In silico identification of known osmotic stress responsive genes from Arabidopsis in soybean and Medicago

Nina M. Soares-Cavalcanti¹, Luis C. Belarmino¹, Ederson A. Kido¹, Ana C. Wanderley-Nogueira¹, João P. Bezerra-Neto¹, Rafaela Cavalcanti-Lira¹, Valesca Pandolfi¹, Alexandre L. Nepomuceno², Ricardo V. Abdelnoor², Leandro C. Nascimento³ and Ana M. Benko-Iseppon¹

¹Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
²Embrapa Soja, Londrina, PR, Brazil.
³Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.

Abstract

Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences. The analysis showed a high number of sequences and high diversity, comprising genes from all categories in both organisms. Genes with unknown function were among the most representative, followed by transcription factors, ion transport proteins, water channel, plant defense, protein degradation, cellular structure, organization & biogenesis and senescence. An analysis of sequences with unknown function allowed the annotation of 174 soybean and 217 Medicago sequences, most of them concerning transcription factors. However, for about 30% of the sequences no function could be attributed using in silico procedures. The establishment of a gene set involved in osmotic stress responses in soybean and barrel medic will help to better understand the survival mechanisms for this type of stress condition in legumes.

Key words: osmotic stress, stress-responsive genes, Glycine max, Medicago truncatula.

Introduction

In the course of evolution, plants have acquired a myriad of developmental and metabolic strategies to cope with the adverse effects of environmental stresses during vegetative growth and reproduction (Parry et al., 2005), making stress tolerance a complex phenomenon.

Stress perception and the immediate induction of signals that culminate in adaptive responses are key steps leading to plant stress tolerance. Tolerance stress differences between genotypes or different developmental stages of a single genotype may arise from peculiarities in signal perception and transduction mechanisms (Chinnusamy et al., 2004). Under osmotic stress conditions diverse sets of physiological responses are activated, including metabolic and defense systems used to sustain growth and for survival.

The stress-inducible genes are classified into two major groups: one of them protects the plant directly against stresses, whereas the other regulates gene expression and signal transduction (Valliyodan and Nguyen, 2006).

Because plant tolerance against osmotic stress is a complex multigenic trait, a demand exists for genome wide analysis, including ‘omics’ approaches suitable for uncovering important gene sets involved in this important process (Hirayama and Shinozaki, 2010).

After the ‘sequencing era’, genetic information was then available for several non-model plants, including some legume species, a group that exhibits unique features, such as the ability to carry the nodulation process. Nitrogen fixation mediated by nodule activities abolishes the need for external nitrogen sources from fertilizers, while providing the so-called ‘green manuring’ that enriches the soil. Moreover, some legumes, such as soybean, barrel medic and cowpea, are important economic crops that provide humans with food, livestock for feeding purposes, and industry with raw materials (Graham and Vance, 2003).
Soybean is an example of a non-model plant with plentiful transcriptome information available. Among available databases, the Genosoja platform connects public and restricted data, providing 60,747 unigenes (Nascimento et al., 2012, this issue).

The identification of candidate genes in soybean and barrel medic will provide additional evidence of the response mechanisms for osmotic stresses in Fabaceae, yielding useful information for crop improvement. As osmotic stress cannot be solved solely via remedial land management, tolerant crops - able to maintain cellular turgor and osmotic balance - may contribute significantly to reduce this economic burden. The key to plant engineering for osmotic tolerance lies in the knowledge of the underlying mechanisms of plant adaptive responses (Hariadi et al., 2011).

In the present work the main categories of osmotic stress genes known from *A. thaliana* were identified in the soybean (Genosoja Project) and barrel medic (*M. truncatula* database) transcriptomes through an *in silico* approach, in order to contribute to a better understanding of the early molecular adaptation to osmotic (drought and salinity) stress in both leguminous plants.

Materials and Methods

In a previous study based on 7,000 Arabidopsis genes, Seki et al. (2002) identified 103 coding genes distributed over 27 functional categories (Table 1) whose expression increased more than five times in response to osmotic stress. The protein sequences of these stress-inducible genes were obtained at the RIKEN Arabidopsis Full-Length Clone Database, and used as query sequences.

After this step, a local bank with the retrieved sequences was generated in order to make searches for similar sequences against the Genosoja platform (Nascimento et al., 2012) and the *M. truncatula* database (Quackenbush et al., 2000) using the tBLASTn algorithm (Altschul et al., 1990) with a cut-off of 1e-05. The results were annotated in other local database for further analyses and for comparisons among studied organisms and literature information. In view of the different number of seed sequences per category, the results obtained from each category and organism were normalized. The soybean and *Medicago* genes with unknown function were submitted to the AutoFACT program (Koski et al., 2005), and annotated according to the data available in the largest functional annotation databases (KEGG, COG, PFAM, SMART, nr). This step was performed in order to categorize these sequences and assign function to them, based on a comparative analysis.

