A proof of Kummer’s theorem

Bruno Gauthier *

March 30, 2022

Abstract

Following suggestions of T. H. Koornwinder, we give a new proof of Kummer’s theorem involving Zeilberger’s algorithm, the WZ method and asymptotic estimates. In the first section, we recall a classical proof given by L. J. Slater. The second section discusses the new proof, in the third section sketches of similar proofs for Bailey’s and Dixon’s theorems are given.

The author is grateful to Peter Paule for his helpful comments.

1 Slater’s proof

In classical hypergeometric theory, formulae concerning summation, transformation and contiguous relations are provided in order to manipulate expressions that represent special functions. One of those is Kummer’s non-terminating summation theorem:

$$\begin{align*}
\binom{a, b}{1 + a - b} : 1 + a - b &= \frac{\Gamma(1 + \frac{a}{2}) \Gamma(1 + a - b)}{\Gamma(1 + a) \Gamma(1 + \frac{a}{2} - b)},
\end{align*}$$

(1)

in which $\text{Re}(b) < 1$ ensures the series to be convergent.

The first step in Slater’s proof is to prove the following quadratic transformation, due to Kummer:

$$\begin{align*}
\binom{a, b}{1 + a - b} : z &= (1 - z)^{-a} \binom{\frac{a}{2} + \frac{a}{2} - b}{1 + a - b} : \frac{-4 z}{(1 - z)^2}.
\end{align*}$$

(2)

The proof of this transformation is as follows. The right-hand side of (2) can be written:

$$\begin{align*}
(1 - z)^{-a} \sum_{k=0}^{\infty} \binom{a}{k} \frac{(\frac{a}{2} + \frac{a}{2} - b)_k}{(1 + a - b)_k} \frac{(-4)^k z^k}{k! (1 - z)^{2k}}.
\end{align*}$$
As this is the coefficient of z^k, we have
\[
\sum_{k=0}^{\infty} \frac{(-\frac{a}{2})^k (\frac{1}{2} + \frac{a}{2} - b) k (-4)^k}{(1 + a - b)_k k!} z^k (1 - z)^{-a} = 0,
\]
which proves Kummer’s quadratic transformation.

The second step is to set $z = -1$ in (2). Therefore
\[
2F_1 \left[\frac{a, b}{1 + a - b}; -1 \right] = 2^{-a} 2F_1 \left[\frac{a}{2}, \frac{1}{2} + \frac{a}{2} - b; 1 + a - b \right]. \tag{4}
\]
Note that these series are convergent if $Re(b) < 1$.

We can sum the series on the right-hand side by Gauss’s theorem [1, (III.3)]. This yields
\[
2F_1 \left[\frac{a, b}{1 + a - b}; -1 \right] = 2^{-a} \frac{\Gamma(1 + a - b) \Gamma\left(\frac{1}{2}\right)}{\Gamma(1 + \frac{a}{2} - b) \Gamma\left(\frac{1}{2} + \frac{a}{2}\right)}. \tag{5}
\]
Since $\Gamma(\frac{1}{2} + \frac{a}{2}) \Gamma(\frac{a}{2} + 1) = 2^a \Gamma(\frac{1}{2}) \Gamma(a + 1)$, we finally obtain Kummer’s theorem:

$$2F_1 \left[\begin{array}{c} a, b \\ 1 + a - b \\ -1 \end{array} \right] = \frac{\Gamma(1-a) \Gamma(1+a+b)}{\Gamma(1+a)\Gamma(1+b)} . \quad (6)$$

2 A new proof

In formula (1), let us replace a by $a + 2n$ where n is a new variable that stands for a nonnegative integer. The resulting formula

$$2F_1 \left[\begin{array}{c} a + 2n, b \\ 1 + a + 2n - b \\ -1 \end{array} \right] = \frac{\Gamma(1-a) \Gamma(1+a+2n-b)}{\Gamma(1+a+2n)\Gamma(1+b)} \quad (7)$$
is clearly equivalent to (1).

