Editorial Comment

Should We Be Ablating the Kidneys or the Heart to Prevent Arrhythmias?*

Lance D. Wilson, MD, Kenneth R. Laurita, PhD

Early clinical trials (1,2) and basic physiology studies (3) have shown that there can be significant benefit from renal denervation (RDN) for reducing hypertension. More recently, however, a well-controlled clinical trial (SYMPPLICITY HTN-3 [Renal Denervation in Patients With Uncontrolled Hypertension-3]) (4) suggests that this benefit may not be so clear cut. There are good reasons to question these results, but it is possible that RDN is beneficial in other important ways. It appears, from a handful of experimental studies and clinical case reports, that RDN may reduce the risk for arrhythmia independent of changes in blood pressure. However, there is very little known about the mechanism of this action, particularly for ventricular arrhythmogenesis. In this issue of JACC: Basic to Translational Science, Chang et al. (5) demonstrate the suppression of ventricular arrhythmias by RDN and, most importantly, a mechanism by which this can occur.

The important role of the autonomic nervous system in determining arrhythmia risk is unquestionable yet very complex (6). Reducing sympathetic activity has long been known to be an effective approach for treating arrhythmias, as demonstrated by the success and resiliency of beta-blockers. Specifically targeting the renal sympathetic chain by RDN can reduce norepinephrine spillover and activation of the renin-angiotensin-aldosterone system (RAAS) that is typical in patients with refractory hypertension. Theoretically, RDN should be beneficial, and this benefit can be achieved without the complications or side effects typically associated with more excessive antisypathetic strategies (e.g., sympathectomy). Furthermore, reduction of sympathetic activity by RDN should have favorable action on ventricular arrhythmias (7,8), as demonstrated in small clinical studies (9,10) and case reports (11,12).

If the antiarrhythmic benefits of RDN hold up to clinical scrutiny, an obvious question is: why? Some mechanistic insight can be gleaned from animal models of atrial fibrillation (AF), where RDN was shown to reduce atrial nerve sprouting, fibrosis, and other electrophysiological substrates associated with AF (13). Further, results from a meta-analysis of clinical trials revealed that RDN can reduce atrial size (14), which can also prevent AF. Much of the atrial structural remodeling that is reduced by RDN could be tied to its effect on the RAAS (15). Electrophysiological (e.g., ion channel) remodeling may also be playing a role in AF prevention by RDN; however, this is less clear. Unfortunately, there is much less mechanistic insight available for ventricular arrhythmias. In pigs, it was found that RDN had a significant effect on PVCs and VF during acute ischemia; however, RDN had no effect on action potentials or on VF during reperfusion (16). In canines with acute myocardial infarction, RDN reduced VF and cardiac alternans, which was attributed to a reduction of APD restitution slope (17). These experimental studies and clinical reports mentioned above demonstrate that RDN can have favorable acute and chronic electrophysiological effects. In the study by Chang et al. (5), the authors demonstrate

*Editorials published in JACC: Basic to Translational Science reflect the views of the authors and do not necessarily represent the views of JACC: Basic to Translational Science or the American College of Cardiology.

From the Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio. This paper was supported, in part, by National Institutes of Health grant HL123012 (to Dr. Laurita). Dr. Wilson has received a research compound for use in basic science experiments from Zealand Pharma, Copenhagen Denmark. All authors attest they are in compliance with human studies committees and animal welfare regulations of the authors’ institutions and Food and Drug Administration guidelines, including patient consent where appropriate. For more information, visit the JACC: Basic to Translational Science author instructions page.
favorable ventricular electrophysiological remodeling, including preventing APD prolongation typically associated with heart failure; however, the most compelling results are related to cardiac alternans.

Cardiac alternans is a beat-to-beat oscillation of repolarization and the ECG T-wave, and it is a cause of arrhythmias (18,19). Alternans is relatively benign when spatially synchronized (concordant), because repolarization is prolonged or shortened in-phase throughout the heart. In heart disease, however, not only does alternans occur at significantly slower heart rates (20), it also can become spatially desynchronized (discordant) where repolarization is prolonged out of phase in different regions of the heart. This ultimately forms large gradients of repolarization that are sufficient to cause reentrant activity (18,21). In the present study, the authors show that RDN reduced cardiac alternans, as has been observed with antisympathetic treatment in patients with disease (22–24). The exact reason why antisympathetic treatment decreases alternans is not known, but could be related to APD restitution (25) or potentially a direct effect on Ca2+ cycling (26).