Results and Discussion

The stress-inducible gene products were classified into two main groups: (I) those that are at the front line of defense, protecting the plant against adverse conditions and (II) those that regulate genic expression and signal transduction in the stress response (Seki et al., 2003). The first group included proteins that probably act in the protection of plant cells from dehydration, such as the enzymes required for the biosynthesis of various osmoprotectants, LEA proteins, antifreeze proteins, chaperones and detoxification enzymes. The second group included signaling mol-

Functional category	# Seed sequence	Functional category	# Seed sequence
bZIP TF	1	WRKY TF	2
Photosynthesis	1	Osmoprotectant	3
Signaling	1	ZincFinger TF	3
Reproductive development	1	Detoxification enzyme	2
Respiration	1	Cellular metabolism	3
DNA nucleus	1	DREB and ERF TF	2
Ferritin	1	Ethylene biosynthesis	2
LEA protein	1	Cytochrome P450	2
MYB TF	1	Fatty Acid metabolism	4
Homeodomain TF	1	Heat Shock protein	2
Membrane protein	2	Kinase protein	2
Senescence-related	1	Carbohydrate metabolism	6
Degradation protein	1	Plant defense	4
Secondary metabolism	1	Transport protein ion channel carrier	4
Water channel protein	1	Cellular struct. organiz. and biogenesis	5
NAC TF	2	Unknown protein	37
Protein phosphatase	2		
Total	103		
molecules such as transcription factors and protein kinases, among others (Seki et al., 2003). Twenty-seven categories of these two groups classified according to Seki et al. (2002) were analyzed, resulting in 1,088 (soybean) and 1,210 (Medicago) sequences (Table S1, supplementary material). In both genomes the ‘unknown protein’ category was the most representative (Figure 1), with 268 candidates for soybean and 331 for Medicago, followed by ‘cellular structure organization and biogenesis’, ‘plant defense’ and ‘transport protein ion channel carrier’ categories (Figure 1).

The highest number of sequences for genes with ‘unknown function’ - a very common category in expression essays regarding osmotic stress response in plants – attracting great interest from researchers, since those genes represent a clear source of new candidates for breeding purposes. Previous studies highlighted the importance of analyzing the role of stress-induced genes, not only for a further understanding of the molecular mechanisms of stress tolerance in higher plants, but also for improving crop performance using gene manipulation (Seki et al., 2002).

Osmotic stress greatly affects cells both at the micro (i.e., membrane structure), and at the macro level (i.e. the physiology of the whole plant), with results that reflect the variety of responses involved in the acquisition of tolerance. At the microcellular level, the activation of genes in the categories ‘cellular structure, organization and biogenesis’ (soybean: 62; Medicago: 66) and ‘transport protein ion channel carrier’ (soybean: 64; Medicago: 60) was observed, showing the importance of the maintenance of cellular structures and of the control of ion exchange with the environment.

Furthermore, we observed the activation of genes in the category ‘plant defense’ (soybean: 66; Medicago: 60), indicating the presence of a cross-talk process between pathways, a common mechanism in plants under stressful conditions. In addition to stress-specific adaptive responses, plants also share responses that protect them from more than one type of stress (Seki et al., 2002; DeFalco et al., 2010; Nuruzzaman et al., 2010), a response also observed in cowpea, another Fabaceae member (Kido et al., 2011).

Amongst the candidates of the second group of responses, composed of genes involved in signal transduction and regulation of expression (203 in soybean and 190 in Medicago; Figure 2), the category transcription factor (TF) was the most prevalent, representing up to 80% in soybean and 82% in Medicago (Figure 2). The high number of transcription factors suggests that transcriptional regulation is an important mechanism in the signal transduction triggered by osmotic stresses in both legumes.

A surprising result was the absence of a bZIP representative in the soybean database, while in Medicago this category was represented by three candidates (Figure 3). This transcription factor has been identified in many plants and is known to participate in various responsive pathways, including abiotic stress response.

Among the transcription factors, the DREB/ERF and Zinc-finger families had the highest number of sequences (Figure 3). This result was expected, since from more than 1,600 transcription factors encoded by A. thaliana, 9% are members of the DREB/ERF-like family (Dietz et al., 2010). Due to the versatility of functions that the zinc finger family may have, as well as the variety of their structural proteins, the obtained result was expected. According to

Figure 1 - Main categories of Group I stress-inducible genes (protective molecules), indicating the number of orthologs identified in Glycine max and Medicago truncatula.

