NOTES ON CONVEX FUNCTIONS OF ORDER α

TOSHIYUKI SUGAWA AND LI-MEI WANG

Abstract. Marx and Strohhäcker showed around in 1933 that $f(z)/z$ is subordinate to $1/(1 - z)$ for a normalized convex function f on the unit disk $|z| < 1$. Brickman, Hallenbeck, MacGregor and Wilken proved in 1973 further that $f(z)/z$ is subordinate to $k_\alpha(z)/z$ if f is convex of order α for $1/2 \leq \alpha < 1$ and conjectured that this is true also for $0 < \alpha < 1/2$. Here, k_α is the standard extremal function in the class of normalized convex functions of order α and $k_0(z) = z/(1 - z)$. We prove the conjecture and study geometric properties of convex functions of order α. In particular, we prove that $(f + g)/2$ is starlike whenever f and g both are convex of order $3/5$.

1. Introduction and main result

Let \mathcal{A} denote the set of analytic functions on the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{A}_1 be the subclass of \mathcal{A} consisting of functions f normalized by $f(0) = f'(0) - 1 = 0$. Further let \mathcal{S} be the subset of \mathcal{A}_1 consisting of functions f univalent on \mathbb{D}. The present paper mainly deals with the subfamily of \mathcal{S}, denoted by $\mathcal{K}(\alpha)$, consisting of convex functions of order α introduced by Robertson [8]. Here, for a constant $0 \leq \alpha < 1$, a function f in \mathcal{A}_1 is called convex of order α if
\[\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \]
for $z \in \mathbb{D}$. Note that the class $\mathcal{K}(0) = \mathcal{K}$ is known to consist of convex functions in \mathcal{A}_1. Here, a function f in \mathcal{A} is called convex if f maps \mathbb{D} univalently onto a convex domain. A function $f \in \mathcal{A}$ is called starlike if f maps \mathbb{D} univalently onto a domain starlike with respect to $f(0)$. It is clear that every convex function is starlike. We denote by \mathcal{S}^* the set of starlike functions in \mathcal{A}_1. By definition, it is obvious that for $0 \leq \alpha < \beta < 1$,
\[\mathcal{K}(\beta) \subset \mathcal{K}(\alpha) \subset \mathcal{K} \subset \mathcal{S}^* \subset \mathcal{S}. \]

The Koebe function $z/(1 - z)^2$ is often extremal in \mathcal{S}^* or even in \mathcal{S} and thus plays quite an important role in the theory of univalent functions. It is helpful in many respects to have such an extremal function for the class $\mathcal{K}(\alpha)$. Since the function $(1 + (1 - 2\alpha)z)/(1 - z)$ maps \mathbb{D} univalently onto the half-plane $\Re w > \alpha$, indeed, the function $k_\alpha \in \mathcal{K}(\alpha)$ characterized by the following relations serves as an extremal one:
\[1 + \frac{zk_\alpha''(z)}{k_\alpha'(z)} = \frac{1 + (1 - 2\alpha)z}{1 - z}, \quad \text{and} \quad k_\alpha(0) = 0, \ k_\alpha'(0) = 1. \]

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C75.

Key words and phrases. subordination, convex functions of order α, hypergeometric function.

The present research was supported by National Natural Science Foundation of China (No. 11326080) and JSPS Grant-in-Aid for Scientific Research (B) 22340025.
Theorem 1.3. The following more refined result. (Brickman et al.)

We say that D is subordinated to G and write $f \prec G$ or $f(z) \prec G(z)$ for it if there is an analytic function ω on \mathbb{D} such that $\omega(0) = 0$ and $f(z) = g(\omega(z))$ for $z \in \mathbb{D}$. When g is univalent, f is subordinate to g precisely if $f(0) = g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$.

In 1973, Brickman, Hallenbeck, MacGregor and Wilken proved in [2, Theorem 11] the following result for convex functions of order α.

Theorem A (Brickman et al.). If $f \in K(\alpha)$ for $1/2 \leq \alpha < 1$, then

$$
\frac{f(z)}{z} \prec \frac{k_\alpha(z)}{z} \quad \text{on } \mathbb{D}.
$$

We note that $k_0(z)/z = 1/(1 - z)$ maps \mathbb{D} univalently onto the half-plane $\text{Re } w > 1/2$. Thus the above relation also holds when $\alpha = 0$ by a theorem of Marx and Strohhäcker (see [2, Theorem 10]). In [2], they conjectured that the assertion of Theorem A would hold for $0 < \alpha < 1/2$ as well. They also observed that the conjecture is confirmed if one could show that the function $k_\alpha(z)/z$ is convex. They prove the last theorem by showing it for $1/2 \leq \alpha < 1$ (cf. [2, Lemma 3]). We will show it for all α.

Theorem 1.1. The function $h_\alpha(z) = k_\alpha(z)/z$ maps \mathbb{D} univalently onto a convex domain for each $0 \leq \alpha < 1$.

We remark that, in the context of the hypergeometric function, this follows also from results of Küstner in [5] (see the remark at the end of Section 2 for more details). Anyway, the conjecture has been confirmed:

Corollary 1.2. Let $0 \leq \alpha < 1$. Then, for $f \in K(\alpha)$, the following subordination holds:

$$
\frac{f(z)}{z} \prec \frac{k_\alpha(z)}{z} \quad \text{on } \mathbb{D}.
$$

In view of the form, it is easy to see that k_α is bounded on \mathbb{D} if and only if $\alpha > 1/2$. By analyzing the shape of the image of \mathbb{D} under the mapping $h_\alpha(z) = k_\alpha(z)/z$, we obtain the following more refined result.

