Multi-omics characterization reveals the pathogenesis of liver focal nodular hyperplasia

Yuming Liu, Jinmai Zhang, Zhuo Wang, ..., Jia Fan, Yongyong Shi, Qiang Gao

shiyongyong@gmail.com (Y.S.)
gao.qiang@zs-hospital.sh.cn (Q.G.)

Highlights
FNHs are genetically stable, but high mutation cases exist.
FNHs have unique transcriptomic modules, and they alter in atypical FNH.
FNH has a unique type of SOST-expressing endothelial cells that may promote fibrosis.
Multi-omics characterization reveals the pathogenesis of liver focal nodular hyperplasia

Yuming Liu,1,6 Jinmai Zhang,2,6 Zhuo Wang,2,6 Jiaqiang Ma,1 Ke Wang,2 Dongning Rao,1 Mao Zhang,1 Youpei Lin,1 Yingcheng Wu,1 Zijian Yang,1 Liangqing Dong,1 Zhenbin Ding,1 Xiaoming Zhang,3 Jia Fan,1,4 Yongyong Shi,2,* and Qiang Gao1,4,5,7,*

SUMMARY

The molecular landscape and pathogenesis of focal nodular hyperplasia (FNH) have yet to be elucidated. We performed multi-omics approaches on FNH and paired normal liver tissues from 22 patients, followed by multi-level bioinformatic analyses and experimental validations. Generally, FNH had low mutation burden with low variant allele frequencies, and the mutation frequency significantly correlated with proliferation rate. Although no recurrently deleterious genomic events were found, some putative tumor suppressors or oncogenes were involved. Mutational signatures indicated potential impaired mismatch function and possible poison contact. Integrated analyses unveiled a group of FNH specific endothelial cells that uniquely expressed SOST and probably had strong interaction with fibroblasts through PDGFB/PDGFRB pathway to promote fibrosis. Notably, in one atypical FNH (patient No.11) with pronounced copy number variations, we observed a unique immune module. Most FNH are benign, but molecularly atypical FNH still exist; endothelial cell derived PDGFB probably promotes the fibrogenic process in FNH.

INTRODUCTION

Liver focal nodular hyperplasia (FNH) ranks the second highest morbidity among benign hepatic tumors after hepatic hemangioma (Nahm et al., 2011). FNH is more prevalent in women than men, especially at childbearing age (Luciani et al., 2002; EASL, 2016). Hitherto, surgical resection is the only standard curative treatment of FNH (Koea and Yeong, 2014), and the surgical procedure will inevitably affect quality of life or even severe postoperative complications. However, if left untreated, the patients may worry about whether FNH could become cancerous, as well as its increasing size over time in some progressive cases (Tajiri et al., 2014; Kudo et al., 2008). Despite the common sense that FNH is a benign tumor with almost no malignant potential (Nahm et al., 2011), its spatial proximity to hepatocellular carcinoma (HCC) within the same patients (Chen et al., 2001; Petsas et al., 2006) and its occurrence linking to chemotherapy-induced liver damage are well documented (Zhu et al., 2021; Torri et al., 2021). Thus, exploring how FNH phenotypic heterogeneity is formed and changed over time may provide clinical insights for FNH and HCC diagnosis and treatment design.

Morphologically, FNH is featured by vascular malformation, ductular overreaction, and fibrous infiltration. Previous studies of FNH mainly focus on single molecules that are cancer or angiogenesis related genes, such as the overexpression of GLUL affecting WNT/β-catenin pathway (Rebouissou et al., 2008), the map-like distribution of glutamine synthetase (Bioulac Sage et al., 2009), and the upregulation of angiopoietin-1 (Gouw et al., 2010) and CD34 (Maillette DeBuy Wenniger et al., 2010). However, because of hypothesis-based research design and limited molecular profiling methods, clinical concerns mentioned above are not well resolved. Therefore, a data-driven approach that utilizes the state-of-art big data to deduce the molecular features of FNH, their correlation with biological behavior and association with the clinical outcome may complement current understanding of FNH initiation and progression.

Next-generation sequencing has recently been widely utilized to characterize morphologically normal tissues and benign tumors, unveiling their novel pathogenesis and molecular alterations (Kakiuchi and
The mutational landscape of the normal esophageal epithelium (Colome et al., 2020), liver (Brunner et al., 2019; Zhu et al., 2019), and gastrointestinal tract (Li et al., 2021; Lee-Six et al., 2019) have been established to illustrate the dynamic clonal expansion that provides survival advantage. Likewise, it has been revealed that renal angiomyolipoma harbors TSC2 mutations and copy-neutral loss of heterozygosity (Idogawa et al., 2020), and uterine leiomyoma carries chromothripsis that is associated with aggressive cancers (Mehine et al., 2013), indicating that “benign tumors” may not always be genetically “faithful”. As a comprehensive approach, multi-omics studies have uncovered the mystery from premalignant lesions to early stages of cancer, including pre-invasive lung cancer (Teixeira et al., 2019), familial adenomatous polyposis (Li et al., 2020), and hepatocarcinogenesis (Jee et al., 2019), which link genotype with phenotype, offering valuable evidence for precise medication.

Herein, we applied whole exome sequencing (WES), bulk RNA sequencing (RNA-seq), and single-cell RNA sequencing (scRNA-seq) on 22 paired FNH and adjacent normal liver tissues (aNL), followed by multi-level validation. We discovered that most FNH were genetically stable with specific transcriptomic modules. Of importance, FNH specific SOST-expressing vascular endothelial cells (ECs) and PDGFRB+ fibroblasts contributing to fibrogenesis in FNH were identified and validated. Surprisingly, some FNH that had atypical molecular characteristics were also identified. Overall, the integrated analyses performed in this study established the genetic and molecular landscape of FNH, and indicated preliminary clues for clinical decision making.

RESULTS
Patient clinical characteristics
Clinical information of all 22 FNH patients was summarized in Table S1. Among them, 19 cases were used for WES and RNA-seq, and 3 cases were applied for scRNA-seq. Eleven male and eight female patients were included, with no one having background liver disease. 68.4% of patients were between 20 and 40 years old, and age was comparable between two genders. Likewise, tumor sizes between the two gender groups were not statistically different (Figure S1A). None of the patients received any chemotherapy, radiotherapy, interventional therapy or drug therapy before surgery.

Individually, P11 simultaneously suffered from HCC in right lobe and FNH in left lobe (Figure S1B). Considering the genetic abnormality of FNH of P07 and P11 (described below), the morphological features of them were confirmed again. For P11, we stained GS, CK19, AFP and ki-67, and typical map-like GS distribution and bile duct hyperplasia were found (Figures S1C–S1F). We next re-checked the hematoxylin-eosin staining image of FNH in P07 with the highest number of somatic mutations, where an FNH-typical central scar and bile duct hyperplasia were seen (Figure S1G). All sequenced FNH samples had morphologically typical features with map-like GS distribution and bile duct hyperplasia.

Not all FNH show genomic integrity
The mean coverage was 99.5 and 99.2% for FNH and aNL, respectively; the depth of WES reached 34X (mean ± SD) and 22X (mean ± SD) for FNH and aNL under mean coverage, respectively. In total, we identified 773 somatic exonic mutations among all 19 patients (Table S2). Of them, 694 mutations were single nucleotide variation (SNV), and the rest 79 mutations were insertion or deletion (Indel). The majority of mutations were missense mutations (473 in total, 61.1%), followed by synonymous mutations (181 in total, 23.4%), and each remaining type was less than 5% (34 nonsense mutations, 29 non-frameshift deletions, 28 frameshift deletions, 17 frameshift insertions, 5 non-frameshift insertions, 5 unknown and 1 nonstop mutation in total) (Figure 1A). The variant allele frequency (VAF) of FNH was 0.132 ± 0.09 (mean ± SD), indicating that mutations were only prevalent in a small proportion of cells within FNH.