Figure 2 - Percentage of stress-inducible genes (Group II), including cell signaling factors identified in Glycine max and Medicago truncatula.
Takatsuji (1998), plants seem to have adopted preexisting prototype zinc-finger motifs, generating new zinc-finger domains to adapt them to various regulatory processes. The zinc finger domain can be present in a number of transcription factors and play critical roles in interactions with other molecules. Mutations in some of the genes coding for zinc-finger proteins have been found to cause profound developmental aberrations or defective responses to environmental cues (Takatsuji, 1998). Zinc finger proteins are required for key cellular processes including transcriptional regulation, development, pathogen defense, and stress responses (Ciftci-Yilmaz and Mittler, 2008). A recent study of rice showed that the C2H2-type zinc finger family alone was represented by 189 members and demonstrated that at least 26 of them respond to different environmental stresses (Agarwal et al., 2007). Moreover, Gong et al. (2010), in a study on transcriptional regulation in drought-tolerant tomato genotypes, also identified and characterized the zinc-finger family as the main activated group during the drought response.

It is important to note that the number of seed-sequences used in the search was different for each category; the ‘unknown protein’ category, for example, was represented by 37 sequences, while the ‘bZIP transcription factor’ category comprised a single sequence. Thus, it was expected that the more abundant orthologous categories would be those obtained through comparative searches with the categories composed of more query sequences.

As for the remainder, after normalizing the results, proportionally the most representative categories (7% each) were: ‘water channel proteins’, ‘protein degradation’ and ‘senescence-related’ (Figure 4). Without doubt, all categories analyzed may contribute to an improvement in osmotic tolerance, although some functions are more relevant than others. Proteins associated with ion channels and water channels are essential in the acquisition of resistance in the presence of soluble salts and water shortages, the former controlling the entry and exit of ions such as Na+, which are toxic in high concentrations, and the latter controlling water loss to the environment. Besides these proteins, those falling into the category ‘protein degradation’ are required for protein turnover and recycling of essential amino acids, while ‘senescence-related’ genes are key components in the abiotic stress response, with genes controlling subcellular changes that lead to tolerance (Seki et al., 2002).
While the normalized results evidenced similar amounts of data in the most representative categories for both organisms, in some categories there were significant variations in the number of sequences between both leguminous species (Figure 4); this difference was even greater than 50% for the categories ‘Reproductive development’ (soybean: 1,395; Medicago: 465), ‘Ferritin’ (soybean: 651; Medicago: 1,392), ‘Respiration’ (soybean: 186; Medicago: 1,302) and ‘Ethylene biosynthesis’ (soybean: 791; Medicago: 1,721). Nevertheless, this variation may be related to the conditions under which the data were generated and deposited, as well as to the number of sequences available in the respective databases. Additionally, species-specific features could be responsible for these variations, to a lesser extent.

Regarding the category ‘Unknown Protein’, screened candidates from soybean (268) and Medicago (331) were subjected to the AutoFACT program in order to assign function to these sequences, allowing the recognition of the function of 174 and 217 sequences, respectively.

As a result, 42 and 57 G. max and M. truncatula were categorized according to the COG (Cluster of Orthologous Groups) functional database in five categories (Table 2; Figure 5). Within each category, the annotation revealed that they present the same description as the matched sequences deposited in the databank. For example, the ‘Amino acid transport and metabolism’ functional category was represented just by ‘Amino Acid Permease’ sequences (Table 2).

Table 2 - Sequence description annotated according to the COG (Cluster of Orthologous Groups) functional category in Glycine max and Medicago truncatula.

COG functional category	Sequence description	G. max	M. truncatula
Amino acid transport and metabolism	Amino acid permease	9	8
Carbohydrate transport and metabolism	Beta-galactosidase	0	2
General function prediction only	Patatin	4	17
Posttranslational modification, protein turnover, chaperones	DnaJ-like protein	14	13
Signal transduction mechanisms	Universal Stress Protein (USP) family protein	15	17
Total		42	57

![Figure 5 - Categorization of soybean and Medicago ‘unknown category’ candidates based on COG (Cluster of Orthologous Groups) functional database.](image)

Table 3 - Description of sequences with unknown function after AutoFACT analysis.

Description	G. max	M. truncatula
Amino acid permease	7	4
ATP binding / kinase / protein serine/threonine kinase	0	3
Auxin-responsive GH3 product [Glycine max]	2	8
BTB/POZ domain-containing protein	0	2
Calcium ion binding	2	4
Calmodulin binding	10	14
CCT_2 domain containing protein	4	5
Copper ion binding / electron transporter	4	1
Cu-binding-like domain containing protein	4	10
Dev_Cell_Death domain containing protein	9	17
DFL1 (DWARF IN LIGHT 1)	1	0
Dnal-like protein [Phaseolus vulgaris]	3	2
F-box family protein	5	4
Heat shock protein binding	3	4
Herpes_BLLF1 domain containing protein	1	0
Hydroxyproline-rich glycoprotein family protein	0	1
IFRD1; interferon-related developmental regulator 1	8	0
Indole-3-acetic acid-amido synthetase GH3.17, putative	3	5
NAC Transcription Factor	4	10
Nucleic acid binding / transcription factor	18	14
Patain B2 precursor, putative	1	0
PHI-1 (PHOSPHATE-INDUCED 1)	19	20
Plastocyanin-like domain-containing protein	0	1
RC12A (RARE-COLD-INDUCIBLE 2A)	0	2
SMC_N multi-domain protein	1	3
SPX domain-containing protein	2	0
Stress-inducible protein	0	2
Tify domain containing protein	8	12
Triacylglycerol lipase	5	5
Uncharacterized protein family/Unassigned protein/Protein of unknown function	94	114
Universal stress protein (USP) family protein	1	3
Zinc finger family protein	7	4
ble 2). Two candidates of Medicago, which were functionally classified into the ‘Carbohydrate transport and metabolism’ category, were also annotated on the KEGG database as involved in the beta-galactosidase pathway (Galactose Metabolism Glycan Structure – degradation), (Table 2).

