Species Composition, Seasonal Occurrence and Abundance of Freshwater Fishes in Ayeyarwady River Segment, Sagaing Region, Upper Myanmar

May Lei Win¹ and Than Than Myint²

¹Department of Zoology, Shwebo University, Upper Myanmar
²Department of Zoology, MaU bin University, Lower Manmar

*Corresponding author, Email address: maymoung@gmail.com

Abstract

The study was carried out to assess the fish species composition, seasonal occurrence, and abundance at Ayeyarwady River segment, Sagaing Region, upper Myanmar from July 2017 to June 2018. A total number of 52 species of 37 genera distributed among 20 families and 10 orders of freshwater fishes were recorded during the study period. The highest composition of species was observed in the order Cypriniformes and the lowest in Osteoglossiformes, Anguilliformes, Beloniformes and Tetraodontiformes. The highest number of species was recorded in October (cool season) and the lowest were noted in June (dry season) during the study period. The highest numbers of individuals was recorded in order Clupeiformes. According to relative abundance value, the four species were noted as very common (Vc), eight species were common (C), and the remaining 39 species were categorized as uncommon species (Uc). Out of the 51 species recorded, 25 species were encountered at every month and the total of five endemic species and one introduced species was observed during the study period.

Key words: species composition, seasonal occurrence, abundance, endemic
1. Introduction

Myanmar is endowed with a rich resource of freshwater and brackish-water fisheries due to its extensive large river systems running North to South and a huge network of river systems in the Ayeyarwady River.

No complete and precise list of all the fish in the Irrawaddy river basin currently exists, but in 1996 it was estimated that there are about 200 species. In 2008, it was estimated that the Irrawaddy ecoregion is home to 119-195 species of fish found nowhere else in the world (endemic). Several new species of fish have been described from the Irrawaddy river basin in recent years (for example, the cyprinid *Danio htamanthinus* in 2016 and the stone loach *Malihkaia aligera* in 2017), and it is likely that undescribed species remain (Wikipedia, 2017).

Ayeyarwady River is an important natural shelter for many aquatic flora and fauna which is less studied. The study of freshwater fishes in Ayeyarwady segment may be essential as one of the corner stone for conservation scheme of biological resources in Myanmar. It is hoped that this paper would provide some information for further research work. Thus, the present study was carried out within the specific area with the following objectives, 1) to investigate and record the freshwater fish in Ayeyarwady Segment, 2) to record relative abundance of fishes in the study area.

2. Materials and Methods

Study Area and Study Period

It was selected Ayeyarwady segment between Kyauk Myaung Township (22° 35' 05"N and 95° 57' 15" E) and Sagaing Township (21° 52' 30"N and 96° 59' 20" E), Sagaing Region. The studied area of Ayeyarwady River is about 80 km (49.7 miles) in length. The present study was undertaken from July 2017 to June 2018 (Figure 1).
Collection, Preservation and Identification of Specimens

In this study, collection of specimen was made with the helpfulness of local fishermen. Fish sampling and landings survey were done twice a month. Fish samples were collected in Ayeyarwady segment at early morning and evening. Sample fishes at different species were randomly selected from the catches of different fishing gears in the River. The photographs of fresh specimens were taken by using digital camera. Measurements were also taken on sample fishes to aid the identification process using keys provided by Day (1878), Lagler (1977), Talwar, and Jhingran (1991), Jayaram (2013), Fish Base (2017). After identification, all fishes were maintained in laboratory of Zoology Department, Shwebo University for later taxonomical revision.

Analysis of Data

Based on the recorded fish species, relative compositions of species in different orders were analyzed. Native, introduced, and endemic fish species were classified among
the recorded species according to FishBase, 2017 during the study period. The recorded data were analyzed as following.

Relative Abundance (Bisht et al., 2004)

\[
\text{Relative abundance} = \frac{\text{Number of individuals in each a species}}{\text{Total number of individuals of all the observed species}}
\]

The average relative abundance was categorized as:

- **Uncommon (uC)** = having relative abundance less than 0.0100
- **Common (C)** = having relative abundance of 0.0100 and above but less than 0.0500
- **Very common (vC)** = having relative abundance of 0.0500 and above

3. Results and Discussion

Species Composition of Fishes in the Different Orders

A total number of 52 species of 37 genera distributed among 20 families and 10 orders of freshwater fishes were recorded during the study period (Table 1).

