Research Paper

Designing a Gait Enhancer and Determining its Effect on Standing Ability and Gait Speed of Children With Cerebral Palsy Spastic Diplegia

Seyed Mehdi Hosseini1, Saeid Fatorehchy2, Seyed Ali Hosseini2, Hojjat Allah Haghgoo2, Samaneh Hosseinzadeh3

1. Department of Mechanical Engineering, Toosi University of Technology, Tehran, Iran.
2. Department of Occupational Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
3. Department of Biostatics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

Objective

This study aimed to design a “gait enhancer” and investigate its effect on standing ability and gait speed of children with cerebral palsy spastic diplegia.

Materials & Methods

A new gate trainer was designed based on Theo Johnson mechanism. Johnson’s two separate movement chains were placed on either side of the gate trainer body and attached to the lower limbs by a foot plate. To investigate the effect of the designed device, a single-item experimental study with baseline design, treatment and maintenance (ABA) was performed on four children with available spastic diplegia cerebral palsy. These children received routine occupational therapy sessions.

Results

The designed “gait enhancer” increased standing ability and gait speed scores in all subjects. Non-overlapping measures also indicated the improvement in both variables. Measured by Cohen’s d, the effect size for standing ability were 1.95, 2.29, 1.83, and 2.3 for the child No. 1, 2, 3, and 4, respectively. Regarding walking speed, the effect size for these children, No. 1 to 4, were 1.13, 3.37, 2.15, and 2.21, respectively. Cohen’s d values were greater than 0.8, indicating the considerable effect of the intervention. Hedges’ g was also calculated due to the small sample size, which was greater than 0.8 for all subjects in standing ability and gait speed.

Conclusion

Following the use of Gait Enhancer along with conventional occupational therapy, we observed an increase in the ability to stand and walk at children with cerebral palsy. Findings showed that the change in standing ability and walking speed occurred more during the period of using the designed device than other stages, which could be a consequence of using Gait Enhancer along with routine occupational therapy sessions at this stage of the study. However, it should be noted that this study was only a single case study and to prove the effectiveness of this tool in children with cerebral palsy, it is necessary to conduct clinical trial studies.

ABSTRACT

Objective

This study aimed to design a “gait enhancer” and investigate its effect on standing ability and gait speed of children with cerebral palsy spastic diplegia.

Materials & Methods

A new gate trainer was designed based on Theo Johnson mechanism. Johnson’s two separate movement chains were placed on either side of the gate trainer body and attached to the lower limbs by a foot plate. To investigate the effect of the designed device, a single-item experimental study with baseline design, treatment and maintenance (ABA) was performed on four children with available spastic diplegia cerebral palsy. These children received routine occupational therapy sessions.

Results

The designed “gait enhancer” increased standing ability and gait speed scores in all subjects. Non-overlapping measures also indicated the improvement in both variables. Measured by Cohen’s d, the effect size for standing ability were 1.95, 2.29, 1.83, and 2.3 for the child No. 1, 2, 3, and 4, respectively. Regarding walking speed, the effect size for these children, No. 1 to 4, were 1.13, 3.37, 2.15, and 2.21, respectively. Cohen’s d values were greater than 0.8, indicating the considerable effect of the intervention. Hedges’ g was also calculated due to the small sample size, which was greater than 0.8 for all subjects in standing ability and gait speed.

Conclusion

Following the use of Gait Enhancer along with conventional occupational therapy, we observed an increase in the ability to stand and walk at children with cerebral palsy. Findings showed that the change in standing ability and walking speed occurred more during the period of using the designed device than other stages, which could be a consequence of using Gait Enhancer along with routine occupational therapy sessions at this stage of the study. However, it should be noted that this study was only a single case study and to prove the effectiveness of this tool in children with cerebral palsy, it is necessary to conduct clinical trial studies.

Extended Abstract

Introduction

Cerebral palsy, with a prevalence of 2-2.5 in 1000 live births [1], is the most common physical disability in childhood. This problem in the developing brain leads to a group of non-progressive disorders. Deficiency in the proper functioning of the muscular system impairs the control of selective movements and muscle tone [2]. The limitations caused by cerebral palsy are often associated with impaired gait speed and endurance and limitations on crossing obstacles [3]. Children with cerebral palsy are less active than their peers [4]. Lack of proper
mobility and high dependence postpones their growth and social interactions [5, 6]. For these children and their families, improving the walking ability is the ultimate goal of rehabilitation [7] because walking plays an undeniable role in daily living activities and improving bone density and cardiopulmonary function [8].

Various studies on children with cerebral palsy have indicated a clear relationship between the severity of cerebral palsy and walking ability [9]. The severity of cerebral palsy is divided into 5 levels based on the Gross Motor Function Classification System (GMFCS) [10, 11]. Many children with cerebral palsy, especially spastic diplegia, have serious problems due to poor control of the trunk, abnormal muscle tone, and lack of coordination in the lower limbs [12]. According to the GMFCS, children at level III need to use a hand-held mobility device such as a cane to walk [13]. Half of the parents of these children admitted that the use of these devices had a good effect on their child’s mobility [14]. In a study on adults with cerebral palsy, it was found that 35% of these people, despite the use of assistive devices, experienced a decrease in walking ability. In 9% of cases, this ability was completely lost over time [13]. Decreased endurance and muscle strength seem to be the main reason for this problem [15]. Gait trainers and support walkers are the most used tools by this group, and this issue has been addressed in the International Classification of Functioning, Disability, and Health [16]. However, these devices are often not used to train walking but increase the child’s activity and participation [17]. Therefore, existing gait trainers are not used as tools to improve gait [17]. Although the role of gate trainers in increasing children’s ability to travel further distances has been confirmed in some studies, more research is needed to investigate the overall impact of these tools [18]. Therefore, proper tools should be designed that can improve the gait of children with cerebral palsy.

