Semiconductor spintronics\cite{12} builds on fundamental aspects of the electron spin interactions. Spin-orbit coupling is particularly important, as it links charge and spin, allowing to control one with the other. There are two main traits of the spin-orbit coupling in the electronic band structure. First, spin-orbit coupling leads to orbital splittings of the bands, while preserving the spin degeneracy. This originates in the fine structure of the host atomic orbitals. A well known example is the spin-orbit split-off band gap in zinc-blende semiconductors. Second, and this is limited to crystals and structures lacking space inversion symmetry, spin-orbit coupling leads to spin splitting of the energy bands. This splitting is an emerging physics due to the crystal field, without a counterpart in atomic-orbitals physics. Effectively, the spin-orbit coupling gives rise to momentum-dependent spin-orbit fields, in analogy to Zeeman fields. Both zinc-blende and wurtzite crystals lack space inversion symmetry, and so exhibit spin splittings due to spin-orbit fields. Again, the most known example is the Dresselhaus field in zinc-blende semiconductors, which describes a cubic (in momentum) spin splitting away from zone center.

Spin-orbit coupling in semiconductors leads to spin relaxation\cite{13}, optical spin orientation\cite{14}, spin Hall effect\cite{15}, persistent spin structures\cite{16}, or the spin galvanic phenomena\cite{17}. Recently, it has been proposed that spin-orbit fields in semiconductor nanowires with induced proximity superconductivity can support Majorana bound states.\cite{18,19} Experimentalists are searching for Majorana states in both zinc-blende InSb\cite{20,21} and wurtzite InAs\cite{22,23} nanowires. To determine the regime for such states to exist, accurate values for the spin-orbit fields are required for the underlying semiconductor materials.

Determination of spin-orbit coupling, especially in zinc-blend III-V semiconductors,\cite{15,16,17} has a long history. Unfortunately, there are conflicting values reported in the literature. For example, the Dresselhaus coupling in GaAs is determined in the range from 9 to 28 eVÅ\cite{18} (see Table III.7. in Ref. [2]). Experimentally, the difficulty is to have reliable models to extract the parameters, while theoretically one needs reliable electronic band structure calculations. This is especially acute for wurtzite phases which are predominantly found (in several polytypes\cite{15}) in nanowires of GaAs, InAs, and InSb.\cite{20} Recently, several groups have demonstrated a controlled growth of nanowires with specific lattice structure\cite{15,16,17}. This versatile growth of III-V semiconductor nanowires has opened the possibility to study anisotropic photonic properties in both zinc-blende and wurtzite phases.\cite{24}

For example, different microscopic contributions to the spin-orbit coupling result in unusual spin dynamics with anisotropic spin relaxation, as measured by time-resolved micro-photoluminescence on single WZ nanowires.\cite{25}

The band gap of III-V semiconductors is at the centre of the Brillouin zone and its size decreases with the increasing atomic number of the atomic species. There were several investigations of the electronic structure of III-V semiconductors starting from empirical non-local pseudopotentials\cite{29} to modern density functional theory.\cite{30} The key ingredient of the density functional theory is the exchange-correlation functional which should contain the relevant information about many body interactions. Unfortunately, local and semilocal models for the exchange correlation functional fail to reproduce known band gap values.\cite{32} It has been shown that the strong underestimation of the fundamental gap in GaAs by the local density approximation\cite{33} leads to a spin splitting parameter that is 14 times greater than the value predicted from a GW band structure that results in the
the ZB phase, and a hexagonal prism for the WZ phase. The first Brillouin zone is a truncated octahedron for (axis perpendicular to the hexagon) is c hexahedra by 60 degrees with respect to the A plane. An stacking sequence, where the b plane has rotated tetragonal lattice of tetrahedra along [0001] forms an Ab ing an ABC stacking sequence. For the WZ structure the direction. The planes are shifted with each other forming an ABC stacking sequence. For the ZB structure the tetra-
hedra form triangular lattice planes normal to the [111] direction for ZB Fig. 1(a,b) we show the tetrahedra around each anion ions. The nearest neighbor connections are similar, but anions whereas WZ is derived from an hcp array of an-
ations. The nearest neighbor connections are similar, but

cations and anions on the spin splittings of the valence and conduction bands, and provide realistic parameters for the functional forms of the spin-orbit fields. The DFT methodology can also be applied to semiconductor slabs, as was recently shown in Ref. 37, which studied spin-orbit splittings in confined zinc-blende InSb. We believe that our results provide a useful database and benchmark for more empirical approaches, such as k · p methods, which can be used to model larger structures such as nanowires.

