Review Article

The Role of Autologous Stem Cell Transplantation in the Treatment of Diffuse Large B-Cell Lymphoma

Marco Gunnellini, Rita Emili, Stefano Coaccioli, and Anna Marina Liberati

1 Department of Transplant Oncohematology, Perugia University, S. Maria, Terni, Italy
2 Faculty of Medicine, Perugia University, S. Maria, Terni, Italy

Correspondence should be addressed to Anna Marina Liberati, marinal@unipg.it

Received 15 October 2011; Accepted 15 November 2011

Diffuse large B-cell non-Hodgkin's lymphoma (DLBCL) accounting for approximately 30% of new lymphoma diagnoses in adult patients. Complete remissions (CRs) can be achieved in 45% to 55% of patients and cure in approximately 30–35% with anthracycline-containing combination chemotherapy [3]. The International Prognostic Index (IPI) proposed in the 1993 [4] has been used in the risk stratification for patients with DLBCL for more than a decade. The age-adjusted IPI (aaIPI) has been widely employed, particularly to "tailor" more intensive therapy such as high-dose therapy (HDT) with autologous hemopoietic stem cell rescue (ASCT). IPI, however, has failed to reliably predict response to specific therapies. This, in part, reflects the inherent biological heterogeneity of DLBCL and highlights the need for more precise, patient-specific, and biologically based risk factors. Despite these criticisms, the IPI has proved valuable for stratification of patients in clinical trials and remains the prognostic system more widely employed in clinical research and daily practice.

The development of rituximab, a chimeric anti-CD20 monoclonal antibody, has represented a revolutionary advance in the therapy of hematologic malignancies [5]. The addition of rituximab to cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) combination has produced significant survival benefits in elderly patients with untreated DLBCL compared to CHOP alone [6, 7]. Similarly, the same immunochemotherapy regimen has determined an improved outcome in young low-risk DLBCL patients [8], as defined by aaIPI. Thus, first line chemotherapy with CHOP or CHOP-like regimens in combination with rituximab has become standard care for CD20+ DLBCL patients.

Despite the striking advances in the outcome of DLBCL patients, a subgroup of young patients with poor prognosis still exists [9, 10]. Currently, clinical and biological research is focused to improve the curability of this setting of patients, mainly young.

1. Introduction

Diffuse large B-cell non-Hodgkin's lymphoma (DLBCL) is the commonest histological subtype of non-Hodgkin's lymphomas (NHL) accounting for approximately 30% of new lymphoma diagnoses in adult patients. Because their incidence increases in old age, this epidemiological pattern might explain, at least in part, the rapid rise in the number of new diagnoses observed over the last decades of the 20th century [1, 2] in which an increase of median age of population has also been registered.

Complete remissions (CRs) can be achieved in 45% to 55% of patients and cure in approximately 30–35% with anthracycline-containing combination chemotherapy [3]. The International Prognostic Index (IPI) proposed in the 1993 [4] has been used in the risk stratification for patients with DLBCL for more than a decade. The age-adjusted IPI (aaIPI) has also been widely employed, particularly to “tailor” more intensive therapy such as high-dose therapy (HDT) with autologous hemopoietic stem cell rescue (ASCT). IPI, however, has failed to reliably predict response to specific therapies. This, in part, reflects the inherent biological heterogeneity of DLBCL and highlights the need...
2. HDT with ASCT in Front-Line Treatment of DLBCL

In the rituximab era, HDT/ASCT has proven effective as salvage treatment in patients with chemosensitive relapsed aggressive NHL [11]. These results suggested the possibility of improving the outcome of aggressive NHL patients by including HDT/ASCT in the first-line therapy. After some phase I/II trials supporting the use of this strategy, HDT/ASCT appeared a promising option for frontline treatment of young patients. However, the results of prospective randomized trials [12–25] have generated conflicting results and several problems have hampered the comparison of data (Tables 1 and 2).

