Evaluation of Anti-Quorum Sensing Activity of 97 Indigenous Plant Extracts From Korea through Bioreporter Bacterial Strains Chromobacterium violaceum and Pseudomonas aeruginosa

Dereje Damte1, Elias Gebru1, Seung-Jin Lee1, Joo-Won Suh2,3 and Seung-Chun Park1*

1Department of Pharmacology, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, South Korea, Korea
2Center for Nutraceutical and Pharmaceutical Materials, Science campus, Myongji University, San 38-2, Namdong, Cheoin-Gu, Yongin, Gyeonggi, 449-728, Korea
3Division of Bioscience and Bioinformatics, Science campus, Myongji University, San 38-2, Namdong, Cheoin-Gu, Yongin, Gyeonggi, 449-728, Korea

Abstract

Quorum sensing (QS) is a recently discovered chemical communication system that enhances survival of bacteria, as a group allowing resident bacteria to assume specialized roles vital for intra- and inter bacterial gene regulation, and for keeping bacterial colonies intact. Furthermore, with the continuing emergence and spread of multidrug-resistant bacteria, antipathogenic strategy to combat bacterial infections through the interruption of quorum sensing controlled virulence factors had been shown to receive increased attention. With this prospect in the current study, we attempt to screen anti-quorum sensing activity of 97 indigenous plant extracts from Korea, through biomonitor bacterial strains, Chromobacterium violaceum (CV12472) and Pseudomonas aeruginosa (PAO1). Standard disc-diffusion assays were used to detect anti-quorum sensing activity (ring of colorless, but viable cells around the disk), of the plant extracts for CV12472. A special swarm media that allow swarming motility growth of POA1 was used to conduct inhibition of swarming motility assay. Minimum Inhibitory Concentration (MIC) test for the 97 plant extracts against bioreporter strains (CV12472 and PAO1) revealed antibacterial activity of three plant extracts (Potentilla cryptotaeniae, Viburnum carlesii and Prunus ammenica var. ansu). Out of the 97 plant extracts, significant inhibition of pigment production were detected by six plant extracts in CV12472, while 16 plant extracts had shown inhibition of swarming motility in POA1. In conclusion, a total of 18 plant extracts were screened for their anti-quorum sensing activity by the two bioreporter strains. Of the 18 plant extracts, four had shown anti-quorum activities in both bioreporter strains.

Keywords: Quorum sensing; 97 plant extracts; Chromobacterium violaceum; Pseudomonas aeruginosa

Introduction

The rising challenge paused by infectious bacterial drug resistance could easily be recognized from the loss of susceptibility observed in about 70% of the bacteria, that cause infections to a minimum of one drug among the routinely used treatment [1]. For example E. coli isolate in US showed an increase from 3 to 17.1% in resistance from 2000 to 2010 for ciprofloxacin [2]. Furthermore, some organisms are resistant to all approved antibiotics, because the environmental antibiotics pressure activates the evolutionary mechanisms that select for resistant strains.

Quorum sensing is a recently discovered chemical communication system that enhances survival of bacteria, as a group allowing resident bacteria to assume specialized roles vital for intra- and inter bacterial gene regulation, and for keeping bacterial colonies intact. These involve several processes, such as specific signaling molecules that bind to and activate receptors that transduce the quorum-sensing signal into intracellular second messenger responses, in a similar fashion to ligand-receptor interaction [3]. This similarity opens a novel alternative that should be looked for in combating drug resistance by the infectious bacteria, with inhibitor drugs that could be designed using current standard pharmacologic principles [3,4]. Therefore, quorum-sensing inhibition offers new hope in combating resistant bacteria with inhibitor drugs that might have novel mechanisms of action, and could, therefore, be more effective against antibiotic-resistant strains of bacteria. In this aspect, although the already known quorum sensing inhibitor halogenated furanones from Delisea pulchra failed to pass for clinical therapeutic use due to its toxicity, and still there are no such drug inhibitors that are currently used clinically, the attempt is an indicative of the potential of the alternative option in combating antibiotic resistance and good example of proving this hypothesis [5]. Other attempts in identifying candidate anti-quorum sensing activities by extracts of garlic, vanilla and essential oil had been reported previously [6,7]. In the current study, we aim to screen anti-quorum sensing activity of 97 indigenous plant extracts from Korea through biomonitor bacterial strains, Chromobacterium violaceum and Pseudomonas aeruginosa.

