Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Perspectives on anti-IL-1 inhibitors as potential therapeutic interventions for severe COVID-19

Jie Geng a,1, Feng Wang b,1, Zhiwei Huang a, Xiaobo Chen c, Yuliang Wang a,∗

a The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
b Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
c Unicell Life Science Development Co., Ltd, Tianjin, China

ARTICLE INFO
Keywords: COVID-19 SARS-CoV-2 Cytokine release syndrome Interleukin-1 blockade Anakinra

ABSTRACT
The overproduction of proinflammatory cytokines, resulting in what has been described as a cytokine storm or cytokine release syndrome (CRS), may be the key factor in the pathology of severe coronavirus disease 2019 (COVID-19) and is also a crucial cause of death from COVID-19. With the purpose of finding effective and low-toxicity drugs to mitigate CRS, IL-1 blockade agents, which are one of the safest ways to stop this overwhelming innate immune response, are already available in several preliminary reports or are under observational trials and may offer an important treatment option in hyperinflammatory COVID-19. In this review, we described the key information in both case reports and clinical studies on the potential beneficial features of IL-1 inhibitors in COVID-19 patients.

1. Introduction

Coronavirus disease 2019 (COVID-19), a global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has been confirmed to infect ~91.8 million people on all continents, leading to ~1.99 million deaths worldwide (updated on January 16, 2021), with the number of new cases continuing to increase [1,2]. The clinical symptoms are wide-ranging and include mild fever, cough, rhinorrhea, sneezing, sore throat, fatigue, anorexia, diarrhea, myalgia and pneumonia. COVID-19 deaths are primarily caused by acute respiratory distress syndrome (ARDS) and cytokine release syndrome (CRS), a state of unregulated systemic hyperinflammation leading to rapidly progressive multisystem organ failure [3]. Immunomodulators or selective cytokine blockade agents have been suggested to abrogate the dysfunctional immune response in hyperinflammatory COVID-19 and are currently being investigated in clinical trials [4,5]. These molecules target an important immune checkpoint or an upstream cytokine. Monoclonal antibodies or inhibitors targeting the IL-1 receptor, as a master cytokine of local and systemic inflammation, can inhibit proinflammatory molecules and influence the activation of the innate immune response [6]. The three drugs currently available either block IL-1 binding to the IL-1 receptor (anakinra) or bind directly to IL-1 (rilonacept and canakinumab) in US Food and Drug Administration (FDA)-approved biologic therapies [7]. Current case reports and registered trials of IL-1-targeting agents using either anakinra or canakinumab at various doses come with a recommendation for the clinical improvement of hyperinflammatory COVID-19. This review aims to summarize the available and latest research perspectives that support the use of anti-IL-1 drugs as potential therapeutic interventions for severe COVID-19.

2. Anakinra – Targeting both IL-1 alpha (α) and IL-1 beta (β) in COVID-19

As an immunosuppressive drug, anakinra is a 17-kDa recombinant nonglycosylated homolog of the human IL-1 receptor antagonist with a short half-life of approximately 3–4 h and a good safety profile and has been approved for the treatment of rheumatoid arthritis and cryopyrin-associated periodic syndrome by the US FDA and the European Medicines Agency (EMEA) [8,9]. Anakinra, unlike rilonacept and canakinumab, competitively inhibits the binding of IL-1 alpha (α) and IL-1 beta (β) to the IL-1 receptor [10]. Anakinra has been used in several preliminary reports in patients with severe COVID-19 and has shown a significant survival benefit in patients with hyperinflammation without...
increased adverse events.

2.1. Case reports

Several case reports of COVID-19 patients treated with anakinra have been published; their main characteristics are summarized in Table 1.

The first report about COVID-19 treated with anakinra dated back to February 28, 2020 [11] and described a critical case of a 50-year-old man with COVID-19 who was effectively treated with anakinra. The use of anakinra was started with the following dosage schedule: 200 mg intravenously followed by 100 mg every 6 h subcutaneously. This first report suggested that in the cytokine storm occurring during severe COVID-19, anakinra may represent a safe and promising strategy to reduce inflammation, preventing multiorgan dysfunction, and an appropriate tailored treatment strategy is crucial. Franzetti et al. [12] reported the first successful treatment case with anakinra and remdesivir in a 57-year-old man with severe COVID-19 on March 10, 2020. The dosage was 100 mg every 6 h subcutaneously for seven days. This case highlighted the high tolerability and interesting immunomodulatory profile of anakinra in the setting of severe COVID-19 associated with remdesivir therapy. González-García et al. [13] reported a case of severe COVID-19-associated pneumonia in a nonsmoking 47-year-old man who was successfully treated with subcutaneous anakinra alone, with no safety problems. Anakinra was initiated at 100 mg every 6 h subcutaneously. On day 11, anakinra was reduced to 100 mg every 8 h until completing a total duration of treatment of 14 days. Finally, on day 19, the patient was discharged with no need for oxygen supplementation.

