An Introduction to the NMPC-Graph as General Schema for Causal Modeling of Nonlinear, Multivariate, Dynamic, and Recursive Systems with Focus on Time-Series Prediction

Christoph Jahnz
ORCID: 0000-0003-3297-7564
CYNERELO Forecasting, Econometric Studies
Frankfurt am Main, Germany
christoph.jahnz@cynerelo.com

Abstract—While the disciplines of physics and engineering sciences in many cases have taken advantage from accurate time-series prediction by applying ordinary differential equation systems upon precise basic physical laws such approach hardly could be adopted by other scientific disciplines where precise mathematical basic laws are unknown. A new modeling schema, the NMPC-graph, opens the possibility of interdisciplinary and generic nonlinear, multivariate, dynamic, and recursive causal modeling in domains where basic laws are only known as qualitative relationships among parameters while their precise mathematical nature remains undisclosed at modeling. The symbolism of NMPC-graph is kept simple and suited for analysts without advanced mathematical skills.

This article presents the definition of the NMPC-graph modeling method and its six component types. Further, it shows how to solve the inverse problem of deriving a nonlinear ordinary differential equation system from any NMPC-graph in conjunction with historic calibration data by means of machine learning. This article further discusses how such a derived NMPC-model can be used for hypothesis testing and time-series prediction with the expectation of gaining prediction accuracy in comparison to conventional prediction methods.

Keywords—calibration; causal modeling; forecasting; inverse problem; machine learning; multivariate; nonlinear; ordinary differential equation system; prediction; recursive; regression; temporal; time-series

I. MOTIVATION FOR INTRODUCING A NEW MODELING METHOD

Today’s commonly established approaches of calculating the future behavior of complex systems whose parameters are expressed numerically roughly might be divided into four major categories of popular mathematical methods: First of all, there is the family of stochastic methods, secondly fundamental equation based simulations, thirdly methods of structural modeling and finally conventional inductive machine learning methods. Each of these method categories is characterized by specific and significant drawbacks concerning prediction accuracy of individual system behavior.

Stochastic models based on a collection of observations in the past resulting in probability based predictions [1] are widely spread. They usually abstract from system’s internal causality. Thus, they are lacking information for predicting precise and non-probabilistic individual system behavior in phase space.

Simulations of continuous systems based on fundamental equations [2] are at the other end of system modeling. They do not abstract system’s causality but specify it to a high level of detail given by mathematic equations including the specification of all mathematical constants. In cases where system’s nature is not completely understood, simulation models tend to be over-specific and therefore likely to be inaccurate. This especially is the case for nonlinear systems where finding adequate equations and their constants is a sophisticated and costly undertaking.

Structural modeling here refers to the methods of structural equation modeling (SEM) [3] and dynamic causal modeling (DCM) [6] which both allow causal modeling without creating over-specific models. However, in both cases much of the theory is bound to linearity and where not, nonlinear relationships are quite predetermined and far away from being flexible [4][5]. There are more methods in the category of reasoning under uncertainty like bayesian networks [13] and fuzzy logic [14] which also could be classified as structural modeling methods. Although they disclose more of a system’s internal nature at the root they tend to abstract system structure and rather deal with uncertainty instead of reflecting system’s precise phase space characteristics.

Conventional supervised machine learning methods like back-propagation algorithm for artificial neural networks [7][10], training algorithms for decision trees [8][11], and support vector machines [9][12] rely on inductive classifying, i.e. most of the information they gain about the system to be represented is given by calibration data. Finding a way of how generalization has to take place is left to the specific algorithm. There hardly exist methodical standards for a human analyst to assist the algorithm in how these calibration data has to be interpreted. Thus, there needs to be a considerably large amount of calibration data and effort to
force the algorithm into a lifelike generalization, otherwise the model is likely to become inaccurate.

In summary, all of the above methods are showing weakness in either including relevant knowledge from the analyst or reflecting sufficiently the system’s structural essentials or coping with nonlinearity or even all of it.

One good example where the drawbacks of conventional methods become obvious is modeling in the discipline of macroeconomy. There, relevant time-series sets often contain only some dozens or hundreds of calibration records of historic data [15]. Taking into account the many economic parameters which play a role within one scenario the available amount of calibration records is likely to not be enough for representatively delivering evidence for all kinds of combined parameter influences. In other words, there is too few information within historic data for disclosing system’s nature.

An accurate model for individual predictions would need to include additional knowledge. However, while analysts are aware of macroeconomic laws for which exist theoretical equations most of such equations are rather expected to only roughly approximate an aspect of some causality instead of modeling it precisely [16]. Furthermore, macroeconomic causality often implies nonlinearity which is not being strongly supported by many of the conventional modeling methods. So it is hard for contemporary analysts to contribute their macroeconomic knowledge into any conventional prediction model [17].

The new method introduced within this article allows analysts to specify their belief about causality by the symbolism of a new modeling schema which is the so called nonlinear monotone parameter coupling graph, or shortly, the NMPC-graph.

A NMPC-graph expresses a network of causal relationships, potentially nonlinear, which explains parameters representing real numbers by other parameters and in case of recursivity, also by themselves. The symbolism is simple, non-algebraic, and universal. However, it comprises only six basic component types which are defined in section II. The characteristics of a well-formed NMPC-graph are presented in section IV.A.

