Analysis of the CCR5 gene coding region diversity in five South American populations reveals two new non-synonymous alleles in Amerindians and high CCR5*D32 frequency in Euro-Brazilians

Angelica B.W. Boldt1,3, Lodércio Culpi2, Luiza T. Tsuneto1,4, Iliada R. Souza1,5, Jürgen F.J. Kun3 and Maria Luiza Petzl-Erler1

1Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil.
2Laboratório de Polimorfismos e Ligação, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil.
3Department of Human Parasitology, Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
4Universidade Estadual de Maringá, Maringá, PR, Brazil.
5Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.

Abstract

The CC chemokine receptor 5 (CCR5) molecule is an important co-receptor for HIV. The effect of the CCR5*D32 allele in susceptibility to HIV infection and AIDS disease is well known. Other alleles than CCR5*D32 have not been analysed before, neither in Amerindians nor in the majority of the populations all over the world. We investigated the distribution of the CCR5 coding region alleles in South Brazil and noticed a high CCR5*D32 frequency in the Euro-Brazilian population of the Paraná State (9.3%), which is the highest thus far reported for Latin America. The D32 frequency is even higher among the Euro-Brazilian Mennonites (14.2%). This allele is uncommon in Afro-Brazilians (2.0%), rare in the Guarani Amerindians (0.4%) and absent in the Kaingang Amerindians and the Oriental-Brazilians. R223Q is common in the Oriental-Brazilians (7.7%) and R80S in the Afro-Brazilians (5.0%). A29S and L55Q present an impaired response to β-chemokines and occurred in Afro- and Euro-Brazilians with cumulative frequencies of 4.4% and 2.7%, respectively. Two new non-synonymous alleles were found in Amerindians: C323F (g.3729G > T) in Guarani (1.4%) and Y68C (g.2964A > G) in Kaingang (10.3%). The functional characteristics of these alleles should be defined and considered in epidemiological investigations about HIV-1 infection and AIDS incidence in Amerindian populations.

Key words: CCR5, Brazilian, Amerindian, HIV, polymorphism.

Received: May 20, 2008; Accepted: July 21, 2008.

Introduction

The human immunodeficiency virus type 1 (HIV-1) epidemic shows great variation among the different Brazilian regions. A progressive reduction in the number of deaths from acquired immunodeficiency syndrome (AIDS) was observed after the introduction of potent antiretroviral therapy in 1996, but the deceleration of the AIDS epidemic was not homogenous throughout all the Brazilian regions (Brito et al., 2005). The Southeast region has experienced the lowest increase in the AIDS epidemic from 1990 to 1996, contrasting with a steep rise in the North and South regions (Szwarcwald et al., 2000). Since 1996, the incidence rates of AIDS in Brazil as a whole and in the State of São Paulo in particular show a trend towards stability, whereas in the Brazilian Northeast the incidence rates of the disease continue to grow (Brito et al., 2005). The different spreading of the disease is due to multiple variables, including biological, behavioural, demographic and economic/political factors that influence the rate of contact between infected and susceptible individuals, as well as the individual’s infectiousness and susceptibility. Among these factors are genetic variants of host genes that facilitate or hamper viral entry into the cells and modulate immune responses against the infection.

The chemokine (C-C motif) receptor 5 gene (CCR5) comprises three exons. The polypeptide of 352 amino acid
residues is encoded by exon 3 (formerly named exon 4) (Mummidi et al., 1997). CCR5 transduces the signals of several different chemokines in phagocytes and T lymphocytes and serves as an essential co-receptor for the entry of R5-tropic HIV-1 into those cells (Blanpain et al., 2001). This is the viral form that most frequently infects people in Brazil (Ferraro et al., 2001). Therefore, CCR5 alleles that code for proteins poorly or not expressed at the cell surface are strong candidates for protection against the infection and for the delay of AIDS onset. This is the case of the truncated CCR5*D32 allele, and probably also of the Fs299 and R60S alleles (Dean et al., 1996; Shioda et al., 2001; Tama-sauskas et al., 2001). CCR5*D32 was also favourably associated with autoimmune diseases such as multiple sclerosis, rheumatoid arthritis and type 1 diabetes mellitus, but increases the risk for abdominal aortic aneurysm and sarcoidosis (for a review, see Navratilova, 2006).

The interaction between the CCR5 receptor and its ligands can block HIV-1 entry and thus retard disease progression. The A29S and L55Q alleles encode products with a reduced affinity for (C-C motif) chemokines and might be associated with a shorter time interval from HIV infection to AIDS onset (Howard et al., 1999).

