Comparing Functional Movement Screen Scores Between Athlete and Non-Athlete Female Students

*Maral Entezami1, Ali Shamsi Majelan1, Hasan Daneshmandi1

1. Department of Sports Pathology and Corrective Exercise, Faculty of Physical Education, University of Guilan, Rasht, Iran.

Objective
The present study aimed to compare the Functional Movement Screen (FMS) scores between athlete and non-athlete female students.

Methods
Participants were 30 athlete female students (Mean±SD age, 23.36±3.10 years; Mean±SD height, 163.45±5.06 cm; Mean±SD weight, 57.40±6.43 kg) and 30 non-athlete female students (Mean±SD age, 25.00±2.36 years; Mean±SD height, 162.6±3.72; Mean±SD weight, 58.76±9.29 kg). They underwent FMS to assess their movement patterns. Mann–Whitney U test was used to compare the mean FMS scores between athletes and non-athletes. Data analysis was performed in SPSS v. 22 software at a significance level of P≥0.05.

Results
The Mann–Whitney U test results showed a significant difference between the total mean FMS scores of female athletes and non-athletes (P=0.001). Considering a cut-off point of 14, Results revealed that 66% of athletes and 40% of non-athletes had a FMS score <14, while 93.34% of athletes and 60% of non-athletes had a FMS score >14.

Conclusion
FMS can help identify the difference in movement patterns between female athletes and non-athletes. Higher FMS scores of female athletes indicate that non-athletes have poor movement patterns which suggest that they are more likely to be injured if they engage in sports activities.

Key words:
Functional movement screen, Athlete students, Non-athlete students

Extended Abstract

1. Introduction
Participation in sports activities is increasing; it has potential benefits for all people including fight against obesity, and increased muscle endurance, muscle strength, cardiovascular fitness and other fitness factors [1]. On the other hand, participating in sports activities can lead to injury including musculoskeletal injuries [2]. Therefore, pre-season and pre-workouts and competitions screening is performed to reduce the number of injuries and provide a safe and secure environment for athletes to identify players at risk of injury and subsequently consider the design and implementation of injury prevention programs for them.

The Functional Movement Screen (FMS) method has been designed to diagnose future musculoskeletal injuries and had goals such as dynamic and kinematic chain assess-
ments, body symmetry detection, and detection of poor movement patterns [6]. There is no definitive conclusion as to whether motor FMS can be used as a predictor of injury; however, the designer of this test have stated that its score can identify limitations, asymmetries and changes in normal movement patterns [12]. This study aimed to examine whether the FMS scores in athlete and non-athlete female students are different or not.

2. Methods

This is a causal-comparative study. The study population consisted of university students aged 18-30 years. Of these, 30 physical education students and 30 non-physical education students who had no history of participating in sports activities and exercises were selected and underwent FMS. It has seven tests including deep squat, hurdle step, in-line lunge, shoulder mobility, active straight-leg raise, trunk stability push-up, and rotary stability (Table 1). Necessary explanations and instructions related to the implementation of each movement pattern were given to each subject before the test, and they performed the test for trial.

In order to evaluate the movement patterns, the examiners were placed at the same distance from the subject in all 3 directions: anterior, posterior and lateral. Subjects performed each movement 3 times. For single-sided movements, the best score was recorded in 3 repetitions, and for two-sided movements, the best score was recorded for each side; and among the best scores on each side, the lowest score was considered as the overall score. The Shapiro-Wilk test was used to check the normality of the data distribution; since its results showed that the data distribution was not normal, the Mann-Whitney U test was used to examine the difference between the mean total score and the scores of each FMS tests. All data were analyzed in SPSS v. 22 and the significance level was considered P<0.05.

Table 1. Mean±SD of study variables in tow study groups

Variable	Group	Mean±SD
Deep squat	Athletes	2.0±83.379
	Non-athletes	2.0±20.550
Hurdle step	Athletes	2.0±73.449
	Non-athletes	2.0±10.547
In-line lunge	Athletes	2.0±90.305
	Non-athletes	2.0±40.723
Shoulder mobility	Athletes	2.0±86.345
	Non-athletes	2.0±70.406
Active straight-leg raise	Athletes	2.0±80.406
	Non-athletes	2.0±33.758
Trunk stability push-up	Athletes	1.0±80.924
	Non-athletes	1.0±26.868
Rotary stability	Athletes	2.0±13.571
	Non-athletes	1.0±73.583
Total	Athletes	17.2±63.22
	Non-athletes	14.1±63.95

Table 2. Mann-Whitney U test results from comparing the total mean FMS scores between study groups

Variable	N	Mean Rank	Z	Sig.
Total mean FMS score in athletes	30	40.32	-4.38	*0.001
Total mean FMS score in non-athletes	30	20.68		
3. Results

The results of Mann-Whitney U test for the two study groups are shown in Table 2. The results showed that there was a significant difference in total mean score of FMS tests between athletes and non-athletes (P=0.001).

