On one example of a Nikishin system

Sergey P. Suetin

October 1, 2018

Abstract

The paper puts forward an example of a Markov function $f = \text{const} + \sigma$ such that the three functions f, f^2, and f^3 form a Nikishin system. A conjecture is proposed that there exists a Markov function f such that, for each $n \in \mathbb{N}$, the system f, f^2, \ldots, f^n constitutes a Nikishin system.

Bibliography: 20 titles.

1 Introduction and statement of the problem

As distinct from Padé polynomials, which are constructed from one function f, a construction of the Hermite–Padé polynomials corresponding, for example, to a two-dimensional multiindex, requires at least two functions f_1 and f_2, which should be in a sense independent. Namely, in order that the definition of the Padé polynomials be meaningful it is necessary that the original function f should not be a rational function. In other words, it is necessary that the pair of functions $1, f$ should be independent over the field of rational functions $\mathbb{C}(z)$. Likewise, in order that the definition of the Hermite–Padé polynomials for a pair of functions f_1, f_2 be meaningful it is required that the three functions $1, f_1, f_2$ be independent over the field $\mathbb{C}(z)$. For the definition of Hermite–Padé polynomials and general properties of these polynomials, see, above all, [11] and [10], and also [20].

1. More precisely, here we speak about the power series expansion defined at some fixed point z_0 of the Riemann sphere \mathbb{C}, for example, $z_0 = \infty$.

0This research was carried out with the partial financial support of the Russian Foundation for Basic Research (grant no. 18-01-00764).
The family of functions involved in the construction of Hermite–Padé polynomials is usually called a system. The two best known systems in the theory of Hermite–Padé polynomials are an Angelesco system and a Nikishin system; for the formal definition of such systems and their properties, see, above all, [10], and also [6], [20], [4], [5], [13]. More general (the so-called “mixed”) systems of functions were considered in [14], [1], [12]. Below we will briefly discuss the meaningfulness of these concepts in the case of a pair of functions f_1 and f_2.

Given an arbitrary (positive Borel) measure σ with support $\text{supp} \sigma$ on the real line \mathbb{R}, $\text{supp} \sigma \subset \mathbb{R}$, we denote by

$$\tilde{\sigma}(z) := \int \frac{d\sigma(x)}{z - x}, \quad z \notin \text{supp} \sigma,$$

the Cauchy transform of the measure σ.

For a pair of functions f_1 and f_2 of the form (1) the property that this pair forms an Angelesco system appears to be quite natural. Namely, in this case the functions f_1 and f_2 can be written as

$$f_1(z) := \tilde{\sigma}_1(z), \quad f_2(z) := \tilde{\sigma}_2(z),$$

where it is assumed that the supports of the measures σ_1 and σ_2 are disjoint, $\text{supp} \sigma_1 \cap \text{supp} \sigma_2 = \emptyset$, $\text{supp} \sigma_1, \text{supp} \sigma_2 \subset \mathbb{R}$.

If in (2) the supports of the measures σ_1 and σ_2 are equal, $\text{supp} \sigma_1 = \text{supp} \sigma_2 = \Delta$, and if

$$d\sigma_2(x) = \tilde{\sigma}_3(x) d\sigma_1(x), \quad x \in \Delta,$$

where the third measure σ_3, $\text{supp} \sigma_3 \subset \mathbb{R}$, is such that $\text{supp} \sigma_3 \cap \Delta = \emptyset$, then the pair of functions f_1 and f_2 of the form (1) is said to form a Nikishin system.

At first glance the definition of an Angelesco system looks more natural than that of a Nikishin system. For example, an Angelesco system is formed by the pair of functions

$$f_1(z) := \frac{1}{[(z - a_1)(z - b_1)]^{1/2}}, \quad f_2(z) := \frac{1}{[(z - a_2)(z - b_2)]^{1/2}},$$

where $a_1 < b_1 < a_2 < b_2$ and a branch of the root is chosen so that $[(z - a_j)(z - b_j)]^{1/2}/z \to 1$ as $z \to \infty$.

2
The purpose of the present note is to present an example of a Markov function $f = \hat{\sigma} + \text{const}$ such that the pair of functions f, f^2 forms a Nikishin system under a certain minimal extension of the original definition of such a system (see (13)–(15), and also Remark 2 below). As a result, it turns out that, from the point of view of the general problem of efficient analytic continuation of a multivalued analytic function defined by a power series (for more details, see [19]), the concept of a Nikishin system is by no means less meaningful than that of an Angelesco system. It is worth noting that this fact is also manifested in some papers on Nikishin systems; see, for example, [7], [2], [3], [9], [8], [18], [17] and the references given therein.

More precisely, we will give an example of a function f of the form
\begin{equation}
 f(z) = C + \hat{\sigma}(z) \tag{5}
\end{equation}
(cf. (1)), where $C \neq 0$ is some real constant, σ is a measure supported on the interval $[-1, 1]$, supp $\sigma = [-1, 1]$, such that the pair of functions
\begin{equation}
 f_1(z) := f(z), \quad f_2(z) := f^2(z) \tag{6}
\end{equation}
forms a Nikishin system. Furthermore, it will be shown that, for the function $f(z)$ considered below (see (11)) of the form (5), the three functions f, f^2, f^3 also form a Nikishin system.

