The Immunomodulatory, Antimicrobial and Bactericidal Efficacy of Commonly Used Commercial Household Disinfectants, Sterilizers and Antiseptics *in Vitro*: Laboratory Assessment of Anti-Inflammatory Infection Control Mechanisms and Comparative Biochemical Analysis of the Microbial Growth of Gram-Negative Bacteria

Niveen M. Masri, Lama B. Hanbali, John J. Haddad*

Cellular and Molecular Physiology and Immunology Signaling Research Group, Biomedical Laboratory and Clinical Sciences Division, Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon

*Corresponding author: john.haddad@yahoo.co.uk

Received January 01, 2015; Revised January 21, 2015; Accepted January 29, 2015

Abstract Background: Immunomodulatory/anti-inflammatory and microbial infection control strategies characterize the spiral evolution of public awareness of health safety issues. This is substantiated with burgeoning number of cases of microbial contamination and/or infection in myriad healthcare settings, at the hospital, and even at home. Previously, we have investigated and identified laboratory parameters in the assessment of the antimicrobial effects of a myriad of commercial disinfectants on the growth of pathogenic and saprophytic gram-positive bacteria. The present sequel study investigates the antimicrobial/bactericidal effects of commercially available disinfectants, sterilizers, antiseptics, and chlorhexidine-containing detergents on the growth of saprophytic and pathogenic gram-negative bacteria *in vitro*. It is an unprecedented wide canopy enveloping standardized comparative assessments of the antimicrobial efficiency of consumer-targeted household detergents, curbing and containing microbial infection, inflammation and contamination propensity. Methods: Given the medical significance and impact of public infection control, we have meticulously examined at least 22 different detergents categorized into four classes (each category comprises a variety of commercially available products commonly used by the public): i) Class A – Daily Mouthwash; ii) Class B – Toilet Bowl Cleaners/Bleaches/Sanitizers; iii) Class C – Surface and Floor Mopping Cleaners/Detergents; and iv) Class D – Hand and Body Wash Gels. Whilst the canonical menu of active ingredients varies among those aforementioned classes, antimicrobial components are well established. Results: Regarding Class A, the most effective against *Citrobacter koseri* is ‘Colgate Plax Mouthwash’; *Enterobacter cloacae* is ‘Colgate Plax Mouthwash’; *Escherichia coli* is ‘Colgate Plax Mouthwash’; *Escherichia coli ESBL* is ‘Colgate Plax Mouthwash’; *Klebsiella pneumoniae* is ‘Colgate Plax Mouthwash’; *Proteus vulgaris* is ‘Colgate Plax Mouthwash’; *Pseudomonas aeruginosa* is ‘Perio.Kin Chlorhexidina 0.20 %’; *Salmonella typhimurium* is ‘Colgate Plax Mouthwash’; and *Shigella sonnei* is ‘Colgate Plax Mouthwash’. Regarding Class B, the most effective against *C. koseri* is ‘Harpic Power Plus Disinfectant’; *E. cloacae* is ‘WC Net Bleach Gel’; *E. coli* is ‘WC Net Bleach Gel’; *E. coli ESBL* is ‘WC Net Bleach Gel’; *K. pneumoniae* are ‘WC Net Bleach Gel’ and ‘Harpic Power Plus Disinfectant’; *P. vulgaris* is ‘Spartan Max WC Lavender’; *P. aeruginosa* is ‘WC Net Bleach Gel’; *S. typhimurium* is ‘Clorox Bleach Rain Clean’; and *S. sonnei* is ‘Harpic Power Plus Disinfectant’. Regarding Class C, the most effective against *C. koseri* is ‘Dettol Antiseptic/Disinfectant’; *E. cloacae* is ‘Dettol Antiseptic/Disinfectant’; *E. coli* is ‘Vim Cream Multipurpose Fast Rinsing’; *E. coli ESBL* is ‘Dettol Antiseptic/Disinfectant’; *K. pneumoniae* is ‘Dettol Antiseptic/Disinfectant’; *P. vulgaris* is ‘Dettol Antiseptic/Disinfectant’; *P. aeruginosa* is ‘Dettol Antiseptic/Disinfectant’; *S. typhimurium* is ‘Dettol Antiseptic/Disinfectant’; and *S. sonnei* is ‘Dettol Antiseptic/Disinfectant’. Regarding Class D, the most effective against *C. koseri*, *E. cloacae*, *E. coli*, *E. coli ESBL*, *K. pneumoniae*, *P. vulgaris*, *P. aeruginosa*, *S. typhimurium*, and *S. sonnei* is unprecedentedly the ‘HiGeen Hand and Body Wash Gel’.

Conclusions: These laboratory results emphatically confirm and verify immunomodulatory infection control variations in the antimicrobial/anti-inflammatory effectiveness of household antiseptics and disinfectants that are purportedly identified in ameliorating the growth of saprophytic and pathogenic gram-negative bacteria in culture.
1. Introduction

The behavioral obsession with infection control using commercially available disinfectants has inundated our way of living since the very dawn of modern society, as we know it [1,2]. Retrospectively, there has been a persistent accumulation of interest in the underlying causes of many house- and hospital-borne microbial-associated illnesses and disorders [3,4,5]. Subsequently, the market shelves have been spirally flooded with antimicrobial household products that have been incessantly introduced to have the ostensible ability of curbing bacterial infections and contaminations; that is certainly recognized an attempt to evaluate and measure the pervasiveness and effectiveness of the processes involved with infection control in public healthcare settings, points of care, households, and clinics [6-8].

According to the World Health Organization (WHO), Environmental Protection Agency (EPA), and Centers for Disease Control and Prevention (CDC), ‘antimicrobial’ products are substances, or compounds, or herein mixtures of substances, that are “used to destroy or suppress the growth of harmful microorganisms on household surfaces [inanimate or otherwise].”

Previously, we have examined the immunomodulatory/antimicrobial effects of a myriad of household detergents and disinfectants on the growth of saprophytic and pathogenic gram-positive bacteria [1]. Many attempts have been undertaken to quantify the antimicrobial activities of household detergents. To the best that the authors know of, none of the aforementioned investigations has offered a wide canopy of analytical measurements on the spectrum of saprophytic and pathogenic microorganisms, whilst covering the major household products of myriad brands available on the market to the extent of assessing many gram-positive and gram-negative bacteria, including: *Bacillus subtilis*, *Citrobacter koseri*, *Enterobacter cloacae*, *E. coli*, *Klebsiella pneumoniae*, *Proteus vulgaris*, *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *Shigella sonnei*, *Staphylococcus aureus*, *Streptococcus pyogenes* (Group A Streptococcus), and *Streptococcus agalactiae* (Group B Streptococcus), in addition to the highly pathogenic fungus, *Candida albicans* [1].

Considering the influence that the concept of infection control bears in our society today, this study is a pioneering attempt in determining the antimicrobial effect of virtually most of the commercially available disinfectants and antiseptics available in the market [9-15]. The study is meticulously designed to reflect upon not only the accuracy and validity of information inundating consumers, but also the futuristic endeavors in terms of addressing public health concerns and adopting hygienic approaches to containing pathogenic microorganisms of medical importance in various household setups [1,2]. Safety of all house members, especially children, remains a concern in modern societies with burgeoning pollution and microbial contaminations. The work therein reported is meant to address those safety issues pertaining to hygiene and welfare of humans in the very safety of their homes, and presents to the eager and perhaps unknowing consumers calculated, precise and definitive scientifically based choices for safe and healthy disinfectant selections, substantiated and corroborated with verified and validated laboratory analytical assessment [16-24].

2. Materials and Methods

2.1. Analytical Chemicals and Reagents

Unless otherwise indicated, chemicals of the highest analytical purity and grade were purchased from Sigma-Aldrich Corporation, according to standards provided by the American Chemical Society (ACS) [1].

2.2. Preparatory Methods and Design

2.2.1. Bacterial Strains

All bacterial strains studied in this report were gram-negative and included: Gram-negative rods (bacilli) – *Citrobacter koseri* (*C. koseri* – facultative anaerobe); *Enterobacter cloaceae* (*E. cloaceae* – facultative anaerobe); *Escherichia coli* (*E. coli* – facultative anaerobe); *Escherichia coli ESBL* (*E. coli* ESBL – facultative anaerobe); *Klebsiella pneumoniae* (*K. pneumoniae* – facultative anaerobe); *Proteus vulgaris* (*P. vulgaris* – facultative anaerobe); *Salmonella typhimurium* (*S. typhimurium* – facultative anaerobe); and *Shigella sonnei* (*S. sonnei* – facultative anaerobe); and Gram-negative coccobacilli – *Pseudomonas aeruginosa* (*P. aeruginosa* – aerobic). All clinical bacterial specimens that were properly collected and stored were gratis of the Clinical Laboratory Medicine departments at Hammoud Hospital University Medical Center (HH-UMC; Saida, Lebanon), and Al-Makassed General Hospital University Medical Center (MGH-UMC; Beirut, Lebanon) [1].

2.2.2. Disk Diffusion Method

Prior to experimental use, all bacterial strains were cultured, grown and maintained on nutrient agar medium, as previously described [1]. The widely used Muller-Hinton plates were seeded with bacterial inoculums (5 x 10^5 CFU/ml) [1,2,3,4,5]. Sterile filter paper disks (Whatman n°1, 5 mm in diameter) were totally dipped in product...
undiluted or with serial dilutions (2, 4, 8, 16, and 32 fold), using ice-cold, pre-equilibrated phosphate buffered saline (PBS) buffer. Petri dishes were pre-seeded with 0.5 ml of inoculums and product disks were then placed on the seeded agar plates. All types of commercial products were tested in triplicate. The plates were then kept at 4°C for 1 h for diffusion of product, thereafter incubated at 37°C for 24 h. prior to collecting experimental observations [6-12].

2.3. Statistical Analysis and Data Handling

Statistical analysis of the results was completed using Microsoft Office Excel 2013, as previously indicated [1]. Experimental results were expressed as mean ± SEM of at least three independent experiments. Statistical analysis was performed by one-way analysis of variance (ANOVA), followed by post hoc Tukey’s test to determine significance of mean separation among treatments. Longitudinal optimal differentiation between data sets was also determined and confirmed by Student’s t-test. The a priori level of significance was set at 95% confidence. Significant variations were indicated with single (*), double (**), or triplet (***). stars for P ≤ 0.05, P ≤ 0.01, and P ≤ 0.001, respectively.

3. Results

All experimental results therein reported are typical observations of at least three (3) different experiments. The various classes used (A, B, C, and D) are grouped according to intended usage as a household modality, and hence variations within any given class are clearly indicated [1].

3.1. The Zones of Inhibition of Gram-Negative Bacterium *Citrobacter koseri*

3.1.1. The Zones of Inhibition of Class A

The effect of daily mouthwash (category Class A) on the microbial growth of *Citrobacter koseri* is given in Table 1 – Table 5. It is noted that ‘Colgate Plax Mouthwash’ is most effective in category Class A. The inhibitory effect of the commonly used antibiotic cefazidime (30 μg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

Table 1. The inhibition zone diameter methodological analysis of the effect of daily mouthwash (class A) on the growth of gram-negative bacteria

Microorganism	control dH2O	control Pure Methanol	undiluted Disinfectant	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Cefazidime (30 μg)
class A – Daily Mouthwash									
Citrobacter koseri	NI*	NI	–	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	–	–	–	–	–	–	19.00 ± 0.15
Escherichia coli	NI	NI	–	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	–	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	–	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	2.67 ± 1.54	–	–	–	–	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI	–	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI	NI	–	–	–	–	–	–	18.00 ± 0.18
Shigella sonnei	NI	NI	13.00 ± 0.33	7.67 ± 2.21	–	–	–	0.00 ± 0.00	

Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

*NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

Commercial brands are disclosed in accordance with ethical and propriety issues.

Table 2. The inhibition zone diameter methodological analysis of the effect of daily mouthwash (class A) on the growth of gram-negative bacteria

Microorganism	control dH2O	control Pure Methanol	undiluted Disinfectant	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Cefazidime (30 μg)
class A – Daily Mouthwash									
Citrobacter koseri	NI*	NI	–	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	–	–	–	–	–	–	19.00 ± 0.15
Escherichia coli	NI	NI	–	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	–	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	–	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	2.67 ± 1.54	–	–	–	–	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI	–	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI	NI	–	–	–	–	–	–	18.00 ± 0.18
Shigella sonnei	NI	NI	13.00 ± 0.33	7.67 ± 2.21	–	–	–	0.00 ± 0.00	

Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

*NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

Commercial brands are disclosed in accordance with ethical and propriety issues.
The inhibitory effect of the commonly used antibiotic ceftazidime (30 μg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.1.4. The Zones of Inhibition of Class D

The effect of hand and body wash gels (category Class D) on the inhibitory growth of Citrobacter koseri is given in Table 20 – Table 22. It is noted that ‘HiGeen Hand and Body Wash Gel’ is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 μg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.2. The Zones of Inhibition of Gram-Negative Bacterium Enterobacter cloacae

Table 4. The inhibition zone diameter methodological analysis of the effect of daily mouthwash (class A) on the growth of gram-negative bacteria

Microorganism	control dDH2O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 μg)
Negative Bacteria									
NI	NI	59.80 ± 2.36	88.00 ± 1.20	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	20.50 ± 0.32	23.00 ± 1.01	–	–	–	–	19.00 ± 0.18
Escherichia coli	NI	NI	31.00 ± 0.51	42.00 ± 0.69	–	–	–	–	20.00 ± 0.25
E. coli ESBL	NI	NI	37.00 ± 0.51	32.00 ± 0.69	–	–	–	–	20.00 ± 0.25
Klebsiella pneumoniae	NI	NI	52.00 ± 0.51	60.00 ± 0.69	–	–	–	–	20.00 ± 0.25
Proteus vulgaris	NI	NI	66.00 ± 0.51	70.00 ± 0.69	–	–	–	–	20.00 ± 0.25
Escherichia coli	NI	NI	53.00 ± 0.51	56.00 ± 0.69	–	–	–	–	20.00 ± 0.25
Salmonella typhimurium	NI	NI	73.00 ± 0.51	75.00 ± 0.69	–	–	–	–	20.00 ± 0.25
Shigella sonnei	NI	NI	84.00 ± 0.51	80.00 ± 0.69	–	–	–	–	20.00 ± 0.25

*Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

Commercial brands are disclosed in accordance with ethical and propriety issues.