During AIDS, the acquisition of mutations in the HIV-1 gp120 envelope glycoprotein gene leads to the switch from primary R5 (CCR5-using) to highly cytopathic X4 (CXCR4-using) HIV-1 variants. According to the somatic hypermutation hypothesis, this switch takes place in the germinal center B cells, due to aberrant somatic hypermutation of the gp-120-coding region of the HIV-1 env gene (Suslov, 2004). This process seems to be more effective in CCR5*D32 heterozygotes, which were found at a 2.5 times higher risk of harbouring X4 HIV-1 variants before the onset of highly active antiretroviral therapy. The presence of X4 variants in the patients seems not to compromise the therapy outcome (Brumme et al., 2005), whereas the presence of a CCR5*D32 allele was found associated with a better response (Accetturi et al., 2000; Guerin et al., 2000).

In order to better understand the diversity of the CCR5 gene and to supply data for studies on the functional effect and epidemiological consequences of the CCR5 variants, we investigated the distribution of CCR5*D32 and other known exon 3 coding region CCR5 alleles in five populations of South Brazil. These alleles and their known functional characteristics are listed in Table 1. We also sequenced part of the coding region of the gene, in order to search for new variants.

Materials and Methods

Samples

One hundred and seventy two Afro-Brazilians, 172 Euro-Brazilians, 18 Oriental-Brazilians, 115 Guarani (89 of which belong to the M’byá sub-group) and 160

DNA level	SNP (NCBI) database	Protein level	Common nomenclature	Gene transcription	Membrane expression	HIV-1 infection	Response to chemokines
rs2448596 G > T	rs2919319	p.Ala29Ser	A29S	+	+	+	X
rs2448605 T > A	rs1799863	p.Leu55Gln	L55Q	+	+	+	X
rs3494269 G > A	rs3494269	p.Arg60Ser	R60S	+	+	+	X
rs3495330 C > T	rs3495330	p.Arg223Gln	R223Gln	+	+	+	X
rs1800945 C > T	rs1800945	p.Phe299fs	Fs299	+	+	+	X
rs1800946 G > A	rs1800946	p.Trp332Phe	W332P	+	+	+	X
rs1800947 C > T	rs1800947	p.Ala335Val	A335V	+	+	+	X
rs1800948 A > T	rs1800948	p.Tyr339Phe	Y339F	+	+	+	X
rs1800949 G > A	rs1800949	silent	-	-	-	-	-
rs1801042 C > T	rs1801042	p.Ala258Thr	A258T	+	+	+	X
rs1801043 A > C	rs1801043	p.Ala335Val	A335V	+	+	+	X
rs1801044 G > A	rs1801044	p.Tyr339Phe	Y339F	+	+	+	X
rs1801045 T > A	rs1801045	p.Arg223Gln	R223Gln	+	+	+	X
rs1801046 C > T	rs1801046	p.Phe299fs	Fs299	+	+	+	X
rs1801047 G > A	rs1801047	p.Trp332Phe	W332P	+	+	+	X
rs1801048 C > T	rs1801048	p.Ala335Val	A335V	+	+	+	X
rs1801049 A > T	rs1801049	p.Tyr339Phe	Y339F	+	+	+	X
rs1801050 G > A	rs1801050	silent	-	-	-	-	-
rs1801051 T > A	rs1801051	p.Ala258Thr	A258T	+	+	+	X
rs1801052 A > C	rs1801052	p.Ala335Val	A335V	+	+	+	X
rs1801053 G > A	rs1801053	p.Tyr339Phe	Y339F	+	+	+	X
rs1801054 T > A	rs1801054	p.Arg223Gln	R223Gln	+	+	+	X
rs1801055 C > T	rs1801055	p.Phe299fs	Fs299	+	+	+	X
rs1801056 G > A	rs1801056	p.Trp332Phe	W332P	+	+	+	X
rs1801057 C > T	rs1801057	p.Ala335Val	A335V	+	+	+	X
rs1801058 A > T	rs1801058	p.Tyr339Phe	Y339F	+	+	+	X
rs1801059 G > A	rs1801059	silent	-	-	-	-	-
rs1801060 T > A	rs1801060	p.Ala258Thr	A258T	+	+	+	X
rs1801061 A > C	rs1801061	p.Ala335Val	A335V	+	+	+	X
rs1801062 G > A	rs1801062	p.Tyr339Phe	Y339F	+	+	+	X
rs1801063 T > A	rs1801063	p.Arg223Gln	R223Gln	+	+	+	X
rs1801064 C > T	rs1801064	p.Phe299fs	Fs299	+	+	+	X
rs1801065 G > A	rs1801065	p.Trp332Phe	W332P	+	+	+	X
rs1801066 C > T	rs1801066	p.Ala335Val	A335V	+	+	+	X
rs1801067 A > T	rs1801067	p.Tyr339Phe	Y339F	+	+	+	X
rs1801068 G > A	rs1801068	silent	-	-	-	-	-
rs1801069 T > A	rs1801069	p.Ala258Thr	A258T	+	+	+	X
rs1801070 A > C	rs1801070	p.Ala335Val	A335V	+	+	+	X
rs1801071 G > A	rs1801071	p.Tyr339Phe	Y339F	+	+	+	X
Kaingang were investigated. All individuals were randomly selected and live in the State of Paraná, in South Brazil, with the exception of 26 Guarani belonging to the Kaiowá and Nandeva subgroups which live in the State of Mato Grosso do Sul in Central-Western Brazil. For some CCR5 alleles, the number of individuals analysed was lower. The classification of individuals as Euro-Brazilians and Afro-Brazilians was based on morphological features. The Euro-Brazilians included 53 unrelated German-speaking individuals whose ancestors came from or joined Mennonite settlements in South Brazil. No HLA genotyping data was available for this subsample. Based on HLA allelic frequencies previously determined for all other population samples, an average European component of 34% and an average Amerindian component of 6% were estimated for the Afro-Brazilians. For the non-Mennonite Euro-Brazilians, the African and Amerindian components are approximately 9% and 5%, respectively (Braun-Prado et al., 2000; Probst CM, MSc Dissertation, Universidade Federal do Paraná, Curitiba, 2000; Probst et al., 2000). The average admixture values of the Guarani and Kaingang with the immigrants from Europe and Africa were estimated to be 4% and 7%, respectively (Petzl-Erler et al., 1993; Probst CM, MSc Dissertation, Universidade Federal do Paraná, Curitiba, 2000; Tsuneto et al., 2003). The gene flow between these two Amerindian groups is also low, being approximately 1.4% in Guarani and 0.5% in Kaingang (Petzl-Erler et al., 1993).

