Persistent Spin Dynamics in the $S = 1/2$ V_{15} Molecular Nano-Magnet

Z. Salman,1,2 R.F. Kiefl,3,4,5 K. H. Chow,6 W.A. MacFarlane,7 T. Keeler,4 T. Parolin,7 S. Tabbara,3 and D. Wang4

1Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, UK
2ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK
3TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada
4Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
5Canadian Institute for Advanced Research, Canada
6Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G7, Canada
7Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada

We present muon spin lattice relaxation measurements in the V_{15} spin 1/2 molecular nanomagnet. We find that the relaxation rate in low magnetic fields (< 5 kG) is temperature independent below ~ 10 K, implying that the molecular spin is dynamically fluctuating down to 12 mK. These measurements show that the fluctuation time increases as the temperature is decreased and saturates at a value of ~ 6 nsec at low temperatures. The fluctuations are attributed to V_{15} molecular spin dynamics perpendicular to the applied magnetic field direction, induced by coupling between the molecular spin and nuclear spin bath in the system.

I. INTRODUCTION

Recent advances in the field of molecular magnetism, using a bottom up approach to synthesis, has produced magnetic systems based on molecules rather than metals or oxides. Example systems include single molecule magnets (SMMs) and high spin molecules, photo-magnets, and room temperature magnets. The focus of the current work is SMMs and their interaction with the environment. These systems have been attracting much attention in recent years mainly due to the discovery of quantum tunneling of the magnetization (QTM) in Mn$_{12}$ and Fe$_8$. A SMM is composed of a small cluster of magnetic ions with strong magnetic interactions between them (10 − 100 K), embedded in magnetically inactive organic or inorganic ligands. Each cluster is thus isolated from its neighbours, forming at low temperatures, a lattice of non-interacting spins and allowing the study of the quantum behaviour of isolated spins. Molecular magnets are ideal objects to study phenomena of great scientific importance for mesoscopic physics, such as QTM, topological quantum phase interference, and quantum coherence.

The effective spin Hamiltonian describing a SMM is usually written as

$$\mathcal{H} = -DS_z^2 - g\mu_B S \cdot H + \mathcal{H}^t,$$

where the first term is the easy axis magneto-crystalline anisotropy term, which is the source of the double well structure and degeneracy of spin up and spin down states, the second is the Zeeman term, and \mathcal{H}^t includes additional crystal field terms as well as the interaction between the molecular spin and its environment (including molecule-molecule dipolar and molecule-nuclear spin bath interactions). In prototypical systems such as Mn$_{12}$ and Fe$_8$, the anisotropy term is large and therefore \mathcal{H}^t is only a perturbation, making it difficult to perform direct measurements to identify the detailed nature of \mathcal{H}^t.

However, isotropic ($D \approx 0$) systems provide an ideal system in which \mathcal{H}^t can be probed directly. In this paper we present muon spin relaxation (μSR) measurements on the spin 1/2 molecular magnet $K_6[V_{15}^{IV}As_6O_{42}(H_2O)] \cdot 8H_2O$ known as V_{15}^{IV}. Due to its spin 1/2 nature this molecule has no anisotropy, i.e. $D \equiv 0$. We find the molecular spin dynamics of V_{15} persists down to mK temperatures, and there is no evidence of freezing even in an applied field of up to 10 kG. The persistent spin dynamics is consistent with a previously reported μSR study, however, our measurements were extended to lower temperatures and higher fields, allowing a more comprehensive understanding of the nature and source of V_{15} spin dynamics. The spin fluctuation time measured is on the nanosecond scale and saturates at ~ 6 nsec at low temperature. These molecular spin fluctuations are perpendicular to the applied field direction and are attributed to the interaction between the V_{15} molecular spin and its environment, in particular nuclear spins.

FIG. 1: (Color online) The core of the V_{15} molecule. Only V^{IV} ions are shown here. The arrows indicate the V^{IV} spins.

The V_{15} complex consists of a lattice of molecules with fifteen V^{IV} ions of spin 1/2, in a quasi-spherical layered structure formed of a triangle sandwiched between two...
hexagons (see Fig. 1). When the temperature is lower than ~ 100 K the two hexagons of the V ions form a $S = 0$ state due to antiferromagnetic interactions, leaving the three V ions on the triangle with an effective Hamiltonian11,28

$$\mathcal{H}_0 = -J_0 (S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1) - g\mu_B H \cdot \sum_{i=1}^{3} S_i,$$

where S_i are the spins of the three V ions and $J_0 \simeq -2.445$ K is the effective coupling between the spins, which is due to competing J_1 and J_2 interactions (see Fig. 1). At temperatures lower than 500 mK the ground state of each V$_{15}$ molecule is $S = 1/2$, with negligible dipolar interactions (few mK) between neighbouring molecules. In contrast to Mn$_{12}$ and Fe$_8$, the V$_{15}$ molecule has no anisotropy barrier and a large tunneling splitting at zero field, $\Delta_0 \simeq 80$ mK11,29.

