Astable multivibrator circuits made with low capacity PLC

I Popa¹, G N Popa¹, C M Diniș¹ and S I Deaconu¹

¹Politehnica University of Timișoara, Department of Electrical Engineering and Industrial Informatics, 5 Revolution Street, 331128 Hunedoara, Romania

E-mail: gabriel.popa@fih.upt.ro

Abstract. The paper presents three versions of astable multivibrator structures that can be made with PS-3 (Klöckner-Moeller) PLCs. They have, in their composition, two time-on delay timers (TR type) that can be found in PS-3 PLC. For each astable multivibrator circuits present the principle accompanied by graphic representations of the main signals of the astable multivibrator circuits and the mode of operation of these circuits using time diagrams. These astable multivibrator structures can be used, special, for teaching PLCs.

1. Introduction

Astable multivibrator circuits (AMCs) is used as clocks, in optical signalling installations, electronic switches when are using with binary counting, binary-decimal decoders, etc. [1], [2], [3]. The paper presents three types of AMCs, their implementation programs on the PS-3 (Klöckner-Moeller) PLC [4], [5] and a simple application of such circuits is to achieve command of a two-inputs multiplexer.

On the two inputs apply signals of different frequencies generated by two AMCs that simulates two points of measurement of electrical parameters or non-electrical signals converted to their corresponding frequency values [6], [7]. The third AMC, from application, has a much lower frequency than the frequencies of the signals collected from the measuring points. In this way, the output half a period of multiplexer (if AMC command of multiplexer is symmetrical) the signal has an input signal, and in the next half cycle, at the output signal is transmitted from the second input. All circuits have a teaching character for signals from the input of these circuits must have low frequency (less than 5 Hz).

2. Astable Multivibrator Circuit, Logically Controlled, Made with RS Flip-Flop Circuit and Two Time-On Delay Timers

This electronic circuit schematic diagram is given in Figure 1.a. Signals marking from schematic diagram is recognized signals from PS-3 PLC.

Before starting the AMC, which is made with I0.1 signal on the second input circuit OR-1 for a short period of time \(t_{l0} \) (Fig. 1b), apply signal \(I0.0=1 \). In this state, the input and output signals of RS flip-flop circuit (RSFFC) have values: \(M0.4=0 \) (\(S=0 \)), because \(I0.1=0 \), \(M0.3=1 \) (\(R=1 \)), because \(I0.0=1 \), so \(Q0.1=0 \) (\(Q=0 \)). The output signal \(Q0.1 \) remains 0 logic, after changing the signal value \(I0.0=0 \) (\(I0.0=0 \)). When \(Q0.1=0 \), after INVERTER-2 gate \(NQ0.1=1 \), following after a set time period \(t_{l0} \) of TR0 time circuit, the output signal \(M0.0=1 \). It applies to the first input of the AND-4 gate.

Since \(Q0.1=0 \) and the output of the on-delayed circuit TR1, has logical 0 value (\(M0.1=0 \)), the signal that is applied to the third input of \(AND-6 \) gate, so \(M0.2=0 \). After \(I0.0=0 \), at the output circuit OR-1
circuit $M0.3=0 \ (R=0)$, and after the INVERTER-3 gate, $NM0.3=1$. This signal is applied to the second input of the AND-4 gate.

If after the time $t_1 (t_0 < t_1 < t_{a0})$, Figures 1.b,c,d measured from when the signal logical $I0.0$ increases from 0 to 1 (positive edge signal at $I0.0=f_1(t)$) is applied to the input AND-4 and AND-6 gates, the signal $I0.1=1$, AND-6 gate remains closed (locked) because $M0.1=0$ and open AND-4 gate.

Figure 1. a. The fundamental circuit of AMC, logically controlled, made with RSFFC and two time-on delay timers; b, c and d: timing diagrams $I0.0=f_1(t)$, $I0.1=f_2(t)$ and $Q0.1=f_3(t)$

It follows that $M0.4=1 \ (S=1)$; as $M0.3=0 \ (R=0)$, $Q0.1=1 \ (Q=1)$. This condition occurs after the time t_{a0} elapsed since positive front of $I0.0$ signal. Now changing signal values $NQ0.1$ and $M0.0$ ($NQ0.1=0$, $M0.0=0$), so it has a new state of the RSFFC namely $M0.4=0 \ (S=0)$, $M0.3=0 \ (R=0)$, but the output $Q0.1$ retain their value; $Q0.1=1 \ (Q=1)$. Enter the timer function TR1 and after the set time t_{a1}, $M0.1=1$, the signal from the output circuit $M0.2$ from AND-6 gate is logical 1 and $M0.3=0 \ (R=1)$; because $M0.4=0$, $Q0.1=0$. Immediately after the timer TR1, $M0.1=0$ which determines $M0.2=0$ and $M0.3=0$.

