INTRODUCTION

Multiple myeloma (MM) is a cancer of plasma cells, the terminal differentiation stage of B lymphocytes. The cancer cells, MM cells, are usually located in the bone marrow (BM) where their harmful influence regularly leads to bone degradation and often to anemia, hypercalcemia, and renal dysfunction. Although recurrent genetic aberrations have been identified in MM cells, none of the aberrations are ubiquitous and none of them have proved useful as drug targets in treatment regimens. On the other hand, effective treatment is established against molecules that are not aberrant but which are highly expressed by the cancer cells like CD38, SLAMF7, and BCMA. In this article, we have employed mRNA expression data from CoMMpass, a database established by the Multiple Myeloma Research Foundation, to explore the highly expressed genes in MM cells.
and identified highly expressed genes with the presumption that proteins encoded by such genes might be suitable as treatment targets.

2 | MATERIAL AND METHODS

Gene expression data from 864 samples of purified and RNA-seq sequenced myeloma cells (MM cells) derived from 767 patients in the CoMMpass database (IA11 release) were downloaded. We calculated the average expression of the individual genes across all samples and selected the 300 protein-coding nuclear genes with the highest expression levels. Genes coding for proteins involved in the translation of mRNA ($n = 108$) were deleted from the list, leaving 192 genes for further analysis.

Genes were classified according to five properties. First, they were sorted by the function of their encoded protein. We defined 20 functional groups specifically for this publication and assigned each gene to one of these groups after having studied literature about the corresponding protein. Next, they were dichotomized into yes or no for the following four properties: (1) whether the gene was a "known MM gene"; (2) whether the gene was expressed by all patients or only by a subgroup, (3) whether expression level conferred prognostic information, and (4) whether the gene was classified in the Depmap database as a gene that MM cells are dependent on for survival. A flowchart of the gene sorting is shown in Figure 1.

"Known MM gene" was loosely defined as being a main focus in at least one MM-related English-language paper in PubMed. The criterion for being expressed only by a subgroup was that the gene was silent [defined as expression level <30 fragments per kilobase million (FPKM)] in $>5\%$ of patients and that there was a ratio of >1000 between the highest and the lowest expression level of the gene.

Survival data available from CoMMpass were used to assess the prognostic impact of the genes. For each gene, the patients were dichotomized into groups of equal size as high or low expressors based on whether their expression of the gene was over or below the median expression for the whole group of patients. The Kaplan-Meier method was used for survival analyses, and the survival curves were compared with the log-rank test. A gene was defined as prognostic if the hazard ratio for overall survival for either high or low expressors was >1.35 with a p-value $<.01$. The software available on the CoMMpass website was used to identify genes with prognostic relevance according to this criterion. GraphPad Prism 8 was used for creating the survival curves and the statistical analysis presented in Figure 2.

3 | RESULTS

3.1 | Highly expressed genes

The 300 most highly expressed protein-coding genes in primary MM cells were listed and ranked in descending order by expression level. Genes coding for ribosomal proteins or for other proteins involved in mRNA translation were highly abundant among the first couple of hundred mRNAs on the list. This may reflect the housekeeping nature of many of the proteins encoded by these genes, but such genes may also be more highly expressed in MM cells than in other cells due to the vast production of immunoglobulin. Whether correct or not, we thought such housekeeping proteins might be considered of little relevance to oncogenesis. Based on this decision, 79 of the first one hundred and 29 of the next two hundred mRNAs were deleted. The remaining 192 mRNAs were analyzed further (Table 1 shows the first 50 genes on the list and Table S1 the whole list). To verify this list, we downloaded similar mRNA expression data from MM cells sampled from 44 MM patients enrolled in the PADIMAC study. Of the 50 genes with the highest expression in the CoMMpass data, 45 were also present on the PADIMAC list (Table 1). In total there was 63% (120/192) concordance between the two lists (Table S1). The concordance between the CoMMpass list and a list of expression data from normal BM plasma cells was 41 genes among the 50 highest expressed in CoMMpass (Table 1) and 54% (103/192) in total (Table S1).

The highest expressed gene was B2M, coding for β2-microglobulin. The third was TPT1, encoding translationally controlled tumor protein (TCTP). This protein is an anti-apoptotic molecule that interacts directly with and stabilizes Mcl-1, a BCL2 family molecule. MCL1 itself was number 12 on the list of highly expressed genes, second of molecules classified as anti-apoptotic.

