Inflationary Dynamics and Particle Production in a Toroidal Bose-Einstein Condensate

Anshuman Bhardwaj,1,* Dzmitry Vaido,1,† and Daniel E. Sheehy1,‡

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 USA

(Dated: Jan 29, 2021)

We present a theoretical study of the dynamics of a Bose-Einstein condensate (BEC) trapped inside an expanding toroid that can realize an analogue inflationary universe. As the system expands, we find that phonons in the BEC undergo redshift and damping due to quantum pressure effects, owing to the thinness of the ring. We predict that rapidly expanding toroidal BEC’s can exhibit spontaneous particle creation, and study this phenomenon in the context of an initial coherent state wavefunction. We show how particle creation would be revealed in the atom density and density correlations, and discuss connections to the cosmological theory of inflation.

I. INTRODUCTION

The theory of inflation is the most promising description of the early universe [1–7], although alternatives exist [8]. This theory is based on a field \( \phi \), the inflaton, propagating in a classical spacetime and moving under the influence of its own potential \( V(\phi) \). The quantum fluctuations in the inflaton field couple with the spatial curvature of the universe, thus acting as seeds for the observed cosmic microwave background (CMB) anisotropies [9] and the large scale structure of our universe [10], although primordial gravitational waves are yet to be observed. The exact shape of the potential \( V(\phi) \) is currently not known, although work has been done to reconstruct it [11]. Indeed, experiments have put stringent constraints on some of the candidates such as the quadratic and quartic inflationary potentials, though there remains a huge class of models that are able to explain observations [12]. In addition, the CMB observations have revealed possible anomalies on the largest scales with a 3\( \sigma \) significance, that hint towards new physics [13]. However, testing inflationary models using cosmological experiments is expensive and difficult.

A natural question, then, is if there exists an alternative setting to test the predictions of inflation. The answer is ‘Analogue Gravity’ [14], where the aim is to come up with simple experimental setups that can be performed in a lab and which mimic the equations governing gravitational and cosmological phenomena such as inflation and black hole physics. Early work in this direction came from Unruh who, in 1981, showed [15] that the Navier-Stokes’ equations for fluid flow, such as in a draining bathtub, could mimic Hawking radiation [16, 17] coming from a black hole horizon. This showed that analogue black holes can be constructed, allowing the study of near-horizon physics outside of an astrophysical setting. Several recent experiments have

![Figure 1](https://example.com/figure1.png)

Figure 1: (Color Online) Sketch of the initial (with radius \( R_0 \)) and final (with radius \( R_f \)) state of an expanding ring-shaped (toroidal) BEC, as realized in Ref. 38. As depicted, an initial density wave traveling counterclockwise (blue) bifurcates due to phonon creation, into two counter propagating waves (red and blue). In the main text, we use polar coordinates \((\rho, \theta, z)\) with \( z \) directed out of the page. We also indicated the ring diameter \( w \), implying that the ring cross-sectional area \( A \approx \frac{1}{4} \pi w^2 \) for the case of a circular cross section. However, in the main text we shall allow for different radii in the \( \rho \) and \( z \) direction (denoted by \( R_\rho \) and \( R_z \), respectively).

Inflation in analogue systems has been studied theoretically [31–37], and realized experimentally in Bose-Einstein condensates (BECs) [38] and in ion traps [39]. Here, our primary motivation is the BEC implementation of analogue inflation realized by Eckel et al [38]. As depicted, an initial density wave traveling counterclockwise (blue) bifurcates due to phonon creation, into two counter propagating waves (red and blue). In the main text, we use polar coordinates \((\rho, \theta, z)\) with \( z \) directed out of the page. We also indicated the ring diameter \( w \), implying that the ring cross-sectional area \( A \approx \frac{1}{4} \pi w^2 \) for the case of a circular cross section. However, in the main text we shall allow for different radii in the \( \rho \) and \( z \) direction (denoted by \( R_\rho \) and \( R_z \), respectively).

Inflation in analogue systems has been studied theoretically [31–37], and realized experimentally in Bose-Einstein condensates (BECs) [38] and in ion traps [39]. Here, our primary motivation is the BEC implementation of analogue inflation realized by Eckel et al [38]. The Eckel et al experiments featured a BEC in a time-dependent trap with the shape of a thin toroid, with a rapid expansion of the toroid mimicking the inflationary era. Some of the analogues of cosmological phenomena

---

*Electronic address: abhard4@lsu.edu
†Electronic address: dvaido1@lsu.edu
‡Electronic address: sheehy@lsu.edu
observed by Eckel et al were the red-shifting of frequencies and damping of modes due to expansion. Vortex creation after halting of the ring expansion was also observed, an analogue of reheating in the early universe.

In this paper, we present analytical results to help understand the Eckel et al experiments and discuss other possible observables that can probe inflationary physics in the context of an analogue BEC experiment. In particular, we show that the thinness of the toroid introduces significant quantum pressure corrections in the BEC, that cause damping of sound modes and eventually lead to spontaneous phonon creation. The rest of the paper is organized as follows: in Sec. II, we investigate the evolution of perturbations (i.e., phonons) in a BEC using the Bogoliubov-de Gennes Hamiltonian. In Sec. III, we show that this approach leads to the Mukhanov-Sasaki equation [40–42] that governs the evolution of such phonons in the primordial universe. This equation forces the density fluctuations to undergo damping that comes from quantum pressure. In Sec. IV, we show that as the ring undergoes an expansion there is a spontaneous generation of phonons which is the analogue of particle creation in the early universe. In Sec. V, we study the case of stimulated phonon creation by calculating the average density in a coherent state and showing that this approach leads to the Mukhanov-Sasaki equation of perturbations (i.e., phonons) in a BEC using the Bogoliubov-de Gennes Hamiltonian. In Sec. VI, we calculate the background density as $n_0(r,t) \equiv \Phi_0(r,t)^2$. Equation (5) describes dynamics of the perturbation operator $\delta \hat{\phi}$ in the presence of a time-dependent background $\Phi_0(r,t)$. Below, we find it convenient to transform to the Madelung representation in terms of density $\hat{n}(r,t)$ and phase $\hat{\phi}(r,t)$ field operators via:

$$\hat{\Phi}(r,t) = \sqrt{\hat{n}(r,t)} e^{i\hat{\phi}(r,t)}. \quad (6)$$

To proceed we use Eq. (4) on the left hand side of Eq. (6) and we introduce linear perturbations for the phase $\hat{\phi} = \phi_0 + \phi_1$ and the density $\hat{n} = n_0 + \hat{n}_1$ on the right hand side of Eq. (6). Then, keeping first-order contributions, we obtain an expression for the condensate perturbation $\delta \hat{\phi}$ in terms of the perturbations in density $\hat{n}_1(r,t)$ and phase $\hat{\phi}_1(r,t)$:

$$\delta \hat{\phi}(r,t) = \frac{\hat{n}_1(r,t)}{2n_0(r,t)} + i\hat{\phi}_1(r,t). \quad (7)$$

Here $\Phi_0(r,t)$ denotes the background phase. The phase and density perturbations satisfy the commutation relation $[\hat{n}_1(r,t), \hat{\phi}_1(r',t)] = i\delta^{(3)}(r-r')$. Substituting the above relation into (5) and using Madelung’s representation for the background $\Phi_0(r,t) = \sqrt{n_0(r,t)} e^{i\phi_0(r,t)}$, we get the equations of motion for the phase and density perturbations [38]:

$$-\frac{\hbar}{U} \partial_t \phi_1 = \hat{D} \hat{n}_1 + \frac{\hbar^2}{MU} \nabla\phi_0 \cdot \nabla \phi_1, \quad (8)$$

$$\partial_t \hat{n}_1 = -\frac{\hbar}{M} \nabla \cdot \left[ \hat{n}_1 \nabla \phi_0 + n_0 \nabla \phi_1 \right], \quad (9)$$

