INTRODUCTION

Despite the advances made in the treatment of human immunodeficiency virus (HIV), the global HIV prevalence remains unacceptably high. The primary determinants of HIV transmission include the accessibility of target cells for infection and viral characteristics such as quantity and fitness. Female genital inflammation contributes to both the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.

KEYWORDS
cytokines, epithelial barrier integrity, female genital inflammation, HIV risk, immune cells, semen, vaginal microbiome
reproductive tract results in an inflammatory response involving cytokine production and leukocyte recruitment for the removal of excess and abnormal sperm. The alkaline pH of semen and the microbial content of the ejaculate also contribute to alterations in the vaginal microbiome which are known to promote genital inflammation and HIV risk in women. A semen-induced pro-inflammatory immune response to prime the female reproductive tract for conception may also promote genital inflammation and HIV acquisition in women.

Conversely, semen also contains factors to help regulate this pro-inflammatory response at the FGT since excessive inflammation may lead to adverse pregnancy outcomes. This results in the induction of a regulatory T-cell (Treg) immune response for tolerance to the paternal antigens and to facilitate embryo implantation. A semen-induced tolerogenic immune response may also inhibit the clearance of HIV and other pathogens at the FGT. Taken together, these studies suggest that semen directly alters the biology of the FGT and may have significant consequences for the risk of HIV infection in women. Here, we review the relationship between female genital immunity and male partner semen and its implications for HIV risk in women.

2 | HOST IMMUNE DEFENCES TO PREVENT HIV INFECTION AT THE FEMALE GENITAL MUCOSA

2.1 | Innate immune responses at the female genital mucosa

2.1.1 | Role of the vaginal epithelium in innate immune defence

During male to female HIV-1 transmission, viral particles present in semen must traverse the vaginal mucus and epithelium to access local cellular targets for infection. However, the FGT has several innate and adaptive immune responses that defend against HIV infection. The innate immune system involves a rapid and non-specific immune response to injury and infection. Tissue-associated phagocytes and intact epithelial barriers are among the primary host defences that serve as physical and chemical barriers against HIV infection. During coitus, semen is deposited in the lower FGT, consisting of the ectocervix and vagina. The lower FGT is lined with several layers of stratified squamous epithelial cells. These cells are held together by tight and adherens junctions, which reduce the permeability of the epithelium and prevent viral entry at the lower FGT. Furthermore, the lower FGT has superficial layers of vaginal epithelium consisting of cornified epithelial cells that provide an additional layer of protection. The upper FGT includes the fallopian tubes and ovaries, uterus, and the endocervix, each lined with a single layer of columnar epithelial cells held together by tight junctions. Vaginal epithelium thickness is influenced by sex hormone fluctuations during the menstrual cycle phases and with hormonal contraceptive use. Increased progesterone has been associated with epithelial thinning at the FGT and a greater risk of HIV infection. Tissue-associated phagocytes such as neutrophils engulf and destroy invading pathogens and infected cells through various mechanisms. Neutrophils can release their deoxyribonucleic acid (DNA) to form neutrophil extracellular traps that prevent HIV infection through viral inactivation. In addition, epithelial and innate immune cells produce cytokines and induce leukocyte recruitment in response to infection.

2.1.2 | Role of the cervicovaginal mucus in innate immune defence

The cervicovaginal environment is covered in a thick layer of mucus that provides lubrication during coitus, facilitates sperm migration, and acts as a physical and chemical barrier to prevent access to the underlying epithelium. Cervicovaginal mucus (CVM) is primarily composed of water and mucin glycoproteins but also contains immunoglobulin (Ig)G, IgA and several antimicrobial agents which provide additional protection at the female genital mucosa. The lower FGT is populated by commensal microbes that can modify the CVM composition and influence its ability to defend against pathogens. Acidic CVM associated with Lactobacillus crispatus dominance and high levels of D-lactic acid can hinder HIV-1 mobility and prevent infection. Conversely, HIV mobility is significantly increased in CVM derived from women with bacterial vaginosis (BV). This is likely since Gardnerella vaginalis, a common BV-associated microbe secretes sialidase enzymes that degrade the CVM. These findings highlight the complex interplay between the vaginal microbiome and host innate immunity.

2.1.3 | Role of the vaginal microbiome in innate immune defence

An optimal vaginal microbiome is dominated by Lactobacilli spp., which exists in a mutualistic relationship with the host and contributes to the immune defences at the FGT. Commensal microorganisms such as L. crispatus prevent pathogen colonisation by inhibiting their growth, preventing biofilm formation, lowering the vaginal pH, competing for nutrients and adherence to the epithelium, and by producing antimicrobial agents such as lactic acid, hydrogen peroxide (H₂O₂) and bacteriocin. Lactobacilli metabolise glycogen secreted by vaginal epithelial cells to produce L- and D-isomers of lactic acid. Physiological concentrations of vaginal lactic acid are sufficient to inactivate BV-associated microbes and other sexually transmitted agents of infection, including HIV. Lactic acid lowers the vaginal pH, enhances the activity of other antimicrobial factors and upregulates the production of anti-inflammatory cytokines. Taken together, these data suggest that a Lactobacillus-dominant
vaginal microbiome is highly beneficial and less vulnerable to HIV infection.

2.2 Adaptive immune responses at the female genital mucosa

Adaptive immunity at the FGT involves either cell-mediated or humoral immunity. Cell-mediated immunity involves the removal and destruction of intracellular pathogens and virus-infected cells by T lymphocytes. Antigen-presenting cells process and display antigens to T cells to trigger a pathogen-specific immune response and promote immunological memory. This adaptive immune response is characterised by the involvement of various CD4+ T cell (eg, T-helper [Th]1, Th2, T follicular helper [Tfh] and Th17 cells) and CD8+ T cell subsets. Cytotoxic T cells (CD8+) recognise antigens presented on major histocompatibility complex (MHC) class I molecules and directly kill virus-infected cells by inducing apoptosis through perforin and granzymes. Conversely, CD4+ T cells recognise antigens presented on MHC class II molecules and respond by secreting cytokines to activate CD8+ T cells, macrophages, and B cells to destroy infected cells.

Humoral immunity is mediated by B cells and their secreted antibody products. Antibodies prevent and fight infections by binding to antigens on the pathogen and preventing their entry into host cells, coating the pathogen for phagocytosis, inducing antibody-to-antigens on the pathogen and preventing their entry into host cells. Antibodies prevent and fight infections by binding to antigens on the pathogen and preventing their entry into host cells. Antibodies prevent and fight infections by binding to antigens on the pathogen and preventing their entry into host cells. Antibodies prevent and fight infections by binding to antigens on the pathogen and preventing their entry into host cells. Antibodies prevent and fight infections by binding to antigens on the pathogen and preventing their entry into host cells.

