Hidden burrow associates: macrosymbiotic assemblages of subtidal deep-burrowing invertebrates in the northern part of the Sea of Japan

Ivan Marin1 · Tatiana Antokhina1

Received: 16 November 2019 / Revised: 26 March 2020 / Accepted: 27 March 2020 / Published online: 2 July 2020
© Senckenberg Gesellschaft für Naturforschung 2020

Abstract
The activity of deep-burrowing macrofauna strongly influences all biogeochemical processes in sublittoral soft sediments. Despite this key role, these organisms are difficult to sample and, thus, often remain ignored in environmental studies. This study is the first in comprehensively exploring the diversity of the macrosymbiotic communities associated with the dominant subtidal deep-burrowing invertebrates from the southern part of the Russian coast of the Sea of Japan, represented by the species of the genera *Upogebia* Leach, 1814 (Arthropoda: Crustacea: Decapoda) and *Urechis* Seitz, 1907 (Annelida: Polychaeta: Echiura). The associated symbiotic communities mostly consist of obligate, host-specific species, while those species found in burrows of both hosts are probably using them just as refuges. Most symbionts occurred solitary or in heterosexual pairs, likely due to aggressive and strictly territorial behavior. This is certainly a hidden biodiversity, as more than half of the species reported here were not previously known from these “relatively simple and well-studied” boreal marine ecosystems. Our findings also allowed us to describe a new species belonging to the symbiotic genus *Hesperonoe* Chamberlin, 1919 (Annelida: Polychaeta: Polynoidae), based on morphological and molecular evidences, the latter being here presented for this genus for the first time.

Keywords Symbiosis · Communities · *Urechis* · *Upogebia* · NW Pacific · *Hesperonoe*

Introduction
Soft sediment communities are very diverse and play an important ecological role in local biogeochemical cycles (e.g., Rhoads 1974; Meysman et al. 2006). The composition and structure of these communities are greatly influenced by the activity of burrowing macrofauna, which modulates biogeochemical processes such as organic matter processing oxygenation or microbial activity stimulation (Levinton 1995; Aller and Aller 1998; Glud 2008) and are considered as ecosystem engineers in sublittoral sandy or muddy marine bottoms (e.g., Tamaki and Ueno 1998; Dworschak 2000; Sandnes et al. 2000; Felder 2001; Webb and Eyre 2004; Pillay and Branch 2011).

Numerous symbiotic species use burrows of larger marine invertebrates as protected habitats to escape predators, access food, and/or support less environmental stress (Itani 2002; Atkinson and Taylor 2005; Anker et al. 2005, 2015; Goto and Kato 2012; Seike et al. 2012; Itoh and Nishida 2013; Henmi and Itani 2014a, b; Marin 2014; Lavesque et al. 2016; Henmi et al. 2017; Moyo et al. 2017). For example, more than 100 symbiotic species, from protozoans to fishes, are known to inhabit the burrows of large crustaceans (i.e., Gebiidea and Axiidea) along the US Pacific coast (e.g., Campos et al. 2009), while the fauna associated with echiuroids (spoon worms) include more than 50 specific symbiotic species, such as bivalves, polychaetes, brachyuran crabs, alpheid shrimps, copepods, and fishes (Anker et al. 2005). In Russia, the study of the diversity of burrowing crustaceans and their associated fauna has just begun, and numerous symbionts including crustaceans (Marin 2010, 2013, 2015; Marin et al. 2011, 2013; Marin and Turbanov 2016) and a new phoronid species (Temereva and Chichvarkhin 2017) have recently been reported. The parasitic fauna of *Upogebia major*
in Vostok Bay, namely the bopyrid isopods Gyge ovalis (Shiino, 1939) and Progebiiophilus sp. (Crustacea: Isopoda: Bopyridae) and the rhizocephalan Sacculina upogebiae Shiino, 1943 (Crustacea: Rhizocephala: Sacculinidae), also represent new records for the Russian coast of the Sea of Japan. However, a large number of the small inhabitants of these communities still remain unknown likely because they are simply not caught by standard sampling gears. The importance of the associations between the burrowing macrofauna and their symbionts in a given ecosystem is difficult to estimate so that having new data on their diversity and biology will help to take these animals into account in future ecological studies.

Deep-burrowing crustaceans and spoon worms are two of the main groups of soft-bottom engineer species in Peter the Great and Posjeta Bays of the Sea of Japan, which are known to occur in large concentrations, for example, in Vostok Bay (Selin 2013, 2014, 2015, 2017). The shrimp Nihotrypaea japonica (Ortmann, 1891) (Decapoda: Callianassidae) may reach up to 200 inds/m², which represent about one-third of the total local macrozoobenthic biomass (Selin 2015). Virtually all bottoms from 0.2- to 3-m depth in the area are excavated by the several meters long burrows of the ghost shrimp Upogebia major (De Haan, 1841) (Decapoda: Gebiidea: Upogebiidae) (Nickell and Atkinson 1995; Kinoshita 2002), which may reach up to 117 mm in body length (pers. observ.). Nevertheless, the symbiotic assemblages inhabiting these burrows in the region were out of scientific interest.

This article is a part of the project attempting to evaluate the biodiversity of shallow-water infaunal organisms, which revealed the highly diverse symbiotic communities mostly composed of undescribed symbiotic species. Moreover, a careful morphological observation and molecular analysis revealed a new species of the rare symbiotic genus Hesperonoe Chamberlin, 1919 (Polychaeta: Polynoidae), known exclusively from the Northern Pacific (Skogsberg 1928; Hartman 1968; Averincev 1990; Buzhinskaia 2013; Hong et al. 2017; Uschakov and Wu 1965).

Materials and methods

Sample collection and treatment

Samples were mainly collected in the estuary of the Volchanka River in the Vostok Bay, near the scientific station “Vostok” (42° 51′ 14.48° N, 132° 46′ 47.24° E), and in the Troitza Bay (42° 38′ 60.00′′ N, 131° 07′ 27.8′′ E) (see Fig. 1), where the burrowing infauna was dominated by the crustaceans Nihonotrypaea japonica and Upogebia major (Marin and Kornienko 2014; Selin 2015, 2017, 2019), at least in summer from 2009 to date, as well as in the Astafeiva Bay (42° 36′ 52.2′′ N, 131° 12′ 01.1′′ E), where a large population of Urechis unincinctus was studied from 2009 to 2012 (Fig. 1). Hosts and the associated symbiotic community were collected subtidally by scuba diving using a bait suction pump (yabby-pump) (Eleftheriou and McIntyre 2005), which did not allow us to measure the length and volume of the burrows, neither to obtain quantitative estimates of the number of symbionts. To obtain reliable data on a qualitative analysis of the symbiotic communities, at least 50 burrows of each of the host species were examined.

Once preserved, the specimens were photographed under a Leica M165C stereomicroscope linked to a Leica IC80HD digital camera. Scanning electron microscope (SEM, Tescan Vega TS5130MM) micrographs were made after critical point drying and coating with 300 Å of gold, at the Laboratory of Electronic Microscopy of the A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences. All symbionts were measured to the nearest 0.1 mm using a calibrated ocular micrometer under a Leica M165C stereomicroscope.

The similarity of the communities was measured with the Sørensen Index (SI) (Sørensen 1948) as SI = 2C/(S1 + S2), where C is the number of species the two communities have in common, S1 is the total number of species found in community 1, and S2 is the total number of species found in community 2; Jaccard Index (JI) (Jaccard 1908, 1912) was calculated as JI = sc/(sa + sb + sc), where sa and sb are the numbers of species unique to samples a and b, respectively, and sc is the number of species common to the two samples; Sørensen–Dice Index was calculated as SD = 2a/(a + b) + (a + c) (Dice Lee 1945; Sorensen 1948).

