On a conjecture of H. Fang, Z. Lu and K.-I. Yoshikawa

D. Rössler & V. Maillot

March 31, 2010

Abstract

In [8, Sec. 4, Conj. 4.17], Fang, Lu and Yoshikawa conjecture that a certain string-theoretic invariant of Calabi-Yau threefolds is a birational invariant. We prove a weak form of this conjecture.

1 Introduction

Let Y be a smooth projective variety of dimension 3 over \mathbb{C}. We suppose that Y is a Calabi-Yau variety (in the restricted sense). By definition, this means that $H^1(Y, \mathcal{O}_Y) = H^2(Y, \mathcal{O}_Y) = 0$ and that $\omega_Y := \det(\Omega_Y) \simeq \mathcal{O}_Y$.

In [8] (see also [22, Sec. 2]), H. Fang, Z. Lu and K.-I. Yoshikawa introduced the analytic invariant $\tau_{BCOV}(Y(\mathbb{C})) \in \mathbb{R}^*_+$. See [8, p. 177] or Definition 2.3 below for the precise definition. They conjectured the following (see [8, Sec. 4, Conj. 4.17] and [22, Sec. 2, Conj. 2.1]): if Y and Y' are birational Calabi-Yau varieties of dimension 3 over \mathbb{C}, then $\tau_{BCOV}(Y(\mathbb{C})) = \tau_{BCOV}(Y'(\mathbb{C}))$.\footnote{The conjecture made in [8, Sec. 4, Conj. 4.17] is only apparently weaker than the conjecture made in [22, Sec. 2, Conj. 2.1], because the topological types of $Y(\mathbb{C})$ and $Y'(\mathbb{C})$ coincide by a result of D. Huybrechts (see [14, middle of p. 65]).}
H. Fang, Z. Lu and K.-I. Yoshikawa explain that their definition of τ_{BCOV} is the mathematical formalisation of a definition made by the string-theorists M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa in [3] and [4] (the invariant $F_1(Y)$). Their conjecture should be viewed as a "secondary" analog of the conjecture (which is now a theorem of Batyrev and Kontsevich; see [2]) that the Hodge numbers of $Y(\mathbb{C})$ and $Y'(\mathbb{C})$ coincide. The latter conjecture was also motivated by physical considerations.

The purpose of this note is to describe the proof of the following arithmetic result, which is a step towards Yoshikawa’s conjecture.

Suppose that X (resp. X') is a smooth projective variety of dimension 3 over L. Suppose that X (resp. X') is a Calabi-Yau variety (in the restricted sense).

If Z is a scheme, write as usual $D^b(Z) := D^b_c(Z)$ for the category derived from the homotopy classes of bounded complexes of coherent sheaves on Z.

If $\sigma : L \hookrightarrow \mathbb{C}$ is a subfield of \mathbb{C}, we shall write X_σ for the base change $X \times_{\text{Spec } L, \sigma \text{ Spec } \mathbb{C}}$ of X to \mathbb{C} via the embedding σ.

Now fix an embedding $\sigma : L \hookrightarrow \mathbb{C}$.

Theorem 1.1. Let T be a finite set of embeddings of L into \mathbb{C}.

Let (S) be the statement : there exists $n \in \mathbb{N}^*$ and $\alpha \in L^*$ such that for all $\tau \in T$,

$$\frac{\tau_{BCOV}(X_\tau(\mathbb{C}))}{\tau_{BCOV}(X'_\tau(\mathbb{C}))} = \sqrt[n]{|\tau(\alpha)|}.$$

(A) If X_σ is birational to X'_σ then (S) is verified.

(B) If $D^b(X_\sigma)$ and $D^b(X'_\sigma)$ are equivalent as triangulated \mathbb{C}-linear categories then (S) is verified.

In particular, if $L = \mathbb{Q}$ and X_σ is birational to X'_σ then there exists $n \in \mathbb{N}^*$ such that $(\tau_{BCOV}(X(\mathbb{C}))/\tau_{BCOV}(X'(\mathbb{C})))^n \in \mathbb{Q}$.

Notice that by a theorem of Bridgeland (see [5]), (B) implies (A).

We shall nevertheless give two separate proofs of (A) and (B).

Here is an outline of our proofs of (A) and (B). We first express the quantity τ_{BCOV} in terms of arithmetic Chern numbers; this is made possible by the arithmetic Riemann-Roch theorem of Bismut-Gillet-Soulé [10]. To prove (A), we use the weak factorisation conjecture
for birational maps (proved in [1]) and some lemmas describing the effect of blow-up on some global Arakelov-theoretic invariants. To prove (B), we make use of a theorem of Orlov, which asserts that if $D^b(X_\sigma)$ and $D^b(X'_\sigma)$ are equivalent as triangulated \mathbb{C}-linear categories then X_σ and X'_σ are related by a Fourier-Mukai functor. We also use a theorem of Caldararu, which describes the effect of a Fourier-Mukai functor on the singular cohomology of $X_\sigma(\mathbb{C})$ and $X'_\sigma(\mathbb{C})$.

Remark. It is likely that Theorem 1.1 is true without any restriction of finiteness on T. In particular, the quantity α should not depend on T. The reason for restricting the statement to finite T is a (probably unnecessary) hypothesis of finiteness included in the definition of an arithmetic ring in Arakelov geometry.

2 The invariant τ_{BCOV} and arithmetic Chern numbers on Calabi-Yau threefolds

We shall apply the arithmetic Riemann-Roch theorem to certain vector bundles on X. In the following, we shall freely use the terminology of global Arakelov theory. For a concise summary of the necessary vocabulary, see [20, Sec. 1].

Let $f : X \to S := \text{Spec} \ L$ be the structure morphism. We may enlarge the set T without changing the conclusion of Theorem 1.1, so we may assume that T is conjugation-invariant. We view L as an arithmetic ring, endowed with the set of embeddings T into \mathbb{C}. We endow $X(\mathbb{C}) := \bigsqcup_{\tau \in T} X_\tau(\mathbb{C})$ with a conjugation-invariant Kähler form ν. Let $\Omega := \Omega_X$ be the sheaf of differentials of X, endowed with the metric induced by ν. We write $\omega := \omega_X$ for $\det(\Omega_X)$ and $\Omega^p := \Omega^p_X$ for $\Lambda^p(\Omega_X)$. Furthermore, we shall write $H^q(Y, \Omega^p)$ for the L-vector space $R^qf_*(\Omega^p)$, endowed with the L^2-metric induced by ν.