The introduction of the free parameter n is the key to this new computer-assisted proof.

Formula (7) can be written as:

$$\sum_k f(n, k) = 1 , \quad (8)$$

where

$$f(n, k) = \frac{(a + 2n)_k (b)_k}{(1 + a + 2n - b)_k} \frac{(-1)^k}{k!}$$

and

$$S(n) = \frac{\Gamma(1 + \frac{a}{2} + n) \Gamma(1 + a + 2n - b)}{\Gamma(1 + a + 2n) \Gamma(1 + \frac{a}{2} + n - b)} .$$

(The coefficient 2 in the substitution $a \to a + 2n$ makes $S(n)$ hypergeometric in n.)

Formula (8) can be rewritten as:

$$\sum_k F(n, k) = 1 \quad \text{where} \quad F(n, k) = \frac{f(n, k)}{S(n)} . \quad (9)$$

We shall actually prove this last formula. Using Gauthier’s Maple package HYPERG, we apply Zeilberger’s algorithm to obtain:

$$F(n, k) - F(n + 1, k) = G(n, k + 1) - G(n, k) , \quad (10)$$

with $G(n, k) = F(n, k) C(n, k)$ and $C(n, k) = -\frac{(b-1)k}{(1 + a + 2n - b + k)(a + 2n)}$.

This $C(n, k)$ is the so-called certificate of the WZ-pair (F, G).

After summing (11) for k from 0 to K, the right-hand side telescopes:

$$\sum_{k=0}^{K} F(n, k) - \sum_{k=0}^{K} F(n + 1, k) = \sum_{k=0}^{K} G(n, k + 1) - \sum_{k=0}^{K} G(n, k) \quad (11)$$

$$= G(n, K + 1) - G(n, 0) \quad (12)$$

$$= F(n, K + 1) C(n, K + 1) . \quad (13)$$
We now let K tend to infinity. Clearly,
\[
\lim_{K \to +\infty} C(n, K + 1) = -\frac{b - 1}{a + 2 n}.
\]

To determine \(\lim_{K \to +\infty} F(n, K + 1) \), we use the well-known estimate (see e.g. [3]):
\[
\frac{\Gamma(a + k)}{\Gamma(b + k)} \sim k^{a-b} \quad \text{as} \quad k \to \infty. \tag{14}
\]

First,
\[
F(n, k) = \frac{(a + 2 n)_k (b)_k}{(1 + a + 2 n - b)_k} \cdot \frac{(-1)^k}{k!} \frac{1}{S(n)},
\]
\[
= \frac{\Gamma(a + 2 n + k) \Gamma(b + k) (-1)^k}{\Gamma(1 + a + 2 n - b + k) \Gamma(k + 1)} T(n),
\]

where \(T(n) = \frac{(a + 2 n) \Gamma(1 + \frac{n}{2} + n - b)}{\Gamma(b) \Gamma(1 + \frac{n}{2} + n)} \) does not depend on \(k \).

Then,
\[
|F(n, k)| \sim k^{a+2n-(1+a+2n-b)} b^{b-1} T(n),
\]
\[
\sim k^{2b-2} T(n).
\]

We know that \(Re(b) < 1 \) (necessary condition for the convergence of the series in (15)). Therefore
\[
\lim_{K \to +\infty} F(n, K + 1) = 0.
\]

Expressing as before \(F(n, k) \) in terms of Gamma functions and using the same asymptotics, it is easy to find the limit of \(F(n, k) \) when \(n \) tends to infinity:
\[
F(n, k) = \frac{(a + 2 n)_k (b)_k}{(1 + a + 2 n - b)_k} \cdot \frac{(-1)^k}{k!} \frac{\Gamma(1 + a + 2 n) \Gamma(1 + \frac{n}{2} + n - b)}{\Gamma(1 + a + 2 n - b + k) \Gamma(1 + a + 2 n - b + k)} \times \frac{\Gamma(1 + a + 2 n - b + k) \Gamma(1 + \frac{n}{2} + n - b)}{\Gamma(1 + a + 2 n - b) \Gamma(1 + \frac{n}{2} + n)}
\]
\[
= \frac{(2 n)^k (2 n)^{-k} \frac{(b)_k (-1)^k}{k!} (2 n)^b n^{-b}}{k!}.
\]