Recently, Nemchand et al. [14] presented a case of a 50-year-old man with cytokine storm and acute respiratory distress syndrome (ARDS) as a result of COVID-19 who commenced a 7-day course of intravenous anakinra (150 mg twice per day). After administration of anakinra, there was a significant reduction in the cytokine storm evidenced by reductions in ferritin, fever and white cell count and his oxygen requirement. This report suggested that anakinra may have a positive effect on the proinflammatory state that is associated with cytokine storms in COVID-19 infection.

The first documented case of COVID-19-related fulminant myocarditis successfully treated with anakinra and dexamethasone was recently reported by Trpkov et al. [15]. In this case, a 62-year-old female with COVID-19 developed acute respiratory failure, and cardiogenic shock received treatment with recombinant anakinra intravenously at a dose of 100 mg twice daily for 12 days and dexamethasone, resulting in a rapid reduction in serum inflammatory markers and a marked recovery in CMR-based markers of inflammation and contractile dysfunction. The patient was subsequently discharged home. The significant clinical improvement observed in this patient provided support for the recent anakinra treatment of COVID-19-related respiratory failure.

In the first report of a hematology case, Day et al. [16] provided further evidence of the utility of this agent in the clinical context described and demonstrated that anakinra was safe in hematology patients and resulted in a clinical improvement in three patients with acute leukemia and confirmed or suspected COVID-19 pneumonia with a life-threatening hyperinflammatory syndrome. One acute myeloid leukemia (AML) case was started on subcutaneous anakinra at a dose of 100 mg three times a day (TDS), dexamethasone, and IV immunoglobulin (IVIg), and the patient was discharged 35 days after commencing chemotherapy. The second AML case was started on subcutaneous anakinra 100 mg TDS, dexamethasone, and IVIg. After seven days in the ICU, he was discharged back to the ward, where anakinra and steroids were progressively reduced. In the third case, anakinra was started at 200 mg intravenously twice a day. Ten days after starting anakinra, the patient defervesced, and his oxygen requirements were substantially reduced. Anakinra was weaned, and the clinical picture continued to improve on the ward before discharge 31 days after admission.

Clark et al. [17] presented the beneficial effects of intravenous anakinra from an analysis of four immunosuppressed patients with severe COVID-19 and evidence of cytokine storm. The four patients were treated with an anakinra dose of 200 mg once a day intravenously, with subsequent clinical improvement in the patients, including reductions in ventilatory and inotropic support and improved biochemical findings, with rapid improvements in inflammatory markers. This case series showed the expected tendency for safety in using intravenous anakinra, which played a beneficial role both clinically and biochemically in patients with concomitant bacterial infections and late-stage COVID-19.

In view of the short half-life of anakinra (3 h), intravenous drugs were typically administered every 6 h. Pontali et al. [18] reported experience with the early use of high intravenous (IV) doses of anakinra in 5 patients with severe/moderate COVID-19 with pulmonary involvement. All 5 patients experienced rapid resolution of systemic inflammation and remarkable improvement in respiratory parameters, with reduction in the oxygen support requirement and early amelioration of chest computed tomography scan abnormalities before discharge in 3 patients. All patients were discharged 6 to 13 days after the start of anakinra. No secondary infections or other adverse events were observed.

In another case series, Aouba et al. [19] reported using anakinra in 9 patients with moderate to severe COVID-19. Anakinra was subcutaneously administered at designated doses (100 mg/12 h from day 1 to day 3, 100 mg/24 h from day 4 to day 10). Among the nine patients, a 47-year-old woman developed acute respiratory failure following the first administration of anakinra, resulting in a premature stop. The rest of the patients all showed good clinical and biological outcomes. C-reactive protein (CRP) levels were restored to within the normal range in 5/8 patients, and a controlled chest CT scan showed that the extension of lesions had stopped in all patients. In this study, it was concluded that the use of anakinra was safe and feasible.

Dimopoulos et al. [20] reported the treatment of eight severe COVID-19 patients who were diagnosed with secondary hemophagocytic lymphohistiocytosis (sHLH) with anakinra. Seven of the eight patients received anakinra at 200 mg TDS IV for 7 days. The last one was treated with an anakinra dose of 300 mg once daily intravenously for 4 days, followed by 100 mg once daily. After anakinra administration termination, a reduction in the need for vasopressors and significantly improved respiratory function were observed in all patients. This study supported the concept that anakinra treatment may improve the respiratory function of severe COVID-19 patients who have sHLH.