The number of somatic mutations among patients varied significantly (2–220 mutations per patient, median 13 per patient), with patient P07 carrying the largest number of mutations and P04 having the fewest mutations (Figure 1B upper and Table S2). A total of 50 mutations were randomly selected for Sanger validation, reaching a success rate of 88% (Figure S2A and Table S3). We checked genes being repeatedly hit among patients, and the mutations that appeared in more than three patients, homoygous mutations, or multi-hit events among patients were not detected. However, some putative tumor suppressors or oncogenes were affected. Mutations of ARID1B, a probable tumor suppressor (Khursheed et al., 2013), were detected in patients P07 and P14. ARID1B mutation (chr6: 157,522,487, G>T, V1574F) in P07 was predicted to be deleterious by different canonical algorithms. Likewise, ARID1B mutation (chr6: 157,488,191, G>T,
G953V) in P14 was also predicted deleterious. The mutations of MMP10, which functions as an oncogene (Deraz et al., 2011), were detected in patients P07 (chr 11: 102,651,271, A>T, Y18N) and P16 (chr11: 102,650,265, G>A, P106L), and both mutations were predicted to cause functional damage (Table S2). Whether FNH shared the same driver mutations with HCC (Brunner et al., 2019; Fujimoto et al., 2012) was explored, and only IGSF10 was found mutated in P11 but not functionally harmful. Then, the mutational profiles were compared among FNH, normal liver (Wijewardhane et al., 2021), cirrhotic liver (Zhu et al., 2019) and HCC (Brunner et al., 2019; Fujimoto et al., 2012), and FNH did not share any mutation with normal liver either, whereas FNH and cirrhotic liver only shared ARID1B mutation. Such recurrent mutations in cirrhotic liver, like ARID1A and ARID1B, are viewed to confer adaptive changes that promote fitness and regeneration in response to chronic damage, instead of malignant transformation (Zhu et al., 2019). Patient P11, who also suffered from HCC, and an elderly patient P10, harbored the second and the third highest number of mutations, indicating that mutations might preferably arise from diseased or aged liver. In addition, dS/dN (Martincorena et al., 2017) analysis was applied to FNH and TCGA hepatocellular carcinoma/cholangiocarcinoma (TCGA-HCC/CCA) datasets, and no positive mutational selection was found to present in FNH, whereas TCGA-HCC and TCGA-CCA both had positive selection (Figure 1C), supporting the notion that FNH did not harbor cancer driver mutations. Conclusively, despite that FNH was not driven by somatic gene mutations, high-mutation cases indeed exist, and some potential tumor suppressors and oncogenes were impaired and likely driving clonal expansion.

Mutations often occur during cell proliferation and division (Cairns, 1975). Thus, the relationship between the cell proliferation rate and the number of mutations was investigated. MKI67 (gene encoding Ki-67) transcripts per million expression was explored as a cell proliferation marker, and a significant positive correlation between mutation load and MKI67 expression level (r = 0.50, p = 0.03, Figure 1D) was identified. However, the correlation between MKI67 expression and tumor size was not significant. This phenomenon indicates that mutations of FNH may have an intrinsic connection with cell proliferation, and close follow-up should be applied to FNH with high proliferative capability, regardless of tumor size. These results are consistent with the clinical observation that progressive FNH was not always large lesions (Tajiri et al., 2014; Kudo et al., 2008).

The mutational spectrum and signatures of FNH were also explored. FNH had a nearly equal number of transition and transversion, where C to T was the predominant type of base substitution (>25% of total mutations), followed by C to A and T to C (Figure 1E), which is similar to cirrhotic liver (Zhu et al., 2019). Of them, C to T and T to C were also the main mutational features of HCC and CCA (Alexandrov et al., 2013; Dong et al., 2018), indicating their commonality in liver tumors. The mutational pattern was deconstructed and compared to COSMIC signature database and signatures with weight ≥ 0.1 were thought significant (Dong et al., 2018). Liver cancers commonly show signature 16 (Brunner et al., 2019), and four FNH cases showed signature 16 as well. Poison contact (Henry et al., 1999) or defective DNA mismatch repair function can contribute to the pathogenesis of liver cancers (Zekri et al., 2005). Similarly, signatures 1, 22, and 24, which indicate potential exposure to poisons appeared in 8 of 19 FNH samples; four lesions showed signature 20 that implied defective DNA mismatch repair function. Nevertheless, different from cirrhotic liver and HCC (Brunner et al., 2019), FNH did not show signature 5, indicating that age may not dominantly account for mutational accumulation in FNH (Figure 1F).

The clonal status of FNH was deduced using VAF (Figure 1G). Except for P04 having too few mutations, other samples were successfully analyzed for the number of clones. In total, 7 of the 18 FNH lesions were monoclonal, and the remaining 11 were polyclonal, which was consistent with a previous study that
most FNH lesions were polyclonal origin (Paradis et al., 1997). In contrast, the monoclonal origin was well recognized in malignant tumors like HCC and CCA (Cai et al., 2009). Hence, we suspected that the monoclonal FNH of P11, which has the second highest mutational load and the highest proliferative rate, showed partial molecular features akin to HCC. Thus, AFP and Ki-67 were stained for this lesion. Enlarged nucleus, disappeared hepatic plates, and positive AFP or Ki-67 staining were observed in many cells within this case (Figures S1E and S1F), indicating pathologically cancer-like morphology.

Tumor mutational burden (TMB) of FNH was compared to TCGA tumors, and its TMB ranked 32 in all 34 types of tumors (Figure S2B). Among malignant tumors, kidney chromophobe, testicular germ cell tumors, uveal melanoma, acute myeloid leukemia and thyroid carcinoma did not show significantly different TMB with FNH. All TCGA benign tumors including thymoma and pheochromocytoma and paraganglioma did not show significantly different TMB with FNH as well. This result indicates that FNH has relatively low TMB, which is in agreement with its benign attribute. Each mutation was then substituted with its corresponding VAF, entitled VAF-TMB (Figure S2C). Of interest, except for thyroid carcinoma, the other four malignancies mentioned above had significantly higher VAF-TMB than FNH, whereas there was no statistical difference in VAF-TMB between two benign tumors and FNH. Of interest, many of these features are also observed in liver cirrhosis (Zhu et al., 2019). When only considering VAF >5%, FNH had a mean of 10.9% and a median of 9.3% VAF (excluding P11), whereas cirrhotic liver has a mean of 10.5% and a median of 8.7% VAF, indicating that mutations may affect same proportion of cells in two diseases. These results again indicate that FNH, as a benign tumor, has fewer cells affected by mutations than malignant tumors.

Copy number variations of FNH
Neither significantly recurrent arm-level copy number variations (CNVs), nor significantly recurrent focal level CNVs in FNH (Figure 1H) were found. However, significant arm-level CNVs of P11 were detected in chromosomes 4q, 7q, 8p, 8q, 16q, and 17p, which were also commonly detected in HCC (Qin et al., 1999). CNVs were confirmed by inspecting the gene expression level in corresponding regions (Figures S2D). Tumor suppressor genes such as TP53 and FAT4 were included in these arm-level regions but no obvious downregulation of these genes was observed, possibly because the functions of these genes were compensated by another intact copy.

The most prominent focal level CNV (copy number = 3) was 113,640,020–114353828 at 13q34 including TFDP1 and CDC16 with significant upregulation of their expression levels (Figures S2E and S2F). The copy number of TFDP1 and CDC16 at 13q34 was frequently amplified to enhance proliferative capability in HCC (Yasui et al., 2002). Altogether, although most of FNH samples did not exhibit common CNVs, P11 had already got features of HCC from both arm-level and focal level CNVs. However, we cannot conclude that FNH has the potential to undergo malignant transformation based on one case, and future integrative analysis enrolling more patients like P11 is needed.

Transcriptomic features of FNH
Principal component analysis (PCA) of the transcriptomic profile revealed pronounced spatial distinction between FNH and aNL (Figure S3A). Next, differentially expressed gene (DEG) analysis between FNH and aNL identified 589 significantly upregulated and 236 significantly downregulated genes. Among significantly upregulated genes, some fibrosis-related genes were found, such as PDGFB, PDGFRB (Czochra et al., 2006), CXCL6 (Cai et al., 2018), NOTCH3 (Chen et al., 2012), and COL1A1 (Figure 2A). Functional enrichment analysis showed the significant upregulation of extracellular matrix (ECM) production and PI3K/AKT pathway (Figure S3B). Also, the PDGF pathway was significantly enriched, again implying its contribution to the fibroblastic process. Meanwhile, Ingenuity Pathway Analysis (IPA) unearthed possible cell types that were responsible for transcriptomic alterations. The most significant canonical pathways were hepatic stellate cell activation (Figure S3B) and PDGFB/PDGFRB axis was the only detected input signal for stellate cell activation in FNH (Figure S3C). Thus, PDGFB/PDGFRB-PI3K/AKT was the most possible pathway that may cause fibrosis in FNH.

FNH transcriptome was compared with TCGA-HCC, TCGA-CCA and GTEx normal liver using PCA. As expected, FNH, aNL and GTEx normal liver were spatially adjacent, whereas TCGA-HCC and TCGA-CCA were located oppositely (Figure 2C). This result preliminarily indicates the benign attribute of FNH. Surprisingly, we found P11 was away from other FNH counterparts and spatially close to TCGA-HCC. Further, consensus clustering was utilized and five classes were confirmed referring to consensus cumulative
FNH has specific transcriptomic modules

The transcriptomic data of five types of samples (FNH, aNL, TCGA-HCC, TCGA-CCA and GTEx normal) were decomposed using independent component analysis (ICA). In total, 35 independent components (ICs) reached the stable status of the model followed by unsupervised clustering, and four modules were generated (Figure 3A). The point biserial correlation coefficients between meta-samples and binary vectors (e.g., all FNH samples were defined as 1 and other types of samples were defined as 0) were calculated as previously described (Aynaud et al., 2020). It is worth noting that IC13 and IC7 in modules 3 and 4, respectively, highly correlated with FNH and aNL, whereas ICs such as IC2, IC11, IC17 and IC29 in module 2 correlated with malignancies (Figures 3A and 3B).

