Transfer RNA Modulates the Editing Mechanism Used by Class II Prolyl-tRNA Synthetase*

Kathryn E. Splan1, Michael E. Ignatov1, and Karin Musier-Forsyth5,2

From the 1Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 and the Departments of 3Chemistry and 4Biochemistry, The Ohio State University, Columbus, Ohio 43210

Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs. To prevent errors in protein synthesis, many synthetases have evolved editing pathways by which misactivated amino acids (pre-transfer editing) and misacylated tRNAs (post-transfer editing) are hydrolyzed. Previous studies have shown that class II prolyl-tRNA synthetase (ProRS) possesses both pre- and post-transfer editing functions against noncognate alanine. To assess the relative contributions of pre- and post-transfer editing, presented herein are kinetic studies of an Escherichia coli ProRS mutant in which post-transfer editing is selectively inactivated, effectively isolating the pre-transfer editing pathway. When post-transfer editing is abolished, substantial levels of alanine mischarging are observed under saturating amino acid conditions, indicating that pre-transfer editing alone cannot prevent the formation of Ala-tRNAPro. Steady-state kinetic parameters for aminoacylation measured under these conditions reveal that the preference for proline over alanine is 2000-fold, which is well within the regime where editing is required. Simultaneous measurement of AMP and Ala-tRNAPro formation in the presence of tRNAPro suggested that misactivated alanine is efficiently transferred to tRNA to form the mischarged product. In the absence of tRNA, enzyme-catalyzed Ala-AMP hydrolysis is the dominant form of editing, with “selective release” of noncognate adenylate from the active site constituting a minor pathway. Studies with human and Methanococcus jannaschii ProRS, which lack a post-transfer editing domain, suggest that enzymatic pre-transfer editing occurs within the aminoacylation active site. Taken together, the results reported herein illustrate how both pre- and post-transfer editing pathways work in concert to ensure accurate aminoacylation by ProRS.
ysis (10), indicative of either enzymatic pre-transfer editing (5) and/or release of the noncognate adenylate into solution (14). Whereas the assessment of pre-transfer editing in the absence of tRNA is straightforward, the presence of tRNA complicates the analysis of pre-transfer editing because of the concurrent hydrolysis of mischarged Ala-tRNAPro, allowing only for the extent of total editing to be measured. To directly assess pre-transfer editing in the course of the aminoacylation reaction, we have kinetically characterized the K279A _Escherichia coli_ (Ec) ProRS mutant that is defective in post-transfer editing (12), thereby effectively isolating the pre-transfer pathway. Characterization of this simplified reaction scheme allows for the direct assessment of the relative contributions of pre- and post-transfer editing to the fidelity of aminoacylation by Ec ProRS, revealing that both pathways work in concert to ensure efficient aminoacylation. Studies carried out with human (Hm) and _Methanococcus jannaschii_ (Mj) ProRS, which lack post-transfer editing activity, were consistent with results obtained using published conditions (26, 27) detected no aminoacylated product.

Enzyme Assays—Aminoacylation assays to determine kinetic parameters and charging levels were performed at 37 °C. The reactions (20 μl) contained 50 mM HEPPS, pH 7.5, 20 mM KCl, 25 mM MgCl₂, 4 mM ATP, 0.5 mM dithiothreitol, 20 μM tRNAPro, trace amounts of [32P]-labeled tRNAPro, and variable levels of amino acid. The reactions were initiated upon addition of Ec K279A ProRS to a final concentration of 0.1 μM (proline) or 0.5 μM (alanine), unless otherwise specified. At the desired time point, a 1.5-μl aliquot was removed and quenched into 4 μl of 0.2 M NaOAc, pH 5, containing 0.4 unit/μl of nuclease P1 (Sigma) at 0 °C. Upon completion of the assay, the aliquots were digested at room temperature for 15 min. Aliquots (1 μl) were spotted onto polyethyleneimine cellulose plates (Sigma) pre-washed with water. Separation of [32P]AMP and aminoacyl-[32P]AMP was performed by developing TLC plates in 0.1 M ammonium acetate, 5% acetic acid. The plates were visualized by phosphorimaging, and the data were analyzed using Bio-Rad Molecular Imager FX software. The fraction of acylated tRNA was determined from the ratio of aminoacyl-AMP to the total amount of AMP in the reaction aliquot. Kinetic parameters were determined using at least five concentrations for each amino acid, ranging from 0.01 to 1 mM for proline and from 10 to 450 mM for alanine. The data were analyzed using Lineweaver-Burk plots.

