Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Efficacy of Ninjin’yoeito in treating severe coronavirus disease 2019 in patients in an intensive care unit

ARTICLE INFO

Keywords
Kampo
Ninjin’yoeito
COVID-19
SARS-CoV-2
Pneumonia
Intensive care unit
Prognostic nutritional index

ABSTRACT

Coronavirus Disease-2019 (COVID-19), an infectious disease associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a global emergency with high mortality. There are few effective treatments, and many severe patients are treated in an intensive care unit (ICU). The purpose of this study was to evaluate the effect of NYT on the prognostic nutritional index (PNI) of patients. We retrospectively examined the PNI, length of IMV, length of ICU stay, length of hospital stay, rate of tracheostomy, and mortality rate.

1. Introduction

Coronavirus disease-2019 (COVID-19), first reported in Wuhan, China in December 2019, is rapidly expanding worldwide (Wang et al., 2020b). It is an infectious disease associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (Perlman, 2020; Zhang et al., 2020), and has now become a global emergency.

There are few effective treatments, and severe patients are treated in an intensive care unit (ICU). In the ICU, many patients with COVID-19 pneumonia develop severe hypoxic respiratory failure and require invasive mechanical ventilation (IMV). Based on NIH COVID-19 Treatment Guidelines, patients in some countries may receive remdesivir and dexamethasone (Sanders et al., 2020). However, cases in ICU are invariably associated with high mortality. The ICU mortality rate reported in previous studies ranges from 16% to 78% (Arentz et al., 2020; Bhatraju et al., 2020; Huang et al., 2020; Myers et al., 2020; Wang et al., 2020a; Wang et al., 2020b; Yang et al., 2020; Zhou et al., 2020).

Globally, as of 30 August 2021, there have been 214,468,601 confirmed cases of COVID-19, including 4,470,969 deaths, reported to WHO (see, https://covid19.who.int). In Japan, COVID-19 has resulted in 1,388,863 confirmed cases with more than 15,797 deaths.

Ninjin’yoeito (NYT) is a Japanese Kampo medicine that improves symptoms such as anemia, anorexia, cough, and fatigue and is used to facilitate disease recovery (Amitani et al., 2015; Miyano et al., 2018). There are no reports evaluating the efficacy and safety of NYT in severe COVID-19 patients undergoing respiratory management with IMV in the ICU.

The purpose of this study was to evaluate the effectiveness of NYT in preventing the progression of COVID-19 and shortening the length of stay in the ICU or length of hospital stay. In addition, we aimed to assess the effect of NYT on the prognostic nutritional index (PNI) of patients.

2. Methods

Patients with confirmed SARS-CoV-2 infection admitted to the ICU at our hospital in May and June 2021 were enrolled in this study. All patients were diagnosed COVID-19 by a positive result for SARS-CoV-2 RNA in nasopharyngeal swabs using real-time fluorescence reverse transcription-polymerase chain reaction (RT-PCR). All patients received remdesivir and dexamethasone (Sanders et al., 2020).

All patients underwent respiratory management with IMV and circulatory management with catecholamine support as needed; enteral nutrition (20 kcal/kg/day) was performed by inserting an elemental diet tube. All patients were treated in the same manner except for NYT administration which was administered in a dose of 7.5 g daily via the elemental diet tube in some patients. Patients who received NYT were compared to those who did not receive NYT. We retrospectively examined the PNI, length of IMV, length of ICU stay, length of hospital stay, rate of tracheostomy, and mortality rate.

https://doi.org/10.1016/j.npep.2021.102201
Received 30 August 2021; Received in revised form 29 September 2021; Accepted 29 September 2021
The demographic and clinical characteristics of the patients are shown in Table 2. The median age of the enrolled patients was 60.0–38.4) years, with 4 (44%) men and 5 (56%) women. The median body mass index (BMI) was 27.6 (20.7–33%), and chronic kidney disease (2 patients, 22%).

The patient outcomes are shown in Table 3. The median duration of hospital stay was 23.5 (15–64) days and time exclusively in the ICU was 33.6 (4–9) days. The mortality rate was 22% (2 patients). There were no significant differences in age, sex, BMI, comorbidities, laboratory data, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and mortality rate between the NYT and non-NYT groups.

Tracheostomy was performed in 5 patients (45%), with fewer patients in the NYT group than in the non-NYT group (22.0%).

