Open String Self-energy on the Lightcone Worldsheet Lattice

Georgios Papathanasiou1 and Charles B. Thorn2

\textit{Institute for Fundamental Theory}
\textit{Department of Physics, University of Florida, Gainesville FL 32611}

Abstract

We continue our study of open string perturbation theory on the lightcone worldsheet lattice, which is an $M \times N$ rectangular grid. Here M is the number of P^+ units and N is the number of $i x^+$ units. We extend our previous analysis to the bosonic open string one planar loop self-energy. We find that, when all open string coordinates satisfy Neumann conditions, the ultraviolet worldsheet divergences associated with the closed string tachyon and boundary effects can be cancelled by renormalization of bulk (AM_1) and boundary (BM_0) worldsheet “cosmological constants”. The bulk divergence for the open string matches that for the closed string. The open string tachyon mass shift displays the dilaton logarithmic divergence with the correct coefficient for its consistent absorption by renormalization of the string tension. The ultraviolet contribution to the open string gluon mass shift vanishes, in accord with its interpretation as a gauge particle. We also find that when the bosonic string ends on a D-brane additional negative powers of $\ln M$ multiply the bulk and boundary divergences. These can no longer be cancelled by the “cosmological constants”, perhaps pointing to the need, in the presence of D-branes, for the cancellations of divergences provided by supersymmetry.

1E-mail address: georgios@ufl.edu
2E-mail address: thorn@phys.ufl.edu
1 Introduction

The lightcone parameterization of the string worldsheet [1, 2] provides a framework for the description of multiloop interacting string diagrams [3]. The definition of the lightcone worldsheet path integrals on a worldsheet lattice [4] then provides a concrete nonperturbative method to study this multiloop expansion numerically. Monte Carlo methods should be particularly apt when the diagrams are restricted to planar open string multiloop diagrams, for which string interactions decorate the worldsheet lattice in a local manner. This restricted sum of diagrams defines the 't Hooft large N limit [5] of the interacting string theory, where N is the size of the Chan-Paton matrices associated with constraining the ends of each open string to move on a stack of N D-branes. In the case these D-branes are coincident D3-branes, the open string spectrum contains a massless $U(N)$ gauge particle in four spacetime dimensions. This then indicates that the zero slope limit $\alpha' \to 0$ [6] of this sum of diagrams could describe large N QCD [7]. In this article we restrict our worldsheet lattice studies to the bosonic string. We should keep in mind that the bosonic open string tachyon could make applications to QCD problematic, either through a failure to stabilize the vacuum or through a stabilization that breaks the $U(N)$ gauge invariance. If so, these problems might be cured by replacing the bosonic open string with the even G-parity bosonic sector of the Ramond-Neveu-Schwarz model [8–10].

Given that we will focus on the bosonic string, which has open string tachyons and hasn’t been shown to stabilize, it is necessary, for our studies, to impose an infrared cutoff that temporarily stabilizes the theory. As we will describe shortly, there is a nice way to do this in the context of the worldsheet lattice. In effect we can naturally impose an energy cost to the existence of each open string end such that virtual open strings can only exist for relatively short times. Note that closed string tachyons are not affected by this infrared cutoff. But closed strings do not propagate within the planar open string diagrams: in fact their existence is only felt in their disappearance into the vacuum as described by the holes in the multiloop worldsheet. Indeed, if we interpret the holes as closed string emission/absorption by the vacuum, each planar multiloop diagram can be interpreted as a closed string tree in a closed string condensate. Thus the 't Hooft limit just provides us with the subset of diagrams which might stabilize the vacuum via closed string condensation. The divergences, which one would normally think of as infrared properties of the closed string amplitudes, are actually ultraviolet divergences on the open string worldsheet, which are regulated by the worldsheet lattice itself.

Over the last two years, we have been critically analyzing the continuum limit of the lattice path integrals for the simplest one open string loop worldsheets [11, 12], and this article is a continuation of these studies. Our motivation is to clearly understand the UV divergence structure emerging from the continuum limit of the lattice and to determine whether all UV divergences can be consistently dealt with, either through cancellation against naturally defined worldsheet counterterms or through renormalization of the physical parameters of the theory, the string tension T_0 or the 't Hooft coupling $N g^2$. Our previous articles [11, 12] discussed these issues in the context of the one open string loop corrections to the closed string propagator. Because the only boundary was that of the slit describing the open
string loop, the UV divergences, in this case, arise only from the limit that the slit length vanishes. For the open string propagator analyzed in the present article, there are additional UV divergences arising from the collision of the slit with the boundaries of the open string worldsheet. The method of reference [11], which took a string field theory approach to the construction of the one loop propagator proved insufficiently precise to deal with these boundary divergences. But here we successfully apply the worldsheet methods introduced in [12] to this problem. The key is to represent the lattice worldsheet propagator in terms of normal modes in discrete time rather than normal modes in discrete space as was done in [12]. This makes the discrete space dependence explicit so that the boundary contributions to the UV divergence structure can be efficiently analyzed.

The Giles-Thorn (GT) discretization of the worldsheet [4] begins with a representation of the free closed or open string propagator as a lightcone worldsheet path integral defined on a lattice. The lattice replaces the transverse coordinates of the string $x(\sigma, \tau)$, living on a rectangular $P^+ \times T$ domain, with discretely labeled coordinates $x^j_k = x(kaT_0, ja)$, living on an $M \times N$ grid with spacing a, where $P^+ = MaT_0$ and $T = a(N+1)$. The free string propagator is then simply a Gaussian integral

$$D_0 = \int \prod_{kj} dx^j_k e^{-S},$$

$$S = \frac{T_0}{2} \sum_{kj} \left[(x^{j+1}_k - x^j_k)^2 + (x^j_{k+1} - x^j_k)^2 \right] \equiv \frac{T_0}{2} x^T \cdot \Delta^{-1} x,$$

(1)

where the $MN \times MN$ matrix Δ is the lattice worldsheet propagator. Then up to an overall normalization factor $D_0 = \det^{-((D-2)/2)} \Delta^{-1}$, where D is the spacetime dimension ($D = 26$ for the bosonic string).

At zero loops, the UV divergences arising in the continuum limit of the GT lattice representation of the open and closed string propagators reside in bulk and boundary contributions to the ground state energies. The light cone energy is $P^- = (P^0 - P^1)/\sqrt{2}$, and one finds in the continuum limit [4]

$$aP^-_{\text{closed}, G} \sim (D - 2) \left[\alpha_0 M - \frac{\pi}{6M} + O(M^{-2}) \right]$$

(2)

$$aP^-_{\text{open}, G} \sim (D - 2) \left[\alpha_0 M - \beta_0 - \frac{\pi}{24M} + O(M^{-2}) \right]$$

(3)

For the GT lattice one has specifically $\alpha_0 = 2C/\pi$ and $\beta_0 = \ln(1 + \sqrt{2})$ where C is Catalan’s constant. Remembering that $P^+ = aMT_0$, we see that the $1/M$ terms precisely account for the tachyonic masses of the free closed and open strings. As explained in [4] the $\alpha_0 M$ term enters time evolution as an exponential of the combination $TP^- = (N+1)M\alpha_0$ which is simply proportional to the discretized area $(N+1)M$ of the lattice: α_0 is just a contribution to the worldsheet bulk “cosmological constant” expected in any quantum field theory. Because the interactions preserve this discrete area, one can harmlessly introduce a bare bulk cosmological constant A which is ultimately chosen to cancel all bulk contributions to the string energies. Similarly the β_0 can be associated with the free ends of the open string.
because it enters the evolution as an exponential of the combination \(-\beta_0(N+1)\) proportional to the length of the worldsheet boundary. Then we can consistently introduce a bare worldsheet boundary cosmological constant \(B\) chosen to cancel all these boundary contributions to the string energies. Unlike the bulk cosmological constant, this boundary term alters the dynamics. It is this parameter that provides the infrared cutoff we alluded to earlier. It is naturally nonzero: even at zero loops it is necessary to absorb boundary divergences. For the purposes of our lattice studies we are free to choose it large enough to suppress the open string tachyonic instability.

On the GT lattice the sum of all open string multiloop planar diagrams can be obtained by summing over all patterns of missing spatial bonds. Formally, this is achieved by introducing Ising-like variables \(S_k^j = 0, 1\) and taking the worldsheet action to be

\[
S_{\text{Planar}} = \frac{T_0}{2} \sum_{ij} \left[(x_{i+1}^j - x_i^j)^2 + S_i^j(x_{i+1}^j - x_i^j)^2 \right] + (D - 2)B \sum_{kj} (1 - S_k^j) - \sum_{ij} \left[S_j^j(1 - S_i^{j+1}) + S_i^{j+1}(1 - S_i^j) \right] \ln g
\]

\[\equiv \frac{T_0}{2} x^T \cdot [\Delta^{-1} + V(S)] x + A(\{S\}).\] (4)

The terms in \(A(\{S\})\) insert the coupling constant \(g\) in the appropriate way and allow for an open string self-energy counterterm \(B\). Then we have

\[
\mathcal{D} = D_0 \sum_{\{S\}} \det^{-1}(I + V\Delta)e^{-A(\{S\})}.\] (5)

When \(V\) is a sparse matrix, i.e. when there are a relatively small number of missing bonds (e.g. \(\sum_{kj}(1-S_{kj}) < M\), which can be arranged by taking \(B \gg 1\)), this will be a particularly efficient way to evaluate the terms of perturbation theory. Holding \(B\) sufficiently large serves as a physical and convenient infrared regulator in our studies of the properties of the planar diagrams.

The planar open string loop expansion organizes the sum over spins in (6) as a power series in \(g^2\), with the number of loops equal to the number of “holes” in the lattice. Orient the worldsheet so that the time axis (\(\tau\)) is horizontal and the space axis (\(\sigma\)) vertical. Then each hole is a horizontal row of contiguous missing links. The number of missing links is the number of time steps the broken string lasts. In this article we study exclusively one loop corrections to the open string self-energy, or, in this language, a single row of contiguous missing links, as we can see in figure 1. Since we are concerned here with energy shifts to the free string spectrum, the initial and final states are energy eigenstates with the same energy, so we can (and do) take the total number of time steps \(N \to \infty\) keeping the slit’s size finite and its location in the vicinity of \(N/2\). Then a given diagram is characterized by the total number steps in space (i.e. the number of string bits) \(M\), the length of the slit in lattice units (or number of missing links) \((K - 1)\) and the number of spatial steps \(M_1\) between the slit and one of the open string boundaries. The worldsheet path integral will depend on
Figure 1: One loop open string self-energy diagram on the lattice worldsheet. A single open string splits at time J and rejoins at time $J + K$, with total time $N + 1 = J + K + L \to \infty$ and $J, L \sim N/2$. Thus the diagram is characterized by the number of missing links $K - 1$, their position M_1, and total string length M.

M, K, M_1, and in principle K should be summed from 1 to ∞ and M_1 should be summed from 1 to $M - 1$. Of course M is just proportional to the fixed P^+ of the string state whose energy shift is being calculated. The presence of the open string tachyon renders the K sum exponentially divergent.

The nature of this tachyonic divergence is easy to see. In the one loop correction to the open string propagator, the slit represents the propagation of two open strings as an intermediate state. The initial and final state is a single open string, say with (mass)$^2 = 2\pi(n - 1)T_0$ with $n = 0, 1, 2, \ldots$ the mode number of the state. The intermediate state is two open strings with (mass)$^2 = 2\pi(n_1 - 1)T_0, 2\pi(n_2 - 1)T_0$. If the two open strings last for a time $(K - 1)a$, then the amplitude acquires a factor $\exp\{-a(K - 1)\Delta P^-\}$, where

$$a\Delta P^- = \frac{\pi(n_1 - 1)}{M_1} + \frac{\pi(n_2 - 1)}{M - M_1} - \frac{\pi(n - 1)}{M}.$$ \hfill (7)

If $n_1 = 0$ (or $n_2 = 0$) ΔP^- becomes negative for small enough M_1 (or $M - M_1$). If $M_1, M - M_1,$ and M are all of order M in the continuum limit, the coefficient of $(K - 1)$ is of order M^{-1} so as long as $K \ll M$, which is the ultraviolet region we study here, the exponent stays small. On the other hand either M_1 or $M - M_1$ can be as small as 1, in which case the coefficient of $(K - 1)$ in the exponential growth is of order 1, even when $K \ll M$. These large exponential factors cause practical difficulties with numerical studies, but we will show that they are absent from the order M and order M^{-1} contributions to the self-energy.

Because the K sum is divergent, we suspend the sum over K keeping it fixed while we study the large M behavior. The ultraviolet structure that we wish to analyze is defined by slits much shorter than P^+, or in lattice units $K \ll M$. The continuum limit is $M \to \infty$ so we focus on obtaining the limit of our calculations in the regime $1 \ll K \ll M$. As we
contemplate numerical studies of multiloop diagrams, it is natural to restrict the hole size summations by simply taking B sufficiently large, rather than by literally suspending them. With B large enough the tachyonic instability is stabilized, at the expense of losing Lorentz invariance. Thus our conclusions strictly apply to this Lorentz violating cutoff model.

We close this introduction with a brief summary of the results of our previous work and an outline of the rest of this paper. In [11, 12] we analyzed the one loop correction to the closed string energy. In this case the sum over M_1 is trivial: it just supplies a factor of M. Then the self-energy correction has the form of a single sum over the slit length K

$$\Delta P^- = \sum_{K=2}^{\infty} \delta P^+_K$$

and we found for M large at fixed K

$$a\delta P^+_K \sim \alpha(K)M + \frac{c(K)}{M} + \frac{d(K)}{M^3} + \cdots$$

We determined the large K dependence of the coefficients numerically to be $\alpha(K) \sim K^{-3}$, and $c(K) \sim K^{-1}$. Thus the coefficient of M summed over K is finite. This term in the energy is a quadratic divergence, corresponding to the closed string tachyon. Here we see that it is in fact harmless\(^3\). The K^{-1} behavior of the $1/M$ term signals the UV logarithmic divergence due to the closed string dilaton. This divergence is, of course, real but can be absorbed in the slope parameter $\alpha' = 1/(2\pi T_0)$. To prove this it is important that the divergence is universal for all states. Our work on the closed string self-energy showed that $c(K) = 0$ for the graviton, and had the appropriate value for selected massive closed string states to be absorbable into T_0.

In this article we deal with the extra complications of the open string boundaries. In this case the large M expansion at fixed K has many more terms:

$$a\delta P^+_K \sim \alpha'(K)M + b(K) + \frac{c'(K)}{M} + \frac{d'(K)}{M^2} + \cdots$$

Here we will show that $\alpha'(K) = \alpha(K)$, necessary to show the harmlessness of the bulk divergences. We also show that $c'(K) = c(K)/4$ as required for the consistent absorption of the logarithmic divergences into the Regge slope parameter. Moreover, we are able to obtain the large K behavior of the coefficients analytically using the Fisher-Hartwig formula for the asymptotic behavior of Toeplitz determinants [14]. In obtaining these results it is crucial to show that the exponential divergences, due to an intermediate open string tachyon with $P^+/(aT_0) = O(1)$, do not contribute to either the M term or the $1/M$ term. This happens because, before the M_1 sum the expansion has the form $a + b/M^2$ and the order M term only arises by summing M_1 over a range of order M, and similarly for the $1/M$ term which comes from summing the $1/M^2$ term over a similar range. We show that the

\(^3\)The harmlessness of the tachyon divergence in the continuum amplitudes is usually argued by analytic continuation [13].
dangerous exponential divergences contribute only to the \(O(M^0) \) and higher orders in \(1/M \), starting at \(O(1/M^4) \). The constant term can be absorbed in a renormalization of \(B \), but the exponential factors multiplying the \(O(M^{-4}) \) and higher powers of \(1/M \) raise practical obstacles to purely numerical efforts to extract the physically relevant coefficient of \(M^{-1} \). Since these obstacles are directly associated with the open string tachyon instability, there is at least some hope that if a stabilizing mechanism can be identified, the numerical difficulties would be surmounted.

In Section 2 we review and generalize the representations for the worldsheet propagator given in [12]. We then use these results to analyze the open string self-energy for the tachyon (Section 3) and the gluon and selected excited states (Section 4). Then in Section 5 we obtain the large \(K \) behavior of the coefficients in the \(1/M \) expansion of the self energies. Section 6 is devoted to numerical analysis of our results. Our final Section 7 gives a preliminary discussion of the problems arising when we try to describe open strings ending on D-branes, and the possibility that the superstring alleviates them, as indicated by the discretization of the continuum self-energy expressions for the latter.

2 Worldsheet Propagators

We gather in this section the expressions for the propagator on the closed open and Dirichlet worldsheets found in [12] (see also [15]). In that reference the worldsheet propagator was represented as a spatial normal mode expansion. But representations based on temporal normal modes are also useful, so we include them in our presentation.

Of central interest are the worldsheet correlators of the coordinates on the \(M \times N \) lattice corresponding to the free closed or open string.

\[
\Delta_{ij,kl} = \langle x^i_j x^l_k \rangle = \frac{\int D x \ x^i_j x^l_k \ e^{-S}}{\int D x \ e^{-S}} \tag{11}
\]

where the worldsheet action \(S \) is appropriate to the type of string coordinates (closed, open, or Dirichlet) being described. Because the expectations are taken with Gaussian weight, the two point correlator in a single dimension captures all of the relevant information. A straightforward evaluation is to use closure to write the numerator as the product of three string propagators (see Appendix D): one from time 0 to \(j \), one from times \(j \) to \(l \), and the last from time \(l \) to \(+(N+1) \). We choose Dirichlet boundary conditions in time: \(x^0_i = x^{N+1}_i = 0 \).

We can resolve \(x^i_j \), \(x^l_k \) into spatial normal modes \(q^i_m \), \(q^l_n \) respectively. Then because each normal mode integral is independent, \(\langle q^i_m q^l_n \rangle = \delta_{mn} \langle q^i_m q^l_m \rangle \) one ends up with a simple two variable Gaussian to do

\[
\int dq^i_m dq^l_m q^i_m q^l_m \exp \left\{ -\frac{1}{2} \left[A_1 q^i_m q^j_m + A_2 q^j_m q^j_m \right] + 2B q^i_m q^l_m \right\} = -\frac{B}{A_1 A_2 - B^2} \det^{-1/2} \begin{pmatrix} A_1 & B \\ B & A_2 \end{pmatrix}
\]

\[
\langle q^i_m q^l_n \rangle = -\frac{B}{A_1 A_2 - B^2} \delta_{mn} \tag{12}
\]
Here A_1, A_2 and B are read off from the formulas of Appendix D. We set the q’s at the initial and final times to zero.

