Groundwater arsenic removal using granular TiO$_2$: integrated laboratory and field study

Jinli Cui · Jingjing Du · Siwu Yu · Chuanyong Jing · Tingshan Chan

Received: 27 August 2014 / Accepted: 4 December 2014 / Published online: 18 December 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract High concentrations of arsenic (As) in groundwater pose a great threat to human health. The motivation of this study was to provide a practical solution for As-safe water in As geogenic areas using granular TiO$_2$ (GTiO$_2$). The kinetics results indicated that the As (III/V) adsorption on GTiO$_2$ conformed to the Weber-Morris (WM) intraparticle diffusion model. The Langmuir isotherm results suggested that the adsorption capacities for As (III) and As (V) were 106.4 and 38.3 mg/g, respectively. Ion effect study showed that cationic Ca and Mg substantially enhanced As (V) adsorption, whereas no significant impact was observed on As (III). Silicate substantially decreased As (V) adsorption by 57 % and As (III) by 50 %. HCO$_3^-$ remarkably inhibited As (V) adsorption by 52 %, whereas it slightly reduced As (III) adsorption by 8 %. Field column results demonstrated that ~700 μg/L As was removed at an empty bed contact time (EBCT) of 1.08 min for 968 bed volumes before effluent As concentration exceeded 10 μg/L, corresponding to 0.96 mg As/g GTiO$_2$. Two household filters loaded with 110 g GTiO$_2$ in the on-off operational mode can provide 6-L/day As-safe drinking water up to 288 and 600 days from the groundwater containing ~700 μg/L As and ~217 μg/L As, respectively. Integration of batch experiments and column tests with systematic variation of EBCTs was successfully achieved using PHREEQC incorporating a charge distribution multisite complexation (CD-MUSIC) model and one-dimensional reactive transport block.

Keywords Groundwater arsenic · Granular TiO$_2$ · Adsorption · Empty bed contact time · CD-MUSIC · PHREEQC · XANES

Introduction

High arsenic (As) in groundwater poses a severe health risk to 100 million people worldwide (Fendorf et al. 2010; Rodriguez-Lado et al. 2013). To provide As-safe drinking water, the groundwater in deep aquifers (>150 m) is suggested as an alternative source (Michael and Voss 2008). However, such large-scale exploitation could facilitate the downward migration of As-enriched shallow groundwater and ultimately contaminate the deep aquifers (Erban et al. 2013). Thus, the practical solution relies on effective and efficient As removal technologies in geogenic As areas.

As a cost-effective and user-friendly technique, adsorptive filtration is widely used in fixed bed columns without chemical addition (Ali et al. 2014; Dou et al. 2013; Kanematsu et al. 2012; Zeng et al. 2008). As summarized in Table S1 in the electronic supplementary material, iron-based adsorbents are some of the most commonly used media in As treatment. However, soluble iron may increase As toxicity (Chandrasekaran et al. 2010; Liu et al. 2013). Recently, a TiO$_2$-based adsorbent demonstrated its advantage in As...
removal due to its chemical stability and high specific affinity to As (Bang et al. 2005; Hristovski et al. 2008; Jing et al. 2009; Luo et al. 2010). Therefore, granular TiO_2 (GTiO_2) was adopted in our approach to remove high As in groundwater from geogenic areas.

Coexisting ion effects on As removal are usually evaluated using synthetic water. Cationic calcium (Ca^{2+}) and magnesium (Mg^{2+}) generally facilitate As (V) adsorption, while exhibiting a negligible or insignificant effect on As (III) (Kanematsu et al. 2013; Stachowicz et al. 2008). On the other hand, coexisting anions such as phosphate (P), silicate (Si), and bicarbonate (HCO_3^-) can suppress As adsorption (Meng et al. 2000; Stachowicz et al. 2008; Zhao and Guo 2014). Though the effect of coexisting ions has been widely studied in batch systems, the compounded influence on As removal in GTiO_2 columns is still not fully understood (Bang et al. 2005).

Extensive research has successfully employed adsorptive columns to remove As from groundwater (Table S1). However, three main challenges still remain that warrant further investigation. First, the As concentrations in previous studies averaged 98.6±152.2 μg/L (n=82, Table S1 and Fig. S1). Very few studies employed high groundwater As levels (~500 to ~1000 μg/L) (Luo et al. 2012; Zhao et al. 2014), which could rapidly saturate the capacity of adsorbents (Kanematsu et al. 2012; Li et al. 2012). Second, systematic study on the influence of variation of empty bed contact time (EBCT) has been limited, though EBCT can regulate As breakthrough curves (Zeng et al. 2008). Third, the parameters obtained from batch adsorption results should be used with caution when designing column experiments (Jeppu et al. 2012; Zhang and Selim 2006). These challenges motivate us to explore the effect of EBCT in treating elevated As groundwater and to integrate batch and column results.

