SOME OBSERVATIONS ON THE INDEX OF C_p-SPACES

BIKRAMJIT KUNDU

Abstract. In this paper, we consider numerical indices associated to spaces with free C_p-action. We prove that the Stiefel manifolds provide an example of non-tidy spaces for $p = 2$, which are those whose co-index and index disagree. In the case of odd primes, we construct examples of co-index 3 whose index may be arbitrarily large.

1. Introduction

In topological combinatorics, one often has to rule out equivariant maps between G-spaces. In such cases an important family of invariants comes from various indices associated to G-spaces [9]. One such index is the Fadell-Husseini index [6] which is an ideal in the cohomology of BG.

In the case of a cyclic group of prime order the universal space EG may be filtered using spheres. For the group C_2, the spheres with antipodal action form the skeleton of EC_2. For p odd, the odd dimensional spheres form the odd skeleton of EC_p. This leads to the definition of co-index and index of C_p-spaces depending of which spheres map to X or which spheres possess a map from X. A crucial role here is played by the Borsuk-Ulam theorem which says that there are no C_p-maps from spheres of higher dimension to those of lower dimension.

This paper investigates examples of spaces X whose co-index is $<$ the index. These are called “non-tidy” spaces by Matousek [9]. For the spheres described, these two are equal. We show using Steenrod operations that Stiefel manifolds provide examples of “non-tidy” spaces in many cases (cf. Theorem 3.1). The index computations of Stiefel manifolds have been earlier applied to combinatorial problems in [3].

Matsushita [10] has constructed C_2-spaces of co-index 1 whose index is large. We analogously consider co-index and index for C_p-spaces. These have also earlier been studied using Bredon cohomology [1], [2]. We provide examples of C_p-spaces of co-index 3 and index arbitrarily large (cf. Theorem 4.2).

1.1. Organisation. In section 2 we recall some basic definitions, useful results regarding index and co-index and some basic notations used in rest of the paper. In section 3 we construct certain Stiefel manifolds as examples of ”non-tidy” space. In section 4 we construct inductively free C_p-spaces whose co-index remain constant but index becomes large.

1.1. Acknowledgements. The author would like to thank Samik Basu who had guided every part of this work with uncountable useful discussions. This research was supported by CSIR SRF.

2. Preliminaries

In this section we will define some basic notations, definitions which will be used frequently in the rest of the paper. The category of the G-spaces has objects topological spaces with G-action and morphism as G-equivariant maps. We recall various indices associated to the free G-spaces in the case where G is a cyclic group of prime order.

Notation 2.1. We use $S(V)$ to denote the sphere inside a G-representation V and σ to denote sign representation of C_2. For an odd prime p, λ denotes the one dimensional

2020 Mathematics Subject Classification. Primary: 55M20; Secondary: 55N91.

Key words and phrases. Stiefel manifolds, Fadell-Husseini index, equivariant cohomology, Serre spectral sequence.
complex representation of C_p where the chosen generator τ acts by multiplying a complex number with $e^{2\pi \tau}$. We use the model for the universal space EC_p as the C_p-CW-complex whose odd and even dimensional skeletons are defined by

$$E^{(2n-1)}C_p = S(n\lambda)$$

$$E^{(2n)}C_p = S(n\lambda) \cup_a C_p \times D^{2n}$$

where $a : C_p \times S^{2n-1} \to S^{2n-1}$ is the action map. If we consider C_2, the k-th skeleton of EC_2 becomes $S((k+1)\sigma)$ which is S^k with antipodal action.

