Periplasmic depolymerase provides insight into ABC transporter-dependent secretion of bacterial capsular polysaccharides

Sean D. Liston,a Stephen A. McMahon,b Audrey Le Bas,c Michael D. L. Suitsd James H. Naismith,a,c,d and Chris Whitfieldb,a,1

aDepartment of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; bBiomedical Sciences Research Complex, The University of St. Andrews, St. Andrews KY16 9ST, United Kingdom; cDivision of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3BN, United Kingdom; and dDepartment of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada

Edited by Joe Lutkenhaus, University of Kansas Medical Center, Kansas City, KS, and approved April 13, 2018 (received for review January 23, 2018)

Capsules are surface layers of hydrated capsular polysaccharides (CPSs) produced by many bacteria. The human pathogen Salmonella enterica serovar Typhi produces “Vi antigen” CPS, which contributes to virulence. In a conserved strategy used by bacteria with diverse CPS structures, translocation of Vi antigen to the cell surface is driven by an ATP-binding cassette (ABC) transporter. These transporters are engaged in heterooligomeric complexes proposed to form an enclosed translocation conduit to the cell surface, allowing the transporter to power the entire process. We identified Vi antigen biosynthesis genetic loci in genera of the Burkholderiales, which are paradoxically distinguished from S. Typhi by encoding VexL, a predicted pectate lyase homolog. Biochemical analyses demonstrated that VexL is an unusual metal-independent endo-lyase with an acidic pH optimum that is specific for O-acetylated Vi antigen. A 1.22-Å crystal structure of the VexL-Vi antigen complex revealed features which distinguish common secreted catabolic pectate lyases from periplasmic VexL, which participates in cell-surface assembly. VexL possesses a right-handed parallel β-superhelix, of which one face forms an electropositive glycan-binding groove with an extensive hydrogen bonding network that includes Vi antigen acetyl groups and confers substrate specificity. VexL provided a probe to interrogate conserved features of the ABC transporter-dependent export model. When introduced into S. Typhi, VexL localized to the periplasm and degraded Vi antigen. In contrast, a cytosolic derivative had no effect unless export was disrupted. These data provide evidence that CPS assembled in ABC transporter-dependent systems is actually exposed to the periplasm during envelope translocation.

Significance

Capsules are critical virulence determinants for bacterial pathogens. They are composed of capsular polysaccharides (CPSs) with diverse structures, whose assembly on the cell surface is often powered by a conserved ABC transporter. Current capsule-assembly models include a contiguous trans-envelope channel directing nascent CPSs from the transporter to the cell surface. This conserved apparatus is an attractive target for antivirulence antimicrobial development. This work describes a CPS depolymerizing lyase enzyme found in the Burkholderiales and unique structural features that define its mechanism, CPS specificity, and evolution to function in the periplasm in a noncatabolic role. The activity of this enzyme provides evidence that CPS assembled in an ABC transporter-dependent system is exposed to periplasm during translocation to the cell surface.

Author contributions: S.D.L., S.A.M., J.H.N., and C.W. designed the study; S.D.L., S.A.M., and A.L.B. performed experiments; S.D.L., S.A.M., M.D.L.S., J.H.N., and C.W. analyzed the data; and S.D.L., S.A.M., J.H.N., and C.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID code 6FI2).

1To whom correspondence may be addressed. Email: naismith@strubi.ox.ac.uk or cwhitfield@uoguelph.ca.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801336115/-/DCSupplemental.
likely recognized by the ABC transporter as an export signal (reviewed in ref. 2).

Glyco-ABC transporters are composed of two copies each of a transmembrane domain (TMD) and a nucleotide-binding domain (NBD), encoded by \(kpsM \) and \(kpsT \) in \(E. coli \), respectively. ATP binding and hydrolysis in the NBD dimer drives conformational changes in the TMD dimer that power CPS secretion across the inner membrane (reviewed in refs. 2 and 8). Translocation of CPS across the periplasm and outer membrane employs a heterooligomeric complex composed of polysaccharide copolymerase (PCP) and outer membrane polysaccharide export (OPX) proteins (reviewed in ref. 9). The current model proposes that these components form a contiguous envelope-spanning channel resembling some bacterial tripartite drug efflux pumps. In efflux pumps, an inner membrane flipase (10), or ABC transporter (11), interfaces with the outer membrane porin (ToIC) through interactions with a periplasmic adaptor protein complex. Available structure and protein interaction data (reviewed in ref. 5) drive the hypothesis that the CPS ABC transporter resides within a complex composed of the transporter, a PCP protein adaptor, and an OPX channel (Fig. 1). However, there is currently no atomic-level data for PCP or OPX proteins from ABC transporter-dependent systems, and this hypothetical export pathway has not been interrogated experimentally.

Vi antigen is a CPS produced by \(S. enterica \) serovar Typhi, the etiological agent of typhoid fever, a disease that afflicts millions each year. Vi antigen is composed of the repeating monosaccharide unit \([-4\rightarrow]-\alpha-D-GalNAcA\-\beta-D-Gal\-\alpha-(1\rightarrow4)-\alpha\-D-GalNAcA\-\beta-D-Gal\-\alpha-(1\rightarrow4)-\alpha\-D-GalNAc\] which is nonstoichiometrically O-acetylated at C-3 (12). It is exploited in current vaccines (13). Like K1 and K5 CPSs, Vi antigen assembly employs an ABC transporter complex, which is encoded by \(vexB \) (TMD), \(vexC \) (NBD), \(vexD \) (PCP), and \(vexA \) (OPX) (Fig. 1) (14, 15). However, the Vi antigen glycolipid terminus and synthesis machinery is distinct from \(E. coli \) prototypes in that Vi antigen possesses a reducing-terminal \(N\)-acytelhexosamine residue decorated with two \(\beta\)-hydroxyacyl chains, instead of oligo-Kdo-\(\xi \)PG (16).

