THE EULER CHARACTERISTIC OF LOCAL SYSTEMS ON THE MODULI OF GENUS 3 HYPERELLIPTIC CURVES

GILBERTO BINI AND GERARD VAN DER GEER

Abstract. For a partition \(\lambda = \{\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0\} \) of non-negative integers, we calculate the Euler characteristic of the local system \(V_\lambda \) on the moduli space of genus 3 hyperelliptic curves using a suitable stratification. For some \(\lambda \) of low degree, we make a guess for the motivic Euler characteristic of \(V_\lambda \) using counting curves over finite fields.

1. Introduction

Let \(\mathcal{H}_3 \) be the moduli space of genus 3 hyperelliptic curves. It is a 5-dimensional substack of the Deligne-Mumford stack \(\mathcal{M}_3 \) of smooth curves of genus 3. The universal curve \(\pi : \mathcal{M}_{3,1} \to \mathcal{M}_3 \) defines a natural local system \(R^1\pi_* (\mathbb{Q}) \) of rank 6 on \(\mathcal{M}_3 \). It comes with a non-degenerate symplectic pairing. The inclusion morphism \(\iota : \mathcal{H}_3 \to \mathcal{M}_3 \) defines a natural local system \(V := \iota^*(R^1\pi_* (\mathbb{Q})) \) on \(\mathcal{H}_3 \).

For any partition \(\lambda = \{\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0\} \) of weight \(|\lambda| = \lambda_1 + \lambda_2 + \lambda_3 \), consider the irreducible representation of \(\text{Sp}(6, \mathbb{Q}) \) associated with \(\lambda \). Any such representation yields a symplectic local system \(V_\lambda \) on \(\mathcal{H}_3 \), which appears ‘for the first time’ in the decomposition of

\[
\text{Sym}^{\lambda_1 - \lambda_2} V \otimes \text{Sym}^{\lambda_2 - \lambda_3} (\wedge^2 V) \otimes \text{Sym}^{\lambda_3} (\wedge^3 V).
\]

If, for example, \(\lambda = \{\lambda_1 \geq 0 \geq 0\} \), then \(V_\lambda = \text{Sym}^{\lambda_1} (V) \).

The cohomology with compact support of \(\mathcal{H}_3 \) with local coefficients in \(V_\lambda \) is supposed to give interesting motives related to automorphic forms. As a first step in understanding this cohomology one wants to know the Euler characteristic of \(V_\lambda \). This was calculated for genus 2 by Getzler in [4]. In the present paper we calculate the Euler characteristic

\[
e_C(\mathcal{H}_3, V_\lambda) = \sum_{i=0}^{10} (-1)^i \dim H^i_c(\mathcal{H}_3, V_\lambda)
\]

for any local system \(V_\lambda \) on \(\mathcal{H}_3 \). We do this by using a stratification of \(\mathcal{H}_3 \otimes \mathbb{C} \) by a union of quasi-projective varieties \(\Sigma(G) \), where \(G \) is a finite subgroup of \(\text{SL}(2, \mathbb{C}) \times \mathbb{C}^* \), which acts on \(V_\lambda \). By standard properties of the Euler
characteristic of local systems, we thus have
\[e_c(\mathcal{H}_3, \mathcal{V}_\lambda) = \sum_G e_c(\Sigma(G)) \dim(\mathcal{V}_\lambda^G), \]
where \(e_c(\Sigma(G)) \) is the topological Euler characteristic of \(\Sigma(G) \) and \(\mathcal{V}_\lambda^G \) is the space of \(G \)-invariants. We determine \(e_c(\Sigma(G)) \) via elementary topological arguments and \(\dim(\mathcal{V}_\lambda^G) \) via character theory. Getzler wrote down the generating series of Euler characteristics in [4]; however for genus 2 already this leads to unwieldy rational functions. We give a short algorithm that calculates these numbers efficiently.

This calculation is a step in the program to understand the motivic Euler characteristic
\[\sum_{i=0}^{10} (-1)^i [H^i_c(\mathcal{H}_3, \mathcal{V}_\lambda)], \]
where \([H^i_c(\mathcal{H}_3, \mathcal{V}_\lambda)]\) is the class of the cohomology with compact support in the Grothendieck ring of mixed \(\mathbb{Q} \)-Hodge structures. The hope is that in analogy to the genus 2 case (cf. [2]), one could use this motivic Euler characteristic to describe properties of Siegel modular forms of genus 3, of which very little is known. In Section 5 we provide some conjectural formulas of the motivic Euler characteristic for specific low values of \(|\lambda|\) based on calculations over finite fields.

Throughout the paper, \(\varepsilon_n \) denotes a primitive \(n \)-th root of unity.

