Activation of cement clinker with high content of belite

Miryuk O.A.
Rudny Industrial Institute, Rudny, Kazakhstan

Received: 04 May 2020 / Peer reviewed: 11 May 2020 / Accepted: 22 May 2020

Abstract: The results of studies of cement clinkers with a high content of belite are presented. To obtain clinkers polyminal wastes of enrichment of skarn-magnetite ores were used. To intensify the hardening of cements, a method for activating the silicate phases of clinker (alite and belite) is proposed. Active phases are formed during the synthesis of clinker using a dual-blend technology, which provides an increase in the reactivity of the components of the raw material mixture. Thermodynamic calculations have been carried out, confirming the likelihood of belite formation reactions based on minerals of the raw material mixture. The composition of raw materials blends is justified.

Introduction

A substantial savings in fuel and energy resources are achieved by reducing the basic capacity of Portland cement clinker. Low-base (belite) cements are low-energy binders with a high content of C$_2$S belite. The consumption of calcium carbonate in the raw material mixture is reduced, clinker firing costs and carbon dioxide emissions are decreased with a fall in the proportion of C$_3$S alite in belite clinker [1 - 10]. Belitic cements have benefits as low heat during hydration, increased service life of concrete in a severe environment. However, when using cements with a low alite content, difficulties associated with slow hardening arise [2, 4, 8, 9].

An increase in low-alumina clinker hydraulic activity is provided by a directed change in the reactive capacity of the raw material [4 - 8]. The chemical and mineral features of man-made materials determine their preference for active low-base clinkers [5,6,10 –16].

Clinker activation solely due to the belite phase is technologically complex and often becomes ineffective [17–19]. The curing rate of low-base cements shows an increased dependence on alite activity. With the intensive hydration of alite, the necessary amount of portlandite is released to form the crystalline framework of the stone. The hydration ability of alite, due to the modification composition and crystalline state of the phase, is very sensitive to changes in the reactive capacity of raw materials.

The possibility of obtaining cements using tailings of skarn-magnetite ores has been proved [5, 15, 20]. The complex chemical and mineral composition of the man-made material seems to
provide the opportunity to control the rate of clinker formation, the structure and activity of the phases, particularly alite.

The alite formation kinetics is determined by the ratio of the dissolution rates of C₃S and CaO, and the melt composition. Technological methods are used to intensify the process such as raw material mixture modification due to additives, grinding coarsening of the carbonate component, its feeding into the sintering zone to prevent CaO recrystallization; high-temperature belite formation, excluding the C₃S passivation of [1, 9, 10, 13, 18]. The dual-charge technology developed by V.D. Barbanyagre [9] considers the composition of one of the blends provides an increased amount of melt at a low temperature.

The study is aimed to investigate the low-base clinkers synthesized by the dual-charge technology using skarn-magnetite ore tailings.

Testing

Limestone and wastes of skarn-magnetite ores enrichment were used for the cement clinkers synthesis, quartz sand was introduced as a correcting siliceous component. The chemical composition of limestone, wt.% as follows SiO₂ 0.84; Al₂O₃ 0.51; Fe₂O₃ 0.63; CaO 53,73; MgO 1,08; SO₃ 0,24; R₂O 0,10; LOI 42,87.

Tails of dry and wet magnetic separation are made after processing skarn-magnetite ores. In the study, gravel-like tails of dry magnetic separation (tails of DMS) were used a disintegrated mass with a particle size of up to 25 mm; humidity was 1–2%. Tails of DMS surpass cement clinker and quartz sand in grinding ability.

The chemical composition of tails of DMS is presented, wt.% as SiO₂ 40,82; Al₂O₃ 11,86; Fe₂O₃ (overall) SiO₂ 40,82; Al₂O₃ 11,86; Fe₂O₃; LOI 3.55. Modified impurities are found in the wastes, wt.% as S 2.79; R₂O 3.21; TiO₂ 0.50; P₂O₅ 0.26; MnO 0.38; V₂O₅ 0.04; Cl 0.11; Cu 0.04; Ni 0.008.

The mineral base of tails of DMS is composed of silicates that differ in genesis, composition, structure, physical properties, chemical activity and thermal stability, wt.% as Pyroxenes (diopside) 20 - 25; epidote 10 - 13; feldspars 8 - 12; chlorites 7–10; Scapolite 8 - 11; garnets (andradite, grossular) 7–12; amphiboles (actinolite) 7-14. The wastes have, wt.% as Calcite 4-7; pyrite 4-8; quartz 2-4; magnetite 3-4.

