Early Cytoplasmic Specialization at the Presumptive Acetylcholine Receptor Cluster: A Meshwork of Thin Filaments

H. BENJAMIN PENG and KEVIN A. PHELAN
Department of Anatomy, University of Illinois at Chicago, Chicago, Illinois 60680. Mr. Phelan’s present address is Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637.

ABSTRACT Postsynaptic differentiation can be experimentally induced in cultured Xenopus myotomal muscle cells by polyornithine-coated latex beads (Peng, H. B., and P.-C. Cheng, 1982, J. Neurosci., 2:1760–1774). In this study, we examined the time course of this process. Small, punctate acetylcholine receptor (AChR) clusters were detectable as early as 1.5 h after the addition of the beads. Subsequently, both the size and the number of the clusters increased with time until a saturation level was reached between 8–24 h. Because the onset and the site of the AChR clustering could be precisely marked, we were able to examine the early structural specializations associated with presumptive AChR clusters. At 1 h, when <20% bead-muscle contacts displayed AChR clusters, 70% of the contacts already exhibited a meshwork of 5–6-nm filaments, which were of the same size as the thin filaments within the myofibrils and thus may contain actin. A system of cisternae similar to the smooth endoplasmic reticulum was suspended within this meshwork, but other organelles were excluded from it. This meshwork, being the earliest cytoplasmic specialization at the presumptive AChR clusters and appearing before the clusters, may be a mechanism for the clustering process.

During the development of the neuromuscular junction, acetylcholine receptors form clusters at the postsynaptic membrane in response to innervation (1, 9, 25, 33). The mechanism for such receptor clustering is unknown. Besides acetylcholine receptor (AChR) clusters, the neuromuscular junction also has a set of other structural specializations associated with the postsynaptic membrane, including the basement membrane, in-foldings, the postsynaptic density, and a meshwork of cytoplasmic filaments (5, 13). This last specialization has attracted considerable attention recently as perhaps being involved in the formation and/or the maintenance of AChR clusters (10–13, 22, 29). However, the causal relationship between the cluster and this filament meshwork cannot be understood from the study of mature synapses or receptor clusters.

Previously we showed that latex beads coated with positively charged polypeptide molecules can induce the clustering of AChRs in cultured Xenopus muscle cells (26, 27). Because the initiation of the clustering process can be controlled by the addition of the beads and the location of the presumptive clusters is marked by the beads with high fidelity, this procedure offers an opportunity to examine the cellular processes involved in the formation of AChR clusters. In this study, we examined the time course of the bead-induced AChR clustering and the early structural specializations associated with this process. Our results have shown that the clusters can be detected as early as 1.5 h after the beads come into contact with the cells. Ultrastructurally, a meshwork of thin filaments marks the bead-muscle contacts at equally early stages.

MATERIALS AND METHODS

Cell Culture and the Induction of AChR Clustering by Latex Beads: Myotomal muscle cells were isolated from Xenopus laevis embryos as previously described (14, 24). They were cultured on glass coverslips (for fluorescence microscopy) or in tissue culture dishes (for electron microscopy). 4.5-μm polystyrene latex beads (Polysciences, Warrington, PA) were coated with poly-L-ornithine (M₄₃0,000; Sigma Chemical Co., St. Louis, MO) according to previous methods (27) and applied to 3-5-d-old muscle cultures. The beads only attached to the top and the sides of the cells and were absent from the cell-substrate interface. The AChR clusters induced by the beads were visualized by first labeling the cultures with tetramethylrhodamine-conjugated α-bungarotoxin (R-BTX [30]) for 30 min. Then the cultures were fixed with 95% ethanol at −20°C and examined with a fluorescence microscope. The position of the AChR clusters in relationship to the bead-muscle contacts was determined by combining the fluorescence with phase-contrast microscopy.

Electron Microscopy: Cultures were fixed with 1% glutaraldehyde in 0.05 M Na-cacodylate buffer, postfixed with 1% OsO₄ en bloc stained with uranyl acetate, dehydrated through an ethanol series, and embedded in Epon. Cells were isolated from the Epon blocks and serially sectioned parallel or perpendicular to the original substrate along the longitudinal axis of the muscle.

