Invariant Polynomial Functions on k qudits

Jean-Luc Brylinski∗† Ranee Brylinski‡

March 31, 2022

Abstract

We study the polynomial functions on tensor states in $(\mathbb{C}^{n})^{\otimes k}$ which are invariant under $SU(n)^{k}$. We describe the space of invariant polynomials in terms of symmetric group representations. For k even, the smallest degree for invariant polynomials is n and in degree n we find a natural generalization of the determinant. For n, d fixed, we describe the asymptotic behavior of the dimension of the space of invariants as $k \to \infty$. We study in detail the space of homogeneous degree 4 invariant polynomial functions on $(\mathbb{C}^{2})^{\otimes k}$.

1 Introduction

In quantum mechanics, a combination of states in Hilbert spaces H_1, \ldots, H_k leads to a state in the tensor product Hilbert space $H_1 \otimes \cdots \otimes H_k$. Such a state will be called here a tensor state. In this paper we take $H_1 = \cdots = H_k = \mathbb{C}^n$ where $n > 1$. Then a tensor state is a joint state of k qudits. It would be very interesting to classify tensor states in $(\mathbb{C}^n)^{\otimes k}$ up to the action of the product $U(n)^{k}$ of unitary groups of local symmetries. A natural approach to this is to study the algebra of invariant polynomials. This approach was developed by Rains [R], by Grassl, Rötteler and Beth [G-R-B1] [G-R-B2], by Linden and Popescu [L-P] and by Coffman, Kundu and Wootters [C-K-W]. These authors study the ring of invariant polynomials in the components of a tensor state in $(\mathbb{C}^n)^{\otimes k}$ and in their complex-conjugates. For k qubits, explicit descriptions of invariants are given in [G-R-B1], [G-R-B2], [L-P] and in [C-K-W].

In this paper the symmetry group we consider is the product $G = SU(n)^{k}$ of special unitary groups; one thinks of G as the special group of local symmetries. We study the G-invariant polynomial functions Q on the tensor states in $(\mathbb{C}^n)^{\otimes k}$ (we discuss in §2 how this is relevant to the description of the G-orbits). We consider polynomials in the entries of a tensor state, in other words, holomorphic polynomials.

∗Department of Mathematics, Penn State University, University Park 16802, jlb@math.psu.edu
†Research supported in part by NSF Grant No. DMS-9803593
‡Department of Mathematics, Penn State University, University Park 16802, rkb@math.psu.edu
Let $\mathcal{R}_{n,k,d}$ be the space of homogeneous degree d polynomial functions on tensor states in $(\mathbb{C}^n)^{\otimes k}$. Let $\mathcal{R}_{n,k,d}^G$ be the space of G-invariants in $\mathcal{R}_{n,k,d}$. See §3 for more discussion. We reduce the problem of computing $\mathcal{R}_{n,k,d}^G$ to a problem in the invariant theory of the symmetric group \mathfrak{S}_d (Proposition 2.1). In particular, $\mathcal{R}_{n,k,d}^G$ is non-zero only if d is a multiple of n. So the “first” case is $d = n$; we examine this in §4. We find that if k is odd then $\mathcal{R}_{n,k,n}^G = 0$ while if k is even then $\mathcal{R}_{n,k,n}^G$ is 1-dimensional. In the latter case we write down (§5) explicitly the corresponding invariant polynomial $P_{n,k}$ in $\mathcal{R}_{n,k,n}$; we find $P_{n,k}$ is a natural generalization of the determinant of a square matrix.

For fixed n, d the direct sum $\oplus_k \mathcal{R}_{n,k,d}$ is an associative algebra. We study the asymptotic behavior of $\dim \mathcal{R}_{n,k,d}$ as $k \to \infty$ in §4. In §5, we specialize to the case of k-qubits, i.e. $n = 2$. We compute the dimension of the space $\mathcal{R}_{2,k,4}^G$ of degree 4 invariants as well as the dimension of the space of invariants in $\mathcal{R}_{2,k,4}^G$ under the natural action of \mathfrak{S}_k. We show that $\oplus_k \mathcal{R}_{2,k,4}^G$ is a polynomial algebra on 2 generators. For $k \leq 5$ we describe the representation of \mathfrak{S}_k on $\mathcal{R}_{2,k,4}^G$. For $k = 4$ we find some interesting relations with the results on classification of tensor states in $(\mathbb{C}^2)^{\otimes 4}$ given in [3].