Remark 1. One consequence of the presence of the term $C \neq 0$ in representation (5) is that the function $f_2(z) = f^2(z)$ can no longer be written in the form (2)–(3). Nevertheless, somewhat more involved representations will be shown to hold. Namely, the following representations are valid
\begin{equation}
 f(z) - C = \hat{\sigma}(z), \quad f^2(z) - Cf(z) = \hat{s}_1(z), \quad f^3(z) - Cf^2(z) = \hat{s}_2(z), \tag{7}
\end{equation}
where supp $s_j = [-1, 1], j = 1, 2$; for more details, see § 2 and Remark 2 below.

The possibility of the existence of a Markov function f for which similar representations would hold for an arbitrary power f^n will be discussed below (see Conjecture [11]).

2 Definitions and statement of the main result

Let $\Delta_1 := [-1, 1],
\varphi(z) := z + (z^2 - 1)^{1/2}, \quad z \notin \Delta_1, \tag{8}$
3
be the function inverse to the Zhukovskii function. Recall that we have chosen and fixed a branch of the square root such that \((z^2 - 1)^{1/2}/z \to 1\) as \(z \to \infty\). So, \(|\varphi(z)| > 1\) for \(z \notin \Delta_1\). Hence, for any complex number \(A\) such that \(|A| > 1\), the multivalued analytic function

\[
f(z) := f(z; A, \alpha) := \left(A - \frac{1}{\varphi(z)} \right)^{\alpha}, \quad \text{where} \quad \alpha \in \mathbb{C} \setminus \mathbb{Z}, \tag{9}
\]

admits a holomorphic (i.e., a single-valued analytic) branch in the domain \(D_1 := \mathbb{C} \setminus \Delta_1\). However, in the domain \(\mathbb{C} \setminus \{-1, 1\}\) the function \(f(z)\) is already a multivalued analytic function, the set of branch points \(\Sigma\) of this function consisting of three points: \(\Sigma = \{\pm 1, a\}\), where \(a = (A + 1/A)/2\) and, hence, \(|a| > 1\). Note that \(1/\varphi(z) = z - (z^2 - 1)^{1/2}\) in accordance with the above choice of the branch of the root in (9).

The class of multivalued analytic functions \(\mathcal{Z}\) consisting of all functions obtained by multiplication of a finite number of functions of the form (9)

\[
f(z) := \prod_{j=1}^{m} \left(A_j - \frac{1}{\varphi(z)} \right)^{\alpha_j}, \tag{10}
\]

where \(|A_j| > 1\), \(\alpha_j \in \mathbb{C} \setminus \mathbb{Z}\) for all \(j = 1, \ldots, m\), and \(\sum_{j=1}^{m} \alpha_j \in \mathbb{Z}\), was introduced and studied in [15] (see also [16], [19]). In the present paper, we shall be concerned only with the case when in (10) \(m = 2\), \(A_1, A_2\) are real, and \(\alpha_1 = \alpha_2 = -1/2\). We shall also assume that \(1 < A_1 < A_2\). So, the functions to be considered are of the form

\[
f(z) := \left[\left(A_1 - \frac{1}{\varphi(z)} \right) \left(A_2 - \frac{1}{\varphi(z)} \right) \right]^{-1/2}, \tag{11}
\]

or, in other words, \(f(z) = f_1(z)f_2(z)\), where

\[
f_1(z) := f(z; A_1, -1/2) := \left(A_1 - \frac{1}{\varphi(z)} \right)^{-1/2} = \frac{1}{(A_1 - 1/\varphi(z))^{1/2}}, \tag{12}
\]

\[
f_2(z) := f(z; A_2, -1/2) := \left(A_2 - \frac{1}{\varphi(z)} \right)^{-1/2} = \frac{1}{(A_2 - 1/\varphi(z))^{1/2}},
\]

\(z \in D_1, 1 < A_1 < A_2\).

In what follows, \(\sqrt{\cdot}\) denotes the positive square root of a nonnegative real number; i.e., \(\sqrt{a^2} = |a|\) for \(a \in \mathbb{R}\).

The main result of the present paper is as follows.
Proposition 1. Let \(f(z) \) be the function defined by representation (11), where \(1 < A_1 < A_2 \), and let \(a_j = (A_j + 1/A_j)/2, j = 1, 2 \). Then, for \(z \in D \),

\[
f(z) = \frac{1}{\sqrt{A_1 A_2}} + \hat{\sigma}(z), \quad (13)
\]

\[
f^2(z) = \frac{1}{A_1 A_2} + \frac{1}{\sqrt{A_1 A_2}} \hat{\sigma}(z) + \hat{s}_1(z), \quad (14)
\]

\[
f^3(z) = \frac{1}{(A_1 A_2)^3} + \frac{1}{A_1 A_2} \hat{\sigma}(z) + \frac{1}{\sqrt{A_1 A_2}} \hat{s}_1(z) + \hat{s}_2(z), \quad (15)
\]