Materials and Methods

The device designed in this study, “gait enhancer” was made according to Theo Jansen’s mechanism. The schematic view of this mechanism is shown in Figure 1. It is known among robot designers for its adjustable design, optimal energy consumption, and fast walking pattern [19]. The device was made of a 3-mm steel sheet and aluminum bars (Figure 2). In this study, an experimental single-subject approach with an ABA design was used. This type of research is powerful for clinical decision-making [20]. Because of the novelty of the study and the uncertainty of the appropriate effect of the designed tool, 4 children with spastic diplegia were selected from rehabilitation centers affiliated to Iran Medical Council in Tehran in 2018. The inclusion criteria for them were as follows: having cerebral palsy spastic diplegia, being 6-10 years old, walking independently with a walker, understanding and following simple verbal instructions based on the SPARCLE Questionnaire [21], being at level III based on GMFCS for cerebral palsy, having family consent to participate in the study, and lacking orthopedic surgery or Botox injections in the past year. The exclusion criteria were as follows: Having uncontrolled seizures, having dislocation or partial dislocation of the hip joint, and suffering from shortness of more than 2 cm in one of the lower limbs. The mean age of the participants was 7 years and 9 months, and they were all boys.

The baseline period was 4 weeks and the intervention and follow-up periods were 8 weeks. All participants had 3 routine occupational therapy sessions per week during the study. During the intervention period, besides routine occupational therapy, they practiced with the “gait enhancer” for 30 minutes 3 times per week. In most studies related to children’s gait training tools, 30-40 minutes of walking with the device have been applied [8]. The gross motor function and gait speed in children were assessed with the gross motor function measure-66 (GMFM-66) and 10-m walk test, respectively. All assessments were performed without placing the child in the device. The GMFM-66 has five dimensions of lying and rolling, sitting, crawling and kneeling, standing and walking, running, and jumping [22]. In this study, only the standing dimension was investigated. The assessments were performed by a senior occupational therapist, who was blind to the study process. The 10-m walk test is a valid test for children with cerebral palsy [23]. This test is a suitable tool for measuring the results of treatment after therapeutic intervention [24]. The person is asked to travel 10 m with or without an assistive device and at a maximum selected speed [25].

Results

The results of single-case studies are reported and analyzed mostly in the form of graphs [26]. In this study, for each variable, graph analysis and calculation of non-overlapping indices (PND, PAND, NAP, PEM, IRD, Phi, Tau-U) were performed. The intervention effect was calculated by using Cohen’s d and Hedges’ g:

\[Cohen’s \, d = \frac{(M2 - M1)}{\text{SD} \text{pooled}} \]

Standing ability

The assessment of children’s ability to stand based on the GMFM-66 is shown in Figure 3. Based on the visual analy-
sis of the change process, the scores related to the standing ability in the intervention phase had an upward trend in all four children compared to the baseline scores. The standing ability of child No.1 increased by 20.5% in the intervention phase and 2.6% in the follow-up phase. In child No.2, the increase was 25% in the intervention phase and 2.7% in the follow-up phase. In child No.3, the increase was 17.9% in the intervention phase and 2.6% in the follow-up phase. In child No.4, the increase was 20.5% in the intervention phase and 7.7% in the follow-up phase.

To accurately examine the observed changes and conduct a pairwise comparison of the results between baseline and intervention phases, non-overlapping parameters were calculated. The results are given in Table 1. Comparing the baseline and intervention phases, these values were slightly lower in the third child than in the other children, but in the other three children, the obtained values indicate a further increase in scores in the intervention phase. These differences were significant. The effect size of the intervention using Cohen’s d and Hedges’ g are presented in Table 2.

Walking ability

The results of the 10-m walk test are shown in Figure 4 for all four children. The visual analysis of the graphs shows the downward trend of the scores in the intervention phase. The downward trend was stopped in the follow-up phase. In Child No.1, the test duration was reduced from 11 to 8.9 s after the intervention, but after removing the intervention effect, this time was extended by 0.5 s. In child No.2, there was a decrease of 3.6 s in the test duration following the intervention and remained constant in the follow-up phase. In child No.3 and No.4, the test times were reduced by 6 and 3.7 s, respectively, in the intervention phase. In the follow-up phase for child No.3, there was a reduction in duration by 1 s, but for child No.4, the travel time increased by 0.2 s. Therefore, in all children, gait speed increased significantly after the intervention, but in the follow-up phase, only the third child showed a slight increase in gait speed. For the pairwise comparison of the phases, non-overlapping indices were calculated (Table 3). The obtained values indicate an increase in gait speed in all children. The increase was lower in the fourth child than in other children. Non-overlapping measures indicated a significant reduction in the time recorded for traveling the test distance for all children. The effect size of the intervention using Cohen’s d and Hedges’ g are reported in Table 4. The results showed a significant difference in the intervention phase compared to baseline and follow-up phases. Therefore, the use of the designed device along with conventional occupational therapy was effective in increasing the gait speed of children.

