Noise-resilient quantum evolution steered by dynamical decoupling

Gang-Qin Liu1,*, Hoi Chun Po2,*, Jiangfeng Du3, Ren-Bao Liu2,4,5 & Xin-Yu Pan1

Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and implement a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelity of 0.91(1) is observed in preparation of a Bell state using the gate. At the same time, the qubit coherence time is elongated at least 30 fold. The design scheme does not require the dynamical decoupling control to commute with the qubit interaction and therefore works for general qubit systems. This work marks a step towards implementing realistic quantum computing systems.
To combat noise effects in quantum computing, there are three main strategies, namely, quantum error corrections\(^1\)\(^–\)\(^3\), decoherence-free subspace\(^4\)\(^–\)\(^6\) and dynamical decoupling (DD)\(^7\)\(^–\)\(^9\). DD, which originated from magnetic resonance spectroscopy, can average out the noise by flipping the qubit. DD has the merits of requiring no extra qubits and potential compatibility with quantum gates. It provides a potential method to realize fidelity of quantum gates above the threshold required by concatenated quantum error corrections for scalable fault-tolerant quantum computing\(^1\)\(^–\)\(^3\). Recent experiments have demonstrated the preservation of quantum coherence\(^1\)\(^0\)\(^–\)\(^1\)\(^5\), or the NULL gate in terminology of quantum computing.

Integration of DD with quantum gates, however, is a non-trivial challenge because, in general, the quantum gates may not commute with the DD control and therefore can interfere with the DD. A straightforward approach is to insert the quantum gates in between the DD control sequences\(^1\)\(^6\)\(^,\)\(^1\)\(^7\), which, however, significantly reduces the time windows for quantum gates. A clever solution is to design the DD sequences such that they commute with the qubit interaction, which can be realized either by encoding the qubits in decoherence-free subspaces\(^1\)\(^8\) or by choosing a certain qubit interaction that commutes with the DD sequences\(^1\)\(^9\). It is also possible to apply control over one qubit while the other qubits are under DD control\(^2\)\(^0\)\(^–\)\(^2\)\(^2\). These methods, however, require special types of interactions or hybridizing operations at very different timescales.

A more important question is whether DD, instead of locking the quantum states of qubits as previously demonstrated\(^1\)\(^0\)\(^–\)\(^1\)\(^4\), can steer non-trivial and noise-resilient quantum evolutions of qubits with generic interactions (that is, not limited to interactions commutable with the DD control)\(^2\)\(^3\). Recent theoretical studies established that arbitrarily accurate dynamical control could be designed for general quantum open systems via concatenated construction or pulse shaping\(^2\)\(^4\)\(^,\)\(^2\)\(^5\).

Here we demonstrate the feasibility of integrating DD with quantum gates by steering the quantum evolution of a hybrid qubit system with numerically optimized DD control, to simultaneously realize a non-trivial two-qubit gate and coherence protection. We realize a self-protected controlled-NOT (C\(_{\text{NOT}}\)) gate on the electron spin of a nitrogen-vacancy (NV) centre and a nearby carbon-13 nuclear spin in diamond, by employing an engineered DD control applied only on the electron spin.

Results

Design of quantum gates by DD

To demonstrate the concept of quantum steering by DD, we consider a negatively charged NV centre in a type IIa diamond (with nitrogen concentration <10 ppb) under an external magnetic field \(B\). The scheme is motivated by the recent study of central spin decoherence in nuclear spin baths\(^2\)\(^6\)\(^–\)\(^3\)\(^0\), which reveals that because of the quantum nature of the qubit-bath coupling, the quantum evolution of nuclear spins is actively manipulated by flipping the central electron spin. Such quantum nature of qubit-bath coupling has been previously utilized to realize control of nuclear spins by flipping the electron spin\(^3\)\(^1\)\(^–\)\(^3\)\(^4\). By engineering the timing of the electron spin flipping, one can steer a noise-resilient quantum evolution of interacting qubits simply by DD control. Recent research on single nuclear spin sensing by central spin decoherence\(^3\)\(^5\)\(^,\)\(^3\)\(^6\)\(^–\)\(^3\)\(^9\) has already demonstrated the quantum nature of coupling between a NV centre spin and remote nuclear spins, and therefore the approach of quantum gates by DD may also be applied to those remote nuclear spins and this has the potential of extending the two-qubit system to few-qubit systems.