TLC assays to measure the rate of AMP formation were performed as described previously (14), with the exception that pyrophosphatase was omitted from the reaction. All of the assays contained either 3 mM proline or 450 mM alanine, 250 μM ATP, 100 mM Tris-HCl, pH 7.0, 10 mM KF, 10 mM 2-mercaptoethanol, 10 mM MgCl₂, and 0.25 μM [α-32P]ATP. The reactions were performed at 37 °C and initiated with either 0.5 μM Ec K279A ProRS or 5 μM WT Ec ProRS, Hm ProRS, or Mj ProRS. The data were analyzed as described previously at 0.5 μM enzyme concentrations (14). At 5 μM enzyme, the rates were obtained using only the initial time points, where the plot of [AMP] _versus_ time was linear. The data were fit to the following equation:

\[
y = B + k_{st}t
\]

(Eq 1)

where _B_ is the burst amplitude and _k_{st}_ is the steady-state rate. The reaction rate constants (_k_{st}) were calculated by dividing the steady-state rate of the reaction (in μM/s) by the total enzyme concentration (μM). To directly compare the rates of mischarging with AMP formation, charging assays were performed utilizing the same reaction conditions as described for the assay of AMP formation. Digestion of tRNA and subsequent data analysis were as described above.
tRNA Modulates Editing by Prolyl-tRNA Synthetase

RESULTS

Characterization of Alanine Mischarging by a Mutant ProRS That Lacks Post-transfer Editing Activity—In this work, we kinetically characterized the EC K279A ProRS mutant, in which post-transfer editing was previously shown to be essentially abolished (12). By focusing on this enzyme, the impact that pre-transfer editing has upon alanine charging kinetics could be assessed. Initial steady-state charging assays performed with proline revealed that both WT and K279A ProRS charge the cognate amino acid substrate with equal efficiency (data not shown), indicating that the fidelity of the synthetic active site in this mutant is maintained.

To characterize the alanine charging kinetics for both WT and K279A ProRS, we used an assay in which the 3’-terminal internucleotide linkage of tRNAPro is labeled with [32P] (25). We introduced a series of mutations that pre-transfer editing has upon alanine charging kinetics which post-transfer editing was previously shown to be essential. Importantly, use of this assay allows for kinetic characterization of alanine charging. The rate constants were measured at pH 7.5 via Lineweaver-Burk analysis in the presence of varying amino acid concentrations, as described under "Experimental Procedures." The conditions are as described under "Experimental Procedures."

![Figure 1. Formation of charged Ala-tRNAPro by 1 μM WT (●) and K279A (■) Ec ProRS in the presence of 450 mM alanine and 20 μM tRNAPro.](Image)

TABLE 1

Amino acid	k_{cat}	K_m	k_{cat}/K_m	k_{cat}/K_m (relative)
Pro	0.23 ± 0.08	0.15 ± 0.02	1.5	1
Ala	0.024 ± 0.002	31 ± 2	7.7 x 10^{-4}	5.1 x 10^{-4}

TABLE 2

Amino acid	k_{cat} (K279A)	
Pro	AMP, no tRNA	ND
Ala	AMP, +tRNA	0.16 ± 0.03

Characterization of Alanine Mischarging by a Mutant ProRS That Lacks Post-transfer Editing Activity

To further quantify this effect, we determined steady-state parameters for the two-step aminoacylation reaction for both cognate proline and noncognate alanine by Ec K279A ProRS. As shown in Table 1, the values measured when post-transfer editing is abolished result in a discrimination factor for proline over alanine of 1 in 1900, which is well within the range where editing is needed (28), even when the relative amino acid concentrations are not taken into account. In E. coli, alanine is present at a higher concentration than proline (148 μM versus 9 μM, respectively) (29), which effectively reduces the discrimination factor to 1 in 120. These results further support the conclusion that pre-transfer editing is not sufficient to prevent the mischarging of alanine in the presence of tRNA.

Measurement of AMP Formation in the Presence of tRNA

As shown in Scheme 1, both pre-transfer editing and amino acid transfer to form charged tRNA result in the release of AMP. In the absence of editing, the formation of AMP is expected to be stoichiometric with respect to the formation of charged tRNA. In the presence of editing, AMP is formed to a greater extent than charged tRNA, because both adenylate hydrolysis (pre-transfer editing) and mischarging and subsequent deacylation (post-transfer editing) result in the production of AMP. Because post-transfer editing is abolished in the case of K279A ProRS, nonstoichiometric production of AMP reports directly on the extent of pre-transfer editing.