Table 1. Non-overlapping measures related to the standing ability scores between baseline and intervention phases

Child	PND (%)	PAND	NAP	PEM (%)	IRD (%)	Phi	TauUnovlap	Tau-U
1	100	1	1	100	100	1	1	0.92
2	100	1	1	100	100	1	1	0.92
3	83	0.87	0.96	100	67	0.67	0.92	0.83
4	100	1	1	100	100	1	1	0.92
Discussion and Conclusion

The results showed the effectiveness of using the designed device in improving the standing ability of four children with spastic diplegia. This result is consistent with other study results [27, 28]. Schindl et al. investigated the effect of gait training on a treadmill in improving cerebral palsy children’s standing ability. Their results showed that, although this type of intervention increased the standing ability, the rate of progress was much higher in children who could walk with weight support than in children without this ability [29]. The children in our study were all able to walk with assistive devices; hence, their results are consistent with our results. Provost et al. obtained similar results to Schindl et al. following gait training in children with cerebral palsy [30]. Because of the continuous weight-bearing exercise on the lower limbs using the gait trainer and the apparent effect of this type of exercise on increasing muscle strength and standing on the legs, an increase in the ability to stand in these children was expected [31]. By concentrating on the walking, the standing duration on two legs decreases, while its duration on one leg increases. This finding can also justify the improved standing ability in children [22]. In children No.3 and No.4, the standing duration was significantly prolonged after the intervention.

In this study, gait speed was measured using a 10-m walk test, and the results showed the desired effect of gait training with the “gait enhancer” device along with occupational

Table 2. The effect size of the intervention in improving the standing ability

Effect Size	Child 1	Child 2	Child 3	Child 4
Cohen’s d	1.95	2.29	1.83	2.3
Hedges’ g	1.7	1.99	1.59	2
therapy. Many studies have examined gait speed with the 10-m walk test. The results of some of these studies are consistent with the results of the present study [32-34]. This similarity may be because of the reduced time it took to stand on two legs following gait training with the designed device. These assistive tools reduce the standing duration on both feet while walking by increasing the swing time in the lower limbs and, hence, increase gait speed [35, 36]. Dodd et al. also reported improvement in gait speed after the intervention [8]. Willoughby et al. in a clinical trial, compared two ways of walking on the ground and a treadmill. Their results showed no significant differences between the two groups. Therefore, both methods increased gait speed to the same extent [37]. Fatorehchey et al. in a pilot study, examined the effect of aquatic therapy in children with cerebral palsy. The results showed improved gait balance and walking capacity in children [38]. In another study, they found an improvement in gait endurance after using gait enhancer in children with cerebral palsy [39]. Therefore, increased balance and endurance of walking can be a reason for increased gait speed in these children.

Table 3. Non-overlapping measures related to the walking ability scores between baseline and intervention phases

Child	PND (%)	PAND	NAP	PEM (%)	IRD (%)	Phi	TAUUnovlap	Tau-U
1	100	1	1	100	100	1	1	1
2	100	1	1	100	100	1	1	0.92
3	100	1	1	100	100	1	1	1
4	83	0.87	0.96	100	67	0.67	0.92	0.83

Figure 4. The recorded time (s) for children with spastic diplegia in the 10-m walk test
Although the gross motor function level of the children in the study was the same, they showed a large difference in gait performance. Therefore, only children at level III of GMFCS had to be selected for the study, and they prolonged the research process. Children have different body dimensions. This device has limited settings for a child. Another limitation of this research was the need for financial resources. In the process of designing and manufacturing the device, repeated actions were required. Moreover, difficulty in purchasing equipment and manufacturing different parts made the research process longer than initially expected. Because of the effectiveness of the designed device, it is recommended that a study be performed to increase the symmetry of lower-extremity motor function in children with hemiplegia. The use of this device in children under 6 years of age is recommended for better therapeutic results.

Using the designed gait enhancer and common occupational therapy can improve the standing ability and gait speed of children with spastic diplegia. The gait enhancer is a valuable device for gait training in these children, with no adverse effects. The difference in results between the four participating children was due to differences in lower-limb muscle strength and muscle tone. This study’s results cannot be generalized to all children with cerebral palsy; hence, more research is needed.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval from the Research Ethics Committee of the University of Social Welfare and Rehabilitation Sciences (Code: IR.USWR.REC.1396.286).

Funding

This research is part of the PhD. dissertation of second author at Department of Occupational Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

Table 4. The effect size of the intervention in improving the walking ability

Effect Size	Child 1	Child 2	Child 3	Child 4
Cohen’s d	1.13	3.37	2.15	2.21
Hedges’ g	0.98	2.93	1.87	1.92

Authors’ contributions

Designing of Gait Enhancer: Saeid Fatorehchy and Seyed Mehdi Hosseini; Date analysis: Samaneh Hosseinzadeh; Editing: Saeid Fatorehchy; Revision and Supervision: Hojjat Allah Haghgoo and Seyed Mehdi Hosseini.

Conflict of interest

The authors declared no conflict of interest.
مقاله پژوهشی

بر توانایی ایستادن و سرعت راه رفتن کودکان با مدل گلایت انهمیک Gait Enhancer

سیدمرتضی حسینی ۱، سیدعلی‌حسینی ۲، سعید فطوره چی ۳

نیکی‌تبارانی ۱، عبدالمجید فتحی ۲

گروه آماری-استاتیستیکی دانشگاه علوم توانبخشی و سلامت اجتماعی، تهران، ایران.

