Quantum impurity models describe a quantum system with a small number of discrete states, the "impurity", coupled to a continuous bath of fermionic or bosonic excitations. Such models are relevant for describing transport through quantum dots, for the treatment of correlated lattice models using dynamical mean field theory, or for the modelling of the decoherence of qubits.

The impurity’s dynamics in thermal equilibrium can be characterized by spectral functions of the type $\mathcal{A}^{BC}(\omega) = \int \frac{d\omega}{2\pi} e^{i\omega t} \langle \mathcal{B}(t)\mathcal{C} \rangle_T$. Their Lehmann representation reads

$$\mathcal{A}^{BC}(\omega) = \sum_{a,b} \langle b|\mathcal{C}|a\rangle \frac{e^{-\beta E_a}}{Z} \langle a|\mathcal{B}|b\rangle \delta(\omega - E_{ba}),$$

with $Z = \sum_a e^{-\beta E_a}$ and $E_{ba} = E_b - E_a$, which implies the sum rule $\int d\omega \mathcal{A}^{BC}(\omega) = \langle \mathcal{B}\mathcal{C} \rangle_T$. In this Letter, we describe a strategy for numerically calculating $\mathcal{A}^{BC}(\omega)$ that, in contrast to previous methods, rigorously satisfies this sum rule and accurately describes both high and low frequencies, including exponentially high resolution of low-energy excitations, and resulting in inaccurate spectral information for $\omega \lesssim T$.

Wilson’s truncation scheme.— The Wilson chain’s zeroth site represents the bare impurity Hamiltonian \hat{h}_0 with a set of d_0 impurity states $|\sigma_0\rangle$. It is coupled to a fermionic chain, whose nth site (1 \(\leq n \leq N\)) represents a set of d states $|\sigma_n\rangle$, responsible for providing energy resolution to the spectrum at the scale $\Lambda^{-n/2}$. For a spinful fermionic band, for example, $\sigma_n \in \{0, \uparrow, \downarrow, \uparrow\downarrow\}$, hence $d = 4$. (Bosonic chains can be treated similarly.)

Our work builds on Wilson’s numerical renormalization group (NRG) method [1]. Wilson discretized the environmental spectrum on a logarithmic grid of energies Λ^{-n}, (with $\Lambda > 1$, 1 \(\leq n \leq N \to \infty\), with exponentially high resolution of low-energy excitations, and mapped the impurity model onto a “Wilson tight-binding chain”, with hopping matrix elements that decrease exponentially as $\Lambda^{-n/2}$ with site index n. Because of this separation of energy scales, the Hamiltonian can be diagonalized iteratively: adding one site at a time, a new “shell” of eigenstates is constructed from the new site’s states and the M_K lowest-lying eigenstates of the previous shell (the so-called “kept” states), while “discarding” the rest.

Subsequent authors [2, 3, 4, 5, 6, 7, 8, 9, 10] have shown that spectral functions such as $\mathcal{A}^{BC}(\omega)$ can be calculated via the Lehmann sum, using NRG states (kept and discarded) of those shells n for which $\omega \sim \Lambda^{-n/2}$. Though plausible on heuristic grounds, this strategy entails double-counting ambiguities [5] about how to combine data from successive shells. Patching schemes [9] for addressing such ambiguities involve arbitrariness. As a result, the relevant sum rule is not satisfied rigorously, with typical errors of a few percent. Also, the density matrix (DM) $\hat{\rho} = e^{-\beta \hat{H}}/Z$ has hitherto been represented rather crudely using only the single N_T-th shell for which $T \simeq \Lambda^{-1/(N_T-1)}$ [8], with a chain of length $N = N_T$, resulting in inaccurate spectral information for $\omega \lesssim T$.

Our derivation avoids both the overcounting ambiguities and the single-shell approximation for the equilibrium density matrix prevalent in current methods, ensuring that relevant sum rules hold rigorously and spectral features at energies below the temperature can be described accurately.