Table 1. Composition and percentage representation of freshwater fishes in each order

Order	Family	Genus	Species	Percentage (%)
Clupeiformes	1	1	2	4
Osteoglossiformes	1	1	1	2
Anguilliformes	1	1	1	2
Cypriniformes	3	11	19	36
Perciformes	5	5	5	9
Anabantiformes	2	2	2	4
Synbranchiformes	1	2	4	8
Siluriformes	4	12	16	31
Beloniformes	1	1	1	2
Tetraodontiformes	1	1	1	2
Total	20	37	52	100
The species *Gudusia chapra* (Indian river shad) and *G. variegata* (Burmese river shad) were recorded under the Family Clupeidae of Order Clupeiformes, *Notopterus notopterus* (Grey featherback) was recorded under the Family Notopteridae of Order Osteoglossiformes. The species *Anguilla bengalensis* (Indian mottled eel) under Family Anguillidae was recorded in Order Anguilliformes (Figure 4).

In Order Cypriniformes, 15 species were recorded, and those are *Catala catala* (Indian carp), *Cirrhinus marigala* (Marigal), *Labeo rohita* (Rohu), *L. calbasu* (Orange fin labeo), *L. stolikae* (Minor carp), *L. angra* (Angra label), *L. bata* (Bata), *Puntius sophore* (Spot fin swamp barb), *P. sarana* (Olive barb), *Salmostoma sardinella* (Sardinella razorbelly minnow), *Amblypharyngodon atkinssonii* (Burmese carplet), *Barilius guttatus* (Burmese trout), *B. gatensis* (River carp baril), *Osteobrama belangeri* (Manipur osteobrama) and *O. alfrediana* (Copper minnow). The species *Acanthopsis choirorhynchos* (Horseface loach) and *Lepidocephalus thermalis* (Malabar loach) were found under the Family Cyprinidae, *Botia berdmorei* (Blyth's loach) from Cobitidae, and *Botia histrionica* (Burmese loach) under the Family Botiidae (Figure 4).

The five species of *Mystus cavasius* (Gangetic mystus), *M. pulcher* (Pulcher mystus), *M. leucophasis* (Sittaung mystus), *Hemibagrus microphthalmus* (Ayeyarwady mystus), *Sperata acicularis* (Long-whiskered catfish) under the Family Bagridae; *Eutropiichthys vacha* (Batchwa vacha), *Clupisoma prateri* (catfish), *Clupisoma macrophthalmus* (catfish) and *Neotropius atherinoides* (Indian postasi) under the Family Schilbeidae; *Ompok pabo* (Pabo catfish) and *Wallago attu* (Boal) under the Family Siluridae; *Gagata dolichonema* (Gagata), *G. melanopterus* (Gatata), *Bagarius yarrelli* (Yellow catfish), *Glyptothorax sinensis* (Yellow catfish) and *Rita rita* (Rita) under the Family Bagridae were noted under the Order Siluriformes (Figure 5).
In Order Beloniformes, the one species, *Xenentodon cancila* (freshwater garfish) was observed under the Family Belonidae. Five species belonging to five families were found to be observed in Order Perciformes. These species were *Rhinomugil corsula* (Corsula mullet) under the family of Mugilidae, *Parambassis ranga* (Indian glassy fish) under the Family Ambassidae; *Oreochromis* sp. (Tilapia) under the Family Cichlidae; *Trichopodus pectoralis* (Snakeskin gourami) under the Family Osphronemidae; *Glossogobius giuris* (Tank goby) under the Family Gobidae (Figure 5).

Anabas testudineus (Climbing perch) from the Family Anabantidae and *Channa striata* (Striped snakehead)) from the Family Channidae belong to Order Anabantiformes were also noticed, respectively. In order Synbranchiformes, the four species of *Macrognathus aculeatus* (Lesser spiny eel) *M. zebrinus* (Zebra spiny eel), *Mastacembelus armatus* (Tire-track spiny eel) and *M. unicolor* (Spotted eel) of family Mastacembelidae were recorded. The only one species *Tetraodon cutcutia* (Ocellated pufferfish) was noted in the Family Tetraodontidae under the Order Tetraodontiformes (Figure 5).

Among the recorded data, the highest composition of species was observed in the order Cypriniformes (36%) and the lowest each (2%) in Osteoglossiformes, Anguilliformes, Beloniformes, and Tetradontiformes respectively (Figure 2).

