Robust stabilization of T-S fuzzy systems via improved integral inequality

C. Karthik1 · G. Nagamani1 · Ramasamy Subramaniyam2 · Dafik3

Accepted: 4 November 2021 / Published online: 25 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This paper addressed the robust stabilization performance of Takagi–Sugeno (T-S) fuzzy systems under a state feedback controller. To attain this, an integral inequality is proposed by rearranging the quadratic matrix-vector form combined with Jensen’s inequality to handle the single integral terms obtained by taking the derivative of the concerned Lyapunov–Krasovskii functional. By employing this integral inequality and by using integral inequality techniques, some improved delay-dependent stability and stabilization results are established in terms of linear matrix inequalities for the proposed T-S fuzzy model. Finally, some numerical examples are provided to facilitate the feasibility and less conservativeness of the proposed theoretical results.

Keywords T-S fuzzy models · Time-varying delays · Linear matrix inequality · Nonlinear systems · Lyapunov–Krasovskii functional

1 Introduction
In the field of control engineering (Takagi and Sugeno 1985), the fuzzy logic control has been regarded as a powerful tool to analyze the performance of the nonlinear systems. Among various fuzzy models, Takagi–Sugeno (T-S) fuzzy model is widely accepted as a simple but effective model to describe the behaviors of uncertain nonlinear systems, where a set of fuzzy IF-THEN rules is introduced to describe the local linear input-output relations of a nonlinear system (Li et al. 2015; Subramaniam et al. 2020; Moodi and Farrokhi 2014; Hui and Xie 2016; Yang and Wang 2014; Gao et al. 2013; Subramaniam and Joo 2019; Zhang et al. 2014; Nagamani and Ramasamy 2016; Araujo et al. 2019; Nithya et al. 2020). On the other hand, over the past decades, the stability and stabilization performance of uncertain T-S fuzzy systems turned out to be a more sensitive research theme (Xia et al. 2017; Wang and Lam 2017; Gu 2000; Zhang et al. 2016; Li et al. 2015). Currently, a plenty of approaches have been developed to examine the themes of such systems, and these proposed techniques are of highly relevant to both theory and application. For example, the problem of T-S fuzzy systems with observer-based non-parallel distributed compensation control throughout an irregular sampling interval is investigated in Peng et al. (2017). Recently, the stabilization of T-S fuzzy model has been studied in Wang and Lam (2017) via fuzzy control approach.

In view of the practical engineering systems, there arise a couple of challenging problems such as the existence of the time-delay and the control directions probably unknown. Both always yield the control design more complicated and complex. In such cases, the relevant LKF mechanism is always a powerful tool to deal with these shortcomings. Based on these useful techniques, many important results have been proposed through numerous inequality approaches such as Wirtinger-based inequality, weighted integral inequality, and relaxed integral inequality (Gu 2000; Zhang et al. 2016; Li et al. 2015). With the help of these inequalities, the derivatives of the concerned LKF are carried out to establish the desired stability conditions in terms of LMIs. To be more specific, an integral inequality proposed in Seuret and Gouaisbaut (2013) results in the reduction in the conservatism based on the treatment in Fourier theory, particularly in the view of well-known Wirtinger inequalities. In Gong et al. (2016), the authors developed new integral
inequalities by means of the proposed integral inequality in Park et al. (2015) in order to investigate the problem of exponential stability performance of the delayed systems. In Zhang et al. (2016), the stability criterion for delayed system is studied with the aid of bounding inequalities and augmented LKF.

On consideration of the aforementioned issues into account, in this paper, an attempt has been made to propose an improved integral inequality to investigate the stable performance of the considered nonlinear model under fuzzy-based state feedback controller. To obtain the desired stabilization criteria, an appropriate LKF has been constructed involving delay-dependent single and double integral quadratic terms. Hence, the derivative of such LKF will result in single integral terms. By introducing an appropriate dimensional matrix, the obtained single integral term can be divided into two single integral terms. Then, by combining the rearrangement of Jensen’s inequality and the desired quadratic matrix vector form based on the appropriate dimensioned matrix introduced earlier, a new integral inequality is proposed which yields a broad foundation for computing the single integral terms. As far as we know, the problems of stabilization for uncertain nonlinear systems via novel integral inequality have not been fully examined, which motivates us to derive the new integral inequality.

The main novelty and contribution of this manuscript can be summarized as follows:

- An improved integral inequality is acquired with help of Jensen’s inequality to handle the considered LKF.
- Based on the fuzzy control approach, the stability and stabilization criteria are obtained for the considered uncertain nonlinear models through LKF whose derivative can be solved by means of the improved integral inequality.
- Appropriate control gain matrices K_i are calculated from the LMIs to guarantee the stabilization of the proposed model via state feedback control.
- Finally, a continuous stirred-tank reactor (CSTR) system is adapted to verify the applicability and virtue of our theoretical findings. Furthermore, numerical simulations are appropriately designated to illustrate the applicability of the designed control to reduce the conservatism.

This manuscript is organized as follows. In Sect. 2, we outlined the preliminaries and system descriptions. In Sect. 3, an improved integral inequality is introduced. Based on this integral inequality, in Sect. 4, the exponential stabilization of the uncertain T-S fuzzy model has been analyzed. Numerical simulation on the considered nonlinear model is provided to evaluate and illustrate the feasibility of the designed controller in Sect. 5. Finally, Sect. 6 gives the conclusion.

1.1 Notations

The notations in this manuscript are quiet standard. A^T stands for the transpose of the matrix A. $M \geq 0$ ($M \leq 0$) denotes that M is a positive (negative) semi-definite symmetric matrix. \mathbb{R}^n represents an n-dimensional Euclidean space and $\mathbb{R}^{n \times m}$ denotes the set of all $n \times m$ real matrices. $C \{[−τ, 0], \mathbb{R}^n\}$ denotes the space of all n-valued continuous functions defined on $[−τ, 0]$. A block-diagonal matrix is denoted by diag[...]. For each positive integer q, let $\mathcal{T}_q = \{1, 2, 3, \ldots, q\}$. Use $\text{sym}(M)$ to represent $M + M^T$, for any matrix M. The symbol $0_{m \times n}$ represents null matrices of order $m \times n$. The notation $*$ is commonly used to denote the symmetric block of a symmetric matrix. I denotes the identity matrix. Matrices, if not specifically mentioned, are supposed to be appropriate dimensions.