PACS numbers: 71.27.+a, 75.20.Hr, 73.21.La
FIG. 1: Diagram for the kept (or discarded) matrix product state $|s^K_n⟩$ (or $|s^D_n⟩$): the nth box represents the matrix block A^K_{nK}, its left, bottom and right legs carry the labels of the states $|s^K_{n-1}⟩$, $|σ_n⟩$ and $|s^D_n⟩$, respectively.

“Kept” states (say the M_k lowest-lying eigenstates of \hat{H}_N) be retained for the next iteration, and “discarded” states (the remaining ones). Since \tilde{h}_n acts as a weak perturbation (of relative size $\Lambda^{-1/2}$) on \hat{H}_N-1, the d-fold degeneracy of the states $|σ_n⟩ ⊗ |s^X_{n-1}⟩$ is lifted, resulting in a characteristic energy spacing $\Lambda^{-n/2}$ for shell n. Iterating until the spectrum of low-lying eigenvalues has reached a fixed point (for $n = N$, say), one generates a set of eigenstates $\{|s^X_n⟩\}$ with the structure of matrix product states $\{|s^K_n⟩\}$ (Fig. 1). The states generated for the last, Nth shell will all be regarded as “discarded” [11].

Anders-Schiller basis.— Recently, A.S have shown [11] that the discarded states can be used to build a complete basis for the whole Wilson chain: the states $\{|s^X_n⟩\}$ describing the nth shell are supplemented by a set of $d^{N−n}$ degenerate “environmental” states $\{|e_n⟩ = |σ_n⟩ ⊗ \cdots ⊗ |σ_{n+1}⟩\}$ spanning the rest of the chain ($|e_n⟩$ denotes an “empty” state), to construct the set of states $\{|se⟩^X_n⟩ = |e_n⟩ ⊗ |s^X_n⟩\}$. These reside in the complete Fock space F_N of the full chain, spanning F_N if $n ≤ n_0$. Ignoring the degeneracy-lifting effect of the rest of the chain, these states become approximate eigenstates of the Hamiltonian \hat{H}_N of the full chain (“NRG-approximation”),

$$\hat{H}_N|se⟩^X_n ≃ E_n^X |se⟩^X_n,$$

with eigenenergies independent of the $(d^{N−n})$-fold degenerate environmental index e_n. (This will facilitate tracing out the environment below.) By construction, we have $D_m^X(se|s'e')_n = δ_{mn}δ_{en}c'_n δ_{ss'}$, and

$$K_m^X(se|s'e')_n^D = \begin{cases} 0, & m ≥ n \\ δ_{en}c'_n [A^K_{en+m} \cdots A^K_{en+n}]_{ss'} , & m < n. \end{cases}$$

The discarded states of shell n are orthogonal to the discarded states of any other shell, and to the kept states of that or any later shell. Combining the discarded states from all shells thus yields a complete set of NRG eigenstates of \hat{H}_N, the “Anders-Schiller basis”, that span the full Fock space $F_N (\sum_n$ henceforth stands for $\sum_{n>n_0}^N)$:

$$1^{d(d^N)} = \sum_{se} |se⟩^K_{n_0}^K |se⟩ = \sum_{se} |se⟩^D_n [ss']_n^D |se⟩ .$$

Local Operators.— Let us now consider a “local” operator \hat{B} acting nontrivially only on sites up to n_0. Two particularly useful representations are

$$\hat{B} = \sum_{ss'e} [se]_n^K [B]_{ss's, n_0}^n |se⟩ = \sum_{ss'}^{n ≠ kK} E_{ss'}^{n},$$

