Comparison of fatty liver index with noninvasive methods for steatosis detection and quantification

Shira Zelber-Sagi, Muriel Webb, Nimer Assy, Laurie Blendis, Hanny Yeshua, Moshe Leshno, Vlad Ratziu, Zamir Halpern, Ran Oren, Erwin Santo

Shira Zelber-Sagi, Muriel Webb, Laurie Blendis, Hanny Yeshua, Moshe Leshno, Vlad Ratziu, Zamir Halpern, Ran Oren, Erwin Santo, Department of Gastroenterology, Tel Aviv Sourasky Medical Center, 64239 Tel-Aviv, Israel
Shira Zelber-Sagi, School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, 31905 Haifa, Israel
Nimer Assy, Liver Unit, Ziv Medical Center, Israel and Bar Ilan University, 13100 Safed, Israel
Moshe Leshno, Zamir Halpern, Ran Oren, Erwin Santo, The Sackler Faculty of Medicine, Tel-Aviv University, 69978 Ramat Aviv, Israel
Vlad Ratziu, Université Pierre et Marie Curie, Hôpital Pitié Salpêtrière, 75013 Paris, France

Author contributions: Zelber-Sagi S conceived and designed the study, performed the data collection, analyzed the data and wrote the manuscript; Webb M developed the HRI method and performed the abdominal ultrasounds and HRI calculations; Assy N, Blendis L, Yeshua H, Ratziu V critically reviewed the manuscript and contributed to the writing of the manuscript; Leshno M contributed to the data analyzes; Halpern Z, Oren R conducted data collection and critically reviewed the manuscript; Santo E helped to design the study and was involved in the development of the HRI method; all authors read and approved the final manuscript.

Correspondence to: Dr. Shira Zelber-Sagi, Researcher, Lecturer, The Liver Unit, Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, 64239 Tel-Aviv, Israel. zelsersagi@bezeqint.net
Telephone: +972-3-6973984 Fax: +972-3-6974622
Received: June 15, 2012 Revised: September 18, 2012
Accepted: September 22, 2012
Published online: January 7, 2013

Abstract

AIM: To compare noninvasive methods presently used for steatosis detection and quantification in nonalcoholic fatty liver disease (NAFLD).

METHODS: Cross-sectional study of subjects from the general population, a subgroup from the First Israeli National Health Survey, without excessive alcohol consumption or viral hepatitis. All subjects underwent anthropometric measurements and fasting blood tests. Evaluation of liver fat was performed using four noninvasive methods: the SteatoTest; the fatty liver index (FLI); regular abdominal ultrasound (AUS); and the hepatorenal ultrasound index (HRI). Two of the noninvasive methods have been validated vs liver biopsy and were considered as the reference methods: the HRI, the ratio between the median brightness level of the liver and right kidney cortex; and the SteatoTest, a biochemical surrogate marker of liver steatosis. The FLI is calculated by an algorithm based on triglycerides, body mass index, γ-glutamyl-transpeptidase and waist circumference, that has been validated only vs AUS. FLI < 30 rules out and FLI ≥ 60 rules in fatty liver.

RESULTS: Three hundred and thirty-eight volunteers met the inclusion and exclusion criteria and had valid tests. The prevalence rate of NAFLD was 31.1% according to AUS. The FLI was very strongly correlated with SteatoTest (r = 0.91, P < 0.001) and to a lesser but significant degree with HRI (r = 0.55, P < 0.001). HRI and SteatoTest were significantly correlated (r = 0.52, P < 0.001). The κ between diagnosis of fatty liver by SteatoTest (≥ S2) and by FLI (≥ 60) was 0.74, which represented good agreement. The sensitivity of FLI vs SteatoTest was 85.5%, specificity 92.6%, positive predictive value (PPV) 74.7%, and negative predictive value (NPV) 96.1%. Most subjects (84.2%) with FLI < 60 had S0 and none had S3-S4. The κ between diagnosis of fatty liver by HRI (≥ 1.5) and by FLI (≥ 60) was 0.43, which represented only moderate agreement. The sensitivity of FLI vs HRI was 86.3%, specificity 57.0%, PPV 57.0%, and NPV 86.1%. The diagnostic accuracy of FLI for steatosis > 5%, as predicted by SteatoTest, yielded an area under the receiver operating characteristic curve (AUROC) of 0.97 (95% CI: 0.95-0.98). The diagnostic accuracy of FLI for steatosis
> 5%, as predicted by HRI, yielded an AUROC of 0.82 (95% CI: 0.77-0.87). The κ between diagnosis of fatty liver by AUS and by FLI (\geq 60) was 0.48 for the entire sample. However, after exclusion of all subjects with an intermediate FLI score of 30-60, the κ between diagnosis of fatty liver by AUS and by FLI either \geq 60 or < 30 was 0.65, representing good agreement. Excluding all the subjects with an intermediate FLI score, the sensitivity of FLI was 80.3% and the specificity 87.3%. Only 8.5% of those with FLI < 30 had fatty liver on AUS, but 27.8% of those with FLI \geq 60 had normal liver on AUS.

