Supporting information

Supplementary Tables

Table S1 Information collected on the reference genome sequences. The short name used in this study, their reference, the number of contigs, the proportions of completeness and contamination, estimated by CheckM and the number of 16S rRNA gene sequences (16S).

Name	Short name	Reference	Total length [Mbp]	Number of contigs	completeness (%)	contamination (%)	16S
Ca. Accumulibacter phosphatis str. UW-1	ACC_UW1	(Martin et al., 2014)	5.3	4*	99.8	0.2	2
Ca. Accumulibacter sp. BA-93	ACC_BA93	(Skennerton et al., 2015)	4.6	85	100.0	0.3	1
Ca. Accumulibacter aalborgensis	ACC_aalb	(Albertsen et al., 2016)	4.7	181	99.5	0.1	1
Dechloromonas aromatica	DEC_arom	(Coates et al., 2001)	4.5	1	99.6	0.3	4
Dechloromonas sp.	DEC_sp	(Parks et al., 2017)	3.3	1	99.8	0.2	3
Ca. Propionivibrio aalborgensis	POV_aalb	(Albertsen et al., 2016)	3.8	405	93.8	3.8	1
Propionivibrio dicarboxylicus	POV_dica	(Varghese et al., 2016)	4.5	47	96.4	0.9	2
Propionivibrio limicola	POV_limi	(Wang et al., 2020)	3.1	57	97.7	1.4	1
Dokdonella koreensis	DOK_kore	(Yoon et al., 2006)	4.4	1	99.2	0.6	2
Ca. Saccharimonas aalborgensis	SAC_aalb	(Albertsen et al., 2013)	1.0	1	67.1	0.9	1

* one chromosome and three plasmids
Table S2 Number of 16S rRNA genes extracted from PacBio contigs for each sample and the best match in MiDAS 16S rRNA gene database vS123.2.1.3 (McIlroy et al., 2017). The taxonomy *Dechloromonas* here also includes 16S rRNA sequences classified as *Ferribacterium* in MiDAS.

Acronym	d71	d322	d427	d740	taxonomy
ACC	10	7	9	3	k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Rhodocyclaceae;g._Candidatus Accumulibacter;s._
ALC	2				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Alcaligenaceae;g._uncultured;s._
BFA	1				k._Bacteria;p._Proteobacteria;c._Alphaproteobacteria;o._Rhizobiales;f._B142;g._s._
CMA	1				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Comamonadaceae;g._uncultured;s._
COM	1				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Xanthomonadales;f._Competibacteriaceae;g._Candidatus Competibacter;s._
CPC	2				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Xanthomonadales;f._Competibacteriaceae;g._CPB;CB2;F32;s._
CPS	1				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Xanthomonadales;f._Competibacteriaceae;g._CPB;S18;s._
CYC	4				k._Bacteria;p._Bacteroidetes;c._Sphingobacteria;o._Sphingobacteriales;f._Saprosiraceae;g._CYCU-0281;s._
CYT	4	1			k._Bacteria;p._Bacteroidetes;c._Cytophagia;o._Cytophagales;f._Cytophagaceae;g._uncultured;s._
DBO	1				k._Bacteria;p._Proteobacteria;c._Alphaproteobacteria;o._DB1-14;f._s._
DEC	3	1			k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Rhodocyclaceae;g._Dechloromonas;s._
DEF	1				k._Bacteria;p._Proteobacteria;c._Alphaproteobacteria;o._Rhodobacterales;f._Rhodobacteraceae;g._Defluviimonas;s._
DOK	2				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Xanthomonadales;f._Xanthomonadaceae;g._Dokdonella;s._
FER	1				k._Bacteria;p._Bacteroidetes;c._Sphingobacteria;o._Sphingobacteriales;f._Chitinophagaceae;g._Ferruginibacter;s._
FLA	1	1			k._Bacteria;p._Bacteroidetes;c._Flavobacteria;o._Flavobacteriales;f._Flavobacteriaceae;g._Flavobacterium;s._
HAC	2				k._Bacteria;p._Bacteroidetes;c._Sphingobacteria;o._Sphingobacteriales;f._Haliscomenobacter;s._
LED	2				k._Bacteria;p._Bacteroidetes;c._Cytophagia;o._Cytophagales;f._Cytophagaceae;g._Leadhiltherella;s._
LEP	1				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Burkholderiaceae;g._Leptothrix;s._
NGA	2				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Gallionellaceae;g._Candidatus Nitrotoga;s._
NIA	2				k._Bacteria;p._Bacteroidetes;c._Sphingobacteria;o._Sphingobacteriales;f._Chitinophagaceae;g._Niabella;s._
NIT	1				k._Bacteria;p._Nitrospira;c._Nitrospira;f._Nitrospiraceae;g._Nitrospira;s._sublineage I
OMC	1				k._Bacteria;p._Planctomycetes;o._OM190;f._g._s._
PER	1				k._Bacteria;p._Bacteroidetes;c._Cytophagia;o._Cytophagales;f._Cytophagaceae;g._Penicicilea;s._
POV	2				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Rhodocyclaceae;f._Rhodocyclaceae;g._Propionivibrio;s._
PRO	1	3			k._Bacteria;p._Actinobacteria;c._Actinobacteria;o._Propionibacteria;f._Propionibacteriaceae;g._Propionicilibrata;s._
PSE	1				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Xanthomonadales;f._Xanthomonadaceae;g._Pseudoxanthomonas;s._
QED	2				k._Bacteria;p._Bacteroidetes;c._Sphingobacteria;o._Sphingobacteriales;f._Saprosiraceae;g._QEDRSBF09;s._
ROB	1	3			k._Bacteria;p._Proteobacteria;c._Alphaproteobacteria;o._Rhodobacterales;f._Rhodobacteraceae;g._Rhodobacter;s._
ROD	1	1	2		k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Rhodocyclaceae;g._uncultured;s._
SAC	1	10			k._Bacteria;p._Bacteroidetes;c._Sphingobacteria;o._Sphingobacteriales;f._Saprosiraceae;g._Sbr-gs28;s._
SAP	1				k._Bacteria;p._Bacteroidetes;c._Sphingobacteria;o._Saprosiraceae;g._uncultured;s._
SBR	1	1		1	k._Bacteria;p._Proteobacteria;c._Alphaproteobacteria;o._Rhizobiales;f._Rhizobaceae;g._Shinella;s._
SHI	1				k._Bacteria;p._Chlorobi;f._Chlorobiaceae;g._Chlorobiaceae;f._s._
SKA	1				k._Bacteria;p._Gemmatismonadetes;c._Gemmatismonadetes;o._Gemmatismonadaceae;f._Gemmatismonadaceae;g._Skagen138;s._
SPB	1	1			k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Burkholderiaceae;g._spb280;s._
TER	1				k._Bacteria;p._Bacteroidetes;c._Sphingobacteria;o._Chitinophagaceae;g._Terrimonas;s._
THI	2	2			k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Thiotrichales;f._Thiotrichaceae;g._Thiotrix;s._
ZOO	6				k._Bacteria;p._Proteobacteria;c._Gammaproteobacteria;o._Betaproteobacterales;f._Rhodocyclaceae;g._Zoogloea;s._
Table S3 Accession ID, reference, clone ID and clade information of the \textit{ppk1} sequences included in the this study.

