Electron-Nuclear Interactions as a Test of Crystal-Field Parameters for Low Symmetry Systems: Zeeman-Hyperfine Spectroscopy of Ho$^{3+}$ Doped Y$_2$SiO$_5$

Sagar Mothkuri,1,2 Michael F. Reid,1,2,* Jon-Paul R. Wells,1,2,** Eloïse Lafitte-Houssat,3,4 Philippe Goldner,3 and Alban Ferrier3,5

1School of Physical and Chemical Sciences, University of Canterbury, PB 4800, Christchurch 8140, New Zealand
2The Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
3Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
4Thales Research and Technology, 1 Avenue Augustin Fresnel, 91767, Palaiseau, France
5Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 933, 75005 Paris, France

(Dated: March 30, 2021)

High-resolution Zeeman spectroscopy of electronic-nuclear hyperfine levels of 5I$_8 \rightarrow ^5$I$_7$ transitions in Ho$^{3+}$:Y$_2$SiO$_5$ is reported. Crystal-field parameters determined for the two C$_1$ symmetry sites in Er$^{3+}$:Y$_2$SiO$_5$ are successfully used to model the Zeeman-hyperfine data, including the prediction of avoided crossings between hyperfine levels under the influence of an external magnetic field. The two six- and seven-coordinate substitutional sites may be distinguished by comparing the spectra with crystal-field calculations.

I. INTRODUCTION

Yttrium orthosilicate (Y$_2$SiO$_5$) doped with rare-earth ions is widely seen as an attractive option for the development of quantum-information technologies. The magnetic moment of yttrium is very small and isotopes of Si and O with non-zero nuclear spin have very low natural abundances. Consequently, decoherence due to spin flips is low, giving outstanding coherence properties. Furthermore, the substitutional sites for rare-earth ions in Y$_2$SiO$_5$ have C$_1$ point-group symmetry, giving highly admixed wavefunctions, which enables efficient and diverse optical pumping schemes [1–3]. Applications include optical quantum memories [4–9], quantum-gate implementations [1, 3], microwave-to-optical photon modulators [10, 11], single-photon sources [12]. Recently, optical quantum memories [4–9], quantum-gate implementations [1, 3], microwave-to-optical photon modulators [10, 11], single-photon sources [12].

Performance improvements for such technologies require highly accurate modeling of magnetic-hyperfine structure to determine optimized regions where the zero-first-order-Zeeman (ZEFOZ) technique can be most efficiently exploited. Use of the ZEFOZ technique has already enabled the demonstration of a spin coherence time of six hours in 151Eu$^{3+}$:Y$_2$SiO$_5$ [5].

Crystal-field calculations [14–17] may be used to model the electronic structure of the entire $4f^N$ configuration of a rare-earth ion. Since the crystal-field parameters vary in a systematic way across the rare-earth series, the information they carry may be transferred between different ions. However, the determination of crystal-field parameters for crystals where the rare-earth ions occupy low point-group symmetry sites is non-trivial. Additional information from magnetic splittings is essential to provide the orientation information necessary to determine a unique set of parameters [18, 19]. In C$_1$ symmetry (i.e. no symmetry) there are 27 crystal-field parameters, so the calculations are computationally challenging. However, recently we have developed techniques that make it practical to obtain full phenomenological crystal-field fits for C$_1$ point-group symmetry sites. These methods have been applied to both sites of Er$^{3+}$:Y$_2$SiO$_5$ [20, 21] with considerable success. These parameters have also been applied to the Zeeman splittings of Nd$^{3+}$ and Sm$^{3+}$ ions in Y$_2$SiO$_5$ [22], demonstrating that the parameters may be transferred from ion to ion, and that the two six- and seven-coordinate substitutional sites may be distinguished by comparing calculations with experiment.

The Nd$^{3+}$ and Sm$^{3+}$ work did not include nuclear hyperfine measurements. In this work, we utilize the large magnetic moment and high nuclear spin ($I = 7/2$) of the trivalent holmium ion, and the application of magnetic fields, to explore the predictive ability of crystal-field calculations in the context of Zeeman-hyperfine measurements. This analysis is directly relevant to the utilization of the ZEFOZ technique in quantum information storage.