A nonlinear relationship is rather expressed qualitatively, e.g. one component might express “the faster first input value grows and the faster the second input value decreases the faster the output grows” while the other might express “the higher the input value the faster the output value decreases”. Together, such relationships form an abstract ordinary differential equation system consisting of strictly monotone univariate and/or multivariate functions which might be combined with integral and differential functions sharing one independent parameter which typically represents time. A NMPC-graph example is shown in section III.B. The precise shape of all monotone functions remains undefined within any NMPC-graph. Their shape is only known within a NMPC-model after calibration process as described in section 0.

Actually, the design of the NMPC-graph symbolism was kept in such way that also analysts who are not familiar with advanced mathematics or system theory are provided with an easy-to-use method for sophisticated system modeling. Conversely, any software converting NMPC-graphs into NMPC-models and evaluating them will carry a high mathematical load. One of the principle motivations for introducing the NMPC-graph method was role-sharing in modeling work, meaning each one, human analysts and computers, do what they can do best, respectively.

A specific NMPC-graph is a hypothesis about some system. Together with data representing system’s history it can be converted into a NMPC-model as shown in section 0. Hypothesis testing is discussed in section V and time-series prediction in section VI.

A glossary with important terms of NMPC methodology and mathematic variables can be found in the appendix.

II. COMPONENT DEFINITIONS

NMPC-graphs can be composed by up to six basic component types which are described in following.

A. Parameter

The first component type is the NMPC-parameter, or shortly, parameter. Each parameter expresses a scalar real number dependent on the independent parameter t and further on will be referred to by variable p. For simplicity, due to its most common application, t in following will be named time parameter although it might also refer to an independent quantity with other meaning than time.

Within a NMPC-graph parameters describe the system’s observable or latent state at one point of t, i.e. typically at one point in time.

$$t \in \mathbb{R} \land p(t) \in \mathbb{R} : p_{\min} \leq p(t) \leq p_{\max} \quad (1)$$

Within a NMPC-graph each parameter can serve as input of one or multiple NMPC-components or it can serve as output of one other NMPC-component or both, simultaneously.

Symbolism:

$$\rho [p_{\min}, p_{\max}] \quad \Rightarrow \quad \rho [p_{\min}, p_{\max}] \quad \Rightarrow \quad \ldots$$

B. Bilateral couplings

There exist three types of so called bilateral couplings. A bilateral coupling expresses an optionally temporal and basically nonlinear relationship between one input x_{in} and one output x_{out} Input and output represent scalar real number values. Within a NMPC-graph, input and output of each bilateral coupling has to be connected to parameters or to components of any other NMPC-component type.

The nonlinear relationship of all types of bilateral coupling is defined in two fundamental aspects: (a) Bilateral couplings describe always the positive or negative growth of output x_{out} over time. (b) The nonlinear relationship between input x_{in} and
output x_{out} is always abstracted by a so called m-function whose precise shape remains unknown at NMPC-graph design time. The m-function $m(x)$ is strictly monotone. t is the independent parameter.

For all bilateral couplings applies following:
\[
 t \in \mathbb{R} \ ; \ x_{\text{in}}(t) \in \mathbb{R} \ ; \ x_{\text{in}}_{\min} \leq x_{\text{in}}(t) \leq x_{\text{in}}_{\max} \ ; \ x_{\text{out}} \in \mathbb{R} \ ; \\
 x_{\text{out}}_{\min} \leq x_{\text{out}}(t) \leq x_{\text{out}}_{\max} \\
 x \in \mathbb{R} \ ; \ m(x) \in \mathbb{R} \ ; \ \frac{\partial m(x)}{\partial x} > 0 . \quad (2)
\]

Generally, bilateral couplings are defined verbally and additionally by a mathematic representation which is able to represent the verbal definition in a formal way. This formal description, however, is not necessarily entirely represented by the verbal definition.

1) Integrative coupling

The m-function for integrative couplings is termed $\tilde{\tau}(x)$ with
\[
 x \in \mathbb{R} \ ; \ \tilde{\tau}(x) \in \mathbb{R} \ ; \ \frac{\partial \tilde{\tau}(x)}{\partial x} > 0 . \quad (3)
\]

Three coupling variants have to be distinguished:

a) The larger x_{in}, the faster x_{out} grows / the slower x_{out} decreases. The smaller x_{in}, the faster x_{out} decreases / the slower x_{out} grows.

Symbolism:
\[
 x_{\text{in}}[x_{\text{in}}_{\min} \cdots x_{\text{in}}_{\max}] \longrightarrow x_{\text{out}}[x_{\text{out}}_{\min} \cdots x_{\text{out}}_{\max}]
\]

Equation:
\[
 \frac{\partial x_{\text{out}}}{\partial t} = \tilde{\tau}(x_{\text{in}}(t)) ; \\
 x_{\text{out}}(t) = \int \tilde{\tau}(x_{\text{in}}(t)) \, dt = i_{++}(x_{\text{in}}(t)) \quad (4)
\]

b) The larger x_{in}, the faster x_{out} decreases / the slower x_{out} grows. The smaller x_{in}, the faster x_{out} grows / the slower x_{out} decreases.

Symbolism:
\[
 x_{\text{in}}[x_{\text{in}}_{\min} \cdots x_{\text{in}}_{\max}] \longrightarrow x_{\text{out}}[x_{\text{out}}_{\min} \cdots x_{\text{out}}_{\max}]
\]

Equation:
\[
 \frac{\partial x_{\text{out}}}{\partial t} = -\tilde{\tau}(x_{\text{in}}(t)) ; \\
 x_{\text{out}}(t) = -\int \tilde{\tau}(x_{\text{in}}(t)) \, dt = i_{--}(x_{\text{in}}(t)) \quad (5)
\]

c) The smaller x_{in}, the faster x_{out} grows / the slower x_{out} decreases. The larger x_{in}, the faster x_{out} decreases / the slower x_{out} grows.