accession number	reference	clone ID	clade
EF559322.1	He et al.2017	DUR_D9	I
EF559324.1		DUR_F9	IIB
EF559331.1		DUR_B11	IIA
EF559333.1		LV_E6	IIC
EF559340.1		NAN_A3	IIC
EU432594.1	Peterson et al.2008	BpbwW_20	IIC
EU432628.1		BPBW2416	IC
EU432630.1		BPBW2421	IA
EU432639.1		BPBW2443	IA
EU432673.1		BPBW2524	IA
EU432696.1		BPBW2573	IC
EU432711.1		BPBW2691	IC
EU432715.1		BPBW2702	IIE
EU432717.1		BPBW2707	IIIG
EU432719.1		BPBW2717	IIIG
EU432735.1		BPBW2774	IIA
EU432747.1		BPBW3567	IIC
EU432817.1		BPBW3118	IIID
EU432854.1		BPBW2806	IIE
EU432859.1		BPBW2832	IIIG
EU432881.1		BPBW2889	IB
EU432887.1		BPBW2897	ID
EU432891.1		BPBW2902	ID
EU432902.1		BPBW2921	IE
EU432907.1		BPBW2929	ID
EU432910.1		BPBW2935	IE
EU432916.1		BPBW2945	IB
EU432919.1		BPBW2950	IE
EU432920.1		BPBW2951	IB
EU432933.1		BPBW2973	IE
EU432966.1		BPBW3245	II
EU433049.1		BPBW3353	IID
EU433059.1		BPBW3461	II
EU433074.1		BPBW3482	IID
EU433088.1		BPBW3496	II
EU433103.1		BPBW3513	IIE
EU433138.1		BPBW3651	IIB
EU433140.1		BPBW3653	II
EU433159.1		BPBW3676	IIB
EU433242.1		BPBW3772	IIF
EU433263.1		BPBW3805	IIF
EU433286.1		BPBW3834	IIF
KP737882.1	Mao et al.2015	TK_5	II-I
KP737888.1		TK_11	II-I
KP737919.1		TK_64	II-I
KP737990.1		DT_138	IIH
KP738013.1		DT_48	IIH
KP738084.1		GZ_16	IIH
Table S4 Primer sequence and contig coordinates.

Primer name	Primer sequence (5' - 3')	Contig UNC4029	Contig UNC4079
F1	GCCTGGCTGGTTCTGTATTA	138 204-138 223	128 859-128 878
FR2	CTGCAGCGGCTAAGTAG	139 054-139 037	286 432-286 449
R3	CGCCAGCCGCTATCTGTT	123 621-123 604	131 051-131 034
R4	TCAGGTGTTGGTTGATTCC	294 769-294 750	287 578-287 559

Table S5 Main characteristics of the assemblies of the PacBio long-reads and/or Illumina short-reads sequencing data. Only the contigs longer or equal to 2000 kbp were considered.

