Correlation Studies in Gladiolus (*Gladiolus hybridus* Hort.) Genotypes

Sripada Swetha1*, Balaji S. Kulkarni2, Mukund Shiragur3, M. S. Kulkarni4, Mahantesha B. N. Naik5, Ravindra Mulge6 and Laxminarayan Hegde7

1Kittur Rani Channamma College of Horticulture, Arabhavi, India
2Department of Floriculture & Landscape Architecture, University of Horticultural Sciences, Bagalkot, India
3Department of Floriculture & Landscape Architecture, KRC College of Horticulture, Arabhavi, India
4University of Horticultural Sciences, Bagalkot, India
5Department of Biotechnology & Crop Improvement, KRC College of Horticulture, Arabhavi
6College of Horticulture, Halladkeri Farm, Bidar, India
7College of Horticulture Engineering and Food technology, Devihosur, India

*Corresponding author

A B S T R A C T

A study on the association of various morphological traits through correlation analysis in gladiolus (*Gladiolus hybridus* Hort.) showed that Number of spikes per plant had a significant and positive correlation with number of leaves, number of shoots and number of daughter corms per plant in genotypic level. Spike length exhibited positive and significant association with rachis length, number of florets vase life and number of cormels. Number of florets exerted a significant positive correlation with vase life at genotypic and phenotypic level. Hence, these characters may be considered as selection indices in gladiolus breeding programme.

Introduction

Gladiolus (*Gladiolus hybridus* Hort.) is an important bulbous ornamental prized for its beauty of spikes as well as longer vase-life and said to be “Queen of bulbous flower crops”. In International florist trade, it ranks fifth next to tulip, lily, freesia and hippeastrum among the geophytes and first in domestic bulbous flower trade according to Council of Holland. It is extensively grown in hills and plains almost all over the world.
There are many excellent cultivars of gladiolus with magnificent inflorescence, in exhaustive range of colours, different shades, varying number of florets, size, wide range of keeping quality and adaptability to different seasons. It is relatively easy to grow and is ideal for bedding and exhibition purposes. The spikes are used in vase arrangements, in bouquets and for indoor decorations. Popularity of this crop as a cut spike is increasing day by day because of its long keeping quality and exhaustive range of colours of the spikes.

In any crop improvement programme, it becomes necessary to have simultaneous progress of more than one character, especially in the case of complex character like yield, which is influenced by many other traits. This is due to the physiological and linkage relationship of genes governing various characters. Hence, knowledge of correlations between different economical traits is of importance in selection programmes.

Materials and Methods

The present investigation was carried out at the Department of Floriculture and Landscape Architecture, Kittur Rani Channamma College of Horticulture (University of Horticultural Sciences, Bagalkot), Arabhavi, Gokak taluk, Belagavi district of Karnataka during the period of 2015 to 2017. Forty gladiolus genotypes collected from diverse source were used in the study presented in Table 1. The experiment was laid out in randomized block design (RBD) with two replications.

Genotypic (r_g) and phenotypic (r_p) correlation coefficients were estimated as suggested by Al-Jibourie et al., (1958)

\[
\text{Genotypic correlation} = r_{xy}(g) = \frac{\text{CoV}_{xy}(G)}{\sqrt{V_x(G) \times V_y(G)}}
\]

\[
\text{Phenotypic correlation} = r_{xy}(p) = \frac{\text{CoV}_{xy}(P)}{\sqrt{V_x(P) \times V_y(P)}}
\]

Where,
- $\text{CoV}_{xy}(G)$ = Genotypic covariance between x and y
- $\text{CoV}_{xy}(P)$ = Phenotypic covariance between x and y
- $V_x(G)$ = Genotypic variance of character x
- $V_x(P)$ = Phenotypic variance of character x
- $V_y(G)$ = Genotypic variance of character y
- $V_y(P)$ = Phenotypic variance of character y

Test of significance of correlation was tested by comparing the ‘r’ value with obtained value.

Results and Discussion

The analysis of phenotypic and genotypic correlation of yield and yield components were worked out for the twelve important quantitative characters using mean data generated from 40 genotypes raised during two continuous seasons from 2015-17, and the pooled analysis of both seasons presented in Table 2 and 3.

