CONSEQUENCE RELATIONS IN DRT

Seiki Akama
Computational Logic Laboratory, Department of Information Systems,
Teikyo University of Technology, 2289 Uruido, Ichihara-shi,
Chiba, 290-01, Japan.
(TEL) +81-436-74-5511, (FAX) +81-436-74-2592.

Yotaro Nakayama
Nihon Unisys Ltd., Tokyo Bay Development Center,
1-10-9, Shinonome, Koto-ku, Tokyo, 135, Japan.

Abstract
We discuss some consequence relations in DRT useful to discourse semantics. We incorporate some consequence relations into DRT using sequent calculi. We also show some connections of these consequence relations and existing partial logics. Our attempt enables us to display several versions of DRT by employing different consequence relations.

1. Introduction
Discourse Representation Theory (DRT) due to Kamp (1981) provides a promising framework for discourse semantics. DRT is in fact successful in formalizing several challenging topics, e.g. anaphora, tense and belief; see Asher (1986, 1993) and Helm (1982). Due to its clear semantics with the construction algorithm, DRT is also used as a background theory in computational linguistics; see Wada and Asher (1986) and Ishikawa and Akama (1992).

However, DRT lacks a deductive (proof-theoretic) formulation to serve as an abstract interpreter for discourse understanding, since it is formalized by means of the notion of partial models. This prevents us from utilizing DRT in various ways for natural language understanding systems. To make DRT more flexible for computational linguistics, we need to generalize a formal basis in a proof-theoretic fashion. If this is successful, computational linguists will be able to reconstruct DRT for their own systems using programming languages like Prolog and LISP. There are perhaps several ways to give an operational semantics of DRT. One of the attractive approaches is to investigate consequence relations associated with DRT. It is thus very useful to study some consequence relations in DRT to develop different versions of DRT.

The purpose of this paper is to explore consequence relations in DRT, one of which exactly produces Kamp's original semantics. We incorporate some consequence relations defined by partial semantics into DRT using sequent calculi. Our attempt enables us to display several versions of DRT by employing different consequence relations. We also show some connections of the proposed consequence relations and partial logics in the literature.

2. Overview of DRT
In this section, we give a brief introduction to DRT. For a detailed exposition, the reader should consult Asher (1993). The basic idea of DRT is to formalize a dynamic representation of partial interpretations by means of classical models using a construction algorithm of discourse representation structures (DRSs). Observe that DRSs can be regarded as such abstract objects as partial models, mental representations, or (partial) possible worlds. But,
such identifications do not seem essential to the significance of DRT.

The language of DRT is called Discourse Representation Language (DRL), which is like a standard quantifier-free first-order language except discourse referents and conditions. The logical symbols of DRL include = (identity), \(\rightarrow \) (conditional), \(\lor \) (disjunction) and \(\neg \) (negation). A discourse representation (DR) \(K \) is expressed as a pair \(\langle U_K, \text{Con}_K \rangle \), where \(U_K \) is a set of discourse referents, and \(\text{Con}_K \) is a set of conditions. Each condition is either atomic or complex. Complex conditions are of the form: \(K_1 \rightarrow K_2, K_1 \lor K_2 \) or \(\neg K_1 \), where both \(K_1 \) and \(K_2 \) are DRs.

A discourse representation structure (DRS) is a partially ordered set of DRs, which can be constructed by means of DRS construction rules whose application reflects the syntactic composition of the sentences in the discourse. When each DR of a DRS is maximal, the DRS is called a complete DRS. Intuitively speaking, each stage in the construction algorithm can be viewed as a partial possible worlds, in which more information resulting from the processing of a further bit of the discourse changes it into a more precise description of the world.