II. CRYSTAL STRUCTURE

Binary III-V semiconductors form crystals with tetra-
hedral coordination, with atoms arranged either in zinc-
blende (ZB) or wurtzite (WZ) lattice structures. A ZB crystal comprises two interpenetrating face-centered-cubic (fcc) Bravais lattices, each of a different atomic species, cation and anion; the corresponding space group is F43m. A WZ crystal is constructed from two interpenetrating hexagonal-close-packed (hcp) lattices; the space group is P63mc.

The differences between the two structures are mani-
fested by viewing them along the [111] direction for ZB and [0001] for WZ, along which both look like stacked hexagonal layers. The atoms are identical within each layer, and the layers alternate between the anion and the cation. Each anion has four nearest neighbor cations po-

tioned in a tetrahedron. ZB is based on an fcc lattice of anions whereas WZ is derived from an hcp array of an-
ions. The nearest neighbor connections are similar, but the distances and angles to further neighbors differ. In Fig. 1(a,b) we show the tetrahedra around each anion connecting four cations. For the ZB structure the tetra-
hedra form triangular lattice planes normal to the [111] direction. The planes are shifted with each other forming an ABC stacking sequence. For the WZ structure the trian-
gular lattice of tetrahedra along [0001] forms an Ab stacking sequence, where the b plane has rotated tetra-
hedra by 60 degrees with respect to the A plane. An ideal WZ crystal has the in-plane lattice constant given by \(a_{WZ} = a_{ZB}/\sqrt{2} \). The lattice constant along the c axis (axis perpendicular to the hexagon) is \(c = a_{WZ}\sqrt{3}/3 \). The first Brillouin zone is a truncated octahedron for the ZB phase, and a hexagonal prism for the WZ phase, see Fig. 1(c,d).

The particular order of the cations and anions within the unit cell determines the spin orientation caused by spin-orbit fields. In this work we use the following ordering. Our ZB structure is formed by the Bravais basis vec-
tors \(\mathbf{a}_1 = (0,1,1)/2, \mathbf{a}_2 = (1,0,1)/2, \mathbf{a}_3 = (1,1,0)/2, \) with the cation (Ga, In) at (0,0,0) and anion (As, Sb) at (1,1,1)/4; \(a \) is the cubic lattice constant. The primitive basis vectors of our hexagonal Bravais lattice of the WZ structure are \(\mathbf{a}_1 = (1/2, -1/2, 0), \mathbf{a}_2 = (0,1,0), \) and \(\mathbf{a}_3 = c(0,0,1): a \) and \(c \) are the in-plane and per-

dependent lattice parameters. Using the three basis vectors \(\mathbf{a}_i \) \((i = 1, 2, 3) \) we place the atoms as follows: \((2/3, 1/3, u) \) and \((1/3, 2/3, 1/2 + u) \) with \(u = 0 \) for anion and \(u = 3/8 \) for cation. In general, we also allow for the shift \(u = 3/8 + \epsilon \), with a small dimensionless internal cell structural parameter \(\epsilon \) describing a deviation from ideal tetrahedrons as one observes in SiC polytypes.

III. METHODS

Standard local and semilocal exchange-correlation functionals applied within density functional theory (DFT) typically underestimate the semiconducting gaps. A simple rigid shift of the bands (scissor operator) would still preserve the wrong dispersion and spin-orbit splittings. The conduction bands have to be correctly (as much as possible) located in energy with respect to the valence bands in order to have realistic descriptions of
the spin physics in semiconductors.

Along state-of-the-art GW calculations for III-V semiconductors in zinc-blende and for InAs and GaAs in wurtzite structure, there are less computationally demanding studies using local density approximation (LDA) and LDA-1/2 method. In between, on the computational complexity level, are methods of hybrid functionals that mix a portion of the exact exchange with semilocal exchange-correlation functionals. Such methods predict reasonable effective masses and gaps in ZB and WZ structures. However, even for these intermediate techniques (not to mention GW), to resolve the fine energy scales on which spin-orbit coupling is manifested requires tremendous computational efforts.

