Effect of root interaction on nodulation characteristics and isoflavonoid mechanism of alfalfa in the simulated alfalfa/oat in pots

Yajiao Zhao, Xiaojing Liu ∗, Yong Wu, Changchun Tong

College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China

* Correspondence:
Corresponding Author
E-mail address: liuxj@gsau.edu.cn

Abstract: Rational intercropping is capable of promoting nodulation and facilitating the fixation and utilization of nitrogen (N) of legumes. Isoflavonoid is critical to form root nodules of legumes, whereas the regulation of isoflavonoid over nodulation and N fixation in legume/cereal intercropping remains unclear. In the present study, nutrient solution of different root partitions (e.g., no barrier (A-O), nylon mesh barrier (NA-O), plastic barrier (PA-O) and sole alfalfa (SA)) and nitrogen levels (e.g., 21 and 210 mg L⁻¹ N) were used to delve into the variations of nodulation, N fixation, isoflavonoid content, isoflavonoid synthase (IFS) and nodulation-signaling pathway (NOD) genes in alfalfa. As suggested from the results, the parameters of nodulation and N fixation ability with A-O were all evidently higher than those with PA-O and SA. Formononetin and genistein with A-O had noticeably higher contents than those with PA-T and SA. Daidzein and luteolin with A-O had remarkably higher contents than those with NA-O in the root. IFR 1, IFR 4, NOD 1 and NOD 2 with A-O and NA-O had noticeably higher relative expressions than those with SA and PA-O. IFR 2 and IFR 3 with A-T and NA-T had significantly lower relative expressions than those with PA-O and SA. The nodulation and isoflavonoids met significant positive associations. IFR and NOD genes and TNN and ENN followed significant positive associations. NOD genes and formononetin exhibited extremely significant positive associations. The conclusion was drawn that the closer root interaction between alfalfa and oat, the more effective the nodulation, N fixation ability and isoflavoids content of alfalfa will be. Isoflavonoids primarily affected nodulation and N fixation. The mechanism of isoflavonoids on nodulation and N fixation in alfalfa/oat intercropping was explained that root interaction results in the reduction of environmental N, thereby regulating the relative expressions of IFR genes, elevating the isoflavonoids contents, and up-regulating the relative expressions of NOD genes; as a result, the nodulation and N fixation ability in alfalfa are facilitated.

Keywords: alfalfa/oat intercropping; nodulation; isoflavonoid; genes
Introduction

Facilitative root interactions in mixed cropping systems are critical since they nutritionally improve crops grown in nutrient-poor soils and low-input agro-ecosystems. Among the interactions, legume/cereal intercropping system has been extensively adopted for its ability of nitrogen (N) fixation by legume. The legume may partially transfer symbiotically fixed N to the intercropped cereal, while the cereal is likely to stimulate the N fixation activity of legume. It has been widely evidenced that intercropping can stimulate nodulation growth and N fixation of legume, covering faba bean (Vicia faba L.)/maize (Zea mays L.) intercropping, pea (Pisum sativum L.)/maize intercropping and cowpea (Vigna unguiculata L.)/cotton (Gossypium spp.) intercropping, etc.

Interspecific competitive and depletion N in legume/cereal intercropping system could down-regulate legume “N suppression” effects and facilitate N fixation. This finding was because that the N content in the soil decreases; as a result, the diffusion of O₂ is promoted in the nodule cortex, the respiration rate of nodule is accelerated, and the nitrogenase activity is enhanced. Moreover, the roots can be stimulated to secrete flavonoids (e.g., isoflavonoids) to further form nodules. Isoflavonoids are critical to various plant–microbe interactions. The first effect is exerted in the rhizosphere, in which plants secrete (iso) flavonoids when N in the soil is scarce. Perception of these compounds by rhizobia could activate the transcription of bacterial nodulation genes, thereby leading to the formation of nodulation factors. The second proposed role of (iso) flavonoids during nodulation also took place inside the root, and it was associated with the notable capacity of (iso) flavonoids to inhibit auxin transport. Kobayashi also considered that daidzein and genistein are the major metabolites of soybean roots, and they could induce soybean nodulation. Several studies clearly suggested that the (ios) flavonoids are crucial for nodulation if the bacteria enter the plant, and exogenous (ios) flavonoids are no longer available. Numerous existing studies have been conducted on the relationship between isoflavonoids secreted by roots and nodulation and N fixation in legume/cereal intercropping. However, how isoflavonoids in legume crops have the effect on nodules remains unclear. Isoflavonoid synthase (IFS) is a vital enzyme of isoflavone decomposition pathway, critically regulating the content and composition of isoflavonoids. Accordingly, to ascertain the variations of isoflavonoids contents and IFR and nodulation-signaling pathway (NOD) related genes in legume/cereal intercropping can further explore the regulation of isoflavones on nodulation and N fixation.

