The Prevalence of Musculoskeletal Lesions in Badminton Players - a Study Regarding the Primary and Secondary Prevention Strategies

Popa Corina ¹
Oravițan Mihaela ²*

¹,²West University of Timișoara, Blv. Vasile Pârvan, 4, 300223, Romania

Keywords: badminton, injuries, prevention

Abstract

The practice of badminton predisposes to certain injuries, in addition to the many benefits it brings to the body. Our purpose was to identify those specific prevention means which can improve physical training and recovery sessions in order to obtain a more effective prevention of the specific injuries. A questionnaire designed in order to assess the particularities of warming, post-exercise recovery and prevalence of musculoskeletal injuries was applied to 35 players. From the musculoskeletal declared injuries, 77.35% were joint damages, 18.87% - muscle damages and 3.78% - bone lesions. The prevalence of traumatic injuries was not correlated with the particularities of age, sex, body mass index, the level of hydration, the presence of stretching as part of the physical training or warming duration. We concluded that the training must include some primary and secondary prevention methods and techniques and the main elements should be the stretching, proprioceptive coordination and plyometric exercises associated with an appropriate post-exercise recovery.

1. Introduction

Injuries of the locomotor apparatus in badminton are common especially in performance sport and affect both competitiveness and quality of life of badminton players. Although in Romania very few studies on this issue were made, at international level, particularly in countries where this sport is widespread practiced, surveys that reveal both the incidence and prevalence of this kind of injuries and their impact on athletes (physical inactivity days, sequelae, relapses etc.) were published.

A review of injury incidence at professional badminton players from Hong Kong, has shown that injuries in this sport have an incidence of 5.04 cases per 1,000 played hours; out of a total of 253 injuries, more than half (128) were relapses, and the most common injuries were localized on back, shoulders, hips and

*E-mail: mihaela.oravitan@e-uvt.ro, tel. 0256592129
knees (Yung, Chan, Wong, Cheuk & Fond, 2007); another study conducted in Malaysia confirmed the predominance of traumatic lesions of the knee (Shariff, George & Ramlan, 2009).

A prospective study of one year, made on 100 players that were registered and treated at a hospital in Denmark, showed that they had 17% - minor lesions, 56% - moderate lesions and 27% - severe lesions (especially in players above 25 years) according to AIS (Abbreviated Injury Scale); 9% of sports injuries in that year were related to a previous injury; the study highlights that 12% of the injured players gave up badminton practice after injury, while 28% gave up sports activities and competitions for a period of at least 2 months (Hoy, Lindblad, Terkelsen & Helleland, 1994); according to a similar study, 58.5% of recorded injuries were represented by joint damage (especially of ligaments) and 19.8% of athletes had muscle injuries (mostly minor), occurred mainly in lower limbs and at players aged over 30 years (Kroner et al., 1994).

2. Material and methods

The hypothesis of this work is that highlighting the prevalence of the main types of musculoskeletal lesions in badminton associated with a proper application of primary and secondary prevention methods may be useful for achieving our goal - the improvement of training and/or recovery programs by adapting them to the particularities of this sport and to its specific pathology.

We developed a questionnaire in order to obtain information related to the injuries occurred in badminton players, as well as some information about specific training, the post-effort recovery thus to highlight the existence of predisposing factors of these injuries.

The questionnaire was conducted using http://docs.google.com and included 24 questions; 40 subjects were randomly selected from groups of amateur and performance players; the questionnaire was sent to these people by e-mail.

The first part of the questionnaire provided us with information of age, sex, anthropometric data: height, weight (with which was then the body mass index - BMI calculated for each participant), the period of time in which they played badminton (length of practice), the status of the player (amateur or professional), sports club affiliation, maximum performance, the number of workouts per week, their duration and warming particularities, hydration, which are the recovery methods used after exercise, if they had been diagnosed with any physical deficiencies (especially of the spine).

The second part of the questionnaire was completed only by those who had suffered musculoskeletal injuries and were requested, in this context, the following information for each injury: diagnosis, the followed treatment (medical, surgical, cast immobilisation or orthotics etc.), rehabilitation program (electrotherapy, hydrotherapy, physical therapy etc.), the imposed inactivity period (without training and/or competitions) and if it had been respected and, finally, if there had been taken some measures after rehabilitation in order to prevent relapses, as a secondary prevention strategy.
We particularly took into consideration the musculoskeletal injuries (of muscles, joints and bones) which occurred during training or competitions.

Out of the 40 badminton players who received the questionnaire, 35 have completed it, giving us a prior consent for use or publication of obtained data in our study.

For the statistical analysis Microsoft Excel Office 2010 software was used.

