The winner takes it all - How to win network globalization

Chengyuan Han,1,2,∗ Dirk Witthaut,1,2,† Marc Timme,3,4 and Malte Schröder3,§

1Forschungszentrum Jülich, Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE), 52428 Jülich, Germany
2Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany
3Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, TU Dresden 01062 Dresden, Germany

Quantifying the importance and power of individual nodes depending on their position in socio-economic networks constitutes a problem across a variety of applications. Examples include the reach of individuals in (online) social networks, the importance of individual banks or loans in financial networks, the relevance of individual companies in supply networks, and the role of traffic hubs in transport networks. Which features characterize the importance of a node in a trade network during the emergence of a globalized, connected market? Here we analyze a model that maps the evolution of trade networks to a percolation problem. In particular, we focus on the influence of topological features of the node within the trade network. Our results reveal that an advantageous position with respect to different length scales determines the success of a node at different stages of globalization and depending on the speed of globalization.

I. INTRODUCTION

Global connectivity is central to our social, economic and technical development [1–4]. The growth of a global transportation network has dramatically changed world economy and led to increased efficiency and more centralized production [5]. But this global connectivity also bears new, systemic risks - highlighted in particular in the financial sector [6, 7].

Economies of scale are a major driving force in the formation of many of these socio-economic networks. Generally, a well developed economic agent with high connectivity is more attractive or competitive compared to smaller, less developed agents. The larger agents thus naturally attract even more connections [8–10]. In social network theory, this principle is commonly referred to as preferential attachment, driving the formation of scale-free networks [11]. In economic theory, economies of scale have been identified as a key mechanism leading to the emergence of trade networks and globalization [5, 12]. More recently, we have seen the emergence of quasi-monopolies in digital platform economies where economies of scale are particularly strong [13–15]. In this case the winner takes it all. But who wins and how?

Understanding which node in a network is the most important one and how it ‘wins’ over the competition in a network globalization process is still largely an open question. In particular, a systematic study of network formation in a heterogeneous geographic environment is a demanding task. Percolation models describing network growth typically involve random processes [16–18], while optimization models of the network structure typically start from a single global objective function [19–23]. However, neither model class fully describes socio-economic networks, whose formation is determined by the individual decisions (optimization, non-random) of interacting agents (multiple different objective functions). Economic equilibrium models and game-theoretic models capture these interactions and the individual decision but quickly become intractable as the number of agents increases [3, 24–28].

In this article, we study a supply network model that explicitly includes nonlinear nonconvex economies of scale and transportation costs and simultaneously enables a semi-analytical treatment by mapping the evolution of the trade network to a percolation problem [29]. In the model, agents try to satisfy a given demand at minimum costs, either through domestic production or via imports. Economies of scale favor the centralization of production and the emergence of trade. On the other hand, non-zero transportation costs favor distributed production. Simulating the evolution of the trade network in this model allows us to systematically study how globalization takes place, how the transportation network affects globalization, and last but not least which geographic factors provide an advantage for the economic agents. In particular, we demonstrate that the way to ‘win’ the globalization process is to be in an advantageous position on the correct length scale. We show that the length scale characterizing the competitiveness of a node changes depending on the stage of globalization and the speed of globalization process.

II. METHODS

A. Economic percolation model

We analyze the influence of topological features on the importance of nodes in a network formation model recently introduced by Schröder et al. [29]. The model describes the formation of trade interactions based on a
Figure 1. **Network Supply Problem.** Each node $i$ chooses a supplier $k$ to satisfy its demand $D$ at minimal cost $K_i = \min_{k \neq k_i} S_k$. These costs include: (I) production costs at node $k$, where the costs per unit depend on the total amount of production $S_k$ at that node (left panel), and (II) transport costs that depend on the distance $T_{ki}$ between the nodes $k$ and $i$ in the underlying transport network (dashed line). All nodes in the network (including $k$) simultaneously solve their individual optimization problem.

The economic percolation model includes heterogeneous geographical conditions explicitly. The matrix $T_{ki}$ encodes the distances of all pairs of nodes $(k, i)$ which depends on their geographic location and the structure of the underlying transportation network. Hence, the model allows to systematically study the influence of geographical or topological properties on the formation of trade and the centralization of production. Are there any geographical or topological features that determine which node becomes the final supplier and which does not?