Materials and Methods

Collection of plant material

One hundred methanol plant extracts (Table 1) from 97 plant species collection were prepared and provided by Korea Research Institute of Bioscience and Biotechnology (KRIBB), for this study. Plant extract selection was simply by availability.

Bacterial strains and culture medium

Bio-reporter strain C. violaceum (CV12472), a wild strain,
No.	Species Name	Family name	Parts extracts prepared
1	Morus bombycis for. kase	Moraceae	Leaf, Stem
2	Quercus aliena	Fagaceae	Leaf, Stem
3	Forsythia koenae	Oleaceae	Leaf, Stem
4	Rumex longifolius	Polygonaceae	Whole plant
5	Papaver rhoes	Papaveraceae	Whole plant
6	Boehmeria tricuspis	Urticaceae	Whole plant
7	Philadelphia schrenckii	Saxifragaceae	Leaf, Stem, Flower
8	Aci pumt vari. mono	Acraceae	Leaf, Stem
9	Rubus phoenicolasius	Rosaceae	Leaf, Stem, Flower
10	Securinega sulphurella	Euphorbiaceae	Leaf, Stem
11	Carex neurocarpa	Cyperaceae	Whole plant
12	Angelica dahurica	Umbellifera	Root
13	Lonicera vesicaria	Caprifoliaceae	Leaf, Stem
14	Prunus padus	Rosaceae	Leaf, Stem, Flower
15	Beta vulgaris var. cicla	Chenopodiaceae	Whole plant
16	It is saviatre	Iridaceae	Whole plant
17	Sciadopitys verticillata	Taxodiaceae	Leaf
18	Calendula arvensis	Composite	Whole plant
19	Draba nemorosa var. hebecarpa	Cruciferae	Whole plant
20	Silene aemoria	Caryophyllaceae	Whole plant
21	Junipenis rigida	Cupressaceae	Leaf, Stem
22	Celastrus orbiculatus	Celastraceae	Leaf, Stem
23	Clerodendrum trichotomum	Verbenaceae	Leaf, Stem
24	Ulmus davidiana var. japonica	Ulmaceae	Leaf, Stem
25	Ambrosia trifida	Composite	Whole plant
26	Rheum undulatum	Polygonaceae	Whole plant
27	Cocculus trilobus	Menispermacae	Whole plant
28	Rodgeriales podophylla	Saxifragaceae	Underground
29	Aerial continentalis	Araliaceae	Whole plant
30	Sambucus williams vari. coreana	Caprifoliaceae	Leaf
31	Sedum oregifolium	Crassulaceae	Whole plant
32	Grapnhamillum affine	Compositae	Whole plant
33	Allium sativum for. pekinense	Liliaceae	Whole plant
34	Tagetes patula	Compositae	Whole plant
35	Sambucus sieboldiana var. pendula	Caprifoliaceae	Leaf, Seed
36	Persicaria seneciosa	Polygonaceae	Ground
37	Persicaria perforlata	Polygonaceae	Whole plant
38	Chenopodium album var. centrorubrum	Chenopodiaceae	Leaf, Stem
39	Potentilla cryptolataeae	Rosaceae	Whole plant
40	Epilobium pyrroclophum	Onagraceae	Whole plant
41	Pinus densiflora for. multicaulis	Pinaceae	Stem
42	Dictamus dasycarpus	Rutaceae	Whole plant
43	Pinus bungeana	Pinaceae	Stem
44	Lotus corniculatus var. japonicus	Leguminosae	Whole plant
45	Carex parviflora var. macroglosa	Cyperaceae	Whole plant
46	Eulaeagnus umbellate	Eulaeagnaceae	Leaf, Seed
47	Viburnum carlesi	Caprifoliaceae	Leaf, Stem, Flower
48	Oryza sativa var. terrestris	Gramineae	Whole plant
49	Prunus ammeniaca var. ansu	Rosaceae	Leaf, Stem
50	Orika japonica	Rutaceae	Leaf, Stem, Flower
51	Taraxacum officinale	Compositae	Whole plant
52	Stachys riederi var. japonica	Labiatae	Whole plant
53	Phnomis umbrosa	Labiatae	Whole plant
54	Senecio integrifolius var. spathalathus	Compositae	Whole plant
55	Potentilla discolor	Rosaceae	Whole plant
56	Centaurea cyanus	Compositae	Whole plant
57	Nymphaea tetragona var. angusta	Nymphaeaceae	Underground
58	Astariea koreana	Saxifragaceae	Whole plant
59	Eudora daniieli	Rutaceae	Stem
60	Passiflora coerulea	Passifloraceae	Ground
61	Spianica oleara	Chenopodiaceae	Whole plant
62	Ixiris dentata	Compositae	Whole plant
63	Robinia pseudo-acacia	Leguminosae	Leaf, Stem
64	Rumex acetocefa	Polygonaceae	Whole plant
65	Crataegus maximowsicizi	Rosaceae	Leaf, Stem, Flower
66	Prunus salicina var. columnatis	Rosaceae	Leaf, Stem, Flower
67	Mallotus japonicus	Euphorbiaceae	Leaf, Stem
68	Paulownia coreana	Scrophulariaceae	Stem-Bark
69	Cucumis sativus	Cucurbitaceae	Ground
70	Vitis amurensis	Vitaceae	Leaf, Stem
71	Acer saccharinum	Aceraceae	Leaf, Stem
72	Potentilla nivea	Rosaceae	Whole plant
73	Magnoliob obovata	Magnoliaceae	Leaf, Stem
74	Ardisia japonica	Myrsinaceae	Whole plant
75	Hydrocharis dubia	Hydrocharitaceae	Whole plant
76	Callicarpa japonica	Verbeanaeae	Leaf, Stem
77	Mellotus suaveolens	Leguminosae	Ground
78	Cephalonclos setegum	Compositae	Whole plant
79	Boheheria scipica	Urticaceae	Leaf, Stem
80	Carex pumila	Cyperaceae	Whole plant
81	Ligurium obtusifolium	Oleaceae	Leaf, stem
82	Rosa multiflora	Rosaceae	Leaf, Stem
83	Lilium lancifolium	Lilaceae	Whole plant
84	Pimpinella brachycarpa	Umbelliferae	Whole plant
85	Paulownia tomentosa	Scrophulariaceae	Leaf
86	Aster scaber	Compositae	Whole plant
87	Portulaica grandiflora	Portulacaceae	Whole plant
88	Cornus controversa	Cornaceae	Leaf, Stem
89	Lysmachia cletroides	Primulaceae	Whole plant
90	Disporum viridescens	Liliaceae	Whole plant
91	Achilea sibirica	Compositae	Whole plant
92	Phyma leptostachya var. asiatica	Phymaceae	Whole plant
93	Dianthus sinensis	Caryophyllaceae	Whole plant
94	Vitis vinifera	Vitaceae	Ground
95	Cleome spinosa	Capparidaceae	Ground
96	Humulus japonicus	Cannabisaceae	Ground
97	Viola patrina	Violaceae	Whole plant

