Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

Thomas Erlebach
School of Informatics, University of Leicester, UK

Michael Hoffmann
School of Informatics, University of Leicester, UK

Murilo Santos de Lima
School of Informatics, University of Leicester, UK

Abstract
The area of computing with uncertainty considers problems where some information about the input elements is uncertain, but can be obtained using queries. For example, instead of the weight of an element, we may be given an interval that is guaranteed to contain the weight, and a query can be performed to reveal the weight. While previous work has considered models where queries are asked either sequentially (adaptive model) or all at once (non-adaptive model), and the goal is to minimize the number of queries that are needed to solve the given problem, we propose and study a new model where \(k \) queries can be made in parallel in each round, and the goal is to minimize the number of query rounds. We use competitive analysis and present upper and lower bounds on the number of query rounds required by any algorithm in comparison with the optimal number of query rounds. Given a set of uncertain elements and a family of \(m \) subsets of that set, we present an algorithm for determining the value of the minimum of each of the subsets that requires at most \((2 + \varepsilon) \cdot \text{opt}_k + O \left(\frac{1}{\varepsilon} \cdot \lg m \right)\) rounds for every \(0 < \varepsilon < 1 \), where \(\text{opt}_k \) is the optimal number of rounds, as well as nearly matching lower bounds. For the problem of determining the \(i \)-th smallest value and identifying all elements with that value in a set of uncertain elements, we give a 2-round-competitive algorithm. We also show that the problem of sorting a family of sets of uncertain elements admits a 2-round-competitive algorithm and this is the best possible.

1 Introduction
Motivated by real-world applications where only rough information about the input data is initially available but precise information can be obtained at a cost, researchers have considered a range of uncertainty problems with queries \[7, 13, 14, 15, 19, 26\]. This research area has also been referred to as queryable uncertainty \[12\] or explorable uncertainty \[17\]. For example, in the input to a sorting problem, we may be given for each input element, instead of its precise value, only an interval containing that point. Querying
an element reveals its precise value. The goal is to make as few queries as possible until
enough information has been obtained to solve the sorting problem, i.e., to determine a
linear order of the input elements that is consistent with the linear order of the precise
values. Motivation for explorable uncertainty comes from many different areas (see [12] and
the references given there for further examples): The uncertain input elements may, e.g.,
be locations of mobile nodes or approximate statistics derived from a distributed database
cache [29]. Exact information can be obtained at a cost, e.g., by requesting GPS coordinates
from a mobile node, by querying the master database or by a distributed consensus algorithm.

The main model that has been studied in the explorable uncertainty setting is the
adaptive query model: The algorithm makes queries one by one, and the results of
previous queries can be taken into account when determining the next query. The number of
queries made by the algorithm is then compared with the best possible number of queries for
the given input (i.e., the minimum number of queries sufficient to solve the problem) using
competitive analysis [5]. An algorithm is ρ-**query-competitive** (or simply ρ-competitive)
if it makes at most ρ times as many queries as an optimal query set. A very successful
algorithm design paradigm in this area is based on the concept of **witness sets** [7, 14]. A
witness set is a set of input elements for which it is guaranteed that every query set that
solves the problem contains at least one query in that set. If a problem admits witness sets of
size at most ρ, one obtains a ρ-query-competitive algorithm by repeatedly finding a witness
set and querying all its elements.

Some work has also considered the **non-adaptive query model** (see, e.g., [15, 28, 29]),
where all queries are made simultaneously and the set of queries must be chosen in such a way
that they certainly reveal sufficient information to solve the problem. In the non-adaptive
query model, one is interested in complexity results and approximation algorithms.

In settings where the execution of a query takes a non-negligible amount of time and there
are sufficient resources to execute a bounded number of queries simultaneously, the query
process can be completed faster if queries are not executed one at a time, but in **rounds**
with k simultaneous queries. Such scenarios include e.g. IoT environments (such as drones
measuring geographic data), or teams of interviewers doing market research. Apart from
being well motivated from an application point of view, this variation of the model is also
theoretically interesting because it poses new challenges in selecting a useful set of k queries
to be made simultaneously. Somewhat surprisingly, however, this has not been studied yet.
In this paper, we address this gap and analyze for the first time a model where the algorithm
can make up to k queries per round, for a given value k. The query results from previous
rounds can be taken into account when determining the queries to be made in the next
round. Instead of minimizing the total number of queries, we are interested in minimizing
the number of query rounds, and we say that an algorithm is ρ-**round-competitive** if, for
any input, it requires at most ρ times as many rounds as the optimal query set.

A main challenge in the setting with k queries per round is that the witness set paradigm
alone is no longer sufficient for obtaining a good algorithm. For example, if a problem
admits witness sets with at most 2 elements, this immediately implies a 2-query-competitive
algorithm for the adaptive model, but only a k-round-competitive algorithm for the model
with k queries per round. (The algorithm is obtained by simply querying one witness set in
each round, and not making use of the other $k - 2$ available queries.) The issue is that, even
if one can find a witness set of size at most ρ, the identity of subsequent witness sets may
depend on the outcome of the queries for the first witness set, and hence we may not know
how to compute a number of different witness sets that can fill a query round if $k \gg \rho$.

Our contribution. Apart from introducing the model of explorable uncertainty with k queries per round, we study several problems in this model: Minimum, Selection and Sorting. For Minimum (or Sorting), we assume that the input can be a family \mathcal{S} of subsets of a given ground set I of uncertain elements, and that we want to determine the value of the minimum of (or sort) all those subsets. For Selection, we are given a set I of n uncertain elements and an index $i \in \{1, \ldots, n\}$, and we want to determine the i-th smallest value of the n precise values, and all the elements of I whose value is equal to that value.

Our main contribution lies in our results for the Minimum problem. We present an algorithm that requires at most $(2 + \varepsilon) \cdot \text{opt}_k + O\left(\frac{1}{\varepsilon} \cdot \lg m\right)$ rounds, for every $0 < \varepsilon < 1$, where opt_k is the optimal number of rounds and $m = |\mathcal{S}|$. (The execution of the algorithm does not depend on ε, so the upper bound holds in particular for the best choice of $0 < \varepsilon < 1$ for given opt_k and m.) Interestingly, our algorithm follows a non-obvious approach that is reminiscent of primal-dual algorithms, but no linear programming formulation features in the analysis. For the case that the sets in \mathcal{S} are disjoint, we obtain some improved bounds using a more straightforward algorithm. We also give lower bounds that apply even to the case of disjoint sets, and show that our upper bounds are close to best possible. Note that the Minimum problem is equivalent to the problem of determining the maximum element of each of the sets in \mathcal{S}, e.g., by simply negating all the numbers involved. A motivation for studying the Minimum problem thus arises from the minimum spanning tree problem with uncertain edge weights [11, 14, 17, 26]: Determining the maximum-weight edge of each cycle of a given graph allows one to determine a minimum spanning tree. Therefore, there is a connection between the problem of determining the maximum of each set in a family of possibly overlapping sets (which could be the edge sets of the cycles of a given graph) and the minimum spanning tree problem. The minimum spanning tree problem with uncertain edge weights has not been studied yet for the model with k queries per round, and seems to be difficult for that setting. In particular, it is not clear in advance for which cycles of the graph a maximum-weight edge actually needs to be determined, and this makes it very difficult to determine a set of k queries that are useful to be asked in parallel. We hope that our results for Minimum provide a first step towards solving the minimum spanning tree problem.

Another motivation for solving multiple possibly overlapping sets comes from distributed database caches [29], where one wants to answer database queries using cached local data and a minimum number of queries to the master database. Values in the local database cache may be uncertain, and exact values can be obtained by communicating with the central master database. Different database queries might ask for the record with minimum value in the field with uncertain information among a set of database records satisfying certain criteria, or for a list of such database records sorted by the field with uncertain information. Answering such database queries while making a minimum number of queries for exact values to the master database corresponds to the Minimum and Sorting problems we consider.

For the Selection problem, we obtain a 2-round-competitive algorithm. For Sorting, we show that there is a 2-round-competitive algorithm, by adapting ideas from a recent algorithm for sorting in the standard adaptive model [21], and that this is best possible.

We also discuss the relationship between our model and another model of parallel queries proposed by Meißner [27], and we give general reductions between both settings.

Literature overview. The seminal paper on minimizing the number of queries to solve a problem on uncertainty intervals is by Kahan [22]. Given n elements in uncertainty intervals, he presented optimal deterministic adaptive algorithms for finding the maximum, the median,
the closest pair, and for sorting. Olston and Widom [29] proposed a distributed database system which exploits uncertainty intervals to improve performance. They gave non-adaptive algorithms for finding the maximum, the sum, the average and for counting problems. They also considered the case in which errors are allowed within a given bound, so a trade-off between performance and accuracy can be achieved. Khanna and Tan [23] extended this previous work by investigating adaptive algorithms for the situation in which bounded errors are allowed. They also considered the case in which query costs may be non-uniform, and presented results for the selection, sum and average problems, and for compositions of such functions. Feder et al. [16] studied the generalized median/selection problem, presenting optimal adaptive and non-adaptive algorithms. They proved that those are the best possible adaptive and non-adaptive algorithms, respectively, instead of evaluating them from a competitive analysis perspective. They also investigated the price of obliviousness, which is the ratio between the non-adaptive and adaptive strategies.

After this initial foundation, many classic discrete problems were studied in this framework, including geometric problems [7, 9], shortest paths [13], network verification [4], minimum spanning tree [11, 14, 17, 26], cheapest set and minimum matroid base [13, 28], linear programming [25, 30], traveling salesman [32], knapsack [19], and scheduling [2, 3, 10]. The concept of witness sets was proposed by Bruce et al. [7], and identified as a pattern in many algorithms by Erlebach and Hoffmann [12]. Gupta et al. [20] extended this framework to the setting where a query may return a refined interval, instead of the exact value of the element.

The problem of sorting uncertainty data has received some attention recently. Halldórsson and de Lima [21] presented better query-competitive algorithms, by using randomization or assumptions on the underlying graph structure. Other related work on sorting has considered sorting with noisy information [1, 6] or preprocessing the uncertain intervals so that the actual numbers can be sorted efficiently once their precise value are revealed [31].

The idea of performing multiple queries in parallel was also investigated by Meißner [27]. Her model is different, however. Each round/batch can query an unlimited number of intervals, but at most a fixed number of rounds can be performed. The goal is to minimize the total number of queries. Meißner gave results for selection, sorting and minimum spanning tree problems. We discuss this model in Section 6. A similar model was also studied by Canonne and Gur for property testing [8].