2 System formulation

We consider the following fuzzy system characterized by the fuzzy IF-THEN rules as:

Rule i: IF $\vartheta_1(x(t))$ is \mathcal{H}_i^1, and ..., and $\vartheta_p(x(t))$ is \mathcal{H}_i^p, THEN

$$
\begin{align*}
\dot{x}(t) &= [A_i + \Delta A_i(t)]x(t) + [A_{ti}]x(t) + \Delta A_{ti}(t)x(t - \tau(t)) + B_iu(t), \\
y(t) &= Cx(t),
\end{align*}
$$

where the premise variables are represented by $\vartheta_1(x(t)), \vartheta_2(x(t)), \ldots, \vartheta_p(x(t))$; the fuzzy sets are denoted by \mathcal{H}_i^q, ($i = 1, 2, \ldots, p$, $q = 1, 2, \ldots, q$), q represents the number of IF-THEN rules. The state vector is denoted by $x(t) \in \mathbb{R}^n$, the control input is represented by $u(t) \in \mathbb{R}^m$, the output vector is denoted as $y(t) \in \mathbb{R}^q$. The known constant system matrices are represented by $A_i \in \mathbb{R}^{n \times n}$, $A_{ti} \in \mathbb{R}^{n \times n}$, $B_i \in \mathbb{R}^{n \times m}$ and $C \in \mathbb{R}^{m \times n}$. For system (1), let $x(t) = \psi(t)$ be the given initial condition, where $\psi \in C \{[−τ, 0], \mathbb{R}^n\}, \tau(t)$ satisfies $0 \leq \tau(t) \leq \tau_0$, $|\dot{x}(t)| \leq \tau_d < 1$. $\Delta A_i(t)$ and $\Delta A_{ti}(t)$ denote the unknown real-valued matrices involving uncertainties of time-varying parameter defined as follows:

$$
[\Delta A_i(t) \Delta A_{ti}(t)] = D_iF_i(t)[E_i E_{ti}],
$$

where D_i, E_i and E_{ti} are known constant matrices and the unknown matrix $F_i(t)$ is follows $F_i^T(t)F_i(t) \leq I$ $\forall t$.

Then, by applying fuzzy approach, one can deduce the system dynamics (1) as follows:

$$
\begin{align*}
\dot{x}(t) &= \sum_{i=1}^{q} m_i(x(t))\left\{[A_i + \Delta A_i(t)]x(t) + [A_{ti} + \Delta A_{ti}(t)]x(t - \tau(t)) + B_iu(t)\right\}, \\
y(t) &= Cx(t),
\end{align*}
$$

Finally, Sect. 6 gives the conclusion.
here \(m_i(x(t)), i = 1, 2, \ldots, q \), denote the normalized membership grades satisfying

\[
m_i(x(t)) = \frac{\prod_{i=1}^{p} \mathcal{H}_{i}^{j}(\theta_v(x(t)))}{\sum_{i=1}^{q} \prod_{i=1}^{p} \mathcal{H}_{i}^{j}(\theta_v(x(t)))} \geq 0,
\]

\[
\sum_{i=1}^{q} m_i(x(t)) = 1
\]

in which \(\mathcal{H}_{i}^{j}(\theta_v(x(t))) \) is the membership grade of \(\theta_v(x(t)) \) subject to the fuzzy set \(\mathcal{H}_{i}^{j} \).

Based on system (2), a state feedback fuzzy model controller is designed as

Fuzzy Controller Rule \(l \): IF \(\theta_1(x(t)) \) is \(\mathcal{J}_1^l \) and \(\ldots \) and \(\theta_p(x(t)) \) is \(\mathcal{J}_p^l \) THEN

\[
u(t) = -\sum_{i=1}^{c} w_i(x(t))K_i x(t).
\]

where \(K_i \in \mathbb{R}^{m \times n}, (l = 1, 2, 3, \ldots, c) \) are control gain matrices.

Substituting (3) into (2), one can get

\[
\begin{align*}
\dot{x}(t) &= \sum_{i=1}^{q} \sum_{l=1}^{c} m_i(x(t))w_l(x(t)) \left\{ [A_i - B_i K_i + \Delta A_i] x(t) \\
&\quad + [A_i + \Delta A_i(t)] x(t - \tau(t)) \right\}.
\end{align*}
\]

(4)

Let us make the transformation as follows:

\[
\mathcal{M}(t) = e^{\alpha t} x(t),
\]

(5)

where \(\alpha \) is decay rate of system (5).

From (5) and (4), one can get the following T-S fuzzy model:

\[
\dot{\mathcal{M}}(t) = \sum_{i=1}^{q} \sum_{l=1}^{c} m_i(x(t))w_l(x(t)) \left\{ [\hat{A}_i + \Delta A_i(t)] \mathcal{M}(t) \\
&\quad + [A_i + \Delta A_i(t)] e^{\alpha t} \mathcal{M}(t - \tau(t)) \right\},
\]

(6)

where \(\hat{A}_i = A_i - B_i K_i + \alpha I \).

3 Improved integral inequality

The following lemma will be derived to investigate the stability and stabilization condition of the considered nonlinear model:

Lemma 3.1 For any symmetric matrix \(L_{33} > 0 \) and appropriate dimensional matrices \(L_{11}, L_{12}, L_{13}, L_{22} \) and \(L_{23} \) satisfying \(\dot{\mathcal{L}} = \begin{bmatrix} L_{11} & L_{12} & L_{13} \\
* & L_{22} & L_{23} \\
* & * & L_{33} \end{bmatrix} \geq 0 \), the following inequality holds:

\[
-\int_{t-\tau(t)}^{t} \dot{x}(s)L_{33}\dot{x}(s)ds \leq \frac{1}{\tau} \xi(t)E^T \Lambda E \xi(t).
\]

where

\[
E = \begin{bmatrix} e_1 \\
e_2 \\
e_i \end{bmatrix}, e_i = [0_{n \times (i-1)_n} I_{0\times (2-i)_n}], i = 1, 2, \Lambda
\]

\[
= \begin{bmatrix} L_{11} + 2L_{13} & L_{12} - L_{13} + L_{22} \\
* & L_{22} - 2L_{23} \end{bmatrix}.
\]

\[
\dot{\mathcal{L}} = \begin{bmatrix} L_{33} & -L_{33} \\
-L_{33} & L_{33} \end{bmatrix}, \xi(t) = [x^T(t) \ x^T(t - \tau(t))].
\]

Proof By applying Jensen’s inequality to the integral term

\[-\int_{t-\tau(t)}^{t} \dot{x}(s)L_{33}\dot{x}(s)ds \]

we get

\[
-\int_{t-\tau(t)}^{t} \dot{x}(s)L_{33}\dot{x}(s)ds \leq -\frac{1}{\tau} \left(\int_{t-\tau(t)}^{t} \dot{x}(s)ds \right)^T L_{33} \left(\int_{t-\tau(t)}^{t} \dot{x}(s)ds \right)
\]

\[
= -\frac{1}{\tau} \begin{bmatrix} x(t) \\
\end{bmatrix}^T \begin{bmatrix} L_{33} \end{bmatrix} \begin{bmatrix} x(t) \\
\end{bmatrix}
\]

\[
= -\frac{1}{\tau} \begin{bmatrix} x(t) \\
\end{bmatrix}^T \begin{bmatrix} L_{33} \end{bmatrix} \begin{bmatrix} x(t) \\
\end{bmatrix}
\]

Also, we have the quadratic matrix vector form as

\[
\begin{bmatrix} x(t) \\
\end{bmatrix}^T \dot{\mathcal{L}} \begin{bmatrix} x(t) \\
\end{bmatrix} \geq 0
\]

After a small computation, one can rewrite the inequality as follows:

\[
-\begin{bmatrix} x(t) \\
\end{bmatrix}^T \dot{\mathcal{L}} \begin{bmatrix} x(t) \\
\end{bmatrix} \leq -\begin{bmatrix} x(t) \\
\end{bmatrix}^T \Lambda \begin{bmatrix} x(t) \\
\end{bmatrix}.
\]

Using (8) in (7), we obtain
lem 1, the following time-dependent LKF is considered. In this section, for obtaining the solution of the above problem, one can estimate the controller gain matrix M appropriately and F has appropriate dimensions satisfying $F'(t)F(t) \leq I$, the subsequent inequality holds for any constant $\varepsilon > 0$:

$$DF(t) + M^T F(t) > \varepsilon DD^T + \varepsilon^{-1} M^T M.$$

On view of the above system configuration, the major objective of the manuscript lies in Problem 1 as follows:

Problem 1 Given the T-S fuzzy system (1), under the state feedback control, one can estimate the controller gain matrices K_l, $l = 1, 2, \ldots, q$ considered in (3) such that system (6) is exponentially stable.

