Association Between Consistent Weight Gain Tracking and Gestational Weight Gain: Secondary Analysis of a Randomized Trial

Christine M. Olson, Myla S. Strawderman, and Meredith L. Graham

Objective: The effective components of interventions for reducing excessive gestational weight gain (GWG) remain to be identified. This study investigated the sociodemographic, physical, psychosocial, and environmental correlates of online GWG tracking and its independent association with GWG outcomes.

Methods: Eight hundred ninety-eight women in the intervention arms of a randomized trial assessing the effectiveness of an integrated online and mobile phone behavioral intervention to decrease the prevalence of excessive GWG were included in this secondary analysis. Data were analyzed using χ^2 analysis and modified Poisson and linear regression approaches.

Results: Only 16.5% of low-income (Medicaid-eligible) women consistently tracked GWG, as did 34.2% of not-low-income women. More highly educated, older, and white women were more likely to be consistent GWG trackers. Among not-low-income women, consistent GWG tracking was associated with 2.35 kg less GWG (95% CI: −3.23 to −1.46 kg; $P < 0.0001$) and a reduced risk of excessive GWG (RR 0.73; 95% CI: 0.59 to 0.89; $P = 0.002$).

Conclusions: Electronic tracking of GWG is an effective component of electronic and mobile health interventions aiming to decrease the prevalence of excessive GWG in not-low-income women. Income group-specific motivators are needed to increase the prevalence of GWG tracking.

Introduction

Maternal obesity and excessive gestational weight gain (GWG) are associated with many adverse pregnancy and birth outcomes. In addition, they increase the risk of obesity in both mother and baby (1-3). A recent Cochrane review found diet and/or exercise interventions during pregnancy reduced the risk of excessive GWG by 20% (4).

Electronic health (e-health) interventions have been shown to be efficacious across cognitive, behavioral, and emotional outcomes (5). However, several recent meta-analyses of e-learning and Web-based weight management interventions have yielded mixed results. Harris et al. (6) concluded that e-learning interventions did not have a significant positive effect on BMI or body weight. Arem and Irwin (7), in their review of Internet-delivered weight loss and maintenance programs, found intervention results ranging from no weight loss to an average loss of 7.6 kg. Kodama et al. (8) concluded from their meta-analysis that the intervention effects are inconsistent and depend on the type of usage of the Internet and the time period of use.

The recent Cochrane review mentioned above suggested that e-health interventions hold potential for addressing maternal obesity and excessive GWG (4). However, there is currently limited knowledge on the effectiveness of e-health interventions in preventing excessive GWG, and even less is known about the effectiveness of specific intervention components (9). Self-monitoring is generally considered to be an important component of behavioral weight management interventions. Self-weighing is recommended as part of the AHA/ACC/TOS Guidelines for the Management of Overweight and Obesity in Adults (10). A recent systematic review of longitudinal studies of self-weighing and weight outcomes found more frequent self-weighing was associated with greater weight loss, less weight gain, and lower body mass index (BMI) (11).

Funding agencies: National Heart, Lung, and Blood Institute and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Grant No. HL096760.

Disclosure: The authors declared no conflict of interest.

Author contributions: CMO, MSS, and MLG designed the study. MSS and MLG conducted the research. MSS analyzed the data. CMO wrote the paper and had primary responsibility for the final content. All authors reviewed and edited the manuscript and approved the final version.

Clinical trial registration: ClinicalTrials.gov identifier NCT01331564.

Received: 11 August 2016; Accepted: 4 April 2017; Published online 2 June 2017. doi:10.1002/oby.21873
regain, and better weight gain prevention (11). Electronic self-monitoring has been found to be related to greater adherence to self-monitoring over a 6-month time period compared to paper monitoring, but not to better weight outcomes (12).

Several studies have been undertaken in Great Britain and Australia to encourage pregnant women to weigh themselves at time intervals between the first and last prenatal care visits, which are the only times they are measured by health care providers (13-15). Harrison and colleagues (13) found a significant difference in GWG at 28 weeks between women who engaged in self-weighing and those who did not in a randomized trial sample of women with overweight and obesity (5.66 ± 2.6 kg vs. 7.03 ± 3.56 kg, \(P = 0.02 \)). Jeffries and colleagues (14) conducted a randomized controlled trial of self-weighing and weight tracking at 16, 20, 24, 28, 30, 32, and 34 weeks of gestation and found no overall positive effect. In a randomized controlled trial with pregnant women who had overweight and obesity, with serial self-weighing and simple dietary advice as the intervention, there was no difference in mean GWG between treatment groups (−0.9 kg, 95% confidence interval [CI]: −2.0 to 0.24) (15).

A recent paper that used data from the trial reported here examined latent class-derived usage patterns of all intervention and control group features and their relationship to GWG (16). No significant associations were found between usage patterns and GWG in the control group. In the intervention group and among higher-income women only, the combined group of super users (who had high use of all features) plus consistent weight trackers gained significantly less during pregnancy than the other use groups combined (normal BMI: −1.49 kg, \(P = 0.002 \); overweight and obesity BMI: −2.17 kg, \(P = 0.003 \)) (16). The common component across the two high-use groups was consistent use of the weight gain tracker, indicating a need to better understand who used the online GWG tracking tool and the relationship of use to weight gain outcomes.

