	1.00 (ref.)	
Past	280 (31) 513 (30)	1.04 (0.88–1.23) \(^b\)	
Current	361 (39) 634 (37)	1.11 (0.94–1.30) \(^b\)	
NSAID use\(^c\)			
No	632 (69) 1174 (68)	1.00 (ref.)	
Yes	283 (31) 545 (32)	0.99 (0.86–1.14)	
HRT use among women			
Never	246 (62) 418 (52)	1.00 (ref.)	
Past	50 (13) 126 (16)	0.66 (0.49–0.90) \(^e\)	
Current	104 (26) 255 (32)	0.74 (0.59–0.93) \(^e\)	

Values are expressed as medians (5th and 95th percentiles) or as fractions (%).

\(^a\)IRRs for CRC—mutually adjusted.

\(^b\)Among current drinkers.

\(^c\)NSAID use is defined as ≥ 2 pills per month during one year.

\(^d\)Risk estimate per 2 kg/m\(^2\) increment of BMI.

\(^e\)Risk estimate for the increment of 10 g alcohol per day.

\(^f\)Risk estimate for the increment of 10 g dietary fibres per day.

\(^g\)Risk estimate for the increment of 25 g red and processed meat per day.

\(\text{doi:10.1371/journal.pone.0116394.t001} \)
polymorphism demonstrated gene-dose effect which is comparable with the results seen among participants with low intake of alcohol (Table 3). In a model where the risk of CRC was inferred per 25 g intake of meat per day subdivided by NSAID use, the risk of CRC by meat intake increased in a dose-dependent manner among variant allele carriers of TLR4/rs5030728 in the absence of NSAID use, but not among NSAID-users (S5 Table). Thus, meat intake was not associated with risk among homozygous carriers of the wild type allele, whereas meat intake was associated with a 4% increased risk per 25 g meat/day (95%CI: 1.00–1.09) among heterozygotes and 11% increased risk among homozygous variant allele carriers (95%CI: 1.02–1.22). However, there were no statistically significant interactions (S5 Table).

Discussion

In the present study, we found that homozygous variant carriage of TLR4/rs5030728 and variant carriage of the NFKB1/rs28362491 polymorphism were associated with increased risk of CRC, but not after correction for multiple testing. We only found weak interactions with a few dietary factors and, thus, we were not able to reproduce the previously found interaction between the NFKB1/rs28362491 polymorphism and meat intake. The lack of association between TLR4/rs4986790 and CRC found in the present study could possibly be due to the very low variant allele frequency in the Danish population. Only one person was homozygous variant allele carrier. We therefore cannot exclude that the functional effect of this SNP affects colorectal carcinogenesis.

The NFKB1/rs28362491 polymorphism has rather consistently been associated with CRC risk [30–32], and to some extend also IBD [29,63,64]. As previously described [65,66], NFKB1 encodes the p50/p105 subunits of the transcription factor NF-κB. NF-κB consists of homo- or

TLR4	rs4986790	n_cases (%)	n_sub-cohort (%)	IRRa (95% CI)	IRRb (95% CI)	P-valuec
AA	839 (92)	1577 (92)	1.00 (ref.)	1.00 (ref.)	-	
GA	76 (8)	141 (8)	0.99 (0.79–1.25)	1.00 (0.79–1.26)	0.98	
GG	0 (0)	1 (0)	-	-	-	
GA+GG	76 (8)	142 (8)	0.99 (0.79–1.25)	1.00 (0.79–1.26)	0.97	
rs5030728	GG	405 (44)	826 (48)	1.00 (ref.)	1.00 (ref.)	-
GA	399 (44)	731 (43)	1.10 (0.96–1.26)	1.11 (0.96–1.27)	0.16	
AA	111 (12)	162 (9)	1.30 (1.06–1.61)	1.30 (1.05–1.60)	0.02	
GA+AA	510 (56)	398 (23)	1.14 (1.00–1.30)	1.14 (1.00–1.30)	0.05	
AA vs. GG+GA	111 (12)	162 (9)	1.24 (1.02–1.52)	1.24 (1.01–1.51)	0.04	