Let \mathcal{E} be the natural exact sequence of hermitian bundles

$$0 \to f^* f_* \omega \to \omega \to 0 \to 0$$

We let $\eta := \widehat{\text{ch}}(\mathcal{E})$ be the Bott-Chern secondary class associated to \mathcal{E}, so that

$$f^* f_* \omega - \omega = \eta$$
in $K_0(X)$, the arithmetic Grothendieck group of X. We shall write η^0 for the degree 0 part of η.

We apply the arithmetic Riemann-Roch theorem to f and to the formal linear combination of hermitian bundles

$$-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3.$$

We obtain the equality

$$\hat{c}_1 \left(R^* f_* \left[-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3 \right] \right) - a(\tau(-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3))$$

$$= f_* \left(\text{Td}(\Omega^\vee) \hat{\text{ch}} \left(-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3 \right) \right)$$

$$- a(\int_X R(\Omega^\vee) \text{Td}(\Omega^\vee) \text{ch}(\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3))^{(1)}$$

in $\hat{CH}^1(L)_{\mathbb{Q}}$, which is the first arithmetic Chow group of L, tensored with \mathbb{Q}.

Recall that $R(\cdot)$ is the R-genus of Gillet-Soule and that $\tau(\cdot)$ is the Ray-Singer analytic torsion; see [10, Introduction].

We shall first analyse the various terms appearing in this equation. Write $\zeta_{\mathbb{Q}}(s)$ for the evaluation of the Riemann zeta function at $s \in \mathbb{C}$.

Lemma 2.1. The equation

$$\hat{\text{c}}_1 \left(R^* f_* \left[-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3 \right] \right) - a(\tau(-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3))$$

$$= -c^{\text{top}}(\Omega^\vee) \left[a(\zeta_{\mathbb{Q}}(0) \text{rk}^{}(\Omega)) + \zeta_{\mathbb{Q}}(-1) \hat{c}_1(\omega) + \text{terms of degree > 1} \right]$$

$$= -c^{\text{top}}(\Omega^\vee) \left[a(\zeta_{\mathbb{Q}}(0) \text{rk}^{}(\Omega)) + \zeta_{\mathbb{Q}}(-1) \hat{c}_1(f^* f_* \omega) - a(\zeta_{\mathbb{Q}}(-1) \eta^0) + \text{terms of degree > 1} \right]$$

holds in $\hat{CH}^1(X)_{\mathbb{Q}}$.

Proof. The proof is similar to the proof of [17, Lemma 3.1] so we omit it. Q.E.D.

Using the projection formula together with Lemma 2.1, we obtain that

$$[f_* (\hat{\text{Td}}(\Omega^\vee) \hat{\text{ch}}(-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3))]^{(1)} = -a(\zeta_{\mathbb{Q}}(-1) \hat{c}_1(f_* \omega) \int_X c^{\text{top}}(\Omega^\vee)) + a(\zeta_{\mathbb{Q}}(-1) \int_X c^{\text{top}}(\Omega^\vee) \eta^0)$$

in $\hat{CH}^1(L)_{\mathbb{Q}}$ (here the superscript $^{(1)}$ refers to part of degree 1 in $\hat{CH}^1(L)_{\mathbb{Q}}$).
We have the identity of cohomology classes
\[R(\Omega^\vee) \operatorname{Td}(\Omega^\vee) \operatorname{ch}(-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3) = -R(\Omega^\vee)c_{\text{top}}(\Omega^\vee) [\zeta_Q(0) \operatorname{rk}(\Omega) + \text{terms of degree } > 0] \]
and so
\[\int_X R(\Omega^\vee) \operatorname{Td}(\Omega^\vee) \operatorname{ch}(-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3) \big|^{(1)} = 0 \]
since \(R^1(\Omega^\vee) = 0 \) by assumption.

As to the left-hand side of equation (\(\text{(1)} \)), we have
\[
\begin{align*}
R^*f_* \left[-\overline{1}^1 + 2 \cdot \overline{2}^1 - 3 \cdot \overline{3}^1 \right] &= -[H^0(X, \overline{1}^1) - H^1(X, \overline{1}^1) + H^2(X, \overline{1}^1)] + 2[H^0(X, \overline{2}^2) - H^1(X, \overline{2}^2) + H^2(X, \overline{2}^2)] \\
&- 3[H^0(X, \overline{3}^3) - H^1(X, \overline{3}^3) + H^2(X, \overline{3}^3)] \\
&= -[-H^1(X, \overline{1}^1) + H^2(X, \overline{1}^1)] + 2[-H^1(X, \overline{2}^2) + H^2(X, \overline{2}^2)] - 3[H^0(X, \overline{3}^3)] \\
&= -H^1(X, \overline{1}^1) - H^1(X, \overline{2}^2) - 3 \cdot H^0(X, \overline{3}^3)
\end{align*}
\]
Here we used the fact that Serre duality is compatible with \(L^2 \)-metrics (see [11, p. 27, after eq. 9]).

Putting everything together, we get
\[
-\hat{c}_1(H^1(X, \overline{1}^1)) - \hat{c}_1(H^1(X, \overline{2}^2)) - 3 \hat{c}_1(H^0(X, \overline{3}^3)) - \tau\left(-\overline{1}^1 + 2 \cdot \overline{2}^1 - 3 \cdot \overline{3}^1 \right)
\]
which implies that
\[
\begin{align*}
-\hat{c}_1(-H^1(X, \overline{1}^1)) - \hat{c}_1(H^1(X, \overline{2}^2)) - \tau\left(-\overline{1}^1 + 2 \cdot \overline{2}^1 - 3 \cdot \overline{3}^1 \right) &= -\zeta_Q(-1) \hat{c}_1(f_*\varpi) \int_X c_{\text{top}}(\Omega^\vee) + \zeta_Q(-1) \int_X c_{\text{top}}(\Omega^\vee) \eta^0 \\
&= \frac{1}{12} \hat{c}_1(f_*\varpi) \int_X c_{\text{top}}(\Omega^\vee) - \frac{1}{12} \int_X c_{\text{top}}(\Omega^\vee) \eta^0 - 3 \log \operatorname{Vol}(X(\mathbb{C}), \nu)
\end{align*}
\]
where
\[
\operatorname{Vol}(X(\mathbb{C}, \nu)) := \frac{1}{3!(2\pi)^3} \int_{X(\mathbb{C})} \nu^3.
\]
Let us write
\[\chi(X) := \int_X c_{\text{top}}(\Omega^\vee). \]
Note that \(\chi(X) = \sum_{p,q} (-1)^{p+q} \dim L(H^q(X, \Omega^p)) \) by the generalized Gauss-Bonnet theorem. Notice also that \(f_*\omega = H^0(X, \Omega^3) \) (by definition). Since \(\zeta_Q(-1) = -1/12 \), we see that
\[
-\hat{c}_1(H^1(X, \Omega^2)) - \frac{1}{12} \chi(X) \hat{c}_1(H^0(X, \Omega^3)) \\
= -\frac{1}{12} \int_X c_{\text{top}}(\Omega^\vee) \eta^0 - 3 \log \text{Vol}(X, \nu) + \hat{c}_1(H^1(X, \Omega^1)) \\
+ \tau(-\Omega^1 + 2 \cdot \Omega^2 - 3 \cdot \Omega^3)
\]
in \(\hat{CH}^1(L) \).