The most important result reported in the study by Chang et al. (5) is that RDN reduced spatially discordant alternans and the occurrence of VF, strongly suggesting a way by which RDN can suppress ventricular arrhythmias. The cellular mechanism of this action was not fully explored by the authors; however, one hypothesis is that the normalization of Ca2+ cycling by RDN suppressed discordant alternans (27,28). It is also important to remember that the present study is a chronic model of disease (4 weeks post-myocardial infarction) and therapy (4 weeks post-RDN), which should allow time for structural changes. It is well known that in disease, activation of the RAAS pathway promotes structural remodeling (29), and that RDN can suppress this activity (30–33). In fact, the normalization of Ca2+ cycling observed by Chang et al. (5) may be an indication of favorable reverse structural remodeling. The prevention of such structural remodeling could reduce, for example, abnormal impulse conduction, which is an important substrate for VF and VT. More interestingly, it can also prevent discordant alternans, which is consistent with the results reported by Chang et al. (5). Although the mechanisms of discordant alternans are complex and not fully understood, it has been shown to significantly increase in the presence of structural barriers (34) or when cell-to-cell uncoupling is decreased (35). Therefore, it is possible that RDN mitigates structural remodeling associated with heart disease and, thus, prevents the occurrence of discordant alternans and VT/VF by this mechanism. In the present study, the authors did not assess structural remodeling and its relationship with discordant alternans, so we will not know for sure if this is the case, but it would seem worthwhile to follow-up on this possibility.

As procedures are refined and the mechanisms of action are better understood, it is possible that RDN will re-emerge as an improved therapeutic strategy for patients with heart disease that is difficult to treat. RDN may be most beneficial for patients with heart failure with recurrent, refractory arrhythmias that cannot tolerate maximal beta-blockade or complications associated with RAAS inhibition, and who are not candidates for cardiac catheter ablation. Furthermore, RDN seems to attenuate both acute and chronic arrhythmia substrates and, thus, could be developed as therapy for preventing arrhythmia associated with multiple etiologies. Clearly, further clinical and experimental studies are needed to better understand the underlying antiarrhythmic action of RDN in patients with heart disease.

REFERENCES

1. Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 2009;373:1275–81.
2. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohn M. Renal sympathetic denervation in patients with treatment-resistant hypertension (the SYMPLECTIC HTN-2 trial): a randomised controlled trial. Lancet 2010;376:1903–9.
3. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 1995;25:878–82.
4. Bhatt DL, Kandzari DE, O’Neill WW, et al. SYMPLECTIC HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 2014;370:1393–401.
5. Chang S-N, Chang S-H, Yu CC, et al. Renal denervation decreases susceptibility to arrhythmogenic cardiac alternans and ventricular arrhythmia in a rat model of post-myocardial infarction heart failure. J Am Coll Cardiol Basic Trans Science 2017;2:184–93.
6. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res 2014;114:1004–21.
7. Bradfield JS, Vaseghi M, Shivkumar K. Renal denervation for refractory ventricular arrhythmias. Trends Cardiovasc Med 2014;24:206–13.
8. Bazoukos G, Korantzopoulos P, Tsoulos F. The impact of renal sympathetic denervation on cardiac electrophysiology and arrhythmias: a systematic review of the literature. Int J Cardiol 2016;220:87–101.

9. Armaganian LV, Staico R, Moreira DA, et al. 6-month outcomes in patients with implantable cardioverter-defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias. J Am Coll Cardiol Invt 2015;8:984–90.

10. Kuitch MG, E Silva GR, Paz LM, Chen S, Souto GL. Proof of concept study: renal sympathetic denervation for treatment of premature ventricular complexes. J Interv Card Electrophysiol 2016;47:221–9.

11. Ukena C, Bauer A, Mahfoud F, et al. Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol 2012;101:63–7.

12. Remo BF, Preminger M, Bradfield J, et al. Safety and efficacy of renal denervation as a novel treatment of ventricular tachycardia storm in patients with cardiomyopathy. Heart Rhythm 2014;11:541–6.

