FAST TRACK COMMUNICATION

Spontaneous breaking of Lorentz symmetry by ghost condensation in perturbative quantum gravity

Mir Faizal

Department of Mathematics, Durham University, Durham DH1 3LE, UK
E-mail: faizal.mir@durham.ac.uk

Received 15 March 2011, in final form 11 August 2011
Published 16 September 2011
Online at stacks.iop.org/JPhysA/44/402001

Abstract
In this paper, we will study the spontaneous breakdown of the Lorentz symmetry by ghost condensation in perturbative quantum gravity. Our analysis will be done in the Curci–Ferrari gauge. We will also analyse the modification of the BRST and anti-BRST transformations by the formation of this ghost condensate. It will be shown that even though the modified BRST and anti-BRST transformations are not nilpotent, their nilpotency is restored on-shell.

PACS number: 04.60.−m

1. Introduction

Lorentz invariance is one of the most important symmetries in nature and has been conformed by all experiments. However, recently the violation of this symmetry has been intensively discussed [1]. Many new experiments are designed to detect any violation of this symmetry [2, 3].

The violation of Lorentz symmetry is being studied because it is expected that interactions in string theories might lead to the spontaneous breakdown of the Lorentz symmetry [4, 5]. In fact, it is expected that string theory will give spacetime a non-commutative structure and this will in turn violate the Lorentz symmetry [6]. The Lorentz symmetry also seems to be violated in many other approaches to quantum gravity [7]. In fact, the whole program of Horava–Lifshits theory is based on breaking the Lorentz symmetry so that higher order spatial terms can be added to the classical Lagrangian density without adding any higher order temporal part [8, 9].

The violation of Lorentz symmetry has also been studied in the context of gravity coupled to the Chern–Simons term [10]. Initially this theory was initially studied only at a linearized level [11]; however, recently these results have been generalized to include interactions [12]. Dynamical Lorentz symmetry breaking induced by radiative corrections in a self-interacting fermionic theory has also been studied [13]. In fact, an extension of the standard model
has also been constructed where through the Higgs mechanism, tensor fields acquire non-zero vacuum expectation values and thus break the Lorentz symmetry spontaneously [14]. The nature of Nambu–Goldstone bosons associated with Lorentz symmetry breaking has also been thoroughly studied [15–17]. Spin-dependent interactions [18] and spin-independent interactions [19] induced by these Nambu–Goldstone bosons have been investigated. However, so far spontaneous breakdown of the Lorentz symmetry has not been studied in the context of perturbative quantum gravity.

In this paper, we will investigate the spontaneous violation of the Lorentz symmetry induced by ghost condensation in perturbative quantum gravity. Ghost condensation in Yang–Mills theories has been studied in the Curci–Ferrari gauge [20], which is obtained by the inclusion of nonlinear terms to the usual Faddeev–Popov Lagrangian density [21–25]. Ghost condensation has also been studied in the context of ghosts associated with higher derivatives, which occur in theories of modified gravity [26–29]. However, so far no work has been done on ghost condensation of the Faddeev–Popov ghosts in the Curci–Ferrari gauge in perturbative quantum gravity. The BRST and anti-BRST symmetries for perturbative quantum gravity in linear gauges have been studied by a number of authors [30–32] and their work has been summarized by Nakanishi and Ojima [33]. The BRST and anti-BRST transformations in the Curci–Ferrari gauge have also been recently studied [34]. In this paper, we will study ghost condensation and its consequences for perturbative quantum gravity in the Curci–Ferrari gauge.

It may be noted that it is not possible to perform an explicit violation of the Lorentz symmetry as this will be incompatible with Bianchi identities and the covariant conservation laws for the energy–momentum and spin-density tensors, whereas spontaneous Lorentz breaking evades this difficulty [35]. So there will be no fundamental change in the classical action of this theory. In this way, this work is sightly different from the work on Horava–Lifshits gravity which is based on modifying the classical theory.

2. BRST and anti-BRST symmetries

In this section, we will review the usual BRST and anti-BRST symmetries for perturbative quantum gravity [34]. The Lagrangian density for pure gravity with cosmological constant λ is given by

$$\mathcal{L} = \sqrt{-g}(R - 2\lambda), \quad (1)$$

where we have adopted units, such that $16\pi G = 1$. In perturbative gravity one splits the full metric g_{ab} into the metric for the background flat spacetime η_{ab} and a small perturbation around it being h_{ab}. The covariant derivatives along with the lowering and raising of indices are compatible with the metric for the background spacetime and small perturbation h_{ab} is viewed as the field that is to be quantized.