Now the RSFFC state is: $M0.4=0$, $M0.3=0$ and $Q0.1=0 \ (S=0$, $R=0$, $Q=0)$.

TR0 timer is activated because of the input signal is a logical 1 ($NQ0.1=1$). After the set time t_{a1} to the output of TR0 circuit obtains $M0.0=1$, the AND-4 gate opens and results $M0.4=1 \ (S=1)$; because the AND-6 gate is blocked, $M0.2=0$ and $M0.3=0 \ (R=0)$ changes the logical value of the output signal ($Q0.1=1$) and the operation is repeated. If $t_{a0}=t_{a1}$ the AMC is symmetrical and $Q0.1$ output signal changes as in Figure 1.d. The AMC operation stops when $I0.1=0$. In the following is the PLC program of AMC.

The first program of AMC on PS-3 PLC, using RSFFC with time-on delay:

Line	Instruction	Value(s)
000	TR0	005 = M0.2
000	TR0 * S : NQ0.1	006 L M0.2
000	TR00 * STP :	007 O I0.0
000	TR0 * IW : KW20	008 = M0.3
000	TR0 * EQ : M0.0	009 L M0.0
001	TR1	010 A NM0.3
001	TR1 * S : Q0.1	011 A I0.1
001	TR1 * STP :	012 = M0.4
001	TR1 * IW : KW20	013 L M0.4
001	TR1 * EQ : M0.1	014 S Q0.1
002	L NM0.4	015 L M0.3
003	A I0.1	016 R Q0.1
004	A M0.1	
3. Astable Multivibrator Circuit, Logically Controlled, Made with Two Time-On Delay Timers (1st version)

Schematic diagram of the AMC is shown in Figure 2.a, and graphic representations of control I0.2 and output Q0.2 signals are given in Figures 2.b and c. In the initial state, control signal I0.2=0, so the output Q0.2 of AND-1 gate has a logical 0 value (Q0.2=0) to determine, after TR2 timer, M0.5=0, and after INVERTER-2 gate, NM0.5=1, signal that is applied to the first input of the AND-1 gate. After the INVERTER-3 gate NM0.2=1, the timer TR3 is activated. If the initial condition is maintained for a time longer than the time working t_a3 of timer TR3, after this circuit signal M0.6=1 and M0.7=1 (from the output OR-4 gate).

![Figure 2. a. The fundamental circuit of AMC, logically controlled, made with two time-on delay timers; b and c: timing diagrams I0.2=f(t) and Q0.2=f(t)](image)

For commissioning of AMC, unlocking control signal I0.2, AND-1 gate (I0.2=1). Now, the output signal Q0.2=1, signal that applies simultaneously on timer TR2, on INVERTER-3 gate and the second input of the OR-4 gate. It follows that to change the signal values at the outputs of the circuits 3 and TR3 (NQ0.2=0 and M0.6=0), but M0.7 is maintained at the logical value 1. The signal M0.5 from output TR2 circuit is maintained at logical 0 another time t_a2 from Q0.2 changing value (from 0 to 1) the period after INVERTER-2 NM0.5=1. After t_a2, M0.5=1, so NM0.5=0. It follows Q0.2=0, and after OR-4 gate M0.7=0, because on the second the input of this Q0.2=0, and on the first input M0.6 is kept at a logical 0 another time t_a1 that is set the timer TR3. Also, after Q0.2 changed the value from 1 to 0, after TR2 circuit and INVERTER-2 gate the signals have M0.5=0 and NM0.5=1. After the set time t_a3, M0.6=1, resulting M0.7=1, Q0.2=1 and following repeated operation. From the foregoing, it is concluded that during the Q0.2=1 is given by the timer TR2, and one in which Q0.2=0 is required for circuit TR3. The output signal Q0.2 of AMC changes over time as in Figure 2.c. The AMC stops when I0.2=0.

The second program of AMC on PS-3 PLC, made with time-on delay timers (1st variant):

```
017 TR2 019 L M0.6
    TR2 * S : Q0.2 020 O Q0.2
    TR2 * STP : 021 = M0.7
    TR2 * IW : KW15 022 L NM0.5
    TR2 * EQ : M0.5 023 A I0.2
018 TR3 024 A M0.7
    TR3 * S : NQ0.2 025 = Q0.2
    TR3 * STP :
    TR3 * IW : KW30
    TR3 * EQ : M0.6
```

It is noted that this AMC circuit $t_{a2} \neq t_{a3}$ ($t_{a3} = 2 \cdot t_{a2}$), so this oscillator is no longer symmetrical.
4. Astable Multivibrator Circuit, Logically Controlled, Made with Two Time-On Delay Timers (2nd version)

This AMC has schematic diagram in Figure 3.a and is easiest done with electronic timers. In the initial state control, the control signal \(I0.3 = 0 \), due to the output circuit AND-1 gate, \(M0.9 = 0 \), and after the timer TR5, \(Q0.3 = 0 \). After TR4 time circuit, the signal circuit has a logical 0 value (\(M0.8 = 0 \)), so the output INVERTER-2 gate, \(NM0.8 = 1 \). This state lasts for a long time (Figures 3.b and c).

