THE ABSORBERS TOWARD CSO 118: SUPERCLUSTERING AT \(z \sim 3 \), OR AN INTRINSIC ABSORPTION COMPLEX?\(^1\)

RAJIB GANGULY, JANE C. CHARLTON, AND NICHOLAS A. BOND

Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802;
ganguly@astro.psu.edu, charlton@astro.psu.edu, bond@astro.psu.edu

Received 2001 March 13; accepted 2001 April 26; published 2001 May 18

ABSTRACT

We present two low-resolution (\(R \sim 1300 \)) high signal-to-noise ratio spectra (\(W_r \sim 50 \) mA) of the quasar CSO 118 (\(z_{\text{em}} = 2.97 \)) taken with the Hobby-Eberly Telescope Marcario Low-Resolution Spectrograph. We detect eight absorbers selected by the \(C\ IV \lambda1548, 1550 \) absorption doublet in the redshift range \(2.23 \leq z_{\text{abs}} \leq 2.97 \), seven of which are \(z_{\text{abs}} \geq 2.68 \). In the redshift range covered by the seven \(z_{\text{abs}} \geq 2.68 \) systems, one expects to find two absorbers. We discuss possible explanations for such an excess of absorbers in a small velocity range. Only superclustering at high redshift and absorption due to intrinsic gas are feasibly allowed.

Subject headings: quasars: absorption lines — quasars: individual (CSO 118)

1. INTRODUCTION

In recent years, the analysis of narrow absorption lines (NALs) that are intrinsic to quasi-stellar objects (QSOs) has become a productive enterprise. There are two smoking guns for the identification of intrinsic NALs: (1) time variability of profile shapes and/or equivalent widths and (2) demonstration that the absorbing structures only partly occult the background source (the QSO central engine). The latter option can only viably be pursued using high-resolution and reasonably high signal-to-noise ratio (S/N) spectra (Barlow & Sargent 1997; Barlow, Hamann, & Sargent 1997c; Ganguly et al. 1999; Srianand & Petitjean 2000). In the former case, we can search for variability in the equivalent width of absorption profiles using low-resolution spectra. To that end, we have embarked on a monitoring program of the Verón-Cetty and Verón QSOs using the Marcario Low-Resolution Spectrograph on the Hobby-Emily Telescope (HET). Finding variability in absorption profile equivalent widths is a step toward systematically identifying truly intrinsic NALs. Follow-up observations at higher resolving power to look for changes in profile shapes and/or the signature of partial coverage will remove any shadow of a doubt as to an intrinsic origin.

In this Letter, we report on a curiosity—the serendipitous discovery of a complex of absorbers that are possibly intrinsic to the radio-quiet QSO CSO 118 (\(z_{\text{em}} = 2.97, V = 17.0 \)). In \(\S \) 2, we present the spectra of CSO 118 and details of the observations. In \(\S \) 3, we demonstrate that the absorption complex is unlikely to be a random occurrence. Finally, in \(\S \) 4 and \(\S \) 5, we discuss the possible explanations for this complex under the assumptions that the complex is intervening or intrinsic, respectively.

