Effective and Reversible Carbon Dioxide Insertion into Cerium Pyrazolates

Uwe Bayer, Daniel Werner, Cäcilie Maichle-Mössmer, and Reiner Anwander*

Abstract: The homoleptic pyrazolate complexes [CeIII(Me₂pz₃)₃] and [CeIV(Me₂pz₄)₂] quantitatively insert CO₂ to give [CeIII(Me₂pz₂CO₂)₂] and [CeIV(Me₂pz₂CO₂)₄], respectively (Me₂pz = 3,5-dimethylpyrazolato). This process is reversible for both complexes, as observed by in situ IR and NMR spectroscopy in solution and by TGA in the solid state. By adjusting the molar ratio, one molecule of CO₂ per [CeIV(Me₂pz₄)₂] complex could be inserted to give trimetallic [Ce₃III(Me₂pz)₉(Me₂pz·CO₂)₃(thf)]. Both the cerous and ceric insertion products catalyze the formation of cyclic carbonates from epoxides and CO₂ under mild conditions. In the absence of epoxide, the ceric catalyst is prone to reduction by the co-catalyst tetra-n-butylammonium bromide (TBAB).

Introduction

Inexorably rising CO₂ levels in the earth’s atmosphere—and their consequential environmental impact—have spurred much interest in combating CO₂ build-up[1] Capture technologies, such as carbon dioxide capture and storage (CCS) and direct air capture (DAC),[2] and CO₂ conversion into fuels or chemical feedstocks[3] appear promising. However, such tactics suffer from either a lack of appropriate storage and transportation of CO₂, or overcoming the high activation barriers of CO₂.[4] To date, the most effective sorbents for CCS/DAC are alkali-metal/alkaline-earth metal hydroxide solutions, inorganic salts (e.g. alkali-metal carbonates),[1,2] or high-surface supported polyamines (max. CO₂ sorption capacity ca. 3 mmol g⁻¹ at 1 bar)[5] and magnesium-based metal-organic frameworks (ca. 35 wt % or 8 mmol CO₂ g⁻¹ at 1 bar).[6]

Like alkaline-earth metals, rare-earth metals (Ln) feature a high affinity for carbon dioxide (cf. bastnaesite is the most important LnIII deposit in the Earth’s crust). Thus, metal-organic derivatives easily react with or insert CO₂, as initially demonstrated by Bochkarev et al. for homoleptic silylamides.[7] Similar archetypes (including LnIII aryloxides) can also be used for chemical transformations, such as the catalytic conversion of a CO₂/epoxide mixture into cyclic carbonates[8] or copolymers.[9a,12,13] However, highly reactive organo-rare-earth-metal complexes with the exception of (e) as shown recently,[10] or divalent derivatives[16] display irreversible CO₂ insertion or favor additional transformations through CO₂ post-activation (e.g. formation of CO, CO₃─, C₂O₄²⁻).[16] Recently, cerium, the most abundant rare-earth element, has gained attention for CO₂ activation.[18,17–19] For example, while the hydrogen-bonded CeIV oxo complex [(L₆Ce)₂Ce(OH)]⁻[MeC(O)NH₂]⁻(L₆Ce = [Co(n⁵-C₅H₅)P(O)(OEt)₂]⁻) was shown to form the tetravalent carbonate species [(L₆Ce)₄Ce(CO₃)]⁺ ortho-NHC-substituted aryloxide CeIV complexes (NHC = N-heterocyclic carbene) insert CO₂ into the Ce–NC bond in a semireversible manner, and catalytically form propylene carbonate from propylene oxide.[18,19]

Bulky cyclopentadienyl (Cp) derivatives (e.g. Ln-(C₅Me₅)₂) were shown to accommodate CO₂ insertion in a unidirectional manner, thereby forming very stable carboxylato moieties through a Ñ- to η switch in the C₅Me₅ coordination (cf. Scheme 1a).[20] Pyrazolates (pz), on the other hand, are nitrogen-derived Cp counterparts, where the putative N–CO₂ bond may tolerate a more reversible insertion process, as seen for other CO₂-heteroatom bonds (Scheme 1e).[21,22] As the tetravalent [Ce(Me₂pz₂)₄] complex was recently shown to undergo reversible insertion of ketones into the Ce–N bond,[23] we extended the study toward CO₂ Quantitative insertion of CO₂ into the Ce–N(Me₂pz) bond was observed for both tetravalent and trivalent cerium Me₂pz complexes, and intriguingly the insertion process was found to be fully reversible.

Ln[N(SiMe₃)₂] (Scheme 1c,d)[9,10] and alkoxides [Ln(OBu)₃] (Scheme 1e).[24]
Results and Discussion

Carbon Dioxide Insertion into a Ceric Pyrazolate: Treatment of \([\text{Ce(Me2pz)}_4]\) with excess CO\(_2\) in either toluene or thf (under 1 bar CO\(_2\) pressure) led to a color change from dark red to orange within 5 minutes (Scheme 2). Crystallization from concentrated toluene or thf solutions at \(-40^\circ\text{C}\) gave orange crystals of \([\text{Ce(Me2pz-CO2)}_4]\) with either toluene (2-toluene, 54 \%) or thf (2-thf, 64 \%) within the lattice. Discounting the lattice solvent, this accounts for about 25 \% CO\(_2\) or 5.7 mmol CO\(_2\) per gram.

