The relationship between sarcopenia detected in newly diagnosed colorectal cancer patients and FGF21, irisin and CRP levels

Utku Oflazoglu1 · Sevinc Caglar2 · Hürye Erbak Yılmaz3 · Hülya Tas Önal3 · Umut Varol4 · Tarik Salman1 · Yasar Yildiz1 · Sinan Unal1 · Zeynep Gulsum Guc1 · Yuksel Kucukzeybek1 · Ahmet Alacacioglu1 · Mustafa Oktay Tarhan5

Received: 30 December 2021 / Accepted: 24 February 2022 / Published online: 11 March 2022 © The Author(s), under exclusive licence to European Geriatric Medicine Society 2022

Key summary points
Aim We aimed to investigate the relationship between irisin and FGF21 in detecting sarcopenia in colorectal cancer patients.
Findings Correlation analysis was performed between skeletal muscle mass index and FGF21, irisin and CRP, there was a positive correlation between skeletal muscle mass index and irisin and FGF21, while there was a negative correlation between skeletal muscle mass index and CRP.
Message Irisin and FGF-21 and CRP may play a role in the pathophysiology of sarcopenia.

Abstract
Aim Sarcopenia is a progressive and generalized syndrome that can be linked to many causes such as cancers, and is caused by a quantitative and qualitative disorder (loss of muscle strength and/or physical performance) of skeletal muscle mass. Although sarcopenia has some hypothetical explanation in clinical practice, the mechanisms underlying this condition have not been clearly differentiated in patients with cancer. We aimed to investigate the relationship between irisin, FGF21 and CRP in detecting sarcopenia in colorectal cancer patients.
Material and methods Current prospectively study included non-metastatic newly diagnosed colorectal cancer patients. Patients were divided into 2 groups of 25 people, those with and without sarcopenia. Body composition measurements by examined by BIA. To measure the level of iris and FGF21 from patients, blood samples were taken into the biochemistry tube and their levels were measured.
Results The median age of the patients included in the study was 60 years (range: 21–81), 68% were men. It was found that there was a significant relationship between sarcopenia and gender and BMI measurement. When Spearman correlation analysis was performed between skeletal muscle mass index and FGF21, irisin and CRP, there was a positive correlation between skeletal muscle mass index and irisin and FGF21, while there was a negative correlation between skeletal muscle mass index and CRP. [respectively: \(r: 0.282, p: 0.048 \), \(r: 0.564, p: <0.001 \) and \(r: -0.360, p: 0.010 \)]. Similar results were found between hand-grip strength and FGF21, irisin and CRP. [respectively: \(r: 0.342, p: 0.015 \), \(r: 0.290, p: 0.041 \) and \(r: -0.476, p: <0.001 \)]. When sarcopenia was treated as the dependent variable in the logistic regression analysis, and FGF21, irisin, CRP, gender and BMI were treated as the independent variables, irisin and CRP levels were determined as independent predictors.
Conclusion This study was revealed that there is a negative relationship between sarcopenia and irisin and FGF-21 in operated non-metastatic colorectal cancer patients and there may be a relationship between sarcopenia and inflammation. It suggests

Utku Oflazoglu
u.oflaz35@gmail.com

1 Department of Medical Oncology, Izmir Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
2 Department of Internal Medicine, Izmir Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
3 Department of Biochemistry, Izmir Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
4 Department of Medical Oncology, Izmir Democracy University, Izmir, Turkey
5 Department of Medical Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
that these biomarkers may play a role in the pathophysiology of sarcopenia. However, our results need to be validated in different types of cancer and with more patients.

Keywords Sarcopenia · Irisin · FGF21 · Colorectal cancer · Bio-electric impedance analysis

Introduction

As defined by the European Society of Parenteral and Enteral Nutrition (ESPEN) and the European Working Group on Sarcopenia in Older People (EWGOSP), sarcopenia is a syndrome characterized by progressive and generalized muscle loss, which can be associated with a wide range of causes and may lead to falls, physical injuries, treatment complications, as well as negative impacts on survival, and accompanied by quantitative and qualitative deterioration of the skeletal muscle mass (loss of muscle and/or physical performance) [1, 2].

Many functional tools are recommended by international workgroups to identify the quantitative muscle mass [1–3]. These include bio-electric impedance analysis (BIA), computed tomography (CT), dual X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI). Among these tools, BIA is an alternative that can be easily applied, cheaper, repeatable, portable, and which do not generate radiation exposure for the patient (in comparison to DXA and CT) [4, 5].

