Article

PD-1 and PD-L1 are diagnostic biomarkers and PD-L1 a promising therapeutic target in HER2-positive and triple negative normal-like feline mammary carcinoma subtypes

Catarina Nascimento1, Ana Catarina Urbano1, Andreia Gameiro1, João Ferreira2, Jorge Correia1, Fernando Ferreira1,*

1CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Departamento de Morfologia e Função, Avenida da Universidade Tecnica, 1300-477 Lisboa, Portugal;
2Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
*Correspondence: fernandof@fmv.ulisboa.pt (F.F.); Tel.: (+351) 21 365 2800 / Ext.: 431234 (F.F.)

Abstract: Tumor microenvironment has gained great relevance due to its ability to regulate distinct checkpoints mediators, orchestrating tumor progression. In order to understand the role of the PD-1/PD-L1 axis in cats with mammary carcinoma, serum PD-1 and PD-L1 levels were compared with healthy controls and with serum CTLA-4 and TNF-α levels. PD-1 and PD-L1 expression was evaluated in TILs and cancer cells, as the presence of somatic mutations. Results showed that serum PD-1 and PD-L1 levels were significantly higher in cats with HER2-positive (p=0.017; p=0.032) and triple negative (TN) normal-like mammary carcinomas (p=0.004; p=0.015). Besides, cats presenting these tumor subtypes showed a strong positive correlation between serum PD-1, PD-L1, CTLA-4 and TNF-α levels. In tumors, PD-L1 expression in cancer cells was significantly higher in HER2-positive samples than in TN normal-like tumors (p=0.010), as the percentage of PD-L1-positive TILs (p=0.038). Results from the PD-L1 gene sequencing identified two heterozygous mutations in exon 4 (A245T, 3.8%; V252M, 42.3%) and one in exon 5 (T267S, 3.8%). In summary, results support that serum PD-1 and PD-L1 levels can be used as diagnostic biomarkers of HER2-positive and TN normal-like feline mammary carcinomas and suggest that the development of monoclonal antibodies may be a good therapeutic strategy.

Keywords: Feline mammary carcinoma; PD-1; PD-L1; CTLA-4; TNF-α; biomarkers; immunotherapy

1. Introduction

Feline mammary carcinoma (FMC) is the third most common tumor in the cat. As in human breast cancer [1], FMC presents an aggressive and infiltrative behavior [2,3], with both HER2-positive and triple negative (TN) subtypes showing worse prognosis than luminal A and B subtypes. Thus, the identification of novel diagnostic biomarkers and therapeutic targets is needed, not only to improve the clinical outcome of cats with mammary carcinoma but also because FMC shares clinicopathological features and molecular classification with human breast cancer [1,4].

In humans, the role of the PD-1/PD-L1 axis is being investigated in different tumor types, with the PD-L1 expressed by tumor cells regulating T cell activity, promoting immune suppression and tumor escape. Recently, a monoclonal antibody that blocks PD-L1 binding to the PD-1 receptor on T cells was approved by the Food and Drug Administration (FDA) to treat different tumor types and also PD-L1 positive unresectable locally advanced and metastatic TN breast cancer [5,6]. The less studied serum PD-1 (sPD-1) and PD-L1 (sPD-L1) levels may also play an important role in anti-tumor immune responses. Studies in patients with breast cancer, lung cancer, metastatic melanoma and renal cell carcinoma reported higher sPD-1 or sPD-L1 levels than in healthy controls, suggesting that
elevated serum PD-1 and PD-L1 levels may promote immunosuppression and are therefore be considered adverse prognostic factors [7–9]. Furthermore, CTLA-4 is another immune mediator that inhibits T-cell immune function, being also targeted in breast cancer. Some trials are evaluating the combination of anti-PD-1/PD-L1 antibodies with CTLA-4 inhibitors [5,10]. In humans, CTLA-4 regulates T-cell proliferation at the initial stage of immune responses, primarily in lymph nodes, whereas PD-1 suppresses T cells in later stages, typically in peripheral tissues. Additionally, it has been described that certain pro-inflammatory cytokines, as TNF-α, can up-regulate PD-L1 expression in cancer cells, contributing to create an immunosuppressive tumor microenvironment [11,12].

The PD-L1 gene encodes for a transmembrane glycoprotein with 290 amino acid residues [13], presenting two extracellular immunoglobulin domains, a cytoplasmic domain and shows a sequence homology of 74.5% with feline PD-L1 gene (UniProt, accession numbers: Felis catus - M3WAP8, Homo sapiens - Q9NZQ7).

Considering the above evidences and the lack of knowledge on the role of the PD-1/PD-L1 signaling pathway in tumor progression in the cat, this study aimed to: i) quantify and compare the sPD-1 and sPD-L1 levels in animals with different mammary carcinoma subtypes and healthy controls; ii) evaluate the PD-1 and PD-L1 expression in tumor-infiltrating lymphocytes and cancer cells; iii) test for statistical associations between serum PD-1, PD-L1, CTLA-4 and TNF-α levels; iv) identify genomic mutations in the PD-L1 gene to validate future checkpoint-blocking therapies.

2. Results

2.1 Cats with HER2-positive or TN Normal-Like mammary carcinoma showed higher serum PD-1 and PD-L1 levels

Serum PD-1 and PD-L1 levels were measured in cats with mammary carcinoma, grouped according to their tumor subtype and compared with serum levels detected in the healthy control group (Tables 1 and 2).

Table 1. Serum PD-1 levels in healthy cats and queens grouped according to their mammary carcinoma molecular subtype.