4 Main results

In this section, for obtaining the solution of the above Problem 1, the following time-dependent LKF is considered.

$$V(t) = M^T(t)P \dot{M}(t) + \int_{t-\tau(t)}^t \dot{M}^T(s)Q \dot{M}(s)ds$$

$$+ \int_0^{t-\tau(t)} \dot{M}^T(s)R \dot{M}(s)ds + \int_{t-\tau}^t \dot{M}^T(s)M_{33} \dot{M}(s)ds,$$

where $P = Q^T \in R^{n \times n}$, $Q = T^T \in R^{n \times n}$, and $R = R^T \in R^{n \times n}$ are positive definite matrices.

Theorem 4.1 For given scalars $\tau > 0$ and $\tau > 0$, the nominal system (6) is exponentially stable with decay rate α, if there exist matrices P, Q, R, M_{33}, J_l, H_l, $l = 1, 2, \ldots, q$ which are symmetric positive definite and appropriately dimensioned matrices M_{11}, M_{12}, M_{13}, M_{22}, M_{23}, and $K_l \in R^{n \times n}$ under which the subsequent LMIs hold for all $l, l \in I_q$:

$$\Theta_{il} - H_{il} + J_{il} + \sum_{r=1}^q \sum_{s=1}^q \bar{h}_{rs} H_{rs} - \sum_{r=1}^q \sum_{k=1}^q h_{jk} J_{ik} < 0,$$

where

$$M_{11} M_{12} M_{13} \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ * & M_{22} & M_{23} \\ * & * & M_{33} \end{bmatrix} \geq 0, \quad R - M_{33} \geq 0.$$

From Lemma 3.1, for any symmetric matrix M_{33} and appropriate dimensioned matrices M_{11}, M_{12}, M_{13}, M_{22}, and M_{23} satisfying $\left[\begin{array}{ccc} M_{11} & M_{12} & M_{13} \\ * & M_{22} & M_{23} \\ * & * & M_{33} \end{array} \right] \geq 0$, the following inequality can be obtained.

$$- \int_{t-\tau(t)}^t \dot{M}^T(s)M_{33} \dot{M}(s)ds \leq \frac{1}{\tau} \eta^T(t) \dot{M}(s) L \eta(t),$$

where

$$\eta(t) = \left[\begin{array}{c} \eta^T(t) \\ \dot{\eta}(t) \end{array} \right],$$

and

$$\dot{\eta}(t) = \left[\begin{array}{c} \dot{\eta}(t) \\ \dot{\eta}(t) \end{array} \right].$$

Adding inequalities (10) and (11), it follows that

$$\dot{V}(t) \leq \sum_{i=1}^q \sum_{l=1}^c m_i(x(t)) w_l(x(t)) \eta^T(t) \Theta_{il} \eta(t).$$
\[
- \int_{t-\tau(t)}^{t} \dot{\mathcal{M}}(s)[R - M_{33}]\dot{\mathcal{M}}(s)ds,
\]

where \(\Theta_{il}\) is defined in Theorem 4.1. Denoting \(\sum_{i=1}^{q} \sum_{l=1}^{q} m_{i}(x(t)) w_{i}(x(t)) = \sum_{i=1}^{q} \sum_{l=1}^{q} h_{il}\), by making use of some algebraic manipulations, we have

\[
\dot{V}(t) \leq \sum_{i=1}^{q} \sum_{l=1}^{q} h_{il} \eta(t)(\Theta_{il} - H_{il} + J_{il}) \eta(t)
+ \sum_{i=1}^{q} \sum_{l=1}^{q} \dot{h}_{il} \eta(t)(H_{il} \eta(t)
- \sum_{i=1}^{q} \sum_{l=1}^{q} h_{il} \eta(t)(J_{il} \eta(t)
- \int_{t-\tau(t)}^{t} \dot{\mathcal{M}}(s)[R - M_{33}]\dot{\mathcal{M}}(s)ds
= \sum_{i=1}^{q} \sum_{l=1}^{q} h_{il} \eta(t)(\Theta_{il} - H_{il} + J_{il}) \eta(t)
+ \sum_{i=1}^{q} \sum_{l=1}^{q} \dot{h}_{il} \eta(t)(H_{il} \eta(t)
- \sum_{i=1}^{q} \sum_{l=1}^{q} h_{il} \eta(t)(J_{il} \eta(t)
- \int_{t-\tau(t)}^{t} \dot{\mathcal{M}}(s)[R - M_{33}]\dot{\mathcal{M}}(s)ds,
\]

where \(\bar{h}_{il}\) is the upper bound of \(h_{il}\), \(\bar{h}_{il}\) is the lower bound of \(h_{il}\). \(H_{il} = H_{il}^T \geq 0\), and \(J_{il} = J_{il}^T \geq 0\). This completes the proof. \(\square\)

Remark 4.2 By taking \(\tilde{A}_{i} = A_{i} - B_{i}K_{i} + \alpha I\), the matrix \(\Theta_{il}\) can be rewritten as

\[
\Theta_{il} = \begin{bmatrix}
\Theta_{il}^{11} & \Theta_{il}^{12} \\
\Theta_{il}^{21} & \Theta_{il}^{22}
\end{bmatrix},
\]

\[
\Theta_{il}^{11} = (A_{i} - B_{i}K_{i} + \alpha I)^T P + P(A_{i} - B_{i}K_{i} + \alpha I)
+ Q + \tau(A_{i} - B_{i}K_{i} + \alpha I)^T R(A_{i} - B_{i}K_{i} + \alpha I)
+ 2M_{13} + M_{11},
\]

\[
\Theta_{il}^{12} = e^{\alpha \tau} P A_{i},
\]

\[
\Theta_{il}^{21} = \tau e^{\alpha \tau} (A_{i} - B_{i}K_{i} + \alpha I)^T R A_{i} - M_{13} + M_{23} + M_{12},
\]

\[
\Theta_{il}^{22} = -(1 - \tau \alpha) Q + \tau e^{2\alpha \tau} A_{i}^T R A_{i} - M_{23} - M_{23} + M_{22}.
\]

Now, Theorem 4.1 can be extended to obtain the exponential stability criterion for system (6) under the case of time-varying uncertainties as in the following theorem.