So,
\[
\lim_{n \to +\infty} F(n, k) = \frac{(b)_k (-1)^k}{k!} 2^b. \tag{15}
\]
By (14), we have $1/S(n) \sim 2^b$ when n tends to infinity, so for all $n \geq n_0$, $1/S(n) < A$ where A is a positive constant. Therefore,

$$|F(n, k)| = \left| \frac{f(n, k)}{S(n)} \right| \leq A |f(n, k)|. \quad (16)$$

Moreover,

$$|f(n, k)| = \left| \frac{(a + 2 n)_k |(b)_k}{(1 + a + 2 n - b)_k k!} \right| \leq \frac{|(b)_k|}{k!}, \quad (17)$$

because

$$\forall i \geq 0, \quad \frac{|a + 2 n + i|}{|1 + a + 2 n - b + i|} < 1 \quad \text{when } n \text{ is big enough,}$$

and

$$\frac{|(a + 2 n)_k|}{|(1 + a + 2 n - b)_k|} = \frac{|(a + 2 n)(a + 2 n + 1)\ldots(a + 2 n + k - 1)|}{|(1 + a + 2 n - b)(1 + a + 2 n - b + 1)\ldots(1 + a + 2 n + b + k - 1)|},$$

$$\leq \frac{|a + 2 n| |a + 2 n + 1|\ldots|a + 2 n + k - 1|}{|1 + a + 2 n - b| |1 + a + 2 n - b + 1|\ldots|1 + a + 2 n + b + k - 1|},$$

$$\leq 1.$$

We can finally establish (use (16), (17) and (14)) that

$$|F(n, k)| \leq A \left| \frac{(b)_k}{k!} \right| \sim A \left| \frac{k^{b-1}}{\Gamma(b)} \right|. \quad (18)$$

For $Re(b) < 0$, this last expression is the general term of a convergent series, so $\sum_{k \geq 0} F(n, k)$ is dominated by a convergent series.

The limit of formula (13) when K tends to infinity gives

$$\sum_{k=0}^{\infty} F(n, k) - \sum_{k=0}^{\infty} F(n + 1, k) = 0.$$

Hence, the sum $\sum_{k=0}^{\infty} F(n, k)$ is independent of n. Then

$$\sum_{k=0}^{\infty} F(n, k) = \lim_{n \rightarrow +\infty} \sum_{k=0}^{\infty} F(n, k),$$

$$= \sum_{k=0}^{\infty} \lim_{n \rightarrow +\infty} F(n, k),$$

where the last equality is justified by dominated convergence. Moreover,
\[
\sum_{k=0}^{\infty} F(n, k) = \sum_{k=0}^{\infty} \lim_{n \to +\infty} (F(n, k),
= \sum_{k=0}^{\infty} 2^b \frac{(b)_k (-1)^k}{(k)!},
= 2^b \sum_{k=0}^{\infty} \frac{(b)_k (-1)^k}{k!},
= 2^b (1 - (-1))^b = 1, \text{ by binomial theorem.}
\]

This is precisely formula (9). So, we proved — with the restriction \(\text{Re}(b) < 0 \) — the validity of Kummer’s theorem (specializing \(n \) by 0 in (7)).

Kummer’s theorem (1) can be rewritten as:

\[
\sum_k M(a, b, k) = \frac{\Gamma(1 + \frac{a}{2}) \Gamma(1 + a - b)}{\Gamma(1 + a) \Gamma(1 + \frac{a}{2} - b)},
\]

with \(M(a, b, k) = \frac{(a)_k (b)_k}{(1 + a - b)_k k!} (-1)^k \).