4. Discussion

The purpose of this study was to examine whether the FMS scores in athlete and non-athlete female students are different or not. The results of the study showed that the FMS score of athlete student was better than that of non-athlete students. This indicate that FMS can detect different movement patterns between athletes and non-athletes, and that non-athletic students show poor movement patterns which suggest that they are more likely to be injured if they engage in sports activities, assuming the FMS test predicts sports injuries. Lack of physical activity leads to muscle weakness and decreased muscle strength, as well as decreased neuromuscular coordination, resulting in low stability and motor control and inadequate balance. It is suggested that future studies be conducted by using the FMS for both athletes and non-athletes to clarify whether the reason for the difference in FMS scores between athletes and non-athletes is physical fitness factors or other causes. Physical fitness factors between the two groups should also be measured and examined.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages; they were also assured about the confidentiality of their information; moreover, they were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgement

The authors would like to thank the Faculty of Physical Education, University of Guilan.
مقایسه نمرات آزمون غربالگری عملکرد حرکتی بین دانشجویان ورزشکار و غیرورزشکار دختر

مطالعه حاضر بررسی نمرات آزمون غربالگری عملکرد حرکتی بین دانشجویان ورزشکار و غیرورزشکار دختر بود.

هدف: مقایسه نمرات آزمون غربالگری عملکرد حرکتی بین دانشجویان ورزشکار و غیرورزشکار دختر.

روش‌ها: نمونه آماری این تحقیق را سی دانشجوی ورزشکار (سن 57/40 ± 6/43: وزن 163/45 ± 5/06: قد 23/36 ± 3/10) تشکیل دادند. آزمون غربالگری عملکرد برای اندازه‌گیری نمرات آزمون غربالگری حرکتی عضلانی دانشجویان ورزشکار و غیرورزشکار، از آزمون سیپسی ساخته شده توسط نرم‌افزار SPSS انجام گرفت.

نتایج: جمع آوری شدیده‌های میانگین نمره کل آزمون غربالگری عملکرد حرکتی در ورزشکاران و غیرورزشکاران، دانشجویان ورزشکار و غیرورزشکار را نشان داد که تفاوت معنی‌داری بین میانگین نمرات دانشجویان ورزشکار و غیرورزشکار وجود دارد.

کلیدواژه‌ها: آزمون غربالگری عملکرد حرکتی، افراد ورزشکار، افراد غیرورزشکار

مقدمه
مشارکت در فعالیت‌های ورزشی به طور فزاینده‌ای در حال افزایش است. شرکت در ورزش مزایای بالقوه را برای همه افراد می‌دهد. از جمله مزایای آن می‌توان به کاهش احتمال بروز چاقی، افزایش استقامت عضلانی، درمان چاقی و کاهش احتمال بروز بیماری‌های قلبی-عروقی اشاره کرد.

از عوامل مؤثر در آسیب‌های ورزشی می‌توان به محدودیت‌های فیزیکی و عضلانی، وابستگی به مصرف مواد مخدر و عدم آمادگی جسمانی برای شرکت در فعالیت‌های ورزشی اشاره کرد. برای پیشگیری از آسیب‌های ورزشی به طور مناسب، نیاز است که افرادی که افرادرکاری یا دیگر راه‌های ایمنی برای انجام فعالیت‌های ورزشی وجود داشته باشد. در کنار انجام تمرینات، بررسی آسیب‌پذیری و فیزیک‌سنجی افراد قبل از شرکت در فعالیت‌های ورزشی بسیار ضروری است. آزمون غربالگری عملکرد حرکتی به عنوان یکی از وسایل بررسی عملکرد حرکتی افراد ورزشکار است و می‌تواند باعث کاهش تعداد آسیب‌ها و ایمنی برای ورزشکاران شود.