Organization of the paper. We present some definitions and preliminary results in Section 2. Sections 3, 4 and 5 are devoted to the sorting, minimum and selection problems, respectively. In Section 6, we discuss the relationship between the model we study and the model of Meißner for parallel queries [27]. We conclude in Section 7.

2 Preliminaries and Definitions

For the problems we consider, the input consists of a set of \(n \) continuous uncertainty intervals \(\mathcal{I} = \{I_1, \ldots, I_n\} \) in the real line. The precise value of each data item is \(v_i \in I_i \), which can be learnt by performing a query; formally, a query on \(I_i \) replaces this interval with \(\{v_i\} \). We wish to solve the given problem by performing the minimum number of queries (or query rounds). We say that a closed interval \(I_i = [\ell_i, u_i] \) is trivial if \(\ell_i = u_i \); clearly \(I_i = \{v_i\} \), so trivial intervals never need to be queried. Some problems require that intervals are either open or trivial; we will discuss this in further detail when addressing each problem. For a given realization \(v_1, \ldots, v_n \) of the precise values, a set \(Q \subseteq \mathcal{I} \) of intervals is a feasible query set if querying \(Q \) is enough to solve the given problem (i.e., to output a solution that can
be proved correct based only on the given intervals and the answers to the queries in Q), and an optimal query set is a feasible query set of minimum size. Since the precise values are initially unknown to the algorithm and can be defined adversarially, we have an online exploration problem [5]. We fix an optimal query set OPT_1, and we write $\text{opt}_1 := |OPT_1|$. An algorithm which performs up to $\rho \cdot \text{opt}_1$ queries is said to be ρ-query-competitive. Throughout this paper, we only consider deterministic algorithms.

In previous work on the adaptive model, it is assumed that queries are made sequentially, and the algorithm can take the results of all previous queries into account when deciding the next query. We consider a model where queries are made in rounds and we can perform up to k queries in parallel in each round. The algorithm can take into account the results from all queries made in previous rounds when deciding which queries to make in the next round. The adaptive model with sequential queries is the special case of our model with $k = 1$. We denote by opt_k the optimal number of rounds to solve the given instance. Note that $\text{opt}_k = [\text{opt}_1/k]$ as OPT_1 only depends on the input intervals and their precise values and can be distributed into rounds of k queries arbitrarily. For an algorithm ALG we denote by ALG_1 the number of queries it makes, and by ALG_k the number of rounds it uses. An algorithm which solves the problem in up to $\rho \cdot \text{opt}_k$ rounds is said to be ρ-round-competitive. A query performed by an algorithm that is not in OPT_1 is called a wasted query, and we say that the algorithm wastes that query; a query performed by an algorithm that is not wasted is useful.

Proposition 2.1. If an algorithm makes all queries in OPT_1, wastes w queries in total over all rounds excluding the final round, always makes k queries per round except possibly in the final round, and stops as soon as the queries made so far suffice to solve the problem, then its number of rounds will be $[(\text{opt}_1 + w)/k] \leq \text{opt}_k + [w/k]$.

The problems we consider are Minimum, Sorting and Selection. For Minimum and Sorting, we assume that we are given a set I of n intervals and a family S of m subsets of I. For Sorting, the task is to output, for each set $S \in S$, an ordering of the elements in S that is consistent with the order of their precise values. For Minimum, the task is to output, for each $S \in S$, an element whose precise value is the minimum of the precise values of all elements in S, along with the value of that element. Regarding the family S, we can distinguish the cases where S contains a single set, where all sets in S are pairwise disjoint, and the case where the sets in S may overlap, i.e., may have common elements. For Selection, we are given a set I of n intervals and an index $i \in \{1, \ldots, n\}$. The task is to output the i-th smallest value v^* (i.e., the value in position i in a sorted list of the precise values of the n intervals), as well as the set of intervals whose precise value equals v^*. We also discuss briefly a variant of Minimum in which we seek all elements whose precise value is the minimum and a variant of Selection in which we only seek the value v^*.

For a better understanding of the problems, we give a simple example for Sorting with $k = 1$. We have a single set with two intersecting intervals. There are four different configurations of the realizations of the precise values, which are shown in Figure 1. In Figure 1a, it is enough to query I_1 to learn that $v_1 < v_2$; however, if an algorithm first queries I_2, it cannot decide the order, so it must query I_1 as well. In Figure 1b we have a symmetric situation. In Figure 1c both intervals must be queried (i.e., the only feasible query set is $\{I_1, I_2\}$), otherwise it is not possible to decide the order. Finally, in Figure 1d it is

2 In some of the literature, it is only required to identify the element with minimum value. Returning the precise minimum value, however, is also an important problem, as discussed in [20, Section 7] for the minimum spanning tree problem.
Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

Figure 1 Example of Sorting for two intervals and the possible realizations of the precise values. We have that $\text{opt}_1 = 1$ in (a), (b) and (d), and $\text{opt}_1 = 2$ in (c).

enough to query either I_1 or I_2; hence, both $\{I_1\}$ and $\{I_2\}$ are feasible query sets. Since those realizations are initially identical to the algorithm, this example shows that no deterministic algorithm can be better than 2-query-competitive, and this example can be generalized by taking multiple copies of the given structure. For MINIMUM, however, an optimum solution can always be obtained by first querying I_1 (and then I_2 only if necessary): Since we need the precise value of the minimum element, in Figure 1b it is not enough to just query I_2.

3 Sorting

In this section we discuss the Sorting problem. We allow open, half-open, closed, and trivial intervals in the input, i.e., I_i can be of the form $[\ell_i, u_i]$ with $\ell_i \leq u_i$, or $(\ell_i, u_i]$, $[\ell_i, u_i)$ or (ℓ_i, u_i) with $\ell_i < u_i$.

First, we consider the case where S consists of a single set S, which we can assume to contain all n of the given intervals. We wish to find a permutation $\pi: [n] \to [n]$ such that $v_i \leq v_j$ if $\pi(i) < \pi(j)$, by performing the minimum number of queries possible. This problem was addressed for $k = 1$ in [21, 22, 27]; it admits 2-query-competitive deterministic algorithms and has a deterministic lower bound of 2.

For Sorting, if two intervals $I_i = [\ell_i, u_i]$ and $I_j = [\ell_j, u_j]$ are such that $I_i \cap I_j = \{u_i\} = \{\ell_j\}$, then we can put them in a valid order without any further queries, because clearly $v_i \leq v_j$. Therefore, we say that two intervals I_i and I_j intersect (or are dependent) if either their intersection contains more than one point, or if I_i is trivial and $v_i \in (\ell_j, u_j)$ (or vice versa). This is equivalent to saying that I_i and I_j are dependent if and only if $u_i > \ell_j$ and $u_j > \ell_i$. Two simple facts are important to notice, which are proven in [21]:

- For any pair of intersecting intervals, at least one of them must be queried in order to decide their relative order; i.e., any intersecting pair is a witness set.
- The dependency graph that represents this relation, with a vertex for each interval and an edge between intersecting intervals, is an interval graph [24].

We adapt the 2-query-competitive algorithm for Sorting by Halládórsson and de Lima [21] for $k = 1$ to the case of arbitrary k. Their algorithm first queries all non-trivial intervals in a minimum vertex cover in the dependency graph. By the duality between vertex covers and independent sets, the unqueried intervals form an independent set, so no query is necessary to decide the order between them. However, the algorithm still must query intervals in the independent set that intersect a trivial interval or the value of a queried interval. To adapt the algorithm to the case of arbitrary k, we first compute a minimum vertex cover and fill as many rounds as necessary with the given queries. After the answers to the queries are returned, we use as many rounds as necessary to query the intervals of the remaining independent set that contain a trivial point.

▶ Theorem 3.1. The algorithm of Halládórsson and de Lima [21] yields a 2-round-competitive algorithm for Sorting that runs in polynomial time.
Proof. Any feasible query set is a vertex cover in the dependency graph, due to the fact that at least one interval in each intersecting pair must be queried. Therefore a minimum vertex cover is at most the size of an optimal query set, so the first phase of the algorithm spends at most opt_k rounds. Since all intervals queried in the second phase are in any solution, again we spend at most another opt_k rounds. As the minimum vertex cover problem for interval graphs can be solved in polynomial time \cite{15}, the overall algorithm is polynomial as well.

The problem has a lower bound of 2 on the round-competitive factor. This can be shown by having kc copies of a structure consisting of two dependent intervals, for some $c \geq 1$. OPT_1 may query only one interval in each pair, while we can force any deterministic algorithm to query both of them (cf. the configurations shown in Figures 1a and 1b). We have that $\text{opt}_k = c$ while any deterministic algorithm will spend at least $2c$ rounds.

We remark that the 2-query-competitive algorithm for \textsc{Sorting} with $k = 1$ due to Meißner \cite{27}, when adapted to the setting with arbitrary k in the obvious way, only gives a bound of $2 \cdot \text{opt}_k + 1$ rounds. Her algorithm first greedily computes a maximal matching in the dependency graph and queries all non-trivial matched vertices, and then all remaining intervals that contain a trivial point.

Now we study the case of solving a number of problems on different subsets of the same ground set of uncertain elements. In such a setting, it may be better to perform queries that can be reused by different problems, even if the optimum solution for one problem may not query that interval. We can reuse ideas from the algorithms for single problems that rely on the dependency graph. We define a new dependency relation (and dependency graph) in such a way that two intervals are dependent if and only if they intersect \textit{and} belong to a common set. Note that the resulting graph may not be an interval graph, so some algorithms for single problems may not run in polynomial time for this generalization.

If we perform one query at a time ($k = 1$), then there are 2-competitive algorithms. One such is the algorithm by Meißner \cite{27}, described above; since a maximal matching can be computed greedily in polynomial time for arbitrary graphs, this algorithm runs in polynomial time for non-disjoint problems. If we can make $k \geq 2$ queries in parallel, then this algorithm performs at most $2 \cdot \text{opt}_k + 1$ rounds, and the analysis is tight since we may have an incomplete round in between the two phases of the algorithm. If we relax the requirement that the algorithm runs in polynomial time, then we can obtain an algorithm that needs at most $2 \cdot \text{opt}_k$ rounds, by first querying non-trivial intervals in a minimum vertex cover of the dependency graph (in as many rounds as necessary) and then the intervals that contain a trivial interval or the value of a queried interval (again, in as many rounds as necessary).

