Boltzmann-Shannon Entropy: Generalization and Application

C.G Chakrabarti 1 and I.Chakrabarty 2, 3

1 Department of Applied Mathematics, Calcutta University, Kolkata 700009, India
2 Heritage Institute of Technology, Kolkata, 700107, India
3 Bengal Engineering and Science University, Howrah, W.B, India

(Dated: April 1, 2022)

The paper deals with the generalization of both Boltzmann entropy and distribution in the light of most-probable interpretation of statistical equilibrium. The statistical analysis of the generalized entropy and distribution leads to some new interesting results of significant physical importance.

Keywords: Boltzmann-Shannon Entropy, Statistical Equilibrium, Most Probable state, Boltzmann-Shannon Cross-entropy, Prior probability.

INTRODUCTION

Boltzmann was first to provide the statistical definition of entropy linking the concept of entropy with molecular disorder or chaos 1. Boltzmann entropy is the key to the foundation of statistical mechanics and is, in fact, the basis of all statistical concepts of entropy. The concept of probability which is vital for a statistical theory, however, has not come out clear with Boltzmann entropy. For, the thermodynamic probability or statistical weight, is the maximum value of the entropy S. It is the maximum value of the entropy S.

where k is the Boltzmann constant and W, called the thermodynamic probability or statistical weight, is the total number of microscopic states or complexion compatible with the macroscopic state of the system. The thermodynamic probability W appearing in Boltzmann entropy (1) is not a probability, it is an integer. We may however, ask for the probability $P(A_n)$ of any macroscopic state A_n (say). This probability may be represented as the fraction representing the ratio of the statistical weight W_n to the sum of statistical weights of all the macroscopic states that are compatible with the given constraints:

$$P(A_n) = \frac{W_n}{\sum_{A_n} W_n} \quad (2)$$

Since for large W_n^2

$$(W_n)_{max} = W_{total} = \sum_{A_n} W_n \quad (3)$$

the probability (2) may be replaced by

$$P(A_n) = \frac{W_n}{(W_n)_{max}} = \exp \frac{S - S_{max}}{k} \quad (4)$$

where S_{max} is the maximum value of the entropy S. It was this form of Boltzmann principle that was used successfully by Einstein 5 in his study of thermodynamic fluctuations and its various applications. In this way Einstein introduced the probability distribution by inverting Boltzmann principle. Note that in this approach entropy comes first and probability comes later on.

In the present paper we shall follow a different path. We shall first introduce the probability distribution of macrostates and find the expression of entropy consistent with the general mathematical theory of entropy 6. Before we do that we consider a classical system and reduce the Boltzmann entropy to the form of entropy, not in terms of probabilities but in terms of occupation numbers of different energy states of the system. This form of entropy is called Boltzmann-Shannon entropy and has been modified in the light of most probable interpretation of statistical equilibrium. The modified entropy called Boltzmann-Shannon cross entropy has led two important results. The first is the probability distribution of the macro states consistent with Einstein’s inversion of Boltzmann principle 3. The second is the equivalence of information and negentropy consistent with the Bernoulli’s negentropy principle of information 4. The most probable interpretation of statistical equilibrium has led to a generalized form of Boltzmann distribution involving prior probabilities. The appearance of prior probabilities makes the results interesting for both physical and non physical systems.

BOLTZMANN-SHANNON ENTROPY AND PROBABILITY

Boltzmann entropy of a system is defined by,

$$S = k \ln W \quad (1)$$

Bengal Engineering and Science University, Howrah, W.B, India

C.G Chakrabarti 1, I.Chakrabarty 2, 3

1 Department of Applied Mathematics, Calcutta University, Kolkata 700009, India
2 Heritage Institute of Technology, Kolkata, 700107, India
3 Bengal Engineering and Science University, Howrah, W.B, India

(Dated: April 1, 2022)

The paper deals with the generalization of both Boltzmann entropy and distribution in the light of most-probable interpretation of statistical equilibrium. The statistical analysis of the generalized entropy and distribution leads to some new interesting results of significant physical importance.

