Complete Genome Sequences and Methylome Analyses of *Cutibacterium acnes* subsp. *acnes* Strains DSM 16379 and DSM 1897T

Paulina Deptula, Pia Laine, Lars Paulin, Petri Auvinen, Richard J. Roberts, Christopher D. Johnston, Pekka Varmanen

ABSTRACT *Cutibacterium acnes* is a member of the normal human skin microbiome. However, it is also associated with skin disorders and persistent infections of orthopedic implants. Here, we announce complete genome sequences and methylomes of the *C. acnes* subsp. *acnes* strains DSM 16379 and DSM 1897T together with their active restriction-modification systems.

Cutibacterium acnes was recently reclassified from *Propionibacterium acnes*, when the former genus *Propionibacterium* was divided into four new genera, namely, *Propionibacterium*, *Cutibacterium*, *Acidipropionibacterium*, and *Pseudopropionibacterium* (1). The strain *C. acnes* subsp. *acnes* DSM 1897T was isolated from acne pustules on facial skin in 1920 (2). The strain *C. acnes* subsp. *acnes* DSM 16379, which is equivalent to the first sequenced representative of the former genus *Propionibacterium* (3) strain KPA 171202, was isolated as a contaminant of an anaerobic culture (4). Both strains belong to the former type I, with the strain DSM 16379 representing subtype IB, while the strain DSM 1897T belongs to subtype IA1 (5).

The strains were anaerobically grown in brain heart infusion broth at 37°C. Genomic DNA from stationary-phase cultures was isolated with the DNA minikit (Qiagen, Germantown, MD, USA). SMRTbell DNA libraries were prepared without shearing, using the PacBio DNA/polymerase binding kit P5 and DNA template preparation kit 3.0 (Pacific Biosciences, USA) according to the manufacturer’s protocol. A sample from DSM 1897T was size selected (4 kb) using the BluePippin system (Sage Sciences). Libraries were sequenced with P5/C3 chemistry on a PacBio RS II sequencer (Pacific Biosciences), resulting in 140,910 (N50, 14,274 bp) and 105,136 (N50, 20,157 bp) polymerase reads for DSM 16379 and DSM 1897T, respectively. Genome assemblies (HGAP3) and motif and modification analyses implemented in SMRT Portal 2.3.0 (Pacific Biosciences) were performed using default parameters. Genome sequences were circularized using GAP4 (Staden package) (6), resulting in genomes with sizes of 2,495,002 bp (G+C content, 60.0%); coverage, 446×; GenBank accession number CP025934) and 2,560,634 bp (G+C content, 60.0%); coverage, 351×; GenBank accession number CP025935) for DSM 1897T and DSM 16379, respectively. One methylation motif was detected for each of the strains. Annotation with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (7) and SEQWARE methylome analysis at REBASE (8) were performed as previously described (9).

The methylation motif BNNDCNNNNNGTCCCC detected in the strain DSM 1897T cannot be genuine and may reflect the presence of an unusual modification for which the PacBio motif detection software was not trained, which could explain the low detection rate of 24.1%. One possibility is that it reflects a further modification of a
methylation that is associated with a system strongly resembling a defense island system associated with restriction-modification (DISARM) (10) (Fig. 1A). If the type IIG system Cac1897ORF8560P is responsible, then one of the neighboring genes may provide the enzymatic activity to further modify the true motif. Further studies are needed to determine the true character of this possible DISARM.

A similar system resembling the DISARM is present in the strain DSM 16379 (Fig. 1B) but is disrupted by a 32.5-kbp insertion (Fig. 1C). The 32.5-kbp insertion carries multiple genes with putative roles in defense, a typical characteristic of a “defense island” (11), and it includes an active type III restriction-modification (RM) system (cbac_08740 to cbac_08750) (Fig. 1D) with a recognition motif, AGCAGY. A similar type III system with the same recognition motif was previously reported in a closely related bacterium, Propionibacterium freudenreichii (12).

ACKNOWLEDGMENTS

We thank Harri Kangas for PacBio sequencing.

This research was funded by the Academy of Finland (grant numbers 292646, 257333, 307856, and 325784) and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement number 845658. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
R.J.R. works for New England BioLabs, a company that sells research reagents, including restriction enzymes and DNA methyltransferases, to the scientific community.

REFERENCES

1. Scholz CFP, Kilian M. 2016. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 66:4422–4432. https://doi.org/10.1099/ijsem.0.01367.

2. Zierdt CH, Webster C, Rude WS. 1968. Study of the anaerobic corynebacteria. Int J Syst Bacteriol 18:33–47. https://doi.org/10.1099/00207713-18-1-33.

3. Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, Dürr P, Gottschalk G. 2004. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305:671–673. https://doi.org/10.1126/science.1100330.

4. Reimer LC, Vetcininova A, Carbasse JS, Söhngen C, Gleim D, Ebeling C, Overmann J. 2019. BacDive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res 47:D631–D636. https://doi.org/10.1093/nar/gky879.

5. Dekio I, McDowell A, Sakamoto M, Tomida S, Ohkuma M. 2019. Proposal of new combination, Cutibacterium acnes subsp. elongatum comb. nov., and emended descriptions of the genus Cutibacterium, Cutibacterium acnes subsp. acnes and Cutibacterium acnes subsp. defendens. Int J Syst Evol Microbiol 69:1087–1092. https://doi.org/10.1093/ijsem/jsy027.

6. Staden R, Judge DP, Bonfield JK. 2003. Managing sequencing projects in the GAP4 environment, p 327–344. In Introduction to bioinformatics. Springer, New York, NY.

7. Tatusova T, DiCuccio M, Badretdin A, Chetverin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.

8. Roberts RJ, Vincze T, Posfai J, Macelis D. 2015. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43:D298–D299. https://doi.org/10.1093/nar/gku1046.

9. Deptula P, Loivamaa I, Smolander O-P, Laine P, Roberts RJ, Piironen V, Paulin L, Savijoki K, Auvinen P, Varmanen P. 2019. Red-brown pigmentation of Acidipropionibacterium jensenii is tied to haemolytic activity and cyl-like gene cluster. Microorganisms 7:512. https://doi.org/10.3390/microorganisms7110512.

10. Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, Doron S, Sorek R. 2018. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol 3:90–98. https://doi.org/10.1038/s41564-017-0051-0.

11. Makarova KS, Wolf YI, Snir S, Koonin EV. 2011. Defense islands in bacterial and archaeal genomes of novel defense systems. J Bacteriol 193:6039–6056. https://doi.org/10.1128/JB.05535-11.

12. Deptula P, Laine PK, Roberts RJ, Smolander O-P, Viihinen H, Piironen V, Paulin L, Jokitalo E, Savijoki K, Auvinen P, Varmanen P. 2017. De novo assembly of genomes from long sequence reads reveals uncharted territories of Propionibacterium freudenreichii. BMC Genomics 18:790. https://doi.org/10.1186/s12864-017-4165-9.

13. Dekio I, Culak R, Misra R, Gaulton T, Fang M, Sakamoto M, Ohkuma M, Oshima K, Hattori M, Klenk HP, Rajendram D, Gharbia SE, Shah HN. 2015. Dissecting the taxonomic heterogeneity within Propionibacterium acnes: proposal for Propionibacterium acnes subspecies. International Journal of Systematic and Evolutionary Microbiology 65:4776–4787. https://doi.org/10.1099/ijsem.0.00648.