Cobalt–nickel layered double hydroxide on hollow Co$_3$S$_4$/CuS derived from ZIF-67 for efficient overall water splitting

Ge Li, Ping Wang, Chenyu Li, Zhao Fang, Miao He, Weiwei Wang, Xilin Yuan, Huan Li, Pangen Li and Zhenxing Li
State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, People’s Republic of China

ABSTRACT
Electrochemical water splitting is one of the most efficient strategies to generate clean energy H$_2$. Herein, a novel hollow Co$_3$S$_4$/CuS@CoNi-LDH nanocomposite was designed. This hollow Co$_3$S$_4$/CuS@CoNi-LDH achieved OER overpotential of 220 mV, HER overpotential of 136 mV, respectively, at the current density of 10 mA cm$^{-2}$. Notably, the hollow Co$_3$S$_4$/CuS@CoNi-LDH serving as both anode and cathode is assembled into a two-electrode water splitting device, and the potential of no more than 1.74 V is required to achieve the overall water splitting efficiency of 10 mA cm$^{-2}$. This work provides a promising bifunctional catalyst for overall electrochemical water splitting.

IMPACT STATEMENT
The hollow Co$_3$S$_4$/CuS@CoNi-LDH is prepared by using ZIF-67 as a template and precursor, and the nanosheets are grown on the surface of Co$_3$S$_4$/CuS to form a unique heterostructure electrocatalytic catalyst.

1. Introduction
Due to the shortage of energy supply and environmental pressures, it is urgent to develop a new type of clean renewable energy [1–3]. Hydrogen (H$_2$), as a typical new, clean, efficient and renewable energy with high calorific value, has aroused extensive attention in the preparation process [4–7]. The electrochemical methods of water electrolysis offer a sustainable solution for the production of high-purity H$_2$, and the efficient electrocatalyst is required to facilitate the sluggish kinetics of the reaction [8–13]. At present, Pt/C, Ir and Ru precious metal oxide catalysts are ahead of other electrocatalysts in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively [14–18]. However, the high price and low reserve prevent them from being widely used [19,20]. Therefore, more and more researchers have made tremendous research efforts to prepare an inexpensive and highly active catalyst [21–24].

Metal–organic framework (MOF) catalysts are constructed by coordination between organic ligands and metal ions/clusters [25]. Materials derived from MOFs generally have the advantages of high electrochemical activity and large specific surface area, which can be used in the design of high-catalytically active electrochemical catalysts [26–29]. For instance, Huo et al. designed a type of hierarchical Fe–Ni LDH/MOF electrocatalyst through in-situ pseudomorphic transformation from heterometallic MOFs [30]. Also, Li et al. reported an electrocatalyst with Co@Ir core–shell nanoparticles derived from MOF [31]. However, the low efficiency of OER limits its application in electrocatalytic water splitting [32]. Therefore, it is of great significance to develop a transition metal-based catalyst with higher efficiency for both HER and OER in alkaline media. The combination of MOF derivatives and layered double hydroxide (LDH) with high OER activity can meet this requirement [33].

Herein, we synthesized a hollow Co$_3$S$_4$/CuS via using ZIF-67 as a template and precursor, and then the cobalt–nickel layered double hydroxide (CoNi-LDH) was in situ grown on the hollow Co$_3$S$_4$/CuS to obtain the
dual-functional catalyst for efficient overall water splitting. Compared with monometallic sulfides, bimetallic sulfides have higher electrical conductivity, and the electronic synergy of metal ions increases their reactivity. In addition, the Co$_3$S$_4$/CuS material after cation exchange shows that it is rougher, which is more conducive to the growth of nanosheets. It can be seen from the SEM that more CoNi-LDH grown on Co$_3$S$_4$/CuS than that supported on Co$_3$S$_4$. The interface interaction generated is stronger, and the more active sites are generated, so the catalytic activity can be significantly improved. Thus, in Co$_3$S$_4$/CuS@CoNi-LDH, the Co$_3$S$_4$/CuS shows high catalytic activity on HER, while the CoNi-LDH exhibits excellent catalytic performance on OER. The hollow Co$_3$S$_4$/CuS@CoNi-LDH achieved OER overpotential of 220 mV, HER overpotential of 136 mV, respectively, at the current density of 10 mA cm$^{-2}$. Moreover, the Co$_3$S$_4$/CuS@CoNi-LDH showed outstanding electrochemical stability in 50 h. Finally, the hollow Co$_3$S$_4$/CuS@CoNi-LDH catalysts serving as both anode and cathode are assembled into a two-electrode water splitting device, which delivered a current density of 10 mA cm$^{-2}$ with the cell voltage no more than 1.74 V.

