Amplified Fragment Length Polymorphism Analysis for Studying Genetic Relationships among Mangifera Species in Thailand

Wichan Eiadthong, Keizo Yonemori,¹ Shinya Kanzaki, and Akira Sugiuira
Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Naoki Utsunomiya
Department of Horticulture, Faculty of Agriculture, Kinki University, Nara 631-8505, Japan
Surasant Subhadradbandhu
Department of Horticulture, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand

Additional index words. mango, phylogenetic relationships, classification

Abstract. The phylogenetic relationships among 14 Mangifera L. species including three economically important species, i.e., common mango (M. indica L.), horse mango (M. foetida Lour.) and kwini (M. odorata Griff.), were analyzed by comparing 117 amplified fragment length polymorphism (AFLP) markers. The unweighted pair grouping method using arithmetic averages (UPGMA) and neighbor-joining (NJ) method were used and two outgroup taxa, cashew nut (Anacardium occidentale L.) and gandaria (Bokea macrophylla Griff.), were added to both analyses. The common mango was closely related to banana mango (M. sylvestris Roxb.), M. laurina Bl., and M. oblengifolia Hook.f. Intraspecific variation among seven cultivars of common mango was much smaller than interspecific variation and these cultivars were classified into one M. indica group using both methods. Mangifera macrocarpa Bl., M. foetida, and M. odorata were also related to M. indica in both UPGMA and NJ trees, although these three species are classified into a different subgenus (subgenus Limus) from the subgenus Mangifera to which M. indica belongs. Also, in both UPGMA and NJ trees, M. gedebe Miq. and M. griffithii Hk.f. were placed in distant positions among the Mangifera species tested, indicating these two species are related distantly to M. indica. The AFLP technique was confirmed to be useful for phylogenetic analysis.

The genus Mangifera is indigenous to southeast Asia, and mango (Mangifera indica) is the most important species in this genus. India was the first country to cultivate mango as a fruit crop, but currently, it is grown commonly throughout tropical areas of the world. Several botanists (Hou, 1978; Mondal et al., 1982; Mukherjee, 1953) have proposed classifications of the genus Mangifera. The most recent and acceptable taxonomic treatment is that by Kostermans and Bompard (1993) who described 69 species in the genus Mangifera based on morphological characteristics and classified 58 species into two subgenera with several sections. The position of the other 11 species was uncertain (Kostermans and Bompard, 1993). Such classical taxonomy is sometimes ambiguous and more reliable marker systems based on molecular biology are needed for modern taxonomy. Previously, we performed restriction site analysis of an amplified region of cpDNA of 13 Mangifera species (Eiadthong et al., 1999b), but could not obtain reasonable phylogenetic relationships among them due to a low level of polymorphism. Our current exploration of Mangifera species in Thailand for germplasm collection could benefit from application of molecular markers to determine the phylogenetic relationships among them.

Detection of polymorphism among germplasm collections for selected species will provide insight into the genome evolution, origin of cultivated species, and current level of diversity in modern agricultural crops (Becker et al., 1995; Hill et al., 1996).

Materials and Methods

Plant materials. All 14 species used in this study (Table 1) were collected in Thailand during 1995–97 from several survey trips (Eiadthong et al., 1999a). Seven cultivars of common mango and two accessions each of M. flava, M. caloneura, M. odorata, M. pentandra, and M. sylvestris were included in the analysis to examine intraspecific diversity. The eight remaining species were analyzed for only one accession because no other accessions were available. Two other genera of Anacardiaceae, cashew nut (Anacardium occidentale L.) and gandaria (Bokea macrophylla Griff.), also were included as outgroup taxa in this study.

DNA extraction and AFLP analysis. Total DNAs were ex-
Table 1. List of 14 Mangifera species and two outgroup taxa with their collected locations for AFLP analysis.