The NV centre electron spin is coupled through hyperfine interaction to \(^{13}\)C nuclear spins\(^4\)\(^0\), which have a natural abundance of 1.1% (Fig. 1a). Lifting the degeneracy between \(m = +1\) and \(m = -1\) NV centre spin states by \(B\), we encode the first qubit in the centre spin states \(|0\rangle = |m = 0\rangle\) and \(|1\rangle = |m = -1\rangle\). As the hyperfine interaction strength decreases rapidly with the distance between a nuclear spin and the NV centre, a proximal \(^{13}\)C spin can be identified by its strong hyperfine splitting in the optically detected magnetic resonance (ODMR) spectra. We encode another qubit in the \(^{13}\)C nuclear spin-1/2 states \(|\uparrow\rangle\) and \(|\downarrow\rangle\) (Fig. 1b), similar to the electron-nuclear spin register studied in Gurudev Dutt et al.\(^3\)\(^5\). Thus, we have a well-defined two-qubit system.

The undesired coupling of this two-qubit system to the other \(^{13}\)C spins in the bath leads to loss of quantum information and therefore reduces the fidelity of the quantum operations. In particular, because of the large difference between the gyromagnetic ratios of the two types of spins, the electron spin decoherence occurs in a timescale that is shorter than the typical operation timescale of the nuclear spin qubit, which results in difficulty in realizing high-fidelity two-qubit operations.

The evolution of the two-qubit system is a path in the curved SU(4) operator space\(^4\)\(^1\). In a free evolution, the system propagator...
follows the natural landscape in the operator space, but the uncertainty in the system propagator increases with time due to the coupling with the environment (Fig. 1c). Although a conventional DD scheme like the Carr-Purcell-Meiboom-Gill sequence or the Uhrig DD sequence can efficiently refocus the otherwise non-coherent evolution of the system propagator, the sequence in general corresponds to an unspecified two-qubit propagator unless resonant values of the total evolution time and the number of pulses are chosen\(^2\) or additional manipulation on the nuclear spin is employed\(^2\). Simultaneously achieving coherence protection and gate implementation, our scheme can be intuitively understood as a systematic approach to identify a path in the operator space comprising segments of free evolution and centre spin \(\pi\)-flips such that the path is self-protected and guided from the identity to a desired two-qubit gate (Fig. 1d).

Because the timescale of interest is much shorter than the longitudinal relaxation time of the centre spin, the centre spin magnetic number \(m\) remains a good quantum number and the Hamiltonian of the two-qubit system can be expanded in the basis of the centre spin eigenstates \(|0\rangle\) and \(|1\rangle\) (Supplementary Note 1), given by \(H = \sum_m |m\rangle\langle m| (E_m + \omega_0 \cdot 1) = \sum_m \langle m| H_m |m\rangle\), where \(E_m\) is the eigen-energy of the centre spin state \(|m\rangle\). I represents the nuclear spin and \(\omega_0\) is the local field for the nuclear spin conditioned on the electron spin state \(|m\rangle\). In general, when the centre spin state is altered, the nuclear spin will evolve under a different local field, and therefore the nuclear spin evolution is conditional on the state of the centre spin\(^3\). When the angle \(\phi\) between \(\omega_0\) and \(\omega_1\) is non-zero (Fig. 1b), which is expected in a general setting (Supplementary Note 1), they represent different axes on the nuclear spin Bloch sphere and hence can be utilized to generate universal qubit operations conditioned on the electron spin qubit.

To be specific, we suppose the system is prepared in an initial state \(|\Psi\rangle = \sum_m |m\rangle |\psi_m\rangle\). When a sequence of \(N\) \(\pi\)-pulses is applied to the centre spin, the nuclear spin state \(|\psi_m\rangle\) evolves to \(|\psi_m'\rangle = u_m(t_{\pi})|\psi_m\rangle\) with \(u_m(t_{\pi}) = e^{-it_{\pi}E_m} \cdots e^{-it_{\pi}\omega_1} e^{-it_{\pi}\omega_0} \), where \(t_{\pi}\) is the time between the \(z\)-th and the \((z + 1)\)-th pulses, \(\sigma = 0\) for \(N\) being even and \(\sigma = 1\) for \(N\) being odd, and \(u_1(t_{\pi})\) is similarly defined.