2. Materials preparation

The preparation of the hollow Co$_3$S$_4$/CuS@CoNi-LDH is schematically demonstrated in Figure S1. First, the ZIF-67 nanoparticles were synthesized using cobalt ions and 2-methylimidazole. In TAA solution at 120°C, ZIF-67 nanoparticles were synthesized using cobalt ions is schematically demonstrated in Figure S1. First, the simulated pattern (CCDC deposition No.671073), XRD pattern of the synthesized ZIF-67 agrees well with the presence of Ni element proves that CoNi-LDH grows in the entire hollow structure of Co$_3$S$_4$/CuS heterostructure. The morphology and elements mapping of Co$_3$S$_4$, Co$_3$S$_4$/CuS and Co$_3$S$_4$/CuS@CoNi-LDH are shown in Figures S2–S4. The SEM and TEM images of the Co$_3$S$_4$/CuS@CoNi-LDH are shown in Figure S5–S7.

The X-ray diffraction (XRD) measurement was performed on the Co$_3$S$_4$, Co$_3$S$_4$/CuS and Co$_3$S$_4$/CuS@CoNi-LDH. As well seen, the XRD pattern of the synthesized ZIF-67 agrees well with the simulated pattern (CCDC deposition No.671073), confirming that the ZIF-67 MOFs have been synthesized successfully with high purity in Figure S8. The representative diffraction peaks located at 16.1°, 31.3°, 47.2° and 55.1° in the XRD pattern of Co$_3$S$_4$ in Figure 2(a) are indexed to (111), (311), (422) and (440) planes, respectively [37]. After cation exchange, a diffraction peak of CuS appears at 29.3°, corresponding to the (102) plane [38]. In the Co$_3$S$_4$/CuS@CoNi-LDH, the diffraction peak at 31.3° of Co$_3$S$_4$ is split into 29.3° and 32.9° corresponding to the (006) planes of CuS, respectively. When the CoNi-LDH is grown, the diffraction peaks appear at 11.6° and 60.9°, which is corresponding to the (003) and (110) planes of CoNi-LDH [39]. The XRD results state the successful synthesis of Co$_3$S$_4$/CuS@CoNi-LDH.

To further demonstrate the heterostructure in Co$_3$S$_4$/CuS@CoNi-LDH, the Fourier transform infrared (FTIR) spectra of Co$_3$S$_4$, Co$_3$S$_4$/CuS, Co$_3$S$_4$/CoNi-LDH and Co$_3$S$_4$/CuS@CoNi-LDH were obtained, as shown in Figure 2(b). In Co$_3$S$_4$, the peak at 1092 cm$^{-1}$ is indexed to
the vibration of the Co–S bond [40]. Compared to Co$_3$S$_4$, Co$_3$S$_4$/CuS and Co$_3$S$_4$/CuS@CoNi-LDH show an obvious blue shift from 1092 cm$^{-1}$ to 1149 cm$^{-1}$. This shift of the peak position in Co$_3$S$_4$/CuS and Co$_3$S$_4$/CuS@CoNi-LDH is due to the introduction of Cu, where part of S in Co$_3$S$_4$ is bound to Cu in the interface of Co$_3$S$_4$ and CuS, indicating a strong electronic interaction between Co$_3$S$_4$ and CuS. In Co$_3$S$_4$/CuS and Co$_3$S$_4$/CuS@CoNi-LDH, the peak position of Cu–S bond has a clear red shift from 467 cm$^{-1}$ to 430 cm$^{-1}$ compared with the Cu–S bond of CuS in the previous literature [41], which suggests that the Co$_3$S$_4$/CuS heterojunction results in a strong interaction between Co$_3$S$_4$ and CuS. For Co$_3$S$_4$@CoNi-LDH and Co$_3$S$_4$/CuS@CoNi-LDH, two peaks at 490 and 559 cm$^{-1}$ are assigned to Ni–O and Co–O bond [42,43], respectively. Similarly, Raman spectra of Co$_3$S$_4$,