Note that for any topological group G there always exists an universal bundle $p : EG \to EG/G = BG$ \footnote{which is unique upto homotopy. Our construction of universal bundle is slightly specialised which will be useful in proving Theorem 4.1} which is homotopically equivalent to X/G. Consider the fibration

$$X \to X_{hG} \xrightarrow{p_X} BG.$$

Definition 2.2. Let X be a free C_2-space. Then one may define

$$\text{Ind}_{C_2}(X) = \min\{n \geq 0 \mid \exists a \text{ C_2-map } X \to S((n+1)\sigma)\},$$

$$\text{Coind}_{C_2}(X) = \max\{n \geq 0 \mid \exists a \text{ C_2-map } S((n+1)\sigma) \to X\}.$$

To rule out the equivariant maps between certain G-spaces one useful invariant is Fadell-Husseini index. For a free G-space X recall that the homotopy orbit space $X_{hG} := EG \times_G X$ is homotopically equivalent to X/G. Consider the fibration

$$X \to X_{hG} \xrightarrow{p_X} BG.$$

Definition 2.3. \footnote{The Fadell-Husseini index $\text{Index}_G(X)$ of a G-space X is defined as $\text{Ker}(p^*)$ where $p^* : BG \to X_{hG}$.} Some basic properties of Fadell-Husseini index are \footnote{\begin{itemize}
 \item **Monotonicity:** If $X \to Y$ is a G-equivariant map, then $\text{Index}_G(Y) \subseteq \text{Index}_G(X)$.
 \item **Additivity:** If $(X_1 \cup X_2, X_1, X_2)$ is an excisive triple of G-spaces, then
 $$\text{Index}_G(X_1) \text{Index}_G(X_2) \subseteq \text{Index}_G(X_1 \cup X_2).$$
 \item **Join:** Let X and Y be G-spaces, then $\text{Index}_G(X) \text{Index}_G(Y) \subseteq \text{Index}_G(X * Y)$.
\end{itemize} Fadell-Husseini index inspires one more similar numerical invariant as defined below.} \footnote{The cohomological index, denoted by C-index$_G(X)$ equals the maximum n such that the ideal $\text{Index}_G(X) = 0$ upto degree n.}

Definition 2.4. We call a C_2-space "tidy" if $\text{Ind}_{C_2}(X) = \text{Coind}_{C_2}(X)$. The existence of C_2-maps between "tidy" spaces are completely determined by the C_2-index. A C_2-space is "non-tidy" if $\text{Ind}_{C_2}(X) \neq \text{Coind}_{C_2}(X)$. Examples of "non-tidy" spaces are not so trivial. We will construct certain Stieffel manifolds as examples of "non-tidy" spaces in section 3. The C_2-indices are related by the following inequality,

Proposition 2.5. \footnote{For any topological space X, $\text{Coind}_{C_2}(X) \leq \text{C-index}_{C_2}(X) \leq \text{Ind}_{C_2}(X)$.} We can generalize the definitions of C_2-indices for an arbitrary G-space X by replacing the representation sphere to universal spaces $E^{(n)}G$. But we will restrict our attention to C_p-spaces in the rest of the section.

Definition 2.6. Let X be a free C_p-space. Then one may define

$$\text{Ind}_{C_p}(X) = \min\{n \geq 0 \mid \exists a \text{ C_p-map } X \to E^{(n)}C_p\},$$

$$\text{Coind}_{C_p}(X) = \max\{n \geq 0 \mid \exists a \text{ C_p-map } E^{(n)}C_p \to X\}.$$
Since there exists C_p-map between any two $E^{(n)}C_p$ spaces the definitions are well defined. We can observe similar inequality like free C_2-spaces in free C_p-space too which is given by

$$\text{Coind}_{C_p}(X) \leq \text{C-index}_{C_p}(X) \leq \text{Ind}_{C_p}(X).$$

In the case of C_p-spaces, the cohomological index is often computed using the height of a cohomology class defined below.

Definition 2.7. The height of a cohomology class is defined by

$$ht(v) = \min\{n : v^n = 0\}.$$

Let $V_{l,k}$ denote the Stiefel manifold of k orthonormal vectors in \mathbb{R}^l. The group C_2 acts on $V_{l,k}$ by sending (v_1, \ldots, v_k) to $(\pm v_1, \ldots, \pm v_k)$. The projective Stiefel manifold $X_{l,k}$ is the orbit space $V_{l,k}/C_2$. The mod 2 cohomology of Stiefel manifold is given by

$$H^*(V_{l,k}) = \Lambda\mathbb{Z}_2(x_{l-k}, \ldots, x_{l-1}).$$

From the Serre spectral sequence of the fibration $V_{l,k} \xrightarrow{i} X_{l,k} \xrightarrow{p} BC_2$ we obtain the mod 2 cohomology of $X_{l,k}$ additively (cf. Theorem 1.6 [7]).