The molecular structure of 2-toluene revealed an 8-coordinate cerium(IV) center with four \(\kappa^2\text{(N,O)}\)-coordinating Me\(_2\)pz ligands (Figure 1), in contrast to the \(\kappa^1\text{(O,O)}\) modes in carboxylates and related carbamates. The Ce–N and Ce–O bond lengths average 2.528 Å and 2.255 Å, respectively, thus matching the values found in the benzophenone-inserted product \([\text{Ce(Me2pz)}_2\text{(pdpm)}_2]\). \(\text{Ce1–N1 2.564 Å, Ce1–O1 2.173 Å; pdpm = (3,5-dimethylpyrazol-1-yl)diphenylmethanolate}\). \(\text{[23]}\) Other homoleptic Ce\(_{\text{IV}}\) complexes, \([\text{Ce-(L)}_4]\) (with L as a donor-functionalized alkoxy ligand engaged in a 5-membered chelate to cerium), also have similar Ce\(_{\text{IV}}\)/C\(_{\text{0}}\) bond lengths as those in 2-toluene, \(\text{[24,25]}\) Seemingly, no delocalization of the Ce\(_{\text{IV}}\)/C\(_{\text{0}}\) bond occurred across the O–C–O fragment, which exhibits average C–O bond lengths of 1.207 Å (terminal) and 1.291 Å (bridging). Support for the localization of the C–O double bond came from DRIFTS measurements of 2-toluene and 2-thf, which showed the presence of a strong absorption band at \(\tilde{\nu} = 1732, 1718 \text{ cm}^{-1}\), respectively, for the CO stretching of the C–O double bond as well as a strong absorption band at \(\tilde{\nu} = 1336 \text{ cm}^{-1}\) for the CO stretching of the C–O single bond.

The structure was also supported by NMR spectroscopic measurements. The \(^1\text{H}\) NMR spectrum recorded in \([\text{D}_8]\)toluene at ambient temperature revealed two distinct methyl group environments for all the pyrazolate ligands, indicative of ligand asymmetry and complete consumption of \([\text{Ce(Me2pz)}_4]\). \(^\text{13}C\) NMR signals for the inserted CO\(_2\) were detected at \(\delta = 149.9 \text{ ppm}\), a region where pyrazolate N-CO-R signals are expected. \(\text{[26]}\) \(^1\text{H}\) NMR measurements on 2-thf in \([\text{D}_8]\)THF at ambient temperature showed a mixture of products, which could not be assigned. Cooling the solution to \(-40^\circ\text{C}\) under 1 bar CO\(_2\) pressure led to a color change from red to orange and both the \(^1\text{H}\) and \(^\text{13}C\) NMR spectra recorded at \(-40^\circ\text{C}\) showed similar signals as 2-toluene in \([\text{D}_8]\)toluene.

Variable-temperature (VT) NMR studies of 2-toluene and 2-thf in \([\text{D}_8]\)toluene and \([\text{D}_8]\)THF were conducted to investigate the reversibility of CO\(_2\) insertion (Scheme 3). In \([\text{D}_8]\)toluene, the formation of a new species at \(40^\circ\text{C}\) was revealed and no further liberation of CO\(_2\) was observed even after heating above \(60^\circ\text{C}\) (see Figure S6 in the Supporting Information). The \(^1\text{H}\) NMR spectrum recorded at \(40^\circ\text{C}\) shows two sets of signals for different Me\(_2\)pz moieties in a 1:1 ratio, which suggests the formation of putative compound \([\text{Ce-(Me2pz)}_2\text{(Me2pz-CO2)}_2]\).

Recooling the solution did not reform 2-toluene quantitatively, likely because some of the liberated CO\(_2\) was no longer within the reaction medium, but the addition of fresh CO\(_2\) quantitatively reformed 2-toluene. The \([\text{D}_8]\)THF VT NMR experiment of compound 2-thf showed a different CO\(_2\)-deinsertion behavior (see Figure S10). As a consequence of competitive thf coordination, displacement of CO\(_2\) starts at \(10^\circ\text{C}\) and is complete at \(60^\circ\text{C}\), with formation of \([\text{Ce(Me2pz)}_2\text{(Me2pz-CO2)}_2]\). As seen in the experiment in \([\text{D}_8]\)toluene, this reaction is fully reversible by recouling the sample and subsequently

Figure 1. Crystal structure of \([\text{Ce(Me2pz-CO2)}_4]\) (2-toluene). Ellipsoids are shown at the 50\% probability level. Hydrogen atoms and lattice toluene are omitted for clarity. Selected bond lengths/angles are listed in the Supporting Information.

Scheme 2. Insertion of CO\(_2\) into the Ce–N(Me2pz) bond of \([\text{Ce-}

Scheme 3. Reversible insertion of CO\(_2\) into the Ce–N(Me2pz) bond.

