Supporting Information

Controllable Stereoinversion in DNA-catalyzed Olefin Cyclopropanation via Cofactor Modification

Jingya Hao,1, 2 Wenhui Miao,1, 2 Shengmei Lu,1 Yu Cheng,1, 2 Guoqing Jia,1 Can Li*, 1

1State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China

2University of Chinese Academy of Sciences, Beijing 101408, China
Table of Contents

Materials and Methods ... 3

General Procedures .. 7

Supplementary Results ... 10

Synthesis and Characterization .. 13

HPLC Traces ... 24

References .. 46
Materials and Methods

Unless otherwise noted, all chemicals and reagents for chemical reactions were obtained from commercial suppliers (Sigma-Aldrich, Acros, TCI, Frontier scientific) and used without further purification. The DNA sequences were all purchased from Sangon (Shanghai, China). The DNA strand concentrations were determined by measuring the UV absorbance of sample at 260 nm by using the molar extinction coefficient values provided by the manufacturer. Water purified on a Milli-Q A10 water purification system (specific resistance of 18.2 MΩ at 25 °C) was used for all experiments.

High Performance Liquid Chromatography (HPLC). The enantioselectivity was determined by Agilent HPLC 1260 analysis using Daicel chiralcel OJH column and Daicel CHIRALPAK-IJ column with a UV-detector by using ethanol, isopropanol and n-hexane as eluents at 25 °C.

Circular Dichroism (CD) Spectroscopy. All CD spectra were recorded on a dual beam DSM 1000 CD spectrophotometer (Olis, Bogart, GA) with a 10 mm or 1.5 mm path-length quartz cell. Each measurement was recorded from 220 to 400 nm at 20 °C under N₂ purge. The scan rate was 0.5 nm per second. The average scan for each sample was subtracted by a background CD spectrum of corresponding buffer solution.

UV Melting Experiment. UV melting experiments were carried out on Shimadzu 2450
spectrophotometer (Shimadzu, Japan) equipped with a Peltier temperature control accessory. A sealed quartz cell with a path length of 1.0 cm was used. The UV melting curves of the G-quadruplexes and G4-based biocatalysts were monitored by UV absorption at 295 nm with a heating rate of 0.5 °C/min. Data were analyzed by using Origin 8 software. The melting temperatures (T_m) can be obtained from the best sigmoidal curve fit of the melting profile.

UV-Vis Absorption Titration Experiments. Absorption spectra were measured on Shimadzu 2600 spectrophotometer (Shimadzu, Japan) with a 1 cm path-length quarter cell. UV-vis absorption titrations were carried out by the stepwise addition of G-quadruplex solution to a cell containing FeTMPyPn ($n = 4, 3, 2$). Absorption spectra were recorded in the range of 300-550 nm at room temperature. The titration was terminated when the wavelength and intensity of the Soret band for FeTMPyPn did not change any more upon three successive additions of G-quadruplexes.

Nuclear Magnetic Resonance (NMR) Titration. NMR titration experiments were performed on Bruker-700MHz NMR instrument in potassium phosphate buffer (10mM, pH 7.0), containing 5% D$_2$O. The strand concentration of NMR samples was 0.25 mM. Before experiment the samples were heated at 95 °C for 3 min and annealed to room temperature.

Isothermal Titration Calorimetry (ITC). ITC measurements were carried out at 25
°C using a MicroCal TM ITC 200 titration calorimeter (MicroCal, GE). Experiments were performed in potassium phosphate buffer (10mM, pH 7.0). The reference cell in the ITC was filled with ultrapure water (18.2 MΩ). A pre-folded G-quadruplex DNA was loaded into the calorimeter cell. Then the syringe was loaded with FeTMPyPn (n = 4, 3, 2) (1.5 mM) in corresponding buffers. Following the auto-equilibration and an initial 60 s delay, the FeTMPyPn titrant divided into 25 injections was added into the cell with 250s injection intervals. The stir rate was 1000 rpm. All data were recorded with the GE Instruments software provided. Calorimetric data were further analyzed according to relevant model using MicroCal ORIGIN software and MATLAB. Data analysis gives ΔH (binding enthalpy change, k_{cal/mol}), K_a (binding constant, M^{-1}), and n (number of bound FeTMPyPn cofactor) whereas the change in Gibbs energy and the entropic contribution were determined by the relationships ΔG = -RTlnK_a and ΔG = ΔH-TΔS, respectively.

