Variability in response to drug use is common and heritable, suggesting that genome-wide pharmacogenomics studies may help explain the ‘missing heritability’ of complex traits. Here, we describe four independent analyses in 33,781 participants of European ancestry from 10 cohorts that were designed to identify genetic variants modifying the effects of drugs on QT interval duration (QT). Each analysis cross-sectionally examined four therapeutic classes: thiazide diuretics (prevalence of use = 13.0%), tri/tetracyclic antidepressants (2.6%), sulfonlurea hypoglycemic agents (2.9%) and QT-prolonging drugs as classified by the University of Arizona Center for Education and Research on Therapeutics (4.4%). Drug–gene interactions were estimated using covariable-adjusted linear regression and results were combined with fixed-effects meta-analysis. Although drug–single-nucleotide polymorphism (SNP) interactions were biologically plausible and variables were well-measured, findings from the four cross-sectional meta-analyses were null (\(P_{\text{interaction}} > 5.0 \times 10^{-8}\)). Simulations suggested that additional efforts, including longitudinal modeling to increase statistical power, are likely needed to identify potentially important pharmacogenomic effects.

The Pharmacogenomics Journal (2014) 14, 6–13; doi:10.1038/tpj.2013.4; published online 5 March 2013

Keywords: gene–environment interaction; genetic epidemiology; QT interval

INTRODUCTION

The role of inheritance in response to drug exposure has long been appreciated, dating to as early as 1932 when the inability to taste phenylthiocarbamide was demonstrated to follow an autosomal recessive inheritance pattern. Today, the promise of pharmacogenomics lies in its potential to tailor drug prescription and dosing to individual patients, a practice exemplified by the use of a patient’s genotype to inform warfarin dosing, to avoid anemia during hepatitis C treatment or to predict benefit from and therefore guide chemotherapy in breast cancer. Documented heterogeneity of drug response has also prompted the suggestion that examining drug–gene interactions may help explain a notable proportion of the heritability for complex traits that remains unexplained by genome-wide association (GWA) studies.
The duration of the QT interval (QT), a non-invasive measure of the ventricular action potential estimated from the resting, standard 12-lead electrocardiogram (ECG), offers a good model for examining the value of pharmacogenomics. In addition to being well-measured,14 heritable5,14 and heterogeneous among those exposed to what are now called ‘QT-prolonging drugs’,15 QT prolongation is the most common cause of withdrawal or restricted marketing of pharmaceuticals16 largely because of its established association with ventricular tachyarrhythmia,17 sudden cardiac death and all-cause mortality.18–20 However, prospectively identifying subpopulations at risk for drug-induced QT prolongation and its sequelae remains a challenge.16

Although heritability estimates suggest a substantial genetic component underlying QT, genetic variation at the 26 single-nucleotide polymorphisms (SNPs) identified to date by GWA studies studies together explain approximately 5–8% of the variance in QT.21–27 Popular explanations for this missing heritability include rare variants that are poorly represented on commercial genotyping arrays as well as gene–gene and gene–environment interactions.10

In search of this missing heritability, we assessed pharmacogenomic influences on QT by conducting four cross-sectional GWA analyses in 10 populations of European ancestry. The aim of the studies was to identify genetic variants modifying the association between drugs in four therapeutic classes previously associated with QT prolongation or sudden death28–32 and the duration of QT.

MATERIALS AND METHODS

Study populations

A meta-analysis of 10 cohorts with GWA data that included 33,781 participants of European descent was performed to investigate cross-sectional drug–SNP interactions in QT. Five cohorts were from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium:23 the Age, Gene/Environment Susceptibility—Reykjavik Study, the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, the Framingham Heart Study (FHS) and the Rotterdam Study. Since the inception of Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, five additional cohorts have joined the effort: the Erasmus Rucphen Family Study (ERF), Health 2000, the Health Aging, Body and Composition Study, the Multi-Ethnic Study of Atherosclerosis (MESA) and the Prospective Study of Pravastatin in the Elderly at Risk. At baseline, all cohorts, drug exposure was queried and participants underwent standardized ECGs, which were read for QT duration. Each cohort followed a prespecified analysis protocol, and findings from the within-cohort analyses were then combined by meta-analysis. All studies were approved by local ethics committees and all participants provided written informed consent. Additional information on the participating studies is provided in the Supplementary Material.