Alfalfa (Medicago sativa L.) refers to the crucial perennial legume forage; it can be used to achieve symbiotic N₂ fixation. Alfalfa exhibits the high-yield, rapidly regenerating many new stems after it is harvested; it can also be harvested multiple times in the growing season. For this reason, it is one of the most commonly used species in arid and semi-arid regions. Oat (Avena sativa L.) is considered the most extensively used annual cool-season forage worldwide, which is an important source of nutrition for ruminant livestock. It is applied in animal nutrition since it is a fast growing, palatable, succulent and nutritious fodder crop. Alfalfa/oat intercropping
system is capable of enhancing N use efficiency, light use efficiency and land productivity; thus, it has become a major planting pattern in northern China. Nevertheless, the effects of root interaction on nodulation characteristics and isoflavonoids variations of alfalfa in this model remain unclear. Thus, in the present study, the root interaction intensity in alfalfa/oat intercropping was simulated, and sand culture nutrient solution was used to ascertain the nodulation, N fixation capacity, isoflavonoid content, *IFR* and *NOD* genes related expression of alfalfa with the use of different N treatment and planting systems. This study primarily aimed to elucidate how alfalfa/oat intercropping impacts the variation of isoflavonoids contents, as well as the potential role of isoflavonoids on nodulation in alfalfa, as attempt to create a novel perspective for facilitative root interactions and developing sustainable agriculture.

Results

Nodulation and N fixation of alfalfa

TNN with A-T was significant higher than that with SA and NA-O (*P* < 0.05). ENN, PNW and SNW with A-O were significant higher than those with SA, NA-O and PA-O (*P* < 0.05) (Fig. 1). ENN and PNW with NA-O were significant higher than that with PA-O under N210. SNW with NA-O were significant higher than that with SA and PA-O (*P* < 0.05). NA with SA and NA-O was significant lower than that with A-O, but NA with SA and NA-O was significant higher than that with PA-O (*P* < 0.05). PNF with A-O was significant higher than that with NA-O; PNF with NA-O was significant higher than that with SA and PA-O (*P* < 0.05).

![Fig. 1 Nodulation and N fixation of alfalfa](image)

Note: N21 and N210 represent 21 mg L⁻¹ and 210 mg L⁻¹ nitrogen treatment. SA, A-T, NA-T and PA-T represent sole alfalfa, no barrier, nylon mesh barrier, plastic barrier. TNN, ENN, PNW, SNW, NA and PNF represent total nodule number, effective nodule number, fresh nodule weight per plant, single nodule weight, nitrogenase activity of nodules and nitrogen fixation capacity per plant.
Content of isoflavonoids in alfalfa

Fig. 2 for peak time of daidzein, luteolin, formononetin and genistein. In Table 1, the contents of daidzein and luteolin in stem and leaf, and those with SA and PA-O in root were not detected. The content of daidzein and luteolin with A-O was significantly higher than that with NA-O in the root ($P < 0.05$). The content of formononetin with A-O was significantly higher than that with SA and NA-O, and the content of formononetin with NA-O was significantly higher than that with PA-O in stem and leaf ($P < 0.05$). The content of formononetin with A-O was significantly higher than that with PA-O in root ($P < 0.05$). The content of genistein with A-O was significantly higher than that with PA-O ($P < 0.05$).

Fig. 2 Peak time of daidzein, luteolin, formononetin and genistein

	Stem and leaf	Root						
	Daidzein	Luteolin	Formononetin	Genistein	Daidzein	Luteolin	Formononetin	Genistein
N210								
SA	---	---	26.93±1.44	2.86±0.23	---	---	---	---
A-O	---	---	42.67±1.41	11.57±0.61	78.40±5.98	9.14±0.75	4.48±0.37	75.05±2.85
NA-O	---	---	30.75±0.71	6.11±0.40	29.45±4.33	2.85±0.25	2.71±0.20	65.59±1.02
PA-O	---	---	24.92±0.9c	2.91±0.16	---	---	0.48±0.30	49.04±1.34
N21								
SA	---	---	32.75±0.78	4.63±0.50	---	---	---	---
A-O	---	---	50.00±0.79	12.72±1.44	112.20±4.61	23.23±0.98	9.98±0.33	81.17±2.45
NA-O	---	---	34.76±1.06	6.77±0.44	75.88±2.50	12.32±1.22	9.92±0.38	74.53±1.11
PA-O	---	---	30.32±1.08	4.06±0.33	---	---	3.46±0.61	68.55±1.26

Note: N21 and N210 represent 21 mg L$^{-1}$ and 210 mg L$^{-1}$ nitrogen treatment. SA, A-T, NA-T and PA-T represent sole alfalfa, no barrier, nylon mesh barrier, plastic barrier.

Expression of isoflavonoid and N-fixed related genes in alfalfa

To unravel the underlying molecular mechanism of the stimulatory effects of different alfalfa and oat cropping systems on alfalfa nodulation, we analyzed expression patterns of a series of key genes regulating isoflavonoids (Fig. 3) and nodulation (Fig. 4) in alfalfa. The relative expressions of IFR 1 and IFR 4 with A-O were significantly higher than those with NA-O, and the relative expressions of IFR 1 and IFR 4 with NA-O were significantly higher than those with SA and PA-O ($P < 0.05$). The relative expression of IFR 1 with SA was significantly higher than that
with PA-O under N210 ($P < 0.05$). The relative expression of IFR 4 with PA-O was significantly higher than that with SA in root under N21 ($P < 0.05$). The relative expressions of IFR 2 and IFR 3 with SA were significantly higher than those with PA-O, and the relative expressions of IFR 2 and IFR 3 with PA-O were significantly higher than those with NA-O and A-O ($P < 0.05$). The relative expressions of IFR 2 under N210 and N21 and IFR 3 under N210 with NA-O were significantly higher than those with SA ($P < 0.05$).