To study the impact of the transport network topology, we consider four different random network ensembles. We start from an ensemble of geographically embedded networks obtained by distributing $N = 1000$ nodes uniformly at random on the unit square. Edges are constructed by a Delaunay triangulation with periodic boundary conditions. Each of the resulting $M = 3000$
links is undirected and assigned a distance equal to the Euclidean distance between the connected nodes. The distance $d_{ij}$ of two arbitrary nodes $i, j$ in the network is finally obtained as the geodesic or shortest path distance in the network.

The other random network ensembles are obtained from the initial ensemble by a reshuffling of the edges. This procedure keeps the number of connections and the distribution of the individual edge lengths identical and thus leaves the networks comparable to each other. We apply three different reshuffling procedures creating randomizations with different properties: First, we keep the structure of the network the same but choose a random permutation of the distances (random weights). This breaks correlations between the link distances and the node position. Second, we uniformly randomly rewire all links to different nodes under the constraint that the resulting network is connected. The network then has a topology corresponding to a Poisson random network [2]. Comparison of this randomization to the original network allows us to understand the impact of regular versus random network topologies. Third, we create a Barabasi-Albert scale-free network with the same number of links and the same distances for the links [11]. We thus create four different ensembles with identical average degree and edge lengths, but vastly different global structures. For instance, the degree distribution changes from narrow for the geometric and Poisson random networks to heavy-tailed for for scale-free networks.

C. Model parameters

In addition to the structure of the transportation network, several model parameters determine the course of globalization. First, we note that the system evolution is invariant with respect to a rescaling of the costs. In particular, we can set $D = 1/N$ by choosing an appropriate unit system. A rescaling of the distances can be absorbed into the main control parameter $p^T$, describing the transport cost per unit. It characterizes the relative importance of transportation costs with respect to production costs.

Two parameters $a$ and $b$ characterize the production costs via the costs per unit $p(S_k) = b_k - aS_k$ [Eq. (2)]. Since only the relative ordering of the costs are relevant to compare different suppliers (in the form of $K_{ki} < K_{ji}$), we scale the costs such that all $b_i \in [0, 1]$ with $\min b_i = 0$ and $\max b_i = 1$. In particular, we choose the $b_i$ uniformly at random from the interval $[0, 1]$. The second parameter $a$ characterizes the economies of scale and has a strong impact on the model behavior. We perform simulations for vastly different values $a \in \{10^{-5}, 10^{-4}, \ldots 10^1\}$ to cover different regimes of globalization. To put this into context, note that total centralization of production leads to a decrease of production costs by exactly $N Da = a$ for $D = 1/N$. Economies of scale are negligible if $a$ is much smaller than typical differences of the cost parameter $b_i$, i.e., for $a \ll 1/N = 10^{-3}$. Economies of scale are dominant if $a$ is of the order of the largest difference of the $b_i$, i.e. for $a \approx 1$. The range $a \in \{10^{-5}, 10^{-4}, \ldots 10^1\}$ covers both regimes.

In summary, we perform simulations for four different transportation network ensembles and several values of $a$. For each case we consider 1000 different random realizations of the network with 10 different permutations of the $b_i$, each, resulting in 10,000 measurements per ensemble and value of $a$. For each realization, we start the simulation in the limit of large transport costs, $p^T = \infty$, without any trade interactions. We then gradually lower $p^T$ and record the emergence of a trade network, i.e., the
emergence of connected components of the network defined by the purchases $S_{ki}$, as well as the final supplier for $p^T = 0$.

III. RESULTS

A. How does globalization emerge?

To understand the emergence of a globalized market we record the size of the largest markets as the transport costs decrease from $p^T = \infty$ (no trade) to $p^T = 0$ (single, global market). A trade network between nodes emerges as transportation costs decrease. An example of the globalization of production is shown in Fig 2 for a small geographically embedded random network. For $p^T = 1.0$, several nodes have already decided to purchase their goods from other neighboring nodes and multiple markets have formed where production is centralized to a single node. The markets grow when $p^T$ decreases to $p^T = 0.5$ as further nodes decide to purchase non-locally. Finally, many nodes again change their supplier, joining one large, global market with strong economies of scale instead of the smaller local markets. In the end, as $p^T \to 0$, production is fully centralized at a single node. The size of the four largest markets is shown in Fig 2 (a) as a function of the transportation cost parameter $p^T$.

