Early prone positioning in acute respiratory distress syndrome related to COVID-19: a propensity score analysis from the multicentric cohort COVID-ICU network—the ProneCOVID study

Christophe Le Terrier¹, Florian Sigaud², Said Lebbah³, Luc Desmedt⁴, David Hajage⁵, Claude Guérin⁶, Jérôme Pugin¹, Steve Primmaz¹, Nicolas Terzi²,⁶* and COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators

Abstract

Background: Delaying time to prone positioning (PP) may be associated with higher mortality in acute respiratory distress syndrome (ARDS) due to coronavirus disease 2019 (COVID-19). We evaluated the use and the impact of early PP on clinical outcomes in intubated patients hospitalized in intensive care units (ICUs) for COVID-19.

Methods: All intubated patients with ARDS due to COVID-19 were involved in a secondary analysis from a prospective multicenter cohort study of COVID-ICU network including 149 ICUs across France, Belgium and Switzerland. Patients were followed-up until Day-90. The primary outcome was survival at Day-60. Analysis used a Cox proportional hazard model including a propensity score.

Results: Among 2137 intubated patients, 1504 (70.4%) were placed in PP during their ICU stay and 491 (23%) during the first 24 h following ICU admission. One hundred and eighty-one patients (36.9%) of the early PP group had a PaO₂/FiO₂ ratio > 150 mmHg when prone positioning was initiated. Among non-early PP group patients, 1013 (47.4%) patients had finally been placed in PP within a median delay of 3 days after ICU admission. Day-60 mortality in non-early PP group was 34.2% versus 39.3% in the early PP group (p = 0.038). Day-28 and Day-90 mortality as well as the need for adjunctive therapies was more important in patients with early PP. After propensity score adjustment, no significant difference in survival at Day-60 was found between the two study groups (HR 1.34 [0.96–1.68], p = 0.09 and HR 1.19 [0.998–1.412], p = 0.053 in complete case analysis or in multiple imputation analysis, respectively).

Conclusions: In a large multicentric international cohort of intubated ICU patients with ARDS due to COVID-19, PP has been used frequently as a main treatment. In this study, our data failed to show a survival benefit associated with early PP started within 24 h after ICU admission compared to PP after day-1 for all COVID-19 patients requiring invasive mechanical ventilation regardless of their severity.

*Correspondence: mterzi@chu-grenoble.fr
financial support

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Introduction
Since 2020, the world has been facing a global threat due to the COVID-19, overwhelming hospitals and intensive care units (ICUs) as never before. To date, the World Health Organization has reported 158 millions confirmed COVID-19 cases and more than 3 millions of deaths [1]. Patients infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and hospitalized for a severe pneumonia may develop acute respiratory distress syndrome (ARDS), which is associated with high mortality [2–4]. Therefore, an extensive burden brought upon the intensive care units (ICUs) to provide invasive mechanical ventilation and other advanced forms of life support [5].

Before the COVID-19 pandemic, the Proseva trial [6] demonstrated an improvement in survival from prone position (PP) used as cycles of more than 16 consecutive hrs in selected ARDS patients, i.e., those with a PaO2/FIO2 ratio < 150 mmHg after 12 to 24 h-stabilization period. Though experts recommended PP in this setting [7], in the daily practice the rate of use of PP was lower than expected [8]. Since the beginning of the COVID-19 pandemic, the surviving sepsis campaign (SSC) recommended PP in COVID-19 presenting with ARDS [9], a treatment widely adopted even though the level of evidence was similar as before the pandemic [4, 10]. In this recommendation, no timing to start prone position was proposed. Owing to the very large number of COVID-19-related ARDS treated with PP it was reported that an early application of PP [11, 12] and the response to PP in terms of oxygenation [13, 14] were both possibly associated with a better outcome. Even if some studies of patients report interesting results [11–14], the impact of early PP on mortality remains unclear in COVID-19 patients in the ICU.

The objective of the present ancillary study was to analyze the use of early PP in the ICU management of ARDS patient due to COVID-19 and to evaluate the impact of an early PP on survival, as well as on respiratory system mechanics and oxygenation, using a large international cohort of COVID-19 ARDS patients [4].

Methods
Study design and patients
This study was a secondary analysis of the COVID-ICU study [4]. COVID-ICU was a prospective, multicenter observational cohort study of 149 ICUs from 138 hospitals conducted across three European countries (France, Belgium and Switzerland). The ethical committees of Belgium and Switzerland (BASEC #: 2020-00704), of the French Intensive Care Society (CE-SRLF 20-23) and of Belgium (2020-294) approved this study and all patients or relatives had given their consent to be included in the COVID-ICU cohort. It recruited 4643 patients between February and May 2020 with 80% of patients receiving invasive mechanical ventilation during their ICU stay.

All consecutive patients over 16 year-old included from February 25, 2020, to May 4, 2020, in the COVID-ICU study with an available vital status at Day-90 were eligible. Patients who met the following criteria in the first 24 h after admission were included: intubated and mechanically ventilated, PaO2/FiO2 < 300 mmHg with PEEP > 5 cmH2O and no therapeutic limitations. Laboratory confirmation for SARS-CoV-2 was defined as a positive result of real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay from either nasal or pharyngeal swabs, and/or lower respiratory tract aspirates. Patients without laboratory-confirmed COVID-19 were not included, even if they presented with a typical radiological pattern.

Patients were classified according to the fact that they had been subjected to PP at Day-1 or later. Day-1 was defined as the first day in ICU at 10 am following the COVID-ICU study. All patients placed in PP during their first day in ICU constituted the early PP group. All patients placed in PP after Day-1 or non-placed in PP during their ICU stay were categorized in the non-early prone position group. Patients placed in PP later in their ICU course were included in the non-early prone position group. Patients placed in PP later in their ICU course were included in the non-early prone position group. Patients placed in PP later in their ICU course were included in the non-early prone position group. Patients placed in PP later in their ICU course were included in the non-early prone position group.

