A NEW FORMULA FOR THE GENERATING FUNCTION OF THE NUMBERS OF SIMPLE GRAPHS

LEONID BEDRATYUK AND ANNA BEDRATYUK

Abstract. By using an approach of the invariant theory we obtain a new formula for the ordinary generating function of the numbers of the simple graphs with n nodes.

Keywords: Invariant theory; simple graph; graph invariants; generating functions

2000 MSC: 13A50; 05C30

1. Introduction. Let \(a_{n,i} \) be the number of simple graphs with \(n \) vertices and \(k \) edges. Let

\[
g_n(z) = \sum_{i=0}^{m} a_{n,i} z^i, \quad m = \binom{n}{2},
\]

be the ordinary generating function for the sequence \(\{a_{n,i}\} \), the OIES sequence A008406. For the small \(n \) we have

\[
g_1(z) = 1, \quad g_2(z) = 1 + z, \quad g_3(z) = 1 + z + z^2 + z^3, \quad g_4(z) = 1 + z + 2z^2 + 3z^3 + 2z^4 + z^5 + z^6.
\]

An expression for \(g_n(z) \) in terms of group cycle index was found by Harary in \cite{1}. The result is based on Polya’s efficient method for counting graphs, see \cite{2} and \cite{3}. Let \(G \) be a permutation group acting on the set \([n] := \{1, 2, \ldots, n\} \). It is well known that each permutation \(\alpha \) in \(G \) can be written uniquely as a product of disjoint cycles. Let \(j_i(\alpha) \) be the number of cycles of length \(i, 1 \leq i \leq n \) in the disjoint cycle decomposition of \(\alpha \). Then the cycle index of \(G \) denoted \(Z(G, s_1, s_2, \ldots, s_n) \), is the polynomial in the variables \(s_1, s_2, \ldots, s_n \) defined by

\[
Z(G, s_1, s_2, \ldots, s_n) = \frac{1}{|G|} \sum_{\alpha \in G} \prod_{i=0}^{n} s_i^{j_i(\alpha)}.
\]

Denote by \([n]^{(2)} \) the set of 2-subsets of \([n] \). Let \(S_n \) be a permutation group on the set \([n] \). The pair group of \(S_n \), denoted \(S_n^{(2)} \) is the permutation group induced by \(S_n \) which acts on \([n]^{(2)} \). Specifically, each permutation \(\sigma \in S_n \) induces a permutation \(\sigma' \in S_n^{(2)} \) such that for every element \(\{i, j\} \in [n]^{(2)} \) we have \(\sigma'\{i, j\} = \{\sigma i, \sigma j\} \).

In \cite{1} F. Harary proved that the generating function \(g_n(z) \) is determined by substituting \(1 + z^k \) for each variable \(s_k \) in the cycle index \(Z(S_n^{(2)}, s_1, s_2, \ldots, s_n) \). Symbolically

\[
g_n(z) = Z(S_n^{(2)}, 1 + z),
\]
where
\[Z(S_n^{(2)}) = \frac{1}{n!} \sum_{j_1+j_2+\ldots+j_n=n} \frac{n!}{\prod_{k=1}^{k} k^{j_k+j_k!}} \prod_{r<t} (s_k s_{2k}^{k-1})^{j_{2k}} s_k^{k(j_k)} \prod_{r<t} s_{[r,t]}^{(r,t)^{j_r+j_t}}. \]

In the paper by an approach of the invariant theory we derive another formula for the generating function \(g_n(z) \).

Let \(\mathcal{V}_n \) be a vector space of weighted graphs on \(n \) vertices over the field \(\mathbb{K} \), \(\dim \mathcal{V}_n = m \). The group \(S_n^{(2)} \) acts naturally on \(\mathcal{V}_n \) by permutations of the basic vectors. Consider the corresponding action of the group \(S_n^{(2)} \) on the algebra of polynomial functions \(\mathbb{K}[\mathcal{V}_n] \) and let \(\mathbb{K}[\mathcal{V}_n]^{S_n^{(2)}} \) be the corresponding algebra of invariants. Let \(\mathcal{V}_n^0 \) be the set of simple graphs. The corresponding algebra of invariants \(\mathbb{K}[\mathcal{V}_n]^{S_n^{(2)}} \) is a finite-dimensional vector space and can be expanded into the direct sum of its subspaces:
\[\mathbb{K}[\mathcal{V}_n]^0 = (\mathbb{K}[\mathcal{V}_n]^0)_0 + (\mathbb{K}[\mathcal{V}_n]^0)_1 + \cdots + (\mathbb{K}[\mathcal{V}_n]^0)_m. \]