Genes for Vi antigen production are found in some soil bacteria, including \(Achromobacter denitrificans \) and \(Bordeella petri \) (16). Paradoxically, these Vi antigen-assembly systems include \(vexL \), a predicted homolog of pectate lyases that depolymerizes Vi antigen in vitro; \(vexL \) is absent from \(S. Typhi \) (16). To determine whether \(vexL \) was simply a catalytic enzyme with broad specificity, we investigated its structure and function. We found that \(vexL \) is a periplasmic Vi antigen-specific lyase enzyme. The structure of the \(vexL-Vi \) antigen complex was solved by X-ray crystallography and defined amino acid residues important for activity and specificity. Depolymerizing enzymes are unprecedented in CPS assembly systems and conflict with current conceptual models for secretion that include a privileged periplasmic channel. The discovery of \(vexL \) provided an opportunity to test this model. We therefore examined the effect of introducing \(vexL \) into \(S. Typhi \), which revealed insights into the molecular mechanism of the ABC transporter-dependent CPS secretion that is conserved in many clinically important bacterial pathogens.

Results

VexL Is a Pectate Lyase Homolog Conserved in Burkholderiales Vi Antigen Assembly Systems. We identified \(vexL \) in the Vi antigen biosynthesis genetic locus (viaB) of \(Achromobacter denitrificans \) (16). Homologs of \(vexL \) belonged to the ambrosia allergen protein family, which contains pectate lyase enzymes (Conserved Domain Database) (16, 17). The structure of \(vexL \) superficially resembles pectin (which has the repeat unit structure \([\rightarrow\rightarrow]-\alpha\-D-GalNAcA\-\beta-D-Gal\-\alpha-(1\rightarrow4)-\alpha\-D-GalNAcA\-\beta-D-Gal\-\alpha-(1\rightarrow4)-\alpha\-D-GalNAc\-\beta-D-Gal\-\alpha-(1\rightarrow4)-\alpha\-D-GalNAc\-\beta-D-Gal\-\alpha-(1\rightarrow4)-\alpha\-D-GalNAc\-\beta-D-Gal\-\alpha-(1\rightarrow4)-\alpha\-D-GalNAc\]) and we hypothesized that \(vexL \) was a pectate lyase homolog with Vi antigen depolymerase activity (16). Vi-antigen depolymerization had been demonstrated in vitro (16), but substrate specificity remained untested. Furthermore, the presence of a signal sequence (mean D score residues 1 to 23 = 0.733, cutoff = 0.57, SignalP4.1) (18) suggested that \(vexL \) is an exported protein but gave no insight into its final cellular location or biological function.

To expand our understanding of this enzyme, position-specific iterative BLAST (19) was used to identify additional homologs of \(vexL \); hits were plant pectate lyases or bacterial enzymes within the Order Burkholderiales (Fig. 2). The Burkholderiales homologs shared 65 to 89% identity with \(A. denitrificans \) \(vexL \). Interestingly, classically characterized bacterial pectate lyases A and C from \(Dickeya dadantii \) (20, 21) and \(Bacillus subtilis \) (22) were not identified, for example. When the phylogeny of these enzymes was investigated, bacterial \(vexL \) homologs and known bacterial pectate lyases clustered separately from representatives from plants (Fig. 2). Furthermore, \(Burkholderiales \) \(vexL \) form a distinct clade separate from characterized bacterial pectate lyases. The genes encoding \(vexL \) clade enzymes were all located adjacent to genes encoding homologs of Vi antigen biosynthesis and export proteins (SI Appendix, Fig. S1A), supporting the hypothesis that \(vexL \) is specifically involved in Vi antigen assembly and/or processing rather than a catalytic pectinase.

VexL Is a Vi Antigen-Specific Lyase. We previously used \(vexL \) to reduce the molecular weight of Vi antigen to isolate the terminal glycolipid residue (16). The apparent molecular weight of Vi antigen decreased in PAGE when incubated with \(vexL \), and purified glycolipids possessed a nonreducing terminal anhydro residue (16) characteristic of lyase enzyme digestion (23, 24). To investigate this activity in more detail, \(vexL \) was incubated with purified Vi antigen, and reaction products were analyzed by HPLC coupled to mass spectrometry (MS). Mass spectra revealed species that differed by 217.059 \(m/z \), which correspond to oligosaccharides of GalNAcA, two to seven residues in length (Fig. 3 and SI Appendix, Table S1). No monosaccharides were detected, indicative of an endo-acting enzyme. MS also revealed species that differed by \(\pm 42.011 \) and \(\pm 18.011 \) \(m/z \), which represent nonstoichiometric \(O\)-acytelylation of the polysaccharide,

![Fig. 1. Model for ABC transporter-dependent CPS assembly in Gram-negative bacteria. The figure illustrates systems from an E. coli group 2 prototype and S. Typhi Vi antigen at different conceptual states in the CPS envelope translocation process. CPS glycans are assembled from NDP-activated glucose residues by cytosolic glycglycosyltransferase enzymes at the cytoplasm-membrane interface (SI Appendix, Fig. S1B), before recognition and export by the ABC transporter. The nascent glycans possess different terminal glycolipids. Binding and hydrolysis of ATP by the cytoplasmic NBD protein dimer drives conformational changes in the TMD that power secretion of CPS across the inner membrane. The transporter is proposed to engage the outer membrane OPX channel via interaction with a PCP adaptor.](https://www.pnas.org/ cgi/doi/10.1073/pnas.1801336115)
Materials and Methods

Phylogeny of VexL pectate lyases. The figure depicts a phylogram of *Achromobacter denitrificans* and *J. curcas* from *Achromobacter denitrificans*. The maximum-likelihood phylogram was generated from 100 bootstrapped datasets using PhyML3.0 (64) and visualized using iTOL (65). GenBank (84) accession numbers for VexL homologs are listed in SI Appendix, Materials and Methods. Bootstraps are labeled as purple circles.

