Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Novel coronavirus disease 2019 (COVID-19) pandemic: Considerations for the biomedical waste sector in India

Shobhana Ramteke a,*, Bharat Lal Sahu b

a School of Studies in Environmental Science, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
b Department of Chemistry, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, CG, India

ARTICLE INFO

Keywords:
COVID-19
Coronavirus
SARS-Co-V2 virus
Biomedical waste

ABSTRACT

In late December 2019, the world woke to a truth of a pandemic of Coronavirus Disease (COVID-19), inspired by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has a place with a gathering of beta-coronavirus. As of July 21 India is still fighting to survive against the SARS-CoV-2 as called coronavirus disease. The contaminations, first constrained in the Kerala state, have inevitably spread to every single other area. The possibility to cause dangerous respiratory disappointment and quick transmission puts COVID-19 in the rundown of the Public Health Emergency of International Concern (PHEIC). There is a flow overall break out of the novel coronavirus Covid-19, which started from Wuhan in China and has now spread to more than 212 countries including 14,753,034 cases, as of 12:20 AM on July 21, 2020. Governments are feeling the squeeze to prevent the outbreak from spiralling into a worldwide wellbeing crisis. At this stage, readiness, straightforwardness, and sharing of data are vital to hazard evaluations and starting explosion control exercises. Since the epidemic condition, expulsion of biomedical waste created from crisis facilities treating COVID-19 patients in like manner demands unprecedented thought as they can be potential bearers of the disease SARS-CoV-2. This article discusses the potential consequences of the COVID-19 pandemic on biomedical waste administrations, concentrating on basic focuses where option working methodology or extra moderation measures might be fitting.

1. Introduction

A third of the global population is on coronavirus lockdown, as of May, 2020. Another coronavirus malady, formally named COVID-19 by the World Health Organization (WHO), has caused a worldwide pandemic with significant changes in numerous parts of human life. On 11 February 2020, the International Committee on Taxonomy of Viruses declared serious intense respiratory disorder coronavirus (SARS-CoV-2) as the name of the new infection [1]. The main instance of the novel coronavirus was accounted for on December 30, 2019, in Wuhan city, 2 Hubei regions, P.R. China. Quick moves were made by the Centre for Disease Control and Prevention (CDC), Chinese wellbeing specialists, and analysts. The WHO briefly named these pathogen 2019 novel coronavirus (2019-nCoV) [2]. During December 2019, a novel Beta-coronavirus temporarily named 2019 novel coronavirus (2019-nCoV), and along these lines authoritative renamed extreme intense respiratory disorder coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses (ICTV), causing coronavirus ailment 2019 (or COVID-19), was related with a group of respiratory tract diseases in Wuhan, Hubei Province, China and has quickly spread across main land’s [3].

The family Coronaviridae incorporates a wide range of creatures and human infections, all portrayed by an unmistakable morphology. Virions are encompassed and round (coronaviruses) or plate, kidney, or pole molded (toroviruses). Every molecule is encircled by a periphery or "crown" speaking to the bulbous distal parts of the bargains glycoproteins [4].

In India, the principal research centre affirmed instance of COVID-19 was accounted for from Kerala on January 30, 2020. As of July 21, 2020, an aggregate of 11,118,206 confirmed cases, 700,087 recovered cases and 27,497 passing were accounted for in India. As per data available on various websites regarding COVID-19 infections worldwide, the cases are increasing exponentially. On July 21, 2020, there were 14,753,034 cases.
reported cases, which included 610,868 deaths and 8,805,686 recovered cases. From that point forward, the whole world has been found mapping by the clueless increment in the number of new cases because of the exponential increment in the pace of transmission of 2019-nCoV, presently formally alluded to as SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) by the International Committee on Taxonomy of Viruses, the causative operator of COVID-19 [5]. Additionally, 2019-nCoV showed halfway similarity with SARS-CoV and MERS-CoV, in phylogenetic examination, clinical signs and path intelligent discoveries. Logical advances from the SARS and MERS outbreaks can give important knowledge into fast understanding and control proportions of the present pandemic [6].

