Slowly rotating charged black holes in anti-de Sitter third order Lovelock gravity

Rui-Hong Yue\textsuperscript{1}, De-Cheng Zou\textsuperscript{2}, Tian-Yi Yu\textsuperscript{1}, Peng Li\textsuperscript{3} and Zhan-Ying Yang\textsuperscript{2}

\textsuperscript{1}Faculty of Science, Ningbo University, Ningbo 315211, China
\textsuperscript{2}Department of Physics, Northwest University, Xi’an, 710069, China
\textsuperscript{3}Institute of Modern Physics, Northwest University, Xi’an, 710069, China

In this paper, we study slowly rotating black hole solutions in Lovelock gravity ($n = 3$). These exact slowly rotating black hole solutions are obtained in uncharged and charged cases, respectively. Up to the linear order of the rotating parameter $a$, the mass, Hawking temperature and entropy of the uncharged black holes get no corrections from rotation. In charged case, we compute magnetic dipole moment and gyromagnetic ratio of the black holes. It is shown that the gyromagnetic ratio keeps invariant after introducing the Gauss-Bonnet and third order Lovelock interactions.

I. INTRODUCTION

It is believed that Einstein’s gravity is a low-energy limit of a quantum theory of gravity. Considering the fundamental nature of quantum gravity, there should be a low-energy effective action which describes gravity at the classical level \[^1\]. In addition to Einstein-Hilbert action, this effective action also involves higher derivative terms, and these higher derivative terms can be seen in the renormalization of quantum field theory in curved spacetimes \[^2\], or in the construction of the low-energy effective action of string \[^3\]. In the AdS/CFT correspondence, the higher derivative terms can be regarded as the corrections of large $N$ expansion in the dual conformal field theory. In general, the higher powers of curvature can give rise to a fourth or even higher order differential equation for the metric, and it will introduce ghosts and violate unitarity. So, the higher derivative terms may be a source of inconsistencies. However, Zwiebach and Zumino \[^4\] found that the ghosts can be avoided

\[^*\] Email:yueruihong@nbu.edu.cn
if the higher derivative terms only consist of the dimensional continuations of the Euler densities, leading to second order field equations for the metric [5]. This higher derivative theory is so-called Lovelock gravity [6], and the equations of motion contain the most symmetric conserved tensor with no more than second derivative of the metric. In this paper, we indulge ourselves with the first four terms of the Lovelock gravity, corresponding to the cosmological constant, Einstein term, Gauss-Bonnet and third order Lovelock terms respectively. So far, the exact static and spherically symmetric black hole solutions in third order Lovelock gravity were first found in [7], and the thermodynamics have been investigated in [5, 7, 8].

On the other hand, a great many attentions have been focused on these static and spherically symmetric black hole solutions by the effect of rotation. In the AdS/CFT correspondence, the rotating black holes in AdS space are dual to certain CFTs in a rotating space [9], while charged ones are dual to CFTs with chemical potential [10]. In general relativity, the higher dimensional rotating black holes have been recently studied and some exact analytical solutions of Einstein’s equation were found in [11, 12].

Since the equations of motion of Lovelock gravity are highly nonlinear, it is rather difficult to obtain the explicit rotating black hole solutions. A new method is needed. In order to find rotating black hole solutions in the presence of dilaton coupling electromagnetic field in Einstein(-Maxwell) theory, Horne and Horowitz [13] first developed a simple perturbative method that a small angular momentum as a perturbation was introduced into a non-rotating system, and obtained slowly rotating dilaton black hole solutions. Until now, this approach has been extensively discussed in general relativity [14]. Taking advantage of this crucial tool, Kim and Cai [15] studied slowly rotating black hole solutions with one nonvanishing angular momentum in the Gauss-Bonnet gravity, here the rotating parameter $a$ appears as a small quantity. Recently, some numerical results about the existence of five-dimensional rotating Gauss-Bonnet black holes with angular momenta of the same magnitude have been presented in [16]. In addition, it is worth to mention that some rotating black brane solutions have been investigated in the second (Gauss-Bonnet) and third order Lovelock gravity [17]. Nevertheless, these solutions are essentially obtained by a Lorentz boost from corresponding static ones. They are equivalent to static ones locally, although not equivalent globally. In this paper, we will analyze slowly rotating black hole solutions in third order Lovelock gravity. Following the Horne and Horowitz’s perturbative method, a
small rotating parameter $a$ as a perturbation into the metric will be introduced. The slowly rotating black hole solutions will be studied in uncharged and charged cases, and then we analyze some physical properties of these black holes.

The outline of this paper is as follows. In section II, we review the $(n = 3)$ Lovelock gravity, and derive the equations of gravitation and electromagnetic fields. Then, we explore slowly rotating uncharged black holes and obtain the slowly rotating black hole solution $f(r)$ and expression for function $p(r)$ by putting a new form metric into these equations. Moreover, we discuss some related physical properties of the black holes. In section III we set about learning slowly rotating black holes in charged case. Section IV is devoted to conclusions and discussions.