Group	n	sPD-1 (pg/ml)	Median	sPD-1 (pg/ml) Mean ± SD
Control	12	534.0		459.0 ± 253.2
Luminal A	7	708.8		1826.5 ± 2165.2
Luminal B	15	590.3		1386.3 ± 1776.8
HER2-positive	11	1148.9		3129.6 ± 3386.0
TN Normal-Like	7	3655.1		21637.3 ± 31478.1
TN Basal-Like	6	513.3		519.3 ± 145.0

Results from the Kruskal-Wallis test found significant differences between the mean ranks of at least one pair of groups (p=0.044 for PD-1; p=0.006 for PD-L1). Indeed, cats showing HER2-positive

Table 2. Serum PD-L1 levels detected in healthy cats and queens stratified by their mammary carcinoma molecular subtype.

Group	n	sPD-L1 (pg/ml)	Median	sPD-L1 (pg/ml) Mean ± SD
Control	13	1835.5		1762.5 ± 545.6
Luminal A	7	1789.6		2121.5 ± 941.6
Luminal B	15	1628.0		1877.6 ± 773.4
HER2-positive	9	5490.4		5672.6 ± 3789.6
TN Normal-Like	7	4377.5		3831.3 ± 8819.4
TN Basal-Like	6	1436.3		1534.2 ± 425.6
or TN normal-like mammary carcinoma displayed higher serum PD-1 levels than healthy group (1148.9 pg/ml vs. 534.0 pg/ml, p=0.017; 3655.1 pg/ml vs. 534.0 pg/ml, p=0.004, Figure 1A), as well as serum PD-L1 levels (5490.4 pg/ml vs. 1835.5 pg/ml, p=0.032; 3641.4 pg/ml vs. 1835.5 pg/ml, p=0.015, Figure 1B). Furthermore, the optimal cut-off value of serum PD-1 levels was 801.6 pg/ml in cats with HER2-positive mammary carcinoma (AUC=0.765 ± 0.104, 95% CI: 0.562-0.968, p=0.031; sensitivity=54.5%; specificity=91.7%; Figure 1C) and 801.6 pg/ml in cats with TN normal-like mammary carcinoma (AUC=0.857 ± 0.092, 95% CI: 0.676-1.000, p=0.011; sensitivity=57.1%; specificity=91.7%; Figure 1D). Regarding the serum PD-L1 levels, the optimal cut-off value in cats with HER2-positive mammary carcinoma was 2545.0 pg/ml (AUC=0.778 ± 0.117, 95% CI: 0.548-1.000, p=0.030; sensitivity=66.7%; specificity=92.3%; Figure 1E) and 2519.0 pg/ml in cats with TN normal-like tumor subtype (AUC=0.857 ± 0.123, 95% CI: 0.617-1.000, p=0.010; sensitivity=85.7%; specificity=92.3%; Figure 1F). No significant differences were found in serum PD-1 and PD-L1 levels between cats with mammary carcinoma of other molecular subtypes and the control group.
Figure 1. Serum PD-1 and PD-L1 levels are increased in cats with HER2-positive and TN normal-like mammary carcinoma. (A) Box plot analysis of serum PD-1 and (B) PD-L1 levels in control group and cats with mammary carcinoma stratified according to their molecular subtype; (C) the optimal cut-off value of sPD-1 levels for cats with HER2-positive mammary carcinoma was determined to maximize the sum of the sensitivity and specificity (801.6 pg/ml; AUC=0.765 ± 0.104; 95% CI: 0.562-0.968; sensitivity=54.5%; specificity=91.7%); (D) for cats with TN normal-like mammary carcinoma, the optimal cut-off value of sPD-1 was 801.6 pg/ml (AUC=0.857 ± 0.092; 95% CI: 0.676-1.000; sensitivity=57.1%; specificity=91.7%); (E) in cats showing HER2-positive mammary carcinoma, the
optimal cut-off value of sPD-L1 was 2545.0 pg/ml (AUC of 0.778 ± 0.117; 95% CI: 0.548-1.000), with a sensitivity of 66.7% and a specificity of 92.3%; (F) in cats with TN normal-like carcinoma, the best cut-off value for sPD-L1 was 2519.0 pg/ml (AUC=0.857 ± 0.123; 95% CI: 0.617-1.000) with a sensitivity of 85.7% and a specificity of 92.3%.

The data obtained also revealed a positive correlation between serum PD-1 and PD-L1 levels in cats with mammary carcinoma (r=0.780, p<0.0001, Figure 2A), particularly in those exhibiting HER2-positive or TN normal-like tumor subtypes (r=0.882, p<0.0001, Figure 2B).

Figure 2. – Serum PD-1 and PD-L1 levels are strongly correlated in cats with HER2-positive and TN normal-like mammary carcinoma. (A) Correlation between sPD-1 and sPD-L1 levels in cats with mammary carcinoma (n=43, r=0.780, p<0.0001) (B) and in cats with HER2-positive and TN normal-like carcinoma subtypes (n=15, r=0.882, p<0.0001).

2.2 Serum CTLA-4 and TNF-α levels are positively correlated with serum PD-1/PD-L1 levels in cats with HER2-positive and TN Normal-Like tumors

A strong positive correlation was found in cats with HER2-positive mammary carcinomas between the serum PD-1 levels and serum PD-L1 (r=0.923), CTLA-4 (r=0.975) and TNF-α (r=0.968) levels (Table 3). The queens with TN normal-like carcinomas also showed a strong positive correlation between serum PD-1 levels and serum PD-L1 (r=0.857), CTLA-4 (r=0.927) and TNF-α (r=0.893) levels (Table 3).

Table 3. Spearman’s correlation between serum PD-1, PD-L1, CTLA-4 and TNF-α levels in cats with HER2-positive and TN normal-like mammary carcinomas. * indicates p<0.05, ** indicates p<0.01.