Data collection
A standardized electronic case report form was completed each day at 10 am by the study investigators. Baseline characteristics were collected at ICU admission: age, sex, body mass index (BMI), active smoking, Simplified Acute Physiology Score (SAPS) II score, Sequential Organ Failure Assessment (SOFA), treated hypertension, diabetes, long-term corticosteroids, immunodeficiency, Clinical Frailty Scale, the date of the first symptom and dates of the hospital and ICU admissions. All investigators were asked to provide the lowest arterial partial pressure of oxygen (PaO2) at Day-1 after intubation and the corresponding fraction of oxygen inspired (FiO2) to
calculate PaO₂/FiO₂ ratio and categorized according to the ARDS Berlin definition [15]. Static compliance was defined by dividing the tidal volume by the driving pressure. The driving pressure was calculated by subtracting plateau pressure from positive end-expiratory pressure (PEEP). All biological data were collected at ICU admission. Proved concurrent bacterial pneumonia was defined by a positive bacterial culture at ICU admission in either a bronchoalveolar lavage sample, or in a blind protected specimen brush distal, or in endotracheal aspirates. The main outcome was Day-60 survival. Secondary outcomes included Day-28 and Day-90 mortality, ventilator-free days until Day-28, extracorporeal membrane oxygenation (ECMO) requirement, extracorporeal CO₂ removal (ECCO₂R) requirement and inhaled nitric oxide. The ventilator-free days were computed as the number of days that a patient was alive and free of invasive ventilation, calculated from ICU admission until Day-28. Patients who died before Day-28 or received invasive ventilation for more than 28 days were considered to have 0 ventilator-free days [16]. The static compliance, the SOFA score and the PaO₂/FiO₂ ratio were also evaluated at Day-3, Day-5 and Day-7 as secondary outcomes.

Statistical analysis

Characteristics of patients were described as counts and percentages for categorical variables, and as mean and standard deviation or median and interquartile range for quantitative variables. Categorical variables were compared by Chi-square or Fisher’s exact test, and quantitative variables were compared by Student’s t test or Wilcoxon’s rank-sum test. Kaplan–Meier overall survival (March 29 or after vs. March 28 or before), PaO₂/FiO₂ ratio and static compliance. A multivariate logistic regression model was performed to estimate the PS for each patient. To assess the balance of measured covariates between treatment groups, we used the standardized mean differences before and after PS weighting [18]. Then, a Cox proportional hazard model weighted on IPTW was performed to estimate the average treatment effect in the entire eligible population [17]. Hazard ratio and its 95% confidence interval were then estimated for the Day-60 mortality associated with prone positioning at Day-1. This analysis was performed on the complete cases data set, and a sensitivity analysis was performed using multiple imputations due to missing data. Imputation method, missing data were realized according to Vesin et al. [19]. Proportional hazard assumption was assessed by inspecting the scaled Schoenfeld residuals and Harrel’s test [20]. Multicollinearity was checked using variance inflation factor.

The secondary endpoints were: Day-28 survival, Day-90 survival, number of days free of mechanical ventilation up to Day-28, the need for extracorporeal life support, the need for inhaled nitric oxide, static compliance (at Day-3, 5 and 7), PaO₂/FiO₂ (at Day-3, 5 and 7) and SOFA score (Day-7, 21 and 28).

Subgroup analyses of mortality at Day-28, Day-60 and Day-90 were performed, according to PaO₂/FiO₂ at Day-1 (< or ≥ 150 mmHg) and time from ICU admission to the first prone position (< or ≥ 24 h). Subgroup analysis according to PaO₂/FiO₂ at Day-1 (< or ≥ 150 mmHg) also included a Cox proportional hazard model weighted on IPTW using propensity score to assess prone positioning at Day-1 effect on Day-60 survival.

All analyses were performed at a two-sided α level of 5% and conducted with R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Characteristics of ICU patients

COVID-ICU study enrolled 4244 patients. In this secondary analysis, 2137 patients met the inclusion criteria and were involved (Fig. 1). The median [interquartile range] age was 63 [55–70] years, 1598 (75.1%) of patients were male, with a median BMI of 29 [26–33] kg/m². The median SAPS II, SOFA and Frailty score were 43 [32–56], 7 [4–10] and 2 [2–3] respectively. The main comorbidity was hypertension (49.9%), followed by diabetes (28.4%) and immunosuppression (7.3%). All patients were rapidly intubated after ICU admission with a median delay inferior to 3 h approximately. Regarding the ARDS severity at Day-1, the median static compliance was 32.8 [26.3–41.7] mL/cmH₂O and the PaO₂/FiO₂ ratio was 145.7 [101.7–200] mmHg including 1106 (51.8%) patients with a ratio less than 150 mmHg. All other baseline characteristics of patients are summarized in Table 1.
Prone position support
Among the 2137 patients analyzed, 1504 (70.4%) patients were subjected to prone positioning during the ICU stay with a median number of 4 [2–6] PP sessions and a median duration of 20 [16–32] h in the first 48 h.

At Day-1, 491 patients (23%) were placed in PP, constituting the early PP group. The distribution of patients per region is detailed in the Additional file 1: Table S1. Then, 1013 patients (47.4%) were proned after Day-1 with a median delay of 3 [2–5] days after ICU admission, and 633 (29.6%) were never subjected to PP. Those 1646 patients (77%) were classified as the non-early PP group. Characteristics of both groups at Day-1 are summarized in Table 1.