Symbolism:
\[
 x_{\text{in}}[x_{\text{in}}_{\min} \cdots x_{\text{in}}_{\max}] \longrightarrow x_{\text{out}}[x_{\text{out}}_{\min} \cdots x_{\text{out}}_{\max}]
\]

Equation:
\[
 \frac{\partial x_{\text{out}}}{\partial t} = \tilde{s}(x_{\text{in}}(t)) ; \\
 x_{\text{out}}(t) = \int \tilde{s}(x_{\text{in}}(t)) \, dt = i_{+}(x_{\text{in}}(t)) \quad (6)
\]

In following integrative couplings will be referred to by a generalized function $i(...) \equiv i_{++}(...) \geq i_{+}(...) \geq i_{-}(...)$.

2) Synchronous coupling

The m-function for synchronous couplings is termed $\tilde{s}(x)$ with
\[
 x \in \mathbb{R} \ ; \ \tilde{s}(x) \in \mathbb{R} \ ; \ \frac{\partial \tilde{s}(x)}{\partial x} > 0 . \quad (7)
\]

Three coupling variants have to be distinguished:

a) The faster x_{in} grows, the faster x_{out} grows / the slower x_{out} decreases. The faster x_{in} decreases, the faster x_{out} decreases / the slower x_{out} grows.

Symbolism:
\[
 x_{\text{in}}[x_{\text{in}}_{\min} \cdots x_{\text{in}}_{\max}] \longrightarrow x_{\text{out}}[x_{\text{out}}_{\min} \cdots x_{\text{out}}_{\max}]
\]

Equation:
\[
 \frac{\partial x_{\text{out}}}{\partial t} = \tilde{s}(x_{\text{in}}(t)) ; \\
 x_{\text{out}}(t) = \int \tilde{s}(x_{\text{in}}(t)) \, dt = s_{+}(x_{\text{in}}(t)) \quad (8)
\]

b) The faster x_{in} grows, the faster x_{out} decreases. The faster x_{in} decreases, the faster x_{out} grows / the slower x_{out} decreases.

Symbolism:
\[
 x_{\text{in}}[x_{\text{in}}_{\min} \cdots x_{\text{in}}_{\max}] \longrightarrow x_{\text{out}}[x_{\text{out}}_{\min} \cdots x_{\text{out}}_{\max}]
\]

Equation:
\[
 \frac{\partial x_{\text{out}}}{\partial t} = -\tilde{s}(x_{\text{in}}(t)) ; \\
 x_{\text{out}}(t) = -\int \tilde{s}(x_{\text{in}}(t)) \, dt = s_{--}(x_{\text{in}}(t)) \quad (9)
\]

c) The faster x_{in} decreases, the faster x_{out} grows / the slower x_{out} decreases. The faster x_{in} grows, the faster x_{out} decreases / the slower x_{out} grows.
Symbolism:

\[x_{in} \{x_{in_{min}}, \ldots, x_{in_{max}}\} \rightarrow x_{out} \{x_{out_{min}}, \ldots, x_{out_{max}}\} \]

Equation:

\[\frac{\partial x_{out}(t)}{\partial t} = - \frac{\partial s}{\partial t} (x_{in}(t)) \] \hspace{1cm} (10)

\[x_{out}(t) = \frac{\partial}{\partial t} (s_{\rightarrow}(x_{in}(t))) \]

In following synchronous couplings will be referred to by a generalized function \(s(\ldots) \) defined as

\[s(\ldots) \supset s_{\rightarrow}(\ldots); s(\ldots) \supseteq s_{\rightarrow}(\ldots); s(\ldots) \supset s_{\rightarrow}(\ldots). \]

3) Differential coupling

The m-function for differential couplings is termed \(\tilde{d}(x) \) with

\[x \in \mathbb{IR}; \tilde{d}(x) \in \mathbb{IR}; \frac{\partial \tilde{d}(x)}{\partial x} > 0. \] \hspace{1cm} (11)

Three coupling variants have to be distinguished:

\textbf{a}) The more \(x_{in} \) accelerates, the faster \(x_{out} \) grows / the slower \(x_{out} \) decreases. The more \(x_{in} \) decelerates, the faster \(x_{out} \) decreases / the slower \(x_{out} \) grows.

Symbolism:

\[x_{in} \{x_{in_{min}}, \ldots, x_{in_{max}}\} \rightarrow x_{out} \{x_{out_{min}}, \ldots, x_{out_{max}}\} \]

Equation:

\[\frac{\partial x_{out}(t)}{\partial t} = \tilde{d} \left(\frac{\partial x_{in}(t)}{\partial t} \right) \] \hspace{1cm} (12)

\[x_{out}(t) = \frac{\partial}{\partial t} (d_{\rightarrow}(x_{in}(t))) \]

\textbf{b}) The more \(x_{in} \) accelerates, the faster \(x_{out} \) decreases / the slower \(x_{out} \) grows. The more \(x_{in} \) decelerates, the faster \(x_{out} \) grows / the slower \(x_{out} \) decreases.

Symbolism:

\[x_{in} \{x_{in_{min}}, \ldots, x_{in_{max}}\} \rightarrow x_{out} \{x_{out_{min}}, \ldots, x_{out_{max}}\} \]

Equation:

\[\frac{\partial x_{out}(t)}{\partial t} = \tilde{d} \left(\frac{\partial x_{in}(t)}{\partial t} \right) \] \hspace{1cm} (13)

\[x_{out}(t) = - \frac{\partial}{\partial t} (d_{\rightarrow}(x_{in}(t))) \]

\textbf{c}) The more \(x_{in} \) decelerates, the faster \(x_{out} \) grows / the slower \(x_{out} \) decreases. The more \(x_{in} \) accelerates, the faster \(x_{out} \) decreases / the slower \(x_{out} \) grows.

