On Sliced Spaces: Global Hyperbolicity revisited

Kyriakos Papadopoulos\(^1\), Nazli Kurt\(^2\), Basil K. Papadopoulos\(^3\)

1. Department of Mathematics, Kuwait University, PO Box 5969, Safat 13060, Kuwait
2. Open University, UK
3. Department of Civil Engineering, Democritus University of Thrace, Greece

E-mail: kyriakos@sci.kuniv.edu.kw

Abstract

We give a topological condition for a generic sliced space to be globally hyperbolic, without any hypothesis on the lapse function, shift function and spatial metric.

1. Preliminaries.

We begin with the definition of a sliced space, that one can read in [3], as a continuation of a study in [1] and [2] on systems of Einstein equations.

Let \(V = M \times I \), where \(M \) is an \(n \)-dimensional smooth manifold and \(I \) is an interval of the real line, \(\mathbb{R} \). We equip \(V \) with a \(n + 1 \)-dimensional Lorentz metric \(g \), which splits in the following way:

\[
g = -N^2(\theta^0)^2 + g_{ij}\theta^i\theta^j,
\]

where \(\theta^0 = dt \), \(\theta^i = dx^i + \beta^i dt \), \(N = N(t, x^i) \) is the lapse function, \(\beta^i(t, x^j) \) is the shift function and \(M_t = M \times \{t\} \), spatial slices of \(V \), are spacelike submanifolds equipped with the time-dependent spatial metric \(g_t = g_{ij}dx^i dx^j \). Such a product space \(V \) is called a sliced space.
Throughout the paper, we will consider $I = \mathbb{R}$.

The author in [3] considered sliced spaces with uniformly bounded lapse, shift and spatial metric; by this hypothesis, it is ensured that parameter t measures up to a positive factor bounded (below and above) the time along the normals to spacelike slices M_t, the g_t norm of the shift vector β is uniformly bounded by a number and the time-dependent metric $g_{ij}dx^idx^j$ is uniformly bounded (below and above) for all $t \in I (= \mathbb{R})$, respectively.

Given the above hypothesis, in the same article the following theorem is proved.

Theorem 1.1 (Cotsakis). Let (V, g) be a sliced space with uniformly bounded lapse N, shift β and spatial metric g_t. Then, the following are equivalent:

1. (M_0, γ) a complete Riemannian manifold.
2. The spacetime (V, g) is globally hyperbolic.

In this article we review global hyperbolicity of sliced spaces, in terms of the product topology defined on the space $M \times \mathbb{R}$, for some finite dimensional smooth manifold M.

2 Strong Causality of Sliced Spaces.

Let $(V = M \times \mathbb{R}, g)$ be a sliced space. Consider the product topology T_P, on V. Since M is finite-dimensional, a base for T_P consists of all sets of the form $A \times B$, where $A \in T_M$ and $B \in T_\mathbb{R}$. Here T_M denotes the natural topology of the manifold M where, for an appropriate Riemann metric h, it has a base consisting of open balls $B^h_r(x)$ and $T_\mathbb{R}$ is the usual topology on the real line, with a base consisting of open intervals (a, b). For trivial topological reasons, we can restrict our discussion on T_P to basic-open sets $B^h_r(x) \times (a, b)$, which can be intuitively called as “open cylinders” in V.

We remind the Alexandrov topology T_A (see [4]) has a base consisting of open sets of the form $<x, y> = I^+(x) \cap I^-(y)$, where $I^+(x) = \{z \in V : x \ll z\}$ and $I^-(y) = \{z \in V : z \ll y\}$, where \ll is the chronological order defined as $x \ll y$ iff there exists a future oriented timelike curve, joining x with y. By $J^+(x)$ one denotes the topological closure of $I^+(x)$ and by $J^-(y)$ that one of $I^-(y)$.

We use the definition of global hyperbolicity from [4] where the reader can read about global causality conditions in more detail as well as characterisations for strong causality. In
particular, a spacetime is strongly causal, iff it possesses no closed timelike curves and global hyperbolicity is an important causal condition in a spacetime related to major problems such as spacetime singularities, cosmic censorship etc.