The left equality, written $\hat{B} = \hat{B}_{KK}^n$ in brief, represents the operator in the complete basis set $\{|se⟩^K_n⟩\}$, with matrix elements known exactly numerically (possibly up to fermionic minus signs depending on the environmental states; but these enter quadratically in correlation functions and hence cancel). The right-hand side (RHS) of Eq. (6) expresses \hat{B} in the AS-basis and is obtained as follows: starting from \hat{B}_{KK}^n, one iteratively refines the “kept-kept” part of \hat{B} from \hat{F}, say, the $(n−1)$st iteration in terms of the NRG eigenstates $\{|se⟩^X_n⟩\}$ of the next shell, including both kept and discarded states $(x = k, d)$,

$$\hat{B}_{KK}^{n−1} = \sum_{ss'e} \sum_{XX'} [se]_n^X [B]_{XX'}^n \{|se⟩^X_n⟩ \} \sum_{XX'}^n |se⟩ = \sum_{XX'} [B]^n_{XX'},$$

thereby defining the operators $\hat{B}_{XX'}^n$, with matrix elements $\{B^se⟩^X_n⟩_{XX'} = [A^K_{ss'e}]_{XX'}^n |B]_{KK}^n |A^K_{XX'}^n⟩\}$. Splitting off all $XX' ≠ kk$ terms (DD, KD, DK) and iteratively refining each kk term until $n = N$, we obtain the RHS of Eq. (6). It has two important features: First, the matrix elements of the time-dependent operator $\hat{B}(t) = e^{-iHt}Be^{-iHt}$, evaluated within the NRG approximation, $\{B^se⟩^X_n⟩_{XX'} ≃ e^{iE^X_n(t)} \sum_{ss'} \sum_{XX'} e^{iE^X_n(t)}$, contain differences of eigenenergies from the same shell only, i.e. calculated with the same level of accuracy. Second, by excluding kk terms it rigorously avoids the double-counting ambiguities and heuristic patching rules plaguing previous approaches [2, 3, 4, 5, 6, 7, 8, 9, 10].

Thermal averages.— To calculate thermal averages $\langle \cdots ⟩_T = \text{Tr}[\hat{ρ} \cdots]$, we write the full density matrix $\hat{ρ} = e^{-βH}/Z$ using the NRG approximation as in Eq. (3)

$$\hat{ρ} ≃ \sum_n \sum_{se} [se]_n^{\rho} e^{-βE^s_n}/Z \hat{ρ}^n_{DD},$$

where $w_n \equiv d^{N−n}Z_n^{\alpha}/Z$ and $Z_n^{\alpha} ≡ \sum_{se} e^{-βE^s_n}$. The RHS of Eq. (8) expresses $\hat{ρ}$ as sum over $\hat{ρ}^n_{DD}$, the density matrix for the discarded states of shell n, properly normalized as $\text{Tr}[\hat{ρ}^n_{DD}] = 1$, and entering with relative weight w_n, with $\sum_n w_n = 1$. Similarly, for spectral functions we have

$$\langle \cdots ⟩_T = \sum_n w_n \langle \cdots ⟩_n , \quad A(ω) = \sum_n w_n A_n(ω),$$

where the averages $\langle \cdots ⟩_n$ and spectral functions $A_n(ω)$ are calculated with respect to $\hat{ρ}^n_{DD}$ of shell n only. Previous strategies [4, 5, 6, 7, 8, 9, 10, 11] for thermal averaging amount to using a “single-shell approximation” $w_n = δ_{nN_T}$ for the density matrix and terminating the chain at a length $N = N_T$ set by $T ≃ A^{−1}(N_T−1)$.

As a result, spectral features on scales \(\omega \leq T \), which would require a longer chain, are described less accurately [see Figs. 2(a) and 2(b)]. Our novel approach avoids these problems by using the full density matrix (FDM), summed over all shells, letting the weighting function \(w_n \) select the shells relevant for a given temperature yielding a smooth \(T \) dependence [see Fig. 2(c)]. Since \(w_n \) has a peak width of five to ten shells depending on \(\Lambda \), \(d \) and \(M_K \) and peaks at \(n \)-values somewhat above \(N_T \) [arrow Fig. 2(b)], spectral information from energies well below \(T \) is retained.