Then for non-zero modes they are:

$$A_1 = T_0 \sinh \lambda [\coth j \lambda + \coth(l-j) \lambda], \quad A_2 = T_0 \sinh \lambda [\coth(N+1-l) \lambda + \coth(l-j) \lambda], \quad B = \frac{-T_0 \sinh \lambda}{\sinh(l-j) \lambda} \quad (13)$$

$$A_1 A_2 - B^2 = T_0^2 \sinh^2 \lambda \left[1 + \coth j \lambda \coth(N+1-l) \lambda + \coth(l-j) \lambda \right] \quad (14)$$

$$A_1 A_2 - B^2 = \frac{1}{T_0 \sinh \lambda} \frac{\sinh j \lambda \sinh(N+1-l) \lambda \sinh(l-j) \lambda}{\sinh(N+1) \lambda} \quad (15)$$

where λ is λ^o_m or λ^c_m for the open or closed string respectively. For the zero modes

$$A_{10} = T_0 \frac{l}{j(l-j)}, \quad A_{20} = T_0 \frac{(N+1-j)}{(N+1-l)}(l-j), \quad B_0 = -\frac{T_0}{l-j} \quad (16)$$

Then the worldsheet propagator for the open string worldsheet is given by

$$\Delta^o_{ij,kl} = \frac{j(N+1-l)}{(N+1)M} + \frac{2}{M} \sum_{m=1}^{M-1} \frac{1}{\sinh \lambda^o_m} \times \frac{\sinh j \lambda^o_m \sinh(N+1-l) \lambda^o_m}{\sinh(N+1) \lambda^o_m} \cos \frac{m(i-1/2)\pi}{M} \cos \frac{m(k-1/2)\pi}{M}, \quad l > j \quad (17)$$

We must keep in mind that this formula applies when $l > j$. In the opposite case we switch the roles of j and l. In this formula we have chosen to expand in the normal modes of the spatial coordinates i, k. But we could equally well have chosen to expand in normal modes in the time coordinates j, l. In that case the propagator takes the form

$$\Delta^o_{ij,kl} = \frac{2}{N+1} \sum_{n=1}^{N} \frac{1}{\sinh \lambda^o_n} \times \cosh(i-1/2) \lambda^o_n \cosh(M-k+1/2) \lambda^o_n \sin \frac{n j \pi}{N+1} \sin \frac{n l \pi}{N+1}, \quad k > i \quad (18)$$

In this case the formula applies when $k > i$. In the opposite case we switch the roles of k and i.

For string self-energy calculations we want to take $N \to \infty$, but with j, l well away ($O(N)$) from 0, $N+1$. So to study this limit we put $j = (N+1)/2 + \hat{j}$, $l = (N+1)/2 + \hat{l}$,
and take the limit with \(\hat{j}, \hat{l} \) fixed. Then the two representations take qualitatively different forms. In the first case we find

\[
\Delta_{ij,kl}^o \sim \frac{N + 1}{4M} - \frac{|l - j|}{2M} + \frac{1}{M} \sum_{m=1}^{M-1} e^{-|l-j|\lambda_m^o} \frac{m(i - 1/2)\pi}{M} \cos \frac{m(k - 1/2)\pi}{M}
\]
(19)

and we see the zero mode divergence in the first term linear in \(N \). In the second case the sum over \(n \) turns into an integral and we find

\[
\Delta_{ij,kl}^o = \int_0^1 dx \frac{\cosh(i - 1/2)\lambda^o(x) \cosh(M - k + 1/2)\lambda^o(x)}{\sinh\lambda^o(x) \sinh M\lambda^o(x)} \cos x(l - j)\pi
\]
(20)

In this case the zero mode divergence shows up as a divergence in the integral at the lower limit. In obtaining this formula we used

\[
\sin \frac{n j\pi}{N + 1} \sin \frac{n l\pi}{N + 1} = \sin^2 \frac{n\pi}{2} \cos \frac{n\hat{j}\pi}{N + 1} \cos \frac{n\hat{l}\pi}{N + 1} + \cos^2 \frac{n\pi}{2} \sin \frac{n\hat{j}\pi}{N + 1} \sin \frac{n\hat{l}\pi}{N + 1}
\]
(21)

The first term contributes only for odd \(n \) and the second term only for even \(n \). But in the limit \(N \to \infty \) where the sum over \(n \) becomes an integral the right side can be replaced by

\[
\sin \frac{n j\pi}{N + 1} \sin \frac{n l\pi}{N + 1} \to \frac{1}{2} \cos x\hat{j}\pi \cos x\hat{l}\pi + \frac{1}{2} \sin x\hat{j}\pi \sin x\hat{l}\pi = \frac{1}{2} \cos x(\hat{l} - \hat{j})\pi
\]
(22)

If the open string coordinate satisfies Dirichlet boundary conditions, the analogs of (17) and (18) are

\[
\Delta_{ij,kl}^D = \frac{2}{M} \sum_{m=1}^{M-1} \frac{\sinh j\lambda_m^o \sinh(N + 1 - l)\lambda_m^o}{\sinh l\lambda_m^o} \frac{m\pi}{M} \sin \frac{m\pi}{M}, \quad l > j
\]
(23)

and

\[
\Delta_{ij,kl}^D = \frac{2}{N + 1} \sum_{n=1}^{N} \frac{\sinh i\lambda_n^o \sinh(M - k)\lambda_n^o}{\sinh k\lambda_n^o} \frac{n j\pi}{N + 1} \sin \frac{n\pi}{N + 1}, \quad k > i
\]
(24)

Correspondingly the analogs of the \(N \to \infty \) formulas (19) and (20) are

\[
\Delta_{ij,kl}^D = \frac{1}{M} \sum_{m=1}^{M-1} \frac{e^{-|l-j|\lambda_m^o}}{\sinh l\lambda_m^o} \frac{m\pi}{M} \sin \frac{m\pi}{M}
\]
(25)

and

\[
\Delta_{ij,kl}^D = \int_0^1 dx \frac{\sinh i\lambda^o(x) \sinh(M - k)\lambda^o(x)}{\sinh\lambda^o(x) \sinh M\lambda^o(x)} \cos x(l - j)\pi
\]
(26)
In this case the lower end of the integral shows no divergence, because zero modes are absent.

For completeness we also mention the two alternative forms for the worldsheet propagator on the closed string worldsheet. Expansion in spatial normal modes gives

\[\Delta_{c,ij,kl} = \frac{j(N+1-l)}{(N+1)M} + \frac{1}{M} \sum_{m=1}^{M-1} \frac{1}{\sinh \lambda_m^c} \times \frac{\sinh j \lambda_m^c \sinh(N+1-l)\lambda_m^c}{\sinh(N+1)\lambda_m^c} \exp \frac{2m(i-k)i\pi}{M}, \quad l > j \]

(27)

whereas the expansion in temporal normal modes gives

\[\Delta_{c,ij,kl} = \frac{1}{N+1} \sum_{n=1}^{N} \frac{1}{\sinh \lambda_n^o} \frac{\cosh(M/2-|i-k|)\lambda_n^o}{\sinh(M/2)\lambda_n^o} \sin \frac{n j \pi}{N+1} \sin \frac{n l \pi}{N+1} \]

(28)

In the first formula we have used Roman i = \sqrt{-1} to distinguish it from the index i. Then taking the \(N \to \infty \) limit as before leads to, respectively

\[\Delta_{c,ij,kl} \sim \frac{N+1}{4M} - \frac{|l-j|}{2M} + \frac{1}{2M} \sum_{m=1}^{M-1} e^{-|l-j|\lambda_m^c} \exp \frac{2m(i-k)i\pi}{M}. \]

(29)

\[\Delta_{c,ij,kl} = \frac{1}{2} \int_0^l dx \frac{1}{\sinh \lambda_n^o} \frac{\cosh(M/2-|i-k|)\lambda_n^o(x)}{\sinh(M/2)\lambda_n^o(x)} \cos x(l-j)\pi. \]

(30)

3 Open String Tachyon Self-energy

The one loop self-energy of the ground string state (the tachyon) can be extracted from the string field propagator (6) by limiting the Ising spin configurations to those of a single hole of length \(K \) (i.e. \(K - 1 \) missing contiguous missing links), and evaluating the \(N \to \infty \) limit at fixed spin configuration, with the missing links in the vicinity of time \(N/2 \). Excited initial and final string states are suppressed exponentially, so one is left with an amplitude proportional to the ground string expectation of the interaction, i.e. the tachyon self-energy times \(N \). The proportionality constant is removed by simply deleting the factor \(D_0 \) from the expression. The overall factor of \(N \) is removed by fixing the initial time step of the hole at say \(N/2 \), so the Ising spin sum is just the sum over the number of missing links and over the spatial location of the hole. For the closed string that second sum just provides a factor of \(M \) by spatial translation invariance. But it is nontrivial for the open string. After all these steps we arrive at the formula

\[-\Delta P^- = g^2 \sum_{K=2}^{\infty} \sum_{M_1=1}^{M-1} \det^{12} (I + V(M_1,K)\Delta) e^{-24B(K-1)}. \]

(31)

The formula for the closed string tachyon self-energy simplified because the summand is then independent of \(M_1 \) so the \(M_1 \) sum was trivial, leaving only the single sum over \(K \). If \(B \) is
set equal to its free string value, the sum over K is badly divergent because the two string
intermediate states include tachyon contributions which are lower in energy than the single
string tachyon. Thus in our studies we are forced to choose B large enough to regularize this
sum. If one could get the answer as an explicit function of B, one could in principle try to
continue back to the free string value. But the perturbation expansion really doesn’t make
sense unless the tachyon instability is resolved. What one can do is study the sum over Ising
spins nonperturbatively, holding B sufficiently large so that the sums over S are convergent,
and then scan the results as a function of B in search of a meaningful (i.e. Lorentz invariant)
result.

3.1 Self-energy formulas on the continuous worldsheet.

Before doing the worldsheet lattice analysis, we recall the formal continuum expressions for
the open string tachyon and gluon self-energy in cylinder coordinates, following the notations
of [7],

$$
\Delta P_{Tach}^{-} = \frac{C_o}{2 P^+} \int_0^1 dq \frac{1}{q^3 \prod_n (1 - q^{2n})^{24}} \int_0^{2\pi} d\theta \frac{1}{4 \sin^2(\theta/2)} \prod_{n=1}^{\infty} \left(\frac{1 - q^{2n} e^{i\theta}}{1 - q^{2n}} \right)^{-2} (32)
$$

$$
\Delta P_{Gluon}^{-} = \frac{C_o}{2 P^+} \int_0^1 dq \frac{1}{q^3 \prod_n (1 - q^{2n})^{24}} \int_0^{2\pi} d\theta \left[\frac{1 + 24q^2}{4 \sin^2(\theta/2)} - 2q^2 + O(q^4) \right] \left[\frac{1}{4 \sin^2(\theta/2)} - \sum_{n=1}^{\infty} \frac{2nq^{2n}}{1 - q^{2n}} \cos n\theta \right] (33)
$$

where in each case we displayed the UV behavior $q \sim 0$ of the integrand. The conformal
mapping to the lightcone diagram, found in [16], determines the relation of q, θ to the length
T and height σ_1 of the slit. Interestingly, θ is simply proportional to σ_1,
$\theta = 2\pi \sigma_1 / P^+$ exactly. The relation of q to T is an implicit one involving elliptic functions, which we give
only in the UV limit $q \sim 0$:

$$
q = \frac{\pi T T_0}{8 P^+ \sin \pi \sigma_1 / P^+} - \frac{5 + \cos 2\pi \sigma_1 / P^+}{3} \left(\frac{\pi T T_0}{8 P^+ \sin \pi \sigma_1 / P^+} \right)^3 + O(T^5) (34)
$$

$$
\rightarrow \frac{\pi K}{8 M \sin \pi M_1 / M} - \frac{5 + \cos 2\pi M_1 / M}{3} \left(\frac{\pi K}{8 M \sin \pi M_1 / M} \right)^3 + O(K^5) (35)
$$

where the second line shows q in the discretized variables of the lattice, $T = K a$, $\sigma_1 = M_1 T_0 a$.

It is now easy to discretize the self-energy shift in the UV regime using

$$
\frac{C_o}{2 P^+} \int d\theta \int \frac{dq}{q^3} \to \frac{C_o}{a \pi T_0 M^2} \sum_{M_1, K} (1 + O(K^4)) \frac{64 M^2}{K^3} \sin^2 \frac{\pi M_1}{M} (36)
$$
Then for the gluon mass shift we have

\[
a \Delta P_{\text{Gluon}} \rightarrow \frac{16\pi C_o}{T_0} \sum_{M_1, K} \left(\frac{1}{\pi^2 K^3} + \frac{3}{8KM^2\sin^2 \pi M_1/M} - \frac{1}{8KM^2} \cos \frac{2\pi M_1}{M} + \mathcal{O}(K^4) \right)
\]

As discussed above, we deal with the severe IR divergences by suspending the \(K \) sum as we study the large \(M \) limit:

\[
a \delta P_{\text{Gluon}, K} \rightarrow \frac{16\pi C_o}{T_0} \left(\frac{M - 1}{\pi^2 K^3} \right.
+ \left. \frac{1}{4K} \sum_{M_1=1}^{(M-1)/2} \left[\frac{3}{M^2 \sin^2 \pi M_1/M} \cos \frac{2\pi M_1}{M} \right] + \mathcal{O}(K^4) \right)
\]

The first term is just the familiar bulk term, which we also encountered for the closed string, and it can be absorbed in the worldsheet cosmological constant. The first term in square brackets formally can contribute a physically significant \(1/M \) term, but also an order \(M^0 \) term\(^4\). This can be seen as follows:

\[
\sum_{M_1=1}^{(M-1)/2} \frac{1}{M^2 \sin^2 \pi M_1/M} = \sum_{M_1=1}^{(M-1)/2} \left[\frac{1}{M^2 \sin^2 \pi M_1/M} - \frac{1}{\pi^2 M_1^2} \right] + \sum_{M_1=1}^{(M-1)/2} \frac{1}{\pi^2 M_1^2}
\]

\[
\sim \frac{1}{6} - \sum_{m=(M+1)/2}^{\infty} \frac{1}{\pi^2 M_1^2} + \frac{1}{M} \int_0^{1/2} dx \left[\frac{1}{\sin^2 \pi x} - \frac{1}{\pi^2 x^2} \right]
\]

\[
\sim \frac{1}{6} - \frac{2}{\pi^2 (M+1)} + \frac{2}{\pi^2 M} \sim \frac{1}{6} + \mathcal{O}(M^{-2})
\]

In this case the coefficient of the \(1/M \) term is zero! The contribution of the second term in square brackets involves

\[
\sum_{M_1=1}^{(M-1)/2} \frac{1}{M^2} \cos \frac{2\pi M_1}{M} \sim \frac{1}{M} \int_0^{1/2} dx \cos 2\pi x + \mathcal{O}(M^{-2}) = \mathcal{O}(M^{-2})
\]

So in fact there is no \(1/M \) contribution to the gluon self-energy,

\[
a \delta P_{\text{Gluon}, K} \rightarrow \frac{16\pi C_o}{T_0} \left(\frac{M - 1}{\pi^2 K^3} + \frac{1}{8K} + \mathcal{O}(M^{-2}) \right)
\]

\(^4\)Contributions to this constant order \(M^0 \) term also come from higher terms in the \(q \) expansion of the integrand. In general one encounters \(M_1 \) sums of the form

\[
\sum_{M_1=1}^{(M-1)/2} \frac{1}{M^{2n} \sin^{2n} \pi M_1/M} \sim \frac{1}{M^{2n-1}} \int_0^{1/2} dx \left[\frac{1}{\sin^{2n} \pi x} - \sum_{k=1}^{n} \frac{c_k}{x^{2k}} \right] + \sum_{k=1}^{n} \sum_{M_1=1}^{(M-1)/2} \frac{c_k}{M^{2(n-k)} M_1^{2k}}
\]

\[
\sim \sum_{k=1}^{n} c_k \frac{\zeta(2k)}{M^{2(n-k)}} + \mathcal{O}(M^{-2n+1}) = \frac{\zeta(2n)}{\pi^{2n}} + \mathcal{O}(M^{-2}) , \quad n > 1
\]

where the \(c_k \) are chosen to make the integral over \(x \) finite.
consistent with zero mass shift for the gluon.

For the tachyon self-energy the first term in square brackets is the same as in the gluon self-energy and so gives no contribution to a $1/M$ term. The second term in square brackets, however, when discretized becomes

$$-\frac{C_o a}{P^+} \int \frac{dq}{q} \int d\theta \rightarrow -\frac{C_o}{M T_0} \sum_{K} \frac{2\pi}{MK} \sim -\frac{2\pi C_o}{M T_0} \sum_{K} \frac{1}{K}$$

(42)

giving the expected logarithmically divergent tachyon mass shift. As we shall see in the remainder of this article, the analysis of the lattice worldsheet is in qualitative accord with these results.

3.2 Lattice self-energy, single missing link, $K = 2$

In coordinate space, the matrix V for a single missing link at time j and between spatial positions k and $k + 1$ in the open string worldsheet is

$$V_{ml;m'l'} = -\delta_{lj} \delta_{l'j} (\delta_{m,k+1} \delta_{m',k+1} + \delta_{m,k} \delta_{m',k} - \delta_{m,k+1} \delta_{m',k} - \delta_{m',k+1} \delta_{m,k}) ,$$

(43)

exactly as in the closed string worldsheet. Keeping the propagator Δ in coordinate space the necessary determinant of the contributing 2×2 matrix can be taken over from the closed string case:

$$\text{det}(I + V \Delta) = \text{det} \begin{pmatrix} 1 + \Delta_{(k+1)j,kj} - \Delta_{kj,kj} & \Delta_{(k+1)j,(k+1)j} - \Delta_{kj,(k+1)j} \\ -\Delta_{(k+1)j,kj} + \Delta_{kj,kj} & 1 - \Delta_{(k+1)j,(k+1)j} + \Delta_{kj,(k+1)j} \end{pmatrix}$$

$$= 1 - \Delta_{(k+1)j,(k+1)j} + \Delta_{kj,(k+1)j} + \Delta_{(k+1)j,kj} - \Delta_{kj,kj}.$$

(44)

We now substitute for Δ the representation (20) for the open string worldsheet propagator, which for $l = j$ reduces to

$$\Delta^0_{ij,kj} = \int_0^1 dx \frac{\cosh(i - 1/2) \lambda^0(x) \cosh(M - k + 1/2) \lambda^0(x)}{\sinh \lambda^0(x) \sinh M \lambda^0(x)}, \quad k > i$$

(45)

and we remind the reader that for $k < i$ we switch the roles of i and k. It is helpful to rewrite the numerator in the integrand as

$$\cosh(i - 1/2) \lambda^0 \cosh(M - k + 1/2) \lambda^0 = \frac{1}{2} [\cosh \lambda^0(M + i - k) + \cosh \lambda^0(M - k - i + 1)]$$

(46)

$$= \frac{1}{2} [\cosh \lambda^0 M + \cosh \lambda^0(M - 2i + 1)], \quad k = i$$

(47)

$$= \frac{1}{2} [\cosh \lambda^0(M - 1) + \cosh \lambda^0(M - 2i)], \quad k = i + 1$$

(48)
Inserting these results into (44), and relabeling \(k \to M_1 \) to more suitably describe the position of the missing link, leads to
\[
\det(I + V \Delta^o) = \int_0^1 dx \frac{\sinh \lambda^o(x)(M - M_1) \sinh \lambda^o(x)M_1 \tanh \frac{\lambda^o(x)}{2}}{\sinh(\lambda^o(x)M/2) \cosh(\lambda^o(x)M/2)} \tag{49}
\]
Now \(\lambda^o(x) = 2 \sinh^{-1} \sin(\pi x/2) \), and changing integration variables to \(\lambda = \lambda^o \) requires
\[
\frac{d\lambda}{dx} = \frac{\pi \sqrt{1 - \sinh^2(\lambda/2)}}{\cosh(\lambda/2)} \tag{50}
\]
Then we can write
\[
D_{M_1} \equiv \det(I + V \Delta^o) = \frac{1}{\pi} \int_0^{\lambda_0} d\lambda \frac{\sinh \lambda(M - M_1) \sinh \lambda M_1 \sinh(\lambda/2)}{\sinh(\lambda M/2) \cosh(\lambda M/2) \sqrt{1 - \sinh^2(\lambda/2)}} \tag{51}
\]
where \(\lambda_0 = 2 \sinh^{-1} 1 \). It is the value of \(\lambda \) where the argument of the square root in the denominator of the integrand vanishes.

