Protective Effect of Di-3n-butylphthalide on Learning and Memory Impairment Induced by Chronic Intermittent Hypoxia-Hypercapnia Exposure

Jing-jing Min1,2*, Xin-long Huo1*, Ling-yun Xiang1, Yan-qing Qin1, Ke-qin Chai1, Bin Wu3, Lu Jin1 & Xiao-tong Wang1

1The Center of Neurology and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China, 2The First People’s Hospital of Huzhou, Huzhou 313000, China, 3Wenzhou Medical University, Wenzhou 325027, China.

Cognitive impairment is a common finding in patients with chronic obstructive pulmonary disease (COPD), but little attention has been focused on therapeutic intervention for this complication. Chronic intermittent hypoxia hypercapnia (CIHH) exposure is considered to be responsible for the pathogenesis of COPD. Di-3n-Butylphthalide (NBP), extracted from Apium graveolens Linn, has displayed a broad spectrum of neuroprotective properties. Our study aimed to investigate the potential of NBP on CIHH-induced cognitive deficits. The cognitive function of rats after CIHH exposure was evaluated by the Morris water maze, which showed that the NBP treated group performed better in the navigation test. NBP activated BDNF and phosphorylated CREB, the both are responsible for neuroprotection. Additionally, NBP decreased CIHH induced apoptosis. Moreover, NBP further induced the expression of HIF-1α, accompanied by the up-regulation of the autophagy proteins Bnip3, Beclin-1 and LC3-II. Finally, NBP also reversed the decreased expression of SIRT1 and PGC-1α, but the expression of Tfam, Cox II and mtDNA remained unchanged. These results suggested that the neuroprotective effects of NBP under CIHH condition possibly occurred through the inhibition of apoptosis, promotion of hypoxia-induced autophagy, and activation of the SIRT1/PGC-1α signalling pathway, while stimulation of mitochondrial biogenesis may not be a characteristic response.

Chronic obstructive pulmonary disease (COPD) is a debilitating disease characterised by incompletely reversible limitations in airflow. Airflow obstruction is the most common manifestation of COPD, but increasing reports have revealed its harmful effect on cognitive functions, which cannot be fully explained by coincidence or by depression1. Countless studies have indicated the association or causation between the suffering of hypoxia- hypercapnia and the progression of cognitive impairment in patients with COPD2,3. This phenomenon has aroused increasing attention, but still lacks appropriate treatment. The animal model of chronic intermittent hypoxia hypercapnia (CIHH) in our study mimicked the pathophysiological process in patients with COPD4. In our previous study, we confirmed that after 2 weeks of CIHH exposure, the learning and memory ability of the experimental rats deteriorated and became worse as the exposure time was lengthened5,6.

Emerging studies suggest that neuronal apoptosis is a major contributor to hypoxia-induced cognitive lesions5. The Bcl-2 family members are major regulators of the intrinsic (mitochondrial) apoptotic pathway and act by shifting the balance between anti-apoptotic and pro-apoptotic members of the pathway6. Caspase-3, as the final executor of the caspase enzyme family, is indispensable for apoptotic chromatin condensation and DNA fragmentation7.

Intracellular aggregation of altered and misfolded proteins is a common feature of most neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease or Huntington’s disease8,9. Then, what goes wrong with these diseases? Increasing evidence highlights the role of autophagy in the clearance of these toxic products. Autophagy, which literally means “self-sacrificing”, has been considered an active cell death pathway for decades. Only recently autophagy has been recognised as a cell survival pathway due to its irreplaceable role in degrading altered proteins and organelle turnover. However, many questions on the role of autophagy or the complicated interplay between apoptosis and autophagy are still debated. Regardless of the controversies, basal autophagy...
plays a vital role in preventing the accumulation of abnormal organelles and proteins. Under stresses such as hypoxia or ischemia, defective autophagy or alterations in autophagy-related genes cause the accumulation of aggregated proteins and neurodegeneration, even in the absence of pathogenesis-related proteins^{11,12}. Hypoxia-inducible factor 1α (HIF-1α) is an essential mediator of hypoxic signalling that regulates the transcription of hundreds of genes. Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (Bnip3), a member of the Bcl-2 pro-apoptotic family and a known HIF-1α target gene, has been shown to trigger autophagy under hypoxic conditions^{13,14}.