Theorem 1.3. Let $0 \leq \alpha < 1$ and $f \in K(\alpha)$. Then the following hold:

(i) $\frac{k_\alpha(-r)}{r} \leq \text{Re } \frac{f(z)}{z} \leq \frac{k_\alpha(r)}{r}$ for $|z| = r < 1$.

(ii) When $0 < \alpha < 1/2$, the asymptotic lines of the boundary curve of $h_\alpha(\mathbb{D})$ are given by $v = \pm \cot(\pi\alpha)(u - \frac{1}{2\alpha - 1})$. In particular, the values of $f(z)/z$ for $z \in \mathbb{D}$ are contained in the sector $S = \{u + iv : |v| < \cot(\pi\alpha)(u - \frac{1}{2\alpha - 1})\}$.

(iii) When $1/2 \leq \alpha < 1$,

$$
|\text{Im } \frac{f(z)}{z}| < M(\alpha), \quad z \in \mathbb{D},
$$
NOTES ON CONVEX FUNCTIONS OF ORDER α

where

$$M(\alpha) = \max_{0 < \theta < \pi} \text{Im} \left[e^{-i\theta} k_\alpha(e^{i\theta}) \right] \leq M(\frac{1}{2}) = \frac{\pi}{2}.$$

The estimate is sharp.

We remark that the left-hand inequality in (i) was already proved by Brickman et al. [2, Theorem 10] and the right-hand one follows also from Robertson’s theorem (see Lemma 3.1 below). A much simpler proof of (i) is now available thanks to Corollary 1.2. The proof of this theorem and more information about the constant $M(\alpha)$ will be given in Section 3. We also provide an application of our results to an extremal problem for $K(\alpha)$ in Section 3.

Styer and Wright [10] studied (non-)univalence of a convex combination of two convex functions. Among other things, the following result is most relevant to the present study.

Theorem B (Styer and Wright). Let $f, g \in K$ be odd convex functions. If $|\text{Im} \left[f(z)/z \right]| < \pi/4$ and $|\text{Im} \left[g(z)/z \right]| < \pi/4$ on $|z| < 1$, then $(f + g)/2 \in S^*$.

Styer and Wright suspected that the assumption $|\text{Im} \left[f(z)/z \right]| \leq \pi/4$ in the theorem was superfluous. They even stated the belief that

\begin{equation}
\frac{f(z)}{z} \prec H_2(z) := \frac{1}{2z} \log \frac{1+z}{1-z} = \sum_{n=0}^{\infty} \frac{z^{2n}}{2n+1}
\end{equation}

if $f \in K$ is odd; namely, $f(-z) = -f(z)$. Note that $|\text{Im} H_2(z)| \leq \pi/4$ on $|z| < 1$. Indeed, Hallenbeck and Ruscheweyh [4] proved that

\begin{equation}
\frac{f(z)}{z} \prec H_1(z) := \frac{1}{2z} \log \frac{1+\sqrt{z}}{1-\sqrt{z}} = \sum_{n=0}^{\infty} \frac{z^n}{2n+1}
\end{equation}

for a function $f \in K$ with $f''(0) = 0$, which implies that $|\text{Im} \left[f(z)/z \right]| \leq \pi/4$. In this way, they strengthened the above theorem (see [4, Corollary 2]):

Theorem C (Hallenbeck and Ruscheweyh). Let $f, g \in K$ satisfy $f''(0) = g''(0) = 0$. Then $(f + g)/2 \in S^*$.

We give another result of this type.

Theorem 1.4. $(f + g)/2 \in S^*$ for $f, g \in K(0.6)$.

The proof will be given in Section 4. Note that the constant $0.6 = 3/5$ is not best possible.

We remark that the claim (1.1) for an odd convex function f is not necessarily true. An example will be given in Section 5.

2. PROOF OF THEOREM 1.4

We now show that the function $h_\alpha(z) = k_\alpha(z)/z$ is convex (univalent) on \mathbb{D} for each $0 \leq \alpha < 1$. To this end, we only need to see that $1 + zh_\alpha''(z)/h_\alpha'(z)$ has positive real
part. Since the case $\alpha = 0$ is trivial, we assume that $\alpha > 0$. Put $\beta = 2 - 2\alpha \in (0, 2)$ for convenience. We assume $\alpha \neq 1/2$ so that $\beta \neq 1$ for a while. A simple calculation yields
\[
h'_\alpha(z) = \frac{(1 - \beta z)(1 - z)^{-\beta} - 1}{(1 - \beta)z^2}
\]
and
\[
1 + \frac{zh''_\alpha(z)}{h'_\alpha(z)} = -1 - \frac{\beta(1 - \beta)z^2}{((1 - z)^{\beta} - 1 + \beta z)(1 - z)}.
\]