To assess the formation of AMP as both a function of pre-transfer editing and of tRNA charging, we monitored steady-state AMP formation and tRNA charging with K279A Ec ProRS under the same conditions, in the presence of either proline or alanine. Importantly, all of the assays were performed in the absence of PPase, which prevents pyrophosphorolysis of the alanyl-adenylate. Thus, under these conditions, the reverse reaction may also take place. For cognate proline, no appreciable formation of AMP by K279A ProRS is detected in the absence of tRNA, consistent with the lack of cognate amino acid editing (Table 2). When the overall accuracy of the experimental technique and standard deviations are taken into account, the presence of tRNA results in a rate of AMP formation that agrees well with the rate of tRNA aminoacylation under identical conditions (Table 2). Similar results have been demonstrated upon formation of His-tRNAHis by Ec histidyl-tRNA synthetase (30).

![Image 60x542 to 288x733](Image)

Figure 1. Formation of charged Ala-tRNAPro by 1 μM WT (●) and K279A (■) Ec ProRS in the presence of 450 mM alanine and 20 μM tRNAPro.
tRNA Modulates Editing by Prolyl-tRNA Synthetase

As shown in Fig. 2 and Tables 2 and 3, the steady-state rate of noncognate alanine mischarging is equal to the steady-state rate of AMP formation in the presence and absence of tRNA. Furthermore, when the supply of chargeable tRNA is exhausted (i.e. plateau is reached), AMP formation continues with the same steady-state rate, presumably because of adenylate hydrolysis. The observation of similar rates for both reactions in the presence and absence of tRNA implies that they share a common rate-limiting step. Furthermore, these data suggest that the transfer step is kinetically fast enough to out-compete pre-transfer editing (see also Fig. 1).

In some AARS, it has been demonstrated that the presence of tRNA can induce a conformational change that impacts the synthetic active site. For example, GlnRS is catalytically inactive prior to binding tRNA\(^{\text{Gln}}\), demonstrating the importance of tRNA-induced conformational changes (31). Similarly, mutant tRNA\(^{\text{His}}\) has been shown to alter the kinetics of His-AMP formation by HisRS (30). To probe the possibility that the binding of tRNA induces a conformational change that stabilizes the enzyme-bound Ala-AMP intermediate and thereby increases the observed rate of mischarging, we measured the rate of AMP formation by K279A Ec ProRS in both the presence and absence of a nonchargeable tRNA substrate. If bound tRNA is capable of stabilizing the adenylate intermediate and decreasing the rate of editing, a reduced rate of AMP formation should be observed, because in this case AMP formation can only occur via pre-transfer editing. However, in the presence of periodate-treated tRNA, the rate of AMP formation was measured to be 0.048 s\(^{-1}\), which is similar to the observed rate in the absence of tRNA (Table 2). We therefore conclude that the binding of tRNA does not increase the stability of Ala-AMP, implying that alanine transfer to tRNA\(^{\text{Pro}}\) can kinetically compete with adenylate hydrolysis. Furthermore, the addition of tRNA does not further stimulate AMP production beyond the level formed during aminoacylation, consistent with the earlier observation that tRNA does not stimulate pre-transfer editing by ProRS (10).

Enzyme-catalyzed Hydrolysis of Ala-AMP—Although the results described above clearly point to post-transfer editing as the dominant mechanism in the presence of chargeable tRNA, in the absence of tRNA, Ala-AMP is hydrolyzed at a significant rate (0.034 s\(^{-1}\)). Consistent with our previous studies of WT Ec ProRS (14), the steady-state rate of AMP formation by K279A ProRS in the presence of alanine is significantly faster (5- and 7-fold in the absence and presence of tRNA, respectively) than the steady-state rate of Ala-AMP formation (Fig. 3 and Table 2). We also previously reported that the rate of AMP formation by WT ProRS in the presence of alanine was ~2-fold slower than the rate of nonenzymatic hydrolysis of Ala-AMP (~0.1 min\(^{-1}\)) and therefore concluded that the majority of pre-transfer editing was occurring via the selective release pathway rather than via enzymatic hydrolysis (14). However, our present studies of K279A ProRS show that the rate of AMP formation in the presence of alanine is 0.034 s\(^{-1}\), which is at least 20 times faster than the rate of nonenzymatic hydrolysis (32) and suggests that pre-transfer editing is enzyme catalyzed. These results motivated us to revisit our previous conclusions with WT ProRS, and in doing so, a calculation error was uncovered.4 We now report a

