EXPLORING TRANSFORMER’S POTENTIAL ON AUTOMATIC PIANO TRANSCRIPTION

Longshen Ou1 Ziyi Guo3 Emmanouil Benetos2 Jiqing Han3 Ye Wang1

1School of Computing, National University of Singapore, Singapore
2Centre for Digital Music, Queen Mary University of London, UK
3Harbin Institute of Technology, China

ABSTRACT

Most recent research about automatic music transcription (AMT) uses convolutional neural networks and recurrent neural networks to model the mapping from music signals to symbolic notation. Based on a high-resolution piano transcription system, we explore the possibility of incorporating another powerful sequence transformation tool—the Transformer—to deal with the AMT problem. We argue that the properties of the Transformer make it more suitable for certain AMT subtasks. We confirm the Transformer’s superiority on the velocity detection task by experiments on the MAESTRO dataset and a cross-dataset evaluation on the MAPS dataset. We observe a performance improvement on both frame-level and note-level metrics after introducing the Transformer network.

Index Terms— Automatic music transcription, deep learning, Transformer, velocity estimation

1. INTRODUCTION

Automatic music transcription (AMT) aims to convert music signals into music notation. It is of great importance to solve the AMT problem because the transcription results can be helpful in many higher-level tasks, like structure segmentation, music similarity assessment, and so on [1]. However, it is not easy to provide a generic solution to AMT, since a music piece usually contains multiple different sound sources and lots of simultaneous notes. It is usually difficult to separate these polyphonic sounds.

Piano transcription is one subproblem of AMT. Because several automated annotation tools (e.g., Yamaha Disklavier) can be used to help us capture the annotation of music data, we have relatively rich datasets for the piano transcription problem, compared to other instruments. This advantage makes it possible to use powerful supervised learning approaches, of which neural networks (NNs) are a representative group of methods.

Recently, the Transformer networks [2] have gathered researchers’ attention from different fields. The success of Music Transformer [3] shows the superiority of using Transformers to model symbolic music. Given the great potential of the Transformer on sequence modeling, we would like to explore its ability to solve AMT tasks, where both input and output sequences have finer granularity than [3]. Furthermore, because of its ability to model relationships between all time steps in a sequence, it is especially good at modeling long-term dependencies. We expect that this property could bring positive impacts when dealing with AMT tasks.

To test the modeling ability of the Transformer for AMT, in this paper, we attempt to use Transformers to solve various subtasks of piano transcription, including multi-pitch detection, onset and offset detection, and velocity estimation, to explore the possible improvement, and find that the Transformer gives a relatively significant improvement on velocity detection task. Then, based on the system in [4], we try to incorporate the Transformer into the velocity branch to enhance the performance of velocity detection. We train and evaluate our system using the MAESTRO dataset [5] and perform a cross-dataset evaluation using the MAPS dataset [6]. We notice that the improvement of the velocity branch has positive effects on the overall performance of the transcription system, by providing more accurate information to the downstream modules of the velocity branch, i.e., onset and frame branches. The proposed system achieves competitive results compared to previous state-of-the-art systems.

2. RELATED WORK

The first trial of the NN-based AMT method starts with [7], in which the feasibilities of several basic network structures were tested, including recurrent neural networks (RNNs). Böck et al. [8] tried to apply Long Short-Term Memory (LSTM) NNs to solve AMT tasks. Sigtia et al. [9] used convolutional neural networks (CNNs) as the acoustic model, and integrated an RNN-based language model to improve the performance further. Hawthorne et al. [10] tried to do note-level transcription by designing networks for onset detection and using the onset information to help the learning of the multi-pitch estimation network. Kelz et al. [11] tried to model the time-variant note properties by considering different note stages. Kim et al. [12] introduce an adversarial training scheme for NN-based methods to more accurately express inter-label dependencies. Kong et al. [4] designed a network that can provide more refined transcription results containing onset, offset, note pitch, and key velocity (speed of pressing a key). More recently, [13] shows that a generic Transformer without domain-specific adaptation can be used to generate note-level transcription results directly with competitive performance.

