MicroRNA biomarkers in frontotemporal dementia and to distinguish from Alzheimer’s disease and amyotrophic lateral sclerosis

https://doi.org/10.4103/1673-5374.330591

Bridget Martinez1, Philip V. Peplow2,*

Abstract
Frontotemporal lobar degeneration describes a group of progressive brain disorders that primarily are associated with atrophy of the prefrontal and anterior temporal lobes. Frontotemporal lobar degeneration is considered to be equivalent to frontotemporal dementia. Frontotemporal dementia is characterized by progressive impairments in behavior, executive function, and language. There are two main clinical subtypes: behavioral-variant frontotemporal dementia and primary progressive aphasia. The early diagnosis of frontotemporal dementia is critical for developing management strategies and interventions for these patients. Without validated biomarkers, the clinical diagnosis depends on recognizing all the core or necessary neuropsychiatric features, but misdiagnosis often occurs due to overlap with a range of neurologic and psychiatric disorders. In the studies reviewed a very large number of microRNAs were found to be dysregulated but with limited overlap between individual studies. Measurement of specific miRNAs singly or in combination, or as miRNA pairs (as a ratio) in blood plasma, serum, or cerebrospinal fluid enabled frontotemporal dementia to be discriminated from healthy controls, Alzheimer’s disease, and amyotrophic lateral sclerosis. Furthermore, upregulation of miR-223-3p and downregulation of miR-15a-5p, which occurred both in blood serum and cerebrospinal fluid, distinguished behavioral-variant frontotemporal dementia from healthy controls. Downregulation of miR-132-3p in frontal and temporal cortical tissue distinguished frontotemporal lobar degeneration and frontotemporal dementia, respectively, from healthy controls. Possible strong miRNA biofluid biomarker contenders for behavioral-variant frontotemporal dementia are miR-223-3p, miR-15a-5p, miR-22-3p in blood serum and cerebrospinal fluid, and miR-124 in cerebrospinal fluid. No miRNAs were identified able to distinguish between behavioral-variant frontotemporal dementia and primary progressive aphasia subtypes. Further studies are warranted on investigating miRNA expression in biofluids and frontal/temporal cortical tissue to validate and extend these findings.

Key Words: Alzheimer’s disease; amyotrophic lateral sclerosis; behavioral variant; biomarker; blood plasma; blood serum; brain; cerebrospinal fluid; cortical tissue; frontotemporal dementia; frontotemporal lobar degeneration; microRNA; primary progressive aphasia

Introduction
Frontotemporal lobar degeneration (FTLD) describes a group of progressive brain disorders that primarily are associated with atrophy of the prefrontal and anterior temporal lobes. The clinical features include behavior and personality disturbances, language impairment, and in some cases, accompanying motor neuron disease or parkinsonism. This group of diseases accounts for 5–15% of all cases of dementia (Graff-Radford and Woodruff, 2007), next in frequency to Alzheimer’s disease (AD) that accounts for 50–70% of all dementia cases, and now the most common cause of early-onset dementia in people less than 60 years of age (Bang et al., 2015). FTLD is considered to be equivalent to frontotemporal dementia (FTD) of which there are two major clinical subtypes: behavioral-variant (bvFTD) and primary progressive aphasia (PPA). The first subtype is characterized by behavioral symptoms, while the second one is comprised of a semantic variant PPA (svPPA) and a nonfluent variant PPA (nfvPPA) in which the main feature is a progressive impairment of language and speech (Bang et al., 2015). The bvFTD accounts for greater than 50% of the cases (Warren et al., 2013). The age of the first symptom can be variable, occurring from as early as 30 years of age to as late as 60 or more years of age (UCSF Weill Institute for Neurosciences). At present, there are no cures for FTD.

Genetic, epigenetic, and environmental factors are considered to contribute to FTD disease development (Maloney and Lahiri, 2016). A positive family history of dementia has been found in approximately 40% of patients with FTD (Rosso et al., 2003) and about 25% of patients with FTD have an identified genetic form of the disease (Bang et al., 2015). Mutations were found in several genes, including those encoding the
MicroRNAs (miRNAs) are single-stranded non-coding RNA molecules approximately 22 nucleotides long that recognize sequences in the 3′-untranslated regions of target mRNAs and either induce mRNA degradation (Bagga et al., 2005) or inhibit their translation (He and Hannon, 2004; Meister, 2007). MiRNAs have been found to be dysregulated in a variety of NDs including AD, ALS, Parkinson’s disease, Huntington’s disease, age-related macular degeneration, and multiple sclerosis, and play an important role in FTD. The progranulin gene has been reported to be under the posttranscriptional control of miR-29b, miR-107, and miR-659 (Hébert et al., 2008; Noren Hooten et al., 2010; Piscopo et al., 2016). Moreover, various disease-specific protein aggregates have been observed in FTLD including hyperphosphorylated tau protein in neurons and glia (FTLD-Tau) (Lee and Leugers, 2012), TDP-43 (FTLD-TDP) (Arai et al., 2006; Neumann et al., 2006), FUS-positive inclusions (FTLD-FUS) (Munoz et al., 2009; Neumann et al., 2009a, b), and ubiquitin proteasome system-positive inclusions (FTLD-UPS) (Holm et al., 2007, 2009). Proteins pathologically aggregated in neurodegenerative disorders, such as TDP-43 and FUS, regulate miRNA biogenesis machinery, particularly Drosha and Dicer (Buratti and Baralle, 2010; Kawahara and Mieda-Sato, 2012; Di Carlo et al., 2013). The dysregulation of TDP-43 and FUS activity associated with FTLD and ALS pathogenesis could alter miRNA expression levels (Gascon and Gao, 2014). There have been conflicting results between miRNA studies, probably due to the heterogeneity of cohorts with regard to the underlying pathology (familial or sporadic), and have mainly compared symptomatic patients with healthy controls in determining potential diagnostic biomarkers. Few studies have examined miRNAs as progression biomarkers for FTD subtypes in presymptomatic subjects. Mild cognitive impairment (MCI), which is a heterogeneous syndrome characteristic of the early stages of various NDs, may be detected by analysis of miRNAs enriched in synapses of brain regions affected by the disease e.g., hippocampus in early AD, frontal and temporal lobes in FTD (Sheinerman et al., 2013; Sheinerman and Umansky, 2013). Approximately 20% of MCI patients who progress to dementia are diagnosed with NDs other than AD, such as vascular, Lewy body, Huntington’s, Parkinson’s dementia, and others (Jicha et al., 2006; Stephan et al., 2009). Thus, it might be possible to identify patients in the initial phases of FTD, before becoming demented, by developing a set of biomarkers to detect MCI of the frontotemporal type (FT-MCI) (de Mendonça et al., 2004). The expression of miRNAs in body fluids such as blood plasma, serum or CSF has been shown to correlate with the diagnosis and progression of the disease (Condrat et al., 2020). The CSF might contain unique miRNA signatures specific for various CNS pathologies. Therefore, miRNAs derived from CSF might serve as more valid biomarkers for brain pathologies than those of other body fluids. To date, relatively few studies have been published of miRNA expression in the CSF of FTD and AD patients and which could serve to distinguish between FTD and AD. In most of them AD patients were compared to healthy controls, or a comparison made of AD patients categorized by Braak stages (Cogswell et al., 2008; Alexandrov et al., 2012; Lehmann et al., 2012; Sala Frigerio et al., 2013; Kiko et al., 2014; Liu et al., 2014; Müller et al., 2014). Little is known about the differences in CSF miRNA levels between AD and other types of dementia such as FTD. The limited number of studies comparing miRNA CSF levels in AD patients versus patients with other types of dementia and their conflicting results justifies the need for additional studies to investigate the utility of miRNAs as biomarkers in a clinically relevant setup. Many miRNA studies are performed in small sample groups with subjects of the same genetic and ethnic background (Li et al., 2010). Thus far, few studies have investigated the potential of miRNAs as early biomarkers for the differential diagnosis of various forms of dementia. Studies in which the expression of miRNAs in AD versus FTD and dementia with Lewy bodies (DLB) is analyzed have indicated that miRNAs can play specific roles in dementias other than AD (Hébert et al., 2013; Arrant and Roberson, 2014). The aim of this review was to analyze recent literature on the expression levels of miRNAs in FTD and their potential for guiding clinical diagnosis and treatment with certain medications to manage the behavioral problems or by speech therapy to improve language and communication (Mayo Clinic, 2021).