Fluorescence quench titration assay. Fluorescently labelled oligonucleotide was dissolved in assay buffer (potassium phosphate buffer 10 mM, pH 7.0), which is in agreement with the catalytic buffer. The resultant strand concentration of oligonucleotide was 100 nM. FeTMPyPn (n = 4, 3, 2) was prepared at a concentration of 5 mM in water and diluted to an appropriate concentration before titration. The fluorescence experiments were recorded on a FLS920 fluorescence spectrometer (Edinburgh) with a 1 cm path length quartz cuvette at 20 °C. Fluorescence intensity of FAM-labeled DNA was recorded after the addition of FeTMPyPn. Interval time
between two titration points was 10-15 minutes in order to reach the binding equilibrium. Each quench titration assay was conducted in triplicate. If not stated otherwise, the titration curve was fitting as one site specific binding by using software Origin 8.1.
General Procedures

Typical procedure for cyclopropanation bioconversions under anaerobic conditions. Reactions (1 mL) were conducted in 10 mL Schlenk tubes (Synthware Glass, Beijing). G4-based biocatalysts were added to the tube with a small stir bar in phosphate buffer (10 mM, pH = 7.0) and a solution of the reductant (Na$_2$S$_2$O$_4$, or NADPH) were combined in tube and degassed by bubbling argon through the solution for 5 min. The headspace of tube was made anaerobic by flushing argon over the solution (with no bubbling). A styrene solution in DMSO (20 µL, typically 1.5 M) was added to the reaction vial via a glass syringe, and left to stir for about 30s. An EDA solution in DMSO was then added (20 µL, 0.5 M) and the reaction was left to stir for appropriate time. The final concentrations of the reagents were typically: 30 mM styrene, 10 mM EDA, 5 mM Na$_2$S$_2$O$_4$ or 0.5 mM NADPH, 12.5 µM mA9A-FeTMPyPn (n = 4, 3, 2). After 2 hours of reaction, the product was extracted with ethyl acetate (3 × 2 mL). The organic layer was washed with brine (1 × 5 mL). After a short flash chromatography containing anhydrous Na$_2$SO$_4$ and the evaporation of solvent, the crude product was analyzed by HPLC, using 2-methylanisole as internal standard.

Synthesis of cyclopropane products. Under inert gas conditions, [Cu(MeCN)$_4$]PF$_6$ (52 mg) was dissolved in 20 mL anhydrous dichloromethane. Under stirring, olefin (140 mmol) was added to the solution and stirred for further 90 min at room temperature. Subsequently, a solution of ethyl diazoacetate or butyldiazoacetate (14 mmol) in 20 mL anhydrous dichloromethane was dropped to the solution over 4 hours.
The reaction mixture was allowed to stir at room temperature overnight. The pure product was obtained after flash chromatography.

Synthesis of cofactor FeTMPyPn.

The pH of an aqueous solution of H$_2$TMPyP (0.15 mmol) in 60 ml water was adjusted to 2 (with 1 M HCl), and a 40-fold molar excess FeCl$_2$.4H$_2$O was added and the solution was stirred and heated under reflux. The course of the metalation was followed by the decrease of the fluorescence of the metal-free porphyrin using UV light at 356 nm. The metalation was completed in 24 hours. The solution was filtered through a filter paper. The Fe porphyrin was precipitated as the PF$_6^-$ salt with a saturated aqueous solution of NH$_4$PF$_6$ (2 ml). The precipitate was thoroughly washed with diethyl ether (5 × 5 mL). The dried precipitate was then dissolved in acetone (the smallest possible amount) and precipitated as the chloride salt with saturated acetone solution of methyl-tri-noctylammonium chloride (2 mL). The precipitate was washed with acetone and dissolved in the smallest possible amount of water. The whole precipitation procedure was repeated once again to ensure high purity.
A solution of R-OH (50 mmol) and 2,2,6-trimethyl-4H-1,3-dioxin-4-one (50 mmol) in 10 mL of toluene was placed in a 50-ml flask. The flask was immersed in an oil bath that had been preheated to 150 °C, and the solution was vigorously stirred. The evolution of acetone became apparent within several minutes, heating was continued for a total of 6 hours. The reaction was cooled, and then the toluene was removed, and the product was distilled. To the solution of first step product (10 mmol) in acetonitrile (12 ml) was added Et$_3$N (13 mmol). The reaction mixture was cooled in an ice bath and a solution of p-ABSA (11 mmol) in acetonitrile (12 ml) was added slowly. The reaction mixture was allowed to warm to r.t. After stirring for 10h, solvent was removed under reduced pressure. The residue was dissolved in ether (60 ml) and washed with 5% aqueous KOH solution. To a solution of the crude product in ethyl ether was added 5% KOH (50 ml), and the reaction mixture was stirred for 1h. The organic phase was separated, dried over Na$_2$SO$_4$, and concentrated under reduced pressure. Purification by vacuum distillation provided the desired diazo esters as yellow liquid.
Supplementary Results