Day	sample name	Total length [Mbp]	number of contigs	N50 contig length [Mbp]	max contig length [Mbp]	average gene length [Mbp]	16S detected per 10 [Mbp]	proportion of complete 16S [%]
71	d71_A long-reads assembly	69.3	1485	65 018	3.46	808	3.5	96
	d71_A hybrid assembly	196.6	19 277	17 044	1.62	709	2.7	45
	d71_A short-reads assembly	101.2	16 031	9056	1.40	859	1.3	41
322	d322_A long-reads assembly	29.8	548	76 706	0.83	844	4.0	100
	d322_A hybrid assembly	199.4	21 309	16 668	1.85	786	3.0	46
	d322_A short-reads assembly	135.2	19 901	10 910	1.40	874	1.1	34
427	d427_A long-reads assembly	75.6	1997	55 509	3.50	863	3.8	86
	d427_A hybrid assembly	284.4	29 679	15 754	2.41	720	2.3	40
	d427_A short-reads assembly	155.3	24 142	10 083	2.17	870	1.0	32
740	d740_A long-reads assembly	123.7	1300	211 407	3.90	798	5.1	100
	d740_A hybrid assembly	409.0	34 726	21 228	1.34	691	2.3	39
	d740_A short-reads assembly	197.3	25 320	19 743	0.77	897	1.1	44
Table S6 Characteristics of all MAGs containing at least one 16S rRNA gene related to *Ca*. Accumulibacter, obtained with the four individual binning tools tested: MuLoBiSC, MetaBAT2, MaxBin2 and CONCOCT, from metagenomic samples taken at four different days of reactor operation (d71, d322, d427, d740). The *Ca*. Accumulibacter 16S rRNA genes with different numbers have a sequence difference of at least three nucleotides. Different contigs containing the same *Ca*. Accumulibacter 16S rRNA gene are distinguished with distinct lowercase letters. Completeness and contamination percentages were determined with CheckM. The weighted silhouette coefficient (WSC) are expressed in millions.

Sample	Binning tool	Contigs containing at least one *Ca*. Accumulibacter 16S rRNA gene	Number of contigs	Bin length [Mbp]	N50 [kbp]	Number of rRNA operon	Number of tRNA	Number of CDS	Completeness [%]	Contamination [%]
d71	MuLoBiSC	ACC003a ACC003b	52	4.7	108	2	47	4139	86.4	1.3
		ACC005a ACC005b	14	4.3	361	2	45	3898	84.3	1.4
	MetaBAT2	ACC001a ACC001c	55	5.9	144	1	59	5306	96.6	20.3
		ACC003a ACC003b	166	7.6	56	2	60	7032	48.3	36.2
		ACC005a ACC005b	57	4.8	107	3	48	4276	86.9	1.5
		ACC005a ACC005b	8	3.1	452	2	39	2833	44.8	0
d322	MuLoBiSC	ACC001a	71	4.4	79	1	42	4105	42.5	5.8
		ACC003a ACC003b	92	6.8	346	4	68	7084	99.0	21.3
	MetaBAT2	ACC003a ACC003b	140	9.0	141	3	86	8526	96.6	37.9
		ACC003a ACC003b ACC003c ACC010	173	8.7	74	4	64	8482	89.9	20.6
		ACC009 COM001 CPS001	4	1	49	3	50	4592	93.6	2.6
d427	CONCOCT	ACC001a ACC001b ACC001c ACC005a ACC005b ACC009 ACC010 ACC003c	473	4.3	315	8	186	23417	100.0	202.1
		ACC003a ACC003b	46	4.3	115	2	45	3853	83.1	1.1
d740	MuLoBiSC	ACC007a	13	4.8	409	1	50	4181	94.8	4.4
		ACC007b ACC007c	20	5.1	325	2	47	4396	97.8	5.6
	MetaBAT2	ACC007a	15	4.9	409	1	50	4285	95.7	5.5
		ACC007b ACC007c	27	5.6	300	2	48	4916	98.3	5.6
		ACC007a ACC007b ACC012	4	1	324	3	102	10879	100.0	104.2
	CONCOCT	ACC007a ACC007b ACC012	73	12.2	324	3	102	10879	100.0	104.2
Table S7 Characteristics of the good quality MAGs containing at least one 16S rRNA gene related to *Ca. Accumulibacter*, obtained with the four individual binning tools tested: MuLoBiSC, MetaBAT2, MaxBin2 and CONCOCT.

Sample	Binning tool	Contigs containing at least one *Ca. Accumulibacter* 16S rRNA gene	Number of contigs	Bin length (Mbp)	Completeness (%)	Contamination (%)	WSC *d*		
d71 MaLoBiSC	ACC003a	ACC003b	52	4.7	86.4	1.3	2.1		
	ACC005a	ACC005b	14	4.3	84.1	1.4	1.8		
	MetaBAT2	ACC003a	ACC003b	ACC010	57	4.8	86.9	1.5	1.9
	MaxBin2	ACC009	COM001	CPS001	41	4.9	93.6	2.6	1.3
	CONCOCT	ACC003a	ACC003b	46	4.3	83.1	1.1	2.5	
d322 MuLoBiSC	ACC003a	ACC003b	10	5.1	96.7	0.4	3.2		
	MetaBAT2	ACC003a	ACC003b	13	5.4	98.6	0.4	2.8	
	CONCOCT	ACC003a	ACC003b	43	6.8	98.6	0.4	< 0	
d427 MuLoBiSC	ACC003a	ACC003b	ACC003c	17	5.4	98.1	2.7	4.2	
	ACC004a	5	5.2	98.6	1.5	3.5			
	ACC005a	ACC005b	ACC005c	19	4.7	97.9	2.2	3.1	
	MetaBAT2	ACC003a	ACC003b	ACC003c	21	5.6	98.1	4.1	3.9
	ACC004a	4	5.2	98.0	1.4	3.4			
	ACC005a	ACC005b	ACC005c	38	5.3	98.5	5.5	1.2	
	MaxBin2	ACC003a	ACC003b	ACC003c	47	6.8	98.2	3.7	1.8
	ACC005a	ACC005b	ACC005c	50	5.6	96.6	7.3	2.6	
	CONCOCT	ACC004a	5	5.5	98.0	1.5	3.5		
d740 MuLoBiSC	ACC007a	ACC010	13	4.8	94.8	4.4	3.0		
	ACC007b	ACC012	20	5.1	97.8	5.6	2.9		
	MetaBAT2	ACC007a	ACC007b	ACC012	15	4.9	95.7	5.4	2.6
	27	5.6	98.3	5.6	2.1				

a Metagenomic samples taken at four different days of reactor operation (d71, d322, d427, d740)

b The *Ca. Accumulibacter* 16S rRNA genes with different numbers have a sequence difference of at least three nucleotides. The letters indicate different contigs containing the same *Ca. Accumulibacter* 16S rRNA gene.