Molecular analysis

Total genomic DNA was extracted from muscle tissue using the innuPREP DNA Micro Kit (Analytik Jena, Germany) following the manufacturer’s protocol. The gene marker of mitochondrial cytochrome c oxidase subunit I (COI mtDNA) was amplified with the help of primers «m13polylco» (TGTAAAACGACGGCCAGTGAATTTAAGCAT) and «m13polyhc0» (CAGGAAAACGCTATGACTAMACTTWWGGGTAACAAARATCA) (Carr et al. 2011), mitochondrial 16S small subunit rRNA (16S rRNA) with the help of +16SA (CGCCTGTITTATCAA AAACAT) and −16SH (CCGTCCTGACTACGTAGTACG), and nuclear 28S large subunit rRNA (28S rRNA) with the help of +C1 (ACCCGCTGAATTTAAGCAT) and −D2 (TCCGTGTTTCAAGACCGG). All obtained sequences are deposited in GenBank (NCBI) database (https://www.ncbi.nlm.nih.gov/genbank/).
Consensus of complementary sequences was obtained with MEGA 7.0. The best evolutionary substitution model was determined using MEGA 7.0 and jModeltest2.1.141 via the CIPRES Science Gateway V. 3.3 (http://www.phylo.org/). Kimura’s two-parameter (K2P) (Kimura 1980) substitution model was calculated using MEGA 7.0 for pairwise comparisons of sequence divergence between species based on the number of nucleotide substitutions. Phylogenetic analysis was performed for COI using RAxML v.8.0.0 with GTR+I+G evolutionary model for maximum likelihood (ML) analysis. Additional dataset of COI mtDNA sequences of the representatives of the family Polynoidae and related taxa was taken from GenBank (NCBI) database. Unfortunately, no sequences of species of *Hesperonoe* were presented in any of genetic databases to date.

The type material and vouchers are deposited in the collection of Zoological Museum of Moscow State University, Moscow (ZMMU), and the Laboratory of Ecology and Evolution of Marine Invertebrates (LEMMI) of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia.

Ecological results

Eleven symbiotic species were found in the burrows of *Upogebia major*, *Upogebia issaeffi* (Balss, 1913), and *Urechis unicinctus* (Table 1; Figs. 1 and 2). The respective symbiotic communities did not differ and, thus, will be considered together in further analyses. All symbiotic species, indicated for each host, belong to approximately the same size class and were found together in the burrows. The large individuals of *Hesperonoe urechis* sp. nov. were found inhabiting the burrows alone with the host spoon worm.

The studied symbiotic communities showed mostly dissimilar species compositions (SI = 0.428; JI = 0.375; SD = 0.428) (Fig. 3). *Sestrostoma balssi*, *Gymnogobius heptacanthus*, and turbellarian *Stylochus/Paraplanocera* sp. were found inside burrows of both *Upogebia* and *Urechis* (Table 1; Fig. 3). The Crustacea (mainly Decapoda) were dominant in diversity and abundance in both symbiotic communities (always comprising more than 60% of all symbiotic specimens), followed by Polychaeta and Turbellaria (in abundance) (Fig. 4; Table 1). The species of Decapoda represent phylogenetically different families, sharing a similar mode of life in the burrows.

Five over the eleven symbiotic species were found solitary or in heterosexual pairs. *Pinnixa rathbuni* was found in groups of up to 30 mature and young individuals inside the burrow of spoon worm, while 1, 2, or (rarely) 3 turbellarian specimens were found inhabiting the same burrow of *U. unicinctus* and *Upogebia*.

Taxonomic account

Family Polynoidae Kinberg, 1856

Genus *Hesperonoe* Chamberlin, 1919

Hesperonoe: Chamberlin 1919: 252; Pettibone 1953: 37; Fauchald 1977: 62; Uschakov 1982: 144; Ruff 1995a: 136; Jirkov 2001: 161.

Type species: *Hesperonoe complanata* (Johnson, 1901).

Diagnosis (based on Fauchald 1977; Uschakov 1982; Ruff 1995a; Hong et al. 2017). Body flattened with 36–38 segments, having 15 pairs of elytra on segments 2, 4, 5, 7, 9,…, 23, 26, 29 and 32; elytra almost covering dorsum. Bilobed prostomium with cephalic peaks (might be reduced); ceratophores of lateral antennae inserted ventrally. Parapodia biramous. Notochaetae more or less serrated, thick with blunt tip (upper) and longer, slenderer with pointed tip (lower). Neurochaetae all unidentate and serrated, slender with long spinous region tapering to fine tip (upper) and thick with expanded subdistal spinous region and smooth tip (lower).

Hesperonoe japonensis Hong, Lee & Sato, 2017

(Figs. 5, 6, and 7)

Hesperonoe japonensis. – Hong, Lee and Sato 2017: 2935–2940, Figs. 7–9.

Hesperonoe hwanghaisensis (not Uschakov and Wu 1959):

Sato et al. 2001: 983–990, Figs. 4–14; Yamanishi and Sato 2007: 188; Sato 2008: 202; Sato 2012: 223, 1 fig.; Sato et al. 2016: 30–38, Figs. 3–3.

Hesperonoe sp.: Sato 2000: 192–195, Figs. 8–6d.

Material examined. Adult specimens: 1 spcm (ZMMU Pl-3941) and 1 spcm (LEMMI, dissected), 12 spcms (LEMMI) – Russian Far East, Sea of Japan (East Sea), Peter the Great Bay, Vostok Bay, near scientific station “Vostok,” 42° 51’ 19.0” N, 132° 46’ 30.6” E, in front of the laboratory, 1–1.5-m depth, sandy-gravel bottom overgrown with seagrass, collected with yabby-pump from burrows of the mud shrimps *Upogebia major* and *U. issaeffi*, coll. I. Marin, 30–31 July 2017; 1 spcm (ZMMU Pl-3942), 1 spcms (LEMMI, dissected), 3 spcms (LEMMI) – Posjeta Bay, Troitza Bay, 42° 38’ 60.0” N, 131° 07’ 27.8” E, 1–1.5-m depth, muddy sand, 1–1.5-m depth, sandy-gravel bottom overgrown with seagrass, collected with yabby-pump from burrows of the mud shrimps *Upogebia major* and *U. issaeffi*, coll. I. Marin, 1–3 Aug. 2018.

Diagnosis (based on Hong et al. 2017 and present study). Color red in vivo. Bilobed prostomium with sharply tapering cephalic peaks. Median and lateral antennae and all cirri with scattered papillae. A row of conical macrotubercles along posterior edge of elytra in adults (≥ 1.9 mm in body width without parapodia). Microtubercles and papillae over most of elytral surface. Marginal fringe of filiform papillae on posterior and outer-lateral elytral...
Fig. 1 Macrosymbiotic community associated with the spoon worm *Urechis unicinctus* (a); b copepod *Goidelia cf. japonica* Embleton, 1901 (Crustacea: Copepoda: Poecilostomatoida: Cariidiidae); c, d pinnotherid crab *Pinnixa rathbuni* Sakai, 1934 (Crustacea: Decapoda: Pinnotheridae); e polynoid Polychaeta *Hesperonoe urechis* sp. nov. (Polychaeta: Polynoidae); f *Stylochus/Paraplanocera* sp. (Stylochoidea: Polycladida: Platyhelminthes); g brachyuran *Sestrostoma balssi* (Shen, 1932) (Crustacea: Decapoda: Varunidae); h undescribed amphipod *Liljeborgia* sp. (Crustacea: Amphipoda: Liljeborgiidae); i gobiid fish *Gymnogobius heptacanthus* (Hilgendorf, 1879) (Pisces: Gobiidae)
edges. Notochaetae at basal lobes of tentacular cirri. Both thick and thin notochaetae strongly serrated.

Description. The largest specimen 20 mm long, 2.7 mm wide without parapodia, 9.8 mm wide with setae, with 40 segments. Body dorsoventrally flattened. Red in vivo (Fig. 5), brownish when preserved.

Prostomium bilobed, about as long as wide, with sharply tapering cephalic peaks (Figs. 6a and 7a). Two pairs of eyes; anterior larger than posterior, near widest region of prostomium, posterior closer together. Ceratophore of median antenna reaching cephalic peaks; style of median antenna long, several times longer than prostomium length (Figs. 6a and 7a). Lateral antennae shorter than prostomium, inserted beneath cephalic peaks (Fig. 6a, c). Median and lateral antennae with scattered papillae (Fig. 7a, b). Palps several times longer than prostomium length, tapering to filiform tips, with minute papillae (Figs. 6a, c and 7a).