Typing method

DNA was extracted from peripheral blood cells using the standard phenol/chloroform/isooamy alcohol or salting-out techniques. The coding region of exon 3 of the CCR5 gene was amplified by PCR as described previously (Boldt and Petzl-Erler, 2002). The product was applied on nylon membranes in the form of dot-blots and allowed to hybridize with sequence-specific oligonucleotide probes (SSOP, Table 2), according to the protocol of the XII International Histocompatibility Workshop (Fernandez-Viña and Bignon, 1997). Part of the coding region of exon 3 was additionally sequenced using the CCR5rev internal primer in 13 Guarani and 29 Kaingang, one Euro-Brazilian and five Oriental-Brazilian samples. These samples and 59 additional Guarani and 55 additional Kaingang samples were also sequenced using the CCR5for internal primer. One Guarani M’bya individual was genotyped only by sequencing. Sequencing reactions were performed with BigDye Terminator version 1.1 chemistry (Applied Biosystems, Foster City, CA). The sequences of the primers and probes are listed in Table 2.

Statistical analysis

Genotype and allele frequencies were obtained by direct counting with the aid of the Convert program version 1.1 (Program distributed by the author, CM Probst). The Hardy-Weinberg equilibrium and population homogeneity

Table 2 - CCR5 PCR primers and sequence-specific probes.

Sequence 5’→3’	Variant	
PCR primer CCR5m	TATGCACAGGGTTGGAACAAG	————
PCR primer CCR5jn	CACACTCTGACTGGGTGCAC	————
Seq. primer CCR5for	AATGAGAAGAAGAGGACAGGCT	————
Probe CCR5 9-	AAGCAAAATCGACGCCCC	+
CCR5 9+	AAGCAAAATCGACGCCCC	A29S
Probe CCR5 1-	CTATCCTGTATACACCAAC	+
CCR5 1+	CTATCCTGTATACACCAAC	L55Q
Probe CCR5 10-	GAAAAGGCTGAGGAAGAAGA	+
CCR5 10+	GAAAAGGCTGAGGAAGAAGA	R60S
Probe CCR5 2-	CAGATATCAATTCTTGGG	+
CCR5 2+	CAGATATCAATTCTTGGG	D32
Probe CCR5 3+	CTCTGGTTCCGMTGTC	+
CCR5 3-	CTCTGGTTCCGMTGTC	R223Q
Probe CCR5 14-	CATCTAGCCCTTTTTGT	+
CCR5 14+	CATCTAGCCCTTTTTGT	Fs299
Probe CCR5 6-	AGGCCTCCGAGCCGAGAG	+
CCR5 6+	AGGCCTCCGAGCCGAGAG	P332P
Probe CCR5 7-	GAGCCTGCAAGCTCACA	+
CCR5 7+	GAGCCTGCAAGCTCACA	A335V
Probe CCR5 8-	TCAGTGTACACCCGAAG	+
CCR5 8+	TCAGTGTACACCCGAAG	Y339F

PCR: polymerase chain reaction
Seq.: sequencing; +: major allele; in bold: variant nucleotides.
Table 3 - CCR5 allelic frequencies and standard deviations in various populations.

