Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Portal vein thrombosis in patients with COVID-19: A systematic review

Hany Abdelfatah El-hady a, b, *, El-Sayed Mahmoud Abd-Elwahab b, Gomaa Mostafa-Hedeab c, d, Mohamed Shawky Elfarargy e, f

a Department of Surgery, Faculty of Medicine, Jouf University, Saudi Arabia
b Department of Surgery, Faculty of Medicine for Girls, Al-Azhar University, Egypt
c Pharmacology Department, Medical College, Jouf University, Sakaka, Saudi Arabia
d Pharmacology Department, Faculty of Medicine, Beni-suef University, Egypt
e Department of Pediatrics, College of Medicine, Jouf University, Saudi Arabia
f Department of Pediatrics, Faculty of Medicine, Tanta University, Egypt

Abstract

Several studies have proven that COVID-19 is linked to a higher incidence of different thrombotic events. Thrombosis of the portal vein can result in portal hypertension and can extend to the mesenteric vein resulting in intestinal ischemia. A search of PubMed, Web of Science, and Scopus for relevant studies revealed an association between PVT and COVID-19. This review is structured according to PRISMA guidelines. Thirty-three studies met the inclusion criteria. Twenty-nine case studies/series and four cohort/cross-sectional studies were included. Age at diagnosis was lower when compared to PVT due to cirrhosis. In cohort/cross-sectional studies, males comprised 54.83% of subjects, whereas in case reports/series, males comprised 62.1%. Obesity, asthma, hypertension, and diabetes were the most common comorbidities identified. The majority of the thrombotic events occurred within two weeks. The treatment aimed to prevent thrombus progression and improve recanalization. According to the evidence, early intervention prevents the poor prognosis of intestinal ischemia and its propagation.

1. Introduction

Since its breakout in December 2019, coronavirus disease 2019 (COVID-19) has caused significant morbidity and mortality. The disease originated as a local ailment in Wuhan and has now spread globally. As of January 2022, there were more than 280 million confirmed illnesses and 5 million fatalities.

The clinical manifestations of COVID-19 vary based on the patient's immune system, gender, and age. Many patients experience general symptoms such as fever, cough, and fatigue, whereas complications such as thrombosis, severe respiratory symptoms, heart, kidney, and multi-organ failure are less common.

Venous thromboembolism has emerged as a significant side effect. Multiple studies have linked severe COVID-19 to arterial and venous thromboembolic disorders. Additionally, the virus appears to target endothelial cells, resulting in endothelial dysfunction.

Despite extensive research into the relationship between COVID-19 and pulmonary embolism and deep vein thrombosis of the lower limb, other thrombotic events, like splanchnic vein thrombosis, are less well understood. Even in a patient with subclinical infection with COVID-19, there was a reported massive thrombus affecting the portal and superior mesenteric valves.

The etiology of portal vein thrombosis (PVT) can be attributed to several causes. By analyzing the current data on PVT associated with COVID-19, we can highlight patient characteristics, clinical presentation, treatment, and potential outcomes.

2. Methods

We conducted a systematic literature search for PVT as a complication of COVID-19. The current review is structured according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA 2020 criteria) (supplementary file), and
the review protocol was registered in PROSPERO (CRD42022300494).

3. Sources and search strategy

The PICO characteristics of the research question used to develop the search strategy are P: Portal vein thrombosis; I: COVID-19 positive; C: none and O: clinical picture of portal vein thrombosis, diagnostic techniques, treatment methods, and case outcome.

Two independent reviewers conducted a comprehensive literature search of the Databases PubMed, web of science, and SCOPUS. In addition to the reference lists of included articles.

Two independent reviewers conducted the search between 1-1-2022 and 28-2-2022. Until the end of the data extraction period, all published and unpublished studies on COVID-19 patients were included. Hand-searching bibliography lists from all qualifying publications yielded additional papers potentially suitable for inclusion.

4. Article screening process

Two independent reviewers conducted and reported the screening results of the title and abstract, as well as the full text. Non-relevant studies were excluded. The consensus was used to settle any disagreements.

5. Inclusion and exclusion criteria

Two independent reviewers analyzed studies reporting portal vein occlusion as a complication of COVID-19 with no language or publication date restrictions.

Prospective/retrospective cohort studies, cross-sectional studies, case studies, and case series were included. Studies should include the following: time of portal vein occlusion or thrombosis, clinical presentation, diagnostic studies, image confirmation, and outcome of the PVT. Animal studies, opinions, meeting abstracts, reviews, or studies with irrelevant or insufficient data were excluded. Any Disagreements were resolved by verbal discussion.

6. Data extraction

Two reviewers independently extracted study data such as the author's name, the year of publication, and the study's country. In each study, demographic and clinical patient data were also obtained. Patients' extracted data include age, gender, comorbidities, method of COVID-19 diagnosis, time till PVT, presenting symptoms of PVT, CT finding of PVT, site of PVT, treatment, and outcome.