II. BOGOLIUBOV-DE GENNES HAMILTONIAN

In this section we describe, within the Bogoliubov-de Gennes (BdG) formalism, how a boson gas in a time-dependent trap can exhibit emergent relativistic dynamics that mimic the phenomenon of inflation. We start with the following Hamiltonian that describes a Bose-Einstein condensate (BEC), given in terms of a complex scalar field ($\hat{\Phi}(r)$), evolving inside a non-uniform and time-dependent toroidal potential $V(r,t)$:

$$H = H_0 + H_1,$$

$$H_0 = \int d^3 r \hat{\Phi}^+ \left[ -\frac{\hbar^2}{2M} \nabla^2 + U(r) - \mu \right] \hat{\Phi}(r),$$

$$H_1 = \frac{U}{2} \int d^3 r \hat{\Phi}^+ \hat{\Phi} \hat{\Phi}^+ \hat{\Phi} - \frac{\hbar^2}{2M} \nabla^2 \hat{\Phi}, \quad (1)$$

where $\mu$ is the chemical potential, $U = \frac{4\pi a_s \hbar^2}{M}$ is the interaction parameter, $a_s$ is the scattering length, $\hbar$ is Planck’s constant, and $M$ is the mass of the bosonic atoms. The time-dependent single-particle potential $V(r,t)$ describes a time-dependent toroidal potential which, taking a cylindrical coordinate system $r = (\rho, \theta, z)$, we can take to be parabolic in the $\hat{z}$ direction and a higher power law in the radial ($\hat{\rho}$) direction:

$$V(r,t) = \frac{1}{2} M \omega^2 \rho^2 + \lambda |\rho - R(t)|^n, \quad (2)$$

consistent with the experiments of Eckel et al [38], who realize a “flat bottomed” trap with the exponent $n \approx 4$. Here, $R(t)$ is the externally-controlled radius of the toroid that increases with time. The condensate field operator obeys the commutation relation

$$[\hat{\Phi}(r), \hat{\Phi}^+(r')] = \delta^{(3)}(r-r'). \quad (3)$$

Under the BdG approximation, the condensate field operator in the Heisenberg picture $\hat{\Phi}(r,t)$ can be written as the sum of a coherent background $\Phi_0(r,t)$ and the perturbation operator $\delta \hat{\Phi}(r,t)$:

$$\hat{\Phi} = \Phi_0(1 + \delta \hat{\phi}). \quad (4)$$

Plugging Eq. (4) into the Hamiltonian (1) and using Heisenberg’s equations of motion, we get

$$i\hbar \partial_t \delta \hat{\phi} = -\frac{\hbar^2}{2M} \nabla^2 \delta \hat{\phi} - \frac{\hbar^2}{M} \Phi_0 \nabla \delta \hat{\phi} + U n_0 \delta \hat{\phi}^+ + \delta \hat{\phi}. \quad (5)$$

for the $\delta \hat{\phi}(r,t)$ equation of motion [36]. Here, we defined the background density as $n_0(r,t) \equiv \Phi_0(r,t)^2$.
where we made use of the continuity equation for $n_0$:
\[ \partial_t n_0 = -\frac{\hbar^2}{2M} \nabla \cdot (n_0 \mathbf{v} \phi_0) \]
and we defined the operator
\[ \hat{D} = 1 - \frac{\hbar^2}{2MU} \left( \nabla^2 - \nabla n_0 \cdot \mathbf{v} \nabla - \frac{\nabla^2 n_0}{2n_0^2} + \frac{(\nabla n_0)^2}{2n_0^2} \right) . \]  
(10)

The terms in parentheses in $\hat{D}$ are due to the quantum pressure, which are often neglected in the hydrodynamic limit where $\hat{D} \approx 1$. In that situation, Eqs. (8) and (9) can be readily combined to get a relativistic wave equation for $\hat{\phi}_1$ (see [34, 35, 38]):
\[ 0 = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu \hat{\phi}_1) , \]  
(11)
where $\mu = 0$ denotes time and $\mu = 1, 2, 3$ denote space so $x^\mu = (ct, x, y, z)$ and $\partial_\mu = (\frac{\hbar}{M}c, \nabla)$ where $c = \sqrt{U n_0/M}$ is the BEC speed of sound. Here, the metric is
\[ g_{\mu\nu} = \begin{bmatrix} -c^2 & 0 & 0 & 0 \\ 0 & c(R + \hat{\rho})^2 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & c \end{bmatrix} , \]  
(12)
with determinant $g = -c^6 (R + \hat{\rho})^2$, where $\hat{\rho} = \rho - R(t)$ is the comoving radial coordinate.

Equation (11) shows that a boson gas in a time-dependent toroidal trap indeed simulates an expanding one-dimensional universe with the metric Eq. (12). However, below we show that although the quantum pressure terms in $\hat{D}$ are small, their inclusion qualitatively impacts the dynamics of low-energy modes in the expanding toroidal BEC, leading to damping and spontaneous phonon creation. This quantum pressure provides short distance corrections to the evolution of sound modes in a BEC, which become significant when we reduce the thickness of the ring to make it quasi one-dimensional.

Having obtained equations (8) and (9), that describe excitations of a superfluid boson gas in a time-dependent trap, in the next section we show how, in the thin-ring limit, these equations reduce to the Mukhanov-Sasaki equation that describes damped sound modes.

### III. THE MUKHANOV-SASAKI EQUATION

Equations (8) and (9) derived in the preceding section describe phase and density perturbations (i.e., phonons) in a BEC with a generic time-dependent trapping potential $V(r, t)$. In fact, the potential $V(r, t)$ only explicitly appears in the dynamics of the background density ($n_0$) and phase ($\phi_0$) on which phonons propagate (which we study in Appendix A), while the density and phase perturbations $\hat{n}_1$ and $\hat{\phi}_1$ are sensitive to $n_0$ and $\phi_0$ via Eqs. (8) and (9). Our first task is to make simplifying approximations that apply to the geometry realized in Ref. 38, i.e., a thin expanding toroidal trapping potential. As we shall see, this leads to the Mukhanov-Sasaki equation for damped sound modes.

The first simplifying approximation we shall invoke is to neglect the $\rho$ and $z$ dependences of the phase and density perturbations, thereby replacing $\hat{\phi}_1(r, t) \to \hat{\phi}_1(\theta, t)$ and $\hat{n}_1(r, t) \to \nabla^{-1} \hat{n}_1(\theta, t)$ in Eqs. (8) and (9), where $\nabla = \mathbf{R} A$ is a volume scale with $A$ the cross-sectional area of the toroid (so that $2\pi V$ is the toroid volume). We note that the angle-dependent density fluctuation operator $\hat{n}_1(\theta)$ is dimensionless.

Such an approximation holds in the thin-ring limit, where the toroidal radius $R(t)$ is much larger than the typical length scales $R_x$ and $R_z$ (defined in Appendix A) characterizing the ring cross-sectional area (see Fig. 1). This implies that an initial angle-dependent perturbation around the ring, such as prepared in the experiments of Ref. [38], will not excite density variations in the $\rho$ and $z$ directions.

The second simplifying approximation we shall invoke is to assume that the background phase $\phi_0$ and density $n_0$ are functions only of $\rho$ and $z$ (i.e., they are independent of $\theta$). This is expected, given the angular symmetry of the toroidal trapping potential. We shall furthermore assume that the condensate and the ring are moving with the same velocity, i.e., the superfluid velocity equals the ring velocity $v = \frac{\hbar}{M} \nabla \phi_0 = \dot{R} \rho$ (here $\dot{R} \equiv \frac{dR}{dt}$). The conditions for validity of this assumption are explored in Appendix A. This implies that the gradients in the perturbations are orthogonal to the condensate velocity, i.e. $\mathbf{v} \cdot \nabla \hat{n}_1 = \mathbf{v} \cdot \nabla \hat{n}_1 = 0$. By a similar argument, the dot-product term $\nabla n_0 \cdot \nabla \hat{n}_1 = 0$ in the quantum pressure also vanishes. On the other hand the divergence of condensate velocity is not zero: $\dot{\mathbf{v}} \cdot \nabla = \frac{\hbar}{M} \nabla^2 \phi_0 \approx \frac{\dot{R}}{R}$.