With the Pochhammer symbol $(a)_n = a(a + 1) \cdots (a + n - 1)$, we compute
\[
(1 - z)^\beta - 1 + \beta z = \sum_{n=2}^{\infty} \frac{(-\beta)_n z^n}{(1)_n}
\]
\[
= -\beta(1 - \beta)z^2 \sum_{n=2}^{\infty} \frac{(2 - \beta)_{n-2} z^{n-2}}{(3)_{n-2}}
\]
\[
= -\beta(1 - \beta)z^2 \sum_{n=0}^{\infty} \frac{(2 - \beta)_{n} z^{n}}{(3)_{n}}.
\]

Letting $b_n = (2 - \beta)_n/(3)_n$ for $n \geq 0$, we obtain
\[
-\frac{((1 - z)^\beta - 1 + \beta z)(1 - z)}{\beta(1 - \beta)z^2} = \frac{1 - z}{2} \sum_{n=0}^{\infty} b_n z^n
\]
\[
= \frac{1}{2} \left(1 + \sum_{n=1}^{\infty} (b_n - b_{n-1}) z^n \right)
\]
\[
= \frac{1 + \omega(z)}{2},
\]
where
\[
\omega(z) = \sum_{n=1}^{\infty} (b_n - b_{n-1}) z^n.
\]

Hence, we have the expression
\[
1 + \frac{zh''_\alpha(z)}{h'_\alpha(z)} = -1 + \frac{2}{1 + \omega(z)} = \frac{1 - \omega(z)}{1 + \omega(z)}.
\]

Note that this is valid also for $\alpha = 1/2$ as is confirmed directly or by taking limit as $\alpha \to 1/2$.

In order to show $\text{Re} \left(1 + \frac{zh''_\alpha(z)}{h'_\alpha(z)} \right) > 0$, it suffices to check $|\omega(z)| < 1$. Since
\[
\frac{b_n}{b_{n-1}} = \frac{n + 1 - \beta}{n + 2} = 1 - \frac{1 + \beta}{n + 2} < 1,
\]
we see that $\{b_n\}$ is a decreasing sequence of positive numbers. Therefore,
\[
|\omega(z)| \leq \sum_{n=1}^{\infty} (b_{n-1} - b_n) |z|^n < \sum_{n=1}^{\infty} (b_{n-1} - b_n) = b_0 - \lim_{n \to \infty} b_n \leq b_0 = 1
\]
for $z \in \mathbb{D}$ as required. (Indeed, we can easily show that $b_n \to 0$ as $n \to \infty$.)
We remark that the function k_α can be expressed in terms of the Gauss hypergeometric function

$$2F_1(a, b; c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \cdot \frac{z^n}{n!}.$$

Indeed, by integrating both sides of

$$k'_\alpha(z) = (1-z)^{-\beta} = \sum_{n=0}^{\infty} (\beta)_n \frac{z^n}{n!}$$

with $\beta = 2 - 2\alpha$, we obtain

$$k_\alpha(z) = \sum_{n=0}^{\infty} \frac{(\beta)_n}{n+1} \cdot \frac{z^{n+1}}{n!} = z \sum_{n=0}^{\infty} \frac{(\beta)_n (1)_n}{(2)_n} \cdot \frac{z^n}{n!},$$

and hence

$$h_\alpha(z) = \frac{k_\alpha(z)}{z} = 2F_1(\beta, 1; 2; z).$$

We extract the following result from Küstner’s theorems in [5] (Theorem 1.1 with $r = 1$ and Remark 2.3, see also Corollary 6 (a) in [6]).

Lemma 2.1 (Küstner). For non-zero real numbers a, b, c with $-1 < a \leq b < c$, let $F(z) = 2F_1(a, b; c; z)$. Then

$$\inf_{z \in \mathbb{D}} \left(1 + \frac{zF''(z)}{F'(z)} \right) = 1 + \frac{-F''(1)}{F'(1)} \geq 1 - \frac{(a+1)(b+1)}{b+c+2}$$

Since $2F_1(a, b; c; z) = 2F_1(b, a; c; z)$, we can apply the above lemma to our function $h_\alpha(z) = 2F_1(\beta, 1; 2; z)$ for $0 < \alpha < 1$; equivalently, for $0 < \beta < 2$. Hence, by (2.1), we obtain

$$\inf_{z \in \mathbb{D}} \left(1 + \frac{zh''(z)}{h'(z)} \right) = 1 - \frac{h''(1)}{h'(1)} = \frac{2\beta + 1 - 2 - \beta - \beta^2}{2(1 + \beta - 2\beta)} \geq \begin{cases} \frac{4\alpha - 1}{5}, & 1/2 \leq \alpha < 1, \\ \frac{\alpha}{3 - \alpha}, & 0 < \alpha \leq 1/2. \end{cases}$$

In this way, we have obtained another proof of convexity of h_α.

3. Mapping properties of functions in $K(\alpha)$

The present section is devoted to the proof of Theorem 1.3. Before the proof, we note basic results due to Robertson [8] (see also Pinchuk [7]).

Lemma 3.1 (Robertson). Let $0 \leq \alpha < 1$ and $f \in K(\alpha)$. Then,

$$-k_\alpha(-r) \leq |f(z)| \leq k_\alpha(r) \quad \text{for } |z| = r < 1.$$

In particular, the image domain $f(\mathbb{D})$ contains the disk $|w| < -k_\alpha(-1)$.