Fig. 3 Expressions of IFR 1, IFR 2, IFR 3 and IFR 4 in different parts of alfalfa

Note: N21 and N210 represent 21 mg L$^{-1}$ and 210 mg L$^{-1}$ nitrogen treatment. SA, A-T, NA-T and PA-T represent sole alfalfa, no barrier, nylon mesh barrier, plastic barrier. Bars represent mean values of 3 independent biological replicates ± standard error.

The relative expressions of NOD 1 and NOD 2 with A-O and NA-O were significantly higher than those with SA and PA-O ($P < 0.05$). The relative expression of NOD 2 with A-O was significantly higher than that with NA-O except that in root under N21 ($P < 0.05$).

Fig. 4 Expressions of NOD 1 and NOD 2 in different parts of alfalfa

Note: N21 and N210 represent 21 mg L$^{-1}$ and 210 mg L$^{-1}$ nitrogen treatment. SA, A-T, NA-T and PA-T represent sole alfalfa, no barrier,
nylon mesh barrier, plastic barrier. TNN, ENN, PNW, SNW, NA and PNF represent total nodule number, effective nodule number, fresh nodule weight per plant, single nodule weight, nitrogenase activity of nodules and nitrogen fixation capacity per plant. Bars represent mean values of 3 independent biological replicates ± standard error.

Correlation analysis of nodulation, isoflavonoids and genes

The parameters of nodulation (TNN, ENN, PNW, SNW, NA and PNF) and the parameters of isoflavonoids (daidzein, luteolin, formononetin and genistein) had extremely significant positive correlation ($P < 0.01$) except genistein in stem and leaf (Table 2). The correlation coefficient between formononetin in stem and leaf and ENN was the highest (0.904).

IFR 2 or IFR 3 had negative correlation with the parameters of nodulation (Table 3). And other parameters were positive correlation. The related genes except IFR 2 in root and TNN, the all related genes and ENN, the related genes except IFR 2 and NOD 2 in stem and leaf and NA or PNF were all extremely significant correlation ($P < 0.01$). The correlation coefficient between IFR 4 in stem and leaf and ENN, NOD 1 in root and PNF were the highest (0.83).

IFR 1 and formononetin, NOD 1 and formononetin, NOD 2 and formononetin were all extremely significant positive correlation ($P < 0.01$) (Table 4). IFR 3 and daidzein, IFR 3 and luteolin were all extremely significant negative correlation ($P < 0.01$).

| Table 2 Correlation analysis between nodulation and isoflavonoids of alfalfa |
|-----------------------------------|------|------|------|------|------|------|
| | TNN | ENN | PNW | SNW | NA | PNF |
| Daidzein - Root | 0.755**| 0.843**| 0.753**| 0.543**| 0.757**| 0.764**|
| Luteolin - Root | 0.719**| 0.817**| 0.795**| 0.611**| 0.767**| 0.832**|
| Formononetin - Stem and leaf | 0.830**| 0.904**| 0.866**| 0.673**| 0.826**| 0.884**|
| Formononetin - Root | 0.583**| 0.681**| 0.798**| 0.783**| 0.804**| 0.820**|
| Genistein - Stem and leaf | 0.826**| 0.901**| 0.742**| 0.476* | 0.714**| 0.758**|
| Genistein - Root | 0.736**| 0.800**| 0.803**| 0.712**| 0.732**| 0.785**|

Note: TNN, ENN, PNW, SNW, NA and PNF represent total nodule number, effective nodule number, fresh nodule weight per plant, single nodule weight, nitrogenase activity of nodules and nitrogen fixation capacity per plant.

| Table 3 Correlation analysis between nodulation and genes of alfalfa |
|-----------------------------------|------|------|------|------|------|------|
| | TNN | ENN | PNW | SNW | NA | PNF |
| IFR 1 - Stem and leaf | 0.598**| 0.731**| 0.749**| 0.637**| 0.740**| 0.792**|
| IFR 1 - Root | 0.746**| 0.808**| 0.526**| 0.238 | 0.578**| 0.537**|
| IFR 2 - Stem and leaf | -0.632**| -0.744**| -0.368 | -0.031| -0.380 | -0.393 |
| IFR 2 - Root | -0.443* | -0.571**| -0.279 | -0.059| -0.184 | -0.275 |
| IFR 3 - Stem and leaf | -0.692**| -0.801**| -0.507* | -0.223| -0.534**| -0.529**|
| IFR 3 - Root | -0.662**| -0.785**| -0.516**| -0.276| -0.585**| -0.543**|
| IFR 4 - Stem and leaf | 0.718**| 0.830**| 0.773**| 0.559**| 0.689**| 0.805**|
| IFR 4 - Root | 0.709**| 0.806**| 0.614**| 0.357 | 0.624**| 0.645**|
| NOD 1 - Stem and leaf | 0.677**| 0.810**| 0.490* | 0.215 | 0.609**| 0.528**|
| NOD 1 - Root | 0.725**| 0.813**| 0.807**| 0.663**| 0.808**| 0.830**|
| NOD 2 - Stem and leaf | 0.694**| 0.777**| 0.460* | 0.173 | 0.499* | 0.471* |
| NOD 2 - Root | 0.639**| 0.745**| 0.650**| 0.486* | 0.725**| 0.687**|
Discussions