Population	A29S	L55Q	R60S	D32	R223Q	Fs299	P332P	A335V	Y339F
Afro-American1,2 n = 50	0.015 ± 0.015 (32)	0.008 ± 0.003 (332)	0.013 ± 0.013 (38)	0.019 ± 0.003 (1015)	0	0	0.01 ± 0.01	0.025 ± 0.007 (242)	0.026 ± 0.015 (58)
Afro-Brazilian n = 37	0.017 ± 0.017 (29)	0.027 ± 0.019	0.05 ± 0.05 (10)	0.02 ± 0.008 (172)	0	0	0.015 ± 0.007 (172)	0 (11)	
Euro-American1,2 n = 50	nt	0.041 ± 0.008 (354)	nt	0.1 ± 0.004 (2056)	0.016 ± 0.016 (32)	0	0	0.006 ± 0.006 (87)	0 (121)
Euro-Brazilian n = 172	0.007 ± 0.007 (69)	0.02 ± 0.008	0 (156)	0.093 ± 0.016	0	0	0.003 ± 0.003	0.006 ± 0.004	
Mennonites n = 53	0 (30)	0.038 ± 0.019	0 (39)	0.142 ± 0.034	0	0	0	0	
Non-Mennonites n = 119	0.013 ± 0.013 (39)	0.013 ± 0.007	0 (117)	0.071 ± 0.017	0	0	0.004 ± 0.004	0.008 ± 0.006	
Chinese n = 785	0	0	0	0	0.047 ± 0.005	0.005 ± 0.002	0	0	
Oriental-American1,2 n = 100	nt	0	nt	0	0.04 ± 0.014	0.04 ± 0.014	0	0	
Oriental-Brazilian n = 13	nt	0	0 (11)	0 (16)	0.077 ± 0.053	0 (12)	0 (18)	0 (12)	
Guarani n = 27	0	0 (34)	0	0.004 ± 0.004 (115)	0 (34)	0	0.013 ± 0.008 (115)	0	
Kaingang n = 31	0	0	0	0 (160)	0	0	0 (160)	0	
Hispanic n = 50	nt	0.01 ± 0.01	nt	0.03 ± 0.012	0.02 ± 0.014	0	0		

n: number of individuals; nt: not tested; in parenthesis: number of individuals if different from “n”.

1(Ansari-Lari et al., 1997); 2(Carrington et al., 2005); shadowed in italics: this work.

Results

The CCR5 genotype distributions met the Hardy-Weinberg equilibrium expectations in all populations. The allelic frequencies of the most common CCR5 alleles varied from 88% to 100% in the population samples studied. The other alleles were seen in about 0.5% to 5% of the population samples except for D32 and R223Q.

Table 4 shows the allelic frequencies of the most common CCR5 alleles and their distributions in various populations.

We used the approach of Cueto and Thompson and the ALEQUIN software package version 3.1 (http://cmpg.unibe.ch/software/alequin3) (Excoffier et al., 2005). p = 0.05 was adopted as the significance limit.

Reference:

Cueto B, Thompson EA. (2002) Allele frequencies and genetic diversity in the human CCR5 gene among populations from Latin America. Hum Mol Genet 11:3325-3330.
zygote out of the 5 Oriental-Brazilians whose exon 3 was sequenced.

Discussion

This is the first study investigating the A29S and R60S alleles in European-derived populations. Also, alleles other than D32 have not been analysed before in Amerindians. Based on the CCR5 allelic frequencies in the Chinese, North- and South-American populations (Table 3), it is possible to infer that A29S, R60S, A335V and Y339F most likely originated in Africa; L55Q and D32 in Europe; R223Q and Fs299 in Asia. The P332P allele, found only once in one heterozygote Afro-American (Ansari-Lari et al., 1997), was not found in our population samples nor in