We derive by Zeilberger’s algorithm, a recurrence for \(M \) with respect to the parameter \(b \):

\[
(a - 2b) M(a, b, k) + (-2a + 2b) M(a, b + 1, k) = G'(a, b, k + 1) - G'(a, b, k)
\]

with \(G'(a, b, k) = M(a, b, k) \frac{(a-b+k)_k}{b} \) and \(\text{Re}(b) < 0 \). After summing both sides with respect to \(k \) from 0 to \(K - 1 \), it gives

\[
(a - 2b) \sum_{k=0}^{K-1} M(a, b, k) + (-2a + 2b) \sum_{k=0}^{K-1} M(a, b + 1, k) = G'(a, b, K) - G'(a, b, 0),
\]

and then we let \(K \) tend to infinity to obtain

\[
(a - 2b) \sum_{k=0}^{\infty} M(a, b, k) + (-2a + 2b) \sum_{k=0}^{\infty} M(a, b + 1, k) = 0,
\]

because \(G'(a, b, 0) = 0 \) and \(\lim_{k \to +\infty} G'(a, b, K) = 0 \).

We have now for any \(b \) with \(\text{Re}(b) < 0 \)

\[
\sum_{k=0}^{\infty} M(a, b + 1, k) = \frac{\frac{a}{2} - b}{a-b} \sum_{k=0}^{\infty} M(a, b, k),
= \frac{\frac{a}{2} - b}{a-b} \frac{\Gamma(1 + \frac{a}{2}) \Gamma(1 + a - b)}{\Gamma(1 + a) \Gamma(1 + \frac{a}{2} - b)},
= \frac{\Gamma(1 + \frac{a}{2}) \Gamma(a-b)}{\Gamma(1 + a) \Gamma(\frac{a}{2} - b)}.\]
Let us replace \(b + 1 \) by \(B \), we finally conclude that

\[
\binom{a, B}{1 + a - B; -1} = \frac{\Gamma(1 + \frac{a}{2}) \Gamma(1 - a - B)}{\Gamma(1 + a) \Gamma(1 + \frac{a}{2} - B)},
\]

for all values of \(B \) such that \(Re(B) < 1 \).

Remark: We can also derive this result directly from (13) by a convergence-acceleration argument. For this, we define a new sequence \(H(n, k) := F(n, 2k) + F(n, 2k + 1) \), and we find that \(\sum_{k \geq 0} H(n, k) \) is dominated by a convergent series. Hence, we have

\[
\sum_{k=0}^{\infty} F(n, k) = \lim_{n \to +\infty} \sum_{k=0}^{\infty} F(n, k),
\]

\[
= \lim_{n \to +\infty} \sum_{k=0}^{\infty} (F(n, 2k) + F(n, 2k + 1)),
\]

\[
= \lim_{n \to +\infty} \sum_{k=0}^{\infty} H(n, k) = \sum_{k=0}^{\infty} \lim_{n \to +\infty} H(n, k),
\]

\[
= \sum_{k=0}^{\infty} \lim_{n \to +\infty} (F(n, 2k) + F(n, 2k + 1)),
\]

\[
= \sum_{k=0}^{\infty} 2^b \left(\frac{(b)_{2k} (-1)^{2k}}{(2k)!} + \frac{(b)_{2k+1} (-1)^{2k+1}}{(2k+1)!} \right),
\]

\[
= 2^b \sum_{k=0}^{\infty} \frac{(b)_k (-1)^k}{k!},
\]

\[
= 1.
\]

3 Other summation theorems

The combination of Zeilberger's algorithm and asymptotic estimates suggests an approach to automatically prove identities involving hypergeometric series. It is well suited to summation theorems. As an example, we now give two apparently new proofs of classical hypergeometric identities then a list of summation theorems that the package **HYPERG** can prove automatically.