One to two weeks after infection, effector CD4+ and CD8+ T cells die, leaving behind antigen-specific memory T cells that persist long after infection. Memory T cells mount a rapid immune response upon reinfection with the same pathogen and can be subdivided into central memory cells that circulate between the blood and lymph nodes, and resident and recirculating effector memory cells in non-lymphoid tissue. Tissue-resident memory T cells (TRMs) reside in mucosal tissues and rapidly respond to local infections by producing cytokines to induce immune cell activation and recruitment at the FGT. Although the physiological role of TRMs is to defend against infections, these cells have also been identified as major targets for HIV at the lower FGT.

3 GENITAL INFLAMMATION INCREASES HIV ACQUISITION RISK IN WOMEN

Although the female genital mucosa has several defences to prevent infection and the probability of heterosexual HIV transmission is relatively low, inflammation can increase the risk of HIV acquisition at this site. This is supported by observations of infection by less fit HIV variants in women with genital inflammation than without. Inflammation is the body’s natural response to injury or infection and involves the influx of immune cells and their products to the site of infection. However, inflammation also contributes to the availability of HIV susceptible cells at the female genital mucosa. Masson et al demonstrated that genital inflammation, characterised by elevated concentrations in at least 5 of 9 pro-inflammatory cytokines, was associated with a greater risk of HIV infection in South African women. The study also identified specific cytokines (macrophage inflammatory protein [MIP]-1α, MIP-1β, and interferon gamma-induced protein [IP]-10) that were independently associated with HIV seroconversion.2 The chemokines MIP-1α, MIP-1β and IP-10 are involved in recruiting HIV target cells to the female genital mucosa.90-93 Additionally, elevated cervicovaginal cytokines also contribute to HIV risk in women through mucosal barrier disruption.

A compromised vaginal epithelium facilitates HIV entry and access to local immune cells for infection. Elevated pro-inflammatory cervicovaginal cytokines have been associated with several proteins involved in protease activity, epithelial barrier function, tissue remodelling, and actin cytoskeleton organisation. Arnold et al also demonstrated that increased concentrations of matrix metalloproteinases (MMP)-8 and 9, proteins involved in the remodelling of the extracellular matrix, are associated with raised cytokine biomarkers of inflammation. Elevated levels of MMPs in vaginal fluid from women with BV were also shown to disrupt endocervical epithelial polarisation and increase HIV transmigration through the endocervical epithelium. Additionally, a study conducted in mice demonstrated that tissue inflammation induced remodelling of the extracellular matrix and altered CD4+ T cell motility. Tissue remodelling and degradation may result in reduced epithelial barrier integrity thereby facilitating access to HIV target cells at the FGT. Consistent with this, studies have demonstrated an increased risk of HIV infection in women with reduced epithelial barrier function.

A compromised epithelial barrier may also facilitate microbial translocation and vaginal microbial diversity known to increase HIV infection rates in women. Although a lactobacillus-dominant vaginal microbiome is beneficial to host immunity, South African women tend to have greater microbial diversity. Microbial diversity and BV are linked to an increased risk of HIV infection in women and higher rates of both sexual and vertical HIV transmission. Specific BV-associated bacteria (Prevotella, G. vaginalis, Sneathia, Parvimonas and Gemella) have been significantly associated with genital inflammation and an increased risk of HIV acquisition in women. These microbes contribute to inflammation through activation of the nuclear factor kappa B (NF-κB) pathway, increasing genital cytokines, immune cell recruitment, reduced epithelial barrier integrity, and impaired wound healing. These studies highlight the role of genital inflammation in susceptibility to HIV infection in women. A better understanding of factors that modulate genital inflammation is required to prevent HIV transmission in women at high risk of acquiring the virus. Here, considering that HIV is predominantly transmitted to
women via heterosexual transmission, we review the potential for semen exposure and condomless sex to foster the genital immune environment linked to HIV risk in women.

4 | THE STRUCTURE OF THE MALE GENITAL TRACT AND HIV INFECTION

The male genital tract (MGT) is comprised of the penile urethra and the testes (Figure 1). In uncircumcised males, the foreskin provides both physical and immunological protection to the glans but is also highly susceptible to HIV infection. The outer surface of the foreskin is lined by a double layer of keratinised stratified squamous epithelium that covers the glans and the opening of the penile urethra (meatus). The epithelium of the foreskin is relatively resistant to HIV infection unless microabrasions are induced during condomless sex, which may facilitate access to target cells within the underlying epithelium. The subpreputial cavity, which is the inside of the foreskin, provides an anoxic and moist microenvironment that harbours a diverse array of anaerobic microbes. The presence of these anaerobic microbes increases the susceptibility of the neighbouring epithelium and the urethral opening to HIV infection via activation of target cells. Additionally, when the penis is erect, the foreskin retracts, exposing the glans and inner foreskin, which are more susceptible to viral infection. The inner foreskin contains HIV target cells that are directly exposed to the vagina during sexual intercourse.

Medical male circumcision involves the surgical removal of the foreskin resulting in a dry keratinised epithelial surface that is more resistant to HIV infection. Circumcision also reduces the diversity of the penile microbiota and may decrease HIV acquisition risk in both men and women.

Urine and semen are secreted from the penile urethra, which originates at the bladder and is approximately 20 cm in length and 1–2 cm in diameter. In contrast to the foreskin, the urethra is lined with non-keratinised pseudostratified glandular columnar epithelium, which is less resilient to HIV infection. Given that the epithelium of the penile urethra confers reduced protection against HIV entry and contains a high density of intraepithelial immune cells, this serves as a primary site for infection by sexually transmitted infections (STIs), including HIV. The epithelium of the urethra also contains several deep invaginations called the perirethral glands of Littre. These Littre glands are responsible for pre-ejaculate secretion that neutralises residual urine in the urethral lumen and acts as lubrication during condomless sex.

The testes can be divided into two main regions; these are the interstitial spaces between the tubules and the seminiferous tubules. The testes are responsible for the production of testosterone and spermatogenesis, which occurs in the coiled seminiferous tubules. The seminiferous tubules connect to the head of the epididymis and then to the vas deferens via the rete testes. The seminiferous tubules are made up of Sertoli cells that...
surround the spermatogenic cells and provide essential nutrients to the spermatozoa. The peritubular myoid cells are smooth muscle cells that surround the seminiferous tubules of the testis and provide structural integrity to the tubules. Peritubular myoid cells are contractile cells that are involved in the maturation and transport of the spermatozoa into the epididymis. Leydig cells are adjacent to the seminiferous tubules and are the most abundant cells within the interstitial space. These cells are responsible for the production of testosterone and small amounts of oestradiol which facilitate the development of spermatozoa.