A brief case series that focused on the use of anakinra to prevent mechanical ventilation in eleven severe COVID-19 patients featuring cytokine storms and acute hypoxic respiratory failure (AHRF) was reported by Navarro-Millán et al. [21]. Subcutaneous anakinra was initiated at 100 mg every 6 h and was gradually tapered off completely after a maximum of 19 days. Seven of these patients who initiated anakinra were discharged 36 hours after the onset of AHRF did not require mechanical ventilation, and all were discharged from the hospital. Four patients who started anakinra more than 4 days after the onset of AHRF required mechanical ventilation. Of those, 3 patients were extubated, and 1 died. These data indicated that anakinra played a crucial role in the beneficial outcomes in COVID-19 patients with evidence of cytokine storms when initiated early after AHRF onset.

2.2. Clinical trials

A retrospective cohort study (ClinicalTrials.gov NCT04318366) in Italy was the first to describe high-dose intravenous (IV) anakinra in patients with COVID-19, acute respiratory distress syndrome (ARDS), and hyperinflammation. In the study, 29 patients received IV infusions of high-dose anakinra (5 mg/kg twice a day), with a median treatment time of 9 days [22]. The outcomes of the patients in the high-dose anakinra group were compared with those of the 16 patients in the comparison group who received standard therapy only. At 21 days, the survival rates were 90% in the high-dose anakinra group and 56% in the
Table 1
Main details of 11 cases reporting the use of anakinra treatment-COVID.

Country	Numbers of patients	Age	Gender	Past history	Co-administered Drugs	S.C./I.V. doses and duration of anakinra treatment	Treatment Result (after starting anakinra)	References
Italy	1	50	Male	None	None	200 mg I.V. followed by 100 mg every 6 h S.C.	Inflammatory markers reduced (day 3)	[11]
Italy	1	57	Male	Tobacco smoke	Remdesivir	100 mg every 6 h S.C. for 7 days	Respiratory parameters improved (day 13)	[12]
Spain	1	47	Male	Asthma	Azithromycin	100 mg every 6 h S.C. On day 11, reduced to 100 mg TDS until	Supplemental Oxygen discontinued (day 32)	[13]
UK	1	50	Male	Renal stones, Holecystitis, Body mass index of 30 kg/m2	Intravenous Co-amoxiclav	150 mg TDS I.V. for 7 days	Oxygen requirements were minimal with oxygen saturations of 93% (day 7)	[14]
Canada	1	62	Female	primary progressive multiple sclerosis	Dexamethasone	100 mg BD I.V. for 12 days	CMR demonstrated marked improvement (12 days)	[15]
UK	3	40	Male	Acute myeloid leukaemia	Corticosteroids	100 mg TDS S.C. for 1 day	Ferritin reduced to 35760 μg/L (day 4)	[16]
		31	Male	Acute myeloid leukaemia	Dexamethasone IVg	100 mg TDS S.C. for 7 days and progressively reduced	Oxygen requirements began decreasing (day 5)	Discharged several days later Discharged (day 35)
		36	Male	Acute lymphoblastic leukaemia	None	200 mg BD I.V. for 10 days	Defervesced (day 2)	[17]
UK	4	30	Male	Renal failure, Renal transplant	Tacrolimus	200 mg OD I.V. for 10 days	Weaned off positive airway pressure (day 3)	Discharged day 12 Weaned off inotropes (day 1)
		48	Male	Renal failure, Renal transplant, Transfusion dependent beta-thalassaemia intermedia, Splenectomy	Ceftriaxone Teicoplanin	200 mg OD I.V. for 21 days	Ferritin reduced and stopped (day 21)	Discharged day 21
		68	Female	Non– Hodgkin’s lymphoma	Ceftriaxone Meropenem Ambisome	200 mg OD I.V.	Ferritin 20479 μg/L (day 1) Ferritin 5118 μg/L (day 3) SARS-CoV-2 viraemia disappeared (day 24)	[18]
		49	Female	End-stage renal failure secondary to Lupus nephritis, Antiphospholipid syndrome with thromboses, Ischaemic heart disease, Spleenectomy	Ceftriaxone Gentamicin Teicoplanin Meropenem Caspofungin	200 mg OD I.V. and increased sequentially to 300 mg BD	Ferritin 30086 μg/L (day 17) Ferritin and CRP notable improvement, Transaminases started to normalize (Increased Anakinra to 300 mg BD,2 days later)	[18]
Italy	5	62	Male	Cardiovascular disease Hyperlipidemia	Hydroxychloroquine Enoxaparin Antiviral Azithromycin	100 mg TDS I.V. for 24 to 48 h	Discharged 6 to 13 days after start of anakinra No secondary infections or other adverse events were observed	[18]
	59		Male	None	Same as above	Same as above	Same as above	
	40		Female	None	Same as above	Same as above	Same as above	
	55		Female	Cardiovascular disease Hyperlipidemia	Azithromycin	Same as above		
	56		Male	Hyperlipidemia None	Hydroxychloroquine Enoxaparin Antiviral Azithromycin	Same as above		