Population	n	D32 freq.	Region	Reference
Admixed Mexican	212	0.014 ± 0.006	————, MX	(Zuniga et al., 2003)
Amerindian Mayo	70	0		
Amerindian Teenek	61	0		
Amerindian Mazatecan	61	0.016 ± 0.011	————, JM	(Hisada et al., 2002)
Afro-Jamaican	242	0.01 ± 0.005	————, JM	(Hisada et al., 2002)
Colombian	150	0.027 ± 0.009	Medellin, CO	(Diaz et al., 2000)
Amerindian	172	0.009 ± 0.005	Areqqua, PE	(Calzada et al., 2001)
Amerindian Tikuna	191	0	North West Amazonas, BR	(Leboute et al., 1999)
Amerindian Baniwa	46	0		
Amerindian Kashinawa	29	0	South West Amazonas, BR	(Leboute et al., 1999)
Amerindian Kanamari	34	0		
Amerindian Tiriyó	180	0	North Amazonas, BR	(Grimaldi et al., 2002)
Amerindian Waiampi	221	0		
Six Amerindian groups	89	0	North Pará, BR	(De Pinho Lott Carvalhaes et al., 2004)
Brazilian	394	0.03 ± 0.006		
Afro-Brazilian	67	0.008 ± 0.008		
Oriental-Brazilian	111	0		
Brazilian	104	0.02 ± 0.01	Recife, Pernambuco, BR	(de Souza et al., 2006)
Admixed Brazilian	549	0.026 ± 0.005	Northeast Bahia, BR	(Grimaldi et al., 2002)
Afro-Brazilian	54	0.019 ± 0.013	Rio de Janeiro, BR	(Chies and Hutz, 2003)
Brazilian	115	0.056 ± 0.015	São Paulo, BR	(Munero et al., 2003)
Brazilian	100	0.035 ± 0.013	Ribeirão Preto, São Paulo, BR	(Passos Jr and Picanço, 1998)
Euro-Brazilian	102	0.044 ± 0.014	Paraná, Santa Catarina and Rio Grande do Sul, BR	(Chies and Hutz, 2003)
Brazilian	127	0.055 ± 0.014		(Kainen-Maciel et al., 2007)
Eight Amerindian groups	241	0.013 ± 0.005		(Hunemeier et al., 2005)
Afro-Brazilian	172	0.02 ± 0.008	Paraná, BR	
Euro-Brazilian	172	0.093 ± 0.016		
Oriental-Brazilian	16	0		This work.
Guarani	114	0.064 ± 0.004		
Kaingang	160	0		
Brazilian	100	0.05 ± 0.015	Londrina, Paraná, BR	(Brajão de Oliveira et al., 2007)
Euro-Brazilian	99	0.066 ± 0.018	Santa Catarina, BR	(Grimaldi et al., 2002)
Euro-Brazilian	59	0.068 ± 0.023	Alegrete, Rio Grande do Sul, BR	(Vargas et al., 2006)
Afro-Brazilian	13	0.038 ± 0.038		
Admixed Brazilian	31	0.064 ± 0.032		
Afro-Brazilians	58	0.009 ± 0.009	Rio Grande do Sul, BR	(Chies and Hutz, 2003)
Amerindian Chiriguano	42	0.012 ± 0.012	Northwest Argentina, AR	(Mangano et al., 2001)
Argentinean	751	0.02 ± 0.004	————, AR	(Gonzalez et al., 2001)
Chilean	62	0.024 ± 0.014	————, CL	(Desgranges et al., 2001)

n: number of individuals; freq.: frequency; ISO 3166-1 codes indicate countries.
HIV-1 co-receptor activity as the major
Chinese population. It is equally distributed in HIV-1
et al., 1997; Zhao et al., 2005). The presence of the D32
allele in the Guarani seems to be the result of gene flow
from Neo-Brazilians, as suggested for Mura and Kaingang
in another study (Hunemeier et al., 2005).

The high D32 frequency in Euro-Brazilians is similar
to the frequencies found in Central Europe (Stephens et al.,
1998). It is compatible with the greater European compo-
nent in the Euro-Brazilian population of the Paraná State, in
comparison to other, previously analysed Brazilian popu-
lations of predominantly European ancestry (Probst et al.,
2000). The D32 frequency in the Mennonite subsample is
two times higher than in the non-Mennonite Euro-Brazilian
subsample and equals the high D32 frequencies in North
Europe (Stephens et al., 1998; Yudin et al., 1998). The fre-
quency of L55Q, another allele with likely European origin,
is three times higher in Mennonite compared to non-
Mennonite Euro-Brazilians. The Mennonites have Friessian
origin (North of Germany and the Netherlands) and exist as
a religious Anabaptist group since the second half of the
XVI century. The majority of individuals in this subsample
are direct descendants from 200 Mennonite families that
left their villages in the Ukraine and in Siberia and arrived
in South Brazil in 1930 (Pauls Jr., 1976). Thus, a founder or
bottleneck effect associated to random genetic drift most
probably caused the rise in the D32 and L55Q allelic fre-
cuencies in this population.

The R223Q allele is the most frequent variant in the
Chinese population. It is equally distributed in HIV-1 in-
fected and non-infected Chinese groups and has similar
HIV-1 co-receptor activity as the major CCR5 allele (Zhao
et al., 2005). Other populations have thus far not been in-
vestigated. We also found this allele among the Orien-
tal-Brazilians.