Each IC was compared with BIODICA (Captier et al., 2022) (Figure S3E) or MSigDB (Liberzon et al., 2011) database or manually annotated. Importantly, cellular senescence was most significantly enriched in IC13, which suggest an intact “brake” function in response to proliferation (Campisi and D’Adda, 2007). Other features such as CTNNB1 signature (Rebouissou et al., 2008), estrogen-related gene expression (Al-dinger, 1977) and NOTCH signaling in fibrogenesis (Chen et al., 2012) have been reported in FHN or liver
Thus, IC13 was entitled FNH-like IC (Figure 3C). Likewise, IC7 was abundant in macrophages and endothelial signatures, thus named FNH-Immune (Table S4).

Next, each sample was scored using the leading genes in ICs that highly correlated with samples and had biological significance. As expected, FNH-Like score was significantly higher in FNH than in other types of samples, whereas the FNH-Immune score in FNH was significantly higher than other types of samples lower than aNL (Figure 3D). Other ICs also delineated other features of FNH, such as fibrosis, ECM generation, moderately elevated proliferative capacity and ductular proliferation (Figure S3F). Meanwhile, the FNH-Immune score of P11 FNH was significantly lower than P11 aNL, with significantly elevated proliferation score but FNH-Like score did not decrease. This result molecularly proved that lesion of P11 was FNH and further explained what alterations happened in P11 that made its transcriptome analogous to HCC mentioned above.

Single-cell landscape of FNH

To further explore FNH molecular characteristics and pathogenesis, three freshly dissected paired FNH and aNL were dissociated into single cell suspension, followed by flow cytometry sorting living cells and scRNA-seq. In total, 54,221 cells (including 27,474 cells from FNH, 26,747 cells from aNL) passed quality control, with 27 clusters of cells generated and visualized by uniform manifold approximation and
A projection (UMAP) (Figure 4A). Each cluster was then annotated automatically and verified manually, resulting in 11 major cell types (Figures 4B and S4A).

To evaluate whether the main features captured by scRNA-seq, three paired pseudo-bulk samples were generated using the scRNA-seq data, followed by DEG analysis. Among significantly upregulated genes in FNH detected by bulk RNA-seq and pseudo-bulk DEG analyses, 145 intersected genes were discovered (Figure 4C). Many essential genes that related to FNH intrinsic features, such as CXCL6, PDGFB, PDGFRB, and NOTCH3, were all included. At single cell level, CXCL6 was found mainly in hepatocytes, PDGFB in endothelial cells, PDGFRB and NOTCH3 in fibroblasts (Figure S4B), supporting the IPA results (Figure S3C). Also, the pathways enriched in pseudo-bulk samples showed a high degree of consistency with those in bulk analysis, again indicating the enhanced ECM interaction, the possible involvement of PI3K-AKT signaling and underlying vascular changes in FNH (Figure 4D).
The proportions of each type of cells were next analyzed to explore FNH specific components (Figure 4E). Because of the limited number of fibroblasts captured by scRNA-seq (577 cells from FNH and 20 cells from aNL), we were only able to analyze as a whole. Even so, ECM deposition related genes, such as COL4A1 and COL4A2, were observed significantly upregulated in the fibroblasts of FNH compared to aNL. Many ECM formation or interaction pathways were enriched in the fibroblasts of FNH as well. FNH had significantly more endothelial cells compared to aNL, which was consistent with the pathological feature of vascular proliferation. Among immune cells, macrophages dominated FNH with an abundance of over 5%, which was proved by the deconvolution of bulk RNA-seq data. Importantly, FNH-Immune consisted of genes mostly representing macrophage, which conspicuously distinguished FNH from other types of samples. Therefore, macrophages and endothelial cells that were highly enriched in FNH were selected for further analysis.

Kupffer cells are abundant in FNH

In total, 2,817 macrophages (1,987 from FNH and 830 from aNL) with three clusters were identified (Figure 5A). Macrophage cluster 1 (Mϕ₁) expressed a high level of CD206, CD163 and MARCO, showing the identity of the non-inflammatory Kupffer cell (MacParland et al., 2018). Mϕ₂ highly expressed S100A8/9 and EREG (Figure 5B), indicative of the role of pro-inflammation (MacParland et al., 2018; Cao et al., 2019). The proportion of Mϕ₁ and Mϕ₂ significantly differed between FNH and aNL, with FNH having more Kupffer cells whereas aNL owning more pro-inflammatory macrophages (Figure 5C). Co-staining of CD68 and CD206 in additional six samples confirmed the results as well (Figure 5D).

To further investigate the distribution of Mϕ₁ MARCO⁺ macrophages, the FNH scRNA-seq data from this study were combined with scRNA-seq from an in-house HCC dataset and a normal liver dataset in a previous study (MacParland et al., 2018). MARCO was hardly detectable in macrophages from HCC, consistent with the previous study (Sun et al., 2017), whereas it showed a relatively high expression in normal liver datasets, FNH and aNL (Figures 5E and 5F). Of note, in P11, FNH rather than corresponding aNL, showed a nearly negative signal of MARCO, similar to that in HCC, whereas the remaining 18 FNH and paired aNL showed obvious staining of MARCO (Figure 5G). Clinically, superparamagnetic iron oxide contrast is able to be taken by Kupffer cells in liver, thus Kupffer-cell-poor lesions can be differentiated (Tanaka et al., 1996). Therefore, superparamagnetic iron oxide MR contrast may be used to monitor potential molecular transformation based on the abundance of Kupffer cells in certain FNH non-invasively.

FNH had a unique type of SOST⁺ endothelial cells

Previous morphological studies assumed that abnormal blood flow might fuel hyperplasia (Rebouissou et al., 2008), driving us to further ask whether FNH had unique endothelial features. A total of 4,194 endothelial cells (3,561 from FNH and 633 from aNL) were identified with 10 clusters generated (Figure 6A). All ECs cells of FNH and aNL detected were positive for vascular markers PECAM1 (CD31) and FLT1 (Hirakawa et al., 2003) but negative for lymphatic EC marker PDPN (Figure S5A) (Amatschek et al., 2007).

We next explored FNH-enriched endothelial clusters and their specific genes. Compared to aNL, the most prominent differences concentrated on cluster 4 and cluster 6 (Figure 6B) that expressed both venous marker COUP-TFII and arterial marker DLL4 but negative for sinus marker MRCT1 (Figure S5B) (deHaan et al., 2020; Diez et al., 2007), indicating an ambiguous status between artery and vein. DEG analysis was performed between all ECs of FNH and aNL. The most upregulated genes (Figure 6C), such as COL4A1, SOST, EDNRB, were mostly expressed in clusters 4 and 6 (Figures S5C–S5E). The expression of COL4A1 indicates an increased activity in ECM production and high EDNRB expression on ECs indicates an enhanced ability of proliferation and migration (Ziche et al., 1995). SELE, found in activated or proliferating endothelial cells (Nishiwaki et al., 2007), was the gene with the highest fold change and its distribution was relatively equal among clusters (Figure S5F), indicating the diffusive molecular alterations in ECs of FNH. Then, the relationship between endothelial clusters was inferred using pseudo-trajectory analysis. Surprisingly, cluster 6 with SOST expression was mostly located at the middle and generated a new branch, whereas all ECs from aNL were found at the ends of the trajectory (Figure S5G). The result indicates that FNH had a unique type of ECs expressing SOST, independent of any ECs in aNL. To corroborate that SOST⁺ ECs were FNH specific, the intersection of FNH upregulated genes in RNA-seq, scRNA-seq and marker genes of cluster 6 were acquired, and SOST was within it (Figure S6A). Moreover, other types of liver samples, including fetal liver, normal liver, cirrhotic liver, HCC and CCA, were all negative for SOST.
Figure 5. The features of macrophages in FNH

(A) UMAP showing three main types of macrophages in FNH.
(B) The marker genes of each clusters.
(C) The relative ratio of each type of macrophages in FNH and aNL.
(D) IHC confirming the constitutional differences of CD68+CD206+ macrophages between FNH and aNL (paired FNH and aNL, n = 6; Paired Student’s t test).
(E) Single-cell data exhibiting a decrease of MARCO+ macrophages in HCC.
(F) qRT-PCR data indicating the decreased level of MARCO in HCC (FNH, n = 7; HCC, n = 9; Mann-Whitney U test). The line and box represent median and upper and lower quartiles, respectively.
(G) IHC confirming significant fewer MARCO+ macrophages in HCC of P11 and FNH of P11 compared to aNL of P11. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
expression (Figures S6B–S6F). The expression of SOST in vascular ECs in fibrous septa of FNH but not in aNL was further confirmed by RNA in situ hybridization (Figure 6D).