Study design: inclusion and exclusion criteria

Within each cohort, we performed four separate cross-sectional analyses using drug, covariate and ECG data collected at the baseline examination. Participants with the following characteristics were excluded from the analysis: poor quality ECG, extreme QRS duration prolongation, including that due to bundle branch block (QRS > 120 ms), atrial fibrillation/flutter on ECG, paced rhythm or second- or third-degree atrioventricular block. Heart failure at study baseline was an additional exclusion for the thiazide diuretic, sulfonylurea hypoglycemic agent and tri/tetracyclic antidepressant analyses. Users of loop diuretics, regardless of thiazide use, were also excluded from analyses examining thiazide diuretics.

Definition of drug exposure

Drug use was assessed by the method of medication inventory or pharmacy database (Supplementary Table 1). Six of the nine cohorts using the medication inventory method captured medications used within 1–2 weeks preceding ECG assessment. The remaining three cohorts currently using medication inventory methods assessed medications used on the day of ECG recording. The Rotterdam Study was the only cohort that assessed drug exposure via pharmacy databases; investigators classified a participant as exposed if he/she filled a prescription for a drug class of interest within 30 days preceding the ECG recording.

Four classes of therapeutic drugs previously associated with QT prolongation were examined: thiazide diuretics,30,32 tri/tetracyclic antidepressants,31 sulfonylurea hypoglycemic agents32 and University of Arizona Center for Education and Research on Therapeutics (UAZ CERT)-classified QT-prolonging drugs.28 Participants were classified as: thiazide users if they took a thiazide or thiazide-like diuretic in a single or combination preparation, with or without potassium sparing diuretic or potassium supplements; as sulfonylurea users if they took a first- or second-generation sulfonylurea anti-diabetic; and as tri/tetracyclic users if they took a tricyclic or tetracyclic antidepressant, ignoring concomitant use of other therapeutic drug classes.

The UAZ CERT classification was used to group medications into four classes based on the likelihood of QT prolongation: definite, possible, conditional or no/unknown. Participants using two or more drugs classified as conditional were reclassified as possible. When participants took drugs from more than one UAZ CERT class, the highest class was assigned. For the UAZ CERT analyses, participants classified as users of definite or possible QT-prolonging drugs were classified as exposed; participants classified as no/unknown were classified as unexposed; and those reporting use of one conditional QT-prolonging agent were excluded.

QT measurement

For each study, technicians digitally recorded resting, supine (or semirecumbent), standard 12-lead ECGs for each participant (Supplementary Table 2) on the same day the drug exposure was recorded. Studies used comparable procedures for preparing participants: placing electrodes, recording, transmitting, processing and controlling quality of the ECGs, although QT in the various studies was measured by different automated systems and therefore will be subject to a small variation equivalent to interobserver error. The ECG from the baseline visit was selected when multiple ECGs were available.

Genotype arrays and imputation

Genome-wide SNP genotyping was performed within each cohort using either the Affymetrix (Santa Clara, CA, USA) or Illumina genotyping arrays (San Diego, CA, USA; Supplementary Table 3). Gender mismatches and duplicate samples were excluded. First-degree relatives were excluded in all cohorts except the family-based FHS and ERF, which accounted for relatedness in the association analysis. DNA samples with genotyping success rates between < 95 and < 99%, depending on the cohort, were excluded. SNPs were also excluded when genotyping call rate thresholds were between 95 and 99%, and minor allele frequencies (MAFs) were < 1%, the determination of which was cohort-specific.

To increase coverage and facilitate evaluation of the same SNPs across cohorts, genotypes were imputed using Bayesian IMputation-Based Association Mapping,24 Markov chain based haplotype25 or BEAGLE,26 which applied algorithms that inferred unobserved genotypes in a probabilistic manner. Imputation was performed for ~ 2.5 million autosomal SNPs based on the HapMap Phase 2 (build 36) CEU reference population (Supplementary Table 3).

Statistical analysis

Each cohort performed four GWA analyses of QT across approximately 2.5 million SNPs comparing drug users to non-users. Study designs that restricted those on treatment were not chosen because of the large potential for type I error due to the inseparability of the SNP main effect and interaction effect estimates.27 Each drug–genotype interaction was estimated using linear regression, under an additive genetic model, and using robust standard errors except in the family-based FHS and ERF cohorts, which used linear mixed-effects models as implemented in the GWAF package for R (FHS)38 and GenABEL/ProbABEL (ERF).39,40 All regressions adjusted for the following covariates: age (year), sex, RR interval (ms), recruitment site when appropriate and principal components summarizing genetic ancestry.7 Global genetic ancestry was also confounding by race/ethnicity. In addition, the four-category UAZ CERT drug categorization was included as a nominal covariate in the thiazides, sulfonylureas and tri/tetracyclic analyses.