2. Stabilizers of hyperelliptic curves

Let \(C \) be a hyperelliptic curve of genus 3 over the field of complex numbers \(\mathbb{C} \). Then \(C \) is a degree two cover of \(\mathbb{P}^1 \) with eight ramification points. It can be given as a curve in the \((X,Y)\)-plane by an equation of the form \(Y^2 = f(X) \), where \(f(X) \) is a polynomial in \(\mathbb{C}[X] \) of degree 7 or 8.

The group \(\text{SL}(2, \mathbb{C}) \times \mathbb{C}^* \) acts on the \((X,Y)\)-plane as follows. An element
\[(A, \xi) = \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}; \xi \right) \in \text{SL}(2, \mathbb{C}) \times \mathbb{C}^* \]
acts via
\[(A, \xi) \cdot (X,Y) := \left(\frac{aX + b}{cX + d}, \xi Y \frac{\xi}{(cX + d)^4} \right). \]
Suppose that \(G \leq \text{SL}(2, \mathbb{C}) \times \mathbb{C}^* \) stabilizes \(C \). Consider the image \(G' \) of \(G \) under the projection of \(\text{SL}(2, \mathbb{C}) \times \mathbb{C}^* \) onto \(\text{SL}(2, \mathbb{C}) \). Clearly, \(G' \) acts as a group of rational transformations on the complex projective line. It also permutes the set of ramification points of \(C \). Note that the kernel of this action is the subgroup generated by the central element \(-I\). By the classification of finite subgroups of \(\text{SL}(2, \mathbb{C}) \) (see [3]), \(G' \) must be isomorphic to one of the following groups:

i) the cyclic group \(C_n \) of order \(n = 2, 4, 14 \);
ii) the quaternionic group \(Q_{4n} \) of order \(4n = 8, 12, 16, 24, 32 \);
iii) the group O of symmetries of a cube.

For the purposes of what follows, we briefly recall the presentation of the groups in i), ii), iii) as subgroups of SL(2, \mathbb{C}). Any cyclic group of order n in SL(2, \mathbb{C}) is conjugated to the group generated by the matrix

$$\begin{pmatrix}
\varepsilon_n & 0 \\
0 & \varepsilon_n^{-1}
\end{pmatrix},$$

Any quaternionic subgroup of order 4, $n \geq 2$, is conjugated to the group with generators

$$S = \begin{pmatrix}
\varepsilon_{2n} & 0 \\
0 & \varepsilon_{2n}^{-1}
\end{pmatrix} \quad \text{and} \quad U = \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.$$

Finally, the group O is conjugated to the group generated by the matrices

$$T = \frac{-1}{\sqrt{2}} \begin{pmatrix}
1 & \varepsilon_8 \\
\varepsilon_8 & 1
\end{pmatrix} \quad \text{and} \quad U = \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.$$

Remarkably, the isomorphism type of G' determines the whole structure of G. Indeed, for any matrix $A \in G'$ there exist two non-zero complex numbers $\pm \xi$ such that

$$\xi^2 Y^2 = (cX + d)^8 f \left(\frac{aX + b}{CX + d} \right),$$

where

$$A = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix}.$$

The assignment

$$u : G' \to \mathbb{C}^*, \quad A \mapsto \xi^2,$$

is a character of a one-dimensional representation of G' because $u(I) = 1$. Thus, the group $G \leq \text{SL}(2, \mathbb{C}) \times \mathbb{C}^*$ contains all pairs $(A, \pm u(A))$, where A varies in one of the groups G' listed in i), ii), iii), and u is a one-dimensional character of G' that satisfies (2.1). Hence, $\#G = 2\#G'$. As a consequence, there are only finitely many non-isomorphic groups G which arise as possible stabilizers of genus 3 hyperelliptic curves. Each of them induces a permutation action on a set of eight points in \mathbb{P}^1. Thus, we can deduce a normal form of curves which are stabilized by G. Examples and explicit computations can be found, for instance, in [6]. There, the stabilizers are not described as subgroups of $\text{PSL}(2, \mathbb{C}) \times \mathbb{C}^*$. It is however easy to verify a correspondence between the two descriptions.

