Modulation of the Pancreatic Islet \(\beta\)-Cell-delayed Rectifier Potassium Channel Kv2.1 by the Polyunsaturated Fatty Acid Arachidonate*\(^{[S]}\)

David A. Jacobson, **Christopher R. Weber**, **Shunzhong Bao**, **John Turk**, and **Louis H. Philipson**

Received for publication, August 16, 2006, and in revised form, December 26, 2006 Published, JBC Papers in Press, December 29, 2006, DOI 10.1074/jbc.M607858200

From the Department of Medicine, University of Chicago, Chicago, Illinois 60637, the Department of Pathology, University of Chicago, Chicago, Illinois 60637, and the Medicine Department Mass Spectrometry Facility and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110

Glucose stimulates both insulin secretion and hydrolysis of arachidonic acid (AA) esterified in membrane phospholipids of pancreatic islet \(\beta\)-cells, and these processes are amplified by muscarinic agonists. Here we demonstrate that nonesterified AA regulates the biophysical activity of the pancreatic islet \(\beta\)-cell-delayed rectifier channel, Kv2.1. Recordings of Kv2.1 currents from INS-1 insulinoma cells incubated with AA (5 \(\mu\)M) and subjected to graded degrees of depolarization exhibit a significantly shorter time-to-peak current interval than do control cells. AA causes a rapid decay and reduced peak conductance of delayed rectifier currents from INS-1 cells and from primary \(\beta\)-cells isolated from mouse, rat, and human pancreatic islets. Stimulating mouse islets with AA results in a significant increase in the frequency of glucose-induced \([Ca^{2+}]_i\) oscillations, which is an expected effect of Kv2.1 channel blockade. Stimulation with concentrations of glucose and carbachol that accelerate hydrolysis of endogenous AA from islet phospholipids also results in accelerated Kv2.1 inactivation and a shorter time-to-peak current interval. Group VIA phospholipase A\(_2\) (iPLA\(_2\)) hydrolyzes \(\beta\)-cell membrane phospholipids to release nonesterified fatty acids, including AA, and inhibiting iPLA\(_2\) prevents the muscarinic agonist-induced accelerated Kv2.1 inactivation. Furthermore, glucose and carbachol do not significantly affect Kv2.1 inactivation in \(\beta\)-cells from iPLA\(_2\)/\(-/-\) mice. Stably transfected INS-1 cells that overexpress iPLA\(_2\) hydrolyze phospholipids more rapidly than control INS-1 cells and also exhibit an increase in the inactivation rate of the delayed rectifier currents. These results suggest that Kv2.1 currents could be dynamically modulated in the pancreatic islet \(\beta\)-cell by phospholipase-catalyzed hydrolysis of membrane phospholipids to yield non-esterified fatty acids, such as AA, that facilitate \(Ca^{2+}\) entry and insulin secretion.

Glucose metabolism within the pancreatic islet \(\beta\)-cell generates a multitude of signals that regulate insulin secretion. Changes in the relative concentrations of the metabolites ATP and ADP cause \(\beta\)-cell depolarization via closure of ATP-sensitive potassium channels (K\(_{ATP}\)), which results in activation of voltage-operated \(Ca^{2+}\) channels, \(Ca^{2+}\) influx, and insulin secretion (1). The extent of \(\beta\)-cell depolarization and insulin release are regulated in part by the activation of repolarizing ion channels, including the voltage-gated potassium channel, Kv2.1 (2–4). One mechanism employed by pancreatic \(\beta\)-cells to regulate the biophysical activity of the ion channels involved in insulin release involves hydrolysis of membrane phospholipids to yield mediators that include inositol triphosphates and free fatty acids (5–8).

Pharmacologic, biochemical, and genetic evidence suggests that glucose-stimulated hydrolysis of esterified arachidonic acid from \(\beta\)-cell membrane phospholipids is required for physiologic insulin secretion (7–25). Pancreatic islet \(\beta\)-cells contain high levels of arachidonic acid compared with other tissues (7, 9–12 24, 25), and about two-thirds of \(\beta\)-cell glycerophospholipids contain arachidonic acid as the sn-2 substituent (23–25). Islet phospholipase A\(_2\) (PLA\(_2\)) enzyme(s) activated by stimulation with glucose and/or G-protein signaling mechanisms catalyze hydrolysis of arachidonic acid from \(\beta\)-cell membrane phospholipids and cause levels of free arachidonic acid to rise by up to 3-fold to the mid-micromolar range (7, 13, 14, 27, 28). Such concentrations of arachidonic acid amplify both the rise in \([Ca^{2+}]_i\) and insulin secretion induced by glucose (7, 15–17, 23, 25, 27, 28).