3.1 Bailey's theorem

\[
\binom{a, 1-a}{1/2} = \frac{\Gamma(\frac{b}{2}) \Gamma(\frac{1+b}{2})}{\Gamma(\frac{a+b}{2}) \Gamma(\frac{1-a+b}{2})},
\]

(19)

Following the same scheme, let \(b \to b + 2n \). Formula (19) can be written:

\[
\sum_{k} F(n, k) = 1,
\]

(20)
where \(F(n, k) = \frac{f(n, k)}{S(n)}, \)

with \(f(n, k) = \sum_k \frac{(a)_k (1-a)_k}{(b+2n)_k} \left(\frac{1}{2} \right)^k \) and \(S(n) = \frac{\Gamma\left(\frac{b}{2} + n\right) \Gamma\left(\frac{1}{2} + \frac{b}{2} + n\right)}{\Gamma\left(\frac{a+b}{2} + n\right) \Gamma\left(\frac{1-a+b}{2} + n\right)} \).

Zeilberger’s algorithm applied to \(F(n, k) \) succeeds to finding a WZ-pair:

\[
F(n, k) - F(n + 1, k) = G(n, k + 1) - G(n, k) ,
\]

where \(G(n, k) = F(n, k) \left(-2 \frac{k}{b+2n+k} \right) . \)

As with Kummer’s theorem, we have:

\[
G(n, 0) = 0 , \quad \lim_{k \to +\infty} G(n, k) = 0 ,
\]

and so, \(\sum_k F(n, k) \) is independent of \(n \).

In this case, \(\lim_{n \to +\infty} F(n, k) = \delta_{k,0} \), so that:

\[
\sum_{k=0}^{\infty} F(n, k) = \lim_{n \to +\infty} \sum_{k=0}^{\infty} F(n, k) = \sum_{k=0}^{\infty} \lim_{n \to +\infty} F(n, k) = \sum_{k=0}^{\infty} \delta_{k,0} = 1 ,
\]

which proves Bailey’s theorem.

3.2 Dixon’s theorem

\[
3F_2 \left[\begin{array}{c} a, b, c \\ 1 + a - b, 1 + a - c \end{array} ; 1 \right] = \frac{\Gamma(1 + a - b) \Gamma(1 + a - c) \Gamma(1 + \frac{a}{2}) \Gamma(1 + \frac{a}{2} - b - c)}{\Gamma(1 + a) \Gamma(1 + \frac{a}{2} - b) \Gamma(1 + \frac{a}{2} - c) \Gamma(1 + a - b - c)} ,
\]

where \(\text{Re}(2 + a - 2b - 2c) > 0 \).

Once again, we replace \(a \) by \(a + 2n \). With the same notation (24), we now have:

\[
f(n, k) = \sum_k \frac{(a+2n)_k (b)_k (c)_k}{(1+a+2n-b)_k (1+a+2n-c)_k k!} ,
\]

and \(S(n) = \frac{\Gamma(1 + a + 2n - b) \Gamma(1 + a + 2n - c) \Gamma(1 + \frac{a}{2} + n) \Gamma(1 + \frac{a}{2} + n - b - c)}{\Gamma(1 + a + 2n) \Gamma(1 + \frac{a}{2} + n - b) \Gamma(1 + \frac{a}{2} + n - c) \Gamma(1 + a + 2n - b - c)} .
\]

The WZ-pair given by Zeilberger’s algorithm is

\[
F(n, k) - F(n + 1, k) = G(n, k + 1) - G(n, k) ,
\]

with \(G(n, k) = F(n, k) C(n, k) \), where the computed certificat \(C(n, k) \) is:
\(-2\cdot 8\cdot a\cdot n\cdot c-a+4\cdot b+4\cdot c-2\cdot n+2\cdot n\cdot b\cdot c-2\cdot a\cdot b\cdot k-2\cdot a\cdot k\cdot c-a\cdot b\cdot c-8\cdot a\cdot n\cdot b
-4\cdot n\cdot k\cdot c-4\cdot n\cdot b\cdot k+a\cdot b+2\cdot n\cdot b-2\cdot a\cdot c-8\cdot n\cdot c+a\cdot c+2\cdot n\cdot c-2\cdot a\cdot k\cdot c+2\cdot 3\cdot a\cdot c
+12\cdot a\cdot n+2\cdot n\cdot k-2\cdot a\cdot n+2\cdot a\cdot b+24\cdot a\cdot n+2\cdot a+k\cdot 2-8\cdot n\cdot k+2\cdot b\cdot n\cdot k\cdot c+2\cdot a\cdot c-2\cdot a\cdot c
+2\cdot b\cdot c-2\cdot c^2)\cdot k/(2+a+2\cdot n-2\cdot b-2\cdot c)/(1+a+2\cdot n-c+k)/(1+a+2\cdot n-b+k)
/(a+2\cdot n)

