Deoxyribonucleic Acid Synthesis in Cell-free Extracts

IV. PURIFICATION AND CATALYTIC PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE III *

(Received for publication, April 28, 1972)

THOMAS KORNBERG AND MALCOLM L. GEFTER

From the Department of Biological Sciences, Columbia University, New York, New York 10027

SUMMARY

DNA polymerase III, an enzyme essential for DNA replication, has been purified more than 10,000-fold from cell-free extracts of Escherichia coli. The enzyme, judged to be 10 to 20% pure, requires all four deoxynucleoside 5'-triphosphates, Mg++, ethanol, and native DNA for maximal activity. It is present in amounts sufficient to account for the in vivo rate of replication.

DNA polymerase III activity is inhibited by sulfhydryl inhibitors and by salt; it is not inhibited by antiserum directed against DNA polymerase I. The most active template for DNA polymerase III is DNA degraded partially by exonuclease III. Linear duplex DNA, single-stranded DNA, or DNA with single strand scissions is not used as template. The enzyme requires a primer to initiate synthesis and polymerization proceeds in the 5' to 3' direction by covalent extension of the primer.

The isolation of a mutant of Escherichia coli, (Pol A1-), lacking detectable levels of DNA polymerase activity (DNA polymerase I) (1), stimulated several investigations into the nature of the DNA synthesis capacity of these cells (2-4). Several laboratories have described the purification and initial characterization of DNA polymerase II, an enzyme distinct from DNA polymerase I. The specific activity of pure DNA polymerase II is less than 10% and there are fewer than 25% as many molecules per cell (6).

DNA polymerase III can be distinguished from DNA polymerase II by several criteria, including its sensitivity to thiol reagents, to ionic strength, and to antiserum directed against DNA polymerase I. Compared with DNA polymerase I, the specific activity of pure DNA polymerase II is less than 10% and there are fewer than 25% as many molecules per cell (6).

DNA polymerase II does, however, bear strong resemblance to DNA polymerase I with regard to its catalytic properties. Like DNA polymerase I, DNA polymerase II catalyzes the template-directed synthesis of DNA in the 5' to 3' direction by covalent attachment of the product to the primer. DNA polymerase II also catalyzes the exonucleolytic degradation of single-stranded DNA from the 3' end; but unlike DNA polymerase I, hydrolysis of DNA from the 5' end is not observed (7, 10).

The physiological roles of both DNA polymerases I and II remain obscure. The availability of mutants defective in DNA polymerase I has not helped to elucidate the role of this enzyme in DNA metabolism (II-13). Evaluation of the biological significance of both DNA polymerases I and II must await further analysis.

During our investigations into the DNA synthetic capacity of Pol A1- cells, another DNA-synthesizing activity (DNA polymerase III) was observed (6). On the basis of its chromatographic behavior, inhibition by salt, thermal stability, and insensitivity to antiserum directed against DNA polymerase I, DNA polymerase III can be distinguished from DNA polymerases I and II. Furthermore, analysis of mutants temperature sensitive for DNA synthesis and for cell viability indicates that DNA polymerase III is essential for DNA replication (14, 15).

In this report we describe the purification and the general catalytic properties of DNA polymerase III, and compare these properties with those of DNA polymerases I and II.

MATERIALS

Nucleotides and Polymers—Unlabeled deoxynucleoside 5'-triphosphates were purchased from Sigma and [3H]TTP (17.8 Ci per mmole) from Schwarz BioResearch. [γ-32P]ATP (1 x 10^6 cpm per pmole) was a gift from Dr. W. Sugden. Dr. F. Bollum kindly provided poly(dA) and poly(dC). The synthetic products, (dA-dC)_n, (dG-dT)_n, and (pdT)_10, were a gift from Drs. I. Molineux and H. G. Khorana. The oligonucleotide (dG)_{25-39} was purchased from Collaborative Research.