The cysteine residue we found mutated to phenyl-
alanine at codon 323 (p.Cys323Phe) in two heterozygote
Guarani individuals is not conserved in CCR2, the homolo-
gous C-C chemokine-receptor protein with the highest se-
quence similarity to CCR5 (75%). The substitution of the
same residue by alanine was found to decrease the expres-
sion of the CCR5 protein on the cellular membrane by pre-
venting receptor palmitoylation (Blanpain et al., 2001). A
change in the secondary structure and function may also be
expected from the replacement of this residue by phenyl-
alanine. In the Kaingang, sequencing revealed another new
allele (g.2964A > G) causing the substitution of tyrosine by
cysteine at the otherwise conserved residue 68 (p.Tyr68Cys)
in the second transmembrane part of the protein.
This allele seems to be very common in the Kaingang
population and restricted to it. Possible protective effects of
both alleles regarding HIV-1 infection and progression to
AIDS have to be established in appropriate cohorts attend-
ing Amerindian(-derived) populations.

In summary, we studied the distribution of the CCR5
coding region alleles in various Brazilian populations and
noticed a high D32 frequency in the Euro-Brazilian popula-
tion of the Paraná State in South Brazil. The D32 frequency
is even higher among the Mennonites and is the highest
thus far reported for Latin America. We also identified two
new coding CCR5 mutations in the Amerindian popu-
lations, whose functional characteristics should be defined
and considered in epidemiological investigations about
HIV-1 infection and AIDS incidence in Amerindian popu-
lations.

Acknowledgments
The subjects of this investigation were informed
about the aims of the study and their consent to participate
is gratefully acknowledged. This investigation was ap-
proved by the Brazilian National Commission for Ethics in
Research (CONEP no. 2046). We thank L.A. de Oliveira,
A. Weierich and S. Grummes for excellent technical assis-
tance. Financial support was provided by the Brazilian Na-
tional Council of Technological and Scientific
Development (Conselho Nacional de Desenvolvimento
Científico e Tecnológico – CNPq).

References
Accetturi CA, Pardini R, Novaes Pinto GH, Turcato Jr G, Lawi
DS and Díaz RS (2000) Effects of CCR5 genetic polymor-
phism and HIV-1 subtype in antiretroviral response in Bra-
zilian HIV-1-infected patients. J Acquir Immune Defic
Syndr 24:399-400.
Ansari-Lari MA, Liu XM, Metzker ML, Rut AR and Gibbs RA
(1997) The extent of genetic variation in the CCR5 gene. Nat
Genet 16:221-222.
Blanpain C, Lee B, Tackoen M, Puffer B, Boom A, Libert F,
Sharron M, Wittamer V, Vassart G, Doms RW, et al. (2000)
Multiple nonfunctional alleles of CCR5 are frequent in vari-
ous human populations. Blood 96:1638-1645.
Blanpain C, Wittamer V, Vanderwinden JM, Boom A, Ren-
neboog B, Lee B, Le Poul E, El Asmar L, Goyaerts C,
Vassart G, et al. (2001) Palmitoylation of CCR5 is critical
for receptor trafficking and efficient activation of intra-
cellular signaling pathways. J Biol Chem 276:23795-23804.
Boldt AB and Petzl-Erler ML (2002) A new strategy for man-
nose-binding lectin gene haplotyping. Hum Mutat 19:296-
306.
Brajão de Oliveira K, Reiche EM, Kaminnami MH, Pelegrinelli
Fungaro MH, Estevão D, Pontello R, Franço NT and Wata-
nabe MA (2007) Analysis of the CC chemokine receptor 5
delta32 polymorphism in a Brazilian population with cuta-
nous leishmaniasis. J Cutan Pathol 34:27-32.
Braun-Prado K, Vieira Mion AL, Farah PN, Culpi L and Petzl-
Erler ML (2000) HLA class I polymorphism, as character-
ised by PCR-SSOP, in a Brazilian exogamic population.
Tissue Antigens 56:417-427.
Brito AM, Castilho EA and Szwarcwald CL (2005) Regional pat-
terns of the temporal evolution of the AIDS epidemic in
Brazil following the introduction of antiretroviral therapy. Braz J Infect Dis 9:9-19.

Brumme ZL, Goodrich J, Mayer HB, Brumme CJ, Henrick BM, Wynhoven B, Asselin JJ, Cheung PK, Hogg RS, Montaner JS, et al. (2005) Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J Infect Dis 192:466-474.

Calzada JE, Nieto A, Beraun Y and Martin J (2001) Chemokine receptor CCR5 polymorphisms and Chagas' disease cardiomyopathy. Tissue Antigens 58:154-158.