Inspecting this evolution, we are directly led to the question how the transition to globalization takes place under different circumstances. Is it very sudden with a single large change in the size of the largest market or is the transition slow and the largest market grows gradually as $p^T$ decreases? Does a single node expand its market or do multiple large markets grow and only later merge to one global market? To answer these questions, we measure the largest gap $\max[\Delta S(1)]$ in the size (total production) of the largest market [30] as well as the maximum size of the second largest market $\max[S(2)]$, the third largest market $\max[S(3)]$ and so on over the course of the evolution from infinite to zero transport costs (see Fig 3). The maximal size $\max[S(2)]$ of the second largest market in particular measures how much markets grow before global centralization occurs. If it is small, only a single large market emerges and local competitiveness is relevant to gain an early advantage. If it is large, at least two large markets expand side by side before one of them becomes globally dominant and production is completely centralized. Here, the markets have to compete against each other on a larger length scale. The maximal size $\max[S(2)]$ of the second largest market serves a proxy for this length scale.

If economies of scale are weak (small values of $a$), multiple large markets coexist before they finally merge. As $a$ becomes larger, the maximum size of all markets except the largest one decreases. Finally, for strong economies of scale $a$, only a single market grows. Correspondingly, globalization becomes more and more abrupt with increasing $a$, measured by the growth of the gap $\max[\Delta S(1)]$. We thus obtain the following picture: For weak economies of scale, several markets grow and finally merge in a gradual process. For strong economies of scale, only local markets exist until globalization sets in abruptly. After this sudden transition, exactly one large market remains.

We observe rather little differences between the four network ensembles under consideration. The transition from gradual to abrupt globalization is qualitatively the same in all networks and also the transition point is remarkably similar. While the transition is gradual (no large gaps) for $a = 10^{-5}$, it is sudden for $a = 10^{-3}$ for all networks. Slight differences are observed only for $a = 10^{-4}$. While the maximum gap is larger than 0.1 for all realization of the random planar network, the transition is still gradual with smaller changes of the largest cluster for most realizations of a scale-free network.

This is rather surprising, as scale free networks are characterized by the existence of hubs, a few nodes with very high degree. At first glance, one might expect that these hubs can exploit economies of scale most easily, making the transition abrupt already for small $a$. Our results show that this simple reasoning fails. The impact of economies of scale on the transition and on the competitiveness of nodes is more subtle. In fact, different hubs have to compete in the globalization process when the economies of scale are not dominant (small $a$). Thus, while hubs allow for the easier formation of local markets, these markets then have to compete on a larger length scale (measured by the maximum size of the second largest market), where the local properties of the central supplier, such as the high degree of the hubs, are less important. Overall, this competition slows down the centralization of production in scale-free networks.

B. Who wins globalization?

Understanding how globalization occurs, we now address the question who wins the competition in the current model. That is, which node $i$ becomes the final supplier of the network for $p^T \to 0$? Are there any geographic features which determine a node’s competitiveness?

To characterize the geographical location of a node in a network, we consider several different centrality measures that measure different aspects of a node’s position in the network:

(i) cost centrality $1/b_i$

(ii) local closeness centrality $1/\min_j T_{ij}$

(iii) global closeness centrality $1/\sum_j T_{ij}$ [31, 32]

(iv) degree centrality [32]

(v) betweenness centrality [32, 33].
Figure 3. **Multiple markets or sudden growth?** Distribution of the maximum size $\max[S(n)]$ of the $n$-th largest market and largest change $\max[\Delta S(1)]$ in the size of the largest market (insets) during the globalization process for (a) the random planar network, (b) the network with randomized weights, (c) the network with uniformly randomized links and (d) the network with scale-free randomized links. For small $a$, multiple large clusters appear and merge slowly in all networks. For large $a$, a global market suddenly forms from the individual nodes in a single large cascade before any other market had the chance to grow significantly. Depending on the value of the parameter $a$, nodes have to be competitive at different length scales to become the final supplier. The maximal size of the second largest cluster $\max[S(2)]$ (red) can serve as a proxy for this length scale.

These quantities measure the advantage of the nodes in terms of (i) global production costs, (ii) small transport costs to a local trade partner, (iii) small transport costs to the whole network, (iv) immediate access to different trade partners and (v) position of the node along many trade routes.