Pharmacologic inhibition or molecular biologic suppression of expression of the pancreatic islet \(\beta\)-cell Group VIA Phospholipase A\(_2\) (iPLA\(_2\)) enzyme (24, 29, 30) results in attenuation of insulin secretory responses induced by glucose and other secretagogues (18–22, 24). The products of iPLA\(_2\) action on its

*The abbreviations used are: KATP, ATP-sensitive potassium channels; Kv2.1, voltage-dependent delayed rectifier potassium channel; AA, arachidonic acid; iPLA\(_2\), Group VIA Phospholipase A\(_2\); INS-1, rat insulinoma cell line; HEK, human embryonic kidney cell line; LPC, lysophosphatidylcholine; GFP, green fluorescent protein; BEL, bromenol lactone; KRB, Krebs-Ringer buffer.

Support

1 Supported in part by an American Diabetes Association Mentor-based fellowship and the Cardiovascular Pathophysiology and Biochemistry Training Program from the National Institutes of Health (NHLBI/National Institutes of Health Grant ST32 HL07237).
2 To whom correspondence should be addressed. Tel.: 773-702-1661; Fax: 773-834-0851; E-mail: l-philipson@uchicago.edu.

Notes

* This work was supported in part by National Institutes of Health Grants DK44840, DK48494, DK63493, and DK20595; United States Public Health Service Grants R37-DK34888, P60-DK20579, and P30-DK56341; the Diabetes Research and Training Center at the University of Chicago; and the Blum-Kovler Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The on-line version of this article (available at http://www.jbc.org) contains supplemental Figs. 1 and 2.
phospholipid substrates include a nonesterified fatty acid, such as AA, and a 2-lyso phospholipid, such as lyso phosphatidylcholine (LPC), and β-cell levels of both products correlate with iPLA₂β expression level (21, 22, 31, 32). Modulation of iPLA₂β activity and the rate of secretagogue-induced hydrolysis of arachidonic acid from β-cell membrane phospholipids might thus represent a tunable signal to amplify or attenuate islet insulin secretion in various (patho)physiologic settings (19, 24).

The products of iPLA₂β action, including physiologically attainable concentrations of nonesterified AA, amplify secretagogue-induced rises in β-cell [Ca²⁺] (7, 17, 18, 27, 33), and several mechanisms have been proposed to explain these effects. These include facilitating Ca²⁺ entry (7, 17), perhaps by effects of AA on voltage-operated Ca²⁺ channels (34), effects of AA and LPC on K₄ATP (35), effects of AA 12-lipoxygenase product(s) on an electrogenic plasma membrane Na⁺/K⁺-ATPase (36), and effects of LPC (37) on plasma membrane store-operated cation channels (38). Arachidonic acid modulates the activity of a number of ion channels, including K₄ATP channels and delayed rectifier K⁺ channels (29–41). The effects of AA on β-cell intracellular [Ca²⁺] dynamics are likely to reflect the combined actions on such ion channels, possibly in concert with effects on G-protein–coupled receptor 40 signaling.

In this study, we investigated the effects of arachidonic acid and iPLA₂β on the Kv2.1-delayed rectifier channel of the pancreatic β-cell and on islet [Ca²⁺] dynamics. We find that incubating islet β-cells with exogenous arachidonic acid results in significant reduction of total Kv activity and increased glucose-stimulated islet [Ca²⁺] oscillations. Concentrations of glucose and carbachol that stimulate islet PLA₂ activity, 13, 14, 18) are also demonstrated here to reduce Kv currents and thereby decrease repolarization. We observe similar reductions in Kv currents with a genetically modified INS-1 insulinoma cell line that overexpresses iPLA₂β. As far as we are aware, genetically modified cell lines with stably altered expression of iPLA₂β have not heretofore been used to examine the role of the enzyme in modulating the activity of specific β-cell ion channels involved in regulating [Ca²⁺] dynamics.

Experimental Procedures

Isolation and Culture of Mouse, Rat, and Human Islets of Langerhans, Insulinoma Cells, and HEK Cells—Islets were isolated from pancreata of 1- to 5-month-old C57BL/J6 wild-type mice (Jackson Laboratories); of iPLA₂β⁻/- mice, which were generated as described elsewhere (24); or of rats using collagenase digestion and Ficoll gradients as described previously (2). Human cadaveric islets were a generous gift from Dr. M. Garfinkel, University of Chicago. Islets were dissociated in 0.005% trypsin, placed on glass coverslips, and cultured for 16 h in RPMI 1640 medium supplemented with 10% fetal calf serum, concentrations of glucose specified in the figure legends, 100 IU/ml penicillin, and 100 μg/ml streptomycin. INS-1 cells and HEK cells expressing Kv2.1-GFP (a generous gift from Michael Tamkun (42)) were cultured for 16 h in RPMI 1640 medium containing 11.1 mM glucose and supplemented with 10% fetal calf serum, 100 IU/ml penicillin, and 100 μg/ml streptomycin. Cells and islets were maintained in a humidified incubator at 37 °C under an atmosphere of 95% air/5% CO₂.