The \(L^2 \)-metric on \(H^2(X(\mathbb{C}), \mathbb{C}) \) is induced from a Riemannian metric on the space \(H^2(X(\mathbb{C}), \mathbb{R}) \). This is a consequence of the formula \([17, \text{before Lemma 2.7}]\). Let \(\text{Vol}_{L^2}(H^2(X(\mathbb{C}), \mathbb{Z})) \) be the volume of a fundamental domain of the lattice \(H^2(X(\mathbb{C}), \mathbb{Z})_{\text{free}} \) in \(H^2(X(\mathbb{C}), \mathbb{R}) \) for that metric. Here \(H^2(X(\mathbb{C}), \mathbb{Z})_{\text{free}} \) is the largest direct summand of \(H^2(X(\mathbb{C}), \mathbb{Z}) \), which is a free \(\mathbb{Z} \)-module.

Lemma 2.2. The equality
\[
\hat{c}_1(H^1(X, \Omega^1)) = a \left(-\bigoplus_{\tau \in T} \log \text{Vol}_{L^2}(H^2(X, \tau(\mathbb{C}), \mathbb{Z})) \right)
\]
holds in \(\hat{CH}^1(L)_Q \).

Proof. Let \(\tau \in T \) and let \(e_1, \ldots, e_r \) be a basis of \(H^2(X, \tau(\mathbb{C}), \mathbb{Z})_{\text{free}} \). By definition, we have
\[
\text{Vol}_{L^2}(H^2(X, \tau(\mathbb{C}), \mathbb{Z})) = |e_1 \wedge \cdots \wedge e_r|^2
\]
where \(|\cdot| \) refers to the natural norm on \(\Lambda^r(H^2(X, \mathbb{C}), \mathbb{C}) \). Since \(H^2(X, \tau(\mathbb{C}), \mathbb{C}) \cong H^{1,1}(X(\mathbb{C})) \) by hypothesis, we may conclude from the Lefschetz theorem on \((1,1) \)-classes that the elements \(e_i \) are classes of algebraic cycles \(e_i \) on \(X_\tau \). Let \(\kappa_0 : K \hookrightarrow \mathbb{C} \) be a field of definition for the \(e_i \), where \(\kappa_0 \) extends \(\tau \). We may assume that \(K \) is finite over \(L \) (see \([7, \text{proof of Prop. 1.5}]\)). Write \(e_i^K \) for the model of \(e_i \) in \(X_K \) and write \(cl_{\text{dR}} \) for the cycle class map with values
in de Rham cohomology. Let \(\tau : K \to \mathbb{C} \) be another embedding of \(K \) extending \(\tau \). Since by construction

\[
H^2(X_{K,\mathbb{C}}, \mathbb{C}) \cong H_{dR}^2(X_K/K) \otimes_\mathbb{C} \mathbb{C}
\]

we see that the elements \(\text{cl}_{dR}(e_1^K) \otimes_\mathbb{C} 1 \) form a basis of \(H^2(X_{K,\mathbb{C}}, \mathbb{C}) \). Furthermore, since \(\text{cl}_{dR}(e_1^K) \otimes_\mathbb{C} 1 = \text{cl}_{dR}(e_1^K \otimes_\mathbb{C} \mathbb{C}) \), we see that the elements \(\text{cl}_{dR}(e_1^K) \otimes_\mathbb{C} 1 \) even form a basis of \(H^2(X_{K,\mathbb{C}}, \mathbb{Z}) \) free. Furthermore, there is a natural identification

\[
H^2(X_{K,\mathbb{C}}, \mathbb{Z}) \cong H^2(X_{\tau}(\mathbb{C}), \mathbb{Z})
\]

which is an isometry for the \(L^2 \)-metrics.

Now let \(f : \text{Spec } K \to \text{Spec } L \) be the natural map. We view \(\text{Spec } K \) has an arithmetic variety over \(\text{Spec } L \). By the above, we have the equalities

\[
\hat{c}_1(H^1(X_K, \Omega^1_X)) = a(-2 \bigoplus_{\tau \in T} \log |\text{cl}(e_1^K) \otimes_\mathbb{C} 1 \wedge \cdots \wedge \text{cl}(e_r^K) \otimes_\mathbb{C} 1|^2)
\]

\[
= a(- \bigoplus_{\tau \in T} \log \text{Vol}_{L^2}(X_\tau(\mathbb{C}), \mathbb{Z}))
\]

and thus

\[
[K : L] \hat{c}_1(H^1(X, \Omega^1_X)) = f_* f^* \hat{c}_1(H^1(X, \Omega^1_X)) = f_* \hat{c}_1(H^1(X_K, \Omega^1_X))
\]

\[
= [K : L] a(- \bigoplus_{\tau \in T} \log \text{Vol}_{L^2}(X_\tau(\mathbb{C}), \mathbb{Z}))
\]

and we can conclude. Q.E.D.

The previous calculations motivate the following definition:

Definition 2.3.

\[
\tau_{BCOV}(X(\mathbb{C})) := \exp\left[-\frac{1}{12} \int_{X(\mathbb{C})} e^{\text{top}}(\Omega^2_{X(\mathbb{C})}) \eta^0 - 3 \log \text{Vol}(X(\mathbb{C}), \nu) - \log(\text{Vol}_{L^2}(H^2(X(\mathbb{C}), \mathbb{Z}))) \right.
\]

\[
- \left. \tau(\Omega^1_{X(\mathbb{C})}) + 2 \cdot \tau(\Omega^2_{X(\mathbb{C})}) - 3 \cdot \tau(\Omega^3_{X(\mathbb{C})}) \right]
\]
It is proven in [8, Sec. 4.4] that $\tau_{\text{BCOV}}(X)$ does not depend on the choice of ν. Notice that equation (2) together with the formula [17, before Lemma 2.7] already implies the weaker statement that $a(\tau_{\text{BCOV}}(X))$ does not depend on ν.