7. Study of quality assessment

The quality of the included studies was determined using the critical appraisal tool for case reports developed by the Joanna Briggs Institute. Two reviewers independently conducted their assessments independently, and any disagreements were resolved through discussion and consensus.

9. Statistical analysis

Data were extracted and entered into Excel sheets. The study's findings were subjected to a meta-analysis based on their quality. Categorical variables were expressed using percentages, while continuous variables were expressed using mean, standard deviation, or range of values.

10. Results

The database search resulted in the importation of 293 references for screening. After removing duplicates and screening the title and abstract, we assessed 48 studies for full-text eligibility, and we found 33 that met the criteria for inclusion; therefore, they are included in this systematic review (Fig 1).

Because of the possibility of study heterogeneity, the findings are presented in a narrative method.

A total of 29 case reports and case series studies (Table 1) (Table 2), as well as four cohort or cross-sectional studies (Table 3), were included in the study.

11. Case reports/series

In the included case studies/series, there were 29 cases of PVTC reported from 14 different countries, with the United States accounting for 24.14% of these cases.

Critical appraisal tools were used to evaluate the quality of the included studies. The score ranged from 2 to 7, with a mean of 5.10 and a standard deviation of 1.291. (Supplementary file 1)

The age ranges from 3 to 82 years, with a mean of 45.1 and an SD of 19.68. Males compromised 62.1% (18 cases), while females compromised 37.3% (11 cases). COVID-19 infection was confirmed by RT-PCR, positive serology, or an image finding suggesting COVID-19 infection.

The most common presenting symptom of PVT was abdominal pain (82.76%), followed by distension (17.24%), diarrhea (17.24%), fever (17.24%), vomiting (10.34%), constipation (10.34%), and hematemesis (2 patients) 6.90%. In four cases, abdominal pain was the presenting symptom despite the absence of respiratory or flu-like symptoms. The interval between COVID-19 infections and PVT ranges from 3 to 42 days. Surprisingly, 11 (37.3%) cases have no associated comorbidities. Additionally, 62.07% of thrombophilia profile testing results were negative when investigating a plausible cause for PVT. The test findings were not reported in the other studies. No study revealed a positive test result for thrombophilia.

In addition to PVT, there is an association with the superior mesenteric vein (SMV), inferior mesenteric vein (IMV), or splenic artery thrombosis in some cases.

CT results helped diagnose PVT and other vascular occlusions, in addition to determining the presence of ascites, intestinal wall thickening, or pneumatosi and whether the liver or spleen developed parenchymal changes.

Anticoagulants were the main line of treatment in each case. Low molecular weight heparin (LMWH), enoxaparin, apixaban, rivaroxaban, fondaparinux heparin drip, and coumadin were among the anticoagulants used.

In addition to anticoagulants, intestinal ischemia may necessitate bowel resection, depending on the case. SMA thrombosis and thrombectomy are used for thrombosis of the mesenteric artery, as reported by DeBarry 2020. 3 Interventional radiology re-cannulates the main portal vein in Petters 2021. 7 Right hepatic vein thrombosis
catheter-directed thrombectomy and thrombolysis in Hussein 2021. In three of the 29 cases, the outcome was not reported, and four patients died due to intestinal ischemia, severe necrosis, septic shock, and multi-organ failure MOF.

12. Cohort/cross-sectional studies

The four observational studies reporting PVT were with included 53,913 COVID-19 positive cases complicated by 217 PVT. Taquet et al.’s [10] research was conducted primarily in the United States, adopting a retrospective cohort analysis using electronic health records. In the two weeks following COVID-19 infection, the absolute risks of cerebral venous thrombosis (CVT) and PVT were examined in 53,791 COVID-19 confirmed cases and compared to other cohorts of influenza patients and individuals who received an mRNA vaccination for COVID-19.

Out of the 537,913 cases with a COVID-19 verified diagnosis, 211 cases were diagnosed to have PVT. The mean age was 57.2 years. The females were 94 (44.5%), while the males were 117 (55.5%). Significant PVT-related comorbidities include previous PVT (55.5%) and previous Liver disease (70.1%).

After COVID-19, the incidence of CVT and PVT is considerably higher than in matched control cohorts. In the two weeks following COVID-19, the absolute risk of PVT was 392.3 per million (95 percent CI 342.8–448.9). When compared to a matched cohort diagnosed with influenza (N = 393,848 in each cohort, RR = 1.43, 95 percent CI 1.10–1.88, P = 0.0094) or compared to a cohort receiving an mRNA vaccination (N = 388,298 in each cohort, RR = 4.46, 95% CI 3.12–6.37, P < 0.0001).

