Quality of Life After Sialendoscopy: Prospective Non-Randomized Study

Giulianno Molina de Melo (✉ giulianomolina@gmail.com)
Federal University of São Paulo

Murilo Catafesta das Neves
Federal University of São Paulo

Marcello Rosano
Federal University of São Paulo

Christiana Maria Ribeiro Salles Vanni
Instituto do Câncer do Estado de São Paulo

Marcio Abrahao
Federal University of São Paulo

Onivaldo Cervantes
Federal University of São Paulo

Research Article

Keywords: Sialendoscopy, Sialoadenitis, Salivary Gland stones, salivary gland Diseases, Quality of life

DOI: https://doi.org/10.21203/rs.3.rs-679845/v1

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The symptomatic (swelling and pain) salivary gland obstructions are caused by sialolithiasis and salivary duct stenosis, negatively affecting quality of life (QOL), with almost all candidates for clinical measures and minimally invasive sialendoscopy. The impact of sialendoscopy treatment on the QOL has been little addressed nowadays. The objective is to prospectively evaluate the impact of sialendoscopy on the quality of life of patients undergoing sialendoscopy due to benign salivary obstructive diseases, measured through QOL questionnaires of xerostomia degree, the oral health impact profile and post sialendoscopy satisfaction questionnaires.

Result: 37 sialendoscopies were included, most young female: 64.5% sialolithiasis, 35.4% post-radioiodine; 4.5 times/week painful swelling; 23.5 months symptom duration; pre- and post-sialendoscopy VAS values: 7.42 to 1.29 (p<0.001); 86.5% and 89.2% were subjected to sialendoscopy alone and endoscopic dilatation respectively; 80.6% reported improved symptoms after sialendoscopy in the sialolithiasis clinic (p<0.001). The physical pain and psychological discomfort domain scores were mostly impacted where sialendoscopy provided relief and improvement (p<0.001). We found a positive correlation between sialendoscopy and obstructive stone disease (p<0.001) and no correlation in sialendoscopy satisfaction in xerostomia patients (p=0.009).

Conclusions: We found improved symptoms with overall good satisfaction after sialendoscopy correlated with stones; and a negative correlation between xerostomia. Our findings support the evident indication of sialendoscopy for obstructive sialolithiasis with a positive impact on QOL and relative indication to xerostomia that barely improved QOL satisfaction.

Trial Registration: WHO Universal Trial Number (UTN): U1111-1247-7028 Brazilian Clinical Trials Registry (ReBeC): RBR-6p8zfs

Introduction

The symptomatic obstructions of major salivary duct are primarily caused by sialolithiasis (50%-75%) and salivary duct stenosis (25%)(1); however, the annual incidence in the world can vary widely among the countries, oscillating from 1/10.000–30.000 hab. to 27–59/1.000.000 hab. (2, 3).

The etiology of obstructive sialadenitis can vary, including salivary stones, stenosis, protein plugs, anatomic variations or deformations, actinic, and autoimmune, all of which lead to salivary flow obstruction with increasing intraductal salivary pressure, swelling of the gland, and pain. This occurs mainly during meals, with a mean duration of 24–48 hours, with pain negatively affecting quality of life (QOL) and can become symptomatic. Sometimes the clinical state can worsen with infection, purulent discharge, and phlogistic signals, requiring antibiotics, corticoids, anti-inflammatory drugs, fasting, and other clinical measures (1, 2, 4–8).
The submandibular glands are most often affected by obstructive sialolithiasis (80%-90%). Anatomic variations of Wharton's duct of the submandibular gland and saliva composition alterations play important roles in increasing the stasis of salivary flow with mucous plug and stone formation. The parotid gland is mainly affected by salivary duct stenosis, occurring in nearly 69% of cases. It is associated with Sjögren's disease and the radioiodine treatment of thyroid cancer (5, 9, 10). In addition, stenosis is present in approximately 25% of all benign obstructive sialadenitis cases, caused by periductal tissue fibrosis, duct angulations, and duct gauge decrease, occurring in one or more points along the duct tree (5, 11).

The majority of obstructive salivary patients are candidates for clinical measures and endoscopic gland procedure management, because once the obstruction is removed, the gland's function is maintained. This has been successfully achieved by minimally invasive techniques like sialendoscopy, introduced in the 1990's for the diagnosis and treatment of salivary duct diseases. Its efficacy and utility have been proven among several authors along the years (2, 12–19). The technique introduces a miniaturized sialendoscope (1.3 mm to 1.7 mm) into the opening papilla of the salivary duct, either submandibular or parotid, to inspect, clean, dilate, remove stones and infuse successful intraglandular duct corticoids, which are utilized in nearly all benign obstructive causes (12, 14, 17, 20–28).

The quality of life during the periods of obstructive sialadenitis has been poor evaluated, with some authors demonstrating a dramatic worsening due intense face and cervical pain, feeding difficulties, weight loss, tooth and salivary problems and decreased self-care (29, 30). Using questionnaires, the quality of life (QOL), xerostomia degree (XER) and the oral health impact profile (OHIP) has long been used to evaluate the quality of treatment in majority of head and neck cancer patients; but there are only three articles with specifically questionnaires to evaluate the sialendoscopy treatment at the moment (29–31).

The objective is to prospectively evaluate the impact of sialendoscopy on the quality of life of patients undergoing sialendoscopy due to benign obstructive diseases of the salivary glands, measured through QoL questionnaires.

It will enable us to measure the patient overall satisfaction before and after procedure; and thus the impact of the sialendoscopy treatment, enhancing its usefulness to most centers worldwide. We hope that our results can improve the ability of assistant physician and the health system managers in better-selecting patients for sialendoscopy.

Methods

This was a prospective, non-randomized, case series, cohort observational study, without biospecimen retention, unicentric with consecutive benign salivary gland obstructive disease patients. They were admitted and treated with sialendoscopy alone, or in combination, with a minimal cervical approach at the Department of Head and Neck Surgery between January 2017 and January 2020, with a minimum follow-up of 6 months. The inclusion criteria were as follows: consecutive patients who had undergone
Sialendoscopy by the same surgical team, with or without combined open facial/cervical preservative gland access as initial treatment for benign obstructive salivary gland disease; patients who agreed to participate in the study; patients who filled the formularies; and patients with indications for endoscopic treatment of salivary gland disease. The exclusion criteria included patients who were exclusively indicated for open surgery, had no indication for sialendoscopy, failed to undergo sialendoscopy during the surgical procedure, missed follow-ups, refused to complete the questionnaire or participate, had missing records, abandoned treatment prior to completion, and had previous surgery on that salivary gland or previous neck radiotherapy, due to another head and neck neoplasia.

The present study was only based on clinical data and the resulting questionnaires, without any further surgical intervention. All patients who agreed to participate in the study have written and signed the ethics approval and informed consent statement. This study was approved by the Institutional Ethics Committee (CAAE: 95881418.2.0000.5483, number 2.934.247) in October 2018.

The study was conducted in accordance with the Declaration of Helsinki and registered with the WHO Universal Trial Number (UTN) number (U1111-1247-7028) and the Brazilian Clinical Trials Registry (ReBeC), whose number is RBR-6p8zfs. This study is in accordance with the Preferred Reporting of Case Series in Surgery (PROCESS) criteria (32), Strengthening the Reporting of Cohort Studies in Surgery (STROCSS) (33) and the Standards for Quality Improvement Reporting Excellence guidelines (SQUIRE 2.0) (34).