Enzymes—DNase I, bacterial alkaline phosphatase, and micrococcal nuclease were products of Worthington. Polynucleotide kinase (1,140 units per mg) and terminal deoxynucleotidyltransferase from calf thymus (575 units per mg) (16) were generous gifts from Dr. P. Modrich. Dr. A. Kornberg donated E. coli DNA polymerase I (Fraction VII) (17) and anti-DNA polymerase I antiserum. E. coli DNA polymerase II (Fraction V, 270 units per mg) was prepared as previously described (6). Exonuclease III (180,000 units per mg) was isolated as previously described (6) and further purified by a method adapted from that of Richardson and Kornberg (18).

Miscellaneous—E. coli W3110 thy', rha', lac', str', Pol A1- was a gift from Dr. J. Groes. Calf thymus DNA was purchased from Collaborative Research.

* The 3rd paper in this series is Reference 7. This investigation was aided by Grants GMCA 18943.01 and ITOI-GM-02087.01 from the United States Public Health Service.
from Calbiochem; DEAE-cellulose (DE 23) and phosphocellulose (P11) from Whatman.

METHODS

DNA Polymerase III Assay—DNA polymerase was assayed in an incubation mixture (0.3 ml) containing 33 mM morpho
tinopropane sulfonic acid-KOH (pH 7.0), 13 mM MgCl₂; 50 mM
2-mercaptoethanol; 0.13 mM (each) dCTP, dATP, dGTP; 0.13
mM [y-32P]ATP (50 cpm per pmole); 32 nmole of calf thymus DNA; 4
10% ethanol (v/v), and enzyme. Incubations were for 5 min at
30°C; nucleotide incorporation into acid-insoluble product was
measured as described (5). One unit of enzyme is defined as the
amount catalyzing the incorporation of 1 nmole of TTP into
acid-insoluble product in 5 min at 30°C.

Preparation of Template for DNA Polymerase III Reaction—
Suitable template ("gapped" DNA) was prepared by the sequential
treatment of DNase I and exonuclease III. The reaction mixture
(10 ml) contained 5.1 mM Tris-acetate (pH 8.2); 2 mM MgCl₂; 3
mM 2-mercaptoethanol; 40 amoles of calf thymus DNA; and 0.3
µg of DNase I. After a 20-min incubation at 30°C, DNase was
inactivated by heating at 65°C for 10 min. An appropriate
amount of exonuclease III, titrated to give maximal DNA
polymerase activity, was added and allowed to incubate for 5
min at 30°C. The reaction was terminated by heating at 65°C
for 10 min.

Preparation of Nuclease-treated T-7 DNA—Digestion of T-7
DNA with DNase I was carried out in a reaction mixture (0.56
ml) containing 0.1 mM Tris-acetate (pH 8.2); 2 mM MgCl₂; 4 mM
2-mercaptoethanol; 175 nmole of T-7 DNA; and 2.5 µg of DNase
I. Incubation was for 5 min at 30°C followed by heating at 65°C
for 10 min. Digestion with micrococcal nuclease (2.5 µg) was
in an identical reaction mixture except that 2 mM CaCl₂ replaced
MgCl₂. Subsequent treatment with exonuclease III was
performed in the reaction mixture as described for the assay of DNA
polymerase III except that calf thymus DNA and ethanol were
omitted. Exonuclease III (10 units) and 10 nmole of "ac-
tivated" T-7 DNA were added, and after 5 min at 30°C, the re-
combination was terminated by heating at 65°C for 10 min.

Preparation of [P³²P]pdT(pdT)s—Unlabeled, chemically syn-
thetized (pdT)₁₀ was dephosphorylated with 0.2 unit of alkaline
phosphatase in a reaction mixture (0.15 ml) containing 60 mM
Tris-acetate (pH 8.2); and 50 nmole of (pdT)₁₀. After 30
min at 65°C the incubation mixture was cooled to 0°C and made 10%
in trichloroacetic acid by the addition of cold 50% trichloroacetic
acid. After 30 min, the precipitate was removed by centrifugation
for 10 min. Digestion with micrococcal nuclease (2.5 µg) was
in an identical reaction mixture except that 2 mM CaCl₂ replaced
MgCl₂. Subsequent treatment with exonuclease III was
performed in the reaction mixture as described for the assay of DNA
polymerase III except that calf thymus DNA and ethanol were
omitted. Exonuclease III (10 units) and 10 nmole of "ac-
tivated" T-7 DNA were added, and after 5 min at 30°C, the re-
combination was terminated by heating at 65°C for 10 min.