Raw mixtures were prepared by co-grinding of pre-ground starting materials. The grinding fineness of the raw mix was evaluated by the residue left on the sieve No. 008 which was 2-5%. Clinkers synthesis was provided by burning samples of the raw material mixture in a laboratory furnace with silica heaters. Cement was obtained by grinding clinker with two-water gypsum.

The materials composition was studied using differential thermal, x-ray phase analysis and microscopy. Strength characteristics of cements were determined on samples of small size (2x2x2 cm) made from paste of normal density.

The study is based on the limited CaO content in one of the two parts of the mixture will contribute to the formation of intermediate compounds (aluminosilicates and magnesium calcium silicates) hypothesis. Intensive heating of another part of the mixture (limestone) in the sintering zone is accompanied by almost instant dissociation of calcite and the occurrence of highly reactive calcium oxide. Calcium oxide responds with the intermediate phases to form belite when two heat-treated feed streams are combined. Discharge of a significant amount of C₃S in a narrow temperature range increases the degree of thermal effect on the material due to exothermy of the reaction brought under control and activates alitogenesis.

Reducing the temperature and time intervals between the synthesis of C₃S and C₃S promotes the active crystalline structure formation, enhances the phase imbalance.

The ΔH enthalpy reactions of feed mixture silicates interaction with calcium oxide was calculated, which result in the formation of C₃S. The reference thermodynamic characteristics were used in calculations. The initial data are provided in Table 1, the calculation results in Table 2.

The systematic nature of the minerals saturation determines the heat release by portions during their interaction with CaO (Table 2). As the basicity of the starting silicates increases, the reaction thermal effect is remarkable decreases. Consequently, the extension of the multi-stage process will provide smooth heat release in a wide temperature range. To contain the exothermic effect, the stages merge is advisable by reducing the gaps between the individual reactions. This can be achieved by removing part of CaO from the sphere of low-temperature interactions, which will limit the low-temperature saturation of natural silicates and will allow one to control the intensity of heat release.

Results and discussion

Various options for preparing a low-basic mixture with a saturation coefficient SC = 0.75 were studied to test initiated proposals. The first part of the raw material mixture, an easily melted furnace feed, contains tailings of skarn-magnetite ores, an adjusted siliceous additive (silica sand), and part of the carbonate component (limestone). The second part of the mixture is the remaining part of the limestone.
A + N lows 3 = C, ma 6,20 tone to S + C.

To assess the composition of tail–burnt furnace feed, the composition of complex silicates, calcium aluminosilicates and solid solutions based on them (exo-effects at 1000 °C and 1180 °C), which availability is fixed on the XRD pattern (Figure 2). The fraction of free CaO in the calcined materials is insignificant (up to 1%), which indicates the completeness of the interaction processes. The synthesis of clinkers based on tails of DMS is characterized by inhibited alitogenesis, which is due to sulfate-alkaline segregation [5]. During sintering of low-caking mass, the availability of dicalcium silicate is possible.

At the first stage, the furnace feed was calcined at a slow rise in temperature (10 °C / min) with a holding time of 20 min at a temperature of 1200 °C. Then, the calcined material was finely ground, minced with the required amount of limestone to obtain a mixture with SC = 0.75 (Table 3), placed in a preheated furnace, and burned at temperatures of 1250 °C and 1300 °C, maintaining a high heating rate (200 °C / min).

The composition of the easily melted furnace feed determines their state after the initial firing and the nature of the interactions during subsequent sintering of the total mixture. Unlike melted materials (furnace feed with BR = 0.25 - 0.50) and dense cokes (furnace feed with BR = 1.0–1.85), burnt furnace feed D6 (BR = 2.25) containing an increased proportion of limestone, acquired the state of low-caking mass.

