Title: Effects of anthropogenic wildfire in low-elevation Pacific island vegetation communities in French Polynesia

Running head: Anthropogenic wildfire impacts on Pacific island flora

Authors: Erica A. Newman A,B,E, Carlea A. WinklerC, David H. HembryD

A School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA

B Pacific Wildland Fire Sciences Laboratory, US Forest Service, Seattle, WA 98103, USA

C Department of Environmental Science, Policy, and Management, University of California at Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA

D Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA

E Corresponding author. email: newmane@email.arizona.edu

Summary for the non-specialist reader: Wildfire at low elevations in remote Pacific islands is poorly characterized but likely all anthropogenic in origin. We show that wildfire in already heavily invaded low-elevation plant communities can lower native plant species richness, while increasing the relative abundance of non-native species. Wildfire also reduces the differences in plant communities among sites, and may exacerbate invasive species problems on Pacific islands by selecting for non-native, fire-adapted species over native ones.
Newman *et al.*: Anthropogenic wildfire impacts on Pacific island flora

Abstract

Anthropogenic (or human-caused) wildfire is an increasingly important driver of ecological change on Pacific islands including southeastern Polynesia, but fire ecology studies are almost completely absent for this region. Where observations do exist, they mostly represent descriptions of fire effects on plant communities before the introduction of invasive species in the modern era. Understanding the effects of wildfire in southeastern Polynesian island vegetation communities can elucidate which species may become problematic invasives with continued wildfire activity. We review what is known about fire effects in low elevation plant communities in Polynesia. We also investigate the effects of wildfire on vegetation in three low-elevation sites (45-379 m) on the island of Mo’orea in the Society Islands, French Polynesia, which are already heavily impacted by past human land use and invasive exotic plants, but retain some native flora. We analyze plants in categories: natives, those introduced by Polynesians before European contact (1767 C.E.), and those introduced since European contact. Burned areas have the same or lower mean species richness than paired unburned sites. Although wildfire does not affect the proportions of native and introduced species, it may increase the abundance of introduced species on some sites. Non-metric multidimensional scaling indicates that unburned plant communities are more distinct from one another than are those on burned sites. We discuss conservation concerns for particular native plants absent from burned sites, as well as invasive species (including *Lantana camara* and *Paraserianthes falcataria*) that may be promoted by fire in the Pacific.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Introduction

The ecological effects of fire in tropical Pacific island ecosystems have received little attention in most of the Pacific island groups (Nunn 1990). Despite the potential importance of wildfires for conservation, public health, and human-environment interactions, almost nothing is known about how contemporary wildfire affects plant communities in the Pacific outside of Hawai‘i (Hughes et al. 1991; D’Antonio and Vitousek 1992; Hughes and Vitousek 1993; Freifelder et al. 1998; D’Antonio et al. 2000, 2001; Ainsworth and Kauffman 2009, 2010, 2013; Angelo and Daehler 2013; Ellsworth et al. 2014), with few studies in New Caledonia (McCoy et al. 1999), western Polynesia (Hjerpe et al. 2001; Elmqvist et al. 2002; Franklin 2007) and Guam (Athens and Ward 2004). Furthermore, human-caused wildfires are increasingly occurring on Pacific islands today (Trauernicht et al. 2015).

French Polynesia is similar to the Hawaiian Islands in terms of isolation from potential colonizing species, climate, geology, topography, and flora, including shared congeners that have similar fire responses. Indeed, Hawai‘i may be the best model for hypothesizing about the role of fire in French Polynesia. There are substantial differences between the island groups, however, including total land area (3500 km2 and 16,600 km2 for French Polynesia and Hawai‘i, respectively), population size (~286,000 people vs. 1.4 million), lack of volcanic activity in French Polynesia for ~1M years (except infrequently on Mehetia), the presence of a potentially important lightning-driven fire regime at high elevations in French Polynesia compared to a lack of lightning activity in Hawai‘i (P. Ortéga, pers. comm.), and overall species differences. There has been no assessment of average size or intensity of fires in this region, and no published studies of the causes of fires. News outlets report an increasing number of fires each year, but
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

records held by local fire stations are difficult to obtain, and records held by local authorities on firefighting efforts are not publically available (Newman 2014; Newman, manuscript), making the news reports hard to verify. However, because there are no other ignition sources, all low-elevation fires can be assumed to be human-caused, including open burning, which is common for waste removal and agriculture. Ignition density and local population size are highly correlated on Mo’orea, although the largest wildfires are apparently caused by agricultural burning (J-M Hokaupoko, interview, 2011; Newman 2014; Newman, manuscript). Droughts, seasonal rainfall variability, and leeward/windward differences in climate likely all affect fire activity, but these relationships have not been well studied. Furthermore, differences in ecological effects of natural wildfires (from lightning and volcanoes) and more recent human-caused fires have not been evaluated for most of remote Oceania.

The purpose of this paper is to review what is known about wildfire’s ecological effects in low elevation plant communities of the Remote Pacific generally, and through analysis of paired field sites, establish what role human-caused wildfire has in low-elevation plant communities in French Polynesia in the modern, post-European contact era. These results may have implications for conservation efforts in southeastern Polynesia and elsewhere in Oceania.

Fire effects in pre-modern Pacific Island plant communities

Fire has been widely invoked by archaeologists and paleoecologists as a means by which humans transformed Pacific island landscapes (Dodson and Intoh 1999; Kirch 2000; Mann et al. 2008). Certain vegetation communities in the Pacific have been considered to be associated with fire (Papy 1954; Mueller-Dombois and Fosberg 1998), but most Pacific island plant communities
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora are not considered to support active fire regimes of the type seen in some continental communities of similar climate (e.g. Cochrane 2003; but see Hunter-Anderson 2009).

Early botanists in the Pacific remarked on extensive fernlands and grasslands on certain islands. These communities were usually described as near-monocultures, dominated by either the native fern *Dicranopteris linearis* (Gleicheniaceae) or several species of grass. In some cases, including modern examples of these fernlands and grasslands, these take the form of “savannas” with scattered emergent trees such as *Metrosideros* and *Commersonia* (Florence 1997). For example, *Dicranopteris* fernlands are common in the Cook, Society, Austral, and Hawaiian islands. Notable areas with grassland include the Gambier Islands, leeward parts of Fiji (where savanna is known by the Fijian name *talasiqa*), the Mariana Islands, and the western Caroline Islands of Palau and Yap in Micronesia (Mueller-Dombois and Fosberg 1998).