This implies that the system propagator can be represented by \(U\{t_{\pi}\} = \sum_m |m\rangle \otimes u_m(t_{\pi})\). One can vary the timing parameters \(\{t_{\pi}\}\) and engineer the system evolution such that \(U\{t_{\pi}\} \approx G\) for some desired two-qubit gates with the generic form \(G = \sum_m |m\rangle \otimes O_m\), where \(O_m\)'s are nuclear spin operators. Important examples of gates with this form include the C\(_{2}\)NOT\(_n\) gate, nuclear spin single-qubit gates, centre spin phase gates and the two-qubit NULL gate. In general, it is non-trivial to exactly solve \(u_m(t_{\pi}) = O_m\) because of the nonlinearity and the large number of variables in the problem. Yet, one can recast the design protocol into a maximization problem through studying the average two-qubit gate fidelity \(\overline{F}\{t_{\pi}\} = \int d\Psi \text{Tr}(U\{t_{\pi}\}\langle\Psi|U^\dagger\{t_{\pi}\}G|\Psi\rangle)\langle\Psi|G\rangle\), where \(|\Psi\rangle\) is a general pure two-qubit state and the integration is over the normalized uniform measure of the state space\(^6\). As \(\overline{F}\{t_{\pi}\} = 1\) if and only if \(U\{t_{\pi}\} = G\), the gate \(G\) is simulated by the system propagator when the timing parameters \(\{t_{\pi}\}\) are chosen to maximize \(\overline{F}\{t_{\pi}\}\).

Such gate design can be achieved by using only DD sequences, where the notion of DD can be understood as a set of criteria on the timing parameters \(\{t_{\pi}\}\) between the centre spin \(\pi\)-pulses. Although a conventional \(N\)-pulse DD sequence (say the Carr-Purcell-Meiboom-Gill sequence) is characterized by just one timing parameter, namely the pulse delay time, the general DD criteria can be derived by studying the expansion of the coherence function. Instead of using all the timing parameters to optimize protection of the centre spin coherence\(^1^6\), one can relax some of the timing parameters by reducing the decoherence suppression order. The design procedure can be summarized as the maximization of \[\overline{F}\{t_{\pi}\}\] with respect to an \(N\)-pulse sequence \(\{t_{\pi}\}\) that complies with a set of DD constraints. The first order DD criterion requires \(t_0 - t_1 + t_2 + \cdots + (-1)^N t_N = 0\), which can be intuitively understood as the spin echo condition. The symmetric timing condition \(t_N = l_N - t_{N-1}\) automatically realizes the second-order DD\(^7\), and higher-order DD criteria can be similarly introduced. At least up to the second order, the DD constraints discussed above are independent of the detailed bath spectrum. DD constraints to higher orders may also be designed independent of the detailed noise spectrum, but a hard high-frequency cut-off (that is, slow noises) is required.

Figure 2 | Simulation of two-qubit gates by DD. By varying the timing parameters in the DD sequences with different numbers of pulses, five two-qubit gates were designed (Supplementary Table S1) and studied numerically, namely, the C\(_{2}\)NOT\(_n\) gate, nuclear qubit Hadamard (H\(_n\)), Pauli-X (X\(_n\)) and Pauli-Z (Z\(_n\)) gates, and the two-qubit NULL gate. The dotted lines are guides to the eye. (a) Ideal gate fidelities of the five gates from sequence optimization (no decoherence included). The maximized fidelity approaches to unity when the number of pulses increases to 14. (b) Operation times of the gates as designed in a as functions of the number of pulses. (c) State fidelities evaluated by exact diagonalization of a small bath. Although in general a high fidelity is achieved, the fidelities, in contrast to the optimized ideal fidelities in a, do not increase monotonically with the number of pulses. (d) Coherence function probed after applying the gate twice as a function of the number of pulses.
As a demonstration of principles, we used the echo condition and the symmetric requirement to realize the DD to the second order. The DD constraints are explicitly in the form \(t_2 \text{DD} \equiv \{ t_0, t_1, t_2, \ldots, t_2, t_0 \} \) with the echo condition \(\sum t_i (-1)^{i} T e = 0 \). With such, we designed DD sequences that execute the desired two-qubit gates by maximizing \(F_{t_2 \text{DD}} \) with respect to the \(N \)-independent timing variables. It is straightforward to generalize the design to higher-order DD for better noise resilience.