In the paper we have proved that \(\dim(\mathbb{K}[\mathcal{V}_n]^0)_1 = a_{n,1} \). Thus the generating function \(g_n(z) \) coincides with the Poincaré series \(\mathcal{P}(\mathbb{K}[\mathcal{V}_n]^{S_n^{(2)}}(z), z) \) of the algebra invariants \(\mathbb{K}[\mathcal{V}_n]^{S_n^{(2)}} \).

Let us identify the elements of the group \(S_n^{(2)} \) with permutation \(m \times m \) matrices and denote \(I_m \) the identity \(m \times m \) matrix. In the paper we offer the following formula for the generating function \(g_n(z) \):
\[g_n(z) = \frac{1}{n!} \sum_{\alpha \in S_n^{(2)}} \frac{\det(I_m - \alpha \cdot z^2)}{\det(I_m - \alpha \cdot z)}. \]

Also for the generating function \(m_n(z) \) of multigraphs on \(n \) vertices we prove that
\[m_n(z) = \frac{1}{n!} \sum_{\alpha \in S_n^{(2)}} \frac{1}{\det(I_m - \alpha \cdot z)}. \]

2. Algebra of invariants of simple graphs.

Let \(\mathbb{K} \) be a field of characteristic zero. Denote by \(\mathcal{V}_n \) the set of undirected graphs on the vertices \(\{1, \ldots, n\} \) and whose edges are weighted in \(\mathbb{K} \). A simple graph is a graph with weights in \(\{0, 1\} \) and a multigraph is a graph with weights in \(\mathbb{K} \). For any pair \(\{i, j\} \) let \(e_{\{i,j\}} \) be the simple graph with one single edge \(\{i, j\} \) and let \(g_{\{i,j\}} e_{\{i,j\}} \) be the graph with one single edge \(\{i, j\} \) and with the weight \(g_{\{i,j\}} \in \mathbb{K} \). The set \(\mathcal{V}_n \) is the vector space with the basis \(\{e_{\{1,2\}}, e_{\{1,3\}}, \ldots, e_{\{n-1,n\}}\} \) of dimension \(m = \binom{n}{2} \). Indeed, any graph can be written uniquely as a sum \(\sum g_{\{i,j\}} e_{\{i,j\}} \). Let \(\mathcal{V}_n^* \) be the dual space with dual basis generated by the linear functions \(x_{\{i,j\}} \) for which \(x_{\{i,j\}}(e_{\{k,l\}}) = \delta_{ik}\delta_{jl} \). The symmetric group \(S_n \) acts on \(\mathcal{V}_n \) and on \(\mathcal{V}_n^* \) by
\[\sigma e_{\{i,j\}} = e_{\{\sigma(i), \sigma(j)\}}, \sigma^{-1} x_{\{i,j\}} = x_{\{\sigma(i), \sigma(j)\}}. \]

Let us expand the action on the algebra of polynomial functions \(\mathbb{K}[\mathcal{V}_n] = \mathbb{K}[\{x_{\{i,j\}}\}] \).

We say that a polynomial function \(f \in \mathbb{K}[x_{\{i,j\}}] \) of \(m \) variables \(x_{\{i,j\}} \) is a \(S_n \)-invariant if \(\sigma f = f \) for all \(\sigma \in S_n \). The \(S_n \)-invariants form a subalgebra \(\mathbb{K}[\mathcal{V}_n]^{S_n} \) which is called the algebra of invariants of the vector space of the weighted graphs in \(n \) vertices. It is clear that there is an isomorphism \(\mathbb{K}[\mathcal{V}_n]^{S_n} \cong \mathbb{K}[x_{\{i,j\}}]^{S_n} \).