Changes in yield must be accompanied by changes in one or more of its components. In the present investigation, it was observed that genotypic correlation coefficients were found to be higher than corresponding phenotypic correlation coefficient for all the characters indicating little influence of environment and the presence of a strong inherent association between various characters. In most of the cases genotypic and phenotypic correlation coefficients were similar in direction (Mishra et al., 2014, Choudhary et al., 2011 in gladiolus).

Number of spikes per plant had significant and positive correlation with number of leaves, number of shoots and number of daughter corms per plant in genotypic level which indicated that selection based on these characters would increase spike yield. Negative and significant correlation was
expressed for yield trait with days to spike emergence, leaf area per plant and plant height at both genotypic and phenotypic levels. The results are in accordance with Mishra et al., (2014), who reported that number of spikes per plant had significant and positive correlation with number of sprouts and number of corms per plant in gladiolus. Aido et al., (2014) in gladiolus also quoted that the magnitude of correlation with flower yield was highest in number of leaves at spike initiation stage. Geeta (2013) and Sahana (2010) also reported that number of spikes per plant had significant positive correlation with number of daughter corms and negative correlation with plant height, leaf area and days to spike emergence in gladiolus.

Plant height showed significant and positive correlation with weight of corm before planting, leaf area per plant, spike length, rachis length, number of cormels and vase life. This indicated that the plant height is an important trait for quality spike production, selection of genotypes based on these characters is important. Similar results were obtained by Ramzan et al., (2016), Katwate et al., (2002), Maitra and Sathya (2004) and Choudhary et al., (2011) in gladiolus.

Number of leaves expressed significant positive correlation with number of spikes, number of daughter corms per plant and significantly negatively associated with leaf area per plant and days to spike emergence. The results are in accordance with Aido et al., (2014) and Nimbalkar et al., (2007) in gladiolus.

A significant positive correlation was exerted by spike length with weight of corm before planting, plant height, leaf area, rachis length, vase life, number of florets per spike and number of cormels. Similar findings were made by Maitra and Sathya (2004) and Choudhary et al., (2011) in gladiolus. It shows that spike length, which is an important attribute of cut flower quality, can be increased with increase in any one of these characters, specially the height of the plant, number of florets per spike and corm weight. Similarly, the market value and marketability of gladiolus spikes depends upon the number of florets per spike, floret size and number of florets open at a time and as these characters had positive correlation with spike length, so a direct selection from germplasm lines may be effective for the improvement of this crop.
Table 1: Details of gladiolus genotypes used in the experiment

S. No	Genotype	Origin	Source
1.	Summer Sunshine	Holland	Jammu & Kashmir
2.	Delhi Local	India	Jammu & Kashmir
3.	Green Bay	USA	Jammu & Kashmir
4.	Copper King	USA	Jammu & Kashmir
5.	Dhanvantari	-	IARI, New Delhi
6.	JesterYellow	Holland	Jammu & Kashmir
7.	Local Yellow	India	Bengaluru
8.	Arka Amar	IIHR	IIHR, Bangalore
9.	Arka Naveen	IIHR	IIHR, Bangalore
10.	Arka Arti	IIHR	IIHR, Bangalore
11.	Darshan	India	IIHR, Bangalore
12.	Jyostna	-	IARI, New Delhi
13.	Suchitra	-	IARI, New Delhi
14.	Magma	-	Navsari, Gujrat
15.	Urmil	-	IARI, New Delhi
16.	White Prosperity	USA	Jammu & Kashmir
17.	Pusa Kiran	IARI	IARI, New Delhi
18.	Sindur	-	IIHR, Bangalore
19.	Arka Thilak	IIHR	IIHR, Bangalore
20.	Punjab Dawn	India	Navsari, Gujrat
21.	African star	-	IARI, New Delhi
22.	Local pink	-	Bengaluru
23.	Pusa Vidushi	IARI	IARI, New Delhi
24.	Legent	-	IARI, New Delhi
25.	Chandini	-	IARI, New Delhi
26.	Mohini	NBRI	IARI, New Delhi
27.	Hunting Song	-	IARI, New Delhi
28.	Golddust	-	IARI, New Delhi
29.	Surya Kiran	-	IARI, New Delhi
30.	Sunayana	-	Navsari, Gujrat
31.	Gunjan	-	PAU, Ludhiana
32.	Novalux	-	PAU, Ludhiana
33.	Punjab glance	India	IARI, New Delhi
34.	Anjali	IARI	Navsari, Gujrat
35.	Shagun	-	IARI, New Delhi
36.	Priscilla	-	IIHR, Bangalore
37.	Arka Sagar	IIHR	IIHR, Bangalore
38.	Arka Kesar	IIHR	IIHR, Bangalore
39.	Arka Gold	IIHR	Jammu & Kashmir
40.	Candyman	USA	Jammu & Kashmir
Table 2: Genotypic correlation coefficient for growth, flowering, yield and quality parameters in gladiolus genotypes

