Protocol

Protocol for comprehensive RNA sequencing analysis of murine long non-coding RNAs during aging

Comprehensive analyses of IncRNAs in aging have been lacking because previous studies have mainly focused on the protein-coding genes during aging. Here, we describe a protocol for the organism-wide analysis of murine IncRNAs during aging. We provide step-by-step instructions to identify IncRNAs that contribute to aging and to determine their underlying functions in each tissue. We further describe methods to compare the IncRNA expression patterns and dynamic changes among multiple tissues.

HIGHLIGHTS

- Differential gene expression and aging-regulated IncRNA identification
- Functional annotation specific for IncRNAs
- Tissue-specific analysis for aging-regulated IncRNA

Lu et al., STAR Protocols 2, 100397
June 18, 2021 © 2021 The Authors.
https://doi.org/10.1016/j.xpro.2021.100397
Protocol

Protocol for comprehensive RNA sequencing analysis of murine long non-coding RNAs during aging

Xinyue Lu,1,4 Qiuzhong Zhou,2,4 Jin Liu,3,* and Lei Sun2,5,6,*

1School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
2Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore
3Centre for Quantitative Medicine, Health Services & Systems Research, Duke-NUS Medical School, Singapore 169857, Singapore
4These authors contributed equally
5Technical contact
6Lead contact
*Correspondence: jin.liu@duke-nus.edu.sg (J.L.), sun.lei@duke-nus.edu.sg (L.S.)
https://doi.org/10.1016/j.xpro.2021.100397

SUMMARY

Comprehensive analyses of lncRNAs in aging have been lacking because previous studies have mainly focused on the protein-coding genes during aging. Here, we describe a protocol for the organism-wide analysis of murine lncRNAs during aging. We provide step-by-step instructions to identify lncRNAs that contribute to aging and to determine their underlying functions in each tissue. We further describe methods to compare the lncRNA expression patterns and dynamic changes among multiple tissues.

For complete details on the use and execution of this protocol, please refer to Zhou et al. (2020).

BEFORE YOU BEGIN

Overview of the project

This project aims to study the dynamic regulation of lncRNAs and their functional implications across multiple rodent tissues during aging. This study includes data collection, preprocessing (Figure 1A) and data analysis composed of differential gene expression analysis, functional annotation, tissue specificity analysis and dynamic network construction (Figure 1B).

For differential gene analysis, we make use of negative binomial model in DESeq package to identify AR(aging-regulated) mRNAs/lncRNAs in multiple tissues.

For functional annotation, we first use Pearson correlation to identify co-expressed mRNAs of each AR-mRNAs. Then we perform BP enrichment analysis to discover the role of those co-expressed mRNAs during aging, so as to infer the potential functions of each AR-lncRNA.

For tissue specificity analysis, we define and calculate the tissue specificity score of each lncRNA, which is used to compare the tissue specificity between AR-lncRNAs and ANR-lncRNAs/AR-mRNAs.

For dynamic network analysis, we first use Pearson correlation to calculate the relationship between each AR-mRNA and each AR-lncRNA at each age point and then make use of the Walktrap community finding algorithm in igraph package to identify modules where AR-mRNAs and AR-lncRNAs are connected.
Data collection

In this protocol, we make use of RNA sequencing expression data to identify those lncRNAs functioning in aging among different tissues. Since correlation between lncRNAs and mRNAs is used to predict the regulatory roles of interested lncRNAs, the samples of interest should include RNA sequencing reads of both mRNAs and lncRNAs from a series of tissues in a specific species. In order to study the transcriptome alternations across the lifespan of a selected species, the samples should come from different age points for each tissue.

Note: For example, we chose mouse as our focused species and considered 11 tissues in our published study. From 8, 26, 60, 78, 104 weeks, 5 replicates of each tissue were collected. That is, we had 5(replicates) × 5(different time points) × 11(different tissues)=275 samples in total. The number of lncRNAs was 21,981 and the number of mRNAs was 12,533, which were consistent in all samples.

Note: The background among replicates should be matched as closely as possible.

Data preprocessing

© Timing: 3-4 days

Note: Use conda create command in conda to create an environment specific for RNA-seq preprocessing.