2. OBSERVATIONS

Two spectra were obtained, separated by 8 months, with the HET using the Marcario Low-Resolution Spectrograph (Hill et al. 1998). We used the 600 line mm\(^{-1}\) grism and the 1” slit to achieve a resolving power of \(R \sim 1300 \) or \(\Delta v \approx 230 \) km s\(^{-1}\) resolution. In Table 1, we report the observing dates and the S/Ns (per pixel) of the spectra. The spectra were bias-subtracted and flat-fielded using the standard IRAF\(^2\) image reduction packages. Spectra were extracted using the APALL task and wavelength-calibrated. Due to the varying aperture size of the HET, we opted not to attempt flux calibration. Also, since the HET is set at a constant zenith angle, the two spectra suffer from the similar amounts of atmospheric absorption. Thus, it was not necessary to correct for differing air masses. The spectra cover the range 4280–7270 \(\AA \). In each spectrum, the \(\sim 0.5 \) hr integration time gives a 3 \(\sigma \) rest-frame equivalent width limit better than \(\sim 50 \) mA, which we also report in Table 1. In Figure 1, we show the two spectra as instrument counts versus wavelength. The emission lines from Ly\(\alpha\), N \(\lambda\), Si \(\lambda\), and C \(\lambda\) are clearly visible as well as the 2.52 < \(z_{\text{abs}} < 2.97 \) Ly\(\alpha\) forest absorption blueward of the Ly\(\alpha\) emission line. Using the unresolved feature identification method of Schneider et al. (1993) and Churchill et al. (1999), we identified possible C \(\lambda\)-doublets where both the stronger transition (\(\lambda1548 \)) and the corroborating Ly\(\alpha\) were detected at a 3 \(\sigma \) confidence and the weaker C \(\lambda\)-doublet transition at 1.5 \(\sigma \) confidence (see, e.g., Ganguly et al. 2001). We detect eight C \(\lambda\)-selected absorbers in the redshift range 2.23–2.97, seven of which are within \(\Delta z = 0.26 \) of the QSO emission redshift. To each doublet, we fit two Gaussians to measure a deblended C \(\lambda\) \(\lambda1548 \) equivalent width. We list these in Table 2 for all eight systems over both epochs of observation as well as the doublet ratios \(= W_l(\lambda1548)/W_l(\lambda1550) \). In only one case \((z_{\text{abs}} = 2.94 \text{ on 2000 March 4}) \) was the flux incident on the absorbers unity. Overplotted, we show the fits of the double Gaussians to the seven C \(\lambda\) profiles in this wavelength range.

3. REDSHIFT PATH DENSITY OF ABSORBERS

Tripp, Lu, & Savage (1996) reported that the redshift path density of C \(\lambda\) absorbers in the redshift range 1.4 < \(z_{\text{abs}} < 2.9 \) and down to an equivalent width limit of 30 mA is \(d\Omega/dz = 7.1 \pm 1.7 \). The total redshift path searched in the spectrum of

\(^1 \) Based on observations obtained with the Hobby-Emily Telescope, which is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

\(^2 \) IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
CSO 118 is $\Delta z = 0.85$, so we would expect to find 6.0 ± 1.4 in all. The Poisson probability of finding eight systems when six are expected is 10%. However, seven of the absorbers are clustered on the high-redshift side of this path. If one divides the path in two, one finds one absorber in the low-redshift bin and seven in the high-redshift bin. In each of these bins, the redshift path is $\Delta z = 0.425$, in which one expects to find 3.0 ± 0.7 absorbers on average. The Poisson probabilities of finding one and seven absorbers in the $\Delta z = 0.425$ path are $14\% \pm 7\%$ and $2\% \pm 2\%$, respectively. Finding only one absorber in the low-redshift bin is not a statistically significant decrement. However, finding seven in the high-redshift bin is a very significant excess. Moreover, if such an absorption complex were common, one would expect the two-point correlation function (TPCF) of C iv–selected systems at $z \sim 3$ to show an above-average amplitude at large velocities. Rauch et al. (1996) report that the amplitude of the TPCF falls off to the average value (i.e., uncorrelated distribution of systems in redshift space) beyond 400 km s$^{-1}$. Therefore, this complex is not only highly significant, but also very rare. We discuss two possible origins for the excess of C iv doublets in the spectrum of CSO 118: (1) absorption from intervening structures or (2) absorption by gas intrinsic to the QSO.

4. INTERVENING ABSORPTION

Intervening C iv absorption has traditionally been attributed to galaxy halos (Steidel, Sargent, & Boksenberg 1987; Pettitjean & Bergeron 1994), high-ionization species associated with the Lyα forest (Lu 1991; Songaila & Cowie 1996; Cowie et al. 1995; Kirkman & Tytler 1999), or hierarchical galaxy formation (Rauch, Haehnelt, & Steinmetz 1997, hereafter RHS). The hierarchical collapse of H i into sheets and filaments has been shown through many impressive simulations (e.g., Davé et al. 1999; Machacek et al. 2000) to reproduce the so-called Lyα forest, which is prevalent in the spectra of QSOs blueward of the Lyα emission.