The objective of this study was to evaluate As removal from elevated As groundwater using a series of EBCTs in GTiO_2 columns. Four major interfering ions were identified, Ca^{2+}, Mg^{2+}, Si, and HCO_3^-, and their effects on As removal were investigated under systematic variation of EBCTs using PHREEQC modeling. This geochemical model (Parkhurst and Appelo 2013), integrating batch adsorptive reactions with one-dimensional reactive transport, accurately predicts the As removal process in column experiments.

Materials and methods

Materials

Stock solutions were prepared with reagent grade NaAsO_2, Na_3AsO_4·12H_2O, NaCl, Na_3SiO_4·9H_2O, CaCl_2, MgCl_2·6H_2O, NaHCO_3, NaOH, and HCl (Sinopharm Chemical Reagent Co. Ltd., China). GTiO_2 was obtained using our reported method (Jing and Cui 2011). Geogenic groundwater #1 from a rural well containing ~700 μg/L As at pH 8.20±0.06 (Table S2) was used in batch and column experiments on site in Shanxi, China. The synthetic water (Table S3) was prepared using boiled deionized (DI) water with N_2 purging to remove dissolved O_2. The synthetic water was adjusted to pH 8.2 according to groundwater #1.

Batch experiments

To study the kinetics of As adsorption, batch experiments were performed by mixing 800-μg/L As (III/V) solution at pH 8.2 with 0.2 g/L GTiO_2 in a 1-L beaker wrapped with aluminum foil. Samples were taken at designed time intervals and passed through a 0.22-μm membrane filter for soluble As analysis. The adsorption kinetics was simulated using Weber-Morris (WM) intraparticle diffusion model: \(q_t = k_t t^{0.5} + b \), where \(k_t \) is the amount of adsorbed As (mg/g) at time t (h), \(k_p \) (mg/g/h^{0.5}) is the equilibrium rate constant for intraparticle diffusion, and b (mg/g) is the constant depicting the boundary layer effects (Dou et al. 2013).

To investigate As removal capacity on GTiO_2, adsorption isotherms were conducted by adding increasing amounts of As (III) and As (V) in 0.1 M NaCl at pH 8.2 with 1 g/L GTiO_2. The suspension samples were mixed on a rotator for 6 days based on kinetics results. The adsorption capacity of GTiO_2 was calculated using the Langmuir equation: \(C_e q_e = 1/q_m b + C_e/q_m \), where \(C_e \) (mg/L) is the equilibrium concentration of As (III) or As (V), and \(q_e \) (mg/g adsorbent) is the adsorbed amount of As (III) or As (V); \(q_m \) (mg/g) and b (L/mg) are the fitting parameters representing the maximum adsorption capacity and the adsorption affinity constant, respectively.

To investigate the effect of cations on As removal, a series of Ca^{2+} and Mg^{2+} concentrations were added with 800 μg/L As (III/V) in 0.1 M NaCl at a cation/As molar ratio varying from 0 to 1200. The solution was then mixed with 0.1 g/L GTiO_2 at pH 8.2 for 6 days. To explore anion effect, Si (8.9 mg/L) and HCO_3^- (388 mg/L) were added at similar levels as in groundwater #1 (Table S2). Ca^{2+}, Mg^{2+}, Si, and HCO_3^- were simultaneously added to investigate their coexisting effects on As removal.

The dose effect of GTiO_2 on As removal from groundwater #1 was performed in the field. Different dose of GTiO_2 was used to remove 800 μg/L As (III/V) in 0.1 M NaCl at pH 8.2 in the laboratory.

Field column studies and household pitcher application

The field column studies were performed using columns with diameter of 2.3 cm and length of 6.9 cm loaded with 26.2 g GTiO_2, resulting in a bed volume (BV) of 28.5 mL. The design parameters were determined according to the following equation: \(EBCT = V_{empty}/Q \), where Q is the water flow rate (mL/min), \(V_{empty} \) is the volume of the empty bed (mL) (Zeng...
et al. 2008). The designed EBCT was 0.11, 0.22, 0.32, 0.54, and 1.08 min, corresponding to a flow rate of 265.0, 132.5, 88.3, 53.0, and 26.5 mL/min, respectively. The upflow rate was controlled using a peristaltic pump (BT00-300 M, Longer, China).

To set up the column, groundwater was first slowly pumped into the column, and then, GTiO2 was cautiously poured into the column to eliminate the trapping of air bubbles. Glass wool was packed in the ends of the column to guarantee no loss of the adsorbent. The columns were wrapped with aluminum foil to prevent light exposure. Samples of groundwater and effluent were collected periodically, passed through a 0.22-μm membrane filter, and preserved in the dark with 5 % HCl at 4 °C (McCleskey et al. 2004). Random effluent sample was filtered through a speculation cartridge to separate As (III) and As (V) on site (Du et al. 2014a) and confirmed the absence of As speciation change during sample storage.

A cylindrical filter house (diameter=4.5 cm, length=8.5 cm) loaded with 110 g GTiO2 was installed in a water pitcher to treat As-tainted groundwater #1 and #2 (containing ~200 μg/L As in Table S2) from two wells. Generally, the water pitcher was used to filter 6 L of groundwater per day in an on-off operational mode.

