The impact of 17O+α reaction rate uncertainties on the s-process in rotating massive stars

J. Frost-Schenk,1 P. Adsley,2,3,4,5 A.M. Laird,1 R. Longland,6,7 C. Angus,1,8 C. Barton,1 A. Choplin,9 C. Aa. Diget,1 R. Hirschi,10,11 C. Marshall,6,7 F. Portillo Chaves 6,7 and K. Setoodehnia6,7

1Department of Physics, University of York, York YO10 5DD, UK
2School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa
3iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa
4Cyclotron Institute, Texas A&M University, College Station, Texas, TX 77843, USA
5Department of Physics and Astronomy, Texas A&M University, College Station, Texas, TX 77843, USA
6Department of Physics North Carolina State University, Raleigh, North Carolina, NC 27695-8202, USA
7Triangle Universities Nuclear Laboratory, Durham, North Carolina, NC 27708-0308, USA
8TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
9Institut d’Astronomie et d’Astrophysique, Universite´ Libre de Bruxelles, CP 226, B-1050 Brussels, Belgium
10Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, UK
11Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Half of the elements heavier than iron were produced in the s-process. Neutrons are produced from source reactions, more importantly 13C(α,n) and 22Ne(α,n) and captured on seed nuclei. The neutron-capture rate is rather slower than the beta-decay rate and thus the nuclei produced during this process are close to the line of stability. In reality, “the” s-process is something of a misnomer since various different slow neutron-capture processes take place in different astrophysical locations caused by different reactions and with different characters.

A number of factors influence the elemental abundances of the elements created in the s-process. These include the amount of s-process neutron seed material (13C and 22Ne) available, the metallicity of the star, and the rates of various nuclear reactions both in producing the neutrons for the s-process and the capture rate for those neutrons. One important set of reactions are neutron sinks: 16O captures neutrons to make 17O. The 17O(α,γ) reaction locks the captured neutron away, preventing additional nucleosynthesis. The 17O(α,n) reaction recycles the neutrons causing additional neutron-capture reactions to take place. The 17O+α reactions depend on the properties of excited states in the compound nucleus, 21Ne. To investigate the spectroscopic properties of these states, we used the 20Ne(d,p)21Ne reaction with the TUNL Split-Pole (Enge) spectrograph. A focal-plane spectrum showing excited states in 21Ne is shown in Fig. 1. Using this reaction, we measured excitation energies and assigned spins and parities, and neutron widths to excited states in 21Ne and recomputed the 17O+α reaction rates. We found that the neutron recycling of the 17O+α reactions is stronger than predicted by previous rate estimates, and that the s-process in rotating metal-poor stars can potentially make elements up to at least barium (Z=56). This work has been published in Monthly Notices of the Royal Astronomical Society1. Another paper is in preparation reporting on states in 21Ne below the α-particle threshold which may be interesting for nuclear structure.

1 J. Frost-Schenk et al. MNRAS 514 2650 (2022)
An additional experiment studying the 20Ne(d,p)21Ne reaction using the HELIOS spectrometer at Argonne National Laboratory was performed in inverse kinematics. The resulting data will be published in another forthcoming paper.

![Excitation energy spectrum](image)

Fig. 1. The focal-plane excitation-energy spectrum for the 20Ne(d,p)21Ne reaction. The black spectrum shows the results from the neon-implanted carbon target and the red spectrum is that for only the carbon backing.