The genus *Basiprionota* Chevrolat, 1837 belongs to the subfamily Cassidinae of Chrysomelidae, comprising 63 species distributed in Oriental region and border parts of Palearctic and Australasian regions (Borowiec 1999; Borowiec and Świętojańska 2002). In this study, we sequenced the complete mitochondrial genome of *Basiprionota bisignata* (Boheman, 1862), the first representative of *Basiprionota*, and performed a phylogenetic analysis among Chrysomelidae with the available mitogenomic sequences.

The samples of *B. bisignata* (specimen number: GZAF-2021-CC1000) were obtained from Yinjiang County (E108.3666, N28.0846), Guizhou province, China by Huimin Yuan and Ting Wang in May 2021, and stored in Insect Museum of Guizhou Academy of Forestry (URL, Kai Hu and 18792617323@163.com), Guiyang. Total genomic DNA was extracted from an adult’s thoracic muscle using the DNeasy Blood and Tissue Kits (Qiagen, Valencia, CA). Based on the high-throughput Illumina HiSeq X platform, total genomic DNA was sequenced. The raw data (3.16 Gb) were assembled using NOVOPlasty version 4.3.1 (Dierckxsens et al. 2017) with *cox1* sequence from *Aspidomorpha diformis* (GenBank accession no. MK049862) as the initial seed. The complete mitochondrial genome of *B. bisignata* was annotated by MITOZ version 1.04 (Meng et al. 2019). All 13 protein-coding gene sequences were aligned using MAFFT version 7.394 (Kuraku et al. 2013) with L-INS-I strategy. Maximum likelihood (ML) analysis was conducted using IQ-TREE version 1.6.3 (Nguyen et al. 2015) with the optimal model (GTR+I+G for Subset1 (*nad3* and *atp6*), Subset3 (*cox1*, *cytb*, *cox3*, and *cox2*), and Subset4 (*nad1*, *nad4L*, *nad4*, and *nad5*); TRN+I+G for Subset2 (*nad6* and *atp8*); TVM+I+G for Subset5 (*nad2*)) were determined by PartitionFinder2 (Lanfear et al. 2017).

The complete mitochondrial genome of *B. bisignata* is 17,116bp in length, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an AT-rich region (control region). The gene order of the newly sequenced mitochondrial genome is consistent with the putative ancestral arrangement of insects (Clary and Wolstenholme 1985; Cameron 2014). The AT content of the mitochondrial genome is 78.5% (A = 42.8%, T = 35.7%, C = 12.8%, and G = 8.7%), which has a strong AT nucleotide bias. Most PCGs (*nad2*, *cox1*, *atp8*, *atp6*, *nad3*, *nad4*, *nad4L*, *nad6*, *cytb*, and *nad1*) share typical stop termination TAA/G, whereas *cox2*, *cox3*, and *nad5* end with incomplete form single T-. Furthermore, all PCGs use ATN (A/T/C/G) as start codon. Length of the 22 tRNAs ranges from 60 bp (*trnL*) to 68 bp (*trnM*). All tRNAs can be folded into common clover-leaf secondary structures, except for *trnS1*, in which the dihydrouridine (DHU) arm formed a simple loop. The size of 16S rRNA and 12S rRNA is 1,259 bp and 740 bp, respectively. The AT-rich region is located between 12S rRNA and *trnl*, which is 2,515 bp in length with an AT content of 82.8%.

Here, based on the nucleotide data of 13 PCGs from 27 Chrysomelidae species and two outgroup taxa from Cerambycidae, we reconstructed the ML phylogenetic tree (Figure 1). The phylogenetic relationships among Chrysomelidae are (((Cassidinae + (Eumolpinae + (Chlamisinae + Clytrinae))) + (Galerucinae + Chrysomelinae)) + (Aspidomorpha difformis + (Basiprionota bisignata + (Boheman, 1862) + (Basiprionota + (Thoracotrupes + (Cassidinae + Thlaspida + (Clytrinae + (Galerucinae + Chrysomelinae)))))))) + (Aspidomorph)).
In the phylogenetic tree, each subfamily forms a monophyletic cluster with strongly support (BS ≥ 98), consistent with some previous studies (Gómez-Zurita et al. 2008; Nie et al. 2020). In Cassidinae, the relationships among included genera are inferred as (((Octodonta + Brontispa) + (Basiprinotana + (Thlaspina + Aspidomorpha)))).

Author contributions
Conceived and designed the experiments: Kai Hu. Performed the experiments: Shaochuan Cheng, Huimin Yuan and Ting Wang. Analyzed the data: Kai Hu. Wrote the paper: Shaochuan Cheng. Helped to proofread the paper: Kai Hu, Huimin Yuan and Ting Wang. All authors have read and agreed to the published version of the manuscript.

Ethical approval
Experiments were performed in accordance with the recommendations of the Ethics Committee of Guizhou Academy of Forestry. These policies were enacted according to the Chinese Association for the Laboratory Animal Sciences and the Institutional Animal Care and Use Committee (IACUC) protocols.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by the Conservation and Demonstration of Urban Bird Habitats in Guiyang [QKHZC [2019] 2311] and the Project of Guizhou Science and Technology Platform and Talent Team Under Grant [QKHPTRC [2016] 5669].

ORCID
Kai Hu http://orcid.org/0000-0001-7193-5864

Data availability statement
The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at [https://www.ncbi.nlm.nih.gov/] under the accession no. MZ699993. The associated BioProject, SRAs, and Bio-Sample numbers are PRJNA759086, SRR15686511-SRR15686512, and SAMN21155885, respectively.

References
Borowiec L, Świątojańska J. 2002. Cassidinae of the world - an interactive manual (Coleoptera: Chrysomelidae). Permanent electronic publication (open in 2002): www.biol.uni.wroc.pl/cassidae/katalog%20internetowy/index.htm.
Borowiec L. 1999. A world catalogue of the Cassidinae (Coleoptera: Chrysomelidae). Wroclaw (Poland): Biologia Silesiae; p. 1–467.
Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 59:95–117.
Clary DO, Wolstenholme DR. 1985. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 22(3):252–271.
Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Gómez-Zuñita J, Hunt T, Vogler AP. 2008. Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae). Cladistics. 24(1):34–50.

Kuraku S, Zmasek CM, Nishimura O, Katoh K. 2013. Leaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41 (Web Server issue):W22–W28.

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 34(3):772–773.

Meng GL, Li YY, Yang CT, Liu SL. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47(11):e63.

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Nie RE, Andújar C, Gómez-Rodríguez C, Bai M, Xue HJ, Tang M, Yang CT, Tang P, Yang XK, Vogler AP. 2020. The phylogeny of leaf beetles (Chrysomelidae) inferred from mitochondrial genomes. Syst Entomol. 45(1):188–204.