Study Design

All eligible consecutive patients with benign salivary gland obstructive disease patients who will treat with sialendoscopy alone (or in possible combination with a minimal cervical approach as necessary), after provided their consent to participate in the study, were given the QOL questionnaires and the visual pain analog scale (VAS) just before the procedure; and again after 2 months prospectively after sialendoscopy procedure, where they were called by phone, filled out the forms and brought them to follow-up consultations.

Questionnaires

The QOL questionnaires applied were: OHIP questionnaire (35, 36) with 49 questions on seven domains, the Xerostomia (Xer) questionnaire (31) with 21 questions on obstructive and inflammatory salivary pathologies, the questionnaire on patient satisfaction post-sialendoscopy (PSPS) (30) with 14 questions and the visual pain analog scale (VAS) (37) for pain analysis.

Clinical and demographic data, sialendoscopy diagnostic and intervention data results, and data from the questionnaires (OHIP, Xer, and PSPS) were collected. Follow-up was performed with regular consultations, one week after post-operatory procedures and then at 30, 60, and 90 days, with a salivary gland ultrasonography (USG) at 90 days in all patients.
All data were collected and the statistical analyses were performed using the Spearman’s correlation test, Mann–Whitney test, two-proportions equality test, Wilcoxon test, and chi-square test, with a significance of $p < 0.05$.

Sialendoscopy protocol

Sialendoscopy was performed by the same surgeon (GMM) and surgical team, following the Marchal *et al.* standards (14) in the operating room, in-hospital, and under general anesthesia. It was performed on the involved gland for both diagnostic and therapeutic interventions, using the semi-rigid modular sialendoscope (Karl Storz, Tuttlingen, Germany) (diameter 1.3 mm or 1.7 mm), with working channel, salivary probes, conic dilatators, bougies, baskets for stones, dilator balloons, silastic stents to the main duct, and papilla patency (27). (Fig. 1 and Fig. 2). No case with acute purulent salivary discharge and sialadenitis were submitted to the procedure.

In cases of minimal open access, a 2–3 cm skin incision was made in the appropriate skin crease. Minimal surgical dissection techniques were achieved with facial nerve monitoring; the main duct was opened and the impacted stone was removed. All cases were subjected to intraductal steroids delivered with the sialendoscope, main duct stenting with silicone, and were withdrawn after 21 days. All patients remained in-hospital for at least 24 hours and were discharged to ambulatory follow-up.

Results

During this period of three years, 40 patients underwent sialendoscopy. Five refused to participate and four missed follow-up appointments. The final cohort included 37 sialendoscopies in 31 patients. All patients underwent preoperative examinations with at least salivary gland ultrasound, computed tomography (CT), and magnetic resonance imaging.

Clinical data

The population was comprised of 17 females and 14 males with a mean age of 44.7 years (11–80 years) and follow-up of 14 months (6–38 months). Clinical characteristics are shown in Table 1. Frequent comorbidities included hypertension (29.0%), previous radioiodine treatment (16.1%), and 19.35% high-volume milk ingestion (> 1,000 mL/day). No case with acute purulent salivary discharge and sialadenitis were submitted to the procedure.
Table 1
Clinical and Symptoms Characteristics

Clinical Characteristics	N	Percent
Gender		
Male	14	45.2%
Female	17	54.8%
Age (years) (average/ range)	44.7	11–80
Follow-up (months) (average/ range)	14	6–26
Comorbidities		
Hypertension	9	29.0%
Diabetes Mellitus	2	3.2%
Auto-immune Diseases	2	6.45%
Thyroid Cancer with RIT	5	16.1%
Tobacco Smoker	6	19.35%
High volume milk ingestion	2	6.45%
Antidepressant medication		
Time to diagnosis at first consultation (months) (average/range)	23.2	1-168
Symptoms Characteristics before procedure (more than one)	30	96.8%
Swellings	28	90.3%
Pain	6	19.35%
Pus in the oral cavity	18	58.0%
Sialolithiasis perception	14	45.2%
Salivation changes	10	32.2%
Dry mouth		
Time of symptoms duration (months) (average, range)	23.5	1–168
Complaints per week (average, range)	4.5	1–14
Pre-operative Pain (VAS 0–10) (average/ range)	7.4	1–10
Clinical Characteristics	N	Percent
---	----	---------
	31	100%
Gland Involved		
Parotid	21	67.7%
Submandibular	10	32.3%
Sublingual	0	0%
Side		
Right	8	25.8%
Left	6	19.4%
Bilateral	17	54.8%
Etiology (some bilateral)		
Pure Stones	13	41.9%
Stenosis (Radioiodine/Inflammatory)	4	12.9%
Stenosis + stones	16	51.6%
Radiological Pre-operatory exam		
Ultrasound (USG)	18	58.1%
Tomography (CT)	14	45.2%
Resonance (MR)	5	16.1%
Scintigraphy		
Size Stones on USG (mm) (average/ range)		
	3.77	2–15

Swelling (96.8%) and pain (90.3%) were the most frequent symptoms, with an average complaint rate of 4.5 times per week, pre-pain VAS average of 7.42 (1–10), delay of 21.7 months from first symptom to medical diagnosis, and symptom duration of 23.5 months (1-168 months). No patients required resection surgery (Table 1). The involved glands were the submandibular (67.7%) and parotid (32.3%), right side (54.8%) and bilateral in 19.4% of cases. The etiology was as follows: stones, 51.6%; stenosis, 41.9%; preoperative USG, 96.7%; CT, 58.1%. The average intraductal stone size on USG was 3.77 mm (2–15 mm).

Clinical characteristics of sialendoscopy

Table 2 shows the sialendoscopy findings, 86.5% were subjected to sialendoscopy alone, 89.2% to endoscopic dilatation, and 100% to intraductal steroids. The percentages according to diagnoses were as follows: 48.6% submandibular stone, 40.5% pure stones, and 32.4% papilla stenosis. The most common
papilla type was type A (48.6%). Stenting (100%) and dilatation (35.1%) were the most common procedures. The stones were single in 37.8% of cases, overall complications were 10.8%, average time of sialendoscopy was 139.5 minutes, and the postoperative pain score was 1.3. All patients submitted to the combined-hybrid procedure have answered the questionnaires with the main objective of evaluating the role of sialendoscopy associated or not with the combined procedure.
Sialendoscopy Clinical Characteristics	N	Percent
Sialendoscopy Alone	32	86.5%
Combined Sialendoscopy	5	13.5%
Sialendoscopy Procedures (more than one)	20	54.1%
Endoscopic Stone Extraction	33	89.2%
Endoscopic Dilatation	30	81.1%
Intraductal/Papilla Stenting	37	100%
Intraductal Steroids		
Sialendoscopy Diagnosis Verified (more than one)	15	40.5%
Pure Stones	3	8.1%
Parotid Stones	18	48.6%
Submandibular Stones	4	10.8%
Stones and Stenosis	12	32.4%
Papilla Stenosis	9	24.3%
Parotid Duct Stenosis	5	13.5%
Submandibular Duct Stenosis		
Papilla Types	18	48.6%
A	7	18.9%
B	2	5.4%
C	4	10.8%
D	6	16.2%
E		
Sialendoscopy Clinical Characteristics	N	Percent
--	----	---------
	37	100%
Procedures on Papilla (more than one)		
Papillotomy	13	35.1%
Dilatation	10	27.0%
Opening floor of mouth	12	32.4%
Marsupialization	37	100%
Stenting		
Stones Characteristics		
Single	6	16.2%
Multiple		
Post-operative Complications		
Lost stent	0	0%
Infection	0	0%
Dehiscence		
Endoscopic Duct Classification LSD		
L0	12	32.4%
L1	4	10.8%
L2	5	13.5%
L3	17	45.9%
S0	13	35.1%
S1	3	8.1%
S2	3	8.1%
S3	1	2.7%
S4	17	45.9%
D0	11	29.7%
D1	9	24.3%
D2	0	0%
D3		
Complications	4	10.8%
Questionnaire findings

Patient satisfaction post-sialendoscopy

The most important question on the PSPS questionnaire, given after the procedure, was number 7 (Sialo7), which indicated the overall satisfaction of the patient with sialendoscopy, the others questions were equal to prior questionnaires; we coded the answers with numbers 1 to 4: Bad (1), Satisfactory (2), Good (3), and Very Good (4). The average was 3.45, indicating that the majority of patients expressed Very Good/Good satisfaction with sialendoscopy. We compared all the other questionnaires with the answer Sialo7.

