Ligand Protonation Triggers H₂ Release from a Dinickel Dihydride Complex to Give a Doubly “T”-Shaped Dinickel(I) Metallodiradical

Peng-Cheng Duan*, Roland Alexander Schulz*, Anton Römer, Benjamin E. Van Kuiken, Sebastian Dechert, Serhiy Demeshko, George E. Cutsail III, Serena DeBeer, Ricardo A. Mata,* and Franc Meyer*

anie_202011494_sm_misellaneous_information.pdf
Table of Contents

1. General Considerations and Materials .. 2
2. Syntheses ... 2
3. IR and UV-Vis Spectra ... 4
4. Magnetic Measurements ... 8
5. X-Ray Crystallography .. 9
6. X-Ray Spectroscopy ... 15
7. DFT Calculations .. 16
8. References ... 57
1. General Considerations and Materials

All manipulations were performed under an anaerobic and anhydrous atmosphere of dry argon by using standard Schlenk techniques, or in a glove box (O₂ < 0.5 ppm, H₂O < 0.5 ppm). Chemicals used were either present in the working group or were purchased from commercial sources, or their synthesis is described below. Glassware was dried at 120°C prior to use. THF, diethyl ether, pentane and hexane were dried over sodium in the presence of benzophenone; all solvents were distilled prior to use. THF-d₈ was also dried over sodium in the presence of benzophenone and distilled, then stored in the presence of 3 Å molecular sieves. Complexes LNi₂Br, 1K and 1' were prepared as reported previously.¹

UV–Vis spectra were recorded on an Agilent Cary 60 equipped with an Unisoku Cryostat (CoolSpek) and magnetic stirrer using quartz cuvettes with an attached tube and a screw cap with a septum. All UV–vis samples were prepared in a glovebox and transferred out of the glovebox prior to the measurement.

IR measurements were performed with a Cary 630 FTIR spectrometer with Dial Path Technology with solid samples and analyzed by FTIR MicroLab software.

2. Syntheses

Synthesis of [KLNi₂]²⁺ (2K): KC₈ (20 mg, 0.5 mmol, 2 equiv) was added to a brown slurry of LNi₂Br (200 mg, 0.25 mmol, 1 equiv) in THF. The reaction mixture became dark red within 30 min and was stirred for 2 hours at room temperature to yield a deep red solution. The solvent was removed under vacuum. The residue was then dissolved in THF, and the KBr and graphite removed by filtration through Celite. After layering with hexane, the product was obtained as red block crystals after one week (yield: 35%).

ATR-IR (ν/cm⁻¹) = 3056 (w), 2955 (m), 2923 (m), 2863 (m), 1552 (m), 1521 (m), 1458 (m), 1432 (s), 1397 (s), 1319 (m), 1270 (m), 1253 (m), 1231 (m), 1192 (m), 1090 (w), 1056 (m), 1019 (m), 935 (w), 848 (m), 795 (m), 756 (s), 735 (w), 645 (w), 631 (w), 545 (w), 520 (w).

UV-vis (THF): λmax = 270, 370 and 384 nm.

Synthesis of [NaLNi₂]²⁺ (2Na): A solution of sodium naphthalide (1 M) in THF (0.5 mL, 0.5 mmol, 2 equiv) was added to a brown slurry of LNi₂Br (200 mg, 0.25 mmol, 1 equiv) in THF. The reaction mixture became dark red immediately and was stirred for 2 hours at room
temperature to yield a deep red solution. The reaction mixture was filtered through Celite. After layering with hexane, the product was obtained as red block crystals after one week (Yield: 40%).

UV-vis (THF): $\lambda_{\text{max}} = 269, 365$ and 380 nm.

Synthesis of [K(DB18C6)]LNiI$_2$ (2'): Method A. Dibenzo(18-crown-6) (17.3 mg, 0.048 mmol, 1.2 equiv) was added into a solution of 2K (30 mg, 0.04 mmol, 1 equiv) in THF at room temperature. After stirring the red solution for 2 h, all volatiles were removed in vacuo. The red residue was washed twice with hexane (10 mL) and the product obtained as red block crystals by layering hexane/Et$_2$O onto a solution of the crude product in THF for two days.

Method B. A sample of [K(DB18C6)][L(NiH)$_2$] (1'), prepared as described in ref. 1, has been thoroughly dried under vacuum for one day. Dissolving it in THF, layering with hexane/Et$_2$O and slow diffusion of the solvents at -30°C yielded the product as red crystals suitable for X-ray diffraction (yield: 40%).

ATR-IR ($\tilde{\nu}$/cm$^{-1}$) = 3054 (w), 2953 (m), 2924 (m), 2964 (m), 1595 (m), 1549 (w), 1503 (s), 1453 (m), 1435 (m), 1399 (m), 1358 (w), 1321 (m), 1297 (w), 1248 (s), 1230 (m), 1209 (m), 1123 (vs), 1086 (m), 1052 (s), 1026 (w), 995 (m), 956 (w), 934 (m), 901 (m), 851 (w), 810 (w), 778 (w), 738 (vs), 646 (w), 595 (m), 557 (w), 524 (w).

UV-vis (THF): $\lambda_{\text{max}} = 270, 330, 370$ and 384 nm.

Synthesis of [LH$_2$Ni]BArF$_4$ (3): 1K (30 mg, 0.04 mmol, 1 equiv) was dissolved in THF (2 mL) to give a clear, orange solution. To this solution [H(Et$_2$O)$_2$]BArF$_4$ (89.1 mg, 0.088 mmol, 2.2 equiv) was quickly added, resulting in an brown-red clear solution which was cooled (-30°C) and layered with hexanes. Slow diffusion of the solvents at -30°C yielded the product as yellow, block-shaped crystals suitable for X-ray diffraction (yield: 40%). Often the crystals were accompanied by inorganic salts (presumably KBrF$_4$) and manual separation was necessary to collect pure product. However, because of remaining trace impurities and its high sensitivity no reliable SQUID data of complex 3 could be obtained.

ATR-IR ($\tilde{\nu}$/cm$^{-1}$) = 2960 (m), 2926 (m), 2873 (m), 2861 (m), 1670 (C=N) (m), 1610 (m), 1464 (m), 1442 (m), 1387 (m), 1357 (m), 1271 (m), 1113 (m), 957 (m), 936 (m), 887 (m), 841 (m), 803 (m), 791 (m), 770 (m), 758 (m), 744 (m), 711 (m), 682 (m), 670 (m).

UV-vis (THF): $\lambda_{\text{max}} = 270, 322$ and 385 nm.
3. IR and UV-Vis Spectra

Figure S1: ATR-IR spectrum of solid 2^K.

Figure S2: UV-vis spectrum of 2^K in THF at different temperatures.
Figure S3: ATR-IR spectrum of solid 2'.

Figure S4: UV-vis spectrum of 2' in THF at different temperatures.
Figure S5: ATR-IR spectrum of solid 3.

Figure S6: UV-Vis spectrum of 1^k (black line) and after addition of [H(Et$_2$O)$_2$]BAR$_4$ to give 3 (blue line); at rt in THF under Ar.
Figure S7: UV-Vis spectrum of 3 (blue line) and after addition of KHMDS giving 2^k (green line); at rt in THF under Ar.
4. Magnetic Measurements

Temperature-dependent magnetic susceptibility measurements for 2^K and 2^Na were carried out with a Quantum-Design MPMS-XL-5 SQUID magnetometer equipped with a 5 Tesla magnet at a magnetic field of 0.5 T. The powdered samples were contained in a Teflon bucket and fixed in a non-magnetic sample holder. Each raw data file for the measured magnetic moment was corrected for the diamagnetic contribution of the Teflon bucket according to $M_{\text{dia}(\text{bucket})} = \chi g m H$, with an experimentally obtained gram susceptibility of the Teflon bucket. The molar susceptibility data were corrected for the diamagnetic contribution according to $\chi_{\text{M dia}(\text{sample})} = -0.5 M \cdot 10^{-6} \text{ cm}^3 \cdot \text{mol}^{-1}$. Experimental data were modelled with the julX program using a fitting procedure to the Heisenberg-Dirac-van-Vleck (HDvV) spin Hamiltonian for isotropic exchange coupling and Zeeman splitting, equation (1).

$$\hat{H} = -2J \hat{S}_1 \cdot \hat{S}_2 + g \mu_B (\hat{S}_1 + \hat{S}_2) B$$ \hspace{1cm} (1)

Temperature-independent paramagnetism (TIP) and a Curie-behaved paramagnetic impurity (PI) with spin $S = 1$ were included according to $\chi_{\text{calc}} = (1 - \text{PI}) \cdot \chi + \text{PI} \cdot \chi_{\text{mono}} + \text{TIP}$. TIP = 1.4%, TIP = 340 $\cdot 10^{-6} \text{ cm}^3 \cdot \text{mol}^{-1}$ for 2^K and TIP = 1.3%, TIP = 200 $\cdot 10^{-6} \text{ cm}^3 \cdot \text{mol}^{-1}$ for 2^Na.

Figure S8: $\chi M T$ vs. T plot for 2^Na; the solid red line represents the calculated curve fit ($\hat{H} = -2J \hat{S}_1 \hat{S}_2$ with $J = -83 \text{ cm}^{-1}$ and $g = 2.14$).
5. X-Ray Crystallography

Crystal data and details of the data collections are given in Table S1, selected bond lengths and angles in Table S2, molecular structures are shown in Figures S9 – S11. X-ray data were collected on a STOE IPDS II or a BRUKER D8-QUEST diffractometer (monochromated Mo-Kα radiation, λ = 0.71073 Å) by use of ω or ω and φ scans at −140 °C or −173 °C. The structures were solved with SHELXT and refined on \(F^2 \) using all reflections with SHELXL-17/18. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and assigned to an isotropic displacement parameter of 1.5/1.2 \(U_{eq}(C) \).

