THE MAXIMAL OPERATORS OF LOGARITHMIC MEANS OF
ONE-DIMENSIONAL VILENKIN-FOURIER SERIES.

GEORGE TEPHNADZE

Abstract. The main aim of this paper is to investigate \((H_p, L_p)\)-type inequalities for
maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series.

2000 Mathematics Subject Classification. 42C10.

Key words and phrases: Vilenkin system, Logarithmic means, martingale Hardy space.

1. INTRODUCTION

In one-dimensional case the weak type inequality
\[\mu \left(\sigma^* f > \lambda \right) \leq \frac{c}{\lambda} \|f\|_1 \quad (\lambda > 0) \]
can be found in Zygmund [20] for the trigonometric series, in Schipp [11] for Walsh series and
in Pál, Simon [10] for bounded Vilenkin series. Again in one-dimensional, Fujii [3] and Simon
[13] verified that \(\sigma^* \) is bounded from \(H_1 \) to \(L_1 \). Weisz [17] generalized this result and proved
the boundedness of \(\sigma^* \) from the martingale space \(H_p \) to the space \(L_p \) for \(p > 1/2 \). Simon
[12] gave a counterexample, which shows that boundedness does not hold for \(0 < p < 1/2 \).
The counterexample for \(p = 1/2 \) due to Goginava ([7], see also [2]).

Riesz’ s logarithmic means with respect to the trigonometric system was studied by a lot
of autors. We mentioned, for instance, the paper by Szasz [14] and Yabuta [19]. this means
with respect to the Walsh and Vilenkin systems by Simon [12] and Gát [4].

Móricz and Siddiqi [9] investigates the approximation properties of some special Nörlund
means of Walsh-Fourier series of \(L_p \) function in norm. The case when \(q_k = 1/k \) is excluded,
since the methods of Móricz and Siddiqi are not applicable to Nörlund logarithmic means.
In [3] Gát and Goginava proved some convergence and divergence properties of the Nörlund
logarithmic means of functions in the class of continuous functions and in the lebesque space
\(L_1 \). Among there, they gave a negative answer to the question of Móricz and Siddiqi [9]. Gát
and Goginava [6] proved that for each measurable function \(\phi(u) = \phi(u \sqrt{\log u}) \) there exists
an integrable function \(f \), such that
\[\int_{G_m} \phi(|f(x)|) \, d\mu(x) < \infty \]
and there exist a set with positive measure, such that the Walsh-logarithmic means of the
function diverge on this set.

The main aim of this paper is to investigate \((H_p, L_p)\)-type inequalities for the maximal
operators of Riesz and Nörlund logarithmic means of one-dimensional Vilenkin-Fourier series.

We prove that the maximal operator \(R^* \) is bounded from the Hardy space \(H_p \) to the space
D. We also show that when $0 < p \leq 1/2$ there exists a martingale $f \in H_p$, for which

$$\|R^* f\|_{L_p} = +\infty.$$

For the Nörlund logarithmic means we prove that when $0 < p \leq 1/2$ there exists a martingale $f \in H_p$ for which

$$\|L^* f\|_{L_p} = +\infty.$$

Analogical theorems for Walsh-Paley system is proved in \[8\].

2. DEFINITIONS AND NOTATIONS

Let N_+ denote the set of the positive integers, $N := N_+ \cup \{0\}$. Let $m := (m_0, m_1, \ldots)$ denote a sequence of the positive integers not less than 2. Denote by $Z_{m_k} := \{0, 1, \ldots m_k - 1\}$ the addition group of integers modulo m_k.

Define the group G_m as the complete direct product of the groups Z_{m_i} with the product of the discrete topologies of Z_{m_i}'s.

The direct product μ of the measures

$$\mu_k (\{j\}) := 1/m_k,$$ \hspace{1cm} ($j \in Z_{m_k}$)

is the Haar measure on G_{m_k}, with $\mu (G_m) = 1$.