Mitochondria are highly dynamic organelles that produce adenosine triphosphate (ATP) for the excitability and survival of neurons. Compared with other regions, the neurons of the hippocampus have an intense demand for mitochondria and are more vulnerable to hypoxia^{15}. SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase, is activated by an increasing NAD+/NADH ratio. As a factor regulating longevity and DNA repair, SIRT1 can also deacetylate and activate PGC-1α^{16,17}. PGC-1α co-activates transcription factors, including NRF-1 and NRF-2, for the promoters of mitochondrial transcription factor A (Tfam) to induce mitochondrial biogenesis and respiration. The biogenesis of mitochondria is a process that dynamically regulates the mitochondrial number and function under diverse pathophysiological conditions. SIRT1-mediated deacetylation and activation of PGC-1α also play protective roles against neurodegeneration^{18,17}.

Di-3n-butylphthalide (NBP), a racemic mixture of an optical isomer, is extracted from the seeds of *Apium graveolens* Linn^{18}. It is widely used for its therapeutic effects on ischemic strokes^{19}. It has been shown to possess a range of pharmacological properties including anti-inflammatory, anti-vasospastic, anti-thrombic and anti-oxidative properties^{20,21}. Additionally, NBP has also been shown to have neuroprotective effects against mitochondrial damage and anti-apoptosis in cerebral ischemia^{22,23}.

Presently, considerable efforts have been made to develop nootropics. Although some drugs such as memantine and acetylcholinesterase (AChE) inhibitors have been shown to ameliorate the symptoms of cognitive impairment in clinical studies, none of these drugs mediate the cognitive impairment process. A recent study indicated that rats with vascular dementia, long-term treatment with NBP could attenuate the learning and memory deficits and promote angiogenesis, as well as increase the expression of growth factors, VEGF, the VEGF receptor and bFGF^{24}. To the best of our knowledge, there is little data concerning the neuroprotective properties of NBP on CIHH-induced impaired cognitive function. In the current study, we attempted to determine whether chronic NBP administration could reverse CIHH-induced learning and memory deficits with a specific focus on apoptosis, hypoxia-induced autophagy and the SIRT1/PGC-1α signalling pathway. We hope to expand the understanding and provide new insights into the potential therapeutic value of NBP for neurodegenerative diseases.

Results

Chronic NBP treatment ameliorated spatial learning and memory ability in CIHH rats. After 2 weeks of CIHH exposure, rats displayed worse performances when locating a hidden platform, but this disruption was ameliorated by chronic NBP treatment (Fig. 1A). On the first and second days of training, each group demonstrated no significant difference in the escape latency time. However, from the third day forward, there were significantly (p < 0.05) prolonged latencies in the hypoxia-hypercapnia group (HH) and hypoxia-hypercapnia+ vegetable oil group (HY) compared with those of the normal control group (NC) (Fig. 1B). However, the rats subjected to NBP treatment showed a significant decrease in the latencies relative to HH group (Fig. 1B)(p < 0.05). This similar tendency also appeared in the measurement of the distance moved, which showed a significant difference from the fourth day forward (Fig. 1C)(p < 0.05). On the last day of the probe trial, each group showed no difference (Fig. 1D) (p > 0.05) which might be due to the small platform in a big pool.

Chronic NBP treatment promotes BDNF expression and CREB phosphorylation. To further confirm our findings from Morris water maze, we measured the cognition related proteins BDNF and CREB. Both are necessary components for the learning and memory formation processes. The BDNF and CREB expression were decreased after CIHH exposure, while treatment with NBP promoted BDNF expression and CREB phosphorylation (Fig. 2)(p < 0.05).

Chronic NBP treatment decreased apoptotic cell death in CIHH rats. We examined the changes of the anti-apoptotic factor Bcl-2 and the pro-apoptotic factor Bax. Increasing expression of both Bcl-2 and Bax were present after 2 weeks of CIHH exposure as determined by Western blotting. NBP treatment substantially antagonised the increase in Bax, but further promoted Bcl-2 expression (Fig. 3A)(p < 0.05). To confirm that the anti-apoptotic mechanism was indeed involved in the protective effect of NBP, we measured the expression of caspase-3 and the number of positive cells by the TUNEL assay. NBP administration counteracted the caspase-3 activation (Fig. 3A)(p < 0.05). Consistent with down regulating apoptotic factors, TUNEL staining showed a decreased number of positive cells after NBP therapy (Fig. 3B)(p < 0.05).

Chronic NBP treatment further induced HIF-1α-dependent autophagy in CIHH rats. Transmission electron microscopy showed that autophagosomes were present in the HH group and were evident in cells exposed to CIHH and treated with NBP (Fig. 4A). To molecularly confirm the induction of autophagy, we used Western blotting to measure the level of autophagy-related proteins. CIHH exposure induced an increase in Beclin-1 and the lipidated form of LC3(LC3-II), and both further improved after NBP administration (Fig. 4B) (p < 0.01). To unmask the precise mechanisms underlying the activation of autophagy, we further measured the alteration of HIF-1α, which has been implicated in hypoxia-induced autophagy as an adaptive metabolic response^{25}. Western blotting and immunohistochemistry showed that the expression of HIF-1α was indeed improved under CIHH exposure and was further expressed after NBP administration (Fig. 4B and Fig. 4C) (p < 0.05), which was consistent with the expression of Bnip3, a known HIF-1α target protein (Fig. 3B) (p < 0.05). We speculated that the up-regulated Beclin-1 may be correlated with the increasing combination of Bnip3 and Bcl-2, which was confirmed by double immunofluorescence of the colocalisation of both Bnip3 and Bcl-2 (Fig. 5).