Sample analysis

The As speciation and concentration were determined using high-performance liquid chromatography (HPLC) coupled with a hydride generation atomic fluorescence spectrometer (HG-AFS, Jitian, P. R. China). Briefly, online separation of As species was carried out with a Hamilton PRP-X100 anion exchange column, using 15 mM phosphate buffer at pH 6 as mobile phase at 1.0-mL/min flow rate. The detection limit was 1.7 μg/L for As (V) and 0.7 μg/L for As (III) (Cui et al. 2013).

Concentrations of dissolved Ca, Mg, Na, Si, K, Al, Fe, and Mn were determined using an inductively coupled plasma optical emission spectrometer (ICP-OES, Optima 8300, Perkin Elmer, US). Anions including F−, Cl−, NO3−, SO42−, and PO43− were measured using an ion chromatography system, DX-1100 (Dionex, US). Alkalinity was measured using the titration method.

Surface complexation and one-dimensional transport modeling

A charge distribution multisite complexation (CD-MUSIC) model with the triple plane option was used to describe the competitive As adsorption behaviors. The basic principles and modeling procedures have been well documented (Du et al. 2014b; Hiemstra and Van Riemsdijk 2006; Jing et al. 2012) and detailed in the electronic supplementary material.

The field column results were simulated using PHREEQC mode (version 3.0), which could integrate CD-MUSIC and transport block. Recently, PHREEQC has been applied in modeling pollutant adsorption and transport in one-dimensional columns importing well-founded thermodynamic database (Parkhurst and Appelo 2013). The water chemistry parameters, GTiO2 surface properties, adsorptive reactions of As and coexisting ions, and transport parameter modeling are detailed in the electronic supplementary material with a PHREEQC input file with explanation notes (Table S4).

Characterization

The surface morphology of GTiO2 was examined using a Hitachi S-3000 N scanning electron microscope (SEM) with an Oxford energy dispersive X-ray (EDS) analyzer. The BET surface area was determined using an automated surface area analyzer (Micromeritics ASAP 2000). X-ray powder diffraction (XRPD) data of GTiO2 were recorded on a Rigaku D/Max-2500 diffractometer at 40 kV, 100 mA using a Cu-target tube and a graphite monochromator. The analyses of the XRPD patterns were performed using the PDF-2 reference database from the International Center for Diffraction Data database. The As speciation on spent GTiO2 media in the field was analyzed using X-ray absorption near edge structure (XANES) spectroscopy at beamline 01C1 at the National Synchrotron Radiation Research Center (NSRRC), Taiwan. The sample preparation, data collection, and analysis are reported in the electronic supplementary material.

Results and discussion

Characterization of GTiO2

The particle size of GTiO2 was 60–80 mesh (0.18–0.25 mm) and is easier to be loaded in filtration columns than the nanoscale TiO2 particles (Luo et al. 2010). The media exhibited a porous structure and coarse surface as evidenced by the SEM image (Fig. S2a) and a surface area of 196 m2/g. The XRD analysis indicated that GTiO2 was in anatase form (Fig. S2b) according to the PDF-2 reference database.

As (III/V) adsorption results

The kinetics results indicated that a rapid As (III/V) uptake on GTiO2 occurred for the first 5 h followed by a slow adsorption (Fig. 1a). The adsorption kinetics conformed to the intraparticle diffusion model as described by the WM equation. The plots of q versus t0.5 implied the existence of two different processes from the steepness of the slope (Fig. 1b). The first step with a steep slope suggests external film
diffusion, whereas the second step with a flattened slope indicates that intraparticle diffusion is the rate-controlling process. The WM adsorption kinetics of GTiO$_2$ follows the behavior of porous media adsorption (Dou et al. 2013). As (III) exhibited a little faster external and intraparticle diffusion kinetics from the WM model (0.583 and 0.218 mg/g h$^{0.5}$, respectively, in Table S5) than As (V) (0.497 and 0.133 mg/g h$^{0.5}$), consistent with a previous report using GTiO$_2$ (Bang et al. 2005).

The maximum adsorption capacities were 106.4 mg/g for As (III) and 38.3 mg/g for As (V), as calculated with the Langmuir model (Fig. 2). In comparison with the widely used granular adsorbent in previous reports (Table S6), GTiO$_2$ demonstrated a better As removal efficiency, especially for As (III).

Dose effect on As (III/V) removal using synthetic water and groundwater

Higher dose of GTiO$_2$ resulted in a better As removal in 0.1 M NaCl solution and real groundwater #1 (Fig. 3), which should be due to the increased adsorbent surface area (Ali et al. 2014). Nevertheless, groundwater matrices substantially inhibited As (V/III) adsorption in comparison with that in 0.1 M NaCl at the same dose. The inhibition should be attributed to the competitive adsorption of Si and HCO$_3^-$ (Kanematsu et al. 2013; Stachowicz et al. 2008). Although phosphate (P) in groundwater has a significant negative effect on As adsorption (Kanematsu et al. 2013; Zeng et al. 2008), the low P concentration in groundwater #1 (<20 μg/L) and groundwater #2 (80 ±40 μg/L) could lead to neglected influence on As adsorption in comparison with Si. This hypothesis was justified by a previous study that Si (9.5 mg/L) exhibited a more negative effect than P when the P concentration (39 μg/L) is no higher than As (100 μg/L) (Kanematsu et al. 2012; Zeng et al. 2008).

