Infection with human herpesvirus type 8 and human T-cell leukaemia virus type-1 among individuals participating in a case–control study in Havana City, Cuba

L Fernandez1, D Serraino*,2, G Rezza3, J Lence1, RM Ortiz1, T Cruz1, S Vaccarella4, L Sarmati5, M Andreoni5 and S Franceschi4

1Instituto Nacional de Oncología y Radiología, Havana, Cuba; 2Dipartimento di Epidemiologia, Istituto Nazionale per le Malattie Infettive L. Spallanzani, IRCCS, Rome, Italy; 3Centro Operativo AIDS, Istituto Superiore di Sanità, Rome, Italy; 4Unit of Field and Intervention Studies, International Agency for Research on Cancer, Lyon, France; 5Istituto di Malattie Infettive, Università di Tor Vergata, Rome, Italy

Infection with human herpesvirus type 8 and with human T-cell leukaemia virus type-1 shows strong geographic variations. We conducted this study to assess prevalence and risk factors for human herpesvirus type 8 infection in Havana City, Cuba. Information and residual serum samples already collected for a hospital based case–control study were used. A total of 379 individuals (267 males and 112 females; median age=63 years) were evaluated. Antibodies to the lytic antigen of human herpesvirus type 8 were detected by using an immunofluorescence assay, while human T-cell leukaemia virus type-1 serology was performed by means of an ELISA test (alpha Biotech). Overall, 64 subjects (16.9%, 95% confidence interval: 13.1 – 20.0) were positive for human herpesvirus type 8 antibodies. Human herpesvirus type 8 seroprevalence significantly increased with age (odds ratio=1.9 for ≥ 65 vs < 55 years), and was twice as frequent in blacks than in whites. No association emerged with gender, socio-economic indicators, family size, history of sexually transmitted disease, sexual behaviour. Overall, 16 persons had anti-human T-cell leukaemia virus type-1 antibodies (4.2%, 95% confidence interval: 2.2 – 6.4). No relationship emerged between human T-cell leukaemia virus type-1 and human herpesvirus type 8 serostatus. The study findings indicate that human herpesvirus type 8 infection is relatively common in Havana City, Cuba, suggesting that Cuba may represent an intermediate endemic area. Sexual transmission does not seem to play a major role in the spread human herpesvirus type 8 infection.

British Journal of Cancer (2002) 87, 1253–1256. doi:10.1038/sj.bjc.6600613 www.bjcancer.com
© 2002 Cancer Research UK

Keywords: Cuba; HHV-8; HTLV-I; Kaposi’s sarcoma; prevalence; risk factors

Since its discovery in 1994, the human herpesvirus type 8 (HHV-8) – the causal agent of Kaposi’s sarcoma (KS) – has been documented in virtually every form of KS, i.e., in the classic, or Mediterranean type; in the endemic, or African type; and in the AIDS-associated type (Chang et al, 1994; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 1997). Many cross-sectional investigations conducted in different geographic areas have put in evidence that the prevalence of HHV-8 infection mirrors incidence rates of AIDS-unrelated KS. The lack of standardized serological assays against HHV-8 antigens still represents a major drawback for the comparison of findings from different investigations (IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 1997; Schatz et al, 2001).

The prevalence of HHV-8 infection in Caribbean populations has been little investigated, and, in these areas, incidence rates for KS are not available (Lennette et al, 1996; Chatlynne and Ablashi, 1999). About 8% of male blood donors, aged 50 years or older, were seropositive for HHV-8 infection in Jamaica (Manns et al, 1998), while an investigation conducted among Haitian women migrated to the United States showed that 29% of them were infected with HHV-8 (Goedert et al, 1997).

To study the distribution of HHV-8 infection, we took advantage of a case–control study on oral cancer conducted in Havana City, Cuba, part of a wider study coordinated by the International Agency for Research on Cancer, Lyon (Garrote et al, 2001). In addition we examined the prevalence of seropositivity for HHV-8 antibodies and certain potential correlates of infection, such as socio-demographic characteristics, history of sexually transmitted diseases (STD) and sexual behaviour, and infection with human T-cell leukaemia virus type-1 (HTLV-I).