CONCLUSION: FLI has striking agreement with SteatoTest and moderate agreements with AUS or HRI. However, if intermediate values are excluded FLI has high diagnostic value vs AUS.

© 2013 Baishideng. All rights reserved.

Key words: Steatosis; Hepatorenal ultrasound index; SteatoTest; Fatty liver index; Screening; Agreement; Sensitivity; Specificity

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is emerging as a significant health burden raising serious clinical and public health concerns. Liver steatosis may predispose the liver to inflammation, fibrosis and eventually cirrhosis and hepatocellular carcinoma[1,2]. Furthermore, it is regarded as the most prevalent chronic liver disease affecting as much as 30% of the adult western population[3-5].

Besides the hepatic damage, in recent years NAFLD has emerged as an independent risk factor for type 2 diabetes and cardiovascular disease[6,7]. Therefore, efforts to prevent NAFLD progression and extrahepatic manifestations must include screening and surveillance strategies. The occult nature of the disease has led to increased efforts in achieving simple and cost-effective diagnostic methods, preferably quantitative, that would be useful for screening, follow-up and evaluation of response to treatment in both clinical practice and research.

Liver biopsy is the gold standard for quantification of liver steatosis in NAFLD[8]. However, it is not routinely performed because it is an invasive procedure with a significant degree of sampling error[9]. In addition, due to the high prevalence of NAFLD in the general population using routine liver biopsy to diagnose NAFLD is unreasonable. Therefore, noninvasive methods including imaging techniques and blood-test-based formulas have been developed to qualify and quantify liver steatosis[10-12]. However, a widely accepted examination that is easy to perform, accurate and inexpensive has yet to be found.

The aim of this study was to compare the fatty liver index (FLI)[13], which has been validated only vs abdominal ultrasound (AUS) with two different reference noninvasive methods for steatosis quantification that were validated vs liver biopsy: the hepatorenal ultrasound index (HRI)[14], and the SteatoTest, a biochemical surrogate marker of liver steatosis[15], providing together a more complete picture of construct validity. We also aimed to compare FLI with regular AUS in a qualitative manner.

MATERIALS AND METHODS

Study population and measurements

A cross-sectional study was performed during 2003-2004, consisting of 375 participants, a subgroup from the First Israeli National Health Survey[16] as described in detail elsewhere[17]. Exclusion criteria were: alcohol consumption \geq 30 g/d in men or 20 g/d in women, presence of hepatitis B surface antigen or anti-hepatitis C virus antibodies, fatty liver suspected to be secondary to hepatotoxic drugs, inflammatory bowel disease, prior surgery that could cause fatty liver, or celiac disease. All patients underwent measurements of weight, height, and waist circumference according to uniform protocols. Blood samples were drawn following a 12-h fast, and tested for liver enzymes, serum lipid profile, and fasting serum glucose and serum insulin levels. Frozen serum samples from all participants were stored at -80 ℃ until the analysis of SteatoTest (BioPredictive, Paris, France). Biomarkers components were analyzed according to published recommendations[18]. A face-to-face interview was carried out with a questionnaire that was assembled by the Israeli Ministry of Health[19] and included demographic data, health status and a detailed questionnaire on alcohol intake.

The study protocol was approved by the institution's human research committee and all participants gave signed informed consent.

AUS for detection of fatty liver and liver fat quantification

Fatty liver was diagnosed qualitatively by AUS using standardized criteria[20]. Ultrasound was performed in all subjects with the same equipment (EUB-8500 scanner; Hitachi Medical Corporation, Tokyo, Japan) and by the same operator (Webb M) as described previously[20]. The radiologist was blinded to the results of the blood tests and the clinical background of the participants, and the calculation of steatosis biomarkers was performed only after the radiological examination.