The WHO authoritatively named the sickness 'COVID-19'. The International Committee on Taxonomy of Viruses named the infection 'serious intense respiratory disorder coronavirus 2' (SARS-CoV-2). Assignment of a conventional name for the novel coronavirus and the ailment it caused is helpful for correspondence in clinical and logical research. This infection has a place with the β-coronavirus family an enormous class of pervasive infections. Like different infections, SARS-CoV-2 has numerous potential common hosts, middle of the road hosts and last has [7]. Specialists sequenced the genome of new infection and made sense of 86.9% of the genome is equivalent to the SARS-CoV genome. Subsequently the name was changed to Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) [8]. COVID-19 is decently irresistible with a generally high death rate, yet the data accessible out in the open reports and distributed writing is quickly expanding. The point of this survey is, to sum up, the ebb and flow comprehension of COVID-19 including causative operator, pathogenesis of the malady, determination, and treatment of the cases, just as control and counteraction methodologies. As the biggest known RNA infections, CoVs are additionally isolated into four genera: alpha-coronavirus, beta-coronavirus, gamma-coronavirus and delta-coronavirus. Until this point, there have been six human coronaviruses (HCoVs) distinguished, including the alpha-CoVs HCoVs-NL63 and HCoVs-229E and the beta-CoVs HCoV-OC43, HCoVs-HKU1, serious intense respiratory condition CoV (SAR-CoV) and Middle East respiratory disorder CoV (MERS-CoV). Coronavirus have caused two enormous scope pandemics in the previous two decades, SARS and Middle East respiratory disorder (MERS). It has for the most part been imagined that SARSr-CoV which is primarily found in bats could cause a future infection episode [9].

2. Morphology, structure and possible transmission routes of SARS-CoV-2

COVID-19 is an irresistible sickness brought about by a novel coronavirus. The COVID-19 pandemic is the third major zoonotic coronavirus sickness episode in just two decades, following the SARS (Severe Acute Respiratory Syndrome) outbreak in 2002–2003 and the MERS (Middle East Respiratory Syndrome) outbreak in 2012. The sickness was first answered to the WHO by Chinese Health Officials on 31 December 2019 as atypical pneumonia of obscure reason [10,11]. The infection is hereditarily like the SARS-CoV coronavirus and is in like manner expected to 55 have crossed the species obstruction from creature to human [10, 12]. Even though its particular starting points are yet to be resolved, the probable progenitor is a bat coronavirus [11].

COVID-19 is a circular or pleomorphic encompassed molecule containing single-abandoned (positive-sense) RNA related with a nucleoprotein inside a capsid included framework protein. The envelope bears club formed glycoprotein projections and some coronaviruses likewise contain a fixed agglutinin-esterase protein (HE). The viral genome contains particular highlights, including a novel N-terminal section inside the spike protein [14–16]. Genes for the major structural proteins in all coronaviruses occur in the 5′–3′ order as S, E, M, and N (Fig. 1).

The transmission behavior of SARS-CoV-2 also has important implications for waste and wastewater services. SARS-CoV-2 specifically targets host cells containing ACE2 proteins.

3. Replication process of SARS-CoV-2

SARS-CoV-2 (COVID-19) ties to ACE2 (the angiotensin-changing over compound 2) by its Spike and permits COVID-19 to go into the cell and taint cells. All together for the infection to finish section into the cell following this underlying procedure, the spike protein must be prepared by a compound called a protease. Comparable on account of SARS-CoV, SARS-CoV-2 (COVID-19) utilizes a protease called TMPRSS2 to finish this procedure. To append an infection receptor (spike protein) to its cell ligand (ACE2), actuation by TMPRSS2 as a protease is required [17]. The infection enters into the respiratory tract and ties with the receptor and the infection goes into the host cell the genome is deciphered and afterward interpreted. Coronavirus genome replication and interpretation happens at cytoplasmic layers and includes facilitated procedures of both nonstop and intermittent RNA amalgamation that are intervened by the viral repeat, a colossal protein complex encoded by the 20-kb replicase quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality. The proteins are amassed at the cell layer and genomic RNA is joined as the develop molecule shapes by growing from the inward cell quality.
various types of fatal irresistible ailments and furthermore cause inter-
ruptions in the earth, and antagonistic effect on biological parity.
Around 600 g for each day per bed in a general professional’s facility/E.g.
100 had relations with the clinic will create unsafe/infectious waste at
the pace of 5 to 10 kg/day [21]. As indicated by the Ministry of Envi-
ronment and Forest (MoEF) net age of BMW in India is 4,05,702 kg/day,
out of which just 2,91,983 kg/day is disposed, which implies that prac-
tically 28% of the wastes is left untreated and not disposed to discover its
way in dumps or water bodies and re-enters our framework.