Firstly, trials had different remission status requirements for HDT/ASCT [12–25]. In particular, only patients in PR or CR, after induction therapy (Table 1), were randomized to receive HDT/ASCT or conventional therapy [12–16]. Secondly, in other trials, patients were randomized at diagnosis (Table 2), and HDT/ASCT was employed as part of initial treatment after shortened [19–21, 25] or full course of induction therapies [17, 18, 22–24]. Furthermore, high-dose sequential (HDS) therapy, a type of induction treatment based on a different “philosophy” from the rationale underlying the conventional one, was administered up-front followed by HDT/ASCT in three studies [17, 23, 24]. HDS therapy consists in the administration of several non-cross-resistant drugs, each given at the maximal tolerated dose mainly as single agent within the shortest possible interval. The purpose of this regimen was to prevent the emergence of drug-resistant tumor clones. Thirdly, a great variety of therapeutic regimens, both among conventional or high-dose treatments, were employed. In fact, conventional CHOP regimen or CHOP-like combinations were employed in 3 and 6 trials, respectively, while, in the other studies, MACOP-B or VACOP-B were used [17, 18, 21, 22]. Although the combination of carmustine, etoposide, cytarabine, and melphalan (BEAM) was the most frequently employed conditioning regimen [15, 16, 18–20, 22, 25], other myeloablative treatments [12–14, 17, 21, 23, 24] were also used in several trials. Fourthly, because several of these studies were designed before the introduction in the clinical practice of both the IPI prognostic score [4] and the REAL-WHO histological classification [26], trials included varying proportions of patients with different risk categories and different histological subtypes, not all of which were DLBCL. Despite the poor comparability of these trials, a statistically significant prolongation of PFS or EFS was documented in four trials [15, 19, 22, 25], but none demonstrated a significant improvement of OS associated with HDT/ASCT with the exception of a retrospective subgroup analysis [14]. In summary, in the rituximab era, HDT/ASCT, employed in front-line therapy, failed to improve the outcome of aggressive NHL patients.

In the rituximab era, HDT/ASCT for intermediate-high (I-H) or high-risk (H) aaIPI patients is still a matter of debate. However, the combination of rituximab with an intensified treatment strategy has resulted in encouraging results in phase II studies (Table 3). Tarella et al. [27] used rituximab in combination with modified HDS chemotherapy delivered with multiple ASCT followed by a consolidation phase consisting of mitoxantrone (Mito) and melphalan (L-PAM) with ASCT. In this study, 93 of the 112 patients enrolled completed the planned therapy. At conclusion of treatment, the CR rate was 80%. At a median followup of 48 months, the estimated 4-year OS projection was 76% (CI: 68–85%), and at median followup of 46 months, the 4-year EFS projection was 73% (CI: 64–81%). Vitolo et al. [28] employed 4 cycles of dose-dense (110 mg/mq epirubicin, 1200 mg/mq cyclofosfamide, 1.4 mg/mq vincristine, and 40 mg/mq prednisone orally days 1 to 5 given every two weeks) CEOP regimen as induction phase, followed by the 2 cycles of mitoxantrone, cytarabine, and dexamethasone (MAD) as intensification phase. The third phase of study design consisted of BEAM with ASCT. A total of six rituximab doses were given, 4 and 2 during induction and intensification phases, respectively. Seventy-six of the 94 patients completed treatment and underwent HDT/ASCT. The CR rate was 82% (CI: 73–88%). With a median followup for censored patients of 49 months, the 4-year EFS rate was 73% (CI: 63, 5–82, 5%) and the 4-year OS rate was 80% (CI: 71, 6–88,4%). Dilhuydy et al. [29] reported an overall response (OR) rate of 67%. With a median followup of 66 months, the estimated rates (±SD) of 5-year OS and EFS rates were 74% ± 4% and 55% ± 5%, respectively. Fitoussi et al. [30] treated 208 patients with rituximab combined with cyclophosphamide, vindesine, bleomycin, and prednisolone (ACVBP) for 4 cycles. This induction therapy was followed by BEAM4 with ASCT in 155 responding patients (CR or PR). A total of 32 patients did not receive HDT/ASCT. Twenty five were withdrawn during induction therapy, 6 because of insufficient response before consolidation and one because of sudden death. With a median followup of 45 months, the 4-year PFS and OS were estimated at 76% (CI: 69–81%) and 78% (72–83%).

In both the Vitolo and the Fitoussi studies, the results achieved with the immunochemotherapy strategy were compared with those obtained in their historical groups of patients treated with similar sequence of chemotherapy program, but not including rituximab. Despite the limitations intrinsic to retrospective analyses, these comparisons showed a clear therapeutic advantage of immunotherapy over chemotherapy in both the two major end points PFS and OS.