Preparation of [P³²P]pdT(pdT)s—Unlabeled, chemically syn-
thetized (pdT)₁₀ was dephosphorylated with 0.2 unit of alkaline
phosphatase in a reaction mixture (0.15 ml) containing 60 mM
Tris-acetate (pH 8.2); and 50 nmole of (pdT)₁₀. After 30
min at 65°C the incubation mixture was cooled to 0°C and made 10%
in trichloroacetic acid by the addition of cold 50% trichloroacetic
acid. After 30 min, the precipitate was removed by centrifugation
and the supernatant was collected by centrifugation. The supernatant was collected by centrifugation.

TABLE I

Fraction	Units	Protein	Specific activity	Yield
I	5,449	11.0	1.10	100
II	6,048	3.4	2.2	110
III	3,080	10.0	14.4	57
IV	1,320	0.05	120	24
V	220	<0.01	>12,000	4

*Polymerase activity in the S100 measures DNA polymerase
III. Mutants defective in DNA polymerase III with normal
amounts of DNA polymerase II (14) have no measurable poly-
erase activity in the S100 fraction.

RESULTS

All steps were performed at 4°C and all buffers contained 50
mM 2-mercaptoethanol and 20% glycerol (v/v). The purifi-
cation is designed for 100 g of cell paste. A summary of the
purification is given in Table I.

S100—Preparation of the S100 cell-free extract was described
(6). The S100 (200 ml) was brought to 20% glycerol by the
addition of glycerol (30 ml) and brought to 400 ml by the
addition of 0.01 M potassium phosphate buffer, pH 6.5.

DEAE-cellulose I—This procedure was performed as previ-
sely described (6). The diluted S100 was brought to 0.2 M
(NH₄)₂SO₄ by the dropwise addition of saturated ammonium
sulfate, previously neutralized with NH₄OH. The sample was
applied to a column of DEAE-cellulose (7.1 x 10 cm) previously
equilibrated with 0.01 M potassium phosphate buffer, pH 7.5,
containing 0.2 M (NH₄)₂SO₄. The protein not adhering to the
column was collected in a single fraction (420 ml).

Ammonium Sulfate—The DEAE-cellulose fraction was brought
to 35% saturation by the addition of solid ammonium sulfate
(73.5 g) over a 30-min period. After an additional 30 min, the
precipitate was removed by centrifugation at 17,000 x g. To the
supernatant, solid ammonium sulfate (38.7 g) was added
during a 30-min period. After an additional 30 min, the pre-
cipitate was collected by centrifugation. The precipitate was
washed once with 50% saturated ammonium sulfate and then
dissolved in 0.02 M potassium phosphate buffer, pH 6.5 (Buffer
A). The ammonium sulfate fraction (21.4 ml) was dialyzed for
10 hours against 1 liter of Buffer A and the dialysis buffer was
changed once.

DEAE-cellulose II—The dialyzed ammonium sulfate fraction
was applied to a column of DEAE-cellulose (4.1 x 30 cm) previ-
sely equilibrated with Buffer A. A linear gradient, 0.02 to 0.3
M potassium phosphate, pH 6.5 with a total volume of 2 liters,
was applied immediately and 20 ml fractions were collected.
DNA polymerase activity eluted in two peaks. The first peak,
DNA polymerase II, eluted at a salt concentration of 0.1 M.²
DNA polymerase III emerged from the column at 0.15 M salt.
Fractons containing DNA polymerase III were pooled and
dialyzed against 2 liters of Buffer A for 10 hours.