II. SLOWLY ROTATING BLACK HOLES IN UNCHARGED CASE

A. Action and Black Hole Solutions

The action of third order Lovelock gravity in the presence of electromagnetic field can be written as

$$\mathcal{I} = \frac{1}{16\pi G} \int d^Dx \sqrt{-g} \left( -2\Lambda + \alpha_1 \mathcal{L}_1 + \alpha_2 \mathcal{L}_2 + \alpha_3 \mathcal{L}_3 - 4\pi GF_{\mu\nu}F^{\mu\nu} \right),$$

(1)

where $\alpha_i$ is the $i$-th order Lovelock coefficients, $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$ is electromagnetic field tensor with a vector potential $A_\mu$. The Einstein term $\mathcal{L}_1$ equals to $R$, and the second order Lovelock (Gauss-Bonnet) term $\mathcal{L}_2$ is $R_{\mu\nu\sigma\kappa}R^{\mu\nu\sigma\kappa} - 4R_{\mu\nu}R^{\mu\nu} + R^2$. $\mathcal{L}_3$ measures the third order Lovelock term which described as

$$2R_{\mu\nu\sigma\kappa}R^{\mu\nu\sigma\kappa}R_{\sigma\kappa\tau}R_{\mu\nu}^{\tau\rho} + 8R_{\mu\nu\sigma\kappa}R^{\mu\nu\sigma\kappa}R_{\nu\tau}^{\sigma\kappa}R_{\mu\kappa}^{\tau\rho} + 24R_{\mu\nu\sigma\kappa}R_{\sigma\kappa\tau\rho}R_{\mu\nu}^{\tau\rho} +$$

$$3RR_{\mu\nu\sigma\kappa}R_{\mu\nu\sigma\kappa} + 24R_{\mu\nu\sigma\kappa}R_{\mu\nu}R_{\sigma\kappa} + 16R_{\mu\nu}R_{\nu\sigma}R_{\mu\sigma} - 12RR_{\mu\nu}R_{\mu\nu} + R^3.$$  

(2)

Varying the action with respect to the metric tensor $g_{\mu\nu}$ and electromagnetic tensor field $F_{\mu\nu}$, the equations for gravitation and electromagnetic fields are

$$\Lambda g_{\mu\nu} + \alpha_1 G^{(1)}_{\mu\nu} + \alpha_2 G^{(2)}_{\mu\nu} + \alpha_3 G^{(3)}_{\mu\nu} = 8\pi GT_{\mu\nu},$$

(3)

$$\partial_\mu(\sqrt{-g}F^{\mu\nu}) = 0.$$  

(4)
Here \( T_{\mu \nu} = F_{\mu \alpha} F_{\nu}^{\alpha} - \frac{1}{2} g_{\mu \nu} F_{\alpha \beta} F^{\alpha \beta} \) is the energy-momentum tensor of electromagnetic field, \( G_{\mu \nu}^{(1)} = R_{\mu \nu} - \frac{1}{2} R g_{\mu \nu} \) is Einstein tensor, and \( G_{\mu \nu}^{(2)} \) and \( G_{\mu \nu}^{(3)} \) are the second order Lovelock(Gauss-Bonnet) and third order Lovelock tensors respectively:

\[
G_{\mu \nu}^{(2)} = 2(R_{\mu \sigma \kappa \tau} R_{\nu}^{\sigma \kappa \tau} - 2 R_{\mu \rho \sigma \tau} R_{\rho}^{\sigma \tau} - 2 R_{\rho \sigma} R_{\mu \rho}^{\sigma} + R R_{\mu \nu}) - \frac{1}{2} L_2 g_{\mu \nu},
\]

\[
G_{\mu \nu}^{(3)} = 3 R_{\mu \nu} R^2 - 12 R R_{\mu}^{\sigma} R_{\sigma \nu} - 12 R_{\mu \nu} R_{\alpha \beta} R_{\alpha \beta}^{\mu \nu} + 24 R_{\mu}^{\alpha R_{\alpha \beta} R_{\beta \nu}} + 24 R_{\mu}^{\alpha R_{\alpha \beta} R_{\beta \nu}} + 24 R_{\mu}^{\alpha R_{\alpha \beta} R_{\beta \nu}} - 12 R_{\mu \alpha \beta \sigma} R_{\nu}^{\sigma \alpha \beta \kappa} + 24 R_{\mu \alpha \beta \sigma} R_{\nu}^{\sigma \alpha \beta \kappa} - 12 R_{\mu \alpha \beta \sigma} R_{\nu}^{\sigma \alpha \beta \kappa} - \frac{1}{2} L_2 g_{\mu \nu}.
\]

 Usually, the action Eq. (1) is supplemented with surface terms (a Gibbons-Hawking surface term) whose variation will cancel the extra normal derivative term in deriving the equation of motion Eq. (3). However, these surface terms is not necessary in our discussion and will be neglected. Note that for third order Lovelock gravity, the nontrivial third term requires the dimension(D) of spacetime satisfying \( D \geq 7 \).

