CASE REPORT

Spontaneous resolution of asymptomatic hepatic pseudoaneurysm post radiofrequency ablation

LI SHYAN CH’NG, MRad (UM), FRCR (UK), ESTRELLITA ELENA MOHD TAZUDDIN, MMed (USM), BENNY YOUNG, MMed (UKM) and AHMAD FAIZAL MOHD ALI, MMed (UKM)

1Department of Radiology, Sarawak General Hospital, Kuching, Malaysia
2Department of Radiology, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia

Address correspondence to: Dr Li Shyan Ch’ng
E-mail: lishyanc@yahoo.com

ABSTRACT

Radiofrequency ablation (RFA) of a hepatic tumour is an established treatment option with an acceptable complication rate. Formation of a pseudoaneurysm after RFA of liver metastasis is an uncommon complication. We report the case of a 69-year-old female patient developing a hepatic pseudoaneurysm after RFA of liver metastasis. On a follow-up CT scan 6 weeks later, there was spontaneous resolution of the pseudoaneurysm. Hepatic pseudoaneurysms are usually treated owing to the risk of rupture. Invasive procedures or conservative management of an asymptomatic hepatic pseudoaneurysm is still the subject of debate. The spontaneous resolution of a hepatic pseudoaneurysm in our patient suggests that an asymptomatic pseudoaneurysm may be observed for resolution instead of being treated at presentation.

SUMMARY

Radiofrequency ablation (RFA) of a hepatic tumour is a safe procedure with an acceptable morbidity and a low mortality rate. Multicentre surveys show that mortality rates ranged from 0.1% to 0.5%. The major and minor complication rates ranged from 2.2% to 3.1% and 5% to 8.9%, respectively. Formation of a pseudoaneurysm after RFA of liver metastasis is an uncommon complication. There have been prior reports of symptomatic cases being treated at presentation.

CASE REPORT

A 69-year-old female patient was diagnosed with advanced cervical carcinoma Stage IIIb. She had undergone total abdominal hysterec- tomy and bilateral salpingo-oophorectomy, as well as completed 36 cycles of radiochemotherapy. A restaging CT scan showed a new solitary segment VIII liver metastasis measuring 3.1 (width) × 3.1 (AP) cm (Figure 1).

In view of the solitary liver metastasis, an RFA was performed. Using the right intercostal approach, an internally cooled 15-cm single electrode with a 3 cm active tip (Cool-tip™, Valleylab, Boulder, CO) was inserted into the tumour’s epicentre under ultrasound guidance. No reposi- tioning of the radiofrequency needle was carried out. Ablation was performed for approximately 12 min. No immediate complication was encountered and the patient was discharged the next day.

A CT scan of the abdomen in the portal venous phase was performed 6 weeks after the ablation. There was residual tumour circumferentially. An intensely enhancing area [measuring 2.3 cm (width) × 1.4 cm (AP)] was noted within the inferolateral aspect of the ablated lesion. The degree of enhancement of the lesion was similar to portal and hepatic veins (Figure 1). No demonstrable communica- tion with the intrahepatic vessels was noted. Based on the CT scan findings, it was thought that the pseudoaneurysm likely originated from the portal or the hepatic vein. However, the single-contrast phase of the CT images made it diffi- cult to identify the origin of the pseudoaneurysm. Extrahepatic disease progression was noted on follow-up CT scan, as evidenced by the enlarged para-aortic nodes and the peritoneal deposit at the splenic hilum. The patient was treated conservatively as she was asymptomatic and not keen on further intervention.

A CT scan of the abdomen 12 weeks after the ablation revealed progression of the segment VIII liver metastasis. The intensely enhancing area was no longer seen, indicating spontaneous resolution of the pseudoaneurysm. There was also progression of other intra-abdominal metastatic disease.

DISCUSSION

The clinical role of RFA is well established in the treatment of unresectable primary and metastatic hepatic tumours. RFA has been in use since the early 1990s. Complications associated with RFA are rare. The complications reported
Hepatic vascular damage includes portoenteric fistula. The hepatic vein is repeated. Symptomatic portal vein pseudoaneurysm is usually treated surgically or with minimally invasive techniques such as transcatheter embolization. Minimally invasive procedures have lower mortality and morbidity than surgical intervention.

A pseudoaneurysm may arise from the hepatic artery, or the hepatic or portal vein. The origin of pseudoaneurysms can be identified from multiphase contrast-enhanced CT, ultrasound Doppler or angiography studies. Most commonly, intrahepatic pseudoaneurysms arise from the hepatic artery. The enhancement of the pseudoaneurysm in the case of our patient was similar to the portal and hepatic veins, suggesting that the pseudoaneurysm arose from either the portal or the hepatic vein. Unfortunately, a multiphase contrast-enhanced CT scan was not performed to confirm the origin of the pseudoaneurysm in this patient. Hepatic venous pseudoaneurysms may have a delayed presentation. Park et al. reported a venous pseudoaneurysm that was not apparent on a CT scan performed 4 days after the ablation but was seen on a CT scan performed 3 weeks later.

