Spin nano–oscillator–based wireless communication

Hyun Seok Choi1, Sun Yool Kang1, Seong Jun Cho1, Inn-Yeal Oh1, Mincheol Shin1, Hyuncheol Park1, Chaun Jang2, Byoung-Chul Min2, Sang-IIl Kim3, Seung-Young Park3 & Chul Soon Park1

1Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea, 2Center for Spintronics Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea, 3Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Korea.

Spin–torque nano–oscillators (STNOs) have outstanding advantages of a high degree of compactness, high–frequency tunability, and good compatibility with the standard complementary metal–oxide–semiconductor process, which offer prospects for future wireless communication. There have as yet been no reports on wireless communication using STNOs, since the STNOs also have notable disadvantages such as lower output power and poorer spectral purity in comparison with those of LC voltage–controlled oscillators. Here we show that wireless communication is achieved by a proper choice of modulation scheme despite these drawbacks of STNOs. By adopting direct binary amplitude shift keying modulation and non–coherent demodulation, we demonstrate STNO–based wireless communication with 200–kbps data rate at a distance of 1 m between transmitter and receiver. It is shown, from the analysis of STNO noise, that the maximum data rate can be extended up to 1.48 Gbps with 1–ns turn–on time. For the fabricated STNO, the maximum data rate is 5 Mbps which is limited by the rise time measured in the total system. The result will provide a viable route to real microwave application of STNOs.

Mobile terminals, an indispensable gadget of modern life, are becoming more compact and power efficient while serving multiple functions and operating in different standards of wireless communication. One of the main issues associated with multi–standard transceivers is how to design a compact, low–power, low–phase–noise, and wideband voltage–controlled oscillator (VCO). The rapid progress in spintronics technology suggests that the spin–torque nano–oscillator (STNO), owing to its small chip size and high tunability, can be a new solution not only for memory and but also for radio–frequency (RF) devices1–2. Compared to the LC tank–based VCO, which is generally used for conventional RF transceivers, STNOs are remarkably small (100 nm or less in diameter) without an LC resonance tank because they are based on the spin–transfer torque on nano–magnetic structures. Moreover, for reconfigurable communication, the high tunability of the STNO makes an STNO–based RF transceiver superior to an LC VCO–based RF transceiver, which requires multiple VCOs and thus consumes much more power than a single LC VCO. In one example, an STNO3 featured an ultra–wideband tuning ratio that exceeds 100% at a center frequency of oscillation of 5 GHz.

However, several issues remain that hinder the realization of an STNO–based RF transceiver. The STNOs have critical disadvantages such as lower output power and poorer spectral purity in comparison with LC voltage–controlled oscillators (VCOs). Many research groups have tried to improve the output power and spectral purity of a single or multiple STNOs4–17. For example, to increase the output power associated with STNOs, the synchronization of multiple STNOs4–5 as well as structural optimizations6–12 has all been attempted; however, these devices require a sizable amplification for wireless communication. Even with multiple amplifications of the STNO output2, modulation which uses a mixer for up– and down–conversion of the frequency cannot be realized due to the poor spectral purity, as evidenced by several MHz of the linewidth Δf and numerous spurious signals, mode hopping20, and the frequency–amplitude nonlinearity21.

Here we take an alternative approach to perform wireless communication by adopting direct modulation with binary amplitude shift keying (ASK) despite major drawbacks of STNOs. This modulation scheme enables us to demonstrate STNO–based wireless communication with a decent data rate at a distance between the transmitter (Tx) and receiver (Rx) of 1 m. We analyze the noise caused by the STNO to extract the maximum data rate theoretically and present the measured data rate experimentally.
Results

Operational principle and properties of the STNO. The operation of the STNO is based on the transfer of spin angular momentum from spin-polarized current to the local magnetization of a thin magnetic layer. As shown in Fig. 1a, when DC current I_{DC} is supplied to the STNO, the conduction electrons are polarized by the magnetization M_p of the pinned layer; the magnetization vector $M_f(r,t)$ in the free layer continuously oscillates around the local effective magnetic field H_{eff}. The spin torque oscillation is observed in a nanoscale structure with a high current density ($\sim 10^8$ A/cm²). The oscillation occurs around static equilibrium magnetic moments, which can be tuned by choosing the material parameters and device structure. The direction and magnitude of H_{ext} also mainly influence the oscillation frequency. Fig. 1b shows that, to measure the STNO oscillation, I_{DC} is injected via the inductive branch and the generated voltage oscillation is extracted via RF microprobes and the capacitive branch of the bias tee. A spectrum analyzer with an operating bandwidth in the range of 10 kHz–50 GHz was used in this case to extract the output spectrum of the STNO.