For some SNPs, the numbers of genetic variants among participants on drug therapy were too small to permit use of standard asymptotic results. Therefore, cohort-specific inference used a (Student’s) t as the reference
distribution. The degrees of freedom for the t-reference distribution were calculated as the cohort- and SNP-specific product of: the number of drug-exposed participants, the SNP imputation quality (range: 0–1) and the minor allele frequencies (range: 0–0.50). For each SNP, cohort-specific P-values were calculated by comparing lstandard error estimates to this reference, with the resulting P-values then meta-analyzed using the standard weighted Z-statistic method,14 with weights based on the number exposed to the drug multiplied by the SNP imputation quality.

Cohort-specific results were corrected by their respective genomic inflation factors (λs).22 The genome-wide threshold for significant drug–SNP interaction was P < 5.0 × 10⁻⁸. The software packages R, ProbABEL, GenABEL, PLINK and GRIMP were used to estimate cohort-specific results (Supplementary Table 3) and METAL41 was used to generate summary meta-analytic estimates of the drug–SNP interaction parameters. Quantile–quantile (Q–Q) plots were used to identify systematic miscalibration of the test statistic for the drug–genotype interactions.

Statistical power simulations

Power to detect drug–SNP interactions using cross-sectional and longitudinal modeling approaches was estimated via simulation studies. Assumptions, which were informed by study data, included: (1) 20 000–30 000 participants; (2) a two-sided, per-SNP α = 5.0 × 10⁻⁵; (3) a mean heart rate-corrected QT (ms) = 400 ± 20 ms; (4) a prevalence of drug exposure = 0.10 for the longitudinal simulations and 0.03–0.14 for the cross-sectional simulations; (5) a mean drug effect for those with zero copies of the minor allele = 1 ms; (6) a mean SNP effect for those not exposed to drug = 1; (7) a minor allele frequency = 0.20 for the longitudinal simulations and minor allele frequencies = 0.05–0.30 for the cross-sectional simulations; and (8) an additive model of inheritance. The drug–SNP interaction effect was varied in size. To evaluate the power that could be gained by incorporating repeated measurements over time, the simulation incorporated up to 2–6 measurements of QT duration and drug exposure for each participant, and the within-person correlation in QT was set at 0.5 based on unpublished observations. Drug use was either temporally constant or variable. When variable, drug exposure was assumed to be completely random at each time. An attrition rate of 5% per visit, plus random missingness of 5% of remaining measurements, was assumed. Linear models with robust standard errors were used for cross-sectional analyses, and generalized estimating equations with exchangeable working correlation were used for longitudinal analyses.

RESULTS

GWA analyses were performed to examine whether common genetic variants modified the effects of exposure to drugs in four therapeutic classes on QT. The 10 participating cohorts of European descent varied in size (range: 1435–8132; Table 1). On average, participants were predominantly women (percent female range: 49.4–62.5%) and middle-aged to elderly (mean age range = 40–75 years). The estimated prevalence of drug exposure at study baseline was highest for thiazides (13.6%), lowest for the tri/tetracyclcs (2.6%) and intermediate for the sulfonylurea hypoglycemic agents (2.9%) and UAZ CERT-certified QT-prolonging drugs (4.4%). After applying genotyping and imputation quality control measures, a total of approximately 2.5 million autosomal SNPs were available for analysis.

Q–Q plots based on meta-analyses of the cohort-specific, drug–SNP interaction test statistics revealed moderately conservative distributions, as demonstrated by λₖ < 1.0 (range: 0.89–0.99) and slightly earlier departure of P-values in the direction of conservatism compared with what would have been expected by chance alone (Figure 1). In line with statistical theory, overstated significance due to miscalibration, which was common using standard asymptotic methods, was not observed using the t-reference approach. These patterns did not differ by the prevalence of medication use at study baseline.

No genome-wide significant cross-sectional interactions (P < 5.0 × 10⁻⁸) were detected for any of the four drug classes (Figure 2). The top five loci (Supplementary Table 4) were all inconsistent across drug classes. Cross-sectional meta-analyses restricted to the 26 SNPs reported by previously published GWA studies of QT main effects were similarly null (interaction P > 0.01; Table 2), as were results for SNPs reported by recent pharmacogenomic studies of QT and drug-induced QT prolongation (Supplementary Table 5).43–47

Statistical power

Given the robustly null results and because four cohorts (52.2% of total sample size) had repeated ECG recordings and drug exposure assessments (range: 2–10; Supplementary Table 2), we examined statistical power for the cross-sectional analysis and the degree to which analyses incorporating repeated measures would increase statistical power. Simulations demonstrated that all cross-sectional analyses were underpowered, especially for drug categories with 3% prevalence (Supplementary Figure 1). However, when the prevalence of drug use increased to 14%...