For convenience, we introduce a new set of variables:
\[\{x_1, x_2, \ldots, x_m\} = \{x_{\{1,2\}}, x_{\{1,3\}}, \ldots, x_{\{n-1,n\}}\}. \]
Then the action of S_n on the set \{$x_{\{1,2\}}, x_{\{1,3\}}, \ldots, x_{\{n-1,n\}}$\} induces its action of the pair group $S_n^{(2)}$ on the set \{x_1, x_2, \ldots, x_m\}. We have

$$\mathbb{K}[x_{\{i,j\}}]^{S_n} \cong \mathbb{K}[x_1, x_2, \ldots, x_m]^{S_n^{(2)}}.$$

In this notation any graph can be written in the way

$$g_1 e_1 + g_2 e_2 + \cdots + g_m e_m, g_i \in \mathbb{K},$$

where e_s is the edge which connect the vertices \{i', j'\} if the pair \{i', j'\} has got the number s. Thus, in this case the old variable $x_{\{i', j'\}}$ corresponds to the new variable x_s.

Since for the simple graphs all its weights are 0, 1 then the reduction of the algebra $\mathbb{K}[\mathcal{V}_n]^{S_n}$ on the set of simple graphs has a simple structure.

Denote by \mathcal{V}_n^0 the set of all simple graphs on n vertices:

$$\mathcal{V}_n^0 = \left\{ \sum_{i=0}^m g_i e_i \mid g_i \in \{0, 1\} \right\} \subset \mathcal{V}_n,$$

The corresponding subalgebra of polynomial function $\mathbb{K}[\mathcal{V}_n^0] \subset \mathbb{K}[\mathcal{V}_n]$ is generated by polynomial functions x_i which on every simple graph only take values 1 or 0.

Let us consider the ideal $I_m = (x_1^2 - x_1, x_2^2 - x_2, \ldots, x_m^2 - x_m)$ in the algebra $\mathbb{K}[\mathcal{V}_n] = \mathbb{K}[x_1, x_2, \ldots, x_m]$. The following statement golds:

Theorem 1.

(i) \quad $\mathbb{K}[\mathcal{V}_n^0] \cong \mathbb{K}[x_1, x_2, \ldots, x_m]/I_m$,

(ii) \quad $\mathbb{K}[\mathcal{V}_n^0]^{S_n^{(2)}} \cong \mathbb{K}[x_1, x_2, \ldots, x_m]^{S_n^{(2)}}/I_m$.

Proof. On the ring of polynomial functions $\mathbb{K}[x_1, x_2, \ldots, x_m]$ let us introduce a binary relation \sim: $f \sim g$ if $f = g$, considered as functions from $\{0, 1\}^m$ to \mathbb{K}. Obviously that $x_i^p \sim x_i$, for all $p \geq 1$. Define an endomorphism $\gamma : \mathbb{K}[\mathcal{V}_n] \to \mathbb{K}[\mathcal{V}_n^0]$ by the way:

$$\gamma(x_i^p) = x_i.$$

It is clear that the kernel of the endomorphism is exactly the ideal I_m. Then

$$\mathbb{K}[\mathcal{V}_n^0] \cong \mathbb{K}[x_1, x_2, \ldots, x_m]/I_m.$$

Note that the algebra $\mathbb{K}[\mathcal{V}_n^0]$ is a finite dimensional vector space of the dimension 2^m with the basis

$$1, x_1, x_2, \ldots, x_n, x_1 x_2, x_1 x_2, \ldots, x_{m-1} x_m, \ldots, x_1 x_2 \cdots x_m.$$

(iii) It is enough to prove that γ commutes with the action of the group $S_n^{(2)}$. Without lost of generality it is sufficient to check on the monomials. For arbitrary element $\sigma \in S_n^{(2)}$ and for arbitrary monomial $x_1^{k_1} x_2^{k_2} \cdots x_s^{k_s}, s \leq m$ we have

$$\gamma(\sigma^{-1}(x_1^{k_1} x_2^{k_2} \cdots x_s^{k_s})) = \gamma(x_1^{k_1(\sigma(1))} x_2^{k_2(\sigma(2))} \cdots x_s^{k_s(\sigma(s))}) = x_1^{k_1(\sigma(1))} x_2^{k_2(\sigma(2))} \cdots x_s^{k_s(\sigma(s))} =$$

$$= \sigma^{-1}(x_1 x_2 \cdots x_s) = \sigma^{-1}(\gamma(x_1^{k_1} x_2^{k_2} \cdots x_s^{k_s})).$$