Electrophysiological Recordings—Voltage-activated currents were recorded using whole-cell ruptured patch clamps with an Axopatch 200B amplifier and Clampster software (Molecular Devices, Sunnyvale, CA). Patch electrodes (2–4 μm) were loaded with intracellular solution containing (in mmol/liter) KCl, 140; MgCl₂, 6 H₂O, 1; EGTA, 10; Hepes, 10; MgATP, 5; pH 7.25 with KOH. Cells were perifused with Krebs-Ringer buffer (KRB) containing (in mmol/liter) NaCl, 119; CaCl₂·(H₂O)₀₂, 2; KCl, 4.7; Hepes, 10; MgSO₄, 1.2; KH₂PO₄, 1.2; glucose, 14.4; adjusted to pH 7.3 with NaOH. When indicated, cells were incubated with arachidonic acid (Sigma) in ethanol (<0.3%). Ethanol (0.03%) treatment of cells alone had no effect on their Kv currents. When indicated, cells were pretreated with a bromenol lactone (BEL) iPLA₂β inhibitor (43) obtained from Sigma and/or treated with carbachol (Sigma) in KRB with 20 μM glucose. Cells were also pretreated with the S or R enantiomers of BEL obtained from Cayman Chemical Co. (Ann Arbor, MI) in 20 μM glucose and then treated with carbachol. S-BEL inactivates iPLA₂β but not iPLA₂γ, and R-BEL inactivates iPLA₂γ but not iPLA₂β (71). The inactivation curves were fitted to the waveform with a single exponential function using Excel software and plotted with the standard error of the mean as a dashed line.

Confocal Immunofluorescence Microscopy—An inverted microscope (Olympus, Tokyo, Japan) with a dual rotating-disk confocal scanner (CSU10; Yokogawa Electric, Tokyo, Japan) was used for confocal imaging of HEK cells expressing Kv2.1-GFP. The cells were illuminated at 488 nm, and emitted light was filtered through a 530/30 nm filter (Omega Filters, Brattleboro, VT).

Measurement of Cytoplasmic [Ca²⁺]—Mouse islets were incubated (20 min, 37 °C) in KRB supplemented with 5 μmol/liter of Fura-2 acetoxyethyl ester (Molecular Probes, Eugene, OR). Fluorescence imaging was performed using a Nikon Eclipse TE2000-U microscope equipped with an epifluorescence illuminator and a 20× fluorescence objective (Fryer Company Inc., Huntley, IL) and MetaFluor software (Molecular Devices, Sunnyvale, CA). Cells were perifused at 37 °C at a flow of 1 ml/min with appropriate KRB-based solutions that contained glucose concentrations specified in the figures with or without the indicated concentrations of arachidonic acid or tolbutamide. The ratios of emitted fluorescence intensities at excitation wavelengths of 340 and 380 nm (F340/F380) were determined every 5 s with background subtraction.

Results

Effects of Arachidonic Acid on β-Cell Kv2.1 Channel Activity—Stimulation of pancreatic islet β-cells with glucose induces both the secretion of insulin and hydrolysis of arachidonic acid from membrane phospholipids, and the latter event is thought to facilitate Ca²⁺ entry and thereby to amplify insulin secretion (7, 15, 17, 18, 27, 33, 36, 44). One mechanism whereby arachidonic acid might affect glucose-induced Ca²⁺ entry into β-cells is by modulating activity of delayed rectifier K⁺ channels that limit glucose-induced depolarization of the β-cell plasma membrane (2–4, 40–42, 45–51), and we therefore examined the effects of arachidonic acid on β-cell Kv2.1 channel activity.
Arachidonic Acid Modulates Islet Kv2.1

As illustrated in Fig. 1A, whole cell recordings from rat INS-1 insulinoma cells show a typical Kv2.1-like delayed rectifier current when stimulated with depolarizing voltage steps. Maximal INS-1 Kv current amplitude at a depolarization step of 60 mV was significantly reduced by 33.4% upon incubation with 5 μM arachidonic acid (n = 7). INS-1 Kv currents also exhibited significantly accelerated current decline from their respective peak current amplitudes (Fig. 1, A and C). Arachidonic acid also significantly shortened by a mean of 8 ms the “time-to-peak” interval required to achieve peak INS-1 Kv current amplitude during a 30 mV depolarization (Fig. 2C). These effects of arachidonic acid are not use-dependent because Kv currents elicited after a 5-min incubation of cells with 5 μM arachidonic acid when held at −80 mV show effects similar to those observed (20) with cells subjected to depolarizing steps during the 5 min period of incubation with arachidonate (Fig. 2B). There were also no significant changes in Kv current inactivation with continued depolarizing steps applied after a 5 min preincubation with 5 μM arachidonate. The effects of arachidonate on Kv2.1 were rapid and occurred within 45 s.