We are interested in the limit \(M \to \infty \) of the quantity
\[
-\delta P^- \equiv \sum_{M_1=1}^{M-1} D_{M_1}^{-1}(D-2) \to \sum_{M_1=1}^{M-1} D_{M_1}^{-12} = 2 \sum_{M_1<M/2} D_{M_1}^{-12} + D_{M/2}\delta_{M,\text{even}}. \tag{52}
\]
We begin with a study of the large \(M \) behavior of \(D_{M_1} \) itself. The explicit \(M \) dependence of the integrand is buried in the ratio of \(\sinh \) and \(\cosh \) factors, which for fixed \(\lambda > 0 \) has the behavior
\[
\frac{\sinh \lambda(M - M_1) \sinh \lambda M_1}{\sinh(\lambda M/2) \cosh(\lambda M/2)} \sim \begin{cases}
1 - e^{-2\lambda M_1} + \mathcal{O}(e^{-\lambda M}) & \text{for } M_1 \leq M/2 \\
1 - e^{-2\lambda(M - M_1)} + \mathcal{O}(e^{-\lambda M}) & \text{for } M_1 \geq M/2
\end{cases} \tag{53}
\]
Here the exponential terms are included to accurately account for the cases \(M_1 = \mathcal{O}(1) \), \(M - M_1 = \mathcal{O}(1) \). These terms are as small as the neglected terms when \(M_1 \) and \(M - M_1 \) are of order \(M \). Next we use \(D_{M-M_1} = D_{M_1} \) to write the sum over \(M_1 \) in terms of a sum over \(M_1 \leq M/2 \). (If \(M \) is odd, it is precisely twice the sum over \(M_1 < M/2 \).) Then we break up
\[
\frac{\sinh \lambda(M - M_1) \sinh \lambda M_1}{\sinh(\lambda M/2) \cosh(\lambda M/2)} = 1 - e^{-2\lambda M_1} + \left[-\frac{2e^{-\lambda M} \sinh^2 M_1 \lambda}{\sinh M \lambda} \right] \tag{54}
\]
and evaluate the integral separately for the first two terms and the term in square brackets:
\[
\frac{1}{\pi} \int_0^{\lambda_0} d\lambda (1 - e^{-2\lambda M_1}) \frac{\sinh(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} = \frac{1}{2} - I_{M_1} \tag{55}
\]
\[
I_{M_1} = \frac{1}{\pi} \int_0^{\lambda_0} d\lambda e^{-2\lambda M_1} \frac{\sinh(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} \tag{56}
\]
We leave the integral defining I_{M_1} unevaluated, but we will need its explicit behavior at large M_1, which can be obtained by expanding the coefficient of $e^{-2\lambda M_1}$ in a power series.

\[
I_{M_1} = \frac{1}{\pi} \int_0^\infty d\lambda e^{-2\lambda M_1} \left[\frac{\lambda}{2} + \frac{\lambda^3}{12} + \cdots \right] + O(e^{-2M_1\lambda_0})
\]

\[
= \frac{1}{8\pi M_1^2} + \frac{1}{32\pi M_1^4} + O(M_1^{-6}) + O(e^{-2M_1\lambda_0}) \tag{57}
\]

The exponentially small corrections to this asymptotic expansion come from the extension of the upper limit from λ_0 to ∞ used to evaluate the power corrections.

Finally we turn to the contribution of the terms enclosed in square brackets to D_{M_1}. By construction it is exponentially small as $M \to \infty$ at fixed λ. Thus in a manner similar to our asymptotic analysis of I_{M_1} we can find its power behaved large M behavior by expanding its coefficient in a power series in λ and extending the upper limit of integration to ∞. The errors in these steps are exponentially small:

\[
\frac{1}{\pi} \int_0^{\lambda_0} d\lambda \left[\frac{\sinh(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} \right] \sim \frac{1}{\pi} \int_0^\infty d\lambda \left(\frac{\lambda}{2M^2} + \frac{\lambda^3}{12M^4} + \cdots \right)
\times \left[-\frac{2e^{-\lambda} \sinh^2(x\lambda)}{\sinh \lambda} \right]
\equiv \frac{f_2(x)}{2\pi M^2} + \frac{f_4(x)}{12\pi M^4} + \cdots \tag{58}
\]

where $x \equiv M_1/M$. Putting everything together we have

\[
D_{M_1} = \frac{1}{2} - I_{M_1} + \frac{f_2(x)}{2\pi M^2} + \frac{f_4(x)}{12\pi M^4} + \cdots \tag{60}
\]

We are interested in the large M behavior of $-\delta P^- \sim aM + b + c/M + \cdots$ through order $1/M$. The sum over M_1 ranges over $M - 1$ values and can thus add up to a power of M to the explicit $1/M$ dependence of the summand. Thus it is sufficient to keep only up to order $1/M^2$ in the summand.

Inserting these results into (52) and expanding to the desired order gives for M odd\(^5\)

\[
-\delta P_{2}^- = 2 \sum_{M_1=1}^{(M-1)/2} \left[\left(\frac{1}{2} - I_{M_1} \right)^{-12} - \frac{12f_2(M_1/M)}{M^2} \left(\frac{1}{2} - I_{M_1} \right)^{-13} \right] \tag{61}
\]

Now I_{M_1} is only small at large M_1 so it is not safe to expand in powers of I_{M_1}. However we can write

\[
\left(\frac{1}{2} - I_{M_1} \right)^{-p} = 2^p + 2^p \left[(1 - 2I_{M_1})^{-p} - 1 \right], \quad p = 12, 13 \tag{62}
\]

\(^5\)When M is even the upper limit is $(M - 2)/2$ and there is an additional term for $M_1 = M/2$. 14
where the second term behaves as $1/M_1^2$ at large M_1. Because of that extra convergence the sum over M_1 does not add a factor of M to the explicit $1/M$ dependence. So for the first term in square brackets, the first term is of order M and the second of order 1:

$$2 \sum_{M_1=1}^{(M-1)/2} \left(1 - I_{M_1} \right)^{-12} = (M - 1)2^{12} + 2^{13} \sum_{M_1=1}^{\infty} \left[(1 - 2I_{M_1})^{-12} - 1 \right]$$

$$-2^{13} \sum_{M_1=(M+1)/2}^{\infty} \left[(1 - 2I_{M_1})^{-12} - 1 \right]$$

$$\sim 2^{12} \left[(M - 1) + 2 \sum_{M_1=1}^{\infty} \left[(1 - 2I_{M_1})^{-12} - 1 \right] - \frac{12}{\pi M} \right]$$

Similarly for the $1/M^2$ term in square brackets, the first term contributes order $1/M$ but the second term stays of order $1/M^2$:

$$-2^{13} \frac{12}{\pi M^2} \sum_{M_1=1}^{(M-1)/2} f_2(M_1/M) (1 - 2I_{M_1})^{-13} \sim -2^{13} \frac{12}{\pi M} \int_0^{1/2} dx f_2(x)$$

So we evaluate

$$\int_0^{1/2} dx f_2(x) = \int_0^{\infty} d\lambda \int_0^{1/2} dx \left[-\frac{2e^{-\lambda} \sinh^2(x\lambda)}{\sinh \lambda} \right] = \frac{\pi^2}{24} - \frac{1}{2}$$

So we finally arrive at the large M behavior

$$-\delta P_2^+ \sim 2^{12} \left[M - 1 + 2 \sum_{M_1=1}^{\infty} \left[(1 - 2I_{M_1})^{-12} - 1 \right] - \frac{\pi}{M} \right] + O(M^{-2})$$

Although for simplicity we assumed that M was odd, it is not difficult to see that the same result holds for M even.

3.3 Single slit with $K - 1$ missing links

As we showed in [12], in the case of a single slit with $K - 1$ missing links between spatial position k and $k + 1$, the path integral (6) involves a determinant of the form

$$\det(I + V\Delta) = \det(h_{lp}) , \quad l, p = 1, 2, \ldots K - 1 ,$$

where

$$h_{lp} = \delta_{lp} + \Delta_{(k+1)l,kp} - \Delta_{kl,kp} + \Delta_{k,(k+1)p} - \Delta_{(k+1)l,(k+1)p} .$$

Focusing on the open string, we insert the two equivalent representations (19) and (20) for the propagators, and again switch to a more distinct notation for the slit position $k \to M_1$,
obtaining respectively

\[h_{lp} = \delta_{lp} - \frac{2}{M} \sum_{m=1}^{M-1} \sin \frac{m\pi}{2M} \sin^2 \frac{m\pi M}{M} \left(\sin \frac{m\pi}{2M} + \sqrt{1 + \sin^2 \frac{m\pi}{2M}} \right)^{-2|l-p|} \]

\[= \int_0^{\lambda_0} d\lambda \frac{\sin \frac{\lambda}{2} \cos \left[2(l-p) \sin^{-1}(\sin \frac{\lambda}{2}) \right]}{\pi \sqrt{1 - \sin^2 \frac{\lambda}{2}}} \left[\sinh \lambda(M - M_1) \sinh \lambda M_1 \right] \frac{\sinh(\lambda M/2) \cosh(\lambda M/2)}{\sinh(M \lambda/2) \cosh(M \lambda/2)} . \]

In what follows we will use the integral form (71). Clearly the only difference from (51) is the additional cosine factor, which carries the dependence on $|l-p|$. The small λ behavior of the first fraction in the integrand of (71) is given by

\[\frac{\sin \frac{\lambda}{2} \cos \left[2(l-p) \sin^{-1}(\sin \frac{\lambda}{2}) \right]}{\pi \sqrt{1 - \sin^2 \frac{\lambda}{2}}} = \frac{\lambda}{2\pi} + \frac{[1 - 3(l-p)^2]}{12\pi} \lambda^3 + O(\lambda^5) . \]

Hence we see that contributions to the asymptotic expansion of h_{lp} coming from the $O(\lambda)$ term will be the same for one or many missing links.

Separating the second fraction in the integrand of (71) according to (54), we similarly obtain

\[h_{lp} = c_{lp} + \epsilon_{lp} = (c_{lp} - I_{lp}) + \epsilon_{lp} , \]

where

\[c_{lp} = \int_0^{\lambda_0} d\lambda \frac{\sin \frac{\lambda}{2} \cos \left[2(l-p) \sin^{-1}(\sin \frac{\lambda}{2}) \right]}{\pi \sqrt{1 - \sin^2 \frac{\lambda}{2}}} = \int_0^1 dx \frac{\sin \frac{\pi x}{2} \cos \left[(l-p)\pi x \right]}{\sqrt{1 + \sin^2 \frac{\pi x}{2}}} , \]

\[I_{lp} = \int_0^{\lambda_0} d\lambda \frac{\sin \frac{\lambda}{2} \cos \left[2(l-p) \sin^{-1}(\sin \frac{\lambda}{2}) \right]}{\pi \sqrt{1 - \sin^2 \frac{\lambda}{2}}} e^{-2M_1 \lambda} , \]

\[\epsilon_{lp} = \int_0^{\lambda_0} d\lambda \frac{\sin \frac{\lambda}{2} \cos \left[2(l-p) \sin^{-1}(\sin \frac{\lambda}{2}) \right]}{\pi \sqrt{1 - \sin^2 \frac{\lambda}{2}}} = \frac{\sinh(\lambda M/2) \cosh(\lambda M/2)}{\sinh(M \lambda/2) \cosh(M \lambda/2)} \left[2 - e^{-2M_1 \lambda} - e^{2M_1 \lambda} \right] . \]

The first part of the matrix element (74) can be shown to coincide with the M-independent part of h_{lp} for the closed string. The c_{ij} combination, for $M_1 \leq (M - 1)/2$, encodes the leading behavior of the integrand for M large.

Expanding as in (72), we may formally do the I_{lp} integral term by term using

\[\int_0^{\lambda_0} \lambda^{s-1} e^{-2M_1 \lambda} = \frac{1}{(2M_1)^s} \int_0^{2M_1 \lambda_0} \lambda^{s-1} e^{-\lambda} = \gamma(s, 2M_1 \lambda) \]

where $\gamma(s, x)$ is the lower incomplete gamma function, which for s a positive integer is

\[\gamma(s, x) = (s-1)! - (s-1)! e^{-x} \sum_{k=0}^{s-1} \frac{x^k}{k!} . \]
This expression is particularly useful for extracting the large M_1 behavior of the integral, since up to exponentially suppressed terms we can write

$$I_{lp} = \frac{1}{8\pi M_1^2} + \frac{1 - 3(l - p)^2}{32\pi M_1^4} + O(M_1^{-6}) + O(e^{-2M_1\lambda}). \quad (79)$$

In a similar fashion, we obtain a large M expansion for the third integral, with $x = M_1/M$ arbitrary,

$$\epsilon_{lp} = \frac{1}{2\pi M^2} f_2(x) + \frac{1 - 3(l - p)^2}{12\pi M^4} f_4(x) + O(M^{-6}) + O(e^{-2M\lambda}), \quad (80)$$

where $f_i(x)$ are the same functions that appeared in the single link case6. Keeping terms of $O(M^{-2})$ for the matrix elements will of course yield the determinant to the same accuracy, and in particular

$$\det(h_{lp}) = \det(\tilde{c}_{lp} + \frac{f_2(x)}{2\pi M^2} + O(M^{-4})) = \det(\tilde{c}_{lp}) \left(1 + \frac{f_2(x)}{2\pi M^2} \sum_{l,p=1}^{K-1} (\tilde{c}^{-1})_{lp} \right) + O(M^{-4}). \quad (81)$$

This will be sufficient for obtaining the tachyon self-energy (31) for fixed K and M_1 summed up to the physically relevant $O(M^{-1})$ term, as the latter sum can contribute an extra factor of M at most7.

Finally, another procedure to evaluate the large M expansion of the sum in question is to add and subtract the value of the summand for large M_1, as we did for the single missing link. In particular, the analogues of (75) for the quantities appearing in (81) are

$$\det(\tilde{c}_{lp}) = \det(\tilde{c}_{lp}) \left(1 - \frac{1}{8\pi M_1^2} \sum_{l,p=1}^{K-1} (c^{-1})_{lp} \right) + O(M_1^{-4}) + O(e^{-2M_1\lambda}), \quad (82)$$

$$\sum_{l,p=1}^{K-1} (\tilde{c}^{-1})_{lp} = \sum_{l,p=1}^{K-1} (c^{-1})_{lp} \left(1 + \frac{1}{8\pi M_1^2} \sum_{l,p=1}^{K-1} (c^{-1})_{lp} \right) + O(M_1^{-4}) + O(e^{-2M_1\lambda}). \quad (83)$$

Thus focusing on M odd, we can calculate the self-energy of a tachyon due to a single slit of $K - 1$ time steps as follows (in all steps we keep terms up to $O(M^{-2})$ in the summand or equivalently $O(M^{-1})$ for the full sum),

$$-\delta P_K^- = \sum_{M_1=1}^{M-1} \det(h_{lp})^{-12} = 2 \sum_{M_1=1}^{(M-1)/2} \det(\tilde{c}_{lp} + \epsilon_{lp})^{-12} \approx 2 \sum_{M_1=1}^{(M-1)/2} \det(\tilde{c}_{lp})^{-12} \left(1 + \frac{f_2(x)}{2\pi M^2} \sum_{l,p=1}^{K-1} (\tilde{c}^{-1})_{lp} \right)^{-12}$$

6Neglecting exponentially suppressed factors, it is not difficult to calculate these functions explicitly. For example $f_2(x) = \frac{x^2}{12\pi M} + \frac{1}{4\pi^2 x^2} - \frac{x^2 \csc^2[\pi x]^2}{4\pi^2}$.

7This can be seen, for example, with the help of the Euler-Maclaurin formula.
For clarity, we mention that in the last step we dropped the term containing the difference between \(\det(\tilde{c}_{lp})^{-12} \) and its asymptotic value in \(M_1 \), as it will only contribute at order \(\mathcal{O}(M^{-2}) \) in the final answer. Employing the asymptotics
\[
\sum_{M_1 = M+1}^{\infty} \frac{1}{8 \pi M_1^2} = \frac{1}{4 \pi M} + \mathcal{O}(M^{-2}) , \quad \sum_{M_1 = 1}^{(M-1)/2} \frac{f_2(x)}{2 \pi M^2} = - \frac{1}{4 M\pi} + \frac{\pi}{48 M} + \mathcal{O}(M^{-3}) ,
\]
we finally obtain
\[
- \delta P_{\perp} = M \det(c_{lp})^{-12} + \left[2 \sum_{M_1 = 1}^{\infty} (\det(\tilde{c}_{lp})^{-12} - \det(c_{lp})^{-12}) - \det(c_{lp})^{-12} \right]
\]
\[
- \frac{\pi}{2M} \det(c_{lp})^{-12} \sum_{l,p=1}^{K-1} (c^{-1})_{lp} + \mathcal{O}(M^{-2}) .
\]
Comparing with the respective summand for the closed string, see equations (38) and (59) in [12], we note that the leading term in the two expressions is the same, and the \(\mathcal{O}(M^{-1}) \) is four times larger in the closed string. The same proportionality holds between the tachyon masses of the free closed and open strings.

