Supplemental Materials

S1. List of Transition Invariants

The network has 6 transition invariants (TI):

1. TI₁: $k_{bind}, k_{phos}, k_{dephos,m}$ (binding of insulin, phosphorylation, dephosphorylation on membrane)
2. TI₂: $k_{bind}, k_{phos}, k_{in,p}, k_{dephos,c}, k_{out},$ buffer (binding of insulin, phosphorylation, internalization, cytoplasmic dephosphorylation, translocation back to membrane)
3. TI₃: k_{in}, k_{out} (internalization, translocation back to membrane)
4. TI₄: $k_{in,p}, k_{out,p}$ (internalization of phosphorylated insulin receptor (IR), translocation back to membrane)
5. TI₅: k_{bind}, k_{diss} (extracellular binding of insulin, release of insulin)
6. TI₆: k_{syn}, k_{deg} (synthesis, degradation of receptor)

Each transition is member of at least one TI, hence the network is covered by TI (CTI).

S2. Quasi-Steady-State Approximation for TI₁

TI₁ describes a cycle of reactions for the species IR, IRI, and IRIP. The corresponding dynamic system is given by

$$\frac{\partial \vec{c}}{\partial t} = \begin{pmatrix} -k_{bind} i_0 & k_{diss} & k_{dephos,m} \\ +k_{bind} i_0 & -k_{diss} - k_{phos} & 0 \\ 0 & k_{phos} & -k_{dephos,m} \end{pmatrix} \vec{c}, \quad (S1)$$

where $\vec{c} = (ir, iri, irip)^T$ denotes a vector of concentrations. The concentration of free insulin is assumed to be constant, i.e., $i = i_0$. Within the QSSA we solved the linear system

$$\frac{\partial \vec{c}}{\partial \tau} = 0 \quad (S2)$$

and obtained the steady state for the 3 concentrations

$$ir^* = \left[1 - \frac{i_0}{i_0 + i_c}\right] ir_0,$$

$$iri^* = \frac{k_{dephos,m}}{k_{phos}} \left(1 + \frac{k_{dephos,m}}{k_{phos}}\right)^{-1} \frac{i_0}{i_0 + i_c} ir_0,$$

and

$$irip^* = \left[1 - \frac{k_{dephos,m}}{k_{phos}} \left(1 + \frac{k_{dephos,m}}{k_{phos}}\right)^{-1}\right] \frac{i_0}{i_0 + i_c} ir_0 \quad (S3).$$
with the equilibrium constant

\[
i_c = \frac{k_{\text{dephos,m}}}{k_{\text{bind}}} \left(1 + \frac{k_{\text{diss}}}{k_{\text{phos}}} \right) \left(1 + \frac{k_{\text{dephos,m}}}{k_{\text{phos}}} \right)^{-1}.
\] (S4)

For our choice of kinetic rate constants, the insulin-binding equilibrium constant becomes \(i_c = 3.33\ \text{nM}\). Sedaghat et al. assume a fast process of phosphorylation (i.e., \(k_{\text{phos}} \gg k_{\text{diss}}\) and \(k_{\text{phos}} \gg k_{\text{dephos,m}}\)). In this case the equation

\[
i_c \approx \frac{k_{\text{dephos,m}}}{k_{\text{bind}}} \] (S5)

is a reasonable approximation. Since the ratio \(k_{\text{dephos,m}}/k_{\text{phos}}\) is less than 0.1 %, we may neglect \(iri^*\), and the formula

\[
irip^* \approx \frac{i_0}{i_0 + i_c} ir_0
\]

is sufficiently precise for practical applications.