To examine further effects of arachidonic acid on the activity of the Kv2.1 channel, which is the predominant delayed rectifier of β-cells (4, 46), HEK cells expressing a Kv2.1-GFP construct (42) were studied (Fig. 1E). HEK cells alone have no Kv-like currents whereas HEK cells expressing Kv2.1-GFP show Kv currents similar to INS-1 cells. Like the INS-1 cells Kv2.1-GFP expressing HEK cells developed significantly reduced Kv current amplitudes with increases in their τa’s of inactivation when incubated with arachidonic acid (Fig. 1E). The rate of Kv2.1 activation is not accelerated as significantly in HEK cells as in INS-1 cells. These results demonstrate that arachidonic acid has direct effects on Kv2.1 current amplitude and inactivation kinetics.

Arachidonic Acid Regulates Delayed Rectifier Currents in Both Rodent and Human Pancreatic Islet β-Cells—Because arachidonic acid affects the activity of Kv2.1 channels expressed in immortalized cell lines, we examined the possibility that similar effects would be observed with Kv currents in rodent and human primary β-cells. When incubated with 5 μM arachidonate, both mouse and rat primary β-cells exhibited decreased Kv-like current amplitudes, increased rates of current inactivation, and slightly shorter time-to-peak current intervals than did cells incubated without arachidonic acid (Fig. 3, A and B). Human β-cells also displayed significantly reduced Kv-like current amplitudes and time-to-peak intervals when incubated with arachidonic acid, although the human Kv-like currents exhibited only a slight acceleration in decay rates upon incubation with arachidonic acid (Fig. 3C). These results suggest that arachidonic acid can modulate the activity of the pancreatic islet β-cell repolarizing delayed rectifier Kv currents that are activated upon depolarization of the β-cell plasma membrane.

Arachidonic Acid Increases [Ca2+] Oscillations of Rodent Islets of Langerhans—Because insulin secretion kinetics closely parallel islet β-cell [Ca2+] fluctuations (1) and Kv2.1 participates in regulating β-cell [Ca2+] (2), effects of arachidonate on β-cell [Ca2+] were examined. Stimulation of mouse islets with 14.4 mM glucose induced typical [Ca2+] oscillations, and their
frequency was minimally increased upon incubation with 5 μM arachidonic acid and returned to basal frequency after washout (Fig. 4A). Incubating islets with 10 μM arachidonic acid induced a significant increase in [Ca\(^{2+}\)] oscillation frequency that returned to prestimulation levels after washout (Fig. 4B). Because arachidonic acid has also been found to modulate β-cell K\(_{ATP}\) channel activity as well as the sodium potassium ATPase (Na\(^+\)/K\(^+\)-ATPase; Refs. 36 and 39), we next examined effects of AA on islet [Ca\(^{2+}\)] fluctuations when K\(_{ATP}\) activity was blocked with tolbutamide alone or in combination with ouabain to block Na\(^+\)/K\(^+\)-ATPase activity. When islets were induced to undergo [Ca\(^{2+}\)] oscillations by stimulation with glucose, adding 250 μM tolbutamide or 50 μM ouabain resulted in an immediate and persistent rise in [Ca\(^{2+}\)] (Fig. 4C and supplemental Fig. 1). Subsequent addition of 10 μM AA induced fast oscillations in [Ca\(^{2+}\)] (10 out of 15 islets, supplemental Fig. 1), which is an effect typical of Kv2.1 channel inhibition (47). These results suggest that AA modulates the activity of ion channels in addition to the K\(_{ATP}\) channel or the Na\(^+\)/K\(^+\)-ATPase that affect β-cell [Ca\(^{2+}\)], such as Kv2.1.

The Muscarinic Receptor Agonist Carbachol Modulates Kv2.1 Currents in β-Cells—The muscarinic agonist carbachol amplifies both arachidonic acid hydrolysis from pancreatic islet β-cell membrane phospholipids and insulin secretion (14, 18, 44), and we examined the effects of carbachol on β-cell Kv currents. As illustrated in Fig. 5, B and C, Kv currents recorded from INS-1 cells stimulated with carbachol (500 μM) displayed a significantly shorter time-to-peak current interval and an increased rate of inactivation compared with currents recorded before stimulation. This suggests that muscarinic receptor occupancy modulates β-cell Kv channel activity. The previously suggested possibility that a PLA\(_2\) participates in muscarinic agonist effects on β-cells (14, 18) is consistent with our observation that pretreatment of INS-1 cells with the iPLA\(_2\) inhibitor BEL (10 μM; Ref. 43) resulted in a significant reduction in the carbachol-induced increase in the rate of Kv inactivation (Fig. 5, D and F), although the BEL-treated cells still exhibited a slight reduction in the time-to-peak Kv current interval upon stimulation with carbachol (Fig. 5D). Pretreatment of cells with the iPLA\(_2\) selective (71) enantiomer of BEL (R-BEL), which has little effect on iPLA\(_2\) activity, did not influence carbachol-induced inactivation of INS-1 Kv currents (n = 7; supplemental Fig. 2, A and C), whereas the iPLA\(_2\)-selective enantiomer (S-BEL) (71) still prevented Cch-induced Kv inactivation (n = 6; supplemental Fig. 2, B and D).