All the degrees of freedom in h_{ab} are not physical as the Lagrangian density for it is invariant under a gauge transformation,

$$\delta_{\lambda} h_{ab} = D^c_{ab} \Lambda_c,$$

where Λ^a is a vector field. These unphysical degrees of freedom give rise to constraints [36] in the canonical quantization and divergences in the partition function [37] in the path integral quantization. So before we can quantize this theory, we need to fix a gauge. This is achieved by addition of a ghost term and a gauge fixing term to the classical Lagrangian density. Now,
let us denote the sum of a ghost term and a gauge fixing term by L_g, which is given by
\[
L_g = -\frac{i}{2} \langle \mathcal{S} [h^{abc} h_{abc} + \frac{i}{2} b^d \epsilon_a] \rangle = \frac{i}{2} \langle \mathcal{S} [h^{abc} h_{abc} + \frac{i}{2} b^d \epsilon_a] \rangle.
\] (3)
where the BRST transformations are given by
\[
sh_{ab} = D_{ab} e^c,
\]
\[
sc a = -c_b \delta^b e^a, \ s b^a = 0,
\]
\[
s c \bar{e} = b^a,
\] and the anti-BRST transformations are given by
\[
\bar{s} h_{ab} = D_{ab} \bar{e}_c,
\]
\[
\bar{s} c^a = -b^a - 2 \bar{c}_b \delta^b \epsilon^a, \ \bar{s} b^a = -b^a \delta^a \epsilon^a - \bar{c}_b \delta^b \epsilon^a \partial_b \epsilon^a.
\] (5)
In the following section, we will analyse perturbative quantum gravity in the Curci–Ferrari gauge.

3. Lorentz symmetry breaking

In order to study spontaneous breaking of the Lorentz symmetry, we have to modify the above-mentioned BRST and anti-BRST transformations by the addition of nonlinear terms to them. Thus, the modified BRST transformations are given by
\[
sh_{ab} = D_{ab} e^c,
\]
\[
sc a = -c_b \delta^b e^a,
\]
\[
s c \bar{e} = b^a,
\]
and the modified anti-BRST transformations are given by
\[
\bar{s} h_{ab} = D_{ab} \bar{e}_c,
\]
\[
\bar{s} c^a = -b^a \delta^a \epsilon^a - \bar{c}_b \delta^b \epsilon^a \partial_b \epsilon^a,
\] and
\[
\bar{s} b^a = -b^a \delta^a \epsilon^a + \bar{c}_b \delta^b \epsilon^a \partial_b \epsilon^a.
\] (7)
Now, as we have modified the BRST and anti-BRST transformations, so the ghost term also gets modified. The sum of this modified ghost term and the gauge fixing term is given by
\[
L_g^{(mod)} = \frac{i}{2} \langle \mathcal{S} [h^{abc} h_{abc} - i \bar{c} \epsilon_a] \rangle = \frac{i}{2} \langle \mathcal{S} [h^{abc} h_{abc} - i \bar{c} \epsilon_a] \rangle.
\] (8)
It may be noted that just like the Yang–Mills theories in the Curci–Ferrari gauge, the perturbative quantum gravity also possess a double BRST symmetry, where the gauge fixing term and the modified ghost term are written as a combination of the BRST and anti-BRST transformations. This Lagrangian density for the sum of the modified ghost and gauge fixing
terms in the Curci–Ferrari gauge is related to the usual Lagrangian density for the ghost and gauge fixing terms as follows:

$$L_{g}^{(\text{mod})} = L_{g} + \frac{\alpha}{2} \epsilon^{abc} \partial_{b} c_{a} c_{c}.$$ \hfill (9)

Thus, apart from the usual Lagrangian density there is a nonlinear term in it. We can however linearize this nonlinear term by means of Hubbard–Stratonovich transformations as follows:

$$\frac{\alpha}{2} \epsilon^{abc} \partial_{b} c_{a} c_{c} = -\frac{1}{2\alpha} \phi^{a} \phi_{a} - i \phi^{a} \epsilon^{abc} \partial_{b} c_{a}.$$ \hfill (10)