Scientific name	Common name	Collected locations (voucher specimen no.)
M. calodora		Sakaerat Ecological Research Station, Nakon Ratchasima (MR-1); Sikhiu, Nakon Ratchasima (MR-2)
M. cochinchinensis Engler	Muang Kalon paan'	Soidao, Chanthaburi (MCC-1)
M. collina Kosterm.	Muang Khailaen	Doi Suthep National Park, Chiang Mai (MN-1)
M. flavo Evard	Muang Doi	Khao Chong arboretum, Trang (MV-1; MV-2)
M. foetida Lour.	Horse mango	Baan Toun Nga Chang, Songkhla (MF-1)
M. gedebe Miq.	Muang pan	Chalermprakiat Wildlife Sanctuary, Narathiwat (ME-1)
M. griffithii Hk.f.	Muang Rawa'	Sugai Padee, Narathiwat (MG-1)
M. indica L.	Common mango	Pak Chong, Nakon Ratchasima (‘Adam’, ‘Irwin’, ‘Raed’, ‘Pim Sen Man’, ‘Nam Dok Mai’ and ‘Sampee’); Nonthaburi (‘Salaya’)
M. laurina Bl.	Muang Puan'	Sikao, Trang (ML-1)
M. macrocarpa Bl.	Muang Kheekwang'	Khao Chong arboretum, Trang (MM-1)
M. oblongifolia Hk.f.	Muang Baap	Soidao, Chanthaburi (MB-1)
M. odorata Griff.	Kwini	Pak Chong, Nakon Ratchasima (MO-1); Chana, Songkhla (MO-2)
M. pentandra Hk.f.	Muang Kan'	Takbai, Narathiwat (MP-1; MP-2)
M. sylvatica Roxb.	Banana mango	Thong Phaphum, Kanchanaburi (MS-1); Sikao, Trang (MS-2)
Anacardium occidentale L.	Cashew nut	Pak Chong, Nakon Ratchasima (AN)
Bouea macrophylla Griff.	Gandaria	Sugai Padee, Narathiwat (B)

3Local name in Thai.
4All cultivars of *M. indica* were not numbered.

trasted from the leaves of each plant by the CTAB method of Doyle and Doyle (1987) with a slight modification (Eiadthong et al., 1999b). The precipitated DNAs were then dissolved in 10 mM Tris-HCl buffer (pH 8.0) containing 1 mM EDTA (TE buffer) and were purified by extraction with a mixture of 25 phenol : 24 chloroform : 1 isoamyl alcohol. After DNA concentrations were adjusted to 20 ngµL⁻¹ by comparison with standard λ-DNA on a minigel (Sambrook et al., 1989), the AFLP reactions were performed following the manufacturer’s instructions in the AFLP analysis system I (Life Technologies, Gaithersburg, Md.) manual. Briefly, 250 ng genomic DNA was digested with 2.5 units EcoRI and 2.5 units MseI at 37 °C for 3 h and incubated at 70 °C for 15 min. The DNA fragments were ligated to EcoRI and MseI adapters at 20 °C for 3 h. After preselective amplification, selective amplification was performed with 64 combinations of EcoRI and MseI primers provided by Life Technologies.

AFLP reactions were denatured by boiling with formamide buffer (98% formamide, 10 mM EDTA, bromophenol blue, xylene cyanol) and loaded on a 6% denaturing polyacrylamide gel (15 × 20 cm). All samples were electrophoresed for 6 h at 200 V and then transferred to a Hybond N membrane (Amersham, Arlington Heights, Ill.) by capillary blotting overnight. The membrane was hybridized with the AFLP radioactive probe (Life Technologies) by following the manufacturer’s instructions, and amplified fragments were detected after incubation with CDP-Star (Boehringer Mannheim, Germany) at 37 °C for 15 min and exposure to X-ray film for 3 h. AFLP samples of *M. indica* ‘Irwin’ and ‘Adam’, were always included in each run of the gel as references for determining the corresponding bands for data analysis.

Data analysis. A binary matrix reflecting the presence (1) or absence (0) of each AFLP band was generated for each genotype. After similarity indices (Nei and Li, 1979) were calculated based on the number of shared bands, the unweighted pair grouping method using arithmetic averages (UPGMA) was used to construct a dendrogram with NTSYS-pc ver. 2.01 (Rohlf, 1997). A second dendrogram was produced using the neighbor-joining (NJ) method (Saitou and Nei, 1987) executed through PHYLLIP (Felsenstein, 1993).