Oral health impact profile and xerostomia

Table 3 presents the quantitative and ordinal data for the OHIP and Xer questionnaires. The overall OHIP punctuation was 32.52 ± 10.82 (196 total points). The Xer questionnaire, the overall average was 24.65 ± 7.06 (105 total points).
	Average	Median	Standard Deviation	Min	Max	N	IC	
Sialo 7	3.45	4	0.89	1	4	31	0.31	
Demographics								
Age	44.77	44	15.63	11	80	31	5.50	
Time to Diagnosis	21.77	8	39.81	1	176	31	14.01	
Time to Symptoms	23.58	15	32.89	1	168	31	11.58	
Pre VAS	7.42	8	2.05	2	10	31	0.72	
Symptoms Frequency	4.52	4	3.02	1	14	31	1.06	
USG Stone Size	3.77	4	4.07	0	15	31	1.43	
Functional Limitation								
Q1	0.94	0	1.24	0	4	31	0.44	
Q2	0.32	0	0.60	0	2	31	0.21	
Q3	0.39	0	1.05	0	5	31	0.37	
Q4	0.71	0	1.04	0	3	31	0.37	
Q5	0.23	0	0.62	0	2	31	0.22	
Q6	0.45	0	1.03	0	4	31	0.36	
Q7	0.55	0	1.12	0	4	31	0.39	
Q8	0.52	0	0.93	0	3	31	0.33	
Q17	0.06	0	0.36	0	2	31	0.13	
Functional Limitation	4.16	2	4.79	0	21	31	1.69	
Physical Pain								
Q9	0.81	0	1.38	0	4	31	0.48	
Q10	1.48	1	1.46	0	4	31	0.51	
Q11	0.84	0	1.13	0	4	31	0.40	
Q12	0.55	0	1.23	0	4	31	0.43	
Q13	0.29	0	0.78	0	3	31	0.28	
Q14	0.48	0	0.96	0	3	31	0.34	
Q15	1.68	1	1.70	0	4	31	0.60	
Physical pain	Average	Median	Standard Deviation	Min	Max	N	IC	
---------------	---------	--------	--------------------	-----	-----	---	----	
Q16	0.61	0	1.23	0	5	31	0.43	
Q18	0.13	0	0.56	0	3	31	0.20	
Psychological discomfort	Q19	2.06	2	1.34	0	4	31	0.47
Psychological discomfort	Q20	1.48	1	1.63	0	5	31	0.57
Psychological discomfort	Q21	0.39	0	0.84	0	3	31	0.30
Psychological discomfort	Q22	1.35	1	1.43	0	4	31	0.50
Psychological discomfort	Q23	1.52	2	1.39	0	4	31	0.49
Psychological discomfort	Q24	0.29	0	0.82	0	3	31	0.29
Psychological discomfort	Q25	0.10	0	0.30	0	1	31	0.11
Psychological disability	Q26	0.48	0	1.00	0	4	31	0.35
Psychological disability	Q27	0.26	0	0.82	0	4	31	0.29
Psychological disability	Q28	0.74	0	1.39	0	4	31	0.49
Psychological disability	Q29	0.81	0	1.25	0	4	31	0.44
Psychological disability	Q30	0.13	0	0.56	0	3	31	0.20
Psychological disability	Q31	0.45	0	1.21	0	4	31	0.42
Psychological disability	Q32	1.03	0	1.30	0	4	31	0.46
Psychological disability	Q33	0.81	0	1.33	0	5	31	0.47
Psychological disability	Q34	1.32	1	1.30	0	4	31	0.46
Psychological disability	Q35	1.06	1	1.21	0	3	31	0.43
Psychological disability	Q36	0.61	0	1.02	0	4	31	0.36
Psychological disability	Q37	1.00	0	1.37	0	4	31	0.48
Psychological disability	Q38	0.61	0	1.12	0	4	31	0.39
Psychological disability	Q39	5.42	5	5.07	0	21	31	1.79
	Average	Median	Standard Deviation	Min	Max	N	IC	
-------------------	---------	--------	--------------------	-----	-----	-----	-----	
Social disability	Q39	0.48	1.09	0	4	31	0.38	
	Q40	0.77	1.23	0	4	31	0.43	
	Q41	0.42	0.99	0	4	31	0.35	
	Q42	0.84	1.32	0	4	31	0.46	
	Q43	0.13	0.56	0	3	31	0.20	
	Social disability	2.65	0	4.54	0	19	31	1.60
Handicap	Q44	0.68	1.01	0	4	31	0.36	
	Q45	0.42	1.03	0	4	31	0.36	
	Q46	0.39	0.88	0	4	31	0.31	
	Q47	0.58	1.06	0	4	31	0.37	
	Q48	0.16	0.64	0	3	31	0.22	
	Q49	0.10	0.54	0	3	31	0.19	
	Handicap	2.32	0	4.45	0	22	31	1.57
Total OHIP		32.52	25	30.75	1	153	31	10.82
Xerostomia	P1	1.84	1	1.66	0	5	31	0.58
	P2	2.00	1	1.69	0	5	31	0.60
	P3	1.35	1	1.40	0	5	31	0.49
	P4	1.23	1	1.31	0	5	31	0.46
	P5	1.45	1	1.55	0	5	31	0.54
	P6	0.94	1	1.18	0	5	31	0.42
	P7	1.16	1	1.39	0	5	31	0.49
	P8	1.23	1	1.36	0	5	31	0.48
	P9	1.16	1	1.59	0	5	31	0.56
	P10	0.87	1	1.18	0	5	31	0.41
	P11	1.35	1	1.28	0	4	31	0.45
	P12	1.10	1	1.25	0	4	31	0.44
	P13	0.84	1	0.86	0	4	31	0.30
Table 4

	Average	Median	Standard Deviation	Min	Max	N	IC
P14	1.19	1	1.25	0	5	31	0.44
P15	0.81	1	1.05	0	5	31	0.37
P16	1.32	1	1.42	0	5	31	0.50
P17	1.00	1	1.21	0	4	31	0.43
P18	0.81	1	0.83	0	3	31	0.29
P19	1.06	1	1.24	0	5	31	0.44
P20	1.00	1	1.13	0	5	31	0.40
P21	0.94	1	1.00	0	4	31	0.35
Total	24.65	23	20.05	0	89	31	7.06