Theorem 4.3 For given scalars \(\tau_{d} > 0\) and \(\tau > 0\), the uncertain system (6) is exponentially stable with decay rate \(\alpha\), if there exist matrices \(P, Q, R, M_{33}, J_{il}, H_{il}, i, l \in I_{q}\) which are symmetric positive definite and appropriately dimensioned matrices \(M_{11}, M_{12}, M_{13}, M_{22}, M_{23}, M_{33}, K_{i} \in \mathbb{R}^{m \times n}\) under which the subsequent LMIs hold for all \(i, l \in I_{q}\):

\[
\Xi = \begin{bmatrix}
\Xi^{11}_{il} & \Xi^{12}_{il} \\
\Xi^{21}_{il} & \Xi^{22}_{il}
\end{bmatrix} < 0,
\]

\[
\begin{bmatrix}
\bar{M}_{11} & \bar{M}_{12} & \bar{M}_{13} \\
\bar{M}_{22} & \bar{M}_{23} & \bar{M}_{33}
\end{bmatrix} \geq 0,
\]

\[
\bar{R} - \bar{M}_{33} \geq 0,
\]

where \(h_{il} \leq \bar{h}_{il} \leq \bar{h}_{il}\)

\[
\Xi^{11}_{il} = \begin{bmatrix}
\mathcal{M} & \Omega_{il}^{12} \\
\ast & -\tau R
\end{bmatrix}, \quad \Xi^{12}_{il} = \begin{bmatrix}
P D_{i} & 0 \\
\tau R D_{i}
\end{bmatrix}, \quad \Xi^{22}_{il} = -\epsilon I, \quad \bar{\Theta}_{il}
\]

\[
\begin{bmatrix}
\bar{\Theta}_{il}^{11} & \bar{\Theta}_{il}^{12} \\
\bar{\Theta}_{il}^{21} & \bar{\Theta}_{il}^{22}
\end{bmatrix}, \quad \Omega_{il}^{12} = \begin{bmatrix}
\bar{\Theta}_{il}^{11} & \bar{\Theta}_{il}^{12} \\
\ast & \bar{\Theta}_{il}^{22}
\end{bmatrix}, \quad \Omega_{il}^{22} = \begin{bmatrix}
\tau \bar{A}_{i}^T R + P \bar{A}_{i} & Q + \bar{M}_{13}^T + \bar{M}_{13} + \bar{M}_{11} + \epsilon \bar{E}_{i} \tau & \bar{M}_{12} + \epsilon \bar{E}_{i} \tau, \\
\bar{M}_{22} + \bar{M}_{23} + \epsilon \bar{E}_{i} \tau & \bar{M}_{33} + \epsilon \bar{E}_{i} \tau
\end{bmatrix}, \quad \bar{\Theta}_{il}^{11} = e^{\alpha \tau} P \tilde{A}_{i}, \quad \bar{M}_{11} + M_{13} + M_{23} + M_{22} + \epsilon \bar{E}_{i} \tau, \\
\bar{\Theta}_{il}^{22} = -(1 - \tau \alpha) Q + \bar{M}_{23} + \bar{M}_{23} + \epsilon \bar{E}_{i} \tau
\]

Proof By continuing the same procedure as in Theorem 4.1 and by considering \(A_{i} = A_{i} - B_{i}K_{i} + \alpha I\), from Remark 4.2, it can be obtained that

\[
\dot{V}(t) \leq \sum_{i=1}^{q} \sum_{l=1}^{q} \eta(t)(\Theta_{il} - H_{il} + J_{il}) + \sum_{r=1}^{q} \sum_{s=1}^{q} \bar{h}_{rs} H_{rs}
- \sum_{i=1}^{q} \sum_{l=1}^{q} \bar{h}_{il} \eta(t)(H_{il} \eta(t)
- \int_{t-\tau(t)}^{t} \dot{\mathcal{M}}(s)[R - M_{33}]\dot{\mathcal{M}}(s)ds.
\]

By rewriting \(\bar{\Theta}_{il}\), we obtain the following inequality:
\[\dot{V}(t) \leq \sum_{i=1}^{n} \sum_{j=1}^{n} \eta_i(t) \left\{ \begin{bmatrix} \Theta_{i1} & \Theta_{i2} \\ \ast & \Theta_{i1} \end{bmatrix} \right\} \]

\[+ \left[\tau \tilde{A}_i^T R \tilde{A}_j + \tau e^{a \tau} \tilde{A}_i^T R \tilde{A}_j \right] \left[\tau \tilde{A}_j^T R \tilde{A}_i + \tau e^{a \tau} \tilde{A}_j^T R \tilde{A}_i \right] \]

\[- H_{il} + J_{il} + \sum_{r=1}^{q} h_{rs} H_{rs} - \sum_{i=1}^{q} \sum_{k=1}^{q} \tilde{h}_{ik} J_{jk} \eta(t) \]

\[- \int_{t-\tau(t)}^{t} \dot{M}(s) (\tilde{R} - \tilde{M}_{33}) \dot{M}(s) ds, \]

\[= \sum_{i=1}^{q} \sum_{j=1}^{q} \eta_i(t) \left\{ \begin{bmatrix} \Theta_{i1} & \Theta_{i2} \\ \ast & \Theta_{i1} \end{bmatrix} \right\} \]

\[+ \left[\tau \tilde{A}_i^T R \tilde{A}_j + \tau e^{a \tau} \tilde{A}_i^T R \tilde{A}_j \right] \left[\tau \tilde{A}_j^T R \tilde{A}_i + \tau e^{a \tau} \tilde{A}_j^T R \tilde{A}_i \right] \]

\[- H_{il} + J_{il} + \sum_{r=1}^{q} h_{rs} H_{rs} - \sum_{i=1}^{q} \sum_{k=1}^{q} \tilde{h}_{ik} J_{jk} \eta(t) \]

\[- \int_{t-\tau(t)}^{t} \dot{M}(s) (\tilde{R} - \tilde{M}_{33}) \dot{M}(s) ds, \]

By using the Schur complement lemma, inequality (12) can be equivalently expressed as

\[\begin{bmatrix} \dot{M} & \Omega_{il}^2 \\ \ast & -\tau R \end{bmatrix} + \epsilon^{-1} \begin{bmatrix} P D_i & 0 \\ \tau R D_i & 0 \end{bmatrix} \begin{bmatrix} D_i^T P^T 0 \tau D_i^T R \end{bmatrix} + \epsilon \begin{bmatrix} E_i^T \\ 0 \end{bmatrix} \begin{bmatrix} E_i e^{a \tau} E_{ti} 0 \end{bmatrix} < 0. \tag{15} \]

Hence, by Lemma 3.2 it follows that

\[\begin{bmatrix} \dot{M} & \Omega_{il}^2 \\ \ast & -\tau R \end{bmatrix} + \begin{bmatrix} P D_i & 0 \\ \tau R D_i & 0 \end{bmatrix} \begin{bmatrix} F(t) \left[E_i e^{a \tau} E_{ti} 0 \right] \end{bmatrix} \]

\[+ \begin{bmatrix} E_i^T \\ 0 \end{bmatrix} \begin{bmatrix} F(t) \left[D_i^T P^T 0 \tau D_i^T R \right] \end{bmatrix} < 0. \tag{16} \]

Now by applying Schur complement to (16) one can obtain that

\[\begin{bmatrix} \hat{\Theta}_{il} & \hat{\Theta}_{il}^2 \\ \ast & \hat{\Theta}_{il} \end{bmatrix} + \begin{bmatrix} \tau \tilde{A}_i^T R \tilde{A}_j + \tau e^{a \tau} \tilde{A}_i^T R \tilde{A}_j \tau \tilde{A}_j^T R \tilde{A}_i + \tau e^{a \tau} \tilde{A}_j^T R \tilde{A}_i \end{bmatrix} \]

\[- H_{il} + J_{il} + \sum_{r=1}^{q} h_{rs} H_{rs} - \sum_{i=1}^{q} \sum_{k=1}^{q} \tilde{h}_{ik} J_{jk} \eta(t) \]

This inequality together with the inequality \(\tilde{R} - \tilde{M}_{33} \geq 0 \) implies that \(\dot{V}(t) < 0 \). Hence, the existence of LMI (12) ensures that the exponential stability of the system (6). This completes the proof. \(\square \)

Remark 4.4 Based on Theorem 4.3, the gain matrices \(K_l \in \mathbb{R}^{m \times n} \) can be obtained by making the transformation \(K_l = Y_l G^{-1} \), \(l \in I_q \) as in the subsequent theorem.

