TIME-CHANGED DIRAC-FOKKER-PLANCK EQUATIONS ON THE LATTICE

N. FAUSTINO

ABSTRACT. A time-changed discretization for the Dirac equation is proposed. More precisely, we consider a Dirac equation with discrete space and continuous time perturbed by a time-dependent diffusion term \(a^2 H t^{2H-1} \) that resembles to a latticizing version of the time-changed Fokker-Planck equation carrying the Hurst parameter \(0 < H < 1 \). The main focus here is the representation of the solutions on the space-time lattice \(\mathbb{R}^n_{h,\alpha} \times [0,\infty) (h > 0 \) and \(0 < \alpha < \frac{1}{2} \)) by means of discrete convolution representations between a kernel function encoded by (unnormalized) Hartman-Watson distributions – ubiquitous on stochastic processes of Bessel type – and the solutions of a semi-discrete equation of Klein-Gordon type. By employing Mellin-Barnes integral representations it turns out that the underlying solutions of Klein-Gordon type may be represented through generalized Wright functions of type \(1 \Psi_1 \), that converge uniformly for values of \(H \) in the range \(\alpha + \frac{1}{2} \leq H < 1 \).

1. Introduction

1.1. General overview. Apart the discretization of the Klein-Gordon equation, the discretization of Dirac-type equations is one of the most deeply study equations in lattice gauge theories due to its implications on the formulation of Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) on space-time lattices (see, for instance, [25, Chapters 4 & 5]). And as it well-known from Wilson, Kogut-Susskind and Rabin fundamental papers (cf. [32, 21, 27]), the latticizing versions of such equations does not lead, in general, to its continuous counterparts in the continuum theory, due to the presence of doubler fermions– the so-called lattice fermion doubling phenomena, characterized in detail in Nielsen-Ninomiya’s paper [26] (see also [25, subsection 4.4]).

The lattice fermion doubling holds because the momentum space carrying a lattice with meshwidth proportional to \(h > 0 \) – the so-called Brillouin zone – has the topology of the \(n \)-torus \(\mathbb{R}^n / 2\pi \mathbb{Z}^n \). While in Wilson’s approach [32] the doubler fermions were removed by adding a cut-off term depending upon the discretization of the Laplace operator \(\Delta \) on the lattice \(h\mathbb{Z}^n \) in [27] it was shown that a staggered fermionic version of Nielsen-Ninomiya’s approach, initially proposed on the seminal paper [21] of Kogut and Susskind, turn out to be linked with the discretization of the Dirac-Kähler operator \(d - \delta \) (cf. [27]). We refer to [25, subsection 4.3] for an overview of Kogut-Susskind’s approach [21], to [24] for a detailed application...
of Dirac-Kähler formalism toward homology theory and [9] for a multivector calculus perspective on the lattice $\hbar \mathbb{Z}^n$.

Mainly influenced by the approaches considered in [8], the discretization of Dirac equations à la Dirac-Kähler (cf. [27]) has been widely used on the last decade to develop further perspectives on the field of discrete harmonic analysis. We refer to [6] for a multivector formulation of discrete Fourier analysis, to [1] for applications on the theory of discrete heat semigroups and to [4] for a higher-dimensional extension of the theory of discrete Hardy spaces.

In author’s recent paper [12] the construction of discretizations for the Dirac operator was reformulated from a pseudo-differential calculus perspective. The idea was to relate directly the construction of discrete Dirac operators to the theory of discrete distributions (see [12, Section 2.]) with the aid of representation of its Fourier multipliers on the momentum space $(\mathbb{R}^n / 2\pi \mathbb{Z}^n \cong \mathbb{R}^n / 2\pi \mathbb{Z}^n)$ (see, for instance, [6, Section 5] and [1, Section 5] for further comparisons) in a way that it is possible to have a physical interpretation for the lattice fermion doubling phenomena which does not conflict with the ladder structure of the Clifford algebra (cf. [9, Section 2]), nor in case where additional symmetries are involved.

Summing up, this approach combines the discrete Fourier analysis framework proposed by Gürtelbeck and Sprößig in [14, Chapter 5] with some abstract results on discrete distributions studied in depth by Ruzhansky and Turunen in [28, Part II]. And in contrast with [6, 1], the underlying spaces of discrete distributions turn out to be linked with the topology of the n–torus, through the canonical isomorphism $\mathbb{R}^n / 2\pi \mathbb{Z}^n \cong (\mathbb{R}^n / 2\pi \mathbb{Z}^n)^n$ (see, for instance, [6, Section 5] and [1, Section 5]) for further comparisons) in a way that it is possible to have a physical interpretation for the lattice fermion doubling phenomena which does not conflict with the ladder structure of the Clifford algebra (cf. [9, Section 2]), nor in case where additional symmetries are involved.

Unfortunately, one cannot say the same for the Wilson’s approach [32] in the continuum limit, due to the following facts: the chiral symmetries are not recovered and the additional fermion doublers do not remain on the spectrum (we refer to [25, Section 4.2] for more details). From a mathematical perspective, that roughly means that Nielsen-Nimomiya’s no-go result [26] was evaded since, contrary to [21, 27], the additional lattice fermion doublers appearing on Wilson’s formulation do not depend on the signature of the Clifford algebra, although the Green’s function carrying Wilson propagator behaves as the Green’s function carrying a free fermion field (that is, the fundamental solution of the continuous Dirac operator).

Following Mandelbrot and Van Ness’ seminal paper on fractional Brownian motion (fBM) (see also [15, subsection 7.6]) which has been gained widespread attention on the stochastic analysis community, mainly due to Hairer’s fundamental paper [15], it becomes natural to inquire if the discrete Dirac equation à la Wilson proposed in [32] can be interpreted as a time-changed stochastic process.

Of course, the idea of describing physical models depending on phase transitions through fBM is indeed very old, as one may notice e.g. on Wilson’s quotation during his Nobel Prize lecture [33] (that may be found in [33, p. 124]):

"There is a murky connection between scaling ideas in critical phenomena and Mandelbrot’s fractals theory - a theory of scaling of irregular geometrical structures (such as coastlines)."

Nevertheless, due to the ongoing research interest on discrete multivector structures one may view this work as a first step to identify further directions towards a stochastic perspective, with the aim of enrich the framework that has been developed in the series of papers [8, 7, 6, 1, 4, 29, 9, 10, 12].
1.2. Statement of the model problem. The model problem under consideration – that it will be coined here and elsewhere as time-changed Dirac-Fokker-Planck (DFP) equation on the lattice – is strongly motivated by the recent surge of interest on the theory of time-changed Fokker-Planck equations in continuum (cf. [18, 19]) and by the ongoing promising applications of such laticizing models toward stochastic discretization (cf. [30]). Other additional motivations may be found on Hairer’s paper [15] – devoted to an exploitation of Mandelbrot-Van Ness’s approach [23] to stochastic PDE’s – and on Hairer et al. papers [16, 17] – centered on rigorous goal-oriented formulations for discrete counterparts for (non-linear) stochastic PDEs. Its structure is organized as follows:

- In Section 2 we introduce the framework we will work with, namely the main ingredients and features of Clifford algebras, discrete Fourier analysis and of the representations of discrete Dirac and discrete Laplacians on the ‘fractional’ lattice $\mathbb{R}^n_{h,\alpha} := (1 - \alpha)h\mathbb{Z}^n \oplus \alpha h\mathbb{Z}^n$ ($h > 0$ and $0 < \alpha < \frac{1}{2}$).

- In Section 3 we propose a possible time-changed version for the Dirac equation on the space-time lattice – time-changed DFP for short – which is akin to a time-fractional regularization of Wilson-Dirac equation in case where $0 < H \leq \alpha$ ($0 < \alpha < \frac{1}{2}$). It will be depicted, in particular, some connections between the fundamental solution of the semi-discrete heat operator $\partial_t - \Delta_h$ and stochastic processes of Bessel type.

- Section 4 will be devoted to the main results of the paper, mainly to the representation of time-changed DFP equation as a discrete convolution between the fundamental solution of the semi-discrete heat equation and the solution of a semi-discrete equation of Klein-Gordon type. Moreover, the Mellin-Barnes framework will be considered to show that the underlying solution of the Klein-Gordon equation admits analytic representations, involving generalized Wright functions of type Ψ_1 in the superdiffusive case ($\frac{1}{2} + \alpha \leq H < 1$, with $0 < \alpha < \frac{1}{2}$).

Throughout this paper, the time-changed DFP equation on the space-time lattice $\mathbb{R}^n_{h,\alpha} \times [0, \infty)$ introduced in subsection 3.1 is far from being a simple second-order perturbation of the discrete Dirac equation studied in author’s recent paper [12]. In the limit $h \to 0$, it corresponds to a finite difference discretization of a Gaussian process $X = \sum_{j=1}^n e_j X_j$ carrying a set of independent and identically distributed (i.i.d) random variables X_1, X_2, \ldots, X_n with variance $\sigma^2(t) = \sigma^2 t^{2H}$ (see e.g. [19, Proposition 1, & Remark 2.]). Herein, the geometric calculus nature of Clifford algebras highlighted in the series of books (see e.g. [14, 31]) allows us to use the discretizations for the Dirac operator considered previously in [8, 7, 23, 9, 10] to develop more robust algebraic tools to go from one-dimensional fractional diffusion models to higher dimensional ones (cf. [24, Chapter 6]) such as the time-changed regularization of the Wilson-Dirac equation [32] highlighted on Remark 3.1 and Remark 3.2.

The main results treated in section 4 are essentially Theorem 4.3 and Corollary 4.4. In the proof of Theorem 4.3 we tackle the problem of representing the solutions within the framework introduced in subsections 2.2, 2.3 and 3.2 whereas in the proof of Corollary 4.4 we show that if we known a-priori the solution of
the semi-discrete Klein-Gordon equation (1.1) (see Theorem 3.2), then the solution \(\Psi(x, t/p) \) of the time-changed DFP equation (3.1) can be neatly represented as a Laplace type integral that encompasses \(\Psi(x, t/p) \) and the stable one-side Lévy distributions \(L_H(u) \) depending on the Hurst parameter \(0 < H < 1 \).

For our purposes (time-changed equation depending on the Hurst parameter \(0 < H < 1 \)) it becomes relevant to consider, as in author’s recent paper [11], the generalized Wright functions \(\Psi_q \) to encompass the stable one-side Lévy distributions \(L_H(u) \) of order \(0 < H < 1 \) appearing on subsection 3.2 and the Fourier multipliers

\[
\cos \left(\mu t \sqrt{d_h(\xi)^2} \right) \quad \text{and} \quad \frac{\sin(\mu t \sqrt{d_h(\xi)^2})}{\sqrt{d_h(\xi)^2}}
\]

appearing on the proof of Lemma 4.1. For the sake of the reader’s convenience we will outline some definitions required in Appendix section A required for the proof of Corollary 4.4 and later, for the proof of Theorem 4.5 in subsection 4.3.