Phosphocellulose—The dialyzed DEAE-cellulose fraction
(220 ml) was applied to a column of phosphocellulose (2.2 x 30
cm) previously equilibrated with Buffer A. After equilibration,
the column was washed with Buffer A. The column was then
eluted with Buffer B, pH 7.5 (20 ml). The column was then
dialyzed against 2 liters of Buffer A for 10 hours.

1 Concentrations of DNA are expressed as total nucleotide.

2 The sensitivity to thiol reagents, salt, anti-DNA polymerase
I antisemur, and chromatographic behavior of this enzyme
activity is consistent with known properties of DNA polymerase
II (6).
TABLE II

Properties of DNA Polymerase III

The reaction mixture and the details of the assay are described under "Methods."

Reactants	Incorporation (pmoles)
Complete system	<2
+ Ethanol (10% v/v)	112
− DNA	<2
− dATP, dGTP, dCTP	<2
− Mg++, + EDTA (3 mM)	<2
− 2 M 2-Mercaptoethanol + N-ethylmaleimide (10 mM)	<2
+ KCl (0.15 M)	<2
+ DNase (15 μg per ml)	<2

Effect of Ionic Strength on Rate of Reaction—DNA polymerase III activity is sensitive to the ionic strength of the reaction mixture. Activity was maximal at low ionic strength in a reaction mixture including the minimum amount of buffer required for pH maintenance, the minimum of base required to neutralize deoxynucleoside triphosphates, and ethanol (10% v/v). K⁺, NH₄⁺, and Na⁺ salts strongly inhibited DNA polymerase III activity at concentrations above 100 mM; 50 mM KCl reduced the rate of polymerization by 50%. Ethanol relieved the salt inhibition and can restore enzyme activity partially reduced by the presence of salt. As shown in Fig. 2, the response to salt and to ethanol distinguishes DNA polymerase III from DNA polymerases I and II.

Template Requirement of DNA Polymerase III

DNA polymerase III requires the presence of a DNA template, and the incorporation of nucleotide residues is abolished by DNase (Table II). The rate of nucleotide incorporation by DNA polymerase III is also sensitive to the nature of the template. Linear, duplex T-7 DNA, and denatured T-7 DNA are inert as templates. Limited digestion of native T-7 DNA with either pancreatic DNase or micrococcal nuclease does not render the DNA active as a template. Thus, synthesis cannot initiate at the site of single-stranded scissions in native DNA. The sequential action of DNase I or micrococcal nuclease and exonuclease III removes nucleotides from the 3' end of a single-stranded scission, leaving a 3'-hydroxyl-terminated, single-
was added to standard reaction mixtures, unsupplemented with 0.04 unit of DNA polymerase II (C- - -C), or 0.1 unit of DNA polymerase III (O-O). Incubations were performed under ethanol and containing 0.4 unit of DNA polymerase I (n---a), ethanol, containing DNA polymerase I (a-a), DNA polymerase III digestion. Can DNA polymerase III initiate synthesis de novo, in the absence of a primer strand? Studies with the single-stranded, synthetic polydeoxynucleotides (dA)n, (dC)n, (dT-dG)n, and single-stranded, circular M13 DNA indicate that single-stranded DNA does not support synthesis by DNA polymerase III. The failure of DNA polymerase III to utilize the polymers as template suggests that DNA polymerase III is incapable of de novo chain initiation with any of the four common deoxyribonucleoside triphosphates. That single-stranded circles are inactive as well indicates that the failure of DNA polymerase III to utilize single-stranded polymers as template is not a consequence of exomucelic degradation.

The template-primer requirements of DNA polymerase III to the known properties of DNA polymerases I (20) and II (6, 10). The sequential digestion of DNA by DNase I and exonuclease III yields the most active template primer for synthesis studied to date. DNA polymerase III performs the same "repair" reaction on DNA extensively degraded by DNase I, although this template is less than 40% active relative to the best "gapped" templates studied.

