Abstract

Objective: Physicians in postgraduate training (PPT) in General Practice (GP) typically have very little interaction with their peers, as there is usually only one resident physician working in their respective department or GP office at a given time. Therefore, the online platform KOLEGEA, presented here, aims to support postgraduate training in general practice (PT in GP) in Germany through virtual interaction.

Methodology: In 2012, the interdisciplinary research project KOLEGEA set up an online platform that any physicians in PT in GP can use for free after registration with their unitary continuous education number (Einheitliche Fortbildungsnummer, EFN). It offers problem-based learning and allows to discuss self-published anonymized patient cases with the community that can be classified and discussed with experienced mentors (specialists in general practice - GPs) in small virtual groups.

Results: An anonymous online survey carried out as part of the 2014 project evaluation showed a good acceptance of the platform, even though shortage of time was mentioned as a limiting factor for its use. Data analysis showed that KOLEGEA was used by PPT in GP in all federal states. Patterns of passive use were predominant (90%). This report also describes the further development of the platform (in 2015 and 2016) that integrates an activity monitor as part of a gamification concept.

Conclusions: Due to a low response rate of the 2014 online survey and the preliminary evaluations of usage patterns we could identify only initial trends regarding the role of KOLEGEA in supporting PPT. The platform was perceived as a helpful supplement to better structure PT in GP.

Keywords: Postgraduate training, general practice, online platform, case-based learning, social web, Physician Competency Framework

1. Introduction

A wide range of initiatives aiming to increase the number of young professionals choosing the GP specialization are currently under development, as a response to the growing shortage of GPs, especially in rural regions. Support measures for general practice are currently being initiated in Health Policy [1] through bill for the provision of healthcare service (Versorgungssträkungsgesetz). In the future, PT in GP is likely to be funded through closer cooperation between the association of statutory health insurance physicians (Kassenärztliche Vereinigungen), the regional medical chambers (Landesärztekammern), The German Hospital Federation (Deutsche Krankenhaus-gesellschaft) and the university-based institutes of GP education [2].

PPT in GP usually have very little interaction with their peers since there is often only one physician in PT working at a given time in their respective department or GPs office.

Modern forms of communication can improve structural conditions and offer new opportunities for further education and training. The internet in general and network-based learning in particular play an important role in making new knowledge available to both educators and learners [3]. Web 2.0 has already started shaping GP undergraduate medical studies. Looking towards the future, it is important to make more explicit use of the unique possibilities of the internet, not only for medical teaching [4], but also for PT.

This article presents an innovative project that supports PT in GP by the means of an online platform. Virtual knowledge exchange [5], [6] is seen as a promising complementary addition to existing training offers that foster PT. Young physicians, are familiar with the didactic approach of problem-oriented and self-directed learning by means of clinical case studies, which KOLEGEA is modeled on. Following this well-established learning approach [7], the online platform for "Cooperative Learning and Mobile Communities for Continuing Professional
2. Basis of the KOLEGEA platform

The first step was to design a media-didactic concept based on a quantitative survey of 73 physicians in PT and a focus group. Taking into account the needs of the target group, the KOLEGEA concept was deployed as an online platform. A pilot version was used for three months by a small closed group of users (20 PPT and 1 mentor) and was evaluated at the end of the period [8]. The platform was optimized in terms of design, structure and technology based on the experience of the initial users and the findings of the evaluation. KOLEGEA has been online at https://beta.kolegea.org/kolegea since September 2013 and can be used nationwide for free by PPT or licensed physicians [5]. Users can register with their EFN-continuous education number regardless of where they are based. The platform is the first German online portal that allows for a virtual exchange of clinical-case-based knowledge. Registered members can anonymize patient cases they encountered in their doctor's office and share these with the KOLEGEA community after having formulated a specific question in regards to the case. This allows physicians to discuss their current patients with experienced GPs and other PPT, to gain new insights, perspectives to find new solutions or learn approaches from each other.

The structure of the case presentations on KOLEGEA is based on the usual structure of clinical practice (anamnesis, examination, diagnostic testing, differential diagnosis, procedure). Multimedia data such as photos, ECG, X-rays, videos or sound recordings can be added to the clinical case description. The case entries can also be linked to relevant clinical guidelines, journal articles or helpful internet links (see Figure 1). Initially, 20 structured patient cases were published on the platform by experienced GPs in order to motivate PPT to publish their own clinical cases.

Experienced GPs support PPT by being temporarily active as “mentors” on the platform. Initial needs assessment showed that PPT consider support by GPs mentoring a helpful training supplement. Mentors comment on the described cause for consultation, on possible differential diagnosis and provide the perspective on the clinical approach from a specialist point of view.

To stimulate engagement and boost the number of activities on the platform, the users receive an automatic weekly notification e-mail with a list of the latest activities conducted on the platform.

3. Evaluation of the original platform: online user survey

In an anonymous online survey in June 2014, all registered users (n=198) were asked about their platform usage behavior, as well as their perceived strengths and limitations of the application. The survey collected quantitative and qualitative user feedback on relevant quality features using 5-stage Likert scales and open questions, e.g. perceived usefulness, ease of use, satisfaction and enjoyment of use. Furthermore, the survey also collected feedback about usage behavior and experience, as well as ideas regarding future application possibilities for the platform. Approximately 10% of registered users (17 participants) completed the evaluation [8].

Descriptive results showed that users who took part in the survey used the internet for approximately two hours a day (SD=1.74, range 0.5–7.0) and logged into the platform on average five times per month (SD=7.22, range 1–30). The majority of respondents (88.2%) mainly used KOLEGEA during their leisure time. The main limiting factor for use was "professional life leaves too little time for self-study", followed by "lack of participation of other participants" and "technical difficulties in use". For half of the respondents, the strongest motivation to engage on the platform was the weekly notification email. Reasons for passive behavior (i.e. not engaging in discussions of cases) were: “lack of time”, "cumbersomelessness of use" and being a "new platform member" as well as "low involvement of the other users". The functions for creating and discussing cases were perceived as particularly important. 75% of participants also found mentoring by experienced GPs to be helpful. 88.3% considered the KOLEGEA platform to be a "useful supplement to existing e-learning courses available online" [8].

Users particularly appreciated the opportunity for professional exchange and relevance of the presented patient cases for PT. Furthermore, the target group appreciated the possibility to be anonymous. Suggestions for change and/or improvement were related to the design (clarity of structure of the platform and categorization of cases) and more engagement from other users, including peers and mentors. It is important to note that the survey response rate was low, and that therefore only limited statements can be made regarding usage patterns on the platform.

4. Evaluation of the original platform: anonymous database analysis

In December 2015 an anonymous database analysis of KOLEGEA platform user behavior was conducted. At that time, there were 298 registered users from 16 different countries. This corresponds to the usual degree of dissemination of new online platforms in the initial establishing phase [9]. Almost half of the users chose an "anonym-
ous" username. Only 31% of users indicated their gender. The non-sharing of personal data points to KOLEGEA users’ need for anonymity. The vast majority of users were in the early stage of their careers, with many users doing their PT in Berlin (28%), Bavaria (16%), Baden-Württemberg (11%) and North Rhine-Westphalia (7%) [10].