Table 3. The inhibition zone diameter methodological analysis of the effect of daily mouthwash (class A) on the growth of gram-negative bacteria

Microorganism	control dDH2O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 μg)
Negative Bacteria									
Citrobacter koseri	NI	NI	19.00 ± 0.33	10.30 ± 1.01	2.33 ± 1.34	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	29.33 ± 3.56	25.00 ± 0.51	8.33 ± 1.68	1.33 ± 1.84	–	–	19.00 ± 0.15
Escherichia coli	NI	NI	29.33 ± 0.51	25.33 ± 0.51	13.33 ± 1.55	1.33 ± 1.95	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	21.67 ± 0.19	18.33 ± 0.51	9.00 ± 0.15	1.33 ± 1.35	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	27.67 ± 0.19	21.33 ± 0.51	13.67 ± 0.19	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	25.33 ± 2.36	14.00 ± 1.20	–	–	–	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI	–	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI	NI	31.00 ± 0.58	23.67 ± 2.17	13.67 ± 2.50	1.00 ± 2.87	–	–	18.00 ± 0.18
Shigella sonnei	NI	NI	23.33 ± 0.51	19.67 ± 0.51	15.33 ± 0.38	1.73 ± 1.54	–	–	5.33 ± 0.00

*Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

Commercial brands are disclosed in accordance with ethical and propriety issues.

3.1.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the inhibitory growth of Citrobacter koseri is given in Table 6 – Table 14. It is noted that ‘Harpic Power Plus Disinfectant’ is most effective in category Class B. The inhibitory effect of the commonly used antibiotic ceftazidime (30 μg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.1.3. The Zones Of Inhibition of Class C

The effect of surface and floor mopping cleaners/detergents (category Class C) on the inhibitory growth of Citrobacter koseri is given in Table 15 – Table 19. It is noted that ‘Dettol Antiseptic/Disinfectant’ is most effective in category Class C. The inhibitory effect of the commonly used antibiotic ceftazidime (30 μg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.
3.2.1. The Zones of Inhibition of Class A

The effect of daily mouthwash (category Class A) on the microbial growth of *Enterobacter cloacae* is given in Table 1 – Table 5. It is noted that ‘Colgate Plax Mouthwash’ is most effective in category Class A. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

Table 5. The inhibition zone diameter methodological analysis of the effect of daily mouthwash (class A) on the growth of gram-negative bacteria

Microorganism	control dH₂O	control Pure Methanol	undiluted Disinfectant Antisepctic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Escherichia coli	NI ± 0.19	12.33 ± 0.96	6.00 ± 1.34	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI ± 0.33	10.33 ± 0.19	9.00 ± 0.12	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI ± 0.08	10.33 ± 1.92	5.33 ± 1.54	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI ± 0.19	2.33 ± 1.34	–	–	–	–	–	–	0.12 ± 0.14
Salmonella typhimurium	NI ± 0.57	–	–	–	–	–	–	–	18.00 ± 0.18
Shigella sonnei	NI ± 0.08	6.67 ± 1.92	5.33 ± 1.54	–	–	–	–	–	25.00 ± 0.00

* NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.
* Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

3.2.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the microbial growth of *Enterobacter cloacae* is given in Table 6 – Table 14. It is noted that ‘WC Net Bleach Gel’ is most effective in category Class B. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

Table 6. The inhibition zone diameter methodological analysis of the effect of toilet bowl cleaners/bleaches/sanitizers (class B) on the growth of gram-negative bacteria

Microorganism	control dH₂O	control Pure Methanol	undiluted Disinfectant Antisepctic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Citrobacter koseri	NI ± 0.19	11.00 ± 0.33	–	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI ± 0.57	9.66 ± 1.34	4.67 ± 1.34	–	–	–	–	–	15.00 ± 0.15
Escherichia coli	NI ± 0.19	13.00 ± 0.58	10.33 ± 0.19	9.00 ± 0.15	7.67 ± 0.19	–	–	–	0.00 ± 0.00
E. coli ESBL	NI ± 0.33	13.00 ± 0.33	9.00 ± 0.12	–	–	–	–	–	25.00 ± 0.25
Klebsiella pneumoniae	NI ± 0.08	13.00 ± 0.57	–	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI ± 0.19	9.33 ± 0.19	9.00 ± 0.33	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI ± 0.57	13.00 ± 1.35	10.33 ± 0.19	9.00 ± 0.15	7.67 ± 0.19	–	–	–	0.00 ± 0.00
Shigella sonnei	NI ± 0.08	8.67 ± 1.92	5.33 ± 1.54	–	–	–	–	–	25.00 ± 0.00

* Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).
* NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.
* Commercial brands are disclosed in accordance with ethical and propriety issues.
Table 7. The inhibition zone diameter methodological analysis of the effect of toilet bowl cleaners/bleaches/sanitizers (class B) on the growth of gram-negative bacteria

Microorganism	control dH₂O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Citrobacter koseri	NI	NI	–	–	–	–	–	–	19.00± 0.18
Enterobacter cloacae	NI	NI	–	–	–	–	–	–	19.00± 0.15
Escherichia coli	NI	NI	–	–	–	–	–	–	0.00± 0.00
E. coli ESBL	NI	NI	–	–	–	–	–	–	25.00± 0.25
Klebsiella pneumoniae	NI	NI	2.67± 1.53	–	–	–	–	–	14.00± 0.12
Proteus vulgaris	NI	NI	2.67± 1.53	–	–	–	–	–	18.00± 0.18
Pseudomonas aeruginosa	NI	NI	–	–	–	–	–	–	0.00± 0.00
Salmonella typhimurium	NI	NI	–	–	–	–	–	–	1.51± 0.16
Shigella sonnei	NI	NI	–	–	–	–	–	–	1.71± 0.18

1 Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).
2 NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.
3 Commercial brands are disclosed in accordance with ethical and propriety issues.

3.2.3. The Zones of Inhibition of Class C
The effect of surface and floor mopping cleaners/detergents (category Class C) on the microbial growth of *Enterobacter cloacae* is given in Table 15 – Table 19. It is noted that ‘Dettol Antiseptic/Disinfectant’ is most effective in category Class C. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.2.4. The Zones of Inhibition of Class D
The effect of hand and body wash gels (category Class D) on the microbial growth of *Enterobacter cloacae* is given in Table 20 – Table 22. It is noted that ‘HiGreen Hand and Body Wash Gel’ is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.3. The Zones of Inhibition of Gram-Negative Bacterium *Escherichia coli*

3.3.1. The Zones of Inhibition of Class A
The effect of daily mouthwash (category Class A) on the microbial growth of *Escherichia coli* is given in Table 1 – Table 5. It is noted that ‘Colgate Plax Mouthwash’ is...
most effective in category Class A. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

Table 9. The inhibition zone diameter methodological analysis of the effect of toilet bowl cleaners/bleaches/sanitizers (class B) on the growth of gram-negative bacteria

Microorganism	Inhibition Zone Diameter (mm) *	Ceftazidime (30 µg)						
	control ddH₂O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32
Citrobacter koseri	NI * NI	9.00 ± 0.33	5.33 ± 1.57	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI NI	12.32 ± 0.83	6.00 ± 1.76	–	–	–	–	19.00 ± 0.15
Escherichia coli	NI NI	9.00 ± 0.57	5.00 ± 1.45	2.33 ± 1.34	–	–	–	15.00 ± 0.15
E. coli ESBL	NI NI	2.33 ± 1.32	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI NI	11.67 ± 0.38	9.67 ± 0.37	5.33 ± 1.53	4.67 ± 1.34	–	–	25.00 ± 0.25
Proteus vulgaris	NI NI	2.67 ± 1.53	–	–	–	–	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI NI	3.00 ± 1.73	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI NI	–	–	–	–	–	–	18.00 ± 0.18
Shigella sonnei	NI NI	9.33 ± 0.19	–	–	–	–	–	0.00 ± 0.00

* NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

3.3.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the microbial growth of *Escherichia coli* is given in Table 6 – Table 14. It is noted that ‘WC Net Bleach Gel’ is most effective in category Class B. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.3.3. The Zones of Inhibition of Class C

Table 10. The inhibition zone diameter methodological analysis of the effect of toilet bowl cleaners/bleaches/sanitizers (class B) on the growth of gram-negative bacteria

Microorganism	Inhibition Zone Diameter (mm) *	Ceftazidime (30 µg)						
	control ddH₂O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32
Citrobacter koseri	NI * NI	–	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI NI	–	–	–	–	–	–	19.00 ± 0.15
Escherichia coli	NI NI	–	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI NI	–	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI NI	–	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI NI	–	–	–	–	–	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI NI	–	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI NI	–	–	–	–	–	–	18.00 ± 0.18
Shigella sonnei	NI NI	–	–	–	–	–	–	0.00 ± 0.00

* NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

3.3.4. The Zones of Inhibition of Class D

The effect of hand and body wash gels (category Class D) on the microbial growth of *Escherichia coli* is given in Table 20 – Table 22. It is noted that ‘HiGeen Hand and...
Body Wash Gel7 is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 μg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.4. The Zones of Inhibition of Gram-Negative Bacterium *Escherichia coli* ESBL

3.4.1. The Zones of Inhibition of Class A

The effect of daily mouthwash (category Class A) on the microbial growth of *Escherichia coli* ESBL is given in Table 11 – Table 5. It is noted that ‘Colgate Plax Mouthwash’ is most effective in category Class A. The inhibitory effect of the commonly used antibiotic ceftazidime (30 μg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

Microorganism	Inhibition Zone Diameter (mm)	control ddH\textsubscript{0}	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 μg)
Citrobacter koseri	NI *	NI	2.33 ± 1.35	–	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	17.00 ± 0.58	11.33 ± 0.20	9.00 ± 0.15	3.00 ± 1.73	–	–	–	19.00 ± 0.15
Escherichia coli	NI	NI	14.33 ± 1.02	7.67 ± 0.19	4.67 ± 1.35	–	–	–	15.00 ± 0.15	
E. coli ESBL	NI	NI	9.67 ± 0.19	5.33 ± 1.54	2.33 ± 1.33	–	–	–	0.00 ± 0.00	
Klebsiella pneumoniae	NI	NI	15.33 ± 0.51	9.68 ± 0.20	8.67 ± 0.19	5.32 ± 1.53	2.67 ± 1.53	–	25.00 ± 0.25	
Proteus vulgaris	NI	NI	–	–	–	–	–	–	25.00 ± 0.25	
Pseudomonas aeruginosa	NI	NI	14.00 ± 0.33	9.00 ± 0.32	4.67 ± 1.34	4.67 ± 1.35	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI	NI	13.33 ± 0.38	3.34 ± 1.92	–	–	–	–	–	18.00 ± 0.18
Shigella sonnei	NI	NI	9.67 ± 0.19	5.00 ± 1.45	–	–	–	–	–	0.00 ± 0.00

a Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

b NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

c Commercial brands are disclosed in accordance with ethical and propriety issues.

Table 11. The inhibition zone diameter methodological analysis of the effect of toilet bowl cleaners/bleaches/sanitizers (class B) on the growth of gram-negative bacteria

Microorganism	Inhibition Zone Diameter (mm)	control ddH\textsubscript{0}	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 μg)
Citrobacter koseri	NI *	NI	14.68 ± 0.38	11.00 ± 0.05	8.00 ± 0.33	–	–	–	19.00 ± 0.18	
Enterobacter cloacae	NI	NI	15.32 ± 1.01	11.67 ± 0.51	2.67 ± 1.53	–	–	–	19.00 ± 0.15	
Escherichia coli	NI	NI	14.67 ± 0.96	10.00 ± 0.67	8.33 ± 0.19	–	–	–	15.00 ± 0.15	
E. coli ESBL	NI	NI	9.00 ± 0.08	2.67 ± 1.54	–	–	–	–	0.00 ± 0.00	
Klebsiella pneumoniae	NI	NI	17.00 ± 0.05	10.33 ± 0.19	7.33 ± 0.19	2.33 ± 1.34	–	–	25.00 ± 0.25	
Proteus vulgaris	NI	NI	–	–	–	–	–	–	25.00 ± 0.25	
Pseudomonas aeruginosa	NI	NI	11.67 ± 0.19	9.00 ± 0.05	3.33 ± 1.92	–	–	–	14.00 ± 0.12	
Salmonella typhimurium	NI	NI	13.00 ± 0.33	9.33 ± 0.19	4.67 ± 1.34	–	–	–	18.00 ± 0.18	
Shigella sonnei	NI	NI	10.33 ± 0.19	8.67 ± 0.19	–	–	–	–	0.00 ± 0.00	

a Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

b NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

c Commercial brands are disclosed in accordance with ethical and propriety issues.
Table 13. The inhibition zone diameter methodological analysis of the effect of toilet bowl cleaners/bleaches/sanitizers (class B) on the growth of gram-negative bacteria

Microorganism	control \(ddH_2O \)	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 \(\mu g \))
Gram-Negative Bacteria									
Citrobacter koseri	NI *	NI	14.33 ± 0.19	11.00 ± 0.33	9.33 ± 0.50	5.00 ± 1.42	2.00 ± 1.15		19.00 ± 0.18
Enterobacter cloaeae	NI	NI	15.67 ± 0.69	6.00 ± 1.76					19.00 ± 0.15
Escherichia coli	NI	NI	14.67 ± 0.19	9.00 ± 0.33					15.00 ± 15
E. coli ESBL	NI	NI	12.33 ± 0.19	2.67 ± 1.54					0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	15.33 ± 1.26	5.67 ± 1.64	2.33 ± 1.34				25.00 ± 0.25
Proteus vulgaris	NI	NI	13.67 ± 0.51						25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI	13.00 ± 0.08	4.00 ± 2.31	2.67 ± 1.54				14.00 ± 0.12
Salmonella typhimurium	NI	NI	13.00 ± 0.05						18.00 ± 0.18
Shigella sonnei	NI	NI	8.32 ± 0.18						0.00 ± 0.00

*Mean value ± SEM, \(n = 3 \) (the zone of inhibition [mm] including disk of 5 mm in diameter).