	WCP	PH	NS	NL	LA	DSE	SL	RL	NF	VL	NDC	NCr	NSp
WCP	1.000	0.499**	-0.190	-0.300**	0.574**	-0.025	0.664**	0.629**	0.522**	0.587**	-0.200	0.485**	-0.091
PH	1.000			-0.283*	0.807**	0.062	0.640**	0.388**	0.151	0.219*	0.002	0.365**	-0.272*
NS	1.000	0.833**		-0.492**	-0.326**	-0.052	0.144	0.205	0.187	0.260*	-0.212	0.774**	
NL	1.000			-0.464**	-0.434**	-0.009	0.151	0.189	0.168	0.388**	-0.142	0.942**	
LA	1.000				0.762**	0.450**	0.359**	0.410**	0.023	0.404**	-0.398**		
DSE					1.000	-0.017	-0.029	-0.134	-0.126	-0.149	0.334**	-0.491**	
SL						1.000	0.830**	0.672**	0.723**	0.157	0.426**	0.027	
RL							1.000	0.793**	0.819**	0.045	0.508**	0.190	
NF								1.000	0.972**	-0.067	0.264*	0.190	
VL									1.000	-0.044	0.267*	0.192	
NDC										1.000	0.182	0.228*	
NCr											1.000	-0.214	
NSp												1.000	

Critical r_g value = 0.219 at 5 per cent and 0.286 at 1 per cent
* and ** indicate significant at 5 and 1 per cent probability level, respectively

WCP – Weight of corm before planting (g)
PH - Plant height (cm)
NS - Number of shoots
NL - Number of leaves
LA - Leaf area (cm²)
DSE - Days to spike emergence
SL - Spike length (cm)
RL - Rachis length (cm)
NF - Number of florets
VL - Vase life (days)

NDC - Number of daughter corms per plant
NCr - Number of cormels per plant
NSp – Number of spikes per plant
Table 3: Phenotypic correlation coefficient for growth, flowering, yield and quality parameters in gladiolus genotypes

	WCP	PH	NS	NL	LA	DSE	SL	RL	NF	VL	NDC	NCr	NSp
WCP	1.000	0.419**	-0.109	-0.122	0.447**	-0.043	0.539**	0.531**	0.393**	0.476**	-0.115	0.393**	-0.021
PH	1.000	-0.259*	-0.169	0.775**	0.062	0.551**	0.316**	0.092	0.165	-0.008	0.324**	-0.239*	
NS	1.000	0.805**	-0.303**	-0.125	-0.013	0.108	0.144	0.138	0.189	-0.198	0.688**		
NL	1.000	-0.301**	-0.192	0.025	0.122	0.135	0.133	0.279*	-0.135	0.791**			
LA	1.000	0.096	0.648**	0.374**	0.241*	0.301**	0.027	0.359**	-0.307**				
DSE	1.000	0.010	-0.013	-0.078	-0.088	-0.141	0.140	0.312**					
SL	1.000	0.828**	0.659**	0.704**	0.148	0.336**	0.012						
RL	1.000	0.773**	0.797**	0.082	0.399**	0.142							
NF	1.000	0.947**	0.004	0.174	0.149								
VL													
NDC	1.000	0.122	0.186										
NCr													
NSp													1.000

Critical \(r_g \) value = 0.219 at 5 per cent and 0.286 at 1 per cent.

* and ** indicate significant at 5 and 1 per cent probability level, respectively.