Munoz et al.’s [17] is a single-cohort retrospective study on 1127 patients hospitalized at the Infanta Leonor University Hospital. In the study, 6.1%, or 80 thrombotic events, occurred in 69 patients. Positive RT-PCR results were observed in 47 patients (68%), and COVID-19 was clinically diagnosed, and 22 patients (32%) had a clinical diagnosis of COVID-19. The thrombosis population had a median age of 65 years (range 27–96), with 65 percent of men. Venous thromboembolism VTE was the most common thrombosis, involving 71 percent of the patients (49/69) and accounting for 65 percent of the events (52/80; 44 pulmonary embolism (PE), six deep vein thrombosis (DVT), and 2 PVT). One male and one female,
Study ID	Country in which the study conducted	Age in years	Co-morbidity	Anticoagulant or antiplatelet intake	History of thromboembolic events
Ignat 2020	France	28	NIL	NO	NO
Rodriguez-Nakamura 2020	Mexico	42	Obesity, ventriculoperitoneal shunt due to a partially resected craniopharyngioma	NA	NA
deBarry 2020	France	79	NIL	NA	NA
Forlemu 2021	United states	39	Diabetes, hypertension and cholecystectomy	NO	NO
Kolli 2021	United states	44	NIL	NO	NO
Rehman 2021	United states	33	NIL	NO	NO
Rokkam 2021	United states	66	Fibromyalgia, gastroesophageal reflux, traumatic brain injury, anxiety, depression, hypertension, constipation, and acute blood loss anemia, Stool positive for Clostridium difficile infection	NA	
DA...lkowski 2021	Poland	33	NIL	NA	NA
Low 2020	United states	51	Lower extremity deep vein thrombosis	heparin therapeutic dose for DVT	NA
Ofosu 2020	United states	55	Hyperlipidemia	NO	NO
Borazjani 2020	Iran	26	Asthma	NO	NO
Lari 2020	Kuwait	38	NIL	NO	NO
LaMura 2020	Italy	72	Parkinson disease, anxious-depressive syndrome, and mild vascular dementia	enoxaparin prophylactic dose	NO
Franco-Moreno 2020	Spain	42	Chronic hepatitis B	NO	NO
Abeysekera 2020	UK	70	NIL	NA	NA
Vidal 2021	Italy	67	Diabetes, alcohol-related cirrhosis, esophageal varices	NO	NO
Miyazato 2021	Japan	33	Chronic tobacco, NO history specific pathological conditions	NO	NO
Marsafi 2021	Morocco	3	Liver transplant recipient for treatment of Caroli disease - post liver transplant right hepatic artery and portal vein thrombosis persistent Epstein-Barr virus (EBV) DNAemia,	enoxaparin prophylactic dose	NO
Petters 2021	United states	68	Coronary artery disease, diabetes, and hypertension, chronic obstructive pulmonary disease, mild Alzheimer's dementia and recurrent urinary tract infection. cholecystitis	Aspirin, heparin prophylaxis	NO
Hosoda 2022	Japan	51	NA	NA	NA
Jeilani 2021	UK	62	Controlled asthma	low molecular weight heparin (LMWH)	NO
Rivera-Alonso 2021	Spain	28	Post C-section	NO	NO
Randhawa 2021	India	26	NA	NA	NA
Agarwal 2021	India	58	Steroid dependent nephrotic syndrome, morbid obesity, hypertension, and pulmonary embolism (PE)	NO	pulmonary embolism
Jafari 2020	Iran	38	NIL	NO	NO
Tripolino 2021	Italy	40	NIL	NO	NO
Sinz 2021	Switzerland	20	NIL	NA	NO
Hussein 2021	Saudi Arabia	28	Steroid dependent nephrotic syndrome, morbid obesity, hypertension, and pulmonary embolism (PE)	NO	NO
Sharma 2021	India	28	MALE	NO	NO
Table 2
Findings in Case studies/case series.

