Genuine Four Tangle for Four Qubit States

S. Shelly Sharma* and N. K. Sharma†

*Depto. de Fisica, Universidade Estadual de Londrina, Londrina 86051-990, PR Brazil
†Depto. de Matematica, Universidade Estadual de Londrina, Londrina 86051-990, PR Brazil

Abstract. We report a four qubit polynomial invariant that quantifies genuine four-body correlations. The four qubit invariants are obtained from transformation properties of three qubit invariants under a local unitary on the fourth qubit.

Keywords: Four tangle, Polynomial invariants, multipartite entanglement

PACS: 3.67.Mn, 03.65.Ud

Two multipartite pure states are equivalent under stochastic local operations and classical communication (SLOCC) [1] if one can be obtained from the other with some probability using SLOCC. Attempts [2, 3] to classify four-qubit pure states under SLOCC, have revealed that several entanglement classes contain a continuous range of strictly nonequivalent states, although with similar structure. In view of this, we proposed classification criteria [4] based on nature of multiqubit correlations in N-qubit pure states. In this article, we examine the three qubit invariants of four qubit states and derive higher degree invariants to quantify four and three-way correlations.

For a two qubit state, negative eigenvalue of partially transposed state operator is the invariant that distinguishes between a separable and an entangled state. In three qubit state space, two qubit subspace (for a selected pair of qubits) is characterized by a pair of two qubit invariants, while new two qubit invariants arise due to three body correlations in the composite space. The most important three qubit polynomial invariant is a degree four combination of two qubit invariants. The entanglement monotone constructed from this is Wootter’s three tangle [5]. Four qubit states sit in the space $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$ with three qubit subspaces for each set of three qubits. If there were no four body correlations, then three tangles should determine the entanglement of a four qubit state. When four body correlations are present, additional three qubit invariants that depend on four way negativity fonts [6] exist. Three qubit invariants, for a given set of three qubits, constitute a five dimensional space. In this article, we obtain four qubit invariants using transformation properties of three qubit invariants under a local unitary applied to the fourth qubit. One can continue the process to a higher number of qubits.

FIVE THREE TANGLES

Two qubit unitary invariants for pair of qubits A_1A_2 in the most general four qubit state

$$|\Psi^{A_1A_2A_3A_4}\rangle = \sum_{i_1i_2i_3i_4} a_{i_1i_2i_3i_4} |i_1i_2i_3i_4\rangle; \quad (i_m = 0, 1),$$

(1)
are $D_{(A_3)_{i_3}}^{00} (A_4)_{i_4}$, $D_{(A_3)_{i_3}}^{00i_4} (A_4)_{i_4} - D_{(A_3)_{i_3}}^{01i_4} (A_4)_{i_4}$, $D_{(A_4)_{i_4}}^{00i_4} - D_{(A_4)_{i_4}}^{01i_3}$, $D_{(A_4)_{i_4}}^{0000} - D_{(A_4)_{i_4}}^{0010}$, $D_{(A_4)_{i_4}}^{0001} - D_{(A_4)_{i_4}}^{0101}$, where

$$D_{(A_3)_{i_3}}^{00} (A_4)_{i_4} = \text{det} \begin{bmatrix} a_{0i_3i_4} & a_{01i_3i_4} \\ a_{10i_3i_4} & a_{11i_3i_4} \end{bmatrix}, D_{(A_3)_{i_3}}^{0i_2i_4} = \text{det} \begin{bmatrix} a_{0i_2i_4} & a_{01i_2i_4} \\ a_{1i_2i_4} & a_{11i_2i_4} \end{bmatrix}, \tag{2}$$

$$D_{(A_3)_{i_3}}^{0i_2i_0} = \text{det} \begin{bmatrix} a_{0i_2i_0} & a_{0i_2+1i_0} \\ a_{1i_2i_0} & a_{1i_2+1i_0} \end{bmatrix}, D_{(A_4)_{i_4}}^{0i_2i_0} = \text{det} \begin{bmatrix} a_{0i_2i_4} & a_{0i_2+1i_4} \\ a_{1i_2i_4} & a_{1i_2+1i_4} \end{bmatrix}. \tag{3}$$