We thank Markus Grassl for his useful comments on the first version of this paper.

2 Polynomial invariants of tensor states

We will consider $(\mathbb{C}^n)^{\otimes k}$ as a space of contravariant tensor states u. Then (once we fix a basis of \mathbb{C}^n) u is given by n^k components $u^{p_1p_2\cdots p_k}$. We consider the algebra $\mathcal{R}_{n,k}$ of polynomial functions on $(\mathbb{C}^n)^{\otimes k}$. So $\mathcal{R}_{n,k}$ is the polynomial algebra $\mathbb{C}[x_{p_1p_2\cdots p_k}]$ in the n^k coordinate functions $x_{p_1p_2\cdots p_k}$. We have a natural algebra grading $\mathcal{R}_{n,k} = \bigoplus_{d=0}^{\infty} \mathcal{R}_{n,k,d}$ where $\mathcal{R}_{n,k,d}$ is the space of homogeneous degree d polynomial functions.

A function in $\mathcal{R}_{n,k,d}$ amounts to a symmetric degree d covariant tensor Q in $(\mathbb{C}^n)^{\otimes k}$. So Q has n^{dk} components $Q_{i_1\cdots i_{dk}}$ where we think of the indices i_{ab} as being arranged in a rectangular array of d rows and k columns and $Q_{i_{11}\cdots i_{dk}}$ is invariant under permutations of the rows of the array. Then Q defines the function

$$
 u \mapsto Q_{i_{11}\cdots i_{dk}} u^{i_{11}i_{12}\cdots i_{1k}} u^{i_{21}i_{22}\cdots i_{2k}} \cdots u^{i_{d1}i_{d2}\cdots i_{dk}}
$$

where we used the usual Einstein summation convention. In this way, $\mathcal{R}_{n,k}$ identifies with $S^d((\mathbb{C}^n)^{\otimes k})$.

Now the group $G = SU(n)^k$ acts on our tensor states u and tensors Q as follows. Let the matrix g_{ij} live in the m-th copy of $SU(n)$ and let g^{ij} be the inverse matrix. Then g_{ij} transforms $u^{p_1p_2\cdots p_k}$ into $g_{pi_{p_{11}p_{12}\cdots p_{1k}}} u^{q_1q_2\cdots q_k}$ and $Q_{i_{11}\cdots i_{dk}}$ into $Q_{j_{11}\cdots j_{dk}} g^{j_{1m}i_{1m}} g^{j_{2m}i_{2m}} \cdots g^{j_{dm}i_{dm}}$. The identification of $\mathcal{R}_{n,k,d}$ with $S^d((\mathbb{C}^n)^{\otimes k})$ is G-equivariant.

We are interested in the algebra $\mathcal{R}_{n,k,d}^G = \bigoplus_{d=0}^{\infty} \mathcal{R}_{n,k,d}^G$ of G-invariants. We view this as a first step towards studying the orbits of G on $(\mathbb{C}^n)^{\otimes k}$. One can first study the orbits of the complex group $G_C = SL(n, \mathbb{C})^k$ and then decompose the G_C-orbits under the G-action. Note that a polynomial is G-invariant if and only if its is G_C-invariant. The closed G_C orbits play a special role—they are the most degenerate orbits. Given any orbit Y, its closure contains a unique closed orbit Z; then points in Y degenerate to
points in Z. The G_C-invariant functions separate the closed orbits; they take the same values on Y and on Z. The set of closed orbits of G_C in $(\mathbb{C}^n)^{\otimes k}$ has the structure of an affine complex algebraic variety with $\mathcal{R}^G_{n,k}$ as its algebra of regular functions. Thus a complete description of $\mathcal{R}^G_{n,k}$ would lead to a precise knowledge of the closed G_C-orbits.

