ON THE RIEMANN-ROCH FORMULA WITHOUT PROJECTIVE HYPOTHESES

A. NAVARRO AND J. NAVARRO

To our father

Abstract. Let S be a finite dimensional noetherian scheme. For any proper morphism between smooth S-schemes, we prove a Riemann-Roch formula relating higher algebraic K-theory and motivic cohomology, thus with no projective hypotheses either on the schemes or on the morphism. We also prove, without projective assumptions, an arithmetic Riemann-Roch theorem involving Arakelov’s higher K-theory and motivic cohomology as well as an analogous result for the relative cohomology of a morphism.

These results are obtained as corollaries of a motivic statement that is valid for morphisms between oriented absolute spectra in the stable homotopy category of S.

INTRODUCTION

Let $f: Y \to X$ be a proper morphism between non-singular quasi-projective varieties over a field k. The original Grothendieck’s Riemann-Roch theorem (cf. [BS58]) states that the following square commutes:

$$
\begin{array}{ccc}
K_0(Y) & \xrightarrow{f_!} & K_0(X) \\
Td(T_Y) \cdot \text{ch} & \downarrow & Td(T_X) \cdot \text{ch} \\
CH^\bullet(Y) \otimes \mathbb{Q} & \xrightarrow{f_*} & CH^\bullet(X) \otimes \mathbb{Q}
\end{array}
$$

or, in other words, that for any element $a \in K_0(Y)$, the following formula holds:

$$
Td(T_X) \cdot \text{ch}(f_!(a)) = f_! \left(Td(T_Y) \cdot \text{ch}(a) \right).
$$

This formula relates the exceptional direct image $f_!$ on the Grothendieck group of vector bundles K_0 to the direct image f_* on the Chow ring with rational coefficients. This relation involves the Chern character ch, adequately twisted with the Todd series Td of the corresponding tangent bundles.

Later on, Grothendieck aimed to generalise this Riemann-Roch formula in three directions: considering schemes defined over a general base, replacing the smoothness condition on the schemes by a regularity condition on the morphism, and removing any projective assumption both from the morphism and from the schemes. The first two problems were among the main questions addressed in [SGA6] (cf. [SGA6, O.1]), whereas the third one—namely, proving a Riemann-Roch formula...
for proper complete intersection morphisms between (non-projective) schemes—remained at that time as an open problem ([SGA6 XIV.2]).

In subsequent years there were various results regarding this question. If \(X \) is a smooth and proper variety over a field \(k \) of characteristic zero, the Chow lemma and the resolution of singularities allow us to construct a projective variety \(\overline{X} \) and a birational map \(\overline{X} \to X \) that is a composition of blowing-ups along smooth centers. In ([Ful77]), Fulton used this fact to prove the Riemann-Roch formula for the projection \(X \to \text{Spec}(k) \). Also, the general case of a proper morphism between smooth varieties over a field of characteristic zero follows with similar reasoning (cf. [Nav81], [FG83]).

The case of positive characteristic was proved in [FG83] using a different approach. Fulton-Gillet’s reasoning avoids the resolution of singularities due to the formulation of the Riemann-Roch theorem developed in [BFM75], the technique of envelopes ([Gil81]), and a little use of higher \(K \)-theory. This result of [FG83 Corollary 2] was the furthest generalization we knew of the Riemann-Roch formula without projective hypotheses.

On the other hand, despite a Riemann-Roch formula for higher \(K \)-theory being already known at that moment (cf. [Gil81]), Fulton-Gillet’s approach did not apply in this setting. In fact, they explicitly posed the problem of extending these results to higher \(K \)-theory (cf. [FG83 3.1.4]).

As Grothendieck already pointed out,

Il semble clair que la démonstration de la formule Riemann-Roch dans ce cas général [i.e., without projective hypotheses] demandera l’introduction d’idées essentiellement nouvelles ([SGA6 XIV.2])

and each proof restricts to the situation where its new ideas may be applied.

In this paper we prove a higher Riemann-Roch formula without projective hypotheses, either on the schemes or on the morphism. Our statement is valid for absolute oriented ring spectra and smooth schemes defined over a finite dimensional, noetherian scheme (cf. Theorem 3.4) and therefore relates homotopy invariant \(K \)-theory with rational motivic cohomology. Hence, we deduce a Riemann-Roch theorem for classic higher \(K \)-theory and (Levine’s extension of) higher Chow groups for smooth schemes over a Dedekind domain. To be more precise, let \(S \) be the spectrum of a Dedekind domain. For any smooth \(S \)-scheme \(X \), let us write \(\text{ch}: K(X) \to CH(X)_\mathbb{Q} \) for the higher Chern character, relating higher \(K \)-groups to higher Chow groups with rational coefficients (see definitions in Example 1.2):

Theorem 3.6 Let \(S \) be the spectrum of a Dedekind domain and let \(f: Y \to X \) be a proper morphism between smooth \(S \)-schemes. The following diagram commutes:

\[
\begin{array}{ccc}
K(Y) & \xrightarrow{f^*} & K(X) \\
\downarrow \text{Td}(T_Y)\text{ch} & & \downarrow \text{Td}(T_X)\text{ch} \\
CH(Y)_\mathbb{Q} & \xrightarrow{f^*} & CH(X)_\mathbb{Q}.
\end{array}
\]

In other words, for any element \(a \in K(Y) \), the following formula holds:

\[
\text{Td}(T_X)\text{ch}(f_*(a)) = f_*(\text{Td}(T_Y)\text{ch}(a)).
\]
Note that the restriction of the formula above to the K_0 group produces a Grothendieck-Riemann-Roch statement that is valid for proper morphisms between general (non-projective) smooth S-schemes.

In addition, we also prove other Riemann-Roch statements for the relative cohomology of a morphism (cf. Corollary 3.3) and for the arithmetic counterparts of higher K-theory and motivic cohomology (cf. Corollary 3.9). These results also improve previous versions of [Nav16b] and [HSt15], respectively.

Our proof relies on a duality theorem of Ayoub (Ayo07), as refined by Cisinski-Déglise in [CD19], and on the Riemann-Roch formula for closed embeddings. Roughly speaking, since duality holds without projective assumptions, the Riemann-Roch formula can also be proved in this generality. The main idea—namely, that the Riemann-Roch theorem is a comparison of dualities—comes from classic algebraic topology (cf. [Dye62]).

The paper is written in Morel-Voevodsky’s language of \mathbb{A}^1-homotopy theory ([MV99], [Voe98]). In addition, our development of the Riemann-Roch is directly inspired by Panin’s work on orientation theory ([Pan03], [Pan04], [Pan09], [Nav16]).

Finally, let us briefly comment on the plan of this article. The first, preliminary section recalls definitions and statements from stable homotopy, in particular regarding cohomology, orientations, Borel-Moore homology, and Thom spaces. In Section 2 we construct a functorial direct image in cohomology as the dual of the direct image in Borel-Moore homology and prove its main properties. Finally, in the last section we establish the aforementioned Riemann-Roch theorems.

1. Preliminaries

All the schemes we will consider throughout this paper are smooth over a finite dimensional noetherian base S. We use the same notation as [Nav16b] and recall the indispensable results.

Let X be a smooth S-scheme and denote by $\text{SH}(X)$ the stable homotopy category of Voevodsky, whose objects are called spectra (cf. [Voe98]).

These categories are symmetric monoidal, meaning that there is a symmetric product \wedge and a unit object $\mathbb{1}_X$. There is also a shift functor $[1]: \text{SH}(X) \to \text{SH}(X)$ and a Tate object $\mathbb{1}_X(1)$ that defines a twist $\wedge \mathbb{1}_X(1): \text{SH}(X) \to \text{SH}(X)$. If E is a spectrum of $\text{SH}(X)$ and $p, q \in \mathbb{Z}$, we write $E(q)[p]$ for the result of shifting p times and twisting q times.