Figure 1. SEM images of (a) ZIF-67, (b) Co$_3$S$_4$, (c) Co$_3$S$_4$/CuS, (d) Co$_3$S$_4$/CuS@CoNi-LDH (insets of (b–d) are the corresponding TEM images). (e) HRTEM images and (f) SAED pattern of a Co$_3$S$_4$/CuS@CoNi-LDH. (g) HAADF-STEM and elemental mapping images for S, Co, Ni and Cu of a Co$_3$S$_4$/CuS@CoNi-LDH.
Figure 2. (a) XRD, (b) FTIR, (c) Raman and (i) N₂ adsorption–desorption curves of Co₃S₄, Co₃S₄/CuS, Co₃S₄@CoNi-LDH and Co₃S₄/CuS@CoNi-LDH. (d) XPS survey spectra of Co₃S₄/CuS@CoNi-LDH. The XPS spectra of (e) Cu 2p, (f) S 2p, (g) Ni 2p and (h) Co 2p.

Co₃S₄/CuS, Co₃S₄@CoNi-LDH and Co₃S₄/CuS@CoNi-LDH are shown in Figure 3(c). In Co₃S₄, the peaks at 498 cm⁻¹ is corresponding to the F₂g of vibration mode of Co₃S₄ [44]. Interestingly, the peaks have obvious red shifts at Co₃S₄/CuS and Co₃S₄/CuS@CoNi-LDH. In Co₃S₄/CuS, the peak shifts from 498 cm⁻¹ to 463 cm⁻¹ indicating that the heterojunction is formed between Co₃S₄ and CuS, which is consistent with the FTIR result. Similar to Co₃S₄/CuS, the Co–S peak in Co₃S₄/CuS@CoNi-LDH has a red shift from 498 cm⁻¹ to 423 cm⁻¹. In Co₃S₄/CuS and Co₃S₄/CuS@CoNi-LDH, the peak at 251 cm⁻¹ is assigned to Cu–S, and the peak has an obvious red shift from 266 cm⁻¹ to 251 cm⁻¹ compared to the previous literature [45]. The peaks at 627 and 1518 cm⁻¹ are attributed to the Co–O stretching and two-magnon (2M) mode of the Ni–O [46,47], respectively, in CoNi-LDH.

The element composition and surface chemical environment of Co₃S₄/CuS@CoNi-LDH was also studied via the X-ray photoelectron spectroscopy (XPS) analysis. The XPS survey spectrum (Figure 2d) shows the presence of Cu, S, Ni, and Co as the main components of Co₃S₄/CuS@CoNi-LDH. The valence states of Cu in Figure 2(e) and Figure S11 are +1 and +2, indicating that the Cu ions successfully exchanged the Co ions [48]. The binding energy of Cu 2p in Co₃S₄/CuS (Figure S11) and Co₃S₄/CuS@CoNi-LDH (Figure 2e) is lower than Cu 2p of CuS in the previous literature [49], which is due to the electron transfer from Co₃S₄ to CuS in the interface of Co₃S₄/CuS. In the high-resolution XPS spectrum (Figure 2f) of S 2p, the weak peaks at 161.8 and 163.2 eV are S²⁻, demonstrating the formation of metal sulfides, and the high-energy peak position around 168.6 eV can be assigned to the sulfate groups [50]. Compared with
Co$_3$S$_4$ (168.2, 162.4 and 161.3 eV), the binding energies of S in Co$_3$S$_4$/CuS (168.6, 162.9 and 161.6 eV) are higher, which is due to the formation of Co$_3$S$_4$/CuS heterojunctions. The Ni 2p regions are analyzed as Ni 2p$_{1/2}$ (874.2 eV) and 2p$_{3/2}$ (856.4 eV) in Figures 2(g) and S10, proving the existence of CoNi-LDH [51]. The high-resolution spectra of Co 2p in Figure 2(h) and S9-S11 show that the valence states of Co in all samples are +2 and +3, which are same from those in Co$_3$S$_4$, further indicating the formation of Co$_3$S$_4$ [52]. It is worth noting that the binding energy of Co (798.1 and 796.8 eV) in Co$_3$S$_4$/CuS is higher than that in Co$_3$S$_4$ (797.8 and 794.7 eV), suggesting that there is the electron transfer from Co$_3$S$_4$ to CuS in the interface of Co$_3$S$_4$ and CuS. Based on the above experimental results, the Co$_3$S$_4$/CuS heterostructure is formed in the Co$_3$S$_4$/CuS@CoNi-LDH. Elemental compositions of Catalysts are determined by XPS in Table S1.