Furnace feed firing is accompanied (Figure 1) by melting tails of DMS (endoeffect at 1120 °C), the formation of complex silicates, calcium aluminosilicates and solid solutions based on them (exo-effects at 1000 °C and 1180 °C), which availability is fixed on the XRD pattern (Figure 2). The fraction of free CaO in the calcined materials is insignificant (up to 1%), which indicates the completeness of the interaction processes. The synthesis of clinkers based on tails of DMS is characterized by inhibited alitogenesis, which is due to sulfate-alkaline segregation [5]. During sintering

Compound	The heat of formation of the elements \(\Delta H^0_{298} \), kJ / mol	\(\text{Avg} = a + vT + cT^{-2}, J / (\text{mol} \cdot \text{deg}) \)	\(a \)	\(a \times 10^{-3} \)	\(c \times 10^3 \)
CMS₂	3208,30	221,53	32,85	65,95	
CAS₂	4238,11	269,66	57,35	70,70	
NAS₆	3934,00	274,14	43,86	79,29	
C₂S	2309,58	151,67	36,94	30,29	
C₆A	3558,10	260,70	19,17	50,11	
CaO	635,85	48,85	4,53	–	6,53
MgO	602,11	42,61	7,28	–	6,20
Na₂O	416,09	77,11	19,33	–	12,59
SiO₂	908,30	46,94	34,31	–	11,30

Table 2 The calculated values of the reactions thermal effects

Ser.No.	Equation of reaction	Enthalpy of reaction, \(\Delta H^0_{298} \), kJ / mol
1	CMS₂ + 3C → 2C₂S + M	105,42
1.1	CMS₂ + C → C₂MS₂	35,75
1.2	C₂MS₂ + C → C₆A	54,95
1.3	C₂MS₂ + C → 2C₂S + M	14,72
2	CAS₂ + 6C → 2C₂S + C₆A	124,05
2.1	CAS₂ + 2C → C₂AS + CS	85,73
2.2	C₂AS + 3C → C₂S + C₆A	1,11
2.3	CS + C → C₂S	37,21
3	NAS₆ + 15C → 6C₂S + C₂A + N	4359,92
3.1	NAS₆ → NAS₂ + 4S	1808,90
3.2	NAS₂ + 7C → 2C₂S + C₂A + N	2032,70
3.3	2C + S → C₂S	129,58

An additional indicator - the basicity ratio (BR) is introduced to assess the composition of tail-containing mixtures, characterized by extremely low values of the saturation coefficient, which allows you to take into account the complex composition of the phases of the burnt furnace feed. It is customary that ternary compounds are acceptable to consider as a conditional combination of simple phases: \(C₂AS = CS + CA \) and \(C₂MS₂ = 2CS + M \). The basicity ratio characterizes the degree of saturation of silica with calcium oxide to CS metasilicate. When calculating BR according to formula (1), the possibility of \(CA, C₂F, CaSO₄ \) formation is taken into account:

\[
BR = \frac{C}{0.55A-0.18F-0.70S},
\]

wherein 0.55 – the ratio of CaO to Al₂O₃ at CA; 0.18 – the ratio of CaO to Fe₂O₃ at C₂F; 0.70 – the ratio of CaO to SO₃ at CaSO₄; 0.93 – the ratio of CaO to SiO₂ at CS.

The whole silica (and the intermediate phases conditionally including it) is assumed to be bound to calcium metasilicate at \(BR = 1 \), with an increase in BR values, the availability of dicalcium silicate is possible.
of a double furnace feed mixture, its easily melted component forms a high-siliceous melt of low viscosity, increased homogeneity, and uniformly saturated with modifying elements.

C$_2$S high-temperature synthesis determines the intensive dissolution of belite in a clinker melt. A defective microstructure of CaO is formed during thermal activation of the carbonate component, which ensures its accelerated dispersion and dissolution in the melt. As a result, crystallization of alite is intensified. The rapid growth of C$_3$S crystals is accompanied by the introduction of modifying elements present in the melt into their structure. Alite crystals formed in this way are distinguished by a distorted crystal lattice and increased hydration activity [3, 9, 19].

![Figure 1 DTA curve of D4 furnace feed](image)

Table 3 Preparation of the raw mix using easily melted furnace feed options

Mixtur e code	1 and 2 parts content in the mixture, %	The material composition of the easily melted furnace feed, %	Furnace feed 1 parameters				
	1	2	limestone	Tails of DMS	Silica sand	BR	SC
D1	38,52	61,48	19,67	68,23	12,10	0,25	0,01
D2	44,48	55,52	31,12	57,46	11,42	0,50	0,09
D3	59,17	40,83	47,76	44,08	8,16	1,00	0,26
D4	72,46	27,54	57,21	36,44	6,35	1,50	0,42
D5	82,17	17,83	62,91	30,88	6,21	1,85	0,54
D6	93,46	6,54	67,48	26,79	5,73	2,25	0,67
K	100	нет	69,59	24,91	5,50	2,47	0,75