§ Commercial brands are disclosed in accordance with ethical and propriety issues.

Table 14. The inhibition zone diameter methodological analysis of the effect of toilet bowl cleaners/bleaches/sanitizers (class B) on the growth of gram-negative bacteria

Microorganism	control \(ddH_2O \)	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 \(\mu g \))
Gram-Negative Bacteria									
Citrobacter koseri	NI *	NI	5.00 ± 1.45	2.00 ± 1.15					19.00 ± 0.18
Enterobacter cloaeae	NI	NI	4.67 ± 1.35						19.00 ± 0.15
Escherichia coli	NI	NI	10.33 ± 0.19	8.00 ± 0.05	7.00 ± 0.08				15.00 ± 0.15
E. coli ESBL	NI	NI	9.33 ± 0.50	5.00 ± 1.45					0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	9.67 ± 0.52	9.00 ± 0.58	8.00 ± 0.33	2.33 ± 1.34			25.00 ± 0.25
Proteus vulgaris	NI	NI							25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI							14.00 ± 0.12
Salmonella typhimurium	NI	NI							18.00 ± 0.18
Shigella sonnei	NI	NI	9.67 ± 0.38	9.33 ± 0.37	8.32 ± 0.18				0.00 ± 0.00

*Mean value ± SEM, \(n = 3 \) (the zone of inhibition [mm] including disk of 5 mm in diameter).

* NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

3.4.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the microbial growth of *Escherichia coli* ESBL is given in Table 6 – Table 14. It is noted that ‘WC Net Bleach Gel’ is most effective in category Class B. The inhibitory effect of the commonly used antibiotic ceftazidime (30 \(\mu g \)) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.4.3. The Zones of Inhibition of Class C

The effect of surface and floor mopping cleaners/detergents (category Class C) on the microbial growth of *Escherichia coli* ESBL is given in Table 15 – Table 19. It is noted that ‘Dettol Antiseptic/Disinfectant’ is most effective in category Class C. The inhibitory effect of the commonly used antibiotic ceftazidime (30 \(\mu g \)) is set
as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

Table 15. The inhibition zone diameter methodological analysis of the effect of surface and floor mopping cleaners/detergents (class C) on the microbial growth of gram-negative bacteria

Microorganism	control ddH₂O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Gram-Negative Bacteria									
Citrobacter koseri	NI *	NI	7.00 ± 0.33	1.15	2.00	2.00	1.15	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	14.33 ± 0.70	5.33	5.00	–	–	–	19.00 ± 0.15
Escherichia coli	NI	NI	10.67 ± 0.51	8.00	0.05	–	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	9.33 ± 0.19	5.67	± 1.64	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	16.67 ± 0.77	10.00	11.00	7.00	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	11.67 ± 0.50	5.66	± 1.27	3.00	± 1.73	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI	2.15 ± 1.35	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI	NI	10.00 ± 0.05	6.67	6.7 ± 1.54	–	–	–	25.00 ± 0.25
Shigella sonnei	NI	NI	10.00 ± 0.33	8.67	0.19	8.00	± 1.34	2.32	0.16 ± 0.18

*Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

Table 16. The inhibition zone diameter methodological analysis of the effect of surface and floor mopping cleaners/detergents (class C) on the growth of gram-negative bacteria

Microorganism	control ddH₂O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Gram-Negative Bacteria									
Citrobacter koseri	NI *	NI	2.33 ± 1.35	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	10.00 ± 0.33	2.67 ± 1.54	–	–	–	–	19.00 ± 0.15
Escherichia coli	NI	NI	9.33 ± 0.83	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	6.67 ± 1.95	2.67 ± 1.54	–	–	–	–	25.00 ± 0.25
Klebsiella pneumoniae	NI	NI	3.00 ± 1.50	3.00 ± 1.73	3.32 ± 1.92	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	3.00 ± 1.50	3.00 ± 1.73	3.32 ± 1.92	–	–	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI	6.67 ± 1.54	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI	NI	2.67 ± 1.54	–	–	–	–	–	18.00 ± 0.18
Shigella sonnei	NI	NI	2.67 ± 1.54	–	–	–	–	–	0.00 ± 0.00

*Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).

NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

Commercial brands are disclosed in accordance with ethical and propriety issues.

3.4.4. The Zones of Inhibition of Class D

The effect of hand and body wash gels (category Class D) on the microbial growth of *Escherichia coli* ESBL is given in Table 20 – Table 22. It is noted that ‘HiGeen Hand and Body Wash Gel’ is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.5. The Zones of Inhibition of Gram-Negative Bacterium *Klebsiella pneumoniae*

3.5.1. The Zones of Inhibition of Class A

The effect of daily mouthwash (category Class A) on the microbial growth of *Klebsiella pneumoniae* is given in Table 1 – Table 5. It is noted that ‘Colgate Plax Mouthwash’ is most effective in category Class A. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.5.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the microbial growth of *Klebsiella pneumoniae* is given in Table 6 – Table 14. It is noted that ‘WC Net Bleach Gel’ is comparably as effective as ‘Harpic Power Plus Disinfectant’ in category Class B. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is...
3.5.3. The Zones of Inhibition of Class C

The effect of surface and floor mopping cleaners/detergents (category Class C) on the microbial growth of Klebsiella pneumoniae is given in Table 15 – Table 19. It is noted that ‘Dettol Antiseptic/Disinfectant’ is most effective in category Class C. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.5.4. The Zones of Inhibition of Class D

The effect of hand and body wash gels (category Class D) on the microbial growth of Klebsiella pneumoniae is given in Table 20 – Table 22. It is noted that ‘HiGeen Hand and Body Wash Gel’ is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.6. The Zones of Inhibition of Gram-Negative Bacterium Proteus vulgaris

3.6.1. The Zones of Inhibition of Class A

The effect of daily mouthwash (category Class A) on the microbial growth of Proteus vulgaris is given in Table 1 – Table 5. It is noted that ‘Colgate Plax Mouthwash’ is most effective in category Class A. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.6.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the microbial growth of Proteus vulgaris is given in Table 6 – Table 14. It is noted that ‘Spartan Max WC Lavender’ is most effective in category Class B. The inhibitory effect of the commonly used
antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.6.3. The Zones of Inhibition of Class C

The effect of surface and floor mopping cleaners/detergents (category Class C) on the microbial growth of *Proteus vulgaris* is given in Table 15 – Table 19. It is noted that ‘Dettol Antiseptic/Disinfectant’ is most effective in category Class C. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.6.4. The Zones of Inhibition of Class D

The effect of hand and body wash gels (category Class D) on the microbial growth of *Proteus vulgaris* is given in Table 20 – Table 22. It is noted that ‘HiGeen Hand and Body Wash Gel’ is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.7. The Zones of Inhibition of Gram-Negative Bacterium *Pseudomonas aeruginosa*

3.7.1. The Zones of Inhibition of Class A

The effect of daily mouthwash (category Class A) on the microbial growth of *Pseudomonas aeruginosa* is given in Table 1 – Table 5. It is noted that ‘Perio.Kin Chlorhexidina 0.20%’ is most effective in category Class A. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.7.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the microbial growth of *Pseudomonas aeruginosa* is given in Table 6 – Table 14. It is noted that ‘WC Net Bleach Gel’ is most effective in category Class B. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.7.3. The Zones of Inhibition of Class C

The effect of surface and floor mopping cleaners/detergents (category Class C) on the microbial growth of *Pseudomonas aeruginosa* is given in Table 15 – Table 19. It is noted that ‘Dettol Antiseptic/Disinfectant’ is the only detergent that is minimally effective in category Class C. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.7.4. The Zones of Inhibition of Class D

The effect of hand and body wash gels (category Class D) on the microbial growth of *Pseudomonas aeruginosa* is given in Table 20 – Table 22. It is noted that ‘HiGeen Hand and Body Wash Gel’ is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

Table 19. The inhibition zone diameter methodological analysis of the effect of surface and floor mopping cleaners/detergents (class C) on the growth of gram-negative bacteria

Microorganism	control ddH2O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Gram-Negative Bacteria									
Citrobacter koseri	NI *	NI	–	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	–	–	–	–	–	–	19.00 ± 0.15
Escherichia coli	NI	NI	–	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	–	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	–	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	–	–	–	–	–	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI	–	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI	NI	–	–	–	–	–	–	18.00 ± 0.18
Shigella somes	NI	NI	–	–	–	–	–	–	0.00 ± 0.00

*NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.

Commercial brands are disclosed in accordance with ethical and propriety issues.

Table 19. The inhibition zone diameter methodological analysis of the effect of surface and floor mopping cleaners/detergents (class C) on the growth of gram-negative bacteria

3.8. The Zones of Inhibition of Gram-Negative Bacterium *Salmonella typhimurium*

3.8.1. The Zones of Inhibition of Class A

The effect of daily mouthwash (category Class A) on the microbial growth of *Salmonella typhimurium* is given in Table 1 – Table 5. It is noted that ‘Colgate Plax Mouthwash’ is most effective in category Class A. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.
3.8.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the microbial growth of *Salmonella typhimurium* is given in Table 6 – Table 14. It is noted that ‘Clorox Bleach Rain Clean’ is most effective in category Class B, but as nearly as effective as ‘Harpic Power Plus Disinfectant’ and ‘Spartan Max WC Lavender’. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.8.3. The Zones of Inhibition of Class C

The effect of surface and floor mopping cleaners/detergents (category Class C) on the microbial growth of *Salmonella typhimurium* is given in Table 15 – Table 19. It is noted that ‘Dettol Antiseptic/Disinfectant’ is the only detergent that is minimally effective in category Class C. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

Table 20. The inhibition zone diameter methodological analysis of the effect of hand and body wash gels (class D) on the growth of gram-negative bacteria

Microorganism	control ddH₂O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Citrobacter koseri	NI *	NI	–	–	–	–	–	–	18.00 ± 0.25
Enterobacter cloacae	NI	NI	–	–	–	–	–	–	18.00 ± 0.15
Escherichia coli	NI	NI	–	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	–	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	–	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	–	–	–	–	–	–	14.00 ± 0.12
Pseudomonas aeruginosa	NI	NI	–	–	–	–	–	–	18.00 ± 0.18
Salmonella typhimurium	NI	NI	–	–	–	–	–	–	0.00 ± 0.00

NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter); DF = Dilution Factor.

Microorganism	Control ddH₂O	Control Pure Methanol	Undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Citrobacter koseri	NI *	NI	–	–	–	–	–	–	18.00 ± 0.25
Enterobacter cloacae	NI	NI	–	–	–	–	–	–	18.00 ± 0.15
Escherichia coli	NI	NI	–	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	–	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	–	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	–	–	–	–	–	–	14.00 ± 0.12
Pseudomonas aeruginosa	NI	NI	–	–	–	–	–	–	18.00 ± 0.18
Salmonella typhimurium	NI	NI	–	–	–	–	–	–	0.00 ± 0.00

NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter); DF = Dilution Factor.

3.8.4. The Zones of Inhibition of Class D

The effect of hand and body wash gels (category Class D) on the microbial growth of *Salmonella typhimurium* is given in Table 20 – Table 22. It is noted that ‘HiGeen Hand and Body Wash Gel’ is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.
Table 22. The inhibition zone diameter methodological analysis of the effect of hand and body wash gels (class D) on the growth of gram-negative bacteria

Microorganism	Inhibition Zone Diameter (mm) *								
	control dDH₂O	control Pure Methanol	undiluted Disinfectant Antiseptic	DF 1/2	DF 1/4	DF 1/8	DF 1/16	DF 1/32	Ceftazidime (30 µg)
Gram-Negative Bacteria									
Citrobacter koseri	NI *	NI	–	–	–	–	–	–	19.00 ± 0.18
Enterobacter cloacae	NI	NI	6.67 ± 1.92	3.33 ± 1.91	–	–	–	–	19.00 ± 0.15
Escherichia coli	NI	NI	5.67 ± 1.64	–	–	–	–	–	15.00 ± 0.15
E. coli ESBL	NI	NI	2.67 ± 1.53	–	–	–	–	–	0.00 ± 0.00
Klebsiella pneumoniae	NI	NI	4.00 ± 2.31	–	–	–	–	–	25.00 ± 0.25
Proteus vulgaris	NI	NI	–	–	–	–	–	–	25.00 ± 0.25
Pseudomonas aeruginosa	NI	NI	–	–	–	–	–	–	14.00 ± 0.12
Salmonella typhimurium	NI	NI	2.33 ± 1.34	–	–	–	–	–	18.00 ± 0.18
Shigella sonnei	NI	NI	–	–	–	–	–	–	0.00 ± 0.00

* Mean value ± SEM, n = 3 (the zone of inhibition [mm] including disk of 5 mm in diameter).
* NI = No Inhibition; TI = Total Inhibition (the zone of inhibition [mm] including disk of 5 mm in diameter is > 50 mm); DF = Dilution Factor.
1 Commercial brands are disclosed in accordance with ethical and propriety issues.