7.5 g of Ninjin’yoeito extract granules contains 6700 mg of a dried extract of the following mixed crude drugs.

2.1. Statistical analysis

Statistical analysis was performed using SPSS 24 statistical software (SPSS Inc., Chicago, USA). The association between NYT and non-NYT was analyzed with the chi-square test, Fisher’s exact test, and Mann-Whitney U test. A p value less than 0.05 was considered to be statistically significant.

3. Results

Nine patients were enrolled in the study. The NYT group (4 patients who received NYT) and non-NYT group (5 patients who did not receive NYT) were compared.

The demographic and clinical characteristics of the patients are shown in Table 2. The median age of the enrolled patients was 60.0 (42–82) years, with 4 (44%) men and 5 (56%) women. The median body mass index (BMI) was 27.6 (20.7–38.4). The most common comorbidity was diabetes (4 patients, 44%), followed by hypertension (3 patients, 33%), and chronic kidney disease (2 patients, 22%).

The patient outcomes are shown in Table 3. The median duration of hospital stay was 23.5 (15–64) days and time exclusively in the ICU was 14.3 (4–49) days. The mortality rate was 22% (2 patients). There were no significant differences in sex, age, BMI, comorbidities, laboratory data, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, and mortality rate between the NYT and non-NYT groups.

Tracheostomy was performed in 5 patients (45%), with fewer patients in the NYT group than the non-NYT group (25% vs. 80%). The median length of IMV days was shorter in the NYT group (4.0 days) than in the non-NYT group (14.3 days). The median length of days in the ICU was shorter in the NYT group (5.3 days) than in the non-NYT group (14.5 days). The median duration of hospital stay was shorter in the NYT group (19.9 days) than in the non-NYT group (28.2 days).

The median PNI at admission was 29.0 in NYT group and 31.2 in non-NYT group. One week after admission, the PNI was 30.7 in the NYT group (19.9 days) than in the non-NYT group (28.2 days).

4. Discussion

Treatment of severe COVID-19 patients tends to be prolonged, and the increase in the number of patients requiring ICU support also causes major global social and economic disruption. Longer hospital stays lead to increased medical expenses. Although effective therapeutic drugs for COVID-19 are required, currently there is no effective and specific antiviral treatment for COVID-19. Based on available evidence, remdesivir and dexamethasone have been used in Japan, but these drugs are not likely to be sufficient for successful treatment of COVID-19 (Sanders et al., 2020) (Beigel et al., 2020; Grein et al., 2020).

In this study, we investigated the use of the Japanese Kampo medicine, NYT (see https://mpdb.nibiohn.go.jp/stork/). Many Kampo medicines have been shown to fight viral infections, inflammation, and apoptotic or other cancers. For example, there is a report that Maoto and
Neuropeptides 90 (2021) 102201

Kakkontokasenkyushin’i might be effective in treating COVID-19-induced high fever and olfactory disorders (Nabeshima et al., 2021; Takayama et al., 2021). However, there are no reports of using NYT in the treatment of COVID-19.

Kampo medicines are inexpensive. If the ICU stay period is shortened, the medical cost benefit will be enormous. We believe that NYT should be studied for COVID-19 treatment. This report is first study to be useful in treating patients with severe COVID-19.

NYT is composed of 12 herbal plants that are used to promote recovery from illness and improve symptoms such as general fatigue, anemia, anorexia, cough, cancer cachexia, and the side effects of anti-cancer therapies (Amitani et al., 2015; Aomatsu et al., 2021; Aomatsu et al., 2020; Miyano et al., 2018). These herbal plants include Ginseng, Japanese angelica root, Rehmannia root, Atractylodes rhizome, Poria sclerotium, Peony Root, Citrus unshiu peel, Polygala root, Astragalus root, Cinnamom bark, Schisandra fruit, and Glycyrrhiza (Table 1).

In COVID-19 patients, it is possible that NYT might improve respiratory symptoms, anxiety, nutritional status, and efficiency of rehabilitation. Especially in COVID-19 patients, NYT’s antithrombotic effects and improvement of respiratory symptoms are important. Previous studies showed that Rehmannia root, Cinnamom bark, Peony Root, and Ginseng have antithrombotic effects (Matsuda, 1986; MATSUDA et al., 1987; MATSUDA et al., 1986; Sakuragawa, 1983). Therefore, NYT might be useful in treating patients with severe COVID-19.