Legume/cereal intercropping can enhance N fertilizer utilization efficiency, which is characterized by high yield and low consumption18. In legume/cereal intercropping systems, the reliance on symbiotic N\textsubscript{2} fixation is enhanced as a result of a strong competition for soil mineral N by the intercropped cereal. The N competition in intercropping is primarily achieved by root interaction. The root separation method was adopted here to clarify the effect of root interaction on nodulation and N fixation of alfalfa and the regulation of isoflavones on nodulation and N fixation. In this study, the nodulation (TNN, ENN, PNW and SNW) and N fixation (NA and PNF) under normal N level were higher than those under low N level of alfalfa. It was therefore suggested that low N level could promote the nodule and N fixation of alfalfa. It has also been confirmed in other studies that the nodulation and N fixation of legumes were largely affected by the N concentration, namely, the lower N concentration, the higher the nodulation and N fixation ability will be19. Compared with NA-O, nodulation and N fixation of alfalfa increased significantly with A-O. When the roots of the two crops with A-O, they can directly compete and exchange environment N through connection of Rhizobia or interception of root surface area. However, the competition and exchange of N with NA-O were achieved primarily through mass flow and diffusion20. Accordingly, the N compete ability with A-O was more robust than that with NA-O of oat, and the nodulation and N fixation with A-O was stronger than that with NA-O of alfalfa. Meantime, the nodulation and N fixation with NA-O of alfalfa were more obvious than those with PA-O and SA, since PA-O and SA had no root interaction, and N exchange could not take place. It was therefore indicated that the nodulation and N fixation of alfalfa increased with the rise in root interaction. Some scholars also consider that legume/cereal intercropping cannot up-regulate the amount of N fixation21, whereas the majority of scholars consider that legume/cereal intercropping can facilitate the nodulation and N fixation of legume2,22. Furthermore, this promotion ability is determined by the combination of crops and cultivation methods23.

Isoflavonoids refer to the major signal components of legume root extracts24. In the present study, in the roots, daidzein and luteolin contents with A-O were noticeably larger than those with NA-O, and those with no PA-O and SA detected. Formonononetin and genistein contents with A-O were obviously larger than those with
PA-O and SA in different parts. All of these findings revealed that alfalfa/oat intercropping gave rise to the differences of isoflavonoids contents in alfalfa; the closer the root interaction, the higher the isoflavonoids contents will be. Meantime, daidzein, luteolin, formononetin and genistein all displayed positive correlations with nodulation and N fixation, suggesting that isoflavonoids contents evidently impacted root nodules in alfalfa. This result was achieved because isoflavonoids participate in the signaling exchange between roots of legumes and N-fixing rhizobia, and they can promote division of cortical cells during nodule formation by hindering auxin transport. Ferguson\(^{25}\) also reported that genistein application could enhance nitrogenase activity, thus, protein content enhancement could be attributed to hastened N fixation. As revealed from the results of Dolatabadian’s experiment, the genistein used elevated nodule number and nodule weight, as well as nitrogenase activity\(^{26}\). In brief, root interaction considerably up-regulated the isoflavonoids contents, and isoflavonoids are indispensable for nodulation in alfalfa.

The existing research primarily focuses on the necessity and evidence of isoflavonoids in legume nodulation, whereas isoflavonoids exert less effect in legume, especially in the field of gene research\(^{13}\). To delve into the nodulation and N fixation mechanism in alfalfa/oat intercropping, the IFR and NOD related genes were detected. As suggested from the results, the relative expressions of IFR 1, IFR 4, NOD 1 and NOD 2 with A-T were evidently higher than those with PA-T and SA, while the relative expressions of IFR 2 and IFR 3 exhibited opposite performance. It is therefore suggested that root interaction exerted noticeable regulatory effect on IFR and NOD genes, thereby affecting the isoflavonoids contents and nodulation characteristics in alfalfa. The correlation revealed that IFR genes were closely correlated with TNN and ENN, IFR 1, IFR 3 and IFR 4 were tightly associated with NA and PNF. It can also be demonstrated that IFR can significantly regulate the nodules formation of alfalfa, and IFR 1, IFR 3 and IFR 4 can significantly regulate alfalfa N fixation ability. Subramanian\(^{27}\) also considered that during soybean nodulation, isoflavonoids are necessary as inducers of nodulation genes in roots, and they are critical to determine the degree of nodulation. The relative expressions of NOD genes with A-T were obviously higher than those with PA-T and SA. This finding complies with the nodulation, N fixation and isoflavonoids contents, because the N competition in intercropping system is more intense under nutrient stress. To fix more N, the relative expression of NOD genes as the signal material of nodulation was up-regulated\(^{28}\). Moreover, NOD genes in root were positively correlated with nodulation and N fixation, while NOD genes displayed positive associations with daidzein, luteolin and formononetin. It is therefore demonstrated that the isoflavonoids in alfalfa are the main inducers of NOD genes expression. Subramanian et al.\(^{13}\) also reported that isoflavonoids are critical to endogenous NOD gene induction in the determinate legume. For this reason, the essential effect exerted by isoflavonoids in alfalfa nodulation is associated with their effects in NOD gene induction.