Let us now consider the spectral function \(A^{BC}(\omega) \), for local operators \(\mathcal{B} \) and \(\mathcal{C} \). Equations (4), (6), (8), and (9) can be used to evaluate \(\langle \mathcal{B}(t)\mathcal{C} \rangle_n \). Fourier transforming the result we find (sums over \(ss' \) and \(\sigma \) implied):

\[
A^{BC}_n(\omega) = \sum_{m>n=0}^{\infty} \sum_{x,x'} \left[C^m_{x} \rho^{[m]}_{xx'} \right]_{ss'} \left[B^m_{x'} \right]_{ss'} \delta(\omega - E^m_{ss}) ,
\]

\[
\left[\rho^{[m]}_{DD} \right]_{ss'} = \delta_{ss'} e^{-\beta E^m_n} Z_n ,
\]

\[
\left[\rho^{[m-n]}_{KK} \right]_{ss'} = \left[A^{|\sigma_m+1 \rangle}, A^{|\sigma_n \rangle}, \rho^{[m]}_{DD} A^K_{KK} \right]_{ss'}^\dagger.
\]

Similarly, the static quantity \(\langle \mathcal{B}\mathcal{C} \rangle_n \) equals the first line's RHS without the \(\delta \) function. The matrix elements \(\rho^{[m]}_{xx'} \) are given by the second and third lines, together with \(\rho^{[m-n]}_{DD} = \rho_{DD}^{[m-n]} = 0 \). After performing a “forward run” to generate all relevant NRG eigenenergies and matrix elements, \(A^{BC}(\omega) \) can be calculated in a single “backward run”, performing a sum with the structure \(\sum_{m>n=0}^{\infty} \left[C^m \rho^{\text{red}}_n \delta(\omega) \right]_{[m]} \), starting from \(m = N \). Here \(\rho^{\text{red}}_n \) is obtained from the

Equations (8)–(10) are the main results of our “FDM-NRG” approach. They rigorously generalize Hofstetter’s DM-NRG [8] (which leads to similar expressions, but using \(w_n = \delta_{n,N_T} \) and without excluding \(\mathcal{K} \) matrix elements), and provide a concise prescription, free from double counting ambiguities, for how to combine NRG data from different shells when calculating \(A^{BC}(\omega) \). The relevant sum rule is satisfied identically, since by construction \(\int d\omega A^{BC}_n(\omega) = \langle \mathcal{B}\mathcal{C} \rangle_n \) holds for every \(n \) and arbitrary temperature and NRG-parameters \(\Lambda \) and \(M_K \).

Smoothing discrete data.— We obtain smooth curves for \(A^{BC}(\omega) \) by broadening the discrete \(\delta \) functions in Eq. (10) using a broadening kernel that smoothly interpolates from a log-Gaussian form (of width \(\alpha \)) [2, 4] for \(|\omega| \geq \omega_0 \), to a regular Gaussian (of width \(\omega_0 \)) for \(|\omega| < \omega_0 \), where \(\omega_0 \) is a “smearing parameter” whose significance is explained below. To obtain high quality data, we combine small choices of \(\alpha \) with an average over \(N_T \) slightly shifted discretizations [3] (see [13] for more details).

Application to Anderson model.— We illustrate our method for the standard single-impurity Anderson model (SIAM). Its local Hamiltonian \(\hat{h}_0 = \sum_\sigma \epsilon_0 c_{0\sigma}^\dagger c_{0\sigma} + \sum_{\langle i,j \rangle} U_{ij} c_{i\sigma}^\dagger c_{j\sigma}^\dagger c_{i\sigma} c_{j\sigma} \) describes a localized state with energy \(\epsilon_0 \), with a Coulomb penalty \(U \) for double occupancy. It is coupled to a Wilson chain \(\sum_{n=1}^{N} \lambda_n (c_{n+1\sigma}^\dagger c_{n\sigma} + \text{h.c.}) \), which generates a local level width \(\Gamma \). We calculated \(A^{<}(\omega) \equiv \sum_{\sigma} A^{\sigma\sigma\sigma}(\omega), A^{<}(\omega) \equiv \sum_{\sigma} A^{\sigma\sigma\sigma}(\omega) \) and \(A \equiv A^+ + A^< \). An “improved” version \(\mathcal{A}^{\text{im}} \) thereof can be obtained by calculating the impurity self energy \(\Sigma(\omega,T) \) via FDM-NRG, which is less sensitive to smoothing details and yields more accurate results for the Kondo peak height \(A_{T=0}(0) \) at zero temperature.