We will use also the following simple fact.
Lemma 3.2. Let Ω be an unbounded convex domain in \mathbb{C} whose boundary is parametrized positively by a Jordan curve $w(t) = u(t) + iv(t)$, $0 < t < 1$, with $w(0^+) = w(1^-) = \infty$. Suppose that $u(0^+) = +\infty$ and that $v(t)$ has a finite limit as $t \to 0^+$. Then $v(t) \leq v(0^+)$ for $0 < t < 1$.

Proof. Let $0 \leq t^* \leq 1$ be the number such that $u(t^*) = \inf_{0 < t < 1} u(t)$ and that $u(t) > u(t^*)$ for $0 < t < t^*$. (We interpret $u(0) = u(0^+)$ or $u(1) = u(1^-)$ when $t^* = 0$ or 1, respectively.) By the assumption $u(0^+) = +\infty$, we have $t^* > 0$. Note that $u(t)$ is strictly decreasing in $0 < t < t^*$. By convexity and orientation, the part $w((t^*,1))$ of the boundary lies below the part $w((0,t^*))$. Thus, it is enough to show that $v(t)$ is non-increasing in $0 < t < t^*$. Let $0 < t_0 < t_1 < t_2 < t^*$ and set $w(t_j) = u_j + iv_j$ for $j = 0, 1, 2$. By convexity, the part $w((t_0, t_2))$ of the boundary lies above the line which passes through the points $w(t_0)$ and $w(t_2)$; equivalently,

$$v(t) \geq v_2 + \frac{v_0 - v_2}{u_0 - u_2} (u(t) - u_2), \quad t_0 < t < t_2.$$

We now put $t = t_1$ and let $t_0 \to 0^+$ to obtain $v_1 = v(t_1) \geq v_2 = v(t_2)$. Thus we have shown that $v(t)$ is non-increasing as required. \qed

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Since $h_\alpha(z) = k_\alpha(z)/z$ is convex and symmetric in \mathbb{R}, we easily see that $h_\alpha(-r) \leq \Re h_\alpha(z) \leq h_\alpha(r)$ for $|z| = r < 1$. Therefore, assertion (i) immediately follows from Corollary 1.2.

To prove (ii) and (iii), we study mapping properties of the function $h_\alpha(z)$. We remark that h_α analytically extends to $\partial \mathbb{D} \setminus \{1\}$ by its form. Let us investigate the shape of the boundary of $h_\alpha(\mathbb{D})$. In the rest of this section, it is convenient to put $\gamma = 2\alpha - 1 \in [-1, 1)$. Note that $\gamma < 0$ if and only if $\alpha < 1/2$. We write $h_\alpha(e^{i\theta}) = u_\gamma(\theta) + iv_\gamma(\theta)$ for $0 < \theta < 2\pi$.

We remark that the symmetry $h_\alpha(\bar{z}) = \overline{h_\alpha(z)}$ leads to the relations $u_\gamma(2\pi - \theta) = u_\gamma(\theta)$ and $v_\gamma(2\pi - \theta) = -v_\gamma(\theta)$. Thus, we may restrict our attention to the range $0 < \theta \leq \pi$. It is easy to obtain the following expressions for $\gamma \neq 0$:

$$u_\gamma(\theta) = \frac{-1}{\gamma} \left(2 \sin \frac{\theta}{2} \right)^\gamma \cos \left(-\theta + \frac{\theta - \pi}{2} \gamma \right) - \cos \theta,$$

$$v_\gamma(\theta) = \frac{-1}{\gamma} \left(2 \sin \frac{\theta}{2} \right)^\gamma \sin \left(-\theta + \frac{\theta - \pi}{2} \gamma \right) + \sin \theta.$$

Observe that for $-1 < \gamma < 0$, both $u_\gamma(\theta)$ and $v_\gamma(\theta)$ tend to $+\infty$ as $\theta \to 0^+$. A simple calculation yields

$$\lim_{\theta \to 0^+} \frac{v_\gamma(\theta)}{u_\gamma(\theta)} = \tan \frac{-\pi \gamma}{2} = -\tan \frac{\pi \gamma}{2}$$

and

$$\lim_{\theta \to 0^+} \left(v_\gamma(\theta) + u_\gamma(\theta) \tan \frac{\pi \gamma}{2} \right) = \lim_{\theta \to 0^+} \left[\frac{-(2 \sin \frac{\theta}{2})^\gamma \sin(\frac{\pi}{2} - 1) \theta}{\gamma \cos(\pi \gamma/2)} - \frac{1}{\gamma} \tan \frac{\pi \gamma}{2} \cos \theta \right]$$

$$= -\frac{1}{\gamma} \tan \frac{\pi \gamma}{2}.$$

Therefore,
\[v = -\tan\frac{\pi\gamma}{2}\left(u - \frac{1}{\gamma}\right) \]

\[= \cot(\alpha\pi)\left(u - \frac{1}{2\alpha - 1}\right) \]
is an asymptotic line of the boundary curve \(\partial h_\alpha(\mathbb{D})\). Since \(h_\alpha(\mathbb{D})\) is a convex domain symmetric in the real axis, we conclude assertion (ii).

Next we assume \(\alpha \geq 1/2\) to show (iii). Since \(f(z)/z < k_\alpha(z)/z < k_{1/2}(z)/z\) for \(f \in K(\alpha)\), the assertion is clear except for \(M(1/2) = \pi/2\). A simple computation gives us the expression
\[v_{1/2}(\theta) = \frac{\pi - \theta}{2} \cos \theta + \sin \theta \log \left(2 \sin \frac{\theta}{2}\right) \]
for \(0 < \theta < \pi\). We easily get \(v_{1/2}(0^+) = \pi/2\). Thus we conclude that \(M(1/2) = \pi/2\) by Lemma 3.2. We have thus proved assertion (iii).