گروه مهندسی ماکارون دانشگاه مهندسی صنایع، جنوب‌غربی جمهوری اسلامی ایران.

1. مقدمه

در هر هزار تولد زنده، ۲/۵ تا ۲/۱ با شیوعی در حدود ۱/۵ فلج مغزی به عنوان رایج‌ترین اختلال جسمی دوران کودکی شناخته می‌شود. این عارضه در مغز در حال رشد، منجر به گروهی از اختلالات غیرپیش‌بینی‌کننده می‌شود. در آینده دسته‌ای از کودکان با بروز شیوه‌های درمانی و حورک‌کننده باعث ایجاد حوزه‌های مختلفی از فلج‌های مغزی و بکری‌های اجتماعی و عاطفی گردیده است.

1.1. کلیه‌های فلج مغزی

فلج مغزی، می‌تواند باعث ایجاد کاهشونی در کارکرد عصبی، تغییرات فیزیکی، تغییرات عاطفی و اجتماعی گردیده است. این اختلال باعث ایجاد مشکل در خدمات درمان و درمانی در کودکان مبتلا به فلج مغزی می‌شود.

1.2. هدف کلی مطالعه

هدف کلی این مطالعه، بررسی تأثیر تمرین با فلک مغزی در توانایی ایستادن و سرعت راه رفتن کودکان با مدل گلایت انهمیک (Gait Enhancer) است.

1.3. جلسات کاردرمانی

در طول مدت پژوهش، کودکان در بهینه‌سازی و توانایی ایستادن و سرعت راه رفتن با استفاده از گلایت انهمیک و تمرینات راه رفتن در راه پایانی کردند.

1.4. نتایج

اواخر پژوهش، نتایج نشان داد که استفاده از گلایت انهمیک و تمرینات راه رفتن باعث افزایش سرعت در سطح گلایت انهمیک شده است.

کلیدواژه‌های: فلج مغزی، تمرین راه رفتن، توانایی ایستادن و سرعت راه رفتن
واکر به آستن ساخته می‌شود و در صفحه سایه‌ای و ابزار قرار می‌گیرد. پاهای کودک روی صفحه انتهایی قرار گرفت، در صفحه سایه‌ای و ابزار قرار می‌گیرد. توانایی حرکتی را در مسیر حرکتی مطلوب قابل تنظیم می‌کند. این دو زنجیره حرکتی به مکانیسم جانسون شکل می‌دهند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زنجیره به طور مشخصی به یک قطعه اضافی و مکانیسم جانسون متصل می‌شوند. این دو زن...
روش‌های تجزیه و تحلیل آماری وسیله طراحی شده

در این بررسی از مطالعه تک نمونه‌ای تجربی با طرح ABA استفاده شد. این نوع پژوهش ابزار قدرتمندی برای تصمیم گیری با توجه به جدید بالینی در اختیار درمانگران قرار می‌دهد. با توجه به عدم قطعیت ابزار و عدم اطمینان از تأثیر مناسب ابزار مداخله، چهار کودک دایپلژی اسپاستیک از مراجعین مراکز توانبخشی خصوصی، زیر نظر سازمان نظام پزشکی تهران در سال 1397 که تحت کاردرمانی رایج قرار داشتند، در این پژوهش شرکت کردند. ملاک‌های ورود عبارت بودند از: تشخیص فلج مغزی از سال تا سه سال، توانایی رفتن مستقل با واکر، توانایی فهم و پیروی از دستورات کلامی و گیت ترینر، سطح سه از GMFCS و رضایت خانواده برای شرکت در مطالعه، عدم جراحی ارتوپدی و یا تزریق بوتاکس در یک سال گذشته. ملاک‌های خروج عبارت بودند از: تشنج کنترل نشده، دررفع یا نیمه دررفع مفصل ران و 50 سانتی‌متر در یکی از اندام‌های تحتانی. میانگین کوتاهی بیشتر از سال و نه ماه بود و همگی پسر بودند.

دوره پایه چهار هفته و دوره مداخله و پیگیری شامل هشت هفته SPARCLE بود. همه شرکت‌کنندگان در طول مطالعه، سه جلسه کاردرمانی رایج در هفته داشتند. در دوره مداخله در کنار کادرمانی رایج، به دقیقه و سه بار در هفته تمرین با گیت ترینر داشتند.

ابزارهای ارزیابی

از بین بررسی‌های تجزیه و تحلیل عملکرد حرکتی در کودکان، ابزاری ارزیابی GMFM به‌رد. این ابزار به ترتیب با ابزارهای تخمین عملکرد حرکتی (GMFM-66) استفاده شد. استفاده از ابزار GMFM-66 که لاتین اسپانیولی لجستیک برای کاربردهای آزمایشی، کاربرد و دانشگاهی است، به‌رد که این ابزار در ارزیابی حرکات کودک‌ها در طول رشد و توسعه این ابزار در ارزیابی حرکات کودک در طول زمان و به دنبال انجام مداخلات حرکتی به کار می‌رود. در پنج حیطه طبقیابی و فلزین (A)، نشستن (B)، ه襜ست و چهار ران (C)، وایاند و پدیم و اوژن (D) کودک‌ها در ابزار رتبه‌گذاری می‌شوند. کودک، نمره‌های میان در صفر تا سه را دریافت می‌کند. این ابزار به عنوان آزمونی دارای اعتبار شناخته می‌شود.