Moreover, NYT includes Schisandra fruit and polygala root. Schisandra fruit has been used to treat chronic cough as a prescription medication in traditional herbal medicine. Schisandra chinensis fruit polysaccharide-1 (SCFP-1), extracted from Schisandra fruit, has anti-tussive activity (Zhong et al., 2016). In addition, Gomisin A (G.A) is a dietary lignan compound from Schisandra chinensis. Gomisin suppressed colorectal lung metastasis in a lung metastasis mouse model by inducing AMPK/p38-mediated apoptosis (Kee et al., 2018). NYT inhibited the contraction of guinea pig bronchial smooth muscle induced by histamine (Inoue, 1994). In fact, NYT is an effective and promising drug with various effects in frail patients with chronic obstructive pulmonary disease, despite conventional treatment (Hirari et al., 2020).

Polygala has been widely used to improve cognitive function. NYT improves mental stress-induced anxiety in neuropeptide Y-deficient zebrafish; Schisadorina fruit was identified as the compound responsible for the anxiolytic effect of NYT (Kawabe et al., 2021).

Table 2
Patient characteristics.

 	Total (n = 9)	NYT (n = 4)	non-NYT (n = 5)	p-value
Age, years	60.0 (42-82)	58.5 (42-82)	60.0 (51-81)	0.905
Sex				
Men	4 (44)	1 (25)	3 (60)	0.294
Women	1 (11)	3 (75)	5 (60)	0.058
Body mass index, kg/m²	27.6 (20.7–38.4)	26.1 (20.7–38.4)	27.6 (23.6–36.3)	0.73
Time from symptom onset to admission, days	8.0 (5-13)	9.0 (8-11)		1
Comorbidities				
Diabetes	4 (44)	2 (50)	2 (40)	0.764
Hypertension	3 (33)	0(0)	3 (60)	0.058
Chronic kidney disease	2 (22)	2 (50)	0 (0)	0.073
Cerebrovascular diseases	1 (11)	0 (0)	1 (20)	0.343
Liver cirrhosis	1 (11)	0 (0)	1 (25)	0.236
Laboratory data				
WBC, /μL⁻¹	5.630 (4910–20,150)	11.195 (4980–20,150)	5.630 (4910–10,330)	0.73
RBC, ×10¹²/μL⁻¹	4.08 (320–496)	3.96 (327–427)	4.72 (320–496)	0.413
PLT, ×10³/μL⁻¹	17.0 (5.8–26.7)	19.9 (5.8–26.7)	17.0 (11.4–22.5)	0.73
Albumin, g/dL	2.80 (2.4-3.7)	2.65 (2.4-2.8)	2.90 (2.7-3.7)	0.063
Prealbumin, mg/dL	8.6 (7.1–10.7)	9.55 (7.1–10.7)	7.90 (7.4–9.4)	0.556
CRP, mg/dL	9.06 (1.06–15.84)	8.91 (1.06–15.44)	9.06 (2.93–15.84)	0.905
KL6, U/mL	352 (124–932)	392 (124–932)	332 (186–719)	1
PNI on admission*	30.7 (25.2–40.3)	29.0 (25.2–32.5)	31.2 (29.4–40.3)	0.111
APACHE II score*	12.0 (8.16)	11.5 (8.16)	12.0 (10–13)	1

 	Total (n = 9)	NYT (n = 4)	non-NYT (n = 5)	p-value
Patient outcomes.				
Rate of tracheostomy, n (%)	5 (56)	1 (25)	4 (80)	0.099
Length of IMV, days	9.4 (2–45)	4.0 (2–17)	14.3 (9–45)	0.111
Length of ICU stay, days	14.3 (4–49)	5.3 (4–17)	14.5 (9–40)	0.111
Length of hospital stay, days	23.5 (15–64)	19.9 (17–27)	28.2 (15–64)	0.286
Mortality, n (%)	2 (22)	1 (25)	1 (20)	0.858
PNI 1 week after admission	27.0 (15.8–41.3)	30.7 (24.1–41.3)	24.4 (15.8–28.7)	0.111
Rate of change in PNI (one week), %	−16.4 (−48.4–+27.2)	+13.6 (−16.4–+27.2)	−22.0 (−48.4–2.9)	0.032

* median (range), NYT: Ninjin’yo eito; PNI: Prognostic nutritional index; WBC: White blood cell; RBC: Red blood cell; PLT: platelet; CRP: C-reactive protein; APACHE Il: Acute Physiology and Chronic Health Evaluation II.