Keywords: Boltzmann-Shannon Entropy, Statistical Equilibrium, Most Probable state, Boltzmann-Shannon Cross-entropy, Prior probability.
The macroscopic state of the system is given by the set of occupation numbers \(A_n = [N_1, N_2, ..., N_n]\). Thus the statistical weight of the macroscopic state \(A_n = [N_1, N_2, ..., N_n]\) is given by

\[
W(A_n) = \frac{N!}{\prod_{i=1}^{n} N_i!}
\]

representing the total number of microscopic states of the system. For large \(N_i(i = 1, 2, ..., n)\), using Stirling’s approximation, Boltzmann entropy \(S\) with statistical weight (6) is reduced to the form

\[
S = k \ln \frac{N!}{\prod_{i=1}^{n} N_i!} \approx -kN \sum_{i=1}^{n} p_i \ln p_i
\]

where \(p_i = \frac{N_i}{N}\) is the relative frequency and for large \(N\), it is the probability that a molecule lies in the \(i\)th energy state \(E_i\). The expression

\[
H(p_1, p_2, ..., p_n) = -k \sum_{i=1}^{n} p_i \ln p_i
\]

appearing in the right hand side of (7) is the Shannon entropy measuring the uncertainty associated with the probability distribution \((p_1, p_2, ..., p_n)\). Thus for large classical system Boltzmann entropy is proportional to the Shannon entropy and as such the Shannon entropy defined by (8) is also a measure of molecular disorder of the system. In terms of occupation numbers the expression (7) can be written as

\[
S = -k \sum_{i=1}^{n} N_i \ln N_i + k \ln N
\]

The second term in the right hand side of (9) is a constant for constant number of molecules constituting the system. So for variational purpose this constant may be dropped and we can write Boltzmann entropy for classical system in the form

\[
S = -k \sum_{i=1}^{n} N_i \ln N_i
\]

Note that (10) has the same functional form of Shannon entropy (8) and is defined over the non probabilistic distribution \([N_1, N_2, ..., N_n]\). Due to this similarity with Shannon entropy (8) we call it Boltzmann-Shannon entropy. In the next section we are going to generalize the Boltzmann-Shannon entropy (10) along with its physical or thermodynamic significance.

PROBABILITY-DISTRIBUTION OF MACROSTATES: BOLTZMANN-SHANNON CROSS-ENTROPY

According to Boltzmann and Planck the thermodynamic equilibrium is defined as the most-probable state. The thermodynamic probability \(W(N_1, N_2, ..., N_n)\) of the macrostate \(A_n = [N_1, N_2, ..., N_n]\) is not a probability, it is an integer. So the thermodynamic equilibrium obtained by the maximization of thermodynamic probability \(W(N_1, N_2, ..., N_n)\) or equivalently Boltzmann entropy (1) may lead to some confusions. To find out the most-probable state we have to determine first the probability distribution of the macrostate \(A_n = [N_1, N_2, ..., N_n]\) on the basis of the prior information or data. The occupation numbers \([N_1, N_2, ..., N_n]\) are assumed to be a set of random variables in view of the many-body aspect of the system. Let \(P(A_n) = P(N_1, N_2, ..., N_n)\) be the probability distribution of \([N_1, N_2, ..., N_n]\). Let the mean or averages of occupation numbers \([N_1, N_2, ..., N_n]\) be known:

\[
\sum_{R_{N,n}} N_i P(N_1, N_2, ..., N_n) = \bar{N}_i
\]

where \(i = 1, 2, ..., n\) and \(R_{N,n}\) is the set of non negative integers satisfying the condition,

\[
N_1 + N_2 + ... + N_n = N
\]

The mean value \(\bar{N}_i(i = 1, 2, ..., n)\) given by (11) constitute constraints about the system. Note that the thermodynamic probability or statistical weight \(W(N_1, N_2, ..., N_n)\) given by (6) is the prior information about the macrostate \(A_n = [N_1, N_2, ..., N_n]\) of the system. An appropriate measure of uncertainty or entropy about the system is given by Bayesian entropy.

\[
S_B = \sum_{R_{N,n}} P(N_1, N_2, ..., N_n) \ln \frac{P(N_1, N_2, ..., N_n)}{W(N_1, N_2, ..., N_n)}
\]

Our problem is to estimate the probability distribution \(P(N_1, N_2, ..., N_n)\) under the prior information (6) and the constraints (11). We can do this by the generalization of Jaynes’ Maximum-entropy principle. According to Jaynes the best estimate of the probability distribution \(P(N_1, N_2, ..., N_n)\) corresponds to the maximization of the Bayesian entropy (13) subject to the constraints (11) and the normalization condition:

\[
\sum_{R_{N,n}} P(N_1, N_2, ..., N_n) = 1
\]

The best estimate of the probability, \(P(N_1, N_2, ..., N_n)\) is then given by the multinominal distribution:

\[
P(N_1, N_2, ..., N_n) = \frac{N!}{\prod_{i} N_i!} (p_i)^{N_i}
\]
where \(p_i^0 \) \((i = 1, 2, ..., n)\) is the prior probability that a molecule lies in the \(i \)-th energy state and it is determined from the prior information or constraint \((11)\). In the existing literature the multinomial distribution of the macrostate \(A_n = [N_1, N_2, ..., N_n] \) is usually assumed without any physical justification. We have, however, provided an information-theoretic method based on generalized maximum-entropy principle which takes account of the prior available constraints and information about the system.