Note: We begin with FASTQ files. If the raw files are in the form of SRA, fasterq-dump in sratoolkit can be used to transform data formats.

1. Quality control
 a. Access the quality of data with fastqc (v0.11.9), which will generate two result files for each sample in the form of zip and html (Andrews, 2010).
 b. Merge the results from fastqc with multqc (v1.9), which will result in a single quality control report across all samples in the form of html (Ewels et al., 2016).
 i. The report consists a series of items, showing data quality in multiple aspects. Mainly focus on Basic Statistics, Per Base Sequence Quality and Adapter Content.
ii. If some of the samples failed to pass the above mentioned quality control items, using trim galore (v0.6.5) to apply adapter and quality trimming to raw fastq files (Krueger, 2012).

c. Make sure all samples are of good quality by fastqc again.

Note: Step-c requires repeating step-a and step-b(i). Only samples passing the mentioned items after adapter and quality trimming are considered as “of good quality” and used for following analysis.

2. Alignment of sequencing reads

 a. Use STAR (v2.7) to map sequence reads to a known genome according to the interested species (Dobin et al., 2013). The reference genome sequence can be downloaded from GENCODE (https://www.gencodegenes.org) (Frankish et al., 2019).

 Note: For example, we perform alignment by mouse reference genome (Release M17 of GenCode, GRCm38) with parameter of sjdbOverhang149 in our published study.

 b. Use SAMtools (v1.11) to deal with file format (Li et al., 2009).

 i. Transform SAM files, the output files of STAR, to BAM files by view command.

 ii. Sort BAM files by sort command.

 Note: BAM files are binary version of SAM files, which can increase the execution speed in gene abundance quantification.

3. Quantification of gene abundance

 a. Assign reads to genes and determine the abundance by featureCounts (v2.0.1) (Liao et al., 2014).

 i. Specific parameter -p counts fragments instead of reads. It is only applicable for pair-end reads since single-end reads will always be counted as reads.

 ii. Parameter -a should be followed by the name of the annotation file. (GTF file obtained in step2-a)

 iii. Parameter -o should be followed by the name of output file including read counts (txt format). Another file including summary statistics of counting results will also be generated.

 b. Use cut command to extract gene names and gene counts, from the output file (txt format) of featureCounts.

 Note: The 2nd to 6th columns include information of genes. Only gene names (the 1st column) and gene counts of each sample (the 7th to (7 + (N−1))th column, where N represents the total number of samples) is necessary.

 Note: This section will generate a G × N raw count matrix including samples from all of the tissues, containing the expression of mRNAs and IncRNAs, where G is the total number of mRNAs and IncRNAs and N is the total number of samples. To be specific, if there are M tissues and N_i (i = 1, 2, ..., M) samples for each of the tissues, N = ∑ N_i.

 △ **CRITICAL:** All of the following analysis will be executed in R statistical environment (v3.6.1).

 Note: In the following parts, we give variable names to some R objects, shown in the form of italics, to make our protocol more understandable. The names of R objects can be adjusted according to the projects.

 Note: In the following parts, R functions are in the form of ‘<functionname> command’.
4. Normalization and filtering troubleshooting 1 and 2
 a. Import raw read counts matrix as a dataframe raw.
 b. Perform normalization of raw read counts by the method of Median of Ratio in DESeq2 package (Anders and Huber, 2010).
 i. Use DESeqDataSetFromMatrix function to create a DESeqDataSet object dds_norm. The only necessary input is the dataframe raw.
 ii. Use estimateSizeFactors function with dds_norm to perform normalization. Then use counts function with a parameter of normalized=TRUE to obtain a normalized matrix norm.
 c. Carry out log transformation of matrix norm by the log1p function and only keep genes with expression > 0 in at least 20% samples for each tissue.
 d. Take the mean expression value for all the replicates at a specific time point for each tissue separately.

Note: This section will generate a series of $g_i \times n_i (i=1, 2, \ldots, M)$ normalized count matrix $T_i (i=1, 2, \ldots, M)$ for each of the tissues containing the expression of mRNA and lncRNA, where M is the total number of tissues, g_i is the number of filtered genes and n_i is the number of samples in this tissue. n_i is the number of different age points after taking the mean value of all the replicates.