Table 4 demonstrates the frequency of qualitative clinical data, showing statistical differences in diabetes mellitus, hypertension, autoimmune diseases, high milk ingestion, tobacco, submandibular and parotid gland, on-bulking, dry mouth, salivary lithiasis, salivary changes, and right side. For the Sialo7 question, 80.6% were Very Good/Good versus 19.4% Satisfactory/Bad (p < 0.001).
Table 4
Frequency Distribution of Qualitative Clinical Data

	N	%	P-valor
Comorbidities			
No	16	51.6	0.799
Yes	15	48.4	
DM			
No	28	93.3	< 0.001
Yes	2	6.7	
Autoimmune Disease			
No	28	93.3	< 0.001
Yes	2	6.7	
Actual Salivary Gland: Parotid			
No	21	67.7	0.005
Yes	10	32.3	
Actual Salivary Gland: Submand			
No	10	32.3	0.005
Yes	21	67.7	
Hypertension			
No	21	70.0	0.002
Yes	9	30.0	
Milk Ingestion			
No	23	79.3	< 0.001
Yes	6	20.7	
Other			
No	22	78.6	< 0.001
Yes	6	21.4	
Gender			
Female	18	58.1	0.204
Male	13	41.9	
Sialo 7			
Very/Good	25	80.6	< 0.001
Satisf./Bad	6	19.4	
Tobacco use			
No	28	96.6	< 0.001
Yes	1	3.4	
Symptom: Swelling			
No	1	3.2	< 0.001
Yes	30	96.8	
Symptom: Dry mouth			
No	21	67.7	0.005
Yes	10	32.3	
Symptom: Salivary stone			
------------------------	--	--	---
No	11	35.5	0.022
Yes	20	64.5	
Symptom: Saliva changes			
Não	15	48.4%	0.799
Sim	16	51.6%	
Compromised Side			
Bilateral	6	19.4	0.004
Rigth	17	54.8	Ref.
Left	8	25.8	0.020

Table 5 shows Spearman's correlation for the Sialo7 question (major satisfaction), relating satisfaction with the sialendoscopy procedure to the variables mentioned. When positive, the correlated variables increased proportionally; however, when the correlation was negative, it implied that the variables were inversely proportional.
Demographics	Sialo (P7)		
	Corr (r)	P-valor	
Age	-0.293	0.110	
Time to Diagnosis	-0.210	0.257	
Symptoms Time	-0.165	0.376	
Pre VAS	-0.194	0.296	
Symptoms Frequency	0.170	0.360	
USG Stone Size	0.357	**0.049**	
Functional Limitation	Q1	-0.040	
	Q2	-0.140	
	Q3	-0.376	
	Q4	-0.032	
	Q5	-0.303	
	Q6	-0.218	
	Q7	0.048	
	Q8	-0.042	
	Q17	-0.296	
	Functional Limitation	-0.080	
Physical Pain	Q9	-0.167	
	Q10	0.124	
	Q11	0.113	
	Q12	-0.134	
	Q13	-0.201	
	Q14	-0.015	
	Q15	0.094	
	Q16	-0.152	
	Q18	-0.349	
	Physical Pain	0.107	
Psychological discomfort	Sialo (P7)		
--------------------------	------------	-----	-----
Q19	-0.188	0.311	
Q20	-0.188	0.311	
Q21	-0.605	**< 0.001**	
Q22	0.009	0.964	
Q23	-0.093	0.618	
Psychological discomfort	-0.235	0.204	

Physical disability			
Q24	-0.269	0.143	
Q25	-0.398	**0.026**	
Q26	-0.119	0.523	
Q27	-0.099	0.598	
Q28	0.104	0.577	
Q29	0.043	0.818	
Q30	-0.349	0.055	
Q31	-0.271	0.140	
Q32	0.006	0.973	
Physical disability	-0.081	0.666	

Psychological disability			
Q33	-0.159	0.392	
Q34	-0.118	0.528	
Q35	-0.203	0.274	
Q36	-0.389	**0.031**	
Q37	-0.102	0.586	
Q38	0.010	0.959	
Psychological disability	-0.089	0.634	

Social disability			
Q39	-0.162	0.385	
Q40	-0.073	0.698	
Q41	-0.324	0.075	
Q42	-0.206	0.266	
	Corr (r)	P-valor	
----------------------	----------	---------	
Q43	-0.134	0.472	
Social disability	-0.123	0.508	
Handicap			
Q44	-0.287	0.118	
Q45	-0.478	**0.006**	
Q46	-0.660	< **0.001**	
Q47	-0.441	**0.013**	
Q48	-0.349	0.055	
Q49	-0.296	0.106	
Handicap	-0.465	**0.008**	
Total OHIP			
	-0.111	0.554	
Xerostomia			
P1	0.004	0.985	
P2	0.046	0.805	
P3	-0.188	0.312	
P4	-0.306	0.094	
P5	-0.403	**0.025**	
P6	-0.388	**0.031**	
P7	-0.301	0.100	
P8	-0.254	0.169	
P9	-0.310	0.090	
P10	-0.364	**0.044**	
P11	-0.283	0.123	
P12	-0.244	0.186	
P13	-0.274	0.135	
P14	-0.390	**0.030**	
P15	-0.443	**0.013**	
P16	-0.242	0.189	
P17	-0.334	0.066	
We found a positive correlation between sialendoscopy and calculi size: the amount of sialolithiasis associated with better sialendoscopy satisfaction results. The best correlation was with question 46 of OHIP, which showed that the higher the Sialo7 (the greater the satisfaction), the lower the question 46 score, which was classified as Very Good.

Table 6 demonstrates the grouped answers of Sialo7 in Very Good/Good and Satisfying/Bad in the Mann–Whitney test to compare the quantitative variables in the various groups. There were differences in the OHIP: question 17 (p = 0.041), question 45 (p = 0.014), question 46 (p = 0.002), and Xer total score (p = 0.009). These results showed no correlation in sialendoscopy satisfaction in xerostomia patients, where the mean of Satisfying/Bad was 46.5 versus 19.4 Very Good/Good answers (p = 0.009).
Table 6
Comparison of the PSPS (question 7) with Ordinal and Quantitative variables