Adipose tissue and muscle synthesize and release molecules that play a role in the control of systemic inflammatory response and metabolism. Pro-inflammatory adipokines, released from white adipose tissues, promote insulin resistance and atherosclerotic changes in obese individuals [6]. Conversely, it is believed that myokines released from the skeletal muscle improve glucose and lipid metabolism and reduce the risk of chronic metabolic disease [7].

Recently, irisin has been identified as a new myokine that accelerates the beige adipocytes' turning into brown [8] as well as glucose intake and fatty acid oxidation process [9]. Irisin is a peptide that consists of 112-amino acid that is proteolytically digested by fibronectin type III and largely expressed in the skeletal muscle [10]. In particular, irisin levels are correlated positively with muscle mass and muscle strength [11]. The accumulated evidence has shown that the levels of irisin in circulation are increased by exercise in humans and animals, which indicates that irisin production depends on the muscular state [12]. However, many studies have concluded that irisin levels in circulation are not only related to fat-free mass but also to muscle strength and function [11, 12]. All these findings suggest a positive connection between irisin and muscle physiology and metabolism, and that irisin has a potential regulatory role [11, 13]. However, the relation between irisin levels and sarcopenia developed by cancer patients has not been explicated.

Fibroblast growth factors are found as signaling proteins in many tissues and participate in growth and metabolism [14]. FGF21 in skeletal muscle has been demonstrated to play a role in glucose intake to myocytes [15]. FGF21 has a role in controlling lipid homeostasis and glucose in other organs such as skeletal muscle and liver [16, 17]. Although it is shown to play a role in energy metabolism, FGF21 is a myokine that is very poorly addressed in cachexia and sarcopenia studies.

Studies examining the relationship between sarcopenia and inflammation are increasing in the literature. However, the association between sarcopenia and inflammation in cancer patients has been less studied. While there are more studies in the literature reporting a positive relationship between sarcopenia and inflammation [18–21], there are also studies that could not reflect any relationships [22]. In this context, C-reactive protein (CRP) is a more readily available, relatively inexpensive parameter, and is a strong indicator of inflammation.

Some studies have demonstrated that patients with advanced cancer develop sarcopenia associated with disease progression or chemotherapy [23–26]. While many factors have been suggested as the cause of this phenomenon in advanced cancer patients, most of the reasons suggested in operated tumor-free patients are hypothetical and remain controversial. No previous study has examined the relationship between sarcopenia detected in newly diagnosed cancer patients and the level of FGF21 and irisin. Therefore, in this study, we planned to investigate the location of inflammation and its relationship with FGF21 and irisin levels to better understand the physiopathology of sarcopenia in newly diagnosed and non-metastatic colorectal cancer patients operated for primary tumors.

Materials and methods

Patient selection and inclusion criteria

This study included newly diagnosed and non-metastatic colorectal cancer patients who underwent curative surgery for the primary tumor in Izmir Katip Çelebi University Atatürk Research and Training Hospital Medical Oncology Clinic between May 2019 and May 2020. These patients’ pre-treatment baseline body composition measurements (using by BIA), muscle strength (using by a hand-grip dynamometer), as well as baseline anthropometric measurements (height,
weight, body mass index, etc.), demographic data and CRP, FGF21 and irisin were checked. After these measurements, a biochemical analysis was performed on single blood samples taken from the patients using a 3-cc biochemistry tube. In total, 50 patients were planned to be included in the study: patients were divided into 2 groups as sarcopenic (n: 25) and non-sarcopenic (n: 25).

The study included operated and non-metastatic patients who were diagnosed with colorectal cancer, above 18 years of age, and who did not receive chemotherapy or radiotherapy before diagnosis. In addition, patients with adequate liver and kidney function, who were non-diabetic, not receiving anti-inflammatory treatment, not receiving oral enteral nutrition support, not presenting any serious comorbidity, and who agreed to participate in the study were included in this study. Patients with physical deformations and impossible to test for muscle strength have been disabled. All patients provided written informed consent to participate in the study. The study was approved by the Institutional Ethics Review Board of Izmir Katip Celebi University. (IKCU-2019/98).

Body composition measurement assessment

Body composition was assessed using BIA (TANITA SC 330). Bio-electric resistance was also measured using a BIA with an operating frequency of 50 kHz at 800 mA.

BIA is an analytical method based on a fat-free tissue mass and the difference in electrical conductivity of fat. The electrical and biological parameters measured by the BIA vary from person to person. At the same time, the hand-grip dynamometer and muscle functions will be evaluated. The hand-grip dynamometer is an instrument used to measure muscle strength with two hand-held apparatus. It is a measurement instrument based on squeezing the hand-held apparatus, which is totally harmless for the patient.

The impedance will be measured with the BIA. The Skeletal Muscle Mass was calculated by the formula previously reported in available studies in the literature [27–31].