The metric of slowly rotating spacetime can be written as [15]

\[
ds^2 = -f(r) dt^2 + \frac{1}{f(r)} dr^2 + \sum_{i=j=3}^{D} r^2 h_{ij} dx^i dx^j - 2a r^2 \rho(r) h_{44} dt d\phi,
\]

where \( h_{ij} dx^i dx^j \) represents the metric of a \((D - 2)\)-dimensional hyper-surface with constant curvature scalar \(-(D - 2)(D - 3)k\) and volume \( \Sigma_k \), here \( k \) is a constant. Without loss of generality, one can take \( k = 0 \) or \( \pm 1 \). When \( k = 1 \), one has \( h_{ij} dx^i dx^j = d\theta^2 + \sin^2 \theta d\phi^2 + \cos^2 \theta d\Omega^2_{D-4} \) and \( h_{44} = \sin^2 \theta \); when \( k = 0 \), \( h_{ij} dx^i dx^j = d\theta^2 + d\phi^2 + dx^2_{D-4} \) and \( h_{44} = 1 \); when \( k = -1 \), \( h_{ij} dx^i dx^j = d\theta^2 + \sinh^2 \theta d\phi^2 + \cosh^2 \theta d\Omega^2_{D-4} \) and \( h_{44} = \sinh^2 \theta \), where \( dx^2_{D-4} \) is the line element of a \((D - 4)\)-dimensional Ricci flat Euclidian surface. While \( d\Omega^2_{D-4} \) denotes the line element of a \((D - 4)\)-dimensional unit sphere.

For the convenience future, we introduce new parameters \( \tilde{\alpha}_i \)

\[
\tilde{\alpha}_0 = \frac{2\Lambda}{(D - 1)(D - 2)}, \quad \tilde{\alpha}_i = \alpha_i \prod_{l=1}^{2i-2} (D - 2 - l), \quad (i = 1, 2, 3).
\]

Firstly, we consider the case without charge; namely \( T_{\mu \nu} = 0 \). Solving Eq. (3) for the metric given in Eq. (5) and discarding any terms involving \( a^2 \) or higher powers, we find that the
The $rr$-component of the equations of motion

\[
0 = (D - 7)\tilde{\alpha}_3(f(r) - k)^3 - (D - 5)\tilde{\alpha}_2(f(r) - k)^2 r^2 + (D - 3)\tilde{\alpha}_1(f(r) - k)r^4 \\
+ [3\tilde{\alpha}_3 f(r) - k] + 2\tilde{\alpha}_2 f(r) - k + \tilde{\alpha}_1 r^5]f'(r) + (D - 1)\tilde{\alpha}_0 r^6,
\]

where a prime denotes the derivative with respect to $r$. We notice that the angular momentum parameter $a$ does not appear in the $rr$-component. Thus, the slowly rotating black hole solutions $f(r)$ is identical to the static one in form. In Eq. (7), there exist one real and two complex solutions $f(r)$. Here, we only take the real one. This general solution $f(r)$ for D-dimensional slowly rotating black hole is

\[
f(r) = k + \frac{r^2}{3\tilde{\alpha}_3} \left[\tilde{\alpha}_2 + \frac{3}{\sqrt[3]{\sqrt{\gamma + \kappa^2(r) + \kappa(r)} - \sqrt{\gamma + \kappa^2(r) - \kappa(r)}}} \right],
\]

where

\[
\gamma = (3\tilde{\alpha}_1\tilde{\alpha}_3 - \tilde{\alpha}_2^2)^3, \quad \kappa(r) = \tilde{\alpha}_2^3 - \frac{9\tilde{\alpha}_1\tilde{\alpha}_2\tilde{\alpha}_3}{2} - \frac{27\tilde{\alpha}_3^2}{2} \left[\tilde{\alpha}_0 + \frac{16\pi GM}{(D - 2)\Sigma_k r^{D - 1}}\right].
\]

The integral constant $M$ is the gravitational mass. Hereafter, for simplicity, we take notation $m = \frac{16\pi GM}{(D - 2)\Sigma_k}$. It is easy to find that the solution is asymptotically flat for $\Lambda = 0$, AdS for negative value of $\Lambda$ and dS for positive value of $\Lambda$. We discuss the case of asymptotically AdS solutions in this paper. Thus, putting $\tilde{\alpha}_0 = -1/l^2$ in Eq. (9), we obtain

\[
\kappa(r) = \tilde{\alpha}_2^3 - \frac{9\tilde{\alpha}_1\tilde{\alpha}_2\tilde{\alpha}_3}{2} - \frac{27\tilde{\alpha}_3^2}{2} \left[-\frac{1}{l^2} + \frac{m}{r^{D - 1}}\right],
\]

\[
\varphi = -\frac{1}{3\tilde{\alpha}_3} \left[\tilde{\alpha}_2 + \frac{3}{\sqrt[3]{\sqrt{\gamma + \kappa^2(r) + \kappa(r)} - \sqrt{\gamma + \kappa^2(r) - \kappa(r)}}} \right],
\]

where $\varphi = (k - f(r))/r^2$.