Structure of VexL. To further characterize VexL, its 3D structure was determined by X-ray crystallography. The gene construct encoded the entire *A. denitrificans* VexL preprotein, including the predicted N-terminal signal sequence and a C-terminal affinity tag. VexL-His6 was expressed in *E. coli* and purified from the periplasm to ensure proper folding of the mature protein, that might be affected by the oxidizing periplasmic environment and signal peptidase processing. Initial optimized VexL crystals diffracted to ≥2.8 Å (space group P 2₁ 2₁ 2₁). To improve resolution, we incubated VexL-His6 with purified Vi antigen and screened for new crystallization conditions. The addition of the glycans did not affect the melting temperature of VexL; the T_m was 59.5 °C with 5 mg/mL Vi antigen. The resulting tetragonal crystals diffracted to 1.22 Å (space group P 4₂ 2₁ 2). These data were phased by molecular replacement, and discussion focuses on this structure (Table 1). The asymmetric unit contains one copy of VexL, a malonate ion (buffer), and a trisaccharide of Vi antigen ([→4]-d-GalNAcA3Ac-α(1→)]. In contrast, the apo-structure was largely incomplete and differed from the glycans-bound structure by 0.45 Å rmsd. Amino acid residues of VexL are hereafter numbered based on the full-length preprotein sequence. VexL currently represents the most complete and highest resolution structure for any active pectate lyase in the PDB.

The VexL structure contains density for residues Cys28→Pro302, Arg195, Gly402, and two His residues from the affinity tag. There are three disulfide linkages: Cys28-Cys35, Cys259-Cys266, and Cys364-Cys400. The majority of VexL is composed of a right-handed parallel β-helix with three “faces” composed of parallel β-sheets (Fig. 4 A and B). Each β-strand is connected to the adjacent one by a short two- to four-residue loop. This forms a compact “core,” which is packed with ordered arrays of aliphatic and hydrophobic amino acids, contributed by each “rung” in the β-helix (labeled 1 to 10) (Fig. 4B). The regular pattern is interrupted by insertions that comprise a loop with an α-helix (rung 6; Leu279→Arg285), a long loop with an α-helix (rung 9; Asn355→Arg360) that is stabilized by a disulfide linkage (Cys356→Cys360) and salt bridge (Asp325→Arg252), and a loop with an α-helix (rung 9; Asn312→Asp316) (SI Appendix, Fig. S4A). These insertions result in two faces of the β-helix being buried and the third face forming the base of an extensive groove. This groove is populated by a conserved (Fig. 4C) and positively charged amino acids (Fig. 4D). The N terminus (Cys26→Pro65) comprises two α-helices, a β-strand, and a long loop. The long loop and long α-helix pack against one face of the β-helix. The shorter α-helix and β-strand pack against the top end of the β-helix. The C terminus (Gly351→Gly402) forms loops and a short α-helix that cap the bottom end of the β-helix and then pack against the same β-sheet as the N terminus and its neighbor (Fig. 5).

The cocomplex reveals clear electron density for three sugar residues of Vi antigen, positioned within the large groove highlighted above (Fig. 4E). There is additional density that suggests a longer polymer, but we were unable to unambiguously model beyond the trisaccharide. The long axis of the trisaccharide molecule and the VexL β-helix align; the reducing sugar sits at the C-terminal end of the β-helix, essentially well with the “base” of the structure. The carbohydrate of the group nonreducing sugar makes a bidentate salt contact with the side chain of Arg279 while the oxygen of the N-acetyl group is hydrogen bonded to Lys195 (SI Appendix, Fig. S5G). The O4 of this sugar makes a hydrogen bond with Arg235, and the pyranose ring oxygen (O5) hydrogen bonds to Arg325 and water. There was no additional difference density for an O-acetylated group of this sugar. The importance of these amino acids was probed by site-directed mutagenesis. Purified periplasmic VexL, K195A, R232K, R232A, and R235A (SI Appendix, Fig. S3C) were inactive in vitro assays monitoring depolymerization or formation of unsaturated termini (SI Appendix, Fig. S3 E and F), despite remaining folded (SI Appendix, Fig. S3D). VexL, R235K had 5% of WT activity. Gln237 hydrogen bonds to Arg235 and water loss, respectively. In all of the products, VexL creates a nonreducing 4-deoxy-2-N-acetyl-α-d-galact-4-enuronosyl residue. This modification appears in MS as an “anhydro” residue at the nonreducing terminus (Fig. 3 and SI Appendix, Table S1). No hydrated species (i.e., hydrolase products) were detected. Cross-ring fragmentation products in MS² were consistent with this terminal modification (SI Appendix, Fig. S2). Formation of 4-deoxy-α-d-galact-4-enuronosyl residues, which absorb at 232 nm (SI Appendix, Fig. S3A), confirmed a lyase mechanism rather than hydrolase and offered the opportunity to follow the reaction by spectrophotometry (25). VexL degraded Vi antigen, generating 3.2 μmol min⁻¹ mg⁻¹ nonreducing termini at its pH optimum of 5.5 (SI Appendix, Fig. S3B). Product formation was dependent on O-acetylation of the glycan; no activity was detected for de-O-acetylated Vi antigen or pectate (SI Appendix, Fig. S3A). VexL activity was unaffected by EDTA, indicating no divalent cation(s) was required for catalysis (SI Appendix, Fig. S3A).
while Arg172 and Asp171 hydrogen bond to Arg232 through water. VexL R172K had 44% of WT activity. Mutation of these “supporting” residues to alanine reduced lyase activity by ~50% (SI Appendix, Fig. S3F), except for Arg172, which was inactive (SI Appendix, Fig. S3 E and F).

The carboxylate of the central sugar is hydrogen bonded to both Gln231 and Tyr295, and the oxygen atom of the N-acetyl group is hydrogen bonded to water (SI Appendix, Fig. S5G). The terminal oxygen atom of the O-acetyl group in this sugar is bridged to the protein by hydrogen bonds to a water molecule. The reducing sugar makes two hydrogen bonds to the protein, Arg245 with oxygen atom of the N-acetyl group and Tyr295 with the terminal oxygen atom of the O-acetyl group. In addition to the hydrogen bonds, all three sugars make extensive van der Waals contacts with the protein. Of particular note is the methyl group of the O-acetyl of the middle sugar, which sits in a hydrophobic pocket bounded by Tyr245 and Leu295. Altering this pocket reduced depolymerase activity, VexL Y254F has 47% of WT activity (SI Appendix, Fig. S3F).