METHODS

This seroepidemiological investigation took advantage of residual serum samples and from information already collected in a hospital-based case–control study (Garrote et al, 2001). The first 200 patients newly diagnosed with cancer of the oral cavity or of the oropharynx diagnosed between April 1996 and July 1999 in the Instituto Nacional de Oncologia y Radiobiologia, Havana City, Cuba, represented the cases of the original study. These 200 cases were histologically confirmed and they did not receive any prior
local or systemic cancer treatment. During the same period, an equal number of controls were identified from the same hospitals of the cases and they were matched to cases by sex and age (in quinquennia). The controls had no history of, or current suspicion of, cancer of the oral cavity or oropharynx. With respect to eligible reasons of hospital admission for control subjects, diseases associated positively or negatively with the known or suspected risk factors for cancer of the oral cavity or oropharynx (e.g., heavy smoking or alcohol abuse) were excluded. Cases and controls consented to participate voluntarily in the study and they were in physical and mental conditions to give reliable answers to the questionnaire (Garrote et al., 2001).

Potential infection with human immunodeficiency virus (HIV) was investigated, though none of the enrolled individuals were aware of having acquired HIV infection. However, neither the cases nor the controls were tested for HIV antibodies.

Residual sera for assessing the presence of antibodies against HHV-8 were not available for nine cases and 12 controls (median age: 62 years) out of the 400 individuals originally enrolled in the case–control study. Thus, 379 individuals (267 males and 112 females; median age=63 years) constituted the study group for the present investigation.

Antibodies to the lytic antigen of HHV-8 were detected by using an immunofluorescence assay (IFA) based on BCBL-1 (body cavity B-cell lymphomas) cell line (obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, National Institutes of Health, from Drs M McGrath and D Ganem) and on BCP-1 cell line. For the purpose of this study, titres of 1:20 or more were considered positive. Details on the assay were previously published (Andreoni et al., 1999; Rezza et al., 1999; Schatz et al., 2001). HHV-1 serology was performed by means of an ELISA test (alpha Biotech). ELISA-positive findings were all confirmed by means of Western blot technique (GeneLab).

Statistical analysis

At univariate analysis, the chi-square test for trend was used to test the statistical significance between ordered categorical variables and HHV-8 seropositivity (Armitage and Berry, 1987). Odds ratios (OR) and their 95% confidence intervals (CI) were used to assess the association between HHV-8 seropositivity and various characteristics and exposures by means of unconditional multiple logistic regression (Breslow and Day, 1980).

RESULTS

Overall, 64 individuals (47 men and 17 women, median age=63 years) (16.9%, 95% CI: 13.1–20.0) were positive for HHV-8 antibodies. Prevalence of HHV-8 infection was similar among the 191 patients with cancer (17.3%) and the 188 controls (16.5%) (P=0.95) (data not shown in tables). As listed in Table 1, HHV-8 seroprevalence significantly increased with the increase of age (χ² for trend, P=0.04), ranging from 12.2% in subjects younger than 55 years to 21.1% in those aged 65 years or older (OR=1.9). HHV-8 infection was twice as frequent in blacks than in whites (95% CI: 1.0–4.4), whereas males and females presented similar seropositivity rates (17.6 and 15.2%, respectively) (Table 1).

All associations described below were evaluated after adjustment for age, gender, and ethnic group. None of the socio-economic indicators (e.g., education: ≤5 years vs ≥9, OR=1.4, 95% CI: 0.7–3.0), and family size indicators (i.e., ≥8 siblings vs ≤3, OR=1.4, 95% CI: 0.7–2.9) turned out to be associated with HHV-8 seropositivity (Table 1).

Seropositivity for HHV-8 antibodies was not associated with history of STD, neither with sexual behaviour, such as age at first intercourse or lifetime number of sexual partners (Table 2). These results did not change when the analysis was separately conducted among males or females (data not shown in tables).

Overall, 16 of these 379 examined persons had anti-HTLV-1 antibodies (4.2%, 95% CI: 2.2–6.4). No relationship emerged between HTLV-1 and HHV-8 serostatus, though a non-statistically significant inverse association was recorded (Table 2).

DISCUSSION

The prevalence of HHV-8 infection in this group of population living in Havana City, Cuba, appeared to be intermediate between those reported in areas where KS is rare, like northern Europe and North America, and areas where KS is more common, like southern Italy (Geddes et al., 1995; Parkin et al., 1997). Interestingly, the findings of this seroprevalence investigation suggest that sexual habits, particularly sexual promiscuity, are not among the main determinants of HHV-8 infection in Cuba. The lack of association between HHV-8 and HTLV-1 infections also points to a minor role of the sexual route of transmission for these two viral infections in the general population of Cuba.