Symbolism:

\[x_{in} \{x_{in_{min}}, \ldots, x_{in_{max}}\} \rightarrow x_{out} \{x_{out_{min}}, \ldots, x_{out_{max}}\} \]

Equation:

\[\frac{\partial x_{out}(t)}{\partial t} = - \frac{\partial \tilde{d}}{\partial t} \left(\frac{\partial x_{in}(t)}{\partial t} \right) \] \hspace{1cm} (14)

\[x_{out}(t) = - \frac{\partial}{\partial t} (d_{\rightarrow}(x_{in}(t))) \]

In following differential couplings will be referred to by a generalized function \(d(\ldots) \) defined as

\[d(\ldots) \supset d_{\rightarrow}(\ldots); d(\ldots) \supseteq d_{\rightarrow}(\ldots); d(\ldots) \supset d_{\rightarrow}(\ldots). \]

\section{C. Operators}

In cases where exist more than one input affecting a NMPC-component, \textit{operators} are needed. A NMPC-graph allows two types of operators, \textit{summators} and \textit{modulators}. An operator is a NMPC-component.

1) Summator

A \textit{summator} reflects the linear arithmetic sum of any number of signed inputs from other NMPC-component outputs returned by one output. This way, it effectively calculates sums and differences. The sign of each input needs to be specified by an inclined (if input adds positive) or declined (if input adds negative) \textit{indicator arrow}. Each input and the output of a summator must be connected to a NMPC-component.

Summators do not involve nonlinear transformation like implied by the \textit{m-function} of bilateral couplings.

Summators are eligible in cases where there have to be considered multiple influences represented by \(j \) state variables \(x_{in_j}(t) \) affecting one target state variable \(x_{out}(t) \) independently from each other.

\[x_{in_1}(t), x_{in_2}(t), \ldots, x_{in_j}(t) \in \mathbb{IR}; \]

\[x_{in_{v_{min}}} \leq x_{in_j}(t) \leq x_{in_{v_{max}}}; \]

\[x_{out} \in \mathbb{IR}; x_{out_{min}} \leq x_{out}(t) \leq x_{out_{max}} \]

Symbolism:

\[x_{in_1} \{x_{in_{1_{min}}, \ldots, x_{in_{1_{max}}}}\} \] \hspace{1cm} (\text{\ldots}) \hspace{1cm} \rightarrow x_{out} \{x_{out_{min}}, \ldots, x_{out_{max}}\} \]
Equation:
\[x_{\text{out}}(t) = \sum_{j=1}^{i} \pm x_{\text{in},v}(t) \]
\[= \sum_{j=1}^{i} \tilde{a}_{j}(x_{\text{in},v}(t)) \]
\[= a(\tilde{a}_{1}(x_{\text{in},v}(t)), \tilde{a}_{2}(x_{\text{in},v}(t)), \ldots, \tilde{a}_{j}(x_{\text{in},v}(t))) \]
\((15) \)

The function \(\tilde{a}_{j}(x) \) reflects the sign of the summator’s input \(v \). The function \(a(\ldots) \in \mathbb{R} \) represents the summator as a whole with \(j \) input state variables.

2) Modulator

A modulator expresses an output \(x_{\text{out}} \) depending on both one input \(x_{\text{in}1} \) and one input \(x_{\text{in}2} \), simultaneously. Each input must be associated to one indicator arrow. An indicator arrow pointing upwards inclined means that a rising value of respective input will cause the output value to also rise. An indicator arrow pointing downwards declined means that a rising value of respective input will cause the output value to decrease.

Presented in a Cartesian coordinate plane a modulator is a continuous function of two variables where the sign of surface inclination always remains unchanged when moving over the surface in parallel to one of its input axes. The shape of the surface can be linear or nonlinear and actually be of any form as long as continuity and the inclination constraints are fulfilled.

When changing only one input value while leaving the other one constant the modulator behaves like a synchronous coupling (see section II.B.2) concerning the changing input and the output.

In contrary to summators which are used for expressing various inputs influencing the output independently each other modulators are used to express one input influencing the output while being conditioned by another input.

\[x_{\text{in}1}(t), x_{\text{in}2}(t) \in \mathbb{R} \]
\[x_{\text{in}1,\text{min}} \leq x_{\text{in}1}(t) \leq x_{\text{in}1,\text{max}} \]
\[x_{\text{in}2,\text{min}} \leq x_{\text{in}2}(t) \leq x_{\text{in}2,\text{max}} \]
\[x_{\text{out}} \in \mathbb{R} ; x_{\text{out},\text{min}} \leq x_{\text{out}}(t) \leq x_{\text{out},\text{max}} \]

Three modulator variants have to be distinguished:

a) The faster \(x_{\text{in}1} \) grows, the faster \(x_{\text{out}} \) grows. The faster \(x_{\text{in}2} \) grows, the faster \(x_{\text{out}} \) grows. \(x_{\text{in}1} \) conditions the influence of \(x_{\text{in}2} \) and vice versa.