Similarly to [11] our approach relies heavily on the representation of the fundamental solution of semi-discrete heat operator \(\partial_t - \Delta_h \) in terms of modified Bessel functions of the first kind (see also [12] subsection 4.2), in view of its major utility in treating initial value problems of Cauchy type through semigroup analysis. Loosely speaking, we have shown that the same scheme also works to represent the fundamental solution of its time-changed counterpart \(\partial_t - H \sigma^2 t^{2H-1} \Delta_h \) (zero-drift case of equation (3.1)).

The role of the modified Bessel functions and alike are indeed compelling and undisputed in the series of papers on the literature (see e.g. [5] and the references therein). In particular, its interplay with the discrete heat semigroup in the setting of discrete Clifford analysis has already been fully answered by Baask et al. [1] (see also [12] subsection 4.2). With the incorporation of a less known interpretation for the fundamental solution of \(\partial_t - \Delta_h \) in the modeling of Brownian motion through a stochastic process of Bessel type, as formerly outlined by Yor [34] (see also [2] and the references given there), we are able to produce a stochastic interpretation that do precisely fit our needs, as briefly depicted throughout subsections 3.2 and 4.2.

2. Preliminaries

2.1. Clifford algebra setup. Following the standard definitions considered in the book [31] and the standard notations already considered in [11] [18] [12], we will introduce the Clifford algebra of signature \((n, n)\) in the following way:

We will denote by \(\mathcal{C}l_{n, n} \) the Clifford endowed by the Minkowski space-time \(\mathbb{R}^{n, n} \), and by \(e_1, e_2, \ldots, e_n, e_{n+1}, e_{n+2}, \ldots, e_{2n} \) the underlying basis of \(\mathbb{R}^{n, n} \). Herein we assume that \(\mathcal{C}l_{n, n} \) is generated by the set of graded anti-commuting relations

\[
e_j e_k + e_k e_j = -2\delta_{jk}, \quad 1 \leq j, k \leq n
\]

\[
e_j e_{n+k} + e_{n+k} e_j = 0, \quad 1 \leq j, k \leq n
\]

\[
e_{n+j} e_{n+k} + e_{n+k} e_{n+j} = 2\delta_{jk}, \quad 1 \leq j, k \leq n.
\]

Through the linear space isomorphism between \(\mathcal{C}l_{n, n} \) and the exterior algebra \(\wedge(\mathbb{R}^{n, n}) \) provided by the linear extension of the mapping \(e_{j_1} e_{j_2} \ldots e_{j_r} \mapsto dx_{j_1} dx_{j_2} \ldots dx_{j_r} \) (1 \(\leq j_1 < j_2 < \ldots < j_r \leq 2n \)), it readily follows that the basis elements of \(\mathcal{C}l_{n, n} \) consists on \(r \)-multivectors of the form \(e_{j_1} e_{j_2} \ldots e_{j_r} \) (cf. [31] Chapter 4). In case where \(J = \emptyset \) (empty set) we have \(e_{\emptyset} = 1 \) (basis for scalars).
For our main purposes we will make use of the embedding \(\mathbb{R}^{n,n} \subseteq C\ell_{n,n} \) to represent, in particular, any \(n \)-tuple \((x_1, x_2, \ldots, x_n)\) of \(\mathbb{R}^n \) by means of the linear combination \(x = \sum_{j=1}^{n} x_j e_j \) carrying the basis elements \(e_1, e_2, \ldots, e_n \) with signature \((0, n) \). In the same order of ideas, we will represent the associated translations \((x_1, x_2, \ldots, x_j \pm \varepsilon, \ldots, x_n)\) on lattices of the form \(\varepsilon \mathbb{Z}^n \subseteq \mathbb{R}^n \) \((\varepsilon > 0)\) as \(x \pm \varepsilon e_j \).

Now let

\[\mathbb{R}_{h,\alpha}^n := (1 - \alpha) h \mathbb{Z}^n \oplus \alpha h \mathbb{Z}^n, \quad h > 0 \quad \& \quad 0 < \alpha < \frac{1}{2} \]

be a lattice of \(\mathbb{R}^n \) that contains \(h \mathbb{Z}^n \).

To properly introduce in Section 2.2 a discrete Fourier transform carrying discrete multivector functions \(g : \mathbb{R}_{h,\alpha}^n \rightarrow \mathbb{C} \otimes C\ell_{n,n} \) and \(f : \mathbb{R}_{h,\alpha}^n \times [0, \infty) \rightarrow \mathbb{C} \otimes C\ell_{n,n} \) represented through one of the following ansatz \((e_f = e_1, e_2, \ldots, e_n)\)

\[
\begin{align*}
g(x) &= \sum_{r=0}^{n} \sum_{|J|=r} g_J(x) e_J, \quad \text{with} \quad g_J : \mathbb{R}_{h,\alpha}^n \rightarrow \mathbb{C} \\
f(x, t) &= \sum_{r=0}^{n} \sum_{|J|=r} f_J(x, t) e_J, \quad \text{with} \quad f_J : \mathbb{R}_{h,\alpha}^n \times [0, \infty) \rightarrow \mathbb{C}
\end{align*}
\]

we need to consider the \(\dagger \)-conjugation operation \(a \mapsto a^\dagger \) on the complexified Clifford algebra \(\mathbb{C} \otimes C\ell_{n,n} \) defined as

\[
\begin{align*}
(ab)^\dagger &= b^\dagger a^\dagger \\
(ae_j)^\dagger &= e_{j}^{\dagger} \ldots e_{j_{r}}^{\dagger} (1 \leq j_1 < j_2 < \ldots < j_r \leq 2n) \\
e_{j}^{\dagger} &= -e_j \quad \text{and} \quad e_{n+j}^{\dagger} = e_{n+j} \quad (1 \leq j \leq n)
\end{align*}
\]

It is straightforward to infer from (2.2) that \(a^\dagger a = a a^\dagger \) is non-negative so that the \(\| \cdot \| \)-norm endowed by complexified Clifford algebra structure \(\mathbb{C} \otimes C\ell_{n,n} \) is defined as \(\|a\| = \sqrt{a^\dagger a} \). In case where \(a \) belongs to \(\mathbb{C} \otimes \mathbb{R}^{n,n} \), it then follows that the quantity \(\|a\| \) coincides with the the standard norm of \(a \) on \(\mathbb{C}^{2n} \).

To avoid ambiguities throughout the manuscript we will use the bold notations \(\mathbf{a}, \mathbf{b}, \ldots, \mathbf{f}, \mathbf{g}, \ldots \) when we refer to Clifford numbers and/or multivector functions with membership in the complexified Clifford algebra \(\mathbb{C} \otimes C\ell_{n,n} \).

2.2. Discrete Fourier Analysis. Let \(\ell_2(\mathbb{R}_{h,\alpha}^n; \mathbb{C} \otimes C\ell_{n,n}) := \ell_2(\mathbb{R}_{h,\alpha}^n) \otimes (\mathbb{C} \otimes C\ell_{n,n}) \) denotes the right Hilbert module endowed by the Clifford-valued sesquilinear form (cf. [11] p. 533)

\[
\langle f(\cdot, t), g(\cdot, t) \rangle_{h,\alpha} = \sum_{x \in \mathbb{R}_{h,\alpha}^n} h^n f(x, t)^\dagger g(x, t),
\]

and let \(S(\mathbb{R}_{h,\alpha}^n; C\ell_{n,n}) := S(\mathbb{R}_{h,\alpha}^n) \otimes (\mathbb{C} \otimes C\ell_{n,n}) \) denote the space of rapidly decaying functions \(f \) with values on \(\mathbb{C} \otimes C\ell_{n,n} \), defined for any \(\mathbb{R} \)-valued constant \(M < \infty \) by the semi-norm condition

\[
\sup_{x \in \mathbb{R}_{h,\alpha}^n} (1 + \|x\|^2)^M \|f(x, t)\| < \infty.
\]
Following \textit{mutatis mutandis} [28 Exercise 3.1.7], it is straightforward to see that
the seminorm condition
\[
\sup_{x \in \mathbb{R}_{n}^{h,\alpha}} (1 + ||x||)^{-M} ||g(x, t)|| < \infty
\]
allows us to properly define the set of all \textit{continuous linear functionals} with membership in \(S(\mathbb{R}_{n}^{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{\ell,n})\) through the mapping \(f(\cdot, t) \mapsto (f(\cdot, t), g(\cdot, t))_{h,\alpha}\), whereby
the family of distributions \(g(\cdot, t) : \mathbb{R}_{n}^{h,\alpha} \to \mathbb{C} \otimes \mathcal{C}_{\ell,n}\) (for every \(t \in [0, \infty)\)) belong
to the multivector counterpart of the \textit{space of tempered distributions} on the lattice \(\mathbb{R}_{n}^{h,\alpha}\). This function space will be denoted here and elsewhere by
\[
S'(\mathbb{R}_{n}^{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{\ell,n}) := S'(\mathbb{R}_{n}^{h,\alpha}) \otimes (\mathbb{C} \otimes \mathcal{C}_{\ell,n}) .
\]
Next, let us denote by \((- \frac{\pi}{h}, \frac{\pi}{h}]^{n}\) an \(n\)-dimensional representation of the \(n\)-torus \(\mathbb{R}^{n}/\mathbb{Z}^{n}\) and by
\[
L_{2} \left(\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}; \mathbb{C} \otimes \mathcal{C}_{\ell,n}\right) := L_{2} \left(\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}\right) \otimes (\mathbb{C} \otimes \mathcal{C}_{\ell,n})
\]
the \(\mathbb{C} \otimes \mathcal{C}_{\ell,n}\)–Hilbert module endowed by the sesquilinear form
\[
\langle f(\cdot, t), g(\cdot, t) \rangle_{\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}} = \int_{\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}} f(\xi, t) \overline{g(\xi, t)} d\xi.
\]

The \textit{discrete Fourier transform} of a function \(g(\cdot, t)\) with membership in \(\ell_{2}(\mathbb{R}_{n}^{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{\ell,n})\) is defined as
\[
\langle F_{h,\alpha} g(\cdot, t) \rangle(\xi, t) = \begin{cases} \frac{h^{n}}{2\pi^{\frac{3n}{2}}} \sum_{x \in \mathbb{R}_{n}^{h,\alpha}} g(x, t) e^{i\pi x \cdot \xi}, & \xi \in \left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n} \\ 0, & \xi \in \mathbb{R}^{n} \setminus \left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n} \end{cases} .
\]

As in [14 subsection 5.2.1], the \textit{discrete Fourier transform} yields the isometric isomorphism
\[
F_{\alpha,h} : \ell_{2}(\mathbb{R}_{n}^{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{\ell,n}) \to L_{2} \left(\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}; \mathbb{C} \otimes \mathcal{C}_{\ell,n}\right),
\]
whose inverse \((F_{h,\alpha}^{-1} g)(x, t) = \hat{g}_{h,\alpha}(x, t)\) is given by the Fourier coefficients
\[
\hat{g}_{h,\alpha}(x, t) = \frac{1}{(2\pi)^{\frac{3n}{2}}} \int_{\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}} F_{h,\alpha} g(\xi, t) e^{-i\pi x \cdot \xi} d\xi.
\]

For the function spaces \(S'(\mathbb{R}_{n}^{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{\ell,n})\) and \(C^{\infty}(\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}; \mathbb{C} \otimes \mathcal{C}_{\ell,n})\), we notice first that \(S'(\mathbb{R}_{n}^{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{\ell,n})\), defined as above, is dense in \(\ell_{2}(\mathbb{R}_{n}^{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{\ell,n})\). On the other hand, \(C^{\infty}(\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}; \mathbb{C} \otimes \mathcal{C}_{\ell,n})\) is embedded on the dual space \(C^{\infty}(\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}; \mathbb{C} \otimes \mathcal{C}_{\ell,n})^{\prime}\), the so-called space of \(\mathbb{C} \otimes \mathcal{C}_{\ell,n}\)–valued distributions over \((- \frac{\pi}{h}, \frac{\pi}{h})^{n}\) (cf. [28 Exercise 3.1.15.] & [28 Definition 3.1.25]).