Variable	Satisf./Bad	Very/Good	N	IC	P-valor				
Age	Average	Median	Standard Deviation	N	IC	P-valor			
	50.8	53.5	12.4	6	9.9	0.202			
	43.3	40	16.2	25	6.3				
Time to Diagnosis	Satisf./Bad	30.8	13	6	39.8	0.192			
	Very/Good	19.6	8	25	14.9				
Symptoms Time	Satisf./Bad	20.5	19.5	6	6.2	0.260			
	Very/Good	24.3	12	25	14.3				
Pre VAS	Satisf./Bad	8.00	8	6	1.52	0.446			
	Very/Good	7.28	7	25	0.82				
Symptoms Frequency	Satisf./Bad	4.17	3	6	1.78	0.879			
	Very/Good	4.60	4	25	1.26				
USG Stone Size	Satisf./Bad	1.67	0	6	2.56	0.089			
	Very/Good	4.28	4	25	1.63				
Q1	Satisf./Bad	1.00	0.5	6	1.01	0.826			
	Very/Good	0.92	0	25	0.49				
Q2	Satisf./Bad	0.17	0	6	0.33	0.534			
	Very/Good	0.36	0	25	0.25				
Q3	Satisf./Bad	0.50	0	6	0.67	0.274			
	Very/Good	0.36	0	25	0.44				
Q4	Satisf./Bad	0.83	0.5	6	0.79	0.596			
	Very/Good	0.68	0	25	0.42				
Q5	Satisf./Mal	0.33	0	6	0.65	0.731			
	Very/Good	0.20	0	25	0.23				
Q6	Satisf./Bad	1.00	0	6	1.34	0.277			
	Very/Good	0.32	0	25	0.31				
Q7	Satisf./Bad	0.50	0	6	0.98	0.785			
	Very/Good	0.56	0	25	0.44				
Question	Type	Average	Median	Standard Deviation	N	IC	P-valor		
----------	--------------	---------	--------	--------------------	----	-----	---------		
Q8	Satisf./Bad	0.83	0	1.33	6	1.06	0.595		
	Very/Good	0.44	0	0.82	25	0.32			
Q17	Satisf./Bad	0.33	0	0.82	6	0.65	0.041		
	Very/Good	0.00	0	0.00	25	- x -			
Functional Limitation	Satisf./Bad	5.50	2	7.84	6	6.27	0.980		
	Very/Good	3.84	2	3.91	25	1.53			
Q9	Satisf./Bad	1.33	0	2.07	6	1.65	0.630		
	Very/Good	0.68	0	1.18	25	0.46			
Q10	Satisf./Bad	1.17	0.5	1.60	6	1.28	0.562		
	Very/Good	1.56	2	1.45	25	0.57			
Q11	Satisf./Bad	0.67	0	1.63	6	1.31	0.271		
	Very/Good	0.88	1	1.01	25	0.40			
Q12	Satisf./Bad	0.67	0	1.63	6	1.31	0.971		
	Very/Good	0.52	0	1.16	25	0.45			
Q13	Satisf./Bad	0.50	0	1.22	6	0.98	0.876		
	Very/Good	0.24	0	0.66	25	0.26			
Q14	Satisf./Bad	0.50	0	1.22	6	0.98	0.696		
	Very/Good	0.48	0	0.92	25	0.36			
Q15	Satisf./Bad	1.33	0.5	1.75	6	1.40	0.671		
	Very/Good	1.76	2	1.71	25	0.67			
Q16	Satisf./Bad	0.50	0	1.22	6	0.98	0.672		
	Very/Good	0.64	0	1.25	25	0.49			
Q18	Satisf./Bad	0.50	0	1.22	6	0.98	0.240		
	Very/Good	0.04	0	0.20	25	0.08			
Physical Pain	Satisf./Bad	7.17	1	12.66	6	10.13	0.248		
	Very/Good	6.80	6	5.93	25	2.32			
Q19	Satisf./Bad	2.17	2	1.17	6	0.94	0.959		
Question	Satisfaction	Average	Median	Standard Deviation	N	IC	P-value		
----------	--------------	---------	--------	--------------------	----	-----	---------		
Very/Good	2.04	2	1.40	25	0.55				
Q20	Satisf./Bad	1.50	1.5	1.38	6	1.10	0.834		
	Very/Good	1.48	1	1.71	25	0.67			
Q21	Satisf./Bad	1.00	0.5	1.26	6	1.01	0.060		
	Very/Good	0.24	0	0.66	25	0.26			
Q22	Satisf./Bad	1.33	1.5	1.21	6	0.97	0.916		
	Very/Good	1.36	1	1.50	25	0.59			
Q23	Satisf./Bad	1.50	1.5	1.38	6	1.10	0.959		
	Very/Good	1.52	2	1.42	25	0.56			
Psychological discomfort	Satisf./Bad	7.50	7	4.93	6	3.94	0.598		
	Very/Good	6.64	7	4.51	25	1.77			
Q24	Satisf./Bad	0.17	0	0.41	6	0.33	0.864		
	Very/Good	0.32	0	0.90	25	0.35			
Q25	Satisf./Bad	0.17	0	0.41	6	0.33	0.526		
	Very/Good	0.08	0	0.28	25	0.11			
Q26	Satisf./Bad	0.83	0	1.60	6	1.28	0.493		
	Very/Good	0.40	0	0.82	25	0.32			
Q27	Satisf./Bad	0.17	0	0.41	6	0.33	0.830		
	Very/Good	0.28	0	0.89	25	0.35			
Q28	Satisf./Bad	0.67	0	1.63	6	1.31	0.696		
	Very/Good	0.76	0	1.36	25	0.53			
Q29	Satisf./Bad	1.00	0	1.67	6	1.34	0.906		
	Very/Good	0.76	0	1.16	25	0.46			
Q30	Satisf./Bad	0.50	0	1.22	6	0.98	0.240		
	Very/Good	0.04	0	0.20	25	0.08			
Q31	Satisf./Bad	0.50	0	1.22	6	0.98	0.830		
	Very/Good	0.44	0	1.23	25	0.48			
Question	Category	Satisf./Bad	Very/Good	Average	Median	Standard Deviation	N	IC	P-valor
----------	-------------------------	-------------	-----------	---------	--------	-------------------	----	-----	---------
Q32		1.00	1.04	1.00	0.5	1.26	6	1.01	0.956
		0.50	0.50	0.50	0.5	1.22	6	0.98	0.240
Physical disability		5.00	4.12	5.00	1.00	9.42	6	7.54	0.917
Physical disability		0.83	0.80	0.83	0.0	1.33	6	1.06	1.000
Physical disability		1.33	1.32	1.33	1.00	1.37	6	1.09	0.874
Physical disability		1.17	1.04	1.17	0.5	1.47	6	1.18	0.872
Physical disability		1.17	0.48	1.17	0.5	1.60	6	1.28	0.290
Physical disability		1.17	0.96	1.17	0.0	1.83	6	1.47	1.000
Psychological disability		6.33	5.20	6.33	4.0	8.14	6	6.51	0.801
Psychological disability		0.67	0.44	0.67	0.0	1.63	6	1.31	1.000
Psychological disability		0.83	0.76	0.83	0.0	1.60	6	1.28	0.930
Psychological disability		0.32	0.32	0.32	0.0	1.22	6	0.98	0.240
Q39		0.67	0.44	0.67	0.0	1.63	6	1.31	1.000
Q40		0.83	0.76	0.83	0.0	1.60	6	1.28	0.930
Q41		0.83	0.32	0.83	0.0	1.60	6	1.28	0.328
Q42		1.17	0.76	1.17	0.5	1.60	6	1.28	0.447
Q43		0.50	0.32	0.50	0.0	1.22	6	0.98	0.240
Question	Category	Satisfaction	Average	Median	Standard Deviation	N	IC	P-valor	
----------	------------------	--------------	---------	--------	--------------------	----	-----	---------	
Social disability	Satisf./Bad	4.00	1	7.46	6	5.97	0.742		
	Very/Good	2.32	0	3.69	25	1.45			
Q44	Satisf./Bad	1.33	1	1.63	6	1.31	0.251		
	Very/Good	0.52	0	0.77	25	0.30			
Q45	Satisf./Bad	1.33	1	1.63	6	1.31	0.014		
	Very/Good	0.20	0	0.71	25	0.28			
Q46	Satisf./Bad	1.50	1.5	1.52	6	1.21	0.002		
	Very/Good	0.12	0	0.33	25	0.13			
Q47	Satisf./Bad	1.17	0.5	1.60	6	1.28	0.189		
	Very/Good	0.44	0	0.87	25	0.34			
Q48	Satisf./Bad	0.50	0	1.22	6	0.98	0.240		
	Very/Good	0.08	0	0.40	25	0.16			
Q49	Satisf./Bad	0.50	0	1.22	6	0.98	0.041		
	Very/Good	0.00	0	0.00	25	- x -			
Handicap	Satisf./Bad	6.33	4	8.33	6	6.67	0.085		
	Very/Good	1.36	0	2.31	25	0.90			
Total OHIP	Satisf./Bad	57.17	50.5	52.94	6	42.36	0.193		
	Very/Good	26.60	23	20.24	25	7.93			
P1	Satisf./Bad	2.67	2.5	1.86	6	1.49	0.174		
	Very/Good	1.64	1	1.58	25	0.62			
P2	Satisf./Bad	2.67	2.5	1.86	6	1.49	0.257		
	Very/Good	1.84	1	1.65	25	0.65			
P3	Satisf./Bad	2.67	3	1.37	6	1.09	0.013		
	Very/Good	1.04	1	1.24	25	0.49			
P4	Satisf./Bad	2.50	1.5	1.97	6	1.58	0.033		
	Very/Good	0.92	1	0.91	25	0.36			
		Average	Median	Standard Deviation	N	IC	P-valor		
----	----------	---------	--------	--------------------	----	-----	---------		
P5	Satisf./Bad	3.17	3.5	2.04	6	1.63	**0.009**		
	Very/Good	1.04	1	1.10	25	0.43			
P6	Satisf./Bad	2.33	1	2.07	6	1.65	**0.009**		
	Very/Good	0.60	1	0.50	25	0.20			
P7	Satisf./Bad	2.50	2	1.76	6	1.41	**0.015**		
	Very/Good	0.84	1	1.11	25	0.43			
P8	Satisf./Bad	2.33	2.5	1.21	6	0.97	**0.014**		
	Very/Good	0.96	1	1.27	25	0.50			
P9	Satisf./Bad	3.00	3	2.19	6	1.75	**0.006**		
	Very/Good	0.72	1	1.06	25	0.42			
P10	Satisf./Bad	1.83	1	1.33	6	1.06	**0.009**		
	Very/Good	0.64	0	1.04	25	0.41			
P11	Satisf./Bad	2.17	2	1.33	6	1.06	**0.075**		
	Very/Good	1.16	1	1.21	25	0.48			
P12	Satisf./Bad	2.33	2	1.51	6	1.20	**0.011**		
	Very/Good	0.80	1	1.00	25	0.39			
P13	Satisf./Bad	1.50	1	1.22	6	0.98	**0.072**		
	Very/Good	0.68	1	0.69	25	0.27			
P14	Satisf./Bad	2.17	1	1.83	6	1.47	**0.103**		
	Very/Good	0.96	1	0.98	25	0.38			
P15	Satisf./Bad	1.67	1	1.63	6	1.31	**0.027**		
	Very/Good	0.60	0	0.76	25	0.30			
P16	Satisf./Bad	2.00	1	1.67	6	1.34	**0.143**		
	Very/Good	1.16	1	1.34	25	0.53			
P17	Satisf./Bad	1.50	1	1.22	6	0.98	**0.088**		
	Very/Good	0.88	1	1.20	25	0.47			
P18	Satisf./Bad	1.50	1	0.84	6	0.67	**0.018**		
The comparison of pre- and post-sialendoscopy VAS values (Wilcoxon test) resulted in a score reduction from 7.42 to 1.29 (p < 0.001), showing the efficacy of sialendoscopy in relieving pain after treatment.