Study ID	Method of diagnosis of COVID-19	Days till symptoms of PVT	Presenting symptoms of PVT	Thrombophilia profile testing	Image finding of the abdomen (ULS/CT)	Treatment of PV thrombosis	outcome	Possible cause of death
Ignat 2020	clinical acute respiratory distress syndrome	NA	Abdominal pain and vomiting.	NR	SMV and PV thrombosis	Anticoagulant + small bowel resection	Discharged	
Rodriguez-Nakamura 2020	Negative RT-PCR test Dyspnea CT scan displayed typical signs of COVID-19 pneumonia	9	abdominal pain and constipation	NR	CT; thrombosis of portal and mesenteric veins, abdominopelvic collection containing gas	exploratory laparotomy, jejunal perforation, Loop resection, enteroenteral manual anastomosis	Death	septic shock with renal, cardiovascular, and respiratory failure
deBarry 2020	Negative RT-PCR Fever and dyspnea CT scan displayed typical signs of COVID-19 pneumonia	8	Fever, abdominal pain and diarrhea	NR	Rt. PV, SMV thrombosis extending to the spleno-mesenteric trunk, ischemia of the caecum and small intestine and ascites	Laparotomy, necrotic ileum, and right colon were resected. Thrombolyis and thrombectomy of the upper mesenteric artery	Death	extended bowel ischemia in addition to severe lung damage caused by COVID-19.
Forlemu 2021	chest x ray suggestive of SARS-COV2 infection confirmatory testing was positive Her COVID-19 test performed during her admission returned positive after she was discharged. Dry cough after discharge as a late presentation of her COVID-19	3	Abdominal pain	Negative	Rt. PVT thrombosis proximal to the bifurcation	enoxaparin and later oral anticoagulants	Discharged	
Kolli 2021	Her COVID-19 test performed during her admission returned positive after she was discharged. Dry cough after discharge as a late presentation of her COVID-19	14	Abdominal pain, abdominal bloating, and chest discomfort	Negative	PVT	heparin drip and coumadin on discharge	Discharged	
Rehman 2021	RT-PCR positive FEVER 38. Asymptomatic (COVID-19) and First presentation is abdominal pain	21	Abdominal pain	Negative	Rt. PVT thrombosis and acute splenic infarct	enoxaparin switched to warfarin upon discharge	Discharged	
Rokkam 2021	RT-PCR positive FEVER 38. Asymptomatic (COVID-19) and First presentation is abdominal pain	14	Watery diarrhea, abdominal pain, mild abdominal distension	NR	Lt. PVT, moderate ascites and colitis	intravenous unfractionated heparin transitioned to apixaban	Discharged	
DA … blokowski 2021	clinical fever, headache, and anosmia	21	Severe abdominal pain, vomiting	Negative	dilated portal vein and the absence of blood flow extending to splenic and SMV a non-occlusive thrombus in the right and left portal veins, portal venous gas and gastric pneumonia	low molecular weight heparin	Discharged	
Low 2020	NA	NR	Hematemesis	NR				
Ofosu 2020	RT-PCR positive Fever shortness of breath, and altered mental status. CT scan and x ray: ground glass opacities	3	Fever shortness of breath, and altered mental status.	Negative	right portal vein thrombus and liver wedge shaped peripheral defect suggestive of ischemia	apixaban	Discharged	
Borazjani 2020	RT-PCR positive Chest CT scan and x ray: ground glass opacities in both lung fields	10	Hematemesis, abdominal pain with distension	Negative		enoxaparin, discharged with oral warfarin	Discharged	