Table 1. Baseline characteristics of 10 cohorts examining pharmacogenomic effects on the QT interval*
Cohort
AGES
ARIC
CHS
ERF
FHS
Health ABC
Health 2000
MESA
PROSPER
RS1
RS2
Summary

Abbreviations: AGES, Age, Gene/Environment Susceptibility—Reykjavik Study; ARIC, Atherosclerosis Risk in Communities study; CHS, Cardiovascular Health Study; ERF, Erasmus Russchoven Family study; FHS, Framingham Heart study; Health ABC, Health Aging, Body and Composition; MESA, Multi-Ethnic Study of Atherosclerosis; ms, milliseconds; N, number; PROSPER, Prospective Study of Pravastatin in the Elderly at Risk; RS, Rotterdam Study; s.d., standard deviation; SNP, single-nucleotide polymorphism; TCA, tri/tetracyclcs antidepressants; UAZ CERT, University of Arizona Center for Education and Research on Therapeutics QT-prolonging agents classification.

*Data presented as mean (s.d.) or N (proportion).

**Number of participants varied by analysis; number of participants meeting the common exclusion criteria were presented.

*Included drugs classified as definite and possible QT-prolonging agents.
(for example, thiazides) and the SNP was common, we achieved 80% power to detect an effect of 3.25 ms. Incorporating repeat ECG measures with constant drug exposure yielded a moderate increase in statistical power, although the greatest increase was associated with a time-varying drug exposure, that is, observed QT measurement on and off drug within an individual (Figure 3). For example, we had 80% power to detect interactive drug–SNP effects when a time-varying drug exposure was examined at least four different times.

DISCUSSION

In this study, composed of approximately 35,000 participants of European descent from 10 cohorts, we examined cross-sectional evidence for drug–SNP interactions influencing QT. We did not identify any variants that significantly modified the association between QT and drugs in four therapeutic classes previously associated with QT prolongation. An analysis limited to SNPs with previously identified genome-wide significant main effects yielded similarly null results, as did one restricted to recent pharmacogenomic studies of QT and drug-induced QT prolongation.

It remains unclear how much ‘missing heritability’ future gene–environment interaction studies will explain, as GWA studies of interaction effects are only beginning to emerge. Drug exposure likely represents a good candidate for gene–environment interrogation, as medication use is highly prevalent and pharmacogenomics is one of the few fields in which gene–environment interactions have been consistently replicated across studies. It is also biologically plausible that the human genome contains variants that modify the association between drug exposure and phenotype, as such common variant alleles would have emerged long before the appearance of modern pharmacotherapies.

We chose a well-measured phenotype with biologically plausible pharmacogenomic effects and our drug assessment methods were sensitive and reliable, yet were unable to detect any genome-wide significant interactions. One possible explanation is statistical power. Using stringent genome-wide significance thresholds, we remained underpowered to detect cross-sectional interactions below 6 ms for low prevalence drugs (for example, the sulfonylurea hypoglycemic agents, UAZ CERT and tri/tetracyclic antidepressants analyses). Although 80% power is achieved when a more common drug exposure is examined (for example, thiazides), 3 ms is outside the range of typical genetic effects observed for QT.

Statistical power remains a challenge in gene–environment interaction studies, although the potential utility of longitudinal models to increase power has been shown here and described previously. Increases in power from longitudinal models are due in part to increased precision in outcome measurement; however, when exposure varies over time, power increases are also due to within-person comparisons of the outcome under each drug status. Therefore, longitudinal analyses increase power more than expanding sample sizes when there is variability in exposure over time and minimal concern about time-dependent confounding that would complicate the interpretation of longitudinal estimates. Analyses of drug–gene interaction effects on QT satisfy both conditions. However, longitudinal models remain rare in GWA studies examining both main and interactive effects and likely reflect the considerable computational complexities associated with implementing a longitudinal model that accommodates the scale of a typical GWA study. We are currently developing methods to implement longitudinal analyses on a
Figure 2. Manhattan plots of drug–single-nucleotide polymorphism (SNP) interaction estimates after meta-analysis of summary results from 10 cohorts of European descent. Drug classes are as follows: (a) thiazide diuretics; (b) sulfonylurea hypoglycemic agents; (c) University of Arizona Center for Education and Research on Therapeutics (UAZ CERT)-classified QT-prolonging drugs; and (d) tri/tetracyclic antidepressants.

Table 2. T-distribution meta-analytic P-values from 10 cohorts examining drug–SNP interactions.