If $\sup_{n} m_n < \infty$, then we call G_m a bounded Vilenkin group. If the generating sequence m is not bounded then G_m is said to be an unbounded Vilenkin group. **In this paper we discuss bounded Vilenkin groups only.**

The elements of G_m represented by sequences

$$x := (x_0, x_1, \ldots, x_j, \ldots), \hspace{1cm} (x_i \in Z_{m_j}).$$

It is easy to give a base for the neighborhood of G_m

$$I_0 (x) : = G_m,$$

$$I_n (x) : = \{y \in G_m \mid y_0 = x_0, \ldots y_{n-1} = x_{n-1}\}, \hspace{1cm} (x \in G_m, n \in N).$$

Denote $I_n := I_n (0)$, for $n \in N_+$.

If we define the so-called generalized number system based on m in the following way:

$$M_0 := 1, \hspace{1cm} M_{k+1} := m_k M_k, \hspace{1cm} (k \in N),$$

then every $n \in N$, can be uniquely expressed as $n = \sum_{j=0}^{\infty} n_j M_j$, where $n_j \in Z_{m_j}, \hspace{1cm} (j \in N_+)$ and only a finite number of n_j's differ from zero.

Next, we introduce on G_m an orthonormal system which is called the Vilenkin system. At first define the complex valued function $r_k (x) : G_m \to C$, The generalized Rademacher functions as
\[r_k(x) := \exp \left(2\pi i x_k / m_k \right), \quad (i^2 = -1, x \in G_m, \ k \in N). \]

Now define the Vilenkin system \(\psi := (\psi_n : n \in N) \) on \(G_m \) as:

\[\psi_n(x) := \prod_{k=0}^{\infty} r_k^n(x), \quad (n \in N). \]

Specifically, we call this system the Walsh-Paley one if \(m \equiv 2 \).

The Vilenkin system is orthonormal and complete in \(L^2(G_m) \).

[1, 15]

Now we introduce analogues of the usual definitions in Fourier-analysis. If \(f \in L^1(G_m) \) we can establish the Fourier coefficients, the partial sums of the Fourier series, the Fejér means, the Dirichlet kernels with respect to the Vilenkin system \(\psi \) in the usual manner:

\[\hat{f}(k) := \int_{G_m} f \overline{\psi_k} \, d\mu, \quad (k \in N), \]
\[S_n f := \sum_{k=0}^{n-1} \hat{f}(k) \psi_k, \quad (n \in N_+, S_0 f := 0), \]
\[\sigma_n f := \frac{1}{n} \sum_{k=0}^{n-1} S_k f, \quad (n \in N_+), \]
\[D_n := \sum_{k=0}^{n-1} \psi_k, \quad (n \in N_+). \]

Recall that

\[D_{M_n}(x) = \begin{cases} M_n, & \text{if } x \in I_n, \\ 0, & \text{if } x \not\in I_n. \end{cases} \]

The norm (or quasinorm) of the space \(L^p(G_m) \) is defined by

\[\|f\|_p := \left(\int_{G_m} |f(x)|^p \, d\mu(x) \right)^{\frac{1}{p}}, \quad (0 < p < \infty). \]

The \(\sigma \)-algebra generated by the intervals \(\{I_n(x) : x \in G_m\} \) will be denoted by \(F_n(n \in N) \).

Denote by \(f = (f^{(n)}, n \in N) \) a martingale with respect to \(F_n(n \in N) \). (for details see e.g. [16]).

The maximal function of a martingale \(f \) is defined by

\[f^* = \sup_{n \in N} |f^{(n)}|. \]

In case \(f \in L^1(G_m) \), the maximal functions are also be given by

\[f^*(x) = \sup_{n \in N} \frac{1}{\mu(I_n(x))} \left| \int_{I_n(x)} f(u) \, d\mu(u) \right|. \]
For $0 < p < \infty$ the Hardy martingale spaces $H_p(G_m)$ consist of all martingale for which

$$\|f\|_{H_p} := \|f^*\|_{L_p} < \infty.$$

If $f \in L_1(G_m)$, then it is easy to show that the sequence $(S_{M_n}(f) : n \in \mathbb{N})$ is a martingale.