Abbreviations used in this paper: AChR, acetylcholine receptor; EM, electron microscopy; R-BTX, tetramethylrhodamine-conjugated α-bungarotoxin.
To determine the time course of formation of AChR clusters, cultures were treated with latex beads and, at different time intervals, labeled with R-BTX and processed for fluorescence microscopy. The results of two experiments are summarized in Fig. 1. In this figure, the duration of co-culture (abscissa) also included the 30 min during which the culture was incubated with R-BTX. At 1.5 h of bead-muscle co-culture, AChR clusters, as evidenced by R-BTX fluorescence, were already present at 20% of the bead-muscle contacts. The aggregation of AChRs proceeded rapidly during this early period such that by 6–8 h of co-culture, the clustering already reached >90% of the level seen in 1-d co-cultures.

Although the AChR clusters could be detected at the bead-muscle contacts as early as 1.5 h after the beads contacted the muscle cell, these early clusters were much smaller as compared with the clusters seen in 1- and 2-d co-cultures. Examples are shown in Fig. 2. At 1.5 h, the clusters associated with individual beads were 0.5–1 μm in diameter. The size of the clusters increased with time such that in 8-h co-cultures they ranged between 1 to 2.5 μm and in 1-d co-cultures they were 3 to 4 μm in diameter as the size was ultimately limited by the 4.5-μm beads used in this study. Clusters over 1 d old were typically composed of small subclusters as previously reported (27).

Having established the time course for the formation of AChR clusters induced by polyornithine-coated latex beads, we set out to examine the early cytoplasmic specializations at presumptive AChR clusters with thin-section electron microscopy. Cultures grown in tissue culture dishes were fixed at different times after the addition of the beads. The time course of AChR clustering, similar to that shown in Fig. 1, was also determined for each electron microscopy (EM) specimen in sister cultures with fluorescence microscopy.

![Figure 1](image.png)

FIGURE 1 Time course of the formation of AChR clusters induced by polyornithine-coated latex beads. Data from two experiments (filled circles and open triangles) are represented here. Each point represents an average of 20 cells. The vertical bars denote the standard error of the mean.

RESULTS

To determine the time course of formation of AChR clusters, cultures were treated with latex beads and, at different time intervals, labeled with R-BTX and processed for fluorescence microscopy. The results of two experiments are summarized in Fig. 1. In this figure, the duration of co-culture (abscissa) also included the 30 min during which the culture was incubated with R-BTX. At 1.5 h of bead-muscle co-culture, AChR clusters, as evidenced by R-BTX fluorescence, were already present at 20% of the bead-muscle contacts. The aggregation of AChRs proceeded rapidly during this early period such that by 6–8 h of co-culture, the clustering already reached >90% of the level seen in 1-d co-cultures.

Although the AChR clusters could be detected at the bead-muscle contacts as early as 1.5 h after the beads contacted the muscle cell, these early clusters were much smaller as compared with the clusters seen in 1- and 2-d co-cultures. Examples are shown in Fig. 2. At 1.5 h, the clusters associated with individual beads were 0.5–1 μm in diameter. The size of the clusters increased with time such that in 8-h co-cultures they ranged between 1 to 2.5 μm and in 1-d co-cultures they were 3 to 4 μm in diameter as the size was ultimately limited by the 4.5-μm beads used in this study. Clusters over 1 d old were typically composed of small subclusters as previously reported (27).

Having established the time course for the formation of AChR clusters induced by polyornithine-coated latex beads, we set out to examine the early cytoplasmic specializations at presumptive AChR clusters with thin-section electron microscopy. Cultures grown in tissue culture dishes were fixed at different times after the addition of the beads. The time course of AChR clustering, similar to that shown in Fig. 1, was also determined for each electron microscopy (EM) specimen in sister cultures with fluorescence microscopy.

![Figure 1](image.png)

FIGURE 1 Time course of the formation of AChR clusters induced by polyornithine-coated latex beads. Data from two experiments (filled circles and open triangles) are represented here. Each point represents an average of 20 cells. The vertical bars denote the standard error of the mean.
were located either within the meshwork or close to the plasma membrane at the bead-muscle contact.