The aim of this study was to examine the relationship between electronic weight gain tracking and weight gain outcomes in a sample of pregnant women in the United States. More specifically, this paper addresses the following questions: (1) What are the sociodemographic, physical, psychosocial, and environmental characteristics of pregnant women who use electronic weight gain tracking during pregnancy, and (2) what is the relationship between weight gain tracking and GWG outcomes independent of the characteristics that predict tracking?

Methods

Sample

Data for this study come from a large randomized controlled effectiveness trial of an integrated mobile phone and online intervention aimed at preventing excessive GWG and postpartum weight retention (17,18). Pregnant women were eligible for the trial if they were 18 to 35 years of age, had normal to obesity class 1 BMI, and were relatively healthy without weight-affecting medical conditions. In addition, participants had to (1) consent at or before 20 weeks of gestation, (2) be available for a 24-month intervention, (3) plan to carry their pregnancy to term and keep the baby, (4) read and understand English, and (5) have an email address. Upon consent, women were electronically randomized via computer to two identical intervention arms and one control arm within two income (low [defined by Medicaid eligibility during pregnancy] and not-low) and two BMI (normal BMI and overweight plus obesity class 1 BMI) groups (four strata).

The sample includes women in the intervention arms who met study eligibility criteria and participated during pregnancy as indicated by at least one website log-in or completion of the baseline questionnaire. Among this group, only those who had a singleton pregnancy that lasted at least 20 weeks were included in the analysis \((n = 898) \). The study protocol was approved by the University of Rochester Research Subject Review Board and the Cornell University Institutional Review Board.

The intervention

All study participants were sent an email describing the study and the features and tools available on the study website. Email, postcard, and telephone reminders were used as prompts to encourage participants to visit the website the first time. A $5 incentive was also given for the first visit to the study website.

Fishbein and Yzer’s Integrative Model of Behavioral Prediction (19) and Fogg’s Behavior Model for Persuasive Design (20) were the guiding theoretical frameworks for the intervention. The website featured blogs, local resources, articles, frequently asked questions, and event reminders that were available to women in the intervention and control arms (21). In addition, intervention arm participants had access to a weight gain tracker and diet and physical activity goal-setting and self-monitoring tools which were hypothesized to be the active ingredients of the intervention. The GWG tracker was based on the Institute of Medicine (IOM) GWG guidelines (2). It used each participant’s weight and height at recruitment for determining prepregnancy BMI and the appropriate GWG goal and graph for each woman. Women could enter weights via text message or online, with each weight plotted on the woman’s personal graph. After each weight entry, the woman was informed through her device if her weight was on or off track. The diet and physical activity goal-setting tools were each multicomponent tools that included an assessment of problems or need for change, setting a goal, identification of personal strategies and barriers, self-monitoring, and rewards. Intervention participants were emailed weekly from randomization until delivery with reminders to log in to see new content and reminders to use the weight gain tracker and diet and physical activity goal-setting tools.

Measures and data collection

Use of the online features was automatically captured by the website. For some features, amount of use in relation to expected use was incorporated into the usage measure. Consistent use was expected for entry of weights into the weight gain tracker, an a priori decision. We expected women to track their weight in 30-day intervals based on the standard schedule for prenatal care visits. However, to allow for possible delays in the scheduling of appointments, we used 45-day intervals from time of enrollment to delivery. If a woman entered a weight during each of the 45-day intervals that she participated in the study, she was categorized as a consistent tracker. If she entered a weight during at least half of the intervals, she was categorized as an almost
consistent tracker. If a woman entered weights in less than half of the intervals or she never entered a weight during pregnancy, she was categorized as an inconsistent tracker.

Sociodemographic, behavioral, psychosocial, and environmental data were collected through an online survey at baseline. Figure 1 shows the predictors of weight tracking from the Integrative Model of Behavioral Prediction (19) that were included in this study. Questions from the EARLY trials consortium were used for measuring sociodemographic characteristics, in-home access to a scale, and frequency of self-weighing (17). Items for measuring the other constructs predicting the behavior of weight tracking came from previous research on GWG (22), and all were pretested in the population for this project.

GWG data were obtained through an audit of the participant’s prenatal, labor and delivery, and 6-week postpartum medical record. Health data were abstracted from the medical record.