Figure S1. UV-melting spectra of mA9A and mA9A-FeTMPyPn (n = 4, 3, 2).
Figure S2. (a) The diagrams of site-specific FAM labelled mA9A G-quadruplex. (b) CD spectra of FAM labelled mA9A (FAM labelled G4 strand concentration 15 μM, potassium phosphate buffer 10 mM, pH 7.0).
Figure S3. FeTMPyPn (n = 4, 3, 2)-dose-responsive FAM-mA9A emission spectra.
Synthesis and Characterization

(1RS, 2RS)-Ethyl 2-phenylcyclopropane-1-carboxylate. Prepared using general procedure, starting from styrene. Purified by column chromatography (SiO$_2$, EtOAc: pentane = 1: 10), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane, flow rate 1 mL/min, λ = 225 nm. 2-methylanisole as internal standard.
(1RS, 2RS)-Ethyl 2-(4-methylphenyl) cyclopropane-1-carboxylate. Prepared using general procedure, starting from 4-methylstyrene. Purified by column chromatography (SiO$_2$, EtOAc: pentane = 1: 10), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane, flow rate 1 mL/min, λ = 225 nm. 2-methylanisole as internal standard.
(1RS, 2RS)-Ethyl 2-(4-methoxyphenyl) cyclopropane-1-carboxylate. Prepared using general procedure, starting from 4-methoxystyrene. Purified by column chromatography (SiO$_2$, EtOAc: pentane = 1: 20), to afford the product as liquid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane: ethanol = 98: 2, flow rate 0.8 mL/min, $\lambda = 225$ nm. 2-methylanisole as internal standard.
(1RS, 2RS)-Ethyl 2-(4-chlorophenyl) cyclopropane-1-carboxylate. Prepared using general procedure, starting from 4-chlorostyrene. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 50), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane: ethanol = 98: 2, flow rate 0.5 mL/min, λ = 225 nm. 2-methylanisole as internal standard.
(1RS, 2RS)-Ethyl 2-(4-fluorophenyl) cyclopropane-1-carboxylate. Prepared using general procedure, starting from 4-fluorostyrene. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 50), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane: ethanol = 98: 2, flow rate 0.5 mL/min, λ = 225 nm. 2-methylanisole as internal standard.
(1RS, 2RS)-Ethyl 2-(3,4-difluorophenyl) cyclopropane-1-carboxylate. Prepared using general procedure, starting from 3,4-difluorostyrene. Purified by column chromatography (SiO₂, EtOAc: pentane = 1: 50), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel CHIRALPAK-IJ, n-hexane: isopropanol = 98: 2, flow rate 0.3 mL/min, λ = 235 nm. 2-methylanisole as internal standard.
(1RS, 2RS)-Ethyl 2-methyl-2-phenylcyclopropane-1-carboxylate. Prepared using general procedure, starting from 2-phenyl-1-propene. Purified by column chromatography (SiO$_2$, EtOAc: pentane = 1: 10), to afford the product as a white solid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane, flow rate 1 mL/min, $\lambda = $ 225 nm. Thioanisole as internal standard.
(1RS, 2RS)-tert-Butyl 2-phenylcyclopropane-1-carboxylate. Prepared using general procedure, starting from styrene and t-BuDA. Purified by column chromatography (SiO$_2$, EtOAc: pentane = 1: 30), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel CHIRALPAK-IJ, n-hexane, flow rate 1 mL/min, λ = 225 nm. Thioanisole as internal standard.
(1RS, 2RS)-2-methyl-1-(1-methylethyl)propyl 2-phenylcyclopropane-1-carboxylate. Prepared using general procedure, starting from 2-Methyl-1-(1-methylethyl)propyl 2-diazoacetate. Purified by column chromatography (SiO$_2$, EtOAc: pentane = 1:30), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel CHIRALPAK-IJ, n-hexane, flow rate 0.8 mL/min, $\lambda = 225$ nm. 4-Methoxystrene as internal standard.
(1RS, 2RS)-1,2-dimethyl-1-(1-methylethyl)propyl 2-phenylcyclopropane-1-carboxylate. Prepared using general procedure, starting from 2,3,4-Trimethyl-3-pentyl diazoacetate. Purified by column chromatography (SiO$_2$, EtOAc: pentane = 1: 50), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel CHIRALPAK-IJ, n-hexane, flow rate 0.5 mL/min, $\lambda = 225$ nm. 4-Methoxystrene as internal standard.
(1RS, 2RS)-dicyclohexylmethyl 2-phenylcyclopropane-1-carboxylate. Prepared using general procedure, starting from 2,3,4-Trimethyl-3-pentyl diazoacetate. Purified by column chromatography (SiO$_2$, EtOAc: pentane = 1: 30), to afford the product as pale yellow liquid.