Cirrophores of tentacular cirri large, with digitiform aciculare containing single stout aciculum, with 1–2 notochaetae (Fig. 7b). Tentacular cirri tapering, with relatively large papillae; dorsal pair longer than ventral pair (Fig. 6a, c).

Elytra thin and semitransparent, 15 pairs, on segments 2, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 26, 29, and 32, covering dorsum completely or except mid central dorsum (Fig. 5a, c), with conical macrotubercles along posterior elytral edge (Figs. 6d and 7c, d). Numerous small microtubercles and papillae over most elytral surface (Figs. 6b and 7c, d). Marginal fringe of filiform papillae on posterior and outerlateral elytral edges (Figs. 6b and 7c).

Biramous parapodia with shorter notopodia with tapering tip and larger neuropodia with shorter, rounded postsetal acicular lobes and longer, conical presetal acicular lobes (Fig. 6e). Notopodia with up to 50 notochaetae: 25–26 upper, thick, with marked serrations, tapering to blunt tip (Figs. 6f and 7e) and 23–24 lower, longer, thin, capillary, with marked serration and filiform tips (Figs. 6g and 7e). Neuropodia with up to 50 neurochaetae: 19–20 upper, slender, with long spinous region, tapering to fine tip (Figs. 6h and 7f) and 20–30 lower, thicker, shorter, with expanded subdistal shorter spinous region, and smooth, sharp, slightly hooked tip (Fig. 6j).

Dorsal cirri with long styles extending beyond chaetae, with scattered papillae. Ventral cirri short, tapered, with small papillae. Cirrophores of ventral buccal cirri inserted at base of segment 2; styles long, tapering, similar to ventral tentacular cirri, with scattered papillae (Fig. 6c). Dorsal tubercles present.

Taxonomic remarks. The specimens from Peter the Great Bay matched very well the original description based on the type specimens from Japan and that of “Hesperonoe hwanghiaensis” described by Sato et al. (2001, 2016) and Hong et al. (2017). The only intraspecific differences in our specimens are palps varying in length (Figs. 6a, c and 7a). *Hesperonoe hwanghiaensis* differs from *H. japonensis* in having a row of conical macrotubercles in elytra of adults, papillae on the surface of the median and lateral antennae, the thick and thin notochaetae being markedly serrated and notochaetae at cirrophores of tentacular cirri (Hong et al. 2017).

Table 1. Presence and approximate abundances (number of individuals) of the symbiotic species recorded from each burrowing host.

Symbiont	Upogebia major	Upogebia issaeffi	Urechis unicinctus
Crustacea			
Pinnixa rathbuni Sakai, 1934			
(Decapoda: Pinnotheridae)			
Sestrostoma balssi (Shen, 1932) Decapoda: Varuniidae)	1	1	1
Betaeus levifrons Vinogradov, 1950 (Decapoda: Alpheidae)	1 or 2 \(\tilde{\varphi}\tilde{\varphi}\)	1 or 2 \(\tilde{\varphi}\tilde{\varphi}\)	–
Liljeborgia sp. (Amphipoda: Liljeborgiidae)	–	–	1
Goidelia cf. japonica Embleton, 1901 (Copepoda: Poecilostomatoida: Catiniidae)	–	–	>30
Unidentified copepod (possibly *Hemicyclops* sp.)	>30	>30	–
Polychaeta			
Hesperonoe japonensis Hong, Lee & Sato, 2017 (Polynoidae)	1	1	–
Hesperonoe urechis sp. nov. (Polynoidae)	–	–	1
Platyhelminthes			
Stylochus/Paraplanoeca sp. (Stylochoidea: Polycladida)	1–2	1–2	2–3
Phoronida			
Phoronis embryolabi Temereva & Chichvarkhin, 2017 (Phoronidae)	>30	>30	–
Pisces			
Gymnogobius heptacanthus (Hilgendorf, 1879) (Pisces: Gobiidae)	1	1	1
Fig. 2 Macrosymbiotic community associated with *Upogebia major* (a) and *U. issaeffi* (b); c Polychaeta *Hesperonoe japonensis* Hong, Lee & Sato, 2017 (Polychaeta: Polynoidae); d, e brachyuran *Sestrostoma balssi*; f alpheid shrimps *Betaeus levifrons* Vinogradov, 1950 (Crustacea: Decapoda: Alpheidae); g gobiid fish *Gymnogobius heptacanthus*; h *Phoronis embryolabi* Temereva & Chichvarkhin, 2017 (Phoronida: Phoronidae); i *Stylochus/Paraplanocera* sp. (Stylochoidea: Polycladida: Platyhelminthes)
GenBank accession numbers. COI mtDNA – MT237710, MT237711; 16S rRNA – MT241162; 28S rRNA – MT241160.

Habitat and ecology. The specimens of *H. japonensis* were collected from burrows of *Upogebia major* and *U. issaeffi*, which were particularly abundant between the rootstocks of *Zostera marina* Linnaeus, 1753; *Z. asiatica* Miki, 1932 (Zosteraceae); and *Phyllospadix japonicus* Makino, 1897 (Cymodoceaceae) overgrowing the sandy-gravel bottoms of the studied area. In Japanese waters, the species was associated with the same species of *Upogebia*, as well as with *Austinogebia narutensis* (Sakai, 1986) (Crustacea: Decapoda: Upogebiidae) (Sato et al. 2001, 2016; Hong et al. 2017; present paper). Only one mature adult was collected from each burrow, suggesting a territorial behavior. The worm shared the same burrow with turbellarian *Stylochus/Paraplanocera* sp., the alpheid shrimp *Betaeus levifrons* and the brachyuran crab *Sestrostoma balssi* (Marin 2010; Marin et al. 2011; Table 1; Fig. 2).

Geographic distribution. Type locality: Akkeshi Bay, Hokkaido Island, Japan. Present in the western part of the Northern Pacific, from Peter the Great Bay of the Sea of Japan (East Sea) to the southern island of Japan (Kyushu).

Hesperonoe urechis sp. nov.

http://zoobank.org/790BA302-0A5E-4746-9795-CCBAF4EDE189

(Figs. 8, 9, and 10)

Material examined. Holotype, 1 adult spcm (ZMMU Pl-3943) – Russian Far East, Sea of Japan (East Sea), Posjeta Bay, Troitza Bay, 42° 38′ 60.0″ N, 131° 07′ 27.8″ E, 1–1.5-m depth, muddy sand, inside a burrow of the spoon worm *U. unicinctus*, yabby-pump, coll. Marin, I., Antokhina T., 24 Aug. 2009; 1 spcm (LEMMI) – Peter the Great Bay, Astafieva Bay, 42° 36′ 52.2″ N, 131° 12′ 01.1″ E, 1–1.5-m depth, clear sand bottom, inside a burrow of the spoon worm *U. unicinctus*, yabby-pump, coll. Marin, I., Antokhina T., 25 Aug. 2009.

Diagnosis. Prostomium bilobed, with pro stomal peaks reduced to small processes. All antennae and cirri without papillae. Tentaculophores without chaetae. Elytra smooth, without or with median microtubercles, without marginal papillae. Distinct dorsal tubercles present. Upper thick notochaetae with minute serration. Yellow-brown in vivo, with a metallic sheen.

Description. Holotype fragmented in two parts, anterior with 28 segments and posterior with 8 segments; 71 mm in total length and 7 mm wide without parapodia, 15 mm wide with setae. Body dorsoventrally flattened. Dorsum yellow brown in vivo, with a metallic sheen, orange when preserved (Fig. 8).

Prostomium bilobed, slightly wider than longer, with cephalic peaks reduced to small processes on frontal prostomial margin, with two palps and three antennae (Figs. 8b and 9a). Two pairs of dorsal black eyes, ovate in shape, equal in size, anterior pair near middle of widest prostomial region, posterior pair on rear prostomial margin. Style of median antenna slender, 1.5 times longer than lateral ones, same length as prostomium, inserted anteriorly in median notch, with distinct ceratophore (Figs. 8b and 9a). Lateral antennae inserted ventrally, with short tapered styles, shorter than median antennae and prostomium length, with distinct ceratophores (Figs. 8b and 9a). All antennae not papillated, without subdistal inflation. Palps stout, 2.5 times longer than prostomium length, not papillated (Fig. 9a).