Symbolism:
\[x_{\text{in}1}[K_{\text{in}1,\text{min}} \cdots K_{\text{in}1,\text{max}}] \]
\[x_{\text{in}2}[K_{\text{in}2,\text{min}} \cdots K_{\text{in}2,\text{max}}] \]
\[x_{\text{out}}[x_{\text{out},\text{min}} \cdots x_{\text{out},\text{max}}] \]

Equation:
\[x_{\text{out}}(t) = m_{++}(x_{\text{in}1}(t), x_{\text{in}2}(t)); \]
\[\frac{\partial m_{++}(x_{\text{in}1}, x_{\text{in}2})}{\partial x_{\text{in}1}} > 0 \]
\[\frac{\partial m_{++}(x_{\text{in}1}, x_{\text{in}2})}{\partial x_{\text{in}2}} > 0 \]
\((16) \)

b) The faster \(x_{\text{in}1} \) grows, the faster \(x_{\text{out}} \) grows. The faster \(x_{\text{in}2} \) decreases, the faster \(x_{\text{out}} \) grows. \(x_{\text{in}1} \) conditions the influence of \(x_{\text{in}2} \) and vice versa.

Symbolism:
\[x_{\text{in}1}[K_{\text{in}1,\text{min}} \cdots K_{\text{in}1,\text{max}}] \]
\[x_{\text{in}2}[K_{\text{in}2,\text{min}} \cdots K_{\text{in}2,\text{max}}] \]
\[x_{\text{out}}[x_{\text{out},\text{min}} \cdots x_{\text{out},\text{max}}] \]

Equation:
\[x_{\text{out}}(t) = m_{+-}(x_{\text{in}1}(t), x_{\text{in}2}(t)); \]
\[\frac{\partial m_{+-}(x_{\text{in}1}, x_{\text{in}2})}{\partial x_{\text{in}1}} < 0 \]
\[\frac{\partial m_{+-}(x_{\text{in}1}, x_{\text{in}2})}{\partial x_{\text{in}2}} < 0 \]
\((17) \)

c) The faster \(x_{\text{in}1} \) decreases, the faster \(x_{\text{out}} \) grows. The faster \(x_{\text{in}2} \) decreases, the faster \(x_{\text{out}} \) grows. \(x_{\text{in}1} \) conditions the influence of \(x_{\text{in}2} \) and vice versa.

Symbolism:
\[x_{\text{in}1}[K_{\text{in}1,\text{min}} \cdots K_{\text{in}1,\text{max}}] \]
\[x_{\text{in}2}[K_{\text{in}2,\text{min}} \cdots K_{\text{in}2,\text{max}}] \]
\[x_{\text{out}}[x_{\text{out},\text{min}} \cdots x_{\text{out},\text{max}}] \]

Equation:
\[x_{\text{out}}(t) = m_{-+}(x_{\text{in}1}(t), x_{\text{in}2}(t)); \]
\[\frac{\partial m_{-+}(x_{\text{in}1}, x_{\text{in}2})}{\partial x_{\text{in}1}} < 0 \]
\[\frac{\partial m_{-+}(x_{\text{in}1}, x_{\text{in}2})}{\partial x_{\text{in}2}} < 0 \]
\((18) \)

In following modulators will be referred to by a generalized function \(m(\ldots) \) defined as
\[m(\ldots) \equiv m_{++}(\ldots) ; m(\ldots) \equiv m_{-+}(\ldots) ; m(\ldots) \equiv m_{-+}(\ldots) . \]

III. NODAL MATRIX DEFINITION OF THE NMPC-GRAPH

A. Definition of the state equation

Given a set of nodes where each input and each output of any component of a given NMPC-graph is connected to one of these nodes, respectively, and each node represents a state variable \(x(t) \) the resulting equation system can be expressed in matrix notation as differential equation system by referring to the definitions in section II as
\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t) \\
\vdots \\
\dot{x}_n(t)
\end{bmatrix} =
\begin{bmatrix}
\tilde{g}_{11}(x_1) & \tilde{g}_{12}(x_2) & \cdots & \tilde{g}_{1n}(x_n) \\
\tilde{g}_{21}(x_1) & \tilde{g}_{22}(x_2) & \cdots & \tilde{g}_{2n}(x_n) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{g}_{n1}(x_1) & \tilde{g}_{n2}(x_2) & \cdots & \tilde{g}_{nn}(x_n)
\end{bmatrix} \begin{bmatrix} 1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
\tilde{s}_{11}(x_1) & \tilde{s}_{12}(x_2) & \cdots & \tilde{s}_{1n}(x_n) \\
\tilde{s}_{21}(x_1) & \tilde{s}_{22}(x_2) & \cdots & \tilde{s}_{2n}(x_n) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{s}_{n1}(x_1) & \tilde{s}_{n2}(x_2) & \cdots & \tilde{s}_{nn}(x_n)
\end{bmatrix} \begin{bmatrix} 1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
\tilde{a}_{11}(x_1) & \tilde{a}_{12}(x_2) & \cdots & \tilde{a}_{1n}(x_n) \\
\tilde{a}_{21}(x_1) & \tilde{a}_{22}(x_2) & \cdots & \tilde{a}_{2n}(x_n) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{a}_{n1}(x_1) & \tilde{a}_{n2}(x_2) & \cdots & \tilde{a}_{nn}(x_n)
\end{bmatrix} \begin{bmatrix} 1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
m_{i1}(x_1,x_2) & m_{i2}(x_1,x_3) & \cdots & m_{in}(x_1,x_n) \\
m_{i1}(x_1,x_2) & m_{i2}(x_1,x_3) & \cdots & m_{in}(x_1,x_n) \\
\vdots & \vdots & \ddots & \vdots \\
m_{i1}(x_1,x_2) & m_{i2}(x_1,x_3) & \cdots & m_{in}(x_1,x_n)
\end{bmatrix} \begin{bmatrix} 1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\]

which per definition is equivalent to

\[
X = I + S + D + A + M
\]

where \(X\) represents a column vector with \(n\) elements, each of them representing a NMPC-component’s output value at one point in time, \(I\) representing a \(n\times n\) matrix for all integrative couplings, \(S\) for all synchronous couplings, \(A\) for summators, \(D\) for all differential couplings, and, as exception, \(M\) is the \(n\times q\) matrix with \(q = \binom{n}{k} \) (\(n\) choose \(k\), i.e. each of all possible combinations of two input state variables into one modulator, respectively) with \(k=2\) for all modulators within the NMPC-graph. Each of those matrices is multiplied by a column vector consisting of ones allowing the matrix notation being converted into an algebraic equation system.