4 Open String Gluon Self-energy

To extract energy shifts for excited states we examine the propagator on a lattice worldsheet with some pattern of missing links described by \(V \):
\[
\Delta^V = (\Delta^{-1} + V)^{-1} = \Delta(I + V \Delta)^{-1} = \Delta - \Delta(I + V \Delta)^{-1} V \Delta \equiv \Delta - \Delta V \Delta .
\]
Inserting the normal mode expansion (19) for Δ in the rightmost side of this equation we can write Δ^V:

$$\Delta^V_{ij,kl} = \sum_{m,m'} e^{j\lambda_m^0 - l\lambda_{m'}^0} \frac{\tilde{\Delta}_{mm'}^{V}}{M \sqrt{\sinh \lambda_m^0 \sinh \lambda_{m'}^0}} \cos \frac{(m - 1/2)\pi}{M} \cos \frac{m'(k - 1/2)\pi}{M}$$

(87)

$$\tilde{\Delta}_{mm'}^{V} = \delta_{mm'} - \frac{\tilde{\nu}_{mm'}}{M \sqrt{\sinh \lambda_m^0 \sinh \lambda_{m'}^0}}$$

(88)

$$\tilde{\nu}_{mm'} = \sum_{pq,rs} \nu_{pq,rs} e^{-q\lambda_m^0 + s\lambda_{m'}^0} \cos \frac{m(p - 1/2)\pi}{M} \cos \frac{m'(r - 1/2)\pi}{M}$$

(89)

then the contribution of this diagram to the one loop gluon self-energy is

$$-\tilde{\Delta}_{11} \det^{-12}(I + V\Delta)$$

(90)

where V corresponds to the missing link patterns of a single hole in the worldsheet.

4.1 Single missing link, $K = 2$

Working in the 2×2 subspace selected by V for a single missing link between positions $k, k+1$ at time j, we have, putting $A = \Delta_{(k+1)j,kj} - \Delta_{kj,kj}$ and $A' = \Delta_{(k+1)j,(k+1)j}$,

$$V = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \quad I + V\Delta = \begin{pmatrix} 1 + A & -A \\ -A' & 1 + A' \end{pmatrix},$$

$$V = (I + V\Delta)^{-1}V = \begin{pmatrix} 1 & 1 + A' & A \\ 1 & 1 \end{pmatrix} = \frac{V}{1 + A + A'}.$$

(91)

Then

$$\tilde{\nu}_{mm'} = -4 \sin \frac{m\pi}{2M} \sin \frac{m'\pi}{2M} \sin \frac{m\pi}{2M} \sin \frac{m'\pi}{2M} \cos \frac{m(k - 1/2)\pi}{M} \cos \frac{m'(k - 1/2)\pi}{M} e^{-j(\lambda_m^0 - \lambda_{m'}^0)} \det(1 + V\Delta)$$

(92)

$$\tilde{\Delta}_{mm'}^{V} = \delta_{mm'} + 4 \sin \frac{m\pi}{2M} \sin \frac{m'\pi}{2M} \sin \frac{m\pi}{2M} \sin \frac{m'\pi}{2M} e^{-j(\lambda_m^0 - \lambda_{m'}^0)} \det(1 + V\Delta)$$

(93)

Then the contribution to the self-energy of the excited string state $a_{-m}|0\rangle$ from this diagram (setting $m' = m$) is

$$-\delta \mathcal{P}^2_{-}(m) = \sum_{k=1}^{M-1} \left(1 + 4 \sin^2 \left(\frac{m\pi}{2M} \right) \frac{1}{M \sinh \lambda_m^0} \cos \frac{m(k - 1/2)\pi}{M} \sinh \lambda_m^0 \det(1 + V\Delta) \right) \det^{-12}(1 + V\Delta)$$

(94)
\[\approx \sum_{k=1}^{M-1} \left(1 + m\pi \frac{\sin^2(\frac{mk\pi}{M})}{M^2 \det(1 + V^2)} + O(M^{-4}) \right) \det^{-12}(1 + V^2) \]

\[\approx 2^{12} \left[M - 1 + 2 \sum_{k=1}^{\infty} [(1 - 2I_k)^{-12} - 1] + (m - 1) \frac{\pi}{M} \right] + O(M^{-2}) \quad (95) \]

It is of course significant that the coefficient \(1/M\) vanishes for \(m = 1\), reflecting the fact that perturbative corrections to the gluon mass should be 0.

4.2 Single slit with \(K - 1\) missing links

As we’ve shown in [12], and can directly verify from the definition

\[\mathcal{V} \equiv (I + V^2)^{-1}V \Rightarrow (I + V^2)\mathcal{V} = \mathcal{V}, \quad (96) \]

the elements of \(\mathcal{V}\) are given by

\[\mathcal{V}_{kl,ks} = \mathcal{V}_{(k+1)l,(k+1)s} = -\mathcal{V}_{(k+1)l,ks} = -\mathcal{V}_{kl,(k+1)s} = -h_{ls}^{-1}, \quad (97) \]

where \(k\) denotes the spatial position of the slit, and the matrix \(h\) was defined in (70)-(71). In what follows, we will again redefine \(k \rightarrow M_1\) so as to label the slit position in a more distinctive manner. In this notation, and with the help of (97), the Fourier transform of \(\mathcal{V}\) with the open string wavefunctions (89) becomes

\[\tilde{\mathcal{V}}_{mm'} = -4 \sin \frac{m\pi}{2M} \sin \frac{m'\pi}{2M} \sin \frac{mM_1\pi}{M} \sin \frac{m'M_1\pi}{M} \sum_{q,s=1}^{K-1} e^{-s\lambda_m^{(o)}} q\lambda_m^{(o)} h_{qs}^{-1}. \quad (98) \]

Then the analogue of (95) for many missing links will be

\[-\delta P^{-}(m) = \sum_{M_1=1}^{M-1} \tilde{\mathcal{V}}_{mm} \det^{-12}(I + V^2) = \sum_{M_1=1}^{M-1} \left(1 - \frac{\tilde{\mathcal{V}}_{mm}}{M \sinh \lambda_m^{(o)}} \right) \det^{-12}(h lp) \quad (99) \]

\[\approx \sum_{M_1=1}^{M-1} \left(1 + m\pi \frac{\sin^2(\frac{m\pi M_1}{M})}{M^2} \sum_{q,s} e^{(s-q)\lambda_m^{(o)} h_{qs}^{-1}} + O(M^{-4}) \right) \det^{-12}(h lp), \]

The additional contribution for the gluon as compared to the tachyon comes from the second term in the parenthesis in (99). We are interested in the asymptotic expansion of the latter equation only up to \(O(M^{-1})\), and hence we only need the leading term of the additional contribution. As we discussed in the case of the tachyon, this may be obtained by replacing all quantities in the sum in \(M_1\) with their asymptotic form for large \(M_1\), which for the case at hand implies

\[\left(\sum_{q,s} e^{(s-q)\lambda_m^{(o)} h_{qs}^{-1}} \right) \det^{-12}(h lp) \rightarrow \left(\sum_{q,s} c_{qs}^{-1} \right) \det^{-12}(c lp) \quad (100) \]
Then, the sum in M_1 can be done exactly in terms of geometric series, and together with the contribution which is identical to the tachyon self-energy (85), we obtain the final formula

$$
-\delta P_K(m) = M \det(c_{lp})^{-12} + \left[2 \sum_{M_1=1}^{\infty} \left(\det(\tilde{c}_{lp})^{-12} - \det(c_{lp})^{-12} \right) - \det(c_{lp})^{-12} \right]
+ (m-1)\frac{\pi}{2M} \det(c_{lp})^{-12} \sum_{l,p=1}^{K-1} (c^{-1})_{lp} + O(M^{-2}) .
$$

(101)

5 Dependence of String Self-energy on Slit Size

5.1 Leading term in the M expansion via Fisher-Hartwig formula

We would like to know the dependence of the coefficients of (101) on the slit size $K - 1$, for $M \gg K \gg 1$. At first this seems quite challenging, as the dependence on $n = K - 1$ enters primarily via the size of the $\det(c_{lp})$ determinant.

Fortunately, this can be achieved by exploiting the fact that the latter is the determinant of a Toeplitz matrix, meaning that $c_{lp} = c(l-p)$, or in other words that all elements in a left-to-right descending diagonal are the same. In this case, there exists a formula for the asymptotic behavior of the determinant due to Fisher and Hartwig [14], see also [17] for a more recent treatment. We will rely on the notations of the latter paper, and in particular we will rewrite the matrix elements as Fourier transforms of the same function $f(z)$,

$$
c_{lp} = \int_0^1 dx \frac{\sin(\pi x/2) \cos((l-p)\pi x)}{\sqrt{1 + \sin^2(\pi x/2)}} = \frac{1}{2\pi} \int_0^{2\pi} d\theta f(e^{i\theta})e^{-i(l-p)\theta}, \quad l, p = 1, \ldots, n
$$

(102)

where

$$
f(e^{i\theta}) = \frac{\sin(\theta/2)}{\sqrt{1 + \sin^2(\theta/2)}}
$$

(103)

or equivalently, for $z = e^{i\theta}$

$$
f(z) = \frac{|z - 1|}{2\sqrt{1 + (z - 1)(1/z - 1)/4}}.
$$

(104)

This implies that $f(z)$ is a special case of the function considered in [17], with the following values for the parameters according to their conventions,

$$
z_0 = 1, \quad \alpha_0 = \frac{1}{2}, \quad \beta_0 = 0, \quad V(e^{i\theta}) = -\log \left(2\sqrt{1 + \sin^2 \frac{\theta}{2}} \right).
$$

(105)

Consequently, the asymptotic behavior of the n-dimensional determinant will be given by

$$
\det(c_{lp}) = n^{\frac{1}{4}} \exp \left(nV_0 + \sum_{k=1}^{\infty} kV_k - \frac{1}{2} \sum_{k=1}^{\infty} V_k - \frac{1}{2} \sum_{k=-\infty}^{-1} V_k \right) \frac{G(\frac{3}{2})^2}{G(2)} \left(1 + O(n^{-1}) \right),
$$

(106)
where $G(x)$ is the Barnes G-function and V_k are the Fourier modes of $V(e^{i\theta})$,

$$V_k = \frac{1}{2\pi} \int_0^{2\pi} d\theta V(e^{i\theta}) e^{-ik\theta}, \quad V(z) = \sum_{k=-\infty}^{\infty} V_k z^k. \quad (107)$$

Our function $V(e^{i\theta})$ is simple enough that $V_{-k} = V_k$, and in particular we can calculate them exactly,

$$V_0 = -\log(1 + \sqrt{2}), \quad V_k = \frac{1}{2k}(1 - \sqrt{2})^{2k} \quad (108)$$

from which we can in turn obtain

$$\sum_{k=1}^{\infty} kV_kV_{-k} = -\frac{1}{4} \log\left[4(-4 + 3\sqrt{2})\right], \quad \sum_{k=1}^{\infty} V_k = \sum_{k=1}^{\infty} V_{-k} = -\frac{1}{2} \log\left[2(\sqrt{2} - 1)\right]. \quad (109)$$

Substituting back into (106), we obtain the final formula

$$\det(c_{lp}) = n^{\frac{1}{4}} \exp\left(-\log(1 + \sqrt{2})n - \frac{1}{8} \log 2\right) \frac{G\left(\frac{3}{2}\right)^2}{G(2)} (1 + \mathcal{O}(n^{-1})),$$

$$\approx \exp \left(0.25 \log n - 0.881 n + 0.0472\right) (1 + \mathcal{O}(n^{-1})),$$

$$\approx 1.048 n^{\frac{1}{4}} \exp \left(-0.881 n\right) (1 + \mathcal{O}(n^{-1})). \quad (110)$$

As a consistency check, we can compare the asymptotic formula above with fits for the value of the determinant over a range of different n. For this purpose, it turns more efficient to fit the logarithm of the determinant, and we choose the range $n \in [100, 200]$ in steps on 1. We find that

$$\log \det(c_{lp}) \approx 0.2499 \log n - 0.88137 n + 0.0472 + \frac{0.17}{n} \quad (111)$$

where the errors in the coefficients are at the order of the last digit, and we also included a term $\log(1 + c/n) \approx c/n$ to account for the subleading asymptotic term in (110). Evidently the coefficients of the fit are in excellent agreement with the Fisher-Hartwig formula.

In order to obtain the dependence of the leading term in the M-expansion of the tachyon and gluon self-energy summand on the duration of the self-interaction $n = K - 1$, we simply have to raise (110) to the (-12) power. In this manner we obtain a power dependence of n^{-3}, which is a rigorous confirmation of the rough estimate we had obtained in [11].

5.2 $\mathcal{O}(M^{-1})$ term

In order to find the dependence on slit size for the $\mathcal{O}(M^{-1})$ term in (101), we will have to additionally analyze $\sum c_{lp}^{-1}$. To this end, we will be using asymptotic expansions for the inverses of Toeplitz matrices in the same category with c_{lp}, which have relatively recently appeared in the literature [18, 19].

8In fact, this term is universal for all states of the open and closed string.
In more detail, these papers focus on Toeplitz matrices of the form (102), where
\[f(z) = |z - 1|^{2\alpha} f_1(z), \]
so that our matrix of interest, \(c_{lp} \), is a special case with \(\alpha = 1/2 \) and
\[f_1(z) = \frac{1}{2\sqrt{1 + (z - 1)(1/z - 1)/4}}. \]

In order to stay as close as possible to the notations of [18, 19], let us call the dimensionality of the matrix \(n \equiv N + 1 \). Then, for \(0 < x < 1, 0 < y < 1, x \neq y \), the asymptotic forms of the inverse matrix element will be
\begin{align*}
 c_{l[Nx]+1,1} & = \frac{1}{g_1(1)\sqrt{\pi N}} \frac{\sqrt{1 - x}}{\sqrt{x}} + o(N^{-1/2}), \quad f_1 = g_1 \bar{g}_1, \quad (114) \\
 c_{l[Nx]+1, [Ny]+1} & = \frac{1}{f_1(1)\pi} \log N + o(\log N), \quad (115) \\
 c_{l[Nx]+1, [Ny]+1} & = \frac{1}{f_1(1)\pi} G_{\frac{1}{2}}(x, y) + o(1), \quad (116)
\end{align*}

where \([a] \) denotes the integer part of \(a \),
\[G_{\frac{1}{2}}(x, y) = \sqrt{x}\sqrt{y} \int_{\max(x,y)}^{1} \frac{dt}{t\sqrt{t - x}\sqrt{t - y}} = 2\arctanh\frac{\sqrt{y}}{\sqrt{1 - y}} \frac{\sqrt{1 - x}}{\sqrt{x}}, \quad (117) \]
and the last equality in the above equation holds if \(x > y \), otherwise we simply exchange \(x \leftrightarrow y \).

According to the Euler-Maclaurin formula, the leading contribution to the sum over the \([Nx]\) or \([Ny]\) indices in each of the formulas above will be \(N \) times the integral over \(x \) or \(y \). This implies a contribution of order \(O(N^{1/2}) \), \(O(N \log N) \) and \(O(N^2) \) to the sum over all indices from (114), (115) and (116) respectively. So up to leading order we may write
\begin{align*}
 \sum_{l,p=1}^{N+1} (c^{-1})_{lp} & \simeq 2 \sum_{l>p=1}^{N+1} (c^{-1})_{lp} = 2 \sum_{l>p=1}^{N+1} \left(c^{-1} \right)_{lp} \\
 & \simeq 2N^2\frac{1}{f_1(1)\pi} \int_0^1 dx \int_0^x dy G_{\frac{1}{2}}(x, y) \quad (118) \\
 & \simeq 4N^2\frac{1}{\pi} \int_0^1 dx \left[2\sqrt{x(1-x)} \arcsin\sqrt{y} + 2(y-x)\arctanh\sqrt{1 - x}\sqrt{y} \right]_{y=0}^{x} \\
 & \simeq 8N^2\frac{1}{\pi} \int_0^1 dx \sqrt{x(1-x)} \arcsin\sqrt{x},
\end{align*}

and given that the \(x \)-integral above yields \(\pi^2/32 \), we finally obtain, after we restore \(n = N+1 \),
\begin{equation}
 \sum_{l,p=1}^{n} (c^{-1})_{lp} \simeq \frac{\pi}{4} n^2 \simeq 0.78539816 \ n^2. \quad (119)
\end{equation}
Another way to arrive at this result, is to notice that only the value of $f_1(z)$ at $z = 1$ matters for the leading term in the expansions (114)-(116). In order to extract the term in question, we can thus examine the determinant where we have replaced $f_1(z)$ with its constant value $f_1(1)$, namely

$$d_{lp} = \frac{1}{2\pi} \int_0^{2\pi} d\theta \sin \theta e^{-i(l-p)\theta} = \frac{2}{\pi} \frac{1}{1 - 4(l-p)^2}. \quad (120)$$

Evidently, the virtue of this replacement is that it allows us to compute the integral explicitly. Then, by analytically inverting the matrix and summing its elements for $n \in [1, 10]$, we experimentally find that the sum of all elements of the inverse matrix is given by the following simple formula,

$$\sum_{l,p=1}^{n} (d^{-1})_{lp} = \frac{\pi}{4} n(n + 1). \quad (121)$$

As a final test of our result (119), we may compare it to fits of the quantity for varying n. In particular, we choose $n \in [100, 200]$ in steps of 5, and determine the coefficients of a polynomial fit of degree two, as potentially existing logarithms at orders lower than $O(n^2)$ can be well approximated by constants within this range. The results are depicted in Figure 2, and leave no doubt that the leading dependence of the sum of all elements of matrix c^{-1} on its size is given by (119).
Table 1: Tachyon self-energy for an interaction lasting $K-1$ time steps, $K = 2, \ldots, 5$. Coefficients of asymptotic expansion in M up to $\mathcal{O}(M^{-1})$, as obtained by numerically evaluating and fitting the quantity in question for $M \in [1005, 1995]$ in steps of 10, and compared to formula (85).

K	$-\delta P_{\text{Tachyon}}$ fit	$-\delta P_{\text{Tachyon}}$ asymptotic formula
2	$4096M + 19804 - 12867.90/M$	$4096M + 19803 - 12867.96/M$
3	$4.2569937517 \times 10^7 M + 1.48720 \times 10^9 - 3.68032 \times 10^8/M$	$4.2569937516 \times 10^7 M + 1.48717 \times 10^9 - 3.68037 \times 10^8/M$
4	$6.602641227 \times 10^{11} M + 1.63308 \times 10^{14} - 1.09497 \times 10^{13}/M$	$6.602641228 \times 10^{11} M + 1.63307 \times 10^{14} - 1.09501 \times 10^{13}/M$
5	$1.2725545528 \times 10^{16} M + 2.743318 \times 10^{19} - 3.4330 \times 10^{17}/M$	$1.2725545522 \times 10^{16} M + 2.743315 \times 10^{19} - 3.4332 \times 10^{17}/M$

Figure 3: Plots of tachyon self-energy for an interaction lasting $K-1$ time steps, for $K = 5$ in (a) and $K = 12$ in (b). Whereas for (a) the $\mathcal{O}(M)$ term dominates and the data, fit and asymptotic formula up to $\mathcal{O}(M^{-1})$ are indistinguishable, the same does not hold for the lower end of M values in (b).