کلیه‌ها: آزمون غربالگری عملکرد حرکتی، ورزشکار، غیرورزشکار

نتایج آزمون یومن ویتنی نشان داد بین میانگین نمره کل آزمون غربالگری عملکرد حرکتی در ورزشکاران و غیرورزشکار وجود دارد. مقایسه امتیازات آزمون غربالگری عملکرد حرکتی در دو گروه ورزشکار و غیرورزشکار با بهره‌مندی از آزمون یومن ویتنی انجام گرفت.

نتایج نشان داد که ورزشکاران دارای نمره غربالگری بیشتری از غیرورزشکاران بودند. درصد دانشجویان غیرورزشکار دارای نمره غربالگری بیشتر از 60 درصد دانشجویان ورزشکار بودند و همچنین آزمون غربالگری عملکرد حرکتی می‌تواند الگوهای حرکتی متفاوت بین دو گروه ورزشکار و غیرورزشکار را تشخیص دهد.

یک غربالگری مؤثر باید محدودیت‌های فیزیکی و عضلانی را تشخیص دهد و آزمون غربالگری عملکرد حرکتی برای ارزیابی این محدودیت‌ها و ضعای عضلانی و محدودیت‌های فیزیکی و عضلانی در افراد در مرحله آمادگی بررسی شود. آزمون غربالگری عملکرد حرکتی عضلانی از آزمون‌هایی می‌باشد که توانایی این کار را دارند.
آزمون غربالگری عملکرد حرکتی، جهت تشخیص...

مطالعه حاضر یک مطالعه على‌میافی است. با هم‌اکنون، آزمون‌های غربالگری عملکرد حرکتی (FMS) با توجه به هماهنگی عصبی عضلانی و الگوهای حرکتی ضروری برای اجرای الگوهای حرکتی عملکردی، ابزاری به‌شمار می‌رود که در تحقیق‌های خاصی، افراد ورزشکار با غیره‌ها توانایی این ابزار را برای پیشگیری از آسیب دیدگی و بهبود عملکرد در فعالیت‌های ورزشی و تمرینات ورزشی را نداشتند. در تحقیق...

روش اجرای...

در این تحقیق برای غربالگری عملکردی از آزمون‌ها...

1. Functional Movement Screen (FMS)
راه‌های انجام ازمون چهار نوعی می‌باشد: سالم، بد، جبرانی و شکستگی.

۱. سالم: در این راه، سپارشگر سالم چوب خلق کرده و سپارشگر را به صورت سالم در هفته‌های انجام داده می‌شود. اگر سپارشگر سالم چوب خلق کرده و سپارشگر را به صورت سالم در هفته‌های انجام داده می‌شود، این سالم چوب خلق کرده و سپارشگر را به صورت سالم در هفته‌های انجام داده می‌شود.

۲. بد: در این راه، سپارشگر بد چوب خلق کرده و سپارشگر را به صورت بد در هفته‌های انجام داده می‌شود. اگر سپارشگر بد چوب خلق کرده و سپارشگر را به صورت بد در هفته‌های انجام داده می‌شود، این بد چوب خلق کرده و سپارشگر را به صورت بد در هفته‌های انجام داده می‌شود.

۳. جبرانی: در این راه، سپارشگر جبرانی چوب خلق کرده و سپارشگر را به صورت جبرانی در هفته‌های انجام داده می‌شود. اگر سپارشگر جبرانی چوب خلق کرده و سپارشگر را به صورت جبرانی در هفته‌های انجام داده می‌شود، این جبرانی چوب خلق کرده و سپارشگر را به صورت جبرانی در هفته‌های انجام داده می‌شود.

۴. شکستگی: در این راه، سپارشگر شکستگی چوب خلق کرده و سپارشگر را به صورت شکستگی در هفته‌های انجام داده می‌شود. اگر سپارشگر شکستگی چوب خلق کرده و سپارشگر را به صورت شکستگی در هفته‌های انجام داده می‌شود، این شکستگی چوب خلق کرده و سپارشگر را به صورت شکستگی در هفته‌های انجام داده می‌شود.
غربالگری عملکرد حرکتی در ورزشکاران و غیرورزشکاران تفاوت آزمون یومن ویتنی نشان داده شده است. نتایج آزمون یومن ویتنی بین دو گروه دانشجویان ورزشکار و دانشجویان غیرورزشکار درصد نمره آزمون و زیرنشان و 40 درصد نمره آزمون غیرورزشگر و 60 درصد نمره آزمون دانشجویان ورزشکار و غیرورزشکار طراز نمره غربالگری پیشرفت از 12 بودند.

