Abstract
Complex documents stored in a flat or partially marked up file format require layout sensitive pre-processing before any natural language processing can be carried out on their textual content. Contemporary technology for the discovery of basic textual units is based on either spatial or other content insensitive methods. However, there are many cases where knowledge of both the language and layout is required in order to establish the boundaries of the basic textual blocks. This paper describes a number of these cases and proposes the application of a general method combining knowledge about language with knowledge about the spatial arrangement of text. We claim that the comprehensive understanding of layout can only be achieved through the exploitation of layout knowledge and language knowledge in an inter-dependent manner.

1 Introduction
There is currently a significant amount of work being carried out on applications which aim to deduce layout information from a spatial description of a document. The tasks vary in detail, however they generally take as input a document description which presents areas of text (including titles, headings, paragraphs, lists and tables) marked implicitly by position. A simple example is a flat text document which uses white space to demonstrate alignment at the edges of textual blocks and blank lines to indicate vertical spatial cohesion and separation between blocks.

Rus and Summers ((Rus and Summers, 1994)) state that “The non-textual content of documents [complement] the textual content and should play an equal role”. This is clearly desirable: textual and spatial properties, as described in this paper, are inter-related and it is in fact highly beneficial to exploit the relationships which exist between them. In algorithmic terms, this implies implementing solutions which use both spatial and linguistic features to detect coherent textual objects in the raw text. Approaches to the problem are limited to those exploiting spatial cohesion. There are two techniques for achieving this. The first looks for features of space, identifying rivers of space which run around text blocks in some meaningful manner. The second looks at non-linguistic qualities of the text including alignment of tokens between lines as well as certain types of global interactions (e.g. (Kieninger and Dengel, 1998)). Although this second type focuses on the characters rather than the spaces in the text, the features that it detects are implications of the spatial arrangement of the text: judging two words to be overlapping in the horizontal axis is not a feature of the words in terms of their content, but of their position. Elements of the above basic methods may be combined and, as with any feature vector type of analysis, machine learning algorithms may be applied (e.g. (Ng et al., 1999)).

2 A New Method
The methods based on spatial cohesion outlined above make assumptions about the application of layout to the textual content of the document in order to derive features indicating higher order structure. These assumptions rely on the realisation of layout as space and do not always hold (see, e.g., Figure 4: Grid Quantization), and may result in ambiguities. However, there is another source of information which can be exploited to recover layout.

Though layout imposes spatial effects, it has little or no effect on low level language phenomena within the distinct layout document objects: we do not expect the layout of text to render it ungrammatical. Conversely, we do not expect grammaticality to persist in an incorrect interpretation of layout. For example, applying this observation to the segmentation of a double column of text will indicate

1The term spatial cohesion is motivated by the work on lexical cohesion by Morris and Hirst ((Morris and Hirst, 1991)). Text which is cohesive is text which has a quality of unity (p. 21). Objects which have spatial cohesion have a quality of unity indicated by spatial features; in the words of Morris and Hirst: they “stick together”.

2It is clear that layout does have very definite consequences for the content of textual document elements, however those features we are concerned with here are below even this rudimentary level of language analysis.
the line breaks, see Figure 4: Double Columns. The application of a low level language model to the interpretation of spatially distinct textual areas can be applied in many cases where a purely spatial algorithm may fail. The following is an incomplete list of possible cases of application (concrete examples may be found in Figure 4):

Multi Column Text When the columns are separated by only one space, a language model may be applied to determine if and where the blocks exist. These may be confused with **False Space Positives** where, by chance, the text formatting introduces streams of white space within contiguous text.

Apposed/Marginal Material Text which is offset from the main body of text, similarly to multi column text, will contain its own line breaks.

Unmarked Headers Headers may be unmarked and appear similar to single line paragraphs.

Double Spacing The introduction of more than one line of spacing within contiguous text causes ambiguities with paragraph separation, headers and so on.

Elliptical Lists When text continues through a layout device, a language model may be used to detect it.

Short Paragraphs When a paragraph is particularly short, the insertion of a line break may cause problems.

Another example, and a useful application, is that to the problem of table segmentation. Once a table has been located using this method or other methods, the cells must be located.

Multi-Column Cells A cell spans multiple columns. This may easily be confused with **Multi-Row Cells** where a cell contains more than one line and must be grouped according to the line breaks.

Elliptical Cell Contents Cells which form a disjunction of possible continuations to the content of another cell can be identified using a language model.

Grid Quantization When a plain text table contains cells which are not wholly aligned with other cells in the same grid row or column, it is difficult to associate the cells correctly.

Languages which permit vertical and horizontal orthography (such as Japanese) pose additional problems when extracting layout features from plain text data.

Orientation Detection With mixed orientation, a language model may be used to distinguish vertical and horizontal text blocks.