![Figure 2: (Color online) Example muon spin relaxation curves at (a) $T = 15$ mK and different magnetic fields, and (b) $H = 50$ G and different temperatures. The solid lines are fits to Eq. (3).](image)

II. EXPERIMENT

The μSR experiments were performed on the M15 and M20 beamlines at TRIUMF in Vancouver, Canada. In these experiments 100% polarized (along z) positive muons are implanted in the sample. Each implanted muon decays (lifetime $\tau = 2.2 \mu$s) emitting a positron preferentially in the direction of its polarization at the time of decay. Using appropriately positioned detectors, one measures the asymmetry of the muon beta decay along z as a function of time $A(t)$, which is proportional to the time evolution of the muon spin polarization. $A(t)$ depends on the distribution of internal magnetic fields and their temporal fluctuations. Further details on the μSR technique may be found in Ref.30,31.

The composition and structure of V$_{15}$ single crystals were confirmed using x-ray diffraction and their magnetization was examined in a SQUID magnetometer. These single crystals were then crushed into a fine powder and used for the μSR measurements reported here. The fine powder was placed in a 4He gas flow cryostat to measure the muon spin relaxation in the temperature range between 2.5 to 300 K. For the low temperature measurements the sample was pressed into pellets and placed in a dilution refrigerator (DR) to measure the relaxation between 12 mK and 3.5 K. To ensure thermalization of the sample in the DR, the pellets were mounted on a silver plate using Apiezon grease, wrapped in a silver foil and attached to the cold finger of the DR. The relaxation in the full temperature range was measured in magnetic fields up to 10 kG applied in the direction of the initial muon spin polarization.

III. RESULTS

The measured asymmetry at all temperatures and applied fields was found to fit best to a square root exponential function (see Fig. 2)

$$A(t) = A_0 e^{-\sqrt{\lambda t}} + A_{BG},$$

which reflects the dynamic nature of the local magnetic fields experienced by the muons as well as multiple muon stopping sites32,33. Here A_0 is the initial asymmetry and $\lambda = 1/T_1$ is the relaxation rate averaged over all stopping sites. A_{BG} is the non-relaxing background signal due to muons missing the sample and stopping in the silver sample holder. The high temperature measurements were performed using the low background setup35. Therefore, a non-zero background signal was found only in the measurements done in the DR. The values of λ in the full temperature range and various magnetic fields are presented in Fig. 4. The relaxation rate increases as the temperature is decreased from room temperature down to ~ 50K due to the slowing down of the thermally activated transitions between the different spin states32,36,37. This increase in the relaxation rate is a signature of the increased correlations between the V moments, as the temperature becomes comparable to the magnetic couplings inside the V$_{15}$ core. Similar behavior is observed in many molecular magnets studied by μSR and NMR32,36,37,38,39. Most striking is the fact that the relaxation rate at temperatures below ~ 10 K and at fields lower than 5 kG becomes almost temperature independent, in agreement with similar 1H NMR27,40,41 and μSR35 studies. At higher fields (5 and 10 kG) and temperatures lower than 10 K the relaxation rate decreases as the temperature is decreased down to 200 mK.
at these temperatures the \(S = 1/2 \) ground spin state is preferentially populated, we attribute the decrease in \(1/T_1 \) to the reduction in the thermally activated transitions between the (Zeeman) split \(m = \pm 1/2 \) states, in agreement with \(^1\text{H} \) NMR measurements\(^{30-31} \). However, at even lower temperatures (less than \(\sim 200 \) mK) \(1/T_1 \) seems to saturate within experimental accuracy and become temperature independent even at high fields. Note that \(1/T_1 \) exhibits a strong field dependence, which can be clearly seen in Fig. 2(a). In contrast, \(1/T_1 \) seems to be field independent up to \(1.5 \) kG in Ref. \(^{27} \). The source of discrepancy between these results and our results is still unclear.