4 In calculating the rate of AMP formation reported in the first row of Table 3 in Ref. 14, we inadvertently divided the amount of AMP formed per min by the concentration of ATP used instead of by the enzyme concentration. The revised numbers are: \(k_{\text{obs}} = 9.6 \text{ min}^{-1}\) for proline and \(27.2 \text{ min}^{-1}\) for alanine.
revised rate of 0.45 s\(^{-1}\) for overall AMP formation in the presence of alanine by WT ProRS. This rate is 240 times faster than the rate of nonenzymatic hydrolysis. Although this recalculated rate is significantly larger than what we report herein for WT ProRS (Table 3), we attribute this difference to the presence of PP\(_i\)ase in our previous studies. Inclusion of PP\(_i\)ase in the reaction mixture will eliminate the reverse reaction and result in a higher net rate of AMP formation.

Therefore, the fast formation of AMP in the absence of tRNA is attributed to enzyme-catalyzed hydrolysis of the alanyl-adenylate both in the case of WT and K279A ProRS. However, because the concentration of Ala-AMP is observed to be higher than the enzyme concentration (Fig. 3), we conclude that a small portion of adenylate is released from the active site, and the relatively slow rate of nonenzymatic hydrolysis allows for a build-up of Ala-AMP over time. In the absence of tRNA, based upon the ratio of AMP formation to adenylate formation reported in Table 2, we estimate that 80% of the adenylate is hydrolyzed enzymatically, establishing this mechanism as the dominant form of pre-transfer editing. Similarly, in the presence of tRNA, where AMP production coincides with the formation of Ala-tRNA\(^{Pro}\), <15% of the adenylate is released, with the majority converted to the mischarged Ala-tRNA\(^{Pro}\) product (Table 2). Thus, both in the absence and presence of tRNA, selective release constitutes a minor pathway for editing (≤20%).

To quantify the amount of AMP and AA-AMP formed during the first enzyme turnover, steady-state rates of AMP formation were also measured using higher WT Ec ProRS concentrations (5 \(\mu\)M). In the presence of noncognate alanine, a burst amplitude corresponding to the enzyme concentration used in the reaction is observed for AMP formation (Fig. 4 and Table 3). Significantly, this build-up of AMP within the first turnover of the enzyme further supports the notion that adenylate hydrolysis is primarily an enzyme-catalyzed event.

In the presence of cognate proline and high enzyme concentrations, a burst in AMP formation is also observed (Fig. 4 and Table 3), albeit with a significantly slower steady-state rate constant relative to alanine, whereas prolyl-adenylate formation extrapolates to zero at zero time (Fig. 5). Significantly, under these high enzyme conditions, the observation of appreciable AMP formation in the presence of proline indicates that enzyme-catalyzed adenylate hydrolysis can serve as a nonproductive pathway even in the presence of cognate amino acid. However, quantification of the ATP consumed in the presence of alanine and proline revealed that multiple turnovers are observed in the presence of alanine, whereas only a few rounds of hydrolysis are observed in the presence of proline (Fig. 6). The failure to observe AMP formation in the presence of proline at low enzyme concentration (Table 2) underscores the relatively small significance of this pathway for the cognate amino acid.
To probe the site of Ala-AMP hydrolysis by ProRS, we performed similar experiments using Hm and Mj ProRS, which lack the insertion domain capable of post-transfer editing. In the case of Mj ProRS, AMP formation exhibited a burst amplitude corresponding to the total enzyme concentration, with a steady-state rate constant 2-fold lower than that of Ec ProRS (Fig. 4 and Table 3). The steady-state rate of Ala-AMP formation by Mj ProRS was also reduced 2-fold, indicating that, similar to Ec ProRS, this enzyme was 84% efficient in clearing misactivated Ala-AMP (Fig. 5 and Table 3). Monitoring of ATP consumption revealed that unlike Ec ProRS, Mj ProRS only appears to undergo a few turnovers in the presence of noncognate alanine (Fig. 6), which may be due to the assay temperature of 37 °C, which is suboptimal for this thermophilic enzyme.