Beyond pitch and timing information, dynamics (referred to as ‘intensities’ or ‘velocities’ interchangeably) are another important factor of music. Szeto et al. [14] proposed to search velocity value by employing a single-note database to artificially generate mixtures of notes. A parametric spectrogram model to estimate note intensities was proposed in [15]. Van Herwaarden et al. [16] tried to utilize Restricted Boltzmann Machines to deal with this task. Methods in [17] and [18] are based on non-negative matrix factorization. However, most of the previous research was done in a score-informed manner and is not conducted in the AMT context. The first trial of estimating note dynamics alongside the pitch and timing information is [10]. Models in [4] and [13] significantly improve the NN-based velocity estimation performance by more effective network structure.
The development of deep learning has brought more powerful tools for NN-based methods in different fields. The Transformer has become a revolutionary architecture in recent years. One of its important internal components is the self-attention mechanism. It allows modeling of dependencies without regard to their distance in the input or output sequences [2]. By using the attention mechanism entirely and eschewing recurrent structures, it can capture global dependencies between input and output sequences, and meanwhile, allow more parallel computing than RNNs, hence improving the training efficiency.

3. METHOD

3.1. System architecture

The architecture of the proposed piano transcription system is based on the high-resolution piano transcription system in [4] (hereinafter called the baseline system). Inherent from the baseline system, we divide the entire task into four subtasks, i.e., onset detection, offset detection, multi-pitch estimation (frame classification), and velocity estimation. We use the same data preprocessing and postprocessing method as the baseline system.

Based on the framework of the baseline system, we first attempt to substitute the bi-directional gated recurrent unit networks (GRU) in the original system with the Transformers to see if there is any performance improvement. The resulting CNN-Transformer architecture is shown in Fig. 1. We try this architecture on each subtask of the original system, evaluate its performance, and compare it with the baseline system. Among these experiments, we observe a considerable performance improvement on the velocity estimation tasks. Hence for the final transcription system, we use the CNN-Transformer structure for the velocity estimation branch and keep the CNN-GRU combination for other branches. The architecture of the resulting system is illustrated in Fig. 2. The detailed structure of the CNN-Transformer for velocity estimation is included in Section 3.2.

3.2. Incorporating the Transformer

Following the baseline system, we solve the AMT problem using a two-step approach: we first convert a sequence of discretized music signals into a sequence of frame-level symbolic notations using the designed neural networks, and then perform postprocessing for these frame-level results by a note search approach to get the final note-level results. The sequence-to-sequence model can be easily incorporated into the first step in this scenario.

Table 1. Detailed structure of a convolution block with \(m \) input channels.

Layer	Output channel	Filter size	Stride	Padding
Conv2d	\(m \)	3x3	1	1
BN 2d				
Relu				
Conv2d	\(m \)	3x3	1	1
BN 2d				
Relu				
Avg pool 2d	1 x 2	2	0	

Fig. 1. Architecture of the CNN-Transformer.

Fig. 2. Architecture of the proposed system. The highlighted part is the proposed CNN-Transformer; the other parts are inherited from the baseline system. The \(\odot \) refers to concatenation operation.
Table 2. Detailed configuration of convolution blocks.

Layer	Input channel	Output channel	Output shape
Spectrogram input	1 x 1001 x 229 (mel bins)	1 x 1001 x 144	
ConvBlock1	1	48	48 x 1001 x 114
Dropout, p=0.2	48	64	64 x 1001 x 57
ConvBlock2	64	96	96 x 1001 x 28
Dropout, p=0.2	96	128	128 x 1001 x 14
ConvBlock3	96	128	128 x 1001 x 14
ConvBlock4	96	128	128 x 1001 x 14

Table 4. Frame-level comparison.