Theorem 2.8. $H^*(X_{l,k}; \mathbb{Z}_2) = \mathbb{Z}_2[z]/\langle z^N \rangle \otimes \Lambda\mathbb{Z}_2(z_{l-k}, \ldots, z_{l-1})$, where degree of z is 1 and $N = \min \{j : l - k + 1 \leq j \leq l\}$ and $\binom{\ell}{j} \neq 0$ (mod 2). Moreover $p^*(u) = z$ where u is the generator of $H^1(BC_2; \mathbb{Z}_2)$ and $i^*(z_1) = x_1$.

Theorem 2.9. Index$_{C_2} V_{l,k}$ is the ideal $\langle u^N \rangle$ in the cohomology of BC_2, where N is as described in (2.8).

Proof. Considering the fibration

$$V_{l,k} \rightarrow X_{l,k} \rightarrow BC_2$$

the proof will directly follow from the Theorem 2.8. \qed

3. **Stiefel manifolds as an example of non-tidy spaces**

In this section we will try to construct certain Stiefel manifolds as an example of ”non-tidy” spaces. Note that as $V_{l,k}$ is $l - k - 1$ connected, by equivariant obstruction theory there is a C_2-map from $S((l - k)\sigma) \rightarrow V_{l,k}$. Therefore we can say that the co-index of $V_{l,k}$ is at least $l - k - 1$. By monotonicity of Fadell-Husseini index we can rule out the existence of C_2-equivariant map from $V_{l,k} \rightarrow S(r\sigma)$ if $r < N$, where $N = \min \{j : l - k + 1 \leq j \leq l\}$ and $\binom{\ell}{j} \equiv 1$ (mod 2). The next result addresses the following question. Does there exists a C_2-map

$$f : V_{l,k} \rightarrow S(N\sigma)$$

for suitable l and k?

Theorem 3.1. For $l = k - 1 + \alpha 2^s$, $k < 2^s$ we have C-index$_{C_2}(V_{l,k}) = \alpha 2^s - 1$. Further if s is the least positive integer such that $k < 2^s$ then Ind$_{C_2}(V_{k-1+\alpha 2^s k}) > \alpha 2^s - 1$.

Proof. From Theorem (2.9) it follows that C-index$_{C_2}(V_{l,k})$ is $N - 1$ where N is as described in (2.8). We have

$$\binom{l}{l - k + 1} = \frac{(k - 1 + 2^s\alpha)(k - 2 + 2^s\alpha) \cdots (1 + 2^s\alpha)}{(k - 1) \cdots 1} = \frac{(k - 1 + 2^s\alpha)}{(k - 1)} \frac{(k - 2 + 2^s\alpha)}{(k - 2)} \cdots \frac{(1 + 2^s\alpha)}{1}.$$
Now if $k - i$ is odd the expression \(\frac{(k-i+2^s \alpha)}{(k-i)} \) is odd. If $k - i$ is even we can factor out 2^m part ($m < s$) from both the numerator and denominator and the expression becomes odd. Therefore we can conclude

\[
\left(\frac{l}{l - k + 1} \right) \equiv 1 \pmod{2}.
\]

Hence $N = l - k + 1 = \alpha 2^s$. This completes the first part of the proof.

For computing the topological index suppose there exists a C_2-map $f : \mathcal{V}_{l,k} \to S(N\sigma)$, then it will induce the following commutative diagram between fibrations

\[
\begin{array}{ccc}
\mathcal{V}_{l,k} & \xrightarrow{f} & S(N\sigma) \\
\downarrow & & \downarrow \\
\mathcal{X}_{l,k} & \xrightarrow{f_{\cdot}C_2} & \mathbb{R}P^{N-1} \\
\downarrow & & \downarrow \\
BC_2 & \xrightarrow{hC_2} & BC_2.
\end{array}
\]

As both $\text{Index}_{C_2} \mathcal{V}_{l,k}$ and $\text{Index}_{C_2} S(N\sigma)$ is \(\langle u \rangle \)

\[
f^*(\epsilon_{N-1}) = \begin{cases}
 x_{N-1} \quad \text{(mod } I^2) \quad \text{if } 2k > l \\
 x_{N-1} \quad \text{if } 2k < l
\end{cases}
\]

where ϵ_{N-1} is the generator of top cohomology of $S(N\sigma)$ and I is the ideal $\langle x_{l-k}, \cdots, x_{l-1} \rangle$.