If $f = (f^{(n)}, n \in \mathbb{N})$ is martingale then the Vilenkin-Fourier coefficients must be defined in a slightly different manner:

$$\hat{f}(i) := \lim_{k \to \infty} \int_{G_m} f^{(k)}(x) \Psi_i(x) \, d\mu(x).$$

The Vilenkin-Fourier coefficients of $f \in L_1(G_m)$ are the same as those of the martingale $(S_{M_n}(f) : n \in \mathbb{N})$ obtained from f.

In the literature, there is the notion of Riesz’ s logarithmic means of the Fourier series. The n-th Riesz’ s logarithmic means of the Fourier series of an integrable function f is defined by

$$R_n f(x) := \frac{1}{l_n} \sum_{k=1}^{n} \frac{S_k f(x)}{k},$$

where

$$l_n := \sum_{k=1}^{n} (1/k).$$

Let $\{q_k : k > 0\}$ be a sequence of nonnegative numbers. The n-th Nörlund means for the Fourier series of f is defined by

$$\frac{1}{Q_n} \sum_{k=1}^{n} q_{n-k} S_k f,$$

where

$$Q_n := \sum_{k=1}^{n} q_k.$$

If $q_k = k$, then we get Nörlund logarithmic means

$$L_n f(x) := \frac{1}{l_n} \sum_{k=1}^{n} \frac{S_k f(x)}{n-k}.$$

It is a kind of “reverse” Riesz’ s logarithmic means.

In this paper we call this means logarithmic means.

For the martingale f we consider the following maximal operators of
\[R^* f(x) := \sup_{n \in \mathbb{N}} |R_n f(x)|, \]
\[L^* f(x) := \sup_{n \in \mathbb{N}} |L_n f(x)|, \]
\[\sigma^* f(x) := \sup_{n \in \mathbb{N}} |\sigma_n f(x)|. \]

A bounded measurable function \(a \) is \(p \)-atom, if there exists a dyadic interval \(I \), such that

\[\begin{cases}
 a) & \int_I a \, d\mu = 0, \\
 b) & \|a\|_{\infty} \leq \mu(I)^{-1/p}, \\
 c) & \text{supp}(a) \subset I.
\end{cases} \]

3. FORMULATION OF MAIN RESULT

Theorem 1. Let \(p > 1/2 \). Then the maximal operator \(R^* \) is bounded from the Hardy space \(H_p \) to the space \(L_p \).

Theorem 2. Let \(0 < p \leq 1/2 \). Then there exists a martingale \(f \in H_p \) such that
\[\|R^* f\|_p = +\infty. \]

Corollary 1. Let \(0 < p \leq 1/2 \). Then there exists a martingale \(f \in H_p \) such that
\[\|\sigma^* f\|_p = +\infty. \]

Theorem 3. Let \(0 < p \leq 1 \). Then there exists a martingale \(f \in L_p \) such that
\[\|L^* f\|_p = +\infty. \]

4. AUXILIARY PROPOSITIONS

Lemma 1. [18] A martingale \(f = (f^{(n)}, n \in \mathbb{N}) \) is in \(H_p \) (\(0 < p \leq 1 \)) if and only if there exist a sequence \((a_k, k \in \mathbb{N}) \) of \(p \)-atoms and a sequence \((\mu_k, k \in \mathbb{N}) \) of a real numbers such that for every \(n \in \mathbb{N} \):

\[\sum_{k=0}^{\infty} \mu_k S_{M_n} a_k = f^{(n)}, \]

\[\sum_{k=0}^{\infty} |\mu_k|^p < \infty. \]

Moreover,
\[\|f\|_{H_p} \sim \inf \left(\sum_{K=0}^{\infty} |\mu_k|^p \right)^{1/p}, \]

where the infimum is taken over all decomposition of \(f \) of the form (1).
5. PROOF OF THE THEOREM