In the presence of alanine, Hm ProRS also produces multiple turnovers of AMP, but in contrast to Ec and Mj ProRS, no burst amplitude was observed within experimental error (Fig. 4 and Table 3). Additionally, formation of Ala-AMP in the absence of Hm ProRS was not observed, indicating that this synthetase is 100% efficient in clearing misactivated Ala-AMP. Hm ProRS clearly undergoes multiple rounds of hydrolysis, which is evident by monitoring ATP consumption. Because both Mj and Hm ProRS lack a separate post-transfer editing domain, these data suggest that hydrolysis of misactivated amino acids takes place within the aminoacylation active site of the enzyme, consistent with our earlier studies of pre-transfer editing (14).

DISCUSSION

The presence of multiple editing pathways (Scheme 1) among the AARS highlights the importance of editing mechanisms in the fidelity of protein synthesis (33). Interestingly, the relative contribution of pre- versus post-transfer editing is not a class-conserved feature of the synthetases. For example, the class I editing enzymes IleRS, ValRS, and LeuRS all possess an extra domain, termed connective polypeptide 1 (CP1), at which editing activity is centered (8). Despite the high homology of the domain, the enzymes rely on different editing pathways to maintain fidelity. IleRS is believed to primarily rely on pre-transfer editing of Val-AMP (7). In contrast, ValRS employs post-transfer editing, as evidenced by the accumulation of the Thr-tRNA_{Val} intermediate (34). In the case of LeuRS, the dominant editing pathway is species specific. Ec LeuRS has been shown to exhibit only post-transfer editing, whereas the yeast enzyme relies primarily on pre-transfer editing (35). Class I MetRS is capable of catalyzing the cyclization of the homocysteine adenylate to form a thiolactone intermediate, representing a form of pre-transfer editing against this amino acid (36, 37). The class II enzymes ProRS (10–14), AlaRS (38, 39), and PheRS (40–42) all exhibit both pre- and post-transfer editing, whereas ThrRS relies only on post-transfer editing (43, 44), and SerRS performs only pre-transfer editing (9).

Although many synthetases display multiple editing mechanisms, in some cases the dominant pathway is unknown, and the reason for multiple pathways is not well understood. The new results reported herein for Ec ProRS identify specific scenarios wherein both pre- and post-transfer editing play important roles in maintaining the fidelity of the aminoacylation reaction. We show that in the presence of tRNA_{Pro}^{Pro}, pre-transfer editing is not sufficient to prevent the efficient production of Ala-tRNA_{Pro}^{Pro} by a post-transfer editing defective ProRS variant, highlighting the dominance of post-transfer editing under these conditions. However, in the absence of tRNA_{Pro}^{Pro}, alanine stimulates ATP hydrolysis and AMP formation, indicative of pre-transfer editing. We speculate that in bacteria, pre-transfer adenylate hydrolysis and post-transfer deacylation provide redundant mechanisms to efficiently clear misactivated alanyl-adenylate when the tRNA_{Pro}^{Pro} is not present and mischarged Ala-tRNA_{Pro}^{Pro} when it is.

Our previous studies on the pre-transfer editing mechanism in the absence of tRNA (14), together with the present studies, highlight the importance of enzyme-catalyzed Ala-AMP hydrolysis in the absence of bound tRNA. Selective release is shown to be a minor pathway (20%) for clearing aminoacyl-adenylate that dissociates from the active site prior to hydrolysis. In contrast to earlier studies, we performed the present assays in the absence of inorganic PPiase, allowing for the contributions of both the forward and reverse reactions in alanine activation to be observed. The rate for AMP formation in the presence of PPiase (0.45 s^{−1}) is considerably faster than the rate observed in the absence of PPiase (0.034 s^{−1}), implying that the reverse reaction is significant in preventing the misactivation of alanine. However, despite this contribution, Ala-AMP is still formed and subsequently hydrolyzed in an enzymatic reaction, highlighting the need for tRNA-independent pre-transfer editing.

Experiments conducted under burst conditions revealed relative rate constants. The amount of AMP extrapolated to time 0 in the presence of alanine by Ec and Mj ProRS corresponds closely to the enzyme concentration used in the assay, indicating that formation of Ala-AMP is faster than its hydrolysis. In addition, the steady-state rate constant of Ala-AMP hydrolysis is significantly faster than hydrolysis of Ala-AMP by water (14, 32) and therefore can be attributed to an enzyme-catalyzed event. In both Ec and Mj systems, the enzyme is not 100% efficient in clearing misactivated Ala-AMP, and slow accumulation of Ala-AMP is observed, suggesting that selective release followed by water hydrolysis plays a minor role in editing. In the presence of cognate amino acid, Ec ProRS undergoes a few rounds of prolyl-adenylate hydrolysis, at which point the enzyme is arrested. Therefore, enzyme-catalyzed prolyl-adenylate hydrolysis, which represents an undesired pathway, is minimized.