NFKB1	rs28362491	Ins/Ins	Ins/Del	Del/Del	Ins/Del+Del/Del	n_cases (%)	n_sub-cohort (%)	IRRa (95% CI)	IRRb (95% CI)	P-valuec
Ins/Ins	320 (35)	679 (60)	1.00 (ref.)	1.00 (ref.)	-					
Ins/Del	449 (49)	787 (46)	1.19 (1.03–1.37)	1.19 (1.03–1.37)	0.02					
Del/Del	146 (16)	253 (15)	1.13 (0.93–1.37)	1.14 (0.94–1.38)	0.18					
Ins/Del+Del/Del	595 (65)	1040 (61)	1.17 (1.02–1.34)	1.17 (1.03–1.34)	0.02					

a Crude—adjusted for age and sex.
b In addition, adjusted for smoking status, alcohol intake, HRT status (women only), BMI, use of NSAID, intake of red and processed meat, and dietary fibre.
c P-value for the adjusted estimates.

doi:10.1371/journal.pone.0116394.t002
Table 3. IRR for CRC for tertiles of intake of dietary factors for the studied polymorphisms.

Polymorphism	Dietary Factor	1.tertile	2.tertile	3.tertile	P-value^b	1.tertile	2.tertile	3.tertile	P-value^b	
	Red and processed meat	Nc	Ns	Nc	Ns	Nc	Ns	Nc	Ns	
	Fish	Nc	Ns	Nc	Ns	Nc	Ns	Nc	Ns	
TLR4/rs4986790	AA	273	598	248	457	288	522	1.00 (ref.)	1.31 (1.11–2.55)	
	GA	29	49	27	48	20	45	1.15 (0.77–1.72)	1.22 (0.85–1.76)	
	+GG									
	Dietary cereal	AA	282	445	277	534	280	598	1.00 (ref.)	0.88 (0.74–1.05)
	GA	19	44	30	42	27	56	0.74 (0.46–1.19)	1.01 (0.69–1.47)	
	+GG									
	Fruit	AA	275	487	267	535	277	555	1.00 (ref.)	0.96 (0.81–1.14)
	GA	25	39	22	52	29	51	1.04 (0.69–1.56)	0.81 (0.52–1.27)	
	+GG									
	Alcohol	AA	288	517	277	578	274	482	1.00 (ref.)	0.92 (0.78–1.08)
	GA	33	42	22	53	21	47	1.23 (0.86–1.78)	0.80 (0.52–1.22)	
	+GG									
TLR4/rs5030728	Red and processed meat	GG	134	295	134	255	137	276	1.00 (ref.)	1.19 (0.94–1.51)
	Fish	GA	133	284	134	210	132	237	1.00 (0.79–1.27)	1.34 (1.06–1.55)
	AA	35	68	37	40	39	54	1.06 (0.73–1.55)	1.70 (1.19–2.43)	
	GG	267	579	268	465	269	513	1.00 (ref.)	1.26 (1.06–1.49)	
	GA	35	68	37	40	39	54	1.06 (0.74–1.52)	1.70 (1.21–2.38)	
	+GG									
	Dietary cereal	GG	125	233	136	275	144	318	1.00 (ref.)	0.97 (0.76–1.24)
	Fish	GA	126	211	145	244	128	276	1.10 (0.85–1.41)	1.07 (0.84–1.37)
	AA	50	45	26	57	35	60	1.54 (1.12–2.13)	0.89 (0.58–1.36)	
	GG	251	444	281	519	272	594	1.00 (ref.)	0.97 (0.81–1.17)	
	+GA									

(Continued)
Table 3. (Continued)

	1.tertile	2.tertile	3.tertile																	
	Nc	Ns																		
Fruit																				
AA	50	45	26	57	35	60	1.48 (1.09–1.99)	0.85 (0.57–1.28)	1.28 (0.88–1.87)	0.10	44	50	33	49	34	63	1.30 (0.94–1.78)	1.17 (0.82–1.67)	1.06 (0.74–1.52)	0.79
GG	139	264	135	275	131	287	1.00 (ref.)	0.98 (0.77–1.24)	0.91 (0.70–1.25)	0.10	132	250	130	289	143	287	1.00 (ref.)	1.03 (0.80–1.31)	1.16 (0.90–1.50)	1.16
Vegetables																				
GG	265	476	271	353	268	546	1.00 (ref.)	0.94 (0.79–1.12)	0.94 (0.77–1.15)	0.10	268	437	259	558	277	562	1.00 (ref.)	0.93 (0.78–1.11)	1.03 (0.84–1.26)	0.11
Alcohol																				
GG	133	267	135	306	137	253	1.00 (ref.)	0.98 (0.78–1.25)	0.23 (0.97–1.57)	0.10	130	249	133	270	142	246	1.00 (ref.)	1.03 (0.80–1.31)	1.16 (0.90–1.50)	1.16
Red and processed meat																				
I/D+D/	190	409	203	280	202	351	0.98 (0.78–1.23)	1.46 (1.17–1.83)	1.24 (0.99–1.56)	0.06	207	354	191	328	197	358	1.25 (0.98–1.58)	1.20 (0.94–1.53)	1.13 (0.88–1.44)	0.76
Dietary fibre																				
I	105	187	101	212	114	280	1.00 (ref.)	0.87 (0.66–1.15)	0.91 (0.68–1.22)	0.06	104	202	112	201	104	276	1.00 (ref.)	1.05 (0.81–1.36)	0.75 (0.58–0.99)	0.99
Fruit																				
I/D+D/	187	308	202	371	206	361	1.15 (0.91–1.45)	1.07 (0.85–1.35)	1.12 (0.87–1.45)	0.07	198	301	190	368	207	371	1.31 (1.04–1.65)	1.19 (0.94–1.52)	1.33 (1.03–1.71)	0.37