Statistical analysis
Total GWG was calculated as the difference between the first weight and the last weight in pregnancy. Overall, 13% of the sample did not have sufficient weight information in the medical record to yield a valid measure of GWG. Sufficient weight information required having a measured weight at both <14 weeks and ≥37 weeks of gestation. Missing data were handled using multiple imputation to address issues of bias (23) that may result from analyzing only complete cases, using SAS Proc MI and MIANALYZE. Sixty imputed data sets were created for the primary analysis and the models presented below. Next, the binary outcome of excessive total GWG was calculated using the IOM guidelines for each BMI group as determined at randomization. For each of the three BMI groups, the cutoff values for excessive total GWG are as follows: normal BMI, >16 kg (35 lb); overweight BMI, >11.5 kg (25 lb); and obesity class 1 BMI, >9 kg (20 lb).

Among participants with measured (not imputed) GWG data, χ² analysis was used to identify the sociodemographic, physical, psychosocial, and environmental predictors of consistent GWG tracking. A modified Poisson regression approach (24) was used to identify the independent predictors of consistent tracking from the variables identified in the binary analyses using the imputed data. All analyses were conducted separately in low and not-low-income groups.

The Mantel-Haenszel χ² statistic was used to evaluate the association between consistency of tracking and the binary outcome of prevalence of excessive total GWG. For total GWG in kilograms, the Kruskal-Wallis test was used. Least-squares multiple regression models assessed the mean difference in total GWG (kg) between consistent weight gain trackers compared to nonconsistent trackers (all the other categories combined) within income groups, controlling for the earlier identified predictors of consistent tracking. Similarly, a modified Poisson regression approach (24) was used to estimate the relative risk (RR) for the categorical outcome variable, the proportion of women with excessive total GWG. All weight outcome models used the imputed data sets and were adjusted for the following covariates: BMI, age, race, and parity, as well as pregnancy timing variables, including gestational age at delivery, the weeks between the first and last pregnancy weight, and the weeks between the last pregnancy weight and delivery. Significance level was set at P < 0.05.

Results
Predictors of weight gain tracking
In this sample from a large randomized effectiveness trial, more than twice as many not-low-income women (34.2%) compared to low-income (Medicaid-eligible) women (16.5%) tracked their weight gain consistently during pregnancy (Table 1). Of the sociodemographic and physical characteristics considered in the bivariate analyses, age, race, and education were significantly (P < 0.05) associated with consistent weight gain tracking in both income groups. Marital status was significantly associated with consistent tracking in the not-low-income women, while there was a trend (P = 0.06) toward an association in low-income women. Early pregnancy BMI
TABLE 1 Characteristics of participants by consistency of weight gain tracking within income groups

