Optimization on end milling operating parameters for super alloy of Inconel 617 by Taguchi’s L27 orthogonal array

T Sathish1*, K.Arul2, Ram Subbiah3, M.Ravichandran4, V.Mohanavel5

1Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai – 602 105, Tamil Nadu, India.
2Department of Mechanical Engineering, Agni College of Technology, Chennai - 603130, Tamilnadu, India.
3Department of Mechanical Engineering, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, Telangana 500090.
4Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Trichy-621112, Tamilnadu, India.
5Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai - 600073, Tamilnadu, India.

*Corresponding author mail ID: sathish.sailer@gmail.com

Abstract: In recent days super alloys contributions were created more impact on the current industrial growth with various researches and developments. Among these super alloys in this experimental study considered on the subject of the by CNC milling machine used end milling operation parameters optimization on Inconel 617. The famous Taguchi method in the company of L27 orthogonal array is used here for the greatest results on the optimization consequences. There are the three considerations focused for the end milling operation such as rate of feed (FR), velocity of the cutting (CV) and depth of cutting (CD) with 27 combination of experiment testing. These considerations were optimizing based on the end product roughness on machined surface (ROMS) and rate of the material removal (RMR). These two responses associated parameters were separately and mutually optimized and corresponding consequences were evidently point out with a variety of plots and response diagrams. The greatest consequences of ROMS (0.208795 microns) and RMR (8.20895 mm3/sec) obtained at the testing number of 7 and testing number of 25 respectively.

Keywords. optimization, end milling, Inconel 617, roughness on machined surface, rate of the material removal.

1. Introduction
Now the world need updated version of alloys for the recent days requirements and various application based on the various places so the super alloys give their contribution to solve these criteria. Here most hard Inconel alloy 617 considered for the investigation. Anish Nair et al [1], give the full details about the chemical compositions and basic properties and application of the Inconel 617 super alloys. They also optimized the parameters of the machining by abrasive particles used water jet in the production process.[2] Lohithaksha M Maiyaret al, focused on the end milling operation conditions with some factors and response mainly verities of roughness on surface such as mathematics mean roughness, RMS mean roughness and etc,. They also provide the clear view on the parametric optimization on milling operation.
Yusuf Fedai [3], et al completely explained about the process parameters of face milling through the technique of Taguchi with verities of the desired responses. The essential possessions on method of optimization for diverse composites of reinforcement like reinforcement of aluminium with various materials like ZnC [4], SiC [5] and some nano particles [6] for the matching were provide the method of the optimization technique with the help of Taguchi orthogonal arrays. There are number of machining parameters of end milling [2], face milling [3], electrochemical machining [7], Laser welding [8], diffusion bonding welding [9] and materials turning [10]. In these all machining have the different parameters optimization with respect to the different desired responses based on the corresponding operations. In this investigation mainly focused on milling especially end milling constraint participation based on the two reactions in machining.

Yung-Kuang Yang et al. [11] mentioned that the industries were mostly give preference for the end milling process when compared to different machining technique for the metal removal processes. Particularly face milling is the easy way to complete this cutting work on the materials. Choudhury et al. [12] and Babur Ozcelik et al. [13] mentioned the various applications of super alloys based on nickel. These super alloys can be used in maximum heat applicable places like the nuclear and thermal plants, vehicles of aerospace, parts of submarines and etc., Mohammadreza Shabgard et al. [14] focused about the Inconel 617 machining in wire electrical discharge machining based integrity on surface. The micro hardness of the specimens get reduced with the increase of the gap of the top surface. Duration pulse increase directly proportional to the micro hardness of the subsurface and inversely proportional to the surface hardness. Rahul et al. [15] also investigate about the supper alloy Inconel 718 machining in EDM with basic mechanical properties. They have taken the voltage, current, pulse on time, duty factor, flushing pressure are the parameters for the responses of metal removal rate, electrode wear rate, surface crack density, surface roughness.