The fact that this meshwork of thin filaments is specifically associated with the site of AChR clustering is further supported by the following observations: (a) In areas away from the bead-muscle contacts, the cortex was unspecialized. Fig. 8 shows an area on the upper cell surface lateral to the bead-muscle contact as shown in Fig. 4. In contrast to the bead contacts, organelles including mitochondria, polysomes, smooth and rough endoplasmic reticulum were not excluded from the cortex of the bead-free areas. Thin filaments were also present in this area, but they did not form extensive meshwork structures. Even when two beads were situated within a diameter (4.5 μm) to each other, the meshwork associated with each bead still existed as discrete entities (Fig. 5), reflecting the discreteness of the AChR clusters on the cell surface. (b) This meshwork was observed at an average of 70% bead-muscle contacts (out of 35 contacts scored) at 1 h, whereas <20% of the contacts exhibited AChR clusters at this time (Fig. 1). Thus, the appearance of this meshwork preceded the AChR clustering and the percentage of beads exhibiting this meshwork at the onset of AChR clustering (1 h) agrees well with the percentage of beads which eventually become cluster-positive (24 h, cf. Fig. 1).

At mature AChR clusters, such filamentous meshwork were also detected. It was usually contiguous with the membrane-associated cytoplasmic density (Fig. 3) and was most clearly seen when the density is sectioned tangentially as reported previously (see Fig. 9 in reference 27). However, meshworks as extensive as those shown in Figs. 4 and 5 were rarely observed at mature bead-induced clusters. Rather, it was often separated into patches by invaginations of the membrane. The first appearance of the invaginations was several hours after the onset of the meshwork (Peng, unpublished results) and they eventually became coextensive as the early meshwork (Fig. 3 and 4). On the basis of these observations we conclude that this meshwork of thin filaments is an integral component of the AChR cluster-associated specializations. Concomitant with the maturation of the cluster, the meshwork becomes more closed apposed to the receptor-rich membrane.

DISCUSSION

In this study we have shown that the formation of AChR clusters proceeds rapidly following its induction by the polyornithine-coated beads in cultured Xenopus muscle cells. Clusters, when visualized with R-BTX labeling, can be detected as early as 1.5 h after the initiation of this process and by 7 to 8 hours it has reached the saturation level (Fig. 1). The aggregation of receptors continues, however, as shown
by a gradual increase in the size of the clusters at least through the first 24 h (Fig. 2). These results clearly demonstrate that new clusters are induced by the beads and rule out the possibility that the beads may somehow become associated with the existent clusters.

Fluorescence microscopy with R-BTX is a highly sensitive way of detecting AChR clustering. Previous freeze-fracture studies have demonstrated that R-BTX fluorescence patches, even in submicrometer dimensions, can be matched precisely with arrays of putative AChR intramembranous particles and areas devoid of R-BTX fluorescence are always associated with a low-density, diffuse intramembranous particle distribution (3, 4, 17). Recently Olek et al. (19) also reported that the formation of AChR clusters in rat myotubes can occur with a rapid time course comparable to that reported here after the addition of brain extract.

We have identified that a meshwork of thin (5–6 nm) filaments and a system of smooth endoplasmic reticulum cisternae which are suspended within this meshwork are the earliest (1 h) specializations detectable at the bead-muscle contacts. Two sets of data indicate that these EM specializations are located at presumptive AChR clusters: (a) Previous whole-mount stereo EM studies have shown that both the filament meshwork and the cisternae are associated with the AChR cluster identifiable with R-BTX labeling (22). (b) The percentage of bead-muscle contacts exhibiting these EM specializations at 1 h compares closely with the percentage of the contacts that eventually develop into AChR clusters. Thus, a strong spatial and temporal correlation between the meshwork and the process of AChR clustering exists. Although this meshwork is less prominent at mature AChR clusters in thin sections (Fig. 3), results obtained through whole-mount (22) and freeze-etching (12, 13) techniques have clearly shown its existence.
This meshwork of thin filaments reported here resembles the network of actin filaments observed at the leading edge (lamellipodium) of motile nonmuscle cells (32) and also at the site of phagocytosis in macrophages (21). The dynamic nature of this meshwork in nonmuscle cells has been exemplified by the fact that it can be assembled or disassembled in minutes at the lamellipodium in response to a change in the direction of cell movement (18) and by the observation that actin molecules within the meshwork exchange rapidly with those in the cytoplasmic pool (16). The rapidity of the assembly of this meshwork at the bead-muscle contacts observed in this study suggests that it may also play a role in the motility process involved in the formation of AChR clusters.