One \(^{1}\)Pr-group (occupancy factors: 0.837(4) / 0.163(4) (C37, C38, C39A/B)) and a thf solvent molecules (occupancy factors: 0.679(9) / 0.321(9) (only C46A/B)) were found to be disordered in 2Na (ras27). SADI restraints \((d_{C46A/B-C45/47}) \) and EADP constraints (for \(^{1}\)Pr carbon atoms) were applied to model the disordered parts. In case of 3 (pd275b) one \(^{1}\)Pr-group was found to be disordered about two positions (occupancy factors: 0.602(5) / 0.398(5)). SAME, SADI & RIGU restraints and EADP constraints were applied to model the disorder. Two CF\(_3\)-groups of the counter-ion (occupancy factors: 0.305(4) / 0.695(4) and 0.552(19) / 0.448(19)) and three out of four thf molecules (occupancy factors: 0.226(15) / 0.774(15), 0.569(7) / 0.431(7) and 0.497(8) / 0.503(8)) are disordered as well. SADI, RIGU & ISOR restraints and EADP constraints in case of the CF\(_3\)-groups and DFIX \((d_{C-O} = 1.44 \, \text{Å}, d_{C-C} = 1.54 \, \text{Å}) \), SAME, SIMU, DELU & ISOR restraints in case of the thf molecules and a BUMP restraint have been used. Face-indexed absorption corrections were performed numerically with the program X-RED\(^4\) or by the multi-scan method with SADABS\(^5\).
Compound	2^α (ras27)	2^β (ras33)	3 (pd275b)
Empirical formula	$C_{47}H_{69}NaNaNi_2O_2$	$C_{55}H_{55}KN_6Ni_2O_4$	$C_{39}H_{35}NaNi_2^+ \cdot C_{32}H_{12}BF_{24}^- \cdot 4(CdH_8O)$
Moiety formula	$C_{47}H_{69}NaNaNi_2O_2$	$C_{55}H_{55}KN_6Ni_2O_4$	$C_{39}H_{35}NaNi_2^+ \cdot C_{32}H_{12}BF_{24}^- \cdot 4(CdH_8O)$
Formula weight	890.49	1050.80	1876.95
Crystal size [mm3]	0.352 x 0.263 x 0.176	0.500 x 0.490 x 0.360	0.500 x 0.490 x 0.480
Crystal system	monoclinic	monoclinic	triclinic
T [K]	100(2)	133(2)	133(2)
Formula	$C_{47}H_{69}NaNaNi_2O_2$	$C_{55}H_{55}KN_6Ni_2O_4$	$C_{39}H_{35}NaNi_2^+ \cdot C_{32}H_{12}BF_{24}^- \cdot 4(CdH_8O)$
Crystal system	monoclinic	monoclinic	triclinic
Space group	P_{2_1}/n (No. 14)	P_2_1 (No. 4)	P–1 (No. 2)
a [Å]	18.6514(7)	13.8033(4)	12.7703(4)
b [Å]	13.9305(5)	14.7683(3)	18.0462(5)
c [Å]	18.7394(7)	14.2159(4)	20.8906(6)
α [°]	90	90	72.510(2)
β [°]	108.870(1)	106.622(2)	74.014(2)
γ [°]	90	90	80.426(2)
V [Å3]	4607.3(3)	2776.83(13)	4395.8(2)
Z	4	2	2
ρ [g cm$^{-3}$]	1.284	1.257	1.418
F(000)	1904	1128	1944
µ [mm$^{-1}$]	0.870	0.801	0.532
T\min / T\max	0.67 / 0.755	0.4327 / 0.9060*	0.6054 / 0.7674*
θ-range [°]	2.297 - 28.293	1.495 - 25.649	1.359 - 26.968
hkl-range	-24 to 23, ±18, ±24	±16, ±17, ±17	-16 to 14, ±22, ±26
Measured refl.	128356	32019	59769
Unique refl. [Rint]	11438 [0.0821]	10195 [0.0437]	18539 [0.0198]
Observed refl. (I > 2σ(I))	8904	9605	15534
Data / restr. / param.	11438 / 6 / 557	10195 / 1 / 625	18539 / 724 / 1335
Goodness-of-fit (F2)	1.062	1.053	1.025
R1, wR2 (I > 2σ(I))	0.0372 / 0.0776	0.0302 / 0.0749	0.0399 / 0.1001
R1, wR2 (all data)	0.0592 / 0.0903	0.0344 / 0.0785	0.0504 / 0.1076
Res. el. dens. [e·Å$^{-3}$]	-0.994 / 0.961	-0.197 / 0.481	-0.503 / 0.636

5 SADABS, *X-RED
Table S2. Selected distances [Å] and angles [°].

	2Na	2K	3
Ni–N$_{pz}$	1.8944(17) / 1.9118(17)	1.890(3) / 1.892(3)	1.8785(16) / 1.8807(16)
Ni–N$_{NaNa}$	1.8624(18) - 1.9212(17)	1.857(3) - 1.917(3)	1.8860(16) - 1.9513(16)
Ni–C	-	-	-
Ni···Na	3.0507(10) / 3.3477(10)	3.8554(9) / 3.9661(9)	4.1032(5)
Ni···K	4.1899(4)	4.1243(7)	4.057(5)
Na–N	2.4466(19) / 2.5314(19)	2.954(3) / 3.039(3)	-
K–N	2.7523(14)	-	-
Na–C (< 3.2 Å)	3.101(2) / 3.195(3)	3.226(3) - 3.498(4)	-
K–C (< 3.5 Å)	2.7523(14)	3.057(7)	-
Na–C$_{pz}^a$	175.59(7) / 176.50(7)	176.21(12) / 176.76(13)	177.91(7) / 178.04(7)
K–C$_{pz}^a$	84.34(7) - 98.36(8)	84.43(12) - 99.22(12)	84.62(7) - 96.99(7)

a) C$_{pz}^a$ is defined as the centroid of the five pyrazolate ring atoms.
Figure S9. Plot (30% probability thermal ellipsoids) of the molecular structure of 2^{Na} (most hydrogen atoms omitted for clarity). Sodium carbon contacts < 3.2 Å are shown as dashed lines. Cgpz is defined as the centroid of the five pyrazolate ring atoms. Selected bond lengths [Å] and angles [°]: Ni1–N1 1.9118(17), Ni2–N2 1.8944(17), Ni1–N3 1.9212(17), Ni1–N4 1.8794(17), Ni2–N5 1.9140(17), Ni2–N6 1.8624(18), Na1–O1 2.248(2), Na1–O2 2.269(2), Na1–N1 2.5314(19), Na1–N2 2.4466(19), Na1–C2 3.195(3), Na1–C3 3.101(2), Na1–Cgpz 2.7523(14), Ni1···Na1 3.3477(10), Ni2···Na1 3.0507(10), Ni1···Ni2 4.1899(4); N4–Ni1–N1 175.59(7), N4–Ni1–N3 98.17(7), N1–Ni1–N3 84.34(7), N6–Ni2–N2 176.50(7), N6–Ni2–N5 98.36(8), N2–Ni2–N5 85.04(7).
Figure S10. Plot (30% probability thermal ellipsoids) of the molecular structure of the 2^k (most hydrogen atoms omitted for clarity). Potassium carbon contacts < 3.5 Å are shown as dashed lines. Cg$_{pz}$ is defined as the centroid of the five pyrazolate ring atoms. Selected bond lengths [Å] and angles [°]: Ni1–N1 1.890(3), Ni2–N2 1.892(3), Ni1–N3 1.917(3), Ni1–N4 1.858(3), Ni2–N5 1.917(3), Ni2–N6 1.857(3), K1–O1 2.760(3), K1–O2 2.776(3), K1–O3 2.718(3), K1–O4 2.798(3), K1–N1 3.039(3), K1–N2 2.954(3), K1–C1 3.498(4), K1–C2 3.371(3), K1–C3 3.226(3), K1–Cg$_{pz}$ 3.0057(7), Ni1···K1 3.8554(9), Ni2···K1 3.9661(9), Ni1···Ni2 4.1243(7); N4–Ni1–N1 176.76(13), N4–Ni1–N3 98.75(13), N1–Ni1–N3 84.43(12), N6–Ni2–N2 176.21(12), N6–Ni2–N5 99.22(12), N2–Ni2–N5 84.49(12).
Figure S11. Plot (30% probability thermal ellipsoids) of the molecular structure of the cationic part of 3 (most hydrogen atoms omitted for clarity). Selected bond lengths [Å] and angles [°]: Ni1–N1 1.8807(16), Ni2–N2 1.8785(16), Ni1–N3 1.9513(16), Ni1–N4 1.8881(16), Ni2–N5 1.9476(15), Ni2–N6 1.8860(16), Ni1⋯Ni2 4.1032(5); N1–Ni1–N4 177.91(7), N1–Ni1–N3 84.73(7), N4–Ni1–N3 96.99(7), N2–Ni2–N6 178.04(7), N2–Ni2–N5 84.62(7), N6–Ni2–N5 96.52(7).
6. X-Ray Spectroscopy

X-ray absorption was measured for powder sample. Each sample was ground together with boron nitride to give ~1% Ni by weight, so that self-absorption would be avoided. Samples were packed into 1 mm Al spacers and sealed with Kapton tape. Samples were handled anaerobically in a glove box and immediately frozen in liquid N₂ following preparation. XAS measurements were performed at beamline 9-3 at the Stanford Synchrotron Radiation Laboratory (SSRL) operating at 3 GeV with a 500 mA ring current. During measurements the samples were cooled to 10 K using a continuous flow liquid He cryostat from Oxford Instrument. The X-ray energy was selected with a liquid nitrogen cooled Si(220) double crystal monochromator. To reduce higher harmonics, a harmonic rejection mirror set to a 13 eV cutoff was combined with 10% detuning of the monochromator. The energy was calibrated by setting the first inflection point of Ni metal foil to 8331.7 eV which was collected in transmission mode placed in the beam path after the sample. The XAS spectra were measured by monitoring the total fluorescence yield using a 100-element Ge Detector, windowed to the Ni Kα emission. Multiple layers of aluminum foils as needed were employed to attenuate the incident beam to minimize photodamage.
7. DFT Calculations

A) (geometry optimization, IR, UV-vis, magnetic properties & orbitals, spin density)

Computational Details. The ORCA program package (version 4.2.1) was employed for all calculations. Geometry optimization and frequency calculation was performed starting from the crystallographic data of 2^K with [K(THF)$_4$]$^+$ removed and the cationic 3 (BP86 functional, def2-TZVP basis set, RI approximation using the auxiliary def2/J basis set, Grimme’s D3 dispersion correction with Becke-Johnson damping, tight convergence and optimization criteria). All other calculations were performed on the optimized coordinates or coordinates from crystallographic data with the B3LYP functional and the RIJCOSX approximation with the same basis sets and dispersion correction as stated above. TD-DFT calculations were carried out at the B3LYP/def2-TZVP level of theory (80 states included).

Molecular structures have been optimized using the conductor-like polarizable continuum mode (CPCM) with default settings for THF. J has been calculated from $-(\langle E[\text{high-spin}] - E[\text{broken symmetry}]\rangle - \langle S^2 \rangle[\text{high-spin}] - \langle S^2 \rangle[\text{broken symmetry}]$).

Table S3. Comparison of experimental and DFT calculated metric parameters of [LNi$_2$]$^-$; selected distances [Å] and angles [°].

	[LNi$_2$]$^-$ (exp: 2^K)	[LNi$_2$]$^-$ ($S = 1$)	[LNi$_2$]$^-$ ($S = 0$)
Ni–N$_{pz}$	1.890(3) / 1.892(3)	1.89603 / 1.89637	1.88855 / 1.88864
Ni–N$_{NacNac}$	1.857(3) - 1.917(3)	1.85804 - 1.91244	1.85812 - 1.91444
Ni⋯Ni	4.1243(7)	4.12728	4.08404
N–Ni–N	176.21(12) / 176.76(13)	176.405 / 176.438	176.840 / 176.859
(opposite)			
N–Ni–N ($<$ 100°)	84.43(12) - 99.22(12)	85.146 - 98.169	85.000 - 98.156

Table S4. Comparison of experimental and DFT calculated metric parameters of [L12Ni$_2$]$^+$; selected distances [Å] and angles [°].

	[L12Ni$_2$]$^+$ (exp: 3)	[L12Ni$_2$]$^+$ ($S = 1$)	[L12Ni$_2$]$^+$ ($S = 0$)
Ni–N$_{pz}$	1.8785(16) / 1.8807(16)	1.88290 / 1.88471	1.87878 / 1.88042
Ni–N$_{NacNac}$	1.8860(16) - 1.9513(16)	1.85551 - 1.94147	1.85730 - 1.94274
Ni⋯Ni	4.1032(5)	4.07989	4.05164
N–Ni–N	177.91(7) / 178.04(7)	177.339 / 177.485	177.198 / 177.407
(opposite)			
N–Ni–N ($<$ 100°)	84.62(7) - 96.99(7)	84.997 - 97.251	84.849 - 97.180
Table S5. Comparison of relative energies (kcal/mol) and \(J \) (cm\(^{-1}\)).