In India around 30% of the total injections administered every year
were finished utilizing reused or inappropriately sanitized clinical gear,
and around 10% of medicinal services establishments offer these pre-
owned syringes to the waste pickers. An exploration demonstrated that
the population which lives inside 3kms good ways from old incinerators
saw an expansion of hazard is contracting malignant growth by 3.5%.
BMW is classi
cified into different categories and each category has its own
methods of disposal [22] (Fig. 3).

Removal of biomedical waste produced from emergency clinics
treating COVID-19 patients likewise requests extraordinary consider-
ation as they can be potential bearers of the infection SARS-CoV2.
Sanitation labourers and cloth pickers are in danger from dealing with
plain clinical waste rising out of homes where COVID-19 patients are
isolated, clinical specialists, and waste administration masters cautioned.

Disposèd of covers, gloves and tissues could be potential hotspots for the
spread of this profoundly infectious infection.

Most emergency clinics follow the Biomedical Waste Management
(BMWM) Rules 2016 and all the more thoroughly so in the hours of
COVID-19. In any case, it is squander discarded by isolated families,
where there is constrained mindfulness about the issue that could un-
cover strong waste/sanitation labourers to greater risks. It is extremely
basic to deal with this waste identified with COVID-19, be it masks,
gloves, the hazardous materials suit. This waste could taint cloth pickers,
kids, or the poor living in the city. It is additionally essential to guarantee
that this waste doesn’t arrive at regular dumping grounds. The tale
coronavirus gets transmitted through direct touch and tainted surfaces
and items, as per an administration report on the utilization of personal
protective equipment (PPE). Sanitary staff associated with cleaning now
and again contacted surfaces and cloths are at moderate hazard and
should utilize N-95 masks and gloves.

5. Biomedical waste management in India

BMW (management and handling) rules 1998, figured by the Ministry
of Environment and Forests, Government of India (GOI) came into power
on 28 July 1998. The standards applied to each one of the individuals
who created, gathered, got, put away, arranged, treated and took care of
BMW in any way. These standards had been proclaimed as an authori-
tative obligation of all social insurance foundations. Under the Envi-
ronment Protection Act 1986, these BMW have been sorted into 10
classifications with the end goal of safe removal. According to BMW rules
2011, these classes were additionally changed to eight for simpler
removal by human services labourers. Then after, BMW rules 2016 were
presented [23].

The principles further explained the meaning of BMW in this way
including immunization camps, blood gift camps, careful camps or social
insurance exercises undertaken outside the medicinal services office. It
visualized the health care facilities (HCF) to make an arrangement inside
their premises for a protected, ventilated and made sure about the area
for a capacity of isolated biomedical waste. It further states pre-treatment
of the research centre and microbiological squander, blood tests and

Fig. 2. Representation of COVID-19 with the cellular attachment factor ACE2 and antigen infection of lung cells.

Fig. 3. Categories of BMW.
sacks through purification on location in the way as recommended by WHO or National AIDS Control Organization (NACO) rules and afterward sent to the normal biomedical waste treatment for definite removal. Strikingly, it eliminates utilization of chlorinated plastic sacks, gloves and blood packs two years from the date of notice of these principles. It further features the significance of preparing and inoculation of social insurance labourers. It further proclaims the foundation of a standardized identification framework for the removal of BMW (Fig. 4).

The most punctual revealing of both major and minor mishaps has likewise been given due importance. Considering the treatment and removal of BMW, the human services offices are coordinated to abstain from developing nearby office if such of office is accessible inside 75 km separation. According to BMW Rules 2016, the squanders would be classified into four classifications dependent on treatment methodology [24] (Fig. 5).