This formula is as follows: Skeletal Muscle Mass (kg) = [0.401 × (Height²/resistance) + (3.825 × gender) − (0.071 × age) + 5.102]; height: cm, resistance: ohms, gender: 1 for men, 0 for women. In order to convert the skeletal muscle mass into the skeletal muscle mass index, the height must be divided by its square in meters. The cutoff points set by EGSWOP are defined as reduced skeletal muscle mass if less than 10.76 for men and 6.76 for women [1].

Assessment of muscle strength

The hand-grip dynamometer test (TAKEI 5401 Hand-Grip Dynamometer, 100 kg) was used to assess patient muscle strength. To obtain the optimal test result, patients were asked to grip the device and squeeze it three times as good as possible within 2-min breaks between the attempts. With this test, the peak of patients (the highest value obtained) and the highest one of the three repeated measurements were determined in kilograms. Patients were asked to use their dominant hand.

Sarcopenia definition and thresholds

The sarcopenia diagnosis was established based on the EWS-GOP consensus [1], both describe sarcopenia as reduced skeletal muscle mass plus low muscle strength and/or low physical performance. The cutoff values were determined based on the values recommended by the European Working Group on Sarcopenia in Older People (EWSGOP) for skeletal muscle mass index (SMI) and hand-grip strength [1].

Thresholds for gender-specific SMI were for men: low SMI < 10.76 kg/m², for women: low SMI < 6.76 kg/m² and low hand-grip strength for men: < 27 kg, and < 16 kg for women. Both low skeletal muscle mass and low muscle strength were identified as sarcopenia [32].

Body mass index

A regular standardized gauge was used to measure weight and height. During measurements, patients wore light clothes without shoes. The body weight and height were measured up to the nearest 0.1 kg and the nearest 0.1 cm. The body mass index (BMI) was calculated by dividing the patient’s weight by the square (kg/m²) of their height. BMI categories: < 20.0 kg/m², weak; 20.0–24.9 kg/m², normal weight; 25.0–29.9 kg/m², overweight; and > 30 kg/m², obese.

Biochemical analysis

Blood samples were taken from patients upon their inclusion in the study, and then serum samples were separated after centrifuging at 3000 rpm. They were stored in clean and dry Eppendorf tubes at − 20 °C until being studied. After pipetting serum samples into the wells covered with antibodies, they were incubated for 2 h at 37 °C. A biotin-marked antibody was added to each well and after incubating for 1 h at 37 °C, the wells were washed three times using 200 µl of washing solution. The streptavidin-marked HRP enzyme was added, and after incubating at 37 °C for an hour, they were washed five times using 200 µl of washing solution. After adding a substrate for the HRP enzyme, the reaction was terminated using H2SO4 after incubation in the dark at 37 °C. The absorbance rates at 450 nm were read on the Elisa plate reader, and the concentration was calculated according to the standard absorbance curve. For ELISA method, FGF21
on Biotek (ELx800, USA) semi-automatic ELISA device and Irisin ELISA kit (Catalog no.: CSB-E16844h, Lot no: P12221948, Catalog No.: CSB-EQ027943HU, Lot no.: p16221949, CUSABIO, Wuhan, China) were used.

Statistical analysis

The data were expressed as mean and standard deviation for continuous variables, and in number and percentage for categorical variables. Numerical variables were evaluated to show whether they showed skewed or normal distribution using Kolmogorov–Smirnov testing and histograms. Normally distributed continuous data and independent samples were compared using the t test. Continuous data with non-normal distribution were compared using the Mann–Whitney U test. The categorical data were compared using the Fischer-Exact test or the Chi-square test. A single variable analysis was used to identify potential risk factors for sarcopenia. Variables with \(p < 0.05 \) were included in the multivariable advanced logistic regression analysis.

The correlations were analyzed by Spearman’s correlation method. Linear regression and logistic regression equations were also used for analysis. Logistic regression analysis was performed to estimate probability rates (PR) and 95% confidence intervals (CI) for sarcopenia.

Since there was no previous study conducted in this context on newly diagnosed colorectal cancer patients, we calculated the number of sarcopenic patients that we expected to detect within 1 year (the period in which we planned to finish the study) based on “the prevalence of sarcopenia in newly diagnosed cancer patients” that had been published by Oflazoglu et al. In that study, Oflazoglu et al. [33] reported the prevalence of sarcopenia in newly diagnosed patients with non-metastatic colorectal cancer as 19%. Again, as part of that study, in total, 21 of 111 patients were found sarcopenic in the last year. Since the present study will also be a pilot study and represents the first research conducted in Turkish society, the number of prospective sarcopenic patients is 21. In total, the study included 50 non-metastatic colorectal cancer patients (25 sarcopenic and 25 non-sarcopenic). \(p < 0.05 \) was considered to indicate statistical significance. The SPSS was used to perform statistical analysis (version 20.0, SPSS Inc., Chicago, IL, 2018).

