Cellular therapy: A promising tool in the future of colorectal surgery

Mohammed Mohammed El-Said, Sameh Hany Emile

Abstract
Cellular therapy may be the solution of challenging problems in colorectal surgery such as impaired healing leading to anastomotic leakage and metastatic colorectal cancer (CRC). This review aimed to illustrate the role of cellular therapy in promotion of wound healing and management of metastatic CRC. An organized literature search for the role of cellular therapy in promotion of wound healing and management of metastatic CRC was conducted. Electronic databases including PubMed/Medline, Scopus, and Embase were queried for the search process. Two types of cellular therapy have been recognized, the mesenchymal stem cells (MSCs) and bone marrow-mononuclear cells therapy. These cells have been shown to accelerate and promote healing of various tissue injuries in animal and human studies. In addition, experimental studies have reported that MSCs may help suppress the progression of colon cancer in rat models. This article reviews the possible mechanisms of action and clinical utility of MSCs and BM-MNCs in promotion of healing and suppression of tumor growth in light of the published literature. Cellular therapy has a potentially important role in colorectal surgery, particularly in the promotion of wound healing and management of metastatic CRC. Future directions of cellular therapy in colorectal surgery were explored which may help stimulate futures studies on the role of cellular therapy in colorectal surgery.

Key words: Cellular therapy; Future; Colorectal surgery; Stem cells
INTRODUCTION

Colorectal surgery entails several technical aspects and various postoperative morbidities that may compromise the outcome of patients. Among these morbidities, improper healing and spread of colorectal cancer (CRC) are considered to be the most challenging problems.

Improper or delayed wound healing after reconstruction is considered a major challenge for many surgeons in the daily practice. Impaired wound healing can result in reconstruction failure which may lead to serious consequences in colorectal surgery such as anastomotic leakage (AL) and persistent fecal incontinence after failing anal sphincter repair.

It is worthy to remember that even when optimal surgical strategies and techniques are followed, failure of surgical reconstruction still occurs in a distressing rate as the case with AL after colorectal anastomosis which ranges between 1.5% and 15.9%[1,2]. It became apparent that, in addition to optimizing the surgical technique, alternative strategies may be necessary for further improvement in the healing process in order to decrease the rate of reconstruction failure.

Another serious problem is the loco-regional recurrence and distant metastasis of CRC occurring after an apparently curative surgery. Approximately 20%-25% of patients with CRC have synchronous liver metastases and another 25%-50% will develop liver metastases after apparently curative intent surgery[3]. Although the current chemotherapy has been reported to cause regression of metastatic CRC[4] with subsequent improvement in the overall survival after curative intent surgery[5], the management of patients with systemic disease is mostly palliative and metastatic cancer remains generally incurable and a major cause of cancer-related mortality.

Most colorectal metastases affect the liver and only 10%-20% of them are resectable with a five-year survival rate of 30%-40%[6].

Even when radical colorectal resection is conducted, functional impairments are frequently encountered postoperatively with remarkable impact on patients’ quality of life. Radical excision of rectal cancer usually results in poor bowel function, particularly low anterior resection syndrome (LARS) which affects up to 80% of patients after low anterior resection[7]. This encouraged many surgeons to adopt the "wait and watch" policy after complete clinical response of rectal cancer to neoadjuvant chemo-radiotherapy. Organ preservation strategies have been increasingly used for rectal cancer in the modern surgical practice.

It has been suggested that the solution of the problems aforementioned may not be in more refinement or improvement in surgical technique or chemotherapy, but in biological interventions including cellular and immunological therapies. Cellular therapy is a promising modality that may become the future of colorectal surgery. This article highlights the role of cellular therapy in promotion of healing and suppression of progression of CRC which may shed light on the potentials and future directions of this innovative therapy.

ROLR OF CELLULAR THERAPY IN TISSUE HEALING

In order to comprehend the rationale of using cellular therapy in promotion of healing, the basic concepts of cellular response to injury should be emphasized. It has been demonstrated that tissue injury stimulates the mobilization of progenitor cells from the bone marrow to the site of injury to regenerate the stroma. These progenitor cells include the fibrocytes which then differentiate into fibroblasts and deposit collagen and extracellular matrix proteins[8-9]; and the endothelial progenitor cells which form new blood vessels[10]. The end result of migration of these mononuclear cells from the bone marrow to the site of injury is the formation of granulation tissue which subsequently matures into fibrous tissue.