where \(\sigma \) is the measure supported on the interval \([-1, 1]\), the measures \(s_1 \) and \(s_2 \) are defined by the representations \(s_1 = \langle \sigma, \sigma_2 \rangle \) and \(s_2 = \langle \sigma, \sigma_2, \sigma \rangle \). Moreover, supp \(s_1 = \text{supp} \ s_2 = [-1, 1] \), supp \(\sigma_2 = [a_1, a_2] \subset \mathbb{R} \setminus [-1, 1] \), and the measures \(\sigma \) and \(\sigma_2 \) have the following explicit representations

\[
d\sigma(x_1) = \frac{\sqrt{1 - x_1^2}}{4\pi \sqrt{A_1 A_2}(a_1 - x_1)(a_2 - x_1)} \left[\frac{h_2(x_1)}{h_1(x_1)} + \frac{h_1(x_1)}{h_2(x_1)} \right] dx_1, \quad x_1 \in [-1, 1], \quad (16)
\]

\[
d\sigma_2(x_2) = \frac{dx_2}{\pi \sqrt{(\varphi(x_2) - A_1)(A_2 - \varphi(x_2))}}, \quad x_2 \in (a_1, a_2), \quad (17)
\]

where

\[
h_j(x_1) := \left(A_j - (x_1 + i\sqrt{1 - x_1^2}) \right)^{1/2} + \left(A_j - (x_1 - i\sqrt{1 - x_1^2}) \right)^{1/2} > 0
\]

for \(x_1 \in [-1, 1], j = 1, 2 \).

Following [6], in Proposition 1 we used the following notation for the measure \(s_1 \): \(d \langle \sigma, \sigma_2 \rangle (x_1) := \hat{s}_2(x_1) d\sigma(x_1), x_1 \in \Delta_1 := (-1, 1) \), which is legitimate under our assumption that \(\Delta_1 \cap \Delta_2 = \emptyset \), where \(\Delta_2 := [a_1, a_2] \). In the definition of the measure \(s_2 \) we follow the standard convention to the effect that \(d \langle \sigma, \sigma_2, \sigma \rangle := d \langle \sigma, \langle \sigma_2, \sigma \rangle \rangle \) (for more details, see [6], and also [1], [4], [5]). According to what has been said, the three functions \(\sigma(z), s_1(z) \) and \(s_2(z) \) form a (classical) Nikishin system. This being so, in view of (13)–(15), it is also natural to regard the system of functions \(f, f^2, f^3 \) as a Nikishin system, because this system is generated by a linear combination of three functions, \(\hat{\sigma}, \hat{s}_1 \) and \(\hat{s}_2 \), which forms a Nikishin system.
3 Proof of Proposition 1

3.1

Given \(x_1 \in \Delta_1^\circ \), we let \(f^+_j(x_1) \) and \(f^-_j(x_1) \), \(j = 1, 2 \), denote the limiting values of the function \(f_j(z) \) as \(z = x_1 + i\varepsilon \to x_1 \in \Delta_1^\circ \), \(\varepsilon \to 0 \), assuming that \(z \) lies, respectively, in the upper half-plane \((\varepsilon > 0) \) and in the lower half-plane \((\varepsilon < 0) \). It is easily seen that

\[
f^+_j(x_1) = \left(A_j - (x_1 - i\sqrt{1-x_1^2}) \right)^{-1/2}, \quad f^-_j(x_1) = \left(A_j - (x_1 + i\sqrt{1-x_1^2}) \right)^{-1/2}.
\]

A direct consequence of (18) is that, for \(x_1 \in \Delta_1^\circ \),

\[
\Delta f_j(x_1) := (f^+_j - f^-_j)(x_1)
\]

\[
= \frac{\left(A_j - (x_1 + i\sqrt{1-x_1^2}) \right)^{1/2} - \left(A_j - (x_1 - i\sqrt{1-x_1^2}) \right)^{1/2}}{\left[\left(A_j - (x_1 + i\sqrt{1-x_1^2}) \right) \left(A_j - (x_1 - i\sqrt{1-x_1^2}) \right) \right]^{1/2}}
\]

\[
= -\frac{2i\sqrt{1-x_1^2}}{\sqrt{(A_j - x_1)^2 + (1-x_1^2)}h_j(x_1)}
\]

\[
= -\frac{2i\sqrt{1-x_1^2}}{\sqrt{2A_j(a_j - x_1)}h_j(x_1)}, \tag{19}
\]

where

\[
h_j(x_1) := \left(A_j - (x_1 + i\sqrt{1-x_1^2}) \right)^{1/2} + \left(A_j - (x_1 - i\sqrt{1-x_1^2}) \right)^{1/2} \tag{20}
\]

for \(x_1 \in \Delta_1^\circ \), \(j = 1, 2 \). Moreover, we have

\[
(f^+_j + f^-_j)(x_1) = \left(A_j - (x_1 + i\sqrt{1-x_1^2}) \right)^{-1/2} + \left(A_j - (x_1 - i\sqrt{1-x_1^2}) \right)^{-1/2}
\]

\[
= \frac{h_j(x_1)}{\sqrt{2A_j(a_j - x_1)}}. \tag{21}
\]

It is easily checked that each function \(h_j \), which is holomorphic on the interval \(\Delta_1^\circ \), extends holomorphically from this interval to some neighborhood
of Δ_1. Moreover, $h_j(x_1) \neq 0$ for $x_1 \in \Delta_1$, and therefore, for x_1 from some neighborhood of Δ_1. It is also worth noting that the function $f_j^+ + f_j^-$, which is holomorphic on the interval Δ_1^0, extends holomorphically to some neighborhood of the interval Δ_1.