3.2 | Known "myeloma genes" and genes expressed by only a subgroup of patients

First, we identified genes that were already known to be implicated in MM pathogenesis. A conspicuously high number of genes [52 (27%)] coded for proteins that had previously been described as playing a role in MM. Among them were genes coding for the proteins β2-microglobulin, Mcl-1, CXCR4, Cyclin-D1, Syndecan-1, SLAMF7, Seryglin, Pin2, BCMA, PRL-3, and several members of the AP1 family of transcription factors (c-Jun, JunB, and c-Fos) (Table 1). "Known MM genes" were more often prognostic (42%) than genes that have not been described in the context of MM (36%). However, this difference was not statistically significant (chi-squared test: 0.48).

Further, we assessed whether each gene was ubiquitously expressed or expressed only by a subgroup of patients. Merely 15 of the 192 genes were expressed by only a subgroup. Interestingly, 11 out of the 15 mRNAs (73%) with skewed expression were coding for proteins previously described as playing a role in MM, a much higher percentage than in the group of ubiquitously expressed mRNAs (23%) (chi-squared test: <0.001).

Despite that the molecules expressed by a subgroup were more often mentioned in the literature on MM, they were not significantly
more often prognostic (40%) than the ubiquitously expressed mRNAs (67 out of 177, (38%)).

3.3 | Genes classified by function

Next, we grouped genes according to known function. The group "Regulation of metabolism" comprised 26 genes, and all were ubiquitously expressed (Table 2), probably reflecting the housekeeping function of many of these genes. Only three of them (11.5%) were classified as "known MM genes". Nevertheless, 46% of the metabolism genes were of prognostic significance. Six genes in this group coded for proteins in the mitochondrial ATP synthase complex and four genes coded for proteins in the terminal enzyme of the mitochondrial respiratory chain, cytochrome c oxidase, probably reflecting a highly active respiratory chain in MM cells. COX8A, the gene coding for cytochrome c oxidase subunit 8A, was strongly associated with a bad prognosis (Figure 2). Four of the respiratory chain genes had much lower expression levels in normal plasma cells. They were COX8A and three genes coding for proteins in the FO subunit of the ATP synthase complex, ATP5ME, ATP5MF, and ATP5MG (Table S1). Three glycosylation enzyme genes (LDHA, GAPDH, and ALDOA) were also on the list. LDHA had very strong prognostic impact (Figure 2), whereas ALDOA had very low or absent expression in normal plasma cells.

Another large group (26 members) were genes encoding proteins involved in protein processing, typically enzymes that catalyze posttranslational modifications. With one exception (CST3), all these genes were ubiquitously expressed. Here, only three genes (11.5%) were "known MM genes". Of the mRNAs in this group, 54% carried significant prognostic information, as compared to 36% of the genes not belonging to this group (chi-squared test: 0.074). In all instances, high expression of the gene implied an unfavorable prognosis.

Four genes in the protein processing group (OST4, DAD1, DDOST, and STT3a) were parts of the oligosaccharyltransferase complex. This complex is involved in the N-linked glycosylation of proteins in the endoplasmic reticulum (ER) by transferring an oligosaccharide to asparagine residues.

The third largest group, "function in ER", consisted of 22 genes. The proteins encoded by these genes typically serve as chaperones in proteins folding or are involved in protein trafficking in ER, Golgi, or secretory vesicles. Three of the four "known MM genes" in this group were heat shock proteins. An astonishing 62% of the genes were prognostic, as compared to 35% in genes not belonging to this group (chi-squared test: 0.030). Like in the previous group, all genes were ubiquitously expressed.

The next group, called "signal transduction", contained 19 genes. Well-known members here were the signaling receptors SLAMF7, BCMA, and CXCR4. Other members were enzymes in signaling pathways like RHOB and the phosphatase genes DUSP1, DUSP5, and PTP4A3. SIK1 and PTP4A3 were highly overexpressed in malignant plasma cells as they ranked only as number 12557 and 8155, respectively, in normal plasma cells (Table S1). Ten of these genes were "known MM genes", a much higher percentage than in the previous groups. Surprisingly, only 26% of the genes in this group were prognostic. Nevertheless, the expression of SRGN, the gene encoding serglycin, stood out as being highly significant for overall survival (Figure 2). Serglycin is the most abundant proteoglycan in MM cells and has been linked to MM-promoting processes including cell growth, cell adhesion, bone resorption, angiogenesis, and complement inhibition.