c Completeness and contamination percentages were determined with CheckM

d WSC = weighted silhouette coefficient (expressed in millions)
Table S8: Characteristics of all MAGs containing at least one 16S rRNA gene related to *Ca. Accumulibacter*, obtained with the metaWRAP and the default combination of binning tool, MetaBAT2, MaxBin2 and CONCOCT (BXC) and the combination MetaBAT2, MaxBin2, MuLoBiSC (BXM).

Sample^a	Binning tool	Contigs containing at least one *Ca. Accumulibacter* 16S rRNA gene^b	Number of contigs	Bin length [Mbp]	N50 [kbp]	Number of rRNA operon	number of tRNA	number of CDS	Completeness [%]	Contamination [%]
d71	BXC	ACC003a ACC003b ACC010	57	4.8	107	3	48	4276	87.7	1.8
	BXM	ACC003a ACC003b	51	4.6	108	2	47	4135	86.4	1.3
		ACC005a ACC005b	14	4.3	361	2	45	3898	84.1	1.4
d322	BXC	ACC003a ACC003b	13	5.4	637	3	55	4660	98.6	0.4
	BXM	ACC001	47	2.9	73	1	29	3030	59.0	0.0
		ACC003a ACC003b	13	5.4	637	3	55	4660	98.6	0.4
		ACC005a ACC005b	71	4.3	69	2	46	4024	76.2	10.3
d427	BXC	ACC003a ACC003b ACC003c	45	6.7	445	3	56	6075	98.2	2.7
		ACC004a	4	5.2	3459	2	48	4598	98.0	1.4
		ACC004b DEC002 ROD005	182	3.9	25	2	52	4586	73.7	26.5
		ACC005a ACC005b ACC005c	35	5.2	331	2	54	4551	98.5	3.9
d740	BXC	ACC003a ACC003b ACC003c	17	5.4	549	3	56	4654	98.1	2.7
		ACC004a	5	5.2	3459	2	48	4615	98.6	1.5
		ACC005a ACC005b ACC005c	19	4.7	48	2	53	4116	97.9	5.5
	BXM	ACC007a ACC007b ACC012	15	4.9	409	1	50	4285	95.7	5.4
		ACC007b ACC012	27	5.6	300	2	48	4916	98.3	5.6
		ACC007b ACC012	13	4.8	409	1	50	4181	94.8	4.4
		ACC007b ACC012	27	5.6	300	2	48	4916	98.3	5.6

^a Metagenomic samples taken at four different days of reactor operation (d71, d322, d427, d740)

^b The *Ca. Accumulibacter* 16S rRNA genes with different numbers have a sequence difference of at least three nucleotides. The letters indicate different contigs containing the same *Ca. Accumulibacter* 16S rRNA gene.

^c Completeness and contamination percentages were determined with CheckM
Table S9 Characteristics of the good quality *Ca*. Accumulibacter related MAGs obtained with the metaWRAP and the default combination of binning tool, MetaBAT2, MaxBin2 and CONCOCT, combined with MuLoBiSC (BXC_M) and the combination MetaBAT2 and MuLoBiSC (BM).

Sample \(^{a}\)	Binning tool	Contigs containing at least a *Ca*. Accumulibacter 16S rRNA gene \(^{b}\)	Number of contigs	Bin length (Mbp)	Completeness (%)	Contamination (%)	WSC \(^{d}\)
d71	BXC_M	ACC003a, ACC003b, ACC010	51	4.6	86.4	1.3	2.6
	ACC005a	ACC005b	14	4.3	84.1	1.4	3.1
	BM	ACC003a, ACC003b	51	4.6	86.4	1.3	2.6
	ACC005a	ACC005b	14	4.3	84.1	1.4	3.1
d322	BXC_M	ACC003a	13	5.4	98.6	0.4	2.8
	BM	ACC003a, ACC003b, ACC003c	13	5.4	98.6	0.4	2.8
d427	BXC_M	ACC003a, ACC003b, ACC003c	45	6.7	98.2	2.7	1.7
	ACC004b		5	5.2	96.5	1.5	3.6
	ACC005a	ACC005b, ACC005c	19	4.7	97.9	2.2	3.2
	BM	ACC003a, ACC003b, ACC003c	17	5.4	98.2	2.7	4.4
	ACC004a		5	5.2	96.5	1.5	3.6
	ACC005a	ACC005b, ACC005c	19	4.7	97.9	2.2	3.2
d740	BXC_M	ACC007a, ACC007b, ACC012	13	4.8	94.8	4.4	3.0
	BM	ACC007a, ACC012	27	5.6	98.3	5.6	2.2

\(^{a}\) Metagenomic samples taken at four different days of reactor operation (d71, d322, d427, d740)
\(^{b}\) The *Ca*. Accumulibacter 16S rRNA genes with different numbers have a sequence difference of at least three nucleotides. The letters indicate different contigs containing the same *Ca*. Accumulibacter 16S rRNA gene.
\(^{c}\) Completeness and contamination percentages were determined with CheckM
\(^{d}\) WSC = weighted silhouette coefficient (expressed in millions)

Table S10 Similarity between ACC005 MAG extracted from samples d71, d322 and d427. On the left, the average nucleotide identity [%] computed with fastani. On the right, the percentage of aligned bases between the two genomes.