We have $f = f_1 f_2$, and hence, for $x_1 \in \Delta_1^0$, using the identity

$$2\Delta f(x_1) := 2(f^+ - f^-)(x_1) = \Delta f_1(x_1)(f_2^+ + f_2^-)(x_1) + \Delta f_2(x_1)(f_1^+ + f_1^-)(x_1)$$

and employing relations (19) and (21), we get

$$2\Delta f(x_1) = -\frac{i\sqrt{1 - x_1^2}}{\sqrt{A_1 A_2}(a_1 - x_1)(a_2 - x_1)} \left[\frac{h_2(x_1)}{h_1(x_1)} + \frac{h_1(x_1)}{h_2(x_1)} \right], \quad x_1 \in \Delta_1. \quad (22)$$

Moreover, it is also immediate that

$$\frac{h_1(x_1)}{h_2(x_1)} + \frac{h_2(x_1)}{h_1(x_1)} > 0 \quad \text{for} \quad x_1 \in \Delta_1.$$

We have $f(\infty) = 1/\sqrt{A_1 A_2}$ by definition (11) of the function f, and hence, applying Cauchy’s theorem to the function f, we get the following representation

$$f(z) - \frac{1}{\sqrt{A_1 A_2}} = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f(t)}{t-z} \, dt, \quad z \in \text{ext } \gamma_1, \quad (23)$$

where γ_1 is an arbitrary closed Jordan curve separating the interval Δ_1 from the infinity point and containing the point z in the unbounded component $\text{ext } \gamma_1$ of its complement $\mathbb{C} \setminus \gamma_1$; we assume that the curve γ_1 has positive orientation relative to $\text{ext } \gamma_1$. From (23) it easily follows that

$$f(z) - \frac{1}{\sqrt{A_1 A_2}} = \frac{1}{2\pi i} \int_{\Delta_1} \frac{\Delta f(x_1)}{x_1-z} \, dx = \int_{\Delta_1} \frac{d\sigma(x_1)}{z-x_1} = \tilde{\sigma}(z), \quad (24)$$

where, for $x_1 \in \Delta_1$,

$$d\sigma(x_1) = -\frac{1}{2\pi i} \Delta f(x_1) \, dx = \frac{\sqrt{1 - x_1^2}}{4\pi \sqrt{A_1 A_2}(a_1 - x_1)(a_2 - x_1)} \left[\frac{h_2(x_1)}{h_1(x_1)} + \frac{h_1(x_1)}{h_2(x_1)} \right] \, dx_1. \quad (25)$$

Using (24) and (25), this establishes

$$f(z) = \frac{1}{\sqrt{A_1 A_2}} + \tilde{\sigma}(z), \quad z \in D_1,$$

thereby proving representations (13) and (16).
3.2

We set \(\rho_1(x_1) := f^+(x_1) + f^-(x_1) = (f_1^+ f_2^+ + f_1^- f_2^-)(x_1) \), \(x_1 \in \Delta_1^\circ \). It is easily seen (see (11) and (21)) that the function \(\rho_1 \in \mathcal{H}(\Delta_1^\circ) \) extends holomorphically from the interval \(\Delta_1^\circ \) to some neighborhood of the interval \(\Delta_1 \). Moreover, the function \(\rho_1 \) is holomorphic on the domain \(D_2 := \mathbb{C} \setminus \Delta_2 \) and can be represented in this domain as

\[
\rho_1(z) = \left[(A_1 - (z - (z^2 - 1)^{1/2})) (A_2 - (z - (z^2 - 1)^{1/2})) \right]^{-1/2} + \left[(A_1 - (z + (z^2 - 1)^{1/2})) (A_2 - (z + (z^2 - 1)^{1/2})) \right]^{-1/2} = \left[\left(A_1 - \frac{1}{\varphi(z)} \right) \left(A_2 - \frac{1}{\varphi(z)} \right) \right]^{-1/2} + \left[(A_1 - \varphi(z)) (A_2 - \varphi(z)) \right]^{-1/2}.
\]

(26)

Given \(x_2 \in \Delta_2^\circ \), we denote by \(\rho_1^+(x_2) \) the limiting values of the function \(\rho_1(z) \) as \(z \to x_2 \) assuming that \(z \) lies in the upper half-plane, and denote by \(\rho_1^-(x_2) \) the limiting values of \(\rho_1(z) \) as \(z \to x_2 \) assuming that \(z \) lies in the lower half-plane. Using (26),

\[
\Delta \rho_1(x_2) := (\rho_1^+ - \rho_1^-)(x_2) = \frac{-2i}{\sqrt{(\varphi(x_2) - A_1)(A_2 - \varphi(x_2))}}, \quad x_2 \in \Delta_2^\circ.
\]