	Low-income women	Not-low-income women	P value^b					
	Total sample	Low-income sample	Consistent trackers, n = 58	Nonconsistent trackers, n = 293	Not-low-income sample	Consistent trackers, n = 547	Nonconsistent trackers, n = 360	P value^b
	(N = 898)	(n = 351)	(16.5%)	(83.5%)	(n = 547)	(34.2%)	(65.8%)	
BMI								
Normal	480 (53.5)^c	173 (49.3)	29 (16.8)	144 (83.2)	307 (56.1)	114 (37.1)	193 (62.9)	0.79
Overweight	278 (31.0)	120 (34.2)	18 (15.0)	102 (85.0)	158 (28.9)	47 (29.8)	111 (70.3)	0.25
Obesity	140 (15.6)	58 (16.5)	11 (19.0)	47 (81.0)	82 (15.0)	26 (31.7)	56 (68.3)	
Age at entry								0.003
Less than 25 y	259 (28.8)	188 (53.6)	24 (12.8)	164 (87.2)	71 (13.0)	13 (18.3)	58 (81.7)	0.01
25 to 29 y	303 (33.7)	102 (29.1)	15 (14.7)	87 (85.3)	201 (36.8)	72 (35.8)	129 (64.2)	
30 y and older	336 (37.4)	61 (17.4)	19 (31.2)	42 (68.9)	275 (50.3)	102 (37.1)	173 (62.9)	
Race								0.001
White	607 (72.1)	141 (46.1)	33 (23.4)	108 (76.6)	466 (86.9)	173 (37.1)	293 (62.9)	0.001
Black (African American)	178 (21.1)	142 (46.4)	11 (7.8)	131 (92.3)	36 (6.7)	3 (8.3)	33 (91.7)	
All other races	57 (6.8)	23 (7.5)	4 (17.4)	19 (82.6)	34 (6.3)	8 (23.5)	26 (76.5)	
Missing (n)	56	45	10	35	11	3	8	
Marital status								0.06
Single, including divorced	136 (15.3)	116 (33.6)	13 (11.2)	103 (88.8)	20 (3.7)	2 (10.0)	18 (90.0)	0.02
Married and cohabitating	756 (84.8)	229 (66.4)	44 (19.2)	185 (80.8)	527 (86.3)	185 (35.1)	342 (64.9)	
Missing (n)	6	6	1	5	0	0	0	
Parity								0.80
Nulliparous	416 (46.4)	148 (42.2)	26 (17.6)	122 (82.4)	268 (49.1)	86 (32.1)	182 (67.9)	0.52
Primiparous	298 (33.2)	106 (30.2)	18 (17.0)	88 (83.0)	192 (35.2)	68 (35.4)	124 (64.6)	
Multiparous	183 (20.4)	97 (27.6)	14 (14.4)	83 (85.6)	86 (15.8)	33 (38.4)	53 (61.6)	
Missing (n)	1	0	0	0	1	0	1	
Education								0.002
High school or less	185 (22.4)	145 (48.7)	16 (11.0)	129 (89.0)	40 (7.6)	9 (22.5)	31 (77.5)	0.002
Some college	235 (28.5)	115 (38.8)	29 (25.2)	86 (74.8)	120 (22.8)	30 (25.0)	90 (75.0)	
College graduate	405 (48.1)	38 (12.8)	12 (31.6)	26 (66.4)	367 (69.6)	149 (40.3)	219 (59.7)	
Missing (n)	53	1	52	0	20	0	20	
Intention								0.97
Intended amount of GWG								0.03
> IOM guidelines^d	191 (22.7)	72 (23.1)	12 (16.7)	60 (83.3)	119 (22.5)	37 (31.1)	82 (68.9)	
Within IOM guidelines	559 (66.4)	196 (62.8)	35 (17.9)	161 (82.1)	363 (68.5)	139 (38.3)	224 (61.7)	
< IOM guidelines	92 (10.9)	44 (14.1)	8 (18.2)	36 (81.8)	48 (9.1)	10 (20.8)	38 (79.2)	
Missing (n)	56	39	3	36	17	1	16	
Skills	Low-income women	Not-low-income women	P value\(^b\)	P value\(^b\)				
---	------------------	----------------------	---------------	---------------				
Total sample	\((N = 898)\)	\((n = 351)\)						
Low-income sample	\((n = 351)\)							
Consistent trackers, \(n = 58\)	(16.5\%)	72 (13.5)	27 (37.5)	45 (62.5)				
Nonconsistent trackers, \(n = 293\)	(83.5\%)	81 (15.2)	23 (28.4)	58 (71.6)				
Not-low-income sample	\((n = 547)\)							
Consistent trackers, \(n = 187\)	(34.2\%)	131 (24.6)	43 (32.8)	88 (67.2)				
Nonconsistent trackers, \(n = 360\)	(65.8\%)	184 (34.5)	63 (34.2)	121 (65.8)				
Frequency of self-weighing			0.004	0.15				
Once a year or less	134 (15.7)	13 (13.5)	27 (37.5)	45 (62.5)				
Every couple of months	131 (15.3)	50 (15.5)	45 (90.0)					
About once a month	243 (28.4)	112 (34.7)	97 (86.6)					
About once a week	263 (30.7)	79 (24.5)	58 (73.4)					
About once a day or more	85 (9.9)	20 (6.2)	12 (60.0)					
Missing (\(n\))	42	28	27	14				
Mobile/Web technology usage			0.98	0.001				
Type of cell phone			0.24	0.08				
Smartphone	552 (64.6)	195 (60.4)	35 (18.0)	160 (82.0)				
Cell phone and no Internet	251 (29.4)	87 (26.9)	16 (18.4)	71 (81.6)				
Does not own a cell phone	52 (6.1)	41 (12.7)	7 (7.1)	34 (82.9)				
Missing (\(n\))	43		15	2				
Frequency of sending or receiving text messages			0.24	0.08				
A few times a week or less	127 (14.9)	35 (10.8)	4 (11.4)	31 (88.6)				
A couple of times a day	226 (26.4)	61 (18.9)	15 (24.6)	46 (75.4)				
Many times a day	450 (52.6)	186 (57.6)	32 (17.2)	154 (82.8)				
Does not own a cell phone	52 (6.1)	41 (12.7)	7 (7.1)	34 (82.9)				
Missing (\(n\))	43		15	2				
Use any pregnancy apps or websites			0.12	0.55				
Yes	447 (49.8)	126 (35.9)	26 (20.6)	100 (79.4)				
No	451 (50.2)	25 (64.1)	32 (14.2)	193 (85.8)				
Number of pregnancy apps or websites			0.29	0.08				
0	451 (50.2)	225 (64.1)	32 (14.2)	193 (85.8)				
1	307 (34.2)	90 (25.6)	18 (20.0)	72 (80.0)				
\(\geq 2\)	140 (15.6)	36 (10.3)	8 (22.2)	28 (77.8)				
Environmental constraints			0.22	0.04				
Received weight advice from health care provider			0.22	0.04				
Yes	297 (34.3)	102 (31.1)	22 (31.6)	80 (78.4)				
No	568 (65.7)	226 (68.9)	36 (15.9)	190 (84.1)				
Missing (\(n\))	33		10	0				
	Low-income womena	Not-low-income women	P valueb					
--------------------------------	---------------------	----------------------	--------------					
	Total sample $(N = 898)$	Low-income sample $(n = 351)$	Consistent trackers, $n = 58$	Nonconsistent trackers, $n = 293$	P valueb			
Low-income sample $(n = 351)$								
Consistent trackers, $n = 58$								
Nonconsistent trackers, $n = 293$								
Access to scale at home								
Yes	527 (61.5)	142 (44.1)	31 (21.8)	111 (78.2)	0.11			
No	330 (38.5)	180 (55.9)	27 (15.0)	153 (85.0)	0.77			
Missing (n)	41	29	0	29				
Frequency of accessing the Internet from home					0.003			
A few times a week or less	237 (27.7)	126 (39.0)	12 (9.5)	114 (90.5)				
Most days of the week	178 (20.8)	61 (18.9)	11 (18.0)	50 (82.0)				
Every day	442 (51.6)	136 (42.1)	35 (25.7)	101 (74.3)				
Missing (n)	41	28	0	28				
Psychosocial predictors of intention								
Weight attitudes and beliefs								
Importance of intended GWG								
Very important	146 (17.3)	69 (22.0)	11 (15.9)	58 (84.1)	0.57			
Important	372 (44.1)	122 (39.0)	26 (21.3)	96 (78.7)	0.70			
Neutral	267 (31.7)	97 (31.0)	14 (14.4)	83 (85.6)				
Unimportant	58 (6.9)	25 (8.0)	4 (16.0)	21 (84.0)				
Missing (n)	55	38	3	35				
Knowledge of appropriate GWG					0.65			
$>$ IOM guidelinesd	226 (27.1)	86 (28.0)	17 (19.8)	69 (80.2)				
Within IOM guidelines	539 (64.6)	180 (61.6)	33 (17.5)	156 (82.5)				
$<$ IOM guidelines	69 (8.3)	32 (10.4)	4 (12.5)	28 (87.5)				
Missing (n)	64	44	4	40				
Self-efficacy to control GWG					0.001			
Sure	341 (39.8)	153 (47.5)	16 (10.5)	137 (89.5)				
Neutral	289 (33.8)	102 (31.7)	22 (21.6)	80 (78.4)				
Unsure	226 (26.4)	67 (20.8)	20 (29.9)	47 (70.1)				
Missing (n)	42	29	0	29				
Norms and normative beliefs and motivations								
Weight perception					0.95			
About right and too low	540 (62.3)	225 (68.6)	40 (17.8)	185 (82.2)				
Too high	327 (37.7)	103 (31.4)	18 (17.5)	85 (82.5)				
Missing (n)	31	23	0	23				