We demonstrate the feasibility of the design by considering an experimentally identified target \(^{13}\text{C}\) spin coupled to an NV centre spin. The experimental parameters were extracted from the ODMR spectra of the NV centre and the free precession signal of the nuclear spin, which were \(\omega_0 = 0.256(2) \) MHz and \(\omega_1 = 6.410(2) \) MHz (see Methods and Supplementary Fig. S1 for details). The magnetic field \(B \) was oriented such that \(\phi = 90^\circ \).

Various DD gate sequences in Supplementary Table S1, were designed based upon the obtained experimental parameters, and their performances were assessed numerically (Fig. 2a–d). Five different two-qubit gates, namely, the \(\text{CNOT}_a \) gate (defined up to an additional \(\pi/2 \) phase shift of the centre spin), the nuclear spin Hadamard \((H_N) \), Pauli-X \((X_N) \) and Pauli-Z \((Z_N) \) gates, and the two-qubit NULL gate, were designed using sequences with 4–14 pulses. The gate fidelities \(F_{t_2} \) (ref. 45), numerically optimized, is at least 0.98 for the gates we considered, and the gate operation time \(T_G \) ranges from 1.4 to 5 \(\mu s \). To incorporate the coupling between the two-qubit system and the environment, we simulated the environment by a small bath consisting of six \(^{13}\text{C}\) spins aside from the \(^{13}\text{C}\) qubit spin. The coupling to the spin bath causes the nuclear spin dephasing in a timescale of \(T_2^* \approx 1.6(1) \mu s \) under free induction decay (FID), which is consistent with the experimental condition. To characterize the performance of the designed gates \((G) \), we considered a typical system initial state \(|\Psi_0\rangle = \frac{1}{2^6}(|1\rangle + |0\rangle) \) and the bath in the thermal state \(\rho_{\text{bath}} \).

We then calculated the total propagator \(U_T \) under the pulse sequences by exact diagonalization, assuming perfect \(\pi \)-pulses and inter-pulse timing. The state fidelity \(F \) is defined by \(F = \sqrt{\langle \Psi_1 | \rho_s | \Psi_1 \rangle} \) (ref. 42), where \(|\Psi_1\rangle = G |\Psi_0\rangle \) is the ideal system final state and \(\rho_s = Tr_{\text{bath}}(U_T (|\Psi_0\rangle \langle \Psi_0 | \otimes \rho_{\text{bath}})) \) is the simulated system density matrix. We found the final state fidelity to be at least 0.97 for the sequences we designed. We also characterized the coherence protection efficacy of the DD gate sequences by performing the cluster-correlation expansion calculation with a larger bath of 44 \(^{13}\text{C}\) spins together with the \(^{14}\text{N}\) nitrogen spin. Because of entanglement with the target spin, the centre spin coherence right after applying the DD gate sequence can be 0. For a fair comparison, therefore, we probe the

Input	\(t_0 \)	\(t_1 \)	\(2t_2 \)	\(t_1 \)	\(t_0 \)	Output		
\(0\rangle\)	0.14 \(T_0 \)	6.49 \(T_1 \)	0.24 \(T_0 \)	6.49 \(T_1 \)	0.14 \(T_0 \)	\(0\rangle\)
\(1\rangle\)	3.49 \(T_1 \)	0.26 \(T_0 \)	6.00 \(T_1 \)	0.26 \(T_0 \)	3.49 \(T_1 \)	\(1\rangle\)