Proof of theorem 1. Using Abel transformation we obtain

\[R_n f(x) = \frac{1}{l_n} \sum_{j=1}^{n-1} \sigma_j f(x) + \frac{\sigma_n f(x)}{l_n}, \]

Consequently,

\[L^* f \leq c \sigma^* f. \]

On the other hand Weisz proved that \(\sigma^* \) is bounded from the Hardy space \(H_p \) to the space \(L_p \) when \(p > 1/2 \). Hence, from (2) we conclude that \(R^* \) is bounded from the martingale Hardy space \(H_p \) to the space \(L_p \) when \(p > 1/2 \).

Proof of theorem 2. Let \(\{\alpha_k : k \in N\} \) be an increasing sequence of the positive integers such that

\[\sum_{k=0}^{\infty} \alpha_k^{-p/2} < \infty, \]

\[\sum_{\eta=0}^{k-1} \left(\frac{M_{2\alpha_k}}{\sqrt{\alpha_{\eta}}} \right)^{1/p} < \left(\frac{M_{2\alpha_k}}{\sqrt{\alpha_k}} \right)^{1/p}, \]

\[\frac{\left(M_{2\alpha_k-1} \right)^{1/p}}{\sqrt{\alpha_{k-1}}} < \frac{M_{\alpha_k}}{\alpha_k^{3/2}}. \]

We note that such an increasing sequence \(\{\alpha_k : k \in N\} \) which satisfies conditions (3)-(5) can be constructed.

Let

\[f^{(A)}(x) = \sum_{\{k : 2\alpha_k < A\}} \lambda_k a_k, \]

where

\[\lambda_k = \frac{m_{2\alpha_k}}{\sqrt{\alpha_k}} \]

and

\[a_k(x) = \frac{M_{2\alpha_k}^{1/p-1}}{m_{2\alpha_k}} \left(D_{M_{2\alpha_k+1}}(x) - D_{M_{2\alpha_k}}(x) \right). \]

It is easy to show that

\[\|a_k\|_\infty \leq \frac{M_{2\alpha_k}^{1/p-1}}{m_{2\alpha_k-1}} \]

\[\leq (M_{2\alpha_k})^{1/p} = (\text{supp}(a_k))^{-1/p}. \]
LOGARITHMIC MEANS

$$S_{MA} a_k (x) = \begin{cases} a_k (x), & 2\alpha_k < A, \\ 0, & 2\alpha_k \geq A. \end{cases}$$

$$f^{(A)} (x) = \sum_{\{ k; 2\alpha_k < A \}} \lambda_k a_k = \sum_{k=0}^{\infty} \lambda_k S_{MA} a_k (x),$$

$$\text{supp}(a_k) = I_{2\alpha_k},$$

$$\int_{I_{2\alpha_k}} a_k d\mu = 0.$$

from (3) and lemma 1 we conclude that $f = (f^{(n)}, n \in \mathbb{N}) \in H_p$.

Let

$$q_A^s = M_{2A} + M_{2s} - 1, \quad A > S.$$

Then we can write

$$R_{q_{\alpha_k}} f (x) = \frac{1}{l_{q_{\alpha_k}}} \sum_{j=1}^{q_{\alpha_k}^s} S_j f (x)$$

$$= \frac{1}{l_{q_{\alpha_k}}} \sum_{j=1}^{M_{2\alpha_k} - 1} S_j f (x)$$

$$+ \frac{1}{l_{q_{\alpha_k}}} \sum_{j=M_{2\alpha_k}}^{q_{\alpha_k}^s} S_j f (x)$$

$$= I + II.$$

It is easy to show that

$$\hat{f}(j) = \begin{cases} \frac{M^{1/p-1}}{\sqrt{\alpha_k}}, & \text{if } j \in \{ M_{2\alpha_k}, \ldots, M_{2\alpha_k+1} - 1 \}, \quad k = 0, 1, 2, \ldots, \\ 0, & \text{if } j \notin \bigcup_{k=1}^{\infty} \{ M_{2\alpha_k}, \ldots, M_{2\alpha_k+1} - 1 \}. \end{cases}$$