3. Results and Discussions

Through the first part of the mentioned questionnaire general information about the study group and data regarding the particularities of physical training program of each player were obtained (some of these results, are presented, as arithmetic means, in Table 1).

Table 1. Study group parameters

Parameters	Values
Age (years)	34.09 ± 10.00
Weight (kg)	69.06 ± 14.48
Height (m)	1.71 ± 7.94
BMI (kg/m²)	27.30 ± 3.76

*The values are presented as arithmetic means ± standard deviation

Most athletes included in the study were from Timisoara (54.29%) and some from Bucharest (11.43%), Târgu-Mureș (8.57%), Iași (8.57%).

From the total of participants in this study, 23 (65.7%) are playing at amateur category and 12 (34.3%) play at performance level. The average number of weekly training sessions was 2.97±1.38, the training period -10.89±8.31 years; regarding the particularities of warming, we found out that the average duration was 9.20±2.47 minutes and stretching exercises were made by 91.43% of the participants.

16 (45.71%) respondents consume less than 1.5l water/day, and the rest hydrate themselves relatively fair.

Post-exercise recovery methods are reduced in the case of 19 cases (54.29%) only to hydration (2 athletes, representing 5.71% of the study group), or rest (3 competitors, 8.57% of total) or both (14 athletes representing 40% of the study group); at less than half of them (45.71% - 16 people), associate other specific recovery methods to hydration and rest; only 2 people associated specific medication to recovery process, other 2 consume rebalancing fluids, and massage and/or saunas are used as means of recovery by other 5 athletes.

The second part of the questionnaire was completed, as previously mentioned, only by those who had musculoskeletal injuries during training or
Poșa C., Oravitan M. / Gymnasium

competitions (88.57%) (Figure 1).

![Pie chart showing the number of participants with/without injuries (41 with injuries, 31 without injuries).]

Figure 1. No. of participants with/without traumatic lesions occurred during training sessions or competitions

From the 53 declared musculoskeletal injuries, 41 were joint injuries and 10 - muscular lesions (Figure 2).

![Bar chart showing the number of cases for each type of traumatic lesion: sprains (23), meniscal lesions (18), muscular lesions (10), and bones lesions (2).]

Figure 2. Traumatic lesions types in the study group

There were reported 7 grade III and 4 grade II ankle sprains and 9 third degree knee sprains (most with complete tears of the anterior cruciate ligament), 2 second degree (with damaging of anterior or posterior cruciate ligament) and a first grade knee sprain (with anterior cruciate ligament injury); there were reported 18 cases of meniscal injuries - mostly in internal meniscus (14, of which 9 at right knee and 5 at the left one).

By analysing the affected side, it can be easily observed that injury reports are in “favour” of the right side of the body with a ratio of about 2:1, which is the dominant part in most athletes (Table 2).

On the second place as lesion type were the muscle injuries (5 fibrillar and fascicular ruptures and 5 cases of tendon injuries); muscle ruptures were localized in the adductor muscles (longus and magnus), soleus, gastrocnemius, and quadriceps femoris muscles.
The tendon lesions were diagnosed as tendinosis, tendinitis or tenosynovitis at the right elbow extensors (3 cases), ulnar extensor carpi (1 case), quadriceps femoris (1 case) and a case of rupture of the Achilles tendon.

2 bone lesions were reported: 1 distal phalanx fracture of the right toe and 1 heel spur in the right foot).

After injuries, all players were recovered and confirmed that had adapted their training program (mainly referring to the process of local warming and decreasing the solicitation of previously affected area, by using special orthotics).

By calculating the Pearson coefficient between the presence of injuries and other types of information collected, we found no significant values for r; thus, we have not found significant correlation between the presence of the injury and the degree of hydration (r=0.093), practitioners' age (r=0.128), the number of recovery methods (r=0.156), the number of workouts per week (r=0.082), the number of muscle groups on which stretching have been applied (r=-0.132) or warming duration (r=-0.004). The number of injuries is not correlated either with the performance level, or body mass index.

The results of our study confirm that the injuries of badminton players from the study group were not favoured by age, degree of hydration, complexity of recovery, warming duration or the stretching complexity in training; although we would have expected a correlation with the presence of at least one of these factors, remains questionable the accuracy of information provided by the participants.

Considering that all information received from them were correct, we conclude that the injuries could be prevented probably in other way - increasing the quality of the following elements: hydration, stretching, recovery etc., in addition to the use of certain specific exercises for increasing the proprioceptive coordination and balance, and for the strength-speed development.

Although at performance level, the requests are higher in general, the players do not have considerably more injuries, may be because at that level, players does not make great mistakes in physical training, warming etc. We may add that the
BMI is not important as a predisposing factor in our study because 82.86% participants have a normal BMI (only 6 participants are overweight and none obese).