Query\(\text{ref}\)	ACC005_d71	ACC005_d322	ACC005_d427
ACC005_d71	68.87	89.77	
ACC005_d322	98.56	73.30	
ACC005_d427	99.58	99.10	

Table S11 Similarity between the ACC003 MAG extracted from samples d71, d322 and d427. On the left, the average nucleotide identity [%] computed with fastani. On the right, the percentage of aligned bases between the two genomes.

Query\(\text{ref}\)	ACC003_d71	ACC003_d322	ACC003_d427
ACC003_d71	84.20	84.02	
ACC003_d322	98.53	96.32	
ACC003_d427	98.52	99.85	
Table S12 Similarity between *Ca.* Accumulibacter, *Dechloromonas* and *Propionivibrio* MAG and chosen reference genomes. On the left, the average nucleotide identity [%] computed with fastani. On the right, the percentage of aligned bases between the two genomes.

Query ref	ACC001a_d71	ACC003_d322	ACC004_d427	ACC005_d427	ACC007_d740	ACC012_d740	ACC_BA-93	ACC_UW1	POV001002	POV_aalb	POV_lim	POV_dica	DEC001_d71	DEC_sp	DEC_arom
ACC001a_d71	19.3	5.4	17.8	17.2	14.8	18.2	76.5	3.6	3.6	3.9	3.4	2.1	2.3	2.0	
ACC003_d322	80.2	6.5	36.1	36.1	34.5	36.4	19.9	4.3	4.8	3.8	3.7	2.3	2.3	2.3	
ACC004_d427	78.0	78.3	6.8	6.5	4.8	7.3	6.6	10.6	11.3	10.4	8.3	3.6	3.0	4.0	
ACC005_d427	79.9	82.3	78.5	81.0	57.7	88.8	19.4	4.8	4.5	4.1	3.6	2.4	2.5	2.3	
ACC007_d740	79.9	82.3	78.4	95.8	56.9	80.2	20.6	4.6	4.5	3.6	3.3	2.3	2.2	2.2	
ACC012_d740	79.5	82.4	77.9	86.2	86.5	57.3	16.7	5.16	4.1	3.2	2.8	2.0	2.1	2.2	
ACC_BA-93	79.9	82.3	78.6	98.9	95.8	86.3	20.3	4.7	4.6	3.7	2.5	2.6	2.3	2.3	
ACC_UW1	95.3	80.1	78.2	80.0	80.1	79.8	80.1	3.9	4.2	4.3	3.7	2.9	2.6	2.8	
POV001002	77.4	78.2	79.2	77.9	78.3	78.9	77.9	77.8	97.3	4.8	3.31	2.1	1.8	2.0	
POV_aalb	77.4	77.9	78.9	77.8	78.0	77.8	77.9	77.5	97.3	4.8	3.31	2.1	1.8	2.0	
POV_lim	78.0	77.6	79.0	77.7	77.4	77.6	77.8	78.0	77.7	77.6	8.8	4.4	3.9	4.1	
POV_dica	77.7	77.8	78.8	77.5	77.5	77.8	77.7	77.9	77.5	77.7	78.9	3.2	3.4	2.9	
DEC001_d71	77.2	77.1	78.2	77.3	77.5	77.3	77.2	77.8	77.3	77.0	77.9	77.6	42.1	38.1	
DEC_sp	77.2	77.8	77.7	77.5	77.3	77.4	77.4	77.3	77.7	77.1	78.1	78.1	83.1	36.3	
DEC_arom	76.9	77.3	78.1	77.2	77.2	77.1	77.6	78.5	77.2	78.3	77.5	82.9	82.1	82.1	82.1

a from sample d71
Table S13 Number of recombinase and transposase genes per 1000 coding DNA sequences (CDS) detected by prokka in the MAG obtained with metaWRAP combining the binning from MetaBAT2, MaxBin2 and the in house binning. The bins are ordered by the normalized sum of the two first columns. The taxonomic affiliation is here given by checkM.