Although these communities are widespread, Mueller-Dombois and Fosberg (1998) proposed that either these plant communities are not natural, or they represent post-disturbance communities because of their extremely low diversity, and because no other plant species are restricted to these communities (i.e. these communities contain no habitat specialists). Such conclusions were likely influenced by local knowledge that these plants grow back following wildfire. Archaeologists came to similar conclusions using pollen and charcoal records, and have argued that widespread “pyrophytic” grassland and fernland zones resulted from the use of fire by the first colonizing humans (Kirch 2000; Athens and Ward 2004; but see Hunter-Anderson 2009). These archaeological studies suggest that fire, in combination with other human impacts, transformed the mid- and low-elevation vegetation of oceanic Pacific islands from forest to pyrophytic fernlands and grasslands.
Despite obvious effects of fire in the vegetation communities of Pacific islands, there are few quantitative studies of wildfire effects on vegetation over the vast area in which they are dispersed. Wildfire has been shown to interact with other disturbance regimes (i.e. cyclones) in Samoa (Hjerpe et al. 2001; Elmqvist et al. 2002) and Tonga (Franklin 2007), and negatively impact the recruitment of late successional dominants (Franklin 2007). In New Caledonia, fire is implicated in the ecology of *maquis* scrublands (McCoy 1999), a vegetation community without parallel elsewhere in the remote tropical Pacific (Perry and Enright 2002). Like the research from Hawai‘i, these studies imply poor recovery of moist Pacific island forests. Few records and no formal studies exist for French Polynesia of the ecological effects of fire activity. In a detailed survey of Society Islands vegetation, Papy (1954) reported an association of *Dicranopteris* and grasses with fire, and suggested that the former can resprout from rhizomes following wildfire. He also observed that certain woody plants (*Metrosideros collina*, *Melastoma denticulatum*, and *Dodonaea viscosa*) are often associated with areas that have burned. These observations are similar to those from Hawai‘i for *Dodonaea viscosa* and *Metrosideros polymorpha* (D’Antonio et al. 2000; Ainsworth and Kauffman 2009).

The Hawai‘i-specific fire effects studies primarily have been conducted within Hawai‘i Volcanoes National Park on the island of Hawai‘i (“Big Island”; but see Ellsworth et al. 2014). They span a range of habitat types and elevations within the park (to 1200 m), where some fires are human-ignited and others are lava-ignited. Although a considerable number of native woody and tree fern species in wet and mesic forests show some ability to persist after wildfire through resprouting or germination following lava-ignited wildfire (Ainsworth and Kauffman 2009), and some native herbaceous species appear to sprout only following repeated wildfires that destroy litter (Ainsworth and Kauffman 2013), most evidence suggests that wildfires increase abundance
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

of introduced herbaceous and grass species. Fires promote invasion of introduced herbaceous species in forests (Ainsworth and Kauffman 2010), native tree and tree fern death (D’Antonio et al. 2000; Ainsworth and Kauffman 2013), and the replacement of native communities with invasive grasslands (Hughes et al. 1991; Hughes and Vitousek 1993; D’Antonio et al. 2000; Ainsworth and Kauffman 2013). These introduced herbaceous and grass communities restrict native seedling recruitment (Ainsworth and Kauffman 2010) and are even more susceptible to future fires, perpetuating a grass-fire cycle (D’Antonio and Vitousek 1992; Freifelder et al. 1998). It has been shown that wildfires can mediate transitions between dominance by different invasive grasses (Hughes et al. 1991; D’Antonio et al. 2001). The upward expansion in elevation of fire-adapted grasses has also been documented (Angelo and Daehler 2013). Although French Polynesia lacks a volcano-driven fire regime, its vegetation communities are similar to Hawaiian ones, and may show similar responses to anthropogenic wildfire.

This study

In this study, we examine vegetation changes associated with wildfires at low elevations (< 380 m) on the island of Mo’orea in the Society archipelago of French Polynesia (see Fig. 1). We investigate how low-elevation plant communities differ between burned areas and nearby comparison areas that have no known recent burn history, and expect wildfire to have substantial effects on the plant communities in our study. The comparison areas do not represent natural vegetation communities, but instead are secondary forests dominated by introduced species that have regrown in areas burned or cultivated by humans following human colonization ~1000 yr BP (Mueller-Dombois and Fosberg 1998; Kirch 2000). Native forests in French Polynesia, which
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
harbor most remaining endemic plant and invertebrate diversity, are primarily restricted to higher
elevations (Meyer 2010), and do not naturally experience large wildfires.

Given what is known from previous observations from other islands, we hypothesize that
burned areas will have a significantly different vegetation community from unburned areas. We
expect that grasses and ferns, especially Dicranopteris linearis, will be present at higher
proportions in burned areas than in unburned areas. We also expect that burned areas will contain
more introduced species and higher abundances of introduced species than are present in
unburned comparison areas, but that native (especially herbaceous) vegetation will persist or
recolonize burned sites (Ainsworth and Kauffman 2009; 2013). We investigate whether site or
burned status (burned or unburned) is more significant in explaining species diversity and
abundance in plots. We examine which plant species are present, through colonization, regrowth,
or persistence, in burned areas. One aim of this study is to identify which of the species existing
in an already highly modified plant community are likely to become more abundant or invasive
after wildfire.

Methods

We conducted research on the island of Mo’orea, French Polynesia (17°32’S, 149°50’W)
during the austral-spring dry season of October and November 2013 (Fig. 1). The wetter summer
season lasts from December-April (21-29C, ~123cm/month precipitation), and the drier winter
season lasts from May-November (19-25C, ~230cm/month precipitation). Large rainfall events
are still relatively common in the mostly dry winter months, however. Winds are generally stable
and dominated by southern tradewinds, although powerful wind events, including cyclones,
occur somewhat regularly (http://mcr.lternet.edu/general_information/climate/). Weather station
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
measurements provided by the Moorea Coral Reef Ecosystem LTER for August 2006-October 2010 report monthly average temperatures ranging from 24.5 C-27.2 C, and monthly cumulative rainfall between 0.8mm-716.8mm (Washburn et al. 2013).