The following equation summarizes the calculations made in this section:

$$\log(\tau_{\text{BCOV}}(X(\mathbb{C}))) = -\hat{c}_1(H^1(X, \Omega^2)) - \frac{1}{12} \chi(X) \hat{c}_1(H^0(X, \Omega^3)) \quad \text{in } \hat{CH}^1(L)_{\mathbb{Q}} \quad (3)$$

3 Proof of Theorem 1.1

With the equation (3) in hand, we see that Theorem 1.1 is equivalent to the equation

$$-\hat{c}_1(H^1(X_L', \Omega^2)) - \frac{1}{12} \chi(X_L') \hat{c}_1(H^0(X_L', \Omega^3)) = -\hat{c}_1(H^1(X', \Omega^2)) - \frac{1}{12} \chi(X') \hat{c}_1(H^0(X', \Omega^3)) \quad (4)$$

Lemma 3.1. Let L' be a finite field extension of L. We view $\text{Spec } L'$ as an arithmetic variety over L. With this convention, the equation

$$-\hat{c}_1(H^1(X_{L'}, \Omega^2)) - \frac{1}{12} \chi(X_{L'}) \hat{c}_1(H^0(X_{L'}, \Omega^3)) = -\hat{c}_1(H^1(X_{L}', \Omega^2)) - \frac{1}{12} \chi(X_{L}') \hat{c}_1(H^0(X_{L}', \Omega^3))$$

in $\hat{CH}^1(L')_{\mathbb{Q}}$ is equivalent to the equation (4).

Proof. Let $f : \text{Spec } L' \to \text{Spec } L$ be the natural morphism. Using the projection formula, we compute

$$[L' : L] \hat{c}_1(H^1(X, \Omega^2)) = f_* f^* \hat{c}_1(H^1(X, \Omega^2)) = f_* \hat{c}_1(H^1(X_{L'}, \Omega^2))$$

and similarly

$$[L' : L] \hat{c}_1(H^0(X, \Omega^3)) = f_* f^* \hat{c}_1(H^0(X, \Omega^3)) = f_* \hat{c}_1(H^0(X_{L'}, \Omega^3))$$

If we combine these formulae with the analogous formulae for X', we may conclude. Q.E.D.

Now notice that the group $\hat{CH}^1(L')_{\mathbb{Q}}$ (where L' is viewed as an arithmetic variety over L) is naturally isomorphic to the homonymous group $\hat{CH}^1(L'_{\mathbb{Q}}) := \hat{CH}^1(L', T'_{\mathbb{Q}})$, which is the first arithmetic Grothendieck group of the arithmetic ring L', endowed with the set $T' := \{ \tau' : L' \hookrightarrow \mathbb{C} | \tau' \in T \}$.
of embeddings into \(\mathbb{C} \). Thus Lemma 3.1 implies that the truth value of Theorem 1.1 remains unchanged if we replace \(L \) by a finite extension field \(L' \) and \(T \) by the set \(T' := \{ \tau' : L' \hookrightarrow \mathbb{C} \mid \tau' \in T \} \).

Before we begin with the proof, notice that by the formula [17, before Lemma 2.7], the \(L^2 \)-metric on \(H^1(X, \Omega^2) \) is given by the formula

\[
\langle \lambda, \kappa \rangle_{L^2} = \frac{i}{(2\pi)^3} \int_{X(\mathbb{C})} \lambda \wedge \overline{\kappa} \quad (5)
\]

and the \(L^2 \)-metric on \(H^0(X, \Omega^3) \) is given by the formula

\[
\langle \lambda, \kappa \rangle_{L^2} = -\frac{i}{(2\pi)^3} \int_{X(\mathbb{C})} \lambda \wedge \overline{\kappa} \quad (6)
\]

In particular, these metrics do not depend on the choice of the Kähler form \(\nu \).

3.1 Proof of (A)

We now assume that there is a birational transformation from \(X_\sigma \) to \(X'_\sigma \).

Lemma 3.2. There is a birational transformation from \(X_L \) to \(X'_{L'} \).

Proof. This can be proven using a “spreading out” argument. We leave the details to the reader. Q.E.D.

Notice that the birational transformation provided by the last Lemma has a model over a finite extension of \(L \). Hence, by the discussion following Lemma 3.1, we may assume without loss of generality that there is a birational transformation from \(X \) to \(X' \) defined over \(L \).

Lemma 3.3.

\[
\hat{c}_1(H^0(X, \Omega^3)) = \hat{c}_1(H^0(X', \Omega^3))
\]

Proof. Let \(\phi \) be a birational transformation from \(X \) to \(X' \). It is shown in [13, Proof of Th. 8.19, chap. II] that there is an open set \(U \subseteq X \) and a morphism \(f : X \to X' \), with the following
properties: f induces φ and codimension $(U) \leq 2$. It is also shown in [13] Proof of Th. 8.19, chap. II] that the maps

$$H^0(X', \Omega^3) \xrightarrow{f^*} H^0(U, \Omega^3) \xleftarrow{\text{restriction to } U} H^0(X, \Omega^3)$$

are bijective. Thus, using the formula (6), we compute that

$$\hat{c}_1(H^0(X', \Omega^3)) = -\log |\int_{X'(\mathbb{C})} \lambda \wedge \overline{\lambda}| = -\log |\int_{X(\mathbb{C})} f^*(\lambda) \wedge \overline{f^*(\lambda)}| = \hat{c}_1(H^0(X, \Omega^3))$$

Here $\lambda \in H^0(X, \Omega^3)$ is any non-zero element. Q.E.D.

We recall the following theorem of Manin (and others).

Theorem 3.4. Let Y be a smooth projective variety over \mathbb{C}. Let $Z \hookrightarrow Y$ be a smooth closed subvariety of codimension c of Y. Let $\phi: \tilde{Y} := \text{Bl}_Z(Y) \to Y$ be the blow-up of Y along Z. Let $e : E \to \tilde{Y}$ be the immersion of the exceptional divisor and let $\pi : E \to Z$ be the natural morphism. Let $\mathcal{O}(1)$ be the tautological vector bundle on E. For any $k \in \mathbb{N}$, there is an isomorphism of \mathbb{Q}-Hodge structures

$$H^k(Y, \mathbb{Q}) \bigoplus_{l \geq 0} \mathbb{Q}^{c-2} H^{k-2l}(Z(\mathbb{C}), \mathbb{Q})(-l - 1) \xrightarrow{\sim} H^k(\tilde{Y}, \mathbb{Q})$$

given by the formula

$$(\eta, \kappa_1, \ldots, \kappa_{c-1}) \mapsto (\phi^* \eta, e_* [\pi^*(\kappa_0) + \pi^*(\kappa_1) \cdot c_1(\mathcal{O}(1)) + \pi^*(\kappa_2) \cdot c_1(\mathcal{O}(1))^2 + \cdots + \pi^*(\kappa_{c-2}) \cdot c_1(\mathcal{O}(1))^{c-2}])$$

Proof. See [18]. Q.E.D.