Chronic NBP treatment improved SIRT1 and PGC-1α expression, but showed no conclusive evidence for mitochondrial biogenesis. Increasing evidence has indicated that SIRT1 and PGC-1α may be neuroprotective and might be potential targets to treat neurodegenerative diseases^{26,27}. In the presence of CIHH-induced cognitive lesions, there were significant decreases in relative protein levels of SIRT1 and PGC-1α (Fig. 6A) (p < 0.05), but levels of both proteins significantly increased in response to NBP treatment (Fig. 6A) (p < 0.05). Because PGC-1α often serves as a master regulator of mitochondrial biogenesis, we investigated the mitochondrial DNA (mtDNA) copy number by real-time PCR to determine whether mitochondrial biogenesis was involved. The results indicated increasing mtDNA content under CIHH conditions (Fig. 6B) (p < 0.05) but no alteration after NBP exposure (Fig. 6B) (p > 0.05). To further substantiate this result, we observed Tfam and COX II expression at the translational level. Tfam is a direct regulator of mitochondrial DNA replication/transcription. COX II is one of the mitochondrial DNAs encoding protein which comprises the electron transport chain.
transport chain. CIHH exposure down regulated the expression of both Tfam and COX II (Fig. 6B) \((p < 0.05) \), but chronic NBP treatment was unable to change this reduction in expression (Fig. 6B) \((p > 0.05) \).

Discussion

In the present study, we introduced the CIHH rat model to estimate the protective effects of NBP on cognitive function. Consistent with results from our previous study, behavioural data obtained from the

Figure 1 | NBP treatment improved the spatial learning and memory deficits in CIHH rats. (A) The pathway map to search for the hidden platform. (B) The mean escape latency time that the rats spent finding the hidden platform. (C) The distance moved to reach the hidden platform (D) The number of crossings of the location of the former platform. Values are expressed as the mean ± SEM. *\(p < 0.05 \) vs the NC group, †\(p < 0.05 \) vs the HH group. NC = normal control group; HH = hypoxia-hypercapnia group; HY = hypoxia-hypercapnia + vegetable oil group; HN = hypoxia-hypercapnia + NBP group.

Figure 2 | Chronic NBP treatment promotes BDNF expression and CREB phosphorylation. Representative Western blots for BDNF and pCREB are shown. GAPDH was used as a loading control. The optical density values were normalised to their respective GAPDH loading control. The gels were run under the same experimental conditions, and cropped blots are used here. The full-length gel images are available in Supplementary Fig. 2. Values are expressed as the mean ± SEM. *\(p < 0.05 \) vs the NC group, †\(p < 0.05 \) vs the HH group. NC = normal control group; HH = hypoxia-hypercapnia group; HY = hypoxia-hypercapnia + vegetable oil group; HN = hypoxia-hypercapnia + NBP group.
prevalent neurotrophins that modulate synaptic activity, to exert its neuroprotective effects.

Brain-derived neurotrophic factor (BDNF) is one of the most prevalent neurotrophins that modulate synaptic activity. The expression of BDNF is partially regulated by the transcription factor cAMP responsive element-binding (CREB), which represents a major integrator of signalling that influences neuronal plasticity and survival. Learning and memory performance correlated well with the increases of BDNF and activation of CREB in the hippocampus. Our study indicated that NBP treatment increased the expression of BDNF and promoted the phosphorylation of CREB, which is consistent with the Morris water maze results.

Apoptosis is characterised by DNA fragmentation and an upregulation of pro-apoptotic proteins. It plays a pivotal role in oxygen deprivation induced cognitive decline through attenuating mitochondrial apoptosis, promoting BDNF protein expression and CREB activation, as well as further improving the level of hypoxia-induced autophagy. We also provide evidence that SIRT1 induced deacetylation, and the resulting activation of PGC-1α may also be involved in the neuroprotective mechanism, but found no conspicuous evidence for mitochondrial biogenesis. Although our current study indicates the anti-apoptosis pathway is involved, the induction of hypoxia-induced autophagy and the activation of the SIRT1/PGC-1α signalling pathway also constitute important aspects of NBP action, we cannot rule out that NBP may interact with other biomolecules, in addition to those mentioned above, to exert its neuroprotective effects.