	\(\Delta E \)	\(J \)
\([\text{LNi}_2]\) (\(S = 1\))	0	-
\([\text{LNi}_2]\) (\(S = 0\))	+0.19	-56.44
anion of \(2^k\) (single point, \(S = 1\)) *	+0.29	-
anion of \(2^k\) (single point, \(S = 0\)) *	0	-100.04
\([\text{L}^{\text{H}_2}\text{Ni}_2]\) (\(S = 1\))	+0.17	-
\([\text{L}^{\text{H}_2}\text{Ni}_2]\) (\(S = 0\))	0	-51.79
cation of \(3\) (single point, \(S = 1\)) *	+0.31	-
cation of \(3\) (single point, \(S = 0\)) *	0	-107.98

*) coordinates from crystallographic data, not DFT optimized, \([\text{K(THF)}_4]^+\) part removed in case of \(2^k\), anionic part removed in case of 3

Figure S12. DFT optimized molecular structure of \([\text{LNi}_2]^-(S = 1)\) (Ni = red, N = blue, C = grey).
Figure S13. DFT optimized molecular structure of $[L^\text{H}_2\text{Ni}_2]^+$ ($S = 1$) (Ni = red, N = blue, C = grey).

Figure S14. Calculated IR spectrum of $[\text{LNi}_2]^-$ ($S = 1$). The spectrum was convoluted using a Gaussian line shape function with a half-width of 20 cm$^{-1}$.
Figure S15. Calculated IR spectrum of $[\text{LNi}_2^-] \ (S = 0)$. The spectrum was convoluted using a Gaussian line shape function with a half-width of 20 cm$^{-1}$.

Figure S16. Calculated IR spectrum of $[\text{L}^{\text{H}_2}\text{Ni}_2]^+ \ (S = 1)$. The spectrum was convoluted using a Gaussian line shape function with a half-width of 20 cm$^{-1}$.
Figure S17. Calculated absorption spectrum of $[\text{LNi}_2]^-$ ($S = 0$) in THF. The spectrum was convoluted using a Gaussian line shape function with a half-width of 20 nm.

Figure S18. Calculated absorption spectrum of $[\text{L}{^{14}\text{Ni}}_2]^+$ ($S = 0$) in THF. The spectrum was convoluted using a Gaussian line shape function with a half-width of 20 nm.
Figure S19. Spin density plot of $[\text{LNi}_2^-]$ ($S = 1$). Loewdin spin population: Ni1 = 0.87, Ni2 = 0.87. (isosurface value: 0.04).

Figure S20. Spin density plot of $[\text{L}^\text{H}_2\text{Ni}_2^+]$ ($S = 1$). Loewdin spin population: Ni1 = 0.87, Ni2 = 0.87. (isosurface value: 0.04).
Figure S21. Combined corresponding orbitals10 representing the magnetic orbitals for the broken symmetry state of $[\text{LNi}_2]^-$ (isosurface value: 0.08).

Figure S22. Combined corresponding orbitals10 representing the magnetic orbitals for the broken symmetry state of $[\text{L}^\text{H}_2\text{Ni}_2]^+$. (isosurface value: 0.08).
Figure S23. Corresponding orbitals10 (\(\alpha\) left, \(\beta\) right) representing the magnetic orbitals for the broken symmetry state of \([LNi\textsubscript{2}]^–\). (isosurface value: 0.08).

Figure S24. Corresponding orbitals10 (\(\alpha\) left, \(\beta\) right) representing the magnetic orbitals for the broken symmetry state of \([LH2Ni\textsubscript{2}]^+\). (isosurface value: 0.08).

Table S6. Selected states, energies (cm\(^{-1}\)), wavelengths (nm), oscillator strengths, and compositions (according to Lowedin reduced orbital populations per MO) of electronic transitions of \([LNi\textsubscript{2}]^–\) (\(S = 0\)) from TD-DFT calculation (\(H\) = HOMO, \(L\) = LUMO).

state	energy	wavelength	osc. strength	selected large contributions
3	10420.0	959.7	0.000612546	H-2 (a) (91% Ni) \(\rightarrow\) L+2 (a) (16% Ni) (d-d), H-2 (a) (91% Ni) \(\rightarrow\) L+6 (a) (33% Ni) (d-d)
6	11826.8	845.5	0.000907444	H-4 (b) (61% Ni) \(\rightarrow\) L+2 (b) (16% Ni) (d-d), H-3 (b) (61% Ni) \(\rightarrow\) L+6 (b) (33% Ni) (d-d)
7	13747.4	727.4	0.001711298	H-7 (a) (67% Ni) \(\rightarrow\) L+2 (a) (16% Ni) (d-d), H-7 (a) (67% Ni) \(\rightarrow\) L+6 (a) (33% Ni) (d-d)
12	19060.9	524.6	0.006385497	H-1 (a) (56% Ni) \(\rightarrow\) L+1 (a) (7% Ni) (MLCT), H-1 (a) (56% Ni) \(\rightarrow\) L(a) (8% Ni) (MLCT)
15	21572.8	463.5	0.017377888	H-6 (a) (70% Ni) \(\rightarrow\) L+1 (a) (7% Ni) (MLCT), H-4 (a) (63% Ni) \(\rightarrow\) L(a) (8% Ni) (MLCT)
18	23010.8	434.6	0.026032864	H-3 (a) (60% Ni) \(\rightarrow\) L+1 (a) (7% Ni) (MLCT), H (a) (63% Ni) \(\rightarrow\) L+1 (a) (7% Ni) (MLCT)
26	24673.9	405.3	0.029405567	H-1 (b) (56% Ni) \(\rightarrow\) L+6 (b) (3% Ni) (MLCT), H-1 (a) (56% Ni) \(\rightarrow\) L+6 (a) (3% Ni) (MLCT)
57	27951.4	357.8	0.014417610	H-2 (b) (91% Ni) \(\rightarrow\) L+4 (b) (2% Ni) (MLCT)
64	29464.3	339.4	0.014884541	H-3 (a) (60% Ni) \(\rightarrow\) L+3 (a) (5% Ni) (MLCT)
71	29992.8	333.4	0.048750075	H-2 (a) (91% Ni) \(\rightarrow\) L+5 (a) (3% Ni) (MLCT)
Table S7. Selected states, energies (cm\(^{-1}\)), wavelengths (nm), oscillator strengths, and compositions (according to Lowedin reduced orbital populations per MO) of electronic transitions of [L\(^{\text{H2}}\)Ni\(_2\)]\(^+\) (S = 0) from TD-DFT calculation (H = HOMO, L = LUMO).

state	energy	wavelength	osc. strength	selected large contributions
2	10467.2	955.4	0.001019499	H-1 (a) (91% Ni) → L+4 (a) (33% Ni) (d-d)
6	12033.4	831.0	0.000648272	H-3 (a) (87% Ni) → L+4 (a) (33% Ni) (d-d)
7	14045.3	712.0	0.001166516	H-7 (b) (87% Ni) → L+4 (b) (34% Ni) (d-d)
13	20155.9	496.1	0.012365618	H-2 (b) (55% Ni) → L+1 (b) (6% Ni) (MLCT), H-2 (b) (55% Ni) → L (b) (6% Ni) (MLCT)
24	24605.7	406.4	0.016499617	H-3 (b) (87% Ni) → L+3 (b) (10% Ni) (MLCT)
32	25303.1	395.2	0.011178716	H (a) (55% Ni) → L+4 (a) (33% Ni) (d-d)
36	27239.6	367.1	0.034795307	H-4 (a) (64% Ni) → L+1 (a) (6% Ni) (MLCT)
45	28376.4	352.4	0.031564584	H-4 (b) (64% Ni) → L+2 (b) (6% Ni) (MLCT)
56	29578.0	338.1	0.040157944	H-4 (a) (64% Ni) → L (a) (6% Ni) (MLCT)

Figure S25. Orbitals with large contributions to state 3 in [LNi\(_2\)]\(^-\) (S = 0); H-2 (a) (91% Ni) → L+2 (a) (16% Ni). (isosurface value: 0.08).

Figure S26. Orbitals with large contributions to state 6 in [LNi\(_2\)]\(^-\) (S = 0); H-4 (b) (61% Ni) → L+2 (b) (16% Ni). (isosurface value: 0.08).
Figure S27. Orbitals with large contributions to state 7 in [LNi₂]⁻ (S = 0); H-7 (a) (67% Ni) → L+6 (a) (33% Ni). (isosurface value: 0.08).

Figure S28. Orbitals with large contributions to state 12 in [LNi₂]⁻ (S = 0); H-1 (a) (56% Ni) → L+1 (a) (7% Ni). (isosurface value: 0.08).

Figure S29. Orbitals with large contributions to state 26 in [LNi₂]⁻ (S = 0); H-1 (b) (56% Ni) → L+6 (b) (3% Ni). (isosurface value: 0.08).
Figure S30. Orbitals with large contributions to state 64 in [LNi₂]⁻ (S = 0); H-3 (a) (87% Ni) → L+4 (a) (33% Ni). (isosurface value: 0.08).

Figure S31. Orbitals with large contributions to state 2 in [LH₂Ni₂]⁺ (S = 0); H-1 (a) (91% Ni) → L+4 (a) (33% Ni). (isosurface value: 0.08).

Figure S32. Orbitals with large contributions to state 6 in [LH₂Ni₂]⁺ (S = 0); H-3 (a) (87% Ni) → L+4 (a) (33% Ni). (isosurface value: 0.08).
Figure S33. Orbitals with large contributions to state 7 in $[\text{L}^{\text{H2Ni}}]^{+}$ ($S = 0$); H-7 (b) (87% Ni) \rightarrow L+4 (b) (34% Ni). (isosurface value: 0.08).

Figure S34. Orbitals with large contributions to state 13 in $[\text{L}^{\text{H2Ni}}]^{+}$ ($S = 0$); H-2 (b) (55% Ni) \rightarrow L+1 (b) (6% Ni). (isosurface value: 0.08).

Figure S35. Orbitals with large contributions to state 24 in $[\text{L}^{\text{H2Ni}}]^{+}$ ($S = 0$); H-3 (b) (87% Ni) \rightarrow L+3 (b) (10% Ni). (isosurface value: 0.08).
Figure S36. Orbitals with large contributions to state 32 in \([L^1H_2Ni_2]^+\) \((S = 0)\); \(H\)-3 (b) (87% Ni) \(\rightarrow\) L+3 (b) (10% Ni). (isosurface value: 0.08).

Figure S37. Orbitals with large contributions to state 36 in \([L^1H_2Ni_2]^+\) \((S = 0)\); \(H\)-4 (a) (64% Ni) \(\rightarrow\) L+1 (a) (6% Ni). (isosurface value: 0.08).

Figure S38. Orbitals with large contributions to state 45 in \([L^1H_2Ni_2]^+\) \((S = 0)\); \(H\)-4 (b) (64% Ni) \(\rightarrow\) L+2 (b) (6% Ni). (isosurface value: 0.08).
Figure S39. Orbitals with large contributions to state 56 in \([\text{L}^{\text{H}}\text{Ni}_2]^+\) (S = 0); H-4 (a) (64% Ni) → L (a) (6% Ni). (isosurface value: 0.08).