HPLC analysis condition: Daicel Chiralcel-OJH, n-hexane, flow rate 0.6 mL/min, λ = 235 nm. Thioanisole as internal standard.
HPLC Traces of Products

(1) Racemic trans product catalyzed by FeTMPyP4

(2) Racemic trans product catalyzed by FeTMPyP3

(3) Racemic trans product catalyzed by FeTMPyP2
(4) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Signal 1: VW01 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area %
[min] [min] [nAU*sec] [nAU]
--
1 17.670 MM 0.4352 352,819 16.3153 12.9558
2 24.068 VB 0.5528 3172.1334 87.7477 87.0358
Totals: 3644.70807 104.07927

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VW01 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area %
[min] [min] [nAU*sec] [nAU]
--
1 17.698 MM 0.4853 734,51807 25.22478 18.8658
2 25.001 BB 0.5467 3159.02954 87.49763 81.1358
Totals: 3893.59761 112.67242

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Signal 1: VW01 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area %
[min] [min] [nAU*sec] [nAU]
--
1 17.606 HH 0.4342 3670.93481 128.31760 73.2711
2 24.872 HH 0.5489 1342.79650 37.10339 26.7822
Totals: 5013.72131 165.41899
(1) Racemic trans product catalyzed by FeTMPyP4

![Graph showing UV/Vis spectra for FeTMPyP4 catalyzed reaction]

Signal 1: Wavelength = 225 nm

Peak Ret Time	Width	Area	Height	Area
	[min]	[min] [AU*sec]	[AU]	%
1	22.490	0.4960 2707.4430	98.9305	59.7884
2	26.602	0.5702 2623.10059	76.67128	49.2116

Totals: 533.24438 176.62433

(2) Racemic trans product catalyzed by FeTMPyP3

![Graph showing UV/Vis spectra for FeTMPyP3 catalyzed reaction]

Signal 1: Wavelength = 225 nm

Peak Ret Time	Width	Area	Height	Area
	[min]	[min] [AU*sec]	[AU]	%
1	23.333	0.4669 3607.62500	119.14697	50.0601
2	28.016	0.6321 3598.96021	86.85062	49.9399

Totals: 7266.58521 206.01059

(3) Racemic trans product catalyzed by FeTMPyP2

![Graph showing UV/Vis spectra for FeTMPyP2 catalyzed reaction]

Signal 1: Wavelength = 225 nm

Peak Ret Time	Width	Area	Height	Area
	[min]	[min] [AU*sec]	[AU]	%
1	23.620	0.4530 608.94950	20.75915	50.6158
2	28.471	0.5904 594.13354	15.48888	49.3842

Totals: 1203.08313 36.14603
(4) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

![Graph showing trans product from cyclopropanation catalyzed by mA9A-FeTMPyP4]

Peak RetTime Type	Width	Area	Height	Area %	
1	22.724 BP	0.4883	1773.1781	60.51929	15.2097
2	26.848 BB	0.7975	5885.0578	197.88266	84.7903
Totals:	1.16592e4	258.40193			

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

![Graph showing trans product from cyclopropanation catalyzed by mA9A-FeTMPyP3]

Peak RetTime Type	Width	Area	Height	Area %	
1	22.692 BB	0.4586	2293.7512	77.30296	19.6923
2	26.934 BB	0.7756	9360.0735	381.16884	80.3277
Totals:	1.16538e4	258.67180			

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

![Graph showing trans product from cyclopropanation catalyzed by mA9A-FeTMPyP2]

Peak RetTime Type	Width	Area	Height	Area %	
1	22.772 BB	0.6087	4332.1704	103.30273	73.5773
2	27.425 BB	0.5466	1483.9227	41.7602	26.4227
Totals:	5616.09314	147.47876			
(1) Racemic trans product catalyzed by FeTMPyP4

![Graph of signal 1: VM01 A, Wavelength=225 nm]

Peak RetTime	Width	Area	Height	Area %	
1	17.329	0.3045	930.77545	46.88914	58.1834
2	24.342	0.4425	923.97205	32.21429	49.8166

Totals: 1854.74750 79.10344

(2) Racemic trans product catalyzed by FeTMPyP3

![Graph of signal 1: VM01 A, Wavelength=225 nm]

Peak RetTime	Width	Area	Height	Area %	
1	17.824	0.3126	927.31396	59.02786	51.1998
2	22.663	0.3989	4696.38379	179.25935	18.8002