An efficient and accurate alternative for the electronic structure calculations of semiconductors by means of DFT provides the modified exchange Becke-Johnson (mBJ) potential. It has been shown that the semilocal Becke-Johnson potential makes predictions for the band gaps similar to hybrid functionals and GW methods. The semilocal approach is computationally on a par with LDA or PBE calculations. Therefore, it is well suited for investigating subtle spin-orbit effects, but also for studying extensive systems such as surfaces and interfaces including spin-orbit coupling.

Here we calculate electronic band structures and the spin properties of selected III-V semiconductors using the full potential linearized augmented plane wave method as implemented in Wien2k code. The wave functions are expanded in atomic spheres for orbital quantum numbers up to 10; the plane wave cut-off multiplied with the smallest atomic radii equals to 10. Relativistic local orbitals with $p_{1/2}$ radial wavefunctions are added for all elements to improve the basis set. The irreducible Brillouin zone is sampled with 600 k points. To overcome the aforementioned deficiencies of standard DFT calculations of the band gap underestimation, we use the modified Becke-Johnson exchange potential plus LDA-correlation. Finally, spin-orbit coupling is included in self-consistent calculations within second variational step.

Structural similarities between ZB and WZ phases suggest that the local electronic environment is also similar for the two phases, and therefore the crystal potentials will be nearly identical for WZ and ZB. We use the mBJ exchange potential that reproduces experimental band gaps in the ZB phase to predict the electronic structure and spin properties of the WZ phase.

\section*{IV. RESULTS}

The results below are obtained from DFT using the mBJ exchange potential combined with LDA for correlations potential including spin-orbit coupling within atomic spheres. It has been shown in case of GaAs that electronic properties are sensitive to structural parameters. To provide realistic first-principles data we use the experimental lattice constants determined at low temperatures. Only in the case of wurtzite GaSb we lack reliable experimental data for the structure parameters, so we take ideal relations between the WZ and ZB lattice constant phases: $a_{\text{WZ}} = a_{\text{ZB}}/\sqrt{2}$, $c_{\text{WZ}} = a_{\text{WZ}}\sqrt{8/3}$, and $\epsilon = 0$. We have scaled the mBJ potential to reproduce the experimental band gaps in the ZB phase, see Tab. I and use the same potential with the experimentally defined atomic structures (up to GaSb mentioned above) to obtain the electronic band structures for the WZ phases. In addition, we determine the internal cell parameter ϵ by minimizing the total energy; the obtained values are listed in Tab. I.

The predictive capability of such an approach of taking for the lattice constants values measured in nanowires is very satisfactory, as we compare the calculated bandgaps to some known measured values from WZ nanowires. For instance, in InAs WZ nanowires the lower bound on the band gap was estimated to be 0.46 eV by means of optical emission using photoluminescence spectroscopy. Our calculated value is 0.461 eV. For WZ GaAs nanowires the gap is experimentally estimated to be less than 1.52 eV. We get 1.38 eV. (The bandgaps measured in nanowires can be somewhat larger than in bulk due to quantum confinement). We also capture the experimental trends that GaAs and GaSb in WZ phase have a smaller gap than in ZB, while InAs and InSb larger. We have also tested our results of the ZB phase of GaSb for the $E_{\text{6}} - \Gamma_{\text{6}} \epsilon_g$ gap, for which we get 50 meV, which also reasonably agrees with electroreflectance spectra measurements yielding 63 meV. For $E_{\text{6}} - \Gamma_{\text{8v}}$, we get 0.8722 eV, while the experiment 0.8922 eV.

\subsection*{A. Band structures}

Similarities in the crystal structures of the ZB and WZ phases translate to the similarity of their band structures via relations between the band gaps and high symmetry points in their corresponding Brillouin zones. There are similar correspondences between the high symmetry directions of the two crystals as well. The symmetry line $\Lambda (\Gamma \rightarrow L)$ in ZB corresponds to the $\Delta (\Gamma \rightarrow A)$ line in WZ phase.