Results and Discussion

Selective primer combinations for AFLP analysis. Based on the number of scorable bands and the levels of polymorphism detected by screening two cultivars of *M. indica* (‘Irwin’ and ‘Adam’), one accession of *M. calodora*, and one accession of *M. foetida* with 64 primer combinations, five primer combinations were selected for further analysis (Table 2). The reproducibility of amplified bands was confirmed with repeated reactions using the same template DNAs and primer combinations selected from the preliminary screen. By the AFLP analysis of these five primer combinations, a total of 217 scorable bands were detected of which 77% were polymorphic among Mangifera species (Table 2). The highest number of polymorphic bands among Mangifera species was obtained from the E–AAC/M–CAG primer combination. AFLP banding patterns of four species produced by each primer combination are shown in Fig. 1. The dendrogram of 14 Mangifera species was constructed using these 217 scorable bands by cluster analysis using UPGMA and the NJ method for phylogenetic analysis.

Phylogenetic relationships. Seven cultivars of *M. indica* were clustered into one group by both UPGMA and NJ methods (Figs. 2 and 3). Each of the two accessions of *M. odorata*, *M. calodora*, *M. pentandra*, *M. flavo*, and *M. sylvatica* also formed

Table 2. Number of scorable and polymorphic bands produced by five primer combinations from 14 Mangifera species.

Primer combination	No. of scorable bands	No. of polymorphic bands among Mangifera sp.	Polymorphic bands (%)
E–AAC/M–CAC	42	32	76
E–AAC/M–CAG	54	50	93
E–AAC/M–CTC	58	43	74
E–AAC/M–CTG	36	22	61
E–ACC/M–CTC	27	20	74
Total	217	167	77
intraspecific groups. The intraspecific polymorphisms were less abundant than interspecific polymorphisms in AFLP analysis. These results imply that AFLP analysis is an efficient and reliable technique to generate data for either interspecific or intraspecific phylogenetic study in the genus *Mangifera*. An error source in AFLP analysis for phylogenetic study could be the nonhomology of comigrating fragments in the gel, the same issue as with RAPD markers, which was discussed by Karp et al. (1996) and Spooner et al. (1996). When analyzing a relatively large genome, too many bands produced by some AFLP primer pairs might increase the problem of comigrating fragments. However, the possibility having a similar AFLP fragment of apparently identical molecular weight in different individuals seems to be minimized with AFLPs compared to RAPD markers due to the highly selective amplification of a small subset of the whole genome and the more sensitive separation range (Kardolus et al., 1998; Mace et al., 1999). In fact, Rouppe van der Voort et al. (1997) reported that 19 of 20 comigrating AFLP markers were identical. Furthermore, the occurrence of overlapping bands from different loci may not cause any serious problem in estimations of variation (Hansen et al., 1999). The occurrence of overlapping bands from different loci results in a downward bias, the accessions appearing to be more closely related than they actually are. However, since it is relative rather than absolute in genetic distances, the bias is not expected to cause any serious distortion in establishing genetic relationships (Hansen et al., 1999).

Dendrograms produced using the UPGMA and NJ methods showed similar relationships among the 14 *Mangifera* species. In both UPGMA and NJ trees, seven species formed a primary cluster that included common mango. The species most closely related to *M. indica* were *M. laurina* and *M. sylvestriva* followed by *M. oblongifolia*, *M. odorata*, *M. macrocarpa*, and *M. foetida* (Figs. 2 and 3). The only major discrepancy between the two analyses was in placement of *M. cochinchinensis*. According to the NJ tree, *M. cochinchinensis* was positioned in a cluster along with *M. gedeb*, *M. griffithii*, and the two out group taxa. Although UPGMA cluster analysis also placed *M. gedeb* and *M. griffithii* at a distant position among *Mangifera* species along with the two outgroup taxa (Fig. 2), *M. cochinchinensis* fell in a cluster with *M. collina*, *M. pentandra*, *M. flava*, and *M. caloneura* (Fig. 2).

