Formation of “undercuts” on titanium case parts

M V Lavrentyeva and V V Mironenko
Department of Aircraft Construction and Maintenance, Institute of Aircraft Construction, Mechanical Engineering and Transport, Irkutsk National Research Technical University, 83, Lermontova str., Irkutsk, 664074, Russia

E-mail: mira.amazon@gmail.com

Abstract. The paper presents a variant of the formation of a part from a hard-to-form case. The calculation of the required area of the movable clamp depending on the stresses arising during the formation of the “undercut” is performed. The results of real and virtual experiments are presented. The conclusions about the applicability of the technology and the advantages that the use of a movable clamp gives are made.

1. Introduction
In sheet forging, there is an acute issue of the formation of sheet parts of their hard-to-form cases. These cases have physical and mechanical characteristics that allow them to work in very difficult conditions (such as high temperatures and loads). The problem is that these cases are either poorly processed in the cold state (realizable deformation in the cold state is from 5 to 7%), or require large formation actions to obtain the desired form. The most common solution is the formation of parts from heated cases. However, the introduction of heating during formation complicates the process and makes it necessary to ensure that a case does not absorb harmful impurities from the air during heating. In particular, titanium cases should not be heated in an uncontrolled environment, since there is a high risk of an alpha case and cracking of the part during operation.

The aircraft construction industry is an industry that widely uses sheet metal forging. It is believed that the parts for aircraft are the most complex in geometry and have the most stringent requirements. The industry also often uses sheet metal parts made of hard-to-form cases. In particular, they often try to use titanium case parts in loaded parts because they combine the best strength-to-weight ratio. However, most of the sheet metal parts are connected with other parts by means of such a complex element for formation as “undercut”.

2. Results
According to the articles [2–4], the main problem in the formation “undercut” is the appearance of two defects such as “underforging” and “fold”. This paper will show the use of technology with a movable clamp for the formation of a part from a hard-to-deform case OT-4 (Figure 1).

Figure 1 shows the characteristics of the “undercut” which allows determining the place of this part on the nomogram of the normative document regulating the formation of “undercuts”.
This regulation document shows that a part with these characteristics must be produced without defects. For verification, finite element modeling was carried out in PAM-STAMP-2G software package of French company ESI-Group. The process of elasto-formation in the cold state at a pressure of 100 MPa was simulated. As a result of modeling, a defect of the “underforging” type was found (Figure 3).

This simulation shows that this part, due to the hard-to-deform case has a defect appeared in the upper part of the nomogram. It is recommended to apply to this part the technology of the formation of a movable clamp described in the article [3].
In order to calculate the characteristics of the movable clamp, first it is necessary to determine the total deformation according to the method from the paper [3] (Formula (1), Figure 4):

$\varepsilon_{\text{tot}} = \frac{S_3 - S_4}{S_3} \cdot 100\% = \frac{1710,334 \text{ mm}^2 - 1511,767 \text{ mm}^2}{1710,334 \text{ mm}^2} \cdot 100\% = 11.61\%$ \hspace{1cm} (1)

As it can be seen from the stresses during undercut formation, this part can be produced only with the use of additional accessories such as a movable clamp [4]. Using the stresses in the sub-section, we calculate the required formation force on the basis of fact that all the effort is directed to the “undercut” area and at different moments of formation it is different and increases from the top to the full area (formula (3)).
This value allows determining the required surface for the distribution of pressure on the movable clamp in order to create this force (Formula (4)). Forming pressure is 20.5 MPa.

\[
S_{rec} = \frac{F_{rec}}{q_{rec}} = \frac{687021.769}{20.5 \text{MPa}} = 33633 \text{ mm}^2
\]

The following curve is set as the profile for the reference curve of the movable clamp (Figure 5)

![Figure 5. Reference curve of the movable clamp](image)

Using the method of least squares, we interpolate the profile of the curve by a polynomial of the 4th order and compose the equation of the surface for the movable clamp (formula (5):

\[
z(x, y) = -0.076615 + 0.812644 \cdot x + 0.013748 \cdot x^2 - 0.00104381 \cdot x^3 \\
+0.0000188464 \cdot x^4
\]

As a result, according to these data, a set of equipment for the formation of the studied part with a movable clamp was designed (Figure 6).

Using CAD system and the built-in system of integral calculus of the surface, the surface of the movable clamp was calculated (it was 33363.3009 mm2, which minimally diverged from the calculated one) (Figure 7).

Using this geometry of the tool, finite element modeling was carried out using a movable clamp with a pressure of 20 MPa. As a result, “underforging” was 0.111 mm. in fact, it was absent (Figure 8).
Figure 6. Formation tool kit

Figure 7. Contact surface of the movable clamp

Figure 8. Distribution of the “underforging” defect over the part (maximum value was 0.054 mm.)
According to the analytical calculation and created geometric models, a set of equipment was produced (Figure 9).

![Tool kit for the formation of a titanium part](image)

Figure 9. Tool kit for the formation of a titanium part

As a result of the formation using QFC 1.2x3-1000 press at a pressure of 20.5 MPa, the part was molded using a movable clamp (Figure 10).

In order to confirm the efficiency of the method and to prove the impossibility of the production of this part without a movable clamp, a real experiment was carried out on a QFC 1.2x3-1000 production unit at a pressure of 100 MPa (Figure 11).

Visually we can estimate that the undercut zone is not formed even at maximum pressure (Figure 10), while with the proposed technology the pressure is 5 times less and the part is produced (Figure 11).

