Sex in Symbiodiniaceae dinoflagellates: genomic evidence for independent loss of the canonical synaptonemal complex

Sarah Shah1,2,3, Yibi Chen1,2,3, Debashish Bhattacharya4 & Cheong Xin Chan1,2,3✉

Dinoflagellates of the Symbiodiniaceae family encompass diverse symbionts that are critical to corals and other species living in coral reefs. It is well known that sexual reproduction enhances adaptive evolution in changing environments. Although genes related to meiotic functions were reported in Symbiodiniaceae, cytological evidence of meiosis and fertilisation are however yet to be observed in these taxa. Using transcriptome and genome data from 21 Symbiodiniaceae isolates, we studied genes that encode proteins associated with distinct stages of meiosis and syngamy. We report the absence of genes that encode main components of the synaptonemal complex (SC), a protein structure that mediates homologous chromosomal pairing and class I crossovers. This result suggests an independent loss of canonical SCs in the alveolates, that also includes the SC-lacking ciliates. We hypothesise that this loss was due in part to permanently condensed chromosomes and repeat-rich sequences in Symbiodiniaceae (and other dinoflagellates) which favoured the SC-independent class II crossover pathway. Our results reveal novel insights into evolution of the meiotic molecular machinery in the ecologically important Symbiodiniaceae and in other eukaryotes.

Sex is part of the life cycle of nearly all eukaryotes and has most likely been so since the last eukaryotic common ancestor1. Even lineages that were traditionally thought to be asexual, such as the Amoebozoa, possess the molecular machinery required for sex2. Dinoflagellates, a group of flagellated, mostly marine phytoplankton, are no exception. From the deeper-branching species Gymnodinium catenatum to the more recently-diverging Alexandrium minutum, syngamy and meiosis have been observed cytologically and through mating-type experiments3. The family Symbiodiniaceae, a lineage that branches between these two4, has been suggested to be sexual based on an early life-cycle description5. Some species of Symbiodiniaceae are symbionts, associated with a wide range of coral reef organisms, including cnidarians, molluscs, and foraminifera. Importantly, the dissociation of Symbiodiniaceae from reef-building corals under environmental stress (i.e., coral bleaching) can lead to coral death and eventual collapse of coral reefs6. A thorough understanding of the molecular mechanisms that underpin the reproduction of Symbiodiniaceae will elucidate the selective forces acting on this trait and adaptation of these ecologically important taxa.

Incongruence between the phylogenies of multiple isoenzymes and the internal transcribed spacer (ITS) regions7, and between the phylogenies of organellar and nuclear gene markers8 suggests that Symbiodiniaceae undergo hybridisation, in addition to clonal propagation. The identification of many meiotic toolkit genes in four diverse Symbiodiniaceae species (Symbiodinium microadriaticum, Breviolum minutum, Cladocopium goreaui, and Fugacium kawagutii) supports the notion that Symbiodiniaceae may be sexual9,10. Symbiodiniaceae cells grow as motile, flagellated cells (mastigotes) under light and divide in the dark as coccoid cells11. Symbiodiniaceae are believed to be isogamous5, but it is difficult to confirm through direct observation if these cell divisions are mitotic or meiotic. If sex occurs during the dark part of the life cycle as found in A. minutum3, one may assume that dinoflagellates including Symbiodiniaceae can respond to selection pressure by producing genetic variation through sexual recombination12. Some genes have a preferred set of codons due to variable abundance of

1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia. 2School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia. 3Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia. 4Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA. ✉e-mail: c.chan1@uq.edu.au
distinct tRNAs; this codon usage bias affects the efficiency of gene expression. In mammals, codon usage bias was hypothesised to be a result of GC-biased gene conversion driven by meiotic recombination. A higher rate of recombination does not necessarily improve the efficacy of selection, or of the removal of deleterious mutations. Nevertheless, a strong codon usage bias likely arose via positive selection, and would inform us about processes that have been favoured in the evolution of Symbiodiniaceae.

One of the hallmarks of meiosis is the formation of the synaptonemal complex (SC), a proteinaceous scaffold that juxtaposes homologous chromosomes, mediating their synopsis (i.e., the pairing of chromosomes for potential crossovers) during prophase I. The conventional SC consists of tripartite proteinaceous elements in parallel: a central element and two outer lateral elements, like two ladders attached side-to-side, with rungs of transversal filament proteins holding the elements together. Loops of sister chromatids are tethered to each lateral element. The process of synopsis “zips” down the scaffolding, with crossovers occurring at recombination nodules. Unsynapsed regions of the lateral elements are referred to as axial elements (see Loidl for a detailed diagram). These axial elements comprise homologous pairing protein 1 (Hop1) and reductional division protein I (Red1), whereas pachytene checkpoint protein 2 (Pch2) prevents chromosome segregation when synopsis and recombination are defective. Formation of the SC is triggered by the synopsis initiation complex proteins, more commonly known as the ZMM proteins: (a) the transversal filament protein Zip1 (not to be confused with zinc transporter Zip1) attaches the central element to the pair of lateral elements; (b) Zip2, Zip3, and Zip4 mediate protein-protein interaction; (c) Mer3, a DNA helicase unwinds double-stranded DNA; and (d) the Msh4-Msh5 heterodimer binds to Holliday junction. Metazoan equivalents of these proteins are named synaptonemal complex proteins (SYCP) and synaptonemal complex central element (SYCE) proteins. Genes encoding the SC and ZMM proteins are meiosis-specific and have been used as indicators of sex in diverse eukaryotes.