Our approach is thus somewhat different from that of [IKR-B1] [G-R-B2] [L-P] [C-K-W] who study the invariant functions on $(\mathbb{C}^n)^{\otimes k}$ which are polynomials in the $x_{pi\cdots pk}$ and in their complex conjugates; these can also be described as the invariant polynomial functions on $(\mathbb{C}^n)^{\otimes k} \oplus (\overline{\mathbb{C}^n})^{\otimes k}$.

At this point it is useful to examine the case $k = 2$. We can identify $(\mathbb{C}^n)^{\otimes 2}$ with the space $M_n(\mathbb{C})$ of square matrices and then $G = SU(n)^2$ acts on $M_n(\mathbb{C})$ by $(g, h) \cdot u = guh$. So $\mathcal{R}^G_{n,k,d}$ is the space of homogeneous degree d polynomial functions Q of an n by n matrix u which are bi-$SL(n, \mathbb{C})$-invariant, i.e. $Q(guh^{-1}) = Q(u)$ for $g, h \in SL(n, \mathbb{C})$. Then Q is, up to scaling, the rth power of the determinant D for some r. Hence $d = rn$. It follows that $\mathcal{R}^G_{n,2}$ is the polynomial algebra $\mathbb{C}[D]$. Thus the space of closed orbits for $SL(n, \mathbb{C})$ identifies with \mathbb{C}, where λ corresponds to the unique closed orbit Z_λ inside the set X_λ of matrices of determinant λ. For $\lambda \neq 0$, $Z_\lambda = X_\lambda$ while for $\lambda = 0$, Z_0 reduces to the zero matrix.

We view $S^d((\mathbb{C}^n)^{\otimes k})$ as the space of invariants for the symmetric group \mathfrak{S}_d acting on $((\mathbb{C}^n)^{\otimes d})^{\otimes k}$. So

$$\mathcal{R}^G_{n,k,d} = (((\mathbb{C}^n)^{\otimes k})^{\otimes d})^{G \times \mathfrak{S}_d} = (((\mathbb{C}^n)^{\otimes d})^{\otimes k})^{G \times \mathfrak{S}_d}$$

(2.2)

Recall the Schur decomposition $(\mathbb{C}^n)^{\otimes d} = \bigoplus_\alpha S^\alpha(\mathbb{C}^n) \otimes E_\alpha$ where α ranges over partitions of d with at most n rows, $S^\alpha(\mathbb{C}^n)$ is the irreducible covariant representation of $SU(n)$ given by the Schur functor S^α, and E_α is the corresponding irreducible representation of \mathfrak{S}_d. We use the convention that E_α is the trivial representation if $\alpha = [d]$, while E_α is the sign representation if $\alpha = [1^d]$. Thus we have

$$((\mathbb{C}^n)^{\otimes d})^{\otimes k} = \sum_{|\alpha_1| = \cdots = |\alpha_k| = d} S^{\alpha_1}(\mathbb{C}^n) \otimes \cdots \otimes S^{\alpha_k}(\mathbb{C}^n) \otimes E_{\alpha_1} \otimes \cdots \otimes E_{\alpha_k}$$

(2.3)

Now taking the invariants under $G \times \mathfrak{S}_d$ we get

$$\mathcal{R}^G_{n,k,d} = \sum_{|\alpha_1| = \cdots = |\alpha_k| = d} S^{\alpha_1}(\mathbb{C}^n)^{SU(n)} \otimes \cdots \otimes S^{\alpha_k}(\mathbb{C}^n)^{SU(n)} \otimes (E_{\alpha_1} \otimes \cdots \otimes E_{\alpha_k})^{\mathfrak{S}_d}$$

(2.4)

The representation $S^\alpha(\mathbb{C}^n)$, since it is irreducible, has no $SU(n)$-invariants except if $S^\alpha(\mathbb{C}^n) = \mathbb{C}$ is trivial. This happens if and only if α_j is a rectangular partition with all columns of length n. This proves:

Proposition 2.1. If n does not divide d, then $\mathcal{R}^G_{n,k,d} = 0$. If $d = nr$, then $\mathcal{R}^G_{n,k,d}$ is isomorphic to $(E^{\otimes r})^{\mathfrak{S}_d}$ where $\pi = [r^n]$.