Moreover, the family of categories obtained if one varies X satisfies Grothen- dieck’s six functors formalism (cf. [Ayo07] and [CD19]). In particular, for any morphism $f: Y \to X$ there exists a pair of adjoint functors

$$f^*: \text{SH}(X) \rightleftarrows \text{SH}(Y): f_*.$$

If f is separated of finite type, then there also exist mutually adjoint exceptional functors

$$f_!: \text{SH}(Y) \rightleftarrows \text{SH}(X): f^!.$$

Finally, if $\pi: X \to T$ is a smooth morphism, then there exists an “extension by zero” functor $\pi_*: \text{SH}(X) \to \text{SH}(T)$ that is left adjoint to π^*. These functors satisfy adequate functorial properties (cf. [Ayo07] 1.4.2 and the refinement in [CD19] 2.4.50]).

Definition 1.1. A ring spectrum is an associative commutative unitary monoid in the stable homotopy category $\text{SH}(X)$ of a scheme X.
An absolute ring spectrum E is a ring spectrum on the stable homotopy category of the base scheme $SH(S)$. Equivalently, an absolute ring spectrum is a family of ring spectra E_X on $SH(X)$ for every scheme X that is stable under pullback, i.e., such that for every morphism of schemes $f: Y \to X$ we have fixed an isomorphism $\epsilon_f: f^*E_X \to E_Y$ satisfying the usual compatibility conditions (cf. [Deg18 1.2.1]).

A morphism of absolute ring spectra $\varphi: E \to F$ is a morphism of spectra in $SH(S)$ or, equivalently, a collection of morphisms of ring spectra $\varphi_X: E_X \to F_X$, one for each scheme X, that is stable under pullback.

If E is an absolute ring spectrum, the E-cohomology of a scheme X is, for $p, q \in \mathbb{Z}$:

$$E^{p,q}(X) := \text{Hom}_{SH(X)}(\mathbb{1}_X, E_X(q)[p]), \quad E(X) := \bigoplus_{p,q} E^{p,q}(X).$$

An oriented absolute ring spectrum is a pair (E, c_1), where E is an absolute ring spectrum and $c_1 \in \pi^{2,1}(\mathbb{P}^{\infty})$ is a class satisfying that $i_1^*(c_1) = \eta$, for $i_1: \mathbb{P}_1 \to \mathbb{P}^{\infty}$ and $\eta \in \pi^{2,1}(\mathbb{P}_1)$, the canonical class defined by the Tate object (cf. [Nav16b §1.3]).

Example 1.2. There is a pleiad of cohomology theories represented by oriented absolute ring spectra. Let us recall here those that we will mention later on, although the reader may consult [Nav16b 1.4] for more examples to which the results of this paper apply.

- The K-theory spectrum KGL is an absolute ring spectrum defined in [Voe98 and Rio10]. It represents Weibel’s homotopy invariant K-theory (cf. [Cis13 2.15]), which will be denoted $KH(_)$, and therefore also represents Quillen’s algebraic K-theory for regular schemes, which will be denoted $K(_)$.

- The \mathbb{Q}-localization of the K-theory spectrum admits a decomposition induced by the Adams operations, i.e., $KGL_{\mathbb{Q}} = \bigoplus_{i \in \mathbb{Z}} KGL_{\mathbb{Q}}^{(i)} \in SH(S)_{\mathbb{Q}}$, where $KGL_{\mathbb{Q}}^{(i)}$ denotes the eigenspaces for the Adams operations ([Rio10 5.3]).

Beilinson’s motivic cohomology spectrum is defined as $H_B = KGL_{\mathbb{Q}}^{(0)} \in SH(S)_{\mathbb{Q}}$ and it is also an absolute ring spectrum. It represents motivic cohomology with rational coefficients, which we denote $H^p_M(_ , \mathbb{Q}(q))$. On smooth schemes over a Dedekind domain, Beilinson’s motivic cohomology spectrum coincides with Spitzweck’s motivic cohomology spectrum ([Spi12 7.14]); therefore it coincides with rational Levine’s motivic cohomology ([Spi12 7.20]) and in particular with higher Chow groups ([Blo86, Lev, Lev01]). More concretely, if S is the spectrum of a Dedekind domain, for X a smooth S-scheme we have

$$\text{Hom}_{SH(X)}(\mathbb{1}_X, H_B(q)[p]) = H^p_M(_ , \mathbb{Q}(q)) = CH_{2q-p}(X, q)_{\mathbb{Q}}.$$

- Let $g: T \to X$ be a morphism of schemes and let E be an absolute ring spectrum.

The spectrum $\text{hofib}_E(g) := \text{hofib}(E_X \to g_*g^*E_X)$ defines cohomology groups that are called the relative cohomology of g:

$$E^{*,*}(g) := \text{Hom}_{SH(X)}(\mathbb{1}_X, \text{hofib}(g)\ast).$$

They fit into long exact sequences

$$\cdots \to E^{p,q}(g) \to E^{p,q}(X) \to E^{p,q}(T) \to E^{p+1,q}(g) \to \cdots$$
and generalize many constructions: the cohomology with proper support, the cohomology with support on a closed subscheme, and the reduced cohomology are, respectively, the relative cohomology of a closed immersion, an open immersion, and the projection over a base point (cf. [Nav16b 1.19]).

Let \(f : Y \to X \) be another morphism and denote \(g_Y : T \times_X Y \to Y \). If either \(g \) is proper or \(f \) is smooth, then the absolute spectrum over \(X \) defined by \(\text{hofib}_E(g) \) represents \(E(g_Y) \) (cf. [Nav16b §1.17]).

Definition 1.3. Let \(E \) in \(\text{SH}(X) \) be a ring spectrum. An \(E \)-module is a spectrum \(M \) in \(\text{SH}(X) \) together with a morphism of spectra \(\nu : E \land M \to M \) in \(\text{SH}(X) \) satisfying the usual module condition. An absolute \(E \)-module is a module over an absolute ring spectrum \(E \).

Let \(\phi : E \to F \) be a morphism of ring spectra and let \((M', \nu')\) be an \(F \)-module. A \(\phi \)-morphism of modules \(\Phi : M \to M' \) is a morphism of spectra in \(\text{SH}(X) \) such that \(\nu' \circ (\phi \land \Phi) = \Phi \circ \nu \).

Example 1.4. Holmstrom-Scholbach defined in [HS15] the arithmetic \(K \)-theory and the arithmetic motivic cohomology ring spectra, \(\text{KGL} \) and \(\text{H}_{\text{B}} \). They are absolute modules over \(\text{KGL} \) and \(\text{H}_{\text{B}} \), respectively. In addition, there is an arithmetic Chern character \(\hat{\text{ch}} : \text{KGL} \to \text{H}_{\text{B}} \) that is a ch-morphism of modules (cf. [HS15 4.2]).

Remark 1.5. The machinery of the six functors formalism provides the \(\mathbb{E} \)-cohomology defined by oriented absolute spectra with the classic properties of cohomologies (such as inverse image, cup product, Chern classes, etc.). For a complete account of these properties the reader may consult [Dég18].