Meanwhile, there exists off-diagonal $t\phi$-component of equations of motion, which is concerned with function $p(r)$. A tedious computation leads to a following equation

\[
\frac{A(r)}{2} p''(r) + \frac{[3A(r) + (D - 3)B(r)]}{2r} p'(r) = 0,
\]

where

\[
A(r) = \tilde{\alpha}_1 + 2\tilde{\alpha}_2 \varphi + 3\tilde{\alpha}_3 \varphi^2, \\
B(r) = \tilde{\alpha}_1 + 2\tilde{\alpha}_2 \varphi + 3\tilde{\alpha}_3 \varphi^2 + \frac{2r\tilde{\alpha}_2 \varphi'}{D - 3} + \frac{6r\tilde{\alpha}_3 \varphi^2 \varphi'}{D - 3}.
\]
It can be changed into a closed form

\[ [\log p'(r)]' = -\left[\frac{D}{r} + \frac{\tilde{\alpha}_1 + 2\tilde{\alpha}_2 \varphi + 3\tilde{\alpha}_3 \varphi^2}{\tilde{\alpha}_1 + 2\tilde{\alpha}_2 \varphi + 3\tilde{\alpha}_3 \varphi^2} \right]' \]

\[ = -[\log(r^D (\tilde{\alpha}_1 + 2\tilde{\alpha}_2 \varphi + 3\tilde{\alpha}_3 \varphi^2))]' . \] (13)

Therefore, the formal expression for function \( p(r) \) in third order Lovelock gravity is given by

\[ p(r) = \int \frac{C_2 dr}{r^D (\tilde{\alpha}_1 + 2\tilde{\alpha}_2 \varphi + 3\tilde{\alpha}_3 \varphi^2)} + C_1 , \] (14)

where the \( C_1 \) and \( C_2 \) are two integration constants.

Note that the exact static and spherically symmetric black hole solutions of third order Lovelock gravity have been found by working directly in the action \([7]\). Here, we adopt the same approach. We substitute the metric Eq. (5) into the action Eq. (11), and then it reduces to

\[ I = \frac{(D - 2)\Omega_{D-2}}{16\pi G} \int dt dr \left[ \frac{r^{D-1}}{l^2} + r^{D-1} \varphi (\tilde{\alpha}_1 + \tilde{\alpha}_2 \varphi + \tilde{\alpha}_3 \varphi^2) \right]' , \] (15)

where a prime denotes derivative to \( r \). Clearly, the Eq. (15) is similar in form to the static black hole solution \([7]\). By varying the action with respect to \( f(r) \), one obtains the equation of motion

\[ \left[ \frac{r^{D-1}}{l^2} + r^{D-1} \varphi (\tilde{\alpha}_1 + \tilde{\alpha}_2 \varphi + \tilde{\alpha}_3 \varphi^2) \right]' = 0 . \] (16)

Therefore, \( \varphi \) is determined by solving for the real roots of the following 3th-order polynomial equation

\[ \tilde{\alpha}_1 \varphi + \tilde{\alpha}_2 \varphi^2 + \tilde{\alpha}_3 \varphi^3 = \frac{m}{r^{D-1}} - \frac{1}{l^2} . \] (17)

We can easily verify by drawing a parallel between the Eqs. (14)(17)

\[ p(r) = \frac{C_2 \varphi}{m(1-D)} + C_1 . \] (18)

Let the constants \( C_2 = m(D - 1) \) and \( C_1 = 0 \), the function \( p(r) \) can be written as

\[ p(r) = -\varphi = \frac{1}{3\tilde{\alpha}_3} \left[ \tilde{\alpha}_2 + 3^{\frac{3}{2}} \sqrt{\gamma + \kappa^2(r)} + \kappa(r) - 3^{\frac{3}{2}} \sqrt{\gamma + \kappa^2(r) - \kappa(r)} \right] . \] (19)
B. Physical properties

As shown in Eq. (8), the slowly rotating black hole solution $f(r)$ is independent of $a$. Though most interesting physical properties also depend only on $a^2$, one can still extract some useful information from it. Based on discussions in the last subsection, we will investigate physical properties of slowly rotating black holes in this subsection.

According to the solution $f(r)$, the gravitational mass of the solution can be expressed as

$$M = \frac{(D - 2) \Sigma_k r_+^{D-7}}{16\pi G} (r_+^6/l^2 + k\alpha_1 r_+^4 + k^2\alpha_2 r_+^2 + k^3\alpha_3)$$  \hspace{1cm} (20)

and the Hawking temperature of the black hole is

$$T = \frac{f'(r_+)}{4\pi} = \frac{(D - 1)r_+^6/l^2 + (D - 3)k\alpha_1 r_+^4 + (D - 5)k^2\alpha_2 r_+^2 + (D - 7)k^3\alpha_3}{4\pi r_+ (\alpha_1 r_+^4 + 2k\alpha_2 r_+^2 + 3k^2\alpha_3)}.$$  \hspace{1cm} (21)