6. Crises for handlings of BMW during coronavirus pandemic

Recently, Delhi and Mumbai are the two most affected cities from coronavirus in India. In Delhi, more than 40 sanitation workers have tried positive for the infection, and 15 have lost their lives. In Mumbai, 10 workers and two security monitors at the city’s two landfills, in Deonar and Kanjurmarg, have been contaminated with COVID-19 and recouped.

These are simply figures from two of the most influenced cities in the nation today. India is near the very edge of a COVID-induced waste crisis, and the specialists know about it. Likewise, used masks, tissues, head covers, shoe covers, expendable material outfits, non-plastic, and semi-plastic coveralls were to be discarded in a yellow pack implied for incineration at a common biomedical waste treatment facility (CBWTF). So were extra food, expendable plates, glasses, utilized covers, tissues, and toilets of COVID-19 patients.

The nation has 200 biomedical waste treatment offices; these two are in Delhi and one is in Mumbai. Furthermore, as per CPCB information, these offices are as of now running at 60% limit – that is a 15% bounce since March. The national average is low in light of the fact that numerous cases have not flooded in numerous urban communities, the manner in which they have in Delhi and Mumbai. In these two cities, the CBWTFs are running at 70–75% and 70% limits, as indicated by CPCB and the Maharashtra Pollution Control Board respectively.

Before the COVID-19 episode, an administration or a private emergency clinic would ordinarily deliver 500 g of biomedical waste (like needles, pee packs, dressing, and so on) per bed, every day. Presently, that number has gone up to between 2.5 to 4 kg per bed, daily, according to SMS Water Grace BMW Private Limited, one of the two CBWTFs in Delhi, which gathers squander from labs, isolate focuses, and emergency clinics, including one of the city’s COVID-19 government offices, the Lok Nayak Jai Prakash Narayan Hospital. An enormous COVID-19 office can anyplace between 1800 to 2200 kg of biomedical waste every day. Presently duplicate this with the quantity of Covid-19 emergency clinics in the nation: 2,900. Add to it the biomedical waste created from 20,700 quarantine centres, 1,540 sample collection centres, and 260 laboratories managing the COVID-19 pandemic, and the biomedical waste gathered by regions (Delhi alone has 12,000 home isolation facilities) and one gets a feeling of the sheer volume of the issue. Delhi creates 27 tons of non-COVID biomedical waste and as much as 11 tons of COVID-19 related waste each day, as per the CPCB; Mumbai has been producing 9 tons of COVID-19 waste and 6 tons of non-COVID biomedical waste each day, BMC (Brihanmumbai Municipal Corporation) estimates.

In the event that, and it’s probably going to be along these lines, Covid-19 cases rise further in the coming months and testing limits keep on getting inclined up – a few cities, including Delhi, may need to send its COVID-19 waste to neighbouring states for removal, CPCB scientists warned. Not simply Delhi and Mumbai, the expansion in biomedical waste is stressing authorities in Kerala as well. Two months after the state began dealing with COVID biomedical waste dependent on revised CPCB rules, Kerala has rewarded in excess of 100 tons of waste from COVID-care centres.

Fig. 4. Elements and consecutive steps of the biomedical waste management plan.

Fig. 5. Biomedical waste management rules 2016.
During the peak of the emergency, Wuhan, the city where the flare-up started, created 240 tons per day of clinical decline – six times the ordinary level, as per the nation’s Environment Ministry. Manila in the Philippines delivered an extra 280 tons per day of clinical waste, while Jakarta produced 212 tons, the Asian Development Bank evaluated. By April, 50 tons of infectious waste were accumulating every day in Thailand’s clinical focuses, which just had the ability to adequately burn 43 tons, as indicated by the Thailand Environment Institute. In Wuhan, the irregularity was far and away more terrible, with just 49 tons of limit for each day to manage almost multiple times the degree of debased waste during the peak of disease.

