ON THE SURJECTIVITY OF CERTAIN MAPS

C.P. ANIL KUMAR

Abstract. We prove in this article the surjectivity of three maps. We prove in Theorem 1 the surjectivity of the chinese remainder reduction map associated to projective space of an ideal with a given factorization into ideals whose radicals are pairwise distinct maximal ideals. In Theorem 2 we prove the surjectivity of the reduction map of the strong approximation type for a ring quotiented by an ideal which satisfies unital set condition. In Theorem 3 we prove for dedekind type domains which include dedekind domains, for \(k \geq 2 \), the map from \(k \)-dimensional special linear group to the product of projective spaces of \(k \)-mutually comaximal ideals associating the \(k \)-rows or \(k \)-columns is surjective. Finally this article leads to three interesting questions 1, 2, 3 mentioned in the introduction section.

1. Introduction

We start this section with a few definitions. Here we define the projective spaces associated to a certain class denoted by \(\text{INTRAD}(\mathcal{R})^* \) of ideals over arbitrary commutative rings \(\mathcal{R} \) with unity.

Definition 1. Let \(\mathcal{R} \) be a commutative ring with identity. Define the set of non-zero ideals
\[
\text{INTRAD}(\mathcal{R})^* = \{ \mathcal{I} \subset \mathcal{R} \mid \mathcal{I} \text{ is an arbitrary intersection of its ideals whose radicals are all distinct maximal ideals} \}
\]
and \(\text{INTRAD}(\mathcal{R}) = \text{INTRAD}(\mathcal{R})^* \cup \{ (0) \} \).

Definition 2. Let \(\mathcal{R} \) be a commutative ring with identity. Let \(0 \neq \mathcal{I} \subset \mathcal{R} \) be a nonzero ideal such that \(\mathcal{I} \in \text{INTRAD}(\mathcal{R}) \). Let \((a_0, a_1, a_2, \ldots, a_k), (b_0, b_1, b_2, \ldots, b_k) \in \mathcal{R}^{k+1}\). Suppose each of the sets \(\{a_0, a_1, a_2, \ldots, a_k\}, \{b_0, b_1, b_2, \ldots, b_k\} \) generate the unit ideal \(\mathcal{R} \). We say
\[
(a_0, a_1, a_2, \ldots, a_k) \sim_{GR} (b_0, b_1, b_2, \ldots, b_k)
\]
if and only if \(a_i b_j - a_j b_i \in \mathcal{I} \) for \(0 \leq i < j \leq k \). This relation \(\sim_{GR} \) is an equivalence relation (see Lemma 7). The equivalence class of \((a_0, a_1, a_2, \ldots, a_k)\) is denoted by \([a_0 : a_1 : a_2 : \ldots : a_k]\). Define the \(k \)-dimensional projective space corresponding to \(\mathcal{I} \) denoted by
\[
\mathbb{P}^k_{\mathcal{I}} = \{ [a_0 : a_1 : a_2 : \ldots : a_k] \mid \text{the set } \{a_0, a_1, a_2, \ldots, a_k\} \subset \mathcal{R} \text{ generates the unit ideal } = \mathcal{R} \}.
\]
Note here we can have elements \(\{a_0, a_1, a_2, \ldots, a_k\} \), where each \(a_i \) is not a unit \(\text{mod } \mathcal{I} \).

Definition 3. Let \(\mathcal{R} \) be a commutative ring with unity. We say a finite subset
\[
\{a_1, a_2, \ldots, a_k\} \subset \mathcal{R}
\]
consisting of \(k \)-elements (possibly with repetition) is unital or a unital set if the ideal generated by the elements of the set is a unit ideal.

In Section 2 we prove the existence of such projective spaces.

2010 Mathematics Subject Classification. 11B25,11D79,11E57,20G35,14N99,14G99,13A15,13F05, 11T55,51N15.

Key words and phrases. Schemes, commutative rings with unity, dedekind type domains, dedekind domains, arithmetic progressions, projective spaces associated to ideals.
1.1. The main results and the structure of the paper. Here in this article we prove three main results. We state the main results and open questions before summarizing the structure of the paper. The first main result concerns the surjectivity of the chinese remainder reduction map associated to a projective space of an ideal (refer to Definition 2) with a given comaximal ideal factorization which is stated as:

Theorem 1. Let \mathcal{R} be a commutative ring with unity. Let $\mathcal{I} = Q_1Q_2\ldots Q_k$ be a non-zero ideal, where $\text{rad}(Q_k) = M_k$ are pairwise distinct maximal ideals in \mathcal{R}. Then the chinese remainder reduction map associated to the projective space

$$\mathbb{P}_{\mathcal{I}}^{l+1} \longrightarrow \mathbb{P}_{Q_1}^{l+1} \times \mathbb{P}_{Q_2}^{l+1} \times \ldots \times \mathbb{P}_{Q_k}^{l+1}$$

is surjective.

We also give a counter example in Section 6.3, where the surjectivity does not hold in the case of projective spaces associated to a product of two prime ideals each of which cannot be expressed as a finite intersection of ideals whose radicals are pairwise distinct maximal ideals.

The second main result is a result of strong approximation type. Here we give a criterion called the unital set condition (USC) which is given in Definition 6 and prove the following surjectivity theorem which is stated as:

Theorem 2. Let \mathcal{R} be a commutative ring with unity. Let $\text{SL}_k(\mathcal{R}) = \{A \in M_k(\mathcal{R}) \mid \det(A) = 1\}$

Let $\mathcal{I} \subset \mathcal{R}$ be an ideal which satisfies the unital set condition $[\ref{USC}]$. Then the reduction map

$$\text{SL}_k(\mathcal{R}) \longrightarrow \text{SL}_k(\frac{\mathcal{R}}{\mathcal{I}})$$

is surjective.

A survey of results on strong approximation can be found in [1]. The third main result concerns the surjectivity of another map from the group $\text{SL}_k(\mathcal{R})$ to a product of k–projective spaces associated to k–pairwise comaximal ideals. Before we state the main theorem we need a definition.

Definition 4. Let \mathcal{R} be a commutative ring with unity. Suppose the ring \mathcal{R} satisfies the following four properties.

- (Property 1): For each maximal ideal \mathcal{M} we have $\mathcal{M}^i \neq \mathcal{M}^{i+1}$ for all $i \geq 0$.
- (Property 2): $\bigcap_{n \geq 0} \mathcal{M}^n = (0)$.
- (Property 3): $\dim_{\mathcal{R}} \left(\frac{\mathcal{M}^i}{\mathcal{M}^{i+1}} \right) = 1$.

So as a consequence of these properties for a noetherian ring \mathcal{R}, it also satisfies the following property.

- (Property 4): Every non-zero element $r \in \mathcal{R}$ is contained in finitely many maximal ideals.

We say a ring \mathcal{R} is a dedekind type domain if it is a field or if it satisfies properties (1), (2), (3), (4). The examples for dedekind type domains include integers, principal ideal domains, discrete valuations rings, dedekind domains, dedekind domains which are obtained as the localizations at any multiplicatively closed set of a dedekind domain. We remark that a noetherian dedekind type domain is a dedekind domain.

The theorem is stated as:
Theorem 3. Let \mathcal{R} be a commutative ring with unity. Suppose \mathcal{R} is a Dedekind type domain (refer to Definition \mathcal{D}). Let $M(\mathcal{R})$ be the monoid generated by maximal ideals in \mathcal{R}. Let $k \geq 2$ be a positive integer. Let $I_1, I_2, \ldots, I_k \in M(\mathcal{R})$ be k– pairwise co-maximal ideals. Consider

$$SL_k(\mathcal{R}) = \{ A = [a_{ij}]_{k \times k} \in M_{k \times k}(\mathcal{R}) \mid \text{det}(A) = 1 \}.$$

Then the maps

$$\sigma_1, \sigma_2 : SL_k(\mathcal{R}) \longrightarrow \mathbb{P}^k_{I_1} \times \mathbb{P}^k_{I_2} \times \cdots \times \mathbb{P}^k_{I_k}$$

given by

$$\sigma_1 : (A) = ([a_{11} : a_{12} : \ldots : a_{1k}],[a_{21} : a_{22} : \ldots : a_{2k}],\ldots, [a_{k1} : a_{k2} : \ldots : a_{kk}]),$$

$$\sigma_2 : (A) = ([a_{11} : a_{21} : \ldots : a_{k1}],[a_{12} : a_{22} : \ldots : a_{k2}],\ldots, [a_{1k} : a_{2k} : \ldots : a_{kk}])$$

are surjective.

This article leads to the following three open questions.

Question 1. Let \mathcal{R} be a commutative ring with unity. Suppose \mathcal{R} is a Dedekind type domain (refer to Definition \mathcal{D}). Let $M(\mathcal{R})$ be the monoid generated by maximal ideals in \mathcal{R}. Let $k \geq 2$ be a positive integer. Let $I_1, I_2, \ldots, I_k \in M(\mathcal{R})$ be k– pairwise co-maximal ideals. Let $G_k(\mathcal{R}) \subset SL_k(\mathcal{R})$ be a subgroup. Under what conditions on $G_k(\mathcal{R})$ are the maps

$$\sigma_1, \sigma_2 : G_k(\mathcal{R}) \longrightarrow \mathbb{P}^k_{I_1} \times \mathbb{P}^k_{I_2} \times \cdots \times \mathbb{P}^k_{I_k}$$

given by

$$\sigma_1 : (A) = ([a_{11} : a_{12} : \ldots : a_{1k}],[a_{21} : a_{22} : \ldots : a_{2k}],\ldots, [a_{k1} : a_{k2} : \ldots : a_{kk}]),$$

$$\sigma_2 : (A) = ([a_{11} : a_{21} : \ldots : a_{k1}],[a_{12} : a_{22} : \ldots : a_{k2}],\ldots, [a_{1k} : a_{2k} : \ldots : a_{kk}])$$

surjective?

The second question is concerning surjectivity of the map, where the equation is different from the defining equation of $SL_k(\mathcal{R}) \subset M_{k \times k}(\mathcal{R})$. Before stating the following open question we mention that we prove another surjectivity Theorem \mathcal{T} for the sum-product equation (refer to Equation \mathcal{E}) in Section \mathcal{S}. Now we state the question concerning general varieties in a slightly general context:

Question 2. Let \mathcal{R} be a commutative ring with unity. Suppose \mathcal{R} is a Dedekind type domain (refer to Definition \mathcal{D}). Let $M(\mathcal{R})$ be the monoid generated by maximal ideals in \mathcal{R}. Let $I_1, I_2, \ldots, I_k \in M(\mathcal{R})$ be k– pairwise co-maximal ideals. Let $k \geq 2$ be a positive integer. Let $M_{k \times k}(\mathcal{R})$ be the set of $k \times k$ matrices with entries in \mathcal{R}. Let $f : M_{k \times k}(\mathcal{R}) \longrightarrow \mathcal{R}$ be a polynomial function in the entries. Suppose $f(g = [a_{ij}]_{k \times k}) = 0$ implies each row of g is unital. Let $V_f(\mathcal{R}) = \{ x = [x_{ij}] \in M_{k \times k}(\mathcal{R}) \mid \text{such that } f(x_{11}, x_{12}, \ldots, x_{kk}) = 0 \}$. For what equations $f = 0$ is the map

$$\sigma_1 : V_f(\mathcal{R}) \longrightarrow \mathbb{P}^k_{I_1} \times \mathbb{P}^k_{I_2} \times \cdots \times \mathbb{P}^k_{I_k}$$

given by

$$\sigma_1 : (A) = ([a_{11} : a_{12} : \ldots : a_{1k}],[a_{21} : a_{22} : \ldots : a_{2k}],\ldots, [a_{k1} : a_{k2} : \ldots : a_{kk}])$$

surjective?

The third question is the following.

Question 3. Classify geometrically defined spaces which are actually full projective spaces associated to an ideal of a ring.

Here we remark on the projective space associated to the ideal as an application of Chinese remainder reduction isomorphism.
Remark 1. This remark concerns the question as to what spaces can be considered as projective spaces associated to ideals. The following are some examples.

- Let K be an algebraically closed field. Then we know via Segre embedding the space $(\mathbb{P}^k_K)^n = \mathbb{P}^k_K \times \mathbb{P}^k_K \times \ldots \times \mathbb{P}^k_K$ is a projective algebraic variety in a suitable high dimensional projective space. However it is also a projective space associated to an ideal. Suppose if R is a commutative ring with unity and M_1, M_2, \ldots, M_n are ideals all whose quotients are isomorphic to \mathbb{C} then $(\mathbb{P}^k_K)^n = \mathbb{P}^k_I$, where $I = \prod_{i=1}^n M_i$ via Chinese remainder reduction isomorphism.

- The fields need not be the same as in the above case. If K_1, K_2, \ldots, K_r are r-fields and if M_1, M_2, \ldots, M_r are pairwise comaximal ideals in R with $R/M_i = K_i$ then \[\prod_{i=1}^r \mathbb{P}^k_{K_i} \cong \mathbb{P}^k_J, \] where $J = \prod_{i=1}^r M_i$ via Chinese remainder reduction isomorphism. For example \[\mathbb{P}^2_R \times \mathbb{P}^2_C \cong \mathbb{P}^2_{(x(x^2+1))}, \] where $R = \mathbb{R}[x], M_1 = (x), M_2 = (x^2 + 1)$.

1.1.1. The structure of the paper. Here we mention the structure of the paper and how the above main results are proved.

In Section 2 we prove Lemma 1 which implies the existence of projective spaces associated to certain class of ideals (refer to Equation 1) in a ring.

In Section 3 we prove Theorem 4 using a fundamental Lemma 2 on arithmetic progressions which is used quite often in this paper.

In Section 4 we prove Lemma 4 and Theorem 5 which gives the existence of elements in certain avoidance subsets of a ring or existence of functions with a prescribed order at a finite set of closed points in the context of schemes. Here in Theorem 5 we require that the intersection of powers of any ideal other than the ring itself is the zero ideal.

In general finite unital sets in a ring need not contain any unit of the ring. In Section 5 we prove Theorem 6 for unital vectors, where any unital vector contain a unit modulo any ideal which is contained in finitely many maximal ideals or modulo any of the maximal ideals in a given finite set after applying some determinant one transformation on that vector.

In Section 6 we prove the first main result, Theorem 1 of this paper. In order to prove surjectivity we introduce an action of the group of determinant equal to ± 1 transformations on a projective space and observe that the image of the Chinese remainder theorem reduction map in Theorem 1 is a union of orbits. This technique immensely simplifies the proof of surjectivity to the usual Chinese remainder theorem in Theorem 1 which is proved by induction. We also give a counter Example 1 in a slightly general context at the end in Section 6.3.

In Section 7 we introduce Definition 6 where we define unital set condition with respect to an ideal. This definition is motivated by Theorem 6. Here we prove the second main result, Theorem 2 of this paper. In the proof of the theorem, we prove diagonal matrices are in the image and also observe that elementary matrices are in the image. After this, we reduce any matrix to a diagonal matrix via elementary transformations to a diagonal matrix. Here we use the unital set condition with respect to the ideal mentioned in the hypothesis of the theorem. This establishes Theorem 2.

In Section 8 we prove Theorem 7 as a consequence of the unital Lemma 5. This implies that the k-dimensional vectors for $k > 1$ arising out of unital sets each of which contains k elements (possibly with repetition) in a ring, form a single transitive orbit modulo any ideal which is contained in finitely maximal ideals under the action of the determinant one matrices. For $k = 1$ the analogous statement need not be not true in general.
In Section 9 we describe Example 2 where the analogue of Theorem 3 is proved for $k = 2$ in much more generality for a pair of distinct maximal ideals in any commutative ring with unity.

In Section 10 we prove, for a ring which is not a field, Theorem 8 which gives the existence of unique factorization of ideals into powers of distinct maximal ideals for any ideal in the monoid generated by maximal ideals. Here in Theorem 8 the ring must satisfy that the finite powers of any particular maximal ideal are all distinct. Another very important Theorem 11 is proved in this section which gives the existence of a non-zero ring-valued multiplicative choice homomorphism on the unique factorization monoid satisfying co-maximality conditions for any monoid generated by finitely many maximal ideals. To establish this Theorem 11 we assume one more additional condition on the ring that every non-zero element or equivalently every non-zero principal ideal is contained in finitely many maximal ideals. This Theorem 11 later becomes very useful in proving Theorems 14, 15, 16 and simplifying some of the main ideas in these proofs conceptually.

In Section 11 we prove Theorem 12, where elements of the projective space associated to an ideal is represented by projective coordinates which is a product of two factors. One is a non-unit which is the analogue of a function with a certain order of vanishing at the closed points of the ideal of the projective space and the other is a unit modulo the ideal. This factorization of the projective coordinates of an element into two factors is also useful to count the cardinality of the finite projective spaces. We first prove an analogue of Theorem 12 namely Theorem 13 for one dimensional projective spaces. Lemmas 8, 9 play an useful role to give the necessary hypothesis that needs to be satisfied by the ring under which the Theorem 12 holds.