Note: It is recommended to use the list structure to store raw and processed counts (before and after taking the mean value) for each tissue. Intermediate results in subsequent parts can also be saved in this way.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Deposited data		
RNA-seq raw data are available at NGDC (http://bigd.big.ac.cn) under the BioProject accession number PRJCA02140	Zhou et al., 2020	NGDC:PRJCA002140
Software and algorithms		
Quality control of RNA-seq : fastqc v0.11.9	Andrews, 2010	http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Summarize the output of fastqc : multiqc v1.9	Ewels et al., 2016	https://multiqc.info
Quality and adapter trimming to fastq files : Trim Galore v0.6.5	Krueger, 2012	http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
RNA-seq mapping : STAR v2.7	Dobin et al., 2013	https://github.com/alexdobin/STAR
Format transformation and sorting : SAMtools v1.11	Li et al., 2009	http://samtools.sourceforge.net
Counting reads : featureCounts v2.0.1	Liao et al., 2014	http://subread.sourceforge.net/
R system : R v4.0.2	N/A	https://cran.r-project.org/
Programming environment of R : RStudio v1.3.1093	N/A	https://rstudio.com/
Differential gene expression analysis : DESeq2 v1.28.1	Anders and Huber, 2010	https://bioconductor.org/packages/release/bioc/html/DESeq2.html
Functional annotation : clusterProfiler v3.16.1	Yu et al., 2012	https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
Gene expression interaction : Hmisc v4.4	Harrell, 2019	https://cran.r-project.org/web/packages/Hmisc
Network cluster : igraph v1.2.4.2	Csardi and Nepusz, 2006	https://igraph.org/redirect.html
Data visualization: pheatmap v1.0.12	Kolde, 2019	https://github.com/raivokolde/pheatmap
STEP-BY-STEP METHOD DETAILS

Differential gene expression

© Timing: 2h

Note: Differential expression analysis is performed in each tissue.

Note: Raw counts are used in this part.

1. Perform pairwise differential gene expression of the youngest group with each aged group using DESeq2 (v1.28.1) package (Anders and Huber, 2010). *(Figure 2A)*
 a. Use DESeqDataSetFromMatrix function to create a DESeqDataSet object dds. The input arguments include CountData, ColData and Design.
 i. CountData is a matrix containing the raw read counts of selected groups. Filter the read counts to keep the same genes as the processed counts after data preprocessing. Each row represents a gene. Each column represents a sample in the interested young and aged groups.
 ii. ColData is a matrix containing sample information. Each row represents a sample, in the order of columns of countData. Each column represents a type of group information, including age and other covariates such as sex.
 iii. Design is a formula representing how the gene counts rely on the variables in colData. Include the interested variables or their interactions in this formula.

Note: For example, to examine which genes are differentially expressed during aging, only need to use ~age as the design *(Figure 2A)*. If other covariates such as sex and sex:age interactions are considered, ~age + sex + age:sex(as their interaction) should be used for the formula of design.
Note: A DESeqDataSet object is used to store the input raw counts and intermediate results during the analysis of differential gene expression. All operations are performed on the DESeqDataSet object.

b. Using DESeq function with `dds` to conduct the analysis of differential gene expression. Outcomes tables can be generated by results function. The tables contain log2FoldChange and adjusted p-value (FDR) of each gene.

Note: DESeq function contains three steps for the analysis of differential gene expression (estimateSizeFactors function, estimateDispersions function, and nbinomWaldTest function). As a substitute, you can also execute the three functions step-by-step.

c. For each of the aged group, the differentially expressed genes are identified with the criteria of $|\log_{2}FC| \geq 0.75$ and FDR ≤ 0.05.

2. Differentially expressed genes in the interested aged groups are identified as aging-regulated (AR) genes.

Note: Up/Down-regulated AR-genes can be identified according to the positive/negative log2FC values.

Note: In most organs, the number of differentially expressed IncRNAs increases during aging (Figure 2C). The differential expressed mRNA/IncRNA of 78 weeks or 104 weeks compared with 8 weeks are classified as aging-regulated mRNAs (AR-mRNAs)/Aging-regulated IncRNAs (AR-IncRNAs) (Figure 2B).

Functional annotation

© Timing: 4h

Note: Functional annotation is performed in each tissue.