We have measured the DC and RF properties of an STNO based on MgO magnetic tunnel junction (MTJ) (See Methods for the details of the sample structure). Fig. 2a shows the magneto-resistance (MR) values of the STNO at both antiparallel (AP) and parallel (P) states between M_p and $M_f(r,t)$ when I_{DC} varies from -3 mA to 3 mA. When I_{DC} is increased from 0 mA to 3 mA, R_{AP} decreases from 83 Ω to 77 Ω. We have observed a microwave oscillation in this AP state at $I_{\text{DC}} = 1 \sim 3$ mA and $H_{\text{ext}} = 55$ Oe; as shown in Fig. 2b, when I_{DC} is increased from 1.0 mA to 3 mA, the output peak power of the STNO (P_{peak}) is increased from -94.0 dBm to -85.7 dBm, and the oscillation frequency of the STNO (f_{osc}) is decreased from 2.62 GHz to 2.51 GHz. When I_{DC} is increased further to 3.5 mA, P_{peak} is slightly decreased to -86.1 dBm. Fig 2c shows the magnetic field dependence of microwave oscillation from the STNO; both f_{osc} and P_{peak} are changed notably when H_{ext} is applied in a range of 20 Oe to 400 Oe. The frequency is tuned from 1.870 GHz to 5.350 GHz, and P_{peak} ranges from -96.4 dBm to -85.7 dBm; the linewidth Δf of the oscillation output spectrum ranges from 200 MHz to 245 MHz with variation of I_{DC}, as shown in Fig. 2d. With an I_{DC} value of 3 mA and a H_{ext} value of 55 Oe, the STNO generates a maximum P_{peak} of -85.7 dBm with a minimum Δf of 200 MHz and resistance near 50 Ω (77 Ω) at 2.5 GHz; the STNO under these conditions will be used for wireless communication in this work.

Modulation for STNO–based communication. For wireless modulation and demodulation, a local oscillator (LO), which generates the carrier frequency, requires enough power (~ 0 dBm) to obtain the intermediate modulation signal using an RF mixer to perform frequency up- and down-conversion. However, the output power levels of STNOs are much lower than 0 dBm; the STNOs in the previous reports have an output power lower than -45 dBm, and the STNO in this work has an P_{peak} value of -85.7 dBm. In addition, the STNO generates numerous spurious signals with the STNO output signal. Due to the low output power and the spurious signals of the STNO, wireless communication by intermodulation, which uses the STNO as an LO, cannot be performed successfully. Thus, we consider amplitude shift keying (ASK) and frequency shift keying (FSK) for STNO–based modulation, as these strategies do not require an RF mixer for wireless communication.