In Fig. 2 we show the calculated band structures in the vicinity of the Γ point for GaAs, GaSb, InAs, and InSb in ZB and WZ phases. All theses materials are central, direct band gap semiconductors. In Table I we list the band gaps E_g obtained from experiment for the ZB which coincide with the scaled mBJ calculations and the calculated gaps for the WZ phases. The T_d symmetry of the ZB reduces to the C_{6v} symmetry in the WZ phase, giving rise to a crystal field which is manifested by an additional structure at the valence band edge. Without spin-orbit coupling, the top valence states in the ZB phase belong to the three dimensional Γ_{6v} representation, which is in the WZ phase further decomposed into the two dimensional Γ_{5v} and one dimensional Γ_{1v}.
Spin-orbit coupling further lifts the triple degeneracy of the valence bands of the Γ_{5v} representation in the ZB phase to the four dimensional Γ_{8v} double group representation and the spin split-off band in the two dimensional Γ_{7v} representation. Calculated spin-orbit split-off energies Δ_{so} are listed in Tab. I. The degenerate (at zone center) heavy holes (HH) and light-holes (LH) states belong to the Γ_{8v} representation. In the WZ phase the reduced symmetry due to the crystal field leads to the splitting (at zone center) of the HH and LH by the energy Δ_{hl}, to two dimensional double group representations Γ_{9v} and Γ_{7v}. The above discussion is summarized graphically in Fig. 3.

The bottom of the conduction band edge in the ZB phase is formed by Γ_{6c} states. Above the Γ_{6c} there are spin-orbit split Γ_{7c} and Γ_{8c} bands; the calculated splitting is denoted as Δ_{so}' in Tab. I. The energy difference between the conduction band edge of Γ_{6c} representation and the valence band edge of Γ_{8v} gives the band gap E_g.

In the WZ phase the band gap is formed between the valence edge of Γ_{9v} and the conduction band edge, which is Γ_{6c} for GaAs and GaSb, and Γ_{7c} for InAs and InSb. The appearance of Γ_{8c} states is a consequence of the zone folding due to the doubled unit cell of the WZ crystal along [111] direction. Therefore, an additional zone center transition is expected to appear coming from the L point minimum in the ZB dispersion. The usual order of the conduction bands is Γ_{7c}, forming the conduction edge, followed by the Γ_{8c}, which is only weakly coupled to the light. The calculated energy differences Δ_{cb} between the Γ_{8c} and Γ_{7c} states at the zone center are listed.
in Tab. I

Low temperature experiments show that GaAs in the WZ phase has a smaller gap than in the ZB phase. This suggests that the minimum of the conduction band has indeed Γ_8, representation, and not Γ_7, in agreement with other calculations. We note that the experimental gaps are measured from the photoluminescence on GaAs WZ nanowires, which should have a slightly higher value than in the bulk, due to confinement. It has been also shown that the order of the representations in the conduction band edge is affected by strain. A direct quantitative comparison of our calculated gaps in the WZ structures with the existing experiment is thus not yet possible.

We also note that the calculated internal cell parameter ϵ in WZ GaAs, InAs and InSb is very small, less than 0.001, see Tab. I. This agrees well with other calculations and the experimental determination for InAs nanowires. On the other hand, this internal cell parameter for GaAs has been estimated to be two times larger than our calculated value, but these measurements were performed in a metastable bulk GaAs. Investigating the possible effects of ϵ on spin-orbit coupling parameters, we have analyzed the electronic structures of WZ phase for $\epsilon = 0$ and for the relaxed value of ϵ, listed in Tab. I. We found that in the structures with the relaxed value of ϵ the mostly affected is InSb: Δ_{III} increases by 10%.

B. Spin-orbit coupling

Describing semiconductor bandgaps with standard local and semilocal exchange-correlation functionals within DFT leads to an overestimation of the band splitting (due to the underestimation of the band gap), when one compares with many-body treatments. It has been shown that the magnitude of the spin-orbit coupling parameters depends on the hybridization between bands. In this section we present our results obtained using mBJ with spin-orbit coupling treated in the second variational step. In known cases our results are in agreement with computationally more expensive many body approaches. We determine relevant spin-orbit coupling parameters by fitting symmetry-determined functional forms of the spin-orbit splittings to our DFT data close to the zone center.

Spin-orbit coupling splits orbital degeneracies of the electronic bands at high-symmetry points. In systems with a space inversion symmetry, time reversal symmetry would lead to at least double degeneracy of the Bloch states. Neither ZB nor WZ phase of III-V semiconductors has space inversion symmetry, which is manifested by the spin-splitting of the states at a general k point. Only time-reversal invariant points, for which k and $-k$ are equivalent (differ by a reciprocal lattice vector), the spin degeneracy is recovered. Trivially, Γ point of the zone center is such a point. Other high symmetry time-reversal invariant points are lattice specific. In general, we can conclude on the existence of spin splitting by analyzing the dimensionality of the irreducible representations of the double groups at high symmetry points and lines.