6 Numerical Analysis

In this section, we numerically evaluate the tachyon and gluon self-energy δP_K due to an interaction lasting $K-1$ time steps, investigate its behavior for different values of M and K, and obtain fits that we compare to the analytic asymptotic formulas (85), (101). We are interested in the ultraviolet $M \gg K$ behavior of the self-energy, so we choose $K \in [2, 30]$ and $M \in [495, 1995]$ in steps of 10. We perform the evaluation using the sum expression for the matrix elements of the determinant (70), as it turns out to be numerically more stable than the integral expression (71).

Starting with the tachyon, we observe that for the first few values of fixed K the leading behavior of δP_K is indeed linear in M within the range we have chosen, and performing fits of the form $\delta P_K = \sum c_i M^i$ with three free parameters $c_{\pm 1}, c_0$, we find excellent agreement of the values predicted by (85). The results of the fits and the comparison with the asymptotic prediction are depicted in Table 1, see also Figure 3a.

As it is evident in Figure 3b however, starting at $K = 12$ and higher $-\delta P_K$ becomes
convex, and subleading terms in the M expansion begin to dominate over the linearly increasing term in the lower end of our range. In particular, this behavior at lower M cannot be due to the $O(M^{-1})$ term, which could only cause a deviation below the straight line because of its negative sign. Therefore it must come from higher terms in the expansion, and experimentation with different fitting functions suggests that it is in fact due the $O(M^{-4})$ term.

This can be seen in more detail in Figure 4, where we compare δP_K against a fit with a constant and an $O(M^{-4})$ term for $K = 14, 30$, finding very good agreement. The fit suggests that its two parameters always have comparable sizes and grow very fast with K. We already know from the analysis of Section 5 that the $O(M)$ and $O(M^{-1})$ coefficients also have comparable sizes (due to the same exponential factor), and to give a measure of comparison, they range between order $10^{56} - 10^{58}$ for $K = 14$ and $10^{128} - 10^{131}$ for $K = 30$. This in turn implies that for the range of M we are examining, already at $K = 14$ the $O(M^{-4})$ is one order of magnitude larger than the $O(M)$ term, and their ratio grows to 24 orders of magnitude for $K = 30$.

Given that the $O(M^{-1})$ term is a few orders of magnitude smaller than the $O(M)$ term, the considerations of the previous paragraph justify why we don’t need to include them in order to obtain good fits for the δP_K depicted in Figure 4. More importantly, they imply that as K increases, it becomes very challenging to extract the $O(M^{-1})$ dependence by purely numerical analysis. Taking the first difference in M does not improve the resolution substantially, as it removes the large $O(1)$, but not the $O(M^{-4})$ term. Hence the only remaining possibilities are to either choose a range of much higher values of M so that the two sets of terms become comparable in size, or drastically increase the precision of the numerics, so as to be able to resolve their difference in size. However since the two sets of
Figure 5: Logarithm of the constant term b in the asymptotic expansion in M for the tachyon δP_K^- as a function of the interaction time $K - 1$. The leading behavior is clearly linear, from which we can infer that $b \propto e^{13K}$.

K	$\delta P^-_{K,\text{gluon}} - \delta P^-_{K,\text{tachyon}}$ fit
2	$-12868.96/M - 2.0 \times 10^9/M^3$
3	$-3.68037 \times 10^8/M - 1.7 \times 10^{10}/M^3$
4	$-1.09501 \times 10^{13}/M - 1.1 \times 10^{15}/M^3$
5	$-3.4332 \times 10^{17}/M - 7 \times 10^{19}/M^3$

Table 2: Fit of difference of tachyon and gluon self-energy for an interaction lasting $K - 1$ time steps (error estimates at the order of the last digit). Comparing with the last row of Table 1, we see that the $\mathcal{O}(M^{-1})$ terms are identical, thereby supporting that the corresponding term is zero for $\delta P^-_{K,\text{gluon}}$.

terms have different exponential behaviors in K, employing any of the two aforementioned options is also expected to increase computation time exponentially.

In more detail, we can verify that the $\mathcal{O}(1)$ term has an exponential behavior in K of roughly e^{13K} by plotting the logarithm of its fitted value against $K \in [2, 30]$, see Figure 5. As we discuss in the Introduction, the exponential increase in K of the $\mathcal{O}(1)$ and $\mathcal{O}(M^{-4})$ terms is due to the tachyonic divergence, which appears when one of the two intermediate strings becomes very short, namely it is a boundary effect. On the contrary, in the regime $1 \ll K \ll M$ we are examining, the tachyonic divergence does not affect the $\mathcal{O}(M)$ and $\mathcal{O}(M^{-1})$ terms, whose exponential dependence $e^{12\beta_0 K} \simeq e^{10.6K}$ is precisely cancelled by the tree-level boundary counterterm.

Moving on to a numerical evaluation of the gluon self-energy, we shall aim to compare our fits with the corresponding asymptotic formula, eq. (101) with $m = 1$. In particular we
Figure 6: Plots of the self-energy difference between the gluon and the tachyon for $K = 3$ in (a) and $K = 14$ in (b). We have rescaled the self-energy by M so as to have only one independent variable. As with the tachyon, subleading terms in the M expansion become dominant with increasing K.

will investigate whether our numerical analysis agrees with the $O(M^{-1})$ term vanishing, and for that reason it will be more advantageous to examine the quantity

$$
\delta P^-_{K,\text{gluon}} - \delta P^-_{K,\text{tachyon}} = -4 \sin^2 \frac{\pi}{2M} \sum_{M_1=1}^{M-1} \sin^2 \frac{\pi M_1}{M} \sum_{q,s=1}^{K-1} e^{(q-s)\lambda_0 h_{qs}^{-1}},
$$

which has the large $O(M)$ and $O(1)$ dependence removed, thereby providing more accurate fits. As for the tachyon, we choose $K \in [2,30]$ and $M \in [495,1995]$, and for the first few values of K, the fits we obtain are depicted in Table 2, see also Figure 6a.

For small K, the numerics suggest that the $O(M^{-1})$ term is identical here and for the tachyon, implying it should be zero for the gluon. Furthermore, the numerics suggest that the subleading term in the asymptotic expansion of (122) is $O(M^{-3})$. Similarly to the tachyon case however, as K increases the $O(M^{-4})$ term dominates the expansion to an extent that does not allow the extraction of the $O(M^{-1})$ dependence by numerical means (see Figure 6b). Finally, the $O(M^{-4})$ term in (122) appears to be different from the corresponding term for the tachyon alone, in particular about an order of magnitude larger.

7 Open Strings Ending on D-branes

So far we have assumed that all open string transverse coordinates obey Neumann conditions. But it is also interesting to impose Dirichlet conditions on a subset of the coordinates [20], denoted by $y(\sigma,\tau)$ to distinguish them from the coordinates x which continue to satisfy Neumann boundary conditions9. If x has $p-1$ components one says that there is a Dp-brane

9We do not consider here the mixed case of Neumann and Dirichlet conditions on opposite ends of an open string.
at the location specified by the (fixed) value of y at the end of each open string. Here we restrict attention to a single Dp-brane location at $y = 0$. In the continuum, the expressions for the one loop self-energy of an open string with $25 - p$ Dirichlet coordinates differs from the expressions (32) and (33) simply by an insertion of the factors $(-2\pi/\ln q)^{(25-p)/2}$ in the integrands. While these factors marginally soften the leading UV divergence from the integration range near $q \sim 0$, they do so in a way that introduces a logarithmic branch point at $q = 0^{10}$. After discretization, the presence of these factors leads to an expected leading large M behavior

$$\delta P_K^{-} \sim \frac{\alpha M}{K^3(\ln(M/K))^{(25-p)/2}}$$

which can no longer be cancelled by the bulk worldsheet cosmological constant. In particular the leading singularity must be accepted as a real divergence, at least in the perturbative loop expansion of bosonic string theory11. The worldsheet lattice provides a physical cutoff, but there is no consistent way to define a finite continuum limit in perturbation theory.

7.1 D-branes and the GT lattice

We turn to a detailed analysis of the self-energy on the GT lattice which will confirm these expectations. The Dirichlet worldsheet propagator on the free string worldsheet takes either of the forms (23) or (24). The main new feature of these formulas is the absence of zero modes in the open string spectrum because the Dirichlet conditions break translation invariance. Of course on the lattice loop corrections will involve a different choice for the matrix V describing the breaking and joining of strings, which we shall denote as \tilde{V} for clarity. A broken Dirichlet string coordinate y involves the replacement 24:

$$\begin{align*}
(y_{k+1}^j - y_k^j)^2 + (y_k^j - y_{k-1}^j)^2 &\to (y_{k+1}^j)^2 + (y_{k-1}^j)^2 + 2\kappa(y_k^j)^2. \\
\end{align*}$$

where the parameter κ gives us some flexibility in specifying the Dirichlet condition on the lattice. The matrix \tilde{V} that describes this replacement is then

$$\begin{align*}
\tilde{V}_{m,l,m',l'} &\equiv \delta_{lj}\delta_{l'j}(\delta_{m,k+1}\delta_{m',k} + \delta_{m,k}\delta_{m',k+1} + \delta_{m,k-1}\delta_{m',k} + \delta_{m,k}\delta_{m',k-1} \\
&+ 2(\kappa - 1)\delta_{m,k}\delta_{m',k})
\end{align*}$$

In the open string nonplanar one-loop diagram, which contains singularities in the pomeron channel invariant t due to closed string states, this branch point in q causes the “unitarity violating” branch point (instead of a pole) in t that led Lovelace to anticipate the need for the critical dimension $D = 26$ 21. Here we see that in addition to $D = 26$ we also need Neumann boundary conditions on all string coordinates to cancel the cut. As clarified in 22, the branch point is not really “unitarity violating”, but rather simply a reflection of a continuous closed string mass spectrum, or the holographic emergence of extra dimensions for the propagation of closed strings. In any case the branch point in t also spells difficulty for the Goddard-Neveu-Scherk analytic continuation method 13 of regulating these divergences.

11Supersymmetry can potentially mitigate these difficulties through cancellation of the divergences due to tachyonic closed string states. In such models the UV divergence due to the dilaton is rendered finite provided that more than 2 coordinates are Dirichlet: $\int dq q^{-1}(\ln q)^{-3/2}$ is convergent at $q \sim 0$ 23.

10In the open string nonplanar one-loop diagram, which contains singularities in the pomeron channel invariant t due to closed string states, this branch point in q causes the “unitarity violating” branch point (instead of a pole) in t that led Lovelace to anticipate the need for the critical dimension $D = 26$ 21. Here we see that in addition to $D = 26$ we also need Neumann boundary conditions on all string coordinates to cancel the cut. As clarified in 22, the branch point is not really “unitarity violating”, but rather simply a reflection of a continuous closed string mass spectrum, or the holographic emergence of extra dimensions for the propagation of closed strings. In any case the branch point in t also spells difficulty for the Goddard-Neveu-Scherk analytic continuation method 13 of regulating these divergences.

29
In contrast to a broken Neumann coordinate, which involves two lattice sites, the broken Dirichlet coordinate involves 3 lattice sites: \(k - 1, k, \) and \(k + 1 \). In matrix form it is

\[
\tilde{V} = \begin{pmatrix}
0 & 1 & 0 \\
1 & 2(\kappa - 1) & 1 \\
0 & 1 & 0
\end{pmatrix}
\] (126)

Writing the corresponding \(3 \times 3 \) block of the propagator as

\[
\Delta = \begin{pmatrix}
e & a & f \\
a & c & b \\
f & b & d
\end{pmatrix}
\] (127)

we find after a simple calculation

\[
\det(1 + \tilde{V}\Delta) = (1 + a + b)^2 - c(e + d + 2f - 2(\kappa - 1))
\] (128)

The matrix elements are related to the worldsheet propagator as follows:

\[
a = \Delta_{k_j,(k-1)j} = \Delta_{(k-1)j,k_j}, \quad b = \Delta_{k_j,(k+1)j} = \Delta_{(k+1)j,k_j}
\] (129)

\[
c = \Delta_{k_j,k_j}, \quad d = \Delta_{(k+1)j,(k+1)j}, \quad e = \Delta_{(k-1)j,(k-1)j}
\] (130)

\[
f = \Delta_{(k+1)j,(k-1)j} = \Delta_{(k-1)j,(k+1)j}
\] (131)

We will now proceed to evaluate the contribution of Dirichlet coordinates to the one loop self-energy calculation with \(K = 2 \). As we did in the previous sections, we will again relabel \(k \rightarrow M_1 \) to better convey that it is referring to the position of the slit. We start by using the representation (26) for the Dirichlet worldsheet propagator in order to obtain

\[
c = \int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda \sinh \lambda}
\] (132)

\[
a = \int_0^1 dx \frac{\sinh(M_1 - 1) \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda \sinh \lambda}
\]

\[
= \int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda} \coth \lambda - \int_0^1 dx \frac{\cosh M_1 \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda}
\] (133)

\[
b = \int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda} \coth \lambda - \int_0^1 dx \frac{\sinh M_1 \lambda \cosh(M - M_1)\lambda}{\sinh M \lambda}
\] (134)

\[
1 + a + b = 2 \int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda} \coth \lambda
\]

\[
= 2 \int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda} \left(\frac{1}{\sinh \lambda} + \tanh \frac{\lambda}{2} \right)
\] (135)

\[
d + e + 2f = 4 \int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda} \left(\frac{1}{\sinh \lambda} + \sinh \lambda \right) - 2 \int_0^1 dx \cosh \lambda
\]

\[
= 4c + 4 \int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1)\lambda}{\sinh M \lambda} \sinh \lambda - 2 \int_0^1 dx \cosh \lambda
\] (136)
Inserting these into the formula for the determinant leads to

$$\det(I + \tilde{V} \Delta) = c \int_0^1 dx \left(4 \sinh^2(\lambda/2) - 8 \frac{\sinh M_1 \lambda \sinh(M - M_1) \lambda}{\sinh M \lambda} \left[\frac{\sinh^3(\lambda/2)}{\cosh(\lambda/2)} \right] + 2k \right)$$

$$+ 4 \left(\int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1) \lambda}{\sinh M \lambda} \tanh \frac{\lambda}{2} \right)^2$$

(137)

We will require the large M limit of this determinant. We notice that the quantity squared in the last term is just the determinant we encountered for Neumann coordinates (51)

$$2 \int_0^1 dx \frac{\sinh M_1 \lambda \sinh(M - M_1) \lambda}{\sinh M \lambda} \tanh \frac{\lambda}{2} = D_M = \frac{1}{2} - I_M + f_2(x) \frac{2}{2\pi M^2} + \frac{f_4(x)}{12 \pi M^4} + \cdots$$

(138)

where we recall (60) and our definition $x = M_1/M$.

We also have some new integrals to analyze:

$$\int_0^1 dx \sinh^2 \frac{\lambda}{2} = \frac{1}{\pi} \int_0^{\lambda_0} d\lambda \frac{\cosh(\lambda/2) \sinh^2(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} = \frac{1}{2}$$

(139)

and for $M_1 \leq M/2$ we use

$$\frac{\sinh M_1 \lambda \sinh(M - M_1) \lambda}{\sinh M \lambda} = \frac{1}{2} \left(1 - e^{-2M_1 \lambda} \right) - \frac{e^{-M \lambda} \sinh^2 M_1 \lambda}{\sinh M \lambda}, \quad M_1 \leq \frac{M}{2}$$

(140)

to decompose the second integral into two terms

$$\int_0^1 dx \frac{1}{2} \left(1 - e^{-2M_1 \lambda} \right) \sinh^3(\lambda/2) \cosh(\lambda/2) = \frac{1}{2\pi} \int_0^{\lambda_0} d\lambda \left(1 - e^{-2M_1 \lambda} \right) \frac{\sinh^3(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}}$$

$$= \frac{1}{2\pi} - J_{M_1}$$

$$J_{M_1} = \frac{1}{2\pi} \int_0^{\lambda_0} d\lambda e^{-2M_1 \lambda} \frac{\sinh^3(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}}$$

(141)

$$= \frac{h_4(x)}{M^4} + \mathcal{O}(M^{-6}, e^{-M \lambda_0})$$

(142)

In contrast to the above integrals which are finite as $M \to \infty$, the integral defining c increases logarithmically with M. This feature is a direct consequence of Dirichlet boundary
conditions. Remembering that the determinant enters the self-energy with a negative power, this means that Dirichlet conditions soften the leading UV divergence by powers of \((\ln M)^{-1}\). To investigate this phenomenon we look at

\[
c = \int_0^\lambda_0 d\lambda \frac{\coth(\lambda/2)}{\pi \sqrt{1 - \sinh^2(\lambda/2)}} \frac{\sinh M_1 \lambda \sinh(M - M_1) \lambda}{\sinh M \lambda} \equiv G_{M_1} + \hat{c} \tag{145}
\]

\[
G_{M_1} = \frac{1}{2\pi} \int_0^{\lambda_0} d\lambda \frac{(1 - e^{-2M_1 \lambda}) \coth(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} \tag{146}
\]

\[
\hat{c} = \frac{1}{\pi} \int_0^{\lambda_0} d\lambda \frac{\coth(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} \left[\frac{e^{-M_1 \lambda} \sinh^2 M_1 \lambda}{\sinh M \lambda} \right] \tag{147}
\]

The large \(M\) behavior of \(\hat{c}\) can be obtained by expanding

\[
\frac{\coth(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} = \frac{2}{\lambda} + \frac{5\lambda}{12} + \mathcal{O}(\lambda^3) \tag{148}
\]

Then term by term we can extend the upper limit to \(\infty\), with errors smaller than order \(e^{-M_1 \lambda}\) to get an asymptotic expansion

\[
\hat{c} = g_0(x) + \frac{g_2(x)}{M^2} + \mathcal{O}(M^{-4}, e^{-M_1 \lambda}) \tag{149}
\]

\[
g_0(x) = \frac{2}{\pi} \int_0^\infty d\lambda \frac{\left[e^{-\lambda} \sinh^2(x \lambda) \right]}{\sinh \lambda}, \quad g_2(x) = \frac{5}{12\pi} \int_0^\infty \lambda d\lambda \left[e^{-\lambda} \sinh^2(x \lambda) \right] \tag{150}
\]

In this expansion the coefficients depend on the ratio \(x = M_1/M\) which is smaller than 1/2. If this ratio is of order 1/\(M\), all of the terms are down by a further factor of 1/\(M^2\).