Theorem 4.5 Under given scholars a \(> 0 \), \(\tau_d > 0 \), \(\tau > 0 \) and \(0 < \tau(t) \leq \tau \), the system formulated in (6) is exponentially stable with decay rate \(\alpha \) under the controller gain matrices \(K_l = Y_l G^{-1} \), \(l \in I_q \), if there exist symmetric positive definite matrices \(\tilde{P}, \tilde{Q}, \tilde{R}, \tilde{M}_33, \tilde{R}_{il}, \tilde{M}_{11} \), \(i \in I_q \), and appropriately dimensioned matrices \(\tilde{M}_{11}, \tilde{M}_{12}, \tilde{M}_{13}, \tilde{M}_{22}, \tilde{M}_{23} \) under which the subsequent inequalities hold simultaneously for all \(i, l \in I_q \):

\[\tilde{P} \leq \begin{bmatrix} \hat{\Theta}_{il} & \hat{\Theta}_{il}^2 \\ \ast & \hat{\Theta}_{il} \end{bmatrix} < 0, \tag{17} \]

\[\begin{bmatrix} \tilde{M}_{11} & \tilde{M}_{12} & \tilde{M}_{13} \\ \ast & \tilde{M}_{22} & \tilde{M}_{23} \\ \ast & \ast & \tilde{M}_{33} \end{bmatrix} \geq 0, \tag{18} \]

\[\tilde{R} - \tilde{M}_{33} \geq 0 \tag{19} \]

where \(\tilde{h}_{il} \leq h_{il} \leq \tilde{h}_{il} \).

Remark 4.6 For facilitating the importance of the stability conditions established in this paper, we attempt to propose...
the less conservative stability conditions for the following system obtained from the system
\[
\dot{x}(t) = \sum_{i=1}^{q} \sum_{l=1}^{q} m_i(x(t)) w_l(x(t)) \left[A_i x(t) + A_{\tau l} x(t - \tau(t)) + B_l u(t) \right].
\]
(20)

obtained from system (4) by removing the uncertain parameter matrices \(\Delta A_i(t) \) and \(\Delta A_{\tau l} \). From Theorem 4.5 and by taking \(\alpha = 0 \), the required asymptotic stability conditions for system (20) can be achieved by adapting the following LKF:
\[
V(t) = x^T(t) \tilde{P} x(t) + \int_{t-\tau(t)}^{t} x^T(s) \tilde{Q} x(s) ds + \int_{t-\tau}^{t} x^T(s) \tilde{R} \dot{x}(s) ds d\theta,
\]
where \(\tilde{P} = \tilde{P}^T \in \mathbb{R}^{n \times n}, \tilde{Q} = \tilde{Q}^T \in \mathbb{R}^{n \times n}, \) and \(\tilde{R} = \tilde{R}^T \in \mathbb{R}^{n \times n} \) are positive definite matrices.

By making use of the same procedure as in Theorem 4.5, the following corollary can be given.

Corollary 4.7 For given scalars \(\alpha > 0, \tau > 0, \tau_d > 0 \) subject to \(0 < \tau(t) \leq \tau \), system (20) becomes exponentially stable for the prescribed controller gain matrices \(\mathbf{K}_l = Y_l \mathbf{G}^{-1}, \) \(l \in \mathcal{I}_q \), if there exist symmetric positive definite matrices \(\tilde{P}, \tilde{Q}, \tilde{R}, \tilde{M}_{33} \) and \(\tilde{J}_{rs}, \tilde{H}_{rs} (r, s = 1, 2, 3, \ldots, q) \), and appropriately dimensioned matrices \(\tilde{M}_{11}, \tilde{M}_{12}, \tilde{M}_{13}, \tilde{M}_{22}, \tilde{M}_{23} \) such that the following inequalities are true for \(i, l \in \mathcal{I}_q \):
\[
\mathbf{z}_{il} < 0, \quad \tilde{M}_{11} \tilde{M}_{12} \tilde{M}_{13} \quad \tilde{M}_{22} \tilde{M}_{23} \quad \tilde{M}_{33} \geq 0, \quad \tilde{R} - \tilde{M}_{33} \geq 0,
\]
\[
\mathbf{z}_{il}^{11} = \begin{bmatrix} \tilde{M}_{11} & * & * \\ * & \tilde{M}_{22} & \tilde{M}_{23} \\ * & * & \tilde{M}_{33} \end{bmatrix} \geq 0, \quad \tilde{R} - \tilde{M}_{33} \geq 0,
\]
\[
\tilde{z}_{il}^{12} = \begin{bmatrix} \tilde{M} \\ \tilde{Q} \\ * \end{bmatrix}, \quad \tilde{z}_{il}^{12} = \begin{bmatrix} \alpha \mathbf{G}^T \mathbf{A}_{ti}^T - \alpha \mathbf{Y}_l \mathbf{B}_{tl}^T \\ \alpha \mathbf{G}^T \mathbf{A}_{ti}^T \end{bmatrix}.
\]
\[
\tilde{M} = \Gamma_{il} - \tilde{H}_{il} + \tilde{J}_{il} + \sum_{r=1}^{q} \sum_{s=1}^{q} \tilde{h}_{rs} \tilde{H}_{rs}
\]
\[
- \sum_{i=1}^{q} \sum_{k=1}^{q} \tilde{h}_{ik} \tilde{J}_{ik}, \quad \Gamma_{il} = \begin{bmatrix} \Gamma_{il}^{11} & \Gamma_{il}^{12} \\ \Gamma_{il}^{21} & \Gamma_{il}^{22} \end{bmatrix},
\]
\[
\Gamma_{il}^{11} = \mathbf{G}^T \mathbf{A}_{ti} - \mathbf{Y}_l \mathbf{B}_{tl}^T + \mathbf{A}_l \mathbf{G} - \mathbf{B}_l \mathbf{Y}_l + \tilde{Q} + \tilde{M}_{33} \quad \tilde{M}_{33} + \tilde{M}_{11},
\]
\[
\Gamma_{il}^{12} = \mathbf{A}_{ti} - \tilde{M}_{13} + \tilde{M}_{23} + \tilde{M}_{12}, \quad \Gamma_{il}^{22} = -(1 - \tau_d) \tilde{Q} - \tilde{M}_{23} - \tilde{M}_{23} + \tilde{M}_{22}.
\]

Proof The proof follows immediately from Theorem 4.5 by putting \(\alpha = 0, \Delta A_i(t) = 0, \Delta A_{\tau l} = 0 \) and hence it is ignored. \(\square \)

5 Numerical examples

Five examples are provided to demonstrate the feasibility and effectiveness of the developed control design technique in this section. In the first example, borrowed from Li et al. (2015); Hua et al. (2008), a CSTR model is given to show the applicability of the considered model and the other examples are considered to show the less conservativeness of the developed technique against the conventional approaches (Kwon et al. 2012; An et al. 2012; Zeng et al. 2014; Zhang et al. 2015; Kwon et al. 2016; An and Wen 2011).