Furthermore, during AUS, the same single radiologist performed steatosis quantification using the HRI. The HRI has been validated vs liver biopsy and is an objective operator-independent examination[14] (available in 331 subjects). As previously described in detail[14], during ultrasonography, a graphic representation of echo
Statistical analysis

Statistical analyses were performed using SPSS Version 17 (Chicago, IL, United States). Continuous variables are presented as mean ± SD. The Pearson correlation coefficient was used for continuous variables. To test differences in continuous variables between two groups the independent samples t test was performed. For nominal variables, the Pearson χ² test was performed. To test the predictive value of the methods, receiver operating characteristic (ROC) curves were performed with SteatoTest (≥ S2) or HRI (≥ 1.5) as the reference methods, and the area under the ROC (AUROC) curve was recorded. κ was calculated for evaluation of agreement between diagnosis of fatty liver by SteatoTest (≥ S2) or HRI (≥ 1.5) compared to FLI (≥ 60). κ values were interpreted by the following grades: very poor (0.00-0.20), poor (0.21-0.40), moderate (0.41-0.60), good (0.61-0.80), and excellent (0.81-1.00) agreement. P < 0.05 was considered statistically significant.

RESULTS

Characteristics of the study population and comparison between subjects with FLI ≥ 60 and < 60

Three hundred and forty-nine volunteers met the inclusion criteria. Three hundred and forty serum samples were available for the SteatoTest (9 were either missing or hemolysed). Two subjects had a high risk of a false-positive FibroTest and thus were omitted from analysis, leaving a sample size of 338 subjects. Detailed information on the study population has been described elsewhere. The main relevant characteristics of the study sample and comparison between the subjects with FLI ≥ 60 and and < 60 are depicted in Table 1. Subjects with FLI ≥ 60 were older, had a higher percentage of men, higher BMI, and higher serum fasting levels of liver enzymes, glucose, triglycerides, insulin and ferritin.

Distribution of steatosis as predicted by different methods in the entire sample and by FLI

Applying AUS as the reference method, most subjects with FLI ≥ 60 had fatty liver on AUS, yielding a positive predictive value (PPV) of 72.2%. Most subjects with FLI < 60 had normal liver on AUS, yielding a negative predictive value (NPV) of 81.5%. Applying HRI as the reference method, only 57.0% (PPV) of subjects with FLI ≥ 60 had HRI ≥ 1.5, but 86.1% (NPV) of the subjects with FLI < 60 also had HRI < 1.5. Applying the SteatoTest as the reference method, most subjects with FLI ≥ 60 had a SteatoTest of ≥ S2, yielding a PPV of 74.7%, and the majority of those with FLI < 60 had a SteatoTest < S2, yielding an NPV of 96.1%. Most subjects (84.2%) with FLI < 60 had S0 and none had S3-S4 (Table 1).

Correlation between FLI and SteatoTest or HRI

FLI was very strongly correlated with SteatoTest (r = 0.91, P < 0.001) and to a lesser but significant degree with HRI (r = 0.55, P < 0.001) (Figure 2). HRI and SteatoTest were also significantly correlated (r = 0.52, P < 0.001).

Furthermore, when testing the distribution of SteatoTest by FLI categories, FLI value above or below 60 discriminated the SteatoTest values with no overlap between the box plots (interquartile range). Similarly, the HRI values were discriminated by FLI categories, but to
a lesser extent (Figure 3). The mean levels of SteatoTest and HRI were significantly different between FLI categories of above or below 60 (Table 1).

Concordance between FLI and SteatoTest or HRI in diagnosis of steatosis

The κ between diagnosis of fatty liver by SteatoTest ($\geq S2$) and by FLI (≥ 60) was 0.74, which represented good agreement (Table 2). The sensitivity of FLI vs SteatoTest was 85.5% (59/69) and the specificity 92.6% (249/269). The κ between diagnosis of fatty liver by HRI (≥ 1.5) and by FLI (≥ 60) was 0.43, which represented only moderate agreement (Table 2). The sensitivity of FLI vs HRI was 56.3% (45/80) and the specificity 86.5% (217/251).

![Figure 2](https://example.com/figure2.png)
Figure 2 Correlation of fatty liver index with the reference methods. A: SteatoTest; B: Hepatorenal ultrasound index (HRI). FLI: Fatty liver index.