(27)

We have \(\rho_1(\infty) = 1/\sqrt{A_1 A_2} \). Hence, by (26)

\[
\rho_1(z) - \frac{1}{\sqrt{A_1 A_2}} = \frac{1}{2\pi i} \int_{\gamma_2} \frac{\rho_1(t) dt}{t - z} = \frac{1}{2\pi i} \int_{\Delta_2} \frac{\Delta \rho_1(x_2) dx_2}{x_2 - z},
\]

(28)

where \(\gamma_2 \) is an arbitrary negatively oriented closed Jordan curve separating the interval \(\Delta_2 \) from the infinity point; the point \(z \) lies in that connected component of \(\mathbb{C} \setminus \gamma_2 \) which contains the infinity point.

From (27) and (28) we see that

\[
\rho_1(z) = \frac{1}{\sqrt{A_1 A_2}} + \hat{\sigma}_2(z), \quad z \in D_2,
\]

(29)

where

\[
d\sigma_2(x_2) := -\frac{1}{2\pi i} \Delta \rho_1(x_2) dy = \frac{1}{\pi} \frac{dx_2}{\sqrt{(\varphi(x_2) - A_1)(A_2 - \varphi(x_2))}}, \quad x_2 \in \Delta_2^\circ.
\]

(30)
So, we have
\[\rho_1(z) := (f^+ + f^-)(z) = \frac{1}{\sqrt{A_1 A_2}} + \tilde{\sigma}(z), \]
where \(\sigma_2 \) is the positive measure with support in \(\Delta_2 \) defined by representation (30). Hence, for \(x_1 \in \Delta_1 \),
\[\frac{\Delta f^2}{\Delta f}(x_1) = (f^+ + f^-)(x_1) = \frac{1}{\sqrt{A_1 A_2}} + \tilde{\sigma}(x_1). \tag{31} \]
As a result (see (25)), we have, for \(x_1 \in \Delta_1 \),
\[\Delta f^2(x_1) \, dx_1 = \left(\frac{1}{\sqrt{A_1 A_2}} + \tilde{\sigma}(x_1) \right) \Delta f(x_1) \, dx_1 \]
\[= - \left(\frac{1}{\sqrt{A_1 A_2}} + \tilde{\sigma}(x_1) \right) 2\pi i \, d\sigma(x_1). \tag{32} \]
Since \(f^2(\infty) = 1/(A_1 A_2) \), it follows from (32) that
\[f^2(z) - \frac{1}{A_1 A_2} = \frac{1}{2\pi i} \int_{\gamma_1} \frac{f^2(t)}{t - z} \, dt = -\frac{1}{2\pi i} \int_{\Delta_1} \frac{\Delta f^2(x_1)}{z - x_1} \, dx_1 \]
\[= \frac{1}{\sqrt{A_1 A_2}} \tilde{\sigma}(z) + \int_{\Delta_1} \frac{\tilde{\sigma}(x_1) \, d\sigma(x_1)}{z - x_1} = \frac{1}{\sqrt{A_1 A_2}} \tilde{\sigma}(z) + \tilde{s}_1(z), \]
where \(s_1 = \langle \sigma, \sigma_2 \rangle, \) \(\text{supp} \, s_1 = \Delta_1. \) Therefore,
\[f^2(z) = \frac{1}{A_1 A_2} + \frac{1}{\sqrt{A_1 A_2}} \tilde{\sigma}(z) - \tilde{s}_1(z), \quad z \in D_1. \]
This completes the proof of representations (14) and (17).

3.3

We now set
\[\rho_2(x_1) := \frac{\Delta f^3(x_1)}{\Delta f(x_1)}, \quad x_1 \in \Delta_1^\circ. \tag{33} \]
Given \(x_1 \in \Delta_1^\circ \), we have
\[f^+(x_1) = \left[\left(A_1 - (x_1 - i \sqrt{1 - x_1^2}) \right) \left(A_2 - (x_1 - i \sqrt{1 - x_1^2}) \right) \right]^{-1/2}, \]
\[f^-(x_1) = \left[\left(A_1 - (x_1 + i \sqrt{1 - x_1^2}) \right) \left(A_2 - (x_1 + i \sqrt{1 - x_1^2}) \right) \right]^{-1/2}, \]
and hence,
\[
(f^+)^2(x_1) = \frac{1}{(A_1 - (x_1 - i\sqrt{1-x_1^2})) (A_2 - (x_1 - i\sqrt{1-x_1^2}))},
\]
\[
(f^-)^2(x_1) = \frac{1}{(A_1 - (x_1 + i\sqrt{1-x_1^2})) (A_2 - (x_1 + i\sqrt{1-x_1^2}))}.
\]