Kostermans and Bompad (1993) divided the genus *Mangifera* into two subgenera, *Mangifera* and *Limus* based on flower morphology. The subgenus *Mangifera* has four sections, section *Marchandora*, section *Euantherae*, section *Rawa*, and section *Mangifera*, while the subgenus *Limus* has two sections, section *Deciduae* and section *Perennes* (Kostermans and Bombard, 1993). Among the species analyzed in the present study, *M. gedeb* has been assigned to the section *Marchandora*, *M. griffithii* belongs to the section *Rawa*, and *M. pentandra*, *M. caloneura*, and *M. cochinchinensis* belong to the section *Euantherae*. *Mangifera indica*, *M. oblongifolia*, *M. collina*, *M. laurina*, and...
flava, and M. sylvatica belong to the section Mangifera. All these 11 species belong to the subgenus Mangifera. The remaining three species, M. foetida, M. macrocarpa, and M. odorata, belong to the section Perennes of the subgenus Limus.

According to our analyses, M. foetida, M. macrocarpa, and M. odorata which were placed into the subgenus Limus by Kostermans and Bompard (1993), instead belong to the section Mangifera along with M. indica, M. laurina, M. sylvatica, and M. oblongifolia. Also, the taxonomic position of M. collina and M. flava which Kostermans and Bompard (1993) placed in the section Mangifera should be reconsidered since our molecular analysis suggested they were more closely related to species in the section Euantherae including M. pentandra and M. caloneura. The classification of the nine other species, however, was in agreement with that proposed by Kostermans and Bompard (1993), although the position of M. cochinchinensis in the NJ tree was slightly questionable in our analyses.

A close relationship of M. laurina and M. sylvatica to M. indica was clearly revealed in the present analyses. The close relationship of M. laurina to M. indica may also be inferred from its use as a synonym of M. indica (Kochummen, 1996). Mangifera laurina is thought to be immune to anthracnose caused by Colletotrichum gloeosporioides Penz. (Bompard and Schnell, 1997) and a good material for breeding disease resistance into mango, even though the fruit is very sour. Also, this species is used occasionally as a rootstock for commercial mango cultivars on periodically inundated riverbeds (Bompard, 1993). The close genetic relationship of this species to M. indica indicates that these traits may be transferred to common mango (M. indica) for commercial production. On the other hand, evidence that M. sylvatica may have been involved in development of cultivated M. indica has been shown by RFLP analysis of an amplified region of cpDNA (Eiadthong et al., 1999b). The fruit of M. sylvatica is sweeter and juicier, although smaller, than that of common mango. This species may also have a potential value for mango breeding.

Mangifera gedebe and M. griffithii are grown in swamps and are thought to be promising sources of rootstock for development of mango cultivation on poorly drained soils and inundated lands (Ram, 1997). However, the distant position of these species from M. indica shown in the present analyses may constitute a problem for graft compatibility, although no references are available for it. The close relationship of M. odorata and M. foetida to common mango revealed in the present analyses suggests a possibility for use of these species as breeding materials of common mango. In both species, the ripe fruit has a distinct and strong odor, and exhibits anthracnose resistance. These two species produce larger fruit than common mango. If the assumption by Hou (1978) that M. odorata may be a hybrid between common mango and M. foetida is true, these species may be cross-compatible with common mango.

Another result from our analyses questions the position of the two outgroup taxa. The morphological characteristics of gandaria are closer to those of the genus Mangifera than cashew nut. This species was placed formerly in the genus Mangifera as M. gandaria Roxb. (Kostermans and Bompard, 1993). However, according to our analyses, the phylogenetic position of this species was more distant from Mangifera species than cashew nut (Figs. 2 and 3). Again, further analysis using molecular tools apart from morphology, is required in this case.

In summary, reliable biosystematic data for evaluating phylogenetic relationships among Mangifera may be produced rapidly using the AFLP technique. In addition, AFLP markers may be useful for evaluating the diversity of germplasm collections of Mangifera species.

Literature Cited

Becker, J., P. Vos, M. Kuiper, F. Salamini, and M. Heun. 1995. Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet. 249:65–73.
Bompard, J.M. 1993. The genus Mangifera re-discovered: The potential contribution of wild species to mango cultivation. Acta Hort. 341:69–77.

Bompard, J.M. and R.J. Schnell. 1997. Taxonomy and systematics. p. 21–47. In: R.E. Litz (ed.). The mango: Botany, production and uses. CAB Intl., Wallingford, U.K.

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bul. 19:11–15.