The process is completely reversible in \([\text{D}_8]\)thf and partially reversible in \([\text{D}_8]\)toluene. The product arising from the elimination of CO\(_2\) in \([\text{D}_8]\)toluene has not been isolated; the structure is based on \(^1\text{H}\) NMR spectroscopic analysis at \(40^\circ\text{C}\).
introducing CO₂. Additionally, in situ IR measurements were performed at 60°C, which showed complete loss of inserted CO₂ and formation of free CO₂ (Figure 2 and see also Figure S88).

In the solid state, 2·toluene is stable for several weeks at –40°C, but at ambient temperature it partially loses CO₂ over a few days or when it is exposed to vacuum, as indicated by a color change from orange to dark red. A thermogravimetric analysis (TGA), performed under a flow of Ar and heating the sample slowly from 28°C to 250°C, indicated an initial loss of mostly lattice toluene. The liberation of CO₂ and small amounts of lattice toluene was dominant between 55 and 95°C, as revealed by a step of 21.92% (theoretical proportion of CO₂ in 2·toluene 19.98%). At 250°C, only nonvolatile parts of 2·toluene remain, leaving a mass of 49.79% of the initial weight (theoretical value 51.61%; see Figure S59). Although the deinsertion of carbon dioxide was achieved in the solid state, bulk compound 1 did not insert any carbon dioxide when stored under 1 bar CO₂ pressure for three days. Moreover, compound 1 was hydrolyzed upon exposure to air within one hour (DRIFT spectrum, see Figure S57).

[Ce(Me₂pz)₄(thf)] (1-thf) was treated with stoichiometric amounts of CO₂ to generate the putative [Ce-(Me₂pz)₂(Me₂pz·CO₂)₂] (Scheme 3). Although this species could not be isolated, it was possible to generate monoinserted [Ce(Me₂pz)₃(Me₂pz·CO₂)₃(thf)] (3) in moderate yields of 46% (Scheme 4). The crystal structure of ceric 3 shows a ring motif with two distinct 9-coordinate and one 10-coordinate cerium atoms (Figure 3). Although all the cerium centers are coordinated by three Me₂pz ligands in an \(\eta^1(N,N') \) fashion, Ce₁ connects further to two oxygen atoms of neighboring Me₂pz·CO₂ ligands as well as an additional thf molecule, 10-coordinate Ce₂ is surrounded by two \(\eta^2(N,O) \)-chelating Me₂pz·CO₂ ligands, and Ce₃ exhibits additional contacts to one \(\eta^1(N,O)-\text{Me}_2\text{pz}-\text{CO}_2 \) ligand and an oxygen atom of a neighboring Me₂pz·CO₂ ligand.

Each Me₂pz·CO₂ ligand bridges between two cerium atoms. In contrast to homoleptic 2, all the oxygen atoms are engaged in cerium bonding, which implies delocalized O–C–O bonds (av. C–O, 1.247 Å). The \(\eta^1(N,N')-\text{Ce}–\text{N(Me₂pz)} \) bond lengths are in the expected range.\[^{[24,27]}\] According to VT NMR studies carried out in \([D_8] \)-toluene, the trimetallic entity 3 is retained in solution at low temperatures, with every dimethylpyrazolato ligand showing a distinct signal set in the proton NMR spectrum at \(-80°C \) (see Figure S12). The signals for the protons of the bridging Me₂pz·CO₂ ligands are shifted upfield compared to those of the terminal \(\eta^1(N,N')-\text{Me}_2\text{pz} \) ligands. As a consequence of the equilibrium between potential alternative oligomers formed in the presence of only one equivalent of CO₂ per cerium, the interpretation of the ambient-temperature NMR spectrum was difficult. This was already experienced for the insertion of benzophenone into the Ce–N(Me₂pz) bond.\[^{[28]}\] Upon heating to 90°C, CO₂ was liberated and [Ce(Me₂pz)₃] re-formed (see Figure S14). After cooling to ambient temperature, a partial reinsertion of CO₂ was observed, as was found in the VT NMR experiments on 2·toluene and 2-thf.