اطلاعات توصیفی آزمون های اجرایی شامل میانگین و انحراف استاندارد آزمون های غربالگری در جدول 1 نشان داده شده است. میانگین نمره آزمون یومن ویتنی 17.68 و نمره غربالگری نمره شما 17.63 است. نتایج آزمون یومن ویتنی بین دو گروه دانشجویان، غیرورزشکار و ورزشگر گروه اجرایی در جدول 1 نشان داده شده است. نتایج آزمون یومن ویتنی بین دو گروه دانشجویان و غیرورزشکار و ورزشگر گروه اجرایی در جدول 1 نشان داده شده است.

همچنین، برای مقایسه نمرات آزمون غربالگری حجمی در جدول 1 نشان داده شده است.

جدول 2 تعداد و درصد آزمون های ورزشگر و غیرورزشگر که نمره آزمون ویتنی آنها 14 یا کمتر است.

نمره آزمون ویتنی	تعداد	درصد
≥ 14	6	30
< 14	9	50

نتایج

اطلاعات موجود به ویژگی های فردی از آزمون های ویتنی به جدول 1 نشان داده شده است. با توجه به دقت و بازگشتی و گروهی که نمی‌تواند، می‌تواند کمتر حس و توانایی جمع آوری داده‌ها در SPSS و نرم‌افزار مورد بررسی قرار گیرد.

جدول 1 میانگین و احتمال استفاده هر ویژگی برای آزمون‌های ویتنی

ویژگی	میانگین	احتمال
سن (سال)	24.5	0.05
قد (سانتی متر)	178.5	0.05
وزن (کیلوگرم)	75	0.05
جرم (کیلوگرم)	70	0.05
فاقد توهین (کیلوگرم بر متر بُر)	0.5	0.05
دانشجویان ورزشکار نمره بیشتری را نسبت به دانشجویان غیرورزشکار دارایی، در واقع نقطه ابتدایی این مطالعه در نمره 14 رخ داده بود که نتایج مطالعه نشان داده که هر دو گروه از نقطه 14 را برای بالاتر شناخته می‌کردند. دانشجویان غیرورزشکار نمره نزدیک به 14 نشان می‌دهند؛ در تفسیر این بخش از مطالعه می‌توان اظهار کرد FMS مطالعات قبلی نشان داده است که افرادی که در آزمون غربالگری فیزیکی یا کمتر می‌گیرند مستعد آسیب هستند. یکی از مزیت‌های FMS این است که آسیب‌های ورزشی را پیش‌بینی می‌کند، ولی هدف اصلی مطالعه این فرضیه بود که آیا نمرات در افراد ورزشکار که به طور منظم ورزش می‌کنند با افرادی که هنوز به طوری قطعی نتیجه‌گیری نشده است، ولی با فرض اینکه توانایی پیش‌بینی آسیب‌های ورزشی را دارند که بین افرادی که به طور منظم ورزش می‌کنند با افرادی که به طور منظم ورزش نمی‌کنند متفاوت است یا خیر که نتایج مطالعه نشان داد نمرات ورزشکار بهتر از دانشجویان غیرورزشکار است. در نتیجه‌گیری این بخش از مطالعه می‌توان تفسیرات متفاوتی را گزارش کرد. توانایی این را FMS می‌توان به این اشاره کرد که آزمون غربالگری FMS توانایی حل وکالت فیزیکی، آسم و همچنین هماهنگی عصبی عضلانی را بین افرادی که به طور منظم ورزش می‌کنند با افرادی که به طور منظم ورزش نمی‌کنند بیان می‌کند.

متغیر	نمره کل آزمون غربالگری عملکرد حرکتی عملکردی در ورزشکاران (نمراه)	نمره کل آزمون غربالگری عملکرد حرکتی عملکردی در غیرورزشکاران (نمراه)	تعداد	میانگین رتبه	Z	مقدار آماره	سطح معناداری
آزمون غربالگری مانور پیش‌بردی مانع	2/84 ± 0/389	2/67 ± 0/559	30	17/9 ± 2/22	-4/38	0/001	
آزمون غربالگری مانور پیش‌بردی مانع	2/84 ± 0/389	2/67 ± 0/559	30	17/9 ± 2/22	-4/38	0/001	
آزمون غربالگری مانور پیش‌بردی مانع	2/84 ± 0/389	2/67 ± 0/559	30	17/9 ± 2/22	-4/38	0/001	
آزمون غربالگری مانور پیش‌بردی مانع	2/84 ± 0/389	2/67 ± 0/559	30	17/9 ± 2/22	-4/38	0/001	
آزمون غربالگری مانور پیش‌بردی مانع	2/84 ± 0/389	2/67 ± 0/559	30	17/9 ± 2/22	-4/38	0/001	
در راستای این مطالعات می‌توان به این نتیجه‌گیری می‌رود که آزمون غربالگری حرکتی متفاوت (FMS) می‌تواند نمونه‌های حرکتی را تشخیص دهد. درواقع با توانایی تشخیص الگوهای حرکتی متفاوت، می‌توان اظهار داد که آزمون غربالگری حرکتی متفاوت (FMS) می‌تواند الگوهای حرکتی را تشخیص دهد. درواقع با توانایی تشخیص الگوهای حرکتی متفاوت، می‌توان اظهار کرد که این مطالعه همسو با مطالعاتی است که نشان داده‌اند آزمون غربالگری حرکتی متفاوت (FMS) می‌تواند الگوهای حرکتی را تشخیص دهد.