![Figure 2. Percentage representation of freshwater fishes recorded in each order](image-url)
Figure 3. Seasonally abundance of fishes recorded from the study area
Figure 4. Some recorded fish species of Order Clupeiformes (A, B), Osteoglossiformes (C), Anguilliformes (D), Cypriniformes (E - W) and Siluriformes (X – AB)
Seasonal Occurrence, Abundance and Relative Abundance of Recorded Fish Species in Study Area

In the present study, a total number of 38 species belonging to 27 genera of 17 families under nine orders were recorded in dry season (from mid-February to mid-June). Total number of fish caught (9153) were recorded and recorded percentage (3%) was found during the study period (Table 2 and Figure 3).

The recorded species, *Amblypharygodon atkinsonii* (2820); relative abundance (0.273), was found to be the most abundant in dry season. The total of number (1034) of caught fish; the relative abundance of *Gudusia chapra* (0.100) and followed by *Mystus cavasius* (855); relative abundance (0.083), *Gudusia variegata* (833); relative abundance (0.081), *Mystus pulcher* (700); relative abundance (0.068), were recorded and these five species were very common (vC). The total number of *Labeo angra* (379); relative abundance (0.037), *L. bata* (356); relative abundance (0.035), *Puntius sophore* (210); relative abundance (0.020), *P. sarana* (137); relative abundance (0.017), *Lepidocephalus thermalis* (500); relative abundance (0.048), *Clupioma macrophthalmus* (135); relative abundance (0.013) and *Parambassis ranga* (195); relative abundance (0.0189), and these seven species were recorded as common species(C). The remaining of 26 species was recorded as uncommon (uC) (Table 3).
In Wet Season (from mid-June to mid-October), a total number of 40 species belonging to 27 genera of 15 families under seven orders were recorded. Total number of fish caught (69096) were recorded and recorded percentage (20%) was observed. In Wet Season, *Barilius gatensis* (23358); relative abundance (0.339), was found to be the most abundant in Wet Season. The number of *Amblypharyngodon atkinsonii* (13460); relative abundance (0.195), *Gudusia chapra* (5550); relative abundance (0.080), *Labeo bata* (3833); relative abundance (0.056), *Puntius sarana* (3730); relative abundance (0.054) were recorded and these five species were very common (vC). The total number of *Gudusia variegata* (2200); relative abundance (0.032), *Labeo angra* (2968); relative abundance (0.043), *Puntius sophore* (1826); relative abundance (0.027), *Salmostoma sardinella* (1577); relative abundance (0.023), *Barilius guttatus* (2408); relative abundance (0.0349), *Mystus cavasius* (2960); relative abundance (0.043), *Mystus pulcher* (2538); relative abundance (0.037) and *Parambassis ranga* (760); relative abundance (0.0110), and these eight species were recorded as common species (C). The remaining of 27 species was recorded as uncommon (uC) (Table 4).

In Cool Season (from mid-October to mid-February), a total number of 48 species belonging to 33 genera of 20 families under 10 orders were recorded. Total number of fish caught (263077) were recorded and recorded percentage (77%) was observed. In Cool Season, *Gudusia chapra* (112900); relative abundance (0.391), was found to be the most abundant in Cool Season. The number of *Gudusia variegata* (69900); relative abundance (0.242) and *Amblypharyngodon atkinsonii* (34200); relative abundance (0.118), were recorded, and these three species were very common (vC). The total number of *Labeo angra* (5600); relative abundance (0.019), *Labeo bata* (7345); relative abundance (0.025), *Puntius sophore* (4142); relative abundance (0.0143), *Puntius sarana* (6654); relative abundance (0.023), *Lepidocephalus thermalis* (3112); relative abundance (0.011), *Mystus*
cavasius (5390); relative abundance (0.019) and Mystus pulcher (6200); relative abundance (0.022) were recorded and these seven species were recorded as common species (C). The remaining of 37 species was recorded as uncommon (uC) (Table 5).

In the present study, a total number of 52 species of 37 genera distributed among 20 families and 10 orders of freshwater fishes were recorded. Among the recorded data, the highest composition of species was observed in the Order Cypriniformes (36%) and the lowest each (2%) in Osteoglossiformes, Anguilliformes, Beloniformes, and Tetradontiformes respectively.