Study sites

We worked at three sites, each containing two study areas: a post-wildfire (“burned”) area that was paired with a nearby, unburned (“comparison”) areas. Post-wildfire sites represent a variety of times since fire disturbance, total burned area, original vegetation communities, elevations, slopes, aspects, and microclimates. We chose to work in previously defined sites (following Koehler 1999), where burned and comparison areas at a single site have the same or very similar slopes, aspects, average rainfalls, and soil types (Bonvallot et al. 1993). The seasonality and severity of the burns were not controlled for, and the post-wildfire climatic conditions are not known, each of which can influence species richness and abundance in post-wildfire communities. Extreme variation in microclimates at these sites was not explicitly controlled for, and we therefore clarify that this collection of sites in not meant to represent plant community succession for different-aged sites.

Study sites varied in location, time since burn, and other characteristics, but were all located on the wetter side of the island (Table 1). Site 1 is located at the Col des Trois Cocotiers (accessible via the “Three Coconuts trail”) on the saddle between Mount Tohi’e’a and Mount Mou’aroa. The fire of interest originated from a small campfire at the top of the ridge (J.-Y. Meyer, pers. comm.) in 2004 (9 years before this survey was conducted), burning <1 ha. The site receives an average annual rainfall of 4500-5000mm, was characterized in 1993 as having an average annual temperature of 20-22.7°C (Bonvallot et al. 1993), and is in direct sunlight
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
throughout the day when there are no clouds. The slope at this site varies with a maximum of
30°. The adjacent comparison area is similar to the burned area but receives slightly more shade,
and is located to the west of the burned area.

Site 2 is also located on the southwest side of the island, north of the town of Ha’apiti.
According to Koehler (1999), the fire originated in 1995 (18 years before survey) from a noni
(Morinda citrifolia, or “nono” in Tahitian) fruit plantation and traveled up the slope of a west-
-facing ridge for approximately 1 km. The width of the burned area is ~300 m, with a total area of
~4 ha. The slope of this site averages approximately 25°, and the ridge can receive direct light
for the entire day. The average annual precipitation is 1720-2000 mm, with an average annual
temperature of >22.7° C (Bonvallot et al. 1993). The adjacent comparison area is located to the
northeast of the burned area.

Site 3 is located on the southwest side of the island, southeast of Ha’apiti. According to
Koehler (1999), the wildfire occurred in 1991 (22 years before this survey was conducted), and
originated from a pile of burning waste in a cemetery on the outskirts of Ha’apiti. The fire
traveled along a west-facing ridge for approximately 1.5 km. The total burned area is ~5 ha,
nowhere exceeding 250 m in width, and the slope is ~25° along the entire length of the burned
site (Koehler 1999). The ridge receives direct sunlight for the majority of the day, the average
annual precipitation at the site is 2000-2350mm, and the average annual temperature is >22.7°C
(Bonvallot et al. 1993). The adjacent comparison area is located to the southeast of the burn.
Center points of all burned and comparison areas, and total area burned were estimated using
Google Earth (Google 2013).

Field surveys
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Each of the paired study areas at three sites (Sites 1, 2, and 3) comprises a post-wildfire burned area and an adjacent, unburned comparison area. Five transect lines were placed in each of the six total burned and comparison areas, for a total of 30 transects. Vegetation was sampled at 4m intervals along each transect (starting at the zero point, for a total of 13 samples per transect and \(n = 390 \) data points) at all sites along points on a 50m transect tape, using a method modified from the Line Interception Method (Canfield 1941).

For each burned and comparison area, all individuals of vascular plant species touching and directly above a vertical measuring post were recorded. These were counted and identified to the species level in the field if possible, and photographs were taken for later verification. For plants that could not be field-identified, samples were collected for examination at the University of California, Berkeley Gump Station using online and printed plant identification keys (Moorea Digital Flora Project, Murdock 1999; Whistler 1995). Samples and photographs were verified through expert opinion (of J.-Y. Meyer, R. Tapatuarai, and J. Nitta). Voucher specimens collected from each site have been deposited in the University Herbarium (UC) at the University of California, Berkeley.

Analyses

Plant species were categorized by origin as native or introduced, and within the category of introduced species, a distinction was made between “Polynesian introduction” and “modern introduction” (post European contact) for analysis (Table 2). Historical presence was assessed by consensus and expert opinions including the following: Austin (1991), Butaud et al. (2008), Butaud (2010), Florence (1997, 2004), Florence et al. (2007), McCormack (2007), Meyer
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora (2004), J.-Y. Meyer (pers. comm.), J. Nitta (pers. comm.), Prebble (2008), and Whistler (1996, 2009).

Line-intercept transect data were used to calculate relative frequencies of species’ abundances for burned and comparison areas at each of the three study sites. Relative frequencies were calculated as total number of individuals in each species pooled across all five transects in one study area. Total species richness was calculated as number of species encountered on all transects in each area. Plants were organized by presence in burned areas, control areas, or both, and graphed by these categories for further examination. Differences between species richness by category of origin was assessed with Pearson’s Chi-squared tests for proportions, with the null hypothesis that the burned areas have the same proportions of species richness by category of origin as the comparison areas, and the alternate hypothesis that they do not. Similar calculations were made for relative frequencies of observed abundances.

To test the relative importance of site (SITE) and burned or unburned status (STATUS) in determining the plant community in an area, we constructed a set of Gaussian-distributed generalized linear models (GLMs) for species richness, and a set of Poisson-distributed GLMs for count data, which corresponds to observed abundance at each transect point. We included an interaction effect of SITE*STATUS in each model. Akaike’s Information Criterion adjusted for small sample sizes (AICc) was applied to each model set for model selection.