3.9. The Zones of Inhibition of Gram-Negative Bacterium Shigella sonnei

3.9.1. The Zones of Inhibition of Class A

The effect of daily mouthwash (category Class A) on the microbial growth of Shigella sonnei is given in Table 1 – Table 5. It is noted that ‘Colgate Plax Mouthwash’ is most effective in category Class A. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.9.2. The Zones of Inhibition of Class B

The effect of toilet bowl cleaners/bleaches/sanitizers (category Class B) on the microbial growth of Shigella sonnei is given in Table 6 – Table 14. It is noted that ‘WC Net Bleach Gel’ is most effective in category Class B. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.9.3. The Zones of Inhibition of Class C

The effect of surface and floor mopping cleaners/detergents (category Class C) on the microbial growth of Shigella sonnei is given in Table 15 – Table 19. It is noted that ‘Dettol Antiseptic/Disinfectant’ is the only detergent that is minimally effective in category Class C. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.9.4. The Zones of Inhibition of Class D

The effect of hand and body wash gels (category Class D) on the microbial growth of Shigella sonnei is given in Table 20 – Table 22. It is noted that ‘HiGeen Hand and Body Wash Gel’ is most effective in category Class D. The inhibitory effect of the commonly used antibiotic ceftazidime (30 µg) is set as a reference for comparison as a positive control, while absolute methanol is recognized as negative control.

3.10. The Comparative Analytical Assessment of Various Household Disinfectants

Comparative analytical assessment of the zones of inhibition of various classes (A – D) with reference to ceftazidime (30 µg) depicts the efficacious impact of those antiseptics and disinfectants against pathogenic bacteria. The zones of inhibition of classes A – D for Citrobacter koseri is shown in Figure 1. Similarly, the zones of inhibition of classes A – D for Enterobacter cloacae is shown in Figure 2. The zones of inhibition of classes A – D for Escherichia coli is shown in Figure 3. The zones of inhibition of classes A – D for Klebsiella pneumoniae is shown in Figure 4. The zones of inhibition of classes A – D for Proteus vulgaris is shown in Figure 5. The zones of inhibition of classes A – D for Pseudomonas aeruginosa is shown in Figure 7. The zones of inhibition of classes A – D for Salmonella typhimurium is shown in Figure 8. The zones of inhibition of classes A – D for Shigella sonnei is shown in Figure 9. These results have been calculated based on the method described in [1].

3.11. The Maximal Effective Ratios of Various Household Disinfectants

The putative immunomodulatory/anti-inflammatory, anti-microbial and bactericidal mechanisms are estimated by determining the probable effective ratios. The maximal effective ratio (E₉) of Classes A – D was calculated as the ratio of each bacterium with maximal zone of inhibition against the minimum zone of inhibition (set as 1) within the same category, such that E₉ = Zone max / Zone min. This ratio determines the most effective treatment for each bacterium and its comparative effectiveness against rest of antiseptics and disinfectants. The E₉ of Class A is shown in Figure 10. The E₉ of Class B is shown in Figure 11. The E₉ of Class C is shown in Figure 12. The E₉ of Class
D is shown in Figure 13. These results have been calculated based on the method described in [1].

Figure 1. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative *Citrobacter koseri* bacteria, as compared with ceftazidime (30 µg). The zone of inhibition of ceftazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to ceftazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, as compared with either ceftazidime or absolute MetOH. NI = No inhibition.

Figure 2. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative *Enterobacter cloacae* bacteria, as compared with ceftazidime (30 µg). The zone of inhibition of ceftazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to ceftazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, as compared with either ceftazidime or absolute MetOH. NI = No inhibition.
Figure 3. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative *Escherichia coli* bacteria, as compared with ceftazidime (30 µg). The zone of inhibition of ceftazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to ceftazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, *P* < 0.05, **P* < 0.01, ***P* < 0.001, as compared with either ceftazidime or absolute MetOH. NI = No inhibition.

Figure 4. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative *Escherichia coli* ESBL bacteria, as compared with ceftazidime (30 µg). The zone of inhibition of ceftazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to ceftazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, *P* < 0.05, **P* < 0.01, ***P* < 0.001, as compared with either ceftazidime or absolute MetOH. NI = No inhibition.
Figure 5. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative *Klebsiella pneumoniae* bacteria, as compared with ceftazidime (30 µg). The zone of inhibition of ceftazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to ceftazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, *P* < 0.05, **P* < 0.01, ***P* < 0.001, as compared with either ceftazidime or absolute MetOH. NI = No inhibition

Figure 6. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative *Proteus vulgaris* bacteria, as compared with ceftazidime (30 µg). The zone of inhibition of ceftazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to ceftazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, *P* < 0.05, **P* < 0.01, ***P* < 0.001, as compared with either ceftazidime or absolute MetOH. NI = No inhibition
Figure 7. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative *Pseudomonas aeruginosa* bacteria, as compared with ceftazidime (30 µg). The zone of inhibition of ceftazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to ceftazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, as compared with either ceftazidime or absolute MetOH. NI = No inhibition

Figure 8. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative *Salmonella typhimurium* bacteria, as compared with ceftazidime (30 µg). The zone of inhibition of ceftazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to ceftazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, *P < 0.05, **P < 0.01, ***P < 0.001, as compared with either ceftazidime or absolute MetOH. NI = No inhibition
Figure 9. Depictive comparative assessment of the antimicrobial efficacy of various detergents against gram-negative Shigella sonnei bacteria, as compared with cefazidime (30 µg). The zone of inhibition of cefazidime was set as a reference (lane 24; horizontal straight line), and that for absolute methanol (MetOH) is shown in lane 23, and all values of the zones of inhibition at undiluted concentrations of disinfectant/sterilizer/antiseptic were compared against those references (Lanes 23 and 24). Lanes 1 – 5 represent Class A (Daily Mouthwash); Lanes 6 – 14 represent Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers); Lanes 15 – 19 represent Class C (Surface and Floor Mopping Cleaners/Detergents); and Lanes 20 – 22 represent Class D (Hand and Body Wash Gels). This comparative analysis allows descriptive visualization of the antimicrobial effectiveness relative to cefazidime, on one hand, and various classes (A – D), on the other hand, thereby showing the most effective class and/or detergent within a given category against a specific type of bacteria. The number of experimental observations is n = 3, * P < 0.05, ** P < 0.01, *** P < 0.001, as compared with either cefazidime or absolute MetOH. NI = No inhibition.

Figure 10. The putative immunomodulatory/anti-inflammatory, anti-microbial and bactericidal mechanisms are estimated by determining the probable effective ratios. The maximal effective ratio (E_{R}) of Class A (Daily Mouthwash) on gram-negative bacteria. E_{R} was calculated as the ratio of each bacterium with maximal zone of inhibition against the minimum zone of inhibition (set as 1) within the same category, such that E_{R} = Zone_{max} / Zone_{min}. This ratio determines the most effective treatment for each bacterium and its comparative effectiveness against rest of antiseptics and disinfectants. For instance, the highest most effective daily mouthwash against E. coli is ‘Colgate Plax Mouthwash.’ The number of experimental observations is n = 3.

3.12. Typical Microbial Growth under the Influence of Selective Household Disinfectants

Typical microbial growth of gram-negative bacteria in the presence of commercially available disinfectants and antiseptics in culture is shown in Figure 14. The growth of Citrobacter koseri in the presence of ‘HiGeen Hand and Body Wash Gel’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + negative control, methanol), noting zones of inhibition is shown in Figure 14A. The growth of Enterobacter cloacae in the presence of ‘WC Net Bleach Gel’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + positive control, cefazidime (30
The growth of *Escherichia coli* in the presence of ‘Colgate Plax Mouthwash’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + positive control, cefazidime (30 µg)), noting zones of inhibition is shown in Figure 14B. The growth of *Escherichia coli* ESBL in the presence of ‘HiGeen Hand and Body Wash Gel’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + negative control, methanol), noting zones of inhibition is shown in Figure 14C. The growth of *Escherichia coli* ESBL in the presence of ‘HiGeen Hand and Body Wash Gel’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + negative control, methanol), noting zones of inhibition is shown in Figure 14D. The growth of *Klebsiella pneumoniae* in the presence of ‘Clorox Bleach Rain Clean’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + positive control, cefazidime (30 µg)), noting zones of inhibition is shown in Figure 14E. The growth of *Proteus vulgaris* in the presence of ‘Spartan Max WC Lavender’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + negative control, methanol), noting zones of inhibition is shown in Figure 14F. The growth of *Pseudomonas aeruginosa* in the presence of ‘WC Net Bleach Gel’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + negative control, methanol), noting zones of inhibition is shown in Figure 14G. The growth of *Salmonella typhimurium* in the presence of ‘HiGeen Hand and Body Wash Gel’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + negative control, methanol), noting zones of inhibition is shown in Figure 14H. The growth of *Shigella sonnei* in the presence of ‘Perio.Kin Chlorhexidina’ at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32 + negative control, methanol), noting zones of inhibition is shown in Figure 14I.

Figure 11. The putative immunomodulatory/anti-inflammatory, anti-microbial and bactericidal mechanisms are estimated by determining the probable effective ratios. The maximal effective ratio (E_R) of Class B (Toilet Bowl Cleaners/Bleaches/Sanitizers) on gram-negative bacteria. E_R was calculated as the ratio of each bacterium with maximal zone of inhibition against the minimum zone of inhibition (set as 1) within the same category, such that $E_R = \frac{\text{Zone}_{\text{max}}}{\text{Zone}_{\text{min}}}$. This ratio determines the most effective treatment for each bacterium and its comparative effectiveness against rest of antiseptics and disinfectants. For instance, the highest most effective Toilet Bowl Cleaners/Bleaches/Sanitizers against *E. coli* is ‘WC Net Bleach Gel.’ The number of experimental observations is $n = 3$.

Class B – Toilet Bowl Cleaners/Bleaches/Sanitizers

Product	E_R	Maximal Effective Ratio (E_R)
WC Net Bleach Gel	1.112	*Shigella sonnei*
Clorox Bleach Rain Clean	1.302	*Salmonella typhimurium*
WC Net Bleach Gel	1.389	*Pseudomonas aeruginosa*
Spartan Max WC Lavender	1.392	*Proteus vulgaris*
WC Net Bleach Gel	1.417	*Klebsiella pneumoniae*
Harpic Power Plus Disinfectant	1.602	*Escherichia coli* ESBL
WC Net Bleach Gel	1.808	*Enterobacter cloacae*
WC Net Bleach Gel	1.228	Citrobacter koseri

Figure 12. The putative immunomodulatory/anti-inflammatory, anti-microbial and bactericidal mechanisms are estimated by determining the probable effective ratios. The maximal effective ratio (E_R) of Class C (Surface and Floor Mopping Cleaners/Detergents) on gram-negative bacteria. E_R was calculated as the ratio of each bacterium with maximal zone of inhibition against the minimum zone of inhibition (set as 1) within the same category, such that $E_R = \frac{\text{Zone}_{\text{max}}}{\text{Zone}_{\text{min}}}$. This ratio determines the most effective treatment for each bacterium and its comparative effectiveness against rest of antiseptics and disinfectants. For instance, the highest most effective Surface and Floor Mopping Cleaners/Detergents against *E. coli* is ‘Vim Cream Multipurpose Fast Rinsing.’ The number of experimental observations is $n = 3$.

Class C – Surface and Floor Mopping Cleaners/Detergents

Product	E_R	Maximal Effective Ratio (E_R)
Dettol Antiseptic/Disinfectant	4.451	*Shigella sonnei*
Dettol Antiseptic/Disinfectant	4.451	*Salmonella typhimurium*
Dettol Antiseptic/Disinfectant	4.511	*Pseudomonas aeruginosa*
Dettol Antiseptic/Disinfectant	5.472	*Proteus vulgaris*
Dettol Antiseptic/Disinfectant	5.472	*Klebsiella pneumoniae*
Dettol Antiseptic/Disinfectant	6.215	*Escherichia coli* ESBL
Dettol Antiseptic/Disinfectant	6.215	*Enterobacter cloacae*
Dettol Antiseptic/Disinfectant	8.233	*Citrobacter koseri*
Figure 13. The putative immunomodulatory/anti-inflammatory, anti-microbial and bactericidal mechanisms are estimated by determining the probable effective ratios. The maximal effective ratio (E_R) of Class D (Hand and Body Wash Gels) on gram-negative bacteria. E_R was calculated as the ratio of each bacterium with maximal zone of inhibition against the minimum zone of inhibition (set as 1) within the same category, such that $E_R = \text{Zone max} / \text{Zone min}$. This ratio determines the most effective treatment for each bacterium and its comparative effectiveness against rest of antiseptics and disinfectants. For instance, the highest most effective Hand and Body Wash Gels against *E. coli* is ‘HiGeen Hand and Body Wash Gel.’ The number of experimental observations is $n = 3$.