Definition 2.1. A spacetime is globally hyperbolic, iff it is strongly causal and the “causal diamonds” \(J^+(x) \cap J^-(y) \) are compact.

We prove the following theorem.

Theorem 2.1. Let \((V, g)\) be a Hausdorff sliced space. Then, the following are equivalent.

1. \(V\) is strongly causal.
2. \(T_A \equiv T_P\).
3. \(T_A\) is Hausdorff.

Proof. 2. implies 3. is obvious and that 3. implies 1. can be found in \([4]\).

For 1. implies 2. we consider two events \(X, Y \in V\), such that \(X \neq Y\); we note that each \(X \in V\) has two coordinates, say \((x_1, x_2)\), where \(x_1 \in M\) and \(x_2 \in \mathbb{R}\). Obviously, \(X \in M_x = M \times \{x\}\) and \(Y \in M_y = M \times \{y\}\). Then, \(\langle X, Y \rangle = I^+(X) \cap I^-(Y) \in T_A\). Let also \(A \in M_a = M \times \{a\}\), where \(a < x\) (\(<\) is the natural order on \(\mathbb{R}\)) and \(B \in M_b = M \times \{b\}\), where \(y < b\). Consider some \(\epsilon > 0\), such that \(B^h(\epsilon)(A) \in M\). Obviously, \(B^h(\epsilon)(A) \times (a, b) \in T_P\) and, for \(\epsilon > 0\) sufficiently large enough, \(\langle X, Y \rangle \subset B^h(\epsilon)(A) \times (a, b)\). Thus, \(\langle X, Y \rangle \in T_P\).

For 2. implies 1. we consider \(\epsilon > 0\), such that \(B^h(\epsilon)(A) \in T_M\), so that \(B^h(\epsilon)(A) \times (a, b) = B \in T_P\). We let strong causality hold at an event \(P\) and consider \(P \in B \in T_P\). We show that there exists \(\langle X, Y \rangle \in T_A\), such that \(P \in \langle X, Y \rangle \subset B\). Now, consider a simple region \(R\) in \(\langle X, Y \rangle\) which contains \(P\) and \(P \in Q\), where \(Q\) is a causally convex-open subset of \(R\). Thus, we have \(U, V \in Q\), such that \(P \in \langle U, V \rangle \subset Q\). Finally, \(P \in \langle U, V \rangle \subset Q \subset B\) and this completes the proof.

3 Global Hyperbolicity of Sliced Spaces, Revisited.

For the following theorem, we use Nash’s result, that refers to finite-dimensional manifolds (see [5]).
Theorem 3.1. Let (V, g) be a Hausdorff sliced space, where $V = M \times R$, M is an n-dimensional manifold and g the $n+1$ Lorentz metric in V. Then, (V, g) is globally hyperbolic, iff $T_P = T_A$ in V.

Proof. Given the proof of Theorem 2.1, strong causality in V holds iff $T_P = T_A$ and given Nash’s theorem, the closure of $B^h_t (x) \times (a, b)$ will be compact. \square

We note that neither in Theorem 2.1 nor in Theorem 3.1 we made any hypothesis on the lapse function, shift function or on the spatial metric.

References

[1] Y. Choquet-Bruhat, T. Ruggeri, Hyperbolicity of the 3+1 system of Einstein equations, Com. Math. Phys. Vol. 89, Issue 2, pp 269-275, 1983.

[2] Y. Choquet-Bruhat and S. Cotsakis, Global Hyperbolicity and Completeness, J. Geom. Phys. 43 (2002) 345-350.

[3] S. Cotsakis, Global Hyperbolicity of Sliced Spaces, Gen. Rel. Grav., Vol 36, Issue 5, pp 1183-1188, 2004.

[4] R. Penrose, Techniques of Differential Topology in Relativity, CBMS-NSF Regional Conference Series in Applied Mathematics, 1972.

[5] John Nash, C^1 Isometric Imbeddings, Annals of Math., Second Series, Vol. 60, No. 3, pp 383-396, 1954.