MicroRNAs in Frontotemporal Dementia

We performed a PubMed search for original research articles published during January 2009–March 2021 on possible miRNA biomarkers of FTD compared to nondemented healthy subjects in blood plasma, serum, CSF, and cortical tissue collected from specific brain regions. In addition, we examined these articles for whether they could distinguish between the various FTD subtypes and differentiate FTD from other NDs such as AD and ALS. The steps involved in the review and its contents are shown (Figure 1). A total of 15 articles were found for this review. Of these, 6 had used blood plasma, 3 CSF, 2 blood serum and CSF, 1 blood plasma and CSF, and 3 cortical tissue (collected at postmortem). The relevant findings in the research articles from the PubMed search are summarized as follows.
with miR-877-5p which was > 2-fold higher in FTD group. MiR-206 was also included as it had a high fold change value and was very close to significance. It had also been described as a biomarker for NDs such as AD and ALS (Toivonen et al., 2014; Moon et al., 2016; Waller et al., 2017) and has a key role in the regulation of brain-derived neurotrophic factor (Lee et al., 2012; Tian et al., 2014), which is an important molecule linked to the pathophysiology of FTD (Zanardini et al., 2016). Significant downregulation of miR-663a, miR-502-3p, and miR-206 levels in FTD patients compared to HC was confirmed. The other miRNAs showed the same trend as in the discovery profiling but were not statistically significant. The levels of miR-663a, miR-502-3p, or miR-206 were not significantly correlated with age at onset of FTD and mini-mental state examination (MMSE) scores. Also, no difference was observed in the levels of these miRNAs between the two FTD clinical subtypes bvFTD (n = 17) and PPA (n = 17). ROC analysis using the three miRNA combination miR-663a, miR-502-3p, and miR-206 gave an AUC 0.89 in distinguishing FTD from HC with optimal cut-off point as > 26.83 with sensitivity 0.875 and specificity 0.813. In analyzing by gender, the significant differences of miR-206 levels were specific for males, while in females its levels were similar to controls. MiR-663a and miR-502-3p had significant differences in both genders. A significant difference was found in let-7e-5p when comparing FTD females and HC, but there was no difference in males and the overall FTD population compared to HC.

Piscopo et al. (2018) recruited 54 probable FTD (31 bvFTD, 23 PPA) and 20 AD patients, all of whom were sporadic with no mutations found in the genes most involved in FTD, MAPT, GRN, and C9orf72, as well as 53 HC. MiR-29b, miR-34a, miR-16-5p, miR-17-5p, miR-107, miR-19, let-7b, miR-26b and miR-127-3p in blood plasma were screened by qRT-PCR as possible candidate miRNAs to discriminate FTD from HC. Significant downregulation of miR-127-3p occurred in FTD compared to HC. The other miRNAs were not significantly different between FTD and HC. The level of miR-127-3p expression was significantly lower in FTD compared to AD. When all subjects were stratified by gender, significant difference of miR-127-3p levels between FTD and HC and between FTD and AD were observed both in males and females. By ROC analysis, the AUC for miR-127-3p expression to discriminate FTD from HC was 0.806 and from AD was 0.899. For distinguishing FTD versus HC, when the relative miR-127-3p value was under ∆Ct 5.5, the sensitivity was 0.815 and specificity 0.698. For distinguishing FTD versus AD, when the relative miR-127-3p value was under ∆Ct 5.5, the sensitivity was 0.815 and specificity 0.800. When distinguished by gender, AUC of miR-127-3p to discriminate FTD versus HC was 0.768 in males and 0.826 in females, and to discriminate FTD versus AD was 0.926 in males and 0.871 in females.

Sheinerman et al. (2017) measured the levels of preselected miRNAs in blood plasma from 50 FTD (23 bv, 1 PPA/logopenic variant, 8 PPA/progressive nonfluent aphas, 8 PPA/semantic variant, 10 progressive supranuclear palsy), 50 AD, 50 PD, 50 ALS patients, and 50 HC using RT-PCR. The miRNAs included those present in synapses and enriched in different brain regions affected by the target pathologies, miRNAs associated with inflammatory processes, miR-206 which is highly enriched in muscle tissue and in cerebellum, ubiquitous apoptosis-associated miR-16, and miR-451 which is more effectively excreted from pathologic than normal cells. MiRNA pairs and their combinations (classifiers) capable of differentiating each ND from HC with the highest accuracy were assessed in the training set and confirmed in the validation set, followed by analysis of the combined dataset. In distinguishing between FTD and HC, miR-9-3p/let-7e, miR-
In a discovery cohort consisting of 7 AD patients and 6 noninflammatory neurological disease controls (NINDC), Galimberti et al. (2014) found using miRNA PCR array analysis an overall downregulation of blood serum miRNAs in AD compared to NINDC, with four miRNAs being significantly downregulated miR-125b, miR-223, miR-23a, and miR-26b. In a larger cohort comprising 15 AD, 12 NINDC, 8 inflammatory neurological disease controls (INDC), and 10 FTD patients, significant downregulation of miR-125b, miR-23a, and miR-26b in blood serum of AD patients compared to NINDC was confirmed by RT-PCR. No significant differences occurred in AD patients compared to INDC and FTD patients.

Cerebrospinal fluid

In the GENFI (Genetic Frontotemporal Dementia Initiative) a cohort consisting of 38 mutation carriers (22 GRN, 11 C9orf72, 5 MAPT) and 11 healthy non-mutation carriers was recruited. 23 mutation carriers were presymptomatic and 15 mutation carriers were symptomatic (12 bvFTD, 1 nfvPPA, 1 svPPA, 1 dementia not otherwise specified). A sporadic disease cohort comprised 7 bvFTD, 4 bvFTD/ALS, 3 svPPA, 1 nfvPPA/ALS, 1 svPPA/ALS, 1 nfvPPA, 13 sporadic AD, and 10 HC. Exosomes were isolated from the CSF and miRNAs analyzed using RT-PCR by Schneider et al. (2018). There were no significant changes in miRNA expression between healthy non-mutation carriers and presymptomatic mutation carriers. Relative expression of both miR-204-5p and miR-632 was significantly decreased in symptomatic compared with presymptomatic mutation carriers. Relative expression of miR-204-5p was significantly lower in symptomatic mutation carriers with either GRN or C9orf72 mutations compared with presymptomatic mutation carriers. Relative expression of miR-632 was significantly reduced in symptomatic compared with presymptomatic mutation carriers in the GRN group but not in the C9orf72 group. Relative expression of both miR-204-5p and miR-632 was still significantly lower when bvFTD only was compared with presymptomatic mutation carriers. Age was significantly different between groups with symptomatic mutation carriers being older than presymptomatic mutation carriers. When analyzing for males and females separately, a decrease of miR-204-5p and miR-632 was found in symptomatic compared with presymptomatic female mutation carriers (n = 23) before correcting for multiple comparisons. The number of male mutation carriers was smaller (n = 13) and comparing miR-204-5p and miR-632 between symptomatic and presymptomatic male mutation carriers only revealed a trend towards significance, before correction for multiple comparisons. No significant decrease of miR-204-5p expression was observed in sporadic FTD compared with sporadic AD or HC of similar age; however, miR-632 was significantly decreased in sporadic FTD compared with HC or AD. By ROC analysis, a decrease of miR-204-5p and miR-632 discriminated well between presymptomatic and symptomatic individuals with AUC 0.89 for miR-204-5p and 0.81 for miR-632. A combination of miR-204-5p and miR-632 increased the AUC to 0.93. In the GRN group, miR-632 discriminated well between presymptomatic and symptomatic individuals with AUC 0.85, and there was a trend for miR-204-5p and the combination of miR-204-5p and miR-632. In the C9orf72 group, only 3 individuals were symptomatic, and no significant results were obtained by ROC analysis. For patients with bvFTD, miR-204-5p and miR-632 discriminated well between presymptomatic and symptomatic individuals with AUC 0.91 and 0.83, and there was a trend for the combination of miR-204-5p and miR-632. In distinguishing sporadic FTD from all non-FTD (HC and AD) by miR-632, the AUC was 0.90, and there was a trend for the AUC to distinguish FTD from HC or AD separately.

