Disseminated nontuberculous mycobacteria infection in human immunodeficiency virus-infected patients

Li Liu1, Jing-Jing Hu2, Hong-Zhou Lu1

1Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; 2School of Public Health, Bengbu Medical College, Bengbu, Anhui 233000, China.

Nontuberculous mycobacteria (NTM) infection can occur in both immunocompetent and immunocompromised patients, but disseminated NTM infection is mostly occurred in immunocompromised patients such as people using long-term immunosuppressants or patients with human immunodeficiency virus (HIV) infection, particularly in those with CD4+ T lymphocyte count <50 cells/mm3. Disseminated infection by NTM is considered a fatal acquired immunodeficiency syndrome (AIDS)-defining opportunistic infection with high mortality in this population.

The incidence of disseminated Mycobacterium avium complex (MAC) disease is 20% to 40% in HIV-infected patients with advanced immunosuppression in the absence of effective antiretroviral treatment (ART) or chemoprophylaxis.1 However, in the era of ART, researchers from the United States identified 37 disseminated nontuberculous mycobacteria (DNTM) cases among 7349 patients with a median annual incidence of 110/100,000 HIV person-years and the highest incidence in those with CD4+ T lymphocyte count <50 cells/mm3, (5300/100,000 person-years) during 2007 to 2012.2 The overall prevalence of any species of NTM in people living with HIV was 49% (96/196).3

Risk factors of susceptibility for DNTM infection are largely unknown. Existing research illustrates that natural immunity to mycobacteria relies on the interleukin 12 and interferon-γ (IFN-γ) pathway, connecting myeloid cells (monocytes, macrophages, and dendritic cells) to lymphoid cells (T cells and natural killer cells).4 Until now, at least seven autosomal mutations (in interleukin 12B, interleukin 12 receptor subunit beta 1, interferon-stimulated gene 15 [ISG15], interferon gamma receptor 1, interferon gamma receptor 2, signal transducer and activator of transcription 1, and interferon regulatory factor 8) and two X-linked mutations (in inhibitor of nuclear factor kappa B kinase regulatory subunit gamma and cytochrome B-245 beta chain), mostly presenting in childhood, have been reported to confer susceptibility to DNTM infection.4,5 Genetic defects in any of these immune factors may lead to disseminated infection.

DNTM infection is considered an AIDS-defining condition, and the treatment involves optimization of immune function and prolonged use of combination of species-specific antimycobacterial drugs. Treatment is often complicated by the intrinsic or acquired drug resistance of NTM and adverse effects of the drug combinations, and treatment failure is common.6

Despite complex pathogenesis and difficult treatment, there is still considerable room for therapeutic improvement of DNTM. The treatment of AIDS with DNTM infection involves the combination of ART and long-term use of specific antibiotics. According to the updated Department of Health and Human Services guideline, ART should be started as soon as possible after the diagnosis of MAC disease, preferably at the same time that ART is initiated in patients with HIV and disseminated Mycobacterium avium complex (DMAC) disease who have not yet started effective ART.6 A potentially large benefit of earlier ART initiation is to reduce the risk of AIDS-defining opportunistic infections and to improve the response to antimycobacterial therapy in the setting of advanced immunosuppression. As for patients who have been started ART, treatment should be continued. When drug interactions between antiretrovirals and antimicrobials are involved, the treatment regimen should be adjusted timely.6 Unless ART leads to immune reconstitution,
people living with HIV will require continuous antimycobacterial treatment.\textsuperscript{[6]}

Auster \textit{et al}\textsuperscript{[7]} developed an innovative protocol that accelerates the growth kinetics of therapeutic assays in short-term \textit{in vitro} quantitative assays. Their protocol demonstrated the capability to optimize the growth and characterization of \textit{M. avium} and \textit{M. intracellulare} independently and in combination for the systematic development of therapeutic drug testing. Sharma \textit{et al}\textsuperscript{[8]} designed a duplex polymerase chain reaction based on the sequence variation between the genes encoding catalase-peroxidase (KatG) of MAC and \textit{Mycobacterium tuberculosis} (MTB). This method can facilitate quick differential diagnosis of DMAC and MTB infections in HIV patients. The rapid diagnosis is vital to inform urgent treatment decisions.