Example 5.1 Consider the following dynamic equations governing CSTR model previewed in Hua et al. (2008), which is illustrated in Fig. 1:
\[
\dot{x}_1(t) = g_1(x(t)) + 0.25 x_1(t - \tau),
\]
\[
\dot{x}_2(t) = g_2(x(t)) + 0.25 x_2(t - \tau) + 0.3 u(t),
\]

where \(x = [x_1(t), x_2(t)]^T \) in which \(x_1 \) represents the conversion rate of the reaction, whereas \(x_2 \) refers to the dimensionless temperature. The functions \(g_1(x) \) and \(g_2(x) \) are described by
\[
g_1(x) = -1.25 x_1(t) + 0.072(1 - x_1(t)) \exp \left(\frac{x_2(t)}{1 + \frac{x_2(t)}{20}} \right),
\]
\[
g_2(x) = -1.55 x_2(t) + 0.576(1 - x_1(t)) \exp \left(\frac{x_2(t)}{1 + \frac{x_2(t)}{20}} \right).
\]

Similar to Hua et al. (2008), the fuzzy model of the above system is expressed under the fuzzy rules defined as follows:

\[
\begin{align*}
\text{Rule 1 : IF } x_2(t) & \text{ has the low level temperature} \\
& \text{(i.e., } x_2(t) \text{ is about 0.8862)}
\end{align*}
\]
\[
\begin{align*}
\text{THEN } \dot{x}(t) & = A_{11} x(t) + A_{12} x(t - \tau) + B_{11} u(t)
\end{align*}
\]
\[
\begin{align*}
\text{Rule 2 : IF } x_2(t) & \text{ has the middle level temperature} \\
& \text{(i.e., } x_2(t) \text{ is about 2.7520)}
\end{align*}
\]
\[
\begin{align*}
\text{THEN } \dot{x}(t) & = A_{21} x(t) + A_{22} x(t - \tau) + B_{21} u(t)
\end{align*}
\]
\[
\begin{align*}
\text{Rule 3 : IF } x_2(t) & \text{ has the high level temperature} \\
& \text{(i.e., } x_2(t) \text{ is about 4.7052)}
\end{align*}
\]
\[
\begin{align*}
\text{THEN } \dot{x}(t) & = A_{31} x(t) + A_{32} x(t - \tau) + B_{31} u(t)
\end{align*}
\]

where
\[
\begin{align*}
A_{11} & = \begin{bmatrix} -1.4274 & 0.0757 \\ -1.4189 & -0.9442 \end{bmatrix}, \\
A_{12} &= \begin{bmatrix} 0.25 & 0 \\ 0 & 0.25 \end{bmatrix}, \\
A_{21} & = \begin{bmatrix} -2.0508 & 0.3958 \\ -6.4066 & 1.6168 \end{bmatrix}.
\end{align*}
\]
$B_1 = B_2 = B_3 = \begin{bmatrix} 1 \\ -1.4 \end{bmatrix}$,

$A_{\tau_2} = \begin{bmatrix} 0.25 & 0 \\ 0 & 0.25 \end{bmatrix}$,

$A_3 = \begin{bmatrix} -4.5279 & 0.3167 \\ -26.2228 & 0.9837 \end{bmatrix}$,

$A_{\tau_3} = \begin{bmatrix} 0.25 & 0 \\ 0 & 0.25 \end{bmatrix}$.

Based on Hua et al. (2008) and Zhou et al. (2019), the concerned membership functions are given as

$m_1(x_2(t)) = \begin{cases} 1, & \text{if } x_2 \leq 0.8882 \\ 1 - \frac{x_2 - 0.8882}{2.7520 - 0.8882}, & \text{if } 0.8882 \leq x_2 \leq 2.7520 \\ 0, & \text{if } x_2 \geq 2.7520 \end{cases}$

$m_2(x_2(t)) = \begin{cases} 1 - m_1, & \text{if } x_2 \leq 2.7520 \\ 1 - m_3, & \text{if } x_2 \geq 2.7520 \\ 0, & \text{if } x_2 \leq 2.7520 \end{cases}$

$m_3(x_2(t)) = \begin{cases} 0, & \text{if } x_2 \leq 2.7520 \\ \frac{x_2 - 4.7520}{4.7520 - 2.7520}, & \text{if } 2.7520 \leq x_2 \leq 4.7520 \\ 1, & \text{if } x_2 \geq 4.7520 \end{cases}$

With respect to mismatched premise design procedure, a two-rule fuzzy controller is adapted as follows:

\[
\begin{cases}
\text{Rule 1:} & IF \theta_1(x(t)) \text{is } J_1^1, \ THEN \ u(t) = -K_1x(t) \\
\text{Rule 2:} & IF \theta_1(x(t)) \text{is } J_1^2, \ THEN \ u(t) = -K_2x(t)
\end{cases}
\]

The membership functions of fuzzy controllers are considered from Zhou et al. (2019) to be

$w_1(x_1) = \frac{1}{1 + e^{-x_1/2}}$, $w_2(x_1) = 1 - w_1(x_1)$.

By fixing $\alpha = 0.1$, $\tau = 0.625$, $\tau_d = 0.02$ and $\epsilon = 0.01$, it is easy to show that LMIs (17)–(19) estimated in Theorem 4.5 can be made feasible by involving MATLAB LMI toolbox. This yields that the CSTR model (21) is exponentially stable under the fuzzy controller (3) with the decay rate $\alpha = 0.1$. Correspondingly, the fuzzy-based control scheme of the control gains $K_l (l = 1, 2, 3)$ are calculated, as follows:

$K_1 = [1.0593 \ 0.0573]$, $K_2 = [1.0066 \ 0.0008]$, $K_3 = [1.0113 \ 0.2369]$.

The obtained theoretical results are further examined through numerical simulation. Under the initial condition $x_0 = [x_1(0) \ x_2(0)]^T = [-4 \ -7]^T$, by applying the fuzzy-based control developed in (3), the trajectories of the states of the considered T-S fuzzy system (21) together with the corresponding control input are depicted in Figs. 2 and 3, respectively.