Figure 3 | Implementing the \(\text{CNOT}_a \) by DD. The effect of the gate is studied by performing state tomography on the system before and after the gate. (a) The DD pulse sequence for realizing the \(\text{CNOT}_a \) gate. The numbers in the first line indicate the time intervals between the flips of the NV centre spin, and the numbers in the second and third lines are the intervals in units of \(T_0 = 2\pi/\omega_0 \) (green) or \(T_1 = 2\pi/\omega_1 \) (blue), the precession periods of the nuclear qubit for the electron qubit in the \(|0\rangle\) or \(|1\rangle\) state. The bars are coloured according to the corresponding entries in the measured density matrices, with blue and red representing positive and negative values, respectively. (b) Schematic of the conditional evolution of the \(|0\rangle\) (upper panel) and \(|1\rangle\) (lower panel) states steered by the DD. The conditional quantization axes of the nuclear qubit, \(\omega_0 \) and \(\omega_1 \), are represented by green and blue arrows, respectively. With \(|0\rangle\), the nuclear spin first precesses about \(\omega_0 \), and alternates between \(\omega_0 \) and \(\omega_1 \) under the DD gate sequence. The nuclear qubit traces out the path \(\omega_0 - \omega_1 - \omega_0 \) under the sequence \(t_0 - t_1 - t_2 - t_1 - t_0 \) and returns to the original state at the end of the sequence. For \(|1\rangle\), the nuclear spin first precesses about \(\omega_0 \) for \(t_0 \). It then evolves during \(t_1 - 2t_2 - t_1 \) along the path \(\omega_1 - \omega_1 - \omega_1 \) and is hence flipped. (c) State tomography of the output Bell state for the initial state in (same colour scale). The resultant state fidelity is measured to be 0.91(1).
centre spin coherence $L(t)$ (ref. 44) after performing each gate sequence twice, such that ideally one would obtain $L(2T_G) = 1$ for the gates we considered. The coherence function was found to be at least 0.92 even when the total evolution time exceeds the FID decoherence timescale. We note that although in principle the average two-qubit gate fidelity can be improved to almost unity by using a larger number of pulses, this does not automatically guarantee a higher resultant state fidelity when the spin bath is incorporated, and in the experimental setting, this can also introduce additional pulse errors.

As the gates realized by applying DD sequences are self-protected, our method offers an integrated solution to achieving both control and noise tolerance in quantum information processing. We note that when the hyperfine interaction is moderately strong, the gate speed of the nuclear spin gates decays in a short time of T_2^*, which is on the order of the spin bath lifetime. We also note that although in principle the average two-qubit gate fidelity can be improved to almost unity by using a larger number of pulses, this does not automatically guarantee a higher resultant state fidelity when the spin bath is incorporated, and in the experimental setting, this can also introduce additional pulse errors.

Experimental implementation. We experimentally demonstrated our scheme by implementing the designed four-pulse C_2NOT$_n$ gate (Fig. 3a). The nuclear spin of the nitrogen host was not polarized in the experiment, the system was first initialized into the superposition state $|\Phi\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ by at least 30 fold.

Discussion

Although the scheme was designed and implemented for a specific system with interaction diagonal in the electron spin qubit basis, the design protocol of optimizing gate fidelity under
the DD constraints can be applied to general systems provided that (1) the qubits are well defined with respect to the bath, (2) at least one of the qubits can be independently controlled by DD pulses and (3) the bath dynamics is slow as compared with the control and the inter-qubit interactions or the noise spectrum has a hard high-frequency cut-off. In principle, all quantum gates that are allowed by the inter-qubit interactions can be designed. Let us consider, for instance, a p-qubit system with general inter-qubit interactions characterized by the system Hamiltonian H_p. When a total of N DD pulses are applied to more than one qubits, the system propagator is given by $U_p(t_2, t_1) = e^{-iH_p t_2}e^{-iH_p t_1}...e^{-iH_p t_3}e^{-iH_p t_2}$, where $\{t_i\}$ specifies the inter-pulse timings and $\{a_i\}$ specifies the qubit that the i-th DD pulse flips. The gate fidelity can then be maximized with respect to both $\{t_i\}$ and $\{a_i\}$ subjected to the DD constraints. Alternatively, one may also apply DD pulses to only one qubit and derive DD constraints that can protect the coherence of the multi-qubit system\(^4\). To combat general qubit-bath coupling (beyond the pure dephasing model), the qubit flips along different axes (such as σ^x_q, σ^y_q, and σ^z_q) can be employed.