Over 100 clinical cases were discussed during the designated research period [8], [11]. The vast majority of KOLEGEA users were passive readers who did not actively participate or publish any patient case entries. A few individual users (“lead users”) on the other hand were very active, making the majority of new patient cases entries or participating in discussion of other cases. This behavior reflects a known pattern of activity in online communities that describes the ratio of active users (about 10%) to passive users (about 90%) [12].

5. Further development of the KOLEGA platform

Based on this evaluation, the platform was further developed with a follow-up financial grant by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF). The new focus was to improve the contents structure according to medical competencies, as well as integrating gamification (game-based features) into the platform.

5.1 Physician Competency Framework in General Practice and CanMEDS

The standard medical procedure in patient consultation in GP is based on the patient’s motives of consultation. Special attention was therefore paid to this aspect when further developing the KOLEGA platform. The Physician Competency Framework General Practice (Kompetenzbasiertes Curriculum Allgemeinmedizin, KCA) [http://www.kompetenzzentrum-allgemeinmedizin.de/public/curriculum.shtml], which is currently used in Germany, formed the basis for the further conceptual development of the platform. The KCA lists 78 reasons to seek consultation corresponding to twelve medical areas. In order to improve the platform, the motives of consultation from already published cases were analyzed and matched with the KCA list. Finally, the list was condensed to a manageable number of 73 main reasons for consultation. Table 1 shows a side-by-side comparison of the medical areas as defined by the KCA and those previously included in the KOLEGA platform.

The early inclusion of competency-based training in PT for GP has been receiving more attention in the later years. [13], [14]. The Canadian CanMEDS competency-based framework (last updated in 2014 [15], [16]) was used as an effective guiding concept in the further development of KOLEGA.

In the CanMEDS framework, knowledge, skills and abilities are consolidated into six core competencies in addition to the medical expertise and organized thematically around seven key physician roles: medical expert, communicator, collaborator, manager, health advocate, scholar and professional. The six core competencies were also incorporated into the KCA (see Figure 2).

5.2 Integrating gamification

In order to make it more attractive to users and increase the end-user motivation, game-based features (also called gamification elements) were integrated into the further development of the platform. Gamification is the application of game-design elements and game principles in non-game contexts. This includes, for example, principles of rewards and competition [17] introduction of incentives to motivate learners and to promote targeted learning [18], [19].
Observations in medical contexts [20], [21] have shown that this can boost users’ motivation and increase their level of engagement on a given platform. It has also been observed and ascertained that introducing incentive systems effectively boosts the generation and sharing of content [22]. Further, the feeling of belonging to a social group and the perception of a personal benefit is described as a relevant factor [23], [24].

There are two main types of gamification:

1. using different forms of point systems and reputation systems (points, medals, badges, status levels, etc.) that place the focus on personal rewards or comparisons with other users.

Table 1: Comparison of 12 medical fields: KOLEGEA and KCA

ICONS	**KOLEGEA** Medical fields	**KCA** Medical fields
	Metabolism, nutrition and digestive system	Metabolism, nutrition and digestive system
	+ emergency - metabolism, nutrition and digestive system, abdomen	
	Respiratory organs and respiratory system	Respiratory organs and ears
	Emergency - Respiration	
	Eyes, ear, nose, mouth	Eyes and nervous system
	Emergency - eyes	
	Cardiovascular system	Cardiovascular system
	Emergency - cardiovascular system	
	Musculoskeletal system, pain, injury, trauma	Musculoskeletal system, pain, injury
	Emergency - trauma	
	Nervous system and psyche	
	Emergency- nervous system and psyche	
	Kidney and urinary tract	
	Sexuality, family planning, sexual organs, gynecology, Emergency - gynecology	Sexuality, family planning, sexual organs, and urinary tract
	Skin	Skin
	Feeling, thinking, psychosocial issues, changes in consciousness	Changes in consciousness, thinking and feeling - psychosocial issues
	Children	Special issues in care of children and adolescents
	Geriatrics, chronic illness	Care of chronically ill and elderly patients
		Palliative medicine
		Emergencies

Figure 2: The 6 key competences on KOLEGEA (activity monitor, 1st part)
online-learning offers as well as the possibility of being services and appreciate the flexible time planning that shown that GPs are generally interested in e-learning better structure PT in GP. International studies have trends as to whether KOLEGEA benefit the PT process. Preliminary evaluations of usage patterns reveal only first the low response rate of the 2014 online survey and the activities conducted online represent only a simple estimate of the user’s expertise on a particular competence, and this has to be distinguished from actual knowledge and skills in real practice (see Figure 2). Case-based activity (i.e. sharing a patient case from one’s practice and participating in the discussion about a case) is visualized as different hexagonal “medals” bearing medical symbols and represent the twelve medical areas (see Figure 3). For this purpose, the Institute of General Practice of the Charité (Institut für Allgemeinmedizin der Charité) slightly adapted the twelve medical areas of the KCA. The different colors of the inner surface of the medal (three levels: bronze, silver, and gold) automatically show the level of activity corresponding to the medical expertise area that each user has achieved on the platform. The golden medal indicates a very high KOLEGEA activity in a specific medical area. The progress in the Expertise for a given medical area is visualized in three levels: low, medium, and high with a different medal color corresponding to each level. Based on the individual activity profile, KOLEGEA makes suggestions promoting specific activities (e.g., “Share another case in the medical field ‘geriatrics, chronic illness’”).

6. Discussion

The low response rate of the 2014 online survey and the preliminary evaluations of usage patterns reveal only first trends as to whether KOLEGEA benefits the PT process. The platform was considered a helpful supplement to better structure PT in GP. International studies have shown that GPs are generally interested in e-learning services and appreciate the flexible time planning that online-learning offers, as well as the possibility of being able to build on their own self-motivation. In Anglo-Saxon countries in particular, e-learning programs are already popular with GPs [25]. KOLEGEA was successfully established as the first online platform for Germany that is specifically tailored to the needs of PPT in GP [26]. KOLEGEA’s pedagogical approach and additional benefit is based on supporting online interaction among scholars in a learning community as a “community of practice” [27]. Additionally, the KOLEGEA approach is based on building a collection of learning objects, such as the patient cases and discussions about these, generated and provided by the learners themselves [28], [29]. In addition to contributing to the deepening of users’ medical expertise, the platform’s structure can also support strengthening the core GP competencies [30], [31], [32]. Promoting the competency-based model will also become more important for GPs in academia and mentors and GPs in charge of PT [33]. An important aspect is the chosen anonymity of most KOLEGEA users on the platform to remain unidentifiable by other users (PPT and GPs). A further development could include the regionalization of virtual groups, allowing users to engage in direct interaction in regional groups alongside the anonymous online communication with the whole community. With regards to existing PPT training networks (Weiterbildungswerk) as well as the imminent establishment of competence centers new potential for usage emerge. Interaction in closed-groups with regional or local mentors within a specific competence-center or Institute of General Practice could be an interesting additional supplement. “Recommendation” functions are a suitable instrument to support the efficient exploration of large data sets [34]. Content-based processes analysis detect similarities between text vectors or available keywords. The quality of the calculated recommendations primarily depends on the quality of the database used [35]. KOLEGEA provides “recommendation” functions to all users. At present, however, it remains unclear whether the quality of the current database is high enough for these recommendations to be of a considerable benefit to PPT. Gamification has been successfully used as an effective incentive mechanism for the information and knowledge exchange in other fields [17], [21], [36], but has not yet been applied in GP. While sparse, previous research shows encouraging effect for the use of gamification in PPT [37]. However, in light of the pronounced time constraints of young doctors, it is challenging to develop an incentive system specifically tailored to this target group.