Twelve genes coded for transcription factors. Here eight genes (67%) were "known MM genes", but none of the 12 mRNAs conferred any prognostic information. Five transcription factors were members of the AP-1 family, JUN, JUNB, JUND, FOS, and FOSB. Three of them were "known MM genes" (JUN, JUNB, and FOS). FOS, JUN, and FOSB were ranked number 10, 14, and 20 of all genes on the list. Only XBP1, coding for the transcription factor X-box binding protein 1, which is essential for differentiation of plasma cells, was expressed at the same level (number 13). XBP1 mRNA exists in both un-spliced variants (XBP1u) and a spliced variant (XBP1s), the latter coding for a larger protein isoform than XBP1u. XBP1s is of particular interest since it is the isoform that can initiate the so-called unfolded protein response (UPR). The CoMMpass database also contains expression data on mRNA isoforms and the ratio between XBP1u and XBP1s isoforms was 12.4. Only one of the 12 transcription factors (IER2) was absent on the gene list of MM samples from the PADIMAC study, whereas 10 of them ranked lower in expression in normal plasma cells than in MM cells (Table 1 and Table S1).

Genes being mostly involved in immune regulation also contained 12 entries. Three of them (25%) were expressed by a subgroup only, two of which encode the interferon-inducible proteins IFI6 and IFITM1. IFI6 and IFITM1 ranked only as number 2621 and 5205, respectively, in normal BM plasma cells. Four genes were of prognostic relevance and two of them, PTMA and MIF, were particularly strong negative prognostic factors (Figure 2).
Nine genes coded for cytoskeletal proteins or proteins regulating the cytoskeleton. VIM and ACTB, coding for vimentin and β-actin, respectively, ranked number 19 and 23 on the overall list of highly expressed genes. High levels of MYL6 and CFL1, encoding myosin light chain-6 and cofillin-1, respectively, were particularly strong negative prognostic factors (Figure 2).

Seven genes coded for proteins involved in protein degradation. They were all ubiquitously expressed. Only PSMB4 was a “known MM gene”, encoding proteasome subunit beta 4, one of the 17 essential subunits of the 20S proteasome complex and the subunit that regulates assembly of the proteasome. In the CoMMpass data set, PSMB4 expression was a highly significant prognostic factor (Figure 2), and it was the only gene in the protein degradation group to carry prognostic information. PSMB4 was overexpressed in MM cells as its expression ranked number 2714 in normal BM plasma cells (Table S1).

The list of highly expressed genes in the CoMMpass data set had a very high fraction (27%) of molecules with a described role in MM. This suggested to us that the other genes also might be enriched by molecules of high relevance to the pathogenesis in MM. We therefore consider the list to be of value as a reference to researchers working on MM. A similar list from an independent data set (PADIMAC) showed high concordance and served as verification of the data.

We found that 38% of the genes predicted disease outcome. Despite rarely being studied by MM researchers, genes coding for proteins engaged in “protein processing” or with a “function in ER”, had a very high fraction of prognostic mRNAs (56% combined). High levels of such proteins might reflect high cellular activity, rapid growth, and cell division. In addition, MM cells have high production of proteins for export, resulting in many misfolded proteins. Therefore, the unfolded protein response (UPR) could be important in MM cells. Some of the gene products in these gene groups are involved in the UPR. Expression of UPR genes could be induced by XBP1s, the spliced variant of the transcription factor XBP1, which was ranked number 13 in expression level. XBP1s causes development of an MM-like disease when forcibly expressed in a mouse model, suggesting that XBP1s could play a role as a driver of MM pathogenesis. However, in the CoMMpass data, XBP1s was expressed at lower levels than the un-spliced XBP1 variants.