Blood serum

Denk et al. (2018) examined mRNA expression levels in blood serum of 48 bvFTD, 48 AD patients, and 44 HC by RT-qPCR. A total of 41 of the 48 bvFTD and 20 of the 48 AD cases tested negative for the most prominent gene C9orf72. No mutations in the genes MAPT and GRN were identified in the tested bvFTD (n = 11) and AD (n = 11) cases. Expression levels of miR-143-3p, miR-197-3p, miR-27a-3p, miR-338-3p, miR-491-5p, miR-7b-5p, miR-7g-5p, miR-106a-5p, miR-106b-5p, miR-18b-5p, miR-223-3p, miR-26a-5p, miR-26b-5p, miR-301a-3p, miR-30b-5p were significantly higher in bvFTD compared to HC, and miR-100-5p, miR-335-5p, miR-99a-5p, miR-146a-5p, miR-15a-5p, miR-22-3p, miR-320a, miR-320b, miR-92a-3p, and miR-1246 were significantly lower in bvFTD compared to HC. By ROC analysis, bvFTD cases were distinguished best from HC by miR-301a-3p (upregulated) with an AUC 0.96 and sensitivity 0.96 and specificity 0.84. Also, miR-27a-3p (upregulated) distinguished bvFTD cases from HC with an AUC 0.86 with sensitivity 0.77 and specificity 0.72. AD cases were distinguished from HC by miR-26b-5p (upregulated) with AUC of 0.97 and sensitivity and specificity 0.89. MiR-301a-3p (upregulated) classified AD from HC with an AUC of 0.94.

In a discovery cohort consisting of 7 AD patients and 6
Denk et al. (2018) measured miRNA expression in CSF of 48 bvFTD, 48 AD patients, and 44 HC using RT-PCR. A total of 41 of the 48 bvFTD and 20 of the 48 AD cases tested negative for the most prominent gene C9orf72. No mutations in the genes MAPT and GRN were found in the tested AD (n = 11) and bvFTD (n = 11) cases. In CSF, miR-124-3p, miR-125a-5p, miR-223-3p were significantly increased, while miR-15a-5p was decreased, in bvFTD compared to HC. Interestingly, miR-140-3p, miR-30a-5p, miR-30e-5p, miR-22-3p were significantly decreased in bvFTD compared to AD. By ROC, miR-125a-5p expression (upregulated) best discriminated bvFTD cases with AUC 0.84, sensitivity 0.72 and specificity 0.81, as well as AD cases with AUC 0.75, sensitivity 0.74 and specificity 0.82, from HC. With an AUC 0.73, miR-30a-5p (downregulated) gave the best classification in distinguishing bvFTD from AD cases with sensitivity 0.78 and specificity 0.68.

Sørensen et al. (2016) recruited 10 AD patients and 10 patients with other types of dementia (4 vascular dementia, 4 dementia, 2 DBL). By RT-PCR, let-7i-5p and miR-15a-5p were significantly upregulated and miR-29c-3p was significantly downregulated in CSF of patients with AD compared to patients with other types of dementia. However, none of these were statistically significant on performing the Benjamini-Hochberg procedure for multiple testing. By combining two of the differentially expressed miRNAs in a simple ratio model miR-29c-3p/miR-15a-5p, AD patients were distinguished from patients with other types of dementia (cut-off value 0.92) with sensitivity 0.90 and specificity 1.00.

A multi-center study was reported by Müller et al. (2016) and involved 57 AD, 37 MCI-AD, 37 FTLD, 35 DBL patients, and 40 HC. Non-centrifuged CSF samples had greater levels (decreased Ct-values) of miR-29a compared to centrifuged samples and this was most evident in comparing samples from AD patients. After normalization, these differences due to the centrifugation protocol were only resolved for miR-146a, but differences between centrifuged and non-centrifuged samples were still evident for miR-29a and also for miR-27a and miR-125b. In the ANCOVA to compare miRNA expression between the groups, gender, age, and sample storage, center of origin, and centrifugation status of the samples were included as confounding factors. When the levels were compared between AD patients and dementia-free controls of all three centers, no significant differences were found. Levels of miR-125b showed a trend towards a decreased expression in AD patients, but when results were controlled for confounding factors this trend disappeared. Comparing MCI-AD to AD patients of all centers, levels of miR-27a, miR-125b and miR-146a were increased in MCI-AD patients. However, after correcting for the confounding factors, these differences were lost. Levels of miR-27a, miR-212 and miR-125b were similar in late stage AD, FTD and DBL. Levels of miR-146a were similar in AD and DBL groups but were increased in FTD patients compared to AD patients. However, this difference disappeared when the covariates were included in the group comparisons. No significant differences were identified for FTD patients compared to dementia-free controls.

In a study of miRNA expression in CSF of 22 AD, 10 FTD patients, 18 NINDC and 8 INDC by qRT-PCR, Galimberti et al. (2014) found a significant decrease of miR-125b and miR-26b in AD patients versus NINDCs. No significant differences were found in miR-23a expression levels in AD compared to NINDCs. Also, no differences were found in miR-125b and miR-26b levels in AD patients compared with INDCs and FTD patients.

Brain tissue

Jawaid et al. (2019) examined miRNA expression in frontal cortex tissue from 10 ALS, 9–12 FTLD, and 6–8 HC brains postmortem. By RT-qPCR, miR-183/96/182 expression was decreased in frontal cortex of patients with ALS while PP1y, a predominantly nuclear isoform of the memory suppressor protein phosphatase 1, was increased. MiR-183/96/182 expression was similarly decreased in the frontal cortex of patients with FTLD with a comparable increase in PP1y.

A study of miRNA levels in temporal lobe (Brodmann area 20) cortex of brains from 8 AD, 14 FTLD, and 8 HC was made by Hébert et al. (2013). The FTLD group was comprised of 5 FTD, and 9 progressive supranuclear palsy (PSP). By qRT-PCR, there was a significant downregulation of miR-132-3p in temporal cortex in AD, FTD, and PSP cases when compared to non-demented HC. MiR-100 was statistically lower in AD versus HC and tended to be higher in FTD compared to AD and HC (but not statistically significant which was probably due to the small group sizes).