Lemma 3.5. Let C be a non-singular curve of genus g over L. Then

$$\hat{c}_1(H^0(\text{Jac}(C), \Omega^1)) = \hat{c}_1(H^0(C, \Omega^1)) + (g - 1) \log(2\pi)$$

in $\hat{CH}^1(L)$, for any Kähler metrics on $C(\mathbb{C})$ and $\text{Jac}(C)(\mathbb{C})$.

Proof. See [21], Exp. I, Lemme 3.2.1]. Q.E.D.

Proposition 3.6. Let Y be a smooth projective threefold over L. Let $Z \hookrightarrow Y$ be a smooth closed subcurve of genus g of Y. Let $\phi: \tilde{Y} := \text{Bl}_Z(Y) \to Y$ be the blow-up of Y along Z. Then

$$\hat{c}_1(H^1(\tilde{Y}, \Omega^2)) = \hat{c}_1(H^1(Y, \Omega^2)) + \hat{c}_1(H^0(Z, \Omega^1)) + 2g \log(2\pi)$$

for any Kähler metrics on Y, Z and \tilde{Y}.
Proof. Let $e : E \hookrightarrow \tilde{Y}$ be the immersion of the exceptional divisor. Let $\pi : E \to Z$ be the natural morphism. By Theorem 3.4, the map

$$H^1(Y, \Omega^2) \oplus H^0(Z, \Omega) \to H^1(\tilde{Y}, \Omega^2)$$

given by the formula

$$(\eta, \kappa) \mapsto \phi^* (\eta) + e_*(\pi^*(\kappa))$$

is an isomorphism. We compute

$$\frac{i}{(2\pi)^3} \int_{\tilde{Y}(\mathbb{C})} \left(\phi^* (\eta_1) + e_*(\pi^*(\kappa_1)) \right) \wedge \left(\phi^* (\eta_2) + e_*(\pi^*(\kappa_2)) \right) =$$

$$= \frac{i}{(2\pi)^3} \int_{\tilde{Y}(\mathbb{C})} \phi^* (\eta_1) \wedge \phi^* (\eta_2) + \frac{i}{(2\pi)^3} \int_{\tilde{Y}(\mathbb{C})} e_*(\pi^* (\eta_1) \wedge \kappa_2) +$$

$$+ \frac{i}{(2\pi)^3} \int_{\tilde{Y}(\mathbb{C})} e_*(\pi^* (\eta_2) \wedge \kappa_1) + \frac{i}{(2\pi)^3} \int_{\tilde{Y}(\mathbb{C})} e_*(\pi^* (\kappa_1)) \wedge e_*(\pi^* (\kappa_2)) =$$

$$= \frac{i}{(2\pi)^3} \int_{\tilde{Y}(\mathbb{C})} \phi^* (\eta_1) \wedge \phi^* (\eta_2) + \frac{i}{(2\pi)^3} \int_{\tilde{Y}(\mathbb{C})} e_*(\pi^* (\kappa_1)) \wedge e_*(\pi^* (\kappa_2))$$

Now using the self-intersection formula (see for instance [9 VI, 1., 1.4.2]), we may compute

$$\frac{i}{(2\pi)^3} \int_{\tilde{Y}(\mathbb{C})} e_*(\pi^* (\kappa_1)) \wedge e_*(\pi^* (\kappa_2)) = \frac{i}{(2\pi)^3} \int_{E(\mathbb{C})} e_*(\pi^* (\kappa_1) \wedge e^* e_*(\pi^* (\kappa_2))) =$$

$$= \frac{i}{(2\pi)^3} \int_{E(\mathbb{C})} e_*(c_1(\mathcal{O}_E(-1))) \wedge \pi^* (\kappa_1) \wedge \pi^* (\kappa_2)) =$$

$$= - \frac{i}{(2\pi)^3} \int_{\mathbb{Z}(\mathbb{C})} \kappa_1 \wedge \kappa_2 = \frac{1}{(2\pi)^3} \cdot -i \int_{\mathbb{Z}(\mathbb{C})} \kappa_1 \wedge \kappa_2$$

These formulae imply the conclusion of the proposition. Q.E.D.

Lemma 3.7. Let A and B be abelian varieties over \overline{L} and let $ϕ : A_σ → B_σ$ be an isogeny (over \mathbb{C}). Then there is an isogeny $A → B$ (over \overline{L}).

Proof. By spreading out. Left to the reader. Q.E.D.

Lemma 3.8. Let A and B be two abelian varieties over L and suppose that there exists an isogeny $ϕ : A → B$ (over L). Suppose that L contains a square root of $\deg(ϕ)$. Then

$$\hat{c}_1(H^0(A, \Omega^0)) = \hat{c}_1(H^0(B, \Omega^0))$$

in $\hat{CH}^1(L)$, for any choice of Kähler metrics on A and B.
Symmetrically, there are curves an isometry of hermitian vector bundles. Using the formula [17 before Lemma 2.7], we see that for any embedding \(\tau \in T \), we have

\[
\langle \alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_g, \alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_g \rangle_{L^2} = \int_{B(C)} ((\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_g) \otimes \tau 1) \wedge ((\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_g) \otimes \tau 1) \]

\[
= \deg(\phi)^{-1} \int_{A(C)} ((\phi^*(\alpha_1) \wedge \phi^*(\alpha_2) \wedge \cdots \wedge \phi^*(\alpha_g)) \otimes \tau 1) \wedge ((\phi^*(\alpha_1) \wedge \phi^*(\alpha_2) \wedge \cdots \wedge \phi^*(\alpha_g)) \otimes \tau 1) \]

and thus the mapping \(H^0(B, \Omega^g) \to H^0(A, \Omega^g) \) given by the formula \(\eta \mapsto (\sqrt{\deg(\phi)}) \cdot \phi^* \) is an isometry of hermitian vector bundles. \(\text{Q.E.D.} \)

Let now \(\phi : X \dasharrow X' \) be a birational transformation. Let \(X'' \) be another smooth projective variety over \(L \), together with morphisms \(f : X'' \to X \) and \(g : X'' \to X' \) such that \(\phi \circ f \) and \(g \) coincide as birational transformations. The variety \(X'' \) can be obtained as a desingularisation of the Zariski closure of the graph of \(\phi \) in \(X \times X' \).

Denote by \(\mathcal{P}HS(\mathbb{Q}) \) the category of (pure) polarisable \(\mathbb{Q} \)-Hodge structures.