4 The Minimum Problem

For the \textsc{Minimum} problem, we assume without loss of generality that the intervals are sorted by non-decreasing left endpoints; intervals with the same left endpoint can be ordered arbitrarily. The \textit{leftmost} interval among a subset of \mathcal{I} is the one that comes earliest in this ordering. We also assume that all intervals are open or trivial; otherwise the problem has a trivial lower bound of n on the query-competitive ratio \cite{20}.

First, consider the case $\mathcal{S} = \{\mathcal{I}\}$, i.e., we have a single set. It is easy to see that the optimal query set consists of all intervals whose left endpoint is strictly smaller than the precise value of the minimum: If I_i with precise value v_i is a minimum element, then all other intervals with left endpoint strictly smaller than v_i must be queried to rule out that their value is smaller than v_i, and I_i must be queried (unless it is a trivial interval) to
determine the value of the minimum. The optimal set of queries is hence a prefix of the sorted list of uncertain intervals (sorted by non-decreasing left endpoint). This shows that there is a 1-query-competitive algorithm when \(k = 1 \), and a 1-round-competitive algorithm for arbitrary \(k \): In each round we simply query the next \(k \) uncertain intervals in the order of non-decreasing left endpoint, until the problem is solved. For \(k = 1 \), the same method yields a 1-query-competitive algorithm for the case with several sets: The algorithm can always query an interval with smallest left endpoint for any of the sets that have not yet been solved. \(\square \)

In the remainder of this section, we consider the case of multiple sets and \(k > 1 \). We first present a more general result for potentially overlapping sets, then we give better upper bounds for disjoint sets. At the end of the section, we also present lower bounds.

Let \(W(x) = x \log_2 x \); the inverse \(W^{-1} \) of \(W \) will show up in our analysis. Note that \(W^{-1}(x) = \Theta(x / \log x) \) (see Appendix A for a proof).

Throughout this section, we assume w.l.o.g. that the optimum must make at least one query in each set (or we consider only sets that require some query). We also assume that any algorithm always discards from each set all elements that are certainly not the minimum of that set, i.e., all elements for which it is already clear based on the available information that their value must be larger than the minimum value of the set (this is where the right endpoints of intervals also need to be considered). We adopt the following terminology. A set in \(S \) is **solved** if we can determine the value of its minimum element. A set is **active** at the start of a round if the queries made in previous rounds have not solved the set yet. An active set **survives** a round if it is still active at the start of the next round. An active set that does not survive the current round is said to be **solved** in the current round.

To illustrate these concepts, let us discuss a first simple strategy to build a query set \(Q \) for a round. Let \(P \) be the set of intervals queried in previous rounds. The **prefix length** of an active set \(S \) is the length of the maximum prefix of elements from \(Q \) in the list of non-trivial intervals in \(S \setminus P \) ordered by non-decreasing left endpoints. The algorithm proceeds by repeatedly adding to \(Q \) the leftmost non-trivial element not in \(Q \cup P \) from an arbitrary active set with minimum prefix length. We call this the **balanced** algorithm, and denote it by BAL. We give an example of its execution in Figure 2 with \(m = 3 \) disjoint sets and \(k = 5 \). The optimum solution queries the first three elements in \(S_1 \) and \(S_2 \), and all elements in \(S_3 \). Since the algorithm picks an arbitrary active set with minimum prefix length, it may give preference to \(S_1 \) and \(S_2 \) over \(S_3 \), thus wasting one query in \(S_1 \) and one in \(S_2 \) in round 2. All sets are active at the beginning of round 2; \(S_1 \) and \(S_2 \) are solved in round 2, while \(S_3 \) survives round 2. Since \(S_1 \) and \(S_2 \) are solved in round 2, they are no longer active in round 3, so the algorithm no longer queries any of their elements.

4.1 The Minimum Problem with Arbitrary Sets

We are given a set \(I \) of \(n \) intervals and a family \(S \) of \(m \) possibly overlapping subsets of \(I \), and a number \(k \geq 2 \) of queries that can be performed in each round.

Unfortunately, it is possible to construct an instance in which BAL uses as many as \(k \cdot \operatorname{opt} \) rounds. Let \(c \) be a multiple of \(k \). We have \(m = c \cdot (k - 1) \) sets, which are divided in \(c \) groups with \(k - 1 \) sets. For \(i = 1, \ldots, c \), the sets in groups \(i, \ldots, c \) share the \(i \) leftmost
Figure 2: Possible execution of BAL for \(m = 3 \) disjoint sets and \(k = 5 \). Each interval is represented by a box, and the optimum solution is a prefix of each set. The solid boxes are useful queries, the two hatched boxes are wasted queries, and the white boxes are not queried by the algorithm.

elements. Furthermore, each set has one extra element which is unique to that set. The precise values are such that each set in the \(i \)-th group is solved after querying the first \(i \) elements. We give an example in Figure 3 with \(k = 3 \) and \(c = 3 \). If we let BAL query the intervals in the order given by the indices, it is easy to see that it queries \(c \cdot k \) intervals, while the \(c \) intervals that are shared by more than one set are enough to solve all sets. In particular, note that BAL does not take into consideration that some elements are shared between different sets. The challenge is how to balance queries between sets in a better way.

Figure 3: Bad instance for BAL with overlapping sets, with \(k = 3 \) and \(c = 3 \). BAL will query the following rounds: \(\{I_1, I_2, I_3\}, \{I_4, I_5, I_6\}, \{I_7, I_8, I_9\} \). It is enough to query \(\{I_1, I_4, I_7\} \).

We give an algorithm that requires at most \((2 + \varepsilon) \cdot \text{opt}_k + O \left(\frac{1}{\varepsilon} \cdot \lg m \right)\) rounds, for every \(0 < \varepsilon < 1 \). (The execution of the algorithm does not depend on \(\varepsilon \), so the upper bound
Algorithm 1 Computing a query round for possibly non-disjoint sets

Data: family \(S = \{S_1, \ldots, S_m\} \) of active subsets of the ground set \(I \)

Result: set \(Q \subseteq I \) of at most \(k \) queries to make

1 begin
2 \(Q \leftarrow \) set of leftmost unqueried elements of all sets in \(S \);
3 if \(|Q| \geq k \) then
4 \(Q \leftarrow \) arbitrary subset of \(Q \) with size \(k \);
5 else
6 \(b_i \leftarrow 0 \) for all \(S_i \in S \);
7 while \(|Q| < k \) and there are unqueried elements in \(I \setminus Q \) do
8 foreach \(e \in I \setminus Q \) do
9 \(F_e \leftarrow \{i \mid e \text{ is the leftmost unqueried element from } I \setminus Q \text{ in } S_i\} \);
10 increase all \(b_i \) simultaneously at the same rate until there is an unqueried element \(e \in I \setminus Q \) that satisfies \(\sum_{i \in F_e} b_i = 1 \);
11 \(Q \leftarrow Q \cup \{e\} \);
12 \(b_i \leftarrow 0 \) for all \(i \in F_e \);
13 return \(Q \);

holds in particular for the best choice of \(0 < \varepsilon < 1 \) for given \(\text{opt}_k \) and \(m \). It is inspired by how some primal-dual algorithms work. The pseudocode for determining the queries to be made in a round is shown in Algorithm 1. First, we try to include the leftmost element of each set in the set of queries \(Q \). If those are not enough to fill a round, then we maintain a variable \(b_i \) for each set \(S_i \), which can be interpreted as a budget for each set. The variables are increased simultaneously at the same rate, until the sets that share a current leftmost unqueried element not in \(Q \) have enough budget to buy it. More precisely, at a given point of the execution, for each element \(e \in I \setminus Q \), let \(F_e \) contain the indices of the sets that have \(e \) as their leftmost unqueried element not in \(Q \). We include \(e \) in \(Q \) when \(\sum_{i \in F_e} b_i = 1 \), and then we set \(b_i \) to zero for all \(i \in F_e \). We repeat this process until \(|Q| = k \) or there are no unqueried elements in \(I \setminus Q \).

When a query \(e \) is added to \(Q \), we say that it is charged to the sets \(S_i \) with \(i \in F_e \). The amount of charge for set \(S_i \) is equal to the value of \(b_i \) just before \(b_i \) is reset to 0 after adding \(e \) to \(Q \). We also say that the set \(S_i \) pays this amount for \(e \).

Definition 4.1. Let \(\varepsilon > 0 \). A round is \(\varepsilon \)-good if at least \(k/2 \) of the queries made by Algorithm 1 are also in \(\text{OPT}_1 \) (i.e., are useful queries), or if at least \(a/r \) active sets are solved in that round, where \(a \) is the number of active sets at the start of the round and \(r = (2(1 + \varepsilon) + \sqrt{2\varepsilon^2 + 4\varepsilon + 4})/\varepsilon \). A round that is not \(\varepsilon \)-good is called \(\varepsilon \)-bad.

Note that \(r > 2 \) for any \(\varepsilon > 0 \).

Lemma 4.2. If a round is \(\varepsilon \)-bad, then Algorithm 1 will make at least \(2k/(2 + \varepsilon) \) useful queries in the following round.

Proof. Let \(a \) denote the number of active sets at the start of an \(\varepsilon \)-bad round. Let \(s \) be the number of sets that are solved in the current round; note that \(s < a/r \) because the current round is \(\varepsilon \)-bad. Let \(T \) be the total amount by which each value \(b_i \) has increased during the execution of Algorithm 1. If the simultaneous increase of all \(b_i \) is interpreted as time passing, then \(T \) corresponds to the point in time when the computation of the set \(Q \) has
been completed. For example, if some set S_i did not pay for any element during the whole execution, then T is equal to the value of b_i at the end of the execution of Algorithm 1.

Let Q be the set of queries that Algorithm 1 makes in the current round. We claim that every wasted query in Q is charged only to sets that are solved in this round. Consider a wasted query e that is in some set S_j not solved in this round. At the time e was selected, j cannot have been in F_i because otherwise e would be a useful query. Therefore, we do not charge e to S_j.

The total number of wasted queries is therefore bounded by Ts, as these queries are paid for by the s sets solved in this round. As the number of wasted queries in a bad round is larger than $k/2$, we therefore have $Ts > k/2$. As $s < a/r$, we get $k/2 < Ta/r$, so $T > (r/2) \cdot (k/a)$.

Call a surviving set S_i rich if $b_i > k/a$ when the computation of Q is completed. A set that is not rich is called poor. Note that a poor set must have spent at least an amount of $(r/2 - 1) \cdot (k/a) > 0$, as its total budget would be at least $T > (r/2) \cdot (k/a)$ if it had not paid for any queries. As the poor sets have paid for fewer than $k/2$ elements in total (as there are fewer than $k/2$ useful queries in the current round), the number of poor sets is bounded by $k/2 \cdot (1/(r-1)) = a/(r-2) > 0$. As there are more than $(1 - 1/r) \cdot a$ surviving sets and at most $a/(r-2)$ of them are poor, there are at least $(1 - 1/r) \cdot a - a/(r-2) = (r-2)(r-1) - r)/(r(r-2)) \cdot a = 2a/(2+\varepsilon) > 0$ surviving sets that are rich.

Let e be any element that is the leftmost unqueried element (at the end of the current round) of a rich surviving set. If e was the leftmost unqueried element of more than a/k rich surviving sets, those sets would have been able to pay for e (because their total remaining budget would be greater than $k/a \cdot a/k = 1$) before the end of the execution of Algorithm 1, a contradiction to e not being included in Q. Hence, the number of distinct leftmost unqueried elements of the at least $2a/(2+\varepsilon)$ rich surviving sets is at least $(2a/(2+\varepsilon))/(a/k) = 2k/(2+\varepsilon)$. So the following round will query at least $2k/(2+\varepsilon)$ elements that are the leftmost unqueried element of an active set, and all those are useful queries that are made in the next round.

> **Theorem 4.3.** Let opt_k denote the optimal number of rounds and A_k the number of rounds made if the queries are determined using Algorithm 1. Then, for every $0 < \varepsilon < 1$, $A_k \leq (2 + \varepsilon) \cdot \text{opt}_k + O \left(\frac{1}{\varepsilon} \cdot \log m \right)$.

Proof. In every round, one of the following must hold:

- The algorithm makes at least $k/2$ useful queries.
- The algorithm solves at least a fraction of $1/r$ of the active sets.
- If none of the above hold, the algorithm makes at least $2k/(2+\varepsilon)$ useful queries in the following round (by Lemma 4.2).

The number of rounds in which the algorithm solves at least a fraction of $1/r$ of the active sets is bounded by $\left\lceil \log_{r/(r-1)} m \right\rceil = O \left(\frac{1}{\varepsilon} \cdot \log m \right)$, since $1/\left(\frac{1}{\log n} \right) < 5/\varepsilon$ for $0 < \varepsilon < 1$. In every round where the algorithm does not solve at least a fraction of $1/r$ of the active sets, the algorithm makes at least $k/(2+\varepsilon)$ useful queries on average (if in any such round it makes fewer than $k/2$ useful queries, it makes $2k/(2+\varepsilon)$ useful queries in the following round). The number of such rounds is therefore bounded by $(2 + \varepsilon) \cdot \text{opt}_k$.

We do not know if this analysis is tight, so it would be worth investigating this question.

4.2 The Minimum Problem with Disjoint Sets

We now consider the case where $k \geq 2$ and the m sets in the given family S are pairwise disjoint. For this case, it turns out that the balanced algorithm achieves good upper bounds.
Theorem 4.4. \(\text{BAL}_k \leq \text{opt}_k + O(\lg \min\{k, m\}) \).

Proof. First we prove the bound for \(m \leq k \). Index the sets in such a way that \(S_i \) is the \(i \)-th set that is solved by BAL, for \(1 \leq i \leq m \). Sets that are solved in the same round are ordered by non-decreasing number of queries made in them in that round by BAL. In the round when \(S_i \) is solved, there are at least \(m - (i - 1) \) active sets, so the number of wasted queries in \(S_i \) is at most \(\frac{k}{m - (i - 1)} \). (BAL makes at most \(\left\lceil \frac{k}{m - (i - 1)} \right\rceil \) queries in \(S_i \), and at least one of these is not wasted.) The total number of wasted queries is then at most \(\sum_{i=1}^{m} \frac{k}{m - (i - 1)} = \sum_{i=1}^{m} k/i = k \cdot H(m) \), where \(H(m) \) denotes the \(m \)-th Harmonic number. By Proposition 2.1, \(\text{BAL}_k \leq \text{opt}_k + O(\lg m) \).

If \(m > k \), observe that the algorithm does not waste any queries until the number of active sets is at most \(k \). From that point on, it wastes at most \(k \cdot H(k) \) queries following the arguments in the previous paragraph, so the number of rounds is bounded by \(\text{opt}_k + O(\log k) \). ▶

We now give a more refined analysis that provides a better bound for \(\text{opt}_k = 1 \), as well as a better multiplicative bound than what would follow from Theorem 4.4.

Lemma 4.5. If \(\text{opt}_k = 1 \), then \(\text{BAL}_k \leq O(\lg m / \lg \lg m) \).

Proof. Consider an arbitrary instance of the problem with \(\text{opt}_k = 1 \). Let \(R + 1 \) be the number of rounds needed by the algorithm. For each of the first \(R \) rounds, we consider the fraction \(b_i \) of active sets that are not solved in that round. More formally, for the \(i \)-th round, for \(1 \leq i \leq R \), if \(a_i \) denotes the number of active sets at the start of round \(i \) and \(a_{i+1} \) the number of active sets at the end of round \(i \), then we define \(b_i = a_{i+1}/a_i \).

Consider round \(i \), \(1 \leq i \leq R \). A set that is active at the start of round \(i \) and is still active at the start of the round \(i + 1 \) is called a surviving set. A set that is active at the start of round \(i \) and gets solved by the queries made in round \(i \) is called a solved set. For each surviving set, all queries made in that set in round \(i \) are useful. For each solved set, at least one query made in that set is useful. We claim that this implies the algorithm makes at least \(k b_i \) useful queries in round \(i \). To see this, observe that if the algorithm makes \(\lfloor k/a_i \rfloor \) queries in a surviving set and \(\lceil k/a_i \rceil \) queries in a solved set, we can conceptually move one useful query from the solved set to the surviving set. After this, the \(a_{i+1} \) surviving sets contain at least \(k/a_i \) useful queries on average, and hence \(a_{i+1} \cdot k/a_i = b_i k \) useful queries in total.

As OPT1 must make all useful queries and makes at most \(k \) queries in total, we have that \(\sum_{i=1}^{R} k b_i \leq \text{opt}_1 \leq k \), so \(\sum_{i=1}^{R} b_i \leq 1 \). Furthermore, as there are \(m \) active sets initially and there is still at least one active set after round \(R \), we have that \(\prod_{i=1}^{R} b_i = a_{R+1}/a_1 \geq 1/m \).

To get an upper bound on \(R \), we need to determine the largest possible value of \(R \) for which there exist values \(b_i > 0 \) for \(1 \leq i \leq R \) satisfying \(\sum_{i=1}^{R} b_i \leq 1 \) and \(\prod_{i=1}^{R} b_i \geq 1/m \). We gain nothing from choosing \(b_i \) with \(\sum_{i=1}^{R} b_i < 1 \), so we can assume \(\sum_{i=1}^{R} b_i = 1 \). In that case, the value of \(\prod_{i=1}^{R} b_i \) is maximized if we set all \(b_i \) equal, namely \(b_i = 1/R \). So we need to determine the largest value of \(R \) that satisfies \(\prod_{i=1}^{R} 1/R \geq 1/m \), or equivalently \(R^R \leq m \), or \(R \lg R \leq \lg m \). This shows that \(R \leq W^{-1}(\lg m) = O(\lg m / \lg \lg m) \). ▶

Corollary 4.6. If \(\text{opt}_k = 1 \), then \(\text{BAL}_k \leq O(\lg k / \lg \lg k) \).

Proof. If \(k \geq m \), then the corollary follows from Lemma 4.5. If \(k < m \), there can be at most \(k \) active sets, because the optimum performs at most \(k \) queries since \(\text{opt}_k = 1 \). Hence, we only need to consider these \(k \) sets and can apply Lemma 4.5 with \(m = k \). ▶
Now we wish to extend these bounds to arbitrary \(\text{opt}_k \). It turns out that we can reduce the analysis for an instance with arbitrary \(\text{opt}_k \) to the analysis for an instance with \(\text{opt}_k = 1 \), assuming that BAL is implemented in a round-robin fashion. A formal description of such an implementation is as follows: fix an arbitrary order of the \(m \) sets of the original problem instance as \(S_1, S_2, \ldots, S_m \), and consider it as a cyclic order where the set after \(S_m \) is \(S_1 \). In each round, BAL distributes the \(k \) queries to the active sets as follows. Let \(i \) be the index of the set to which the last query was distributed in the previous round (or let \(i = m \) if we are in the first round). Then initialize \(Q = \emptyset \) and repeat the following step \(k \) times. Let \(j \) be the first index after \(i \) such that \(S_j \) is active and has unqueried non-trivial elements that are not in \(Q \); pick the leftmost unqueried non-trivial element in \(S_j \setminus Q \), insert it into \(Q \), and set \(i = j \). The resulting set \(Q \) is then queried.

Lemma 4.7. Assume that BAL distributes queries to active sets in a round-robin fashion. If \(\text{BAL}_k \leq \rho \) for instances with \(\text{opt}_k = 1 \), with \(\rho \) independent of \(k \), then BAL is \(\rho \)-round-competitive for arbitrary instances.

Proof. Let \(L = (I, S) \) be an instance with \(\text{opt}_k(L) = t \). Note that \(\text{opt}_1(L) \leq tk \). Consider the instance \(L' \) which is identical to \(L \) except that the number of queries per round is \(k' = tk \). Use BAL’ to refer to the solution computed by BAL for the instance \(L' \) (and also to the algorithm BAL when it is executed on instance \(L' \)). Note that \(\text{opt}_{k'}(L') = 1 \) as \(\text{opt}_1(L') = \text{opt}_1(L) \). By our assumption, BAL’ is \(\rho \)-round-competitive.

To establish the claim, we compare the situation when BAL’ has executed \(x \) rounds on \(L' \) with the situation when BAL has executed \(x t \) rounds on \(L \). We claim that the following two invariants hold for every \(x \):

1. The number of remaining active sets of BAL is at most that of BAL’.
2. BAL has made at least as many queries in each active set as BAL’.

For a proof of these invariants, note that BAL’ and BAL distribute queries to sets in the same round-robin order, the only difference being that BAL performs a round of queries whenever \(k \) queries have been distributed, while BAL’ only performs a round of queries whenever \(kt \) queries have accumulated. Imagine the process by which both algorithms pick queries as if it was executed in parallel, with both of the algorithms choosing one query in each step. The only case where BAL and BAL’ can distribute the next query to a different set is when BAL’ distributes the next query to a set \(S_i \) that is no longer active for BAL (or all of whose non-trivial unqueried elements have already been added by BAL to the set of queries to be performed in the next round). This can happen because BAL may have already made some of the queries that BAL’ has distributed to sets but not yet performed. If this happens, BAL will select for the next query an element of a set that comes after \(S_i \) in the cyclic order, so it will move ahead of BAL’ (i.e., it chooses a query now that BAL’ will only choose in a later step). Hence, at any step during this process, BAL either picks the same next query as BAL’ or is ahead of BAL’. This shows that if the invariants hold when BAL and BAL’ have executed \(x t \) and \(x \) rounds, respectively, then they also hold after they have executed \((x + 1)t \) and \(x + 1 \) rounds, respectively. As the invariants clearly hold for \(x = 0 \), if follows that they always hold, and hence \(\text{BAL}_k \leq \rho t \).

Lemmas 4.5 and 4.7 imply the following.

Corollary 4.8. BAL is \(O(\lg m/\lg \lg m) \)-round-competitive.

Unfortunately, Corollary 4.6 cannot be combined with Lemma 4.7 directly to show that BAL is \(O(\lg k/\lg \lg k) \)-round-competitive, because the proof of Lemma 4.7 assumes that \(\rho \) is not a function of \(k \). However, we can show the claim using different arguments.
Lemma 4.9. BAL is $O(\lg k/\lg \lg k)$-round-competitive.

Proof. If $k \geq m$, the lemma follows from Corollary 4.8.

If $k < m$, let L be the given instance and let R_0 be the number of rounds the algorithm needs until the number of active sets falls below $k + 1$ for the first time. As the algorithm makes at most one query in each active set in the first R_0 rounds, all queries made in the first R_0 rounds are useful. Let L' be the instance at the end of round R_0. As L' has at most k active sets, BAL is $O(\lg k/\lg \lg k)$-round-competitive on L' by Corollary 4.8 and it needs at most $O(\lg k/\lg \lg k) \cdot \text{opt}_k(L') = O(\lg k/\lg \lg k) \cdot \lceil \text{opt}_1(L')/k \rceil$ rounds to solve L'.

We have that $\text{opt}_1(L) = k \cdot R_0 + \text{opt}_1(L')$, and hence $\text{opt}_k(L) = R_0 + \lceil \text{opt}_1(L')/k \rceil$. Thus,

$$
\text{BAL}_k(L) \leq R_0 + O(\lg k/\lg \lg k) \cdot \lceil \text{opt}_1(L')/k \rceil \\
\leq O(\lg k/\lg \lg k) \cdot (R_0 + \lceil \text{opt}_1(L')/k \rceil) \\
= O(\lg k/\lg \lg k) \cdot \text{opt}_k(L),
$$

and the claim follows. ▶

The following theorem then follows from Corollary 4.8 and Lemma 4.9.

Theorem 4.10. BAL is $O(\lg \min\{k, m\}/\lg \lg \min\{k, m\})$-round-competitive.

4.3 Lower Bounds

In this section we present lower bounds for MINIMUM that hold even for the more restricted case where the family S consists of disjoint sets.

Theorem 4.11. For arbitrarily large m and any deterministic algorithm ALG, there exists an instance with m sets and $k > m$ queries per round, such that $\text{opt}_k = 1$, $\text{ALG}_k \geq W^{-1}(\lg m)$ and $\text{ALG}_k = \Omega(W^{-1}(\lg k))$. Hence, there is no $o(\lg \min\{k, m\}/\lg \lg \min\{k, m\})$-round-competitive deterministic algorithm.

Proof. Fix an arbitrarily large positive integer M. Consider an instance with $m = M^M$ sets, and let $k = M^{M+1}$. Each set contains Mk elements, with the i-th element having uncertainty interval $(1 + i\varepsilon, 100 + i\varepsilon)$ for $\varepsilon = 1/m$. The adversary will pick for each set an index j and set the j-th element to be the minimum, by letting it have value $1 + (j + 0.5)\varepsilon$, while the i-th element for $i \neq j$ is given value $100 + (i - 0.5)\varepsilon$. The optimal query set for the set is thus its first j elements. We assume that an algorithm queries the elements of each set in order of increasing lower interval endpoints. (Otherwise, the lower bound only becomes larger.)

Consider the start of a round when $a \leq m$ sets are still active, initially $a = m$. The adversary observes how the algorithm distributes its k queries among the active sets and repeatedly adds the active set with largest number of queries (from the current round) to a set L, until the total number of queries from the current round in sets of L is at least $(M - 1)k/M$. Let S' denote the remaining active sets. Note that $|S'| \geq a/M$. For the sets in L, the adversary chooses the minimum in such a way that a single query in the current round would have been sufficient to find it, while the sets in S' remain active (and so the optimum must make the same queries in them that the algorithm has made in the current round, and these are at most k/M queries). We continue for M rounds. In the M-th round, the adversary picks the minimum in all remaining sets in such way that a single query in that round would have been sufficient to solve the set. The optimal number of queries is then at most $(M - 1)k/M + M^M = (M - 1)k/M + k/M = k$, and hence $\text{opt}_k = 1$. On the other hand, we have $\text{ALG}_k = M$.

Proof. If $k \geq m$, the lemma follows from Corollary 4.8.
We can now express this lower bound in terms of k or m as follows: As $m = M^M$, we have $\lg m = M \lg M$ and hence $M = W^{-1}(\lg m)$. As $k = M^{M+1}$, we have $\lg k = (M + 1) \lg M$ and hence $M = \Omega(W^{-1}(\lg k))$. Thus, the theorem follows.

\begin{proof}

Theorem 4.12. No deterministic algorithm ALG attains $\text{ALG}_k \leq \text{opt}_k + o(\lg \min\{k, m\})$.

Proof. Let $k = m$ be an arbitrarily large integer. The intervals of the m sets are chosen as in the proof of Theorem 4.11, for a sufficiently large value of M. Let a be the number of active sets at the start of a round; initially $a = m$. After each round, the adversary considers the set S_j in which the algorithm has made the largest number of queries, which must be at least k/a. The adversary picks the minimum element in S_j in such a way that a single query in the current round would have been enough to solve it, and keeps all other sets active. This continues for m rounds. The number of wasted queries is at least $k/m + k/(m-1) + \cdots + k/2 + k - m = k \cdot (H(m) - 1) = k \cdot \Omega(\lg k)$. As the algorithm must also make all queries in OPT_1, the theorem follows from Proposition 2.1.

\end{proof}

We conclude thus that the balanced algorithm attains matching upper bounds for disjoint sets. For non-disjoint sets, a small gap remains between our lower and upper bounds.

5 Selection

An instance of the Selection problem is given by a set I of n intervals and an integer i, $1 \leq i \leq n$. Throughout this section we denote the i-th smallest value in the set of n precise values by v^*.

5.1 Finding the Value v^*

If we only want to find the value v^*, then we can adapt the analysis in [20] to obtain an algorithm that performs at most $\text{opt}_1 + i - 1$ queries, simply by querying the intervals in the order of their left endpoints. This is the best possible and can easily be parallelized in $\text{opt}_k + \lceil \frac{i - 1}{k} \rceil$ rounds. Note that we can assume $i \leq \lceil n/2 \rceil$, since otherwise we can consider the i-th largest value problem, noting that the i-th smallest value is the $(n-i+1)$-th largest value. We also assume that every input interval is either trivial or open, since otherwise (if arbitrary closed intervals are allowed) the problem has a lower bound of n on the competitive ratio, using the same instance as presented in [20] for the problem of identifying the minimum element.

Let I_{j1} be the interval with the i-th smallest left endpoint, and let I_{j2} be the interval with the i-th smallest right endpoint. Note that any interval I_j with $u_j < \ell_{j1}$ or $\ell_j > u_{j2}$ can be discarded (and the value of i adjusted accordingly).

We analyze the algorithm that simply queries the k leftmost non-trivial intervals until the problem is solved.

\begin{proof}

Theorem 5.1. For instances of the i-th smallest value problem where all input intervals are open or trivial, there is an algorithm that returns the i-th smallest value v^* and uses at most

$$\left\lceil \frac{\text{opt}_1 + i - 1}{k} \right\rceil \leq \text{opt}_k + \left\lceil \frac{i - 1}{k} \right\rceil$$

rounds.

\end{proof}
Proof. Let I' be the set of non-trivial intervals in the input, ordered by non-decreasing left endpoint. We show that there is a set $Q \subseteq I'$ of size at most $\text{opt}_1 + i - 1$ that is a prefix of I' in the given ordering and has the property that, after querying Q, the instance is solved. Given the existence of such a set Q, it is clear that the theorem follows.

Fix an optimum query set OPT_1, and let v^* be the i-th smallest value. After querying OPT_1, assume that there are m trivial intervals with value v^*. Note that $m \geq 1$, since it is necessary to determine the value v^*. Those m intervals are either queried in OPT_1 or already were trivial intervals in the input. We classify the intervals in I into the following categories, depending on where they fall after querying OPT_1:

1. The set M (of size m) consisting of trivial intervals whose value is v^*;
2. The set X consisting of non-trivial intervals that contain v^*;
3. The set L of intervals that are to the left of v^*;
4. The set R of intervals that are to the right of v^*.

![Figure 4](image-url) An illustration of sets M, X, L, and R in the proof of Theorem 5.1

We illustrate this classification in Figure 4. Note that intervals in L and R may intersect intervals in X, but cannot contain v^*. Let $M^* = M \cap \text{OPT}_1$, $L^* = L \cap \text{OPT}_1$ and $R^* = R \cap \text{OPT}_1$. Note that $X \cap \text{OPT}_1 = \emptyset$, and that every interval in $M \setminus M^*$ is trivial in the input.

We claim that the set $Q = (L \cap I') \cup X \cup M^* \cup R^*$ is a prefix of I' in the given ordering (note that $(X \cup M^* \cup R^*) \setminus I' = \emptyset$), that querying Q suffices to solve the instance, and that $|Q| \leq \text{opt}_1 + i - 1$. Clearly, every interval in $L \cup X \cup M^*$ comes before all the intervals in $R \setminus R^*$ in the ordering considered. It also holds that every interval in R^* comes before all the intervals in $R \setminus R^*$ in the ordering, since otherwise an interval in R^* not satisfying this condition could be removed from OPT_1. Furthermore, querying all intervals in Q is enough to solve the instance, because every interval in $R \setminus R^*$ is to the right of v^*, and the optimum solution can decide the problem without querying them. Thus it suffices to bound the size of Q. Note then that $|L| + |X| \leq i - 1$ since, after querying OPT_1, the i-th smallest interval is in M, and any interval in $L \cup X$ has a left endpoint to the left of v^*. Therefore,

$$|Q| \leq |L| + |X| + |M^*| + |R^*| \leq i - 1 + |M^*| + |R^*| \leq \text{opt}_1 + i - 1,$$

which concludes the proof. ▷

The upper bound of $\left\lceil \frac{\text{opt}_1 + i - 1}{k} \right\rceil$ is best possible, because we can construct a lower bound of $\text{opt}_1 + i - 1$ queries to solve the problem. It uses the same instance as described in [20] for the problem of identifying an i-th smallest element (but not necessarily finding its precise value). We include a description of the instance for the sake of completeness. Consider $2i$ intervals, comprising i copies of $(0, 5)$ and i copies of (3). For the first $i - 1$ intervals $(0, 5)$ queried by the algorithm, the adversary returns a value of 1, so the algorithm also needs to
query the final interval of the form \((0, 5)\) to decide the problem. Then the adversary sets the value of that interval to 4, and querying only that interval would be sufficient for determining that 3 is the \(i\)-th smallest value. Hence any deterministic algorithm makes at least \(i\) queries, while \(\text{opt}_1 = 1\).

5.2 Finding all Elements with Value \(v^*\)

Now we focus on the task of finding \(v^*\) as well as identifying all intervals in \(\mathcal{I}\) whose precise value equals \(v^*\). For ease of presentation, we assume that all the intervals in \(\mathcal{I}\) are closed. The result can be generalized to arbitrary intervals without any significant new ideas, but the proofs become longer and require more cases. A complete proof is included in Appendix B.

Let us begin by observing that the optimal query set is easy to characterize.

\textbf{Lemma 5.2.} Every feasible query set contains all non-trivial intervals that contain \(v^*\). The optimal query set \(\text{OPT}_1\) contains all non-trivial intervals that contain \(v^*\) and no other intervals.

\textbf{Proof.} If a non-trivial interval \(I_j\) containing \(v^*\) is not queried, one cannot determine whether the precise value of \(I_j\) is equal to \(v^*\) or not. Thus, every feasible query set contains all non-trivial intervals that contain \(v^*\).

Furthermore, it is easy to see that the non-trivial intervals containing \(v^*\) constitute a feasible query set: Once these intervals are queried, one can determine for each interval whether its precise value is smaller than \(v^*\), equal to \(v^*\), or larger than \(v^*\).

Let \(I_{j_1}\) be the interval with the \(i\)-th smallest left endpoint, and let \(I_{j_2}\) be the interval with the \(i\)-th smallest right endpoint. Then it is clear that \(v^*\) must lie in the interval \([\ell_{j_1}, u_{j_2}]\), which we call the target area. The following lemma was essentially shown by Kahan [22]; we include a proof for the sake of completeness.

\textbf{Lemma 5.3} (Kahan, 1991). Assume that the current instance of Selection is not yet solved. Then there is at least one non-trivial interval \(I_j\) in \(\mathcal{I}\) that contains the target area, i.e., satisfies \(\ell_j \leq \ell_{j_1}\) and \(u_j \geq u_{j_2}\).

\textbf{Proof.} First, assume that the target area is trivial, i.e., \(\ell_{j_1} = u_{j_2} = v^*\). If there is no non-trivial interval in \(\mathcal{I}\) that contains \(v^*\), then the instance is already solved, a contradiction.

Now, assume that the target area is non-trivial. Assume that no interval in \(\mathcal{I}\) contains the target area. Then all intervals \(I_j\) with \(\ell_j \leq \ell_{j_1}\) have \(u_j < u_{j_2}\). There are at least \(i\) such intervals (because \(\ell_{j_1}\) is the \(i\)-th smallest left endpoint), and hence the \(i\)-th smallest right endpoint must be strictly smaller than \(u_{j_2}\), a contradiction to the definition of \(u_{j_2}\).

For \(k = 1\), there is therefore an online algorithm that makes \(\text{opt}_1\) queries: In each round, it determines the target area of the current instance and queries a non-trivial interval that contains the target area. (This algorithm was essentially proposed by Kahan [22] for determining all elements with value equal to \(v^*\), without necessarily determining \(v^*\).) For larger \(k\), the difficulty is how to select additional intervals to query if there are fewer than \(k\) intervals that contain the target area.

The intervals that intersect the target area can be classified into four categories:

1. \(a\) non-trivial intervals \([\ell_j, u_j]\) with \(\ell_j \leq \ell_{j_1}\) and \(u_j \geq u_{j_2}\); they contain the target area;
2. \(b\) intervals \([\ell_j, u_j]\) with \(\ell_j > \ell_{j_1}\) and \(u_j < u_{j_2}\); they are strictly contained in the target area and contain neither endpoint of the target area;
3. \(c\) intervals \([\ell_j, u_j]\) with \(\ell_j \leq \ell_{j_1}\) and \(u_j < u_{j_2}\); they intersect the target area on the left;
Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries

(4) d intervals $[\ell_j, u_j]$ with $\ell_j > \ell_{j_1}$ and $u_j \geq u_{j_2}$; they intersect the target area on the right.

We propose the following algorithm for rounds with k queries: Each round is filled with as many non-trivial intervals as possible, using the following order: first all intervals of category (1); then intervals of category (2); then picking intervals alternatingly from categories (3) and (4), starting with category (3). If one of the two categories (3) and (4) is exhausted, the rest of the k queries is chosen from the other category. Intervals of categories (3) and (4) are picked in order of non-increasing length of overlap with the target area, i.e., intervals of category (3) are chosen in non-increasing order of right endpoint, and intervals of category (4) in non-decreasing order of left endpoint. When a round is filled, it is queried, and the algorithm restarts, with a new target area and the intervals redistributed into the categories.

Proposition 5.4. At the start of any round, $a \geq 1$ and $b \leq a - 1$.

Proof. Lemma 5.3 shows $a \geq 1$. If the target area is trivial, we have $b = 0$ and hence $b \leq a - 1$. From now on assume that the target area is non-trivial.

Let L be the set of intervals in \mathcal{I} that lie to the left of the target area, i.e., intervals I_j with $u_j < \ell_{j_1}$. Similarly, let R be the set of intervals that lie to the right of the target area.

Observe that $a + b + c + d + |L| + |R| = n$.

The intervals in L and the intervals of type (1) and (3) include all intervals with left endpoint at most ℓ_{j_1}. As ℓ_{j_1} is the i-th smallest left endpoint, we have $|L| + a + c \geq i$.

Similarly, the intervals in R and the intervals of type (1) and (4) include all intervals with right endpoint at least u_{j_2}. As u_{j_2} is the i-th smallest right endpoint, or equivalently the $(n - i + 1)$-th largest right endpoint, we have $|R| + a + d \geq n - i + 1$.

Adding the two inequalities derived in the previous two paragraphs, we get $2a + c + d + |L| + |R| \geq n + 1$. Combined with $a + b + c + d + |L| + |R| = n$, this yields $b \leq a - 1$. \hfill ▲

Lemma 5.5. If the current round of the algorithm is not the last one, then the following holds: If the algorithm queries at least one interval of categories (3) or (4), then the algorithm does not query all intervals of category (3) that contain v^*, or it does not query all intervals of category (4) that contain v^*.

Proof. Assume for a contradiction that the algorithm queries at least one interval of categories (3) or (4), and that it queries all intervals of categories (3) and (4) that contain v^*. Observe that the algorithm also queries all intervals in categories (1) and (2), as otherwise it would not have started to query intervals of categories (3) and (4). Thus, the algorithm has queried all intervals that contain v^* and, hence, solved the problem, a contradiction to the current round not being the last one. \hfill ▲

Theorem 5.6. There is a 2-round-competitive algorithm for **Selection**.

Proof. Consider any round of the algorithm that is not the last one. Let A, B, C and D be the sets of intervals of categories (1), (2), (3) and (4) that are queried in this round, respectively. Let A^*, B^*, C^* and D^* be the subsets of A, B, C and D that are in OPT, respectively. By Lemmas 5.2 and 5.3, $|A| = |A^*| \geq 1$. Since the algorithm prioritizes category (1), by Proposition 5.4 we have $|B| \leq |A| - 1$, and thus $|A \cup B| \leq 2 \cdot |A| - 1 = 2 \cdot |A^*| - 1 \leq 2(|A^*| + |B^*|) - 1$.

For bounding the size of $C \cup D$, first note that the order in which the algorithm selects the elements of categories (3) and (4) ensures that, within each category, the intervals that contain v^* are selected first. By Lemma 5.5 there exists a category in which the algorithm does not query all intervals that contain v^* in the current round. If that category is (3), we have $|C| = |C^*|$ and, by the alternating choice of intervals from (3) and (4) starting with (3),...
\(|D| \leq |C|\) and hence \(|C \cup D| \leq 2 \cdot |C^*| \leq 2(|C^*| + |D^*|)\). If that category is (4), we have \(|D| = |D^*|\) and \(|C| \leq |D| + 1\), giving \(|C \cup D| \leq 2 \cdot |D^*| + 1 \leq 2(|C^*| + |D^*|) + 1\). In both cases, we thus have \(|C \cup D| \leq 2(|C^*| + |D^*|) + 1\).

Combining the bounds obtained in the two previous paragraphs, we get \(|A \cup B \cup C \cup D| \leq 2(|A^*| + |B^*| + |C^*| + |D^*|)\). This shows that, among the queries made in the round, at most half are wasted. The total number of wasted queries in all rounds except the last one is hence bounded by \(\text{opt}_1\). Since the algorithm fills each round except possibly the last one and also queries all intervals in \(\text{OPT}_1\), the theorem follows by Proposition \[2.1\].

We also have the following lower bound, which proves that our algorithm has the best possible multiplicative factor. We remark that it uses instances with \(\text{opt}_k = 1\), and we do not know how to scale it to larger values of \(\text{opt}_k\). In its present form, it does not exclude the possibility of an algorithm using at most \(\text{opt}_k + 1\) rounds.

Lemma 5.7. There is a family of instances of Selection with \(k = i \geq 2\) with \(\text{opt}_1 \leq i\) (and hence \(\text{opt}_k = 1\)) such that any algorithm that makes \(k\) queries in the first round needs at least two rounds and performs at least \(\text{opt}_1 + \left\lceil (i-1)/2 \right\rceil\) queries.

Proof. Consider the instance with \(i-1\) copies of interval [0, 3] (called left-side intervals), \(i-1\) copies of interval [5, 8] (called right-side intervals), and one interval [2, 6] (called middle interval). The precise values are always 1 for the left-side intervals, and 7 for right-side intervals. The value of the middle interval depends on the behavior of the algorithm, but in all cases it will be the \(i\)-th smallest element. If the algorithm does not query the middle interval in the first round, then we set its value to 4, so we have \(\text{opt}_1 = 1\) and the algorithm performs at least \(\text{opt}_1 + i = (i + 1) \cdot \text{opt}_1\) queries. So assume that the algorithm queries the middle interval in the first round. If it queries more left-side than right-side intervals, then we set the value of the middle interval to 5.5, so all right-side intervals must be queried (and all queries of left-side intervals are wasted); otherwise, we set the middle value to 2.5. In either case, we have \(\text{opt}_1 = i\) and the algorithm wastes at least \(\left\lceil (i-1)/2 \right\rceil\) queries.

6 Relationship with the Parallel Model by Meißner

In [27] Section 4.5, Meißner describes a slightly different model for parallelization of queries. There, one is given a maximum number \(r\) of batches that can be performed, and there is no constraint on the number of queries that can be performed in a given batch. The goal is to minimize the total number of queries performed, and the algorithm is compared to an optimal query set. The number of uncertain elements in the input is denoted by \(n\). In this section, we discuss the relationship between this model and the one we described in the previous sections.

Meißner argues that the sorting problem admits a 2-query-competitive algorithm for \(r \geq 2\) batches. For the minimum problem with one set, she gives an algorithm which is \(\lceil n^{1/r} \rceil\)-query-competitive, with a matching lower bound. She also gives results for the selection and the minimum spanning tree problems.

Theorem 6.1. If there is an \(\alpha\)-query-competitive algorithm that performs at most \(r\) batches, then there is an algorithm that performs at most \(\alpha \cdot \text{opt}_k + r - 1\) rounds of \(k\) queries. Conversely, if a problem has a lower bound of \(\beta \cdot \text{opt}_k + t\) on the number of rounds of \(k\) queries, then any algorithm running at most \(t + 1\) batches has query-competitive ratio at least \(\beta\).

Proof. Given an \(\alpha\)-query-competitive algorithm \(A\) on \(r\) batches, we construct an algorithm \(B\) for rounds of \(k\) queries in the following way. For each batch in \(A\), algorithm \(B\) simply performs
all queries in as many rounds as necessary. In between batches, we may have an incomplete round, but there are only \(r - 1 \) such rounds.

In view of Meißner’s lower bound for the minimum problem with one set mentioned above, the following result is close to being asymptotically optimal for that problem (using \(\alpha = 1 \)).

Theorem 6.2. If there is an \(\alpha \)-round-competitive algorithm for rounds of \(k \) queries, with \(\alpha \) independent of \(k \), then there is an algorithm that performs at most \(r \) batches with query-competitive ratio \(O(\alpha \cdot n^{\alpha/(r-1)}) \), with \(r \geq \lfloor \alpha \cdot x + 1 \rfloor \) for an arbitrary natural number \(x \). In particular, for \(r \geq \lfloor \alpha \cdot x \rfloor + 1 \), the query-competitive factor is \(O(\alpha) \).

Proof. Assume \(r = \lfloor \alpha \cdot x + 1 \rfloor \) for some natural number \(x \); otherwise we can simply leave some batches unused. Given an \(\alpha \)-round-competitive algorithm \(A \) for rounds of \(k \) queries, we construct an algorithm \(B \) that performs at most \(r \) batches. We group them into sequences of \(\lfloor \alpha \rfloor \) batches. For the \(i \)-th sequence, for \(i = 1, \ldots, x \), algorithm \(B \) runs algorithm \(A \) for \(\lfloor \alpha \rfloor \) rounds with \(k = n^{(i-1)/x} \), until the problem is solved. If the problem is not solved after \(\lfloor \alpha \rfloor \cdot x \) batches, then algorithm \(B \) queries all the remaining intervals in one final batch.

To determine the query-competitive ratio, consider the number \(i \) of sequences of \(\lfloor \alpha \rfloor \) batches the algorithm executes. If the problem is solved during the \(i \)-th sequence, then algorithm \(B \) performs at most \(\lfloor \alpha \rfloor \cdot (\sum_{j=0}^{i-1} n^{j/x}) = \lfloor \alpha \rfloor \cdot \Theta(n^{i/x}) \) queries. (If the problem is solved during the last batch, it performs at most \(n \leq \lfloor \alpha \rfloor \cdot n^{x/x} \) queries.) On the other hand, we claim that, if the problem is not solved after the \((i-1) \)-th sequence, then the optimum solution queries at least \(n^{(i-2)/x} \) intervals. This is because algorithm \(A \) is \(\alpha \)-round-competitive, so whenever the algorithm performs a sequence of \(\lfloor \alpha \rfloor \) rounds for a certain value of \(k \) and does not solve the problem, it follows that the optimum solution requires more than one round for this value of \(k \), and hence more than \(k \) queries. Thus, the query-competitive ratio is at most \(\lfloor \alpha \rfloor \cdot \Theta(n^{1/x}) = \Theta(\alpha \cdot n^{\alpha/(r-1)}) \). \(\blacktriangleright \)

Therefore, an algorithm that uses a constant number of batches implies an algorithm with the same asymptotic round-competitive ratio for rounds of \(k \) queries. On the other hand, some problems have worse query-competitive ratio if we require few batches, even if we have round-competitive algorithms for rounds of \(k \) queries, but the ratio is preserved by a constant if the number of batches is sufficiently large.

7 Final Remarks

We propose a model with parallel queries and the goal of minimizing the number of query rounds when solving uncertainty problems. Our results show that, even though the techniques developed for the sequential setting can be utilized in the new framework, they are not enough, and some problems are harder (have a higher lower bound on the competitive ratio).

One interesting open question is how to extend our algorithms for \textsc{Minimum} to the variant where it is not necessary to return the precise minimum value, but just to identify the minimum element. Another problem one could attack is the following generalization of \textsc{Selection}: Given multiple sets \(S_1, \ldots, S_m \subseteq I \) and indices \(i_1, \ldots, i_m \), identify the \(i_j \)-smallest precise value and all elements with that value in \(S_j \), for \(j = 1, \ldots, m \). It would be interesting to see if the techniques we developed for \textsc{Minimum} with multiple sets can be adapted to \textsc{Selection} with multiple sets.

It would be nice to close the gaps in the round-competitive ratio, to understand if the analysis of Algorithm \[\text{[1]} \] is tight, and to study whether randomization can help to obtain better upper bounds. One could also study other problems in the parallel model, such as the minimum spanning tree problem.
References

1. M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting and selection with imprecise comparisons. *ACM Transactions on Algorithms*, 12(2):19:1–19:19, 2016. doi:10.1145/2703427

2. S. Albers and A. Eckl. Explorable uncertainty in scheduling with non-uniform testing times. In *WAOA 2020: 18th International Workshop on Approximation and Online Algorithms*, Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2021. To appear. Also: arXiv preprint, arXiv:2009.13316, 2020. URL: https://arxiv.org/abs/2009.13316

3. L. Arantes, E. Bampis, A. V. Kononov, M. Letsios, G. Lucarelli, and P. Sens. Scheduling under uncertainty: A query-based approach. In *IJCAI 2018: 27th International Joint Conference on Artificial Intelligence*, pages 4646–4652, 2018. doi:10.24963/ijcai.2018/646

4. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ák, and L. S. Ram. Network discovery and verification. *IEEE Journal on Selected Areas in Communications*, 24(12):2168–2181, 2006. doi:10.1109/JSAC.2006.884015

5. A. Borodin and R. El-Yaniv. *Online Computation and Competitive Analysis*. Cambridge University Press, 1998.

6. M. Braverman and E. Mossel. Sorting from noisy information. *arXiv preprint*, arXiv:0910.1191, 2009. URL: https://arxiv.org/abs/0910.1191

7. R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for geometric computing with uncertainty. *Theory of Computing Systems*, 38(4):411–423, 2005. doi:10.1007/s00454-004-1180-4

8. C. L. Canonne and T. Gur. An adaptivity hierarchy theorem for property testing. *computational complexity*, 27:671–716, 2018. doi:10.1007/s00037-018-0168-4

9. G. Charalambous and M. Hoffmann. Verification problem of maximal points under uncertainty. In T. Lecroq and L. Mouchard, editors, *IWOCA 2013: 24th International Workshop on Combinatorial Algorithms*, volume 8288 of *Lecture Notes in Computer Science*, pages 94–105. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-45278-9_9

10. C. Dürr, T. Erlebach, N. Megow, and J. Meißner. An adversarial model for scheduling with testing. *Algorithmica*, 2020. doi:10.1007/s00453-020-00742-2

11. T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncertainty. In D. Kratsch and I. Todinca, editors, *WG 2014: International Workshop on Graph-Theoretic Concepts in Computer Science*, volume 8747 of *Lecture Notes in Computer Science*, pages 164–175. Springer Berlin Heidelberg, 2014. doi:10.1007/978-3-662-45278-9_9

12. T. Erlebach and M. Hoffmann. Query-competitive algorithms for computing with uncertainty. *Bulletin of the EATCS*, 116:22–39, 2015. URL: http://bulletin.eatcs.org/index.php/beatcs/article/view/335

13. T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for cheapest set problems under uncertainty. *Theoretical Computer Science*, 613:51–64, 2016. doi:10.1016/j.tcs.2015.11.025

14. T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihal’ák, and R. Raman. Computing minimum spanning trees with uncertainty. In S. Albers and P. Weil, editors, *STACS’08: 25th International Symposium on Theoretical Aspects of Computer Science*, volume 1 of *Leibniz International Proceedings in Informatics*, pages 277–288. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2008. doi:10.4230/LIPIcs.STACS.2008.1358

15. T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing shortest paths with uncertainty. *Journal of Algorithms*, 62(1):1–18, 2007. doi:10.1016/j.jalgor.2004.07.005

16. T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the median with uncertainty. *SIAM Journal on Computing*, 32(2):538–547, 2003. doi:10.1137/S0097539701395668

17. J. Focke, N. Megow, and J. Meißner. Minimum spanning tree under explorable uncertainty in theory and experiments. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, and R. Raman, editors, *SEA 2017: 16th International Symposium on Experimental Algorithms*, volume 75 of *Leibniz
For the sake of completeness, we include a proof of the following:
Proposition A.1. Let $W(x) = x \lg x$. It holds that $W^{-1}(x) = \Theta(x/\lg x)$.

Proof. First we claim that $W^{-1}(x) \geq 2$ for $x \geq 2$. It holds that $W^{-1}(x)$ is injective for $x > 0$, because $y \lg y$ is increasing for $y > 1$, and $y \lg y \leq 0$ for $0 < y \leq 1$ but $y \lg y > 0$ for $y > 1$. Thus $W^{-1}(2)$ is unique and it is easy to check that $W^{-1}(2) = 2$. By implicit differentiation,

$$x = W^{-1}(x) \lg W^{-1}(x)$$

$$1 = \left(\lg W^{-1}(x) + \frac{1}{\ln 2}\right) \frac{dW^{-1}(x)}{dx}$$

$$\frac{dW^{-1}(x)}{dx} = \frac{1}{(\lg W^{-1}(x) + \frac{1}{\ln 2})},$$

which is greater than zero for $x > 0$, because $W^{-1}(x) > 1$ for $x > 0$, because $\lg y$ is not defined for $y \leq 0$, and $\lg y \leq 0$ for $0 < y \leq 1$. Therefore $W^{-1}(x)$ is increasing and $W^{-1}(x) \geq 2$ for $x \geq 2$.

Now we prove the asymptotic bounds for $x \geq 2$. First,

$$\frac{x}{\lg x} = \frac{W^{-1}(x) \lg W^{-1}(x)}{\lg(W^{-1}(x) \lg W^{-1}(x))} \leq W^{-1}(x) \frac{\lg W^{-1}(x)}{\lg W^{-1}(x)} = W^{-1}(x),$$

where the inequality holds because $y \lg y \geq y$ for $y = W^{-1}(x) \geq 2$. Furthermore,

$$\frac{2x}{\lg x} = \frac{2W^{-1}(x) \lg W^{-1}(x)}{\lg(W^{-1}(x) \lg W^{-1}(x))} \geq \frac{2W^{-1}(x) \lg W^{-1}(x)}{2 \lg W^{-1}(x)} = \frac{2W^{-1}(x) \lg W^{-1}(x)}{2 \lg W^{-1}(x)} = W^{-1}(x),$$

where the inequality holds because $y \lg y \leq y^2$ for $y = W^{-1}(x) \geq 2$.

Thus, we have shown that $\frac{x}{\lg x} \leq W^{-1}(x) \leq \frac{2x}{\lg x}$ for all $x \geq 2$. ◼

B Selection with Arbitrary Intervals

In this section we prove that Theorem 5.6 also holds for arbitrary intervals.

An instance of the Selection problem is given by a set I of n intervals and an integer i, $1 \leq i \leq n$. The i-th smallest value in the set of n precise values is denoted by v^*. The task is to find v^* as well as identify all intervals in I whose precise value equals v^*.

We allow arbitrary intervals as input: trivial intervals containing a single value, open intervals, closed intervals, and intervals that are closed on one side and open on the other.

Lemma 5.2 and its proof hold also for arbitrary intervals without any changes.

We call the left endpoint ℓ_i of an interval I_i an open left endpoint if the interval does not contain ℓ_i and a closed left endpoint otherwise. The definitions of the terms open right endpoint and closed right endpoint are analogous. When we order the left endpoints of the intervals in non-decreasing order, equal left endpoints are ordered as follows: closed left endpoints come before open left endpoints. When we order the right endpoints of the intervals in non-decreasing order, equal right endpoints are ordered as follows: open right endpoints come before closed right endpoints. Equal left endpoints that are all open can be ordered arbitrarily, and the same holds for equal left endpoints that are all closed, for equal right endpoints that are all open, and for equal right endpoints that are all closed.

Informally, the order of left endpoints orders intervals in order of the “smallest” values they contain, and the order of right endpoints orders intervals in order of the “largest” values they contain. We call the resulting order of left endpoints \preceq_L and the resulting order of right endpoints \preceq_U. We say that a right endpoint u_i, strictly precedes a right endpoint
Let \(I_j \) be the interval with the \(i \)-th smallest left endpoint (i.e., the \(i \)-th left endpoint in the order \(\leq_j \)), and let \(I_j \) be the interval with the \(i \)-th smallest right endpoint (i.e., the \(i \)-th right endpoint in the order \(\leq_j \)). Then it is clear that \(v^* \) must lie in the interval \(I_{ta} \), which we call the target area and define as follows:

- If \(\ell_j \) is an open left endpoint of \(I_{j1} \) and \(u_{j2} \) is an open right endpoint of \(I_{j2} \), then \(I_{ta} = (\ell_j, u_{j2}) \).
- If \(\ell_j \) is an open left endpoint of \(I_{j1} \) and \(u_{j2} \) is a closed right endpoint of \(I_{j2} \), then \(I_{ta} = (\ell_j, u_{j2}) \).
- If \(\ell_j \) is a closed left endpoint of \(I_{j1} \) and \(u_{j2} \) is an open right endpoint of \(I_{j2} \), then \(I_{ta} = [\ell_j, u_{j2}] \).
- If \(\ell_j \) is a closed left endpoint of \(I_{j1} \) and \(u_{j2} \) is a closed right endpoint of \(I_{j2} \), then \(I_{ta} = [\ell_j, u_{j2}] \).

The following lemma was essentially shown by Kahan [22]; for the sake of completeness, we give a proof for arbitrary intervals.

Lemma B.1 (Kahan, 1991; version of Lemma 5.3 for arbitrary intervals). Assume that the current instance of SELECTION is not yet solved. Then there is at least one non-trivial interval \(I_j \) in \(I \) that contains the target area \(I_{ta} \).

Proof. First, assume that the target area is trivial, i.e., \(I_{ta} = \{v^*\} \). If there is no non-trivial interval in \(I \) that contains \(v^* \), then the instance is already solved, a contradiction.

Now, assume that the target area \(I_{ta} \) is non-trivial. Assume that no interval in \(I \) contains the target area. Then all intervals \(I_i \) whose left endpoint is not after \(\ell_j \), in the order of left endpoints must have a right endpoint that strictly precedes \(u_{j2} \). There are at least \(i \) such intervals (because \(\ell_j \) is the \(i \)-th smallest left endpoint), and hence the \(i \)-th smallest right endpoint must strictly precede \(u_{j2} \) in the order of right endpoints, a contradiction to the definition of \(u_{j2} \).

The intervals that intersect the target area can be classified into four categories:

1. a non-trivial intervals that contain the target area;
2. \(b \) intervals that are strictly contained in the target area such that the target area contains at least one point to the left of the interval and at least one point to the right of the interval.
3. \(c \) intervals that contain some part of \(I_{ta} \) at the left end and do not contain some part of \(I_{ta} \) on the right end. Formally, an interval \(I_i \) with closed right endpoint \(u_i \) is in this category if \(u_i \in I_{ta} \), \(I_i \cap I_{ta} = \{v \in I_{ta} \mid v \leq u_i \} \) and \(\{v \in I_{ta} \mid v > u_i \} \neq \emptyset \). Moreover, an interval \(I_i \) with open right endpoint \(u_i \) is in this category if \(u_i \in I_{ta} \) and \(I_i \cap I_{ta} = \{v \in I_{ta} \mid v < u_i \} \neq \emptyset \).
4. \(d \) intervals that contain some part of \(I_{ta} \) at the right end and do not contain some part of \(I_{ta} \) on the left end. Formally, an interval \(I_i \) with closed left endpoint \(\ell_i \) is in this category if \(\ell_i \in I_{ta} \), \(I_i \cap I_{ta} = \{v \in I_{ta} \mid v \geq \ell_i \} \) and \(\{v \in I_{ta} \mid v < \ell_i \} \neq \emptyset \). Moreover, an interval \(I_i \) with open left endpoint \(\ell_i \) is in this category if \(\ell_i \in I_{ta} \) and \(I_i \cap I_{ta} = \{v \in I_{ta} \mid v > \ell_i \} \neq \emptyset \).

We propose the following algorithm for rounds with \(k \) queries. Each round is filled with as many intervals as possible, using the following order: First all intervals of category (1); then intervals of category (2); then picking intervals alternatingly from categories (3) and (4), starting with category (3). If one of the two categories is exhausted, the rest of the \(k \)
queries is chosen from the other category. Intervals of categories (3) and (4) are picked in order of non-increasing length of overlap with the target area. More precisely, intervals of category (3) are chosen according to the reverse of the order \preceq_U of their right endpoints, and intervals of category (4) are chosen according to the order \preceq_L of their left endpoints. When a round is filled, it is queried, and the algorithm restarts, calculating a new target area and redistributing the intervals into the categories.

Proposition B.2 (Version of Proposition 5.4 for arbitrary intervals). At the start of any round, $a \geq 1$ and $b \leq a - 1$.

Proof. Lemma [B.1] shows $a \geq 1$. If the target area is trivial, we have $b = 0$ and hence $b \leq a - 1$. From now on assume that the target area is non-trivial.

Let L be the set of intervals in I that lie to the left of I_{ta} (and have empty intersection with I_{ta}). Similarly, let R be the set of intervals that lie to the right of I_{ta} (and have empty intersection with I_{ta}). Observe that $a + b + c + d + |L| + |R| = n$.

The intervals in L and the intervals of type (1) and (3) include all intervals with left endpoint not after ℓ_{j_1} in the order \preceq_L. As ℓ_{j_1} is the i-th left endpoint in that order, we have $|L| + a + c \geq i$.

Similarly, the intervals in R and the intervals of type (1) and (4) include all intervals with right endpoint not before u_{j_2} in the order \preceq_U. As u_{j_2} is the i-th smallest right endpoint in that order, or equivalently the $(n - i + 1)$-th largest right endpoint in that order, we have $|R| + a + d \geq n - i + 1$.

Adding the two inequalities derived in the previous two paragraphs, we get $2a + c + d + |L| + |R| \geq n + 1$. Combined with $a + b + c + d + |L| + |R| = n$, this yields $b \leq a - 1$. ◀

Lemma [5.5] and its proof hold for arbitrary intervals without any changes.

Theorem B.3. There is a 2-round-competitive algorithm for Selection even if arbitrary intervals are allowed as input.

Proof. The proof is identical to the proof of Theorem 5.6 except that Lemma [B.1] and Proposition [B.2] are used in place of Lemma [5.3] and Proposition [5.4] respectively. ◀