Recently two randomized studies conducted by the SWOG [31] and FIL [32] have tested the role of HDT/ASCT in the front line therapy of unfavorable (1-H/H) patients with aggressive NHL. In particular, in the SWOG study, patients responsive to the CHOP or R-CHOP induction therapy were randomized to receive one more cycle of R-CHOP followed by TBI or BCNU-based regimens and ASCT or three additional cycles of R-CHOP [31]. In this trial, the 2 yr PFS was 69% and 56% in the experimental arm compared to the standard one (95% CI: 1.18–2.51) \(P = 0.05 \), while no significant difference was documented in the 2-year OS. The authors conclude that HDT/ASCT improves PFS for responders, including those induced with R-CHOP, with a stronger outcome seen for those with H IPI grade. The FIL study, a multicenter randomized trial with a 2 × 2 factorial
Table 1: Phase III trials of HDT/ASCT in CR or PR unfavorable NHL patients.

Author	Year	n	Histological classification	DLCL (%)	Immunological phenotype (%)	aaIPI ≥ 2 (%)	Disease status	Therapy	Shorten induction	PFS/EFS (%)	P	OS (%)	P
Verdonk [12]	1995	35	W.F.	26	B: 77	44	PR	CHOP × 8 versus CHOP × 4 + HD-CTX-TBI/ASCT	Yes	4y: 53	N.S.	4y: 85	N.S.
		34		33	B: 79	44				4y: 41	N.S.		
Martelli [13]	1996	27	W.F./Kiel	62	B: 70	N.R.	PR	DHAP \(\times 6 \) versus BEAC\(\times 2 \)/ASCT	No	5y: 52	N.S.	5y: 73	N.S.
		22		40	B: 45					5y: 73	N.S.		
Haioun [14]	2000	111	W.F.	61	B: 63	90	CR	ACVB versus ACVB + CBV/ASCT	No	8y: 39	0.02	8y: 64	0.04
		125		56	B: 60	80				8y: 55	N.S.		
Kluin-Nelemans [15]	2001	56	REAL	58	B: 55	29	CR, PR	ChVmP/BV\(\times 8 \) versus ChVmP/BV\(\times 6 + BEAM/ASCT \)	Yes	5y: 56	N.S.	5y: 77	N.S.
		49		50	B: 66	31				5y: 61	N.S.		
Milpied [16]	2004	99	W.F.	74	B: 74	49	PR	AGB\(\times 2 \) versus CEOP + ECVB\(\times 2 + BEAM/ASCT \)	No	5y: 37	0.037	5y: 56	0.037
		98		77	B: 77	57				5y: 55	N.S.		

1 Plus radiotherapy at bulky disease.
2 Plus radiotherapy at bulky disease and intrathecal prophylaxis in very high-risk patients.

W.F.: working formulation—NHL classification; Kiel: Kiel classification of NHL; CR: complete response; PR: partial response; CHOP: cyclophosphamide, doxorubicin, vincristine, and prednisone; HD-CTX: high-dose cyclophosphamide; TBI: total body irradiation; DHAP: cisplatin, cytarabine, and high-dose dexamethasone; BEAC: carmustine, etoposide, cytarabine, and cyclophosphamide; ACBV: doxorubicin, cyclophosphamide, vindesine, and bleomycin; CBV: cyclophosphamide, vincristine, and bleomycin; ChVmP/BV: cyclophosphamide, doxorubicin, teniposide, prednisone, bleomycin, and vincristine; BEAM: carmustine, etoposide, cytarabine, and melphalan; CEOP: cyclophosphamide, epirubicin, vincristine, and prednisone; ECVB: epirubicin, cyclophosphamide, vindesine, bleomycin, and prednisone; N.S.: not significant.
Author	Year	n	Histological classification	DLI (%)	Immunological phenotype (%)	aIPI ≥ 2 (%)	Disease status	Therapy	Shorten induction	PFS/EFS (%)	P	OS (%)	P
Gianni [17]	1997	58	W.F.	88/91	N.R.	74/94	CR, CRu, PR, SD, MR, PD	MACOP-B\(^3\) versus HDS\(^3\) + mito-L-PAM\(^3\)/ASCT	No				
Santini [18]	1998	61/63	W.F.	72/77	B:75/R:83	59/54	CR, CRu, PR, SD, MR, PD	VACOP-B\(^3\) versus VACOP-B\(^3\) + BEAM/ASCT	No				
Gisselbrecht [19]	2002	181/189	Kid/WHO 1999	62.5/60	B:79/R:75	97/99	CR, CRu, PR, SD, MR, PD	ACBVP\(^3\) versus CEOP\(^3\) + ECVBP + BEAM/ASCT	Yes	5y: 52	0.01	5y: 60	0.007
Kaiser [20]	2002	154/158	REAL	61/58	B:79/R:73	75/73	CR, CRu, PR, SD, MR, PD	CHOE\(^1\) × 5 versus CHOE\(^1\) × 3 + BEAM/ASCT	Yes	3y: 49		3y: 63	
Martelli [21]	2003	75/75	REAL	84/78	B:81/R:70	100/100	CR, CRu, PR, SD, MR, PD	MACOP-B versus MACOP-B + BEAC/ASCT	Yes	5y: 49		5y: 65	
Olivieri [22]	2005	106/116	W.F.	78/75	B:83/R:80	68/72	CR, CRu, PR, SD, MR, PD	VACOP-B\(^3\) × 12 weeks versus VACOP-B\(^3\) × 8 weeks + HD-CTX + HD-VP16 + BEAM/ASCT	No	7y: 44.9		7y: 60	
Vitolo [23]	2005	66/60	REAL	90/80	B:96/R:90	80/87	CR, CRu, PR, SD, MR, PD	Mega CEP\(^3\) × 6–8 versus HDS\(^3\) + mito-L-PAM\(^3\)/ASCT	No	6y: 48		6y: 63	