Carrington M, Kissner T, Gerrard B, Ivanov S, O'Brien SJ and Dean M (1997) Novel alleles of the chemokine-receptor gene CCR5. Am J Hum Genet 61:1261-1267.

Chies JA and Hutz MH (2003) High frequency of the CCR5delta32 variant among individuals from an admixed Brazilian population with sickle cell anemia. Braz J Med Biol Res 36:71-75.

De Pinho Lott Carvalhaes FA, Cardoso GL, Hamoy IG, Liu YT and Guerreiro JF (2004) Distribution of CCR5-delta32, CCR2-64I, and SDF1-3'A mutations in populations from the Brazilian Amazon region. Hum Biol 76:643-646.

de Souza PR, Araaes LC, Lima Filho JL, Bruneska D, Milanes M and Crovella S (2006) CCR5 promoter polymorphisms and HIV-1 perinatal transmission in Brazilian children. J Reprod Immunol 69:77-84.

Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter AIDS cohort study, multicenter hemophilia cohort study, San Francisco City cohort, ALIVE study. Science 273:1856-1862.

Desgranges C, Carvajal P, Afani A, Guzman MA, Sasco A and Sepulveda C (2001) Frequency of CCR5 gene 32-basepair deletion in Chilean HIV-1 infected and non-infected individuals. Immunol Lett 76:115-117.

Diaz FJ, Vega JA, Patino PJ, Bedoya G, Nagles J, Villegas C, Vesga R and Rugeles MT (2000) Frequency of CCR5 delta32 mutation in human immunodeficiency virus (HIV)-sero-positive and HIV-exposed seronegative individuals and in general population of Medellin, Colombia. Mem Inst Oswaldo Cruz 95:237-242.

Excoffier L, Laval G and Schneider S (2005) Arlequin v. 3.0: An integrated software package for population genetics data analysis. Evol Bioinf Online 1:47-50.

Fernandez-Vina MA and Bignon JD (1997) Primers and oligonucleotide probes (SSOP) used for DNA typing of HLA class II alleles. In: Charron D (ed) HLA: Genetic Diversity of HLA Functional and Medical Implication. 1st edition. EDK, Paris, pp 199-215.

Ferraro GA, Mello MA, Sutmoller F, Van Weyenbergh J, Shindo N, Galvao-Castro B and Bou-Habib DC (2001) Biological characterization and chemokine receptor usage of HIV type 1 isolates prevalent in Brazil. AIDS Res Hum Retroviruses 17:1241-1247.

Gonzalez E, Dhandra R, Bamshad M, Mummidi S, Ghevarghese R, Catano G, Anderson SA, Walter EA, Stephan KT, Hammer MF, et al. (2001) Global survey of genetic variation in CCR5, RANTES, and MIP-1alpha: Impact on the epidemiology of the HIV-1 pandemic. Proc Natl Acad Sci USA 98:5199-5204.

Grimaldi R, Shindo N, Acosta AX, Dourado I, Brites C, de Melo CO, Brito I, Bou-Habib DC and Galvão-Castro B (2002) Prevalence of the CCR5Delta32 mutation in Brazilian populations and cell susceptibility to HIV-1 infection. Hum Genet 111:102-104.

Guerin S, Meyer L, Theodorou I, Boufassa F, Magierowska M, Goujard C, Rouzioux C, Debre P and Delfraissy JF (2000) CCR5 delta32 deletion and response to highly active antiretroviral therapy in HIV-1-infected patients. AIDS 14:2788-2790.

Hisada M, Lal RB, Masciorta S, Rudolph DL, Martin MP, Carrington M, Wilks RJ and Manns A (2002) Chemokine receptor gene polymorphisms and risk of human T lymphotropic virus type 1 infection in Jamaica. J Infect Dis 185:1351-1354.

Howard OM, Shirakawa AK, Turpin JA, Maynard A, Tobin GJ, Carrington M, Oppenheim JJ and Dean M (1999) Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 Co-receptor and ligand binding function. J Biol Chem 274:16228-16234.

Hunemeier T, Neves AG, Nornberg I, Hill K, Hurtado AM, Carnese RF, Goicochea AS, Hutz MH, Salzano FM and Chies JA (2005) T-cell and chemokine receptor variation in South American populations. Am J Hum Biol 17:515-518.

Kaimen-Maciel DR, Reiche EM, Brum Souza DG, Frota Comini ER, Bobroff F, Morimoto HK, Ehara Watanabe MA, Carvalho DO, Matsuo T, Lopes J, et al. (2007) CCR5-Delta32 genetic polymorphism associated with benign clinical course and magnetic resonance imaging findings in Brazilian patients with multiple sclerosis. Int J Mol Med 20:337-344.