If we know the algebra of invariants $\mathbb{K}[\mathcal{V}_n]^{S_n^{(2)}}$ then we are able to find the algebra of invariants $\mathbb{K}[\mathcal{V}_n^0]^{S_n^{(2)}}$ of simple graphs. Indeed, if the invariants f_1, f_2, \ldots, f_s generate the algebra $\mathbb{K}[\mathcal{V}_n]^{S_n^{(2)}}$ then the surjectivity of γ implies that the invariants $\gamma(f_1), \gamma(f_2), \ldots, \gamma(f_s)$ generate the algebra $\mathbb{K}[\mathcal{V}_n^0]^{S_n^{(2)}}$.
Example. Let us consider the case \(n = 4 \). The algebra of invariants \(\mathbb{K}[\mathcal{V}_n]^{S_4(2)} \) is well known, see \cite{4}, and its minimal generating system consists of the following 9 invariants:

\[
R(x_1) = \frac{1}{6}(x_1 + x_2 + x_3 + x_4 + x_5 + x_6), R(x_1^2) = \frac{1}{6}(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2),
\]

\[
R(x_1 x_6) = \frac{1}{3}(x_1 x_6 + x_2 x_5 + x_3 x_4), R(x_1^3) = \frac{1}{6}(x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 + x_6^3),
\]

\[
24R(x_1^2 x_2) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_1 + x_2^2 x_3 + x_3^2 x_1 + x_3^2 x_2 + x_1^2 x_5 + x_4^2 x_1 +
\]

\[
\quad + x_4^2 x_5 + x_5^2 x_1 + x_5^2 x_4 + x_2^2 x_4 + x_2^2 x_6 + x_4^2 x_2 + x_4^2 x_6 + x_6^2 x_2 + x_6^2 x_4 + x_3^2 x_5 +
\]

\[
\quad + x_3^2 x_6 + x_5^2 x_3 + x_5^2 x_6 + x_6^2 x_3 + x_6^2 x_5,
\]

\[
R(x_1 x_2 x_3) = \frac{1}{4}(x_1 x_2 x_3 + x_1 x_5 x_4 + x_2 x_6 x_4 + x_3 x_6 x_5),
\]

\[
R(x_1^4) = \frac{1}{6}(x_1^4 + x_2^4 + x_3^4 + x_4^4 + x_5^4 + x_6^4), R(x_1^5) = \frac{1}{6}(x_1^5 + x_2^5 + x_3^5 + x_4^5 + x_5^5 + x_6^5),
\]

\[
24R(x_1^3 x_2) = x_1^3 x_2 + x_1^3 x_3 + x_2^3 x_1 + x_2^3 x_3 + x_3^3 x_1 + x_3^3 x_2 + x_1^3 x_4 + x_3^3 x_5 + x_4^3 x_1 +
\]

\[
\quad + x_4^3 x_5 + x_5^3 x_1 + x_5^3 x_4 + x_3^3 x_4 + x_2^3 x_5 + x_4^3 x_2 + x_4^3 x_6 + x_6^3 x_2 + x_6^3 x_4 + x_3^3 x_5 +
\]

\[
\quad + x_3^3 x_6 + x_5^3 x_3 + x_5^3 x_6 + x_6^3 x_3 + x_6^2 x_5.
\]

Here

\[
R = \frac{1}{n!} \sum_{g \in S_n} g
\]

is the Reinfeldts group action averaging operator which is a projector from \(\mathbb{K}[\mathcal{V}_n] \) into \(\mathbb{K}[\mathcal{V}_n]^{S_4(2)} \). We have that

\[
\gamma(R(x_1^5)) = \gamma(R(x_1^4)) = \gamma(R(x_1^3)) = \gamma(R(x_1^2)) = R(x_1), \gamma(R(x_1^2 x_2)) = R(x_1 x_2).
\]

Therefore, the algebra of invariants \(\mathbb{K}[\mathcal{V}_n]^{S_4(2)} \) of simple graphs on \(n \) vertices is generated by the 4 invariants:

\[
R(x_1), R(x_1 x_6), R(x_1 x_2), R(x_1 x_2 x_3).
\]

So far, the algebra of invariants \(\mathbb{K}[\mathcal{V}_n]^{S_n(2)} \) is calculated only for \(n \leq 5 \), see \cite{5}.