The adsorption curves of As (III) and As (V) were well simulated using the CD-MUSIC model (Fig. 3). The modeling results indicated that in 0.1 M NaCl, the extended contact time of 6 days resulted in a logK value of 5.1 for As (III) and 26 for As (V). The logK values obtained with 6-day contact time were higher than those of 4.0 for As (III) and 23.3 for As (V), respectively, with a short contact time of 6 h. This observation is in agreement with a recent report that the logK of As (V) adsorption on ferrihydrite was linearly increased as a function of adsorption time (Swedlund et al. 2014). The change in logK value reflects the slow kinetics of As adsorption to reach equilibrium due to intraparticle diffusion in the porous adsorbent. In groundwater #1 at 6 h, the logK values of As (III) and As (V) adsorption were 6.6 and 21.8, respectively. These logK values are different from those in 0.1 M NaCl solution, which may be ascribed to the influence of coexisting ions.

The adsorption of coexisting Ca, Mg, and Si in groundwater on GTiO$_2$ was also well simulated using the CD-MUSIC model (Fig. S3). Their adsorption constants (Table S7) were employed in the simulation of As adsorption in 0.1 M NaCl solution with coexisting cations and anions.

Coexisting ion effect on As (III/V) adsorption

Increasing concentrations of Ca$^{2+}$ and Mg$^{2+}$ elevated As (V) adsorption on GTiO$_2$ (Fig. 4). The molar ratio of Ca$^{2+}$/As (V) and Mg$^{2+}$/As (V) in groundwater was 251 and 1116 (black dashed lines in Fig. 4), respectively, which enhanced As (V) adsorption by 37 and 42 %. The enhancement of As (V) by cationic ions should be caused by the electrostatic attraction (Kanematsu et al. 2013; Stachowicz et al. 2008). In contrast to
As (V), As (III) adsorption was not affected in the presence of Ca\(^{2+}\) and Mg\(^{2+}\), which is in accordance with a previous study (Kanematsu et al. 2013).

Si substantially decreased the adsorption of As (III) by 50\% from 6.0 to 3.0 mg/g and that of As (V) by 57\% from 4.9 to 3.0 mg/g (Fig. 5). HCO\(_3\)\(^-\) significantly inhibited As (V) adsorption by 52\% from 5.0 to 2.4 mg/g. In contrast, As (III) adsorption declined by only 8\%, in line with a previous study (Maiti et al. 2013). The similar molecular structures of Si and HCO\(_3\)\(^-\) to As (III/V) anions enable their analogous adsorption behaviors, which is of crucial importance in As treatment practice (Kanematsu et al. 2013; Meng et al. 2000; Stachowicz et al. 2008).

The confounding effects of cations and anions on As adsorption were investigated, and the results demonstrate that the coexisting ions exhibited not a simple summation of individual ion effects but a compromise between them (Fig. 5). Such a postulation was justified by a previous study showing that the interference of Ca\(^{2+}\) or Mg\(^{2+}\) with HCO\(_3\)\(^-\) results in a lower effect on As adsorption/desorption on ferrihydrite than would be expected from their competitive effects alone (Saalfield and Bostick 2010). Anions including Si and HCO\(_3\)\(^-\) in groundwater usually are neutralized with divalent cations such as Ca\(^{2+}\) and Mg\(^{2+}\), which would lead to positive influences in As treatment practice (Meng et al. 2000). Thus, this confounding observation suggested that the interference of one single ion could be masked or eliminated due to other coexisting ions with stronger effects (Kanematsu et al. 2013; Zeng et al. 2008).

The adverse effects of anions on As adsorption were simulated using CD-MUSIC modeling and were in close agreement with the experimental observations (Fig. 5 and Table S7–8). Moreover, the simultaneous effect of Ca\(^{2+}\), Mg\(^{2+}\), Si, and HCO\(_3\)\(^-\) on As removal can be well modeled. For example, As (III) and As (V) loads of 3.51±0.06 and 2.67±0.26 mg/g were experimentally observed, respectively, whereas the corresponding model predictions were 3.51 and 2.69 mg/g. In the modeling process, though the adsorption constants of As and coexisting ions were employed from dose effect (Fig. 3 and Table S7), some fine-tuning of As charge distribution \(f\) to the TiO\(_2\) surface has to be adapted (Table S8). The change should be affected by the coadsorbed ions, which could affect the electric double layer on TiO\(_2\) surface. These satisfactory modeling results attest to the effective application of CD-MUSIC in predicting As adsorptive column breakthrough curves.