We generally expect that all these properties are beneficial for the nodes. For example, a high cost centrality implies that production is cheap – at least until production costs decrease significantly due to economies of scale. The node with the highest cost centrality would be the socially optimal supplier when $p^T = 0$ and minimize the total costs across all nodes. Similarly, a high global closeness centrality implies that transportation is cheap on average, making the node an attractive global supplier when transport costs are not zero. The remaining three centrality measures also point to a favorable position in the network, but their implication is less clear. High degree and local closeness point to an attractive local environment, while high betweenness centrality is a typical measure of importance in social networks and means that many shortest transportation routes cross the respective node.

To understand which of these properties most strongly influences the competitiveness of a node, we rank all nodes according to their centralities and evaluate if the final suppliers typically have a high or low ranking. We record the final supplier and its centrality ranking $x$ for each random realization of the globalization process. The resulting distributions of the ranks of the final supplier are shown in Fig 4 for the four network ensembles under consideration. In addition, we fit a distribution $P(x) \sim \exp[-m(N-x)]$ to the observed centrality rankings to quantify the importance of the respective centrality. A value of $m = 0$ indicates a flat distribution, i.e., no influence of the centrality rank $x$ on the chance to become the final supplier. The higher the value of $|m|$, the stronger the correlation, and the more meaningful the respective centrality to predict which node wins the competition.

The first, expected observation is the influence of the cost centrality $1/b_i$ of a node $i$. For weak economies of scale (small $a$) the production costs are dominated by the cost parameters $b_i$ and low production costs are decisive for the competitiveness of a node. For all network ensembles under consideration, cost centrality is the best
Figure 4. How to win network globalization? Distribution of the ranking of the final supplier in various centrality measures (see main text) in (a) a random planar network, (b) the network with a random permutation of edge distances, (c) a Poisson random network with a random permutation of the edge distances, and (d) a scale-free network with a random permutation of the edge distances. All networks are constructed from a Delaunay triangulation of $N = 1000$ points uniformly randomly distributed in the unit square, resulting in $M = 3000$ links with distances equal to the Euclidean distance between the connected nodes (see Methods for details).
indicator for competitiveness for small \( a \), whereas its importance decreases for stronger economies of scale.

The second, more striking observation is the importance of the local closeness centrality. In the case of strong economies of scale \( a = 1 \), this centrality measure provides the best indicator for the competitiveness of a node. The histogram of the centrality ranking peaks strongly at top ranks. Local closeness is even more important than global closeness, although we evaluate the global competitiveness of the nodes. Again, this finding holds true for all four network ensembles.

A surprising correlation is found for the two remaining centrality measures, degree and betweenness, for the spatially embedded random network. Contrary to our expectation, the final supplier typically has a low degree and betweenness centrality for strong economies of scale \( a \). This effect is lost or even reversed for the other network ensembles and can be attributed to a subtle geometric property of spatially embedded random networks. In this network class, local closeness centrality is anti-correlated with degree and betweenness centrality. As competitive nodes have a high local closeness, they are likely to have a low degree and betweenness centrality. This observation is particularly relevant since real-world transportation networks are typically spatially embedded, with the exception of digital, data exchange networks. It is that similar correlations exist for other network ensembles as well. For example, nodes with a high degree centrality in the reshuffled scale free networks typically also have high local closeness centrality, due to more opportunities for a short link.

Finally, a more subtle implication of the centrality measures is that, depending on the parameter \( a \), the size or length scale of the relevant neighborhood changes. This length scale is defined by the critical size the largest cluster must reach before it becomes the global supplier. The effect is illustrated in Fig 5. For small \( a \), the number of customers does not affect the costs very much and one new customer allows the supplier to attract customers only in a small additional range [Fig 5 (a)]. Consequently, a node must attract a larger number of customers to become globally competitive and the critical size is (almost) equal to the total size of the network. In this regime, global centrality measures like the cost centrality are most relevant. For intermediate \( a \), a single customer allows the supplier to attract nodes in a larger range [Fig 5 (b)]. The critical length scale becomes smaller and we need to put more weight to the local structure. In this regime, the global closeness centrality and the degree centrality start to become better predictors, quantifying the centrality of a node in a local neighborhood. Finally, for very large \( a \), the critical size of the largest cluster becomes 2 and one single customer induces a sufficiently large change in production costs for the supplier to become globally competitive [Fig 5 (c)]. The centrality of a node in its most local context then becomes the deciding factor. This is best measured by the distance to the nearest neighbor, the local closeness centrality \( 1/\min_{ij} T_{ij} \).