1. Zinc-blende structures

The time-reversal invariant points of ZB structures are Γ, L, and X. At these points the bands are always doubly spin degenerate. In addition, the Bloch states along [100], i.e., along the Δ line, have the C_{2v} symmetry whose double group has only two dimensional irreducible representations. Therefore, the states along Δ do not spin-split either, see Fig. 4(a).

![FIG. 4. Schematic plot of bands spin splitting near the zone center for spin up and spin down shown with solid and dashed curves. The splitting is shown for zinc-blende along directions (a) [100] the Δ line; (b) [110] the Σ line; (c) [111] the Λ line; and for (d) wurzite structure along any direction except the Δ line. The symbol CB denotes conduction bands, HH stands for heavy holes, LH for light holes and CH for crystal hole bands.](image)

Along the [110] direction, the Σ line, including the K points, the states transform by the C_{Σ_3} point group. Since C_{Σ_3} has only one dimensional double group representations, all the states are in general spin-split, see Fig. 3(b), to Σ_3 or Σ_4 representations. The splitting close to zone center is proportional to k^3 for bands with Γ_6 and Γ_7 representations. However splitting of the Γ_8 contains also terms linear in k of the form $\Delta E = C k + \gamma k^3$, where C and γ are the corresponding energy splitting parameters. We determine the spin-orbit coupling parameters by fitting the ΔE in the vicinity of the Γ point up to 2% of the $\Gamma - K$ width to our calculated DFT data. The signs of the spin-orbit coupling parameters depend on the specific atomic positions (ordering of cations and anions) within the unit cell. In this case the reflection...
of the C_s point group, the plane (110), multiplies state spin-up (Σ^\uparrow) by $-i$ while spin-down state (Σ^\downarrow) by i, and hence (Σ^\uparrow) belongs to Σ_4 and (Σ^\downarrow) to Σ_3 representation according to the character table in Ref. [2].

We define the energy spin splitting ΔE as positive if the spin-up state is above the spin-down state.

States along the [111] direction, the Λ symmetry line, belong to the C_{3v} point group and may fall to one or two dimensional irreducible double group representations. Therefore, the states along Λ may, but need not spin split. For our materials the conduction and light-hole bands along Λ line do not split, while the valence bands of Γ_{8c} symmetry, heavy holes, do spin-split to Λ_5 or Λ_6 representations, also following the $Ck + \gamma k^3$ dependence close to the zone center [31,52,17].

To determine the sign of the C and γ parameters, we consider L point $[1/2,1/2,1/2]$ in conventional basis and spin quantization axis along [001]. The reflection plane σ. distinguishes spin-up and spin-down states that belong to Λ_6 and Λ_5 representations [2]. Similarly, the spin splitting ΔE is defined as positive when the spin-up state is above the spin-down state, or when states Λ_6 are above Λ_5 states [2]. Comparing especially the absolute values of the spin-orbit parameters for the $H\Pi$ band along Σ and Λ lines, see Tab. I [2], we find them strongly anisotropic. We observe also that the absolute values of the spin-orbit parameters for the studied semiconductors in general grow with the atomic weight of the compounds. However, the parameters describing linear in k spin-splittings the atomic weight of the cation plays the dominant role.

In Table I we show the calculated spin-orbit coupling parameters for the valence bands as well as the split-off gap at zone center, Δ_{so}, for the valence (difference between Γ_{8c} and Γ_{7c}), and Δ_{so}, for the conduction (difference between Γ_{8c} and Γ_{7c}) bands; see Fig. 3. These gaps reflect on the strength of the spin-orbit coupling at the anion and cation sites, as the zone center coupling is directly related to the atomic fine structure of the atoms supplying the principal band orbitals. We find that Δ_{so} is mainly controlled by the the anion (As, Sb), while Δ_{so} by the cation (Ga,In) [12].