In Table 1 we list all possible groups in terms of G' and u, as well as the associated normal form. To this end, we need to review some conventional notation from character theory. In general, we shall denote by 1 the trivial character of G'. If G' is the cyclic group of order n, there are $n - 1$ nontrivial characters χ^k such that

$$\chi^k \left(\begin{pmatrix}
\varepsilon_n & 0 \\
0 & \varepsilon_n^{-1}
\end{pmatrix} \right) = \varepsilon_n^k, \quad 1 \leq k \leq n - 1.$$
On the other hand, the quaternionic group Q_{4n} has only three non-trivial characters of one-dimensional representations, namely:

χ	$\chi(S)$	$\chi(U)$
χ_0	1	-1
χ^+	-1	$-i^n$
χ^-	-1	i^n

The group O has a unique 1-dimensional character ρ, which is not trivial.

$$Y^2 = f(X)$$

name	(G', u)	Normal Form $Y^2 = f(X)$
G_1	$(C_2, 1)$	$(X^2 - 1)(X^6 + \sum_{i=1}^{5} a_i X^{6-i} + 1)$
G_2	$(C_4, 1)$	$X^8 + b_1 X^6 + b_2 X^4 + b_3 X^2 + 1$
G_3	$(Q_8, 1)$	$(X^4 + c_1 X^2 + 1)(X^8 + c_2 X^4 + 1)$
G_4	(C_4, χ^2)	$X(X^6 + d_1 X^4 + d_2 X^2 + 1)$
G_5	$(Q_{16}, 1)$	$X^8 + fX^4 + 1$
G_6	(Q_8, χ_0)	$(X^4 - 1)(X^4 + LX^2 + 1)$
G_7	$(Q_{12}, 1)$	$X(X^6 + mX^3 + 1)$
G_8	(Q_{32}, χ_-)	$X^8 - 1$
G_9	$(O, 1)$	$X^8 + 14 X^4 + 1$
G_{10}	(Q_{24}, χ_-)	$X(X^6 - 1)$
G_{11}	(C_{14}, χ^6)	$X^7 - 1$

Table 1: Groups and Associated Normal Forms

We remark that the normal forms in Table 1 are equivalent to the equations given in [6], Table 3. For example, the map

$$(X, Y) \mapsto \left(\frac{-iX + i}{X + 1}, \frac{\sqrt{8} \varepsilon_8}{\sqrt{2} - l(X + 1)^4}\right), \quad l \neq 2,$$

transforms the normal form associated with G_6 to

$$Y^2 = X(X^2 - 1)(X^4 + LX^2 + 1),$$

where $L = -(12 + 2l)/(2 - l)$. Additionally, the character u changes too. However, this does not affect the calculation of $e_v(\mathcal{H}_3, \mathcal{V}_\lambda)$ - see Section 4.

3. The stratification of \mathcal{H}_3

For each group G_i in Table 1, define Σ_i to be the locally closed sublocus of \mathcal{H}_3 that contains all curves C whose stabilizer is exactly G_i. As seen in Section 2, the corresponding group G_i' is a permutation group on a set of eight elements. We thus obtain a stratification of \mathcal{H}_3 if the relation $G_i' \leq G_j'$ is interpreted as an inclusion of permutation groups. In other words, G_i' is a subgroup of G_j', and any set of eight elements, which is permuted by G_i',
can be decomposed in G'_j-orbits. All possible relations are displayed in the diagram below.

From this diagram, to be justified later, we also deduce information on the strata Σ_i. Actually, we have:

1. $\mathcal{H}_3 = \bigcup_{i=1}^{11} \Sigma_i$;
2. $\Sigma_i \cap \Sigma_j = \emptyset$ for $i \neq j$;
3. $\Sigma_j \subseteq \Sigma_i$ whenever $G'_i \leq G'_j$.

As explained in Section 1, we need to calculate the topological Euler characteristic e_c of all the strata. Since $e_c(\mathcal{H}_3) = 1$, we work out $e_c(\Sigma_i)$, $i = 2, \ldots, 10$ and we deduce $e_c(\Sigma_1)$.

0-dimensional strata. The stratum Σ_i for $i = 8, 9, 10, 11$ is clearly 0-dimensional and irreducible, so its Euler number is 1.

1-dimensional strata. The strata corresponding to G_5, G_6, G_7 are 1-dimensional. Moreover, let us consider the following subsets of \mathbb{P}^1:

$\mathcal{O}_1 := \{ \varepsilon^k_8; 0 \leq k \leq 7 \},$

$\mathcal{O}_2 := \{ 0, \infty, \pm 1, \pm \varepsilon_3, \pm \varepsilon_3^2 \},$

$\mathcal{O}_3 := \{ \pm \alpha_1, \pm i \alpha_1, \pm 1/\alpha_1, \pm i/\alpha_1 \},$

where α_1 is a root of the polynomial $X^2 - (i + 1)X - i$.

It is easy to verify that \mathcal{O}_1 is a G'_8-orbit, a union of two G'_5-orbits and a union of three G'_6-orbits. On the other hand, \mathcal{O}_2 is a union of three G'_7-orbits, a union of three G'_6-orbits and a union of two G'_{10}-orbits. Finally, \mathcal{O}_3 is a full G'_9-orbit, a union of two G'_7-orbits and a union of three G'_7-orbits. This justifies the lower row of directed edges in the above diagram.
As for the Euler number \(e_i \), the following holds.