The remaining previously ‘unknown’ sequences were annotated as shown in Table 3. The analysis through AutoFACT allowed a function assignment to 132 and 160 soybean and Medicago sequences, respectively. In general, the highest number of sequences was categorized as transcription factors, essential genes participating in the transcriptional regulation of plants. Although it was possible to record more than 65% of the sequences, 35% of ‘unknown’ soybean and 34% of ‘unknown’ Medicago sequences remained without their putative function identified. These are relevant data to be worked out in future functional studies, since they may represent new genes not yet described and unique to legumes.

In conclusion, even in the absence of libraries restricted to osmotic stress in the Genosoja databank, this study indicated that most of the genes involved in the osmotic stress pathways were expressed by the non-stressed soybean and Medicago libraries at least in a baseline way. The data also revealed that soybean and Medicago are a rich source of stress-responsive candidates, which can be also applied to improve soybean and other legumes. It also highlights the existence of significant diversity for most genes, useful for comparative physiological essays. The obtained data are available for gene-targeted functional evaluation using qRT-PCR, as well as other biotechnological approaches. The molecular differences detected between the compared libraries will permit the identification of important candidates by additional approaches including PCR walking, as previously done for other crops (e.g. Coemans et al., 2005).

The identified candidates are also being monitored in further expression assays carried out in the Genosoja project (considering contrasting combinations of tolerant and susceptible plants under drought stress as compared with their negative control in a time frame) providing a more complete picture of genes involved in osmotic stress response and useful for breeding and biotechnological purposes.

Acknowledgments

The authors would like to thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for their financial support.

References

Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S and Tyagi AK (2007) Genome-wide identification of C(2)H(2) zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65:467-485.

Autschluf SF, Gish W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410.

Chinnusamy V, Schumaker K and Zhu J-K (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225-236.

Ciftci-Yilmaz S and Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150-1160.

Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R and Sági L (2005) SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminate), a non-model organism. Theor Appl Genet 111:1118-1126.

DeFalco TA, Bender KW and Snedden WA (2010) Breaking the code: Ca+27 sensors in plant signalling. Biochem J 425:27-40.

Dietz K-J, Vogel MO and Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3-14.

Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, et al. (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. J Exp Bot 61:3563-3575.

Graham PH and Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiol 131:872-877.

Hariadi Y, Marandon K, Tian Y, Jacobsen S-E and Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185-193.

Hirayama T and Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: Past, present and future. Plant J 61:1041-1052.

Kido EA, Barbosa PK, Ferreira Neto JCR, PandolﬁV, Houllou-Kido LM, Crovella S and Benko-Issepon AM (2011) Identiﬁcation of plant protein kinases in response to abiotic and biotic stresses using SuperSAGE. Curr Prot Pept Sci 12:643-656.

Koski LB, Gray MW, Lang BE and Burger G (2005) AutoFACT: An Automatic Functional Annotation and Classiﬁcation Tool. BMC Bioinformatics 16:151-161.

Nascimento LC, Costa GGL, Binneck E, Pereira GAG and Carazzolle MF (2012) A web-based bioinformatics interface applied to Genosoja Project: Databases and pipelines. Genet Mol Biol 35(suppl 1): 203-211.

Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H and Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30-44.

Parry MAJ, Flexas J and Medrano H (2005) Prospects for crop production under drought: Research priorities and future directions. Ann Appl Biol 147:211-226.

Quackenbush J, Liang F, Holt I, Pertea G and Upton J (2000) The TIGR Gene Indices: Reconstruction and representation of expressed gene sequences. Nucleic Acids Res 28:141-145.

Sekif M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, et al. (2002) Monitoring the expression proﬁles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279-292.

Sekif M, Kamei A, Yamaguchi-Shinozaki K and Shinozaki K (2003) Molecular responses to drought, salinity and frost: Common and different paths for plant protection. Curr Opin Plant Biol 14:194-199.
Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54:582-596.
Valliyodan B and Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189-195.