Table 3
Patient outcomes.

 	Total (n = 9)	NYT (n = 4)	non-NYT (n = 5)	p-value
Rate of tracheostomy, n (%)	5 (56)	1 (25)	4 (80)	0.099
Length of IMV, days	9.4 (2–45)	4.0 (2–17)	14.3 (9–45)	0.111
Length of ICU stay, days	14.3 (4–49)	5.3 (4–17)	14.5 (9–40)	0.111
Length of hospital stay, days	23.5 (15–64)	19.9 (17–27)	28.2 (15–64)	0.286
Mortality, n (%)	2 (22)	1 (25)	1 (20)	0.858
PNI 1 week after admission	27.0 (15.8–41.3)	30.7 (24.1–41.3)	24.4 (15.8–28.7)	0.111
Rate of change in PNI (one week), %	−16.4 (−48.4–+27.2)	+13.6 (−16.4–+27.2)	−22.0 (−48.4–2.9)	0.032
In this study, we evaluated nutritional status using PNI. PNI is easily calculated based on the serum albumin concentration and peripheral blood lymphocyte count (10 × serum albumin (g/dL) + 0.005 × total lymphocyte count (μL)), and is an indicator of the nutritional and immune status (Hong et al., 2015; Ikeya et al., 2015). It has been confirmed to have prognostic value in various settings, such as infectious disease, cardiovascular disease, and various cancers (He et al., 2017; Keskin et al., 2017; Peng et al., 2017; Shirakabe et al., 2018; Sun et al., 2015; Wu et al., 2016). Recently, several reports indicated that PNI is independently associated with mortality in COVID-19 patients, and a lower PNI score is associated with a worse prognosis. (Hu et al., 2021; Wang et al., 2020b; Wang et al., 2021; Wei et al., 2021).

In this study, we compared the PNI at admission and after one week, and PNI was significantly (p = 0.032) increased in the NYT group (+13.6%) compared to the non-NYT group (−22.0%). All patients were treated in the same manner except for NYT administration. It is possible that PNI was improved by the administration of NYT from the elemental diet tube immediately after underwent respiratory management with IMV. In addition, the NYT group had improved nutritional status and shorter length of stay compared to the non-NYT group. This study was conducted in a small number of cases, and further large clinical trials are necessary to determine the efficacy of NYT treatment for COVID-19. In Japan, integrative randomized controlled trials of Japanese Kampo medicine for COVID-19 are underway (Namiki et al., 2021; Takayama et al., 2021; Takayama et al., 2020).

5. Conclusion

Our study suggests that the Japanese Kampo medicine NYT might be useful for treating patients with severe COVID-19 in the ICU.

Ethics statement

This study was performed in accordance with the Declaration of Helsinki and institutional guidelines. The patients/participants provided their written informed consent to participate in this study. The institutional ethics committee approval number is 2109066.

Author contributions

NA made a substantial contribution to the study conception, conducted a literature search, and drafted the manuscript. NA, KS, KM, and DK contributed to the acquisition of data. HM, and MS advised on their written informed consent to participate in this study. The institutional ethics committee approval number is 2109066.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The authors declare that there are no conflicts of interest.

References

Amitani, M., Amitani, H., Sloan, R.A., Suzuki, H., Sameshima, N., Anakawa, A., Neronem, Y., Oouchi, Y., Inoue, A., Hodino, E., 2015. The translational aspect of complementary and alternative medicine for cancer with particular emphasis on Kampo. Front. Pharmacol. 6, 150.

Aomatsu, N., Uchima, Y., Tsuji, M., Miyamota, Y., Okada, T., Kurihara, S., Matsutani, S., Hirakawa, T., Iwaiso, T., Morimoto, J., 2020. Postoperative adjuvant chemotherapy regimen of CAPOX combined with Ninjin yoeito in an elderly patient with stage III colon cancer: a case report. Front. Nutr. 7, 57.

Aomatsu, N., Maeda, K., Uchima, Y., Matsutani, S., Tsuji, G., Miyamota, H., Oka, T., Kurihara, S., Nishii, T., Tachimori, A., 2021. Multiple stage IV colorectal cancers in a patient who received multidisciplinary treatment, including chemotherapy and Japanese Kampo medicine: a case report. Neuropeptides 88, 102160.