Chen-Plotkin et al. (2012) obtained frontal cortex samples from 12 FTLD-TDP cases (5 with GRN mutations and 7 without GRN mutations) and 6 HC. By qRT-PCR, miR-132-5p, miR-132-3p, and miR-212 all showed < 50% expression in both GRN(−)FTLD-TDP and GRN(+)FTLD-TDP compared with normal controls. This decreased expression relative to normal controls occurred in both GRN(−)FTLD-TDP and GRN(+)FTLD-TDP subgroups, removing the possibility that one subgroup was causing the effect. A significant difference also persisted when quantitation was normalized to the brain-expressed miR, miR-124, removing the possibility that neuronal loss associated with FTLD-TDP was responsible for the effect. Absolute levels of miR-132-5p were ~100 times higher than miR-132-3p and miR-212 in all groups. MiR-132 and miR-212 are dual repressors of TMEM106B through shared binding sites in the 3′-untranslated region.

The findings from the miRNA studies are summarized in Table 1 and 2.

Discussion

FTD is the next most common cause of dementia after AD, with between 20–50% of the cases being familial (Olszewska et al., 2016). FTD is characterized by progressive impairments in behavior, executive function, and language (Rascovsky et al., 2011). The most frequent genetic cause of familial FTD and ALS is a hexanucleotide (GGGGCC) repeat expansion in the C9orf72 gene (DeJesus-Hernandez et al., 2011; Renton et al., 2011). Neurodegeneration can be caused by this autosomal dominant mutation through C9orf72 loss of function, aggregates of mutant RNA in nuclear foci and of dipeptide repeats, leading to pathological inclusions of TDP-43. It is imperative to identify biomarkers of preclinical progression for FTD and ALS that could be used to initiate and monitor potential disease-modifying treatments before any irreversible brain damage has occurred. Presymptomatic C9orf72 carriers represent an optimal target population for the development of new therapeutic interventions for FTD and ALS (Eisen et al., 2014; Betrand et al., 2018).
The early diagnosis of FTD is crucial for developing management strategies and interventions for these patients. Without validated biomarkers, the clinical diagnosis depends on recognizing all the core or necessary neuropsychiatric features of FTD (Neary et al., 1998; Mendez and Perryman, 2002). However, early FTD patients often do not show all the necessary core features for the clinical diagnosis of FTD and fail to meet diagnostic criteria on initial assessment (Mendez and Perryman, 2002). Many of the initial symptoms of FTD are compatible with a range of neurologic and psychiatric disorders. Consequently, physicians misdiagnose FTD in patients with AD, or other neurodegenerative diseases, that may present with overlapping cognitive, behavioral, and psychiatric symptoms (Mendez et al., 2006b; Olszewska et al., 2016). Changes in social and emotional behavior are usually the earliest signs of FTD. Within the first few years after onset, neuropsychiatric symptoms usually precede or overshadow any cognitive disabilities (Miller et al., 1991; The Lund and Manchester Groups, 1994; Edmonds-Lea et al., 1997; Pasquier and Petit, 1997). The profile of neuropsychological abnormalities in executive functions and language, with less impaired memory and visuospatial skills than AD (Elfgren et al., 1993; Hodges et al., 2004; Elderkin-Thompson et al., 2004), may be shown only as the disease progresses and lacks sensitivity in the beginning stages of FTD (Hodges, 2001; Mendez and Perryman, 2002; Kertesz et al., 2003). In addition, the earliest behavioral manifestations of FTD vary considerably and are associated with variation in the earliest localization of the disease and possibly in neuropathologic features (McMurtag et al., 2001; Mendez et al., 2006a). Thus, the development of proven biomarker(s) for early FTD would lessen the likelihood of misdiagnosis and benefit patient care. Cost-efficient, and specific biomarkers that can help in diagnosing early FTD and differentiating it from AD and ALS are urgently needed. The t-tau:Ab42 and p-tau:Ab42 ratios measured in CSF have been used to distinguish FTD and AD, and p-tau:Ab42 ratio discriminated PPA from AD (Casoli et al., 2019). However, collecting CSF by lumbar puncture is an invasive procedure and may be difficult to carry out in older patients. It is much more desirable to identify possible biomarkers in blood plasma or serum that can discriminate between FTD and AD which involves collecting peripheral venous blood by a minimally invasive procedure and can be done repeatedly to monitor disease progression and response to intervention.

Author	Method of miRNA analysis	Comparison	miRNA analysis
Kmetts, et al., 2020	miRNA sequencing	Symptomatic mutation carriers' vs. HC	Upregulated: miR-34a-5p, -345-5p
Kmetts, et al., 2020	miRNA sequencing	Presymptomatic mutation carriers' vs. HC	Upregulated: miR-34a-5p
Kmetts, et al., 2020	miRNA sequencing	Symptomatic mutation carriers vs. presymptomatic mutation carriers	Upregulated: miR-345-5p
Siedleck-A-Wullich et al., 2019	RT-PCR	AD vs. HC	Upregulated: miR-92a-3p, -181c-5p, -210-3p
Siedleck-A-Wullich et al., 2019	RT-PCR	MCI vs. HC	Upregulated: miR-181c-5p, -210-3p
Siedleck-A-Wullich et al., 2019	RT-PCR	FTD vs. HC	No significant differences in miR-92a-3p, -181c-5p, -210-3p
Grasso et al., 2019	RT-PCR	FTD vs. HC	Downregulated: miR-663a, -502-3p, -206
Grasso et al., 2019	RT-PCR	bvFTD vs. PPA	No significant differences in miR-663a, -502-3p, -206
Grasso et al., 2019	RT-PCR	Male FTD vs. HC	Downregulated: miR-663a, -502-3p, -206
Grasso et al., 2019	RT-PCR	Female FTD vs. HC	Downregulated: miR-663a, -502-3p, let-7e-5p
Piscopo et al., 2018	RT-PCR	FTD vs. HC	Downregulated: miR-127-3p
Piscopo et al., 2018	RT-PCR	FTD vs. AD	Downregulated: miR-127-3p
Piscopo et al., 2018	RT-PCR	Male FTD vs. HC	Downregulated: miR-127-3p
Piscopo et al., 2018	RT-PCR	Female FTD vs. HC	Downregulated: miR-127-3p
Piscopo et al., 2018	RT-PCR	Male FTD vs. AD	Downregulated: miR-127-3p
Piscopo et al., 2018	RT-PCR	Female FTD vs. AD	Downregulated: miR-127-3p
Sheinerman et al., 2017	RT-PCR	FTD vs. HC	The ratios miR-9-3p/let-7e, miR-7/miR-451, miR-335-5p/let-7e distinguished FTD from HC
Sheinerman et al., 2017	RT-PCR	FTD vs. AD	The ratios miR-125b/miR-29a, miR-125b/miR-874, miR-107/miR-335-5p distinguished FTD from AD
Sheinerman et al., 2017	RT-PCR	FTD vs. ALS	The ratios miR-129-3p/miR-206 and miR-338-3p/let-7e distinguished FTD from ALS
Sørensen et al., 2016	RT-PCR	AD vs. other dementia types (vascular, FTD, DLB)	Upregulated: miR-590-5p, -142-5p but not significant by Benjamini-Hochberg
Sheinerman et al., 2017	RT-PCR	MCI vs. HC	Downregulated: miR-194-5p but not significant by Benjamini-Hochberg
Sheinerman et al., 2012	RT-PCR	MCI vs. HC	The ratios miR-128/miR-491-5p, miR-132/miR-491-5p, miR-874/miR-491-5p, miR-134/miR-370, miR-323-5p/miR-370, miR-382/miR-370 distinguished MCI from HC
Galimberti et al., 2014	RT-PCR	bvFTD vs. HC	Upregulated: miR-143-3p, -193-3p, -222-3p, -223-3p, -26a-5p, -26b-5p, -30a-5p, -30b-5p
Galimberti et al., 2014	RT-PCR	AD vs. NIHDC	Downregulated: miR-100-5p, -335-5p, -99a-5p, -146a-5p, -15a-5p, -22-3p, -320a, -320b, -92a-3p, -1246
Galimberti et al., 2014	RT-PCR	AD vs. FTD and INDC	Downregulated: miR-125b, -23a, -26b-5p
Galimberti et al., 2014	RT-PCR	FTD vs. INDC	No significant differences in miR-125b, -23a, -26b-5p