Conclusions

In alfalfa/oat intercropping, the closer root interaction between alfalfa and oat,
the more effective the nodulation, N fixation ability and isoflavoids content of alfalfa will be. Isoflavonoids primarily affected nodulation and N fixation. The mechanism of isoflavonoids on nodulation and N fixation in alfalfa/oat intercropping was explained that root interaction results in the reduction of environmental N, thereby regulating the relative expressions of IFR genes, elevating the isoflavonoids contents, and up-regulating the relative expressions of NOD genes; as a result, the nodulation and N fixation ability in alfalfa are facilitated.

Materials and Methods

Experimental Materials

Alfalfa, LW6010, was provided by college of Pratacultural Science, Gansu Agricultural University (GAU), China. Oat, Haywire, was provided by Beijing Clover Company, China. The rhizobium (Bradyrhizobium japonicum), Sinorhizobium meliloti (12531), was provided by GAU, China.

Experimental Design

In order to prevent the effect of precipitation on the N concentration in the experiment, it was carried out in the growth chamber (light at 28℃/14 h and darkness at 20 ℃/10 h, light intensity was 260–350 mol m⁻² s⁻¹, and relative humidity was 60%–70%) at Gansu Agricultural University, Lanzhou, China. In order to provide an accurate and stable N environment, and reduce root nodule abscession and RNA degradation though rapid and complete root sampling, nutrient solution sand culture method was used. Nutrient solution sand culture method was conducted with sand culture (25 kg pot⁻¹ sand washed clean by distilled water) with 5 cropping systems in plastic pots (47 cm diameter, 40 cm height) under 2 N treatments. The 2 N treatments were (1) the low N level, 21 mg N L⁻¹ as mixed N source of Ca(NO₃)₂ and (NH₄)₂SO₄ (N21), (2) the medium N level (appropriate nitrogen levels of alfalfa), 210 mg N L⁻¹ as mixed N source of Ca(NO₃)₂ and (NH₄)₂SO₄ (N210). Hoagland-Arnorn solution as the basic nutrient solution was used in the N21 and N210 nutrient solutions, and the ration of NO₃⁻ -N: NH₄⁺ -N was 1:1. The 5 cropping systems were (1) alfalfa as a monoculture (SA), (2) oat as a monoculture (ST), (3) alfalfa/oat intercropping with no barrier (A-O), (4) alfalfa/oat intercropping with nylon mesh barrier (NA-O), (5) and alfalfa/oat intercropping with plastic barrier (PA-O). Plastic pots were cut in the middle, separated into two compartments and then placed nylon mesh (diameter of 0.2 mm) or plastic film in the middle, and then reconstructed. The A–O planting pattern had no artificial physical barrier between alfalfa and oat, allowing water and nutrients to exchange and possible root interaction between alfalfa and oat. NA–O planting pattern obstructed overlapping of alfalfa roots with oat roots but allowed water and nutrients to exchange through the nylon meshes. The PA–O planting pattern preventing water and nutrients exchanged between alfalfa and oat and with no overlapping of alfalfa roots with oat roots. There were 3 replications in each treatment.

The seeds of alfalfa and oat were chosen and disinfected, and then were planted
in separated one side of plastic pots filled with sand. When the alfalfa and oat grew to 3 cm in height, healthy seedlings were kept in each plastic pot with the rest removed by hand. Sole alfalfa and sole triticale kept 20 seedlings, no barrier, nylon mesh barrier and plastic barrier of alfalfa and triticale kept 10 seedlings, respectively. Seven days after alfalfa seedlings emergence, two levels of N nutrient solution (1000 mL per pot) were added to the pots, and then rhizobium (Sinorhizobium meliloti, 12531, provided by College of Pratacultural Science, GAU) liquid was inoculated (50 mL per pot, OD600 between 0.63 to 0.64). Sand was rinsed with distilled water and nutrient solution was replaced once a week. Distilled water (1 L) was slowly added in each pot (prevent salt ion accumulation) in each time. Then pots with plants were rinsed with distilled water for 12 h, and then added nutrient solution (2 L pot⁻¹). Distilled water was supplemented every day to the location of the nutrient solution for the first time. Sowing date for alfalfa was 1 March 2018; and sowing date for oat was 23 March 2018; and harvest date for alfalfa and oat was 13 July 2018 (flowering stage of alfalfa). The original source of method descriptions should be clearly acknowledged and cited. The method descriptions were cited from Zhao's research which is our team's preliminary research³⁰.

