Scalability of Atomic-Thin-Body (ATB) Transistors Based on Graphene Nanoribbons

Qin Zhang1, Yeqing Lu1, Huili Grace Xing1, Steven J. Koester2, and Siyuranga O. Koswatta3

1Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Tel: (574) 631-5498, Fax: (574) 631-4393, email: qzhang1@nd.edu

2University of Minnesota, 200 Union St. SE, Minneapolis, Twin Cities, MN 55455, USA

3IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

Abstract

A general solution for the electrostatic potential in an atomic-thin-body (ATB) field-effect transistor geometry is presented. The effective electrostatic scaling length, λ_{eff}, is extracted from the analytical model, which cannot be approximated by the lowest order eigenmode as traditionally done in SOI-MOSFETs. An empirical equation for the scaling length that depends on the geometry parameters is proposed. It is shown that even for a thick SiO\textsubscript{2} back oxide λ_{eff} can be improved efficiently by thinner top oxide thickness, and to some extent, with high-k dielectrics. The model is then applied to self-consistent simulation of graphene nanoribbon (GNR) Schottky-barrier field-effect transistors (SB-FETs) at the ballistic limit. In the case of GNR SB-FETs, for large λ_{eff}, the scaling is limited by the conventional electrostatic short channel effects (SCEs). On the other hand, for small λ_{eff}, the scaling is limited by direct source-to-drain tunneling. A subthreshold swing below 100mV/dec is still possible with a sub-10nm gate length in GNR SB-FETs.
Index Terms – Graphene, Schottky-barrier, thin-body, transistor scaling, subthreshold swing.
I. INTRODUCTION

Graphene has been attracting considerable attention as an alternative channel material to silicon in CMOS technology [1]-[6] because of its remarkable electrical properties [1] as well as due to the fact that an energy band gap can be induced under certain conditions in this normally gapless material [2]-[4]. Therefore, it may be possible to realize atomic-thin-body (ATB) transistors based on graphene. To date, GNR based transistor operation has been numerically simulated using the nonequilibrium Green’s function formalism combined with 3D electrostatics [5]-[6]. A generalized scaling theory for the ATB field-effect transistor (ATB-FET) geometry however, has not been presented, which is different from the well established ultrathin-body (UTB) structures which have comparatively large body thicknesses with a well-defined semiconductor dielectric medium [7]-[9]. In this letter, a new generalized analytical solution is derived to calculate the electrostatic potential in the ATB-FET geometry which is applicable to transistors based on single-layer and few-layer graphene as well as conventional semiconductor materials with body thicknesses below ~ 1nm [10]. On the other hand, carrier transport properties will depend on the individual bandstructure of the specific material. Here, we simulate GNR based Schottky-barrier FETs (SB-FETs) to explore their scalability dependence on geometrical parameters.

II. APPROACH

The structure of a double-gate (DG) ATB transistor is illustrated in Fig. 1(a). The atomic thin channel material with a length L_g and a negligible thickness (assumed to be zero in the model) is placed in between the top and back oxides. The top oxide has a thickness of t_{tox} and dielectric constant of ε_{tox}, and the back oxide is SiO$_2$ ($\varepsilon_{box} = 3.9\varepsilon_0$) with a thickness of t_{box}. The potential boundary conditions are as shown in Fig. 1(a).
It should be noted that due to the negligible body thickness of ATB-FETs the parabolic approximation for the potential across the body cannot be used here as was done in original scaling studies [11]-[12]. Therefore, we use a procedure similar to that in [7]-[9], whereby the electrostatic potential of the ATB-FET can be written as \(\psi(x, y) = v(x) + ul(x, y) + ur(x, y) \), where \(v(x) \) is the long-channel solution that accounts for the top and bottom boundary conditions, as well as the self-consistent charge induced in the channel (therefore, the solution is valid in both subthreshold as well as above-threshold operation). \(ul(x, y) \) and \(ur(x, y) \) satisfy the source and drain boundary conditions, respectively, and can be expanded as:

\[
ul(x, y) = \sum_{n=1}^{\infty} A_n \frac{\sin[k_n(x + t_{box})] \sinh[k_n(L_g - y)]}{\sin(k_n t_{box}) \sinh(k_n L_g)} (-t_{box} \leq x \leq 0) \\
- \sum_{n=1}^{\infty} A'_n \frac{\sin[k_n(x - t_{box})] \sinh[k_n(L_g - y)]}{\sin(k_n t_{box}) \sinh(k_n L_g)} (0 \leq x \leq t_{box})
\]

\[
ur(x, y) = \sum_{n=1}^{\infty} A'_n \frac{\sin[k_n(x + t_{box})] \sinh[k_n y]}{\sin(k_n t_{box}) \sinh(k_n L_g)} (-t_{box} \leq x \leq 0) \\
- \sum_{n=1}^{\infty} A_n \frac{\sin[k_n(x - t_{box})] \sinh[k_n y]}{\sin(k_n t_{box}) \sinh(k_n L_g)} (0 \leq x \leq t_{box})
\]

where the eigenvalues \(\lambda_n = 1/k_n \) are determined by the implicit equation,

\[\varepsilon_{box} \tan(k_n t_{box}) + \varepsilon_{tox} \tan(k_n t_{box}) = 0. \]