Rahman et al. [16] mentioned the important problem of the super alloys such as the life of the tool used for machining and high cutting force lead to the metallurgical damage. These can be solved by the special tools which is greater hardness than work piece can be used. Optimum cutting force usage on the work piece leads to avoid the metallurgical problems. Skrabalak et al. [17] explained about the end milling process parameters optimization on the super alloy of Inconel 617. This Inconel 617 specimen was hardened for avoiding the corrosion on the surface.

Skrabalak et al. [18] clearly explained that the Dry milling process leads to enhanced performance properties, structure of the machine tool can be easy to understand, reduced expenses of the electric medium and eco-friendly machining. These all are produced the production rate in the economic way.

Leao F.N et al. [19] reviewed about the various dielectric fluids in the EDM machining process. They recommended that the various organic and chemical dielectric fluids can be replaced by the water in the pure form or minimum concentration solutions of water. Aspinwall DK et al. [20], investigate about the surface roughness comparison on alloy and super alloy-based machining in the WEDM process [21]. They focused the integrity damage reduction on the work pieces by using the numerous roughing and repeated finishing methods [22-32].

In this investigation focused about the CNC milling machine-based parameter (like feed rate, cutting velocity, cutting depth) optimization with respect to the two outputs like roughness on machined surface (ROMS) and rate of the material removal (RMR). L27 orthogonal array-based Taguchi method is used for the optimization with the help of the Minitab 2017 software.

2. Experimental procedure

For this investigation on end milling operation is carried with the machine of CNC milling mentioned in figure 1 with the following specifications like twenty-kilowatt capacity of motor, ten thousand revolutions per minute of maximum spindle speed with ten meter per minute of maximum feed rate. The part programming for these operations was created. Similarly, the specification of the work pieces were considers as 250 mm of length, 40 mm of the breadth and 9 mm thickness specimens of the super
alloy of Inconel 617. The Sandvik created Tungsten carbide tool have diameter of ten millimetres with four flutes was chosen as the working toll for this CNC milling operation.

Testing Number	FR – Feed rate mm / teeth	CV – Cutting velocity m/ min	CD – Cutting depth mm
TN 1	0.075	30	0.25
TN 2	0.075	30	0.5
TN 3	0.075	30	0.75
TN 4	0.075	60	0.25
TN 5	0.075	60	0.5
TN 6	0.075	60	0.75
TN 7	0.075	90	0.25
TN 8	0.075	90	0.5
TN 9	0.075	90	0.75
TN 10	0.1	30	0.25
TN 11	0.1	30	0.5
TN 12	0.1	30	0.75
TN 13	0.1	60	0.25
TN 14	0.1	60	0.5
TN 15	0.1	60	0.75
TN 16	0.1	90	0.25
TN 17	0.1	90	0.5
TN 18	0.1	90	0.75
TN 19	0.125	30	0.25
TN 20	0.125	30	0.5
TN 21	0.125	30	0.75
TN 22	0.125	60	0.25
TN 23	0.125	60	0.5
TN 24	0.125	60	0.75
TN 25	0.125	90	0.25
TN 26	0.125	90	0.5
TN 27	0.125	90	0.75

The most favourable and reliable tool of optimization such as Taguchi technique with the orthogonal array of L27 is created and mentioned in the table 1. The considered three participation considerations were feed rate with the variation of 0.075 mm/ teeth, 0.100 mm/ teeth and 0.125 mm/teeth, cutting velocity with the ranges of 30 m/min, 60 m/min and 90 m/min similarly the cutting depth with the variation of 0.25 mm, 0.50 mm and 0.75 mm.
There are twenty seven combinations of the operating conditions as per the table 1 in end milling operation were created in the same machine, same tool with different specimens through same dimensions for the two major responses such as roughness on the machined surface (ROMS) and the Rate of material removal (RMR). These two parameters were also measured with sensors and the surface testing machine with high accuracy of 0.00001 microns similarly RMR have the accuracy of 0.00001 mm³/Sec. Then the experiments were conducted as per the table 1 and the corresponding results were noted for the optimization of the inputs.