Bonfield \textit{et al}\textsuperscript{[9]} utilized \textit{in vitro} and \textit{in vivo} models of chronic NTM infection to evaluate the potential therapeutic use of human marrow-derived mesenchymal stem cells (hMSCs). Using these models, they identified donor-specific hMSCs potency against \textit{M. avium} and \textit{M. intracellulare}. The researches demonstrate that hMSCs are antimicrobial and anti-inflammatory \textit{in vitro} and in the context of an \textit{in vivo} sustained infection of either \textit{M. avium} or \textit{M. intracellulare} [Table 1]. Sharma \textit{et al}\textsuperscript{[10]} found that trehalose significantly reduced the HIV antibody and HIV antigen (HIV-p24) levels in \textit{ex vivo}-infected peripheral blood mononuclear cells (PBMCs) or PBMCs from treatment-naive HIV patients and also controlled mycobacterial survival within MTB-infected animals [Table 1].

A study showed the lymphocytes of patients with MAC-lung disease (MAC-LD) had attenuated function with regards to IFN-\gamma production and increased apoptosis status, and this may be associated with an increase in the expression of the programmed cell death protein-1 (PD-1) pathway. By partially blocking PD-1 and its ligands, secretion of IFN-\gamma increased from lymphocytes, and apoptosis status improved. Targeted regulation of the PD-1 pathway may have therapeutic potential for MAC-LD in the future, especially for patients who fail current medical treatment.\textsuperscript{[11]} The effect of this novel therapeutic method in DNTM infection still needs to be identified.

Host-directed therapeutic (HDT) strategies offer several major advantages compared with conventional antibiotics: (a) HDTs can be effective against drug-resistant bacteria, drug-susceptible bacteria and potentially dormant mycobacteria; (b) HDTs are unlikely to result in bacterial drug resistance; (c) HDTs can synergize with antibiotics or shorten the duration of antibiotic treatment by targeting different pathways.\textsuperscript{[12]} A review summarized the evidence supporting specific adjunctive, HDTs for MAC, with a focus on the repurposing of existing immune-modulatory agents targeting a variety of different cellular pathways.\textsuperscript{[13]} The summarized HDT agents which are currently under investigation for MAC disease, as well as other HDTs and potentially targetable host pathways, were the mammalian

| Therapy                  | HDT agents/drugs                  | Advantage                                                                 |
|--------------------------|-----------------------------------|---------------------------------------------------------------------------|
| hMSCs                    | hMSCs                             | hMSCs are antimicrobial and anti-inflammatory.\textsuperscript{[9]}         |
| Trehalose                | Trehalose                          | Activate autophagy and kill intracellular NTMs.\textsuperscript{[10]}        |
| HDTs                     | Anti-PD-1/PD-L1 therapy           | (a) HDTs can be effective against drug-resistant bacteria, drug-susceptible bacteria and potentially dormant mycobacteria |
|                          | Heme oxygenase inhibition         | (b) HDTs are unlikely to result in bacterial drug resistance               |
|                          | IFN-\gamma therapy                | (c) HDTs can synergize with antibiotics or shorten the duration of antibiotic treatment by targeting different pathways.\textsuperscript{[13]} |
|                          | Anti-TNF antibodies               |                                                                           |
|                          | Non-steroidal anti-inflammatory   |                                                                           |
|                          | drugs and corticosteroids         |                                                                           |
|                          | Statins                           |                                                                           |
|                          | Metformin                         |                                                                           |
|                          | Clavanim-MO                       |                                                                           |
|                          | Thioridazine                       |                                                                           |
| New oxazolidinone        | Heme oxygenase inhibition         |                                                                           |
| Inhaled drugs            | Linezolid, tedizolid              | Against M. abscessus, with linezolid-like activity \textit{in vitro} and \textit{in vivo}.\textsuperscript{[14]} |
| Bedaquiline              | Inhaled NO and LAI                | Reduced toxicity and improved efficacy.\textsuperscript{[14]}              |
| Clofazimine              | Bedaquiline                        | Have clinical activity.\textsuperscript{[14]}                               |
| \beta-lactams in combination with \beta-lactamase inhibitor avibactam | Avibactam                          | Synergistic with amikacin against M. avium and M. abscessus and it significantly prevented regrowth of NTM strains after clarithromycin and amikacin exposure.\textsuperscript{[14]} |