7. Guidelines for handlings of BMW by the Central Pollution Control Board (CPCB)

Recently, India produces around 600 metric tons of biomedical waste daily, which is approximately 10% more wastes, due to this pandemic situation of COVID-19 (Fig. 6). With COVID waste being produced at a quicker pace and high volume, it is all the more testing to see that it is arranged without causing extra medical issues. It is evaluated that
overall, 2 tons of COVID waste is created in each state from analyses, isolate and treatment of the illness. This is excessively low contrasted with the 240 tons of waste created each day in Wuhan, the focal point of the pandemic [25].

A set of guidelines on dealing with, treatment, and removal of waste produced during treatment, determination and isolation of COVID-19 patients was released by the Central Pollution Control Board, New Delhi, Government of India on March 18, 2020. Under these, isolation wards in hospitals need to keep up discrete shading coded canisters for isolation of waste. A committed container marked ‘COVID-19’, should have been kept in a different, brief extra space and should just be taken care of by approved staff. The separate arrangement of sanitation labourers in these wards for biomedical waste administration was likewise suggested. The board also requested a record of the waste produced in segregation wards. For isolate camps and home consideration of the presumed patients, the CPCB instructed assortment concerning biomedical waste in yellow packs and the canisters containing these ought to be given over to approve authorities. The guidelines suggest that such handling wastes need to be provided with adequate training and PPE, including three-layered masks, splash-proof aprons, gloves, gumboots and safety goggles (Fig. 8) [25].

8. Conclusion

In the condition of the COVID-19 scourge, this article shows that huge research is expected to evaluate the business as usual for plague mindedness and reaction in the biomedical squanders. We require exposing the discussion around potential changes to rehearse, for example, for the assortment and treatment of biomedical waste materials from emergency clinics and isolate offices with positive or suspected COVID-19 patients. Current relief practices, for example, the utilization of retaining times may do a lot to decrease the dangers to labourers taking care of strong squanders, yet extra amendments to systems might be required and ought to be thought of. Here is likewise a squeezing requirement for information on SARS-CoV-2 pervasiveness and determination in biomedical waste to all the more likely comprehends related transmission pathways and to illuminate proper hazard the board activities for the biomedical part. Further examination into a conceivable airborne transmission of COVID-19 is likewise justified, as exercises from past episodes including SARS-CoV demonstrated that this pathway was a factor in sickness spread. At long last, the capacity to distinguish SARS-CoV-2 in bio medical waste gives a perfect chance to return to its benefits as an information source. Albeit singular protection contemplations and a need to guarantee information security can be a test, given the scale, human cost and monetary effect of COVID-19, this exploration ought to continue with earnestness.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] L.D. Nghiem, B. Morgan, E. Donner, M.D. Short, The COVID-19 pandemic: considerations for the waste and wastewater services sector, Case Stud.Chem. Environ. Eng. (2020) 100006, https://doi.org/10.1016/j.csecce.2020.100006.

[2] M.T. ul Qamar, S.M. Alqahtani, M.A. Alamri, L.L. Chen, Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants, J. Pharmaceut. Anal. (2020), https://doi.org/10.1016/j.jpha.2020.03.009.

[3] T. Lupia, S. Scabini, S. Mornese Pinna, G. Di Perri, F.G. De Rosa, S. Corcione, 2019 novel coronavirus (2019-nCoV) outbreak: a new challenge, J. Global. Antimicrob. Resist 21 (2020) 22–27, https://doi.org/10.1016/j.jger.2020.02.021.

[4] C.J. Burrell, C.B. Howard, F.A. Murphy, Chapter 13 - coronaviruses, Fenner White’s Medical Virology (2017) 437–446, https://doi.org/10.1016/B978-0-12-375156-0.00031-X.

[5] A.A. Al-Qhtani, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): emergence, history, basic and clinical aspects, Saud. J. Biol. Sci. (2020) 2, https://doi.org/10.1016/j.sjbs.2020.04.033.

[6] M. Xie, Q. Chen, Insight into 2019 novel coronavirus — an updated interim review and lessons from SARS-CoV and MERS-CoV, Int. J. Infect. Dis. 94 (2020) 119–124, https://doi.org/10.1016/j.ijid.2020.03.071.

[7] L. Wang, Y. Wang, D.Y. Qiu, Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence, Int. J. Antimicrob. Agents (Agents 2020) 105948, https://doi.org/10.1016/j.ijantimicag.2020.105948.