Let $j < M_{2\alpha_k}$. Then from (4) and (8) we have
\begin{equation}
|S_j f(x)| \\
\leq \sum_{\eta=0}^{k-1} \sum_{v=M_{2\alpha_\eta}}^{M_{2\alpha_\eta+1}-1} |\hat{f}(v)| \\
\leq \sum_{\eta=0}^{k-1} \sum_{v=M_{2\alpha_\eta}}^{M_{2\alpha_\eta+1}-1} \frac{M_{2\alpha_\eta}^{1/p-1}}{\sqrt{\alpha_\eta}} \\
\leq c \sum_{\eta=0}^{k-1} \frac{M_{2\alpha_\eta}^{1/p}}{\sqrt{\alpha_\eta}} \leq c M_{2\alpha_k-1}^{1/p} \sqrt{\alpha_{k-1}}.
\end{equation}

Consequently

\begin{equation}
|I| \leq \frac{1}{l_{q^*_k}} \sum_{j=1}^{M_{2\alpha_k}-1} |S_j f(x)| \\
\leq \frac{c}{\alpha_k} \frac{M_{2\alpha_k}^{1/p}}{\sqrt{\alpha_{k-1}}} \sum_{j=1}^{M_{2\alpha_k}-1} \frac{1}{j} \\
\leq \frac{c}{\alpha_k} \frac{M_{2\alpha_k}^{1/p}}{\sqrt{\alpha_{k-1}}}.
\end{equation}

Let \(M_{2\alpha_k} \leq j \leq q^*_k \). Then we have the following

\begin{equation}
S_j f(x) = \sum_{\eta=0}^{k-1} \sum_{v=M_{2\alpha_\eta}}^{M_{2\alpha_\eta+1}-1} \hat{f}(v) \psi_v(x) + \sum_{v=M_{2\alpha_k}}^{j-1} \hat{f}(v) \psi_v(x) \\
= \sum_{\eta=0}^{k-1} \frac{M_{2\alpha_\eta}^{1/p-1}}{\sqrt{\alpha_\eta}} \left(D_{M_{2\alpha_\eta+1}}(x) - D_{M_{2\alpha_\eta}}(x)\right) \\
+ \frac{M_{2\alpha_k}^{1/p-1}}{\sqrt{\alpha_k}} \left(D_j(x) - D_{M_{2\alpha_k}}(x)\right).
\end{equation}

This gives that

\begin{equation}
II = \frac{1}{l_{q^*_k}} \sum_{j=M_{2\alpha_k}}^{q^*_k} \frac{1}{j} \left(\sum_{\eta=0}^{k-1} \frac{M_{2\alpha_\eta}^{1/p-1}}{\sqrt{\alpha_\eta}} \left(D_{M_{2\alpha_\eta+1}}(x) - D_{M_{2\alpha_\eta}}(x)\right)\right) \\
+ \frac{1}{l_{q^*_k}} \frac{M_{2\alpha_k}^{1/p-1}}{\sqrt{\alpha_k}} \sum_{j=M_{2\alpha_k}}^{q^*_k} \frac{1}{j} \left(D_j(x) - D_{M_{2\alpha_k}}(x)\right) \\
= II_1 + II_2.
\end{equation}
To discuss II_1, we use (11). Thus we can write:

$$|II_1| \leq c \sum_{\eta=0}^{k-1} \frac{M_{2 \alpha \eta}^{1/p}}{\sqrt{\alpha \eta}} \leq \frac{c M_{2 \alpha k - 1}}{\sqrt{\alpha - 1}}.$$

