INTRODUCTION

Music can be described as a harmonious and coherent blend of various frequencies and vibrations (Chowdhury & Gupta, 2015). There have been many studies on the effects of musical sound on plant growth, some of which attempted to refute the view that music influences plant growth (Gagliano, Baroque; Classical; Jazz; Rock; Nature sound; New-age; Waltz. For the duration of the study, music was played for 12 hours each day for seven days. Results showed that a significantly lower number of alfalfa seeds germinated in the rock music treatment. In contrast, the highest percentage of alfalfa seeds germinated in treatments with music that was in the classical, nature sound, and waltz treatments. In lettuce seedlings, significantly longer radicles were observed in the Gregorian chant, new-age, and waltz treatments compared to the control, whereas no such effects were evident in alfalfa seedlings. Significantly longer lettuce hypocotyls were found in Gregorian chant, jazz, nature sound, new-age, and waltz music treatments. Of these, although exposure to jazz and nature sound significantly promoted the growth of lettuce hypocotyls, the growth of alfalfa hypocotyls was inhibited under identical conditions. Lettuce seedlings grown in Gregorian chant, new-age, and waltz music produced both significantly longer radicles and hypocotyls, and are suitable to be used as an alternative method to improve seedling growth and development.

ABSTRACT

The aim of this study was to investigate the effects of music on lettuce and alfalfa seed germination and seedling growth. Nine music treatments were used: Control (no music); Gregorian Chant; Baroque; Classical; Jazz; Rock; Nature sound; New-age; Waltz. For the duration of the study, music was played for 12 hours each day for seven days. Results showed that a significantly lower number of alfalfa seeds germinated in the rock music treatment. In contrast, the highest percentage of alfalfa seeds germinated in treatments with music that was in the classical, nature sound, and waltz treatments. In lettuce seedlings, significantly longer radicles were observed in the Gregorian chant, new-age, and waltz treatments compared to the control, whereas no such effects were evident in alfalfa seedlings. Significantly longer lettuce hypocotyls were found in Gregorian chant, jazz, nature sound, new-age, and waltz music treatments. Of these, although exposure to jazz and nature sound significantly promoted the growth of lettuce hypocotyls, the growth of alfalfa hypocotyls was inhibited under identical conditions. Lettuce seedlings grown in Gregorian chant, new-age, and waltz music produced both significantly longer radicles and hypocotyls, and are suitable to be used as an alternative method to improve seedling growth and development.

Cite this as: Lai, Y.-N., & Wu, H.-C. (2020). Effects of different types of music on the germination and seedling growth of alfalfa and lettuce plants. AGRIVITA Journal of Agricultural Science, 42(2), 197–204. https://doi.org/10.17503/agrivita.v0i0.2613
appropriate responses (Mishra, Ghosh, & Bae, 2016). Studies have also established that plants modulate their growth and development in response to environmental factors such as sound waves and other mechanical perturbations. Studies have demonstrated that roots are able to locate a water source by sensing the vibrations generated by the water moving inside pipes (Gagliano, Grimonprez, Depczynski, & Renton, 2017). Plants have also been shown to be able to communicate similarly through acoustic vibration (Gagliano, Renton, Duvdevani, Timmins, & Mancuso, 2012; Mishra, Ghosh, & Bae, 2016). However, the presence of noise affects the root’s ability to respond correctly to the surrounding soundscapes.

According to Haswell, Phillips, & Rees (2011), plant membranes comprise a large number of mechano-sensitive channels that are believed to be responsive to mechanical vibrations. There is an increasing number of studies that suggest sound vibrations of certain frequencies can positively influence seed germination, root elongation, callus growth, cell cycling, and other plant processes (Chowdhury, Lim, & Bae, 2014; Hendrawan, Rizky, Susilo, Prasetyo, & Damayanti, 2020; Teixeira da Silva & Dobranszki, 2014). In a study on the germination of *Cicer arietinum* (chickpea) seeds exposed to light Indian music, results showed that it promoted the growth and development of these plants (Chowdhury & Gupta, 2015). However, when noise was used during germination, seed growth was hindered. Findings from another study showed that protein content in plants such as soya, spinach, and wheat was positively affected by Indian classical ragas (Creath & Schwartz, 2004; Reddy, Geetha, & Ragavan, 2013). Furthermore, it was also found that the germination of okra and zucchini seeds were stimulated by musical vibrations.