3. Results and discussion

Testing Number	ROMS micron	RMR mm³/Sec
TN 1	0.224815	4.61915
TN 2	0.237315	4.5874
TN 3	0.249815	4.55565
TN 4	0.216805	6.26405
TN 5	0.229305	6.2323
TN 6	0.241805	6.20055
TN 7	0.208795	7.90895
TN 8	0.221295	7.8772
TN 9	0.233795	7.84545
TN 10	0.25399	4.76915
TN 11	0.26649	4.7374
TN 12	0.27899	4.70565
TN 13	0.24598	6.41405
TN 14	0.25848	6.3823
3.1 Roughness on machined surface (ROMS)
The twenty seven operation conditions based experimental outcomes were tabulated in table 2. The leading consequence drawing for SN fraction founded on ROMS is clearly shown in figure 2 with the condition of minimum ROMS is favourable. For the ROMS with the less significant is preferable condition provided the feed rate is 0.075 mm / teeth, the cutting velocity of 90 m/ min and the cutting depth of 0.25 mm to achieve the greater response such as 0.208795 microns of ROMS which is obtained in the testing number of 7.

TN 15	0.27098	6.35055
TN 16	0.23797	8.05895
TN 17	0.25047	8.0272
TN 18	0.26297	7.99545
TN 19	0.283165	4.91915
TN 20	0.295665	4.8874
TN 21	0.308165	4.85565
TN 22	0.275155	6.56405
TN 23	0.287655	6.5323
TN 24	0.300155	6.50055
TN 25	0.267145	8.20895
TN 26	0.279645	8.1772
TN 27	0.292145	8.14545

Figure 2. Leading consequence drawing for SN fraction founded on Roughness on machined surface (FR – Feed rate (mm / teeth), CV – Cutting velocity (m/ min), CD – Cutting depth (mm))
Figure 3. Relations comparison based on Roughness on machined surface (FR – Feed rate (mm / teeth), CV – Cutting velocity (m/ min), CD – Cutting depth (mm))

The ROMS based comparison of result plot is mentioned in the figure 3. The comparison of the all the parameters verses each other category were clearly plotted in the same figure 3. There is FR versus CV and CD interactions, CV versus FR and CD interactions similarly CD versus CV and FR interactions was clearly plotted as six graphs in a single image for the clear comparison on the parameters. In Figure 4 with variations on the responses based on the experimental results on ROMS plotted as contour plot with the clear mention with regions with colours with identically.

ROMS Regression Equation =0.1226 + 1.077 FR - 0.000246 CV + 0.04615 CD

(1)
Figure 4. Experimental results of Roughness on machined surface based Contour plot (FR – Feed rate (mm / teeth), CV – Cutting velocity (m/ min), CD – Cutting depth (mm))

3.2 Rate of the material removal (RMR)
From the figure 5 obviously expressed the leading consequence drawing for SN fraction founded on RMR in the condition of maximum RMR is preferring condition. For the RMR with the higher significant have a preference circumstance afford the feed rate is 0.125 mm / teeth, the cutting velocity of 90 m/ min and the cutting depth of 0.25 mm to achieve the greater response at the testing number of 25 such as 8.20895 mm3/Sec of RMR which is achieved. Similarly the lower RMR have the circumstance afford the feed rate is 0.075 mm / teeth, the cutting velocity of 30 m/ min and the cutting depth of 0.75 mm.
Figure 5. Leading consequence drawing for SN fraction founded on Rate of the material removal (FR – Feed rate (mm / teeth), CV – Cutting velocity (m/ min), CD – Cutting depth (mm))

Figure 6. Relational association based on Rate of the material removal (FR – Feed rate (mm / teeth), CV – Cutting velocity (m/ min), CD – Cutting depth (mm))

The evaluation of RMR result plot is clearly point out in the figure 6 with association of the all the parameters verse every one category. There is FR versus CV and FR versus CD interactions, CV versus FR and CV versus CD interactions similarly CD versus CV and CD versus FR interactions was visibly design as six graphs in a solo image in favour of the understandable judgment on the parameters. The responses differences based on the investigational consequences on RMR mentioned
with the help of contour plot by means of the clear point out among area by means of colours in figure 7.