5 | SEMEN COMPOSITION AND IMPLICATIONS FOR HIV INFECTION

Semeno contains a mixture of spermatozoa, seminal plasma (SP), microbes and several bioactive molecules known to both promote and inhibit female genital inflammation. Semen contains secretions from the prostate gland and seminal vesicles. These secretions contain high levels of E-series prostaglandins (PGE) and transforming growth factor (TGF)-β, which are known to have potent immunomodulatory effects. TGF-β and PGE2 in semen are commonly associated with anti-inflammatory properties, including suppressing neutrophils, natural killer cells and dendritic cells (DCs). However, in cervical biopsies, PGE2 was shown to stimulate the production of the chemotactic cytokine interleukin (IL)-8 and inhibit the production of the secretory leukocyte peptidase inhibitor, an enzyme with anti-HIV activity. Semen also contains several other cytokines (including IL-1α, IL-1β, IL-2, IL-7, IL-8, IL-10, IL-15, IL-17, granulocyte-macrophage colony-stimulating factor [GM-CSF], granulocyte colony-stimulating factor [G-CSF], monocyte chemoattractant protein [MCP]-1, MIP-1α, MIP-1β, regulated on activation, normal T cell expressed and secreted [RANTES], fibroblast growth factor [FGF]-2, growth-related oncogene [GRO]-α, tumour necrosis factor [TNF], vascular endothelial growth factor [VEGF], and fractalkine), chemokines, immunoglobulins and other proteins. These semen-derived cytokines are involved in immune cell recruitment and the maturation and proliferation of monocytes, T cells, B cells, DCs and natural killer cells. Semeno contains high levels of IL-7, which at similar concentrations in cervicovaginal and lymphoid tissues were shown to enhance HIV-1 replication and prevent apoptosis of CD4+ T cells. Additionally, semen contains endogenously produced lymphocytes including CD4+ and CD8+ T cells. Semen also harbours a diverse array of microbes derived from the penile urethra and upper MGT. The most abundant bacterial taxa in semen include among others Streptococcus, Staphylococcus, Corynebacterium, Lactobacillus, Prevotella, Aerococcus, Finegoldia, etc. Additionally, protein deposits known as amyloid fibrils have also been identified in semen, their physiological function is to mediate the selection and clearance of damaged sperm. However, these semen-derived amyloid fibrils also greatly enhance HIV infection by facilitating the binding of HIV virions to their cellular targets for infection. Importantly, semen composition may be altered in the presence of HIV and other STIs resulting in an increased pro-inflammatory immune response at the FGT, which may further impact HIV susceptibility in women.

6 | CONTRIBUTIONS OF SEMEN TO FEMALE GENITAL INFLAMMATION

6.1 Impact of semen exposure on cytokine biomarkers of FGT inflammation

The immunomodulatory components of semen induce alterations at the FGT to facilitate conception but may also contribute to genital inflammation and HIV risk in women. Exposure to semen and SP is associated with short-term alterations in several cytokines (including IL-1α, IL-6, IL-8, IL-12p70, TNF-α, TNF-β, IP-10, leukaemia inhibitory factor [LIF], MCP-1, MCP-3, RANTES, GM-CSF, G-CSF, GRO-α, MIP-3α, VEGF, FGF-2 and fractalkine) at the lower and upper FGT. Of particular importance is IL-1α, IL-6, IL-8, TNF-α, MIP-3α, MCP-1, RANTES and IP-10, which have been used to define female genital inflammation. The β-chemokines MIP-1α, MIP-1β and RANTES are CCR5 ligands that recruit HIV target cells to the FGT but also competitively bind to the CCR5 co-receptor. Vaginal epithelial cells previously exposed to semen had elevated concentrations of MIP-3α (CCL20), a chemokine involved in the recruitment of Langerhans cells to the epithelium. MIP-3α induces chemotaxis of CCR6+ cells, including Th17 cells, the preferential targets for HIV infection, and may therefore increase the availability of HIV susceptible cells at the female genital mucosa. However, in addition to its chemotactic properties, MIP-3α also exhibits anti-HIV activity through competitive binding to the CCR6 receptor. Sharkey et al demonstrated that exposure to semen induced the expression of IL-1β, IL-6 and LIF by endometrial epithelial cells. Expression of these cytokines triggers the recruitment and activation of macrophages, DCs and neutrophils. Similarly, a study conducted on SP-treated endometrial epithelial cells and stromal fibroblasts demonstrated an upregulation of several cytokines. The presence of semen in the female genital mucosa upregulates the production of pro-inflammatory and chemotactic cytokines, with several of these associated with leukocyte recruitment and reduced mucosal barrier integrity, both significant contributors to the ability of HIV to penetrate and access target cells at the FGT.

6.2 Impact of semen on immune cells at the female genital mucosa

Since semen is initially recognised as foreign in the FGT an immune response is mounted, resulting in cytokine upregulation and the chemotaxis of immune cells. In reproduction, this pro-inflammatory immune response is necessary for the removal of excess and abnormal sperm. However, these semen-induced alterations may also
increase susceptibility to HIV infection in women. Semen-derived PGE2 has been associated with the recruitment and activation of HIV target cells.162,170 PGE2 in SP was shown to induce prostaglandin-endoperoxidase synthase-2 (PTGS2) expression in the cervix of women, where it regulates the tolerogenic phenotypes of DCs and macrophages in the postcoital inflammatory response.11,16 The expression of PTGS2 in vaginal cells is also related to an increased susceptibility to HIV and other STIs.162 Recent condomless sex has been associated with an influx of CD14+ monocytes, CD1a+ dendritic cells and CD8+ T cells to the cervical epithelium and stroma.11 Additionally, SP treatment significantly induced chemotaxis of CD14+ monocytes and CD4+ T cells in endometrial epithelial cells and stromal fibroblasts.20 SP also upregulates the expression of the HIV co-receptor CCR5+ on CD4+ T cells and in vitro in HeLa cells.171,172 Similarly, we have recently demonstrated that higher cervicovaginal Y-chromosome DNA (YcDNA) concentrations and prostate-specific antigen (PSA) detection, both indicative of recent semen exposure, are associated with increased frequencies of activated CD4 + HLA-DR + T cells and CD4 + CCR5 + HLA-DR + HIV targets, respectively (Jewanraj et al, 2021; accepted).