In Section 12 we prove Theorem 14 an analogue of Theorem 3 for $k = 2$. Here we give a direct proof using Theorem 13 without using the technique of proof for higher dimensions. For $k > 2$, we prove the third main result, Theorem 3 in Section 13. In order to prove surjectivity we introduce an action of determinant one matrices and first observe that the image is an union of orbits. Then we use Theorem 12 to establish the result. In this section we also prove using Theorem 8 the surjectivity Theorem 15 for rectangular matrices, where the set of highest dimensional minors generate the unit ideal.

Later in Section 14 we give Example 4 of a fixed point subgroup where the surjectivity type theorem need not hold. In fact in this Example 4 we determine the exact image. This Example 4 and Theorem 3 motivates and leads to Question 1 of this paper.

In Section 15 we prove surjectivity Theorem 16 an analogue of Theorem 3 for the sum-product equation (refer to Equation 3) using Lemmas 10, 11. Finally the Theorems 3, 16 motivates and leads to Question 2 of this paper.

Also the study of finite dimensional projective spaces associated to certain class of ideals (refer to Equation 1) and the interesting Remark 1 also leads to Question 3 mentioned above.

2. Projective spaces associated to ideals in arbitrary commutative rings with identity

In this section we prove the well-definedness and existence of k-dimensional projective spaces.

Lemma 1. Using the notation in Definition 2, the relation \sim_{GR} is an equivalence relation.

Proof. The relation is reflexive and symmetric. We need to prove transitivity. Suppose $(a_0, a_1, a_2, \ldots, a_k), (b_0, b_1, b_2, \ldots, b_k), (c_0, c_1, c_2, \ldots, c_k) \in \mathcal{R}^{k+1}$ and each of the sets $\{a_0, a_1, a_2, \ldots, a_k\}, \{b_0, b_1, b_2, \ldots, b_k\}, \{c_0, c_1, c_2, \ldots, c_k\}$ generate the unit ideal \mathcal{R}. First consider the case when $0 \neq I \in \text{INTRAD}(\mathcal{R})$ is an ideal whose radical is a maximal ideal.
\(\mathcal{M}\). Suppose \((a_i : 0 \leq i \leq k) \sim_{GR} (b_i : 0 \leq i \leq k),(a_i : 0 \leq i \leq k) \sim_{GR} (c_i : 0 \leq i \leq k)\). Suppose without loss of generality \(a_1 \notin \mathcal{M}\). So \(a_1\) is a unit \(\mod I\). We assume \(a_1 = 1\). Now for any \(0 \leq i < j \leq k\) we have \(b_ic_j = a_1b_cj \equiv b_ia_1c_j \equiv b_i c_j = b_1c_2c_i = b_1b_jc_i = bjc_i\) \(\mod I\). Hence the transitivity follows for \(I\). Since every ideal \(0 \neq I \in \text{INTEGRAD}(\mathbb{R})\) is an intersection of ideals with distinct radical maximal ideals, Lemma \(1\) follows for any nonzero ideal \(I \in \text{INTEGRAD}(\mathbb{R})\).

This proves the existence and if \(\mathbb{F}_2^k\) is a finite ring then the space \(\mathbb{F}_2^k\) is a finite projective space.

3. A fundamental lemma on arithmetic progressions

In this section we prove a very useful lemma on arithmetic progressions for integers, dedekind type domains and a theorem in the context of schemes. Remark \(2\) below summarizes these two Lemmas \(2, 3\) and Theorem \(4\) in this section.

3.1. Fundamental lemma on arithmetic progressions for integers.

Lemma 2 (A fundamental lemma on arithmetic progressions for integers).

Let \(a, b \in \mathbb{Z}\) be integers with \((a) + (b) = 1\). Consider the set \(\{a + nb \mid n \in \mathbb{Z}\}\). Let \(m \in \mathbb{Z}\) be any non-zero integer. Then there exists an \(n_0 \in \mathbb{Z}\) and an element of the form \(a + n_0b\) such that \(\gcd(a + n_0b, m) = 1\).

Proof. Assume \(a, b\) are both non-zero. Otherwise Lemma \(2\) is trivial. Let \(q_1, q_2, q_3, \ldots, q_t\) be the distinct prime factors of \(m\). Suppose \(q \mid \gcd(m, b)\) then \(q \nmid a + nb\) for all \(n \in \mathbb{Z}\). Such prime factors \(q\) need not be considered. Let \(q \mid m, q \nmid b\) then there exists \(t_q \in \mathbb{Z}\) such that the exact set of elements in the given arithmetic progression divisible by \(q\) is given by

\[\ldots, a + (t_q - 2q)b, a + (t_q - q)b, a + t_qb, a + (t_q + q)b, a + (t_q + 2q)b, \ldots\]

Since there are finitely many such prime factors for \(m\) which do not divide \(b\) we get a set of congruence conditions for the multiples of \(b\) as \(n \equiv t_q \mod q\). In order to get an \(n_0\) we solve a different set of congruence conditions for each such prime factor say for example \(n \equiv t_q + 1 \mod q\). By chinese remainder theorem we have such solutions \(n_0\) for \(n\) which therefore satisfy \(\gcd(a + n_0b, m) = 1\). \(\square\)

3.2. Fundamental lemma on arithmetic progressions for dedekind type domains.

Lemma 3 (A fundamental lemma on arithmetic progressions for dedekind type domains).

Let \(\mathcal{O}\) be a dedekind type domain. Let \(a, b \in \mathcal{O}\) such that sum of the ideals \((a) + (b) = \mathcal{O}\). Consider the set \(\mathcal{A} = \{a + nb \mid n \in \mathcal{O}\}\). Let \(\mathcal{M} \subset \mathcal{O}\) be any nonzero ideal. Then there exists an \(n_0 \in \mathcal{O}\) and an element \(a + n_0b \in \mathcal{A}\) such that the sum of the ideals \((a + n_0b) + \mathcal{M} = \mathcal{O}\).

Proof. Assume \(a, b\) are both non-zero as otherwise Lemma \(3\) is trivial. Let the ideal \(\mathcal{M}\) be contained in finitely many maximal ideals \(Q_1, Q_2, \ldots, Q_t\). Suppose \(Q \in \{Q_1, Q_2, \ldots, Q_t\}\) and \(Q \supset \mathcal{M} + (b)\) then \(a + nb \notin Q\) for all \(n \in \mathcal{O}\) because otherwise both \(a, b \in Q\) which is a contradiction. Such prime ideals \(Q\) need not be considered. Let \(\mathcal{M} \subset Q\) and \(b \notin Q\) then there exists \(t_Q \in \mathcal{O}\) such that

\[\{t \mid a + tb \in Q\} = t_Q + Q\]

an arithmetic progression. This can be proved as follows. First of all since \(b \notin Q\) we have \((b) + Q = \mathcal{O}\). So there exists \(t_Q\) such that \(a + t_Qb \in Q\). If \(a + tb \in Q\) then \((t - t_Q)b \in Q\). So \(t \in t_Q + Q\).

Since there are finitely many such maximal ideals \(Q\) containing \(\mathcal{M}\) such that \(b \notin Q\) we get a set of congruence conditions for the multiples of \(b\) as \(n \equiv t_Q \mod Q\). In order to get an \(n_0\) we solve a different set of congruence conditions for each such maximal ideal say for
example \(n \equiv tQ + 1 \mod Q \). By chinese remainder theorem we have such solutions \(n_0 \) for \(n \) which therefore satisfy \(a + n_0b \notin Q \) for all maximal ideals \(Q \in \{ Q_1, Q_2, \ldots, Q_t \} \) and hence the sum of the ideals \((a + n_0b) + M = O\). This proves the fundamental Lemma \(\square \) on Arithmetic Progressions for dedekind type domains.

3.3. Fundamental lemma on arithmetic progressions for schemes.

Theorem 4. Let \(X \) be a scheme. Let \(Y \subset X \) be an affine subscheme. Let \(f, g \in \mathcal{O}(Y) \) be two regular functions on \(Y \) such that the unit regular function \(1_Y \in (f, g) \subset \mathcal{O}(Y) \). Let \(E \subset Y \) be any finite set of closed points. Then there exists a regular function \(a \in \mathcal{O}(Y) \) such that \(f + ag \) is a non-zero element in the residue field \(k(\mathcal{M}) = \frac{\mathcal{O}(Y)_\mathcal{M}}{\mathcal{M}_\mathcal{M}} = \frac{\mathcal{O}(Y)}{\mathcal{M}} \) at every \(\mathcal{M} \in E \).

Proof. Let the set of closed points be given by \(E = \{ \mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_t \} \). If \(g \) vanishes in the residue field at \(\mathcal{M}_i \) then for all regular functions \(a \in \mathcal{O}(Y) \), \(f + ag \) does not vanish in the residue field at \(\mathcal{M}_i \). Otherwise both \(f, g \in \mathcal{M}_i \) which is a contradiction to \(1_Y \in (f, g) \). Now consider the finitely many maximal ideals \(\mathcal{M} \in E \) such that \(g \notin \mathcal{M} \). Then there exists \(t_\mathcal{M} \) such that the set

\[
\{ t \mid f + tg \in \mathcal{M} \} = t_\mathcal{M} + \mathcal{M}
\]

a complete arithmetic progression. This can be proved as follows. First of all since \(g \notin \mathcal{M} \) we have \((g) + \mathcal{M} = (1_Y) \). So there exists \(t_\mathcal{M} \) such that \(f + t_\mathcal{M}g \in \mathcal{M} \). Now if \(f + tg \in \mathcal{M} \) then \((t - t_\mathcal{M})g \in \mathcal{M} \). Hence \(t \in t_\mathcal{M} + \mathcal{M} \).

Since there are finitely such maximal ideals \(\mathcal{M} \) such that \(g \notin \mathcal{M} \) in the set \(E \) we get a finite set of congruence conditions for the multiples \(a \) of \(g \) as \(a \equiv t_\mathcal{M} \mod \mathcal{M} \). In order to get an \(a_0 \) we solve a different set of congruence conditions for each such maximal ideal in \(E \) say for example \(a \equiv t_\mathcal{M} + 1 \mod \mathcal{M} \). By chinese remainder theorem we have such solutions \(a_0 \) for \(a \) which therefore satisfy \(f + a_0g \notin \mathcal{M} \) for all maximal ideals \(\mathcal{M} \in E \) and hence the regular function \(f + n_0g \) does not vanish in the residue field \(k(\mathcal{M}) \) for every \(\mathcal{M} \in E \). This proves Theorem \(\square \).

Remark 2. If \(a, b \in \mathbb{Z}, \gcd(a, b) = 1 \) then there exists \(x, y \in \mathbb{Z} \) such that \(ax + by = 1 \). Here we note that in general \(x \) need not be one unless \(a \equiv 1 \mod b \). However for any non-zero integer \(m \) we can always choose \(x = 1 \) to find an integer \(a + b \) such that \(\gcd(a + by, m) = 1 \). In the context of schemes this observation gives rise to regular functions which do vanish at a given finite set of closed points.

4. A theorem on ideal avoidance

In this section first we prove below the order prescription Lemma \(\square \) before stating Theorem \(\square \) on ideal avoidance. Remark \(\square \) below summarizes Lemma \(\square \) and Theorem \(\square \).

Lemma 4 (Order prescription lemma). Let \(\mathcal{R} \) be a commutative ring with unity. Let \(\{ \mathcal{M}_i : 1 \leq i \leq t \} \) be a finite set of maximal ideals. For each \(1 \leq i \leq t \) let \(\mathcal{M}_i^{m_i} \supset \mathcal{I} \) but \(\mathcal{M}_i^{m_i+1} \notin \mathcal{I} \) then there exists a function \(f \in \mathcal{I} \) such that \(f \in \mathcal{I} \setminus \bigcup_{i=1}^{t} \mathcal{I}\mathcal{M}_i \). In particular

\[
f \in \mathcal{M}_i^{m_i} \setminus \mathcal{M}_i^{m_i+1} \cap \mathcal{I} \text{ for } 1 \leq i \leq t.
\]

Proof. Let \(\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_r \) be the finite set of maximal ideals for which \(m_i = 0 \) and let \(\mathcal{M}_{r+1}, \mathcal{M}_{r+2}, \ldots, \mathcal{M}_t \) be the remaining ideals for which \(m_i > 0 \). So first we observe that for \(1 \leq j \leq r, \mathcal{M}_j \) does not contain \(\mathcal{I} \left(\prod_{i=1,i\neq j}^{t} \mathcal{M}_i \right) \). So there exists \(g_j \in \mathcal{I} \left(\prod_{i=1,i\neq j}^{t} \mathcal{M}_i \right) \) with
Lemma 5. Let \(E = \text{Lemma on arithmetic progressions for schemes, Theorem 4, where} \) there exists \(d \) only finitely many maximal ideals. Then there exist an example \(J \) the proof.

Theorem 5 (A theorem on ideal avoidance).

Let \(\mathcal{R} \) be a commutative ring with unity. Suppose for every maximal ideal \(\mathcal{M} \), \(\bigcap_{i=1}^{\infty} \mathcal{M} = (0) \).

Let \(\mathcal{I} \subset \mathcal{R} \) be an ideal. Let \(\mathcal{J}_1, \mathcal{J}_2, \ldots, \mathcal{J}_r \subset \mathcal{R} \) be proper ideals (not the ring itself) such that

\[
\mathcal{I} = \bigcup_{i=1}^{r} \mathcal{I} \mathcal{J}_i.
\]

Then \(\mathcal{I} = (0) \).

Proof. Replace the set of ideals \(\{ \mathcal{J}_i : 1 \leq i \leq r \} \) by a finite set of maximal ideals \(\{ \mathcal{M}_i : 1 \leq i \leq s \} \) such that each maximal ideal \(\mathcal{M}_i \) contains some ideal \(\mathcal{J}_j \) for some \(j \) and for any ideal \(\mathcal{J}_i \) there exists a maximal ideal \(\mathcal{M}_j \) such that \(\mathcal{M}_j \supset \mathcal{J}_i \). Then we have

\[
\mathcal{I} = \bigcup_{i=1}^{s} \mathcal{I} \mathcal{M}_i.
\]

Before applying order prescription Lemma 4 for the ideal \(\mathcal{I} \), if it is non-zero, we observe that a suitable choice of \(m_i \) for \(\mathcal{M}_i \) exist because of the hypothesis about intersection property. So \(\mathcal{I} = (0) \). This proves Theorem 5.

Remark 3. Lemma 4 gives the existence of functions in an ideal of functions with a certain order of vanishing at a finite set of closed points in the context of schemes.

5. The unital lemma

In this section we prove unital lemma which is useful to obtain a unit in a \(k \)-row unital vector via an \(SL_k(\mathbb{Z}) \)-elementary transformation.

Theorem 6. Let \(\mathcal{R} \) be a commutative ring with unity. Let \(k \geq 2 \) be a positive integer. Let \(\{a_1, a_2, \ldots, a_k\} \subset \mathcal{R} \) be a unital set i.e. \(\sum_{i=1}^{k} (a_i) = \mathcal{O} \). Let \(\mathcal{J} \subset \mathcal{R} \) be an ideal contained in only finitely many maximal ideals. Then there exist \(a \in \{a_2, \ldots, a_k\} \) such that \(a_1 + a \) is a unit mod \(\mathcal{J} \).

Proof. Let \(\{\mathcal{M}_i : 1 \leq i \leq t\} \) be the finite set of maximal ideals containing in \(\mathcal{J} \). For example \(\mathcal{J} \) could be a product of maximal ideals. Since the set \(\{a_1, a_2, \ldots, a_k\} \) is unital there exists \(d \in \{a_2, a_3, \ldots, a_k\} \) such that \((a_1) + (d) = (1) \). Now we apply the fundamental lemma on arithmetic progressions for schemes, Theorem 4, where \(X = Y = \text{Spec}(\mathcal{R}) \), \(E = \{\mathcal{M}_i : 1 \leq i \leq t\} \) to conclude that there exists \(n_0 \in \mathcal{R} \) such that \(a = n_0 d \) and \(a_1 + a = a_1 + n_0 d \notin \mathcal{M}_i \) for \(1 \leq i \leq t \). This proves Theorem 6.

Lemma 5. Let \(\mathcal{R} \) be a commutative ring with unity. Let \(k \geq 2 \) be a positive integer. Let \(\{a_1, a_2, \ldots, a_k\} \subset \mathcal{R} \) be a unital set i.e. \(\sum_{i=1}^{k} (a_i) = \mathcal{O} \). Let \(E \) be a finite set of maximal ideals in \(\mathcal{R} \). Then there exist \(a \in \{a_2, \ldots, a_k\} \) such that \(a_1 + a \notin \mathcal{M} \) for all \(\mathcal{M} \in E \).
Proof. The proof is essentially similar to the previous Theorem even though we need not have to construct an ideal which is contained in exactly the maximal ideals in the set E. \qed

6. On the surjectivity of the chinese remainder reduction map

In order to prove surjectivity of the map in Theorem we first observe that the image is invariant under a suitable action of the two groups

1. $SL_{k+1} = \{ A \in M_{k+1}(\mathcal{R}) \mid \text{det}(A) = 1 \}.$
2. $\tilde{SL}_{k+1} = \{ A \in M_{k+1}(\mathcal{R}) \mid \text{det}(A) = \pm 1 \}.$

on the codomain.