The functional enrichment analysis was performed at the whole EC level between FNH and aNL. The ECs of FNH showed significant enrichment of ECM associated pathways, PDGFBR signaling pathway and fluid shear stress pathway. Then, we re-analyzed the data excluding clusters 4 and 6, finding that ECM associated and PDGFBR signaling pathways were not enriched any more whereas fluid shear pathway was still enriched (Figure 6E). This result indicates that ECs of FNH may be broadly influenced by abnormal blood flow, and FNH specific ECs of clusters 4 and 6 are probably the main contributors of ECM deposition. In addition, cluster 4 exhibited a stronger function of vasculogenesis, whereas cluster 6 was more active in PDGFRB signaling, but the crosstalk between ECs and immune cells decreased (Figure S6G). Moreover, metabolic signature analysis figured out that cluster 6 had stronger oxidative phosphorylation, citric acid cycle and glutathione metabolism but lower arginine metabolism, which suggests a more active functional and metabolic status but impaired endothelial protection function (Figure S6H) (Zhang et al., 2006; Prasad et al., 1999; Jongkind et al., 1989). Together, FNH had a specific type of SOST+ vascular ECs with higher ECM related activity and higher metabolic activity.

Considering the involvement of PDGFRB signaling in FNH specific ECs, cell-cell interaction analysis was then performed. There were six clusters of ECs showing interaction with PDGFRB+ fibroblasts, among which cluster 6 had the strongest interaction (Figure 6F). Next, multiplex immunostaining of PDGFB, PDGFRB, αSMA, and CD31 in four paired FNH and aNL showed strong PDGFB intensity in vascular ECs from FNH instead of aNL. Correspondingly, PDGFRB+ fibroblasts were found spatially proximal to PDGFB+ ECs in FNH but not in aNL as well (Figures 6G and S7A–S7C), highlighting that PDGFB+ ECs could activate fibroblast and promote fibrosis through spatially proximal PDGFB/PDGFRB pair (Czochra et al., 2006). In addition, the two cells within 4 μm were thought actively interacted (Sheng et al., 2021). Therefore, ECs within FNH may promote fibrosis through upregulating ECM pathways and activating fibroblasts by producing PDGFB.

DISCUSSION

FNH is the second most common benign hepatic tumor, the prevalence of which is reported between 0.4 and 3% (Mailliet DeBuy Wenniger et al., 2010). Transcriptomic signature related to FNH pathogenesis has been reported (Rebouissou et al., 2008), but the existence and relevance of the genomic and micro-environmental alterations remain less clear. Herein, we delineated the multi-omics characteristics of FNH in the scope of genome, transcriptome and single cell transcriptome and revealed that, despite mutations in tumor suppressors or oncogenes, FNH possesses a relatively stable genome with specific transcriptomic features. Combined with single cell data, we found FNH harbored abundant MARCO+ Kupffer cells and a unique type of SOST+ ECs that may contribute to the fibrotic process through PDGFB/PDGFRB axis. Interestingly, an atypical FNH was identified that gained an extra copy of 13q34 and excessive proliferative ability. Our work advanced the comprehensive understanding of FNH, which may further improve the clinical management of FNH.

We observed no cancer driver events in FNH at genomic level, which is consistent with the previously reported results that the well-known driver genes in HCC do not appear in FNH (Cai et al., 2009). However, lesions with a high number of mutations and high proliferative rate were discovered. Despite that only passenger mutations were found, the mutational signatures still indicated impaired DNA repair functions in FNH. Though the mutational profiles between FNH and liver cirrhosis are generally different, FNH indeed
shares some genomic features with liver cirrhosis (Zhu et al., 2019), indicating that genomic events are confined to a fraction of hepatocytes restricted by hyperplastic nodes. Thus, we recommended that FNH especially atypical FNH with a high proliferative rate should undergo surgical resection in time, and proliferation markers such as ki-67 should be stained routinely.

Our RNA-seq and scRNA-seq data ascertain the fibrogenic nature of FNH, in agreement with its morphological feature (Rebouissou et al., 2008). We also revealed that EC-fibroblast interaction may be driven by PDGFB/PDGFRB interaction through PI3K-AKT pathway. One mechanism for fibrosis in FNH can be summarized as ECs that under abnormal blood flow secretes PDGFB, by which ECs activate and recruit hepatic stellate cells to form fibroblasts, and further in vivo study is needed for validation. Notably, PDGFB/PDGFRB-PI3K/AKT was the only enriched pathway in FNH instead of famous TFGB1/TGFBR1 signaling, which differs from corresponding pathways reported in hepatitis-B-related liver fibrosis or alcohol-associated liver cirrhosis (Kisseleva and Brenner, 2021). As for the source of fibroblasts, other than stellate cell formed fibroblasts, portal fibroblasts are another possible source of ECM producing myofibroblast. However, portal fibroblasts cannot be driven by PDGF (Kisseleva and Brenner, 2021; Wells et al., 2004). These differences suggest the driving factor of FNH is different from those hepatocyte-injured diseases.

Interestingly, FNH specific ECs of cluster 6, showing the strongest interaction with fibroblasts, also uniquely express SOST. SOST was initially discovered in bone and elevated while encountering mechanical stimulation (Robling et al., 2008). Studies about SOST and ECs are scarce. So far as we know, only one study reported that sclerostin increased the proliferation of human umbilical vein ECs in vitro (Oranger et al., 2016). Nevertheless, which factors drive the expression of SOST in FNH and what is the exact biological significance are still elusive.

P11 is the most special among all samples sequenced. FNH of P11 has the second largest number of mutations that were monoclonal origin, but there are no noxious mutations in famous oncogenes or tumor suppressors. However, CNVs in FNH of P11 suggests the similarity to early HCC. FNH of P11 preserves the main transcriptomic feature, but acquires extra proliferative capability. Essentially, MARCO+ macrophages decreasing is the main immune alteration in P11. Thus, Kupffer cell sensitive contrast agent may help non-invasively trace FNH or alarm atypical FNH. However, further in-depth studies are needed to confirm this conclusion.

In conclusion, by integrating WES, RNA-seq and scRNA-seq data, we revealed that most FNH are genetically stable but some molecularly atypical FNH still exist, discovered a new type of FNH specific ECs, and offered a probable mechanism of fibrogenesis in FNH. Our work advances the understanding of molecular pathogenesis of FNH and provides clues for clinical management.

Limitations of the study

Limitations of this study included the lack of cellular or animal models, which handicaps the study of mechanisms. Although WES yielded an average of 13% VAF mutations in FNH, it was possible that considerable somatic mutations with less VAF were left undetected. Ultra-high sequencing depth or single cell genome sequencing may better help reveal those hidden but important secrets.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Clinical sample acquisition
- **METHOD DETAILS**
 - Specimens processing
 - DNA extraction, library construction, WES and sanger validation
 - RNA extraction, library construction and RNA-seq
 - WES data processing, somatic mutation detection
 - RNA-seq data processing
- dN/dS analysis
- Mutational signature analysis
- Identification of CNVs
- Clone number estimation
- TMB calculation and comparison with TCGA datasets
- DEG detection and pathway analysis
- PCA of FNH, TCGA and GTEx transcriptome
- Consensus clustering of FNH, TCGA and GTEx samples
- ICA and correlation with five types of samples
- Annotation of FNH specific IC and samples scoring
- Single-cell suspension preparation
- Library construction and scRNA-sequencing
- scRNA sequencing data processing
- Unsupervised clustering and determination of cell type
- Deconvolution of RNA-seq data
- Pseudo-bulk sample generation
- Gene set enrichment of single-cell data
- Pseudo-trajectory inference
- Metabolic gene signature scoring
- Intercellular ligand-receptor analysis
- Immunofluorescence and immunohistochemistry
- RNA extraction and qRT-PCR
- RNA in situ hybridization

QUANTIFICATION AND STATISTICAL ANALYSIS
- Statistical analysis

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104921.

ACKNOWLEDGMENTS
We thank Dr. Yumeng Sun and Dr. Lu Meng, from Institute Pasteur of Shanghai, Chinese Academy of Sciences for technical assistance. We thank Ms. Yifei Cheng from Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital for the important support of written English. We thank all members of the laboratory for their insightful discussions. We would also like to acknowledge the funding of the National Natural Science Foundation of China (Nos. 81961128025, 82121002, 32070679, U1804284, 81871055), Program of Shanghai Academic Research Leader (No. 19XD1420700), the National Key R&D Program of China (2021YFC2702100, 2019YFA0905400, 2017YFC0908105), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), Taishan Scholar Program of Shandong Province (tsqn201812153), Natural Science Foundation of Shandong Province (ZR2019YQ14) and Zhupei Foundation of Zhongshan Hospital (Zhupei 2021-001).