Table 1. Crystallographic data collection and refinement statistics

Description	Value
Space group	P 4_2 2_1 2
Cell dimensions a, b, c, Å	94.7, 94.67, 78.8
α, β, γ, *	90, 90, 90
Resolution, Å	1.24–1.22
(High resolution)	(1.24–1.22)
Rmerge	0.07 (1.42)
l/f	17.0 (2.1)
Completeness, %	100 (100)
Average redundancy	12.8 (12.7)
Vm, Å/Da	2.05
Solvent, %	40.0

Description	Value
No. of unique reflections	106,029
Rsym/Rfree, %	14.0/16.6
No. of atoms (non-H)	2,978
Water	243
Vi antigen	52
Malonate	7
B-factors, Å	19.3
Protein	29.7
Water	31.1
Vi antigen	35.4
Malonate	0.012
Bond lengths, Å	1.51
Ramachandran	95.4
Favored, %	0
Disallowed, %	1.12/97
Molprobity score/centile	6F12

Vi Antigen Envelope Translocation Includes a Periplasm-Accessible Intermediate. A predicted signal sequence suggested that VexL is an exported protein. Proteins reactive with VexL-specific antibodies were found associated with cells in three Achromobacter species (SI Appendix, Fig. S1C). However, no protein or lyase activity was detected in the spent media from cultures of these bacteria, indicating that VexL resides in the cytoplasm or periplasm of its natural host, rather than being a substrate for a protein secretion system (SI Appendix, Fig. S4C). Material reactive with Vi antigen-specific antibodies was identified in lysates of these Achromobacter species, suggesting that these Achromobacter do produce a glycan resembling Vi antigen (SI Appendix, Fig. S1C). To the best of our knowledge, CPS-specific depolymerases are not found in other ABC transporter-dependent assembly systems, and we reasoned VexL might offer insight into this process. However, investigating the role of VexL in Vi antigen production in Burkholderiales is complicated by the absence of information concerning both the diversity of polysaccharides it produces and the underlying biology (i.e., glycan function and growth conditions that affect Vi antigen synthesis). An additional barrier is the resistance of Achromobacter isolates to antibiotics used as markers in molecular genetic tools (26). We therefore chose to examine the impact of VexL in the characterized S. Typhi system. We argue that this heterologous system is a valid model to examine glycan accessibility in the export pathway because these organisms possess essentially identical Vi antigen biosynthesis and export proteins (SI Appendix, Fig. S1A). However,
S. Typhi does not encode VexL, and A. denitrificans does not encode TviA, a transcriptional activator of the Vi antigen locus unique to S. Typhi (27, 28).

S. Typhi was transformed with inducible plasmid vectors encoding A. denitrificans VexL-His₆, VexL R232A-His₆, or VexL²⁴⁻⁴⁰²-His₆ (which lacks the signal sequence). To confirm localization of these constructs in S. Typhi, released periplasmic contents were examined by immunoblotting employing VexL-specific antibodies. As expected, VexL and VexL R232A appeared in the periplasmic fraction whereas VexL²⁴⁻⁴⁰² was confined to the cytoplasm and remained within spheroplasts (SI Appendix, Fig. S4A).

Expression of VexL-His₆ reduced the average molecular weight of Vi antigen (Fig. 5A) while the catalytically inactive VexL R232A-His₆ (Fig. 5A) did not, confirming that the change in molecular weight is a specific catalytic effect rather than a structural consequence of overexpression of periplasmic VexL-His₆. In contrast, cytoplasmic VexL²⁴⁻⁴⁰²-His₆ had no effect on Vi antigen profiles (Fig. 5A), indicating that any degradation of product occurred postexport from the cytosol. The Vi antigen produced by cells expressing VexL variants was located on the cell surface in S. Typhi judged by susceptibility to the Vi antigen-specific bacteriophage ViII (Fig. 5B). Growth media from these cultures was examined, but

Fig. 4. Crystal Structure of A. denitrificans VexL-His₆ with bound Vi Antigen. (A) The graphic representation of VexL was generated from a 1.22-Å diffraction dataset collected from a single crystal of VexL-His₆ bound to a trisaccharide of purified Vi antigen. The diagram is colored in rainbow from N terminus (blue) to C terminus (red). (B) Topology of A. denitrificans VexL. Secondary structure elements are colored turquoise (β-sheets) or orange (α-helices). Disulfide linkages are colored red. Thick (3 pt) lines represent β-sheets and loops above the plane of the page. (C) Amino acid conservation of VexL with the bacterial and plant pectate lyases described in Fig. 2. Conservation scores were mapped to the VexL structure using ConSurf and displayed on the solvent-accessible surface (68). (D) Electrostatic surface potential for VexL was calculated at pH 6.5 using the Adaptive Poisson-Boltzmann Solver (66) and is displayed from −3 kT/e (red) to +3 kT/e (blue). (E) VexL structure with bound Vi antigen depicted as yellow sticks. (Inset) The 2Fo − Fc electron density map contoured at 1σ for the bound trisaccharide, as gray mesh. The reducing and nonreducing sugar residues are labeled.
Vi antigen is susceptible to degradation by VexL in the periplasm. (A) Expression of VexL in S. Typhi reduces the apparent molecular weight of Vi antigen in SDS/PAGE whereas VexL R232A and signal sequence-truncated VexL ΔexC do not. Deletion of the Vi antigen transporter NBD (vexC), renders (now cytoplasmic) Vi antigen susceptible to degradation by VexL ΔexC. The figure depicts immunoblots of whole cell lysates, probed with Vi antigen-, VexL-, or RNA polymerase α-specific antibodies. RNA polymerase α was included as a loading control. Cultures were grown to midlog phase, before induction of plasmid-encoded protein expression with indicated final concentration of l-arabinose for 30 min. (B) Expression of VexL or VexL ΔexC does not eliminate susceptibility to lysis by a Vi antigen-specific bacteriophage (Vi phage II, HER no. 39). LB agar contained 0.02% (wt/vol) l-arabinose to induce plasmid-encoded gene expression. S. Typhi and S. Typhi ΔexC provide positive and negative controls for surface-exposed Vi antigen, respectively.