6.1. SL_{k+1}—Invariance of the image of the chinese remainder reduction map.

Here we define the action of SL_{k+1} on $\mathbb{P}^k \mathcal{R}$.

Definition 5 (SL_{k+1}—action). Let \mathcal{R} be a commutative ring with unity. Let $I \in \mathcal{R}$. Let $g \in SL_{k+1}(\mathcal{R})$. Define

$$L_g = r_{g^{-1}} : \mathbb{P}^k \mathcal{R} \longrightarrow \mathbb{P}^k \mathcal{R}$$

given by $L_g([a_0 : a_1 : a_2 : \ldots : a_k]) = g \cdot ([a_0 : a_1 : a_2 : \ldots : a_k]) = r_{g^{-1}}([a_0 : a_1 : a_2 : \ldots : a_k]) = [b_0 : b_1 : b_2 : \ldots : b_k]$, where

$$(b_0, b_1, b_2, \ldots, b_k) = (a_0, a_1, a_2, \ldots, a_k)g^{-1}.$$

This action can be extended to a product of such projective spaces in a similar manner.

Lemma 6 (SL_{k+1}—Invariance of the image). Let \mathcal{R} be a commutative ring with unity. Let $I_i \in \mathcal{R}$, $1 \leq i \leq n$ be finitely many pairwise co-maximal ideals in \mathcal{R}. Let

$$I = \prod_{i=1}^{n} I_i.$$

The image of the chinese remainder reduction map is a union of SL_{k+1}—orbits.

Proof. If

$$\sigma : \mathbb{P}^k \mathcal{R} \longrightarrow \prod_{i=1}^{n} \mathbb{P}^k I_i$$

then the chinese remainder reduction map σ is always SL_{k+1}—invariant in the sense that for any $g \in SL_{k+1}(\mathcal{R})$ we have

$$g \cdot \sigma([a_0 : a_1 : a_2 : \ldots : a_k]) = \sigma(g \cdot [a_0 : a_1 : a_2 : \ldots : a_k]).$$

Hence this theorem follows. \qed

Note 1. Let $\tilde{SL}_{k+1}(\mathcal{R}) = \{ A \in M_{k+1}(\mathcal{R}) \mid \text{det}(A) = \pm 1 \}$. We can similarly conclude like in Lemma that the image of the chinese remainder reduction map is $\tilde{SL}_{k+1}(\mathcal{R})$—invariant and it is a union of $\tilde{SL}_{k+1}(\mathcal{R})$—orbits.
6.2. Surjectivity of the chinese remainder reduction map. Here in this section we prove the first main Theorem 1 of this article.

Proof. The theorem holds for $k = 1$ and any $l > 0$ as there is nothing to prove. Now we prove by induction on k. Let

$$([a_{10}, a_{11}, \ldots, a_{1l}], [a_{k0}, a_{k1}, \ldots, a_{kl}]) \in \mathbb{PF}^{l+1}_{Q_1} \times \mathbb{PF}^{l+1}_{Q_2} \times \cdots \times \mathbb{PF}^{l+1}_{Q_k}$$

By induction we have an element $[b_0 : b_1 : b_2 : \ldots : b_l] \in \mathbb{PF}^{l+1}_{Q_2Q_3\ldots Q_k}$ representing the last $k - 1$ elements. Now consider the matrix

$$A = \begin{pmatrix} Q_1 & \rightarrow & a_{10} & a_{11} & \cdots & a_{1,l-1} & a_{1l} \\ Q_2 \ldots Q_k & \rightarrow & b_0 & b_1 & \cdots & b_{l-1} & b_l \end{pmatrix}$$

Now one of the elements in the first row is not in \mathcal{M}_1. By finding inverse of this element modulo Q_1 and hence by a suitable application of $\tilde{SL}_{l+1}(R)$ matrix the matrix A can be transformed to the following matrix B, where we replace the unique non-zero entry in the first row by 1.

$$B = \begin{pmatrix} Q_1 & \rightarrow & 1 & 0 & \cdots & 0 & 0 \\ Q_2 \ldots Q_k & \rightarrow & c_0 & c_1 & \cdots & c_{l-1} & c_l \end{pmatrix}$$

If c_0 is a unit $\mod Q_2 \ldots Q_k$ then we are done as this reduces to ordinary chinese remainder theorem. Otherwise suppose without loss of generality

$$c_0 \in \mathcal{M}_2\mathcal{M}_3 \ldots \mathcal{M}_r \setminus (\mathcal{M}_2 \ldots \mathcal{M}_r) \neq \emptyset.$$

Let $\sum_{i=0}^{l} c_i x_i = 1$. Now consider any element $a \in \mathcal{M}_{r+1} \ldots \mathcal{M}_k \setminus (\mathcal{M}_2 \ldots \mathcal{M}_r) \neq \emptyset$. Then the matrix

$$C = \begin{pmatrix} Q_1 & \rightarrow & 1 & 0 & \cdots & 0 & 0 \\ Q_2 \ldots Q_k & \rightarrow & c_0 + \sum_{i=1}^{l} ac_ix_i = a + c_0(1-ax_0) & c_1 & \cdots & c_{l-1} & c_l \end{pmatrix}$$

is obtained from B by $\tilde{SL}_{l+1}(R)$ - matrix. Now the element

$$a + c_0(1-ax_0) \notin \mathcal{M}_2 \cup \ldots \cup \mathcal{M}_k.$$

Let $u \in R$ be such that $u(a + c_0(1-ax_0)) \equiv 1 \mod \prod_{i=2}^{k} Q_i$. Then the matrix C represents the same elements as the matrix D.

$$D = \begin{pmatrix} Q_1 & \rightarrow & 1 & 0 & \cdots & 0 & 0 \\ Q_2 \ldots Q_k & \rightarrow & 1 & u c_1 & \cdots & u c_{l-1} & u c_l \end{pmatrix}$$

The elements in the matrix C is in the image of chinese remainder reduction map by the usual chinese remainder theorem.

Hence the induction step is completed and Theorem 1 follows. \square

6.3. A counter example, where surjectivity need not hold.

Example 1 (Construction of a counter example for surjectivity in one dimension). Let $\mathcal{R} = \mathbb{K}[x, y]$, where \mathbb{K} is a field. Consider the prime ideals $\mathcal{P}_1 = (x - 1)$, $\mathcal{P}_2 = (y - 1)$. We note that these are not finite intersection of ideals whose radicals are maximal ideals because there are infinitely many maximal ideals containing each of these prime ideals. However here we observe that $\mathcal{P}_1\mathcal{P}_2 = \mathcal{P}_1 \cap \mathcal{P}_2$ by unique factorization domain property and the projective spaces $\mathbb{PF}^{1}_{\mathcal{P}_1}, \mathbb{PF}^{1}_{\mathcal{P}_2}, \mathbb{PF}^{1}_{\mathcal{P}_1\mathcal{P}_2}$ makes sense as the relation

$$\sim_{\mathcal{P}_1}, \sim_{\mathcal{P}_2}, \sim_{\mathcal{P}_1\mathcal{P}_2}$$
are all also equivalence relations. Here let \(a, b, c, d \in \mathcal{R}\) be such that each of the pairs \((a, b), (c, d)\) generate a unit ideal. We say \((a, b) \sim_I (c, d)\) if and only if \(ad - bc \in I\), where \(I = \mathcal{P}_1\) or \(\mathcal{P}_2\) or \(\mathcal{P}_1 \mathcal{P}_2\).

Now consider the Chinese remainder reduction map

\[
\mathbb{P}F^1_{\mathcal{P}_1 \mathcal{P}_2} \rightarrow \mathbb{P}F^1_{\mathcal{P}_1} \times \mathbb{P}F^1_{\mathcal{P}_2}
\]

This map is not surjective. Consider the element \(([1 : 0], [0 : 1]) \in \mathbb{P}F^1_{\mathcal{P}_1} \times \mathbb{P}F^1_{\mathcal{P}_2}\). If \(a, b \in \mathcal{R}\) represent this element via congruence conditions then we get

\[
\begin{align*}
 a &\equiv 1 \mod(x - 1), a \equiv 0 \mod(y - 1) \\
 b &\equiv 0 \mod(x - 1), b \equiv 1 \mod(y - 1)
\end{align*}
\]

So we get \(a = (y - 1)t\) and \(a - 1 = -(x - 1)u\). So we get that \((y - 1)t + (x - 1)u = 1\) which yields a contradiction if we substitute \(x = 1, y = 1\). There is no such “a” and similarly there is no such “b” as well. So via congruences we cannot obtain a representing element pair \((a, b)\). Now let \(a, b \in \mathcal{R}\) generate a unit ideal such that \([a : b] = [1 : 0] \in \mathbb{P}F^1_{\mathcal{P}_1}\) and \([a : b] = [0 : 1] \in \mathbb{P}F^1_{\mathcal{P}_2}\), then \((x - 1) \mid b, (y - 1) \mid a\). So we have the ideal \((a, b) \subset (x - 1, y - 1)\) which is impossible. This proves that the Chinese remainder reduction map is not surjective.

7. Surjectivity of the map \(SL_k(\mathcal{R}) \rightarrow SL_k(\mathcal{I})\) and the unital set condition with respect to an ideal

In this section we consider the reduction map

\[
SL_k(\mathcal{R}) \rightarrow SL_k(\mathcal{I})
\]

and prove Theorem 2. First we start with an important definition.

Definition 6 (Unital set condition with respect to an ideal). Let \(\mathcal{R}\) be a commutative ring with unity. Let \(\mathcal{I} \subset \mathcal{R}\) be an ideal. We say \(\mathcal{I}\) satisfies unital set condition USC if for every unital set \(\{a_1, a_2, \ldots, a_k\} \subset \mathcal{R}\) with \(k \geq 2\), there exists an element \(j \in (a_2, \ldots, a_k)\) such that \(a_1 + j\) is a unit modulo \(\mathcal{I}\).

Now we prove the second main Theorem 2 of this article.

Proof. For \(k = 1\) there is nothing to prove. So assume \(k > 1\). Clearly all elementary matrices \(E_{ij}(r)\), \(r \in \mathcal{R}, i \neq j\) are in the image. Now consider a diagonal matrix \(diag(d_{11} = d_1, d_{22} = d_2, \ldots, d_{kk} = d_k)\) such that

\[
d_1d_2 \ldots d_k \equiv 1 \mod \mathcal{I}.
\]

Let \(n = d_1d_2 \ldots d_k - 1 \in \mathcal{I}\).

Define a matrix

\[
E = \begin{pmatrix}
 e_{11} & e_{12} & e_{13} & \cdots & e_{1(k-1)} & e_{1k} \\
 e_{21} & e_{22} & e_{23} & \cdots & e_{2(k-1)} & e_{2k} \\
 e_{31} & e_{32} & e_{33} & \cdots & e_{3(k-1)} & e_{3k} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 e_{(k-1)1} & e_{(k-1)2} & e_{(k-1)3} & \cdots & e_{(k-1)(k-1)} & e_{(k-1)k} \\
 e_{k1} & e_{k2} & e_{k3} & \cdots & e_{k(k-1)} & e_{kk}
\end{pmatrix}
\]

with \(e_{k1} = n, e_{12} = e_{23} = e_{34} = \ldots = e_{(k-1)k} = n\) also let

\[
e_{ii} = d_i + \alpha_i^1 n + \alpha_i^2 n^2 + \ldots + \alpha_i^{k-1} n^{k-1} \in \mathcal{R}[\alpha_j^i : 1 \leq i \leq k, 1 \leq j \leq (k - 1)]
\]
be a polynomial representing a symbolic respective n–adic expansion modulo (n^k). Choose the rest of the entries in the matrix E to be zero. Now this matrix has determinant given by

$$e_{11}e_{22} \ldots e_{kk} - (-1)^k n^k z.$$

The sum of ideals $(e_{11}e_{22} \ldots e_{kk}) + (n^k) = (1)$ in the polynomial ring $R[\alpha_i^n : 1 \leq i \leq k, 1 \leq j \leq (k-1)]$ because $(e_{11}e_{22} \ldots e_{kk}) + (n) = (d_1d_2 \ldots d_k) + (n) = (1)$ and using radical of ideals. i.e.

$$\text{rad}(A + \text{rad}(B)) = \text{rad}(\text{rad}(A) + B)$$

$$= \text{rad}(\text{rad}(A) + \text{rad}(B)) = \text{rad}(A + B)$$

for ideals A, B in a Ring

So there exist $w, \alpha \in R[\alpha_i^n : 1 \leq i \leq k, 1 \leq j \leq (k-1)]$ such that

$$\alpha e_{11}e_{22} \ldots e_{kk} + wn^k = 1.$$

If we choose for the symbols α_i elements of R such that

$$e_{11}e_{22} \ldots e_{kk} \equiv 1 \mod n^k$$

then we get $\alpha \equiv 1 \mod n^k$. So we can solve for z so that the determinant

$$e_{11}e_{22} \ldots e_{kk} - (-1)^k n^k z = 1.$$

To solve first consider $k = 2$. If $d_1d_2 = 1 + t_1n + t_2n^2 + \ldots + (n^k) \equiv 1 \mod n$. Such an equation is solvable say for α_1 or for α_2 as d_1, d_2 are units mod n^r for all r. To obtain a value t_1 we know that $d_1d_2 - 1 = n\tilde{t}_1$ for some $\tilde{t}_1 \in R$. So choose $t_1 = \tilde{t}_1$ and there are no remaining t_i as $k = 2$ here in this case.

For a general k. Let the symbolic n–adic expansions be given by

$$d_1d_2 \ldots d_k = 1 + t_1n + t_2n^2 + \ldots + t_kn^{k-1} + (n^k),$$

$$d_2d_3 \ldots d_k = s_0 + s_1n + s_2n^2 + \ldots + s_{k-1}n^{k-1} + (n^k)$$

$$e_{11} = d_1 + \alpha_1 n + \alpha_2 n^2 + \ldots + \alpha_{k-1} n^{k-1} + (n^k).$$

Fix a section $\text{sec}: \frac{R}{(n)} \rightarrow R$. Recursively pick representative values in the image of sec in R for t_i for $i = 1, \ldots, (k-1)$, and s_i for $i = 0, \ldots, (k-1)$. Let $e_{ii} = d_i$ for all $i \geq 2$ then

$$e_{11}e_{22} \ldots e_{kk} = d_1d_2 \ldots d_k + \alpha_1 nd_2d_3 \ldots d_k + \alpha_2 n^2d_2d_3 \ldots d_k + \ldots + (n^k).$$

So we should have $s_0\alpha_1 + t_1 \equiv 0 \mod n$. So solve for α_1 as s_0 is a unit $\mod n$. Now solve for α_2 because $s_0\alpha_2 + \ldots \equiv 0 \mod n$ recursively by carrying the addendums of the previous term $s_0\alpha_1 + t_1$ which are higher powers of n and so on for the rest of the α_i's. The α_i gets multiplied by s_0 which is a unit $\mod n$. So solving for α_i is possible.

We have proved that the diagonal determinant one matrices in $SL_k(\frac{R}{(n)})$ are in the image of the reduction map $\sigma: SL_k(R) \rightarrow SL_k(\frac{R}{(n)})$ by choosing $n = d_1d_2 \ldots d_k - 1 \in \mathcal{I}$ for each $\text{diag}(d_1, d_2, \ldots, d_k) \in SL_k(\frac{R}{(n)})$.

Now we prove the following claim. We note here that $k > 1$.

Claim 1. All matrices in $SL_k(\frac{R}{(n)})$ can be reduced to identity by elementary determinant one matrices and matrices of the form $\text{diag}(1, \ldots, u, u^{-1}, \ldots, 1)$, where $u \in \mathcal{U}(\frac{R}{(n)})$ a unit if \mathcal{I} satisfies the unital set condition.

Proof of Claim. To prove this we observe that we can reduce any element to identity using elementary matrices and matrices of the form

$$\text{diag}(1, \ldots, u, u^{-1}, \ldots, 1),$$
where $u \in U(\mathcal{R})$ a unit. This reduction can be done because if (a_1, a_2, \ldots, a_k) is a row then there exists an element $i \in I$ such that $\{a_1, a_2, \ldots, a_k, i\}$ is unital and hence satisfies the unital set condition. So there exists $j \in (a_2, \ldots, a_k, i)$ such that $a_1 + j$ is a unit modulo I. Now the element i can be ignored so that we can bring a unit modulo I in a row by applying only elementary determinant one matrices as column operations. This proves the claim for $\text{SL}_k(\mathcal{R})$.