Arntz, M., Tim, E., Nahr, L., Sekhandwalla, S., Riedo, F.X., Chong, M., Lee, M., 2020. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. Jama 323, 1612-1614.

Beigel, J.H., Tomaheak, K.M., Dodd, L.E., Mehta, A.K., Zingman, B.S., Kall, A.C., Hohmann, E., Chu, H.Y., Leekmetweer, A., Kline, S., 2020. Remdesivir for the treatment of Covid-19—preliminary report. N. Engl. J. Med. 383(18), 1813-1836.

Bharaju, P.K., Ghasemieh, B.J., Nichols, M., Kim, R., Jerome, K.R., Nalla, A.K., Grengien, A.L., Pipavath, S., Wurfel, M.M., Evans, L., 2020. Covid-19 in critically ill patients in the Seattle region case series. N. Engl. J. Med. 382, 2012-2022.

Chan, J.Y.W., Lam, F.C., Leung, P.C., Che, C.T., Fung, K.P., 2009. Anthyglycemic and antioxidant effects of a herbal formulation of radix Astragali, radix Codonopsis and Cortex Lycii in a mouse model of type 2 diabetes mellitus. Phytomed. 23, 658-665.

Chen, L.-G., Jan, Y.-S., Tsai, P.-W., Norimoto, H., Michihiro, S., Murayama, C., Wang, C.-C., 2016. Anti-inflammatory and antiangiogenic constituents of Atractylodes japonica Koidzumi. J. Agric. Food Chem. 64, 2254-2262.

Crawford, P., Crawford, A.J., 2018. Edema from taking cinnamon for treatment of diabetes: similar biochemistry and pathophysiology to thiazolidinedione medications. J. Am. Board Fam. Med. 31, 809-811.

Grein, J., Ong, S.-Y., Ishii, S., Shin, D., Diax, J., Egeringen, E., Castagna, A., Feldt, T., Green, G., Green, M.L., Lescure, F.X., 2020. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 382, 2327-2336.

Han, S.-Y., Kim, J., Kim, E., Kim, S.H., Seo, D.B., Kim, J.-H., Shin, S.S., Cho, J.Y., 2018. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J. Ginseng Res. 42, 496-503.

He, D.-Y., Dai, S.-M., 2011. Anti-inflammatory and immunomodulatory effects of Panax notoginseng Flora, a traditional Chinese herbal medicine. Front. Pharmacol. 2, 10.

He, Z.-Q., Ke, C., Chang, X.-F., Danz, H., Gao, C.-C., Wang, Y., Zhang, X.-H., Chiu, Y.-S., Liu, G.-Z., Wang, J., 2017. Low preoperative prognostic nutritional index predicts poor survival in patients with newly diagnosed high-grade gliomas. J. Neuro-Oncol. 132, 239-247.

Hilari, K., Honma, T., Matsunaga, T., Akimoto, K., Yamamoto, S., Sugauna, H., Kashima, A., Sato, H., Ebato, T., Miyata, Y., 2020. Usefulness of Ninjin yoeito for chronic obstructive pulmonary disease patients with frailty. J. Altern. Complement. Med. 26, 750-757.

Hong, V.K., Wu, H.-T., Ma, T., Liu, W.-J., He, X.-J., 2009. Effects of Glyceririza glabra polysaccharides on immune and antioxidant activities in high-fat mice. Int. J. Biol. Macromol. 45, 61-64.

Hong, S., Zhou, T., Fang, W., Xue, C., Hu, Z., Qin, T., Yang, Y., Chen, Y., Ma, Yang, Y., 2015. The prognostic nutritional index (PNI) predicts overall survival of small-cell lung cancers. Tumor Biol. 36, 3389-3397.

Hu, X., Deng, H., Wang, Y., Chen, L., Gu, X., Wang, X., 2021. Predictive value of the prognostic nutritional index for the severity of coronavirus disease 2019. Nutrition 84, 111123.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, J., Xu, G., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506.

Ikeya, T., Shibutani, M., Maeda, K., Sugano, K., Nagahara, H., Ohtani, H., Hirakawa, K., 2015. Maintenance of the nutritional prognostic index predicts survival in patients with unresectable metastatic colorectal cancer. J. Cancer Res. Clin. Oncol. 141, 741-748.