In the early PP group, patients were more obese (54.8% vs. 41.4%, \(p < 0.0001 \)) and had a higher rate of treated hypertension (55.2% vs. 48.3%, \(p = 0.005 \)). Median \(\text{PaO}_2/\text{FiO}_2 \) ratio was lower in the early PP group (128.3 [87.5–177.5] mmHg vs. 152.2 [107–205] mmHg, \(p < 0.0001 \)) as well as the respiratory static compliance (30.7 [24.1–39.9] mL/cmH\(_2\)O vs. 33.6 [26.9–42] mL/cmH\(_2\)O, \(p = 0.001 \)). In the whole cohort, 181 (36.9%) patients of the early PP group had a \(\text{PaO}_2/\text{FiO}_2 \) ratio > 150 mmHg when placement in prone position was initiated. On the opposite, 796 (48.4%) patients with \(\text{PaO}_2/\text{FiO}_2 \) ratio < 150 mmHg at Day-1 were not placed in PP.

The median number of prone sessions was 3 [2–6] in the non-early PP group, with a median duration of 17 [16–23] h during the first 48 h versus 4 [2–7] number of prone sessions with a duration of 20 [16–32] h in the early PP group (\(p < 0.0001 \)).

Outcomes
In the whole cohort
In unadjusted analysis, mortality at Day-28, Day-60 and Day-90 were 30.5%, 35.4% and 35.9%, respectively, in the complete cohort study. Mortality was significantly lower in the non-early PP group compared to the early PP group as shown in Table 2. More patients needed adjunctive therapies (ECMO, ECO2R, inhaled nitric oxide) in the early PP group. The static compliance, the \(\text{PaO}_2/\text{FiO}_2 \) ratio and the SOFA score at Day-3, Day-5 and Day-7
Table 1: Demographic, clinical and ventilatory characteristics of patients according to their proning status at Day-1

Variable	All patients (n = 2137)	Non-early prone position group (n = 1646)	Early prone position group (n = 491)	p
Age (years), median (IQR)	63 (55–70)	63 (55–70)	63 (54–70)	0.393
Sex, n (%)				
Men	1598 (75.1%)	1242 (75.7%)	356 (73.1%)	0.238
Women	529 (24.9%)	398 (24.3%)	131 (26.9%)	
Body mass index (kg/m²), median (IQR)	29 (26–33)	28 (26–32)	30 (27–34)	<0.0001
≥ 30 kg/m², n (%)	888 (44.4%)	636 (41.4%)	252 (54.8%)	<0.0001
Comorbidities, n (%)				
Active smokers	87 (4.2%)	68 (4.3%)	19 (4%)	0.791
Treated hypertension	1055 (49.9%)	786 (48.3%)	269 (55.2%)	0.005
Known diabetes	601 (28.4%)	446 (27.4%)	155 (31.9%)	0.053
Immunodeficiency	154 (7.3%)	120 (7.4%)	34 (7%)	0.788
Long-term corticosteroids	77 (3.7%)	66 (4.1%)	11 (2.3%)	0.064
SAPS II score, median (IQR)	43 (32–56)	42 (32–56)	44 (32–55)	0.702
SOFA score at ICU admission, median (IQR)	7 (4–10)	7 (4–10)	8 (5–10)	0.033
Clinical frailty score, median (IQR)	2 (2–3)	2 (2–3)	2 (2–3)	0.112
Time between first symptoms and ICU admission (days), median (IQR)	9 (6–12)	9 (6–12)	9 (6–11)	0.273
Time between ICU admission and invasive mechanical ventilation (hours), median (IQR)	2.7 (0.7–9.7)	3 (0.7–10.8)	1.8 (0.4–6.3)	0.001
Concomitant bacterial pneumonia, n (%)	130 (6.3%)	93 (5.8%)	37 (7.7%)	0.143
Respiratory support received in ICU before intubation at Day-1, n (%)				
Oxygen therapy	220 (10.3%)	177 (10.8%)	43 (8.8%)	0.203
High-flow nasal cannula	143 (6.8%)	119 (7.3%)	24 (4.9%)	0.069
Non-invasive mechanical ventilation	61 (2.9%)	43 (2.3%)	18 (3.7%)	0.216
High-doses Corticosteroids using at Day-1 n (%)	227 (10.7%)	171 (10.5%)	56 (11.4%)	0.557
Invasive mechanical ventilation settings, median (IQR)				
PaO₂/FiO₂ (mmHg)	145.7 (101.7–200)	152.2 (107–205)	128.3 (87.5–177.5)	<0.0001
Tidal volume (ml)	415 (375–450)	418 (380–450)	400 (370–440)	0.035
Tidal volume, ml/kg PBW	6.1 (5.8–6.7)	6.1 (5.8–6.7)	6.1 (5.8–6.5)	0.1326
Set PEEP (cmH₂O)	12 (10–14)	12 (10–14)	12 (10–14)	<0.0001
Plateau pressure (cmH₂O)	24 (21–27)	24 (21–27)	25 (22–28)	<0.0001
Driving pressure¹ (cmH₂O)	13 (10–17)	13 (10–17)	13.5 (11–17)	0.0345
Mechanical power² (J/min)	26.7 (18.9–35)	25.8 (18.4–33.6)	30.3 (21.1–39.1)	<0.0001
Ventilatory ratio³ (J/min)	1.7 (1.4–2.2)	1.7 (1.4–2.1)	1.9 (1.5–2.4)	<0.0001
Static compliance⁴ (mL/cmH₂O)	32.8 (26.3–41.7)	33.6 (26.9–42)	30.7 (24.1–39.9)	0.001
Dynamic compliance⁵ (mL/cmH₂O)	16.7 (13.6–21)	17 (14.1–21.4)	15.2 (12.3–19.5)	0.0001
Blood gas, median (IQR)				
pH	7.4 (7.3–7.4)	7.4 (7.3–7.4)	7.4 (7.3–7.4)	<0.0001
PaCO₂ (mmHg)	43 (37–49)	42 (37–48)	45 (40–52)	<0.0001
PaO₂/FiO₂ (mmHg)	145.7 (101.7–200)	152.2 (107–205)	128.3 (87.5–177.5)	<0.0001
< 150 mmHg, n (%)	1106 (51.8%)	796 (48.4%)	310 (63.1%)	<0.0001
HCO₃ (mmol/L)	25 (22–27)	24 (22–27)	25 (22–28)	0.001
Lactate (mmol/L)	1.3 (1–1.7)	1.3 (1–1.7)	1.3 (1–1.8)	0.012
Biology, median (IQR)				
Lymphocyte count (x 10⁹/L)	0.8 (0.5–1.1)	0.8 (0.5–1.1)	0.8 (0.6–1.2)	0.294
Thrombocyte count (x 10⁹/L)	225 (167–292.5)	223 (165–291)	227 (170.2–296)	0.367
Total bilirubin (mg/dL)	0.58 (0.41–0.89)	0.58 (0.41–0.89)	0.58 (0.41–0.89)	0.245
Serum creatinine (mg/dL)	0.94 (0.71–1.39)	0.92 (0.7–1.38)	0.96 (0.74–1.46)	0.033
were worse in the early PP group. In the whole cohort, ventilatory parameters did not improve during the first 7 days after ICU admission.