A study by Vanol & Vaidya (2014) exposed guar plants to classical music, rhythmical rock music, and non-rhythmic traffic noise with varying frequencies. Data on seed germination percentage, plant height, and the number of leaves demonstrated that, compared to untreated plants, classical music and rhythmical rock music showed positive effects, whereas non-rhythmic traffic noise negatively affected the plants. However, results of other studies reported that, in comparison to silence treatment, the growth of bean plants was promoted when exposed to any kind of sound (Singh, Jalan, & Chatterjee, 2013; Vanol & Vaidya, 2014). Few studies have investigated how various types of music affect radicle and hypocotyl growth during the germination stage in lettuce and alfalfa, thus, the aim of this study was to determine the effects of different types of music on their germination percentage and seedling growth.

MATERIALS AND METHODS

Plant Material and Growth Conditions

This research was conducted from November 2018 to April 2019 at the Department of Natural Biotechnology, Nanhua University, Taiwan. Lettuce (*Lactuca sativa*) and alfalfa (*Medicago sativa*) seeds were germinated in 90-mm sterile Petri-dishes lined with two pieces of 90-mm filter paper. Six milliliters of reverse osmosis (RO) water was added to each Petri-dish. Each Petri-dish contained 12 seeds, which were arranged in a 3 x 4 layout. The Petri-dishes were sealed with two layers of Parafilm and placed in a box (33 x 33 x 33 cm). Each box, which represented a single treatment, had five Petri-dishes inside. The Petri-dishes were evenly spaced out with a cellphone placed horizontally facing the Petri-dishes. Each box was fitted with 23-mm thick sound-absorbing Nitrile Butadiene Rubber (NBR) on all 6 sides. The seeds were germinated in total darkness. All the boxes with different music treatments were placed far apart at different areas inside a growth room with the temperature adjusted to 25±2°C (daytime) and 20±2°C (nighttime). The relative humidity inside each box was 60-70% throughout the study.

Music Treatments and Playback Conditions

In total, nine music treatments were used, namely: 1) Control (no music); 2) Gregorian Chant; 3) Baroque; 4) Classical; 5) Jazz; 6) Rock; 7) Nature sound; 8) New-age; 9) Waltz (Table 1). A digital sound level meter (Smart Sensor AS804B, Sensor Instruments) was placed inside each box to record the decibel values of each music track. The volume of the music treatments was adjusted to within a similar range. In each music treatment, the track was played for 12 hours (7:00 am to 7:00 pm) for the duration of the study (7 days). Identical cellphones with two speakers were used for music playback in each music treatment. The cellphones were installed with the Automatelt software program and set up to play music automatically at the set time period and duration.

Copyright © 2020 Universitas Brawijaya
Statistical Analysis

A total of 60 replicates per treatment was used. The seeds were germinated for 7 days, during which the following data were collected: Germination percentage was collected on the 3rd, 5th, and 7th day. On the 7th day, the radicle length and hypocotyl length of all germinated seedlings were measured. Each seedling was placed on a workbench and its radicle and hypocotyl were carefully straightened against a ruler to take their measurements. Data were analyzed using the Chi-square test and Duncan’s Multiple Range Test to compare germination % and treatment means, respectively, using SPSS v. 17 software.

RESULTS AND DISCUSSION

Effect of Different Types of Music on Germination Percentage

In lettuce seeds, high germination percentages were evident throughout all music treatments. Results showed that no significant differences were found between the different types of music on the germination percentage of lettuce seeds after 3, 5, or 7 days (Table 2). After 7 days, the lowest and highest germination percentages were found in the classical (93.3%) and nature sound treatments (100%), respectively, while 98.3% of lettuce seeds germinated in the control treatment. On the contrary, significant differences were observed among music treatments in alfalfa seed germination after 5 days and 7 days, namely, classical, nature sound, and waltz music showed 100% germination, whereas rock music significantly reduced the germination percentage (91.7%) (Table 3). These findings are in agreement with those reported by Chivukula & Ramaswamy (2014) where rock music containing hardcore vibrations was found to inhibit plant growth. However, it is also important to note that other characteristics of rock music may also be an important factor in their effects on seed germination, which could be a factor in the present study as the inhibitory effects of the rock music treatment on alfalfa seed germination were not as profound as one would expect, with over 90% germination. Evidence of this nature has been shown in literature where, despite rock music often being referred to as ‘noise’ or ‘unharmonious’ music, there are studies that found positive influences. Specifically, regardless of the type of music played, it seems those that are considered rhythmic music or rhythmic frequencies tend to have a positive effect. This was demonstrated in the study by Vanol & Vaidya (2014) where rhythmic rock music showed a positive effect on the germination of seeds. Ekici, Dane, Mamedova, Metin, & Huseyinov (2007) also found rhythmic music to positively affect root elongation and mitotic division in onion root tips during germination. Thus, compelling cases demonstrating rhythmic differences in music that directly affect germination seem to be gaining recognition.
Nevertheless, the results of the present study suggest that the rhythmic characteristics of music are not solely responsible for affecting seed germination, given that the unharmonious, non-rhythmic hard rock music used in this study significantly inhibited alfalfa seed germination but did not cause significant adverse effects in lettuce seed germination. This finding is indicative of the importance of taking into consideration the different facets that makeup music, such as rhythm, melody, harmony, repetition or variation, and instruments, and how each component individually or in combination can affect seed germination or plant growth. Furthermore, it is particularly noteworthy that both lettuce and alfalfa seeds exposed to nature sound and classical music, respectively, were the only treatments that had 100% germination by day 3 (Table 2; Table 3). These results agree with those reported by Vanol & Vaidya (2014), where classical music was found to have a positive effect on guar seed germination.