It has been shown that mesenchymal stem cells (MSCs) also are mobilized from the bone marrow to the site of injury to promote healing[11] without integration in the tissues[11]. Therefore, the bone marrow mononuclear cells (BM-MNCs) and MSCs are
being mobilized in response to tissue trauma from the bone marrow to the site of injury to contribute to promotion of healing as illustrated in Figure 1. Since both have the same origin and pathway homing at the site of injury, the MSCs and BM-MNCs may belong to the same differentiation line, may have common cellular features and functions, and may have similar therapeutic efficacy\(^{(13)}\).

The use of cellular therapy in promotion of wound healing is mainly based on the stem cell paradigm in which stem cells injected into the injured tissues will differentiate into parenchymal cells resulting in better healing and tissue regeneration. However, tissue regeneration secondary to differentiation of injected stem cells was not proved to occur in experimental studies. Another possible mechanism was postulated that stem cells may improve wound healing by secreting different healing promoting mediators, instead of differentiation into parenchymal cells\(^{(14)}\).

On the other hand, an alternative concept, the stroma paradigm, was suggested. In this paradigm, the progenitor cells are first mobilized from the bone marrow to the site of injury to contribute to regeneration of the stroma, then the local stem cells start infiltrating the preformed stroma to regenerate the parenchyma.

In light of this paradigm, it would be logical that impaired stroma regeneration can prevent its infiltration by local parenchymal stem cells, resulting in healing by fibrosis rather than by regeneration. Many experimental studies supported the stroma paradigm against the stem cell paradigm. Three experimental studies examined the effect of local injection of stem cells on healing of injured anal sphincters\(^{(14-16)}\) and concluded that the injected stem cells do not differentiate into skeletal muscles, yet they accelerate a normal regenerative mechanism that begins by regeneration of the stroma which is then infiltrated by muscle fibers from the nearby muscles\(^{(17)}\).

Based on previous arguments; the use of MSCs may not be ideal in promoting healing and the BM-MNCs may be a more suitable alternative. This fraction of bone marrow contains the cells responsible for stroma regeneration ready to act, the fibrocytes and endothelial progenitor cells, in contrast to the MSCs which are supposed to be less differentiated\(^{(18,19)}\).

Experimental and clinical studies have shown that both MSCs and BM-MNCs are equally effective in promotion of healing. Mazzanti et al\(^{(18)}\) showed that local injection of MSCs and BM-MNCs have the same therapeutic efficacy in promotion of healing of injured anal sphincter muscles in rats. Other investigators have also reported that MSCs and BM-MNCs are equally effective in inducing regenerative changes in animal models of myocardial infarction and osteoarthritis\(^{(15-17)}\).

Being equally effective with the MSCs, the BM-MNCs have the advantages of being less costly, easier to prepare, and not requiring weeks of in-vitro culture rendering them more suitable for clinical use\(^{(12)}\). The preparation of BM-MNCs takes approximately one hour after withdrawal of bone marrow. Orthopedic surgeons\(^{22-24}\) have used bone marrow aspirate concentrate (BMAC) which is composed mainly of BM-MNCs\(^{(20)}\) instead of ex-vivo cultivated stem cells in the treatment of bone defects, bone healing disorders, and osteonecrosis with promising results. Our group has also used BMAC to augment healing of repaired external anal sphincter in humans with promising results\(^{(26)}\).

ROLE OF CELLULAR THERAPY IN TREATMENT OF METASTATIC CRC

Many studies demonstrated that MSCs home into various tumors as breast cancer, prostate cancer\(^{(27)}\) and colon cancer\(^{(28)}\). It has been assumed that tumors tend to behave biologically as a wound that never heals, releasing several inflammatory mediators that recruit MSCs\(^{(29)}\).