Measured parameters

Plant dry matter weight and N accumulate

During the sampling period, the whole 5 plants of alfalfa and oat were selected from each pot for whole plant dry matter. 3 pots were taken for each treatment. Whole plant dry weight (PDW, mg plant⁻¹): put fresh samples in 105°C oven for 15 min and then put them in 60~70°C oven until a constant weight.

Plant nitrogen content (PNC) was determined by Kjeldahl procedure after digestion in a mixture of concentrated H₂SO₄ and H₂O₂³¹. Powdered sample was digested in the Kjeldahl digestion flask by boiling with H₂SO₄-H₂O₂ until the mixture became clear. The digested liquid was filtered and volume. Ammonia was steam distilled from the digest to which NaOH solution was added. The distillate was collected in a conical flask containing HCl and red methyl indicator. The ammonia that was distilled into the receiving conical flask reacted with the acid and the excess acid in the flask was estimated by back titration against NaOH with color change from red to yellow (end point). Determinations were made on all reagents alone (blank determinations). N (%) was calculated as [(ml standard acid × N of acid) - (ml blank × N of base)] × (ml std base × N of base) × 1.4007/ Weight of sample in grams × 100%. Plant N accumulation (PNA, mg plant⁻¹) = PNC × PDW.

Nodulation

Roots were rinsed with distilled water, and absorbed residual water with absorbent paper, then removed the nodules quickly. All fresh nodules were detached from the roots to collect, and then counted and weighted. Nodulation, including total nodule number (TNN), effective nodule number (ENN), fresh nodule weight per plant
(PNW), single fresh nodule weight (SNW) of alfalfa, was measured. At the time of sampling, some nodules are pink; they can effectively fixing N, so they are called “effective nodules”. In addition, some nodules are white or brown, which may be immature or aging, so they are called “non-effective nodules”. The TNN is the sum of ENN and ineffective nodule number. The ratio of ENN to TNN was calculated.

Nitrogenase activity

The nitrogenase activity (NA) was measured by the acetylene reduction assay32. Weigh fresh nodules about 0.2 g into a 7 ml glass bottle, seal with a rubber stopper. 10% volume of air was removed and replaced with an equal volume of acetylene. After 30 min at room temperature, duplicate 25 µL gas samples were removed and analyzed by gas chromatography for peak of ethylene and acetylene. The standard curve of ethylene was determined and measured under standard conditions using standard ethylene to calculate the nitrogenase activity of the nodule sample. The instrument was the GC-7890F gas chromatograph with column temperature of 180 °C, sampler of 150 °C, and FID detector of 170 °C. Gas pressure: N\textsubscript{2} is 0.3 mPa, H\textsubscript{2} is 0.08 mPa, and air is 0.15 mPa. C\textsubscript{2}H\textsubscript{4} level (\(\mu\)mol g-1 h-1) = hx (sample peak area) \times C (standard C\textsubscript{2}H\textsubscript{4} level, µmol mL-1) / hs (standard C\textsubscript{2}H\textsubscript{4} peak area) \times 24.9 \times t (C\textsubscript{2}H\textsubscript{2} reaction time, h) \times m (tumor weight, g). N fixation capacity (umol h-1) = NA \times SNW.

Content of isoflavonoids

1g of hay sample was accurately weighed (having been powdered and screened for 1mm). Subsequently, 20 ml of methanol solution was added and soaked for 6 h, extracted by ultrasound for 30 min, and then filtered through filter paper. The filter residue was collected again, and 20ml of methanol solution was added. The mixture solution was ultrasonically treated for 20min and filtered with filter paper. The two filter solutions were mixed and spin-dried in vacuum at 30 °C. The crude extract was dissolved in methanol to 10ml and filtered with 0.22 µm PTFE membrane for HPLC analysis.

Preparation of standard curve: the quality of standard products (daidzein, luteolin, formononetin, genistein) was accurately weighted, and then the products were dissolved in methanol to prepare standard solution at a certain concentration. The chromatographic peak area of each component was ascertained using the automatic injector. The injection quality of the standard and the corresponding peak area acted as the standard curve.

The column applied in the experiment was Synergi 4U hydro RP 80A (250 mm \times 4.6 mm ID). Mobile phase A was pure methanol, while B was ultra-pure water. The elution conditions included: 30% ~ 40% (5 min) \rightarrow 40% ~ 60% (10 min) \rightarrow 60% ~ 90% (25 min) \rightarrow 90% (29 min) \rightarrow 90% ~ 30% (34 min) \rightarrow 30% (37 min) \rightarrow stop elution (37 min). The determining conditions of liquid chromatography included: wavelength 270 nm, column temperature 30 °C, flow rate at 0.9 ml min-1, and period for 45 min. Detection wavelength: 254 nm. Under the selected chromatographic
conditions, the chromatograms of isoflavonoid (1000 ng ml\(^{-1}\)) and the sample to be tested were generated. The detection limit reached 10 ng ml\(^{-1}\). The target flavonoids were ascertained according to the retention time. The content of isoflavonoids was calculated using external standard method. Ethanol and methanol were of HPLC grade, while all the other chemicals were of analytical grade.