Table 1: List of plant species and their parts extracts prepared for anti-quorum sensing activity.

Producing quorum sensing controlled purple pigment violacein, that produces and responds to the cognate C₃ and C₆ Acyl Homoserine Lactones (AHls), an important intercellular signaling molecules used by bacteria to monitor their population density, and P. aeruginosa (PAO1), a pathogenic strain with many traits controlled by quorum sensing signaling, including swarming motility were used in the study. A stock culture of Chromobacterium violaceum (C. violaceum) was purchased from Sigma stock. Chromobacterium violaceum (C. violaceum) was provided by Professor Stephen K Farrand, University of Illinois, USA. Unless and otherwise stated, all strains were grown in LB broth and Agar (1% tryptone, 0.5% yeast extract, 1% NaCl and 1.5% agar) media, with temperature ranging 30-37°C.
Determination of MIC

MIC of the 97 plant extracts was determined against biosensor strains *C. violaceum* (CV12472), and *P. aeruginosa* (PA01) by broth macrodilution method. MIC was defined as the minimum concentration of plant extracts at which there was no visible growth of test strain.

Bioassay for anti-quorum sensing

Disk diffusion assay, swarming motility assay and flask incubation assay were selected for their simplicity, and ability to easily and inexpensively investigating large number of biological materials, for their potential anti-quorum sensing activity. The flask incubation assay has also an advantage on to quantify the production of the violacein production by *C. violaceum* (CV12472).