The wired binary FSK (BFSK) modulation or analog frequency modulation using STNOs by controlling I_{DC} has already been demonstrated. The demodulation of BFSK, however, leads to another challenge. In the BFSK demodulation, there are two types of the BFSK demodulation with no RF mixer; one is using bandpass filter (BPF) pairs, and the other is using a frequency discriminator. The BPF pairs should separate two different frequencies clearly. However, given the oscillation characteristics of STNOs, it is difficult to separate the two different frequencies by BPF pairs due to the bandwidth limitation of BPF; a frequency discriminator increases the noise of high frequency components of the STNOs. Therefore, the demodulation through I_{DC}–controlled BFSK is very difficult to be used with STNOs. Moreover, the STNO fabricated in this work has a broad minimum linewidth of 200 MHz as shown in Fig. 2d. In order to use the BFSK, a sufficient frequency separation between two frequencies more than 200 MHz is required, but the frequency range of the STNO that can be controlled by bias current (I_{DC}) is only 110 MHz shown in Fig. 2b. The I_{DC}–controlled BFSK based on this type of STNO cannot distinguish the on–state from the off–state in the demodulated STNO signal. Instead, we may consider the BFSK controlled by external field (H_{ext}) as an alternative option for our STNO of which frequency can be controlled over a wide frequency band ($1.87 \sim 5.35$ GHz) by H_{ext}. Unfortunately, the H_{ext}–controlled BFSK additionally requires a circuit such as coplanar wave guide (CPW) for generating H_{ext} changed continuously by the current of the BFSK demodulation with no RF mixer; one is using bandpass filter (BPF) pairs, and the other is using a frequency discriminator. The BPF pairs should separate two different frequencies clearly. However, given the oscillation characteristics of STNOs, it is difficult to separate the two different frequencies by BPF pairs due to the bandwidth limitation of BPF; a frequency discriminator increases the noise of high frequency components of the STNOs. Therefore, the demodulation through I_{DC}–controlled BFSK is very difficult to be used with STNOs. Moreover, the STNO fabricated in this work has a broad minimum linewidth of 200 MHz as shown in Fig. 2d. In order to use the BFSK, a sufficient frequency separation between two frequencies more than 200 MHz is required, but the frequency range of the STNO that can be controlled by bias current (I_{DC}) is only 110 MHz shown in Fig. 2b. The I_{DC}–controlled BFSK based on this type of STNO cannot distinguish the on–state from the off–state in the demodulated STNO signal. Instead, we may consider the BFSK controlled by external field (H_{ext}) as an alternative option for our STNO of which frequency can be controlled over a wide frequency band ($1.87 \sim 5.35$ GHz) by H_{ext}. Unfortunately, the H_{ext}–controlled BFSK additionally requires a circuit such as coplanar wave guide (CPW) for generating H_{ext} changed continuously by the current of the BFSK demodulation with no RF mixer; one is using bandpass filter (BPF) pairs, and the other is using a frequency discriminator. The BPF pairs should separate two different frequencies clearly. However, given the oscillation characteristics of STNOs, it is difficult to separate the two different frequencies by BPF pairs due to the bandwidth limitation of BPF; a frequency discriminator increases the noise of high frequency components of the STNOs. Therefore, the demodulation through I_{DC}–controlled BFSK is very difficult to be used with STNOs. Moreover, the STNO fabricated in this work has a broad minimum linewidth of 200 MHz as shown in Fig. 2d. In order to use the BFSK, a sufficient frequency separation between two frequencies more than 200 MHz is required, but the frequency range of the STNO that can be controlled by bias current (I_{DC}) is only 110 MHz shown in Fig. 2b. The I_{DC}–controlled BFSK based on this type of STNO cannot distinguish the on–state from the off–state in the demodulated STNO signal. Instead, we may consider the BFSK controlled by external field (H_{ext}) as an alternative option for our STNO of which frequency can be controlled over a wide frequency band ($1.87 \sim 5.35$ GHz) by H_{ext}. Unfortunately, the H_{ext}–controlled BFSK additionally requires a circuit such as coplanar wave guide (CPW) for generating H_{ext} changed continuously by the current of
pulsed input\(^{28-29}\). As a consequence, the integrated chip size for wireless communication system becomes larger, and more DC current may be consumed in comparison with the \(I_{\text{DC}}\)-controlled modulation.