Kinetics of Synthesis

Under the conditions of the stranded assay, DNA polymerase III catalyzes a "repair" type synthesis. Both the initial rate and the final extent of the reaction are determined by the template. When an excess of "gapped" DNA was used, the initial rate of incorporation of TMP residues was directly proportional to enzyme concentration (0.006 to 0.24 units). However, under standard assay conditions (30°), synthesis was linear with time for only 10 mm and continued at a decreasing rate thereafter. At 37° all synthesis ceased after 10 min of incubation. Addition of more DNA is without effect, while addition of more enzyme resulted in the resumption of synthesis. These results indicate that curtailment of synthesis can be independent of DNA concentration, and is not due to the saturation of available substrate. These observations suggest that the enzyme is labile in the reaction mixture. Sensitivity of DNA polymerase III activity to incubation was not overcome by the addition of bovine serum albumin (1 mg per ml) or by the addition of a sulfhydryl-reducing agent. The proposed lability of DNA polymerase III is further substantiated by the observation that at 32°, in the presence of 20% glycerol and excess substrate, incorporation was linear for at least 23½ hours (Fig. 4).

As shown in the inset to Fig. 4, the initial rate of the reaction increases with temperature between 15° and 37°. A 1.5-fold increase in the rate of incorporation at 37° relative to 30° was observed.

Primer Requirement

As shown in Table III, DNA polymerase III is most effective in repairing single-stranded regions generated by exonuclease III digestion. Can DNA polymerase III initiate synthesis de novo, in the absence of a primer strand? Studies with the single-stranded, synthetic polydeoxynucleotides (dA)n, (dC)n, (dT-dG)n, and single-stranded, circular M13 DNA indicate that single-stranded DNA does not support synthesis by DNA polymerase III. The failure of DNA polymerase III to utilize the polymers as template suggests that DNA polymerase III is incapable of de novo chain initiation with any of the four common deoxynucleoside triphosphates. That single-stranded circles are inactive as well indicates that the failure of DNA polymerase III to utilize single-stranded polymers as template is not a consequence of exomucelic degradation.

The synthetic polymers can be
Fig. 4. Kinetic analysis of enzyme activity. Reaction mixtures (0.9 ml) contained 33 mM morpholinopropane sulfonic acid (pH 7.0); 13 mM MgCl₂; 15 mM 2-mercaptoethanol; 0.13 mM (each) dATP, dCTP, and dGTP; and 0.13 mM nmoles of [3H]TTP (50 cpm per pmole); ethanol, 10% (v/v); glycerol, 29% (v/v); 384 nmoles of morpholinopropane sulfonic acid (pH 7.0); 13 mM MgCl₂; 50 mM 2-mercaptoethanol; 0.13 mM [3H]TTP (200 cpm per pmole); 4 nmoles of (dA)₈; 1.6 nmoles of [32P]dTMP (1000 cpm per pmole); 60 μl of ethanol; and enzyme (1.2 units). The reaction mixture was previously heated at 100°C for 5 min before addition of enzyme. Incubation was at 25°C and 10-μl aliquots were withdrawn at the indicated times. Aliquots were chilled by addition to 200 μl H₂O, cold trichloroacetic acid was added, and acid-insoluble radioactivity was determined. The values reflect the total amount of product accumulated in the 0.6-ml reaction mixture.

Fig. 5. Sephadex filtration of poly(dA)-directed product. The oligonucleotide (pdT)₁₀ labeled at the 5' terminus with ³²P was used to prime poly(dA)-directed synthesis of (pdT)₁₀. The details of the reaction are given in the legend to Table V. At 80 min of incubation the reaction mixture (0.6 ml) was heated to 100°C for 5 min and subjected to filtration at 65°C on a column of Sephadex G-50 (1 X 110 cm). A portion (0.1 ml) was analyzed for ³²P (---) and for ³²P (——). The arrows mark the position of Blue Dextran and [³²P]pdT(pdT)₁₀ determined prior to application of the sample.