Discussion

VexL shares a conserved β-helical structure with diverse bacterial and plant catabolic polysaccharide lyases found in families PL1, PL3, and PL9 of the Carbohydrate-Active Enzyme (CAZY) database (29, 30). The representative structures of these protein families differ predominantly in the position of loops inserted at turns that frame the glycan-binding site(s) but have little variation within the β-helix itself, suggesting that these elaborations are important for substrate recognition. Close structural homologs of VexL (SI Appendix, Fig. S5 and Table S4) belong to family PL1, which contains metal-dependent, endo-acting, pectin catabolic polysaccharide lyases with alkaline pH optima (24, 29). Despite the existence of dramatically different polysaccharide lyase folds [e.g., (α/α) barrel, PL10], their catalytic centers for trans-β-elimination are conserved (31). The reaction employs an arginine residue positioned to extract a proton from C4 of the hexuronic acid residue in the +1 subsite (24). In VexL, we suggest that Arg235 fills this role. This is supported by inactivating mutations in VexL R232K (conservative) and R232A and the position of this residue relative to C4 of GalA in the +1 subsite of the Dickeya dadantii PelC–GalA complex (SI Appendix, Fig. S5H) (21). D. dadantii PelC includes an additional conserved arginine (Arg245) (SI Appendix, Fig. S5H) that is involved in a ligand-positioning bidentate salt contact with the carboxylate of the GalA residue in the –1 subsite. In VexL, Arg235 fills this role (SI Appendix, Fig. S5G), and, as such, we propose that the tri-saccharide of Vi antigen in the VexL structure represents glycan-binding subsites –3, –2, and –1. The hydrogen-bonding network involving Vi antigen N- and O-acetyl decorations (SI Appendix, Fig. S5G) is a critical component of substrate recognition: all point mutants of interacting residues had reduced lyase activity (SI Appendix, Fig. S3F). The specific requirement for the O-acetyl group is achieved not through a single interaction but rather through a network involving bridging water molecules. We propose that using a network, as opposed to a single interaction, underpins the tolerance of VexL for nonstoichiometric O-acetylation of its substrate. Notably, the VexL-binding groove lacks multiple DXD motifs, which coordinate divalent cations essential for glycan binding and activity in conventional pectate lyases, such as D. dadantii PelC (29) (SI Appendix, Fig. S5G and H). The lack of sensitivity to EDTA supports the conclusion that VexL does not require a divalent cation(s) for catalysis. VexL has a signal peptide, a pH optimum more acidic than other relative enzymes (pH 5.5 vs. ~8.0 to 9.5), and presence of multiple disulfide linkages that we suggest stabilize the N and C termini of the protein. Because of these unique properties, we propose that VexL has evolved unique structural changes and catalytic features that facilitate function in the more acidic (32) and oxidizing environment of the periplasm; VexL is a distinctive and unusual protein among these classes.

Fig. 5. Vi antigen is susceptible to degradation by VexL in the periplasm. (A) Expression of VexL in S. Typhi reduces the apparent molecular weight of Vi antigen in SDS/PAGE whereas VexL R232A and signal sequence-truncated VexL ΔexC do not. Deletion of the Vi antigen transporter NBD (vexC), renders (now cytoplasmic) Vi antigen susceptible to degradation by VexL ΔexC. The figure depicts immunoblots of whole cell lysates, probed with Vi antigen-, VexL-, or RNA polymerase α-specific antibodies. RNA polymerase α was included as a loading control. Cultures were grown to midlog phase, before induction of plasmid-encoded protein expression with indicated final concentration of l-arabinose for 30 min. (B) Expression of VexL or VexL ΔexC does not eliminate susceptibility to lysis by a Vi antigen-specific bacteriophage (Vi phage II, HER no. 39). LB agar contained 0.02% (wt/vol) l-arabinose to induce plasmid-encoded gene expression. S. Typhi and S. Typhi ΔexC provide positive and negative controls for surface-exposed Vi antigen, respectively.
addition to polysaccharide lyase family 1, that defines a robust subfamily with unusual polysaccharide lyase activity.

This work confirms that VexL is a periplasmic CPS-degrading enzyme. This feature is absent from all other known CPS assembly systems that use ABC transporters. However, periplasmic glycan-modifying proteins participate in production of some secreted exopolysaccharides (EPSs) that feature different biosynthesis and export machinery. These enzymes include polysaccharide lyases, hydrolases, epimerases, and acetylatelesterases that modify nascent EPS glycans nonstoichiometrically as they transit the periplasm. In some examples, these enzymes participate in the envelope translocation protein complex and are therefore sometimes required for glycan assembly and/or export. The *Pseudomonas aeruginosa* PEL polysaccharide provides an example. Unlike CPS, PEL does not possess a terminal lipid (33); its secretion requires a multidrug and toxic compound extrusion (MATE) transporter and a periplasmic scaffold that guides PEL to an outer membrane channel. PelA is a periplasmic PEL acetylatelesterase and hydrolase that binds the scaffold (34) and is required for PEL production (35). Similarly, *E. coli* poly-N-acetylglucosamine EPS employs a periplasmic acetylatelesterase (PgaB) that is required for export but not synthesis (36). In contrast, production of the (Wzx-dependent) *P. aeruginosa* FSL EPS does not require the cognate PslG periplasmic hydrolase although PslG overexpression decreases FSL production and biofilm formation (37). The *P. aeruginosa* EPS alginate assembly machinery encodes a periplasmic lyase (AlgL). AlgL is proposed to degrade periplasmic glycan that has escaped the export machinery, and deletion of *algL* does result in the accumulation of periplasmic glycan that results in cell lysis. However, AlgL also interacts with the secretion complex so interpretation of the phenotype is complicated (38, 39).