Proposition 3.1. The topological Euler characteristic of \(\Sigma_i \), \(i = 5, 6, 7 \), is equal to \(-2\).

Proof. We just prove the statement for \(\Sigma_5 \), the other cases being similar. For \(f \in \mathbb{C} - \{\pm 2\} \), consider the set of hyperelliptic curves \(C_f \) with equation \(Y^2 = X^8 + fX^4 + 1 \). By direct inspection, two such curves \(C_{f_1} \) and \(C_{f_2} \) are isomorphic if and only if \(f_1 = \pm f_2 \). Note that \(\Sigma_8 \) and \(\Sigma_9 \) are the isomorphism classes of \(C_0 \) and \(C_{14} \), respectively. Therefore, there exists an isomorphism \(\Phi : \Sigma_5 \cup \Sigma_8 \cup \Sigma_9 \rightarrow \mathbb{C} - \{4\} \) which maps the orbit of \(C_f \) to \(f^2 \). Accordingly, the topological Euler characteristic of \(\Sigma_5 \) is \(-2\).

2-dimensional strata. As readily checked from Table 1, the strata corresponding to \(G_3 \) and \(G_4 \) have dimension two. It is easy to deduce from the ramification sets in \(\mathbb{P}^1 \) that the following holds:

\[
\Sigma_5 \subset \Sigma_4, \quad \Sigma_6 \subset \Sigma_3, \\
\Sigma_6 \subset \Sigma_4, \quad \Sigma_7 \subset \Sigma_4.
\]

On the other hand, note that \(\Sigma_5 \) does not lie in the closure of \(\Sigma_4 \). Equivalently, there is no set \(S \) of eight elements which is both a union of \(G'_1 \)-orbits and \(G'_5 \)-orbits. Indeed, any set \(S \subset \mathbb{P}^1 \) has always two orbits of length one under the action of \(G'_1 \). Conversely, the permutation action of \(G'_5 \) does not have any fixed point.

Proposition 3.2. The topological Euler characteristic of \(\Sigma_3 \) is 1.

Proof. The group \(G_3 \) corresponds to the pair \((G'_3, 1) \), where \(G'_3 \) is the quaternionic group \(Q_4 \cong C_2 \times C_2 \). The group \(G'_3 \) induces a permutation action on \(\mathbb{P}^1 \) via the group \(V_4 \) generated by the transformations \(x \mapsto -x \) and \(x \mapsto 1/x \). Denote by \(V(x) \) the orbit of \(x \) under \(V_4 \). Note \(\#V(a) = 4 \) unless \(a \in \{0, \infty, 1, -1, i, -i\} \).

We recall that the normal form associated with \(G_3 \) is

\[
Y^2 = f(X) = (X^4 + c_1X^2 + 1)(X^4 + c_2X^2 + 1).
\]

Moreover, we have

\[
\{x : f(x) = 0\} = \{\pm q_1, \pm 1/q_1, \pm q_2, \pm 1/q_2\},
\]

for distinct \(q_1, q_2 \) such that \(\#V(q_1) = \#V(q_2) = 4 \). Note that \(c_i = -q_i^2 - 1/q_i^2 \) for \(i = 1, 2 \).

Let \(\{Y^2 = f_1(X)\} \) and \(\{Y^2 = f_2(X)\} \) be two curves with stabilizer \(G_3 \). They are isomorphic if and only if there exists a rational transformation that maps \(\{z : f_1(z) = 0\} \) to \(\{z : f_2(z) = 0\} \). All such transformations commute with the elements of \(V_4 \). Therefore, two curves are isomorphic if and only if there exists an automorphism of \(\mathbb{P}^1/V_4 \) which preserves the set \(E := \{V(0), V(1), V(i)\} \), i.e. the ramification set of \(\mathbb{P}^1 \rightarrow \mathbb{P}^1/V_4 \). Observe that the map \(\mathbb{P}^1 \rightarrow \mathbb{P}^1/V_4 \) sends \(y \) to \((y^2 + 1/y^2)/2\).

A curve \(C \) with equation \((3.1) \) has a larger stabilizer than \(G_3 \) if and only if there exists \(M \in \text{SL}(2, \mathbb{C}) \) - not in \(G'_3 \) - which induces a permutation of
and a permutation of the set \(\{0, \infty, 1, -1, i, -i\}\). By direct inspection, there is only one possible \(M\), namely:

\[
M = \begin{pmatrix}
\varepsilon_8 & 0 \\
0 & \varepsilon_8^{-1}
\end{pmatrix}.
\]

In this case, \(M\) induces the automorphism \(x \mapsto ix\) on \(\mathbb{P}^1\) and the automorphism \(z \mapsto -z\) on \(\mathbb{P}^1 / V_4\). Its fixed points on \(\mathbb{P}^1 / V_4\) are \(V(0)\) and \(V(\varepsilon_8)\).