Results

In the present study, 220 patients with colorectal cancer were scanned until a total of 50 subjects (25 sarcopenic and 25 non-sarcopenic) were included. The median age of patients was 60 years (range: 21–81). 16 patients (32%) were women, and 34 (68%) were men. The number of patients with any chronic disease was 27 (54%). 36 (72%) patients’ ECOG performance score was 0. All the subjects were non-metastatic patients. 66% of patients (\(n = 33 \)) were under 65 years of age, while 34% (\(n = 17 \)) were over 65 years of age. The number of patients with albumin levels below \(< 3 \) was 6 (12%), while the number of patients with albumin level \(> 3 \) was 44 (88%).

When we grouped patients by Body Mass Index (BMI), 26% (\(n = 13 \)) were obese, 42% (\(n = 21 \)) were overweight, 30% (\(n = 15 \)) were normal weight, and 2% (\(n = 1 \)) were low weight. Table 1 summarizes the demographic characteristics of patients based on the overall and sarcopenic condition.

Given the factors that may be associated with sarcopenia (age, gender, BMI, ECOG performance score, chronic disease, albumin level) only gender and BMI level were found to be associated with it (\(p = 0.015 \) and \(p = 0.019 \), respectively).

Respectively, FGF21, irisin and CRP mean levels were 175.3 (SD: 382.9), 256.3 (SD: 198.2) and 1.6 (SD: 2.4) in the non-sarcopenic patient group, which were found as 55.8 (SD: 22.4), 76.1 (SD: 50.1) and 4.6 (SD: 4.4) in the sarcopenic group (\(p = 0.007, < 0.001 \) and \(< 0.001 \), respectively) (Table 2).

A Spearman’s correlation analysis between skeletal muscle mass index (SMI) and FGF21, irisin and CRP showed a positive correlation in terms of FGF21 and irisin, while CRP was negatively correlated [respectively: \(r = 0.282, p = 0.048 \), \(r = 0.564, p = 0.001 \) and \(r = −0.360, p = 0.010 \)]. When Spearman’s correlation analysis was performed between the hand-grip strength and these markers, FGF21 presented a positive correlation in terms of irisin, while there was a negative correlation in terms of CRP [respectively: \(r = 0.342, p = 0.015 \), \(r = 0.290, p = 0.041 \) and \(r = −0.476, p < 0.001 \)]. They are shown in Table 3.

As part of the logistic regression analysis, when we treated sarcopenia as a dependent variable and FGF21, irisin, CRP, gender and BMI as independent variables, the irisin and CRP levels proved to be an independent predictors. (respectively, for irisin, OR: 0.974, CI: (0.952–0.996), \(p = 0.022 \); for CRP, OR: 1883, CI (1.092–3.547), \(p = 0.048 \)) (Table 4).

Discussion

In this prospective observational study, FGF-21 and Irisin levels were found to decrease in the sarcopenic patient group compared to non-sarcopenic patients, while CRP was found to increase in comparison with non-sarcopenic patients. In this context, this study is the first one for new patients diagnosed with operated colorectal cancer, which has shown that FGF-21 and irisin can be associated with sarcopenia and inflammation, and inflammation may also play a role.
Previously, there were discussions about the relationship between levels of irisin in circulation and aerobic capacity [34, 35]. Some previous studies have demonstrated that circulating irisin levels are not associated with fat-free mass [10] but also ALM (appendicular fat-free mass) and HGS (muscle strength) [11, 12]. Building on them in the present study, we have shown reduced irisin levels in sarcopenic patients with cancer, despite other studies conducted on certain non-cancer patients that reported no association with sarcopenia. In a study conducted in healthy women,