Field column results

To evaluate the effect of various EBCTs (0.11 to 1.08 min) on As removal efficiency, field column studies were conducted using ~700-\(\mu\)g/L As groundwater #1 (Fig. 6). Generally, extended As breakthrough was observed using high EBCT, consistent with previous reports (Hristovski et al. 2008; Zeng 2008).
et al. 2008). The number of BV before the effluent As concentration exceeded 10 μg/L (BV 10) exhibited a clear linear increase as a function of EBCT ($R^2=0.997$, Fig. 7a).

The adsorbed As at BV 10, calculated from mass balance using the breakthrough curves, linearly increased from 0 to 0.96 mg/g with EBCT increasing from 0.11 to 1.08 min (Fig. 7b). The increasing of adsorbed As was also confirmed by EDS analysis of the spent GTiO2 after column experiments (Fig. S4a). In agreement with our batch kinetics study (Fig. 1), this linear relationship confirms that extended contact time should facilitate the As mass transfer diffusion into GTiO2 pores and its access to adsorption sites (Badruzaman et al. 2004; Hristovski et al. 2008; Kanematsu et al. 2012).

The adsorbed As on GTiO2 (0.96 mg/g) with EBCT=1.08 min ranks well in comparison with other groundwater treatment studies (Table S1). Previous column studies usually employed low As groundwater (98.6±152.2 μg/L, n=82, median=51.5.0 μg/L, Table S1), resulting in an average adsorption load of 0.83±1.13 mg/g with a median value of 0.40 mg/g. However, the BV10 (968) at 1.08 min in our study was much lower than the average BV10 in other studies (17,262±16,032, median=11,250, Table S1). A recent column study reported that at EBCT=2 min, 10,500 BV groundwater can be treated when initial As is about 120 μg/L, whereas the BVs are appreciably reduced to 4300 with 410 μg/L As in the raw water (Li et al. 2012). These consistent results highlight
the challenge of treating groundwater with high As concentrations (>500 μg/L).

With increasing EBCT, both As (III) and As (V) exhibited lengthening of the breakthrough point at 10 μg/L, with a different extension (Fig. 6). For example, for EBCT = 0.32 min, As (III) displayed a faster breakthrough (BV10 = 247) than As (V) (BV10 = 741), whereas for EBCT = 1.08 min, As (III) showed a much slower breakthrough (BV10 = 2160) than As (V) (BV10 = 1029), though the adsorption of both was elevated. This observation indicates that more As (III) could be adsorbed on GTiO2 than As (V), given sufficient time such as in the isotherm results.

Furthermore, As speciation analysis on spent GTiO2 in the field column experiments using XANES revealed that 7–35 % of adsorbed As was in the As (III) form (Fig. 8), 6–52 % lower than the calculation from mass balance after filtration process (34–64 %). This difference indicates that the oxidation of adsorbed As (III) occurred during filtration due to trace amounts of dissolved oxygen in the groundwater (0.42±0.61 mg/L, Table S2), which is consistent with our previous observations (Jing et al. 2009). The oxidation from As (III) to As (V) may facilitate As stabilization because As (V) usually has a higher affinity than As (III) (Guan et al. 2012).

During filtration, Ca2+ and Mg2+ were also adsorbed on GTiO2 (Fig. S5a–b), and their loads increased with increasing EBCT from 0.11 to 1.08 min (Fig. 7c). The retention of Ca and Mg was evidenced by EDS analysis of the spent GTiO2 surface (Fig. S4b–c). As a result, the adsorbed Ca2+ or Mg2+ may enhance As adsorption due to electrostatic attraction. Interestingly, the Ca2+ load (311 mg/g at EBCT = 1.08 min) was higher than Mg2+ (171 mg/g), though Ca2+ concentration (39.1±2.1 mg/L, Table S2) was much lower than Mg2+ (104.3±4.2 mg/L) in groundwater #1. In agreement with our observations, Ca2+ was bound more strongly than Mg2+ in a study of a column packed with Mn oxide-coated sand (Appelo and Postma 1999). Conversely, Ca2+ showed weaker affinity than Mg2+ on goethite (Stachowicz et al. 2008) and E33 (Kanematsu et al. 2013) in batch experiments. Although these two cations may exhibit distinct adsorption behaviors themselves, probably due to the variations in adsorbents and
experimental conditions, they generally lead to positive effects on As removal.

In addition, the Si adsorption was also a function of EBCT (Fig. 7c), but with an earlier breakthrough point than As under the same EBCT (Fig. S5c). This result implies that Si transports more quickly than As in the column, consistent with a previous report (Kanematsu et al. 2012). Consequently, the adsorbed Si (Fig. S4d) could occupy and block TiO\textsubscript{2} adsorption sites earlier than As, decrease the pH\textsubscript{zpc} of TiO\textsubscript{2}, and significantly suppress As adsorption (Kanematsu et al. 2012).