□

We indicate how to compute the value of \(M(\alpha)\) for \(1/2 < \alpha < 1\). Set \(c = \gamma/2 = \alpha - 1/2 \in (0, 1/2)\). Since \(h_\alpha(\mathbb{D})\) is a bounded convex domain symmetric in \(\mathbb{R}\), it is easy to see that \(v_\gamma(\theta)\) has a unique critical point, say, \(\theta_\alpha\) at which \(v_\gamma\) attains its maximum so that \(M(\alpha) = v_\gamma(\theta_\alpha)\). Here, \(\theta = \theta_\alpha\) is a unique solution of the equation
\[(3.1) \quad \left[c \cot \frac{\theta}{2} + (1 - c) \cot(c\pi + (1 - c)\theta)\right] \left(2 \sin \frac{\theta}{2}\right)^{2c} \sin(c\pi + (1 - c)\theta) - \cos \theta = 0 \]
in \(0 < \theta < \pi\), where \(c = \alpha - 1/2\). By using this equation, we can express \(M(\alpha)\) in a different way:
\[(3.2) \quad M(\alpha) = \frac{1}{2c} \left[\frac{\cos \theta_\alpha}{c \cot(\theta_\alpha/2) + (1 - c) \cot(c\pi + (1 - c)\theta_\alpha)} - \sin \theta_\alpha\right]. \]

This expression will be used in the proof of Theorem 1.4.

Assertion (ii) of Theorem 1.3 can be applied to an extremal problem for \(K(\alpha)\). For \(0 \leq \alpha < 1\) and \(t \in \mathbb{R}\), we consider the quantity
\[Q_\alpha(t) = \inf_{f \in K(\alpha), z \in \mathbb{D}} \Re \left[e^{itf(z)}\right]. \]
The quantity \(M(\alpha)\) in Theorem 1.3 is a particular case of this quantity. Indeed, we have \(Q_\alpha(\pi/2) = -M(\alpha)\) for \(1/2 \leq \alpha < 1\). We have the obvious monotonicity \(Q_\alpha(t) \leq Q_\beta(t)\) for \(0 \leq \alpha < \beta < 1\) and the symmetry \(Q_\alpha(-t) = Q_\alpha(t)\). It is thus enough to consider the case when \(0 \leq t \leq \pi\).

Theorem 3.3. For \(0 < \alpha < 1\), the function \(\varphi_\alpha(\theta) = \theta + \arg h_\alpha'(e^{\theta})\) maps the interval \((0, \pi]\) onto \((\pi(1 - \alpha), \pi]\) homeomorphically. Furthermore, the following hold.

(i) Suppose \(\alpha = 0\). Then, \(Q_0(0) = 1/2\) and \(Q_0(t) = -\infty\) for \(0 < t \leq \pi\).
(ii) Suppose $0 < \alpha < 1/2$. Then

\[Q_\alpha(t) = \begin{cases}
\text{Re} \left[e^{i(t-\theta_0)}k_\alpha (e^{i\theta_0}) \right], & 0 \leq t < \alpha \pi, \theta_0 = \varphi_\alpha^{-1}(\pi - t), \\
(2\alpha - 1)^{-1} \cos(\alpha \pi), & t = \alpha \pi, \\
-\infty, & \alpha \pi < t \leq \pi.
\end{cases} \]

(iii) Suppose $\alpha = 1/2$. Then

\[Q_{1/2}(t) = \begin{cases}
\text{Re} \left[e^{i(t-\theta_0)}k_{1/2} (e^{i\theta_0}) \right], & 0 \leq t < \pi/2, \theta_0 = \varphi_{1/2}^{-1}(\pi - t), \\
-\pi/2, & t = \pi/2, \\
-\infty, & \pi/2 < t \leq \pi.
\end{cases} \]

(iv) Suppose $1/2 < \alpha < 1$. Then

\[Q_\alpha(t) = \begin{cases}
\text{Re} \left[e^{i(t-\theta_0)}k_\alpha (e^{i\theta_0}) \right], & 0 \leq t < \alpha \pi, \theta_0 = \varphi_\alpha^{-1}(\pi - t), \\
(2\alpha - 1)^{-1} \cos t, & \alpha \pi \leq t \leq \pi.
\end{cases} \]

Proof. When $t = 0$ or π, the assertions are clear. Assume therefore that $0 < t < \pi$. Let $D_\alpha = h_\alpha(\mathbb{D})$. By Corollary 1.2, we have

\[Q_\alpha(t) = \inf_{u+iv \in D_\alpha} \text{Re} \left[e^{it}(u + iv) \right] = \inf_{u+iv \in D_\alpha} \left[u \cos t - v \sin t \right]. \]

Then, geometrically, we can say that $-Q_\alpha(t)/\sin t$ is the supremum of y-intercepts of those lines $y = x \cot t + C$ which intersect with D_α. Since D_α does not intersect the y-axis, such a line must intersect with ∂D_α. Therefore, in the above characterization of $Q_\alpha(t)$, D_α may be replaced by ∂D_α. Hence, noting also the symmetry of D_α in \mathbb{R}, we further obtain

\[Q_\alpha(t) = \inf_{u+iv \in \partial D_\alpha} \left[u \cos t - v \sin t \right] = \inf_{u+iv \in \partial D_\alpha, v \geq 0} \left[u \cos t - v \sin t \right] = \inf_{0 < \theta < \pi} F(\theta), \]

where

\[F(\theta) = u_\gamma(\theta) \cos t - v_\gamma(\theta) \sin t. \]

and u_γ, v_γ are the functions given by $h_\alpha(e^{i\theta}) = u_\gamma(\theta) + iv_\gamma(\theta)$ with $\gamma = 2\alpha - 1$, as before.