Coordinates for DFT calculations, \([\text{LNi}_2]^−\) (S = 1):

Atom	X	Y	Z
Ni	-2.04825740448843	1.05520925956665	-0.23339917927300
Ni	2.05420827357330	1.02348807804217	0.21737348728861
N	-0.65936441726771	2.33940415550780	-0.10403213576772
N	-3.18718511816098	2.55764937227795	-0.55398425512728
N	-3.32823243095713	-0.28339654587603	-0.38443937610033
N	0.68365612179456	2.32878837587716	0.09902295224143
N	3.2152675244815	2.50740932480347	0.54500971558717
N	3.31553638662333	-0.33362262237313	0.35741203223072
C	-1.07282130359413	3.63030586213649	-0.17644972706950
C	-2.53119651223460	3.85852062152485	-0.43957758799912
C	-4.46366120245776	2.46021688307365	-0.89911281830711
C	-4.60099653124125	-0.06746822556585	-0.75452821030755
C	-2.92186697018423	-1.55258291394088	0.09476531699988
C	-0.37472630682318	-1.09771205955263	-1.96771546991134
C	1.1164162390013	3.61307812157119	0.17672043246121
C	0.02830176738460	4.48261970261745	0.00186496220296
C	-5.1227640081871	1.21131507812510	-1.01782974381061
C	-5.26704796496765	3.71149506640399	-1.18453963468036
C	-5.52453171189536	-1.25760777434631	-0.90559166900309
C	-3.28149659599798	-1.95139781996235	1.41107624013758
C	-2.11750969057102	-2.39074124252634	-0.71706358015641
C	-1.67351360518199	-1.91253260553753	-2.08735426142389
C	2.57804492823431	3.81830196024540	0.44022609385586
C	-2.85003301097697	-3.19753524355544	1.87526567957528
C	-4.03900692971743	-0.98695907084520	2.31128014061673
C	-1.70913450487135	-3.62728515929687	-0.2080304712829
C	-1.50108490946886	-3.04711029567063	-3.10376018391224
C	4.49114635161722	2.38980615812894	0.8859842027730
C	4.59200898511581	-0.1384756955046	0.72648202245515
C	2.88970543605902	-1.59356416729270	-0.12921984479737
C	H		
---------	---------		
0.34499025400574	-1.12134150417307	1.9400919204483	
-2.07497134258952	-4.03876851576089	1.0740604248873	
-3.05818397606365	-0.00548002461512	2.97391236410717	
-4.91528660785807	-1.68217068732971	3.35840767372569	
5.13268325391884	1.13108312463461	0.99610935329909	
5.31325498502872	3.62795653342006	1.1753107729605	
5.49849636786838	-1.34270716875875	0.86840661146726	
2.07232606622350	-2.42373744418112	0.67745557454549	
3.24233029088290	-1.98998136313636	-1.4481241598408	
1.6373111719732	-1.94748428418372	2.05150742838495	
1.64373391821716	-3.65024313438937	0.1610864691088	
2.79028129039581	-3.22586918891444	-1.92007584176047	
4.01648787569050	-1.03261746103154	-2.34208316413430	
1.45996460481540	-3.08495909338996	3.06386838680775	
2.00195238518050	-4.05943927400364	-1.12382535393891	
3.05274214560696	-0.02995361155376	-2.98032231502626	
4.88042485987522	-1.73578933272163	-3.39415559986569	
-6.16011001043380	1.24520486527913	-1.3491682098532	
6.17115178239734	1.14870492379587	1.32516752936182	
-0.52389030186807	-0.20810872397827	-1.32577095542212	
-0.04891151772792	-0.73374198330911	-2.95238311882919	
0.43117771220563	-1.70346109223384	-1.53435918224530	
-2.98341936250404	4.45632318798473	0.37794904079205	
-2.65940696415625	4.45707922979042	-1.36318683930497	
0.49655430502475	-0.23396908209617	1.29587268746534	
0.02922421567454	-0.75346422141848	2.92661696674165	
-0.46910006991843	-1.72121118171687	1.5138352756553	
0.03646756808664	5.56939776529320	0.00392444291470	
-6.29923254363902	3.46139433227149	-1.45898032538921	
-4.82098373852796	4.29364865549299	-2.00893069153632	
-5.29387409621854	4.37625230500671	-0.305384338370	
-6.48334727867571	-0.95001762601471	-1.34074268262104	
-5.7511248109801	-1.74159943092951	0.06335241128776	
-5.07180549147774	-2.02812897372726	-1.54831038628750	
-2.45624929627098	-1.22927016650051	-2.45371057746267	
3.03826480183397	4.41533732050312	-0.37330991038784	
2.71552574538233	4.40853949376746	1.36797916126731	
-3.11222793790000	-3.51628039334173	2.88517647598977	
-4.70140657326104	-0.38428579983071	1.67239282474080	
-1.08664343568986	-4.27587729306936	-0.82375358302792	
-1.3100505429383	-2.6279366315881	-4.10355301165999	
-2.39760785818057	-3.68392532880705	-3.16004407738889	
-0.64039271919541	-3.68504930259682	-2.85264910699774	
-1.74809717450739	-5.00841035856824	1.45358408350119	
Coordinates for DFT calculations, $[\text{LNi}_2^–]$ ($S = 0$):

\[
\begin{align*}
\text{Ni} & \quad -2.02020341320738 & \quad 1.05186009484380 & \quad -0.28664066094488 \\
\text{Ni} & \quad 2.0261903508893 & \quad 1.02066716840199 & \quad 0.2670104204576 \\
\text{N} & \quad -0.65235395215928 & \quad 2.34511376131768 & \quad -0.13461140191254 \\
\text{N} & \quad -3.16284048393109 & \quad 2.54576990946655 & \quad -0.64326982544436 \\
\text{N} & \quad -3.29606818549210 & \quad -0.29274650114719 & \quad -0.4162943564591 \\
\text{N} & \quad 0.67723225332505 & \quad 2.334679664641982 & \quad 0.12170923629463 \\
\text{N} & \quad 3.19036527491853 & \quad 2.49595516140451 & \quad 0.63157252142317 \\
\text{N} & \quad 3.28245835105097 & \quad -0.34282316003649 & \quad 0.39001177545781 \\
\text{C} & \quad -1.06539016064009 & \quad 3.63498445906018 & \quad -0.22300454991423 \\
\text{C} & \quad -2.51650625007447 & \quad 3.85237636483460 & \quad -0.53318759020401 \\
\text{C} & \quad -4.43708784053476 & \quad 2.43713711970640 & \quad -0.99268496790412 \\
\text{C} & \quad -4.57004968173694 & \quad -0.08662395884227 & \quad -0.78703121536067 \\
\text{C} & \quad -2.837878656745058 & \quad -1.54752041617029 & \quad 0.10435008356691 \\
\text{C} & \quad -0.41426978845629 & \quad -1.18022024739775 & \quad -2.03561731837092 \\
\text{C} & \quad 1.10923401301160 & \quad 3.61789001284705 & \quad 0.21629267528085 \\
\text{C} & \quad 0.02827465038345 & \quad 4.48788165658033 & \quad -0.00128558013033 \\
\end{align*}
\]

31
C	-5.09232924352715	1.18413550208005	-1.08644618161893
C	-5.24319561410780	3.67979125194220	-1.30690632341450
C	-5.49413336366188	-1.28103268405627	-0.89288583543243
C	-3.23562823643687	-1.89001695151422	1.44055294997219
C	-2.11980849468156	-2.42957547759690	-0.69006703886464
C	-1.70395357086595	-2.01590139357449	-2.0905510639095
C	2.56329819654479	3.81243375459635	0.52771952000938
C	2.81492554702539	-3.12371286898764	1.94555954071117
C	-3.96674647669579	-0.8812520071017	2.3133150046551
C	-1.72236820797533	-3.65265270514577	-0.14084193047332
C	-1.5295156301284	-3.19897136267733	-3.0500819246174
C	4.46279081174644	2.36707540332617	0.98071224910073
C	4.55910712996430	-0.15718715451733	0.76244317822665
C	2.86291924097426	-1.58876522848042	-0.13813001053926
C	0.39002042836910	-1.19874435023059	2.00382336564922
C	-2.06910456595303	-4.00779582545679	1.16328646006432
C	-2.95931649959372	0.10894915691836	2.92423355385233
C	-4.83748042916146	-1.52137701761920	3.39971930270543
C	5.09968116552289	1.10423921274265	1.0682468259950
C	5.28697139500109	3.59626336720692	1.30091507473250
C	5.46572908113172	-1.36542809493698	0.86222745330690
C	2.07724196425371	-2.46508562844973	0.65115490423722
C	3.19996656140637	-1.92758956885912	-1.47644008539795
C	1.66710125141606	-2.05383748957186	2.05403115586698
C	1.66343195896806	-3.67940251198898	0.09458588504256
C	2.76235684527985	-3.15227689132380	-1.9889691738676
C	3.94512380453432	-0.9236709843504	-2.34299486365134
C	1.47418097238882	-3.2397590610061	3.00635503089156
C	2.00490843237463	-4.0310245398123	-1.2118837533986
C	2.952079815556780	0.08434877807542	-2.9483236888122
C	4.80740554171504	-1.5692463943709	-3.43287830784856
H	-6.13218206634215	1.20916335269398	-1.41218145168945
H	6.13961144700274	1.11254243496149	1.39496164602032
H	-0.56766491779059	-0.25455980957281	-1.44802059513393
H	-0.10212560368008	-0.87635968377118	-3.0456287989725
H	0.40332026678712	-1.74895133506646	-1.5741386537950
H	-2.99379091799332	4.46156024926956	0.26053681953254
H	-2.62082289852876	4.43439564439256	-1.47065876210972
H	0.55536162094587	-0.27467710901349	1.41707318503134
H	0.08538956266804	-0.8916995036428	3.01517302896239
H	-0.43714278914997	-1.75495139577377	1.54419252120096
H	0.03628648661034	5.57403687106105	0.00132757550729
H	-6.27503400770770	3.42139601360448	-1.57557487145983
H	-4.79839726769622	4.2436159923732	-2.14333081881264
Coordinates for DFT calculations, \([\text{L}^\text{H}_2\text{Ni}_2]^+ (S = 1)\):

Ni	-2.02997164288090	0.97407626184308	-0.19846877678201
Ni	2.00434682739460	0.95013753332475	0.4091339539136
N -0.68048534481077 2.26595490183964 0.0365567098454
N -3.18808704304459 2.49092685368449 -0.55263603612538
N -3.31554456633022 -0.35079093007004 -0.38545400260837
N 0.54879486496963 2.25507021304341 0.30059707711921
N 3.15654744696793 2.43264310994407 0.90302021751041
N 3.30618582203252 -0.3756227088557 0.44752161213808
C -1.09886451877303 3.55548579700428 0.00100913674376
C -2.54183769900177 3.79443195746084 -0.30211527202481
C -4.39942819388748 2.43636555998009 -0.99020489746852
C -4.52855597257277 -0.2117609754815 0.82772279082077
C -2.86817250693930 -1.62865247210589 0.10241837548613
C 1.06587270695513 3.53778003933393 0.44429600015431
C -0.01684396684544 4.40743451257608 0.25901548678658
C 0.72797238439351 1.11796515099994 0.27987916243745
C -5.22322161185111 3.6635231737825 0.92765758566568
C -5.49910874503939 -1.35175593835119 0.82772279082077
C -3.18925656362774 -1.99836655927297 1.4283610485157
C -2.09678896039392 -2.44827108756278 -0.74807965727073
C 2.51242366140145 3.75230620293944 0.76275932445338
C -2.75097299366625 -3.2509086994472 1.8731439377755
C -3.91593757699536 -1.03258389723848 2.35181554088586
C -1.69065875206688 -3.69249770301511 -0.25390719695260
C -1.68849496421855 -1.9633248443127 2.1286356451245
C 4.37173259210981 2.34352375914925 1.32367223927928
C 4.51484415844131 -0.27453613677549 0.91110689618624
C 2.88484631881315 -1.58595403184162 -0.20677754219320
C -2.02167296559998 -4.09736958785154 1.03850475582388
C -2.91551516134425 -0.01662310837772 2.93171698369813
C -4.70580084712379 -1.72152754832316 3.4608645122455
C -0.43834876298381 -1.07319428064478 -2.0180320850476
C -1.44839987625944 -3.0978306604841 3.13039166435624
C 5.04068132767425 1.00355884066233 1.51124980332827
C 5.20229533442137 3.54345427880292 1.6915188233728
C 5.49619133959860 -1.40877470070004 0.8899346723450
C 2.12329193325604 -2.52755934502713 0.51658208442426
C 3.2190148168652 -1.7650048504986 -1.5684034616522
C 1.73051199532638 -3.69222865014421 -0.15170953698157
C 1.71216785726302 -2.2561629531640 1.95450986651258
C 2.79381159435936 -2.94473163535793 2.1888451109660
C 3.95508176508653 -0.68123214067165 -2.340982505519
C 2.06592890918149 -3.90536257827285 -1.48773713017402
C 0.48465609091637 -1.3285369359528 1.98465998645215
C 1.43326460530085 -3.52808419931671 2.7609690561810
C 2.95841965925011 0.38984055468786 -2.8193696901216
Coordinates for DFT calculations, $[\text{L}^2\text{Ni}_2]^+$ ($S = 0$):