Some genes, although not strictly in meiosis-specific pathways, are also relevant to meiosis. For example, postmeiotic segregation increased homologs 1 and 2 (PMS1 and PMS2) are part of the DNA mismatch repair system during both mitosis and meiosis. They compete to heterodimerise with MutL homolog 1 (MLH1), which is then assembled into the MutL-MutS heteroduplex that aids in degradation of DNA strands. Genes involved in synopsis (i.e., gamete fusion during fertilisation) are also relevant to sexual reproduction. Cell membranes fuse first (plasmogamy), followed by nuclear fusion (karyogamy); genes associated with these processes include HAP2 (haploid-disrupting 2) and gamete expressed protein 1 (GEX1). Thought to be an ancestral gene in all eukaryotes, HAP2 encodes the transmembrane protein Hap2-GCS1 that inserts into the target membrane using a hydrophobic fusion loop. GEX1 gene products are nuclear envelope proteins involved in karyogamy.

To attain a comprehensive overview of sex and reproduction in Symbiodiniaceae, here we used available genome and transcriptome data from broadly sampled taxa to investigate the presence of genes that encode functions critical to different stages of meiosis and syngamy, and their associated protein complexes. We also investigated codon usage in nuclear genes from each isolate, and compared the predicted functions between genes with strong codon usage preference and those under neutral selection.

Results

Canonical synaptonemal complex is absent in Symbiodiniaceae. The datasets of 21 isolates of Symbiodiniaceae used in this study are shown in Table 1. We found that meiosis-specific genes involved in the formation of the synaptonemal complex (SC) were largely missing from these microalgae. We did not recover genes encoding Hop1, Red1, Pch2, Zip1, Zip2, Zip3, and Zip4 (Fig. 1). However, we identified some of the genes that encode the ZMM proteins: the DNA helicase Mer3 and the Holliday junction heterodimer Msh4-Msh5. We also found most of the representative genes involved in homologous recombination, i.e., HOP2, MND1, DMC1, RAD51A and ATR. This result suggests that Symbiodiniaceae is capable of producing genetically diverse gametes in the absence of a canonical SC. This pattern of non-SC mediated meiotic crossovers may also hold for other dinoflagellates; Gymnodinium pseudopalustre Schiller, Amphidinium cryophilum, Alexandrium tamarense (basionym Gyonyaulax tamarensis), Alexandrium minutum, and several species of Tovelliaceae (basionym Woloszynska) have all been observed to lack obvious SC or SC-like structures. The lack of SC proteins in dinoflagellates was previously described, but the studied taxa remain unspecified, and the genetic resources from dinoflagellates were very limited at that time, with no genome-scale data available.

Genes playing major roles in meiosis and syngamy are present. We identified the gamete fusogen gene, HAP2, in the transcriptomes of Cladocropium sp. SM (also known as isolate WSY) and Cladocropium sp. C1 MMETSP1367, and in the genomes of Symbiodinium natans and Symbiodinium tridacnidorum (both high-quality hybrid-reads assemblies). This suggests that some of the cells observed to be attached together, i.e., “large tetrad” described in early microscopic observations may indeed be fertilisation. It is unsurprising that HAP2 occurs in Symbiodiniaceae, as this gene has been observed in other taxa in the Alveolata (to which dinoflagellates also belong): the ciliates Tetrahymena thermophila (UniProtKB: HAP2_TETTH, “evidence at protein level”) and in the apicomplexan Plasmodium berghei (UniProtKB: HAP2_PLABA, “evidence at transcript level”). We also recovered HAP2 candidates in other dinoflagellates, namely Polarella glacialis CCMIP383, Prorocentrum minutum, Gymnodinium catenatum, Noctiluca scintillans, and Oxyrrhis marina; its presence in the latter two species has been independently confirmed by Hofstatter and Lahr. See Supplementary Fig. S1 online for a phylogeny showing the clustering of alveolate Hap2 sequences. Although we did not find clear evidence of HAP2 among the predicted gene models from all six available symbiodiniacean genomes, we recovered fragments of this gene in the transcriptomes of S. natans and S. tridacnidorum. The presence of HAP2 remains to be more thoroughly investigated as more high-quality genomes become available to guide gene prediction methods.

We did not recover the karyogamy gene GEX1 in all the isolates studied here, but its absence does not necessarily mean Symbiodiniaceae do not undergo nuclear fusion. The malaria-causing parasite Plasmodium
falciparum, the ciliate Tetrahymena thermophila, the diatom Thalassiosira pseudonana, and the blight-causing oomycete Phytophthora infestans also appear to be missing GEX1, but gamete fusion is well-established in these cases.