For plant data in each survey area, we calculated a non-metric multi-dimensional scaling test (NMDS) using a Bray-Curtis dissimilarity matrix to assess community-level differences among sites and between burned and comparison areas, using individual transects as data points. Bray-Curtis NMDS analyses evaluate community composition and structure. We employed Wisconsin double standardization (using R package “vegan” “metaMDS” analysis, Solymos et
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
al. 2015). Results of the NMDS were evaluated using analysis of similarities (ANOSIM in R
software package “vegan”). Homogenization of plant communities was assessed by applying an
ANOVA, followed by a Tukey’s Honestly Significant Differences Test, on the Bray-Curtis
transformed NMDS (using the function “betadisperser” in the “vegan” R package). A significant
value of the ANOVA F-test would indicate that the burned areas are different from the control
areas in terms of community homogenization (measured in distance to the centroid of each group
in ordination space).

All analyses were conducted in “R” version 3.1.3 (R Core Team 2015), with additional
packages “vegan” version 2.3-0 (Oksanen et al. 2015), “MASS” version 7.3-34 (Venables and
Ripley 2002), “AICmodavg” version 2.1-1 (Mazerolle 2017), and “MuMIn” version 1.15.6 (Bartoń 2009).

Results

Fire effects on species composition

Wildfire at all surveyed sites had large effects on the species composition of the resulting
communities, compared to unburned areas. Certain native species, such as Dicranopteris linearis
and Commersonia bartramia appeared only in burned areas. Plants fell into three categories:
those that were only present in unburned areas (23 species), those that were only present in
burned areas (11 species), and those that were present in both burned and unburned areas (23
species) (Fig. 2). Although these species might be placed in different categories with data from
additional sampling, our results suggest that there is a significant component of the low-elevation
plant community that is directly benefitting from wildfire activity and are present only in burned
areas. Of these, pineapple (Ananas comosus) is a fruit crop that may have been planted following
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
the fires, and therefore likely does not represent a “naturalized” species benefitting from fire.
Papaya (*Carica papaya*), on the other hand, does seem to benefit from fire in western Polynesia
(Franklin 2007) although we are not aware of evidence that it is naturalized in southeastern
Polynesia where this study took place. Similarly, *Inocarpus fagifer* (Fabaceae) is a large tree that
may have persisted through a low-intensity fire, so its presence in one burned area may not be
reflective of its response to fire. Persistence of overstory trees in low-intensity burns may be
more common, and such observations should be noted in future studies on this topic.

Dicranopteris linearis, as discussed previously, appears to be an aggressive colonizer of post-
wildfire sites, and like the native *Metrosideros collina*, is only present in areas that have been
burned. This is consistent with observations of the pyrophytic *Dicranopteris* savanna noted
previously. One observation of the native tree *Phyllanthus manono* (syn. *Glochidion manono*) in
a burned area is interesting to the natural history of this species, but it was not noted if this was
an individual that had resprouted or grown from seed.

Of the species present in both burned and unburned areas, *Hibiscus tiliaceus* is native and
is the most abundant, followed by an aggressive modern invasive, *Paraserianthes falcataria*.
This species (syn. *Falcataria molluccana, Albizia falcataria*) has been identified as having
disproportionate effects on species loss in tropical systems it invades (Pyšek et al. 2012). Of the
control-area only plants, notable are coconut (*Cocos nucifera*), which may have been planted; a
host of native species which may be highly fire-intolerant, including *Ixora mooreensis* and
Xylosma suaveolens, a large number of native fern species, and a problematic invasive species,
Miconia calvescens, which densely invades otherwise undisturbed areas (Meyer and Florence
1996).
Burned and unburned comparison sites contained a total of 57 vascular plant species (one club moss, 13 ferns, 14 monocots, and 29 eudicots; Table 2). Lichens and mosses were not included in this study. Of these, 54 plant species were identified to the species level. Each of three unknown species was given a unique identifier for analysis. At comparison sites, 46 species were found in total, with 34.8% native species, 17.4% Polynesian introduced species, and 41.3% modern introduced species (with three unidentified species of unknown origin). By comparison, 34 species were found in burned sites, 38.2% of which were natives, 5.9% Polynesian, and 50.0% modern introductions (Fig 3-4). Abundances varied on a site-to-site basis, with wildfire increasing observed abundances at two of three sites, and sharply increasing observed abundance at Site 2.

Model selection on GLMs for species richness (Table 3) showed that two models had near-equal explanatory power, and we therefore present model averages of a model of species richness ~ SITE + SPECIES, and a model that contains an interaction between the two measured explanatory variables: SITE + SPECIES + SITE*SPECIES. We found that comparison areas had greater species richness than burned areas ($P = 0.004$); Site 1 had the greatest species richness, though this effect was not as great when SITE by SPECIES interactions were considered (Table 4). GLM analysis of observed abundances (Table 3) produced three models within ΔAICc = 2 of one another, all containing STATUS as an explanatory variable. Model averaging on these three top ranked models yielded the following (Table 5): unburned “comparison” status had higher abundance generally than burned areas ($P = 0.079$), though the effect size was relatively small (0.152). As was the case for the species richness GLM, the high point estimate and statistical
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

significance of the intercept in each case indicates that more nuanced models with higher
explanatory power could be developed.

Fire effects on proportions of native and introduced species

Species richness was compared between study areas by category of origin (Fig. 3). Pearson’s Chi-squared tests for proportions show no differences between proportions of species in the native, Polynesian introduction, and modern introduction categories for burned and unburned areas at each site (χ² = 1.43, df = 2, P = 0.434 for 9-year burned and unburned areas at Site 1; χ² = 3.65, df = 2, P = 0.161 for 18-year burned and unburned areas at Site 2; and χ² = 3.58, df = 2, P = 0.167 for 22-year burned and unburned areas at Site 3). When modern and Polynesian introductions are grouped into one “introduced species” category, this result does not change, that is, there are no significant differences between proportions of native and introduced species by native versus introduced categories (P-values on χ² tests are all > 0.2).