7. Outlook

Clinical case-based online communication and knowledge sharing using a tool that allows self-assessment of competencies is perceived to be a valuable support of PT in GP through web 2.0 applications. It is necessary to examine the extent to which the virtual networking of PPT should be strengthened by means of getting personally acquainted, or with accompanying seminars, as an addi-
tional measure. KOLEGEA could be an apt helpful addition to the emerging GP competence centers. Future evaluations should examine whether the dissemination and long-term use of the platform can contribute to improving the quality, effectiveness and attractiveness of PT in GP.

Acknowledgement

Research groups “Interaktive Systeme und Kooperative” (Prof. J. Ziegler), “Lernunterstützende Systeme” (Prof. H-U. Hoppe) of the University of Duisburg-Essen and TheCode AG.

Funding

This project was co-funded by the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) and the EU’s European Social Fund (funding number 898 14145).

Competing interests

The authors declare that they have no competing interests.

References

1. Bundesministerium für Gesundheit. GKV-Versorgungsstrukturgesetz. Berlin: Bundesministerium für Gesundheit; 2015. Zugänglich unter/available from: http://www.bmg.bund.de/themen/krankenversicherung/gkv-versorgungsstaerkungsgesetz.html

2. Deutsche Krankenhausgesellschaft. Förderprogramm Allgemeinmedizin. Berlin: Deutsche Krankenhausgesellschaft; 2016. Zugänglich unter/available from: http://www.dkg.eu/dkg.php/cat/144/title/foerderprogramm_allgemeinmedizin

3. Vollmar HC Wu, Sönnichsen AC, Gilbert K, Schürer-Maly CC, Gensichen J. Ergebnisse einer zweistufigen Delphi-Studie zum E-Learning in der hausärztlichen Versorgung. GMS Z Med Ausbild. 2007;24(1):Doc58. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2007-24/zma000352.shtml

4. Hempel GN, Rotzoll D, Heinke W. Medizinstudium 2.0 dank Web 2.0?! – Risiken und Chancen am Beispiel des Leipziger Medizinstudiums. GMS Z Med Ausbild. 2013;30(1):Doc11. DOI: 10.3205/zma000854

5. Heintze C, Beck S, Dini L. Ärzte in Weiterbildung: Virtueller Wissensaustausch. Dtsch Arztebl Int. 2014;111(22):A-1002/B-856/C-810. Zugänglich unter/available from: https://www.aerzteblatt.de/archiv/160472/Aerzte-in-Weiterbildung-Virtueller-Wissensaustausch

6. Hoppe HU, Kienle A, Krämer N. Workshop zu Web 2.0 in der beruflichen Weiterbildung im Rahmen der DeLFI 2012. Hagen: DeLF; 2012.

7. Lehmann R HB, Oberle S, Simon A, Choukair D, Tönshoff B, Huwendiek S. Virtual Patients in continuing medical education and residency training: a pilot project for acceptance analysis in the framework of a residency revision course in pediatrics. GMS Z Med Ausbild. 2015;32(8):Doc51. DOI: 10.3205/zma000993

Figure 3: 12 Medical areas at KOLEGEA (activity monitor, 2nd part)
8. Dini L, Sauer V, Beck S, Ziebarth S, Hoppe HU, Ziegler J, Novak J, Heintze C. Unterstützung der Weiterbildung zum Facharzt für Allgemeinmedizin mit der Online-Plattform KOLEGAE. Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin. 48. Kongress für Allgemeinmedizin und Familienmedizin. Hamburg, 18.-20.09.2014. Düsseldorf: German Medical Science GMS Publishing House; 2014. Doc14degam146. DOI: 10.3205/14degam146

9. Preece J, Shneiderman B. The reader-to-leader framework: Motivating technology-mediated social participation. AIS Trans Human Comp Interact. 2009;1(1):13-32.

10. Galanski C, DL, Micheler I, Bayer G, Novak J, Heintze C. Nutzerverhalten auf der hausärztlichen online-Weiterbildungsplattform "KOLEGAE". Z Allgemeinmed. in press.

11. KOLEGAE Forschungsgruppe. Ermittlung der Weiterbildungspaltform und summative Nutzertests. Berlin: KOLEGA; 2014.

12. Nielsen J. The 90-9-1 Rule for Participation Inequality in Social Media and Online Communities. Social Media User Experience. Fremont: Nielsen Norman Group; 2006.

13. Svab I. Dare to be different! Keynote at the WONCA world conference in Prague. Eur J Gen Pract. 2013;19(4):257-260. DOI: 10.3109/13814788.2013.851664

14. Czabanowska K, Klemenc-Ketis Z, Potter A, Rochfort A, Tomasik T, Csizsar J. Van den Bussche P. Development of a competency framework for quality improvement in family medicine: a qualitative study. J Contin Educ Health Prof. 2012;32(3):174-80. DOI: 10.1002/che.21142

15. Frank JR, Snell LS, Sherbino J. The DraftCanMEDS 2015. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2014. Zugänglich unter/available from: www.royalcollege.ca/portal/page/portal/rc/common/documents/canmeds/framework/canmeds2015_framework_series_ill_e.pdf

16. Rourke J, Frank JR. Implementing the CanMEDS physician roles in rural specialist education: the multi-specialty community training network. Educ Health (Abingdon). 2005;18(3):368-378. DOI: 10.1080/13576280500289413

17. Deterding S. Gamification: designing for motivation. Interact. 2012;19(4):14-17. DOI: 10.1145/2212877.2212883

18. Leba M, Ionica A, Aposto D. Educational Software based on Gamification Techniques for Medical Students. Recent Advances in Computer Engineering, Communications and Information Technology. Proceedings of the 5th International Conference on Applied Informatics an dComputer Theory. Tenerife: AICT; 2014. S.225-230.

19. Sousa-Vieira ME, Lopez-Andoa JC, Fernandez-Vega M, Rodriguez-Perez M, Lopez-Garcia C. Using Social Learning Methodologies in Higher Education. Int J Eng Pedagog. 2015;5(2):64-72. DOI: 10.3991/iep.v5i2.4645

20. Kuo MS, Chuang TY. How gamification motivates visits and engagement for online academic dissemination - An empirical study. Comput Hum Behav. 2016;55:16-27. DOI: 10.1016/j.chb.2015.08.025

21. Nevin CR, Westfall AO, Rodriguez JM, Dempsey DM, Cherrington A, Roy B, Patel M, Willig JH. Gamification as a tool for enhancing graduate medical education. Postgrad Med J. 2014;90(1070):685-693. DOI: 10.1136/postgradmedj-2013-132486

22. Li Z, Huang K, Huseyin C. Quantifying the Impact of Badges on User Engagement in Online Q&A Communities. International Conference on Information Systems. Orlando: ICS; 2012. S.3798-3807.

23. Hsu MH, Ju TL, Yen CH, Chang CM. Knowledge sharing behavior in virtual communities: The relationship between trust, self-efficacy, and outcome expectations. J Hum Comp Stud. 2007;65(2):153–169. DOI: 10.1016/j.jhcs.2006.09.003

24. Chiu CM, Hsu MH, Wang ET. Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Dec Supp Syst. 2006;(42):1872–1888.

25. Walsh JS. e-learning for general practitioners: lessons from the recent literature. London: Radcliffe Publishing; 2004. S.5.