Symbiodiniaceae appear to have a reduced set of cohesin complex genes. We found only genes encoding the main component of the cohesin complex, the heterodimer Smc1-Smc3, which forms a proteinaceous ring around sister chromosomes or sister chromatids. We did not find REC8, SMC5, or SMC6. Because REC8 plays a role in anaphase I (separating homologous chromosomes) and anaphase II (separating sister chromatids), this raises the possibility that Symbiodiniaceae may not go through the same mechanism of chromosome/chromatid separation in canonical meiosis. In canonical meiosis, the Smc5-Smc6 heterodimer (encoded by SMC5 and SMC6) recruits Smc1-Smc3 to double-strand DNA breaks. It appears that in Symbiodiniaceae, Smc5-Smc6 has been replaced by another protein complex, or the recruitment process does not occur.

We found candidate genes for the mismatch repair proteins Pms1 and Pms2 in Symbiodiniaceae; these genes were clustered as a single family (see Supplementary Fig. S2 online). In comparison, the opisthokont counterparts are sufficiently distinct as separate subfamilies (see PANTHER family tree PTHR10073). Searching against the KEGG ortholog HMM database (KOfam), these candidate proteins in Symbiodiniaceae shared higher sequence similarity to "DNA mismatch repair protein PMS2" (KOfam ID: K10858) than to "DNA mismatch repair protein PMS1" (KOfam ID: K10864); we thus annotated them as Pms2 here. Since Pms1 and Pms2 play the same role in DNA mismatch repair, it is unlikely that the absence of either one dramatically affects meiosis in Symbiodiniaceae.

Isolate	Type	GC-content of CDS (%)	Source
Cladocopium sp. C1 MMETSP1367	Transcriptome	54.7	MMETSP
Cladocopium sp. C15 MMETSP1370	Transcriptome	54.4	MMETSP
Cladocopium sp. Davies	Transcriptome	54.9	MMETSP
Cladocopium sp. C3k	Transcriptome	55.0	MMETSP
Cladocopium sp. Md	Transcriptome	53.8	MMETSP
Cladocopium goreau MI SCF055 (C1); Magnetic Island isolate, same isolate as used in Liu et al.10	Transcriptome	54.9	MMETSP
Cladocopium goreau SM (C1); South Molle isolate, also known as Whitsunday Islands (WSY) isolate	Transcriptome	54.5	MMETSP
Breviolum aenigmaticum (B19)	Transcriptome	51.7	MMETSP
Breviolum sp. SS801 (B1)	Transcriptome	51.6	MMETSP
Breviolum sp. B1 MI055 (B1)	Transcriptome	50.5	MMETSP
Breviolum pseudominutum (B1)	Transcriptome	51.8	MMETSP
Breviolum psycrophilum (B19)	Transcriptome	51.7	MMETSP
Dorusdinium trenchii (D1a)	Transcriptome	55.1	MMETSP
Effrenium voratum (E2)	Transcriptome	58.6	MMETSP
Symbiodinium microadriaticum CassKB8 (A1)	Transcriptome	56.7	MMETSP
Polarella glacialis CCMP1383	Transcriptome	58.1	MMETSP
Polarella glacialis CCMP2088	Transcriptome	57.4	MMETSP
Polarella glacialis CCMP1383*	Predicted proteins	57.8	MMETSP
Polarella glacialis CCMP2088*	Predicted proteins	57.8	MMETSP
Breviolum minutum (B1)	Predicted proteins	51.2	MMETSP
Symbiodinium tridacnidorum (A3)	Predicted proteins from hybrid assembly	57.3	MMETSP
Symbiodinium tridacnidorum (A3)	Predicted proteins	57.8	MMETSP
Cladocopium sp. C92	Predicted proteins	54.1	MMETSP
Symbiodinium microadriaticum (A1)	Predicted proteins	57.4	MMETSP
Cladocopium goreaui* MI SCF055 (C1)	Predicted proteins	56.4	MMETSP
Fugacium kawagutii	Predicted proteins	55.1	MMETSP
Symbiodinium natans	Predicted proteins	58.2	MMETSP

Table 1. Dataset used in this study. MMETSP: Marine Microbial Eukaryote Transcriptome Sequencing Project. For C. goreau and P. glacialis, asterisks indicate predicted protein versions from genome data of the same isolate, in addition to transcriptome data.

Isolate, the ciliate Tetrahymena thermophila, the diatom Thalassiosira pseudonana, and the blight-causing oomycete Phytophthora infestans also appear to be missing GEX1, but gamete fusion is well-established in these cases.

Symbiodiniaceae appear to have a reduced set of cohesin complex genes. We found only genes encoding the main component of the cohesin complex, the heterodimer Smc1-Smc3, which forms a proteinaceous ring around sister chromosomes or sister chromatids. We did not find REC8, SMC5, or SMC6. Because REC8 plays a role in anaphase I (separating homologous chromosomes) and anaphase II (separating sister chromatids), this raises the possibility that Symbiodiniaceae may not go through the same mechanism of chromosome/chromatid separation in canonical meiosis. In canonical meiosis, the Smc5-Smc6 heterodimer (encoded by SMC5 and SMC6) recruits Smc1-Smc3 to double-strand DNA breaks. It appears that in Symbiodiniaceae, Smc5-Smc6 has been replaced by another protein complex, or the recruitment process does not occur.