S3. Quasi-Steady-State Approximation for TI\(_2\)

The steady-state concentrations \(ir^*, iri^*,\) and \(irip^*\) completely ignore the process of translocation of receptor into the cytoplasm and are a justifiable approximation only for a short reaction time compared to the time scale of the translocation process. The process of translocation of the activated IR into the cytoplasm \((k_{\text{in,p}})\) is member of the subnetwork defined by TI\(_2\). The ODE system of the subnetwork reads

\[
\frac{\partial \vec{c}}{\partial t} = \begin{pmatrix} 0 & 0 & 0 & k_{\text{syn}} & 0 \\ 0 & k_{\text{bind}} i_0 + k_{\text{in}} & -k_{\text{diss}} & -k_{\text{dephos,m}} & -k_{\text{out}} & 0 \\ -k_{\text{bind}} i_0 & k_{\text{diss}} + k_{\text{phos}} & 0 & 0 & 0 \\ 0 & -k_{\text{diss}} & k_{\text{dephos,m}} + k_{\text{in,p}} & 0 & -k_{\text{out,p}} \\ -k_{\text{in}} & 0 & 0 & k_{\text{out}} + k_{\text{deg}} & -k_{\text{dephos,c}} \\ 0 & 0 & -k_{\text{in,p}} & 0 & k_{\text{dephos,c}} + k_{\text{out,p}} \end{pmatrix} \vec{c} \] (S6)

with the vector of concentrations, \(\vec{c} = (ir, iri, irip, ir_{in}, irip_{in})^T\). The steady state is given by

\[
ir^* = \frac{i_0}{i_c + i_0} \left(1 + \frac{k_{\text{diss}}}{k_{\text{phos}}} \right) \left[k_{\text{dephos,m}}(k_{\text{out,p}} + k_{\text{dephos,c}}) \right] \left[k_{\text{bind}}/k_{\text{in,p}} \right] \frac{k_{\text{dephos,c}}}{k_{\text{phos}} k_{\text{dephos,c}}} \frac{k_{\text{out}}}{k_{\text{dephos,c}}} \frac{i_0}{i_c + i_0},
\]

\[
iri^* = \frac{i_0}{i_c + i_0} \left[k_{\text{dephos,m}}(k_{\text{out,p}} + k_{\text{dephos,c}}) \right] \frac{k_{\text{diss}}}{k_{\text{phos}}} \frac{k_{\text{out}}}{k_{\text{dephos,c}}} \frac{i_0}{i_c + i_0},
\]

\[
irip^* = \frac{i_0}{i_c + i_0} \frac{k_{\text{out,p}} + k_{\text{dephos,c}}}{k_{\text{phos}}} \frac{k_{\text{out}}}{k_{\text{dephos,c}}} \frac{i_0}{i_c + i_0},
\]

\[
ir_{in}^* = \frac{k_{\text{syn}}}{k_{\text{deg}}}, \quad \text{and}
\]

\[
irip_{in}^* = \frac{i_0}{i_c + i_0} \frac{k_{\text{out}}}{k_{\text{dephos,c}}} \frac{i_0}{i_c + i_0},
\]

with the constant

\[
i_c^* = \frac{k_{\text{in}}}{k_{\text{bind}}} \left[1 + \frac{k_{\text{dephos,m}}}{k_{\text{in,p}}} \left(1 + \frac{k_{\text{out,p}}}{k_{\text{dephos,c}}} \right) \right] \left(1 + \frac{k_{\text{diss}}}{k_{\text{phos}}} \right). \] (S8)
i^\dagger_c is the critical insulin concentration for the internalization of receptor. For a fast phosphorylation process as postulated by Sedaghat et al., (i.e., $k_{phos} = 2.500 \text{ min}^{-1}$) a simplification of equations (S7,S8) is feasible.

We considered nonzero degradation and nonzero synthesis of the receptor, i.e., k_{syn}, k_{deg}, in the steady state (S7). However, the degradation and synthesis are not members of TI$_2$ but form the trivial TI$_6$. For $k_{syn} = k_{deg} = 0$ (i.e. in the case of no degradation and no synthesis), the steady-state concentration, ir^\dagger_m, becomes a free parameter and has to be determined by a mass conservation equation for the amount of the receptor in the cell.