Surprisingly, in contrast to Ec and Mj ProRS, Hm ProRS does not exhibit burst kinetics in the presence of alanine while clearly undergoing multiple rounds of hydrolysis. This suggests that in the case of Hm ProRS, formation of Ala-AMP is rate-limiting compared with its hydrolysis. The lack of Ala-AMP accumulation in the presence of the human enzyme also suggests that enzymatic pre-transfer editing is sufficient in this system. In the context of drug design, species-specific mechanisms in amino acid activation and/or editing may, in principal, be exploited in the development of species-selective inhibitors of ProRS.

Examination of the data in Table 3 reveals that all three enzymes exhibit comparable rates of pre-transfer adenylate hydrolysis. Therefore, despite lacking post-transfer editing, Mj
tRNA Modulates Editing by Prolyl-tRNA Synthetase

ProRS and Hm ProRS have not evolved more efficient mechanisms for clearing misactivated Ala-AMP. We previously reported that both Mj and Hm ProRS exhibit selectivity for proline activation relative to alanine that is an order of magnitude greater than that of Ec ProRS. Thus, rather than evolve more efficient editing mechanisms, ProRSs from these species appear to have evolved a more selective active site. Nevertheless, the fact that ProRSs from all three kingdoms exhibit enzyme-catalyzed Ala-AMP hydrolysis supports the relevance of a pre-transfer editing mechanism that does not involve translocation to a distant site on the enzyme.

In conclusion, mutational isolation of the pre-transfer editing pathway in Ec ProRS has allowed the relative contributions of both pre- and post-transfer editing of alanine to be assessed. In the absence of tRNA, enzyme-catalyzed adenylate hydrolysis clears misactivated alanine with selective release constituting a minor pathway. However, in the presence of tRNA, a mutant enzyme that is deficient in post-transfer editing efficiently misactivates alanine with selective release constituting a major pathway. In conclusion, mutational isolation of the pre-transfer editing domain, these data strongly suggest that pre-transfer editing occurs in the aminoacylation active site.

Acknowledgments—We thank Drs. Joseph Chiha and Sanchita Hati for helpful discussions and critical reading of the manuscript.