We found candidate genes for the mismatch repair proteins Pms1 and Pms2 in Symbiodiniaceae; these sequences were clustered as a single family (see Supplementary Fig. S2 online). In comparison, the opisthokont counterparts are sufficiently distinct as separate subfamilies (see PANTHER family tree PTHR10073). Searching against the KEGG ortholog HMM database (KOfam), these candidate proteins in Symbiodiniaceae shared higher sequence similarity to "DNA mismatch repair protein PMS2" (KOfam ID: K10858) than to "DNA mismatch repair protein PMS1" (KOfam ID: K10864); we thus annotated them as Pms2 here. Since Pms1 and Pms2 play the same role in DNA mismatch repair, it is unlikely that the absence of either one dramatically affects meiosis in Symbiodiniaceae.

Other genes that we did not recover in Symbiodiniaceae or P. glacialis are DNA2 and REC114 from the set of genes that induce double-strand DNA breaks, SLX4 from the crossover I pathway, MMS4 (also known as EME1) from the crossover II pathway, and MSH3 from the set of mismatch-correction genes. These genes are not meiosis-specific, and not critical to their implicated processes. As is the case for PMS1 and PMS2, we do not expect their absence to impact meiosis in Symbiodiniaceae.
Our observations of meiosis-specific and meiosis-related genes for *B. minutum* and *S. microadriaticum* are broadly consistent with earlier results by Chi et al.9, except for the absence of two genes in this study: *HOP2* in *B. minutum* and *PMS1* in *S. microadriaticum* based on the revised gene models. The *HOP2*-encoding sequence identified in *B. minutum* by Chi et al.9 failed to align to any putative protein homologs from SwissProt. The *PMS1*-encoding sequence identified in *S. microadriaticum* by Chi et al.9 aligned poorly to homologs from model organisms (mouse, human, *Dictyostelium discoideum*, *Arabidopsis thaliana*, yeasts *S. cerevisiae* and *S. pombe*) with a mismatch of 67% over 146 parsimony-informative sites. These results suggest that the previously identified genes are highly fragmented, or false positives. Liu et al.10 searched for meiosis-associated genes in *C. goreaui* and *F. kawagutii*, and found many more candidates than Chi et al.9. These likely include false positives, especially among genes that share high sequence identity such as the different MSHs and SMCs; for instance, a candidate protein for SLX1 may have been misannotated as SLX4. To make a stronger case for gene presence, we constructed single-gene phylogeny trees as described in Chi et al.9. Genes reported by Liu et al.10 to be present in *S. microadriaticum* but completely absent here based on revised gene models from Chen et al.26 are: *HOP1*, *ZIP1*, *REC8*, *SMC5*, *SMC6*, *RAD17*, *SLX4*, *MMS4*, and *MSH3*. We only identified nine sex-associated genes in the *F. kawagutii* predicted gene set, but Morse27 found nine additional genes (*MND1*, *MLH1*, *MSH2*, *MSH3*, *MSH4*, *MSH5*, *RAD51A*, *SGS1*, and *SMC3*) using one-way BLAST searches from the *F. kawagutii* transcriptome data. Our putative candidates for the additional nine that
Microscopic observation	Evidence in silico	
Ciliates	Lodi and Scherthan \(^{19}\) observed no SC for *Tetrahymena thermophila*, but Chi et al. \(^{40}\) observed fragmented SCs in *Stylonychia mytilus*, a close relative of *Oxytricha trifallax*. *Tetrahymena thermophila*, *Paramecium tetraurelia*, *Ichthyophthirius multifiliis*, and *Oxytricha trifallax*	
Dinoflagellates	Gyrodinium pseudopalustre, Amphidinium cryophilum, Alexandrium tamarense, *Alexandrium minutum*, and several species of *Tovelliaeae* \(^{20–22}\) In unspecified taxa \(^{23}\)	
Diatoms	Unconfirmed. Frustule and dense chromatin obstruct view of potential SCs \(^{24,25}\), Manton et al. \(^{36}\) observed SC-like ribbons in *Lithodendrium undulatum*. *Pseudo-nitzschia multiseries*, *Seminavis robusta*, *Fragilariaopsis cylindrus*, *Thalassiosira pseudonana*, and *Pheocystis tricornutum* \(^{40}\)	
Corn smut fungus *Ustilago maydis*	45,83	45
Fission yeast *Schizosaccharomyces pombe*	44	55,65
Filamentous fungus *Aspergillus nidulans*	Putative genes encoding Hop1, Red1, and Mer3 (GenBank: CBF81757.1, EAA61648.1, CBF81763.1) are present. Genes encoding Pch2, Zip1, Zip2, Zip3, and Zip4 are absent.	43
Male fruit fly *Drosophila melanogaster*	Gilboa and Lehmann \(^{38}\) showed molecular pathways taken during spermatogenesis versus oogenesis.	43

Table 2. Eukaryotic organisms that lack a synaptonemal complex and the supporting lines of evidence.

Morse \(^{27}\) found did not fit our criteria (i.e., BLASTP hits with e-value < 10\(^{-3}\) and mutual coverage ≥25% against query sequences) and were thus considered absent.

For isolates for which genome data are not available (Table 1), absence of genes (based on searches using only transcriptome data) may represent false negatives. For instance, expression level of these genes may have been too low or likely not expressed under the conditions for which the transcript data were generated. This is likely the case for *Cladocopium* sp. Md and *Cladocopium* sp. C3k, in which completeness of transcriptome data based on Benchmarking Universal Single-Copy Orthologs (BUSCO) was 42.1% and 22.2% respectively (Fig. 1).