Next we study the difference \(G_{M_1} = c - \hat{c}\) which depends only on \(M_1\). Since \(M_1\) has to be summed over the range \(0 < M_1 < M/2\), we will need the large \(M_1\) behavior of this term, which we will find behaves like \(\ln M_1\).

\[
G_{M_1} = \frac{1}{2\pi} \int_0^{\lambda_0} d\lambda \frac{(1 - e^{-2M_1 \lambda}) \coth(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}}
\]

\[
= \frac{1}{2\pi} \int_0^{\lambda_0} d\lambda \left[e^{-2M_1 \lambda} \coth(\lambda/2) \right] \left[\frac{\coth(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} - \frac{2}{\lambda} \right] + \frac{1}{\pi} \int_0^{\lambda_0} d\lambda \frac{1 - e^{-2M_1 \lambda}}{\lambda} \tag{151}
\]

The quantity in square brackets has good small \(\lambda\) dependence so the terms in the first integral can be evaluated separately:

\[
\frac{1}{2\pi} \int_0^{\lambda_0} d\lambda \left[\frac{\coth(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} - \frac{2}{\lambda} \right] = \frac{1}{\pi} \ln \frac{2}{\lambda_0} + \frac{\Gamma'(1)}{2\pi} - \frac{\Gamma'(1/2)}{2\pi \sqrt{\pi}} \tag{152}
\]
\[
\frac{1}{2\pi} \int_0^{\lambda_0} d\lambda e^{-2M_1\lambda} \left[\frac{\coth(\lambda/2)}{\sqrt{1 - \sinh^2(\lambda/2)}} - \frac{2}{\lambda} \right] \sim \frac{5}{24\pi(2M_1)^2} + \mathcal{O}(M_1^{-4}, e^{-2M_1\lambda_0})
\] (153)

Finally the large \(M_1\) behavior of the last integral
\[
\frac{1}{\pi} \int_0^{\lambda_0} d\lambda \frac{1 - e^{-2M_1\lambda}}{\lambda} = -\frac{1}{\pi} \int_0^{\lambda_0} d\lambda (2M_1 e^{-2M_1\lambda}) \ln \frac{\lambda}{\lambda_0} = -\frac{1}{\pi} \int_0^{\infty} d\lambda e^{-\lambda} \ln \frac{\lambda}{2M_1\lambda_0} + \mathcal{O}(e^{-2M_1\lambda_0})
\]
\[
= \frac{1}{\pi} \ln(2M_1\lambda_0) - \frac{\Gamma'(1)}{\pi} + \mathcal{O}(e^{-2M_1\lambda_0}) \quad (154)
\]

All together then we have for the large \(M_1\) behavior of \(c - \hat{c}\)
\[
G_{M_1} = \frac{1}{\pi} \ln(4M_1) - \frac{\Gamma'(1) + \Gamma'(1/2)/\sqrt{\pi}}{2\pi} - \frac{5}{96\pi M_1^2} + \mathcal{O}(M_1^{-4}, e^{-2M_1\lambda_0})
\]
\[
= \frac{1}{\pi} \ln(4M_1) - \frac{\psi(1) + \psi(1/2)}{2\pi} - \frac{5}{96\pi M_1^2} + \mathcal{O}(M_1^{-4}, e^{-2M_1\lambda_0}) \quad (155)
\]

where \(\psi(z) \equiv \Gamma'(z)/\Gamma(z)\) is the digamma function.

Finally we quote the determinant for \(K = 2\) due to a Dirichlet coordinate keeping terms up to order \(M^{-2}\):
\[
\det(I + \tilde{V}\Delta) = \left[G_{M_1} + g_0(x) + \frac{g_2(x)}{M^2} \right] \left(2(\kappa + 1) - \frac{4}{\pi} + 8J_{M_1} \right) + \left(\frac{1}{2} - I_{M_1} \right)^2 + \frac{(1 - 2I_{M_1})f_2(x)}{2\pi M^2} + \mathcal{O}(M^{-4}) \quad . \quad (156)
\]

Then the self-energy shift of the tachyon in the presence of a \(Dp\)-brane is given by
\[
\delta P_K^- = 2g^2 \sum_{M_1 = 1}^{(M-1)/2} \det^{-(p-1)/2}(I + V\Delta)\det^{-(25-p)/2}(I + \tilde{V}\Delta) e^{-24B(K-1)} \quad (157)
\]

The leading behavior for large \(M\) occurs from the region \(1 \ll M_1 = \mathcal{O}(M)\). For \(K = 2\) this gives
\[
\delta P_{K=2}^- \sim 2g^2 \sum_{M_1 = 1}^{(M-1)/2} 2^{(p-1)/2} \left(\frac{2(\kappa + 1) - 4/\pi}{\pi} \ln M_1 \right)^{(25-p)/2} e^{-24B}
\]
\[
\sim g^2 2^{p-13} \left[\frac{M}{(\ln M)^{(25-p)/2}} \left(\frac{\pi^2}{(\kappa + 1)\pi - 2} \right)^{(25-p)/2} e^{-24B} \right] \quad (158)
\]

Subleading divergences of the form \(M/(\ln M)^{n+(25-p)/2}\) and \(1/(\ln M)^{n+(25-p)/2}\) will also appear. In fact, each power of \(M\) can be expected to be multiplied by a power series in \((\ln M)^{-1}\). We leave the interpretation of these non-analytic divergences to future work.
7.2 Discretization of the continuum expressions for the self-energy of superstring.

Although we do not yet have a completely satisfactory GT lattice for the superstring, we can get a glimpse of the benefits of supersymmetry by simply discretizing the known continuum formulas for the gluon self-energy diagrams for the superstring with supersymmetry broken by compactification of an extra dimension12. The critical dimension is $D = 10$ so there will be 8 transverse coordinates x, \mathcal{P} and 8 worldsheet fermions denoted Γ in the Ramond (R) sector and H in the Neveu-Schwarz (NS) sector. We shall need the correlators:

\begin{equation}
\langle \mathcal{P}\mathcal{P} \rangle = \frac{1}{4 \sin^2(\theta/2)} - \sum_{n=1}^{\infty} \frac{2nq^{2n}}{1 - q^{2n}} \cos n\theta \tag{159}
\end{equation}

\begin{equation}
\langle \mathcal{H}\mathcal{H} \rangle_+ = \frac{1}{2 \sin(\theta/2)} - 2 \sum_{r=1/2}^{\infty} \frac{q^{2r}}{1 + q^{2r}} \sin r\theta \tag{160}
\end{equation}

\begin{equation}
\langle \mathcal{H}\mathcal{H} \rangle_- = \frac{1}{2 \tan(\theta/2)} - 2 \sum_{n=1}^{\infty} \frac{q^{2n}}{1 + q^{2n}} \sin n\theta \tag{161}
\end{equation}

\begin{equation}
\langle \Gamma\Gamma \rangle = \frac{1}{2 \sin(\theta/2)} + 2 \sum_{r=1/2}^{\infty} \frac{q^{2r}}{1 - q^{2r}} \sin r\theta \tag{162}
\end{equation}

where we use the notation and conventions of [7]. We have expressed the correlators in terms of the moduli q, θ of the cylinder. To break supersymmetry, we compactify one of the transverse target space dimensions imposing periodic boundary conditions on bosonic states and antiperiodic conditions on fermionic states. In the expressions of the one loop self-energies, this simply means an insertion of the factor

\begin{equation}
\sum_{m=-\infty}^{\infty} q^{m^2R^2T_0/4\pi^2}, \text{ bosonic loop}, \quad \sum_{m=-\infty}^{\infty} (-)^m q^{m^2R^2T_0/4\pi^2}, \text{ fermionic loop}. \tag{163}
\end{equation}

Both these factors approach unity in the decompactification limit $R \to \infty$. The absence of tachyonic divergences in the loop integrals requires $R^2T_0 \geq 4\pi^2$. When the gluon polarization

12With unbroken supersymmetry the diagram is identically zero!
is in the direction of a compactified coordinate, the \(\langle PP \rangle \) correlator quoted above acquires an extra term:

\[
\langle PP \rangle = -\left(\frac{m^2 R^2 T_0}{4\pi^2}\right) + \frac{1}{4\sin^2(\theta/2)} - \sum_{n=1}^{\infty} \frac{2nq^{2n}}{1 - q^{2n}} \cos n\theta
\]

(168)

where

\[
\langle f(m) \rangle = \frac{\sum_m f(m)q^{m^2 R^2 T_0/4\pi^2}}{\sum_m q^{m^2 R^2 T_0/4\pi^2}}, \quad \text{bosonic loop}
\]

(169)

\[
\langle f(m) \rangle = \frac{\sum_m (-)^m f(m)q^{m^2 R^2 T_0/4\pi^2}}{\sum_m (-)^m q^{m^2 R^2 T_0/4\pi^2}}, \quad \text{fermionic loop}
\]

(170)

By taking the \(R \to 0 \) limit we get the extra term in this correlator when gluon polarizations are transverse to a D-brane: it is just \(1/(2 \ln q) \). It is noteworthy that the extra term from either compactification or from the presence of D-branes is negative. Since generally \(C_s < 0 \), this term therefore contributes positively to the self energy. Thus while the mass shift of the gluon (polarizations in uncompactified directions) is zero, the mass squared shift of the massless scalar (polarization in compactified directions) is positive.

The self-energy of the gluon state is given as a sum of three terms

\[
\Delta P^-= \frac{C_s}{2P_+} (\Sigma_+ + \Sigma_- + \Sigma_F)
\]

(171)

\[
\Sigma_+ = \frac{1}{2} \int_0^{1} \frac{dq}{q^2} \int_0^{2\pi} d\theta \sum_{m=-\infty}^{\infty} q^{m^2 R^2 T_0/4\pi^2} \frac{\prod_r (1 + q^{2r})^8}{\prod_n (1 - q^{2n})^8} \langle PP \rangle
\]

(172)

\[
\Sigma_- = -8 \int_0^{1} \frac{dq}{q^2} \int_0^{2\pi} d\theta \sum_{m=-\infty}^{\infty} q^{m^2 R^2 T_0/4\pi^2} \frac{\prod_n (1 + q^{2n})^8}{\prod_n (1 - q^{2n})^8} q \langle PP \rangle
\]

(173)

\[
\Sigma_F = -\frac{1}{2} \int_0^{1} \frac{dq}{q^2} \int_0^{2\pi} d\theta \sum_{m=-\infty}^{\infty} (-)^m q^{m^2 R^2 T_0/4\pi^2} \frac{\prod_r (1 - q^{2r})^8}{\prod_n (1 - q^{2n})^8} \langle PP \rangle
\]

(174)

Terms involving the fermionic correlators \(\langle HH \rangle^2 \) and \(\langle TT \rangle^2 \) do not contribute to the onshell two gluon function because they are multiplied by kinematic factors like \(k_i \cdot k_j \epsilon_k \cdot \epsilon_l \) or \(k_i \cdot \epsilon_j k_k \cdot \epsilon_l \). But for the two point function \(k_2 = -k_1, k_1 = 0 \), and \(k_i \cdot \epsilon_i = 0 \), so all these factors vanish. The combination \(\Sigma_+ + \Sigma_- \) projects out the odd G-parity states of the NS sector circulating the loop, while \(\Sigma_F \) represents the R sector states circulating the loop. Because of Jacobi’s abstruse identity

\[
\prod_r (1 + q^{2r})^8 - \prod_r (1 - q^{2r})^8 - 16q \prod_n (1 + q^{2n})^8 = 0
\]

(175)

\[\text{From the lightcone viewpoint the self-energy shift is a result from second order perturbation theory which is necessarily negative by unitarity. Since the divergence in the integral has a positive coefficient, this implies that } C_s \text{ must be negative. The negative divergent contribution to the shift is, of course, cancelled against the boundary cosmological constant counterterm } B.\]
We have, for gluon polarization in uncompactified directions, the simplification

\[\Delta P^- = \frac{C_s}{2P^+} \int_0^1 dq \int_0^{2\pi} d\theta \sum_{m=\text{odd}} q^{m^2R^2T_0/4\pi^2} \frac{\prod_r (1 - q^{2r})^8}{\prod_n (1 - q^{2n})^8} \langle PP \rangle \]
\[= \frac{C_s}{2P^+} \int \frac{dq}{q} \int_0^{2\pi} d\theta \sum_{m=\text{odd}} q^{m^2R^2T_0/4\pi^2} \left(\frac{1 - 8q + 36q^2}{4q \sin^2(\theta/2)} - 2q + 4q \sin^2 \frac{\theta}{2} + \mathcal{O}(q^2) \right) \]

(176)

(177)

where in the second line we have explicitly displayed the first few terms in the \(q \) expansion. It is worth emphasizing that the right side vanishes in the decompactification limit \(R \to \infty \), which restores supersymmetry. Also notice that, although the \(q \) integral is convergent at the lower end \(q \sim 0 \) when \(R^2T_0 > 4\pi^2 \), the \(\theta \) integral is still divergent at its end points. It is this divergence that discretization will show can be absorbed in the constant boundary counterterm \(B \).

Incidentally, for gluon polarization in the compactified direction, the open string state corresponds to a massless scalar particle which gains a mass by virtue of the extra term shown in (168):

\[\Delta M_{\text{Scalar}}^2 = 2P^+ \Delta P^- = -\frac{C_sR^2T_0}{2\pi} \int_0^1 dq \frac{\prod_r (1 - q^{2r})^8}{q^2 \prod_n (1 - q^{2n})^8} \sum_{m=\text{odd}} m^2 q^{m^2R^2T_0/4\pi^2} \]

(178)

which is positive since \(C_s < 0 \). The integral on the right is convergent at \(q \sim 0 \) provided \(R^2T_0 > 4\pi^2 \), and becomes arbitrarily large as \(R^2T_0 \to 4\pi^2 \). The convergence of the integral at \(q \sim 1 \) becomes transparent after the change of variables by the Jacobi imaginary transformation \(q = e^{2\pi^2/\ln \omega} \), which maps \(q = 1 \) to \(\omega = 0 \).

Now let’s discretize the gluon self-energy (176) in the variables of the lightcone lattice and examine how the continuum limit is regained. Recalling (34), (35), and (36), we have

\[\Delta P^- \to \frac{64C_s}{a\pi T_0} \sum_K \frac{2 + \mathcal{O}(K^4)}{K^3} \sum_{M_1=1}^{\infty} \sum_{k=-\infty}^{M_1-1/2} q^{1 + (2k - 1)^2R^2T_0/4\pi^2} \left[1 - 8q + 36q^2 + 4q^2 \sin^4 \frac{\pi M_1}{M} - 2q^2 \sin^2 \frac{\pi M_1}{M} + \mathcal{O}(q^3) \right] \]

(179)

where, to avoid ungainly expressions, we have deferred replacing \(q \) with its discretized version given by (35). Instead we work out the large \(M \) limit of the contribution of each power of \(q \) in what follows.

As we did in subsection 3.1, we next study the large \(M \) limit of the terms at fixed \(K \). The summand involves terms of the form \(q^p \sin^{2n}(\pi M_1/M) \) with \(p \geq 1 + R^2T_0/(4\pi^2) \geq 2 \) and \(n = 0, 1, 2 \). For simplicity of discussion, let’s choose \(R^2T_0 = 4\pi^2 \), so the lowest power is \(q^2 \), and begin by examining the large \(M \) limit of

\[\sum_{M_1=1}^{\infty} q^{2} \sim \left(\frac{\pi^2 K^2}{48 M^2} \right) \sum_{M_1=1}^{\infty} \left(\frac{\pi K}{8 M \sin \pi M_1/M} \right)^2 - 4 \sum_{M_1=1}^{\infty} \left(\frac{\pi K}{8 M \sin \pi M_1/M} \right)^4 \]

36
\[
\frac{1}{48M^2} \left(\frac{\pi^2 K^2}{384} + \mathcal{O}(M^{-2}) \right) - 4\zeta(4) \frac{K^4}{8^4} + \mathcal{O}(M^{-2}) \\
= \frac{\zeta(2) K^2}{64} - \frac{\zeta(4) K^4}{1024} + \mathcal{O}(M^{-2})
\]

where the last two lines follow from the argument in footnote 4. A similar analysis applies to the higher powers of \(q \) as well. As this \(q^2 \) example shows the presence of additional factors of \(\sin(\pi M_1/M) \) have the effect of suppressing the contribution by additional powers of \(M^{-1} \). This means that in collecting the contributions to the constant boundary counterterm, one only needs to keep the first three terms in the square brackets:

\[
\sum_{M_1=1}^{(M-1)/2} q^3 \approx \sum_{M_1=1}^{(M-1)/2} \left(\frac{\pi K}{8M \sin \pi M_1/M} \right)^3 \\
\approx \frac{\pi^3 K^3}{8^3 M^2} \int_0^{1/2} dx \left(\frac{1}{\sin^3 \pi x} - \frac{1}{\pi^3 x^3} - \frac{1}{2\pi x} \right) \\
+ \frac{K^3}{8^3} \sum_{M_1=1}^{(M-1)/2} \frac{1}{M_1^3} + \frac{\pi^2 K^3}{8^3 M^2} \sum_{M_1=1}^{(M-1)/2} \frac{1}{2M_1} \\
= \frac{\zeta(3) K^3}{8^3} + \mathcal{O}(M^{-2} \ln M)
\]

(181)

\[
\sum_{M_1=1}^{(M-1)/2} q^4 \approx \sum_{M_1=1}^{(M-1)/2} \left(\frac{\pi K}{8M \sin \pi M_1/M} \right)^4 = \frac{\zeta(4) K^4}{8^4} + \mathcal{O}(M^{-2})
\]

(182)

Thus the total contribution from these terms to the divergence is

\[
\Delta P_{\text{div}}^- = \frac{C_s}{a_0 T_0} \sum_K \frac{1}{K} \left[2\zeta(2) - 2\zeta(3) K + \zeta(4) K^2 + \mathcal{O}(K^4) \right]
\]

(183)

7.3 D-branes and the superstring

We now return to the effect of imposing Dirichlet conditions on some of the coordinates. As before, the self-energy integrands now acquire extra factors \((- \ln q)^{-(9-p)} \), which become

\[
\left(-\ln \frac{\pi K}{8M \sin \pi M_1/M} + \frac{6 - 2 \sin^2 \pi M_1/M}{3} \left(\frac{\pi K}{8M \sin \pi M_1/M} \right)^2 + \mathcal{O}(K^4) \right)^{-(9-p)}
\]

(184)

After expanding in powers of \(K \), we see that in general we will encounter, in addition to more terms in higher powers of \(K \), a series of terms with more negative powers of \(\ln K \) of the form

\[
\left(-\ln \frac{\pi K}{8M \sin \pi M_1/M} \right)^{-(9-p+n)}
\]

(185)
These extra factors modify the extraction of the divergent parts of the discretized self-energy expressions. It will suffice to illustrate this with the lowest contributing power of K:

\[
\sum_{M_1=1}^{(M-1)/2} q^2 (-\ln q)^{-n} \rightarrow \sum_{M_1=1}^{(M-1)/2} \left(\frac{\pi K}{8M \sin \pi M_1/M} \right)^2 \left(-\ln \frac{\pi K}{8M \sin \pi M_1/M} \right)^{-n} \\
\sim \frac{\pi^2 K^2}{64M} \int_0^{1/2} dx \left(-\ln \frac{\pi K}{8M \sin \pi x} \right)^{-n} - \frac{1}{\pi^2 x^2} \left(-\ln \frac{K}{8M x} \right)^{-n} \\
+ \sum_{M_1=1}^{\infty} \frac{K^2}{64M_1^2} \left(-\ln \frac{K}{8M_1} \right)^{-n} - \sum_{M_1=(M+1)/2}^{\infty} \frac{K^2}{64M_1^2} \left(-\ln \frac{K}{8M_1} \right)^{-n} \\
= \sum_{M_1=1}^{\infty} \frac{K^2}{64M_1} \left(-\ln \frac{K}{8M_1} \right)^{-n} + O(M^{-1}(\ln M)^{-n-1}) \quad (186)
\]

So we see that the presence of D-branes for the superstring does not spoil the ability to absorb divergences in the boundary counterterm. Also notice that the negative powers of $\ln M$ suppress the M^{-1} correction term which, if nonzero, would signal a nonzero shift to the gluon mass.