Internet Resources
RIKEN Arabidopsis Full-Length Clone Database, http://www.brc.riken.go.jp/lab/epd/catalog/cdnaclone.html (May, 2011)
Genosoja platform, http://bioinfo03.ibi.unicamp.br/soja/ (May, 2011)
Medicago truncatula database, http://www.medicago.org/ (May, 2011)

Supplementary Material
The following online material is available for this article:
Table S1 - Identified candidates among abiotic stress responsive gene categories in soybean and Medicago genomes.
This material is available as part of the online article from http://www.scielo.br/gmb.
Table S1 - Identified candidates among abiotic stress responsive gene categories in soybean and *Medicago* genomes based on selected arabidopsis seed sequences, as well as number of other hits, e-value and score, against the respective database of *Medicago truncatula* (Mt) and *Glycine max* (Gm).

Arabidopsis Information	Query Sequence	Blast Result					
bZIP Transcription Factor	At1g42990	Mt_bZIP_1	*M. truncatula*	2	7.00 e-12	67.4	
	At3g10740	Mt_Carb_Met_1	*M. truncatula*	7	0.0	959	
	Gm_Carb_Met_1	G. max	8	0.0	947		
	Gm_Carb_Met_2	G. max	7	6.00 e-121	430		
	At3g06500	Mt_Carb_Met_2	*M. truncatula*	6	0.0	788	
	Gm_Carb_Met_3	G. max	2	8.00 e-76	280		
	At3g60130	Mt_Carb_Met_3	*M. truncatula*	5	1.00 e-107	386	
	Gm_Carb_Met_4	G. max	3	1.00 e-166	582		
	At5g18670	Mt_Carb_Met_4	*M. truncatula*	3	8.00 e-141	496	
	Gm_Carb_Met_5	G. max	19	0.0	919		
	At3g04240	Mt_Carb_Met_5	*M. truncatula*	17	0.0	1166	
	Gm_Carb_Met_6	G. max	5	5.00 e-98	353		
	At2g43820	Mt_Carb_Met_6	*M. truncatula*	10	2.00 e-106	382	
	Gm_Cell_Met_1	G. max	1	8.00 e-83	304		
	At3g53180	Mt_Cell_Met_1	*M. truncatula*	7	9.00 e-175	610	
	Gm_Cell_Met_2	G. max	4	2.00 e-60	229		
	At3g45300	Mt_Cell_Met_2	*M. truncatula*	7	6.00 e-153	536	
	Gm_Cell_Met_3	G. max	14	2.00 e-156	352		
	At2g39210	Mt_Cell_Met_3	*M. truncatula*	8	1.00 e-91	333	
	Gm_Cell_Met_4	G. max	2	3.00 e-91	331		
	At2g42970	Mt_Cell_Met_4	*M. truncatula*	11	7.00 e-145	510	
	Gm_Cell_Met_5	G. max	19	1.00 e-38	155		
	At1g68620	Mt_Cell_Met_5	*M. truncatula*	19	7.00 e-40	159	
	Gm_Cell_Stru_Org_Biog_1	G. max	16	4.00 e-110	394		
	At1g03220	Mt_Cell_Stru_Org_Biog_1	*M. truncatula*	19	4.00 e-145	510	
	Gm_Cell_Stru_Org_Biog_2	G. max	7	1.00 e-123	437		
	At3g10720	Mt_Cell_Stru_Org_Biog_2	*M. truncatula*	7	1.00 e-87	318	
	Gm_Cell_Stru_Org_Biog_3	G. max	16	1.00 e-47	184		
	At5g62350	Mt_Cell_Stru_Org_Biog_3	*M. truncatula*	18	9.00 e-47	182	
	Gm_Cell_Stru_Org_Biog_4	G. max	19	7.00 e-21	95.9		
	At5g20230	Mt_Cell_Stru_Org_Biog_4	*M. truncatula*	18	1.00 e-22	102	
	Gm_Cytoch_P450_1	G. max	11	2.00 e-101	365		
	Cytochrome P450	At2g34500	Mt_Cytoch_P450_1	*M. truncatula*	12	0.0	684
	Gm_Cytoch_P450_2	G. max	4	2.00 e-85	311		
	At3g26220	Mt_Cytoch_P450_2	*M. truncatula*	10	8.00 e-97	350	
	Gm_Detox_Enz_1	G. max	14	4.00 e-43	169		
	Detoxification Enzyme	At2g31570	Mt_Detox_Enz_1	*M. truncatula*	17	9.00 e-40	157
	Gm_Detox_Enz_2	G. max	19	4.00 e-51	196		
	At2g29450	Mt_Detox_Enz_2	*M. truncatula*	19	2.00 e-50	194	
Module	Gene Name	Species	Score	Identity			
------------------------------	--------------------	---------	--------	-----------			
DNA Nucleus	Gm_Detox_Enz_3	G. max	4.00 e-107	374			
	Mt_Detox_Enz_3	M. truncatula	1.00 e-95	346			
	Gm_DNA_Nuc_1	G. max	3.00 e-11	63.2			
	Mt_DNA_Nuc_1	M. truncatula	1.00 e-11	65.1			
DREB/ERF Transcription Factor	Gm_DREB_ERF_TF_1	G. max	2.00 e-41	164			
	Mt_DREB_ERF_TF_1	M. truncatula	2.00 e-37	152			