As a result, the \textit{Parseval type relation}, involving the sesquilinear forms [23] and [24] (cf. [28 Definition 3.1.27]):
\[
\langle F_{h,\alpha} f(\cdot, t), g(\cdot, t) \rangle_{\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}} = \langle f(\cdot, t), \hat{g}_{h,\alpha}(\cdot, t) \rangle_{h,\alpha}
\]
extends furthermore the isometric isomorphism
\[
F_{h,\alpha} : \ell_{2}(\mathbb{R}_{n}^{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{\ell,n}) \to L_{2} \left(\left(- \frac{\pi}{h}, \frac{\pi}{h}\right)^{n}; \mathbb{C} \otimes \mathcal{C}_{\ell,n}\right)
\]
yields straightforwardly from the sequence of identities at the level of distributions:

\[\text{discrete convolution property} \]

2.3. Discrete Dirac and Discrete Laplacian. Consider now, for each \(h > 0 \), the discrete Laplacian on the lattice \(h \mathbb{Z}^n \subseteq \mathbb{R}^n \).

\[\Delta_h f(x, t) = \sum_{j=1}^{n} \frac{f(x + h e_j, t) + f(x - h e_j, t) - 2f(x, t)}{h^2} \]

and the Fourier multiplier of \(F_{h, \alpha} \circ (-\Delta_h) \circ F_{h, \alpha}^{-1} \)

\[d_h(\xi) = \frac{4}{h^2} \sum_{j=1}^{n} \sin^2 \left(\frac{h \xi_j}{2} \right). \]

By means of the mapping properties associated to the discrete Fourier transform (2.5) together with the Dirac-Kähler discretization on the lattice \(\varepsilon \mathbb{Z}^n \), already considered in [10] (see also [12, section 1.2]):

\[D_{\varepsilon} f(x, t) = \sum_{j=1}^{n} \frac{2f(x, t) - f(x + \varepsilon e_j, t) - f(x - \varepsilon e_j, t)}{2\varepsilon} \]

one can further exploit the framework considered in a series of author’s previous papers [9,10] (see also [8,10,11] for further comparisons) toward pseudo-differential calculus. Concretely speaking, the discrete Dirac type operators

\[D_{h, \alpha} : S(\mathbb{R}^n_{h, \alpha}; \mathbb{C} \otimes C^{l_n,n}) \rightarrow S(\mathbb{R}^n_{h, \alpha}; \mathbb{C} \otimes C^{l_n,n}) \]
satisfying the factorization property \((D_{h,\alpha})^2 = -\Delta_h\) can be straightforwardly determined by the Fourier multiplier of \(\mathcal{F}_{h,\alpha} \circ D_{h,\alpha} \circ \mathcal{F}_{h,\alpha}^{-1}\), defined componentwise by the Clifford-vector-valued function (cf. [12, Subsection 2.2.])

\[
\mathbf{z}_{h,\alpha}(\xi) = \sum_{j=1}^{n} -i e_j \sin((1-\alpha)h\xi_j) + \frac{\sin(\alpha h \xi_j)}{h} + \sum_{j=1}^{n} e_{n+j} \cos(\alpha h \xi_j) - \frac{\cos((1-\alpha)h\xi_j)}{h}.
\]

(2.13)

The key property besides this approach is the square condition \(\mathbf{z}_{h,\alpha}(\xi)^2 = d_h(\xi)^2\) between the Fourier multipliers of \(\mathcal{F}_{h,\alpha} \circ D_{h,\alpha} \circ \mathcal{F}_{h,\alpha}^{-1}\) and \(\mathcal{F}_{h,\alpha} \circ (-\Delta_h) \circ \mathcal{F}_{h,\alpha}^{-1}\), respectively.

As it depicted in [12, Remark 2.1], the limit case \(\alpha \to 0\)

\[
\mathbf{z}_{h,0}(\xi) = \sum_{j=1}^{n} -i e_j \sin(h\xi_j) + \sum_{j=1}^{n} e_{n+j} \frac{1 - \cos(h\xi_j)}{h}.
\]

yields the Fourier multiplier of \(\mathcal{F}_{h,\alpha} \circ D_{h,\alpha} \circ \mathcal{F}_{h,\alpha}^{-1}\) on \(h\mathbb{Z}^n\), encoded by the Dirac-Kähler discretization \(D_h\) (set \(\varepsilon = h\) on eq. (2.12)), whereas in the limit \(\alpha \to \frac{1}{2}\), the symbol

\[
\mathbf{z}_{h,\frac{1}{2}}(\xi) = \sum_{j=1}^{n} -i e_j \frac{2 \sin(h\xi_j)}{h}
\]

stands for the Fourier multiplier of the self-adjoint discretization of the Dirac operator on the lattice \(\frac{h}{2}\mathbb{Z}^n\).

Considering now the formal \(\dagger\)-conjugation of (2.12) induced by the Clifford algebraic property (2.2):

\[
D_\varepsilon^\dagger f(x, t) = \sum_{j=1}^{n} e_j f(x + \varepsilon e_j, t) - f(x - \varepsilon e_j, t) + \sum_{j=1}^{n} e_{n+j} f(x, t) - 2f(x + \varepsilon e_j, t) - f(x - \varepsilon e_j, t)
\]

it readily follows from a direct application of the properties of the discrete Fourier transform (2.13) that the operator \(D_{h,\alpha} : S(\mathbb{R}^n_{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{n,n}) \to S(\mathbb{R}^n_{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{n,n})\) satisfying

\[
\mathcal{F}_{h,\alpha}(D_{h,\alpha} g)(\xi) = \mathbf{z}_{h,\alpha}(\xi) (\mathcal{F}_{h,\alpha} g)(\xi)
\]

is uniquely determined by

\[
D_{h,\alpha} := (1-\alpha)D_{(1-\alpha)h} - \alpha D_{\alpha}^\dagger.
\]

(2.14)

3. Time-Changed Dirac-Fokker-Planck Equation

3.1. The model problem explained. In this work we propose a time-changed variant of the Dirac equation \(\partial_t \Phi(x, t) = i\mu D_{h,\alpha} \Phi(x, t)\) by adding an extra time-changed perturbation of the order of cut-off. Henceforth, the resulting time-changed Dirac-Fokker-Planck (DFP) type equation on the space-time lattice \((x, t) \in \mathbb{R}^n_{h,\alpha} \times [0, \infty)\) formulated as

\[
\partial_t \Phi(x, t) = i\mu D_{h,\alpha} \Phi(x, t) + \sigma^2 Ht^{2H-1} \Delta_h \Phi(x, t), \quad \Phi(x, 0) = \Phi_0(x),
\]

(3.1)
resembles to a discrete counterpart of a fractional Wiener process carrying the drift and diffusion terms, μ and σ^2 respectively, that approximates the discrete massless Dirac equation in the limit $H \to 0$. Its right hand side depending on the time variable term H^{-2H-1} carrying the Hurst parameter $0 < H < 1$ reflects the time-changed dependence of the discrete Laplacian Δ_h for values $H \neq \frac{1}{2}$ (cf. [23]). Moreover, the limit conditions $\alpha, H \to 0$ allows us to recover, from a multivector calculus perspective, the massless Dirac equation considered on Rabin’s approach [27] towards the investigation of the lattice fermion doubling phenomena (see also [12, Subsection 3.2], on which the solution of the discrete Dirac equation was investigated by means of operational techniques.

Both of this clues allow us to make a reasonable guess that the formulation of the model problem (3.1) may be viewed as a stochastic rescaling of Wilson’s formulation [32] on which the second order term $\sigma^2 H t^{2H-1} \Delta_h \Phi(x, t)$ encoding the variance function $\sigma^2_H(t) = \sigma^2 t^{2H}$ (see also [15, subsection 3.1])

$$\frac{1}{2} \frac{d\sigma^2_H(t)}{dt} = H \sigma^2 t^{2H-1}$$

acts as Wilson-like term on the momentum space $\left(-\frac{\pi}{H}, \frac{\pi}{H}\right]^n \times [0, \infty)$, in case where $0 < H \leq \alpha$ ($0 < \alpha < \frac{1}{2}$).

At this stage, one notice here that in case where $H = \frac{1}{2}$, it is commonly to choose $\sigma^2 = h$ as the Wilson parameter r – that is assumed to be on the interval $0 < r \leq 1$ (cf. [25, p. 178]). Interesting enough, for values of H in the range $0 < H \leq \alpha$ one easily recognizes that the time-dependent diffusion term satisfies the condition $\sigma^2 H t^{2H-1} < 1$ in the limit $t \to \infty$.

Remark 3.1 (Regularization of Wilson’s approach). Despite the choice of H that yields a Wilson-like parameter may be independently taken for values of H on the interval $0 < H < \frac{1}{2}$ (sub-diffusive case), one has considered the constraint $H \leq \alpha$ to strongly emphasize that our model problem (3.1) naturally leads, for special choices of H [bounded above by α], to a fractional time-dependent regularization of Wilson’s seminal approach [32] in the limit $\alpha \to \frac{1}{2}$.

Remark 3.2 (Toward fBM). Commonly the diffusion term σ^2 depends on the Hurst parameter $0 < H < 1$. And due to the spectral density analysis studied in depth by Mandelbrot and Van Ness in [23, Section 7] it remains natural to consider diffusion terms of the form

$$\sigma^2 = \frac{2\Gamma(2-2H)}{\pi H (2H-1)} \cos(\pi (H-1)), $$

where Γ stands for the Gamma function defined via the Eulerian integral (A.7).