We present the hypothetical sexual stages of the life cycle in Symbiodiniaceae in Fig. 2. During plasmogamy (Fig. 2a), Hap2 allows the “minus” mating type gamete to insert a loop into an opposing gamete \(^{28}\). The mechanism for karyogamy remains unclear because we did not recover *GEX1*. Meiosis begins in a diploid cell (Fig. 2b), following which Spo11 makes double-strand breaks in DNA (Fig. 2c). In canonical meiosis, the SC forms during synapsis and then degrades at the end of prophase I; this does not occur in Symbiodiniaceae (Fig. 2d,e,f). A pair of MRN complexes, composed of Rad50, Mre11, and Atm, tethers the broken ends of DNA strands together \(^{29}\). The Smc1-Smc3 heterodimer keeps sister chromosomes together, and the Hop2-Mnd1 complex then binds to DNA strands and searches for homologous chromosomes (Fig. 2d) \(^{30}\). Rad51 and Dmc1 assemble on double-strand breaks; Hop2-Mnd1 interacts with Rad51 and Dmc1, allowing single-strand invasion \(^{31}\). Crossover II then occurs: double Holliday junctions are resolved with the help of endonucleases Mus81 and S1x1, and helicases Sgs1 and Mer3 (Fig. 2e). The Msh4-Msh5 heterodimer, along with Mlh1 and Mlh3, keeps homologous chromosomes together. Finally, the Msh2-Msh6 complex recognises base-base mismatches in DNA (Fig. 2f), activated by Pms2 and Mlh1. Exo1 then excises the incorrect bases, and the DNA strands are further repaired \(^{32}\). At the end of prophase I, we presume the rest of meiosis proceeds similarly to other dinoflagellates (Fig. 2g); chromosomes stay condensed and are segregated via spindles that form outside the nucleus \(^{33}\).

Are sex-associated genes under selection pressure? We found that most sex-associated genes in Symbiodiniaceae have no codon usage preference, but trend towards “neutrality” (Table 3; see Supplementary Fig. S3, Supplementary Fig. S4 and Supplementary Fig. S5 online). This is similar to the meiotic genes in the yeast *Schizosaccharomyces pombe*, which showed an unbiased codon usage, in contrast to the highly biased ribosomal proteins \(^{37}\). From a total of 287 sex-associated genes found in this study, only seven (six *MER3* and one *MND1*) show evidence of putative biased codon usage (i.e., distance of >25 units away from the diagonal line of neutrality plots in Supplementary Fig. S4 online). In addition, *MER3* in Symbiodiniaceae is highly diverged when compared to model organisms (e.g., see branch lengths in Supplementary Fig. S6 online), suggesting non-neutral evolution.

To determine which gene functions were undergoing selection, we annotated all the predicted gene models using Gene Ontology (GO) terms (Table 3). Genes with a strong codon preference were significantly enriched for the *reductive pentose-phosphate cycle* (GO:0019253), i.e., photosynthesis via C\(_3\) carbon fixation. Genes under neutral selection were enriched in several RNA-associated processes: RNA-dependent DNA biosynthetic process (GO:0006278), RNA-mediated transposition (GO:0032197), and RNA phosphodiester bond hydrolysis (GO:00090501 and GO:00090502). If taken together with another enriched process DNA integration (GO:0015074), genes under neutral selection appear to be largely involved in the propagation of transposable elements. See Supplementary Table S1 online for the top five enriched GO terms for each isolate.

Most isolates, including *P. glacialis* showed a similar trend of codon usage: overall GC-content of 50–58% with several hundred coding sequences (CDSs) exhibiting strong codon usage bias; see Supplementary Fig. S3, Supplementary Fig. S4 and Supplementary Fig. S5 online for codon usage trends for each isolate. Assuming that Symbiodiniaceae have a large effective population and that the effect of GC-biased gene conversion is small, most
CDSs appear to be under non-neutral selection. The slight variation in codon usage observed for each isolate is attributed to the synonymous third codon position. For this analysis, we focused on *Cladocopium goreaui* as a representative of all isolates. Figure 3a shows the effective number of codons of CDSs in *C. goreaui* versus the GC-content of the synonymous third codon position (GC3s). The slope for the trend line for *C. goreaui* is 0.13 (i.e. <1.0), indicating that most of these CDSs may have been under selection for elevated GC-content in third codon positions. As shown in Fig. 3a, 790 CDSs show a distance of ≥25 units below the expected curve, indicating strong codon-usage preference; 74% of all CDSs in *C. goreaui* have >50% GC-content in all three codon positions (Fig. 3b). Figure 3c shows the multi-variate correspondence plot of relative synonymous codon usage, with each of the two axes representing the relative inertia that explains variation of the observed codon usage. Axis 1 explains 19.6% of variation in codon usage of all *C. goreaui* genes based on differences in GC3s.