HER2-positive	PD-1	PD-L1	CTLA-4	TNF-α
PD-1	-	0.923**	0.975**	0.968**
PD-L1	0.923**	-	0.947**	0.922**
CTLA-4	0.975**	0.947**	-	0.947**
TNF-α	0.968**	0.922**	0.947**	-

TN normal-like	PD-1	PD-L1	CTLA-4	TNF-α
PD-1	-	0.857*	0.927**	0.893**
PD-L1	0.857*	-	0.815*	0.857*
CTLA-4	0.927**	0.815*	-	0.927**
TNF-α	0.893**	0.857*	0.927**	-

2.3 TN normal-like mammary carcinomas showed lower PD-L1 expression than HER2-positive tumors

Considering the high serum PD-L1 levels presented by cats with HER2-positive or TN normal-like mammary carcinomas, we further evaluated PD-L1 expression in tumor-infiltrating lymphocytes...
(TILs) and cancer cells, by immunostaining of tumor samples. Results showed a higher percentage of PD-L1-positive TILs in HER2-positive tumors than in TN normal-like ones (48% vs. 0%, p=0.038, Figures 3A, 4A, 4B, 4E and 4F). Besides, the PD-L1 staining intensity on cancer cells was significantly higher in HER2-positive tumors than in TN normal-like mammary carcinomas (p=0.010, Figures 3B, 4C, 4D, 4E and 4F).

Regarding PD-1 expression in TILs and cancer cells no significant differences were found between HER2-positive tumors and TN normal-like mammary carcinomas (p=0.109, Figure 3C; p=0.958, Figure 3D).

Figure 3. – PD-L1 and PD-1 staining analysis of TILs and cancer cells in HER2-positive and TN normal-like tumor samples. (A) A higher percentage of PD-L1-positive TILs (B) and PD-L1 intensity score of cancer cells was found in HER2-positive mammary carcinomas in comparison to TN normal-like tumors (p=0.038; p=0.010, respectively). (C) No significant differences were found in the

Figure 3. – PD-L1 and PD-1 staining analysis of TILs and cancer cells in HER2-positive and TN-normal-like tumor samples. (A) A higher percentage of PD-L1-positive TILs (B) and PD-L1 intensity score of cancer cells was found in HER2-positive mammary carcinomas in comparison to TN-normal-like tumors (p=0.038; p=0.010, respectively). (C) No significant differences were found in the
percentage of PD-1-positive TILs between HER2-positive tumors and TN normal-like mammary carcinomas (p=0.109), (D) neither in the PD-1 intensity score of cancer cells (p=0.958).

![Image of PD-L1 staining](image1.png)

Figure 4. – PD-L1 is highly expressed in TILs and cancer cells of HER2-positive mammary carcinomas in comparison to TN normal-like tumors. (A) Representative PD-L1 immunostaining of tumor infiltrating lymphocytes in a HER2-positive (B) and in a TN normal-like mammary carcinoma (100x objective). (C) PD-L1 score intensity 4+ in HER2-positive cancer cells (D) and score 1+ in TN normal-like cancer cells (100x objective). Furthermore, in TILs, PD-L1 is localized to the cell membrane and cytoplasm, while in cancer cells is mainly distributed to cytoplasmic and nuclear membranes. (E) Immunohistochemical staining of PD-L1 in a HER2-positive solid carcinoma (F) and in a TN normal-like tubulopapillary carcinoma (40x objective).

2.4 Three non-redundant mutations were detected in feline PD-L1 gene

Results from DNA sequencing allowed us to identify three heterozygous mutations in the feline PD-L1 gene (Figure 5). Two were found in exon 4 (c.16.756G>A; c.16.777G>A), one changing a neutral...
nonpolar amino acid (alanine-245) to a neutral polar residue (threonine) in 3.8% of the studied population (1/26). The second mutation converted a methionine to a valine (p.V252M), both neutral nonpolar amino acids, in 42.3% of the animals evaluated (11/26). A third mutation was identified in exon 5 (c.18.526A>C), replacing a neutral polar threonine by a neutral polar serine at residue number 267, in 3.8% of the DNA samples (1/26).

Figure 5. - Three heterozygous and non-redundant somatic mutations were found in feline PD-L1 gene. Two mutations were detected in exon 4 (transmembrane domain; A245T, 3.8%, 1/26; V252M, 42.3%, 11/26) and one in exon 5 (cytoplasmic domain; T267S; 3.8%, 1/26).

3. Discussion

In order to escape the immune system cancer cells can develop mechanisms to downregulate immune responses. For example, by overexpression of distinct immune checkpoint mediators such as PD-L1. In humans, the interaction between PD-L1 and its receptor has been revealed as an important step in the maintenance of an immunosuppressive tumor microenvironment [14]. Thus, a better understanding of the PD-1/PD-L1 pathway may also contribute to the development of new diagnostic tools and molecular therapies targeting PD-L1 in pets.