The effect of MSCs on tumor growth is controversial as some studies reported that MSCs can either enhance\(^{(10,11)}\) or inhibit tumor growth\(^{(12,13)}\). Waterman et al\(^{(14)}\) documented that MSCs can be primed by stimulation of toll like receptor 3 or 4 (TLR3 or TLR4) into immunosuppressive or proinflammatory MSCs, respectively. While the non-primed and immunosuppressive MSCs tend to enhance tumor growth, the proinflammatory MSCs tend to inhibit it. This concept may shed light on the controversial role and dual action of MSCs in tumor biology.

The key in using MSCs in inhibition of tumor growth lays in shifting the polarization of these cells from the immunosuppressive phenotype, which helps formation of tumor stroma (pro-tumor), to the proinflammatory phenotype which stimulates the immune system to destroy the tumor (anti-tumor). One of the strategies used for shifting polarization of MSCs to the proinflammatory phenotype is local injection of bacteria into the tumor.

Coley\(^{(20)}\) treated patients with inoperable soft tissue sarcomas by local injection of...
heat killed bacteria "Coley's toxin" with long term disease free survival of about 50% which is considered extraordinary. Although Coley's toxin is not used now in clinical practice, intra-vesical Bacillus Calmette Guerin (BCG) is considered the standard of care in patients with superficial bladder cancer[36]. In general, the antitumor effect of BCG on superficial bladder cancer is due to activation of the patient's immune response against the tumor[37] as evidenced by infiltration of the bladder wall by immune cells after BCG therapy[38]. To be effective, BCG therapy requires a competent host immune system[39]. We speculate that these bacterial products may prime MSCs that infiltrate the tumor to become proinflammatory, resulting to tumor regression. Although certain evidence is still lacking, combining MSCs with bacteria may help priming the MSCs to become proinflammatory which makes them a strong weapon against cancer.

Former experimental studies have documented the inhibitory effect of MSCs therapy on the progression of CRC. Francois et al[40] showed that intravenous injection of MSCs attenuated both initiation and progression of CRC in an immunocompetent rat model of colon cancer. In line with the previous study, Tang et al[41] showed that intravenous MSCs helped suppress the development of colon cancer in a colitis rat model. El-Khadragy et al[42] also showed that intra-rectal injection of non-manipulated bone marrow cells suppressed the progression of colon cancer in a rat model.

Similar to MSCs, fibrocytes seem also to either promote or suppress tumor growth through differentiation into different phenotypes. Fibrocytes that express CD34+ were suggested to help inhibition of tumor growth in different cancers[43]. On the other hand, loss of CD34+ on fibrocytes in tumor stroma with increased α-smooth muscle actin+ are associated with increased invasive behavior of different tumors[44,45]. This may be explained by loss of the antigen presenting function of fibrocytes that lack CD34+ expression, eventually leading to impaired immune response to malignant cells[46]. This concept of polarization of fibrocytes and the effect of this polarization on tumor biology is so similar to that of MSCs which may suggest common origin and functions of both cell types.

Although fibrocyte-based cellular therapies were not used yet to treat tumors even experimentally, the biologic similarity between fibrocytes and MSCs as aforementioned makes us postulate that local injection of BM-MNCs may have similar effects on tumor growth as MSCs. Perhaps the addition of a bacterial product such as BCG to either MSCs or BM-MSCs may help polarize stem cells or fibrocytes to the tumor suppressing phenotype, however, thorough and extensive research on this hypothesis is needed to ascertain its validity.

CONCLUSION

In conclusion, cellular therapy may be the future solution for difficult surgical problems such as impaired healing and tumors. Cells can be locally injected at sites of reconstruction to augment healing as to prevent AL. The use of MSCs and potentially BM-MNCs may help suppress the progression of metastatic CRC without the morbidity, mortality and limitations of major surgery. Further animal studies are highly required to prove the validity of these concepts.