Carbon Dioxide Insertion into a Cerous Pyrazolate: To examine the role of the oxidation state of cerium (Ce\(^{IV}\) versus Ce\(^{III}\)) and, therefore, the impact of its Lewis acidity, cerous donor-free [Ce₄(Me₂pz)₁₂]\(^{[29]}\) (4) was used as a precursor for CO₂ insertion (Scheme 5). Remarkably, while retaining
Ce$_4$ nuclearity, all of the Ce–N(Me$_2$pz) moieties engaged in CO$_2$ insertion, leading to the complex [Ce$_4$(Me$_2$pz-CO$_2$)$_{12}$]$_2$ (5; Figure 4). Compared to the six different coordination modes of the pyrazolato moieties in starting material 4,[28] the crystal structure of 5 revealed only three. Ce2, Ce3, and Ce4 form a nearly equilateral triangle bridged by μ$_1$κ$_2$(N,O):2κ(O):3κ$_3$-(O')-Me$_2$pz-CO$_2$. Each of the 9-coordinate cerium centers (Ce2, Ce3, and Ce4) is also surrounded by two terminal Me$_2$pz-CO$_2$ groups in a κ$_1$(N,O) coordination mode and two oxygen atoms in a κ$_2$(O,O') fashion (Figure S66). This triangle is capped by 9-coordinate Ce1, which is coordinated to three Me$_2$pz-CO$_2$ ligands in a κ$_1$(N,O) manner (Ce1–N$_{avg}$ 2.710 Å, Ce1–O$_{avg}$ 2.395 Å) and to three bridging oxygen atoms. The Ce–O bond lengths are similar to those found in [Ce-(L$_R$·CO$_2$)$_3$]$_2$ (L$_R$ = 2-O-3,5-iPr$_2$-C$_6$H$_2$(1-C[N(CH)$_2$N(R)]$_2$) and R = tPr and Mes) reported by Arnold et al. with Ce–O bond lengths of 2.466(6)–2.482(6) Å.[18] The O–C–O bond lengths indicate delocalization of the bridging Me$_2$pz-CO$_2$ ligands, with two C–O bond lengths in the same region (1.235(9)–1.264(9) Å) and rather localized C–O single (1.261(1)–1.301(9) Å) and C–O double bonds (1.21(1)–1.229(9) Å) for the capping and terminal Me$_2$pz-CO$_2$ ligands. For further comparison, the cerous carbamate [Ce$_4$(O$_2$CNPr$_2$)$_{12}$] features a lozenge arrangement of one 8-coordinate and three 7-coordinate CeIII centers with Ce–O bond lengths in the range 2.322(7)–2.746(7) Å (no Ce–N interaction).[29] The latter complex was obtained from the reaction of CeCl$_3$(DMF) with HNIPr$_2$ and CO$_2$ (Scheme 1f). In accordance with the crystal structure of cluster 5, DRIFTS measurements show strong absorption bands for both the C–O single bonds (ν = 1250–1350 cm$^{-1}$) and C–O double bonds (ν = 1600–1750 cm$^{-1}$). 1H DOSY NMR measurements on 5 in [D$_8$]toluene, [D$_8$]THF, or a [D$_8$]toluene/3,3-dimethyl-1,2-butylene oxide mixture revealed distinct diffusion coefficients (see Figures S17–S20) for the solvents employed and only one additional peak corresponding to a much larger species but correlating with every other signal in the proton NMR spectra. Calculation of the molar mass of this compound ([D$_8$]toluene: M_r = 1989 gmol$^{-1}$; [D$_8$]THF: M_r = 1643 gmol$^{-1}$; [D$_8$]toluene + 3,3-dimethyl-1,2-butylenoxide: M_r = 2357 gmol$^{-1}$) as a compact sphere-like molecule[30] suggests it exists as a tetrametallic (M_r = 2242 gmol$^{-1}$) or a non-monometallic species in solution. Treating [Ce(Me$_2$pz)$_2$(thf)$_2$] with CO$_2$ in [D$_8$]THF gave the same NMR spectrum as that of 5-toluene, thus indicating the formation of a multimetallic compound also in donor solvents (see Figure S16). TGA of 5-toluene also showed an initial loss of toluene (cf. 2-toluene), followed by a pronounced step (21.39 % weight loss) in the range from 52 to 90°C, consistent with the release of CO$_2$ (theoretical value: 16.75 %) and some lattice toluene (Figure S60). At 250°C, only the nonvolatile parts of 5-toluene remain and a total loss of 46.82 wt% compared to the starting material fits well with the theoretical value of 45.99 % for 10 molecules of toluene and 12 molecules of CO$_2$ eliminated from [Ce$_4$(Me$_2$pz-CO$_2$)$_{12}$]·10toluene (5-toluene).

Catalytic Formation of Cyclic Carbonates from CO$_2$ and Oxiranes: Having established the efficiency and reversibility of CO$_2$ insertion into Ce–N(Me$_2$pz) bonds, we were interested in any catalytic utilization. Accordingly, pyrazolate complexes 1 and 4 were probed as catalysts for the generation of cyclic carbonates from CO$_2$ and oxiranes. In the absence of CO$_2$, compound 1 interacts with epoxides, as indicated by a noticeable shift in the 1H NMR spectrum upon addition of one equivalent of 3,3-dimethyl-1,2-butylen oxide (see Figure S24). This is most likely due to formation of a donor adduct, which is considered a crucial step in Lewis-acid-catalyzed cycloaddition reactions. Even though such donor adducts were shown to be isolable (e.g. Tp$^{[1]}$Bu$_2$C$_6$H$_3$(1-C[N(CH)$_2$N(R)]$_2$), the putative [Ce(Me$_2$pz)$_4$(PO)] (1-PO) could not be isolated. Tetra-n-butylammonium bromide (TBAB) was employed as a co-catalyst, since it was shown to promote the highest activities in such cycloaddition reactions.[11b,32] The reaction was optimized for propylene oxide [31], the putative [Ce(Me$_2$pz)$_4$(PO)] (1-PO) could not be isolated. Tetra-n-butylammonium bromide (TBAB) was employed as a co-catalyst, since it was shown to promote the highest activities in such cycloaddition reactions.[11b,32] The reaction was optimized for propylene oxide [31], thus indicating the formation of a multimetallic compound also in donor solvents (see Figure S16). TGA of 5-toluene also showed an initial loss of toluene (cf. 2-toluene), followed by a pronounced step (21.39 % weight loss) in the range from 52 to 90°C, consistent with the release of CO$_2$ (theoretical value: 16.75 %) and some lattice toluene (Figure S60). At 250°C, only the nonvolatile parts of 5-toluene remain and a total loss of 46.82 wt% compared to the starting material fits well with the theoretical value of 45.99 % for 10 molecules of toluene and 12 molecules of CO$_2$ eliminated from [Ce$_4$(Me$_2$pz-CO$_2$)$_{12}$]·10toluene (5-toluene).