(continued on next page)
Study ID	Method of diagnosis of COVID 19	Days till symptoms of PVT	Presenting symptoms of PVT	Thrombophilia profile testing	Image finding of the abdomen (ULS/CT)	Treatment of PV thrombosis	outcome	Possible cause of death	
Lari 2020	RT-PCR positive	2	Abdominal pain, nausea, vomiting and shortness of breath	Negative	Thrombosis of the portal, splenic, superior and inferior mesenteric veins. Pulmonary embolism left and right portal vein hepatic attenuation in the liver segments supplied by thrombosed branches	Jejunal segment resection, heparin anticoagulation, ECMO	Discharged		
LaMura 2020	Fever	6	Fever, jaundice, mild abdominal pain with bloating and constipation	Negative	Abdominal pain	Exenaparin	NR		
Franco-MoreNO2020	RT-PCR negative, Serological test showed positive IgG and negative IgM, fever and dry cough	21	Diffuse abdominal pain	Negative	Abdominal pain	Exenaparin	After 4 weeks oral anticoagulant	Discharged	
Abeysekera 2020	Positive Antibody serology fever and a dry cough	14	Abdominal pain	Negative	Entire length of PV and mid SMV thrombosis, mural edema of the distal duodenum, distal small bowel and descending colon.	Apixaban	Discharged		
Vidali 2021	RT-PCR negative, IgG positive	7	Abdominal pain and absence of bowel movements for 8 days	Negative	Thrombosis of PV, splenic vein, SMV and IMV, splenic artery occlusion with splenic infarction	Low molecular heparin (LMWH)	NR		
Miyazato 2021	Hypoxemia, Fever and respiratory distress	12	NA	NR	Thrombosis of the PV main trunk extending to SMV intraperitoneal fluid, thrombosis of PV, splenic vein, SMV Thickening, submucosal edema and parietal pneumatosis of the jejunum	Anticoagulant therapy	NR		
Marsafi 2021	RT-PCR positive	7	Diffuse abdominal pain	NR	Death Intestinal ischemia and secondary short bowel syndrome	Surgical resection of small bowel, anticoagulant therapy	Death	Intestinal ischemia and secondary short bowel syndrome	
Petters 2021	RT-PCR positive, Fever and cough	13	Abdominal distention and diarrhea	NR	Death Intestinal ischemia and secondary short bowel syndrome	Re-cannulation of the main portal vein by interventional radiology, enoxaparin therapy	Discharged		
Hosoda 2022	RT-PCR positive, Fever	42	Abdominal distension	NR	Extensive gastrointestinal necrosis induced by excessive portal and mesenteric vein thrombosis	Fluid resuscitation and vasopressor died within 6 h from the onset of the shock	Death	Extensive gastrointestinal necrosis induced by excessive portal and mesenteric vein thrombosis	
Jeilani 2021	RT-PCR positive, Cough	9	Abdominal pain and distension	Negative	PVT and SMV thrombosis, engorgement of small bowel mesenteric vessels.	Low molecular weight heparin	Discharged		
Author	Year	Symptoms	Imaging Findings	Treatment	Disposition				
----------	------	---	---	---	---------------------				
Rivera-Alonso 2021	Fever Positive for IgG, negative for IgM, First presentation is abdominal pain	Abdominal pain, general discomfort, and fever.	left portal vein thrombosis impaired liver perfusion in the related segment, mild cholecystitis, PVT, SMV thrombosis With few periportal collaterals.	fondaparinux injection then warfarin	Discharged				
Randhawa 2021	antibody serology was positive chest peripheral ground-glass opacities consistent with COVID-19 infection	Abdominal pain loss of appetite Negative	the main portal vein was not visualized, gross ascites and bilateral minimal pleural effusion Portal vein thrombosis, intraperitoneal fluid, patchy enhancement of hepatic parenchyma	continuous intravenous heparin infusion	Discharged				
Agarwal 2021	NA	Acute abdominal pain and distension Negative	Acute abdominal pain and distension	LMWH	Discharged				
Jafari 2020	RT-PCR positive respiratory distress and fatigue chest CT scan, including multifocal patchy Consolidations and bilateral pleural effusion	Abdominal pain NR	Acute abdominal pain and distension	continuous intravenous heparin infusion	Discharged				
Tripolino 2021	RT-PCR positive fever	Abdominal pain	Abdominal pain	Continuous intravenous heparin Patchy enhancement of hepatic parenchyma	Discharged				
Sinz 2021	RT-PCR negative fever and cough history of flue like symptoms Positive SARS-CoV2 IgM and IgG	Fever and abdominal pain Negative	Fever and abdominal pain	LMWH	Discharged				
Hussein 2021	Intermittently positive PCR Anosmia and ageusia Positive Ig M and Ig G	Abdominal pain, Nephrotic syndrome Relapse, anasarca, diarrhea, and	Abdominal pain, Nephrotic syndrome Relapse, anasarca, diarrhea, and	Enoxaparin then switch to Rivaroxaban	Discharged				
Sharma 2021	RT-PCR positive	Abdominal pain Negative	Abdominal pain	right and left PVT, mild HSM and ascites.	Discharged				
aged 27 and 67, were diagnosed with PVT, respectively. They received enoxaparin and were later discharged. Furthermore, despite prophylaxis, 90% of the patients in this study experienced a thrombotic episode.

In the Taya et al.11 study, imaging abnormalities before and after infection with COVID-19 were compared using contrast-enhanced CT scans of the abdomen and pelvis at a tertiary oncology hospital. The imaging was performed between three and six weeks after the COVID-19 diagnosis. For comparison, a previous CT scan imaging of the pelvis and abdomen was also required. In 63 individuals, it was common to observe new ground glass opacities at the lung bases (34 male, 29 females; mean age, 60.6 years; range, 24.4–85.0 years), accounting for 29/63, 46.0%. In addition, a new PVT (1/63, 1.6%) was discovered. A 67-year-old lady with intrahepatic cholangiocarcinoma was found to have a PVT of a right portal vein branch. Two months earlier, her CT scan was negative for PVT.

A cross-sectional, observational control study by Hassnine12 included 70 people with liver cirrhosis divided into two groups with matched individuals in terms of age and sex. Group A included 28 people with liver cirrhosis and COVID-19, whereas group B included 42 people with hepatic cirrhosis alone as controls. In Group A (liver cirrhosis and COVID-19), PVT was found in 3 cases (10.7%). These cases were not previously known to have PVT. In Group B (liver cirrhosis only), one patient (2.3%) was diagnosed with PVT. This case also has HCC. It was a statistically significant finding comparing PVT in both groups with a p-value (<0.05). The three patients were diabetic, two of them known to have Hepato-cellular carcinoma HCC.