Table 1 Characteristics of the study sample, distribution of steatosis as predicted by different methods, and comparison between subjects with fatty liver index ≥ 60 and < 60

Characteristics/method	Range	Total ($n = 338$)	FLI < 60 ($n = 259$)	FLI ≥ 60 ($n = 79$)	P value
Age (yr)	50.8 ± 10.4	50.0 ± 10.4	53.3 ± 10.0	0.01	
Male %	53.0	48.3	68.4	0.002	
BMI (kg/m2)	27.2 ± 4.4	25.6 ± 3.2	32.4 ± 3.9	< 0.001	
ALT (U/L)	22.1 ± 9.6	20.6 ± 7.4	26.9 ± 13.5	< 0.001	
AST (U/L)	23.0 ± 5.5	22.4 ± 4.8	24.7 ± 7.0	0.008	
GGT (U/L)	16.0 ± 12.1	13.9 ± 11.1	22.7 ± 12.7	< 0.001	
Glucose (mg/dL)	1.3 ± 0.3	1.2 ± 0.3	1.6 ± 0.4	< 0.001	
Insulin (μU/mL)	24.2	13.9	57.0	< 0.001	
Triglycerides (mg/dL)	195 ± 10.0	195 ± 10.0	31.5 ± 12.3	< 0.001	
Ferritin (ng/mL)	71.5 ± 5.3	64.6 ± 5.3	100.1 ± 6.7	< 0.001	
FL on AUS % ($n = 338$)	31.1	18.5	72.2	< 0.001	
HRI ($n = 331$)	1.3 ± 0.4	1.2 ± 0.3	1.6 ± 0.4	< 0.001	
SteatoTest ($n = 338$)	0.3 ± 0.2	0.2 ± 0.1	0.6 ± 0.1	< 0.001	
S ≥ 2 (FL) %	20.4	3.9	74.7	< 0.001	
SI %	66.9	84.2	10.1	< 0.001	
S1 %	1-5	12.7	12.0	15.2	0.45
S2 %	6-33	13.0	3.9	43.0	< 0.001
S3-S4 %	34-100	7.4	0	31.6	< 0.001
FLI ($n = 338$)	36.7 ± 27.7	24.2 ± 17.1	77.8 ± 11.1	< 0.001	
FLI > 60 (FL) %	23.4	NA	NA	NA	
FLI < 30 %	48.8	NA	NA	NA	

Data are mean ± SD or proportion. BMI: Body mass index; ALT: Alanine amino transferase; AST: Abstract syntax tree; GGT: Gamma-glutamyl transpeptidase; FL: Fatty liver; FLI: Fatty liver index; AUS: Abdominal ultrasound; HRI: Hepatorenal ultrasound index; NA: Not available.

Concordance between FLI and regular AUS in diagnosis of steatosis

The κ between diagnosis of fatty liver by AUS and by FLI (≥ 60) was 0.48 (data not shown). A validation study of FLI has suggested that FLI < 30 rules out and FLI ≥ 60 rules in fatty liver$^{[13]}$, therefore, further analysis was performed after exclusion of all subjects with an intermediate FLI score of 30-60 (27.8%). The κ between diagnosis of fatty liver by AUS and by FLI either ≥ 60 or < 30 was 0.65, which represented good agreement (Table 2). The sensitivity of FLI was 80.3% (57/71) and the specificity 87.3% (151/173).

Only 8.5% of those with FLI < 30 had fatty liver on AUS, but 27.8% of those with FLI ≥ 60 had normal liver on AUS.
Diagnostic accuracy of FLI for detection of steatosis > 5% in comparison to SteatoTest or HRI

The diagnostic accuracy of FLI for steatosis > 5%, as predicted by SteatoTest, yielded an AUROC of 0.97 (95% CI: 0.95-0.98). The diagnostic accuracy of FLI for steatosis > 5%, as predicted by HRI, yielded an AUROC of 0.82 (95% CI: 0.77-0.87) (Figure 4).

DISCUSSION

In view of the public health issue of the increasing prevalence of NAFLD and its hepatic and extrahepatic consequences, the development of simple cost-effective screening methods has become extremely important.

In the present study, the agreement between different potential noninvasive screening methods was evaluated. This is believed to be the first study to evaluate the agreement between FLI and SteatoTest and between FLI and quantitative ultrasound methodology (HRI).