Frame	Onset	Offset	Velocity				
	F1	F1-s	F1-t	F1-s	F1-t	MAE	STD
CNN-GRU	80.92	54.32	95.53	27.98	80.51	4.2725	4.1925
CNN-Transformer	77.38	54.36	95.18	22.66	73.87	4.0026	4.0077
Without PE	74.07	52.51	94.97	22.47	73.12	4.4241	4.3072

Table 3. Performance of separately trained CNN-Transformers. F1-s refers to the strict frame-level F1 score. F1-t refers to windowed F1 score of timing information. The third row shows the results of CNN-Transformers without positional encoding. The lower velocity measures and higher other metrics indicate better performance.
Transformer structure cannot easily model these relationships. For example, in the multi-pitch estimation task, it is quite common to observe a consequent sequence of note activations of the same pitch because of the duration of notes. Hence, if many neighboring frames of a particular frame have activation on a specific note pitch, a model should have prior knowledge to believe that activation is more likely to show up on this frame. As for the offset detection task, the offset location is also closely related to the energy decay over time of nearby preceding frames. In both cases, the model should give more weights to frames nearby when making decisions about such a specific frame, i.e., short-term memory is crucial for the two tasks. Because the forget gate inside the GRU unit, GRU tends to focus more on neighboring frames when training and inference. However, to enhance the ability to learn long-range dependencies, the Transformer is designed to connect all pairs of input and output positions, hence equally treating all time steps when doing detections. Therefore, the GRU can model this relationship more naturally than the Transformer.

Table 3 also includes the result of an ablation study to remove the positional encoding of the CNN-Transformers. It is worth noting that the positional encoding is crucial in all the subtasks, as the performance considerably degrades when it is removed. Based on this observation, we can infer that the absolute temporal location of each frame in the spectrogram is essential for the subsequent Transformer.

Because the Transformer has considerable improvement on the velocity estimation performance, we incorporate the Transformer structure for the velocity branch in the following experiment.

4.4.2. Final system

Tables 4 and 5 show the performance comparison of the proposed system and other state-of-the-art systems. We refer to the system in [4] as HPT, the system with velocity Transformer, described in Section 3, as HPT-T. In Table 4, As we expected, HPT-T outperforms the baseline HPT on the velocity task by 10% lower mean absolute error and 6.8% lower standard deviation. In the current system structure, the onset branch takes the transcription result produced by the velocity branch as a condition when training and inferring, so the performance of the velocity branch will impact the performance of the onset branch. On the onset detection task, although HPT-T is a little behind on the strict F1 measure (−0.3%), it slightly outperforms the HPT on the F1 with tolerance by 0.09%, which is a more important metric in note-level evaluation. We can infer that the information provided for the onset branch by the CNN-Transformer velocity branch is not as temporal-accurate as that of CNN-GRU, but more effective for the note-level onset detection. Also, the better onset branch benefits its downstream subtask, leading to better multi-pitch estimation performance. On the multi-pitch estimation task, HPT-T outperforms the HPT by 0.46%. For the offset task, the improvement results from a better training strategy. As the result of the enhanced performance of each branch, the proposed system achieves better note-level results on all the note-level metrics, as shown in Table 5. Although on the Note-3 and Note-4 metrics, HPT-T is slightly weaker than the model in [13] based a generic Transformer, our model has better performance on the Note-2 measure and provide satisfactory frame-level transcriptions as well, which is also a competitive result.

Table 6 shows the results of a cross-dataset evaluation on a subset of the MAPS database. Our system has a better frame-level F1 score than HPT and also performs better on Note-3 and Note-4 metrics. This indicates the proposed system has a reasonable ability to generalize to a dataset with different recording environments, and that the introduction of the Transformer does have positive effects on the system’s overall performance.

5. Conclusion

We have explored the Transformer’s ability to solving different AMT subtasks. Based on our experiments, the proposed HPT-T system improves the transcription performance of the baseline on both frame-level and note-level metrics. We have further shown the decent generalization ability of our system by a cross-dataset evaluation. For future study, we plan to test more possible position representations in the current Transformer structure, instead of solely using the sinusoidal function as the positional encoding. In addition, we will try to restrict self-attention to prioritize neighboring frames of the respective output position to enhance the performance of the Transformer on multi-pitch estimation and offset detection tasks.
6. REFERENCES

[1] Emmanouil Benetos, Simon Dixon, Zhiyao Duan, and Sebastian Ewert, “Automatic music transcription: An overview,” IEEE Signal Processing Magazine, vol. 36, no. 1, pp. 20–30, 2019.