Ethylene Biosynthesis	Gm_DREB_ERF_TF_2	G. max	6.00 e-33	136			
	Mt_DREB_ERF_TF_2	M. truncatula	2.00 e-52	202			
Fatty Acid Metabolism	Gm_Ethyl_Bios_1	G. max	1.00 e-112	402			
	Mt_Ethyl_Bios_1	M. truncatula	4.00 e-106	380			
	Gm_Ethyl_Bios_2	G. max	5.00 e-61	230			
	Mt_Ethyl_Bios_2	M. truncatula	7.00 e-101	363			
Fatty Acid Metabolism	Gm_Fatty_Acid_Met_1	G. max	6.00 e-96	347			
	Mt_Fatty_Acid_Met_1	M. truncatula	5.00 e-26	115			
	Gm_Fatty_Acid_Met_2	G. max	3.00 e-94	340			
	Mt_Fatty_Acid_Met_2	M. truncatula	3.00 e-124	441			
	Gm_Fatty_Acid_Met_3	G. max	2.00 e-58	222			
	Mt_Fatty_Acid_Met_3	M. truncatula	3.00 e-134	446			
	Gm_Fatty_Acid_Met_4	G. max	2.00 e-92	335			
Ferritin	Gm_Ferritin_1	G. max	1.00 e-85	311			
	Mt_Ferritin_1	M. truncatula	1.00 e-87	318			
	Gm_HSF_1	G. max	2.00 e-51	197			
	Mt_HSF_1	M. truncatula	1.00 e-51	198			
Heat Shock Protein	Gm_HSF_2	G. max	0.0	996			
	Mt_HSF_2	M. truncatula	0.0	994			
Homeodomain Transcription Factor	Gm_Homeodom_TF_1	G. max	8.00 e-88	320			
	Mt_Homeodom_TF_1	M. truncatula	4.00 e-116	415			
LEA Protein	Gm_LEA_1	G. max	6.00 e-09	55.5			
	Mt_LEA_1	M. truncatula	2.00 e-07	50.4			
Membrane Protein	Gm_Memb_Prot_1	G. max	1.00 e-116	415			
	Mt_Memb_Prot_1	M. truncatula	3.00 e-113	332			
	Gm_Memb_Prot_2	G. max	6.00 e-44	174			
MYB Transcription Factor	Gm_MYB_TF_1	G. max	8.00 e-57	217			
	Mt_MYB_TF_1	M. truncatula	4.00 e-25	112			
NAC Transcription Factor	Gm_NAC_TF_1	G. max	1.00 e-89	325			
	Mt_NAC_TF_1	M. truncatula	4.00 e-91	330			
	Gm_NAC_TF_2	G. max	2.00 e-95	344			
	Mt_NAC_TF_2	M. truncatula	2.00 e-94	341			
Osmoprotectant	Gm_Osmoprot_1	G. max	2.00 e-142	500			
	Mt_Osmoprot_1	M. truncatula	3.00 e-157	550			
	Gm_Osmoprot_2	G. max	2.00 e-11	65.5			
	Mt_Osmoprot_3	G. max	5.00 e-09	57.8			
	Mt_Osmoprot_2	M. truncatula	9.00 e-16	80.9			
Function	Gene	Species	Gene ID	Function	Gene	Species	Gene ID
-------------------------	-----------------------	---------	----------	-------------------	-----------------------	---------	----------
Photosynthesis	Gm_Osmoprot_4	G. max	At3g57520	Mt_Osmoprot_3	M. truncatula	M. truncatula	At5g20830
	Gm_Osmoprot_5	G. max					
	Gm_Photosyn_1	G. max	At4g15530	Mt_Photosyn_1	M. truncatula		
Plant Defense	Gm_Osmoprot_4	G. max	At3g55430	Mt_Osmoprot_4	M. truncatula		
	Gm_Photosyn_1	G. max	At4g13580	Mt_Photosyn_1	M. truncatula		
Protein degradation	Gm_Prot_Degrad_1	G. max	At2g40000	Mt_Prot_Degrad_1	M. truncatula		
Protein Kinase	Gm_Prot_Kinase_1	G. max	At5g25110	Mt_Prot_Kinase_1	M. truncatula		
Protein Phosphatase	Gm_Prot_Phosphat_1	G. max	At4g26080	Mt_Prot_Phosphat_1	M. truncatula		
Reproductive Development	Gm_Reprod_Develop_1	G. max	At5g56750	Mt_Reprod_Develop_1	M. truncatula		
Secondary Metabolism	Gm_Second_Metabol_1	G. max	At2g38240	Mt_Second_Metabol_1	M. truncatula		
Senescence-Related	Gm_Senesc_Relat_1	G. max	At5g13170	Mt_Senesc_Relat_1	M. truncatula		
Signalling	Gm_Sigalnling_1	G. max	At5g33380	Mt_Sigalnling_1	M. truncatula		
Transport Protein	Gm_Transp_Prot_Ion_1	G. max	At1g58360	Mt_Transp_Prot_Ion_1	M. truncatula		
Ion Channel Carrier	Gm_Transp_Prot_Ion_2	G. max	At1g08930	Mt_Transp_Prot_Ion_2	M. truncatula		
	Gm_Transp_Prot_Ion_3	G. max	At5g20380	Mt_Transp_Prot_Ion_3	M. truncatula		
	Gm_Transp_Prot_Ion_4	G. max	At2g22500	Mt_Transp_Prot_Ion_4	M. truncatula		
Unknown Protein	Gm_Unknown_1	G. max	At5g22290	Mt_Unknown_1	M. truncatula		
	Gm_Unknown_2	G. max	At1g11210	Mt_Unknown_2	M. truncatula		
			At1g15430	Gm_Unknown_2	G. max		