When $\alpha = 0$, the function $h_0(z) = 1/(1 + z)$ maps the unit disk onto the half-plane $\text{Re} w > 1/2$ so that assertion (i) is obvious. We thus assume that $0 < \alpha < 1$ in the rest of the proof.

First we analyze the case when $Q_\alpha(t) = -\infty$. Recall that $u_\gamma(\theta) \rightarrow +\infty$ and $v_\gamma(\theta) = u_\gamma(\theta) \cot(\alpha \pi) + O(1)$ as $\theta \rightarrow 0^+$ for $0 < \alpha < 1/2$ by (ii) of Theorem 1.3. This is valid also for $\alpha = 1/2$. Hence,

\[\sin(\alpha \pi) \left[u_\gamma(\theta) \cos t - v_\gamma(\theta) \sin t \right] = u_\gamma(\theta) \sin(\alpha \pi - t) + O(1) \rightarrow -\infty \quad (\theta \rightarrow 0^+), \]

whenever $\sin(\alpha \pi - t) < 0$, which confirms the assertion for $\alpha \pi < t < \pi$ and $0 < \alpha \leq 1/2$.

We now show the first assertion of the theorem. Let $\psi_\alpha(\theta) = \arg [u_\gamma'(\theta) + iv_\gamma'(\theta)] \in (\pi/2, 3\pi/2]$ for $0 < \theta \leq \pi$. The strict convexity of D_α implies that ψ_α is strictly increasing. Note that $\psi_\alpha(\theta) = \arg h_\alpha'(e^{i\theta}) + \theta + \pi/2 = \varphi_\alpha(\theta) + \pi/2$. Then we consider the case $0 \leq
$t < \alpha \pi$. From the proof of assertion (ii) of Theorem \ref{thm1.3} we see that $\psi_\alpha(0^+) = 3\pi/2 - \alpha \pi$ for $0 < \alpha < 1/2$. This is valid also for $1/2 \leq \alpha < 1$. Indeed, it follows from

$$\tan \psi_\alpha(0^+) = \lim_{\theta \to 0^+} \frac{u_\gamma(\theta)}{u_\gamma(0^+)} = -\tan \frac{\pi \gamma}{2} = \cot(\alpha \pi)$$

for $1/2 < \alpha < 1$. We can also see that $\psi_{1/2}(0^+) = \pi$ directly. Hence, we conclude that the range of $\psi_\alpha(\theta)$ on $0 < \theta \leq \pi$ is precisely $(\frac{\pi \gamma}{2} - \alpha \pi, \frac{3\pi}{2} \gamma]$, which proves the required assertion.

We now consider the case when $0 \leq t < \alpha \pi$. Then $F'(\theta)$ vanishes precisely when $\tan \psi_\alpha(\theta) = v'_\gamma(\theta)/u'_\gamma(\theta) = \cot t = \tan(3\pi/2 - t)$, namely, $\varphi_\alpha(\theta) = \pi - t$. Thus we see that $F(\theta)$ takes its minimum at $\theta_0 = \varphi_\alpha^{-1}(\pi - t)$ and the corresponding assertions hold.

Our next task is to consider the borderline case $t = \alpha \pi$. When $0 < \alpha < 1/2$, Theorem \ref{thm1.3} (ii) implies that the supremum of the y-intercepts of the lines $y = x \cot(\alpha \pi) + k$ intersecting with D_α is $\cot(\alpha \pi)/(1 - 2\alpha)$. This case has been confirmed to be true. When $\alpha = 1/2$, the assertion is contained in Theorem \ref{thm1.3} (iii). When $\alpha > 1/2$, this case can be included in the final case below.

We finally consider the case when $1/2 < \alpha < 1$ and $\alpha \pi \leq t < \pi$. In this case the function $F(\theta)$ has no critical point in $0 < \theta < \pi$. Since $F'(\pi) = -v'_\gamma(\pi) \sin t > 0$, we see that $F(\theta)$ is increasing in $0 < \theta < \pi$ so that $Q_\alpha(t) = F(0^+) = (2\alpha - 1)^{-1} \cos t$. \hfill \Box

4. Proof of Theorem \ref{thm1.4}

We denote by \mathbb{D}_r the disk $|z| < r$. Throughout this section, we define f_a for $f \in \mathcal{A}_1$ and $a \in \mathbb{D}$ by $f_a(z) = f(az)/a$. Here, we set $f_0(z) = \lim_{a \to 0} f_a(z) = z$. We begin with the following simple observation.