Within these approximations, the equations of motion (8) and (9) in the thin ring limit take the form:
\[ -\frac{\hbar \dot{V}}{U} \partial_t \hat{\phi}_1(\theta, t) = \hat{D}_\theta \hat{n}_1(\theta, t) , \]  
(13)
\[ \partial_t \hat{n}_1(\theta, t) = -\frac{R}{\dot{R}} \hat{n}_1(\theta, t) - \frac{\hbar \dot{V} n_0}{MR^2} \partial_\theta^2 \hat{\phi}_1(\theta, t) , \]  
(14)

describing angle-dependent excitations in a thin radially expanding toroidal BEC. Here $\hat{D}_\theta \equiv 1 - \frac{\hbar^2}{2MU} \left( \frac{\partial^2}{2n_0^2} - \frac{\nabla^2 n_0}{2n_0^2} + \frac{(\nabla n_0)^2}{2n_0^2} \right)$ is the projection of $\hat{D}$ in the $\theta$-space. To solve this system of equations, we introduce mode expansions as:
\[ \hat{\phi}_1(\theta, t) = \sqrt{\frac{U}{2\pi \hbar}} \sum_{n = -\infty}^{\infty} e^{i \xi_n \chi_n(t) \partial_n} + e^{-i \xi_n \chi_n^* \partial_n^*} \hat{a}_n \]  
(15)
\[ \hat{n}_1(\theta, t) = \sqrt{\frac{U}{2\pi \hbar}} \sum_{n = -\infty}^{\infty} e^{i \eta_n \eta_n \partial_n} + e^{-i \eta_n \eta_n^* \partial_n^*} \hat{a}_n \]  
(16)
where the ladder operators $\hat{a}_n$ satisfy $[\hat{a}_n, \hat{a}_m^\dagger] = \delta_{n,m'}$, and the mode functions are assumed to be same whether the modes are traveling clockwise or anticlockwise, i.e. $\chi_n = \chi_n$ and $\eta_n = \eta_n$. We take $\xi_n(t)$ and $\eta_n(t)$ to satisfy $(\eta_n \chi_n - \chi_n \eta_n) = i \hbar / U$, which leads to the commutation relation $[\hat{n}_1(\theta, t), \hat{\phi}_1(\theta', t)] = i \hbar \delta(\theta - \theta')$. Sub-
Thus $R$ is indeed an order of magnitude smaller than the ratio given by the mass of a $^{23}$Na atom, the speed of sound $c \approx 2\text{ mm/s}$ and the width of the ring $w \approx 2\mu m$ (which is indeed an order of magnitude smaller than the radius $R(t)$ that varies between $10\mu m$ to $50\mu m$ [38]). Thus $(\frac{\xi}{2\omega_z})^2 \approx 10^{-1}$. Also, since the width of the ring is small compared to its radius, $w \ll R(t)$, we find $\dot{\hat{D}}_n \approx -\frac{1}{2}(\frac{\xi}{2\omega_z})^2 \ddot{R}/R$. Here we estimate the ring width via $w = \sqrt{2\omega_z}$, where $\omega_z$ is the trapping frequency in the $z$ direction. We also made use of the local density approximation (LDA) to estimate the chemical potential in a harmonic trap. Following [38], we get $\mu \propto R^{-1/2}$ (see Appendix A). This implies that $\gamma_{QP} \approx \frac{1}{2}(\frac{\xi}{2\omega_z})^2 \approx 10^{-1}$. This shows that short-distance physics of quantum pressure comes into play as we decrease the width of the ring $w$ to make it quasi 1D.

We pause to note that although the quantum-pressure terms in Eq. (10) do not have a direct cosmological analogue, our final Mukhanov-Sasaki equation is in fact relevant for cosmology. Indeed, within inflationary cosmology, the Einstein equations that describe the background evolution of inflationary spacetime yield a Mukhanov-Sasaki equation that is of the form of Eq. (19) but with the coefficient of the damping term being the number of spatial dimensions, with a small correction due to the so-called “slow-roll parameters” [43] that is reminiscent of the small parameter $\gamma_{QP}$ obtained here. More generally, as we shall show below, Eq. (19) leads to a crucial prediction of inflationary theory, which is spontaneous particle creation that leads (in the cosmological context) to the distribution of anisotropies in the CMB.

In fact, the quantum pressure effects in Eq. (19) are essential for achieving particle production. To see this, we now examine the implications of making a further approximation (motivated by our preceding estimates), in which we take $\alpha_{QP} \rightarrow 1$ and $\gamma_{QP} \rightarrow 0$. Indeed, this approximation brings Eq. (19) into a very simple form:

$$\ddot{\chi}_n + \frac{\dot{R}}{R}\dot{\chi}_n + \frac{n^2c^2}{R^2}\chi_n = 0,$$

(20)

where we assume a constant speed of sound $c$. Equation (20) was discussed in detail in [38]. Here, we solve it by introducing the conformal time $d\tilde{t} = \frac{cdt}{R(t)}$ that measures the size in cosmology. Equation (20) then takes the form of a simple harmonic oscillator: $\chi_n''(\tilde{t}) + n^2\chi_n(\tilde{t}) = 0$, with plane waves $e^{\pm in\eta}$ as solutions. Switching back to proper time $t$, we get:

$$\chi_n(t) \bigg|_{\gamma=0} \sim \exp \left[ \pm i|n| \int_0^t \frac{cdt'}{R(t')} \right].$$

(21)

This shows that the amplitude of the modes will be conserved with time in the $\gamma_{QP} \rightarrow 0$ limit. Thus the quantum pressure correction $\gamma_{QP}$ plays the role of a damping parameter. As we will see in Sec. IV, nonzero $\gamma_{QP}$ (even if it is small in magnitude) is essential for particle production. This is a well-known fact in cosmology [48], where a conformally invariant scalar field living in a $(1 + 1)$-dimensional spatially flat FLRW spacetime, has plane wave modes as solutions of the wave equation and thus leads to no particle creation.

Thus, while small, the quantum pressure correction represented by $\gamma_{QP}$ fundamentally modifies the solutions
of the Mukhanov-Sasaki equation. In general, the para-
parameters $\gamma_0$ and $\alpha_0$ depend on time, but in what
follows, we will assume them to be constants ($\gamma_0 = \gamma$, $\alpha_0 = \alpha$). This approxima-
tion gives us an analytic handle on the parameter space, where the basic physical fea-
tures like the particle creation can be modeled without going in to the fine details of how they evolve with time. We will take $\gamma$ to be a small number and take $\alpha \to 1$. The reason for the latter approximation is that in this paper, we are mainly interested in particle creation due to quantum pressure, embodied in the parameter $\gamma$. We expect that the slight deviation of $\alpha$ from unity, which effectively yields a time-dependent speed of sound (see [25,31–35]), will be a subleading effect here. Within these approxi-
mations, (19) reduces to the following Mukhanov-Sasaki equation [40–42]:

$$\ddot{\chi}_n + (1 + \gamma) \frac{\dot{R}}{R} \dot{\chi}_n + \frac{n^2 c^2}{R^2} \chi_n = 0, \quad (22)$$

where we have assumed the speed of sound $c$ to be a constant.

In the following, we also choose a specific form for the
time-dependent radius $R(t)$. Our choice is motivated by the fact that, in the inflationary era, the Hubble param-
eter $H \equiv \dot{a}/a \approx H_0$ is roughly a constant and one could model this phase with a de-Sitter type inflation where the scale factor $a(t) \sim e^{H_0 t}$ [43, 44]. This motivates us to study an exponential expansion $R(t) = R_0 e^{t/\tau}$ of the ring radius, characterized by the timescale $\tau$. Then the general solution to Eq. (22) is:

$$\chi_n(t) = e^{-\frac{t}{\tau}(1+\gamma)} \left[ A_n J_{\frac{1+\gamma}{2}}(z) + B_n J_{-\frac{1+\gamma}{2}}(z) \right], \quad (23)$$

where the time dependent parameter $z = \omega_n \tau$ with the frequency $\omega_n = \frac{n |c|}{R(t)}$ and $J_n(z)$ are Bessel functions of the first kind. The coefficients $A_n$ and $B_n$ are fixed by the initial conditions.

To illustrate the effect of nonzero $\gamma$ in the case of ex-
ponential inflation in the toroid, in Fig. 2 we plot $\chi_n$ as a function of $t$ for an $n = 1$ mode for the case of $\gamma = 0$ (dashed curve) and $\gamma = 0.5$ (solid curve). For $t < 0$ (before expansion), both curves show oscillatory motion, and during expansion (for $t > 0$), where they are governed by Eq. (23), they both show a redshift [38] i.e. their frequency $\omega_n = \frac{n c}{R(t)}$ decreases as the ring expands. However, while the $\gamma = 0$ curve shows no reduction of amplitude, the $\gamma = 0.5$ curve exhibits damping due to quantum pressure. Both of these phenomena, the redshift and damping, have their respective counterparts in cosmology.