RMR Regression Equation = 2.610 + 6.126 FR + 0.05598 CV - 0.1297 CD

\[\text{RMR} = 2.610 + 6.126 \text{FR} + 0.05598 \text{CV} - 0.1297 \text{CD} \] \hspace{1cm} (2)

Figure 7. Experimental results of Rate of the material removal based Contour plot (FR – Feed rate (mm/teeth), CV – Cutting velocity (m/min), CD – Cutting depth (mm))

3.3 Roughness on machined surface (ROMS) and rate of the material removal (RMR)

By means of the figure 8 observably articulated the leading consequence diagram for SN fraction based on the both responses of ROMS and RMR with the provision of nominal have a preference circumstance. For the superior significant of the ROMS and RMR afford at the feed rate is 0.125 mm/teeth, the cutting velocity of 30 m/min and the cutting depth of 0.75 mm to accomplish the superior response at 21st testing number of such as 0.308165microns of ROMS and 4.85565mm³/Sec of RMR were accomplished. The figure 9 also expressed the relational association based on the both responses ROMS and RMR interactions with all the parameters with each other.
Figure 8. Leading consequence drawing for SN fraction founded with Roughness on machined surface and rate of the material removal (FR – Feed rate (mm / teeth), CV – Cutting velocity (m/ min), CD – Cutting depth (mm))

Table 3. Ranking comparison table for SN relation

Level	FR – Feed rate (mm / teeth)	CV – Cutting velocity (m/ min)	CD – Cutting depth (mm)	FR – Feed rate (mm / teeth)	CV – Cutting velocity (m/ min)	CD – Cutting depth (mm)	FR – Feed rate (mm / teeth)	CV – Cutting velocity (m/ min)	CD – Cutting depth (mm)
1	13.50	12.22	12.92	15.86	13.69	16.12	-11.361	-9.493	-11.190
2	12.46	12.49	12.49	16.08	16.28	16.08	-10.917	-11.051	-10.932
3	11.53	12.77	12.07	16.29	18.27	16.03	-10.527	-12.261	-10.683
Delta	1.97	0.54	0.85	0.43	4.58	0.09	0.833	2.768	0.507
Rank	1	3	2	2	1	3	2	1	3
The responses based ranking comparison table is clearly tabulated in the table 3 with the responses of individual and combinations of both with three different conditions. For ROMS based operation have the first rank for the feed rate and last rank for cutting velocity but the RMR and combination of the both responses have the same first rank and last ranks as cutting velocity and cutting depth respectively also the second preference is given to the feed rate.

4. Conclusion
In this experimental study of optimization on end milling operating parameters for super alloy of Inconel 617 by Taguchi’s L27 orthogonal array produced the followings as the conclusions.
- In favour of only ROMS based optimized parameters were the feed rate is 0.075 mm / teeth, the cutting velocity of 90 m/ min and the cutting depth of 0.25 mm.
- Testing number of 7 have the greatest results of ROMS reached as 0.208795 microns.
- For only RMR based optimized parameters were feed rate is 0.125 mm / teeth, the cutting velocity of 90 m/ min and the cutting depth of 0.25 mm.
- Testing number of 25 has the greatest results of RMR have 8.20895mm3/sec.
- For both responses of ROMS and RMR based optimized parameters were feed rate is 0.125 mm / teeth, the cutting velocity of 30 m/ min and the cutting depth of 0.75 mm.
- Testing number of 21st have the results of ROMS of 0.308165 microns and RMR of 4.85565 mm3/sec under nominal is best condition.
References

[1] Nair, A. and Kumanan, S., 2017. Multi-performance optimization of abrasive water jet machining of Inconel 617 using WPCA. *Materials and Manufacturing Processes*, 32(6), pp.693-699.