The field ϕ^{a} introduced here has a vanishing ghost number and is required to be Hermitian to maintain the total Hermitian of the Lagrangian density. Thus, after using the Hubbard–Stratonovich transformations, the Lagrangian density for the sum of the modified ghost and the gauge fixing terms in the Curci–Ferrari gauge becomes

$$L_{g}^{(\text{mod})} = L_{gf} + i \epsilon^{abc} N_{ab} c^{b} - \frac{1}{2\alpha} \phi^{a} \phi_{a},$$ \hfill (11)

where

$$N_{ab} = K_{ab} - \phi_{a} \partial_{b},$$ \hfill (12)

where K_{ab} is the contribution coming from the original ghost term and is given by

$$K_{ab} = \eta_{ae} \eta_{bf} \eta^{mn} D_{e}^{m} D_{f}^{n}. $$ \hfill (13)

Now, we sum over all one-loop ghost diagrams with an arbitrary number of external ϕ^{a} fields. This gives us an effective potential $V[\phi]$, which is given by

$$\int d^{4}x V[\phi] = \int d^{4}x \frac{1}{2\alpha} \phi^{a} \phi_{a} + i \log \left|\det (N_{ab})\right|. $$ \hfill (14)

This effective potential obtained from equation (14) is divergent and thus has to be regulated. The renormalized effective potential thus obtained is given by

$$V[\phi] = \phi^{a} \phi_{a} \left[1 + \frac{1}{32\pi^{2}} \left(\log \left(\frac{|\phi|}{4\pi\mu^{2}} \right) + C \right) \right]. $$ \hfill (15)

The stationary point for this effective potential is given by

$$\frac{\delta V[\phi]}{\delta \phi^{a}} = 0. $$ \hfill (16)

Equation (16) apart from having the trivial solution $\phi^{a} = 0$ also has the non-trivial solutions $\phi^{a} = \pm \nu^{a}$. In the semi-classical approximation, the field ϕ^{a} is shifted as follows:

$$\phi^{a} \rightarrow \phi_{(c)}^{a} + \tilde{\phi}^{a}, $$ \hfill (17)

where $\phi_{(c)}^{a}$ is the classical field and $\tilde{\phi}^{a}$ represents the quantum fluctuations to it. The vacuum expectation value of the field ϕ^{a} is required to coincide with the classical field, so that the vacuum expectation value of the quantum fluctuations vanishes. Now in the non-trivial vacuum $\phi^{a} = \pm \nu^{a}$, we get a non-vanishing vacuum expecting value for the vector field $\phi_{(c)}^{a}$, and this spontaneously breaks the Lorentz symmetry,

$$\phi_{(c)}^{a} = \langle \phi^{a} \rangle = \pm \nu^{a}. $$ \hfill (18)

In this section, we showed that the formation of ghost condensate in perturbative quantum gravity spontaneously breaks the Lorentz symmetry. In the following section, we will investigate the BRST and anti-BRST symmetries in this phase, where the Lorentz symmetry is spontaneously broken.
4. Modified BRST and anti-BRST transformations

The formation of ghost condensate not only spontaneously breaks the Lorentz symmetry but also spoils the nilpotency of the BRST and anti-BRST transformations. However, we will see in this section that the nilpotency of these modified BRST and anti-BRST transformations is restored on-shell. The BRST transformations get modified due to the formation of ghost condensates as follows:

\[s_{ha} = D^e_{a b} e_e, \]
\[s e^a = -c_b \partial^b e^a, \]
\[s \bar{e}^a = b^a - \bar{e}^b \partial_b e^a, \]
\[s b^a = -b^b \partial_b e^a, \]
\[s \phi^a = 2 \psi^a, \]
\[s \psi^a = -\frac{1}{2} \psi^b \partial_b \psi^a, \]
\[s \overline{\psi}^i = \phi^a - i c^a \partial_a \psi^i, \]

and the anti-BRST transformations get modified as follows:

\[s_{ha} = D^e_{a b} e_e, \]
\[s \bar{e}^a = -c_b \partial^b \bar{e}^a, \]
\[s e^a = b^a - \bar{e}^b \partial_b e^a, \]
\[s b^a = -b^b \partial_b e^a, \]
\[s \phi^a = 2 \overline{\psi}^a, \]
\[s \psi^a = -\frac{1}{2} \overline{\psi}^b \partial_b \psi^a, \]
\[s \overline{\psi}^i = \phi^a - i c^a \partial_a \overline{\psi}^i. \]