Catalytic Formation of Cyclic Carbonates from CO$_2$ and Oxiranes: Having established the efficiency and reversibility of CO$_2$ insertion into Ce–N(Me$_2$pz) bonds, we were interested in any catalytic utilization. Accordingly, pyrazolate complexes 1 and 4 were probed as catalysts for the generation of cyclic carbonates from CO$_2$ and oxiranes. In the absence of CO$_2$, compound 1 interacts with epoxides, as indicated by a noticeable shift in the 1H NMR spectrum upon addition of one equivalent of 3,3-dimethyl-1,2-butylen oxide (see Figure S24). This is most likely due to formation of a donor adduct, which is considered a crucial step in Lewis-acid-catalyzed cycloaddition reactions. Even though such donor adducts were shown to be isolable (e.g. Tp$^{[1]}$Bu$_2$C$_6$H$_3$(1-C[N(CH)$_2$N(R)]$_2$), the putative [Ce(Me$_2$pz)$_4$(PO)] (1-PO) could not be isolated. Tetra-n-butylammonium bromide (TBAB) was employed as a co-catalyst, since it was shown to promote the highest activities in such cycloaddition reactions.[11b,32] The reaction was optimized for propylene oxide, which gave almost quantitative conversion after 24 h under mild conditions. Using 0.5 mol % 1 or 0.25 mol % 4 and

![Scheme 5. Insertion of CO$_2$ into the Ce–N(Me$_2$pz) bonds of cerous [Ce$_2$(Me$_2$pz)$_2$].](image-url)

Figure 4. Crystal structure of [Ce$_4$(Me$_2$pz-CO$_2$)$_{12}$] (5). Ellipsoids are shown at the 50% probability level. Hydrogen atoms and lattice toluene (ten molecules) are omitted for clarity. Cutouts of the crystal structure of 5 and a schematic view of different Me$_2$pz-CO$_2$ binding modes, as well as selected bond lengths/angles are shown in the Supporting Information.
1 mol% TBAB without solvent at ambient temperature and 1 bar CO₂ pressure gave 93% conversion for the tetravalent catalyst and 98% for its trivalent counterpart (Table 1, entries 1 and 3). The CO₂-insertion complexes 2 and 5 displayed similar catalytic activity (entries 2 and 4). The conversion dropped drastically on increasing the steric bulk of the substituent on the epoxides. As a result, styrene oxide, and 3,3-dimethyl-1,2-butylene oxide showed only very low conversions (entry 21) for ceric and almost no conversion in the case of trivalent catalyst (entry 22). Moderate conversion was observed for 1,2-n-hexylene oxide with the tetravalent catalyst (entry 13). Conducting the catalysis at higher temperature increased the TONs with both catalysts and 4, and resulted in nearly quantitative conversion for both systems (entries 15 and 16). Without co-catalyst TBAB, showed moderate catalytic activity at 90 °C (entry 17). In almost all cases, tetravalent showed higher catalytic activity than cerous, which most likely results from the higher Lewis acidity of CeIV versus CeIII. To further evaluate the catalytic reaction with catalyst and propylene oxide, the TOFs at different stages of the catalysis were determined (see Table S1). After a short induction period, most likely corresponding to the insertion of CO₂ into, the TOF reached a maximum of 11 h⁻¹ within the first 3 h. For comparison, a TOF of 155 h⁻¹ was reported by Yao and co-workers when performing the reaction under 10 bar CO₂ pressure. Increasing the CO₂ pressure did not significantly affect the catalytic activity of compound (entries 13 vs. 18 and 21 vs. 23). However, a simultaneous increase of the temperature to 90 °C and the CO₂ pressure to 10 bar led to a marked improvement in the catalytic activity, resulting in TONs of up to 300 for the sterically demanding 3,3-dimethyl-1,2-butylene oxide (entries 24 and 26). The latter conditions were also applicable for the cycloaddition of CO₂ and cyclohexene oxide, an internal epoxide (entries 27–29). Having optimized the reaction conditions, we determined the initial turnover frequencies for the different epoxides (entries 5, 12, 20, and 25). As expected, the TOFs increased as the steric of the substituents bulk decreased, ranging from 24 to 196 h⁻¹ and giving almost quantitative conversion of propylene oxide after a reaction time of one hour (entry 5). Compared to the other catalyst systems based on rare-earth metals reported by Yao and co-workers (TOFs up to 440 h⁻¹) or by Otero and co-workers (3167 h⁻¹), our system shows only moderate catalytic activity under comparable conditions.