Im Ahn, K., Choi, E.O., Kwon, D.H., Hwangbo, H., Kim, M.Y., Kim, H.J., Ji, S.Y., Hong, S.-H., Jeong, J.-W., Park, C., 2017. Induction of apoptosis by ethanol extract of Citrus unshiu Markovich peel in human bladder cancer T24 cells through ROS-mediated inactivation of the PI3K/Akt pathway. Biosci. Trends 11(5), 565-573.

Inoue, K., 1994. General pharmacology of Ninjin-yeoi-to(NIN) and Juzen-taiho-to(JUZ). Pharmaceutics 47, 495-503.

Jiangwei, M., Zengyong, Q., Xia, X., 2011. Aquous extract of Astragalus mongholicus ameliorates high cholesterol diet induced oxidative injury in experimental rats. J. Med. Plants Res. 5, 858.

Keskin, M., Hayiroğlu, M., Keskin, T., Kaya, A., Tatlanu, M., Altay, S., Uzun, A., Börkülü, E., Güvenç, T., Avci, I., 2017. A novel and useful predictive indicator of prognosis in ST-segment elevation myocardial infarction, the prognostic nutritional index. Nutr. Metab. Cardiovasc. Dis. 27, 438-446.

Kim, J.-H., 2012. Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J. Ginseng Res. 36, 16.

Kim, E.-H., Son, R.-H., Myoung, H.-J., Mar, W.-C., Kim, W.-K., Nam, K.-W., 2010. The inhibitory effect of baicalin on the short-term food intake in C57BL/6J mice. Biosil. Ther. 18, 171-177.
Kim, M.-Y., Yoo, B.C., Cho, J.Y., 2014. Ginsenoside-Rp1-induced apolipoprotein A1 expression in the LoVo human colon cancer cell line. J. Ginseng Res. 38, 251–255.

Knight, L., Nishimura, T., Furabayashi, A., Yoshida, J., 1977. On the constitution of rhizome of Rehmannia glutinosa Lischk., forma hueichingiensis Hsiao. Pharm. Soc. Jap. 91 (5), 593–596.

Kubo, M., Asato, A., Shiimoto, H., Matsuda, H., 1994. Studies on rehmanniae radix I. Effect of 50% ethanol extract from steamed and dried rehmannia radix on hemorrhhe in alcoholic and thrombotic rats. Biol. Pharm. Bull. 17, 1282–1286.

Lee, J.-Y., Lee, K.M., Chou, K.Y., Won, B.Y., Jung, H.Y., Sub, H.H., 2009. Effects of BT-11 on sleep quality in healthy human females. Lett. 544, 111–114.

Lee, Y.H., Lee, N.H., Bharath, G., Kim, G.E., Lee, K.C., Yan, B.S., Hwang, P.H., Yi, H.K., 2013. Anti-inflammatory effect of paracitic acid promotes odontoblast differentiation via HO-1 in dental pulp cells. Oral Disc. 19, 193–199.

Liu, G., Zhao, H., Liu, Y., 2017. Anti-aging investigations of Astragalus membranaceus (Huangqi): a well-known Chinese tonic. Aging Dis. 8, 866.

Matsuda, H., 1986. Inhibitory effect of oriental medicine ‘Rehmanniae Radix’ on Ohsawa, M., Maruoka, J., Inami, C., Iwaki, A., Murakami, T., Ishikura, K.-I., 2018. Effect of Kampo medicine on the use of a hyperthermic operation in patients with brain metastases. Oncol. Lett. 14, 2195–2198.

Matsuda, H., Namba, K., Fukuda, S., Tani, T., Kubo, M., 1986. Pharmacological study on Shin, K.Y., Won, B.Y., Heo, C., Kim, H.J., Jang, D.P., Park, C.H., Kim, S., Kim, H.S., 2018. An observational study of novel immunological and nutritional-based prognostic study: IMJEDI P1 study. Trials 22, 1.

Sanders, J.M., Monogue, M.L., Jodlowski, T.Z., Cutrell, J.B., 2020. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 323, 1874–1885.

Sakuragawa, N., 1983. Studies on the influence of Wakan-Yakus (traditional herbal medicines) on the vascular reactivity in rats. J. Ethnopharmacol. 8, 211–219.

Sakuragawa, N., Mitani, K., Sempuku, S., Imai, T., Takemoto, Y., Shimomura, H., Kamata, F., 2018. A clinical study of ninjin yoeito with regard to frailty. Front. Nutr. 5, 126.