After propensity score adjustment, results were analyzed in both complete case analysis including 944 patients and in multiple imputation analysis with all
baseline population of 2137 patients, supplied in the Additional file 1: Table S2. Baseline characteristics before and after weighted-propensity score analysis are provided in the Additional file 1: Table S3.

After weighting, no significant difference in Day-60 mortality was found between the two study groups, in both analysis (hazard ratio (HR) 1.34 [0.96–1.68], \(p = 0.09 \) in complete case analysis and 1.19 [0.998–1.412], \(p = 0.053 \) in multiple imputation analysis) as illustrated in Figs. 2 and 3. Mortality at Day-28 and Day-90 was also similar between the two study groups after weighted-propensity score analysis.

In the subgroups

In the subgroups of ARDS patients according to their PaO2/FiO2 more or less than 150 at Day-1, mortality was higher in patients with PaO2/FiO2 less than 150 mmHg (Table 3).

Among the 1504 patients who received prone positioning during their ICU stay, an early PP was not associated with a reduction of mortality nor an increase in ventilator-free-days up to Day-28, as shown in Table 3. After propensity score adjustment in the subgroup of severely hypoxemic patients (PaO2/FiO2 ratio less than 150 mmHg) at Day-1, results were analyzed in both complete case analysis including 474 patients and in multiple imputation analysis with all baseline subgroup population of 1106 patients, supplied in the Additional file 1: Table S4. Subgroup baseline characteristics before and after weighted-propensity score analysis are provided in the Additional file 1: Table S5. After weighting, no significant difference in Day-60 mortality was found between the non-early PP and the early PP groups, in both analysis (hazard ratio (HR) 1.12 [0.78–1.59], \(p = 0.55 \) in complete case analysis and 1.13 [0.9–1.42], \(p = 0.28 \) in multiple imputation analysis) as illustrated in Additional file 1: Figs. S3 and S4.

However, in the subgroup of non-severely hypoxemic patients (PaO2/FiO2 ratio more than 150 mmHg) at Day-1, an early PP seemed to be associated to higher Day-60 mortality with a significant difference between the two study groups in both analysis (hazard ratio (HR) 1.7 [1.05–2.77], \(p = 0.03 \) in complete case analysis and 1.7 [1.16–2.47], \(p = 0.006 \) in multiple imputation analysis) as illustrated in Additional file 1: Figs. S6 and S7.

Discussion

In this secondary analysis of a multicenter observational cohort study, our results show that PP was widely used across European ICUs during the COVID-19 pandemic, with 70% of patients intubated at ICU admission placed in prone position during their ICU stay. This rate contrasts with the results of the Lung Safe study and Apronet studies published before this pandemic, reporting less than 15% use of PP in ARDS of all-causes worldwide [8, 21]. Interestingly, our study highlights that prone positioning was not always used according to international guidelines [7, 22]. As a result, a large proportion of patients (37%) was placed in PP despite a PaO2/FiO2 ratio higher than 150 mmHg. In addition, approximately 50% of patients were not placed in PP at Day-1 despite PaO2/FiO2 ratio lower than 150 mmHg. Those findings are consistent with results of previous studies [11, 12]. In a recent observational study, Mathews et al. reported
that 44% of intubated patients with a PaO2/FiO2 ratio less than 100 mmHg were not placed in PP during the first 2 days, and only 30% of patients experienced proning during their ICU stay [11]. In a large cohort study of more than 1000 patients, 21% of patients were not placed in PP despite a PaO2/FiO2 ratio of less than 100 mmHg [13]. Those results highlight the difficulty in this pandemic to properly apply international guidelines. Higher number of ICU beds and higher number of patients per physician or per nurse have previously been associated with a lower use of prone positioning [21]. The intervention of prone positioning in intubated patient requiring experimented staff to do it safely. Work overload, the deterioration of work conditions, the hiring of unexperienced staff and the reorganization of ICU care associated with this pandemic [23, 24] may have contributed to an inadequate use of PP and may explain why patients had not been placed in PP or placed in PP disregarding international guidelines.