Herein, the combination of the identity

$$\sigma^2 = \frac{2\Gamma(2-2H)}{\pi H (1-2H)} \sin\left(\pi \left(\frac{1}{2} - H\right)\right)$$

with the inequalities $0 < \Gamma(2-2H) < 1$ & $0 < 2 \sin \left(\pi \left(\frac{1}{2} - H\right)\right) < \pi (1 - 2H)$, for values of H in the range $0 < H < \frac{1}{2}$, result into the estimates

$$0 < H \sigma^2 t^{2H-1} < 1, \quad \text{for large values of } t > 0.$$

That suggests us to choose $H\sigma^2$ as a Wilson-like parameter for our model problem (3.1) in the sub-diffusive case ($0 < H < \frac{1}{2}$). Interesting enough, such choice is
naturally associated to Fourier multipliers generated from one-side stable distributions of Lévy type (see for example [24, Chapter 3]).

3.2. **A stochastic interpretation of the DFP equation.** In order to provide a stochastic meaning to the solutions of (3.1), we must impose the normalization condition
\[\sum_{x \in \mathbb{R}_n^+} h^n \Phi(x, t) = 1, \text{ for all } t \geq 0. \]

In the zero-drift case ($\mu = 0$) the analysis may be considerably simplified to the study of the discrete fundamental solution of the discrete heat equation (cf. [1]). In particular, if $\Phi(x, 0) = \Phi_0(x)$ equals to the discrete delta distribution
\[\delta_h(x) = \begin{cases} \frac{1}{h^n} & \text{if } x = (0, 0, \ldots, 0) \\ 0 & \text{if } x \neq (0, 0, \ldots, 0) \end{cases}, \]
the function $\Phi(x, t) := \exp(t \Delta_h) \delta_h(x)$ turns out to be fundamental solution of the semi-discrete heat operator $\partial_t - \Delta_h$ (cf. [1, Section 4]), approximates the semi-martingale case in the limit $h \to 0$ ($\sigma^2 = 2$ and $H = \frac{1}{2}$). Interestingly enough, the following representation formula
\[\exp(t \Delta_h) \delta_h(x) = \left(2\pi \right)^{-\frac{n}{2}} \frac{1}{h^n} e^{-\frac{2nt}{h^2}} \prod_{j=1}^n I_{\frac{2j}{h^2}} \left(2t \right), \]
written in terms of the modified Bessel functions of the first kind $I_k(u)$ (cf. [12, subsection 4.2]) seamlessly describes to a n-ary product of transition probability densities carrying a finite sequence of Bessel processes $R_{\nu_1}^{(n_1)}, R_{\nu_2}^{(n_2)}, \ldots, R_{\nu_n}^{(n_n)}$ of order $\nu_j = \frac{|x_j|}{h} \in \mathbb{N}_0$ ($j = 1, 2, \ldots, n$) (cf. [2, pp. 71-76]).

Indeed, using the fact that the modified Bessel function $I_k(u)$ admits the Laplace identity
\[I_k(r) = \int_0^\infty \exp \left(-\frac{1}{2} k^2 p \right) \theta_r(p) dp \]
in terms of the (unnormalized) Hartman-Watson distribution
\[\theta_r(p) = \frac{r}{\sqrt{2\pi^4 u}} \int_0^\infty \exp \left(-\frac{\pi^2 - p^2}{2u} - r \cosh(p) \right) \sinh(p) \sin \left(\frac{\pi p}{u} \right) dp \]
deduced by Marc Yor [34] (see also [2, p. 79]) gives rise to
\[\exp(t \Delta_h) \delta_h(x) = \left(2\pi \right)^{-\frac{n}{2}} \frac{1}{h^n} e^{-\frac{2nt}{h^2}} \prod_{j=1}^n \exp \left(-\frac{x_j^2}{2h^2} \right) \Theta \left(\xi; \frac{2t}{h^2} \right) d\xi, \]
where $d\xi$ denotes the Lebesgue measure and the n-ary product
\[\Theta \left(\xi; \frac{2t}{h^2} \right) = \theta_{\xi_1^{(n)}} \Theta \theta_{\xi_2^{(n)}} \left(\xi_2 \right) \ldots \theta_{\xi_n^{(n)}} \left(\xi_n \right). \]

With formula (3.3) we have a precise probabilistic interpretation for the fundamental solution of $\partial_t - \Delta_h$. More generally, $\Phi_0(x)$ may be chosen as a discrete
quasi-probability distribution

\[
\Pr \left(\sum_{j=1}^{n} e_j X_j = x \right) = h^n \Phi_0(x)
\]

carrying a set of independent and identically distributed (i.i.d) random variables \(X_1, X_2, \ldots, X_n\), providing a Bayesian probability meaning to the discrete convolution representation

\[
\exp(t \Delta_h) \Phi_0(x) = \sum_{y \in \mathbb{R}^n_{h,\alpha}} h^n \Phi_0(y) \exp(t \Delta_h) \delta_h(y - x)
\]

of the solution of the discrete heat equation studied in detail in refs. [1, 5] (see, in particular, [1, Section 6.] and [5, Section 2]).

In the zero-diffusion case (\(\sigma^2 = 0\)) some interesting choices for the likelihood function \(h^n \Phi_0(x)\) are e.g. the Poisson and Mittag-Leffler distributions depicted in [10, subsection 4.1 & subsection 4.2].

4. Main Results

4.1. Semi-discrete Klein-Gordon equations. In this subsection we focus on the study of solutions associated to the time-changed DFP type equation (3.1) on the space-time lattice \((x, t) \in \mathbb{R}^n_{h,\alpha} \times [0, \infty)\) and on the solutions of the semi-discrete Klein-Gordon type equation on \((x, t) \in \mathbb{R}^n_{h,\alpha} \times [0, \infty)\):

\[
\begin{cases}
\partial_t^2 \Psi(x, t|p) + 4pt \partial_t \Psi(x, t|p) + \\
+(2p + 4p^2 t^2) \Psi(x, t|p) = \mu^2 \Delta_h \Psi(x, t|p) \\
\Psi(x, 0|p) = \Phi_0(x) \\
[\partial_t \Psi(x, t|p)]_{t=0} = i\mu D_{h,\alpha} \Phi_0(x).
\end{cases}
\]

Before proceeding with the main results, we just want to underscore that the exponentiation operator \(\exp(i\mu t D_{h,\alpha})\) may be used to generate the solutions of the Klein-Gordon type equation on the lattice (cf. [12, Corollary 3.1]). The following lemma, that will be useful on this subsection and elsewhere, mimics the proof of [12, Theorem 1.1]:

Lemma 4.1. Let \(z_{h,\alpha}(\xi)\) and \(d_h(\xi)^2\) be the Fourier multipliers of \(\mathcal{F}_{h,\alpha} \circ D_{h,\alpha} \circ \mathcal{F}_{h,\alpha}^{-1}\) and \(\mathcal{F}_{h,\alpha} \circ (-\Delta_h) \circ \mathcal{F}_{h,\alpha}^{-1}\), respectively. Then, the exponentiation function \(\exp(i\mu t z_{h,\alpha}(\xi))\) admits the following representation

\[
\exp(i\mu t z_{h,\alpha}(\xi)) = \cos \left(\mu t \sqrt{d_h(\xi)^2} \right) + \frac{\sin(\mu t \sqrt{d_h(\xi)^2})}{\sqrt{d_h(\xi)^2}} i z_{h,\alpha}(\xi).
\]
Proof. First, recall that \(\exp(i\mu t z_{h,\alpha}(\xi)) = \cosh(i\mu t z_{h,\alpha}(\xi)) + \sinh(i\mu t z_{h,\alpha}(\xi)) \), whereby
\[
\cosh(i\mu t z_{h,\alpha}(\xi)) = \sum_{k=0}^{\infty} \frac{(\mu t)^{2k}}{(2k)!} (iz_{h,\alpha}(\xi))^{2k}
\]
\((4.2) \)
\[
\sinh(i\mu t z_{h,\alpha}(\xi)) = \sum_{k=0}^{\infty} \frac{(\mu t)^{2k+1}}{(2k+1)!} (iz_{h,\alpha}(\xi))^{2k+1}
\]
denotes the even resp. odd part of the formal series expansion of \(\exp(i\mu t z_{h,\alpha}(\xi)) \).

From the factorization property \(z_{h,\alpha}(\xi)^2 = d_h(\xi)^2 \) we thereby obtain that
\[
(i z_{h,\alpha}(\xi))^{2k} = i^{2k} (z_{h,\alpha}(\xi)^2)^k = (-1)^k (\sqrt{d_h(\xi)^2})^{2k}
\]
\[
(i z_{h,\alpha}(\xi))^{2k+1} = i z_{h,\alpha}(\xi) (i z_{h,\alpha}(\xi))^{2k} = (-1)^k (\sqrt{d_h(\xi)^2})^{2k+1} \sqrt{d_h(\xi)^2} i z_{h,\alpha}(\xi),
\]
hold for every \(k \in \mathbb{N}_0 \).

Finally, by substituting the previous relations on the right hand side of (4.2), one readily obtain by linearity arguments the following identities, involving the formal series expansions of sine and cosine functions, respectively:
\[
\cosh(i\mu t z_{h,\alpha}(\xi)) = \sum_{k=0}^{\infty} \frac{(-1)^k (\mu t)^{2k}}{(2k)!} (\sqrt{d_h(\xi)^2})^{2k}
\]
\[
= \cos(\mu t \sqrt{d_h(\xi)^2})
\]
\[
\sinh(i\mu t z_{h,\alpha}(\xi)) = \sum_{k=0}^{\infty} \frac{(-1)^k (\mu t)^{2k+1}}{(2k+1)!} (\sqrt{d_h(\xi)^2})^{2k+1} \sqrt{d_h(\xi)^2}
\]
\[
= \sin(\mu t \sqrt{d_h(\xi)^2}) i z_{h,\alpha}(\xi),
\]
completing the proof of Lemma 4.1. \(\square \)

With the construction furnished in Lemma 4.1 we are able to prove that the exponentiation function \(\exp(i\mu t D_{h,\alpha}) \) generates a solution for the semi-discrete Klein Gordon equation (4.1). That corresponds to the following theorem:

Theorem 4.2. For a given Clifford-valued function function \(\Phi_0 \) with membership in \(\mathcal{S}(\mathbb{R}^n_{h,\alpha}; \mathbb{C} \otimes \mathbb{C}l_n) \), the ansatz function
\[
\psi(x, t | p) = e^{-\nu^2} \left(\cos(\mu t \sqrt{-\Delta_h}) \Phi_0(x) + \frac{\sin(\mu t \sqrt{-\Delta_h})}{\sqrt{-\Delta_h}} i D_{h,\alpha} \Phi_0(x) \right)
\]
satisfies the conditions of the evolution problem (4.1).