Assuming \(N_i(i = 1, 2, ..., n) \) to be very large and using Stirling’s approximation we can reduce the logarithm of the probability \(P(N_1, N_2, ..., N_n) \) to the form

\[
k \log P(N_1, N_2, ..., N_n) = -Nk \sum_{i=1}^{n} p_i \ln \frac{p_i}{\bar{p}_i} \tag{16}
\]

where \(p_i = \frac{N_i}{n} \), \((i = 1, 2, ..., n)\) and for the large \(N \), it is the probability that a molecule lies in \(i \)-th energy state \(E_i \). Note that \((16)\) is a generalization of \((3)\) and is in fact, the measure of relative entropy. Again except the multiplication constant \((-Nk)\) the expression \((16)\) is known as Kullback-Leibler relative information or simply Kullback cross-entropy giving a measure of directed divergence between the probability distributions \([p_1, p_2, ..., p_n]\) and \([p_1^0, p_2^0, ..., p_n^0]\) \(^10\).

Let us now transform \((16)\) in terms of the occupation numbers \([N_1, N_2, ..., N_n]\). The priori probabilities \(p_i^0 \) are the parameters of the multinomial distribution \((15)\). As we have stated \(p_i^0 \) are to be determined in terms of the available constraints \((11)\) that is, in terms of \(N_i \) \((i = 1, 2, ..., n)\). An unbiased estimate of \(p_i^0 \) is given by \(\bar{p}_i \). Then replacing \(p_i \) by \(\frac{N_i}{n} \) and \(p_i^0 \) by \(\frac{N_i}{n} \), we have

\[
k \ln P(N_1, N_2, ..., N_n) = -k \sum_{i=1}^{n} N_i \ln \frac{N_i}{N_i} \tag{17}
\]

which is a generalization of Boltzmann-Shannon entropy \((10)\). It is, in fact, a measure of relative entropy defined over the non-negative integers. Since \(P(N_1, N_2, ..., N_n) \leq 1 \) the quantity \((17)\) is, however, negative. We shall call the negative of \((17)\) that is, the quantity

\[
-k \ln P(N_1, N_2, ..., N_n) = k \sum_{i=1}^{n} N_i \ln \frac{N_i}{N_i} \tag{18}
\]

as the generalized Boltzmann entropy. The left hand side of \((18)\) is the probabilistic entropy of the macrostate \(A_n = [N_1, N_2, ..., N_n] \). The right hand side has the same form as that of Kullback cross-entropy \(^{10}\) and due to this similarity we shall call this expression Boltzmann-Shannon cross-entropy defined over the set of non-negative integers \([N_1, N_2, ..., N_n]\). In the following we are going to study its physical or thermodynamical significance.

Let us assume that the averages \(\bar{N}_i \) \((i = 1, 2, ..., n)\) correspond to the thermodynamic equilibrium values of \(N_i \) \((i = 1, 2, ..., n)\), then it is easy to show that \(^{11}\)

\[
-k \sum_{i=1}^{n} N_i \ln \frac{N_i}{N_i} = S - S_{equil} \tag{19}
\]

where \(S \) is the entropy of the system at non equilibrium state \([N_1, N_2, ..., N_n]\) and \(S_{equil} \) be that of equilibrium state \([N_1, N_2, ..., N_n]\). From \((18)\) and \((19)\) we have,

\[
-k \ln P(N_1, N_2, ..., N_n) = S_{equil} - S \tag{20}
\]

The left hand side of \((20)\) which we have stated to represent the probabilistic entropy of the macrostate \([N_1, N_2, ..., N_n]\) is also the measure of information obtained about macrostate \([N_1, N_2, ..., N_n]\) after its realization \(^6\). The right hand side of \((20)\) is the negentropy of the system at the state \([N_1, N_2, ..., N_n]\). The relation \((20)\) thus implies the equivalence of information and negentropy and is consistent with the Brillouin’s negentropy principle of information \(^4\). The relation \((20)\) also provides another important result. From \((20)\) we can write the probability of macrostate \([N_1, N_2, ..., N_n]\) as

\[
P[N_1, N_2, ..., N_n] = \exp \left[\frac{S - S_{equil}}{k} \right] \tag{21}
\]

consistent with Einstein’s result \((4)\) obtained by inverting Boltzmann principle.