First segment non-visible dorsally, with two pairs of tentacular cirri without papillae, dorsal pair slightly longer than...
Fig. 5 *Hesperone japonensis* Hong, Lee & Sato, 2017: a–c dorsal view, *in vivo*; d, e polychaete specimens attached to host’s abdomen. White arrows highlight the position of the worms.
Fig. 6 *Hesperonoe japonensis* Hong, Lee & Sato, 2017:

- **a** dorsal view of the anterior end;
- **b** elytron from the middle part of body;
- **c** ventral view of the anterior end;
- **d** enlargement of the posterior edge of the elytron at the position indicated by arrow;
- **e** posterior view of a right parapodium of the 9th segment;
- **f** upper notochaeta;
- **g** distal part of the lower notochaeta;
- **h** distal part of the upper neurochaeta;
- **i** middle neurochaeta;
- **j** lower neurochaeta.

Scale bars: (a, b, c, e) 1 mm; (d, f, g, h, i, j) 200 µm
Fig. 7 *Hesperonoe japonensis* Hong, Lee & Sato, 2017: a dorsal view of the anterior end; b cirrophore of tentacular cirri with notochaeta; c posterior edge of elytron with filiform papillae and microtubercles; d posterior edge of elytron with filiform papillae, microtubercles, and conical macrotubercles; e upper (left) and lower notochaetae (right); f upper neurochaetae (left). (ctc) Cirrophore of tentacular cirri. (nc) Notochaetae. (ac) Aciculum. (la) Lateral antenna. Scale bars: a, 0.5 mm; b, c, d, 100 µm; e, f, 200 µm
Elytra 15 pairs almost completely covering dorsum except for last few segments in vivo (Fig. 8a, c). Anterior fragment of holotype with 13 pairs of elytra on segments of: 2, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 26; posterior fragment without elytra, only with cirrigerous segments. Elytra oval, smooth, sometimes with central microtubercles, margin without papillae (Figs. 9b, c and 10a, b).

Biramous parapodia with reduced rounded notopodia and larger neuropodia (Figs. 9i, j and 10b). Neuropodia with shorter, rounded postsetal acicular lobes and longer, conical presetal acicular lobes with digitiform supra-acicular extension (Fig. 9j). Tips of acicula penetrate neuropodial postsetal acicular lobes (Fig. 9i).

Notopodia with up to 40 notochaetae: 15–22 upper, thick, with faint serrations, smooth, aciculiform, with rounded tips (Figs. 9d and 10d) and 17–23 lower, lower, thin, with marked serration and filiform tips (Figs. 9e and 10e). Neuropodia with 70+ neurochaetae of about equal width, noticeable serrated (Fig. 10b), upper, slender, with long spinous region tapering to fine tip (Figs. 9f and 10f), lower ones shorter than upper, with short expanded subdistal spinous region and smooth, sharp tip (Figs. 9g and 10g), with transitional neurochaetae between upper and lower (Fig. 9g). Lower and upper neurochaetae of about equal width and length.

Dorsal cirri with large cylindrical cirrophores and smooth long styles extending beyond chaetae, without distal inflation. Dorsal tubercles well developed (Figs. 8b and 9i). Ventral cirri short, tapered, not extending to lower edge of neuropodia (Fig. 9i, j).

Taxonomic remarks. *Hesperonoe urechis* sp. nov. can be distinguished from all other species of the genus by its relatively long body (up to 7 cm in mature specimens). It resembles *H. adventor* (Skogsberg in Fisher and MacGinitie 1928), but differs in: (1) the absence of papillae on all antennae, palps and cirri (heavily ciliated in *H. adventor*); (2) microtubercules, if present, located in the median area of elytra (on the edge of ones as in *H. adventor*); (3) thick upper notochaetae with faint serrations (distinct pectination in *H. adventor*); and (4) rounded prostomium with reduced cephalic peaks (tapering lateral peaks in *H. adventor*, according to Hartman (1968)). The original description indicated the presence of two mammilliform anterior processes, which may almost be absent (Skogsberg 1928).

The new species is also resembling *Hesperonoe andriashevi* Averincev, 1990, but differs in having (1) small processes on prostomium (lacking in *H. andriashevi*); (2) up to 45 notochaetae and 70 neurochaetae (5–7 and ~15 in *H. andriashevi*); (3) two types of neurochaetae (only one in *H. andriashevi*); and (4) median elytral microtubercules (absent in *H. andriashevi*). The elytra of *H. andriashevi* were reported as non-completely covering dorsum. However, its description was based on one elytron (Averincev 1990). *Hesperonoe andriashevi* differs from all other species of *Hesperonoe* in having 13 pairs of elytra and neurochaetae that cannot be clearly subdivided into two types so that its position within *Hesperonoe* was cast in doubt by Hong et al. (2017), but not by Averincev (1990). Upper and lower neurochaetae of *H. urechis* sp. nov. are different, but there are some transitional chaetae between them. A similar distribution of neurochaetae occurs in other species of *Hesperonoe,* such as *Hesperonoe corensis* Hong, Lee & Sato, 2017. The fact is that it may be difficult to clearly subdivide neurochaetae into two types, thus supporting the necessity to modify the generic diagnosis of the genus as suggested by Averincev (1990).

Genetic differences. Uncorrected pairwise distances (*p*-distances) between *H. japonensis* and *Hesperonoe urechis* sp. nov. is 0.152 ± 0.008 substitution per 100 nucleotides (about 15%) that clearly support their interspecific differences.

GenBank accession numbers. COI mtDNA – MT237712, MT237713; 16S rRNA – MT241163; 28S rRNA – MT241161.

Habitat and ecology. The specimens of the new species were collected from intertidal muddy sand flats. They are commensals of the shallow-water spoon worm *Urechis unicinctus,* which lives in large U-shaped burrows in muddy and sandy sediments in inter- and subtidal zones in the Sea of Japan and the Yellow Sea (Abe et al. 2014; personal observation). The symbiotic fauna of *U. unicinctus* in Peter the Great Bay includes turbellarian *Stylochus/Paraplanocera* sp., the pinnotherid crab *Pinnixa rathbuni,* an amphipod *Liljeborgia* sp., the copepod *Goidelia* cf. *japonica* Embleton, 1901, and gobid fish *Gymnogobius heptacanthus* (Hilgendorf, 1879) (Marin 2016; Table 1; Fig. 1).

Etymology. The species is named after the generic name of its host – *Urechis unicinctus.*

Geographic distribution. *Hesperonoe urechis* sp. nov. were found in the southern part of Peter the Great and Posjeta Bays of the Sea of Japan (Russian Federation) (Fig. 11). Although the distribution of the new species is probably related with that of *Urechis unicinctus* (see Abe et al. 2014), it has never been collected from burrows in the northern part of Peter the Great Bay (Vostok Bay and adjacent areas), which have been intensive sampled with the same method. Similarly, no records are known from the southern region of the distribution.

Discussion

The symbiotic communities associated with the dominant burrowing invertebrates, such as the spoon worm *Urechis caupo* Fisher & MacGinitie, 1928 (Annelida: Echiura: Urechidae), and the ghost shrimps *Neotrypaea californiensis*
(Dana, 1854) (Crustacea: Decapoda: Callianassidae) and Upogebia pugettensis (Dana, 1852) (Crustacea: Decapoda: Upogebiidae), or tube builders, such as the parchment worm Chaetopterus aff. variopedatus (Renier, 1804) (Annelida: Polychaeta: Chaetopteridae), inhabiting the mud flats along the US coast, are mostly studied in the Northern Pacific (Ricketts et al. 1985; Manning and Felder 1991). The burrows of the species of Urechis, like those of almost all other echiuroids, often host numerous symbionts, such as shrimps, crabs, bivalves, and even fishes (e.g., Fisher and MacGinitie...
Fig. 9 *Hesperonoe urechis* sp. nov.