Relative abundances of all individuals in vegetation communities were also compared across burned and control areas in three sites by category of origin (Fig. 3). Here, Pearson’s Chi-squared tests show significant differences between proportions of abundances of individuals in the native, Polynesian introduction, and modern introduction categories for burned and unburned areas at each site (χ² = 7.523, df = 2, P = 0.023 for Site 1; χ² = 10.697, df = 2, P = 0.005 for Site 2; and χ² = 76.705, df = 2, P < 10⁻⁵ for Site 3). When modern and Polynesian introductions are grouped into one “introduced species” category, results are still significant (though not as strongly so) (P = 0.09 for Site 1; P = 0.005 for Site 2; and P = 0.01 for Site 3). Wildfire significantly increased the relative abundance of individuals in the “introduced species” category at Sites 1 and 3, but decreased the relative abundance of introduced species at Site 2.
Fire effects on plant communities

Community differences were assessed with a two-dimensional NMDS. Results were plotted with individual points representing a single transect. Results converged in three iterations, for a calculated stress = 0.160, Procrustes root mean squared error = 1.64e-05, and maximum residuals = 2.98e-05. An analysis of similarities gives values for the ANOSIM test statistic \(R = 0.709 \), with \(P = 0.001 \), meaning that compositional differences between groups (in this case burned and unburned areas) are significantly greater than within groups.

As shown in Fig. 5, there was no overlap in the points between the burned and unburned comparison areas, visually indicating large differences between burned and unburned communities in ordination space. Points for each of the comparison areas were highly clustered but did not overlap with sites of different ages, indicating substantial differences in communities between different unburned comparison areas. In contrast, points for the burned areas are highly mixed and essentially indistinct from each other, and within-site spread of points in NMDS-ordination space is larger for the burned areas than for the comparison areas. Community level differences in burned and comparison areas were tested with an ANOVA followed by a Tukey’s Honestly Significant Differences Test on the Bray-Curtis transformed NMDS. We find that the results are not significant between groups \((F_{1,28} = 0.417, P = 0.524) \). These results are similar to those produced by a related test, the permutation test for homogeneity of multivariate dispersions (not shown). The significance level of the ANOVA does not change if the data are first normalized by Euclidian distances \((F_{1,28} = 1.902, P = 0.179) \) (Oksanen 2015). Our results do not support the hypothesis of vegetation community homogenization due to presence of non-native species.
Discussion

We have shown that even in an already heavily impacted plant community, wildfire creates communities that lack distinguishability between sites, whereas unburned comparison sites remain relatively distinct from one another. Wildfire does not appear to change the proportion of species in a community by their category of origin (i.e. native, Polynesian introduction, or modern introduction), but it significantly lowered diversity at one of three sites (Site 2). Counter to our original hypothesis, we did not find that there were more introduced species in burned areas than unburned ones. These results taken together provide evidence that wildfire impacts on the native community of plants vary from site to site, and are likely related to microclimate or other environmental drivers affecting the original vegetation community that were not measured in this study.

We found, as previous studies have, that *Dicranopteris linearis* colonized burned areas. We did not find higher presence of grasses, as has been noted in Hawai‘i, however, it should be noted that all our study sites were located on the wet side of the island, and that non-native grasses are present in abundance only on the dry side of Mo’orea. A study designed to sample the dry side of Mo’orea would likely discover additional problematic invasives. Although only sixth most abundant among invasives, *Lantana camara* is a modern introduction that is probably of higher concern than some of the more abundant species. Fire-*Lantana* interactions, including the possibility of a “fire cycle” or positive feedback between the two, are of special concern and have been reported from continental tropical areas (Fensham et al. 1994; Duggin and Gentle 1998; Hiremath and Sundaram 2005; Berry et al. 2011). Although its flammability and other fire adaptations compared to other vegetation in this system are not known, *Lantana camara* is bird-
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora dispersed in French Polynesia (Spotswood et al. 2012), and so has the potential to increase its range rapidly through seed dispersal. *Lantana camara* is designated by the French Polynesian government as one of the most serious invasive plants in the country (Meyer and Butaud 2007).

Our results demonstrate that wildfire on Mo’orea causes significant changes in plant communities, reducing distinguishability of communities between sites, increasing abundances of introduced species in burned areas, and changing community membership by facilitating colonization by *Dicranopteris linearis* as well as non-native species that have known positive fire feedback interactions. These changes are present in all post-wildfire sites (including the oldest site of 22 years). Long-term changes to the vegetation community that promote non-native and fire-prone species could be especially harmful on small tropical islands because they are more susceptible to invasion, and the plant diversity is already relatively low (Elton 1958; Vitousek et al. 1996).

Pacific islands invasives are comparatively understudied (Pyšek et al. 2012), and a general understanding of disturbance ecology across Pacific islands is absent. Our results may be generalizable to other islands both within the Society Islands chain and elsewhere in French Polynesia and southeastern Polynesia, where the original vegetation communities are similar to those on Mo’orea, and the invasive species available to colonize post-wildfire sites come from the same pool of available species. These results are important in light of frequent recent reports of wildfire events in local news media from multiple islands in French Polynesia (Newman, *manuscript*), and because both wildfire frequency and total burned area per year may increase in future years with climate change, presence of invasive species, increasing populations that rely on fire for agricultural and waste management, and other changes in human land use.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Acknowledgements

We thank the instructors of the Biology and Geomorphology of Tropical Islands, G. Roderick, B. Mishler, V. Resh, J. Stillman, and S. Carlson, as well as graduate student instructors C. DiVittorio, J. Hopper, and L. Dougherty for project guidance; Dr. J.-Y. Meyer, R. Tapatuarai, and J. Nitta for plant identifications; D. Godwin for providing code for graphing; and R. B. de Andrade for comments. We thank V. Brotherson and Gump Research Station for providing logistical support, field sites and facilities, and P. Frogier and the Délégation à la Recherche for providing permits to CAW, EAN, and DHH. This work was supported by funds from a U.S. National Science Foundation (NSF) Graduate Research Fellowship, the Energy and Resources Group at the University of California, Berkeley, and by the Gordon and Betty Moore Foundation to EAN, and by NSF grant OISE-1159509 to DHH.

References

Ainsworth A, Kauffman JB (2009) Response of native Hawaiian woody species to lava-ignited wildfires in tropical forests and shrublands. Plant Ecology 201, 197-209.