Discussion

Our results, based on the analysis of genome-scale data from a broadly sampled set of taxa, provide strong evidence for the lack of canonical SCs in Symbiodiaceae. The lack of SCs has also been reported in other dinoflagellates. In species that have well-characterised sexual life cycles, such as in *Gymnodinium pseudopalustre*, chromosomes were "paired at a distance"20, suggesting that SCs are not needed for synapsis. One exception is the stretched-out chromosomes observed to form axial-loop structures in *Prorocentrum micans* during meiosis48, but they lacked the characteristic ladder-like organisation. These structures may represent dinoflagellate-specific synaptonemal complexes, although further confirmation is needed (Marie-Odile Soyer-Gobillard, personal communication, 26 August 2019). Such cytological observations do not exist for Symbiodiaceae. Ciliates, which are basal alveolates, lack SCs in some lineages, while retaining "residual SC structures" in others (Table 2). Apicomplexans including *Plasmodium falciparum* are basal to dinoflagellates, but *P. falciparum* has canonical SCs and a near-complete meiotic gene inventory97. Therefore, our results suggest an independent loss of canonical SCs in dinoflagellates.

In canonical meiosis, SCs mediate class I crossovers. This pathway, favoured in *Arabidopsis* and mammals, involves ZMM proteins and MutL homologs that ensure crossovers happen at a distance from one another on a chromosome, resulting in a phenomenon known as interference. The tension produced from these distant points of crossovers allow the paired chromosomes to separate properly into daughter cells49. In contrast, the class II pathway recruits the Mus81-Mms4 complex, among others, to repair double-strand breaks at random positions57. Class II crossovers can also occur on SCs, usually near pericentric heterochromatin58. The highly repetitive sequences near the centromere are known to produce complex recombination intermediates that are thought to be better resolved by the class II pathway59.
In the SC-lacking *S. pombe* and ciliates, crossovers occur predominantly via the class II pathway. We recovered *MUS81* and *SGS1* in Symbiodiniaceae, which encode the crossover junction endonuclease Mus81 and the DNA helicase Sgs1, respectively. These two proteins are essential for meiotic crossover in the SC-lacking ciliate *Tetrahymena thermophila*. Therefore, we propose that Symbiodiniaceae also undergo class II crossovers in lieu of SC-mediated crossovers. To verify this class II crossover bias, we suggest comparing frequencies of different classes via immunostaining.

The loss of SCs in dinoflagellates may be explained by two conditions. First, repeat sequences make up a substantial proportion (20–40%) of Symbiodiniaceae genomes, and an even higher proportion (68%) in the genome of *Polarella glacialis*, a closely related, earlier-diverging sister lineage. Second, dinoflagellates including Symbiodiniaceae have permanently condensed chromosomes. Although genome data from other more-anciently diverged dinoflagellates remain lacking, these conditions represent key idiosyncratic genome features in dinoflagellates. We speculate that the tension provided by class I crossovers is not necessary for chromosome separation and therefore, SCs became expendable. We hypothesise that this loss started with the loss of function of *ZIP1* which encodes the transversal filaments (the axial elements are encoded by *HOP1* and *RED1*, which are still present in SC-lacking *S. pombe*).

Talbert and Henikoff theorise that cell size increase in dinoflagellates during the Eocene due to warming temperatures led to genome size expansion. Together with the gain of dinoflagellate viral nucleoproteins, they propose that novel ways of packaging chromosomes arose in dinoflagellates. Extending this study to more basal dinoflagellates and alveolates will help reveal if this loss coincides with the appearance of permanently condensed chromosomes and an increase in repetitive elements.

Diatoms also lack genes encoding canonical SCs; SC-like structures observed in some species suggest that other unidentified proteins may have replaced the SC. Both cytological and *in silico* analysis demonstrated the lack of SCs in the fungus *Ustilagomaydis*. Similarly, SCs are completely absent in the fission yeast *S. pombe*; they instead produce single-lined linear elements. On the other hand, spermatogenesis in male fruit flies involves interlocked homologous chromosomes called bivalents that are physically sequestered into pockets of the prophase nucleus, leading to achiasmate meiosis. Without cytological evidence, we cannot rule out the possibility that there may be such unidentified SC substitutes in Symbiodiniaceae. We also cannot rule out a parasexual process such as that in the fungus *Candida albicans*, in which a fusion of haploids undergoes recombination and chromosome loss until it is haploid again. Many of the genes in the meiotic toolkit also play alternative roles.
in non-meiotic processes; for instance, MND1 that repairs double-strand breaks in meiosis is also involved in telomere maintenance\(^5^3\). Therefore, the presence of the toolkit genes alone cannot prove an organism is sexual.

Identification of the HAP2 gene using our approach suggests the existence of Symbiodiniaceae gametes. Questions about other characteristics, however, remain: are these gametes isogamous mastigotes as previous research suggests, and what are their mating types? Immunostaining of the Hap2 protein at different life cycle stages may prove useful in answering these questions.

The codon usage trends seen here corroborate results from earlier studies\(^5^4,5^5\), and agree with general codon usage in dinoflagellates. The Symbiodiniaceae and dinoflagellates studied thus far have an overall GC-content >50% in their coding regions, with the third codon GC-content varying more than the first or second, and the variation of codon bias within each species or isolate being correlated with the GC-content of the synonymous third codon position (GC3s)\(^5^6\). Hypotheses that may explain these findings are: (a) Symbiodiniaceae underwent selection pressure whereby high GC3s was favoured, or (b) as one would expect in mammals, many genes underwent concerted evolution which led to GC-biased gene conversion\(^5^7\). In any case, meiotic recombination likely drives these codon usage trends\(^1^4\), supporting the hypothesis that Symbiodiniaceae are sexual. Our results also suggest that these species undergo non-canonical meiosis using the class II crossover pathway that bypasses SC formation.