Proof. First, let us take the ansatz function
\[
\psi(x, t) = \cos(\mu t \sqrt{-\Delta_h}) \Phi_0(x) + \frac{\sin(\mu t \sqrt{-\Delta_h})}{\sqrt{-\Delta_h}} i D_{h,\alpha} \Phi_0(x),
\]
By applying the discrete Fourier transform $\mathcal{F}_{h,\alpha}$ on both sides we thereby obtain from Lemma 4.1 that

$$
(F_{h,\alpha}\Psi(\cdot, t))(\xi) = \cos \left(\mu t \sqrt{d_h(\xi)^2} \right) (F_{h,\alpha}\Phi_0)(\xi) + \frac{\sin(\mu t \sqrt{d_h(\xi)^2})}{\sqrt{d_h(\xi)^2}} i\mathbf{z}_{h,\alpha}(\xi) (F_{h,\alpha}\Phi_0)(\xi)
$$

corresponds to the representation of $\Psi(x, t)$ on the momentum space $\left(-\frac{\pi}{h}, \frac{\pi}{h}\right)^n \times [0, \infty)$. A simple computation moreover shows that $(F_{h}\Psi(\cdot, t))(\xi)$ provides us a solution for the Cauchy problem on $\left(-\frac{\pi}{h}, \frac{\pi}{h}\right)^n \times [0, \infty)$:

$$
\begin{align*}
\partial_t^2 (F_{h,\alpha}\Psi(\cdot, t))(\xi) &= -\mu^2 d_h(\xi)^2 (F_{h,\alpha}\Psi(\cdot, t))(\xi) \\
(F_{h,\alpha}\Psi(\cdot, 0))(\xi) &= (F_{h,\alpha}\Phi_0)(\xi) \\
[\partial_t (F_{h,\alpha}\Psi(\cdot, 0))(\xi)]_{t=0} &= i\mu \mathbf{z}_{h,\alpha}(\xi) (F_{h,\alpha}\Phi_0)(\xi).
\end{align*}
$$

(4.3)

Next, let us take the substitution $(F_{h,\alpha}\Psi(\cdot, t))(\xi) = e^{pt^2} (F_{h,\alpha}\Psi(\cdot, t|p))(\xi)$ on (4.1) for a given $p \geq 0$.

Clearly, one has

$$(F_{h,\alpha}\Psi(\cdot, 0))(\xi) = (F_{h,\alpha}\Psi(\cdot, 0; p))(\xi) = (F_{h,\alpha}\Phi_0)(\xi).$$

On the other hand, a straightforward computation based on the Leibniz rule moreover shows that

$$
\left[\partial_t \left(e^{pt^2} (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) \right) \right]_{t=0} = \left[e^{pt^2} \left(\partial_t (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) + 2pt (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) \right) \right]_{t=0} = i\mathbf{z}_{h,\alpha}(\xi) (F_{h,\alpha}\Phi_0)(\xi)
$$

$$
\partial_t^2 \left(e^{pt^2} (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) \right) = \partial_t \left[e^{pt^2} \left(\partial_t (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) + 2pt (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) \right) \right] = e^{pt^2} \left(i\mu + 2pt \right) (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) + 2pt (F_{h,\alpha}\Psi(\cdot, t|p))(\xi)
$$

$$
= e^{pt^2} \left(\partial_t^2 + 4pt \partial_t + 2p + 4p^2 t^2 \right) (F_{h,\alpha}\Psi(\cdot, t|p))(\xi).
$$

From the above set of relations one can therefore conclude that $(F_{h}\Psi(\cdot, t))(\xi)$ is a solution of the semi-discrete Cauchy problem

$$
\begin{align*}
\partial_t^2 (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) + 4pt \partial_t (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) + (2p + 4p^2 t^2) (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) &= -\mu^2 d_h(\xi)^2 (F_{h,\alpha}\Psi(\cdot, t|p))(\xi) \\
(F_{h,\alpha}\Psi(\cdot, 0; p))(\xi) &= (F_{h,\alpha}\Phi_0)(\xi) \\
[\partial_t (F_{h,\alpha}\Psi(\cdot, t|p))(\xi)]_{t=0} &= i\mu \mathbf{z}_{h,\alpha}(\xi) (F_{h,\alpha}\Phi_0)(\xi).
\end{align*}
$$

(4.4)

Finally, by taking the inverse of the discrete Fourier transform $F_{h,\alpha}$ on both sides of (4.3) we conclude that

$$
\Psi(x, t|p) = e^{-pt^2} \left(\cos(\mu t \sqrt{-\Delta_h})\Phi_0(x) + \frac{\sin(\mu t \sqrt{-\Delta_h})}{\sqrt{-\Delta_h}} iD_{h,\alpha}\Phi_0(x) \right)
$$

is a solution of (4.1).
4.2. Time-Changed DFP vs. Klein-Gordon. Let us turn again our attention to the time-changed DFP (3.1) on the space-time lattice \(\mathbb{R}^n_{h,\alpha} \times [0, \infty) \). We notice that on the momentum space \(\left(-\frac{\pi}{k}, \frac{\pi}{k}\right]^n \times [0, \infty) \), the equation (3.1) reads as

\[
\partial_t (\mathcal{F}_{h,\alpha} \Phi(\cdot, t))(\xi) = (i\mu \mathcal{Z}_{h,\alpha}(\xi) - \sigma^2 H t^{2H-1} d_h(\xi)^2) (\mathcal{F}_{h,\alpha} \Phi(\cdot, t))(\xi),
\]

(4.5)

(\mathcal{F}_{h,\alpha} \Phi(\cdot, t))(0)(\xi) = (\mathcal{F}_{h,\alpha} \Phi_0)(\xi),

upon the application of the discrete Fourier transform (2.5).

Considering now the exponentiation function \(\exp \left(i\mu \mathcal{Z}_{h,\alpha}(\xi) - \sigma^2 H t^{2H-1} d_h(\xi)^2 \right) \), we recall that

\[
\exp \left(i\mu \mathcal{Z}_{h,\alpha}(\xi) - \sigma^2 H t^{2H-1} d_h(\xi)^2 \right) = \exp \left(-\sigma^2 H t^{2H-1} d_h(\xi)^2 \right) \exp \left(i\mu \mathcal{Z}_{h,\alpha}(\xi) \right)
\]

results from the fact that \(\mathcal{Z}_{h,\alpha}(\xi) \) commutes with \(d_h(\xi)^2 \). Thus

\[
(\mathcal{F}_{h,\alpha} \Phi(\cdot, t))(\xi) = \exp \left(i\mu \mathcal{Z}_{h,\alpha}(\xi) - \sigma^2 H t^{2H-1} d_h(\xi)^2 \right) (\mathcal{F}_{h,\alpha} \Phi_0)(\xi)
\]

(4.7)

corresponds to the representation of the solution of the evolution equation (3.1) on the momentum space \(\left(-\frac{\pi}{k}, \frac{\pi}{k}\right]^n \times [0, \infty) \), since \((\mathcal{F}_{h,\alpha} \Phi(\cdot, 0))(\xi) = (\mathcal{F}_{h,\alpha} \Phi_0)(\xi) \) and

\[
\partial_t (\mathcal{F}_{h,\alpha} \Phi(\cdot, t))(\xi) = \exp \left(-\sigma^2 H t^{2H-1} d_h(\xi)^2 \right) \left[\partial_t \exp \left(i\mu \mathcal{Z}_{h,\alpha}(\xi) \right) (\mathcal{F}_{h,\alpha} \Phi_0)(\xi) + \right.
\]

\[
\left. \left[\partial_t \exp \left(-\sigma^2 H t^{2H-1} d_h(\xi)^2 \right) \right] \right) \exp \left(i\mu \mathcal{Z}_{h,\alpha}(\xi) \right) (\mathcal{F}_{h,\alpha} \Phi(\cdot, t))(\xi).
\]

So if we take the discrete convolution property (2.4) underlying to mapping property \(\mathcal{F}_{h,\alpha} : \mathcal{S}'(\mathbb{R}^n_{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{n,n}) \to C^\infty(\left(-\frac{\pi}{k}, \frac{\pi}{k}\right]^n; \mathbb{C} \otimes \mathcal{C}_{n,n}) \), we thus have proved the following:

Theorem 4.3. Let \(\Phi_0 \) be Clifford-valued function membership in \(\mathcal{S}(\mathbb{R}^n_{h,\alpha}; \mathbb{C} \otimes \mathcal{C}_{n,n}) \), and \(\mathbf{F}_H \) a kernel function defined by the integral formula

\[
\mathbf{F}_H(x, t|\mu, \sigma^2) = \frac{1}{(2\pi)^\frac{n}{2}} \int_{\left(-\frac{\pi}{k}, \frac{\pi}{k}\right]^n} \exp \left(-\frac{\sigma^2 \xi^2}{2} d_h(\xi)^2 \right) \exp \left(i\mu \mathcal{Z}_{h,\alpha}(\xi) \right) e^{-ix\cdot\xi} d\xi.
\]

Then we have the following:

(i) The ansatz

\[
\Phi(x, t) = \exp \left(i\mu D_{h,\alpha} + \frac{\sigma^2 t^{2H}}{2} \Delta_h \right) \Phi_0(x)
\]

solves the Dirac-Fokker-Planck equation (3.7) on the space-time lattice \(\mathbb{R}^n_{h,\alpha} \times [0, \infty) \).

(ii) \(\Phi(x, t) \) is uniquely determined by the discrete convolution representation

\[
(\mathbf{F}_H(\cdot, t|\mu, \sigma^2) \ast_{h,\alpha} \Phi_0)(x) = \sum_{y \in \mathbb{R}^n_{h,\alpha}} h^n \Phi_0(y) \mathbf{F}_H(x - y, t|\mu, \sigma^2).
\]
In order to obtain an interplay with the Klein-Gordon equation associated to the Cauchy problem (4.1), we would like to stress first that the product rule (4.6) allows also to recast the operational formula (4.8) as

$$\Phi(x, t) = \exp \left(\frac{\sigma^2 tH^2}{2} \Delta_h \right) \Psi(x, t), \quad \text{with} \quad \Psi(x, t) = \exp (i\mu t D_{h, \alpha}) \Phi_0(x)$$

so that

$$\Phi(x, t) = \sum_{y \in \mathbb{R}^n_{h, \alpha}} h^n \Psi(y, t) F_H(x - y, t|0, \sigma^2)$$

(4.9)

corresponds to an equivalent formulation for the convolution representation provided by Theorem 4.3. Essentially, that involves the discrete convolution between the solution \(\Psi(x, t|0) := \Psi(x, t)\) of (4.1) and the kernel function \(F_H(x, t|0, \sigma^2)\).