Continuing with the proof of the main Theorem 2, we observe that all matrices are in the image i.e. the reduction map $\sigma : \text{SL}_k(\mathcal{R}) \rightarrow \text{SL}_k(\mathcal{R}/I)$ is onto. This finishes the proof of Theorem 2.

\textbf{Note 2.} In the proof of the following corollary 1, Theorem 6 is applied as this can be used to bring a unit modulo the ideal in every row using elementary operations of determinant one.

\textbf{Corollary 1.} Let \mathcal{R} be a commutative ring with unity. Let $I \subset \mathcal{R}$ be an ideal contained in finitely many maximal ideals. Then the reduction map

$$\text{SL}_k(\mathcal{R}) \rightarrow \text{SL}_k(\mathcal{R}/I)$$

is onto.

\textit{Proof of Corollary.} For $k = 1$ there is nothing to prove. For $k > 1$ this corollary follows from the fact that any ideal I which is contained in finitely many maximal ideals satisfies unital set condition (USC) using Theorem 6.

\section*{8. An important consequence of unital lemma}

In this section we prove the following theorem.

\textbf{Theorem 7} (A theorem on elementary row vector of dimension more than one). Let \mathcal{R} be a commutative ring with unity. Let I be an ideal which is contained only in finitely many maximal ideals. Let $k > 1$ be a positive integer. Let $\{a_1, a_2, \ldots, a_k\} \subset \mathcal{R}$ be a unital set i.e. $\sum_{i=1}^{k} (a_i) = \mathcal{R}$. Then there exists a matrix g in $\text{SL}_k(\mathcal{R})$ such that

$$(a_1, a_2, \ldots, a_k)g \equiv (1, 0, \ldots, 0) \mod I$$

For $k = 1$ the existence of such a matrix g need not hold.

We begin with a lemma which is stated as follows.

\textbf{Lemma 7.} Let \mathcal{R} be a ring. Let $k > 1$ be a positive integer. Let $(a_1, a_2, \ldots, a_k) \in \mathcal{R}^k$ be a vector such that a_i is a unit for some $1 \leq i \leq k$. Then there exists k-vectors \{v_1, v_2, \ldots, v_k\} \subset \mathcal{R}^{k-1}$ such that

$$v_1 \wedge v_2 \wedge \ldots \wedge \hat{v_i} \wedge \ldots \wedge v_k = a_i$$

\textit{Proof.} First consider a unital vector (a_1, a_2, \ldots, a_k) with a_1 a unit without loss of generality. Let

$$v_1 = (a_2, -a_1^{-1}a_3, +a_1^{-1}a_4, \ldots, (-1)^{i}a_1^{-1}a_i, \ldots, (-1)^{k}a_1^{-1}a_k)^t$$

$$= a_2e_1^{-1} + \sum_{i=2}^{k-1} (-1)^i a_1^{-1}a_ie_i^{-1}, v_2 = a_1e_1^{-1}, v_3 = e_2^{-1}, \ldots, v_k = e_{k-1}^{-1}.$$.

Then we immediately observe that for $1 \leq i \leq k$,

$$v_1 \wedge v_2 \wedge \ldots \wedge \hat{v_i} \wedge \ldots \wedge v_k = a_i$$

Similarly if any other component a_i is a unit. Hence the lemma follows.
Now we prove the main Theorem \textup{7} of this section.

\textbf{Proof.} We note that if \(k = 1 \) and \(a_1 \) is a unit in \(\mathcal{R} \) but \(a_1 \not\equiv 1 \mod \mathcal{I} \). Then \(a_1 g \equiv 1 \mod \mathcal{I} \) does not imply that \(g \in SL_1(\mathcal{R}) \) unless \(1 + \mathcal{I} \) is the set of all units in \(\mathcal{R} \).

Now assume \(k > 1 \). Let \((b_1, b_2, \ldots, b_k) \in \mathcal{R}^k \) such that \(\sum_{i=1}^{k} (-1)^{i-1} a_i b_i = 1 \). Now the vector \((b_1, b_2, \ldots, b_k)\) is unital. So from the previous Lemma \textup{5} there exists \(t_2, t_3, \ldots, t_k \in \mathcal{R} \) such that the element \(c_1 = b_1 + t_2 b_2 + \ldots + t_k b_k \) is a unit modulo \(\mathcal{I} \).

Now consider the vector \((c_1, b_2, \ldots, b_k)\) which has a unit \(\equiv \mod \mathcal{I} \). Hence using Lemma \textup{7} there exists \(k \)-vectors \(\{v_1, v_2, \ldots, v_k\} \subset \mathcal{R}^{k-1} \) such that \(v_2 \wedge v_3 \wedge \ldots \wedge v_k \in c_1 + \mathcal{I} \) and

\[v_1 \wedge v_2 \wedge \ldots \wedge \hat{v}_i \wedge \ldots \wedge v_k \in b_i + \mathcal{I} \text{ if } i > 1 \]

Now choose

\[w_1 = v_1, w_2 = v_2 - t_2 v_1, w_3 = v_3 + t_3 v_1, \ldots, w_k = v_k + (-1)^{k-1} t_k v_1 \]

Then we have for \(i \geq 2 \)

\[w_1 \wedge w_2 \wedge \ldots \wedge \hat{w}_i \wedge \ldots \wedge w_k \in b_i + \mathcal{I} \]

and \(w_2 \wedge w_3 \wedge \ldots \wedge w_k \in b_1 + \mathcal{I} \). So the following matrix has unit determinant modulo \(\mathcal{I} \).

i.e. treating each \(w_i \) is a column \((k-1)\)-vector we have

\[\text{det} \begin{pmatrix} a_1 & a_2 & \ldots & a_k \\ w_1 & w_2 & \ldots & w_k \end{pmatrix} \equiv 1 \mod \mathcal{I} \]

So using Theorem \textup{2} there exists a matrix \(B \in SL_k(\mathcal{R}) \) such that we have

\[B \equiv \begin{pmatrix} a_1 & a_2 & \ldots & a_k \\ w_1 & w_2 & \ldots & w_k \end{pmatrix} \mod \mathcal{I} \]

We observe that

\[(1,0,\ldots,0)B \equiv (a_1, a_2, \ldots, a_k) \mod \mathcal{I} \]

So we consider \(g = B^{-1} \) and this lemma follows. \(\square \)

\textbf{Remark 4.} If \(\mathcal{R} \) is a commutative ring with unity and \(\mathcal{I} \subset \mathcal{R} \) is an ideal which is contained in finitely many maximal ideals then for \(k > 1 \) the above Theorem \textup{7} proves that the set

\[\{(\pi_1, \pi_2, \ldots, \pi_k) \in \left(\frac{\mathcal{R}}{\mathcal{I}} \right)^k | \{a_1, a_2, \ldots, a_k\} \subset \mathcal{R} \text{ is an unital set} \} \]

is a transitive orbit under the action of \(SL_k(\mathcal{R}) \).

9. \textbf{Surjectivity example for a pair of maximal ideals in arbitrary commutative ring with unity}

This section describes the example which is as follows.

\textbf{Example 2.} Here we describe explicitly the collection of \(2 \times 2 \) determinant one matrices which map onto the product of spaces \(\mathbb{P}^1_{\mathcal{N}} \times \mathbb{P}^1_{\mathcal{M}} \) for two maximal ideals \(\mathcal{N}, \mathcal{M} \) in the ring \(\mathcal{R} \).

Fix any two sections \(s_\mathcal{N} : \frac{\mathcal{R}}{\mathcal{N}} \to \mathcal{R} \) and \(s_\mathcal{M} : \frac{\mathcal{R}}{\mathcal{M}} \to \mathcal{R} \) of the quotient maps \(\tau_\mathcal{M} : \mathcal{R} \to \frac{\mathcal{R}}{\mathcal{M}}, \tau_\mathcal{N} : \mathcal{R} \to \frac{\mathcal{R}}{\mathcal{N}} \).

Consider the following set of matrices

\[\mathcal{C}_1 = \left\{ \begin{pmatrix} s & (st - 1) \\ 1 & t \end{pmatrix} | s \in \text{image}(s_\mathcal{N}), t \in \text{image}(s_\mathcal{M}) \right\} \]
This set of matrices maps into the subset

\[\mathbb{N} \times \left(\left\{ [1 : t] \in \mathbb{N} : t \in \text{image}(s_\mathcal{M}) \right\} \right) \subseteq \mathbb{N} \times \mathbb{N} \]

injectively giving rise to distinct elements.

\[\mathcal{C}_1 \hookrightarrow \mathbb{N} \times \left(\left\{ [1 : t] \in \mathbb{N} : t \in \text{image}(s_\mathcal{M}) \right\} \right) \]

There is one more element for each \(t \in \text{image}(s_\mathcal{M}) \) with \([1 : t]\) as the image corresponding to the second row. It is given as follows. Since \(\mathcal{M}, \mathcal{N} \) are comaximal the exists elements \(p \in \mathcal{M}, q \in \mathcal{N} \) such that the ideals \((p),(q)\) are comaximal i.e. \((p) + (q) = 1\). Consider elements \(r, q \in \mathcal{R} \) such that \(rq - kp = 1 \) as \((p) + (q) = 1 \) and for such \(p, q, r, k \), we have that the ideals \((p(1 + qr)), (q(1 + pk))\) are comaximal. So consider elements \(l, m \) such that \(lp(1 + qr) - mq(1 + pk) = 1 - t \) for any given \(t \in \mathcal{R} \). Now consider 2 \times 2 matrices of determinant 1.

\[\mathcal{C}_2 = \left\{ \begin{pmatrix} (1 + rq) & (t + mq) \\ (1 + kp) & (t + lp) \end{pmatrix}, t \in \text{image}(s_\mathcal{M}) \right\} \]

Now the collection \(\mathcal{C}_1 \cup \mathcal{C}_2 \) maps injectively into the set \(\mathbb{N} \times \left(\left\{ [1 : t] \in \mathbb{N} : t \in \text{image}(s_\mathcal{M}) \right\} \right) \). We shall soon observe that this collection actually maps onto this set bijectively. i.e

\[(\mathcal{C}_1 \cup \mathcal{C}_2) \cong \mathbb{N} \times \left(\left\{ [1 : t] \in \mathbb{N} : t \in \text{image}(s_\mathcal{M}) \right\} \right) \]

Now consider the set

\[\mathcal{C}_3 = \left\{ \begin{pmatrix} 1 + sp \\ p \end{pmatrix}, s \in \text{image}(s_\mathcal{N}) \right\} \]

This set maps injectively into the set \(\mathbb{N} \times \{0 : 1\} \)

\[\mathcal{C}_3 \hookrightarrow \mathbb{N} \times \{0 : 1\} \]

We will soon see that the set \(\mathcal{C}_3 \) misses just one element in the set \(\mathbb{N} \times \{0 : 1\} \).

Now we describe that one more matrix of determinant one which maps onto the missing element \([p : 1], [0 : 1] \) in \(\mathbb{N} \times \mathbb{N} \). Consider elements \(x, l \in \mathcal{R} \) such that \(lq - xp = 1 \) as \((p) + (q) = 1 \). For such integers \(x, p, l, q \) we have that the ideals \((p(1 + lq)), (q(1 + xp))\) are comaximal. So consider elements \(y, r \in \mathcal{R} \) such that \(rq(1 + xp) - yp(1 + lq) = 1 - p - xp^2 \). Then consider 2 \times 2 matrix of determinant 1 given by

\[\begin{pmatrix} rq + p & 1 + lq \\ yp & 1 + xp \end{pmatrix} \]

Now we observe that we have a total collection of two by two matrices of determinant one mapping injectively into \(\mathbb{N} \times \mathbb{N} \).

We immediately see that for a fixed \(t \in \text{image}(s_\mathcal{M}) \)

\[\{[s : st - 1] \mid s \in \text{image}(s_\mathcal{N})\} = \{[1 : w] \mid w \in \text{image}(s_\mathcal{N}), [1 : w] \neq [1 : t]\} \cup \{[0 : 1]\}. \]

We also observe that

\[\{[1 + sp : s] \mid s \in \text{image}(s_\mathcal{N})\} = \{[1 : w] \mid w \in \text{image}(s_\mathcal{N}), [1 : w] \neq [p : 1]\} \cup \{[0 : 1]\}. \]

Hence the mapping \(\sigma_1 \) is onto and similarly the map \(\sigma_2 \) is also onto. So the intermediate claims of surjectivity of \(\mathcal{C}_1 \cup \mathcal{C}_2 \) and the set \(\mathcal{C}_3 \) just missing one element are justified.
10. Unique factorization maximal ideal monoid of the ring

In this section we define the unique factorization monoid of maximal ideals of the ring. We start by proving below a theorem for a commutative ring R which is not a field i.e. ideal (0) is not maximal.

Theorem 8 (Unique factorization theorem). Let R be a commutative ring with unity. Suppose for any maximal ideal $M^i \neq M^{i+1}$ for all $i \geq 0$. Let $I = M_1^{t_1}M_2^{t_2} \cdots M_k^{t_k} = N_1^{s_1}N_2^{s_2} \cdots N_r^{s_r}$ be two factorizations as a product of powers of distinct maximal ideals. Then $\{M_1, M_2, \ldots, M_k\} = \{N_1, N_2, \ldots, N_r\}, r = k$ and with a suitable permutation or rearrangement of $\{N_1, N_2, \ldots, N_r\}$ we have $t_i = s_i$ for all $1 \leq i \leq r = k$.

Proof. If $M \supset I$ then $M = M_j$ for some $1 \leq j \leq k$. So
$$\{M_1, M_2, \ldots, M_k\} = \{N_1, N_2, \ldots, N_r\}, k = r.$$

Now if the ideal I is a power of a maximal ideal then the power is uniquely determined because $M^i \neq M^{i+1}$ for all $i \geq 0$ and all maximal ideals $M \subset R$. We prove the following respective powers are equal in the following two claims.

Claim 2. If M is a maximal ideal and $S = R \setminus M$. Then we have
$$S^{-1}M^i = (S^{-1}M)^i = \left\{ \frac{a}{s} | a \in M^i, s \notin M \right\}$$

Conversely if $\frac{b}{t} \in S^{-1}M^i$ then $b \in M^i$. Also
$$S^{-1}M^i \neq S^{-1}M^{i+1} \quad \text{for all } i \geq 0.$$

Proof of Claim. Suppose $\frac{b}{t} \in S^{-1}M^i$ then there exists $a \in M^i, s, u \in S$ such that $atu = bsu$. So $b \in M^i$ as $su \notin M$. Also we have $S^{-1}M^i = (S^{-1}M)^i$. Since $M^i \neq M^{i+1}$ the other inequality of sets in the claim follows.

Claim 3. If $I = M_1^{t_1}M_2^{t_2} \cdots M_k^{t_k}$ and $S = R \setminus M_1$ then $S^{-1}I = S^{-1}M_1^{t_1}$.

Proof of Claim. Let $\frac{b}{s} \in S^{-1}I$ with $b \in I, s \in S$. Then $b = \sum_{j=1}^{l} b_j c_j$ with $b_j \in M_1^{t_1}, c_j \in M_2^{t_2} \cdots M_k^{t_k}$. So $\frac{b}{s} \in S^{-1}M_1^{t_1}$. Conversely if $b \in M_1^{t_1}$ then pick $s_i \in M_i \setminus M_1, 2 \leq i \leq k$ then for any $\frac{b}{s} \in S^{-1}M_1^{t_1}, \frac{b}{s} = \frac{b s_2 s_3 \cdots s_k}{s s_2 s_3 \cdots s_k} \in S^{-1}I$. So $S^{-1}M_1^{t_1} = S^{-1}I$. This proves the claim.

Continuing with the proof of the above theorem, using the previous two claims and upon localization at each M_i in the factorization of I we observe that the powers are also uniquely determined and this Theorem follows.

Now we define the valuation of an ideal in the multiplicative monoid of maximal ideals with respect to a maximal ideal.

Definition 7 (A Total Valuation Map V, Valuation V_M at M on Monoid M). Let R be a commutative ring with unity. Suppose for any maximal ideal $M^i \neq M^{i+1}$ for all $i \geq 0$. Let $\max(\text{spec}(R))$ be any finite set. Let $M(\max(\text{spec}(R)))$ be the multiplicative monoid of generated by the maximal ideals in $\max(\text{spec}(R))$.

Define two maps
$$V, V_M : M \longrightarrow N \cup \{0\}$$
as

\[V(\mathcal{J}) = \prod_{i=1}^{t} N_i^{s_i} \in M = \sum_{i=1}^{t} s_i \]

\[V_M(\mathcal{J}) = \prod_{i=1}^{t} N_i^{s_i} \in M = s_i \text{ if } M = N_i \text{ otherwise } 0. \]

This definitions of the valuation maps \(V, V_M \) are well defined.

After having the definition above, because of distinctness of ideals with factorizations into a product of powers of distinct maximal ideals we prove the following theorem about non-emptyness of certain sets.