![Figure 2 X-ray diffraction patterns of easily melted furnace feed primary firing](image)

The intensity of clinker formation during firing of double furnace feed mixtures is confirmed by a more uniform crystalline structure of clinkers. Alite crystals of hexagonal crystals with good faceting and a size of 60 - 80 μm prevail (Fig. 3). According to petrography and X-ray diffraction analysis (Figure 4), an increase in the alite content of 5–8% in clinkers synthesized using double furnace feed technology was revealed. This is ensured by the intensification of the final stages of clinker formation, the presence of modifying elements in the man-made raw materials, and the formation of a highly iron aluminoferrite phase less saturated with calcium oxide (shift of the diffraction maximum of 0.265 nm to lower angles).

When firing double furnace feed mixtures, the α$_m$ – C$_2$S modification is stabilized (Figure 4), the largest amount of which is noted for D1 and D2.
clinkers. The formation of the reactive form $\alpha_m - C_2 S$ is achieved due to the complex effect of doping impurities during the high-temperature phase formation with the participation of the modified melt.

Preliminary heat treatment of raw materials positively affects the hydration activity of synthesized clinkers (Table 4). An increase in the amount and degree of hydration of $C_3 S$, and the formation of the hydraulically active modification of $\alpha_m - C_2 S$ belite.

Maximum strength indicators are achieved when using the most easily melted tail-containing D1 furnace feed.

![Figure 3](image3.png)

Figure 3 The clinker microstructure synthesized from a double furnace feed mixture

Table 4 The influence of synthesis conditions on hydration activity of clinkers

Clinker code	Alita hydration degree, %, Aged, days	Maximum strength, MPa, samples 2x2x2cm aged, days
	1 28	1 28
D1	32 96	42 112
D2	31 92	38 110
D3	31 94	38 107
D4	29 93	33 105
D5	27 90	29 99
D6	28 89	28 97
K	23 80	25 82

However, this option involves feeding into the sintering zone almost half of all the raw materials; therefore, it is technically complicated and requires deep engineering study. This technology implementation is possible in furnace units of a different configuration. Compiling options of D4 - D6 mixtures providing a limited input of the carbonate component into the sintering zone are of the greatest practical interest for the existing clinker firing technology.

Findings

The possibility of activating belite clinkers based on skarn-magnetite ore tailings using the double furnace feed technology is given. The synthesis efficiency of the low-base clinkers based on double furnace feed is determined by the thermal activation of the man-made component in combination with a given amount of carbonate component and the subsequent interaction of the calcined furnace feed with thermally activated calcium oxide.

A well-aimed change in the state of raw materials and the nature of their interactions enhances the modifying effect of skarn-magnetite ore tailings on the properties of the melt, the formation of $C_3 S$ and CaO reactive, the intensification of alite formation and stabilization of hydraulically active forms of belite and alite.

Cite this article as: Miryuk O.A. Activation of cement clinker with high content of belite // Kompleksnoe Ispol’zovanie Mineral’nogo Syr’ya (Complex Use of Mineral Resources). – 2020. – № 2 (313). p.38-45. https://doi.org/10.31643/2020/6445.15
Активизация цементных клинкеров с повышенным содержанием белита

Мирюк О.А.

Аннотация. Приведены результаты исследований цементных клинкеров с высоким содержанием белита. Для получения клинкеров использованы полиминеральные отходы обогащения скарново-магнетитовых руд. Для интенсификации твердения цементов предложен способ активизации силикатных фаз клинкера (алита и белита). Активные фазы формируются при синтезе клинкера по двухшихтовой технологии, которая обеспечивает повышение реакционной способности компонентов сырьевой смеси. Выполнены термодинамические расчеты, подтверждающие вероятность реакций образования белита на основе минералов сырьевой смеси. Обоснован состав сырьевой шихты. Для оценки легкоплавкой шихты введен коэффициент основности и показана предпочтительность значений KO = 0,25 – 1,50. Увеличение активности алита и стабилизация активной модификации белита обеспечивают упрочнение цементного камня. Работа направлена на создание ресурсосберегающих технологий портландцемента.

Ключевые слова: техногенные материалы, белитовый клинкер, алита, активизация.