- **a** Dorsal view of the anterior end with round prostomium with small processes;
- **b** elytron with small group of microtubercles in the center;
- **c** microtubercles;
- **d** upper notochaeta;
- **e** lower notochaeta;
- **f** upper neurochaeta;
- **g** middle neurochaeta;
- **h** lower neurochaeta;
- **i** posterior view of a left parapodium of the 14th segment;
- **j** posterior view of a right parapodium of the 13th segment.

Scale bars:
- (a, b, d, e) 2 mm;
- (c) 1 mm;
- (f, g, h, i, j) 200 μm.
In turn, the burrows of *U. pugettensis* are inhabited by 15 commensal species, seven of them obligate (Haig and Abbott 1980; Ricketts et al. 1985; Hornig et al. 1989; Fisher and MacGinitie 1928; MacGinitie 1934; Fisher 1946; Hart 1964; MacGinitie and MacGinitie 1968; Butler 1980; Morris et al. 1980; Ricketts et al. 1985; Zmarzly 1992; Jensen 1995; Ruff 1995b; Martin and Britayev 1998, 2018). At the same time, the symbiotic assemblages associated with burrows of large invertebrate burrowers are less completely studied along Asian coasts of the NW Pacific, despite the numerous reports of symbiotic brachyurans and caridean shrimps (Davie 1992; Itani 2002; Itani et al. 2002a, b, 2005; Yamauchi and Konishi 2005; Marin 2008, 2010, 2016; Anker and Marin 2009; Marin et al. 2011; Marin and Kornienko 2014; Henmi and Itani 2014a, b; Henmi et al. 2017), copepods (Miyake 1982; Ho 1928; Anker et al. 2005; Itani et al. 2005; Goto et al. 2017). In

![Fig. 10 Hesperonoe urechis sp. nov.:](image)

- a: elytron of middle part of body
- b: microtubercules on a center of an elytron
- c: posterior view of a left parapodium of the 14th segment
- d: upper thick notochaeta with minute serration
- e: lower thin notochaeta
- f: upper neurochaeta
- g: lower neurochaeta

(Unt) upper notochaeta; (Lnt) lower thin notochaeta; (Unr) upper neurochaeta; (Lnr) lower neurochaeta. Scale bars: (a, b) 2 mm; (c) 1 mm; (d) 200 µm
Fig. 11 Distribution of Hesperonoe japonensis and Hesperonoe urechis sp. nov. in the Sea of Japan and around Japan Islands (upper) and total distribution of known representatives of the genus Hesperonoe in the Northern Pacific (lower)
and Kim 1991; Itoh and Nishida 1998, 2013; Kim 2000; Ijichi et al. 2017), bivalves (e.g., Shoji 1938; Qi et al. 1989; Kato and Itani 1995, 2000; Itani et al. 2002a, b; Kil and Park 2009; Goto et al. 2017), polychaetes (Hong et al. 2017), and fishes (Henmi and Itani 2014a; Henmi et al. 2014). Accordingly, Anker et al. (2005) for echiuroids. The species composition of the symbiotic communities from the NE Pacific is very similar to that from the NW Pacific coasts, at least for echiuroids (Anker et al. 2005). However, a detailed analysis has never been carried out.

Burrows of large invertebrates are very attractive for symbionts as they are stable and long-lasting habitats, which are long-time maintained in good conditions (MacGinitie and MacGinitie 1968). Most specialized symbionts use these burrows as a shelter from predators, but are trophically unrelated with their hosts, except those species that steal food from the spoon worm filtering net (Itoh and Nishida 2013; Henmi and Itani 2014b; Henmi et al. 2017; Burukovsky and Marin 2018).

The symbiotic communities associated with deep-burrowing invertebrates in the Russian waters of the Sea of Japan are also very rich and diverse and still include many undescribed species, as very probably the turbellarian Stylochus/Paraplanocera sp. and the amphipod Lifseborgia sp. (Marin, 2020), while our findings of representatives of Stylochus/Paraplanocera undetermined species, as very probably the turbellarian Phoronis embryolabi, is firstly recorded from the Russian coasts of the Sea of Japan as a symbiont of Urechis unicinctus, as it was previously recorded from only burrows of Upogebia spp. only (Marin et al. 2011). However, the species was previously recorded from burrows of both hosts in Japan (Itani 2002, 2004; Itani et al. 2002a, 2005). Other symbiotic crustaceans were previously recorded from the area (see Marin 2010, 2016; Marin et al. 2011; Marin and Kornienko 2014; Marin and Smelnikov 2016). The horsehoe worm Phoronis embryolabi was described as living commensally inside burrows of the callianassid shrimp Nihonomtrypaea japonica (see Temereva and Chichvarkin 2017), but it is also very abundant in our samples in the sediments around the burrows of Upogebia spp., so we may suggest a symbiotic association with this host too. Moreover, the relative Phoronis species are known as symbionts of burrowing shrimps of the genus Upogebia (Thompson 1972; Santagata 2004).

The species of Hesperonoe are among the most noticeable symbionts of various burrowing invertebrates. Despite the current lack of knowledge on their diversity and ecology, it is possible to conclude that relatively large-sized species, such as H. adventor and H. urechis sp. nov., tend to be associated with spoon worms, while the relatively small-sized species, namely H. complanata, H. coreensis, and H. japonica, tend to live associated with different ghost shrimps (Thalassinidea) (MacGinitie and MacGinitie 1968; Morris et al. 1980; Ricketts et al. 1985; Ruff 1995a; Martin and Britayev 1998, 2018; Sato et al. 2001, 2016; Hong et al. 2017) (see Fig. 11). Usually one single specimen of H. urechis sp. nov. occurs in each burrow, from where other conspecific individuals are actively expelled, likely due to food rather than to space limitations. The scale worm feeds mainly on detritus trapped in the host mucus net (Fisher and MacGinitie 1928; Ricketts et al. 1985), and its particular feeding mode is now being studied using stable isotopes (Marin, unpublished data). This agile worm is rarely, if ever, found outside the innkeepers’ burrows, and often dwells in the immediate proximity of the host. The juveniles associated with burrowing shrimps are commonly attached to the ventral or lateral surface of the thorax or abdomen of the host. As soon as they become adults, they detach themselves from the host carapace to move freely on the inner surface of the host burrow (MacGinitie 1935; MacGinitie and MacGinitie 1968; Sato et al. 2001). Almost all species of Hesperonoe, especially the small-sized H. japonica, H. coreensis, and H. complanata, have a uniform bright red coloring (Sato et al. 2001), probably as a result of being rich in blood pigments like other symbionts living in relatively oxygen-poor conditions (Martin and Britayev 1998, 2018).

As part of this investigation, we were able to obtain molecular genetic data of the species of the polychaete genus Hesperonoe Chamberlin, 1919 (Polychaeta: Polynoidae) for the first time. Several gene markers were amplified, sequenced, and compared. The obtained molecular genetic data (Fig. 12) confirms the relationships between two described species, although they greatly differ in their appearance and size. The divergence for more than 15% by COI mtDNA (e.g., Carr et al. 2011) clearly supports the interspecific differences between the species within the genus Hesperonoe. The genus Hesperonoe is well isolated on the general phylogenetic reconstruction (tree) of the Polynoidae family (Fig. 12) and is associated with a clade including such genera as Harmothoe Kinberg, 1856; Enipo Malmgren, 1865; Gattyana McIntosh, 1897; Eunoe Malmgren, 1865; and Grubeopolynoe Pettibone, 1969. However, the taxonomy of these genera is rather complicated, and many of them could be polyphyletic. Nevertheless, the phylogenetic relationships of the genus Hesperonoe lie beyond the aims of our research. The autapomorphy of the clade Hesperonoe–Grubeopolynoe is the presence of the setae (notosetae) of two types, short blunt and slender tapering.

Finally, we conclude that, in the relatively simple boreal ecosystem, the existence of hidden biodiversity is confirmed by the finding of at least three undescribed species, which correspond to a 30% of the total observed symbiotic species. If we take into account the recent records and redescription of
two species of symbiotic decapods (Marin 2010; Marin et al. 2011) and the recently described phorid species (Temereva and Chichvarkhin 2017), the number of new species discovered in these communities will increase up to 60%. The symbiotic assemblages associated with burrowing shrimps (Gebiidea) and spoon worms (Echiura) are quite different at the species level, but coincident at higher taxa level, which may support a common origin for these associations. There are also clear differences in species composition of the symbiotic assemblages of boreal and tropical ecosystems. Related host species of Upogebia are inhabited by the same species of symbionts with low host specificity in boreal ecosystems (Table 1), whereas the tubes of related host species of Chaetopterus spp. are inhabited by different, although some closely related, associates, showing higher specificity of symbionts in relation to the host in tropical ecosystems (Britayev et al. 2017).