Methods

Dataset. We collected transcriptomes used in González-Pech et al.\(^5^5\). Original sources are listed in Table 1. Incomplete ORFs were removed from transcriptomes, then translated using EMBOSS transeq\(^5^8\). Proteins encoded by plastid and mitochondrial genes were removed using BLASTP\(^5^9\) searches against the RefSeq database (mitochondrion and plastid; release 75) following González-Pech et al.\(^5^5\). For the six species *Symbiodinium*...
microadriaticum, Symbiodinium tridacnidorum, Breviolum minutum, Fugacium kawagutii, Cladocopium sp. C92, and Cladocopium gorei, we used predicted gene models from Chen et al. To assess the completeness of each dataset, we searched for the alveolata_odb10 BUSCO genes using BLASTP (e-value < 1e-5).

Searching for homologous sequences. The relevant protein sequences available in the SwissProt database (release 2019_05) were used as queries to search against our dataset for putative homologs. Accession numbers of queries are listed in Supplementary Table S2 online. For genes that were very divergent, Symbiodinium microadriaticum and apicomplexan sequences from TREMBL were used as queries. We chose a total of 42 genes, a combination of genes analysed in Chi et al. and Hofstatter et al. Genes that were peripheral players (e.g., RAD52, which mediates RAD51 in homologous recombination repair), or genes that did not have close homologs outside of metazoans (e.g., BRCA1, BRCA2) were excluded from our analysis. Hits with e-value < 1e-3 and mutual coverage ≥25% were selected as candidates.

Validation of candidate sequences. Identified homologs were further verified using a phylogenetic approach. Here, candidate sequences from each gene were first aligned to the query sequences, other SwissProt homologs, and homologs from closely-related taxa using MAFFT V7 with the --auto alignment. Alignments were trimmed using either trimAL v1.2 with the -automated1 algorithm or BMGE v1.12 with gap cut-off -g 0.4. Single-gene phylogenetic trees were constructed using IQ-TREE ModelFinder Plus using ultrafast bootstrap of 1000 replicates. Putative homologs were verified if (a) they branched together with other dinoflagellates or alveolates, and (b) had branch lengths similar to those of queries. These sequences were then annotated by KofamScan using the KOam eukaryotic database. The KOam annotation of these genes are listed in Supplementary Table S3 online. The predicted gene models and protein sequences are available at https://doi.org/10.14264/uql.2020.483. Many Mnd1 candidates from the BLASTP step did not have corresponding KOam hits to Mnd1, but this may be because Symbiodiniaceae sequences are very divergent.

Codon usage trends. The effective number of codons, GC3s, and GC-content of each codon position for each CDS in the dataset were obtained using CodonW v1.3 (http://codonw.sourceforge.net/culong.html) and EMBOSS cusp. Relative synonymous codon usage was used for correspondence analysis. Plots were generated using the R package ggpubr version 0.2.2 (https://cran.r-project.org/package=ggpubr). For transcriptome-alone isolates, we assumed 1 transcript = 1 CDS, as we did not have information on gene splicing from these data.

Gene Ontology (GO) enrichment analysis. We performed GO enrichment analysis independently for each of the seven species: S. microadriaticum, S. tridacnidorum, S. natans, B. minutum, F. kawagutii, C. goreai, and Cladocopium sp. C92 (Supplementary Table S1 online). For each species, we first used the predicted proteins as query and searched against the SwissProt database (release 2019_11; BLASTP, E ≤ 1e-5) for putative homologs. Each protein sequence was then annotated based on the top SwissProt hit, and the associated GO terms to this hit were recovered using two in-house Python scripts (https://github.com/TimothyStephens/Annotate.GOterms_from_BLAST), following UniProt-GOA mapping (release 2019_05). Using the R package topGO version 2.36.0 (https://bioconductor.org/packages/topGO/), the enrichment analysis for GO terms associated with Biological Process was conducted using Fisher’s exact test. Independently for each species, a comparison was conducted for (a) proteins coded by genes exhibiting strong codon preference, and for (b) proteins coded by genes under neutral selection, each against all predicted proteins in the corresponding genome as background. Using combined, predicted proteins from all seven species, a comparison was also conducted independently for (a) proteins coded by genes exhibiting a strong codon preference, and for (b) proteins coded by genes under neutral selection, each against all predicted proteins from the seven genomes as background; these results are shown in Table 3. In total, our approach yielded 126,979 GO-annotated proteins, 2,400 proteins coded by genes exhibiting strong codon preference, and 47,422 proteins coded by genes under neutral selection (i.e., at a distance <5% from the diagonal line of y=x in Fig. 3b).

Data availability

All gene models and protein sequences used in this study are available at https://doi.org/10.14264/uql.2020.483, except for the predicted protein sequences of Polarella glacialis and Symbiodinium tridacnidorum (hybrid genome assemblies) that were obtained from Stephens et al. and González-Pech et al. respectively.