Let us recall here the construction of the morphism of forgetting support, since it will be used later on. Let \(Z \xrightarrow{j} Y \xrightarrow{i} X \) be closed immersions and let \(\mathbb{M} \) be an absolute \(\mathbb{E} \)-module. We define a morphism

\[
j_* : \mathbb{M}_Z(X) \to \mathbb{M}_Y(X)
\]
as follows: the adjunction of \((j^*, j_*)\) induces a morphism

\[
i_*(\text{ad}) : i_*(\mathbb{I}_Y) \to i_*(j_*j^* \mathbb{I}_Y) = (ij)_* \mathbb{I}_Z.
\]

Let \(a : (ij)_* \mathbb{I}_Z \to \mathbb{M}_X \) be in \(\mathbb{M}_Z(X) \). The element \(j_*(a) \in \mathbb{M}_Y(X) \) is defined as

\[
i_* (\mathbb{I}_Y) \xrightarrow{i_*(\text{ad})} (ij)_* \mathbb{I}_Z \xrightarrow{a} \mathbb{M}_X.
\]

1.6 (Borel-Moore homology). Let \(\mathbb{E} \) be an absolute ring spectrum, and let \(\mathbb{M} \) be an \(\mathbb{E} \)-module. The Borel-Moore homology of a scheme \(\pi_X : X \to S \) is defined as

\[
\mathbb{M}^{\text{BM}}_{p,q}(X) := \text{Hom}_{\text{SH}(X)}(\mathbb{I}_X, \pi_X^! \mathbb{M}_{\text{S}}(-q)[-p]) \quad \mathbb{M}^{\text{BM}}(X) := \bigoplus_{p,q} \mathbb{M}^{\text{BM}}_{p,q}(X).
\]

Observe the equivalent descriptions, using adjunction:

\[
\mathbb{M}^{\text{BM}}_{p,q}(X) = \text{Hom}_{\text{SH}(S)}(\pi_{X!} \mathbb{I}_X, \mathbb{M}_{\text{S}}(-q)[-p])
\]

\[
= \text{Hom}_{\text{SH}(S)}(\mathbb{I}_S, \pi_{X*} \pi_X^! \mathbb{M}_{\text{S}}(-q)[-p]).
\]

If \(f : Y \to X \) is a proper morphism, then the direct image with compact support, \(f_* \), is canonically isomorphic to \(f_* \) (cf. [CD19 2.2.7]), so that the adjunction of \((f_!, f^!\)) induces a natural transformation

\[
\pi_{Y*} \pi_Y^! = \pi_{X*} f_* f^! \pi_X^! \to \pi_{X*} \pi_X^! \to \pi_{X*} \pi_X^!.
\]
which in turn produces a direct image in BM-homology

\[f_* : BM_{p,q}(Y) \rightarrow BM_{p,q}(X). \]

As expected Borel-Moore homology is a module, in the classic sense, over the \(E \)-cohomology. More precisely, there is a cap product:

\[E^{p,q}(X) \times BM_{r,s}(X) \rightarrow BM_{p+r-s,q}(X), \]

where a pair \((a, m)\) is mapped into the element \(a \cdot m \in BM_{p+r-s,q}(X)\) defined as

\[\llbracket X \rrbracket \mapsto \llbracket E_X(q)[p] \rrbracket \]
\[\mapsto \pi^*_X(E_S) \land \pi^*_X(E_S)(q-s)[p-r] \]
\[\cong \pi^*_X(E_S \land E_S)(q-s)[p-r] \]
\[\mapsto \pi^*_X(E_S)(q-s)[p-r]. \]

Here, \(\mu \) stands for the structural map of \(E \), and the first isomorphism is due to the fact that the structural map of the bilateral module \(\llbracket \pi^*, \pi^! \rrbracket \) is an isomorphism (cf. [Ayo07, 2.3.27]).

1.7 (The Thom space). Let \(V \rightarrow X \) be a vector bundle of rank \(d \) and let us write \(\bar{V} := \mathbb{P}(V \oplus \llbracket \rrbracket) \) for the projective completion.

The Thom space of \(V \) is defined as

\[Th(V) := V/V - \{0\} \simeq \bar{V}/\mathbb{P}(V) \in SH(X). \]

Let \((E, c_1)\) be an oriented absolute ring spectrum. Let us write

\[E^{*,*}(Th(V)) := \text{Hom}_{SH(X)}(Th(V), E_X[\ast][\ast]). \]

There exists a long exact sequence

\[\cdots \rightarrow E^{*,*}(Th(V)) \xrightarrow{i^*} E^{*,*}(\bar{V}) \xrightarrow{i^*} E^{*,*}(\mathbb{P}(V)) \rightarrow \cdots. \]

The Thom class is the following element in cohomology:

\[t(V) := \sum_{i=0}^d (-1)^i c_i(V)x^i \in E^{2d,d}(\bar{V}) \quad x := c_1(O_{\bar{V}}(-1)). \]

As a consequence of the projective bundle theorem ([Dég18, 2.1.13]), \(i^*(t(V)) = 0 \), so that there exists a unique class \(t^{\text{ref}}(V) \in E^{2d,d}(Th(V)) \), called the refined Thom class, such that \(\pi(t^{\text{ref}}(V)) = t(V) \). Moreover, the cohomology of the Thom space \(E(Th(V)) \) is a free \(E(X) \)-module of rank one generated by \(t^{\text{ref}}(V) \in E^{2d,d}(Th(V)) \).

Also, let us recall that the deformation to the normal bundle induces an isomorphism

\[E(Th(V)) \xrightarrow{\cong} E_X(\bar{V}) \]
\[t^{\text{ref}}(V) \mapsto \tilde{\eta}_X^V, \]

where \(\tilde{\eta}_X^V \) denotes the refined fundamental class of \(X \) on \(V \) (cf. [Dég18, 2.3.1]).

Similar statements are true for \(E \)-modules. Due to the lack of a reference, let us sketch the proof of the projective bundle theorem in this case:

Lemma 1.8. Let \((E, c_1)\) be an oriented absolute ring spectrum, let \(M \) be an absolute \(E \)-module, and let \(V \rightarrow X \) be a vector bundle.

It holds that

\[M(\mathbb{P}(V)) = M(X) \otimes_{E(X)} E(\mathbb{P}(V)). \]

\(^1\)For the definition of left and right module in this context see [Ayo07, 2.1.94].
Proof. As in [Dég08, 3.2], due to Mayer-Vietoris we can reduce to the case of a trivial vector bundle. To prove $M(P^n_\mathbb{P}^n) = M(X) \otimes_{E(X)} E(P^n_\mathbb{P}^n)$ we can assume that $X = S$ and proceed by induction on n. The case $n = 0$ is trivial; for the induction step consider the homotopy cofiber sequence

$$\mathbb{P}^{n-1} \overset{i}{\to} \mathbb{P}^n \overset{\pi}{\to} \mathbb{P}^n/\mathbb{P}^{n-1}$$

that produces a long exact sequence

$$\cdots \to M(\mathbb{P}^n/\mathbb{P}^{n-1}) \to M(\mathbb{P}^n) \overset{i^*}{\to} M(\mathbb{P}^{n-1}) \to \cdots.$$

Since $\mathbb{P}^n/\mathbb{P}^{n-1} \simeq \mathbb{I}(n)(2n)$ (cf. [MV99, 3.2.18]), $M^{p,q}(\mathbb{P}^n/\mathbb{P}^{n-1}) = M^{p-2n,q-n}(S)$. By the induction hypothesis we deduce that i^* is surjective (since we have $i^*(m \cdot c_1(O_{\mathbb{P}^n}(-1))^j) = m \cdot c_1(O_{\mathbb{P}^n}(-1))^j$ for $m \in M(X)$). The map $\pi : M^{p-2n,q-n}(S) \to M^{p,q}(\mathbb{P}^n)$ maps $m \mapsto m \cdot c_1(O_{\mathbb{P}^n}(-1))^n$ (cf. [Dég18, Proof 2.1.3]). Hence, the thesis follows.

As a consequence of this lemma, for any vector bundle $V \to X$, the M-cohomology of its Thom space is isomorphic to the M-cohomology of X through the morphism

$$M(X) \xrightarrow{\sim} M^{p,q}(\text{Th}(V))$$

$$m \quad \mapsto \quad m \cdot t^\text{ref}(V).$$

Remark 1.9. More generally, all the statements above remain true if V is a virtual vector bundle. Indeed, as shown by Riou ([Riou10]), the Thom space construction in SH extends to a canonical functor

$$\text{Th} : K(X) \to \text{SH}(X)$$

defined on the category $K(X)$ of virtual vector bundles ([Del87, 4.12]).