(Continued)
Table 3. (Continued)

1.tertile	2.tertile	3.tertile	P-value^b															
Nc	Ns	Nc	Ns	Nc	Ns	IRR (95% CI)^a	Nc	Ns	Nc	Ns	Nc	IRR (95% CI)^a	Nc	Ns	Nc	Ns	Nc	IRR (95% CI)^a
Alcohol						1.00 (ref.)							1.08 (0.83–1.40)	1.32 (1.01–1.73)				
I/D+D/D	217	329	188	377	190	334	1.45 (1.15–1.83)	1.16 (0.92–1.48)	1.36 (1.08–1.73)	0.09					1.45 (1.15–1.83)	1.16 (0.92–1.48)	1.36 (1.08–1.73)	0.09

^a Analysis adjusted for smoking status, alcohol intake, HRT status (women only), BMI, use of NSAID, intake of red and processed meat, and dietary fibre.

^b P-value for interaction between polymorphisms and dietary factors for the adjusted estimates

Women: Tertiles of red and processed meat (<74.7773 g, 74.7773 g < and < 102.086 g, > 102.086 g), fish (<27.2196 g, 27.2196 g < and < 43.6676 g, > 43.6676 g), dietary fibre (<16.9701 g, 16.9701 g < and < 22.0983 g, > 22.0983 g), cereals (<135.539 g, 135.539 g < and < 190.481 g, > 190.481 g), fruit (<141.858 g, 141.858 g < and < 266.488 g, > 266.488 g), vegetables (<121.870 g, 121.870 g < and < 213.721 g, > 213.721 g), lactose (<7.54871 g, 7.54871 g < and < 17.1355 g, > 17.1355 g), dairy products (<218.144 g, 218.144 g < and < 454.235 g, > 454.235 g), alcohol (<4.31931 g, 4.31931 g < and < 12.9957 g, > 12.9957 g).

Men: Tertiles of red and processed meat (<116.935 g, 116.935 g < and < 159.387 g, > 159.387 g), fish (<33.3477 g, 33.3477 g < and < 52.7767 g, > 52.7767 g), dietary fibre (<17.5748 g, 17.5748 g < and < 22.4931 g, > 22.4931 g), cereals (<166.378 g, 166.378 g < and < 233.859 g, > 233.859 g), fruit (<90.9913 g, 90.9913 g < and < 193.509 g, > 193.509 g), vegetables (<105.532 g, 105.532 g < and < 186.459 g, > 186.459 g), lactose (<7.93777 g, 7.93777 g < and < 17.2082 g, > 17.2082 g), dairy products (<217.360 g, 217.360 g < and < 461.449 g, > 461.449 g), alcohol (<14.4960 g, 14.4960 g < and < 37.1134 g, > 37.1134 g).

doi:10.1371/journal.pone.0116394.t003
heterodimers of a number of different subunits p65, p50, p105, C-rel and relB [67,68] and the combination determines target gene specificity. As a p65/p50 heterodimer, the complex is pro-inflammatory [68], whereas the p50 homodimer has anti-inflammatory properties [65,67,69,70]. The relative abundance of p50/p65 heterodimers and p50 homodimers will therefore determine the magnitude of inflammation by balancing the pro-inflammatory and anti-inflammatory response [67]. The NFKB1/rs28362491 polymorphism generates a deletion of four nucleotides in the promoter region causing lowered transcription levels and consequently partial depletion of p50 [63]. In agreement with this, it was found that the mRNA levels of NFKB1 were lower in colon biopsies of healthy tissue from homozygous del-carriers compared to heterozygotes [71]. This disfavours the anti-inflammatory response since the formation of the pro-inflammatory p65/p50 heterodimer depends on the concentration of p50, whereas the formation of the anti-inflammatory p50 homodimer depends on the concentration of p50 squared [65].