To examine the physiological effects of iPLA\(_2\)β on β-cell Kv currents, studies were performed with islet β-cells isolated from iPLA\(_2\)-null mice, which were prepared as described elsewhere (24). Because phospholipase C is also activated by Cch, these experiments utilized intracellular calcium buffering to prevent phospholipase C activation. Carbachol and glucose were applied to control and iPLA\(_2\)-null islets before and 10 min after stimulation with carbachol (Fig. 5C), whereas the iPLA\(_2\)-null cells still exhibited a slight reduction in the time-to-peak Kv current interval upon stimulation with carbachol (Fig. 5C). Pretreatment of cells with the iPLA\(_2\) selective (71) enantiomer of BEL (R-BEL), which has little effect on iPLA\(_2\) activity, did not influence carbachol-induced inactivation of INS-1 Kv currents (n = 7; supplemental Fig. 2, A and C), whereas the iPLA\(_2\)-selective enantiomer (S-BEL) (71) still prevented Cch-induced Kv inactivation (n = 6; supplemental Fig. 2, B and D).

The Muscarinic Agonist Carbachol Modulates Kv2.1 Currents in β-Cells—The muscarinic agonist carbachol amplifies both arachidonic acid hydrolysis from pancreatic islet β-cell membrane phospholipids and insulin secretion (14, 18, 44), and we examined the effects of carbachol on β-cell Kv currents. As illustrated in Fig. 5, B and C, Kv currents recorded from INS-1 cells stimulated with carbachol (500 μM) displayed a significantly shorter time-to-peak current interval and an increased rate of inactivation compared with currents recorded before stimulation. This suggests that muscarinic receptor occupancy modulates β-cell Kv channel activity. The previously suggested possibility that a PLA\(_2\) participates in muscarinic agonist effects on β-cells (14, 18) is consistent with our observation that pretreatment of INS-1 cells with the iPLA\(_2\) inhibitor BEL (10 μM; Ref. 43) resulted in a significant reduction in the carbachol-induced increase in the rate of Kv inactivation (Fig. 5, D and F), although the BEL-treated cells still exhibited a slight reduction in the time-to-peak Kv current interval upon stimulation with carbachol (Fig. 5D). Pretreatment of cells with the iPLA\(_2\)-selective (71) enantiomer of BEL (R-BEL), which has little effect on iPLA\(_2\) activity, did not influence carbachol-induced inactivation of INS-1 Kv currents (n = 7; supplemental Fig. 2, A and C), whereas the iPLA\(_2\)-selective enantiomer (S-BEL) (71) still prevented Cch-induced Kv inactivation (n = 6; supplemental Fig. 2, B and D).
Arachidonic Acid Modulates Islet Kv2.1

FIGURE 5. Effects of the muscarinic agonist carbachol on INS-1 cell-delayed rectifier currents. A, traces recorded from an INS-1 cell subjected to 500-ms depolarization in 10-mV increments from −80 to +80 mV. B, traces recorded from the same INS-1 cell as in A 10 min after incubation with carbachol (500 μM). C, traces from an INS-1 cell subjected to a 500-ms depolarization step from −80 to −5 mV. D, traces from an INS-1 cell pretreated with 10 μM BEL and then subjected to a 500-ms step from −80 to −5 mV before (black trace) and 10 min after incubation with 500 μM carbachol (gray bar). E, decay curves of Kv current traces from an INS-1 cell subjected to 500-ms depolarization at +60 mV before (black line) and after (gray line) incubation with 500 μM carbachol. Dashed lines represent standard errors of the mean (n = 7). F, Kv current decay curves from INS-1 cells that had been pretreated with BEL as in D and then subjected to 500-ms depolarization at +60 mV before (black line) and after (gray line) incubation with 500 μM carbachol. Dashed lines represent standard errors of the mean (n = 6).