Totals: 5623.69775 378.28722

(3) Racemic trans product catalyzed by FeTMPyP2

![Graph of signal 1: VM01 A, Wavelength=225 nm]

Peak RetTime	Width	Area	Height	Area %	
1	17.758	0.3457	7474.04639	316.19681	49.9475
2	22.448	0.4440	7489.76221	281.14175	50.0525

Totals: 1.49638e+6 597.33817
(4) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

Additional Info: Peak(s) manually integrated

Peak Set	Time	Width	Area	Height	Area %
1	17.560	0.3003	2313.20581	118.69658	21.0114
2	22.148	0.4773	8666.06348	307.39966	78.9886

Totals: 1.10093e6 426.69624

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Additional Info: Peak(s) manually integrated

Peak Set	Time	Width	Area	Height	Area %
1	17.256	0.2975	4117.81585	213.84589	24.0873
2	21.711	0.4339	1,2977644	468.30869	75.9127

Totals: 1.70551e6 674.15417

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Additional Info: Peak(s) manually integrated

Peak Set	Time	Width	Area	Height	Area %
1	16.950	0.3482	6344.62169	283.86646	73.0086
2	21.284	0.3869	2345.86286	101.04584	26.9920

Totals: 8.69030396 384.91229
(1) Racemic trans product catalyzed by FeTMPyP4

(2) Racemic trans product catalyzed by FeTMPyP3

(3) Racemic trans product catalyzed by FeTMPyP2
(4) *Trans* product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

![Graph showing cyclopropanation analysis](image)

Signal	Peak	RetTime	Width	Height	Area	Area %
1	15.824 BB	0.2507	1045.165316	63.17922	17.5529	
2	18.662 BV	0.3497	4789.22412	216.04589	82.4471	
Totals					5954.38928	279.22431

(5) *Trans* product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

![Graph showing cyclopropanation analysis](image)

Signal	Peak	RetTime	Width	Height	Area	Area %
1	15.862 BB	0.2566	1054.52954	63.44704	23.5063	
2	18.551 BV	0.3692	3431.63235	142.65867	76.4937	
Totals					4486.16089	206.30572

(6) *Trans* product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

![Graph showing cyclopropanation analysis](image)

Signal	Peak	RetTime	Width	Height	Area	Area %
1	16.807 VB	0.3287	2046.27869	101.11288	76.4640	
2	18.683 BB	0.3570	697.94991	41.13651	25.1360	
Totals					2733.32660	142.24939
(1) Racemic trans product catalyzed by FeTMPyP4

Peak RetTime Type	Width	Area	Height	Area %	
	(min)	(μAU)	(μAU)	(%)	
1	16.296	0.271	3425.209235	210.83144	50.6160
2	17.134	0.2963	3335.0468	170.84022	49.3840
Totals				6784.25293	381.86766

(2) Racemic trans product catalyzed by FeTMPyP3

Peak RetTime Type	Width	Area	Height	Area %	
	(min)	(μAU)	(μAU)	(%)	
1	14.836	0.2539	7726.88379	467.84775	50.2703
2	17.077	0.3314	7643.77983	384.45569	49.7297
Totals				1.5370764	892.30344

(3) Racemic trans product catalyzed by FeTMPyP2

Peak RetTime Type	Width	Area	Height	Area %	
	(min)	(μAU)	(μAU)	(%)	
1	14.131	0.2636	1512.62354	87.19427	52.1810
2	16.959	0.3074	1386.17859	68.52614	47.8190
Totals				2096.60212	155.71841
(4) **Trans** product from the cyclopropanation catalyzed by m9A-FeTMPyP4

![Graph 1]

Signal 1: WDI A, Wavelength=225 nm

Peak	RetTime	Width	Area	Height	Area %
1	14.202	0.2396	874.29547	55.32927	17.1389
2	17.016	0.321	226.92725	50.41016	82.8611

Totals: 5896.66519 263.24512

(5) **Trans** product from the cyclopropanation catalyzed by m9A-FeTMPyP3

![Graph 2]

Signal 1: WDI A, Wavelength=225 nm

Peak	RetTime	Width	Area	Height	Area %
1	14.316	0.260	1031.82813	57.43111	29.3377
2	17.161	0.365	2485.24097	107.33364	70.6623

Totals: 3517.06903 164.74675

(6) **Trans** product from the cyclopropanation catalyzed by m9A-FeTMPyP2

![Graph 3]

Signal 1: WDI A, Wavelength=225 nm

Peak	RetTime	Width	Area	Height	Area %
1	14.460	0.3153	2623.39624	117.16426	85.2797
2	17.225	0.2244	644.42249	43.71943	19.7203