Observe that for $k > 0$

\[
Sq^k(x_{N-1}) = Sq^k f^*(\epsilon_{N-1}) = f^*Sq^k \epsilon_{N-1} = 0.
\]

Now if we can show that $Sq^k(x_{N-1}) \neq 0$ for some $k > 0$, we will obtain a contradiction.

There is a map $i : \mathbb{R}P^{l-1} \to SO(l)/SO(l-k) \cong \mathcal{V}_{l,k}$, (Ch.(5)[12]). Consider the diagram

\[
\begin{array}{ccc}
H^{N-1}(\mathcal{V}_{l,k}) & \xrightarrow{i^*} & H^{N-1}(\mathbb{R}P^{l-1}) \\
\downarrow Sq^{2^s-1} & & \downarrow Sq^{2^s-1} \\
H^{N-1+2^s-1}(\mathcal{V}_{l,k}) & \xrightarrow{i^*} & H^{N-1+2^s-1}(\mathbb{R}P^{l-1}).
\end{array}
\]

We know from the property of Steenrod squares that (Ch.4,[8])

\[
Sq^{2^s-1}(u_{N-1}) = \left(\frac{N-1}{2^s-1} \right) u^{N-1+2^s-1}.
\]

The expression would be non zero for following two conditions

\[
\left(\frac{N-1}{2^s-1} \right) \equiv 1 \pmod{2} \quad \text{(2)}
\]

and

\[
N - 1 + 2^s-1 \leq l - 1,
\]

i.e.

\[
N + 2^s-1 \leq l. \quad \text{(3)}
\]

We have

\[
l = k - 1 + \alpha 2^s, \\
N = \alpha 2^s.
\]
Expanding (2) we get
\[
\frac{(N - 1)(N - 2) \cdots (N - 2^s - 1)}{2^s \cdots 1} = \frac{(2^s \alpha - 1)}{1} \cdots \frac{(2^s \alpha - 2^{s-1} + 1)}{(2^{s-1} - 1)} \cdot \frac{2^s \alpha - 2^{s-1}}{2^s - 1}
\]
which is odd by a similar argument as in (1).

So for \(\alpha \geq 1 \) and \(l = k - 1 + \alpha 2^s \) both the conditions (2) and (3) are satisfied implying, \(Sq^{2^{s-1}}(u^{N-1}) \neq 0 \) and we obtain a contradiction. This implies \(\text{Ind}_{C_2}(V_{k-1+\alpha 2^s,k}) > \alpha 2^s - 1 \). □

From Proposition 2.6 we obtain the following result.

Corollary 3.2. With \(k, s \) and \(\alpha \) as above, \(V_{k-1+\alpha 2^s,k} \) are examples of "non-tidy" spaces.

\[\text{4. } C_p\text{-space of high index}\]

In this section we provide examples of spaces with small co-index and high C-index. We first prove a lemma which identifies the space of co-index 1.

Let \(X \) be a free \(C_p \) path connected space and \(\bar{X} \) be its orbit space. From covering space theory we have \(\pi_1(\bar{X})/\pi_1(X) \cong C_p \). Let \(f : X \to Y \) be a \(C_p \)-equivariant map between two free path connected \(C_p \)-spaces. This map will induce \(f_* : \pi_1(\bar{X})/\pi_1(X) \to \pi_1(Y)/\pi_1(Y) \).

We have a commutative diagram
\[
\begin{array}{ccc}
\pi_1(\bar{X}) & \xrightarrow{f_*} & \pi_1(Y) \\
\Downarrow & & \Downarrow \\
C_p & = & C_p.
\end{array}
\]

We call an element \(\alpha \in \pi_1(\bar{X}) \) prime to \(p \) if it does not belong to \(\pi_1(X) \).