Now, it is possible to give an alternative description of \(\Sigma_3\), which contains all curves whose stabilizer is exactly \(G_3\). Denote by \(\Delta\) the diagonal in \((\mathbb{P}^1 / V_4 - E) \times (\mathbb{P}^1 / V_4 - E)\). Define a group \(W_4\) of transformations of \(\mathbb{P}^1 / V_4 \times \mathbb{P}^1 / V_4\) as follows: \(W_4\) is generated by \(\tau\), which interchanges both factors and \(i\), which simultaneously multiplies both factors by \(i\). Note that \(W_4\) is isomorphic to the Klein four group. Therefore, \(\Sigma_3\) can be parametrized as

\[
((\mathbb{P}^1 / V_4 - E) \times (\mathbb{P}^1 / V_4 - E) - \Delta - Z) / W_4,
\]

where

\[
Z := \{(V(a), V(ia) : a \in (\mathbb{P}^1 / V_4 - E) - V(\varepsilon_8))\}.
\]

For the Euler number we get:

\[
e_\varepsilon(\Sigma_3) = \frac{1}{4}((-1) \times (-1) - (-1) - (-2)) = 1.
\]

\(\square\)

Proposition 3.3. The topological Euler characteristic of \(\Sigma_4\) is 1.

Proof. The group \(G_4\) corresponds to the pair \((G_4', \chi^2)\), where \(G_4'\) is cyclic of order 2. Now \(G_4'\) induces a permutation action on \(\mathbb{P}^1\) via the transformation \(x \mapsto -x\). Denote by \(\sigma(x)\) the orbit of \(x\) under such transformation.

We recall that the normal form associated with \(G_4\) is

\[
Y^2 = f(X) = X(X^5 + d_1X^4 + d_2X^2 + 1).
\]

Moreover, we have

\[
\{\infty\} \cup \{z : f(z) = 0\} = \{\infty, 0, \pm a, \pm b, \pm c\}
\]

for some distinct \(a, b, c \in \mathbb{C}^*\). Therefore, any equation of the form \(\{x\}\) corresponds to the 5-point set \(\{\sigma(0), \sigma(\infty), \sigma(a), \sigma(b), \sigma(c)\}\) on the \(\mathbb{P}^1\) which parametrizes the orbits \(\{\sigma(x) : x \in \mathbb{P}^1\}\).

Let \(\{Y^2 = f_1(X)\}\) and \(\{Y^2 = f_2(X)\}\) be two curves with stabilizer \(G_4\). They are isomorphic if and only if there exists a rational transformation that maps \(\{\infty\} \cup \{z : f_1(z) = 0\}\) to \(\{\infty\} \cup \{z : f_2(z) = 0\}\) and fixes 0 and \(\infty\). Such a transformation commutes with \(x \mapsto -x\). Consequently, \(\{Y^2 = f_1(X)\}\) and \(\{Y^2 = f_2(X)\}\) are isomorphic if and only if the associated 5-point sets are mapped one onto the other by a rational transformation which preserves \(\sigma(0)\) and \(\sigma(\infty)\) and permutes the other three points. In other words, an isomorphism class of curves with stabilizer \(G_4\) defines an element in \(\mathcal{M}_{0,5}/\mathfrak{S}_3\), where \(\mathcal{M}_{0,5}\) is the moduli space of rational 5-pointed curves.
and \mathcal{S}_3 is the symmetric group of degree three. Conversely, any element in $\mathcal{M}_{0,5}/\mathcal{S}_3$ determines an equivalence class of curves with stabilizer G_4.

Note that elements in $\mathcal{M}_{0,5}/\mathcal{S}_3$ can be written as $(0, \infty, 1, \sigma(u), \sigma(v))$ for some distinct $u, v \in \mathbb{P}^1 - \{0, \infty, \pm 1\}$. The corresponding curve in Σ_4 have a bigger stabilizer if and only if $\sigma(u)\sigma(v) = 1$. As a consequence, Σ_4 can be identified with $\mathcal{M}_{0,5}/\mathcal{S}_4 - Y$, where Y is the image of

$$X := \{(0, \infty, 1, \sigma(u), 1/\sigma(u))\} \subset \mathcal{M}_{0,5}$$

under the quotient map onto $\mathcal{M}_{0,5}/\mathcal{S}_3$. Thus, we have

$$e_c(\Sigma_4) = e_c(\mathcal{M}_{0,5}/\mathcal{S}_3) - e_c(Y) = 1 - e_c(Y)$$

and

$$e_c(X) = 6e_c(Y) - r.$$

Note that $e_c(X) = 2 - 4 = -2$ since $\sigma(u) \notin \{\sigma(0), \sigma(i), \sigma(1), \sigma(\infty)\}$. Additionally, $r = 2$ since the quotient map onto $\mathcal{M}_{0,5}/\mathcal{S}_3$ is ramified over X when $\sigma(u)$ is the orbit of a primitive third root of unity. Hence, the statement is completely proved.