Sum rules.— As expected, we find FDM-NRG to be significantly more accurate at lower computational cost than NRG or DM-NRG [8, 15]. The sum rules hold exactly to \(10^{-15} \) for our discrete data, and to \(10^{-4} \) after smoothing (due to numerical integration inaccuracies). Moreover, even for \(M_K \) as small as 256, our results for \(A_{T=0}(0) \) and \(A_{T=\pm 0}(0) \) typically agree to within 2% and 0.2%, respectively, with the Friedel sum rule, which requires \(\pi T A_{T=0}^{\text{exact}} = \sin^2 \pi (\epsilon_{0\sigma}^\dagger \epsilon_{0\sigma}) \). The exact relation \(A_{\sigma} = f(\omega) A_{\sigma} \) (\(f \) is the Fermi function), which follows from detailed balance, is likewise satisfied well (though not rigorously so): the left-hand side of Eq. (11) typically equals \(\int d\omega f(\omega) \mathcal{A}(\omega) \) to better than \(10^{-2} \).

Low-frequency data.— Due to the underlying logarithmic discretization, all NRG-based schemes for calculating finite-temperature spectral functions inevitably produce spurious oscillations at very low frequencies \(|\omega| \ll T \). The scale \(\delta_T \) at which these set in can be understood as follows: the Lehmann sum in Eq. (1) is dominated by contributions from initial states \(|a \rangle \) with energy \(E_a \approx T \), represented by NRG shells with \(n \) near \(N_T \). The characteristic energy scale of these states limits the accuracy obtainable for energy differences \(E_{ba} \) to accessible final states \(|b \rangle \). Thus the scale \(\delta_T \) is set by those shells which contribute with largest weight \(w_n \) to the density matrix.

We analyze this in more detail in Figs. 2(a) and 2(b) by purposefully choosing the smearing parameter to be unconventionally small, \(\omega_0 \ll T \). The resulting spurious oscillations are usually smeared out using \(\omega_0 \gtrsim \delta_T \) [Fig. 2(a), thick gray (red) curve], resulting in quantitatively accurate spectral functions only for \(|\omega| \gtrsim \omega_0 \approx \delta_T \). For conventional NRG approaches, the “single-shell” approximation \(w_n = \delta_{n,N_T} \) typically leads to \(\delta_T \approx T \), as can be seen in Fig. 2(a) [dashed (green) and thin solid (blue) line]. In contrast, FDM-NRG yields a significantly reduced value of \(\delta_T \approx T/5 \) [Fig. 2(a), black line, and Fig. 2(b)], since the weighting functions \(w_n \) [inset of Fig. 2(b)] retain weight over several shells below \(N_T \), so that lower-frequency information is included.
FIG. 2: (color online). FDM-NRG results for the spectral function $A_T(\omega)$ of the SIAM, with $U = 0.12$, $\Gamma = 0.01$, $\epsilon_d = -U/2$ ($T_K = 2.185 \times 10^{-4}$), $\Lambda = 1.7$ and $M_K = 1024$, unless indicated otherwise. Inset of (a): FDM-NRG result for $A_T(\omega)$ with ω in units of bandwidth. For (a),(b) an unusually small smearing parameter was used, $\omega_0 = 0.005 T$ (except for thick gray (red) curve in (a), with $\omega_0 = 0.5 T$), leading to spurious low-frequency oscillations. These illustrate the differences (a) between NRG (dashed green curve), DM-NRG (solid thin blue curve) and FDM-NRG (black curve) results for the regime $\omega \lesssim T$; and (b) between different choices of M_K and Λ for FDM-NRG, which yield different shapes for the weights ω_n [shown in inset of (b)]: larger Λ reduces the scale $\delta \tau$ at which oscillations set in, but yields less accurate values for Kondo peak height in the regime $\delta \tau \lesssim \omega \lesssim T_K$. (c),(d) Comparison of high-quality FDM-NRG data (dots, solid curves) with exact Fermi-liquid results (black dashed lines) for the conductance $G(T)$ for $T \ll T_K$; and (d) for $A_T^{\mathrm{FL}}(\omega)$ for $T, \omega \ll T_K$. In (c), c_{eff} was found from a data fit to $c_{\text{eff}}(T/T_K)^2$ for $T < T_{\text{Im}}$ (arrow). In (d) we plot $\delta A_T(\omega) = |A_T^{\text{im}}(\omega)|^2 - |A_T^{\text{im}}(0)|^2 |A_T^{\text{im}}(0)|$ vs. ω/T_K (curves) and $\delta A(T) = |A_T^{\text{im}}(0)/A_T^{\text{im}}(0)-1| \approx (T/T_K)\pi/\sqrt{3}$ (dotes), for a set of 12 temperatures between 0.001 and 0.069 T_K (with curves and dots having same T in the same color), to illustrate the leading ω- and T-behavior of $A_T^{\text{im}}(\omega)$: the dashed black line represents the expected Fermi liquid behavior in both cases, $\omega/T_K \alpha - \omega^2 \gamma x / T_K$.