Quantitative Real-time PCR Analysis of isoflavonoids

For quantitative analysis, 3 independent biological replicates of stem and leaf and root samples of alfalfa from three different pots for each treatment were harvested. The each provided sample obtained from the different alfalfa plants in each pot, frozen in liquid N, and kept at \(-80\ ^\circ\text{C}\) for further analyses. Total RNA extraction was isolated using TransZOL method. The concentration of the total RNA was determined by ultra-micro UV spectrophotometer (Quawell-Q5000, USA). Five grams of total RNA were used to synthesize cDNA by reverse transcriptase powescipt\™ (Hiscript II Q Sellect RT SuperMix for qPCR (+ gDNA wiper) test kit; Vazyme; China) following the manufacturer’s protocol. The cDNA samples were used as template to quantify the target gene expression levels (quantitative real-time PCR) by ChamQ SYBR Color qPCR Master Mix Test Kit (Vazyme, China) following the manufacturer’s protocol.

According to the *Medicago truncatula* gene information (NCBI/GenBank accession NO. MTR_5g020760 for *IFR* 1; MTR_5g020800 for *IFR* 2; MTR_8g071130 for *IFR* 3; MTR_4g070340 for *IFR* 4; MTR_8g020840 for *Nod* 1; MTR_3g072710 for *Nod* 2; MTR_8g098715 for 18s), we designed the primers for each gene, where *IFR* 1, *IFR* 2, *IFR* 3 and *IFR* 4 are isoflavonoids reeducate genes, *NOD* 1 and *NOD* 2 are nodulation genes (Table 5).

Name	Accession NO.	Sequence
IFR 1	MTR_5g020760	F: 5'-CACGAGGCAGTTGAGCCAGTTAG-3' R: 5'-ACGTCGAGTTGAGCCAAGTTACG-3'
IFR 2	MTR_5g020800	F: 5'-CACGAGGCAGTTGAGCCAGTTAG-3' R: 5'-ACGTCGAGTTGAGCCAAGTTACG-3'
IFR 3	MTR_8g071130	F: 5'-ATGGTTGTTCACGAGACCTCAGTG-3' R: 5'-ACGGCAATGCACTAGGCTTAAGAG-3'
IFR 4	MTR_4g070340	F: 5'-TCGATGTTTCAGTGTCCGTGT-3' R: 5'-CAGCCAGACAAATGGCAAGTCC-3'
NOD 1	MTR_8g020840	F: 5'-TGTCTGTGCTCAGTTCAGGTTGC-3' R: 5'-GCTCCATGCCTCTCAACACCTTC-3'
NOD 2	MTR_3g072710	F: 5'-TCAGAGCCAAATCAAGCCCATCAGTG-3' R: 5'-TGTTGACCCTGTTGTTGGAAGC-3'

Statistical analysis

Data were analyzed using Statistical Analysis Software (SPSS software, 17.0, SPSS Institute Ltd, USA) with the standard split-plot design analysis method to test
for significance of treatments, and means were compared by least significance difference (LSD). Where indicated, the results are expressed as mean values (±SE) from three independent experiments. Harvest period, N treatment and cropping system were considered as fixed effects and replication as random effects. All significances were declared at the probability level of 0.05.

Guidelines statement

I statement that our experimental research and field studies on plants are complied with relevant institutional, national, and international guidelines and legislation.

REFERENCE

1. Li, L., et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. *P. Natl. Acad. USA* 104, 11192–11196, 10.1073/pnas.0704591104 (2007).
2. Li, Y. L., et al. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N₂ fixation of faba bean. *Plant Soil* 323, 295–308, 10.1007/s11104-009-9938-8 (2009).
3. Xiao, Y., Li, L. & Zhang, F. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect ¹⁵N techniques. *Plant Soil* 262, 45–54, 10.1023/b.plso.000037019.34719.0d (2004).
4. Fan, F., et al. Nitrogen fixation of faba bean (*Vicia faba* L.) interacting with a non-legume in two contrasting intercropping systems. *Plant Soil* 283, 275–286, 10.1007/s11104-006-0019-y (2006).
5. Hu, F., et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. *Plant Soil* 412, 235–251, 10.1007/s11104-016-3063-2 (2016).
6. Rusinamhodzi, L., Murwira. H. K. & Nyamangara, J. Cotton–cowpea intercropping and its N₂ fixation capacity improves yield of a subsequent maize crop under Zimbabwean rain-fed conditions. *Plant Soil* 287, 327–336, 10.1007/s11104-006-9080-9 (2006).
7. Zhang, G., Yang Z. B. & Dong, S. T. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. *Field Crop. Res.* 124, 66–73, 10.1016/j.fcr.2011.06.006 (2011).
8. Liu, Y. C., et al. Intercropping influences component and content change of flavonoids in root exudates and nodulation of Faba bean. *J. Plant Interact.* 12, 187–192, 10.1080/17429145.2017.1308569 (2017).
9. Fisher, R. F. & Long, S. R. Rhizobium–plant signal exchange. *Nature* 357, 655–660, 10.1038/357655a0 (1992).
10. Mulligan, J. T. & Long, S. R. A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. *Genetics* 122, 7-18, 10.1101/gad.3.5.729 (1989).
11. Taylor, L. P. & Grotewold, E. Flavonoids as developmental regulators. *Curr. Opin. Plant Biol.* 8, 317–323, 10.1016/j.pbi.2005.03.005 (2005).
12. Kobayashi, H., et al. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in *Rhizobium* sp. NGR234. *Mol. Microbiol.* 51, 335–347, 10.1046/j.1365-2958.2003.03841.x (2004).
13. Subramanian, S., Stacey, G. & Yu, O. Distinct, crucial roles of flavonoids during legume nodulation. *Trends Plant Sci.* 12, 282–285, 10.1016/j.tplants.2007.06.006 (2007).
14. Loh, J., et al. Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. *P. Natl. Acad. USA* 99, 14446–14451, 10.1073/pnas.222336799 (2002).
15. Dai, H. & Jia, G. Effects of Se on the growth, tolerance, and antioxidative systems of three alfalfa cultivars. *Environ. Sci. Pollut. R.* 24, 1–6, 10.1007/s11356-017-9137-8 (2017).
16. Brink, G.E., Sanderson, M.A. & Casler, M.D. Grass and legume effects on nutritive value of complex forage
mixtures. *Crop Sci.* **55**, 1329–1337, 10.2135/cropsci2014.09.0666 (2015).