To start oscillator is required \(I0.3 = 1 \), value which is maintained throughout the operation (Figure 3.b). Now at the output of the AND-1 gate \(M0.9 = 1 \), but after TR5, \(Q0.3 = 0 \) since a time \(t_{a5} \) that is set time circuit (TR5); after this time \(Q0.3 = 1 \), TR4 timer is activated, after a set time \(t_{a4} \), logical signal changes of \(M0.8 \) signal. It follows \(M0.8 = 1 \), after INVERTER-2 gate \(NM0.8 = 0 \) which determines very quickly \(M0.9 = 0 \) and \(Q0.3 = 0 \), the operation is repeated. In this way \(t_{a5} \) during work time circuit TR5, \(Q0.3 = 0 \), and \(t_{a4} \) periods imposed by timer TR4, \(Q0.3 = 1 \). The variation in time of the output signal \(Q0.3 \) of the oscillator is shown in Figure 3.c.

Stopping oscillator occurs when \(I0.3 = 0 \), which value determines lock of AND-4 gate as a result \(M0.9 = 0 \) and \(Q0.3 = 0 \). With the AMC principle scheme in Figure 3.a, the program could make on PS-3 PLC.

The third program achievement PS-3 PLC circuit multivibrator, ordered logically made electronic circuit-delayed timers (2nd version):

\[
\begin{align*}
026 & \text{ TR4} \\
029 & = M0.9 \\
030 & \text{ TR5} \\
TR4 * S : Q0.3 & \\
TR4 * STP : & \\
TR4 * I W : KW15 & \\
TR4 * E Q : M0.8 & \\
027 & \text{ L NM0.8} \\
028 & \text{ A I0.3} \\
030 & \text{ TR5} \\
031 & \text{ TR5 * S : M0.9} \\
032 & \text{ TR5 * STP :} \\
033 & \text{ TR5 * I W : KW15} \\
034 & \text{ TR5 * E Q : Q0.3} \\
\end{align*}
\]

5. Application. Two Inputs Multiplexer Controlled by AMC Made with Six Time-On Delay Timers

With three AMCs, logically ordered, made with electronic circuit-delayed (1st version) and a two-input multiplexer, made a remote transmission system through a line feed from output of \(Q0.4 \) (Figure 4), data collected from two points of measurement of technological parameters (electric or non-electric), converted into electrical signals modulated in frequency.

The measurement points are simulated by FFC (flip-flop circuit) 1 and 2. The multiplexer with two inputs \(Q0.1, Q0.2 \) is done with logic circuits 1-4 signal being ordered by output signal \(Q0.3 \) of the FFC 3. The output frequency signals \(Q0.1 \) and \(Q0.2 \), output from these blocks are much higher than the frequency control signal \(Q0.3 \). It also requires that \(t_i > t_{a5} \), \(t_i > t_{a4} \), (Figure 5.d). The three circuits
$\text{FFC1, FFC2 and FFC3}$ are symmetrical. The control of $\text{FFC1, FFC2 and FFC3}$ is with the signal $I0.0$.

In its original state, during time t_i as $I0.0$ control signal of three FFC has logical 0 operation is blocked, so $Q0.1=0$, $Q0.2=0$, $Q0.3=0$, due and output signal $Q0.4$ of the multiplexer is set to logical 0, as shown in Figure 5.

After time t_i, $I0.0=1$ and all three FFC are un-lock. During the time t_{a4}, $Q0.3=1$, AND-3 gate opens the gate due to output signal $Q0.4$ is sent from the measurement point 2 ($Q0.4=Q0.2$), and in the time t_{a5}, $Q0.4=Q0.1$ (Figure 5.c). The data is transmitted remotely by a line which is not shown in Figure 4, on a frequency-meter calibrated in units of measurement of process parameters or a two-outputs de-multiplexer which are joined together in such devices.

In the first case, in addition to the meter is necessary to have an electronic device showing the number of measurement point, and in the latter case, they must control devices to operate the multiplexer and de-multiplexer synchronously. To stop the operation of the remote measuring technological parameters required $I0.0=0$. With the scheme in principle of two-input multiplexer ordered by FFC (1^st variant) the 4th program was drawn on PS-3 PLC.