Table 1	Associations of participant and disease characteristics by sarcopenic status			
Variables	Total patients	No sarcopenia (n, %)	Sarcopenia (n, %)	p value
All patients	50 (100%)	25 (100%)	25 (100%)	
Age (mean/SD)	58.4 (11.3)	58.8 (10.4)	57.5 (14.1)	0.961
Gender				0.015
Men	34 (68%)	13 (48%)	21 (84%)	
Women	16 (32%)	12 (52%)	4 (16%)	
BMI status				0.069
BMI < 25	16 (32%)	5 (20%)	11 (44%)	
BMI ≥ 25	34 (68%)	20 (80%)	14 (56%)	
ECOG status				1.0
0	36 (72%)	18 (72%)	18 (72%)	
1 and 2	14 (28%)	7 (28%)	7 (28%)	
Age				0.765
< 65 years	33 (66%)	17 (68%)	16 (64%)	
≥ 65 years	17 (34%)	8 (32%)	9 (36%)	
Any chronic disease				0.500
Yes	27 (54%)	14 (56%)	13 (52%)	
No	23 (46%)	11 (44%)	12 (48%)	
Albumine levels				0.384
< 3	6 (12%)	2 (8%)	4 (16%)	
≥ 3	44 (88%)	23 (92%)	21 (84%)	
BMI (mean/SD)	27.9 (4.9)	28.8 (5.4)	25.2 (4.1)	0.019
SMI (mean/SD)	11.1 (1.6)	13.1 (1.7)	8.9 (1.1)	< 0.001
HGS (mean/SD)	28.9 (5.7)	34.4 (6.5)	23.1 (3.9)	< 0.001

ECOG Eastern Cooperative Oncology Group, BMI Body mass index, SD standard error, SMI Skeletal muscle mass index, HGS hand-grip strength

Table 2	Associations of FGF21, Irisin and CRP results by sarcopenic status		
Variables (mean,SD)	Non-sarcopenic (n: 25)	Sarcopenic (n: 25)	p value*
FGF21 (pg/ml)	175.3 (SD:382.9)	55.8 (SD:22.4)	0.007
Irisin (pg/ml)	256.3 (SD:198.2)	76.1 (SD:50.1)	< 0.001
CRP (mg/dl)	1.6 (SD:2.4)	4.9 (SD:4.4)	< 0.001

SD Standard deviation
*The comparison of sarcopenic patients and non-sarcopenic patients in terms of inflammatory markers was performed using Mann–Whitney U test

Table 3	Spearman’s correlation analysis with skeletal muscle mass index (SMI), hand-grip strength (HGS) and inflammatory factors					
	FGF21 level	Irisin level	CRP level			
	r	p value	r	p value	r	p value
SMI	0.282	0.048	0.564	< 0.001	−0.360	0.010
HGS	0.342	0.015	0.290	0.041	−0.476	< 0.001

SMI Skeletal muscle mass index, HGS hand-grip strength
* Spearman’s correlation analysis was used to test the parameters, p < 0.05 statistically significant
Significant relationships were observed between the levels of irisin circulating in the body and various factors. For instance, in the logistic regression analysis, we found a positive relationship between serum irisin concentration and the presence of sarcopenia. Additionally, we observed a negative correlation between irisin levels and body mass index (BMI), indicating that irisin may play a role in muscle mass and metabolism.

These findings are consistent with previous studies that have suggested a potential regulatory role of irisin in metabolic processes and muscle physiology. For example, a study by Chang et al. in 715 Korean individuals without cancer reported that sarcopenia was associated with low BMI (p = 0.03). Supporting the findings of the present study, a study conducted by Brougmann et al. in 87 patients over the age of 70 with early-stage colorectal cancer reported a positive correlation between irisin and muscle physiology (BMI > 25) than those with normal and low weight (BMI < 25). Our study detected a positive relationship between sarcopenia and irisin levels, which continued in logistic regression analysis as well. In a study evaluating 100 patients with advanced lung cancer, 69% and 47% of patients presented cachexia and sarcopenia, respectively.

Furthermore, the levels of irisin circulating in the body may be influenced by inflammatory markers such as high-sensitivity C-reactive protein (HsCRP). The relationship between inflammatory markers and sarcopenia has not yet been investigated. With this study, we have shown that there may be a relationship between sarcopenia and inflammatory markers such as CRP, IL-6, and TNF-a.

Although FGF21 is shown to play a role in energy metabolism [15–17], it is a myokine that has been treated very poorly in the studies of cachexia and sarcopenia, and the available data are limited. Some studies have found a positive correlation between serum FGF21 levels and aging-sarcopenia [39, 40]. A study conducted by Hojman et al. reported a negative relationship between the FGF-21 level and the fat-free mass [41]. The degeneration of various body tissues and changes in metabolic activity, considered as part of the aging process, may affect the synthesis and release of FGF21. Adipocytes have been shown to be an important source of FGF21 production, whereas the liver was previously considered to be the main source of FGF21 in circulation [42]. More recently, the skeletal muscle expression and the release of FGF21 have been shown to cause a five-fold increase in the concentration of FGF21 in circulation [43]. This suggests that there may be a relationship between the quantity of muscle tissue and the level of FGF-21. Although our understanding of the systemic effects of muscular FGF21 has increased, FGF21’s direct contribution to muscle function has not yet been investigated. With this study, we have shown that there may be a relationship between sarcopenia and FGF-21.