AD: Alzheimer's disease; ALS: amyotrophic lateral sclerosis; bvFTD: behavioral variant FTD; DLB: dementia with Lewy bodies; FTD: frontotemporal dementia; HC: non-demented healthy controls; INDC: inflammatory neurologic disease controls; MCI: mild cognitive impairment; NINDC: non-inflammatory neurologic disease controls; PPA: primary progressive aphasia; RT-PCR: real-time polymerase chain reaction. 'Symptomatic mutation carriers consisted of 15 FTD, 4 FTD/ALS, 3 ALS patients carrying a C9orf72 expansion; 'Presymptomatic mutation carriers were 46 asymptomatic first-degree relatives of FTD, DLB).
A very large number of miRNAs was found to be dysregulated in the different studies reviewed herein, but with limited overlap between individual studies (Tables 1 and 2). Important findings in blood plasma were miR-663a, miR-502-3p, miR-206 being downregulated in FTD patients compared to HC (Grasso et al., 2019), as was miR-127-3p (Piscopo et al., 2018), and also the ratios miR-9-3p/let-7e, miR-7/miR-451, miR-335-5p/let-7e distinguished FTD from HC (Sheinerman et al., 2017). Moreover, miR-127-3p was downregulated in FTD compared to AD (Piscopo et al., 2018), and the ratios miR-125b/miR-29a, miR-125b/miR-874, miR-107/miR-335-5p distinguished FTD from AD (Sheinerman et al., 2017). FTD was distinguished from ALS by the ratios miR-129-3p/miR-206 and miR-338-3p/let-7e HC (Sheinerman et al., 2017). No significant differences in miR-663a, miR-502-3p, miR-206 were found in bvFTD compared to PPA (Grasso et al., 2019). Symptomatic mutation carriers consisting of FTD, FTD/ALS, and ALS patients carrying a C9orf72 expansion had upregulated miR-34a-5p, miR-345-5p and downregulated miR-200c-3p, miR-10a-3p compared to HC. Presymptomatic mutation carriers who were asymptomatic first-degree relatives of C9orf72 patients with a pathogenic expansion had upregulated miR-34a-5p compared to HC. Symptomatic mutation carriers were distinguished from presymptomatic mutation carriers by an upregulation of miR-34a-5p and downregulation of miR-200c-3p, miR-10a-3p (Kmetsch et al., 2021). Important findings in blood serum included upregulation of miR-143-3p, miR-197-3p, miR-27a-3p, miR-338-3p, miR-491-5p, miR-7b-5p, miR-7g-5p, miR-106a-5p, miR-106b-5p, miR-18b-5p, miR-223-3p, miR-26a-5p, miR-26b-5p, miR-301a-3p, miR-30b-5p and downregulation of miR-100-5p, miR-335-3p, miR-99a-5p, miR-146a-5p, miR-15a-5p, miR-22-3p, miR-320a, miR-320b, miR-92a-3p, miR-1246 in bvFTD compared to HC (Denk et al., 2018). In exosomes isolated from CSF, miR-204-5p, miR-632 were downregulated in symptomatic mutation carriers compared to asymptomatic presymptomatic mutation carriers. Symptomatic mutation carriers consisted of GRN, C9orf72, MAPT mutation carriers and comprised 12 bvFTD, 1 nfvPPA, 1 svPPA, 1 dementia not otherwise specified. Presymptomatic mutation carriers consisted of 23 patients.
2018). Upregulation of miR-124-3p, miR-125a-5p, miR-223-3p and downregulation of miR-15a-5p distinguished bvFTD from HC. Moreover, downregulation of miR-140-3p, miR-30a-5p, miR-30e-5p, miR-22-3p distinguished bvFTD from AD (Denk et al., 2018). Upregulation of miR-223-3p and downregulation of miR-15a-5p had been found in blood serum in bvFTD compared to HC (Denk et al., 2018). Downregulation of miR-22-3p in blood serum and CSF distinguished bvFTD from HC and AD, respectively. Thus, measurement of specific miRNAs singly or in combination, or as miRNA pairs (as a ratio) in blood plasma, serum or CSF enabled FTD to be discriminated from HC, AD, and ALS as shown by ROC analysis. Also, bvFTD could be distinguished from HC or AD. No miRNAs were identified as being able to distinguish between the bvFTD and PPA subtypes in the studies reviewed. Downregulated expression in frontal cortex of miR-183/96/182 (Jawaid et al., 2019) and miR-132-3p (Chen-Plotkin et al., 2012) occurred in FTLD compared to HC. Downregulation of miR-132-3p in temporal cortex in FTD compared to HC was also reported (Hébert et al., 2013). None of these miRNAs had altered expression in blood plasma, serum, or CSF in FTD patients. Possible strong miRNA biofluid biomarker contenders for bvFTD are miR-223-3p, miR-15a-5p, and miR-22-3p. MI-124 had been reported to modulate social behavior in FTD (Arrant and Roberson, 2014) and was found to be upregulated in CSF in FTLD versus HC and AD (Derkow et al., 2018) and could also be a potential biomarker contender. Table 3 provides further information on the composition of the groups in the studies by Denk et al. (2018) and Derkow et al. (2018). In the study by Denk et al. (2018) a total of 41 of the 48 bvFTD and 20 of the 48 AD cases were tested negative for the most prominent gene C9orf72, and no mutations in the genes MAPT and GRN were identified in the tested AD (n = 11) and bvFTD (n = 11) cases. No information on gene mutations in the cases was provided by Derkow et al. (2018). Interestingly, miR-132, miR-29b and miR-659 are reported to regulate GRN gene, and TDP-43 seems to regulate miR-9a and increases its stability (Piscopo et al., 2016b). Also, miR-30d is predicted to target C9orf72 gene (Kovanda et al., 2018). However, none of these miRNAs had altered expression in the studies reviewed. MiR-223-3p targets the G6PT gene (Paul et al., 2020). It is suggested that miR-223-3p is upregulated in bvFTD patients in response to inflammation to mediate a neuroprotective effect; overexpression of miR-223-3p was found to protect dissociated cortical neurons from condition media-mediated degeneration (Morquette et al., 2019). The target gene of miR-124 is AMPAR (Piscopo et al., 2016a) and research suggests that AMPA receptors are associated with the regulation of social behavior (Gascon et al., 2014). Upregulation of miR-124 would lead to a decrease in AMPAR and AMPA receptors, thereby affecting the regulation of social behavior. MiR-15a is positively linked with amantadine which acts as an N-methyl-D-aspartate receptor antagonist. Research has shown amantadine to be associated with the treatment of behavioral disturbances (Huey et al., 2006). MiR-15a-5p targets the BDNF gene (Dentham et al., 2018), which is also targeted by miR-22-3p in addition to the PTEN and SIRT1 genes (Lauretti et al., 2020; Liu et al., 2020).