REFERENCES
El-Said MM et al. Cellular therapy in colorectal surgery

Choi HK, Law WL, Ho JW. Leakage after resection and intraperitoneal anastomosis for colorectal malignancy: analysis of risk factors. *Dis Colon Rectum* 2006; 49: 1719-1725. [PMID: 17051321 DOI: 10.1007/s10330-006-0703-2]

Sørensen LT, Jørgensen T, Kirkeby LT, Skovdal J, Vennits B, Wille-Jørgensen P. Smoking and alcohol abuse are major risk factors for anastomotic leakage in colorectal surgery. *Br J Surg* 1999; 86: 927-931. [PMID: 10417567 DOI: 10.1046/j.1365-2168.1999.01165.x]

Hynes DM, Tarlov E, Durazo-Arvizu R, Perrin R, Zhang Q, Weichle T, Ferreira MR, Lee T, Benson AB, Bhoopalam N, Bennett CL. Surgery and adjuvant chemotherapy use among veterans with colon cancer: insights from a California study. *J Clin Oncol* 2010; 28: 2571-2576. [PMID: 20468940 DOI: 10.1200/JCO.2009.23.5200]

Chua TC, Saxena A, Liao W, Kokandi A, Morris DL. Systematic review of randomized and nonrandomized trials of the clinical response and outcomes of neoadjuvant systemic chemotherapy for resectable colorectal liver metastases. *Ann Surg Oncol* 2010; 17: 492-501. [PMID: 19856028 DOI: 10.1245/s10434-009-0781-1]

Sargent D, Srebro A, Grothey A, O’Connell MJ, Busye M, Andre T, Zheng Y, Green E, Labianca R, O’Callaghan C, Seitz JF, Francini G, Haller D, Yothers G, Goldberg R, de Gramont A. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. *J Clin Oncol* 2009; 27: 872-887. [PMID: 19124803 DOI: 10.1200/JCO.2008.20.5362]

Adam R, Vinet E. Regional treatment of metastasis: surgery of colorectal liver metastases. *Ann Oncol* 2004; 15 Suppl 4: i103-i106. [PMID: 15477291 DOI: 10.1093/annonc/mdl912]

Martellucci J. Low Anterior Resection Syndrome: A Treatment Algorithm. *Dis Colon Rectum* 2016; 59: 79-82 [PMID: 26651136 DOI: 10.1097/DCR.0000000000000493]

Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. *Mol Med* 1994; 1: 71-81. [PMID: 8790630 DOI: 10.1007/bf03403533]

Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. *Exp Cell Res* 2005; 304: 81-90. [PMID: 15705776 DOI: 10.1016/j.yexcr.2004.11.011]

Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Keaner M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. *Circ Res* 1999; 85: 221-228. [PMID: 10436164 DOI: 10.1161/01.res.85.3.221]

Newman RE, Yoo D, LeRoux MA, Danilkovich-Miagkova A. Treatment of inflammatory diseases with mesenchymal stem cells. *Inflamm Allergy Drug Targets* 2009; 8: 110-123. [PMID: 19530993 DOI: 10.2174/187152809788462633]

Masson S, Lopez EA, Yoo D, Danilkovich-Miagkova A, Leroux MA. Concise review: role of mesenchymal stem cells in wound repair. *Stem Cells Transl Med* 2012; 1: 142-149. [PMID: 23197761 DOI: 10.5966/sctm.2011-0018]

Song F, Tang J, Geng R, Hu H, Zhu C, Cui W, Fan W. Comparison of the efficacy of bone marrow mononuclear cells and bone mesenchymal stem cells in the treatment of osteoarthritis in a sheep model. *Int J Clin Exp Pathol* 2014; 7: 1415-1426. [PMID: 24817937]

Pathi SD, Acevedo JF, Keller PW, Kishore AH, Miller RT, Wai CY, Word RA. Recovery of the injured external anal sphincter after injection of local or intravenous mesenchymal stem cells. *Obstet Gynecol* 2012; 119: 134-144 [PMID: 22183221 DOI: 10.1097/AOG.0b013e3182357009]

Lorenzi B, Pessina F, Lorenzoni P, Urbani S, Verrillo R, Saragagi G, Gerli R, Mazzanti B, Bosi A, Saccardi R, Lorenzoni M. Treatment of experimental anal sphincter injury with primary surgical repair and injection of bone marrow-derived mesenchymal stem cells. *Dis Colon Rectum* 2008; 51: 411-420. [PMID: 18224375 DOI: 10.1003/t50-097-9153-8]