DNTM: Disseminated NTM; HDTs: Host-directed therapies; hMSCs: Human marrow-derived mesenchymal stem cells; IFN-\gamma: Interferon-\gamma; LAI: Liposomal amikacin for inhalation; NO: Nitric oxide; NTM: Nontuberculous mycobacteria; PD-1: Programmed cell death protein-1; PD-L1: Programmed cell deathligand 1; TNF: Tumor necrosis factor.
target of rapamycin inhibitors, anti-PD-1/programmed cell
death-ligand 1 therapy, heme oxygenase inhibition, IFN-γ
terapy, suppressing excessive tumor necrosis factor
(TNF)-α activation (anti-TNF antibodies), broad suppress-
sion of inflammation (non-steroidal anti-inflammatory
drugs and corticosteroids), targeting lipid metabolism and
inducing autophagy (statins), activation of adenosine
monophosphate-activated protein kinase and potentiation
of macrophage effector function (metformin), immuno-
modulation and antimicrobial properties (clavamin-MO),
and potentiation of macrophage effector function and
antimicrobial activity (thioridazine). HDTs against
MAC represent a promising but underexplored avenue
of research, which could hold great potential in improving
microbiological and clinical outcomes [Table 1].

Additionally, several new drugs also show their effective-
ness in treating nontuberculosis, such as oxazolidinone
(linezolid and tedizolid), inhaled nitric oxide, and lipo-
osomal amikacin for inhalation, bedaquiline, clofazidine,
and β-lactams in combination with β-lactamase inhibitor
avibactam, such as avibactam. Inhaled drugs could
reduce toxicity and improve the efficacy of anti-DNTM.
Clofazidine was synergistic with amikacin against
M. avium and Mycobacterium abscessus and it signifi-
cantly prevented the regrowth of nontuberculosis strains
after exposure to clarithromycin and amikacin. Novel
treatments are research priorities [Table 1]. Recently,
a subunit vaccine ID91 (a recombinant fusion protein)
combined with GLA-SE (glucopyranosyl lipid adjuvant, a
subunit vaccine ID91 (a recombinant fusion protein)
activation (anti-TNF antibodies), broad suppress-
sion of inflammation (non-steroidal anti-inflammatory
drugs and corticosteroids), targeting lipid metabolism and
inducing autophagy (statins), activation of adenosine
monophosphate-activated protein kinase and potentiation
of macrophage effector function (metformin), immuno-
modulation and antimicrobial properties (clavamin-MO),
and potentiation of macrophage effector function and
antimicrobial activity (thioridazine). HDTs against
MAC represent a promising but underexplored avenue
of research, which could hold great potential in improving
microbiological and clinical outcomes [Table 1].

Additionally, several new drugs also show their effective-
ness in treating nontuberculosis, such as oxazolidinone
(linezolid and tedizolid), inhaled nitric oxide, and lipo-
osomal amikacin for inhalation, bedaquiline, clofazidine,
and β-lactams in combination with β-lactamase inhibitor
avibactam, such as avibactam. Inhaled drugs could
reduce toxicity and improve the efficacy of anti-DNTM.
Clofazidine was synergistic with amikacin against
M. avium and Mycobacterium abscessus and it signifi-
cantly prevented the regrowth of nontuberculosis strains
after exposure to clarithromycin and amikacin. Novel
treatments are research priorities [Table 1]. Recently,
a subunit vaccine ID91 (a recombinant fusion protein)
combined with GLA-SE (glucopyranosyl lipid adjuvant, a
toll like receptor 4 agonist formulated) indicated protec-
tion of in
flammation (non-steroidal anti-inflammation
and potentiation of macrophage effector function and
antimicrobial activity (thioridazine). HDTs against
MAC represent a promising but underexplored avenue
of research, which could hold great potential in improving
microbiological and clinical outcomes [Table 1].

Funding
This work was supported by the Shanghai Commission of
Science and Technology (No. 20MC1920100).

Conflicts of interest
None.