Brain-derived neurotrophic factor (BDNF) is one of the most prevalent neurotrophins that modulate synaptic activity. The expression of BDNF is partially regulated by the transcription factor cAMP responsive element-binding (CREB), which represents a major integrator of signalling that influences neuronal plasticity and survival. Learning and memory performance correlated well with the increases of BDNF and activation of CREB in the hippocampus. Our study indicated that NBP treatment increased the expression of BDNF and promoted the phosphorylation of CREB, which is consistent with the Morris water maze results.

Apoptosis is characterised by DNA fragmentation and an upregulation of pro-apoptotic proteins. It plays a pivotal role in oxygen deprivation induced cognitive impairment. Because the Bcl-2 family members are located upstream of the irreversible cellular damage and focus most of their efforts on the level of the mitochondria, they are irreplaceable in deciding the fate of a cell. Bcl-2 is an anti-apoptotic protein that resides in the mitochondrial outer membrane. It normally forms a heterodimer with Bax to inhibit the activation of apoptosis. Bax, an anti-apoptotic pathway member, is primarily located in the cytosol in its inactive form. When apoptosis is triggered, Bax forms a homodimer with itself and translocates from the cytosol to the mitochondrial outer membrane. Among the caspase family, caspase-3 is believed to be a hallmark of apoptotic cell death and acts as the final executor of apoptosis. In our rat model, the expression of Bcl-2, Bax and caspase-3 all increased after CIHH stimulation. NBP intervention further induced Bcl-2 activity but significantly antagonised Bax and caspase-3 expression. Because DNA strand breaks occur during cell apoptosis, and the nicks in DNA molecules can be detected by the TUNEL assay, we also detected TUNEL-positive cells after CIHH stimulation. We observed that NBP treatment antagonised CIHH-induced increases in TUNEL-positive cells. These results support the idea that NBP is an effective anti-apoptotic reagent. Our results were in accordance with studies that showed that NBP reduced apoptosis and prevented mitochondrial damage in a focal cerebral ischemic or diabetic rat model.

Autophagy is characterised by the formation of double-membrane structures termed autophagosomes that engulf cytoplasmic constituents into the lysosome/vacuole for degradation. This process is essential for neuronal homeostasis and continuous remodelling of neuronal terminals. Emerging evidence notes that defective autophagy leads to the accumulation of large, ubiquitin-containing inclusion bodies, which are the pathological hallmark of many neurodegenerative diseases. Moreover, when cells are exposed to an unfavourable stimulus, such as hypoxia, autophagy will be rapidly activated or up-regulated as an adaptive response to promote cell survival. On the other hand, recent elucidation of the predominant role of HIF-1α and its downstream target, Bnip3, in hypoxia-induced autophagy has greatly advanced our understanding of this process. Bnip3, a known pro-apoptotic factor of the BH3-only Bcl-2 family, is gradually becoming recognised as capable of promoting protective autophagy-related genes, including Beclin-1 and Atg5, under oxygen deprivation. Under such stress, the BH3-domain of Bnip3 can compete with Bcl-2 to dissociate the Bcl-2/Beclin-1 complex, releasing Beclin-1 from the complex and then triggering autophagy to...
protect neurons from apoptosis. These events may account for our immunofluorescence results that showed that the colocalisation of Bcl-2 and Bnip3 increased as autophagy was activated. Ectopic expression of both Bnip3 and Bnip3L (the Bnip3 homologue) are sufficient to initiate the autophagic process, even in the absence of oxygen and nutrient limitations, while the ablation of both under normoxic conditions promotes cell death. Our current data showed that exposure to CIHH resulted in the induction of HIF-1α expression.