A Treg immune response is induced soon after semen exposure since prolonged inflammation at the FGT may reduce the odds of fertilisation and pregnancy.12,16,30,31,173 Semen-derived TGF-β and PGE induce a shift from an initial Th1 to a Th2 immune response by promoting Treg cell differentiation and expansion.12,29,30 The induction of a Treg immune response results in tolerance of the paternal alloantigen at the time of embryo implantation.12,31,32 Prostaglandins in semen may also upregulate the production of the anti-inflammatory cytokine IL-10. Consistent with this, we and others have demonstrated elevated cervicovaginal IL-10 concentrations in response to recent semen exposure.13,165 Additionally, prostaglandins prevent an immune response at the FGT by inhibiting macrophage cytokine production and T-cell proliferation.29,30,169,174,175 Although this induction of immune tolerance may be protective for the paternal alloantigen, this dampened immune response may prevent pathogen clearance at the female genital mucosa.

In addition, studies have demonstrated that prior and prolonged exposure to the same donor’s semen improved fertility and reduced preeclampsia rates in women, highlighting the importance of immune tolerance to semen in these contexts.176-180 Furthermore, a
recent study conducted in rhesus macaques demonstrated that repeated vaginal exposure to semen resulted in lower CCR5 expression on CD4+ T cells and reduced infection by Simian Immunodeficiency Virus. \(^{181}\) These findings suggest that semen exposure to new or multiple concurrent partners may induce a greater and prolonged inflammatory response, which is associated with adverse pregnancy outcomes and possibly an increased risk of HIV transmission. \(^{176-178,180,181}\) Immune tolerance may be lost on exposure to semen from a new partner, resulting in a more pronounced immune response and suggests a biological link for the relationship between partner concurrency and HIV risk in South African women. \(^{182}\)

6.3 | Impact of semen exposure on the vaginal microbiota

Bacterial vaginosis is a state characterised by a shift in the vaginal microbiome from Lactobacillus dominance to a more diverse spectrum of facultative anaerobes. \(^{52,183}\) Condomless sex has been associated with BV occurrence, \(^{28,184-186}\) and increases in Escherichia coli at the FGT. \(^{185,187-189}\) Semen contains a diverse array of bacteria that are introduced into the vagina during condomless sex. \(^{24-26}\) Additionally, the MGT itself (including the penile skin, meatus, glans/corona and the subpreputial cavity) also contains a diverse array of bacterial taxa that may be transferred to the FGT in the absence of ejaculation and semen exposure. \(^{24-28,187,190,191}\) A high level of concordance has been observed between the MGT microbiome composition and BV incidence in female partners. \(^{27,28,190}\) In addition, semen has an alkaline pH range between 7.2 and 7.8, capable of buffering the acidic pH of vaginal fluid. \(^{23,192,193}\) This neutralisation of the vaginal pH may promote a shift in the vaginal microbiome to a BV-associated state that is conducive to HIV-1 infection. \(^{4,5,7,52,69,193,194}\) Several factors in semen may also inhibit the activity of extracellular H₂O₂ produced by Lactobacilli species and thus promote the growth of BV-associated microbes. \(^{195}\) We have demonstrated that recent semen exposure is associated with increased detection of BVAB-2, Prevotella bivia, and G. vaginalis and reduced detection of Lactobacillus jensenii in vaginal specimens (Jewanraj et al, 2021; accepted). \(^{165}\) Increases in other gut-associated microbes have also been observed in the FGT after protected sexual intercourse, suggesting that these alterations in the vaginal microbiota may also be associated with mechanical contamination rather than just semen itself. \(^{185,187}\) These studies suggest that semen exposure and sexual intercourse may promote a shift in the microbial environments of the FGT that may facilitate HIV infection in women. \(^{4,5,7,165}\)

6.4 | Impact of sexual intercourse and semen exposure on the vaginal epithelial barrier

An intact vaginal epithelial barrier is the primary host defence against HIV entry and infection. Reduced epithelial barrier integrity may facilitate HIV access to target cells at the FGT. Colposcopic examination of the vaginal mucosa revealed that friction during consensual sexual intercourse might cause microabrasions in the epithelial barrier. \(^{196-198}\) Additionally, pro-inflammatory cytokines within semen may also increase the permeability of the vaginal epithelium. Interferon-gamma in semen may increase epithelial permeability by inducing macrophagocytosis of tight junction proteins. \(^{199}\) Semen-derived IL-1β may also increase vaginal epithelium tight junction permeability through the activation of the NF-κB pathway. \(^{200}\) Elevated levels of MMPs have also been linked to reduced mucosal barrier integrity, increased cervicovaginal cytokine production, immune cell recruitment at the vaginal mucosa and increased HIV transmigration. \(^{3,8}\) We have recently demonstrated that semen exposure is associated with increased concentrations of MMP-2 and their inhibitors in vaginal specimens. \(^{165}\) An increased HIV incidence has been observed among women with compromised epithelial barrier integrity through the enhanced ability of HIV-1 to penetrate the vaginal epithelium. \(^{11,96,98,201}\)

7 | THE ROLE OF SEXUAL INTERCOURSE AND SEMEN EXPOSURE ON TOPICAL PrEP EFFICACY

In addition to its role in female genital inflammation and immune activation, semen exposure and sexual intercourse may also undermine topical pre-exposure prophylaxis (PrEP) efficacy \(^{202-204}\) and has additional implications for HIV susceptibility in women. The physiological changes that occur during coitus may alter PrEP efficacy by changing the surface area of the vagina and redistributing cervicovaginal fluid and topically applied microbicides. \(^{205,206}\) In clinical trials, vaginal microbicide gels PRO 2000 and cellulose sulphate failed to confer protection against HIV-1 transmission in women. \(^{207,208}\) In vitro assays demonstrated a significant reduction in the antiviral activity of PRO 2000 gel following sexual intercourse. \(^{204}\) Tenofovir gel concentrations were also significantly reduced in cervicovaginal lavage and vaginal and cervical tissues after coitus. \(^{203}\) These findings were likely due to the redistribution of the microbicide gels in the vagina during sexual intercourse.

Semen and SP itself contains several bioactive molecules and may also alter the antiviral activity of microbicides. \(^{202,204-209,210}\) SP was shown to interfere with the HIV-1 and herpes simplex virus (HSV)-2 inhibitory activity of PRO 2000 and cellulose sulphate microbicides. \(^{202,209,210}\) Seminal proteins, fibronectin and lactoferrin competitively inhibited the binding of the microbicides to their target on the HSV envelope. \(^{210}\) The reduced antiviral activity of these microbicides may also be due to electrostatic interactions between cationic SP polyamines and the polyanions of the microbicides. \(^{204,209-211}\) Zirafi et al \(^{202}\) demonstrated that seminal amyloids enhance HIV infection and also contribute to the reduced antiviral activity of microbicides. Additionally, we previously demonstrated that recent semen exposure was associated with increased detection of G. vaginalis and biomarkers of inflammation in vaginal specimens (Jewanraj et al, 2021; accepted), both of which contribute to
diminished topical PrEP efficacy in women. These studies suggest that sexual intercourse and semen itself may also reduce the efficacy of topical PrEP in women and highlights the need to assess and control for these factors.

