On the occurrence of a highly localized outbreak of a saturniid in lowland east Ecuador: a case study and literature review

Samantha Sutton, Sarah C. Pasquini, TodD Swanson and Walter P. Carson

ABSTRACT
For decades, outbreaks of insect herbivores in tropical forests were considered unusual or rare events primarily because of high plant diversity and the top-down impact of enemies. An alternative explanation is that these outbreaks are common but occur on sparsely distributed hosts high in the canopy and at scales of one or a few individual trees. Here, we report an outbreak of a saturniid in the genus Citioica Travassos & Noronha near the Amazon Basin of Ecuador on a single tree of Inga edulis Mart. The outbreak caused near complete defoliation (>90% leaf loss) and did not occur on nearby conspecifics. This is only the twenty-third documented case of a saturniid outbreak, of which more than 60% occurred in tropical habitats. This is the first report of an outbreak on a single tree. Members of the local indigenous communities are well aware of these Citioica outbreaks and collect these caterpillars for food whenever outbreaks are detected, suggesting that these isolated outbreaks are fairly common. Further research is required to explore the possibility that insect outbreaks in tropical forests may be more common than previously suspected but occur over very small spatial scales undetected high in the forest canopy.

Introduction
Insect outbreaks in tropical forests are thought to be uncommon, particularly when compared to temperate or boreal forests. Indeed, Elton [1] argued that insect populations in the tropics are kept from outbreaks because of both high plant diversity and abundant enemies [2,3]. Consequently, the study and documentation of tropical insect outbreaks have been neglected [4–6]. Here, we define an insect outbreak as a rather sudden spike in population density relative to background densities on longer temporal or larger spatial scales [e.g., 7,8]. In addition, outbreaks can also be quantified by the degree of host defoliation, which is usually severe [reviewed by 8].

Tropical insect outbreaks may be overlooked because they occur high in the forest canopy, occur on sparsely distributed hosts, or occur on a single host plant located within a high-density host patch [5,8–12]. Thus, outbreaks may be common, but go undocumented because they are widely scattered, highly localized, and unpredictable in space and time [5,6,10,12]. To better evaluate the frequency and occurrence of outbreaks, Dyer et al. [5] argued that outbreaks should be documented in the peer-reviewed literature with information on the identity of the herbivore, its abundance, its hosts, and geographic location. These accounts could then be used to better understand the ecology of outbreaks. Importantly, from a phytocentric view, repeated outbreaks that cause major defoliation over the life of a long-lived tree could reduce host survival and fecundity, which may then impact forest dynamics and diversity [4,5,13,14]. Indeed, as Strong et al. [15] pointed out, “the role of rare events such as outbreaks … cannot be ignored as a force structuring ecological communities just because they are rare”. Here, we document an outbreak of a Citioica sp. Travassos & Noronha (Saturniidae, Ceratocampinae) on a single mature individual of the ice cream bean tree (Inga edulis Mart.) near the Amazon Basin of Ecuador. In addition, we briefly review the literature on the worldwide occurrence of outbreaks of saturniids.

Natural history of our focal species
Our study occurred at Tiyu Yaku, Napo, Ecuador at the Andes and Amazon Field School, also known as Iyarina (0.9963° S, 77.8136° W). This field station occurs within lowland evergreen rainforest with a Köppen-Geiger climate designation of Af [equatorial rainforest, fully humid: minimum monthly mean temperature ≥ 18°C, mean precipitation of the driest month ≥ 60 mm; 16]. Inga edulis is in the Fabaceae within the subfamily Caesalpinioideae [17]. It is an early successional native tree species with high rates of photosynthesis and...
growth [18]. *I. edulis* is also a domesticated crop, and trees growing in and around agricultural settings may have slightly lower allelic diversity versus wild populations [19], which may make these individuals more prone to suffering outbreaks, though this has not been tested. Leaves of *Inga* spp. produce nectaries located on the leaf rachis. These nectaries are present in both young and mature *Inga* leaves, though only nectaries on young leaves actively produce nectar to attract ants as a defensive mutualism. In addition to this defensive mutualism, *Inga* leaves produce an array of secondary defensive compounds, with young leaves showing a higher investment in these secondary metabolites than older leaves [20,21].