26. Ziebarth S KA, Hoppe HU, Dini L, Schröder S, Novak J. Design of a Collaborative Learning Platform for Medical Doctors specializing in Family Medicine. 10th International Conference on Computer-Supported Collaborative Learning, Wisconsin: ISLS; 2013. S.4.

27. Wenger E. Community of Practice. Cambridge: Cambridge University Press; 1998. DOI: 10.1017/CBO9780511803932

28. Hoppe HU PN, Oelinger M, Zeini S, Verdejo F, Barros B, Mayorga JI. Building Bridges within Learning Communities through Ontologies and "Thematic Objects". Proceedings of the International Conference on Computer Supported Collaborative Learning. Taipei/Taiwan: ICIS; 2005.

29. De Jong TJ, Gieranza I, Girault I, Hoppe HU, Kindermann J, van der Zanden M. Learning by creating and exchanging objects: the SCY experience. Br J Educ Technol. 2010;41(6):909-921. DOI: 10.1111/j.1467-8535.2010.01121.x

30. Geffter L, Merrell SB, Rosas LG, Moroka-Douglaas N, Rodríguez E. Service-Based Learning for Residents: A Success for Communities and Medical Education. Fam Med. 2015;47(10):803-806.

31. Schnabel KP, Boldt PD, Breuer G, Fichtner A, Karsten G, Kujumdzievski S, Schmidts M, Stosch C. A consensus statement on practical skills in medical school - a position paper by the GMA Committee on Practical Skills. GMS Z Med Ausbild. 2011;28(4):Doc58. DOI: 10.3205/ma000770

32. Mahler C, Karstens S, Roos M, Szeceenyi J. Interprofessional education for patient-centred practice: development of outcome-focused competencies for a Bachelor Programme Interprofessional Health Care]. Z Evid Fortbildd Qual Gesundhwes. 2012;106(7):523-532. DOI: 10.1016/j.zefq.2012.04.003

33. Warren AE, Allen VM, Bergin F, Hazleton L, Alexandis-Brown P, Lightfoot K, McSweeney J, Singleton JF, Sargeant J, Mann K. Understanding, teaching and assessing the elements of the CanMEDS Professional Role: canadian program directors' views. Med Teach. 2014;36(5):400-402. DOI: 10.3109/0142159X.2014.890281

34. Liu J, Dolen P, Pedersen E. Personalized news recommendation based on click behavior. 15th international conference on Intelligent user interfaces. New York: ICIIS; 2010.

35. Pu PC, Hu R. Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model User Adapt Interact. 2012;22(4):317-335. DOI: 10.1007/s11257-011-9115-7

36. Agoritsas T, Iserman E, Hobson N, Cohen N, Cohen A, Rosanov PS, Perez M, Cotoi C, Parrish R, Pullenayegum E, Wilczynski NL, Iorio A, Haynes RB. Increasing the quantity and quality of searching for current best evidence to answer clinical questions: protocol and intervention design of the MacPLUS FS Factorial Randomized Controlled Trials, Implement Sci. 2014;9:125. DOI: 10.1186/s13012-014-0125-9

37. Di Bitonto P. Corrieri N, Pesare E, Rossano V, Roselli T. Training an learning in e-health using the gamification approach: The trainer interaction. New York, Heidelberg: Springer; 2014. S.228-237.
Zusammenfassung

Zielsetzung: Ärztinnen und Ärzte in Weiterbildung (ÄiW) Allgemeinmedizin haben überwiegend wenig Austausch mit ihrer Peer Group, weil sie meist die einzigen ÄiW sind, die zu einer gegebenen Zeit in dem entsprechenden Fachbereich bzw. der Praxis arbeiten. Die hier vorgestellte Online-Plattform „KOLEGEA“ hat daher das Ziel, die Weiterbildung Allgemeinmedizin in Deutschland durch den virtuellen Austausch zu unterstützen.

Methodik: In einem interdisziplinären Forschungsprojekt wurde 2012 eine Online-Plattform etabliert, die Ärztinnen und Ärzten in Weiterbildung (ÄiW) mittels ihrer Einheitlichen Fortbildungsnummer (EFN) frei nutzen können. Neben problemorientiertem Lernen können anonymisierte eingeordnete Patientenfälle mit der Gemeinschaft diskutiert und mit erfahrenen Mentoren (Fachärztinnen/Fachärzten für Allgemeinmedizin) in virtuellen Kleingruppen eingearbeitet werden.

Ergebnisse: Eine anonyme Online-Umfrage im Rahmen der Evaluation in 2014 wies darauf hin, dass die Plattform positiv aufgenommen wurde, wenn auch Zeitmangel als begrenzender Faktor für die Nutzung beschrieben wurde. Die Datenanalyse zeigte, dass die KOLEGEA-Plattform in allen Bundesländern von ÄiW genutzt wurde. Passive Nutzungsmuster überwiegen (90%). Ergänzend wird die Entwicklung der Plattform in 2015/2016 beschrieben, die einen Aktivitätsmonitor als spielerische Lernelemente integriert.

Schlussfolgerungen: Die niedrige Response der Online-Umfrage 2014 und die vorläufigen Auswertungen zu Nutzungsmustern lassen nur erste Trends erkennen, ob KOLEGEA den Weiterbildungsprozess unterstützt. Die Plattform wird als hilfreiche Ergänzung zu einer besseren Strukturierung der Weiterbildung Allgemeinmedizin eingeschätzt.

Schlüsselwörter: Weiterbildung, Allgemeinmedizin, Online-Plattform, fallbasiertes Lernen, Social Web, Kompetenzbasiertes Curriculum

1. Einleitung

Aufgrund des zunehmenden Mangels an Fachärztinnen und Fachärzten für Allgemeinmedizin (HÄ) gerade in ländlichen Regionen entwickeln sich vielfältige Initiativen, um den hausärztlichen Nachwuchs langfristig zu erhöhen. Aktuell initierte die Bundesgesundheitspolitik durch das Versorgungsstärkungsgesetz [1] Unterstützungsmaßnahmen für die Allgemeinmedizin. Zukünftig soll die Weiterbildung durch eine engere Kooperation der Kassenärztlichen Vereinigungen, der Landesärztekammern, der Deutschen Krankenhausgesellschaft und der universitären Allgemeinmedizin strukturiert gefördert werden [2].

Ärztinnen und Ärzte in Weiterbildung (ÄiW) Allgemeinmedizin haben in der ambulanten Weiterbildung überwiegend wenig Austausch mit ihrer Peer Group, weil sie meist die einzigen ÄiW sind, die zu einer gegebenen Zeit in dem entsprechenden Fachbereich bzw. der Praxis arbeiten. Neben der Verbesserung der strukturellen Gegebenheiten bieten auch moderne Kommunikationsformen neue Möglichkeiten der Fort- und Weiterbildung. Das Internet und insbesondere netzbasiertes Lernen leisten einen wichtigen Beitrag, um Lehrenden und Lernenden neues Wissen leichter verfügbar zu machen [3]. Das Web 2.0 hat bereits begonnen das Medizinstudium mitzugestalten. Für die Zukunft gilt es, die besonderen Möglichkeiten des Webs noch stärker für die medizinische Lehre [4], aber auch die Weiterbildung nutzbar zu machen.