(continued on next page)
Country	Numbers of patients	Age	Gender	Past history	Co-administered Drugs	S.C./I.V. doses and duration of anakinra treatment	Treatment Result (after starting anakinra)	References
France	9	55	Male	High blood pressure	Non-available	100 mg BD S.C. from day 1 to day 3, then at 100 mg OD from day 4 to day 10	Non-feverish and showed good clinical (day 3)	[19]
		54	Male	Obesity	Non-available	Same as above	Chest CT scan showed the extension of lesions stopped (day 5 to day 8) CRP levels normalised in 5/8 patients (day 11)	
		56	Male	Obesity	Non-available	Same as above		
		55	Male	None	Non-available	Same as above		
		54	Male	None	Non-available	Same as above		
		84	Male	High blood pressure Diabetes	Non-available	Same as above		
		62	Male	None	Non-available	Same as above		
		60	Male	High blood pressure Obesity	Non-available	Same as above		
		46	Female	Obesity	Non-available.	Same as above	Treatment stop (showed an acute respiratory failure 6 h after the first and only dose of anakinra)	
Greece	8	51	Male	Arterial hypertension	Hydrocortisone Hydroxychloroquine Meropenem Teicoplanin Azithromycin	200 mg TDS I.V. for 7 days	Death (day 12)	[20]
		74	Male	DM2 Arterial hypertension Benign prostate hypertrophy	Hydrocortisone Hydroxychloroquine Meropenem Teicoplanin Azithromycin	Same as above	Death (day 9)	
		67	Male	CHD Dyslipidemia Arterial hypertension	Hydrocortisone Hydroxychloroquine Meropenem Teicoplanin Azithromycin	Same as above	Alive, weaning from MV (day 22)	
		84	Male	CHD COPD Benign prostate hypertrophy Dyslipidemia Arterial hypertension Stroke	Hydroxychloroquine Meropenem Teicoplanin Azithromycin	Same as above	Death (day 19)	
		56	Male	Arterial hypertension	Hydroxychloroquine Piperacillin/tazobactam Colistin Azithromycin	Same as above	Alive, weaning from MV day 31	
		68	Male	DM2 CHD Dyslipidemia Arterial hypertension Stroke	Hydroxychloroquine Cefaroline Azithromycin	Same as above	Alive, on MV (day 28)	
		67	Male	DM2 CHD Dyslipidemia Arterial hypertension Stroke	Hydroxychloroquine Cefaroline Azithromycin	Same as above	Alive, on MV (day 28)	
Netherlands	71 Female	Arterial hypertension Metastatic colon cancer Dyslipidemia	Cefaroline	300 mg OD I.V. from day 1 to day 4, then at 100 mg OD from day 5 to day 9	Alive, discharged day 9			
US	11	61	Male	DM2 Asthma Obesity CHD Dyslipidemia	None	Below 100 mg every 6 h S.C. for 7 days, to 100 mg OD S.C. on day 8, then discontinued	Discharged	[21]
		48	Male	Obesity	None	Below 100 mg every 6 h S.C. on day 1, to 100 mg every 6 h S.C. on day 2, to 100 mg S.C. TDS on day 6, to 100 mg BD S.C. on day 10, to 100 mg OD S.C. on day 13, then discontinued	Discharged; Received anakinra 100 mg daily for 5 days as outpatient	
		60	Female	COPD	Methylprednisolone	100 mg every 6 h S.C. for 2 days, to 100 mg S.C. TDS on day 3, to 100 mg BD S.C. on day 5, to 100	Discharged	

(continued on next page)
The study suggested that treatment with high-dose anakinra was safe and had comparable benefits for survival and clinical outcomes. Moreover, Huet et al. [23] reported the Ana-COVID study in France, a cohort study including a prospective cohort group and a historical control group. Fifty-two consecutive patients were included in the anakinra group, and 44 historical patients were identified in the cohort study. Compared with the historical group, subcutaneous (SC) fixed-dose anakinra (100 mg twice daily for 72 h, then 100 mg daily for 7 days) significantly reduced both the need for invasive mechanical ventilation and mortality among patients with severe COVID-19.

All these studies suggested that anakinra could represent a safe and efficient treatment for severe forms of COVID-19. Several different phases of prospective clinical trials, as of December 2020, are now enrolling and should provide meaningful data on the potential merit of anakinra for COVID-19; most are in phase II or III, indicating a growing interest in this class of anti-IL-1 agents. Table 2 lists these clinical trials, which have currently been registered around the world (ClinicalTrials.gov) [24-35].