It should be noted that when the system is too large, the numerical optimization procedure can become intractable as the gate fidelity has to be maximized with respect to the high-dimension system propagators over the large parameter space, and the numerical complexity increases exponentially with the number of qubits in the system\(^4\). A set of one- and two-qubit gates is sufficient for universal quantum computing. For multiple qubits coupled to common noise sources, however, collective design of multiple-qubit control would still be needed. Given a realistic limitation on numerical resources, the achievable fidelities of the multiple-qubit control would drop due to the exhaustion of optimization parameters. Such a limitation is a common issue for all numerical optimization schemes for noise-resistant qubit control. On the other hand, because the DD constraints depend only on the algebraic form of qubit-bath couplings but not on the qubit-qubit couplings, the coherence protection capacity of the scheme should not suffer from a growth in the system size.

Although the gate-by-DD scheme demonstrated in this work is based on optimization of a discrete set of timing parameters, we note that numerical pulse shaping has been proposed for dynamically protected quantum gates, in which both environmental noise and control errors can be corrected\(^2\). In this paper, we have not considered the effects of control errors (which is actually the main source of infidelity in our experimental implementation). The gate-by-DD scheme, however, can also be extended to employ robust DD sequences\(^5\) for tolerance of control errors. As the DD gate design does not depend on the phase of the DD pulses, the scheme can be extended to employ both X and Y DD pulses so as to protect the gates against pulse imperfection\(^5\).

This work demonstrates a general approach to quantum information processing in which the quantum evolution of the system is engineered to perform decoupling from a large spin bath and execute a designated gate on the two-qubit system, and thereby simultaneously realize high-fidelity two-qubit gates and coherence protection. The approach developed here is applicable to other systems under a general setting and therefore provides a new avenue towards achieving scalable and fault-tolerant quantum computing.

Figure 5 | System characterization and control. (a) Pulsed ODMR spectra of the NV centre under study. The signal is fitted to Gaussian line shapes. Other than the splitting due to the 14N nuclear spin, the hyperfine splitting due to a strongly coupled proximal 13C spin was resolved, which allows isolation of this spin from the bath to form a nuclear spin qubit. (b) Energy level diagram of the system and the resonant frequencies of the different MW pulses used. (c,d) Rabi oscillations driven by different MW channels. P_{m0} denotes the population in the $|0\rangle$ state. (c) Full Rabi oscillation between the centre spin $m = 0$ and $m = -1$ states was driven by the strong MW$_0$ pulse. The symbols are experimental data, and the line is fitting to a cosine function. (d) Selective Rabi oscillations between different states were driven by the weak MW$_1$ (green), MW$_2$ (magenta) and MW$_3$ (blue) pulses. The signals are each fitted to a superposition of two cosine functions corresponding to the in- and off-resonance oscillations. Note that the selective Rabi oscillations drove only one-third of the $m = 0$ population, as weaker MW pulses were used such that the 13C spin was polarized only in the $m = 0$ subspace.
System characterization and control. The energy splittings between different levels were first measured using the pulsed ODMR technique (Fig. 5a). MW pulses of various powers, frequencies and phases were employed to coherently control the NV centre electron spin (Fig. 5b). Figure 5c–d shows the response of the system under different MW pulses. Note that we took the quantization axis of the nuclear qubit to be along its local field when the electron spin was in the \(m = 0 \) state. MW\(_0\) was the strongest pulse and was tuned in resonance with the transition between the centre spin states \(|m = 0\rangle \) and \(|m = -1\rangle \), which was used to execute the centre spin flips in the DD sequence. The Rabi frequency of this control pulse was chosen to be 25 MHz, much larger than the hyperfine coupling strength (6.41 MHz), so that the electron spin flip was completed in a short time (<20 ns) and therefore was independent of the nuclear spin states. The other three MW channels used relatively weaker MW power so that the power broadening was less than the hyperfine splitting due to the nuclear qubit to selectively drive Rabi oscillations. MW\(_1\) and MW\(_2\) were tuned, respectively, resonant with the transitions \(|1\rangle \leftrightarrow |0\rangle \) and \(|0\rangle \leftrightarrow |1\rangle \), so that they could be used to polarize and read out the nuclear spin state\(^34\). MW pulses were set to be about 1.25 MHz to selectively drive the \(m = 0 \) component of the \(^{14}\)N spin in the state tomography experiments, and were set to be about 4 MHz to drive all the \(^{14}\)N spin components in the Ramsey interference experiments. The additional MW\(_3\) channel was used for the ‘kick out’ pulses discussed below.