Our study detected a positive relationship between sarcopenia and CRP. Moreover, this relationship was maintained in the logistical regression analysis as well. In a study evaluating 100 patients with advanced lung cancer, 69% and 47% of patients presented cachexia and sarcopenia, respectively. That study found no significant difference in terms of CRP, IL-6 and albumin concentrations when compared with non-cachectic patients (p = 0.020, p = 0.040, p = 0.003); however, the relationship between inflammatory markers and sarcopenia was not investigated [44]. Although some studies detected a relationship between inflammation and sarcopenia [45–47], there are others that reported no relation [19]. A meta-analysis that did not include cancer patients showed no difference between basal sarcopenia and inflammatory markers (IL-6, TNF-a), but a positive relationship with CRP was reported [19]. Another study was reported to have a positive relationship between sarcopenia and highly sensitive CRP (HsCRP), which continued in logistic regression [48].

In the present study, when assessing factors that may be associated with sarcopenia (age, gender, BMI, ECOG performance score, chronic disease, albumin level), there was an association only with male gender and BMI < 25. (p values, respectively: 0.015 and 0.019). The results of the present study were confirmed in a study conducted by Of lazoglu et al. [49] in cancer patients. Also, a meta-analysis published by Pamoudjian on sarcopenia in patients with cancer reported that sarcopenia was more frequent in men [50]. In addition, we found that the incidence of sarcopenia was lower in obese and overweight patients (BMI > 25) than those with normal and low weight (BMI < 25). Supporting the findings of the present study, a study conducted by Brougmann et al. in 87 patients over the age of 70 with early-stage colorectal cancer reported that sarcopenia was associated with low BMI (p = 0.03) [51].

The present study was designed as a prospective observational study, but there were certain limitations. The first is that it was conducted with a limited number of patients. On the other hand, the recommended gold standard method

Variables	β	SE	Confidence interval	Odds ratio	p value
Constant	9.211	5.072	10.004-6-3.547	0.048	1.883
FGF21	–0.030	0.016	0.947-1.101	0.970	0.058
Gender	–0.027	0.021	0.953-0.960	0.974	0.022*
CRP	0.633	0.323	1.095-3.547	1.883	0.048*
BMI	–0.188	0.180	0.583-1.179	0.829	0.297

n: 50, R²: 0.789 (Nagelkerke), Model: χ² (2): 44.762, p < 0.05
SE standard error, BMI Body mass index
*p < 0.05
for detecting sarcopenia is computed tomography. However, we used the bio-electric impedance device, which is a non-invasive method. Although the bio-electric impedance analyzer is a fast, non-invasive method for measuring body composition, its reliability can vary with an individual's hydration level, ethnicity, physical suitability, even if optimal conditions are provided.

In conclusion, the present study has shown that sarcopenia, irisin and FGF-21 have a negative relationship in operated non-metastatic colorectal cancer patients and pointed to a potential relationship between sarcopenia and inflammation. This suggests that these biomarkers could play a role in the physiopathology of sarcopenia. It further suggests that there may be a positive relationship between sarcopenia and inflammation. However, our results should be validated with different types of cancer and more patients.

Acknowledgements The authors gratefully acknowledge the support from friend Songul Uluc Ozaltaş.

Author contributions Study concept: AA, UO. Study design: UO, AA. Data acquisition: SC, TS, SU, ZGG, YY. Quality control of data: UO, AA, YK. Data analysis and interpretation: UO, AA, YK. Biochemical analysis of blood: HTO, HEY. Statistical analysis: UO, AA, YK. Preparation: UO, UV. Manuscript editing: UV, AA. Manuscript review: UV, AA, YK, MOT.

Funding The authors did not receive support from any organization for the submitted work.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Availability of data and materials All core data are available upon request.

Code availability Not applicable.

Ethics approval The study was approved by the Institutional Ethics Review Board of Izmir Katip Celebi University. (IKCU-2019/98).

Consent to participate Informed consent was obtained from all participants.

Consent to publication Informed consent for publication was obtained from all participants.