In dem vorliegenden Artikel wird ein innovativer Ansatz der Hausärztlichen Weiterbildung vorgestellt, der die Online-Plattform „KOLEGEA“ als virtuelle Plattform zur Unterstützung der hausärztlichen Weiterbildung nutzt. Der hier vorgestellte Ansatz ermöglicht eine intensivere Kommunikation und Diskussion der Themen mit der Community und den Experten, um den individuellen Lernprozess zu unterstützen.
und selbstgesteuerten Lernens mittels klinischer Fallbeispiele ist jungen Ärztinnen und Ärzten zunehmend vertraut, insbesondere jenen, die in Modellstudien eingebunden werden. Diesem bewährten Lernansatz folgend [7] wurde die Online-Plattform für „Kooperatives Lernen und mobile Gemeinschaften für berufsbegleitende Weiterbildung Allgemeinmedizin“ (KOLEGEA) entwickelt und erprobt [8].

2. Grundlage der KOLEGEA Plattform

Zunächst wurde ein mediendidaktisches Konzept erstellt, das auf einer quantitativen Befragung von 73 Ärztinnen und Ärzten in Weiterbildung und einer Fokusgruppe beruhte. Unter Berücksichtigung der erhobenen Bedürfnisse der Zielgruppe erfolgte die Umsetzung des KOLEGEA-Konzeptes in eine Online-Plattform. Eine Pilotversion wurde über drei Monate von einer kleinen geschlossenen Gruppe von Nutzern (20 ÄiW und 1 Mentor) genutzt und anschließend evaluiert [8]. Auf der Grundlage der Erfahrungen der Nutzer und der Erkenntnisse der Evaluation wurde die Plattform im Hinblick auf Design, Struktur und Technik optimiert. Seit September 2013 kann die KOLEGEA-Plattform [https://beta.kolegea.org/kolegea/] bundesweit kostenfrei von ÄiW oder approbierten Ärztinnen und Ärzten genutzt werden [5]. Diese können sich mit ihrer Einheitlichen Fortbildungsnummer (EFN) ortsunabhängig anmelden. Die Plattform ist das erste deutsche Online-Portal, in dem ein virtueller klinisch-fallbasierter Wissensaustausch möglich ist. Registrierte Mitglieder können eigene Fälle aus der ärztlichen Sprechstunde anonymisiert und nach Formulierung einer konkreten Fragestellung mit der KOLEGEA-Community teilen. Damit ist es möglich, das eigene klinische Vorgehen mit anderen Nutzern zu diskutieren und klinische Einschätzungen zu reflektieren.

Die strukturierte Falldarstellung orientiert sich an der in der Hausarztpraxis üblichen klinischen Vorgehensweise (Anamnese, Untersuchung, Diagnostik, Verdachtsdiagnose, Prozedere). Eingestellte Patientenfälle können zusätzlich durch multimediale Ergänzungen (z. B. Fotos, EKG, Röntgenbilder, Videos oder Tonaufnahmen) veranschaulicht werden. Ergänzend können Patientenfälle auch mit relevanten Leitlinien, Fachartikeln oder hilfreichen Internet-Links verknüpft werden (siehe Abbildung 1). Zu Beginn wurden 20 strukturierte Patientenfälle von erfahrenen Hausärztinnen und Hausärzten auf der Plattform einge stellt. Dies dient als Motivation für ÄiW, selbst eigene Fälle zu hinterlegen.

Zur Unterstützung der hausärztlichen Weiterbildung sind erfahrene Hä temporär als sogenannte Mentoren auf der Plattform aktiv. In der Bedarfsanalyse hat sich gezeigt, dass ÄiW diese Form der Unterstützung als hilfreiche Ergänzung wahrnehmen. Die Mentoren kommentieren den geschilderten Beratungsanlass, die möglichen Differenti aldiagnosen und das klinische Vorgehen nochmals aus fachärztlicher Sicht.

Für eine Steigerung der Aktivitäten auf der Plattform wird wöchentlich automatisch eine Benachrichtigungsemail an die Plattformnutzer mit einer übersichtlichen Aufzählung der neuesten Plattformaktivitäten versendet.

3. Evaluation der Ursprungsplattform: Online-Befragung der Nutzer

In einer anonymen Online-Umfrage wurden alle im Juni 2014 registrieren Nutzer (n=198) bezüglich ihres Plattformnutzungsverhaltens sowie der Stärken und Barrieren der Anwendung befragt. Durch 5-stufige Likert-Skalen und offene Fragen wurde quantitatives und qualitatives Nutzerfeedback zu relevanten Qualitätsmerkmalen erhoben, z.B. wahrgenommene Nützlichkeit, Einfachheit der Bedienung, Zufriedenheit und Freude bei der Nutzung. Ferner wurde auch nach Nutzungsverhalten und -erfahrungen sowie zukünftigen Anwendungsmöglichkeiten der Plattform gefragt. Ca. zehn Prozent der registrierten Nutzer (17 Teilnehmer) haben an der Evaluation teilgenommen [8].

Ergebnisse der deskriptiven Auswertung zeigten, dass die befragten KOLEGEA Nutzer circa zwei Stunden täglich (SD=1,74, Range 0,5–7,0) das Internet nutzen und sich im Monat durchschnittlich fünffach (SD=7,22, Range 1–30) auf der KOLEGEA-Plattform anmelden. Die Mehrheit der Befragten (88,2%) nutzt KOLEGEA vornehmlich in der Freizeit. Als Hauptnutzungsbarriere wurde „zu wenig Zeit für Eigenstudium im Berufsalltag“ angegeben, gefolgt von „mangelnder Beteiligung anderer TeilnehmerInnen“ und „technischen Hürden bei der Nutzung“. Wichtigster Anreiz sich auf der Plattform zu beteiligen waren die Hälfte der Befragten die wöchentlichen Benachrichtigungs-Emails. Gründe für ein passives Verhalten (Nichtdiskutieren von Fällen) waren „zeitbedingt“ (Zeitmangel bzw. schlechtes Timing), „umständliche Handhabung“ und „neues Plattformmitglied“ sowie die „geringe Beteiligung anderer“. Insbesondere die Funktionen zum Erstellen und Diskutieren von Fällen wurden wichtig bewertet.

Als das Mentoring durch Hä empfanden 75 Prozent der Beteiligten als hilfreich. 88,3 Prozent sahen die KOLEGEA-Plattform als eine „nützliche Ergänzung der bisherigen Online-Lernangebote“ [8].

Besonders geschätzt wurden die Möglichkeit zum fachlichen Austausch und die Verbindung zu Patientenfällen mit Relevanz für die Weiterbildung. Deutlich wurde auch, dass die Anonymität für die Zielgruppe von Bedeutung war. Änderungs-bzw. Verbesserungsvorschläge bezogen sich auf Gestaltung (Übersichtlichkeit der Plattform und Fallsortierung) und eine stärkere Nutzung der Plattform durch Kollegen und Mentoren. Limitierend muss festgestellt werden, dass der Rücklauf dieser Evaluation niedrig war und damit nur begrenzte Aussagen zu Nutzungsmustern der Ursprungsplattform gemacht werden können.
4. Evaluation der Ursprungsplattform: Anonyme Datenbankabfrage

Zusätzlich erfolgte im Dezember 2015 eine anonyme Datenbankabfrage, mit der das Verhalten der Nutzer auf der KOLEGA Plattform analysiert wurde. Zu diesem Zeitpunkt waren 298 Nutzer aus 16 Bundesländern registriert. Das entspricht dem üblichen Verbreitungsgrad neuer Online-Plattformen in der Etablierungsphase [9]. Fast die Hälfte der Nutzer wählte einen „anonymen“ Nutznamen. Das Geschlecht wurde nur von 31 Prozent angegeben. Die Zurückhaltung persönlicher Daten der KOLEGA-Nutzer unterstreicht das Bedürfnis nach Anonymität. Die große Mehrheit der Nutzer sind Berufsanfänger. Stark vertreten sind Berlin (28%), Bayern (16%) und Baden-Württemberg (11%) und Nordrhein-Westfalen (7%) [10].