4. Discussion

4.1. Infection Control and Microbial Analysis

This study has investigated the laboratory patterns of microbial growth of saprophytic and pathogenic Gram-negative bacteria in response to disinfectants and various sterilants. The variations observed underscores the significance of using appropriate concentrations for specified periods of time, under controlled conditions, thus jibing with previously reported results pertaining to Gram-positive bacteria [1,2,5,8,13,15,21-29,33,48]. I this regard, the EPA has recently published a consortium on public health issues relating to disinfectants, sterilizers, and antiseptics that are commonly used by the public consumers [30-35]. According to the EPA, antimicrobials used in public healthcare settings are defined as ‘substances that are used to destroy or suppress the growth of microorganisms [saprophytic or otherwise pathogenic], such as bacteria, viruses, or fungi that [may] pose a threat to humans [and their health welfare].’ Consumer-targeted products are ostensibly effective in curbing the growth and/or spread of infectious microorganisms that are usually residing in or on non-living, inanimate surfaces, and on living tissues as well [36,37,38]. Of those commercially available products, sterilizers, disinfectants, and sanitizers are commonly known and widely used. Many of these products are anti-inflammatory in nature at sub-physiologic concentrations [1]; however, at supraphysiologic concentrations, they may exert inflammatory and/or irritant responses that may bear the imprints of allergic conditions [1-6].

4.2. Healthcare Products and Categorization

It is essentially pragmatic to consider what the differences among the various types of healthcare products actually are and how they are comparatively related to each other [39-50]. Firstly, sterilizers are considered products that are primarily designed to destroy microbes of myriad types including, but not limiting to, fungi, viruses, and bacteria and their resilient spores. For instance, liquid sterilants are commonly used in medical settings essentially on selected delicate medical and surgical instruments, and equipment that cannot observably tolerate high temperature sterilization, where low temperature gas sterilization is usually not feasible [1,2,51,52,53,54,55]. Secondly, disinfectants, on the other hand, are healthcare products that are essentially used on inanimate surfaces and/or objects to control the growth of fungi, viruses, and bacteria; perhaps, spores are usually resistant to this kind of disinfectants as opposed to sterilizers [56-62]. The EPA has also categorized disinfectants a notch further, as follows: i) Hospital disinfectants (specific with a narrow activity spectrum); and ii) General use disinfectants (common household detergents with a broad activity spectrum). Moreover, there are four known types of commercially available disinfectants: 1) Chlorine-containing bleaches, a group of strong oxidizing agents comprising chlorine (e.g., Perio.Kin Chlorhexidina, WC Net Bleach Gel, Carrefour Nettoyant Disinfectant, La Croix Sans Javel, and Clorox Bleach Rain Clean used in this study); 2) Phenolic-containing compounds and detergents, derived from phenol, a caustic, poisonous, and white crystalline molecule (C_6H_5OH), commonly used in resins, disinfectants, plastics, and pharmaceuticals (e.g., Spartan Septal Antiseptic/Disinfectant, and Astonish Vac Maxx used in this study); 3) Pine oil-containing products, usually obtained by steam distillation processing of gum taken from pine trees, or chemically derived as a byproduct of paper pulp-making by a complicated sulfating process; and 4) Quaternary ammonium compounds (QACs) and detergents, essentially derived from ammonium cations (NH_4^+) to generate so often ammonium salts (e.g., Mr. Muscle Toilet Cleaner Duck, and Germicidal Bowl Cleanse Spartan Flash used in this study) [60-75].
Figure 14. Typical microbial growth of gram-negative bacteria in the presence of commercially available disinfectants and antiseptics in culture. (A) *Citrobacter koseri* + 'HiGeen Hand and Body Wash Gel' at various concentrations (undiluted, 1/2, 1/4, 1/8, 1/16, and 1/32) + negative control, methanol; or positive control, ceftazidime (30 µg), noting zones of inhibition. (B) *Enterobacter cloacae* + WC Net Bleach Gel. (C) *Escherichia coli* + 'Colgate Plax Mouthwash'. (D) *Escherichia coli* ESBL + 'HiGeen Hand and Body Wash Gel'. (E) *Klebsiella pneumoniae* + 'Clorox Bleach Rain Clean'. (F) *Proteus vulgaris* + 'Spartan Max WC Lavender'. (G) *Pseudomonas aeruginosa* + WC Net Bleach Gel. (H) *Salmonella typhimurium* + HiGeen Hand and Body Wash Gel. (I) *Shigella sonnei* + Perio.Kin Chlorhexidina 0.20% Mouthwash.

The number of experimental observations is n = 3. DF = Dilution factor.
Thirdly, sanitizers are recognized as products that tend to reduce, but not necessarily eliminate, microorganisms commonly found on inanimate objects. For example, sanitizing rinses are used for surfaces such as dishes and cooking utensils, equipment and utensils used in food-processing plants, and food service establishments [76-90]. This categorization of commercially available disinfecting and sanitizing detergents is significantly harnessing attention in terms of safe and healthy choices available to consumers in the current momentum of containing and curbing microbial infection and contamination [1].

4.3. Infection Control and Microbial Epidemiology

In healthcare settings, routine hygienic practices are mandatory and this certainly has assisted healthcare professionals in following standardized procedures to ensure quality infection control [1,2,3]. Recently, the ‘Association for Professionals in Infection Control and Epidemiology (APIC)’ [15], in a manner consistent with policies of EPA, has introduced strict infection control guidelines that have been integrated into a system of norms, especially at hospitals, in an attempt to ameliorate microbial resistance and/or spreading in many common setups [91-115]. Although household disinfectants and antiseptics are likely used at hospitals, specific considerations for healthcare settings demand the use of clinically (and perhaps scientifically) proven effective disinfectants. The APIC has further published a series of definitions the authors recognize as ‘necessary modules in curbing infection’, and hence forward the reader’s attention to commonly used definitions [1,2,3,4,5,116-125]:

A. “Sterilization is the complete elimination or destruction of all forms of microbial life. It is accomplished in the hospital by either physical or chemical processes. Steam under pressure, dry heat, ethylene oxide gas, and liquid chemicals are the principle sterilizing agents used in the hospital.”

B. “Disinfection describes a process that eliminates many of all pathogenic microorganisms on inanimate objects with the exception of bacterial spores. This is generally accomplished by the use of liquid chemicals or wet pasteurization in health care settings. The efficacy of disinfection is affected by a number of factors; each of which may nullify or limit the efficacy of the process. Some of the factors that have been shown to affect disinfection efficacy are the prior cleaning of the object, the organic load on the object, the type and level of microbial contamination, the concentration of and exposure time to the germicide, the physical configuration of the object, and the temperature and pH of the disinfection process. The levels of disinfection are defined as sterilization, high-level disinfection, intermediate-level disinfection, and low-level disinfection. High-level disinfection can be expected to destroy all microorganisms with the exception of high numbers of bacterial spores. Intermediate-level disinfection inactivates Mycobacterium tuberculosis, vegetative bacteria, most viruses and most fungi, but, does not necessarily kill bacterial spores. Low-level disinfection can kill most bacteria, some viruses and some fungi, but, cannot be relied upon to kill resistant microorganisms or bacterial spores.”

C. “Cleaning is the removal of all foreign material (i.e., soil, organic material) from objects. It is normally accomplished with water, mechanical action, and detergents. Cleaning must precede disinfection and sterilization procedures.”

D. “Germicide is an agent that destroys microorganisms, particularly pathogenic organisms (germs).”

E. “Chemical sterilants are chemicals used for the purpose of destroying all forms of microbial life, including fungal and bacterial spores.”

F. “Disinfectant is a germicide that inactivates virtually all recognized pathogenic microorganisms, but, not necessarily all microbial forms on inanimate objects.”

G. “Antiseptic is a chemical germicide formulated for use on skin or tissue and should not be used to decontaminate inanimate objects.”

4.4. Biochemical Analysis of Detergents and Disinfectants

The active chemical compositions of commercially available disinfectants and antiseptics according to their category of classification, showing the main active component, recommended in-use concentration, supplier and trade name of the disinfectants used in this study are given in brevity [1,2]. The standardized methods of sterilization and disinfection, according to APIC guidelines for infection control practice are subsequently given [1,2].

This wide spectrum study has touched the very foundations of hygienic practice jibing with internationally standardized procedures [126-140]. It certainly forms a unique approach to understanding the degree of infection control using commercially available disinfectants, antiseptic, and sterilants. Unaware of the humongous work at hand, we have though undertaken a daunting task of identifying commonly used disinfectants and antiseptics in the endeavor of creating public awareness and prowess consistent with established norms [1,2,3,4,5,141-155]. Therefore, the significance of this study falls in two parts: i) Identifying the efficacy and durability of household disinfectants in terms of controlling microbial growth; and ii) Providing a comparative canopy of information relevant to consumer’s hygiene and public health awareness. Although we have not tackled the individual biochemical constituencies of the aforementioned household disinfectants, the stark variations in controlling the growth of gram-negative (and gram-positive) bacteria is in and of itself a daring process for taking the notion of infection control at home and further afield safely and healthily another notch [156-162].

Comparatively, various disinfectants contain chemicals that are powerfully anti-bacterial (the certified labels attest to that, at least in theory). For example, household disinfectants are well known to contain chemicals such as aldehydes (R-CHO; usually non-corrosive, and stainless), alcohols (highly effective when this disinfectant is used on instruments, surfaces, and skin), hydrogen peroxide (H2O2), potassium permanganate (KMnO4) solution, and iodine [163-175]. Moreover, disinfectants found in soaps and hand washes/sanitizers commonly contain phenol compounds, and their derivatives, which are highly effective anti-bacterial agents that have been consistently included in commercially available mouthrinse products.
as well, for example. On the other hand, antiseptics usually contain boric acid (H₃BO₃), alcohol, carboxylic acid (C₅H₉O₂), iodine, H₂O₂, sodium chloride (NaCl), calcium hypochlorite (Ca(ClO)₂), and chlorhexidine (C₂₂H₃ₐClₑ₂N₁₀). Interestingly, chlorine-containing products are as effective as bactericides, sporicides, and fungicides [175-183].

Furthermore, several factors might affect the degree of effectiveness of disinfectants and/or antiseptics. Those aspects that essentially determine antimicrobial efficacy are related to: i) Bacterial amount and concentration at the site being disinfected/sterilized; ii) The specific manner by which surfaces or objects or wounds are cleaned, especially if those sites are either flat or cracked; and iii) Dependency on variables such as blood stains, tissue or mucous, environmental temperature, exposure time, and chemical composition and stability, the latter being controlled by EPA [1,2,35,67,125,156,180-185]. In brevity, it is conspicuously understandable, therefore, that the effectiveness of disinfectants and/or antiseptics varies with cleanliness, exposure time, concentration, and temperature. Those not necessarily combined sequential modules are essentially crucial to determining the efficacy of commercially available household disinfectants, an issue that is significantly reflecting the pervasive nature of marketed antimicrobial products.

4.5. Antimicrobial Mechanisms of Detergents and Disinfectants

Analytically, this study has classified disinfectants and antiseptics into four main categories: i) Class A – Daily mouthwash; ii) Class B – Toilet bowl cleaners/bleaches/sanitizers; iii) Class C – Surface and floor mopping cleaners/detergents; and iv) Class D – Hand and body wash gels. Those classes are by no means reflecting any degree of effectiveness, rather are a mirror of handy arrangement for chronological research purposes. Thereafter, we will map out a comparative analytical approach in simulating the descending order of antimicrobial efficacy of each class of disinfectant/sterilizer/antiseptic used in this study against the individual gram-positive bacteria therein assessed [185-190]:

i) *Citrobacter koseri* – Class D > Class A > Class B > Class C.

ii) *Enterobacter cloacae* – Class D > Class A > Class B > Class C.

iii) *Escherichia coli* – Class D > Class A > Class B > Class C.

iv) *Escherichia coli ESBL* – Class D > Class A > Class B > Class C.

v) *Klebsiella pneumoniae* *Escherichia coli* – Class D > Class A > Class B > Class C.

vi) *Proteus vulgaris* *Escherichia coli* – Class D > Class A > Class B > Class C.

vii) *Pseudomonas aeruginosa* – Class B > Class C > Class D > Class A.

viii) *Salmonella typhimurium* – Class D > Class A > Class B > Class C.

ix) *Shigella sonnei* – Class D > Class A > Class B > Class C.

Importantly, the first study that investigated the use of disinfectants at home was presented in 1978 [2]. Thereafter, an astronomical number of references, herein alluded to, investigated the antimicrobial disinfectants frequently used in hospitals, dental surgeries (and other healthcare settings), industry, and households. These disinfectants, as indicated above, include active ingredients such as alcohol (such as ethanol or isopropanol), which is usually wiped over inanimate surfaces (benches), and skin, and allowed to evaporate quickly; aldehyde (such as formaldehyde or glutaraldehyde), which is highly effective against bacteria; ammonia, which is usually added with chloramine, a disinfectant; chlorine, which usually reduces and/or neutralizes waterborne infectious agents; sodium hypochlorite, which is a common household bleach, highly effective disinfectant; H₂O₂, effectively antibacterial and antiviral disinfectant; ozone, a gaseous disinfectant and highly effective antibacterial and antifungal sanitary disinfectant; phenol, which is common in most household detergents and in some daily mouthwash products, and is highly effective antiseptic; and quaternary ammonium salts (quats) (such as benzalkonium chloride), which are effectively antibacterial and act as biocides [190-201].