Thus, the angular momentum of the black hole

$$J = \frac{2aM}{D - 2} = \frac{a\Sigma_k r_+^{D-7}}{8\pi G} (r_+^6/l^6 + k\alpha_1 r_+^4 + k^2\alpha_2 r_+^2 + k^3\alpha_3).$$  \hspace{1cm} (22)

Another important thermodynamic quantity is black hole entropy. Usually, the entropy of black hole satisfies the so-called area law of entropy which states that the black hole entropy equals to one-quarter of the horizon area \cite{19, 20}. It applies to all kinds of black holes and black strings of Einstein gravity \cite{21}. However, in higher derivative gravity, the area law of the entropy is not satisfied in general \cite{22}. Since black hole can be regard as a thermodynamic system, it obeys the first law of thermodynamics $dM = T dS + \omega_H dJ$. Through the angular velocity $\omega_H$, one can get the entropy of black hole.

For the slowly rotating solution, the stationarity and rotational symmetry metric Eq. (5) admits two commuting Killing vector fields

$$\xi(t) = \frac{\partial}{\partial t}, \quad \xi(\varphi) = \frac{\partial}{\partial \varphi}. \hspace{1cm} (23)$$

The various scalar products of these Killing vectors can be expressed through the metric
components as follows

\[ \xi(t) \cdot \xi(t) = g_{tt} = -f(r), \]
\[ \xi(t) \cdot \xi(\phi) = g_{t\phi} = -ar^2 p(r) h_{44}, \]
\[ \xi(\phi) \cdot \xi(\phi) = g_{\phi\phi} = r^2 h_{44}. \]

To examine further properties of the slowly rotating black holes, as well as physical processes near such a black hole, we introduce a family of locally non-rotating observers.

The coordinate angular velocity for these observers that move on orbits with constant \( r \) and \( \theta \) and with a four-velocity \( u^\mu \) such that \( u \cdot \xi(\phi) = 0 \) is given by \[12, 15\]

\[ \Omega = \frac{-g_{t\phi}}{g_{\phi\phi}} = ap(r) \]
\[ = \frac{a}{3\tilde{\alpha}_3} \left[ \tilde{\alpha}_2 + \sqrt[3]{\sqrt{\gamma + \kappa^2(r)} + \kappa(r)} - \sqrt[3]{\sqrt{\gamma + \tilde{\kappa}^2(r)} - \tilde{\kappa}(r)} \right]. \] (24)

In contrast to the case of an ordinary kerr black hole in asymptotically flat spacetime, the angular velocity does not vanish at spatial infinity

\[ \Omega_\infty = \frac{a}{3\tilde{\alpha}_3} \left[ \tilde{\alpha}_2 + \sqrt[3]{\sqrt{\gamma + \kappa^2(r)} + \kappa(r)} - \sqrt[3]{\sqrt{\gamma + \tilde{\kappa}^2(r)} - \tilde{\kappa}(r)} \right] = a\Delta. \] (25)

where \( \kappa(r) = \tilde{\alpha}_2^3 - \frac{9\tilde{\alpha}_1\tilde{\alpha}_2\tilde{\alpha}_3}{2} + \frac{27\tilde{\alpha}_3^2}{2r^2} \) and \( \Delta \) is a constant.

When approaching the black hole horizon, the angular velocity turns to be \( \Omega_H = ap(r_+) = -a\varphi(r_+) = -\frac{ak}{r_+^2} \). This \( \Omega_H \) can be thought as the angular velocity of the black hole. The relative angular velocity with respect to a frame static at infinity is defined by

\[ \omega_H = \Omega_H - \Omega_\infty = -a\left( \frac{k}{r_+^2} + \Delta \right). \] (26)

Therefore, we get the entropy of slowly rotating black hole up to the linear order of the rotating parameter \( a \)

\[ S = \frac{\Sigma_k}{4G} r_+^{D-2} \left[ \tilde{\alpha}_1 + \frac{2(D - 2)k\tilde{\alpha}_2}{(D - 4)r_+^2} + \frac{3(D - 2)k^2\tilde{\alpha}_3}{(D - 6)r_+^4} \right], \] (27)

which recovers the results in \[7\].

III. SLOWLY ROTATING BLACK HOLES IN CHARGED CASE
In this section, we consider slowly rotating black hole solution with charge. In charged case, the situation is dramatically altered. Since the black hole rotates along the direction $\phi$, it will generate a magnetic field. Considering this effect, the gauge potential can be chosen 

$$A_\mu dx^\mu = A_t dt + A_\phi d\phi.$$  

Here we assume $A_\phi = -aQc(r)h_{44}$. As a result, the electro-magnetic field associated with the solution are

$$F_{tr} = -A'_t, \quad F_{r\phi} = -aQc'(r)h_{44}, \quad F_{\theta\phi} = -aQc(r)\frac{d(h_{44})}{d\theta}. \quad (28)$$