The spin splitting near the Γ_{6c} conduction band minimum can be described by the operator

$$H_{\text{so}} = \frac{\hbar}{2} \sigma \cdot \Omega(\mathbf{k}).$$

Here σ is the vector of Pauli spin matrices and $\Omega(\mathbf{k})$ is the spin-orbit field (labeled as sof). For the ZB conduction bands the functional form of this field is

$$\Omega(\mathbf{k}) = \gamma [k_x(k_y^2 - k_z^2), k_y(k_z^2 - k_x^2), k_z(k_x^2 - k_y^2)],$$

as first derived by Dresselhaus [3]. In Fig. 5(a) we plot this cubic Dresselhaus spin-orbit field as a vector field on a momentum contour for $k_z = 0$. As the conduction band is formed from s-type orbitals, their spin would point along the $\Omega(\mathbf{k})$; compare to the calculated spin expectation values shown in Fig. 5(c). The hole states are formed by the p-type orbitals which are split due to SOC to the total angular momentum $J = 3/2$ and $J = 1/2$ separated by the Δ_{so} energy. In this case the SOC field can not be directly expressed, although the spin expectation values of the Bloch states can be calculated, what we show in Fig. 5(a,b).

The field $\Omega(\mathbf{k})$ is responsible for conduction band Γ_{6c} spin splitting which for small k varies as k^3. The proportionality parameter γ depends on the bulk properties of the material and its amplitude often grows with anion mass and scales as $1/E_g$ for narrow gap semiconductors [12].

We determine the sign of γ by fixing $\Omega(\mathbf{k})$ to the calculated spin expectation values, compare Fig. 5(a) and Fig. 5(c) for GaAs. We note that the sign of γ can also be determined from symmetry representations of the eigenvectors near the zone center [13].

Calculated spin expectation values for GaSb, InAs, and InSb are similar to the GaAs case shown in Fig. 5, see Appendix.

We determine the γ parameter for the Γ_{6c} band in GaAs to be 9.13 eVÅ3 which is in good agreement with previous calculations. For instance, empirical pseudopotentials corrected by fitting to GW [23] found the corrected value of 8.3 eVÅ3 with respect to the LDA value of 46.8 eVÅ3. Adding empirical pseudo Darwin potential shifts [22] to adjust gaps at high symmetry points to reproduce experimental gaps results in a qualitatively reasonable band structure with γ calculated within LMTO to 14.9 eVÅ3 and $k \cdot p$ theory to 29.8 eVÅ3. A semiclassical billiard model [24] provide 9 eVÅ3. Extensive self-consistent GW calculations with the spin-orbit interaction taken as a perturbation to the scalar relativistic Hamiltonian and scaled self-energy to reproduce experimental bandgaps [25] give 8.5 eVÅ3. Comparing our calculated γ parameter for GaSb, InAs, and InSb with the GW calculations [26], see Tab. I, we conclude that the employed mBJ potential gives accurate results.

On a qualitative level, γ for the Γ_{6c} conduction band grows with the total atomic weight of the compound. For the valence states the amplitude of the cubic spin-orbit coupling parameter is controlled by the anion type while the linear parameters by the cation.
The positive value is for Γ the first and second conduction bands in the zone center. The spin splittings are very sensitive to the accuracy of the band gap determination. When considering the current experimental accuracy of these, the influence of ϵ is less than 10%, indeed negligible when considering the current experimental accuracy of determining these spin-orbit parameters.

The linear term in \mathbf{k} for Γ_7 and Γ_8 states manifests in the band spin splitting of the same form as the Rashba splitting [22] see Fig. 4(d). The Γ_9 states of the heavy holes in WZ do not have linear spin-orbit fields [73,80] similarly to the zinc-blende Γ_{6c} spin splitting shown in Fig. 4(b). However, in contrast to ZB, the WZ phase, both linear α and cubic γ parameters, depend, for the conduction band Γ_{8c}, on the type of the anion. For Γ_7c states as well as for the hole bands Γ_9c and Γ_9v, the overall atomic weight of the compound gives the strength of spin-orbit coupling.

V. CONCLUSION

We have studied the electronic structures, and in particular the spin splitting in ZB and WZ phases of GaAs, GaSb, InAs, and InSb semiconductors, by means of semilocal mBJ exchange potential within the DFT framework. We have found that this method gives accurate results, as judged by comparing with the GW. Indeed, the calculated spin-orbit coupling parameters for the zinc-blende phases agree well with known quasiparticle many
TABLE I. Structural and spin-orbit coupling parameters of studied III-V semiconductors in zinc-blende and wurtzite phase. Calculated bandgaps coincide with the experimental values for zinc-blende structures with a given accuracy. Experimentally determined values are indicated by giving the corresponding references. The values in parantheses are GW calculations with scaled self-energy to reproduce experimental bandgaps.