Figure 4 | NBP treatment further increased the level of hypoxia-induced autophagy. (A) Transmission electron microscopy shows the autophagosomes (white arrowheads), and the scale bars indicate 0.5 μm. (B) Representative western blots for HIF-1α, Bnip3, Beclin-1 and LC3 are shown. The optical density values were normalised to their respective GAPDH loading control. The gels have been run under the same experimental conditions, and cropped blots are used here. The full-length gel images are available in Supplementary Fig. 4B. (C) Photomicrographs showing hippocampal HIF-1α immunoreactivity (original magnification × 200). The bar graph showing the quantitative integrated optical density (IOD) obtained through the IPP analysis. Values are expressed as the mean ± SEM. *P < 0.05 vs the NC group, †P < 0.05 vs the HH group. NC = normal control group; HH = hypoxia-hypercapnia group; HY = hypoxia-hypercapnia + vegetable oil group; HN = hypoxia-hypercapnia + NBP group.
To survive in oxygen deprived environments, organisms must be capable of coping with redox imbalances and oxygen deficiencies. The NAD⁺-dependent deacetylase SIRT1 plays a crucial role on the redox-sensing and oxygen-sensing pathways that mediate cell adaptation and longevity. Meanwhile, both SIRT1-mediated deacetylation and activation of PGC-1α are important adaptive responses that increase mitochondrial metabolism. Previous studies on PGC-1α function in the brain were consistent with a primary role in neuroprotection. PGC-1α knockout mice were hyperactive and displayed a progressive loss of striatal neurons, which were also primarily affected in Huntington’s disease patients. Intriguingly, in mice treated with resveratrol, the ectopic expression of SIRT1 also supported the neuroprotective role of SIRT1 in models for Alzheimer’s disease and amyotrophic lateral sclerosis. Considering the aforementioned findings, the SIRT1/PGC-1α pathway has been suggested as a neuroprotective axis for new therapeutic approaches to combat neurodegeneration. On the other hand, PGC-1α is a “master regulator” of respiration and mitochondrial biogenesis. It can co-activate numerous transcription factors including NRFs to induce the promoter for Tfam, and Tfam can drive the transcription and replication of mitochondrial DNA (mtDNA). Mitochondrial DNA (mtDNA) encodes three cytochrome-c oxidase (COX) subunits (I–III) that regulate mitochondrial oxidative phosphorylation. During hypoxia-hypercapnia exposure, the SIRT1/PGC-1α axis was inhibited, which might be due to the activation of GiBP (an inhibitor of SIRT1 transcription) or due to the NAD⁺ diminution directly inactivating SIRT1. At the same time, Tfam and COX II protein expression and mtDNA gene expression provided direct indications of the suppression of mitochondrial biogenesis under the CIHH stimulus. After NBP exposure, although the expression of both SIRT1 and PGC-1α was improved, the amount of Tfam and COX II proteins and the mtDNA copy number were not substantially changed. These divergent phenomena, especially the absence of any changes on mtDNA, are worth pondering. Several reasons may account for this separation. First, all studies have found that PGC-1α also co-activates a large set of other genes termed oxidative phosphorylation (OXPHOS)-coregulated genes, as well as coordinates heme biosynthesis and triglyceride metabolism. So, the upregulation of PGC-1α may function separately from mitochondrial biogenesis. Additionally, Tfam, which is unchanged after NBP exposure, is essential for the transcription, initiation and replication of mtDNA. It was previously reported that the transcription factors Sp1, NRF-1, NRF-2 were all critical for maintaining the transcription of the mammalian Tfam gene, and the DNA-free Tfam (Tfam unable to bind DNA) was prone to be degraded by the Lon protease. Our current study did not focus on the regulation of Tfam, so further studies are still necessary. Moreover, increased hypoxia-induced autophagy may also suppress the increase of the mitochondrial content to lessen the energy expenditure.

In conclusion, the current study presents the functional role of NBP in ameliorating the learning and memory deficits caused by hypoxia-hypercapnia exposure. We propose that the possible mechanism involves inducing the cytoprotective function of hypoxia-induced autophagy and suppressing the level of apoptosis. NBP also activated the neuroprotective SIRT1/PGC-1α axis, but no evidence of mitochondrial biogenesis was found. Our study provides new insights into the long-term use of NBP as a potential treatment in early cognitive impairment caused by chronic obstructive pulmonary disease.

Methods

Animals and hypoxic exposure. Rat experiments were approved by the Ethics Committee of Wenzhou Medical University on the use of live animals in teaching and research (Approval no.wdyy2012-0075). All experiments were performed in accordance with the relevant guidelines and regulations of the Laboratory Animal Unit of Wenzhou Medical University. Efforts were made to reduce the number of animals and to minimise their suffering. DL-3-n-Butylphthalide (purity, 99.6%; lot number, 09100151) was obtained from Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd (Shijiazhuang, Hebei, China). Six- to eight-week-old male Sprague-Dawley rats, weighing 180–220 g, were housed in the animal care facility with 12 h light/dark cycles and had free access to food and water. The rats were randomly divided into four groups: (i) normal control group (NC n = 16); (ii) hypoxia-hypercapnia group (HH n = 16); (iii) hypoxia-hypercapnia + vegetable oil group (HN n = 16); and (iv) NBP + hypoxia-hypercapnia + NBP (HN n = 16). The CIHH
exposure was performed as previously described. The rats in the latter three groups were intermittently placed in a closed chamber that was ventilated with an elevated CO₂/gas mixture (9%–11% O₂, 6.5%–7.5% CO₂ in N₂) for 8 h/day, 6 days/week for 2 weeks. The conventional treatment of NBP is 10–12 days, and most studies use it as a chronic treatment. CIHH-induced cognitive impairment is a chronic and progressive neurodegenerative process. Therefore, dl-3-n-Butylphthalide at a dose of 80 mg/kg or vegetable oil at the same dose was gavaged into the rat separately after the exposure cycle was completed each day for 2 weeks. The NBP dose applied here was determined from prior studies showing that this dose provided the maximal protective effects in the treatment of different brain diseases. The NC group underwent identical handling and exposure, however, the chamber was flushed with room air instead of N₂.