where $Q$, an integration constant, is the electric charge of the black hole and a prime denotes the derivative with respect to $r$. Form $t$-component of electromagnetic field equation $\partial_\mu(\sqrt{-g}F^{\mu\nu}) = 0$, one can find $F_{tr} = \frac{Q}{4\pi r D-4}$, which is the same as the static form. Unlike the static case, there exist the $\phi$-component of the electromagnetic field equation, and then the equation for function $c(r)$ reads

$$(r^{D-4}f(r)c'(r))' - 2k(D-3)r^{D-6}c(r) = \frac{p'(r)}{4\pi}. \quad (29)$$

To find the black hole solution, one may use any components of the equations of motion Eq. (3). While, these equations are influenced by charge and the $rr$-component reads

$$- \frac{Q^2 G}{2(D-2)\pi} r^{10-2D} = [3\tilde{\alpha}_3 r(f(r) - k)^2 - 2\tilde{\alpha}_2(f(r) - k)r^3 + \tilde{\alpha}_1 r^5] f'(r) \quad + (D - 7)\tilde{\alpha}_3(f(r) - k)^3 - (D - 5)\tilde{\alpha}_2(f(r) - k)^2 r^2 \quad + (D - 3)\tilde{\alpha}_1(f(r) - k)r^4 + (D - 1)\tilde{\alpha}_0 r^6. \quad (30)$$

Setting $\tilde{\alpha}_0 = -1/l^2$, we take the general charged solution $f(r)$ of D-dimensional slowly rotating black hole in third order Lovelock gravity

$$f(r) = k + \frac{r^2}{3\tilde{\alpha}_3} \left[ \tilde{\alpha}_2 + \sqrt[3]{\gamma_* + \kappa_*^2(r) + \kappa_*(r)} - \sqrt[3]{\gamma_* + \kappa_*^2(r) - \kappa_*(r)} \right], \quad (32)$$

where

$$\gamma_* = (3\tilde{\alpha}_1 \tilde{\alpha}_3 - \tilde{\alpha}_2^3), \quad \kappa_*(r) = \tilde{\alpha}_2 - \frac{9\tilde{\alpha}_1 \tilde{\alpha}_2 \tilde{\alpha}_3}{2} - \frac{27\tilde{\alpha}_3^2}{2} \left[ -1/l^2 + \frac{m}{r^{D-1}} - \frac{q^2}{r^{2D-4}} \right].$$

We also introduce $f(r) = k - r^2\varphi_*$ with

$$\varphi_* = -\frac{1}{3\tilde{\alpha}_3} \left[ \tilde{\alpha}_2 + \sqrt[3]{\gamma_* + \kappa_*^2(r) + \kappa_*(r)} - \sqrt[3]{\gamma_* + \kappa_*^2(r) - \kappa_*(r)} \right]. \quad (33)$$
The integration constant $M = \frac{(D-2)\Sigma}{16\pi G} m$ also is gravitational mass and the charge $Q^2$ is expressed as $Q^2 = \frac{2\pi(D-2)(D-3)}{G} q^2$.

In addition, there exist the off-diagonal $t\phi$-component of the equation of motion, which is concerned with functions $p(r)$ and $c(r)$

$$r^D (\tilde{\alpha}_1 + 2\tilde{\alpha}_2 \varphi_* + 3\tilde{\alpha}_3 \varphi_*^2) p(r)' = 4GQ^2 c(r) + C_3,$$  \hspace{1cm} (34)

where $C_3$ is a constant.

We substitute metric Eq. (5) into the action Eq. (1). Apparently, the forms of cosmological constant $\Lambda$, Einstein tensor $R$, Gauss-Bonnet tensor $\mathcal{L}_2$ and third order Lovelock tensor $\mathcal{L}_3$ get no correction from charge in the action and maintain the same form demonstrated in Eq. (15). As shown in Eq. (29), there exist two non-vanishing $F_{r\phi}$ and $F_{\theta\phi}$ which are proportional to parameter $a$. Discarding all terms involve $a^2$ and higher power, $F_{\mu\nu}F^{\mu\nu}$ in action Eq. (1) reduces to $F_{tr}F^{tr}$ which is the same as the counterpart in static case. Hence, $\varphi_*$ is determined by solving for the real roots of the following 3th polynomial equation [23]

$$\frac{1}{l^2} + \tilde{\alpha}_1 \varphi_* + \tilde{\alpha}_2 \varphi_*^2 + \tilde{\alpha}_3 \varphi_*^3 = \frac{m}{r^{D-1}} - \frac{q^2}{r^{2D-4}}.$$  \hspace{1cm} (35)

Based on Eqs. (30) (34) (35), we eventually find these explicit solutions for functions $p(r)$ and $c(r)$

\begin{align*}
  c(r) &= -\frac{1}{4\pi(D-3)r^{D-3}} \\
  p(r) &= -\varphi_* \\
  &= \frac{1}{3\tilde{\alpha}_3} \left[ \tilde{\alpha}_2 + \sqrt{\sqrt{\gamma_* + k_*^2(r)} + \kappa_0(r)} - \sqrt{\sqrt{\gamma_* + k_*^2(r)} - \kappa_0(r)} \right], \hspace{1cm} (36)
\end{align*}

where $C_3$ is equal to $m(D - 1)$.