The permutation action of \mathfrak{S}_k on $(\mathbb{C}^n)^{\otimes k}$ induces an action of \mathfrak{S}_k on $\mathcal{R}^G_{n,k,d}$.

Corollary 2.2. The isomorphism of Proposition 2.1 intertwines the \mathfrak{S}_k-action on $\mathcal{R}^G_{n,k,d}$ with the action of \mathfrak{S}_k on $(E^{\otimes r})^{\mathfrak{S}_d}$ given by permuting the k factors E_π.

3
3 The generalized determinant function

Given n and k, we want to find the smallest positive value of d such that $\mathcal{R}_{n,k,d}^G \neq 0$. By Proposition [2.4], the first candidate is $d = n$.

Corollary 3.1. $\mathcal{R}_{n,k,n}^G \neq 0$ iff k is even. In that case, $\mathcal{R}_{n,k,n}^G$ is one-dimensional and consists of the multiples of the function $P_{n,k}$ given by

$$P_{n,k}(u) = \sum_{\sigma_2, \ldots, \sigma_k \in \mathfrak{S}_n} \epsilon(\sigma_2) \cdots \epsilon(\sigma_k) \prod_{h=1}^n u^{h_{\sigma_2} \cdots h_{\sigma_k}} \quad (3.1)$$

where $h_{\sigma_j} = \sigma_j(h)$.

Proof. By Proposition [2.4] we need to compute $(E^{\otimes k}_\pi)_{\otimes d}$. For $d = n$, $\pi = [1^n]$ and so E_π is the sign representation of \mathfrak{S}_n. Then $(E^{\otimes k}_\pi)$ is one-dimensional and carries the trivial representation if k is even, or the sign representation if k is odd.

Now for k even, we can easily compute a non-zero function $P = P_{n,k}$ in $\mathcal{R}_{n,k,n}$. For $S^*(\mathbb{C}^n)$ is the top exterior power $\Lambda^n \mathbb{C}^n$. Thus P is a non-zero element of the one-dimensional subspace $(\Lambda^n \mathbb{C}^n)^{\otimes k}$ of $((\mathbb{C}^n)^{\otimes n})^{\otimes k}$. The tensor components of P are then given by $P_{i_1 \cdots i_n k} = \frac{1}{n!} \epsilon(\sigma_1) \cdots \epsilon(\sigma_k)$ if for each j, the column i_1, \ldots, i_n is a permutation σ_j of $1, \ldots, n$ and 0 otherwise. Then we get

$$P_{n,k}(u) = \frac{1}{n!} \sum_{\sigma_1, \ldots, \sigma_k \in \mathfrak{S}_n} \epsilon(\sigma_1) \cdots \epsilon(\sigma_k) \prod_{h=1}^n u^{h_{\sigma_1} \cdots h_{\sigma_k}} \quad (3.2)$$

where $h_{\sigma_i} = \sigma_i(h)$. The expression is very redundant, as each term appears $n!$ times. We remedy this by restricting the first permutation σ_1 to be 1. This gives [3.1].

$P_{n,k}$ is a *generalized determinant*; $P_{n,k}$ is invariant under the \mathfrak{S}_k-action. For $k = 2$, [3.1] reduces to the usual formula for the matrix determinant.

Recall that the rank s of a tensor state u in $(\mathbb{C}^n)^{\otimes k}$ is the smallest integer s such that u can be written as $u = v_1 + v_2 + \cdots + v_s$, where the v_i are decomposable tensor states $v_i = w_{i1} \otimes w_{i2} \otimes \cdots \otimes w_{ik}$. There is a relation between the rank and the vanishing of $P_{n,k}$ as follows:

Corollary 3.2. If the tensor state u in $(\mathbb{C}^n)^{\otimes k}$ has rank less than n, then $P_{n,k}(u) = 0$.