Racquet sports require an increased endurance of the joints, muscular and cardiovascular systems. Knees and ankles are the most solicited joints in accelerated movements and quick changes of direction; this aspect is supported by a large number of injuries reported in these joints; also, the repeated ample movements of the upper limb during services are challenging these limbs, and especially the shoulders; repeated overhead actions can produce bursitis, rotator cuff tears or impingement syndrome. Lower back pain can occur also due to over-extension of the spine.

The hip adductor muscles, wrist muscles may be also affected by the repetitive or sudden contractions during the game. In badminton, a special coordination and balance, excellent stability of the legs for the rapid changes of direction are also necessary; a good range of motion, strength and speed are required when the players hit the ball and, also, a good stability in order to transfer the power is essential (British Medical Association, 2011).

During warming, the body temperature should increase slightly, with a small load of the cardiovascular system and should include all muscle groups used in the game. Physical training should be centred on developing strength, power and cardiovascular fitness; thus, interval training for cardio-vascular system combined with plyometric exercises for developing power will be indicated.

Stretching has two important roles for badminton players: in preventing injuries and in increasing performance (Norris, 2013), even, if, after some authors (Hausswirth & Mujika, 2010), stretching does not improve maximal strength, rate of force development, vertical jumps (indicators of explosiveness) or time to exhaustion; in racquets sports, the hips, upper body (especially the shoulders) and back are under a considerable strain; also, the wrists, elbows and ankles must be flexible in order to perform effectively on court (Norris, 2013).

Flexibility can be developed especially through stretching; it will reduce stiffness and thus, the risk of injury; types of stretching which are recommended in badminton are passive and active (isometric, ballistic sport) ones; stretching is particularly important for both warming and for the end of the training; stretching alone is not generally effective as a recovery method and has sometimes contraindications; quoting Hausswirth et al. (2010), stretching should be avoided immediately after muscle strengthening sessions or specific physical activities that induce muscle soreness.

An important stretching exercise for badminton players is "sleeper stretch" which involves the stretching of the posterior scapular-humeral joint capsule which is particularly important in preventing posterior shoulder tightness and glenohumeral internal rotation deficit (Mine, Nakayama, Milanese & Grimmer, 2016) or impingement syndrome (Manske, Grant-Niemand & Brennen, 2013).

Increasing strength of the muscles that are frequently solicited or injured in badminton should also be an important part of the physical preparation; an effective
exercise is called "lawnmower", which is dedicated to the rotator cuff muscles in the upper and middle back; it helps developing the coordination between the upper and lower parts of the back and increases the control over the shoulders.

The ability to generate power is critical in performance and success in badminton. A plyometric program improves the coordination, efficiency, speed and power in preparation for sport participation (Houglum, 2010); in badminton, plyometric training have an important role in improving lower body strength and stability. It is demonstrated that lower extremity plyometric exercises reduce injuries in team sports, while combined with other neuromuscular training (i.e. strength training, balance training and stretching); on the other hand, plyometric exercises involve an increased risk of injury due to the large force generated during training and requires a good strength, flexibility and proprioception (De Bremæcker, 2013).

To minimize the risk of injury, warm-up training is recommended to prepare the athlete in terms of coordination and muscle pre-stress for the challenges ahead. Plyometric exercises include jumps and sideways hopes in all forms and can be done based on the needs of each athlete, being individualized also on age, body weight, competitive level, surface, footwear, proper technique, progression and goals; also, a rest of between one and two minutes is suggested and reactive jumps on the court floor are recommended (Fröhlich, Felder & Reuter, 2014) and, in addition, we must take into consideration the precautions and contraindications for plyometric training both in rehabilitation and training (Houglum, 2010).

The importance of hydration in sport and mental performance and also in rehabilitation processes is well known. Even if the low hydration level of our study group is not correlated with the prevalence of injuries, it is recognized that the performance quality and the safety of the players depend largely on an adequate hydro-electrolytic balance; that includes, beside a proper hydration, also the electrolyte replacement during recovery (Hausswirth et al., 2010) This last one aspect is present only for a few players from our study group.

We consider that the mentioned changes should be included, where appropriate, in physical training programs of the players in order to improve their performance level; it will also be useful to monitor the recurrence rate of injuries among them.

4. Conclusions

Soft tissue injuries of the lower limbs (especially, ligaments and muscles) are the most common injured tissues in badminton players, data which is confirmed also by the available data in scientific literature; the lesions are more common in older age groups, but have not confirmed any link between injuries and gender. Sprains remain the most common injury of young players, while muscle injuries (including tendon lesions) dominate in senior players.

