Enhanced technology of quantitative assessment for technological suitability of real estate for technical improvements

M A Schenyatskaya, M O Krutilova*, A V Sharapova, A A Markova
Belgorod State Technological University. V.G. Shukhov, 46, Kostyukova street, Belgorod, 308012, Russia

E-mail: marykrutilova@gmail.com

Abstract. The key problems of organizing a rational investment in technical improvements (repair and reconstruction) of buildings and structures, as a way to improve the real estate functional efficiency are the quantitative ranking problems of objects to be improved according to the actual resource needs of work, the resulting economic assessment and reconstruction social effect, technical feasibility integrated assessment and work conditions. Particularly up to date is the question of quantifying the conditions for making improvements when implementing investment programs financed by budgetary funds, under which, as a rule, complex territorial improvement is carried out, or targeted programs are being implemented to improve the municipal real estate for functional purposes. To contribute to the effective solution of these problems and to be an effective tool for the established practice of managing urban real estate background, the methodological approaches presented in the work and the algorithms for constructing a quantitative assessment of the technological suitability of real estate for functional improvement are presented. The paper demonstrated the proposed methodologies practical use examples, evaluating the potential effectiveness of the property manager’s activities, proposed tools for the practical implementation of the techniques in industry software.

Introduction
Reconstruction of buildings and structures is one of the progressive areas of construction, since as a result, the functionality is improved, the technology is modernized, architectural, social, town-planning tasks are solved [1]. Reconstruction, obviously, has a huge economic effect, since based on the buildings existing elements, which reduces the overall resource work intensity. At the same time, when reconstructing in comparison with new construction, there are more complex tasks: erecting the construction site in conditions of constraint, without stopping the current process, to carry out repair and replacement works of worn out structural elements. In general, reconstruction is the most efficient and effective way of not only extending the period of safe operation, but also improving the real estate object operation quality, expressed in updating and improving a number of its consumer characteristics, collectively referred to as technical improvements.

The most important condition for economic efficiency and technological feasibility of real estate reconstruction is the feasibility study of the work scope and the organizational and technological reconstruction plan established at the stage of strategic planning, operational management or budgeting for operation and maintenance of real estate, especially on the balance of federal or municipal budgets.
The authors created a high-tech production “The new methods and tools development for property management in the public sector and implement them in the software package of the information-analytical system for centralized management of property owned by constituent entities of the Russian Federation, municipalities, as well as the property of state-owned companies within the framework of work on a comprehensive project” which offers a comprehensive methodology for quantifying organizational and technological the suitability of real estate for the proposed technical improvements, which has a high potential for formalization and integration into the property management digital environment, and at the same time, analytical information presentation exceptional visibility, simplicity of its interpretation and low resource intensity of primary deployment and administration in the current practice of property managers of organizations.

For the real estate technological suitability analysis, such properties of structural elements of buildings, TS, as flexibility (the ability to dismantle the element without loss of the building structural reliability), manufacturability (technical problems associated with dismantling and replacing the element), innovativeness (the possibility of using replacement innovative materials and technology) are used and Technosphere safety (the ability to safely assemble / disassemble the structure). Comparative assessment of TS is carried out by quantitative specific weights of the indicators k_i, determined by the compared indicators ranking according to the Fishburn rule (Table 1). The buildings constructive properties nomenclature expansion is necessary to be taken into account the regional specifics of real estate or the sectoral nature of management activity. It is carried out in the same way without changing the general evaluation algorithm.

Table 1. Ranking indicators of the real estate technological suitability for reconstruction

TS indicator	Grade	Specific gravity, k_i
TS1. Flexibility	4	$4/10=0.4$
TS2. Manufacturability	3	$3/10=0.3$
TS3. Innovativeness	2	$2/10=0.2$
TS4. Technosphere safety	1	$1/10=0.1$
Total	10	1

To provide a comparative assessment of technological suitability for the reconstruction of buildings with a wide range of design solutions, individual structural elements was ranking performed according to four indicators TS, estimated on a three-point scale from 1 (the quality of the property is unacceptable, the property is not recoverable) to 3 fully recoverable), taking into account their weights (Table 1).

$$TS_{av} = TS_i k_i.$$

Technological suitability ratings tabulation for individual classification groups of structural and engineering elements most commonly used for budget-financed buildings in the Russian Federation is presented in Table 2.