For qubits $A_1A_2A_3$ in $|\Psi^{A_1A_2A_3}\rangle$, three qubit invariants

$$\left(I_{3}^{A_1A_2A_3} \right)_{(A_4)_{i_4}} = \left(D_{(A_4)_{i_4}}^{00} (A_4)_{i_4} - D_{(A_4)_{i_4}}^{010} (A_4)_{i_4} \right)^2 - 4D_{(A_3)_{i_3}}^{00} (A_4)_{i_4} D_{(A_3)_{i_3}}^{00} (A_4)_{i_4} ; \quad i_4 = 0, 1. \tag{4}$$

quantify GHZ state like three-way correlations in three qubit state space. We examine the action of $U^{A_4} = \frac{1}{\sqrt{1+|y|^4}} \begin{bmatrix} 1 & -y^* \\ y & 1 \end{bmatrix}$ on invariant $\left(I_{3}^{A_1A_2A_3} \right)_{(A_4)_{i_4}}$. The transformed invariant is a combination of five three qubit invariants that is

$$\left(I_{3}^{A_1A_2A_3} \right)_{(A_4)_{i_4}}' = \frac{1}{(1+|y|^4)} \left[(y^*)^4 \left(I_{3}^{A_1A_2A_3} \right)_{(A_4)_{i_4}} - 4(y^*)^3 P_{(A_4)_{i_4}}^{A_1A_2A_3} \\ + 6(y^*)^2 T_{A_4}^{A_1A_2A_3} - 4y^* P_{(A_4)_{i_4}}^{A_1A_2A_3} + \left(I_{3}^{A_1A_2A_3} \right)_{(A_4)_{i_4}} \right]. \tag{5}$$

Here prime denotes the transformed invariant and additional invariants are

$$T_{A_4}^{A_1A_2A_3} = \frac{1}{6} \left(D_{(A_4)_{i_4}}^{0000} + D_{(A_4)_{i_4}}^{0001} + D_{(A_4)_{i_4}}^{0010} + D_{(A_4)_{i_4}}^{0011} \right)^2 - \frac{2}{3} \left(D_{(A_3)_{i_3}}^{0000} (A_4)_{i_4} + D_{(A_3)_{i_3}}^{0010} (A_4)_{i_4} \right) \left(D_{(A_3)_{i_3}}^{0000} (A_4)_{i_4} + D_{(A_3)_{i_3}}^{0010} (A_4)_{i_4} \right)$$

$$+ \frac{1}{3} \left(D_{(A_4)_{i_4}}^{0000} (A_4)_{i_4} + D_{(A_4)_{i_4}}^{0010} (A_4)_{i_4} \right) \left(D_{(A_4)_{i_4}}^{0000} (A_4)_{i_4} + D_{(A_4)_{i_4}}^{0010} (A_4)_{i_4} \right)$$

$$- \frac{2}{3} \left(D_{(A_3)_{i_3}}^{0000} (A_4)_{i_4} D_{(A_3)_{i_3}}^{0010} (A_4)_{i_4} + D_{(A_3)_{i_3}}^{0000} (A_4)_{i_4} D_{(A_3)_{i_3}}^{0010} (A_4)_{i_4} \right), \tag{6}$$

$$P_{(A_4)_{i_4}}^{A_1A_2A_3} = \frac{1}{2} \left(D_{(A_4)_{i_4}}^{0000} (A_4)_{i_4} + D_{(A_4)_{i_4}}^{0010} (A_4)_{i_4} \right) \left(D_{(A_4)_{i_4}}^{0000} + D_{(A_4)_{i_4}}^{0010} + D_{(A_4)_{i_4}}^{0011} \right)$$

$$- \left(D_{(A_3)_{i_3}}^{0000} (A_4)_{i_4} \left(D_{(A_3)_{i_3}}^{0000} + D_{(A_3)_{i_3}}^{0010} \right) + D_{(A_3)_{i_3}}^{0000} (A_4)_{i_4} \left(D_{(A_3)_{i_3}}^{0000} + D_{(A_3)_{i_3}}^{0011} \right) \right). \tag{7}$$