Since

$$D_{j+M_{2 \alpha k}} (x) = D_{M_{2 \alpha k}} (x) + \psi_{M_{2 \alpha k}} (x) D_j (x), \text{ when } j < M_{2 \alpha k},$$

for II_2 we have

$$II_2 = \frac{1}{l_{q_0 \alpha k}} \frac{M_{2 \alpha k}^{1/p-1}}{\sqrt{\alpha k}} \sum_{j=0}^{M_{2 \alpha k}} \frac{D_{j+M_{2 \alpha k}} (x) - D_{M_{2 \alpha k}} (x)}{j + M_{2 \alpha k}}$$

$$= \frac{1}{l_{q_0 \alpha k}} \frac{M_{2 \alpha k}^{1/p-1}}{\sqrt{\alpha k}} \psi_{M_{2 \alpha k}} \sum_{j=0}^{M_{2 \alpha k} - 1} \frac{D_j (x)}{j + M_{2 \alpha k}}.$$

We write

$$R_{q_0 \alpha k} f (x) = I + II_1 + II_2,$$

Then by (5), (7), (10) and (12)-(15) we have

$$\left| R_{q_0 \alpha k} f (x) \right| \geq |II_2| - |I| - |II_1|$$

$$\geq |II_2| - c \frac{M_{2 \alpha k}}{\alpha k^{3/2}}$$

$$\geq \frac{c}{\alpha k} \frac{M_{2 \alpha k}^{1/p-1}}{\sqrt{\alpha k}} \sum_{j=0}^{M_{2 \alpha k} - 1} \frac{D_j (x)}{j + M_{2 \alpha k}} - c \frac{M_{2 \alpha k}}{\alpha k^{3/2}}.$$

Let $0 < p \leq 1/2$, $x \in I_{2s} \setminus I_{2s+1}$ for $s = \lfloor 2 \alpha k / 3 \rfloor, \ldots, \alpha_k$. Then it is evident

$$\left| \sum_{j=0}^{M_{2s} - 1} \frac{D_j (x)}{j + M_{2 \alpha k}} \right| \geq c \frac{M_{2s}^2}{M_{2 \alpha k}}.$$

Hence we can write
\[|R_{q_{\alpha_k}} f (x)| \geq \frac{c M_{2\alpha_k}^{1/p-1}}{\alpha_k} \frac{c M_{2s}^2}{\sqrt{\alpha_k}} - c M_0 \frac{\alpha_k}{\alpha_k^3/2} \]
\[\geq \frac{c M_{2\alpha_k}^{1/p-2} M_{2s}^2}{\alpha_k^3} \geq c M_{2\alpha_k} M_{2s} \frac{\alpha_k}{\alpha_k^3/2}. \]

Then we have
\[
\int_{G_m} |R^* f (x)|^p d\mu (x) \\
\geq \sum_{s=\lfloor 2\alpha_k/3 \rfloor}^{\alpha_k} \int_{I_{2s} \setminus I_{2s+1}} |R_{q_{\alpha_k}} f (x)|^p d\mu (x) \\
\geq \sum_{s=\lfloor 2\alpha_k/3 \rfloor}^{\alpha_k} \int_{I_{2s} \setminus I_{2s+1}} \left(\frac{c M_{2\alpha_k}^{1/p-2} M_{2s}^2}{\alpha_k^3} \right)^p d\mu (x) \\
\geq c \sum_{s=\lfloor 2\alpha_k/3 \rfloor}^{\alpha_k} \frac{M_{2\alpha_k}^{1-2p} M_{2s}^{2p-1}}{\alpha_k^{3p/2}} \\
\geq \begin{cases}
\frac{2^{\alpha_k (1-2p)}}{\alpha_k^{3p/2}}, & \text{when } 0 < p < 1/2, \\
ca_{1/4}, & \text{when } p = 1/2, \\
\rightarrow \infty, & \text{when } k \to \infty.
\end{cases}
\]

which complete the proof of the theorem 2.