We found a striking agreement between SteatoTest and FLI, which were very highly correlated. A less impressive but still high correlation was found between FLI and HRI. The κ between diagnosis of fatty liver by SteatoTest and by FLI was 0.73, which represented good agreement. The κ between diagnosis of fatty liver by HRI and by FLI was 0.44, which represented only moderate agreement.

Although evaluation and quantification of steatosis does not provide a complete reflection of severity of
NAFLD, such evaluation is important for several reasons. As much as 23% of patients with simple steatosis may still develop nonalcoholic steatohepatitis (NASH) and fibrosis progression, as demonstrated in a recent 3-year follow-up of NAFLD patients\[22]. Furthermore, recent literature indicates that NAFLD predicts the tendency to develop both diabetes mellitus\[23,24] and cardiovascular disease\[25-27]. Therefore, it is not surprising that patients with NAFLD have increased mortality and morbidity compared with the general population\[28,29]. Moreover, NAFLD patients seem to have diminished quality of life\[30], which is manifested by increased fatigue with impairment in physical function\[31] and over-representation of depressive and anxiety disorders\[32]. From the economic point of view, the healthcare costs were demonstrated to be significantly higher for individuals with NAFLD and increased serum ALT levels by 33%, controlling for BMI, lifestyle and comorbid conditions\[33].

The limitation of this study was that it had no liver biopsy as a gold standard because it could not be obtained in a population-based screening study for NAFLD. Therefore, no inference can be made as a criterion validity of the FLI. Two quantitative methods were developed and validated against liver biopsy: the HRI, a radiological method\[34], and the SteatoTest\[35] based on biochemical markers. Therefore, both methods were used as the best available reference for steatosis quantification, in the absence of biopsies, in the present population-based study. For that reason, the correlations presented here can only provide construct validity to the FLI. In fact, for a broader use of both SteatoTest and HRI, more validation studies including liver biopsy are warranted because only one has been performed for the HRI\[36] and two for the SteatoTest in liver disease patients\[37], and recently in patients with morbid obesity treated with bariatric surgery\[38]. The HRI has been used in very few studies so far\[35,39], probably because it requires special ultrasonographic equipment, and a dedicated ultrasonographer. In contrast, there have been more studies using the SteatoTest\[17,37-39] providing it with some construct validity.

The FLI is a continuous measure that has been validated against AUS for the qualitative detection of NAFLD and has never been validated as liver biopsy. However, the presence of quantitative reference methods in the current study has enabled the testing of FLI also in a quantitative manner. The FLI has recently been used as a surrogate for NAFLD in large epidemiological studies. In a large European cross-sectional population-based study, FLI was associated with insulin resistance, higher Framingham risk score, and increased intima-media thickness\[40]. More importantly, the predictive validity of FLI was demonstrated in two large cohorts. In the French general population cohort, FLI was an independent predictor for diabetes in a 9-year follow-up\[41], as would be expected from ultrasound-diagnosed NAFLD\[42]. In an Italian population cohort, after 15 years follow-up, FLI was independently associated with liver-related mortality\[43].

The commonest noninvasive method for the evaluation of fatty liver is AUS\[44,45]. AUS is the modern diagnostic test of choice for NAFLD in epidemiological surveys because it is noninvasive, safe, widely available, and with a reasonable sensitivity and specificity\[42,46,47]. In a recent meta-analysis, the overall sensitivity and specificity of ultrasound for the detection of moderate-severe fatty liver compared to histology were 84.8% and 93.6%, respectively\[48]. We demonstrated only moderate agreement between diagnosis of fatty liver by AUS and by FLI (≥ 60) (κ = 0.48), but after exclusion of all subjects with a intermediate FLI score of 30-60, κ increased to 0.65, representing good agreement, and the sensitivity and specificity of FLI were 80.3% and 87.3%, respectively. This however was at the cost of leaving almost 30% of the study population undiagnosed.

In summary, the present study provides construct validity to simple, inexpensive surrogate markers of NAFLD. FLI highly correlates and has good agreement with SteatoTest, perhaps because both are calculated measures based on overlapping parameters. FLI has moderate agreement with ultrasonographic methods; either regular AUS or HRI. These noninvasive diagnostic methods for liver steatosis should be further validated in different populations, preferably by criterion (vs liver histology) and predictive validity.