GMFM-66 از نظر عملکرد حرکتی، ابزاری است که برای اندازه‌گیری توانمندی حرکتی همکاری کودک در طول رشد و توسعه این ابزار به‌بیننده می‌شود. این ابزار به عنوان آزمونی دارای اعتبار شناخته می‌شود. این آزمون، ابزاری است که برای اندازه‌گیری توانمندی حرکتی کودک در طول رشد و توسعه به‌بیننده می‌شود. این آزمون به عنوان آزمونی دارای اعتبار شناخته می‌شود. این آزمون به عنوان آزمونی دارای اعتبار شناخته می‌شود.
سیره انتخابیمسیر ۲ آمتری را ایفا کنند. برای حذف شتاب افزایشی و کاهش شتاب افزایشی، مدت زمان انتخابی سرعت این ایستاده برای کاهش شتاب افزایشی در فاصله ۱۰ سرعت انتخابی مسیر محاسبه می‌شود. برای این کار، کلر از مارکرهایی در فاصله ۱۰ متری از شروع استفاده می‌شود. مدت زمان طی شده بین این دو مارکر توسط کروئیت محاسبه می‌شود. سپس سرعت فرد بر اساس ثانیه گزارش می‌شود.

یافته‌ها
نتایج حاصل از مطالعات تکمیلی در اکثر موارد به سوت نمودار گزارش و تحلیل می‌شود. در این مطالعه برای هر یک از متغیرها، تحلیل نمودار و محاسبه شاخص‌های غیرهم‌پوشانی (PND, PAND, NAP, PEM, JRD, Phi, Tau-У) انجام شد. استانداردهای مداخله توسط گه مهندس و هدایت محاسبه گردیده.

تصویر ۳. نمودار نمرات ایستادگی بر اساس GMFM-66 در معیار گزارش‌های سیدمهدی حسینی و همکاران. طراحی و بررسی تأثیر تمرین با Gait Enhancer.
شاخص‌های فیرهایپوکاسی مربوط به تمرات ایستادن بین فاز راه‌پیمایی و مداخله

پیامدهای	فاز	PND	PEM	NAP	PAND	IRD
Tau-U	52	52	1	1	1	1
Tau novlap	52	52	1	1	1	1
Phi	100	100	1	1	1	1
(٪)						

نتایج ارزیابی تولیدی ایستادن کودکان بر اساس GMFM-66

M2 = (M2med - M2mean)/SDpooled

GMFM-66 در تصور شماره 2 ملاحظه شده است بر اساس تحلیل 76 پایین‌تر، مشخصات کودکان که تمرات مرتبط به تولیدی ایستادن در مرحله مداخله نسبت به مرحله پیشی به جهت کودک پس از اعمال مداخله به میزان 20 درصد در مرحله مداخله به ترتیب به اندازه 1 و 8 واحد در مرحله پیشی ترتیب یک و 3 واحد بیشتر شده است. برای تعیین تأثیرات ایستادن کودکان در توانایی ایستادن، مقادیر کودکان از همدیگر مربع محاسبه می‌شود. این شاخص توانایی ایستادن کودکان ایستادن می‌گوید که میزان این کودک در قسمت مداخله از کودک پیشی به ترتیب به اندازه 1 و 8 واحد در مرحله پیشی بیشتر شده است.

نتایج بررسی شرط پیمودن مسیر بر اساس walk test

در تصویر شماره 8 در قلب نمونه برای هر چهار کودک به عنوان درآمد این مطالعه طراحی و با کمک Gait trainer که در مرحله مداخله رشد کودکان به شکلی نشان می‌دهد محاسبه اثر مشاهده در طول اندازه‌گیری 6 تکرار محاسبه هم به انجام گرفته بود که مشاهده شد که اثرات EMI در مرحله مداخله در کودکان نفرات دوم و سوم بهبودی تعیین می‌شود.

جدول 1: اثرات در مداخله در فاز‌های ایستادن

کودک	پیشی	مداخله	EMI	Cohen’s d	Hedges’ g
کودک 1	0.5	0.7	2	0.4	0.3
کودک 2	0.6	0.8	2	0.5	0.4
کودک 3	0.7	0.9	2	0.6	0.5
کودک 4	0.8	1.0	2	0.7	0.6

به منظور بررسی دقیق تغییرات مشاهده‌شده و مقایسه فازها

به صورت زوجی بین پایه و مداخله مشاهده شده که تأثیرات ایستادن کودکان از همدیگر مربع محاسبه می‌شود. این کودک دوم و سوم بهبودی تعیین می‌شود.

به این ترتیب مشاهده‌ها ملاحظه‌شده در مقایسه 3 افراد فازی به وسیله EMI در کودکان قابل شناخت و محاسبه بهبودی کودک در فاز مداخله بیشتر از سایر کودکان. کمی شفافیت است و در هر سه کودک متغیر بعد‌زمینه حاکی از این امر می‌باشد.
شرکت کننده در مطالعه سرعت راه رفتن بعد از مداخله افزایش قابل ملاحظه طبقه است. اما در مرحله پیگیری فقط کودک سوم، آن هم به میزان اندکی افزایش سرعت نشان می‌دهد. در ادامه به متابولیسم خاکی تغییرات مشاهده شده و مقایسه فازها به صورت ممکن از تجربه‌های غیرهم‌پوشانی محاسبه شده و در جدول شماره ۴، گزارش شده است.