Effect of Different Types of Music on Radicle Growth

In lettuce seedlings, results showed that after 7 days, significantly higher radicle lengths were observed in the Gregorian chant, new-age, and
waltz treatments compared to the control (Table 4). Of these three treatments, seedlings in the Gregorian chant and waltz treatments produced the longest radicles, which were significantly longer than those exposed to new-age music. With regard to the radicle growth of alfalfa seedlings, no significant differences were found between all treatments (Table 4). Nevertheless, results indicated that alfalfa seeds grown with jazz music tend to have shorter radicles, whereas those germinated in Gregorian chant and classical music tend to produce longer radicles.

Metabolism in plants can be influenced by music, including its frequency (Hz) (Chowdhury & Gupta, 2015). According to Coghlan (1994), the production of protein increases when music at the appropriate frequency is played, which stimulates overall plant growth. Similarly, it has been found that audible sound at 125 Hz and 250 Hz frequencies, plant genes are more active in DNA code translation, and as a result, growth and development are increased (Ekici, Dane, Mamedova, Metin, & Huseyinov, 2007). The results of the present study agree with this finding as shown by the radicles of lettuce seedlings that were exposed to Gregorian chant, which falls close to within the abovementioned frequencies, being significantly longer than most of the other music treatments (Table 4). Nonetheless, these results also clearly showed that the effects of music on radicle growth are highly dependent on plant type as illustrated by the non-significant responses of alfalfa seedlings in all the music treatments. Several reports have shown that music with string instruments such as violins tend to have a positive impact on plant growth (Chivukula & Ramaswamy, 2014; Laad & Viswanathan, 2010; Petrescu, Mustâţea, & Nicorini, 2017; Reddy, Geetha, & Ragavan, 2013). However, in the present study, no significant differences were found in the growth of radicles and hypocotyls of lettuce and alfalfa seedlings between the control treatment and the baroque music treatment, which was primarily performed with violins.

Table 4. The effects of different types of music on radicle growth of lettuce and alfalfa seedlings after 7 days of germination

Treatment	Radicle Length (mm)	Frequency (Hz)	
	Lettuce	Alfalfa	
Control	32.49±8.88ab	39.75±15.89a	-
Gregorian Chant	43.77±9.38c	43.36±17.15a	131 ~ 349
Baroque	32.44±8.80ab	41.62±13.59a	123 ~ 1661
Classical	29.26±10.23a	43.93±15.87a	466 ~ 1397
Jazz	31.48±8.86ab	38.32±12.88a	207 ~ 557
Rock	34.53±11.01b	40.33±14.37a	196 ~ 294
Nature Sound	34.22±10.83c	39.17±16.59a	Pink Noise
New-age	39.76±9.95c	41.76±15.00a	73 ~ 1760
Waltz	43.58±12.71d	41.02±16.59a	147 ~ 1319

Remarks: Different letters in the same column indicate values differ significantly according to Duncan’s Multiple Range test (P ≤ 0.05)
You-Ning Lai and How-Chiun Wu: Music Effects on Alfalfa and Lettuce

Effect of Different Types of Music on Hypocotyl Growth

In lettuce seedlings, except for those in the baroque, classical, and rock music treatments, which had similar hypocotyl lengths to those in the control treatment, the hypocotyls of seedlings grown in all the other music treatments were significantly longer than the control (Table 5). Overall, the highest hypocotyl length was produced in jazz and waltz music treatments, whereas those germinated in the control treatment produced the shortest of all treatments. In contrast to lettuce seedlings, the response of the growth of alfalfa hypocotyls to music was less pronounced. Except for jazz and nature sound, which had significantly shorter hypocotyls, the hypocotyl length of alfalfa seedlings grown without any music was comparable to the other music treatments (Table 5). In general, when lettuce seedlings were exposed to music, there seemed to be a stimulatory effect on hypocotyl growth regardless of the type of music used. The response of lettuce in our study is similar to those reported by Singh, Jalan, & Chatterjee (2013) and Vanol & Vaidya (2014) who found that, in comparison to no sounds, growth of bean plants was promoted when exposed to any type of music treatment. Overall, the results of the present study clearly showed that the growth of both the radicle and hypocotyl of alfalfa seedlings was less responsive to music treatments while the growth of lettuce seedlings was more easily affected by the presence of music.