In particular, this means that for every short exact sequence of vector bundles $0 \to E' \to E \to E'' \to 0$ in X there is a canonical isomorphism in $\text{SH}(X)$:

$$\text{Th}(E') \wedge \text{Th}(E'') \xrightarrow{\sim} \text{Th}(E).$$

It induces an isomorphism (cf. [Dég18, 2.4.8])

$$E(\text{Th}(E')) \otimes E(\text{Th}(E'')) \xrightarrow{\sim} E(\text{Th}(E)), \quad t^\text{ref}(E') \otimes t^\text{ref}(E'') \mapsto t^\text{ref}(E') \cdot t^\text{ref}(E'').$$

Thus, the Thom class of a virtual vector bundle $\xi = [E] - [E']$ is defined to be the class $t^\text{ref}(\xi) = t^\text{ref}(E) \cdot t^\text{ref}(E')^{-1}$.

2. Direct image for proper morphisms

In what follows, we will make a strong use of the following statement, which is the duality theorem in the motivic setting proved by Ayoub (cf. [Ayo07, 1.4.2], [SGA4, XVIII.3.2.5]). More concretely, we will use its extension to the non-quasi-projective setting of [CD19, 2.4.50].

Theorem 2.1. If $\pi : X \to T$ is a smooth morphism, there exists a functorial isomorphism

$$\pi^*(___) \wedge \text{Th}(T_\pi) \xrightarrow{\sim} \pi^!(__),$$

where T_π stands for the virtual tangent bundle of π (cf. [Ful98, B.2.7]).
In the particular case of a smooth S-scheme, $\pi_X: X \to S$, the tangent bundle of π_X is the tangent bundle T_X of X. Hence, the theorem above implies the following isomorphism:

$$\text{Hom}_{\text{SH}(X)}(\text{Th}(-T_X), M_X(q)[p]) \simeq \text{Hom}_{\text{SH}(X)}(\iota_X, \pi_X^* M_S(q)[p])$$

which relates the cohomology of the Thom space of the tangent bundle to its Borel-Moore homology; that is to say,

$$M^{p,q}(\text{Th}(-T_X)) \simeq M^{BM}_{-p,-q}(X).$$

Combining these facts with the computation of the cohomology of the Thom space $\text{Th}(\mathcal{E})$, we obtain duality isomorphisms between the M-cohomology and the Borel-Moore homology of a smooth scheme:

$$M^{p,q}(X) \simeq M^{BM}_{p+2n,q+n}(\text{Th}(-T_X)) \simeq M^{BM}_{-p-2n,-q-n}(X).$$

With these isomorphisms, it is possible to define a direct image in cohomology without projective assumptions:

Definition 2.2. Let (\mathcal{E}, c_1) be an oriented absolute ring spectrum and let M be an absolute \mathcal{E}-module. The direct image—in M-cohomology—of a proper morphism $f: Y \to X$ between smooth S-schemes is defined as the composition

$$M^{p,q}(Y) \simeq M^{BM}_{-p-2n,-q-n}(Y) \xrightarrow{f_*} M^{BM}_{-p-2n,-q-n}(X) \simeq M^{p+2d,q+d}(X),$$

where $n = \dim_S Y$ and $d = n - \dim_S X$.

Remark 2.3. Due to Ayoub’s duality, it is not surprising that we can express the direct image in terms of Thom spaces. Let us describe in detail the case of a closed immersion $i: Z \to X$.

Let $N_{Z/X}$ be the normal bundle and recall that $T_Z = i^* T_X - N_{Z/X} \in K_0(Z)$. Then

$$\text{Th}(T_Z) = \text{Th}(-N_{Z/X}) \wedge \text{Th}(i^* T_X) = \iota^!(\iota_X) \wedge \iota^*(\text{Th}(T_X)),$$

because of isomorphism (11) and the fact that $\iota^!(\iota_X) = \text{Th}(-N_{Z/X})$ (cf. [Dég18, 1.3.5.3]) and $\text{Th}(i^* T_X) = i^*(\text{Th}(T_X))$.

Therefore, there is a map

$$\text{Hom}_{\text{SH}(Z)}(\iota_Z, \text{Th}(T_Z) \wedge \mathcal{E}_Z) \xrightarrow{\text{ad}_{i^!, i^*}} \text{Hom}_{\text{SH}(X)}(\iota_X, \iota^! \iota^!(\iota_X) \wedge \text{Th}(T_X) \wedge \mathcal{E}_X) \xrightarrow{\text{ad}_{i^!, i^*}} \text{Hom}_{\text{SH}(X)}(\text{Th}(T_Z), \mathcal{E}_X),$$

where $\text{ad}_{i^!, i^*}$ is obtained by composing with the natural adjunction $i^! i^* \to \text{Id}$.

Denote $\pi = \pi_X$ and $\pi' = \pi_Z$. Observe that $T_{\pi i} = T_{\pi'} = T_Z$; then $\text{Th}(T_{\pi i}) = \text{Th}(T_Z) = \iota^!(\iota_X) \wedge \iota^*(\text{Th}(T_{\pi'}))$. The compatibility of the above map $\mathcal{E}(\text{Th}(-T_Z)) \to \mathcal{E}(\text{Th}(-T_X))$ and the direct image in Borel-Moore homology derive
from the commutative square

\[\begin{array}{c}
\pi_1 i_! \pi_! (_) \\
\downarrow \\
\pi_1 i_! (\text{Th}(T_{\pi}) \wedge i^* \pi^*(_)) \\
\downarrow \\
\pi_1 (i_! (_ I_X) \wedge i^* (\text{Th}(T_{\pi}) \wedge \pi^*(_))) \\
\downarrow \\
\pi_1 (i_! (_ I_X)) \wedge \pi^*(_) \xrightarrow{\text{ad}_{i_! i^*}} \pi_1 \pi^*(_) ,
\end{array} \]

where the vertical isomorphisms arise from duality and the projection formula (cf. [Ayo07, 2.3.10]).

Remark 2.4. If \(i : Z \to X \) is a closed immersion of codimension \(d \), then the direct image can be refined to a direct image with support. More precisely, let us write \(\pi_! : E^*(Z) \to E^*+2d,*,+d(Z) \) for the morphism defined as follows:

\[\begin{array}{c}
\text{Hom}_{SH}(Z)(_ I_Z, \text{Th}(T_Z) \wedge E_Z) \\
\downarrow \\
\text{Hom}_{SH}(Z)(_ I_Z, \text{Th}(-N_{Z/X}) \wedge \text{Th}(i^* T_X) \wedge E_Z) \\
\downarrow \\
\text{Hom}_{SH}(Z)(_ I_Z, \text{Th}(-N_{Z/X}) \wedge E_Z) \sim \to E(\text{Th}(N_{Z/X})),
\end{array} \]

where the right equality is a consequence of the deformation to the normal bundle (cf. [Dég18, §1.3]).

Theorem 2.5. Let \((E, c_1) \) be an oriented absolute ring spectrum and let \(M \) be an absolute \(E \)-module.

The direct image in \(M \)-cohomology defined in Definition 2.2 between smooth \(S \)-schemes satisfies:

1. **Functoriality:** for any proper morphisms \(Z \xrightarrow{u} Y \xrightarrow{f} X \),
 \[(fg)_* = f_* g_* . \]

2. **Normalization:** for any closed immersion \(i : H \to X \) of codimension one,
 \[i_*(a) = i_b(a \cdot c_1^H(L_H)) , \]
 where \(i_b \) is the morphism of forgetting support (cf. Remark 1.3).

3. **Key formula:** for any closed immersion \(i : Z \to X \) of codimension \(d \),
 \[\pi^* i_*(a) = j_*(c_{d-1}(K) \cdot \pi^*(a)) , \]
 where \(\pi^* : B_Z X \to X \) is the blowing-up of \(Z \) in \(X \) with exceptional divisor
 \(j : P(N_{Z/X}) \to B_Z X \).

4. **Projection formula:** for any proper morphism \(f : Y \to X \) and any elements \(b \in E(X) \) and \(m \in M(Y) \), it holds that
 \[f_*(f^*(b) \cdot m) = b \cdot f_*(m) . \]
 (An analogous formula holds for general projective morphisms; cf. Corollary 2.6.)