The wide canopy of household products investigated in the present study contained all of the abovementioned active ingredients, albeit with varying compositions and concentrations, many of which are antimicrobial. Via mapping the localities of bacteria, moreover, and scanning the milieu of common bacterial species in human mouth we have revealed families of gram-negative bacteria such as *Escherichia coli*, *Pseudomonas aeruginosa*, and *Salmonella typhimurium*. According to recent reports, the most common household items that are likely to be infested with microbes are kitchen sponges and rags, dish towels, cutting boards, kitchen surfaces, sink drains, toilet, tub and shower, doorknobs and handles, cellphones, computer keyboards, television remotes, carpets, and toothbrushes. Furthermore, common bacteria in household floors, bowels, lavenders, appliances, and furniture are *Bacillus*, *Corynebacterium*, *Cryptosporidium*, *E. coli*, *Salmonella*, *Staphylococcus* spp., and *Streptococcus* spp.

4.6. Inflammatory and Anti-inflammatory Mechanisms of Detergents and Disinfectants

Antiseptics and disinfectants are used extensively in hospitals and other health care settings for a variety of topical and hard-surface applications. In particular, they are an essential part of infection control practices and aid in the prevention of nosocomial infections. Mounting concerns over the potential for microbial contamination and infection risks in the food chain and general consumer markets have also led to increased use of antiseptics and disinfectants by the general public [1,42]. A wide variety of active chemical agents (or “biocides”) are found in these products, many of which have been used for hundreds of years for antisepsis, disinfection, and preservation. Despite this, less is known about the mode of action of these active agents than about antibiotics. In general, biocides have a broader spectrum of activity than antibiotics, and, while antibiotics tend to have specific intracellular targets, biocides may have multiple targets. The widespread use of antiseptic and disinfectant products has prompted some speculation on the development of microbial resistance, in particular cross resistance to antibiotics [1,18,64,144].
Although the anti-microbial effects of commercially available detergents and disinfectants are now well established following the canopy of microorganisms investigated in this and other research studies, the inflammatory and/or anti-inflammatory mechanisms have yet to be unraveled [4,11,18,30,42,58,64,141,144,195,196]. Several hypotheses have been proposed as to deciphering the anti-microbial and inflammatory/anti-inflammatory effects of commercially available disinfectants and sterilizers, whose active ingredients in particular are essentially highly potent biocides. One of the scenarios indicated that the active ingredients of these detergents are irritants at certain concentrations and allergic reactions have been reported [42]. These inflammatory and allergic responses are ostensibly dependent on the frequency and time exposure, in addition to biochemical constituency and its variations. Furthermore, other scenarios implicated the occurrence of anti-inflammatory effects in curbing the spread of microbial contamination in various healthcare settings, as alluded to above [11,18,42,58,141,195]. These opposing effects highlight the importance of understanding the mechanisms pertaining to infection control using those products. Current studies at our laboratories are investigating the purported anti-inflammatory effects at various levels: i) Measuring the minimum inhibitory concentrations (MICs) of various detergents against gram-positive and gram-negative bacteria in vitro; ii) Investigating the inflammatory and allergic responses at various concentrations, particularly that of hives and contact dermatitis; iii) Assessing the anti-inflammatory role of detergents and disinfectants commonly used in the dental office against gingivitis and plaques; iv) Undertaking the in vivo analytical assessment of the effect of detergents and disinfectants on inflammatory responses mediated by an essential transcription factor known as nuclear factor-κB (NF-κB); and v) Measuring cellular responses in terms of the effect of detergents and disinfectants on the biosynthesis and secretion of inflammatory cytokines in vitro. These observations jibe with the established efficacious role that detergents and disinfectants may exert both anti-microbial and anti-inflammatory effects in vitro and in vivo [1,42].

Considerable progress has been made in understanding the mechanisms of the antibacterial action of antiseptics and disinfectants. By contrast, studies on their modes of action against fungi, viruses, and protozoa have been rather sparse. Furthermore, little is known about the means whereby these agents inactivate prions [1]. Whatever the type of microbial cell (or entity), it is probable that there is a common sequence of events. This can be envisaged as interaction of the antiseptic or disinfectant with the cell surface followed by penetration into the cell and action at the target site(s). The nature and composition of the surface vary from one cell type (or entity) to another but can also alter as a result of changes in the environment. Interaction at the cell surface can produce a significant effect on viability (e.g. with glutaraldehyde), but most antimicrobial agents appear to be active intracellularly [1]. The outermost layers of microbial cells can thus have a significant effect on their susceptibility (or insusceptibility) to antiseptics and disinfectants; it is disappointing how little is known about the passage of these antimicrobial agents into different types of microorganisms.

A battery of techniques are currently available for studying the mechanisms of action of antiseptics and disinfectants on microorganisms, especially bacteria [1,42,55,65,112,145,196]. These include the examination of uptake, lysis and leakage of intracellular constituents, perturbation of cell homeostasis, effects on model membranes, inhibition of enzymes, electron transport, and oxidative phosphorylation, interaction with macromolecules, effects on macromolecular biosynthetic processes, and microscopic examination of biocide-exposed cells. Additional and useful information can be obtained by calculating concentration exponents (n values) and relating these to membrane activity. Many of these procedures are valuable for detecting and evaluating antiseptics or disinfectants used in combination [1].

![Figure 15](image.png)

Figure 15. An overview schematic showing microbial infection control. (Adapted, courtesy of Talaro, Kathleen P., *Foundations in Microbiology*, 9th Edition, 2015. McGraw-Hill Education, USA.)
Interestingly, unless products are intended to be sterile, it is likely that some contamination may be present. This should be kept to a minimum and must not contain pathogenic organisms or inappropriate organisms (i.e., vegetative bacteria in a product marketed as bactericidal). An overview schematic showing microbial infection control is given in Figure 15.

5. Conclusions and Prospects

The present wide spectrum study has meticulously examined the antimicrobial efficacies of various household antiseptics and disinfectants to a surprising revelation of four classes, dubbed A – D. Whilst these commercially available products show variations in antimicrobial effectiveness, this is the first broad investigation that determined authenticity of information commercially inundating the public in terms of hygiene and health awareness [1]. For the first time in recent history that a study of this magnitude has ever been attempted. That said, we have not only revealed putative antimicrobial variations with myriad household products, but also unraveled the effectiveness of these products as compared with commonly used antibiotic, novobiocin, albeit showing in many occasions more antimicrobial propensity than the antibiotic itself.

These laboratory verified results bolster the common observations that commercially available household products are in fact effective antimicrobials at various levels, but that professional advertising is less than accurate and consumer’s attention should be revisited and redirected. The choice of any of those products as common commodities essentially remains that of the consumer [1-5,25-30,45-62,91-105,116-132,175-182,198-221]. This study, nevertheless, has mirrored an unprecedented household guide roadmap for well-informed, prowess, and health awareness [1].

Acknowledgments

At the technical and experimental levels, all authors have equally and squarely contributed to the research work therein reported, with Dr. John J. Haddad as lead and principle investigator. The authors would also like to thank the following undergraduate students (alphabetically arranged) in Medical Laboratory Technology for technical assistance: Ahlam H. Abbass, Esraa K. Al-Haddidi, Doaa M. Azzam, Rana M. Ghadieh, Hiba A. Hasan, and Yasmine K. Nakhel. This work is supported by intramural funds provided by the University at the Biomedical Laboratory of the Faculty of Health Sciences. Parts of this work are also supported by a CNRS grant to the principal investigator, Dr. John J. Haddad (#01-03-12; Beirut, Lebanon). There is no conflict of interest the authors can declare on the premise that this work is granted and undertaken solely for educational purposes. The last author’s work therein cited was, in part, supported by the Anonymous Trust (Scotland), the National Institute for Biological Standards and Control (England), the Tenovus Trust (Scotland), the UK Medical Research Council (MRC, London), the National Institutes of Health (NIH), and the Wellcome Trust (London). Dr. John J. Haddad held the distinguished Georges John Livanos fellowship at the University of Dundee, Scotland, UK, and the National Institutes of Health postdoctoral fellowship at the University of California, San Francisco, USA (NIH; UCSF).

Patient Consent

The authors confirm that there is no patient consent involved with the bearings of this work.

Footnote

The authors would want to mention that this work therein reported and any other ramifications of this research thereafter demonstrated is and are not to be construed as an attempt to undermine or damage the integrity of information and/or validity of biochemical efficacies provided and promoted by commercial tenders or trademarks. We are consumers reporting observations that have been validated in a recognized research laboratory, and hence we have no intention otherwise to disqualify or discredit any domestic or international brand or trademark. Therefore, the authors and or their institution thereby bear and hold no liability or any legal responsibility as we have reported original research work performed by students and their qualified instructors for educational purposes, and is not intended in any way, shape, or form to be viewed and/or construed for promotional or commercial endpoints.

Abbreviations

- Aldehyde, R-CHO; American Chemical Society, ACS; Amine fluoride/stannous fluoride, AFSF; Association for Professionals in Infection Control and Epidemiology, APIC; Boric acid, H3BO3; Carbolic acid, C6H6O; Calcium hypochlorite, Ca(ClO)2; Centers for Disease Control and Prevention, CDC; Cetyl pyridinium chloride, CPC; Chlorhexidine, C22H30Cl2N10 (CHX); Enterococcus Group D, EGD; Environmental Protection Agency, EPA; Essential oil, EO; Ethanol, EtOH; Group A Streptococcus, GAS; Group B Streptococcus, GBS; Hydrogen peroxide, H2O2; Minimum inhibitory concentration, MIC; Nuclear factor-kB, NF-kB; One-way analysis of variance, ANOVA; Phenol, C6H5OH; Phosphate buffered saline, PBS; Potassium permanganate, KMnO4; Quaternary ammonium compounds, QACs; Sodium chloride, NaCl; World Health Organization, WHO.

References

[1] Masri, M.N.; Hanbali, L.B.; Kamar, A.H.; Kanafani, L.M.S.; Hanbali, M.B.; Haddad, J.J. The immunomodulatory,
antimicrobial and bactericidal efficacy of commonly used commercial household disinfectants, sterilizers and antiseptics in vitro: Putative anti-inflammatory infection control mechanisms and comparative biochemical analysis of the microbial growth of Gram-positive bacteria. Am. J. Med. Biol. Res., 2013, 3, 163-133.

Bloomfield, S.F. The use of disinfectants in the home. J. Appl. Bacteriol., 1978, 45, 1-18.

Tirari, R.E.; Bodur, H.; Sipahi, B.; Sungurtekin, E. Evaluation of the antimicrobial activities of chlorhexidine gluconate, sodium hypochlorite and octenidine hydrochloride in vitro. Aust. Endod. J., 2013, 39, 15-18.

Gomes, B.P.; Ferraz, C.C.; Vianna, M.E.; Barber, V.B.; Teixeira, F.B.; Souza-Filho, F.J. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus fecalis. Int. Endod. J., 2001, 34, 424-428.

Lankford, M.G.; Collins, S.; Youngberg, L.; Rooney, D.M.; Warren, J.R.; Noskin, G.A. Assessment of materials commonly utilized in health care: Implications for bacterial survival and transmission. Am. J. Infect. Control, 2006, 34, 258-263.

Burke, J.P. Infection control a problem for patient safety. N. Engl. J. Med., 2003, 348, 651-656.

Noskin, G.A.; Stosor, V.; Cooper, I.; Peterson, L.R. Recovery of vancomycin-resistant Enterococcus on fingertips and environmental surfaces. Infect. Control Hosp. Epidemiol., 1995, 16, 577-581.

Schulster, L.; Chinn, R.Y.W. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the healthcare infection control practices advisory committee (HICPAC). MMWR Morb. Mortal. Wkly. Rep., 2003, 52, 1-42.

Scott, E.; Bloomfield, S.F. The survival and transfer of microbial contamination via clothes, hands, and utensils. J. Appl. Bacteriol., 1990, 68, 271-278.

Neely, A.N.; Maley, M.P. Survival of Enterococcus and Staphylococcus on hospital fabrics and plastics. J. Clin. Microbiol., 2000, 38, 724-726.

Widmer, A.F.; Wenzel, R.P.; Trilla, A.; Bale, M.J.; Jones, R.N.; Doebbling, B.N. Outbreak of Escherichia coli in a surgical intensive care unit: Probable transmission via hands of healthcare worker. Clin. Infect. Dis., 1993, 16, 372-376.

Saurina, G.; Landman, D.; Quale, J.M. Activity of disinfectants against vancomycin-resistant Enterococcus faecium. Infect. Control Hosp. Epidemiol., 1997, 18, 345-347.

Rutala, W.A.; Barbee, S.L.; Aguiar, N.C.; Sobsey, M.D.; Weber, D.J. Antimicrobial activity of home disinfectants and natural products against potential human pathogens. Infect. Control Hosp. Epidemiol., 2000, 21, 33-38.

Dharian, S.; Mourouga, P.; Copin, P.; Bessmer, G.; Tschang, B.; Pittet, D. Routine disinfection of patients’ environmental surfaces. Myth or reality? J. Hosp. Infect., 1999, 42, 113-117.

Exner, M.; Vacata, V.; Hornei, B.; Dietlein, E.; Giebel, J. Hospital cleaning and surface disinfection: New insights and strategies. J. Hosp. Infect., 2004, 56, S70-S75.

Rutala, W.A. APIC guideline for selection and use of disinfectants. Am. J. Infect. Control, 1996, 24, 313-342.

Lim, W.M.; Ting, D.H. Healthcare marketing: Contemporary salient issues and future research directions. Int. J. Healthcare Manage., 2012, 5, 3-11.

Entoyen, A.; Tollén, L. Competition in healthcare: It takes systems to pursue quality and efficiency. Health Aff., 2005, 24, 420-433.