Table 2: Phase III trials of HDT/ASCT in unfavorable NHL patients.
Author	Year	n	Histological classification	DLCL (%)	Immunological phenotype (%)	aaIPI ≥ 2 (%)	Disease status HDT/ASCT	Therapy	Shorten induction yes/no	PFS/EFS (%)	P	OS (%)	P	
Betticher [24]	2006	59/70	REAL	69/76	B: 74/B: 93	88/72	CR, CRu, PR, SD, MR, PD	CHOP\(^1\) × 8 versus HDS\(^2\) + mito-L-PAM\(^2\)/ASCT	No	3y:33	3y:39	N.S.	3y:46	N.S.
Lynch [25]	2010	234/233	W.F.	N.R.	N.R.	98/98	CR, CRu, PR, SD, MR, PD	CHOP\(^1\) × 6–8 versus CHOP\(^1\) × 3 + BEAM/ASCT	Yes	5y:38	5y:44	N.S.	5y:50	N.S.

\(^1\)Plus radiotherapy at bulky disease.

\(^2\)Plus radiotherapy at bulky disease and intrathecal prophylaxis in very high-risk patients.

\(^3\)Plus intrathecal prophylaxis in very high-risk patients.

\(^4\)See [17, 23, 24].

W.F.: working formulation-NHL classification; Kiel: Kiel classification of NHL; WHO: World Health Organization classification of NHL; CR: complete response; CRu: unconfirmed complete response; PR: partial response; MR: minor response; SD: stable disease; PD: progressive disease; MACOP-B: methotrexate with leucovorin rescue, doxorubicin, cyclophosphamide, vincristine, prednisone, and bleomycin; HDS: high-dose sequential chemotherapy; mito-L-PAM: mitoxantrone and melphalan; VACOP-B: etoposide, doxorubicin, cyclophosphamide, vincristine, prednisone, and bleomycin; BEAM: carmustine, etoposide, cytarabine, and melphalan; ACBVP: doxorubicin, cyclophosphamide, vindesine, bleomycin, and prednisone; (mega) CEOP: cyclophosphamide, epirubicin, vincristine, and prednisone; ECVBP: epirubicin, cyclophosphamide, vindesine, bleomycin, and prednisone; CHOEP: cyclophosphamide, doxorubicin, vincristine, etoposide, and prednisone; BEAC: carmustine, etoposide, cytarabine, and cyclophosphamide; HD-CTX: high-dose cyclophosphamide; HD-VP16: high-dose etoposide; N.R.: not reported; N.S.: not significant.
design, compared two rituximab dose-dense treatments (R-CHOP14 versus R-megaCHOP14), followed or not by BEAM with ASCT [32]. With a median followup of 23 months, 2-year PFS was 65% (CI: 59–70%), for the entire group of enrolled patients and 59% (CI: 51–57%) versus 72% (CI: 64–78%) for no HDT/ASCT versus HDT/ASCT respectively. So far, the advantage in PFS does not translate in OS benefit. However, a longer followup will clarify the role of HDT/ASCT as first-line treatment of aaIPI 2-3 DLBCL patients. These and other randomized studies will define whether HDT/ASCT combined with rituximab in the front line therapy is associated with increased cure rate of unfavorable DLBCL patients.

3. HDT with ASCT as Salvage Therapy

In the prerituximab era, the Parma trial established HDT/ASCT as standard therapy in relapsing aggressive NHL patients responding to salvage therapy [11].