به نظر می‌رسد که نمودار مدت زمان پیمودن مسیر بر اساس ثانیه نشان می‌دهد که در هر چهار کودک شرکت‌کننده، سرعت راه رفتن کودک شماره ۱، ۲، ۳ و ۴ افزایش یافته است. البته این افزایش در کودک شماره ۲، نسبت به کودک‌های دیگر، میزان کمتری داشته است.

تحقیقات قبلی نشان داده که در مقایسه فازهای پایه و اول تمرین، سرعت خستگی جسمانی در همه کودکان است. بنابراین برای محاسبه اندازه اثر مداخله مقدار هدایت بین دو فاز پایه و اول تمرین محاسبه شد و مقادیر آن برای هر چهار کودک در جدول شماره ۳ نمایش داده شد.

تحلیل چشم‌انداز گروه‌های تغییرات مشاهده شده بیانگر کاهش معنی‌دار زمان لازم جهت اجرای آزمون در همه کودکان کوهن و d است؛ بنابراین برای محاسبه اندازه اثر مداخله مقدار هدایت بین دو فاز پایه و اول تمرین محاسبه شد و مقادیر آن برای هر چهار کودک در جدول شماره ۲ نمایش گذاشته شد.

بحث
GMFM-20 بر توانایی ایستادن و سرعت راه رفتن کودکان فلج مغزی Gait Enhancer سیدمهدی حسینی و همکاران. طراحی و بررسی تأثیر تمرین با شاخص‌های GMFM-20 در بیماران دارای سایکل‌های آمیخته و مداخله متقابل ممکن با وجود اینکه بهترین آزمون برای بررسی توانایی ایستادن سایکل‌های آمیخته و MTT است، این آزمون بهترین آزمون برای بررسی توانایی ایستادن سایکل‌های آمیخته و MTT است، این آزمون بهترین آزمون برای بررسی توانایی ایستادن سایکل‌های آمیخته و MTT است.
در کودکان فلج مغزی باعث افزایش قدرت نیز موجب می‌شود، اما میزان پیشرفت در کودکان که با تمرین راه رفتن به مراتب بیشتر از کودکانی که ناقص توانایی ایستادن دارند. شیندلر و همکاران با پژوهشی حاضر نیز نشان دادند که این نوع پیشرفت باعث افزایش قدرت راه رفتن در کودکان است و بهبود توانایی ایستادن در این کودکان بیشتر می‌باشد.

جدول 2
نفرات	گرتور	گرتور ناولپلاک	فی	نرخ احتمال بقا	نرخ پیشرفت	نرخ پیشرفت	IRD	PEM	PND	PAND
1	100	100	100	1	1	1	1	1	1	1
2	83	87	83	/	0	/	2	/	2	/

نتیجه‌گیری

استفاده از یک تمرین بیشتر در کنار کاردرمانی رایگان، می‌تواند باعث افزایش قدرت نیز می‌شود، در این مطالعه با توجه به نتایج مطالعه شیندلر و همکاران، تمرین در این کودکان دارای اهمیت بالایی است. نتایج این مطالعه با نتیجه‌ها مطالعه‌های قبلی همسو است و بهبود توانایی ایستادن و سرعت راه رفتن در کودکان فلج مغزی، البته در کنار کاردرمانی رایج است. به‌طور کلی، این دستگاه به عنوان یک ابزار مفید در آموزش و تمرین راه رفتن کودکان فلج مغزی به‌شمار می‌رود و هیچ گونه اثر نامطلوبی در کاربرد این دستگاه روی کودکان نشان ندارد. در توجیه تفاوت نتایج به دست آمده در بین چهار کودک شرکتکننده، شاید بتوان به تفاوت قدرت عضلانی در اندام‌های تحتانی و توان عملکردی غیر پیشکن در این کودکان اشاره کرد؛ چراکه این دستگاه باعث کاهش مدت زمانی برای ایستادن روی دو پا و افزایش مدت زمانی برای ایستادن روی یک پا می‌شود.

جدول 3
بانکار	پیشکن	میانگین	نرخ احتمال بقا	نرخ پیشرفت	NPM	PEM	PND	PAND
کودک اول	13	13	13	13	13	13	13	13
کودک دوم	12	12	12	12	12	12	12	12

نتیجه‌گیری

استفاده از ابزار جدید در کنار کاردرمانی باعث افزایش قدرت نیز می‌شود، در این مطالعه با توجه به نتایج مطالعه شیندلر و همکاران، تمرین در این کودکان دارای اهمیت بالایی است. نتایج این مطالعه با نتیجه‌ها مطالعه‌های قبلی همسو است و بهبود توانایی ایستادن و سرعت راه رفتن در کودکان فلج مغزی، البته در کنار کاردرمانی رایج است. به‌طور کلی، این دستگاه به عنوان یک ابزار مفید در آموزش و تمرین راه رفتن کودکان فلج مغزی به‌شمار می‌رود و هیچ گونه اثر نامطلوبی در کاربرد این دستگاه روی کودکان نشان ندارد. در توجیه تفاوت نتایج به دست آمده در بین چهار کودک شرکتکننده، شاید بتوان به تفاوت قدرت عضلانی در اندام‌های تحتانی و توان عملکردی غیر پیشکن در این کودکان اشاره کرد؛ چراکه این دستگاه باعث کاهش مدت زمانی برای ایستادن روی دو پا و افزایش مدت زمانی برای ایستادن روی یک پا می‌شود.