A model for DRL is an ordered pair \((M, F_M) \), where \(M \) is the domain of interpretation function of constants and predicates. An embedding function for a DR \(K \) in a model \(M \) is a mapping from discourse referents in \(U_K \) into the domain of \(M \). An extension of an embedding function \(f \) for \(K \) in \(M \) to an embedding function \(g \) for \(K' \) in \(M \) is defined as \(g: (\text{Dom}(f) \cup U_{K'}) \rightarrow M \). We write \(f \leq_K g \) to mean that \(g \) extends an embedding function \(f \) to an embedding of \(K' \). The notation \(M \models_{f,K} C \) abbreviates that \(M \) satisfies \(C \) under \(f \) for \(K \). A proper embedding of \(K \) in \(M \) is an embedding function such that \(f \leq_K g \) and for any condition \(C \) in \(M \), \(M \models_{g,K} C \). The notions of proper embedding and satisfaction can be extended to general cases by simultaneous recursion; see Asher (1993). A DR \(K \) is shown to be true in a model \(M \) if there is a proper embedding of \(K \) in \(M \). A DR \(K \) implies a DR \(K' \) if every model in which \(K \) is true is also a model in which \(K' \) is true. This definition induces a consequence relation in DRT, but we have no reason to consider it as the only plausible for DRT. In fact, it is our job in this paper to seek alternate definitions.

3. Consequence Relations and Sequent Calculi

A partial semantics for classical logic is implicit in the so-called Beth tableaux. This insight can be generalized to study consequence relations in terms of Gentzen calculi. The first important work in this direction has been done by van Benthem (1986, 1988). We here try to apply this technique to DRT. Since our approach can replace the base logic of DRT by other interesting logics, we obtain alternative versions of DRT.

Recall the basic tenet of Beth tableaux. Namely, Beth tableaux (also semantic tableaux) prove \(X \rightarrow Y \) by constructing a counterexample of \(X \land \neg Y \). In fact, Beth tableaux induce partial semantics in the sense that there may be counterexamples even if a branch remains open. Let \(X \) and \(Y \) be sets of formulas, and \(A \) and \(B \) be formulas. And we write \(X \vdash Y \) to mean that \(Y \) is provable from \(X \). Van Benthem's partial semantics for classical logic can be axiomatized by the Gentzen calculus, which has the axiom of the form:

\[
X, A \vdash A, Y
\]

and the following sequent rules:

\begin{align*}
(\text{Weakening}) & \quad X \vdash Y \quad \Rightarrow \quad X, A \vdash A, Y. \\
(\text{Cut}) & \quad X, A \vdash Y \text{ and } X \vdash A, Y \quad \Rightarrow \quad X \vdash Y. \\
(\rightarrow L) & \quad X \vdash A, Y \quad \Rightarrow \quad X, \neg A \vdash Y. \\
(\& R) & \quad X \vdash Y, A \text{ and } X \vdash Y, B \quad \Rightarrow \quad X \vdash Y, A \land B. \\
(\& L) & \quad X, A, B \vdash Y \quad \Rightarrow \quad X, A \land B \vdash Y. \\
(\lor R) & \quad X \vdash A, B, Y \quad \Rightarrow \quad X \vdash A \lor B, Y. \\
(\lor L) & \quad X, A \vdash Y \text{ and } X, B \vdash Y \quad \Rightarrow \quad X \lor B \vdash Y.
\end{align*}

Van Benthem's formulation can be extended for partial logics. Because such an extension
uses the notion of partial valuations, it is not
difficult to recast the treatment for DRT.

Let \(V \) be a partial valuation assigning 0, 1
to some atomic formula \(p \). Now, we set \(V(p) = 1 \)
for \(p \) on the left-hand side and \(V(p) = 0 \)
for \(p \) on the right-hand side in an open branch
of Beth tableaux. This construction can be
easily accommodated to sequent calculi. Then,
we can define the following two consequence
relations:

\((\text{C1})\) for all \(V \), if \(V(\text{Pre}) = 1 \)
then \(V(\text{Cons}) = 1 \),
\((\text{C2})\) for all \(V \), if \(V(\text{Pre}) = 1 \)
then \(V(\text{Cons}) \neq 0 \),

where \text{Pre} and \text{Cons} stand for premises (antecedent)
and conclusion (succedent) of a sequent, respectively. In a classical setting, (\text{C1})
and (\text{C2}) coincide. It is not, however, the case
for partial logics.