3-dimensional strata. There is only a 3-dimensional stratum, namely Σ_2. As readily checked, both Σ_3 and Σ_4 lie in the closure of Σ_2.

Proposition 3.4. The topological Euler characteristic of Σ_2 is 2.

Proof. The group G_2 corresponds to the pair $(G'_2, 1)$, where G'_2 is cyclic of order two. As in Proposition 3.3, G'_2 induces a permutation action on \mathbb{P}^1 via the transformation $x \mapsto -x$. Again, denote by $\sigma(x)$ the orbit of x under such transformation.

We recall that the normal form associated with G_2 is

$$Y^2 = f(X) = X^8 + b_1X^6 + b_2X^4 + b_3X^2 + 1.$$

Moreover, we have

$$\{z : f(z) = 0\} = \{\pm p_1, \pm p_2, \pm p_3, \pm p_4\}$$

for some distinct $p_1, p_2, p_3, p_4 \in \mathbb{C}^*$. Therefore, any equation of the form (3.4) corresponds to the 4-point set $\{\sigma(p_1), \sigma(p_2), \sigma(p_3), \sigma(p_4)\}$ on the \mathbb{P}^1 which parametrizes the orbits $\{\sigma(x) : x \in \mathbb{P}^1\}$.

Let $\{Y^2 = f_1(X)\}$ and $\{Y^2 = f_2(X)\}$ be two curves with stabilizer G_2. They are isomorphic if and only if there exists a rational transformation that maps $\{z : f_1(z) = 0\}$ to $\{z : f_2(z) = 0\}$. All such possible transformations commute with $x \mapsto -x$. Consequently, $\{Y^2 = f_1(X)\}$ and $\{Y^2 = f_2(X)\}$ are isomorphic if and only if the associated 4-point sets are mapped one onto the other by a rational transformation. In other words, equivalence of curves with equation (3.4) corresponds to equivalence of 4-tuples of points in \mathbb{P}^1 under the action of $\text{SL}(2, \mathbb{C})$ and the symmetric group of degree 4. Thus, an isomorphism class of curves stabilized by G_2 defines a point in $\mathcal{M}_{0,4}/\mathcal{S}_4$, where $\mathcal{M}_{0,4}$ is the moduli space of 4-pointed rational curves and \mathcal{S}_4 is the symmetric group of order 4. Note that $e_c(\mathcal{M}_{0,4}/\mathcal{S}_4) = 1$: see, for instance, [1].
We finally observe that Σ_2 is not the whole $M_{0,4}/\mathfrak{S}_4$. In fact, we need to disregard all curves with extra automorphisms, i.e., the ones in lower dimensional strata. Therefore,

$$e_c(\Sigma_2) = e_c(M_{0,4}/\mathfrak{S}_4) - \sum_{i=3}^{10} e_c(\Sigma_i)$$

$$= 1 - (-6 + 2 + 3) = 2.$$

In Table 2, we list the dimension and the topological Euler characteristic of all the strata in H_3.

i	1	2	3	4	5	6	7	8	9	10	11
dim(Σ_i)	5	3	2	2	1	1	1	0	0	0	0
$e_c(\Sigma_i)$	-1	2	1	1	-2	-2	-2	1	1	1	1

Table 2: Some Topological Invariants of the Strata Σ_i.

4. The Calculation of $e_c(H_3, V_\lambda)$

Let $\gamma_j : \Sigma_j \to H_3$ be the embedding of Σ_j in H_3. By the properties of the Euler characteristic of local systems, we have

$$e_c(H_3, V_\lambda) = \sum_{j=1}^{11} e_c(\Sigma_j, \gamma_j^*(V_\lambda)).$$

On the other hand, $\gamma_j^*(V_\lambda)$ is a local system on Σ_j with respect to G_j. Hence, (4) can be written as

$$e_c(H_3, V_\lambda) = \sum_{j=1}^{11} e_c(\Sigma_j) \dim(V_\lambda^{G_j}),$$

where $V_\lambda^{G_j}$ is the space of G_j-invariants. In Section 3 we computed $e_c(\Sigma_j)$. Now, we work out the dimension of the corresponding invariant subspaces.