Acknowledgments

This research was supported in part by the Department of Energy under Grant No. DE-FG02-97ER-41029.

A Closed Strings in the Presence of D-branes

In this appendix, we will briefly examine how the scattering of a closed string tachyon off a D-brane can be described within the worldsheet-based approach, and compare with the string field theory analysis of the same process, which was carried out in Section 3 of [11].

To this end, we will first have to generalize the introductory remarks of Section 7, and derive a determinant formula for the path integral where instead of one site obeying Dirichlet boundary conditions, we now have $K - 1$ consecutive sites in the temporal direction, and in the same spatial position k. This requires taking the direct product of matrix (126) with a diagonal matrix with entries 1 for the sites in question, and zero otherwise. Then $\det(I + \bar{V} \Delta)$ may be written in the block form

\[
\det(I + \bar{V} \Delta) = \begin{vmatrix}
I + \Delta_{-10} & \Delta_{00} & \Delta_{01} \\
\Delta_{-1, -1} + 2(\kappa - 1)\Delta_{-10} + \Delta_{-11} & I + \Delta_{-10} + 2(\kappa - 1)\Delta_{00} + \Delta_{01} & \Delta_{-11} + 2(\kappa - 1)\Delta_{01} + \Delta_{11} \\
\Delta_{-10} & \Delta_{00} & I + \Delta_{01}
\end{vmatrix},
\]

where each of the blocks corresponds again to spatial positions $k - 1, k$ and $k + 1$, and Δ_{lm} is the $(K - 1)$-dimensional matrix with elements $\Delta_{(i+1)(j+k)}$, namely with only the temporal
indices \(i, j\) varying. By elementary row and column operations, we can reduce the size of the matrix and bring it to the form

\[
\det(I + \tilde{V} \Delta) = \begin{vmatrix}
I + \Delta_{-10} + \Delta_{01} & -2(\kappa - 1)I + \Delta_{-1,-1} + \Delta_{11} + 2\Delta_{-11} \\
\Delta_{00} & I + \Delta_{-10} + \Delta_{01}
\end{vmatrix}
\]

(187)

The latter equation may be used for the study of the open or closed string case, by substituting the corresponding expression for the propagator. In what follows we will focus on the closed string, where the propagator is a function of \(|l - m|\) alone, and more concretely is given by (29). Clearly the zero mode piece of the propagator will dominate as \(N \to \infty\), and following the same logic as in the string field theory approach [11], the quantity of interest will be precisely the coefficient of the zero mode in \(\det(I + \tilde{V} \Delta)\),

\[
\mathcal{M}_K = \lim_{N \to \infty} \frac{4M \det(I + \tilde{V} \Delta)}{N + 1}.
\]

(188)

The expression of the second line of (187) is advantageous for obtaining \(\mathcal{M}_K\), as the \(\mathcal{O}(N)\) term is contained only in the lower left block. In fact, since this term will be the same for all elements in the block, we can perform further row and columns operations in order to remove it from all but one element. This implies that \(\mathcal{M}_K\) will simply equal the minor of the latter element, or in other words is will be given by a determinant of dimension \(2(K - 1) - 1\).

For specific \(K\), here it is also possible to obtain and asymptotic expansion in \(M\) for \(\mathcal{M}_K\) with the help of the Euler-Maclaurin formula. For example, setting \(\kappa = 1\) for simplicity, we find

\[
\begin{align*}
\mathcal{M}_2 &= 4(1 - \frac{1}{\pi}) + \frac{\pi^3}{15} \frac{1}{M^4} + \mathcal{O}(M^{-6}) \simeq 2.727 + \frac{0.517}{M^2}, \\
\mathcal{M}_3 &= \frac{(5\pi - 8+)(3\pi^2 + 16)}{2\pi^3} + \frac{5\pi - 4}{2M^2} + \mathcal{O}(M^{-4}) \simeq 5.669 + \frac{3.854}{M}, \\
\mathcal{M}_4 &= \frac{-32(1024 - 296\pi - 75\pi^2 + 12\pi^3)}{9\pi^4} - \frac{16(2048 - 720\pi - 129\pi^2 + 36\pi^3)}{27\pi^4 M^2} + \mathcal{O}(M^{-4}) \simeq 10.003 + \frac{22.270}{M}.
\end{align*}
\]

(189)

(190)

(191)

It’s worth noting that particularly for \(K = 2\), the coefficient of the \(\mathcal{O}(M^{-2})\) term is zero. We may compare our results of our current approach to D-branes with the string field theory based approach of [11], by noting that the quantity we defined in equation (87) of the latter paper, equals in our current notations to

\[
r_K = \sqrt{\frac{\eta^{-K+1} \det(h_{lp})}{1 - \eta^2} \mathcal{M}_K}
\]

(192)

where \(\eta = 1 + \kappa - \sqrt{\kappa(2 + \kappa)}\) and \(\det(h_{lp})\) is given by equation (33) of [12]. Indeed, we have verified that the two approaches yield the same values for \(r_K\) for a wide range of \(M\) and \(K\),
and that the fits we obtained in [11] for fixed K and varying $M \gg K$ are in good agreement with the asymptotic expressions we can now obtain analytically. As an illustration, with the current methods we find for $\kappa = 1$

$$r_2 = \frac{\sqrt{\pi}}{\sqrt{2(\pi - 1)}} \left(1 + \frac{1}{6\pi M^2} \right) + \mathcal{O}(M^{-4}) \simeq 0.856429 \frac{0.448425}{M^2} + \mathcal{O}(M^{-4}) \quad (193)$$

which compares very well with the fit on the left hand side of Figure 14 in the latter reference.

B Open String Self-energy: String Field Viewpoint

In this appendix, we give the alternative expression for the self-energy as a concatenation of open string propagators, along the lines of [11]. For the open string self-energy, depicted in Fig. 1, we have a total of $N + K - 1$ missing links, N for the open string ends and $K - 1$ for the extra two ends of the two intermediate strings. Let the external string have N sites and the two intermediate strings have M_1, $M_2 = M - M_1$ sites respectively. At each time j there will be M coordinates x_i^j, $i = 1, \ldots, M$. If at time j there are two open strings, we shall identify x_i^j, $i = 1, \ldots, M_1$, with string 1 and x_i^j, $i = M_1 + 1, \ldots, M$ with the second one. The summand of the self-energy diagram will then depend on M_1, J, K, so we write

$$\langle N + 1, \{x^j\}|0, \{x^j\}\rangle_{M_1, K, J} = \int dx_i^K dx_i^L \langle L, \{x^j\}|0, \{x^j\}\rangle_M \langle K, \{x^j\}|0, \{x^j\}\rangle_M$$

$$\langle K, \{x^j\}|0, \{x^j\}\rangle_{M_2} \langle J, \{x^j\}|0, \{x^j\}\rangle_M e^{-T_0(x_M^j - x_M^j)^2 + (x_K^j - x_K^j)^2}/4} \quad (194)$$

$$\int dx_i^K dx_i^L e^{iW + (N + K - 1)B_0 - T_0(x_M^j - x_M^j)^2}e^{(x_K^j - x_K^j)^2}/4$$

where we have introduced the notation x_i for x_i, $i = 1, \ldots, M_1$ and x_i for x_i, $i = M_1 + 1, \ldots, M$.

We will again want to change integration variables to normal modes of either the single external string or the two intermediate strings as follows:

$$x_i = \frac{1}{\sqrt{M}} q_0 + \sqrt{\frac{2}{M}} \sum_{m=1}^{M-1} q_m \cos \frac{m\pi}{M} \left(i - \frac{1}{2} \right) \quad (195)$$

$$= \begin{cases} \frac{1}{\sqrt{M_1}} q_0 + \sqrt{\frac{2}{M_1}} \sum_{m=1}^{M_1-1} q_m \cos \frac{m\pi}{M_1} \left(i - \frac{1}{2} \right) & i = 1, \ldots, M_1 \\ \frac{1}{\sqrt{M_2}} q_0 + \sqrt{\frac{2}{M_2}} \sum_{m=1}^{M_2-1} q_m \cos \frac{m\pi}{M_2} \left(i - M_1 - \frac{1}{2} \right) & i = M_1 + 1, \ldots, M \end{cases} \quad (196)$$

The missing link terms in the exponent involve

$$x_{M_1+1} - x_{M_1} = -2 \sqrt{\frac{2}{M}} \sum_{m=1}^{M-1} q_m \sin \frac{mM_1\pi}{M} \sin \frac{m\pi}{2M} \quad (197)$$
\[(x_{M1+1} - x_{M1})^2 = \frac{8}{M} \sum_{m',m''=1}^{M-1} q_{m'} q_{m''} \sin \frac{m' M_1 \pi}{M} \sin \frac{m'' M_1 \pi}{M} \sin \frac{m' \pi}{2M} \sin \frac{m'' \pi}{2M} \] (198)

It is straightforward to relate the \(q_m^{(1)} \), \(q_m^{(2)} \) to the \(q_m \):

\[
q_0^{(1)} = \sqrt{\frac{M_1}{M}} q_0 + \sqrt{\frac{2}{MM_1}} \sum_{m'=1}^{M-1} q_{m'} U^{(1)}_{m'm}, \quad q_0^{(2)} = \sqrt{\frac{M_2}{M}} q_0 + \sqrt{\frac{2}{MM_2}} \sum_{m'=1}^{M-1} q_{m'} U^{(2)}_{m'm},
\]

and we note the identity \(q_0^{(1)} \sqrt{M_1} + q_0^{(2)} \sqrt{M_2} = q_0 \sqrt{M} \), as expected from the fact that \(q_0 / \sqrt{M} \) is the center of momentum of the open string. The matrices \(U^{(1)}, U^{(2)} \) are listed in Appendix E.

B.1 Correction to the open string ground energy

For the ground state it suffices to set \(x^i = x^f = 0 \), so that the expression for \(iW \) simplifies somewhat:

\[
iW \rightarrow -\frac{T_0}{2} \left[\frac{(q_0^L)^2}{L} + \frac{(q_0^K)^2}{J} + \sum_{m=1}^{M-1} \sinh \lambda_m^o \left((q_m^L)^2 \coth L \lambda_m^o + (q_m^K)^2 \coth J \lambda_m^o \right) \right. \\
+ \left. \frac{(q_0^L - q_0^K)^2}{K} \sum_{m=1}^{M_1-1} \sinh \lambda_m^{o,1} \left([(q_m^L)^2 + (q_m^K)^2] \coth K \lambda_m^{o,1} - 2 \frac{q_m^K q_{m'}^{L,1}}{\sinh K \lambda_m^{o,1}} \right) \right. \\
+ \left. \frac{(q_0^L - q_0^K)^2}{K} \sum_{m=1}^{M_2-1} \sinh \lambda_m^{o,2} \left([(q_m^L)^2 + (q_m^K)^2] \coth K \lambda_m^{o,2} - 2 \frac{q_m^K q_{m'}^{L,2}}{\sinh K \lambda_m^{o,2}} \right) \right] (201)
\]

where \(\lambda_m^{o,1}, \lambda_m^{o,2} \) are obtained from \(\lambda_m^o \) through the substitutions \(M \rightarrow M_1, M_2 \) respectively.

Finally we eliminate the \(q_m^{(1,2)} \) in favor of the \(q_m \). Because \(U_{m'0}^{(2)} = -U^{(1)}_{m'0} \), we find that the zero modes combine nicely

\[
(q_0^{L,1} - q_0^{K,1})^2 + (q_0^{L,2} - q_0^{K,2})^2 = (q_0^K - q_0^L)^2 + \frac{2}{MM_1M_2} \sum_{m',m''=1}^{M-1} (q_{m'}^K - q_{m''}^L)(q_{m''}^K - q_{m'}^L) U_{m'0}^{(1)} U_{m''0}^{(1)} (202)
\]

From this we see that the zero modes enter the exponent in the combination

\[
iW_0 = -\frac{T_0}{2} \left[\frac{(q_0^L)^2}{L} + \frac{(q_0^K)^2}{J} + \frac{(q_0^K - q_0^L)^2}{K} \right] (203)
\]
So integrating them out simply implements closure on the zero modes.

$$\int dq_0^K dq_0^L e^{iW_0} = \frac{2\pi}{T_0} \sqrt{\frac{JKL}{J + K + L}} = \frac{2\pi}{T_0} \sqrt{\frac{JKL}{N + 1}}.$$ (204)

The contribution of the nonzero modes to the exponent can be expressed using the following matrix definitions:

$$A^{(1)}_{m'm''} \equiv \frac{4}{MM_1} \sum_{m=1}^{M_1-1} U^{(1)}_{m'm''} U^{(1)}_{m'm} \sinh \lambda_{m}^{o,1} \coth K\lambda_{m}^{o,1} $$ (205)

$$B^{(1)}_{m'm''} \equiv -\frac{4}{MM_1} \sum_{m=1}^{M_1-1} U^{(1)}_{m'm''} U^{(1)}_{m'm} \sinh \lambda_{m}^{o,1} \sinh K\lambda_{m}^{o,1} $$ (206)

$$A^{(2)}_{m'm''} \equiv \frac{4}{MM_2} \sum_{m=1}^{M_2-1} U^{(2)}_{m'm''} U^{(2)}_{m'm} \sinh \lambda_{m}^{o,2} \coth K\lambda_{m}^{o,2} $$ (207)

$$B^{(2)}_{m'm''} \equiv -\frac{4}{MM_2} \sum_{m=1}^{M_2-1} U^{(2)}_{m'm''} U^{(2)}_{m'm} \sinh \lambda_{m}^{o,2} \sinh K\lambda_{m}^{o,2} $$ (208)

Taking the limit \(L, J \to \infty \), we define the nonzero mode contribution to \(iW \) plus the missing link terms as

$$iW' = -\frac{T_0}{2} \sum_{m'=1}^{M-1} \sinh \lambda_{m'}^{o} ((q_{m'}^{L})^2 + (q_{m'}^{K})^2)$$

$$+ \frac{2}{KM_1M_2} \sum_{m',m''=1}^{M-1} (q_{m'}^{K} - q_{m'}^{L})(q_{m''}^{K} - q_{m''}^{L})U^{(1)}_{m'0} U^{(1)}_{m''0}$$

$$+ \sum_{m',m''=1}^{M-1} (q_{m'}^{K} q_{m''}^{K} + q_{m'}^{L} q_{m''}^{L})(A^{(1)} + A^{(2)})_{m'm''} + 2 \sum_{m',m''=1}^{M-1} q_{m'}^{K} q_{m''}^{L} (B^{(1)} + B^{(2)})_{m'm''}$$

$$+ \frac{4}{M} \sum_{m',m''=1}^{M-1} (q_{m'}^{K} q_{m''}^{K} + q_{m'}^{L} q_{m''}^{L}) \sin \frac{m' M_1 \pi}{M} \sin \frac{m'' M_1 \pi}{M} \sin \frac{m' \pi}{2M} \sin \frac{m'' \pi}{2M}$$ (209)

$$\equiv -\frac{T_0}{2} \left[\sum_{m',m''=1}^{M-1} (q_{m'}^{K} q_{m''}^{K} + q_{m'}^{L} q_{m''}^{L}) A_{m'm''} + 2 q_{m'}^{K} q_{m''}^{L} B_{m'm''} \right]$$ (210)

where we have defined

$$A_{m'm''} \equiv \delta_{m'm''} \sinh \lambda_{m'}^{o} + (A^{(1)} + A^{(2)})_{m'm''} + \frac{2}{KM_1M_2} U^{(1)}_{m'0} U^{(1)}_{m''0}$$

$$+ \frac{4}{M} \sin \frac{m' M_1 \pi}{M} \sin \frac{m'' M_1 \pi}{M} \sin \frac{m' \pi}{2M} \sin \frac{m'' \pi}{2M}$$ (211)

$$B_{m'm''} \equiv (B^{(1)} + B^{(2)})_{m'm''} - \frac{2}{KM_1M_2} U^{(1)}_{m'0} U^{(1)}_{m''0}$$ (212)
The Gaussian integral in the two open string function then becomes
\[
\int dx_i^K dx_i^L e^{iW} \rightarrow \left(\frac{2\pi}{T_0}\right)^M \sqrt{\frac{JKL}{N+1}} \det^{-1/2} \begin{pmatrix} A & B \\ B & A \end{pmatrix}
\] (213)

and the prefactors in the expression for the two open string function become in the limit \(J, L \rightarrow \infty\),

\[
\mathcal{D}_M^{\text{open}}(J)\mathcal{D}_M^{\text{open}}(K)\mathcal{D}_M^{\text{open}}(L) \rightarrow \frac{e^{-(J+L)\sum_m \lambda_m^0/2}}{K\sqrt{JL}} \frac{T_0}{2\pi} \prod_{m=1}^{M-1} \frac{[2 \sinh \lambda_m^0]}{[\sinh \lambda_m^0]^{1/2}} \prod_{m=1}^{M-1} \frac{[\sinh K \lambda_m^{o,1}]}{[\sinh \lambda_m^{o,2}]}^{-1/2} \] (214)

Combining these results, dividing by \(\mathcal{D}^{\text{open}}(N+1)e^{NB_0}\) and summing over \(M_1, K\) leads to our expression for the ground state energy shift

\[
-a \Delta P^- = \sum_{K=1}^{\infty} \sum_{M_1=1}^{M-1} \left[\frac{e^{K \sum_m \lambda_m^0/2+(K-1)B_0}}{\sqrt{K}} \prod_{m=1}^{M-1} \frac{[2 \sinh \lambda_m^0]^{1/2}}{[\sinh \lambda_m^0]} \right]^{D-2} \]

\[
\left[\prod_{m=1}^{M-1} \frac{[\sinh K \lambda_m^{o,1}]}{[\sinh \lambda_m^{o,2}]} \prod_{m=1}^{M-1} \frac{[\sinh K \lambda_m^{o,2}]}{[\sinh \lambda_m^{o,1}]} \right]^{-1/2} \det \begin{pmatrix} A & B \\ B & A \end{pmatrix} \] (215)