Phospholipase A2 Regulates Delayed Rectifier Current Activity—iPLA2β is expressed by islet β-cells from rats (29), humans (47), and mice (48), and by several insulinoma cell lines (31, 38, 39). Upon activation, iPLA2β hydrolyzes the sn-2 substituent from phospholipids substrates, such as phosphatidylcholine, to yield a free fatty acid and a lysophospholipid, such as LPC (44, 54, 55). Because arachidonate is the most abundant sn-2 substituent in β-cell membrane phospholipids (23, 25, 26), activation of iPLA2β upon stimulation of islets with glucose results in liberation of arachidonate as the preponderant free fatty acid (7). Stably transfected INS-1 cells that overexpress iPLA2β (INS1-iPLA2β) exhibit amplified insulin secretory responses to glucose and other secretagogues (21, 56). We therefore compared Kv activity in control INS-1 cells and those that overexpress iPLA2β (“INS-1-iPLA2β cells”), both treated with 20 mM glucose. As illustrated in Fig. 7, Kv currents from INS-1-iPLA2β cells exhibit accelerated activation rates and a significant increase in decay rates, although the peak Kv-like current amplitudes do not differ significantly between the two cell lines. These results demonstrate that iPLA2β expression level in β-cell lines correlates with their Kv-like channel activity.

DISCUSSION

Concentrations of glucose that stimulate insulin secretion also induce phospholipid hydrolysis in pancreatic islet β-cells, and the resultant accumulation of phospholipid-derived mediators including AA is thought to amplify insulin secretion (11–20, 23–25, 27, 28, 31–34, 36, 57, 58). The results presented here demonstrate that AA modulates Kv2.1-delayed rectifier K+ channel currents in β-cells, and these channels are thought to modulate glucose-induced fluctuations in β-cell [Ca2+]i and insulin secretion (2–4, 40–42, 45–51). Whole cell patch clamp recordings of delayed rectifier currents elicited by application of graded degrees of depolarization to β-cells incubated with AA display a shorter time-to-peak current interval, a decrease in peak current amplitude, and accelerated inactivation compared with control cells. The iPLA2β expressed in pancreatic β-cells hydrolyzes AA esterified in membrane phospholipids (18–22, 24, 31, 32, 36), and we find that overexpression of iPLA2β in β-cells mimics the effects of exogenous AA on Kv-like currents. Furthermore, β-cells cells that do not express iPLA2β or β-cells treated with pharmacological inhibitors of iPLA2β have attenuated muscarinic agonist-induced Kv channel activation. These findings suggest that iPLA2β might participate in dynamic regulation of the repolarizing effects of Kv2.1 channel activation in β-cells.

Arachidonic acid causes other slowly inactivating delayed rectifier K+ channels, such as Kv3.4, to resemble fast inactivating A-type K+ currents (41). The phospholipid content of esterified AA is higher in pancreatic islets than in other tissues (23, 25, 26, 29), and arachidonate is hydrolyzed from phospholipids upon stimulation of islets with secretagogues (13, 14, 27, 31, 36, 44) and accumulates to micromolar concentrations (7, 27, 28) that are sufficient to modulate delayed rectifier Kv channel...
Arachidonic Acid Modulates Islet Kv2.1

Gogue-stimulated islets (7, 27). The iPLA₂β enzyme is expressed by islets from rats, mice, and humans (20, 24–26) and by several insulinoma cell lines (31, 52, 53), and iPLA₂β catalyzes the hydrolysis of the sn-2 ester bond of phospholipids to yield a free fatty acid, such as arachidonic acid, and a 2-lyso-phospholipid, such as LPC (54, 55). Secretagogue-stimulated hydrolysis of AA from β-cell phospholipids is suppressed by the iPLA₂β inhibitor BEL (18, 52, 53), and overexpression of iPLA₂β in insulinoma cells causes a rise in PLA₂ product levels and is associated with amplification of insulin secretory responses (21, 56). Changes in local levels of nonesterified AA within the phospholipid bilayer could affect the activities of proteins in membranes. AA facilitates Ca²⁺ influx into β-cells (17, 18, 33) and has been suggested to influence ion movement through pumps and channels (34–36). Our observations suggest that Kv2.1 might represent one such channel. The PLA₂ product AA blocks the activity of these channels, and overexpression of iPLA₂β in insulinoma cells is associated with amplification of insulin secretion and suppression of Kv2.1 channel activity, which is consistent with previous observations that blockade of Kv2.1 activity by other means also results in increased insulin secretory responses (48, 49).