Pseudoaneurysms after RFA are formed by thermal and mechanical injuries. Thermal injury seldom cause vessel necrosis owing to the cooling effect of blood flow. The hepatic vein is more susceptible to thermal injury compared with the hepatic artery and the portal vein. This is due to the lack of protective smooth muscle or perivascular connective tissue. Repeated repositioning of a single needle into the tumour could result in vascular injury. The chances of a mechanical injury occurring from insertion of a single electrode is less than that from a cluster of electrodes. In our case, we believe that the hepatic pseudoaneurysm was secondary to vessel injury from electrode insertion, as the neck of the aneurysm was along the presumed pathway of the electrode.

Although a pseudoaneurysm is an uncommon complication, it should be kept in mind when reviewing the follow-up CT scans of post-ablation patients. Rupture rates of hepatic artery pseudoaneurysms are as high as 44%, with mortality rates being as high as 82%. Symptomatic portal vein pseudoaneurysms are usually associated with fistulous communication such as arterioportal shunt, or portobiliary fistula or portoenteric fistula. Hepatic pseudoaneurysms can be treated surgically or with minimally invasive techniques such as transcatheter embolization. Minimally invasive procedures have lower mortality and morbidity than surgical intervention.

Thrombosis and resolution of the pseudoaneurysm in our case could be owing to the low pressure of the venous system. Furthermore, the progression of the liver metastasis involving the neck of the aneurysm may have contributed to its resolution. Recurrence of tumour along the margins, as in the case of our patient, can be reduced if two cycles of ablation are performed instead of one or a larger active tip is used. Intrahepatic pseudoaneurysms that resolved 15 days after the RFA were likely due to thrombosis, as reported by Tamai et al. They suggested that not all asymptomatic hepatic pseudoaneurysms need to be treated. Soudack et al. reported spontaneous thrombosis of an iatrogenic hepatic artery pseudoaneurysm after 72 months in a patient who refused intervention. Spontaneous thromboses of post-traumatic hepatic artery pseudoaneurysms were noted a few weeks after the trauma in two reported cases. These cases were followed up with serial ultrasound. Pseudoaneurysms are usually treated owing to a high rate of rupture and mortality. The spontaneous resolution of an asymptomatic pseudoaneurysm in our patient and the previously reported cases suggests that not all asymptomatic hepatic pseudoaneurysms need to be treated. Soudack et al. recommend serial ultrasound follow-up of such cases.

LEARNING POINTS

1. Hepatic pseudoaneurysm should be kept in mind when reviewing the follow-up CT scans of post-ablation patients owing to a high risk of rupture and mortality.
2. Doppler ultrasound, multiphase contrast-enhanced CT or angiography would be needed to identify the origin of the pseudoaneurysm (venous or arterial origin).
3. A hepatic pseudoaneurysm arising from a vein after RFA is an uncommon complication.
4. The spontaneous resolution of reported asymptomatic pseudoaneurysms suggests that not all hepatic pseudoaneurysms need to be treated. Serial imaging would be needed until resolution of the pseudoaneurysm.

CONSENT
Written informed consent was obtained from the patient for publication of this case report, including the accompanying images. This case report has been approved for publication by the local Institutional Review Board.