[8] A. Naserganbandi, S.F. Allahem, R. Saffarpour, All about COVID-19 in brief, New Microbes New Infections 35 (2020) 100678, https://doi.org/10.1016/j.jnmni.2020.100678.

[9] D. Wu, T. Wu, Q. Liu, Z. Yang, The SARS-CoV-2 outbreak: what we know, Int. J. Infect. Dis. 94 (2020) 44–48, https://doi.org/10.1016/j.ijid.2020.03.004.

[10] D.B. Taylor, A Timeline of the Coronavirus Pandemic, New York Times, 2020.

[11] L.L.M. Poon, M. Peiris, Emergence of a novel human coronavirus threatening human health, Nat. Med. 26 (3) (2020) 317–319.

[12] A.G. Gorbalenya, S.C. Baker, R.S. Baric, R.J. de Groot, C. Drosten, A.A. Gulyaeva, B.L. Haagmans, C. Lauber, A.M. Leitovich, B.W. Neuman, D. Penzar, S. Perlman, L.L.M. Poon, D.V. Samborskiy, I.A. Sidirov, I. Sola, J. Ziebuhr, V. Coronaviridae Study, Group of the International Committee on Taxonomy of, The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-ncov and naming it SARS-CoV-2, Nat. Microbiol. 5 (4) (2020) 536–544.

[13] V.C.C. Cheng, S.P.K. Lau, P.C.Y. Woo, K.Y. Yuen, Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection, Clin. Microbiol. Rev. 20 (4) (2007) 660.

[14] World Health Organization, Naming the Coronavirus Disease (COVID-19) and the Virus that Causes it, WHO, Geneva, 2020.

[15] World Health Organization, Coronavirus Disease 2019 (COVID-19) Situation Report-48, WHO, 2020. Available from, https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200229-sitrep-48-covid-19.pdf?sfvrsn=8-49b69652_2. (Accessed 29 February 2020).

[16] Indian Council of Medical Research, Revised Strategy of COVID19 Testing In India (Version 3, Dated 20/03/2020), ICMR, New Delhi, 2020. Available from, https://icmr.nic.in/sites/default/files/Upload_documents/2020-03-20_covid19_testing_3.pdf. (Accessed 30 March 2020).

[17] WHO, https://www.who.int/emergencies/diseases/novel-coronavirus-2019. (Accessed 17 April 2020).

[18] Z. Zhang, X. Jiang, D. Tong, S.J. Davis, H. Zhao, G. Geng, R. Ni, Transboundary health impacts of transported global air pollution and international trade, Nature 543 (2017) 705–709.

[19] Status of Biomedical Waste Management in National Capital Territory of Delhi, Available at, http://www.medwasteind.org/pdf/ (Accessed 1 May 2016).

[20] World Health Organization, Safe Healthcare Waste Management, Policy Paper, Department of Protection of the Human Environment Water, Sanitation and Health, Available at, http://www.who.int/immunization/safety/publications/waste_management/en/safe_health_care_waste_management_policy.pdf. (Accessed 15 May 2016).

[21] A. Prem Nath, V. Prashanthini, C. Visvanathan, Healthcare waste management in Asia, Waste Manag. 30 (2010) 154–161.

[22] A. Acharya, V.A. Gokhale, D. Joshi, Impact of biomedical waste on city environment: case study of Pune India, IOSR J. Appl. Chem. 6 (6) (2014) 21–27.

[23] Major changes proposed in the bio-medical waste management rules, 2016 and its likely implication, Available at, http://phbphoto.nic.in/documents/link/2016/law/p2/201612/2701.pdf. (Accessed 15 May 2016).

[24] Bio-Medical Waste Management Rules, 2016. Available at, http://nabn.to/Announce/BMW_Rules_2016.pdf. (Accessed 15 May 2016).

[25] Central Pollution Control Board CPCB, Guidelines for Handling, Treatment and Disposal of Waste Generated during Treatment/diagnosis/quarantine of COVID-19 Patients, Central Pollution Control Board, Govt. of India, New Delhi, 2020.