Both galaxy halo absorption and forest absorption (from C iv) are accounted for by standard dN/dz measurements. Thus, the presence of only a few absorbers (3.0 ± 0.7 in $\Delta z = 0.425$) can be explained in this manner. In the model of hierarchical galaxy formation, as discussed by RHS, a dense H i filament (see, for example, their Fig. 3) gives rise to low-ionization absorption (e.g., H i, C ii, Si iv). This is surrounded by a lower density phase (giving a high-ionization parameter) that produces C iv absorption. This lower density phase is encompassed by an even lower density phase that yields very high ionization O vi absorption. A HIRES/Keck spectrum of the $\z_{\text{abs}} = 2.768$ system (Kirkman & Tytler 1999, hereafter KT) toward CSO 118 shows precisely this type of structure (see their Fig. 1). KT performed a Voigt profile decomposition of the system profiles to extract column densities and Doppler widths for each velocity component of each transition. Noting the differences in the C iv and O vi Doppler widths, KT reported this as evidence of distinct high-ionization phases and speculated that this was evidence of a hierarchical merging event.

While the hierarchical galaxy formation scenario may also be responsible for a few absorbers, it is unlikely to explain a whole complex spread over 20,000 km s$^{-1}$ as seen along the CSO 118 line of sight. Regardless of whether or not the ab-

TABLE 1

Observation Date	Exposure Time (s)	3 σ W/Limit (mA)
2000 Mar 04	1800	70
2000 Nov 21	600	...
2000 Nov 24	900	55*
2000 Nov 25	900	...

* The three integrations taken in 2000 November were averaged to give the reported S/N and 3 σ W limit. The smaller S/N in the November spectrum resulted primarily from poorer seeing conditions.

TABLE 2

2000 Mar 04	2000 Nov 24	
Wavelength (Å)	Wavelength (Å)	
\z_{abs}	\z_{abs}	
2.244	5022.4 ± 0.2	5021.6 ± 0.3
2.678	5694.2 ± 0.2	5694.5 ± 0.3
2.705	5737.6 ± 0.4	5737.9 ± 0.5
2.744	5796.6 ± 0.3	5797.0 ± 0.4
2.769	5835.1 ± 0.1	5834.3 ± 0.2
2.841	5946.9 ± 0.5	5945.0 ± 1.0
2.874	5998.2 ± 0.2	5997.5 ± 0.5
2.940	6100.1 ± 1.9	6096.8 ± 0.7

* The C iv doublet profile could not be deblended. The listed equivalent width is of the blended feature.
Superclustering is not a new idea in the realm of QSO absorption lines. There have been several reports in the literature of binary QSOs in which absorption at common redshifts occurs. The most famous of these is the “Tololo pair,” Tol 1037–2704 and Tol 1038–2712 (Bohlsie & Weedman 1979; Jakobsen et al. 1986), where the candidate supercluster is at \(z \approx 2 \). Other reports include UMO 680/681 and Q2343+125/Q2344+125 (Sargent 1988; see also Romani, Filippenko, & Steidel 1991; Francis & Hewitt 1993; Williger et al. 1996, 2000; Francis et al. 1996). These claims are usually based on the coincidence of absorbers in redshift (implying gas that is possibly in common to both lines of sight) and the separation of the QSOs (17' in the case of the Tololo pair, implying a minimum size of \(\sim 4\ h^{-1}\ \text{Mpc} \)). However, these claims are still controversial, as it is still unknown whether they are caused by intervening structures or whether they arise due to the presence of a relativistic outflow from the QSO central engine (see \(\S \) 5). We note here that there are no bright extragalactic objects (for which to do absorption line spectroscopy) in the NASA/IPAC Extragalactic Database at high redshift within 20' of CSO 118. Thus, a study of the transverse extent of this structure (if it is intervening) is unlikely. There is, at least, one other object in the literature, Q2359+068, with a similar concentration of absorbers (eight in the range 2.73 < \(z_{\text{abs}} < z_{\text{cen}} \), with a Poisson probability of 1% ± 1%).

5. INTRINSIC ABSORPTION

The complex of high-redshift absorbers toward CSO 118 can also plausibly be of an intrinsic origin. First, intrinsic NALs have been detected at high ejection velocities up to \(v_{\text{ej}} \sim 56,000\ \text{km}\ \text{s}^{-1} \) (Jannuzi et al. 1996; Hamann, Barlow, & Junkkarinen 1997b; Richards et al. 1999). Second, multiple (2–3) intrinsic absorption systems are also observed—e.g., PG 2302+029 (Jannuzi et al. 1996), PG 0935+417 (Hamann et al. 1997a), Q0835+5803 (Aldcroft, Bechtold, & Foltz 1997). Furthermore, at low redshift, there is an enhanced probability of a radio-quiet QSO hosting an intrinsic NAL when one detects a broad absorption line (BAL; Ganguly et al. 2001). Thus, it is reasonable to expect multiple absorption systems that are intrinsic to a given QSO.