\[
\begin{array}{cccc}
\text{H} & -0.35296406390424 & -1.76740070220941 & 1.42714579825390 \\
\text{H} & 0.71301316337155 & -0.33992191709982 & 1.53373587929520 \\
\text{H} & 1.26000878728774 & -3.27164001298839 & 3.81514116853427 \\
\text{H} & 2.27332516204866 & -4.23568967176397 & 2.71279002072797 \\
\text{H} & 0.52987480442842 & -4.03793977619875 & 2.39754430330384 \\
\text{H} & 3.48141617240017 & -3.33735879295200 & 3.32965130983636 \\
\text{H} & 2.39701092992709 & -1.96873249953831 & 0.81705045222211 \\
\text{H} & 2.23131402295751 & -3.52023395420643 & -0.04578050016400 \\
\text{H} & 5.38987080865982 & -4.31432038894405 & -1.61385169203545 \\
\text{H} & 4.15504853969525 & -3.94236558527607 & -2.01639152765593 \\
\text{H} & 5.47242918897224 & -3.18902378572160 & 3.45325300346036
\end{array}
\]

\[
\begin{array}{cccc}
\text{Ni} & -0.01032162569621 & 0.97901584073507 & 0.22108789782962 \\
\text{Ni} & 1.99059698605607 & 0.95444261222493 & 0.41753176432869 \\
\text{N} & -0.67359977578193 & 2.27749537697236 & 0.017528178553 \\
\text{N} & -3.17404111040676 & 2.49139709114752 & -0.58539045545210 \\
\text{N} & -3.29549195059829 & -0.35032493671187 & -0.39649662268522 \\
\text{N} & 0.64830643181801 & 2.26612133117452 & 0.30031675881061 \\
\text{N} & 3.14506015357389 & 2.43165442116527 & 0.92870290613641 \\
\text{N} & 3.28985113897415 & -0.37499510911068 & 0.45325300346036 \\
\text{C} & -1.09363967108015 & 3.56621563404877 & -0.0208242648638 \\
\text{C} & -2.53712539596476 & 3.79924622378596 & -0.3414005392536 \\
\text{C} & -4.38520150161396 & 2.43074395209643 & -1.02265990191869 \\
\text{C} & -4.50926395312161 & -0.21573877371800 & -0.83805492476073 \\
\text{C} & -2.84996317932510 & -1.62478752885290 & 0.1026054337251 \\
\text{C} & 1.06518047245255 & 3.54775330635316 & 0.45269521987791 \\
\text{C} & -0.01520183289200 & 4.41792255093854 & 0.25432652689661 \\
\text{C} & -5.05391292848454 & 1.10834419251385 & -1.30619844189193 \\
\text{C} & -5.21334732815872 & 3.65289884704777 & -1.31469019762191 \\
\text{C} & -5.48078139041881 & -1.35612110858254 & -0.92125005387790 \\
\text{C} & -3.16011921868776 & -1.97862564922142 & 1.43595024531395 \\
\text{C} & -2.09707958933994 & -2.46171419209701 & -0.74763636975372 \\
\text{C} & 2.50843345714751 & 3.75524474139288 & 0.79013400610459 \\
\text{C} & -2.72534977447499 & -3.22580037959075 & 1.89170995258054 \\
\text{C} & -3.87269198643300 & -0.99528915079499 & 2.35430843392834 \\
\text{C} & -1.69137241396016 & -3.70141822924633 & -0.24119356646250 \\
\text{C} & -1.71616332179079 & -2.00374770604964 & -2.14576652359796 \\
\text{C} & 4.35331849328183 & 2.33405485767923 & 1.36666270642547 \\
\text{C} & 4.49646233482740 & -0.27863689672058 & 0.92303537313738 \\
\text{C} & 2.86768743224678 & -1.57942858047562 & -0.2116197577357 \\
\text{C} & -2.00916782633120 & -4.08669797390663 & 1.06038496459197 \\
\text{C} & -2.85925722524278 & 0.01546233538393 & 2.92026330593787
\end{array}
\]
B) (calculation of XAS spectra)

The pre-edges of the XAS spectra were calculated using time-dependent density functional theory (TDDFT) using previously established protocol (Figure S12).\(^\text{11}\) For DFT calculations, complexes \(1^K\) and \(2'\) were optimized using the BP86\(^\text{12}\) functional in combination with the def2-TZVP basic set. The D3 method of Grimme was used to model dispersion forces.\(^\text{13}\) X-ray absorption spectra were calculated within the Tamm-Dancoff approximation to TDDFT where only the 1s donor orbitals of Ni were included in the donor space when solving the response equations. The B3LYP functional was used for TDDFT calculation.\(^\text{14}\) The calculated X-ray energies were shifted by +180 eV to align the theory with experiment. The X-ray intensities where computed as the sum of electric dipole, magnetic dipole and electric quadrupole contributions to the oscillator strength.
Figure S40: Comparison of experimental (solid) and calculated (dashed) Ni K-edge pre-edge XAS of complexes 1^K and $2'$. The structural models show representative difference densities for transitions contributing to the pre-edge features. The sticks show the individual transitions.

C) (reaction pathway calculations)

The initial structures for optimization were derived from extensive constrained scans (on the singlet, broken-symmetry and triplet PES) of the complexes $1'$ and $3'$ using the same functional as in all other optimisations (BP86) but a smaller basis set (def2-SVP). The scans followed the decrease of the distance between the two leaving hydrogen atoms, as an approximation to the reaction coordinate. The final energies and structures for the minima (MIN1, MIN2) were obtained via optimisations at the BP86-D3/def2-SVP(CPCM(THF)) level of theory. The final energies and structures for the first transition state (TS1) were obtained by employing the nudged elastic band method integrated in ORCA (using the keyword NEB-TS). The final energies and structures for the second transition state (TS2*) is an approximation, obtained by fixing the distance between the leaving hydrogen to the equilibrium distance of free hydrogen at this level of theory (0.767 Å). Scans at smaller H-H distances confirm an earlier crossover to the broken-symmetry state of $3'$ (before MIN2), comparing to $1'$ (r(H-H) > 1.2 Å).
Coordinates for DFT calculations, 1'(MIN1):

Atom	X	Y	Z
Ni	-0.69621238202907	17.16010453535381	18.89397449819229
Ni	-1.42169206562480	15.5837444937835	15.31783284361861
C	-3.09269974375762	18.11900895871219	17.97378024564606
C	-3.94926769436863	18.2532263133880	16.8594577844568
H	-4.87078320166480	18.84183747690109	16.7839922456768
C	-3.35062443359426	17.44816868982311	15.8632119226326
C	-3.66235443439431	17.10956341968354	14.43930327872207
H	-4.69294028759002	16.68952940829010	14.3507872370629
H	-3.6689665436790	18.03650501270912	13.81617770608684
C	-2.69361878366846	15.70137022572623	12.71817086148050
C	-3.7489922375187	16.2152066204904	11.76053345899838
H	-4.77163367303046	15.94887040936036	12.1307588299614
H	-3.63755284690189	15.76461016017633	10.75708409112695
C	-0.97905814268659	14.73151876215628	12.2443909176524
C	-1.85733742767170	14.44420257153841	11.18715455896800
H	-2.87466374822321	14.05262957084779	13.0026729683813
C	0.03372116305799	12.95825126420683	12.30377060902596
H	1.12167324285006	13.16884937699263	12.42876127490919
H	-0.2014869131254	12.94807313878503	11.2235732668753
H	-0.15823803818401	11.98128495211252	12.7386629443804
C	0.35065818028804	13.43549102806618	15.01177086172289
C	-0.13256011632266	12.20803299588973	15.54736168603370
C	0.76081778239077	11.37960568285710	16.25291735719109
H	0.39719791737585	10.43273016910066	16.67971849841841
C	0.21019553243920	11.75352219966998	16.43836010295744
H	2.78472143123094	11.1010031196561	17.0040553896023
C	2.56307750387128	12.9668802972870	15.9068728969770
C	3.60981116467496	13.26428600361713	16.06651622152352
C	1.71063952449590	13.81436244942137	15.17389926924204
C	2.20681154100389	15.13950345147229	14.61059102379217
H	1.55704673942023	15.3757044982407	13.74076346877796
C	3.66039186682960	15.08763320496991	14.11659788201184
H	3.93344515993778	16.04437961071741	13.62383642493356
H	3.82276956783042	14.26512789678747	13.38831284988689
H	4.37170421206661	14.94252798575036	14.95667986756778
C	2.00767352394671	16.25624279881886	15.6519736781430
H	2.63678141534931	16.08175506259075	16.5407364533162
H	0.95099808109841	16.28015989086065	15.99165112078921
C	2.77119047329995	17.24772966678667	15.22763560057276
C	-1.61379339346826	11.86516014688986	15.43376259772322
H -1.98400794972582 12.33157968526627 14.49742359735415
C -2.37968741925479 12.5351856589656 16.59115297962873
H -3.47795693692970 12.42162028161188 16.46597099827665
H -2.1283208483640 13.62017304191580 16.62572607833564
H -2.08744562892234 12.08496087475174 17.56249355263631
C -1.90471453258104 10.36049813417155 15.35418676046912
H -1.33178711369510 9.87405311934090 14.53732162614863
H -2.98450361946665 10.18801400512119 15.16465227556124
H -1.65397356369878 9.83700565455839 16.30100067426347
C -3.08258402527355 18.6406743510121 19.37790048429661
H -3.11259702230891 19.75998450743526 19.38245031404871
H -4.0031761101744 18.32299709311098 19.91473273726464
C -1.64081142695339 18.44027396729831 21.31727067420814
C -2.65029477576875 19.25369623981533 22.10154915532292
H -2.80588668142880 20.25217332937482 21.6391638478050
H -2.32216487819038 19.40593407491294 23.14618940264420
H -3.6455612330994 18.7593409969763 22.11416928628222
C -0.45449981601385 18.0214902907843 21.97966012451202
H -0.36319270444695 18.28471018447971 23.04014351274171
C 0.64979309407123 17.35666182359384 21.39689227654477
C 1.85681693373333 17.09306086505294 22.27739231534446
H 2.13478614450141 16.01905789296039 22.26580457257902
H 1.66095070022593 17.4004650880321 23.3215330658072
H 2.74835362949974 17.64213771937935 21.90952740712262
C 1.92959743322589 16.45991271911845 19.59008672064824
C 2.17693424630295 15.06021748621373 19.56152476634178
C 3.39271221655914 14.60304069015361 19.01771430320284
H 3.58673672398160 13.5210427690172 18.96854258597686
C 4.36024169332307 15.50076568506224 18.5417941626930
H 5.30697884951047 15.12292065438922 18.12455276047627
C 4.11302897308521 16.88135875137652 18.59567585463174
H 4.87139716472344 17.5830522026584 18.21604751324179
C 2.90297973592309 17.38226718401998 19.1130187220128
C 2.58859111088846 18.8745047057897 19.0950282185682
H 1.89493013461933 19.06966514403547 19.93973292224725
C 1.81875729196888 19.22470945214491 17.80561213275926
H 2.45724768049548 19.05801159285318 16.91247294458054
H 1.48968239831604 20.28531177308119 17.81163324069653
H 0.92248358623496 18.5703860895848 17.71682167143437
C 3.8183821097484 19.77259042689641 19.28156251885004
H 4.3924519015843 19.50036677601860 20.19273556829564
H 3.50898483033444 20.83413489022549 19.3766382947068
C 4.51159794166896 19.71311349797553 18.41512003137534
C 1.11847221085617 14.09023571243368 20.06969275627358
Coordinates for DFT calculations, 1'(TS1):