With regard to the response of plants to green music, which comprises natural sounds such as birds, insects, and water, studies have shown seed germination to be significantly affected when germinated under these treatments (Creath & Schwartz, 2004). In the present study, the hypocotyl growth of lettuce plants was significantly promoted by nature sound compared to the control treatment (Table 5). However, the opposite effect was true in alfalfa seedlings where significantly shorter hypocotyls were observed in nature sound than those in the control treatment. Similar effects on hypocotyl growth were also evident in the jazz treatment (Table 5). This is further evidence that positive or negative responses to a particular type of music are plant-specific, and in the case of this study, only present in certain organs of the seedling as these effects were not observed in the radicle treatments.

Table 5. The effects of different types of music on hypocotyl growth of lettuce and alfalfa seedlings after 7 days of germination

Treatment	Hypocotyl Length (mm)	Frequency (Hz)	
	Lettuce	Alfalfa	
Control	33.93±5.57a	50.11±15.08cde	-
Gregorian Chant	38.63±6.71cd	49.66±11.13cde	131 ~ 349
Baroque	36.20±6.08abc	47.89±13.27bcd	123 ~ 1661
Classical	35.82±7.36ab	50.94±10.93de	466 ~ 1397
Jazz	39.98±9.64d	44.00±9.76e	207 ~ 557
Rock	36.65±8.01abc	45.66±11.50bc	196 ~ 294
Nature Sound	38.34±7.26bcd	39.53±10.35a	Pink Noise
New-age	38.95±6.18bcd	48.17±11.29bcd	73 ~ 1760
Waltz	39.84±6.74d	53.25±13.15a	147 ~ 1319

Remarks: Different letters in the same column indicate values differ significantly according to Duncan’s Multiple Range test (P ≤ 0.05)
CONCLUSION

Rock music was found to significantly inhibit the germination of alfalfa seeds. Results also showed that Gregorian chant, new age, and waltz music were able to induce lettuce seedlings to produce significantly longer radicles and hypocotyls. Compared to seedlings grown without any music, exposure to nature sound or jazz music resulted in inverse effects in the growth of hypocotyls of lettuce and alfalfa. Further studies are needed to determine the specific factors within each music type that causes these effects.

REFERENCES

Chivukula, V., & Ramaswamy, S. (2014). Effect of different types of music on Rosa chinensis plants. *International Journal of Environmental Science and Development*, 5(5), 431–434. https://doi.org/10.7763/ijesd.2014.v5.522

Chowdhury, A. R., & Gupta, A. (2015). Effect of music on plants – An overview. *International Journal of Integrative Sciences, Innovation and Technology*, 4(6), 30–34. Retrieved from https://www.researchgate.net/publication/291086163_Effect_of_Music_on_Plants_-_An_Overview

Chowdhury, M. E. K., Lim, H.-S., & Bae, H. (2014). Update on the effects of sound wave on plants. *Research in Plant Disease*, 20, 1–7. https://doi.org/10.5423/rpd.2014.20.1.001

Coghlan, A. (1994). *Good vibrations give plants excitations*. Retrieved from https://www.newscientist.com/article/mg14219271-500-good-vibrations-give-plants-excitations/

Creath, K., & Schwartz, G. E. (2004). Measuring effects of music, noise, and healing energy using a seed germination bioassay. *Journal of Alternative and Complementary Medicine*, 10(1), 113–122. https://doi.org/10.1089/107555304322849039

Ekici, N., Dane, F., Mamedova, L., Metin, I., & Huseyinov, M. (2007). The effects of different musical elements on root growth and mitosis in onion (*Allium cepa*) root apical meristem (musical and biological experimental study). *Asian Journal of Plant Sciences*, 6, 369–373. https://doi.org/10.3923/ajps.2007.369.373

Gagliano, M. (2013). Green symphonies: A call for studies on acoustic communication in plants. *Behavioral Ecology*, 24(4), 789–796. https://doi.org/10.1093/beheco/ars206