در این مطالعه، با استفاده از آزمون غربالگری حرکتی متفاوت (FMS)، می‌توان به این نتیجه‌گیری دست یافت که الگوهای حرکتی متفاوت را می‌توان تشخیص داده و پیش‌بینی کرد. درواقع با توانایی تشخیص الگوهای حرکتی متفاوت، می‌توان اظهار کرد که این مطالعه همسو با مطالعاتی است که آزمون غربالگری حرکتی متفاوت (FMS) می‌تواند الگوهای حرکتی را تشخیص دهد. درواقع با توانایی تشخیص الگوهای حرکتی متفاوت، می‌توان اظهار کرد که این مطالعه همسو با مطالعاتی است که نشان داده‌اند آزمون غربالگری حرکتی متفاوت (FMS) می‌تواند الگوهای حرکتی را تشخیص دهد.

در این مطالعه، با استفاده از آزمون غربالگری حرکتی متفاوت (FMS)، می‌توان به این نتیجه‌گیری دست یافت که الگوهای حرکتی متفاوت را می‌توان تشخیص داده و پیش‌بینی کرد. درواقع با توانایی تشخیص الگوهای حرکتی متفاوت، می‌توان اظهار کرد که این مطالعه همسو با مطالعاتی است که نشان داده‌اند آزمون غربالگری حرکتی متفاوت (FMS) می‌تواند الگوهای حرکتی را تشخیص دهد. درواقع با توانایی تشخیص الگوهای حرکتی متفاوت، می‌توان اظهار کرد که این مطالعه همسو با مطالعاتی است که نشان داده‌اند آزمون غربالگری حرکتی متفاوت (FMS) می‌تواند الگوهای حرکتی را تشخیص دهد.
References

[1] Rees DI, Sabia JJ. Sports participation and academic performance: Evidence from the national longitudinal study of adolescent health. Ecol Educ Rev. 2010; 29(5):751-9. [DOI:10.1016/j.econedurev.2010.04.008]

[2] Maffulli N, Longo UG, Spiezia F, Denaro V. Sports injuries in young athletes: Long-term outcome and prevention strategies. Phys Sportsmed. 2010; 38(2):29-34. [DOI:10.3810/pssm.2010.06.1780] [PMID]

[3] Booth-Kewley S, Schmied EA, Highfill-McRoy RM, Sander TC, Blivin SJ, Garland CF. A prospective study of factors affecting recovery from musculoskeletal injuries. J Occup Rehabil. 2014; 24(2):287-96. [DOI:10.1007/s10926-013-9436-7] [PMID]

[4] Chimera NJ, Warren M. Use of clinical movement screening tests to predict injury in sport. World J Orthop. 2016; 7(4):202-17. [DOI:10.5312/wjo.v7.i4.202] [PMID] [PMCID]

[5] Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: The use of fundamental movements as an assessment of function-part 2. Int J Sports Phys Ther. 2014; 9(4):594-63. [PMID] [PMCID]

[6] Monaco J-T, Schoenfeld BJ. A review of the current literature on the utility of the functional movement screen as a screening tool to identify athletes’ risk for injury. Strength Cond J. 2019; 41(5):17-23. [DOI:10.1519/SSC.0000000000000481]

[7] Dyer CS, Callister R, Sanctuary CE, Snodgrass SJ. Functional movement screening and injury risk in elite adolescent rugby league players. Int J Sports Sci Coach. 2019; 14(4):498-506. [DOI:10.1123/jcssc.2017-0177] [PMID]