	Not-low-income sample $(n = 547)$	Consistent trackers, $n = 187$	Nonconsistent trackers, $n = 360$	P valueb	
Access to scale at home					0.77
Yes	385 (72.0)	136 (35.3)	249 (64.7)		
No	150 (28.0)	51 (34.0)	99 (66.0)		
Frequency of accessing the Internet from home					0.99
A few times a week or less	111 (20.8)	39 (35.1)	72 (64.9)		
Most days of the week	117 (21.9)	40 (34.2)	77 (65.8)		
Every day	306 (57.3)	106 (34.6)	200 (65.4)		
Missing (n)	13	2	11		

Olson et al.
TABLE 1. (continued).

Low-income women	Not-low-income women	
	Consistent trackers, n = 58	Nonconsistent trackers, n = 293
	(16.5%)	(83.5%)
	P value^b	P value^b
	0.15	0.05

Total sample (N = 351)	Low-income women^a	Not-low-income women^a
	Consistent trackers, n = 58	Nonconsistent trackers, n = 293
	(16.5%)	(83.5%)
	P value^b	P value^b
	0.15	0.05

Weight satisfaction
- Very satisfied: 104 (31.8), 146 (44.4), 247 (72.5), 30 (8.6)
- Somewhat satisfied: 19 (5.3), 20 (6.1), 25 (7.1), 9 (2.6)
- Unsatisfied: 19 (5.3), 20 (6.1), 25 (7.1), 9 (2.6)
- Missing: 22

As shown in Figure 1, intention to avoid excessive pregnancy weight gain is the most proximal predictor of weight tracking. Overall, 22.7% of women intended to gain more weight during pregnancy than recommended by the IOM, 66.4% intended to gain within the guidelines, and 10.9% intended to gain less than recommended by the IOM (Table 1). Among low-income women who intended to gain within the IOM guidelines, 17.9% were consistent trackers, and among not-low-income women who intended to gain within the IOM guidelines, 38.3% were consistent trackers. The intended amount of GWG was significantly associated with consistent GWG tracking in not-low-income women (P = 0.03) but not in low-income women (P = 0.97).

Among the skills examined in bivariate analyses, frequency of self-weighing was significantly associated with consistent weight tracking among low-income women (P = 0.004) but not in not-low-income women (P = 0.15). Among not-low-income women, usage of mobile and Web technology was associated with consistent tracking (P < 0.001). Women who had a cell phone and no Internet were more likely to be consistent trackers than women who used other electronic communication technologies (Table 1).