Table 2

Country	Numbers of patients	Gender	Past history	Co-administered Drugs	S.C./I.V. doses and duration of anakinra treatment	Treatment Result (after starting anakinra)	References	
74	Male	Hypertension Gastroesophageal reflux disease DM2 Hyperlipidemia Hypothyroidism	Methylprednisolone	100 mg OD on day 8, then discontinued	Hospitalized without oxygen support; Required MV for 19 days.			
63	Male	Hypertension Obesity Pre-DM2 Hyperlipidemia Benign prostatic hyperplasia	Methylprednisolone	100 mg every 6 h S.C. for 2 days	Death; Anakinra discontinued after 8 doses due to bacterial infection			
81	Female	Gastroesophageal reflux disease B-thalassemia	Methylprednisolone	100 mg every 6 h S.C. for 3 days, to 100 mg S.C. TDS on day 4, to 100 mg BD S.C. on day 9, to 100 mg OD on day 11, then discontinued	Discharged			
62	Male	Hypertension Obesity Pre-DM2 Hyperlipidemia Benign prostatic hyperplasia	Methylprednisolone	100 mg every 6 h S.C. for 4 days, to 100 mg S.C. TDS on day 5, to 100 mg BD S.C. on day 7, to 100 mg OD on day 8, then discontinued	Discharged			
66	Male	None	Benign prostatic hyperplasia	Methylprednisolone	100 mg every 6 h S.C. for 2 days, to 100 mg S.C. TDS on day 3, to 100 mg BD S.C. on day 15, to 100 mg OD on day 16, then discontinued	Discharged		
65	Male	Hypertension DM2 Benign prostatic hyperplasia Cerebrovascular accident	Methylprednisolone	100 mg every 6 h S.C. for 3 days, to 100 mg S.C. TDS on day 4, to 100 mg BD S.C. on day 9, to 100 mg OD on day 12, then discontinued	Discharged	Required MV for 5 days. Met criteria for CSS before and after extubation but consulted for anakinra treatment only after extubation.		
43	Male	None	Benign prostatic hyperplasia	Methylprednisolone	100 mg every 6 h S.C. for 5 days, to 100 mg S.C. TDS on day 6, then discontinued	Discharged	Required MV for 7 days. Patient was intubated on day 1 of anakinra	
42	Male	Hypertension Benign prostatic hyperplasia	Methylprednisolone	100 mg every 6 h S.C. for 1 day, to 100 mg S.C. TDS on day 2 then discontinued on day 4	Discharged			

Abbreviations: BD = twice a day; comorbidity index; CHD: coronary heart disease; COPD: chronic obstructive pulmonary disease; DM2: type 2 diabetes mellitus; I.V. = intravenous; OD = once a day; TDS = three times a day; S.C. = subcutaneous; CRP = C reactive protein; CSS = Cytokine storm syndrome; MV = mechanical ventilation.

3. Canakinumab –Targeting IL-1-beta (β) in COVID-19

Canakinumab, a fully human monoclonal antibody neutralizing IL-1β, is regarded as the “summit” cytokine of the innate immune response and promotes the production of cytokines and chemokines and the activation of macrophages. Moreover, IL-1β induces its self-generation as well as the synthesis of IL-6[40] which has been considered the leading role in cytokine storms. This cascade process may cause exaggerated inflammation, endothelial dysfunction, and even myocardial injury. In addition, canakinumab significantly reduced the incidence of atherothrombotic events and heart failure exacerbations, which are particularly high risks for COVID-19-related mortality[41].

All these studies suggested that anakinra could represent a safe and efficient treatment for severe forms of COVID-19. Several different phases of prospective clinical trials, as of December 2020, are now enrolling and should provide meaningful data on the potential merit of anakinra for COVID-19; most are in phase II or III, indicating a growing interest in this class of anti-IL-1 agents. Table 2 lists these clinical trials, which have currently been registered around the world (ClinicalTrials.gov) [24-35].
hyperinflammation, and respiratory failure, a dose of 300 mg of canakinumab (subcutaneously) was safe, well tolerated, and associated with a significant decrease in the level of systemic inflammatory response and an improvement in oxygenation. The rapid improvement of serum inflammatory biomarkers after canakinumab administration suggests that the IL-1β pathway plays an important role in the pathophysiology of COVID-19.

Caracciolo et al. [43] presented a case of an 85-year-old male presenting with COVID-19 complicated by ARDS and cardiac and renal failure rescued by canakinumab administered as compassionate use. After administering canakinumab at a single 300 mg dose on days 25 and 31, the patient’s renal function was ameliorated, and his inflammatory symptoms were relieved; his high IL-6 levels and NK cells and 31, the patient needed to prove the safety and efficacy of canakinumab injection in severe COVID-19 patients to provide more “life-saving” treatment for clinicians.