The Morris water maze test. After the last hypoxia-hypercapnia exposure, the Morris water maze test was performed as previously described by Morris. The Morris water maze sessions were conducted in a round tank, 1.5 m in diameter and 50 cm in deep, filled with water (35 cm depth). The water temperature was maintained at 26 ± 1 °C. The pool was artificially divided into four imaginary quadrants. A 10-cm diameter platform was submerged 2 cm under the water surface in a fixed quadrant of the pool and could not be seen by the rats. During the experiments, the tank was videotaped by a video camera suspended above the maze, and the swimming paths, latency and distance moved to reach the escape platform were automatically recorded by an image analyser (Sly-WMS Morris Water Maze System; Sunny Instruments Co. Ltd., Beijing, China). The animals underwent 3 trials per day for 5 consecutive days. The rats were placed randomly into the pool, facing the wall, from four preset starting points, and they were allowed to swim for a maximum of 60 s. If the animal did not find the platform during a period of 60 s, it was gently guided to the platform and allowed to rest on it for 30 seconds. During the spatial probe trial, the platform was removed from the pool and the rats were allowed to swim for 60 s. The times of crossing the previous location of the platform was recorded.

Western blotting analysis. Equal amounts of the proteins (60 μg) were separated by SDS-polyacrylamide gels and transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA, USA). PVDF membranes were blocked for 2 h at room temperature with 5% fat-free powdered milk. Then, the membranes were incubated overnight at 4 °C with respective primary antibodies including: anti-Bax, anti-active-Caspase-3, anti-Beclin-1, anti-LC3, anti-NRF-1, anti-COX II, and anti-pCREB antibodies, which were obtained from Cell Signalling Technology (Danvers, MA, USA); anti-BDNF, anti-Bnip3, anti-Bcl-2, anti-PGC-1α, anti-GAPDH and anti-Tubulin antibodies, which were obtained from Abcam (Cambridge, MA, USA); and anti-HIF-1α and anti-SIRT1 antibodies, from Novus Biologicals (Littleton, CO, USA). After incubation with the secondary goat-anti mouse or goat anti-rabbit antibody, the immunoreactive bands were detected by using BeyoECL Plus reagents.

Immunohistochemistry. After dewaxing and hydration, the slides were incubated in citrate antigen-repairing solution and placed in a microwave oven at high power for 10 min. The solution was then allowed to cool at room temperature for 15 min, followed by washing in PBS for 5 min. To block the activity of endogenous

Figure 6 | NBP treatment improved the protein expression of Sirt1 and PGC-1α, but did not change Tiam and COX II expression or the mtDNA content. (A) Representative western blots for PGC-1α, Tiam and COX II are shown. GAPDH was used as a loading control. The optical density values were normalised to their respective GAPDH loading control. The gels have been run under the same experimental conditions, and cropped blots are used here. The full-length gel images are available in Supplementary Fig. 6A. (B) The mtDNA was corrected by the amount of nuclear DNA (β-actin). Values are expressed as the mean ± SEM. *p < 0.05 vs the NC group, #p < 0.05 vs the HH group. NC = normal control group; HH = hypoxia-hypercapnia group; HY = hypoxia-hypercapnia + vegetable oil group; HN = hypoxia-hypercapnia + NBP group.
peroxidase, the slices were incubated in 3% hydrogen peroxide in methanol for 10 min at room temperature. To block the nonspecific binding, the slices were incubated with 5% normal goat serum in PBS for 30 min. After the step listed above, the slices were incubated with an anti-HIF-1α antibody (1: 50, Novus Biologicals, USA) in PBS and then incubated with an HRP-conjugated secondary goat-anti mouse antibody (1: 100, Abcam, UK) in PBS for 1 h. The slices were developed with DAB and counterstained with haematoxylin. The immunoreactive specificity was confirmed by omitting the primary antibody. The pyramidal cells in the CA1 region were examined.