Fermi-liquid relations.—To illustrate the accuracy of our low-frequency results, we calculated $A_T^{\text{FL}}(\omega)$ for $\omega, T \ll T_K$ for the symmetric SIAM, and made quantitative comparisons to the exact Fermi-liquid relations [14]

$$A_T(\omega) \simeq A_0 \left[1 - \frac{c}{2} \left(\frac{T}{T_K} \right)^2 - \frac{3c}{2} \frac{\omega}{2\pi} \left(\frac{T}{T_K} \right)^2 \right],$$

$$G(T) \equiv \int_{-\infty}^{\infty} d\omega \, A(\omega,T) \left(\frac{\partial f}{\partial \omega} \right) \simeq A_0 \left[1 - c \left(\frac{T}{T_K} \right)^2 \right].$$

Here $A_0 = 1/\pi \Gamma$, $c \equiv \pi^4/16$, and the Kondo temperature T_K is defined via the static magnetic susceptibility $\chi(\omega)|_{\omega=0} = 1/4T_K$. Figures 2(c) and 2(d) show the FDM-NRG data [gray (colored) dots and lines] to be in remarkable quantitative agreement with these relations [black dashed curves]. The results for the “conductance” $G(T)$, being a frequency integrated quantity obtained by summing over discrete data directly without the need for broadening, are more accurate than for $A_T^{\text{im}}(\omega)$, and reproduce the prefactor c with an error consistently below 5% (hitherto, errors of order 10-30% had been customary).

The smoothness of the data in Fig. 2(c), obtained using temperatures not confined to the logarithmic set $\Lambda^{-n/2}$ [gray vertical lines in Fig. 2(c)], together with the remarkable stability with respect to different z-shifts illustrate the accuracy of our approach.

Conclusions.—Our FDM-NRG method offers a transparent framework for the calculation of spectral functions of quantum impurity models, with much improved accuracy at reduced computational cost. Its results satisfy frequency sum rules rigorously and give excellent agreement with other consistency checks such as the Friedel sum rule, detailed balance, or Fermi-liquid relations, including the regime $\omega \lesssim T$.

We thank F. Anders, R. Bulla, T. Costi, T. Hecht, W. Hofstetter, A. Rosch and G. Záraldi for discussions, and the KITP in Santa Barbara for its hospitality. The work was supported by DFG (SFB 631, De-730/3-1,3-2), and in part by the NSF (PHY99-07949).

Note added.—Just before completion of this work we learned that Peters, Pruschke and Anders had followed up on the same idea [15].