- **WCP** – Weight of corm before planting (g)
- **PH** – Plant height (cm)
- **NS** – Number of shoots
- **NL** – Number of leaves
- **LA** – Leaf area \((cm^2) \)
- **DSE** – Days to spike emergence
- **SL** – Spike length (cm)
- **RL** – Rachis length (cm)
- **NF** – Number of florets
- **VL** – Vase life (days)
- **NDC** – Number of daughter corms per plant
- **NCr** – Number of cormels per plant
- **NSp** – Number of spikes per plant
Rachis length was significantly and positively correlated with vase life, number of florets per spike and number of cormels per plant. This result is in accordance with the findings of Raj et al., (1998), Choudhary et al., (2011), Anju and Ranvir (2012) and Anwesha and Ratha (2015) in gladiolus.

On the basis of findings of the present experiment the following conclusion may be drawn, most of the characters have higher genotypic correlation coefficient than phenotypic correlation coefficient. For improvement of spike yield through selection, much emphasis should be given on the characters like number of leaves, number of shoots and number of daughter corms per plant.

References
Aido, T., Genetic divergence studies in gladiolus (Gladiolus grandiflorus L.) 2014, Dr. Y.S.R. Horticultural University. M.Sc. Thesis.
Al-Jibourie, H. A., Miller, P. A. and Robinson, H. F., 1958, Genetic and environmental variance in an upland cotton cross on inter-specific origin. Agron. J., 50: 633-637.
Anju, P. and Ranvir, S., 2012, Correlation and path coefficient analysis in gladiolus. Ann. Hort., 5 (1): 103-107.
Anwesha, Ratha, and Das, J. N., 2015, Genetic variability in gladiolus. Thesis. Orissa University of Agriculture and Technology.
Choudhary, M., Moond, S. K. and Kumari, A., 2011, Correlation studies in gladiolus. Res. Plant Biol., 1(4): 68-72.
Geeta, 2013, Morphological and molecular characterization in gladiolus (Gladiolus hybridus Hort.) varieties. M.Sc. Thesis, University of Horticultural Sciences, Bagalkot.
Katwate, S. M., Warade, S. D., Nimbalkar, C. A. and Patil, M. T., 2002, Correlation and path analysis studies in gladiolus. J. Maharashtra agric. Univ., 27(1): 40-43.
Maitra, S. and Satya, P., 2004, studies on genetic parameters of some off-season planted gladiolus genotypes in humid sub-Himalayan region. J. Ornamental Horti., 7(3-4): 57-62.
Mishra, P., Singh, A. K. and Singh, O. P., 2014, Genetic variability, heritability, genetic advance, correlation coefficient and path analysis in gladiolus. IOSR J. Agric. Vet. Sci., 7 (7): 23-26.
Nimbalkar C. A., Katawate, S. M., Singh, B. R., Kakade, D. S. and Gurav, S. B., 2007, Selection strategy for improvement in economic traits of gladiolus. J. Ornamental Horti., 10(1): 9-14.
Raj, R. L. D., Saini, M. H. C. and Dohare, S. R., 1998, Correlation and path-coefficient studies in gladiolus over different environments. J. Ornamental Horti., 1(1): 26-31.
Ramzan, A, Nawab, N. N., Ahad, A., Hafiz, A. I., Tariq, S. M. and Ikram, S., 2016, Genetic variability, correlation studies and path coefficient analysis in Gladiolus alatus cultivars. Pak. J. Bot., 48(4): 1573-1578.
Sahana, K., 2010, Studies on genetic variability in gladiolus (Gladiolus hybridus Hort.). M. Sc. (Hort.) Thesis, Univ. Agric. Sci., Dharwad.
Vertv, P., Prasad, V. M., Collis, J. P. and Nazir, M., 2017, Correlation analysis in gladiolus (Gladiolus grandiflorus L.). Agric. Res. Tech., 10(4): 1-6.

How to cite this article:
Sripada Swetha, Balaji S. Kulkarni, Mukund Shiragur, M. S. Kulkarni, Mahantesha B. N. Naik, Ravindra Mulge and Laxminarayan Hegde. 2020. Correlation Studies in Gladiolus (Gladiolus hybridus Hort.) Genotypes. Int.J.Curr.Microbiol.App.Sci. 9(02): 525-531.
doi: https://doi.org/10.20546/ijcmas.2020.902.065