[2] Maivar, L.M., Ramanujam, R., Venkatesan, K. and Jerald, J., 2013. Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis. *Procedia engineering*, 64, pp.1276-1282.

[3] Fedai, Y., Kahraman, F., Kiri Akin, H. and Basar, G., 2018. Optimization of machining parameters in face milling using multi-objective Taguchi technique. *Tehnicki glasnik*, 12(2), pp.104-108.

[4] Sathish, T. and Sabarirajan, N., 2021. Synthesis and Optimization of AA 7175-Zirconium Carbide (ZrC) Composites Machining Parameters. *Journal of New Materials for Electrochemical Systems*, 24(1), pp.34-37.

[5] Sathish Thanikodi., 2022. Performance and emission characteristics of biodiesel-blend in diesel engine: A review. *Environmental Engineering Research*, 27(1), pp.1-12.

[6] T Sathish, V Mohanavel, Alagar Karthick, M Arunkumar, M Ravichandran, S Rajkumar*Study on Compaction and Machinability of Silicon Nitride (Si3N4) Reinforced Copper Alloy Composite through P/M Route* International Journal of Polymer Science, Article ID 7491679, 2021

[7] Sathish, T., 2019. Experimental investigation of machined hole and optimization of machining parameters using electrochemical machining. *Journal of Materials Research and Technology*, 8(5), pp.4354-4363.

[8] Thanikodi Sathish, Vinayagam Mohanavel, Khalid Ansari, Rathinasamy Saravananan, Alagar Karthick, Asif Afzal, Sagr Alamri, C Ahamed Saleel "Synthesis and Characterization of Mechanical Properties and Wire Cut EDM Process Parameters Analysis in AZ61 Magnesium Alloy+ B4C+ SiC" Materials, 14 (13), 3689.

[9] Sathish, T., Kumar, S.D., Muthukumar, K. and Karthick, S., 2020. Temperature distribution analysis on diffusion bonded joints of Ti-6Al-4V with AISI 4140 medium carbon steel. *Materials Today: Proceedings*, 21, pp.847-856.

[10] Palaniappan, S.P., Muthukumar, K., Sabariraj, R.V., Kumar, S.D. and Sathish, T., 2020. CNC Turning process parameters optimization on Aluminium 6082 alloy by using Taguchi and ANOVA. *Materials Today: Proceedings*, 21, pp.1013-1021.

[11] Yang, Y.K., Chuang, M.T. and Lin, S.S., 2009. Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. *Journal of materials processing technology*, 209(9), pp.4395-4400.

[12] Ozcelik, B., Oktem, H. and Kurtaran, H., 2005. Optimum surface roughness in end milling Inconel 718 by coupling neural network model and genetic algorithm. *The International Journal of Advanced Manufacturing Technology*, 27(3), pp.234-241.

[13] Choudhury, I.A. and El-Baradie, M.A., 1998. Machinability of nickel-base super alloys: a general review. *Journal of Materials Processing Technology*, 77(1-3), pp.278-284.

[14] Shabgard, M., Farzaneh, S. and Gholipoor, A., 2017. Investigation of the surface integrity characteristics in wire electrical discharge machining of Inconel 617. *Journal of the Brazilian Society of Mechanical Sciences and Engineering*, 39(3), pp.857-864.

[15] Datta, S., Biswal, B.B. and Mahapatra, S.S., 2017. A novel satisfaction function and distance-based approach for machining performance optimization during electro-discharge machining on super alloy Inconel 718. *Arabian Journal for Science and Engineering*, 42(5), pp.1999-2020.
[16] Rahman, M.; Seah, W.K.H.; Teo, T.T, 1997 “The machinability of Inconel 718”, J. Mater. Process. Technol. 63(1–3), 199–204.