2The key formula also holds for general projective morphisms; cf. Corollary 2.6.
Proof. Functoriality is evident from the definition.

Both normalization and the projection formula follow from the comparison made in Remark 2.3. Indeed, for a closed immersion \(i: Z \to X\), the morphism \(E(\text{Th}(-T_Z)) \to E(\text{Th}(-T_X))\) maps \(a \cdot t^{\text{ref}}(-T_Z)\) into \(i_*(a \cdot t^{\text{ref}}(N_{Z/X})) \cdot t^{\text{ref}}(-T_X)\) (cf. [Dég18, 2.4.8]). Hence

\[
i_*(1) = i_*(t^{\text{ref}}(N_{Z/X})).
\]

In the case of codimension one, one can explicitly compute that \(t^{\text{ref}}(N_{H/X}) = c^H(I_H)\), where \(I_H\) is the sheaf of ideals defining \(H\) (cf. [Nav16b, 2.19]). In addition, formula (7) also shows that our direct image coincides with that of [Dég18, 2.3.1]. Therefore it also satisfies the key formula (cf. [Dég18, 2.4.2]).

Finally, the projection formula is equivalent to its analogue in Borel-Moore homology. To be precise, we have to check that for \(b \in E^{p,q}(X)\) and \(m \in M_{r,s}^{BM}(Y)\),

\[
f_*(f^*(b) \cdot m) = b \cdot f_*(m).
\]

Let \(\pi_X: X \to S\) and \(\pi_Y: Y \to S\) be the structural morphisms. Without loss of generality, assume that \(p = q = r = s = 0\). By definition, the left hand side of the equation is the adjoint to the morphism

\[
\pi_X|\pi_X^{-1}S \xrightarrow{ad} \pi_Y!\pi_Y^*|\pi_X^{-1}S \xrightarrow{f^*(b)} \pi_Y!E_Y \simeq E_S \land \pi_Y!(\mathbb{1}_Y) \xrightarrow{(1^\land m)} E_S \land M_S \xrightarrow{\mu} M_S.
\]

The right hand side is the adjoint of

\[
\pi_X|\pi_X^{-1}S \xrightarrow{\pi_X^{-1}(b)} \pi_X|E_X \simeq E_S \land \pi_X|\pi_X^{-1}S \xrightarrow{1^\land ad} E_S \land \pi_Y!(\mathbb{1}_Y) \xrightarrow{1^\land m} E_S \land M_S \xrightarrow{\mu} M_S.
\]

These two morphisms agree due to the same argument of [Dég18, 1.2.10.E7], replacing inverse images by exceptional images and using the analogous compatibility.

\[\square\]

Corollary 2.6. Let \((E, c_1)\) be an oriented absolute ring spectrum and let \(f: Y \to X\) be a projective morphism between smooth \(S\)-schemes.

The direct image \(f_*: E(Y) \to E(X)\) defined in Definition 2.2 coincides with that of [Dég18, 3.2.6] and [Nav16b, 2.32].

Proof. These three definitions satisfy the conditions of the uniqueness result from [Nav16b, 2.34], restricted to smooth \(S\)-schemes. The result follows from the same arguments of the cited result.

\[\square\]

A direct image for the cohomology defined by absolute modules over oriented absolute ring spectra was defined in [Nav16b, §2]. For the sake of completeness, let us prove here a uniqueness result.

Theorem 2.7. Let \((E, c_1)\) be an oriented absolute ring spectrum and let \(M\) be an absolute \(E\)-module.

There exists a unique way of assigning, for any projective morphism \(f: Y \to X\) between smooth \(S\)-schemes, a group morphism \(f_*: M(Y) \to M(X)\) satisfying the following properties:

1. **Functoriality**: for any projective morphisms \(Z \xrightarrow{g} Y \xrightarrow{f} X\), \((fg)_* = f_*g_*\).
2. **Normalization**: for any closed immersion \(i: H \to X\) of codimension one, \(i_*(a) = i_*(a \cdot c^H_1(L_H))\).
(3) **Key formula**: for any closed immersion \(i: Z \to X \) of codimension \(n \),
\[
\pi^* i_*(a) = j_*(c_{n-1}(K) \cdot \pi'^*(a)),
\]
where \(\pi^*: B_Z X \to X \) is the blowing-up of \(Z \) in \(X \) with exceptional divisor
\(j: \mathbb{P}(N_{Z/X}) \to B_Z X \).

(4) **Projection formula**: for any projective morphism \(f: Y \to X \) and any
elements \(b \in \mathbb{E}(X) \) and \(m \in \mathbb{M}(Y) \), it holds that
\[
f_*(f^*(b) \cdot m) = b \cdot f_*(m).
\]

Proof. Any projective morphism \(f: Y \to X \) factors as the composition of a closed
embedding \(i: Y \to \mathbb{P}_X^n \) and a projection \(p: \mathbb{P}_X^n \to X \).

Properties (1), (2), and (3) characterize the direct image for closed immersions. The projection formula characterizes the direct image for a projection \(p \) due to Lemma 1.8

Remark 2.8. A uniqueness result for direct images of proper morphisms is also true, due to work in progress of F. Dégilde. However, such a statement requires us to take into account Borel-Moore homology, and therefore the framework of bivariant theories is more convenient (cf. [FM81]).

2.1. **Direct image on \(K \)-theory.** Let us prove that the direct image for proper
morphisms of Definition 2.2 coincides, when applied to the spectrum \(\mathrm{KGL} \) and
regular schemes, with the usual definition of direct image for higher \(K \)-theory (cf. [TT90, 3.16.4]).

To this end, let us firstly introduce a general definition.

Definition 2.9. Let \((E, c_1)\) be an oriented absolute ring spectrum and let \(\mathbb{M} \) be an
absolute \(E \)-module. We define the inverse image, in the Borel-Moore \(\mathbb{M} \)-homology,
of a smooth \(S \)-morphism \(f: Y \to X \) to be
\[
\mathbb{M}_{p, q}^\mathrm{BM}(X) \simeq \mathbb{M}^{-p+2n, -q+n}(X) \xrightarrow{f^*} \mathbb{M}^{-p+2n, -q+n}(Y) \simeq \mathbb{M}_{p+2d, q+n}^\mathrm{BM}(Y),
\]
where \(n = \dim_S X \) and \(d = n - \dim_S Y \).

Let us recall a recent construction by Jin of a spectrum which represents the \(G \)-theory of a scheme and its comparison result with the \(K \)-theory spectrum (cf. [Jin16b], [Jin17]).

Theorem 2.10 (Jin). Let \(S \) be a finite dimensional noetherian scheme.

1. There exists a spectrum \(\mathrm{GGL}_S \in \mathrm{SH}(S) \) representing Thomason’s \(G \)-theory. In other words, for any smooth \(S \)-scheme \(X \) and any \(n \in \mathbb{Z} \) there exist canonical isomorphisms
\[
G_n(X) = \mathrm{Hom}_{\mathrm{SH}(S)}(X[n], \mathrm{GGL}_S).
\]

2. If \(S \) is regular and \(\pi: X \to S \) is a separated morphism of finite type, there are canonical isomorphisms
\[
\mathrm{GGL}_S \simeq \mathrm{KGL}_S, \quad \mathrm{GGL}_X \simeq \pi^! \mathrm{KGL}_S
\]
compatible with the proper covariance of \(G \)-theory and smooth contravariance of \(G \)-theory (cf. [TT90, 3.14.1]). In other words, for \(f: T \to S \) a
smooth morphism of relative dimension \(d \), \(p : Y \to X \) a proper morphism, and \(n, m \in \mathbb{Z} \), the following squares commute:

\[
\begin{array}{ccc}
KGL_{n,m}^BM(Y) & \xrightarrow{\sim} & G_{n-2m}(Y) \\
p_* & & \downarrow \ \\
KGL_{n,m}^BM(X) & \xrightarrow{\sim} & G_{n-2m}(X),
\end{array}
\]

\[
\begin{array}{ccc}
KGL_{n+2d,m+d}^BM(T) & \xrightarrow{\sim} & G_{n-2m}(T) \\
f^* & & \downarrow f^* \\
KGL_{n,m}^BM(S) & \xrightarrow{\sim} & G_{n-2m}(S).
\end{array}
\]

If \(X \) is a smooth \(S \)-scheme, the isomorphism of (6) together with Jin’s result \((\pi^!KGL_S \simeq GGL_X)\) allows us to define an isomorphism

\[
\begin{array}{ccc}
KGL^BM(X) & \xrightarrow{\sim} & G(X) \\
\phi & & \downarrow \ \\
\end{array}
\]

On the other hand, let us recall that for every scheme \(X \) there is a natural map \(\Phi : K(X) \to G(X) \), which is an isomorphism whenever \(X \) is regular.