Theorem 9 (Non-emptiness theorem). Let \(R \) be a commutative ring with identity. Suppose for each maximal ideal \(M, M^i \neq M^{i+1} \) and \(\bigcap_{i \geq 0} M^i = (0) \). Let \(\mathcal{F} \subset \text{max}(\text{Spec}(R)) \) be a finite set. Let \(M(\mathcal{F}) \) be the finitely generated monoid by a finite set \(\mathcal{F} \). Let \(I = M_{1}^{i_1} M_{2}^{i_2} \ldots M_{k}^{i_k} \in M(\mathcal{F}) \) be a product of maximal ideals. Then the set

\[I \setminus \left(\bigcup_{J \in M(\mathcal{F})^*} IJ \right) \neq \emptyset. \]

Proof. We can use Theorem 5 on ideal avoidance for the ring \(R \). Since the monoid is finitely generated by finitely many maximal ideals in \(\mathcal{F} \), we have

\[I \setminus \left(\bigcup_{M \in \mathcal{F}} IM \right) \neq \emptyset. \]

Here \(M(\mathcal{F}) \) denote the set \(M(\mathcal{F}) \setminus \{R\} \).

The following theorem is also similar to the previous theorem and it gives rise to multiplicative properties.

Theorem 10 (Determined valuative elements). Let the notation be as in the previous Theorem 9. For every ideal \(I \in M(\mathcal{F}) \), let \(a_I \in I \setminus \left(\bigcup_{J \in M(\mathcal{F})^*} IJ \right) \). Let \(I_j \in M(\mathcal{F}) : 1 \leq j \leq r \) are pairwise co-maximal. Then

\[\prod_{i=1}^{r} a_{I_i} \in \prod_{i=1}^{r} I_i \setminus \left(\bigcup_{J \in M(\mathcal{F})^*} J \prod_{i=1}^{r} I_i \right) \]

Proof. First we prove the claim below.

Claim 4. If \(a \in R \) and \(s \notin M \) then

\[a \in M^i \setminus M^{i+1} \Leftrightarrow as \in M^i \setminus M^{i+1}. \]

Proof of Claim. If \(a \in M^i \) then \(as \in M^i \). If \(as \in M^{i+1} \) then since \(s \notin M \), \(a \in M^{i+1} \). So one way implication follows. Now the other way implication also follows similarly. This proves the claim.

Continuing with the proof of the theorem we observe that, in the hypothesis above, since the ideals \(I_i : 1 \leq i \leq r \) are co-maximal the valuations with respect to any maximal ideal in \(\mathcal{F} \) gets exactly determined for the product \(\prod_{i=1}^{r} a_{I_i} \) and the theorem follows using the previous claim.
Non-emptiness Theorem \(\mathfrak{F} \) gives rise to the following definition.

Definition 8. Let \(R \) be a commutative ring with unity. Suppose for each maximal ideal \(M \) we have \(M^i \neq M^{i+1} \) and \(\bigcap_{i \geq 0} M^i = 0 \). Let \(F \subset \max(Spec(R)) \) be a finite set. Let \(M(F) \) be the finitely generated monoid by a finite set \(F \). Let \(\mathcal{I} \in M(F) \). Define the set

\[
S_\mathcal{I} \overset{\text{def}}{=} \mathcal{I}\setminus \left(\bigcup_{\mathcal{J} \in M(F)^*} \mathcal{I}\mathcal{J} \right).
\]

By non-emptiness Theorem \(\mathfrak{F} \) this set \(S_\mathcal{I} \) is non-empty.

Note 3. Let \(R \) be a commutative ring with unity. If two sets \(S_1, S_2 \subset R \) satisfy the property that their sum of the generated ideals \((S_1) + (S_2) = R \) then this need not imply that there exists \(s_1 \in S_1, s_2 \in S_2 \) such that their sum of the generated ideals \((s_1) + (s_2) = R \). However it does imply that there exists finite set of elements \(s_{i1}, s_{i2}, \ldots, s_{it_i} \in S_i \) such that the sum of the ideals

\[
(s_{i1}, s_{i2}, \ldots, s_{it_i}) + (s_{21}, s_{22}, \ldots, s_{2t_2}) = R.
\]

Now we prove an useful theorem below which produces elements in \(S_\mathcal{I} \) for ideals \(\mathcal{I} \) in a finitely generated multiplicative monoid which satisfy multiplicative properties and co-maximality conditions. The theorem is as stated below.

Theorem 11 (Co-maximality of the ideals of the sets theorem). Let \(R \) be a commutative ring with unity. Suppose for each maximal ideal \(M \subset R \) we have

- \(M^i \neq M^{i+1} \).
- \(\bigcap_{i \geq 0} M^i = 0 \).

Let \(F \subset \max(Spec(R)) \) be a finite set. Let \(M(F) \) denote the corresponding finitely generated monoid. Suppose every non-zero element \(r \in R \) is contained in finitely many maximal ideals. Then there exists a nowhere zero choice multiplicative monoid map \(\Sigma : M(F) \to R \) such that

1. **(Unit Condition):** \(\Sigma(R) = 1 \).
2. **(Choice Set Condition):** \(\Sigma(\mathcal{I}) \in S_\mathcal{I} \) for all \(\mathcal{I} \in M(F) \).
3. **(Multiplicativity Condition):** If \(\mathcal{I}, \mathcal{J} \in M(F) \) are co-maximal then \(\Sigma(\mathcal{I}\mathcal{J}) = \Sigma(\mathcal{I})\Sigma(\mathcal{J}) \).
4. **(Co-maximality Condition):** For ideals \(\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_r \in M(F) \)

 \[
 \text{If } \mathcal{I}_1 + \mathcal{I}_2 + \ldots + \mathcal{I}_r = 1 \text{ then } (\Sigma(\mathcal{I}_1)) + (\Sigma(\mathcal{I}_2)) + \ldots + (\Sigma(\mathcal{I}_r)) = 1.
 \]

Proof. We prove this theorem as follows.

Claim 5. If \(\mathcal{I}, \mathcal{J} \in M(F) \) are co-maximal then we have \((S_\mathcal{I}) + (S_\mathcal{J}) = 1 \) i.e. the ideals of the sets are comaximal and may not be the sets themselves.

Proof of Claim. Let \(\mathcal{M} \) be a maximal ideal containing the set \(S_\mathcal{I} \) then \(\mathcal{M} \) occurs in the unique factorization of \(\mathcal{I} \in M(F) \). Suppose not then ideal avoidance Theorem \(\mathfrak{E} \) does not hold as \(\mathcal{I} = \mathcal{I}\mathcal{M} \cup \mathcal{I}\mathcal{N} \). Since there are no common maximal ideals occuring in the unique factorization of \(\mathcal{I}, \mathcal{J} \) the claim follows.

Continuing with the proof, we define \(\Sigma(R) = 1 \). Let \(F = \{M_1, M_2, \ldots, M_k\} \). Since every non-zero element is contained in finitely many maximal ideals we find the points \(\Sigma(M_1^{t_1}) \in S_{M_1^{t_1}} \) inductively as follows.

First we choose any \(\Sigma(M_1) \in S_{M_1} \). Now this element is contained in finitely many maximal ideals. Choose \(\Sigma(M_2) \in S_{M_2} \) avoiding these finitely many maximal ideals and continue this process till we find a configuration of elements \(\#(F) = k \)-elements \(m_i \in S_{M_i} \) inductively
for $1 \leq i \leq k$ which are pairwise co-maximal again using Theorem [5] on ideal avoidance in every inductive step.

Note that it may so happen that $\Sigma(M_1)^2 = 0$ and hence it belongs to all ideals. So we just cannot raise these values to higher powers. Instead now we find $\Sigma(M_1^t) \in S_{\mathcal{M}_1^t}$ which is co-maximal to all the previously found elements corresponding to other maximal ideals using Theorem [5] on ideal avoidance and also co-maximal to maximal ideals other than M_1 containing $\Sigma(M_1)$. So continuing this way we have defined Σ for all powers of maximal ideals in \mathcal{F}. Now extend Σ multiplicatively to the entire monoid. We use Theorem [10] to conclude $\Sigma(\mathcal{I}) \in S_{\mathcal{T}}$.

Now if $\mathcal{I}_1 + \mathcal{I}_2 + \ldots + \mathcal{I}_r = 1$. Let \mathcal{M} be any maximal ideal. If \mathcal{M} contains all the elements $\Sigma(\mathcal{I}_1), \Sigma(\mathcal{I}_2), \ldots, \Sigma(\mathcal{I}_r)$ then \mathcal{M} contains $\Sigma(M_1^i)$ and $\Sigma(M_j^j)$ for two distinct maximal ideals $M_i \neq M_j$ in \mathcal{F}. So co-maximality condition follows.

Now the fact that $\Sigma(\mathcal{I}) \in S_{\mathcal{T}}$ implies that Σ is nowhere zero. Now Theorem [11] follows. □

Observation 1. In Theorem [11] while defining the map $\Sigma_{\mathcal{F}}$ it satisfies the following property automatically. If $\mathcal{A} = M_1^{t_1}M_2^{t_2} \ldots M_i^{t_i}, \mathcal{B} = M_1^{s_1}M_2^{s_2} \ldots M_l^{s_l}$ with $M_1, \ldots, M_l \in \mathcal{F}$ then we not only have

$$
\Sigma_{\mathcal{F}}(\mathcal{A}) = \Sigma_{\mathcal{F}}(M_1^{t_1}) \ldots \Sigma_{\mathcal{F}}(M_i^{t_i}), \Sigma_{\mathcal{F}}(\mathcal{B}) = \Sigma_{\mathcal{F}}(M_1^{s_1}) \ldots \Sigma_{\mathcal{F}}(M_l^{s_l})
$$

If $t_i \neq s_i$ for all $1 \leq i \leq l$, we have for each $1 \leq i, j \leq l$, the set of maximal ideals containing $\Sigma(M_i^{t_i})$ other than M_i is distinct from the set of maximal ideals containing $\Sigma(M_j^{s_j})$ other than M_j.

Example 3.

- Let $\mathcal{R} = \mathbb{Z}$. Here Σ can be defined for the entire monoid $M(\mathcal{R})$. The map $\Sigma : M(\mathcal{R}) \rightarrow \mathcal{R}$ given by $\Sigma((p_1^{t_1}p_2^{t_2} \ldots p_k^{t_k})) = p_1^{t_1}p_2^{t_2} \ldots p_k^{t_k}$, where $p_i : 1 \leq i \leq k$ are k—distinct primes.

- Let \mathcal{R} be a dedekind domain with finitely many maximal ideals which is not a field. It is a principal ideal domain. Any element in $\pi_i \in \mathcal{P}_i \setminus \left(\bigcup_{j \neq i} \mathcal{P}_j \cup \mathcal{P}_i^2 \right)$ is a generator as its ideal factorization in \mathcal{R} is given by $(\pi_i) = \mathcal{P}_i$. Here the monoid $M(\mathcal{R})$ is finitely generated. Then define $\Sigma(\prod_{i=1}^{k} \mathcal{P}_i^{t_i}) = \prod_{i=1}^{k} \pi_i^{t_i}$.

- A dedekind domain \mathcal{R} is a principal ideal domain if and only if for every maximal ideal \mathcal{M}, the set

$$
\mathcal{M} \setminus \left(\bigcup_{\mathcal{N} \in \text{Spec(}\mathcal{R}) \setminus \mathcal{M}} \mathcal{N} \right) \cup \mathcal{M}^2 \neq \emptyset.
$$

Then we could define the map Σ similar to the ring of integers explicitly.

11. Representation of elements of projective spaces associated to ideals

In this section we prove the following Theorem [12] which is stated below.

Theorem 12. Let \mathcal{R} be a commutative ring with unity. Suppose \mathcal{R} is a dedekind type domain (refer to Definition [4]). Let $M(\mathcal{R})$ be the monoid generated by maximal ideals in \mathcal{R}. Let $\mathcal{I} \in M(\mathcal{R})$ be a product of maximal ideals. Let $k \geq 2$ be a positive integer. Let \mathcal{F} be any finite set of maximal ideals containing $V(\mathcal{I})$. Let Σ be the nowhere zero choice monoid multiplicative map for the monoid $M(\mathcal{F})$ from Theorem [11]. Then the description of the k—
One dimensional projective space is given by

\[
\mathbb{P} P^k_t = \{ [\Sigma(J_0)v_0 : \Sigma(J_1)v_1 : \ldots : \Sigma(J_k)v_k] \mid J_i \supset \mathcal{I}, \sum_{i=0}^k J_i = \mathcal{R} \Rightarrow \sum_{i=0}^k \Sigma(J_i) = \mathcal{R} \}
\]

\[v_0, v_1, \ldots, v_k \in \mathcal{R} \setminus \bigcup_{\mathcal{M} \in \mathcal{F}} \sum_{i=0}^k (\Sigma(J_i)v_i) = \mathcal{R} \} .\]

We first consider one dimensional projective spaces before we proceed to higher dimensions.

11.1. Representation of elements in one dimensional projective space associated to ideals.

We begin with a couple of Lemmas 8,9 before proving Theorem 13 of representing elements of one dimensional projective spaces.

Lemma 8 (A representation lemma). Let \(\mathcal{R} \) be a ring with unity. Let \(\mathcal{M} \) be a maximal ideal. Suppose \(\dim \mathcal{R} (\mathcal{M}^t : \mathcal{M}^{t+1}) = 1 \) for \(0 \leq t \leq (k - 1) \). Let \(p_t \in \mathcal{M}^t \setminus \mathcal{M}^{t+1} \) represent a basis modulo \(\mathcal{M}^{t+1} \) for the \(\mathcal{R} / \mathcal{M}^t \)-vector space \(\mathcal{M}^t / \mathcal{M}^{t+1} \), \(0 \leq t \leq (k - 1) \). Then the projective space

\[
\mathbb{P} P^k_{\mathcal{M}^t} = \{ [1 : p_t u] \mid \bar{u} \in \mathcal{U}(\mathcal{R} / \mathcal{M}^t, 0 \leq t \leq (k - 1)) \}
\]

\[
\bigcup \{ [ptu : 1] \mid \bar{u} \in \mathcal{U}(\mathcal{R} / \mathcal{M}^t, 0 \leq t \leq (k - 1)) \} \bigcup \{ [1 : 0], [0 : 1] \}
\]

Proof. Clearly if \([a : b] \in \mathbb{P} P^k_{\mathcal{M}^t} \) then either \(a \notin \mathcal{M} \) or \(b \notin \mathcal{M} \). So without loss of generality we can assume either \(a = 1 \) or \(b = 1 \). So assume \(a = 1 \). Then \([1 : b] = [1 : b_2] \) if and only if \(b_1 - b_2 \in \mathcal{M}^k \). Moreover for each \(i = 1, 2 \) either for some \(0 \leq t < k, b_i \in (\mathcal{M}^t \setminus \mathcal{M}^{t+1}) \) or \(b_i \in \mathcal{M}^k \). Also for any \(0 \leq t < k \)

\[b_1 \in \mathcal{M}^t \setminus \mathcal{M}^{t+1} \Leftrightarrow b_2 \in \mathcal{M}^t \setminus \mathcal{M}^{t+1} \]

and for \(t = k \)

\[b_1 \in \mathcal{M}^k \Leftrightarrow b_2 \in \mathcal{M}^k .\]

Now let \(b \in \mathcal{M}^t \setminus \mathcal{M}^{t+1} \) and let \(b = p_t u + \mathcal{M}^{t+1} \) and here \(u \) actually can be varied in a coset of \(\mathcal{M} \). Because if

\[p_t u + \mathcal{M}^{t+1} = p_t u' + \mathcal{M}^{t+1} \]

Then by the basis condition \(u - u' \in \mathcal{M} \). However we need to answer the question of representing an element \(b \in \mathcal{M}^t \setminus \mathcal{M}^{t+1} \) in the required form. If \(t + 1 = k \) we are through. Now we will answer the question of representing the element of projective space if \(k > t + 1 \).

Here first we observe that

\[b - p_t u = \sum x_i y_i \text{ with } x_i \in \mathcal{M}^t, y_i \in \mathcal{M} .\]

Now again expressing each \(x_i \) in terms of the basis \(\{p_t\} \) modulo \(\mathcal{M}^{t+1} \) and repeating this process and pushing the powers to \(y_i \)’s from \(x_i \)’s till we reach \(\mathcal{M}^k \) we can actually assume that

\[b = p_t v + \mathcal{M}^k \]

for possibly some other \(v \notin \mathcal{M} \).

This representation yields surjectivity and also as now if \(k > t + 1 \) then we can actually vary \(v \) in the coset of \(\mathcal{M}^{k-t} \) without changing the projective element \([1 : b] \).