Members of the oligosaccharyltransferase complex constitute a cluster of genes in the protein processing group that could possibly become targets for the treatment of MM. Genes encoding the catalytic subunit, STT3a, and three other members of this complex (OST4, DAD1, DDOST) were highly expressed. All of them were prognostic, but none have been studied in the context of MM. DAD1 protein, also called Defender of Apoptotic cell Death, is reported to bind Mcl-1 and protect against apoptosis.

The group of transcription factors, comprising 12 different mRNAs, were at the other extreme with regard to clinical impact, as none of them were prognostic. Intuitively, this is difficult to understand since these genes code for proteins that regulate molecular programs supposedly important for the aggressiveness of cancer. Posttranscriptional regulation that leads to low correlation between mRNA level and protein level could be a possible explanation.

Genes expressed by only a subgroup of patients were more often “known MM genes” than ubiquitously expressed genes. It could be that genes with a dynamic expression more easily will be interpreted as important and more often studied than molecules with a stable expression pattern. An exaggerated focus on molecules with skewed expression is supported by the modest prognostic impact of such molecules.

The most highly expressed of all 192 genes was B2M, encoding β2-microglobulin, the beta moiety of the HLA class I heterodimer and a well-known prognostic serum marker in MM. Besides its role in antigen presentation, it also delivers a “don’t eat me” signal to macrophages, which could be an important protective measure for cancer cells against the immune system. Contrary to the β2-microglobulin serum level, B2M mRNA was not prognostic. Maybe the level in serum is not primarily reflecting gene expression but cancer cell turnover. Aggressive, highly proliferating disease could be accompanied by rapid cell decay, which may lead to release of...
β2-microglobulin into circulation. The alternate explanation that β2-microglobulin in serum reflects tumor load, is less likely since percentage of MM cells in the BM is not among the best measures of disease aggressiveness.41

Several studies have pointed to Mcl-1 as the most important anti-apoptotic molecule of the BCL-2 family in MM cells.9,42 Interestingly, MCL1 ranked number 12 of highly expressed genes and was the only BCL-2 family molecule on the list.

The only other anti-apoptotic gene on the list, TPT1, encoding translationally controlled tumor protein (TCTP), was mentioned in passing in a single paper on MM.43 The lack of interest in TPT1 is surprising given that it was the third most expressed gene and that it is reported to stabilize Mcl-1.744 Notably, expression of both these anti-apoptotic genes ranked higher in malignant than in normal plasma cells.

Twelve mRNAs coded for immunoregulatory proteins. Two of them, IFITM1 and IFI6, encoded proteins involved in interferon signaling. A gene set enrichment analysis (GSEA) comparing primary patient cells with MM cell lines revealed that immune signaling signatures are significantly enriched in primary cells, and interferon response genes are an important part of this enrichment.45 We have found that induction of interferon response genes is mediated by transcription factors STAT1 and −2 in response to PRL-3 (protein encoded by PTP4A3) in MM cells.46 It is not unlikely that cellular traits that are exclusive to primary cells reflect the influence of the microenvironment in the BM. IL-6 and other cytokines that induce important signaling mediators such as PRL-3 could be instrumental in sustaining important molecular programs that are not necessarily operative in cell lines.47,48 It is also highly noteworthy that expression of IFI6, IFITM1, and PTP4A3 was very low in normal BM plasma cells, showing that their expression in plasma cells is virtually exclusive to malignant plasma cells.