Литература

[1] Ávalos-Rendóna T.L., Pastén Chelala E.A., Mendoza Escobedo C.J., Figueroa I.A., Lara H.V., Palacios-Romerod L.M. Synthesis of belite cements at low temperature from silica fume and natural commercial zeolite // Materials Science and Engineering: B. – 2018. – V. 229. – P. 79 – 85. https://doi.org/10.1016/j.mseb.2017.12.020

[2] Bouzidi M.A., Tahakourt A., Bouzidi N., Merabet D. Synthesis and characterization of belite cement with high hydraulic activity and low environmental impact // Arabian Journal for Science and Engineering. – 2014. – V. 39. – N 12. – P. 8659–8668. http://dx.doi.org/10.1007/s13369-014-1471-2

[3] Park S.-J., Jeon S.-H., Kim K.-N., Song M.-S. Hydration characteristics and synthesis of hauyne-belite cement as low temperature sintering cementitious materials // Journal of the Korean Ceramic Society. – 2018. – V. 55. – N 3. – P. 224 – 229. http://dx.doi.org/10.4191/kcers.2018.55.3.04

[4] Pawluk J. The importance of marls with high silica modulus as raw materials for belite cements production // Cement Wapno Beton. – 2018. – V. 23. – N 1. – P. 40 – 47.

[5] Miryuk O.A. The effect of waste on the formation of cement clinker // IOP Conference Series: Materials Science and Engineering. – 2019. – V. 510. http://dx.doi.org/10.1088/1757-899X/510/1/012012

[6] Koupouri D., Angelopoulos G.N. Effect of boron waste and boric acid addition on the production of low energy belite cement // Cement and Concrete Composites. – 2016. – V. 68. – P. 1 – 8. http://dx.doi.org/10.1016/j.cemconcomp.2015.12.009

[7] Zhao Y., Lu L., Wang S., Gong C., Lu L. Dicalcium silicates doped with strontia, sodium oxide and potassium // Advances in Cement Research. – 2015. – V. 27. – N 6. – P. 311 – 320. http://dx.doi.org/10.1680/adcr.14.00011

[8] Ohno M., Niijima S., Kurokawa D., Hirao H. A study on the control of hydration reactivity of belite – strength improvement of high belite cement containing abundant MgO // Cement Science and Concrete Technology. – 2016. – V. 70. – N 1. – P. 61 – 68. http://dx.doi.org/10.14250/cement.70.61

[9] Барбанягрэ В.Д., Коледаева Т.А. Низкотемпературный синтез портландцементного клинкера // Цемент и его применение. – 2010. – N 4. – С. 111–114.

[10] Gong Y., Fang Y. Preparation of belite cement from stockpiled high-carbon fly ash using granule-hydrothermal synthesis method // Construction and Building Materials. – 2016. – V. 111. – P. 175 – 181. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.043
References

[1] Ávalos-Rendón T.L., Pastor-chelala E.A., Mendoza Escobedo C.J., Figueroa I.A., Lara H.V., Palacios-Romerod L.M. Synthesis of belite cements at low temperature from silica fume and natural commercial zeolite. Materials Science and Engineering: B. 2018, 229, 79 – 85. https://doi.org/10.1016/j.mseb.2017.12.020 (in Eng.).

[2] Bouzidi M.A., Tahakourt A., Bouzidi N., Merabet D. Synthesis and characterization of belite cement with high hydraulic reactivity and low environmental impact. Arabian Journal for Science and Engineering. 2014. 39(12), 8659 – 8668. http://dx.doi.org/10.1007/s13369-014-1471-2 (in Eng.).

[3] Park S.-J., Jeon S.-H., Kim K.-N., Song M.-S. Hydration characteristics and synthesis of hauyne-belite cement as low temperature sintering cementitious materials. Journal of the Korean Ceramic Society. 2018. 55(3), 224 – 229. http://dx.doi.org/10.4191/kcers.2018.55.3.04 (in Eng.).

[4] Pawluk J. The importance of marls with high silica modulus as raw materials for belite cements production. Cement Wapno Beton. 2018. 23(1), 40 – 47. (in Eng.).

[5] Miryuk O.A. The effect of waste on the formation of cement clinker. IOP Conference Series: Materials Science and Engineering. 2019. 510. http://dx.doi.org/10.1088/1757-899X/510/1/012012 (in Eng.).