This proves Lemma 8. \(\square \)
Lemma 9 (A fundamental observation between the addition and multiplication in the ring). Let \(R \) be a commutative ring with unity. Let \(I = M^k \), where \(M \subset R \) be a maximal ideal. Suppose \(\dim_R \left(\frac{M^k}{M^{k+1}} \right) = 1 \). Suppose \(p_i, \bar{p}_i \in M^i \setminus M^{i+1} \) for \(0 \leq i \leq k \). For any \(u \in \mathcal{R} \setminus M \) there exists \(v \in \mathcal{R} \setminus M \) such that \([1 : pu] = [1 : \bar{p}_i v] \in \mathbb{P}^1_{\mathcal{F}^1} \). i.e. \(pu - \bar{p}_i v \in M^k \). Moreover \(u \) and \(v \) can be varied in their respective cosets \(\mod \mathcal{P}^{k-1} \) without changing the element in the projective space \(\mathbb{P}^1_{M^k} \).

Proof. Since we have exhibited representing elements in case when the ideal \(I = M^k \) a power of a maximal ideal for any fixed set of representatives \(p_i \in M^i \setminus M^{i+1} \) for \(0 \leq i \leq (k - 1) \) and \(p_k = 0 \) in the previous Lemma \(8 \) this Lemma \(9 \) follows.

Now we state the following theorem of representing elements for one dimensional projective spaces.

Theorem 13. Let \(R \) be a commutative ring with unity. Suppose \(R \) is a dedekind type domain (refer to Definition 4). Let \(M(R) \) be the monoid generated by maximal ideals in \(R \). Let

\[
I = M_1^{k_1} M_2^{k_2} \ldots M_r^{k_r} \in M(R)
\]

be an ideal. Let \(\mathcal{F} \) be any finite set of maximal ideals containing \(V(I) \). Then the projective space

\[
\mathbb{P}^1_{\mathcal{F}} = \{ [\Sigma(I_1) : \Sigma(I_2)]u \mid u \in R \setminus \left(\bigcup_{M \in \mathcal{F}} M \right) + \mathcal{I}_3, \text{ where for } i = 1, 2, 3 \ I \subset I_i \in M(R) \}
\]

with \(I_1, I_2 \) are co-maximal and \(I_1 I_2 I_3 = I \}

Here the map \(\Sigma \) is the nowhere zero choice monoid multiplicative map for the monoid \(M(\mathcal{F}) \) from Theorem 11.

Proof. Consider an element \(e = (e_1, e_2, \ldots, e_r) \in \prod_{i=1}^{r} \mathbb{P}^1_{M_i^{k_i}} \). Let \(A \sqcup B \) be a partition of the set \(\{1, 2, \ldots, r\} \) such that if \(i \in A \) then \(e_i = [1 : \Sigma(M_i^{j_i})u_i] \) for some \(u_i \notin M_i \) and if \(i \in B \) then \(e_i = [\Sigma(M_i^{j_i})v_i : 1] \) for some \(v_i \notin M_i \). Here \(0 \leq j_i \leq k_i \). This representation holds for \(e \) using the representation Lemma \(8 \). Using the chinese remainder reduction isomorphism in Theorem 11 there exists an element \([a : b] \in \mathbb{P}^1_{\mathcal{F}} \) such that \([a : b] \equiv e_i \mod M_i^{k_i} \). Let \(I_1 = \prod_{i \in B} M_i^{j_i} \), \(I_2 = \prod_{i \in A} M_i^{j_i} \). Let \(I_3 \) be the unique ideal which is a product of maximal ideals and \(I_1 I_2 I_3 = I \). We observe that \(I_1, I_2 \) are co-maximal as \(A, B \) are disjoint. Now we factor \(\Sigma(I_1), \Sigma(I_2) \) from \(a, b \) respectively using congruences especially using Lemma 9 Let \(i \in A \). Then \(a \equiv 1 \mod M_i^{k_i}, b \equiv \Sigma(M_i^{j_i})u_i \mod M_i^{k_i} \). Let \(t \Sigma(I_1) \equiv 1 \mod M_i^{k_i} \). We observe both \(b, \Sigma(I_2) t \in M_i^{j_i} \setminus M_i^{j_i+1} \) unless \(j_i = k_i \) in which case both \(b, \Sigma(I_2) t \in M_i^{k_i} \). Now we use Lemma 9 to conclude that there exists \(x_i \in \mathcal{R} \setminus M_i \) such that \(b - \Sigma(I_2) t x_i \in M_i^{k_i} \).

This proves that

\[
[a : b] = [1 : \Sigma(I_2) t x_i] = [\Sigma(I_1) : \Sigma(I_2) x_i] \in \mathbb{P}^1_{M_i^{k_i}}.
\]

We can do similarly if \(i \in B \). So we have factored \(\Sigma(I_1), \Sigma(I_2) \) from \(a, b \) for all \(1 \leq i \leq r \) respectively obtaining suitable elements \(x_i \in \mathcal{R} \setminus M_i \) for \(1 \leq i \leq r \). So we get that

\[
[a : b] = (e_1, e_2, \ldots, e_r) = ([\Sigma(I_1) : \Sigma(I_2) x_1], [\Sigma(I_1) : \Sigma(I_2) x_2], \ldots, [\Sigma(I_1) : \Sigma(I_2) x_r])
\]

Now we obtain the element \(u \in \mathcal{R} \setminus \left(\bigcup_{M \in \mathcal{F}} M \right) \) as follows. We solve three sets of congruences simultaneously.
- The first set of congruences is
 \[u \equiv x_i \mod M_i^k \]
- The second set of congruences is as follows. For \(M \in F \setminus \{M_1, M_2, \ldots, M_k\} \),
 \[u \equiv 1 \mod M \]
- The third set of congruences is as follows. Since any element \(r \in R \) is in finitely many maximal ideals, let \(G \) be the finite set of maximal ideals which contain \(\Sigma(I_1), \Sigma(I_2) \). Then we solve for \(M \in G \setminus F \)
 \[u \equiv 1 \mod M \]

So by solving these congruences we not only obtain \(u \in R \setminus \left(\bigcup_{M \in F} M \right) \) we also have that there is no common maximal ideal containing \(u, \Sigma(I_1), \Sigma(I_2) \). So \(\{\Sigma(I_1) : \Sigma(I_2)u \in \mathbb{P}_F^1\} \) is not only a well defined element but also the required element. Now the fact that we can modify \(u \) to another \(\tilde{u} \in u + I_3 \) provided \(\{\Sigma(I_1) : \Sigma(I_2)\tilde{u} \in \mathbb{P}_F^1\} \) is well defined is a easy consequence. This proves Theorem 13.

11.2. Unique factorization of a non-zero element with respect to a finitely generated monoid generated by maximal ideals.

Here we introduce a definition of factorizing an element with respect to a finite set of maximal ideals. For a fixed element the factorization is unique.

Definition 9. Let \(R \) be a commutative ring with unity. The ring \(R \) satisfies the following properties.

1. For each maximal ideal \(M \) we have \(M_i \neq M_{i+1} \) for all \(i \geq 0 \).
2. \(\bigcap_{n \geq 0} M^i = (0) \).
3. Every non-zero element \(r \in R \) is contained in finitely many maximal ideals.

Let \(M(R) \) be the monoid generated by maximal ideals in \(R \). Let \(F \) be a finite set of maximal ideals. Then for any \(0 \neq x \in R \) we can define a valuation \(V_F \) with respect to the monoid \(F \). Since \(x \neq 0 \) for each maximal ideal \(M \) there exists a largest integer \(i = i_M \geq 0 \) such that \(x \in M^i \setminus M^{i+1} \). The maps

\[V_F : R^* \longrightarrow M(F), V_M : R^* \longrightarrow \mathbb{N} \]

are defined as \(V_F(x) = \prod_{M \in F} M^{i_M} \) and \(V_M(x) = i_M \). Clearly \(x \in V_F(x) \) and \(V_F(x) \) is the unique factorization of the element \(x \) with respect to the monoid \(M(F) \).

11.3. Representation of elements in higher dimensional projective space associated to ideals.

Now we prove the main Theorem 12 of this section about representing elements of projective spaces associated to ideals of any dimension.

Proof. Let \(I = M_{1,1}^l \cdot M_{2,2} \cdot \ldots \cdot M_{k,1}^l \in M(R) \). Let \([x_0 : x_1 : \ldots : x_k] \in \mathbb{P}_F^k \). Assume each \(x_i \) is non-zero by replacing the element by a non-zero element of \(I \). This also does not alter the condition \(\sum_{i=0}^k (x_i) = R \). We define the ideal \(J_i \) as follows. Let \(G = \{M_1, \ldots, M_l\} = V(I) \).

Consider the unique factorizations of \(x_i \) with respect to the monoid \(M(G) \). Define the ideal

\[\sum_{j=0}^k x_i \Rightarrow J_i \supset V_G(x_i) \supset \{x_i\}, J_i \supset I. \]
are co-maximal, where $u, v \in I$ and consider the following matrix

where I and v we lift v_{ij} to an element $v_i \in R \setminus \bigcup_{M \in \mathcal{F}} M$ by solving congruences.

$$v_i \equiv v_{ij} \mod M_j^i$$

We may need to solve some additional finitely many congruences of the type

$$v_i \equiv 1 \mod N$$

to avoid a maximal ideal N and also to ensure the condition that

$$\sum_{i=0}^k (\Sigma(I_i)v_i) = R$$

which can be done as every non-zero element is contained in finitely many maximal ideals. Hence Theorem 12 follows. \qed

12. Surjectivity of the map $SL_2(R) \rightarrow \mathbb{PF}_2^1 \times \mathbb{PF}_2^1$

In this section we prove the surjectivity Theorem 13 for $k = 2$ which is stated below.

Theorem 14. Let R be a commutative ring with unity. Suppose R is a dedekind type domain (refer to Definition 1). Let $M(R)$ be the monoid generated by maximal ideals in R. Let $I, J \in M(R)$ be two co-maximal ideals. Then the map

$$SL_2(R) \rightarrow \mathbb{PF}_2^1 \times \mathbb{PF}_2^1$$

given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow ([a : b], [c : d])$$

is surjective.

Proof. Consider the two co-maximal ideals

$$\mathcal{I} = \prod_{i=1}^r M_i^{k_i}, \mathcal{J} = \prod_{i=1}^s N_i^{l_i} \in M(R).$$

Let

$$\mathcal{F} = \{M_1, M_2, \ldots, M_r, N_1, N_2, \ldots, N_s\}.$$

Let Σ be the choice monoid multiplicative map for the monoid $M(\mathcal{F})$ from Theorem 11. Using the previous Theorem 13 consider an element

$$([\Sigma(I_1) : \Sigma(I_2)v], [\Sigma(J_1) : \Sigma(J_2)(xu + i_3)]) \in \mathbb{PF}_1^1 \times \mathbb{PF}_1^1,$$

where $I_1, I_2, J_1, J_2 \in M(R)$ with $I \subset I_1, I_2$ which are co-maximal and $J \subset J_1, J_2$ which are co-maximal, where $u, v \in R \setminus \bigcup_{M \in \mathcal{F}} M$. Let $I_3, J_3 \in M(R)$ be the unique ideals such that $I_1I_2I_3 = I, J_1J_2J_3 = J$. Let

$$x \in R \setminus \left(\bigcup_{i=1}^r M_i \right), y \in R \setminus \left(\bigcup_{i=1}^s N_i \right), i_3 \in I_3, j_3 \in J_3$$

and consider the following matrix

$$\begin{pmatrix} \Sigma(I_1)x & \Sigma(I_2)(xu + i_3) \\ \Sigma(J_1)y & \Sigma(J_2)(yv + j_3) \end{pmatrix}.$$
Now consider the two ideals \(\Sigma(J) \), \(I \in \mathcal{I}, J \in \mathcal{J}, i_3 = I_3 \beta \Sigma(I_1), j_3 = J_3 \alpha \Sigma(J_1) \) and consider the equation
\[
(2) \quad \Sigma(I_1) \Sigma(J_2) x (J_3 \alpha \Sigma(J_1)) - \Sigma(I_2) \Sigma(J_1) y (I_3 \beta \Sigma(I_1)) = 1 + (\Sigma(I_2) \Sigma(J_1) u - \Sigma(I_1) \Sigma(J_2) v) xy
\]
Consider the co-maximal ideals
\[K_1 = (\Sigma(I_1)), K_2 = (\Sigma(J_1)) \]
Now we solve the following congruences for \(A \in \mathcal{R} \) given by
\[1 + \Sigma(I_2) \Sigma(J_1) u A \in K_1, 1 + \Sigma(I_1) \Sigma(J_2) v A \in K_2 \]
Such solutions exist because the pairs of ideals \((\Sigma(I_2) \Sigma(J_1) u), K_1\), \((\Sigma(I_1) \Sigma(J_2) v), K_2\) are also co-maximal. i.e.
\[(\Sigma(I_2) \Sigma(J_1) u) + (\Sigma(I_1)) = \mathcal{R} \]
\[(\Sigma(I_1) \Sigma(J_2) v) + (\Sigma(J_1)) = \mathcal{R}. \]
If \(A_0 \) is one common solution then the set of common solutions is given by
\[A_0 + K_1 K_2 = \{ A_0 + a \mid a \in K_1 K_2 \} \]
because \(\frac{\mathcal{R}}{K_1 K_2} \cong \frac{\mathcal{R}}{K_1} \oplus \frac{\mathcal{R}}{K_2} \). Moreover we have the sum of the ideals \((A_0) + K_1 K_2 = \mathcal{R} \). So let \((A_0) + (B_0) = \mathcal{R} \) for some \(B_0 \in K_1 K_2 \). Here in Theorem 4 we choose the set
\[E = V(\mathcal{I}) \cup V(\mathcal{J}) \cup V(\Sigma(I_2)) \cup V(\Sigma(J_2)) \] a finite set.
Because each set in the union is a finite set. Here choice multiplicative monoid map \(\Sigma \) never takes a zero value. Now we note that \(\Sigma(I_2) \Sigma(J_2) = \Sigma(I_2 J_2) \neq 0 \) by multiplicativity and So using Theorem 4 which is the fundamental lemma on arithmetic progressions for schemes there exists an element of the form \(C_0 = A_0 + n B_0 \) for some \(n \in \mathcal{R} \) such that
\[(C_0) + I \mathcal{J}(\Sigma(I_2) \Sigma(J_2)) = \mathcal{R}. \]
Now choose \(x = 1, y = C_0 \) in their respective sets such that their associated principal ideals are obviously co-maximal and also co-maximal to each ideal \(\mathcal{I}, \mathcal{J} \). We observe that
\[1 + (\Sigma(I_2) \Sigma(J_1) u - \Sigma(I_1) \Sigma(J_2) v) xy \in K_1 \cap K_2 = K_1 K_2 = (\Sigma(I_1) \Sigma(J_1) = \Sigma(I_1 J_1)). \]
Now let \(1 + (\Sigma(I_2) \Sigma(J_1) u - \Sigma(I_1) \Sigma(J_2) v) xy = \Sigma(I_1 J_1) t \). We solve for \(I_3, J_3 \) in the following equation which is obtained from Equation 2
\[\Sigma(J_2) x J_3 \alpha - \Sigma(I_2) y I_3 \beta = t \]
Now consider the two ideals \(\Sigma(J_2) x J_3, \Sigma(I_2) C_0 I_3 \). They are co-maximal because \(\Sigma(J_2) x J_3 = \Sigma(J_2) J_3 \). Also the ideals \(\Sigma(I_2), I_3 \) are co-maximal with ideals \(\Sigma(J_2), J_3 \) and the ideal \(C_0 \) is co-maximal with \(\Sigma(J_2) \) and \(\mathcal{J} \) itself hence \(J_3 \) also. So solving for \(I_3 \beta \in \mathcal{I}, J_3 \alpha \in \mathcal{J} \) is possible in the above equation.
This proves Theorem 1\(\Box \)

13. **Surjectivity of the map** \(SL_k(\mathcal{R}) \rightarrow \prod_{i=1}^k \mathbb{P}P_{I_i}^{k-1} \)

Here in this section now we prove the third main Theorem 3 of this article.

Proof. We prove this theorem by proving the following three claims.
Claim 6 (Well definedness of the map $r_{g^{-1}}$). Let $g \in SL_k(\mathcal{R})$. Let

$$((a_{11} : a_{12} : \ldots : a_{1k}), [a_{21} : a_{22} : \ldots : a_{2k}], \ldots, [a_{k1} : a_{k2} : \ldots : a_{kk}]) \in \prod_{i=1}^{k} \mathbb{P}^{k-1}_{\mathcal{I}_i}.$$

Consider the matrix $A = [a_{ij}]_{k \times k}$. Let $Ag^{-1} = [b_{ij}]_{k \times k}$. Then the map

$$r_{g^{-1}} : \prod_{i=1}^{k} \mathbb{P}^{k-1}_{\mathcal{I}_i} \to \prod_{i=1}^{k} \mathbb{P}^{k-1}_{\mathcal{I}_i}$$

given by

$$((a_{11} : a_{12} : \ldots : a_{1k}), [a_{21} : a_{22} : \ldots : a_{2k}], \ldots, [a_{k1} : a_{k2} : \ldots : a_{kk}]) \mapsto ((b_{11} : b_{12} : \ldots : b_{1k}), [b_{21} : b_{22} : \ldots : b_{2k}], \ldots, [b_{k1} : b_{k2} : \ldots : b_{kk}])$$

is well defined. This gives a left action of $SL_k(\mathcal{R})$ on the space $\prod_{i=1}^{k} \mathbb{P}^{k-1}_{\mathcal{I}_i}$.