MIF, coding for macrophage migration inhibitory factor, is a secreted cytokine and a ligand for two receptors encoded by genes on the list, CD74 and CXCR4. This opens for the possibility of autocrine
Number	GENE name	Mean of gene expression (FPKM)	Gene classification	Known myeloma gene?	Prognostic?	Ubiquitously expressed (U) or by subgroup (S)	Among top 300 genes in the Padimac study	Expression rank in normal BM PCs	Enriched in MM in Depmap
1	B2M	19959	Antigen presentation	Y	N	U	Y	1	Y
2	IGJ	4294	Immune regulation	N	N	U	Y	2	N
3	TPT1	4227	Anti-apoptosis	N	N	U	Y	78	N
4	HLA-B	3399	Antigen presentation	Y	N	U	Y	6	N
5	TXND5	3322	Function in ER	Y	N	U	N	1631	Y
6	HLA-C	2825	Antigen presentation	N	N	U	Y	15	N
7	FTL	2557	Metal chelation	N	N	U	Y	12	N
8	MZB1	2289	Immune regulation	N	N	U	Y	9	N
9	HSP90B1	1556	Function in ER	Y	Y	U	Y	4	Y
10	FOS	1550	Transcr factor	Y	N	U	Y	19	N
11	DDX5	1335	Transcr regul	Y	N	U	Y	18	N
12	MCL1	1333	Anti-apoptosis	Y	Y	U	Y	96	Y
13	XB1P1	1308	Transcr factor	Y	N	U	Y	8	Y
14	JUN	1291	Transcr factor	Y	N	U	Y	31	N
15	TSC22D3	1268	Immune regulation	N	Y	U	Y	23	N
16	CYBA	1184	Immune regulation	N	N	U	Y	41	N
17	DERL3	1176	Function in ER	N	N	U	Y	852	N
18	NACA	1130	Function in ER	N	N	U	Y	376	N
19	VIM	1092	Cytoskeleton	Y	N	U	Y	177	N
20	FOSB	1088	Transcr factor	N	N	U	Y	169	N
21	CD74	1083	Antigen presentation	Y	N	U	Y	5	N
22	PPIB	1070	Function in ER	N	Y	U	Y	144	N
23	ACTB	1025	Cytoskeleton	N	N	U	Y	3	N
24	HLA-A	1024	Antigen presentation	Y	N	U	Y	29	Y
25	H3F3B	1007	Histone	N	N	U	Y	14	N
26	HSPA8	983	Function in ER	N	N	U	Y	36	N
27	DUSP1	928	Signal transduction	N	N	U	Y	17	N
Number	GENE name	Mean of gene expression (FPKM)	Gene classification	Known myeloma gene?	Prognostic?	Ubiquitously expressed (U) or by subgroup (S)	Among top 300 genes in the Padimac study	Expression rank in normal BM PCs	Enriched in MM in Depmap
--------	-----------	-------------------------------	---------------------	---------------------	------------	---	--	-------------------------------	--------------------------
28	HNRNPH1	914	RNA processing	N	N	U	Y	295	N
29	TMSB10	872	Cytoskeleton	N	Y	U	Y	43	N
30	ITM2C	871	Unknown	Y	N	U	Y	25	N
31	PPIA	805	Immune regulation	N	Y	U	Y	201	N
32	UBC	797	Prot degrad.	N	N	U	Y	11	N
33	COX7C	794	Metabolism	N	N	U	N	581	N
34	JunD	745	Transcr factor	N	N	U	Y	371	N
35	HSPA5	734	Function in ER	Y	Y	U	Y	7	Y
36	HNRNPA1	734	RNA processing	N	N	U	Y	903	N
37	GAPDH	721	Metabolism	N	Y	U	Y	45	N
38	QAZ1	716	Metabolism	N	Y	U	Y	77	Y
39	SPCS1	716	Function in ER	N	Y	U	N	67	N
40	ATF4	715	Transcr factor	Y	N	U	Y	158	N
41	PSAP	699	Metabolism	N	N	U	Y	16	N
42	H1FX	683	Histone	N	N	U	Y	519	N
43	GNAS	682	Signal transduction	N	N	U	Y	192	N
44	SEC61B	681	Function in ER	N	Y	U	N	191	N
45	TMBIM6	681	Function in ER	N	Y	U	Y	28	N
46	ACTG1	671	Cytoskeleton	N	N	U	Y	13	N
47	TMSB4X	647	Cytoskeleton	Y	N	S	N	21	N
48	NFKBIA	639	Signal transduction	Y	N	U	Y	56	N
49	TRIB1	631	Signal transduction	N	N	U	Y	76	N
50	CCNL1	623	Cell division	N	N	U	Y	167	N

Abbreviations: FPKM, fragments per kilobase million; N, no; Y, yes; PCs, plasma cells; S, expressed by a subgroup; U, expressed by all patients.
TABLE 2
Groups of highly expressed genes in samples of purified primary myeloma cells, categorized by function of encoded protein