References

1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, European Working Group on Sarcopenia in Older People et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 39(4):412–423. https://doi.org/10.1093/ageing/afq034

2. Cederholm T, Barazzoni R, Austin P et al (2017) ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr 36(1):49–64. https://doi.org/10.1016/j.clinu.2016.09.004

3. Chen L-K, Liu L-K, Woo J et al (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for sarcopenia. J Am Med Dir Assoc 15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025

4. Kyle UG, Bosaeus I, De Lorenzo AD et al (2004) Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr 23(5):1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004

5. Böhm A, Heitmann BL (2013) The use of bioelectrical impedance analysis for body composition in epidemiological studies. Eur J Clin Nutr 67(Suppl 1):S79-85. https://doi.org/10.1038/ejcn.2012.168

6. Marra F, Bertolani C (2009) Adipokines in liver diseases. Hepatology 50:957–969. https://doi.org/10.1002/hep.23046

7. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465. https://doi.org/10.1038/nrendo.2012.49

8. Bostrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777

9. Xin C, Liu J, Zhang J et al (2016) Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int J Obes (Lond) 40:443–451. https://doi.org/10.1038/ijo.2015.199

10. Huh JY, Panagiotou G, Mougiou V et al (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61:1725–1738. https://doi.org/10.1016/j.metabol.2012.09.002

11. Kurdiova T, Balaz M, Vician M et al (2014) Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol 592:1091–1107. https://doi.org/10.1113/ijphysiol.2013.264655

12. Kim HJ, So B, Choi M, Kang D, Song W (2015) Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans. Exp Gerontol 70:11–17. https://doi.org/10.1016/j.exger.2015.07.006

13. Pardo M, Crueijeras AB, Amil M et al (2014) Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int J Endocrinol 2014:857270. https://doi.org/10.1155/2014/857270

14. Itoh N, Ornitz DM (2011) Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 149(2):121–130. https://doi.org/10.1093/jb/mvq121

15. Mashili FL, Austin RL, Deshmukh AS et al (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol 592:1091–1107. https://doi.org/10.1113/ijphysiol.2013.264655

16. Lin Z, Tian H, Lam KSL et al (2013) Adiponectin-ceramide axis controls energy expenditure and insulin sensitivity in mice. Cell Metab 17(5):779–789. https://doi.org/10.1016/j.cmet.2013.04.005

17. Holland WL, Adams AC, Brozinick JT et al (2013) An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17(5):790–797. https://doi.org/10.1016/j.cmet.2013.03.019

18. Tuttle CSL, Thang LAN, Maier AB (2020) Share Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis. Ageing Res Rev 64:101185. https://doi.org/10.1016/j.arr.2020.101185
22. Dupont J, Kara O, Kizilarslanoglu MC, Arik G, Ayçiçek GS et al (2017) Sarcoopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/aje/kfw035

23. Veasey-Rodrigues H, Parsons HA, Janku F, Naing A, Wheler J et al (2018) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/aje/kfw035

24. Stene GB, Helbostad JL, Amundsen T, Sorhaug S, Hjelde H et al (2017) Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clin Cancer Res 15(15):511330. https://doi.org/10.1016/j.exger.2017.111130

25. Tan BHL, Birdsell LA, Martin L, Baracos VE, Fearon KCH et al (2015) Circulating levels of fibroblast growth factor-21 increase with age independently of body composition. J Clin Endocrinol Metab 99(8):2778–2785. https://doi.org/10.1210/jc.2014-1195

26. Daly LE, Ní Bhualchabha EY, Cushen SJ, James K et al (2014) Irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol Metab 99:2154–2161. https://doi.org/10.1210/jc.2014-1437

27. Daly LE, Cushen SJ, James K, Janku F, Naing A et al (2016) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/aje/kfw035

28. Janssen I, Heymsfield SB, Ross R et al (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159:413–421. https://doi.org/10.1093/aje/kwh085

29. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al (2013) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31. https://doi.org/10.1093/ageing/afz046

30. Oflazoğlu U, Alacacioglu A, Varol U et al (2020) Prevalence and related factors of sarcopenia in newly diagnosed cancer patients. Support Care Cancer 28(2):837–843. https://doi.org/10.1007/s00520-019-04880-4

31. Hecksteden A, Wegmann M, Steffen A et al (2013) Irisin and exercise training in humans—results from a randomized controlled training trial. BMC Med 11:235. https://doi.org/10.1186/1741-7015-11-235

32. Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF (2013) Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—correlation with body mass index. Peptides 39:125–130. https://doi.org/10.1016/j.peptides.2012.11.014

33. Chang JS, Kim TH, Nguyen TT, Park K-S, Kim N, Kong ID (2017) Circulating irisin levels as a predictive biomarker for sarcopenia: a cross-sectional community-based study. Geriatr Gerontol Int 17:2266–2273. https://doi.org/10.1111/ggi.13030

34. Zhao X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F (2008) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57:1246–1253. https://doi.org/10.2337/db07-1476

35. Huh JY, Mougios V, Kabasakalis A et al (2014) Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol Metab 99:2154–2161. https://doi.org/10.1210/jc.2014-1437

36. Huh JY, Mougios V, Kabasakalis A et al (2014) Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J Clin Endocrinol Metab 99:2154–2161. https://doi.org/10.1210/jc.2014-1437