Lemma 4.1. Let $f \in \mathcal{S}$. Suppose that $f(\mathbb{D})$ contains the disk \mathbb{D}_ρ for some $\rho > 0$. Then $\mathbb{D}_\rho \subset f_a(\mathbb{D})$ for $a \in \mathbb{D}$.

Proof. It suffices to show that $\mathbb{D}_{\rho r} \subset f(\mathbb{D}_r)$ for $0 < r < 1$. By assumption, $g(w) = f^{-1}(\rho w)$ is a univalent analytic function on \mathbb{D} with $|g(w)| < 1$ and $g(0) = 0$. Then the Schwarz lemma implies that $g(\mathbb{D}_r) \subset \mathbb{D}_r$, which in turn gives us $\mathbb{D}_{\rho r} \subset f(\mathbb{D}_r)$ as required. \hfill \Box

By making use of the idea due to Styer and Wright \[\text{[10]}, \] the following result can now be shown. For convenience of the reader, we reproduce the proof here in a somewhat simplified form.

Lemma 4.2. Let ρ be a positive constant. Suppose that two functions f, $g \in \mathcal{K}$ satisfy the following two conditions:

1. $f(\mathbb{D})$ and $g(\mathbb{D})$ both contain the disk \mathbb{D}_ρ, and
2. $|\text{Im}[f(z)/z]| < \rho$ and $|\text{Im}[g(z)/z]| < \rho$ on \mathbb{D}.

Then $(f + g)/2 \in \mathcal{S}^*$.

Proof. Put $h = f + g$. For starlikeness, we need to show that $\text{Re}[zh'(z)/h(z)] > 0$ on \mathbb{D}. We will show that $\text{Re}[z f'(z)/h(z)] > 0$. Since we can do the same for g, it will finish the proof.
Let \(a \in \mathbb{D} \) with \(a \neq 0 \). Since \(f'_a(1)/h_a(1) = af''(a)/h(a) \), it is enough to show the inequality \(\text{Re} [f'_a(1)/h_a(1)] \geq 0 \). Denote by \(W \) the set \(\{ w : |w| \geq \rho, |\text{Im} w| < \rho \} \). Then \(W \) consists of the two connected components \(W_+ \) and \(W_- \), where \(W_+ = \{ w \in W : w > 0 \} \). By Lemma 4.1 and the relation \(f_a(z)/z = f(az)/(az) \), the assumptions imply \(f_a(1) \in W \). Since the (continuous) curve \(t \mapsto f_{a_t}(1), 0 \leq t \leq 1 \), connects \(f_0(1) = 1 \), we see that \(f_a(1) \in W_+ \). Since we have \(g_a(1) \in W_+ \) in the same way and thus \(-g_a(1) \in W_- \), the segment \([-g_a(1), f_a(1)] \) intersects the disk \(\mathbb{D}_\rho \). Choose a point \(w_0 \in [-g_a(1), f_a(1)] \cap \mathbb{D}_\rho \). Then the vector \(f_a(1) - w_0 \) is directed at the point \(f_a(1) \) outward from the convex domain \(f_a(\mathbb{D}) \). Since the tangent vector of the curve \(f_a(e^{i\theta}) \) at \(\theta = 0 \) is given by \(if'_a(1) \), we have

\[
\arg [if'_a(1)] - \pi \leq \arg [f_a(1) - w_0] = \arg [f_a(1) + g_a(1)] \leq \arg [if'_a(1)],
\]

which is equivalent to \(|\arg [f'_a(1)/h_a(1)]| \leq \pi/2 \). Thus we have shown the desired inequality \(\text{Re} [f'_a(1)/h_a(1)] \geq 0 \).

Proof of Theorem 1.4. Let \(f, g \in \mathcal{K}(3/5) \). We will apply the last lemma to these two functions. Let \(\rho = -k_{3/5}(-1) = 5(2^{1/5} - 1) = 0.743491 \ldots \). By Theorem 1.3, we have only to show that \(M(3/5) \leq \rho \). We denote by \(F(\theta) \) the function in the left-hand side in (3.1) for \(c = \frac{3}{5} - \frac{1}{2} = \frac{1}{10} \). A numerical computation gives us \(F(0.11) = 0.0050 \cdots > 0 \) and \(F(0.114) = -0.0010 \cdots < 0 \). Thus we have \(0.11 < \theta_{3/5} < 0.114 \). By (3.2), we have the expression \(M(3/5) = 5G(\theta_{3/5}) \), where

\[
G(\theta) = \frac{\cos \theta}{c \cot(\theta/2) + (1 - c) \cot(c\pi + (1 - c)\theta)} - \sin \theta = \frac{\cos \theta}{H(\theta)} - \sin \theta.
\]

We observe that \(H(\theta) \) is positive and decreasing in \(0 < \theta < \frac{1/2 - c}{1-c} \pi = 4\pi/9 \), because

\[
H'(\theta) = -\frac{c}{2 \sin^2(\theta/2)} - \frac{(1 - c)^2}{\sin^2(c\pi + (1 - c)\theta)} < 0.
\]

