Chekanov–Eliashberg dg-algebras for singular Legendrians

Johan Asplund

Uppsala University

April 2, 2021

Based on joint work with Tobias Ekholm (arXiv:2102.04858)
Setup and main results

The Chekanov–Eliashberg dg-algebra

Computations and examples

Proof of the pushout diagrams

Setup and main results
Setup

Let X be a $2n$-dimensional Weinstein manifold with ideal contact boundary ∂X.

\[\Lambda \subset \partial X \quad \text{smooth Legendrian} \quad \sim \quad CE^*(\Lambda) \quad \text{Chekanov–Eliashberg dg-algebra} \]

Singular Legendrians

Let (V, λ) be a $(2n - 2)$-dimensional Weinstein domain, together with a handle decomposition h. Assume there is an embedding of V in ∂X such that it extends to a (strict) contact embedding

\[F: (V \times (-\varepsilon, \varepsilon), dz + \lambda) \longrightarrow (\partial X, \alpha) \]

We call F a Legendrian embedding of V in ∂X.
Setup

Singular Legendrians
In particular, the union of the top dimensional strata of $\text{Skel} V$ is Legendrian, and we will refer to $\text{Skel} V$ as a "singular Legendrian" in ∂X.

$(V, h) \subset \partial X$
Legendrian embedding

$\leadsto CE^*((V, h); X)$
Setup

Stopped Weinstein manifolds

We consider *stops* using a surgery description.

\[C = \text{union of co-core disks of top handles of } V \times D^*_\varepsilon[-1, 1] \]
Main results

Theorem A (A.–Ekholm)

There is a surgery isomorphism of A_∞-algebras

$$\Phi: C W^*(C; X_V) \rightarrow CE^*((V, h); X)$$

Let $\Lambda \subset \partial X$ be a smooth Legendrian and let $(V(\Lambda), h(\Lambda))$ denote a small disk cotangent neighborhood of Λ with a handle decomposition with a single top handle.

Theorem B (A.–Ekholm)

There is a quasi-isomorphism of dg-algebras

$$\Psi: CE^*((V(\Lambda), h(\Lambda)); X) \rightarrow CE^*(\Lambda, C_{-*}(\Omega \Lambda); X)$$

Theorem A and B together prove a conjecture by Ekholm–Lekili and independently by Sylvan.
Main results

Now assume V is Legendrian embedded in the ideal contact boundary of X and X'. We can join X and X' together via V.

$$V \times D_\varepsilon^*[-1, 1]$$

$C_\#$ = union of co-core disks of top handles of $V \times D_\varepsilon^*[-1, 1]$. $\Sigma_\#$:= union of attaching spheres dual to $C_\#$.
Main results

Theorem C (A.–Ekholm)

Below, the front face is a pushout. After passing to cohomology, the diagram commutes and the back face is a pushout.

\[
\begin{align*}
&\text{CW}^*(c; V) \quad \text{CE}^*(\partial l; V_0) \\
&\downarrow \quad \downarrow \\
&\text{CE}^*(\partial l; V_0) \quad \text{CE}^*((V, h); X') \\
&\uparrow \quad \uparrow \\
&\text{CE}^*((V, h); X) \quad \text{CE}^*(\Sigma_{\#}; X \#_0 X') \\
&\downarrow \quad \downarrow \\
&\text{CW}^*(C; X_V) \quad \text{CW}^*(C'; X'_V) \quad \text{CW}^*(C_{\#}; X_{\#} V X')
\end{align*}
\]
The Chekanov–Eliashberg dg-algebra
Setup

Let X be a $2n$-dimensional Weinstein manifold with ideal contact boundary ∂X. ($c_1(X) = 0$)

Let $\Lambda \subset \partial X$ be a smooth Legendrian with vanishing Maslov class.

- α contact form on ∂X
- R_α Reeb vector field, defined by

$$\begin{cases}
 d\alpha(R_\alpha, -) = 0 \\
 \alpha(R_\alpha) = 1
\end{cases}$$

Consider $R = \{\text{Reeb chords of } \Lambda\}$ and let $\Lambda = \bigsqcup_{i=1}^n \Lambda_i$. Then $R_{ij} \subset R$ is the set of Reeb chords from Λ_i to Λ_j.

Let \mathbb{F} be a field. Let $\{e_i\}_{i=1}^n$ be such that

- $e_i^2 = e_i$
- $e_i e_j = 0$ if $i \neq j$
CE for smooth Legendrians

Graded algebra

Define $k := \bigoplus_{i=1}^{n} \mathbb{F} e_i$. Then \mathcal{R} is a k-k-bimodule via

\[
e_i \cdot c = \begin{cases}
 c, & \text{if } c \in \mathcal{R}_{ji} \\
 0, & \text{otherwise}
\end{cases}
\]

\[
c \cdot e_i = \begin{cases}
 c, & \text{if } c \in \mathcal{R}_{ij} \\
 0, & \text{otherwise}
\end{cases}
\]

Then define

\[
CE^*(\Lambda) := k \langle \mathcal{R} \rangle.
\]

Grading is given by

\[
|c| = -CZ(c) + 1.
\]
CE* for smooth Legendrians

Differential

\[\partial: CE^*(\Lambda) \longrightarrow CE^*(\Lambda) \] counts (anchored) rigid \(J \)-holomorphic disks in \(\mathbb{R} \times \partial X \) with boundary on \(\mathbb{R} \times \Lambda \) with 1 positive puncture, and several negative punctures.