The indigenous Kichwa people often plant *I. edulis* on the periphery of agricultural clearings or leave naturally occurring individuals in place because mature adult trees shade perennial crops, fix nitrogen, provide edible fruits, and produce timber [22–24]. Our focal tree likely colonized naturally due to its location on the edge of a precipice. The caterpillar (*Citioica* sp.) is called “tupuli kuru” (pin caterpillar) in the Kichwa dialect (T.D. Swanson, personal observation). Before the caterpillars pupate, locals gather them as a food source, typically roasting them over fires, or forming the caterpillars into patties and frying them (W.P. Carson, personal observation).

Methods

To conduct our literature review, we used Google Scholar and Biosis with key words saturniid outbreak, insect outbreak + saturniidae, saturniidae AND insect outbreak, insect outbreak AND tropical insect outbreak. We also conducted a more traditional search using several recent reviews as entry ways into the literature [4,5].

Caterpillars were counted visually with the aid of binoculars from the ground surrounding the single focal tree (see description below). A random sample of caterpillars (n = 20) were measured for length and width at midpoint using a ruler.

Results and discussion

Caterpillars numbering at least 1000–1200 individuals caused nearly complete defoliation of a single individual of *I. edulis* from 23 July to 27 July 2017 (Appendix 1). The caterpillars averaged 6.8 cm in length (range: 5.0–7.7; n = 20) and 0.78 cm in width (range: 0.6–1.0 cm; n = 20). The species we observed had aposematic coloration and non-urticating spines (Appendix 2). We observed oropendolas (*Psarocolius* sp.) feeding on the caterpillars, suggesting the caterpillars were not well defended by toxic chemicals. The occurrence of so many caterpillars on a single individual tree suggests that their sheer numbers may function to overwhelm enemies allowing at least some to survive to pupation.

Caterpillars were members of the genus *Citioica* (Samuel Jaffe, the Caterpillar Lab, Amherst, Massachusetts, USA, personal communication), but we were not able to identify the caterpillars to species (attempts at rearing failed). Saturniids from the Napo Province, Ecuador include *Citioica kaechi* Brechlin [25] and *Citioica homoea* Brechlin [26], making them candidate species. *Citioica guayensis* Brechlin & Meister is found in French Guiana and has similar coloration and spinal arrangement, but our species had less yellow [27]. Without comparable images of candidate caterpillars, species identification necessitates a DNA sample or rearing to the adult stage.

The outbreak was highly localized on a single mature *I. edulis* (39.2 cm DBH) and two individuals of *I. edulis* less than 100 meters away from our focal tree were devoid of caterpillars. We did not observe the caterpillars on any nearby heterospecifics. Five other *I. edulis* individuals, within three kilometers of the outbreak, were also devoid of saturniids. Anecdotal reports suggest that *I. edulis* can recover from heavy bouts of defoliation [22] and our focal individual appeared healthy with an intact canopy, devoid of caterpillars, one year after the outbreak in July 2018 and also in March of 2019.

This was only the 23rd documented case of a saturniid outbreak in the scientific literature (Table 1). Similar to the case study here, Allen [28], and Criddle [29] documented highly localized outbreaks of saturniids that were less than 20 ha and 1.2 ha in area respectively. Paredes et al. [30] documented severe defoliation of *I. edulis* in Ecuador by the saturniid *Eacles imperialis* over an area of just 125 ha. Such highly localized outbreaks may be [31,32] common but simply go unseen or unreported, particularly if they occur within large expanses of continuous forest. For example, Grogan [33] reported that an unidentified *Thysanoptera* caused complete defoliation over a 500-m² area of forest in Southeast Brazil. For saturniids, outbreaks were typically larger, sometimes covering areas of more than 200,000 ha (Table 1).

Species within a single genus (*Hylesia* spp.) accounted for about 20% of the outbreaks, about one quarter of the outbreaks occurred on plant species within the Fabaceae, and more than 60% were in tropical habitats. Species within the Fagaceae, particularly within the genus *Quercus*, were also vulnerable to outbreaks in temperate regions. Overall, it is unknown how often highly localized insect outbreaks occur across the landscape and the degree that they occur repeatedly on the same host individual. We suggest that these types of outbreaks are more common than previously suspected but are simply overlooked or
Table 1. Twenty-three studies of Saturniidae outbreaks within 13 insect genera including the one sampled in this study. Outbreaks occurred in tropical savannas, and temperate and tropical forests.