The coefficients \(A_n \) and \(A'_n \) are calculated by integrating \(ul(x, 0)*g_n(x) \) and \(ur(x, L_g)*g_n(x) \) from \(-t_{box}\) to \(t_{box}\), respectively, where \(g_n(x) \) is constructed to be a set of corresponding conjugate functions to each term in \(ul(x, 0) \) that satisfies

\[\int_{-t_{box}}^{t_{box}} ul_n(x, 0)g_n(x)dx = \delta_{mn} \] (note that \(g_n(x) \) will simultaneously satisfy a similar condition with each term of \(ur(x, L_g) \) as well). The calculated eigenvalues \(\lambda_n \) and coefficients \(A_n \), \(A'_n \) are shown in Fig. 1(b). Using the above series solution, an effective scaling length (\(\lambda_{eff} \)) is extracted by an exponential fitting of the potential profile near the source region. Since the eigenmodes are
weighted by the expansion coefficients A_n^l and A_n^r, which do not necessarily peak at $n = 1$ (Fig. 1(b)), λ_{eff} cannot be approximated by the first eigenvalue (λ_1) as has been traditionally done in SOI-MOSFETs [7]-[9]. For the geometry considered in Fig. 1(b) the first eigenvalue gives $\lambda_1 \approx 16\text{nm}$, which shows a large discrepancy to the 2D series solution with $\lambda_{\text{eff}} \approx 1.6\text{nm}$.

We use the above series solution to simulate GNR SB-FETs, considering a 2nm-wide GNR with an energy band gap of $E_g = 0.69\text{eV}$ [13], and source/drain SB height of $\Phi_B = 0.1\text{V}$. The Schottky barrier and direct source-to-drain (S\rightarrowD) tunneling are both included on the same footing, whereby the WKB tunneling coefficient is calculated using the imaginary bandstructure of the GNR that treats the electron-hole nature of carriers realistically. Ballistic transport simulations are performed similar to [14] accounting for self-consistent electrostatics, while any edge-induced states in the band gap [15] and phonon scattering [16] are not considered.

III. RESULTS AND DISCUSSION

Figure 2(a) compares the extracted λ_{eff} to the lowest order eigenvalue λ_1 as a function of t_{tox} for different t_{box} values. It is clearly seen that λ_1 cannot correctly describe λ_{eff}. Therefore, an empirical equation $\lambda_{\text{emp}} = c t_{\text{tox}} \left[1 + \frac{\epsilon_{\text{box}}}{\epsilon_{\text{tox}}} \right] \left[1 + \left(\frac{\epsilon_{\text{box}}}{\epsilon_{\text{tox}}} \right) \left(\frac{t_{\text{tox}}}{t_{\text{box}}} \right) \right] \left(\frac{t_{\text{tox}}}{t_{\text{box}}} \right)$ is proposed to approximate λ_{eff}, and this equation shows reasonable consistency for a large range of t_{tox} and ϵ_{tox} values at thick SiO$_2$ box limit where $a = 0.6$ is the only fitting parameter (Fig. 2). It is seen in Fig. 2(a) that λ_{eff} is greatly improved by thinner t_{tox}, and also modulated by t_{box} when it is below a certain thickness (< 50 nm). On the other hand, λ_{eff} and λ_{emp} do not appreciably depend on t_{box} for thicknesses > 50nm. Figure 2(b) plots λ_{eff} as a function of ϵ_{tox} for different t_{tox}, and shows that λ_{eff} is also improved by high-k top oxide, but the improvement saturates at a certain point [5] [7]. More importantly, even for a thick SiO$_2$ back oxide, λ_{eff} can be reduced below 2nm by thinning the top oxide thickness.
The transfer characteristics of GNR SB-FETs are shown in Fig. 3(a) for different gate lengths. For the calculated geometry, $I_{on}/I_{off} > 10^3$ is achieved at a supply voltage of 0.3V. Figures 3(b) and 3(c) show the band diagram and the energy-resolved current density in the off-state of the $L_g = 10$nm and 15 nm devices, respectively. For this geometry which has $\lambda_{eff} = 1.45$nm, when the channel length is $L_g \geq 15$nm the subthreshold swing (SS) approaches the 60mV/dec limit, but it degrades to 85mV/dec at $L_g = 10$nm because of direct S\rightarrowD tunneling (Fig. 3(b)). Here, we extract the SS values where $\log_{10}(I_D-V_{GS})$ is nearly linear in Fig. 3(a) at $V_{GS} \approx 0.05$V. In order to further elucidate the scaling potential of GNR SB-FETs, Fig. 4(a) plots SS vs. L_g, and Fig. 4(b) plots SS vs. $L_g/\pi\lambda_{eff}$. Since the 2D potential at the middle of the channel near the thermionic barrier region depends on $exp(-L_g/2\lambda_{eff})$, previous works [7] [9] [12] have shown that SS degrades significantly for $L_g/\pi\lambda_{eff} \leq 1.5 \sim 2$ due to excessive thermal leakage.