Leboute AP, de Carvalho MW and Simões AL (1999) Absence of the deltaccr5 mutation in indigenous populations of the Brazilian Amazon. Hum Genet 105:442-443.

Mangano A, Theiler G, Sala L, Capuchicio M, Fainboim L and Sen L (2001) Distribution of CCR5-Delta32 and CCR2-64I alleles in an Argentine Amerindian population. Tissue Antigens 58:99-102.

Mummidi S, Ahuja SS, McDaniel BL and Ahuja SK (1997) The human CC chemokine receptor 5 (CCR5) gene. Multiple transcripts with 5'-end heterogeneity, dual promoter usage, and evidence for polymorphisms within the regulatory regions and noncoding exons. J Biol Chem 272:30662-30671.

Munerato P, Azevedo ML, Sucupira MC, Pardini R, Pinto GH, Carrozzo M, Souza IE and Diaz RS (2003) Frequency of polymorphisms of genes coding for HIV-1 co-receptors CCR5 and CCR2 in a Brazilian population. Braz J Infect Dis 7:236-240.

Navratilova Z (2006) Polymorphisms in CCL2 & CCL5 chemokines/chemokine receptors genes and their association with diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150:191-204.

Passos Jr GA and Picanço VP (1998) Frequency of the delta ccr5 deletion allele in the urban Brazilian population. Immunol Lett 61:205-207.

Pauls Jr P (1976) Witmarsum in Paraná. 1st edition. Imprimax, Curitiba, 50 pp.

Petzl-Erler ML, Luz R and Sotomaior VS (1993) The HLA polymorphism of two distinctive South-American Indian tribes:
The Kaingang and the Guarani. Tissue Antigens 41:227-237.

Probst CM, Bompeixe EP, Pereira NF, de O Dalalio MM, Visen-tainer JE, Tsuneto LT and Petzl-Erler ML (2000) HLA polymorphism and evaluation of European, African, and Amer-indian contribution to the white and mulatto populations from Paraná, Brazil. Hum Biol 72:597-617.

Shioda T, Nakayama EE, Tanaka Y, Xin X, Liu H, Kawa-nata-Tachikawa A, Kato A, Sakai Y, Nagai Y and Iwamoto A (2001) Naturally occurring deletional mutation in the C-terminal cytoplasmic tail of CCR5 affects surface trafficking of CCR5. J Virol 75:3462-3468.

Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW, Car-rington M, Winkler C, Huttley GA, Allikmets R, Schriml L, et al. (1998) Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet 62:1507-1515.

Suslov KV (2004) Does AID aid AIDS? Immunol Lett 91:1-2.

Szwarcwald CL, Bastos FI, Esteves MA and de Andrade CL (2000) The spread of the AIDS epidemic in Brazil from 1987 to 1996: A spatial analysis. Cad Saúde Pública 16:7-19.

Tamasauskas D, Powell V, Saksela K and Yazdanbakhsh K (2001) A homologous naturally occurring mutation in Duffy and CCR5 leading to reduced receptor expression. Blood 97:3651-3654.

Tsuneto LT, Probst CM, Hutz MH, Salzano FM, Rodriguez-Delfin LA, Zago MA, Hill K, Hurtado AM, Ribeiro-dos-Santos AK and Petzl-Erler ML (2003) HLA class II diversity in seven Amerindian populations. Clues about the origins of the Ache. Tissue Antigens 62:512-526.

Vargas AE, Marrero AR, Salzano FM, Bortolini MC and Chies JA (2006) Frequency of CCR5delta32 in Brazilian populations. Braz J Med Biol Res 39:321-325.

Yudin NS, Vinogradov SV, Potapova TA, Naykova TM, Sitnikova VV, Kulikov IV, Khasnulin VI, Konchuk C, Vlochinskiii PE, Ivanov SV, et al. (1998) Distribution of CCR5-delta 32 gene deletion across the Russian part of Eurasia. Hum Genet 102:695-698.

Zhao XY, Lee SS, Wong KH, Chan KC, Ng F, Chan CC, Han D, Yam WC, Yuen KY, Ng MH, et al. (2005) Functional analysis of naturally occurring mutations in the open reading frame of CCR5 in HIV-infected Chinese patients and healthy controls. J Acquir Immune Defic Syndr 38:509-517.

Zuniga JA, Villarreal-Garza C, Flores E, Barquera R, Perez-Hernandez N, Montes de Oca JV, Cardiel MH, Vargas-Alarcon G and Granados J (2003) Biological relevance of the polymorphism in the CCR5 gene in refractory and non-refrac-tory rheumatoid arthritis in Mexicans. Clin Exp Rheumatol 21:351-354.

Associate Editor: Francisco Mauro Salzano

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.