Before concluding this section, we note that, as in con-
tentional inflationary theory, the fate of modes after ex-
ansion in a toroidal BEC is strongly dependent on the mode index $n$ (which controls the mode wave-
length). To see this, note that for exponential expansion $R(t) \propto e^{t/\tau}$, the horizon size is given by $\eta_H = \int_0^{t_f} \frac{cdt}{R(t)} = c\tau(1 - e^{-t_f/\tau})$. After the expansion persists long enough i.e. $t_f/\tau$ is large, then the horizon size is $\eta_H \sim c\tau$. If the parameter $z = \frac{|n c|}{R(t)}$ is small, i.e., $\frac{R}{|n|} \gg c\tau$, then the wavelengths of the modes are much larger than the horizon size and the mode solution (23) becomes constant in time:

$$\chi_n(t) \approx \left( \frac{2R_0}{|n| c\tau} \right)^{\frac{1}{2+\gamma}} B_n \frac{1}{\Gamma\left(\frac{1+\gamma}{2}\right)}, \quad (24)$$

where we have used the result that for small arguments $z \to 0$, the Bessel function goes as $J_n(z) \to \frac{1}{\Gamma(n+1)} \left(\frac{z}{2}\right)^n$. Note that the form of the exponential factor in Eq. (23) is essential to get the above result. This freezing of super-
horizon modes (i.e. those with small mode index) is a
very important aspect of the inflationary mechanism as it
eliminates the horizon modes (i.e. those with small mode index) is a
very important aspect of the inflationary mechanism as these modes re-enter the horizon at a later time and form large scale structures in the observable universe. In the next section, we will discuss how phonons are produced due to the mode solution (23) and see the importance of the super-horizon modes in the expanding ring.

IV. SPONTANEOUS PHONON CREATION

Now that we have solved the Mukhanov-Sasaki equa-
tion for a constant quantum pressure parameter $\gamma$, in this section we use its solution (23) to understand how a BEC in the vacuum state, when expanded exponentially, will exhibit the dynamical generation of phonons. We start with an initially static BEC in its vacuum state. The mode functions for this initial BEC (which we denote as the “in” state) obey Eq. (22), but with $\dot{R} = 0$ (so that they are undamped). These initial mode functions are:

$$\chi_n^{in}(t) = \frac{1}{\sqrt{2\omega_n^0}} e^{-i\omega_n^0 t}, \quad (25)$$

which satisfy $i \partial_t \chi_n^{in} = \omega_n^0 \chi_n^{in}$, where $\omega_n^0$ is the frequency at $t = 0$. These positive-frequency ‘in’-mode functions satisfy the Wronskian condition $W[\chi_n, \chi_n^*] = \dot{\chi}_n \chi_n^* - \chi_n \dot{\chi}_n^* = -i$, and associated with them is the structure of ladder operators $\hat{a}_n$ that annihilate their associated ‘a-vacuum’ state: $\hat{a}_n |0\rangle = 0$.

Having described the normal modes of the initial BEC, we turn to the impact of a period of exponential growth on the BEC, starting at $t = 0$, and described by the exponential function $R(t) = R_0 e^{t/\tau}$. During this period, the modes evolve according to (23), where the coefficients are fixed by matching the mode functions $\chi_n(t)$ and their time derivatives with that of the initial BEC at $t = 0$. This matching results in the conditions:

$$A_n = \frac{J_{\frac{1+\gamma}{2}}(z_0) + iJ_{-\frac{1+\gamma}{2}}(z_0)}{J_{\frac{1+\gamma}{2}}(z_0)J_{-\frac{1+\gamma}{2}}(z_0) - J_{-\frac{1+\gamma}{2}}(z_0)J_{\frac{1+\gamma}{2}}(z_0)}, \quad B_n = \frac{J_{-\frac{1+\gamma}{2}}(z_0) - iJ_{\frac{1+\gamma}{2}}(z_0)}{J_{\frac{1+\gamma}{2}}(z_0)J_{-\frac{1+\gamma}{2}}(z_0) - J_{-\frac{1+\gamma}{2}}(z_0)J_{\frac{1+\gamma}{2}}(z_0)}, \quad (26)$$
where $z_0 = \frac{|n|\epsilon}{\tau_0}$. Equation (23), along with these coefficients, describes the mode functions during the exponential growth regime of the toroidal BEC.

\[
|\beta_n|^2 = \frac{1}{2\omega_n^f}e^{-\omega_n^f(t-t_f)}.
\]  

Due to the quantum evolution during the ring expansion, the final Heisenberg picture results for the operators $a_1(\theta,t)$ and $a_1(\theta,t)$ are still given by Eqs. (15), but with the final mode functions a superposition of the ‘out’-modes in Eq. (27):

\[
\chi_n^f(t) = e^{-\frac{t}{2\tau_f}} \left[ \alpha_n \chi_n^{\text{out}}(t) + \beta_n \chi_n^{\text{out}}(t) \right] ,
\]  

where $\omega_n^f = \frac{|n|\epsilon}{\tau_f}$ is the frequency for $t \geq t_f$. The coefficients in Eq. (28) are obtained by again demanding that the mode function and its derivatives are consistent at $t_f$, with the $t \rightarrow t_f$ solution given by Eq. (23) as described above. By solving these matching conditions we find the coefficients $\alpha_n$ and $\beta_n$:

\[
\alpha_n = e^{-\frac{t_f}{2}} \left[ A_n \left( J_{1+\gamma} - iJ_{1-\gamma} \right) + B_n \left( J_{-1+\gamma} + iJ_{-1-\gamma} \right) \right] ,
\]  

\[
\beta_n = e^{-\frac{t_f}{2}} \left[ A_n \left( J_{1+\gamma} + iJ_{1-\gamma} \right) + B_n \left( J_{-1+\gamma} - iJ_{-1-\gamma} \right) \right] ,
\]  

where we have suppressed the arguments of the Bessel functions, which are all evaluated at $z_f = \frac{|n|\epsilon}{\tau_f}$ with $R_f$ the final ring radius. These coefficients, which satisfy $|\alpha_n|^2 - |\beta_n|^2 = 1$, describe the modification of the mode functions $\chi_n$ during the expansion process. One can plug in equations (29)-(30) in Eq. (28), and thereby realize that the final mode $\chi_n^f$ has the same form as Eq. (23), i.e. an exponentially decreasing factor times some linear combination of Bessel functions.

The modified mode function (27) in the ‘out’-regime, defines a new set of ladder operators $b_n$ that annihilate the new ‘b-vacuum’ state $|0_b\rangle \neq |0_a\rangle$: $b_n|0_b\rangle = 0$. The coefficients $\alpha_n$ and $\beta_n$ provide a Bogoliubov transformation between $a_n$ and $b_n$ via [45-48]:

\[
\hat{a}_n = \alpha_n^* \hat{b}_n - \beta_n^* \hat{b}^\dagger_n ,
\]  

\[
\hat{b}_n = \alpha_n \hat{a}_n + \beta_n \hat{a}^\dagger_n .
\]  

Thus, assume we start in the ‘a-vacuum’, characterized by vanishing particle density $\langle 0_a | \hat{n}^a | 0_a \rangle = 0$, where $\hat{n}^a = \hat{a}_n^\dagger \hat{a}_n$. During the expansion, the system wavefunction remains $|0_a\rangle$ (since we work in the Heisenberg picture), but the $\hat{a}_n$ evolve into the $\hat{b}_n$ according to Eq. (31). A measurement of the particle density will find the final system is bubbling with ‘b-particles’ [49], as represented by the expectation value $\langle 0_a | \hat{n}^b | 0_a \rangle = |\beta_n|^2$. This is known as spontaneous particle creation from the vacuum state, characterized by the power parameter $|\beta_n|^2$ that we plot in Fig. 3 with respect to the mode index $n$, for three values of the quantum pressure parameter $\gamma = 0.2$, $\gamma = 0.35$ and $\gamma = 0.5$.

We now describe the connection of these results to the theory of inflation. We can infer from Fig. 3 that the power associated with small mode indices such as $n = 1$ is much higher than those at larger $n$. As in inflationary cosmology, this is because during the expansion some modes such as $n = 1$ become super-horizon and freeze (24), i.e. their power remains constant. In contrast, modes that are well within the horizon (i.e., at higher $n$, or smaller wavelength) are strongly damped and thus their power $|\beta_n|^2$ is reduced.

Thus, larger values of the quantum pressure parameter lead to stronger damping of modes (22) as well as increased spontaneous phonon production. This suggests that the loss of amplitude is converted into phonon production. In the next section, we will discuss the possibility of observing stimulated creation of phonons from a coherent initial state.