The role of the complementary oligonucleotide primer in polymer-directed synthesis was assessed through the use of selectively labeled oligonucleotides. The oligonucleotide, [³²P]pdT(pdT)₁₀, was prepared by sequential treatment of (pdT)₁₀ with alkaline phosphatase and, using [γ-³²P]ATP, with polynucleotide kinase. [³²P]pdT(pdT)₁₀ was used to prime poly(dA)-directed incorporation of [³²P]TMP. (pdT)₁₀ is soluble in 5% trichloroacetic acid (see Table V) and was eluted at 25°C of the bed volume on Sephadex G-50 (see Fig. 5). Polymer-directed synthesis using the oligonucleotide primer, [³²P]pdT(pdT)₁₀, rendered both ³²P and [³²P]TMP acid insoluble. After 80 min of

Table IV
Primer requirement of DNA polymerase III

Primer template	Incorporation of ³²P nucleotide	Incorporation of ³²H nucleotide
Gapped calf thymus DNA	122	122
(dT)₁₀	<1	2
(dA)₈ + (pdT)₁₀	160	160
(dC)₈ + (dG)₁₂₋₁₄	<1	1
(dC)₈ + (pdT)₁₀	<1	1
(dC)₈ + (pdG)₁₂₋₁₄	90	90
(dT-dG)₈	8.0	8.0
(dC-dA)₈	5.6	5.6
(dT-dG)₈ + (dC-dA)₈	112	112

The reaction mixture (0.6 ml) contained 33 mM morpholinopropane sulfonic acid (pH 7.0); 13 mM MgCl₂; 50 mM 2-mercaptoethanol; 0.13 mM (each) dATP, dCTP, and dGTP; and [³²P]TTP (200 cpm per pmole) of (dA)₈; 1.6 nmoles of [³²P]dTMP (1000 cpm per pmole); 60 μl of ethanol; and enzyme (1.2 units). The reaction mixture was previously heated at 100°C for 5 min before addition of enzyme. Incubation was at 25°C and 10-μl aliquots were withdrawn at the indicated times. Aliquots were chilled by addition to 200 μl H₂O, cold trichloroacetic acid was added, and acid-insoluble radioactivity was determined. The values reflect the total amount of product accumulated in the 0.6-ml reaction mixture.
and counted in Bray’s solution. Norit nonadsorbable material was collected saturated sodium pyrophosphate. After 5 min at 0°, the Norit drops of 25% Norit, 20 µl of 5% trichloroacetic acid, and 10 µl of activity adsorbable to Norit was removed by the addition of 2 nmoles of calf thymus DNA and 5% trichloroacetic acid. Radioinsoluble radioactivity was determined after the addition of 40 µg of calf thymus DNA and, where indicated, 2 µg of alkaline phosphatase. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid. Acid-insoluble oligonucleotides was determined from the addition of 40 µg of calf thymus DNA and 5% trichloroacetic acid.

The ability to quantitate the amount of primer active in chain elongation permits the examination of the mechanism of chain elongation by DNA polymerase III. In the experiment described above, 80 pmoles of oligonucleotide primer molecules were used in chain extension. Yet the 0.8 unit of enzyme present should not exceed 1 pmole of enzyme molecules. These results indicate that one enzyme molecule is capable of extending more than one DNA primer molecule under these conditions. We cannot, however, conclude from these results with what frequency the enzyme remains attached to the chain which it has just extended.

DISCUSSION

We have previously shown that DNA polymerase III performs an essential function in DNA replication (14). E. coli strains with thermosensitive mutations at the dnaE locus are temperature sensitive for DNA synthesis and for viability. DNA polymerase III is mutationally altered in these strains; both polymerases I and II are normal. We have concluded from these results that both DNA polymerase I and II are unrelated to DNA polymerase III and that DNA polymerase III is essential for viability, independent of the presence of DNA polymerases I and II. The present communication represents an attempt to assess the distinctive functions of DNA polymerase III through an examination of both its general properties and its catalytic capabilities.