The results obtained showed that cats presenting mammary carcinoma subtypes associated with more aggressive features and poor prognosis [15] (HER2-positive and TN normal-like) displayed significantly increased serum PD-1 and PD-L1 levels, as reported in humans with HER2-positive metastatic breast cancer [16], TN breast cancer [7], renal cell carcinoma [9], esophageal cancer [17], gastric cancer [8], advanced pancreatic cancer [18], lung cancer [19] and metastatic melanoma [20] correlated to shorter overall survival and tumor-free survival times [7,9,16,17,19], suggesting a conserved role of the PD-1/PD-L1 axis in both species. Moreover, the determined serum PD-1 and PD-L1 cut-off values showed high sensitivity and specificity, indicating that these molecules can be used as promising biomarkers for the diagnosis of HER2-positive and TN normal-like mammary carcinomas. As also reported in humans, our findings uncovered a positive correlation between serum PD-1 and PD-L1 levels, suggesting that both molecules are co-regulated [7,18]. Furthermore, cats with HER2-positive or TN normal-like tumors also showed a strong positive correlation between serum PD-1, PD-L1, CTLA-4 and TNF-α levels, indicating that these animals were immunosuppressed. CTLA-4 is another immune mediator located on the surface of T cells and expressed by Treg-cell populations, which triggers an inhibitory signal to immune cells [21], also being targeted in breast cancer treatment [10]. Additionally, the higher serum levels of the pro-inflammatory cytokine TNF-α may contribute to the increased tumor cell survival and PD-L1 stabilization on breast tumor cells, playing a critical role for tumor escape from immune surveillance [12].

Results from the immunostaining analysis revealed that in HER2-positive mammary carcinoma, TILs and cancer cells overexpress PD-L1, as reported in humans [22,23], contrasting with TN mammary carcinoma tumor samples. Accordingly, recent studies described the presence of tumor-derived exosomes that carry PD-L1, suggesting an effective paracrine mechanism that cancer cells use to communicate and reprogram immune cells and consequently suppress T-cell activation [24–
These findings support that HER2-positive cancer cells lead to a local immunosuppressive microenvironment, strengthening the systemic immunosuppression found in cats with this tumor subtype. It has also been suggested that serum PD-L1 levels can result from the release of stromal and cancer cells to the bloodstream [5], justifying the higher median of sPD-L1 levels found in cats with HER2-positive tumors than those showing TN normal-like mammary carcinomas. Otherwise, serum PD-L1 levels were higher in cats with TN normal-like carcinomas comparing with animals presenting HER2-positive carcinomas, indicating that sPD-L1 can bind to PD-L1 attached to the cell membrane of dendritic cells, inhibiting T cell function and proliferation, as previously described [27].

Lastly, three non-redundant heterozygous mutations were found in the feline PD-L1 gene, with none of them located at the PD-L1 extracellular domain, which is recognized by the recent and promising monoclonal antibody approved for the treatment of human metastatic TN breast cancer [13]. This shall not compromise the future development of checkpoint-blocking therapies targeting PD-L1 for FMC treatment. According to the Catalogue of Somatic Mutations in Cancer (COSMIC), six mutations were reported with very low frequency in human breast cancer patients (148/47194; 0.3%), all different from the ones that we detected.

4. Material and Methods

4.1 Animal population

Tumor and serum samples were collected from 53 queens with mammary carcinoma that underwent mastectomy and 15 healthy queens presenting for elective ovariohysterectomy at the Small Animal Hospital of the Veterinary Medicine Faculty, University of Lisbon. All mammary lesions were embedded in paraffin after fixation in 10% buffered formalin (pH 7.2) during 24-48 h. Serum was separated from clotted blood by centrifugation (1500 g, 10 min, 4°C) and stored at -80°C until further use. All samples that showed hemolysis were discarded, as recommended for humans [28].

For each animal enrolled in the study, the following clinicopathological characteristics were recorded: age, breed, reproductive status, contraceptive administration, treatment performed (none, surgery or surgery plus chemotherapy), number, location and size of tumor lesions, histopathological classification, malignancy grade, presence of tumor necrosis, lymphatic invasion, lymphocytic infiltration, cutaneous ulceration, regional lymph node involvement, stage of the disease (TNM system), disease free-survival (DFS) and overall survival (OS) [15]. Table 4 summarizes the collected clinical data. Briefly, the mean age at diagnosis was 11.8 years (range 6.5 – 18 years), while the mean size of the primary lesions was 2.6 cm (range 0.3 – 7 cm). The DFS was 9.2 ± 7.8 months (n=49; 95% CI: 7.3-11.7 months) and the OS was 15.0 ± 9.8 months (n= 51; 95% CI: 12.2-17.7 months).

Regarding the molecular-based subtyping of FMC [15,29], cats enrolled in this study were stratified in five groups: luminal A (n=8), luminal B (n=18), HER2-positive (n=13), TN normal-like (n=7) and TN basal-like (n=7).

All the animals enrolled in this study were anesthetized before surgical procedures, with serum and tumor samples being collected during anesthesia. Therefore, as there was no interference with animal well-being and all the procedures involving the manipulation of animals were consented by the owners, the Commission on Ethics and Animal Wellbeing considered that there was no reason for additional advice.
Table 4. Clinicopathological features of the 53 female cats with mammary carcinoma enrolled in this study.