Using weak factorisation of birational maps (see [11] and Proposition 3.6) and possibly replacing \(L \) by one of its finite extensions, we conclude that there are curves \(C_1, \ldots, C_{r'} \) over \(L \) and numbers \(s_i' \in \{-1, 1\} \) so that

\[
H^3(X_{\sigma}(\mathbb{C}), \mathbb{Q}) + \sum_{l=1}^{r'} (-1)^{s_i'} H^1(C_{l,\sigma}, \mathbb{Q})(-1) = H^3(X''(\mathbb{C}), \mathbb{Q})
\]

in \(K_0(\mathcal{P}HS(\mathbb{Q})) \) and so that

\[
\hat{c}_1(H^1(X, \Omega^2)) + \sum_{l=1}^{r'} (-1)^{s_i'} \hat{c}_1(H^0(C_{l}', \Omega^1)) + 2 \sum_{l=1}^{r'} (-1)^{s_i'} \text{genus}(C_{l}') \log(2\pi) = \hat{c}_1(H^1(X'', \Omega^2)).
\]

Symmetrically, there are curves \(C_{1}', \ldots, C_{r''}, \) over \(L \) and numbers \(s_i'' \in \{-1, 1\} \) so that

\[
H^3(X'_{\sigma}(\mathbb{C}), \mathbb{Q}) + \sum_{l=1}^{r''} (-1)^{s_i''} H^1(C_{l,\sigma}, \mathbb{Q})(-1) = H^3(X''(\mathbb{C}), \mathbb{Q})
\]

in \(K_0(\mathcal{P}HS(\mathbb{Q})) \) and so that

\[
\hat{c}_1(H^1(X', \Omega^2)) + \sum_{l=1}^{r''} (-1)^{s_i''} \hat{c}_1(H^0(C_{l}'', \Omega^1)) + 2 \sum_{l=1}^{r''} (-1)^{s_i''} \text{genus}(C_{l}'') \log(2\pi) = \hat{c}_1(H^1(X'', \Omega^2)).
\]
Now by a theorem of Kontsevich (proved using motivic integration; see [16]) there is an isomorphism of \mathbb{Q}-Hodge structures $H^3(X_\sigma(C), \mathbb{Q}) \simeq H^3(X'_\sigma(C), \mathbb{Q})$. Thus

$$2 \sum_{l=1}^{r'} (-1)^{s'_l} \text{genus}(C'_l) \log(2\pi) = 2 \sum_{l=1}^{r''} (-1)^{s''_l} \text{genus}(C''_l) \log(2\pi).$$

Furthermore, since the category of polarisable \mathbb{Q}-Hodge structures is semi-simple, there exists an isomorphism of \mathbb{Q}-Hodge structures

$$\bigoplus_{l,s'_l=1} H^1(\text{Jac}(C'_l), \mathbb{Q}) \bigoplus \bigoplus_{l,s''_l=1} H^1(\text{Jac}(C''_l), \mathbb{Q}) \rightarrow \bigoplus_{l,s'_l=1} H^1(\text{Jac}(C'_l), \mathbb{Q}) \bigoplus \bigoplus_{l,s''_l=1} H^1(\text{Jac}(C''_l), \mathbb{Q})$$

and thus an L-isogeny of abelian varieties

$$\prod_{l,s'_l=1} \text{Jac}(C'_l) \prod_{l,s''_l=1} \text{Jac}(C''_l) \rightarrow \prod_{l,s'_l=1} \text{Jac}(C'_l) \prod_{l,s''_l=1} \text{Jac}(C''_l)$$

Here we used Lemma 3.7. Extend L further so that the latter isogeny is defined over L. Then, by Lemma 3.8, we have

$$\sum_{l} (-1)^{s'_l} \hat{c}_1(H^0(\text{Jac}(C'_l), \Omega^{\dim \text{Jac}(C'_l)})) = \sum_{l} (-1)^{s''_l} \hat{c}_1(H^0(\text{Jac}(C''_l), \Omega^{\dim \text{Jac}(C''_l)}))$$

in $\hat{CH}^1(L, \mathbb{Q})$. Using Lemma 3.5 we deduce that

$$\sum_{l} (-1)^{s'_l} \hat{c}_1(H^0(C'_l, \Omega^0)) = \sum_{l} (-1)^{s''_l} \hat{c}_1(H^0(C''_l, \Omega^0)).$$

so that

$$\hat{c}_1(H^1(X, \Omega^0)) = \hat{c}_1(H^1(X', \Omega^0)).$$

Furthermore, by Lemma 3.3 we have

$$\hat{c}_1(H^0(X, \Omega^3)) = \hat{c}_1(H^0(X', \Omega^3))$$

and by a theorem of Kontsevich (see [16]) we have $\chi(X) = \chi(X')$. This implies that

$$-\hat{c}_1(H^1(X, \Omega^2)) - \frac{1}{12} \chi(X) \hat{c}_1(H^0(X, \Omega^3)) = -\hat{c}_1(H^1(X', \Omega^2)) - \frac{1}{12} \chi(X') \hat{c}_1(H^0(X', \Omega^3)).$$

Thus the equation (4) is verified and the theorem is proved.
3.2 Proof of (B)

We now assume that the categories $D^b(X_\sigma)$ and $D^b(X'_\sigma)$ are equivalent as triangulated \mathbb{C}-linear categories.

As a matter of notation, if $X_1 \times X_2 \times \cdots \times X_t$ is a cartesian product of varieties, we shall write

$$
\pi_{X_1X_2\cdots X_t} : X_1 \times X_2 \times \cdots \times X_t \to X_{i_1} \times X_{i_2} \times \cdots \times X_{i_j}
$$

for the natural projection.

If M (resp. M') is an object in $D^b(X_\sigma)$ (resp. in $D^b(X'_\sigma)$), let F_M (resp. $F_{M'}$) be the functor $D^b(X_\sigma) \to D^b(X'_\sigma)$ (resp. $D^b(X'_\sigma) \to D^b(X_\sigma)$) defined by the formula

$$
F_M(\cdot) = R^\bullet \pi_{X_\sigma X'_\sigma}^* (\pi_{X_\sigma X'_\sigma}^* \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} (\cdot))
$$

(resp.

$$
F_{M'}(\cdot) = R^\bullet \pi_{X_\sigma X'_\sigma}^* (\pi_{X_\sigma X'_\sigma}^* \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} (\cdot))
$$

). The symbol \otimes refers to the derived tensor product and $R^\bullet f_*$ refers to the functor derived from the direct image functor.

We shall make use of the following theorems.

Theorem 3.9 (Orlov). There exists an object M (resp. M') in $D^b(X_\sigma \times X'_\sigma)$ with the following properties.

(a) The object

$$
R^\bullet \pi_{X_\sigma X'_\sigma}^* (\pi_{X_\sigma X'_\sigma}^* \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} (M)) \otimes \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} (M')
$$

is isomorphic in $D^b(X_\sigma \times X_\sigma)$ to the image of the diagonal morphism in $X_\sigma \times X_\sigma$.