V. STIMULATED PHONON CREATION

Having discussed how phonons can be produced by a BEC that is initially in its vacuum state, we now turn to the possibility of starting with a initial coherent state in the mode $N$:

\[
|\alpha, N\rangle = e^{-\frac{1}{2} |\alpha|^2} e^{\alpha \hat{a}_N^\dagger} |0_a\rangle ,
\]  

where the complex parameter $\alpha$ is a measure of the average number of particles in the coherent state given by
\(|\alpha|^2\). Physically, such a state represents a macroscopic current-carrying state of the BEC. The states \(|\alpha, N\rangle\) are eigenfunctions of the annihilation operators:

\[
\hat{a}_m|\alpha, N\rangle = \delta_{m,N}\alpha|\alpha, N\rangle.
\]  

In what follows, we will use these coherent states to calculate the average density in the ring, before and after expansion. The advantage of using coherent states relative to fixed-number Fock states is that in the latter, the average density is zero at all times. This implies that, in an experiment, no significant change will be observed in the average density. For the case of an initial vacuum state, studied in the preceding section, another complication is the presence of other phonon modes, such as thermally excited phonons (since experiments cannot truly reach the zero-temperature vacuum state), that may swamp the signal from spontaneously created phonons. In contrast, in a coherent state, the average densities change with time, making it easier to detect changes due to phonon production.

Since we are in the Heisenberg picture, the system wavefunction is always given by Eq. \(33\), while the density operators change during the rapid expansion of the ring. We start by writing the mode expansion for the initial density operator (before expansion). To do this, we make use of \((16)\), and the relation \((17)\) between the density \(\eta_n\) and phase \(\chi_n\) modes neglecting the quantum pressure corrections (i.e. \(D_n \approx 1\) here):

\[
\hat{n}_1^i(\theta, t) = N_0 \sum_{n=-\infty}^{\infty} \left[ e^{i\theta} \eta_n^{in}(t)\hat{a}_n + e^{-i\theta} \eta_n^{ins}(t)\hat{a}_n^\dagger \right],
\]

\[\text{(35)}\]

where \(N_0 = \sqrt{\frac{U\bar{V}_0}{2\pi\hbar}}\) is the initial normalization and the ‘in’-density modes are \(\eta_n^{in}(t) = i\frac{\hbar}{2} \sqrt{\frac{\omega_n^2}{\omega_0^2}} e^{-i\omega_n t}\). Note that we are only neglecting the quantum pressure corrections in the connection between the \(\eta_n\) and \(\chi_n\) (where they have a small effect) but keeping then in the Mukhanov-Sasaki equation for the mode functions (where including the quantum pressure is qualitatively important, as we have discussed).

Next, we write down the final density operator after expansion, which has a similar form, but with the ‘out’-mode density operators discussed above (see Eqs. \(31\) and \(32\)):

\[
\hat{n}_1^f(\theta, t) = N_f e^{-\frac{i\pi}{4}\gamma} \sum_{n=-\infty}^{\infty} \left[ e^{i\theta} \eta_n^{out}(t)\hat{b}_n + e^{-i\theta} \eta_n^{out*}(t)\hat{b}_n^\dagger \right],
\]

\[\text{(36)}\]

with the final normalization \(N_f = \sqrt{\frac{U\bar{V}_f}{2\pi\hbar}}\) and the ‘out’-density modes are defined as \(\eta_n^{out}(t) = i\frac{\hbar}{2} \sqrt{\frac{\omega_n^2}{\omega_0^2}} e^{-i\omega_n (t-t_f)}\). Now we define the average density in the coherent state as:

\[
\langle \hat{n}_1(\theta, t) \rangle = \langle \alpha, N|\hat{n}_1(\theta, t)|\alpha, N\rangle.
\]

\[\text{(37)}\]

If we take \(\alpha \in \mathbb{R}\), then the initial average density can be written as a wave that travels in the clockwise direction (+\(\theta\)):

\[
\langle \hat{n}_1^i(\theta, t) \rangle = -2\sqrt{|N|} \alpha \cdot \sin \left( N\theta - \frac{|N|c}{R_0} \right),
\]

\[\text{(38)}\]

where we have set the normalization \(\sqrt{\frac{\hbar c V_0}{4\pi U R_0}}\) to unity for simplicity.

The initial atom density (at \(t = 0\)) according to Eq. \(38\) is shown in Fig. 4 with a dotted line, describing a counterclockwise traveling density wave (in the +\(\theta\) direction). However, upon evaluating the density expectation value after expansion, we find that the final average density can be expressed as a sum of two waves (as illustrated schematically above in Fig. 1) reflecting phonon creation: A counterclockwise wave traveling wave (direction +\(\theta\)) with amplitude \(|\alpha_n|\), representing a reduced initial wave, and a smaller clockwise traveling wave (direction −\(\theta\)) with an amplitude \(|\beta_n|\), thus representing the density wave due to newly created phonons. The final time-dependent density is:

\[
\langle \hat{n}_1(\theta, t) \rangle = -2e^{-\frac{i\omega}{\gamma}} |N| \frac{\alpha}{|\alpha|} \left( |\alpha| \sin \left( N\theta - \frac{|N|c}{R_f} \Delta t + \varphi_\alpha \right) + |\beta| \sin \left( N\theta + \frac{|N|c}{R_f} \Delta t + \varphi_\beta \right) \right),
\]

\[\text{(39)}\]
where we have again set the normalization $\sqrt{\frac{\hbar V}{4\pi t_fR_f}}$ to unity. Here, $\Delta t = (t - t_f)$ is the time elapsed after the expansion has ended, and $\varphi_{\alpha} = \text{Arg}(\alpha_N)$ and $\varphi_{\beta} = \text{Arg}(\beta_N)$ are, respectively, the phase associated with the incoming and created particles. The final density wave is shown in Fig. 4 at $t = t_f$, for various values of quantum pressure. In Fig. 5 we show the density vs. angle, showing a concrete experimental testable signature of particle production in an initial coherent state.

**VI. DENSITY CORRELATIONS**

As we have discussed, a rapidly expanding toroidal BEC undergoes a modification of its vacuum, leading to particle production with amplitude $\beta_n$. In this section, we show how this is revealed in correlations of the density fluctuations (i.e., noise correlations), an experimental probe that has already been used to study horizons in the context of Hawking radiation [21]. We start by computing density correlations at zero temperature $T = 0$ before generalizing to nonzero temperature.

A. $T = 0$ limit

We assume our initial system, before expansion, is a vacuum of $\hat{a}_n$ particles $|0\rangle$. The appropriate equal-time fluctuation correlation function is:

$$C(\theta, \theta') = \langle \hat{n}(\theta, t)\hat{n}(\theta', t) \rangle - \langle \hat{n}(\theta, t) \rangle \langle \hat{n}(\theta', t) \rangle,$$

where the averages are being taken with respect to the initial vacuum state $|0\rangle$. Then, for the initial static BEC before expansion, we make use of $(\alpha_n^*\alpha_n) = 0$ along with (35) and (38) to calculate the initial noise correlations, obtaining:

$$C(\theta, \theta') = N_0^2 \sum_{n = -\infty}^{\infty} |\eta_n^\prime(t)|^2 \delta(\theta - \theta').$$

Since the mode functions in the summand $|\eta_n^\prime(t)|^2 = \frac{\hbar^2c}{2U^2} \omega_n^0 \propto |n|$, this sum is divergent and must be regularized. To implement this regularization, we note that this divergence comes from the fact that we have taken a long-wavelength (low energy) approximation. The linear-in-$n$ energy dependence of these modes must become quadratic, as in the conventional Bogoliubov approximation, for sufficiently large $|n| \geq n_c = \frac{2cMR_0}{\hbar^2c}$. We account for this by replacing the linear summand with the result following from Bogoliubov theory, which gives:

$$C(\theta, \theta') = N_0^2 \sum_{n = -\infty}^{\infty} \frac{n^2}{\sqrt{n^2(n^2 + n_c^2)}} e^{in(\theta - \theta')} = \frac{\hbar^2c}{2U^2 R_0} n_c \sum_{n = -\infty}^{\infty} \frac{n^2}{\sqrt{n^2(n^2 + n_c^2)}} e^{in(\theta - \theta')}.$$

where in the second line we inserted our formulas for $N_0$, $n_c$, and $c$ (at the initial radius $R_0$) to simplify the prefactor. This result is precisely what one would obtain for a 1D BEC, at $T = 0$, within standard Bogoliubov theory [50]. The final sum is convergent, although it has a delta-function piece that we can isolate with the Poisson summation formula to arrive at