II. EXPERIMENTAL

Y$_2$SiO$_5$ (in the X2 phase) is a monoclinic crystal with C$_{2h}$ space group symmetry. The yttrium ions occupy two crystallographically distinct sites, each with C$_1$ point-group symmetry, with oxygen coordination numbers of six and seven [23]. We follow the labeling convention used in Er$^{3+}$ [21, 24] and in Ref. [22] of referring to these as Site 1 and Site 2, tentatively identified as six- and seven-coordinate. Y$_2$SiO$_5$ has three perpendicular optical-extinction axes: the crystallographic b axis, and two mutually perpendicular axes labeled D_1 and D_2. In our calculations we follow the convention of identifying these as the z, x, and y axes respectively [24].

The crystal of Ho$^{3+}$:Y$_2$SiO$_5$ used in the current study was prepared using the Czochralski process with a Ho$^{3+}$
shows the lowest-energy field parameters, with k = 2, 4, 6. Due to this, all non-axial (q ≠ 0) B^k parameters are complex, leading to a total of 27 parameters. Due to this low symmetry, all electronic states are non-degenerate in Ho\(^{3+}\).

The holmium nucleus has a spin I = 7/2, and the electronic states are coupled to the nuclear spins by the hyperfine interaction, giving 8 electronic-nuclear states for each electronic level. We use basis states |J M_J, I M_I⟩ in our calculations.

For holmium the magnetic-hyperfine interaction is much larger than the nuclear-quadrupole interaction [25] so here we consider only the magnetic hyperfine part of the Hamiltonian, which within a single multiplet may be written as

\[H_{\text{HF}} = A_J J \cdot I, \]

where A_J is the hyperfine coupling constant for the multiplet. The A_J may be calculated using eigenvectors of the free-ion part of the Hamiltonian.

The effect of an external magnetic field is given by the Zeeman Hamiltonian

\[H_Z = \mu_B B \cdot (L + 2S), \]

where B is the magnetic field. Within a multiplet L + 2S may be written as a g factor g(2S + 1) I_J multiplied by J.

IV. RESULTS AND DISCUSSION

Figure 1 shows the lowest-energy \(^{5}\text{I}_8\) (Z) → \(^{5}\text{I}_7\) (Y) absorption transitions, which we assign to Site 2 (see
Table I. Experimental and calculated Z_1-$Z_2 \rightarrow Y_1$-Y_2 transition energies for Site 2. All values are in units of cm$^{-1}$.

Transition	Experimental	Calculated
Z_2-Y_1	5130.22	5130.23
	5130.41	5130.41
	5130.54	5130.54
	5130.61	5130.62
Z_2-Y_2	5131.68	5131.73
	5131.76	5131.78
	5131.87	5131.87
	5131.95	5131.96
Z_1-Y_1	5135.09	5135.11
	5135.14	5135.21
	5135.24	5135.29
	5135.32	5135.34
Z_1-Y_2	5136.46	5136.45
	5136.49	5136.53
	5136.68	5136.66
	5136.84	5136.84

Table II. Energy levels for the Z_1, Z_2, Y_1 and Y_2 states for Site 1 and Site 2 from crystal-field calculations (CF) and after fitting to the experimental data. The last row shows the splitting between Y_1 and Y_2. All values in units of cm$^{-1}$.

Multiplet	Energy level	Site 1	Site 2		
5I_8	Z_1	0	0		
	Z_2	4.67	4.87	1.77	4.72
5I_7	Y_1	5162.19	5158.20	5125.37	5135.25
	Y_2	5162.70	5159.25	5125.92	5136.40
	$\Delta_{Y_1Y_2}$	0.51	1.05	0.55	1.15

Table III. Absolute values of matrix elements of the angular momentum operators from crystal-field calculations. The diagonal matrix elements are not shown, but are of the order of 10^{-4}.

Energy level	Site 1	Site 2						
J_x	2.53	5.34						
J_y	1.47	3.01	2.75					
J_z	5.12							
$	\langle Z_1	J_i	Z_2\rangle	$	1.96	5.19		
$	\langle Y_1	J_i	Y_2\rangle	$	2.15	3.01	2.76	4.9924

Table IV. Hyperfine and magnetic constants calculated using eigenvectors of the free-ion part of the Hamiltonian [25].