The N$_2$ adsorption–desorption isotherm (Figure 2i) was carried out, and the obtained results are listed in Table S2. The specific surface area size relationship is as follows: Co$_3$S$_4$/CuS@CoNi-LDH (258.10 m2 g$^{-1}$) > Co$_3$S$_4$/CoNi-LDH (183.71 m2 g$^{-1}$) > Co$_3$S$_4$/CuS (165.55 m2 g$^{-1}$) > Co$_3$S$_4$ (150.55 m2 g$^{-1}$). The specific surface area of Co$_3$S$_4$/CuS/CoNi-LDH and Co$_3$S$_4$/CoNi-LDH is slightly larger than that of Co$_3$S$_4$/CuS and Co$_3$S$_4$, indicating that the specific surface area is enlarged after loading LDH. Among them, the largest specific surface area of Co$_3$S$_4$/CuS@CoNi-LDH contributes to the electrochemical performance due to its more active sites and faster electrolyte diffusion. From the
pore size distribution in Figure S12, indicating that they are all mesoporous structure.

The OER activity of Co3S4/CuS@CoNi-LDH was investigated in 1 M potassium hydroxide (KOH). Figure 3(a) shows the linear sweep voltammetry (LSV) curves of Co3S4/CuS@CoNi-LDH with IR compensation, which exhibits a low overpotential of 220 mV at the current density of 10 mA cm\(^{-2}\). The comparative samples overpotential are shown in Table S3. Besides, Co3S4/CuS@CoNi-LDH shows better OER performance than the state-of-the-art RuO2. In addition to this, it can be observed that the LDH-supported catalyst is more active than the unsupported one. It is speculated that LDH provides more OH\(^-\) to participate in the OER reaction. Figure 3(b) shows the overpotential comparison of Co3S4/CuS@CoNi-LDH and the control sample. It can be seen that Co3S4/CuS@CoNi-LDH has a relatively low OER overpotential. The Co3S4/CuS@CoNi-LDH has a lower Tafel slope of 90.78 mV dec\(^{-1}\) in OER (Figure 3c), which is lower than that of the state-of-the-art RuO2 catalyst, revealing the higher OER rate and favorable kinetic of it. The turnover frequency (TOF) can reflect the intrinsic activity of the catalyst, and it can be found that the catalytic activity of Co3S4/CuS@CoNi-LDH is higher than that of other samples in Figure 3(d). Impressively, the Co3S4/CuS@CoNi-LDH exhibits superior electrocatalytic performance over other previously reported CoNi-based catalysts (Figure 3e).

Electrochemical impedance spectroscopy (EIS) measurements are shown in Figure 3(f). The EIS data are all fitted by an equivalent circuit (inset of Figure 3f), consisting of a resistor (R1) in series with a parallel combination of a resistor (R2) and a constant-phase element [53]. The lower R2 value corresponds to the faster reaction rates. The Co3S4/CuS@CoNi-LDH in OER shows the smallest R2, which is consistent with the low overpotential and small Tafel slope in the above analysis. The resulting R2 values are shown in Table S4. Figure 3(g) shows that Co3S4/CuS@CoNi-LDH maintains a current density of 10 mA cm\(^{-2}\) for at least 50 h, the overpotential only changed slightly by 1.8%. As a comparison, the overpotential of RuO2, Co3S4, Co3S4/CuS, and Co3S4@CoNi-LDH (Figure S13–S16) at the current density of 10 mA cm\(^{-2}\) changed by 10.9%, 1.8%, 13.6% and 1.7%, respectively. It is worthwhile noting that the Co3S4/CuS@CoNi-LDH shows outstanding catalytic stability, and the high catalytic activity is still maintained even after 50 h of continuous operation. The cyclic voltammetric (CV) scans with different rates were performed to determine the double-layer capacitance \(C_{dl}\), which can be used to estimate the ECSA and the corresponding intrinsic activity [54]. The CV curves were measured in N\(_2\)-saturated 1 M KOH in Figure S17, and \(C_{dl}\) calculated from CV is shown in Figure S18. The \(C_{dl}\) value of Co3S4/CuS@CoNi-LDH is much higher than that of other catalysts and RuO2, further indicating that Co3S4/CuS@CoNi-LDH can expose more catalytical active site. The durability of the Co3S4/CuS@CoNi-LDH after the OER test was confirmed by TEM and XRD (Figures S19 and S20), and no prominent change was found.