A blinded randomized controlled trial, termed the Three C study (NCT04365153), is being carried out, which exclusively assesses whether canakinumab prevents progressive respiratory failure and cardiac dysfunction in COVID-19 patients with myocardial injury and increased inflammation [45]. More randomized controlled trials are needed to prove the safety and efficacy of canakinumab injection in severe COVID-19 patients to provide more “life-saving” treatment for clinicians.

4. Rilonacept – A potentially valuable therapeutic drug in severe COVID-19

Rilonacept is a recombinant protein consisting of the extracellular portion of the human IL-1 receptor type 1 and the IL-1 receptor accessory protein fused with the Fc portion of human IgG1 [46]. The extracellular domains of the IL-1R components have strong affinities for both IL-1α and IL-1β, thereby neutralizing their activities and functioning as an “IL-1 trap”. Rilonacept has been approved for the treatment of CAPS by the FDA. Another unique feature of rilonacept is that it can also potentially bind to IL-1Ra. Furthermore, rilonacept has a longer half-life of 6–8 days; therefore, the interval of injections can be extended to a week [47].

Rilonacept has shown effective inflammatory inhibitory effects in a variety of inflammatory diseases. In a phase III trial of rilonacept in sJIA, patients were randomly allocated in a 1:1 ratio to receive either 4 weeks of placebo followed by 20 weeks of rilonacept or 24 weeks of rilonacept, and rilonacept was generally well tolerated [48]. Efficacy of the drug was confirmed in active sJIA. Rilonacept was found to maintain inflammatory remission in IL-1 receptor antagonist (DIRA)-deficient patients [49]. The once weekly injection was well tolerated and correlated with increased quality of life. In a randomized, double-blind, placebo-controlled clinical trial, 47 patients with familial cold autoinflammatory syndrome (FCAS) and Muckle-Wells syndrome (MWS) were enrolled and injected weekly with 160 mg rilonacept for 6 weeks. Ninety-six percent of the patients receiving rilonacept experienced at least a 30% reduction in the mean key symptom score, in contrast to 29% of patients receiving placebo (ClinicalTrials.gov Identifier: NCT00288704) [50]. Previously, rilonacept was also shown to be a possible treatment option for colchicine-resistant or colchicine-intolerant FMF patients: in a small, randomized, double-blind, alternating treatment study, rilonacept given at 2.2 mg/kg weekly reduced the attack frequency to 0.77 per month in comparison to 2 per month in the placebo-treatment group. (ClinicalTrials.gov Identifier: NCT00582907) [51]. Currently, a number of clinical trials are being carried out for chronic inflammatory diseases, including type 1 diabetes (NCT00962026) [52] atherosclerosis (NCT00417417) [53] hepatitis (NCT01903798) [54] and chronic kidney disease (NCT01663103) [55]. In view of its improving effect on inflammation, rilonacept may be used as a potentially valuable therapeutic drug in severe COVID-19 patients with increased inflammation.

5. Conclusions

Emerging evidence has shown that CRS might be one of the most important and deadly complications in severe patients with COVID-19.
Anti-IL-1 inhibitor therapies may offer an important treatment option in COVID-19 patients with CRS, which may induce rapid and sustained blockade of inflammation and significantly change the disease course and its long-term outcome. Interestingly, Haralampus presented a 70-year-old woman who was diagnosed with CAPS 5 years ago and was initially treated with anakinra daily and subsequently canakinumab 150 mg every 8 weeks [56]. She had her last canakinumab injection 10 days before she was diagnosed with COVID-19. It is worth noting that her white cell count was 4.28×10^9/L, and her CRP level was 9 mg/dL at that time. After a few days, her symptoms disappeared, and her SARS-CoV-2 test was negative 12 days later. No definite conclusion can be drawn from this case. However, the presentation of this case aims to fuel a fruitful discussion on this issue, which is that cytokine blockade may protect patients from a cytokine storm and thus ameliorate the gravity of the clinical picture of their COVID-19 infection. The numbers of new cases and prospective randomized trials evaluating a number of different anti-IL-1 therapies in patients with COVID-19 are continuing to increase; further information regarding the effectiveness and potential clinical benefits and risks of these therapies is needed. New evidence will continue to inform clinicians and scientists worldwide about the role of anti-IL-1 therapy in critically ill COVID-19 patients.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81470982), and Tianjin Health Industry High-level Talent Selection and Training Project - Jinmen Medical Talents.