17. Andrzejewska, J., et al. Performance of oat (*Avena sativa* L.) sown in late summer for autumn forage production in Central Europe. *Grass Forage Sci.* 1-7, 10.1111/gfs.12400 (2018).

18. Kermah, M., et al. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. *Field Crop Res.* **213**, 38–50, 10.1016/j.fcr.2017.07.008 (2017).

19. Salvagiotti, F., et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. *Field Crop. Res.* **108**, 1–13, 10.1016/j.fcr.2008.03.001 (2008).

20. Li, B., et al. Mixed cropping with maize combined with moderate UV-B radiations lead to enhanced flavonoid production and root growth in faba bean. *J Plant Interact* 7, 1–8, 10.1080/17429145.2012.714407 (2012).

21. Van Kessel, C. & Hartley, C. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? *Field Crop. Res.* **65**, 165–181, 10.1016/s0378-4290(99)00085-4 (2000).

22. Andersen, M. K., et al. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. *Plant Soil* **266**, 273–287, 10.1007/s11104-005-0997-1 (2005).

23. Pang, J., et al. Commensalism in an agroecosystem: hydraulic redistribution by deep-rooted legumes improves survival of a droughted shallow-rooted legume companion. *Physiol. Plantarum* **149**, 79–90, 10.1111/plp.12020 (2013).

24. Kossiak, R. M., et al. Strain-specific inhibition of nod gene induction in Bradyrhizobium japonicum by flavonoid compounds. *App. Environ. Microbiol.* **56**, 1333–1341, 10.1007/BF01200945 (1990).

25. Ferguson, B. J. & Gresshoff, P. M. Physiological implications of legume nodules associated with soil acidity. *Associated with Soil Acidity*: 113–125, 10.1007/978-3-319-6212-9_6 (2015).

26. Dolatabadian, A., et al. Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress. *World J. Microb. Biot.* **29**, 1327–1339, 10.1007/s11274-013-1296-2 (2013).

27. Subramanian, S., Stacey, G. & Yu, O. Endogenous isoflavones are essential for the establishment of symbfFRis between soybean and Bradyrhizobium japonicum. *Plant J.* **48**, 261-273, 10.1111/j.1365-313X.2006.02874.x (2006).

28. Li, B., et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. *Proc Natl Acad. Sci. USA* **113**, 6496–6501, 10.1073/pnas.1523580113 (2016).

29. Li, S. M., Li, L., Zhang, F. S., Tang, C. Acid phosphatase role in chickpea/maize intercropping. *Ann. Botan.* **94**, 297–303, 10.1093/aob/mch140 (2004).

30. Zhao, Y. J., et al. Efficient of root interaction on nodulation and nitrogen fixation ability of alfalfa in the simulated alfalfa/tefficale intercropping in pots, *Sci. Rep.*, 10, 1008-1019, (2020).

31. Magomya, A. M., Kubmarava, D. and Ndahi, J. A. Determination of plant proteins via the Kjeldahl method and amino acid analysis: a comparative study. *Int. J. Sci. Technol. Rese Volume*. **3**, 68-72 (2014).

32. Tang, C., et al. Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of *Medicago truncatula* L. *Ann. Botany* **88**, 131-138, 10.1006/anbo.2001.1440 (2001).

Acknowledgements

The authors thank Weibiao Liao at Gansu Agricultural University for his suggestions and English correction. The authors also thank a reviewer for suggesting the principle component analysis.

Author Contributions
XL took part in designing the experiment and participated in drafting the work; YZ conceived and designed the experiment, conducted it and acquired the data, analyzed the data and wrote the manuscript; CT and YW helped experiment test.

Funding

This work was supported by National Natural Science Foundation of China (31460622) and special funds for discipline construction (GAU-XKJS-2018-008).

Additional Information

Competing interests: The author(s) declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.