جدول 4
بانکار	پیشکن	میانگین	نرخ احتمال بقا	نرخ پیشرفت	NPM	PEM	PND	PAND
کودک اول	13	13	13	13	13	13	13	13
کودک دوم	12	12	12	12	12	12	12	12

نتیجه‌گیری

استفاده از ابزار جدید در کنار کاردرمانی باعث افزایش قدرت نیز می‌شود، در این مطالعه با توجه به نتایج مطالعه شیندلر و همکاران، تمرین در این کودکان دارای اهمیت بالایی است. نتایج این مطالعه با نتیجه‌ها مطالعه‌های قبلی همسو است و بهبود توانایی ایستادن و سرعت راه رفتن در کودکان فلج مغزی، البته در کنار کاردرمانی رایج است. به‌طور کلی، این دستگاه به عنوان یک ابزار مفید در آموزش و تمرین راه رفتن کودکان فلج مغزی به‌شمار می‌رود و هیچ گونه اثر نامطلوبی در کاربرد این دستگاه روی کودکان نشان ندارد. در توجیه تفاوت نتایج به دست آمده در بین چهار کودک شرکتکننده، شاید بتوان به تفاوت قدرت عضلانی در اندام‌های تحتانی و توان عملکردی غیر پیشکن در این کودکان اشاره کرد؛ چراکه این دستگاه باعث کاهش مدت زمانی برای ایستادن روی دو پا و افزایش مدت زمانی برای ایستادن روی یک پا می‌شود.

جدول 5
بانکار	پیشکن	میانگین	نرخ احتمال بقا	نرخ پیشرفت	NPM	PEM	PND	PAND
کودک اول	13	13	13	13	13	13	13	13
کودک دوم	12	12	12	12	12	12	12	12

نتیجه‌گیری

استفاده از ابزار جدید در کنار کاردرمانی باعث افزایش قدرت نیز می‌شود، در این مطالعه با توجه به نتایج مطالعه شیندلر و همکاران، تمرین در این کودکان دارای اهمیت بالایی است. نتایج این مطالعه با نتیجه‌ها مطالعه‌های قبلی همسو است و بهبود توانایی ایستادن و سرعت راه رفتن در کودکان فلج مغزی، البته در کنار کاردرمانی رایج است. به‌طور کلی، این دستگاه به عنوان یک ابزار مفید در آموزش و تمرین راه رفتن کودکان فلج مغزی به‌شمار می‌رود و هیچ گونه اثر نامطلوبی در کاربرد این دستگاه روی کودکان نشان ندارد. در توجیه تفاوت نتایج به دست آمده در بین چهار کودک شرکتکننده، شاید بتوان به تفاوت قدرت عضلانی در اندام‌های تحتانی و توان عملکردی غیر پیشکن در این کودکان اشاره کرد؛ چراکه این دستگاه باعث کاهش مدت زمانی برای ایستادن روی دو پا و افزایش مدت زمانی برای ایستادن روی یک پا می‌شود.
اشکال کودکان فلج مغزی از نظر توجه است که این کودکان در حین تمرین راه و رانندگی با دستگاه نیز به نتایج بسیار مثبتی از گزارش اسـتهایی چهارم یک توجه پژوهشی خاصی نمی‌گذارند. از نظر توجه است که این کودکان سطح سه از مقیاس طبقه‌بندی عملکرد حرکتی درشت پیدا کرده‌اند. منابع همکاران نمی‌توانند نتایج به دست آمده به همه کودکان عمومی نیست و برای این منظور ایجابی به انجام تحقیقات بیشتری انجام شود.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.

پیشنهاد می‌شود، مطالعه‌ای با هدف افزایش تقارن عملکرد حرکتی اندام‌های تحتانی در کودکان همی با پژوهش صورت گیرد. استفاده از این دستگاه در کودکان فلج مغزی به منظور مداخله به‌ناهجار و حصول نتایج درمانی بهتر توصیه می‌شود.

ملاحظات اخلاقی

در این مقاله تعارض منافع ندارد.
References

[1] Stanley FJ, Blair E, Alberman E. Cerebral palsy: Epidemiology and causal pathways. Cambridge: Cambridge University Press; 2000. https://www.google.com/books/edition/Cerebral_Pal{}es/jEtC1q-CNg3I?hl=en&gbpv=0

[2] Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: The definition and classification of cerebral palsy. April 2006. Developmental medicine and child neurology. Supplement. 2007; 109(suppl 109):8-14. [PMID]

[3] McNevin NH, Coren I, Schafer J. Gait in adolescent cerebral palsy: the effect of partial unweighting. Archives of Physical Medicine and Rehabilitation. 2000; 81(4):525-8. [DOI:10.1053/mr.2000.4429]

[4] Palisano R, Tieman BL, Walter SD, Burket DJ, Rosenbaum PL, Russell DJ, et al. Effect of environmental setting on mobility methods of children with cerebral palsy. Developmental Medicine and Child Neurology. 2003; 45(2):113-20. [DOI:10.1011/j.1469-8749.2003. th00914.x]