It is hard to argue that VexL would be required for Vi antigen export in the *Burkholderiales* given the overall similarity of the Vi antigen export machinery to examples from other bacteria, and homology to *S. Typhi* Vi antigen export proteins, which do not include VexL. The structure of VexL does not include any obvious domain that would point to an interaction with the CPS-translocation complex, and expressing a catalytically inactive VexL had no effect on the normal export process in *S. Typhi*. Furthermore, cognate periplasmic glycanases are not found in AlgL-dependent EPSs (as the corresponding CPS-specific glycanases are). Thus, VexL degradation during its synthesis in the cytoplasm. This could be accomplished by a complex of biosynthetic enzymes creating a protected environment for the glycan or by tight coupling of polymerization and export, such that the glycan is exported as it is polymerized. Such coupling occurs in the synthesis of some O antigenic polysaccharides which couple a multiprotein synthesis complex to an ABC transporter (51, 52). Coupling synthesis and export of O antigen regulates product chain length, and a similar effect is evident in the increased molecular weight of Vi antigen in the *vec* mutant (Fig. 5).4. The observation that the Vi antigen becomes susceptible to cytoplasmic degradation in the absence of export suggests that there is normally a protected cytosolic “compartment” but does not on its own distinguish between an enveloping protein complex or coupling-mediated effect. However, the susceptibility of cytosolic Vi antigen accumulating in export-deficient mutants leads us to favor the latter explanation.

Previous studies used recombinant bacteriophage-derived endoglycanases enzymes to examine the cytoplasmic accessibility of CPS during its synthesis in *E. coli* K1 (53) and K5 (54). In both cases, CPS degradation was assessed by susceptibility of the bacteria to the corresponding CPS-specific bacteriophage (an indicator of some exported CPS). In K5, CPS production was directly quantified (54). Surprisingly, these studies yielded different conclusions. The authors concluded that K1 (53) was synthesized in a protected cellular compartment, but K5 was not (54). We recapitulated the experiments with *E. coli* K1 and found that it retained susceptibility to the CPS-specific bacteriophage (as reported in ref. 53), but, when the CPS was examined by immunoblotting, most was degraded by the cytoplasmic glycanase (*SI Appendix*, Fig. S6). This result is more consistent with those obtained with *E. coli* K5, and the different conclusions may reflect the different approaches and bacteriophages used to assess phenotypes. Neither system offers the cytoplasmic protection seen for Vi antigen, and this may reflect the differences in biosynthetic machinery and glycolipid acceptors used by *E. coli* and *S. Typhi*. The organization of the reported biosynthesis complex (53, 55, 56) would therefore appear to differ from that for Vi antigen.

Our results demonstrate that the Vi antigen can be degraded by VexL during the translocation phase in the periplasm. This finding is inconsistent with the current assembly model (Fig. 1) and raises questions that will only be answered with solved structures. The model was influenced by the ABC transporter-based tripartite drug efflux pumps (7), such as the MacA–MacB–ToLC complex (11). A prototype OPX protein from the Wzx-dependent export of *E. coli* “Group 1” CPS forms a multimeric channel across the outer membrane (57) and interacts with its inner membrane (periplasm-exposed) PCP partner (58). In the
group 2 E. coli K5 system, a multiprotein complex has been detected that contains the ABC transporter (KpsMT), the PCP protein (KpsE), and the OPX protein (KpsD) (55). Furthermore, genetic data support cognate interaction between PCP-OPX protein pairs in other group 2 systems (59). Although there is currently no structural data for KpsD, the PCP protein KpsE forms a membrane-bound multimeric structure in croy-EEM whose periplasmic domain resembles the adaptor complex of tripartite drug efflux pumps (59). While the size and complexity of the CPS substrate and structures of efflux pumps have made the concept of a protected translocation pathway attractive as a working model, the accessibility of Vi antigen to degradation in the periplasm indicates that this must be reassessed. In group 1 systems, CPS polymerization occurs in the periplasm external to the PCP-OPX complex, and the glycans is proposed to access the lumen of the complex laterally (58). Site-directed cross-linking experiments established that CPS glycans transit the outer membrane within the OPX pore (60). The results presented here indicate that periplasmic access to the translocation pathway is also required in group 2 systems. Periplasmic exposure of the glycans may offer interesting avenues for CPS structural diversification. For example, LPS O antigens exported by ABC transporters are exposed during assembly/translocation and can be substrates for postpolymerization periplasmic glycosylation systems, creating altered structures and antigenic epitopes (61).

Experimental Procedures

Molecular Biology. Oligonucleotide primers were obtained from Sigma-Aldrich and are described in SI Appendix, Table S3. DNA fragments were generated by PCR employing primers that introduced restriction sites for use in cloning, digested using appropriate restriction enzymes (NEB; Invitrogen), and ligated to digested vector DNA using T4 DNA ligase (NEB). Site-directed mutants were generated using KOD HotStart DNA polymerase (Novagen) with primers containing point mutations (SI Appendix, Table S3), according to the QuikChange method (Stratagene). All DNA constructs were confirmed by sequencing at the Genomics Facility, Advanced Analysis Centre, University of Guelph, and are described in SI Appendix, Table S4.

Bioinformatic Analyses. Homologs of VexL were identified using a position-specific iterative BLAST search of the nonredundant protein sequence database. Initial hits from Achromobacter were selected to generate a VexL-specific blocks substitution matrix (BLOSUM), which was used in the second iteration (19). The top 500 hits were selected; hypothetical, predicted, “low-quality,” and “multispecies” hits were removed. A multiple sequence alignment was generated using MUSCLE (62). Dickeya daddanti PeL, PeC, and Bacillus sp. N16-5 PeL were included in multiple sequence alignments due to structural similarity to VexL but did not appear as hits in position-specific iterative BLAST. Conserved blocks for phylogenetic analysis were defined using Gblocks (63). A maximum-likelihood phylogram was generated from 100 bootstrapped datasets using PhyML3.0 (64) and visualized by iTOL (65). A maximum-likelihood phylogram was generated from 100 bootstrapped datasets using PhyML3.0 (64) and visualized by iTOL (65). Structure prediction was performed using the online CCP4 server (73). Automatic model building was performed with Buccaneer (74), followed by manual rebuilding after interpretation in Coot (75). At this stage, density was visible to place a trisaccharide of Vi antigen. A library for Vi antigen was generated using PRODRG (76) and implemented during model refinement in REFMACS (77) and PBREDLO (78). The structure was validated using Molprobity (79) and deposited in the PDB (6FI2).