For the binary ASK, digital data is simply represented as the presence or absence of STNO oscillation. Because the demodulation is performed by detecting the envelope of the modulated signal without BPF pairs and a frequency discriminator, it is also related to neither \(\Delta f\) nor the maximum frequency difference of the STNO, in contrast to BFSK. Moreover, the BFSK signal requires two frequencies representing the symbol states with a sufficient separation. In contrast, the binary ASK signal requires only one carrier frequency. Because the required bandwidth of the BFSK signal is twice the bandwidth of the ASK signal under same data rate, the binary ASK modulation is more bandwidth efficient than the BFSK, which is within the operating range of \(250 \text{ kbps}\). Because the amplified modulation signal is transmitted through the \(T_x\) antenna \((-33.7 \text{ dBm}}\) with \(2\)-dBi \(T_x\) antenna gain), which is a 2.5–GHz 2–dBi dipole antenna identical to \(R_s\) and given that the path loss of air is \(-40 \text{ dB}\) (see Methods) with a distance of 1 m between \(T_x\) and \(R_s\), the received signal power through the \(R_s\) antenna is \(-71.7 \text{ dBm}\) \([-85.7 \text{ dBm} (\text{STNO output}) + 50 \text{ dB (amplifier gain)} + 2 \text{ dB (}T_x\text{ antenna gain)} - 40 \text{ dB (the air path loss)} + 2 \text{ dB (}R_s\text{ antenna gain})]\). For \(R_s\) shown in Fig. 3b, the total gain and noise figure \(NF\) of \(R_s\) are 39 dB and 1.4 dB, respectively, as calculated by adding each RF block’s gain and \(NF\) (see Eq. (1) in Methods). Fig. 3d shows the RF block–by–block signal power flow of the received signal. The received signal power right before the demodulator is \(-32.7\text{ dBm}\), which is within the operating range of \(-60 \text{ dBm}\) to \(-5 \text{ dBm}\) of the envelope detector. We designed \(R_s\) such that it has a 1.4–dB \(NF\) and a gain of 39 dB, thus satisfying the minimum sensitivity of the envelope detector \((-60 \text{ dBm})\).

Demonstration of binary ASK modulation and demodulation. The square–pulsed signal of 230 mV\(_{\text{p-p}}\) generates an \(I_{\text{DC}}\) value of 3 mA to turn on and off the STNO, where \(V_{\text{p-p}}\) is the peak–to–peak voltage of a signal. The modulated signal is measured at node a in Fig. 3a, right before the antenna, and the demodulated signal is measured at node b in Fig. 3b on the sampling oscilloscope.

Fig. 4 reveals the successful wireless communication between \(T_x\) and \(R_s\) at 200 kbps. Figs. 4a and 4b show the modulated signal with a

Figure 2 | Characteristics of the measurements for the fabricated STNO. (a) Magneto–resistance of the STNO as a function of \(I_{\text{DC}}\) \((H_{\text{ext}} = 55 \text{ Oe})\). \(P\) indicates the parallel (P) state between \(M_p\) and \(M_p\), AP denotes the antiparallel (AP) state between \(M_p\) and \(M_p\). (b) The oscillation frequency \(f_{\text{osc}}\) and peak output power \(P_{\text{peak}}\) level of the STNO as a function of \(I_{\text{DC}}\) \((H_{\text{ext}} = 55 \text{ Oe})\). (c) \(f_{\text{osc}}\) and the \(P_{\text{peak}}\) level of the STNO as a function of \(H_{\text{ext}}\) \((I_{\text{DC}} = 3 \text{ mA})\). (d) The linewidth \(\Delta f\) of the STNO as a function of \(H_{\text{ext}}\) \((I_{\text{DC}} = 55 \text{ Oe})\).
pulsed input frequency of 100 kHz and a demodulated signal at a distance of 1 m between Tx and Rx, respectively. The 170–mV p–p value in Fig. 4b is much larger than the noise voltage level after the demodulation process. One remarkable feature in Fig. 4b is that there is a difference in the noise voltage between the on– and off– states: 645 mV for the on– state (Vn, on) and 620 mV for the off– state (Vn, off). The only cause of this difference is whether the STNO is on or off. This is used to extract the STNO noise voltage and finally to determine the maximum data rate with the STNO in the forthcoming discussion section.

Discussion

Analysis of the STNO noise. The STNO– caused noise, Vn, STNO can be extracted from the measurement of the on– and off– state noise voltages with the assumption that the STNO noise does not have any correlation with other noise sources in the communication system in Fig. 4b.