NAFLD has become one of the most important public health issues today. Although NASH is more relevant for the development of life-threatening liver disease, such as cirrhosis and hepatocellular carcinoma\[49-51], it has now become clear from population studies that steatosis is relevant for the development of extrahepatic life-threatening diseases\[52], such as diabetes\[53] and cardiovascular disease\[26,27]. Therefore, there is an urgent need for well-validated, quantitative, cost-effective, noninvasive methods for evaluation of steatosis in clinical practice, and epidemiological and clinical research when liver biopsy is not feasible.

COMMENTS

Background
Nonalcoholic fatty liver disease (NAFLD) is regarded as the most prevalent chronic liver disease affecting as much as 30% of the adult western population. Besides hepatic damage, in recent years, NAFLD has emerged as an independent risk factor for type 2 diabetes and cardiovascular disease.

Research frontiers
Liver biopsy is the gold standard for detection and quantification of liver steatosis in NAFLD. However, it is not routinely performed because it is an invasive procedure with a significant degree of sampling error. In addition, due to the high prevalence of NAFLD, using routine liver biopsy to diagnose or screen for NAFLD is unreasonable and also unethical in epidemiological population-based studies. Therefore, noninvasive methods including imaging techniques and blood-test-based formulas have been developed to qualify and quantify liver steatosis. However, a widely accepted examination that is easy to perform, accurate and inexpensive has yet to be found.

Innovations and breakthroughs
In view of the increasing prevalence of NAFLD and its hepatic and extrahepatic consequences, the development of simple cost-effective screening methods has become extremely important. In the present study, the agreement between different potential noninvasive screening methods was evaluated. This is be-
lied to be the first study to evaluate the agreement between fatty liver index (FLI) and two quantitative methods, the steatoTest and the hepaticorenal index (HRI), which have been validated so far only in one study.

Applications
Efforts to prevent NAFLD progression and extrahepatic manifestations must include screening and surveillance strategies. The present study provides validity to FLI, a simple, inexpensive surrogate marker of NAFLD. Validated, quantitative, cost-effective methods for evaluation of steatosis can help in repeated evaluation of treatment efficacy during follow-up in clinical practice and clinical trials. Furthermore, in large epidemiological population-based studies, when liver biopsy is not feasible, noninvasive methods may serve as an alternative. Knowing the agreement and disagreement between the different noninvasive methods would help in the interpretation of results from studies using different methods. Further validation of FLI in comparison with liver biopsy is still warranted.

Terminology
Steatosis is fatty infiltration of the liver, mainly triglycerides. Fatty liver is defined as steatosis exceeding 5%-10% of its weight. NAFLD may predispose the liver to inflammation, fibrosis and eventually cirrhosis and hepatocellular carcinoma. The HRI is a quantitative ultrasound methodology. The SteatoTest and the FLI are biochemical surrogate markers of liver steatosis based on calculated algorithms. All these are noninvasive methods presently used for steatosis detection and quantification.

Peer review
The subject of the article is of interest and importance. This was a good descriptive study in which the authors compared noninvasive methods presently used for steatosis detection and quantification in NAFLD. The results are interesting and suggest that FLI has striking agreement with SteatoTest and moderate agreements with AUS or HRI.

REFERENCES
1 Caldwell S, Argo C. The natural history of non-alcoholic fatty liver disease. Dig Dis 2010; 28: 162-168 [PMID: 20460906]

2 Bhala N, Angulo P, van der Poorten D, Lee E, Hui JM, Saracco G, Adams LA, Charatcharoenwithaya P, Topping JH, Bugianesi E, Day CP, George J. The natural history of non-alcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 2011; 54: 1208-1216 [PMID: 21688282 DOI: 10.1002/hep.24491]

3 Bellentani S, Saccoccio G, Masutti F, Croce LS, Brandi G, Sasso F, Cristianini G, Tiribelli C. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med 2000; 132: 112-117 [PMID: 10644271]

4 Bedogni G, Bellentani S. Fatty liver: how frequent is it and why? Ann Hepatol 2004; 3: 63-65 [PMID: 15257248]

5 Zelber-Sagi S, Nitzan-Kaluski D, Halpern Z, Oren R. Prevalence of primary non-alcoholic fatty liver disease in a population-based study and its association with biochemical and anthropometric measures. Liver Int 2006; 26: 856-863 [PMID: 16911469]