Note: The mean value of processed counts of different replicates are used in this part.

Note: The clusterProfiler (v3.16.1) package requires the gene ID to be EntrezID for the functional annotation. If the type of gene ID is already EntrezID, please skip step 3.

3. Transform gene ID to EntrezID for mRNAs using the bitr function in the clusterProfiler package (Yu et al., 2012).

 a. Find genome-wide annotation package for the species of your experimental model from http://bioconductor.org/packages/release/BiocViews.html#___OrgDb.

 Note: A series of org.Xx.eg.db packages including annotation for common species are required when performing the transformation of gene ID type. For example, we chose org.Mm.eg.db as our published study was conducted on mice.

 b. Use bitr function to perform ID transformation. The parameters, including geneID, fromType, toType and OrgDb, are used for the essential inputs.

 i. Input your gene id for ‘geneID’.
 ii. Use keytypes function to see the supported ID types for ‘fromType’ and ‘toType’.
 iii. The name of selected org.Xx.eg.db package is used for ‘OrgDb’.

 Note: The following GO analysis is performed for each set of co-expressed mRNAs of each AR-IncRNA.
4. Identify the co-expressed mRNAs of each AR-lncRNA (Necsulea et al., 2014) (Figure 3A).
 a. Perform Pearson correlation between AR-lncRNAs and mRNAs and calculate p-value using
 `rcorr` function in Hmisc (v4.4) package. ((Harrell, 2019); (Schaum et al., 2019)) Take the absolute
 value of correlation coefficient. Using `p.adjust` function in stat package to adjust p-value by the
 method ‘fdr’.
 b. For each AR-lncRNA, its co-expressed mRNAs were selected with a cutoff at absolute Pearson
 correlation coefficient $R \geq 0.8$ and FDR ≤ 0.05 in each tissue.

5. Perform GO analysis by clusterProfiler package (Yu et al., 2012).
 a. Use `enrichGO` function to perform BP(biological process) enrichment in GO analysis. Set ‘ont’
 as ‘BP’ and ‘qvalueCutoff’ as 0.05. This step will return enrichment GO categories, go.

 Note: The parameter ‘ont’ can be selected as ‘MF’ for molecular function, ‘BP’ for biological
 process and ‘CC’ for cell component, or can be selected as ‘All’ to contain all of three. BP
 enrichment is most widely used.

 b. Use `data.frame` function to turn go into the form of data frame, go1. Filter go1 to remain col-
 umns including ‘ID’, ‘Description’, ‘p.adjust’, ‘geneID’ and ‘Count’.

 Note: The go1 data frame for each AR-IncRNA can be combined during each loop by `rbind`
 function, which facilitates the following steps.

6. Analysis of the number of lncRNAs associated with each BP terms. (Figure 3B)
 a. Calculate the total number of associated AR-lncRNAs for each of the significantly enriched BP
 terms.
 b. Rank the BP terms according to the decreasing order of associated AR-lncRNA numbers.

Tissue specificity analysis

© Timing: 2h

Note: Tissue specificity analysis is performed at each time point.

Note: The mean values of processed counts of replicates are used in this part.

7. Definition of tissue specificity score (Alvarez-Dominguez et al., 2015; Ding et al., 2018)

In the following equations, n represents the total number of tissues, T_{ij} represents the average
expression of a given gene i in a given tissue j. (Figure 3A)

$$
\text{Tissue fraction}_{ij} = \frac{T_{ij}}{\sum_{j=1}^{n} T_{ij}}
$$

$$
\text{Tissue specificity score}_i = \max \{ \text{Tissue fraction}_{ij} \}
$$

Note: The highest tissue fraction of a lncRNA, which indicates that a given IncRNA is highest
expressed in a given tissue, is used as its tissue specific score. It can be used to compare the
expression of interested IncRNAs among different tissues.

8. Definition of tissue specific and control IncRNA
a. Rank all lncRNAs according to tissue specificity scores in a decreasing order.

Note: Use order function with parameter ‘decreasing = T’ to sort your data decreasingly.

b. Define the top 20% lncRNAs as tissue specific lncRNAs and the bottom 20% as control lncRNAs.