Theorem 4.1. For an 1-connected free \(C_p \)-space \(X \), there exists a map \(g : E^{(2)}C_p \to X \) iff \(\pi_1(\bar{X}) \) has an element prime to \(p \) whose order is \(p \).

Proof. The proof is similar to Theorem 2.2 described in [10]. Let \(\tau \in \pi_1(E^{(2)}C_p) \cong C_p \) be the generator of \(C_p \). By the commutative diagram (1), existence of \(g \) implies \(\bar{g}_*(\tau) \) is an element prime to \(p \) of order \(p \).

Let \(\beta \in \pi_1(\bar{X}) \) be an element prime to \(p \) such that \(\beta^p = 1 \). Let \(\bar{\gamma} \) be a representative of \(\beta \) and \(\gamma \) be its lift in \(X \). We can choose \(\gamma \) as
\[
\gamma : [0, 2\pi/p] \to X.
\]

Since \(\beta \) is prime to \(p \) we have a non-trivial generator \(\tau \) of \(C_p \), such that \(\tau \gamma(0) = \gamma(\frac{2\pi}{p}) \).

Define \(\phi = \gamma \cdot (\tau \gamma) \cdots (\tau^{p-1} \gamma) \). Then \(\phi : S^1 = E^{(1)}C_p \to X \) is a \(C_p \)-equivariant map and
\[
p_*[\phi] = \beta^p = 1
\]
where \(p : X \to \bar{X} \) is the covering projection. Since \(p_* \) is injective in \(\pi_1 \) we can conclude \(\phi \) is null-homotopic and it can be extended to a map \(g : E^{(2)}C_p \to X \) by equivariant obstruction theory [9]. □

We want to construct a sequence of spaces \(X(k) \) whose C-index \(C_p(X(k)) \) becomes large and \(\text{Coin}(X(k)) \) is small. Start with \(X(0) = S^3 \) where \(C_p \) acts freely and the left action is generated by \(g : (z_0, z_1) = (e^{2\pi i/p} z_0, z_1) \) and the right action is generated by \((z_0, z_1) \cdot g = (e^{2\pi i/p} z_0, e^{2\pi i/p} z_1) \). Define \(X(k+1) = X(k) \times_{C_p} S^3 \). We see
\[
S^3 \to X(k+1) \to X(k)/C_p
\]
is a S^3 bundle over $X(k)/C_p$. More specifically, it is the bundle $S(L \oplus \epsilon C)$ over $X(k)/C_p$, where the line bundle L is classified by

$$X(k)/C_p \xrightarrow{\psi_k} BC_p \xrightarrow{\phi} BS^1.$$

Recall that

$$H^*(BC_p; \mathbb{Z}/p) = \mathbb{Z}/p[y]/(y^2)$$

where $|y| = 2$, $|\epsilon| = 1$ and the two generators are related by Bockstein, $\beta(\epsilon) = y$. Also recall,

$$H^*(BS^1; \mathbb{Z}/p) = H^*(\mathbb{C}P^\infty; \mathbb{Z}/p) = \mathbb{Z}/p[x]$$

where $\phi^*(x) = y$.

From the fiber bundle (5) we have a C_p-equivariant inclusion $S^3 \to X(k+1)$. This implies $\text{Coind}_{C_p}(X(k+1)) \geq 3$.

Theorem 4.2. C-index $C_p(X(k+1)) \geq 2k + 2$ and $\text{Coind}_{C_p}(X(k+1)) = 3$.

Proof. Consider the fibration

(6)

$$S^3/C_p = L_p(3) \twoheadrightarrow X(k+1)/C_p \to X(k)/C_p$$

and the commutative diagram of fibrations

$$S^3 \xrightarrow{i} X(k+1) \xrightarrow{\psi_{k+1}} BC_p$$

As $\text{Coind}_{C_p}(X(k+1)) \geq 3$, C-index $C_p(X(k+1)) \geq 3$. This implies $\text{Index}_{C_p}(X(k+1))$ does not have any element in degree 3 and

$$\psi_{k+1}^*(y) \neq 0, \psi_{k+1}^*(\epsilon) \neq 0, \psi_{k+1}^*(\epsilon y) \neq 0$$

all of which get pulled back to the respective generators of the cohomology of $L_p(3)$. The spectral sequence for (6) collapses at E_2 page.