References

[1] World Health Organization, Coronavirus disease 2019 (COVID-19) pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019, 2020 (Accessed 9 September 2020).
[2] M. Ciotti, M. Ciccozzi, A. Terrinoni, W.-C. Jiang, C.-B. Wang, S. Bernardini, The COVID-19 pandemic, Crit. Rev. Clin. Lab. Sci. 57 (6) (2020) 355–388.
[3] N. Mangalmurti, C.A. Hunter, Cytokine storms: understanding COVID-19, J. Geng et al.
[4] G. Filocamo, et al., Use of anakinra in severe COVID-19: A case report, Int. J. Infect. Dis. 97 (2020) 213–215, https://linkinghub.elsevier.com/retrieve/pii/S2215030X20302894.
[5] I. Navarro-Millán, et al., Use of Anakinra to prevent mechanical ventilation in severe COVID-19: a case series, ArthritisRheumatol. 20 (3) (2020) 1217–1221.
[6] G. Cavalli, G. De Luca, C. Campochiaro, E. Della-Torre, M. Ripa, D. Canetti, C. Oltolini, B.W. van der Meel, W. Salomon, J. Emmerich, J. Mourad, G. Chatellier, G. Hayem, Anakinra for severe forms of COVID-19: a cohort study, The Lancet Respiratory Medicine 8 (9) (2020) e325–e331, https://linkinghub.elsevier.com/retrieve/pii/S2213260020301272.
[7] T. Huet, H. Beauvis, O. Voisin, S. Jouvenouche, G. Dauriet, L. Ezac, S. Barher, Subcutaneous and Intravenous IL-1Ra (Anakinra) in COVID-19 Infection in Qatar: A Randomized Clinical Trial, 2020 (cited 2021 1-01).
[8] M. Mertens, J.A. Singh, Anakinra for rheumatoid arthritis, Cochrane. Database. Syst. Rev. (1) (2009) CD005121.
[9] D.R. Burrage, S. Koushesh, N. Sofat, Immunomodulatory drugs in the management of SARS-CoV-2, Front. Immunol. 11 (2020) 1844.
[10] G. Emmi, et al., Use of interleukin-1 blockers in pericardial and cardiovascular diseases, Curr. Cardiol. Rep. 20 (8) (2018) 61.
[11] G. Filocamo, et al., Use of interleukin-1 blockers in pericardial and cardiovascular diseases, Curr. Cardiol. Rep. 20 (8) (2018) 61.
[12] C. Trpkov, P. MacMullan, P. Feuchter, R. Kachra, B. Heydari, N. Merchant, M. S. Bristow, J.A. White, Rapid response to cytokine storm inhibition using anakinra in a patient with COVID-19 myocarditis, CJC Open 3 (2) (2021) 210–213.
[13] J.W. Day, T.A. Fox, R. Halsey, B. Carpenter, P.D. Kottaridis, Interleukin-1 blockade with anakinra in acute leukaeemia patients with severe COVID-19 pneumonia appears safe and may result in clinical improvement, Br J Haematol 190 (2) (2020), https://doi.org/10.1111/bjh.15673.
[14] K.E.N. Clark, et al., Safety of intravenous anakinra in COVID-19 patients with evidence of hyperinflammation, a case series, Rheumatol. Pract. Adv. 4 (2) (2020) 3a0040.
[15] E. Pontali, S. Volpi, G. Antonucci, M. Castellana, D. Buzzi, F. Tricerri, A. Angelelli, R. Caorsi, M. Feoli, P. Calusotti, E. Castagnola, G.A. Rollandi, A. Patelli, G. Casola, Safety and efficacy of high-dose IV anakinra in severe COVID-19 lung disease, J. Allergy Clin. Immunol. 146 (1) (2020) 215–215, https://linkinghub.elsevier.com/retrieve/pii/S0091674920303654.
[16] A. Azabia, et al., Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series, Ann. Rheum. Dis. 79 (10) (2020) 1381–1382.
[17] G. Dimopoulos, Q. de Mast, N. Markou, M. Theodorakopoulou, A. Komnou, M. Mouktaroudi, M.G. Netea, T. Spyridopoulos, R.J. Verheugen, J. Hoogerwerf, A. Chanchra, F.L. van de Venrode, E.J. Giamarellos-Bourboulis, Favorable Anakinra Responses in Severe COVID-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis, Cell Host Microbe 28 (1) (2020) 121–123.e1, https://linkinghub.elsevier.com/retrieve/pii/S1931321820302894.
[18] N. Kaneko, et al., The role of interleukin-1 in general pathology, Inflamm. Regen. 39 (2019) 12.
[19] A. Aouba, et al., Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series, Ann. Rheum. Dis. 79 (10) (2020) 1381–1382.
[20] M. Milanes, A. Nicolaides, A. Politis, J. Le Pavec, A. Chanchra, M.G. Netea, T. Spyridopoulos, R.J. Verheugen, J. Hoogerwerf, A. Chanchra, F.L. van de Venrode, E.J. Giamarellos-Bourboulis, Favorable Anakinra Responses in Severe COVID-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis, Cell Host Microbe 28 (1) (2020) 121–123.e1, https://linkinghub.elsevier.com/retrieve/pii/S1931321820302894.
[21] C.H.I.D. Toulon, Interleukin-1 (IL-1) and Interferon Gamma (IFNγ) Inhibition During COVID 19 Infection: Randomized, Controlled Study Assessing Efficacy and Safety of Anakinra and Remdesivir, to 2020 (cited 2021 1-01).
[22] H.S. Sepini, suPAR-guided Anakinra Treatment for Validation of the Risk and Early Management of Severe Respiratory Failure by COVID-19: The SAVE Open-label, Non-randomized Single-arm Trial, 2020 (cited 2021 1-01).
Cytokine 143 (2021) 155544