13. Discussion

In approximately one-third of patients, the cause of PVT remains unknown. PVT is rare in the absence of cirrhosis. PVT may be caused by concomitant local, acquired, or inherited thrombophilic diseases in non-malignant, non-cirrhotic patients.13

Patients with cirrhosis, hepatobiliary malignancies, infectious or inflammatory gastrointestinal diseases, or hematologic disorders are more likely to develop PVT.14

In approximately one-third of PVT cases, the major contributing factor is the cirrhotic liver, accounting for 6 to 64 percent in post-mortem studies.15 PVT has been linked to an uncommon but probable deficiency in protein C and protein S.15

Infections such as viral hepatitis, cytomegalovirus (CMV), and Epstein-Barr virus have been proven to increase the incidence of splanchnic vascular thrombosis; as a result, testing for these microorganisms may be tried if no known cause of PVT is discovered. Even in immunocompetent individuals, infections such as CMV have been shown to cause PVT.14

Respiratory viruses can influence all components of the coagulation cascade, including primary hemostasis, coagulation, and fibrinolysis, and are linked to coagulation problems and increase the incidence of DVT and PE.15

Microvascular changes, increased number of portal vein branches associated with lumen dilatation, partial or total luminal thrombosis of the portal and sinusoidal veins, and portal tract fibrosis were all observed in COVID-19.17 18 Consequently, PVT is better explained by systemic inflammation and local microvascular changes in the portal venous system.

In these reviewed PVT cases, most patients had no major predisposing factors such as cirrhosis or malignancy except for a case of alcohol-related cirrhosis and a case of cholangiocarcinoma, even though both were diagnosed with COVID-19 infection. In addition, none of the comorbidities associated with the development of PVT are statistically significant.

The average age of COVID-19 patients who have had thrombotic events was 63.78 years.19 20 21 22 23 24 In the reviewed cases, PVT presented at a younger age, with the mean age of the included cohort/cross-sectional studies ranging between 57.2 ± 11.5 years in cohort/cross-sectional studies and 45.1 ± 19.68 years in case reports/series. In addition, the age was younger when compared to PVT associated with cirrhosis.25 In cohort/cross-sectional studies, males comprised 54.83% of participants, whereas in case reports/series, males comprised 62.1% of participants. This finding is consistent with other studies.26 In cohort/cross-sectional studies, males compromised 54.83%, whereas in case reports/series, they compromised 62.1%, which is supported by other studies.26

Obesity, asthma, hypertension, and diabetes were found to be the most prevalent comorbidities in this review. Nevertheless, Tomerak et al. found that the comorbidities did not differ significantly between the non-thrombotic and the thrombotic groups. Li et al.27 and Fujiyama et al.28 studies showed higher rates of concomitant diabetes, cardiovascular disease, and hypertension. In these reviewed cases, the most common presentation was abdominal pain followed by distension, diarrhea, and fever. This result aligns with other studies.29 30 15 14

The highest rates of pulmonary thromboembolism, ischemic stroke, acral ischemia, and mesenteric ischemia were observed in patients with severe COVID-19.31 However, in a patient with...
preclinical COVID-19, a sizable thrombus involving the SMV was detected. \(^\text{3,5} \) Thrombosis is a possibility, whatever the severity of COVID-19 is, as this review included four case studies of asymptomatic covid 19 complicated by \(^{32} 33 34 35 \) The time between COVID-19 and PVT in the case/series range between 2 days and 42 and mean 12.32 days. \(^\text{36} \) Most thrombotic events occurred within 2 weeks.\(^\text{35} 36 37 27 38 39 \) The goal of therapy at the time of presentation is to prevent thrombus progression and improve recanalization. Progressive thrombus propagation into more proximal veins is linked to a higher risk of intestinal ischemia and fatality.\(^\text{41} 42 \) Thrombolytic therapy efficacy was poorer, and the mortality rate was higher when compared to conservative treatment.\(^\text{43} 44 45 46 \)

14. Conclusion

COVID-19 has caused considerable morbidity and mortality not just due to pneumonia and acute respiratory distress syndrome (ARDS) complications but also as a result of various extra pulmonary symptoms. Clinicians should be aware of this potential COVID-19 drawback when managing patients with PVT signs and symptoms. Linking these symptoms to a history of COVID-19 infection could facilitate the early detection of PVT. Critically ill patients with severe abdominal pain, either as a presenting symptom or while hospitalized, are advised to undergo abdominal imaging, particularly contrast-enhanced scans.

15. Availability of data

The study’s data are included in the article/Supplementary Material, and any further queries should be directed to the corresponding author.

16. Declaration of competing interest

None.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ajjspir.2022.11.002.