[17] Skrabalak, G., Kozak, J. and Zybura, M., 2013. Optimization of dry EDM milling process. Procedia CIRP, 6, pp.332-337.

[18] Skrabalak, G. and Kozak, J., 2011, October. Modeling and Experimental Investigations of Dry Electrical Discharge Machining (DEDM). In AIP Conference Proceedings (Vol. 1394, No. 1, pp. 103-112). American Institute of Physics.

[19] Leão, F.N. and Pashby, I.R., 2004. A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. Journal of materials processing technology, 149(1-3), pp.341-346.

[20] Aspinwall, D.K., Soo, S.L., Berrisford, A.E. and Walder, G., 2008. Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology. CIRP annals, 57(1), pp.187-190.

[21] Sathish T., 2020. Performance Improvement of Base Fluid Heat Transfer medium using Nano Fluid Particles. Journal of New Materials for Electrochemical Systems, 23(4), pp.235-243.

[22] V.Mohanavel, K.S.Ashraff Ali, S.Prasath T.Sathish, M. Ravichandran, Journal of Materials Research and Technology, 9 (2020) 14662-14672.

[23] V.Mohanavel, K. Rajan, M. Ravichandran, Journal of Materials Research, 31 (2016) 3824-3831.

[24] V.Mohanavel, M. Ravichandran, Materials Research Express, 6 (2019) 106557.

[25] Arul, K & Senthil Kumar, VS 2020, ‘Magnetorheological Based Minimum Quantity Lubrication (MR-MQL) With Additive n-CuO’, Materials and Manufacturing Processes, vol. 35, no. 4, pp. 404-414.

[26] Vinayagam Mohanavel, Thandavamoorthy Raja, Anshul Yadav, Manickam Ravichandran, Jerzy Winczek, Evaluation of Mechanical and Thermal Properties of Jute and Ramie Reinforced Epoxy-based Hybrid Composites, Journal of Natural Fibers, DOI: 10.1080/15440478.2021.1958432

[27] Arul, K & Senthil Kumar, VS 2020, ‘Effect of Magneto Rheological Minimum Quantity Lubrication on Machinability, Wettability and Tribological Behavior in Turning of Monel K500 Alloy’, International Journal of Machining Science and Technology, vol. 24, no. 5, pp. 810-836.

[28] Thanikodi Sathish, Abdul Razak R Kaladgi, V Mohanavel, K Arul, Asif Afzal, Abdul Aabid, Munecr Baig, Bahaa Saleh, 2021, "Experimental Investigation of the Friction Stir Weldability of AA8006 with Zirconia Particle Reinforcement and Optimized Process Parameters" Materials 14 (11), 2782

[29] B. Chaitanya Kumar, P. Sri Charan, Kanishkar Jayakumar, D. Alankrutha, G. Sindhu, Ram Subbiah, 2020, Assessment Of Wear Properties On Low Temperature Molten Salt Bath Nitriding On Austenitic Stainless Steel, Materials Today: Proceedings, 27, 2, 1541-1544.

[30] T. Lakshmi Deepak, G. Ananda Mithra, K. Lokesh, B. Sai Chandra, Ram Subbiah, 2020, Stability Of Expanded Austenite By Gas Nitriding Process On Austenitic Stainless Steel Material Under Low Temperature Conditions, Materials Today: Proceedings, 27, 2, 2020, 1681-1684.

[31] Ram Subbiah, Md. Rahel, A Sravika, R.Ambika, A.Srujana, E.Navya, 2019, Investigation on Microstructure and Mechanical Properties of P91 Alloy Steel Treated With Normalizing Process - A Review, Materials Today: Proceedings, 18, 7, 2265-2269.

[32] A. Rohit Sai Krishna, B. Vamshi Krishna, T. Sashank, D. Harshith, Ram Subbiah, 2020, Influence and Assessment of Mechanical Properties on Treated P91 Steel with Normalized Processes, Materials Today: Proceedings, 27, 2, 1555-1558.