Disk diffusion assay

The Disk diffusion assay is an assay used to evaluate anti-QS activity by evaluating zones of inhibition around the disk, in a similar fashion to a standard disk diffusion assay used for antibacterial activity test. Standard disc-diffusion assays were used to detect anti-QS activity of the plant extracts, as previously described [8]. Briefly, each extract (50 µL) was loaded onto sterile disks (6 mm diameter), placed onto prepared LB plates spread with overnight culture (100 µL) of *C. violaceum* (CV12472). Plates were incubated at 30°C overnight and anti-QS activity was detected by a ring of colorless, but viable cells around the disk. Measurements were made from the outer edge of the disks to the edge of the zones of anti-QS activity. Purified halogenated furanon (100 µg) was used as a positive control for anti-QS activity, and methanol (20 µL) as a negative control. The methanol was allowed to evaporate from the control and sample discs before testing, to eliminate toxicity. A third control (Orbifloxacin 10 µg per disc) was included to compare antibiotic effect with anti-QS activity.

Swarming motility assay (P. aeruginosa PA01)

The Swarming motility assay were conducted with LB media, consisted of 0.5% (wt/vol) Difco bacto-agar, to which 5 g/liter glucose was added. Swarm plates (small size Petri dish (30×10)) were typically allowed to dry at room temperature overnight, before being used. Swarm plates prepared with 50 µL extracts were inoculated with bacteria from an overnight culture in LB agar, and incubated for 24 hr at 30°C. Levels of the swarming were determined by measuring diameters of the swarms and comparing it with the control.

Flask incubation assay for quantification of violacein production

The flask incubation assay used to quantify anti QS activity was determined, as described elsewhere [7]. Briefly, *Chromobacterium violaceum* (CV12472) was incubated for 16-18 h and inoculated to OD₅₆₅nm=0.1 in Erlenmeyer flasks containing 20 mL LB, LB supplemented with Furanon, and LB supplemented with extracts at concentrations of 1% plant extracts and 1 µg/mL of Furanon. The flasks were incubated at 30°C, with 150 rev min⁻¹ agitation for 24 h in a shaking incubator. Then after from each flask, 1 mL of culture sample was transferred to 1.5 mL e-tube and centrifuged at 13 000 rev min⁻¹ for 10 min to precipitate the insoluble violacein. After discarding the culture supernatant, 1 mL of DMSO was added to the pellet and vortexed vigorously for 30 s, to completely solubilize violacein and centrifuged at 13 000 rev min⁻¹ for 10 min to remove the cells. From the violacein-containing supernatants, 200 µL were transferred to four wells of 96-well flat bottomed microplates (SPL Life science, Gyeonggi-do, Korea), per each extract and control samples, and the absorbance was read with a microplate reader (Versa max Molecular Devices, Sunnyvale, CA, USA), at a wavelength of 585 nm. To confirm any antibacterial activity by the extracts in each flask, 100 µL of culture was collected and serially diluted to factors of 10⁻¹⁻¹⁸, and 100 µL of the diluted cultures were spread on LB-agar plates from each flask. The plates were incubated at 30°C for 24 h, and bacterial colony counts were compared with control.

Results

Antibacterial activity against test organisms

MIC test for the 97 plant extracts against bio-reporter strains (CV12472 and PA01) revealed no inhibition (≥ 8.4% v/v), except three plants (*Potentilla cryptantha varia, Viburnum carlesii* and *Prunus armeniaca var. ansu*), which have showed antibacterial activity at 8.4% (v/v) concentration for *P. aeruginosa* and one (*Viburnum carlesii*) for *C. violaceum* at the same concentration.

Anti-quorum sensing activities against C. violaceum and P. aeruginosa

Production of purple colored violacein pigmentation by quorum sensing chemical communications in *C. violaceum* provides a naturally occurring, readily observable phenotype, without the need for additional substrate, and eases the evaluation of quorum sensing inhibition of compounds in this bacterium [9]. Using this bacterium, 97 plant extracts (Table 1) were screened for anti-quorum sensing activities, out of which significant inhibition of pigment production were detected by six plant extracts (Table 2). Except one, all the remaining five plant extracts did not show antibacterial activity. This might be an important trait, as quorum sensing inhibition is focused on the interference of bacterial signaling. Our result did not show any growth inhibition zones of test organism, except *Viburnum carlesii* extract (Figure 1). Furthermore, besides the MIC test, additional experiments of disc diffusion assay at higher doses by all the 97 plant extract shown inhibition zones, only by the three plant extracts similar to the MIC test, indicating the tested plant extracts have less antibacterial effect on the growth of *C. violaceum*.