Discussion

Synopsis of new findings

This prospective study evaluated the post-sialendoscopy satisfaction by QOL questionnaire results for 37 sialendoscopies in three years. Few studies have focused specifically on the QOL after sialendoscopies; previous specific questionnaires, like the Chronic Obstructive Sialadenitis Symptoms (COSS) Questionnaire (38), have retrospectively addressed the severity of sialadenitis symptoms in sialendoscopy submitted patients, in seven years period with only 66 patients enrolled and, different from our study, they evaluated a past month clinical period.

Our study differs in the complete and prospective way in which the topic was addressed by specific questionnaires of sialendoscopy, xerostomia and OHIP, before and after the procedure, with a good correlation of the result with sialendoscopy, with findings similar to another prospective study with forty patients and specific questionnaire (29) and to date, there are no other comparable studies, despite the growing spread of the technique (31).

Our cohort included most young female patients: 64.5% had sialolithiasis, 35.4% had post-radioiodine and milk ingestion; the periodic painful swelling (4.5 times/week), and a long average time until treatment (23.5 months) could have strongly influenced the poor pre-sialendoscopy QOL, once the pre-VAS was 7.42 (p < 0.001). This was anatomically explained by the sensitive gland innervation from trigeminal V3 branches. Our post-sialendoscopy follow-up (14 months) confirmed the successful viability of the sialendoscopy as an organ function-preserving procedure, with a high satisfaction index.
In our cohort, 64.5% of patients suffered from stones obstruction with an average size of 3.77 mm. Nearly 37% were single stones of which 86.5% were successfully treated with sialendoscopy alone, and the remaining with a combined approach. The average time of 139 minutes (2 hours and 31 minutes) was comparable with the literature, in the way that some patients (majority with stones and five others with combined-hybrid procedure), have took more time to retrieve the objective, without complications (5, 39–41). The post-VAS pain scale was 1.3 after sialendoscopy (p < 0.001). There was major satisfaction with the procedure, as 3.45 was the overall satisfaction score (p < 0.001), which mainly correlated with stone size (p = 0.049) and was comparable with only one other similar article (29) (Table 1, Table 2, Table 3).

Oral health impact profile and sialendoscopy findings

Overall, 80.6% of patients reported improved symptoms after sialendoscopy in the sialolithiasis clinic (p < 0.001) (Table 4). In the OHIP, the physical pain and psychological discomfort domain scores were mostly impacted by salivary obstruction (Table 3). As these QOL domains were heavily impacted by obstruction, the sialendoscopy provided relief and truly improved psychological discomfort and physical and psychological deficiencies (p < 0.001) (Table 5).

Our study limitations were the relatively small number of patients for this amount of time; questionable conclusions due to the interpretation of subjective data on QOL questionnaires, common in this type of studies; the absence of comparative results in literature to ours of specific questionnaires on sialendoscopy; and patient misinterpretation with different types of questions. Nevertheless, our prospective study on post-sialendoscopy satisfaction found high score QOL correlated with stone size.

In our correlation analysis (Table 5), we found a positive correlation with calculi size, that is, larger sialolithiasis and better sialendoscopy satisfaction (p = 0.049). We found the best correlation with question 46 (unable to enjoy people's company) of OHIP, where r=-0.660. This negative r-correlation shows, inversely, a greater satisfaction with sialendoscopy.

In Table 4, the salivary stone symptom correlated with Good satisfaction (p = 0.022) and overall Good satisfaction with sialendoscopy for obstructive disease (p < 0.001), demonstrating the efficacy of sialendoscopy in relieving pain and an enriching QOL.

In Table 5, other Very Good correlations of sialendoscopy included the following: OHIP: question 3 (p = 0.037), question 21 (p < 0.001), question 25 (p = 0.026), question 36 (p = 0.031), question 45 (p = 0.006), question 47 (p = 0.013), and total deficiency (p = 0.008). This means that OHIP questions prior to sialendoscopy (such as tooth problems, psychological discomfort, depression, and an unsatisfying life) have a strong correlation with Very Good satisfaction after sialendoscopy procedure. This mainly reflects the mental status improvement after relief of pain and resolution of the salivary problems.

Similar results are shown in Table 6, with respect to the satisfaction answer: Very Good/Good and Satisfying/Bad. The main differences occurred on question 17 (p = 0.041), question 45 (p = 0.014), and
question 46 (p = 0.002), implying good correlation after the sialendoscopy, in which the procedure ameliorated in some way the prior symptoms.