13. Linz D, van Hunnik A, Hohi M, et al. Catheter-based renal denervation reduces atrial nerve sprouting and complexity of atrial fibrillation in goats. Circ Arrhythm Electrophysiol 2015;8:466–74.

14. Lu D, Wang K, Liu Q, Wang S, Zhang Q, Shan Q. Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis. Clin Res Cardiol 2016;105:648–56.

15. Linz D, Ukena C, Wolf M, Linz B, Mahfoud F, Bohm M. Experimental evidence of the role of renal sympathetic denervation for treating atrial fibrillation. J Attr Fibrillation 2014;7:1128.

16. Linz D, Wirth K, Ukena C, et al. Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs. Heart Rhythm 2013;10:1525–30.

17. Huang B, Yu L, He B, et al. Renal sympathetic denervation modulates ventricular electrophysiology and has a protective effect on ischemia-induced ventricular arrhythmia. Exp Physiol 2014;99:1467–77.

18. Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS. Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 1999;100:1385–94.

19. Narayan SM, Bode F, Karasik F, Franz MR. Alternans of atrial action potentials during atrial flutter as a precursor to atrial fibrillation. Circulation 2002;106:1968–73.

20. Kaufman ES, Mackall JA, Julka B, Drabek C, Rosenbaum DS. Influence of heart rate and sympathetic stimulation on arrhythmogenic T wave alternans. Am J Physiol Heart Circ Physiol 2000;279: H1248–55.

21. Qu Z, Garfinkel A, Chen P, Weiss J. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 2000;102:1664–70.

22. Rashba EJ, Cooklin M, MacMurdy K, et al. Effects of selective autonomic blockade on T-wave alternans in humans. Circulation 2002;105:837–42.

23. Kobayashi S, Susa T, Tanaka T, et al. Low-dose beta-blocker in combination with milrinone safely improves cardiac function and eliminates pulsus alternans in patients with acute decompensated heart failure. Circ J 2012;76:1646–53.

24. Schwartz PJ, Malliani A. Electrical alternation of the T-wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long QT-s syndrome. Am Heart J 1975;89:45–50.

25. Ng GA, Brack KE, Patel VH, Coote JH. Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart. Cardiovasc Res 2007;73:750–60.

26. Livshitz LM, Rudy Y. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am J Physiol Heart Circ Physiol 2007;292:H2854–66.

27. Sato D, Shiferaw Y, Garfinkel A, Weiss JN, Qu Z, Karma A. Spatially discordant alternans in cardiac tissue: role of calcium cycling. Circ Res 2006;99:520–7.

28. Wilson LD, Rosenbaum DS. Mechanisms of arrhythmogenic cardiac alternans. Europace 2007;9 Suppl 6:v177–82.

29. Prabhukh SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction. From inflammation to fibrosis. Circ Res 2016;119:91–112.

30. Lu J, Ling Z, Chen W, et al. Effects of renal sympathetic denervation using saline-irrigated radiofrequency ablation catheter on the activity of the renin-angiotensin system and endothelin-1. J Renin Angiotensin Aldosteron Syst 2014;15:532–9.

31. Brandt MC, Mahfoud F, Reda S, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 2012;59:901–9.

32. Watanabe H, Iwana Y, Miyaji Y, Yamamoto H, Miyazaki S. Renal denervation mitigates cardiac remodeling and renal damage in Dahl rats: a comparison with beta-receptor blockade. Hypertens Res 2016;39:217–26.

33. Wang K, Lu D, Zhang B, et al. Renal denervation attenuates multi-organ fibrosis and improves vascular remodeling in rats with transverse aortic constriction induced cardiomyopathy. Cell Physiol Biochem 2016;40:465–76.

34. Pastore JM, Rosenbaum DS. Role of structural barriers in the mechanism of alternans-induced reentry. Circ Res 2000;87:1157–63.

35. Kojbye AL, Dikhuyyn M, Eloff BC, Deschenes I, Rosenbaum DS. Maintenance of intercellular coupling by the antiarrhythmic peptide rotigaptide suppresses arrhythmogenic discordant alternans. Am J Physiol Heart Circ Physiol 2008;294:H41–9.

KEY WORDS alternans, arrhythmia, mechanism, heart failure, renal denervation