Previously identified locus	European index SNP	Alleles	CAF	Interaction P-value	
RNF207	rs846111^{24,25}	C/G	0.28	0.90 0.43 0.67 0.02	
NOS1AP	rs12143842²⁶	T/C	0.25	0.60 0.85 0.11 0.40	
	rs12029454²⁵	A/G	0.15	0.10 0.26 0.87 0.66	
	rs16857031²⁶	C/G	0.87	0.01 0.96 0.98 0.85	
	rs465717B²⁶	T/C	0.25	0.52 0.76 0.15 0.78	
	rs2880055^{23,27}	A/G	0.67	0.84 0.36 0.56 0.62	
	rs10494366²²	T/G	0.64	0.35 0.93 0.25 0.74	
	rs10919071²⁶	A/G	0.87	0.92 0.68 0.66 0.73	
	rs12053902²⁶	T/C	0.68	0.32 0.18 0.93 0.74	
	rs1112795²⁶	A/G	0.24	0.09 0.26 0.95 0.57	
	rs11756438²⁶	A/C	0.48	0.90 0.36 0.24 0.74	
	rs1153730²⁶	T/C	0.50	0.64 0.20 0.80 0.72	
	rs11970286²⁶	T/C	0.47	0.39 0.63 0.70 0.73	
	rs12210819²⁶	C/G	0.06	0.70 0.65 0.28 0.70	
	rs4725982²⁴	T/C	0.22	0.76 0.65 0.28 0.75	
	rs2968664²⁴	T/C	0.76	0.62 0.59 0.44 0.11	
	rs2968663²⁶	T/C	0.24	0.58 0.84 0.17 0.11	
	rs2074238²⁴	T/C	0.06	0.02 0.90 0.18 0.67	
	rs1257623²⁶	T/C	0.13	0.05 0.16 0.98 0.34	
	rs12296050²⁶	T/C	0.18	0.03 0.12 0.64 0.77	
	rs2478333²²	A/C	0.36	0.35 0.15 0.10 0.22	
	rs9804060^{24,25}	T/C	0.50	0.01 0.55 0.03 0.20	
	rs7188697²²	A/G	0.74	0.36 0.39 0.79 0.62	
	rs37062²²	A/G	0.75	0.49 0.39 0.23 0.63	
	LIG3, RFFL	rs2074518²⁴	T/C	0.46	0.29 0.35 0.33 0.86
	rs17779747²⁶	T/C	0.33	0.50 0.90 0.85 0.18	

Abbreviations: CAF, coded allele frequency; SNP, single-nucleotide polymorphism; TCA, tri/tetracyclic antidepressants; UAZ CERT, University of Arizona Center for Education and Research on Therapeutics QT-prolonging agents classification.

^aLimited to 26 SNPs with genome-wide significant effects reported in prior studies of the QT–SNP association among populations of European descent.

^bAll SNPs reported in genome-wide literature are examined. No linkage disequilibrium filter was applied.

^cCoded allele listed first.

^dMeta-analysis was performed on interaction P-values.
patterns of use for the UAZ CERT class (intraclass correlation coefficients estimated in the ARIC study suggest intermittent decades are those least likely to have experienced side effects, as use effects, in which participants taking the drugs for years or of use. It is difficult to gauge the overall influence of duration of

First, we did not address the potential for bias related to duration of use and QT. However, previous simulations indicated that confounding by contraindication has very modest effects on estimates of interaction in pharmacogenomic studies. Third, our results are statistically conservative, given the evidence of understatement of significance for the drug–SNP interaction estimates suggested by Q–Q plots. However, it is unlikely that the bias would be so large as to cause truly genome-significant loci to be reclassified as nonsignificant. Fourth, we relied on medication inventory and pharmacy data to ascertain medication usage. Although neither source of information guarantees exposure, validation studies suggest good agreement between serum drug concentrations and several (for example, thiazide diuretic) exposures ascertained by medication inventory. Pharmacy data appear to be even more accurate in this regard.