NMPC-parameters are a subset of \(X\) being expressed by column vector \(P\) where each parameter holds one number value for each point in time:

\[
X \supset P \text{ with } x_1(t), x_2(t), \ldots, x_n(t)
\]

and \(p_1(t), p_2(t), \ldots, p_r(t) \in \mathbb{R}\)

Referring to the definitions in section II and (20) with \(t\) as independent variable and with all state variables \(x_i(t)\) the matrix notation can be also written as
\[
\begin{bmatrix}
x_1(t) \\
x_2(t) \\
\vdots \\
x_n(t)
\end{bmatrix}
=
\begin{bmatrix}
 i_{1,1}(x_1) & i_{1,2}(x_2) & \cdots & i_{1,n}(x_n) \\
 i_{2,1}(x_1) & i_{2,2}(x_2) & \cdots & i_{2,n}(x_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 i_{n,1}(x_1) & i_{n,2}(x_2) & \cdots & i_{n,n}(x_n)
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\]

\[
+
\begin{bmatrix}
s_{1,1}(x_1) & s_{1,2}(x_2) & \cdots & s_{1,n}(x_n) \\
s_{2,1}(x_1) & s_{2,2}(x_2) & \cdots & s_{2,n}(x_n) \\
\vdots & \vdots & \ddots & \vdots \\
s_{n,1}(x_1) & s_{n,2}(x_2) & \cdots & s_{n,n}(x_n)
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\]

\[
+
\begin{bmatrix}
d_{1,1}(x_1) & d_{1,2}(x_2) & \cdots & d_{1,n}(x_n) \\
d_{2,1}(x_1) & d_{2,2}(x_2) & \cdots & d_{2,n}(x_n) \\
\vdots & \vdots & \ddots & \vdots \\
dx_{n,1}(x_1) & d_{n,2}(x_2) & \cdots & d_{n,n}(x_n)
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\]

\[
+
\begin{bmatrix}
a_1(\bar{a}_{1,1}(x_1), \bar{a}_{1,2}(x_2), \ldots, \bar{a}_{1,n}(x_n)) \\
a_2(\bar{a}_{2,1}(x_1), \bar{a}_{2,2}(x_2), \ldots, \bar{a}_{2,n}(x_n)) \\
\vdots \\
a_n(\bar{a}_{n,1}(x_1), \bar{a}_{n,2}(x_2), \ldots, \bar{a}_{n,n}(x_n))
\end{bmatrix}
\]

where each of the elements \(i_{v,w}, s_{v,w}, d_{v,w}, a_v\) and \(m_{v,w}\) with \(v, w\) as matrix index represent either a bilateral coupling or an operator, or the value 0, latter indicating a missing NMPC component at this place.

Modulators are represented by \(m_{v,w}\), enumerating all possible input variable combinations without repetitions. Direct feedbacks of a modulator’s output into one of its inputs is not allowed, meaning that within a matrix row \(r\) all elements \(m_{r,v}(x_v, x_w) = 0\) where \(v = r\) or \(w = r\).

Accordingly, direct feedback of a synchronous coupling’s output into its input is not allowed, meaning that within a matrix row \(r\) all elements \(s_{r,v}(x_r) = 0\).

Summators are represented by one sum of state variables as function \(a_v(\bar{a}_{v,1}(x_1), \bar{a}_{v,2}(x_2), \ldots, \bar{a}_{v,n}(x_n))\) per state variable \(x_v\). Direct feedback from a summators output into its input is not allowed, meaning that within a matrix row \(r\) the summator’s input \(\bar{a}_{r,v}(x_r) = 0\).

Further, each of all \(n\) state variables in \(X\) represents the output node of at most one NMPC-function:
\(\forall i \mid i_{a,0} = 0 \rightarrow i_{a,0} = 0, \ s_{a,0} = 0, \ d_{a,0} = 0, \ a_{a} = 0, \ m_{a,0} = 0 \)
\(\forall s \mid s_{a,0} = 0 \rightarrow i_{a,0} = 0, \ s_{a,0} = 0, \ d_{a,0} = 0, \ a_{a} = 0, \ m_{a,0} = 0 \)
\(\forall d \mid d_{a,0} = 0 \rightarrow i_{a,0} = 0, \ s_{a,0} = 0, \ d_{a,0} = 0, \ a_{a} = 0, \ m_{a,0} = 0 \)
\(\forall a \mid a_{a} = 0 \rightarrow i_{a,0} = 0, \ s_{a,0} = 0, \ d_{a,0} = 0, \ a_{a} = 0, \ m_{a,0} = 0 \)
\(\forall m \mid m_{a,0} = 0 \rightarrow i_{a,0} = 0, \ s_{a,0} = 0, \ d_{a,0} = 0, \ a_{a} = 0, \ m_{a,0} = 0 \)

\[u \neq w; \ j = 1..n; l = 1..q \]

\((23)\)

B. Example of a NMPC-Graph

Following example illustrates how a NMPC-graph is represented in matrix notation. Here a hypothetic scenario of a time dependent measure of soil moisture is shown which depends on natural precipitation and evaporation:

The higher the soil moisture \((p_3)\) the more intensive the evaporation \((x_4)\), amplified \((m_{4,2})\) with growing sunshine intensity \((p_1)\). Evaporation is subtracted \((a_6)\) from a unit of measure adjusted precipitation \((x_5)\). The unit of measure adjustment \((S_{5,2})\) is applied to original precipitation \((p_2)\). The more positive this result, the faster soil moisture grows \((i_{3,6})\). The more negative this result, the faster soil moisture decreases \((i_{3,6})\).