In case of *P. aeruginosa*, flagellar motility dependent swarming are under regulation of quorum sensing related gene expressions with other virulence characters, such as biofilm formation and proteolytic activity. This surface translocation on the surface of agar, 0.45% or more in concentration, supports a swarming motility has been considered as quorum sensing inhibitor indicator [6,10]. From the 97 plant extracts we investigated for quorum sensing inhibition of *P. aeruginosa*, as measured by the inhibition of swarming motility, 16 plant extracts had shown inhibition of quorum sensing activity against *P. aeruginosa* (Table 2). The plant extracts show inhibition, ranging from 33.33-71.42% compared to the control (Figure 2). From the 16 plant extracts, four of them have also shown inhibition of pigment production in *C. violaceum*. Furthermore, the inhibitory activity of the six plant extracts against bacterial quorum sensing was determined using violacein production. As indicated in figure 2 (Left panel), significant reduction in violcin production compared to the normal control in *C. violaceum* CV12472 was observed by all the six plant extracts (P<0.05), while bacterial cell count performed on LB Agar plates at 24 h incubation from the same experimental flask of the inhibition experiments revealed no significant difference in the number of colony forming units (CFU) (Figure 2 (Right panel)).
Table 2: Result summary for screening of 97 plant extracts anti-quorum sensing activity with C. violaceum and P. aeruginosa.

Species Name	Family name	Parts extracts prepared	Zone of inhibition
Rumex longifolious	Polygonaceae	Ground	14 (66.67)
Rubus phoenicolasius	Rosaceae	Leaf, Stem	15 (71.42)
Carex neurocarpa	Cyperaceae	Whole plant	11 (52.38)
Securinega suffruticosa	Euphorbiaceae	Leaf, Stem	3
Angelica dahurica	Umbelliferae	Root	4
Prunus Padus	Rosaceae	Leaf, Stem, Flower	11 (52.38)
Calendula arvensis	Compositae	Whole plant	13 (61.9)
Silene armeria	Caryophylliaceae	Whole plant	13 (61.9)
Rodgersia podophylla	Saxifragaceae	Underground	6
Potentilla cryploaenae	Rosaceae	Whole plant	13 (61.9)
Pinus bungeana	Pinaceae	Stem	14 (66.67)
Viburnum carlesii	Caprifoliaceae	Leaf, Stem, Flower	6 (71.42)
Prunus armeniaca var. ansu	Rosaceae	Stem	13 (61.9)
Centaurea cyanus	Compositae	Whole plant	13 (61.9)
Nymphaea tetragona var. angusts	Nymphaceae	Underground	12 (71.43)
Malotus japonicus	Euphorbiaceae	Leaf, Stem	7 (33.33)
Pimpinella brachycarpa	Umbelliferae	Whole plant	9 (42.85)
Disporum viridescens	Liliaceae	Whole plant	14 (66.67)
Control			
Furanon	Positive control		5 (80.95)
Orbifloxacin	Antibiotic		2 (9.52)

*Zones are in mm beyond the sample disk** Zones are the diameters untreated swarming movements minus the treated swarming movement in mm

Figure 1: Anti-quorum sensing activity of (A) six plant extracts against C. violaceum with disc diffusion assay and (B) a selected representative extracts anti-quorum sensing activities against P. aeruginosa swarming motility. Methanol (Met) and Orbifloxacin (Orb).