[1] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975); H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003 (1980); ibid. 1044, (1980).
[2] S. Sakai, Y. Shimizu and T. Kasuya, J. Phys. Soc. Japan 58, 3666 (1989).
[3] M. Yoshida, M. A. Whitaker and L. N. Oliveira, Phys. Rev. B 41, 9403 (1990).
[4] T. A. Costi, A. C. Hewson and V. Zlatić, J. Phys. Condens. Matter 6, 2519 (1994).
[5] T. A. Costi, Phys. Rev. B 55, 3003 (1997).
[6] R. Bulla, A. C. Hewson and Th. Pruschke, J. Phys. Condens. Matter 10, 8365 (1998).
[7] R. Bulla, T. Costi and T. Pruschke, condmat/0701105.
[8] W. Hofstetter, Phys. Rev. Lett. 85, 1508 (2000).
[9] R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001).
[10] R. Bulla, N. H. Tong, and M. Vojtta, Phys. Rev. Lett. 91, 170601 (2003).
[11] F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005); Phys. Rev. B 74, 245113 (2006).
[12] F. Verstraete et al., cond-mat/0504305, (2005).
[13] The Appendix describes our smoothing procedure.
[14] A. Hewson, The Kondo Problem to Heavy Fermions. Cambridge University Press, New York, 1993.
[15] R. Peters, T. Pruschke and F. B. Anders, Phys. Rev. B 74, 245114 (2006). We recommend this paper for a more detailed comparison of the new and previous approaches.
APPENDIX

Smoothing Discrete Data:— The FDM-NRG yields the spectral function in the form of a Lehmann sum over discrete δ-functions, which have to be broadened to obtain a smooth function. Ideally, this should be done using a procedure for which the results are independent both of the parameters used for broadening and for discretizing the conduction band.

We calculate the smoothed spectral function using $A(\omega) \equiv \int d\omega' K(\omega, \omega') A_{\text{raw}}(\omega')$. Here $A_{\text{raw}}(\omega') = \sum_n w_n A_n(\omega')$ represents the discrete numerical data obtained from Eq. (10), which in practice we collect in binned form, typically using 250 bins per decade in ω, restricted to have the same sign; and a Gaussian broadening, of somewhat arbitrary shape.

The chosen kernel $K(\omega, \omega')$, which we choose to be of the following form:

$$K(\omega, \omega') = L(\omega, \omega') h(\omega') + G(\omega, \omega')[1 - h(\omega')] \quad (14a)$$

where

$$L(\omega, \omega') = \frac{\theta(\omega')}{\sqrt{\pi \sigma(\omega)}} e^{-\left(\frac{\omega - \omega'}{\sigma(\omega)}\right)^2} \quad (14b)$$

$$G(\omega, \omega') = \frac{1}{\sqrt{\pi \sigma(\omega')}} e^{-\left(\omega/\omega'\right)^2}, \quad (14c)$$

$$h(\omega') = \begin{cases} 0, & |\omega| \geq \omega_0, \\ 1 - e^{-\left(\log \omega/\omega_0\right)^2}, & |\omega| < \omega_0. \end{cases} \quad (14d)$$

The chosen kernel K constitutes a smooth interpolation of somewhat arbitrary shape $h(\omega')$, between a log-Gaussian broadening kernel L on the one hand, used for all ω'-frequencies but the smallest (with ω and ω' restricted to have the same sign); and a Gaussian broadening kernel G of width ω_0 on the other, used for $|\omega| < \omega_0$ to smoothly connect the regimes of positive and negative frequencies. We choose ω_0 to be roughly a factor of 2 smaller than the smallest energy scale in the problem, including the Kondo temperature T_K (note that by construction in Eq. (14d) the transition to regular Gaussian sets in below ω_0).

The log-Gaussian kernel $L(\omega, \omega')$ was purposefully chosen to have the following three desirable features:

(i) **Frequency-dependent width**: being Gaussian on a logarithmic scale, on a linear scale its width as function of ω is proportional to ω'. This is needed to deal with the fact that spectral data generated using Wilson’s logarithmic discretization grid is more coarse-grained at large frequencies than at smaller ones.