[5] Lanzioni GE, Singh NN, O’Reilly MF, Sigafoos J, Didden R, Manfredi F, et al. Fostering locomotor behavior of children with developmental disabilities: An overview of studies using treadmills and walkers with microswitches. Research in Developmental Disabilities. 2009; 30(2):308-22. [DOI:10.1016/j.ridd.2008.05.002] [PMID]

[6] Mcween IR. Assistive positioning as a control parameter of social-communicative interactions between students with profound multiple disabilities and classroom staff. Physical Therapy. 1992; 72: 634-47. [DOI:10.1093/ptj/72.9.634] [PMID]

[7] Shepherd R. Cerebral palsy. In: Shepherd R, editor. Physiotherapy in paediatrics. Oxford: Butterworth-Heinemann; 1995. https://www.google.com/books/edition/Physiotherapy_in_Paediatrics/WCt2Q

[8] Alotaibi M, Long T, Kennedy E, Bavishi S. The efficacy of GMFM-88 and GMFM-66 to detect changes in gross motor function in children with cerebral palsy (CP): A literature review. Disability and Rehabilitation. 2014; 36(6):617-27. [DOI:10.3109/09638288.2013.85820] [PMID]

[9] Watson MJ. Refining the ten-meter walking test for use with neurologically impaired people. Physiotherapy. 2002; 88(7):386-97. [DOI:10.1016/S0031-9406(05)61264-3]

[10] Wooden J. Gait Enhancer and Determining its Effect on Standing Ability and Gait Speed of Children. RJ. 2021; 21(4):436-453.
[26] Zhan S, Ottenbacher KJ. Single subject research designs for disability research. Disability and Rehabilitation. 2001; 23(1):1-8. [DOI:10.1080/09638280150211202] [PMID]

[27] Meyer-Heim A, Ammann-Reiffer C, Schmartz A, Schaefer J, Sennhauser FH, Heinen F, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Archives of Disease in Childhood. 2009; 94(8):s15-20. [DOI:10.1136/adc.2008.145488] [PMID]

[28] Mattern-Baxter K. Effects of partial body weight supported treadmill training on children with cerebral palsy. Pediatric Physical Therapy. 2009; 21(1):12-22. [DOI:10.1097/PEP.0b013e318196ef42] [PMID]

[29] Schindl MR, Forstner C, Kern H, Hesse S. Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. Archives of Physical Medicine and Rehabilitation. 2000; 81(3):301-6. [DOI:10.1016/S0003-9993(00)90075-3] [PMID]

[30] Provost B, Dieruf K, Burtner PA, Phillips JP, Bernitsky-Beddingfield A, Sullivan KJ, et al. Endurance and gait in children with cerebral palsy after intensive body weight supported treadmill training. Pediatric Physical Therapy. 2007; 19(1):2-10. [DOI:10.1097/01.pep.0000249418.25913.a3] [PMID]

[31] Eisenberg S, Zuk I, Carmeli E, Katz-Leurer M. Contribution of stepping while standing to function and secondary conditions among children with cerebral palsy. Pediatric Physical Therapy. 2009; 21(1):79-85. [DOI:10.1097/PEP.0b013e31818f57f2] [PMID]

[32] Banz R, Bolliger M, Columbo G, Dietz V, Lienenburger L. Computerized visual feedback: an adjunct to robotic-assisted gait training. Physical Therapy. 2008; 88(10):1135-45. [DOI:10.2522/ptj.20070203] [PMID]

[33] Cho C, Hwang W, Hwang S, Chung Y. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy: The Tohoku Journal of Experimental Medicine. 2016; 238(3):213-8. [DOI:10.1620/tjem.238.213] [PMID]

[34] Swe NN, Sendhilnathan S, van Den Berg M, Barr C. Over ground walking and body weight supported walking improve mobility equally in cerebral palsy: A randomised controlled trial. Clinical Rehabilitation. 2015; 29(11):1108-16. [DOI:10.1177/0269215514566249] [PMID]

[35] Cherrng RJ, Liu CF, Lau TW, Hong RB. Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. American Journal of Physical Medicine & Rehabilitation. 2007; 86(7):548-55. [DOI:10.1097/PHM.0b013e31806dc302] [PMID]

[36] Wang X, Wang Y. Gait analysis of children with spastic hemiplegic cerebral palsy. Neural Regeneration Research. 2012; 7(20):3575-84. [DOI:10.3969/j.issn.1673-5374.2012.20.008] [PMID]

[37] Willoughby KL, Dodd KJ, Shields N, Foley S. Efficacy of partial body weight-supported treadmill training compared with over-ground walking practice for children with cerebral palsy: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation. 2010; 91(3):333-9. [DOI:10.1016/j.apmr.2009.10.029] [PMID]

[38] Fatorehchy S, Hosseini SA, Rassafiani M. The effect of aquatic therapy at different levels of water depth on functional balance and walking capacity in children with cerebral palsy. International Journal of Life Science and Pharma Research. 2019; 9(1):452-57. [DOI:10.22376/jipbs/lpr.2019.9.1.452-57]

[39] Fatorehchy S, Hosseini SA, Haghgoo HA, Hosseinzadeh S. The effect of gait enhancer mechanism on functional balance and endurance of walking in children with cerebral palsy. Medical Science. 2019; 23(9):724-31. [https://www.semanticscholar.org/paper/The-effect-of-gait-enhancer-mechanism-on-functional-Fatorehchy-Hosseini/07006c272052e361ac543682a8565ce60b4903]