Consider the commutative diagram of fibrations

(7)

$$X(k+1) \xrightarrow{i} X(k+1)/C_p \xrightarrow{\Lambda_{k+1}} P(L \oplus \epsilon) \xrightarrow{\Lambda_{k+1}} X(k)/C_p \xrightarrow{\Lambda_{k+1}} X(k)/C_p.$$

From the construction of Chern classes [5]

$$H^*(P(L \oplus \epsilon); \mathbb{Z}/p) = H^*(X(k)/C_p)[x]/(x^2 + z_k x)$$

where z_k is the first Chern class of the line bundle L over $X(k)/C_p$ as described above, that is

$$c_1(L \oplus \epsilon) = c_1(L) = \psi_k^*(y) = z_k.$$

Let

$$\psi_{k+1}^*(\epsilon) = e_{k+1}, \quad \psi_{k+1}^*(y) = z_{k+1}.$$

As cohomology of $L_p(3)$ is freely generated by $i^*(e_{k+1}), i^*(z_{k+1}), i^*(\epsilon_{k+1} z_{k+1})$, Lerray-Hirsch theorem for the bundle

$$L_p(3) \twoheadrightarrow X(k+1)/C_p \to X(k)/C_p$$

implies $H^*(X(k+1)/C_p; \mathbb{Z}/p)$ is the $H^*(X(k)/C_p; \mathbb{Z}/p)$-module generated by $e_{k+1}, z_{k+1}, \epsilon_{k+1} z_{k+1}$. To find the ring structure of $H^*(X(k+1)/C_p; \mathbb{Z}/p)$ first observe that Λ^* is a ring map. From the right hand square of the diagram (7) we have

$$\Lambda^*(x) = \psi_{k+1}^*(y) = z_{k+1},$$

$$\Lambda^*(x^2 + z_k x) = 0.$$
This completes the proof of the first part of the theorem.

And $e^2 = 0$ implies $e_{k+1}^2 = 0$. Thus

$$H^*(X(k + 1)/C_p; \mathbb{Z}_p) = H^*(X(k)/C_p; \mathbb{Z}_p)[e_{k+1}, z_k]/(e_{k+1}^2, z_{k+1}^2)$$

Therefore in this ring,

$$z_{k+1}^n = \pm z_{k+1}^{n-1} z_k$$

This gives $ht(z_{k+1}) = ht(z_k) + 1$. As $\beta(e_{k+1}) = z_{k+1}$, we conclude that

C-index$_{C_p}(X(k + 1)) = 2(ht(z_{k+1}) - 1)$

or

$$= 2ht(z_{k+1}) - 1.$$

So we have C-index$_{C_p}(X(k)) = 2k + 2$ or $2k + 3$, which is arbitrary large as k increases. This completes the proof of the first part of the theorem.

For the second part consider any arbitrary C_p-map $f : S^3 \to X(k + 1)$. We will show this map is not null-homotopic. This implies that the map does not extend to $E(4)C_p$ and thus $\text{Coind}_{C_p}(X(k + 1)) = 3$. By construction of $X(k)$ consider the commutative diagram

$$\begin{array}{ccc}
S^3 & \xrightarrow{f} & X(k + 1) \\
\downarrow{q} & & \downarrow{g} \\
S^3/C_p & \xrightarrow{g \circ q} & X(k)/C_p
\end{array}$$