Eiadthong, W., K. Yonemori, A. Sugiura, N. Utsunomiya, and S. Subhadradhangu. 1999a. Genetic resources of Mangifera species in Thailand. Jpn. J. Trop. Agr. 43:76–83.

Eiadthong, W., K. Yonemori, A. Sugiura, N. Utsunomiya, and S. Subhadradhangu 1999b. Analysis of phylogenetic relationships in Mangifera by restriction site analysis of an amplified region of cpDNA. Scientia Hort. 80:145–155.

Felsenstein, J. 1993. PHYLIP (phylogeny inference package) version 3.5c. Dept. of Genetics, Univ. Wash., Seattle.

Hansen, M., T. Kroft, M. Christiansson, and N.-O. Nilsson. 1999. Evaluation of AFLP in Bata. Theor. Appl. Genet. 98:845–852.

Kardolus, J.P., H.J. van Eck, and R.G. van den Berg. 1998. The potential of AFLPs in biosystematics: A first application in Solanum taxonomy (Solanaceae). Plant Systematics Evol. 210:87–103.

Kochummen, K.M. 1996. Anacardiaceae, p. 1–92. In: E. Soepadmo, K.M. Wong, and L.G. Saw (eds.). Tree flora of Sabah and Sarawak. vol. 2. Forest Res. Inst. Malaysia, Kuala Lumpur.

Kostermans, A.J.G.H. and J.M. Bompard. 1993. The mangoes: Their botany, nomenclature, horticulture and utilization. IBPGR Academic Press, London.

Mace, E.S., C.G. Gebhardt, and R.N. Lester. 1999. AFLP analysis of genetic relationships in the tribe Datureae (Solanaceae). Theor. Appl. Genet. 99:634–641.

Marsan, P.A., P. Castiglia, F. Fusiari, M. Kuiper, and M. Motto. 1998. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96:219–227.

Mondal, M.S., A.K. Mahapatra, and S. Mahapatra. 1982. Pollen morphology of some species of Mangifera L. in relation to taxonomy. J. Econ. Taxon. Bot. 3:365–372.

Mukherjee, S.K. 1953. Origin, distribution and phylogenetic affinity of the species of Mangifera L. J. Linn. Soc. London (Bot.) 55:65–83.

Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76:5269–5273.

Perera, L., J.R. Russell, J. Provan, J.W. McNicol, and W. Powell. 1998. Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor. Appl. Genet. 96:545–550.

Ram, S. 1997. Propagation, p. 363–400. In: R.E. Litz (ed.). The mango: Botany, production and uses. CAB Intl., Wallingford, U.K.

Roa, A.C., M.M. Maya, M.C. Duque, J. Tohme, A.C. Allem, and M.W. Bonierbale. 1997. AFLP analysis of relationships among cassava and other Manihot species. Theor. Appl. Genet. 95:741–750.

Rohlf, F.J. 1997. NTSYS-pc (numerical taxonomy and multivariate analysis system), version 2.01. Exeter Software, New York.

Roupee van der Voort, J.N.A.M., P. van Zandvoort, H.J. van Eck, R.T. Folkertsma, R.C.B. Hutten, J. Draaistra, F.J. Gommers, E. Jacobsen, J. Helder, and J. Bakker. 1997. Use of allele specificity of comigrating AFLP markers to align genetic maps from different potato genotypes. Mol. Gen. Genet. 255:438–447.

Saitou, N. and M. Nei. 1987. The neighbour-joining methods: A new method for reconstructing phylogenetic trees. Mol. Biol. Evolution 4:406–425.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual, 2nd ed. vol. 1. Cold Spring Harbor Lab. Press, Plainview, N.Y.

Spooner, D.M., J. Tivang, J. Nienhuis, J.T. Miller, D.S. Douches, and A. Contereras-M. 1996. Comparison of four molecular markers in measuring relationships among the wild potato relatives Solanum section Etuberosum (subgenus Potatoes). Theor. Appl. Genet. 92:532–540.

Vos, P., R. Hogers, M. Bleeker, M. Rijans, T. van der Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acid Res. 23:4407–4414.

Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson, and G.J. Bryan. 1998. AFLP markers for the study of rice biodiversity. Theor. Appl. Genet. 96:602–611.