A curve giving the term \(\partial c = b_1 b_2 b_3 + \cdots \).
Assume V^{2n-2} is a Weinstein domain which is Legendrian embedded in ∂X with handle decomposition h and $c_1(V) = 0$. Let V_0 denote its subcritical part.

Let

$$ l := \bigcup_{j=1}^{m} l_j = \text{union of core disks of top handles} $$

$$ \partial l := \bigcup_{j=1}^{m} \partial l_j = \text{union of the attaching spheres of top handles} $$
CE* for singular Legendrians

Now attach $V_0 \times D_{\varepsilon}^*[-1, 1]$ to $V_0 \times (-\varepsilon, \varepsilon) \subset \partial X$ to construct X_{V_0}.

Define

$$\Sigma(h) := l \sqcup_{\partial l \times \{-1\}} (\partial l \times [-1, 1]) \sqcup_{\partial l \times \{1\}} l$$
Definition.

We define the Chekanov–Eliashberg dg-algebra of a Legendrian embedding of \((V, h)\) in \(\partial X\) as

\[
CE^*((V, h); X) := CE^*(\Sigma(h); X_{V_0}).
\]

Theorem A.

There is a surgery isomorphism of \(A_\infty\)-algebras

\[
\Phi: CW^*(C; X_V) \longrightarrow CE^*((V, h); X)
\]
Proof of the surgery formula

Proof of Theorem A.
Follows immediately from the definition together with the Bourgeois–Ekholm–Eliashberg surgery formula.

\[CW^*(C; X_V) \cong CE^*(\Sigma(h); X_{V_0}) = CE^*((V, h); X) \]
Description of generators

Lemma

For any $a > 0$, there is some $\varepsilon > 0$ small enough (size of the stop) so that we have the following one-to-one correspondence

\[
\left\{ \text{Reeb chords of } \Sigma(h) \subset \partial X V_0 \text{ of action } < \alpha \right\} \\
\left\{ \text{Reeb chords of } l \subset \partial X \text{ of action } < \alpha \right\} \cup \\
\left\{ \text{Reeb chords of } \partial l \subset \partial V_0 \text{ of action } < \alpha \right\}
\]

1:1

Lemma

There is a dg-subalgebra of $CE^*((V, h); X)$ which is freely generated by Reeb chords of $\partial l \subset \partial V_0$ and canonically isomorphic to $CE^*(\partial l; V_0)$.
Computations and examples
Special case: $\partial X = P \times \mathbb{R}$

Assume $V \subset P \times \mathbb{R}$ is a Legendrian embedding so that $\pi(V_0) \subset P$ is embedded. Consider

$$P^\circ := (P \setminus \pi(V_0)) \sqcup_{\pi(\partial V_0)} ((-\infty, 0] \times \pi(\partial V_0))$$
Special case: \(\partial X = P \times \mathbb{R} \)

Then we can consider \(CE^*(l; P^\circ \times \mathbb{R}) \), where \(l \) is the Legendrian lift of \(\pi(l) \subset P^\circ \).

Proposition

There is an isomorphism of dg-algebras

\[
CE^*(l; P^\circ \times \mathbb{R}) \cong CE^*((V, h); \mathbb{R} \times (P \times \mathbb{R}))
\]

Upshot

Can compute \(CE^*(l; P^\circ \times \mathbb{R}) \) and hence \(CE^*((V, h); \mathbb{R} \times (P \times \mathbb{R})) \) by projecting \(l \) and holomorphic curves to \(P^\circ \).

(cf. An–Bae)
Computations

Example \((n\) points in the circle, \(I_n\))

Let \(X = \mathbb{R}^2\) and \(\Lambda = n\) pts \(\subset\) \(\partial X = S^1\).

Let \(V = T^*\Lambda \subset S^1\). The only generators of \(CE^*((V, h); \mathbb{R}^2)\) are Reeb chords in \(S^1\) of the top handles \(l = \Lambda\)

- \(c^{0}_{ij}\) for \(1 \leq i < j \leq n\)
- \(c^{p}_{ij}\) for \(1 \leq i, j \leq n\)

The differential \(\partial\) is given by

\[
\partial(c^{0}_{ij}) = (-1)^* \sum_{k=1}^{n} c^{0}_{k}c^{0}_{i k},
\]

\[
\partial(c^{1}_{ij}) = \delta_{ij} + (-1)^* \sum_{k=1}^{n} c^{1}_{k}c^{0}_{i k} + (-1)^* \sum_{k=1}^{n} c^{0}_{k}c^{1}_{i k}.
\]

\(\ast\)

\(\ast\)

\(\ast\)
Computations

Example (Link of Lagrangian arboreal A_2-singularity)

Let $X = \mathbb{R}^4$ and $\Lambda \subset S^3$. Then $V = T^*\Lambda$ has 0-handles x and y and 1-handles l_1, l_2 and l_3.