One-dimensional reactive transport modeling for field column experiments

The groundwater chemistry, adsorptive reactions of As and coexisting ions, surface properties, and transport block parameters in the field columns can be included in the PHREEQC modeling (Table S4), and the As breakthrough curves can be calculated. As shown in Fig. 6, the general trend of the As modeling results agreed well with the experimental observations. This satisfactory agreement suggests that PHREEQC could successfully predict the As filtration process under a series of flow rates.

In these modeling runs, the transport properties of groundwater components and adsorption constants remained the same except for some fine-tuning of As adsorption parameters in the CD-MUSIC model (Table 1). The minute differences in the optimized adsorption constants (logK) among different columns reflect the slight variation in adsorption conditions. This fine-tuning approach is similar to previous studies where the parameters obtained from batch adsorption have to be modified to satisfactorily approximate the column data (Hanna et al. 2010; Jing et al. 2009). For example, the surface area had to be decreased to simulate a genitic acid transport process in hematite-coated sand column according to batch experiments due to inaccessibility of the reactive surface sites (Hanna et al. 2010).

Recently, As (III) breakthrough curves in a fixed bed with iron oxide-coated natural rock were well simulated using PHREEQC with the WATEQ4F database (Maji et al. 2012). On the other hand, the As transport process in an iron oxide-containing soil column could not be predicted using batch equilibrium adsorption parameters due to kinetic limitations (Williams et al. 2003). This limitation was mainly due to the fact that adsorption equilibrium at local micro-interfacial areas in a column is hard to reach without sufficient contact time (Zhang and Selim 2006). Thus, PHREEQC, derived from equilibrium conditions, could incorporate the kinetics block when elevating column modeling from batch experiments (Jeppu et al. 2012).

The CD-factor (f) is the charge distribution from the central As atom to the TiO\textsubscript{2} surface, reflecting the interfacial molecular structural information (Hiemstra and Van Riemsdijk 2006; Jing et al. 2009). The optimized f for As surface complexes was a function of EBCT (Table 1). For example, f increased from 0.50 to 0.66 for As (III), and from 0.40 to 0.50 for As (V) when EBCT increased from 0.11 to 1.08 min. This trend suggests the gradual transfer of As charge to the surface with increasing EBCT, which is attributable to the suppression of the electric double layer due to the increase of adsorbed ions with prolonged contact time.

Notably, when the effluent As (III/V) concentration exceeds 100 μg/L, the model may overestimate the effluent concentration (Fig. 6). This overestimation may be due to

Table 1 Optimized reaction parameters in PHREEQC modeling for field columns with a series of EBCTs

As adsorption reactions	0.11 min	0.22 min	0.32 min	0.54 min	1.08 min	LogK (Average±std)
	f*	logK	f*	logK	f*	logK
H\textsubscript{3}AsO\textsubscript{3}O\textsubscript{3} + 2Surf_sOH-0.33 = (Surf_sO\textsubscript{2})\textsubscript{2}AsO\textsubscript{3}OH-0.66 + 2H\textsubscript{2}O	0.50	18.0	0.66	16.0	0.66	16.1 ± 0.9
H+ + H\textsubscript{2}AsO\textsubscript{4}-2 + 2Surf_sOH-0.33 = (Surf_sO\textsubscript{2})\textsubscript{2}AsO\textsubscript{4}OH-1.66 + 2H\textsubscript{2}O	0.40	20.0	0.40	18.7	0.50	18.2 ± 0.8
H\textsubscript{2}AsO\textsubscript{4} + 2Surf_sOH-0.33 = (Surf_sO\textsubscript{2})\textsubscript{2}AsO\textsubscript{4}OH-1.66 + 2H\textsubscript{2}O	0.40	19.0	0.40	18.0	0.50	17.2 ± 0.8
2H+ + H\textsubscript{2}AsO\textsubscript{4}-2 + 2Surf_sOH-0.33 = (Surf_sO\textsubscript{2})\textsubscript{2}AsO\textsubscript{4}OH-1.66 + 2H\textsubscript{2}O	0.40	30.0	0.40	30.0	0.50	29.0 ± 1.0
H+ + H\textsubscript{2}AsO\textsubscript{4} + 2Surf_sOH-0.33 = (Surf_sO\textsubscript{2})\textsubscript{2}AsO\textsubscript{4}OH-1.66 + 2H\textsubscript{2}O	0.40	25.6	0.40	26.2	0.50	24.6 ± 1.0
TiOH2- (strong site)	10.0	15.0	15.0	15.0	15.0	–
Ti\textsubscript{2}O\textsubscript{2}-2- (weak site)	1.1	3.4	3.4	3.4	3.4	–
Cell length (m)	0.017	0.017	0.017	0.017	0.017	–
Time step (s)	1.0	1.9	2.9	4.8	9.7	–
Number of shifts	18567	40867	18946	10403	23343	–

f* : f represents the charge distribution factor of the As atom to the TiO\textsubscript{2} surface.
the unappreciated iron hydroxides generated in situ at circumneutral pH in the presence of iron in the raw groundwater. This explanation is justified by the fact that Fe was detected in the raw water (0.15 to 0.74 mg/L) but not in the effluent after filtration. These in situ formed iron surface sites could also contribute to As adsorption (Maiti et al. 2013). A similar observation was also reported in filtration experiments for groundwater As removal (Hug et al. 2008; Leupin et al. 2005).