Comparing results across the different network topologies, we find that the network topology becomes more important when the diameter is smaller, i.e., for Poisson and scale-free network structure. Since the total transport costs in these networks are smaller (proportional to the smaller diameter of these networks), the critical size to become the global supplier is also smaller. Thus, local length scales and the (local) network structure become important already for smaller values of \( a \).

**IV. CONCLUSION AND DISCUSSION**

Economies of scale are a decisive factor in the formation of socio-economic networks and the globalization and centralization of economic activities. Eventually, the winner takes all. Here we have studied core aspects of the question who wins and how.

The formation of socio-economic networks is a guiding research question across disciplines, including economics [4–6, 12], sociology [3, 27, 34] and statistical physics [2, 11]. Key mechanisms and global properties of network formation through economies of scale have been thoroughly analyzed [5, 11, 27], whereas the microscopic processes in large systems with many heterogeneous actors are much harder to grasp. Most traditional models of network formation do not explicitly capture the behavior of individual actors [11, 17, 35]. Percolation models are based on random processes, while optimization models typically assume a common global objective function. In contrast, game theoretic models describing individual agents [21, 25, 26, 36] are typically hard, if not impossible, to solve for large heterogeneous systems. In this article, we have analyzed a supply network model [29] that explicitly includes economies of scale and individual decisions, yet remains simple enough to allow for an efficient simulation of network formation and centralization in large heterogeneous environments. We exploit this fact to reveal the most important topological properties that determine the success of a node in the globalization process. We find that different length scales determine the success of a node, depending on the speed of the globalization.

The model yields the structure of a trade network given an underlying transportation network as a function of two main parameters: the strength of economies of scale \( a \) and the transport costs per distance \( p \). As transport costs decrease, trade links are established and the production is centralized to fewer and fewer nodes. For weak economies of scale, this process is gradual. Nodes compete at all length scales and the internal cost parameters are decisive for the competitiveness of a node. Only nodes with low productions costs \( b \) have a chance to become the final supplier of the network once production is centralized completely. The geographic location of the nodes in the network, characterized by different centrality measures, plays only a minor role. In contrast, if
Figure 5. **Impact of a single customer.** Sketch of the effect of a single (new) customer for a node. With the new customer production increases and the production costs per unit decrease by $a \Delta$. This compensates larger transport costs for nodes further away from the supplier. Consequently, the supplier becomes competitive in a larger range and can potentially attract additional customers. The blue circles indicate the distance that is compensated by the decrease in production costs due to one customer (two customers). (a) For small $a$, the change in production cost is small and likely has no immediate effect [compare $a = 10^{-4}$ in Fig 4(a)]. The nodes have to compete at all length scales. (b) For intermediate $a$, a single customer may reduce the costs sufficiently to cause additional nodes to change their supplier. In this case, nodes have to compete at a local scale until they reach a size sufficiently large to take over the global market. (c) For large $a$, a single customer definitely reduces the costs sufficiently to cause a cascade of purchasing decisions and the first node to attract a customer takes over the whole market. Here, only the immediate neighborhood of a node decides about its success [compare $a = 1$ in Fig 4(a)].

Loosely speaking, we our findings are as follows: For weak economies of scale the internal properties of a node or economic agent are decisive. Competition occurs across all length scales in the network and basic efficiency provides the greatest advantage in all stages of globalization. Only the (globally) most efficient nodes have a chance to take over the market. For strong economies of scale speed becomes the most important factor, rather than efficiency or global location. Competition occurs only locally to gain a first advantage and then exploit economies of scale to grow its market, skipping over the competition in other stages of globalization. For the future it would be of eminent interest to study how other factors influencing globalization confirm or modify these findings and whether they can be confirmed in real world settings.

V. ACKNOWLEDGEMENTS

We gratefully acknowledge support from the Helmholtz association (grant no. VH-NG-1025 to DW), the German Ministry for Education and Research (BMBF grants no. 03SF0472A-F and 03EK3055 to DW and MT) and the German Science Foundation (DFG) by a grant towards the Cluster of Excellence *Center for Advancing Electronics Dresden* (cfaed).