Innerhalb des untersuchten Zeitraumes wurden über 100 Fälle diskutiert [8], [11]. Die überwiegende Zahl der KOLEGA-Nutzer war lesend (passiv), ohne aktive Beiträge oder Patientenfälle beizutragen. Einzelne Nutzer („Lead-User“) waren dagegen sehr aktiv und stellten einen Großteil neuer Patientenfälle zur Verfügung oder beteiligten sich an der Kommentierung anderer Fälle. Dieses Verhalten spiegelt ein bekanntes Aktivitätsmuster in Online-Gemeinschaften wider, bei dem das Verhältnis von aktiven (ca. 10%) und passiven (ca. 90%) beschrieben wird [12].

5. Weiterentwicklung der KOLEGA Plattform

Basierend auf der Evaluation wurde die Plattform nach Anschlussfinanzierung des Bundesministeriums für Bildung und Forschung (BMBF) weiterentwickelt. Schwerpunkte waren nun die Strukturierung der Weiterbildungs Inhalte in ärztliche Kompetenzen und die Integration von Gamifizierungselementen (spieleähnlichen Elementen) in die Plattformstruktur.

5.1 Kompetenzbasiertes Curriculum Allgemeinmedizin und CanMEDS

Das typische hausärztliche Vorgehen bei Patienten-Konsultationen orientiert sich an Beratungsanlässen. Entsprechend kam diesem Aspekt bei der Erweiterung der KOLEGA Plattform besondere Aufmerksamkeit zu. Das in Deutschland aktuell zu nutzende Kompetenzbasierte Curriculum Allgemeinmedizin (KCA) [http://www.kompetenzzentrum-allgemeinmedizin.de/public/curriculum.shtml] bildete die Grundlage für die Weiterentwicklung der Plattform. Im KCA gibt es 78 Beratungsanlässe, eingeteilt in 12 medizinische Bereiche. Für die Verbesserung der Plattform wurde die Liste um existierende Beratungsanlässe erweitert und auf ein überschaubares Maß von 73 Hauptberatungsanlässen kondensiert. In Tabelle 1 wird der Vergleich der medizinischen Bereiche des KCA und der KOLEGA Plattform gezeigt. Auch für die Weiterbildung Allgemeinmedizin wird zunehmend der frühzeitige Bezug zu hausärztlichen Kompetenzen gefordert [13], [14]. Der kanadische Ansatz der „CanMEDS“, zuletzt aktualisiert in 2014 [15], [16], diente als zielführendes Konzept für die Weiterentwicklung der Plattform. Wissen, Fertigkeiten und Fähigkeiten werden in Meta-Kompetenzen zusammengefasst und in sieben Bereichen organisiert. Neben der medizinischen Expertise sind Kommunikation, Zusammenarbeit, Professionalität, Vertretung des Patienten, Lehren und Lernen und Management als zentrale Achsen definiert. Diese Kompetenzen sind auch in das KCA eingeflossen (siehe Abbildung 2).

Abbildung 1: Beispiel für einen Falleintrag
Tabelle 1: Vergleich der 12 medizinischen Bereiche: KOLEGEA und KCA

ICONS	KOLEGEA medizinische Bereiche	KCA medizinische Bereiche
	Stoffwechsel, Ernährung und Verdauungssystem	Stoffwechsel, Ernährung und Verdauungssystem
	+ Notfall - Stoffwechsel, Ernährung und Verdauungssystem, Abdomen	
	Atmungsorgane und Atemwege	Atmungsorgane und Ohren
	Notfall - Atmung	
	Auge / Ohr / Nase / Mund	
	Notfall - Augen	
	Herz-Kreislauf-System	Herz-Kreislauf-System
	Notfall - Herz-Kreislauf-System	
	Bewegungsapparat / Schmerzen / Verletzungen / Trauma	Bewegungsapparat, Schmerzen, Verletzungen
	Notfall - Trauma	
	Nervensystem und Psyche	Augen und Nervensystem
	Notfall - Nervensystem und Psyche	
	Niere und ableitende Harnwege	
	Sexualität, Familienplanung, Geschlechtsorgane, Gynäkologie, Notfall - Gynäkologie	Sexualität, Familienplanung, Geschlechtsorgane und ableitende Harnwege
	Haut	Haut
	Fühlen, Denken, Psychosoziales, Änderungen des Bewusstseins	Änderungen des Bewusstseins, Denkens und Fühlens / Psychosoziales
	Kinder	Besonderheiten bei Kindern und Jugendlichen
	Geriatrie, chronisch Kranke	Betreuung chronisch Kranker und alter Patienten
		Palliativmedizin

Abbildung 2: Die 6 Kompetenzen bei KOLEGEA (Aktivitätsmonitor 1. Teil)

5.2 Integration von Gamifizierungselementen

Um die Attraktivität für die Nutzer zu erhöhen, wurden spielerische Elemente, auch Gamifizierungselemente genannt, integriert. Mit Gamifizierung ist die Anwendung von spieleähnlichen Elementen und Mechanismen in einem nicht spielerischen Kontext gemeint; dies umfasst zum Beispiel Belohnungs- und Wettbewerbsmechanismen.
Aktivität in dem jeweiligen medizinischen Bereich bedeutet. Der aktuelle Stand der eigenen Expertise für einen medizinischen Bereich kann in drei Abstufungen eingeschätzt werden (wenig, mittel, hoch). Jede Abstufung wird dann durch die Farbe des Medaillenrandes des Symbols angezeigt.

Passend zur individuellen Aktivität macht die KOLEGEA Plattform weitere Aktivitätsvorschläge, um einzelne Bereiche gezielt zu fördern (z. B. „Teilen Sie noch einen Fall im Bereich Geriatrie, chronisch Kranke“).

6. Diskussion

Die niedrige Response der Online-Umfrage 2014 und die vorläufigen Auswertungen zu Nutzungsmustern lassen nur erste Trends erkennen, ob die KOLEGEA Plattform den Weiterbildungsprozess unterstützt. Internationale Untersuchungen haben aber gezeigt, dass Allgemeinmediziner generell Interesse an E-Learning-Angeboten haben und die Vorteile der flexiblen Zeiteinteilung und die Eigenmotivation gerne nutzen. Vor allem in angelsächsischen Ländern werden E-Learning-Angebote bereits häufig von Allgemeinmedizinern genutzt [25]. Für Deutschland konnte mit KOLEGEA erstmals eine Online-Plattform etabliert werden, die speziell auf den Bedarf von ÄiW in Allgemeinmedizin zugeschnitten ist [26].