Cypriniformes is an order of ray-finned fish, including the carps, minnows, loaches and relatives. This order contains 11-12 families, over 400 genera, and more than 4,250 species. They are most diverse in southeastern Asia, and are entirely absent from Australia and South America (FishBase, 2004). Since Myanmar is a country located in Southeast Asia region and much of the environmental conditions were almost the same in these regions, most species was recorded in Order Cypriniformes in present study and this finding was agreed with that of FishBase, 2004. Moreover, many local researchers also found that the species composition in order Cypriniformes was the largest in different study sites (Htay Htay Sein, 2010) and Nwe Ni Saw (2013). It was noted the species recorded under this order, such as Cirrhinus marigala, Labeo rohita, L. calbasu, L. angra, L. bata, Amblypharyngodon atkinsonii, Osteobrama belangeri and Lepidocephalus thermalis were economically important as their daily food for local people of Myanmar.

According to FishBase (2017), the total of 3 species was noted in Order Osteoglossiformes, 3 species in Order Anguilliformes, 10 species in Order Beloniformes and 4 species in Order Tetraodontiformes respectively in Myanmar. In the present study, only one species in each order was recorded.
According to the recorded data, the highest number of fish species (48 species, 38%) was recorded in cool season and the lowest (38 species, 30%) in dry season. It was also noted that, 25 species were encountered in all seasons while *Anguilla bengalensis* was encountered only once in November in cool season and the rest of 25 were recorded as not continuously.

Based on the relative abundance, very common (vC), common (C) and uncommon (uC) were classified. In dry season, among 38 species, five species were recorded as very common (vC), seven species as common (C) and 26 species as uncommon (uC). The highest number of individual (2820) with relative abundance (0.273494) was recorded in *Amblypharyngodon atkinsonii* and the lowest number only two with relative abundance (0.000194) in *Bagarius yarrelli*.

Out of 40 species, five species as very common (vC), eight species as common (C) and 27 species as uncommon (uC) were recorded in wet season. The highest number of individual (23359) with relative abundance (0.3386) in *Barilius gatensis* and the lowest number of individual only two; relative abundance (0.000) in the species *Bagarius yarrelli* was noted in wet season. According to the IUCN Red List (2017) the *Bagarius yarrelli* was near threatened species but these species were collected every season in the study area.

In cool season, three species were recorded as very common (vC), seven species as common (C) and 37 species as uncommon (uC) in 48 species. The highest number of individual (112900) with relative abundance (0.3908) was noted in the species *Gudusia chapra* and the lowest number of individual only one with relative abundance (3x10^-6) in the species *Anguilla bengalensis* at cool season. This species was collected only one specimen throughout the study period.
Fishbase (2017) stated that 58 endemic freshwater fish species in Myanmar. In the present study, total of five endemic of *Gudusia variegata*, *Labeo stolizkae*, *Mystus leucophasis*, *Clupisoma prateri* and *Macrognathus zebrinus* were recorded.

Among the three seasons, the highest number of fish was recorded in cool season and lowest in dry season, because it was depended on the water level and some environmental factors in study area. Findings of this study will be very helpful to conserve this unique natural habitat of fish, diversity and other fauna.

Table 2. Relative seasonal occurrences of fish species recorded from the study area

	Order	Family	Genus	Species
Dry Season	9	17	27	38
Wet Season	7	15	27	40
Cool Season	10	20	33	48
Table 3. Abundance and relative abundance of fish species recorded in Dry Season