Among environmental factors, receiving advice about GWG from a health care provider was considered as a potential facilitator of GWG tracking. Among low-income women, there was no relationship. In not-low-income women, among those who did not get advice, 38.0% were consistent trackers compared to 29.2% among those who did get GWG advice (P = 0.04), the opposite of what was expected. There was a trend for access to a scale at home to be associated with weight tracking in low-income women only (P = 0.11). Accessing the Internet frequently at home was strongly and significantly associated with consistent tracking among low-income women (P = 0.003) but not in higher-income women (P = 0.99), among whom daily use of the Internet at home was much more common (57.3% vs. 42.1%).

Among the psychosocial predictors of intention, knowledge of the appropriate amount of weight gain was positively associated with consistent tracking among not-low-income women in bivariate analyses (P = 0.02). In addition, self-efficacy was significantly associated with consistent weight tracking among low-income women (P = 0.001). Low-income women who were unsure of their ability to control their weight gain during pregnancy were more likely to be consistent weight trackers (29.9%) than those who were neutral or sure (10.5% and 21.6%, respectively).

Each of the significant factors from the bivariate analyses was then included in a multivariate model predicting consistent GWG tracking in each of the two income groups separately. Among low-income women, the following factors were significantly associated (P < 0.05) with consistent weight tracking: age 30 years or older, some college education or more, self-weighing once or more per week, accessing the Internet daily from home, unsure weight gain self-efficacy, and BMI (Table 2). Among not-low-income women and in the reduced model, not-black race, completing college, receiving no GWG advice from a health care provider, and not owning a smartphone were positively and significantly associated (P < 0.05) with consistent GWG tracking (Table 3).
Association of weight gain tracking with weight gain outcomes

The second research question of this paper was whether consistent weight tracking was associated with two weight outcomes: total amount of GWG in kilograms and the proportion of women with excessive GWG as defined by the IOM. In the unadjusted analysis for the sample with complete weight data shown in Figure 2, there was no association between consistency of weight gain tracking and the total amount of weight gained during pregnancy in low-income (Medicaid-eligible) women ($P = 0.21$). Among not-low-income women, the more consistent the weight tracking, the less women gained, and this relationship was significant ($P < 0.001$). The results for the prevalence of excessive total GWG were similar to those for total GWG in kilograms (Figure 3). There was no association between the consistency of weight tracking and the prevalence of excessive GWG in low-income women ($P = 0.47$), and there was a highly significant association in not-low-income women ($P < 0.0001$). In this income group, 36.4% of the consistent trackers gained excessively compared to 58.8% of inconsistent trackers (Figure 3).

To assess the independent effect of GWG tracking on weight outcomes in each income group, the GWG outcome models were adjusted for covariates associated with weight tracking. This analysis should inform answering the question of whether GWG tracking is associated

TABLE 2

	Full model b	Reduced model c				
	RR	95% CI	P value	RR	95% CI	P value
Age ≥ 30 y	1.55	0.97–2.47	0.06	1.74	1.12–2.72	0.01
Not-black race	1.71	0.90–3.24	0.10			
Not-single marital status	1.16	0.65–2.08	0.62			
Some college education or more	1.76	0.98–3.16	0.06	1.93	1.10–3.38	0.02
Weigh self \geq once per week	1.67	1.03–2.71	0.04	1.84	1.16–2.92	0.01
Access Web every day from home	1.79	1.12–2.84	0.01	1.89	1.19–3.00	0.007
Unsure self-efficacy for gestational weight gain	2.25	1.42–3.55	0.0005	2.23	1.43–3.47	0.0004
BMI	0.93	0.88–0.99	0.03	0.94	0.88–0.99	0.03

aPoisson regression models used to calculate RR, 95% CI, and P values shown in table.

bFull model includes all variables significantly ($P < 0.05$) associated with consistent tracking in χ^2 analysis.

cReduced model excludes variables from full model with $P > 0.10$.

CI, confidence interval; RR, relative risk.

TABLE 3

	Full model b	Reduced model c				
	RR	95% CI	P value	RR	95% CI	P value
Age ≥ 25 y	1.19	0.79–2.03	0.52			
Not-black race	2.02	0.92–4.45	0.08	2.17	1.00–4.68	0.05
Completed college	1.44	1.05–1.98	0.02	1.56	1.15–2.11	0.004
Not-single marital status	1.68	0.48–5.94	0.42			
Unsatisfied with weight	1.19	0.89–1.60	0.25			
No weight advice from health care provider	1.27	0.98–1.64	0.07	1.31	1.02–1.68	0.04
Does not own a smartphone	1.37	1.09–1.73	0.008	1.48	1.16–1.82	0.001
Intend to gain $<\text{IOM}^d$ recommendation	1.11	0.82–1.50	0.49			
Use $<\text{two pregnancy websites or apps}$	1.29	0.93–1.80	0.13			
Send less than many text messages per day	1.10	0.87–1.40	0.42			
BMI	0.98	0.94–1.02	0.29	0.99	0.96–1.02	0.40

aPoisson regression models used to calculate RR, 95% CI, and P values shown in table.

bFull model includes all variables significantly ($P < 0.05$) associated with consistent tracking in χ^2 analysis.

cReduced model excludes variables from full model with $P > 0.10$.