Clinicopathological feature	Number of animals (%)	Clinicopathological feature	Number of animals (%)
Age		Tumor size	
<8 years old	3 (5.7%)	<2 cm	19 (35.8%)
≥ 8 years old	50 (94.3%)	≥ 2 cm	34 (64.2%)
Breed		HP classification	
Not determined	39 (73.6%)	Tubulopapillary carcinoma	21 (39.6%)
Siamese	5 (9.4%)	Solid carcinoma	6 (11.3%)
Persian	6 (11.3%)	Cribriform carcinoma	5 (9.4%)
Norwegian Forest Cat	2 (3.8%)	Papillary-cystic carcinoma	1 (1.9%)
Blue Russian	1 (1.9%)	Tubular carcinoma	12 (22.6%)
Spayed		Mucinous carcinoma	8 (15.2%)
No	28 (52.8%)	Tumor malignancy grade	
Yes	24 (45.3%)	I	3 (5.7%)
Unknown	1 (1.9%)	II	7 (13.2%)
Contraceptive administration		III	43 (81.1%)
No	19 (35.9%)	Tumor necrosis	
Yes	28 (52.8%)	No	13 (24.5%)
Unknown	6 (11.3%)	Yes	40 (75.5%)
Treatment		Tumor lymphatic invasion	
None	1 (1.9%)	No	48 (90.5%)
Mastectomy	48 (90.6%)	Yes	5 (9.5%)
Mastectomy + Chemo	4 (7.5%)	Lymphocytic infiltration	
Multiple tumors		No	17 (32.0%)
No	19 (35.8%)	Yes	34 (64.2%)
Yes	34 (64.2%)	Unknown	2 (3.8%)
Lymph node status		Tumor ulceration	
Negative	32 (60.4%)	No	46 (86.8%)
Positive	17 (32.1%)	Yes	7 (13.2%)
Unknown	4 (7.5%)	Ki-67 index	
TNM classification		Low (<14%)	36 (67.9%)
I	13 (24.5%)	High (>14%)	17 (32.1%)
II	6 (11.3%)	Progesterone status	
III	29 (54.7%)	Negative	28 (52.8%)
IV	5 (9.5%)	Positive	25 (47.2%)
Tumor localization		Estrogen status	
M1	8 (15.1%)	Negative	37 (69.8%)
M2	10 (18.9%)	Positive	16 (30.2%)
M3	20 (37.7%)	HER2 status	
M4	15 (28.3%)	Negative	41 (77.4%)

TNM – Tumor, Node, Metastasis; HP- Histopathological.

4.2 Quantification of serum PD-1, PD-L1, CTLA-4 and TNF-α levels

Serum PD-1, PD-L1, CTLA-4 and TNF-α levels were quantified by using the commercially available immunoassay kits from R&D systems (Minneapolis, USA) and following the manufacturer's recommendations. PD-1 levels were measured with the PD-1 DuoSet ELISA kit (DY1086); PD-L1 levels with the PD-L1/B7-H1 DuoSet ELISA kit (DY156); CTLA-4 levels with the CTLA-4 DuoSet ELISA kit (DY476); and the TNF-α levels with the TNF-α DuoSet ELISA kit (DY2586),
all based on a solid-phase sandwich enzyme-linked immunosorbent assay (ELISA) technique. The concentration levels of the above molecules were calculated using appropriate standard curves, by making serial dilutions from a stock solution of recombinant PD-1, PD-L1, CTLA-4 and TNF-α (9, 18, 36, 78, 156, 312.5, 625, 1250, 2500, 5000 and 10000 pg/ml). Serum PD-1 and PD-L1 levels (pg/ml) were calculated using a quadratic regression ($y=ax^2 + bx + c$, $r^2=0.99$ for PD-1 and $r^2=0.96$ for PD-L1) and serum CTLA-4 and TNF-α concentrations determined using a curve-fitting equation ($y=mx + c$, $r^2=0.99$)[30].

Briefly, quantification of the above mentioned molecules was performed in 96-well microplates incubated overnight with the corresponding capture antibodies (100 μl/well), at room temperature (RT). On the next day, plates were washed three times with 400 μl/well of PBS-Tween 0.05% and incubated with 300 μl/well of PBS/BSA blocking agent (1%, w/v), at RT for 60 min. Then, plates were washed three times with 400 μl/well PBS-Tween 0.05% and incubated with 100 μl/well of each dilution, in duplicate. For determination of serum PD-1, PD-L1, CTLA-4 and TNF-α levels, serum samples were diluted 20 times in PBS/BSA 1% and 100 μl of each sample were added to the wells. The plates were thereafter sealed and incubated for 2 hours at RT. After another washing step (3x400 μl/well PBS-Tween 0.05%), 100 μl/well of detection antibodies were added and incubated for 2 hours at RT. Later and after three washes with 400 μl/well of PBS-Tween 0.05%, 100 μl/well of streptavidin-HRP were added and incubated for 20 min at RT, avoiding placing the microplate in direct light. Afterwards a further washing step (3x400 μl/well PBS-Tween 0.05%), 100 μl/well of substrate solution (1:1 mixture of H2O2 and tetramethylbenzidine) were added and incubated for 20 min at RT in the dark. Finally, the reaction was stopped by adding 50 μl/well of 2 N H2SO4 and gently shaking the plate. The absorbance was measured by a spectrophotometer (Fluostar Optima Microplate Reader, BMG, Ortenberg, Germany), following the manufacturer’s recommendations.

4.3 Immunohistochemical staining and analysis

To analyze PD-1 and PD-L1 expression, two sections of formalin-fixed paraffin-embedded tissues of FMC with 3 μm thickness (Microtome Leica RM2135, Newcastle, UK) were prepared, mounted on adhesive glass slides (SuperFrost Plus, Thermo Fisher Scientific, Massachusetts, USA) and placed at 64°C for 60 min and then at 37°C overnight. Then deparaffinization, rehydration and epitope retrieval were performed using a PT-Link module (Dako, Agilent, Santa Clara, USA), by immersing glass slides in Antigen Target Retrieval Solution pH 9 from Dako during 40 min at 95°C. Thereafter, slides were cooled for 30 min at RT and rinsed twice for 5 min in distilled water. The endogenous peroxidase activity was blocked by an incubation period of 20 min with Peroxidase Block Novocastra Solution (Novacstra, Leica Biosystems, Newcastle, UK), and after two washing steps with PBS the nonspecific binding of immunoglobulins was prevented by incubating the tissue slices with the Protein Block Novocastra Solution (Leica Biosystems) for 60 min. Then, before two PBS washes (2x5 min), tissue slices were incubated with an anti-PD-1 monoclonal antibody (1:25 dilution, clone J116, Abcam, Cambridge, UK) or with an anti-PD-L1 monoclonal antibody (1:100 dilution, clone 28-8, Abcam), at 4°C overnight. After two washes with PBS for 5 min, each tissue section was incubated at RT with the Novolink Polymer (Leica Biosystems) for 30 min. Subsequently and after an additional wash in PBS, the staining was performed using the DAB Chromogen Solution (Leica Biosystems) diluted in Novolink DAB Substrate Buffer (Leica Biosystems, 1:20, 5 min). Finally, tissue sections were counterstained with hematoxylin (Leica Biosystems) for 1 min, dehydrated in a graded ethanol series and mounted.