Parameter	GaAs	GaSb	InAs	InSb	
a [Å]	5.6532	6.0958	6.0587	6.4794	
E_g [eV]	1.5178	0.8231	0.4172	0.2395	
Δ_{so} [eV]	0.294	0.66	0.31	0.685	
exper.	0.346	0.756	0.33	0.81	
Δ_{so} [eV]	0.156	0.178	0.429	0.383	
exper.	0.174	0.214	–	0.395	
$\Omega(k)$ = $\gamma(k_x(k_x^2 - k_y^2), k_y(k_x^2 - k_y^2), k_z(k_x^2 - k_y^2))$	9.13	105.3	-21.4	200	
γ [eV Å3]	(GW calc.)	(8.5)	(119.3)	(47.5)	(209.6)

spin-orbit coupling parameters for $k||[110]$ (Σ symmetry line)

Γ_{sv}	$\Delta E(k) = Ck + \gamma k^3$
(HH)	C' [meV Å]
	γ [eV Å3]
	α [meV Å3]
(LH)	C' [meV Å]
	γ [eV Å3]

spin-orbit coupling parameters for $k||[111]$ (Λ symmetry line)

Γ_{sv} (HH)	C' [meV Å]	γ [meV Å3]
	-53.6	-179.4

wurtzite

Parameter	GaAs	GaSb	InAs	InSb
a [Å]	3.989	5.653	6.564	5.653
c [Å]	6.564	8.145	7.0253	7.522
E_g [eV]	1.378	0.503	0.461	0.241
Δ_{sb} [eV]	-0.135	-0.323	0.706	0.337
Δ_{sl} [eV]	0.089	0.087	0.066	0.091
Δ_{sh} [eV]	0.376	0.725	0.360	0.745

Γ_7 (HH)

| $\Omega(k)$ = $(a + \gamma(k_x^2 - k_y^2))(k_y, -k_x, 0)$ |
|---------------|-------------------------------|
| α [eV Å] | 0.04 | 0.078 | 0.3 | 0.71 |
| γ [eV Å3] | 6.51 | 52.1 | 132.5 | 892 |
| β | 0.53 | 1.29 | -1.24 | -0.91 |

Γ_8 (HH)

| $\Omega(k)$ = $(a + \gamma(k_x^2 - k_y^2))(k_y, -k_x, 0)$ |
|---------------|-------------------------------|
| α [eV Å] | 0.1 | 0.49 | 0.04 | 0.34 |
| γ [eV Å3] | 1.92 | 18.7 | 2.73 | 10.7 |
| β | 0.06 | -0.04 | -0.06 | -0.07 |

Γ_{9v} (HH)

| $\Omega(k)$ = $\gamma(k_y(k_y^2 - 3k_z^2), k_x(k_x^2 - 3k_z^2), 0)$ |
|---------------|-------------------------------|
| γ [eV Å3] | 69 | 187 | 521 | 1541 |

Γ_{7v} (LH)

| $\Omega(k)$ = $(a + \gamma(k_x^2 - k_y^2))(k_y, -k_x, 0)$ |
|---------------|-------------------------------|
| α [eV Å] | -0.36 | -0.44 | -0.74 | -1.15 |
| γ [eV Å3] | 71 | 123.6 | 420.8 | 608 |
| β | -0.02 | -0.93 | 0.49 | 1.14 |

Γ_{7v} (CH)

| $\Omega(k)$ = $(a + \gamma(k_x^2 - k_y^2))(k_y, -k_x, 0)$ |
|---------------|-------------------------------|
| α [eV Å] | 0.29 | 0.27 | 0.42 | 0.38 |
| γ [eV Å3] | -8.24 | 17 | -26 | 16.6 |
| β | -0.03 | 3.8 | 2.6 | 1.8 |

* Ref.20
b Ref.27,69
c Ref.17
d Ref.19
* Ref.20
f Ref.70
body calculations, giving a strong support for the predictive power of our results for the wurtzite phases. We believe that this approach can be used to investigate spin-orbit coupling effects at semiconductor interfaces and surfaces, but also as a starting point (benchmark for fitting the band structure) for empirical methods.

ACKNOWLEDGMENTS

We acknowledge support by DFG SFB 689.