The electrocatalytic HER performance of each material was also investigated in Figure 4. Figure 4(a) shows the LSV curves of samples with IR compensation, which shows that the Co3S4/CuS@CoNi-LDH has high HER activity. The overpotential of Co3S4/CuS@CoNi-LDH is 136 mV at a current density of 10 mA cm\(^{-1}\), which is slightly higher than the commercial Pt/C and lower than other comparative sample in Figure 4(b) and Table S5. Therefore, the enhanced activity of Co3S4/CuS@CoNi-LDH is related to the heterostructure of Co3S4/CuS. To study the kinetic activity of each catalyst, the Tafel slope curve of each catalyst is plotted in Figure 4(c). The Tafel slope of Co3S4/CuS@CoNi-LDH in HER is 126.3 mV dec\(^{-1}\), which is slightly larger than the commercial Pt/C, but smaller than Co3S4/CuS, Co3S4@CoNi-LDH and Co3S4, consistent with the results measured above. The TOF of Co3S4/CuS@CoNi-LDH is higher than that of other samples in Figure 4(d). Moreover, Co3S4/CuS@CoNi-LDH exhibits superior electrocatalytic HER performance over other previously reported CoNi-based catalysts in Figure 4(e). Similarly, the catalyst kinetics at the electrode interface was investigated by EIS measurements in Figure 4(f). The order of R2 values obtained in HER indicates that the Co3S4/CuS@CoNi-LDH has a more optimized charge transfer ability than other catalysts, and the resulting R2 values are shown in Table S6. Figure 4(g) shows that Co3S4/CuS@CoNi-LDH maintains a current density of 10 mA cm\(^{-2}\) for at least 50 h, and the overpotential only changed slightly by 1.8%. As a comparison, in Figures S22–S24, the potentials of Co3S4/CuS, Co3S4, and Co3S4@CoNi-LDH at 10 mA cm\(^{-2}\) changed by 5.0%, 3.2%, and 3.8%, respectively. After 35 h, the potential of Pt/C decreased sharply by 23.0% in Figure S21. Therefore, the above experimental results prove the excellent stability of the Co3S4/CuS@CoNi-LDH as a water electrolysis catalyst. As shown in Figure S25, the CV curves in N\(_2\)-saturated 1 M KOH. The results of \(C_{dl}\) calculated by CV are shown in Figure S26. The results of \(C_{dl}\) indicate the Co3S4/CuS@CoNi-LDH has higher ECSA and more catalytical active sites. The durability of the Co3S4/CuS@CoNi-LDH after the HER test was confirmed by TEM and XRD (Figures S27 and S28), and no prominent change was found.
Inspired by the excellent electrocatalytic properties of HER and OER, the Co$_3$S$_4$/CuS@CoNi-LDH serves as anode and cathode to prepare electrolyzers for overall water splitting in an alkaline solution. As shown in Figure 5(c), the dual-functional Co$_3$S$_4$/CuS@CoNi-LDH and Co$_3$S$_4$/CoNi-LDH achieved a current density of 10 mA cm$^{-2}$ at potentials of 1.74 and 1.84 V, respectively, which is lower than the overall hydrolysis potential (1.88 V) of RuO$_2$|Pt/C. The calculated potential of total hydrolysis and the actual measurement are shown in Figure 5(d). The overall hydrolysis potential calculated based on HER and OER is slightly lower than the actual measured. In addition to the high catalytic efficiency, the Co$_3$S$_4$/CuS@CoNi-LDH|Co$_3$S$_4$/CuS@CoNi-LDH was tested at 10 mA cm$^{-2}$ for 50 h, only a weak potential decay was observed, and the potential can maintain 99.9%, which further proves the durability. In Figures S29 and S30, the overall water splitting stability of Co$_3$S$_4$/CoNi-LDH|Co$_3$S$_4$/CoNi-LDH and RuO$_2$|Pt/C is compared. After 50 h, the Co$_3$S$_4$/CoNi-LDH|Co$_3$S$_4$/CoNi-LDH and RuO$_2$|Pt/C remain at 89.5% and 90.0% of their original values, respectively. To realize the efficient utilization of green resources, the assembled electrolyzer is driven by solar cells. Figure 5(a)
Figure 5. (a) Scheme of water-splitting device powered by a solar panel. (b) Real photo of solar panel measuring total hydrolysis. (c) The catalytic performance of the RuO$_2$/|Pt/C, Co$_3$S$_4$/CuS@CoNi-LDH|Co$_3$S$_4$/CuS@CoNi-LDH, Co$_3$S$_4$/CoNi-LDH|Co$_3$S$_4$ @CoNi-LDH. (d) Comparison of the potential of achieving a current density of 10 mA cm$^{-2}$. (e) Total hydrolytic stability of Co$_3$S$_4$/CuS@CoNi-LDH|Co$_3$S$_4$/CuS@CoNi-LDH for 50 h.