The analyses of PD-1 and PD-L1 immunostaining was scored following the recommendations of the International TILs Working Group 2014, established for breast cancer [31]. Briefly, the area occupied by positive lymphocytes in the stromal compartment was evaluated in whole tumor sections, excluding the TILs outside of the tumor border or in tumor zones with artifactuals or necrosis, with 200–400x magnification. For cancer cells the intensity scores were as follows: 0 (negative), 1+ (weak), 2+ (moderate), 3+ (strong) and 4+ (very strong). Human placenta and feline lymph node tissues were used as positive controls, whereas sections of healthy mammary tissues were used as
negative controls and feline lymph nodes as internal controls. All slides were independently subjected to blind scoring by two independent pathologists.

4.4 DNA extraction, amplification and sequence analysis of feline PD-L1 gene

Genomic DNA extraction was performed in 26 primary mammary tumors using a QIAamp FFPE kit (Qiagen, Dusseldorf, Germany) following the manufacturer’s recommendations. Initially, tumor samples were homogenized with Tissue Lyser II (Qiagen) and digested with protease K in a concentration of 20 mg/ml (Qiagen). After several washing steps, the genomic DNA was eluted from the extraction columns and its quantity and quality were measured by NanoDrop ND-100 Spectrophotometer (Thermo Fischer Scientific). Then, the exons of interest in PD-L1 gene were amplified by using specific primers (Table 5) with a PCR thermal cycler (VWR Thermocycler, Leicestershire, England). PCR procedures were performed with a standard reaction mixture (4 μl/sample of Phusion GC Buffer (Thermo Fischer Scientific), 0.4 μl/sample of dNTPs (Grisp, Porto, Portugal), 0.1 μl/sample of each forward and reverse primers and 0.2 μl/sample of DNA Polymerase (Thermo Fischer Scientific). In all samples, PCR-grade water and DNA were added to maintain a concentration of 4 ng/ml. For amplification of exons 3 and 6, PCR reactions were performed as follows: denaturation at 98°C for 30 s, followed by 35 cycles at 98°C for 10 s, 56°C for 30 s, 72°C for 10 s, plus one extension step of 72°C for 10 min. For exons 2, 4 and 5, the melting temperature was 60°C. After confirmation of the expected size for each amplified fragment in an agarose gel (2.5%, Sigma-Aldrich, Darmstadt, Germany), DNA fragments were purified and sequenced by Sanger technique (StabVida, Almada, Portugal).

Exons	Forward 5'→3'	Reverse 5'→3'	
2	TTTGGGGACAGCACTTGTT	TGAACAGACTGACACCGTG	
3	CTGAGAACACGCCAGAATGA	ACTGGAACATAGGGCGTG	
4	GTGAGGTTCTCGTCTGT	AGAGGCACTGTGACAACA	
5	AATGGACCTCGGCTGTT	GAGGTAAGGGAGCCCGGT	
6	TACTGAGAGGTAACCTGGCA	GCATCGCTCCATCGGACATC	

The identification of PD-L1 exons was performed using BLAST software (Basic Local Alignment Search Tool, NCBI) by comparing the sequence of feline PD-L1 gene (NC_018735.3) with its transcript (Ensembl, ENSFCAT0000078517.1). Sequenced fragments were aligned using the ClustalW tool (Bioedit software), while protein mutations and SNP loci were identified by using the Expert Protein Analysis System’s (ExPASY) translate tool (XM_006939039).

4.5 Statistical analysis

The Kruskal-Wallis test and Dunn’s multiple comparisons post-test were applied to compare the serum PD-1 and PD-L1 levels between cats with different mammary carcinoma subtypes and healthy controls. Animals that had serum PD-1 or PD-L1 levels that fell more than three standard deviations from the mean were considered outliers and removed from further analysis. The optimal cut-off values were determined using the Youden index and the area under the receiver operating characteristic (ROC) curve values were calculated. Significant differences on the PD-1 and PD-L1 staining of tumor infiltrating lymphocytes and on the staining intensity of cancer cells were evaluated by using the Mann-Whitney test. Spearman’s coefficient was used to assess the correlations between serum PD-1, PD-L1, CTLA-4 and TNF-α levels.

Statistical analysis was conducted in SPSS software version 25.0 (IBM, Armonk, USA) and the two-sided p-value <0.05 was considered statistically significant. Results were presented as median values. GraphPad Prism version 8.1.2 (GraphPad Software, California, USA) and Microsoft Excel for MacOS (version 16.30, Microsoft Corporation, Redmond, USA) were used to plot the graphs.
5. Conclusion

In conclusion, our data demonstrated that serum PD-1 and PD-L1 levels can be used as noninvasive biomarkers to diagnose HER2-positive and TN normal-like feline mammary carcinomas. The strong positive correlations detected between serum PD-1, PD-L1, CTLA-4 and TNF-α levels also suggest a systemic immunosuppression in cats presenting these tumor subtypes. Additionally, the microenvironment of HER2-positive tumors was revealed to be locally immunosuppressed by overexpressing PD-L1. Altogether, our results indicate that cats presenting HER2-positive or TN normal-like tumors could benefit from immunostimulatory therapies (e.g. anti-PD-L1, anti-CTLA-4).