In the rest of this section, let us explore some physical properties of charged black holes. From Eq. (32), the charged solutions get no corrections from the rotation up to linear order of $a$, and the introduction of charged $Q$ does not alter asymptotic behavior of the metric. Therefore, the expressions for the mass and angular momentum for two cases do not change.

Another particular characteristic of charged black hole is its gyromagnetic ratio. In general relativity, one of the remarkable facts about a Kerr-Newman black hole in asymptotically flat spacetime is that it can be assigned a gyromagnetic ratio $g$, just as an electron in the Dirac theory [12, 24]. For example, the gyromagnetic ratio $g$ of a charged rotating black hole is $g = 2$ in four-dimensional spacetime [25]. For slowly rotating third order Lovelock black
holes, the magnetic dipole moment is \( \mu = Qa \). According to \( J = \frac{2aM}{D-2} \), the gyromagnetic ratios is obtained

\[
g = \frac{2\mu M}{QJ} = D - 2.
\]

It is clear that the value of \( g \) is the same as the case in general relativity [12] and in Gauss-Bonnet gravity [15], and it only depends on the number of spacetime dimensions.

IV. CONCLUSION AND DISCUSSION

Based on the non-rotating charged black hole solutions, we successfully derived the slowly rotating (charged) black hole solutions by introducing a small rotating parameter \( a \) in third order Lovelock gravity. In the new metric, we choose \( g_{t\phi} = -ar^2p(r)h_{44} \) and discard any terms involving \( a^2 \) and higher powers, and then get the expression for function \( p(r) \), while the function \( f(r) \) still keep the form of the static solution. In charged case, the vector potential has an extra nonradial component \( A_\phi = -aQc(r)h_{44} \) due to the rotation of the black hole. Since the off-diagonal component of the stress-tensor of electro-magnetic field was related to \( c(r) \), the equations for \( p(r) \) and \( c(r) \) become two non-homogeneous differential equations. However, exact solutions for \( c(r) \) and \( p(r) \) have been separately expressed as \( c(r) = -\frac{1}{4r(D-3)^2}r^D \) and \( p(r) = -\varphi_* \). In fact, it is still valid for general \( \tilde{\alpha}_i \). Up to the linear order of the rotating parameter \( a \), the expressions of the mass, temperature, and entropy for the black holes got no correction from rotation in both uncharged and charged cases.

It is worth to point out that for third order Lovelock gravity, its Lagrangian \( L_3 \) involves eight terms constituted by the Ricci and the Riemann curvature tensors. Moreover, the resulting field equations, obtained after variation with respect to the metric tensor, have thirty-four terms. Considering a higher order Lovelock term, for instance the quartic Lovelock tensor, it involves twenty-five terms and each contains the product of four curvature terms. A general expression of the corresponding field equations was obtained in [26], while this work is very complicated. Therefore, taking into account all the relevant terms of the Lovelock action, then obtaining slowly rotating black hole solutions by solving the field equations for general space-times in high dimensions, is a formidable task. Note that the exact static and spherically symmetric black hole solutions of the Gauss-Bonnet gravity have
been found by working directly in the action $^{[18, 27]}$. Then, this simple method has been popularized in studying slowly rotating black holes in third order Lovelock gravity $^{[7]}$, even higher order Lovelock gravity $^{[23]}$. However, the metric should be taken a proper form. By using the same approach, the generalization of the present work may be further simplified and is now under investigation.

Acknowledgment

This work has been supported by the National Natural Science Foundation of China under grant No. 10875060.