AUTHOR CONTRIBUTIONS
Q.G. and Y-Y.S. conceived and directed the project. Y-M.L., L-Q.D., and D-N.R. collected surgical samples and clinical data. J-M.Z., K.W., and Y-M.L. wrote the code for analysis and Y-C.W. and Q.G. were responsible for verification. J-Q.M. designed immunohistochemistry panel. Y-M.L. performed experiments and M.Z., Y-P.L., and Z-J.Y. provided experimental support. J.F. and Z-B.D. provided important intellectual input. Y-M.L. and J-M.Z. wrote the manuscript with the assistance of Z.W. and X-M.Z. All authors critically revised the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: April 27, 2022
Revised: July 17, 2022
Accepted: August 8, 2022
Published: September 16, 2022
REFERENCES

Azarani, N., Saviano, A., Sagar, Mailly, L., Durand, S., Herman, J.S., Pessaux, P., Baumann, T.F., and Grun, D. (2019). A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572, 199–204. https://doi.org/10.1038/s41586-019-1373-2.

Aldinger, K. (1977). Focal nodular hyperplasia of the liver associated with high-dosage estrogens. Arch. Intern. Med. 137, 357–359. https://doi.org/10.1001/archinte.1977.03630150057016.

Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A.R., Behjati, S., Biankin, A.V., Bignell, G.R., Bolli, N., Borg, A., Barresen-Dale, A.L., et al. (2013). Signatures of mutational processes in human cancer. Nature 500, 415–421. https://doi.org/10.1038/nature12477.

Amatschek, S., Kriehuber, E., Bauer, W., Reininger, B., Meraner, P., Wolpl, A., Schweifer, N., Haslinger, C., Stingl, G., and Maurer, D. (2007). Synthetase in focal nodular hyperplasia: a novel marker of cell differentiation. Blood 109, 109–119. https://doi.org/10.1182/blood-2006-10-053280.

Aran, D., Hu, Z., and Butte, A.J. (2017). Xcell digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220. https://doi.org/10.1186/s13059-017-1349-1.

Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R.P., Wolters, P.J., Abate, A.R., et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 935–946. https://doi.org/10.1038/s41591-019-0127-y.

Aynaud, M.M., Mirabou, O., Gruel, N., Grosselletê, S., Boeva, V., Durand, S., Surdez, D., Saulnier, O., Zaidi, S., Gribkova, S., et al. (2020). EZH2 pathway in liver fibrosis. J. Cell Mol. Med. 24, 163–172. https://doi.org/10.1111/jcm.15787.

Beerens, M., Jaekers, J., Topal, B., et al. (2020). Multiple tools and samples in a single report. Bioinformatics 36, 408–411. https://doi.org/10.1093/bioinformatics/bty560.

Chen, Y.X., Weng, Z.H., and Zhang, S.L. (2012). NOTCH3 regulates the activation of hepatic stellate cells. World J. Gastroenterol. 18, 1397–1403. https://doi.org/10.3748/wjg.v18.i9.1397.

Campini, J., and D’Adda, D.F.F. (2007). Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740. https://doi.org/10.1038/nrm2233.

Cai, Y.R., Gong, L., Teng, X.Y., Zhang, H.T., Wang, C.F., Wei, G.L., Guo, L., Ding, F., Liu, Z.H., Pan, Q.J., and Su, Q. (2009). Clonality and allelotyping analyses of focal nodular hyperplasia compared with hepatocellular adenomas and adenocarcinomas. World J. Gastroenterol. 15, 4695–4708. https://doi.org/10.3748/wjg.v15.i24.4695.

Cairns, J. (1975). Mutation selection and the natural history of cancer. Nature 255, 197–200. https://doi.org/10.1038/255197a0.

Chen, T.C., Chou, T.B., Ng, K.F., Hsieh, L.L., and Chou, Y.H. (2001). Hepatocellular carcinoma mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 415, 538–542. https://doi.org/10.1038/s41586-019-1670-9.

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). Transcriptional reprogramming of hepatocellular carcinoma cells in tumour microenvironment. Nat. Rev. Mol. Cell Biol. 19, 1377–13787. https://doi.org/10.1038/s41586-018-0245-4.

Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890. https://doi.org/10.1093/bioinformatics/bty560.

Chozpha, P., Klopic, B., Meyer, E., Herkel, J., Garcia-Lazaro, J., Thiering, F., Schramcher, P., Biesterfeld, S., Galle, P.R., Lohse, A.W., and Kanzler, S. (2006). Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J. Hepatol. 45, 419–428. https://doi.org/10.1016/j.jhep.2006.04.010.

Dong, L.Q., Shi, Y., Ma, L.J., Yang, L.X., Wang, X.Y., Zhang, S., Wang, Z.C., Duan, M., Zhang, Z., Liu, L.Z., et al. (2018). Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J. Hepatol. 69, 89–98. https://doi.org/10.1016/j.jhep.2018.02.009.

de Haan, W., Gie, C., Berkenhiel, M., Dheedene, W., Vinckier, S., Coppelli, G., Aragüenes, X.L., Beeren, M., Jaekers, J., Topal, B., et al. (2020). Unraveling the transcriptional determinants of liver sinusoidal endothelial cell specialization. Am. J. Physiol. Gastrointest. Liver Physiol. 318, G603–G615. https://doi.org/10.1152/ajpgi.00215.2019.

Diez, H., Fischer, A., Winkler, A., Hu, C.J., Hatzopoulos, A.K., Breier, G., and Gessler, M. (2007). Hypoxia-mediated activation of DLL4-NOTCH-HEY2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp. Cell. Res. 313, 1–9. https://doi.org/10.1016/j.yexcr.2006.09.009.

EASL (2016). EASL clinical practice guidelines on the management of benign liver tumours. J. Hepatol. 65, 386–398.

Efremova, M., Vento-Tormo, M., Teichmann, S.A., and Vento-Tormo, R. (2020). CellphoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1848–1856. https://doi.org/10.1038/s41596-020-0292-x.

Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw170. 2017 03.001.

Fujimoto, A., Totoki, Y., Abe, T., Borowicz, K.A., Hosoda, F., Nguyen, H.H., Aoki, M., Hosono, N., Kubo, M., Miya, F., et al. (2012). Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764. https://doi.org/10.1038/ng.2291.

Gentleman J.B., van den Heuvel, M.C., Popperma, S., de Jong, K.P., and Molema, G. (2010). Molecular characterization of the vascular features of focal nodular hyperplasia and hepatocellular adenoma: a role for angiopeptin-1. Hepatology 52, 540–549. https://doi.org/10.1002/hep.23703.

Hirakawa, S., Hong, Y.K., Harvey, N., Schacht, V., Matsuda, K., Libermann, T., and Detmar, M. (2003). Identification of vascular lineage-specific genes by transcriptional profiling of isolated vascular and lymphatic endothelial cells. Am. J. Pathol. 162, 575–586. https://doi.org/10.1016/S0002-9440(03)63651-5.

Henry, S.H., Bosch, F.X., Truxel, T.C., and Bolger, P.M. (1999). Public health: reducing liver cancer—global control of aflatoxin. Science 286, 2453–2454. https://doi.org/10.1126/science.286.5449.2453.

Hävärinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Netw. 13, 411–438. https://doi.org/10.1016/S0893-6080(00)00262-5.
Kisseleva, T., and Brenner, D. (2021). Molecular Cancer Biol. Ther.