Ainsworth A, Kauffman JB (2010) Interactions of fire and nonnative species across an elevation/plant community gradient in Hawaii Volcanoes National Park. Biotropica 42, 647-655.

Ainsworth A, Kauffman JB (2013) Effects of repeated fires on native plant community development at Hawaii Volcanoes National Park. International Journal of Wildland Fire 22, 1044-1054.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
Angelo CL, Daehler CC (2013) Upward expansion of fire-adapted grasses along a warming tropical elevation gradient. *Ecography* **36**, 551-559.

Athens JS, Ward JV (2004) Holocene vegetation, savanna origins and human settlement of Guam. *Records-Australian Museum* **19**, 15-30.

Austin DF (1991) *Ipomoea littoralis* (Convolvulaceae)—taxonomy, distribution, and ethnobotany. *Economic Botany* **45**, 251-256.

Bartoń K (2009) MuMIn: multi-model inference. R package, version 1.15.6. Available at: http://r-forge.r-project.org/projects/mumin/.

Berry ZC, Wevill K, Curran TJ (2011) The invasive weed *Lantana camara* increases fire risk in dry rainforest by altering fuel beds. *Weed Research* **51**, 525-533.

Bonvallot J, Dupon J-F, Vigneron E, Gay J-C, Morhange C, Ollier C, Peugniez G, Reitel B, Yon-Cassat F (1993) ‘Atlas de la Polynésie française.’ (Éditions de l’ORSTOM: Paris, France)

Butaud J-F, Gérard J, Guibal D (2008) ‘Guide des arbres de Polynésie française: bois et utilisations.’ (Éditions Au vent des îles: Pirae, French Polynesia)

Butaud J-F (2010) ‘Gambier: guide floristique.’ (Direction de l’Environnement, Government of French Polynesia: Papeete) Available online: http://www.environnement.pf/spip.php?article125
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Canfield RH (1941) Application of the line interception method in sampling range vegetation. *Journal of Forestry* **39**, 388-394.

Cochrane MA (2003) Fire ecology for rainforests. *Nature* **421**, 913-919.

D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. *Annual Review of Ecology and Systematics* **23**, 63-87.

D’Antonio CM, Hughes RF, Vitousek PM (2001) Factors influencing dynamics of two invasive C₄ grasses in seasonally dry Hawaiian woodlands. *Ecology* **82**, 89-104.

D’Antonio CM, Tunison JT, Loh RK (2000) Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii. *Austral Ecology* **25**, 507-522.

Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: A general theory of invasibility. *Journal of Ecology* **88**, 528-534

Dodson JR, Intoh M (1999) Prehistory and palaeoecology of Yap, federated states of Micronesia. *Quaternary International* **59**, 17-26.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
Duggin JA, Gentle CB (1998) Experimental evidence on the importance of disturbance intensity for invasion of Lantana camara L. in dry rainforest-open forest ecotones in north-eastern NSW, Australia. Forest Ecology and Management 109, 279-292.

Elmqvist T, Wall M, Berggren AL, Blix L, Fritioff Å, Rinman U (2002) Tropical forest reorganization after cyclone and fire disturbance in Samoa: remnant trees as biological legacies. Conservation Ecology 5, 10.

Ellsworth LM, Litton CM, Dale AP, Miura T (2014) Invasive grasses change landscape structure and fire behaviour in Hawaii. Applied Vegetation Science 17, 680-689.

Elton CS (1958) ‘The ecology of invasions by animals and plants.’ (Methuen: London, UK)

Fensham RJ, Fairfax RJ, Cannell RJ (1994) The invasion of Lantana camara L. in Forty Mile Scrub National Park, north Queensland. Australian Journal of Ecology 19, 297-305.

Florence J (1997) ‘Flore de la Polynésie française, vol. 1.’ (Éditions de l’ORSTOM: Paris, France)

Florence J (2004) ‘Flore de la Polynésie française, vol. 2.’ (IRD Éditions and Muséum national d’histoire naturelle: Paris, France)
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Florence J, Chevillotte H, Ollier C, Meyer J-Y (2007) Base de données botaniques Nadeaud de l’Herbier de la Polynésie française (PAP). Available online: http://www.herbier-tahiti.pf

Franklin J (2007) Recovery from clearing, cyclone and fire in rain forests of Tonga, South Pacific: Vegetation dynamics 1995-2005. *Austral Ecology* **32**, 789-797.

Freifelder RR, Vitousek PM, and D’Antonio CM (1998) Microclimate change and effect on fire following forest-grass conversion in seasonally dry tropical woodland. *Biotropica* **30**, 286-297.

Google (2013) Google Earth (Version 7). Available online: http://www.google.com/earth/

Hiremath AJ, Sundaram B (2005) The fire-lantana cycle hypothesis in Indian forests. *Conservation and Society* **3**, 26-42.

Hjerpe J, Hedenås H, Elmqvist T (2001) Tropical rain forest recovery from cyclone damage and fire in Samoa. *Biotropica* **33**, 249-59.

Hughes F, Vitousek PM (1993) Barriers to shrub reestablishment following fire in the seasonal submontane zone of Hawai‘i. *Oecologia* **93**, 557-563.

Hughes F, Vitousek PM, Tuniston T (1991) Alien grass invasion and fire in the seasonal submontane zone of Hawai‘i. *Ecology* **72**, 743-747.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
Hunter-Anderson RL (2009) Savanna anthropogenesis in the Mariana Islands, Micronesia: re-interpreting the palaeoenvironmental data. *Archaeology in Oceania* **44**, 125-141.

Kato-Noguchi H, Saito Y, Suenaga K (2012) Involvement of allelopathy in the establishment of pure colony of *Dicranopteris linearis*. *Plant Ecology* **213**, 1937-1944.

Kirch PV (2000) ‘On the road of the winds: an archaeological history of the Pacific islands before European contact.’ (University of California Press: Berkeley, CA, USA)

Koehler TB (1999) Plant recovery on fire scars on Moorea, French Polynesia. University of California, Berkeley, Biology and Geomorphology of Tropical Islands **8**, 71-79.

Mann D, Edwards J, Chase J, Beck W, Reanier R, Mass M, Finney B, Loret J (2008) Drought, vegetation change, and human history on Rapa Nui (Isla de Pascua; Easter Island). *Quaternary Research* **69**, 16-28.