The Gentzen calculus \(G1 \) for \(\text{C1} \) is obtainable
from the above system without right (\(\to \))-rule by introducing the following rules:

\((\sim\to R)\) \(X, A \vdash Y \Rightarrow X \vdash \sim A, Y \).
\((\sim\to L)\) \(X \vdash \sim A \Rightarrow X, A \vdash Y \).
\((\sim & R)\) \(X, A \vdash Y \Rightarrow X \vdash \sim (A \& B), Y \).
\((\sim & L)\) \(X \vdash \sim A \Rightarrow X, \sim B \vdash Y \).
\((\sim \to V)\) \(X \vdash \sim A \Rightarrow X, \sim B \vdash Y \).
\((\sim \to L)\) \(X \vdash \sim A \Rightarrow X, \sim (A \vee B) \vdash Y \).

Van Benthem (1986) showed that \(G1 \) is a Gentzen
type axiomatization of \(\text{C1} \). To guarantee a cut-
free formulation, we need to modify van Ben-
them's original system. We denote by \(GC1 \) the
sequent calculus for \(\text{GC1} \), which contains the
axioms of the form: (A1) \(A \vdash A \) and (A2) \(A, \sim A \vdash \),
with the right and left rules for (\(\& \)),
(\(\lor \)), (\(\sim \)), (\(\& \)) and (\(\lor \)) together with
(Weakening) and (Cut). It is shown that \(GC1 \)
is equivalent to \(G1 \) without any difficulty. As
a consequence, we have:

Theorem 1

\(\text{C1} \) can be axiomatized by \(GC1 \).

The Gentzen system \(GC2 \) for \(\text{C2} \) can be ob-
tained from \(GC1 \) by adding the next axiom:

\((A3)\) \(\vdash A, \sim A \).

Theorem 2

\(\text{C2} \) can be axiomatized by \(GC2 \).

There are alternative ways to define con-
sequence relations by means of sequent calculi.
For example, it is possible to give the following alternate definitions.

\((\text{C3})\) for all \(V \), if \(V(\text{Pre}) = 1 \)
then \(V(\text{Cons}) = 1 \)
and if \(V(\text{Cons}) = 0 \)
then \(V(\text{Pre}) = 0 \).

The new definition obviously induces inconsist-
ent valuations. The Gentzen system \(GC3 \) is
obtainable from \(GC1 \) by replacing (A2) by the
following new axiom:

\((A4)\) \(A, \sim A \vdash B, \sim B \).

Theorem 3

\(\text{C3} \) can be axiomatized by \(GC3 \).

4. Relation to Partial Logics

In this section, we compare the proposed Gentzen
systems with some existing partial logics, in
particular, three-valued and four-valued log-
ics in the literature; see Urquhart (1986). To
make connections to partial logics clear, we ex-
tend DRL with weak negation "\(\neg \)" to express
the lack of truth rather than verification of fal-
sity in discourses. We denote the extended
language by \(\text{EDRL} \). In the presence of two kinds
of negation, we can also define two kinds of
implication as material implications. We need
the next rules for weak negation:

\((\sim R)\) \(X, A \vdash Y \Rightarrow X \vdash \neg A, Y \).
\((\sim L)\) \(X \vdash \neg A \Rightarrow X, \neg A \vdash Y \).
\((\sim \to R)\) \(X, A \vdash Y \Rightarrow X \vdash \sim A \vee B, Y \).
\((\sim \to L)\) \(X \vdash \sim A \Rightarrow X, \sim B \vdash Y \).
\((\sim \to V)\) \(X \vdash \sim A \Rightarrow X, \sim B \vdash Y \).
\((\sim \to L)\) \(X \vdash \sim A \Rightarrow X, \sim (A \vee B) \vdash Y \).