Gene groups defined by function of encoded protein	Number of genes	Fraction of “known MM genes” (%)	Fraction of prognostic mRNAs (%)	Fraction of genes expressed by subgroup (%)	Fraction of genes in top 192 genes in normal PCs (%)	Fraction of genes vulnerable by Depmap (%)
Regulation of metabolism	26	11.5	46	0	59.1	3.8
Protein processing	26	11.5	53.8	3.8	58	3.8
Function in ER	22	18	59	0	63.6	13.6
Signal transduction	19	52.6	26.3	10.5	63	15.8
RNA processing	14	0	42.9	0	43	0
Transcription factor	12	66.7	0	16.7	50	8.3
Immune regulation	12	33.3	33.3	25	41.7	8.3
Transcriptional regulation	10	20	30	0	40	30
Cytoskeleton	9	33.3	44.4	11.1	88.9	11.1
Protein degradation	7	14.3	14.3	0	43	14.3
Antigene presentation	6	83	0	0	100	33
Metal chelation	6	33	66	66	17	16.7
Unknown	5	20	20	0	40	20
Ion transport	4	25	50	0	75	0
Cell division	4	25	0	25	25	25
Adhesion	3	100	66.7	33.3	0	0
Anti-apoptosis	2	50	50	0	100	50
Histone	2	0	0	0	50	0
Mitochondrial transporter	2	0	0	0	0	0
Protein trafficking, not ER	1	0	100	0	100	0
All genes	192	27.1	38	7.8	54	10.9
stimulation. It is shown that MIF is involved in adhesion of MM cells to BM stroma and in resistance to chemotherapeutic drugs. Its importance for MM cells is further supported by the strong correlation between MIF expression and a bad prognosis.

The high expression of HBB was surprising. Not much is written about the role of hemoglobin proteins in cancer. A recent publication showed the HBB gene product β-globin to be expressed by breast cancer cells in circulation, but not by primary or metastatic tumor cells. The function of the protein was not primarily to carry oxygen, but to lower ROS levels.

PSMB4 has not been extensively studied in MM, but a publication from 2015 found this molecule to be overexpressed in MM cells and its expression to be positively correlated with NFκB activity and expression of miRNA21. PSMB4 is also overexpressed and linked to adverse prognosis in several cancer entities and could be a cancer-driving gene in solid tumors. Mutations and overexpression of another subunit, PSMB5, are determinants for resistance to the proteasome inhibitor bortezomib, but whether PSMB4 overexpression of another subunit, PSMB5, are determinants for resistance to the proteasome inhibitor bortezomib, but whether PSMB4 overexpression can lead to resistance to proteasome inhibitors is an open question that needs to be examined.

Surprisingly, the expression of SDC1, encoding syndecan-1, lacked prognostic significance. Syndecan-1 serum level is a powerful negative prognostic factor. The explanation could be the same as suggested above for B2 M. Alternatively, it could be that syndecan-1 is shed from the cell surface through an active enzymatic process and that soluble syndecan-1 has oncogenic properties.

In conclusion, we think that the list of highly expressed genes in MM cells both confirms the importance of molecules that already have been extensively studied and points at molecules that deserve further examination.

ACKNOWLEDGEMENTS
The authors have been supported by the Liaison Committee for education, research and innovation in Central Norway (Samarbeidsorganet); by the Joint Research Committee between St. Olavs Hospital and the Faculty of Medicine and Health Science, NTNU (Felles Forskningsutvalg); by Rakel and Otto Kr. Bruun’s legacy; and by the Cancer Fund (Kreftfondet) at St. Olav’s Hospital. The authors are indebted to the Multiple Myeloma Research Foundation for their Personalized Medicine Initiatives (https://research.themmmrf.org and www.themmmrf.org). We are also indebted to the investigators in the PADIMAC study and to Chester J Joyner and colleagues at Emory University for making their RNA 77sequencing data publicly available.

CONFLICT OF INTEREST
The authors have no conflicts of interest relevant for this paper.

DATA AVAILABILITY STATEMENT
All the data processed in this article were retrieved from public sources. CoMMpass data can be accessed on this website: https://research.themmmrf.org. The gene-dependencies enriched in MM cells can be accessed through depmap.org/portal/context/multiple_myeloma. Publicly available mRNA sequencing data from MM cells sampled from 44 patients in the PADIMAC study and mRNA sequencing data from 31 samples of normal BM plasma cells from healthy donors can be downloaded from GEO, accession numbers GSE116324 and GSE17878, respectively. These two lists of gene expression levels were ranked and filtered in the same way as the CoMMpass data.