Fitzwater JL, Grande KB, Sailors JL, Acevedo JF, Word RA, Wai CY. Effect of myogenic stem cells on the integrity and histomorphology of repaired transected external anal sphincter. *Int Urogynecol J* 2015; 26: 251-256 [PMID: 25253391 DOI: 10.1007/s00192-014-2496-5]

El-Said MM, Emile SH. Comment on "A new method for treating fecal incontinence by implanting stem cells derived from human adipose tissue: preliminary findings of a randomized double-blinded clinical trial". *Stem Cell Res Ther* 2018; 9: 115 [PMID: 29869293 DOI: 10.1186/s13287-018-0785-4]

Metc CN. Fibrocytes: a unique cell population implicated in wound healing. *Cell Mol Life Sci* 2003; 60: 1342-1350. [PMID: 12943323 DOI: 10.1007/s00018-003-2328-0]

Hristov M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, differentiation, and homing. *Arterioscler Thromb Vasc Biol* 2003; 23: 1185-1189. [PMID: 12714439 DOI: 10.1161/01.ATV.0000073832.49290.B5]

Mazzanti B, Lorenzi B, Borghini A, Boiser M, Ballerini L, Saccardi R, Weber E, Pessina F. Local injection of bone marrow progenitor cells for the treatment of anal sphincter injury: in-vitro expanded versus minimally-manipulated cells. *Stem Cell Res Ther* 2016; 7: 85 [PMID: 27328811 DOI: 10.1186/s13287-016-0344-x]

Guarita-Souza LC, Teixeira de Carvalho KA, Rebelatto C, Senegaglia A, Hansen P, Furuta M, Miyagwe N, Francisco JC, Olandoski M, Woitowicz V, Simeoni R, Faria-Neto JR, Brofman P. Comparison of mononuclear and mesenchymal stem cell transplantation in myocardium infarction. *Br J Cardiovasc Surg* 2005; 20: 270-278 [PMID: 15733563 DOI: 10.1016/s0793-4059(00)00030-0]

Hendrich C, Franz E, Waertel G, Krebs R, Jäger M. Safety of autologous bone marrow aspiration concentrate transplantation: initial experiences in 101 patients. *Orhopav* (Pavia) 2009; 1: e32 [PMID: 21806991 DOI: 10.4081/or.pavia.2009.e32]

Gessmann J, Köller M, Godry H, Schildhauer TA, Seybold D. Regenerate augmentation with bone marrow concentrate after traumatic bone loss. *Orhopav* (Pavia) 2012; 4: c14 [PMID: 22577502 DOI: 10.4081/or.2012.e14]

Jäger M, Heminga P, Zilkins C, Herten M, Li X, Fischer J, Krause R. Cell therapy in bone healing disorders. *Orhopav* (Pavia) 2010; 2: c20 [PMID: 21808710 DOI: 10.4081/or.2010.c20]

Hermann PC, Huber SL, Herrler T, von Heeschen C, Andrassy J, Kevy SV, Jacobson MS, Heeschen C. Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. *Cell Transplant* 2008; 16: 1059-1069. [PMID: 18351022 DOI: 10.3727/00000000783472363]

Khafagy WW, El-Said MM, Thabet WM, Aref SE, Omar W, Emile SH, Elfeki H, El-Ghonyem MS, El-
El-Said MM et al. Cellular therapy in colorectal surgery

Shobaky MT. Evaluation of anatomical and functional results of overlapping anal sphincter repair with or without the injection of bone marrow aspirate concentrate: a case-control study. Colorectal Dis 2017; 19: 066-074 [PMID: 27943250 DOI: 10.1111/col.12579]

Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther 2013; 4: 70 [PMID: 23763837 DOI: 10.1186/scrt221]

Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, Tanaka S, Yasui W, Chayama K. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 2010; 127: 2323-2333 [PMID: 20473928 DOI: 10.1002/ijc.25440]

Moteigi SI, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci 2017; 86: 83-89 [PMID: 27866791 DOI: 10.1016/j.jdermsci.2016.11.005]