REFERENCES

1. Freist, W. (1989) Biochemistry 28, 6787–6795
2. Ibba, M., and Söll, D. (2000) Annu. Rev. Biochem. 69, 617–650
3. Ibba, M., Francklyn, C., and Cusack, S. (eds) (2005) The Aminoacyl-tRNA Synthetases, Landes Bioscience, Georgetown, TX
4. Giege, R., Sissler, M., and Florentz, C. (1998) Nucleic Acids Res. 26, 5017–5035
5. Jakubowski, H., and Goldman, E. (1992) Microbiol. Rev. 56, 412–429
6. Lee, J. W., Beeke, K., Nangle, L. A., Jang, J., Longo-Guess, C. M., Cook, S. A., Davison, M. T., Sundberg, J. P., Schimmel, P., and Ackerman, S. L. (2006) Nature 443, 50–55
7. Hendrickson, T. L., and Schimmel, P. (2003) in Translation Mechanism (Lapointe, J., and Brakier-Gingras, L. eds) pp. 34–64, Plenum Publishing Corp., New York
8. Mascharenhas, A., Martinis, S., An, S., Rosen, A. E., and Musier-Forsyth, K. (2008) in Protein Engineering (RajBhandary, T., and Koehler, C. eds) Springer-Verlag New York Inc., New York, in press
9. Gruic-Sovulj, I., Rokov-Plavec, J., and Weygand-Durasevic, I. (2007) FEBS Lett. 581, 5110–5114
10. Beuning, P. J., and Musier-Forsyth, K. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8916–8920
11. Beuning, P. J., and Musier-Forsyth, K. (2001) J. Biol. Chem. 276, 30779–30785
12. Wong, F. C., Beuning, P. J., Nagan, M., Shiba, K., and Musier-Forsyth, K. (2002) Biochemistry 41, 7108–7115
13. Wong, F. C., Beuning, P. J., Silvers, C., and Musier-Forsyth, K. (2003) J. Biol. Chem. 278, 52857–52864
14. Hati, S., Zierovogel, B., Sternjohn, J., Wong, F., Nagan, M., Rosen, A. E., Siliciano, P. G., Chiha, J. W., and Musier-Forsyth, K. (2006) J. Biol. Chem. 281, 27862–27872
15. Ahel, I., Korencic, D., Ibba, M., and Söll, D. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 15422–15427
16. Ruan, B., and Söll, D. (2005) J. Biol. Chem. 280, 25887–25891
17. An, S., and Musier-Forsyth, K. (2004) J. Biol. Chem. 279, 42359–42362
18. An, S., and Musier-Forsyth, K. (2005) J. Biol. Chem. 280, 34465–34472
19. Zhang, H., Huang, K., Li, Z., Banerjei, L., Fisher, K. E., Grishin, N. V., Eisenstein, E., and Herzberg, O. (2000) Proteins 40, 86–97
20. Stehlin, C., Heacock, D. H., 2nd, Liu, H., and Musier-Forsyth, K. (1997) Biochemistry 36, 2932–2938
21. Heacock, D., Forsyth, C. J., Shiba, K., and Musier-Forsyth, K. (1996) Bioorg. Chem. 24, 273–289
22. Burke, B., Lipman, R. S., Shiba, K., Musier-Forsyth, K., and Hou, Y. M. (2001) J. Biol. Chem. 276, 20286–20291
23. Fersht, A. R., Ashford, J. F., Bruton, C. J., Jakes, R., Koch, G. L., and Hartley, B. S. (1975) Biochemistry 14, 1–4
24. Stehlin, C., Burke, B., Yang, F., Liu, H., Shiba, K., and Musier-Forsyth, K. (1998) Biochemistry 37, 8605–8613
25. Wolfsson, A. D., and Uhlenbeck, O. C. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5965–5970
26. Liu, H., Peterson, R., Kessler, J., and Musier-Forsyth, K. (1995) Nucleic Acids Res. 23, 165–169
27. Musier-Forsyth, K., Scaringe, S., Usman, N., and Schimmel, P. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 209–213
28. Fersht, A. R. (1981) Proc. R. Soc. London Ser. B 212, 351–379
29. Rauino, R., and Rosengvist, H. (1970) Acta Chem. Scand. 24, 2737–2744
30. Guth, E. C., and Francklyn, C. S. (2003) Mol. Cell 25, 531–542
31. Ibba, M., Becker, H. D., Stathopoulos, C., Tumbula, D. L., and Söll, D. (2000) Trends Biochem. Sci. 25, 311–316
32. Lewinsohn, R., Paehtz-Horowitz, M., and Katchalsky, A. (1967) Biochim. Biophys. Acta 140, 24–36
33. Schimmel, P., and Schmidt, E. (1995) Trends Biochem. Sci. 20, 1–2
34. Fersht, A. R., and Kaetner, M. M. (1976) Biochemistry 15, 3342–3346
35. Englisch, S., Englisch, U., von der Haar, F., and Cramer, F. (1986) Nucleic Acids Res. 14, 7529–7539
36. Fersht, A. R., and Dingwall, C. (1979) Biochemistry 18, 1250–1256
37. Jakubowski, H., and Fersht, A. R. (1981) Nucleic Acids Res. 9, 3105–3117
38. Beeke, K., Ribas De Pouplana, L., and Schimmel, P. (2003) EMBO J. 22, 668–675
39. Tsui, W. C., and Fersht, A. R. (1981) Nucleic Acids Res. 9, 4627–4637
40. Lin, S. X., Baltzinger, M., and Remy, P. (1983) Biochemistry 22, 681–689
41. Lin, S. X., Baltzinger, M., and Remy, P. (1984) Biochemistry 23, 4109–4116
42. Roy, H., Ling, J., Irnov, M., and Ibba, M. (2004) EMBO J. 23, 4639–4648
43. Dock-Bregeon, A., Sankaranarayanan, R., Romby, P., Caillet, I., Springer, M., Rees, B., Francklyn, C. S., Ehresmann, C., and Moras, D. (2000) Cell 103, 877–884
44. Dock-Bregeon, A. C., Rees, B., Torres-Larios, A., Bey, G., Caillet, J., and Moras, D. (2004) Mol. Cell 16, 375–386