Finally, the drug classes considered herein, particularly the UAZ CERT class, combine QT-prolonging drugs that may have heterogeneous mechanisms of action, thereby reducing the sensitivity for detecting SNPs possessing important, population-level interactive effects. However, disagreement among classifications is much lower in the highest ventricular arrhythmia risk category and for older drugs, including the majority of those

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

Atherosclerosis Risk in Communities Study (ARIC): The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung and Blood Institute Contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694, National Human Genome Research Institute Contract U01HG004402, and National Institutes of Health Contract HS268201062526C. We thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant No. UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. Cardiovascular Health Study (CHS): This CHS research was supported by National Heart, Lung, and Blood Institute (NHLBI) Contracts N01-HC-85239, N01-HC-85079–N01-HC-85086; N01-HC-35129, N01-HC-15103, N01-HC-55222, N01-HC-75150, N01-HC-45133, HHSN268201200036C and NHLBI Grants HL080295, HL073566, HL087652 and HL105756, with additional contribution from NINDS. Additional support was provided through AG-023629, AG-15928, AG-02098 and AG-027058 from the NIA. See also http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in

Figure 3. Statistical power of a simulated pharmacogenomics study of QT. The following assumptions were used for the calculations; 2–6 serial visits measuring electrocardiograms (ECGs) and drug exposure, n = 20 000–30 000 participants, a single-nucleotide polymorphism (SNP) minor allele frequency of 0.20, and the prevalence of drug exposure at any one visit of 10%. The solid black lines represent a cross-sectional analysis, the red lines a longitudinal model evaluating drug exposure measured at baseline and repeated ECG measures and the blue lines a longitudinal model with drug exposure and ECG assessed at all visits. (a) Assumes 20 000 participants, with variable number of visits. (b) Assumes four visits, with a variable number of participants.

diuretics (intraclass correlation coefficient = 0.69). Although we can suppose that drugs with intermittent patterns of use are less influenced by selection bias related to duration of use than those characterized by long-term usage patterns, further studies examining the robustness of pharmacogenomic findings to such biases are clearly warranted. Second, confounding by contra-indication could also result from the comorbidities that influence drug use and QT. However, previous simulations indicated that confounding by contraindication has very modest effects on estimates of interaction in pharmacogenomic studies.

Several limitations of this study warrant consideration to inform future efforts examining pharmacogenomic influences on QT. First, we did not address the potential for bias related to duration of use. It is difficult to gauge the overall influence of duration of use effects, in which participants taking the drugs for years or decades are those least likely to have experienced side effects, as they likely differ by drug class. For example, intraclass correlation coefficients estimated in the ARIC study suggest intermittent patterns of use for the UAZ CERT class (intraclass correlation coefficient = 0.39), but long-term usage patterns for thiazide

gene–drug interactions on QT interval using available longitudinal data.

In addition to performing a GWA study of QT-prolonging drug use and QT, as a sensitivity analysis we separately evaluated 26 SNPs previously associated with QT main effects. Restricting interaction analyses to SNPs with replicated main effects is not uncommon in GWA interaction studies, and likely reflects statistical power concerns given the stringent GWA study significance thresholds. Here, we demonstrated that none of the previously identified QT SNPs modified the association between QT-prolonging drug use and QT. This is not surprising, as SNPs selected on the basis of an extreme P-value for a single main effect may be less likely to harbor heterogeneity across population subgroups.

Several limitations of this study warrant consideration to inform future efforts examining pharmacogenomic influences on QT. First, we did not address the potential for bias related to duration of use. It is difficult to gauge the overall influence of duration of use effects, in which participants taking the drugs for years or decades are those least likely to have experienced side effects, as they likely differ by drug class. For example, intraclass correlation coefficients estimated in the ARIC study suggest intermittent patterns of use for the UAZ CERT class (intraclass correlation coefficient = 0.39), but long-term usage patterns for thiazide

genome-wide scale and future work will include re-evaluation of gene–drug interactions on QT interval using available longitudinal data.

In conclusion, our findings suggest that additional efforts are required to realize the potential of pharmacogenomics. In addition to careful selection of the phenotype of interest, researchers interested in pharmacogenomics should increase the number of measures per participant and invest in longitudinal modeling infrastructure scalable to GWA studies to help increase statistical power. Although these cross-sectional analyses do not support strong drug–gene interactions for QT, future efforts incorporating longitudinal modeling are needed to determine whether the reported associations are underpowered or genuinely null.
Drug–gene interactions and the QT interval