Karnoub AE, Dash AB, Yo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyzak K, Tubo R, Weisberg RA. Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 2007; 449: 557-563 [PMID: 17914389 DOI: 10.1038/nature06183]

Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J, Cao W, Han C, Chen Y. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006; 80: 267-274 [PMID: 16214129 DOI: 10.1016/j.yexmp.2005.07.004]

Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M. Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003; 75: 248-255 [PMID: 1461816 DOI: 10.1016/y.exmp.2003.06.001]

Cousin B, Ravel E, Poglio S, De Toni F, Bertuzzi M, Laluka H, Touil I, André M, Grolloeu JL, Péron JM, Chavoin JP, Boarini P, Péinaud L, Castellia L, Buscali L, Cordelier P. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. Proc Natl Acad Sci USA 2009; 4: e2678 [PMID: 19609435 DOI: 10.1073/pnas.0900627]

Waterman RS, Tomchuk SL, Henklet SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. Proc Natl Acad Sci USA 2010; 8: e10088 [PMID: 20436665 DOI: 10.1073/pnas.0910081]

Bickels J, Kollender Y, Merinisky O, Meller I. Coley's toxin: historical perspective. Int Med Assoc J 2002; 4: 471-472 [PMID: 12073431]

Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Böhle A, Palou-Redorta J, Rouprêt M, European Association of Urology (EAU). EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol 2011; 59: 997-1008 [PMID: 21428150 DOI: 10.1016/j.eururo.2011.03.017]

OLD LJ, CLARKE DA, BENACERRAF B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 1959; 184: 291-292 [PMID: 14428599 DOI: 10.1038/184291a0]

Böhle A, Gerdes J, Ulmer AJ, Hofstetter AG, Flad HD. Effects of local bacillus Calmette-Guerin therapy in patients with bladder carcinoma on immunocompetent cells of the bladder wall. J Urol 1990; 144: 53-58 [PMID: 2359181 DOI: 10.1016/s0022-5347(17)33965-5]

Morton D, Eilber FR, Malmgren RA, Wood WC. Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery 1970; 68: 158-163; discussion 163-4 [PMID: 10483463]

François S, Usnier B, Forgue-Laflite ME, L’Homme B, Benderitter M, Douay L, Gorin NC, Larsen AK, Chapet A. Mesenchymal Stem Cell Administration Attenuates Colon Cancer Progression by Modulating the Immune Component within the Colorectal Tumor Microenvironment. Stem Cells Transl Med 2018; 8: 285-300 [PMID: 30451398 DOI: 10.1002/scitm.18-0117]

Tang RJ, Shen SN, Zhao XY, Nie YZ, Xu XJ, Ren J, Lv MM, Hou YY, Wang TT. Mesenchymal stem cells-regulated Treg cells suppress colitis-associated colorectal cancer. Stem Cell Res Ther 2015; 6: 71 [PMID: 25889203 DOI: 10.1186/s13287-015-0055-8]

El-Khadragy MF, Nabil IM, Hassan BN, Tohamy AA, Waer HF, Yehia HM, Alharbi AM, Moniem AEA. Bone Marrow Cell Therapy on 1,2-Dimethylhydrazine (DMH)-Induced Colon Cancer in Rats. Cell Physiol Biochem 2018; 45: 1072-1083 [PMID: 2943258 DOI: 10.1159/000487349]

Keeley EC, Mehrad B, Strieter RM. Fibrocytes: bringing new insights into mechanisms of inflammation and fibrosis. Int J Biochem Cell Biol 2010; 42: 535-542 [PMID: 19850147 DOI: 10.1016/j.biocel.2009.10.014]

Barth PJ, Westhoff CC. CD34+ fibrocytes: morphology, histogenesis and function. Curr Stem Cell Res Ther 2007; 2: 221-227 [PMID: 18220905 DOI: 10.2174/157488807781696249]

Elahrimasde S, Westhoff CC, Barth PJ. CD34+ fibrocytes are preserved in most invasive lobular carcinomas of the breast. Pathol Res Pract 2007; 203: 695-698 [PMID: 17656039 DOI: 10.1016/j.prp.2007.05.009]