Dynamic interaction network construction

© Timing: 6h

Note: Interaction network between AR-lncRNAs and AR-mRNAs is constructed in each tissue.

Note: Processed counts without taking the mean value of replicates are used in this part.

9. Identification of modules in dynamic interaction networks
 a. Calculate the Z-score for the log-transformed normalized counts of each AR-lncRNA and AR-mRNA at different age points, separately. In the following equation, μ represents the mean value, σ represents the standard deviation.

$$Z &= \frac{X - \mu}{\sigma}$$
Note: Processed data points after Z-score normalization follows the standard normal distribution. Here, Z-score normalization enables us to compare expression data at different age points on the same level.

b. Combine the samples from the neighbor age points into 4 stages (stage1: 008w&026w, stage2: 026w&060w, stage3: 060w&078w, and stage4: 078w&104w).

Note: We performed the analysis for the combined samples as our sample size was relatively small (n=5) and may not provide accurate outcomes. If you have \(\geq 10 \) samples for each age points, you can skip this step.

c. For expression matrix in each stage, evaluate Pearson correlation for each AR-IncRNA and AR-mRNA using rcorr function in Hmisc package (Harrell, 2019; Schaum et al., 2019). Take the absolute value of correlation coefficient and obtain four correlation matrices \(\text{cor1, cor2, cor3, cor4} \). Use p.adjust function in stat package to adjust p-value by the method ‘fdr’.

Figure 4. Tissue specificity analysis of IncRNA expression
(A) A graphical instruction of tissue specific score calculation. Here is an example of tissue fraction matrix. The maximum tissue fraction for each IncRNA is selected for its tissue specificity score.
(B) Proportion of tissue-specific IncRNAs in AR-IncRNAs and ANR-IncRNAs using different thresholds of tissue-specific score (0.25, 0.30, 0.35, 0.40, 0.45, 0.50) in eWAT. To be specific, if you choose 0.25 as the threshold, all IncRNAs with a tissue specific score \(\geq 0.25 \) will be identified as tissue-specific IncRNAs, while the others are tissue-nonspecific IncRNAs.
(C) The comparison of tissue specific score in AR-IncRNAs and ANR-IncRNAs in eWAT. * represents p < 0.05, using Mann-Whitney test.
(D) Cumulative density of \(|\log_{2} (\text{old/young})|\) expression value of tissue-specific and control IncRNAs among multiple tissues. \(|\log_{2} (\text{old/young})|\) is selected as the maximum \(|\log_{2} \text{FC}|\) between 8-week samples and 78-week/104-week samples.
d. When a pair of AR-lncRNA and AR-mRNA has the absolute correlation coefficient $R \geq 0.9$ and adjusted p-value ≤ 0.05 in either or both of stage1 or stage4, keep the AR-lncRNA and AR-mRNA pair in the subsequent dynamic network construction.

e. Identify modules for dynamic network construction using igraph (v1.2.4.2) package (Csardi and Nepusz, 2006).

i. Construct a new dataframe `exp` to store higher correlation coefficient in stage1 and stage4 between each pair of filtered AR-lncRNA and AR-mRNA, where each line of the first and second column represents pairs of AR-lncRNA and AR-mRNA, the third column represents their correlation coefficient. (Figure 5A)

ii. Use `graph_from_data_frame` function to create an igraph graph `g` with the dataframe `exp`.

iii. Use `cluster_walktrap` function to identify modules of `g` with the parameter of `steps=10`, which will return a community object `wc`. Use membership function to obtain the module information for `wc`. Use a new dataframe `mod` to store these information.

Note: The step highly depends on computing resources.

Note: The `cluster_walktrap` function only keeps modules with gene number ≥ 30.