Van Benthem (1986) showed that \(G1 \) is a Gentzen
type axiomatization of \(\text{C1} \). To guarantee a cut-
free formulation, we need to modify van Ben-
them's original system. We denote by \(GC1 \) the
sequent calculus for \(GC1 \), which contains the
axioms of the form: (A1) \(A \vdash A \) and (A2) \(A, \sim A \vdash \),
with the right and left rules for (\(\& \)),
(\(\lor \)), (\(\sim \)), (\(\& \)) and (\(\lor \)) together with
(Weakening) and (Cut). It is shown that \(GC1 \)
is equivalent to \(G1 \) without any difficulty. As
a consequence, we have:

Theorem 1

\(\text{C1} \) can be axiomatized by \(GC1 \).

The Gentzen system \(GC2 \) for \(\text{C2} \) can be ob-
tained from \(GC1 \) by adding the next axiom:
logic L_3. In fact, the Lukasiewicz implication \rightarrow can be defined as follows:

$$A \rightarrow B =_{\text{def}} (A \rightarrow_\omega B) \land (\sim B \rightarrow_\omega \sim A)$$

which implies

$$\vdash_{EKL} A \rightarrow B \text{ iff } A \vdash_{EKL} B \text{ and } \sim B \vdash_{EKL} \sim A.$$

This is closely related to the consequence relation C_3.

Theorem 5

$$A \vdash_{C_3} B \text{ iff } A \vdash_{EKL} A \rightarrow B.$$

If we drop (A2) from GC1, we have the sequent calculus GC1$, which is shown to be equivalent to Belnap's (1977) four-valued logic BEL.

Theorem 6

$$\vdash_{BEL} = \vdash_{GC1}.$$

The four-valued logic BEL can handle both incomplete and inconsistent information. We believe that four-valued semantics is plausible as a basis for representational semantics like DRT, which should tolerate inconsistent information in discourses. In view of these results, we can develop some versions of DRT which may correspond to current three-valued and four-valued logics; see Akama (1994).

5. Conclusions

We have studied a proof-theoretic foundation for DRT based on consequence relations defined by partial semantics. These consequence relations yield alternative versions of DRT to be used for different applications. We have noted some connections between these relations and partial logics, in particular three-valued and four-valued logics. We believe that the significance of our work lies in reformulating DRT in sequent calculi to be easily applied to computational linguistics.

There are several topics that can be further developed. First, we should give a more detailed discussion of what sort of completeness proof is involved, although we have established some correspondence results. Second, it is very interesting to show how the proposed consequence relations affect DRT in more detailed ways. Third, we need to extend the present work for the predicate case to take care to capture the dynamic effect of the quantificational structure of DRT.

References

Akama, S. (1994): A proof system for useful three-valued logics, to appear in *Proc. of Japan-CIS Symposium on Knowledge Based Software Engineering*.

Asher, N. (1986): Belief in discourse representation theory, *Journal of Philosophical Logic* 15, 127-189.

Asher, N. (1993): *Reference to Abstract Objects in Discourse*, Kluwer, Dordrecht.

Belnap, N. D. (1977): A useful four-valued logic, J. M. Dunn and G. Epstein (eds.), *Modern Uses of Multiple-Valued Logic*, 8-37, Reidel, Dordrecht.

Heim, I. (1982): *The Semantics of Indefinite and Definite Noun Phrases*, Ph. D. dissertation, University of Massachusetts at Amherst.

Ishikawa, A. and Akama, S. (1991): A semantic interface for logic grammars and its application to DRT, C. Brown and G. Koch (eds.), *Natural Language Understanding and Logic Programming III*, 281-292, North-Holland, Amsterdam.

Kamp, H. (1981): A theory of truth and semantic representation, J. Groenendijk, T. Janssen and M. Stokhof (eds.), *Formal Methods in the Study of Language*, 277-322, Mathematisch Centrum Tracts, Amsterdam.

Kleene, S. C. (1952): *Introduction to Metamathematics*, North-Holland, Amsterdam.

Urquhart, A. (1986): Many-valued logic, D. Gabbay and F. Guenthner (eds.), *Handbook of Philosophical Logic* vol. IV, 71-116, Reidel, Dordrecht.

Wada, H. and Asher, N. (1986): BUILDRS: An implementation of DR Theory and LFG, *Proc. of COLING-86*, 540-545.