The total noise voltage of a system and the noise voltage from each noise source are related by the following equation,

$$V_{n,\text{tot}}^2 = V_{n1}^2 + V_{n2}^2 + \cdots + V_{n\text{,tot}}^2,$$

(2)

where $V_{n,\text{tot}}$ is the total noise voltage of the system and $V_{n\text{,tot}}$ is the n–th noise voltage from the n–th noise source. All noise voltages are independent of each other in Eq. (2). Thus, the noise voltage caused by only the STNO is calculated by the equations below.

$$V_{n,\text{on}}^2 = V_{n,\text{STNO}}^2 + V_{n,\text{off}}^2$$

(3)

$$V_{n,\text{STNO}} = \sqrt{V_{n,\text{on}}^2 - V_{n,\text{off}}^2}$$

(4)

Here, $V_{n,\text{STNO}}$ is the noise voltage amplified from the only STNO– caused noise, $V_{n,\text{on}}$ is the noise voltage of the system when the STNO is turned on, and $V_{n,\text{off}}$ is the noise voltage of the system when the STNO is turned off.

Using Eqs. (3) and (4), $V_{n,\text{STNO}}$ is determined to be ±40.3 mV, which is observed as the largest noise source in the system, where $V_{n,\text{on}} = \pm 45$ mV and $V_{n,\text{off}} = \pm 20$ mV. The only STNO– caused noise power $P_{n,\text{STNO}}$ is determined to be 16.25 μW, or 217.90 dBm from the root– mean– square (RMS) value of $V_{n,\text{STNO}}$ and the 50–V impedance [$P_{n,\text{STNO}} = V_{n,\text{STNO}}/2 \cdot 2/2/50$].

The noise generated only by the STNO is $V_{n,\text{STNO}}$ which is amplified as much as the total gain of the system because we analyze $V_{n,\text{STNO}}$ in the demodulator. The total gain of 80.3 dB is calculated by adding the subtotal gain of 53 dB before the envelope detector and the envelope detector gain of 27.3 dB. The envelope detector gain is calculated by subtracting the input signal power of -32.7 dBm from the output signal power of -5.4 dBm, as calculated from a RMS of 170 mV p–p and the 50–Ω impedance [the output signal power = $(170 \cdot mV/2)/50 = 5.4$ dBm]. Therefore, the noise generated only by the STNO itself is -98.2 dBm [-17.90 dBm ($P_{n,\text{STNO}}$) – 80.3 dBm (total gain)], and the signal–to– noise ratio (SNR) of the signal power flow, where P_n is the received signal power of Rx and Ant, LNA, RF amp, and BPF are the measurement positions before the Rx antenna, the LNA, the RF amplifier, BPF, and the envelope detector, respectively. The signal level right after BPF is -32.7 dBm, which is within the detectable range of the demodulator ($-60 \sim 5$ dBm).

Figure 3 | Configuration of the STNO– based binary ASK transceiver. (a) Schematic of the STNO– based binary ASK transmitter (Tx). (b) Schematic of the receiver (Rx) and the gain and noise figure (NF) of the Rx chain. (c) The measurement set– up of the STNO– based binary ASK system. (d) The received signal power flow, where P_n is the received signal power of Rx and Ant, LNA, RF amp, and BPF are the measurement positions before the Rx antenna, the LNA, the RF amplifier, BPF, and the envelope detector, respectively. The signal level right after BPF is -32.7 dBm, which is within the detectable range of the demodulator ($-60 \sim 5$ dBm).
signal power to the STNO noise power is determined to be 12.5 dB \([-85.7 \text{ dBm} -(-98.2 \text{ dBm})]\), where the signal power of the STNO is \(-85.7 \text{ dBm}\), as shown in Fig. 2b. For ASK modulation with the STNO, because the amplitude stability of the STNO mainly determines the SNR of the system, we can improve the SNR and the data rate by eliminating the mode hopping at \(f_{osc}\) and/or maintaining the constant oscillation amplitude of the STNO.

Extraction of the maximum data rate. The maximum data rate \(D_{\text{max}}\) can be extended with the available bandwidth and the number of modulation levels which can be increased with SNR from Shannon’s theorem given as

\[
D_{\text{max}} = B \log_2 (\text{SNR} + 1),
\]