It is easy to find a tensor state u of rank n such that $P_{n,k}(u)$ is non-zero. For instance, $P_{n,k}(u) = 1$ if u has all components zero except $u^{1 \cdots 1} = \cdots = u^{n \cdots n} = 1$. For $k = 2$, $P_{n,k}(u) = 0$ implies u has rank less than n. For bigger (even) k, this is false, if n is large enough. This happens essentially because the rank of u can be very large (at least $\frac{n^k}{kn-k+1}$). Thus $P_{n,k}$ gives only partial information about the rank.

4 Asymptotics as $k \to \infty$

Suppose we fix n and d where $d = rn$. Then there is a G-invariant associative graded algebra structure $P \circ Q$ on the direct sum $\oplus_k \mathcal{R}_{n,k,d}^G$. Indeed, the product of tensors
induces a \((G \times \mathfrak{S}_d)\)-invariant map \(V^\otimes k \otimes V^\otimes l \to V^\otimes (k+l)\) where \(V = (\mathbb{C}^n)^\otimes d\). The induced multiplication on the spaces of \((G \times \mathfrak{S}_d)\)-invariants gives the product on \(\oplus_k \mathcal{R}^G_{n,k,d}\), where we use the identification in \((2)\). This multiplication corresponds, under the isomorphism of Proposition \((2.1)\), to the product map \(E^\otimes_k \otimes E^\otimes_l \to E^\otimes (k+l)\). This structure is very useful. For instance, if \(d = n\), then \(P_{n,k} \circ P_{n,l} = \frac{1}{m!} P_{n,k+l}\). Thus the determinant \(P_{n,2}\) determines \(P_{n,2m}\) in that the \(m\)-fold product \(P_{n,2} \circ \cdots \circ P_{n,2}\) is equal to \((n!)^{-m+1} P_{n,2m}\).

We will study the size of the algebra \(\oplus_k \mathcal{R}^G_{n,k,d}\) by finding an asymptotic formula for the dimension of \(\mathcal{R}^G_{n,k,d}\). We do this for \(r \geq 2\). Indeed for \(r = 1\) we already know \(\dim \mathcal{R}^G_{n,k,n}\) is 1 if \(k\) is even or 0 if \(k\) is odd; we call this the static case. The asymptotics involve the number

\[p = \dim E_\pi = d! \prod_{m=0}^{n-1} \frac{m!}{(m+r)!} \quad (4.1) \]

where \(\pi = [r^n]\) as in Proposition \((2.1)\). Our formula for \(p\) is immediate from the hook formula for the dimension of an irreducible symmetric group representation.

Proposition 4.1. Assume \(d = rn\) with \(r \geq 2\). Then \(\dim \mathcal{R}^G_{n,k,d} \sim c \frac{p^k}{d!} \) as \(k \to \infty\), where \(c = 1\) with one exception: \(c = 4\) if \(n = 2, d = 4\).

Proof. Let \(s = \dim \mathcal{R}^G_{n,k,d} = \dim (E_\pi^\otimes k)^{\mathfrak{S}_d}\). Then \(s = \frac{1}{d!} \sum_{\sigma \in \mathfrak{S}_d} \chi(\sigma)^k\) where \(\chi : \mathfrak{S}_d \to \mathbb{Z}\) is the character of \(E_\pi\). If \(\sigma\) acts trivially on \(E_\pi\), then \(\chi(\sigma) = p\). If \(\sigma\) acts non-trivially, we claim \(|\chi(\sigma)| < p\). To show this, it suffices to show that \(\sigma\) has at least two distinct eigenvalues on \(E_\pi\); this is because \(\chi(\sigma)\) is the sum of the \(p\) eigenvalues of \(\sigma\). Now the set \(\Sigma_d\) of \(\sigma \in \mathfrak{S}_d\) which act on \(E_\pi\) by a scalar is a normal subgroup of \(\mathfrak{S}_d\). So if \(d \geq 5\), then \(\Sigma_d = \{1\}\), the alternating group \(A_d\) or \(\mathfrak{S}_d\). We can easily rule out the latter two possibilities, so \(\Sigma_d = \{1\}\), which proves our claim. If \(d \leq 4\), then (since \(r > 1\) and \(n > 1\), we have \(d = 4, n = 2\) and \(\pi = [2, 2]\)). Our claim is clear here since \(\mathfrak{S}_4\) acts on \(E_\pi\) through the reflection representation of \(\mathfrak{S}_3\) on \(\mathbb{C}^2\).