Acknowledgments: The authors would like to thank Dra. Maria Soares for the clinical samples and database.

Funding: This research was funded by Fundação para a Ciência e a Tecnologia (Portugal) through the projects PTDC/CVT-EPI/3638/2014 and CISIA-UID/CVT/00276/2020. C.N. is receipt of a PhD fellowship from University of Lisbon (ref.C00191r) and A.G. is receipt of a PhD fellowship from Fundação para a Ciência e a Tecnologia (ref. SFRH/BD/132260/2017).

Author Contributions: Conceptualization, C.N. and F.F.; Methodology, C.N. and F.F.; Formal analysis, C.N. and A.C.U.; Investigation, C.N., A.C.U., A.G., J.F., J.C and F.F.; Supervision, F.F.; Funding acquisition, F.F; Project administration, F.F.; Writing – original draft preparation, C.N. and F.F.; Writing – review and editing, C.N., A.C.U., A.G., J.F., J.C, and F.F. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Cannon, C. Cats, Cancer and Comparative Oncology. Vet. Sci. 2015, 2, 111–126. doi:10.3390/vetsci2030111
2. Adega, F.; Borges, A.; Chaves, R. Cat Mammary Tumors: Genetic Models for the Human Counterpart. Vet. Sci. 2016, 3, 17. doi:10.3390/vetsci3030017
3. Hassan, B.B.; Elshafae, S.M.; Supsavhad, W.; Simmons, J.K.; Dirksen, W.P.; Sokkar, S.M.; Rosol, T.J. Feline Mammary Cancer: Novel Nude Mouse Model and Molecular Characterization of Invasion and Metastasis Genes. Vet. Pathol. 2017, 54, 32–43. doi:10.1177/0300985816650243
4. Soares, M.; Ribeiro, R.; Najmudin, S.; Gameiro, A.; Rodrigues, R.; Cardoso, F.; Ferreira, F. Serum HER2 levels are increased in cats with mammary carcinomas and predict tissue HER2 status. Oncotarget 2016, 7. doi:10.18632/oncotarget.7551
5. Gu, D.; Ao, X.; Yang, Y.; Chen, Z.; Xu, X. Soluble immune checkpoints in cancer: Production, function and biological significance. J. Immunother. Cancer 2018, 6, 1–14. doi:10.1186/s40425-018-0449-0
6. U.S.Food & Drug FDA approves atezolizumab for PD-L1 positive unresectable locally advanced or metastatic triple-negative breast cancer Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-pd-l1-positive-unresectable-locally-advanced-or-metastatic-triple-negative (accessed on Apr 15, 2019).
7. Li, Y.; Cui, X.; Yang, Y.; Chen, Q.-Q.; Zong, L.; Zhang, T.; Cai, R.-L.; Miao, J.-Y.; Yu, S.-C.; Zhang, F. Serum sPD-1 and sPD-L1 as biomarkers for evaluating the efficacy of neo-adjuvant chemotherapy in triple-negative breast cancer patients. Clin. Breast Cancer 2019, 1–8. doi:10.1016/j.clbc.2019.03.008
8. Zheng, Z.; Bu, Z.; Liu, X.; Zhang, L.; Li, Z.; Wu, A.; Wu, X.; Cheng, X.; Xing, X.; Du, H.; et al. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin. J. Cancer Res. 2014, 26, 104–11. doi:10.3978/j.issn.1000-9604.2014.02.08
9. Frigola, X.; Inman, B.A.; Lohse, C.M.; Krco, C.J.; Cheville, J.C.; Thompson, R.H.; Leibovich, B.; Blute, M.L.; Dong, H.; Kwon, E.D. Identification of a soluble form of B7-H1 that retains immunosuppressive
activity and is associated with aggressive renal cell carcinoma. Clin. Cancer Res. 2011, 17, 1915–1923.

doi:10.1185/1078-0432.CCR-10-0250

10. Makhoul, I.; Atiq, M.; Alwbari, A.; Kieber-Emmons, T. Breast Cancer Immunotherapy: An Update. Breast Cancer Basic Clin. Res. 2018, 12. doi:10.1117/1178223418774802

11. Xun, W.; Lingyun, Y.; Feng, H.; Qiuyang, Z.; Sen, L.; Lin, M.; Zongbing, Y. Inflammatory cytokines IL-17 and TNF-α regulate PD-L1 expression in human prostate and colon cancer cells. Immunol. Lett. 2018, 184, 7–14. doi:10.1016/j.imlet.2017.02.006

12. Lim, S.O.; Li, C.W.; Xia, W.; Cha, J.H.; Chan, L.C.; Wu, Y.; Chang, S.S.; Lin, W.C.; Hsu, J.M.; Hsu, Y.H.; et al. Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell 2016, 30, 925–939.

doi:10.1185/1078-0432.CCR-17-2664.