37. Chang JS, Kim TH, Nguyen TT, Park K-S, Kim N, Kong ID (2017) Circulating irisin levels as a predictive biomarker for sarcopenia: a cross-sectional community-based study. Geriatr Gerontol Int 17:2266–2273. https://doi.org/10.1111/ggi.13030

38. Choi HY, Kim S, Park JW, Lee NS, Hwang SY et al (2014) Impliability of circulating irisin levels with brown adipose tissue and sarcopenia in humans. J Clin Endocrinol Metab 99(8):2778–2785. https://doi.org/10.1210/jc.2014-1195

39. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M et al (2016) Sarcopenia in an overweight or obese patient is an adverse prognostic factor in pancreatic cancer. Clin Cancer Res 15(22):6973–6980. https://doi.org/10.1158/1078-0432.CCR-15-2824

40. Anda J, Tawes S, Tjondronegoro K, Sambu C, Park K-S, et al. (2017) Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab 25:1374-1389.e6. https://doi.org/10.1016/j.cmet.2017.04.021

41. Hanks LJ, Gutiérrez OM, Bammam MM, Ashraf A, McCormick KL, Casazza K et al (2015) Circulating levels of fibroblast growth factor-21 increase with age independently of body composition indices among healthy individuals. J Clin Transl Endocrinol 2:77–82. https://doi.org/10.1016/j.jcte.2015.02.001

42. Janssen I, Heymsfield SB, Ross R et al (2005) Sarcopenia, obesity, and inflammation: results from the AARP Diet and Health Study. J Am Geriatr Soc 53:755–763. https://doi.org/10.1093/aje/kwi095

43. Ryan AM (2018) Loss of skeletal muscle during systemic chemotherapy toxicity and prognostic value. Support Care Cancer 26:839–846. https://doi.org/10.1007/s00520-018-4058-5

44. Srdic D, Plestina S, Sverko-Peternac A, Nikolac N, Simundic AM et al (2016) Cancer cachexia, sarcopenia and biochemical markers in patients with advanced non-small cell lung cancerchemotherapy toxicity and prognostic value. Support Care Cancer 24(11):4495–4502. https://doi.org/10.1007/s00520-016-3287-y

45. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of interleukin-6 and tumour necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the health ABC study. J Gerontol A Biol Sci Med Sci 57:M326–M332. https://doi.org/10.1093/gerona/57.5.m326

46. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M (2005) Sarcopenia, obesity, and inflammation: results from the trial of angiotensin converting enzyme inhibition and novel cardiovacular risk factors study. Am J Clin Nutr 82:428–434. https://doi.org/10.1093/ajcn.82.2.428

47. Srdic D, Pletina S, Sverko-Peternac A, Nikolac N, Simundic A-M et al (2016) Cancer cachexia, sarcopenia and biochemical markers in patients with advanced non-small cell lung cancerchemotherapy toxicity and prognostic value. Support Care Cancer 24(11):4495–4502. https://doi.org/10.1007/s00520-016-3287-y

48. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of interleukin-6 and tumour necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the health ABC study. J Gerontol A Biol Sci Med Sci 57:M326–M332. https://doi.org/10.1093/gerona/57.5.m326

49. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M (2005) Sarcopenia, obesity, and inflammation: results from the trial of angiotensin converting enzyme inhibition and novel cardiovacular risk factors study. Am J Clin Nutr 82:428–434. https://doi.org/10.1093/ajcn.82.2.428
47. Ferrucci L, Penninx BW, Volpato S, Harris TB, Bandeen-Roche K et al (2002) Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc 50:1947–1954. https://doi.org/10.1046/j.1532-5415.2002.50605.x

48. Oflazoglu U, Alacacioglu A, Varol U et al (2020) The role of inflammation in adjuvant chemotherapy-induced sarcopenia (Izmir Oncology Group (IZOG) study). Support Care Cancer 28(8):3965–3977. https://doi.org/10.1007/s00520-020-05477-y

49. Oflazoglu U, Alacacioglu A, Varol U et al (2020) Chemotherapy-induced sarcopenia in newly diagnosed cancer patients: Izmir Oncology Group (IZOG) study. Support Care Cancer 28(6):2899–2910. https://doi.org/10.1007/s00520-019-05165-6

50. Pamoukdjian F, Bouillet T, Lévy V, SoussanM ZL, Paillaud E (2018) Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review. Clin Nutr 37(4):1101–1113. https://doi.org/10.1016/j.clnu.2017.07.010

51. Williams JR, Deal GR, Yu AM et al (2015) Prevalence of sarcopenia in older patients with colorectal cancer. J Geriatr Oncol 6(6):442–445. https://doi.org/10.1016/j.jgo.2015.08.005

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.