Proof of theorem 3. We write

\begin{equation}
L_{q_{\alpha_k}} f (x) = \frac{1}{l_{d_{\alpha_k,s}}^{q_{\alpha_k}^s}} \sum_{j=1}^{q_{\alpha_k}^s} S_j f (x) \\
= \frac{1}{l_{q_{\alpha_k}^s}} \sum_{j=1}^{M_{2\alpha_k}-1} S_j f (x) \\
+ \frac{1}{q_{\alpha_k}^s} \sum_{j=M_{2\alpha_k}}^{q_{\alpha_k}^s} S_j f (x) = III + IV.
\end{equation}

Since (see 11)
\[|S_j f (x)| \leq \frac{M_{2\alpha_k-1}^{1/p}}{\sqrt{\alpha_{k-1}}}, \quad j < M_{2\alpha_k}. \]
For III we can write

\begin{equation}
|III| \leq \frac{c}{\alpha_k} \sum_{j=0}^{M_{2\alpha_k - 1}} \frac{1}{q_{\alpha_k}^j - j} \sqrt{\alpha_{k-1}} \leq \frac{c M_{2\alpha_k - 1}^{1/p}}{\sqrt{\alpha_{k-1}}}.
\end{equation}

Using (11) we have

\begin{equation}
IV = \frac{1}{l q_{\alpha_k}} \sum_{j=M_{2\alpha_k}}^{q_{\alpha_k}} \frac{1}{q_{\alpha_k}^j - j} \left(\sum_{\eta=0}^{k-1} \frac{M_{2\alpha_k - 1}^{1/p}}{\sqrt{\alpha_{\eta}}} \left(D_{M_{2\alpha_k + \eta}} (x) - D_{M_{2\alpha_k}} (x) \right) \right)
+ \frac{1}{l q_{\alpha_k}} \sum_{j=M_{2\alpha_k}}^{q_{\alpha_k}} \frac{M_{2\alpha_k - 1}^{1/p}}{q_{\alpha_k}^j - j} \left(D_j (x) - D_{M_{2\alpha_k}} (x) \right)
= IV_1 + IV_2.
\end{equation}

Applying (4) in IV_1 we have

\begin{equation}
|IV_1| \leq \frac{c M_{2\alpha_k - 1}^{1/p}}{\sqrt{\alpha_{k-1}}}.
\end{equation}

From (14) we obtain

\begin{equation}
IV_2 = \frac{1}{l q_{\alpha_k}} \frac{M_{2\alpha_k - 1}^{1/p}}{q_{\alpha_k}^j - j} \sum_{j=0}^{M_{2\alpha_k - 1}} D_j (x).
\end{equation}

Let \(x \in I_{2s} \setminus I_{2s+1}\). Then \(D_j (x) = j, j < M_s\). Consequently

\[\sum_{j=0}^{M_{2s-1}} \frac{D_j (x)}{M_{2s} - j} = \sum_{j=0}^{M_{2s-1}} \frac{j}{M_{2s} - j} = \sum_{j=0}^{M_{2s-1}} \left(\frac{M_{2s}}{M_{2s} - j} - 1 \right) \geq csM_{2s}. \]

Then

\begin{equation}
|IV_2| \geq \frac{c M_{2\alpha_k - 1}^{1/p}}{\alpha_k^{3/2}} s M_{2s}, \quad x \in I_{2s} \setminus I_{2s+1}.
\end{equation}

Combining (5), (16)-(21) for \(x \in I_{2s} \setminus I_{2s+1}, s = [2\alpha_k/3] \ldots \alpha_k\) and \(0 < p \leq 1\) we have
Then