References

1. Tomerak S, Khan S, Almasri M, et al. Systemic inflammation in COVID-19 patients may induce various types of venous and arterial thrombosis: a systematic review. Scand J Immunol. 2021;94(5):1–18. https://doi.org/10.1111/sji.13097.
2. WHO coronavirus (COVID-19) dashboard | WHO coronavirus (COVID-19) dashboard with vaccination data. https://covid19.who.int/. Accessed January 3, 2022.
3. Kheyrianirsh A, Rastgar A, Arab-Zozani M, Sarab GA. Portal vein thrombosis might develop by COVID-19 infection or vaccination: a systematic review of case-report studies. Front Med. 2021;8(December. https://doi.org/10.3389/fmed.2021.794599.
4. Thuluvu SK, Zhu H, Tan MML, et al. A 29-year-old male construction worker from Shanghai who presented with left-sided abdominal pain due to isolated superior mesenteric vein thrombosis associated with SARS-CoV-2 infection. Am J Case Rep. 2020;21:1–5. https://doi.org/10.25567/AJCR.926785.
5. Randhawa J, Kaur J, Randhawa HS, Kaur S, Singh H. Thrombolysis of the portal vein and superior mesenteric vein in a patient with severe COVID-19 infection. Cureus. 2021;13(4). https://doi.org/10.7759/CUREUS.14366.
6. de Barry O, Mekki A, Diffee C, Seror M, El Hajjam M, Carlier RY. Arterial and venous abdominal thrombosis in a 79-year-old woman with COVID-19 pneumonia. Radiol Case Rep. 2020;15(7):1054. https://doi.org/10.1016/j.ricr.2020.04.055.
7. Petters LM, Vogel TP, Munoz FM, et al. Multisystem inflammatory syndrome in children associated with SARS-CoV-2 in a solid organ transplant recipient. Am J Transplant. 2021;21(7):2596–2603. https://doi.org/10.1111/ajt.16572.
8. Hussein MH, Alabdaljabar MS, Alfaghy N, Badran M, Alami K. Splanchnic venous thrombosis in a nephrotic patient following COVID-19 infection: a case report. BMC Nephrol. 2021;22(1):420. https://doi.org/10.1186/s12882-021-02643-0.
9. Muñoz-Rivas N, Abad-Motos A, Mestre-Gómez B, et al. Systemic thrombosis in a large cohort of COVID-19 patients despite thromboprophylaxis: a retrospective study. Thromb Res. 2021;199(December. 2020):132–142. https://doi.org/10.1016/j.thromres.2020.12.024.
10. Taquet M, Husain M, Geddes JR, Luciano S, Harrison PJ. Cerebral venous thrombosis and portal vein thrombosis: a retrospective cohort study of 537,913 COVID-19 cases. EclinicalMedicine. 2021;39, 101061. https://doi.org/10.1016/j.eclinm.2021.101061.
11. Taya M, Paroder V, Redelman-Sidi G, et al. Abdominal imaging findings on computed tomography in patients acutely infected with SARS-CoV-2: what are the findings? Emerg Radiol. 2021;28(6):1087–1096. https://doi.org/10.1007/s10140-021-01986-3.
12. Hassnine, Alshymaa Ahmed and Elsayed AM. COVID-19 in Cirrhotic Patients? Is Portal Vein Thrombosis a Potential Complication?. Available SSRN https://ssrn.com/abstract=3834327 Published online 2021:1-35.
13. Kohlika N, Skalicky M, Milotie F, Flis V. Non-cirrhotic and non-malignant acute extrahepatic portal vein thrombosis (PVT): short- and long-term results. J Int Med. 2011;3(9):1090–1098. https://doi.org/10.1177/1473230X110900344.
14. Ng JY, Reason S, Ng JY. Idiopathic portal vein thrombosis in a non-cirrhotic patient: a discussion of management and a review of literature. Cureus. 2021;13(8). https://doi.org/10.7759/CUREUS.17445.
15. Majid Z, Tahir F, Arif T Bin, Ahmed J. Chronic non-cirrhotic portal vein thrombosis with cavernous transformation secondary to protein C and S deficiency. Cureus. 2020;12(2). https://doi.org/10.7759/CUREUS.7142.
16. Kofale B, Tegegne CT, Degu A, Tadega M, Tesfai D. Prevalence and risk factors of thromboembolism among patients with coronavirus disease-19: a systematic review and meta-analysis. Clin Appl Thromb Hemost. 2020;26. https://doi.org/10.1002/throm.26078.
17. Tripolino C, Pizzuni AM, Zaccaroni S, et al. Is SARS-CoV-2 infection an emerging risk factor for splanchic venous thrombosis? Clin Hemorheol Microm. 2021;78(2):347–355. https://doi.org/10.3233/CH-2121256.
18. Sonzogni A, Previtali C, Segrezzini M, et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int Off J Int Assoc Study Liver. 2020;40(9):2110–2116. https://doi.org/10.1111/liv.14601.
19. Frassé M, Logre E, Pajot O, Mentzé H, Plantefève G, Contou D. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Clin Care. 2020;24:1–4. https://doi.org/10.1177/135402020-03025-y.
20. Artifoni M, Danic G, Gautier C, et al. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of D-dimer as predictive factors. J Thromb Thrombolysis. 2020;50(1):211–216. https://doi.org/10.1007/s11239-020-02146-z.
21. Gaisbhai-Armelin PR, de Oliveira AB, Ferrisse TM, et al. COVID-19 (SARS-CoV-2) infection and thrombotic events: a systematic review and analysis. Eur J Clin Invest. 2021;51(6), e13559. https://doi.org/10.1111/eci.13559.
22. Chen S, Zhang D, Zheng T, Yu Y, Jiang J. DVT incidence and risk factors in critically ill patients with COVID-19. J Thromb Thrombolysis. 2020. https://doi.org/10.1007/s11239-020-02181-w. Published online.
23. Deneloro-rodriguez P, Cervilla-munoz E, Ordojenes-ortega L, Parra-virto A. Since January 2020 Elsevier Has Created a COVID-19 Resource Centre with Free Information in English and Mandarin on the Novel Coronavirus COVID-19. The COVID-19 Resource Centre Is Hosted. Elsevier Connect, the company’s public news and information; 2020.(January.
24. Middeldorp S, Coppens M, van Haefs TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18(9):1005–2002. https://doi.org/10.1111/j.1448-8545.2020.05392.x. Published online.
25. Fujiyama S, Saitoh S, Kawamura Y, et al. Portal vein thrombosis in liver cirrhosis: incidence, management, and outcome. BMC Gastroenterol. 2017;17(1). https://doi.org/10.1186/s12876-017-0686-8.
26. Taquet M, Husain M, Geddes JR, Luciano S, Harrison PJ. Cerebral venous
thrombosis and portal vein thrombosis: a retrospective cohort study of 537,913 COVID-19 cases. EClinicalMedicine. 2021;39, 101061. https://doi.org/10.1016/j.eclinm.2021.101061.