Also, we see that \(-H'(\theta)\) is positive and decreasing in \(0 < \theta < 4\pi/9 \) by its form. Since

\[
G'(\theta) = -\frac{\sin \theta}{H(\theta)} - \frac{H'(\theta) \cos \theta}{H(\theta)^2} - \cos \theta,
\]

letting \(\theta_0 = 0.11 \) and \(\theta_1 = 0.114 \), we estimate on \(\theta_0 \leq \theta \leq \theta_1 \) in the form

\[
G'(\theta) > -\frac{\sin \theta_1}{H(\theta_1)} - \frac{H'(\theta_1) \cos \theta_1}{H(\theta_0)^2} - \cos \theta_0 = 0.326 \cdots > 0.
\]

Hence \(G(\theta) \) is increasing in this interval so that

\[
M(3/5) = 5G(\theta_{3/5}) < 5G(\theta_1) = 0.743487 \cdots < \rho.
\]

The proof is now complete. \(\square \)
5. An example

We conclude the present note by giving an example of an odd convex function \(f \in K \) such that

\[
\frac{f(z)}{z} \not\preccurlyeq H_{2}(z) = \frac{1}{2z} \log \frac{1+z}{1-z} \quad \text{on } \mathbb{D}.
\]

The following result due to Alexander [1] (see also Goodman [3]) is useful for our aim here.

Lemma 5.1 (Alexander). The function \(f(z) = z + a_{2}z^{2} + a_{3}z^{3} + \ldots \) is convex univalent on \(\mathbb{D} \) if

\[
\sum_{n=1}^{\infty} n^{2} |a_{n}| \leq 1.
\]

We also need the following auxiliary result which is a special case of Theorem 5 of Ruscheweyh [9] with \(n = 1 \).

Lemma 5.2 (Ruscheweyh). The function \(q_{\gamma}(z) = \sum_{j=1}^{\infty} \gamma + 1 \gamma + j z^{j} \) belongs to \(K \) for \(\text{Re} \gamma \geq 0 \).

In particular, the function \(H_{1} \) given in (1.2) is univalent because \(H_{1} = 1 + q_{1/2}/3 \).

We now consider the function

\[
f(z) = z + \frac{z^{3}}{100} + \frac{z^{5}}{50}.
\]

Then, by Alexander’s lemma, \(f \) is an odd convex function. Secondly, we observe that \(f \) has a non-zero fixed point \(z_{0} \) in \(\mathbb{D} \). Indeed, by solving the algebraic equation \(f(z) = z \), we obtain \(z_{0} = \pm i/\sqrt{2} \).

We now show that \(f(z)/z \) is not subordinate to \(H_{2}(z) \) given in (1.1). Suppose, to the contrary, that

\[
\frac{f(z)}{z} \preccurlyeq H_{2}(z) = \frac{1}{2z} \log \frac{1+z}{1-z} \quad z \in \mathbb{D}.
\]

Then there exists an analytic function \(\omega \) on \(\mathbb{D} \) with \(\omega(0) = 0 \) and \(|\omega| < 1 \) such that

\[
\frac{f(z)}{z} = H_{2}(\omega(z)) = H_{1}(\omega(z)^{2}).
\]

Thus

\[
\frac{zf'(z) - f(z)}{z^{2}} = 2\omega(z)\omega'(z)H_{1}'(\omega(z)^{2}).
\]

Since \(f(z_{0}) = z_{0} \), we have \(H_{1}(\omega(z_{0})^{2}) = 1 = H_{1}(0) \). Univalence of \(H_{1} \) enforces the relation \(\omega(z_{0}) = 0 \) to hold. Hence, \(z_{0}f'(z_{0}) - f(z_{0}) = 0 \) which is equivalent to \(f'(z_{0}) = 1 \).

By solving the equation \(f'(z) = 1 \), we obtain \(z_{0} = \pm i\sqrt{3}/10 \). This is a contradiction. Therefore, \(f(z)/z \) is not subordinate to \(H_{2}(z) \).
References

1. J. W. Alexander, *Functions which map the interior of the unit circle upon simple regions*, Ann. of Math. **17** (1915), 12–22.
2. L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, *Convex hulls and extreme points of families of starlike and convex mappings*, Trans. Amer. Math. Soc. **185** (1973), 413–428.
3. A. W. Goodman, *Univalent functions and nonanalytic curves*, Proc. Amer. Math. Soc. **8** (1957), 598–601.
4. D. J. Hallenbeck and St. Ruscheweyh, *Subordination by convex functions*, Proc. Amer. Math. Soc. **52** (1975), 191–195.
5. R. Küstner, *Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order α*, Comput. Methods Funct. Theory **2** (2002), 597–610.
6. R. Küstner, *On the order of starlikeness of the shifted Gauss hypergeometric function*, J. Math. Anal. Appl. **334** (2007), 1363–1385.
7. B. Pinchuk, *On starlike and convex functions of order α*, Duke Math. J. **35** (1968), 721–734.
8. M. S. Robertson, *On the theory of univalent functions*, Ann. of Math. **37** (1936), 374–408.
9. St. Ruscheweyh, *New criteria for univalent functions*, Proc. Amer. Math. Soc. **49** (1975), 109–115.
10. D. Styer and D. Wright, *On the valence of the sum of two convex functions*, Proc. Amer. Math. Soc. **37** (1973), 511–516.

Graduate School of Information Sciences, Tohoku University, Aoba-ku, Sendai 980-8579, Japan
E-mail address: sugawa@math.is.tohoku.ac.jp

School of Statistics, University of International Business and Economics, No. 10, Huixin Dongjie, Chaoyang District, Beijing 100029, China
E-mail address: wangmabel@163.com