With \(F_H\), described as before, a closed formula for \(F_H(x, t|0, \sigma^2) = \exp \left(\frac{\sigma^2 t^2 H^2}{2} \Delta_h \right) \delta_h(x)\) may be easily obtained upon the replacement \(t \to \frac{2 \nu + \Delta_h}{2} \) on the right hand sides of (3.2) and (3.3) so that \(F_H(x - y, t|0, \sigma^2) = e^{-\frac{|x - y|^2}{2H^2}} N_H(x - y, t|\sigma^2)\), with

$$N_H(x - y, t|\sigma^2) =$$

$$= \frac{(2\pi\sigma^2)^{-\frac{n}{2}}}{h^n} \int_{(0, \infty)^n} \exp \left(-\sum_{j=1}^{n} \frac{(x_j - y_j)^2}{2H^2} \xi_j + \frac{(\xi \cdot \Delta_h)^2}{H^2} \right) \Theta \left(\xi; \frac{t^2 H^2}{2H^2} \right) d\xi.$$

(4.10)

Next, we will use the formula of the Laplace identity (A.13) involving the Lévy one-sided distribution \(L_\nu(u) = \frac{1}{\nu} \Psi_1 \left[\left(0, -\nu \right) \mid \frac{1}{u^\nu} \right] \) (see Appendix A.2) to relate the solutions of the time-changed Dirac-Fokker-Planck equation (3.1) with the solutions of semi-discrete Klein-Gordon equation (4.1).

Corollary 4.4. Let \(\Psi(x, t)\) be the solution of the time-changed DFP equation (3.1) provided by Theorem 4.3; \(\Psi(x, t|p)\) be the solution of the differential-difference Klein-Gordon equation (4.1) provided by Theorem 4.2.

Then, we have the following:

1. On the momentum space \((-\pi, \pi)^n \times [0, \infty),\) the solutions \(\Phi(x, t)\) and \(\Psi(x, t|p)\) are interrelated by the operational representation

$$\left(F_{h, \alpha} \Phi (\cdot, t) \right)(\xi) =$$

$$= \int_0^\infty \left(F_{h, \alpha} \Psi (\cdot, t|p) \right)(\xi) \Psi_1 \left[(0, -\nu) \mid \frac{1}{\nu^\nu} \right] d\nu \cdot \left(\frac{\sigma^2}{2pH d_h(\xi)} \right)^2 \frac{dp}{p}$$

(4.11)

2. On the space-time lattice \(\mathbb{R}^n_{h, \alpha} \times [0, \infty),\) the solutions \(\Phi(x, t)\) and \(\Psi(x, t|p)\) are interrelated by the discrete convolution representation

$$\Phi(x, t) = \sum_{y \in \mathbb{R}^n_{h, \alpha}} h^n \Psi_H(y, t) N_H(x - y, t|\sigma^2),$$

where \(N_H\) is the kernel function associated to the solutions of the time-changed Dirac-Fokker-Planck equation (3.1).
with

\[
\hat{\Psi}_H(y, t) = \int_0^\infty \psi(y, t|p) \, \psi_1 \left[(0, -H) \right| \frac{n\sigma^2}{h^2p^2} \right] \frac{dp}{p}.
\]

Proof. For the proof of statement (1), we recall that for the substitution \(s = \left(\frac{\sigma^2}{2} d_h(\xi)^2 \right)^{\frac{1}{2}} t^2 \) on both sides of (A.13), the sequence of identities

\[
\exp \left(-\frac{\sigma^2 t^2 d_h(\xi)^2}{2} \right) =
\]

\[
= \int_0^\infty e^{-u \left(\frac{\sigma^2}{2} d_h(\xi)^2 \right)^{\frac{1}{2}} t^2} \, \psi_1 \left[(0, -H) \right| \frac{1}{u^2} \right] \frac{du}{u}
\]

\[
= \int_0^\infty e^{-pt^2} \, \psi_1 \left[(0, -H) \right| \frac{\sigma^2}{2p^2 H^2 d_h(\xi)^2} \right] \frac{dp}{p}
\]
yield straightforwardly from the change of variable \(p = u \left(\frac{\sigma^2}{2} d_h(\xi)^2 \right)^{\frac{1}{2}} \).

Thus,

\[
(F_{h, \alpha})^2 \Phi(\cdot, t)(\xi) = \exp \left(-\frac{\sigma^2 t^2 d_h(\xi)^2}{2} \right) \exp (i\mu t z_{h, \alpha}(\xi)) \, (F_{h, \alpha} \Phi_0)(\xi)
\]

\[
= \int_0^\infty \exp(-pt^2) \exp(i\mu t z_{h, \alpha}(\xi)) \, \psi_1 \left[(0, -H) \right| \frac{\sigma^2}{2p^2 H^2 d_h(\xi)^2} \right] \frac{dp}{p}.\]

Now, from the combination of Lemma 4.2 with Proposition 4.2, we realize that \(\exp(-pt^2) \exp(i\mu t z_{h, \alpha}(\xi)) (F_{h, \alpha} \Phi_0)(\xi) \) equals to \((F_{h, \alpha} \psi(\cdot, t|p))(\xi) \) so that the previous integral identity becomes then

\[
(F_{h, \alpha}\Phi(\cdot, t))(\xi) = \int_0^\infty (F_{h, \alpha} \Phi(\cdot, t|p))(\xi) \, \psi_1 \left[(0, -H) \right| \frac{\sigma^2}{2p^2 H^2 d_h(\xi)^2} \right] \frac{dp}{p}.
\]

For the proof of (2), notice first that

\[
\Phi(x, t) = \sum_{y \in \mathbb{R}_{\geq 0, \alpha}} h^n e^{-\frac{\sigma^2}{2h^2} t^2} \psi(y, t) N_H(x - y, t|\sigma^2).
\]

Then, in the same order of ideas of the proof of statement (1), we employ the Laplace identity

\[
e^{-\frac{\sigma^2}{2h^2} t^2} = \int_0^\infty e^{-pt^2} \, \psi_1 \left[(0, -H) \right| \frac{n\sigma^2}{h^2p^2} \right] \frac{dp}{p}
\]
derived from (A.13) of Appendix A.2 to conclude that \(e^{-\frac{\sigma^2}{2h^2} t^2} \psi(y, t) \) equals to \(\hat{\Phi}_H(y, t) \), as desired. \(\square \)

4.3. Solution representation through generalized Wright functions. We have essentially used on the proof of Corollary 4.4 that the solution \(\Phi(x, t) \) can be represented as a discrete convolution between the kernel function H and the function

\[
e^{-\frac{\sigma^2}{2h^2} t^2} \psi(y, t) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-\frac{\sigma^2}{2h^2} t^2} \exp(i\mu t z_{h, \alpha}(\xi)) (F_{h, \alpha} \Phi_0)(\xi) e^{-iy \xi} \, d\xi.
\]
Bearing in mind the result obtained in Lemma 4.1, we know already from the framework developed in [12, Section 3] (see, in particular, [12, Theorem 3.1]) that the function $e^{-\frac{a^2 \xi^2}{2H}} \Psi(x,t)$ described as above may be reformulated as a discrete convolution involving the kernel functions

$$K_H^{(0)}(y,t|\mu,\sigma^2) = \frac{1}{(2\pi)^\frac{n}{2}} \int_{(-\frac{\pi}{2},\frac{\pi}{2})^n} e^{-\frac{a^2 \xi^2}{2H}} \cos(\mu t \sqrt{d_h(\xi)^2}) e^{-i y \cdot \xi} d\xi$$

$$K_H^{(1)}(y,t|\mu,\sigma^2) = \frac{1}{(2\pi)^\frac{n}{2}} \int_{(-\frac{\pi}{2},\frac{\pi}{2})^n} e^{-\frac{a^2 \xi^2}{2H}} \sin(\mu t \sqrt{d_h(\xi)^2}) e^{-i y \cdot \xi} d\xi.$$

That is,

$$e^{-\frac{a^2 \xi^2}{2H}} \Psi(y,t) = (K_H^{(0)}(\cdot,t|\mu,\sigma^2) *_{h,\alpha} \Phi_0)(y) + (K_H^{(1)}(\cdot,t|\mu,\sigma^2) *_{h,\alpha} iD_{h,\alpha} \Phi_0)(y)$$

$$= \sum_{x \in \mathbb{R}^n_{h,\alpha}} \Phi_0(x) K_H^{(0)}(y-x,t|\mu,\sigma^2) + \sum_{x \in \mathbb{R}^n_{h,\alpha}} iD_{h,\alpha} \Phi_0(x) K_H^{(1)}(y-x,t|\mu,\sigma^2).$$

To obtain analytic representations for $K_H^{(0)}$ and $K_H^{(1)}$ we are going to derive identities involving the generalized Wright functions with the aid of the Mellin framework developed in [12, Section 3] (see, in particular, [12, Theorem 3.1]).

First, define the auxiliary kernel function $W_H^{(\beta)}(y,\mu t|s,\frac{n \sigma^2}{h^2})$ via integral eq. (4.14):

$$W_H^{(\beta)}(y,\mu t|s,\frac{n \sigma^2}{h^2}) = \frac{1}{(2\pi)^\frac{n}{2}} \int_{(-\frac{\pi}{2},\frac{\pi}{2})^n} \Psi_1 \left[\Psi_1 \left(\frac{x+y}{\sqrt{2}}, \frac{\beta}{\sqrt{2}} \right) \left(\frac{n \sigma^2}{h^2} \right)^{-\frac{\beta}{2}} \left(\frac{\mu^2 t^2 d_h(\xi)^2}{4} \right)^{-\frac{\beta}{2}} e^{-iy \cdot \xi} d\xi. \right.$$

We note that from direct application of [20, Theorem 1] (see also subsection A.2 of Appendix A) the series expansion of Wright type Ψ_1 appearing on the integral (4.13) is uniformly convergent for values of H in the range $\frac{1}{2} \leq H < 1$ so that one can only interchange term-by-term of the series with the integral under such constraint. In particular, we note that the aforementioned series expansion:

- Is uniformly convergent for all $t \geq 0$ in case of $\frac{1}{2} < H < 1$;
- For $H = \frac{1}{2}$ we can only assure the uniformly convergence of the series of Ψ_1 type on the compact interval $0 \leq t \leq \sqrt{2}$ (equivalent to $|t| \leq \rho$, with $\rho = \left(\frac{1}{2}\right)^{\frac{1}{2}}$ whenever the parameter s appearing on Ψ_1 satisfies the constraint $\text{Re}(s) < 0$ (equivalent to $\text{Re}(\kappa) > \frac{1}{2}$, with $\kappa = (\beta + \frac{1}{2}) - (s + \beta)$).