It is easy to establish the following limits:

\[
G(n, 0) = 0, \\
\lim_{k \to +\infty} G(n, k) = \lim_{k \to +\infty} k^2 b^2 + 2 c - 2 n - 4 - a T(n)
\]

Again, \(\sum_k F(n, k)\) is independent of \(n\).

Since \(\lim_{n \to +\infty} F(n, k) = \delta_{k, 0}\), we conclude again that:

\[
\sum_{k=0}^{\infty} F(n, k) = \lim_{n \to +\infty} \sum_{k=0}^{\infty} F(n, k) = \sum_{k=0}^{\infty} \lim_{n \to +\infty} F(n, k) = \sum_{k=0}^{\infty} \delta_{k, 0} = 1. \tag{27}
\]

3.3 A list of theorems

These formulas can automatically be proved using the HYPERG package:

- Gauss’s theorem [7, (III.3)]:

\[
\begin{aligned}
2F_1 \left[\frac{a, b}{c}; 1 \right] &= \frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(-b+c)}.
\end{aligned}
\]

- another Dixon’s theorem [7, (III.10)]:

\[
\begin{aligned}
4F_3 \left[\frac{a, 1 + \frac{a}{2}, b, c}{\frac{a}{2}, 1 + a - b, 1 + a - c}; -1 \right] &= \frac{\Gamma(1+a-b) \Gamma(1+a-c)}{\Gamma(1+a) \Gamma(1+a-b-c)}.
\end{aligned}
\]

- another Dixon’s theorem [7, (III.12)]:

\[
\begin{aligned}
5F_4 \left[\frac{a, \frac{a}{2} + 1, b, c, d}{\frac{a}{2}, 1 + a - b, 1 + a - c, 1 + a - d}; 1 \right] &= \frac{\Gamma(1+a-b) \Gamma(1+a-c) \Gamma(1+a-d) \Gamma(1+a-b-c-d) \Gamma(1+a-c-d)}{\Gamma(a+1) \Gamma(1+a-b-c) \Gamma(1+a-b-d) \Gamma(1+a-c-d)}.
\end{aligned}
\]
References

[1] B. Gauthier, HYPERG, Maple package, User’s reference manual, Version 1.0, (182 pages), Electronic version available at http://www-igm.univ-mlv.fr/~gauthier, (1998).

[2] R. W. Gosper, Jr, Decision procedure for indefinite hypergeometric summation, Proceedings of the National Academy of Sciences of the United States of America 75 (1978) 40–42.

[3] T. H. Koornwinder, Identities of nonterminating series by Zeilberger’s algorithm, J. Comput. Appl. Math. 99 (1998) 449–461.

[4] C. Krattenthaler, HYP, Manual for a Mathematica package for handling hypergeometric series, 160 pages, (1994).

[5] P. Paule, M. Schorn, A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities, RISC-Linz Report Series, 93-36 (1993), J. Kepler University of Linz.

[6] M. Petkovšek, H. S. Wilf, D. Zeilberger, A = B (A K Peters, Wellesley, Massachusetts, 1996).

[7] L. J. Slater, Generalized hypergeometric functions, (Cambridge University Press, Cambridge, 1966).

[8] D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities, Discrete Math. 80 (1990) 207–211.

[9] D. Zeilberger, Three recitations on holonomic systems and hypergeometric series, Séminaire Lotharingien de Combinatoire B24a (1990).

[10] D. Zeilberger, The method of creative telescoping, J. Symbol. Comp. 11 (1991) 195–204.