For our choice of kinetic constants, we get the numerical value, $i^\dagger_c = 0.535 \text{ nM}$, for the critical insulin concentration of internalization of the IR and the steady state concentrations (S7) become

$$ir^\dagger = 0.9 \text{ pM} \times \left[1 - \frac{i_0}{i^\dagger_c + i_0} \right],$$

$$iri^\dagger = 0.0116 \text{ fM} \times \frac{i_0}{i^\dagger_c + i_0},$$

$$irip^\dagger = 0.143 \text{ pM} \times \frac{i_0}{i^\dagger_c + i_0},$$

$$ir^\dagger = 0.1 \text{ pM}, \text{ and}$$

$$irip^\dagger = 0.651 \text{ fM} \times \frac{i_0}{i^\dagger_c + i_0}.$$ (S9)

The steady state concentrations, iri^\dagger and $irip^\dagger_m$, of the transient complexes are below experimental detection limits. The steady state concentration, ir^\dagger_m, of free intracellular receptor is regulated by synthesis (k_{syn}) and degradation (k_{deg}), and hence remains constant for all values of i_0. In the limit of small concentrations of insulin, $i_0 \to 0$, the function

$$f(i_0) = \frac{i_0}{i^\dagger_c + i_0} \quad \text{(S10)}$$

approaches zero for vanishing concentration of external insulin, i.e., $\lim_{i_0\to 0} f(i_0) = 0$. For increasing concentrations of insulin, $i_0 \to \infty$, the function $f(i_0)$ converges to 1. Since the steady-state concentrations, iri^\dagger, $irip^\dagger$ and $irip^\dagger_m$, are proportional to $f(i_0)$, they are zero in the basal state of the cell, i.e., in absence of extracellular insulin, $i_0 = 0$. In the process of down-regulation by insulin, the concentrations, iri^\dagger, $irip^\dagger$, and $irip^\dagger_m$, increase proportionally to the function $f(i_0)$ until they reach their maximal values for $i_0 \gg i^\dagger_c$. The steady-state concentration, ir^\dagger, of the surface receptor is proportional to $1 - f(i_0)$, and hence, ir^\dagger is maximal in the basal state and drops down to zero for $i_0 \gg i^\dagger_c$.

S4. Characteristic Eigenvalue for TI$_1$

The characteristic eigenvalue of ODE (S1) is given by

$$\lambda_1 = -\frac{k_{bind} i_0 + k_{diss} + k_{phos} + k_{dephos,m}}{2} \left[1 - \sqrt{1 - \frac{4(k_{bind} i_0 (k_{phos} + k_{dephos,m}) + (k_{diss} + k_{phos}) k_{dephos,m})}{(k_{bind} i_0 + k_{diss} + k_{phos} + k_{dephos,m})^2}} \right].$$ (S11)
The simplification

\[\lambda_1 \approx -\frac{k_{\text{phos}}(k_{\text{bind}}i_0 + k_{\text{dephos,m}})}{k_{\text{bind}}i_0 + k_{\text{phos}}} \]

(S12)

approximates the eigenvalue, \(\lambda_1 \), within a relative precision of \(2 \times 10^{-5} \).

S5. Characteristic Eigenvalue for TI

The characteristic eigenvalue of ODE (S6) is given by

\[
\begin{align*}
\lambda_2 &= -\frac{L}{2} \left[1 - \sqrt{1 - \frac{4(k_{\text{out}}(k_{\text{out,p}} + k_{\text{dephos,c}}) + (k_{\text{out,p}} + k_{\text{dephos,c}})K_1 + (k_{\text{out}} + k_{\text{dephos,c}})K_2)}{L^2}} \right], \\
L &= k_{\text{out,p}} + k_{\text{out}} + k_{\text{dephos,c}} + K_1 + K_2, \\
K_1 &= k_{\text{in}} \frac{i_c}{i_0 + i_c}, \quad \text{and} \\
K_2 &= k_{\text{phos}}k_{\text{in},p} \frac{i_0}{k_{\text{phos}} + k_{\text{dephos,m}}} \frac{i_0}{i_0 + i_c}.
\end{align*}
\]