The presence of such diverse symbiotic communities seems not only to be associated with the ability to escape in burrows from predators but also to receive/stain food from their host without leaving holes. Accordingly, we suggest that the symbiotic assemblage may be more abundant and diverse when associated to Urechis unicinctus, as the host feeding can also be a food resource for the symbionts (Fisher and MacGinitie 1928; Anker et al. 2005; Burukovsky and Marin 2018). In turn, the species of Upogebia only pump water through their burrow to filter food particles with their appendages (Dworschak 1981, 1983, 1987; Kinoshita 2002). In fact, the only possibility to obtain food that the symbionts of Upogebia has is either to creep over the host’s body (crabs and polychaetes) or attach on its carapace (the bivalves Neaeromya rugifera (Carpenter, 1864) or the species of the genus Peregrinamor Shōji, 1938 (Mollusca: Bivalvia: Lasaeidae) (Kato and Itani 2000)) to be able to steal the food that gets stuck in the bristles of appendages and body of Upogebia (Fig. 5d, e).

It is also known that symbiotic assemblage is influenced by physical factors and habitat requirements. Species richness and community composition associated with the spoon worm Ochetostoma erythrogrammon Leuckart & Rüppell, 1828 (Annelida: Echiura: Thalassematidae) in the Ryukyu Archipelago, Japan, are greatly influenced by the granulometric characteristics of the sediment, separating them for shrimp- (Alpheus barbatus Coutière, 1897) and scale worm–dominant (Lepidonotus sp.) sites (Goto and Kato 2012).

Acknowledgments The authors are very grateful to the staff of the biological scientific station “Vostok” of NSCMB FEB RAS (Vladivostok, Russia) and personally Konstantin Dudka and Dr. Anastasia Mayorova for the help during the field sampling. The authors are very thankful to anonymous reviewers, who greatly improved the manuscript.

Funding information The study was financially supported by the Russian Foundation of Fundamental Researches (RFFR) through the grant 18-04-01093 A “Large burrowing crustaceans (Callianassidae and Upogebiidae) and their symbionts: diversity and trophic interaction” given to I. Marin.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Sampling and field studies All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable. The study is compliant with CBD and Nagoya protocols.

Data availability All data generated or analyzed during this study are included in this published article; analyzed genetic sequences are available in GenBank (NCBI) database.

Author contribution IM conceived and designed research. IM and AT conducted sampling in the Sea of Japan, identified animals, and analyzed data. Both authors read and approved the manuscript.

Open access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Abe H, Sato-Okoshi W, Tanaka M, Okoshi K, Teramoto W, Kondoh T, Nishitani G, Endo Y (2014) Swimming behavior of the spoon worm Urechis unicinctus (Annelida, Echiura). Zoology 117(3):216–223. https://doi.org/10.1016/j.zool.2013.12.001

Aller RC, Aller JY (1998) The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. J Mar Res 56:905–936. https://doi.org/10.1357/00224098321667413

Anker A, Marin I (2009) The alpheid shrimp genus Leptalpheus Williams, 1965 in the tropical western Pacific, with description of two new species (Crustacea: Decapoda: Caridea). Raffles Bull Zool 57(1):91–107

Anker A, Murina GV, Lira C, Vera Caripe JA, Palmer AR, Jeng MS (2005) Macrofauna associated with echiuran burrows: a review with new observations of the innkeeper worm, Ochetostoma erythrogrammon Leuckart and Rüppell, in Venezuela. Zool Stud 44:157–190

Anker A, Komai T, Marin IN (2015) A new echiurian-associated snapping shrimp (Crustacea: Decapoda: Alpheidae) from the Indo-West Pacific. Zootaxa 3914:441–455. https://doi.org/10.11646/zootaxa.3914.4.4

Atkinson RJL, Taylor AC (2005) Aspects of the physiology, biology, and ecology of thalassinidean shrimps in relation to their burrow environment. Oceanogr Mar Biol 43:173–210. https://doi.org/10.1201/9781420037449.ch5
Averinec VG (1990) The polychaetous fauna of the Laptev Sea. Issled Fauny Mory 37:147–186 (in Russian, English summary)

Balss H (1913) Diagnosen neuer ostasiatischen Macrurren. Zool Anz 42: 234–239

Britayev TA, Mekhova E, Deart Y, Martin D (2017) Do syntopic host species harbour similar symbiotic communities? The case of Chaetocterus spp. (Annelida: Chaetocteriidae). PeerJ 5:e2930. https://doi.org/10.7717/peerj.2930

Burukovsky RN, Marin IN (2018) The food composition of the symbiotic crab Pinnixa rathbunae Sakai, 1934 (Brachyura, Pinnotheridae) from burrows of the spoon worm Urechis unicinctus (von Drasche, 1881) (Echiurida, Urechididae) in Vostok Bay of the Sea of Japan. Arthrop Sel 27(4):319–324. https://doi.org/10.15259/ arthsel.27.4.06

Butler TH (1980) Shrimps of the Pacific coast of Canada. Can Bull Fish Aquat Sci 202–1–280

Buzhinskaja GN (2013) Polychaetes of the Far East of Russia and adjacent waters of the Pacific Ocean: annotated checklist and bibliography. KMK Scientific Press, Moscow (in Russian, English summary)

Campos E, de Campos AR, Manriquez I (2009) Intertidal thalassinidean shrimps (Thalassinidea, Callianassidae and Urogebiidae) of the west coast of Baja California, Mexico: annotated checklist, key for identification, and symbionts. Crustacea 82(10):1249–1263. https://doi.org/10.1163/01121609X12481267024454

Carpenter PP (1864) Supplementary report on the present state of our knowledge with regard to the Mollusca of the west coast of North America. Brit Assoc Adv Sci 33:517–686

Carr CM, Hardy SM, Brown TM, Macdonald TA, Hebert PD (2011) A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS One 6(7):e22232. https://doi.org/10.1371/journal.pone.0022232

Chamberlin RV (1919) Pacific coast Polychaeta collected by Alexander Agassiz. Bull Mus Comp Zool 63:251–270

Dana JD (1852) Conpects crustaceorum, & conspectus of the Crustacea of the exploring expedition under Capt. C. Wilkes, U.S.N. Macrouca. Proc Acad Natl Sci Phila 7: 175–177

Davie PJF (1992) A new species and new records of intertidal crabs (Crustacea: Brachyura) from Hong Kong. In: Morton B (ed) The marine flora and fauna of Hong Kong and Southern China III. Hong Kong University Press, Hong Kong, pp 345–359

De Haan W (1841) Crustacea. In: von Siebold PF (ed) Fauna japonica. 439. wildserv Biol Rep 82:1–5

Dworschak PC (1982) The pumping rates of the burrowing shrimp Upogebia pusilla (Petagna) (Decapoda: Thalassinidea). J Exp Mar Biol Ecol 52(1):25–35. https://doi.org/10.1016/0022-0981(81)90168-4

Dworschak PC (1983) The biology of Upogebia pusilla (Petagna) (Decapoda, Thalassinidea). I. The burrows. Mar Ecol Progr Ser Zool Napoli 4:19–43. https://doi.org/10.1111/j.1439-0485.1983.tb00286.x

Dworschak PC (1987) Feeding behaviour of Upogebia pusilla and Callianassa tyrrhena (Crustacea, Decapoda, Thalassinidea). Investig Pesq 51(Supplement 1):421–429

Dworschak PC (2000) Global diversity in the Thalassinidea (Decapoda). J Crustacean Biol 20(special number 2):238–245

Eleutheriou A, McIntyre AD (eds) (2005) Methods for the study of marine benthos. Third edition. Blackwell, Oxford, 418 p