APPENDIX

Here we present the calculated spin expectation values on a contour for momentum \(k \) equal 1\% of Brillouin zone width, the \(\Gamma - X \) length, for zinc-blende GaSb, Fig. 7, InAs, Fig. 8 and InSb, Fig. 9. The spin for light holes and conduction bands are similar in all studied cases, compare also to GaAs in Fig. 6. Spins for the heavy holes in GaSb are zero for \(k_x \approx k_y \), in addition to \(k_x = 0 \) and \(k_y = 0 \). We note that the amplitude of spins for the lower in energy band of heavy holes for InAs is about 0.65 smaller.

![Figure 7](image1)

FIG. 7. Calculated spin expectation values for zinc-blende GaSb. The momentum contour around zone center with \(k \) equal to 1\% of Brillouin zone width and \(k_z = 0 \). (a) spins for spin split light hole bands, (b) for heavy hole bands, and (c) for conduction bands. The bottom row corresponds to the bands (of the spin-split family) with the lower energy.

![Figure 8](image2)

FIG. 8. Calculated spin expectation values as in Fig. 7 but for zinc-blende InAs.

1. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
2. J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Phys. Slovaca 57, 565 (2007).
3. G. Dresselhaus, Phys. Rev. 100, 580 (1955).
4. J. Fabian and S. D. Sarma, Journal of Vacuum Science & Technology B 17, 1708 (1999).
5. F. Meier and B. P. Zakharchenya, Optical orientation (Oxford, United Kingdom, 1984).
6. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
7. J. Schliemann, arXiv:1604.02026 (2016).
8. S. D. Ganichev, Int. J. Mod. Phys. B 22, 1 (2008).
9. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).
10. Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).
11. V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003 (2012).
12. M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Nano Letters 12, 6414 (2012).
13. S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krosgstrup, and C. M. Marcus, Nature 531, 206 (2016).
14. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Nat Phys 8, 887 (2012).
15. M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev. B 38, 1806 (1988).
16. R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems (Springer, Berlin, 2003).
FIG. 9. Calculated spin expectation values as in Fig. 7 but for zinc-blende InSb.
A. Joullié, A. Z. Eddin, and B. Girault, Phys. Rev. B 23, 928 (1981).
C.-Y. Yeh, S.-H. Wei, and A. Zunger, Phys. Rev. B 50, 2715 (1994).
J. L. Birman, Phys. Rev. Lett. 2, 157 (1959).
W. Peng, F. Jabeen, B. Jusserand, J. C. Harmand, M. Bernard, J. C. Harmand, B. Jusserand, F. Jabeen, and W. Peng, Applied Physics Letters 100, 073102 (2012).
P. Kusch, S. Breuer, M. Ramsteiner, L. Geelhaar, H. Riechert, and S. Reich, Phys. Rev. B 86, 075317 (2012).
X. Peng and A. Copple, Phys. Rev. B 87, 115308 (2013).
Z. Zanolli, M.-E. Pistol, L. E. Fröberg, and L. Samuelson, Journal of Physics: Condensed Matter 19, 295219 (2007).
R. C. Casella, Phys. Rev. 114, 1514 (1959).
R. J. Elliott, Phys. Rev. 96, 280 (1954).
M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev. Lett. 56, 2831 (1986).
J. J. Hopfield, Journal of Applied Physics 32, 2277 (1961).
G. D. Mahan and J. J. Hopfield, Phys. Rev. 135, A428 (1964).
K. Hümmer, R. Helbig, and M. Baumgärtner, phys. stat. sol. (b) 86, 527 (1978).
I. Brosér and M. Rosenzweig, phys. stat. sol. (b) 95, 141 (1979).
E. S. Koteles and G. Winterling, Phys. Rev. Lett. 44, 948 (1980).
J. Y. Fu and M. W. Wu, Journal of Applied Physics 104, 093712 (2008).
W.-T. Wang, C. L. Wu, S. F. Tsay, M. H. Gau, I. Lo, H. F. Kao, D. J. Jang, and J.-C. Chiang, Applied Physics Letters 91, 082110 (2007).
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Journal of Applied Physics 89, 5815 (2001).
P. D. O. Madelung, Semiconductors: Data Handbook (Springer Berlin Heidelberg, 2004).
V. T. Bublik, J. Wilke, and A. T. Pereversev, phys. stat. sol. (a) 73, K271 (1982).
T. A. Nilsen, M. Breivik, G. Myrv�nes, T. A. Nilsen, M. Breivik, B.-O. Finland, and B.-O. Finland, Journal of Vacuum Science & Technology B 28, C317 (2010).