It follows that the functions \(f^+ f^- \) and \((f^+)^2 + (f^-)^2 \) extend analytically from the interval \(\Delta \) to the domain \(D \). Consequently, the function \(\rho \), which is given by representation (33), extends holomorphically to the domain \(D \). Moreover,
\[
f^+(x_1) f^-(x_1) = \frac{1}{\sqrt{2A_1(a_1 - x_1)} \sqrt{2A_2(a_2 - x_1)}} = \frac{1}{2\sqrt{A_1(a_1 - x_1)A_2(a_2 - x_1)}},
\]
\[
(f^+)^2(x_1) + (f^-)^2(x_1) = \left(\frac{A_1 - (x_1 + i\sqrt{1-x_1^2})}{A_2 - (x_1 + i\sqrt{1-x_1^2})} \right) + \left(\frac{A_1 - (x_1 - i\sqrt{1-x_1^2})}{A_2 - (x_1 - i\sqrt{1-x_1^2})} \right)
\]
\[
= \frac{4A_1(a_1 - x_1)A_2(a_2 - x_1)}{4A_1(a_1 - x_1)A_2(a_2 - x_1)}.
\]

for \(x_1 \in \Delta \). Since \(1 < a_1 < a_2 \), it can be easily shown that \((f^+)^2 + (f^-)^2 + f^+ f^-)(x_1) > 0 \) for \(x_1 \in \Delta \). So, using the definition of the function \(\varphi(z) \) and employing the identity
\[
\frac{\Delta f^3(x_1)}{\Delta f(x_1)} = ((f^+)^2 + (f^-)^2)(x_1) + (f^+ f^-)(x_1),
\]
where \(x \in \Delta \), we arrive at the explicit representation
\[
\rho_2(z) = \frac{1}{(A_1 - 1/\varphi(z))(A_2 - 1/\varphi(z))} + \frac{1}{(A_1 - \varphi(z))(A_2 - \varphi(z))} + \left[(A_1 - 1/\varphi(z))(A_2 - 1/\varphi(z))(A_1 - \varphi(z))(A_2 - \varphi(z)) \right]^{-1/2} \tag{34}
\]
for the function \(\rho_2 \in \mathcal{H}(D) \), where \(z \in D \). Moreover, \(\rho_2(x_1) > 0 \) for \(x_1 \in \Delta \), \(\rho_2(\infty) = 1/(A_1A_2) \), and for \(x_2 \in \Delta \), we have
\[
\Delta \rho_2(x_2) := \rho_2^+(x_2) - \rho_2^-(x_2)
\]
\[
= \frac{-2i}{\sqrt{(A_1 - 1/\varphi(x_2))(A_2 - 1/\varphi(x_2))(\varphi(x_2) - A_1)(A_2 - \varphi(x_2))}} \tag{35}
\]
Therefore,
\[
\rho_2(z) = \rho_2(\infty) + \frac{1}{2\pi i} \int_{\gamma_2} \frac{\rho_2(t)}{t-z} \, dt \\
= \frac{1}{A_1 A_2} + \frac{1}{2\pi i} \int_{a_1}^{a_2} \frac{\Delta \rho_2(x_2)}{x_2 - z} \, dx_2,
\]
where \(z \in D_2, \gamma_2 \) is an arbitrary closed Jordan curve separating the interval \(\Delta_2 \) from the point \(z \) and from the infinity point and which is positively oriented with respect to the domain containing the point \(z \). The following representation for the function \(\rho_2(z) \) is a direct consequence of (35) and (36).

We have
\[
\rho_2(z) = \frac{1}{A_1 A_2} + \tilde{\sigma}_3(z),
\]
where \(\sigma_3 \) is a positive measure supported on the interval \(\Delta_2 \), \(\text{supp} \sigma_3 = \Delta_2 \), and moreover,
\[
d\sigma_3(x_2) = \frac{1}{\pi} \frac{dx_2}{\sqrt{(A_1 - 1/\varphi(x_2))(A_2 - 1/\varphi(x_2))((\varphi(x_2) - A_1)(A_2 - \varphi(x_2)))}},
\]
\(x_2 \in \Delta_2^c \).