Proposition 2.11. If \(X \) is a smooth \(S \)-scheme, then the two isomorphisms \(\varphi, \Phi : K(X) \to G(X) \) considered above coincide.

Proof. Denote by \(\eta_f \in KGL^BM(X) \) the image of \([\mathcal{O}_X] \otimes t_{\text{ref}}(-T_X) \in K(X) \otimes K(\text{Th}(-T_X))\) through the isomorphism \((6) \). Since both \(\Phi \) and \(\varphi \) are morphisms of \(K(X) \)-modules (in the classical sense), we only need to check that the image of \(\eta_f \) through the second isomorphism of the construction of \(\varphi \) is \([\mathcal{O}_X] \in G(X)\).

Let \(\pi : X \to S \) be the structural map. The compatibility with smooth contravariance of Theorem 2.10 amounts to the commutativity of both squares of the diagram

\[
\begin{array}{ccc}
KGL^BM(X) & \xleftarrow{\sim} & K(X) \otimes K(\text{Th}(X)) \\
\pi^* & & \downarrow \pi^* \\
KGL^BM(S) & \xrightarrow{\sim} & K(S) \xrightarrow{\sim} G(S).
\end{array}
\]

Chasing \([\mathcal{O}_S] \in K(S)\) along that diagram allows us to conclude. \(\square \)

Let \(f : Y \to X \) be a proper morphism between smooth \(S \)-schemes. Using the notation introduced above, the direct image \(f_* : K(Y) \to K(X) \) defined by Thomason in \([TT90\text{ 3.16.4}]\) can be described as the composition

\[
K(Y) \xrightarrow{\Phi} G(Y) \xrightarrow{\Phi^{-1}} K(X).
\]

Corollary 2.12. Let \(f : Y \to X \) be a proper morphism between smooth \(S \)-schemes. The direct image \(f_* : K(Y) \to K(X) \) of Definition 2.2 coincide with the direct image \(f_* : K(Y) \to K(X) \) of \([TT90\text{ 3.16.4}]\).³

³We warn the reader that the direct image \(f_* \) is denoted by \(f_* \) in \([TT90\).
Proof. The statement follows from the commutativity of the following diagram:

\[
\begin{array}{ccc}
K(Y) & \xrightarrow{f_*} & K(X) \\
\sim & & \sim \\
\Phi & \downarrow & \Phi^{-1} \\
KGL^{BM}(Y) & \xrightarrow{\sim} & KGL^{BM}(X) \\
\sim & & \sim \\
G(Y) & \xrightarrow{\sim} & G(X)
\end{array}
\]

3. Riemann-Roch theorems

Let \((E, c_1)\) and \((F, c_1)\) be oriented absolute ring spectra. To avoid confusion, we overline notation to refer to elements and morphisms in the \(F\)-cohomology.

3.1. If \(\varphi: (E, c_1) \to (F, c_1)\) is a morphism of oriented absolute ring spectra, then

\[\varphi(c_1) = G(\bar{c}_1) \cdot \bar{c}_1\]

for a unique invertible series \(G(t) \in (\mathbb{F}(S)[[t]])^* = \mathbb{F}(\mathbb{P}^\infty_F)^*\) (Nav16b, 1.34).

Let us write \(G_X\) for the multiplicative extension of \(G(t)\). To be more precise, if \(V \to X\) is a vector bundle, the splitting principle assures the existence of a base change \(\pi: X' \to X\),injective in cohomology, such that \(\pi^*V = L_1 + \cdots + L_r\) is a sum of line bundles in \(K_0(X')\) (cf. Nav16b, 1.35). We use the notation

\[G_X(V) := G(L_1) \cdot \ldots \cdot G(L_r) \in \mathbb{F}(X),\]

where \(G(L)\) stands for \(G(c_1(L))\).

Remark 3.2. Let \(\varphi: (E, c_1) \to (F, c_1)\) be a morphism of oriented absolute ring spectra and let \(G \in \mathbb{F}[S[[t]]\) be the unique series such that \(\varphi(c_1) = G(\bar{c}_1) \cdot \bar{c}_1\).

If \(i: Z \to X\) is a closed immersion and \(N_{Z/X}\) stands for its normal bundle, then Déglise (Dég18, 4.2.3) proved that, for any \(a \in E(Z)\), the following Riemann-Roch formula holds:

\[\varphi(p_i(a)) = p_i(G_X^{-1}(-N_{Z/X}) \cdot \varphi(a))\] (8)

To be more precise, the following lemma proves the formula we will require later.

Lemma 3.3. Let \(\varphi: (E, c_1) \to (F, c_1)\) be a morphism of oriented absolute ring spectra such that \(\varphi(c_1) = G(\bar{c}_1) \cdot \bar{c}_1\).

If \(V \to X\) is a vector bundle, the following equality holds on \(\mathbb{F}(\text{Th}(V))\):

\[\varphi(t^{\text{ref}}(V)) = G_X^{-1}(-V) \cdot t^{\text{ref}}(V)\]

Proof. If \(s: X \to V\) denotes the zero section, then \(p_s(1) = t^{\text{ref}}(V) \in \mathbb{E}(\text{Th}(V))\) (cf. equation (4) and Remark 2.4). Moreover, \(s\) is a closed immersion whose normal bundle equals \(V\); thus, the Riemann-Roch formula (8) unfolds in this case into

\[\varphi(t^{\text{ref}}(V)) = \varphi(p_s(1)) \equiv p_s(G_X^{-1}(-V) \varphi(1)) = p_s(G_X^{-1}(-V)) = G_X^{-1}(-V) t^{\text{ref}}(V)\]

\(\square\)
Theorem 3.4. Let \(f : Y \to X \) be a proper morphism between smooth \(S \)-schemes. Let \(\varphi : (E, c_1) \to (F, c_1) \) be a morphism of oriented absolute ring spectra such that \(\varphi(c_1) = G(c_1) \cdot \tilde{c}_1 \) and let \(G^{-1}_x \) stand for the multiplicative extension of \(G^{-1} \in \mathbb{F}(S)[[t]] \).

The following square commutes:

\[
\begin{array}{c}
\mathbb{E}(Y) \xrightarrow{f_*} \mathbb{E}(X) \\
\downarrow \mathbb{F}(T_Y) \varphi \downarrow \mathbb{F}(T_X) \varphi \\
\mathbb{F}(Y) \xrightarrow{f_*} \mathbb{F}(X).
\end{array}
\]

Proof. The statement follows from the commutativity of the following diagram:

\[
\begin{array}{c}
\mathbb{E}(Y) \xrightarrow{\sim} \mathbb{E}(\text{Th}(-T_Y)) \simeq \mathbb{E}^\text{BM}(-n,-q-n) \xrightarrow{f_*} \mathbb{E}^\text{BM}(X) = \mathbb{E}(\text{Th}(-T_X)) \xrightarrow{\sim} \mathbb{E}(X) \\
\downarrow \mathbb{F}^{-1}(T_Y) \varphi \downarrow \mathbb{F}(T_X) \varphi \\
\mathbb{F}(Y) \xrightarrow{\sim} \mathbb{F}(\text{Th}(-T_Y)) \simeq \mathbb{F}^\text{BM}(Y) \xrightarrow{f_*} \mathbb{F}^\text{BM}(X) \simeq \mathbb{F}(\text{Th}(-T_X)) \xrightarrow{\sim} \mathbb{F}(X).
\end{array}
\]

Let us check each of the three squares separately.