Previously we showed that the formation of AChR clusters at the bead-muscle contacts can be blocked by Ca$^{2+}$ channel blockers and the calmodulin inhibitor trifluoperazine (23). These results suggest that a local increase in Ca$^{2+}$ level at the contact area may activate the clustering process. In view of our current findings, it is reasonable to speculate that this activation may first involve an assembly of the thin filament meshwork. The involvement of Ca$^{2+}$ in this process is further implicated by the co-localization of sarcoplasmic reticulum-like cisternae within the meshwork at the early stage of cluster formation. These cisternae, similar to sarcoplasmic reticulum (7), may participate in regulating the Ca$^{2+}$ level by acting as a mechanism for Ca$^{2+}$ sequestration. This system of cisternae is maintained at mature AChR clusters (see Fig. 3 and reference 22) and perhaps also at the subsynaptic area at neuromuscular junction (9, 20) where it may be involved in the Ca$^{2+}$ regulation during synaptic transmission (8).

Measurements on the lateral diffusion coefficients of AChRs within the plane of the membrane have shown that isolated receptors move freely in the membrane, whereas clustered receptors are essentially immobile (2, 28). As Edwards and Frisch (6) first suggested, the formation of AChR clusters can be accounted for by a simple diffusion-trap hypothesis. The membrane-associated thin filament meshwork at the bead-muscle contact could act as a trap so that the AChRs randomly moving into this area will be immobilized by the meshwork. Such a control of the mobility of integral membrane proteins by cyto-matrix has been demonstrated in the erythrocyte membrane (15). According to this model, the
structural organization of a cluster would be determined by the organization of the filament meshwork underneath. This is supported by the often patchy appearance of both the clusters (Fig. 2g and see Fig. 5 in reference 27) and the meshwork (Fig. 4, inset). After this initial event of receptor concentration via the diffusion-trap mechanism, a slower process which stabilizes the clusters may set in. This may be manifested by the development of the postsynaptic density that underlies the receptor-rich membrane at the mature clusters (Fig. 3).

Our results do not rule out a local insertion of new AChRs from intracellular pools during the cluster formation (31). Our previous work (27) has shown that new receptors inserted into the membrane after the addition of the beads are also used in the formation of new clusters. However, these new receptors may be diffusely incorporated into the membrane and move to the site of new cluster formation by lateral diffusion (1).

We wish to thank Donald Markey for his technical help and Dr. Margaret Hollyday for her comments on the manuscript.

This work was supported by National Institutes of Health grant NS 16259 and a grant from the Muscular Dystrophy Association.

Received for publication 12 January 1984, and in revised form 28 March 1984.