is a schematic diagram of overall hydrolysis under the driving conditions of solar panels. When the assembled cell was exposed to sunlight, bubbles were generated at both the cathode and anode of the two-electrode system in Figure 5(b). The potential of the solar panel was measured by the voltmeter in Figure 5S1, the solar panel produced a potential of 1.97V. And the attached video shows the overall water splitting dynamics and the bubble generation and accumulation process driven by the solar panel, proving that the Co$_3$S$_4$/CuS@CoNi-LDH has excellent bifunctional catalytic performance.

4. Conclusion

The hollow Co$_3$S$_4$/CuS@CoNi-LDH is prepared by using ZIF-67 as a template and precursor, and the CoNi-LDH nanosheets are uniformly grown on the surface of hollow Co$_3$S$_4$/CuS to form a unique heterostructure electrocatalytic catalyst. The hollow Co$_3$S$_4$/CuS@CoNi-LDH achieved OER overpotential of 220 mV, HER overpotential of 136 mV, respectively, at the current density of 10 mA cm$^{-2}$. The excellent OER and HER activities can be attributed to the abundant active sites from hollow structures and heterojunctions. The hollow structure can
provide a larger surface area, exposing more catalytical active sites, and the heterostructure improves the structural stability, and the synergistic effect of the bimetal sulfides increases the catalytical activity. This work opens a novel avenue for designing the bifunctional catalyst for overall electrochemical water splitting.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
We gratefully acknowledge the financial support from the National Key Research and Development Program of China (grant number 2021YFB4000405) and National Nature Science Foundation of China (grant number 22122113).