Although they are rare in badminton compared to other competitive sports, the serious injuries can appear also, requiring specialist treatment and a longer rehabilitation period. Individualized training programs are a necessity in this sport,
given the high rate of recurrence of lesions; they must include primary and secondary prevention methods, where the main elements should be stretching, proprioceptive coordination and plyometric exercises, and also post-exercise recovery methods suitable for the athletes' needs.

Although at the athletes followed in this study significant correlations between the occurrence of injuries and age, number of workouts, warming duration, realization of stretching were not found, we conclude that prevention of injury could depend on increasing the recovery and warming quality, the use of certain specific exercises for proprioceptive coordination, balance and for development of strength in speed regime.

References

1. BRITISH MEDICAL ASSOCIATION. (2011). *The BMA Guide to Sports Injuries – The essential step-by-step guide to prevention, diagnoses, and treatment*, London: Dorling Kindersley.
2. DE BREMAEKER, M. (2013). *Plyo-Flex*, Wethersfield: Turtle Press, 11-15;
3. FRÖHLICH, M., FELDER, H., & REUTER, M. (2014). Training effects of plyometric training on jump parameters in D- and D/C – squad badminton players, *Journal of Sports Research, 1*(2): 22-33;
4. HAUSSWIRTH, C., & MUJIKA, I. (2010). *Recovery for performance in sport*, Champaign: Human Kinetics, 71-81;
5. HOUGLUM, P.A.(2010). *Therapeutic exercise for musculoskeletal injuries*, 3rd Edition, Champaign: Human Kinetics, 271-294;
6. HOY, K., LINDBLAD, B.E., TERKELEN, C.J., & HELLELAND, H.E. (1994). Badminton injuries – a prospective epidemiological and socioeconomic study, *British Journal of Sport Medicine, 28*(4): 276-279;
7. MINE, K., NAKAYAMA, T., MILANESE , S., & GRIMMER K. (2016). Effectiveness of stretching on posterior shoulder tightness and glenohumeral internal rotation deficit: a systematic review of randomised controlled trials, *Journal of Sport Rehabilitation, 24*(2): 1-28;
8. KRONER, K., SCHMIDT, S.A., NIELSEN, A.B., YDE, J., JOCOBSEN, B.W., MOLLER-MADSEN, B., & JENSEN, J. (1994). Badminton injuries, *British Journal of Sport Medicine, 24*(3): 169-172;
9. MANSKE, R.C., GRANT-NIERMANN, M., & BRENNEN, L. (2013). Shoulder posterior impingement in the overhead athlete, *Int J Sports Phys Ther, Apr, 8*(2): 194-204;
10. NORRIS, C.M. (2013). *Stretching for racquet sports*, London: Bloomsbury, 21-25;
11. SHARIFF, A.H., GEORGE, J., & RAMLAN, A.A. (2009). Musculoskeletal injuries among Malaysian badminton players, *Singapore Med. J., 50*(11): 1095-1097;
12. YUNG, P.S., CHAN, R.H., WONG, F.C., CHEUK, W.P., & FOND, D.T. (2007). *Epidemiology of injuries in Hong Kong elite badminton athletes*, Res Sports Med., Apr-Jun;15(2): 133-46;
Prevalența Leziunilor Musculo-Scheletale la Jucătorii de Badminton - Studiu privind Strategiile de Prevenție Primară și Secundară

Popa Corina 1
Oravițan Mihaela 2

1,2Universitatea de Vest din Timișoara, Blv. Vasile Pârvan, 4, 300223, Romania

Cuvinte cheie: badminton, leziuni traumatice, prevenție

Rezumat
Practicarea badmintonului predispune la apariția anumitor leziuni, pe lângă numeroasele beneficii pe care le aduce organismului. Scopul nostru a fost identificarea acelor mijloace care pot îmbunătăți programele de antrenament și de recuperare în vederea unei mai eficiente prevenții a leziunilor traumatice specifice. Un chestionar conceput în vederea evaluării particularităților încălzirii, a refacerii post-efort și a leziunilor traumatice specifice a fost aplicat unui grup de 35 de jucători. Dintre leziunile musculo-scheletale declarate, 77,35% au fost leziuni articulare, 18,87% au fost afectări musculare și 3,78% - leziuni osoase. Apariția leziunilor traumatice nu s-a corelat cu particularitățile de vârstă, sex, indice de masă corporală, dar nici cu nivelul de hidratare, cu prezența stretching-ului ca parte componentă a pregătirii sau cu durata încălzirii. Am concluzionat că antrenamentul trebuie să includă metode și tehnici de kinetoprofilaxie primară și secundară în care elementele principale trebuie să fie stretching-ului, exercițiile de coordinare proprioceptivă și cele pliometrice, asociate cu metode de refacere post-efort corespunzătoare.