Unfortunately, on the 2 month rest-frame timescale over which the CSO 118 was observed, neither the equivalent width nor the doublet ratio of any profile varied. (Also, since the features are unresolved, it make little sense to compute coverage fractions.) Either evidence for time variability or partial coverage would provide a smoking gun for an intrinsic origin. Nevertheless, it must be noted that the lack of variability of the profiles does not preclude an intrinsic origin. Moreover, because the profiles are unresolved, we would not have detected changes in the profile shapes. We offer two possible scenarios to explain this absorption complex under the accretion disk/wind model (Murray et al. 1995; Proga, Stone, & Kallman 2000). The first scenario involves the presence or the development of a BAL outflow, while the second proposes periodic or stochastic mass-loss events.

In the accretion disk/wind model for the QSO central engine, matter orbits a supermassive black hole in a geometrically thin, optically thick disk and spirals inward as a result of viscous friction. Matter on the surface of the disk is lifted via radiation pressure. The rate at which this matter is lost is regulated by the balance between the mass accretion rate, which is capped by the Eddington rate, and the mass fueling rate. As this mass is blown off the disk, it is blindsided by an even more powerful
force: radiation pressure from the inner part of the disk, which radiates a UV/soft X-ray continuum. This results in a relativistically and radially accelerated wind blowing away from the disk. However, the matter leaving the disk retains its angular momentum. So as it is radially accelerated, it spirals away from the disk in a helix. This rotational component can play an important part in the projected line-of-sight velocity of the wind and, by consequence, the optical thickness to photons emitted by the accretion disk and broad-line region. The broad UV emission lines originate from the lower regions of the wind where the matter is optically thick.

The complex of absorption seen toward CSO 118 may be connected to BAL-type outflow. In the accretion disk/wind model described above, BAL outflow is understood to occur when the mass fueling rate greatly exceeds the mass accretion rate. In this case, the wind becomes optically thick and photons attempting to pass through the wind are completely absorbed. Moreover, since there is a large velocity gradient in the wind, the absorption, as well, occurs over a broad range in velocities. Thus, all radio-quiet QSOs are viewed as having a BAL outflow, but in only ~10% of such cases are the viewing angle and wind opening angle such that a BAL is seen. CSO 118 is nicely with being like a BAL QSO in which the line(s) of sight are broad. The absorbers span ejection velocities up to 23,000 km s⁻¹, reminiscent of typical BAL velocity widths. Like many BAL QSOs, CSO 118 is very radio-quiet (a nondetection by the FIRST survey makes the radio loudness parameter log R < 0). It is also not detected by the ROSAT All-Sky Survey (although this merely provides the unrestrictive limit of αₘ < -1.3). One possible explanation for the difference between the series of BALs in CSO 118 and a BAL is that the line of sight to the latter graces clumpy outcroppings of the wind; these clumps, which are caused by Kelvin-Helmholtz instabilities, are seen in the simulations of Proga et al. (2000). According to the simulations, these clumps last on the order of a few years in the QSO rest frame. A related possibility is that the outflowing wind is starting to become much denser, possibly as a result of a change in mass fueling/loss rate. It is possible that we are seeing the initial fragmentation of the wind into BAL clouds.

Another possible explanation for CSO 118 is sporadic (or quasi-periodic) mass ejection by the accretion disk. Because the mass accretion rate is capped by the Eddington limit, changes in the mass-fueling rate are directly transposed to changes in the mass-loss rate. If the fueling rate were to drastically change either periodically or sporadically, the outflowing wind would have a density structure, which can be viewed as a perturbation on the general density law of the wind. The perturbations resulting from an increase in the mass-fueling rate would resemble expanding shells. The observational signature of outflowing shells could be complexes of absorbers as seen in the CSO 118 line of sight.

Support for this work was provided by the NSF (AST 96-17185) and NASA (NAG5-6399). We would like to thank Gary Hill for building the LRS and Larry Ramsey for building the Hobby-Eberly Telescope. R. G. acknowledges Gordon Richards for useful discussions.

REFERENCES