By convention, all measurable parameters are shown underlined while parameters which are believed to be meaningful to the scenario but cannot directly be measured, i.e. latent parameters, are shown in parenthesis:

\[x_3(t) \rightarrow p_3(t): \]

soil moisture

\[x_4(t): \] (evaporation)

\[x_5(t): \]

sunshine intensity per period

\[x_1(t) \rightarrow p_1(t): \]

precipitation level per period

The corresponding matrix equation looks like following:
with \(p_1(t) = x_1(t) \), \(p_2(t) = x_2(t) \), and \(p_3(t) = x_3(t) \).

IV. CONVERGING THE NMPC-GRAPH INTO A NMPC-MODEL BY CALIBRATION WITH HISTORIC DATA

A. The principle of calibration

Modeling dynamic systems by NMPC-graphs is suited for such systems where types of NMPC-couplings between parameters are believed to be known, but not the precise shapes of their monotone and possibly nonlinear functions.

As the precise shapes of monotone functions \(i, s, d, \) and \(m \) in sections II.B and II.C are not fully defined in their input variables, the differential state equation system given by (19), (20), and (22) is neither. For calculating the evolution of state variables \(X \) in (19) over independent parameter \(t \) precise manifestations need to be determined for all monotone functions within the NMPC-graph. This is known as an inverse problem [18][19] and can be achieved numerically by a procedure which in following will be referred to as calibration.

Calibration is a network-suited regression method based on an iterative nonlinear regression calculus with a forward pass and a backward pass for each cycle while applying modulated noise [22] in order to overcome local minima. The objective is to convert a specific NMPC-graph into a NMPC-model, which is a differential state equation system corresponding to (22) and fully defined in its state variables \(X \) and independent parameter \(t \). Thus, a NMPC-model is fully defined by its NMPC-parameters, NMPC-functions with their regression constants, and their couplings.
The NMPC-functions which need to be determined by a regression method are all of the bilateral couplings and modulators while NMPC-parameters and summators are already fully defined without calibration.

Let \(u \) be an index uniquely identifying each NMPC-component in an NMPC-graph. Then the time independent regression constants for all bilateral couplings can be determined by some regression method [20][21]

\[
(k_{u,1}, k_{u,2}, \ldots, k_{u,h(u)}) = \text{regression}_{u}(x_{\text{in}, u}(t_j), x_{\text{out}, u}(t_j)) \bigg|_{t_j = t_{\text{min}} \ldots t_{\text{max}}} \tag{25}
\]

with a number of \(h(u) \) regression constants \(k_u \) of a bilateral coupling \(u \).

Since the regression constants define either of the monotone functions \(\tilde{d}(x), \tilde{v}(x) \), and \(\tilde{s}(x) \) they can be calculated as long as for each calibratable NMPC-function there is a sufficient large number of calibration sets containing time dependent values for input and output state variables with a sufficient coverage of the relevant value space for input and output state variable. Calibration sets for bilateral couplings then are represented by

\[
x_{\text{in}, u}(t_j) ; x_{\text{out}, u}(t_j) \bigg|_{t_j = t_{\text{min}} \ldots t_{\text{max}}} \tag{26}
\]

Here, all \(x_{\text{in}, u}(t_j) \) can be calculated in a forward pass by (29) and all \(x_{\text{out}, u}(t_j) \) can be calculated within a backward pass by (30) (see below).

The same principle applies for modulators where the time independent regression constants of modulator \(u \) can be determined by some regression method [20][21]

\[
x_{\text{in}, u}(t) = \text{net}_{\text{i}}(t) = \begin{cases} g_{v}(\text{net}_{v}(t), k_{v,1}, k_{v,2}, \ldots, k_{v,h(v)}) \\ m_{v}(\text{net}_{v}(t), k_{v,1}, k_{v,2}, \ldots, k_{v,h(v)}) \\ a_{v}(\text{net}_{v}(t), k_{v,1}, k_{v,2}, \ldots, k_{v,h(v)})) \end{cases} \\
\text{with } x_{\text{in}, u} \text{ as output of a bilateral coupling } v \text{ with } x_{\text{in}, u} \text{ as output of a modulator } v \text{ with } x_{\text{in}, u} \text{ as output of a summator } v \text{ with } x_{\text{in}, u} \text{ as NMPC- parameter } \tag{29}
\]

with generalized bilateral coupling function \(g(t) \supseteq d(t), \ g(t) \supseteq i(t), \ g(t) \supseteq s(t) \).

For modulators, the net-function to calculate \(x_{\text{in}, u} \) applies here for either inputs \(x_{\text{in}, 1, u} \) and \(x_{\text{in}, 2, u} \).