The muscarinic agonist carbachol amplifies both glucose-induced insulin secretion and eicosanoid release that reflects hydrolysis of arachidonate from islet membrane phospholipids (14, 18, 44), and the iPLA₂β inhibitor BEL blunts both responses (18). Carbachol also induces accumulation of inositol trisphosphates (18) and diacylglycerol (14) in islets by a BEL-insensitive mechanism that probably involves coupling of the muscarinic receptor with a G-protein that activates a phospholipase C. Accumulation of diacylglycerol in phospholipid bilayers facilitates PLA₂ activation (63, 64) and phospholipids hydrolysis to yield free fatty acids, such as arachidonic acid or linoleic acid (50, 51), near Kv2.1 channels might affect channel activity. We observe that carbachol shortens the depolarization-induced time-to-peak Kv2.1 current and accelerates current inactivation in INS-1 cells and primary mouse β-cells; the latter effect is prevented by the iPLA₂β inhibitor BEL or in cells from genetically modified mice that do not express iPLA₂β. These findings suggest that iPLA₂β catalyzes formation of product(s) that negatively regulate the repolarizing effects of β-cell Kv2.1 channels.

Kv1.1 is a delayed rectifier K channel related to Kv2.1 that is expressed at high levels in the central nervous system, and its activity is affected in a manner similar to that reported here by the iPLA₂β inhibitor BEL (65). This raises the possibility that regulation of delayed rectifier, voltage-gated K channels by iPLA₂β, or products of its action might be a phenomenon that is not confined to β-cells. Kv1.1 channel activity (66) and subcellular location (67) are also affected by free fatty acids, and it is possible that colocalization or direct interaction of iPLA₂β and voltage-gated K channels, such as Kv1.1 and Kv2.1, occur.

β-Cell iPLA₂β subcellular redistribution is known to occur upon stimulation (21), and iPLA₂β undergoes some established interactions with other signaling proteins (68). Interactions with additional proteins are suspected (69), and iPLA₂β has an ankyrin-repeat domain (29) and a Smad-4-like protein interaction domain (30) that might mediate interaction with a variety...
of signaling partners or the assembly of multimeric protein aggregates (70) that allow local, direct delivery of the products of iPLA_2 action to effector molecules regulated by them. In β-cells, such molecules could include ion channels like Kv2.1.

The evolution of type II diabetes is associated with changes in blood free fatty acids that have been linked to insulin resistance, including a rise in concentrations of AA and a fall in linoleic acid levels (59–61). Prolonged exposure of β-cells to AA stimulates their proliferation and amplifies secretagogue-induced insulin release (62), both of which also occur during the evolution of type II diabetes. Similarly, overexpression of iPLA_2β in insulinoma cell lines is associated with increased proliferation rates and amplified secretory responses (21, 56), and suppression of iPLA_2β expression is associated with reduced proliferation rates and insulin secretion (22). The progressive rise in insulin resistance during the evolution of type II diabetes requires development of a compensatory hypersecretion of insulin to maintain glucose homeostasis, and a rise in AA levels might stimulate such a response. The deterioration of glucose tolerance induced in mice fed a high fat diet is exacerbated in mice that might stimulate such a response. The deterioration of glucose tolerance induced in mice fed a high fat diet is exacerbated in mice that

ACKNOWLEDGMENTS—We appreciate the expert technical assistance of Molly Dodge and Felipe Mendez and helpful discussions with Andrey Kuznetsov, James Lopez, Leonid Fridlyand, and Natalia Tamarina.