8

J. Geng et al.

[34] U.H. Tours, Efficacy and Safety of ANAKinra During Adult “ COVID-19 “ With Aggravating Respiratory Symptoms: a Multicenter Open-label Controlled Randomized Trial, 2020 (cited 2021 1-01). <https://www.clinicaltrials.gov/ct2/show/NCT04364009?term=ANAKinra&cond=COVID-19&rank=8>.

[35] H.L.S. Sepsis, suPAR-Guided Anakinra Treatment for Validation of the Risk and Early Management of Severe Respiratory Failure by COVID-19: The SAVE-MORE Double-blind, Randomized, Phase III Confirmatory Trial, 2020 (cited 2021 1-01). <https://www.clinicaltrials.gov/ct2/show/NCT04680947?term=Anakinra&cond=COVID-19&rank=3>.

[36] H.I. Brunner, et al., Efficacy and safety of canakinumab in sjia patients with and without fever at baseline: results from an open-label, active treatment extension study, Arthritis Rheumatol (2020).

[37] P.A. Brogans, et al., Rapid and Sustained Long-Term Efficacy and Safety of H.I.S. Sepsis, suPAR-Guided Anakinra Treatment for Validation of the Risk and Early Management of Severe Respiratory Failure by COVID-19: The SAVE-MORE Double-blind, Randomized, Phase III Confirmatory Trial, 2020 (cited 2021 1-01). <https://www.clinicaltrials.gov/ct2/show/NCT04680947?term=Anakinra&cond=COVID-19&rank=3>.

[38] L. Zhuang, et al., Dosage Considerations for Canakinumab in Children With Periodic Fever Syndromes, Clin. Pharmacol. Ther. 106 (3) (2019) 557-567.

[39] E.V. Acosta-Rodriguez, et al., Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells, Nat. Immunol. 8 (9) (2007) 942-949.

[40] P.M. Ridker, et al., Interleukin-1 Trap to Treat Vascular Dysfunction in Early Management of Severe Respiratory Failure by COVID-19: The SAVE-MORE Double-blind, Randomized, Phase III Confirmatory Trial, 2020 (cited 2021 1-01). <https://www.clinicaltrials.gov/ct2/show/NCT04680947?term=Anakinra&cond=COVID-19&rank=3>.

[41] H.I. Brunner, et al., Efficacy and safety of canakinumab in sjia patients with and without fever at baseline: results from an open-label, active treatment extension study, Arthritis Rheumatol (2020).

[42] P.A. Brogans, et al., Rapid and Sustained Long-Term Efficacy and Safety of H.I.S. Sepsis, suPAR-Guided Anakinra Treatment for Validation of the Risk and Early Management of Severe Respiratory Failure by COVID-19: The SAVE-MORE Double-blind, Randomized, Phase III Confirmatory Trial, 2020 (cited 2021 1-01). <https://www.clinicaltrials.gov/ct2/show/NCT04680947?term=Anakinra&cond=COVID-19&rank=3>.

[43] M. Caracciolo, et al., Case report: canakinumab for the treatment of a patient with COVID-19 acute respiratory distress syndrome, Front. Immunol. 11 (2020) 2042.

[44] M. Caracciolo, et al., Case report: canakinumab for the treatment of a patient with COVID-19 acute respiratory distress syndrome, Front. Immunol. 11 (2020) 2042.

[45] R. Cheng, et al., Interleukin-1 in Patients With Cryopyrin-Associated Periodic Syndrome Ages Five Years and Younger, Arthritis. Rheumatol. 71 (11) (2019) 1955-1963.

[46] R. Cheng, et al., Interleukin-1 in Patients With Cryopyrin-Associated Periodic Syndrome Ages Five Years and Younger, Arthritis. Rheumatol. 71 (11) (2019) 1955-1963.

[47] H.M. Moutsopoulos, Anti-inflammatory therapy may ameliorate the clinical picture of COVID-19, Ann Rheum Dis 79 (9) (2020) 1253-1254.