[1] M. H. Dehghani, Phys. Rev. D 67, 064017 (2003) [arXiv:hep-th/0211191];
[2] N. D. Birrell and P. C. W. Davies, Cambridge, Uk: Univ. Pr. (1982) 340p; K. S. Stelle, Phys. Rev. D 16, 953 (1977); G. de Berredo-Peixoto and I. L. Shapiro, Phys. Rev. D 70, 044024 (2004) [arXiv:hep-th/0307030]; G. de Berredo-Peixoto and I. L. Shapiro, Phys. Rev. D 71, 064005 (2005) [arXiv:hep-th/0412249]; S. Nojiri, S. D. Odintsov and M. Sasaki, Phys. Rev. D 71, 123509 (2005) [arXiv:hep-th/0504052].
[3] D. Lust and S. Theisen, Lect. Notes Phys. 346, 1 (1989); S. O. Alekseev and M. V. Pomazanov, Grav. Cosmol. 3, 191 (1997); K. i. Maeda, N. Ohta and Y. Sasagawa, Phys. Rev. D 80, 104032 (2009) [arXiv:0908.4151 [hep-th]].
[4] B. Zwiebach, Phys. Lett. B 156, 315 (1985); B. Zumino, Phys. Rept. 137, 109 (1986).
[5] X. H. Ge, S. J. Sin, S. F. Wu and G. H. Yang, Phys. Rev. D 80, 104019 (2009) [arXiv:0905.2675 [hep-th]].
[6] D. Lovelock, J. Math. Phys. 12, 498 (1971).
[7] M. H. Dehghani and R. Pourhasan, Phys. Rev. D 79, 064015 (2009) [arXiv:0903.4260 [gr-qc]].
[8] M. H. Dehghani and M. Shamirzaie, Phys. Rev. D 72, 124015 (2005) [arXiv:hep-th/0506227].
[9] S. W. Hawking, C. J. Hunter and M. Taylor, Phys. Rev. D 59, 064005 (1999) [arXiv:hep-th/9811056].
[10] M. Cvetic and S. S. Gubser, JHEP 9907, 010 (1999) [arXiv:hep-th/9903132]; R. G. Cai and K. S. Soh, Mod. Phys. Lett. A 14, 1895 (1999) [arXiv:hep-th/9812121]; A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Phys. Rev. D 60, 064018 (1999) [arXiv:hep-th/9902170].
[11] G. W. Gibbons, H. Lu, D. N. Page and C. N. Pope, J. Geom. Phys. 53, 49 (2005) [arXiv:hep-th/0404008]; G. W. Gibbons, H. Lu, D. N. Page and C. N. Pope, Phys. Rev. Lett. 93, 171102 (2004) [arXiv:hep-th/0409155]; S. W. Hawking, C. J. Hunter and M. Taylor, Phys. Rev. D 59, 064005 (1999) [arXiv:hep-th/9811056].

[12] A. N. Aliev, Phys. Rev. D 75, 084041 (2007) [arXiv:hep-th/0702129].

[13] J. H. Horne and G. T. Horowitz, Phys. Rev. D 46 (1992) 1340 [arXiv:hep-th/9203083].

[14] A. Sheykhi and M. Allahverdizadeh, Phys. Rev. D 78, 064073 (2008) [arXiv:0809.1131 [gr-qc]]; A. N. Aliev, Mod. Phys. Lett. A 21, 751 (2006) [arXiv:gr-qc/0505003]; T. Ghosh and S. SenGupta, Phys. Rev. D 76, 087504 (2007) [arXiv:0709.2754 [hep-th]].

[15] H. C. Kim and R. G. Cai, Phys. Rev. D 77, 024045 (2008) [arXiv:0711.0885 [hep-th]].

[16] Y. Brihaye and E. Radu, Phys. Lett. B 661, 167 (2008) [arXiv:0801.1021 [hep-th]].

[17] M. H. Dehghani and R. B. Mann, Phys. Rev. D 73, 104003 (2006) [arXiv:hep-th/0602243]; M. H. Dehghani, G. H. Bordbar and M. Shamirzaie, Phys. Rev. D 74, 064023 (2006) [arXiv:hep-th/0607067]; S. H. Hendi and B. E. Panah, Phys. Lett. B 684 (2010) 77.

[18] J. T. Wheeler, Nucl. Phys. B. 268, 737 (1986); Nucl. Phys. B. 273, 732 (1986); D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985).

[19] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).

[20] S. W. Hawking, Nature 248, 30 (1974); J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

[21] C. J. Hunter, Phys. Rev. D 59, 024009 (1999) [arXiv:gr-qc/9807010]; S. W. Hawking, C. J. Hunter and D. N. Page, Phys. Rev. D 59, 044033 (1999) [arXiv:hep-th/9809035].

[22] T. Jacobson and R. C. Myers, Phys. Rev. Lett. 70, 3684 (1993) [arXiv:hep-th/9305016].

[23] R. C. Myers and J. Z. Simon, Phys. Rev. D 38, 2434 (1988); M. Banados, C. Teitelboim and J. Zanelli, Phys. Rev. D 49, 975 (1994) [arXiv:gr-qc/9307033]; J. P. Muniain and D. D. Piriz, Phys. Rev. D 53, 816 (1996) [arXiv:gr-qc/9502029]; R. G. Cai and K. S. Soh, Phys. Rev. D 59, 044013 (1999) [arXiv:gr-qc/9808067]; R. G. Cai, Phys. Lett. B 582, 237 (2004) [arXiv:hep-th/0311240]; R. G. Cai and N. Ohta, Phys. Rev. D 74, 064001 (2006) [arXiv:hep-th/0604088].

[24] B. Carter, Phys. Rev. 174, 1559 (1968).

[25] A. N. Aliev and V. P. Frolov, Phys. Rev. D 69, 084022 (2004) [arXiv:hep-th/0401095].

[26] C. C. Briggs, arXiv:gr-qc/9703074.

[27] R. G. Cai and Q. Guo, Phys. Rev. D 69, 104025 (2004) [arXiv:hep-th/0311020]; R. G. Cai, Phys. Rev. D 65, 084014 (2002) [arXiv:hep-th/0109133]; Y. M. Cho and I. P. Neupane, Phys.
Rev. D 66, 024044 (2002) [arXiv:hep-th/0202140].