Embleton AL (1901) Goidelia japonica - a new entozoic copepod from Japan, associated with an Infusorian (Trichodina). Zool J Linnean Soc 28:211–229. https://doi.org/10.1111/j.1096-3424.1901.tb01750.x

Fauchald K (1977) The polychaete worms. Definitions and keys to the orders, families and genera. Los Angeles, Natural History Museum of Los Angeles County, Los Angel Nat Hist Mus Los Angeles County Sci Ser 28:1–188

Felder DL (2001) Diversity and ecological significance of deep-burrowing macrocrustaceans in coastal tropical waters of the Americas (Decapoda: Thalassinidea). Interciencia 26(10):440–449

Fisher WK (1946) Echiurid worms of the North Pacific Ocean. Pro C US Natl Mus 96:212–292

Fisher WK, MacGinitie GE (1928) The natural history of an echiurid worm. Ann Mag Nat Hist 1:204–213

Gláz RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4: 243–289

Goto R, Kato M (2012) Geographic mosaic of mutually exclusive dominance of obligate commensals in symbiotic communities associated with a burrowing echiurian worm. Mar Biol 159:319–330. https://doi.org/10.1007/s00227-011-1860-8

Goto R, Hamamura Y, Kato M (2017) Morphological and ecological adaptation of Basterota bivalves (Galeommatoidea: Sportellidae) to symbiotic association with burrowing echiurian worms. Zool Sci 28(3):225–234. https://doi.org/10.2108/zsj.28.225

Haig J, Abbott DP (1980) Macrura and Anomura: the ghost shrimps, hermit crabs, and allies. In: Morris RH, Abbott DP, Haderlie EC (eds) Intertidal invertebrates of California. Stanford University Press, Stanford, pp 577–593

Hart JFL (1964) Shrimps of the genus Betaeus on the Pacific coast of North America with descriptions of three new species. Proc US Natl Mus 115:431–466. https://doi.org/10.5479/si.00963801.115-3490.431

Hartman O (1968) Atlas of the errantiate polychaetous annelids from California. Allan Hancock Foundation, University of Southern California, Los Angeles

Henmi Y, Itani G (2014a) Burrow utilization in the goby Eutaeniichthys gilli associated with the mud shrimp Upogebia yokoyai. Zool Sci 31(8):523–528. https://doi.org/10.2108/zsj.31.523

Henmi Y, Itani G (2014b) Laboratory quantification of burrow utilization by the symbiotic varunid crab Sestrostoma toriumii. Plankton Benthos Res 9:203–206. https://doi.org/10.3800/pbr.9.203

Henmi Y, Iwata Y, Itani G (2014) Associations of the gobies Eutaeniichthys gilli and Gymnogobius scrobiculatus with burrows of the mud shrimp Upogebia yokoyai at low tide. JPN J Benthos 69: 69–75 (in Japanese with English Abstract). https://doi.org/10.5179/benthos.69.69

Henmi Y, Okada Y, Itani G (2017) Field and laboratory quantification of alternative use of host burrows by the varunid crab Sestrostoma toriumii (Takeda, 1974) (Brachyura: Varuniidae). J Crustac Biol 37(3):235–242. https://doi.org/10.1093/jcbiol/rux018

Hilgendorf FM (1879) Einige Beiträge zur Ichthyologie Japan. Sitzungsber Ges Naturf Freunde Berlin: 78–81

Ho JS, Kim IH (1991) Two new species of the genus Hesperonoe (Copepoda: Poecilostomatoida, Clausidiidae) from crab burrows in the Yellow Sea. Korean J Zool 34:289–294. https://doi.org/10.4088/kz.1991.34.3.289

Hornig S, Sterling A, Smith SD (1989) Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific North West): ghost shrimp and blue mud shrimp. US Fish Wild Serv Biol Rep 82:1–15
the southern part of the Russian coast of the Sea of Japan. Arthrop Sel 25(2):171–182. https://doi.org/10.15298/art sel.25.2.04

Marin IN, Turbanov IS (2016) The first record of the copepod genus Clas udium Kossman, 1875 (Crustacea: Copepoda: Pocelostomatoidea: Clas usididae) parasitic on burrowing callianasid shrimps from the Black Sea. Arthrop Sel 25(4):381–384. https://doi.org/10.15298/art sel.25.4.05

Marin IN, Korn OM, Kornienko ES (2011) Symbiotic crab Sestrostoma balssi (Shen, 1932) (Varunidae: Gaeticinae) from Vostok Bay, Sea of Japan: a new species for the fauna of Russia. Russ J Mar Biol 37(6):509–510. https://doi.org/10.1134/S1063074011060113

Marin IN, Korn OM, Kornienko ES (2013) Upogebia yokoyai Makarov, 1938 (Decapoda: Gebideia: Upogebiidae)—a new species of geobid shrimps for fauna of the Sea of Japan. Biol Morya 39(3):221–226 (in Russian)

Martin D, Britayev TA (1998) Symbiotic polychaetes: review of known species. Oceanoogr Mar Biol Annu Rev 36:217–340

Martin D, Britayev TA (2018) Symbiotic polychaetae revisited: an update of the known species and relationships (1998–2017). Oceanoogr Mar Biol Annu Rev 56:371–448. https://doi.org/10.1201/9780429454455-6

McIntosh WC (1897) Notes from the Gatty Marine Laboratory, St. Martin D, Britayev TA (2018) Symbiotic polychaetes revisited: an update of the known species and relationships (1998–2017). Oceanoogr Mar Biol Annu Rev 56:371–448. https://doi.org/10.1201/9780429454455-6

McIntosh WC (1897) Notes from the Gatty Marine Laboratory, St. Martin D, Britayev TA (2018) Symbiotic polychaetes revisited: an update of the known species and relationships (1998–2017). Oceanoogr Mar Biol Annu Rev 56:371–448. https://doi.org/10.1201/9780429454455-6

McIntosh WC (1897) Notes from the Gatty Marine Laboratory, St. Martin D, Britayev TA (2018) Symbiotic polychaetes revisited: an update of the known species and relationships (1998–2017). Oceanoogr Mar Biol Annu Rev 56:371–448. https://doi.org/10.1201/9780429454455-6

Moyo R, Pillay D, Baeza JA (2017) Symbiont-mediated shifts in sand prawn behaviour: implications for ecosystem functioning in marine soft-sediment ecosystems. J Exp Mar Biol Ecol 486:296–304. https://doi.org/10.1016/j.jembe.2016.10.022

Nickell LA, Atkinson RJA (1995) Functional morphology of burrows and trophic modes of three thalassinid shrimp species, and a new approach to the classification of thalassinid burrow morphology. Mar Ecol Prog Ser 128:181–197

Ortmann AE (1891) Die Decapoden-Krebse des Strassburger Museums mit besonderer Berücksichtigung der von Herrn Dr. Döderlein bei Japan und bei den Liu-Kiu-Inseln gesammelten und z. z. im Strassburger Museum aufbewahrten Formen III. Theil. Die Abtheilungen der Reptantia Boas: Homaridae, Loricata und Thalassimidea. Zoologische Jahrbücher. Abteilung für Systematik 6:1–58

Petitbone MH (1953) Some scale-bearing polychaetes of Puget Sound and adjacent waters. University of Washington Press, Seattle

Petitbone MH (1969) The genera Polyenoea McIntosh, Hololepidella Willey, and three new genera (Polychaeta, Polyonidae). P Biol Soc Wash 82:43–62

Pillay D, Branch G (2011) Bioengineering effects of burrowing thalassinid shrimp on marine soft-bottom ecosystems. Oceanogr Mar Biol 49:137–192. https://doi.org/10.1201/b11009-6

Qi ZY, Ma XT, Wang ZR, Ling GY, Xu FS, Dong ZZ, Li FL, Lu RH (1989) Mollusca of Huanghai and Bohai. Agri Pub House, Beijing, pp 1–309

Renier SA (1804) [Rejected publication. See ICZN 316] Prospetto della Classe dei Vermi, nominati el ordinati secondo il Sistema di Bosc. Padua, Italy xv–xxvi

Rhoads DC (1974) Organism–sediment relations on the muddy sea floor. Oceanogr Mar Biol 12:223–300