Species	Abundance	Relative abundance	Status
Gudusia chapra	1034	0.100281	vC
Gudusia variegata	833	0.080788	vC
Notopterus notopterus	64	0.006207	uC
Catla catla	39	0.003782	uC
Labeo rohita	47	0.004558	uC
Labeo angra	379	0.036757	C
Labeo bata	356	0.034526	C
Puntius sophore	210	0.020367	C
Puntius sarana	173	0.016778	C
Amblyparyngodon atkinsonii	2820	0.273494	vC
Osteobrama belangeri	55	0.005334	uC
Osteobrama alfrediana	34	0.003297	uC
Acantopsis choirorhynchos	26	0.002522	uC
Lepidocephalus thermalis	500	0.048492	C
Botia berdmorei	33	0.0032	uC
Botia histrionica	41	0.003976	uC
Mystus cavasius	855	0.082921	vC
Mystus pulcher	750	0.067889	vC
Sperata acicularis	7	0.000679	uC
Eutropiichthys burmannicus	135	0.013093	C
Eutropiichthys vacha	141	0.013675	uC
Eutropiichthys sp.	57	0.005528	uC
Ompok pabo	39	0.003782	uC
Wallago attu	34	0.003297	uC
Gagata dolichonema	17	0.001649	uC
Gagata melanopterus	18	0.001746	uC
Bagarius yarrelli	2	0.000194	uC
Glyptothorax sinensis	17	0.001649	uC
Xenentodon cancila	8	0.000776	uC
Parambassis ranga	295	0.018912	C
Oreochromis nilotica	50	0.004849	uC
Glossogobius giuris	60	0.005819	uC
Anabas testudineus	36	0.003491	uC
Channa striata	4	0.000388	uC
Macroganathus aculeatus	49	0.004752	uC
Macroganathus zebrinus	54	0.005237	uC
Mastacembelus armatus	26	0.002522	uC
Tetraodon cutcutia	5	0.000485	uC

Total uC = 26 C = 7 vC = 5
Table 4. Abundance and relative abundance of fish species recorded in Wet Season

Species	Abundance	Relative abundance	Status
Gudusia chapra	5550	0.0804	vC
Gudusia variegata	2200	0.0319	C
Labeo rohita	60	0.0009	uC
Labeo calbasu	5	0.0001	uC
Labeo angra	2968	0.0430	C
Labeo bata	3833	0.0556	vC
Puntius sophore	1826	0.0265	C
Puntius sarana	3730	0.0541	vC
Salmostrona sardinella	1577	0.0229	C
Amblycephryngodon atkinsonii	13460	0.1951	vC
Barilius guttatus	2408	0.0349	C
Barilius gatensis	23358	0.3385	vC
Osteobrama belangeri	149	0.0022	uC
Osteobrama alfrediana	122	0.0018	uC
Mystus cavusius	2960	0.0429	C
Mystus pulcher	2538	0.0368	C
Mystus leucophasis	12	0.0002	uC
Sperata acicularis	18	0.0003	uC
Eutropiichthys burmannicus	292	0.0042	uC
Eutropiichthys vacha	274	0.0040	uC
Eutropiichthys sp.	75	0.0011	uC
Neotropius atherinoides	12	0.0002	uC
Ompok pabo	58	0.0008	uC
Wallago attu	51	0.0007	uC
Gagata dolichonema	52	0.0008	uC
Gagata melanopterus	55	0.0008	uC
Bagarius yarrelli	2	0.0000	uC
Glyptothorax sinusinis	27	0.0004	uC
Xenentodon cancila	76	0.0011	uC
Parambassis ranga	760	0.0110	C
Oreochromis nilotica	101	0.0015	uC
Trichopodus pectoralis	31	0.0004	uC
Rhinomugil corsula	85	0.0012	uC
Glossogobius giuris	102	0.0015	uC
Anabas testudineus	42	0.0006	uC
Channa striata	25	0.0004	uC
Macragnostus aculeatus	73	0.0011	uC
Macragnostus zebrinus	86	0.0012	uC
Mastacembelus armatus	32	0.0005	uC
Tetraodon cutcutia	11	0.0002	uC
Total	uC = 27	C = 8	vC = 5

Table 5. Abundance and relative abundance of fish species recorded in Cool Season