The TLR4/rs5030728 polymorphism has not yet been linked to CRC [20] and its function is unknown [72]. TLR4/rs4986790, which has been associated with IBD and CRC, is tightly linked with TLR4/rs5030728. It is therefore not clear which of the two polymorphisms is the biologically relevant one. However, our results indicate that carriage of TLR4/rs4986790 was not associated with risk of CRC, whereas carriage of TLR4/rs5030728 was associated with risk. This suggests that the risk conferred by TLR4/rs5030728 carriage was not caused by linkage with TLR4/rs4986790. Interestingly, variant carriage of the TLR4/rs5030728 A-allele has been associated with beneficial response to anti-TNF therapy among patients with IBD [73], implying that these patients may have a higher baseline activity or expression of TLR4.

The two TLR4 SNP are present on several commonly used GWAS arrays (https://www.broadinstitute.org/mpg/snap/ldsearch.php) whereas the ins/del NFKB1/rs28362491 polymorphism is not monitored linkage in GWAS [65]. None of the two TLR4 SNPs were associated with CRC in GWAS. However, our main focus was to search for gene-environment interactions, rather than identifying loci with strong associations to CRC. Gene-environment interactions are rarely assessed in GWAS.

We did not find any strong indications of gene-environment interactions. For variant carriers of NFKB1/rs28362491 and homozygous A-allele carriers of TLR4/rs5030728, risk of CRC among low meat consumers was lower compared to medium and high meat consumers, who had risk estimates between 1.24 and 1.70 indicating a stronger role of meat in colorectal carcinogenesis among subjects with genetically determined high inflammatory response. Alternatively, meat intake covaries with other lifestyle factors that per se induce an inflammatory response that we have not been able to adjust for.

The found interaction with vegetables and TLR4/rs5030728 in the present study is not directly interpretable and could be due to small groups in the tertiles. However, vegetables seemed to slightly increase the risk of CRC in the present study, which should be addressed in other prospective studies.

We had limited statistical power to detect gene-environment interactions. However, the prospective study design used in this study is well suited for gene-environment interaction analyses due to the collection of dietary and lifestyle factors before diagnosis, eliminating the risk of recall bias. Changing in dietary and lifestyle habits during follow-up is, however, possible, but is not expected to result in differential misclassification between cases and the comparison group. In addition, the present study group is homogenous consisting of Danes and two of the studied polymorphisms have high allele frequencies. Using the present study group, we have previously found gene-environment interactions between diet and IL10 rs3024505 (Pint; meat = 0.04, fish = 0.007, fibre = 0.0008, vegetables = 0.0005), IL1B C-3737T (Pint; NSAID use = 0.040), PTGS2 G-765C (Pint; meat = 0.006, fibre = 0.0003, fruit 0.004), and PTGS2...
T8473C (P_{int}; fruit = 0.03) and $PTGS2$ A-1195G (P_{int}; fibre 0.020 and current smoking = 0.046) [27]. We adjusted risk estimates for suspected risk factors and carefully selected the polymorphisms based on function and/or previously findings on association with dietary factors, CRC or IBD. However, none of the analyses withstood adjusting for multiple testing. Thus, we cannot rule out that our findings are due to chance and they should therefore not be considered as significant associations.

In conclusion, this study was not able to demonstrate associations between the studied polymorphisms in the inflammatory mediator genes $NFKB1$ and $TLR4$ as none of the found associations withstood adjustment for multiple comparisons. We found no strong gene-environment interactions between the examined polymorphisms and diet and lifestyle factors in relation to CRC risk.

Supporting Information

S1 Table. IRR for CRC in relation to combinations of $NFKB1$/rs2836249 and $TLR4$/rs5030728 genotypes.

(SDOCX)

S2 Table. Interaction between dietary factors and the studied polymorphisms in relation to CRC risk.

(SDOCX)

S3 Table. Interaction between NSAID use and the studied polymorphisms in relation to CRC risk.

(SDOCX)

S4 Table. Interaction between smoking status and the studied polymorphisms in relation to risk of CRC.

(SDOCX)

S5 Table. Interaction between NSAID use and the studied polymorphisms per 25 g red and processed meat intake per day in relation to CRC risk.