1. Introducere
Leziunile aparatului locomotor în badminton sunt specifice, cu precădere, activității de performanță și afectează atât nivelul competitivității, cât și calitatea vieții jucătorilor de badminton. Deși în România s-au realizat foarte puține studii în acest sens, la nivel internațional, în special la nivelul țărilor cu tradiție în practicarea badmintonului, s-au publicat studii care au evidențiat atât incidența cât și prevalența acestor tipuri de leziuni, precum și impactul asupra sportivilor (zile de inactivitate fizică, sechele, recidive etc.).

O recenzie privind incidența traumatismelor la jucătorii de badminton profesioniști din Hong Kong a arătat că traumatismele în acest sport au o incidență de 5,04 la 1000 de ore de joc; din totalul celor 253 de traumatisme, mai mult de jumătate (128) au fost recidive, iar cele mai multe leziuni au fost localizate la spate, umeri, șolduri și genunchi (Yung, Chan, Wong, Cheuk & Fond, 2007); un alt studiu realizat în Malaezia a confirmat predominanța leziunilor la nivelul genunchilor (Shariff, George & Ramlan, 2009).

Un studiu prospectiv, realizat pe o perioadă un an, pe 100 de jucători care au fost înregistrați și tratați într-un spital din Danemarca, a arătat, conform AIS
Poșa C., Oravițan M. / Gymnasium

(Abbreviated Injury Scale – Scala abreviată a leziunilor), că în 17% din cazuri au fost leziuni minore, 56% - leziuni moderate și 27% - leziuni severe (apărute, în special, la jucătorii de peste 25 de ani); 9% din leziuni au fost legate de o accidentare anterioară; studiul a evidențiat și faptul că 12% din jucătorii accidentați au renunțat la a practica badmintonul după traumatism, în timp ce 28% nu au practicat activități sportive și competiționale o perioadă de cel puțin 2 luni (Hoų, Lindblad, Terkelsen & Helleland, 1994); potrivit unui studiu similar, 58,5% din leziunile înregistrate au fost leziuni articulare (în special, ligamentare) și 19,8% din sportivi au avut leziuni musculare (majoritatea minore) apărute preferențial la membrul inferior și la jucătorii de peste 30 de ani (Kroner et al., 1994).

2. Material și metode

Ipoteza acestui studiu este aceea că prin evidențierea prevalenței principalelor tipuri de leziuni musculo-scheletale apărute la jucătorii de badminton asociat cu aplicarea corespunzătoare a metodelor de prevenție primară și secundară poate fi utilizată în realizarea scopului nostru - acela de a îmbunătăți procesul de antrenament și/sau de refacere prin adaptarea acestor metode la particularitățile jocului și a patologiei specifice acestuia.

Am realizat un chestionar cu scopul de a obține informații legate de leziunile suferite de jucătorii de badminton, precum și a unor date privind antrenamentul fizic specific, refacerea post-effort pentru a evidenția existența unor factori predispozanți ai acestor leziuni.

Chestionarul a fost realizat folosind http://docs.google.com și a inclus 24 de întrebări; cele 40 de jucători de badminton amatori și de performanță din eșantionul randomizat le-a fost trimis chestionarul prin e-mail.

Prima parte a chestionarului ne-a furnizat informații privind vârsta, sexul, anumite date antropometrice: talie, greutate corporală (care ne-a permis și calcularea indicelui de masă corporală – IMC, pentru fiecare participanță), perioada cât a practicat badmintonul, statutul de jucător (amator sau de performanță), afilierea sportivă (apartenența la un club), performanța maximă obținută ca jucător, numărul de antrenamente pe săptămână, durata acestora, particularitățile încălzirii, hidratarea, metodele de refacere post-effort utilizate, prezența unor deficiențe fizice (în special, la nivelul coloanei vertebrale).

A doua parte a chestionarului a fost completată doar de cei care au suferit leziuni musculo-scheletale și, în acest context, au fost solicitate informații specifice pentru fiecare accidentare: diagnosticul, tratamentul urmat (medicamentos, chirurgical, imobilizare ghipsată sau în orteze etc.), programul de reabilitare recomandat (electroterapie, hidroterapei, kinetoterapie etc.), perioada de inactivitate impusă (fără antrenamente și/sau competiții), dacă au fost respectate și dacă au fost luate anumite măsuri pentru prevenția recidivelor, ca o strategie de profilaxie secundară.

Am luat în calcul doar leziunile musculo-scheletale (ale mușchilor, articulațiilor și oaselor) care au survenit în timpul antrenamentelor și competițiilor.

Din cei 40 de jucători de badminton la care a fost trimis chestionarul, 35 l-au
completat, după ce și-au dat, în prealabil, consimțământul pentru a publica rezultatele obținute.

Pentru analiza statistică a datelor obținute s-a folosit programul Microsoft Excel Office 2010.