Application: household pitcher

A household water pitcher with GTiO₂ was designed to treat As-contaminated groundwater from two wells. In groundwater #1 with ~700 μg/L As, 14,000 BVs (10.1 mg/g) were obtained before As breakthrough at 10 μg/L through 288 days (Fig. 9a). In groundwater #2 with ~217 μg/L As, 25,000 BV (7.8 mg/g) As-safe water was obtained for about 600 days (Fig. 9b). The much higher As adsorption in the household pitcher than that in field column results and literature reports (Table S1) could be attributed to its on-off operational mode. This on-off mode provides enough time for As to diffuse into the adsorbent pores and subsequently results in efficient As adsorption (Badruzzaman et al. 2004). This on-off operation matches the daily variability in household water demand. Nevertheless, the adsorbed As in the household filter is much lower than the adsorption capacity from the isotherm experiments. This difference should be attributed to the competition from coexisting anions in groundwater (Figs. 3 and 5) and the short contact time in filters to reach adsorption equilibrium (Williams et al. 2003; Zhang and Selim 2006).

To evaluate the social acceptability of the household filter, the cost of the filtered water was calculated to be CNY 0.03–0.06 (USD 0.0048–0.0096) per liter. The cost is acceptable in rural areas in Shanxi, because the per capita net income was CNY 7154 for one rural resident in 2013 (Shanxi Statistical Bureau 2014).

Furthermore, to reduce the arsenic-laden waste and cost of As removal, spent GTiO₂ media was regenerated by immersing in 5 M NaOH for 1 h and subsequently washing to neutral pH according to our previous report (Luo et al. 2010). The media was reused, and the results showed satisfactory As removal in treating about 8000 BVs (Fig. 9c). The regenerated solution was collected and recovered as solid by heating at 70 °C (Luo et al. 2010), resulting in no secondary pollution.

Conclusions

This study used granular TiO₂ media to remove geogenic As (III) and As (V) from groundwater. Our kinetics study shows that As adsorption follows a fast external film diffusion and then a slow intraparticle diffusion process. Ca²⁺ and Mg²⁺ enhanced As (V) adsorption, while exhibiting a slight adverse impact on As (III). Si severely decreased As (III/V) adsorption, and HCO₃⁻ significantly inhibited As (V) adsorption while slightly reducing As (III). Field systematic column studies show that longer EBCT may result in a higher As
removal efficiency, which is also confirmed by our kinetics results. The PHREEQC program well simulated systematic As breakthrough curves in field columns by integrating the CD-MUSIC model with one-dimensional reactive transport block. The household pitcher under on-off operational mode resulted in satisfactory As adsorption. Our approach provides a practical solution for supplying As-safe drinking water in As-contaminated areas.

Acknowledgments We thank Dr. David Parkhurst for the helpful discussion on PHREEQC modeling. We acknowledge the financial support of the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14020201), the National Science Foundation of China (41373123, 21337004), and RCEES (YSW2013A01).