Doing the three products \(\prod_{m=1}^{M-1} [2 \sinh \lambda_m^0]\) explicitly yields

\[
-a \Delta P^- = \sum_{K=1}^{\infty} \sum_{M_1=1}^{M-1} \left[\frac{e^{K \sum_m \lambda_m^0/2+(K-1)B_0}}{\sqrt{K}} \prod_{m=1}^{M-1} \frac{[2 \sinh \lambda_m^0]}{[\sinh \lambda_m^0]} \right]^{D-2} \prod_{m=1}^{M-1} \frac{[2 \sinh \lambda_m^0]}{[\sinh \lambda_m^0]}^{-2/(D-2)} \]

\[
\left[\frac{M \sinh 2 \sinh^{-1} 1 \sinh 2M \sinh^{-1} 1}{M_1 M_2 \sinh 2M_1 \sinh^{-1} 1 \sinh 2M_2 \sinh^{-1} 1} \right]^{-2/(D-4)} \prod_{m=1}^{M-1} [2 \sinh K \lambda_m^{o,1}] \prod_{m=1}^{M-1} [2 \sinh K \lambda_m^{o,2}] \det \begin{pmatrix} A & B \\ B & A \end{pmatrix} \] (216)

B.2 Correction to the open string gluon energy

Examination of the open string propagator shows that the gluon state, the lightest spin one state with energy \(\lambda_1^0\) above the ground state, contributes via the first order term in the expansion of

\[
\exp \left[T_0 q_{1,f}^0 \cdot q_{1,f}^0 \frac{\sinh \lambda_1^0}{\sinh(N+1)\lambda_1^0} \right] \sim 1 + T_0 q_{1,f}^0 \cdot q_{1,f}^0 \frac{2 \sinh \lambda_1^0 \sinh(N+1)\lambda_1^0}{\sinh(N+1)\lambda_1^0} e^{-(N+1)\lambda_1^0} \] (217)

So to extract the one loop correction we isolate this term from the two external line propagators in the expression for the one loop correction to the two point function. It is then
safe to take the $J, L \to \infty$ limit of what multiplies these factors. Then in parallel with our extraction of the correction to the graviton self-energy, we find

$$-a\Delta P_{gluon}\delta_{kl} = 2T_0 \sinh \lambda_1^o \sum_{K=1}^{\infty} \sum_{M_1=1}^{M-1} e^{K\lambda_1^o} \langle q_{1,L}^{ok} q_{1,K}^{ol} \rangle \left[\frac{e^{K \sum_m \lambda_m^o/2+(K-1)B_0}}{\sqrt{K}} \prod_{m=1}^{M-1} [2 \sinh \lambda_m^o]^{1/2} \right]^{D-2}$$

$$\left[\prod_{m=1}^{M_1-1} \left(\frac{\sinh K \lambda_m^o}{\sinh \lambda_m^o} \right)^{-1/2} \prod_{m=1}^{M_2-1} \left(\frac{\sinh K \lambda_m^o}{\sinh \lambda_m^o} \right)^{-1/2} \right] \det^{-1/2} \left(\begin{array}{cc} A & B \\ B & A' \end{array} \right)$$

where the correlator is given by

$$\langle q_{1,L}^{ok} q_{1,K}^{ol} \rangle = \frac{\int dq_{L,m}^{ok} dq_{K,m}^{ol} e^{iW} q_{L,m}^{ok} q_{L,m}^{ol} e^{-iW}}{\int dq_{L,m}^{ok} dq_{K,m}^{ol} e^{iW}}$$

Again with the notation

$$\left(\begin{array}{cc} A & B \\ B & A' \end{array} \right)^{-1} = \left(\begin{array}{cc} A' & B' \\ B' & A' \end{array} \right)$$

it follows that

$$\langle q_{1,L}^{ok} q_{1,K}^{ol} \rangle = \delta_{kl} \frac{B_{11}'}{T_0}$$

C Normal Modes

A string with $P^+ = M \alpha T_0$ is described at a fixed time by M coordinates x_i or y_i, $i = 1, \ldots M$. In this article we require several normal mode decompositions depending on the boundary conditions.

Neumann Open String

$$x_i = \frac{1}{\sqrt{M}} q_0 + \sqrt{\frac{2}{M}} \sum_{m=1}^{M-1} q_{om} \cos \frac{m\pi(i-1/2)}{M}$$

$$q_0 = \sqrt{\frac{1}{M}} \sum_{i=1}^{M} x_i, \quad q_{om} = \sqrt{\frac{2}{M}} \sum_{i} x_i \cos \frac{m\pi(i-1/2)}{M}$$

Closed String (Neumann)

M odd:
\[x_i = \frac{1 \sqrt{q_0} + \sqrt{\frac{2}{M} \sum_{m=1}^{(M-1)/2} \left[q_{cm} \cos \frac{2m\pi(i-1/2)}{M} + q_{sm} \sin \frac{2m\pi(i-1/2)}{M} \right]} }{2 \sqrt{M} \sum_{m=1}^{(M-1)/2} \left[q_{cm} \cos \frac{2m\pi(i-1/2)}{M} + q_{sm} \sin \frac{2m\pi(i-1/2)}{M} \right] } \quad (224) \]

\[q_{cm} = \sqrt{2} \sum_{i=1}^{M} x_i \cos \frac{2m\pi i}{M}, \quad q_{sm} = \sqrt{2} \sum_{i=1}^{M} x_i \sin \frac{2m\pi i}{M} \quad (225) \]

Dirichlet Open String

\[y_k = \sqrt{\frac{2}{M} \sum_{m=1}^{M-1} q_{Dm} \sin \frac{m\pi k}{M} } \quad \text{for} \quad k = 1, \ldots, M-1, \quad y_M = q_{DM} \quad (228) \]

\[q_{Dm} = \sqrt{2} \sum_{k=1}^{M-1} y_k \sin \frac{m\pi k}{M}, \quad 0 < m < M, \quad q_{DM} = y_M \quad (229) \]

Closed String (Dirichlet)

\[y_i = \frac{1 \sqrt{q_0} + \sqrt{\frac{2}{M} \sum_{m=1}^{M/2-1} \left[q_{cm} \cos \frac{2m\pi i}{M} + q_{sm} \sin \frac{2m\pi i}{M} \right]} }{\sqrt{M} \sum_{m=1}^{M/2-1} \left[q_{cm} \cos \frac{2m\pi i}{M} + q_{sm} \sin \frac{2m\pi i}{M} \right] } \quad (230) \]

\[q_{cm} = \sqrt{2} \sum_{i=1}^{M} y_i \cos \frac{2m\pi i}{M}, \quad q_{sm} = \sqrt{2} \sum_{i=1}^{M} y_i \sin \frac{2m\pi i}{M} \quad (232) \]

\[q_0 = \sqrt{\frac{1}{M} \sum_{i=1}^{M} y_i}, \quad q_{cM/2} = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (-1)^i y_i}, \quad \text{(for M even)} \quad (233) \]
D Propagators

D.1 Neumann open string propagator

\[\langle N+1, x^i|0, x^i \rangle^{\text{open}} = \mathcal{D}^{\text{open}}(N+1) e^{iW_{\text{open}}} \]

(234)

where

\[\mathcal{D}^{\text{open}}(N+1) = \frac{1}{\sqrt{N+1}} \left(\frac{T_0}{2\pi} \right)^{M/2} \prod_{m=1}^{M-1} \left[\frac{\sinh(N+1)\lambda_m^D}{\sinh \lambda_m^D} \right]^{-1/2} \]

(235)

\[iW_{\text{open}} = -\frac{T_0}{2} \left[\frac{(q_{0,f} - q_{0,i})^2}{N+1} + \sum_{m=1}^{M-1} \sinh \lambda_m^D \left((q_{m,i}^2 + q_{m,f}^2) \coth(N+1)\lambda_m^D - 2q_{m,i}q_{m,f} \sinh \lambda_m^D \sinh \frac{K\lambda_m^D}{2} \right) \right] \]

(236)

\[\lambda_0^D = 0, \quad \lambda_m^D = 2 \sinh^{-1} \sin \frac{m\pi}{2M}, \quad m = 1, \ldots, M-1 \]

(237)

Where the \(q_m \)'s are the normal mode coordinates for the \(x_i \)'s. The right side is the result of doing the integrations over all the \(x_i \) with \(i = 1, \ldots, M \) and \(j = 1, \ldots, N \). The propagator spans \(N+1 \) time steps and this result corresponds to assigning half the potential energy \(T_0 \sum_{i=1}^{M-1} (x_{i+1}^2 - x_i^2)/2 \) to time \(j = 0 \) and half to \(j = N+1 \).

D.2 Dirichlet open string propagator

The Dirichlet open string propagator over a time of \(K = N+1 \) steps is evaluated to be

\[\langle q^f, N+1|q^i, 0 \rangle^{D} = \mathcal{D}^{D}(N+1) e^{iW^{D}} \]

(238)

where

\[\mathcal{D}^{D}(N+1) = \left(\frac{T_0}{2\pi} \right)^{M/2} \prod_{m=1}^{M} \left[\frac{\sinh(N+1)\lambda_m^D}{\sinh \lambda_m^D} \right]^{-1/2} \]

(239)

\[iW^{D} = -\frac{T_0}{2} \sum_{m=1}^{M} \left((q_{Dm}^f + q_{Dm}^i)^2 \sinh \lambda_m^D \coth K\lambda_m^D - 2q_{Dm}^f q_{Dm}^i \sinh \lambda_m^D \sinh K\lambda_m^D \right) \]

(240)

\[\lambda_m^D = \lambda_m^D, \quad m = 1, \ldots, M-1, \quad \lambda_M^D = 2 \sinh^{-1} \sqrt{\frac{K}{2}} \]

(241)

We recall that the above expressions give the result of integrating over all the variables \(q_j^i \), for \(j = 1, \ldots, N \), with half the potential energy assigned to \(j = 0, N+1 \), which is consistent with the closure requirement.
E Overlap Formulas

Open-2 Open, Neumann

\[q_{0}^{(1)} = \sqrt{\frac{M_{1}}{M}} q_{0} + \sqrt{\frac{2}{M M_{1}}} m' \sum_{m'=1}^{M-1} q_{m'} U_{m'0}^{(1)}, \quad q_{m}^{(1)} = \frac{2}{\sqrt{M M_{1}}} m' \sum_{m'=1}^{M-1} q_{m'} U_{m'm}^{(1)} \]

\[q_{0}^{(2)} = \sqrt{\frac{M_{2}}{M}} q_{0} + \sqrt{\frac{2}{M M_{2}}} m' \sum_{m'=1}^{M-1} q_{m'} U_{m'0}^{(2)}, \quad q_{m}^{(2)} = \frac{2}{\sqrt{M M_{2}}} m' \sum_{m'=1}^{M-1} q_{m'} U_{m'm}^{(2)} \]

\[U_{m'm}^{(1)} = \sum_{i=1}^{M_{1}} \cos \frac{m' \pi}{M} \left(i - \frac{1}{2} \right) \cos \frac{m \pi}{M_{1}} \left(i - \frac{1}{2} \right) \]

\[= \frac{(-)^{m}}{2} \sin \left(m' \pi M_{1} / M \right) \sin \left(m' \pi / 2 M \right) \cos \left(m \pi / 2 M_{1} \right) - \sin^{2} \left(m \pi / 2 M_{1} \right) \]

\[U_{m'm}^{(2)} = \sum_{i=1+M_{1}}^{M} \cos \frac{m' \pi}{M} \left(i - \frac{1}{2} \right) \cos \frac{m \pi}{M_{2}} \left(i - M_{1} - \frac{1}{2} \right) \]

\[= \frac{-1}{2} \sin \left(m' \pi M_{1} / M \right) \sin \left(m' \pi / 2 M \right) \cos \left(m \pi / 2 M_{2} \right) - \sin^{2} \left(m' \pi / 2 M_{2} \right) \]

and we note the identity \(q_{0}^{(1)} \sqrt{M_{1}} + q_{0}^{(2)} \sqrt{M_{2}} = q_{0} \sqrt{M} \), as expected from the fact that \(q_{0} / \sqrt{M} \) is the center of momentum of the open string.

We can also express the \(q \)'s in terms of the \(q^{(1)}, q^{(2)} \)'s:

\[q_{0} = q_{0}^{(1)} \sqrt{\frac{M_{1}}{M}} + q_{0}^{(2)} \sqrt{\frac{M_{2}}{M}} \]

\[q_{m'} = \sqrt{\frac{2}{M M_{1}}} \left(q_{0}^{(1)} U_{m'0}^{(1)} + \sqrt{2} \sum_{m=1}^{M_{1}-1} q_{m}^{(1)} U_{m'm}^{(1)} \right) \]

\[+ \sqrt{\frac{2}{M M_{2}}} \left(q_{0}^{(2)} U_{m'0}^{(2)} + \sqrt{2} \sum_{m=1}^{M_{2}-1} q_{m}^{(2)} U_{m'm}^{(2)} \right) \]

Open-2 Open, Dirichlet

\[q_{DM_{1}}^{(1)} = \sqrt{\frac{2}{M}} \sum_{m'=1}^{M-1} q_{DM'} \sin \frac{m' \pi M_{1}}{M}, \quad q_{DM}^{(1)} = \frac{2}{\sqrt{M M_{1}}} \sum_{m'=1}^{M-1} q_{DM'} U_{m'm}^{(1)} \]

\[q_{DM_{2}}^{(2)} = y_{M} = q_{DM}, \quad q_{DM}^{(2)} = \frac{2}{\sqrt{M M_{2}}} \sum_{m'=1}^{M-1} q_{DM'} U_{m'm}^{(2)} \]

\[U_{m'm}^{D(1)} = \sum_{k=1}^{M_{1}-1} \sin \frac{m' \pi k}{M} \sin \frac{m \pi k}{M_{1}} = \frac{(-)^{m}}{4} \frac{\sin \left(m \pi / M_{1} \right) \sin \left(m' \pi M_{1} / M \right)}{\sin^{2} \left(m' \pi / 2 M \right) - \sin^{2} \left(m \pi / 2 M_{1} \right)} \]

47
\[\begin{align*}
U_{m'm}^{D(2)} & = \sum_{i=1+M_1}^{M-1} \sin \frac{m' \pi k}{M} \sin \frac{m \pi (k - M_1)}{M_1} \\
& = \frac{(-)^m}{4} \sin(m \pi /(M-M_1)) \sin(m' \pi (M-M_1)/M) \\
& \quad \sin^2(m' \pi /2M) - \sin^2(m \pi /2(M-M_1)) \end{align*} \] (250)

3 Zero-momentum Tachyon Vertex

\[\begin{align*}
V_3 &= \frac{1}{\sqrt{\left|P_1^+ P_2^+ P_3^+\right|}} \frac{\left|P_2^+ \left(P_1^{+2} + P_2^{+2} + P_3^{+2}
ight)/P_2^+ P_3^+\right|}{\left|P_3^+ \left(P_1^{+2} + P_2^{+2} + P_3^{+2}
ight)/P_1^+ P_3^+\right|} \\
P_3^+ &= -P_1^+ - P_2^+ \end{align*} \] (251)

References

[1] P. Goddard, C. Rebbi, C. B. Thorn, Nuovo Cim. A12 (1972) 425-441.
[2] P. Goddard, J. Goldstone, C. Rebbi and C. B. Thorn, Nucl. Phys. B 56 (1973) 109.
[3] S. Mandelstam, Nucl. Phys. B 64 (1973) 205. Nucl. Phys. B 69 (1974) 77.
[4] R. Giles and C. B. Thorn, Phys. Rev. D 16 (1977) 366.
[5] G. ’t Hooft, Nucl. Phys. B72 (1974) 461.
[6] A. Neveu and J. Scherk, Nucl. Phys. B 36 (1972) 155.
[7] C. B. Thorn, Phys. Rev. D 78 (2008) 085022 [arXiv:0808.0458 [hep-th]]. C. B. Thorn, Phys. Rev. D 78 (2008) 106008 [arXiv:0809.1085 [hep-th]].
[8] P. Ramond, Phys. Rev. D 3 (1971) 2415; A. Neveu and J. H. Schwarz, Phys. Rev. D 4 (1971) 1109; C. B. Thorn, Phys. Rev. D 4 (1971) 1112.
[9] A. Neveu and J. H. Schwarz, Nucl. Phys. B 31 (1971) 86; A. Neveu, J. H. Schwarz and C. B. Thorn, Phys. Lett. B 35 (1971) 529.
[10] F. Gliozzi, J. Scherk and D. I. Olive, Phys. Lett. B 65, 282 (1976); Nucl. Phys. B 122 (1977) 253.
[11] G. Papathanasiou and C. B. Thorn, Phys. Rev. D 86 (2012) 066002 [arXiv:1206.5554 [hep-th]].
[12] G. Papathanasiou and C. B. Thorn, Phys. Rev. D 87, (2013) 066005 [arXiv:1212.2900 [hep-th]].
[13] P. Goddard, Nuovo Cim. A 4 (1971) 349; A. Neveu and J. Scherk, Nucl. Phys. B 36 (1972) 317.

48
[14] M. E. Fisher and R. E. Hartwig, Advan. Chem. Phys. **15** (1968), 333

[15] G.Y. Hu and R.F. O’Connell, *Journal of Physics A- Mathematical and General*, **29** (1996), 1511-1513; G.Y. Hu, J.Y. Ryu, and R.F. O’Connell, *Journal of Physics A- Mathematical and General*, **31** (1998), 9279-9282; F. Chung and S.-T. Yau, *Journal of Combinatorial Theory, Series A* **91** no. 1-2, (2000) 191 – 214.

[16] S. Mandelstam, Lectures at the Workshop on Unified String Theories, 29 July-16 August 1985, Institute for Theoretical Physics, University of Santa Barbara, Santa Barbara CA, published in *Unified String Theories*, Ed. M.Green and D. Gross, World Scientific, 1986.

[17] P. Deift, A. Its, and I. Krasovsky 2012, [arXiv:1206.1292]

[18] P. Rambour and A. Seghier, *C. R. Acad. Sci. I. Math.* **347** (2009) 489.

[19] P. Rambour and A. Seghier, *Bull. Sci. Math.* **134** (2010) 155.

[20] J. Dai, R. G. Leigh and J. Polchinski, *Mod. Phys. Lett. A* **4** (1989) 2073.

[21] C. Lovelace, *Phys. Lett. B* **34** (1971) 500.

[22] C. B. Thorn, *Phys. Lett. B* **242** (1990) 364.

[23] F. Rojas and C. B. Thorn, *Phys. Rev. D* **84** (2011) 026006 [arXiv:1105.3967 [hep-th]].

[24] C. B. Thorn, *Phys. Rev. D* **80** (2009) 086010 [arXiv:0906.3742 [hep-th]].