The parameters affecting the results of HDT/ASCT are identified in responsive disease to conventional dose salvage therapy before myeloablative treatment, relapse defined as a time less than twelve months from diagnosis to recurrence (early), and the presence of prognostic factors at relapse, as defined by IPI or secondary aaIPI (saaIPI) [33–35].

As an example, the treatment details and outcomes for patients receiving HDT/ASCT for relapsed, rituximab-naive DLBCL are presented below, along with the results from other studies. The differences in outcomes are likely due to the use of rituximab before and after HDT/ASCT.

Study	Year	n	Pathological phenotype	Immunological phenotype	aaIPI ≥ 2 (%)	Therapy	Shorten induction yes/no	PFS/EFS (%)	OS (%)	
Tarella [27]	2007	112	REAL	79	B. 100	100	Modified R-HDS	No	4y: 73	4y: 76
Vitolo [28]	2009	97	REAL	86	B. 100	100	R-mega CEOP14 × 4 + R-MAD 2 × 2 + BEAM/ASCT	No	4y: 73	4y: 80
Dilhuydy [29]	2010	42	REAL	N.R.	B. 100	100	R × 4 + CEEP × 2 + R-MTX/R-MC + BEAM/ASCT	Yes	5y: 55	5y: 74
Fitoussi [30]	2011	209	WHO	N.R.	B. 100	100	R-ACVBP × 4 + BEAM/ASCT	Yes	4y: 76	4y: 78

1Plus radiotherapy at bulky disease.
2Plus radiotherapy at bulky disease and intrathecal prophylaxis in very high-risk patients.

REAL: revised European-American lymphoma classification; WHO: World Health Organization classification of NHL; R: rituximab; (mega) CEOP: cyclophosphamide, epirubicin, vincristine, and prednisone; MAD: mitoxantrone, cytarabine, and dexamethasone; BEAM: carmustine, etoposide, cytarabine, and melphalan; CEEP: cyclophosphamide, epirubicin, vindesine, and prednisone; MTX: methotrexate; MC: methotrexate and cytarabine; ACBVP: doxorubicin, cyclophosphamide, vindesine, bleomycin, and prednisone; N.R.: not reported.

Table 3: Studies of HDT/ASCT in unfavorable DLBCL patients.
determined. In the GEL/TAMO report by Martín and colleagues [40], no significant differences in response rates were documented in multivariate analysis between patients treated with R-ESHAP and previously exposed or not to rituximab. However, patients who had received prior rituximab had a significantly worse PFS and OS than rituximab-naïve patients. Furthermore, prior treatment with this monoclonal antibody was also an independent adverse prognostic factor for both PFS and OS. In the experience of Fenske et al. [41], the administration of rituximab given with first-line or salvage therapy prior to HDT/ASCT was associated with the 3-year EFS, PFS, and OS. However, patients relapsing after more than 12 months from diagnosis benefited from the introduction of rituximab into their salvage regimen and showed 3-year EFS ranging from 40% to 50%. In conclusion, at present, the optimal second-line regimen is not defined, and the benefit of the inclusion of standard dose of rituximab in salvage therapy for patients previously exposed to this agent is also unclear although known risk factors might be useful in choosing salvage therapeutic strategy. These factors include saaIPI, response (CR versus PR refractory) to upfront therapy disease status (early versus late relapse) at the time of salvage therapy. The third aspect regards the development of resistance to rituximab. One possibility in overcoming this resistance consists in using high-dose (HD) of this antibody. This therapeutic aspect was evaluated by Khouri et al. [43].

In the GEL/TAMO report by Martín and colleagues [40], no significant differences in response rates were documented in multivariate analysis between patients treated with R-ESHAP and previously exposed or not to rituximab. However, patients who had received prior rituximab had a significantly worse PFS and OS than rituximab-naïve patients. Furthermore, prior treatment with this monoclonal antibody was also an independent adverse prognostic factor for both PFS and OS. In the experience of Fenske et al. [41], the administration of rituximab given with first-line or salvage therapy prior to HDT/ASCT was associated with the 3-year EFS, PFS, and OS. However, patients relapsing after more than 12 months from diagnosis benefited from the introduction of rituximab into their salvage regimen and showed 3-year EFS ranging from 40% to 50%. In conclusion, at present, the optimal second-line regimen is not defined, and the benefit of the inclusion of standard dose of rituximab in salvage therapy for patients previously exposed to this agent is also unclear although known risk factors might be useful in choosing salvage therapeutic strategy. These factors include saaIPI, response (CR versus PR refractory) to upfront therapy disease status (early versus late relapse) at the time of salvage therapy. The third aspect regards the development of resistance to rituximab. One possibility in overcoming this resistance consists in using high-dose (HD) of this antibody. This therapeutic aspect was evaluated by Khouri et al. [43]. HD-rituximab (HD-R) was employed after mobilization chemotherapy. The median time from last chemotherapy and again on day 1 and day 8 after HDT/ASCT. In this study, the HDT consisted of standard BEAM.