Figure 6 | Polarization and readout of the nuclear spin qubit. (a) Pulse sequence for polarizing and reading out the nuclear qubit. The polarization and readout schemes were adapted from the methods in Gurudev Dutt et al.\(^{33} \) with an additional ‘kick out’ pulse to remove the unwanted population in the \(|\downarrow\rangle \) state into the \(m = -1 \) subspace to increase the effective polarization. An additional 532-nm pulse was applied to initialize the centre spin if it was not in the \(|0\rangle \) state before readout. (b,c) Selective Rabi oscillations driven by weak MW channels. The symbols are experimental data, and the lines are fitting to a superposition of two cosine functions corresponding to the in- and off-resonance oscillations. \(P_{g0} \) denotes the population in the \(|0\rangle \) state. (b) Polarizing the nuclear qubit to \(|\downarrow\rangle \) without using the ‘kick out’ pulse. Large amplitude Rabi oscillations driven by both MW\(_1\) (green) and MW\(_2\) (magenta) indicate that the polarization is incomplete. (c) Effect of the ‘kick out’ pulse. By employing the ‘kick out’ pulse, the population in the \(|0\rangle \) state is removed, and an effective polarization of 90% is achieved in the \(m = 0 \) subspace. The residual oscillation driven by MW\(_2\) is caused by the off-resonance excitation in the \(m = \pm 1 \) subspaces, which also contributes as a dominant source of errors in the state tomography experiments.

State tomography. State tomography was performed by adopting the method detailed in Neumann et al.\(^{51}\) using the transitions \(|0\rangle \leftrightarrow |1\rangle \) as the ‘working transitions’. The first two transitions were driven by weak MW pulses, and the third one was realized by free precession of the nuclear qubit. The Rabi nutation and free precession signals were compared with the full oscillations in the \(m = 0 \) subspace to extract the corresponding elements of the density matrix. The real and imaginary parts of the matrix elements were measured by using MW pulses with phases of 0 and \(\pi/2 \), respectively, and the required phase shift in the free precession signal was realized by transferring the populations to the \(m = -1 \) subspace and allowing the nuclear qubit to precess about \(\omega_0 \). Other entries were obtained by transferring the corresponding populations to one of the working transitions. To map all off-diagonal elements, each of the diagonal elements in the density matrix was measured three times, and the data presented were taken as the mean of these measurements. The errors in the fidelity were calculated from the fitting errors of the Rabi nutations.

Sources of errors. In the experimental implementation of the scheme, a dominant source of errors originated from the imperfect selective \(\pi \)-pulses used. As the \(^{14}\)N nitrogen spin was unpolarized in the experiment, the weak MW\(_1\) and MW\(_2\) channels, which were respectively used to drive selective Rabi oscillations between the \(|0\rangle \leftrightarrow |1\rangle \) and \(|0\rangle \leftrightarrow |\downarrow\rangle \) transitions in the \(m = 0 \) subspace of the \(^{14}\)N spin, would also partially drive the other \(^{14}\)N-components. This resulted in an imperfect selective \(\pi \)-pulses and limited the effective polarization to only 90% even after applying the ‘kick out’ pulse (Fig. 6c). This introduced errors in both the initialization of the system and the state tomography process.
Such imperfection, however, does not affect the performance of the DD gate as the scheme used only non-selective centre spin DD pulses. The Rabi frequency of the strong MW channel (MW\textsubscript{0}) (25 MHz) was much higher than the hyperfine interaction strengths for both the 14N and 13C nuclear spins, and this allowed Rabi oscillation between |0\rangle and |1\rangle regardless of the states of the nuclear spins. Therefore, the fidelity of the demonstrated quantum gate should still be higher than that inferred from the measured state fidelities, which are currently limited by the errors in the weak selective MW pulses used in spin initialization and state tomography.