$$C(\theta, \theta') = n_0 V_0 \delta(\theta - \theta') + S(\theta - \theta'),$$

where

$$S(\theta) = \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} \left[ \frac{n^2}{\sqrt{n^2(n^2 + n_c^2)}} - 1 \right] e^{in\theta}.$$
The result for the final regularized noise correlations after expansion follow similarly, and can be written in the following manner:

\[
C' (\theta - \theta') = n_0 V e^{-i \gamma} \delta(\theta - \theta') \\
+ S(\theta - \theta') + C_{\text{sub}}(\theta - \theta'),
\]

where we defined the function

\[
C_{\text{sub}}(\theta) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \frac{n^2}{\sqrt{n^2(n^2 + n_c^2)}} |\beta_n|^2 e^{i n \theta},
\]

which, as can be seen by comparing to Eq. (43), is an additional contribution after the rapid expansion of the ring BEC. Here, the superscript “sub” indicates that this is the subtracted noise correlator, i.e., the difference of the final and initial normalized correlators. Note that this contribution depends on \( \Delta t = (t - t_f) \), the time elapsed after expansion, so that the summand exhibits oscillatory behavior as a function of \( \Delta t \). However, we find that the summand is well approximated by time-averaging over one period \( (2\pi/\omega_n) \) of these oscillations, which eliminates the interference term \( \alpha_n \beta_n^* \) and yields

\[
\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{n^2}{\sqrt{n^2(n^2 + n_c^2)}} |\beta_n|^2 e^{i n \theta},
\]

for the subtracted noise correlations.

The expressions (43) and (45) for the initial and final noise correlations have a dirac-delta function that is divergent at \( \theta = \theta' \). In plotting these functions, we drop this piece, and set the prefactors (i.e., \( n_0 V_0/(2\pi) \) and \( n_0 V e^{-i \gamma/2} \)) to unity to simplify comparing the noise before and after expansion. The main part of Fig. 6 shows this comparison, with the initial case being a red dashed line and the final case being a solid green line. We see that each case is dominated by a large (though finite) negative contribution at equal angles (\( \theta \rightarrow 0 \)). We regard such anti-correlations as reflecting the repulsion of bosonic atoms at short distances [51, 52]. For larger angular separations, the correlations gradually flatten out [53], except for the appearance of a cusp feature at nonzero angle in the final noise correlations. This cusp clearly represents a signature of the phonon creation, proportional to \( |\beta_n|^2 \), that we have discussed above. In the inset, we plot the subtracted part Eq. (47) for three values of the quantum pressure parameter: \( \gamma = 0.2 \) (solid green), \( \gamma = 0.35 \) (short-dashed blue), and \( \gamma = 0.5 \) (long-dashed red). This shows that the magnitude of the cusp increases with increasing quantum pressure, although the cusp location is independent of \( \gamma \). We do find that the cusp location as a function of angle increases with increasing expansion time \( t_f \), asymptotically approaching \( \theta = \pi \) for large \( t_f \).

To better understand the origin of the cusp in Fig. 6, and connect it to particle production during expansion of the ring BEC, we differentiate (47) to get:

\[
\frac{d}{d\theta} C_{\text{sub}}(\theta) = -2 \sum_{n=1}^{\infty} \frac{n^2 |\beta_n|^2}{\sqrt{n^2 + n_c^2}} \sin(n\theta).
\]

A good approximation to this sum results if we Taylor expand the creation parameter \( \beta_n \) for small damping \( \gamma \ll 1 \) and large mode index \( n \gg 1 \), which gives \( n^2 |\beta_n|^2 \approx (\gamma^2 \left( \frac{a}{R_0} \right)^2 \right)^{-1} \left[ 1 + a^2 - 2a \cos(2\theta_H) \right] \), where \( a = \frac{c}{R_0} \) is the scale factor and \( \theta_H = \frac{c}{R_0} (1 - a^{-1}) \) is the angular horizon size at the end of expansion. Upon plugging this into (48), we end up with three sums that we write as:

\[
\frac{1}{f(\gamma)} \frac{d}{d\theta} C_{\text{sub}}(\theta) = a \sum_{n=1}^{\infty} \frac{\sin(n(\theta - 2\theta_H))}{\sqrt{n^2 + n_c^2}} + a \sum_{n=1}^{\infty} \frac{\sin(n(\theta + 2\theta_H))}{\sqrt{n^2 + n_c^2}} - (1 + a^2) \sum_{n=1}^{\infty} \frac{\sin(n\theta)}{\sqrt{n^2 + n_c^2}}.
\]

where \( f(\gamma) = \gamma^2 \left( \frac{a}{R_0} \right)^2 \). We now analyze the angle dependence of this quantity. For \( \theta > 0 \), the first sum is the dominant one, and approximating it by an integral we
get
\[ \sum_{n=1}^{\infty} \frac{\sin(n(\theta - 2\theta_\text{H}))}{\sqrt{n^2 + n_c^2}} \approx \int_0^\infty dx \frac{\sin(n_c(\theta - 2\theta_\text{H}))}{\sqrt{1 + x^2}}, \]
\[ \approx \frac{\pi}{2} \left[ \Theta(\theta - 2\theta_\text{H})I_0(n_c(\theta - 2\theta_\text{H}))-L_0(n_c(\theta - 2\theta_\text{H})) \right], \]
where the integration variable \( x = n/n_c \), \( I_0(x) \) is the modified Bessel function of the first kind, \( L_0(x) \) is the modified Struve function and \( \Theta(x) \) is the unit step function. The appearance of the latter means that the derivative is discontinuous at \( \theta = 2\theta_\text{H} \), implying that this determines the angular position of the cusp. We therefore conclude that the cusp in the correlation function is determined by the angular horizon size:
\[ \theta_{\text{cusp}} = 2\theta_\text{H} = \frac{cT}{R_0}(1 - e^{-\gamma}). \]  
This result shows that the cusp location is independent of the damping parameter \( \gamma \), as we saw in Fig. 6. It also explains why the cusp moves away from the origin, eventually slowing down as it approaches \( \theta = \pi \), as the duration of expansion \( t_f \) increases. The negative correlation at the cusp signifies creation of phonons that anti-bunch as they are created in pairs that move away from each other with opposite momenta [45-48]. This is similar to the ‘tongue’-like features that were numerically observed in an acoustic black hole [51].

![Graph](image)

Figure 7: (Color Online) Subtracted noise correlations \( C^{\text{sub}}(\theta) \) plotted with respect to the angle difference \( \theta \), at finite temperatures given in Eq. (53). In each, we focused on \( \theta \neq 0 \) (dropping the delta-function piece) and dropped overall prefactors. For low temperature \( T/T_c = 0.1 \) (short-dashed, blue), the correlations after expansion show a cusp like feature as in Fig. 6. For high temperatures \( T/T_c = 2 \) (solid, red) and \( T/T_c = 5 \) (long-dashed, yellow), we get similar correlations with a kink at the same location where the cusp appears. The appearance of the kink and the scaling behavior with temperature is a signature of particle creation.

B. \( T \neq 0 \) regime

A key question concerns the fate of the cusp feature at finite temperatures. To explore this, we extend the preceding analysis to finite temperatures by assuming the initial unexpanded ring is characterized by a Bose distribution of quasiparticles. We therefore evaluate the averages in Eq. (40) using:
\[ \langle \hat{a}^\dagger_n \hat{a}_n \rangle = \delta_{n,0} n_B(E_n) \]
which is similar to (47) except for the appearance of a Bose-Einstein distribution function \( n_B(n, T) \) defined as
\[ n_B(n, T) = \left( e^{\beta n} - 1 \right)^{-1}, \]
\[ f(n) = |\frac{n}{n_c}| \left( 1 + \frac{n^2}{n_c^2} \right)^{1/2} \]
where the temperature scale is defined as \( T_c = \frac{n^2 h^2}{2 M R^2 k_B} \).

In Fig. 7, we plot the subtracted noise correlator (53), divided by \( T/T_c \), for three different temperatures \( T/T_c = 0.1, T/T_c = 2 \) and \( T/T_c = 5 \). For these curves we chose the quantum pressure to be \( \gamma = 0.5 \), the speed of sound to be \( c = 2 \text{ mm/s} \), the radius to be \( R = 10\mu m \), the duration of expansion to be \( t_f = 10\text{ms} \), the timescale governing the expansion of the trap to be \( \tau = 6.21\text{ms} \) and \( n_c = 10 \). Using these parameters we get \( T_c = 10 \text{nK} \) for the relevant temperature scale.