Since we are interested on the description of the solutions of the DFP equation (3.1) the space-time lattice $\mathbb{R}^n_{h,\alpha} \times [0, \infty)$ depending upon the fractional parameter $0 < \alpha < \frac{1}{2}$, that justifies the introduction of the condition $\alpha + \frac{1}{2} \leq H < 1$ on the statement of the following theorem.
Theorem 4.5. Let $K_H^{(β)}$ resp. $W_H^{(β)}$ the kernel functions defined via eq. (4.13) resp. (4.14). In case where the Hurst parameter H satisfies the condition $α + \frac{1}{2} \leq H < 1$, we have that $W_H^{(β)}$ converges uniformly in the space-time lattice $\mathbb{R}^n_{h, α} \times [0, ∞)$.

Moreover, for $β = 0, 1$, the kernel functions $K_H^{(β)}$ admits the Mellin-Barnes representation formula

$$K_H^{(β)}(y, t|\mu, \sigma^2) =$$

(4.15)

\[
\frac{1}{2n} \int_{c-i\infty}^{c+i\infty} \frac{\mu^{\sqrt{n}}}{2^{\beta+1}H} W_H^{(β)} \left(y, \mu t \mid s, \frac{n \sigma^2}{h^2} \right) \left(\frac{n \sigma^2}{h^2} \right)^{-\frac{s}{2H}} t^{-s} d\mu.
\]

Proof. From the discussion taken previously, we have seen that the sufficient condition $α + \frac{1}{2} \leq H < 1$ assures the uniformly convergence of the auxiliar function $W_H^{(β)}$ defined via eq. (4.14). Thus, it remains to prove only the closed formula (4.15).

Firstly, we recall that in view of Lemma 4.1 and of eqs. (A.9) and (A.10) (see subsection A.2 of Appendix A), one can represent the Fourier multipliers $e^{-\frac{n \sigma^2}{h^2} t^2 H} \cos(\sqrt{\mu} t \sqrt{d_h(ξ)^2})$ and $e^{-\frac{n \sigma^2}{h^2} t^2 H} \sin(\sqrt{\mu} t \sqrt{d_h(ξ)^2})$ appearing on (4.13) as

$$e^{-\frac{n \sigma^2}{h^2} \sqrt{\mu} t^2 H} \cos(\sqrt{\mu} t \sqrt{d_h(ξ)^2}) =$$

(4.16)

\[
= \mu^{\sqrt{n}} e^{-\frac{n \sigma^2 H}{h^2}} 0Ψ \left[\left(\frac{1}{2}, 1 \right) \left| \frac{\mu^2 t^2 d_h(ξ)^2}{4} \right. \right]
\]

$$e^{-\frac{n \sigma^2}{h^2} \sqrt{\mu} t^2 H} \sin(\sqrt{\mu} t \sqrt{d_h(ξ)^2}) =$$

(4.17)

\[
= \frac{\mu^{\sqrt{n}}}{2} e^{-\frac{n \sigma^2 H}{h^2}} 0Ψ \left[\left(\frac{3}{2}, 1 \right) \left| -\frac{\mu^2 t^2 d_h(ξ)^2}{4} \right. \right].
\]

Thus, the computation of the kernel functions (4.13) may be reformulated by means of the compact formula ($β = 0, 1$)

(4.18)

\[
K_H^{(β)}(y, t|\mu, \sigma^2) =
\]

\[
\frac{1}{(2\pi)^{\beta}} \int_{\mathbb{R}^n_h} \frac{\mu^{\sqrt{n}}}{2^{\beta}} t^\beta \sqrt{\mu} e^{-\frac{n \sigma^2 H}{h^2}} 0Ψ \left[\left(\beta + \frac{1}{2}, 1 \right) \left| -\frac{\mu^2 t^2 d_h(ξ)^2}{4} \right. \right] e^{-iy \cdot ξ} dξ.
\]

At this stage one notice that the k-term $t^{\beta+2k} \exp \left(-\frac{n \sigma^2 t^2 H}{2} \right)$ appearing on the right hand sides of (4.16) and (4.17) satisfies the Mellin identity

(4.19) $\mathcal{M} \left\{ t^{\beta+2k} e^{-\frac{\mu^2 t^2 H}{2}} \right\} (s) = \frac{1}{2H} \left(\frac{n \sigma^2}{h^2} \right)^{-\frac{s+\beta}{2H}} \Gamma \left(\frac{s+\beta}{2H} + \frac{k}{H} \right).$
Subsequently, by substituting the k-term $t^{\beta+2k}e^{-\frac{a^{2}t^{2}H}{h^{2}}}$ appearing on

$$t^{\beta}e^{-\frac{a^{2}t^{2}H}{h^{2}}} \Psi_1 \left[(\beta + \frac{1}{2}, 1) \left| -\frac{\mu^2 t^2 h_b(\xi)^2}{4} \right. \right]$$

by the Mellin inverse of the right hand side of (4.19) (see eq. (A.2) of Appendix A.1) we obtain a Mellin-Barnes integral representation involving the Wright functions of type $1 \Psi_1$. Namely, by interchanging term-by-term of the series expansion with the complex integral over the fundamental strip $\text{Re}(s) = c$ we easily check from eq. (A.6) of Appendix A (see subsection A.2) that

$$t^{\beta}e^{-\frac{a^{2}t^{2}H}{h^{2}}} \Psi_1 \left[(\beta + \frac{1}{2}, 1) \left| -\frac{\mu^2 t^2 h_b(\xi)^2}{4} \right. \right] =$$

$$= \sum_{k=0}^{\infty} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma \left(\frac{s+\beta}{2H} + \frac{k}{H} \right) \frac{1}{k! \Gamma(\beta + \frac{1}{2} + k)} \frac{1}{2H} \left(\frac{n\sigma^2}{h^{2}} \right)^{-\frac{s+\beta}{2H} - \frac{k}{H}} ds.$$

Thereby, from the previous identity we recognize after a wise change of integration that the function $K_H^{(\beta)}(y, t|\mu, \sigma^2)$ defined via eq. (4.18) equals to (4.15), concluding in this way the proof of Theorem 4.5. \(\square\)

Appendix A. Fractional Calculus Background

We aim at presenting in this appendix a systematic account of basic properties and characteristics of generalized Wright functions (also known as Fox-Wright functions (cf. [22])) in interplay with the Mellin transform.

A.1. The Mellin transform. The well-known Mellin transform \mathcal{M} (cf. [3]) is defined for a locally integrable function f on $]0, \infty[$ by the integral

$$\mathcal{M}\{f(t)\}(s) = \int_{0}^{\infty} f(t)t^{s-1} dt, \quad s \in \mathbb{C}. \quad (A.1)$$

In order to provide the existence of the inverse \mathcal{M}^{-1} of (A.1) through the inversion formula

$$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \mathcal{M}\{f(t)\}(s) t^{-s} ds, \quad t > 0 & c = \text{Re}(s) \quad (A.2)$$

in such way that the contour integral is independent of the choice of the parameter c, one needs to restrict the domain of analyticity of the complex-valued function $\mathcal{M}\{f(t)\}(s)$ to the fundamental strip $-a < \text{Re}(s) < -b$ parallel to the imaginary axis $i\mathbb{R}$, whereby the parameters a and b are determined through the asymptotic constraint

$$f(t) = \begin{cases}
O(t^{-a-1}) & \text{if } t \to 0^+ \\
O(t^{-b-1}) & \text{if } t \to \infty
\end{cases}.$$
It is straightforward to see after a wise change of variable on the right hand side of (A.1), we infer that
\[
M\{t^\beta f(t)\}(s) = M\{f(t)\}(s + \beta), \quad \text{for} \quad \beta \in \mathbb{C}
\]
\[
M\{f(t^\gamma)\}(s) = \frac{1}{\gamma} (Mf) \left(\frac{s}{\gamma} \right), \quad \text{for} \quad \gamma \in \mathbb{C} \setminus \{0\}
\]
\[
M\{f(\kappa t)\}(s) = \kappa^{-s} (Mf)(s), \quad \text{for} \quad \kappa > 0.
\]

With the above sequence of operational identities, neatly amalgamated through the compact formula
\[
(A.3) \quad M\{t^\beta f(\kappa t^\gamma)\}(s) = \frac{1}{|\gamma|} \kappa^{-\frac{s}{\gamma}} M\{f\} \left(\frac{s + \beta}{\gamma} \right)
\]
carrying the parameters \(\beta \in \mathbb{C}, \gamma \in \mathbb{C} \setminus \{0\}\) and \(\kappa > 0\), there holds the Mellin convolution theorem
\[
(A.4) \quad M\{f \ast_{\mathcal{M}} g\}(s) = M\{f\}(s) M\{g\}(s)
\]
encoded by the convolution type integral (cf. [3, Theorem 3.])
\[
(A.5) \quad (f \ast_{\mathcal{M}} g)(t) := \int_0^\infty f \left(\frac{t}{p} \right) g(p) \frac{dp}{p}.
\]

We refer to [3, Section 4.] for additional properties associated to the Mellin convolution (A.5).

A.2. Generalized Wright Functions. Generalized Wright functions \(p \Psi_q\) are a rich class of analytic functions that include generalized hypergeometric functions \(p \, F_q\) and stable distributions (cf. [22] & [24, Chapter 3]). With the aim of amalgamate some the technical work required in subsections 4.2 and 4.3 we will take into account the definition of \(p \Psi_q\) in terms of series expansion
\[
(A.6) \quad p \Psi_q \left[\left(\frac{a_k, \alpha_k}{b_l, \beta_l} \right)_{1,p} \bigg| \lambda \right] = \sum_{m=0}^{\infty} \frac{\prod_{k=1}^{p} \Gamma(a_k + \alpha_k m)}{\prod_{l=1}^{q} \Gamma(b_l + \beta_l m)} \frac{\lambda^m}{m!},
\]
where \(\lambda \in \mathbb{C}, a_k, b_l \in \mathbb{C}\) and \(\alpha_k, \beta_l \in \mathbb{R} \setminus \{0\}\) \((k = 1, \ldots, p; l = 1, \ldots, q)\).

Here and elsewhere
\[
(A.7) \quad \Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt
\]
stands for the Eulerian representation for the Gamma function.

We note that in particular, that the trigonometric functions may be seen as particular cases of the Mittag-Leffler and Wright functions
\[
E_{\rho, \beta}(\lambda) = 1 \Psi_1 \left[\left(\frac{1, 1}{\beta, \rho} \right) \bigg| \lambda \right] \quad \text{resp.} \quad \phi(\rho, \beta; \lambda) = \eta \Psi_1 \left[\left(\beta, \rho \right) \bigg| \lambda \right].
\]

Namely, in view of (A.11) and on the Legendre’s duplication formula
\[
(A.8) \quad \Gamma(2s) = \frac{2^{2s-1}}{\sqrt{\pi}} \Gamma(s) \Gamma \left(s + \frac{1}{2} \right)
\]
one readily has
\[
(A.9) \quad \cos(\lambda) = 1 \Psi_1 \left[\left(\frac{1, 1}{1, 2} \right) \bigg| - \lambda^2 \right] = \sqrt{\pi} \eta \Psi_1 \left[\left(\frac{1}{2}, 1 \right) \bigg| \frac{- \lambda^2}{4} \right]
\]
\[\frac{\sin(\lambda)}{\lambda} = \Psi_1 \left[\frac{(1,1)}{(2,2)} \right] - \lambda^2 = \frac{\sqrt{\pi}}{2} \Psi_1 \left[\left(\frac{3}{2}, 1 \right) \right] - \frac{\lambda^2}{4}. \]

showing that \(\cos(t) \) and \(\frac{\sin(t)}{t} \) are spherical Bessel functions in disguise.