Ni -0.90795931242336 1.44785178229359 1.69125607287037
Ni -1.47646332842390 0.09294579748850 -1.8933233218668
C -3.28897293457901 2.53276018858770 0.77198528185814
C -4.13900354601120 2.67352809150835 -0.34977592164934
H -5.06048523017849 3.26227685407573 -0.4263670606298
C -3.53400588991306 1.87623142563406 -1.34878330376821
C -3.82772859722161 1.52339123779044 -2.78064945076782
H -4.84477273250014 1.07184561765682 -2.87212836801412
H -3.85668588735640 2.44458082503858 -3.41114925045122
C -2.80636976089653 0.12667569857815 -4.49329261779426
C -3.87595281986731 0.59846507619379 -5.45756276934788
H -4.89130733647207 0.33852564201250 -5.08714795959728
H -3.74820518065658 0.14487714598666 -6.4575186229128
H -3.86018948166360 1.70397455334887 -5.5710754623442
C -1.85174740825967 -0.82065339811650 -4.95846659631967
H -1.94652061486184 -1.12849932125921 -6.00990759943151
C -0.83940325021411 -1.46582719375429 -4.20776896732004
C -0.04535487003560 -2.56236054691067 -4.8930838412915
H 1.04744543463982 -2.40570714752913 -4.77843227906975
H -0.28980144593298 -2.61552583691872 -5.9704788999812
H -0.26247249433489 -3.55198376788289 -4.4374119349924
C 0.32641754138975 -2.04598195215022 -2.19971235525690
C -0.19505250457495 -3.23146021763828 -1.60895706970800
C 0.67601578641609 -4.06324407412199 -0.88048958509196
H 0.28238545725682 -4.97679158029499 -0.40886297024642
C 2.03185122379770 -3.73488433257199 -0.7306342504577
H 2.69839071545909 -4.38845033947854 -0.1460926628436
C 2.53387531027102 -2.56681578440747 1.32438997007469
H 3.59597829217002 -0.30535685703668 -3.6693097884275
C 3.73081988245200 -0.52882351326272 -3.09702867667498
H 4.03506059903559 0.37152656871852 -3.67093483077789
C 3.95809874285102 -1.42375133471305 -3.71386760800729
H 4.37172189871045 -0.56838583758350 -2.1921948815982
C 1.9611133515305 0.77569053224404 -1.83604809815740
H 2.50030866450165 0.69561189204780 -0.87231130513234
H 0.8729850525940 0.83380056619003 -1.5935467324744
C 2.27827075669503 1.71456967774396 -2.33910318223622
C -1.68824262022058 -3.52965044282607 -1.69495965176666
H -2.06999112276674 -3.00258955644617 -2.59325886213497
C -2.4135313100777 -2.91349035070452 -0.48146564716928
C -3.5162197766747 -2.98748361386414 -0.59597173219220
H -2.1359402067871 -1.84091568052558 -0.37723817587552
H -2.12286273631556 -3.43648978549049 0.45278928961855
C -2.01359413975961 -5.02192121954621 -1.85297752058897
H -1.47720023832297 -5.46782899212535 -2.71694177425567
C -3.10240103440546 -5.16349591175689 -2.01634581293303
H -1.74175253448461 -5.6071354313919 -0.94903657701322
C -3.25764759646356 3.05560018838803 2.18137402184968
C -3.27626050250198 4.17183880964701 2.18674017363734
H -4.17732337430550 2.74325579920429 2.73335180395495
C -1.77964142110729 2.84024789540727 4.1034166801257
C -2.75739808890919 3.68166121616014 4.89944929269695
H -2.9069095550843 4.67672203369560 4.42795324145912
H -2.40482989542229 3.84063925594520 5.93506522609141
H -3.75995465278653 3.2039034702901 4.93931683923220
C -0.58973626101911 2.40144185748642 4.74824070290510
H -0.47162512759253 2.69291986923664 5.80158634588854
C 0.49143063061540 1.69092116122339 4.17399964498600
C 1.72232832066467 1.47018092171081 5.03379480665952
C 2.02111856729612 0.40199751261992 5.04699085076575
H 1.54690037850357 1.80576236675882 6.07287053435961
H 2.59424825979460 2.02546348287969 4.62867139956983
C 1.72651147835324 0.72078131897852 2.36778208705591
C 2.00398637741312 -0.67408316639533 2.38940241419978
C 3.20213943111661 -1.12888194792787 1.80692392496472
H 3.41971852224853 -2.20692321800223 1.79574669309332
Coordinates for DFT calculations, 1'(MIN2):

Ni -0.7804050288936 17.05104742333115 18.89831740125684
NI -1.31878356425322 15.72416056534131 15.31499560676285
C -3.18441268918856 18.0896977867493 17.9971490468256
C -4.04703435495690 18.2085572954349 16.8812895792627
H -4.98817923530322 18.76547870985753 16.81519483181395
C -3.42130139983205 17.43803023429364 15.8735213500059
C -3.71172925383116 17.07309118399843 14.4497225119860
H -4.71761070488832 16.59594589338328 14.35973707869923
H -3.76610693449759 17.9899069329616 13.80954134437125
C -2.66622656698524 15.69411322789496 12.73554097834418
C -3.7484825423363 16.14042839552278 11.77299449728420
H -4.75268575261759 15.86039065764337 12.14668938678773
H -3.61400662536523 15.68620508810111 10.7739865658004
H -3.75652639557767 17.24567211295138 11.65592666721019
C -1.69820802960574 14.75972935015577 12.27357717047711
H -1.79229970961958 14.43852849483691 11.22606668016818
C -0.67912367270582 14.13560513502664 13.03189150408596
C 0.10958327217899 13.021030866766 12.37021249898140
H 0.13025829548220 12.290124989094 11.25797783311191
C 0.47112133781432 13.59466588257797 15.0569087009027
C 0.77806588383607 11.59008053551734 16.40583637966465
H 0.36669049868112 10.69093686036218 16.8901343964177
C 2.14174188027351 11.88999099018535 16.54657304690964
H 2.79528037500695 11.22938659001833 17.13780413519504
H 2.66875016142013 13.03690529233615 15.93306492708607
C 3.73744771778929 12.26691891358875 16.0486942869122
C 1.85742877249519 13.89420076583800 15.1668820315642
C 2.42335472754721 15.12869276712749 14.47379503075637
H 1.87340511715248 15.22618466325670 13.5116680125644
C 3.92010749710121 15.02179472778078 14.15172651484764
C 4.2435292055770 15.89006109792791 13.54075245785786
C 4.16091410469215 14.0956458680903 13.5884862971300
C 4.53403993633732 15.02726953307803 15.07652034343026
C 2.12775113556882 16.39531525829429 15.29604249829368
H 2.65019750225909 16.35980280913350 16.27137184336955
H 1.04135741823783 16.4696524329578 15.51310192512013
H 2.4574858841020 17.30686972122732 14.75232499855918
C -1.57586259103208 12.1656642386016 15.58221287292420
H -1.93712960909244 12.66546839440532 14.66033565023021
C -2.29837529066128 12.84680405970411 16.7618888265377
H -3.40059799552996 12.81022428890194 16.62839728462296
H -1.98692022142298 13.91289837064800 16.83623215315219
H -2.04420033625272 12.3414932592013 17.71758291559398
C -1.93853184786212 10.67762694336128 15.48061280697553
H -1.40844675798356 10.18394701433100 14.63955640890324
H -3.02971695447757 10.55813043251772 15.3159893655401
H -1.68893804004083 10.12230353304277 16.40944995190127
C -3.15559312456219 18.5995487096000 19.41092966067381
H -3.20324593265754 19.71480421128631 19.42837931772965
H -4.06147171671139 18.25739682479560 19.96789628109596
C	-1.65407046912281	18.41070631282528	21.31734141215704
C	-2.64258288131046	19.22827652731186	22.12500396530968
H	-2.81905614125967	20.22104177761259	21.65805294966461
H	-2.28300514755967	19.39230565549987	23.15743630858882
H	-3.63374248915436	18.72825114565522	22.17399893715507
C	-0.45005618914744	17.99519846209199	21.9499142835009
H	-0.3261465219343	18.28875716892530	23.00192389971497

C	0.63481103774317	17.30028860066647	21.36422946010101
C	1.87697196379898	17.09189713367412	22.21068311687979
H	2.18238326614148	16.02553177315153	22.22636095651524
H	1.71172652971996	17.43188109170008	23.24995926359265
H	2.74116989645521	17.64983016223151	21.79254179059638
C	1.85106497346313	16.32733840252476	19.54737193386110
C	2.12937191217694	14.93277010988302	19.59049572705186
C	3.32349662891555	14.46834770136974	19.0083500049920
C	3.54256964530681	13.39077554337887	19.0158600174154
H	2.42320531681581	15.35391244344956	18.42711459374795
H	5.17292303596325	14.96949847901276	17.9792042338395
C	3.97209337778693	16.73048209312459	18.41851197682290
H	4.69548370214803	17.42322556125118	17.96145614730344
C	2.78207699273542	17.23888517160721	18.97270439901584
C	2.43952311480775	18.72307487216256	18.89751367267241
H	1.74576551105292	18.93506288048978	19.73719691595265
C	1.65911486368369	19.01601530676969	17.60018627568526
H	2.30735455592374	18.87087895087880	16.71145325066333
H	1.27828921577151	20.05917945877317	17.59158136124347
H	0.79338071373293	18.32124027584811	17.51573481151979
C	3.65465850796634	19.64756729734654	19.0478370202228
H	4.22907363193135	19.42180980867030	19.97135069073838
C	3.32976106848678	20.70780236693150	19.09753061089000
H	4.3511181372891	19.56182047977801	18.1865417198113
C	1.1290838953414	13.97865548490313	20.23279103160496
H	0.69280008135035	14.51611180377863	21.10308703528381
C	-0.02086102436201	13.67889394969535	19.25602974812253
H	-0.48232792654371	14.62522130549280	18.90496381584687
H	-0.79841424485765	13.04661583718967	19.73567013044405
H	0.36062143073249	13.1544952113405	18.35941862509524
C	1.76093933280821	12.67793157556664	20.74899707293514
H	1.01011137982064	12.08661039206692	21.3135519026038
H	2.62541099186862	12.87086211338905	21.41823607439958
H	2.11284737386632	12.04145832387389	19.90964864268771
N	-2.12525850613826	17.70122644199698	17.65994014928235
N	-2.26936292706666	16.90399695334898	16.36958346719058
N	-2.65041827169602	16.16175687710646	13.98602460790212
Coordinates for DFT calculations, 1'(TS2):