Received: 8 March 2020; Accepted: 19 May 2020;
Published online: 17 June 2020

References

1. Speijer, D., Lukeš, J. & Eliáš, M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc. Natl. Acad. Sci. USA 112, 8827–8834 (2015).
2. Hofstatter, P. G., Brown, M. W. & Lahr, D. J. G. Comparative genomics supports sex and meiosis in diverse amoebozoa. Genome Biol. Evol. 10, 3118–3128 (2018).
3. Figueroa, R. I., Dapena, C., Bravo, I. & Cuadrado, A. The hidden sexuality of Amoebozoa. Proc. Natl. Acad. Sci. USA 112, 8827–8834 (2015).
4. Price, D. C. & Bhattacharya, D. Robust Dinoflagellata phylogeny inferred from public transcriptome databases. J. Phycol. 53, 725–729 (2017).
5. Freudenthal, H. D. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J. Protozool. 9, 45–52 (1962).
6. Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
7. LaJeunesse, T. C. Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J. Phycol. 37, 866–880 (2001).
53. Maciver, S. K. Ancestral eukaryotes reproduced asexually, facilitated by polyploidy: a hypothesis. BioEssays 41, 1900152 (2019).
54. Bayer, T. et al. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS One 7, e35269 (2012).
55. González-Pech, R. A., Ragan, M. A. & Chan, C. X. Signatures of adaptation and symbiosis in genomes and transcriptomes of Symbiodinium. Sci. Rep. 7, 15021 (2017).
56. Williams, E. P., Place, A. & Bachvarova, T. Transcriptome analysis of core dinoflagellates reveals a universal bias towards “GC” rich codons. Mar. Drugs 15, 125 (2017).
57. Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10, 285–311 (2009).
58. Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
59. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
60. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
61. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
62. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
63. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
64. Keller, F., Medvedovic, M. & Bafna, V. Phylosift: a tool for finding phylogenetic signals in short-read sequence data. Mol. Biol. Evol. 29, 1708–1711 (2012).
65. Pybus, O. G. & Rambaut, A. phytools: phylogenetic tools in R. Methods Ecol. Evol. 2, 359–366 (2011).
66. Drummond, A. J. & Rambaut, A. GeneTree: finding the best trees from gene sequences. Mol. Biol. Evol. 18, 776–779 (2001).
67. Minh, B. Q., Kosina, P., Stamatakis, A. & von Haeseler, A. RAxML-ULTRA: ultrafast maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
68. Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).
69. Rašković, L., Jurić, D. M. & Drnovšek, R. O. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
70. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
71. Ladner, J. T., Barshis, D. J. & Palumbi, S. R. Protein evolution in two co-occurring types of Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium clade D. BMC Evol. Biol. 12, 217 (2012).
72. González-Pech, R. A., Vargas, S., Francis, W. R. & Wörheide, G. Transcriptomic resilience of the photosynthetic thylakoid membranes in the CO2 stress resilient coral. Mol. Biol. Evol. 35, 304–319 (2018).
73. Levin, R. A. et al. Sex, scavengers, and chaperones: transcriptome secrets of Symbiodinium thermal tolerances. Mol. Biol. Evol. 33, 2201–2215 (2016).
74. Parkinson, I. E. et al. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genome Biol. Evol. 8, 665–680 (2016).
75. Xiang, T., Nelson, W., Rodriguez, J., Tolleter, D. & Grossman, A. R. Symbiodinium transcriptome and global responses of cells to immediate changes in light intensity when grown under autotrophic or mixotrophic conditions. Plant J. 82, 67–80 (2015).
76. Shoguchi, E. et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23, 1399–1408 (2013).
77. Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19, 458 (2018).
78. Loidl, J. & Scherthan, H. Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. J. Cell Sci. 117, 5791–5801 (2004).
79. Round, F. E., Crawford, R. M. & Mann, D. G. The Diatoms: Biology & Morphology of the Genera (Cambridge University Press, 1991).
80. Mann, D. G. & Stickel, A. J. Meiosis, nuclear cyclosis, and aequorein formation in Navicula sensu stricto (Bacillariophyta). Br. Phycol. J. 24, 167–181 (1989).
81. Manton, I., Kowallik, K. & von Stosch, H. A. Observations on the fine structure and development of the spindle at mitosis and meiosis in Aspergillus nidulans: another example for lacking synaptonemal complexes in the yeast Schizosaccharomyces pombe. Genes Cells 14, 499–509 (2009).

Acknowledgements

S.S. and Y.C. are supported by the University of Queensland Research Training Scholarship. This project was supported by the Australian Research Council grant DP190102474 awarded to C.X.C. and D.B., and the computational resources of the National Computational Infrastructure (NCI) National Facility systems through the NCI Merit Allocation Scheme (Project d85) awarded to C.X.C. D.B. was supported by a NIFA-USDA Hatch grant (NJ01170). We thank Timothy Stephens for providing analytic tools, and Raúl González-Pech for his insights into interpreting the results.
Author contributions
S.S. and C.X.C. conceived the study; Y.C. provided in-house scripts and computational pipelines; S.S. and Y.C. conducted all computational analyses; S.S. prepared all figures, tables, and the first draft of the manuscript; S.S., C.X.C. and D.B. interpreted the results; all authors reviewed, commented on and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-66429-4.
Correspondence and requests for materials should be addressed to C.X.C.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020