We, however, identify two distinct limiting conditions for SS degradation depending on the device geometrical parameters that are yet practically relevant: 1) for very small λ_{eff} values, SS degradation is mainly due to direct S\rightarrowD tunneling, while 2) at larger λ_{eff}, SS degradation is due to conventional electrostatic short-channel-effects (SCEs) [7] [9] [12]. For thin t_{ox} (1nm and 2.15nm) in Fig. 4(a) with small λ_{eff}, SS degradation for L_g below ~ 15nm is due to direct S\rightarrowD tunneling [5], and not because of electrostatic SCEs. An SS ≤ 100mV/dec is still possible for sub-10nm L_g with small λ_{eff} values, even though obtaining small off-state currents will be a challenge because of the direct tunneling limit. Nevertheless, narrower GNRs with larger band gaps may alleviate this problem [5]. For thick t_{ox} (5nm and 8nm) in Fig. 4(b), on the other hand, with large λ_{eff}, SS increases to ~100mV/dec when the conventional $L_g/\pi\lambda_{eff} \approx 1.5$ condition is met [7] [9] [12]. In other words, in the large λ_{eff} limit, scaling is controlled by the electrostatic SCEs. Interestingly, when comparing Fig. 2 with SOI-MOSFET simulations in [9] for a similar device...
geometry, the GNR channel has smaller λ_{eff} than the 5nm thick Si based UTB channel, showing the excellent scaling potential of GNR based ATB-FETs.

IV. CONCLUSIONS

A generalized 2D analytical electrostatic solution is developed for the ATB-transistor geometry. An empirical equation for the effective scaling length has been proposed which cannot be approximated by the lowest order eigenmode as traditionally done in SOI–MOSFETs. Even for a thick SiO$_2$ back oxide, the scaling length can be efficiently improved by thinner top oxide, and to some extent, by high-k dielectrics. It is seen that the scalability of GNR SB-FETs can be limited either by direct S\rightarrowD tunneling, or conventional electrostatic SCEs, depending on the geometrical parameters. Compared to conventional UTB-FET geometries, excellent scaling potential of ATB-FETs based on graphene has been demonstrated.
REFERENCES

[1] A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, pp.1530-1534, 2009.

[2] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, “A graphene field-effect device,” IEEE Electron Dev. Lett., vol. 28, no. 4, pp. 282-284, 2007.

[3] Z. Chen, Y. –M. Lin, M. J. Rooks, and P. Avouris, “Graphene nano-ribbon electronics,” Physica E, vol. 40, pp. 228-232, 2007.

[4] E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B, vol. 74, no. 16, p. 161403, 2006.

[5] Y. Ouyang, Y. Yoon, and J. Guo, “Scaling behaviors of graphene nanoribbon FETs: a three-dimensional quantum simulation study,” IEEE Trans. Electron Dev., vol. 54, no. 9, pp. 2223-2231, 2007.

[6] G. Fiori and G. Iannaccone, “Simulation of graphene nanoribbon field-effect transistors,” IEEE Electron Dev. Lett., vol. 28, no.8, pp. 760-762, 2007.

[7] D. J. Frank, Y. Taur, and H. –S. P. Wong, “Generalized scale length for two-dimensional effects in MOSFETs,” IEEE Electron Dev. Lett., vol. 19, no. 10, pp. 385-387, 1998.

[8] S. -H. Oh, D. Monroe, J. M. Hergenrother, “Analytic description of short-channel effects in fully depleted double-gate and cylindrical, surrounding-gate MOSFETs,” IEEE Electron Dev. Lett., vol. 21, no. 9, pp. 445-447, 2000.