Element	X	Y	Z
Ni	-0.7805149532896	16.99493032299730	18.91350279738419
Ni	-1.27567844633600	15.74189573008856	15.30659282351530
C	-3.16841675562565	18.05312194550365	18.00931133306070
C	-4.01153869570598	18.20630150807895	16.88131604477917
H	-4.94997507769614	18.76885521714115	16.81309911844594
C	-3.36987011872246	17.45967569222006	15.86341912585720
C	-3.63215915426830	17.12607945224629	14.42218296821200
H	-4.64275016037691	16.66518687478595	14.30419605760280
C	-3.65910985920564	18.05482107293268	13.80177556004624
C	-2.58338600495927	15.74039362544203	12.87208237639032
H	-3.64589257768607	16.20667358758832	11.74516099416458
H	-4.66439260056512	15.94145509172047	12.10339709022720
H	-3.50478979192007	15.75289152884436	10.74668196459007
H	-3.63539381460050	17.31226623235280	11.63103573984197
C	-1.62985168716460	14.78619925478787	12.27053781624288
H	-1.71735017151141	14.46541024210551	11.2222387541368
C	-0.63678480227370	14.14091113672665	13.04926379911997
C	0.13659270124086	13.00382649645854	12.40285045169120
H	1.23152317653422	13.12435661525573	12.54068479036726
H	-0.08482644875238	12.93202029815095	11.32281360044090
H	-0.12594148974736	12.0382865481806	12.87666857120785
C	0.46979942252546	13.60775412070800	15.09791230059775
C	-0.09800219993186	12.44753498800497	15.70444285478923
C	0.74095508887969	11.59289780131843	16.44183726788566
H	0.31707991602804	10.69486361060133	16.91722314355430
C	2.10910920483616	11.87217332569202	16.58933874364602
H	2.75181019690400	11.19511807943270	17.17386521851822
C	2.65486758841939	13.01703410688816	15.98724252571115
H	3.72574270146040	13.23044767863203	16.10981600334864
C	1.86106155310618	13.8895569585418	15.22105841681980
C	2.44760376037107	15.11538649120899	14.52824454639358
H	1.96678669130221	15.16972855200067	15.32572779727535
C	3.96631749515417	15.04201303409575	14.32186331279891
H	4.31135689523913	15.90270102749916	13.71206395800554
H	4.27533856146711	14.10914018732969	13.80552088698237
C	4.50415675075198	15.09050291704822	15.29142031336969
C	2.06662237109782	16.40021128853354	15.28356953116001
H	2.49297009534144	16.39206265797779	16.30418864851504
H	0.96158066470208	16.47218023814970	15.39004526942309
H	2.44006474320146	17.30199004075050	14.75159052850016
C	-1.60050762148821	12.2055068009846	15.60297492060050
C	-1.93203674217360	12.46313458110015	14.63881515163396
C	-2.33649527403003	12.98156410616424	16.71382142104200
C	-3.43574258966959	12.95565990425689	15.55732410270790
C	-2.01081897362727	14.04763001879651	16.71742905390850
C	-2.11205123061094	12.54692964712337	17.70900091253923
C	-1.99363794887945	10.72258762360011	15.60399473037975
C	-1.45233523011848	10.15371556357482	14.81985098561581
H	-3.08245051066140	10.61325761733657	15.41797070429846
C	-1.78195293957470	10.23801516185277	15.58078265478483
C	-3.15236493445903	18.52628989531552	14.93511161627932
C	-3.21079457802343	19.64037218820405	19.48063124530487
C	-4.05809866310086	18.16222162560099	19.97910064322020
C	-1.64312627940408	18.32628321613855	21.33560282616447
C	-2.63918524135753	19.12831659153754	22.15438248098208
C	-2.82429803802719	20.12512546132742	21.69243851281800
C	-2.27832647877307	19.28395224775250	23.18782578268688
C	-3.62677418296906	18.62083199361484	22.20034173989249
C	-0.43408298008429	17.92080767590130	21.95816050549649
C	-0.30482312491688	18.20992412296182	23.01083131306259
C	0.65428875673070	17.24694137287523	21.3554082299137
C	1.91612332053143	17.05781652828238	22.17611773101393
C	2.24070749376701	15.99679729602786	22.18095761306163
C	1.76660199315872	17.39080726634324	23.22010379197047
C	2.76200875362254	17.63300244162116	21.74313245949538
C	1.83831593233985	16.30702520645201	19.49796329513612
C	1.24517477913520	14.91607554411948	19.53307592302612
C	3.34415764740763	14.47914773685209	18.94155674524860
C	3.58971676157007	13.40760666297085	18.94896756342641
C	2.41342658071056	15.38621774510116	18.35535590125042
C	5.17923600371797	15.02285865061280	17.90715910545983
C	3.93912174818118	16.75739863817995	18.34735315135000
C	4.64456394195862	17.46462234571545	17.88471812112993
C	2.74481410933486	17.24031952304363	18.91284759445534
C	2.36716813472536	18.7175562664355	18.85455698324748
C	1.72089773145732	18.91717940257033	19.73476892143978
C	1.50266419268359	18.99739078527250	17.60823404375268
C	2.09523123355613	18.86437859109872	16.67976755821543
C	1.10272614682618	20.0330492825621	17.62600367526777
C	0.64034260601471	18.29127046728055	17.5764467623455
C	3.56887869877856	19.66811896118855	18.93092324946576
H 4.19982098673480 19.4568498511449 19.81997241571059
H 3.2248084368756 20.7213726248623 18.99675939487554
H 4.21523930029427 19.59399303314267 18.03050077690567
C 1.17209728924849 13.94803341738952 20.1965198776553
H 0.7917796929835 14.45858373155854 21.1090845992736
C -0.03737112232797 13.69190356753851 19.2810147276678
C -0.52020672318694 14.65307836893222 19.00402678920302
H -0.78762011446322 13.04379387797906 19.78318909363789
H 0.28273791428715 13.20378856508977 18.3425634774242
C 1.81722701085930 12.62508611383691 20.63159021673016
H 1.08790950036972 12.0396143482009 21.20305154634599
H 2.70920333001737 12.7883960945898 21.2718708265423
H 2.13251039573510 12.0238076896569 19.75292186437537
N -2.10975829974832 17.27009867801267 17.6691451204902
N -2.23416633347679 16.91007708249324 16.36553375977779
N -2.57415033879149 16.20844985422402 13.97130546526669
N -0.37306791230629 14.45903158639527 13.302948264017
N -1.91593541036278 18.03108799734676 20.0614033634913
N 0.63557248647426 16.7910637910058 20.0845760217535
H -0.2116190037491 16.06419762205336 17.5149796597045
H -0.33826562351828 15.76405256142818 16.8206840358646

Coordinates for DFT calculations, 3'(MIN1):
N -2.21208605727093 16.86930992425225 16.36746904513794
C -3.32643555351699 17.45895073832162 15.85377178396065
C -3.89173247798888 18.31440778272957 16.82243726164024
C -3.03451926532766 18.18606426124338 17.9352186847016
N -2.03478736165218 17.3116234387431 17.63572720195192
C -2.9894850314548 18.76899894373416 19.31473176085923
N -1.84748964825738 18.15329282472072 20.0255334776102
C -1.71111115692353 18.3365734660637 21.3019958067304
C -0.57564291022259 17.69327427713019 22.05472992439126
C 0.65489950454242 17.16993856531107 21.36370107037004
N 0.67282899951239 16.86342503142632 20.09234837301300
C 1.91855499028629 16.42789705260240 19.50185394668484
C 2.25668767538356 15.04930503087343 19.5168696848020
C 3.46804198932610 14.67263718693186 18.9065159210992
C 4.32177454185705 15.62555423765786 18.33047436533871
C 3.97162012514130 16.9826250226710 18.34842772348717
C 2.76356675829398 17.41256406302806 18.93210358430861
C -3.66696837952801 17.07827010879111 14.4463898202455
N -2.61887826699893 16.15718629420281 13.961482973247
C -2.59664745861838 15.80864901776911 12.71237539894930
C -1.53415431653274 14.88527680033314 12.18044770828772
Coordinates for DFT calculations, 3'(TS1):

H	Coordinate	
0.92289554537859	16.3209841580249	15.57036915732399
2.34564453585319	17.15591903596426	14.82664669575252
-2.08279397974769	12.51692747147126	14.70678464750920
-3.52762463259459	12.73219330873304	16.7005945226021
-2.12374889839185	13.8591107131372	16.8286349102001
-2.14109147598309	12.3384692013338	17.7809203858036
-1.57437650319371	10.03425611194387	14.87997588951452
-3.19368660137665	10.46235057719744	15.43730397970004
-1.86834111421844	10.0531801743469	16.5593177928358
-2.85773296453947	19.87415064411988	19.2899528034527
-3.94217818316659	18.58341861603172	19.85930449695396
-2.65076249310797	20.21609534483181	21.78403936498116
-2.42975216515560	19.1237959380368	23.19403268298202
-3.71635765276027	18.8002762917677	21.97611115562954
-1.01495225745101	16.84944740272742	22.6369724366830
2.62461493369904	16.36335580790271	21.8373600075698
1.56321291152615	16.70665356634564	23.2626621240687
2.32993453388896	18.04087789914892	22.37367624629472
3.75795056825274	13.61264995878365	18.89540052139446
5.26866292123573	15.30572061593103	17.86972777480408
4.64591733547260	17.72392531720707	17.89520958360293
1.62189697408285	19.04765277596956	17.9115263121264
2.2475140390046	19.99863298118627	16.6848148575753
1.14836733234912	20.16862094556522	17.549113537384
0.7078140961176	18.42137215663862	17.47439486331433
4.07114706151085	19.65571846650460	19.9745000986613
3.10747129406918	20.90072519121591	19.11102248900005
4.19807474466751	19.82792301141471	18.19235172705045
0.94262143296152	14.49103083092182	21.10336017498792
-0.39405927810408	14.67450650915439	18.97271743218605
-0.6054629515383	13.06681635007879	19.77166580104821
0.44827277234304	13.24980611064311	18.32547134722393
1.34158821005457	12.07124057368357	21.1291774618044
2.92721422622870	12.91325635612582	21.2033619502592
2.37055857967119	12.15884189160723	19.67163523454241
-0.03243965869543	16.26512914720308	17.88721812921332
-0.50984597135208	15.36000811828458	16.4864077999294
-2.0207250010519	14.18129512408097	11.46633274787706
-0.24155017357789	18.40117466838243	22.84282287837634

Coordinates for DFT calculations, 3'(MIN2):

