Intellectual Control of Dangerous States of the Facilities of Main Hydrocarbon Transport Systems in Adaptive Expert Systems

M Y Zemenkova

1Industrial University of Tyumen, 38 Volodarskogo str., Tyumen, 625000, Russia

E-mail: muzemenkova@mail.ru

Abstract. The work deals with the development of methods for assessing the reliability of oil and gas equipment and systems for adaptive decision support systems. At the Department of Hydrocarbon Transportation, studies are underway to create decision support systems with predictive, warning and reliability assessment functions. The proposed methodology can be used for adaptive expert systems for monitoring reliability in real time. The technique allows identifying the state of the technological facility and predicting the probabilities of parametric failure by the given criteria. The proposed method has been tested and can be used when estimating the reliability of oil and gas pipeline technical systems.

1. Introduction

A complex of collaborative intelligent technological management of reliability and efficiency of oil and gas systems (CI-TREMS) is a fundamentally new technology of intelligent instrumental neural network engineering control developed at the Department of Hydrocarbon Transport for forecasting and preventing contingencies, incidents and accidents, optimization and ensuring the effectiveness of technical solutions for the management of industrial processes. CI-TREMS is modular and multitasking, flexible and adaptive, it is based on the theory of neural network programming, reliability theory, cybernetics, system analysis, statistics and probability, etc. Moreover, currently the issues of ecology and noosphere culture in oil and gas engineering are undoubtedly relevant and acquired a special significance at various facilities from Siberia to the Arctic [1-9] and the existence of such systems in hazardous enterprises is a necessity.

The author's research focuses on the development of methodological support for this anticipatory monitoring and control system which includes a set of algorithms, techniques, mathematical models. One of the important tasks is monitoring of dangerous states of technical systems and the probability of finding them in real time by dispatching data.

The problem of ensuring the reliability and safety of hydrocarbon transportation facilities is very time-consuming and multifaceted. Solutions of individual problems of ensuring reliability and optimizing repair work at oil and gas facilities and in the engineering sphere are described at different times in numerous works of well-known scientists: Yasin E.M., Gubin V.E., Abuzova F.F., Berezin V.L., Tugunov P.I., Novoselov V.F., Lurie M.V., Korolenok A.M., Sukharev M.G., Kolotilov Yu.V., Krapivskiy E.I., Kuchumov R.Ya., Shabarov A.B., Gulkov A.N., Gumerov A.G., Moiseyev B.V., Chekardovsky M.N., Ivantsov O.M., Moldavanov O.I., Yakovlev E.I., Shibnev A.V., Vasilyev G.G.,
Let's consider some issues related to the modernization of the system of technical regulation in the field of ensuring safety of hazardous production facilities in 2018. Theoretical and practical issues of solution provide for individual work with each technical system [1,2].

The new requirements in the field of industrial safety were approved on January 24, 2018. The order of the Federal Service for Ecological, Technological and Nuclear Supervision No. 29 in the oil and gas industry started a new stage - the safety manual "Methodological recommendations on the classification of man-made events in the field of industrial safety at hazardous production facilities of the oil and gas complex" was approved [10].

Technogenic events in the field of industrial safety are now recommended to be classified on the basis of technological features of the facility, signs of the realization of the hazard of accidents, the severity of consequences into four levels of danger:

- Level 1 - accident;
- Level 2 - incident;
- Level 3 - premise to the incident (hereinafter - premise);
- Level 4 - violations in the system of industrial safety management or deviations of technological parameters, but without exceeding the maximum permissible values, including those registered by remote control.

A modern classification of hazardous facilities requires new approaches and technology of control, differentiation and management of events. For example, it is now recommended to evaluate the parameters for an anthropogenic event using models corresponding to the specifics of the facility.

Let us consider the features of constructing a model on the basis of the theory of interval estimates with the use of parametric methods.

2. Materials and methods

Let us consider the basic model, most simply applicable under operation conditions for oil and gas complex facilities. According to the model proposed by the author for the new standard [8], for all types of technological equipment, 5 levels of functioning and 5 types of states are assumed. The most dangerous level is the first, characterized by an emergency state, the safest - the 5th - is normal functioning within the parameters established by the regulations and characterized by stationarity.

The process of transitioning to the higher level is characterized by undesirable events and occurs with intensities $\lambda_{ij}$, reaching critical operating levels, where $i$ is the previous state, and $j$ is the following. A lot of operable states belong to the set $E_+$, if the system loses its operability, the state belongs to the set $E_-$. Maintenance is considered as a recovery procedure with intensity $\mu_{ji}$. Under the normal operation conditions, many parameters characterizing the operation of the system $y_i(t)$ are technologically regulated and belong to the range of admissible values $y_i(t) \in Y_{add}$. In case the registered parameter reaches the critical level according to the regulations, but not providing for stopping the technological process of transport, the parameter belongs to the range of critical values $y_i(t) \in Y_{cr}$. The technological and mathematical formulations of states are presented in Table 1.