Our observational study failed to demonstrate an improvement of survival in intubated patients receiving an early PP at Day-1 compared to non-early PP. Our findings therefore contrast to those reported in another study in mechanically ventilated patients, in which early prone positioning in the first 2 days of ICU admission was associated with a survival benefit in COVID-19-related ARDS [11]. Several reasons may explain these discrepancies. First, definition of treatment group was different between studies. In our study, treatment groups were defined according to their PP status at Day-1 and not according to their PP status in the first 48 h after admission. In order to respect the validity of the propensity score using, our
study was designed to analyze a potential survival benefit of prone positioning during the first 24 h of ICU admission. Although the median delay between ICU admission and the first prone positioning in the non-early PP group was 3 days, we could have failed to demonstrate a benefit because approximately 25% of patients in this group had been finally placed in PP during Day-2. Those patients would have been referred as PP group in Mathews et al. study [11]. Consequently, our results suggest no additional outcomes’ improvement supporting very early PP during the first 24 h of ICU admission. Second, our study enrolled all intubated ARDS patients and more than a third of patients placed in PP had a PaO₂/FiO₂ ratio higher than 150 mmHg. The Proseva trial showed survival benefit with PP in moderate to severe selected patients with a PaO₂/FiO₂ ratio less than 150 mmHg with a PEEP ≥ 10 cmH₂O and FiO₂ ≥ 0.6 under standardized mechanical ventilation before inclusion [6]. Even if PP is supposed to limit the extent of lung injuries induced by ventilation in ARDS patients with various degrees of severity, the potential survival benefit in patients with PaO₂/FiO₂ ratio higher than 150 mmHg has not been demonstrated and remains unclear mainly due to under-powered previous studies [25]. Third, a large proportion of patients in the early PP group were placed in PP for less than 16 h in contrast to the Proseva trial showing a benefit in patient placed two time in prone position for at least 16 h during the first 2 days [6]. Similar to previous studies [26, 27], the short duration of PP session could also explain the absence of benefit of PP observed in the early PP group. Fourth, as previously described, the PaO₂/FiO₂ ratio is influenced by FiO₂ and the level of PEEP [28]. In this observational study, mechanical ventilation was not standardized before blood gases analyses which was used to define PaO₂/FiO₂ ratio, which may have resulted in greater heterogeneity within groups. Finally, 660 patients were proned after 48 h of ICU admission, representing 43.8% of all proned patients in our cohort, and Guerin et al. found a survival benefit when using prone positioning early after endotracheal intubation (within 48 h) [6]. In Mathews et al’s study a smaller proportion of patients (19.5%) was initiated on proning after 48 h of ICU admission [11], which might have contributed to greater difference in patient’s care between groups and thus impact mortality. However, impact of timing of prone sessions initiation after endotracheal intubation has not been specifically studied yet and is scarcely described in other randomized control trials assessing proning in ARDS [29–31].

Prone position has been shown to improve blood oxygenation by homogenizing the distribution of pulmonary ventilation/perfusion ratios [32–35]; preventing ventilator induced lung injury by homogenizing the strain to lung tissue associated with mechanical ventilation on inflamed alveoli [36–38] and preserving systemic hemodynamics [39], particularly right ventricular function [40]. However, the clear response to the prone position has remained non-defined. Our results show that patients placed in PP at Day-1 did not improve their ventilatory parameters, including the static compliance and oxygenation during their ICU stay at least until Day-7. In a large cohort of intubated COVID-19 patients, Langer et al. found that prone positioning was associated with immediate oxygenation improvement without any increase of respiratory system compliance [13]. The lack of oxygenation improvement in our study

Table 3 Subgroups analysis

Variable	PaO₂/FiO₂ ratio at Day-1	p	
	≥ 150 mmHg (n = 1031)	< 150 mmHg (n = 1106)	
Mortality Day-28, n (%)	271 (26.3%)	381 (34.4%)	< 0.0001
Mortality Day-60	312 (30.3%)	444 (40.1%)	< 0.0001
Mortality Day-90	319 (30.9%)	448 (40.5%)	< 0.0001
Invasive ventilation-free days up to Day-28 (days), median (IQR)	9 (0–18)	0 (0–14)	< 0.0001

Time between ICU admission and first prone session

	After 24 h (n = 1013)	Before 24 h (n = 491)	
Mortality Day-28, n (%)	339 (33.5%)	170 (34.6%)	0.656
Mortality Day-60	403 (39.3%)	193 (39.3%)	0.86
Mortality Day-90	410 (40.5%)	193 (39.3%)	0.665
Invasive ventilation-free days up to Day-28 (days), median (IQR)	0 (0–13)	0 (0–14)	0.415

IQR interquartile range, PaO₂ arterial partial pressure in oxygen, FiO₂ fraction inspired in oxygen, ICU Intensive care unit
could be due to the timing of assessment of oxygenation. Indeed, we recorded blood gases results daily independently of patients proning status at that time and did not study blood gases evolution during and just after proning. This could be in line with results reported by Langer et al. showing a trend toward worsening of oxygenation after re-supination [13]. Our results considering the lack of improvement of static compliance are consistent with those of Langer et al. contrasting data on non-COVID-19-related ARDS which showed a reduction of driving pressure and plateau pressure when placed in prone position, suggesting better static compliance [35]. This difference of effect of PP on respiratory mechanics between COVID-19 and non-COVID-19-related ARDS possibly highlights different pathophysologies [41]. Those lack of ventilatory parameters improvements could explain why the median duration of invasive mechanical ventilation in ARDS COVID-19 patients is approximately 12–13 days, longer that previously reported in all-causes ARDS patients included in Lung safe study [4, 20]. It might therefore also be possible that the follow-up of 7 days in our study did not allow us to show a potential ventilatory parameters benefits of prone position due to the short time of the follow-up. Moreover, we hypothesize that the main mechanism of the PP benefit in ARDS related to COVID-19 is the redistribution of pulmonary perfusion leading to higher ventilation perfusion ratios, rather than the recruitment, as reported by another study [12]. This pathophysiological rationale could explain why the mechanical property did not improve during the follow-up of our study.