Forest Type	Location	Saturniid	Host Plant	Documentation	Outbreak Size	References
Tropical Savannah	Limpopo Province, South Africa	Imbrasia belina	Goliapheum mopane (Fabaceae)	Estimated larval densities using shade netting bags	>200,000 ha	De Swardt et al. 2018 [34]
Semi-arid tropical savannah	Limpopo Province, South Africa	Cimina forda	Burkea africana (Fabaceae)	Estimates of biomass consumption	800 ha	Scholes and Walker 1993 [35]
Semi-arid broadleaf savannah	Louisiana and Mississippi, United States	Hemicela maha	Quercus spp. (Fagaceae)	Observational; Host plant preference	Widespread regional defoliation	Martinat et al. 1997 [36]
Temperate Forest	Oregon, United States	Colorada pandora	Pinus ponderosa; Pinus contorta (Pinaceae)	Used tree rings for identification of outbreaks	>1,000 ha; >75 ha	Brown 1984 [37], Speer et al. 2001 [38]
Oak-hickory broadleaf forest	New York and New Hampshire, United States	Dyocampa rubicunda	Acer rubrum, Acer saccharum (Sapindaceae)	Observational	<20 ha	Allen 1976 [28]
Coniferous forest	Belair Resort, Quebec, Canada	Anisota	Quercus macrocarpa (Fagaceae)	Observational	1,000 ha	Serrano and Fortz 2003 [40]
Northern hardwoods	Carman, Manitoba, Canada	Anisota	Quercus macrocarpa (Fagaceae)	Observational	1.2 ha	Serrano and Fortz 2003 [40]
Oak-pine mixed forest	Gainesville, Florida, United States	Anisota	Quercus spp. (Fagaceae)	Observational	~1,000 ha	nosotros
Southern hardwoods	Patagonia, Argentina	Ornismodes	amphimone (Fagaceae)	Larval densities	Widespread regional defoliation	nosotros
Broadleaf rainforest	Parana, Brazil	Drupha	Araucaria angustifolia (Araucariaceae)	Observational; Behavioral observations	~50,000 ha	widespread regional defoliation
Moist semi-deciduous broadleaf	Costa Rica, Mexico, French Guiana, Trinidad	Hylesia spp.	Multiple species* (Multiple Families)	Larval densities	<10,000 ha; a few trees; ~50 trees; widespread regional defoliation	Carrillo-Sánchez et al. 2002 [44], Janzen 1984 [45], Jourdain et al. 2012 [46], Pescador 1993 [31], Pescador 1995 [32], Polar et al. 2010 [47], Paredes et al. 2011 [30]
Dry broadleaf forest; mangroves	Guayas Province, Ecuador	Estes imperialis	Theobroma caico (Malvaceae)	Larval densities	125 ha	Widespread regional defoliation; widespread regional defoliation
Cacao plantation	Brazil	Syphaxinae	Scholecolobus paralyba (Fabaceae)	Pest of cultivated parica trees	700 ha	Batista et al. 2013 [48]
Parica plantation	Northeast India	Criola	Mangifera indica (Anacardiaceae)	Pest of cultivated mango trees (Outbreaks are controlled by parasitoids)	Widespread regional defoliation; a few hosts	Widespread regional defoliation; a few hosts
Table 1. (Continued).

Location	Saturniid Host	Single tree
Lowland Tiyu, Napo, Ecuador	*Chorocha sp.*	*Acocora edulis* (Fabaceae)

Saturniids were often not identified to species.

ignored because of their ephemeral occurrence, and sporadic, small-scale nature.

Acknowledgments

We thank John Wenzel, Michelle Spicer, and Tiffany Betras for comments on various drafts of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Samantha Sutton http://orcid.org/0000-0002-1491-7763