Figure 5. Dynamic AR-lncRNA–AR-mRNA crosstalk during aging

(A) A graphical instruction of AR-genes filtering for module detection. Here is an example considering 3 AR-lncRNAs and 6 AR-mRNAs. Their correlation coefficient (FDR) are displayed correspondingly in the figure. Firstly, pick up edges between an AR-lncRNA and an AR-mRNA with correlation coefficient $R \geq 0.9$ and FDR ≤ 0.05 in Stage1 and Stage4, separately, shown as red lines. To be specific, the edge between AR-lncRNA2 and AR-mRNA1 is taken since it fulfills both criterions. On the contrary, though AR-lncRNA3 and AR-mRNA1 has a correlation coefficient $= 0.97 > 0.9$, the edge is not selected since its FDR $= 0.18 > 0.05$. Secondly, if an edge is chosen in either or both of Stage1 or Stage4, include it for consequent steps. It can be clearly seen that AR-mRNA5 is not correlated with any AR-lncRNA. As a result, remove AR-mRNA5 from network construction. For the remaining edges, use the higher value of correlation coefficient of Stage1 and Stage4 for module detection. Take the edge between AR-lncRNA2 and AR-mRNA1 as an example. It is picked both in Stage1 and Stage4 and remains in the network. Its correlation coefficient in stage1(0.92) is higher than stage4(0.91), keep 0.92 rather than 0.91.

(B) Dynamic network showing the interaction of AR-lncRNAs and AR-mRNAs during the mouse lifespan in eWAT. Each row represents an AR-lncRNA. Each column represents an AR-mRNA.
10. Construction of the AR-lncRNA~AR-mRNA network
 a. Rearrange the rows and columns of correlation coefficient matrix in each stage, which adjusts the order of AR-lncRNAs and AR-mRNAs, in the order of module information (from module 1 to module n) of each AR-lncRNAs and AR-mRNAs in dataframe mod.

 Note: The order of AR-lncRNAs and AR-mRNAs become exactly the same in four different stages.
 b. Use pheatmap function in pheatmap package (v1.0.12) to plot heatmap of cor1, cor2, cor3, cor4. Set cluster_rows = F, cluster_cols = F.

EXPECTED OUTCOMES

The differential gene expression analysis will lead to a list of differential expressed mRNAs/lncRNAs at different age points in each tissue (Figure 2C). The differentially expressed mRNAs/lncRNAs in your interested aged groups, identified as AR-mRNAs/AR-lncRNAs, are critical for downstream analysis.

The functional annotation identifies the BP terms that are associated with AR-lncRNAs. You can also make comparisons of top BPs connected with AR-lncRNAs between different tissues (Figure 3C).

The tissue specificity analysis calculates the tissue specificity scores for each IncRNA at different age points. These score can be used to investigate the tissue specificity of AR-lncRNAs (Figures 4B and 4C). Comparision of aging-induced changes between tissue specific and non-specific lncRNAs indicates that tissue-specific lncRNAs tend to be more regulated during aging (Figure 4D).

The dynamic interaction network construction can reveal the modules of highly correlated AR-lncRNAs and AR-mRNAs for different tissues at different age stages. The growth of modules generally indicates the enhanced functional and regulatory relationship (Figure 5B). Functional annotation can be performed within drastically growing modules in each tissue to infer the functional changes during aging.

LIMITATIONS

The quality of raw data have a strong influence on the analysis, e.g., level of abundance, batch effect, duplicate rate. A principal component analysis (PCA) can be performed by plotPCA function in DESeq2 package on normalized counts. If the data are of good quality, transcriptomes are likely to be grouped according to organ identity instead of age points.

TROUBLESHOOTING

Problem 1

Removing batch effect.

Potential solution

Batch effect results from a subset of experiments running on different days, by different technicians or using different reagents, chips or instruments. Measurements with batch effect will have qualitatively different behaviours among conditions, which are uncorrelated with experimental variables in a particular study.

If the sample are not from the same batches, the removeBatchEffect function in limma package can help to solve this problem. Input the raw data and batch information and execute this function to remove batch effect, which can ensure the robustness of following analysis.
Problem 2
Selection of normalization methods.

Potential solution
Comparison of common normalization methods are listed below (Tables 1, 2, and 3).

To make the gene expression data more comparable within or between samples, normalization is often a prerequisite. The main factors that normalization methods accounted for include sequencing depth, gene length and RNA composition.

In practice of TMM method, which scaling to library size, the gene length is absorbed into the parameter of the number of transcripts. As a result, TMM method will not use gene length as an input (Robinson and Oshlack, 2010). However, longer genes will have more read counts compared to shorter ones at the same expression levels. Thus, intrasample comparison may not be accurate. We used log2(FPKM) with a prior count of 0.5 to perform further normalization after TMM in our published study.

