Charm production in diffractive DIS and PHP at ZEUS

Isabell-Alissandra Melzer-Pellmann
DESY Hamburg, ZEUS

DIS 2007
April 16th - 20th, 2007
Outline

• Introduction
• Selection of diffractive events
• Reconstruction of D*
• Diffractive D* in photoproduction ($Q^2 \approx 0$) (new result)
• Comparison to inclusive D*
• Summary and Outlook
Deep Inelastic Scattering at HERA:
diffraction contributes substantially to the cross section
(~ 10% of visible low-x events)

Inclusive DIS:
Probe partonic structure
of the proton \(\to F_2 \)

Diffractive DIS:
Probe structure
of the exchanged
color singlet \(\to F_2^D \)

\(Q^2 \): 4-momentum exchange
\(W \): \(\gamma \) p centre of mass energy
\(x \): fraction of p momentum carried
by struck quark

\(x_{IP} \): fraction of p momentum carried
by the Pomeron (IP)

\[x_{IP} = \frac{q \cdot (p - p')}{{q \cdot p}} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2} \]

\(\beta \): fraction of IP momentum carried
by struck quark

\[\beta = \frac{Q^2}{2q \cdot (p - p')} \approx \frac{Q^2}{Q^2 + M_X^2} = \frac{x}{x_{IP}} \]
Inclusive diffraction and factorisation theorem

Diffractive structure function:

\[
F_2^{D(3)}(\beta, Q^2, x_{IP}) = \frac{\beta Q^4}{4\pi\alpha_s^2(1 - y + y^2/2)} \cdot \frac{d\sigma_D^{ep\to e'Xp'}}{d\beta dQ^2 dx_{IP}}
\]

QCD Factorisation:

\[\sigma^D = \text{universal diffractive PDF} \otimes \text{hard ME}\]

Factorisation proven for DDIS by Collins.

Rapidity gap due to exchange of colorless object with vacuum quantum numbers.
Reminder: Diffractive D^* in DIS

Kinematic range:
- $1.5 < Q^2 < 200$ GeV2
- $0.02 < y < 0.7$
- $\beta < 0.8$

NLO calculation:
HVQDIS with:
- ACTW fit B (gluon dominated fit to H1 and ZEUS incl. diffr. DIS and ZEUS diffr. γP data)

D^* cuts:
- $p_T(D^*) > 1.5$ GeV
- $|\eta(D^*)| < 1.5$

- good agreement of NLO calculations with data
- confirms QCD factorisation in DDIS
- data used to constrain gluons in ZEUS LPS fit
Diffractive PDFs:
- assume Regge factorisation
- parametrise flavour singlet and gluons at $Q^2 = 2$ or 3 GeV^2
- evolve with NLO DGLAP and fit

- Gluon dominated
- quark density well constrained
- larger gluon uncertainty at high z (fractional momentum of parton)
Dijet cross section factor 3-10 lower than expected using different HERA PDFs

Comparison to Tevatron

HERA:
- DIS ($Q^2 > 5 GeV^2$) and direct photoproduction ($Q^2=0$):
 - photon directly involved in hard scattering

TEVATRON and LHC:
- interaction of two hadronic systems

Resolved photoproduction:
- photon fluctuates into hadronic system, which takes part in hadronic scattering
Comparison to Tevatron

Suppression due to secondary interactions by add. spectators

Test at HERA with resolved part of photoproduction
Kaidalov et al.: rescaling of resolved part by 0.34 (for dijets, less for charm due to enhancement of direct part)

Dijet and charm data:
Hard scale: E_T of jet or charm mass
- tests of universality of PDF's (=QCD factorisation)
- test of DGLAP evolution

Phys.Lett.B567 (2003),61
Diffractive selection with rapidity gap method:
- $\eta_{\text{max}} < 3.0$
- $x_{\text{IP}} < 0.035$
- subset for cleaner diffr. events:
 - $x_{\text{IP}} < 0.01$

Strong reduction of non-diffractive background by cut on forward plug calorimeter (FPC).
Diffractive D*(2010) in γP: D* selection

D*(2010): reconstructed using decay chain:

\[D^{*(2010)^+} \rightarrow D^0 \pi^+ \]

- **Identification of D* with mass difference method.**
- **Background estimated using wrong charge combinations.**

Event selection:

- Kinematic range:
 - \(Q^2 < 1 \text{ GeV}^2 \)
 - \(130 < W < 300 \text{ GeV} \)

- **D* cuts:**
 - \(p_T(D^*) > 1.9 \text{ GeV} \)
 - \(|\eta(D^*)| < 1.6 \)

![Graph showing distributions and event counts](attachment:image.png)