Xerostomia and sialendoscopy findings

We found good correlation between sialendoscopy satisfaction in Q5 (p = 0.025), Q6 (p = 0.031), Q10 (p = 0.044), Q14 (p = 0.030), Q15 (p = 0.013), and Q18 (p = 0.003) (Table 5). This showed that worries prior to the procedure were positively associated with resolution and satisfaction after sialendoscopy.

However, in Table 6, we found a negative correlation between Xer and sialendoscopy satisfaction, where the total score was 46.5 Satisfying/Bad versus Very Good/Good (p = 0.009). These results demonstrated no correlation in sialendoscopy satisfaction, similar to the literature, specifically on stenosis, radioiodine, and salivary production deficiency (8, 11, 20, 25, 26, 31). These contradictory results could be explained by the fact that the main disease that determined the stenosis is the same on salivary acini destruction. This results in decreased salivary production and flow, and since the sialendoscopy is a procedure that affects the flow part of equation; and salivary production is not achieved and solved by sialendoscopy, the final result is the poor satisfaction expressed by patients along time; other explanations are patient misunderstanding, method limitations and the relatively few subjects on the study.

Clinical applications

Our findings support the evident indication of sialendoscopy for obstructive sialolithiasis and relative indication for stenosis/other xerostomia causes. The positive impact on QOL is clearly evident on the sialolithiasis and barely satisfactory in the stenosis; as result, the surgeon must precisely evaluate the time of each case indication.

The positive satisfaction of sialendoscopy for pain relief in obstructive disease, mainly due to stones while conserving the salivary gland, reaffirms the indication of sialendoscopy as the first alternative for obstructive salivary lithiasis.

Our results can assist clinicians with the appropriate patient selection for sialendoscopy treatment. Additionally, they introduce a new question: When is the best time to indicate sialendoscopy in cases of obstruction due to strictures, where the main cause is inflammation (radioinduced, autoimmune sialodenitis)? Should it only be when they are symptomatic? Perhaps more multi-center, prospective studies, with a greater sample size could address this question.

The main goal of the study is to apply these results in our daily clinic, selecting the better temporary moment to perform the procedure and not simply proposing the sialendoscopy act. Our results will help to choose the moment at which sialendoscopy will be indicated as the definitive treatment for obstructions by stones, preserving the gland and getting better QOL, or indicating as "palliative" treatment in cases of inflammatory strictures, expecting a poor improvement on QOL.

Conclusions
Our study on post-sialendoscopy QOL found high score correlated with good patient satisfaction and overall good patient satisfaction after sialendoscopy in sialolithiasis, where 80.6% of symptoms improved.

We found a negative correlation between Xerostomia and post-sialendoscopy satisfaction, meaning poor QOL satisfaction perceived by the patient.

Our findings support the formal indication of sialendoscopy for obstructive sialolithiasis with a positive impact on QOL and relative indication in stenosis/other xerostomia causes that barely improved QOL satisfaction.

Abbreviations

QOL – quality of life questionnaire

XER – xerostomia degree questionnaire

OHIP – oral health impact profile questionnaire

QoL – quality of life questionnaires

CAAE - institutional Ethics Committee

WHO – world health organization

UTN – universal trial number

ReBec - Brazilian Clinical Trials Registry

PROCESS - Preferred Reporting of Case Series in Surgery

STROCSS - Strengthening the Reporting of Cohort Studies in Surgery

SQUIRE 2.0 - Standards for Quality Improvement Reporting Excellence guidelines

VAS – visual pain analog scale

Pre-VAS – pre-sialendoscopy visual pain analog scale score

Post-VAS – post-sialendoscopy visual pain analog scale score

PSPS - questionnaire on patient satisfaction post-sialendoscopy

USG - ultrasonography

Declarations
Ethics approval and consent to participate

This study was approved by the Institutional Ethics Committee (CAAE: 95881418.2.0000.5483, number 2.934.247) in October 2018. The study was conducted in accordance with the Declaration of Helsinki and registered with the WHO Universal Trial Number (UTN) number (U1111-1247-7028) and the Brazilian Clinical Trials Registry (ReBeC), whose number is RBR-6p8zfs. This study is in accordance with the Preferred Reporting of Case Series in Surgery (PROCESS) criteria (32), Strengthening the Reporting of Cohort Studies in Surgery (STROCSS) (33) and the Standards for Quality Improvement Reporting Excellence guidelines (SQUIRE 2.0) (34).

Consent for publication

Not applicable

Availability of data and materials

Not applicable

Competing interests

The authors declare that they have no competing interests

Funding

There is no funding to this study

Authors' contributions

GMM: study concept, study design, data acquisition, data analysis and interpretation, manuscript preparation, manuscript editing and review, final approval of the version to be published and accountable for all aspects of the work

MCN: data acquisition, manuscript preparation, final approval of the version to be published and accountable for all aspects of the work

MR: data acquisition, manuscript preparation, final approval of the version to be published and accountable for all aspects of the work

CMRSV: data acquisition, manuscript preparation, final approval of the version to be published and accountable for all aspects of the work

MA: study design, data analysis and interpretation, manuscript preparation, manuscript editing and review, final approval of the version to be published and accountable for all aspects of the work
OC: study design, data analysis and interpretation, manuscript preparation, manuscript editing and review, final approval of the version to be published and accountable for all aspects of the work

All authors read and approved the final manuscript.

Acknowledgments

We would like to thank to the Statistical team, in the person of Mr. Jimmy Adans Costa Palandi, who performed this precious analysis and to the Editage Group (www.editage.com) for professional English language editing in the review of this manuscript.

References

1. Capaccio P, Gaffuri M, Rossi V, Pignataro L. Sialendoscope-assisted transoral removal of hilo-parenchymal sub-mandibular stones: surgical results and subjective scores. Acta Otorhinolaryngol Ital. 2017;37(2):122–7.

2. Marchal F, Dulguerov P. Sialolithiasis management: the state of the art. Arch Otolaryngol Head Neck Surg. 2003;129(9):951–6.

3. Escudier MP, McGurk M. Symptomatic sialoadenitis and sialolithiasis in the English population, an estimate of the cost of hospital treatment. Br Dent J. 1999;186(9):463–6.

4. Van Nostrand D. Sialoadenitis secondary to 131I therapy for well-differentiated thyroid cancer. Oral Dis. 2011;17(2):154–61.

5. Delagnes EA, Aubin-Pouliot A, Zheng M, Chang JL, Ryan WR. Sialadenitis without sialolithiasis: Prospective outcomes after sialendoscopy-assisted salivary duct surgery. Laryngoscope. 2017;127(5):1073–79.

6. Kakoei S, Haghdoost AA, Rad M, Mohammadalizadeh S, Pourdamghan N, Nakhai M, et al. Xerostomia after radiotherapy and its effect on quality of life in head and neck cancer patients. Arch Iran Med 2012;15(4):214–8.

7. Ardekian L, Shamir D, Trabelsi M, Peled M. Chronic obstructive parotitis due to strictures of Stenson's duct: our treatment experience with sialoendoscopy. J Oral Maxillofac Surg. 2010;68(1):83–7.

8. Koch M, Iro H. Salivary duct stenosis: diagnosis and treatment. Acta Otorhinolaryngol Ital. 2017;37(2):132–41.

9. De Luca R, Trodella M, Vicidomini A, Colella G, Tartaro G. Endoscopic management of salivary gland obstructive diseases in patients with Sjögren's syndrome. J Craniomaxillofac Surg. 2015;43(8):1643–9.

10. Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13(3):265–71.

11. Choi JS, Choi YG, Kim YM, Lim JY. Clinical outcomes and prognostic factors of sialendoscopy in salivary duct stenosis. Laryngoscope. 2018;128(4):878–84.
12. Nahlieli O, Neder A, Baruchin AM. Salivary gland endoscopy: a new technique for diagnosis and treatment of sialolithiasis. J Oral Maxillofac Surg. 1994;52(12):1240–2.

13. Nahlieli O, Baruchin AM. Sialoendoscopy: three years' experience as a diagnostic and treatment modality. J Oral Maxillofac Surg. 1997;55(9):912–8.

14. Marchal F, Becker M, Dulguerov P, Lehmann W. Interventional sialendoscopy. Laryngoscope. 2000;110(2):318–20.

15. Erkul E, Gillespie MB. Sialendoscopy for non-stone disorders: The current evidence. Laryngoscope Investig Otolaryngol. 2016;1(5):140–5.

16. Nahlieli O, Baruchin AM. Long-term experience with endoscopic diagnosis and treatment of salivary gland inflammatory diseases. Laryngoscope. 2000;110(6):988–93.

17. Faure F, Boem A, Taffin C, Badot F, Disant F, Marchal F. Diagnostic and interventional sialendoscopy. Rev Stomatol Chir Maxillofac. 2005;106(4):250–2.

18. Danquant J, Wagner N, Arndal H, Homøe P. Sialoendoscopy for diagnosis and treatment of non-neoplastic obstruction in the salivary glands. Dan Med Bull. 2011;58(2):A4232.

19. Cordesmeyer R, Winterhoff J, Kauffmann P, Laskawi R. Sialoendoscopy as a diagnostic and therapeutic option for obstructive diseases of the large salivary glands-a retrospective analysis. Clin Oral Investig. 2015;11.

20. Kim JW, Han GS, Lee SH, Lee DY, Kim YM. Sialoendoscopic treatment for radioiodine induced sialadenitis. Laryngoscope. 2007;117(1):133–6.

21. De Luca R, Vicidomini A, Trodella M, Tartaro G, Colella G. Sialoendoscopy: a viable treatment for I(131) induced sialoadenitis. Br J Oral Maxillofac Surg. 2014;52(7):641–6.

22. Bomeli SR, Schaitkin B, Carrau RL, Walvekar RR. Interventional sialendoscopy for treatment of radioiodine-induced sialadenitis. Laryngoscope. 2009;119(5):864–7.

23. Bhayani MK, Acharya V, Kongkiatkamon S, Farah S, Roberts DB, Sterba J, et al. Sialendoscopy for Patients with Radioiodine-Induced Sialadenitis and Xerostomia Thyroid. 2015;25(7):834–38.

24. Nahlieli O, Nazarian Y. Sialadenitis following radioiodine therapy - a new diagnostic and treatment modality. Oral Dis. 2006;12(5):476–9.

25. Wu CB, Xi H, Zhou Q, Zhang LM. Sialendoscopy-assisted treatment for radioiodine-induced sialadenitis. J Oral Maxillofac Surg. 2015;73(3):475–81.

26. Pace CG, Hwang KG, Papadaki ME, Troulis MJ. Sialadenitis Without Sialolithiasis Treated by Sialendoscopy. J Oral Maxillofac Surg. 2015;73(9):1748–52.

27. Marchal F. Sialoendoscopy - The Endoscopic Approach to Salivary Gland Ductal Pathologies. Tuttlingen, Germany: Francis Marchal; 2012. 58 p.

28. Lele SJ, Hamiter M, Fourrier TL, Nathan CA. Sialendoscopy With Intraductal Steroid Irrigation in Patients With Sialadenitis Without Sialoliths. Ear Nose Throat J. 2019;98(5):291–4.

29. Aubin-Pouliot A, Delagnes EA, Chang JL, Ryan WR. Sialendoscopy-assisted surgery and the chronic obstructive sialadenitis symptoms questionnaire: A prospective study. Laryngoscope.
2016;126(6):1343–8.

30. Kroll T, Finkensieper M, Sharma SJ, Guntinas-Lichius O, Wittekindt C. Short-term outcome and patient satisfaction after sialendoscopy. Eur Arch Otorhinolaryngol. 2013;270(11):2939–45.

31. Kim YM, Choi JS, Hong SB, Hyun IY, Lim JY. Salivary gland function after sialendoscopy for treatment of chronic radioiodine-induced sialadenitis. Head Neck. 2016;38(1):51–8.

32. Agha RA, Borrelli MR, Farwana R, Koshy K, Fowler A, Orgill DP, et al. Statement: Updating Consensus Preferred Reporting Of CasE Series in Surgery (PROCESS) Guidelines. International Journal of Surgery. 2018;60:279–82.

33. Agha RA, Borrelli MR, Vella-Baldacchino M, Thavayogan R, Orgill DP, STROCSS Group. The STROCSS statement: Strengthening the Reporting of Cohort Studies in Surgery. Int J Surg 2017;46:198–202.

34. Ogrinc G, Davies L, Goodman D, Batalden P, Davidoff F, Stevens D. SQUIRE 2.0 (Standards for QUality Improvement Reporting Excellence): revised publication guidelines from a detailed consensus process. BMJ Quality & Safety. 2016;25:986–92.

35. Slade GD. Derivation and validation of a short-form oral health impact profile. Community Dent Oral Epidemiol. 1997;25:284–90.

36. Vagias WM. Likert-type scale response anchors. Clemson International Institute for Tourism & Research Development. Department of Parks, Recreation and Tourism Management Clemson University [Internet]. 2006.

37. Haefeli M, Elfering A. Pain Assessment. Eur Spine J. 2006;15:S17-24.

38. Aubin-Pouliot A, Delagnes EA, Eisele DW, JL C, WR R. The Chronic Obstructive Sialadenitis Symptoms Questionnaire to assess sialendoscopy-assisted surgery. Laryngoscope. 2016;126(1):93–9.

39. Cox D, Chan L, Veivers D. Prognostic factors for therapeutic sialendoscopy. The Journal of Laryngology & Otology. 2018;132(3):275–8.

40. Kondo N, Yoshihara T, Yamamura Y, Kusama K, Sakitani E, Seo Y, et al. Treatment outcomes of sialendoscopy for submandibular gland sialolithiasis: The minor axis of the sialolith is a regulative factor for the removal of sialoliths in the hilum of the submandibular gland using sialendoscopy alone. Auris Nasus Larynx. 2018;45(4):772–6.

41. Kopeć T, Wierzbicka M, Kałużny J, Młodkowska A, Szyfter W. Sialendoscopy and sialendoscopically-assisted operations in the treatment of lithiasis of the submandibular and parotid glands: our experience of 239 cases. Br J Oral Maxillofac Surg. 2016;54(7):767–71.

Figures
Figure 1

Final Image Stone Sequence A- Obstructive Sialolithiasis in the main duct B- Basket in position beside the stone C- Open Basket holding the stone D- Exteriorizing the set through the mouth E- Sialolithiasis measuring 4mm
Figure 2

Final Image Stenosis Sequence A- Severe Stenosis with pale intraductal mucosa B- Dilatator Balloon in position, inside the stenosis C- Inflated Balloon, one can see the light reflect in the balloon filled with water D- Severe turned in mild Stenosis improving the saliva flow