Patters, M.R.; Nalbandian, J.; Nichols, F.C. Effects of octenidine mouthrinse on plaque formation and gingivitis in humans. J. Periodontol. Res., 1986, 121, 154-162.

Mir, J.; Morato, J.; Ribas, F. Resistance to chlorine of freshwater bacterial strains. J. Appl. Microbiol., 1997, 82, 7-14.

Earnshaw, A.M.; Lawrence, L.M. Sensitivity to commercial disinfectants, and the occurrence of plasmids within various Listeria monocytogenes genotypes isolated from poultry products and the poultry processing environment. J. Appl. Microbiol., 1998, 84, 642-648.

Taylor, J.H.; Rogers, S.J.; Holah, J.T. A comparison of the bactericidal efficacy of 18 disinfectants used in the food industry against Escherichia coli 0157:H7 and Pseudomonas aeruginosa at 10 and 20°C. J. Appl. Microbiol., 1999, 87, 718-725.

Langsru, S.; Morettis, T.; Sundheim, G. Characterization of Serratia marcescens surviving in disinfecting footbaths. J. Appl. Microbiol., 2003, 95, 186-195.
elimination of inflammation in an experimental gingivitis model. Clin. J. Dent. Res., 2011, 14, 135-140.

Oyanagi, T.; Tagami, J.; Matin, K. Potentials of mouthwashes in disinfecting cariogenic biofilms and biofilms leading to inhibition of caries. Open Dent. J., 2012, 6, 23-30.

Chen, Y.; Wong, R.W.; Seneviratne, C.J.; Hägg, U.; McGrath, C.; Samaranayake, L.P. Comparison of the antimicrobial activity of Listerine and Corsodyl on ortodontic brackets in vitro. Am. J. Orthod. Dentofacial Orthop.., 2011, 140, 537-542.

Zhong, C.Y.; Wang Z.H. Effects of chlorhexidine and listerine fluoride mouthrinses on four putative root-caries pathogens in the biofilm. Clin. J. Dent. Res., 2011, 14, 480-484.

Fine, D.H.; Furgang, D.; McKiernan, M.; Tereski-Bischio, D.; Abbas, F. Acute and substantive action of antimicrobial oil and a chlorhexidine mouthrinse. J. Am. Dent. Assoc., 2011, 12, 183-186.

Almas, K.; Skaug, N.; Ahmad, I. An antimicrobial study. J. Clin. Dent., 2011, 2, 183-186.

Goodyear, N. Effectiveness of five-day-old 10% bleach in a student microbiology laboratory setting. Clin. Lab. Sci., 2012, 25, 219-222.

Feliciano, L.; Li, J.; Lee, J.; Pascall, M.A. Efficacies of sodium hypochlorite and chlorhexidine in disinfection of contaminated Resilon cones. J. Endod., 2011, 37, 270-273.

Amoah, P.; Drechsel. P.; Abaidoo, R.C.; Klutse, A. Effectiveness of common and improved sanitary washing methods in selected cities of West Africa for the reduction of coliform bacteria and helminth eggs on vegetables. Trop. Med. Int. Health, 2007, 12, 204-206.

Mennemeyer, J.; Busscher, H.J.; van der Mei, H.C.; van Hoogmoed, S.; Farghui, S.; Almas, K.; Skaug, N.; Ahmad, I. An antimicrobial mouthrinse in a hydrodynamic model. Clin. Oral Investig., 2010, 14, 241-250.

Abirami, C.P.; Venugopal, P.V. Antifungal activity of three mouth rinses – in vitro study. Indian J. Pathol. Microbiol., 2005, 48, 43-44.

Jacobs, S.P.; Ball, T.S.; Paton, C.J.; Johnson, P.H.; Ritchie, S.A. Operational use of household bleach to “crash and release” Aedes aegypti prior to Wollbachia-infected mosquito release. J. Med. Entomol., 2013, 50, 344-351.

Goodyear, N. Effectiveness of five-day-old 10% bleach in a student microbiology laboratory setting. Clin. Lab. Sci., 2012, 25, 219-222.

Feliciano, L.; Li, J.; Lee, J.; Pascall, M.A. Efficacies of sodium hypochlorite and chlorhexidine in disinfection of contaminated Resilon cones. J. Endod., 2011, 37, 270-273.
Infect. Control Hosp. Epidemiol., 2012, 40, 533-542.

Witt, J.; Ramji, N.; Gibb, R.; Dunavent, J.; Flood, J.; Barnes, J. Antibacterial and antiplaque effects of a novel, alcohol-free oral rinse with cetylpyridinium chloride. J. Am. Dent. Assoc., 2010, 141, 415-422.

Hendry, E.R.; Worthington, T.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine. J. Pharm. Biomed. Anal., 2012, 58, 533-542.

Antimicrobial activity and evidence for efficacy of antimicrobial mouthrinses. J. Dent. Hyg., 2010, 94, 263-269.

Malhotra, N.; Rao, S.P.; Acharya, S.; Vasudev, B. Comparative in vitro evaluation of efficacy of mouthrinses against Streptococcus mutans, Lactobacilli and Candida albicans. Oral Health Prev. Dent., 2011, 9, 261-268.

Hitz Lindenmüller, I.; Lambrecht, J.T. Oral care. Curr. Probl. Dermatol., 2011, 40, 107-115.

Lobo, P.L.; de Carvalho, C.B.; Fonseca, S.G.; de Castro, R.S.; Monteiro, A.J.; Fontes, M.C.; Fontes, C.S. Sodium fluoride and chlorhexidine effect in the inhibition of Streptococcus mutans in children with dental caries: A randomized, double-blind clinical trial. Oral Microbiol. Immunol., 2008, 23, 486-491.

Flisfisch, S.; Meyer, J.; Meurman, J.H.; Wältin, T. Effects of fluorides on Candida albicans. Oral Dis., 2008, 14, 296-301.

Rioboo, M.; García, V.; Serrano, J.; O’Connor, A.; Herrera, D.; Sanz, M. Clinical and microbiological efficacy of an antimicrobial mouth rinse containing 0.05% cetylpyridinium chloride in patients with gingivitis. Int. J. Dent. Hyg., 2012, 10, 98-106.

Herrera, D.; Roldán, S.; Santacruz, I.; Santos, S.; Masdeval, M.; Sanz M. Differences in antimicrobial activity of four commercial 0.12% chlorhexidine mouthrinse formulations: An in vitro contact test and salivary bacterial counts study. J. Clin. Periodontol., 2003, 30, 307-314.

Bélanger-Giguère, K.; Giguère, S.; Bélanger, M. Disinfection of toothbrushes contaminated with Streptococcus mutans. Am. J. Dent., 2011, 24, 155-158.

Ogbulie, J.N.; Adieze, I.; Nwankwo, N.C. Susceptibility pattern of some clinical bacterial isolates to selected antibiotics and disinfectants. Pol. J. Microbiol., 2008, 57, 199-204.

Young, R.; Buckley, L.; McEwan, N.; Nuttall, T. Comparative in vitro efficacy of antimicrobial shampoos: A pilot study. Vet. Dermatol., 2012, 23, 36-40, e8.

Ogublije, J.N.; Adieze, I.E.; Nwankwo, N.C. Susceptibility pattern of some clinical bacterial isolates to selected antibiotics and disinfectants. Pol. J. Microbiol., 2008, 57, 199-204.

Messager, S.; Goddard, P.A.; Dettmar, P.W.; Maillard, J.Y. Comparison of two in vitro and two ex vivo tests to assess the antibacterial activity of several antiseptics. J. Hosp. Infect., 2004, 58, 115-121.

Schafer, E.; Bossmann, K. Antimicrobial efficacy of chloroxylenol and chlorhexidine in the treatment of infected root canals. Am. J. Dent., 2001, 14, 233-237.

Wichelsbauer, A.; Bader, F.; Sander, F.G.; Krieger, D.; Mettens, T. Effective disinfection of orthodontic plasters. J. Orofac. Orthop., 2006, 67, 316-336.

Navarro-Escobar, E.; Baca, P.; González-Rodríguez, M.P.; Arias-Moliz, M.T.; Ruiz, M.; Ferrer-Luque, C.M. Ex vivo microbial leakage after using different final irrigation regimens with chlorhexidine. J. Appl. Oral Sci., 2013, 21, 74-79.

Chimal, M.; Mocó, D.S.; Warren, D.K.; Perl, T.M.; Bolon, M.; Herwaldt, L.A.; Weinstein, R.A.; Sepkowitz, K.A.; Kernigan, J.A.; Sanogo, K.; Wong, E.S. Effect of daily chlorhexidine bathing on hospital-acquired infection. N. Engl. J. Med., 2013, 368, 533-542.

Pradeep, A.R.; Kumari, M.; Priyanka, N.; Naik, S.B. Efficacy of chlorhexidine, metronidazole and cetylpyridinium chloride in the treatment of gingivitis. A randomized clinical trial. J. Int. Acad. Periodontol., 2012, 14, 91-96.

Salim, N.; Moore, C.; Silikas, N.; Satterthwaite, J.; Rautenaea, R. Chlorhexidine is a highly effective topical broad-spectrum agent against Candida spp. Int. J. Antimicrob. Agents., 2013, 41, 65-69.

Rupp, M.E.; Cavaliere, R.J.; Lyden, E.; Kucera, J.; Martin, M.; Fitzgerald, T.; Tyner, K.; Anderson, J.R.; VanSchoorneweld, T.C. Effect of hospital-wide chlorhexidine patient bathing on healthcare-associated infections. Infect. Control Hosp. Epidemiol., 2012, 33, 1094-1100.

Baradari, A.G.; Khezri, H.D.; Arabi, S. Comparison of antibacterial effects of oral rinses chlorhexidine and herbal mouthwash in patients admitted to intensive care unit. Brztil. Leky., 2012, 113, 556-560.

Johnson, M.D.; Schlott, C.D.; Grandits, G.A.; Mende, K.; Whitman, T.J.; Trubble, D.R.; Hospenthal, D.R.; Murray, P.R. Chlorhexidine does not select for resistance in Staphylococcus aureus isolates in a community setting. Infect. Control Hosp. Epidemiol., 2013, 33, 1061-1063.

Horner, C.; Mawer, D.; Wilcox, M. Reduced susceptibility to chlorhexidine in Staphylococcus: Is it increasing and does it matter? J. Antimicrob. Chemother., 2012, 67, 2547-2559.

Hannig, C.; Basche, S.; Burghardt, T.; Al-Ahmad, A.; Hannig, M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Investig., 2013, 17, 805-814.

Moeintaghavi, A.; Khezri, H.D.; Arabi, S. Comparison of antibacterial effects of oral rinses chlorhexidine and herbal mouthwash in patients admitted to intensive care unit. Brztil. Leky., 2012, 113, 556-560.

Johnson, M.D.; Schlott, C.D.; Grandits, G.A.; Mende, K.; Whitman, T.J.; Trubble, D.R.; Hospenthal, D.R.; Murray, P.R. Chlorhexidine does not select for resistance in Staphylococcus aureus isolates in a community setting. Infect. Control Hosp. Epidemiol., 2013, 33, 1061-1063.

Horner, C.; Mawer, D.; Wilcox, M. Reduced susceptibility to chlorhexidine in Staphylococcus: Is it increasing and does it matter? J. Antimicrob. Chemother., 2012, 67, 2547-2559.

Hannig, C.; Basche, S.; Burghardt, T.; Al-Ahmad, A.; Hannig, M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Investig., 2013, 17, 805-814.

Moeintaghavi, A.; Khezri, H.D.; Arabi, S. Comparison of antibacterial effects of oral rinses chlorhexidine and herbal mouthwash in patients admitted to intensive care unit. Brztil. Leky., 2012, 113, 556-560.

Johnson, M.D.; Schlott, C.D.; Grandits, G.A.; Mende, K.; Whitman, T.J.; Trubble, D.R.; Hospenthal, D.R.; Murray, P.R. Chlorhexidine does not select for resistance in Staphylococcus aureus isolates in a community setting. Infect. Control Hosp. Epidemiol., 2013, 33, 1061-1063.

Horner, C.; Mawer, D.; Wilcox, M. Reduced susceptibility to chlorhexidine in Staphylococcus: Is it increasing and does it matter? J. Antimicrob. Chemother., 2012, 67, 2547-2559.

Hannig, C.; Basche, S.; Burghardt, T.; Al-Ahmad, A.; Hannig, M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Investig., 2013, 17, 805-814.

Moeintaghavi, A.; Khezri, H.D.; Arabi, S. Comparison of antibacterial effects of oral rinses chlorhexidine and herbal mouthwash in patients admitted to intensive care unit. Brztil. Leky., 2012, 113, 556-560.

Johnson, M.D.; Schlott, C.D.; Grandits, G.A.; Mende, K.; Whitman, T.J.; Trubble, D.R.; Hospenthal, D.R.; Murray, P.R. Chlorhexidine does not select for resistance in Staphylococcus aureus isolates in a community setting. Infect. Control Hosp. Epidemiol., 2013, 33, 1061-1063.

Horner, C.; Mawer, D.; Wilcox, M. Reduced susceptibility to chlorhexidine in Staphylococcus: Is it increasing and does it matter? J. Antimicrob. Chemother., 2012, 67, 2547-2559.

Hannig, C.; Basche, S.; Burghardt, T.; Al-Ahmad, A.; Hannig, M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Investig., 2013, 17, 805-814.
solution in eliminating intracanal Enterococcus faecalis biofilm. Acta Microbiol. Immunol. Hung. 2013, 60, 63-75.