Tokino, T., and Natori, H. (2020). Renal visualization. Neuroimage

Jongkind, J.F., Verkerk, A., and Baggen, R.G. (2019). Version 1.24.0.https://rtcga.github.io/RTCGA.

https://doi.org/10.1038/s41587-019-0201-4.

https://doi.org/10.1038/s41568-021-0238-2.

https://doi.org/10.1006/jbct.2021.00305-3.

https://doi.org/10.1056/NEJMoa1302736.

https://doi.org/10.1093/bioinformatics/btp698.

https://doi.org/10.1093/bioinformatics/btr260.

https://doi.org/10.1093/bioinformatics/btt656.

https://doi.org/10.1093/bioinformatics/bts693.

https://doi.org/10.1038/s41586-019-1672-7.

https://doi.org/10.1038/s41586-019-03586-1.

https://doi.org/10.1136/gut.50.6.877.

https://doi.org/10.1016/j.cell.2017.09.042.

https://doi.org/10.1038/s41568-021-0238-2.

https://doi.org/10.1093/bioinformatics/btr260.

https://doi.org/10.1006/jbct.2021.00305-3.

https://doi.org/10.1006/jbct.2021.00305-3.

https://doi.org/10.1056/NEJMoa1302736.

https://doi.org/10.1093/bioinformatics/btt656.

https://doi.org/10.1016/j.cell.2017.09.042.

https://doi.org/10.1038/s41568-021-0238-2.

https://doi.org/10.1093/bioinformatics/btr260.

https://doi.org/10.1006/jbct.2021.00305-3.

https://doi.org/10.1056/NEJMoa1302736.

https://doi.org/10.1016/j.cell.2017.09.042.

https://doi.org/10.1038/s41568-021-0238-2.

https://doi.org/10.1093/bioinformatics/btr260.

https://doi.org/10.1006/jbct.2021.00305-3.

https://doi.org/10.1056/NEJMoa1302736.

https://doi.org/10.1016/j.cell.2017.09.042.

https://doi.org/10.1038/s41568-021-0238-2.

https://doi.org/10.1093/bioinformatics/btr260.

https://doi.org/10.1006/jbct.2021.00305-3.

https://doi.org/10.1056/NEJMoa1302736.

https://doi.org/10.1016/j.cell.2017.09.042.

https://doi.org/10.1038/s41568-021-0238-2.

https://doi.org/10.1093/bioinformatics/btr260.
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
CD68	abcam	Cat# ab213363
CD206	abnova	Cat# 5C11
MARCO	ATLAS ANTIBODIES	Cat# HPA063793
PDGFRB	abcam	Cat# ab32570
PDGFB	abcam	Cat# ab23914
aSMA	abcam	Cat# ab5694
CD31	abcam	Cat# ab76533
G5	abcam	Cat# ab176562
CK19	abcam	Cat# ab52625
Ki-67	abcam	Cat# ab15580
Chemicals, peptides, and recombinant proteins		
DMEM, without glucose, L-glutamine, phenol red, sodium pyruvate and sodium bicarbonate	Sigma-Aldrich	Cat#D5030
Fetal Bovine Serum	Gibco	Cat# 10099141
Opal™ 7-Color Manual IHC Kit 50 slides	PerkinElmer	NEL811001KT
Collagenase IV	Gibco	Cat# 17104019
Dispase II	Gibco	Cat# 17105041
Critical commercial assays		
RNAscope® 2.5 HD Assay - Brown	Advanced Cell Diagnostics	Cat#322300
RNAscope® SOST Probes	Advanced Cell Diagnostics	Cat# 452941
RNAmplification Pure Tissue Kit	TIANGENE	Cat#DP431
NEBNext Ultra™ II Directional RNA Library Prep Kit	New England BioLabs	Cat#E7765
TIAN Amp Genomic DNA kit	TIANGENE	Cat#DP130227
Agilent SureSelect XT Human All Exon V5 kit	Agilent	Cat#5190-6213
Chromium Single Cell 3’ Reagent Kits	10x Genomics	Cat# PN-1000057
Deposited data		
Normal liver single cell data	(Aizarani et al., 2019)	GSE124395
Normal liver single cell data	MacParland et al., 2018	GSE115469
Liver cirrhosis single cell data	(Ramachandran et al., 2019)	GSE136103
HCC and fetal liver single cell data	(Sharma et al., 2020)	GSE156625
Intrahepatic CCA single cell data	(Zhang et al., 2020)	GSE138709
Oligonucleotides		
Primers for Sanger sequencing, see Table S3	This paper	N/A
Primer for SOST	This paper	N/A
Forward: CGTCAGGATTGTCGCGCAGTA		
Reverse: CTTTTGGAGTAACCCACCAT		
Software and algorithms		
R V3.6.2	R Core Team	https://www.r-project.org/
GraphPad Prism V8.0	GraphPad Software Inc	https://www.graphpad.com/scientific-software/prism
Burrows- Wheeler Alignment V0.7.12	Li and Durbin, 2010	http://bio-bwa.sourceforge.net/

(Continued on next page)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Prof. Qiang Gao (gao.qiang@zs-hospital.sh.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All sequencing raw data, including WES, RNA-seq and scRNA-seq, are deposited in NODE (https://www.biosino.org/node) under the accession number OEP002718. This paper does not report original code. Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical sample acquisition
19 Paired FNH and aNL samples for WES and RNA-seq were all acquired from patients underwent curative resection from January 2012 to December 2013 at Zhongshan Hospital. Three paired FNH and aNL samples for scRNA-seq were from December 2019 to January 2020 at Zhongshan Hospital. Samples of Hematoxylin-Eosin staining, IHC, fluorescent immunostaining and qRT-PCR were included in the 19 sample cohorts. Patients for ISH were from February 2021. The study was approved by the Research Ethics Committee of Zhongshan Hospital, and written informed consent was obtained from each patient.

REAGENT or RESOURCE SOURCE IDENTIFIER

REAGENT or RESOURCE	SOURCE	IDENTIFIER
FastQC V0.11.8	Babraham Bioinformatics	https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Samtools V0.1.19	Danecek et al., 2021	https://github.com/samtools/samtools
Mutect2	Broad Institute	https://gatk.broadinstitute.org/hc/en-us/articles/360037593851-Mutect2
CNVkit V0.9.5	Teakle et al., 2016	https://cnvkit.readthedocs.io/en/stable/
dNdScv	Martincorena et al., 2017	https://github.com/m3sanger/dndscv
Maftools V3.1	Mayakonda et al., 2018	https://www.bioconductor.org/packages/release/bioc/html/maftools.html
TopHat2 V2.1.1	Kim et al., 2019	http://ccb.jhu.edu/software/tophat/index.shtml
Cufflinks V2.1.1	Trapnell et al., 2012	http://cole-trapnell-lab.github.io/cufflinks/
DESeq2 V1.14.1	Love et al., 2014	http://bioconductor.org/packages/release/bioc/html/DESeq2.html
edgeR V3.12	Robinson et al., 2009	https://bioconductor.org/packages/release/bioc/html/edgeR.html
ggrepplot2 V3.3.0	Wickham, 2011	https://cran.r-project.org/web/packages/ggrepplot2/index.html
Biodica	Captier N et al.	https://github.com/LabBandSB/BIODICA
Consensusclusterplus V1.5	Wilkerson and Ayes, 2010	http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html
Cellranger V3.1	10x Genomics	https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
Seurat V3.1.4	Stuart et al., 2019	https://cran.r-project.org/web/packages/seurat/index.html
Monocle V2.1.4	Trapnell lab	https://www.bioconductor.org/packages/release/bioc/html/monocle.html
Cibersortx	Newman et al., 2019	https://cibersortx.stanford.edu/
ggsci V2.9	Xiao and Li	https://CRAN.R-project.org/package=ggsci
METHOD DETAILS

Specimens processing
After resected, paired FNH and aNL for sequencing were transferred in 10% FBS (Giboco, USA) RPMI-1640 medium (Sigma-Aldrich, USA), followed by washing for three times by PBS solution and visibly necrotic and hemorrhagic parts were carefully removed. Then, the clean samples were put into liquid nitrogen for snap frozen and stored in −80°C for further processing. The time from sample collection to storage at −80°C was strictly controlled within 30 minutes. aNL was used for germline analysis. All surgically resected samples were macroscopically and microscopically diagnosed by two experienced pathologists to assure FNH diagnosis.

DNA extraction, library construction, WES and sanger validation
TIANamp Genomic DNA kit (TIANGEN, Beijing, China) standard procedure was applied to extract tissue DNA. Quality control was measured by Nanodrop2000, and DNA content per sample >200 ng and concentration >20 ng/μL was accepted for following steps. Covaris™ S2 Ultrasonicator System (Covaris, Woburn, MA, USA) was used for DNA segmentation of 150 bp. 200ng DNA for each sample was used for library construction. Library was built in accordance to Agilent SureSelect XT Human All Exon V5 kit (Agilent, CA, USA) guideline. 150 bp paired-end sequencing was performed on Illumina X-ten. Primers for Sanger sequencing were summarized in Table S3.

RNA extraction, library construction and RNA-seq
Total RNA was extracted from freshly frozen FNH and aNL samples using RNAprep Pure Tissue Kit (TIANGENE, Beijing, China) followed by Nanodrop 2000 for quality control with the threshold of total RNA >4 μg. 200 ng RNA for each sample was sent for library construction. We prepared RNA-seq library with NEBNext Ultra™ II Directional RNA Library Prep Kit (NEB, MA, USA) for Illumina in accordance with the manufacturer’s instructions. 150 bp paired-end sequencing was performed on Illumina X-ten (Illumina, CA, USA).