8 | BIOMARKERS OF SEMEN EXPOSURE

Research primarily relies on self-reports of condom use and sexual behaviour, which may lead to inaccurate data interpretation due to reporting bias. Although biomarkers of semen exposure were developed for use in forensics, they also have several useful applications in HIV prevention research. Semen biomarkers can be used to control for semen-induced alterations at the FGT, assess condom use in clinical trials and determine the efficacy of barrier contraceptives and microbicides. Biomarkers that have been previously used to detect semen in vaginal specimens include PSA, YcDNA, semenogelins, acid phosphatase and sperm detection by microscopy. PSA and YcDNA detection are the most well-studied and commonly used biomarkers of semen exposure. PSA is present in high concentrations in semen, and detection in vaginal fluid usually indicates semen exposure within 48 h. We and others have demonstrated that PSA detection in vaginal specimens, a proxy for recent semen exposure, is associated with a pro-inflammatory immune response at the FGT (Jewanraj et al, 2021; accepted). Conversely, YcDNA is a more stable biomarker and is detectable in vaginal specimens up to 15 days after coitus. Since YcDNA is detectable in the presence of spermatozoa, it is an ideal measure of the probability of pregnancy. These semen biomarkers may be suitable for different studies depending on the residence time of the biomarker and the study outcome, such as the probability of pregnancy, infection or genital inflammation. Routine objective screening for semen biomarkers may avoid the discrepancies associated with self-reported data and may lead to more reproducible study outcomes. Additionally, given the immunomodulatory properties of semen, these biomarkers can be used to control for semen’s impact on the immune and microbial microenvironments of the FGT.

9 | CONCLUSION

Identifying factors associated with female genital inflammation and limiting their impact on HIV risk is particularly important in high HIV burden areas. Semen is a highly immunomodulatory fluid and is the primary vector for HIV transmission to women during condomless sex. However, most studies of mucosal immunity are conducted in the absence of semen or without consideration of its immune impact on the female genital mucosa. Semen exposure is associated with a short-term inflammatory response at the FGT which is quickly resolved to facilitate immune tolerance to the paternal antigens. Albeit short-lived, a semen-induced pro-inflammatory immune response may promote genital inflammation and HIV risk in women. Additionally, semen and condomless sex may also modulate topical PrEP efficacy and have additional implications for HIV risk in women. Future clinical and immunological studies of HIV and other STIs should consider semen’s contribution to the immune and microbial environments of the FGT. We suggest that STI/HIV research may benefit from routine screening for semen biomarkers in vaginal specimens to account for its impact on female genital inflammation.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

ORCID

Janine Jewanraj https://orcid.org/0000-0002-4501-8103

REFERENCES

1. UNAIDS. Fact Sheet – World AIDS Day; 2020.
2. Masson L, Passmore JA, Liebenberg LJ, et al. Genital inflammation and the risk of HIV acquisition in women. Clin Infect Dis. 2015;61(2):260-269.
3. Arnold KB, Burgener A, Birse K, et al. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells. Mucosal Immunol. 2016;9(1):194-205.
4. Anahtar MN, Byrne EH, Doherty KE, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015;42(5):965-976.
5. Gosmann C, Anahtar MN, Handley SA, et al. Lactobacillus-deficient cervicovaginal bacterial communities are associated with increased HIV acquisition in young south African women. Immunity. 2017;46(1):29-37.
6. Cherne MD, Cole AL, Newberry L, Schmidt-Owens M, Deichen M, Cole AM. Matrix metalloproteinases expressed in response to bacterial vaginosis disrupt the endocervical epithelium, increasing transmigration of HIV. Infect Immun. 2020;88(4):e00041-20.
7. McClelland RS, Lingappa JR, Srinivasan S, et al. Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case-control study. Lancet Infect Dis. 2018;18(5):554-564.
8. Royce RA, Seña A, Cates W, Cohen MS. Sexual transmission of HIV. N Engl J Med. 1997;336(15):1072-1078.
human pregnancy plug mucus and mucins in an inhibition assay. *Virol J.* 2008;5(1):1-10.

49. Shukair SA, Allen SA, Cianci GC, et al. Human cervicovaginal mucus contains an activity that hinders HIV-1 movement. *Mucosal Immunol.* 2013;6(2):427-434.

50. Wang Y-Y, Kannan A, Nunn KL, et al. IgG in cervicovaginal mucus traps HSV and prevents vaginal herpes infections. *Mucosal Immunol.* 2014;7(5):1036-1044.

51. Demoueaux B, Gouyer V, Gottrand F, Narita T, Desseyn J-L. Gel-forming mucin interactome drives mucus viscoelasticity. *Adv Cell Interface Sci.* 2018;252:69-82.

52. Lai SK, Hida K, Shukair S, et al. Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. *J Virol.* 2009;83(21):11196-11200.

53. Schroeder HA, Nunn KL, Schafer A, et al. Herpes simplex virus-binding IgG traps HSV in human cervicovaginal mucus across the menstrual cycle and diverse vaginal microbial composition. *Mucosal Immunol.* 2018;11(5):1477-1486.

54. Yarbrough VL, Winkle S, Herbst-Kralovetz MM. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. *Human Reprod Update.* 2015;21(3):353-377.

55. Cone RA. Barrier properties of mucus. *Adv Drug Deliv Rev.* 2009;61(2):75-85.

56. Mall AS, Habte H, Mthembu Y, Peacocke J, De Beer C. Mucus and Mucins: do they have a role in the inhibition of the human immunodeficiency virus? *Virol J.* 2017;14(1):1-14.

57. Birse KD, Cole AL, Hirbod T, et al. Correction: non-cationic factors are associated with HIV neutralizing activity in genital secretions of female sex workers. *PLoS One.* 2015;10(7):e0134196.

58. Nunn KL, Wang YY, Harit D, et al. Enhanced trapping of HIV-1 by human cervicovaginal mucus is associated with lactobacillus crispatus-dominant microbiota. *MBio.* 2016;6(5):e01084-15.

59. Tyssen D, Wang Y-Y, Hayward JA, et al. Anti-HIV-1 activity of lactic acid in human cervicovaginal fluid. *MSphere.* 2018;3(4):e00055-18.

60. Hoang T, Toler E, DeLong K, et al. The cervicovaginal mucus barrier to HIV-1 is diminished in bacterial vaginosis. *PLoS Pathog.* 2020;16(1):e1008236.