where \(B\) is the 3-dB bandwidth of the signal. The rise time \(T_r\) is typically defined as the time for the signal to rise from 10% to 90% of the step size, and \(B\) is given by \(0.35/T_r^2\). The \(B\) is closely related to the transitional processes in STNOs. If the turn–on of the STNO is approximately 1 ns, the rise time \(T_r\) is approximately 1 ns, and thus \(B\) is calculated as 350 MHz. The total noise power in the SNR calculation for a communication system is the arithmetic sum of the system noise power, which results from the circuits of the signal generator, power amplifiers, antennas, LNA, and the envelope detector, and the STNO noise power. Here, the maximum data rate, where it is assumed that all circuits do not produce any noise apart from the STNO, can be extracted as 1.48 Gbps from \(1/M\)–\(1/M\) pulses input signal in Fig. 5a. The 80–ns increase of \(T_r\) and 90–ns increase of \(T_f\) in the modulated signals is involved in the by–pass capacitor which is parallel–connected to the inductive branch of bias tee. In Fig. 5b and 5c, the rise time of the demodulated signal by the transceiver \((T_{r, \text{TxRx}})\) and the fall time of the demodulated signal by the transceiver \((T_{f, \text{TxRx}})\) are measured into 350 ns and 190 ns after the envelope detector, which are shorter than the pulse width of 500 ns corresponding to 1–MHz pulsed input frequency. Thus, the signal power decreased by the \(V_{p-p}\) reduction does not occur and does not degrade SNR because the \(V_{p-p}\) is 168 mV from 1–MHz pulsed input compared with 170 mV \(100–\text{kHz}\) pulsed input (only 2–mV \(p-p\) decrease). If the pulsed input frequency increases to more than 1 MHz, 350–ns \(T_r, \text{TxRx}\) is much longer than the pulse width and the SNR is degraded. Moreover, because the 120–ns \(T_{r, \text{mod}}\) is increased to 350–ns \(T_r, \text{TxRx}\) and the 150–ns \(T_{f, \text{mod}}\) is increased to 190–ns \(T_f, \text{TxRx}\), the \(T_f\) of only demodulator \((T_{f, \text{demod}})\) is 230 ns and the \(T_{f, \text{demod}}\) of only demodulator \((T_{f, \text{demod}})\) is 40 ns. Due to the total rise time of the system is 350 ns, the maximum data rate using the fabricated STNO is 5 Mbps.

In conclusion, STNO–based wireless communication was demonstrated for the first time successfully at a distance of 1 m at 200 kbps with the direct binary ASK modulation and demodulation. By analyzing the STNO noise, a SNR of STNO is 12.5 dB, and maximum data rate could be, theoretically, increased up to 1.48 Gbps with the STNO having the fastest turn–on of 1 ns. The maximum data rate using the fabricated STNO is 5 Mbps which is limited by rise time and fall time of the system. Further improvement of the data rate is possible by reducing the turn–on time, the rise time, and the fall time of the system and by stabilizing and linearizing the STNO oscillation amplitude.

Table 1 | Comparison of possible maximum data rate for the different types of STNOs. Here \(F\) is the oscillation frequency, \(LW_{\text{min}}\) the minimum linewidth, \(P_{\text{out}}\) the maximum output power, \(D_{\text{max}}\) the maximum data rate. For all STNOs, \(D_{\text{max}}\) is evaluated with SNR (12.5 dB) through the modulator and demodulator of binary ASK modulation. All the STNOs have the 50–ohm connection to the sampling oscilloscope.

STNOs	\(F\) (GHz)	\(LW_{\text{min}}\) (MHz)	\(P_{\text{out}}\) (dBm)	Turn–on time (ns)	\(D_{\text{max}}\) (Mbps)
Ref. 30	3–5.2	–	–37.0	1	1480
Ref. 33	10.48	10	–37.2	15	99
Ref. 34	25.3	–	–	16*	93
Ref. 35	0.007–0.04	–	–	500	3
This work	1.87–5.35	200	–85.7	350**	5

*The turn–on time of Ref. 34 is assumed to 16 ns from the pulse repetition period in the measurement.
**The total rise time of the system is 350 ns which include the turn–on time of the fabricated STNO.
experiment is 2.5 GHz and the calculated path loss of the free space is 40 dB.

\[P_\text{loss} = 20 \log_{10} \left(\frac{4 \pi d}{\lambda} \right) \]

where \(P_\text{loss} \) is the path loss in dB, \(d \) is the distance between the antennas in the same units as the wavelength, and \(\lambda \) is the wavelength. The calculated path loss of the free space is 40 dB.