\[
\int_{G_m} |L^{*} f (x)|^p \, d\mu (x) \\
\geq \sum_{s=[2\alpha_k/3]}^{m_k} \int_{I_2s \setminus I_{2s+1}} |L^{*} f (x)|^p \, d\mu (x) \\
\geq c \sum_{s=[2\alpha_k/3]}^{m_k} \int_{I_2s \setminus I_{2s+1}} \left(\frac{M^{1/p-1}_{2\alpha_k-1}}{\alpha_k^{3/2}} sM_{2s} \right) d\mu (x) \\
\geq c \sum_{s=[2\alpha_k/3]}^{m_k} \frac{M^{1-p}_{2\alpha_k-1}}{\alpha_k^{p/2}} M^{p-1}_{2s} \\
\geq \begin{cases}
\frac{2^{\alpha_k(1-p)}}{\alpha_k^{p/2}}, & \text{when } 0 < p < 1, \\
c\sqrt{\alpha_k}, & \text{when } p = 1, \\
\rightarrow \infty, & \text{when } k \rightarrow \infty.
\end{cases}
\]

Theorem 3 is proved.

REFERENCES

[1] G. N. AGAEV, N. Ya. VILENKIN, G. M. DZHAFA RLY and A. I. RUBINSHEITN, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku, Elim, 1981 (in Russian).
[2] I. BLAHOTA, G. GÁT and U. GOGINAVA, Maximal operators of Fejér means of Vilenkin-Fourier series. JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), 1-7.
[3] N. J. FUJII, A maximal inequality for \(H_1 \) functions on the generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), Ill-116.
[4] G. GÁT, Investigations of certain operators with respect to the Vilenkin systems, Acta Math. Hunger. N 1-2.61(1993), 131-149.
[5] G. GÁT, U. GOGINAVA, Uniform and L-convergence of logarithmic means of Walsh-Fourier series. Acta Math. Hunger. 22 (2006), no. 2, 497-506.
[6] G. GÁT, U. GOGINAVA, On the divergence of Nörlund logarithmic means of Walsh-Fourier series. Acta Math. Sin. (Engl. Ser.) 25 (2009), no 6, 903-916.
[7] U. GOGINAVA, The maximal operator of Marcinkiewicz-Fejér means of the \(d \)-dimensional Walsh-Fourier series. East J. Approx. 12 (2006), no. 3, 295–302.
[8] U. GOGINAVA, The maximal operator of logarithmic means of Walsh-Fourier series. Rendiconti del Circlo Matematico di Palermo Serie II, 82(2010), pp. 345-357.
[9] F. MóRICZ, A. SIDDIQI, Approximation by Nörlund means of Walsh-Fourier series, Journal of approximation theory, 70 (1992), 375-389.
[10] J. PÁL and P. SIMON, On a generalization of the concept of derivative, Acta Math. Hung., 29 (1977), 155-164.
[11] F. SCHIPP, Certain rearrangements of series in the Walsh series, Mat. Zametki, 18 (1975), 193-201.
[12] P. SIMON, Cesáro summability with respect to two-parameter Walsh systems, Monatsh. Math., 131 (2000), 321-334.
[13] P. SIMON, Investigations with respect to the Vilenkin system, Annales Univ. Sci. Budapest Eotv., Sect. Math., 28 (1985), 87-101.
[14] O. SZASZ, On the logarithmic means of rearranged partial sums of Fourier series, Bull. Amer. Math. Soc., 48 (1942), 705-711.
[15] N. Ya. VILENKIN, A class of complete orthonormal systems, Izv. Akad. Nauk. U.S.S.R., Ser. Mat., 11 (1947), 363-400.
[16] F. WEISZ, Martingale Hardy spaces and their application in Fourier analysis, Springer, Berlin-Heidelberg-New York, 1994.
[17] F. WEISZ, Cesáro summability of one and two-dimensional Fourier series, Anal. math. Studies, 5 (1996), 353-367.
[18] F. WEISZ, Hardy spaces and Cesáro means of two-dimensional Fourier series, Bolyai Soc. Math. Studies, (1996), 353-367.
[19] K. YABUTA, Quasi-Tauberian theorems, applied to the summability of Fourier series by Riesz’ s logarithmic means, Tohoku Math. Journ. 22 (1970), 117-129.
[20] A. ZYGMUND, Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959.

G. TEPHNADZE, Department of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia

E-mail address: giorgitephnadze@gmail.com