[9] X. Liang and Y. Taur, “A 2-D analytical solution for SCEs in DG MOSFETs,” IEEE Trans. Electron Dev., vol. 51, no. 8, pp. 1385-1391, 2004.

[10] M. Schmidt, M. C. Lemme, H. D. B. Gottlob, F. Driussi, L. Selmi, and H. Kurz, “Mobility extraction in SOI MOSFETs with sub 1 nm body thickness,” Solid-State Electronics, vol. 53, no. 12, pp. 1246-1253, 2009.
[11] K. K. Young, “Short-channel effect in fully depleted SOI MOSFETs,” IEEE Trans. Electron Dev., vol. 36, no. 2, pp. 399-402, 1989.

[12] R. H. Yan, A. Ourmazd, and K. F. Lee, “Scaling the Si MOSFET – from bulk to SOI to bulk,” IEEE Trans. Electron Dev., vol. 39, no. 11, pp. 1704-1710, 1992.

[13] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, “Spin qubits in graphene quantum dots,” Nature Phys., vol. 3, pp. 192-196, 2007.

[14] L. C. Castro, D. L. John and D. L. Pulfrey, “Towards a compact model for schottky-barrier nanotube FETs,” COMMAD2002, pp. 303-306.

[15] D. Basu, M. J. Gilbert, L. F. Register, S. K. Banerjee, A. H. MacDonald, “Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 92, no. 4, p. 042114, 2008.

[16] S. O. Koswatta, M. S. Lundstrom, and D. E. Nikonov, "Influence of phonon scattering on the performance of p-i-n band-to-band tunneling transistors," Appl. Phys. Lett., vol. 92, p. 043125, 2008.
FIGURE CAPTIONS

Fig. 1: (a) Schematic cross section of a double-gate (DG) ATB transistor. The channel material is buried between the top and the back oxides with zero thickness. (b) Eigenvalues λ_n and coefficients A_n^t and A_n^r in the potential expansion (Eq. (1) and (2)) of a DG GNR SB-FET with $t_{box} = 50$ nm (SiO$_2$), $t_{tox} = 2.15$ nm (high-k with $\varepsilon_{tox} = 20\varepsilon_0$), and $V_{GS} = V_{DS} = 0.3$ V.

Fig. 2: (a) The extracted effective scaling length λ_{eff}, the lowest order eigenvalue λ_1 and the empirical λ_{emp} as a function of t_{tox} for different t_{box}. The back oxide is SiO$_2$ and the top oxide is high-k with $\varepsilon_{tox} = 20\varepsilon_0$. (b) λ_{eff} and λ_{emp} as a function of ε_{tox} for different t_{tox}. The back oxide is 50 nm SiO$_2$.

Fig. 3: (a) Calculated transfer characteristics of DG GNR SB-FETs with different gate lengths at $\lambda_{eff} = 1.45$ nm. Band diagram and current density per energy in the off-state for a DG GNR SB-FET with (b) $L_g = 10$ nm and (c) $L_g = 15$ nm, showing that the off-state leakage is dominated by thermionic current at longer channel length (c), and increased dramatically by direct source-to-drain tunneling at short gate length (b) for this geometry ($\lambda_{eff} = 1.45$ nm).

Fig. 4: The subthreshold swing (SS) vs. (a) L_g, and (b) L_g/λ_{eff}. For thin t_{tox} (small λ_{eff}), SS significantly increases for L_g below 15nm due to direct source-to-drain tunneling, while for thick t_{tox} (large λ_{eff}), SS increases to 100mV/dec when $L_g/(\pi\lambda_{eff}) \approx 1.5$ due to electrostatic short-channel-effects (SCEs), as observed in conventional SOI-MOSFETs [7] [9] [12].
Fig. 1. Q. Zhang, et al., *IEEE Elect. Dev. Lett.*
Fig. 2. Q. Zhang, et al., *IEEE Elect. Dev. Lett.*
Fig. 3. Q. Zhang, et al., *IEEE Elect. Dev. Lett.*
DG GNR SB-FET
$\Phi_B = 0.1 \text{ V}$ $V_{DS} = 0.3 \text{ V}$
$\varepsilon_{tox} = 20\varepsilon_0$
$t_{box} = 10 \text{ nm}$
$w = 2 \text{ nm}$
$t_{tox} = 1, 2.15, 5, 8 \text{ nm}$

$\lambda_{eff} = 0.8, 1.45, 2.9, 4 \text{ nm}$
$t_{tox} = 1 \text{ nm}$

SCE limited

Fig. 4. Q. Zhang, et al., IEEE Elect. Dev. Lett.