For the calculation of total \(NF \), if several devices are cascaded, the total noise factor can be obtained by the Friis formula for the noise factor, as follows:

\[NF = F_1 \cdot (F_2 - 1) / (G_1 + (F_3 - 1) / (G_2 G_3 + \cdots + (F_n - 1) / (G_n G_{n+1}) \cdots G_{n-1}) \cdots) \]

where \(F_n \) is the noise factor for the \(n \)-th device and \(G_n \) is the power gain (linear, not in dB) of the \(n \)-th device. Related to this equation, \(NF \) in the text refers to \(F \) expressed in dB.

1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for future. Science 294, 1488–1495 (2001).

Methods

STNO fabrication. We fabricated STNOs using magnetic tunnel junctions (MTJs) with an MgO barrier. As shown in Fig. 1b, the MTJ stack consists of a buffer/Pt\textsubscript{37}Mn\textsubscript{63} (20)/Co\textsubscript{70}Fe\textsubscript{30} (3)/Ru (0.8)/Co\textsubscript{60}Fe\textsubscript{20}B\textsubscript{20} (5) (pinned layer)/MgO (0.9) (barrier)/Co\textsubscript{60}Fe\textsubscript{20}B\textsubscript{20} (2) (free layer)/cap layer, where the subscript denotes the composition in atomic percent and the numbers in parentheses denote the layer thickness. Nanopillars with area of 0.053 \(\mu \text{m}^2 \) were formed by Ar ion milling and e-beam lithography.

Numerical. The path loss is the power attenuation when an electromagnetic wave propagates through air space. The power at receiving antenna is given by Friis transmission equation as follows:

\[P_{\text{Rx}} = \frac{G_t}{G_r} \frac{G_{\text{antenna}}}{G_{\text{antenna}}} \frac{(\lambda)}{d} P_{\text{Tx}} F(z) \]

where \(P_{\text{tx}} \) and \(P_{\text{rx}} \) are the input power of the transmitter and receiver, respectively, \(G_t \) and \(G_r \) are the antenna gains of the transmitter and receiver, \(F(z) \) is the free–space path loss, \(20 \log_{10} (\frac{4 \pi d}{\lambda}) \) is the noise factor for the \(n \)-th device and \(NF_1 \cdot (F_2 - 1) / (G_1 + (F_3 - 1) / (G_2 G_3 + \cdots + (F_n - 1) / (G_n G_{n+1}) \cdots G_{n-1}) \cdots) \) is the input power of the antenna, and \(G_{\text{antenna}} \) is the output power of the antenna.