Totals: 3267.81873 160.88369

S33
(1) Racemic trans product catalyzed by FeTMPyP4

Peak RetTime Type	Width	Area	Height	Area %	
1	18.633	0.3744	2981.03667	118.15169	49.2549
2	21.876	0.4324	3071.22632	105.16261	50.7451

Totals: 6052.26099 223.31429

(2) Racemic trans product catalyzed by FeTMPyP3

Peak RetTime Type	Width	Area	Height	Area %	
1	18.804	0.3684	3712.28394	140.29503	49.3660
2	21.177	0.4430	3807.63623	125.42380	50.6340

Totals: 7519.92017 265.71883

(3) Racemic trans product catalyzed by FeTMPyP2

Peak RetTime Type	Width	Area	Height	Area %	
1	18.142	0.3658	2957.25635	118.91586	49.2929
2	21.323	0.4309	3042.10400	104.17683	50.7071

Totals: 5999.36035 223.09469
(4) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

RetTime	Width	Area	Height	Area %	
18.202	0.4314	896,164,675	35,623,072	22.772	
21.558	0.4290	3039,14722	105,672,458	77.227	
Totals:				3935,31396	139,29552

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

RetTime	Width	Area	Height	Area %	
17.883	0.4640	1297,94507	49,080,956	29.808	
20.946	0.4361	3056,37643	104,160,988	70.192	
Totals:				4354,31250	153,20980

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

RetTime	Width	Area	Height	Area %	
17.843	0.3843	4405,87988	166,697,458	85.6408	
20.980	0.4468	739,39587	24,194,50	14.3592	
Totals:				5149,27576	190,89195
(1) Racemic trans product catalyzed by FeTMPyP4

![UV spectrum of racemic trans product]

Peak RetTime	Width	Area	Height	Area %
1	14.888	0.2872	676.2322	46.46402 49.3497
2	16.793	0.3916	699.34905	38.27814 53.6503
Totals		1.775.59973		84.74415

(2) Racemic trans product catalyzed by FeTMPyP3

![UV spectrum of racemic trans product]

Peak RetTime	Width	Area	Height	Area %
1	15.001	0.3079	691.40973	37.42679 51.5734
2	16.959	0.3505	649.22241	30.86210 48.4266
Totals		1.340.63214		68.29600

(3) Racemic trans product catalyzed by FeTMPyP2

![UV spectrum of racemic trans product]

Peak RetTime	Width	Area	Height	Area %
1	14.676	0.2744	630.75702	34.99970 50.4532
2	16.550	0.3541	619.42499	29.15617 49.5468
Totals		1.250.10201		64.15587
(4) *Trans* product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

![Graph](image1.png)

Signal 1: VWD1 A, Wavelength=225 nm

Peak Ret Time Type	Width [min]	Area [µM×t]	Height [µM]	Area %
1 15.334 NM	0.3236	1698.9331	78.4533	45.1246
2 17.334 AV	0.3620	1909.7349	79.8723	54.8754

Totals: 3491.6659 136.2576

(5) *Trans* product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

![Graph](image2.png)

Signal 1: VWD1 A, Wavelength=225 nm

Peak Ret Time Type	Width [min]	Area [µM×t]	Height [µM]	Area %
1 15.348 MM	0.3336	1569.9331	78.4533	45.1246
2 17.334 AV	0.3620	1909.7349	79.8723	54.8754

Totals: 3479.10059 136.2576

(6) *Trans* product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

![Graph](image3.png)

Signal 1: VWD1 A, Wavelength=225 nm

Peak Ret Time Type	Width [min]	Area [µM×t]	Height [µM]	Area %
1 15.001 HF	0.3198	724.20697	37.74258	51.6815
2 16.959 FN	0.3618	677.08167	31.18903	48.3185

Totals: 1401.28864 68.93161
(1) Racemic trans product catalyzed by FeTMPyP4

Peak RetTime Type	Width	Area [nAU^2]	Height [nAU]	Area %
1	8.305	876.82204	69.01480	55.3834
2	9.500	831.47778	61.91261	49.6166
Totals		1740.30072	130.93741	

(2) Racemic trans product catalyzed by FeTMPyP3

Peak RetTime Type	Width	Area [nAU^2]	Height [nAU]	Area %
1	8.874	722.56366	53.89403	50.3919
2	10.223	711.32303	43.93259	49.6081
Totals		1433.88708	97.02702	

(3) Racemic trans product catalyzed by FeTMPyP2

Peak RetTime Type	Width	Area [nAU^2]	Height [nAU]	Area %
1	8.436	777.01953	61.62082	50.6113
2	9.626	758.24988	55.37621	49.3887
Totals		1535.26941	116.99703	
(4) **Trans** product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