A better understanding of the relaxation rate can be obtained by studying the eigenstates and eigenvalues of the Hamiltonian \(^\text{(2)} \). We rewrite the Hamiltonian as

\[
\mathcal{H}_0 = -\frac{J_0}{2} \left(S^2 - \frac{9}{4} \right) - g\nu_B H \cdot S
\]

where \(S = \sum_{i=1}^{3} S_i \) and \(S \) are the total spin operator and spin number, respectively. The eigenstates of \(\mathcal{H}_0 \) are \(|Sm\rangle \) with eigenvalues \(E_{Sm} \), where \(S \) can be either 1/2 or 3/2 with \(m = -S, -S+1, \cdots, S \). Note that the \(S = 1/2 \) state is doubly degenerate. The energy level scheme implies that at temperatures \(T \ll -3J_0/2 \approx 3.7 \) K (i.e. the splitting between the \(S = 3/2 \) and \(1/2 \) states), only the ground spin state \(S = 1/2 \) is appreciably populated. With the absence of additional terms in \(\mathcal{H}_0 \), the molecular spin and hence the resultant local field experienced by the muon should be static. However, as seen in Fig. 3 at low fields the relaxation rate is finite at these temperatures, and therefore the local field (and molecular spin) continues to fluctuate down to 12 mK, the lowest temperature measured. These results indicate that \(\mathcal{H}_0 \) cannot fully describe the system at low temperature. Rather, one expects the existence of an additional term in the spin Hamiltonian, \(\mathcal{H}' \), that mixes the unperturbed \(|Sm\rangle \) eigenstates, hence inducing transitions between them. We expect that the local magnetic field experienced by the implanted muons is proportional to the \(V_{15} \) neighbouring spins. Hence, assuming that fluctuations of the \(V_{15} \) spins, described by exponential correlation functions\(^{32} \), are

\[
\langle S_z(t)S_z(0) \rangle = \frac{1}{3} S(S+1) \exp \left(-\frac{t}{\tau_z} \right) \tag{5}
\]

\[
\langle S_+(t)S_-(0) \rangle = \frac{2}{3} S(S+1) \exp(i\omega_c t) \exp \left(-\frac{t}{\tau_{\pm}} \right) \tag{6}
\]

where \(\tau_z \) and \(\tau_{\pm} \) are the correlation times of the parallel and perpendicular (to the applied field) \(S \) components respectively, and \(\omega_c = g\nu_B H \) is the electronic resonance frequency. For simplicity we assume that the correlation times for both components are equal, \(\tau_z = \tau_{\pm} = \tau \). In this case \(1/T_1 \) can be written as\(^{32} \)

\[
\frac{1}{T_1} = \frac{2\Delta_2^z \tau}{1 + \omega_c^2 \tau^2} + \frac{2\Delta_2^z \tau}{1 + (\omega_c + \omega_{\mu})^2 \tau^2} + \frac{2\Delta_2^z \tau}{1 + (\omega_c - \omega_{\mu})^2 \tau^2}, \tag{7}
\]

where \(\omega_{\mu} = \gamma H \) is the muon Larmor frequency and \(\Delta_2 \) is an estimate of the coupling strength between the muon and the molecular spin, which depends on the nature of the coupling (e.g. exchange or dipolar). The first term in Eq. (7) originates from flipping of the muon while second and third terms are due to flip-flop and co-flipping of the muon and molecular spins, respectively. Using \(\omega_c \gg \omega_{\mu} \) one can rewrite Eq. (7) as\(^{33} \)

\[
\frac{1}{T_1} \approx 2f \frac{\Delta_2^z \tau}{1 + \omega_c^2 \tau^2} + 2(1-f) \frac{\Delta_2^z \tau}{1 + \omega_{\mu}^2 \tau^2}, \tag{8}
\]

where \(\Delta = \sqrt{\Delta_2^x + \Delta_2^y + \Delta_2^z} \) is a measure of the distribution of local magnetic field observed by muons, which depends on the coupling strength between the muon spin \(\mathbf{I} \) and molecular spin \(\mathbf{S} \), and \(f = \Delta_2^z / \Delta_2 \). Note the first term in Eq. (8) is due to fluctuations along the applied field \(\langle S_z \rangle \), while the second is due to fluctuations in \(S_x \) and \(S_y \). The value of \(f \) measures the relative size of parallel versus perpendicular local field. For example, using the assumptions above, for a dipolar interaction between \(\mathbf{I} \) and \(\mathbf{S} \) (which is fluctuating randomly in all directions) we expect on average \(f \approx 0.3 \). However, if our earlier assumption of \(\tau_z = \tau_{\pm} \) in Eqs. (5) and (6) does not hold, \(f \) will contain also information on the importance of parallel versus perpendicular fluctuations, e.g. \(f = 0 \) implies that \(\tau_z = \tau_{\pm} \) and therefore \(1/T_1 \) is dominated by fluctuations perpendicular to the applied field.