This study has some limitations. First, only patients admitted in the first COVID wave have been enrolled in this research. Second, it is not a randomized controlled study. Although we used a propensity score adjusting on potential confounders, we cannot guarantee in this observational study that: (1) the standardization of mechanical ventilation at all centers was the same as that used in the positive randomized Proseva trial, (2) the PaO2/FiO2 ratio used by clinicians to initiate PP was calculated after a standardization of setting PEEP and FiO2 level, as previously demonstrated as an important factor to define severity of ARDS patients [28, 42]. Third, despite of the propensity score weighting adjustment, it might be possible that patients in the early PP group were more severe at ICU admission and required a prone positioning earlier than patients in the non-early PP group, leading to confusion bias. Moreover, many patients were not die earlier. Finally, some patients required up to 20 prone sessions leading to potential complications. Unfortunately, those data were not collected in this study.

Conclusions

Our results suggest that ICUs across European countries have largely adopted prone positioning in ARDS patients due to COVID-19 regardless of their severity. In this observational study, our data failed to show a survival benefit associated with early prone positioning initiated during the first day of ICU admission compared to prone positioning initiation after Day-1 for all COVID-19 patients requiring invasive mechanical ventilation regardless of their severity. Further studies are needed to identify subgroups of patients with COVID-19-related ARDS who might benefit from early prone positioning.

Abbreviations

COVID-19: Coronavirus disease 2019; PP: Prone position; ICU: Intensive care unit; ARDS: Acute respiratory distress syndrome; RT-PCR: Real-time reverse transcriptase-polymerase chain reaction; BMI: Body mass index; SOFA: Sequential Organ Failure Assessment; PaO2: Arterial partial pressure of oxygen; FiO2: Fraction inspired of oxygen; SAPS II: Simplified Acute Physiology Score II; PEEP: Positive end-expiratory pressure; ECMO: Extracorporeal membrane oxygenation; ECCI: Extracorporeal CO2 removal; IPTW: Inverse probability of treatment weighting; PS: Propensity score.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13054-022-03949-7.
Acknowledgements

We acknowledge all physicians and ICU staff for taking care of all those patients. With contributions of the Clinical Research Center, University Hospital and Faculty of Medicine, Geneva (Isabelle Semar, Véronique Ménoti, Emmanuelle Lelong-Favre, Sophie Longchamp and Isabelle Mercier), we also acknowledge with gratitude all the French and Belgian clinical researchers, the medical students, the students of the Polytechnic University, and all the volunteers for their amazing help in data collection.