6 Sung KC, Ryan MC, Wilson AM. The severity of nonalcoholic fatty liver disease is associated with increased cardiovascular risk in a large cohort of non-obese Asian subjects. Atherosclerosis 2009; 203: 581-586 [PMID: 18774133]

7 Stefan N, Kantartzis K, Häring HU. Causes and metabolic consequences of fatty liver. Endocr Rev 2008; 29: 939-960 [PMID: 18723451]

8 Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. CMAJ 2005; 172: 899-905 [PMID: 15794142]

9 Ratziu V, Charlotte F, Heurtier A, Gombert S, Giraud P, Bruckert E, Grimod A, Capron F, Poynard T. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology 2005; 128: 1898-1906 [PMID: 15940625]

10 Saadeh S, Younossi ZM, Remer EM, Gramlich T, Ong JP, Hurley M, Mullon KD, Cooper JN, Sheridan MJ. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002; 123: 745-750 [PMID: 12198701]

11 Joy D, Thava VR, Scott BB. Diagnosis of fatty liver disease: is biopsy necessary? Eur J Gastroenterol Hepatol 2003; 15: 539-543 [PMID: 12702913 DOI: 10.1097/01.meg.0000095911.41030.2e]

12 Siegelman ES, Rosen MA. Imaging of hepatic steatosis. Semin Liver Dis 2001; 21: 71-80 [PMID: 11296698]

13 Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, Tiribelli C. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 2006; 6: 33 [PMID: 17081293]

14 Webb M, Yeshua H, Zelber-Sagi S, Santo E, Brazowski E, Halpern Z, Oren R. Diagnostically validated hepatorenal index for sonographic quantification of liver steatosis. AJR Am J Roentgenol 2009; 192: 909-914 [PMID: 19304694]

15 Poynard T, Ratziu V, Naveau S, Thabut D, Charlotte F, Messois D, Capron D, Abella A, Massard J, Nigo Y, Munteanu M, Mercadier A, Manns M, Albrecht J. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Comp Hepatol 2005; 4: 10 [PMID: 16375767]

16 Nitzan Kaluski D, Goldsmith R, Chinitz A, Ben Arie-Magled O, Mayer C, Green M. First National Health and Nutrition Survey, Part I 1999-2001. Jerusalem, Israel: Israel Center for Disease Control, 2003

17 Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R, Webb M, Zvilbi I, Goldiner I, Blends L, Halpern Z, Oren R. Role of leisure-time physical activity in nonalcoholic fatty liver disease: a population-based study. Hepatology 2008; 48: 1791-1798 [PMID: 18972405 DOI: 10.1002/hep.22252]

18 Imbert-Bismut F, Messous D, Thibault V, Myers RB, Piton A, Thabut D, Devers L, Hainque B, Mercadier A, Poynard T. Intra-laboratory analytical variability of biochemical markers of fibrosis (Fibrotest) and activity (Actitest) and reference ranges in healthy blood donors. Clin Chem Lab Med 2004; 42: 323-333 [PMID: 15080567 DOI: 10.1515/CCLM.2004.058]

19 Gore RM. Diffuse liver disease. In: Gore R, Levine MS, Lauffer I, editors. Textbook of Gastrointestinal Radiology. Philadelphia: Saunders, 1994: 1968-2017

20 Zelber-Sagi S, Nitzan-Kaluski D, Halpern Z, Oren R. NAFLD and hyperinsulinemia are major determinants of serum ferritin levels. J Hepatology 2007; 46: 700-707 [PMID: 17150279]

21 Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159-174 [PMID: 843571]

22 Wong VW, Wong GL, Choi PC, Chan AW, Li MK, Chan HY, Chim AM, Yu J, Sung JJ, Chan HL. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut 2010; 59: 969-974 [PMID: 20891244]

23 Sung KC, Kim SH. Interrelationship between fatty liver and insulin resistance in the development of type 2 diabetes. J Clin Endocrinol Metab 2011; 96: 1093-1097 [PMID: 21252243]

24 Fan JG, Li F, Cai XB, Peng YD, Ao QH, Gao Y. Effects of nonalcoholic fatty liver disease on the development of metabolic disorders. J Gastroenterol Hepatol 2007; 22: 1068-1091 [PMID: 17608855]