CI, confidence interval; RR, relative risk; IOM, Institute of Medicine.
with weight outcomes, or whether the association results from the characteristics of the women who choose to track.

Among low-income women, consistent tracking was not significantly related to either total GWG or the proportion of women with excessive GWG (Table 4). In this income group, self-weighing once a week or more was associated with 1.57 kg greater GWG (95% CI: 0.09 to 3.04; \(P = 0.04 \)). Among not-low-income women, consistent tracking was associated with an average of 2.35 kg less GWG (95% CI: −3.23 to −1.46; \(P < 0.0001 \)) controlling for other variables associated with consistent tracking (Table 5). Similarly, consistent trackers in this income group were at significantly reduced risk of gaining excessively (RR 0.73; 95% CI: 0.59 to 0.89; \(P = 0.002 \)) (Table 5).

Discussion

The results of this study support weight gain tracking as an intervention feature in electronic intervention programs for avoiding excessive weight gain during pregnancy among not-low-income (not-Medicaid-eligible) women. Among women in this income group, consistent trackers gained 2.35 kg less weight during pregnancy and were at significantly reduced risk of gaining excessively compared to women who were not consistent weight gain trackers, controlling for predictors of tracking behavior.

The prevalence of consistent weight tracking during pregnancy was overall quite low, especially among the low-income group, in which only 16.5% were consistent trackers. Among not-low-income women, 34.2% were consistent trackers. While this number is double the proportion of consistent trackers among low-income women, it is not the majority of women.

Generally speaking, the sociodemographic factors positively associated with consistent tracking were similar among low- and not-low-income women: older age, white race, and higher education. In the multivariate analysis, early pregnancy BMI was significantly and negatively associated with weight gain tracking in low-income women only. The psychosocial and environmental factors from the...
Integrative Model of Behavior Prediction (Figure 1) (19) that were significantly associated with tracking varied by income group. Several important environmental constraints and skills were significantly associated with weight tracking among low-income women but not among not-low-income women. This finding is consistent with the idea of a "digital divide," meaning that low-income women have less access to the devices and technology for e-health interventions. The digital divide also includes an individual’s usual style of learning and the availability of supports that facilitate benefiting from access to electronic communications technology.

For the design of future intervention trials, it is important to better understand how to encourage more women to track their weights during pregnancy. The results support taking a different approach for women in each income group. Among low-income women, increased access to and familiarity with using the e-health technologies and greater availability and use of the tools for weight monitoring (scales) need to be addressed. Among not-low-income women, the intervention should focus on addressing the psychological factors that contribute directly to forming an intention to gain appropriately. Interestingly, among higher-income women, those who did not recall getting advice from a health care provider were more likely to consistently track. This raises the question of how to involve health care providers in an online self-care weight gain prevention intervention such as the one described here. In this income group, women who did not own a smartphone were more likely to consistently track weight gain. We hypothesize that these women may have had less access to and possibly less interest in other pregnancy websites and apps and thus used the study website more frequently. The two ownership groups may have differed in characteristics not controlled in the analysis.

This study has several limitations. It is a secondary post hoc analysis of data from a relevant subgroup of intervention arm participants in a randomized trial. The cross-sectional analysis examines associations between weight tracking and weight outcomes, and it is not possible

TABLE 4 Multivariable regression models of gestational weight gain outcomes by consistent tracking and its predictors among low-income (Medicaid-eligible) women*
Total GWG in kilograms^b
Estimate (kg)
Consistent weight tracking
Age ≥30 y
Some college education or more
Weigh self ≥ once per week
Access Web every day from home
Unsure self-efficacy for gestational weight gain

* Covariates in the models include BMI, race, parity, gestational age at delivery, the number of weeks between the first and last pregnancy weight, and the number of weeks between the last pregnancy weight and delivery.

^b Least-squares multiple regression models used to calculate the estimate, 95% CI, and P values shown in table.

^c Modified Poisson regression approach used to calculate RR, 95% CI, and P values shown in table.

CI, confidence interval; GWG, gestational weight gain; RR, relative risk.

TABLE 5 Multivariable regression models of gestational weight gain outcomes by consistent tracking and its predictors among not-low-income (not-Medicaid-eligible) women*
Total GWG in kilograms^b
Estimate (kg)
Consistent weight tracking
Not-black race
Completed college
No weight advice from health care provider
Does not own a smartphone

* Covariates in the models include BMI, age, parity, gestational age at delivery, the number of weeks between the first and last pregnancy weight, and the number of weeks between the last pregnancy weight and delivery.

^b Least-squares multiple regression models used to calculate the estimate, 95% CI, and P values shown in table.

^c Modified Poisson regression approach used to calculate RR, 95% CI, and P values shown in table.