Peak RetTime Type	Width	Area	Height	Area %	
#	[min]	[min]	[nAU’s]	[nAU]	
1	8.573	0.293	77.96956	4.40032	9.0489
2	9.813	0.262	786.43921	49.70558	90.9591
Totals:			862.40907	54.14290	

(5) **Trans** product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Peak RetTime Type	Width	Area	Height	Area %	
#	[min]	[min]	[nAU’s]	[nAU]	
1	8.638	0.2073	151.08315	11.07085	19.7433
2	9.874	0.228	614.15540	40.98235	80.2567
Totals:			765.33854	52.05319	

(6) **Trans** product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Peak RetTime Type	Width	Area	Height	Area %	
#	[min]	[min]	[nAU’s]	[nAU]	
1	8.785	0.2137	929.03815	65.43421	67.8835
2	10.103	0.2351	439.13946	28.53935	32.1165
Totals:			1368.57761	93.97356	
(1) Racemic trans product catalyzed by FeTMPyP4

Signal 1: VWD1 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area
[min] [min] [mAU]* [mAU]%

1 7.072 BB 0.1286 1343.86194 59.94378 49.9669
2 8.139 BB 0.1473 1345.69233 139.78761 50.0331
Totals: 2689.50427 299.73131

(2) Racemic trans product catalyzed by FeTMPyP3

Signal 1: VWD1 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area
[min] [min] [mAU]* [mAU]%

1 7.088 BB 0.1284 1805.69903 221.08999 49.9503
2 8.158 BB 0.1494 1860.39575 192.1677 50.0497
Totals: 3717.09558 413.65176

(3) Racemic trans product catalyzed by FeTMPyP2

Signal 1: VWD1 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area
[min] [min] [mAU]* [mAU]%

1 7.096 BB 0.1282 822.85834 97.11717 50.0823
2 8.169 VB 0.1685 820.18530 84.33962 49.9877
Totals: 1623.04364 181.45679
(4) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

![Graph of Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP4]

Peak	RetTime	Width	Area	Height	Area %
1	7.066	0.128	146.3738	17.2507	8.1401
2	8.131	0.147	160.4517	16.9557	91.8599

Totals: 1785.80510 186.91184

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

![Graph of Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3]

Peak	RetTime	Width	Area	Height	Area %
1	7.105	0.128	262.0803	31.2437	16.1732
2	8.177	0.149	1357.9679	139.8162	83.8268

Totals: 1619.96820 171.05431

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

![Graph of Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2]

Peak	RetTime	Width	Area	Height	Area %
1	7.056	0.127	1200.3136	151.2206	69.0204
2	8.104	0.161	565.5743	58.3376	30.9736

Totals: 1025.88782 209.56629
(1) Racemic trans product catalyzed by FeTMPyP4

```
Signal 1: VW01 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area %
1 10.713 MM 0.2456 1845.59424 125.22459 48.8721
2 12.730 MM 0.4078 1930.78052 78.90295 51.1279
Totals: 3776.37476 204.12755
```

(2) Racemic trans product catalyzed by FeTMPyP3

```
Signal 1: VW01 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area %
1 10.785 MM 0.3124 2421.89723 172.01741 47.5126
2 12.908 VB 0.3132 2675.40975 176.80783 52.4874
Totals: 5097.30697 298.82510
```

(3) Racemic trans product catalyzed by FeTMPyP2

```
Signal 1: VW01 A, Wavelength=225 nm
Peak RetTime Type Width Area Height Area %
1 10.713 MM 0.2330 1747.02778 124.99615 48.2356
2 12.730 MM 0.3999 1875.54919 78.34403 51.7654
Totals: 3622.27699 203.34097
```
(4) **Trans** product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

Signal	Wavelength (nm)	Peak Ret Time (min)	Width (min)	Area (AU^2)	Height (AU)	Area %	
1	10.556	2.2902	113,22777	6.50344	6.4336		
2	12.732	3.3178	2440.62915	109.42220	95.5664		
Totals						255.38692	115.92564

(5) **Trans** product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal	Wavelength (nm)	Peak Ret Time (min)	Width (min)	Area (AU^2)	Height (AU)	Area %	
1	10.446	2.2120	836.29364	66.94638	18.1963		
2	12.556	2.2563	3714.70581	225.94635	81.8507		
Totals						454.99945	290.69283