For any element \(a \in \mathbb{E}^{p,q}(Y) \), we have

\[
a \cdot \mathbf{t}^\text{ref}(-T_Y) \in \mathbb{E}(\text{Th}(-T_Y)) \simeq \mathbb{E}^{BM}_{-p-2n,-q-n}(Y).
\]

Since \(\varphi \) is a morphism of rings and due to the previous lemma,

\[
\varphi(a \cdot \mathbf{t}^\text{ref}(-T_Y)) = \varphi(a) \cdot \mathbf{t}^\text{ref}(-T_Y) = \varphi(a) \cdot G^{-1}_x(T_Y) \cdot \tilde{t}^\text{ref}(-T_Y).
\]

Hence, if \(n = \dim_S Y \), the following diagram commutes:

\[
\begin{array}{c}
\mathbb{E}^{p,q}(Y) \xrightarrow{\sim} \mathbb{E}^{p+2n,q+n}(\text{Th}(-T_Y)) \simeq \mathbb{E}^{BM}_{-p-2n,-q-n}(Y) \\
\downarrow \mathbb{F}^{-1}(T_Y) \varphi \downarrow \mathbb{F}(T_X) \varphi \\
\mathbb{F}^{p,q}(Y) \xrightarrow{\sim} \mathbb{F}^{p+2n,q+n}(\text{Th}(-T_Y)) \simeq \mathbb{F}^{BM}_{-p-2n,-q-n}(Y).
\end{array}
\]

Analogously, if \(d = n - \dim_S X \) the diagram

\[
\begin{array}{c}
\mathbb{E}^{BM}_{-p-2n,-q-n}(X) \simeq \mathbb{E}^{p+2n,q+n}(\text{Th}(-T_X)) \xrightarrow{\sim} \mathbb{E}^{p+2d,q+d}(X) \\
\downarrow \mathbb{F}(T_X) \varphi \\
\mathbb{F}^{BM}_{-p-2n,-q-n}(X) \simeq \mathbb{F}^{p+2n,q+n}(\text{Th}(-T_X)) \xrightarrow{\sim} \mathbb{F}^{p+2d,q}(X)
\end{array}
\]

commutes.

Finally, the following square also commutes:

\[
\begin{array}{c}
\mathbb{E}^{BM}_{-p-2n,-q-n}(Y) \xrightarrow{f_*} \mathbb{E}^{BM}_{-p-2n,-q-n}(X) \\
\downarrow \varphi \\
\mathbb{F}^{BM}_{-p-2n,-q-n}(Y) \xrightarrow{f_*} \mathbb{F}^{BM}_{-p-2n,-q-n}(X)
\end{array}
\]

because direct image in Borel-Moore homology is defined out of the adjunction \(f_! f^* \to \text{Id} \), which is a natural transformation and hence compatible with morphisms of spectra. \(\square \)
The analogous statement for absolute modules is a consequence of the theorem above.

Corollary 3.5. Let \(f : Y \to X \) be a proper morphism between smooth \(S \)-schemes.

Let \(\varphi : (E, c_1) \to (F, \bar{c}_1) \) be a morphism of oriented absolute ring spectra such that \(\varphi(c_1) = G(\bar{c}_1) \cdot \bar{c}_1 \in F(\mathbb{P}^\infty_S) \). Also, let \(\Phi : M \to \bar{M} \) be a \(\varphi \)-morphism of absolute modules.

The following diagram commutes:

\[
\begin{array}{ccc}
M(Y) & \xrightarrow{f^*} & M(X) \\
G^{-1}_\infty(T_Y) \Phi & \downarrow & G^{-1}_\infty(T_X) \Phi \\
M(Y) & \xrightarrow{f^*} & M(X)
\end{array}
\]

Riemann-Roch for \(K \)-theory and motivic cohomology. Let \(\text{KGL}_Q \) be the \(Q \)-localization of the \(K \)-theory ring spectrum and let \(H_B \) be the Beilinson’s motivic cohomology spectrum (cf. Example 1.2).

The higher Chern character \(\text{ch} : \text{KGL}_Q \to \bigoplus_i H_B[2i](i) \) is an isomorphism of absolute ring spectra (cf. [Ri10, 6.2.3.9]). It does not preserve orientations but satisfies

\[
\text{ch}(c_1) = \frac{1 - e^{\bar{c}_1}}{\bar{c}_1}.
\]

Consequently, let us consider the inverse of this series, called the **Todd series**:

\[
\text{Td}(t) := \left(\frac{1 - e^t}{t} \right) = \frac{t}{1 - e^t}.
\]

Corollary 3.6. Let \(S \) be the spectrum of a Dedekind domain and let \(f : Y \to X \) be a proper morphism between smooth \(S \)-schemes.

The following diagram, relating higher \(K \)-theory and higher Chow groups with rational coefficients, commutes:

\[
\begin{array}{ccc}
K(Y)_Q & \xrightarrow{f^*} & K(X)_Q \\
\text{Td}(T_Y) \text{ch} & \downarrow & \text{Td}(T_X) \text{ch} \\
CH(Y)_Q & \xrightarrow{f^*} & CH(X)_Q
\end{array}
\]

Remark 3.7. To our knowledge, this is the first Riemann-Roch statement involving higher \(K \)-theory that does not assume any projective hypotheses (cf. [Gil15], [Dég18], [HS15], [Nav16b]).

Regarding Grothendieck-Riemann-Roch statements involving the \(K_0 \) group, the most general formula without projective assumptions we know, due to Fulton and Gillet ([FG83]), applies to schemes defined over a field.

Theorem 3.5 also applies to the modules we described in Example 1.2. In particular, we obtain the following result:

Corollary 3.8. Let \(S \) be a finite dimensional noetherian scheme and let \(f : Y \to X \) be a proper morphism between smooth \(S \)-schemes. Let \(g : T \to X \) be a morphism of schemes and let us write \(g_Y : T \times_X Y \to Y \) for the induced map.
If either g is proper or f is smooth, then the following diagram commutes:

$$
\begin{array}{c}
KH(g_Y)_\mathbb{Q} \xrightarrow{f_*} KH(g)_\mathbb{Q} \\
\text{Td}(T_Y)\text{ch} \downarrow \quad \downarrow \text{Td}(T_X)\text{ch} \\
H_M(g_Y, \mathbb{Q}) \xrightarrow{f_*} H_M(g, \mathbb{Q}).
\end{array}
$$

Arithmetic Riemann-Roch. Let $\widehat{\text{KGL}}$ and \widehat{H}_B be the arithmetic K-theory and motivic cohomology ring spectra defined by Holmstrom-Scholbach in [HS15] (see Example 1.4). Let us also consider the arithmetic Chern character (cf. [HS15, 4.2], [Nav16b, §1.2]), which is a ch-morphism of modules:

$$
\widehat{\text{ch}} : \widehat{\text{KGL}} \to \widehat{H}_B.
$$

As a consequence of Corollary 3.5, there also follows an arithmetic formula:

Corollary 3.9. Let $f : Y \to X$ be a proper morphism between smooth schemes over an arithmetic ring.

The following diagram commutes:

$$
\begin{array}{c}
\widehat{KH}(Y)_\mathbb{Q} \xrightarrow{f_*} \widehat{KH}(X)_\mathbb{Q} \\
\text{Td}(T_Y)\widehat{\text{ch}} \downarrow \quad \downarrow \text{Td}(T_X)\widehat{\text{ch}} \\
\widehat{H}_M(Y, \mathbb{Q}) \xrightarrow{f_*} \widehat{H}_M(f, \mathbb{Q}).
\end{array}
$$

Acknowledgments

The authors would like to thank J. Ayoub, J. I. Burgos Gil, F. Déglise, H. Gillet, and F. Jin for many helpful discussions and comments.