Age and ethnic group turned out to be the strongest determinants of HHV-8 infection. An increase in prevalence of HHV-8 infection with ageing has been consistently reported (IARC Working Group on the Evaluation of Carcinogenic Risks to Humans,

Table I Seropositivity for HHV-8 antibodies according to selected characteristics, Cuba, 1996–1999

Age (years)	HHV-8-positive (n=64) %	OR* (95% CI)
≤55 (n=98)	12.2	1
55–64 (n=101)	13.9	1.1 (0.5–2.4)
≥65 (n=180)	21.1	1.9 (0.9–3.9)
χ² for trend	4.11; P=0.04	

*Multiple logistic regression (MLR) odds ratio (OR) and 95% confidence intervals (CI) adjusted for gender, age and ethnic group. In some items, the sum does not add up to the total because of missing values.
HHV-8 and HTLV-I in Cuba
L Fernandez et al

Table 2 Seropositivity for HHV-8 according to history of selected sexually transmitted diseases and sexual lifestyles. Cuba, 1996–1999

Sexual habits	HHV-8-positive (n=64) %	MLR-OR* (95% CI)
Age at first intercourse		
≥ 19 (n=74)	23.0	I
16 – 18 (n=97)	15.5	0.6 (0.3 – 1.4)
≤ 15 (n=102)	11.8	0.5 (0.2 – 1.2)
* for trend	2.68; P=0.10	
Lifetime number of sexual partners		
< 1 (n=54)	16.0	I
2 – 5 (n=60)	18.3	1.2 (0.3 – 3.2)
6 – 10 (n=49)	14.3	0.9 (0.2 – 2.3)
≥ 11 (n=100)	14.0	0.9 (0.2 – 2.3)
* for trend	0.48; P=0.49	
History of sexually transmitted diseases		
Herpes genitalis		
No (n=369)	16.8	I
Yes (n=10)	20.0	1.5 (0.3 – 7.6)
Genitourinary		
No (n=336)	16.1	I
Yes (n=43)	23.3	1.4 (0.6 – 3.0)
Syphilis		
No (n=371)	17.0	I
Yes (n=8)	12.5	0.5 (0.1 – 4.6)
HTLV-I		
No (n=363)	17.4	I
Yes (n=16)	6.3	0.4 (0.0 – 3.0)

*Multiple logistic regression (MLR) odds ratios (OR) and 95% confidence intervals (CI) adjusted for gender, age and ethnic group. HTLV-I=human T-cell leukemia virus type-I.

REFERENCES

Andreonii M, El-Sawaf G, Rezza G, Ensoli B, Nicastrri E, Ventura L, Ercoli L, Sarmiti L, Roschi G (1999) High seroprevalence of antibodies to human herpesvirus-8 in Egyptian children: evidence of non sexual transmission. JNCI 91: 465 – 469

Armitage P, Berry G (1987) Statistical methods in medical research. Oxford: Blackwell Scientific publications

Blattner W, Kalyanaraman VS, Robert-Guroff M, Galton DA, Sarin PS, Crawford MH, Catovsky D, Greaves M, Gallo RC (1982) The human type C retrovirus, HTLV in Blacks from the Caribbean region, and relationship to adult T-cell leukemia/lymphoma. Int J Cancer 30: 257 – 264

Breslow NE, Day NE (1980) Statistical methods in cancer research – Volume 1 The analysis of case-control studies IARC Scientific Publications No. 32 Lyon: IARC

Chang Y, Cesaran E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266: 1865 – 1869

Chatylyne LG, Ablashi DV (1999) Serosopidemiology of Kaposi’s sarcoma-associated herpesvirus (KSHV). Sem Cancer Biol 9: 175 – 185

Estrada RA, Luis S, Mustelier R, Ruiz W, Rodriguez B, Miranda A, Roman GC (1995) Absence of human retroviral antibodies in epidemic neuropa- thy in Cuba: report of the first two cases of HTLV-I-associated tropical spastic paraparesis observed in Cuba. J Neurol Sci 128: 112 – 113

Garrote LF, Herrero R, Reyes RM, Vaccarella S, Anta JL, Ferbeye L, Munoz N, Franceschi S (2001) Risk factors for cancer of the oral cavity and oro-phar- ynx in Cuba. Br J Cancer 81(1): 46 – 54

Geddes M, Franceschi S, Balza D, Arziani S, Gafa L, Zanetti R (1995) Birth- place and classic Kaposi’s sarcoma in Italy. Associazione Italiana Registri Tumori. J Natl Cancer Inst 87: 1015 – 1017