CL Avery et al

part by National Center for Research Resources CTSA Grant UL 1R033176, National Institute of Diabetes and Digestive and Kidney Diseases Grant DK063491 to the Southern California Diabetes Endocrinology Research Center and the Cedars-Sinai Board of Governors’ Chair in Medical Genetics (JIR). Framingham Heart Study (FHS): FHS work was supported by the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine (Contract No. N01-HC-25195), its contract with Affymetrix for genotyping services (Contract No. N02-HL-6-4278), based on analyses by FHS investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGa-IL), funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. Measurement of the Gen 3 ECGs was supported by grants from the Doris Duke Charitable Foundation and the Burroughs Wellcome Fund (Newton-Chen) and the NIH (HL080025, Newton-Chen). Health 2000: Supported by the Orion-Farms Research Foundation (KK and KP), the Finnish Foundation for Cardiovascular Research (KK, KP) and the Academy of Finland (Grant Nos. 129494 and 139635 to VS). Health, Aging, Body and Composition (Health ABC). This research was supported by NIH Contracts N01AG26101, N01AG26103 and N01AG26106. The genome-wide association study was funded by NIA Grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping was supported in part by the National Heart Lung and Blood Institute of the NIH, National Institute on Aging, Multi-Ethnic Study of Atherosclerosis (MESA), MESA and MESA SNP Health Association Resource (SHARe) and the Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research Institute for Diseases in the Elderly (RIDE). This study was supported by the Netherlands Genomics Initiative (Netherlands Consortium for Healthy Aging, Body and Composition) (NGI), The Netherlands Organization for Scientific Research (NWO) Project No. 050-060-810. Rotterdam Study (RS): The RS is supported by the Erasmus Medical Center and Erasmus University Rotterdam; The Netherlands Organization for Scientific Research; The Netherlands Organization for Health and Development (ZonMw); the Research Institute for Diseases in the Elderly; The Netherlands Heart Foundation; the Ministry of Education, Culture and Science; the Ministry of Health Welfare and Sports; the European Commission; and the Municipality of Rotterdam. Support for genotyping was provided by The Netherlands Organization for Scientific Research (NWO) (175.010.050.011, 911.03.012) and Research Institute for Diseases in the Elderly (RIDE). This study was supported by The Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) Project No. 050-060-810. This collaborative effort was supported by an award from the National Heart, Lung and Blood Institute (R01-HL-103612, PI BMP). CLA was supported in part by Grant R01-HL-098458 from the National Heart, Lung, and Blood Institute.