Gagliano, M., Grimonprez, M., Depczynski, M., & Renton, M. (2017). Tuned in: plant roots use sound to locate water. *Oecologia*, 184, 151–160. https://doi.org/10.1007/s00442-017-3862-z

Gagliano, M., Mancuso, S., & Robert, D. (2012). Towards understanding plant bioacoustics. *Trends in Plant Science*, 17(6), 323–325. https://doi.org/10.1016/j.tplants.2012.03.002

Gagliano, M., Renton, M., Duvdevani, N., Timmins, M., & Mancuso, S. (2012). Out of sight but not out of mind: Alternative means of communication in plants. *PLoS ONE*, 7(5), e37382. https://doi.org/10.1371/journal.pone.0037382

Haswell, E. S., Phillips, R., & Rees, D. C. (2011). Mechanosensitive channels: What can they do and how do they do it? *Structure*, 19(10), 1356–1369. https://doi.org/10.1016/j.str.2011.09.005

Hendrawan, Y., Rizky, A., Susilo, B., Prasetyo, J., & Damayanti, R. (2020). The effect of Javanese gamelan music on the growth of Chinese broccoli. *Pertanika Journal of Science and Technology*, 28(1), 69–90. Retrieved from http://www.pertanika.upm.edu.my/Pertanika%20PAPERS/JST%20Vol.%2028%20(1)%20Jan.%202020/05%20JST-1745-2019.pdf

Jung, J.-H., Kim, S.-K., Kim, J.-Y., Jeong, M.-J., & Ryu, C.-M. (2018). Beyond chemical triggers: Evidence for sound-evoked physiological reactions in plants. *Frontiers in Plant Science*, 9(25), 1–7. https://doi.org/10.3389/fpls.2018.00025

Laad, M., & Viswanathan, G. (2010). The influence of sounds of stringed instruments on growth of medicinal plant *Trigonella foenum graecum* (Family Fabaceae). *International Journal of Applied Agricultural Research*, 5(2), 275–282. Retrieved from http://www.ripublication.com/IJAER/ijaarv5n2_15.pdf

Mauck, K. E., De Moraes, C. M., & Mescher, M. C. (2014). Biochemical and physiological mechanisms underlying effects of *cucumber mosaic virus* on host-plant traits that mediate transmission by aphid vectors. *Plant, Cell and Environment*, 37(6), 1427–1439. https://doi.org/10.1111/pace.12249

Mishra, R. C., Ghosh, R., & Bae, H. (2016). Plant acoustics: In the search of a sound mechanism for sound signaling in plants. *Journal of Experimental Botany*, 67(15), 4483–4494. https://doi.org/10.1093/jxb/erw235
You-Ning Lai and How-Chiun Wu: *Music Effects on Alfalfa and Lettuce*

Petrescu, Ş., Mustăţea, R., & Nicorini, I. (2017). The influence of music on seed germination of *Beta vulgaris* L. Var. Cicla L. *Journal of Young Scientist*, V, 67–72. Retrieved from http://journalofyoungscientist.usamv.ro/pdf/vol_V_2017/Art12.pdf

Ramekar, U. V., & Gurjar, A. A. (2016). Empirical study for effect of music on plant growth. In *Proceedings of the 10th International Conference on Intelligent Systems and Control, ISCO 2016* (pp. 1–4). Coimbatore: IEEE. https://doi.org/10.1109/ISCO.2016.7727025

Reddy K. V. G., Geetha, & Ragavan, R. (2013). Classical ragas: A new protein supplement in plants. *Indian Journal of Life Sciences*, 3(1), 97–103. Retrieved from https://www.scribd.com/document/350706853/Classicalragas-a-New-Protein-Supplement-in-Plants

Singh, A., Jalan, A., & Chatterjee, J. (2013). Effect of sound on plant growth. *Asian Journal of Plant Science and Research*, 3(4), 28-30. Retrieved from https://www.imedpub.com/abstract/effect-of-sound-on-plant-growth-14649.html

Teixeira da Silva, J. A., & Dobránszki, J. (2014). Sonication and ultrasound: Impact on plant growth and development. *Plant Cell, Tissue and Organ Culture*, 117, 131–143. https://doi.org/10.1007/s11240-014-0429-0

Vanol, D., & Vaidya, R. (2014). Effect of types of sound (music and noise) and varying frequency on growth of guar or cluster bean (*cyamopsis tetragonoloba*) seed germination and growth of plants. *Quest*, 2(3), 9–14. Retrieved from http://www.aribas.edu.in/Quest/2014/Issue3/3.pdf