Perhaps the most distinctive feature of DNA polymerase III is the rate at which it can synthesize DNA. Contrary to previous reports that extracts from the Pol A mutant retain less than 1% the DNA-polymerizing capacity of wild type E. coli (1, 5-10), we now find that cell-free extracts of the Pol A mutant, assayed under conditions optimal for DNA polymerase III activity, possess DNA-synthesizing activity approximately equal to that amount measured in Pol+ cells. Purification of this activity permits the evaluation of the mechanism of its catalysis. Our most highly purified preparations of DNA polymerase III have a specific activity in excess of 60,000 units per mg of protein. From polyacrylamide gel analysis, we judge this preparation to be approximately 33% pure. Assuming that the purity is 33% and that the molecular weight is approximately 140,000, an approximate estimate can be made both of the rate of nucleotide incorporation per molecule of enzyme and of the number of DNA polymerase III molecules per E. coli cell. There are approximately 10 molecules of DNA polymerase III per bacterial cell; the rate of nucleotide incorporation at 30° is in excess of 15,000 nucleotides per min, per molecule of DNA polymerase III. (This measurement is limited to templates studied to date.) Relative to DNA polymerases I and II, of which there are approximately 400 (21) and 100 (6) molecules, respectively, per bacterial cell, the rate of synthesis by DNA polymerase III is greater than the rate of synthesis catalyzed by DNA polymerases I and II by a factor of 15 and 300, respectively. The total activity of DNA polymerase III is sufficient to account for the in vivo rate of replication.

Several groups of investigators have reported that a nonionic detergent was necessary to obtain DNA polymerase II from extracts of E. coli (8, 9). We have not observed such a requirement. We have previously reported that both DNA polymerases II and III can be obtained from French pressure cell lysates, and now report that this method yields DNA polymerase III activity in amounts sufficient to account for the in vivo rate of replication. Recently, Wickner et al. (10) have isolated DNA polymerase II from cells lysed by alumina grinding, confirming the observation that detergent treatment is not required for the isolation of DNA polymerase II. Thus, DNA polymerases II and III, like DNA polymerase I (21), can be obtained in soluble form without sonication or detergent treatment, suggesting that procedures disruptive to membranes are not required to yield soluble enzyme.

DNA polymerase III can be distinguished from DNA polymerases I and II by virtue of a low pH optimum, a requirement for high concentrations of sulfhydryl reagent, sensitivity to salt, and stimulation by ethanol. The apparent Kₘ for deoxynucleoside triphosphates is greater than the levels required for the saturation of DNA polymerases I and II. DNA polymerase III closely resembles DNA polymerases I and II with regard to its catalytic properties. DNA polymerase III is not capable of de novo chain initiation using either single-stranded synthetic polynucleotides or single-stranded circular DNA as templates. Both can be rendered active if a primer (ribo or deoxyribo) with a free 3’-hydroxyl is provided. Synthesis can proceed in the 5’ to 3’ direction by covalent linkage of

TABLE VI

Fraction	Label	No treatment	Treatment with alkaline phosphatase
Norit-nonadsorbable	³²P	60	2645
Norit-nonadsorbable	³H	27	24
Acid-insoluble	³²P	1831	57
Acid-insoluble	³H	6708	6220

6 T. Kornberg and M. L. Gefter, unpublished observations.
the product to the 3'-hydroxyl end of the primer. Although elongation of primers in the 5' direction has not been observed, we cannot conclude that DNA polymerase III is incapable of carrying out synthesis in the 3' to 5' direction. Such an event may require a triphosphate moiety at the 5' terminus (22), and this possibility is currently being explored.