So, for \(z \in D_2 \) we have
\[
\frac{\Delta f^3}{\Delta f}(z) = \rho_2(z) = \frac{1}{A_1 A_2} + \tilde{\sigma}_3(z).
\]
Hence, in view of (30) it follows from (38) that
\[
d\sigma_3(x_2) = \rho_3(x_2) \, d\sigma_2(x_2), \quad x_2 \in \Delta_2^c,
\]
where
\[
\rho_3(x_2) := \frac{1}{\sqrt{(A_1 - 1/\varphi(x_2))(A_2 - 1/\varphi(x_2))}}, \quad x_2 \in \Delta_2^c.
\]
The function \(\rho_3 \) extends holomorphically from the interval \(\Delta_2^c \) to the domain \(D_1 \). Furthermore, it is clear that \(\rho_3(z) \equiv f(z), \ z \in D_1 \). So, by (13)
\[
\rho_3(z) = \frac{1}{\sqrt{A_1 A_2}} + \tilde{\sigma}(z), \quad z \in D_1,
\]
where the measure \(\sigma \) is given by representation (25).
From (39), (40) and (41) it follows that, for \(x_1 \in \Delta_1 \),
\[
\frac{\Delta f^3(x_1)}{\Delta f(x_1)} = \frac{1}{A_1 A_2} + \int_{a_1}^{a_2} \frac{\rho_3(x_2) \, d\sigma_2(x_2)}{x_1 - x_2} \\
= \frac{1}{A_1 A_2} + \frac{1}{\sqrt{A_1 A_2}} \tilde{\sigma}_2(x_1) + \int_{a_1}^{a_2} \frac{\tilde{\sigma}(x_2) \, d\sigma_2(x_2)}{x_1 - x_2} \\
= \frac{1}{A_1 A_2} + \frac{1}{\sqrt{A_1 A_2}} \tilde{\sigma}_2(x_1) + \hat{s}(x_1),
\]
(42)
where the measure \(s \) is defined as \(s := \langle \sigma_2, \sigma \rangle \), \(\text{supp } s = \text{supp } \sigma_2 = \Delta_2 \). We have \(f^3(\infty) = 1/\sqrt{(A_1 A_2)^3} \), and hence, by Cauchy’s formula,
\[
f^3(z) - \frac{1}{(A_1 A_2)^3} = \frac{1}{2\pi i} \int_{\eta} \frac{f^3(t) \, dt}{t - z} = \frac{1}{2\pi i} \int_{-1}^{1} \frac{\Delta f^3(x_1) \, dx_1}{x_1 - z}.
\]
(43)
So, using (39), (42) and (43),
\[
f^3(z) - \frac{1}{\sqrt{A_1 A_2}} = \frac{1}{A_1 A_2} \cdot \frac{1}{2\pi i} \int_{-1}^{1} \frac{\Delta f(x_1) \, dx_1}{x_1 - z} + \frac{1}{\sqrt{A_1 A_2}} \cdot \frac{1}{2\pi i} \int_{-1}^{1} \frac{\tilde{\sigma}_2(x_1) \Delta f(x_1) \, dx_1}{x_1 - z} \\
- \frac{1}{2\pi i} \int_{-1}^{1} \frac{\tilde{s}(x_1) \Delta f(x_1) \, dx_1}{x_1 - z} \\
= \frac{1}{A_1 A_2} \tilde{\sigma}(z) + \frac{1}{\sqrt{A_1 A_2}} \int_{-1}^{1} \frac{\tilde{\sigma}_2(x_1) \, d\sigma_2(x_1)}{z - x_1} + \int_{-1}^{1} \frac{\tilde{s}(x_1) \, d\sigma_2(x_1)}{z - x_1}.
\]
(44)
Finally, from (44) and the definition of the measure \(s := \langle \sigma_2, \sigma \rangle \) we have the representation
\[
f^3(z) = \frac{1}{\sqrt{(A_1 A_2)^3}} + \frac{1}{A_1 A_2} \tilde{\sigma}(z) + \frac{1}{\sqrt{A_1 A_2}} \hat{s}_1(z) + \hat{s}_2(z),
\]
where \(s_1 = \langle \sigma, \sigma_2 \rangle, s_2 = \langle \sigma, \sigma_2, \sigma \rangle, \text{supp } s_j = [-1, 1], j = 1, 2 \).

This proves (15), and therefore, Proposition 1.

Remark 2. The relations
\[
f(z) - \frac{1}{\sqrt{A_1 A_2}} = \tilde{\sigma}(z), \quad f^2(z) - \frac{1}{\sqrt{A_1 A_2}} f(z) = \hat{s}_1(z), \quad f^3(z) - \frac{1}{\sqrt{A_1 A_2}} f^2(z) = \hat{s}_2(z)
\]
(45)
are immediate consequences of (13)–(15).
Conjecture 1. Let f be a function from the class \mathcal{Z} of the form

$$f(z) = \left(\frac{A_1 - 1/\varphi(z)}{A_2 - 1/\varphi(z)} \right)^\alpha,$$

where $1 < A_1 < A_2$ and $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Then f is a Markov function and, for any $n \in \mathbb{N}$, the system f, f^2, \ldots, f^n is a Nikishin system.

Remark 3. In accordance with representation (11) all branch points of the function f are of second order, and hence in view of the above Proposition the results of [2] and [8] on the asymptotics of Hermite–Padé polynomials apply to the system of functions f, f^2, and the results of [7], to the system of functions f, f^2, f^3. It is very likely that by appropriately transforming the independent variable (see, for example, [19, § 5]), which was carried out in representation (11), and multiplying some resulting functions it might be possible to obtain those exotic, as they may seem, Nikishin systems on star-like sets which have been considered in [3] and [9]. In other words, there is a hope that examples of Nikishin systems of such kind can be found in the form f, f^2, \ldots, f^n.