Participating sites and COVID-ICU investigators

CHU Angers, Angers, France (Alain Mercat, Pierre Asfar, François Beloncè, Demiselle), APHP—Hôpital Bicêtre, Le Kremlin-Bicêtre, France (Tai Pham, Arthur Pavot, Xavier Monnet, Christian Richard), APHP—Hôpital Pitié Salpêtrière, Paris, France (Alexandre Demoule, Julien Dreyfus, Alexandre Ouali, Lucie Houdou), Centre Hospitalier Intercommunal de Créteil, Créteil, France (Frédérique Schortgen, Leon Rusel, Camille Jung), Hospices Civils de Lyon—Hôpital Neurologique, Lyon, France (Florent Gobert), APHP—Hôpital Necker, Paris, France (Damien Vimpere, Lionel Lamhaït), Centre Hospitalier Public du Cotentin—Hôpital Pasteur, Cherbourg-en-Cotentin, France (Bertrand Sauneuf, Liliane Charrrier, Julien Calus, Isabelle Desmeules), CHU Rennes—Hôpital du Pontchaillou, Rennes, France (Benoît Painvin, Jean-Marc Tadie), CHU Strasbourg—Hôpital Hautepierre, Strasbourg, France (Vincent Castelain, Baptiste Michaud, Jean-Étienne Herbrecht, Mathieu Baldacini), APHP—Hôpital Pitié Salpêtrière, Paris, France (Nicolas Weiss, Sophie Demeuter, Clémence Marias, Benjamin Rohaut), Centre Hospitalier Territorial Guérin Mignon, Nîmes, France (Pierrick Castillejo, Emmanuelle Couraud, Mathieu Série), Centre Hospitalier Compiegne-Noyon, Compiegne, France (Nicolas Alexandre), Groupe Hospitalier Saint-Joseph, Paris, France (Cédric Bruel, Candise Fontaine, Sonia Garrigou, Juliette Courtade Mahler), Centre hospitalier mémorial de Saint-Lô, Saint-Lô, France (Maxime Leclerc, Michel Ramakers), Grand Hôpital de l’Est Francilien, Jossigny, France (Pierre Gargon, Nicole Massiou, Loïc Vion, Juliette Buel), Gustave Roussy, Villejuif, France (Niallon Lucas, Franck Chernoumi, Annabelle Stocklin), Centre Hospitalier Intercommunal Robert Ballanger, Aulnay-sous-Bois, France (Alexandre Avenel, Henri Faure, Angélie Gentilhomme, Sylvie Ricorne), Hospices Civils de Lyon—Hôpital Edouard Herriot, Lyon, France (Paul Abraham, Céline Monard, Julien Texieris, Thomas Rimmelé), Centre Hospitalier d’Avignon, Avignon, France (Florent Montani), Groupe Hospitalier Diaconesses—Croix Saint-Pierre, Lyon, France (Alexandre Avenel, Henri Faure, Angélie Gentilhomme, Sylvie Ricorne), APHP—Hôpital Bicêtre, Le Kremlin-Bicêtre, France (Tai Pham, Arthur Pavot, Xavier Monnet, Christian Richard), APHP—Hôpital Pitié Salpêtrière, Paris, France (Alexandre Demoule, Julien Dreyfus, Alexandre Ouali, Lucie Houdou), Centre Hospitalier Intercommunal de Créteil, Créteil, France (Frédérique Schortgen, Leon Rusel, Camille Jung), Hospices Civils de Lyon—Hôpital Neurologique, Lyon, France (Florent Gobert), APHP—Hôpital Necker, Paris, France (Damien Vimpere, Lionel Lamhaït), Centre Hospitalier Public du Cotentin—Hôpital Pasteur, Cherbourg-en-Cotentin, France (Bertrand Sauneuf, Liliane Charrrier, Julien Calus, Isabelle Desmeules), CHU Rennes—Hôpital du Pontchaillou, Rennes, France (Benoît Painvin, Jean-Marc Tadie), CHU Strasbourg—Hôpital Hautepierre, Strasbourg, France (Vincent Castelain, Baptiste Michaud, Jean-Étienne Herbrecht, Mathieu Baldacini), APHP—Hôpital Pitié Salpêtrière, Paris, France (Nicolas Weiss, Sophie Demeuter, Clémence Marias, Benjamin Rohaut), Centre Hospitalier Territorial Guérin Mignon, Nîmes, France (Pierrick Castillejo, Emmanuelle Couraud, Mathieu Série), Centre Hospitalier Compiegne-Noyon, Compiegne, France (Nicolas Alexandre), Groupe Hospitalier Saint-Joseph, Paris, France (Cédric Bruel, Candise Fontaine, Sonia Garrigou, Juliette Courtade Mahler), Centre hospitalier mémorial de Saint-Lô, Saint-Lô, France (Maxime Leclerc, Michel Ramakers), Grand Hôpital de l’Est Francilien, Jossigny, France (Pierre Gargon, Nicole Massiou, Loïc Vion, Juliette Buel), Gustave Roussy, Villejuif, France (Niallon Lucas, Franck Chernoumi, Annabelle Stocklin), Centre Hospitalier Intercommunal Robert Ballanger, Aulnay-sous-Bois, France (Alexandre Avenel, Henri Faure, Angélie Gentilhomme, Sylvie Ricorne), Hospices Civils de Lyon—Hôpital Edouard Herriot, Lyon, France (Paul Abraham, Céline Monard, Julien Texieris, Thomas Rimmelé), Centre Hospitalier d’Avignon, Avignon, France (Florent Montani), Groupe Hospitalier Diaconesses—Croix Saint-Pierre, Lyon, France (Alexandre Avenel, Henri Faure, Angélie Gentilhomme, Sylvie Ricorne),
Dieppe, Dieppe, France (Antoine Marchalot, Cécile Saladrin, Christelle Bigit), CHU de Martinique, Fort-de-France, France (Pierre-Marie Fayolle, Jules Fatéas, Amir Ibrahim, Dabour Resiere), Hôpital Fondation Adolphe de Rothschild, Paris, France (Raphia Hage, Clémentine Chotard, Marie Cantier, Pierre Trouiller), APHP—Bichat Claude Bernard, Paris, France (Philippe Montravers, Eric Lortat-Jacob, Sebastien Tenaka, Alexey Tran Dinh), APHP—Hôpital Universitaire Paris Sud Bicêtre, France (Jacques Duranteau, Anatoole Haroics,Guillaumme Dubreulx, Marie Werner), APHP—Hôpital Européen Georges Pompidou, Paris, France (Anne Godlier, Sophie Hamada, Diane Zlotnick, Hélène Nougue), APHP, GHU Henri Mondor, Créteil, France (Armand Mekomto-Dessapp, Guillaume Caraux, Keyvan Mosheibi, Nicolas Del-Patres), APHP—Hôpital Pitie-Salpetrière, Paris, France (Jean-Michel Constantin, Mona Assif, Marine Lecorre, Agathe Selves). Institut Mutualiste Montsouris, Paris, France (Florian Prevost, Christian Lamer, Ruiying Shi, Lyes Knaï), CHU Besançon—Hôpital Jean Minjoz, Besançon, France, (Sébastien Plu Flory, Lucie Vettoretto), APHP—Hôpital Universitaire Robert-Debré, Paris, France (Michael Levy, Lucile Marsac, Stéphane Dauger, Sophie Gulin-Mérimé), CHU Besançon—Hôpital Jean Minjoz, Besançon, France, (Hadrien Wisnieswizki, Gérald Petrin, Thibaud Sournaye, Gilles Capelliére), MédiPôle Lyon-Villeurbanne, Villeurbanne, France, (Jean-Baptiste Putegnat, Frédérique Bayle, Maya Perrou, Ghyslaine Thao), APHP—Ambroisé Paré, Boulogne-Billancourt, France (Guillaume Géry, Cyril Charon, Xavier Repessé, Antoine Veillard-Baron), CHU Amiens Picardie, Amiens, France (Mathieu Guibaut, Pierre-Alexandre Roger, Sébastien Hinard, Pierre-Yves Macq), Hôpital Nord, CHU de Lille, France (Stéphane Chédeville, Cyril, Chédeville), CH de Châlons en Champagne, Châlons en Champagne, France (Patrick Chillet), Aminat, Barbara Darjent, Aminat, Barbara Darjent.
of the work are appropriately investigated and resolved. The manuscript’s guarantors (CLT and NT) affirm that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained. All authors read and approved the final manuscript.

Funding
This study was funded by the AP-HP Foundation and its donors though the program “Alliance Tous Unis Contre le Virus”, by the Clinical Research and Development Department, by the French Ministry of Health and by the foundation of the University hospitals of Geneva, Geneva, Switzerland. The Reseau European de recherche en Ventilation Artificielle (REVA) network received a 75,000 € research grant from Air Liquide Healthcare.

Sponsor
The sponsor was Assistance Publique Hôpitaux de Paris (AP-HP).