Table 4: Rituximab-based salvage therapy in rituximab-naïve relapsing/refractory DLBCLs.

Author	Year	Pathological phenotype	Therapy	Conditioning regimen	PFS/EFS (%)	P	OS (%)	P
Kewalramani	2004	36/147 WHO	R-ICE	R-ICE	2y: 54	N.S.	2y: 67	N.S.
			ICE		2y: 43		2y: 56	
Sienawski	2007	19/19 WHO	R-DHAP²	BEAM	2y: 57	0.0051	2y: 77	0.0051
			DHAP¹		2y: 18		2y: 37	
Vallenga	2008	113/112 WHO	R-DHAP-VIM-DHAP¹	BEAM	2y: 52	0.002	2y: 59	N.S.
			DHAP-VIM-DHAP¹		2y: 31		2y: 52	
Mounier	2011	470 WHO	N.R.	BEAM and others¹	5y: 48	0.001**	5y: 63	N.R.

¹ Plus radiotherapy at bulky disease.
² The choice of conditioning regimen depended on the patient’s age, the extent of previous therapy and the clinical trials active at the time of transplantation (see [30]).
³ See [39].
⁴ Each patient was assessed as his or her own control.
WHO: World Health Organization classification of NHL; R: rituximab; ICE: ifosfamide, carboplatin, and etoposide; DHAP: cisplatin, cytarabine, and dexamethasone; VIM: etoposide, ifosfamide, and methotrexate; BEAM: Carmustine, etoposide, cytarabine, and melphalan; N.R.: not reported; N.S.: not significant.

Table 5: Salvage therapy in relapsing/refractory DLBCLs previously exposed to rituximab.

Author	Year	Kind of study	Pathological phenotype	Therapy	Conditioning regimen	PFS/EFS (%)	P	OS (%)	P
Martin	2008	Retrospective	WHO 94/69	R-ESHAP (prior R)	R-ESHAP (no prior R)	3y: 17	0.008	3y: 38	0.004
			100	R-ESHAP		3y: 57		3y: 67	
Fenske	2009	Retrospective	WHO 818/176	R-CT (no prior R)	R-CT (prior R)	3y: 50	0.008	3y: 57	0.006
			100	R-CT		3y: 38		3y: 45	
Gisselbrecht	2010	Perspective	WHO 194/202	R-DHAP-R-ICE	BEAM	3y: 42	N.S.	2y: 51	2y: 47
			100			3y: 31			

¹ The choice of conditioning regimen depended on the patient’s age, the extent of previous therapy, and the clinical trials active at the time of transplantation (see [40, 41]).
² WHO: World Health Organization classification of NHL; R: rituximab; ICE: ifosfamide, carboplatin, and etoposide; DHAP: cisplatin, cytarabine, and etoposide. CT: multiple variable regimens; ICE: ifosfamide, carboplatin, and etoposide; DHAP: cisplatin, cytarabine, and etoposide; BEAM: Carmustine, etoposide, cytarabine, and melphalan; N.S.: not significant.
The RIT combined with high-dose chemotherapy was superior compared to historical data especially in the salvage of patients with high IPI scores and residual PET-avid disease [45]. To further increase the therapeutic potential of RIT, Winter et al. [46] tested dose-escalated 90Y-ibritumomab tiuxetan combined with BEAM and ASCT. In this study, 30% and 36% of the 44 treated patients had achieved less than a PR to their most recent treatment or never had obtained CR. Thus, respectively, 30% of cases would not have been eligible for HDT/ASCT at most centers. The estimated 3-years PFS and OS reported in this unfavorable series of patients were 43% and 60%, respectively. Careful dosimetry rather than weight-based strategy for dose escalation was required to avoid toxicity and under treatment.