Wang, W.-Y., Li, W.-S., Han, L., 2015. Determination and pharmacokinetic study of ginsenoside Rc isolated from G. notabilis by LC-MS/MS: a case study. J. Pharm. Biomed. Anal. 112, 201–208.

Wang, D., Bu, H., Hu, C., Zhu, F., Li, X., Zhang, J., Wang, B., Xiang, G., Cheng, Z., Xiong, Y., 2020a. Anti-inflammatory activity of constituents isolated from Angelica acutiloba Kitagawa. Phytother. Res. 34, 1956–1957.

Wang, D., Li, H.-L., Hong, Y., Zhu, H.-T., Xu, M., Zhang, Y.-J., Yang, C.-R., 2013. Chemical and morphological variations of Panax notoginseng and their relationships. Phytochemistry 83, 93–98.

Wang, F.-Y., Li, W.-S., Han, L., 2015. Determination and pharmacokinetic study of ginsenoside Rc isolated from G. notabilis by LC-MS/MS: a case study. J. Pharm. Biomed. Anal. 112, 201–208.

Wang, D., Bu, H., Hu, C., Zhu, F., Li, X., Zhang, J., Wang, B., Xiang, G., Cheng, Z., Xiong, Y., 2020a. Anti-inflammatory activity of constituents isolated from Angelica acutiloba Kitagawa. Phytother. Res. 34, 1956–1957.

Wang, D., Bu, H., Hu, C., Zhu, F., Li, X., Zhang, J., Wang, B., Xiang, G., Cheng, Z., Xiong, Y., 2020b. Anti-inflammatory activity of constituents isolated from Angelica acutiloba Kitagawa. Phytother. Res. 34, 1956–1957.

Wang, D., Li, H.-L., Hong, Y., Zhu, H.-T., Xu, M., Zhang, Y.-J., Yang, C.-R., 2013. Chemical and morphological variations of Panax notoginseng and their relationships. Phytochemistry 83, 93–98.

Wang, D., Bu, H., Hu, C., Zhu, F., Li, X., Zhang, J., Wang, B., Xiang, G., Cheng, Z., Xiong, Y., 2020a. Anti-inflammatory activity of constituents isolated from Angelica acutiloba Kitagawa. Phytother. Res. 34, 1956–1957.

Wang, D., Bu, H., Hu, C., Zhu, F., Li, X., Zhang, J., Wang, B., Xiang, G., Cheng, Z., Xiong, Y., 2020b. Anti-inflammatory activity of constituents isolated from Angelica acutiloba Kitagawa. Phytother. Res. 34, 1956–1957.

Wang, Z.-H., Lin, Y.-W., Wei, X.-B., Li, F., Xiong, X.Z., Cheng, N.S., 2016. Lymphocyte to pro-inflammatory activity of constituents isolated from aerial part of Angelica acutiloba Kitagawa. Phytother. Res. 34, 1956–1957.

Wang, Z., Wang, D., Koh, H.-L., Hong, Y., Zhu, H.-T., Xu, M., Zhang, Y.-J., Yang, C.-R., 2013. Chemical and morphological variations of Panax notoginseng and their relationships. Phytochemistry 83, 93–98.

Wang, Z.-H., Lin, Y.-W., Wei, X.-B., Li, F., Xiong, X.Z., Cheng, N.S., 2016. Lymphocyte to pro-inflammatory activity of constituents isolated from aerial part of Angelica acutiloba Kitagawa. Phytother. Res. 34, 1956–1957.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062.

Naoki Aomatsua,b,*, Kazuaki Shigemitsua, Hidenori Nakagawaa, Takaya Morookaa, Junichi Ishikawaa, Tomoya Yamashitaa, Ayumu Tsuruokaa, Akihiro Fukea, Koka Motoyamaa, Daiki Kitagawaa, Katsumi Ikedaa, Kiyoshi Maedab, Michinori Shiranoc, Hiroshi Rinkab

a Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
b Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan
c Department of Infectious Diseases, Osaka City General Hospital, Osaka, Japan
d Department of Breast Surgical Oncology, Osaka City General Hospital, Osaka, Japan

* Corresponding author at: 2-13-22, Miyakojima-hondori Miyakojima-ku, Osaka 531-0021, Japan.

E-mail address: hong.shim@yahoo.co.jp (N. Aomatsu).