bin	Recombinases 1000 CDS	Transposase 1000 CDS	Taxonomic affiliation	completeness
ACC003_d427	6	42	_c._Betaproteobacteria	98.1
ACC007_d427	7	23	_c._Betaproteobacteria	98.3
Bin.1_d322	8	21	_c._Betaproteobacteria	94.8
BFA002/ROB004_d427	1	42	_o._Rhizobiales	50.5
ACC005_d427	6	17	_c._Betaproteobacteria	97.9
ACC003_d71	2	33	_c._Betaproteobacteria	86.4
POV001/002_d71	4	24	_c._Betaproteobacteria	78.3
ACC005_d71	5	18	_c._Betaproteobacteria	84.1
PRO001_d740	6	12	_o._Actinomycetales	50.6
NGA002_d740	2	25	_c._Betaproteobacteria	91.3
Bin.4_d71	4	14	_c._Betaproteobacteria	66.9
ACC001_d322	4	11	_c._Betaproteobacteria	59.0
ACC005_d322	4	9	_c._Betaproteobacteria	76.2
Bin.3_d427	4	7	_o._Actinomycetales	82.7
ZOO001/002_d740	2	19	_f._Rhodocyclaceae	92.9
Bin.4_d427	1	17	_o._Actinomycetales	97.8
Bin.8_d427	2	14	_c._Betaproteobacteria	51.9
COM/CSP001_d71	2	13	_c._Gammaproteobacteria	93.6
CYC001_d740	1	10	_p._Bacteroidetes	98.8
ROD002/004_d740	3	7	_c._Betaproteobacteria	82.7
PRO003_d740	1	15	_o._Actinomycetales	92.1
CPC001_d427	3	3	_c._Gammaproteobacteria	90.2
NIA001_d740	2	6	_p._Bacteroidetes	99.0
Bin.1_d427	0	14	_o._Actinomycetales	73.9
Bin.3_d322	3	0	_k._Bacteria	55.2
Bin.11_d71	3	3	_o._Actinomycetales	84.1
DEC001_d71	2	7	_c._Betaproteobacteria	98.5
Bin.1_d71	2	8	_f._Xanthomonadaceae	59.9
Bin.15_d427	1	11	_o._Actinomycetales	51.7
CYT001_d740	2	4	_o._Cytophagales	84.5
SBR001_d740	1	9	_o._Actinomycetales	96.6
SBR001_d427	1	9	_o._Actinomycetales	96.4
DOK002_d740	2	5	_f._Xanthomonadaceae	94.3
SBR003_d322	1	7	_o._Actinomycetales	82.0
SAG012_d740	2	2	_k._Bacteria	56.0
DB0001_d71	1	4	_c._Alphaproteobacteria	51.0
DEQ001_d740	1	4	_f._Rhodobacteraceae	84.5
Bin.9_d740	1	7	_p._Bacteroidetes	83.8
QED001_d740	1	3	_p._Bacteroidetes	89.3
Bin.12_d427	1	3	_p._Bacteroidetes	72.4
SPB001_d71	1	4	_o._Burkholderiales	68.2
THI001_d322	1	6	_c._Gammaproteobacteria	88.6
SAC002_d740	2	0	_k._Bacteria	67.3
DB0002_d740	1	4	_c._Alphaproteobacteria	84.0
SAC013_d740	1	4	_k._Bacteria	63.0
PSE002_d427	1	4	_f._Xanthomonadaceae	85.2
SAC015_d740	1	2	_k._Bacteria	65.8
THI001_d427	0	6	_c._Gammaproteobacteria	84.2
CYT003_d740	1	2	_o._Cytophagales	94.9
SAC014_d740	1	2	_k._Bacteria	56.0
Bin.7_d71	0	5	_k._Bacteria	78.6
SAC001_d740	1	0	_k._Bacteria	57.7
LED001/002_d740	1	1	_o._Cytophagales	60.8
SAC003_d740	1	0	_k._Bacteria	60.6
HAC001/002_d740	1	2	_p._Bacteroidetes	65.4
CMA001_d740	0	1	_k._Bacteria	50.9
Table S14 Putative type F plasmid-related contigs in the PacBio long-read assemblies of samples d71, d322, d427 and d740. The taxonomy of the contigs is provided by CAT. The contigs indicated as circular by the miniasm assembler are considered as circularized. Affiliations to a bin (metaWRAP combining MetaBAT2, MaxBin2 and MuLoBiSC) are indicated for the contigs that were not unbinned.

contig_name	sample	taxonomy	len	circularized	bin
UNC0046	d71	o Betaproteobacteriales	57566	no	-
UNC0085	d71	Ca. Accumulibacter	37421	yes	-
UNC0094	d71	p Proteobacteria	49953	no	-
UNC0157	d71	Ca. Accumulibacter	39454	yes	-
UNC0209	d71	Ca. Accumulibacter	49912	yes	-
UNC0409	d71	Ca. Accumulibacter	51073	no	-
UNC0427	d71	Ca. Accumulibacter	66331	no	-
UNC0491	d71	p Proteobacteria	24472	no	-
UNC0732	d71	Ca. Accumulibacter	15609	yes	-
UNC0872	d71	Ca. Accumulibacter	21615	no	-
UNC0964	d71	Ca. Accumulibacter	19994	no	-
UNC1095	d71	p Proteobacteria	23891	no	-
UNC1106	d71	Ca. Accumulibacter	23398	no	-
UNC1469	d322	p Proteobacteria	49499	yes	-
UNC1481	d322	Ca. Accumulibacter	39447	yes	-
UNC1485	d322	Ca. Accumulibacter	95818	no	-
UNC1487	d322	Ca. Accumulibacter	75188	no	-
UNC1488	d322	Ca. Accumulibacter	89764	yes	-
UNC1496	d322	Ca. Accumulibacter	16819	no	-
UNC1517	d322	Ca. Accumulibacter	40862	no	-
UNC1593	d322	Ca. Accumulibacter	25761	yes	-
UNC1608	d322	Ca. Accumulibacter	24231	no Bin.1	ACC001
UNC1627	d322	Ca. Accumulibacter	87312	no ACC012	
UNC1705	d322	Ca. Accumulibacter	33216	no	-
UNC1816	d322	Ca. Accumulibacter	33647	no	-
UNC2037	d427	Ca. Accumulibacter	147421	no	-
UNC2046	d427	Ca. Accumulibacter	39428	yes	-
UNC2058	d427	Ca. Accumulibacter	47111	no	-
UNC2067	d427	Ca. Accumulibacter	88157	no	-
UNC2068	d427	Ca. Accumulibacter	75519	no	-
UNC2082	d427	p Proteobacteria	52639	no	-
UNC2125	d427	Ca. Accumulibacter	18325	no	-
UNC2127	d427	Ca. Accumulibacter	42431	no	-
UNC2195	d427	Ca. Accumulibacter	45755	yes	-
UNC2239	d427	o Betaproteobacteriales	25751	yes	-
UNC2774	d427	Ca. Accumulibacter	121130	no	-
UNC2923	d427	Ca. Accumulibacter	23264	no	-
UNC3052	d427	Ca. Accumulibacter	19298	no	-
UNC3985	d740	Ca. Accumulibacter	71224	no	-
UNC3988	d740	Ca. Accumulibacter	84405	no	-
UNC3992	d740	Ca. Accumulibacter	30058	no	-
UNC4003	d740	Ca. Accumulibacter	68196	no ACC012	
UNC4019	d740	Ca. Accumulibacter	81770	no ACC012	
UNC4201	d740	Ca. Accumulibacter	104603	yes	-
UNC4503	d740	o Betaproteobacteriales	32457	no	-
UNC4505	d740	Ca. Accumulibacter	68949	yes	-
UNC5165	d740	o Betaproteobacteriales	29889	no	-
UNC5193	d740	Ca. Accumulibacter	31786	no	-
UNC5195	d740	o Betaproteobacteriales	39314	no	-
Supplementary Figures