By definition, the fibre of the local system $V_{(1,0,0)}$ over a curve C is given by the cohomology group $H^1(C; \mathbb{Q})$. V_λ is thus obtained from the Sp$(6, \mathbb{Q})$-module $V_{(1,0,0)}$ by standard construction in representation theory (cfr. [3]). Obviously, any group G in Table 1 acts on $V_{(1,0,0)}$. This action yields a homomorphism $\eta : G \to \text{Sp}(6, \mathbb{Q})$. Let (A, ξ) be an element in G, where A is a matrix with eigenvalues a and a^{-1}. By Corollary 3 in [4], the eigenvalues of $\eta(g)$ are given by

$$a^2\xi, \quad a^{-2}\xi^{-1}, \quad a^{-2}\xi, \quad a^2\xi^{-1}, \quad \xi, \quad \xi^{-1}.$$

As a consequence, it is possible to compute the dimension of the G-invariant subspace of V_λ by elementary character theory. More specifically, let J_d be the symmetric function

$$J_d(x_1, x_2, x_3) = h_d(x_1, x_1^{-1}, x_2, x_2^{-1}, x_3, x_3^{-1}),$$
where \(h_d \) is the complete symmetric function in six variables. Moreover, for any \(\{ \lambda = \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0 \} \), we denote by \(J_\lambda \) the determinant of the 3 \(\times \) 3 matrix whose \(i \)-th row is

\[
(J_{\lambda_i} - i + 2) J_{\lambda_i} - i + J_{\lambda_i} - i + 3 + J_{\lambda_i} - i - 1).
\]

By Proposition 24.22 in [3], the following holds:

\[
\dim (\mathcal{Y}_{G}) = \frac{1}{\# G} \sum_{a, \xi, \eta} J_\lambda(a^2 \xi, a^{-2} \eta, \xi).
\]

For each of the groups \(G \), we can list the pairs \((a, \xi)\) that occur as \(g \) runs through \(G \). If \((a, \xi)\) occurs, then \((-a, -\xi)\) and \((a, -\xi)\) occur too. For each \(G \) in Table 3 we give a set \(Y_i \) of pairs \((a, \xi)\) with multiplicity (indicated by an exponent). The set \(Y_i \) has the following property. If we replace \((a, \xi) \in Y_i \) by the 4 elements \((\pm a, \pm \xi)\) we get all the pairs with multiplicity corresponding to the \(g \in G \). This is indicated by the notation \((\pm a, \pm \xi) \in Y_i \).

Theorem 4.1. The Euler characteristic \(e_c(\mathcal{H}_3, \mathcal{V}_\lambda) \) is given by

\[
e_c(\mathcal{H}_3, \mathcal{V}_\lambda) = \sum_{i=1}^{11} \frac{\# G_i}{\# G} \sum_{(\pm a, \pm \xi) \in Y_i} J_\lambda(a^2 \xi, a^{-2} \eta, \xi),
\]

where the Euler numbers \(e(\Sigma_i) \) and the sets \(Y_i \) are given in Tables 2 and 3.

\(Y_1 \)	\((1, 1)\)
\(Y_2 \)	\((1, 1), (i, 1)\)
\(Y_3 \)	\((1, 1), (i, 1)^3\)
\(Y_4 \)	\((1, 1), (i, i)\)
\(Y_5 \)	\((1, 1), (i, i, i)\)
\(Y_6 \)	\((1, 1), (i, 1, i)\)
\(Y_7 \)	\((1, 1), (i, 1, i)^3\)
\(Y_8 \)	\((1, 1), (i, i, i)\)
\(Y_9 \)	\((1, 1), (i, 1)^9, (i, 1)^2, (i, 1)^4, (i, 1)^4, (i, 1)^4, (i, 1)^4, (i, 1)^4, (i, 1)^4, (i, 1)^4\)
\(Y_{10} \)	\((1, 1), (i, i)_9, (i, i, i)_4, (i, i, i)_4\)
\(Y_{11} \)	\((1, 1), (i, i)_9, (i, i, i)_4, (i, i, i)_4\)

Table 3. The Sets \(Y_i \)

For example, the elements of the group \(G_1 \) are \((\pm \text{Id}, \pm 1)\). If \(\lambda = (k, 0, 0) \), then the contribution from this group yields

\[
\dim(\mathcal{Y}_{G_1}^{(k, 0, 0)}) = \frac{1}{4} \{ 2h_k(1, 1, 1, 1, 1, 1) + 2h_k(-1, -1, -1, -1, -1, -1) \}
\]

\[
= \frac{1}{2} \binom{k + 5}{k} (1 + (-1)^k).
\]
In the following table we give the values of $e_c(\mathcal{H}_3, \mathcal{V}_\lambda)$ for all λ of weight ≤ 10. Note that because of the hyperelliptic involution $e_c(\mathcal{H}_3, \mathcal{V}_\lambda) = 0$ if the weight is odd.