The main limitations identified in these studies included the small sizes of some groups, gender and/or age disproportion in some groups, and whether normalization of miRNA data had been employed. For example, in a study by Sørensen et al. (2016) miRNA expressions were compared in 10 AD patients versus 10 patients with other types of dementia (consisting of 4 vascular dementia, 4 FTD, 2 DLB). When applying multiple testing of P values with the Benjamini-Hochberg procedure, none of the previously found differences remained significant. With small group sizes it is difficult to show statistically significant changes, and no power calculations were included in any of the reviewed articles. Also, Piscopo et al. (2018) studied miRNA expression in 54 probable FTD cases (19 male/35 female) and 20 AD cases (10 male/10 female); however, testing of data to take account of gender differences was not considered.

Table 3 | Possible miRNA biomarker candidates in frontotemporal dementia from studies by Denk et al. (2018) and Derkow et al. (2018) and related mechanistic pathways

Author	Number of FTD patients, gender, ages	Subjects for comparison, number, Sample assayed	Altered miRNA expression	Related pathway to FTD	
bvFTD vs. HC					
Denk et al., 2018	48 bvFTD³, 30M/18F, 65±9.2 yr (48 serum)	44 HC, 20M/24F, 64±11.3 yr (38 serum)	Serum	miR-223-3p upregulated	Possible protection of surviving neurons by miR-223-3p. MiR-223-3p targets G6PT gene
					A positive linkage of miR-15a with amantadine, which is associated with the treatment of behavioral disturbances
					MiR-15a-5p targets BDNF gene
					MiR-22-3p targets BDNF, PTEN, and SIRT1 genes
Denk et al., 2018	48 bvFTD³, 30M/18F, 65±9.2 yr (48 CSF)	44 HC, 20M/24F, 64±11.3 yr (44 CSF)	CSF	miR-223-3p upregulated	Possible protection of surviving neurons by miR-223-3p. MiR-223-3p targets G6PT gene
					The target gene of miR-124 is AMPAR. AMPA receptors are associated with the regulation of social behavior
					A positive linkage of miR-15a with amantadine, which is associated with the treatment of behavioral disturbances
					MiR-15a-5p targets BDNF gene
					MiR-22-3p targets BDNF, PTEN, and SIRT1 genes
FTLD vs. HC					
Derkow et al., 2018	8 FTLD, 3M/5F, 64±11.5 yr	10 HC, 7M/3F, 58±11 yr	CSF	miR-124 upregulated	The target gene of miR-124 is AMPAR. AMPA receptors are associated with the regulation of social behavior
FTLD vs. AD					
Derkow et al., 2018	8 FTLD, 3M/5F, 64±11.5 yr	12 AD, 2M/10F, 71±8.5 yr	CSF	miR-124 upregulated	The target gene of miR-124 is AMPAR. AMPA receptors are associated with the regulation of social behavior

AD: Alzheimer’s disease; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazoletropic acid; CSF: cerebrospinal fluid; F: Female; FTD: frontotemporal dementia; bvFTD: behavioral variant FTD; FTLD: frontotemporal lobar degeneration; HC: healthy controls; M: Male; yr: years. Total of 41 of the 48 bvFTD and 20 of the 48 AD cases were tested negative for the most prominent gene C9orf72, and no mutations in the genes MAPT and GRN were identified in the tested AD (n=11) and bvFTD (n = 11) cases.
in these two groups by multiple comparisons was not made. Furthermore, the gender composition of the AD, FTD, NINC and INDC groups in the study by Galimberti et al. (2014) was not reported. A significant age difference occurred between symptomatic mutation carriers and presymptomatic mutation carriers in the study by Schneider et al. (2018). Also, in a multi-center study of miRNAs in CSF by Müller et al. (2016), several confounding factors were identified that included gender, age, sample storage, center of origin, and centrifugation status of the samples, and notably when the results were controlled for these confounding factors, the differences identified in miRNA levels between the different groups were lost. Normalization of experimental data was reported in eight of the 15 studies, but it was unclear whether this had been performed in the other studies. It was surprising that there were only three studies performed with frontal or temporal cortical tissue. In one of these studies fresh frontal cortices were used (Jawai et al., 2019) while frontal cortex (Chen-Plotkin et al., 2012) and temporal cortex (Hébert et al., 2013) were obtained from a research brain bank. The other studies examined either cerebrospinal fluid (CSF), frontal or temporal cortical tissue. In one of these studies it is hoped that a sensitive and specific, minimally invasive test can be developed to identify patients with FTLD and assist with regular monitoring and initiate treatment to slow disease progression. A multimodal assessment combining potential novel biofluid biomarkers with clinical, neuroimaging, and genetic markers may enable FTLD subtypes to be more accurately distinguished.

Author contributions: Both authors contributed equally to this manuscript and approved the final manuscript.

Conflicts of interest: The authors declare no conflicts of interest.

Financial support: None.

Copyright license agreement: The Copyright License Agreement has been signed by both authors before publication.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

References

Alexandrov PN, Zhao Y, Pogue Ai, Tarr MA, Knuck TP, Percy ME, Cui JG, Lukow WI (2012) microRNA (miRNA) speciation in Alzheimer’s disease cerebrospinal fluid (CSF) and extracellular fluid (ECF). J Biol Mol Biol 3:365-373.

Arai T, Hasegawa M, Akiami H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitinin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602-612.

Arrant AE, Roberson ED (2014) MicroRNA-124 modulates social behavior in frontotemporal dementia. Nat Med 20:1381-1383.

Bagga S, Bracht J, Hunter S, Massirier K, Holtz J, Euchas R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target miRNA degradation. Cell 122:553-563.

Bang J, Spina S, Miller BL (2015) Frontotemporal dementia. Lancet 386:1672-1682.

Bertrand A, Wen J, Rinaldi D, Houtc M, Sayah S, Camuzat A, Fournier C, Fontanna S, Routier A, Courtrier P, Pasquier F, Hubert MO, Hannequin D, Martinoud O, Caroppo P, Levy K, Dubois B, Brice A, Durrleman S, Colliot O, Le Ber I (2018) Early cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers younger than 40 years. JAMA Neurol 75:236-245.

Blauwendraat C, Wilke C, Simón-Sánchez J, Jansen IE, Reifsneider A, Capell A, Haass C, Castillo-Lizardo M, Biskup S, Maetzel W, Rizu P, Heutink P, Synofzik M (2018) The wide genetic landscape of clinical frontotemporal dementia: systematic combined sequencing of 121 consecutive subjects. Genet Med 20:240-249.

Bruun M, Koikkalainen J, Rhodus-Meester HF, Baron M, Gjerum L, van Gils M, Sohinn H, Remes AM, Hartkainen P, Waldemar G, Mecci P, Barkhof F, Pinjemen Y, van der Vler WM, Hasselbalch SG, Lottjen J, Frederiksen KS (2019) Detecting frontotemporal dementia syndromes using MRI biomarkers. Neuroimage Clin 22:101711.

Buratti E, Baralle FE (2010) The multiple roles of TDP-43 in pre-miRNA processing and gene expression regulation. RNA Biol 7:420-429.

Casali T, Paolino S, Fabbietti P, Fattorotti P, Piacaroni L, Fabi K, Gobbi B, Galeazzi R, Rossi R, Lattanzio F, Pellicioni G (2019) Cerebrospinal fluid biomarkers and cognitive status in differential diagnosis of frontotemporal dementia and Alzheimer’s disease. J Int Med Res 47:4968-4980.

Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicielli-Daley L, Busch J, Alke S, Grossman M, Van Der Vein L, Trojanowski JQ, Lee VM (2012) TME106, the risk factor for frontotemporal dementia, is regulated by microRNA-132/121 cluster and affects prionopathy pathways. J Neurosci 32:11213-11227.

Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelner K, Kemppainen J, Brown J, Chen C, Prinjia RK, Richardson JC, Saunders AM, Roses AD, Richards CA (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease biology. J Alzheimers Dis 14:27-41.

Condrat CE, Thompson DC, Barbucci MG, Bugnar OL, Boboc A, Cretioul D, Suciu N, Cretioul SM, Voinea SC (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9:276.

Dantham S, Srivastava AK, Gulati S, Rajeswari MR (2018) Differentially regulated cell-free microRNAs in the plasma of Friedreich’s ataxia patients and their association with disease pathology. Neuropediatrics 49:35-43.
de Mendonga A, Ribeiro F, Guerreiro M, Garcia C (2004) Frontotemporal mild cognitive impairment. J Alzheimers Dis 6:1-9.
Dejesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamsom J, Kouri N, Wojtas A, Senguy P, Hsiung Y, Karydas A, Sweeney LW, Josephs KA, Coop JG, Geschwind DH, Wszolek ZK, et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245-256.
Denk R, Oberhauser F, Komnora S, Wilfflang J, Fassbender K, Schroeter ML, Volk AE, De Smet S, Prudjo J, Dahnke A, Landwehrmeyer B, Lauer M, Otto M, Jahn H (2018) Specific sequence and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls. PLoS One 13:e0197329.
Derkow K, Rössling R, Schipke C, Krüger C, Bauer J, Fähling M, Stroux A, Schott E, Ruprecht K, Peters O, Lehnders S (2018) Distinct expression of the neurotoxic microRNA family let-7 in the cerebrospinal fluid of patients with Alzheimer’s disease. PLoS One 13:e0200602.
Di Carlo V, Grossi E, Laneve P, Morlando M, Dini Modigliani S, Ballarino M, Poli D, Sottolineo M, Barbagallo R, Corna V, Piccardi V, La Placa E, Forlani S, Caffarelli E (2013) TDP-43 regulates the microprocessor complex during in vitro neuronal differentiation. Mol Neurobiol 48:952-963.
Edwards-Lee T, Miller BL, Benson DF, Cummings JL, Russell GL, Boone K, Mena I (1997) The temporal variant of frontotemporal dementia. Brain 120:1027-1040.
Eisen A, Kiernan M, Mitsumoto H, Swash M (2014) Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry 85:1233-1238.
Eldering-Thompson V, Boone KB, Hwang S, Kumar A (2004) Neurocognitive profiles in elderly patients with frontotemporal dementia or major depressive disorder. J Int Neuropsychol Soc 10:753-771.
Ellgren C, Passant U, Risberg J (1993) Neuropsychological findings in frontal lobe dementia. Dementia 4:214-219.
Endo K, Ishigaki S, Masamizu Y, Fujioka Y, Watakabe A, Yamamori T, Hatanaka K, Ohno Y, Kurimura J, Takemoto T, et al. (2013) Abnormalities of brain metabolites and functional connectivity in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 94:485-493.
Endo K, Ishigaki S, Masamizu Y, Fujioka Y, Watakabe A, Yamamori T, Hatanaka K, Ohno Y, Kurimura J, Takemoto T, et al. (2013) Abnormalities of brain metabolites and functional connectivity in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 94:485-493.
Elfgren C, Passant U, Risberg J (1993) Neuropsychological findings in frontal lobe dementia. Dementia 4:214-219.
Endo K, Ishigaki S, Masamizu Y, Fujioka Y, Watakabe A, Yamamori T, Hatanaka K, Ohno Y, Kurimura J, Takemoto T, et al. (2013) Abnormalities of brain metabolites and functional connectivity in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 94:485-493.
Kovanda A, Leonards L, Zidar J, Kortink J, Dolenc-Grosejelj L, Kovacic SR, Curtk T, Maxeiner U (2018) Differential expression of microRNAs and other small RNA molecules in muscle tissue of patients with ALS and healthy age-matched controls. Sci Rep 8:5609.
Laforest E, Dincer O, Pratcò D (2020) Regional and temporal miRNAs expression profile in a transgenic mouse model of tauopathy: implications for its pathogenesis. Mol Psychiatry doi: 10.1038/s41380-020-0555-2.
Lee G, Leugers CJ (2012) Tau and tauopathies. Prog Mol Biol Trans Sci 107:263-293.
Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, Park DK, Lim JY, Kim JM, Jeon D, Ryu H, Lee SK, Kim M, Roh JK (2012) miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 72:269-277.
Le VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121-1159.
Lehmang SM, Krüger C, Park B, Berkow K, Rosenberger K, Baumgart J, Trimbach T, Eom G, Hinz M, Kaul D, Habelb P, Kärin R, Franzoni E, Rybak A, Ninnemann U, Veh R, Ninemann U, Peters O, Nitsch R, Hepper F, et al. (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827-835.
Liu C, Liu Y, Kim T, Min R, Zhang Z (2010) Gene expression variability within and between human populations and implications toward disease susceptibility. PLoS Comput Biol 6:e1000810.
Liu CG, Wang JL, Li L, Xue LX, Zhang YQ, Wang PC (2014) MicroRNA-135a and -200b, potential biomarkers for Alzheimer’s disease, regulate β secretase and amyloid precursor protein. Brain Res 1583:55-64.
Liu K, Tong H, Li T, Wang X, Chen Y (2020) Research progress in molecular biology related to quantitated methods of microRNA. Am J Transl Res 12:3198-3211.
Ly CV, Miller TM (2018) Emerging antisense oligonucleotide and viral therapies for amyotrophic lateral sclerosis. Curr Opin Neurol 31:648-654.
Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995-1007.
Maloney B, Lahiri D (2016) Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 15:760-774.
Mangold A, Pratcò D (2017) Can anti-tau therapies treat neurodegenerative disorders? Neurology Rev 25:26-29.
Mazo JR, Parisi JE, Dickson DW, Johnson K, Cha R, Ivnik RJ, Tangalos EG, Boeve BF, Knopman DS, Braak H, Petersen RC (2006) Neuropathologic outcome of dementia with Lewy bodies, hippocampal sclerosis, frontotemporal lobar dementia, and non-demented human controls. J Alzheimers Dis 35:335-348.
Hedges JR (2001) Frontotemporal dementia (Pick’s disease): clinical features and assessment. Neurology 56:56-60.
Hedges JR, Davies RR, Xuereb JH, Casey B, Brole M, Bak TH, Krij J, Halliday GM (2004) Clinicopathological correlates in frontotemporal dementia. Ann Neurol 56:599-606.
Holm IE, Englund E, Mackenzie IR, Johannsen P, Isaacs AM (2007) A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3. J Neuropathol Exp Neurol 66:884-891.
Holm IE, Englund E, Mackenzie IR (2009) Absence of FUS-immunoreactive pathology in frontotemporal dementia linked to chromosome 3 (FTD-3) caused by mutation in the CHMP2B gene. Acta Neurosci Scand 65:198-210.
Huey ED, Putnam KT, Graffman J (2006) A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology 66:17-22.
Review

NEURAL REGENERATION RESEARCH | www.nrronline.org

Meng F, Dai E, Yu X, Zhang Y, Chen X, Liu X, Wang S, Wang L, Jiang W (2013) Constructing and characterizing a bioactive small molecule and microRNA association network for Alzheimer’s disease. J R Soc Interface 11:20130157.