VI. AUTHOR CONTRIBUTIONS

Conceptualization: Dirk Witthaut and Malte Schröder
Formal Analysis: Chengyuan Han and Malte Schröder
Funding Acquisition: Dirk Witthaut and Marc Timme
Investigation: Chengyuan Han and Malte Schröder
Methodology: Chengyuan Han, Dirk Witthaut and Malte Schröder
Project Administration: Dirk Witthaut and Malte Schröder
Resources: Chengyuan Han, Dirk Witthaut, Malte Schröder and Marc Timme
Software: Chengyuan Han and Malte Schröder
Supervision: Dirk Witthaut and Malte Schröder
Validation: Chengyuan Han and Malte Schröder
Visualization: Malte Schröder
Writing – Original Draft Preparation: Dirk Witthaut and Malte Schröder
Writing – Review and Editing: Chengyuan Han, Dirk Witthaut, Marc Timme and Malte Schröder
[1] M. Newman, SIAM Review 45, 167 (2003).
[2] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[3] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning about a highly connected world (Cambridge University Press, Cambridge, 2010).
[4] S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. Kantelhardt, J. Kertész, S. Kirkpatrick, J. Kurths, J. Portugal, and S. Solomon, Eur. Phys. J. Special Topics 214, 273 (2012).
[5] P. R. Krugman, Geography and trade (MIT press, Cambridge, MA, 1991).
[6] F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, and D. R. White, Science 325, 422 (2009).
[7] C. Piccardi and L. Tajoli, PloS one 13, e0208265 (2018).
[8] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal, in Proceedings 41st Annual Symposium on Foundations of Computer Science (2000) pp. 57–65.
[9] R. Kumar, J. Novak, and A. Tomkins, “Structure and evolution of online social networks,” in Link Mining: Models, Algorithms, and Applications, edited by P. S. Yu, J. Han, and C. Faloutsos (Springer New York, New York, NY, 2010) pp. 357–357.
[10] N. Kollentz, M. Schröder, and M. Timme, Phys. Rev. Lett. 121, 138301 (2018).
[11] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[12] P. R. Krugman, J. Pol. Econ. 99, 483 (1991).
[13] M. L. Katz and C. Shapiro, J. Econ. Perspect. 8, 93 (1994).
[14] C. Shapiro, S. Carl, and H. R. Varian, Information rules: a strategic guide to the network economy (Harvard Business Press, Brighton, MA, 1998).
[15] E. Brousseau and T. Penard, Rev. Netw. Econ. 6 (2007).
[16] D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1992).
[17] A. A. Saberi, Phys. Rep. 578, 1 (2015).
[18] R. M. D’Souza and J. Nagler, Nat. Phys. 11, 531 (2015).
[19] R. V. Sole and M. Montoya, Proc. Roy. Soc. London Ser. B 268, 2039 (2001).
[20] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Science 298, 824 (2002).
[21] M. T. Gastner and M. E. J. Newman, Phys. Rev. E 74, 016117 (2006).
[22] R.-M. Memmesheimer and M. Timme, Phys. Rev. Lett. 97, 188101 (2006).
[23] H. Ronellenfitsch and E. Katifor, Phys. Rev. Lett. 117, 138301 (2016).
[24] V. Bala and S. Goyal, Econometrica 68, 1181 (2000).
[25] M. Jackson and A. Watts, J. Econ. Theory 106, 265 (2002).
[26] E. Even-dar and M. Kearns, in Advances in Neural Information Processing Systems 19, edited by B. Schölkopf, J. C. Platt, and T. Hoffman (MIT Press, Cambridge, MA, 2007) pp. 385–392.
[27] M. O. Jackson, Social and economic networks, Vol. 3 (Princeton University Press, Princeton, NJ, 2008).
[28] O. Atabati and B. Farzad, Comp. Soc. Netw. 2, 1 (2015).
[29] M. Schröder, J. Nagler, M. Timme, and D. Witthaut, Phys. Rev. Lett. 120, 248302 (2018).
[30] J. Nagler, A. Levina, and M. Timme, Nat. Phys. 7, 265 (2011).
[31] G. Sabidussi, Psychometrika 31, 581 (1966).
[32] M. E. J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010).
[33] L. C. Freeman, Sociometry 40, 35 (1977).
[34] D. van Dolder and V. Buskens, PloS one 9, e92276 (2014).
[35] D. P. Bertsekas, Network optimization: continuous and discrete models (Athena Scientific, Belmont, 1998).
[36] A. Watts, Games Econ. Behav. 34, 331 (2001).