Figure S1 MuLoBiSC workflow. General workflow of the MAGs assembly with MuLoBiSC, from DNA extraction to MAGs validation.
Figure S2 Composition of the bacterial communities in the aerobic granular sludge on day 71 (d71), day 322 (d322), day 427 (d427) and day 740 (d740), estimated by 16S rRNA gene amplicon sequencing. The taxonomic affiliation was obtained by comparison with MiDAS2. The genera are colored according to the class they belong to, with the exception of the Betaproteobacteriales, previously the class of Betaproteobacteria, colored in red. They were recently merged with the Gammaproteobacteria (Parks et al., 2018), here colored in light green. Only the most abundant taxa are shown.
Figure S3 GC skew Dechloromonas MAG and reference. GC skew (grey) and cumulative GC skew (green) plots of (A) *Dechloromonas* MAG DEC001 from sample d71 and (B) *Dechloromonas* sp. HYN0024 (CP031842.1; Parks et al., 2017).

Figure S4 GC skew Saccharibacteria MAG and reference. GC skew (grey) and cumulative GC skew (green) plots of (A) Saccharibacteria MAG SAC002 from sample d427, (B) SAC013 from sample d740, (C) SAC015 from sample d740 and (D) Ca. Saccharimonas aalborgensis isolate TM71 (CP005957.1; Albertsen et al., 2013).
Figure S5 GC skew Dokdonella MAG and reference. GC skew (grey) and cumulative GC skew (green) plots of (A) Dokdonella MAG DOK002 from sample d740 and (B) Dokdonella koreensis DS-123 (NZ_CP015249.1; Yoon et al., 2006).