References
1. Nightingale SD, Byrd LT, Southern PM, Jockusch JD, Cal SX, Wynne
BA. Incidence of Mycobacterium avium-intracellulare complex
bacteremia in human immunodeficiency virus-positive patients. J
Infect Dis 1992;165:1082–1085. doi: 10.1093/infdis/165.6.1082.
2. Varley CD, Ku JH, Henkle E, Schafer SD, Winthrop KL. Disseminated
nontuberculous mycobacteria in HIV-infected patients,
Oregon, USA, 2007-2012. Emerg Infect Dis 2017;23:533–535. doi:
10.1155/2017/32031/165.161708.
3. Lapinèl NC, Jolley SE, Ali J, Welsh DA. Prevalence of non-
tuberculous mycobacteria in HIV-infected patients admitted to
hospital with pneumonia. Int J Tuberc Lung Dis 2019;23:491–497.
doi: 10.5888/ijtl.18.0336.
4. Wu LT, Holland SM. Host susceptibility to non-tuberculous
mycobacterial infections. Lancet Infect Dis 2015;15:968–980. doi:
10.1016/S1473-3099(15)00089-4.
5. Gil E, Sweeney N, Barrett V, Morris-Jones S, Miller RF, Johnston VJ,
et al. Bedaquiline as treatment for disseminated nontuberculous
mycobacteria infection in 2 patients co-infected with HIV. Emerg
Infect Dis 2021;27:944–948. doi: 10.3201/eid2703.202339.
6. Kaplan JE, Benson C, Holmes KK, Brooks JT, Pau A, Masur H, et al.
Guidelines for prevention and treatment of opportunistic infections in
HIV-infected adults and adolescents: recommendations from CDC,
the National Institutes of Health, and the HIV Medicine Association
of the Infectious Diseases Society of America. MMWR Recomm Rep
2009;58:1–207. https://www.cdc.gov/mmwr/preview/mmwrhtml/
rr58e234a1.htm/00053202.htm.
7. Auster L, Sutton M, Gwin MC, Nitkin C, Bonfield TL. Optimization of
in vitro Mycobacterium avium and Mycobacterium intracellular
growth assays for therapeutic development. Microorganisms
2019;7:42. doi: 10.3390/microorganisms7020042.
8. Sharma S, Latawa R, Wanchu A, Verma I. Differential diagnosis of
disseminated Mycobacterium avium and Mycobacterium tuberculo-
sis infection in HIV patients using duplex PCR. Future Microbiol
2021;16:159–173. doi: 10.2217/fmb-2020-0091.
9. Bonfield TL, Sutton MT, Fletcher DR, Folz MA, Ragavapuram V,
Somoza RA, et al. Donor-defined mesenchymal stem cell antimicro-
bial potency against nontuberculous mycobacterium. Stem Cells
Trans Med 2021;10:1202–1216. doi: 10.1002/scm.20-0521.
10. Sharma V, Makhdoumi M, Singh L, Kumar P, Khan N, Singh S, et al.
Trehalose limits opportunistic mycobacterial survival during HIV co-
infection by reversing HIV-mediated autophagy block. Autophagy
2021;17:476–495. doi: 10.1080/15548627.2020.1723574.
11. Shu CC, Wang JY, Wu MF, Wu CT, Lai HC, Lee LN, et al. Attenuation of
lymphocyte immune responses during Mycobacteri-
um avium complex-induced lung disease due to increasing expression
of programmed death-1 on lymphocytes. Sci Rep 2017;7:42004. doi:
10.1038/srep42004.
12. Klinç G, Sarris A, Ottenhoff THM, Haks MC. Host-directed therapy
to combat mycobacterial infections. Immunol Rev 2015;302:1–7.
doi: 10.1111/imr.12951.
13. Crilly NP, Ayeh SK, Karakousis PC. The new frontier of host-directed
therapies for Mycobacterium avium complex. Front Immunol
2020;11:623119. doi: 10.3389/fimmu.2020.623119.
14. Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: status,
gaps and the way forward. Drug Discov Today 2018;23:1502–1519.
doi: 10.1016/j.drudis.2018.04.001.
15. Larsen SE, Reese VA, Pecor T, Berube BJ, Cooper SK, Brewer G, et al.
Subunit vaccine protects against a clinical isolate of Mycobacterium
avium in wild type and immunocompromised mouse models. Sci Rep
2021;11:9040. doi: 10.1038/s41598-021-88291-8.

How to cite this article: Liu L, Hu JJ, Lu HZ. Disseminated
nontuberculous mycobacteria infection in human immunodeficiency
virus-infected patients. Chin Med J 2021;134:2838–2840. doi: 10.1097/
CM9.0000000000001820