Constant	Value
$A(^{1}I_8)$	812 MHz
$A(^{5}I_2)$	883 MHz
$g(^{1}I_8)$	1.24
$g(^{5}I_2)$	1.17

Below). Both the ground and excited states are closely spaced electronic singlets, which can be observed as four sets of transitions in Fig. 1(a). At low temperatures the population of Z_2 is significantly less than that of Z_1. Though the sample is in contact with a mount that is nominally at 4.2 K, a comparison of intensity ratios with the Boltzmann equation suggests that the sample temperature is close to 10 K. The close proximity of these levels, together with the low point-group symmetry of the Ho$^{3+}$ ions, suggests we may treat these levels as a pair of pseudo-doublets, with their close proximity giving significant magnetic interactions such as Zeeman-hyperfine effects. Indeed, the zero-field spectrum shown in Fig. 1(a) exhibits partially resolved hyperfine splittings significantly larger than the inhomogeneous broadening of the spectral lines. Estimated transition energies are listed in Table I. Figure 1(b) shows the same transitions with the application of a 0.3 T magnetic field along the b axis.

We model the spectrum by first calculating electronic energy levels and wavefunctions and then treating the hyperfine interaction as a perturbation. Table II gives calculated energies for the lowest two 5I_8 (Z_1, Z_2) and 5I_7 (Y_1, Y_2) states. These calculations use the crystal-field parameters for Er$^{3+}$ in Y$_2$SiO$_5$ from Ref. [20] for Site 1 and Site 2, and the free-ion parameters for Ho$^{3+}$ from Ref. [14]. The Y_1 and Y_2 levels for Site 2 are calculated to be lower than those for Site 1, so we assign the spectrum in Fig. 1 to Site 2. The calculated splitting between Z_1 and Z_2 and the splitting between Y_1 and Y_2 is smaller than the experimental splitting, so we treat the energies as adjustable parameters.

Table III gives the relevant matrix elements of the angular momentum operators J_x, J_y and J_z calculated using eigenvectors from the crystal-field calculation. These operators contribute to both the hyperfine splitting (Eq. 4) and the magnetic splitting (Eq. 5). The different magnitudes of the matrix elements of these operators for the two sites, and the different directions, will allow us to confirm our assignments. The A and g factors for the relevant multiplets are given in Table IV. The only free parameters in our calculation are the energies of Z_1, Z_2, Y_1, and Y_2. These fitted energies are given in Table II.

The addition of the nuclear spin ($I = 7/2$) expands each singlet electronic state into 8 electronic-nuclear states. However, due to Kramers degeneracy, in the absence of a magnetic field there are only four distinct energies for each electronic state. Thus, there are two 16 \times 16 matrices, one each for the Z_1-Z_2 and Y_1-Y_2 states. Since the diagonal matrix elements of J are extremely small (they would be zero for isolated singlets), it is the off-diagonal matrix elements of $J_zJ\cdot I$ between Z_1 and Z_2 or Y_1 and Y_2 that are responsible for the hyperfine splitting. Figure 2 shows the calculated zero-field energy levels and the calculated transition energies are given in Table I. Figure 3 shows the energies as a function of magnetic
field.

The eigenvectors from the electronic-hyperfine calculation can also be used to estimate the absorption. The $5{I}_8$ to $5{I}_7$ transitions are predominantly magnetic dipole [25] in nature. The calculated spectra in Fig. 1 were obtained by calculating the squares of the appropriate magnetic-dipole moments, and adding line profiles of width (FWHM) 0.12 cm$^{-1}$.

In the low symmetry sites of Y$_2$SiO$_5$, the hyperfine Hamiltonian (Eq. 4) mixes states with different M_I. This is in contrast to the high-symmetry sites in Refs. [25, 26], where the states are pure M_I. Since optical transitions do not change the nuclear spin, in the high-symmetry systems the number of allowed transitions is restricted, and at zero field there are only four distinct transitions between singlet electronic states. Our spectra, and our calculations, also give only four strong transitions at zero field, even though in principle all possible transitions are allowed. This is because the eigenvectors of the hyperfine Hamiltonian for Z$_1$-Z$_2$ and Y$_1$-Y$_2$ are sufficiently similar that only four transitions with distinct energies at zero field, and 8 at non-zero field, have significant intensity.

Experimental data and calculations for the magnetic field range from 0 to 0.5 T are shown in Fig. 4. With the aid of Fig. 3, which indicates the approximate selection rules, it is clear why the Z$_1$ \rightarrow Y$_2$ and Z$_2$ \rightarrow Y$_1$ transitions move apart, and the Z$_1$ \rightarrow Y$_1$ and Z$_2$ \rightarrow Y$_2$ transitions move together as the field increases. In the latter case the energy differences \rightarrow the same value. A similar calculation also reproduces the magnetic splitting along the D$_2$ axis. The matrix elements of J_y are smaller than those of J_z (Table III), so both experimental and calculated magnetic splittings are smaller. Note, also, that the J_z matrix elements are significantly smaller for Site 1, and if the Site 1 eigenvectors were used, the calculation would be in poor agreement with the experimental measurements. Thus, the calculations confirm our site assignment.