In this protocol, we make a slight change here by using Median of ratios method in DESeq2 package for normalization. It was reported that among all common normalization methods, only Median of ratios and TMM performed well in both differential expressed genes detection and false positive rate control (Dillies et al., 2012). So this change will not reduce the power of following analysis.

Table 1. Description of common types of normalization methods
Method
CPM
TPM
RPKM/FPKM
Median of ratios
TMM

Table 2. Accounted normalization factors of common types of normalization methods
Method
CPM
TPM
RPKM/FPKM
Median of ratios
TMM

Table 3. Recommend usage of common types of normalization methods
Method
CPM
TPM
RPKM/FPKM
Median of ratios
TMM
RESOURCES AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Lei Sun (sun.lei@duke-nus.edu.sg).

Materials availability
This study did not generate new unique reagents.

Data and code availability
An example RNA-seq raw data is NGDC: PRJCA002140. An example code for this protocol is on https://github.com/Xinyue-Lu.

ACKNOWLEDGMENTS
This work was supported by Singapore National Medical Research Council’s Open Fund-Individual Research (OFIRG) grants (NMRC/OFIRG/0062/2017, OFIRG19may-0060) and Ministry of Education (MOE) Tier2 grants (MOE2016-T2-2-029, MOE2017-T2-2-015, MOE2018-T2-1-046, MOE2018-T2-2-006, and MOE2019-T2-1-025). Organ images in the graphical abstract were generated from www.favicon.com.

AUTHOR CONTRIBUTIONS
L.S. and J.L. designed the study. X.L. and Q.Z. analyzed and interpreted the results. L.S., J.L., X.L., and Q.Z. drafted and edited the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
Alvarez-Dominguez, J.R., Bai, Z., Xu, D., Yuan, B., Lo, K.A., Yoon, M.J., Lim, Y.C., Knoll, M., Slavov, N., Chen, S., et al. (2015). De Novo reconstruction of adipose tissue transcriptomes reveals long non-coding RNA regulators of brown adipocyte development. Cell Metab. 21, 764–776.

Andrews, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11, 1–12.

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network research. Int. J. Comp. Syst. 1695, 1–9.

Dillies, M.A., Rau, A., Aubert, J., Hennequet-Antier, C., Jeanmougin, M., Servant, N., Keime, C., Marot, G., Castel, D., Estelle, J., et al.; on behalf of The French StatOmique Consortium (2012). A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinformatics 14, 671–683.

Ding, C., Lim, Y.C., Chio, S.Y., Walet, A.C.E., Xu, S., Lo, K.A., Zhao, Y., Zhu, D., Shan, Z., Chen, Q., et al. (2018). De novo reconstruction of human adipose transcriptome reveals conserved IncRNAs as regulators of brown adipogenesis. Nat. Commun. 9, 1329.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048.

Frankish, A., Diekhans, M., Ferreira, A.M., Johnson, R., Jungreiss, I., Loveland, J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773.

Harrell, F.E. (2019). Hmisc: Harrell Miscellaneous. R Package Version 4.2-0 (R Foundation for Statistical Computing).

Kolde, R. (2019). pheatmap v1.0.12. (GitHub).

Krueger, F. (2012). Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Subgroup (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

Necsulea, A., Soumillon, M., Werners, M., Liehti, A., Daish, T., Zeller, U., Baker, J.C., Grutzner, F., and Kaeussmann, H. (2014). The evolution of IncRNA repertoires and expression patterns in tetrapods. Nature SSG 635–640.

Robinson, M.D., and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, 1–9.

Schaum, N., Lehallier, B., Hahn, O., Hossenizadeh, S., Lee, S.E., Sit, R., Lee, D.P., Losada, P.M., Zardeneta, M.E., Pálovics, R., et al. (2019). The murine transcriptome reveals global aging nodes with organ-specific phase and amplitude. bioRxiv. https://doi.org/10.1101/662254.

Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16, 284–287.

Zhou, Q., Wan, Q., Jiang, Y., Liu, J., Qiang, L., and Sun, L. (2020). A landscape of murine long non-coding RNAs reveals the leading transcriptome alterations in adipose tissue during aging. Cell Rep. 31, 1–10.