Table 2. The main buildings technical solutions and the elements for reconstruction and repair suitability degree

Constructive solution of the building	Structural and engineering elements of the building	TS1	TS2	TS3	TS4	TS_{av}
Frame-panel building	Vertical supporting structures - columns, stiffening diaphragms	1	1	1	1	1
	Horizontal supporting structures - floor slabs, monolithic reinforced concrete plots	2	1	3	2	1.9
The technological suitability evaluation of the specific analyzed buildings for reconstruction, ETSi, is carried out on the basis of decomposition of the object’s design solution into separately assessed structural elements attributable to tabulated (Table 2), identifying and evaluating physical wear of elements, Fi, according to the methods [2] and subsequent averaging according to them, element-wise ratings of technological suitability of TS_{av}. The results of the individual public buildings ETS in 2019 that are on the balance of the municipality of Belgorod in 2019 are presented in Table. 3

Constructive solution of the building	Structural and engineering elements of the building	TS_1	TS_2	TS_3	TS_4	TS_{av}
Enclosing structures - wall reinforced concrete panels	2	3	3	2	2.5	
Partitions - light concrete masonry materials	3	1	3	3	2.4	
Engineering networks - typical solutions of the 60s. 70s	2	2	2	3	2.1	
Total					**9.9**	
Supporting structures vertical - stone walls	1	1	1	1	1.0	
Horizontal supporting structures - prefabricated floor slabs	2	1	3	3	2.0	
Enclosing structures - stone walls with multilayer insulation	1	2	2	2	1.6	
Partitions - light concrete masonry materials	3	3	3	3	3.0	
Engineering networks - typical solutions of the 50s - 80s	2	2	2	3	2.1	
Total					**9.7**	
Vertical supporting structures - columns	1	1	1	1	1.0	
Horizontal supporting structures - crossbars. truss	2	1	2	2	1.7	
Fencing - sandwich panels	1	2	2	2	1.6	
Partitions - light concrete masonry materials	3	2	2	2	2.4	
Engineering networks - typical solutions of the 60s - 80s	2	2	2	3	2.1	
Total					**8.8**	
Vertical supporting structures - stone walls. internal frame	1	1	1	1	1.0	
Horizontal supporting structures - crossbars. reinforced concrete floor slab	1	1	2	1	1.2	
Enclosing structures - stone walls	1	1	2	1	1.2	
Partitions - light concrete masonry materials	3	2	2	2	2.4	
Engineering networks - typical solutions of the 70s - 90s	2	2	2	3	2.1	
Total					**7.9**	
Table 3. The technological suitability actual integral assessment for the reconstruction of individual public buildings that are on the balance of the municipality of Belgorod in 2019

Estimated building	Constructive solution of building elements	F_i	TS_i,av	ETS_i
Building №1	Vertical supporting structures - columns. stiffening diaphragms	30%	1	0.30
	Horizontal supporting structures - floor slabs. monolithic reinforced concrete plots	40%	1.9	0.76
	Enclosing structures - wall reinforced concrete panels	20%	2.5	0.50
	Partitions - light concrete masonry materials	25%	2.4	0.60
	Engineering networks - typical solutions of the 60s. 70s	35%	2.1	0.74
The object ETS	Supporting structures vertical - stone walls	35%	1	0.35
Building №2	Horizontal supporting structures - prefabricated floor slabs	35%	2	0.70
	Enclosing structures - stone walls with multilayer insulation	50%	1.6	0.80
	Partitions - light concrete masonry materials	30%	3	0.90
	Engineering networks - typical solutions of the 50s - 60s	35%	2.1	0.74
The object ETS	Bearing structures vertical - stone walls. racks. brick pillars	20%	1	0.20
Building №3	Horizontal supporting structures - beams. reinforced concrete slab	25%	1.2	0.30
	Enclosing structures - stone walls	27%	1.2	0.32
	Partitions - light concrete masonry materials	20%	2.4	0.48
	Engineering networks - typical solutions of the 80s - 90s	30%	2.1	0.63
The object ETS	Supporting structures vertical - stone walls	35%	1	0.35
Building №4	Horizontal supporting structures - prefabricated floor slabs	45%	2	0.9
	Enclosing structures - stone walls with multilayer insulation	40%	1.6	0.64
	Partitions - light concrete masonry materials	40%	3	1.2
	Engineering networks - typical solutions of the 50s - 60s	40%	2.1	0.84
The object ETS				3.93

For the qualitative categorization of the boundaries and the volatility of the technological suitability estimates obtained in a practical analysis of real buildings, the spectral filtering by marking marginal objects (the technological suitability of which is empirically rated most and least highly) is proposed for use. The actual boundaries of the ETS from 1.93 to 3.93, obtained in the example tableb3, allow to establish the following categories of technological suitability:

- technological suitability category
 - suitable
 - ETS
 - 3.6 and up
unsuitable 2.3 ... 3.5
unsuitable 2.2 or less

The repair and restoration potential assessment associated with establishing the actual physical deterioration of the structures and engineering networks of the facilities is updated for a certain period of time (the recommended assessment interval is two years), during which the amount of physical deterioration of the building F_i will change after the repair and restoration measures allocated funding in accordance with the repair and restoration potential assessment results in the previous year [3-5].

Periodically updated, dynamic ETS of buildings and structures allows for effective strategic and operational planning of the budget, directed to the buildings repair by the activities effectiveness quantitative indicators monitoring carried out. So, for example, the planned effect from the production of the reconstruction financed by the municipal budget presented in Table. 3 buildings in 2019-2020 will be expressed in the following change in physical wear by structural elements groups of (Table 4) and ETS buildings (Table 4).