Ricketts EF, Calvin J, Hedgpeth JW (1985) Between Pacific tides. 5th ed. (revised by Phillips D). Stanford Univ. Press, Stanford 652 p

Ruff RE (1995a) Taxonomic atlas of the Santa Maria Basin and Western Santa Barbara Channel. Vol. 5. The Annelida Part 2. Santa Barbara: Santa Barbara Museum of Natural History. Fam Polynoidae Malmgren 1867:105–166

Ruff RE (1995b) Chapter 2. Family Polynoidae Malmgren, 1867. In Blake JA, Hilbig B, Scott PH (eds) Taxonomic atlas of the benthic fauna of the Santa Maria Basin and Western Santa Barbara Channel. Vol. 5. The Annelida Part 2. Polychaeta: Phyllodocidae (Syllidae and scalebearing families), Amphironida, and Eunicida. Santa Barbara Museum of Natural History, Santa Barbara, CA, pp 105–166

Sakai T (1934) Species of the genus Pinnoisa (pinnoither crab) found in the Far East. Sci Rep Tokyo Bunrika Daigaku Sect B 2:37–43

Sakai K (1986) On Upogebia narutensis, a new thalassind (Decapoda, Crustacea), from Japan. Res Crustacea Carcinological Soc JPN 15:23–28. https://doi.org/10.18353/rcrustacea.15.0.23

Sandnes F, Forbes T, Hansen R, Sandnes B, Rygg B (2000) Bioturbation and irrigation in natural sediments, described by animal–community parameters. Mar Ecol Prog Ser 197:169–179. https://doi.org/10.3354/meps197169

Santagata S (2004) A waterborne behavioral cue for the actinothorac larva of Phoronis pallida (Phoronida) produced by Upogebia pugettensis (Decapoda: Thalassimidea). Biol Bull 207(2):103–115. https://doi.org/10.2307/1543585

Sato M (2000) Life in Ariake Sea: biodiversity in tidal flats and estuaries. Tokyo, Kaiyu-sha, Polychaeta, pp 184–205 (In Japanese)

Sato M (2008) Parasitism and symbiosis. Symbiotic system in the sea: focusing around polychaetous annelids. Tokai University Press, Hadano, pp 191–216 (In Japanese)

Sato M (2012) Threatened animals of Japanese tidal flats: red data book (RDB) of seashore benthos. Tokai University Press, Hadano 223 pp (In Japanese)

Sato M, Uchida H, Itani G, Yamashita H (2001) Taxonomy and life history of the scale worm Hesperonoe hwanghaiensis (Phoronida: Polynoidae), newly recorded in Japan, with special reference to commensalism to a burrowing shrimp, Upogebia major. Zool Sci 18:981–991. https://doi.org/10.2108/zss.18.981

Sato M, Kato T, Seike K, Itani G (2016) Records of a scale worm, Hesperonoe hwanghaiensis (Annelida: Polynoidae) from eastern Japan. Taxa 41:30–39 (In Japanese, English summary)

Seike K, Jenkins RG, Watanabe H, Nomaki H, Sato K (2012) Novel use of burrow casting as a research tool in deep-sea ecology. Biol Lett 8:648–651. https://doi.org/10.1098/rsbl.2011.1111

Seitz P (1907) Der Bau von Echiurus chilensis (Urechis n. g. chilensis). Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere 24(2):323–356

Selin NI (2013) Some peculiarities of the population biology of the ghost shrimp Nihonotrypaea peturala (Stimpson, 1860) (Decapoda: Callianassidae) in coastal waters of Vostok Bay, the Sea of Japan. Russ J Mar Biol 39(5):363–372. https://doi.org/10.1134/S1063074013000076

Selin NI (2014) Some features of the biology of the mud shrimp Upogebia issaeffi (Balls, 1913) (Decapoda: Upogebiidae) from the subtidal zone of Vostok Bay, Sea of Japan. Russ J Mar Biol 40(1):24–29. https://doi.org/10.1134/S1063074014010088

Selin NI (2015) The distribution and some features of the biology of the ghost shrimp Nihonotrypaea japonica (Ortmann, 1891) (Decapoda: Callianassidae) from the Volchanka River estuary (Vostok Bay, Sea of Japan). Russ J Mar Biol 41(1):17–23. https://doi.org/10.1134/S1063074015100083

Selin NI (2017) The population dynamics and growth of the mud shrimp Upogebia major (De Haan, 1841) (Crustacea: Decapoda) from Peter

The text above is a natural representation of the document in the image.
the Great Bay, Sea of Japan. Russ J Mar Biol 43(4):270–275. https://doi.org/10.1134/S1063074017040101

Selin NI (2019) The prevalence of macroparasite infection in the mud shrimp *Upogebia major* (De Haan, 1841) (Decapoda: Gebiidea) from Peter the Great Bay, Sea of Japan. Russ J Mar Biol 45(5): 355–362. https://doi.org/10.1134/S1063074019050109

Shen CJ (1932) The Brachyuran Crustacea of North China. Zool Sin Ser A Invertebr China 9:1–321

Shoji K (1938) A new commensal bivalve attached to a burrowing shrimp. Venus 8:119–128

Skogsberg T (1928) A commensal polynoid worm from California. Proc California Acad Sci 4th Ser 17:253–265

Sørensen R (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K Danske Vidensk Selsk 51–34

Tamaki A, Ueno H (1998) Burrow morphology of two callianassid shrimps, *Callianassa japonica* Ortmann, 1891 and *Callianassa* sp. (=C. japonica: de Man, 1928) (Decapoda: Thalassinidea). Crustacean Res 27:28–39. https://doi.org/10.18353/crustacea.27.0_28

Temereva EN, Chichvarkhin A (2017) A new phoronid species, *Phoronis embryolabi*, with a novel type of development, and consideration of phoronid taxonomy and DNA barcoding. Invertebr Syst 31(1):65–84. https://doi.org/10.1071/IS16032

Thompson RK (1972) Functional morphology of the hindgut gland of *Upogebia pugettensis* (Crustacea, Thalassinidea) and its role in burrow construction. Ph.D. dissertation, University of California, Berkeley, 202 p

Uschakov PV (1982) Fauna of the USSR, polychaetes, vol. II, Part 1: polychaetes of the Suborder Aphroditiformia of the Arctic Ocean and the northwestern part of the Pacific, Families Aphroditidae and Polynoidae. Moscow, Academy of Sciences of the USSR, Zoological Institute (In Russian)

Uschakov PV, Wu B (1959) The polychaete worms of the families Phyllodocidae and Aphroditidae (Polychaeta, Errantia) from the Yellow Sea. Arch Inst Oceanol Sin 1:1–40 (In Chinese and Russian)

Uschakov PV, Wu B (1965) Polychaeta Errantia of the Yellow Sea. Amerind Publishing Co Pvt Ltd, New Delhi (translated from Russian in 1979)

Vinogradov LG (1950) Classification of shrimps, prawns and crabs from the Far East. Izv TINRO 33:179–358 (In Russian)

von Drasche R (1880) Zur Kenntnis des Baues der Segmentalorgane bei Echiuren. Zool Anz 3:517–519

Webb AP, Eyre BD (2004) Effect of natural populations of burrowing thalassinidean shrimp on sediment irrigation, benthic metabolism, nutrient fluxes and denitrification. Mar Ecol Prog Ser 268:205–220. https://doi.org/10.3354/meps268205

Yamashita R, Sato M (2007) The 7th national survey on the natural environment: shallow sea survey (tidal flats). Annelida, Polychaeta Fujiyoshida. Biodiversity Center, Nature Conservation Bureau, Ministry of the Environment, pp 182–192 (In Japanese)

Yamauchi T, Komiya K (2005) Notes on rare *Pinnixa* crabs (Decapoda, Brachyura, Pinnotheridae) of Japan. Crustaceana 77:1237–1243. https://doi.org/10.1163/1568540043166083

Zmarzly DL (1992) Taxonomic review of pea crabs in the genus *Pinnixa* (Decapoda: Brachyura: Pinnotheridae) occurring on the California shelf, with descriptions of two new species. J Crustac Biol 12:677–713. https://doi.org/10.1163/193724092X00166

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.