S6. Drop of Insulin and the Lambert Function

We have abstained from discussing the development of insulin concentration with time based on the functional regimes of the Lambert function \(W \). It is easy to see that for insulin concentrations well below the critical concentration of \(i_c^\dagger = 0.535 \) nM, the differential equation simplifies to

\[
\frac{\partial i}{\partial t} = -\frac{i}{t_4},
\]

(S13)

and the insulin concentration drops down exponentially in time

\[i(t) = i_0 e^{-t/t_4}. \]

(S14)

In the case of a high concentration of insulin (i.e., for \(i \gg i_c^\dagger = 0.535 \) nM), the cell is maximally down-regulated, and the differential equation is given by

\[
\frac{\partial i}{\partial t} = -\frac{i_c}{t_4}.
\]

(S15)

Consequently, the consumption of insulin with constant maximal velocity leads to a linear diminishment of insulin:

\[i(t) = i_0 - i_c \frac{t}{t_4}. \]

(S16)

The consumption of insulin by the cell leads to an exponential drop on the time scale of \(t_4 = 5 \) h 33 min, if the insulin concentration is below the critical insulin concentration, \(i_c^\dagger = 0.535 \) nM. For insulin given in excess (i.e., for \(i \gg i_c^\dagger \)), the insulin concentration decreases linearly with a flat-angle slope of \(0.535 \) nM/5 h 33 min.
S7. Phosphorylation Dynamics

Cedersund et al. [1] have discussed the short-term phosphorylation dynamics of the insulin receptor. They have measured a rapid transient overshoot in tyrosine phosphorylation for human adipocytes after a step increase from 0 to 0.1 µM in insulin concentration and have discussed the implication of such an “overshot” on various model structures. Cedersund et al. [2] have rejected model structures based on the zeros and complex poles of the linearized transfer function, see also Brännmark et. al. [3]. In terms of the Petri net formalism, the model structure requires a certain substructure to produce an overshot behavior. For Sedaghat et al.’s model [4] such a substructure is defined by transition invariant TI1. The Petri net approach explains the overshoot by the high concentration of phosphorylated receptor, irip\(^*\), of the meta-stable quasi-steady state associated with transition invariant TI1. Figure S1 shows the percentage of transient phosphorylated IR versus the concentration of insulin.

![Graph showing percentage of transient phosphorylated IR versus insulin concentration](image)

Figure S1. After a step increase in insulin concentration the concentration of phosphorylated IR approach the value irip\(^*\) of meta-stable steady state (S3). This transient high value of phosphorylated IR drops to the value \(\nu \times \text{irip}^\dagger\) of meta-stable steady state (S7) due to endocytosis and dephosphorylation of the internalized IR. Plotted is the percentage of transient phosphorylated \(\text{irip}^* - \nu \times \text{irip}^\dagger\) versus the concentration of insulin. For 0.1 µM insulin concentration, Sedaghat et al.’s model estimates an “overshoot” at in round numbers 40%.

References

1. Cedersund, G.; Roll, J.; Ulfhielm, E.; Danielsson, A.; Tidefelt, H.; Strålfors P. Model-based hypothesis testing of key mechanisms in initial phase of insulin signaling. *PLoS Comput. Biol.* 2008, 4, e1000096.
2. Cedersund, G.; Roll, J. Systems biology: Model based evaluation and comparison of potential explanations for given biological data. *FEBS J.* 2009, 276, 903–922.
3. Brännmark, C.; Palmér R.; Glad, S.T.; Cedersund, G.; Strålfors P. Mass and information feedbacks through receptor endocytosis govern insulin signaling as revealed using a parameter-free modeling framework. *J. Biol. Chem.* **2010**, *285*, 20171–20179.

4. Sedaghat, A.R.; Sherman, A.; Quon, M.J. A mathematical model of metabolic insulin signaling pathways. *Am. J. Physiol. Endocrinol. Metabol.* **2002**, *283*, E1084–E1101.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).