Therefore we have \(s = c \frac{p^k}{d!} + O(p^r)\) as \(k \to \infty\) where \(c\) is cardinality of the kernel of \(\mathfrak{S}_d \to \text{Aut} E_\pi\). Our work in the previous paragraph computes \(c\). \(\square\)

Proposition \((4.1)\) implies that the algebra \(\oplus_k \mathcal{R}^G_{n,k,d}\) is far from commutative, as it has roughly \(1/N\) times the size of the tensor algebra \(\oplus_k (\mathbb{C}^n)^\otimes k\). We note however that the \(\mathfrak{S}_k\)-invariants in \(\oplus_k \mathcal{R}^G_{n,k,d}\) form a commutative subalgebra, isomorphic to \(S(E_\pi)^{\mathfrak{S}_d}\).

5 Quartic invariants of \(k\) qubits

The case \(n = 2\) is of particular interest, as here the qudits are qubits, and this is the case being most discussed in quantum computation. Here we can give some precise non-asymptotic results for the first non-static case, namely \(\mathcal{R}^G_{2,k,4}\). We put \(E = E_\pi = E_{[2,2]}\). The proof of Proposition \((4.1)\) easily gives

Corollary 5.1. We have \(\dim \mathcal{R}^G_{2,k,4} = \frac{1}{3}(2^{k-1} + (-1)^k)\).
The first few values of \(\dim R_{2,k,4}^G \), starting at \(k = 1 \), are 0, 1, 1, 3, 5, 11, 21, 43. For \(k = 2 \) and \(k = 3 \) the unique (up to scalar) invariants are, respectively, the squared determinant \(P_{2,2}^2 \) and the Cayley hyperdeterminant \(H_{2,3} \) (see [C-K-Z]). We note that the hyperdeterminant is very closely related to the relative tangle of 3 entangled qubits discussed in [C-K-W].

It would be useful to study \(R_{2,k,4}^G \) as a representation of \(\mathcal{G}_k \), where \(\mathcal{G}_k \) acts by permuting the \(k \) qubits. The \(\mathcal{G}_k \)-invariants in \(R_{2,k,4}^G \) are the \((\mathcal{G}_k \ltimes G)\)-invariants in \(R_{2,k,4} \). These \((\mathcal{G}_k \ltimes G)\)-invariant polynomials are very significant as they separate the closed orbits of the extended symmetry group \(\mathcal{G}_k \ltimes SL(2, \mathbb{C})^k \) acting on \((\mathbb{C}^2)^{\otimes k}\). We can compute the dimension of the \(\mathcal{G}_k \)-invariants as follows:

Proposition 5.2. The dimension of the space of \(\mathcal{G}_k \ltimes G \)-invariants in \(R_{2,k,4} \) is \(M_k = \left\lfloor \frac{k}{6} \right\rfloor + r_k \) where \(r_k = 0 \) if \(k \equiv 1 \mod 6 \), or \(r_k = 1 \) otherwise. Furthermore the algebra \(\oplus_k R_{2,k,4}^{\mathcal{G}_k \ltimes G} \) is the polynomial algebra \(\mathbb{C}[P_{2,2}^2, H_{2,3}] \).