(SDOCX)

Acknowledgments

We thank Nick Martinussen and Katja Boll for technical assistance with data managing; and Jane Christensen for statistical consulting. The project was supported by a PhD stipend from the Danish Research Councils in the programme ‘An integrated approach to risk-benefit assessment of human health effects of food and food contaminants’ (Forskeruddannelsel 2009–10), and by a Mobility PhD grant (09–06 7572) from the Danish Council for Independent Research (www.ufm.dk) and as part of the project: “Beef versus pork consumption in the etiology of cancers in the colon and rectum: investigations performed within the Diet, Cancer and Health cohort” also from the Danish Council for Independent Research; Medical Sciences (grant no. 09–073597) (www.ufm.dk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions

Conceived and designed the experiments: TIK VA UV. Performed the experiments: TIK. Analyzed the data: TIK. Contributed reagents/materials/analysis tools: AT. Wrote the paper: TIK.
References

1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, et al. (2014) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase no. 11 [internet].

2. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, et al. (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from sweden, denmark, and finland. N Engl J Med 343: 78–85. PMID: 10891514

3. Durko L, Malecka-Panas E (2014) Lifestyle modifications and colorectal cancer. Curr Colorectal Cancer Rep 10: 45–54. PMID: 24659930

4. Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, et al. (2011) Preventable exposures associated with human cancers. J Natl Cancer Inst 103: 1827–1839. doi:10.1093/jnci/djr483 PMID: 22158127

5. Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, et al. (2009) Environmental and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int J Cancer 125: 171–180. doi: 10.1002/ijc.24343 PMID: 19350627

6. Santarelli RL, Pierre F, Corpet DE (2008) Processed meat and colorectal cancer: A review of epidemiologic and experimental evidence. Nutr Cancer 60: 131–144. doi:10.1080/01635580701684872 PMID: 18444144

7. Le Leu RK, Young GP (2007) Fermentation of starch and protein in the colon: Implications for genomic instability. Cancer Biol Ther 6: 259–260. PMID: 17426435

8. Cummings JH, Hill MJ, Bone ES, Branch WJ, Jenkins DJ (1979) The effect of meat protein and dietary fiber on colonic function and metabolism. II. bacterial metabolites in feces and urine. Am J Clin Nutr 32: 2094–2101. PMID: 484528

9. Geypens B, Claus D, Evenepoel P, Hiele M, Maes B, et al. (1997) Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut 41: 70–76. PMID: 9274475

10. Le Leu RK, Young GP, Hu Y, Winter J, Conlon MA (2013) Dietary red meat aggravates dextran sulfate sodium-induced colitis in mice whereas resistant starch attenuates inflammation. Dig Dis Sci 58: 3475–3482. doi: 10.1007/s10620-013-2844-1 PMID: 23990000

11. Bingham SA, Day NE, Luben R, Ferrari P, Slimani N, et al. (2003) Dietary fibre in food and protection against colorectal cancer in the european prospective investigation into cancer and nutrition (EPIC): An observational study. Lancet 361: 1496–1501. PMID: 12737858

12. Murphy N, Norat T, Ferrari P, Jenab M, Bueno-de-Mesquita B, et al. (2012) Dietary fibre intake and risks of cancers of the colon and rectum in the european prospective investigation into cancer and nutrition (EPIC). PLoS One 7: e39361. doi:10.1371/journal.pone.0039361 PMID: 22761771

13. Bingham SA (1990) Mechanisms and experimental and epidemiological evidence relating dietary fibre (non-starch polysaccharides) and starch to protection against large bowel cancer. Proc Nutr Soc 49: 153–171. PMID: 2172992

14. De Preter V, Rutgeerts P, Schuit F, Verbeke K, Arijs I (2013) Impaired expression of genes involved in the butyrate oxidation pathway in cohen's disease patients. Inflam Bowel Dis 19: E43–4. doi: 10.1002/ibd.22970 PMID: 22508661

15. Young GP, Hu Y, Le Leu RK, Nyskohus L (2005) Dietary fibre and colorectal cancer: A model for environment—gene interactions. Mol Nutr Food Res 49: 571–584. PMID: 15864783

16. Whitehead RH, Young GP, Bhathal PS (1986) Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut 27: 1457–1463. PMID: 3804021

17. Heerdt BG, Houston MA, Augenlicht LH (1997) Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ 8: 523–532. PMID: 9149903

18. Seguin JP, Raingeard de la Bletiere D, Bourelle A, Leray V, Gervoix N, et al. (2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition: Implications for crohn's disease. Gut 47: 397–403. PMID: 10940278

19. Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat Rev Immunol 10: 131–144. doi: 10.1038/nri2707 PMID: 20098461

20. Slattery ML, Herrick JS, Bondurant KL, Wolff RK (2012) Toll-like receptor genes and their association with colon and rectal cancer development and prognosis. Int J Cancer 130: 2974–2980. doi: 10.1002/ijc.26314 PMID: 21792899

21. Fukata M, Chen A, Klepper A, Krishnareddy S, Vamadevan AS, et al. (2006) Cox-2 is regulated by toll-like receptor-4 (TLR4) signalling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131: 862–877. PMID: 16952555
22. Hornel MW, Normark BH, Vandewalle A, Normark S (2003) Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 198: 1225–1235. PMID: 14568981

23. Garlanda C, Riva F, Veliz T, Polentarutti N, Pasqualini F, et al. (2007) Increased susceptibility to colitis-associated cancer of mice lacking Tlr8, an inhibitory member of the interleukin-1 receptor family. Cancer Res 67: 6017–6021. PMID: 17616656

24. Xiao H, Gulen MF, Qin J, Yao J, Bulek K, et al. (2007) The toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorogenesis. Immunity 26: 461–475. PMID: 17398123

25. Fukata M, Hernandez Y, Conduah D, Cohen J, Chen A, et al. (2009) Innate immune signaling by toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis 15: 997–1006. doi: 10.1002/ibd.20880 PMID: 19229991

26. Fukata M, Abreu MT (2007) TLR4 signalling in the intestine in health and disease. Biochem Soc Trans 35: 1473–1478. PMID: 18031248

27. Andersen V, Holst R, Kopp TI, Tjonneland A, Vogel U (2013) Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective danish case-cohort study. PLoS One 8: e78366. doi: 10.1371/journal.pone.0078366 PMID: 24194923

28. Andersen V, Holst R, Vogel U (2013) Systematic review: Diet-genie interactions and the risk of colorectal cancer. Aliment Pharmacol Ther 37: 383–391. doi: 10.1111/ajp.12180 PMID: 23216531

29. Bank S, Skytt Andersen P, Burisch J, Pedersen N, Roug S, et al. (2014) Polymorphisms in the inflammatory pathway genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARγ are associated with susceptibility of inflammatory bowel disease in a danish cohort. PLoS One 9: e98815. doi: 10.1371/journal.pone.0098815 PMID: 24971461

30. Mohd Suzairi MS, Tan SC, Ahmad Aizat AA, Mohd Aminudin M, Siti Nurfatimah MS, et al. (2013) The functional-94 insertion/deletion ATTG polymorphism in the promoter region of NFKB1 gene increases the risk of sporadic colorectal cancer. Cancer Epidemiol 37: 634–638. doi: 10.1016/j.canep.2013.05.007 PMID: 23806437

31. Lewander A, Butchi AK, Gao J, He LJ, Lindblom A, et al. (2007) Polymorphism in the promoter region of the NFKB1 gene increases the risk of sporadic colorectal cancer in Swedish but not in Chinese populations. Scand J Gastroenterol 42: 1332–1338. PMID: 17852842

32. Eyking A, Ey B, Runzi M, Roig AI, Reis H, et al. (2011) Toll-like receptor 4 variant D299G induces features of neoplastic progression in caco-2 intestinal cells and is associated with advanced human colon cancer. Gastroenterology 141: 2154–2165. doi: 10.1053/j.gastro.2011.08.043 PMID: 21920464

33. Browning BL, Huebner C, Petermann I, Gearry RB, Barclay ML, et al. (2007) Has toll-like receptor 4 been prematurely dismissed as an inflammatory bowel disease gene? association study combined with meta-analysis shows strong evidence for association. Am J Gastroenterol 102: 2504–2512. PMID: 17850411

34. Brand S, Staudinger T, Schnitzler F, Pfennig S, Hofbauer K, et al. (2005) The role of toll-like receptor 4 Asp299Gly and Thr399Ile polymorphisms and CARD15/NOD2 mutations in the susceptibility and phenotype of crohn’s disease. Inflamm Bowel Dis 11: 645–652.

35. Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, et al. (2004) Deficient host-bacteria interactions in inflammatory bowel disease? the toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with crohn’s disease and ulcerative colitis. Gut 53: 987–992. PMID: 15194649

36. De Jager PL, Franchimont D, Waliszewska A, Bitton A, Cohen A, et al. (2007) The role of the toll receptor pathway in susceptibility to inflammatory bowel diseases. Genes Immun 8: 387–397. PMID: 17538633

37. Kutikhin AG, Yuzhalin AE, Volkov AN, Zhivotovsky AS, Brusina EB (2014) Correlation between genetic polymorphisms within IL-1B and TLR4 genes and cancer risk in a russian population: A case-control study. Tumour Biol.

38. Pimentel-Nunes P, Teixeira AL, Pereira C, Gomes M, Brandao C, et al. (2013) Functional polymorphisms of toll-like receptors 2 and 4 alter the risk for colorectal carcinoma in europeans. Dig Liver Dis 45: 63–69. doi: 10.1016/j.dld.2012.08.006 PMID: 22999059

39. Boraska Jelavic T, Barisic M, Drmci Hofman I, Boraska V, Vrdoljak E, et al. (2006) Microsatellite GT polymorphism in the toll-like receptor 2 is associated with colorectal cancer. Clin Genet 70: 156–160. PMID: 16679199
41. Omrane I, Baroudi O, Kourda N, Bignon YJ, Uhrhammer N, et al. (2014) Positive link between variant toll-like receptor 4 (Asp299Gly and Thr399Ile) and colorectal cancer patients with advanced stage and lymph node metastasis. Tumour Biol 35: 545–551. doi: 10.1007/s13277-013-1075-6 PMID: 23949880

42. Davoodi H, Seow HF (2011) Variant toll-like receptor4 (Asp299Gly and Thr399Ile alleles) and toll-like receptor2 (Arg753Gln and Arg677Trp alleles) in colorectal cancer. Iran J Allergy Asthma Immunol 10: 91–99. doi: 010.02/ijaa.9199 PMID: 21625017

43. Landi S, Gemignani F, Bottai F, Gioia-Patricola L, Guino E, et al. (2006) Polymorphisms within inflammatory genes and colorectal cancer. J Negat Results Biomed 5: 15. PMID: 17062130

44. Cuda C, Badawi A, Karmali M, El-Soehmy A (2011) Polymorphisms in toll-like receptor 4 are associated with factors of the metabolic syndrome and modify the association between dietary saturated fat and fasting high-density lipoprotein cholesterol. Metabolism 60: 1131–1135. doi: 10.1016/j.metabol.2010.12.006 PMID: 21306745

45. Tjonneland A, Olsen A, Boll K, Stripp C, Christensen J, et al. (2007) Study design, exposure variables, and socioeconomic determinants of participation in diet, cancer and health: A population-based prospective cohort study of 57,053 men and women in Denmark. Scand J Public Health 35: 432–441. PMID: 17786808

46. Barlow WE, Ichikawa L, Rosner D, Izumi S (1999) Analysis of case-cohort designs. J Clin Epidemiol 45: 829–836. doi: 10.1016/S0895-4356(98)00184-3 PMID: 10580779

47. Andersen V, Christensen J, Ernst A, Jacobsen BA, Tjonneland A, et al. (2011) Polymorphisms in NF-kappaB, PXR, LXR, PPARgamma and risk of inflammatory bowel disease. World J Gastroenterol 17: 197–206. doi: 10.3748/wjg.v17.i1.197 PMID: 21245992

48. Andersen V, Egberg R, Tjonneland A, Vogel U (2012) Interaction between interleukin-10 (IL-10) polymorphisms and dietary fibre in relation to risk of colorectal cancer in a Danish case-cohort study. BMC Cancer 12: 183–2017. doi: 10.1186/1471-2407-12-183.

49. Tjonneland A, Overvad K, Haraldsdottir J, Bang S, Ewertz M, et al. (1991) Validation of a semiquantitative food frequency questionnaire developed in Denmark. Int J Epidemiol 20: 906–912. PMID: 1800429

50. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16: 1215. PMID: 3344216

51. Barrett JC, Fry B, Maller J, Daly MJ. (2005) Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265. PMID: 15297300

52. International HapMap Consortium (2003) The international HapMap project. Nature 426: 789–796. PMID: 14685227

53. Barlow WE (1994) Robust variance estimation for the case-cohort design. Biometrics 50: 1064–1072. PMID: 7786988

54. Andersen V, Ostergaard M, Christensen J, Overvad K, Tjonneland A, et al. (2009) Polymorphisms in the xenobiotic transporter multidrug resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study. BMC Cancer 9: 407–2047. doi: 10.1186/1471-2407-9-407.