Der pädagogische Ansatz und Mehrwert der KOLEGEA Plattform beruht auf der Unterstützung des Austausches zwischen Lernenden in einer Lerngemeinschaft im Sinne einer „Community of Practice“ [27]. Zusätzlich setzt der KOLEGEA-Ansatz auf den Aufbau einer Sammlung von Lernobjekten. Das sind z. B. die Fälle und Kommentare, welche von den Lernenden selbst erzeugt und bereitgestellt werden [28], [29].

Die Struktur der Plattform erlaubt neben der Förderung der medizinischen Expertise auch die Stärkung weiterer für die hausärztliche Tätigkeit maßgeblicher Kompetenzen [30], [31], [32]. Eine Verbreitung des kompetenzbasierten Modells wird auch unter Dozenten und Weiterbildungsbeauftragten zukünftig an Bedeutung gewinnen [33]. Ein wichtiger Punkt ist, dass sich die Mehrheit der KOLEGEA Nutzer anonym auf der Plattform anmeldet und damit für die mitdiskutierenden ÄiW und HÄ nicht identifizierbar ist. Zusätzlich könnte sich zukünftig die Option der Regionalisierung von Nutzergruppen ergeben, die sich neben dem anonymen Online-Angebot direkt austauschen können. Gerade im Hinblick auf bestehende allgemeinmedizinische Weiterbildungsverbünde und die zu etablierenden Kompetenzzentren Allgemeinmedizin werden vielfältige Anwendungsmöglichkeiten sichtbar. So könnte die zusätzliche Unterstützung durch eine regional verfügbare hausärztliche Mentorin/Mentor für einen geschlossenen Nutzerkreis eine interessante Ergänzung darstellen. Empfehlungsfunktionen stellen ein geeignetes Mittel dar, um die Exploration großer Datenbestände effizienter zu gestalten [34]. Inhaltsbasierte Verfahren ermitteln Ähnlichkeiten zwischen Textvektoren oder zur Verfügung stehenden Schlagworten. Die Güte der berechneten
Empfehlungen hängt primär von der Qualität der verwendeten Datenbasis ab [35]. Auch für die KOLEGEA Nutzer werden Empfehlungsfunktionen bereitgestellt. Zum jetzigen Zeitpunkt bleibt allerdings offen, ob die Qualität der verwendeten Datenbasis ausreicht, um für ÄiW einen Mehrwert bei der Nutzung dieser Empfehlungen zu erzeugen.

Gamifizierungselemente als Anreizsystem des Informations- und Wissensaustausches wurden in anderen Anwendungsbereichen erfolgreich eingesetzt [17], [21], [36], aber noch nicht auf die allgemeinmedizinische Weiterbildung angewendet. Die wenigen bestehenden Arbeiten konnten ermutigende Effekte zeigen [37]. Insbesondere vor dem Hintergrund der ausgeprägten Zeitknappheit junger Ärztinnen und Ärzte, stellt die Entwicklung eines speziell für diese Zielgruppe zugeschnittenen Anreizsystems allerdings eine Herausforderung dar.

7. Ausblick

Der fallbasierte Austausch mit einem Tool zur Selbsteinschätzung von Kompetenzen wird als wertvolle Möglichkeit gesehen, zukünftig die ärztliche Weiterbildung durch Web 2.0 Anwendungen zu unterstützen. Zu prüfen ist, inwieweit die virtuelle Vernetzung von ÄiW nicht auch durch persönliches Kennenlernen oder Begleitseminare als ergänzende Maßnahme gestärkt werden kann. Entsprechend könnte KOLEGEA eine hilfreiche Ergänzung für die sich entwickelnden Allgemeinmedizinischen Kompetenzzentren darstellen.

Zukünftige Evaluationen sollten prüfen, ob die Verbreitung und nachhaltige Nutzung der Plattform einen Beitrag zur Steigerung der Qualität, Effektivität und Attraktivität der allgemeinmedizinischen Weiterbildung leisten kann.

Danksagung

Forschungsgruppen Interaktive Systeme und Kooperative (Prof. J. Ziegler), Lernunterstützende Systeme (Prof. H-U. Hoppe) der Universität Duisburg-Essen und TheCode AG.

Förderung

Dieses Projekt wurde vom Bundesministerium für Bildung und Forschung (BMBF) und des Europäischen Sozialfonds der EU (Fördernummer 898 14145) gefördert.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.
Literatur

1. Bundesministerium für Gesundheit, GKV-Versorgungsstrukturgesetz. Berlin: Bundesministerium für Gesundheit; 2015. Zugänglich unter/available from: http://www.bmg.bund.de/themen/krankenversicherung/gkv-versorgungsstrukturgesetz.html

2. Deutsche Krankenhausgesellschaft. Förderprogramm Allgemeinmedizin. Berlin: Deutsche Krankenhausgesellschaft; 2016. Zugänglich unter/available from: http://www.dkg.de/dkg.php/cat/144/title/Foerderprogramm_Allgemeinmedizin

3. Vollmar HC, Sönntich AC, Gilbert K, Schürer-Maly CC, Lex G, Kolenkow SSC. Forschungsgruppe. Evaluierung der Weiterbildungsplattform und summative Nutzertests. Berlin: DeLFI; 2012.

4. Hempel GN, Rotzoll D, Heinke W, Dini L, Sauer V, Beck S, Ziebarth S, Huwendiek S, Hoppe HU, Kienle A, Krämer N. Workshop zu Web 2.0 in der hausärztlichen Versorgung. GMS Z Med Ausbild. 2007;24(1):Doc53. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2007-24/zma000352.shtml

5. Heintze C, Beck S, Dini L, Ärzte in Weiterbildung: Virtueller Wissensaustausch. Dtsch Arztebl Int. 2014;111(22):A-1002/B-856/C-810. Zugänglich unter/available from: https://www.aerzteblatt.de/archiv/160472/Aerzte-in-Weiterbildung-VirtuellerWissensaustausch

6. Hoppe HU, Kienle A, Krämer N. Workshop zu Web 2.0 in der beruflichen Weiterbildung im Rahmen der DelFI 2012. Hagen: DelFI; 2012.

7. Lehmann RHB, Oberle S, Simon A, Choukair D, Tönshoff B, Huwendiek S. Virtual Patients in continuing medical education and residency training: a pilot project for acceptance analysis in the framework of a residency revision course in pediatrics. GMS Z Med Ausbild. 2015;32(5):Doc51. DOI: 10.3205/zma000993

8. Dini L, Sauer V, Beck S, Ziebarth S, Hoppe HU, Ziegler J, Novak J, Heintze C. Unterstützung der Weiterbildung zum Facharzt für Allgemeinmedizin mit der Online-Plattform KOLEGEA. Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin. 48. Kongress für Allgemeinmedizin und Familienmedizin. Hamburg, 18.-20.09.2014. Düsseldorf: German Medical Science GMS Publishing House; 2014. Doc14degam146. DOI: 10.3205/14degam146

9. Preece J, Shneiderman B. The reader-to-leader framework: Motivating technology-mediated social participation. AIS Trans Human Comp Interact. 2009;1(1):13-32.

10. Galanski C, DL, Mielech I, Bayer G, Novak J, Heintze C. Nutzerverhalten auf der hausärztlichen online-Weiterbildungsplattform "KOLEGEA". Z Allgemeinmed. in press.