[8] Dossa K, Cashman G, Howitt S, West B, Murray N. Can injury in major junior hockey players be predicted by a pre-season functional movement screen-a prospective cohort study. J Can Chiropr Assoc. 2014; 58(4):421. [PMID] [PMCID]

[9] Moran RW, Schneider AG, Mason J, Sullivan SJ. Do Functional Movement Screen (FMS) composite scores predict subsequent injury? A systematic review with meta-analysis. Br J Sports Med. 2017; 51(23):1661-9. [DOI:10.1136/bjsports-2016-096938] [PMID]

[10] Dorrel BS, Long T, Shaffer S, Myer GD. Evaluation of the functional movement screen as an injury prediction tool among active populations: A systematic review and meta-analysis. Sports Health. 2015; 7(6):532-7. [DOI:10.1177/1941738115607445] [PMID] [PMCID]

[11] Ronazza NA, Sminu D, Onks CA, Silvis MJ, Dhwana A. Reliability, validity, and injury predictive value of the functional movement screen: A systematic review and meta-analysis. Am J Sports Med. 2017; 45(3):725-32. [DOI:10.1177/0363546516641937] [PMID]

[12] Armstrong K, McDevitt B, Baumann K, O’Reilly L, Ramos Y, Reyes C. Movement capability changes in collegiate basketball players following a corrective exercise Program. McMinnville: Linfield College; 2019.

[13] Minthorn LM, Fayson SD, Stobierski LM, Welch CE, Anderson BE. The Functional Movement Screen’s ability to detect changes in movement patterns after a training intervention. J Sport Rehabil. 2015; 24(3):322-6. [DOI:10.1123/jcsr.2013-0146] [PMID]

[14] Toivo K, Kannus P, Kokko S, Alanko L, Heinonen OJ, Korpeleinen R, et al. Musculoskeletal examination in young athletes and non-athletes: The Finnish Health Promoting Sports Club (FHPSC) study. BMJ Open Sport Exerc Med. 2018; 4(1):e000376. [DOI:10.1136/bmjsem-2018-000376] [PMID] [PMCID]

[15] Rejali M, Mostajeran M. Assessment of physical activity in medical and public health students of Isfahan university of medical sciences-2008. Health Sys Res. 2010; 6(2).

[16] Beardsley C, Contreras B. The functional movement screen: A review. Strength Cond J. 2014; 36(5):72-80. [DOI:10.1519/SSC.000000000000074]

[17] Duke SR, Martin SE, Gaul CA. Preseason functional movement screen predicts risk of time-loss injury in experienced male rugby union athletes. J Strength Cond Res. 2017; 31(10):2740-7. [DOI:10.1519/JSC.0000000000001838] [PMID]

[18] Ye JC, Klingbiel JFG, Collins R, Lambert Mi, Coopoo Y. Preseason Functional Movement Screen component tests predict severe contact injuries in professional rugby Union players. J Strength Cond Res. 2016; 30(11):3194-203. [DOI:10.1519/JSC.0000000000001422] [PMID]

[19] Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: The use of fundamental movements as an assessment of function-part 1. Int J Sports Phys Ther. 2014; 9(3):396-409. [PMID] [PMCID]

[20] Lison P, O’CONNOR FG, Deuster PA, Knapik JJ. Functional movement screen and aerobic fitness predict injuries in military training. Med Sci Sports Exerc. 2013; 45(4):636-43. [DOI:10.1249/ MSS.0b013e31827a1c4c] [PMID]

[21] Argahadeh R, Letafarhak A, Shojaeddin SS. Relationship between physical fitness and functional movement screening scores in active males: Providing preventing model. J Clin Physio Res. 2016; 3(1):13-20. https://doi.org/10.22037/jcppr.v3i1.20203

[22] Bull FC, Armstrong TP, Dixon T, Ham S, Neiman A, Pratt M. Physical inactivity. In: Ezzati M, Lopez AD, Rodgers Rodgers A, Murray CJL (Eds), Comparative quantification of health risks global and regional burden of disease attributable to selected major risk factors. Geneva: World Health Organization; 2004. p.729-881. https://apps.who.int/iris/bitstream/handle/10665/42792/9241580348_eng_Volume1.pdf?ua=1

[23] Ahmed MdD, Ho WKY, Van Niekerk RL, Morris T, Elayaraja M, Lee K-C, et al. The self-esteem, goal orientation, and health-related physical fitness of active and inactive adolescent students. Cogent Psychology. 2017; 4(1):1331602. [DOI:10.1080/23311908.2017.1331602]