Finally, one relevant prognostic factor associated with DLBCL consists of the cell origin of malignant cells [47–51]. In fact, the gene expression profile (GEP) resembling that of germinal center B cells (GCB) is predictive of better patient outcome than a profile resembling that of activated B cells (ABC). Cell-of-origin (COO) algorithms [52, 53] can also translate GEP data into practical applications. In the rituximab era, studies using conventional dose therapy or HDT/ASCT concluded in favour of predictive prognostic value of COO [48, 51]. In contrast, the clinical significance of DLBCL subtyping, as defined by COO, is more controversial in patients treated at diagnosis with immunochemotherapy [53–56]. At relapse, few data regarding the clinical impact of COO-subsets are available. Recently a subanalysis of Coral trial [57] has indicated that COO retains its prognostic value in relapse/refractory DLBCL patients. In addition, a better response to R-DHAP was documented in GCB-like DLBCL cases. In contrast with these findings, in the study by Gu et al. [58], COO failed to predict survival in DLBCL patients, either with chemosensitive or chemoresistant disease, treated with HDT/ASCT. Further studies are needed to clarify the predictive value of DLBCL subtyping in the setting of patients with refractory/relapsing disease.

In conclusion, the benefit of HDT/ASCT for refractory or relapsed DLBCL is restricted to patients with immunochemosensitive disease. In fact, the response to second-line treatment seems to predict patient outcome after HDT/ASCT.

Different therapeutic approaches are required to salvage patients with disease resistant to rituximab and chemotherapy. New agents such anti-CD20 antibodies therapeutically more active than rituximab, radiolabeled-antibodies, histone deacetylase inhibitors, various molecules which target mTOR, inhibitor of protein Kinase Cβ, and other types of target therapy might be effective in controlling refractory-relapsing DLBLC.

References

[1] H. Tilly and M. Dreyling, “Diffuse large B-cell non-Hodgkin’s lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up,” *Annals of Oncology*, vol. 21, no. 5, pp. v172–v174, 2010.

[2] P. Boffetta, “Epidemiology of adult non-Hodgkin lymphoma,” *Annals of Oncology*, vol. 22, supplement 4, pp. iv27–iv31, 2011.

[3] R. I. Fisher, E. R. Gaynor, S. Dahlberg et al., “Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma,” *New England Journal of Medicine*, vol. 328, no. 14, pp. 1002–1006, 1993.

[4] M. A. Shipp, D. P. Harrington, J. R. Andersen et al., “A predictive model for aggressive non-Hodgkin’s lymphoma,” *New England Journal of Medicine*, vol. 329, no. 14, pp. 987–994, 1993.

[5] C. Traullé and B. B. Coiffier, “Evolving role of rituximab in the treatment of patients with non-Hodgkin’s lymphoma,” *Future Oncology*, vol. 1, no. 3, pp. 297–306, 2005.

[6] B. Coiffier, E. Lepage, J. Brière et al., “Chop chemotherapy plus rituximab compared with chop alone in elderly patients with diffuse large-B-cell lymphoma,” *New England Journal of Medicine*, vol. 346, no. 4, pp. 235–242, 2002.

[7] P. Feugier, A. Van Hoof, C. Sebban et al., “Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large-B-cell lymphoma: a study by the groupe d’étude des lymphomes de l’adulte,” *Journal of Clinical Oncology*, vol. 23, no. 18, pp. 4117–4126, 2005.

[8] M. Péreundschuh, L. Trümper, Á. Österborg et al., “CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group,” *Lancet Oncology*, vol. 7, no. 5, pp. 379–391, 2006.

[9] L. H. Sehn, B. Berry, M. Chhanabhai et al., “The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large-B-cell lymphoma treated with R-CHOP,” *Blood*, vol. 109, no. 5, pp. 1857–1861, 2007.

[10] M. Ziepert, D. Hasenclever, E. Kuhnt et al., “Standard International prognostic index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era,” *Journal of Clinical Oncology*, vol. 28, no. 14, pp. 2373–2380, 2010.

[11] T. Philip, C. Guglielmi, A. Hagenbeek et al., “Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma,” *New England Journal of Medicine*, vol. 333, no. 23, pp. 1540–1545, 1995.

[12] L. F. Verdónck, W. L. J. Van Putten, A. Hagenbeek et al., “Chop chemotherapy in relapsing DLBCL: final analysis of the prospective LNH87-2 protocol—a groupe d’etude des lymphomes de l’adulte study,” *Journal of Clinical Oncology*, vol. 18, no. 16, pp. 3025–3030, 2000.

[13] M. Martelli, M. Vignetti, P. L. Zinzani et al., “High-dose chemotherapy followed by autologous bone marrow transplantation versus dexamethasone, cisplatin, and cytarabine in aggressive non-Hodgkin’s lymphoma with partial response to front-line chemotherapy: a prospective randomized Italian multicenter study,” *Journal of Clinical Oncology*, vol. 14, no. 2, pp. 534–542, 1996.