GENERALIZED BOLTZMANN DISTRIBUTION AND APPLICATIONS

In Boltzmann statistics the distribution law of thermodynamic equilibrium is determined by maximizing the thermodynamic probability \(W(N_1, N_2, ..., N_n) \) given by \((6)\) or equivalently the Boltzmann-Shannon entropy \((10)\) subject to the constraints \((5)\). The entropy \((10)\) subject to the constraints \((15)\). The maximization yields the Boltzmann distribution

\[
p_i = \frac{e^{-\beta E_i}}{Z(\beta)} \tag{22}
\]

where

\[
Z(\beta) = \sum_{i=1}^{n} e^{-\beta E_i} \tag{23}
\]

and the parameter \(\beta \) may be identified with the inverse temperature by the relation \(\beta = \frac{1}{kT} \), \(T \) being the absolute temperature of the system. According to most probable interpretation of the statistical equilibrium the maximum of the probability \(P(N_1, N_2, ..., N_n) \) or equivalently \(\ln P(N_1, N_2, ..., N_n) \) given by \((16)\) subject to the constraints corresponds to the statistical equilibrium. We have then the generalized Boltzmann distribution,

\[
p_i = p_i^0 \left[\frac{e^{-\beta E_i}}{Z(\beta)} \right] \tag{24}
\]
where

\[Z(\beta) = \sum_{i=1}^{n} e^{-\beta E_i} \] \hspace{1cm} (25)

The difference with the usual or old Boltzmann distribution (22) comes out from the multiplicative factor \(p_i^0 \), the prior probability. The appearance of prior probabilities makes the problem complex and it is difficult to determine the prior probabilities in statistical mechanics or in any other branch of science. If no state is more preferable to other, it is then reasonable to assume that all the prior probabilities \(p_i^0 \) are equal to one another so that \(p_i^0 = \frac{1}{n}, \) \((i = 1, 2, ..n) \). This is Laplace’s principle of insufficient knowledge. According to Jaynes’ this is the state of maximum prior ignorance. In the case of equal prior probabilities the most-probable distribution reduces to the form

\[p_i = \frac{1}{n} e^{-\beta E_i} \] \hspace{1cm} (26)

which except the multiplicative constant \(\frac{1}{n} \) is the Boltzmann-distribution derived earlier. For most-probable state of thermodynamic equilibrium with equal priori probabilities \(\frac{1}{n} \) the entropy (7) becomes

\[S_{\text{equil}} = -kN \sum_{i=1}^{n} p_i \ln p_i \]
\[= kN[\ln n + (\beta E + \ln Z(\beta))] \] \hspace{1cm} (27)

On the other hand, with unequal prior probabilities, the entropy of thermodynamic equilibrium corresponding to the probabilities distribution (24) is given by

\[S_{\text{equil}}^0 = -Nk \sum_{i=1}^{n} p_i^0 \ln p_i^0 + Nk(\beta E + \ln Z(\beta)) \]

(28)

Since \(\ln n \geq - \sum_{i=1}^{n} p_i^0 \ln p_i^0 \), we have

\[S_{\text{equil}} \geq S_{\text{equil}}^0 \] \hspace{1cm} (29)

implying that the thermodynamic equilibrium with unequal prior probabilities \(p_i^0 \) does not correspond to the maximum entropy or maximum disorder of the system. This is a violation of the existing physical law and is due to unequal prior probabilities.\(^{15}\)

We now consider a physical problem where unequal prior probabilities appear and make things different from those with equal prior probabilities. Let us consider a collection of \(N \) linear harmonic oscillators all with frequency \(\nu \). The energy levels of a linear harmonic oscillator is given by,

\[E_i = (i - \frac{1}{2})\nu \] \hspace{1cm} (30)

where \((i = 1, 2, ..) \) and \(h \) is Planck’s constant. When the prior probabilities are all equal then the total energy of the system is given by

\[E = \frac{h
u}{2} + \frac{h
u}{e^{\beta h
u} - 1} \] \hspace{1cm} (31)

Now if the collection is of two dimensional harmonic oscillators, the situation becomes different. In this case prior probabilities \(p_i^0 \) increases linearly with \(i \), so that we can write

\[p_i^0 = \frac{i}{C} \] \hspace{1cm} (32)

where \((i = 1, 2, ..) \) and \(C \) is a necessary to make \(p_i^0 \) probability in true sense. In the case of two dimensional oscillators

\[E_i = i\nu \] \hspace{1cm} (33)

where \((i=1,2,..) \) and a bit of calculation gives the total energy of the system as

\[E = h\nu + \frac{2h\nu}{e^{\beta h\nu} - 1} \] \hspace{1cm} (34)

where the zero-energy level has been changed from that of linear harmonic oscillators.