(ii) **Conservation of weight**: we have $\int d\omega L(\omega, \omega') = 1$, ensuring that $\int d\omega A(\omega) = \int d\omega' A_{\text{raw}}(\omega')$.

(iii) **Conservation of peak height**: for the choice $\gamma = \alpha/4$ (adopted henceforth) L is symmetric under $\omega \leftrightarrow \omega'$, so that also $\int d\omega' L(\omega, \omega') = 1$. This ensures that the logarithmic broadening kernel maps a constant function onto itself (if $A_{\text{raw}}(\omega') = A_0$, then $A_{\text{raw}}(\omega) = A_0$), and thus does not change the height of a peak whose width on a logarithmic scale is broader than α. (In this respect our L differs from that of [2, 4, 15].)

Since choice (iii) implies that our log-Gaussian Kernel, as function of ω, describes a peak asymmetric w.r.t. ω' (shifted by $\alpha/4$ on a log scale), on a linear ω-scale the broadened data is stretched relative to the raw data by factor $e^{\alpha^2/4}$. This effect can be minimized by keeping α as small as possible. The smoothing of plain NRG data typically requires $\alpha \sim 1/\sqrt{A}$ (e.g. 0.7 for $A = 2$). However, smaller values (e.g. $\alpha \leq 0.3$ or even smaller) can be achieved by using the ‘α-trick’ [3]: collect several (say N_z) sets of discrete FDM-NRG data, each obtained from a different, slightly shifted logarithmic grid $\{\Lambda^{n-z}\}$ of discrete frequencies, for N_z different values of α between -0.5 and 0.5, and average the results. The hopping matrix elements along the Wilson chain are recalculated for each z by carefully tridiagonalizing the underlying logarithmically discretized Hamiltonian.

Self-energy representation:— The accuracy of the results for $A_\sigma(\omega)$ for the Anderson model can be improved by expressing it in terms of the impurity self energy [6]: first, note that $A_\sigma(\omega) = -\text{Im}[G^R(\omega)]/\pi$, where $G^R(\omega)$ is the Fourier transform of $G^R(t) = -i\theta(t)\langle [e_{\sigma\sigma}(t), c_{\sigma\sigma}^\dagger(t)] \rangle_T$. An improved version for $G^R(\omega)$ can be obtained by expressing it as

$$G^{\text{im}}_\sigma(\omega) = \frac{1}{\omega - \Delta_\sigma(\omega) - \Sigma^U_\sigma(\omega)} \cdot \Sigma^U_\sigma(\omega) = U \frac{F^R_\sigma(\omega)}{G^R_\sigma(\omega)}.$$

Here $\Delta_\sigma(\omega)$, the U-independent part of the self energy which characterizes the level’s broadening, can be computed exactly. $G^R_\sigma(\omega)$ is the standard (“non-improved”) version of the correlator, and $F^R_\sigma(\omega)$ is the Fourier transform of $-i\theta(t)\langle [c_{\sigma\sigma}^\dagger(t), c_{\sigma\sigma}^\dagger(t)] \rangle_T$.

We calculate the imaginary parts of $G^R_\sigma(\omega)$ and $F^R_\sigma(\omega)$ using FDM-NRG from Lehmann representations of the form (10), smoothen the discrete data as described above, Kramers-Kronig transform the smoothed results to obtain their real parts, and finally calculate $\Sigma^U_\sigma(\omega)$. Small wavy features in $G^R_\sigma(\omega)$ and $F^R_\sigma(\omega)$ that reflect the logarithmic discretization grid largely cancel out in the ratio $\Sigma^U_\sigma(\omega)$. Thus, smooth results for $G^{\text{im}}_\sigma(\omega)$ and $\Delta^{\text{im}}_\sigma(\omega)$ can be obtained using much less (or even no) α-trick averaging, thus reducing the number of distinct FDM-NRG runs required to get good results. Moreover, since $\Sigma^U_\sigma(\omega) \to 0$ at $T = 0$ is found to approach 0, the self-energy representation also improves the accuracy with which the Friedel sum rule is fulfilled.