3. Rezultate și discuții

Prin intermediul primei părți a chestionarului au fost obținute informații generale despre grupul de studiu și date privind particularitățile programului de antrenament (o parte din aceste rezultate sunt prezentate, ca medii aritmetice, în Tabelul 1).

Tabel 1. Parametrii grupului de studiu*

Parametrii	Valori
Vârstă (ani)	34.09 ± 10.00
Greutate (kg)	69.06 ± 14.48
Talie (m)	1.71 ± 7.94
IMC (kg/m²)	27.30 ± 3.76

*Valorile sunt prezentate ca medii aritmetice ± deviația standard

Majoritatea sportivilor incluși în studiu au fost din Timișoara (54,29%), restul fiind din București (11,43%), Târgu-Mureș (8,57%), Iași (8,57%).

Din totalul de 35 de jucători de badminton cuprinși în studiu, 23 (65,7%) sunt la nivel de amatori, iar 12 (34,3%) joacă badminton de performanță. Numărul mediul de antrenamente este de 2,97±1,38 pe săptămână, perioada medie de joc - 10,89±8,31 ani; în ceea ce privește particularitățile încălzirii, s-a aflat că durata acesteia este de 9,20±2,47 minute și conține exerciții de stretching la 91,43% dintre participanți.

16 (45,71%) dintre respondenți consumă zilnic mai puțin de 1,5 l apă zilnic, în timp ce restul se hidratează bine.

Refacerea post-efort se rezumă în cazul a 19 jucători (54,29%) doar la hidratare (la 2 sportivi – 5,71%) sau repaus (3 sportivi – 8,57%) sau ambele – la 14 sportivi (40%) din grupul de studiu; mai puțin de jumătate dintre respondenți (45,71% - 16 persoane) asociază și o altă metodă de refacere hidratării și repausului; doar 2 dintre ei asociază medicație specifică de refacere, alții 2 consumă lichide specifice pentru refacerea echilibrului hidro-electrolitic, iar 5 jucători beneficiază și de masaj și/sau saună ca metodă complementară de refacere.

Partea a doua a chestionarului a fost completată, după cum am menționat anterior, doar de aceia care au suferit leziuni la nivelul aparatului locomotor în timpul antrenamentelor sau competițiilor (88,57% dintre respondenți) (Figura 1).
Din totalul celor 53 de leziuni declarate, 41 au fost leziuni articolare și 10 – leziuni musculare (Figura 2).

Au fost raportate 7 entorse de gleznă de gradul III și 4 de gradul II, iar la nivelul genunchiului - 9 entorse de gradul III (majoritatea cu rupturi complete ale ligamentului încrucișat anterior), 2 entorse de gradul II (cu afectarea ligamentelor încrucișat anterior sau posterior) și o entorsă de gradul I (cu afectarea ligamentului încrucișat anterior); au fost raportate 18 cazuri de leziuni meniscale – majoritatea la nivelul meniscului intern (14, din care 9 la nivelul genunchiului drept și 5 la cel stâng).

Analizând partea afectată, se poate observa că proporția mai mare a leziunilor este „în favoarea” părții drepte a corpului (2:1), care este partea dominantă pentru cei mai mulți sportivi (Tabel 2).

Pe locul al doilea, după leziunile articolare, s-au aflat leziunile musculare (5 rupturi fibrilare sau fasciculare și 5 leziuni tendinoase); acestea au fost localizate la nivelul mușchilor adductorii (lung și mare), solear, gastrocnemian și evadriceps femural.
Leziunile de tendon au fost diagnosticate ca tendinoze, tendinite sau tenosinovite la nivelul extensorilor cotului drept (3 cazuri), extensor ulnar al carului (1 caz), cvadriceps femoral (1 caz) și un caz de ruptură a tendonului achillean. Au fost raportate și 2 leziuni osoase: o fractură la nivelul falangei distale a halucelui drept și o fractură de calcaneu la nivelul piciorului drept.

Toți cei afectați s-au recuperat și susțin că și-au adaptat programul de antrenament (în special în ceea ce privește încălzirea zonei și scăderea solicitării la nivelul zonei lezate anterior prin folosirea, cu precădere, a ortezelor).

Prin calcularea coeficientului Pearson între prezența leziunilor și alte informații colectate, nu s-au găsit valorile semnificative pentru r; astfel, nu s-au găsit corelații semnificative între prezența leziunilor și nivelul hidratații (r=0,093), vârsta practicanților (r=0,128), numărul metodelor de refacere folosite (r=0,156), numărul de antrenamente săptămânale (r=0,082) numărul de grupe musculare cu care s-a făcut stretching (r=-0,132) sau durata încălzirii (r=-0,004). Numărul de leziuni nu este corelat nici cu nivelul performanței sportivilor, nici cu IMC-ul acestora.