References
[1] Song H, Yu J, Tang Z, et al. Halogen–doped carbon dots on amorphous cobalt phosphate as robust electrocatalysts for overall water splitting. Adv Energy Mater. 2022;12:2102573.
[2] Wen S, Chen G, Chen W, et al. Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities. J Mater Chem A. 2021;9:9918–9926.
[3] Edalati K, Wang Q, Eguchi H, et al. Impact of TiO2–II phase stabilized in anatase matrix by high-pressure torsion on electrocatalytic hydrogen production. Mater Res Lett. 2019;7:334–339.
[4] Feng L, Li S, He D, et al. Heterostructured VN/Mo2C nanoparticles as highly efficient pH-universal electrocatalysts toward the hydrogen evolution reaction. ACS Sustain Chem Eng. 2021;9:15202–15211.
[5] Li Z, Zhang X, Kang Y, et al. Interface engineering of Co–LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv Sci. 2021;8:2002631.
[6] Wu H, Lu S, Yang B. Carbon-dot-enhanced electrocatalytic hydrogen evolution. Acc Mater Res. 2022;3:319–330.
[7] Zhou Z, Kong Y, Tan H, et al. Cation–vacancy–enriched nickel phosphate for efficient electrocatalysis of hydrogen peroxides. Adv Mater. 2022;34:2106541.
[8] Zeng X, Cai Z, Zhang C, et al. Novel NiFe-LDH@Ni-MOF/NF heterostructured electrocatalysts for efficient oxygen evolution. Mater Res Lett. 2022;10:88–96.
[9] Zhang T, Yang K, Wang C, et al. Nanometric Ni5P4 clusters nested on NiCo3O4 for efficient hydrogen production via alkaline water electrolysis. Adv Energy Mater. 2018;8:1801690.
[10] Kim HJ, Kim HY, Joo J, et al. Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond. J Mater Chem A. 2021;10:50–88.
[11] Luo D, Zhou B, Li Z, et al. Biomimetic organization of a ruthenium-doped collagen-based carbon scaffold for hydrogen evolution. J Mater Chem A. 2018;6:2311–2317.
[12] Chen J, Long Q, Xiao K, et al. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci Bull. 2021;66:1063–1072.
[13] Jia X, Zhang X, Zhao J, et al. Ultrafine monolayer co-containing layered double hydroxide nanosheets for water oxidation. J Energy Chem. 2019;34:57–63.
[14] Talib SH, Lu Z, Yu X, et al. Theoretical inspection of M1/PMA single-atom electrocatalyst: ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 2021;11:8929–8941.
[15] Najafi L, Oropesa-Nuñez R, Bellani S, et al. Topochemical transformation of two-dimensional VS2 into metallic nonlayered VO2 for water splitting reactions in acidic and alkaline media. ACS Nano. 2022;16:351–367.
[16] Li Z, Yu C, Wen Y, et al. Mesoporous hollow Cu–Ni alloy nanocage from core–shell Cu@Ni nanocube for efficient hydrogen evolution reaction. ACS Catal. 2019;9:5084–5095.
[17] Boppella R, Park J, Lee H, et al. Hierarchically structured bifunctional electrocatalysts of stacked core–shell CoS1-xPx heterostructure nanosheets for overall water splitting. Small Methods. 2020;4:2000043.
[18] Zhang X, Zhao Y, Zhao Y, et al. A simple synthetic strategy toward defect–rich porous monolayer NiFe–layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater. 2019;9:1900881.
[19] Wang Y, Jiao Y, Yan H, et al. Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting. Angew Chem Int Ed. 2022;61:e202116233 (1–9).
[20] Kang S, Gao G, Xie X, et al. Synthesis of surfactant-free Cu–Pt dendritic heterostructures with highly electrocatalytic perform. Mater Res Lett. 2016;4:212–218.
[21] Li Z, Yu C, Kang Y, et al. Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction. Nat Sci Rev. 2021;8:nwaa204.
[22] Wu K-H, Liu Y, Tan X, et al. Regulating electron transfer over asymmetric low-spin Co(II) for highly selective electrocatalysis. Chem Catalysis. 2022;2:372–385.
[23] Zhao S, Yang Y, Tang Z. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew Chem Int Ed. 2022;6:61.
[24] Wen Y, Li R, Liu J, et al. A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance. J Colloid Interface Sci. 2021;604:239–247.
[25] Zhao S, Tan C, He C-T, et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat Energy. 2020;5:881–890.
[26] Raja DS, Chahu X-F, Lu S-Y. In situ grown bimetallic MOF–based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultra-stability at high current densities. Adv Energy Mater. 2018;8:1801065.
[27] Wen Y, Wei Z, Ma C, et al. MXene boosted CoNi-ZIF-67 as highly efficient electrocatalysts for oxygen evolution. Nanomaterials. 2019;9:775.
[28] Dhakshinamoorthy A, Garcia H. Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem Soc Rev. 2012;41:5262.
[29] Li Z, Hu M, Liu J, et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of...
phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022;15:1983–1992.

[30] Huo J, Wang Y, Yan L, et al. In situ semi-transformation from heterometallic MOFs to Fe–Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale. 2020;12:14514–14523.

[31] Li D, Zong Z, Tang Z, et al. Total water splitting catalyzed by Co@Ir core–shell nanoparticles encapsulated in nitrogen-doped porous carbon derived from metal–organic frameworks. ACS Sustain Chem Eng. 2018;6:5105–5114.