Generators are Reeb chords of l: a and b, and generators of $\partial l \subset \partial V_0$: $\{x_{ij}^p\}$ and $\{y_{ij}^p\}$.

\[\text{Diagram of the link with Reeb chords and handles.}\]
Computations

Example (Link of Lagrangian arboreal A_2-singularity)

The dg-subalgebra $CE^*(\partial l; V_0)$ consists of two copies of I_3. The differential of a and b is as follows

$$\partial a = e_1 + y_{31}^1 b x_{12}^0 + y_{31}^1 x_{12}^0 - y_{21}^1 x_{12}^0, \quad \partial b = x_{23}^0 - y_{23}^0$$
Computations

Example (Singular torus)

Let $X = \mathbb{R}^6$ and $\Lambda \subset S^5$ is given by the following front.

$\begin{align*}
\begin{array}{c}
\includegraphics[width=\textwidth]{example.png}
\end{array}
\end{align*}$

The intersection $l \cap \partial h^0$ is a standard Hopf link in S^3.

The dg-subalgebra $CE^*(\partial l; V_0)$ is generated by the generators of the Hopf link together with a copy of I_2.

Suitable augmentation of $CE^*(\partial l; V_0)$ gives Chekanov–Eliashberg dg-algebra of nearby smooth tori obtained by smoothing.
Proof of the pushout diagrams
Joining Weinstein manifolds along V

Recall the construction of $X \#_V X'$. Assume V is Legendrian embedded in the ideal contact boundary of X and X'. We can join X and X' together via V.
Joining Weinstein manifolds along V

Theorem C (A.–Ekholm)

Below, the \textit{front face} is a pushout. After passing to cohomology, the diagram commutes and the \textit{back face} is a pushout.

\[
\begin{align*}
&\text{CW}^*(c; V) \quad \text{\textit{\scriptsize [BEE]}} \quad \text{\textit{\scriptsize [BEE]}} \\
&\quad \quad \ quad
Proof of the pushout diagram for CE^*

Proof of Theorem C.

Consider $X \#_{V_0} X'$, and $\Sigma_\#(h) \subset \partial (X \#_{V_0} X')$ the attaching spheres obtained by joining l on either side by $\partial l \times [-1,1]$ through the handle.
Proof of the pushout diagram for CE^*

Proof of Theorem C.

By the description of the generators we obtain

$$CE^*(\Sigma\#(h); X\#V_0X') \cong CE^*((V, h); X) \ast CE^*(\partial l; V_0) CE^*((V, h); X')$$

which means that the diagram

$$\begin{array}{ccc}
CE^*(\partial l; V_0) & \xrightarrow{\text{incl.}} & CE^*((V, h); X') \\
\downarrow\text{incl.} & & \downarrow\text{incl.} \\
CE^*((V, h); X) & \xrightarrow{\text{incl.}} & CE^*(\Sigma\#(h); X\#V_0X')
\end{array}$$

is a pushout.

Key observation: $CE^*((V, h); X) \subset CE^*(\Sigma\#(h); X\#V_0X')$ since curves cannot “cross” the handle.
Stop removal

Corollary (Stop removal)

Let $X' := V \times D_1^*[-1, 1]$ equipped with the Liouville vector field $Z_V + x\partial_x + y\partial_y$. Then $CW^*(C_#; X_V^# X')$ has trivial cohomology.

Proof.

The key is to observe that after rounding corners $V \times \{(-1, 0)\} \subset \partial (V \times D_1^*[-1, 1])$ is loose (meaning that each core disk l_j of every top handle of V admits a loose chart).

\[\text{Diagram:} \]

\[\text{Diagram:} \]

\[\text{Diagram:} \]

\[\text{Diagram:} \]

\[\text{Diagram:} \]
Stop removal

Proof.

Since we can create loose charts it means that there is at least one generator $b \in CE^*((V, h); X')$ such that $\partial b = 1$. Use

$$
\begin{array}{c}
CE^*(\partial l; V_0) \\ \text{incl.}
\end{array}
\xrightarrow{\text{incl.}}
\begin{array}{c}
CE^*((V, h); X') \\ \text{incl.}
\end{array}
\xrightarrow{\text{incl.}}
\begin{array}{c}
CE^*((V, h); X) \\ \text{incl.}
\end{array}
\xrightarrow{\text{incl.}}
\begin{array}{c}
CE^*(\Sigma\#(h); X\#V_0X') \\
\end{array}
$$

To conclude that the same is true for $CE^*(\Sigma\#(h); X\#V_0X')$. By surgery we therefore have

$$CW^*(C\#; X\#VX') \cong CE^*(\Sigma\#(h); X\#V_0X') \cong 0$$
Thank you!