Design of DD gates by numerical optimization. We adopted a numerical optimization protocol similar to the one adopted in Khaneja et al.32 for the optimization of the average two-qubit fidelity \(F^{[t]}\) subjected to the DD constraints (echo condition and symmetric sequence). In each optimization step, we updated \(t_{\alpha} = t_{\alpha} + \epsilon F\) subjected to the DD constraints, where \(\Delta F\) could be directly calculated by evaluating \(\partial \chi\) (Supplementary Methods) and \(\epsilon\) is a small numerical parameter.

Simulation of the spin bath. The spin bath was simulated by considering the 14N nitrogen host nuclear spin together with 13C nuclear spins randomly placed in the diamond lattice with the natural abundance of 1.1%. Although the hyperfine coupling between the centre spin and the 14N was modelled by established parameters, the coupling between the centre spin and the rest of the bath spins, as well as the coupling between bath spins, was assumed to be dipolar34. The simulated bath was selected to reproduce the value of \(T_{\chi}^2\) in FID experiment.

References

1. Kitaev, A. Y. Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191–1249 (1997).
2. Terhal, B. M. & Burkard, G. Fault-tolerant quantum computation for local non-Markovian noise. Phys. Rev. A 71, 012336 (2005).
3. Aharonov, D., Kitaev, A. & Preskill, J. Fault-tolerant quantum computation with long-range correlated noise. Phys. Rev. Lett. 96, 050504 (2006).
4. Duan, L. M. & Guo, G. C. Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997).
5. Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).
6. Ban, M. Photon-echo technique for reducing the decoherence of a quantum bit. J. Mod. Opt. 45, 2315–2325 (1998).
7. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).
8. Khodjasteh, K. & Lidar, D. A. Fault-tolerant quantum dynamical decoupling. Phys. Rev. Lett. 95, 180501 (2005).
9. Yang, W., Wang, Z. Y. & Liu, R. Preserving qubit coherence by dynamical decoupling. Front. Phys. 6, 2–14 (2011).
10. Biercuk, M. J. et al. Experimental Uhrig dynamical decoupling using trapped ions. Phys. Rev. A 79, 062324 (2009).
11. Du, J. et al. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature 461, 1265–1268 (2009).
12. de Lange, G., Wang, Z. H., Riste, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).
13. Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust dynamical decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).
14. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nat. Phys. 7, 109–113 (2011).
15. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).
16. Viola, L., Lloyd, S. & Knill, E. Universal control of decoiled quantum systems. Phys. Rev. Lett. 83, 4888–4889 (1999).
17. Souza, A. M., Alvarez, G. A. & Suter, D. Experimental protection of quantum gates against decoherence and control errors. Phys. Rev. A 86, 050301(R) (2012).
18. West, J. R., Lidar, D. A., Fong, B. H. & Gyure, M. F. High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010).
19. Piltz, C., Scharenberger, B., Khromova, A., Varon, A. F. & Wunderlich, C. Protecting conditional quantum gates by robust dynamical decoupling. Phys. Rev. Lett. 110, 200501 (2013).
20. Cappellaro, P., Jiang, L., Hodges, J. S. & Lukin, M. D. Coherence and control of quantum registers based on electronic spin in a nuclear spin bath. Phys. Rev. Lett. 102, 210502 (2009).
21. van der Sar, T. et al. Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature 484, 82–86 (2012).
22. Xu, X. et al. Coherently protected quantum state by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109, 070502 (2012).
23. Ng, H. K., Lidar, D. A. & Preskill, J. Combining dynamical decoupling with fault-tolerant quantum computation. Phys. Rev. A 84, 012305 (2011).
carried out the experimental study. H.C.P. and G.-Q.L. wrote the paper. J.D. discussed the scheme and the results. All authors analysed the data and commented on the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Liu, G.-Q. *et al.* Noise-resilient quantum evolution steered by dynamical decoupling. *Nat. Commun.* 4:2254 doi: 10.1038/ncomms3254 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/