WES data processing, somatic mutation detection
FastQC V1.9 (https://github.com/s-andrews/FastQC) and MultiQC V1.9 (Ewels et al., 2016) were used for quality control of primary WES data, fastp tool V0.20.1 (Chen et al., 2018) was used to filter data and sequence was mapped to hg19 using BWA V0.7.15 (Li and Durbin, 2010). We used GATK BaseRecalibrator V4.0.6.0 (https://gatk.broadinstitute.org/hc/en-us/articles/360036898312-BaseRecalibrator) to adjust base quality. Filtered data was sent to GATK Mutect2 (https://gatk.broadinstitute.org/hc/en-us/articles/36003793851-Mutect2) to call somatic mutation followed by Annovar V2017 (Wang et al., 2010) annotation. Mutations with alteration depth <5X or total depth of FNH <20X were removed and we used IGV (https://software.broadinstitute.org/software/igv/igvtools) to verify data. Important databases related to Annovar were COSMIC (http://cancer.sanger.ac.uk/cosmic), dbSNP146 (http://www.ncbi.nlm.nih.gov/snp), 1000genomes (http://www.1000genomes.org/) and EXAC (http://exac.broadinstitute.org).

RNA-seq data processing
Raw data was imported to FastQC V1.9 (https://github.com/s-andrews/FastQC) for quality control and was subsequently sent to fastp V0.20.1 (Chen et al., 2018) for filtering low quality sequence. Reads were mapped to the human genome hg19 with HISAT2 V2.0.5 (Kim et al., 2019) and Cufflinks (Trapnell et al., 2012). SAM to BAM transformation was finished by Samtools V1.7 (Danecek et al., 2021). The final count files annotated by gencode.v33.annotation.gtf were produced from FeatureCounts V1.22.2 (Liao et al., 2014) processed BAM files.

dN/dS analysis
To estimate whether FNH has positive selection on mutations, we performed dN/dS analysis referred to the previously described method (Martincorena et al., 2015). VCF files including silent and non-silent mutations exported from the WES upstream analysis were imported to dNdScv R package (Martincorena et al., 2017), and genes with wmis_cv, wnon_cv or wind_cv > 1, and the corresponding q value <0.05 were considered as positive selection. RTCGA and RTCGA.mutations.20160128 packages (Kosinski and Biecek, 2021) were used to download TCGA liver hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) mutational information. Same analytical process was also applied to TCGA data.
Mutational signature analysis

Due to the relatively low mutation number in each sample compared with malignancies, we manually merge SNVs from all 19 samples as one integrated VCF file. Then, the VCF file was imported to maftools R package (Mayakonda et al., 2018) for illustration and further analysis. The mutational signature was acquired using deconstructSigs (Rosenthal et al., 2016), and the cosine similarity was calculated by comparing the signature with COSMIC predefined Mutational Signatures V2. The cosine similarity ranges from 0 to 1, and the closer the number is to 1, the higher the similarity between each pair.

Identification of CNVs

Both FNH and aNL BAM files were imported into CNVkit (Talevich et al., 2016), and the aNL file was pooled and set as reference. The final results were generated using default parameter. The copy number was thought to be non-diploid if log2(copy number fold change) > 0.585 or ≤ −1. And the arm-level changes were defined as ≥ 0.1 fold change detected on ≥ 50% length of that chromosome arm.

Clone number estimation

We estimated clone number with maftools (Mayakonda et al., 2018) and the variant allele frequency (VAF) was used to calculate Mutant-Allele Tumor Heterogeneity (MATH) score. MATH score is a method to measure intra-tumor genetic heterogeneity. When evaluating malignant tumors, high MATH score is correlated to lower survival rate (Rajput et al., 2017). Here, we put this method into benign tumor to estimate whether mutations derived from monoclonal cells. Samples with >5 somatic mutations were calculated.

TMB calculation and comparison with TCGA datasets

33 TCGA tumor mutational profiles were acquired with RTCGA and RTCGA.mutations.20160128 packages (Kosinski and Biecek, 2021). Setting the filtering depth threshold of our dataset as the reference, we ruled out low quality mutations using the depth-adjusted threshold for TCGA samples. To make our dataset and TCGA datasets comparable, we then adjusted sequenced exome length and sorted each tumor by median mutational number. Mann-Whitney U test was performed between FNH and each tumor, respectively. When considering VAF which means the scale a mutation could affect, we substituted each single point in previous graph with VAF of each mutation. Mann-Whitney U test was performed as described above.

DEG detection and pathway analysis

Different expressed genes were identified by DESeq2 (Love et al., 2014) R package V3.12 embedding shrinkage estimation for dispersion and fold change. Read counts were corrected for their patient origin, and genes expressed more than three patients were included for further analysis. We used log2(fold change) ≥ 1 or ≤ −1 and FDR q value <0.05 as the threshold for significant gene selection. For function and pathway enrichment, we used clusterProfiler (Yu et al., 2012) R package V3.14.0 and ToppGene tool (https://toppgene.cchmc.org/enrichment.jsp) implementing canonical database such as KEGG, GO, REACTOME. Results with FDR q value <0.05 was thought significant.

PCA of FNH, TCGA and GTEx transcriptome

HCC and CCA read counts were downloaded from GDC portal (https://portal.gdc.cancer.gov/), and normal liver read counts was downloaded from GTEx portal (https://www.gtexportal.org/home). Only protein coding genes were extracted from the original matrices, and these protein coding matrices including FNH were merged together. We used DESeq2 R package V3.12 (Love et al., 2014) embedded variance stabilizing transformation that normalizes the count data by dividing the normalization factors. Genes expressed less than 10% of the corresponding sample were excluded from further analysis. PCA was performed using DESeq2 R package described above and the 3D plot was graphed by plot3D R package V1.3 (https://CRAN.R-project.org/package=plot3D) using top 3 principle components.

Consensus clustering of FNH, TCGA and GTEx samples

Consensus clustering is a method of aggregation of clustering. It refers to that the given clusters of a dataset desire to fit for a better existing clustering. Thus, this algorithm can reconcile data from different samples or results from different runs of an algorithm (Bonizzoni et al., 2008). Therefore, we used consensus clustering embedded ConsensusClusterPlus R package V3.12 (Wilkerson and Ayes, 2010) which can also determine the ideal cluster number to comprehensively analyze data from our dataset, TCGA and GTEx. We normalized read count from different dataset via weighted trimmed mean of M-values (TMM) algorithm.
built in edgeR R package V3.12 (Robinson et al., 2009). We then used median absolute deviation (MAD) to select how many genes were included for the next step. The similarity between each sample and each unsupervised generated cluster was established by 1000 iterations.

ICA and correlation with five types of samples
ICA is a decomposition method that extracts a group of independent signal from a multivariate signal. The process can be described as $X = AS$, and X represents the raw signal, A is the loading matrix and S is the weight matrix of each independent component (IC). FastICA (Hyvärinen and Oja, 2000), an efficient algorithm implementing ICA, orchastrates Icasso algorithm (Himberg et al., 2004) to synergistically explore the stable IC number and subsequently acquire a robust IC result. We used MATLAB developed BIODICA software windows GUI version (https://github.com/LabBandSB/BIODICA) which relies on FastIC and Icasso, running for 100 times respectively for 10 to 70 ICs to inspect the compactness, and finally decided the optimal IC result. Then, the correlation coefficient between each IC and every BIODICA built-in biologically significant gene set. Biologically prominent ICs with correlation coefficient >0.4 were directly entitled as the corresponding name, such as “proliferation” and “fibrosis”. We set the binary vector for each sample within specific type as 1 and outside as 0. To establish the relation between ICs and sample types, we calculated the biserial correlation coefficient between the binary vector and the metasample (sample versus component). Lastly, the simple Pearson correlations were calculated between each IC pairs (Aynaud et al., 2020). In our study, the correlation coefficient >0.5 was considered significant.

Annotation of FNH specific IC and samples scoring
The FNH specific metagenes (IC versus genes) were ranked by the contribution factor by decreasing. The ranked list was then imported into GSEA_4.0.3 (Subramanian et al., 2005; Mootha et al., 2003), and GSEA Preranked tool with 1000 permutation was performed. MSigDB V7.2 (Gouw et al., 2010) H, C2, C5 and cell signatures obtained from xCell (Aran et al., 2017) database were set as the standard signature. Terms whose normalized enrichment score (NES) > 1.5 and FDR q value <0.05 were significant. Of each gene for each IC in metagene matrix, contribution factor >3 were ideal representative for the IC. Therefore, we used the sum of transcripts per million (TPM) of each representative gene as the IC score. Hypothesis testing was carried out using Mann-Whitney U test between FNH and sample x ($x = aNL$, TCGA-HCC, TCGA-CCA and GTEx Normal).