These curves show that, while the cusp-like feature is still present at low \( T \), it is smoothed out at higher \( T \). The higher \( T \) curves instead exhibit a change of slope (i.e., a kink) at the horizon location. In fact, the two higher temperature curves in Fig. 7 overlap. This is due to the fact that they are well approximated by taking the high-temperature limit of the Bose function, replac-
\[ C^{\text{sub}}(\theta) \approx \frac{2T}{\pi T_c} \sum_{n=-\infty}^{\infty} \frac{|\beta n|^2}{1 + (n/n_c)^2} e^{in \theta}, \]
The approximate result Eq. (55) shows that, with increasing temperature, the angle-dependent subtracted noise correlations scale linearly with \( T \), but with an angle-dependence that still reflects the horizon location.

From these results, we can outline two experimental procedures to identify stimulated particle creation in an experiment measuring density correlations. Firstly, an
experiment that measures correlations at different temperatures (but for the same expansion time) would find an approximate collapse of the curves, when plotted as normalized in Fig 7. This probes the predicted linear scaling with temperature. Secondly, experiments at fixed temperature but varying expansion time would detect a change in the location of the angle-dependent kink, representing the moving horizon. These results demonstrate that correlations in the density fluctuations show a clear signature of particle production in a rapidly expanding toroidal BEC, showing another way that cold atom experiments can probe inflationary physics.

VII. CONCLUDING REMARKS

In this paper, we have explored how an exponentially expanding thin toroidal Bose-Einstein condensate can reproduce the various features of primordial cosmological inflation. Our work was inspired by recent experimental and theoretical work by Eckel and collaborators who studied inflationary physics in a ring-shaped BEC [38]. These authors observed experimentally (and confirmed theoretically) the redshifting of phonons due to the rapid expansion of this analogue 1D universe, a damping of phonon modes due to Hubble friction, and evidence of the preheating phenomena predicted to occur at the end of inflation.

A central finding of our work is that quantum pressure effects, even if they are quantitatively small, can have important implications for the dynamics of expanding toroidal BEC’s. Such quantum pressure effects modify the Mukhanov-Sasaki equations for phonon modes in a fundamental way, with the resulting solutions exhibiting damping and redshift, just like in inflationary cosmology. We found that this damping is responsible for the change of the vacuum state of the fluctuations, which ultimately leads to the dynamical generation of phonons. This is the analogue of particle production in the early universe. As a result, if the perturbations start in a coherent state, the ring expansion forces them to bifurcate into two density waves that propagate opposite to each other, leading to a complex time-dependent density wave in the toroid. This phonon generation also manifests itself in the density-density noise correlations as a cusp-like feature that tracks the horizon size. Both of these results are clear signatures of particle creation and can be verified experimentally. However, it is important to note that, within the gravitational analogy viewpoint, the model we consider here is a very special one i.e. a quasi-one-dimensional toroidal BEC, the small width of which led us to consider the short-distance corrections due to quantum pressure. More general models could be realized experimentally that can give different results and interpretations [39].

We make note of two things. Firstly, a simple harmonic oscillator with a time dependent frequency [46], can also exhibit a change of vacuum states leading to particle creation. Secondly, the fact that no particle creation happens for $\gamma = 0$ is related to the presence of an adiabatic invariant in 1D [38]. Unlike other settings where quantum pressure effects are unimportant for particle production (for example, the Sakharov oscillations measurements of Hung et al [24]), in the present case of a one-dimensional BEC, where we have assumed a time independent speed of sound $c$, it is essential to have a nonzero $\gamma$ for the damping of modes. We emphasize that taking $c$ to be constant is a simplifying approximation, and that a rapid time-dependent variation of $c$ would also lead to phonon production. Within the preceding approximations, our work shows that quantum pressure is essential to achieve particle production, as seen from the form of Eq. (20) and its solution Eq. (21).

Such damping is also crucial within inflationary theory, where the horizon size is approximately fixed. During this period, some modes (which are due to spontaneously created particles) get stretched out of the horizon and thus freeze. However, other modes never exit the horizon and thus undergo damping. When inflation ends, the horizon again expands and starts enveloping these frozen modes, that re-enter the horizon and distribute the available matter and radiation. This way, inflation provides a mechanism through which vacuum fluctuations in the early universe manifest themselves later in the form of distribution of galaxies and the CMB anisotropies. In a BEC, the quantum pressure is essential for damping and particle creation. As a result, here too the same mechanism of horizon exit and freezing of modes is happening. In this sense, the quantum pressure terms provide us with an analogue of the inflationary mechanism in a BEC.

Future studies could look into other types of expansion rates like the ones arising from the quadratic or the Starobinsky models of inflation. A further possibility as mentioned in [38], could be to study how causally disconnected regions recombine. This could potentially help cosmology experiments to observe physics beyond our current horizon. Another possibility as discussed in [54], is to see whether cold atomic systems can be used to study the trans-Planckian era that happened before inflation, which is believed to entail quantum effects of gravity.

VIII. ACKNOWLEDGEMENTS

The authors are grateful to Ivan Agullo for useful comments. AB acknowledges financial support from the Department of Physics and Astronomy at LSU. DV acknowledges financial support from LSU. DES acknowledges financial support from National Science Foundation Grant No. DMR-1151717.
Appendix A: Dynamics of an expanding toroidal BEC

In this section we study BEC’s in the presence of an expanding toroidal-shaped trap given by Eq. (2). Our aim is to understand the background solution on which phonon excitations propagate. For this task we study the time-dependent Gross-Pitaevskii equation (GPE)

\[
\frac{i\hbar}{\partial t} \Phi_0(r, t) = -\frac{\hbar^2}{2M} \nabla^2 \Phi_0(r, t) + (V(r, t) - \mu) \Phi_0(r, t) + U|\Phi_0(r)|^2 \Phi_0(r, t).
\]

Writing \(\Phi_0(r, t) = \sqrt{n_0(r, t)} e^{i\phi_0(r, t)}\), with \(n_0\) the density and \(\phi_0\) the superfluid phase, we obtain:

\[
-h \partial_t \phi_0(r, t) = -\frac{\hbar^2}{2M\sqrt{n_0(r, t)}} \nabla^2 \sqrt{n_0(r, t)} (A2)
\]

\[
\frac{\partial}{\partial t} n_0(r, t) = -\frac{\hbar}{M} \nabla \cdot \{n_0(r, t) \nabla \phi_0(r, t)\}. (A3)
\]

A key question is whether the superfluid velocity, \(\mathbf{v}(r, t) = \frac{\hbar}{M} \nabla \phi_0(r, t)\), is equal to the radial ring velocity \(\hat{\rho} \dot{R}(t)\). Before analyzing this, we recall the simpler case of a homogeneously translated trap moving at constant velocity \(\mathbf{v}_T\). In this case, which can be described by a trapping potential \(V(r, t) = V(r - \mathbf{v}_T t)\), Galilean invariance [

55] ensures that a solution to Eqs. (A2) and Eqs. (A3) always exists with superfluid velocity \(\mathbf{v} = \mathbf{v}_T\) and density \(n(r)\) static in the moving frame. That is, we can always boost to a moving reference frame in which the single-particle potential is static.

In the case of present interest, however, a toroidal expanding ring described by the trapping potential Eq. (2), the lack of Galilean invariance means that we cannot find such a simple exact solution with \(\mathbf{v} = \hat{\rho} \dot{R}(t)\). In the following, we investigate whether such a relation holds approximately under the conditions of the experiment. To do this, we take the gradient of both sides of Eq. (A2), and use the definition of the superfluid velocity, to obtain the Euler equation:

\[
-M \partial_t \mathbf{v} = \nabla \left[ \left( -\frac{\hbar^2}{2M\sqrt{n_0(r, t)}} \nabla^2 \sqrt{n_0(r, t)} \right) + \frac{1}{2} M \mathbf{v}^2 + V(r, t) - \mu + U n_0(r, t) \right]. (A4)
\]

We now invoke the Thomas-Fermi (TF) approximation [56] by neglecting the Laplacian term in square brackets on the right of Eq. (A4). Then, we plug our assumed solution \(\mathbf{v} = \hat{\rho} \dot{R}(t)\) into the left side, which leads to \(-M \partial_t \mathbf{v} = -M \dot{\rho} \hat{\rho}\), allowing us to find the following result for the TF density of a BEC in an expanding toroid:

\[
n_0(r) = \frac{1}{U} \left( \mu(t) - \frac{1}{2} M \omega_2^2 z^2 - \lambda|\rho - R^n| - M \dot{\rho} (\rho - R) \right) \times \Theta(\mu(t) - \frac{1}{2} M \omega_2^2 z^2 - \lambda|\rho - R^n| - M \dot{\rho} (\rho - R)), (A5)
\]

obtained by integrating both sides of Eq. (A4) with respect to \(\rho\). Note we also plugged in \(V(r, t)\) from Eq. (2), and an overall constant of integration was chosen so that the \(\rho\) dependence of Eq. (A5) is via the combination \(\rho - \dot{R}(t)\) (although we suppressed the time argument in \(R\) for brevity).