(b) The object

$$
R^\bullet \pi_{X_\sigma X'_\sigma}^* (\pi_{X_\sigma X'_\sigma}^* \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} (M)) \otimes \pi_{X_\sigma X'_\sigma} \pi_{X_\sigma X'_\sigma} (M')
$$

is isomorphic in $D^b(X'_\sigma \times X'_\sigma)$ to the image of the diagonal morphism in $X'_\sigma \times X'_\sigma$.
Proof. See [19]. Q.E.D.

The last theorem is actually valid more generally if X_σ (resp. X'_σ) is replaced by any smooth quasi-projective scheme over \mathbb{C} and if one assumes that $D^b(X_\sigma)$ and $D^b(X'_\sigma)$ are equivalent as triangulated \mathbb{C}-linear categories.

Write $\pi : X_\sigma \times X'_\sigma \to X_\sigma$ for the first projection and $\pi' : X_\sigma \times X'_\sigma \to X'_\sigma$ for the second projection.

Theorem 3.10 (Caldararu). Let M and M' be objects satisfying the conditions (a) and (b) in Theorem 3.9 then the map

$$\Phi^H_M : H^\bullet(X_\sigma(\mathbb{C}), \mathbb{Q}) \to H^\bullet(X'_\sigma(\mathbb{C}), \mathbb{Q})$$

given by the formula

$$\Phi^H_M(\beta) := \pi'_*(\pi^*(\beta) \cdot \sqrt{\text{Td}(X_\sigma \times X'_\sigma) \cdot \text{ch}(M)})$$

is an isomorphism and for any $k \in \mathbb{N}$ we have

$$\Phi^H_M(\bigoplus_{p-q=k} H^{p,q}(X_\sigma(\mathbb{C}))) = \bigoplus_{p-q=k} H^{p,q}(X'_\sigma(\mathbb{C}))$$

and furthermore, for any $\beta, \lambda \in H^3(X_\sigma(\mathbb{C}), \mathbb{Q})$, we have

$$\int_{X(\mathbb{C})} \beta \wedge \lambda = \int_{X'(\mathbb{C})} \Phi^H_M(\beta) \wedge \Phi^H_M(\lambda)$$

Proof. See [6] or [15, 5.2]. Q.E.D.

The last theorem is actually valid more generally if X_σ (resp. X'_σ) is replaced by any smooth projective scheme of dimension 3 over \mathbb{C}.

Notice that Theorem 3.10 implies that if its hypotheses are satisfied, then

$$\Phi^H_M(H^{2,1}(X_\sigma(\mathbb{C}))) = H^{2,1}(X'_\sigma(\mathbb{C}))$$

and

$$\Phi^H_M(H^{3,0}(X_\sigma(\mathbb{C}))) = H^{3,0}(X'_\sigma(\mathbb{C})).$$

Here we have used the fact that X and X' are Calabi-Yau varieties in the restricted sense.
Lemma 3.11. There exists a finite field extension K of L and an object M_0 (resp. M'_0) of $D^b(X_K \times X'_K)$ (resp. $D^b(X'_K \times X_K)$) such that

\begin{itemize}
 \item [(a)] The object
 \[
 R^\bullet \pi^*_{X_K \times X_K} (\pi_{X_K \times X_K}^* \otimes \pi_{X_K \times X_K}^* (M))
 \]
 is isomorphic in $D^b(X_K \times X_K)$ to the image of the diagonal morphism in $X_K \times X_K$.

 \item [(b)] The object
 \[
 R^\bullet \pi^*_{X'_K \times X'_K} (\pi_{X'_K \times X'_K}^* \otimes \pi_{X'_K \times X'_K}^* (M))
 \]
 is isomorphic in $D^b(X'_K \times X'_K)$ to the image of the diagonal morphism in $X'_K \times X'_K$.
\end{itemize}

Proof. Let $\Delta : X_\sigma \hookrightarrow X_\sigma \times X_\sigma$ (resp. $\Delta' : X_\sigma \hookrightarrow X'_\sigma \times X'_\sigma$) be the diagonal morphism. Let U be a bounded complex of locally free sheaves on $X_\sigma \times X'_\sigma$ representing M and let U' be a bounded complex of locally sheaves on $X'_\sigma \times X_\sigma$ representing M'. Let L_1 be a finitely generated extension of L (as a field), such that U (resp. U') has a model over $X_{L_1} \times X_{L_1}$ (resp. $X'_{L_1} \times X'_{L_1}$). Let S be an affine variety over L, which is smooth and irreducible and whose function field is isomorphic to L_1 as an L-algebra. After possibly replacing S by one of its open affine subsets, we may find bounded complexes of locally free sheaves \tilde{U} (resp. \tilde{U}') on $X_S \times X_S$ (resp. $X'_S \times X'_S$), which are models of U and U'.

The conditions (a) and (b) in Theorem 3.9 are equivalent to the conditions:

\begin{itemize}
 \item There are isomorphisms of coherent sheaves
 \[
 R^0 \pi^*_{X_\sigma \times X'_\sigma} (\pi_{X_\sigma \times X'_\sigma}^* (M)) \simeq \Delta_* O_{X_\sigma}
 \]
 and
 \[
 R^i \pi^*_{X_\sigma \times X'_\sigma} (\pi_{X_\sigma \times X'_\sigma}^* (M)) \otimes \pi_{X_\sigma \times X'_\sigma}^* (M')) \simeq 0
 \]
 for all $i \neq 0$;
 \item there are isomorphisms of coherent sheaves
 \[
 R^0 \pi^*_{X'_\sigma \times X'_\sigma} (\pi_{X'_\sigma \times X'_\sigma}^* (M')) \simeq \Delta_* O_{X'_\sigma}
 \]
\end{itemize}
and
\[\pi_* X'_s X_s^* \left(\pi_* X'_s X_s^* (M') \otimes \pi_* X'_s X_s^* (M) \right) \simeq 0 \]
for all \(i \neq 0 \).

Thus, after possibly a further reduction of the size of \(S \), we may assume that

- there are isomorphisms of coherent sheaves
 \[R^0 \pi_* X'_s X_s^* \left(\pi_* X'_s X_s^* \left(\tilde{U} \right) \otimes X'_s X_s^* \left(\tilde{U}' \right) \right) \simeq \Delta_* O_X S \]
 and
 \[R^i \pi_* X'_s X_s^* \left(\pi_* X'_s X_s^* \left(\tilde{U} \right) \otimes X'_s X_s^* \left(\tilde{U}' \right) \right) \simeq 0 \]
 for all \(i \neq 0 \); and
- there are isomorphisms of coherent sheaves
 \[R^0 \pi_* X'_s X_s^* \left(\pi_* X'_s X_s^* \left(\tilde{U} \right) \otimes X'_s X_s^* \left(\tilde{U}' \right) \right) \simeq \Delta_* O_X' S \]
 and
 \[R^i \pi_* X'_s X_s^* \left(\pi_* X'_s X_s^* \left(\tilde{U} \right) \otimes X'_s X_s^* \left(\tilde{U}' \right) \right) \simeq 0 \]
 for all \(i \neq 0 \).