Single-cell suspension preparation
Three paired freshly resected FNH and aNL samples were immediately transferred into a 4°C DMEM (Gibco, CA, USA) filled 50 mL centrifugal tube with 10% fetal bovine serum (Gibco, CA, USA) and samples were transported to our lab on ice. Clean tissue was trimmed to 5×5×5 mm in size and was subsequently emerged into 10 mL complex digestive enzyme system including 1 mg/mL collagenase IV (Gibco, CA, USA), and 1 U/mL dispase II (Gibco, CA, USA). The 10 mL system was constantly stirred at 37°C for 40 min. The dissociated solution was filtered through a 40-µm cell-strainer nylon mesh (BD, NJ, USA) followed by 700 g centrifugation for 10 min. Supernatant was removed and the cell sediment was washed twice with MACS solution (PBS containing 1% FBS, 0.5% EDTA, and 0.05% gentamycin). Cells were finally dissolved in sorting buffer (PBS with 1% FBS), stained with DRAQ5 1:200 for 15 min and DAPI 1:200 for 15 min. Living cells were then assessed and sorted by MoFlo Astros EQ (Beckman Coulter, CA, USA) Cell Sorter into 10% FBS DMEM solution. Living cells took up > 90% of total cells.

Library construction and scRNA-sequencing
We used Chromium Single Cell 3’ Reagent Kits V3 (10X Genomics, CA, USA) to construct libraries according to manufacurer’s instructions. We aimed to harvest 6000 cells per cells from each channel. Libraries were constructed using 10X Genomics Single-Cell Instrument and drops were then generated. Samples were sequenced on Illumina NovaSeq.

scRNA sequencing data processing
Raw data was processed by Cell Ranger Single-Cell Software TABLE suite (10X Genomics, CA, USA) for doublet removing, barcode processing, alignment and quality control. Reads were mapped to GRCh38 annotated with corresponding annotation files in ENSEMBL database by Cellranger pipeline V3.0.1 (https://github.com/10XGenomics/cellranger). To optimally balance cell number and quality, we kept cells with both 600 < genes <4000, 1200 < UMIs <20,000 and percentage of mitochondrial genes <20%. Moreover,
we manually checked the marker genes of each cluster and deleted those clusters marked with contradictory canonical genes. A total of 27,474 cells from FNH and 26,747 cells from aNL finally passed the quality control, with 1,686 ± 793 (mean ± SD) genes for cells of FNH and 1,387 ± 527 (mean ± SD) genes for cells of aNL.

Unsupervised clustering and determination of cell type
We used log-transformed method to normalize counts and the top 2000 highly variable genes were subsequently scaled for principle component analysis. Seurat V3.2.3 (Stuart et al., 2019) embedding Harmony algorithm (Korsunsky et al., 2019), a strong method to minimize technical or biological confounders to integrate different datasets and preserve biological characteristics was used to combine cells derived from three patients. Top 20 principle components were used for clustering and Uniform Manifold Approximation and Projection (UMAP) was applied for visualization. Marker genes were detected using FindAllMarker function. Genes expressed in >25% cells in each cluster and log2(fold change) ≥ 1 were recognized as marker genes. Next, we employed singleR V1.0.6 R package (Aran et al., 2019) to preliminarily annotate clusters followed by manual verification using canonical marker genes published in papers or documented in databases.

Deconvolution of RNA-seq data
Our bulk RNA-seq data was deconvoluted using Cibersortx (Newman et al., 2019), LM22 signature matrix was used as background reference and 500 permutations were applied. Absolute mode was finally set to acquire results.

Pseudo-bulk sample generation
The pseudo-bulk samples were generated by adding all single-cell read counts individually. Genes expressed by less than 10 cells were excluded from analysis and DEG and pathway enrichment analysis were performed the same way described in “Differentially Expressed Genes Detection and Pathway Analysis”. DEGs with adjusted p value <0.05 and |log2(fold change)| ≥ 1 were considered significant.

Gene set enrichment of single-cell data
Gene set variation analysis (GSVA), depending on a non-parametric unsupervised method, transform an expression matrix into a relative enrichment score matrix. The count files were scaled to conform to Gaussian distribution and imported into GSVA function. For visualization, we used z-score to plot heatmap.

Pseudo-trajectory inference
We used Monocle V2.12.0 R package (Trapnell et al., 2014) to construct the pseudo-trajectory of endothelial cells. Differentially expressed genes (expressed >10% cells) were chosen using differentialGeneTest function and the genes with FDR q value <0.01 were selected for DDRTree which is responsible for trajectory construction.

Metabolic gene signature scoring
We obtained metabolic gene signatures from the published article (Trapnell et al., 2014). Both Seurat object and signature genes were imported to AddModuleScore function of Seurat, which calculates the difference of the average expression of target genes and control genes randomly sampled from each bin. We set 100 control genes and 24 bins for analysis. Each cell would get a score of the signature.

Intercellular ligand-receptor analysis
We usedCellPhoneDB V2.0 to infer the ligand-receptor crosstalk between single cells (Efremova et al., 2020). Significant secreting ligand and receptor was selected and visualized by ggplot2 (Wickham, 2011) and ggsci (https://CRAN.R-project.org/package=ggsci).

Immunofluorescence and immunohistochemistry
The paraffin section was baked for 1 h and dewaxed by 10 min xylene for three times followed by 100%, 95%, 85% and 75% gradient dehydration. Then, the section was washed for twice and placed in boiling antigen retrieval buffer (citrate PH = 6 or EDTA PH = 9) for 10 min. Next, the section was incubated with 3% H2O2 for 10 min for blocking endogenous peroxidase. Non-specific binding was blocked by goat serum
(Vector, CA, USA) for 30 min. The section was incubated with primary antibody over night at 4°C or for 1 hat room temperature. After washing for three times, the section was then incubated with corresponding second antibody for 25 min. Following three-time washing, Opal® (PerkinElmer, MA, USA) fluorescence dye kit was used to stain the target. The whole process from antigen retrieval to fluorescence staining was repeated till the last marker was finished. Finally, nuclei were stained using DAPI (Sigma-Aldrich, USA) and slides were mounted with fluorescence mounting media (DAKO, CA, USA). Slides were scanned and analyzed using PerkinElmer Vectra® platform.

Immunohistochemistry followed the same steps as immunofluorescence, however, after second body incubation, the section was processed stepwise by hematoxylin, acidic differentiation solution and bluing buffer. Then, the section was dehydrated by 100% ethanol and xylene followed by resin mounting.

RNA extraction and qRT-PCR

Frozen tissue was minced thoroughly in liquid nitrogen precooled mortar into powder. After liquid nitrogen completely evaporated, 1 mL Trizol (Invitrogen, CA, USA) was added followed by 200 µL chloroform. Centrifugation was performed and the supernatant was moved to 500 µL isopropanol for RNA precipitation. Centrifugation was performed again and 75% ethanol (prepared with DEPC water) was added for washing.

RNA with OD260/OD280 > 1.8 was considered qualified. Reverse transcription and qRT-PCR were performed according to the manufacturer’s instruction (Yeasen, Shanghai, China) using QuantStudio 3 (ABI, MA, USA).

Primers for MARCO:

F: CGTCAGGATTGTCGGCAGTA.
R: CCTTTGGAGTAACCCAGCAT.

RNA in situ hybridization

RNAscope® 2.5 HD Assay - Brown and RNAscope® SOST Probes were purchased from Advanced Cell Diagnostics (ACD, CA, USA). Freshly resected FNH tissue was immediately transferred to cold PBS to remove as much blood as possible. Then, samples were immersed in 10% neutral buffered formalin for 24 h for paraffin embedding. After deparaffinized, RNAscope® Hydrogen Peroxide and RNAscope® Target Retrieval Reagents were used to quench endogenous peroxidase and retrieve antigens respectively, followed by protein digestion using RNAscope® Protease Plus. Finally, targeted RNA was hybridized by SOST probe and RNAscope® 2.5 HD Detection Reagents – BROWN was used to amplified the signal.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Standard statistical methods were utilized, including Student’s t test, Paired Student’s t test and Mann-Whitney U test. For clinical data comparison, single-omic and multi-omic analyses, Student’s t test was used to compare the age and tumor size between two gender groups. Mann-Whitney U test was applied to the comparison of TMB or VAF-TMB between FNH and each TCGA tumor samples, IC scores between FNH and each type of samples. For experiment data, Student’s t test was used to compare the MARCO expression level between FNH and HCC. Paired Student’s t test was utilized to measure the content difference of macrophages between FNH and paired aNL. All statistical tests were two-sided, and statistical significance was considered when P value < 0.05. For continuous variables versus continuous variables, Spearman’s rank or Pearson correlation was used. For category versus continuous variables, the point-biserial correlation was used. Statistical analysis was performed using GraphPad Prism 8. Correlation analyses were performed in R v3.6.3. Data were represented using the mean ± standard deviation (SD), unless indicated otherwise.