References

Ali I, Al-Othman ZA, Alvarathan A, Asim M, Khan TA (2013) Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res 21(5):3218–3229
Appelo CAJ, Postma D (1999) A consistent model for surface complexation on biremersite (\(\text{MnO}_2\)) and its application to a column experiment. Geochim Cosmochim Acta 63(19–20):3039–3048
Badruzzaman M, Westerhoff P, Knappe DRU (2004) Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH). Water Res 38(18):4002–4012
Bang S, Patel M, Lippincott L, Meng XG (2005) Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 60(3):389–397
Chandrasekaran VRM, Muthaiyan I, Huang PC, Liu MY (2010) Using iron precipitants to remove arsenic from water: is it safe? Water Res 44(19):5823–5827
Cui JL, Shi JB, Jiang GB, Jing CY (2013) Arsenic levels and speciation from ingestion exposures to biomarkers in Shaxi, China: implications for human health. Environ Sci Technol 47(10):5419–5424
Dau XM, Mohan D, Pittman CU (2013) Arsenate adsorption on three types of granular schwertmannite. Water Res 47(9):2938–2948
Du JJ, Che DS, Zhang HF, Jing CY (2014a) Rapid on-site separation of As(III) and As(V) in waters using a disposable thiol-modified sand cartridge. Environ Toxicol Chem / SETAC 33(8):1692–1696
Du JJ, Jing CY, Duan JM, Zhang YL, Hu S (2014b) Removal of arsenate with hydrous ferric oxide coprecipitation: effect of humic acid. J Environ Sci-China 26(2):240–247
Erban LE, Gorelick SM, Zebker HA, Fendorf S (2013) Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc Natl Acad Sci U S A 110(34):13751–13756
Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328(5982):1123–1127
Guo XH, Du JS, Meng XG, Sun YK, Sun B, Hu QH (2012) Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 215:1–16
Hanna K, Ruch B, Lasbaterre L, Hofmann A, Humbert B (2010) Reactive transport of genitic acid in a hematite-coated sand column: experimental study and modeling. Geochim Cosmochim Acta 74(12):3351–3366
Hiemstra T, Van Riemsdijk WH (2006) On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J Colloid Interface Sci 301(1):1–18
Hristovski K, Westerhoff P, Crittenden J (2008) An approach for evaluating nanomaterials for use as packed bed adsorber media: a case study of arsenate removal by titinate nanofibers. J Hazard Mater 156(1–3):604–611
Hug SJ, Leupin OX, Berg M (2008) Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation. Environ Sci Technol 42(17):6318–6323
Jeppu GP, Clement TP, Barnett MO, Lee KK (2012) A modified batch reactor system to study equilibrium-reactive transport processes. J Contam Hydrol 129(2–9
Jing CY, Cui JL (2011) A synthesis method of granular TiO2 adsorbent for drinking water purification. 201111022984.X
Jing CY, Meng XG, Calvache E, Jiang GB (2009) Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environ Pollut 157(8–9): 2514–2519
Jing CY, Cui JL, Huang YY, Li AG (2012) Fabrication, characterization, and application of a composite adsorbent for simultaneous removal of arsenic and fluoride. ACS Appl Mater Interfaces 4(2):714–720
Kanematsu M, Young TM, Fukushima K, Green PG, Darby JL (2012) Individual and combined effects of water quality and empty bed contact time on As(V) removal by a fixed-bed iron oxide adsorbent: Implication for silicate precoating. Water Res 46(16):5061–5070
Kanematsu M, Young TM, Fukushima K, Green PG, Darby JL (2013) Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochim Cosmochim Acta 106:404–428
Leupin OX, Hug SJ, Badruzzaman ABM (2005) Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ Sci Technol 39(20):8032–8037
Li Y, Liu JR, Jia SY, Guo JW, Zhuo J, Na P (2012) TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chem Eng J 191:66–74
Liu S, Guo XC, Zhang XX, Cui YB, Zhang Y, Wu B (2013) Impact of iron precipitant on toxicity of arsenic in water: a combined in vivo and in vitro study. Environ Sci Technol 47(7):3432–3438
Luo T, Cui JL, Hu S, Huang YY, Jing CY (2010) Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol 44(23):9094–9098
Luo T, Hu S, Cui JL, Tian HX, Jing CY (2012) Comparison of arsenic geochemical evolution in the Datong Basin (Shanxi) and Hetao Basin (Inner Mongolia), China. Appl Geochem 27(12):2315–2323
Maiti A, Thakur BK, Basu JK, De S (2013) Comparison of treated laterite as arsenic adsorbent from different locations and performance of best filter under field conditions. J Hazard Mater 262:1176–1186
Maji SK, Kao YH, Wang CJ, Lu GS, Wu JJ, Liu CW (2012) Fixed bed adsorption of As(III) on iron-oxide-coated natural rock (IOCNR) and application to real arsenic-bearing groundwater. Chem Eng J 203:285–293
McCleskey RB, Nordstrom DK, Maest AS (2004) Preservation of water samples for arsenic(III/V) determinations: an evaluation of the literature and new analytical results. Appl Geochem 19(7):995–1009
Meng XG, Bang S, Korfiatis GP (2000) Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res 34(4):1255–1261
Michael HA, Voss CI (2008) Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc Natl Acad Sci U S A 105(25):8531–8536
Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey
Rodriguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater arsenic contamination throughout China. Science 341(6148):866–868

Saalfield SL, Bostick BC (2010) Synergistic effect of calcium and bicarbonate in enhancing arsenate release from ferrihydrite. Geochim Cosmochim Acta 74(18):5171–5186

Shanxi Statistical Bureau (2014) Per capita net income of farmers in Shanxi reaches 7154 CNY in 2013

Stachowicz M, Hiemstra T, van Riemsdijk WH (2008) Multi-competitive interaction of As(III) and As(V) oxyanions with Ca²⁺, Mg²⁺, PO₄³⁻, and CO₃²⁻ ions on goethite. J Colloid Interface Sci 320(2):400–414

Swedlund PJ, Holtkamp H, Song Y, Daughney CJ (2014) Arsenate-ferrihydrite systems from minutes to months: a macroscopic and IR spectroscopic study of an elusive equilibrium. Environ Sci Technol 48(5):2759–2765

Williams LE, Barnett MO, Kramer TA, Melville JG (2003) Adsorption and transport of arsenic(V) in experimental subsurface systems. J Environ Qual 32(3):841–850

Zeng H, Arashiro M, Giammar DE (2008) Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent. Water Res 42(18):4629–4636

Zhang H, Selim HM (2006) Modeling the transport and retention of arsenic (V) in soils. Soil Sci Soc Am J 70(5):1677–1687

Zhao K, Guo HM (2014) Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis. Environ Sci Pollut Res 21(3):1944–1953

Zhao K, Guo H, Zhou X (2014) Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: characterization and behaviors. Appl Geochem 48:184–192