In the paper \[20\], Kilbas et al have checked for \(\alpha_k, \beta_l > 0 \) that \(\Psi_q \) admits the Mellin-Barnes type integral representation

\[\Psi_q \left[\frac{(a_k, \alpha_k)}{(b_l, \beta_l)}_1, q \right] (\lambda) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(s) \prod_{k=1}^{p} \Gamma(a_k - \alpha_k s)}{\prod_{i=1}^{q} \Gamma(b_i - \beta_l s)} (-\lambda)^{-s} \, ds \]

in a way that \(\Psi_q \) and the inverse of the Mellin transform (see eqs. \[A.1\] & \[A.2\]) are interrelated by the operational formula

\[\Psi_q \left[\frac{(a_k, \alpha_k)}{(b_l, \beta_l)}_1, q \right] (\lambda - t) = M^{-1} \left\{ \frac{\Gamma(s) \prod_{k=1}^{p} \Gamma(a_k - \alpha_k s)}{\prod_{i=1}^{q} \Gamma(b_i - \beta_l s)} \right\} (t). \]

This result may be summarized as follows: if intersection between the simple poles \(b_i = -m \) \((m \in \mathbb{N}_0) \) of \(\Gamma(s) \) and the simple poles \(\frac{\alpha_k + p}{\alpha_k} \) \((k = 1, \ldots, p; m \in \mathbb{N}_0) \) of \(\Gamma(a_k - \alpha_k s) \) \((k = 1, \ldots, p) \) satisfies the condition \(\frac{\alpha_k + m}{\alpha_k} \neq -m \), we have the following characterization:

1. In case of \(\sum_{l=1}^{q} \beta_l - \sum_{k=1}^{p} \alpha_k > -1 \), the series expansion \[A.6\] is absolutely convergent for all \(\lambda \in \mathbb{C} \).

2. In case of \(\sum_{l=1}^{q} \beta_l - \sum_{k=1}^{p} \alpha_k = -1 \), the series expansion \[A.6\] is absolutely convergent for all \(\rho \) and of \(|z| = \rho \), \(\text{Re}(\kappa) > \frac{1}{2} \), with

\[\rho = \frac{\prod_{l=1}^{q} |\beta_l|^{\beta_l}}{\prod_{k=1}^{p} |\alpha_k|^{\alpha_k}} \quad \text{and} \quad \kappa = \sum_{l=1}^{q} b_l - \sum_{k=1}^{p} a_k + \frac{p - q}{2}. \]

Other important classes of generalized Wright functions are the modified Bessel functions

\[I_{\nu}(u) = \left(\frac{u}{2} \right)^{\nu} \Psi_1 \left[\left(\nu + 1, 1 \right) \right] \left(\frac{u^2}{4} \right) \]

of order \(\nu \) and the one-sided Lévy distribution \(L_{\nu} \), which is represented through the Laplace identity

\[\exp(-s^\nu) = \int_0^\infty e^{-su} L_{\nu}(u) \, du, \quad 0 < \nu < 1. \]

For the later one we would like to emphasize that \(L_{\nu} \) may be seamlessly described in terms of the Wright functions \(\phi(\rho, \beta; \lambda) = \Psi_1 \left[\left(\beta, \rho \right) \right] (\lambda) \) \((-1 < \rho < 0) \)

(cf. \[13\] \[22\]). In concrete, the term-by-term integration of the \(k \)-terms of \(\phi(\rho, \beta; \lambda) \) provided by \[A.7\] yields

\[e^{-s^\nu} = \int_0^\infty e^{-su} \Psi_1 \left[\left(0, -\nu \right) \right] \left(\frac{1}{u^\nu} \right) \frac{du}{u}. \]
so that (A.12) may be reformulated in terms of the Mellin convolution (A.5). That is,
\[e^{-s \nu} = (f \ast_M g)(1), \]
with
\[f(t) = 0 \Psi_\nu \left[(0, -\nu) ; t^\nu \right] \]
and \(g(t) = e^{-st} \).

Moreover, \(L_\nu(u) \) is uniquely determined by
\[L_\nu(u) = \frac{1}{u} 0 \Psi_\nu \left[(0, -\nu) ; \frac{1}{u^\nu} \right]. \]

References

[1] Baaske, F., Bernstein, S., De Ridder, H., & Sommen, F. (2014). *On solutions of a discretized heat equation in discrete Clifford analysis*. Journal of Difference Equations and Applications, 20(2), 271-295.

[2] Borodin, A. N., & Salminen, P. (2012). *Handbook of Brownian motion-facts and formulae*. Birkhäuser.

[3] Butzer, P. L., & Jansche, S. (1997). *A direct approach to the Mellin transform*. Journal of Fourier Analysis and Applications, 3(4), 325-376.

[4] Cerejeiras, P., Kühler, U., Ku, M., & Sommen, F. (2014). *Discrete hardy spaces*. Journal of Fourier Analysis and Applications, 20(4), 715-750.

[5] Ciaurri, Ó., Gillespie, T. A., Roncal, L., Torrea, J. L., & Varona, J. L. (2017). *Harmonic analysis associated with a discrete Laplacian*. Journal d’Analyse Mathématique, 132(1), 109-131.

[6] De Bie, H., De Ridder, H., & Sommen, F. (2012). *Discrete Clifford analysis: the one-dimensional setting*. Complex Variables and Elliptic Equations, 57(7-8), 903-920.

[7] De Ridder H, De Schepper H, Kähler U, Sommen F. 2010. *Discrete function theory based on skew-Weyl relations*. Proc. Amer. Math. Soc. 138: 3241-3256.

[8] Faustino, N., Kähler, U., & Sommen, F. (2007). *Discrete Dirac operators in Clifford analysis*. Advances in Applied Clifford Algebras, 17(3), 451-467.

[9] Faustino, N. (2016). *Solutions for the Klein-Gordon and Dirac equations on the lattice based on Chebyshev polynomials*. Complex Analysis and Operator Theory, 10(2), 379-399.

[10] Faustino, R., & José, N. (2017). *A conformal group approach to the Dirac-Kähler system on the lattice*. Mathematical Methods in the Applied Sciences, 40(11), 4118-4127.

[11] Faustino, Nelson. *Hypercomplex Fock States for Discrete Electromagnetic Schrödinger Operators: A Bayesian Probability Perspective*. Applied Mathematics and Computation 315 (2017): 531-548.

[12] Faustino, N. (2019). *Relativistic Wave Equations on the lattice: an operational perspective*. Topics in Clifford Analysis, Springer Book series Trends in Mathematics (in production) arXiv preprint arXiv:1801.09534.

[13] Gorenflo, R., & Mainardi, F. (1998). *Fractional calculus and stable probability distributions*. Archives of Mechanics, 50(3), 377-388.

[14] Gürlebeck, K., & Sprössig, W. (1997). *Quaternionic and Clifford calculus for physicists and engineers*. Wiley.

[15] Hairer, M. (2005). *Ergodicity of stochastic differential equations driven by fractional Brownian motion*. The Annals of Probability, 33(2), 703-758.

[16] Hairer, M., Maas, J., & Weber, H. (2014). *Approximating rough stochastic PDEs*. Communications on Pure and Applied Mathematics, 67(5), 776-870.

[17] Hairer, M., & Matetski, K. (2018). *Discretisations of rough stochastic PDEs*. The Annals of Probability, 46(3), 1651-1709.

[18] Hahn, M., Kobayashi, K., & Umarov, S. (2011). *Fokker-Planck-Kolmogorov equations associated with time-changed fractional Brownian motion*. Proceedings of the American mathematical Society, 139(2), 691-705.

[19] Hahn, M., Ryvkina, J., Kobayashi, K., & Umarov, S. (2011). *On time-changed Gaussian processes and their associated Fokker-Planck-Kolmogorov equations*. Electronic Communications in Probability, 16, 150-164.
[20] Kilbas, A. A., Saigo, M., & Trujillo, J. J. (2002). On the generalized Wright function. Fractional Calculus and Applied Analysis, 5(4), 437–460.
[21] J. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories Phys. Rev. D 11(2) (1975), 395–408.
[22] Mainardi, F., & Pagnini, G. (2007). The role of the Fox-Wright functions in fractional subdiffusion of distributed order. Journal of Computational and Applied Mathematics, 207(2), 245-257.
[23] Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM review, 10(4), 422-437.
[24] Meerschaert, M. M., & Sikorskii, A. (2011). Stochastic models for fractional calculus (Vol. 43). Walter de Gruyter.
[25] Montvay, I., & Münster, G. (1997). Quantum fields on a lattice. Cambridge University Press.
[26] H.B. Nielsen, M. Ninomiya, A no-go theorem for regularizing chiral fermions Phys. Lett. B 105(2) (1981), 219–223.
[27] J. Rabin, Homology Theory of Lattice Fermion Doubling Nuc. Phys. B 201(2) (1982), 315 – 332.
[28] Ruzhansky, M., & Turunen, V. (2010). Pseudo-differential operators and symmetries: background analysis and advanced topics (Vol. 2). Springer Science & Business Media.
[29] Sushich, V. (2014). A discrete model of the Dirac-Kähler equation. Reports on Mathematical Physics, 73(1), 109-125.
[30] Tarasov, V. E. (2014). Large lattice fractional Fokker-Planck equation. Journal of Statistical Mechanics: Theory and Experiment, 2014(9), P09036.
[31] Vaz Jr, J., & da Rocha Jr, R. (2016). An introduction to Clifford algebras and spinors. Oxford University Press.
[32] Wilson, K. G. (1974). Confinement of quarks. Physical review D, 10(8), 2445.
[33] Kenneth G. Wilson Nobel Lecture. NobelPrize.org. Nobel Media AB 2019. Tue. 9 Jul 2019. https://www.nobelprize.org/prizes/physics/1982/wilson/lecture/
[34] Yor, M. (1980). Loi de l’indice du lacet brownien, et distribution de Hartman-Watson. Probability Theory and Related Fields, 53(1), 71-95.

CMCC, Universidade Federal do ABC, 09210–580, Santo André, SP, Brazil.
E-mail address: nelson.faustino@ufabc.edu.br | nelson.faustino@gmail.com