Five three tangles, constructed from invariants $\left(I_{3}^{A_1A_2A_3} \right)_{(A_4)_{i_4}}$, $\left(I_{3}^{A_1A_2A_3} \right)_{(A_4)_{i_4}}$, $P_{(A_4)_{i_4}}^{A_1A_2A_3}$, and $T_{A_4}^{A_1A_2A_3}$, capture the entanglement of $A_1A_2A_3$ due to three and four-way correlations.
GENUINE FOUR TANGLE

Continuing the search for a four qubit invariant that detects genuine four-way correlations, we notice that when a selected U^{A_4} results in $\left(I_3^{A_1A_2A_3}\right)'(A_4)_0 = 0$, we have at hand a quartic equation. A quartic equation, $y^4a - 4by^3 + 6y^2c - 4dy + f = 0$, in variable y has associated polynomial invariants $S = af - 4bd + 3c^2$, cubic invariant $T = acf - ad^2 - b^2f + 2bcd - c^3$, and discriminant $\Delta = S^3 - 27T^2$. Therefore, the degree eight polynomial invariant associated with $I_3^{A_1A_2A_3}(A_4)_0 = 0$ is

$$I_{(4,8)}^{A_1A_2A_3A_4} = 3 \left(T_{A_4}^{A_1A_2A_3}\right)^2 + \left(I_3^{A_1A_2A_3}(A_4)_0 \right)^2 - 4P^{A_1A_2A_3}(A_4)_0 P^{A_1A_2A_3}(A_4)_1. \tag{8}$$

The discriminant is given by $\Delta = \left(I_4^{A_1A_2A_3A_4}\right)^3 - 27 \left(J^{A_1A_2A_3A_4}\right)^2$, where

$$J^{A_1A_2A_3A_4} = \det \begin{bmatrix} I_3^{A_1A_2A_3}(A_4)_0 & P^{A_1A_2A_3}(A_4)_1 & T_{A_4}^{A_1A_2A_3} \\ P^{A_1A_2A_3}(A_4)_1 & T_{A_4}^{A_1A_2A_3} & P^{A_1A_2A_3}(A_4)_0 \\ T_{A_4}^{A_1A_2A_3} & P^{A_1A_2A_3}(A_4)_0 & I_3^{A_1A_2A_3}(A_4)_0 \end{bmatrix}. \tag{9}$$

We may mention here that since there are four ways in which a given set of three qubits may be selected, Δ can be expressed in terms of different sets of three qubit invariants.

The four tangle $\tau_{(4,8)} = 4 \left| 2I_{(4,8)}^{A_1A_2A_3A_4}\right|^2$ quantifies 4-way correlations [7]. If four tangle is zero then transformation equations acquire a simpler form and yield four qubit invariants that quantify 3-way correlations. Invariant to quantify entanglement of a four qubit state having purely two qubit correlations can also be easily obtained. What is the utility of these polynomial invariants? Quantum entanglement distributed between distinct parties is a physical resource for practical quantum information processing. Polynomial invariants are used to construct entanglement monotones to quantify entanglement.

ACKNOWLEDGMENTS

Financial support from CNPq Brazil and FAEP UEL Brazil is acknowledged.

REFERENCES

1. F. Verstraete, J. Dehaene, B. DeMoor, and H. Verschelde, Phys. Rev. A 65, 052112 (2002).
2. L. Lamata, J. Leon, D. Salgado and E. Solano, Phys. Rev. A 75, 022318 (2007).
3. D. Li, X. Li, H. Huang, and X. Li, Quant. Inf. Comp. 9, 0778 (2009).
4. S. S. Sharma and N. K. Sharma, Phys. Rev. A 85, 042315 (2012).
5. V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000).
6. S. S. Sharma and N. K. Sharma, Phys. Rev. A 82, 052340 (2010).
7. S. S. Sharma and N. K. Sharma, Phys. Rev. A 87, 022335(2013).