Notes:
- **Function** indicates the biological function of the gene.
- **Gene** and **Species** represent the gene name and species, respectively.
- **Gene ID** indicates the gene identification number.
- **G. max** and **M. truncatula** refer to the species of Glycine max and Medicago truncatula, respectively.
- **Signalling** and **Transport Protein Ion Channel Carrier** are categories for specific functions.
- **Unknown Protein** category indicates genes with unknown functions.
| Gene Symbol | Species | Log2 Fold Change | P-Value | Window Size | | |
|---|---|---|---|---|---|---|
| MtUnknown_3 | M. truncatula | 7 | 1.00e-31 | 132 |
| GmUnknown_3 | G. max | - | 9.00e-34 | 140 |
| MtUnknown_4 | M. truncatula | 5 | 2.00e-20 | 95.5 |
| GmUnknown_4 | G. max | 1 | 2.00e-28 | 122 |
| MtUnknown_5 | M. truncatula | 7 | 1.00e-76 | 281 |
| GmUnknown_5 | G. max | 2 | 2.00e-66 | 248 |
| MtUnknown_6 | M. truncatula | 5 | 1.00e-16 | 80.5 |
| GmUnknown_6 | G. max | 17 | 3.00e-124 | 441 |
| MtUnknown_7 | M. truncatula | 11 | 3.00e-81 | 298 |
| GmUnknown_7 | G. max | 2 | 2.00e-67 | 254 |
| MtUnknown_8 | M. truncatula | 13 | 1.00e-39 | 160 |
| GmUnknown_8 | G. max | 12 | 2.00e-56 | 214 |
| MtUnknown_9 | M. truncatula | 11 | 1.00e-81 | 320 |
| GmUnknown_9 | G. max | 13 | 3.00e-106 | 380 |
| MtUnknown_10| M. truncatula | 15 | 1.00e-61 | 233 |
| GmUnknown_10| G. max | 4 | 3.00e-58 | 202 |
| MtUnknown_11| M. truncatula | 11 | 6.00e-50 | 154 |
| GmUnknown_11| G. max | 12 | 6.00e-79 | 290 |
| MtUnknown_12| M. truncatula | 9 | 1.00e-20 | 94.0 |
| GmUnknown_12| G. max | 13 | 3.00e-106 | 380 |
| MtUnknown_13| M. truncatula | 4 | 4.00e-58 | 202 |
| GmUnknown_13| G. max | 3 | 5.00e-29 | 123 |
| MtUnknown_14| M. truncatula | 1 | 1.00e-25 | 112 |
| GmUnknown_14| G. max | 7 | 7.00e-20 | 94.0 |
| MtUnknown_15| M. truncatula | 12 | 3.00e-30 | 129 |
| GmUnknown_15| G. max | 6 | 2.00e-13 | 70.1 |
| MtUnknown_16| M. truncatula | 6 | 4.00e-18 | 86.3 |
| GmUnknown_16| G. max | - | 9.00e-18 | 84.7 |
| MtUnknown_17| M. truncatula | 3 | 2.00e-15 | 77.8 |
| GmUnknown_17| G. max | 1 | 8.00e-10 | 58.2 |
| MtUnknown_18| M. truncatula | 3 | 2.00e-07 | 50.8 |
| GmUnknown_18| G. max | 8 | 8.00e-66 | 246 |
| MtUnknown_19| M. truncatula | 17 | 2.00e-70 | 262 |
| GmUnknown_19| G. max | 1 | 3.00e-60 | 197 |
| MtUnknown_20| M. truncatula | 1 | 2.00e-46 | 181 |
| GmUnknown_20| G. max | 19 | 5.00e-102 | 366 |
| MtUnknown_21| M. truncatula | 19 | 2.00e-101 | 365 |
| GmUnknown_21| G. max | 5 | 0.0 | 510 |
| MtUnknown_22| M. truncatula | 12 | 0.0 | 754 |
| GmUnknown_22| G. max | 3 | 3.00e-20 | 95.1 |
| MtUnknown_23| M. truncatula | 4 | 5.00e-32 | 134 |
| GmUnknown_23| G. max | 1 | 3.00e-36 | 146 |