Figure 2: Inhibition of violacein production and bacterial cell count by flask incubation assay. Violacein production inhibition (Left panel) and bacterial count from the same experiment (Right panel) by the six plant extract as measured spectrophotometrically, as described in the materials and methods. Data are presented as mean ± SD of absorbance at 585 nm for violacein production, and as the logarithm of mean CFU ± SD for bacterial count (*P>0.05).
Discussion

Recently, because of continuing emergence and spread of multidrug-resistant bacteria, antipathogenic strategy to combat bacterial infections through the interruption of quorum sensing controlled virulence factors has received increased attention [11]. In the present study, the most known cases of quorum sensing system regulated phenotypes, the pigment production by C. violaceum bio-reporter strain and the swarming motility of P. aeruginosa potential were utilized to screen 97 plant extracts for their quorum sensing inhibition potentials. These plant extracts investigated for their anti-quorum sensing potential were selected from indigenous and other Korean plants of bio-sources. Our findings indicated the potentials of the indigenous and other plants as a source of anti-quorum sensing compounds, and highlight the importance of evaluating the unexplored diversity of indigenous and other plant bio-sources, besides the usual evaluation of traditionally used medicinal plant sources for such activity. Besides, this is the first report on anti-quorum sensing activity form indigenous plants bio-sources of Korea. However, others have reported anti-quorum sensing activity of medicinal plant, essential oil and edible plants and fruits extracts of phytochemicals [4,6,8,12,13]. Contrary to our observation in previous studies, most of the plant extracts in this study have not shown any antibacterial activity, even at their higher concentrations. This might be due to the effects of the extract compounds in limited molecular target areas, that might involve only in quorum sensing signaling of the bacteria [4,6,8].

While four plant extracts were inhibiting quorum sensing of both C. violaceum pigment production and the swarming motility of P. aeruginosa, 2 and 12 other plant extracts were observed, inhibiting quorum sensing and the swarming motility of C. violaceum and P. aeruginosa, respectively. This is suggestive of the responsible compounds of the four plant extracts have a broad spectrum effect in inhibiting, both the signaling involved in pigment production of C. violaceum, and the swarming motility of P. aeruginosa. On the other hand, the higher numbers of plant extracts observed inhibiting the swarming motility of P. aeruginosa might be due to many down and upstream signaling involved the swarming motility of P. aeruginosa, creating multiple targets of interaction for inhibitions by compounds of many plant extracts.

The observation of anti-quorum sensing activities of plant extracts from more than one plant species from one family, such as Euphorbiaceae, Rosaceae, Compositae suggests further studies of other plants species in this families.

In summary, the selected indigenous and other Korean plants of bio-sources may have a potential, and serve as important as medicinal plants species in this families.

Acknowledgement

We are very thankful to Professor Stephen K Farrand, University of Illinois, USA for providing P. aeruginosa (PAO1) for this study. This work was supported in part by a grant from the Next-Generation BioGreen 21 Program (No. PJ009007), Rural Development Administration, Republic of Korea, and in part by the Ministry of Knowledge Economy (MKE), Korea Institute for Advancement of Technology (KIAT), through the Inter-ER Cooperation Projects.

References

1. van der Bij AK, Pitout JD (2012) The role of international travel in the worldwide spread of multidrug-resistant Enterobacteriaceae. J Antimicrob Chemotherapy 67: 2090-2100.
2. Sanchez GV, Master RN, Karlowsky JA, Bordon JM (2012) In vitro antimicrobial resistance of urinary Escherichia coli isolates among U.S. outpatients from 2000 to 2010. Antimicrob Agents Chemotherapy 56: 2181-2183.
3. Raffa RB, Iannuzzo JR, Levine DR, Saied KK, Schwartz RC, et al. (2005) Bacterial communication ("quorum sensing") via ligands and receptors: a novel pharmacologic target for the design of antibiotic drugs. J Pharmacol Exp Ther 312: 417-423.
4. Musthafa KS, Ravi AV, Annapoorni A, Packiavathy IS, Pandian SK (2010) Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acylhomoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy 56: 333-339.
5. Manefield M, de Nys R, Kumar N, Read R, Givskov M, et al. (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145: 283-291.
6. Khan MS, Zahn M, Hasan S, Huisam FN, Ahmad I (2009) Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Lett Appl Microbiol 49: 354-360.
7. Choo JH, Rukayadi Y, Hwang JK (2006) Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 42: 637-641.
8. Adonizio AL, Downum K, Bennett BC, Mathee K (2006) Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol 105: 427-435.
9. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, et al. (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacin production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 3703-3711.
10. Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97: 4885-4890.
11. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112: 1300-1307.
12. Adonizio A, Kong KF, Mathee K (2008) Inhibition of quorum-sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemotherapy 52: 198-203.
13. Issac Abraham SV, Palani A, Ramaswamy BR, Shunmugah KP, Arumugam VR (2011) Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res 42: 658-668.