[6] Komoupsori D., Angelopoulos G.N. Effect of boron waste and boric acid addition on the production of low energy belite cement. Cement and Concrete Composites. 2016. 68, 1 – 8. http://dx.doi.org/10.1016/j.cemconcomp.2015.12.009 (in Eng.).

[7] Zhao Y., Lu L., Wang S., Gong C., Lu L. Dicalcium silicates doped with strontium, sodium oxide and potassium. Advances in Cement Research. 2015. 27(6), 311 – 320. http://dx.doi.org/10.1680/adcr.14.00011 (in Eng.).

[8] Ohno M., Niijima S., Kurokawa D., Hirao H. A study on the control of hydration reactivity of belite – strength improvement of high belite cement containing abundant MgO. Cement Science and Concrete Technology. 2016. 70(1), 61 – 68. http://dx.doi.org/10.14250/cement.70.61 (in Eng.).

[9] Barbanyagre V.D., Koledayeva T.A. Nizkotemperaturny sintez portlandsetemenntnogo klinkera (Low-temperature synthesis of Portland cement clinker) Tsment i ego primeniyie= Cement and its application . 2010. 4, 111–114. (in Russ.).

[10] Gong Y., Fang Y. Preparation of belite cement from stockpiled high-carbon fly ash using granule-hydrothermal synthesis method. Construction and Building Materials. 2016. 111, 175 – 181. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.043 (in Eng.).

[11] Junwei S., Jielu Z. Hydration heat evolution of high-belite cement–phosphate slag binder. Journal of Thermal Analysis and Calorimetry. 2019. 138(1), 135 – 143. http://dx.doi.org/10.1007/s10973-019-08241-5 (in Eng.).
[12] Kavas T., Angelopoulos G.N., Iacobescu R.I. Production of belite cement using boron and red mud wastes. Cement Wapno Beton. 2015. 20 (5), 328 – 334. (in Eng.).

[13] Mazouzi W., Kacimi L., Cyr M., Clastres P. Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method. Cement and Concrete Composites. 2014. 53, 170 – 177. http://dx.doi.org/10.1016/j.cemconcomp.2014.07.001 (in Eng.).

[14] Suthatip S., Kittipong K., Suwimol A. Synthesis of belite cement from nano-silica extracted from two rice husk ashes. Journal of Environmental Management. 2017. 190(1). 53 – 60. https://doi.org/10.1016/j.jenvman.2016.12.016 (in Eng.).

[15] Miryuk O.A. A cement clinker formation with the use of magnetite scarn ores washery refuses. Kompleksnoe ispol’zovanie mineral’nogo syr’ya = Complex Use of Mineral Resources. 2019. 1, 74 – 82. https://doi.org/10.31643/2019/6445.09 (in Eng.).

[16] Rungchet A., Poon C.S., Chindaprasirt P., Pimraksa K. Synthesis of low-temperature calcium sulfoaluminate-belite cements from industrial wastes and their hydration: Comparative studies between lignite fly ash and bottom ash. Cement and Concrete Composites. 2017. 83, 10 – 19. http://dx.doi.org/10.1016/j.cemconcomp.2017.06.013 (in Eng.).

[17] Dahhou M., Barbach R., Moussaouiti M.E. Synthesis and characterization of belite-rich cement by exploiting alumina sludge. KSCE Journal of Civil Engineering. 2019. 23. 1150 – 1158. http://dx.doi.org/10.1007/s12205-019-0178-z (in Eng.).

[18] Kacimi L., Simon-Masseron A., Salem S., Ghomari A., Derriche Z. Synthesis of belite cement clinker of high hydraulic reactivity. Cement and Concrete Research. 2009. 39(7). 559 – 565. http://dx.doi.org/10.1016/j.cemconres.2009.02.004 (in Eng.).

[19] Chen Y.-L., Lin C.-J., Ko M.-S., Lai Y.-C., Chang J.-E. Characterization of mortars from belite-rich clinkers produced from inorganic wastes. Cement and Concrete Composites. 2011. 33 (2). 261 – 266. https://doi.org/10.1016/j.cemconcomp.2010.10.012 (in Eng.).

[20] Miryuk O.A. Termicheskiye prevrashcheniya tekhnogennogo komponenta tsementnoy syryevoy smesi (Thermal transformations of the technogenic component of the cement raw material mixture). Ekologiya i promyshlennost Rossii = Ecology and Industry of Russia. 2020. 24(4). 36 – 41. https://doi.org/10.18412/1816-0395-2020-4-36-41 (in Russ.).