As has been observed with DNA polymerases I and II, preparations of DNA polymerase III possess an associated nuclease which catalyzes the degradation of single-stranded DNA exonucleolytically from the 3' end. In studies which are not reported here, the nuclease activity was found to be inactive with double-stranded DNA; its catalytic requirements resembled those described for the polymerizing capacity of DNA polymerase III (i.e. sensitivity to sulfhydryl reagents and to salt). The rate of nucleotide removal is in excess of 5000 nucleotides per min per enzyme molecule.

The template requirements of DNA polymerase III suggest a strong similarity to DNA polymerase II. Neither enzyme, in contrast to DNA polymerase I, can utilize single-stranded natural DNA templates or DNA with single strand scissions. None of the polymerases can achieve the replication of native, duplex DNA. All perform a "repair" function with greatest efficiency.

Thus, the catalytic properties of DNA polymerase III do not establish its identity as a polymerase distinctly different from either DNA polymerase I or II, nor do they suggest the role of DNA polymerase III in DNA metabolism. The only properties which clearly differentiate DNA polymerase III from DNA polymerases I and II are its requirement for low ionic strength and ethanol as well as a rapid rate of nucleotide incorporation. Although DNA polymerase III has not been observed to initiate strands de novo, to replicate double-stranded DNA, or to carry out synthesis in the 5' direction, it may be naive to expect a single enzyme to do so. The distinctive features of this DNA polymerase may lie in its ability to cooperate with other proteins functioning in DNA replication.

REFERENCES

1. De Lucia, P., and Cairns, J. (1969) Nature 224, 1164
2. Smith, D. W., Schaller, E., and Bonhoeffer, F. J. (1970) Nature 226, 711
3. Knippers, R., and Stahl, W. (1970) Nature 226, 715
4. Okazaki, R., Sugimoto, K., Okazaki, T., Imae, Y., and Segino, A. (1970) Nature 228, 223
5. Kornberg, T., and Gutfert, M. L. (1970) Biochem. Biophys. Res. Commun. 40, 1340
6. Kornberg, T., and Gutfert, M. L. (1971) Proc. Natl. Acad. Sci. U. S. A. 68, 761; (1971) Fed. Proc., 30, 1110
7. Gutfert, M. L., Molinex, I. J., Kornberg, T., and Khorana, H. G. (1972) J. Biol. Chem. 247, 1110
8. Moses, R., and Richardson, C. C. (1970) Proc. Natl. Acad. Sci. U. S. A. 67, 574; Biochem. Biophys. Res. Commun. 41, 1565
9. Knippers, R. (1970) Nature 225, 1050
10. Wicker, R. B., Ginsberg, B., Beckower, I., and Hurwitz, J. (1972) J. Biol. Chem. 247, 1110
11. Monk, M., Peacey, M., and Gross, J. D. (1971) J. Mol. Biol. 58, 625
12. Gross, J. D., Grunstein, J., and Witkin, E. M. (1971) J. Mol. Biol. 58, 631
13. Klein, A., and Neibach, U. (1971) Nature 234, 82
14. Gutfert, M. L., Hirota, Y., Kornberg, T., Wechler, J. A., and Barnoux, C. (1971) Proc. Natl. Acad. Sci. U. S. A. 68, 1315
15. Nusslein, V., Otto, B., Bonhoeffer, F., and Schaller, J. (1971) Nature 234, 255
16. Jonin, T. M., England, P. T., and Bertsch, L. L. (1969) J. Biol. Chem. 244, 2060
17. Kato, K., Goncalves, J. M., Pouls, G. E., and Bollum, F. J. (1967) J. Biol. Chem. 242, 2765
18. Richardson, C. C., and Kornberg, A. (1964) J. Biol. Chem. 239, 242
19. Bucher, T. (1947) Biochim. Biophys. Acta 1, 292
20. Kornberg, A. (1969) Science 163, 1410
21. Richardson, C. C., Schilkraut, C. L., Apostian, H. V., and Kornberg, A. (1964) J. Biol. Chem. 239, 222
22. Cozzarelli, N. R., Kelly, R. B., and Kornberg, A. (1969) J. Mol. Biol. 45, 513