REFERENCES
1. Borset M, Sundan A, Waage A, Standal T. Why do myeloma patients have bone disease? A historical perspective. Blood Rev. 2020;41:100646.
2. van de Donk N, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397(10272):410-427.
3. Behan FM, Iorio F, Picco G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568(7753):511-516.
4. Meyers RM, Bryan JG, McFarland JM, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49(12):1779-1784.
5. Chapman MA, Sive J, Ambrose J, et al. RNA-seq of newly diagnosed patients in the PADIMAC study leads to a bortezomib/lenalidomide decision signature. Blood. 2018;132(20):2154-2165.
6. Joyner CJ, Ley AM, Nguyen DC, et al. Generation of human long-lived plasma cells by developmentally regulated epigenetic imprinting. Life Sci Alliance. 2022;5(3):e202101285.
7. Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF. Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol. 2005;25(8):3117-3126.
8. Kin K, Sakurabayashi I, Kawai T. Beta2-microglobulin levels of serum and ascites in malignant diseases. Gan. 1977;68(4):427-434.
9. Derenne S, Monia B, Dean NM, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100(1):194-199.
10. Sanz-Rodriguez F, Hidalgo A, Teixido J. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood. 2001;97(2):346-351.
11. Seto M, Yamamoto K, Iida S, et al. Gene rearrangement and overexpression of PRAD1 in lymphoid malignancy with t(11;14)(q13;q32) translocation. Oncogene. 1992;7(7):1401-1406.
12. Sanderson RD, Borset M. Syndecan-1 in B lymphoid malignancies. Ann Hematol. 2002;81(3):125-135.
13. Tai YT, Dillon M, Song W, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112(4):1329-1337.
14. Theocharidis AD, Seidel C, Borset M, et al. Serglycin constitutively secreted by myeloma plasma cells is a potent inhibitor of bone mineralization in vitro. J Biol Chem. 2005;281(46):35116-35128.
15. Asano J, Nakano A, Oda A, et al. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia. 2011;25(7):1182-1188.
16. Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103(2):689-694.
17. Abdollahi P, Vandsemb EN, Elsaadi S, et al. Phosphatase of regenerating liver-3 regulates cancer cell metabolism in multiple myeloma. FASEB J. 2021;35(3):e21344.
18. Fagerli UM, Holt RU, Holien T, et al. Overexpression and involvement in migration by the metastasis-associated phosphatase PRL-3 in human myeloma cells. Blood. 2008;111(2):806-815.

19. Di Simone D, Galimberti S, Matti L, Petrini M. C-Jun and GST-pi expression in human plasma cells. Haematologica. 1997;82(1):69-70.

20. Fan F, Bashari MH, Morelli E, et al. The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia. 2017;31(7):1570-1581.

21. Brown RD, Pope B, Luo XF, Gibson J, Joshua D. The oncoprotein phenotype of plasma cells from patients with multiple myeloma. Leuk Lymphoma. 1994;16(1-2):147-156.

22. Abdollahi P, Kohn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett. 2020;501:105-113.

23. Purushothaman A, Toole BP. Serglycin proteoglycan is required for phenotype of plasma cells from patients with multiple myeloma. J Biol Chem. 2014;289(9):5499-5509.

24. Skliris A, Happonen KE, Terpos E, et al. Serglycin inhibits the classical and lectin pathways of complement via its glycosaminoglycan chains: implications for multiple myeloma. Eur J Immunol. 2011;41(4):437-449.

25. Reimold AM, Iwakoshi NN, Manis J, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412(6844):300-307.

26. Lee K, Tirasophon W, Shen X, et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 2002;16(4):452-466.

27. Sburlati AR, Manrow RE, Berger SL. Prothymosin alpha antisense mRNA inhibits the classical and lectin pathways of complement via its glycosaminoglycan chains: implications for multiple myeloma. Eur J Immunol. 2011;41(4):437-449.

28. Zheng Y, Wang Q, Li T, et al. Role of myeloma-derived MIF in multiple myeloma cell adhesion, in vivo growth, and vascularization. Cancer Lett. 2014;328(9):5499-5509.