Proof of Claim. Suppose $((\tilde{a}_{11} : \tilde{a}_{12} : \ldots : \tilde{a}_{1k}), [\tilde{a}_{21} : \tilde{a}_{22} : \ldots : \tilde{a}_{2k}], \ldots, [\tilde{a}_{k1} : \tilde{a}_{k2} : \ldots : \tilde{a}_{kk}]) = ((a_{11} : a_{12} : \ldots : a_{1k}), [a_{21} : a_{22} : \ldots : a_{2k}], \ldots, [a_{k1} : a_{k2} : \ldots : a_{kk}]) \in \prod_{i=1}^{k} \mathbb{P}^{k-1}_{\mathcal{I}_i}$. Then we have for every $1 \leq \alpha, \beta, \gamma \leq k$, $a_{\alpha \beta} \tilde{a}_{\alpha \gamma} - \tilde{a}_{\alpha \beta} a_{\alpha \gamma} \in \mathcal{I}_\alpha$. Now we observe that if

$$\begin{pmatrix} a_{\alpha 1} & a_{\alpha 2} & \ldots & a_{\alpha k} \\ \tilde{a}_{\alpha 1} & \tilde{a}_{\alpha 2} & \ldots & \tilde{a}_{\alpha k} \end{pmatrix} g^{-1} = \begin{pmatrix} b_{\alpha 1} & b_{\alpha 2} & \ldots & b_{\alpha k} \\ \tilde{b}_{\alpha 1} & \tilde{b}_{\alpha 2} & \ldots & \tilde{b}_{\alpha k} \end{pmatrix}$$

Then we have for any fixed $1 \leq \alpha \leq k$ and for every $1 \leq \mu < \delta \leq k$

$$b_{\alpha \mu} \tilde{b}_{\alpha \delta} - \tilde{b}_{\alpha \mu} b_{\alpha \delta} \in \text{ideal}(a_{\alpha \beta} \tilde{a}_{\alpha \gamma} - \tilde{a}_{\alpha \beta} a_{\alpha \gamma} : 1 \leq \beta < \gamma \leq k) \subset \mathcal{I}_\alpha$$

and conversely because g is invertible. Moreover

$$(a_{\alpha i} : 1 \leq i \leq k) = (\tilde{a}_{\alpha i} : 1 \leq i \leq k) = \mathcal{R} \iff (b_{\alpha 1} : 1 \leq i \leq k) = (\tilde{b}_{\alpha 1} : 1 \leq i \leq k) = \mathcal{R}$$

This proves the claim. \qed

Claim 7 (Invariance of the Image). The image of the map σ_1 is $SL_k(\mathcal{R})$ invariant.

Proof of Claim. We observe that $g.\sigma_1(A) = \sigma_1(Ag^{-1})$. Each row of Ag^{-1} is unital if and only if each row of A is unital. So the claim follows. \qed

Claim 8. The image of σ_1 equals $\prod_{i=1}^{k} \mathbb{P}^{k-1}_{\mathcal{I}_i}$.

Proof of Claim. Let $((a_{11} : a_{12} : \ldots : a_{1k}), [a_{21} : a_{22} : \ldots : a_{2k}], \ldots, [a_{k1} : a_{k2} : \ldots : a_{kk}]) \in \prod_{i=1}^{k} \mathbb{P}^{k-1}_{\mathcal{I}_i}$. Let $A = [a_{ij}]_{k \times k} \in M_{k \times k}(\mathcal{R})$. Now we reduce the matrix A to an element in $SL_k(\mathcal{R})$ to prove the claim in a step by step manner.

Since each row generates a unit ideal using Lemma 5, we can right multiply A by an $SL_k(\mathcal{R})$—matrix so that a_{11} element is a unit modulo \mathcal{I}_1. Now replace the first row by an equivalent row, where $a_{11} = 1$. Then we can transform the first row to $e_k = (1, 0, 0, \ldots, 0)$ using another $SL_k(\mathcal{R})$—matrix. Now we use the previous Theorem 12 to represent appropriately the elements of the projective spaces by choosing the map Σ on the finitely generated monoid $M(\mathcal{F})$, where

$$\mathcal{F} = V(\mathcal{I}_1) \cup V(\mathcal{I}_2) \cup \ldots \cup V(\mathcal{I}_k).$$

Let the second row be

$$[\Sigma(\mathcal{I}_{21})v_{21} : \Sigma(\mathcal{I}_{22})v_{22} : \ldots : \Sigma(\mathcal{I}_{2k})v_{2k}]$$
We have
\[\sum_{i=1}^{k} (\Sigma(I_{2i})v_{2i}) = \mathcal{R}, \quad \text{and} \quad \mathcal{I}_1 + \sum_{i=2}^{k} (\Sigma(I_{2i})v_{2i}) = \mathcal{R} \]
by the choice of the monoid. Hence we get
\[(\Sigma(I_{21})v_{21})\mathcal{I}_1 + \sum_{i=2}^{k} (\Sigma(I_{2i})v_{2i}) = \mathcal{R} \]
So there exists \(i_1 \in \mathcal{I}_1 \) such that the vector
\[(\Sigma(I_{21})v_{21}i_1, \Sigma(I_{22})v_{22}, \ldots, \Sigma(I_{2k})v_{2k}) \]
is unital in \(\mathcal{R} \). Now \(\mathcal{I}_2 \) satisfies unital set condition \(USC \). So by Theorem 6 there exists \(s_1, s_3, \ldots, s_k \in \mathcal{R} \) such that the element
\[\Sigma(I_{22})v_{22} + \Sigma(I_{21})v_{21}s_1 + \sum_{i=3}^{k} \Sigma(I_{2i})v_{2i}s_i \]
is a unit modulo \(\mathcal{I}_2 \). The second summand in the above expression is in the ideal \(\mathcal{I}_1 \). Now we use a suitable column operation on \(A \) to transform \(a_{22} \) to the above expression. This does not alter the first row because it replaces the element \(a_{12} \) by an element of \(\mathcal{I}_1 \). Hence we could replace the first row of \(A \) back by \(e_1^R \). Now we have obtained \(a_{22} \) a unit mod \(\mathcal{I}_2 \). We can make this element \(a_{22} = 1 \) exactly by replacing the second row with another equivalent projective space element representative in \(\mathbb{P}F^k_{\mathcal{I}_2} \) however in the same equivalence class. Now by applying suitable column operations we can transform the second row to \(e_2^k = (0, 1, \ldots, 0) \).
Inductively suppose we arrive at the \(j^{th} \)-row for \(j \leq k \). Let the \(j^{th} \) row be given by
\[[\Sigma(I_{j1})v_{j1} : \Sigma(I_{j2})v_{j2} : \ldots : \Sigma(I_{jk})v_{jk}] \]
using again Theorem 12 with respect to the same monoid map \(\Sigma \).
We have
\[\sum_{i=1}^{k} (\Sigma(I_{ji})v_{ji}) = \mathcal{R}, \quad \text{and} \quad \mathcal{I}_1 \mathcal{I}_2 \ldots \mathcal{I}_{j-1} + \sum_{i=j}^{k} (\Sigma(I_{ji})v_{ji}) = \mathcal{R} \]
by the choice of the monoid. Hence we get
\[\sum_{i=1}^{j-1} (\Sigma(I_{ji})v_{ji})\mathcal{I}_1 \mathcal{I}_2 \ldots \mathcal{I}_{j-1} + \sum_{i=j}^{k} (\Sigma(I_{ji})v_{ji}) = \mathcal{R} \]
So there exists \(t_1, t_2, \ldots, t_{j-1} \in \prod_{i=1}^{j-1} \mathcal{I}_i \) such that the vector
\[(\Sigma(I_{j1})v_{j1}t_1, \Sigma(I_{j2})v_{j2}t_2, \ldots, \Sigma(I_{j(j-1)})v_{j(j-1)}t_{j-1}, \Sigma(I_{jj})v_{jj}, \ldots, \Sigma(I_{jk})v_{jk}) \]
is unital in \(\mathcal{R} \). Now \(\mathcal{I}_j \) satisfies unital set condition \(USC \). So by Theorem 6 we make \(a_{jj} \) element an unit mod \(\mathcal{I}_j \) without actually changing the previous \((j-1) \)-rows as projective space elements because \(t_1, t_2, \ldots, t_{j-1} \in \prod_{i=1}^{j-1} \mathcal{I}_i \). Now we make the \(a_{jj} = 1 \) exactly and then by applying an \(SL_{k+1}(\mathcal{R}) \) matrix make the \(j^{th} \) row equal to \(e_j^R = (0, 0, \ldots, 0, 1, 0, \ldots, 0) \).
We continue this procedure till \(j = k \). We arrive at the identity matrix. Hence the map \(\sigma_1 \) is surjective and Claim 8 follows. \(\square \)
Continuing with the proof of Theorem 8 we observe similarly the map \(\sigma_2 \) is also surjective. This finishes the proof of Theorem 8. \(\square \)
13.1. A consequence of surjectivity.

Theorem 15. Let \mathcal{R} be a commutative ring with unity.

1. Let \mathcal{R} be a dedekind type domain (refer to Definition [4]).
2. \mathcal{R} has infinitely many maximal ideals.

Suppose Let $M(\mathcal{R})$ be the monoid generated by maximal ideals in \mathcal{R}. Let $I_1, I_2, \ldots, I_r \in M(\mathcal{R})$ be pairwise co-maximal ideals. Let $k \geq 2$ be a positive integer. Consider for $r \leq k$

$$G_{r,k}(\mathcal{R}) = \{ A = [a_{ij}]_{r \times k} \in M_{r \times k}(\mathcal{R}) \mid \text{such that } r \times r \text{ minors generate unit ideal} \}.$$

Then the map

$$\tau : G_{r,k}(\mathcal{R}) \rightarrow \mathbb{P}^{k-1}_I \times \mathbb{P}^{k-1}_{I_2} \times \ldots \times \mathbb{P}^{k-1}_{I_r}$$

given by

$$\tau : (A) = ([a_{11} : a_{12} : \ldots : a_{1k}], [a_{21} : a_{22} : \ldots : a_{2k}], \ldots, [a_{r1} : a_{r2} : \ldots : a_{rk}])$$

are surjective.

Proof. Since the dedekind type domain has infinitely many maximal ideals by hypothesis, let $\mathcal{I}_{r+1}, \ldots, \mathcal{I}_k \in M(\mathcal{R})$ be pairwise co-maximal which are also co-maximal to each of $\mathcal{I}_1, \ldots, \mathcal{I}_r$. Such ideals exist. Now using the main Theorem [3] we conclude surjectivity of this map τ. Hence this Theorem 15 also follows. \qed

14. An example of a fixed point subgroup of $SL_k(\mathcal{R})$, where surjectivity need not hold

In this section we give an example. In this Example [4] the analogue of Theorem [3] need not hold for a fixed point subgroup.

Example 4. Let \mathbb{K} be an algebraically closed field. Let $\mathcal{R} = \mathbb{K}[z_1, z_2, \ldots, z_n]$. Consider the standard action of $SL_2(\mathcal{R})$ on \mathcal{R}^2. Let $G(\mathcal{R})$ be the stabilizer subgroup of the element $(1,1)^{tr} \in \mathcal{R}^2$ i.e. $G_2(\mathcal{R}) = \{ A \in SL_2(\mathcal{R}) \mid A.(1,1)^{tr} = (1,1)^{tr} \}$. Let \mathcal{M}, \mathcal{N} be two maximal ideals in \mathcal{R}. Then the map

$$G_2(\mathcal{R}) \rightarrow \mathbb{P}^{1}_\mathcal{M} \times \mathbb{P}^{1}_\mathcal{N}$$

is not surjective.

We observe that $G_2(\mathcal{R})$ is also given as follows.

$$G_2(\mathcal{R}) = \{ \begin{pmatrix} 1+b & -b \\ b & 1-b \end{pmatrix} \mid b \in \mathcal{R} \}$$

So the image of $G_2(\mathcal{R})$ is exactly $\{([1 + b : -b], [b : 1 - b]) \mid b \in \mathcal{R} \} \subset \mathbb{P}^{1}_\mathcal{M} \times \mathbb{P}^{1}_\mathcal{N} = \mathbb{P}^{1}_\mathbb{K} \times \mathbb{P}^{1}_\mathbb{K} \subset \mathbb{P}^{2}_\mathbb{K}$. The image is precisely

$$([x_1 : y_1], [x_2 : y_2]) \in \mathbb{P}^{1}_\mathbb{K} \times \mathbb{P}^{1}_\mathbb{K}, \text{ where } (x_1 + y_1)(x_2 + y_2) \neq 0.$$

In fact the image does not contain any element from the set

$$\left(\{[1 : -1] \} \times \mathbb{P}^{1}_\mathbb{K} \right) \cup \left(\mathbb{P}^{1}_\mathbb{K} \times \{[1 : -1] \} \right)$$

which is a union of two projective lines meeting at the point $([1 : -1], [1 : -1])$.

15. A surjectivity theorem for the sum-product equation

In this section we prove the following surjectivity theorem for the sum-product equation.

Theorem 16. Let \mathcal{R} be a commutative ring with unity. Suppose \mathcal{R} is a dedekind type domain (refer to Definition 4). Let $M(\mathcal{R})$ be the monoid generated by maximal ideals in \mathcal{R}. Let $I_1, I_2, \ldots, I_r \in M(\mathcal{R})$ be r-- pairwise co-maximal ideals. Let $r \geq 2, k \geq 2$ be two positive integer. Consider

$$M(r, k)(\mathcal{R}) = \{A = [a_{ij}]_{r \times k} \mid \sum_{j=1}^{r} \prod_{i=1}^{k} a_{ij} = 1\}.$$

Then the map

$$\lambda : M(r, k)(\mathcal{R}) \longrightarrow \mathbb{P}\mathbb{P}^{k-1}_{I_1} \times \mathbb{P}\mathbb{P}^{k-1}_{I_2} \times \ldots \times \mathbb{P}\mathbb{P}^{k-1}_{I_r}$$

given by

$$\lambda : (A) = ([a_{11} : a_{12} : \ldots : a_{1k}], [a_{21} : a_{22} : \ldots : a_{2k}], \ldots, [a_{r1} : a_{r2} : \ldots : a_{rk}])$$

is surjective.

We begin this section with a useful remark below.

Remark 5. Let \mathcal{R} be a commutative ring with unity. Let $k > 0$ be a positive integer. Let $(a_1, a_2, \ldots, a_{k+1})$ be a unital set in \mathcal{R}. Suppose $a_1x_1 + a_2x_2 + \ldots + a_kx_k + a_{k+1}x_{k+1} = 1$ and $\{x_1, x_2, \ldots, x_k\}$ is also a unital set. i.e. $b_1x_1 + b_2x_2 + \ldots + b_kx_k = 1$ then we have

$$(a_1 + a_{k+1}x_{k+1}b_1)x_1 + (a_2 + a_{k+1}x_{k+1}b_2)x_2 + \ldots + (a_k + a_{k+1}x_{k+1}b_k)x_k = 1$$

i.e. there exists $t_1, t_2, \ldots, t_k \in (a_{k+1})$ such that the set $\{a_1 + t_1, a_2 + t_2, \ldots, a_k + t_k\}$ is unital in \mathcal{R}.

Now prove the following two important Lemmas before proving the main result.

Lemma 10. Let \mathcal{R} be a commutative ring with unity in which every non-zero element is contained in finitely many maximal ideals. Let $\mathcal{I} \subset \mathcal{R}$ be an ideal. Let $x, y \in \mathcal{R}$. Suppose $(x)+(y) + \mathcal{I} = \mathcal{R}$. Then there exists $a, b \in \mathcal{R}$ such that $ax + by \equiv 1 \mod \mathcal{I}$ and $(a)+(b) = \mathcal{R}$.

Proof. Suppose $a_1x + b_1y + i = 1$ for some $i \in \mathcal{I}$. Either $b_1 \neq 0$ or $a_1 \neq 0$. Suppose $b_1 \neq 0$. Then by fundamental lemma on arithmetic progressions for schemes we have that there exists $t \in \mathcal{R}$ such that $(a_1 - t(b_1y + i)) + (b_1) = \mathcal{R}$. So we have

$$(a_1 - t(b_1y + i))x + (1 + tx)(b_1y + i) = 1$$

$$(a_1 - t(b_1y + i)) + (b_1) = \mathcal{R}$$

$$(a_1 - t(b_1y + i))x + (1 + tx)b_1y + (1 + tx)i = 1$$

So choosing $a = (a_1 - t(b_1y + i)), b = (1 + tx)b_1$ we have $(a) + (b) = \mathcal{R}$ and $ax + by \equiv 1 \mod \mathcal{I}$. Now the lemma follows. \qed

Lemma 11. Let \mathcal{R} be a commutative ring with unity. Suppose \mathcal{R} is a dedekind type domain (refer to Definition 4). Let $\mathcal{I} \subset \mathcal{R}$ be an ideal. Let $r > 1$ be a positive integer. Suppose (a_1, a_2, \ldots, a_r) is a unital set modulo \mathcal{I}. Then there exists $t_1, t_2, \ldots, t_r \in \mathcal{I}$ such that the set $\{a_1 + t_1, a_2 + t_2, \ldots, a_r + t_r\}$ is unital in \mathcal{R}.