Figure 4. Two inputs multiplexer controlled by AMC made with time-on delay timers (1^st version)
Figure 5. Timing diagrams of the signals: a. \(I0.0 = f_1(t) \), b. \(Q0.1 = f_2(t) \), c. \(Q0.2 = f_3(t) \), d. \(Q0.3 = f_4(t) \), e. \(Q0.4 = f_5(t) \)

The fourth program achievement on PS-3 PLC with two inputs multiplexer, ordered by FFC made with time-on delayed (1st version):

000 TR0
010 TR3
TR0 * S : Q0.1
TR0 * STP :
TR0 * IW : KW10
TR0 * EQ : M0.0
001 TR1
011 L M0.4
TR1 * S : NQ0.1
TR1 * STP :
TR1 * IW : KW10
TR1 * EQ : M0.1
002 L M0.1
016 A M0.5
003 O Q0.1
017 = Q0.2
004 = M0.2
018 TR4
005 L NM0.0
014 L NM0.3
006 A I0.0
013 = M0.5
007 A M0.2
015 A I0.0
012 O Q0.2
025 A M0.8
021 O Q0.3
022 = M0.8
023 L NM0.6
024 A I0.0
026 = Q0.3
027 L Q0.1
028 A NQ0.3
029 = M0.9
030 L Q0.2
031 A Q0.3
032 = M0.10
033 L M0.10
034 O M0.10
035 = Q0.4
6. Conclusions

The paper was presented three AMC with possibility of materializing on the PLC PS-3 Klöckner-Moeller [4], [5]. They are composed of two electronic circuits on-delayed timers [1], [2], [6], [7], [8]. For each multivibrator circuit schematic diagram presented accompanied by graphic representations of the main signs of AMC, the operation of these oscillators and finally realized on the PLC program PS-3 for the analysed signal generators.

From the analysis in the paper, results that the latter oscillator with the output signal rectangular configuration is the simplest.

Schematic diagram of the AMC (Figure 3.a.) is taken from the literature [3]. The first two variants of the oscillators, namely: AMC made with RSFFC and with time-on delay circuits and with FFC performed with with time-on delay circuits and AMC made with time-on delay circuits, 1st variant are original.

Using three symmetrical AMC made with time-on delay circuits, 1st variant and a multiplexer with two inputs has been designed with an electronic switch schematic diagram in Figure 4.a, the two measuring points of technological parameters (electrical or non-electrical), with values converted into two frequency-modulated signals.

These measuring points are simulated with FFC1 and FFC2, the control being provided by FFC3, which has a signal output less frequently than the frequency of the signals emitted by the first two square wave generators.

At the output of electric switch obtain a complex signal (Q0.4) which in the half cycle of FFC3 has the frequency signal at the output of a measuring point (Q0.2), and the other half cycle, frequency of the other measuring point (Q0.1). The principle states that the schemes symbols for time circuit was done after [1], [2], [8], which analyses and its operation. Virtually, all circuits were checked on PS-3 PLC programs presented in the paper.

The paper first importance in terms of teaching, but electronic switch for two measuring points can also be used with some improvement in industry (specified in sub-chapter 5).

The principle schemes of AMCs and electronic switch from the paper (Figures 1.a, 2.a, 3.a, and 4) could make and the other PLCs [9], [10].

References

[1] Popa I and Popa G N 2000 Electronic Devices with Wired and Programmed Structure, for Protection of Low Voltage Three-Phase Motors, Mirton Publishing House, Timișoara, Romania (in Romanian)
[2] Popa I, Popa G N and Deaconu S 2008 Electronic Time Relay with Eight Functions, Made with Integrated Logic Circuits, Science and Engineering 13 249 – 254
[3] ***1988 AP 201. User’s Manual, Bucharest, Romania (in Romanian)
[4] ***1987 Handbuch Teil 2. Software, Programmbeispiele, Klöckner-Moeller, Germany (in German)
[5] ***1987 Handbuch Teil 3. Software, Programmbeispiele, Klöckner-Moeller, Germany (in German)
[6] Rajput D S, Gwalior I and Singh R 2015 Timer Circuit Using OTRA and its Application as Astable and Monostable Multivibrator, 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, India, Feb. 26-27, pp1047-1050
[7] Telles A C C, Renato A, Finco S and Pomilio J A 2014 Modelling of a MOS Ultralow Voltage
Astable Multivibrator for Energy Harvesting, *IEEE Transactions on Circuits and Systems II: Express Briefs* **61**(3) 168-172

[8] Popa G N, Popa I and Deaconu S 2006 *PLC in Applications*, Mirton Publishing House, Timişoara, Romania (in Romanian)

[9] Basile F, Chiacchio P and Gerbasio D 2011 *Progress in PLC Programming for Distributed Automation Systems Control*, 9th IEEE International Conference on Industrial Informatics (INDIN), Caparica, Lisbon, Portugal, July 26-29, pp 621-627

[10] Bolton W 2009 *Programmable Logic Controllers*, 5th Edition, Newnes, Elsevier, UK