Anti-crossings between magnetic-hyperfine levels are of interest in quantum-information applications, since transitions at those points suffer minimal effects of magnetic fluctuations [5, 27]. Figure 5 gives a blowup of our calculated Z$_1$ and Z$_2$ states. As the magnetic field is increased, anticrossings between the Z$_1$ and Z$_2$ states are apparent. These are the order of 4.7 cm$^{-1}$ (140 GHz). This splitting is much larger than the 9 GHz splitting utilized in the EPR experiments of Reference [27], due to the much larger matrix elements of J connecting the Z$_1$ and Z$_2$ states in our system. Consequently, the second deriva-
Figure 4. Map of the experimental and calculated Zeeman-hyperfine infrared absorption spectra for the $Z_1-Z_2 \rightarrow Y_1-Y_2$ transitions of Site 2 for Ho$^{3+}$:Y$_2$SiO$_5$ with a magnetic field applied along the b axis.

Figure 5. Calculated anti-crossings in the Z_1-Z_2 region of Site 2 with a magnetic field applied along the b axis. The energy gaps at the anti-crossing points within Z_1 and Z_2 are the order of 10^{-4} cm$^{-1}$ (5 MHz), so are not visible in the Figure.

tives with respect to changes in the magnetic field are considerably smaller in our system.

There are also anti-crossings between the Z_1 states. These are not resolved in Fig. 5, since the spacings at the anti-crossings range from 2 to 9 MHz. These spacings are small because the matrix elements of J within Z_1 are the order of 10^{-4} cm$^{-1}$, which is a result of the electronic states being non-degenerate. In Reference [26], anticrossings of approximately 1.8 GHz were observed by infra-red absorption in a degenerate excited state of Ho$^{3+}$ in LiYF$_4$. The hyperfine anticrossings in the non-degenerate electronic states of Ho$^{3+}$:Y$_2$SiO$_5$ are too small to resolve by optical absorption measurements.

We now consider a region that we assign to transitions of Ho$^{3+}$ in Site 1. In Figs. 6 and 7 experimental data is compared with calculations of hyperfine and magnetic splittings for $Z_1-Z_2 \rightarrow Y_1-Y_2$ transitions of Site 1. This region also contains lines that we assign to Site 2 and to water (indicated by asterisks). For clarity, these features were removed from Fig. 7. The hyperfine structure is not fully resolved, but it is clear that both measured and calculated Zeeman splittings are much smaller for Site 1 than for Site 2. Though the calculation reproduces the experimental energies, it does not accurately reproduce the experimental intensities under the influence of a magnetic field (Fig. 6(b)). It is possible that mixing with higher-lying electronic states is responsible for this discrepancy. To properly account for such effects would require going beyond the perturbation approach used here, to a calculation taking into account the crystal-field, hyperfine, and Zeeman interactions for the full 4f^{10} configuration.

V. CONCLUSIONS

We have presented Zeeman-hyperfine spectra for the lowest energy infrared absorption transitions of Ho$^{3+}$ doped into high-quality Y$_2$SiO$_5$ crystals. We have
Figure 7. Map of the experimental and calculated Zeeman-hyperfine infrared absorption spectra for the Z1-Z2 → Y1-Y2 transitions of Site 1 for Ho3+:Y2SiO5 with a magnetic field applied along the b axis. For clarity, transitions assigned to Site 2 and water have been deleted from the experimental map.

demonstrated that the data may be modeled using electron-nuclear wavefunctions derived from a Ho3+ crystal-field calculation using parameters obtained previously for the Er3+ ion, which neighbors Ho3+ in the periodic table. The results presented here form an important test of both the transferability of parameters from ion-to-ion and the predictive ability of crystal-field calculations for sites exhibiting very low C1 point group symmetry. The calculations are, therefore, an important step in establishing a consistent set of crystal-field parameters for rare-earth ions in Y2SiO5. It is notable that not only are our calculations able to distinguish spectroscopic features of the two substitutional sites but in fact, give excellent agreement with few fitting parameters.