Walter P. Carson http://orcid.org/0000-0001-7246-3790

References

[1] Elton CS. The ecology of invasions by animals and plants. London, UK: Chapman & Hall; 1958.
[2] Beeson CFC. The ecology and control of the forest insects of India and the neighbouring countries. Dehra Dun, India: Vasant Press; 1941.
[3] Voûte AD. Regulation of the density of the insect populations in virgin-forests and cultivated woods. Arch Néerl De Zool. 1946;7(3):435–470.
[4] Carson WP, Cronin JP, Long ZT. A general rule for predicting when insects will have strong top-down effects on plant communities: on the relationship between insect outbreaks and host concentration. In: Weisser WW, Siemann E, editors. Insects and ecosystem function. Ecological studies 173. Berlin, Germany: Springer-Verlag; 2004. p. 193–211.
[5] Dyer LA, Carson WP, Leigh EG Jr. Insect outbreaks in tropical forests: patterns, mechanisms, and consequences. In: Barbosa P, Letourneau DK, Agrawal AA, editors. Insect outbreaks revisited. Oxford, UK: Wiley-Blackwell Publishing; 2012. p. 217–245.
[6] Wolda H. Long-term stability of tropical insect populations. Popul Ecol. 1983;25(3):112–126.
[7] Berryman AA. Principles of population dynamics and their application. Glasgow: UK: Stanley Thorne Publishers; 1999.
[8] Nair KSS. Tropical forest insect pests: ecology, impact, and management. Cambridge, UK: Cambridge University Press; 2007.
[9] Dyer LA, Singer MS, Lill JT, et al. Host specificity of Lepidoptera in tropical and temperate forests. Nature. 2007;448(7154):696–699.
[10] Janzen DH. Patterns of herbivory in a tropical deciduous forest. Biotropica. 1981;13(4):271–282.
[11] Lowman MD. Herbivory in forests: from centimetres to megametres. In: Watt AD, Stork NE, Hunter MD, editors. Forests and Insects. London: UK: Chapman & Hall; 1997. p. 135–149.
[12] Torres JA. Lepidoptera outbreaks in response to successful changes after the passage of Hurricane Hugo in Puerto Rico. J Trop Ecol. 1992;8(3):285–298.
[13] Carson WP, Root RB. Herbivory and plant species coexistence: community regulation by an outbreaking phytophagous insect. Ecol Monogr. 2000 Feb;70(1):73–99. PubMed PMID: WOS:000085208500004.
[14] Wong M, Wright SJ, Hubbell SP, et al. The spatial pattern and reproductive consequences of outbreak defoliation in Quararibea asterolesis, a tropical tree. J Ecol. 1990;78(3):579–588.

[15] Strong DR, Lawton JH, Southwood TRE. Insects on plants: community patterns and mechanisms. Cambridge, Massachusetts, USA: Harvard University Press; 1984.

[16] Kottek M, Grieser J, Beck C, et al. World map of the Köppen-Geiger climate classification updated. Meteorol Z. 2006;15(3):259–263.

[17] Azani N, Babineau M, Bailey CD, et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: the Legume Phylogeny working group (LPWG). TAXON. 2017;66(1):44–77.

[18] Jaquetti RK, Goncalves JF. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia. An Acad Bras Cienc. 2017;89(3):1761–1771.

[19] Hollingsworth PM, Dawson IK, Goodall-Copestake WP, et al. Do farmers reduce genetic diversity when they domesticate tropical trees? A case study from Amazonia. Mol Ecol. 2005;14(2):497–501.

[20] Coley PD, Endara M-J, Kursar TA. Consequences of interspecific variation in defenses and herbivore host choice for the ecology and evolution of Inga, a speciose rainforest tree. Oecologia. 2018;187(2):361–376.

[21] Brenes-Arquedas T, Coley PD, Kursar TA. Divergence and diversity in the defensive ecology of Inga at two Neotropical sites. J Ecol. 2008;96(1):127–135.

[22] FAO. Food and fruit-bearing forest species 3. Examples from Latin America. FAO forestry paper 44/3. Rome, Italy: food and Agriculture Organization of the United Nations (FAO), Forestry Department; 1986. p. 308.

[23] Lojka B, Preininger D, Lojkova J, et al. Biomass growth and farmer knowledge of Inga edulis in Peruvian Amazon. Agric Trop Subtrop. 2005;38:44–51.

[24] Rollo A, Lojka B, Honys D, et al. Genetic diversity and hybridization in the two species Inga ingoides and Inga edulis: potential applications for agroforestry in the Peruvian Amazon. Ann For Sci. 2016;73(2):425–435.

[25] Brechlin R. Three new species in the genus Citoica Travassos & Noronha, 1965 from Ecuador and Colombia (Lepidoptera:Saturniidae). Entomol-Satsphingia. 2017;10(3):38–44.

[26] Racheli L, Racheli T. Description of three new species of Pseudacteon Lemaire, 1967 from Ecuador and Peru (Lepidoptera: saturniidae). SHILAP-Rev Lepidopt. 2006;34(135):125–139.

[27] Brechlin R, Meister F. Fifty new taxa of Ceratocampinae (Lepidoptera:Saturniidae). Entomol-Satsphingia. 2011;4(3):5–58.

[28] de Swardt DB, Wigley-Coese C, O’Connor TG. Insect outbreaks alter nutrient dynamics in a southern African savanna: patchy defoliation of Colophaspermum mopane savanna by Imbrasia belina larvae. Biotropica. 2018;50(3):789–796.

[29] Scholes RJ, Walker BH, Nylsvev: the study of an African savanna. Cambridge, UK: Cambridge University Press; 1993.