Miller BL, Cummings JL, Villanueva-Meyer J, Boone K, Mengerin CM, Lesser IM, Mena I (1993) Frontal lobe degeneration: clinical, neuropyschological, and SPECT characteristics. Neuropsychology 41:1374-1382.

Moon J, Lee ST, Kong IG, Byun JJ, Sunwoo JS, Shin JW, Shim JY, Park JH, Jeon D, Jung HK, Jung KY, Kim DY, Lee SK, Kim M, Chu K (2016) Early diagnosis of Alzheimer’s disease from elevated olfactory mucosal miR-206 level. Sci Rep 6:20364.

Morquette B, Juizk CA, Drake SS, Charabati M, Zhang Y, Lécyer MA, Galloway DA, Dumas A, de Faria Junior O, Paradis-Iseri N, Bueno M, Rambaldi I, Zandie S, Moore C, Bar-Or A, Vallières L, Pratt A, Fournier AE (2019) MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain 142:279-2995.

Müller M, Kuperbi JB, Claassen JA, Kusters VB, Veerbeek MM (2014) MicroRNAs in Alzheimer’s disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging 35:152-158.

Müller M, Kuperbi JB, Versleijen A, Chiasserini D, Farotti L, Baschieri F, Parnetti L, Struyfs H, De Roodt E, Engelberts S, Claassen JA, Veerbeek MM (2016) Validation of microRNAs in cerebrospinal fluid as biomarkers for different forms of dementia in a multicenter study. J Alzheimers Dis 52:1330-1339.

Munoz DG, Neumann M, Kusaka H, Yokota O, Ishihara K, Terada S, Kuroda S, Mackenzie I (2009) FUS pathology in basophilic inclusion body disease. Acta Neuropathol 118:617-627.

Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Muller M, Kuiperij HB, Claassen JA, Küsters B, Verbeek MM (2014) MicroRNAs with reduced expression in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Nat Neurosci 17:559-565.

Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Bruce J, Schuck T, Grossman M, McCluskey LF, Miller BL, Alsop D, Robertson J, Boxer AL, Tartaglia MC, Roberts J (2018) Reduced miR-659-3p levels correlate with progranulin increase in hypoxic ischemia reperfusion injury. Am J Pathol 188:280-290.

Rosso SM, Donker Kaat L, Baks T, Joosse M, de Koning J, Pijnenburg Y, de Jong D, van Duijn CM, Heutink P, van Swieten JC (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126:2016-2022.

Sal Fraser G, Lai P, Saeta E, Tournoy J, Bossers K, Van der Bergh R, Wallin A, Birke J, Meltzer B, Blennow K, De Strooper B (2013) Reduced expression of hsa-mir-27a-3p in CSF of patients with Alzheimer disease. Neurology 81:2103-2106.

Santos-Santos MA, Mandelli ML, Binney RJ, Ogar J, Wilson SM, Henry ML, Hubbard HI, Meese M, Attygalle S, Rosenberg L, Pakvasa M, Trojanowki JQ, Gringert LT, Rosen H, Barker AL, Miller BL, Seeley WW, Gorno-Tempini ML (2014) Features of patients with nonfluent/agagramatic primary progressive aphasia with underlying progressive supranuclear pallidathy or corticobasal degeneration. JAMA Neurol 73:733-742.

Schneider R, McKeever P, Kim T, Graff C, van Swieten JC, Karydas M, Trojanowki JQ, Umanjsky SR (2017) Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimers Res Ther 9:89.

Sheinerman KS, Toledo JB, Tisvinsky VG, Irwin D, Grossman M, Weintraub D, Hurtig HI, Chen-Plotkin A, Wolk DA, McCluskey EF, Elman LB, Umanjsky SR (2013) Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging (Albany NY) 5:925-938.

Sheinerman KS, Tisvinsky VG, Crawford F, Mullan MJ, Abdullah L, Umanjsky SR (2012) Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY) 4:590-605.

Sheinerman KS, Umanjsky SR (2013) Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies. Front Cell Neurosci 7:150.

Sieben A, van Langenhove T, Martin JJ, Boon P, Craz P, De Deyn PP, Santens P, Van Broeckhoven C, Cruts M (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124:353-372.

Siedlecki-Wullich D, Catalá-Solsona J, Fábregas C, Hernández I, Clarimon J, Lledí J, Boada M, Saura CA, Rodríguez-Alvarez J, Miliano-Molina AJ, Del Campo JM, Jiménez JM, Domingues F, Assin C, Díez M, López-Carrizales F, Serón JS, García-Redondo A, Osta R (2019) MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain 142:2979-2995.

Slopien S, Ye J, Engelberths S, Martin JJ, Boon P, Craz P, De Deyn PP, Santens P, Van Broeckhoven C, Cruts M (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124:353-372.

Stephan BC, Matthews FE, Khaw KT, Dufois C, Brayne C (2009) Beyond mild cognitive impairment: vascular cognitive impairment, no dementia (VCIND). J Neurology Neurosurgery Psychiatry 89:1072.

Toivonen JM, Mena I (1991) Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics. Neuropsychology 41:1374-1382.

Wattjes MP, Barkhof F, Gossink F, Prins ND, Stek ML, Scheltens P, Pijnenburg YL, Zanardini R, Ciani M, Benussi L, Ghidoni R (2016) Molecular pathways bridging neurodegeneration and microRNA regulation. J Neuroregen Res 7:31.

Wexler EM, D’Souza J, Jack CR Jr, Boeve BF, Kertesz A, Seeley WW, Rankin KP, Johnson JK, Gorno-Tempini ML, Rosen H, Miller BL, Rapoport J, Trojanowki JQ, Umanjsky SR (2009) Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies. Front Cell Neurosci 3:18.

Mackenzie IR (2009) FUS pathology in basophilic inclusion body disease. J Neurol Neurosurgery Psychiatry 80:909-914.

Mackenzie IR (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132:2922-2931.

Mackenzie IR, Roebber S, Kretschmar HA, Rademakers R, Baker M, Mackenzie IR (2009a) Abnormal FUS immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol 118:605-616.

McNamara A, Abrahamson D, Xing C, Eggen H, Zinman L, Rohrer JD, Tartaglia MC, Roberts J (2018) Potential plasma biomarkers for Alzheimer’s disease. Alzheimers Res Therapy 1:4-12.

Sørensen SS, Nygaard AB, Christensen T (2016) miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia—an exploratory study. Transl Neurodegener 5:6.

Tian N, Cao Z, Zhang Y (2014) MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neurosci Bull 30:191-197.

Toivonen JM, Manzano R, Ollivier S, Zaragoza P, García-Redondo A, Osta R (2014) MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 9:e89065.

UCSF Well Institute for Neurosciences. Familial FTD. https://memory.ucsf.edu/genes/familial-ftd. accessed 11 April 2021.

Vijverberg EG, Dols A, Kruop D, Peters A, Kersssn CJ, van Berckel BN, Wattjes MP, Barkhof F, Gossink F, Prins ND, Stek ML, Scheltens P, Pijnenburg YL (2016) Diagnostic accuracy of the frontotemporal dementia consensus criteria in the late-onset fronto lobe syndrome. Dement Geriatr Cogn Disord 41:210-219.

Waller R, Goodall EF, Milo M, Cooper-Knock J, Da Costa M, Hobson E, Kaza K, Wolff H, Heath PR, Shaw PJ, Kirby J (2017) Serum miRNAs miR-206, 143-3p, and 374-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiol Aging 55:123-131.

Zanardini R, Ciani M, Benussi L, Ghidoni R (2016) Molecular pathways bridging frontotemporal lobar degeneration and psychiatric disorders. Front Aging Neurosci 8:10.