2. Villard, P. U. et al. A GHz spintronic-based RF oscillator. IEEE J. Solid-State Circuits 45, 196–197 (2010).
3. Krivorotov, I. N. et al. Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves. Phys. Rev. B 76, 024418 (2007).
4. Ruutola, A. et al. Phase-locking of magnetic vortices mediated by antivortices. Nature Nanotechnology 4, 528–532 (2009).
5. KaKa, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature Letter 437, 389–392 (2005).
6. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).
7. Rippard, W. H. et al. Direct-current induced dynamics in Co90Fe10Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).
8. Rippard, W. H. et al. Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys. Rev. B 70, 100406 (R) (2004).
9. Mistral, Q. et al. Current-driven microwave oscillations in current perpendicular-to-plane spin-valve nanopillars. Appl. Phys. Lett. 88, 192507–192507-3 (2006).
10. Houseammeadine, D. et al. Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nature Materials 6, 447–453 (2007).
11. Prigog, V. S. et al. Magnetic vortex oscillator driven by DC spin-polarized current. Nature Physics 3, p. 498–503 (2007).
12. Gusakova, D. et al. Spin-polarized current-driven excitations in spin-valve nanopillars with a synthetic antiferromagnetic pinned layer. The 53rd Annual Conf. Magnetism and Magnetic Materials proceedings, (2008).
13. Mistral, Q. et al. Current-driven vortex oscillations in metallic nanopillars. Phys. Rev. Lett. 100, 257201 (2008).
14. Nazarov, A. V. et al. Microwave generation in MgO magnetic tunnel junctions due to spin transfer effects. J. Appl. Phys. 103, 07A303 (2008).
15. Houseammeadine, D. et al. Spin transfer induced coherent microwave emission with large power from nanoscale MgO tunnel junctions. Appl. Phys. Lett. 93, 022505 (2008).
16. Muduli, P. K., Heinonen, O. G. & Åkerman, J. Decoherence and mode hopping in a magnetic tunnel junction based spin torque oscillator. Phys. Rev. Lett. 108, 207203 (2012).
17. Consolo, G. et al. Combined frequency-amplitude nonlinear modulation: theory and applications. IEEE Tran. on Magnetics 46, 3629–3634 (2010).
18. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magnetism and Magnetic Mater. 159, L1–L7 (1996).
19. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).
20. Sun, J. Z. Spin angular momentum transfer in current-perpendicular nanomagnetic junctions. IBM J. Res. & Dev. 50, 81–100 (2006).
21. Manfrini, M. et al. Agility of vortex-based nanocontact spin torque oscillators. Appl. Phys. Lett. 95, 192507 (2009).
22. Manfrini, M. et al. Frequency shift keying in vortex-based spin torque oscillators. J. Appl. Phys. 109, 083940 (2011).
23. Pufall, M. R. et al. Frequency modulation of spin-transfer oscillators. Appl. Phys. Lett. 86, 082506 (2005).
24. Muduli, P. K., Pogoryelov, Ye. & Bonetti, S. Nonlinear frequency and amplitude modulation of a nanocontact-based spin-torque oscillator. Phys. Rev. B 81, 140408 (2010).
25. Pogoryelov, Ye. et al. Spin-torque oscillator linewidth narrowing under current modulation. Appl. Phys. Lett. 98, 192506 (2011).
26. Pogoryelov, Ye. et al. Frequency modulation of spin torque oscillator pairs. Appl. Phys. Lett. 98, 192501 (2011).
27. Watson, B. FSK: Signals and Demodulation. Watkins-Johnson Company Tech–notes. vol. 7, no. 5 (1980).
28. Nagasawa, T. et al. Frequency transition of spin-torque oscillator under the magnetic-field pulse in nanosecond range. J. Appl. Phys. 109, 07C907 (2010).
29. Nagasawa, T. et al. Delay detection of frequency modulation signal from a spin-torque oscillator under a nanosecond-pulsed magnetic field. J. Appl. Phys. 111, 07C908 (2012).
30. Krivorotov, I. N. et al. Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques. Science 307, 228–231 (2005).
31. Byeon, C. W., Lee, J. J., Eun, K. C. & Park, C. S. A 60 GHz 5 Gb/s gain-boosting OOK demodulator in 0.13 μm CMOS. IEEE MWCL. 21, 101–103 (2011).
32. Bogatin, E. Bandwidth and Rise time: Signal and Power Integrity – Simplified (2nd ed.). (Prentice Hall, 2009).
33. Rippard, W. H., Pufall, M. & Kos, Anthony. Time required to injection-lock spin torque nanoscale oscillators. Appl. Phys. Lett. 103, 182403 (2013).
34. Zhou, Yan et al. Oscillatory transient regime in the forced dynamics of a nonlinear auto oscillator. Phys. Rev. B 82, 012408 (2010).
35. Belanovsky, A. D. et al. Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators. Phys. Rev. B 85, 100409(R) (2012).
36. Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875 (2009).

Acknowledgments
This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (No.2014-004057). The authors wish to thank Kyung-Jin Lee (Korea University) for the valuable discussion of the manuscript and Jürgen Langer, Berthold Ocker, and Wolfram Maass (Singulus Technology Ag) for the low-resistance MTJ stacks.

Author contributions
H.S.C. and C.S.P. designed the experiments and performed the analysis of the data. C.J. and B.C.M. fabricated the devices. S.Y.K., S.J.C., S.I.K. and S.Y.P. supported the experiments and I.Y.O., M.S. and H.P. supported the analysis of the data. H.S.C. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Choi, H.S. et al. Spin nano–oscillator–based wireless communication. Sci. Rep. 4, 5486; DOI:10.1038/srep05486 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/