Proof. We have isomorphisms \(R_{2,k,4}^{\mathcal{G}_k \ltimes G} \sim (E^{\otimes k})^{\mathcal{G}_k} \times E_3 \sim S^k(E)^{\mathcal{G}_3} \) since the representation of \(\mathcal{G}_4 \) on \(E \) factors through \(\mathcal{G}_3 \). Thus the algebra \(\oplus_k R_{2,k,4}^{\mathcal{G}_k \ltimes G} \) identifies with \(S(E)^{\mathcal{G}_3} \). Now \(S(E)^{\mathcal{G}_3} \) is the algebra of \(\mathcal{G}_3 \)-invariant polynomial functions on traceless \(3 \times 3 \) diagonal matrices, and so is a polynomial algebra on the functions \(A \mapsto Tr(A^2) \) and \(A \mapsto Tr(A^3) \). These invariants correspond (up to scaling) to \(P_{2,2}^2 \) and \(H_{2,3} \). The formula for the dimension follows easily.

For instance, we have: \(M_1 = 0 \), \(M_k = 1 \) for \(2 \leq k \leq 5 \), and \(M_6 = 2 \). We remark that by replacing \(S(E)^{\mathcal{G}_3} \) by \(\wedge(E)^{\mathcal{G}_3} \), it is easy to prove that the sign representation of \(\mathcal{G}_k \) does not occur in \((E^{\otimes k})^{\mathcal{G}_4}\) for any \(k \geq 2 \).

We can determine the \(\mathcal{G}_k \)-representation on \(R_{2,k,4}^G \) for small \(k \) by explicit trace computations. For \(k = 2 \) and \(k = 3 \) we have the trivial 1-dimensional representation. For \(k = 4 \), we find \(R_{2,4,4}^G \) is the direct sum \(E_{[4]} \oplus E_{[2,2]} \). The trivial representation \(E_{[4]} \) of \(\mathcal{G}_4 \) is spanned by \(P_{2,2}^2 \), while the 2-dimensional representation \(E = E_{[2,2]} \) is spanned by the determinants \(\Delta(ijkl) \) introduced in [B]. Here \((ijkl) \) is a permutation of \((1234)\). Given a tensor state \(u \in (\mathbb{C}^2)^{\otimes 4} \), we can view it as an element \(v \) of \(\mathbb{C}^4 \otimes \mathbb{C}^4 \), where the first (resp. second) \(\mathbb{C}^4 \) is the tensor product of the \(i \)-th and \(j \)-th copies of \(\mathbb{C}^2 \) (resp. of the \(k \)-th and \(l \)-th copies). Then \(\Delta(ijkl)(u) \) is the determinant of \(v \). As shown in [B], the \(\Delta(ijkl) \) span the representation \(E \) of \(\mathcal{G}_4 \). The significance of the \(\Delta(ijkl) \) is that their vanishing describes the closure of the set of tensor states in \((\mathbb{C}^2)^{\otimes 4}\) of rank \(\leq 3 \). For \(k = 5 \) the representation \(R_{2,5,4}^G \) of \(\mathcal{G}_5 \) is \(E_{[5]} \oplus E_{[2,1,1,1]} \).

References

[B] J-L. Brylinski, Algebraic measures of entanglement, quant-ph 0008031

[C-K-W] V. Coffman, J. Kundu and W. K. Wootters, Distributed Entanglement, preprint quant-ph/9907047
[G-K-Z] I.M. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser (1991)

[G-R-B1] M. Grassl, M. Rötteler and T. Beth, Computing Local Invariants of Quantum-Bit Systems, Phys. Review A 58 no. 3 (1998), 1833-1839; also on the Arxiv as quant-ph/9712040

[G-R-B2] M. Grassl, M. Rötteler and T. Beth, Description of Multi-Particle Entanglement through Polynomial Invariants, Talk of M Grassl at the Isaac Newton Institute for Mathematical Sciences in July 1999, available on the web as http://iaks-www.ira.uka.de/home/grassl/publications.html

[L-P] N. Linden and S. Popescu, On Multi-Particle Entanglement, Forts. der Physik 46 (1998), no. 4-5, 567-578, also on the Arxiv as quant-ph/9711010

[R] E. Rains, Polynomial Invariants of Quantum Codes, EEE Trans. on Information Th. 46 no. 1 (2000), 54-59