61. Borgdorff H, Gautam R, Armstrong SD, et al. Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier. *Mucosal Immunol.* 2016;9(3):621-633.

62. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. *Proc Natl Acad Sci USA.* 2011;108:4680-4687.

63. Mastroamarino P, Di Pietro M, Schiavoni G, Nardis C, Gentile M, Sessa R. Effects of vaginal lactobacilli in Chlamydia trachomatis infection. *Int J Med Microbiol.* 2014;304(5–6):654-661.

64. Coman M, Verdenelli M, Cescioni C, et al. In vitro evaluation on HeLa cells of protective mechanisms of probiotic lactobacilli against Candida clinical isolates. *J Appl Microbiol.* 2015;119(5):1383-1390.

65. Spurbeck RR, Arvidson CG. Inhibition of Neisseria gonorrhoeae by human cervicovaginal mucus. *Infect Immun.* 2008;76(7):3124-3130.

66. Ciandini E, Campana R, Cassettari L, et al. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm. *Appl Microbiol Biotechnol.* 2016;100(15):6767-6777.

67. O’Hanlon DE, Come RA, Moench TR. Vaginal pH measured in vivo: lactobacilli determine pH and lactic acid concentration. *BMCMicrobiol.* 2019;19(1):1-8.

68. Mironsef P, Hotton AL, Gilbert D, et al. Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH. *PLoS One.* 2014;9(7):e102467.

69. Aldunate M, Tyssen D, Johnson A, et al. Vaginal concentrations of lactic acid potently inactivate HIV. *J Antimicrob Chemother.* 2013;68(9):2015-2025.

70. O’Hanlon DE, Moench TR, Cone RA. In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide. *BMC Infect Dis.* 2011;11(1):1-8.

71. Gong Z, Luna Y, Yu P, Fan H. Lactobacilli inactivate Chlamydia trachomatis through lactic acid but not H2O2. *PLoS One.* 2014;9(9):e107758.

72. Hearps A, Tyssen D, Srinovskii D, et al. Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. *Mucosal Immunol.* 2017;10(6):1480-1490.

73. Rodriguez-Garcia M, Shen Z, Fortier JM, Wira CR. Differential cytotoxic function of resident and non-resident CD8+ T cells in the human female reproductive tract before and after menopause. *Front Immunol.* 2020;11:1096.

74. Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. *Immunol Rev.* 2005;206:306-335.

75. Shacklett BL. Mucosal immunity in HIV/SIV infection: T cells, B cells and beyond. *Curr Immunol Rev.* 2019;15(1):63-75.

76. Ruprecht RM, Marasini B, Thippesappa R. Mucosal antibodies: defending epithelial barriers against HIV-1 invasion. *Vaccines.* 2019;7(4):194.

77. Ravel JV, Bolland S. IgG fc receptors. *Ann Rev Immunol.* 2001;19(1):275-290.

78. Mkhize NN, Durghia R, Ashley V, et al. Broadly neutralizing antibody specificities detected in the genital tract of HIV-1 infected women. *AIDS.* 2016;30(7):1005.

79. Ghosh M, Fahey JV, Shen Z, et al. Anti-HIV activity in cervical-vaginal secretions from HIV-positive and negative women correlate with innate antimicrobial levels and IgG antibodies. *PLoS One.* 2010;5(6):e11366.

80. Wira CR, Rodriguez-Garcia M, Patel MW. The role of sex hormones in immune protection of the female reproductive tract. *Nat Rev Immunol.* 2015;15(4):217-230.

81. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. *Nature.* 1999;401(6754):708-712.

82. Carbone FR, Mackay LK, Heath WR, Gebhardt T. Distinct resident and recirculating memory T cell subsets in non-lymphoid tissues. *Curr Opin Immunol.* 2013;25(3):329-333.

83. Masopust D, Soerens AG. Tissue-resident T cells and other resident leukocytes. *Annu Rev Immunol.* 2019;37:521-546.

84. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. *Nat Immunol.* 2009;10(5):524.

85. Schenkel JM, Fraser KA, Beura LK, Paumen KE, Vezys V, Masopust D. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. *Science.* 2014;346(6205):98-101.

86. Cantero-Pérez J, Grau-Expósito J, Serra-Peinado C, et al. Resident memory T cells are a cellular reservoir for HIV in the cervical mucosa. *Nat Commun.* 2019;10(1):1-16.

87. O’Neill TR, Hu K, Truong NR, et al. The role of tissue resident memory CD4 T cells in herpes simplex viral and HIV infection. *Viruses.* 2021;13(3):359.

88. Gray RH, Wawer MJ, Brookmeyer R, et al. Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-discordant couples in Rakai, Uganda. *Lancet.* 2001;357(9263):1149-1153.

89. Selhorst P, Masson L, Ismail SD, et al. Cervicovaginal inflammation facilitates acquisition of less infectious HIV variants. *Clin Infect Dis.* 2017;64(1):79-82.

90. Li Q, Estes JD, Schlevert PM, et al. Glycerol monolaurate prevents mucosal SIV transmission. *Nature.* 2009;458(7241):1096.

91. Stanford MM, Isselkut TB. The relative activity of CXC CR3 and CCR5 ligands in T lymphocyte migration: concordant and disparate activities in vitro and in vivo. *J Leukoc Biol.* 2003;74(5):791-799.
92. Dieu-Noëjean MC, Vicari A, Lebecque S, Caux C. Regulation of dendritic cell trafficking: a process that involves the participation of selective chemokines. J Leukoc Biol. 1999;66(2):252-262.

93. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995;270(5243):1811-1815.

94. Nazli A, Chan O, Dobson-Belaire WN, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6(4):e1000852.

95. Overstreet MG, Gaylo A, Angermann BR, et al. Inflammation-induced interstitial migration of effector CD4+ T cells is dependent on integrin αvβ3. Nat Immunol. 2013;14(9):949-958.

96. Hladik F, McElrath MJ. Setting the stage: host invasion by HIV. Nat Rev Immunol. 2008;8(6):447-457.

97. Miller CJ, Li Q, Abel K, et al. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol. 2005;79(14):9217-9227.

98. Anderson DJ. Finally, a macaque model for cell-associated SIV/HIV vaginal transmission. J Infect Dis. 2010;202(3):333-336.

99. Lennard K, Dabee S, Barnabas SL, et al. Microbial composition predicts genital tract inflammation and persistent bacterial vaginosis in South African adolescent females. Infect Immun. 2018;86(1):e00410-17.

100. Price LB, Liu CM, Johnson KE, et al. The effects of circumcision on the penis microbiome. PLoS One. 2010;5(12):e8422.