[30] Martínat PJ, Solomon JD, Leininger TD. Survivorship, development, and fecundity of buck moth (Lepidoptera: saturniidae)on common tree species in the Gulf Coast urban forest. J Entomol Sci. 1997;32(2):192–203.

[31] Brown LN. Population outbreak of pandora moths (Coloradia pandora, Blake) on the Kaibab Plateau, Arizona (Saturniidae). J Lepid Soc. 1984;38(1):65.

[32] Speer JH, Swetnam TW, Wickman BE, et al. Changes in pandora moth outbreak dynamics during the past 622 years. Ecology. 2001;82(3):679–697. CIPMOD(2):CO:2.

[33] Allen DC. Biology of the Green-striped Mapleworm, Dryocampa rubicunda (Lepidoptera: saturniidae) in the Northeastern United States. Ann Entomol Soc Am. 1976;69(5):857–862.

[34] Henne DC. Parasitoid survey of Anisota virginiensis (Lepidoptera: saturniidae)at Belair, Manitoba from 1989-1999. P Entomol Soc Manitoba. 2004;60:5–10.

[35] Criddle N. Forest and shade tree insects. Can Insect Pest Rev. 1932;10(4):79.

[36] Serrano D, Doltz JL. Natural history of Anisota piegleri (Lepidoptera: saturniidae) in Gainesville, Florida. NHOAPL:2.0.CO:2 Fla Entomol. 2003;862:217–219.

[37] Paritis J, Veblen TT. Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Glob Change Biol. 2011;17(1):239–253.

[38] Borges JD. Aspectos da biologia e comportamento de Dirphia araucariae em seu habitat natural. Ann Agron Vet Sch. 1986;14:1645–51.

[39] Zengker MM, Specht A, Fonza E, et al. Biology and life table of Dirphia araucariae (Lepidoptera: saturniidae): a herbivore of potentially high impact on Araucaria angustifolia. Zoologia. 2013;30(2):143–150.

[40] Carrillo-Sánchez JL, Echiguña-Martínez A, Sosa-Torres CM. Biology and life history of Hylesia iola Dyar, a corn-leaf feeder of Tlaxcala, Mexico. Southwest Entomol. 2002;27(1):91–95.

[41] Janzen DH. Natural history of Hylesia lineata (Saturniidae, Hemileucinae) in Santa Rosa National Park, Costa Rica. J Kansas Entomol Soc. 1984;57:490–514.

[42] Jourdain F, Girod R, Vassal J-M, et al. The moth Hylesia metabus and French Guiana lepidopterism: century of a public health concern. Parasite. 2012;19(2):117–128.

[43] Pescador AR. The effects of a multispecies sequential diet on the growth and survival of a tropical polyphagous caterpillar. Entomol Exp Appl. 1993;67(1):15–24.

[44] Pescador AR. Distribution and abundance of Hylesia lineata egg masses in a tropical dry forest in western Mexico. Southwest Entomol. 1995;20:367–375.

[45] Polar P, Cock MJW, Frederickson C, et al. Invasions of Hylesia metabus (Lepidoptera: saturniidae, Hemileucinae) into Trinidad, West Indies. Living World. 2010;2010:1–10.

[46] Paredes JR, Peralta EL, Wagner DL, et al. Outbreak of Eacles imperialis (Saturniidae) on cocoa and fruit trees in Milagro, Ecuador. J Lepid Soc. 2011;65(4):256–258.

[47] Batista TFV, Lunz AM, VSV R, et al. Biological and morphometric aspects and rearing of Syssphinx molina (Cramer) (Lepidoptera: saturniidae), a defolator of parica tree. Acta Amazon. 2013;43(2):191–196.

[48] Tikader A, Vijayan K, Saratchandra B. Cricula trifenes trata (Heller) (Lepidoptera: saturniidae)-Asil produc ing wild insect in India. Trop Lepidoptera Res. 2014;24(1):22–29.

[49] Pal S, Medda PS. Frequent outbreak of wild silk moth, Cricula trifenes trata Heller in West Bengal. Insect Environ. 2006;12(3):99.

[50] Grojan J Bigleaf mahogany (Swietenia macrophylla King) in southeast Pará, Brazil: a life history study with management guidelines for sustained production from natural forests. Dissertation. Yale University; 2001. p. 422.
Appendix 1. The *Inga edulis* was nearly completely defoliated by the end of the five-day outbreak.

Appendix 2. A caterpillar from the outbreak (A) and the underside of one of the *Citioica* sp. from the outbreak (B).