The mechanism of the cycloaddition of CO₂ and epoxides using tetraalkylammonium salts as co-catalysts has been discussed in detail. It is generally accepted that the epoxide is activated by coordination to a Lewis-acidic metal center followed by a nucleophilic ring-opening attack of the bromide to form a metal-alkoxy bond (Scheme 6). Subsequently, the alkoxide reacts with CO₂ and cyclizes to produce a cyclic carbonate. Hints that the mechanisms for the cycloaddition differ using ceric or cerous as the catalyst could be found when conducting the reactions with different amounts of catalyst loading (entries 7 and 9). This results in a change in the TONs for the tetravalent catalyst, whereas the TONs remained the same for trivalent complex. The occurrence of distinct reaction mechanisms is not surprising, as is a monometallic complex while is a tetrametallic compound in the solid state and in solution (for a more detailed possible mechanism see Scheme S1). Such a mechanism, involving multiple metal centers, was previously proposed for the bimetallic complex [Al(salen)]₂O by North and co-workers. However, any detailed information about the mechanism could not be retrieved from our catalyst system as the TOFs decreased enormously when the reactions were conducted in propylene carbonate (no significant conversion at ambient temperature after 24 h and ca. 10% conversion after 20 h at 90 °C) or any other solvent, which makes kinetic studies unfeasible.

Table 1: Catalytic formation of cyclic carbonates from epoxides and CO₂.

Entry	Catalyst	Substrate	Product	Conversion [%]	TON/Ce
1	1	3	93	93	
2	2	3	93	93	
3	4	4	98	98	
4	5	5	96	96	
5	1[^a]	1[^a]	98	196	
6	1[^a]	1[^a]	20	20	
7	4[^a]	4[^a]	8	8	
8	4[^a]	4[^a]	13	13	
9	4[^a]	4[^a]	6	12	
10	4-thf	4-thf[^b]	13	13	
11	4-thf[^b]	4-thf[^b]	7	14	
12	1[^a]	1[^a]	12	24	
13	1[^a]	1[^a]	61	61	
14	1[^a]	1[^a]	25	25	
15	1[^a]	1[^a]	98	98	
16	4[^a]	4[^a]	96	96	
17	1[^a]	1[^a]	25	25	
18	1[^a]	1[^a]	76	76	
19	6[^a]	3[^a]	3	3	
20	1[^a]	1[^a]	49	98	
21	1[^a]	1[^a]	12	12	
22	1[^a]	1[^a]	3	3	
23	1[^a]	1[^a]	9	9	
24	1[^a]	1[^a]	84	168	
25	1[^a]	1[^a]	14	28	
26	1[^a]	1[^a]	60	300	
27	1[^a]	1[^a]	2	2	
28	1[^a]	1[^a]	77	154	
29	1[^a]	1[^a]	35	175	

[^a] Reaction conditions if not otherwise noted: 1 bar CO₂ pressure and 0.5 mol% catalyst (1 mol% for 2 and 6; 0.25 mol% for 4 and 5) and 1 mol% co-catalyst for 24 h at ambient temperature in neat epoxide. [^b] 0.25 mol% catalyst 1 and 0.5 mol% TBAB, 24 h. [^c] 0.125 mol% catalyst 4 and 0.5 mol% TBAB, 24 h. [^d] 0.5 mol% catalyst 1 and 1 mol% TBAB, 24 h, 90 °C. [^e] 0.25 mol% catalyst 4 and 1 mol% TBAB, 24 h, 90 °C. [^f] At 90 °C without TBAB as a co-catalyst. [^g] 0.5 mol% catalyst 1 and 1 mol% TBAB, 24 h, 10 bar CO₂ pressure. [^h] 0.25 mol% catalyst 1 and 0.5 mol% TBAB, 24 h, 90 °C, 10 bar CO₂ pressure. [^i] 0.25 mol% catalyst 1 and 0.5 mol% TBAB, 1 h, 90 °C, 10 bar CO₂ pressure. [^j] 0.1 mol% catalyst 1 and 0.2 mol% TBAB, 24 h, 90 °C, 10 bar CO₂ pressure.
The 8-coordinate cerium center bears four \(\text{CO}_2 \) in stoichiometric amounts in \([\text{D}_8] \text{toluene under 1 bar CO}_2\) during the catalytic studies and when combining \([\text{Ce(Me}_2\text{pz·CO}_2)_4][\text{NBu}_4]\) (the presence of TBAB to afford cerous species). Catalytic reactions. The crystal structure of 2·toluene molecules of \(\text{CO}_2 \) within one complex, respectively. The gram complex and via the controlled activation of 12 \([\text{Ce}_4(\text{Me}_2\text{pz})_{12}] \) at an amount equivalent to 5.7 mmol \(\text{CO}_2 \) per Angew. Chem. Int. Ed.

Conclusion

We have shown that carbon dioxide easily inserts into the \(\text{Ce} - \text{N(\text{Me}_2\text{pz})} \) bond of both ceric \([\text{Ce} (\text{Me}_2\text{pz})_2]_3\) and cerous \([\text{Ce}_2(\text{Me}_2\text{pz})_3]_2\) at an amount equivalent to 5.7 mmol \(\text{CO}_2 \) per gram complex and via the controlled activation of 12 molecules of \(\text{CO}_2 \) within one complex, respectively. The insertion process is reversible both in solution and in the solid state, with \(\text{CO}_2 \) desorption being complete at \(< 100^\circ \text{C}\). Both trivalent and tetravalent cerium pyrazolate complexes are active catalysts for the cycloaddition of epoxides and carbon dioxide with TBAB as a co-catalyst under mild conditions. We are currently investigating the carbon dioxide capture performance of silica-grafted variants of Ce-pyrazolates, and our findings might also stimulate research in the area of cerium-dipyrzolate-based \(\text{CO}_2 \)-"breathable"/expandable MOFs.