Proof. Let $a_1x_1 + \ldots + a_rx_r + i = 1$ for $i \in \mathcal{I}$. If $i = 0$ then there is nothing to prove. So assume $i \neq 0$.

Suppose if two of the x_j's are non-zero. Say $x_1 \neq 0, x_2 \neq 0$. Let $e = a_2x_2 + \ldots + a_rx_r + i$. Then $a_1x_1 + e = 1$. By using the fundamental lemma for arithmetic progressions for
dedekind type domains there exists $t \in \mathcal{R}$ such that $(x_1 - te) + (x_2) = \mathcal{R}$. We also have $(x_1 - te)a_1 + (1 + ta_1)e = 1$. So we get

$$a_1(x_1 - te) + a_2x_2(1 + ta_1) + a_3x_3(1 + ta_1) + \ldots + a_rx_r(1 + ta_1) + i(1 + ta_1) = 1$$

Now we have both $\text{ideal}(x_1 - te) + \text{ideal}(x_2) = \mathcal{R}$, $\text{ideal}(x_1 - te) + \text{ideal}(1 + ta_1) = \mathcal{R}$ so $\text{ideal}(x_1 - te) + \text{ideal}(x_2(1 + ta_1)) = \mathcal{R}$. There exists $s_1, s_2 \in \mathcal{R}$ such that

$$(x_1 - te)s_1 + x_2(1 + ta_1)s_2 = 1 \Rightarrow (x_1 - te)s_1i(1 + ta_1) + x_2(1 + ta_1)s_2i(1 + ta_1) = i(1 + ta_1)$$

Hence we get

$$(a_1 + s_1(1 + ta_1)i)(x_1 - te) + (a_2 + s_2(1 + ta_1)i)x_2(1 + ta_1) + a_3x_3(1 + ta_1) + \ldots + a_rx_r(1 + ta_1) = 1$$

So choosing $t_1 = is_1(1 + ta_1), t_2 = is_2(1 + ta_2) \in \mathcal{I}, t_3 = t_4 = \ldots = 0$ we get $\{a_i + t_i : 1 \leq i \leq r\}$ is unital.

Suppose all but one of the x_i is zero. Say $x_1 \neq 0$ and $x_2, x_3, \ldots, x_r = 0$. Then $a_1x_1 + i = 1$ and suppose $a_j = 0$ for some $j \geq 2$. Then choose $t_j = i, t_i = 0$ for $i \neq j$ and we have the set $\{a_1, a_2, \ldots, a_{j-1}, a_j + t_j, a_{j+1}, \ldots, a_r\}$ is unital.

Now if $x_1 \neq 0, x_2 \neq 0$ then $x_3 = \ldots = x_r = 0, a_2, a_3, \ldots, a_r \neq 0$ and $r \geq 3$ then we could choose $x_2 = a_3, x_3 = -a_2$ and we have at least two of the x_i's non-zero which is considered before.

Now consider the possibility, where $r = 2$. Let $(a_1) + (a_2) + I = \mathcal{R}$. Now using the previous Lemma we have that there exists x_1, x_2 such that $(x_1) + (x_2) = \mathcal{R}$ and $a_1x_1 + a_2x_2 = 1$ for some $i \in \mathcal{I}$. So if $x_1y_1 + x_2y_2 = 1$ then $x_1y_1i + x_2y_2i = i$. So we get $\{a_1 + y_1i, a_2 + y_2i\}$ is a unital set.

This completes the proof of this Lemma.

Now we prove the main result, Theorem of this section on the surjectivity theorem for the sum-product equation (refer to Equation [3]).

Proof. For $r = 1$ the theorem is not true. Choose $\mathcal{R} = \mathbb{Z}, \mathcal{I}_1 = p\mathbb{Z}$. The point

$$[1 : -1] \in \mathbb{P}^{1}_{\mathcal{I}_1} = \mathbb{P}^{1}_p$$

is not in the image of $M(1, 2)(\mathbb{Z})$.

Assume $r \geq 2$. Let us prove this by induction on r. First we prove for $r = 2$. Let

$$([x_1 : \ldots : x_k], [y_1 : \ldots : y_k]) \in \mathbb{P}^{k-1}_{\mathcal{I}_1} \times \mathbb{P}^{k-1}_{\mathcal{I}_2}.$$

Suppose there exists

$$([x'_1 : \ldots : x'_k], [y'_1 : \ldots : y'_k]) = ([x_1 : \ldots : x_k], [y_1 : \ldots : y_k]) \in \mathbb{P}^{k-1}_{\mathcal{I}_1} \times \mathbb{P}^{k-1}_{\mathcal{I}_2}$$

such that $\sum_{j=1}^{k} x'_j y'_j = 1 + i_2$, where $i_2 \in \mathcal{I}_2$. Let $\sum_{j=1}^{k} x'_j y'_j = 1$ because we have $\sum_{j=1}^{k} (x'_j) = \mathcal{R}$.

By choosing $u_j = x'_j, v_j = y'_j - z'_j i_2$ we have $\sum_{j=1}^{k} u_j v_j = 1$ and

$$([u_1 : \ldots : u_k], [v_1 : \ldots : v_k]) = ([x_1 : \ldots : x_k], [y_1 : \ldots : y_k]) \in \mathbb{P}^{k-1}_{\mathcal{I}_1} \times \mathbb{P}^{k-1}_{\mathcal{I}_2}$$

So it is enough to prove that there exists $([x'_1 : \ldots : x'_k], [y'_1 : \ldots : y'_k]) = ([x_1 : \ldots : x_k], [y_1 : \ldots : y_k]) \in \mathbb{P}^{k-1}_{\mathcal{I}_1} \times \mathbb{P}^{k-1}_{\mathcal{I}_2}$ such that $\sum_{j=1}^{k} x'_j y'_j = 1 \mod \mathcal{I}_2$.

Since $\mathcal{I}_1 + \mathcal{I}_2 = \mathcal{R}$, let $a \in \mathcal{I}_1, b \in \mathcal{I}_2$ such that $a + b = 1 - \sum_{j=1}^{k} x_i y_i$. Now there exists $w_i \in \mathcal{R}$ such that $\sum_{j=1}^{k} w_i y_i = 1$ because $\sum_{j=1}^{k} (y_i) = \mathcal{R}$. Hence $\sum_{j=1}^{k} (x_i + aw_i) y_i = 1 - b \equiv 1 \mod \mathcal{I}_2$.

Now apriori we do not have $\sum_{j=1}^{k} (x_j + aw_j) = \mathcal{R}$. Instead we have

$$\sum_{j=1}^{k} (x_j + aw_j) + \mathcal{I}_2 = \mathcal{R}, \sum_{j=1}^{k} (x_j + aw_j) + \mathcal{I}_1 = \mathcal{R}.$$

Hence $\sum_{j=1}^{k} (x_j + aw_j) + \mathcal{I}_1\mathcal{I}_2 = \mathcal{R}$. So using Lemma 11 we conclude that there exists $t_1, t_2, \ldots, t_k \in \mathcal{I}_1\mathcal{I}_2$ such that $\sum_{j=1}^{k} (x_j + aw_j + t_j) = \mathcal{R}$ and

$$\sum_{j=1}^{k} (x_j + aw_j + t_j)y_j = 1 - b + \sum_{j=1}^{k} t_jy_j \equiv 1 \mod \mathcal{I}_2$$

So choosing $x_j^0 = x_j + aw_j + t_j, y_j^0 = y_j$ we have proved this Theorem 16 for the case when $r = 2$.

Now we prove for any positive integer $r > 2$. Let

$$\mathcal{F} = V(\mathcal{I}_1) \cup V(\mathcal{I}_2) \cup \ldots \cup V(\mathcal{I}_r).$$

Let $\Sigma = \Sigma_{\mathcal{F}} : M(\mathcal{F}) \longrightarrow \mathcal{R}$ be the nowhere zero choice multiplicative monoid map using Theorem 11. Let

$$[\Sigma(\mathcal{J}_{11})v_{11} : \Sigma(\mathcal{J}_{12})v_{12} : \ldots : \Sigma(\mathcal{J}_{1k})v_{1k}], [\Sigma(\mathcal{J}_{21})v_{21} : \Sigma(\mathcal{J}_{22})v_{22} : \ldots : \Sigma(\mathcal{J}_{2k})v_{2k}], \ldots,$$

$$[\Sigma(\mathcal{J}_{r1})v_{r1} : \Sigma(\mathcal{J}_{r2})v_{r2} : \ldots : \Sigma(\mathcal{J}_{rk})v_{rk}] \in \prod_{i=1}^{r} \mathbb{F}_{\mathcal{I}_i}^{k-1}.$$

Let $\mathcal{I} = \prod_{i=1}^{r} \mathcal{I}_i$. We note that $(v_{ij}) + \mathcal{I} = \mathcal{R}$ for every $(i, j) \in \{1, 2, \ldots, r\} \times \{1, 2, \ldots, k\}$. We replace v_{ij} by $w_{ij} \in v_{ij} + \mathcal{I}$ such that the following two property holds.

- For every $(i, j) \neq (e, f) \in \{1, 2, \ldots, r\} \times \{1, 2, \ldots, k\}$ the sets of maximal ideals containing w_{ij} and w_{ef} are disjoint i.e. $V(w_{ij}) \cap V(w_{ef}) = \emptyset$.

- For every $(i, j), (e, f) \in \{1, 2, \ldots, r\} \times \{1, 2, \ldots, k\}$ the sets of maximal ideals containing w_{ij} and $\Sigma(\mathcal{J}_{ef})$ are disjoint i.e. $V(w_{ij}) \cap V(\Sigma(\mathcal{J}_{ef})) = \emptyset$.

This can be done using Lemma 3 on arithmetic progressions for dedekind type domains. This immediately implies that for each i we have a well defined element representing the same element

$$[\Sigma(\mathcal{J}_{11})v_{11} : \Sigma(\mathcal{J}_{12})v_{12} : \ldots : \Sigma(\mathcal{J}_{1k})v_{1k}] = [\Sigma(\mathcal{J}_{21})v_{21} : \Sigma(\mathcal{J}_{22})v_{22} : \ldots : \Sigma(\mathcal{J}_{2k})v_{2k}] \in \mathbb{F}_{\mathcal{I}_1}^{k-1}$$

We observe that any maximal ideal containing the coordinates $\Sigma(\mathcal{J}_{ij})w_{ij}, 1 \leq j \leq k$ contains all $\Sigma(\mathcal{J}_{ij})$ for $1 \leq j \leq k$ and hence has to be a unit ideal which is a contradiction. Now for a fixed $1 \leq j \leq k$ we observe that the maximal ideals containing $\Sigma(\mathcal{J}_{ij})$ outside $V(\mathcal{I}_i)$ distinct for $1 \leq i \leq r$. For this purpose we use the Observation 11 and we have $\mathcal{J}_{ij} \supset \mathcal{I}_i$ for $1 \leq i \leq r$ with \mathcal{I}_i being mutually comaximal.

We have for $1 \leq j \leq k$

$$\prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij}) = \Sigma(\prod_{i=2}^{r} \mathcal{J}_{ij}).$$

Now consider a maximal ideal \mathcal{M} containing the set $\{\prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij}) \mid j = 1, \ldots, k\}$. Then \mathcal{M} contains one of the factors $\Sigma(\mathcal{J}_{ij})$ for some $2 \leq i \leq r, 1 \leq j \leq k$.

Again for $1 \leq j \leq k$, in the factorization of $\prod_{i=2}^{r} \mathcal{J}_{ij}$, for any maximal ideal $\mathcal{M}_i \in \mathcal{F}$, the maximal ideal \mathcal{M}_i does not occur to the same power for all $1 \leq j \leq k$. So if $\mathcal{M} \notin \mathcal{F}$ then it is a maximal ideal containing $\Sigma(\mathcal{M}_i)$, $\Sigma(\mathcal{M}_j)$ for some $i \neq j$ or if $i = j$ then $t_i \neq s_i = s_j$ which contradicts the Observation [1].

Now suppose $\mathcal{M} \in \mathcal{F}$, then it immediately follows that \mathcal{M} contains $\{\Sigma(\mathcal{J}_{ij}) \mid j = 1, \ldots, k\}$ for a fixed subscript $1 \leq i \leq r$ which implies that \mathcal{M} is a unit ideal which is a contradiction.

So the the set
\[\{\prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij}) \mid j = 1, \ldots, k\} \]
is unital.

Similarly now the set
\[\{\prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij})w_{ij} = \prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij})w_{ij} \mid j = 1, \ldots, k\} \]
is also unital.

Now consider the element
\[\left(\prod_{i=2}^{r} \Sigma(\mathcal{J}_{i1})w_{1i} : \prod_{i=2}^{r} \Sigma(\mathcal{J}_{i2})w_{2i} : \ldots : \prod_{i=2}^{r} \Sigma(\mathcal{J}_{ik})w_{ki} \right) \in \mathbb{P}^{k}_{\mathcal{F}}(\prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij})w_{ij})I_{2}I_{3} \ldots I_{k} \].

Now we reduce to the case when $r = 2$ and apply this Theorem [16] for the above element in
\[\left(\prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij})w_{ij}I_{2}I_{3} \ldots I_{k} \right) \]
and the element $[\Sigma(\mathcal{J}_{i1})w_{11} : \Sigma(\mathcal{J}_{i2})w_{12} : \ldots : \Sigma(\mathcal{J}_{ik})w_{1k}] \in \mathbb{P}^{k}_{\mathcal{F}}(\mathcal{I}_{1})$. We note that the two ideals
\[\left(\prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij})w_{ij}I_{2}I_{3} \ldots I_{k} \right), \mathcal{I}_{1} \]
are co-maximal.

Now there exists elements $b_{1j} : 1 \leq j \leq k$ with $b_{1j} \equiv \Sigma(\mathcal{J}_{ij})w_{1j} \pmod{\mathcal{I}_{1}}$ and
\[[b_{11} : b_{12} : \ldots : b_{1k}] = [\Sigma(\mathcal{J}_{i1})w_{11} : \Sigma(\mathcal{J}_{i2})w_{12} : \ldots : \Sigma(\mathcal{J}_{ik})w_{1k}] \in \mathbb{P}^{k}_{\mathcal{F}}(\mathcal{I}_{1}) \]
and there exists $t_1, t_2, \ldots, t_k \in \mathcal{I}_{2}I_{3} \ldots I_{k}$ such that
\[\sum_{j=1}^{k} b_{1j} \left(\prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij})w_{ij} + t_j \prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij})w_{ij} \right) = 1. \]

Now consider the same element with these representatives
\[([b_{11} : b_{12} : \ldots : b_{1k}], [b_{21} : b_{22} : \ldots : b_{2k}], \ldots, [b_{r1} : b_{r2} : \ldots : b_{rk}] \in \mathbb{P}^{k}_{\mathcal{F}}(\mathcal{I}_{1}) \times \mathbb{P}^{k}_{\mathcal{F}}(\mathcal{I}_{2}) \times \ldots \times \mathbb{P}^{k}_{\mathcal{F}}(\mathcal{I}_{r}), \]
where for $r > i > 1$ we have $b_{ij} = \Sigma(\mathcal{J}_{ij})w_{ij}$ and for $i = r$ we have
\[b_{rj} = \Sigma(\mathcal{J}_{rj}) \left(w_{rj} + t_j \prod_{i=2}^{r} \Sigma(\mathcal{J}_{ij})w_{ij} \right). \]
Then we observe that
\[
\sum_{j=1}^{k} \prod_{i=1}^{r} b_{ij} = 1
\]
The map \(\lambda\) is surjective and Theorem 16 follows for any \(r > 2\). □

16. Acknowledgements

It is a pleasure to thank my mentor Prof. B. Sury for his support, encouragement and useful comments. The author is supported by an Indian Statistical Institute (ISI) Grant in the position of the Visiting Scientist at ISI Bangalore, India.

References

[1] Andrei S. Rapinchuk, Strong Approximation for Algebraic Groups, Thin Groups and Superstrong Approximation MSRI Publications, Vol. 61 (2013).

Stat Math Unit, Indian Statistical Institute, 8th Mile Mysore Road, Bangalore-560059, India
E-mail address: akcp1728@gmail.com