REFERENCES

1 Mancinelli L, Cronin M, Sadee W. Pharmacogenomics: the promise of personalized medicine. AAPS PharmSci 2000; 2: E4.
2 Weinsilboum R. Inheritance and drug response. N Engl J Med 2003; 348: 529–537.
3 Phillips RA, Veena DR, Oren E, Lee JK, Sadee W. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 2001; 286: 2270–2277.
4 Wilke RA, Dolan ME. Genetics and variable drug response. JAMA 2011; 306: 306–307.
5 Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353: 717–719.
6 Rietie AE, Wiercenski I, Gonzalez FJ, Trager WF, Korzewka KR. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacoge netics 1994; 4: 39–42.
7 Fellay J, Thompson AJ, Ge D, Gumbs CE, Urban TJ, Shanna KV et al. IPFA gene variants protect against anemia in patients treated for chronic hepatitis C. Nature 2010; 466: 405–408.
8 Paik S, Shah S, Tang G, Kim C, Baker J, Cronin M et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351: 2817–2826.
9 Roden DM, Wilke RA, Kroemer HK, Stein CM. Pharmacogenomics: the genetics of variable drug responses. Circulation 2011; 123: 1661–1670.
10 Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747–753.
11 Daly AK. Genome-wide association studies in pharmacogenomics. Nat Rev Genet 2010; 11: 241–246.
12 Vaidean GD, Schroeder EB, Whitsel EA, Pinrane RJ, Chambless LE, Perkus JS et al. Short-term repeatability of electrocardiographic spatial T-wave axis and QT interval. J Electrocardiol 2005; 38: 139–147.
13 Manson B, Tuna N, Bouchard T, Heston L, Eckert E, Lykken D et al. Genetic factors in the electrocardiogram and heart rate of twins reared apart and together. Am J Cardiol 1989; 63: 606–609.
14 Newton-Chen C, Larson MG, Corey DC, Benjamin EJ, Herbert AG, Levy D et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis. The Framingham Heart Study. Heart Rhythm 2005; 2: 277–284.
15 Pratt CM, Ruberg S, Morganroth J, McNutt B, Woodward J, Harris S et al. Dose–response relation between terfenadine (Seldane) and the QTc interval on the scalar electrocardiogram: distinguishing a drug effect from spontaneous varia bility. Am Heart J 1996; 131: 472–480.
16 Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med 2004; 350: 1033–1022.
17 Mass AJ. The QT interval and torsade de pointes. Drug Saf 1999; 21(Suppl 1): 5–10 (discussion 81–17).
18 Duker JM, Crow RS, Homan PJ, Schouten EG, Folsom AR. Heart rate-corrected QT interval prolongation predicts risk of coronary heart disease in black and white middle-aged men and women: the ARIC study. J Am Coll Cardiol 2004; 43: 565–571.
19 Zhang Y, Post WS, Blasco-Colmenares E, Dalal D, Tomaszela G, Guallar E. Electrocardiographic QT interval and mortality: a meta-analysis. Epidemiology 2011; 22: 660–670.
20 Zhang Y, Post WS, Dalal D, Blasco-Colmenares E, Tomaszela G, Guallar E. QT-interval duration and mortality rate: results from the Third National Health and Nutrition Examination Survey. Arch Intern Med 2011; 171: 1727–1733.
21 Jamshidi Y, Nolte IM, Spector TD, Snieder H. Novel genes for QTc interval. How much heritability is explained, and how much is left to find? Genome Med 2010; 2: 35.
22 Arking DE, Pfeiffer A, Post W, Kao WH, Newton-Chen C, Ikeda M et al. A common genetic variant in the NS151 regulator NOST1 modulates cardiac repolarization. Nat Genet 2006; 38: 644–651.
23 Marroni F, Pfeiffer A, Alchenso YS, Franklin CS, Isaacs A, Pichler I et al. A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations: the EUROSPAN project. Circ Cardiovasc Genet 2009; 2: 322–328.
24 Newton-Chen C, Eggelshelm M, Rice KM, de Bakker PI, Yin X, Estrada K et al. Common variants at ten loci influence QT interval duration in the QTGEN study. Nat Genet 2009; 41: 399–406.
25 Nolte IM, Wallace C, Newhouse SJ, Waggott D, Fu J, Soranzo N et al. Common genetic variation near the phospholamban gene is associated with cardiac repolarization: meta-analysis of three genome-wide association studies. PLoS One 2009; 4: e6138.
26 Pfeiffer A, Sanna S, Arking DE, Muller M, Gatev V, Fuchberger C et al. Common genetic variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet 2009; 41: 407–414.
27 Chambers JC, Zhao J, Terracciano CM, Bezirtz R, Zhang W, Kaba R et al. Genetic variation in SCN10A influences cardiac conduction. Nat Genet 2010; 42: 149–152.
28 Arizona Center for Education and Research on Therapeutics 2011, Drugs that Prolong the QT Interval. CredibleMeds—AZCET: AZ, USA; accessed on December 2012; http://www.azcert.org/.
29 Meiners KL, Knatterud GL, Scam reused TE, Klint CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970; 19(Suppl): 789–830.
30 Multiple Risk Factor Intervention Trial Research Group. Baseline rest electrocardiographic abnormalities, antihypertensive treatment, and mortality in the Multiple Risk Factor Intervention Trial. Multiple Risk Factor Intervention Trial Research Group. Am J Cardiol 1985; 55: 1–15.
31 Viewegh WV, Wood MA. Tricyclic antidepressants, QT interval prolongation, and tor saide of episodes. Psychosomatics 2004; 45: 371–377.
32 Rautaharju PM, Manolio TA, Patsy BM, Borhani NO, Furburg CD. Correlates of QT prolongation in older adults (the Cardiovascular Health Study). Cardiovascular Health Study Collaborative Research Group. Am J Cardiol 1994; 73: 999–1002.
33 Patsy BM, O'Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, Rotter JI et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE)

The Pharmacogenomics Journal (2014), 6 – 13

© 2014 Macmillan Publishers Limited
Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2009; 2: 73–80.

Servin B, Stephens M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 2007; 3: e114.

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 2010; 34: 816–834.

Nothnagel M, Ellinghaus D, Schreiber S, Krawczak M, Franke A. A comprehensive evaluation of SNP genotype imputation. Hum Genet 2009; 125: 163–171.

Der J, Avery CL, Whitsel EA, Stürmer T. Detection and characterization of pharmaco genomic effects in nonrandomized studies—a simulation study of QT-prolonging drug–gene interactions. Pharmacopoeiul Drug Saf 2011; 20: 57.

Chen MH, Yang Q. GWAF: an R package for genome-wide association analyses of family data. Bioinformatics 2010; 26: 580–581.

Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. ProbABEL package for genome-wide association analysis. Bioinformatics 2007; 23: 1294–1296.

Aulchenko YS, Struchalin MV, van Duijn CM. GenABEL: an R library for genome-wide association scans. Bioinformatics 2007; 23: 1294–1296.

Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2009; 2: 73–80.

Gu Q, Dillon CF, Burt VL. Prescription drug use continues to increase: U.S. Prescription drug data for 2007–2008. NCHS Data Brief 2010; 42: 1–8.

The Pharmacogenomics Journal (2014), 6 – 13

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj)