Dual immunocytochemical analysis of oestrogen and epidermal growth factor receptors in human breast cancer

A.K. Sharma¹, K. Horgan¹, A. Douglas-Jones², R. McClelland³, J. Gee³ & R. Nicholson³

Departments of ¹Surgery, ²Pathology and ³Tenuous Cancer Research Centre, University of Wales College of Medicine, Heath Park, Cardiff, CF4 4XN, UK.

Summary Recent studies have demonstrated a consistent inverse relationship between oestrogen receptor (ER) and epidermal growth factor receptor (EGFR) levels in female human breast cancer. Serial cross-section studies have suggested that separate populations of ER+ / EGFR− and ER− / EGFR+ cancer cells exist in tumours deemed by immunocytochemical assay (ICA) to be positive for both. We have developed a dual immunocytochemical assay (D-ICA) that is able to stain for both ER and EGFR on a single 5 μm frozen section sample of breast tissue. Twenty-two samples of female human breast cancer tissue that exhibited positivity for ER and EGFR by ICA using the H222 monoclonal antibody and EGFR-ICA using the EGFR1 monoclonal antibody underwent the dual ICA. There was a significant correlation in receptor positivity between the single and dual assays for both ER (r = 0.801, P < 0.001) and EGFR (r = 0.831, P < 0.001). Individual cancer cells exhibited one of three staining patterns: nuclear staining only (ER+/EGFR−), membrane-associated and cytoplasmic staining only (ER−/EGFR+) or no staining (ER−/EGFR−). No cancer cells exhibited both nuclear and membrane/cytoplasmic staining. This is the first description of a simultaneous dual immunocytochemical assay system for ER and EGFR in clinical breast cancer specimens. The results suggest that ER and EGFR expression are mutually exclusive within an individual breast cancer cell in vivo with separate populations of ER+/EGFR− cells, ER−/EGFR+ cells and ER−/EGFR− cells coexisting.

Oestrogens are essential factors in the growth and development of normal breast tissue (Laron et al., 1989) and act via specific nuclear receptors (ERs) (Gorski et al., 1986). In the normal breast oestrogens act as mitogens and also induce the progesterone receptor, which is required for development and differentiation (Horwitz et al., 1985). However, it has long been known that oestrogens have an important role in the development and subsequent progression of human breast cancer (Seibert & Lippman, 1982). More recently evidence has emerged suggesting that oestrogenic effects are mediated to some degree by peptide growth factors and their receptors (Lippman & Dickson, 1989). These peptide growth factors along with their receptors are now being increasingly recognised for the role that they play in the growth and differentiation of both normal (Rowe & Friesen, 1984) and malignant tissue (Lippman et al., 1988). Of these, the epidermal growth factor receptor (EGFR) is of particular interest in human breast cancer. Human EGFR is a high-affinity transmembrane receptor glycoprotein with a molecular weight of 170,000 (Cohen et al., 1982). It consists of an external ligand-binding domain, a transmembrane section and a cytoplasmic or internal domain that contains a tyrosine-specific protein kinase (Downward et al., 1984).

Many studies in recent years have shown an inverse relationship between ER and EGFR in female human breast cancer (Sainsbury et al., 1985; Toi et al., 1989; Lewis et al., 1990). EGFR expression in human breast cancer is associated with a number of features of poor prognosis, including high tumour grade (Hainsworth et al., 1991), lymphatic invasion (Toi et al., 1989, 1990), lymph node involvement (Hainsworth et al., 1991) and markers of increased cellular proliferation such as Ki-67 (Toi et al., 1990). It has also been shown to be significantly associated with resistance to hormone therapy (Nicholson et al., 1990), reduced relapse-free period (Lewis et al., 1990; Nicholson et al., 1990) and reduced overall survival (Nicholson et al., 1990). There are some studies that dispute these findings, and these have been extensively reviewed elsewhere (Klijn et al., 1992).

This inverse relationship with all its implications for prognosis has been the subject of intense study. Initial investigations involved the use of biochemical ligand-binding assays and revealed that ER could be detected in 60–80% of human breast cancers (McGuire et al., 1975) and EGFR in 45% (Klijn et al., 1992). These studies involved the homogenisation of sample tissue and thus were unable to address the issues of tumour heterogeneity, such as which cells were receptor positive (e.g. benign or malignant) or what proportion of cancer cells were receptor positive. The development of monoclonal antibodies and immunocytochemical assays specific for ER (King & Greene, 1984) and EGFR (Waterfield et al., 1982) on frozen sections addressed these issues. The results of the ER immunocytochemical assay (ER-ICA) using the monoclonal antibody H222 shows high concordance with the biochemical ligand-binding assays (McClelland et al., 1986). ER is immuno-localised in the nuclei of target cells (King & Greene, 1984; King et al., 1985), and human breast cancer is found to have a heterogeneous population of ER-positive cells and ER-negative cells (King et al., 1985). The EGFR immunocytochemical assay (EGFR-ICA) using the monoclonal antibody EGFR1 (Waterfield et al., 1982) localises EGFR on the cellular membrane and this also displays a heterogeneous distribution (Toi et al., 1989).

Studies have tried to examine the heterogeneous distribution of ER and EGFR at the individual cellular level by examining serial cross-sections of frozen breast cancer (Toi et al., 1989). The results suggested that EGFR was selectively stained on ER-negative cells and cell groups in tumours categorised to be positive for both. However, the technique of taking serial cross-section samples is open to the criticism that the same cell or cell groups are not being examined in different sections. To address this issue we have developed a dual immunocytochemical assay (D-ICA) that is able to stain for both ER and EGFR on a single 5 μm frozen section sample of tumour cell lines (Sharma et al., 1994). This assay was able to detect all four phenotypes with respect to ER and EGFR (ER+/EGFR−, ER−/EGFR+, ER−/EGFR− and ER+/EGFR+). In the present study we have modified this assay to examine female human breast cancers that have been categorised to be positive for both receptors by ER-ICA and EGFR-ICA.

Correspondence: A.K. Sharma.
Received 8 June 1993; and in revised form 19 January 1994.
Materials and methods

Materials

The tissues used for analysis were obtained from 22 patients who had previously been categorised to be positive for ER and EGFR by immunocytochemical assay. Of the 22 patients (age range 35–81 years), nine were premenopausal and 13 were post-menopausal (Table I). All the samples were obtained from primary breast cancer patients undergoing mastectomy or wide local excision or from excision of locoregional recurrences in patients who had not received any form of adjuvant therapy.

The samples were snap frozen within 30 min of excision in liquid nitrogen or dry ice. They were then placed in individual flexible plastic moulds that contained a semi-serviscous freezing compound (OCT, Miles Laboratories, Naperville, IL, USA), snap frozen to −70°C in dry ice and stored at −70°C. Five micron cryostat sections were cut and thaw mounted onto poly-l-lysine tissue adhesive-coated glass slides and immediately either underwent the fixation procedure for the ER-ICA, EGFR-ICA and D-ICA or were stained with haematoxylin–eosin for histological examination. All 22 samples were deemed histologically assessable on the haematoxylin–eosin preparation. Repeat ER-ICA and EGFR-ICA and the D-ICA were performed on all 22 samples.

ER-ICA

The cryostat sections were fixed in 3.7% formaldehyde–PBS (0.01 M phosphate-buffered saline) for 15 min, washed twice for 5 min in PBS, fixed at −10°C in absolute methanol for 6 min followed by immersion in acetone at −10°C for 3 min then washed again in PBS (2 × 5 min). The sections were then stored −20°C in a glycerol–sucrose specimen storage medium for up to 7 days prior to staining. The reagents used for staining were obtained in kit form (ER-ICA monoclonal, Abbott Laboratories, North Chicago, IL, USA). After blocking non-specific binding with normal goat serum (NGS, 15 min), the staining procedure involved sequential incubations, with intervening PBS washes (2 × 5 min), with rat monoclonal anti-ER or control normal rat IgG (30 min), bridging goat anti-rat IgG (30 min), rat peroxidase–anti-peroxidase complex (30 min) and dianinobenzidine (DAB) hydrogen peroxide–chromogen substrate solution (6 min). The indirect peroxidase–anti-peroxidase procedures of the assay are fully described elsewhere (Walker et al., 1988). The slides were then rinsed in deionised water (2 × 5 min), counterstained with 1% aqueous methyl green (5 min) washed again in deionised water (1 min), dehydrated in graded ethanol (50%, 70%, 90%, 100%) and cleared in xylene and coverslipped using a xylene-soluble mountant.

Parallel control sections using normal rat IgG antiserum were run to check for non-specific staining. Inclusion of control slides of MCF-7 cells enabled inter-assay variations to be monitored. Brown nuclear staining is observed in ER-positive cells following the ER-ICA.

EGFR-ICA

The cryostat sections were air dried for 1 h prior to storage in a sealed box at −70°C for up to 7 days prior to assay. The slides were rehydrated in PBS followed by fixation in 50:50 chloroform:acetone at 4°C (10 min) followed by washing in PBS (2 × 5 min). The sections were then incubated with 10% normal goat serum (NGS) in PBS to block non-specific antibody binding. Excess serum was removed and mouse monoclonal primary anti-EGFR antibody (EGFR1, Amersham International, UK) or a control mouse anti-sheep erythrocyte antibody (MASE, seraLab, UK) was added (60 min). EGFR1 was added at 1:1000 with 10% NGS and 5% normal human serum (NHS) in PBS. This monoclonal antibody detects the native folded external domain of human EGFR and does not com-
(mean = 49%, Figure 1 and Table I). There was marked heterogeneity in staining intensity between individual cancer cells.

Similarly, red membrane-associated and cytoplasmic EGFR staining was also immunolocalised in all 22 cases. Positivity ranged from 2% to 70% (mean = 21%, Figure 2 and Table I). Heterogeneity between individual cancer cells was less apparent than with ER staining. No staining was observed on the control slides in either assay.

D-ICA

Using the dual ER and EGFR assay, the patterns of immunostaining were essentially similar to those previously described using the single-assay procedures. Thus, brown nuclear ER staining was immunolocalised in all 22 cases and displayed a similar heterogeneous pattern to that seen following the ER-ICA (Figure 3), with positivity ranging from 10% to 90% (mean 46.5%, Figure 1 and Table I). Red membrane-associated and cytoplasmic EGFR staining was immunolocalised in 20/22 (90.9%) cases (Figure 4) with positivity ranging from 0% (two cases) to 80% (mean = 19.5%, Figure 2 and Table I). There was a significant correlation between the single and dual assays in determining both the ER content ($r = 0.801$, $P < 0.001$) and the EGFR content ($r = 0.831$, $P < 0.001$). There was no staining on the control slides.

Three staining patterns were seen in our samples in the D-ICA.

1. Brown nuclear staining with no membrane/cytoplasmic staining (ER+/EGFR− cells).
2. Red membrane/cytoplasmic staining with no nuclear staining (ER−/EGFR+ cells).
3. No nuclear or membrane/cytoplasmic staining (ER−/EGFR− cells).

No cells displaying both nuclear and membrane/cytoplasmic staining were identified (Figure 5). Summation of the proportion of cells expressing either ER or EGFR never exceeded 100% in either the single or dual assays for any individual patient (Table I).

In this small select group of double-positive patients we found no significant inverse linear relationship between ER and EGFR in either the single assays (Figure 6, $r = -0.163$) or the dual assay (Figure 7, $r = -0.249$). With the exception of two patients EGFR positivity did not exceed 40%.

Discussion

The present study is the first to describe a dual immunocytochemical assay that will stain for both ER and EGFR on single 5 μm frozen section samples of clinical human breast cancer specimens. The results of staining for ER and EGFR following the D-ICA are similar to those achieved in the two single assays of proven prognostic significance (McClelland et al., 1986; Lewis et al., 1990) with only small variations in the proportion of tumour cells being detected as positive. Such relatively minor variations may result from observer errors, which are inherent in immunocytochemical procedures (McClelland et al., 1991), or may be due to tumour heterogeneity, which is well documented (Walker et al., 1988).

Using the dual assay, three phenotypes have been observed in our series of 22 ER-positive/EGFR-positive samples; ER+/EGFR− cells, ER−/EGFR+ cells and ER−/EGFR− cells. Importantly, no ER+/EGFR+ cells were identified, despite the proven ability of this assay to detect such cells when they have been artificiially constructed by transfecion procedures (Sharma et al., 1994). These data suggest that ER and EGFR are mutually exclusive within an individual cancer cell in vivo, a conclusion that is supported by studies examining the expression of these receptors in serial cross-section analysis (Toi et al., 1989). An alternative explanation is that ER+/EGFR+ cells were not detected because of the relatively small number of cases examined. However, it is difficult to accrue large numbers of double-positive tumours as these represent between only 4% (Bilous et al., 1992) to

![Figure 1](image1.png)
Figure 1 ER levels in the single and dual immunocytochemical assays are significantly correlated ($r = 0.801$, $P < 0.001$). The bars represent mean receptor positivity.

![Figure 2](image2.png)
Figure 2 EGFR levels in the single and dual assays are also significantly correlated ($r = 0.831$, $P < 0.001$). Mean receptor positivity is represented by the bars.

Case	Age (years)	Menopausal status	ER (%)	EGFR (%)	Dual assay (%)
1	35	Pre	50	30	50
2	36	Pre	65	30	60
3	40	Pre	30	10	30
4	43	Pre	50	30	30
5	43	Pre	40	10	70
6	43	Pre	40	10	30
7	45	Pre	60	5	70
8	45	Pre	20	5	30
9	48	Pre	10	10	20
10	52	Post	30	60	20
11	58	Post	50	10	50
12	59	Post	90	5	90
13	59	Post	50	10	50
14	61	Post	50	10	50
15	61	Post	30	70	20
16	62	Post	60	5	60
17	63	Post	60	40	40
18	65	Post	50	20	50
19	67	Post	50	30	50
20	72	Post	80	20	80
21	74	Post	50	40	50
22	81	Post	60	2	60

Table 1 Patient data and results
37% (Bevilacqua et al., 1990) of primary breast cancers using immunocytochemical analysis.

Although the exact mechanisms responsible for final expression of ER or EGFR are not fully understood, investigations in clinical breast cancer specimens have shown gene amplification with or without rearrangement to be a relatively rare event (Ro et al., 1988; Watts et al., 1992) and is thus unlikely to significantly contribute to an altered phenotype. In contrast to this, in vitro studies on human breast cancer cell lines, while confirming the inverse relationship between ER and EGFR mRNA and protein expression (Lee et al., 1990), have also shown that treatment of ER-positive cell lines by progestins (Ewing et al., 1989) and 12-O-tetradecanoyl phorbol 13-acetate (Lee et al., 1989) increases EGFR binding and mRNA levels with concomitant decline in ER binding and mRNA. These data suggest that final receptor expression may be determined by direct regulation of one receptor gene by the product of the other and/or reciprocal control by a common regulator that has opposite effects on these receptors at the transcriptional or post-transcriptional level. The degree to which these findings can be applied to the in vivo situation is unclear, although it has been shown that EGFR mRNA is found more commonly in ER-negative than in ER-positive breast cancer biopsies (Travers et al., 1988).

Figure 3 ER-positive/EGFR-negative cells in the D-ICA displaying brown nuclear staining without any membrane-associated or cytoplasmic staining (original magnification × 990).

Figure 4 ER-negative/EGFR-positive cells in the D-ICA displaying red membrane-associated and cytoplasmic staining alone without any nuclear staining (original magnification × 990).

Figure 5 Photograph demonstrating separate populations of ER-positive/EGFR-negative cells a, and ER-negative/EGFR-positive cells b, coexisting within an individual human breast cancer following the D-ICA. No ER-positive/EGFR-positive cells were observed in the specimens examined (original magnification × 990).

Figure 6 Relationship between ER and EGFR in the single assays.

Figure 7 Relationship between ER and EGFR in the D-ICA.
Thus, although these cells are immunocytochemically ER negative, they are capable of expressing ER given appropriate growth conditions. Similarly, this phenotype is also found in normal breast tissue and in overtly ER positive tumours, where their presence can be associated with endocrine sensitivity (Walker et al., 1988). This has led to the suggestion that they may represent a resting cell population (Nicholson, 1992).

Although, as yet, no single robust theory has evolved to fully explain the inverse relationship found between ER and EGFR, it is evident that the emergence of wholly ER−/EGFR+ tumours heralds a poor outlook for the breast cancer patient with poor response to endocrine measures (Nicholson et al., 1990). In this light, we are currently applying our D-ICA to samples before, during and at the time of relapse from endocrine therapy to examine the expression of ER+/EGFR−, ER−/EGFR+ and ER−/EGFR− phenotypes. These studies may aid our understanding of the cellular mechanisms leading to hormone dependence and endocrine resistance.

References

BEVILACQUA, P., GASPARINI, C., DAL-FIOR, S. & CORRODE, G. (1990). Immunocytochemical determination of epidermal growth factor receptor with monoclonal EGFFR antibody in primary breast cancer patients. Oncology, 47, 313–317.

BILOUS, M., MILLIKEN, J. & MATHUS, J.-M. (1992). Immunocytochemistry and in situ hybridisation of epidermal growth factor receptor and relation to prognostic factors in breast cancer. Eur. J. Cancer, 28, 1033–1037.

BOLUER, P., MIRALLES, F., RODRIGUEZ, A., VAZQUEZ, C., LLUCH, A. GARCIA-CONE, J. & JOLIOS, T. (1990). Epidermal growth factor receptor in human breast cancer: correlation with cytotoxic and nuclear ER receptors and with biological and histological tumor characteristics. Eur. J. Cancer, 26, 283–290.

BOUZUBAR, N.F.H. (1991). Studies of hormone and antihormone action in early breast cancers using immunocytochemical techniques. Ph.D thesis, University of Cardiff.

CANTER, S. & USHER, H. STOCHER, C. & THINKER, M. (1982). A native 170,000 epidermal growth factor receptor-kines complex from shed plasma membrane vesicles. J. Biochem., 257, 1235–1531.

DE LARCO, J.E. & TODARO, G.J. (1980). Sarcoma growth factor (SGF): specific binding to epidermal growth factor (EGF) membrane receptors. J. Cell Physiol., 102, 267–277.

DOWNWARD, J., PARKER, P. & WATERFIELD, M.D. (1984). Autophosphorylation sites on the epidermal growth factor receptor. Nature, 311, 483–485.

ewing, T.E., MURPHY, J.L., NG, M.-L., PANG, G.Y.N., LE, L.S.L., WATTS, C.K.W. & SUTHERLAND, R.L. (1989). Regulation of epidermal growth factor receptor by progestins and glucocorticoids in human breast cancer cell lines. Int. J. Cancer, 44, 744–752.

GORSKI, J., WELSHONS, W.V., SAKAI, D., HANSEN, J., WALENT, J., KASSIS, J., SHULL, J., STACK, G. & CAMPEN, C. (1986). Evolution of a model of oestrogen action. Prog. Horm. Res., 2, 292–329.

HAINSWORTH, P.J., HENDERSON, M.A., STILLWELL, R.G. & BENNETT, R.C. (1991). Comparison of EGF, c-erbB2 and ras p21 immunohistochemistry as prognostic markers in primary breast cancer. Eur. J. Surg. Oncol., 17, 9–15.

HÖRNTZ, I. & SEDLAG, C. D'ARVILLE, C.N. (1985). Progestin action and progesterone receptor structure in human breast cancer: a review. Rev. Prog. Horm. Res., 41, 249–316.

KING, W.J. & GREENE, G.L. (1984). Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature, 307, 745–747.

KING, W.J., DESOMBRE, E.R., JENSEN, E.V. & GREENE, G.L. (1985). Comparison of immunocytochemical and steroid-binding assays for estrogen receptor in human breast tumors. Cancer Res., 45, 293–304.

KLIN, J.G.M., BERNS, P.M.J.J., SCHMITZ, P.M. & FOEKENS, J.A. (1992). The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocrine Res., 13, 3–17.

FARADON, J., TOGGE, N., NIMOTO, M. & HATTORI, T. (1989). Immunocytochemical and biochemical analysis of epidermal growth factor expression in human breast cancer tissues: Relationship to estrogen receptor and lymphatic invasion. Inv. J. Cancer, 43, 220–225.

FARADON, M., NAKAMURA, T., MUKAIDA, H., SUHEIRO, S., WADA, T., TOGE, N., NIMOTO, M. & HATTORI, T. (1989). Immunocytochemical and biochemical analysis of epidermal growth factor expression in human breast cancer tissues: Relationship to estrogen receptor and lymphatic invasion. Inv. J. Cancer, 43, 220–225.

FARADON, M., NAKAMURA, T., MUKAIDA, H., WADA, T., OSAKI, A., YAMADA, H., TOGE, M., NIMOTO, M. & HATTORI, T. (1989). Relationship between epidermal growth factor status and various prognostic factors in human breast cancer. Cancer, 65(8), 1980–1984.

FARADON, M., NAKAMURA, T., MUKAIDA, H., WADA, T., OSAKI, A., YAMADA, H., TOGE, M., NIMOTO, M. & HATTORI, T. (1989). Relationship between epidermal growth factor status and various prognostic factors in human breast cancer. Cancer, 65(8), 1980–1984.
ERs AND EGFRs IN HUMAN BREAST CANCER

TRavers, M.T., Barrett-Lee, P.J., Berger, U., Luqmani, Y.A., Gazet, J.-C., Powles, T.J. & Coombes, R.C. (1988). Growth factor expression in normal, benign and malignant breast tissues. Br. Med. J., 296, 1621-1624.

Walker, K.J., Bouzubar, N., Robertson, J., Ellis, I.O., Elston, C.W., Blamey, R.W., Wilson, D.W., Griffiths, K. & Nicholson, R.I. (1988). Immunocytochemical localization of estrogen receptor in human breast tissue. Cancer Res., 48, 6517-6522.

Waterfield, M.D., Mayes, E.L.B., Stroobant, P., Bennett, P.L.P., Young, S., Goodfellow, P.N., Banting, G.B. & Ozanne, B. (1982). A monoclonal antibody to human epidermal growth factor receptor. J. Cell Biochem., 20, 149-161.

Watts, C.K.W., Handel, M.L., King, R.J.B. & Sutherland, R.L. (1992). Oestrogen receptor gene structure and function in breast cancer. J. Steroid Biochem. Mol. Biol., 41, 529-536.