The chemical potential in Eq. (A5) is determined by satisfying the fixed number constraint \(N = \int d^3 r n_0(r)\), with \(N\) the total boson number. In this integration, the term proportional to \((\rho - \dot{R}(t))\) will approximately vanish, with the other terms in Eq. (A5) determining the TF radii in the \(z\) and \(\rho\) directions, which are given by:

\[
R_z = \sqrt{\frac{2\mu(t)}{M \omega_z^2}}, (A6)
\]

\[
R_\rho = \left( \frac{\mu(t)}{\lambda} \right)^{1/n}. (A7)
\]

With these definitions, the density is given by:

\[
n_0 \simeq \frac{\mu(t)}{U} \left[ 1 - \frac{z^2}{R_z^2} - \frac{1}{R_\rho^2} |\rho - R|^n - \frac{M \dot{\rho}}{\mu(t)} (\rho - R) \right] × \Theta \left( 1 - \frac{z^2}{R_z^2} - \frac{1}{R_\rho^2} |\rho - R|^n - \frac{M \dot{\rho}}{\mu(t)} (\rho - R) \right), (A8)
\]

describing a peak in the atom density that approximately follows the expanding ring. The large value of the exponent \(n\) implies a “flatness” to the density profile in the radial direction, i.e., a weak dependence of the density on \(\rho\). We note that in the Eckel et al experiments the exponent \(n \approx 4\), although we'll keep it general in this section.

The system chemical potential \(\mu(t)\) is determined by the requirement of a fixed total particle number \(N\) during expansion. Since the density at the center of the toroid (i.e., at \(\rho = \dot{R}(t)\) and \(z = 0\)) is proportional to \(\mu(t)\) in Eq. (A8), and the toroid volume is proportional to \(R_z R_\rho \dot{R}(t)\), then the fixed number constraint leads to the estimate

\[
N \propto \mu(t) R_z R_\rho \dot{R}(t) \propto \mu(t)^{\frac{3n+2}{2n+2}} R(t), (A9)
\]

which implies the chemical potential satisfies

\[
\mu(t) \propto R(t)^{-\frac{3n}{2n+2}}, (A10)
\]

with exponent \(\gamma \equiv \frac{2n}{3n+2} \simeq \frac{4}{7}\). Thus, during expansion, the chemical potential (and central density) decrease with increasing time. Note that since the sound velocity \(c \propto \sqrt{n_0}\), this result implies that the sound velocity scales with toroidal radius as \(c \propto R(t)^{-\frac{1}{2} \gamma}\), or \(R(t)^{-2/7}\) for the case of \(n = 4\) [38].

We have found that a solution with \(\mathbf{v} \simeq \dot{R}(t) \hat{\rho}\) can approximately satisfy the Euler equation and yields a time-dependent chemical potential in the number constraint equation. The next step is to examine the continuity equation, Eq. (A3), which is:

\[
\partial_t n_0 = -\nabla n_0 \cdot \mathbf{v} - n_0 \nabla \cdot \mathbf{v}. (A11)
\]
We now analyze Eq. (A11) without assuming \( v \approx \dot{R}(t)\dot{R} \), but only the TF density profile result Eq. (A5). To simplify the left side of Eq. (A11), we note that Eq. (A5) implies that the partial time derivative of \( n_0 \) satisfies:

\[
\partial_t n_0 = -\dot{R}(t)\dot{R} \cdot \nabla n_0(\rho, z, t) + \frac{1}{U} (\partial_t \mu(t) - M(\rho - R(t))\dot{R}(t)).
\]  

(A12)

Henceforth we drop the final term on the right side, since it is small in the regime \( \rho \to R(t) \). Plugging this into the left side of Eq. (A11) gives

\[
-\dot{R}(t)\dot{R} \cdot \nabla n_0 + \frac{1}{U} \partial_t \mu(t) = -\nabla n_0 \cdot v - n_0 \nabla \cdot v. 
\]  

(A13)

We now analyze this equation in the regime of \( \rho \approx R(t) \). From Eq. (A5), we find that the gradient of \( n_0 \) is a constant at \( \rho \to R \) and is given by:

\[
\dot{\rho} \cdot \nabla n_0 \bigg|_{\rho \to R(t)} = -\frac{M\dot{R}(t)}{U}. 
\]  

(A14)

Plugging this in to the continuity equation, using our result for \( \mu \) (which implies \( \partial_t \mu = -\gamma \frac{\dot{\rho}}{\rho} \mu \)), and cancelling an overall factor of \( 1/U \), we find:

\[
M\dot{R}\ddot{R} - \mu \ddot{\dot{R}} = M\dot{R}v - \mu \nabla \cdot v. 
\]  

(A15)

Now we take account of the fact that our system exhibits a rapid growth of \( R \) with increasing \( t \). During this expansion, \( \mu \) decreases slowly according to Eq. (A10), while \( \frac{\dot{\rho}}{\rho} \) is \( \mathcal{O}(1) \) (e.g. for exponential growth). This implies that the first terms on the right and left sides of Eq. (A15) are much larger than the second terms on the left and right sides. Dropping the subleading terms, we finally get:

\[
M\dot{R}\ddot{R} = M\dot{R}v, 
\]  

(A16)

or \( v = \dot{R} \), consistent with our original assumption. This shows that, within the preceding approximations, a rapidly expanding toroidal BEC indeed exhibits a radial superfluid velocity \( \mathbf{v} = \dot{R}\hat{\mathbf{r}} \).
[43] S. Weinberg, “Cosmology,” Oxford, UK: Oxford Univ. Pr. (2008).

[44] P. J. E. Peebles, “Principles of physical cosmology,” Princeton, USA: Univ. Pr. (1993).

[45] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Pr. (1984).

[46] V. Mukhanov and S. Winitzki, Introduction to quantum effects in gravity, Cambridge Univ. Pr. (2007).

[47] L. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, Cambridge Univ. Pr. (2009).

[48] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-time, London Math. Soc. Student Texts 17, 1 (1989).

[49] S. M. Carroll, “Spacetime and Geometry,” San Francisco, USA: Addison-Wesley (2004).

[50] A. Imambekov, I. E. Mazets, D. S. Petrov, V. Gritsev, S. Manz, S. Hofferberth, T. Schumm, E. Demler, and J. Schmiedmayer, Density ripples in expanding low-dimensional gases as a probe of correlations, Phys. Rev. A 80, 033604 (2009). doi:10.1103/PhysRevA.80.033604

[51] I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot and A. Fabbri, Numerical observation of Hawking radiation from acoustic black holes in atomic BECs, New J. Phys. 10, 103001 (2008). doi:10.1088/1367-2630/10/10/103001

[52] M. Naraschewski and R. J. Glauber, Spatial coherence and density correlations of trapped Bose gases, Phys. Rev. A 59, 4595 (1999). doi:10.1103/PhysRevA.59.4595

[53] M. Schellekens, R. Hoppeler, A. Perrin, J. Viana Gomes, D. Boiron, A. Aspect, C. I. Westbrook, Hanbury Brown Twiss Effect for Ultracold Quantum Gases, Science 310, 648 (2005). doi:10.1126/science.1118024

[54] S. Y. Chä and U. R. Fischer, Probing the scale invariance of the inflationary power spectrum in expanding quasi-two-dimensional dipolar condensates, Phys. Rev. Lett. 118, no. 13, 130404 (2017) Addendum: [Phys. Rev. Lett. 118, no. 17, 179901 (2017)] doi:10.1103/PhysRevLett.118.179901, doi:10.1103/PhysRevLett.118.130404

[55] V.I. Yukalov, Theory of cold atoms: Bose-Einstein statistics, Laser Physics 26, 062001 (2016). doi:10.1088/1054-660X/26/6/062001

[56] G. Baym and C.J. Pethick, Ground-State Properties of Magnetically Trapped Bose-Condensed Rubidium Gas, Phys. Rev. Lett. 76, 6 (1996). doi:10.1103/PhysRevLett.76.6