3. The Poincaré series of the algebra \(\mathbb{K}[\mathcal{V}_n]^{S_n(2)} \). Let us consider the algebra \(\mathbb{K}[\mathcal{V}_n] \) as a vector space. Then the following decomposition into the direct sum of its subspaces holds:

\[
\mathbb{K}[\mathcal{V}_n] = (\mathbb{K}[\mathcal{V}_n])_0 + (\mathbb{K}[\mathcal{V}_n])_1 + \cdots + (\mathbb{K}[\mathcal{V}_n])_m,
\]

where \((\mathbb{K}[\mathcal{V}_n])_i\) is the vector space generated by the elements

\[
x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_m^{\varepsilon_m}, \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_m = i, \quad \text{where} \quad \varepsilon_k = 0 \text{ or } \varepsilon_k = 1.
\]

Also, for the algebra \(\mathbb{K}[\mathcal{V}_n]^{S_n(2)} \) the decomposition holds:

\[
\mathbb{K}[\mathcal{V}_n]^{S_n(2)} = (\mathbb{K}[\mathcal{V}_n]^{S_n(2)})_0 + (\mathbb{K}[\mathcal{V}_n]^{S_n(2)})_1 + \cdots + (\mathbb{K}[\mathcal{V}_n]^{S_n(2)})_m.
\]

Since, the Reynolds operator is a projector which save the degree of a polynomial then the component \((\mathbb{K}[\mathcal{V}_n]^{S_n(2)})_i\) is generated by the following elements

\[
R(x_1^{\varepsilon_1} x_2^{\varepsilon_2} \cdots x_m^{\varepsilon_m}).
\]

Particularly, we have that \((\mathbb{K}[\mathcal{V}_n]^{S_n(2)})_0 = \mathbb{K}\). Also, the component \((\mathbb{K}[\mathcal{V}_n]^{S_n(2)})_m\) has the dimension 1 and it is generated by the polynomial \(R(x_1 x_2 \cdots x_m) = x_1 x_2 \cdots x_m\).
Let us now give an interpretation of \(\dim(\mathbb{K}[V_n^0]_{S_n^{(2)}}) \) in terms of the graph theory. The following important theorem holds.

Theorem 2. The dimension \(\dim(\mathbb{K}[V_n^0]_{S_n^{(2)}}) \) equal to the number of non-isomorphic simple graphs with \(n \) vertices and \(i \) edges.

Proof. The \(S_n^{(2)} \)-module \((\mathbb{K}[V_n^0]/I_m)_i \) is generated by the monomials
\[
x_1^{\varepsilon_1}x_2^{\varepsilon_2} \cdots x_m^{\varepsilon_m}, \varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_m = i, \varepsilon_k = 0 \text{ or } \varepsilon_k = 1.
\]
Since the group \(S_n^{(2)} \) is finite then the module \((\mathbb{K}[V_n^0]/I_m)_i \) is decomposed into the direct sum of its irreducible \(S_n^{(2)} \)-submodules:
\[
(\mathbb{K}[V_n^0]_{S_n^{(2)}})_i = M_1 \oplus M_2 \oplus \cdots \oplus M_p.
\]
Each of these submodules has a basis generated by the monomials of the form \(x_1^{\varepsilon_1}x_2^{\varepsilon_2} \cdots x_m^{\varepsilon_m} \). Let us choose for each \(M_i \) the corresponding basis monomials \(m_1, m_2, \ldots, m_p \) and consider the invariants \(R(m_1), R(m_2), \ldots, R(m_p) \). By the construction they are different and linearly independent. Therefore the component \((\mathbb{K}[V_n^0]_{S_n^{(2)}})_i \) is the sum of one-dimensional \(S_n^{(2)} \)-submodules
\[
(\mathbb{K}[V_n^0]_{S_n^{(2)}})_i = \langle R(m_1) \rangle + \langle R(m_2) \rangle + \cdots + \langle R(m_p) \rangle,
\]
and \(\dim(\mathbb{K}[V_n^0]_{S_n^{(2)}})_i = p \) for some \(p \). To each of monomial \(m_1, m_2, \ldots, m_p \) assign a simple graph in the following way: if \(m_i = x_1^{\varepsilon_1}x_2^{\varepsilon_2} \cdots x_m^{\varepsilon_m} \) then the corresponding simple graph has the form
\[
G_{m_i} = \varepsilon_1 e_1 + \varepsilon_2 e_2 + \cdots + \varepsilon_m e_m.
\]
Since the monomials \(m_1, m_2, \ldots, m_p \) belong to the different irreducible \(S_n^{(2)} \)-modules then \(G_{m_i} \) are non-isomorphic and they exhausted all the possible classes of isomorphic classes of isomorphic graphs with \(n \) vertices and \(i \) edges.