Here, \(\phi^a \) plays the role of a new Nakanishi–Lautrup field and \(\psi^a \) and \(\overline{\psi}^i \) play the role of new ghosts and anti-ghosts, respectively. These new BRST and anti-BRST transformations are not nilpotent because

\[s^2 \psi^a = 2 \psi^a - b^b \partial_b e^a \neq 0, \]
\[s^2 \psi^a = 2 \overline{\psi}^a + b^b \partial_b \overline{\psi}^i \neq 0. \]

However, their nilpotency is restored by using the equation of motion for these fields and thus on-shell version of the above two transformations is given by

\[[s^2 \psi^a]_{\text{on-shell}} = 0, \]
\[[s^2 \psi^a]_{\text{on-shell}} = 0. \]

The sum of the gauge fixing term and the ghost term also gets modified because of the modification of the BRST and anti-BRST transformations. However, even after this modification the sum of the gauge fixing term and the ghost term possesses a double BRST symmetry on-shell and thus can be written as a combination of the BRST and anti-BRST transformations on-shell,

\[L_g^{(\text{new})} = \frac{i}{2} \bar{g} \left[h_{ab} \bar{h}_{ab} - i c^b \partial^b e_a - i \frac{a}{2} \phi^a \phi_a \right] = - \frac{i}{2} \bar{g} \left[h_{ab} \bar{h}_{ab} - i c^b \partial^b e_a - i \frac{a}{2} \phi^a \phi_a \right]. \]
The sum of the gauge fixing term and modified ghost term is related to the sum of the usual ghost term and gauge fixing term as follows:

\[
L_{(\text{new})} = L_{\text{g}} - i\alpha \psi^a \gamma_\alpha \gamma^b \partial_b c_a - \alpha \bar{\psi}^a \psi_a + \frac{\alpha}{2} \phi^a \phi_a.
\]

(24)

It may be noted that the appearance of the term \(\alpha \bar{\psi}^a \psi_a\) only produces a multiplicative overall factor, which can be absorbed in the normalization constant of the partition function.

5. Conclusion

We have seen how the Lorentz symmetry is spontaneously broken by the formation of ghost condensates in perturbative quantum gravity. We have also analysed the modification of the BRST and anti-BRST transformations by this ghost condensation. We have shown that even though the modified BRST and anti-BRST transformations are not nilpotent, their nilpotency is restored on-shell.

One of the possible signals of the Lorentz violation may come from CMB [38] and other high-energy astrophysical observations [39]. The violation of Lorentz might be helpful in explaining the polarization of CMB.

Lorentz violation will also have interesting phenomenological signatures. In fact, if there is a non-vanishing vacuum expecting value for the vector field, then it might lead to a decrease in the anomaly frequency of a positron if the anomaly frequency of an electron is increased [40]. However, so far no violation of the Lorentz symmetry has been detected [42, 43]. Another signature of Lorentz symmetry breaking might come from the spectral analysis of the spectra of atoms made up of matter and similar atoms made up of anti-matter. In fact, calculations of the spectrum of hydrogen and anti-hydrogen show that small differences will occur in some lines, and no differences will occur in others if the Lorentz symmetry is spontaneously broken [41].

The non-vanishing vacuum expecting value for the vector field could possibly explain the occurrence of the cosmological constant. The fact that spontaneous breakdown of the Lorentz symmetry can only occur at very high energies might explain why the cosmological constant has a small value.

Our work has been done in flat spacetime and it will be interesting to generalize this to general spacetimes or at least maximally symmetric spacetimes like the de Sitter spacetime and anti-de Sitter spacetime. A similar analysis might lead to a spontaneous breakdown of the de Sitter or anti-de Sitter invariance in those spacetimes.