Rezultatele obținute confirmă faptul că leziunile jucătorilor de badminton din grupul de studiu nu sunt favorizate de vârsta, gradul de hidratare, complexitatea refacerii, durata încălzirii sau complexitatea stretchingului din cadrul antrenamentului; deși ne-am așteptat la prezența unei corelații cu cel puțin unul din acești factori, rămâne de discutat acuratețea informațiilor oferite de participanții la studiu.

Luând în considerare ideea că toate informațiile primate au fost corecte, putem concluziona că leziunile ar fi putut fi prevenite pe altă cale, și anume - creșterea calității următoarelor elemente: hidratare, stretching, refacere etc., alături de folosirea unor exerciții specifice pentru creșterea coordonării proprioceptive, a echilibrului și pentru dezvoltarea forței în regim de viteză.

Deși la nivel de performanță, solicitările sunt mai intense, în general, totuși, jucătorii de acest nivel nu au considerabil mai multe leziuni poate și pentru că, la

Leziuni articulare	Membrul inferior drept afectat (număr cazuri)	Membrul inferior stâng afectat (număr cazuri)
Entorsă de gleznă de gradul 3	5	2
Entorsă de gleznă de gradul 2	3	1
Entorsă de genunchi de gradul 3	6	3
Entorsă de genunchi de gradul 2	-	2
Entorsă de genunchi de gradul 1	1	-
Leziuni de menisc intern	9	5
Leziuni de menisc extern	2	2

Tabel 2. Leziunile articulare în grupul de studiu
Acest nivel, jucătorii nu fac mari greșeli în ceea ce privește pregătirea fizică, încălzirea etc. Putem adăuga și că IMC nu este un factor predispozant al leziunilor în acest studiu, probabil pentru că 82,86% dintre participanți au IMC în limite normale (doar 6 participanți sunt supraponderali și niciunul obez).

Sporturile cu rachetă necesită o rezistență crescută la nivel articular, muscular și cardio-vascular. Genunchii și gleznele sunt cele mai soliciate articulații în mișcările accelerate și schimbările bruske de direcție; acest aspect este confirmat și de prezența unui număr mare de leziuni raportate la nivelul acestor articulații; de asemenea, mișcările ample, repetate ale membrului superior în timpul serviciului sunt solicitante pentru acestea, în special, pentru umeri.

Acțiunile repetate deasupra capului pot produce bursite, leziuni ale manșonului rotatorilor sau sindrom de impingement. Durerea lombară joasă poate apare datorită hiperextensiei coloanei vertebrale. Mușchii coapsei, ai pumnului pot fi, de asemenea, afectați de contracțiile repetitive și bruske din timpul jocului. În badminton sunt necesare o bună coordonare și echilibru, o stabilitate excelentă la nivelul picioarelor pentru schimbările rapide de direcție; atunci când jucătorul lovește mingea, sunt necesare o bună mobilitate, forță și viteză, precum și o bună stabilitate pentru a transfera puterea (British Medical Association, 2011).

În timpul încălzirii, temperatura corpului trebuie să crească treptat, cu o solicitare mică a sistemului cardio-vascular și trebuie să includă toate grupele musculare folosite în timpul jocului. Pregătirea fizică trebuie orientată, în principal, spre dezvoltarea forței, puterii și a fitness-ului cardio-vascular; de aceea, sunt indicate antrenamentul cu interval și exercițiile pliometrice pentru dezvoltarea puterii.

Stretching-ul are două roluri importante la jucătorii de badminton: în prevenția accidentărilor și în creșterea performanței (Norris, 2013), chiar dacă stretching-ul nu crește forța maximală, nu crește rata de dezvoltare a forței, detenta (indicator al puterii explozive) sau rezistența (Hausswirth & Mujika, 2010); în sporturile cu rachetă, șoldurile, trenul superior (în special, umeri) și spatele sunt într-o tensiune considerabilă; de asemenea, articulațiile radio-carpiene, coatele și gleznele trebuie să fie foarte flexibile pentru ca jucătorul să fie competitiv în teren (Norris, 2013).

Flexibilitatea poate fi dezvoltată în special prin stretching; acesta va reduce redarea și, în consecință, riscul de traumatism; tipurile de stretching recomandate în badminton sunt cele pasiv și activ (izometric și balistic); acesta este important atât în perioada de încălzire, cât și la sfârșitul antrenamentului; totuși, stretching-ul nu este eficient ca metodă de refacere unică și are și anumite contraindicații; după Hausswirth et al. (2010), acesta trebuie evitat după sesiunile de creștere a forței musculare sau după activitățile fizice care produc durere musculară.