(6) **Trans** product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Signal	Wavelength (nm)	Peak Ret Time (min)	Width (min)	Area (AU^2)	Height (AU)	Area %	
1	10.403	2.2001	4474.54492	340.35177	65.5142		
2	12.460	2.2690	2355.33862	130.09409	34.4858		
Totals						682.88354	470.34586
(1) Racemic trans product catalyzed by FeTMPyP4

![Graph](image)

Signal 1: WM D1 A, Wavelength=235 nm

Peak RetTime Type	Width	Area	Height	Area %	
1	18.644 BB	0.0510	2356.112255	112.14309	50.0232
2	22.166 BB	0.0595	3355.90686	51.08897	49.9768

Totals: 4714.04159 2032.2396

(2) Racemic trans product catalyzed by FeTMPyP3

![Graph](image)

Signal 1: WM D1 A, Wavelength=235 nm

Peak RetTime Type	Width	Area	Height	Area %	
1	38.623 BB	0.3298	2511.602375	120.07256	49.8477
2	22.119 BB	0.3981	2527.03816	97.14995	50.1595

Totals: 5038.71792 217.22240

(3) Racemic trans product catalyzed by FeTMPyP2

![Graph](image)

Signal 1: WM D1 A, Wavelength=235 nm

Peak RetTime Type	Width	Area	Height	Area %	
1	38.361 BB	0.3243	1803.07316	87.62695	50.2330
2	21.594 BB	0.3893	1778.21704	87.62695	50.2330

Totals: 3982.8913 198.08391
(4) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP4

Signal 1: VWD1 A, Wavelength=235 nm

Peak RetTime	Width	Area	Height	Area
# [min]	[min]	[nAU*]	[nAU]	%
1 18.435	0.322	1203.0667	57.58662	31.7402
2 21.767	0.389	2587.3576	101.72431	68.2598

Totals: 3790.44903 159.23092

(5) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP3

Signal 1: VWD1 A, Wavelength=235 nm

Peak RetTime	Width	Area	Height	Area
# [min]	[min]	[nAU*]	[nAU]	%
1 18.426	0.369	1755.6017	75.77023	37.2007
2 21.796	0.429	5031.1950	117.54772 62.7993	

Totals: 4826.79614 193.32193

(6) Trans product from the cyclopropanation catalyzed by mA9A-FeTMPyP2

Signal 1: VWD1 A, Wavelength=235 nm

Peak RetTime	Width	Area	Height	Area
# [min]	[min]	[nAU*]	[nAU]	%
1 18.481	0.314	2135.0352	104.36347	55.7904
2 21.830	0.393	1691.6054	66.73677 44.2086	

Totals: 3926.93601 171.10024
References
1. Y. Li, M. Cheng, J. Hao, C. Wang, G. Jia and C. Li, Chemical Science, 2015, 6, 5578-5585.
2. M. P. Cheng, J. Y. Hao, Y. H. Li, Y. Cheng, G. Q. Jia, J. Zhou and C. Li, Biochimie, 2018, 146, 20-27.
3. T. D. J. Stumpf, M. Steinbach, M. Holtke, G. Heuger, F. Grasemann, R. Frohlich, S. Schindler and R. Gottlich, Eur J Org Chem, 2018, 2018, 5538-5547.
4. A. Rioz-Martinez, J. Oelerich, N. Segaud and G. Roelfes, Angewandte Chemie-International Edition, 2016, 55, 14136-14140.
5. H. B. Mao, A. J. Lin, Y. Shi, Z. J. Mao, X. B. Zhu, W. P. Li, H. W. Hu, Y. X. Cheng and C. J. Zhu, Angewandte Chemie-International Edition, 2013, 52, 6288-6292.
6. P. S. Coelho, E. M. Brustad, A. Kannan and F. H. Arnold, Science, 2013, 339, 307-310.
7. A. Sarkar, D. Formenti, F. Ferretti, C. Kreyenschulte, S. Bartling, K. Junge, M. Beller and F. Ragaini, Chemical Science, 2020, 11, 6217-6221.
8. K. E. Hernandez, H. Renata, R. D. Lewis, S. B. J. Kan, C. Zhang, J. Forte, D. Rozzell, J. A. McIntosh and F. H. Arnold, Acs Catalysis, 2016, 6, 7810-7813.
9. N. Watanabe, H. Matsuda, H. Kuribayashi and S. Hashimoto, Heterocycles, 1996, 42, 537-542.
10. M. P. Doyle, B. D. Brandes, A. P. Kazala, R. J. Pieters, M. B. Jarstfer, L. M. Watkins and C. T. Eagle, Tetrathedron Lett, 1990, 31, 6613-6616.
11. J. A. Ma, L. X. Wang, W. Zhang and Q. L. Zhou, Tetrathedron-Asymmet, 2001, 12, 2801-2804.