Marc J. Mazerolle (2017) AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.1-1.

McCormack G (2007) Cook Islands Biodiversity Database, Version 2007.2. Cook Islands Natural Heritage Trust, Rarotonga, Cook Islands. Available online: http://cookislands.bishopmuseum.org.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
Meyer J-Y (2010) Montane cloud forests in remote islands of Oceania: the example of French Polynesia (South Pacific Ocean). In ‘Tropical montane cloud forests: Science for conservation and management’. (Eds LA Bruijnzeel, FN Scatena, LS Hamilton) pp. 121-129. (Cambridge University Press: Cambridge, UK)

Meyer J-Y (2004) Threat of invasive alien plants to native flora and forest vegetation of Eastern Polynesia. Pacific Science 58, 357-375.

Meyer J-Y, Butaud J-F (2007) ‘Les plantes envahissantes en Polynésie française: guide illustré d’identification.’ (Government of French Polynesia, Direction de l’Environment and Délégation à la Recherche: Papeete, French Polynesia) Available online: http://www.environnement.pf/IMG/pdf/Guide_plantes_envahissantes.pdf

Meyer J-Y, Florence J (1996) Tahiti’s native flora endangered by the invasion of Miconia calvescens (Melastomataceae). Journal of Biogeography 23, 775-781.

Mueller-Dombois D, Fosberg FR (1998) ‘Vegetation of the tropical Pacific islands.’ (Springer: Berlin, Germany).

Murdock A (1999) Moorea digital flora project. Available online: http://ucjeps.berkeley.edu/moorea/index.html.

Newman EA (2014) Fire in paradise. Wildfire Magazine, (Nov. issue) 22-26.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora
Nunn PD (1990) Recent environmental changes on Pacific Islands. Geographical Journal, 125-140.

Oksanen J (2011) Multivariate analysis of ecological communities in R: vegan tutorial, 39pp.

Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.0-10. Available online: http://CRAN.R-project.org/package=vegan.

Papy HR (1954) ‘Tahiti et les îles voisines, II, la végétation des îles de la Société et de Makatea.’ (Laboratoire Forestier: Toulouse, France).

Perry, GLW, and Enright NJ (2002) Humans, fire and landscape pattern: understanding a maquis-forest complex, Mont Do, New Caledonia, using a spatial “state-and-transition” model. Journal of Biogeography 29, 1143-1158.

Prebble M (2008) No fruit on that beautiful shore: What plants were introduced to the subtropical Polynesian islands prior to European contact? In ‘Islands of inquiry: Colonisation, seafaring and the archaeology of maritime landscapes’. (Eds G Clark, F Leach, S O’Connor) pp. 227-251. (Terra Australis 29). (ANU ePress: Canberra, Australia)

Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E (2008) Geographical and taxonomic biases in invasion ecology. Trends in Ecology and Evolution 23, 237-244.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012) A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Global Change Biology 18, 1725-1737.

R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org.

Russell A E, Raich JW, Vitousek PM (1998) The ecology of the climbing fern Dicranopteris linearis on windward Mauna Loa, Hawaii. Journal of Ecology 86, 765-779.

Spotswood EN, Meyer J-Y, Bartolome JW (2012) An invasive tree alters the structure of seed dispersal networks between birds and plants in French Polynesia. Journal of Biogeography 39, 2007-2020.

Trauernicht, C, Pickett E, Giardina CP, Litton CM, Cordell S and Beavers A (2015) The Contemporary Scale and Context of Wildfire in Hawai'i 1. Pacific Science 69, 427-444.

Venables WN, Ripley BD (2002) ‘Modern Applied Statistics with S.’ Fourth Edition. (Springer: New York, NY)
Newman *et al.*: Anthropogenic wildfire impacts on Pacific island flora
Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. *American Scientist* 84, 468-478.

Wagner WL, Lorence DH (2002) Flora of the Marquesas Islands website.
http://botany.si.edu/pacificislandbiodiversity/marquesasflora/index.htm [Accessed online February 2014]

Washburn, L and Brooks A, of Moorea Coral Reef LTER. 2013. MCR LTER: Coral Reef: Gump Meteorological Data. knb-lter-mcr.9.36 (http://metacat.lternet.edu/knb/metacat/knb-lter-mcr.9.36/lter). Accessed online July 1, 2013.

Whistler AW (2009) ‘Plants of the canoe people: an ethnobotanical voyage through Polynesia.’
(National Tropical Botanical Garden: Kalaheo, HI, USA)

Whistler AW (1996) ‘Wayside plants of the islands: A guide to lowland plants of the Pacific Islands.’ (University of Hawai‘i Press: Honolulu, HI, USA)
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Figure legends.

Figure 1.
Map of the Pacific region showing the the region containing French Polynesia (dark outline) and the island of Mo’orea. Other island chains mentioned in this study are also labeled.

Figure 2.
Species recorded in burned and comparison areas, arranged by relative abundance. Data represent all individuals recorded at all sites, and are grouped by presence in burned areas, comparison areas, or both.

Figure 3.
Species richness shown as total (A) and proportional (B) measurements; and observed abundances of species (C) and their proportions (D) measured at sampling points in burned and unburned areas at 3 sites. Data represent individuals measured at 13 points each along 5 transects in burned and comparison areas for each of 3 sites (n = 390 data points). Plants are grouped into native, Polynesian introduction, and modern introduction categories.

Figure 4.
Box plots comparing species richness and observed abundance across burned and comparison areas (“Status”) and three sites.

Figure 5.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Non-metric multidimensional scaling (NMDS) plot showing differences in plant community composition between transects from each site. Points that are closer together have a higher degree of similarity. Each point represents a single transect; burned area data are represented in red, and comparison plot data are represented in black. Post-fire areas have larger and more overlapping ranges in this parameter space than do unburned areas.
Table 1. Summary of characteristics for burned and unburned comparison sites. Centers of burned areas were determined from aerial photos.