51
N	-2.22422920358878	16.88704068839452	16.37546420846448
C	-3.36597996866150	17.43036521378499	15.87500007577990
C	-4.01815836025646	18.15844069713914	16.9583656992604
C	-3.18107571760318	17.99960400994685	18.0239501360626
N	-2.11569590775697	17.22761549893305	17.68240549883621
C	-3.18984107769377	18.4698903442162	19.45001451326340
C	-1.9605945954196	17.9417263088330	20.10639652774714
C	-1.79730381799116	18.11642572899826	21.38035700261799
C	-0.57052621466934	17.5884219523279	22.0810900038953
C	0.66765849620291	17.1493960232248	21.34319327233072
C	0.64361725365428	16.77597130009613	20.08931482765301
C	1.8678531775039	16.3478667917178	19.4545496490336
C	2.27683423325144	14.99362318488438	19.58631570928393
C	3.45654809288909	14.60499382691200	18.92594565300415
C	4.21502377517546	15.5271359887720	18.18897219452370
C	3.79658238587857	16.86109402353341	18.0923874554417
C	2.61257667741847	17.2991239245542	18.71491708424321
C	-3.6306521994570	17.120115340023212	14.4319309997229
C	-2.53000140432763	16.25301868736952	13.94521961792658
C	-2.43824928918147	15.9753692229484	12.68195907798393
C	-1.31816595364925	15.1061453940732	12.16229677703200
C	-0.52382514461325	14.1975091741475	13.06411469767792
N	-0.35412166759881	14.4540138992112	14.33521784221730
C	0.43518562640591	13.55923717612307	15.14597919605911
C	-0.23592380976035	12.56132659970161	15.89423228094062
C	0.54629723829309	11.70630905585615	16.69504708988515
C	1.93920786172249	11.85011166555795	16.75882386362029
C	2.57764729961906	12.85197601102099	16.01109637058947
C	1.84664816768562	13.71795869591175	15.1768683454731
C	-1.7585322874276	12.47475817739199	15.8974436181581
C	-2.28111627038537	11.03704723038184	15.75580355177523
C	2.51987577946833	14.79733888521835	14.33224260696360
C	2.24648333795936	16.19601296745132	14.91500152653837
C	1.44747805384157	14.01551226351532	20.4148686024096
C	2.20868963082881	12.74367427679573	20.81132532310069
C	2.1043883052604	18.7260725601700	18.53762654906814
C	3.21166186359135	19.78242539669473	18.66618159771472
Ni	-0.80342274910260	16.90850628211550	18.92430869679286
Ni	-1.21912131635548	15.7771097807280	15.31543533715331
C	-3.39802338569784	16.51331180009229	11.65615386588513
C	0.05490251110258	12.98710639409948	12.38607873216869
C	4.02458756976736	14.57527930936327	14.1338267182584
C	-2.32108840714981	13.16887652203593	17.15566282002727
C	-2.80347345394840	18.82357178764956	22.24716105388103
H	0.86173823546912	19.84586718491402	17.1138239984396
	0.5650829388237	18.06907681744333	17.120185609286
H	3.76293476356965	19.67886606095442	16.623672738801
H	2.77700575545997	20.80252941936786	18.6291431343203
H	3.9492293591829	19.7115487776529	17.83917642259151
H	1.17468722580298	14.54035282276358	21.3574662444904
H	-0.4024798920037	14.57632089999630	19.36507117735933
H	-0.5311076293088	13.05970149377703	20.3301243588031
H	0.35779660688553	13.08223140298412	18.7678459178227
H	1.17468722580298	14.54035282276358	21.3574662444904
H	-0.4024798920037	14.57632089999630	19.36507117735933
H	-0.5311076293088	13.05970149377703	20.3301243588031

Coordinates for DFT calculations, 3'(TS2):

N	-2.20953696769681	16.89446048562055	16.37018937590512
C	-3.35968090874806	17.42010796980007	15.8765882351788
C	-4.02125129671240	18.1322657499638	16.90336671769335
C	-3.17755681997728	17.97950951767779	18.02890530012463
N	-2.10308550302410	17.22786588591361	17.67932323360493
C	-3.18265795962823	18.43488945768539	19.45728659079655
N	-1.94768797791392	19.72408367097241	20.10143474106020
C	-1.76930599169959	18.10520139808615	21.37309713992850
C	-0.52875521508531	17.60048292929821	22.06507475250617
C	0.70008787986685	17.15580128809592	21.31794332925988
N	0.66318405475318	16.7880680699142	20.06265617544949
C	1.87157931670386	16.35043981812912	19.4158367606712
C	2.25636675070802	14.98654416873429	19.53292310738445
C	3.44256623181326	14.58819870030566	18.89125073706833
C	4.22896593360389	15.50875946705849	18.18166939691947
C	3.83267663563165	16.85092986884878	18.09247624762929
C	2.64739457591876	17.30183702793538	18.7047957129941
C	-3.62089762060548	17.1042239946104	14.43314893936956
N	-2.51921714256810	16.23578161617933	13.95339313616659
C	-2.42457827099858	15.95256278543181	12.69174363869380
C	-1.30349000004840	15.08160900942844	12.17699068560177
C	-0.5123391381651	14.17628863904770	13.0847992322236
N	-0.36072473911678	14.43675139019103	14.35772804637394
C	0.42560137114845	13.55749226579585	15.18001682242262
C	-0.23489125570810	12.52173453231303	15.8900273608648
C	0.55549725615554	11.6597895781635	16.67421682715132

54
C	1.94503884764182	11.83014220602695	16.75993430903037
C	2.57166155998688	12.8689521870305	16.0538611741007
C	1.8336171953334	13.74493171819904	15.23715684120029
C	-1.75532023720908	12.4094618003600	15.85984715713105
C	-2.26422261572533	10.96166185038152	15.879342991008
C	2.49449351139663	14.85342567593980	14.42073556347804
C	2.15173835230234	16.24071639220985	14.99302964685056
C	1.3964636488457	14.8724799047726	20.3336386808932
C	-1.75532023720908	12.4094618003600	15.85984715713105
C	-2.26422261572533	10.96166185038152	15.879342991008
C	2.49449351139663	14.85342567593980	14.42073556347804
C	2.15173835230234	16.24071639220985	14.99302964685056
C	1.3964636488457	14.8724799047726	20.3336386808932

Ni -0.78048815465443 16.91768253460514 18.9141074314977

Ni -1.22099255858333 15.75908875357631 15.32070671664514

C -3.38170452831382 12.9739387951573 12.41497677995559

C 0.08919854836381 16.48724799047726 11.66092529173630

C 4.01239025797423 16.9011675475973 14.27418752098179

C -2.36364109821451 13.23992410955747 17.00933695743600

C -2.7711262748936 18.80227417181390 22.24724877054902

C 1.96574690034005 17.17227712289781 22.12863542145851

C 1.30092096278979 18.8813669880591 17.28707419376243

C 0.08506352171973 13.7079587249507 19.59247192708778

H -4.97081276368736 18.67438186873644 16.84223995647756

H -4.59210462794742 16.57781898282253 14.29926539482969

H -3.68216394534268 18.03057865440703 13.81935997271856

H -4.39936327820899 16.0750542546086 11.83298172690911

H -3.06976906308596 16.22010662508852 10.63529289219313

H -3.46973261026068 17.59114273191010 11.73430019482640

H -0.57575382088580 15.76335346558354 11.66899043587010

H 0.84496307373271 12.47437601844147 13.04577549338238

H 0.54271257262875 13.26113516903428 11.44440866723800

H -0.71572297014244 12.24213810509615 12.1849097426439

H 0.07212445457480 10.84205915737849 17.22935406750350

H 2.54649304825841 11.14634891606100 17.37850019947143

H 3.66089651429320 12.9904941174404 16.12824383921511

H 2.05894173637209 14.80138581033766 13.39738093422317

H 4.14500703836870 15.47409871957361 13.6016266803646

H 4.28638641972106 13.70186611434474 13.85140346399997

H 4.52642843821650 14.79835571261201 15.25151560338385

H 2.60208431156761 16.36618074512251 15.99558276811923

H 1.0538098912504 16.36790250291112 15.11334085947590

H 2.52985699642170 17.04795054334883 14.33290472972553

H -2.10279442178292 12.87196072104336 14.91315693621667

H -3.4651795610749 13.31748803179630 16.90662782119870

H -1.94366170706834 14.26843202562031 17.00674068571118
H	-2.13175023064211	12.77991231937256	17.99125196631820
H	-1.80497079587383	10.35822375771316	15.06990493161800
H	-3.36506332890486	10.94061509908612	15.74399280992671
H	-2.04558927326762	10.45991151676797	16.84523026758945
H	-3.21150495220686	19.54456313221720	19.534131777050
H	-4.08211251568897	18.06327950553310	19.9754513627276
H	-2.86404421736339	19.87038286412628	21.95304644717006
H	-2.49272150204352	18.75836370950406	23.31434100938414
H	-3.78549970285202	18.3565576071687	22.12712009379123
H	-0.84599188870116	16.74832306771655	22.71700792213099
H	2.76499436678783	16.55981055819382	21.67498072049970
H	1.7696006292990	16.82544061435165	23.16275069617495
H	2.33550105120707	18.21865575050830	22.20653827606451
H	3.76811109924866	13.54147325466600	18.96063521785936
H	5.16157870816360	15.17650301728304	17.70121198036796
H	4.45784602412101	17.56455955805714	17.93580704145067
H	1.50063129755866	18.9562351931161	19.416325899729
H	1.91301382043290	18.73910672322748	16.3733797709721
H	0.82527172582449	19.88239554681634	17.24034225098653
H	0.49651904124042	18.11444606048934	17.28578359902111
H	3.93244641966380	19.66264149073192	19.4905642786394
H	2.88605941534991	20.80173241822894	18.57930615640536
H	3.96187891160975	19.68561902709416	17.695753024958
H	1.12985403206351	14.52988179536095	21.28741059743875
H	-0.43368619809108	14.64436374683042	19.29291727490173
H	-0.60440439909738	13.11065141963660	20.22371016043257
H	0.29324143259795	13.14251345924349	18.66405993549253
H	1.47246944950360	12.09806523993461	21.36898263264513
H	3.06849244280962	12.91161603217478	21.25871188818889
H	2.35685530465210	12.10926737054808	19.81715890693443
H	-0.19160669463883	16.0142292187287	17.52900064939363
H	-0.27531069657950	15.78412511785750	16.80213430512196
H	-1.70140028321442	14.46725947035900	11.34265793620712
H	-0.21644401956591	18.37082240734674	22.80256214399554
8. References

1. Manz, D.-H.; Duan, P.-C.; Dechert, S.; Demeshko, S.; Oswald, R., John, M.; Mata, R. A.; Meyer, F. *J. Am. Chem. Soc.* 2017, 139, 16720-16731.

2. Bill, E. *julX, Program for Simulation of Molecular Magnetic Data*, Max-Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, 2008.

3. a) Sheldrick, G. M. *Acta Cryst.* 2015, A71, 3-8; b) Sheldrick, G. M. *Acta Cryst.* 2015, C71, 3-8.

4. X-RED; STOE & CIE GmbH, Darmstadt, Germany, 2002.

5. SADABS; BRUKER AXS GmbH, Karlsruhe, Germany, 2016.

6. Neese, F. *WIREs Comput. Mol. Sci.* 2012, 2, 73–78.

7. a) Schäfer, A.; Horn, H.; Ahlrichs, R. *J. Chem. Phys.* 1992, 97, 2571–2577. b) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305.

8. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.* 2010, 132, 154104.

9. a) Yamaguchi, K.; Takahara, Y.; Fueno, T. in: V.H. Smith (Ed.) Applied Quantum Chemistry. Reidel, Dordrecht (1986), pp 155. b) Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K. *Chem. Phys. Lett.* 2000, 319, 223–230.

10. Neese, F. *J. Phys. Chem. Solids* 2004, 65, 781-785.

11. (a) George, S. D.; Petrenko, T.; Neese, F. *J. Phys. Chem. A*, 2008, 112, 12936-12943. (b) George S.D., Petrenko T, Neese F. Inorg Chimi Acta, 2008, 361, 965-972.

12. (a) Becke, A. D. *Phys. Rev. A* 1988, 38, 3098-3100, (b) Perdew, J. P. *Phys. Rev. B* 1986, 33, 8822-8824.

13. Grimme, S.; Ehrlich, S.; Goerigk, L. *J. Comput. Chem.* 2011, 32, 1456-1465.

14. Becke, A. D. *J. Chem. Phys.* 1993, 98, 1372-1377.