REFERENCES

1. Ashcroft, F. M., Proks, P., Smith, P. A., Ammala, C., Bokvist, K., and Rorsman, P. J. (1994) J. Cell. Biochem. 55, 54–65
2. Philipson, L. H., Rosenberg, M. P., Kuznetsov, A., Lancaster, M. E., Worley, J. F., 3rd, Roe, W. M., and Dukes, I. D. (1994) J. Biol. Chem. 269, 27787–27790
3. Dukes, I. D., and Philipson, L. H. (1996) Diabetes 45, 845–853
4. Roe, W. M., Worley, J. F., III, Mittal, A. A., Kuznetsov, A., DasGupta, S., Mertz, R. J., Witherspoon, S. M., III, Blair, N., Lancaster, M. E., McIntyre, M. S., Shehee, W. R., Dukes, I. D., and Philipson, L. H. (1996) J. Biol. Chem. 271, 32241–32246
5. Laychock, S. G. (1983) Diabetes 32, 6–13
6. Morgan, N. G., and Montague, W. (1985) Biochem. J. 226, 571–576
7. Wolf, B. A., Pasquale, S. M., and Turk, J. (1991) Biochemistry 30, 6372–6379
8. Tamarina, N. A., Kuznetsov, A., Rhodes, C. J., Bindokas, V. P., and Philipson, L. H. (2005) Diabetes 54, 3073–3081
9. Turk, J., Colca, J. R., Kotagal, N., and McDaniel, M. L. (1984) Biochim. Biophys. Acta 794, 110–124
10. Turk, J., Wolf, B. A., Comens, P. G., Colca, J., Jakshick, B., and McDaniel, M. L. (1985) Biochim. Biophys. Acta 835, 1–17
11. Dixon, J. F., and Hokin, L. E. (1984) J. Biol. Chem. 259, 14418–14425
12. Chaudhry, A., Laychock, S. G., and Rubin, R. P. (1987) J. Biol. Chem. 262, 17426–17431
13. Konrad, R. J., Jolly, Y. C., Major, C., and Wolf, B. A. (1992) Biochim. Biophys. Acta 1135, 215–220
14. Konrad, R. J., Jolly, Y. C., Major, C., and Wolf, B. A. (1992) Biochem. J. 287, 283–290
15. Turk, J., Wolf, B. A., and McDaniel, M. L. (1987) Prog. Lipid Res. 26, 125–181
16. Turk, J., Hughes, J. H., Easom, R. A., Wolf, B. A., Scharp, D. W., Lacy, P. E., and McDaniel, M. L. (1988) Diabetes 37, 992–996
17. Ramanadham, S., Gross, R., and Turk, J. (1992) Biochem. Biophys. Res. Commun. 184, 647–653
18. Ramanadham, S., Gross, R. W., Han, X., and Turk, J. (1993) Biochemistry 32, 337–346
19. Song, K., Zhang, X., Zhao, C., Ang, N. T., and Ma, Z. A. (2005) Mol. Endocrinol. 19, 504–515
20. Bao, S., Song, H., Wohltmann, M., Ramanadham, S., Jin, W., Bohrer, A., and Turk, J. (2006) J. Biol. Chem. 281, 20958–20973
21. Ma, Z., Ramanadham, S., Wohltmann, M., Bohrer, A., Hsu, F. F., and Turk, J. (2001) J. Biol. Chem. 276, 13198–13208
22. Bao, S., Bohrer, A., Ramanadham, S., Jin, W., Zhang, S., and Turk, J. (2006) J. Biol. Chem. 281, 87–98
23. Ramanadham, S., Bohrer, A., Mueller, M., Jett, P., Gross, R., and Turk, J. (1993) Biochemistry 32, 5339–5351
24. Ramanadham, S., Song, H., Hsu, F. F., Zhang, S., Crankshaw, M., Grant, G. A., Newgard, C. B., Bao, S., Ma, Z., and Turk, J. (2003) Biochemistry 42, 13929–13940
25. Ramanadham, S., Bohrer, A., Gross, R. W., and Turk, J. (1993) Biochemistry 32, 13499–13509
26. Ramanadham, S., Hsu, F. F., Bohrer, A., Nowatzke, W., Ma, Z., and Turk, J. (1998) Biochemistry 37, 4535–4567
27. Wolf, B., Turk, J., Sherman, W., and McDaniel, M. L. (1986) J. Biol. Chem. 261, 3501–3510
28. Turk, J., Wolf, B. A., and McDaniel, M. L. J. (1986) Biochem. J. 237, 259–263
29. Ma, Z., Ramanadham, S., Kempe, K., Chi, X. S., Ladenson, J., and Turk, J. (1997) J. Biol. Chem. 272, 11118–11127
30. Ma, Z., Wang, X., Nowatzke, W., Ramanadham, S., and Turk, J. (1999) J. Biol. Chem. 274, 9607–9616
31. Ramanadham, S., Hsu, F. F., Bohrer, A., Ma, Z., and Turk, J. (1999) J. Biol. Chem. 274, 13915–13927
32. Ma, Z., Bohrer, A., Wohltmann, M., Ramanadham, S., Hsu, F. F., and Turk, J. (2001) Lipids 36, 689–700
33. Metz, S. A., Drazin, B., Sussman, K. E., and Leitner, J. W. (1987) Biochim. Biophys. Acta 110, 110–124
34. Vacher, P., Meckebie, J., and Dufy, F. (1989) Am. J. Physiol. 257, E203–E211
35. Eddleston, G. T. (1995) Am. J. Physiol. 268, C181–C190
36. Owada, S., Larsson, O., Arkhammar, P., Katz, A. I., Chibalin, A. V., Berggren, P. O., and Bertorello, A. M. (1999) J. Biol. Chem. 274, 2000–2008
37. Smanis, T., Zakharov, S. I., Csutora, P., Leno, E., Trepakova, E. S., and Bolotina, V. M. (2004) Nat. Cell Biol. 6, 113–120
38. Roe, W. M., Worley, J. F., Qian, F., Tamarina, N., Mittal, A. A., Druyluk, F., Blair, N. T., Mertz, R. J., Philipson, L. H., and Dukes, I. D. (1998) J. Biol. Chem. 273, 10402–10410
39. Juhl, K., Efano, A. M., Olsen, H. L., and Gromada, J. (2003) Biochem. Biophys. Res. Commun. 310, 274–279