Name of site and location	Age (year of burn)	Condition	GPS coordinates	Elevation (m)	Size of burned area	No. species (no. observations)
Site 1: Col des Trois Cocotiers	9 years (2004)	burned	17°32'49.9"S 149°50'32.5"W	374	< 1 ha	26 (179)
			17°32'47"S			
	(NA)	comparison	149°50'35"W	379	(NA)	30 (331)
Site 2: North of Ha'apiti	18 years (1995)	burned	17°33’10.39"S 149°52’14.63"W	154	~4 ha	18 (150)
	(NA)	comparison	149°52’3.68"W	146	(NA)	21 (212)
Site 3: Southeast of Ha'apiti	22 years (1991)	burned	17°33’30.44"S 149°51’50.48"W	120	5 ha	13 (160)
	(NA)	comparison	17°33’40.98"S 149°51’53.15"W	45	(NA)	17 (167)
Newman *et al*.: Anthropogenic wildfire impacts on Pacific island flora

Table 2. Plant species recorded at the three study sites, categorized by broad taxonomic groups.

Species are also categorized by their historical presence in the Society Islands: e.g., native, introduced by humans before 1767 C.E. (“Polynesian introductions”), or introduced by humans since 1767 C.E. (“modern introductions”). Lichens and mosses were not included in this study.

Historical Presence *	Type of Plant	Species
Native	Club mosses	*Lycopodiella cernua*
	Ferns	*Angiopteris evecta*
		Arachniodes aristata
		Asplenium australasicum
		Blechnum patersonii
		Davallia solida
		Dicranopteris linearis
		Diplazium ellipticum
		Lygodium reticulatum
		Nephrolepis hirsutula
Monocots		*Freycinetia impavida*
		Pandanus tectorius
Eudicots		*Cyclophyllum barbatum* (*Canthium barbatum*)
		Commersonia bartramia
		Fagraea berteroana
		Hibiscus tiliaceus
		Ipomoea littoralis
		Ixora mooreensis
		Metrosideros collina
		Neonauclea forsteri
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Polynesian Introduction	Monocots	Cocos nucifera
	Cordyline fruticosa	
	Dioscorea bulbifera	
	Miscanthus floridulus	
	Musa X paradisiaca (cultivar)	
	Zingiber zerumbet	

Eudicots
Inocarpus fagifer
Syzygium malaccense

Modern Introduction
Ferns
Adiantum trapeziforme
Diplazium proliferum

Monocots
Ananas comosus
Centotheca lappacea
Dypsis madagascariensis
Melinis repens
Spathoglottis plicata

Eudicots
Falcataria moluccana (syn. Paraserianthes falcataria, Albizia falcataria)
Carica papaya
Elephantopus mollis
Emilia fosbergii
Lantana camara
Mangifera indica
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Merremia peltata
Miconia calvecens
Mikania micrantha
Passiflora foetida
Polyscias scutellaria
Psidium guajava
Rubus rosifolius
Spathodea campanulata
Stachytarpheta urticifolia
Syzygium cuminii
Tecoma stans

Unknown Origin
Fern
unknown fern 1
Fern
unknown fern 2
Monocot
unknown grass 1

* Historical presence was assessed by consensus and expert opinions including the following references: Austin 1991, Butaud et al. 2008, Butaud 2010, Florence 2004, Florence 1997, Florence et al. 2007, McCormack 2007, Meyer 2004, J.-Y. Meyer (pers. comm.), J. Nitta (pers. comm.), Prebble 2008, Whistler 1996, and Whistler 2009.
Table 3. Model selection for species richness and for abundance. Models are shown in rank order of AICc support. Here, k = number of parameters in model; AICc = Akaike’s Information Criterion value corrected for small sample sizes; ΔAICc = difference of AICc value compared to the next best-supported model; w_i = AICc weight (a measure of strength of evidence for each model); Cumulative w = total model AICc weights for best models in rank order; and LL = Log-Likelihood.

Ranked models for $y = \text{SPECIES}$

Model family = Gaussian	k	AICc	ΔAICc	w_i	Cumulative w	LL
$y = \text{SITE} + \text{STATUS}$	5	164.33	0	0.53	0.53	-75.91
$y = \text{SITE} + \text{STATUS} + \text{SITE:STATUS}$	7	164.54	0.21	0.47	1	-72.72
$y = \text{SITE}$	4	179.21	14.88	0	1	-84.81
$y = \text{STATUS}$	3	183.74	19.41	0	1	-88.41
$y = 1$	2	190.3	25.98	0	1	-92.93

Ranked models for $y = \text{ABUNDANCE}$

Model family = Poisson	k	AICc	ΔAICc	w_i	Cumulative w	LL
$y = \text{SITE} + \text{STATUS} + \text{SITE:STATUS}$	7	237.02	0	1	1	-108.96
$y = \text{SITE}$	4	253.67	16.66	0	1	-122.04
$y = \text{SITE} + \text{STATUS}$	5	254.89	17.88	0	1	-121.2
$y = 1$	2	255	17.98	0	1	-125.28
$y = \text{STATUS}$	3	256.13	19.11	0	1	-124.6
Table 4. Fixed effect parameter estimates from GLM analysis of total species richness, averaged from the top two AICc-selected models. Significant parameters are printed in **bold**.

Parameter	Point Estimate	Standard error	P-value
Intercept	11.383	1.581	< 0.001
SITE THREE	-6.38	2.266	0.006
SITE TWO	-5.569	2.139	0.012
STATUS (Comparison)	7.234	2.448	0.004
SITETHREE:STATUS (Comparison)	-6	2.733	0.037
SITETWO:STATUS (Comparison)	-5.2	2.733	0.071
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Table 5. Fixed effect parameter estimates from GLM analysis of total abundance, from the top AIC_c-selected model. Significant parameters are printed in **bold**.

Parameter	Point Estimate	Standard error	P-value
Intercept	3.68819	0.0973	< 0.001
SITE	-0.06368	0.0410	0.138
STATUS (Comparison)	0.15209	0.0831	0.079
SITE:STATUS (Comparison)	0.04208	0.0707	0.570
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Figure 1.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Figure 2.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Figure 3.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Figure 4.
Newman et al.: Anthropogenic wildfire impacts on Pacific island flora

Figure 5.