Let us recall that the ordinary generating function for the sequence \(\dim(\mathbb{K}[V_n^0]_{S_n^{(2)}})_i \)
\[
\mathcal{P}(\mathbb{K}[V_n^0]_{S_n^{(2)}}, z) = \sum_{i=0}^{m} \dim(\mathbb{K}[V_n^0]_{S_n^{(2)}})_i \cdot z^i.
\]
is called the Poincaré series of the algebra \(\mathbb{K}[V_n^0]_{S_n^{(2)}} \).

The Theorem 2 implies that
\[
g_n(z) = \mathcal{P}(\mathbb{K}[V_n^0]_{S_n^{(2)}}, z).
\]
In the following theorem we derived explicit formulas for the series \(\mathcal{P}(\mathbb{K}[V_n^0]_{S_n^{(2)}}, z) \) and \(\mathcal{P}(\mathbb{K}[V_n]_{S_n^{(2)}}, z) \).

Theorem 3. Let the group \(S_n^{(2)} \) be realized as \(m \times m \) matrices. Then
\[
(i) \quad \mathcal{P}(\mathbb{K}[V_n^0]_{S_n^{(2)}}, z) = \frac{1}{n!} \sum_{\alpha \in S_n^{(2)}} \frac{\det(1_m - \alpha \cdot z^2)}{\det(1_m - \alpha \cdot z)},
\]
\[
(ii) \quad \mathcal{P}(\mathbb{K}[V_n]_{S_n^{(2)}}, z) = \frac{1}{n!} \sum_{\alpha \in S_n^{(2)}} \frac{1}{\det(1_m - \alpha \cdot z)}.
\]
here \(1_m \) is the unit \(m \times m \) matrix.
Proof. (i) The vector space $\mathbb{K}[V^0_{n}]_1$ has the basis $\langle x_1, x_2, \ldots, x_m \rangle$ and a permutation $\alpha \in S_n^{(2)}$ acts on the $(\mathbb{K}[V^0_{n}]_1)$ by permutation of the basis vectors. Denote this linear operator by A_α.

Let us expand this operator on the component $(\mathbb{K}[V^0_{n}]^{S_n^{(2)}})_k$ as endomorphism and denote it by $A_\alpha^{(k)}$. Since $A_\alpha^{(k)}$ is endomorphism and acts as a permutation of the basis vectors of $(\mathbb{K}[V^0_{n}]^{S_n^{(2)}})_k$ then the action of the operator $A_\alpha^{(k)}$ is defined correctly.

Let a permutation α be written uniquely as a product of disjoint cycles and let $j_i(\alpha)$ be the number of cycles of length i in the disjoint cycle decomposition of α.

Now find the track of the operator $A_\alpha^{(k)}$.

Lemma 1.

$$\text{Tr}(A^{(i)}_\alpha) = \sum_{\beta_1 + 2\beta_2 + \cdots + m\beta_m = i} \binom{(j_1(\alpha))}{\beta_1} \binom{(j_2(\alpha))}{\beta_2} \cdots \binom{(j_i(\alpha))}{\beta_i}.$$

Proof. Since the operator $A_\alpha^{(i)}$ acts by permutations of the basis vectors of the vector space $(\mathbb{K}[V^0_{n}]_i)$ that its track equal to the numbers of its fixed point.

For $i = 1$ we have $(\mathbb{K}[V^0_{n}]_1) = \langle x_1, x_2, \ldots, x_m \rangle$ and $A_\alpha^{(1)}(x_s) = x_{\alpha^{-1}(s)}$. Thus $\text{Tr}(A^{(1)}_\alpha) = j_1(\alpha)$.