Double Immunofluorescence Labelling. The sections were prepared in a conventional way, incubated in 0.1% sodium borohydride for 15 min to reduce the intensity of the autofluorescence from the paraffin and immersed for 30 min in a solution of 5% normal goat serum (Vector) in PBS. The sections were then incubated overnight with a mouse anti-Bnip3 antibody (diluted to 1: 100 in PBS) and a rabbit anti-Bcl-2 antibody (diluted to 1: 50 in PBS). This incubation was followed by three washes with PBS and incubation for 1 h at room temperature in fluorescent isothiocyanate (FITC)-conjugated goat-anti-mouse IgG (1: 100) and Cy3-conjugated goat-anti-rabbit IgG (1: 100) antibodies. The sections were mounted and the pyramidal cells in the CA1 region were examined using an Olympus FluoView FV500 confocal microscope. The control sections were incubated with PBS instead of the primary antibodies.

Tdt-mediated dUTP nick end labelling (TUNEL). Double-strand DNA breaks were detected by the TUNEL assay. The deparaffinised sections were washed with distilled water and incubated with the Protein Digestion Enzyme for 20 min at 37°C. Then, we used the In Situ Cell Death Detection Kit (Roche Molecular Biochemicals) for the TUNEL assay according to the manufacturer’s instructions. The pyramidal cells in the CA1 region were examined.

Determination of the mtDNA copy number. The mtDNA transcript levels were measured using the Roche LightCycler 480 real-time PCR system (Roche Co., Germany) with the SYBR Green detection method. The total hippocampal DNA was extracted using the QIAamp DNA mini kit (QIAGEN, Germantown, MD) according to the manufacturer’s instructions. The relative mtDNA copy number was defined as the ratio of mtDNA (represented by the ND1 gene) to nuclear DNA (represented by the β-actin gene). The primers for the ND1 gene were ND1-forward, 5′-CCCTACGCTACCCCATCT-3′ and ND1-reverse, 5′-GACGGATGGGTGACGACCTCGGACCTGAGGATT-3′. The primers for the β-actin gene were β-actin-forward, 5′-TCAACAACTTTGGGATGATGAGT-3′ and β-actin-reverse, 5′-GTTGGGTCTTGGTCTTCGAG-3′. Each real-time PCR reaction (20 μl total volume) contained 2 μl of template DNA, 10 μl of SYBR Green Real-time PCR Master, 1 μl of each of the forward and reverse primers and 6 μl of ultrapure water. All data points were performed in triplicate.

Statistical Analysis. The Morris water maze latency and distance were analysed using repeated measures ANOVA (RM ANOVA). The other data were analysed by one-way ANOVA followed by a post hoc comparison test using the LSD (equal variances assumed) method. A level of P < 0.05 was considered to be statistically significant. The data were expressed as the mean ± SEM. All statistical procedures were performed with SPSS16.0 software.