Figure S6 GC skew Sbr-gs28. GC skew (grey) and cumulative GC skew (green) plots of Sbr-gs28 MAG SBR001 from sample d427.
Figure S7 Scatter plot of the $\sqrt{\text{coverage}}$ vs $\log_e(\text{length})$ of the contigs. The contigs affiliated with Ca. Accumulibacter, by CAT v5.2, are colored in red and the bins affiliated with Ca. Accumulibacter are indicated by different shapes. The names of the potentially complete MAGs are indicated on the plot.
Figure S8 Assembly graph of long-read assembly of sample day 71. Assembly graph of the PacBio long-read assembly of sample day 71 visualized in Bandage. The sequences were replaced by the polished sequences, yet the edges of the graph are the relations between the contigs before the polishing. Some of them may therefore be ‘chimeric’, but still provide information about the similarity between the contigs before correction. Only the contig longer than 100 kbp or linked to a contig longer than 100 kbp are shown. The labels indicate the metaWRAP combining MetaBAT2, MaxBin2 and MuLoBiSC (BXM), the taxonomic affiliation provided by CAT (von Meijenfeldt et al.,2019) and the coverage on contigs longer than 100 kbp. Contigs are colored according to the bin they belong to.
Figure S9 Assembly graph of PacBio long-read assembly of sample day 322. Assembly graph of the PacBio long-read assembly of sample day 322 visualized in Bandage. The sequences were replaced by the polished sequences, yet the edges of the graph are the relations between the contigs before the polishing. Some of them may therefore be 'chimeric', but still provide information about the similarity between the contigs before correction. Only the contig longer than 100 kbp or linked to a contig longer than 100 kbp are shown. The labels indicate the metaWRAP combining MetaBAT2, MaxBin2 and MuLoBiSC (BXM), the taxonomic affiliation provided by CAT (von Meijenfeldt et al., 2019) and the coverage on contigs longer than 100 kbp. Contigs are colored according to the bin they belong to.
Figure S10 Assembly graph of PacBio long-read assembly of sample day 427 visualized in Bandage. The sequences were replaced by the polished sequences, yet the edges of the graph are the relations between the contigs before the polishing. Some of them may therefore be chimeric, but still provide information about the similarity between the contigs before correction. Only the contigs longer than 100 kbp or linked to a contig longer than 100 kbp are shown. The labels indicate the metaWRAP combining MetaBAT2, MaxBin2 and MuLoBiSC (BXM), the taxonomic affiliation provided by CAT (von Meijenfeldt et al., 2019) and the coverage on contigs longer than 100 kbp. Contigs are colored according to the bin they belong to.
Figure S11 Assembly graph of PacBio long-read assembly of sample day 740. Assembly graph of the PacBio long-read assembly of sample day 740 visualized in Bandage. The sequences were replaced by the polished sequences, yet the edges of the graph are the relations between the contigs before the polishing. Some of them may therefore be 'chimeric', but still provide information about the similarity between the contigs before correction. Only the contig longer than 100 kbp or linked to a contig longer than 100 kbp are shown. The labels indicate the metaWRAP combining MetaBAT2, MaxBin2 and MuLoBiSC (BXM), the taxonomic affiliation provided by CAT (von Meijenfeldt et al., 2019) and the coverage on contigs longer than 100 kbp. Contigs are colored according to the bin they belong to.
Figure S12 MUMmer plots comparing ACC005 MAGs. MUMmer plots comparing the *Ca. Accumulibacter* MAG ACC005 obtained (A) from samples d71 and d322, (B) from samples d427 and d71 and (C) from samples d427 and d322. Only the alignments bigger than 4 kbp are shown.
Figure S13 MUMmer plots comparing ACC003 MAGs. MUMmer plots comparing the *Ca. Accumulibacter* MAG ACC003 obtained (A) from samples d71 and d322, (B) from samples d427 and d71 and (C) from samples d427 and d322. Only the alignments bigger than 4 kbp are shown.
Figure S14 MUMmer plot comparing MAGs ACC005, ACC007 and Ca. Accumulibacter sp. BA-93. MUMmer plots comparing similar Ca. Accumulibacter MAGs, obtained from this study and (Skennerton et al., 2015): (A) ACC007 from sample d740 and ACC005 from sample d427, (B) Ca. Accumulibacter sp. BA-93 and ACC007 from sample d740 and (C) Ca. Accumulibacter sp. BA-93 and ACC005 from sample d427. Only the alignments bigger than 4 kbp are shown.
Figure S15 MUMmer plot of MAG ACC007 and ACC012 (A) MUMmer plot comparing the Ca. Accumulibacter MAGs ACC007 and ACC012 from samples d740. Only the alignments bigger than 4 kbp are shown. The zone on the part of the MUMmer plot indicated by the red rectangle is enlarged below. (B) Zoom the comparison of two contigs from ACC007 and ACC012 MAGs showing several genomic rearrangement episodes. The presence of recombinases (recR, yer) and transposases (tnpA) is indicated on the top at the edge of the plot. The conserved fragments presented in supplementary Figure 2 are indicated on the MUMmer plot with the corresponding letter.
Figure S16 Mapping of individual granule reads on MAGs. Mapping of short-read sequences of individual granules from (Leventhal et al., 2018). The same protocol was followed but the reference MAGs were replaced by the ones from the present study, except for Ca. Accumulibacter sp. BA-91, for which no similar MAG was assembled in this study.
Figure S17 ACC001 assembly graph Assembly graph of contigs similar to Ca. Accumulibacter phosphatis str. UW-1 (Martín et al., 2014). (A) metaWRAP BXM bin name and the coverage of illumina reads obtained with extraction method A are indicated for each contig. (B) DNA sequences with at least 90% identity with Ca. Accumulibacter phosphatis str. UW-1 are indicated in blue. (C) colored parts indicate DNA sequences identity with a gene from BUSCO Betaproteobacteria set (Kriventseva et al., 2015) with a minimal coverage of 60%.
Figure S18 ACC001 assembly graph zoom 1
Zoom on potential variants of closely related *Ca. Accumulibacter* populations in the assembly graph of contigs similar to *Ca. Accumulibacter phosphatis* str. UW-1 (Martin et al., 2014). (A) DNA sequences with at least 90 % identity with *Ca. Accumulibacter phosphatis* str. UW-1 are indicated in blue, (B) metaWRAP BXM bin name and the coverage of illumina short-reads obtained with extraction method A are indicated for each contig. Colored parts indicate DNA sequences identity with a gene from BUSCO Betaproteobacteria set with a minimal coverage of 60 %.

Figure S19 ACC001 assembly graph zoom 2
Zoom on the assembly graph of contigs similar to *Ca. Accumulibacter phosphatis* str. UW-1 (Martin et al., 2014). (A) DNA sequences with at least 90 % identity with *Ca. Accumulibacter phosphatis* str. UW-1 are indicated in blue, (B) metaWRAP BXM bin name and the coverage of illumina short-reads obtained with extraction method A are indicated for each contig. Colored parts indicate DNA sequences identity with a gene from BUSCO Betaproteobacteria set with a minimal coverage of 60 %.
Figure S20 Assembly graph of MAGs ACC007 and ACC012 (A) Assembly graph of MAGs ACC007 and ACC012 in sample d740. DNA sequences with at least 90% identity with Ca. Accumulibacter sp. BA-93 (Skennerton et al., 2015) are indicated in red. (B) Zoom on the probable chimeral contig ACC007/012.
Figure S21 Mapping of long-reads on the probable chimera contig. IGV view of the mapping PacBio long-reads from sample d740 on the long-read contig utg000193l. This contig contains a ACC007 16S rRNA gene sequence but it is placed in bin ACC012 by MetaBAT2, the MuLoBiSC and metaWRAP with the MetaBAT2, MaxBin2 and in house binning combination.