For $i = 2$ let us find out the number of fixed points of the operator $A_\alpha^{(2)}$ which acts on the vector space $(\mathbb{K}[V^0_{n}]_2)$ with the basis vectors $x_i x_j, i < j$. An arbitrary pair of fixed points of the operator A_α form one fixed point for the operator $A_\alpha^{(2)}$. Thus we get $(j_2(\alpha))$ such points. Also, every transposition define one fixed point. Therefore

$$\text{Tr}(A_\alpha^{(2)}) = \binom{(j_1(\alpha))}{2} + j_2(\alpha).$$

All $j_1(\alpha)$ fixed points of the permutation α generates $(j_1(\alpha))$ fixed points of the operator $A_\alpha^{(3)}$. Every fixed point of A_α together with $j_2(\alpha)$ transposition generate one fixed point of $A_\alpha^{(3)}$. At last, each any of 3-cycle of α generates one fixed point for $A_\alpha^{(3)}$. Then

$$\text{Tr}(A_\alpha^{(3)}) = \binom{(j_1(\alpha))}{3} + j_1(\alpha)j_2(\alpha) + j_3(\alpha).$$

Analogously

$$\text{Tr}(A_\alpha^{(4)}) = \binom{(\alpha_1)}{4} + \binom{(\alpha_1)}{2}\alpha_2 + \binom{(\alpha_2)}{2} + \alpha_1\alpha_3 + \alpha_4.$$

In the general case any partition of i

$$\beta_1 + 2\beta_2 + \cdots + m\beta_m = i.$$

generates

$$\binom{(j_1(\alpha))}{\beta_1} \binom{(j_2(\alpha))}{\beta_2} \cdots \binom{(j_m(\alpha))}{\beta_m}$$

fixed points of the operator $A_\alpha^{(i)}$. Therefore

$$\text{Tr}(A_\alpha^{(i)}) = \sum_{\beta_1 + 2\beta_2 + \cdots + m\beta_m = i} \binom{(j_1(\alpha))}{\beta_1} \binom{(j_2(\alpha))}{\beta_2} \cdots \binom{(j_m(\alpha))}{\beta_m}.$$

\[\square\]

Lemma 2.

$$\sum_{i=0}^{m} \text{Tr}(A^{(i)}_\alpha)z^i = (1 + z)^{j_1(\alpha)}(1 + z^2)^{j_2(\alpha)} \cdots (1 + z^m)^{j_m(\alpha)}.$$
Proof. We have

\[
\sum_{i=0}^{m} \text{Tr}(A_{\alpha}^{(i)}) z^i = \sum_{\beta_1 + 2\beta_2 + \cdots + m\beta_m = i} \left(\frac{j_1(\alpha)}{\beta_1} \right) \left(\frac{j_2(\alpha)}{\beta_2} \right) \cdots \left(\frac{j_m(\alpha)}{\beta_i} \right) z^i =
\]

\[
= \sum_{\beta_1 + 2\beta_2 + \cdots + m\beta_m = i} \left(\frac{j_1(\alpha)}{\beta_1} \right) \left(\frac{j_2(\alpha)}{\beta_2} \right) \cdots \left(\frac{j_m(\alpha)}{\beta_i} \right) z^{\beta_1 + 2\beta_2 + \cdots + m\beta_m} =
\]

\[
= \sum_{\beta_1 + 2\beta_2 + \cdots + m\beta_m = i} \left(\frac{j_1(\alpha)}{\beta_1} \right) z^{\beta_1} \left(\frac{j_2(\alpha)}{\beta_2} \right) (z^2)^{\beta_2} \cdots \left(\frac{j_m(\alpha)}{\beta_i} \right) (z^m)^{\beta_m} =
\]

\[
= \left(\sum_{\beta_1 = 0}^{\sum_{i=1}^{m} j_i(\alpha)} \frac{j_1(\alpha)}{\beta_1} \right) \left(\sum_{\beta_2 = 0}^{j_2(\alpha)} \frac{j_2(\alpha)}{\beta_2} \right) (z^2)^{\beta_2} \cdots \left(\sum_{\beta_m = 0}^{j_m(\alpha)} \frac{j_m(\alpha)}{\beta_m} \right) (z^m)^{\beta_m} =
\]

\[
= (1 + z)^{j_1(\alpha)} (1 + z^2)^{j_2(\alpha)} \cdots (1 + z^m)^{j_m(\alpha)}.
\]

Lemma 3.

\[
\sum_{i=0}^{m} \text{Tr}(A_{\alpha}^{(i)}) z^i = \frac{\det(1_m - A_{\alpha} \cdot z^2)}{\det(1_m - A_{\alpha} \cdot z)}.
\]