| MtUnknown_24| M. truncatula | 5 | 4.00e-11 | 63.5 |
| MtUnknown_25| M. truncatula | 5 | 6.00e-25 | 109 |
| MtUnknown_26| M. truncatula | - | 2.00e-40 | 161 |
| Accession | Organism | Symbol | Gene | Log2 Fold Change | p-value | FPKM |
|-----------|----------|--------|------|------------------|---------|------|
| At2g40140 | G. max | Gm_Unknown_24 | 19 | 1,00 e-161 | 565 |
| MtUnknown_27 | M. truncatula | MtUnknown_27 | 19 | 5,00 e-153 | 537 |
| GmUnknown_25 | G. max | GmUnknown_25 | 20 | 1,00 e-28 | 121 |
| At4g36040 | M. truncatula | MtUnknown_28 | 19 | 2,00 e-26 | 114 |
| GmUnknown_26 | G. max | GmUnknown_26 | 9 | 1,00 e-59 | 225 |
| At4g33050 | M. truncatula | MtUnknown_29 | 14 | 7,00 e-74 | 273 |
| GmUnknown_27 | G. max | GmUnknown_27 | 18 | 3,00 e-87 | 317 |
| At5g09440 | M. truncatula | MtUnknown_30 | 19 | 2,00 e-79 | 291 |
| GmUnknown_28 | G. max | GmUnknown_28 | 9 | 9,00 e-38 | 152 |
| At1g19180 | M. truncatula | MtUnknown_31 | 14 | 3,00 e-23 | 105 |
| GmUnknown_29 | G. max | GmUnknown_29 | 1 | 4,00 e-11 | 64.3 |
| At1g17380 | M. truncatula | MtUnknown_32 | 1 | 7,00 e-14 | 74.3 |
| GmUnknown_30 | G. max | GmUnknown_30 | 4 | 4,00 e-59 | 224 |
| At1g02660 | M. truncatula | MtUnknown_33 | 5 | 7,00 e-168 | 587 |
| GmUnknown_31 | G. max | GmUnknown_31 | 2 | 6,00 e-66 | 245 |
| At2g21620 | M. truncatula | MtUnknown_34 | 1 | 2,00 e-65 | 244 |
| GmUnknown_32 | G. max | GmUnknown_32 | 7 | 2,00 e-126 | 448 |
| At1g27760 | M. truncatula | MtUnknown_35 | 1 | 6,00 e-107 | 384 |
| GmUnknown_33 | G. max | GmUnknown_33 | 4 | 3,00 e-77 | 285 |
| At1g63010 | M. truncatula | MtUnknown_36 | 3 | 8,00 e-89 | 324 |
| GmUnknown_34 | G. max | GmUnknown_34 | 1 | 1,00 e-56 | 216 |
| At2g41640 | M. truncatula | MtUnknown_37 | 2 | 9,00 e-160 | 559 |
| GmUnknown_35 | G. max | GmUnknown_35 | 14 | 5,00 e-67 | 249 |
| At1g11360 | M. truncatula | MtUnknown_38 | 19 | 1,00 e-59 | 225 |
| GmWater_Chan_1 | G. max | GmWater_Chan_1 | 19 | 2,00 e-116 | 414 |
| MtWater_Chan_1 | M. truncatula | MtWater_Chan_1 | 19 | 3,00 e-115 | 410 |
| GmWRKY_TF_1 | G. max | GmWRKY_TF_1 | 10 | 4,00 e-65 | 244 |
| MtWRKY_TF_1 | M. truncatula | MtWRKY_TF_1 | 15 | 3,00 e-62 | 235 |
| GmWRKY_TF_2 | G. max | GmWRKY_TF_2 | 12 | 9,00 e-43 | 167 |
| MtWRKY_TF_2 | M. truncatula | MtWRKY_TF_2 | 8 | 1,00 e-40 | 161 |
| GmZF_TF_1 | G. max | GmZF_TF_1 | 7 | 9,00 e-31 | 129 |
| MtZF_TF_1 | M. truncatula | MtZF_TF_1 | 15 | 4,00 e-32 | 134 |
| GmZF_TF_2 | G. max | GmZF_TF_2 | 11 | 1,00 e-24 | 107 |
| MtZF_TF_3 | M. truncatula | MtZF_TF_3 | 17 | 7,00 e-68 | 252 |
| GmZF_TF_3 | G. max | GmZF_TF_3 | 11 | 1,00 e-24 | 107 |
| MtZF_TF_2 | M. truncatula | MtZF_TF_2 | 16 | 4,00 e-67 | 250 |