We can hypothesise that spatially cohesive areas of the document are renderings of some underlying textual representation. If, at some level, the text is separated from the layout (the text is linearised by removing line breaks), then we may observe certain linguistic phenomena which are characteristic of the language. Reversing this allows us to identify the spatially cohesive objects in the document by discovering the transformation to the text (the application of layout, i.e. the insertion of spacing and line breaks) which preserve our observations about the language. One such observation is the ordering of words. Consequently, we can apply a language model to a line of text in a document to determine where line breaks have been inserted into the text for layout purposes by observing where the language model breaks down and where our simple notion of layout based on spatial features permits text block segmentation. This is an ideal. In fact, knowledge of layout and language is required to overcome the short comings of each.

There are many types of language model which may be applied to the problem being considered, ranging from the analytical - which provide an indication of linguistic structure), to the classifying - which indicate if (and to what extent) the input fits the model. The analytical, such as a context free grammar, are not appropriate for this problem as they require a broad input and are not suited to the fragments of input envisioned for this applications.

The prime purpose of the language model we wish to use is to provide some ranking of candidate continuations of a particular set of one or more tokens. A simple example is the bigram model. This uses frequency counts of pairs of words derived from a corpus. Although there are advantages and disadvantages to this model, it will serve as an example though other more sophisticated and reliable models may easily be applied.
3 Basic Algorithm

The problem can be generally described in the following manner: given a set of objects distributed in a two dimensional grid, for each pair of objects, determine if they belong to the same cohesive set. The objects are tokens, or words, and the measure of cohesion is that one word follows from the other in accordance with the nature of the language, the content of the document, and the idiom of the particular document element within which they may be contained and that the spatial model of the layout of the document permits cohesion. In summary, the cohesion is spatial and linguistic.

However, such a general description is not computationally sensible and the search space will be reduced if we consider the cases where we expect ambiguities to occur. This can be approached by recognising that when there is the potential for ambiguity there is often present some artifact which may well help identify the domain of the ambiguity: these are generally the markers of spatial cohesion; e.g., where there are double columns, we may also identify left justification. Consequently, for a given word in the the double column area, the ambiguity may be resolved by inspecting the word to the right, or the set of words which may be left justified with the line currently under inspection on the line below. Therefore, the application of the language model to the disambiguation problems mentioned above takes place between a small set of candidate continuation positions.

These continuation points are located as prescribed by the markers of the spatial layout of text. Consequently, any algorithm using linguistic knowledge must exploit layout knowledge in order to both arrive at an economic solution, and also to be robust to weaknesses in the language model. The general method described here relies on and determines both spatial and linguistic information in a tightly integrated manner. The algorithm falls in to the following broad steps:

1. detect potential for ambiguity.
2. compute the set of possible continuation points by using knowledge of spatial layout.
3. disambiguate using a combination of language and layout knowledge.

For example, the words marked with a clear box in Figure 2, upper, are those which, according to a naive spatial algorithm, are possibly in close proximity to the right edge of a text block. Having detected them, the possible continuation points, shaded boxes, are computed (here for a single word for illustration). A language model may then be applied to determine the most likely continuation. Care must be taken when discovering equally likely continuations as opposed to a single most likely one. Figure 2, lower, contains two examples. The first illustrates the case when there is no continuation appropriate (there are three equally likely continuations; as none is the most likely, no continuation should be proposed). In the second example, a unique continuation is preferred. The general algorithm above provides annotation to the tokens in the document which may then be used to drive a text-block recognition algorithm.

Detecting the Potential for Ambiguity The potential for ambiguity occurs when a feature of the document is discovered which may indicate the immediate boundary of a text block. As we are dealing with the basic element of a token (or word), the potential for ambiguity may occur at the end of a word, or between any two words in a sequence on the line. However, we only need to consider those cases where a spatial algorithm may determine a block boundary (correctly or incorrectly). In order to do this we need a characterisation of a spatial algorithm in terms of the features it uses to determine text block boundaries. These are naturally related to space in the text, and so our algorithm will be concerned with the following three types of space: 1) Between words where there is a vertical river of white space which continues above and below according to some threshold; 2) Between words larger than a minimum amount of space; 3) At the right hand side of the document when no more tokens are found. These describe potential points for line break insertion into text and constitute a partial functional model of layout.

Computing the Set of Continuation Points The set of continuation points is computed according to the assumptions used to determine if there is the potential for ambiguity. The continuation point from a point of potential ambiguity are: 1) The next word to the right; 2) The first word on the next line; 3) All the continuation points on the next line which are to the left of the current word. These represent the complement to the above functional model of layout. Thus we have a model of layout which is intentionally over general as it uses local features which are ambiguous.