CI, confidence interval; GWG, gestational weight gain; RR, relative risk.
to make a causal inference based on the study design. A second limitation is the small proportion of women who consistently tracked GWG. A strength is that this study includes a large and diverse sample from an effectiveness trial. This increases the applicability of the results to real-world electronic and mobile health applications.

Conclusion

Consistent weight tracking was associated with significantly less weight gain during pregnancy and a significantly reduced risk of gaining excessively in not-low-income women. This relationship was independent of other variables that were associated with consistent tracking. Weight tracking by pregnant women themselves appears to be an effective component of interventions to reduce excessive GWG among not-low-income women.

© 2017 The Obesity Society

References

1. Grivell RM, O’Brien CM, Dodd JM. Managing obesity in pregnancy: A change in focus from harm minimization to prevention. Semin Reprod Med 2016;34:e38-e48.
2. IOM (Institute of Medicine), National Research Council (NRC). Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC: The National Academies Press; 2009.
3. Viswanathan M, Siega-Riz AM, Moos M-K, et al. Outcomes of maternal weight gain: Evidence Report/Technology Assessment, no. 168. Rockville, MD: Agency for Healthcare Research and Quality; 2008.
4. Muktabhant B, Lawrie T, Lumbiganon P, Laopaiboon M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst Rev 2015:CD007145. doi:10.1002/14651858.CD007145.pub3
5. Murray E. Web-based interventions for behavior change and self-management: potential, pitfalls, and progress. Med 2.0. 2012;1:e3. doi:10.2196/med20.1741
6. Harris J, Felix L, Miners A, et al. Adaptive e-learning to improve dietary behaviour: a systematic review and cost-effectiveness analysis. Health Technol Assess 2011;15:1-160.
7. Arem H, Irwin J. A review of web-based weight loss interventions in adults. Obes Rev 2011;12:e236-e243.
8. Kodama S, Saito K, Tanaka S, et al. Effect of web-based lifestyle modification on weight control: a meta-analysis. Int J Obes (Lond) 2012;36:675-685.
9. Soltani H, Azden MA, Dunbury AMS, Fair FJ. An analysis of behaviour change techniques used in a sample of gestational weight management trials. J Pregnancy 2016;2016:1085916. doi:10.1155/2016/1085916
10. Jensen MD, Ryan DH, Donato KA, et al. Guidelines (2013) for managing overweight and obesity in adults. Obesity (Silver Spring) 2014;22:S1-S410.
11. Zheng Y, Klem ML, Sereika SM, Danford CA, Iving LJ, Burke LE. Well-weighing in weight management: a systematic literature review. Obesity (Silver Spring) 2015;23:256-265.
12. Burke LE, Conroy MB, Sereika SM, et al. The effect of electronic self-monitoring on weight loss and dietary intake: a randomized behavioral weight loss trial. Obesity (Silver Spring) 2011;19:338-344.
13. Harrison CL, Teede HJ, Lombard CB. How effective is self-weighing in the setting of a lifestyle intervention to reduce gestational weight gain and postpartum weight retention? Aust NZ J Obstet Gynaecol 2014;54:382-385.
14. Jeffries K, Shub A, Walker SP, Hiscock R, Permezel M. Reducing excessive weight gain in pregnancy: a randomised controlled trial. Med J Aust 2009;191:429-433.
15. McCarthy EA, Walker SP, Ugoni A, Lappas J, Leong O, Shub A. Self-weighing and simple dietary advice for overweight and obese pregnant women to reduce obstetric complications without impact on quality of life: a randomised trial. BJOG 2016;123:965-973.
16. Graham ML, Strawderman MS, Demment M, Olson CM. Does usage of an eHealth intervention reduce the risk of excessive gestational weight gain? Secondary analysis from a randomized controlled trial. J Med Internet Res 2017;19:e6. doi:10.2196/jmir.6644
17. Lytle LA, Svetkey LP, Patrick K, et al. The EARLY trials: a consortium of studies targeting weight control in young adults. Transl Behav Med 2014;4:304-313.
18. Fernandez I, Groth S, Reschke J, Graham M, Strawderman M, Olson C. eMoms: Electronically-mediated weight interventions for pregnant and postpartum women. Study design and baseline characteristics. Contemp Clin Trials 2015;43:63-74.
19. Fishbein M, Yzer MC. Using theory to design effective health behavior interventions. Commun Theory 2003;13:164-183.
20. Fogg B. Persuasive Technology. Using Computers to Change What We Think and Do. San Francisco, CA: Morgan Kaufmann; 2002.
21. Graham M, Uesegi K, Niederdeppe J, Gay G, Olson CM. The theory, development, and implementation of an e-intervention to prevent excessive gestational weight gain: e-Moms RCT. Telemed J E Health 2014;20:1135-1142.
22. Kendall A, Olson CM, Frongillo EA Jr. Evaluation of psychosocial measures for understanding weight-related behaviors in pregnant women. Ann Behav Med 2001;23:50-58.
23. Graham J. Missing data analysis: making it work in the real world. Ann Rev Psychol 2009;60:549-576.
24. Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidem 2004;159:702-706.