ACKNOWLEDGMENTS

SM acknowledges support from the University of Canterbury in the form of University Doctoral Scholarship. EL-H acknowledges support from DGA. The technical assistance of Mr Stephen Hemmingson, Mr Robert Thir-kettle and Mr Graeme MacDonald (UoC, NZ) is gratefully acknowledged.

[1] L. Rippe, B. Julsgaard, A. Walther, Y. Ying, and S. Kröll, Phys. Rev. A 77, 022307 (2008).
[2] B. Lauritzen, S. R. Hastings-Simon, H. de Riedmatten, M. Afzelius, and N. Gisin, Physical Review A 78, 043402 (2008).
[3] J. J. Longdell and M. J. Sellars, Physical Review A 69, 032307 (2004).
[4] H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, Nature 456, 773 (2008).
[5] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015).
[6] T. Zhong, J. M. Kindem, J. G. Bartholomew, J. Rochman, I. Craiciu, E. Miyazono, M. Bettinelli, E. Cavalli, V. Verma, S. W. Nam, F. Marsili, M. D. Shaw, A. D. Beyer, and A. Faraon, Science 357, 1392 (2017).
[7] M. Rančič, M. P. Hedges, R. L. Ahlefeldt, and M. J. Sellars, Nature Physics 14, 50 (2018).
[8] B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, Physical Review Letters 104, 080502 (2010).
[9] E. Fraval, M. J. Sellars, and J. J. Longdell, Physical Review Letters 95, 030506 (2005).
[10] S. Probst, H. Rotzinger, S. Wünsch, P. Jung, M. Jerger, M. Siegel, A. V. Ustinov, and P. A. Bushev, Physical Review Letters 110, 157001 (2013).
[11] X. Fernandez-Gonzalo, Y.-H. Chen, C. Yin, S. Rogge, and J. J. Longdell, Physical Review A 92, 062313 (2015).
[12] A. M. Dibos, M. Raha, C. M. Phenicie, and J. D. Thompson, Physical Review Letters 120, 243601 (2018).
[13] S. Chen, M. Raha, C. M. Phenicie, S. Ourari, and J. D. Thompson, Science 370, 592 (2020).
[14] W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, The Journal of Chemical Physics 90, 3443 (1989).
[15] C. Görler-Walrand and K. Binnemans, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 23, edited by J. K. A. Gschneidner and L. Eyring (North-Holland, Amsterdam, 1996) p. 121.
[16] D. J. Newman and B. K. C. Ng, eds., Crystal Field Handbook (Cambridge University Press, Cambridge, 2000).
[17] G. Liu, in Spectroscopic Properties of Rare Earths in Optical Materials, edited by G. Liu and B. Jacquier (Springer Science & Business Media, 2006).
[18] A. A. Antipin, M. P. Davydova, M. V. Eremin, R. K. Luks, and A. L. Stolov, Optika i Spektroskopiya 33, 673 (1972).
[19] S. P. Horvath, J.-P. R. Wells, M. F. Reid, M. Yamaga, and M. Honda, J. Phys.: Condens. Matter 31, 015501 (2018).
[20] S. P. Horvath, High-resolution spectroscopy and novel crystal-field methods for rare-earth based quantum information processing, Ph.D. thesis, University of Canterbury (2016).
[21] S. P. Horvath, J. V. Rakonjac, Y.-H. Chen, J. J. Longdell, P. Goldner, J. P. R. Wells, and M. F. Reid, Phys. Rev. Lett. 123, 057401 (2019).
[22] N. L. Jobbitt, S. J. Patchett, Y. Alizadeh, M. F. Reid, J.-P. R. Wells, S. P. Horvath, J. J. Longdell, A. Ferrier, and P. Goldner, Physics of the Solid State 61, 780 (2019).
[23] B. A. Maksimov, V. V. Ilyukhin, Y. A. Khariton, and N. V. Belov, Soviet Physics Crystallography, USSR 15, 806 (1971).
[24] Y. Sun, T. Böttger, C. W. Thiel, and R. L. Cone, Physical Review B 77, 085124 (2008).
[25] J.-P. R. Wells, G. D. Jones, M. F. Reid, M. N. Popova, and E. P. Chukalina, *Molecular Physics* **102**, 1367 (2004).

[26] K. N. Boldyrev, M. N. Popova, B. Z. Malkin, and N. M. Abishev, *Physical Review B* **99**, 041105(R) (2019).

[27] M. Shiddiq, D. Komijani, Y. Duan, A. Gaïta-Ariño, E. Coronado, and S. Hill, *Nature* **531**, 348 (2016).