[14] C. Haïoun, E. Lepage, C. Gisselbrecht et al., “Survival benefit of high-dose therapy in poor-risk aggressive non-Hodgkin’s lymphoma: final analysis of the prospective LNH87-2 protocol—a groupe d’étude des lymphomes de l’adulte study,” *Journal of Clinical Oncology*, vol. 18, no. 16, pp. 3025–3030, 2000.

[15] H. C. Kluin-Nelemans, V. Zagone, A. Anastasopoulos et al., “Standard chemotherapy with or without high-dose chemotherapy for aggressive non-Hodgkin’s lymphoma: randomized
[28] U. Vitolo, A. Chiappella, E. Angelucci et al., “Dose-dense and high-dose chemotherapy plus rituximab with autologous stem cell transplantation for primary treatment of diffuse large B-cell lymphoma with a poor prognosis: a phase II multicenter study,” Haematologica, vol. 94, no. 9, pp. 1250–1258, 2009.

[29] M. S. Dilhuydy, T. Lamy, C. Foussard et al., “Front-line high-dose chemotherapy with Rituximab showed excellent long-term survival in adults with aggressive large B-cell lymphoma: final results of a phase II GOELAM5 study,” Biology of Blood and Marrow Transplantation, vol. 16, no. 5, pp. 672–677, 2010.

[30] O. Fitoussi, K. Belhadj, N. Mounier et al., “Survival impact of rituximab combined with ACVB and upfront consolidation autotransplantation in high risk diffuse large B-cell lymphoma for GELA,” Haematologica, vol. 96, pp. 1136–1143, 2011.

[31] P. J. Still, J. M. Unger, J. Cook et al., “Randomized phase III U.S./Canadian intergroup trial (SWOG S9704) comparing CHOP + R for eight cycles to CHOP ± R for six cycles followed by autotransplant for patients with high-intermediate (H-int) or high IPI grade diffuse aggressive non-Hodgkin lymphoma,” Journal of Clinical Oncology, vol. 29, abstract a8001, 2011.

[32] U. Vitolo, A. Chiappella, E. Brusamolino et al., “A randomized multicentre phase III study for first line treatment of young patients with high-risk (aaIPI 2-3) diffuse large B-cell lymphoma (DLBCL): Rituximab δ plus dose-dense chemotherapy CHOP14/megaCHOP14 with or without intensified high-dose chemotherapy (HDC) and autologous stem cell transplantation (ASCT). Results of DLCL04 trial od Italian Lymphoma Foundation (FLF),” Annals of Oncology, vol. 22, supplement 4, a072, p. iv106, 2011.

[33] C. Guglielmi, F. Gomez, C. Sebba et al., “Time to relapse has prognostic value in patients with aggressive lymphoma enrolled onto the parma trial,” Journal of Clinical Oncology, vol. 16, no. 10, pp. 3264–3269, 1998.

[34] J. Y. Blay, F. Gomez, C. Sebba et al., “The International Prognostic Index correlates to survival in patients with aggressive lymphoma in relapse: analysis of the PARMA trial,” Blood, vol. 92, no. 10, pp. 3562–3568, 1998.

[35] P. A. Hamlin, A. D. Zelenetz, T. Kewalramani et al., “Age-adjusted International Prognostic Index predicts autologous stem cell transplantation outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma,” Blood, vol. 102, no. 6, pp. 1989–1996, 2003.

[36] T. Kewalramani, A. D. Zelenetz, S. D. Nimer et al., “Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma,” Blood, vol. 103, no. 10, pp. 3684–3688, 2004.

[37] M. Sieniawski, O. Staak, J. P. Glossmann et al., “Rituximab added to an intensified salvage chemotherapy program followed by autologous stem cell transplantation improved the outcome in relapsed and refractory aggressive non-Hodgkin lymphoma,” Annals of Hematology, vol. 86, no. 2, pp. 107–115, 2007.

[38] E. Vellenga, W. L. J. Van Putten, M. B. Van ’t Veer et al., “Rituximab improves the treatment results of DHAP-VIM-DHAP and ASCT in relapsed/progressive aggressive CD20+ NHL: a prospective randomized HOVON trial,” Blood, vol. 111, no. 2, pp. 537–543, 2008.

[39] N. Mounier, C. Canals, C. Gisselbrecht et al., “High-dose therapy and autologous stem cell transplantation in first relapse for diffuse large B cell lymphoma in the rituximab era: an analysis based on data from the European Blood and