Species	Abundance	Relative abundance	Status
Gudusia chapra	112900	0.3908	vC
Gudusia variegata	69900	0.2420	vC
Notopterus notopterus	137	0.0005	uC
Anguilla bengalensis	1	0.0000	uC
Catla catla	81	0.0003	uC
Cirrhinus mrigala	91	0.0003	uC
Labeo rohita	112	0.0004	uC
Labeo calbasu	18	0.0001	uC
Labeo stoliczkae	39	0.0001	uC
Labeo angra	5600	0.0194	C
Labeo bata	7345	0.0254	C
Puntius sophore	4142	0.0143	C
Puntius sarana	6654	0.0230	C
Amblypharyngodon atkinsonii	34200	0.1184	vC
Osteobrama belangeri	177	0.0006	uC
Osteobrama alfrediana	132	0.0005	uC
Acanthopsis choiorrhynchos	89	0.0003	uC
Lepidocephalus thermalis	3112	0.0108	C
Botia berdmorei	140	0.0005	uC
Botia histrionica	324	0.0011	uC
Mystus cavasius	5390	0.0187	C
Mystus pulcher	6200	0.0215	C
Mystus leucophasis	27	0.0001	uC
Sperata acicularis	43	0.0001	uC
Hemibagrus penguensis	68	0.0002	uC
Eutropiichthys burmancicus	820	0.0028	uC
Eutropiichthys vacha	756	0.0026	uC
Eutropiichthys sp.	410	0.0014	uC
Ompok pabo	171	0.0006	uC
Wallago attu	238	0.0008	uC
Gagata dolichonema	49	0.0002	uC
Gagata melanopterus	57	0.0002	uC
Bagarius yarrelli	11	0.0000	uC
Glyptothorax sinensis	22	0.0001	uC
Rita rita	22	0.0001	uC
Xenentodon cancila	95	0.0003	uC
Parambassis ranga	2460	0.0085	uC
Oreochromis nilotica	117	0.0004	uC
Trichopodus pectoralis	56	0.0002	uC
Rhinomugil corsula	84	0.0003	uC
Glossogobius giuris	139	0.0005	uC
Anabas testudineus	127	0.0004	uC
Table 5. Continued

Species	Abundance	Relative abundance	Status
Channa striata	76	0.0003	uC
Macrognathus aculeatus	148	0.0005	uC
Macrognathus zebrinus	140	0.0005	uC
Mastacembelus armatus	55	0.0002	uC
Mastacembelus unicolor	90	0.0003	uC
Tetraodon cutcutia	12	0.0000	uC
Total	**uC = 37**	**C = 7**	**vC = 3**

uC = Uncommon
C = Common
vC = Very Common

4. Conclusions

The Ayeyarwady River supports diverse and abundant population of freshwater fishes in Myanmar. The flood plains of the Ayeyarwady River are highly productive and play an important role in the ecology of the river system. These characteristics could probably create suitable niches for a variety of fish species and subsequently higher fish abundance will be found in that habitat and also harbour five endemic species, the study area need to be maintained sustainable yield.

Acknowledgements

We would like to express my sincere thanks to Associate professor Dr. Sukree Hajisamae, Dean of Faculty of Science and Technology, Prince of Songkla University, for giving permission to submit this paper. We would like to express my profound gratitude to Dr Aung Kyaw Thin, Rector, Shwebo University for encouragement to conduct this research. We are deeply indebted to Dr Myin Zu Minn, Pro-Rector, University of Mandalay for her invaluable suggestions. Our sincere gratitude goes to Dr
Khin Than Htay, Professor, Department of Zoology, Shwebo University for her guidance and suggestions given on this work.

References

Day, F. (1878). *The Fishes of India*, Being a Natural History of the Fishes of Known to Inhabit the Sea and Freshwater India, Burma and Ceylon. Vol. I and II. William Dawson and Sons Ltd., London.

FishBase (2017). List of freshwater fishes for Myanmar. Retrieved from http://www.fishbase.org/ListByLetter/common.

Htay Htay Sein (2010). *Diversity of fish fauna in Lay-Ein-Su-Let-Kyar In (Lake) in Myingyan Township, Mandalay Division*. (Doctoral thesis, Department of Zoology, University of Mandalay).

IUCN Red List (2017). *Bagarius yarrelli*. The IUCN Red List of Threatened Species 2010:.Retrieved from http://dx.doi.org/10.2305/IUCN.UK.2010-4. RLTS.T166503A6223581.en

Jayaram, K.C. (2013). *The Fresh Water Fishes of the Indian Regions*. Narendra Publishing House, Delhi. pp. 1- 551.

Nwe Ni Saw (2013). *Species richness and seasonal abundance of fish fauna in Western part of Kanthayar In (Lake), Monywa, Sagaing Region with emphasis on reproductive performance in some freshwater fishes* (Doctoral thesis, Department of Zoology, University of Mandalay)

Lagler, K. F. (1977). *Ichthyology*. (Fourth Edition) Toppon Co.Ltd., Japan, 545pp.

Research 7 (2): 26-31

Talwar, P.K. and Jhingran A.G. (1991). *Inland Fishes of India and Adjacent Countries*. Vol. I and II. Oxford and IBH Publishing Co. PVT. LTD. Calcutta.
Wikipedia (2016). *Ayeyarwady River*. Retrieved from http://en.wikipedia.org/wiki/Ayeyarwady River.