CONCLUSION:

In the present paper we have made an attempt to generalize both Boltzmann entropy and Boltzmann distribution in the light of Boltzmann Planck most-probable interpretation of statistical equilibrium. We have obtained some interesting new results different from the old ones and tried to find out their physical significance. Let us state some of the main results along with their merits.

(i) The present method of determination of the probability distribution of macrostates is more direct and transparent than the old method of inverting Boltzmann principle.

(ii) Boltzmann-Shannon cross-entropy obtained as a generalization of Boltzmann-Shannon entropy is defined over the set of non-negative integers \([N_1, N_2, ..., N_n]\). The relation (18), however shows that it has probabilistic meaning and is consistent with the probabilistic foundation of entropy and information.

(iii) The most-probable interpretation of statistical equilibrium leading to the generalized Boltzmann distribution (24) involves prior probabilities \(p_i^0 \). The appearance of prior probabilities makes the result interesting different from the existing ones, sometimes in violation of the existing physical laws, for example, the maximum entropy or disorder for statistical equilibrium.\(^{15}\)

(iv) The importance of prior probability in a physical system namely a collection of two dimensional harmonic oscillators...
oscillators has been investigated. Prior probabilities also play a significant role in statistical mechanical modelling of ecosystems.

Boltzmann-Shannon entropy is a classical one, its generalization, however, leads to some new results of important physical significance. Finally, the mathematical simplicity of the paper which is independent of any mechanical or statistical models and postulates is an advantageous point of the theory.

ACKNOWLEDGEMENT

The authors wish to thank the learned referee whose comments helps the better exposition of the paper.

REFERENCES

[1] L.Boltzmann, Lectures on Gas Theory (English Translation),(University of California, Berkley, 1964)
[2] B.H. Lavenda, Statistical Physics: A probabilistic Approach, (Wiley and Sons, New-York, 1991).
[3] C.F. Shannon and W.Weaver: Mathematical Theory of Communication, University of Illinois, Urbana, 1949.
[4] L.Brillouin, Science and Information Theory, (Academic Press, New-York, 1956).
[5] A. Einstein: Zur allegemeinen malckulaven Theorie de Warme .Ann. De Phys 14,354(1904).
[6] J.Aczel and Z.Doroc’zy: On Measures of Information and their Characterization. (Academic Press, New-
York, 1975).
[7] J.N. Kapur, Maximum-Entropy Models in Science and Engineering (Wiley Eastern, New-Delhi, 1990).
[8] E.T. Jaynes, Phys. Rev. 106, 620 (1957).
[9] C.G. Chakrabarti, and M.De: Ind.J. Phys, 76A,573 (2002)
[10] S.Kullback: Information Theory and Statistics, (Wiley and Sons, New-York, 1959).
[11] C.G.Chakrabarti and K.De: J.Biol. Phys. 23,(1997), 169.
[12] K.G.Denbigh and J.S. Denbigh : Entropy in relation in relation to incomplete knowledge, (Cambridge Univ. Press, Cambridge, 1985)
[13] A.Katz : Principles of Statistical Mechanics, (W.H Freeman and Co. San-Francisco, 1967).
[14] R.Baierlein: Atoms and Information Theory, (W.H. Freeman and Co. San-Francisco, 1967).
[15] P.T. Landsberg: J.Stat.Phys. 35,159(1984)
[16] J.R.Lindsay: Introduction to Physical Statistics, (Wiley and Sons, New-York, 1941).
[17] P.N.Augar: Dynamics and Thermodynamics of Hierarchically Organized Systems, (Pergamon Press, Oxford, 1989)
[18] R.Penrose: Foundation of Statistical Mechanics, (Pergamon Press, Oxford, 1970).

∗ Electronic address: cgc.math@rediffmail.com
† Electronic address: indranilc@indiainfo.com