Table 4. The predicted change in physical deterioration of structural elements during the repair and restoration of the building

Object	Construction elements	Vertical supporting structures	Horizontal supporting structures	Walling	Partition	Network engineering					
		2019	2021	2019	2021	2019	2021	2019	2021	2019	2021
Building No1	Vertical supporting structures	30%	10%	40%	20%	20%	5%	25%	5%	35%	15%
Building No2	Vertical supporting structures	35%	11%	35%	11%	50%	26%	30%	6%	35%	11%
Building No3	Vertical supporting structures	20%	3%	25%	8%	27%	10%	20%	3%	30%	13%
Building No4	Vertical supporting structures	35%	14%	45%	24%	40%	19%	40%	19%	40%	19%

Table 5. Predicted integral assessment of technological suitability for the reconstruction of individual public buildings that are on the balance of the Belgorod municipality in 2021

Estimated building	Constructive solution of building elements	F_i	TS_{av}	ETS$_i$
Building No1	Vertical supporting structures - columns, stiffening diaphragms	10%	1	0.90
	Horizontal supporting structures - floor slabs, monolithic reinforced concrete plots	20%	1.9	1.51
	Enclosing structures - wall reinforced concrete panels	0%	2.5	2.49
	Partitions - light concrete masonry materials	5%	2.4	2.27
	Engineering networks - typical solutions of the 60s, 70s	15%	2.1	1.78
The object ETS				**8.94**

Building No2	Supporting structures vertical - stone walls	11%	1	0.89
	Horizontal supporting structures - prefabricated floor slabs	11%	2	1.78
	Enclosing structures - stone walls with multilayer insulation	26%	1.6	1.19
Estimated building	Constructive solution of building elements	F_i	TS_{av}	ETS_i
	Partitions - light concrete masonry materials	6%	3	2.82
	Engineering networks - typical solutions of the 50s - 60s	11%	2.1	1.87
The object ETS	**8.55**			
Building №3	Bearing structures vertical - stone walls, racks, brick pillars	3%	1	0.97
	Horizontal supporting structures - beams, reinforced concrete slab	8%	1.2	1.10
	Enclosing structures - stone walls	10%	1.2	1.08
	Partitions - light concrete masonry materials	3%	2.4	2.32
	Engineering networks - typical solutions of the 80s - 90s	13%	2.1	1.82
The object ETS	**7.28**			
Building №4	Supporting structures vertical - stone walls	14%	1	0.86
	Horizontal supporting structures - prefabricated floor slabs	24%	2	1.51
	Enclosing structures - stone walls with multilayer insulation	19%	1.6	1.29
	Partitions - light concrete masonry materials, gypsum concrete slabs, cinder slabs	19%	3	2.42
	Engineering networks - typical solutions of the 50s - 60s	19%	2.1	1.69
The object ETS	**7.78**			

Empirically assigning marginal objects, according to the actual ETS borders from 7.28 to 8.94, obtained in the example table, 4, it will be possible to establish the following categories of technological suitability:

- **technological suitability category** | **ETS**
- suitable | 8.9 and above
- unsuitable | 7.3 ... 8.8
- unsuitable | 7.2 or less

The presented immovable objects quantitative ranking technique according to technological suitability for the proposed technical improvements created by reconstruction and repair makes it possible to enrich analyst’s tools in the field of building management and operation with an effective tool for rational budgeting of municipal and federal real estate possessing the required modern digital economy of breadth and flexibility of formalization, visibility interpretation of results and the possibility minimally resource-intensive integration into the existing practice of property management for various purposes and industry sector.

References

[1] Makovkina A S, Schildt L A 2016 *The economic feasibility of the reconstruction of public buildings* (Herald of Young Scientists) 1. Information on: http://vmu-ugntu.ru/article/view/4563 (referred on 01.06.2019). (In Russ.)

[2] Manual to assessment of the physical deterioration of residential and public buildings VSN 53-88 (p). Intr. 1987-07-01. 54 p. (In Russ.)

[3] Avilova I P, Schenyatskaya M A 2015 *Performance management of investment in construction through the quality of real estate* (Bulletin of BSTU named after V.G. Shukhov) 4 141-145. (In Russ.)
[4] Schenyatskaya M A, Avilova I P, Naumov A E 2016 Using the integrated risk indicator in analyzing the effectiveness of investment in construction (Bulletin of BSTU named after V.G. Shukhov) 4 243-249. (In Russ.)

[5] Rykova M A, Avilova I P, Baidina O V 2014 Improving the conceptual and methodological basement of real estate investment (Journal of Economy and entrepreneurship) 12-4 (53) 588-590. (In Russ.)

Acknowledgements
The work is realized in the framework of the implementation of a comprehensive project to create high-tech production “Development of new methods and tools for management of property in the budget sector and their implementation in the software package of the information-analytical system for centralized management of property owned by the constituent entities of the Russian Federation, municipalities, as well as state property companies” (agreement No. 074-11-2018-026 of 07/11/2018).