1. Ortapamuk, H. & Naldokon, S. Brain perforation abnormalities in chronic obstructive pulmonary disease: comparison with cognitive impairment. Ann Nucl Med 20, 99–106 (2006).
2. Dodd, J., Getov, S. & Jones, P. Cognitive function in COPD. Med Hypotheses 71, 1545–1552 (2008).
3. Liu, C.-L. Increased susceptibility to intermittent hypoxia in aging rats: a protective effect of hydrogen on memory damage induced by hypoxia. Chinese J Pathophysiol 35, 132–136 (2009).
4. Perroy, J., Dayan, F. & Mazine, N. M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437–443 (2006).
5. Leventis, A. P., Pappadopoulou, L. C. Neuroprotective effect of nitric oxide in models of mitochondrial dysfunction. Apoptosis Induced By Transient Focal Cerebral Ischemia. In Int J Pharm 1 Phy 2002.
6. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Mol cell 27, 40–55 (2006).
7. Lin, J. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 16, 153–158 (2011).
8. Liu, C.-L. et al. Dl-3n-butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP. J Neurol Sci 206, 106–113 (2002).
9. Zhang, L. et al. Effects of Dl-3-n-butylphthalide on vascular dementia and angiogenesis. Neurosci Res 37, 911–919 (2012).
10. Gozal, D. et al. Increased susceptibility to intermittent hypoxia in aging rats: a protective effect of hydrogen on memory damage induced by hypoxia. J Neurochem 89, 27–42 (2001).
11. Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Mol cell 27, 40–55 (2006).
12. Lin, J. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 16, 153–158 (2011).
13. Liu, C.-L. et al. Dl-3n-butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP. J Neurol Sci 206, 106–113 (2002).
14. Zhang, L. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Bio Chem 283, 10992–10993 (2008).
15. Hota, S. K., Barhwal, K., Singh, S. B. & Ijazuddin, G. Differential temporal changes in proteasomal activity, neuronal apoptosis and spatial function. Neurochem Res 35, 1033–1039 (2010).
16. Liu, C.-L. et al. Dl-3n-butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP. J Neurol Sci 206, 106–113 (2002).
17. Jiang, M. et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 16, 153–158 (2011).
18. Liu, C.-L. et al. Dl-3n-butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP. J Neurol Sci 206, 106–113 (2002).
19. Zhang, L. et al. Effects of Dl-3-n-butylphthalide on vascular dementia and angiogenesis. Neurosci Res 37, 911–919 (2012).
20. Peng, Y., Zeng, X., Feng, Y. & Wang, X. Antitplatelet and antithrombotic activity of L-3-n-butylphthalide in rats. J Cardiovasc Pharm 43, 876–881 (2004).
21. Hao, L.-X. & Yi, P.-F. Inhibitory effects of chiral 3-n-butylphthalide on ischemia-reperfusion injury following focal ischemic brain injury in rats. Acta Pharmacol Sin 21, 433–438 (1999).
22. Chang, Q. & Wang, X. L. Effects Of Chiral 3-n-butylphthalide On Neuronal Apoptosis Induced By Transient Focal Cerebral Ischemia In Rats. Int J Pharm 1 Phy 2002.
23. Xiong, J. & Feng, Y. The protective effect of butylphthalide against mitochondrial dysfunction during central ischemia. Acta Pharmacol Sin 35, 408–412 (2000).
24. Zhang, L. et al. Effects of Dl-3-n-butylphthalide on vascular dementia and angiogenesis. Neurosci Res 37, 911–919 (2012).
25. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).
26. Liu, C.-L. et al. Dl-3n-butylphthalide prevents neuronal cell death after focal cerebral ischemia in mice via the JNK pathway. Brain Res 1359, 216–226 (2010).
27. Zhang, T., Jia, W. & Sun, X. 3-n-Butylphthalide (NBP) reduces apoptosis and enhances vascular endothelial growth factor (VEGF) up-regulation in diabetic rats. Neurobiol Dis 32, 396–396 (2010).
28. Yang, Y., Xing, D., Zhou, F. & Chen, Q. Mitochondrial autophagy protects against heat shock-induced apoptosis through reducing cytosolic cytochrome c release and downstream caspase-3 activation. Biochem Bioph Res Co 395, 190–195 (2010).
29. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–28 (2008).
30. Azad, M. B. et al. Hypoxia induces autophagic cell death in apoptosis-resistant cells through a mechanism involving BNIP3. Autophagy 4, 195–204 (2008).
31. Bellot, G. et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29, 2570–2581 (2009).
32. Mazure, N. M. & Pouvessig, J. Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy 5, 868–869 (2009).
33. Papadopoulou, L. C. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23, 333–337 (1999).
48. Matsushima, Y., Goto, Y. & Kaguni, L. S. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci USA 107, 18410–5 (2010).
49. Dong, X. et al. Mitochondrial transcription factor A and its downstream targets are up-regulated in a rat hepatoma. J Biol Chem 277, 43309–43318 (2002).
50. Liu, X.-G. & Feng, Y.-P. Protective effect of dl-3-n-butylphthalide on ischemic neurological damage and abnormal behavior in rats subjected to focal ischemia. Acta Pharmacol Sin 1995, 30(12): 896–903.
51. Liao, S. et al. Enhanced angiogenesis with dl-3n-butylphthalide treatment after focal cerebral ischemia in RHRSP. Brain Res 1289, 69–78 (2009).
52. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth 11, 47–60 (1984).
53. Cai, X.-H. et al. Chronic intermittent hypoxia exposure induces memory impairment in growing rats. Acta Neurobiol Exp 70, 279–287 (2010).

Acknowledgments
We thank Dr Jiangfan Chen, Department of Neurology, Boston University School of Medicine, Boston, for the critical review and preparation of the manuscript. This research was supported by the Medical Science Research Foundation of Zhejiang Province grant (NO: Y205233) and by Wenzhou City Science and Technology Bureau grant (NO:Y2005A001). No author or related institution has received any financial benefit from research in this study.

Author contributions
The work presented here was carried out in collaboration between all authors. Conceived and designed the experiments: J.J.M., X.L.H., X.T.W. Performed the experiments: J.J.M., X.L.H. Analyzed the data: L.Y.X., K.Q.C. Contributed reagents/materials/analysis tools: Y.Q.Q., L.J., B.W. Wrote the paper: J.J.M., X.L.H., X.T.W.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Min, J.-j. et al. Protective Effect of Dl-3n-butylphthalide on Learning and Memory Impairment Induced by Chronic Intermittent Hypoxia-Hypercapnia Exposure. Sci. Rep. 4, 5555; DOI:10.1038/srep05555 (2014). This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/