- \(x_{IP} < 0.035: 458 \pm 30 \text{ events} \)
- \(x_{IP} < 0.01: 204 \pm 20 \text{ events} \)
90% of events produced in **direct process**
(due to color enhancement),
only **10% resolved** (including flavor excitation).
- good statistics to check factorisation in direct γP
- too poor statistics to check factorisation for resolved γP

Monte Carlo (for corrections):
RAPGAP 2.08/18 with H1 FIT2 LO

NLO calculation:
FMNR with the following diffractive PDFs:
- H1 fit 2006 A and B
- ZEUS-LPS + charm fit
Photon PDF: GRV-G-HO
Diffractive D^*: γP

$x_{IP} < 0.035$ (new)

- good agreement of all NLO calculations with data
- large error in theory mainly due to scale variations

- supports QCD factorisation in direct γP
**Diffractive D*: γp

$x_{IP} < 0.01$ (new)

- $x_{IP} < 0.01$: cleaner events:
 - Reggeon contribution negligible,
 - non-diffr. background reduced

- Good agreement of all NLO calculations with data
- Large error in theory mainly due to scale variations

- Supports QCD factorisation in direct γp
Calculation of ratio diffractive \((x_{IP} < 0.035) \) /inclusive:

- Perform exactly the same analysis with/without diffractive cuts
- Use exactly the same program (FMNR) only with different PDFs

- systematic errors in analysis cancel out
- NLO uncertainties cancel out
- more precise test of PDFs

inclusive Monte Carlo (for corrections):
HERWIG 6.301

inclusive NLO calculation:
- FMNR with CTEQ5M
Diffractive D^*: γP

comparison to inclusive D^* (new!)

Ratio diffractive/inclusive D^* (R_D) for $x_{IP} < 0.035$:

$$R_D(D^*) = 5.7 \pm 0.5_{\text{stat}} + 0.7 - 0.4_{\text{syst}} + 0.3_{\text{p.d.}} \%$$

Ratio from NLO calculations:
- H1 2006 Fit A: 6.0%
- H1 2006 Fit B: 5.7%
- LPS Fit: 5.8%

Very good agreement: strongly supports QCD factorisation for direct γP
Diffractive D*: γP and DIS

Ratio R_D for $x_{IP} < 0.035$
- visible cross section: 6% of D* are produced diffractively
- no Q^2 dependence observed

$$\text{ep} \rightarrow \text{eD'}X'\text{p}$$

$R_D(D^*)$ vs $Q^2 (\text{GeV}^2)$
Test of diffractive PDFs with ep charm (D*) data:
Data very well described by NLO
 ≈ about 6% of D* are produced diffractively for DIS and γP.

- **DIS:**
 - NLO QCD calculations with diffr. PDFs describe data
 - QCD factorisation confirmed

- **γP:**
 - NLO QCD calculations with diffr. PDFs describe D* data
 - strongly supports QCD factorisation for direct γP
 - too large uncertainties to draw conclusion for resolved γP (contribution only about 10%)

Outlook: need dijet analysis for conclusion on resolved γP
 - new ZEUS results presented by Y. Yamazaki
Event selection: LPS, M_x and LRG method

LPS

Use of leading proton spectrometer (LPS):
- t-measurement
- access to high x_{IP} range
- free of p-dissociation background
- small acceptance \rightarrow low statistics

$$\frac{dN}{d\ln M_x^2} = D + c \cdot \exp(b \cdot \ln M_x^2)$$

(D, c, b from a fit to data)

- **Diffr.** flat vs $\ln M_x^2$ for diffractive events
- **Non-diffr.** exponentially falling for decreasing M_x for non-diffractive events

LRG

Events with large rapidity gap (LRG):
p-dissociation background for $M_N < 1.6$ GeV, $|t| < 1$ GeV2

p-dissociation background subtracted for mass of diss. p $M_N > 2.3$ GeV
Event selection with M_x method

Forward Plug Calorimeter (FPC):

- CAL acceptance extended in pseudorapidity from $\eta=4$ to $\eta=5$
- higher M_x (a factor 1.7) and lower W
- p-dissociation events: for $M_N>2.3$ GeV energy in FPC > 1GeV recognized and rejected

\[
\frac{dN}{dln M_x^2} = D + c \cdot \exp(b \cdot ln M_x^2)
\]

- flat vs ln M_x^2 for diffractive events
- exponentially falling for decreasing M_x for non-diffractive events
Event selection with LPS

- t-measurement
- x_{IP} measurement (access to high x_{IP} range)
- free of p-dissociation background
- small acceptance \rightarrow low statistics

$$x_{IP} = 1 - \frac{E'_p}{E_p}$$

$$x_L = \frac{p'_z}{p_z} \approx 1 - x_{IP}$$