Role of the funder
The funder had no role in the design and conduct of the study, collection, management, analysis and interpretation of the data, preparation, review or approval of the manuscript, and decision to submit the manuscript for publication.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All patients or close relatives were informed that their data were included in the COVID-ICU cohort. Human research ethics committee approval for the study were the ethical committee of the French Intensive Care Society (CE-SRLF 20-23) and the study were the ethical committee of Geneva (BASEC #: 2020-00704), the ethical committee of the French Intensive Care Society (CE-SRLF 20-23) and the ethical committee of Belgium (2020-294) following our local regulations.

Consent for publication
All patients or close relatives were informed that their data might be published.

Competing interests
All authors declare no competing interests.

Author details
1 Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland. 2 Medical Intensive Care Unit, Grenoble Alpes University Hospital, Grenoble, France. 3 AP-HP, Département de Santé Publique, Centre de Pharmacoco-épidémiologie, Paris, France. 4 Medical Intensive Care Unit, Nantes Hôtel-Dieu University Hospital, Nantes, France. 5 Division of Intensive Care, Edouard Herriot University Hospital, Lyon, France. 6 Medical Intensive Care Unit, Grenoble Alpes University Hospital, Avenue Maquis du Grésivaudan, 38700 La Tronche, France.

Received: 13 September 2021 Accepted: 14 March 2022
Published online: 24 March 2022

References
1. World Health Organization. Coronavirus (COVID-19) dashboard. Available at https://covid19.who.int. Accessed 12 May 2022.
2. Grasselli G, Greco M, Zanella A, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med. 2020;180(10):1345–55.
3. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle Region—case series. N Engl J Med. 2020;382(21):2012–22.
4. COVID-ICU Group on behalf of the REVA network and the COVID-ICU investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47(1):60–73.
5. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrin L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574–81.
6. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.
7. Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):169.
8. Guérin C, Beuret P, Constantin JM, et al. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018;44(1):22–37.
9. Alhazzani W, Maller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46(5):854–87.
10. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46(12):2200–11.
11. Mathews KS, Sch H, Shaei S, et al. Prone positioning and survival in mechanically ventilated patients with coronavirus disease 2019-related respiratory failure. Crit Care Med. 2021.
12. Camporota L, Sanderson B, Chiumello D, et al. Prone position in coronavirus disease 2019 and noncoronavirus disease 2019 acute respiratory distress syndrome: an international multicenter observational comparative study. Crit Care Med. 2021.
13. Langer T, Brioni M, Guzzarella A, et al. Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients. Crit Care. 2021;25(1):128.
14. Scarazzmuzzo G, Gamberrin L, Tonetti T, et al. Sustained oxygenation improvement after first prone positioning is associated with liberation from mechanical ventilation and mortality in critically ill COVID-19 patients: a cohort study. Ann Intensive Care. 2021;11(1):63.
15. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.
16. Yehya N, Harhay MO, Curley MAQ, Schoenfeld DA, Reeder RW. Reappraisal of ventilator-free days in critical care research. Am J Respir Crit Care Med. 2019;200(7):828–36.
17. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res. 2011;46:399–424.
18. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28:3083–107.
19. Vesin A, Azoulay E, Ruckly S, et al. Reporting and handling missing values in clinical studies in intensive care units. Intensive Care Med. 2013;39(8):1396–404.
20. Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81:515–26.
21. Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.
22. Fan E, Del Sorbo L, Goligher EC, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respil Crit Care Med. 2017;195(9):1253–63.
23. Primmaz S, Le Terrier C, Suh N, et al. Preparedness and reorganization of care for coronavirus disease 2019 patients in a swiss ICU: characteristics and outcomes of 129 patients. Crit Care Explor. 2020;2(8):e0173.
24. Dousset A, Ciceron F, Cerutti E, et al. Prone positioning for severe acute respiratory distress syndrome in COVID-19 patients by a dedicated team: a safe and pragmatic reallocation of medical and surgical work force in response to the outbreak. Ann Surg. 2020;272(6):e311–5.
25. Albert RK. Prone ventilation for patients with mild or moderate acute respiratory distress syndrome. Ann Intern Med. 2017;195(9):1253–63.
27. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292(19):2379–87.
28. Palanidurai S, Phua J, Chan YH, Mukhopadhyay A. Is it time to revisit the PaO2/FIO2 ratio to define the severity of oxygenation in ARDS? Ann Intensive Care. 2021;11(1):138.
29.Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345(8):568–73.
30. Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(11):1233–9.
31. Taccone P, Pesenti A, Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302(18):1977–84.
32. Galatsou E, Kostanti E, Savrna E, et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury. Am J Respir Crit Care Med. 2006;174(2):187–97.
33. Henderson AC, Sá RC, Thellung RJ, Buxton RB, Prisk GK, Hopkins SR. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung. J Appl Physiol. 2013;115(3):313–24.
34. Lamm WJ, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med. 1994;150(1):184–93.
35. Guérin C, Albert RK, Beitler J, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46(12):2385–96.
36. Pelosi P, Tubiolo D, Mascheroni D, et al. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med. 1998;157(2):387–93.
37. Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome: Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;188(11):1286–93.
38. Guerin C, Baboi L, Richard JC. Mechanisms of the effects of prone positioning in acute respiratory distress syndrome. Intensive Care Med. 2014;40(11):1634–42.
39. Jozwiak M, Teboul JL, Anguel N, et al. Beneficial hemodynamic effects of prone positioning in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med. 2013;188(12):1428–33.
40. Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132(5):1440–6.
41. Chiurme D, Busana M, Coppola S, et al. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Med. 2020;46(12):2187–96.
42. Aboab J, Louis B, Jonson B, Brochard L. Relation between PaO2/FIO2 ratio and FIO2: a mathematical description. Intensive Care Med. 2006;32(10):1494–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.