Acknowledgements

We thank Prof. Doris Kunz for providing access to ReactIR 15 for in situ IR measurements, and the working group of Prof. H.-Jürgen Meyer for conducting the TGA measurements.

Conflict of interest

The authors declare no conflict of interest.

Keywords: carbon dioxide · cerium · cycloaddition · epoxides · pyrazolates

How to cite: Angew. Chem. Int. Ed. 2020, 59, 5830–5836
Angew. Chem. 2020, 132, 5879–5885

[1] a) F. Falkowski et al., Science 2000, 290, 291–296; b) S. Solomon, H.-K. Plattner, R. Knutti, P. Friedlingstein, Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709; c) R. S. Haszeldine, Science 2009, 325, 1647–1652; d) W. Keith, Science 2009, 325, 1654–1655; e) N. von der Assen, P. Voll, M. Peters, A. Bardow, Chem. Soc. Rev. 2014, 43, 7982–7994.

[2] For review articles, see a) D. M. D’Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058–6082; Angew. Chem. 2010, 122, 6194–6219; b) C.-H. Yu, C.-H. Huang, C.-S. Tan, Aerosol Air Qual. Res. 2012, 12, 745–769; c) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herr, T.-H. Bac, J. R. Long, Chem. Rev. 2012, 112, 724–781; d) E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, C. W. Jones, Chem. Rev. 2016, 116, 11840–11876; e) Y. Lin, C. Kong, Q. Zhang, L. Chen, Adv. Energy Mater. 2017, 7, 1601296.

[3] For review articles, see a) T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365–2387; b) G. Centi, S. Perathoner, Catal. Today 2009, 148, 191–205; c) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510–8537; Angew. Chem. 2011, 123, 8662–8690; d) M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709–1742; e) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933; f) J. Arzt, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434–504.

[4] A. Paparo, J. Okuda, Coord. Chem. Rev. 2017, 334, 136–149.

[5] a) A. Goepbert, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah, S. R. Narayanan, J. Am. Chem. Soc. 2011, 133, 20164–20167; b) F. Inagaki, C. Matsumoto, T. Iwata, C. Mukai, J. Am. Chem. Soc. 2017, 139, 4639–4642.

[6] a) S. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870–10871; b) T. M. McDonald et al., Nature 2015, 519, 303–308.

[7] Y. F. Radkov, E. A. Fedorova, S. Y. Khorshev, G. A. Kalinina, M. N. Bochkarev, G. A. Razuvaev, Zhur. Obshchei Khimii 1986, 56, 386–389.
For a recent study on Ce(CN)$_3$ silylamides, see H. Yin, P. J. Carroll, E. J. Schelter, Chem. Commun. 2016, 52, 9813–9816.

M. N. Bochkarev, E. A. Fedorova, Y. F. Radkow, S. Y. Khorshev, G. S. Kalinin, G. A. Razuvayev, J. Organomet. Chem. 1983, 258, C29–C33.

For examples of CO$_2$ insertion into Ln(n)-aryloxy bonds, see a) D. Cui, M. Nishiura, O. Tardif, Z. Hou, Organometallics 2008, 27, 2482–2435; b) L. A. M. Steele, T. J. Boyle, R. A. Kemp, C. Moore, Polyhedron 2012, 42, 258–264.

a) J. Qin, P. Wang, Q. Li, Y. Zhang, D. Yuan, Y. Yao, Chem. Commun. 2014, 50, 10952–10955; b) J. Martínez, J. Fernández-Baeza, L. F. Sánchez-Barba, J. A. Casto-Asma, A. Lara-Sánchez, A. Otero, ChemSusChem 2017, 10, 2886–2890; c) Z. Zhao, J. Qin, C. Zhang, Y. Wang, D. Yuan, Y. Yao, Inorg. Chem. 2017, 56, 4568–4575.

d) Cui, M. Nishiura, Z. Hou, Macromolecules 2005, 38, 4089–4095; b) D. V. Vitanova, F. Hampel, K. C. Hultsch, J. Organomet. Chem. 2005, 690, 5182–5197; c) B. Lazarov, F. Hampel, K. C. Hultsch, Z. Anorg. Allg. Chem. 2007, 633, 2367–2373; d) Z. Zhang, D. Cui, X. Liu, J. Polyn. Sci. Part A 2008, 46, 6810–6818; e) A. Decortes, R. M. Haak, C. Martin, M. M. Belmonte, E. Martín, J. Benet-Buchholz, A. W. Kleij, Macromolecules 2015, 48, 8197–8207; f) J. Qin, B. Xu, Y. Zhang, D. Yuan, Y. Yao, Green Chem. 2016, 18, 4270–4275.