55. Vogel U, Christensen J, Dybdahl M, Friis S, Hansen RD, et al. (2007) Prospective study of interaction between alcohol, NSAID use and polymorphisms in genes involved in the inflammatory response in relation to risk of colorectal cancer. Mutat Res 624: 88–100. PMID: 17544013

56. Andersen V, Christensen J, Overvad K, Tjonneland A, Vogel U (2011) Heme oxygenase-1 polymorphism is not associated with risk of colorectal cancer: A Danish prospective study. Eur J Gastroenterol Hepatol 23: 282–285. doi: 10.1097/MEG.0b013e3283417776 PMID: 21191307

57. Andersen V, Agerstjerne L, Jensen D, Ostergaard M, Saebo M, et al. (2009) The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case-control study. BMC Med Genet 10: 18–1072. doi: 10.1016/j.mrfmmm.2009.01.009 PMID: 19428376

58. Andersen V, Egeberg R, Tjonneland A, Vogel U (2012) ABC22 transporter gene polymorphisms, diet and risk of colorectal cancer: A Danish prospective cohort study. Scand J Gastroenterol 47: 572–574. doi: 10.3109/00365521.2012.668933 PMID: 22428913

59. Hansen RD, Krath BN, Frederiksen K, Tjonneland A, Overvad K, et al. (2009) GPX1 pro(198)leu polymorphism, erythrocyte GPX activity, interaction with alcohol consumption and smoking, and risk of colorectal cancer. Mutat Res 664: 13–19. doi: 10.1016/j.mrfmmm.2009.01.009 PMID: 19428376

60. Hansen RD, Sorensen M, Tjonneland A, Overvad K, Wallin H, et al. (2008) A haplotype of polymorphisms in ASE-1, RAI and ERCC1 and the effects of tobacco smoking and alcohol consumption on risk of colorectal cancer: A Danish prospective case-cohort study. BMC Cancer 8: 54–2047–8–54.

61. Hansen RD, Sorensen M, Tjonneland A, Overvad K, Wallin H, et al. (2007) XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer. Mutat Res 619: 68–80. PMID: 17363013
62. Friis S, Poulsen AH, Sorensen HT, Tjonneland A, Overvad K, et al. (2009) Aspirin and other non-steroidal anti-inflammatory drugs and risk of colorectal cancer: A danish cohort study. Cancer Causes Control 20: 731–740. doi: 10.1007/s10552-008-9286-7 PMID: 19122977
63. Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ, et al. (2004) Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13: 35–45. PMID: 14613970
64. Borm ME, van Bodegraven AA, Mulder CJ, Kraal G, Bouma G (2005) A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. Int J Immunogenet 32: 401–405. PMID: 16313306
65. Vogel U, Jensen MK, Due KM, Rimm EB, Wallin H, et al. (2011) The NFKB1 ATTG ins/del polymorphism and risk of coronary heart disease in three independent populations. Atherosclerosis 219: 200–204. doi: 10.1016/j.atherosclerosis.2011.06.018 PMID: 21726863
66. Kopp TI, Friis S, Christensen J, Tjonneland A, Vogel U (2013) Polymorphisms in genes related to inflammation, NSAID use, and the risk of prostate cancer among danish men. Cancer Genet 206: 266–278. doi: 10.1016/j.cancergen.2013.06.001 PMID: 23880210
67. Pereira SG, Oakley F (2008) Nuclear factor-kappaB1: Regulation and function. Int J Biochem Cell Biol 40: 1425–1430. PMID: 17693123
68. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8: 49–62. PMID: 17183360
69. Cao S, Zhang X, Edwards JP, Mosser DM (2006) NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 281: 26041–26050. PMID: 16835236
70. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16: 225–260. PMID: 9597130
71. Andersen V, Vogel U, Godiksen S, Frenzel FB, Saebo M, et al. (2013) Low ABCB1 gene expression is an early event in colorectal carcinogenesis. PLoS One 8: e72119. doi: 10.1371/journal.pone.0072119 PMID: 23977225
72. Gast A, Bermejo JL, Claus R, Brandt A, Weires M, et al. (2011) Association of inherited variation in toll-like receptor genes with malignant melanoma susceptibility and survival. PLoS One 6: e24370. doi: 10.1371/journal.pone.0024370 PMID: 21931695
73. Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, et al. (2014) Associations between functional polymorphisms in the NFkappaB signaling pathway and response to anti-TNF treatment in danish patients with inflammatory bowel disease. Pharmacogenomics J.