\textbf{Example 5.2} We consider the T-S system (6) having the parameters as

$A_1 = \begin{bmatrix} 2.78 & -5.63 \\ 0.01 & 0.33 \end{bmatrix}$, $A_{\tau_1} = \begin{bmatrix} 0.5 & 0 \\ 0 & -0.5 \end{bmatrix}$.
Let us consider the membership functions of (3) as follows:

\[m_1(x(t)) = 1 - \frac{1}{1 + e^{-(x_1 + 4\eta(t))}}, \]
\[m_2(x(t)) = 1 - m_1(x(t)) - m_3(x(t)), \]
\[m_3(x(t)) = 1 - \frac{1}{1 + e^{-(x_1 - 4\eta(t))}}. \]

As a result of parameter uncertainty \(\eta(t) \), the membership functions designed above become the uncertain grades of membership. Therefore, the minimum and maximum membership functions are calculated as

\[\underline{m}_1(x(t)) = 1 - \frac{1}{1 + e^{-(x_1 + 4\eta(t))}}, \]
\[\underline{m}_2(x(t)) = 1 - \underline{m}_1(x(t)) - \underline{m}_3(x(t)), \]
\[\underline{m}_3(x(t)) = 1 - \frac{1}{1 + e^{-(x_1 - 4\eta(t))}}, \]
\[\overline{m}_1(x(t)) = 1 - \frac{1}{1 + e^{-(x_1 + 0.05 \alpha)}}. \]

Let us consider the membership functions of (3) as follows:

\[\overline{w}_1(x(t)) = 1 - \frac{1}{1 + e^{-(x_1 + 0.15\tau)}} \cdot \overline{w}_1(x(t)), \]
\[\overline{w}_2(x(t)) = 1 - \frac{1}{1 + e^{-(x_1 - 0.15\tau)}} \cdot \overline{w}_2(x(t)). \]

with the parameters \(\alpha = 0.1, \tau = 0.625, \tau_d = 0.02 \) and \(\epsilon = 0.01 \). Figs. 4 and 5 show that control input and the state response of the corresponding control system with the following controller gains

\[K_1 = [11.0593 \ 4.573], K_2 = [8.5066 \ 3.3679], \]
\[K_3 = [5.0113 \ 2.2369]. \]

Moreover, on solving LMIs (17)–(19) obtained in Theorem 4.5, the corresponding larger delay upper bounds \(\tau \) are calculated for different values of \(\alpha \) as given in Table 1. In view of Table 1, one can conclude that when the value of \(\tau \) decreases, simultaneously \(\alpha \) increases.
The obtained theoretical results are further examined through numerical simulations. Under the initial condition $x_0 = [x_1(0) \ x_2(0)]^T = [-4 \ -7]^T$, by applying the fuzzy-based control developed in (3), the trajectories of the states of the considered nonlinear system together with the corresponding control parameters are plotted in Figs. 4 and 5, respectively.

Example 5.3 Consider T-S fuzzy system (20) having the subsequent parameters with two plant rule:

\[
A_1 = \begin{bmatrix} -2 & 0 \\ 0 & -0.9 \end{bmatrix}, \quad A_{r_1} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}.
\]

\[
A_2 = \begin{bmatrix} -1 & 0.5 \\ 0 & -1 \end{bmatrix}, \quad A_{r_2} = \begin{bmatrix} -1 & 0 \\ 0.1 & -1 \end{bmatrix}.
\]

In this example, when τ_d is chosen as 0 and 0.1, the appropriate maximum values of time-delay bound τ for guaranteeing the asymptotic stability can be estimated as a result of the proposed LMIs in Corollary 4.7 and it is compared with the asymptotic stability can be estimated as a result of the recent studies (Kwon et al. 2012; Zeng et al. 2014; Yang et al. 2012; Zeng et al. 2014; Yang et al. 2014; Zhang et al. 2015) as summarized in Table 2. In addition, Corollary 4.7 provides maximum delay bounds than the existing works (Zeng et al. 2014; An and Wen 2011) in which the delay-partitioning approach is involved.

Example 5.4 Consider the T-S fuzzy model (20) having the following system parameters with $u(t) = 0$ under two plant rule:

\[
A_1 = \begin{bmatrix} -2.1 & 0.1 \\ -0.2 & -0.9 \end{bmatrix}, \quad A_{r_1} = \begin{bmatrix} -1.1 & 0.1 \\ -0.8 & -0.9 \end{bmatrix}.
\]

\[
A_2 = \begin{bmatrix} -1.9 & 0 \\ -0.2 & -1.1 \end{bmatrix}, \quad A_{r_2} = \begin{bmatrix} -0.9 & 0 \\ -1.1 & -1.2 \end{bmatrix}.
\]

In this example, the stability of open loop fuzzy system defined in (20) has been analyzed extremely in Yang and Wang (2014) and the goal is to calculate the larger upper bound τ with which the fuzzy system is exponentially stable. Table 3 summarizes the values of the larger upper bound τ estimated by various approaches. Through this table, it is witnessed that the performance of the developed results provides maximum delay bounds than the existing ones (An et al. 2012; Zeng et al. 2014; Zhang et al. 2015; Kwon et al. 2016).

Example 5.5 Choose the T-S fuzzy system (20) with the parameters

\[
A_1 = \begin{bmatrix} 0 & 0.6 \\ 0 & 1 \end{bmatrix}, \quad A_{r_1} = \begin{bmatrix} 0.5 & 0.9 \\ 0 & 2 \end{bmatrix},
\]

\[
A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad A_{r_2} = \begin{bmatrix} 0.9 & 0 \\ 1 & 1.6 \end{bmatrix}, \quad B_1 = B_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.
\]

In Kwon et al. (2016), Mozelli et al. (2011), Souza et al. (2009), and Zhang et al. (2015), the two-rule fuzzy system has been widely reviewed and the objective is to produce the larger upper bound τ for which the fuzzy system could be stabilized by designing the appropriate controller. To obtain the less conservatism, we compare the derived results with the traditional techniques (Zhang et al. 2015; Kwon et al. 2016; Mozelli et al. 2011; Souza et al. 2009). Table 4 gives the upper bound τ obtained by means of various approaches. Hence, it can be viewed that Corollary 4.7 establishes the higher delay bounds than the existing ones as shown in Table 4.

6 Conclusion

The problem of exponential stabilization for the nonlinear system via fuzzy-based controller under the framework...
of Lyapunov approach has been investigated in this paper. First, novel integral inequality is introduced with the help of Jensen’s inequality to limit the considered LKF. Based on the fuzzy control approach, the stability and stabilization criteria have been obtained for the considered uncertain nonlinear models through suitable LKF whose derivative can be solved via improved integral inequality. Appropriate control gain matrices have been calculated from the LMIs to guarantee the stabilization of the proposed model via state feedback control. Finally, the CSTR system has been adapted to verify the applicability and merits of our theoretical findings. Furthermore, numerical simulations have been designated appropriately to illustrate the applicability of the designed control by reducing the conservatism.

Acknowledgements None of the authors of this manuscript have a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the manuscript.

Declarations

Conflict of interest It is to specifically state that “No Competing interests are at stake and there is No Conflict of Interest” with other people or organizations that could inappropriately influence or bias the content of the manuscript.

Human and animal rights This article does not contain any studies with human participants or animals performed by any of the authors.