REFERENCES
1. Livraghi T, Solbiati L, Meloni MF, Gazelle GS, Halpern EF, Goldberg SN. Treatment of focal liver tumors with percutaneous radiofrequency ablation: complications encountered in a multicenter study. Radiology 2003; 226: 441–51. doi: 10.1148/radiol.2262012198
2. Dutta RV. Intrahepatic pseudoaneurysm after radiofrequency ablation of liver lesion. Int Surg 2008; 93: 381–4.
3. Chuang C-H, Chen C-Y, Tsai H-M. Hepatic infarction and hepatic artery pseudoaneurysm with peritoneal bleeding after radiofrequency ablation for hepatoma. Clin Gastroenterol Hepatol 2005; 3: A23. doi: 10.1016/S1542-3565(05)00019-X
4. Rhim H, Yoon K-H, Lee JM, Cho Y, Cho J-S, Kim SH, et al. Major complications after radio-frequency thermal ablation of hepatic tumors: spectrum of imaging findings. Radiographics 2003; 23: 123–34. doi: 10.1148/radiographics.23120054
5. Muller S, Muller P, Ni Y, Miao Y, Dupas B, Marchal G, et al. Complications of radiofrequency coagulation of liver tumours. Br J Surg 2002; 89: 1206–22. doi: 10.1046/j.1365-2168.2002.01688.x
6. Fonseca AZ, Santin S, Gomes IGL, Waisberg J, Ribeiro Jr MF. Complications of radiofrequency ablation of hepatic tumors: frequency and risk factors. World J Hepatol 2014; 6: 107–13. doi: 10.4254/wjh. v6.i3.107
7. Park HS, Kim YJ, Park SW, Lee MW, Yu NC, Chang S-H, et al. Hepatic vein pseudoaneurysm after radiofrequency ablation of recurrent intrahepatic cholangiocarcinoma managed with stent-graft placement. J Vasc Interv Radiol 2010; 21: 306–7. doi: 10.1016/j.jvir.2009.10.018
8. Tamai F, Furuse J, Maru Y, Yoshino M. Intrahepatic pseudoaneurysm: a complication following radio-frequency ablation therapy for hepatocellular carcinoma. Eur J Radiol 2002; 44: 40–3. doi: 10.1016/S0720-048X(01)00436-3
9. Nishimura Y, Jo S, Akuta K, Masunaga S, Fushiki M, Hiraoka M, et al. Histological analysis of the effect of hyperthermia on normal rabbit hepatic vasculature. Cancer Res 1989; 49: 4295–7.
10. Park MJ, Kim YS, Rhim H, Lim HK, Lee MW, Choi D. A comparison of US-guided percutaneous radiofrequency ablation of medium-sized hepatocellular carcinoma with a cluster electrode or a single electrode with a multiple overlapping ablation technique. J Vasc Inter Radiol 2011; 22: 771–9. doi: 10.1016/j.jvir.2011.02.005
11. Kim YS, Lim HK, Rhim H, Do YS. Hepatic arterial pseudoaneurysm after percutaneous radiofrequency ablation for hepatocellular carcinoma. Eur J Radiol Extra 2006; 57: 85–9. doi: 10.1016/j.ejrex.2005.12.004
12. Soudack M, Epelman M, Gaitini D. Spontaneous thrombosis of hepatic posttraumatic pseudoaneurysms: sonographic and computed tomographic features. J Ultrasound Med 2003; 22: 99–103.
13. Shin JH, Park DH, Yoon H-K. Transarterial embolization of a post-biopsy portal vein pseudoaneurysm using n-butyl cyanoacrylate. Gastrointestinal Intervention 2013; 2: 62–4. doi: 10.1016/j.giit.2013.03.004
14. Javadshadiz R, Mozaffarpour S, Sadramani S, Jalili J, Sepehri B. Pseudoaneurysm of the portal vein as a rare source of gastrointestinal bleeding in pregnancy: a case report. Gastroenterology Hepatol Bed Bench 2012; 5: 213–6.
15. Burke C, Park J. Portal vein pseudoaneurysm with portovenous fistula: an unusual cause for massive gastrointestinal hemorrhage. Semin Intervent Radiol 2007; 24: 341–5. doi: 10.1055/s-2007-985748
16. Tessier DJ, Fowl RJ, Stone WM, McKusick MA, Abbas MA, Sarr MG, et al. Iatrogenic hepatic artery pseudoaneurysms: an uncommon complication after hepatic, biliary, and pancreatic procedures. Ann Vasc Surg 2003; 17: 663–9. doi: 10.1007/s10166-003-0075-1
17. Wilseck Z, Cho K. Spontaneous circulation return after termination of resuscitation efforts for cardiac arrest following embolization of a ruptured common hepatic artery pseudoaneurysm. Gastrointestinal Intervention 2015; 4: 55–7. doi: 10.1016/j.giit.2015.01.002
18. Ou H-Y, Concejero AM, Yu C-Y, Huang T-L, Chen T-Y, Tsang LL, et al. Hepatic arterial embolization for massive bleeding from an intrahepatic artery pseudoaneurysm using N-butyl-2-cyanoacrylate after living donor liver transplantation. Transplant Int 2011; 24: e19–e22. doi: 10.1111/j.1432-2277.2010.01186.x
19. Wu XY, Shi XL, Zhou JX, Qiu YD, Zhou T, Han B, et al. Life-threatening hemorrhage after liver radiofrequency ablation successfully controlled by transarterial embolization. World J Hepatol 2012; 4: 419–21. doi: 10.4254/wjh.v4.i2.419
20. Venturini M, Angelé E,Salvioni M, De Cobelli F, Trentin C, Carlucci M, et al. Hemorrhage from a right hepatic artery pseudoaneurysm: endovascular treatment with a coronary stent-graft. J Endovasc Ther 2009; 2: 921–4. doi: 10.1177/1526602809320215
21. Francisco LE, Asunción LC, Antonio CA, Ricardo RC, Manuel RP, Caridad MH. Post-traumatic hepatic artery pseudoaneurysm treated with endovascular embolization and thrombin injection. World J Hepatol 2010; 2: 87–90. doi: 10.4254/wjh.v2.i2.87
22. Mallek R, Mostbeck G, Gebauer A, Korn M, Speiser W, Tscholakoff D. A posttraumatic pseudoaneurysm of the hepatic artery. Duplex sonographic diagnosis and follow-up in spontaneous thrombosis. Radiologe 1990; 30: 484–8.