101. Price LB, Liu CM, Johnson KE, et al. The effects of circumcision on the penis microbiome. PLoS One. 2010;5(12):e8422.

102. McCoombes SG, Short RV. Potential HIV-1 target cells in the human penis. AIDS. 2006;20(11):1491-1495.

103. Dinh MH, Anderson MR, McRaven MD, et al. Visualization of HIV-1 interactions with penile and foreskin epithelia: clues for female-to-male HIV transmission. PLoS Pathog. 2015;11(3):e1004729.

104. Anderson D, Politch JA, Pudney J. HIV infection and immune defense of the penis. Am J Reprod Immunol. 2011;65(3):220-229.

105. Neidleman JA, Chen JC, Kohgdai N, et al. Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells. PLoS Pathog. 2017;13(2):e1006163.

106. Price LB, Liu CM, Johnson KE, et al. The effects of circumcision on the penis microbiome. PLoS One. 2010;5(12):e8422.

107. O’Farrell N, Chung C, Weiss H. Foreskin length in uncircumcised men is associated with subpreputial wetness. Int J STD AIDS. 2011;65(3):220-229.
Filippini A, Riccioli A, Padula F, et al. Immunology and immunopathology of the male genital tract: control and impairment of immune privilege in the testis and in semen. Human Reprod Update. 2001;7(5):444-449.

Fijak M, Meinhardt A. The testis in immune privilege. Immunol Rev. 2006;213(1):66-81.

Bronson R. Biology of the male reproductive tract: its cellular and morphological considerations. Am J Reprod Immunol. 2011;65(3):212-219.

Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. J Androl. 2011;32(6):625-640.

Maekawa M, Kamimura K, Nagano T. Peritubular myoid cells in the testis: their structure and function. Arch Histol Cytol. 1996;59(1):1-13.

Templeton AA, Cooper I, Kelly RW. Prostaglandin concentrations in the semen of fertile men. J Reprod Fertil. 1978;52(1):147-150.

Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol Reprod. 2011;85(2):397-408.

Kelly RW, Critchley HO. Immunomodulation by human seminal plasma: a benefit for spermatozoon and pathogen? Hum Reprod. 1997;12(10):2200-2207.

Maegawa M, Kamada M, Irahara M, et al. A repertoire of cytokines in human seminal plasma. J Reprod Immunol. 2002;54(1-2):33-42.

Sutherland JR, Sales KJ, Jabbour HN, Katz AA. Seminal plasma enhances cervical adenocarcinoma cell proliferation and tumour growth in vivo. PLoS One. 2012;7(3):e33848.

Chahroudi A, Silvestri G. Interleukin-7 in HIV pathogenesis and therapy. Eur Cytokine Netw. 2010;21(3):202-207.

Fong AM, Robinson LA, Steeber DA, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med. 1998;188(8):1413-1419.

Mueller YM, Katsikis PD. IL-15 in HIV infection: pathogenic or therapeutic potential? Eur Cytokine Netw. 2010;21(3):219-221.

Introini A, Vanpuille C, Lisco A, Grivel J-C, Margolis L. Interleukin-7 facilitates HIV-1 transmission to cervical-vaginal tissue ex vivo. PLoS Pathog. 2013;9(2):e1003148.

Olivier AJ, Liebenberg LJ, Coetze D, Williams S-L, Passmore J-AS, Burgers WA. Isolation and characterization of T cells from semen. J Immunol Methods. 2012;375(1-2):223-231.

Roan NR, Sandi-Monroy N, Kohgadai N, et al. Semen amyloids participate in spermatozoa selection and clearance. Elife. 2017;6:e24888.

Munch J, Rucker E, Standker L, et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell. 2007;131(6):1059-1071.

Kim KA, Yolamanova M, Zirafi O, et al. Semen-mediated enhancement of HIV infection is donor-dependent and correlates with the levels of SEVI. Retrovirology. 2010;7:55.

Roan NR, Müller JA, Liu H, et al. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe. 2011;10(6):541-550.

Roan NR, Liu H, Usmani SM, et al. Liquefaction of semen generates and later degrades a conserved semenogelin peptide that enhances HIV infection. J Virol. 2014;88(13):7221-7234.

Arnold F, Schnell J, Zirafi O, et al. Naturally occurring fragments from two distinct regions of the prostatic acid phosphatase form amyloidogenic enhancers of HIV infection. J Virol. 2012;86(2):1244-1249.

Kokab A, Akhondi MM, Sadeghi MR, et al. Raised inflammatory markers in semen from men with asymptomatic chlamydial infection. J Androl. 2010;31(2):114-120.