Disambiguation Disambiguation may be carried out in a number of ways depending on the extent required by the language model being employed. However, regardless of what range of history or lookahead is required by the language model, the process of disambiguation is not a simple matter of selecting the best possible continuation as proposed by the statistical or other elements of the language model. The interactions between layout and language require that a number of constraints be considered. These constraints model the ambiguities caused by
the layout and the language.

For any potential point of ambiguity, a single (or null) point of continuation must be found. And for any point of continuation, a single source of its history is required. If token A has potential continuation points X and Y, and token B has potential continuation points Y and Z, and the best continuation as predicted by the model for A is X and that for B is also X, then both A and B can not be succeeded by their respective best continuations. The selection of continuation points must be based on the set of possible continuation points for the connected graph in which a potential point of ambiguity occurs (see Figure 3). An additional constraint imposed by the layout of the text is that links representing continuation cannot cross. This constraint is a feature of the interaction between the spatial layout and the linguistic model.

3.1 Extensions

The above algorithm is not capable of capturing all types of continuation observed in the basic text blocks of certain document elements. Specifically, there is an implicit restriction on a unique continuation of the language through certain layout features. This may be called the one to one model of the interaction between layout and language. However, the less frequent, though equally important cases of one to many and many to one interactions must also be considered. In Figure 4: Many to One, examples of both are given. Significantly, these cases exist at the boundaries between basic textual components of large document objects (here tables). It is suggested, then, that the detection of equally likely continuation points may be used to detect boundaries where there is little or no spatial separation.6

3.2 Experimentation

In order to test the basic ideas described in this paper, a simple system was implemented. A corpus of documents was collected from the SEC archive (www.sec.gov). These documents are rich in various document elements including tables, lists and headers. The documents are essentially flat, though there is some amount of header information encoded in XML as well as a minimal amount of markup in the document body.

A simple bigram model of the language used was created. This was constructed partly from general texts (a corpus of English literature) of which it was assumed there was no complex content, and partly from the SEC documents.7 A system was imple-
References
T. Kieninger and Andreas Dengel. 1998. A paper-to-html table converting system. In Proceedings of Document Analysis Systems (DAS) 98, Nagano, Japan, November.
Jane Morris and Graeme Hirst. 1991. Lexical cohesion computed by thesaural relations as an indicator of the structure of text. Computational Linguistics.
Hwee Tou Ng, Chung Yong Lim, and Jessica Li Teng Koo. 1999. Learning to recognize tables in free text. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics, pages 443–450, Maryland, USA, June.
Daniela Rus and Kristen Summers. 1994. Using white space for automated document structuring. Technical Report TR94-1452, Cornell University, Department of Computer Science, July.
For example, a paragraph occur. Applying this of text is grammatical observation to the segmentation of a double column of text will indicate where the line breaks occur.

Number	Date	Name	Address

Figure 2: Locating Potential Ambiguity and Computing Continuation Points

If a bigram model is used, the probability that word \(w \) is followed by word \(w' \) may be expressed as a probability as \(P(w' | w) \) and assigned a value between 0 and 1. If the probabilities are those shown in the right then the continuation for A would be X and the continuation point for B would be Y.

Figure 3: Sorting continuation depends on the potential layout of the document
Double Column
For example, a paragraph applying this of text in grammatically observation to the correct wherever the line segmentation of a double breaks occur. Column of text still indicate where the line breaks occur.

False White Space Rivers
Sentences may require to form false positives of rivers of white space which look like separated blanks but it is fast continuous text.

Apposed/Marginal Material
ENTRANCE PROCEDURE
For order of lock-entry bonds solicited or an agent and accepted or the issuer for settlement on the first.

Simple Apposed/Marginal Material
FAIL TO SETTLE:
If the trustee fails to enter an IADS delivered order with

Unmarked Headings
Adjustments upon changes in common stock

In the event that the number of outstanding shares of Common Stock of the Company is changed by reason of recapitalization, reclassification, stock

Double Spacing
We, the undersigned directors, attest to the correctness of this Report of Condition and declare that it has been examined by us, and to the best of our knowledge and

Elliptical Lists
- We may sell the securities:
 - through underwriters,
 - through agents or
 - directly to a limited number of institutional purchasers or to a single purchaser.

Short Paragraphs
A short paragraph may produce islands of text.

Multi-column cell
Number of	Number of	
Dups	Cases	Horses

Multi-row Cell

Name of Birth	Address

Multi-row Stub Cells
Weighted average number of common shares used in calculation:

Number of	Dups	Cases	Horses
	35	200	124

Multiple Cells (below header)

Name	Date of Birth	Address

Elliptical Cell Contents

Property, plant and equipment: 1,300,000

| Property, plant and equipment | 1,300,000 |

| Loss accumulated depreciation | 120,000 |

Grid Quantization

Name and Address	Common of Beneficial Owner Shares

Orientation Variation

One to Many, Many to One

Figure 4: Layout and Language Effects