13. Lawson, N.L.; Dix, C.I.; Scorer, P.W.; Stubbs, C.J.; Wong, E.; Hutchinson, L.; McCall, E.J.; Schimpl, M.; DeVries, E.; Walker, J.; et al. Mapping the binding sites of antibodies utilizing in programmed cell death ligand-1 predictive immunohistochemical assays for use with immuno-oncology therapies. Mod. Pathol. 2019. doi:10.1038/s41379-019-0372-z

14. Li, S.; Chen, L.; Jiang, J. Role of programmed cell death ligand-1 expression on prognostic and overall survival of breast cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2019, 98, e15201.

doi:10.1080/2162402X.2017.1310358

15. Soares, M.; Madeira, S.; Correia, J.; Peleteiro, M.; Cardoso, F.; Ferreira, F. Molecular based subtyping of feline mammary carcinomas and clinicopathological characterization. Breast 2016, 27, 44–51.

doi:10.1016/j.breast.2016.02.016

16. Leitzel, K.; Ali, S.M.; Shepherd, L.E.; Parulekar, W.R.; Zhu, L.; Virk, S.; Nomikos, D.; Aparicio, S.; Gelmon, K.A.; Drabick, J.J.; et al. Serum PD-L1 and outcomes in CCTG MA.31 phase 3 trial of anti-HER2 therapy in first-line HER2+ metastatic breast cancer patients (trastuzumab arm only). J. Clin. Oncol. 2018, 36, 1031. doi:10.1001/jc.2018.08.009

17. Ito, M.; Yajima, S.; Suzuki, T.; Oshima, Y.; Nanami, T.; Shimada, H.; Tochigi, N.; Shiraishi, F.; Funahashi, K.; Tochigi, N.; Shimada, H. High serum PD-L1 level is a poor prognostic biomarker in surgically treated esophageal cancer. Cancer Med. 2019, 1321–1327. doi:10.1002/jcam.29508

18. Kruger, S.; Legenstein, M.L.; Rösgen, V.; Haas, M.; Modest, D.P.; Westphalen, C.B.; Ormanns, S.; Kirchner, T.; Heinemann, V.; Holdenrieder, S.; et al. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology 2017, 6, 1–8. doi:10.1002/eji.201242529

19. Abu Hejleh, T.; Furqan, M.; Ballas, Z.; Clamon, G. The clinical significance of soluble PD-1 and PD-L1 in lung cancer. Crit. Rev. Oncol. Hematol. 2019, 143, 148–152. doi:10.1017/S11782234188774802

20. Ugurel, S.; Schadendorf, D.; Horny, K.; Sucker, A.; Schramm, S.; Utikal, J.; Pföhler, C.; Herbst, R.; Schilling, B.; Blank, C.; et al. Elevated baseline serum PD-1 or PD-L1 predicts poor outcome of PD-1 inhibition therapy in metastatic melanoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 144–152.

doi:10.1016/j.annonc.2019.09.005

21. Ward, F.J.; Dahal, L.N.; Wijesekera, S.K.; Abdul-Jawad, S.K.; Kaewarapai, T.; Xu, H.; Vickers, M.A.; Barker, R.N. The soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur. J. Immunol. 2013, 43, 1274–1285. doi:10.1002/eji.201900000

22. Vranic, S.; Cyprian, F.S.; Gatalica, Z.; Palazzo, J. PD-L1 status in breast cancer: Current view and perspectives. Semin. Cancer Biol. 2019. doi:10.1158/1078-0432.CCR-16-2819

23. Cimino-Mathews, A.; Thompson, E.; Taube, J.M.; Ye, X.; Lu, Y.; Meeker, A.; Xu, H.; Sharma, R.; Leckell,
K.; Cornish, T.C.; et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum. Pathol. 2016, 47, 52–63. doi:10.1038/s41586-018-0392-8

24. Theodoraki, M.-N.; Whiteside, T.L.; Gooding, W.E.; Yerneni, S.S.; Hoffmann, T.K. Clinical Significance of PD-L1 + Exosomes in Plasma of Head and Neck Cancer Patients. Clin. Cancer Res. 2017, 24, 896–905. doi:10.1002/eji.200635978

25. Ludwig, S.; Floros, T.; Theodoraki, M.N.; Hong, C.S.; Jackson, E.K.; Lang, S.; Whiteside, T.L. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer. Clin. Cancer Res. 2017, 23, 4843–4854. doi:10.1097/MBC.0b013e3283549696

26. Chen, G.; Huang, A.C.; Zhang, W.; Zhang, G.; Wu, M.; Xu, W.; Yu, Z.; Yang, J.; Wang, B.; Sun, H.; et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018, 560, 382–386. doi:10.1007/s13277-015-4251-z

27. Kuipers, H.; Muskens, F.; Willart, M.; Hijdra, D.; van Assema, F.B.J.; Coyle, A.J.; Hoogsteden, H.C.; Lambrecht, B.N. Contribution of the PD-L1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ cell activation. Eur. J. Immunol. 2006, 36, 2472–2482. doi:10.1093/annonc/mdt450

28. Lippi, G.; Avanzini, P.; Zobbi, V.; Ippolito, L. Influence of mechanical hemolysis of blood on two D-dimer immunoassays. Blood Coagul. Fibrinolysis 2012, 23, 461–463. doi:10.1097/MD.0b013e318215201

29. Soares, M.; Correia, J.; Peleteiro, M.C.; Ferreira, F. St Gallen molecular subtypes in feline mammary carcinoma and paired metastases—disease progression and clinical implications from a 3-year follow-up study. Tumor Biol. 2016, 37, 4053–4064. doi:10.1200/JCO.2018.36.15_suppl.1031

30. Urbano, A.C.; Nascimento, C.; Soares, M.; Correia, J.; Ferreira, F. Clinical Relevance of the serum CTLA-4 in Cats with Mammary Carcinoma. Sci. Rep. 2020, 10, 1–11. doi: 10.1038/s41598-020-60860-3

31. Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruner, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.; Penault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an International TILs Working Group 2014. Ann. Oncol. 2015, 26, 259–271. doi:10.1002/cam4.2789