29. Zheng P, Guo H, Li G, Han S, Luo F, Liu Y. PSMB4 promotes multiple myeloma cell adhesion to bone marrow and chemotherapy response. Blood. 2021;128(3):399-405.

30. Neri P, Ren L, Azab AK, et al. Integrin beta7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood. 2011;117(23):6202-6213.

31. Abroun S, Otsuyama K, Shamsasenjan K, et al. Galectin-1 suppresses the survival of CD45RA(-) primary myeloma cells in vitro. Br J Haematol. 2008;142(5):754-765.

32. McFarland JM, Ho ZV, Kugener G, et al. Improved estimation of cancer dependencies from large-scale RNAI screens using model-based normalization and data integration. Nat Commun. 2018;9(1):4610.

33. Vincenz L, Jager R, O'Dwyer M, Samali A. Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma. Mol Cancer Ther. 2013;12(6):831-843.

34. Carrasco DR, Sukhdeo K, Protopopova M, et al. The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell. 2007;11(4):349-360.

35. Lopez Sambrooks C, Baro M, Quijano A, et al. Oligosaccharyltransferase inhibition overcomes therapeutic resistance to EGFR tyrosine kinase inhibitors. Cancer Res. 2018;78(17):5094-5106.

36. Baro M, Lopez Sambrooks C, Quijano A, Saltzman WM, Contessa J. Oligosaccharyltransferase inhibition reduces receptor tyrosine kinase activation and enhances glioma radiosensitivity. Clin Cancer Res. 2019;25(2):784-795.

37. Makishima T, Yoshimi M, Komiyama S, Hara N, Nishimoto T. A subunit of the mammalian oligosaccharyltransferase, DAD1, interacts with Mcl-1, one of the bcl-2 protein family. J Biochem. 2000;128(3):399-405.

38. Tanigaki N, Nakamura K, Appella E, Poulik MD, Pressman D. Identity of the HL-A common portion fragment and human beta2-microglobulin. Biochem Biophys Res Commun. 1973;55(4):1234-1239.

39. Barkal AA, Weiskopf K, Kao KS, et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 2018;19(1):76-84.

40. Greipp PR, San Miguel J, Durie BG, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412-3420.

41. Seidel C, Sundan A, Hjorth M, et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood. 2000;95(2):388-392.

42. Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood. 2002;99(6):1885-1893.

43. Ge F, Zhang L, Tao SC, et al. Quantitative proteomic analysis of tumor regression in multiple myeloma cells. J Proteome Res. 2011;10(2):845-855.

44. Tuynder M, Susini L, Prieur S, et al. Biological models and genes of tumor regression: cellular reprogramming through tpt1/TCTP and SIAH1. Proc Natl Acad Sci U S A. 2002;99(23):14976-14981.

45. Sarin V, Yu K, Ferguson ID, et al. Evaluating the efficacy of multiple myeloma cell lines as models for patient tumors via transcriptomic correlation analysis. Leukemia. 2020;34(10):2754-2765.

46. Vandsemb EN, Rye MB, Steiro IJ, et al. PRL-3 induces a positive signaling circuit between glycolysis and activation of STAT1/2. FEBS J. 2021;288(23):6700.

47. Chong PSY, Zhou J, Lim JSL, et al. IL6 promotes a STAT3-PRL3 feedback loop via SHP2 repression in multiple myeloma. Cancer Res. 2019;79(18):4679-4688.

48. Slordahl TS, Abdollahi P, Vandsemb EN, et al. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells. Oncotarget. 2016;7(19):27295-27306.

49. Zheng Y, Miyamoto DT, Wittner BS, et al. Expression of beta-globin by cancer cells promotes cell survival during blood-borne dissemination. Nat Commun. 2017;8:14344.

50. Lee GY, Haverty PM, Li L, et al. Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res. 2014;74(11):3114-3126.

51. Oerlemans R, Franke NE, Assaraf YG, et al. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008;112(6):2489-2499.

52. Nam EJ, Park PW. Shedding of cell membrane-bound proteoglycans. Methods Mol Biol. 2012;836:291-305.

53. Seidel C, Børset M, Hjertner O, et al. High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood. 2000;96(9):3139-3146.

54. Yang Y, Yaccoby S, Liu W, et al. Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood. 2002;100(2):610-617.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.