References

Ali MS, Narayanan G, Shekher V, Alsulami H, Saced T (2020) Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms. Appl Math Comput 369:124896

An J, Wen G (2011) Improved stability criteria for time-varying delayed T-S fuzzy systems via delay partitioning approach. Fuzzy Syst Syst 185(1):83–94

An J, Li T, Wen G, Li R (2012) New stability conditions for uncertain T-S fuzzy systems with interval time-varying delay. Int J Control Autom Syst 10(3):490–497

Araujo RF, Torres LA, Palhares RM (2019) Distributed control of networked nonlinear systems via interconnected takagi-sugeno fuzzy systems with nonlinear consequent. IEEE Trans Syst Man Cybern Syst

Chen L, Liu M, Huang X, Fu S, Qiu J (2017) Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures. IEEE Trans Fuzzy Syst 26(3):1311–1323

Gao Q, Feng G, Xi Z, Wang Y, Qiu J (2013) A new design of robust H_{∞} sliding mode control for uncertain stochastic T-S fuzzy time-delay systems. IEEE Trans Cybern 44(9):1556–1566

Gong C, Zhu G, Wu L (2016) New weighted integral inequalities and its application to exponential stability analysis of time-delay systems. IEEE Access 4:6231–6237

Gu K (2000) An integral inequality in the stability problem of time-delay systems. In Proceedings of the 39th IEEE conference on decision and control (Cat. No. 00CH37187), vol 3. IEEE, pp 2805–2810

Hua C, Wang Q-G, Guan X (2008) Robust adaptive controller design for nonlinear time-delay systems via T-S fuzzy approach. IEEE Trans Fuzzy Syst 17(4):901–910

Hui G, Xie X (2016) Novel observer-based output feedback control synthesis of discrete-time nonlinear control systems via a fuzzy approach. Neurocomputing 214:16–22

Kanthick SA, Sakthivel R, Ma YK, Mohanapriya S, Leelamani A (2019) Disturbance rejection of fractional-order TS fuzzy neural networks based on quantized dynamic output feedback controller. Appl Math Comput 361:846–857

Kwon O, Park M-J, Lee S-M, Park JH (2012) Augmented Lyapunov-Krasovskii functional approaches to robust stability criteria for uncertain Takagi-Sugeno fuzzy systems with time-varying delays. Fuzzy Sets Syst 210:1–19

Kwon O, Park M-J, Park JH, Lee S-M (2016) Stability and stabilization of T-S fuzzy systems with time-varying delays via augmented Lyapunov-Krasovskii functionals. Inf Sci 372:1–15

Li J, Wang HO, Niemann D, Tanaka K (2000) Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems: an LMI approach. Inf Sci 123(3–4):201–221

Li H, Wu C, Yin S, Lam H-K (2015) Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans Fuzzy Syst 24(5):1233–1245

Li X, Shen J, Akca H, Rakkiyappan R (2015) LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter. Appl Math Comput 250:798–804

Li Y, Lam H-K, Zhang L, Li H, Liu F, Tsai S-H (2015) Interval type-2 fuzzy-model-based control design for time-delay systems under imperfect premise matching. In: 2015 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1–6

Lin C, Wang Q-G, Lee TH (2005) Stabilization of uncertain fuzzy time-delay systems via variable structure control approach. IEEE Trans Fuzzy Syst 13(6):787–798

Liu Y, Wu F, Ban X (2016) Dynamic output feedback control for continuous-time T-S fuzzy systems using fuzzy lyapunov functions. IEEE Trans Fuzzy Syst 25(5):1153–1167

Moodi H, Farrokhi M (2014) On observer-based controller design for Sugeno systems with unmeasurable premise variables. ISA Trans 53(2):305–316

Mozelli L, Souza FO, Palhares R (2011) A new discretized Lyapunov-Krasovskii functional for stability analysis and control design of time-delayed T-S fuzzy systems. Int J Robust Nonlinear Control 21(1):93–105

Nagamani G, Ramasamy S (2016) Dissipativity and passivity analysis for discrete-time T-S fuzzy stochastic neural networks with leakage time-varying delays based on Abel lemma approach. J Franklin Inst 353(14):313–3342

Nithya V, Sakthivel R, Alzahrani F (2020) Dissipative-based non-fragile filtering for fuzzy networked control systems with switching communication channels. Appl Math Comput 373:125011
Park P, Lee WJ, Lee SY (2015) Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems. J Franklin Inst 352(4):1378–1396

Peng C, Ma S, Xie X (2017) Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered communication. IEEE Trans Cybern 47(8):2279–2287

Qiu J, Feng G, Gao H (2012) Observer-based piecewise affine output feedback controller synthesis of continuous-time T-S fuzzy affine dynamic systems using quantized measurements. IEEE Trans Fuzzy Syst 20(6):1046–1062

Seuret A, Gouaisbaut F (2013) Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9):2860–2866

Souza FO, Mozelli LA, Palhares RM (2009) On stability and stabilization of T-S fuzzy time-delayed systems. IEEE Trans Fuzzy Syst 17(6):1450–1455

Subramaniam R, Joo YH (2019) Passivity-based fuzzy ISMC for wind energy conversion systems with PMSG. IEEE Trans Syst Man Cybern. https://doi.org/10.1109/TSMC.2019.2930743

Subramaniam R, Song D, Joo YH (2020) T-S fuzzy-based sliding mode controller design for discrete-time nonlinear model and its applications. Inf Sci 519:183–199

Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 1:116–132

Wang L, Lam H-K (2017) A new approach to stability and stabilization analysis for continuous-time Takagi-Sugeno fuzzy systems with time delay. IEEE Trans Fuzzy Syst 26(4):2460–2465

Wang Y, Xia Y, Zhou P (2016) Fuzzy-model-based sampled-data control of chaotic systems: a fuzzy time-dependent Lyapunov-Krasovskii functional approach. IEEE Trans Fuzzy Syst 25(6):1672–1684

Wang A, Liu L, Qiu J, Feng G (2018) Event-triggered robust adaptive fuzzy control for a class of nonlinear systems. IEEE Trans Fuzzy Syst 27:1648–1658

Xia H, Lam H-K, Li L, Wen Q, Ma G (2017) Stability analysis and synthesis of fuzzy-model-based time-delay systems under imperfect premise matching. J Intell Fuzzy Syst 32(6):4227–4233

Yang G-H, Wang H (2014) Fault detection and isolation for a class of uncertain state-feedback fuzzy control systems. IEEE Trans Fuzzy Syst 23(1):139–151

Yang F, Guan S, Wang D (2014) Quadratically convex combination approach to stability of T-S fuzzy systems with time-varying delay. J Franklin Inst 351(7):3752–3765

Zeng H-B, Park JH, Xia J-W, Xiao S-P (2014) Improved delay-dependent stability criteria for T-S fuzzy systems with time-varying delay. Appl Math Comput 235:492–501

Zhang J, Shi P, Qiu J, Nguang SK (2014) A novel observer-based output feedback controller design for discrete-time fuzzy systems. IEEE Trans Fuzzy Syst 23(1):223–229

Zhang Z, Lin C, Chen B (2015) New stability and stabilization conditions for T-S fuzzy systems with time delay. Fuzzy Sets Syst 263:82–91

Zhang C-K, He Y, Jiang L, Wu M, Zeng H-B (2016) Stability analysis of systems with time-varying delay via relaxed integral inequalities. Syst Control Lett 92:52–61

Zhang C-K, He Y, Jiang L, Wu M (2016) Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov-Krasovskii functionals. IEEE Trans Autom Control 62(10):5331–5336

Zhou K, Huang T, Zhao T, Gao F (2019) Membership-function-dependent stability and stabilization conditions for T-S fuzzy time-delay systems. IETE J Res 65(3):351–364

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.