It is proved that statistical distributions of failures of complex equipment and systems are not limited to an exponential type of distribution, but require a refinement in real time [1,2,3]. In this case, the methods for assessing the risks of events require a fairly accurate prediction of events. In the model proposed by the author, $\lambda_{ij}$, $\mu_{ji}$ are variables that are assessed automatically in real time by statistical methods.
Table 1. Identification of states during operation.

| Levels of state hazard | Description                                                                 | Mathematical definition |
|------------------------|-----------------------------------------------------------------------------|-------------------------|
| Level 5                | Normal operating parameters (within the limits of the regulations)           | \( y_1(t) \in E_+ \)   |
|                        |                                                                             | \( y_1(t) \in Y_{add} \) |
| Level 4                | Violations in the system of industrial safety or deviations of technological parameters | \( y_1(t) \in B_+ \)   |
|                        |                                                                             | \( y_1(t) \in Y_{cr} \) |
| Level 3                | Premise. Critical level of the parameter, contingency                        | \( y_1(t) \in E_+ \)   |
|                        |                                                                             | \( y_1(t) \in Y_{cr} \) |
| Level 2                | Incident. Parameter failure level, any parameter exceeding the permissible limits | \( y_1(t) \in E_- \)   |
| Level 1                | Accident. Parameter failure level, consequences, damage                      | \( y_1(t) \in E_- \)   |

The general algorithm for the functioning of the identification system is shown in Fig. 1. Steps 1 and 3 provide for the initial processing of information and state identification. Such identification can be realized using neural network technologies, for example, using Kohonen networks or multi-layer neural networks.

![General algorithm for reliability analysis based on the probabilistic approach and parametric identification.](image)

Consider the ordered set of states of the system \( S_1, S_2, S_3, S_4, S_5 \). The features of the model consist in the transition between \( S_k \) states only through the neighboring states. To build the model, we suppose that all event streams that determine the intensity of transitions are the simplest ones with intensities \( \lambda_{k,k+1} \) and reconstructions \( \mu_{k+1,k} \). According to the graph presented in Fig. 2, we will compose and solve algebraic controls for the limiting probabilities of states. We note that the existence of these probabilities depends on the possibilities of transitioning from each state to each other and the finiteness of the number of states.
normal operation violations in the system of industrial safety management or deviations of technological parameters premise to the incident incident accident

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{35} \) \( \mu_{35} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{43} + \mu_{43} \)

\( \lambda_{54} + \mu_{54} \)

\( \lambda_{32} + \mu_{32} \)

\( \lambda_{21} + \mu_{21} \)

\( \lambda_{12} + \mu_{12} \)

\( \lambda_{54} p_5 = \mu_{45} p_4 \)  \( \lambda_{43} p_4 = \mu_{34} p_3 \)  \( \lambda_{35} p_3 = \mu_{25} p_2 \)  \( \lambda_{21} p_2 = \mu_{12} p_1 \)

\( \lambda_{43} p_4 = \mu_{45} p_5 \)  \( \lambda_{35} p_3 = \mu_{34} p_4 \)  \( \lambda_{21} p_2 = \mu_{25} p_3 \)  \( \lambda_{12} p_1 = \mu_{12} p_2 \)

\( \lambda_{54} p_5 = \mu_{45} p_4 \)  \( \lambda_{43} p_4 = \mu_{34} p_3 \)  \( \lambda_{32} p_3 = \mu_{25} p_2 \)  \( \lambda_{21} p_2 = \mu_{12} p_1 \)

\( p_0 + p_1 + p_2 + p_3 + p_4 + p_5 = 1 \)

\( \lambda_{54} \) \( \mu_{45} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)

\( \lambda_{32} \) \( \mu_{32} \)

\( \lambda_{21} \) \( \mu_{21} \)

\( \lambda_{12} \) \( \mu_{12} \)

\( \lambda_{54} \) \( \mu_{54} \)

\( \lambda_{43} \) \( \mu_{43} \)
The algorithm and methodology are designed for functioning within the framework of an adaptive expert control system for reliability of energy-mechanical equipment of oil and gas pipelines. When the system operates in real time and determines the exact type and parameters of failure distribution (physical or parametric), the results can have different accuracy, complexity, and a list of diagnosed indicators. Based on the monitoring results of the technological facility, not only management solutions can be adopted, but also solutions on constructive system improvement. The models and algorithms are tested by the author and implemented in the form of software. Application of the technology of intellectual control and forecasting in real time allows optimizing labor and material resources to ensure the reliability of elements and the facility as a whole.