Next, we evaluate the correlation time \(\tau \) from the field dependence of \(1/T_1 \) using Eq. (8). Note that \(\tau \) is the fluctuation time of the molecular spin. In Fig. 4 we present the relaxation rate as a function of applied magnetic field for two different temperatures. The solid lines are fits of the data to Eq. (8), from which the values of \(\tau, \Delta \) and
The value of Δ, shown in Fig. 5(b), increases as the temperature is decreased from room temperature down to ~ 100 K. This increase coincides with the observed decrease in the effective magnetic moment above 100 K15. Similarly, the increase below ~ 1 K coincides with the additional decrease in the effective magnetic moment from 3 μ_B down to 1 μ_B at this temperature. Note that Δ is a measure of the distribution of the local magnetic fields experienced by muons, and therefore is not simply proportional to the measured V_{15} magnetic moment. Instead, factors such as the local magnetization combined with the fluctuation rate as well as the type of interaction between the V_{15} moments and muons determine the value of Δ.

As we mentioned earlier, if the parallel and perpendicular fluctuations are different, the value of f is related to the direction of fluctuations of S, parallel or perpendicular to the magnetic field (defined as z direction). Interestingly, we find $f \sim 0.35$ at high temperatures ($5 - 100$ K) (see Fig. 5(c)), indicating that (I) the fluctuations of S are in randomly oriented relative to the applied field as expected from thermal fluctuations and (II) the coupling between I and S is dipolar. As the temperature is reduced, thermal fluctuations between the spin states become less likely, especially when the temperature is much lower than the energy splitting between the levels (including Zeeman). Nevertheless, the fluctuations persist even at mK temperatures. Note however, that at low temperatures $f \approx 0$, i.e. the fluctuations are predominantly perpendicular to the z direction and do not originate from transitions between, e.g. $m = \pm 1/2$ spin states, since these are indeed separated by the Zeeman energy. Instead they are most probably due to the finite energy level broadening produced by the interaction between S and the nuclear spin bath in the system. This occurs since in the presence of the nuclear moments (as a perturbation on \mathcal{H}_0), S_z is no longer a good quantum number, and therefore the m levels are split or broadened. The size of $\tau \sim 6$ nsec implies broadening of the levels on the scale of few tens of mK, which is a reasonable size for such interactions24,32. Finally, since at $T > 100$
K there are less correlations between the V ions in the magnetic core, the fluctuations measured by the muon are due to its interaction with multiple, uncorrelated V ions. This may be the reason for the decrease of f at T > 100 K. Alternatively, it may also be due to diffusion of the muons in the sample at these temperatures.

In conclusion, we found that the muon spin lattice relaxation rate is temperature independent at low temperatures and fields, in agreement with earlier NMR and μSR measurements. This temperature independence exhibits the non-thermal/quantum nature of the V$_{15}$ molecular spin fluctuations which persist down to 12 mK temperature. The correlation time of the spin-spin auto-correlation functions was estimated to be ~ 6 nsec at low temperature. We believe that this low temperature spin dynamics is due to broadening of the spin states introduced by the interactions between the V$_{15}$ spin and the nuclear spin bath.

Acknowledgments

We would like to thank Achim Müller at the University of Bielefeld for providing the sample and Bernard Barbara at Institut Néel for helpful discussions. This work was supported by the CIAR, NSERC and TRIUMF. We thank Syd Kreitman, Rahim Abasalti, Bassam Hitti and Donald Arseneau for technical support.
D. Gatteschi, Phys. Rev. Lett. 81, 3773 (1998).

38 F. Borsa, A. Lascialfari, and Y. Furukawa, in Novel NMR and EPR Techniques, edited by J. Dolinsek, M. Vilfan, and S. Zumer (Springer Berlin / Heidelberg, 2006), pp. 297–349.

39 F. Borsa, in NMR-MRI, µSR and Mossbauer spectroscopies in molecular magnets, edited by P. Carretta and A. Lascialfari (Springer-Verlag, 2007).

40 H. Yoneda, T. Goto, Y. Fujii, B. Barbara, and A. Müller, Physica B 329-333, 1176 (2003).

41 Y. Furukawa, Y. Fujiyoshi, K. Kumagai, and P. Kögerler, Polyhedron 24, 2737 (2005).

42 I. J. Lowe and D. Tse, Phys. Rev. 166, 279 (1968).

43 S. R. Dunsiger, R. F. Kiefl, J. A. Chakhalian, J. E. Greedan, W. A. MacFarlane, R. I. Miller, G. D. Morris, A. N. Price, N. P. Raju, and J. E. Sonier, Phys. Rev. B 73, 172418 (2006).

44 Z. Salman, A. Keren, P. Mendels, A. Scuiller, and M. Verdaguer, Physica B 289-290, 106 (2000).