„Stretching-ul celui care doarme” (”sleeper stretch”) este un exercițiu important pentru jucătorii de badminton care implică întinderea părții posterioare a capsului articulației scapulo-humerale, aspect essential în prevenirea blocajului posterior, a deficitului de rotație internă (Mine, Nakayama, Milanese & Grimmer,
sau a sindromului de impingement (Manske, Grant-Niermann & Brennen, 2013).

Creșterea forței mușchilor solicitați sau lezați frecvent în badminton trebuie să fie o parte importantă a pregătirii fizice; un exercițiu eficient este cel al „mașinii de tuns iarba” (”lawnmower”), care este dedicat musculaturii coafei rotatorilor din zona superioară și mijlocie a spatei; ajută la dezvoltarea coordonării dintre părțile superioare și inferioare și crește controlul asupra umerilor.

Abilitatea de dezvolta putere este esențială în obținerea performanței și succesului în badminton. Un program de exerciții pliometrice îmbunătățește coordonarea, eficiența mișcărilor, viteza și puterea (Houglum, 2010); în badminton, exercițiile pliometrice au un rol important în dezvoltarea forței trenului inferior și a stabilității.

S-a demonstrat că exercițiile pliometrice scad numărul leziunilor în sporturile de echipă atunci când sunt combinate cu alte metode (de exemplu, de dezvoltare a forței musculare, a echilibrilui și cu stretching-ul); pe de altă parte, exercițiile pliometrice cresc riscul producerii anumitor leziuni datorită forței mari generate și, în consecință, necesită forță, flexibilitate și coordonare proprioceptive bune (De Bremaeker, 2013).

Pentru a reduce riscul acestor traumatisme, este recomandată încălzirea sportivului în ceea ce privește coordonarea și solicitarea musculară. Exercițiile pliometrice includ sărituri verticale și laterale în toate formele și vor fi făcute în funcție de necesitățile fiecăruia, fiind individualizate în funcție de vârstă, greutate, nivel competițional, suprafață de joc, încălțăminte, cu tehnică corespunzătoare, în mod progresiv, în funcție de scop; de asemenea, este recomandată o perioadă de repaus de 1-2 minute între sărituri (Fröhlich, Felder & Reuter, 2014) și se va ține cont de precauțiile și contraindicațiile acestor exerciții atât pentru antrenamente cât și pentru reabilitare (Houglum, 2010).

Importanța hidratarii atât în performanță fizică și mentală, cât și în reabilitare este binecunoscută. Chiar dacă în studiul nostru nu există o corelație semnificativă între nivelul scăzut de hidratare și prevalența traumatismelor, este confirmat faptul că nivelul performanței și siguranța jucătorilor depinde major de un echilibru hidro-electrolitic adecvat; acesta include, pe lângă o hidratare corespunzătoare și o refacere a nivelului electroliților după efort (Hausswirth et al., 2010). Acest din urmă aspect este prezent doar în refacerea câtorva persoane din grupul de studiu.

Considerăm că toate modificările menționate trebuie incluse, atunci când e cazul, în programele de pregătire a jucătorilor pentru a le crește nivelul performanței, dar și pentru a scădea rata recidivelor traumatismelor în rândul acestora.

4. Concluzii

Leziunile țesuturilor moi ale membrelor inferioare (în special, ligamente și mușchi) sunt cele mai frecvente traumatisme la jucătorii de badminton, aspect confirmat și de informațiile care au fost identificate în literatura de specialitate; leziunile sunt mai frecvente în grupele de vârstă mai mari, dar nu au fost găsite
corelații între sexul jucătorului și prevalența traumatismelor. Entorsele sunt cele mai frecvente leziuni la jucătorii tineri, în timp ce leziunile musculare (incluzând și leziunile tendinoase) sunt specifice jucătorilor seniori. Deși nu sunt specifice jocului de badminton, accidentările serioase pot apare totuși, necesitând tratament de specialitate și o perioadă lungă de reabilitare.

Programele individualizate de antrenament sunt o necesitate în acest sport, având în vedere rata mare de recidivă a leziunilor; acestea trebuie să includă metode primare și secundare de prevenție în care elementele principale trebuie să fie stretching-ul, exercițiile pliometrice și de coordonare proprioceptive, precum metodele de refacere adaptate necesităților sportivului.

Deși în studiul nostru nu am găsit corelații semnificative între prevalența traumatismelor și vârstă, numărul de antrenamente săptămânale, durata încălzirii, realizarea stretching-ului, am concluzionat că prevenția ar putea depinde de calitatea încălzirii și a refacerii, de realizarea anumitor exerciții specifice pentru dezvoltarea coordonării proprioceptive, a echilibrului și a forței în regim de viteză.