[147] Li, X.Z.; Wei, X.; Zhang, C.J.; Jin, X.L.; Tang, J.J.; Fan, G.J.; Zhou, B. Hypohalous acid-mediated halogenation of resveratrol and its role in antioxidant and antimicrobial activities. Food Chem., 2012, 135, 1239-1244.

[148] Lakshmi, C.; Sririvas, C.R.; Anand, C.V.; Mathew, A.C. Irritancy ranking of 31 cleansers in the Indian market in a 24-h patch test. Int. J. Cosmet. Sci., 2008, 30, 277-283.

[149] Birnie, C.R.; Malanud, D.; Schnaare, R.L. Antimicrobial evaluation of N-alkyl betaines and N,N-dimethylamine oxides with variations in chain length. Antimicrob. Agents Chemother., 2000, 44, 2514-2517.

[150] Birnie, C.R.; Malanud, D.; Thoumluka, K.W.; Schwartz, J.B.; Schnaare, R.L. Antimicrobial and diffusional correlation of N-alkyl betaines and N,N-dimethylamine oxides from semioisids. J. Pharm. Sci., 2001, 90, 1386-1392.

[151] Salem-Milani, A.; Balaei-Gajen, E.; Rahimi, S.; Moosavi, Z.; Abdollahi, A.; Zakeri-Milani, P.; Bolourian, M. Antibacterial effect of Dichofenac sodium on Enterococcus faecalis. J. Dent. (Tehran), 2013, 10, 16-22.

[152] Wada, A.; Kono, M.; Kawauschi, S.; Takagi, Y.; Morikawa, T.; Funakoshi, K. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry. PLoS One, 2012, 7, e47093.

[153] Pagani, G.; Borgna, P.; Piersimoni, C.; Nista, D.; Terreni, M.; Pregolato, M. In vitro anti-Mycobacterium avium activity of N-(2-hydroxyethyl)-1,2-benzisothiazol-3(2H)-one and -thione carbamic esters. Arch. Pharm. (Weinheim), 1996, 329, 421-425.

[154] Arserculatne, S.N.; Atappattu, D.N.; Balasooriya, P.; Fernando, R. The effects of biocides (antiseptics and disinfectants) on the endosperms of Rhoposporidium sebei. Indian J. Med. Microbiol., 2006, 24, 85-90.

[155] Dellanno, C.; Vega, Q.; Bosenberg, D. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am. J. Infect. Control, 2009, 37, 649-652.

[156] Mansouri, M.D.; Darouiche, R.O. In-vitro activity and in-vivo efficacy of catheters impregnated with chloroxylenol and thymol against uropathogens. Clin. Microbiol. Infect., 2008, 14, 190-192.

[157] Atiq, M.; Karipcin, F.; Sarboğa, B.; Taş, M.; Çelik, H. Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 98, 290-301.

[158] Cui, Y.; Kang, M.S.; Ghani, J.; Lim, J.; Kim, K.K.; Park, J.; Lee, M.; Lee, S.T. Brevibacterium daeguense sp. nov., a nitratereducing bacterium isolated from a 4-chlorophenolrichenrichment culture. Int. J. Syst. Evol. Microbiol., 2013, 63, 152-157.

[159] Pacios, M.G.; Silva, C.; López, M.E.; Cecilia, M. Antibacterial action of calcium hydroxide vehicles and calcium hydroxide pastes. J. Investig. Clin. Dent., 2012, 6, 507-513.

[160] Zore, G.B.; Thakre, A.D.; Rathod, V.; Karuppayil, S.M. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: Inhibition of growth, dimorphism and sensitivity. Mycoses, 2011, 54, e99-e109.

[161] Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. C, 2007, 62, 507-513.

[162] Bester, K.; Banzhaf, S.; Burkhart, M.; Janzen, N.; Niederstrasser, K.; Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial organisms implicated in vulvovaginal candidasis. Int. J. Clin. Dent., 2012, 3, 264-270.

[163] Shaeffer, P.R.; Vyas, V.K.; Pillai, S.K. Susceptibility of various disinfectants to biofilm contaminated toothbrushes due to brushing. Contemp. Clin. Dent., 2011, 2, 302-307.

[164] Verma, G.K.; Mahajan, V.K.; Shanker, V.; Tegta, G.R.; Jindal, N.; Minhas, S. Contact depigmentation following irritant contact dermatitis to chloroxylenol (Dettol). Indian J. Dermatol. Venereol. Leprol., 2011, 77, 612-614.

[165] Ogunshe, A.A.; Omotoso, O.A.; Akindele, T.M. Soaps and germicides as adjunct to topical anticytic agents on candida species implicated in vulvovaginal candidasis. East Afr. J. Public Health, 2011, 8, 112-118.
of sensitivity and attenuation of gram -positive and gram -negative activity of sweet cherry (Prunus avium) extracts. Antimicrob. Agents Med. Chem., 2012, 13, 141-157.

[13] Hanbali, L.B.; Ghadieh, R.M.; Hasan, H.A.; Nakhal, Y.K.; Haddad, J.J. Measurement of antioxidant activity and antioxidant compounds under versatile extractions conditions: I. The immuno-biochemical antioxidant properties of sweet cherry (Prunus avium) extracts. Antimicrob. Agents Med. Chem., 2012, 13, 173-187.

[14] Haddad, J.J.; Ghadieh, R.M.; Hasan, H.A.; Nakhal, Y.K.; Hanbali, L.B. Measurement of antioxidant activity and antioxidant compounds under versatile extractions conditions: II. The immuno-biochemical antioxidant properties of black sour cherry (Prunus cerasus) extracts. Antimicrob. Agents Med. Chem., 2013, 12, 229-245.

[15] Hanbali, L.B.; Amiry, J.G.; Hanbali, L.B.; Ghadieh, R.M.; Hasan, H.A.; Koussan, S.S.; Nakhal, Y.K.; Tarral, A.M.; Haddad, J.J. The antimicrobial activity of sweet cherry (Prunus avium) extracts: II. Measurement of sensitivity and attenuation of gram-positive and gram-negative bacteria and C. albicans in culture. Curr. Nutr. Food Sci., 2012, 8, 275-291.

[16] Hanbali, L.B.; Amiry, J.G.; Ghadieh, R.M.; Hasan, H.A.; Koussan, S.S.; Nakhal, Y.K.; Tarral, A.M.; Haddad, J.J. Measurement of sensitivity and attenuation of gram-positive and gram-negative bacteria and C. albicans in culture. Curr. Nutr. Food Sci., 2012, 8, 292-303.

[17] Aranda-Garcia, A.R.; Guerreiro-Tanomaru, J.M.; Faria-Júnior, N.B.; Chavez-Andrade, G.M.; Leonardo, R.T.; Tanomaru-Filho, M.; Bonetti-Filho, I. Antibacterial effectiveness of several irrigating solutions and the Endox Plus system – An ex vivo study. Int. Endod. J., 2012, 45, 1091-1096.

[18] Barnett, M. Role of therapeutic antimicrobial mouthrinses in the mouth rinse. J. Am. Dental Assoc., 2003, 134, 699-702.

[19] Fine, D.H.; Furgang, D.; Barnett, M. Comparative antibacterial activities of antiseptic mouthrinses against isogenic planktonic and biofilm strains of Actinobacillus actinomycetemcomitans. J. Clin. Periodontol., 2001, 28, 697-700.

[20] Markodi, S.M.; Mostler, K.M.; Charles, C.H.; Bartels, L.L. Comparative antiseptic and antiplaque effectiveness of a chlorhexidine and an essential oil mouthrinse: 6 month clinical trial. J. Clin. Periodontol., 2004, 31, 878-884.

[21] Aarnisalo, K.; Salo, S.; Miettinen, H.; Suihko, M.L.; Wirtanen, G.; Mankodi, S.M.; Mostler, K.M.; Charles, C.H.; Bartels, L.L. Chlorhexidine and an essential oil mouthrinse: 6 month clinical trial. J. Clin. Periodontol., 2004, 31, 207-250.

[22] Arnold, J.W.; deLaubenfels, E.; Zambelli-Weiner, A. Quantitative assessment of hard surface disinfectant activity against the foodborne pathogen Listeria monocytogenes. J. AOAC Int., 2006, 89, 1617-1621.

[23] Chavant, P.; Gaillard-Martine, B.; Hebrard, N. Microbiological effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase. FEMS Microbiol. Lett., 2004, 236, 241-248.

[24] Bonesvoll, P.; Gjermo, P. A comparison between chlorhexidine and some quaternary ammonium compounds with regard to retention, salivary concentration and plaque-inhibiting effect in the human mouth after mouth rinses. Arch. Oral Biol., 1978, 23, 289-294.

[25] Dilek, A.; Buzul, M.; Alpas, H.; Accikel, M. Hypochlorite inactivation kinetics of lactococcal bacteriophages. LWT Food Sci. Technol., 2007, 40, 1369-1375.

[26] Araghi, G.F. Available laboratory tests to guide antimicrobial therapy. J. Med. Lab. Immunol., 2005, 7, 185-189.

[27] Wilson, M.; Mowad, C. Chlorhexylool. Dermatitis, 2007, 18, 120-121.

[28] Bouti, F.; Zioga, M.; Koussidou, T.; Ioannides, D.; Mourellou, O. Comparison of chlorhexylool 0.5% plus salicyclic acid 2% cream and benzoyl peroxide 5% gel in the treatment of Acne vulgaris: A randomized double-blind study. Drugs Exp. Clin. Res., 2003, 29, 101-105.

[29] Lear, J.C.; Maillard, J.Y.; Dettmar, P.W.; Goddard, P.A.; Russell, S.L. Chlorhexylool and -triclosan-tolerant bacteria from industrial sources. J. Ind. Microbiol. Biotechnol., 2002, 29, 238-242.

[30] Haddad, J.J. On the cellular and molecular regulatory transcriptional mechanisms and alternative purative pathways to inflammatory oxidative stress revisited: Current immunological breakthroughs and views at a glance. Antifilmfl. Antiallery Agents Med. Chem., 2013, 12, 189.
review on agar diffusion and direct contact methods. J. Conserv. Dent., 2013, 16, 9-16.

[210] McDanel, J.S.; Murphy, C.R.; Diekema, D.J.; Quan, V.; Kim, D.S.; Peterson, E.M.; Evans, K.D.; Tan, G.L.; Hayden, M.K.; Huang, S.S. Chlorhexidine and mupirocin susceptibilities of methicillin-resistant Staphylococcus aureus from colonized nursing home residents. Antimicrob. Agents Chemother., 2013, 57, 552-558.

[211] Zubko, E.I.; Zubko, M.K. Co-operative inhibitory effects of hydrogen peroxide and iodine against bacterial and yeast species. BMC Res. Notes, 2013, 6, 272.

[212] Krause, R.; Ribitsch, W.; Schilcher, G. Daily chlorhexidine bathing and hospital-acquired infection. N. Engl. J. Med., 2013, 368, 2331-2332.

[213] Thrall, T.H. Complete cleaning: Improved cleaners, disinfectants, monitoring systems and training help close the loop on infection prevention. Health Facil. Manage., 2013, 26, 43-46.

[214] Bradford, B.D.; Seiberling, K.A.; Park, F.E.; Hiebert, J.C.; Chang, D.F. Disinfection of rigid nasal endoscopes following in vitro contamination with Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Haemophilus influenzae. JAMA Otolaryngol. Head Neck Surg., 2013, 139, 574-578.

[215] Alonso-Hernando, A.; Guevara-Franco, J.A.; Alonso-Calleja, C.; Capita, R. Effect of the temperature of the dipping solution on the antimicrobial effectiveness of various chemical decontaminants against pathogenic and spoilage bacteria on poultry. J. Food Prot., 2013, 76, 833-842.

[216] Seenama, C.; Tachasirirugune, P.; Jintanothaitavorn, D.; Kachintorn, K.; Thamlikitkul, V. Effectiveness of disinfectant wipes for decontamination of bacteria on patients’ environmental and medical equipment surfaces at Siriraj Hospital. J. Med. Assoc. Thailand., 2013, 96, S11-S116.

[217] Godoy, P.; Castillo, J.; Delgado-Rodriguez, M.; Martin, V.; Soldevila, N.; Alonso, J.; Astray, J.; Baricot, M.; Cantón, R.; Castro, A.; González-Candelas, F.; Mayoral, J.M.; Quintana, J.M.; Pumarola, T.; Tamames, S.; Domínguez, A.; CIBERESP Cases and Controls in Pandemic Influenza Working Group, Spain. Effectiveness of hand hygiene and provision of information in preventing influenza cases requiring hospitalization. Prev. Med., 2012, 54, 434-439.

[218] Larson, E.L.; Cohen, B.; Baxter, K.A. Analysis of alcohol-based hand sanitizer delivery systems: Efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands. Am. J. Infect. Control, 2012, 40, 806-809.

[219] Evans, V.A.; Orris, P. The use of alcohol-based hand sanitizers by pregnant health care workers. J. Occup. Environ. Med., 2012, 54, 3.

[220] Jacups, S.P.; Ball, T.S.; Paton, C.J.; Johnson, P.H.; Ritchie, S.A. Operational use of household bleach to “crash and release” Aedes aegypti prior to Wolbachia-infected mosquito release. J. Med. Entomol., 2013, 50, 344-351.

[221] Weitz, N.A.; Lauren, C.T.; Weiser, J.A.; LeBoeuf, N.R.; Grossman, M.E.; Biagas, K.; Garzon, M.; Morel, K.D. Chlorhexidine gluconate-impregnated central access catheter dressings as a cause of erosive contact dermatitis: A report of 7 cases. JAMA Dermatol., 2013, 149, 195-199.