4. References
[1] Zemenkova M Yu 2018 System analysis and technological monitoring of reliability and safety in the transport and storage of hydrocarbons: monograph Tyumen: IUT 270
[2] Zemenkova M Yu 2018 Methodological support of expert systems for monitoring reliability indicators of pipeline transport facilities for hydrocarbons: monograph Tyumen: IUT 420
[3] Shantarin V D, Bezzubtseva N A and Zemenkov Yu D 2018 Noospheric ecological imperative in the culture of a technocratic society IOP Conf. Series: Materials Science and Engineering 357
[4] Gorelik J B, Shabarov A B, Sysoyev Yu S The dynamics of frozen ground melting in the influence zone of two wells Earth's Cryosphere 12 (1) 59
[5] Lisin I Yu, Subbotin V A, Korolenok A M 2017 System analysis of regularities of formation and operation of a fleet of machines for repair of main pipelines Territorija Neftegaz Oil and gas territory 6 114-118
[6] Fridlyand Ya M, Korolenok A M 2017 Application of the logical-probabilistic approach to the ranking of sections of the linear part of the main pipelines to optimize the performance of repairs Oil Industry 8 124-129
[7] Vlasenko V S, Slesarenko V V, Gulkov A N and Lapshin V D 2015 Preparation of arctic oil and gas condensate deposit formation fluid for storage and transport in the form of hydrocarbon hydrate-containing dispersed system Proceedings of the International Offshore and Polar Engineering Conference 2015
[8] Vlasenko V S, Slesarenko V V, Gulkov A N, Zhidkov D A 2017 Experimental investigation of vortex tubes with laval nozzle Proceedings of the International Offshore and Polar Engineering Conference 721-728
[9] Drozd V A, Kholodov A S, Agoshkov A I, Petukhov V I, Blinovskaya Y Y, Lushpey V P, ..., Golokhvat K S 2016 Potentional toxic risk from the nano- and microparticles in the atmospheric suspension of Russky Island (Vladivostok) Der Pharma Chemica 8(11) 231-235
[10] Gulkov A N, Lapshin V D, Morozov A A, Vlasenko V S, Alembaev A N 2016 Improvement of natural gas liquefaction process by application of carbon dioxide boiling in triple point Proceedings of the International Offshore and Polar Engineering Conference 1023-1026
[11] 2018 Safety Guide "Methodological recommendations on the classification of man-made events in the field of industrial safety at hazardous production facilities of the oil and gas industry" Approved by the Order of the Federal Service for Environmental, Technological and Nuclear Supervision 29 Access mode: http://sudekt.ru/law/prikaz-rostekhnadzora-ot-24012018-n-29-ob/rukovodstvo-po-bezopasnosti-metodicheskie-rekomendatsii/ (access date: 1.04.2018)
[12] Yasin E M 1972 Reliability of main pipelines Moscow: Nedra 184
[13] Kredentser B P 1978 Forecasting the reliability of systems with time redundancy Kiev: Naukova dumka 240
[14] 1994 Reliability of energy systems and their equipment 4 3 1 Reliability of gas and oil supply systems / Ed. M G Sukharev Moscow: Nedra 414
[15] Sukharev M G 1987 Reserving of main pipeline systems Moscow: Nedra 167
[16] 1994 Reliability of energy systems and their equipment: reference 4 4 Reliability of heat supply
systems / E V Sennova et al. Moscow: Energoatomizdat 480
[17] Sukharev M G 2010 Methods of forecasting Moscow: MaxPress 176
[18] 1994 Reliability of energy systems and their equipment 4 1 / G N Antonov et al. Moscow: Nedra 414
[19] Kremer N Sh 2017 Probability theory Moscow: Urait 271
[20] 1983 Questions of the mathematical theory of reliability Ed. B V Gnedenko Moscow: Radio and Communication 376
[21] Pevzner L D 2013 Theory of control systems St. Petersburg: Lan 424
[22] Belov V V 1976 Theory of graphs: Textbook for technical colleges Moscow: Vysshaya Shkola 391
[23] Filkenstein E Ya 1979 Ensuring the reliability of elements using parametric control methods Riga: Zinatie 252
[24] Diestel R 2002 Theory of graphs Novosibirsk: Institute of Mathematics Press 336 p