To see this, use the fact that the elements of the complexes \(\tilde{U} \) and \(\tilde{U}' \) are locally free and apply the theorem on cohomology and base-change (see [12, chap. III, 7.7.4]).

Now pick a closed point \(s \in S \). The field \(K := \kappa(s) \) has all the properties we are looking for. Q.E.D.

Now replace \(L \) by a finite extension \(K \) satisfying the conclusion of Lemma 3.11. Replace \(T \) by the set \(T_K \) of embeddings of \(K \) into \(C \) lying above embeddings in \(T \). Recall that by Lemma 3.1 this does not restrict generality.

Proposition 3.12. There are isometries of hermitian vector bundles
\[H^1 \left(X, \bar{\Omega}'^2 \right) \simeq H^1 \left(X', \bar{\Omega}'^2 \right) \]
and
\[H^0(X, \Omega^3) \simeq H^0(X', \Omega^3) \]

Proof. Let \(M_0, M'_0 \) be as provided by Lemma 3.11. Set \(M_\sigma := M_0 \otimes_\sigma \mathbb{C} \) and \(M'_\sigma := M'_0 \otimes_\sigma \mathbb{C} \). Since \(\mathbb{C} \) is flat as an \(L \)-algebra via \(\sigma \), we see that \(M_\sigma \) and \(M'_\sigma \) satisfy properties (a) and (b) in Theorem 3.9.

Furthermore, there are comparison isomorphisms
\[H^3(X_\sigma(\mathbb{C}), \mathbb{C}) \simeq \bigoplus_{p+q=3} H^q(X, \Omega^p) \otimes_\sigma \mathbb{C} \]
and
\[H^3(X'_\sigma(\mathbb{C}), \mathbb{C}) \simeq \bigoplus_{p+q=3} H^q(X, \Omega^p) \otimes_\sigma \mathbb{C} \]
compatible with pull-backs, push-forwards and formation of Chern classes. We may thus conclude from Theorem 3.10 that the morphism \(\bigoplus_{p+q=3} H^q(X, \Omega^p) \to \bigoplus_{p+q=3} H^q(X, \Omega^p) \)
given by the formula in Hodge cohomology
\[\Phi_{Hdg}^M(\beta) := \pi'_\tau^* (\pi^* (\beta) \cdot \sqrt{\text{Td}(X \times X')} \cdot \text{ch}(M_0))) \]
is an isomorphism. Therefore, again by Theorem 3.10 (see remark after the theorem), the maps
\[\Phi_{Hdg}^M \otimes_\tau \mathbb{C}|_{H^1(X, \Omega^2)} : H^1(X_\tau, \Omega^2) \to H^1(X'_\tau, \Omega^2) \]
and
\[\Phi_{Hdg}^M \otimes_\tau \mathbb{C}|_{H^0(X, \Omega^3)} : H^0(X_\tau, \Omega^3) \to H^0(X'_\tau, \Omega^3) \]
are isometries for any \(\tau \in T \). This implies the result. Q.E.D.

We can now conclude the proof the Theorem 1.1. Indeed, by Proposition 3.12 we have
\[\hat{c}_1(H^1(X, \Omega^2)) = \hat{c}_1(H^1(X', \Omega^2)) \]
and
\[\hat{c}_1(H^0(X, \Omega^3)) = \hat{c}_1(H^0(X', \Omega^3)) \]
in \(\hat{CH}^1(L) \). We conclude using equation (2).
References

[1] Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531–572 (electronic).

[2] Victor V. Batyrev, Birational Calabi-Yau n-folds have equal Betti numbers, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 1–11.

[3] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Holomorphic anomalies in topological field theories, Mirror symmetry, II, AMS/IP Stud. Adv. Math., vol. 1, Amer. Math. Soc., Providence, RI, 1997, pp. 655–682.

[4] ______, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), no. 2, 311–427.

[5] Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613–632.

[6] Andrei Căldăraru, The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism, Adv. Math. 194 (2005), no. 1, 34–66.

[7] Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin, 1982.

[8] Hao Fang, Zhiqin Lu, and Ken-Ichi Yoshikawa, Analytic torsion for Calabi-Yau threefolds, J. Differential Geom. 80 (2008), no. 2, 175–259.

[9] William Fulton and Serge Lang, Riemann-Roch algebra, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 277, Springer-Verlag, New York, 1985.

[10] Henri Gillet and Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), no. 3, 473–543.

[11] H. Gillet and C. Soulé, Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), no. 1, 21–54. With an appendix by D. Zagier.

[12] A. Grothendieck, Éléments de géométrie algébrique. Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967).

[13] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.

[14] Daniel Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1, 63–113.

[15] D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, Oxford, 2006.

[16] Eduard Looijenga, Motivic measures, Astérisque 276 (2002), 267–297. Séminaire Bourbaki, Vol. 1999/2000.
[17] Vincent Maillot and Damian Roessler, *On the periods of motives with complex multiplication and a conjecture of Gross-Deligne*, Ann. of Math. (2) 160 (2004), no. 2, 727–754.

[18] Ju. I. Manin, *Correspondences, motifs and monoidal transformations*, Mat. Sb. (N.S.) 77 (119) (1968), 475–507 (Russian).

[19] D. O. Orlov, *Derived categories of coherent sheaves and equivalences between them*, Uspekhi Mat. Nauk 58 (2003), no. 3(351), 89–172 (Russian, with Russian summary); English transl., Russian Math. Surveys 58 (2003), no. 3, 511–591.

[20] Christophe Soulé, *Genres de Todd et valeurs aux entiers des dérivées de fonctions L*, Astérisque 311 (2007), Exp. No. 955, vii, 75–98 (French, with French summary). Séminaire Bourbaki. Vol. 2005/2006.

[21] Lucien Szpiro (ed.), *Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell*, Société Mathématique de France, Paris, 1985. Papers from the seminar held at the École Normale Supérieure, Paris, 1983–84; Astérisque No. 127 (1985).

[22] Ken-Ichi Yoshikawa, *Analytic torsion and an invariant of Calabi-Yau threefold*, Differential geometry and physics, Nankai Tracts Math., vol. 10, World Sci. Publ., Hackensack, NJ, 2006, pp. 480–489.