[2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems (NIPS), 2017, pp. 5998–6008.

[3] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck, “Music transformer: Generating music with long-term structure,” in International Conference on Learning Representations (ICLR), 2019.

[4] Qiuqiang Kong, Bochen Li, Xuchen Song, Yuan Wan, and Yuxuan Wang, “High-resolution piano transcription with pedals by regressing onset and offset times,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 29, pp. 3707–3717, 2021.

[5] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng Zhi Anna Huang, Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas Eck, “Enabling factorized piano music modeling and generation with the Maestro dataset,” in International Conference on Learning Representations (ICLR), 2019, pp. 1–12.

[6] Valentin Emiya, Nancy Bertin, Bertrand David, and Roland Badeau, “MAPS - A piano database for multipitch estimation and automatic transcription of music,” Research report, July 2010.

[7] Matija Marolt, “A connectionist approach to automatic transcription of polyphonic piano music,” IEEE Transactions on Multimedia, vol. 6, no. 3, pp. 439–449, 2004.

[8] Sebastian Böck and Markus Schedl, “Polyphonic piano note transcription with recurrent neural networks,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 121–124.

[9] Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon, “An end-to-end neural network for polyphonic piano music transcription,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 5, pp. 927–939, 2016.

[10] Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin Raffel, Jesse Engel, Sageev Oore, and Douglas Eck, “Onsets and frames: Dual-objective piano transcription,” in International Society for Music Information Retrieval Conference (ISMIR), 2018, pp. 50–57.

[11] Rainer Kelz, Sebastian Böck, and Gerhard Widmer, “Deep polyphonic ADSR piano note transcription,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019, vol. 2019-May, pp. 246–250.

[12] Jong Wook Kim and Juan Pablo Bello, “Adversarial learning for improved onsets and frames music transcription,” in International Society for Music Information Retrieval Conference (ISMIR), 2019, pp. 670–677.

[13] Curtis Hawthorne, Ian Simon, Rigel Swavely, Ethan Manilow, and Jesse Engel, “Sequence-to-sequence piano transcription with Transformers,” in International Society for Music Information Retrieval Conference (ISMIR), 2021.

[14] Wai Man Szeto, Kin Hong Wong, and Chi Hang Wong, “Finding intensities of individual notes in piano music,” in Computer Music Modeling and Retrieval, 2005.

[15] Sebastian Ewert and Meinard Müller, “Estimating note intensities in music recordings,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2011, pp. 385–388.

[16] Sam Van Herwaarden, Maarten Grachten, and W. Bas de Haas, “Predicting expressive dynamics in piano performances using neural networks,” in International Society for Music Information Retrieval Conference (ISMIR), 2014, pp. 47–52.

[17] Dasaem Jeong and Juhan Nam, “Note intensity estimation of piano recordings by score-informed NMF,” in AES International Conference, 2017, pp. 124–131.

[18] Dasaem Jeong, Taegyun Kwon, and Juhan Nam, “A timbre-based approach to estimate key velocity from polyphonic piano recordings,” in International Society for Music Information Retrieval Conference (ISMIR), 2018, pp. 120–127.

[19] Colin Raffel, Brian McFee, Eric J. Humphrey, Justin Salamon, Oriol Nieto, Dawen Liang, and Daniel P. W. Ellis, “mir_eval: A transparent implementation of common MIR metrics,” in International Society for Music Information Retrieval Conference (ISMIR), 2014, pp. 367–372.

[20] Ilya Loshchilov and Frank Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations (ICLR), 2019.

[21] Leslie N. Smith, “Cyclical learning rates for training neural networks,” in IEEE Winter Conference on Applications of Computer Vision (WACV), 2017, pp. 464–472.