Proof. Let \(\lambda_1, \lambda_2, \ldots, \lambda_m\) be the eigenvalues of the operator \(A_{\alpha}\). Since \(A_{\alpha}^m\) is the identity matrix then all eigenvalues \(\lambda_i\) are roots of unity of orders \(j_1(\alpha), j_2(\alpha), \ldots, j_m(\alpha)\). Therefore the characteristic polynomial of the operator \(A_{\alpha}\) has the form

\[
\det(1_m - A_{\alpha} z) = (1 - \lambda_1 z)(1 - \lambda_2 z) \cdots (1 - \lambda_n z) = (1 - z)^{j_1(\alpha)} (1 - z^2)^{j_2(\alpha)} \cdots (1 - z^m)^{j_m(\alpha)}.
\]

Now

\[
\sum_{i=0}^{m} \text{Tr}(A_{\alpha}^{(i)}) z^i = (1 + z)^{j_1(\alpha)} (1 + z^2)^{j_2(\alpha)} \cdots (1 + z^m)^{j_m(\alpha)} =
\]

\[
= \frac{(1 - z)^{j_1(\alpha)}}{(1 - z)^{j_1(\alpha)}} \frac{(1 - z^4)^{j_2(\alpha)}}{(1 - z^2)^{j_2(\alpha)}} \cdots \frac{(1 - z^{2m})^{j_m(\alpha)}}{(1 - z^m)^{j_m(\alpha)}} = \frac{\det(1_m - A_{\alpha} \cdot z^2)}{\det(1_m - A_{\alpha} \cdot z)}.
\]

Lemma 4.

\[
\dim(\mathbb{K}[\mathcal{V}^0_n]_{S^{(2)}_n})_i = \frac{1}{n!} \sum_{\alpha \in G} \text{Tr}(A_{\alpha}^{(i)}).
\]

Proof. The dimension of the subspace \((\mathbb{K}[\mathcal{V}^0_n]_{S^{(2)}_n})_i\) is equal to the number of eigenvectors that correspond to the eigenvalue 1 and which are common eigenvectors for all operators \(A_{\alpha}^{(i)}\). Consider the average matrix

\[
P^{(i)} = \frac{1}{|G|} \sum_{g \in G} A_{\alpha}^{(i)}.
\]

Since the Reynolds operator is a projector from \((\mathbb{K}[\mathcal{V}^0_n])_i\) into \((\mathbb{K}[\mathcal{V}^0_n]_{S^{(2)}_n})_i\), then it has the only eigenvalues 1 and 0. Therefore the dimension of the space \((\mathbb{K}[\mathcal{V}^0_n]_{S^{(2)}_n})_i\) is equal to the track of the matrix \(P^{(i)}\).
Taking into account the lemmas stated above we have

$$\mathcal{P}(\mathbb{K}[V^0_n]S_n^{(2)}, z) = \sum_{i=0}^{m} \dim(\mathbb{K}[V^0_n]S_n^{(2)})_i z^i = \frac{1}{n!} \sum_{i=0}^{m} \left(\sum_{\alpha \in S_n^{(2)}} \text{Tr}(A^{(i)}_{\alpha}) \right) z^i =$$

$$= \frac{1}{n!} \sum_{g \in S_n^{(2)}} \left(\sum_{i=0}^{m} \text{Tr}(A^{(i)}_{g}) z^i \right) = \frac{1}{n!} \sum_{\alpha \in S_n^{(2)}} \frac{\det(1_m - \alpha \cdot z^2)}{\det(1_m - \alpha \cdot z)}.$$

(ii) It is the Molien formula for the Poincaré series of the algebra invariants of the group $S_n^{(2)}$.

REFERENCES

[1] Harary F., The number of linear, directed, rooted, and connected graphs, Trans. Amer. Math. Soc. 78 (1955), 445-463
[2] Pólya, G. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math 68, 145-254(1937)
[3] Harary F., Palmer E., Graphical Enumeration. Academic Press, New York, 1973, 271 p.
[4] Aslaksen H., Chan S.-P., Gulliksen T., Invariants of S_4 and the Shape of Sets of Vectors, Appl. Algebra Eng. Commun. Comput. 7, No.1, 53-57 (1996).
[5] Thiéry N., Algebraic invariants of graphs; a study based on computer exploration. ACM SIGSAM Bulletin, 2000, 34 (3), pp.9-20.

Khmelnitskiy national university, Instytuts’ka, 11, Khmelnits’ky, 29016, Ukraine

E-mail address: leonid.uk@gmail.com