If for every r, image of $\pi_1(S^3/C_p)$ is non-zero under the composite map

$$S^3/C_p \to X(k + 1)/C_p \to \cdots \to X(r)/C_p$$

we reach $X(0)/C_p$ and have $g_0 : S^3/C_p \to X(0)/C_p = S^3/C_p$ for which g_0 is not 0. That means g_0 induces isomorphism in π_1. This implies g_0 lifts to an C_p-equivariant map $\tilde{g}_0 : S^3 \to S^3$ with

$$\tilde{g}_0 : H_3(S^3; \mathbb{Q}) \to H_3(S^3; \mathbb{Q})$$

is an isomorphism. The quotient map $q : S^3 \to S^3/C_p$ induces an isomorphism

$$q_* : H_3(S^3; \mathbb{Q}) \cong H_3(S^3/C_p; \mathbb{Q}).$$

Applying $H_3(\cdot; \mathbb{Q})$ to the diagram (8) gives

$$\begin{array}{ccc}
H_3(S^3; \mathbb{Q}) & \xrightarrow{f_*} & H_3(X(k + 1); \mathbb{Q}) \\
\downarrow{q_*} & & \downarrow{g_{0*}} \\
H_3(S^3/C_p; \mathbb{Q}) & \xrightarrow{g_{0*}} & H_3(X(0)/C_p; \mathbb{Q})
\end{array}$$

In above diagram as the composite $g_*g_* \neq 0$ we must have

$$f : S^3 \to X(k + 1)$$

not homotopic to zero as it induces non-trivial map on rational homology.
Now we may assume for $k = r$

$$\begin{xy}
 0<0,0> = \text{Diagram}
 0a1{S^3/C_p} = \ar[r]^{g} & \ar[r] X(r + 1)/C_p \\
 0a0{X(r)/C_p} = \ar[r] & \ar[r] \text{and hence the map } g_∗ \text{ is 0 in } \pi_1. \text{ From the covering space theory we have a lift of } g \text{ in the universal cover of } X(k)/C_p \text{ by the following diagram}

\begin{xy}
 0<0,0> = \text{Diagram}
 0a1{S^3 × S^3 × \cdots × S^3} = \ar[r]^{\lambda} \ar[r] X(k) \\
 0a0{S^3/C_p} = \ar[r]^{g} \ar[r] X(k)/C_p.
\end{xy}

The 3-equivalence $S^3 \to K(\mathbb{Z}/3)$ implies the following isomorphism between the based homotopy classes of maps

$$[S^3/C_p, S^3 × S^3 × \cdots × S^3] \cong [S^3/C_p, K(\mathbb{Z}/3) × \cdots × K(\mathbb{Z}/3)]
\cong \bigoplus_{k+1} H^3(S^3/C_p; \mathbb{Z})
\cong \bigoplus_{k+1} \mathbb{Z}.$$

If λ is not homotopic to \ast, $\lambda^*: H^3((S^3)^{k+1}; \mathbb{Z}) \to H^3(S^3/C_p; \mathbb{Z})$ is non-trivial. This implies

$$\lambda^*: H^3((S^3)^{k+1}; \mathbb{Q}) \to H^3(S^3; \mathbb{Q})$$

is non-zero. From the long exact sequence of fibration $S^3 × \cdots × S^3 \to X(k)/C_p$ we have $H^3((X(k)/C_p); \mathbb{Q}) \cong H^3((S^3)^{k+1}; \mathbb{Q})$. This implies that the map $gq : S^3 \to X(k)/C_p$ in the commutative diagram is not homotopic to zero. Thus $f : S^3 \to X(k + 1)$ is not null-homotopic as it induces an isomorphism on $H^*(-; \mathbb{Q})$.

If λ is homotopic to \ast then g is null-homotopic. From the covering lifting property of fibration we have

$$\begin{xy}
 0<0,0> = \text{Diagram}
 0a1{S^3/C_p} = \ar[r]^{i} \ar[r] X(k + 1)/C_p \\
 0a0{S^3/C_p × I} = \ar[r] \ar[r] \ar[r] S^3/C_p × \{1\} \ar[r] \ar[r] \ar[r] X(k)/C_p.
\end{xy}

The map $S^3/C_p \to X(k + 1)/C_p$ on orbit spaces induced from f is non-trivial, so we deduce that μ is an isomorphism in π_1 and in \mathbb{Z}/p-cohomology. Now consider the commutative
We have μ^* non-zero in upper row. We will show i^* is non-zero in upper row. It suffices to prove this rationally by the commutative diagram

$$
\begin{array}{ccc}
H^3(X(k+1)/C_p; \mathbb{Z}) & \stackrel{i^*}{\longrightarrow} & H^3(S^3/C_p; \mathbb{Z}) \\
\downarrow & & \downarrow \\
H^3(X(k+1)/C_p; \mathbb{Z}/p) & \stackrel{\mu^*}{\longrightarrow} & H^3(S^3/C_p; \mathbb{Z}/p).
\end{array}
$$