[32] Zhao W, Peng C, Kuang Z, et al. Na⁺-induced in situ reconstitution of metal phosphate enabling efficient electrochemical water oxidation in neutral and alkaline media. Chem Eng J. 2020;398:125537.

[33] Liang Q, Chen J, Wang F, et al. Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev. 2020;398:125537.

[34] Fang Y, Luan D, Chen Y, et al. Synthesis of copper–substituted CoS2@Cu4S double–shelled nanoboxes by sequential Ion exchange for efficient sodium storage. Angew Chem Int Ed. 2020;59:2644–2648.

[35] Chen T, Zhang Z, Cheng B, et al. Self-Template formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J Am Chem Soc. 2017;139:12710–12715.

[36] Wei D, Zhang Y, Zhu X, et al. CNT/cO3S4@NiCo LDH ternary nanocomposites as battery-type electrode materials for hybrid supercapacitors. J Alloys Compd. 2020;824:153937.

[37] Gao M, Le K, Du W, et al. Enhanced supercapacitive performance of the CoFe2O4 /CoFe2S4 composite nanoflake array induced by surface sulfidation. New J Chem. 2019;43:13491–13498.

[38] Zhu J, Peng X, Nie W, et al. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosens Bioelectron. 2019;141:111450.

[39] Valdez R, Grotjahn DB, Smith DK, et al. Nanosheets of Co-(Ni and Fe) layered double hydroxides for electrocatalytic water oxidation reaction. Int J Electrochem Sci. 2015;10:10.

[40] Muradov MB, Balayeva OO, Azizov AA, et al. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method. Infrared Phys Technol. 2018;89:255–262.

[41] Pathania D, Gupta D, Agarwal S, et al. Fabrication of chitosan-g-poly(acrylamide)/CuS nanocomposite for controlled drug delivery and antibacterial activity. Mater Sci Eng C. 2016;64:428–435.

[42] Saeed M, Ilyas M. Oxidative removal of phenol from water catalyzed by nickel hydroxide. Appl Catal B. 2013;129:247–254.

[43] Al-Qirby LM, Radiman S, Siong CW, et al. Sonochemical synthesis and characterization of Co3O4 nanocrystals in the presence of the ionic liquid [EMIM][BF4]. Ultrason Sonochem. 2017;38:640–651.

[44] Patil SJ, Kim JH, Lee DW. Graphene-nanosheet wrapped cobalt sulphide as a binder free hybrid electrode for asymmetric solid-state supercapacitor. J Power Sources. 2017;342:652–665.

[45] Hurma T, Kose S. XRD Raman analysis and optical properties of CuS nanostructred film. Optik (Stuttg). 2016;127:6000–6006.

[46] Struzhkin VV, Goncharov AF, Syassen K. Effect of pressure on magnetic excitations in CoO. Mater Sci Eng A. 1993;168:107–110.

[47] Dev GS, Sharma V, Singh A, et al. Raman spectroscopic study of ZnO/NiO nanocomposites based on spatial correlation model. RSC Adv. 2019;9:26956–26960.

[48] Liu C-G, Tang H-X, Zheng X, et al.Near-infrared-activated lysosome pathway death induced by ROS generated from layered double hydroxide-copper sulfide nanocomposites. ACS Appl Mater Interfaces. 2020;12:40673–40683.

[49] Pejraj B, Reddivari M, Kotte TRR. Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: effect of copper precursors on the properties of CuS. Mater Chem Phys. 2020;239:122030.

[50] Ma L, Hu Y, Chen R, et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy. 2016;24:139–147.

[51] Zhou J-J, Li Q, Chen C, et al. Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery-type supercapacitors. Chem Eng J. 2018;350:551–558.

[52] Li H, Yang H, Sun Z, et al. A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy. 2019;56:100–108.

[53] Kappel MAA, Fabbri R, Domingos RP, et al. Novel electrochemical impedance simulation design via stochastic algorithms for fitting equivalent circuits. Measurement (Mahwah N J). 2016;94:344–354.

[54] McCrory CCL, Jung S, Peters JC, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc. 2013;135:16977–16987.