11. KOLEGEA Forschungsgruppe. Evaluator der Weiterbildungsplattform und summative Nutzertests. Berlin: KOLEGEA; 2014.

12. Nielsen J. The 90-9-1 Rule for Participation Inequality in Social Media and Online Communities. Social Media User Experience. Fremont: Nielsen Norman Group; 2006.

13. Svab I. Dare to be different! Keynote at the Wonca world conference in Prague. Eur J Gen Pract. 2013;19(4):257-260. DOI: 10.3109/13814788.2013.851684

14. Czabanowska K, Klemenc-Ketis Z, Potter A, Rochfort A, Tomasik T, Csiszar J, Van den Bussche P. Development of a competency framework for quality improvement in family medicine: a qualitative study. J Contin Educ Health Prof. 2012;32(3):174-80. DOI: 10.1002/chp.21142

15. Frank JR, Snell LS, Sherbino J. The Draft CanMEDS 2015. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2014. Zugänglich unter/available from: www.royalcollege.ca/portal/page/portal/rc/common/documents/canmeds/framework/canmeds2015_framework_series_III_e.pdf

16. Rourke L, Frank JR. Implementing the CanMEDS physician roles in rural specialist education: the multi-speciality community training network. Educ Health (Abingdon); 2005;18(3):368-378. DOI: 10.1080/13576290500289413

17. Deterding S. Gamification: designing for motivation. Interact. 2012;19(4):14-17. DOI: 10.1145/2212877.2212883

18. Leba M, Ionica A, Apostu D. Educational Software based on Gamification Techniques for Medical Students. Recent Advances in Computer Engineering, Communications and Information Technology. Proceedings of the 5th International Conference on Applied Informatics an dComputer Technology. Tenerife: IACT; 2014, S.225-230.

19. Sousa-Vieira ME, Lopez-Adroa JC, Fernandez-Veiga M, Rodriguez-Perez M, Lopez-Garcia C. Using Social Learning Methodologies in Higher Education. Int J Eng Pedagog. 2015;5(2):64-72. DOI: 10.3991/ijepl.v5i2.4645

20. Kuo MS, Chuang TY. How gamification motivates visits and engagement for online academic dissemination - An empirical study. Comput Hum Behav. 2016;55:16-27. DOI: 10.1016/j.chb.2015.08.025

21. Nevin CR, Westfall AO, Rodriguez JM, Dempsey DM, Cherrington A, Roy B, Patel M, Willig JH. Gamification as a tool for enhancing graduate medical education. Postgrad Med J. 2014;90(1070):685-693. DOI: 10.1136/postgradmedj-2013-132486

22. Li Z, Huang K, Huseyin C. Quantifying the Impact of Badges on User Engagement in Online Q&A Communities. International Conference on Information Systems. Orlando: ICIS; 2012 .S.3798-3807.

23. Hsu MH, Xu TL, Yen CH, Chang CM. Knowledge sharing behavior in virtual communities: The relationship between trust, self-efficacy, and outcome expectations. J Hum Comp Stud. 2007;65(2):153–169. DOI: 10.1016/j.hcjs.2006.09.003

24. Chiu CM, Hsu MH, Wang ET. Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Dec Supp Syst. 2006;42:1872–1888.

25. Walsh JS. e-learning for general practitioners: lessons from the recent literature. London: Radcliffe Publishing; 2004. S.S.

26. Ziebarth S, Hoppe HU, Dini L, Schröder S, Novak J. Design of a Collaborative Learning Platform for Medical Doctors specializing in Family Medicine. 10th International Conference on Computer-Supported Collaborative Learning. Wisconsin: ISLS; 2013. S.4.

27. Wenger E. Community of Practice. Cambridge: Cambridge University Press; 1998. DOI: 10.1017/CBO9780511803932

28. Hoppe HU PN, Oelinger M, Zeini S, Verdejo F, Barros B, Mayorga JLI. Building Bridges within Learning Communities through Ontologies and "Thematic Objects". Proceedings of the International Conference on Computer Supported Collaborative Learning. Taipei/Taiwan: ICIS; 2005.

29. De Jong T, Gernenza I, Girault I, Hoppe HU, Kindermann J, van der Zanden M. Learning by creating and exchanging objects: the SCY learning experience. Br J Educ Technol. 2010;41(6):909-921. DOI: 10.1111/j.1467-8535.2010.01121.x

30. Gelfter L, Merrell SB, Rosas LG, Moriga-Douglas N, Rodriguez E. Service-Based Learning for Residents: A Success for Communities and Medical Education. Fam Med. 2015;47(10):803-806.
31. Schnabel KP, Bolzt PD, Breuer G, Fichtner A, Karsten G, Kujumshiev S, Schmidt M, Stosch C. A consensus statement on practical skills in medical school - a position paper by the GMA Committee on Practical Skills. GMS Z Med Ausbild. 2011;28(4):Doc58. DOI: 10.3205/zma000770

32. Mahler C, Karstens S, Roos M, Szczesny J. Interprofessional education for patient-centred practice: development of outcome-focused competencies for a Bachelor Programme Interprofessional Health Care. Z Evid Fortbild Qual Gesundwes. 2012;106(7):523-532. DOI: 10.1016/j.zefq.2012.04.003

33. Warren AE, Allen VM, Bergin F, Hazelton L, Alexandris-Brown P, Lightfoot K, McSweeney J, Singleton JF, Sargeant J, Mann K. Understanding, teaching and assessing the elements of the CanMEDS Professional Role: canadian program directors' views. Med Teach. 2014;36(5):390-402. DOI: 10.3109/0142159X.2014.890281

34. Liu J, Dolan P, Pedersen E. Personalized news recommendation based on click behavior. 15th international conference on Intelligent user interfaces. New York: ICIS; 2010.

35. Pu PC, Hu R. Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model User Adapt Interact. 2012;22(4-5):317-355. DOI: 10.1007/s11257-011-9115-7

36. Agoritsas T, Iserman E, Hobson N, Cohen N, Cohen A, Roshanov PS, Perez M, Cotoli C, Parrish R, Pullenayegum E, Wilczynski NL, Iorio A, Haynes RB. Increasing the quantity and quality of searching for current best evidence to answer clinical questions: protocol and intervention design of the MacPLUS FS Factorial Randomized Controlled Trials. Implement Sci. 2014;9:125. DOI: 10.1186/s13012-014-0125-9

37. Di Bitonto P, Corrierio N, Pesare E, Rossano V, Roselli T. Training an learning in e-health using the gamification approach: The trainer interaction. New York, Heidelberg: Springer; 2014. S.228-237.

Korrespondenzadresse:
Prof. Dr. Christoph Heintze
Charité – Universitätsmedizin Berlin, Institut für Allgemeinmedizin, Charitéplatz 1, 10117 Berlin, Deutschland
christoph.heintze@charite.de

Bitte zitieren als
Dini L, Galanski C, Döpfmer S, Gehrke-Beck S, Bayer G, Boeckle M, Michee I, Novak J, Heintze C. Online Platform as a Tool to Support Postgraduate Training in General Practice – A Case Report. GMS J Med Educ. 2017;34(5):Doc59. DOI: 10.3205/zma001136, URN: urn:nbn:de:0183-zma0011364

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2017-34/zma001136.shtml

Eingereicht: 26.09.2016
Überarbeitet: 16.03.2017
Angenommen: 30.05.2017
Veröffentlicht: 15.11.2017

Copyright
©2017 Dini et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/