Goedt JJ, Kedes DH, Ganem D (1997) Antibodies to human herpesvirus 8 in women and infants born in Haiti and the USA. Lancet 349: 1368

ACKNOWLEDGEMENTS

This study was supported by Progetto Nazionale AIDS, grant No. 20C.15.We thank Michela Di Pasquale for assistance in text editing.
Hallec TJ, Evans AS, Niederman JC, Brooks CM, Voegly JH (1974) Infectious mononucleosis at the U.S. Military Academy: a prospective study of a single class over four years. Yale J Biol 47: 182 – 195
Hernandez Ramirez P, Rivero Jimenez R, Ballester Santovenia M, Navea Leyva L, Matutes E, Catovsky D, Yamaguchi K, Fukuyoshi Y, Nishimura Y, Kiyokawa T (1991) Very low seroprevalence of HTLV-I/II in Cuba: antibodies in blood donors and in hematological and nonhematological patients. Vox Sang 61: 277 – 278
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1996) Human immunodeficiency viruses and human t-cell lymphotropic viruses. Lyon, June 11 – 18, 1996. IARC Monogr Eval Carcinog Risks Hum 67: 271 – 273
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1997) Epstein-Barr virus and Kaposi’s sarcoma herpesvirus/human herpesvirus 8. Lyon, June 17 – 24, 1997. IARC Monogr Eval Carcinog Risks Hum 70: 375 – 463
Lennette ET, Blackbourn DJ, Levy JA (1996) Antibodies to human herpesvirus type 8 in the general population and in Kaposi’s sarcoma patients. Lancet 348: 858 – 861
Manns A, Strickler HD, Hanchard B, Manassaram DM, Waters D, Ablashi DV (1998) Age- and sex-specific seroprevalence of human herpesvirus 8 in Jamaica. J Natl Cancer Inst 90: 1102 – 1103
Parkin DM, Whelan SL, Ferlay J, Raymond L, Young J (1997) Cancer incidence in five continents — Volume VII. International Agency for Research on Cancer Sci Publ no. 143. Lyon: IARC
Plancoulaine S, Abel L, van Beveren M, Tregouet D, Joubert M, Tortevoye P, de The G, Gessain A (2000) Human herpesvirus 8 transmission from mother to child and between siblings in an endemic population. Lancet 356: 1062 – 1065
Rezza G, Andreoni M, Dorrucci M, Pezzotti P, Monini P, Zerbini R, Salassa B, Colangeli V, Sarmati L, Nicastri E, Barbanera M, Priatera R, Aiuti F, Ortona L, Ensol B (1999) Human herpesvirus 8 seropositivity and risk of Kaposi’s sarcoma and other acquired immunodeficiency syndrome-related diseases. JNCI 91: 1468 – 1474
Schatz O, Monini P, Bugarini R, Neipel F, Schulz TF, Andreoni M, Erb P, Eggers M, Haas J, Butto S, Lukwiya M, Bogner JR, Yaguboglu S, Sheldon J, Sarmati L, Goebel FD, Hintermaier R, Enders G, Regamey N, Wermli M, Sturzl M, Rezza G, Ensol B (2001) Kaposi’s sarcoma-associated herpesvirus serology in Europe and Uganda: multicentre study with multiple and novel assays. J Med Virol 65: 123 – 132
Serraino D, Bordonaro R, Faila G, De Poal P, Colina P, Tedeschi RM, Ippolito G. (2000) Prevalence of HHV-8 infection among cancer patients in Sicily. Int J Cancer 86: 448 – 449
Silva Cabrera E, Perez Guevara MT, Lubian Caballero AL, de la Fuente Arzda JL, Navea Leyva L, Cruz Sui O (1997) Search for antibodies against human T-cell lymphotropic virus type 1 (HTLV-I) in blood donors and risk groups. Rev Cubana Med trop 49: 24 – 27
Vitale F, Briffa DV, Whitby D, Maida I, Grochowska A, Levin A, Romano N, Goedert JJ (2001) Kaposi’s sarcoma herpes virus and Kaposi’s sarcoma in the elderly population of 3 Mediterranean islands. Int J Cancer 91: 588 – 591
Yoshida M (1999) Human C-type oncoviruses and T-cell leukemia/lymphoma. In Microbes and Malignancy, Parsonnet J (ed) pp 289 – 307 NY: Oxford University Press