Subcellular Localization of VexL-His and Mutant Derivatives. Cultures of S. Typhi H251.1 harboring plasmid-encoded VexL-His6 or mutant derivatives, were grown in 250 mL of lysogeny broth using the conditions described in In Vivo Lysate Accessibility Assay. Periplasmic contents were released by osmotic shock (500 mM Sucrose, EDTA, and lysozyme) and further fractionated by differential centrifugation. These samples were then used for western immunoblotting. Spent cell-free culture media were concentrated and analyzed by SDS-PAGE and Western blotting. Monoclonal antibodies were used to identify purified Vi antigen and allow to rest there overnight.

Cultures were harvested from Vi antigen-supplemented mother liquor and flash cooled directly in liquid nitrogen, without further addition of cryoprotectant. Data were collected at ~173 °C on beamline i23-1 at the European Synchrotron Radiation Facility with automated data processing (70, 71). The structure was solved by molecular replacement using Balb (72) via the online CCP4 server (73). Automatic model building was performed with Buccaneer (74), followed by manual rebuilding after interpretation in Coot (75). At this stage, density was visible to place a trisaccharide of Vi antigen. A library for Vi antigen was generated using PRODRG (76) and implemented during model refinement in REFMACS (77) and PBREDLO (78). The structure was validated using Molprobity (79) and deposited in the PDB (6FI2).

VexL Lyase Activity Assay. VexL lyase activity was determined by spectrophotometric assay monitoring absorbance at 232 nm (SI Appendix, Materials and Methods) (25).

Cystitization of VexL-His6, Crystallographic Data Collection, Refinement, and Analysis. Before cystitization, VexL-His6 was diluted to 13.5 mg/mL (A280) and incubated with purified Vi antigen at 5 mM (estimated based on the MW of GalNAcA3Ac, the most abundant product identified in MS; 1,036.27 g/mol) (Fig. 3). This mixture was incubated at 37 °C for 1 h and then centrifuged at 16,000 × g for 4 °C for 10 min before cystitization. Sparse matrix screening of the sample was performed using a combination of commercial and in-house crystallization screens. All experiments were set up as sitting drops, at 20 °C using a Crystaphyron robot (Art Robbins) at drop ratios of 1:1 and 2:1 protein–precipitant in 300 and 450 mL of total drop sizes, respectively. After 1 d, UV-bright crystals were evident in 1.63 M sodium malonate, 0.1 M BisTris-HCl, pH 6.5, 0.08 mM ammonium citrate, and 3.05% (vol/vol) 2-methyl-2,4-pentanediol. Drops were scaled up to 1.0 and 1.5 μL, and the mother liquor was refined to 1.58 M sodium malonate, 0.1 M BisTris-HCl, pH 6.5, 0.13 M ammonium citrate, and 2.5% (vol/vol) 2-methyl-2,4-pentanediol. To avoid antigen Vi binding, culture before day 1, crystals were transferred to a drop of mother liquor supplemented with 10 mM Vi antigen and allowed to rest there overnight.

Crystals were harvested from Vi antigen-supplemented mother liquor and flash cooled directly in liquid nitrogen, without further addition of cryoprotectant. Data were collected at ~173 °C on beamline i23-1 at the European Synchrotron Radiation Facility with automated data processing (70, 71). The structure was solved by molecular replacement using Balb (72) via the online CCP4 server (73). Automatic model building was performed with Buccaneer (74), followed by manual rebuilding after interpretation in Coot (75). At this stage, density was visible to place a trisaccharide of Vi antigen. A library for Vi antigen was generated using PRODRG (76) and implemented during model refinement in REFMACS (77) and PBREDLO (78). The structure was validated using Molprobity (79) and deposited in the PDB (6FI2).

VexL Lyase Accessibility Assay. VexL lyase accessibility was determined by spectrophotometric assay monitoring absorbance at 232 nm (SI Appendix, Materials and Methods) (25).

Bacteriophage-Sensitivity Assays. Half of an LB agar plate was inoculated with 3 × 10^6 pfu of bacteriophage V. lamarckii (HER no. 39; Félix d’Hérelle Reference center for Bacterial Viruses, Université Laval) or 2 × 10^6 pfu of bacteriophage K1F (81). LB agar plates contained 100 μg/mL ampicillin and 0.02% (wt/vol) l-arabinose or 0.5 mM isopropyl-β-D-thiogalactopyranoside (IPTG), to induce plasmid-encoded gene expression. Plates were dried at room temperature. Then, μL of stationary-phase cultures were dropped onto the phage-free side of the plate and then tipped to the phage-inoculated area. Plates were incubated at 37 °C for 5 h and then imaged using an EPSON Perfection 2450 Photo scanner.
Purified VexL-His was suspended at 50% (vol/vol) in Freund’s incomplete adjuvant and used to immunize a female New Zealand white rabbit by intramuscular injection at four surgically prepared sites. The Animal Utilization Protocol was approved by the University of Guelph Animal Care Committee, and all procedures were performed by Animal Care Services at the Central Animal Facility at the University of Guelph. Antibodies were purified from sera by Vex-L-affinity chromatography, concentrated, and stored at −80 °C (SI Appendix, Materials and Methods).

PAGE and Immuno blotting. Whole-cell lysates were prepared by collecting 1 OD600 unit equivalent of cells resuspended in 100 μL of loading buffer (80). SDS/PAGE samples were incubated at 100 °C for 10 min, before electrophoresis (Tri-Glycine, 10% (wt/vol) acrylamide). Protein gels were stained with Coomassie Brilliant Blue R-250. For immuno blotting, protein samples were transferred to nitrocellulose membranes (0.45 μm; Amersham Protran). Primary antibodies were murine monoclonal anti-His, diluted (1:1,300; Qiagen), murine monoclonal anti-RNA polymerase α (sc-101597; diluted 1:2,000; Santa Cruz Biotechnology), murine anti-MaE (diluted 1:20,000; Santa Cruz Biotechnology), rabbit anti-OmpA (diluted 1:3,000; gift from Thomas Silhavy, Department of Molecular Biology, Princeton University, Princeton) (82), or purified polyclonal rabbit anti-VexL-His (diluted 1:3,000; Qiagen) or HRP-conjugated goat anti-rabbit (diluted 1:3,000; Qiagen); detection employed HRP-substrate Luminata Classic (Millipore).