27. Li Y, Li M, Wang M, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol. 2020;5(3): 279–284. https://doi.org/10.1136/svn-2020-000431.

28. Stoneham SM, Milne KM, Nuttall E, et al. Thrombotic risk in COVID-19: a case series and case-control study. Clin Med J R Coll Physicians London. 2020;20(4): E76–E81. https://doi.org/10.7861/CLINMED.2020-0228.

29. Intagliata NM, Caldwell SH, Tripodi A. Diagnosis, development, and treatment of portal vein thrombosis in patients with and without cirrhosis. Gastroenterology. 2019;156(6):1582.e1599. https://doi.org/10.1053/j.gastro.2019.01.265.

30. Seijo S, PhD, Plessier A. Noncirrhotic Nontumoral Portal Vein Thrombosis. 2014;3(6):118-121. doi:10.1002/cld.336.

31. Randhawa J, Kaur J, Randhawa HS, Kaur S, Singh H. Thrombosis of the portal vein and superior mesenteric vein in a patient with subclinical COVID-19 infection. Cureus. 2021;13(4), e14366. https://doi.org/10.7759/cureus.14366.

32. Rehman A, Thoppil AJ, Wallach SL. Portal vein thrombosis and splenic infarction in a COVID-19 patient. Cureus. 2021;13(8), e16843. https://doi.org/10.7759/cureus.16843.

33. Rivera-Alonso D, Rivera-Alonso I, Burneo-Esteves M, Martinez-Ruiz C, Rojo-Abecia M, Moreno-Sanguino C. Acute portal vein thrombosis in mild cholecystitis. A consequence of coronavirus disease 2019 infection? Cir Cir. 2021;89(3):399.e402. https://doi.org/10.24875/CIRU.20001044.

34. Sharma N, Shukla R, Kumar K, Arora S, Warrier R, Philip S. Portal vein thrombosis-a rare complication of SARS-CoV-2 infection. VN Compr Clin Med. 2021;3(6):1416–1419. https://doi.org/10.1007/s42399-021-00877-5.

35. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence and consequences of systemic arterial thrombotic events in COVID - 19 patients. J Thromb Thrombolysis. 2020;50(3):543–547. https://doi.org/10.1007/s11239-020-02176-7.

36. Bilaloglu S, Aphinyanaphongs Y, Jones S, Iturrate E, Hochman J, Berger JS. Thrombosis in hospitalized patients with COVID-19 in a New York city health system. JAMA. 2020;324(8):799–801. https://doi.org/10.1001/jama.2020.13372.

37. Hosoda T, Orikasa H. A fatal case of extensive gastrointestinal necrosis due to portal and mesenteric vein thrombosis in the post-acute phase of COVID-19. J Infect Chemother Off J Japan Soc Chemother. 2022;28(1):108–111. https://doi.org/10.1016/j.jiac.2021.10.015.

38. Kiat Y, Claire T, Aloysius G, et al. COVID - 19 and ischemic stroke : a systematic review and meta - summary of the literature. J Thromb Thrombolysis. 2020;191:148.e150. https://doi.org/10.1016/j.thromres.2020.04.041.

39. Hosoda T, Orikasa H. A fatal case of extensive gastrointestinal necrosis due to portal and mesenteric vein thrombosis in the post-acute phase of COVID-19. J Infect Chemother Off J Japan Soc Chemother. 2022;28(1):108–111. https://doi.org/10.1016/j.jiac.2021.10.015.