25 Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med 2011; 43: 617-649 [PMID: 21039302 DOI: 10.3109/07853900.2010.518623]

26 Targher G, Bertolini L, Poli F, Rodella S, Scala L, Tessari R, Zenari L, Falezza G. Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetologia 2005; 48: 3541-3546 [PMID: 16306573]

27 Villanova N, Moscatelli S, Ramilli S, Bugianesi E, Magalotti D, Vanni E, Zoli M, Marchesi G. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease. Hepatology 2005; 42: 473-480 [PMID: 15981216 DOI: 10.1002/hep.20781]
Non-invasive detection of liver steatosis

Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. *Gastroenterology* 2005; 129: 113-121 [PMID: 16012941]

Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S, Benson JT, Enders FB, Angulo P. The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. *Gut* 2009; 58: 1538-1544 [PMID: 19625277]

David K, Kowdle KV, Unalp A, Kanwal F, Brunt EM, Schwimmer JB. Quality of life in adults with nonalcoholic fatty liver disease: baseline data from the Fibrohepatitis clinical research network. *Hepatology* 2009; 49: 1904-1912 [PMID: 19434741 DOI: 10.1002/hep.22868]

Newton JL, Jones DE, Hane E, Kane L, Wilton K, Burt AD, Day CP. Fatigue in non-alcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. *Gut* 2008; 57: 807-813 [PMID: 18270241]

Elwing JE, Lustman PJ, Wang HL, Clouse RE. Depression, anxiety, and nonalcoholic steatohepatitis. *Psychosom Med* 1991; 49, 563-569 [PMID: 16882657]

Baumeister SE, Völzke H, Marschall P, John U, Schmidt CO, Lange C, Vol S, Fumeron F, Bonnet F. Nine-year incidence diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study. *BMJ Gastroenterol* 2010; 56 [PMID: 20529259]

Kim CH, Park JY, Lee KU, Kim JH, Kim HK. Fatty liver is an independent risk factor for the development of Type 2 diabetes in Korean adults. *Diabet Med* 2008; 25: 476-481 [PMID: 18346164]

Calori G, Lattuada G, Ragogna F, Garancini MP, Cossignani P, Villa M, Bosi E, Ruotolo P, Piemonti L, Perseghin G. Fatty liver index and mortality: the Cremona study in the 15th year of follow-up. *Hepatology* 2011; 54: 145-152 [PMID: 21488860 DOI: 10.1002/hep.24356]

Browning JD, Saczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. *Hepatology* 2004; 40: 1387-1395 [PMID: 15556550 DOI: 10.1002/hep.20466]

Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentanti S. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. *Hepatology* 2005; 42: 44-52 [PMID: 15895401 DOI: 10.1002/hep.20734]

Fan JG, Zhu J, Li XJ, Chen L, Li L, Dai F, Li F, Chen SY. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China. *J Hepatol* 2005; 43: 508-514 [PMID: 16060030]

Sanyal AJ, AGA technical review on nonalcoholic fatty liver disease. *Gastroenterology* 2002; 123: 1705-1725 [PMID: 12404245]

Hernaez R, Lazo M, Bonekamp S, Kamel I, Brancati FL, Guallar E, Clark JM. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. *Hepatology* 2011; 54: 1082-1090 [PMID: 21618575 DOI: 10.1002/hep.24452]

Ekstedt M, Fränzen LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodenar M, Kechagias S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. *Hepatology* 2006; 44: 865-873 [PMID: 17006923 DOI: 10.1002/hep.21237]

Rafiq N, Bai C, Fang Y, Srishord M, McCullough A, Gramlich T, Younossi ZM. Long-term follow-up of patients with nonalcoholic fatty liver. *Clin Gastroenterol Hepatol* 2009; 7: 234-238 [PMID: 19049831]

Sanyal AJ, Brunt EM, Kleiner DE, Kowdle KV, Chalasani N, Lavine JE, Ratziu V, McCullough A. Endpoints and clinical trial design for nonalcoholic steatohepatitis. *Hepatology* 2011; 54: 344-353 [PMID: 21520200 DOI: 10.1002/hep.24376]

Ratziu V, Bellentanti S, Cortez-Pinto H, Day C, Marchesini G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. *J Hepatol* 2010; 53: 372-384 [PMID: 20494470]

P-Reviewer Takuma Y S-Editor Gou SX L-Editor Kerr C E-Editor Xiong L