To analyze polysaccharides in whole-cell lysates, samples were prepared as above and then incubated with 50 μg of proteinase K for 1 h at 55 °C. The lysates were then separated by SDS/PAGE and transferred to PVDF or nylon membranes (BioDyne B; Pall). Membranes were probed with murine monoclonal anti-Vi antigen antibody P2B1G2/A9 (diluted 1:350), (83), or anti-polysialic acid-NCAM antibody (MAB5324 clone 2-2b, diluted 11,000; Millipore Sigma), followed by alkaline phosphatase-conjugated goat anti-mouse secondary antibody (diluted 1:3,000; Qiagen). Detection employed nitro-blue tetrazo- lium and 5-bromo-4-chloro-3-indolyl phosphate (Roche).

For purified polysaccharide, 1 μL of 2 M sucrose was added to 5 μL of sample (typically at 1 mg/mL Vi antigen) and loaded into 15% (wt/vol) acrylamide, 89 mM Tris, pH 7.6, 89 mM boric acid, and 2 mM EDTA minigels, for electrophoresis at 250 V for 70 min. Gels were stained for 16 h with 0.125% (wt/vol) Alcian blue, 10% (vol/vol) acetic acid, and 25% (vol/vol) ethanol, destained with 10% (vol/vol) acetic acid, 10% (vol/vol) ethanol for 1 h, and then developed using the Pierce Silver Stain kit.

ACKNOWLEDGMENTS. We gratefully acknowledge contributions of Jonah Nechacov in the early stages of this work. This work was supported in part by grants from the Canadian Institutes of Health Research (FDN, 148364) to (C.W.). S.D.L. is a recipient of a Natural Science and Engineering Research Council Alexander Graham Bell Canada Graduate Scholarship and Michael Smith Foreign Study Supplement. C.W. is a Canada Research Chair. J.H.N. is a Wellcome Trust Investigator (100209/Z/12/2).

1. Willis LM, et al. (2013) Conserved glycolipid termini in capsular polysaccharides syn- thesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proc Natl Acad Sci USA 110:7868–7873.
2. Liston SD, Mann E, Whitfield C (2017) Glycolipid substrates for ABC transporters re- quired for the assembly of bacterial cell-envelope and cell-surface glyconjugates. Biochim Biophys Acta 1862:1394–1403.
3. Marshall JM, Gunn JS (2015) The O-antigen capsule of Salm onella enterica serovar Typhimurium facilitates serum resistance and surface expression of FliC. Infect Immun 83:3946–3959.
4. Taylor CM, Roberts JS (2005) Capsular polysaccharides and their role in virulence. Contrib Microbiol 12:55–66.
5. Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68.
6. Islam ST, Lam JS (2013) Wzx flipase-mediated membrane translocation of sugar poly- mer precursors in bacteria. Environ Microbiol 15:1001–1015.
7. Willis LM, Whitfield C (2013) Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 378:35–44.
8. Long J (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23:487–493.
9. Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 73:1555–1577.
10. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V (2009) The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci USA 106:7173–7178.
11. Filipkiewicz AW, et al. (2017) Structure of the MacAb-ToIC ABC-type tripartite multidi- rug efflux pump. Nat Microbiol 2:17070.
12. Heyns K, Kiesling G (1967) Strukturaufklarung des vi-antigens aus Citrobacter freundii (E. coli) 53963B. Carbohydr Res 3:340–353.
13. Kantele A, Pakkanen SH, Kattunen R, Kantele JM (2013) Head-to-head comparison of humoral immune responses to Vi capsular polysaccharide and Salmonella Typhi Tys1a typhoid vaccines—A randomized trial. PLoS One 8:e65083.
14. Wetter M, et al. (2012) Molecular characterization of the viab locus encoding the biosynthetic machinery for Vi capsule formation in Salmonella Typhi. PLoS One 7: e36299.
15. Virlogeux I, Waxin H, Ecobichon C, Lee JO, Popoff MY (1996) Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsA through rcsB is involved in regulation of Vi antigen synthesis. J Bacteriol 178:1691–1698.
16. Hugouvieux-Cotte-Pattat N, Condemine G, Shevchik VE (2014) Bacterial pectate ly-ases, structural and functional diversity. Environ Microbiol Rep 6:427–440.
17. Cantarel BL, et al. (2009) The Carbohydrate-Active Enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res 37:D223–D238.
18. Charnock SJ, Brown IE, Turkenburg JP, Black GW, Davies GJ (2002) Convergent evo- lution: lights on the evolution of Vi antigen synthesis in family 1 and 10 polysaccharide lyases. Proc Natl Acad Sci USA 99:12072–12077.
19. Yang M, et al. (2014) Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli. Nat Commun 5:4981.
20. Franklin MJ, Nivers DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseu- monas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167.
21. Marmont LS, et al. (2017) Oligomeric lipopolysaccharide Pel guides Pel polysaccharide ex- port across the outer membrane of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 114:2892–2897.
22. Colvin KM, et al. (2013) PelA decetylation activity is required for Pel polysaccharide synthesis in Pseudomonas aeruginosa. J Bacteriol 195:2329–2339.
23. Itoh Y, et al. (2008) Roles of pgaABCDE genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin polysaccharide-α-1,6-N-acetyl-D-glucosamine. J Bacteriol 190:3670–3680.
24. Itoh Y, et al. (2008) Roles of pgaABCDE genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin polysaccharide-α-1,6-N-acetyl-D-glucosamine. J Bacteriol 190:3670–3680.
25. Itoh Y, et al. (2008) Roles of pgaABCDE genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin polysaccharide-α-1,6-N-acetyl-D-glucosamine. J Bacteriol 190:3670–3680.
26. Itoh Y, et al. (2008) Roles of pgaABCDE genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin polysaccharide-α-1,6-N-acetyl-D-glucosamine. J Bacteriol 190:3670–3680.
27. Itoh Y, et al. (2008) Roles of pgaABCDE genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin polysaccharide-α-1,6-N-acetyl-D-glucosamine. J Bacteriol 190:3670–3680.