$(\lambda_1, \lambda_2, \lambda_3)$	$e_c(\mathcal{H}_3, \mathcal{V}_\lambda)$	$(\lambda_1, \lambda_2, \lambda_3)$	$e_c(\mathcal{H}_3, \mathcal{V}_\lambda)$
(0, 0, 0)	1	(5, 2, 1)	-10
(2, 0, 0)	-1	(4, 4, 0)	-5
(1, 1, 0)	0	(4, 3, 1)	-4
(4, 0, 0)	-1	(4, 2, 2)	-7
(3, 1, 0)	0	(3, 3, 2)	-2
(2, 2, 0)	-1	(10, 0, 0)	-17
(2, 1, 1)	0	(9, 1, 0)	-22
(6, 0, 0)	-5	(8, 2, 0)	-43
(5, 1, 0)	-2	(8, 1, 1)	-8
(4, 2, 0)	-5	(7, 3, 0)	-34
(4, 1, 1)	0	(7, 2, 1)	-32
(3, 3, 0)	0	(6, 4, 0)	-37
(3, 2, 1)	0	(6, 3, 1)	-26
(2, 2, 2)	-3	(6, 2, 2)	-27
(8, 0, 0)	-7	(5, 5, 0)	-6
(7, 1, 0)	-8	(5, 4, 1)	-22
(6, 2, 0)	-13	(5, 3, 2)	-12
(6, 1, 1)	-2	(4, 4, 2)	-15
(5, 3, 0)	-10	(4, 3, 3)	0

Table 4: Some Values of $e_c(\mathcal{H}_3, \mathcal{V}_\lambda)$

5. Some Remarks on the motivic Euler characteristic

For partitions of small degree $|\lambda|$ it is not unreasonable to expect that all cohomology of \mathcal{V}_λ is Tate, i.e., that the motivic Euler characteristic

$$E_c(\mathcal{H}_3, \mathcal{V}_\lambda) = \sum_{i=0}^{10} (-1)^i [H^i_c(\mathcal{H}_3, \mathcal{V}_\lambda)]$$

is a polynomial in L, the Tate motive of weight 2. It is well known that $E_c(\mathcal{H}_3, \mathcal{V}_0) = L^5$. One can calculate the trace of Frobenius on the ℓ-adic variant of \mathcal{V}_λ in characteristic p on $\mathcal{H}_3 \otimes \mathbb{F}_p$ by summing

$$\sum_C \text{Tr}(F, \mathcal{V}_\lambda(H^1))/\#\text{Aut}_{\mathbb{F}_p}(C),$$

where C runs over a complete set of representatives of the \mathbb{F}_p-isomorphism classes of hyperelliptic curves of genus 3 over \mathbb{F}_p. We found that the following guesses for the motivic Euler characteristic are compatible with these traces for $p = 2, 3$ and 5 and with the values of $e_c(\mathcal{H}_3, \mathcal{V}_\lambda)$.
\[\lambda \quad \quad E_c(\mathcal{H}_3, \mathbb{V}_\lambda) \\
(0, 0, 0) \quad L^5 \\
(2, 0, 0) \quad -1 \\
(1, 1, 0) \quad L^6 - L^5 \\
(4, 0, 0) \quad L^2 - 2 \\
(3, 1, 0) \quad L^2 - L \\
(2, 2, 0) \quad L^7 - 2L^6 + L^2 - 1 \\
(2, 1, 1) \quad -L^6 + 2L^5 - L^4 - L^3 + L^2 - L + 1 \\

Table 5. Motivic Euler Characteristics

References

[1] G. Bini, G. Gaiffi, M. Polito: A formula for the Euler characteristic of \(\overline{M}_{2,n} \), Math. Z. 236 (2001), no. 3, 491–523.
[2] C. Faber, G. van der Geer: Sur la cohomologie des systèmes locaux sur les espaces des modèles des courbes de genre 2 et des surfaces abéliennes, I, II. C. R. Acad. Sci. Paris, Sér. I, 338 (2004), p. 381–384, 467–470.
[3] W. Fulton, J. Harris, Representation Theory. A First Course, Springer-Verlag, New York, 1991.
[4] E. Getzler: Euler characteristics of local systems on \(\mathcal{M}_2 \), Comp. Math. 132 (2002), no. 2, 121–135.
[5] F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig, 1884. (Reprinted by Birkhäuser Verlag, Basel, 1993).
[6] K. Magaard, T. Shaska, S. Shpectorov, and H. Völklein: The locus of curves with prescribed automorphism group, RIMS Kyoto Series, Communications on Arithmetic Fundamental groups, vol. 6, 112–141, 2002.