We will show $i^*: H^3(X(k+1); \mathbb{Q}) \to H^3(S^3; \mathbb{Q})$ is non-zero. For this we will analyze Serre spectral sequence associated to the principal fibration

$$S^3 \to X(k+1)/C_p \to X(k)/C_p.$$

As mentioned earlier in this section this is exactly the $S(L \oplus \epsilon_C)$ bundle over $X(k)/C_p$. Observe that $\pi_1(X(k)/C_p) = \oplus_{k+1} \mathbb{Z}/p$ does not act non-trivially on $\mathrm{Aut}(\mathbb{Z})$. The \mathbb{Z}-cohomology spectral sequence associated to the bundle collapses at E_2 page. Denote by β the generator of top cohomology of S^3. Then the differential is given by

$$d(\beta) = e(L \oplus \epsilon_C) = 0,$$

where e denotes the Euler class of the bundle. This implies $i^*: H^3(X(k+1); \mathbb{Z}) \to H^3(S^3; \mathbb{Z})$ is non-trivial and so with rational coefficient. This implies that the homomorphism $\mu^* \circ i^*$ in the top row of the diagram (9) is non-zero. Therefore the top horizontal map is non-trivial in the following commutative diagram as the down horizontal map is non-zero.

$$
\begin{array}{ccc}
H^3(X(k+1); \mathbb{Q}) & \stackrel{i^*}{\longrightarrow} & H^3(S^3; \mathbb{Q}) \\
\downarrow & & \downarrow \\
H^3(X(k+1)/C_p; \mathbb{Q}) & \stackrel{\mu^* \circ i^*}{\longrightarrow} & H^3(S^3/C_p; \mathbb{Q}).
\end{array}
$$

This implies $f: S^3 \to X(k+1)$ is not null-homotopic and completes the proof.

\[\square\]

References

[1] S. Basu and S. Ghosh, Bredon cohomology of finite dimensional C_p-spaces, to appear in Homology Homotopy Appl.
[2] ____, Equivariant maps related to the topological Tverberg conjecture, Homology Homotopy Appl., 19 (2017), pp. 155–170.
[3] S. Basu and B. Kundu, The index of certain Stiefel manifolds, arXiv preprint [arXiv:2103.02500] (2021).
[4] P. V. M. Blagojević and G. M. Ziegler, Beyond the Borsuk-Ulam theorem: the topological Tverberg story, in A journey through discrete mathematics, Springer, Cham, 2017, pp. 273–341.
[5] R. Bott and L. W. Tu. Differential forms in algebraic topology, Graduate Texts in Mathematics, (82), Springer-Verlag, New York-Berlin, (1982).
[6] E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynam. Systems, 8* (1988), pp. 73–85.
[7] S. Gitler, D. Handel, The projective Stiefel manifolds, Topology, 7 (1968), pp. 39-46.
[8] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002
[9] J. Matoušek, Using the Borsuk-Ulam theorem, Universitext, Springer-Verlag, Berlin, 2003. Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler.
[10] T. Matsushita, Some examples of non-tidy spaces, Math. J. Okayama Univ., 59, (2017), pp. 21–25.
[11] J. Milnor, Construction of universal bundles. II, Ann. of Math. (2), 63 (1956), pp. 430–436.
[12] R. E. Mosher and M. C. Tangora. *Cohomology operations and applications in homotopy theory*, Harper & Row, Publishers, New York-London, (1968).

DEPARTMENT OF MATHEMATICS, RAMAKRISHNA MISSION VIVEKANANDA EDUCATIONAL AND RESEARCH INSTITUTE, BELUR MATH, HOWRAH 711202

Email address: bikramju@gmail.com, bikramjit.kundu.math17@gm.rkmvu.ac.in