References

[1] А. И. Аптекарев, В. Г. Лысов, Системы марковских функций, генерируемые графами, и асимптотика их аппроксимаций Эрмита–Паде, Матем. сб., 2010, vol 201, 2, 29–78 transl: A. I. Aptekarev, V. G. Lysov, Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants, Sb. Math., 2010, vol 201, 2, 183–234

[2] А. И. Аптекарев, А. И. Боголюбский, М. Л. Ятцелев, Сходимость лучевых последовательностей аппроксимаций Фробениуса–Паде, Матем. сб., 2017, vol 208, 3, 4–27 transl: A. I. Aptekarev, A. I. Bogolyubskii, M. Yattselev, Convergence of ray sequences of Frobenius-Padé approximants, Sb. Math., 2017, vol 208, 3, 313–334

[3] Д. Баррио Рослана, Дж. С. Джеронимо, Г. Лопес Лагомасино, Рекуррентные соотношения высших порядков, аппроксимации Эрмита–Паде и системы Никишина, Матем. сб., 2018, vol 209, 3,
102–137 transl: D. Barrios Rolanía, J. S. Geronimo, G. López Lagomasino, High-order recurrence relations, Hermite-Padé approximation and Nikishin systems, Sb. Math., 2018, vol 209, 3, 385–420

[4] U. Fidalgo Prieto, A. Lopez Garcia, G. Lopez Lagomasino, V. N. Sorokin, Mixed type multiple orthogonal polynomials for two Nikishin systems, Constructive Approximation , 2010, vol 32, 255–306

[5] U. Fidalgo Prieto, G. Lopez Lagomasino, Nikishin Systems Are Perfect , Constr. Approx., vol 34, 3 , 2011, 297–356

[6] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, Hermite–Pade approximants for systems of Markov-type functions, transl: Sb. Math., 1997, vol 188, 5, 671–696

[7] A. V. Komlov, R. V. Palvelev, S. P. Suetin, E. M. Chirka, Hermite–Padé approximants for meromorphic functions on a compact Riemann surface, Russian Math. Surveys, 2017, vol 72, 4, 671–706

[8] Guillermo Lopez Lagomasino, Walter Van Assche, Riemann–Hilbert analysis for a Nikishin system, SB MATH, 2018, vol 209, 7, arXiv: 1612.07108

[9] A. Lopez-Garcia, E. Mina-Diaz, Nikishin systems on star-like sets: algebraic properties and weak asymptotics of the associated multiple orthogonal polynomials, 2018, vol 209, 7

[10] Е. М. Никишин, В. Н. Сорокин, Рациональные аппроксимации и ортогональность, Наука, М., 1988 transl: Nikishin, E. M.; Sorokin, V. N., Rational approximations and orthogonality, Translated from the
Russian by Ralph P. Boas, Translations of Mathematical Monographs, vol 92, American Mathematical Society, Providence, RI, 1991, viii+221 pp. ISBN: 0-8218-4545-4

[11] J. Nuttall, Asymptotics of diagonal Hermite–Padé polynomials, 1984, J. Approx. Theory, vol 42, 299–386

[12] Е. А. Рахманов, К асимптотике многочленов Эрмита–Паде для двух марковских функций, Матем. сб., 2011, vol 202, 1, 133–140 transl: E. A. Rakhmanov, The asymptotics of Hermite-Padé polynomials for two Markov-type functions, Sb. Math., 2011, vol 202, 1, 127–134

[13] Е. А. Рахманов, Распределение нулей полиномов Эрмита–Паде в случае Анжелеско, УМН, 2018, vol 73, 3(441), 89–156 transl: Russian Math. Surveys, 2018, vol 73, 3, 457–518

[14] В. Н. Сорокин, О совместном приближении нескольких линейных форм, Вестн. Моск. ун-та. сер. 1. Математика. Механика, 1, 1983, 44–47, Sorokin, V. N., Simultaneous approximation of several linear forms, info (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1983, 1, 44–47

[15] С. П. Суетин, О некотором аналоге теоремы Пойя для многозначных аналитических функций с конечным числом точек ветвления, Матем. заметки, vol 101, 5, 2017, 779–791 transl: S. P. Suetin, An Analog of Pólya’s Theorem for Multivalued Analytic Functions with Finitely Many Branch Points, Math. Notes, 2017, vol 101, 5, 888–898

[16] С. П. Суетин, О распределении нулей полиномов Эрмита–Паде для набора четырёх функций, УМН, 2017, vol 72, 2, 191–192 transl: S. P. Suetin, On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions, Russian Math. Surveys, 2017, vol 72, 2, 375–377

[17] С. П. Суетин, О распределении нулей полиномов Эрмита–Паде для комплексной системы Никишин, УМН, 2018, vol 73, 2(440), 183–184 transl: S. P. Suetin, Distribution of the zeros of Hermite–Padé polynomials for a complex Nikishin system

[18] С. П. Суетин, О новом подходе к задаче о распределении нулей полиномов Эрмита–Паде для системы Никишин, Комплексный
анализ, математическая физика и приложения, Сборник статей, Тр. МИАН, 2018, vol 301, 259–275, МАИК «Наука/Интерпериодика», M. transl: Proc. Steklov Inst. Math., 2018, vol 301, 245–261; Sergey P. Suetin, On a new approach to the problem of the zero distribution of Hermite–Padé polynomials for a Nikishin system, Submitted on 19 May 2018, arXiv: 1805.07577

[19] Sergey P. Suetin, 2018, Hermite–Padé polynomials and analytic continuation: new approach and some results, 45 pp., arxiv: 1806.08735

[20] Van Assche, Walter, Padé and Hermite–Padé approximation and orthogonality, Surv. Approx. Theory, vol 2, 2006, 61–91