REFERENCES

1. Anderson, M. J., and M. W. Cohen. 1977. Nerve induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J. Physiol. (London). 268:757-773.
2. Axelrod, D., P. Ravdin, D. E. Koppel, J. Schlessinger, W. W. Webb, E. L. Elson, and T. R. Podleski. 1976. Lateralmotionof fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc. Natl. Acad. Sci. USA. 73:4954-4958.
3. Bridgman, P. C., and Y. Nakajima. 1983. Distribution of filipin-sterol complexes on cultured muscle cells: cell-substrate contact areas associated with acetylcholine clusters. J. Cell Biol. 96:386-392.
4. Cohen, S. A., and D. W. Pumplin. 1979. Clusters of intramembrane particles associated with binding sites for a-bungarotoxin in cultured chick myotubes. J. Cell Biol. 82:494-516.
5. Couteaux, R., and M. Pecot-Dechaux. 1968. Particulaires structurales du sarco-plasme sous-nucléaire. C. R. Acad. Sci. (Paris). 268:D8-D10.
6. Edwards, C., and H. L. Fisch. 1976. A model for the localization of acetylcholine receptors at the muscle endplate. J. Neurobiol. 7:371-381.
7. Endo, M. 1977. Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57:71-108.
8. Evans, R. H. 1979. The entry of labelled calcium into the innervated region of the mouse diaphragm muscle. J. Physiol. (London). 240:517-533.
9. Finet, E., and G. D. Pichichero. 1979. Early events in neuromuscular junction formation in vitro. J. Cell Biol. 93:143-158.
10. Gisler, R. L., and T. S. Reese. 1981. Cytoskeletal organization at the postsynaptic complex. J. Cell Biol. 91:298-302.
11. Hall, Z. W., B. W. Lubit, and J. H. Schwarz. 1981. Cytoskeletal actin in postsynaptic structures at the neuromuscular junction. J. Cell Biol. 90:789-792.
12. Heuser, J. E., and S. R. Salpeter. 1979. Organization of acetylcholine receptors in quick-frozen, deep-etched and rotary-replicated Torpedo postsynaptic membrane. J. Cell Biol. 82:150-173.
13. Hirakawa, N., and J. E. Heuser. 1982. Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. J. Neurocytol. 11:487-510.
14. Jones, K. W., and T. R. Endale. 1983. The culture of small aggregates of amphibian embryonic cells in vitro. J. Embryol. Exp. Morphol. 81:135-154.
15. Koppel, D. E., M. P. Sheetz, and M. Schindler. 1981. Matrix control of protein diffusion in biological membranes. Proc. Natl. Acad. Sci. USA. 78:3576-3580.
16. Kreis, T. E., B. Geiger, and J. Schlesinger. 1982. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell 29:835-843.
17. Luther, P. W., and H. B. Peng. 1982. Correlation of light microscopic and freeze-fracture observation of a-bungarotoxin binding sites in cultured Xenopus muscle cells. Anat. Rec. 202:116A. (Abstr.)
18. Luther, P. W., H. B. Peng, and J. S. Lin. 1983. Change in cell shape and actin distribution induced by constant electric field. Nature (London). 303:61-64.
19. Coteaux, R., and M. Pecot-Dechaux. 1968. Particulaires structurales du sarco-plasme sous-nucléaire. C. R. Acad. Sci. (Paris). 268:D8-D10.
20. Onsher, R. L., and T. S. Reese. 1980. A freeze-substitution method for localizing divalent cations: examples from secretory systems. Fed. Proc. 39:2802-2808.
21. Painter, R. G., J. Whisnand, and A. T. McIntosh. 1981. Effects of cytochalasin B on actin and myosin association with particle binding sites in mouse macrophages: implications with regard to the mechanism of action of cytochalasins. J. Cell Biol. 91:373-384.
22. Peng, H. B. 1983. Cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor cluster in cell cultures. J. Cell Biol. 97:489-498.
23. Peng, H. B. 1984. Participation of calcium and calmodulin in the formation of acetylcholine receptor clusters. J. Cell Biol. 98:550-557.
24. Peng, H. B., and Y. Nakajima. 1981. Membrane particle aggregates in innervated and noninnervated cultures of Xenopus embryonic muscle cells. Proc. Natl. Acad. Sci. USA. 78:500-504.
25. Peng, H. B., Y. Nakajima, and P. C. Bridgman. 1980. Development of the postsynaptic membrane in Xenopus neurons cultured observed by freeze-fracture and thin-section electron microscopy. Brain Res. 196:11-31.
26. Peng, H. B., P. S. Cheng, and C. N. Christian. 1982. Interaction of cytoskeletal framework with acetylcholine receptor on the surface of embryonic muscle cells in culture. J. Cell Biol. 98:231-236.
27. Poo, M. M. 1981. Rapid lateral diffusion of functional ACh receptors in embryonic muscle cell membrane. Nature (London). 295:332-334.
28. Prives, J., A. B. Fulton, S. Penman, M. P. Daniels, and Z. W. Hall. 1982. Interaction of cytoskeletal framework with acetylcholine receptor on the surface of embryonic muscle cells in culture. J. Cell Biol. 92:231-236.
29. Ravdin, P., and D. Axelrod. 1977. Fluorescent tetramethyl rhodamine derivatives of a-bungarotoxin: preparation, separation and characterization. Anal. Biochem. 80:585-592.
30. Salpeter, M. M., and R. Harris. 1983. Distribution and turnover rate of acetylcholine receptors throughout the junction folds at a vertebrate neuromuscular junction. J. Cell Biol. 96:429-442.
31. Salpeter, M. M., and R. Harris. 1983. Distribution and turnover rate of acetylcholine receptors throughout the junction folds at a vertebrate neuromuscular junction. J. Cell Biol. 96:1781-1785.
32. Small, J. V., and G. Langanger. 1981. Organization of actin at the leading edge of cultured cells: influence of extramembrane dehydration and hydration on the ultrastructure of actin meshwork. J. Cell Biol. 91:695-705.
33. Weissberg, C. B., J. R. Sanes, and Z. W. Hall. 1981. Formation of neuromuscular junctions in adult rats: accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina. Dev. Biol. 84:255-266.