References

[Ayo07] Joseph Ayoub, *Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I* (French, with English and French summaries), Astérisque 314 (2007), x+466 pp. (2008). MR2423375; II 315, (2007), vi+364 pp. (2008). MR2438151

[BFM75] Paul Baum, William Fulton, and Robert MacPherson, *Riemann-Roch for singular varieties*, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 101–145. MR412190

[Blo86] Spencer Bloch, *Algebraic cycles and higher K-theory*, Adv. in Math. 61 (1986), no. 3, 267–304, DOI 10.1016/0001-8708(86)90081-2. MR852815

[BS58] Armand Borel and Jean-Pierre Serre, *Le théorème de Riemann-Roch* (French), Bull. Soc. Math. France 86 (1958), 97–136. MR116022

[Cis13] Denis-Charles Cisinski, *Descente par éclatements en K-théorie invariante par homotopie* (French, with English and French summaries), Ann. of Math. (2) 177 (2013), no. 2, 425–448, DOI 10.4007/annals.2013.177.2.2. MR3010804

[CD19] Denis-Charles Cisinski and Frédéric Déglise, *Triangulated categories of mixed motives*, Springer Monographs in Mathematics, Springer, Cham, [2019] ©2019. MR3971240

[CD12] Denis-Charles Cisinski and Frédéric Déglise, *Mixed Weil cohomologies*, Adv. Math. 230 (2012), no. 1, 55–130, DOI 10.1016/j.aim.2011.10.021. MR2900540

[Dég08] Frédéric Déglise, *Around the Gysin triangle. II*, Doc. Math. 13 (2008), 613–675. MR2466188

[Dég18] Frédéric Déglise, *Orientation theory in arithmetic geometry. K-Theory—Proceedings of the International Colloquium, Mumbai, 2016*, Hindustan Book Agency, New Delhi, 2018, pp. 239–347. MR3930052
[Dég18b] Frédéric Déglise, Bivariant theories in motivic stable homotopy, Doc. Math. 23 (2018), 997–1076. MR3874952

[Del87] P. Deligne, Le déterminant de la cohomologie (French), Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93–177, DOI 10.1090/comm/067/902592. MR902592

[Dye62] E. Dyer, Relations between cohomology theories, Colloquium on Algebraic Topology, Aarhus University, 1962, pp. 89–93.

[FG83] William Fulton and Henri Gillet, Riemann-Roch for general algebraic varieties (English, with French summary), Bull. Soc. Math. France 111 (1983), no. 3, 287–300. MR735307

[Ful77] William Fulton, A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties, Compositio Math. 34 (1977), no. 3, 279–283. MR460323

[Ful98] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR1644323

[FM81] William Fulton and Robert MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165, DOI 10.1090/memo/0243. MR609831

[Gil81] Henri Gillet, Comparison of K-theory spectral sequences, with applications, Algebraic K-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math., vol. 854, Springer, Berlin-New York, 1981, pp. 141–167, DOI 10.1007/BFb0089520. MR618303

[Gil81b] Henri Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40 (1981), no. 3, 203–289, DOI 10.1016/S0001-8708(81)80006-0. MR624666

[HS15] Andreas Holmstrom and Jakob Scholbach, Arakelov motivic cohomology I, J. Algebraic Geom. 24 (2015), no. 4, 719–754, DOI 10.1090/jag/648. MR3383602

[Jin16] Jin Fangzhou, Bord-Moore motivic homology and weight structure on mixed motives, Math. Z. 283 (2016), no. 3-4, 1149–1183, DOI 10.1007/s00209-016-1363-7. MR3519998

[Jin16b] F. Jin, Quelques aspects sur l’homologie de Bord-Moore dans le cadre de l’homotopie motivique : poids et G-théorie de Quillen, PhD Dissertation, E.N.S. de Lyon, 2016.

[Jin17] F. Jin, Algebraic G-theory in motivic homotopy categories, arXiv:1806.03927, 2018.

[Lev] M. Levine, K-theory and motivic cohomology of schemes, I, https://www.uni-duis.de/~bm0032/publ/RthoMotI12.01.pdf.

[Lev01] Marc Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363. MR1811558

[LM07] M. Levine and F. Morel, Algebraic cobordism, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR2286826

[MV99] Fabien Morel and Vladimir Voevodsky, A1-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR1813224

[Nav81] J. A. Navarro González, Cálculo de las clases de Chern de los esquemas lisos y singulares, PhD Dissertation, Universidad de Salamanca, 1981.

[Nav16] Alberto Navarro, On Grothendieck’s Riemann-Roch theorem, Expo. Math. 35 (2017), no. 3, 326–342, DOI 10.1016/j.exmath.2016.09.005. MR3689905

[Nav16b] A. Navarro, Riemann-Roch for homotopy invariant K-theory and Gysin morphisms, Adv. Math. 328 (2018), 501–554, DOI 10.1016/j.aim.2018.01.001. MR3771136

[Pan03] I. Panin, Oriented cohomology theories of algebraic varieties, K-Theory 30 (2003), no. 3, 265–314, DOI 10.1023/B:KTHE.0000019788.33790.cb. MR2064242

[Pan04] I. Panin, Riemann-Roch theorems for oriented cohomology, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 261–333, DOI 10.1007/978-94-007-0948-5_8. MR2061857

[Pan09] Ivan Panin, Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov), Homology Homotopy Appl. 11 (2009), no. 1, 349–405. MR2529164

[PPR08] Ivan Panin, Konstantin Pimenov, and Oliver Röndigs, A universality theorem for Voevodsky’s algebraic cobordism spectrum, Homology Homotopy Appl. 10 (2008), no. 2, 211–226. MR2475610

[PPR09] Ivan Panin, Konstantin Pimenov, and Oliver Röndigs, On the relation of Voevodsky’s algebraic cobordism to Quillen’s K-theory, Invent. Math. 175 (2009), no. 2, 435–451, DOI 10.1007/s00222-008-0155-5. MR2470112
[Rio10] Joël Riou, *Algebraic K-theory, \mathbb{A}^1-homotopy and Riemann-Roch theorems*, J. Topol. 3 (2010), no. 2, 229–264, DOI 10.1112/jtopol/jtq005. MR2651359

[SGA4] M. Artin, A. Grothendieck, J-L Verdier, eds: *Séminaire de Géométrie Algébrique du Bois Marie - 1963-64 - Théorie des topos et cohomologie étale des schémas* - (SGA 4) - vol. 3 (PDF). Lecture Notes in Mathematics (in French). 305. Berlin; New York: Springer-Verlag. pp. vi+640 (1972).

[SGA6] P. Berthelot, A. Grothendieck, L. Illusie: *Séminaire de Géométrie Algébrique du Bois Marie — 1966–67 — Théorie des intersections et théorème de Riemann-Roch — (SGA 6)*. Lecture notes in mathematics, vol. 225 (1971)

[Spi12] Markus Spitzweck, *A commutative \mathbb{P}^1-spectrum representing motivic cohomology over Dedekind domains*, Mém. Soc. Math. Fr. (N.S.) 157 (2018), 110, DOI 10.24033/msmf.465. MR3865569

[TT90] R. W. Thomason and Thomas Trobaugh, *Higher algebraic K-theory of schemes and of derived categories*, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435, DOI 10.1007/978-0-8176-4576-2_10. MR1106918

[Voe98] Vladimir Voevodsky, *\mathbb{A}^1-homotopy theory*, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Doc. Math. Extra Vol. I (1998), 579–604. MR1648048

Departamento de Matemáticas Aplicada, E. T. S. de Arquitectura, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Departamento de Matemáticas, Universidad de Extremadura, 06006 Badajoz, Spain