Gianella S, Morris SR, Anderson C, et al. Herpes viruses and HIV-1 drug resistance mutations influence the virologic and immunologic milieu of the male genital tract. Aids. 2013;27(1):39-47.
conception and subsequent risk of preeclampsia. J Reprod Immunol. 2014;102:104-110.
178. Kho EM, McCowan LM, North RA, et al. Duration of sexual relationship and its effect on preeclampsia and small for gestational age perinatal outcome. J Reprod Immunol. 2009;82(1):66-73.
179. Saftlas AF, Beydoun H, Triche E. Immunogenetic determinants of preeclampsia and related pregnancy disorders: a systematic review. Obstet Gynecol. 2005;106(1):162-172.
180. Robillard PY, Hulse TC, Perianin J, Jankyl E, Miri EH, Papiernik E. Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet. 1994;344(8928):973-975.
181. Abdulhaqq SA, Martinez M, Kang G, et al. Repeated semen exposure decreases cervicovaginal SIVmac251 infection in rhesus macaques. Nat Commun. 2019;10(1):1-10.
182. Kenyon CR, Tsoumanis A, Schwartz IS, Maughan-Brown B. Partner concurrency and HIV infection risk in South Africa. Int J Infect Dis. 2016;45:81-87.
183. Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005;353(18):1899-1911.
184. Gallo MF, Warner L, King CC, et al. Association between semen exposure and incident bacterial vaginosis. Infect Dis Obstet Gynecol. 2011;2011:284625.
185. Verstraelen H, Verhelst R, Vaneechoutte M, Temmerman M. The epidemiology of bacterial vaginosis in relation to sexual behaviour. BMC Infect Dis. 2010;10:81.
186. Turner AN, Carr RP, Snead MC, et al. Recent biomarker-confirmed unprotected vaginal sex, but not self-reported unprotected sex, is associated with recurrent bacterial vaginosis. Sex Transm Dis. 2016;43(3):172.
187. Eschenbach DA, Patton DL, Hooton TM, et al. Effects of vaginal intercourse with and without condoms on vaginal flora and vaginal epithelium. J Infect Dis. 2001;183(6):913-918.
188. Foxman B, Zhang L, Tallman P, et al. Transmission of uropathogenic Escherichia coli bacteriuria and contraceptive method. J Infect Dis. 1997;175(4):989-992.
189. Hooton TM, Hillier S, Johnson C, Roberts PL, Stamm WE. Escherichia coli bacteriuria and contraceptive method. JAMA. 1991;265(1):64-69.
190. Liu CM, Hungate BA, Tobian AA, et al. Penile microbiota and female partner bacterial vaginosis in Rakai, Uganda. MBio. 2015;6(3):e00589.
191. Willem M, Holst E, Myhre EB, Olsson AM. The bacterial flora of the genitourinary tract in healthy fertile men. Scand J Urol Nephrol. 1996;30(5):387-393.
192. Fox CA, Meldrum SJ, Watson BW. Continuous measurement by radio-telemetry of vaginal pH during human coitus. J Reprod Fertil. 1973;33(1):69-75.
193. Tevi-Benissan C, Belec L, Levy M, et al. In vivo semen-associated pH neutralization of cervicovaginal secretions. Clin Diag Lab Immunol. 1997;4(3):367-374.
194. Ongradi J, Cecherini-Nelli L, Pistello M, Specter S, Bendinelli M. Acid sensitivity of cell-free and cell-associated HIV-1: clinical implications. AIDS Res Hum Retroviruses. 1990;6(12):1433-1436.
195. O’Hanlon DE, Lanier BR, Moench TR, Cone RA. Cervicovaginal fluid and semen block the microbicidal activity of hydrogen peroxide produced by vaginal lactobacilli. BMC Infect Dis. 2010;10:120.
196. Norvell MK, Benrubi GI, Thompson RJ. Investigation of microtrauma after sexual intercourse. J Reprod Med. 1984;29(4):269-271.
197. Fraser I, Lahteenmaki P, Elomaa K, et al. Variations in vaginal epithelial surface appearance determined by colposcopic inspection in healthy, sexually active women. Hum Reprod. 1999;14(8):1974-1978.
198. Brawner BM, Sommers MS, Moore K, et al. Exploring genitoanal injury and HIV risk among women: menstrual phase, hormonal birth control, and injury frequency and prevalence. J Acquir Immune Defic Syndr. 2016;71(2):207.
220. Mauck CK, Weaver MA, Schwartz JL, Walsh T, Joannis C. Critical next steps for female condom research–report from a workshop. Contraception. 2009;79(5):339-344.

221. Mauck CK. Biomarkers of semen exposure. Sex Transm Dis. 2009;36(3 Suppl):S81-S83.

222. Mauck CK, Straten A. Using objective markers to assess participant behavior in HIV prevention trials of vaginal microbicides. J Acquir Immune Defic Syndr. 2007;49(1):64-69.

223. Ghanem KG, Melendez JH, McNeil-Solis C, et al. Condom use and vaginal Y-chromosome detection: the specificity of a potential biomarker. Sex Transm Dis. 2007;34(8):620-623.

224. Macaluso M, Lawson ML, Hortin G, et al. Efficacy of the female condom as a barrier to semen during intercourse. Am J Epidemiol. 2003;157(4):289-297.

225. Galvao LW, Oliveira LC, Diaz J, et al. Effectiveness of female and male condoms in preventing exposure to semen during vaginal intercourse: a randomized trial. Contraception. 2005;71(2):130-136.

226. Bahamondes L, Diaz J, Marchi NM, Castro S, Villarroel M, Macaluso M. Prostate-specific antigen in vaginal fluid after exposure to known amounts of semen and after condom use: comparison of self-collected and nurse-collected samples. Hum Reprod. 2008;23(11):2444-2451.

227. Jespers V, Kyongo J, Joseph S, et al. A longitudinal analysis of the vaginal microbiota and vaginal immune mediators in women from sub-Saharan Africa. Sci Rep. 2017;7(1):11974.

228. Kyongo JK, Jespers V, Goovaerts O, et al. Searching for lower female genital tract soluble and cellular biomarkers: defining levels and predictors in a cohort of healthy Caucasian women. PLoS One. 2012;7(11):e43951.

229. Francis SC, Hou Y, Baisley K, et al. Immune activation in the female genital tract: expression profiles of soluble proteins in women at high risk for HIV infection. PLoS One. 2016;11(1):e0143109.

230. Chomont N, Grézenguet G, Lévy M, et al. Detection of Y chromosome DNA as evidence of semen in cervicovaginal secretions of sexually active women. Clin Diagn Lab Immunol. 2001;8(5):955-958.

231. Zenilman JM, Yuengier J, Galai N, Turner CF, Rogers SM. Polymerase chain reaction detection of Y chromosome sequences in vaginal fluid: preliminary studies of a potential biomarker for sexual behavior. Sex Transm Dis. 2005;32(2):90-94.

232. Lilja H, Abrahamsson P-A, Semenogelin LA. the predominant protein in human semen. Primary structure and identification of closely related proteins in the male accessory sex glands and on the spermatozoa. J Biol Chem. 1989;264(3):1894-1900.

233. Malm J, Hellman J, Magnussen H, Laurell CB, Lilja H. Isolation and characterization of the major gel proteins in human semen, semenogel I and semenogelin II. Eur J Biochem. 1996:238(1):48-53.

234. Lundwall Å, Bjartell A, Olsson AY, Malm J. Semenogelin I and II, the predominant human seminal plasma proteins, are also expressed in non-genital tissues. Mol Hum Reprod. 2002;8(9):805-810.

235. Mauck CK, Doncel GF. Biomarkers of semen in the vagina: applications in clinical trials of contraception and prevention of sexually transmitted pathogens including HIV. Contraception. 2007;75(6):407-419.

236. Lilja H. Structure, function, and regulation of the enzyme activity of prostate-specific antigen. World J Urol. 1993;11(4):188-191.

237. Graves HC, Sensabaugh GF, Blake ET. Postcoital detection of a male-specific semen protein. Application to the investigation of rape. N Engl J Med. 1985;312(6):338-343.

238. Kamenev L, Leclercq M, Francois-Gerard C. An enzyme immunoassay for prostate-specific p30 antigen detection in the postcoital vaginal tract. J Forensic Sci Soc. 1989;29(4):233-241.

239. Macaluso M, Lawson L, Akers R, et al. Prostate-specific antigen in vaginal fluid as a biologic marker of condom failure. Contraception. 1999;59(3):195-201.

240. Thurman A, Jacot T, Melendez J, et al. Assessment of the vaginal residence time of biomarkers of semen exposure. Contraception. 2016;94(5):512-520.

How to cite this article: Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol. 2021;00:e13478. https://doi.org/10.1111/aji.13478