For the use of organosamarium(III) complexes in the catalytic hydrosilylation of CO$_2$, see a) A. Berkefeld, W. E. Piers, M. Parvez, L. Castro, L. Maron, O. Eisenstein, Chem. Sci. 2013, 4, 2125–2162; b) F. A. LeBlanc, W. E. Piers, M. Parvez, Angew. Chem. Int. Ed. 2014, 53, 789–792; Angew. Chem. 2014, 126, 808–811.

For a recent study on Ce(III) silylamides, see H. Yin, P. J. Carroll, C. H. Booth, E. J. Schelter, Inorg. Chem. 2013, 52, 11600–11607.

M. Begtrup, J. Elguero, R. Faure, P. Camps, C. Estopí, D. Ilavsky, A. Fruchier, C. Mazzin, J. de Mendoza, Magn. Reson. Chem. 1988, 26, 134–151.

D. Werner, G. B. Deacon, P. C. Junk, R. Anwander, Eur. J. Inorg. Chem. 2017, 3419–3428.

H. C. Aspinall, J. Bacs, A. C. Jones, J. S. Wrench, K. Black, P. R. Chalker, P. J. King, P. Marshall, M. Werner, H. O. Davies, et al., Inorg. Chem. 2011, 50, 11644–11652.

J. A. Bogart, A. J. Lewis, S. A. Medling, N. A. Piro, P. J. Carroll, C. H. Booth, E. J. Schelter, Inorg. Chem. 2013, 52, 11600–11607.

M. Bergtrup, J. Elguero, R. Faure, P. Camps, C. Estopí, D. Ilavsky, A. Fruchier, C. Mazzin, J. de Mendoza, Magn. Reson. Chem. 1988, 26, 134–151.

D. Werner, G. B. Deacon, P. C. Junk, R. Anwander, Dalton Trans. 2017, 46, 6265–6277.

D. Werner, U. Bayer, N. E. Rad, P. C. Junk, G. B. Deacon, R. Anwander, Dalton Trans. 2018, 47, 5952–5955.

U. Baisch, D. B. Dell’Amico, F. Calderazzo, L. Labella, F. Marchetti, D. Vitali, J. Mol. Catal. B 2014, 80, 204–205, 259–265.

S. Bachmann, B. Kernert, D. Stalke, Chem. Commun. 2016, 52, 12681–12684.

M. H. Chisholm, J. C. Gallucci, K. Phromphai, Inorg. Chem. 2004, 43, 6717–6725.

W. Clegg, R. W. Harrington, M. North, R. Pasquale, Chem. Eur. J. 2010, 16, 6828–6843.

a) D. J. Darenbourg, M. W. Holcamp, Coord. Chem. Rev. 1996, 153, 155–174; b) H. Jing, T. Chang, L. Jin, M. Wu, W. Qiu, Catal. Commun. 2007, 8, 1630–1634; c) J. Meléndez, M. North, R. Pasquale, Eur. J. Inorg. Chem. 2007, 3232–3326; d) F. Jutz, J.-D. Grunwaldt, A. Baiker, J. Mol. Catal. A 2008, 279, 94–103; e) F. Jutz, J.-D. Grunwaldt, A. Baiker, J. Mol. Catal. A 2009, 297, 63–72; f) M. North, R. Pasquale, Angew. Chem. Int. Ed. 2009, 48, 2946–2948; Angew. Chem. 2009, 121, 2990–2992.

Y. Liang, R. Anwander, Dalton Trans. 2013, 42, 12521–12545.

For Ce$^{3+}$ carboxylate MOFs, see a) P. J. Ti, T. Sawano, Z. Lin, A. Urban, D. Bours, W. Lin, J. Am. Chem. Soc. 2013, 135, 14860–14863; b) X. P. Wu, L. Gagliardi, D. G. Truhlar, J. Am. Chem. Soc. 2018, 140, 7904–7912.

For examples of dipyrrolyl-based MOFs, see a) H. J. Choi, M. Dinca, J. R. Long, J. Am. Chem. Soc. 2008, 130, 7848–7850; b) M. Tonigold, Y. Lu, B. Brenkötter, B. Rieger, S. Bahnmüller, J. Hitzbleck, G. Langstein, D. Volkmer, Angew. Chem. Int. Ed. 2009, 48, 7546–7550; Angew. Chem. 2009, 121, 7682–7687; c) N. M. Padial, E. Q. Procopio, C. Montoro, E. López, J. E. Oltra, V. Colombo, A. Maspero, N. Masciocchi, S. Galli, I. Senkovska, S. Kaskel, E. Barja, J. A. R. Navarro, Angew. Chem. Int. Ed. 2013, 52, 8290–8294; Angew. Chem. 2013, 125, 8448–8452; d) Z. R. Herm, B. M. Wiers, J. A. Mason, M. R. Hudson, P. Jutz, C. M. Brown, N. Masciocchi, R. Krishna, J. R. Long, Science 2013, 340, 960–964; e) C. A. Mason, J. Oktawiecz, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi, J. R. Long, Nature 2015, 527, 357–363.

Manuscript received: December 23, 2019
Accepted manuscript online: January 9, 2020
Version of record online: January 30, 2020