References

[1] Kostelecky V A 2003 Phys. Rev. D 69 105009
[2] Kostelecky A and Russell N 2011 Rev. Mod. Phys. 83 11
[3] Kostelecky V A (ed) 2005 CPT and Lorentz Symmetry III (Singapore: World Scientific)
[4] Kostelecky V A and Samuel S 1989 Phys. Rev. D 39 683
[5] Colladay D and Kostelecky V A 1997 Phys. Rev. D 55 6760
[6] Seiberg N and Witten E 1999 J. High Energy Phys. JHEP09(1999)032
[7] Bluhm R 2004 Breaking Lorentz symmetry Physics World (March 2004) pp 41–6 (available at http://physicsworldarchive.iop.org/full/pwa-pdf/17/3/phwv17i3a33.pdf)
[8] Horava P 2009 J. High Energy Phys. JHEP03(2009)020
[9] Horava P 2009 Phys. Rev. Lett. 102 161301
[10] Jackiw R and Pi S Y 2003 Phys. Rev. D 68 104012
[11] Mariz T, Nascimento J R, Passos E and Ribeiro R F 2004 Phys. Rev. D 70 024014
[12] Mariz T, Nascimento J R, Petrov A Y, Santos L Y and da Silva A J 2008 Phys. Lett. B 661 312
[13] Gomes M, Mariz T, Nascimento J R and da Silva A J 2008 Phys. Rev. D 77 105002
[14] Colladay D and Kostelecky V A 1997 Phys. Rev. D 55 6760
[15] Bluhm R and Kostelecky V A 2005 Phys. Rev. D 71 065008
[16] Kostelecky V A and Potting R 2009 Phys. Rev. D 79 065018
[17] Kostelecky V A and Potting R 2005 Gen. Rel. Grav. 37 1675
[18] Arkani-Hamed N, Cheng H C, Luty M and Thaler J 2005 J. High Energy Phys. JHEP07(2005)029
[19] Kostelecky V A and Tasson J 2009 Phys. Rev. Lett. 102 010402
[20] Curci G and Ferrari R 1976 Nuovo Cimento A 32 151.
[21] Kondo K I and Shinohara T 2000 Phys. Lett. B 491 263
[22] Capri M A L, Lemes V E R, Sobreiro R F, Sorella S P and Thibes R 2008 Phys. Rev. D 77 105023
[23] Capri M A L, Dudas D, Gracey J A, Lemes V E R, Sobreiro R F, Sorella S P and Verschelde H 2006 Phys. Rev. D 73 014001
[24] Fazio A R 2005 Mod. Phys. Lett. A 20 585
[25] Kondo K-I 2003 Phys. Lett. B 572 210
[26] Feldstein B 2008 Phys. Rev. D 78 064061
[27] Mukohyama S 2006 J. Cosmol. Astropart. Phys. JCAP10(2006)011
[28] Mukohyama S 2005 Phys. Rev. D 71 104019
[29] Arkani-Hamed N, Cheng H C, Luty M A and Mukohyama S 2004 J. High Energy Phys. JHEP05(2004)074
[30] Nakamichi N 1978 Prog. Theor. Phys. 59 972
[31] Kugo T and Ojima I 1978 Nucl. Phys. B 144 234
[32] Nishijima K and Okawa M 1978 Prog. Theor. Phys. 60 272
[33] Nakamichi N and Ojima I 1990 Covariant Operator Formalism of Gauge Theories and Quantum Gravity (Lecture Notes in Physics) (Singapore: World Scientific)
[34] Faizal M 2011 Found. Phys. 41 270
[35] Kostelecky V A 2004 Phys. Rev. D 69 105009
[36] Henneaux M and Teitelboim C 1992 Quantization of Gauge Systems (Princeton, NJ: Princeton University Press)
[37] Miege J T 1980 J. Math. Phys. 21 2834
[38] Cai Y-F, Li M and Zhang X 2009 J. Cosmol. Astropart. Phys. JCAP01(2009)017
[39] Jacobson T, Liberati S and Mattingly D 2006 Ann. Phys. 321 150
[40] Bluhm R, Kostelecky V A and Russell N 1998 Phys. Rev. D 57 3932
[41] Bluhm R, Kostelecky V A and Russell N 1999 Phys. Rev. Lett. 82 2254
[42] Mittlerman R K, Ioannou I L, Dehmelt H G and Russell N 1999 Phys. Rev. Lett. 83 2116
[43] Dehmelt H G and Van Dyck R K Jr 1999 Phys. Rev. Lett. 83 4694