![Titanium formed part with a movable clamp](image)

Figure 10. Titanium formed part with a movable clamp
3. Conclusion

As a result, it is shown that the proposed technology can form undercuts on parts made of hard-to-deform cases without temperature exposure.

References

[1] Govorkov A S, Lavrenteva M V and Fokin I V 2018 Mathematical modeling of making mechanical engineering products based on an information model MATEC Web of Conferences 224 02022. DOI: https://doi.org/10.1051/matecconf/201822402022
[2] Chumachenko E, Aksenov S and Logashina I 2012 Optimization of superplastic forming technology Metal 2012 – Conf. Proc., 21st int. conf. on metallurgy and materials pp 295-301
[3] Sevastyanov G, Chernomas V, Marin S and Sevastyanov A 2015 Numerical simulation features of continuous casting process form ad31 (a (greek passage)31) alloy using finite-difference and finite-element models Non-Ferrous Metals 2015(2) 25-29
[4] Govorkov A S, Zhilyaev A S and Fokin I V 2018 Method of transition from 3d model to its ontological representation in aircraft design process J. of Phys.: Conf. Ser. 1015(3) 032046
[5] Lavrentiev M and Govorkov A 2017 Using a discrete product model to determine the design element junctures MATEC Web of Conferences 129 03002. DOI: 10.1051/matecconf/201712903003
[6] Lavrentiev M V, Chimitov P E and Govorkov A S 2019 Development of a computer aided design system for assembly equipment of MC-21 aircraft IOP Conf. Ser.: Mater. Sci. Eng. 632 012099. DOI:10.1088/1757-899X/632/1/012099
[7] Fedorchuk M and Pak I 2005 Rigidity and polynomial invariants of convex polytopes Duke Math. J. 129(2) 371-404. DOI:10.1215/S0012-7094-05-12926-X.
[8] Pokrasin M, Semashko N, Krupskii R and Kupov A 2004 Effect of electric-pulse treatment on the dislocation structure of ot4 titanium alloy Russian metallurgy (Metally) 2004(6) 595-600
[9] Mironenko V V and Larionova Y N 2019 Calculation of process parameters of pieces containing irregular lateral cuttings, which forming leads to such defect as “corrugation forming” IOP Conf. Ser.: Mater. Sci. Eng. 632 012102
[10] Mironenko V V and Larionova Y N 2019 Mathematical model to calculate key parameters of forming irregular lateral cuttings on sheet articles to eliminate such defects as ”under-forging” IOP Conf. Ser.: Mater. Sci. Eng. 632 012101
[11] Mokritskii B, Vereshchagin V, Mokritskaya E, Pyachin S, Belykh S and Vereshchagin A 2016 Composite hard-alloy end mills Russian Engineering Research 36(12) 1030-1032
[12] Pal-Val P, Natsik V, Pal-Val L, Loginov Y, Demakov S and Illarionov A 2014 Unusual young's modulus behavior in ultrafine-grained and microcrystalline copper wires caused by texture changes during processing and annealing Mater. Sci. Eng. A 618 9-15
[13] PAM-STAMP 2012 User’s Guide, ESI Group, 2012 – 960
[14] Fabík R, Kliber J, Kubina T, Mamuzić I and Aksenov S 2012 Mathematical modelling of flat and long hot rolling based on finite element methods (FEM) Metalurgija (Sisak, Yugoslavia) 51(3) 341-344
[15] Khusainov R, Sabirov A and Mubarakshin I 2017 Study of deformations field in the working zone of vertical milling machine Procedia Engineering 206 1069-1074
[16] Belykh S and Perevalov A 2013 Modelling of bending rolls of extruded nonsymmetric in the msc marc European Researcher 5-1(48) 1140-1146
[17] Bourkine S, Korshunov E, Loginov Y, Shakhapazov E, Nassibov A and Babailov N 1999 Projection of steel wire producing technology beyond the continuous-casting of an ingot using a direct combination of casting and metal forming J. of Materials Processing Technology 86(1-3) 278-290
[18] Sokolnikov R A, Bozheeva T V and Govorkov A S 2020 Development of methodology for formalized selection of technological operations when designing technological process manufacturing of machinery J. of Phys.: Conf. Ser. 1582(1)
[19] Roshchupkin V, Pokrasin M, Chernov A, Sobol N, Semashko N, Krupskii R and Kupov A 2005 Deformation of VT20 and ot4 titanium alloys subjected to a high-density pulse current during static loading Russian metallurgy (Metally) 2005(4) 350-354
[20] Roshchupkin V, Semashko N, Krupskii R, Kupov A and Shport V 2003 Temperature and strain changes in vt20 titanium alloy under electric-pulse effect High Temperature 41(5) 633-638
[21] Roshchupkin V, Krupskii R, Levchuk T and Semashko N 2002 Methodical aspects of exciting acoustic emission of magnetostriction Russian metallurgy (Metally) 4 361-362
[22] Mironenko V and Shmakov A 2018 Movable-clamp undercutting of sheet metal parts Advances in Engineering Research 158 271-275
[23] Erisov Y, Grechnikov F and Surudin S 2016 Yield function of the orthotropic material considering the crystallographic texture Structural Engineering and Mechanics 58(4) 677-687
[24] Erisov Y, Surudin S, Shlyapugin A and Grechnikov F 2016 The end-to-end computer simulation of casting and subsequent metal forming Key Engineering Materials 685 167-171
[25] Isachenkov E I 1967 Rubber and liquid forging (Moscow: Mashinostroenie) 367 p