Further, assuming that \(x_{\text{out}, u} \) in (26) and (28) is one input node of another NMPC-component \(\bar{v} \) then \(x_{\text{out}, u} \) can be calculated by the net\(^{-1}\)-function (inverse net-function)

\[
x_{\text{out}, u}(t) = \text{net}_{\text{i}}^{-1}(t) = \begin{cases} g_{\bar{v}}^{-1}(\text{net}_{\bar{v}}^{-1}(t), k_{\bar{v},1}, k_{\bar{v},2}, \ldots, k_{\bar{v},h(\bar{v})}) \\ x_{\text{out}, u}(m_{\bar{v}}^{-1}(\text{net}_{\bar{v}}^{-1}(t), k_{\bar{v},1}, k_{\bar{v},2}, \ldots, k_{\bar{v},h(\bar{v})})) \\ x_{\text{out}, u}(a_{\bar{v}}^{-1}(\text{net}_{\bar{v}}^{-1}(t))) \end{cases} \\
\text{with } x_{\text{out}, u} \text{ as input of a bilateral coupling } \bar{v} \text{ with } x_{\text{out}, u} \text{ as input of a modulator } \bar{v} \text{ with } x_{\text{out}, u} \text{ as input of a summator } \bar{v} \text{ with } x_{\text{out}, u} \text{ as NMPC- parameter } \tag{30}
\]

whilst net\(^{-1}\)-function in all cases is assumed as calculable.

This is non-trivial for the inverse functions \(m_{\bar{v}}^{-1} \) and \(a_{\bar{v}}^{-1} \) of
the NMPC-operators, i.e. for NMPC-functions with more than one input state variable. A solution for this problem is shown in section IV.C.

For a NMPC-graph being defined as well formed all of following conditions need to be fulfilled:
- Each of its state variables needs to be computable by both (29) and (30).
- Each input state variable of any NMPC-component is connected to exactly either one output state variable or a NMPC-parameter.
- Each output state variable of any NMPC-component is connected to at least one input state variable or a NMPC-parameter.
- Each NMPC-function’s output can be calculated directly or indirectly from at least one NMPC-parameter.

As the net-function and the inverse net-function allow to compute values for all input and all output state variables of any NMPC-function within a well formed NMPC-graph calibration is possible as soon as there is given a sufficient number of NMPC-parameters in column vector $P \subseteq X$ with $P(t(j))$, $j \in I$ and $j = 1...c$ where c is a sufficient number of calibration records allowing to determine (26) and (28) assuming c points in time in ascending order with $t(j) > t(j-1)$ given $j_2 > j_1$.

Since there may be connected more than one input state variable or NMPC-parameter to an output state variable of any NMPC-component u, the NMPC-graph may offer multiple output paths for choosing net_p^{-1} in (30). When implementing a software algorithm for calculation of an inverse net-function it is recommendable to randomly choose among multiple paths of one output node by selecting each of those paths with the same probability. This helps to achieve a well balanced consideration of all NMPC-components after many calibration cycles.

Example: Referring to section III.B there would apply following net-functions:

\[
\begin{align*}
 x_1(t) &= p_1(t) \\
 x_i(t) &= net_{i-1}^{a_i} = x_i(m_{a_i^{-1}}(t)) \\
 x_3(t) &= net_3 = s_3(z(p_3(t))) \\
 x_4(t) &= net_4 = x_4(a_{b_4}^{-1}(t)) \\
 x_5(t) &= net_5 = s_5(z(p_5(t))-m_{a_5}(p_1(t), p_3(t))) \\
 x_6(t) &= net_6 = i_6^{-1}(p_3(t))
\end{align*}
\]

Note that calculating the inverse net-function of NMPC-operators like $m_{a_2}^{-1}(t)$ and $a_6^{-1}(t)$ is non-trivial and described in section IV.C.

B. Proposing an algorithm for calibrating NMPC-functions

The objective of this section is to show how all time independent regression constants $k_{u_1}, k_{u_2}, \ldots, k_{u_n}$ defined in (25) and (27) can be determined for all calibratable components in the NMPC-graph in order to fully define (19).
synchronous, and differential couplings can be easily determined, because \(g_\tau \) and thus also \(g_\tau^{-1} \) are strictly monotone functions yielding one output value for one input value over their whole definition interval.

On the contrary, in (30) the inverse function of a NMPC-function with multiple input variables like summators with \(a_\tau^{-1}(net_\tau^{-1}(t)) \) or modulators with \(m_\tau^{-1}(net_\tau^{-1}(t)) \) in spite of being strictly monotone are not real functions in a mathematical sense as they are yielding multiple valid input variable value sets for exactly one output value. The basic idea now is to use input values previously calculated in a forward calculation pass for dissolving this ambiguity for both modulator and summator.

When applying the inverse function during a backward calculation pass in an ideally calibrated NMPC-model its results at the output variable of any NMPC-function would not deviate from the same value calculated by a forward pass.

However, if it does as being the case in a non-ideal calibration state the inverse function can be calculated in such way that it approximates most closely the result of the last forward pass.

The two following sections describe why the inverse function results in an ambiguity for operators and how it can be dissolved for modulators and summators in a reasonable way.

3) Calculating inverse function of a NMPC-modulator

The surface of the strictly monotone function of a modulator can be expressed by position vector \(\vec{r} \) with

\[
\text{IR}^2: \quad \vec{r} = \begin{pmatrix} x_{in,1} \\ x_{in,2} \\ m(x_{in,1}, x_{in,2}) \end{pmatrix}
\]

with the characteristics described in section II.C.2). Determining the modulator’s input variable values by inverse function \(\left(x_{in,1}, x_{in,2} \right) = m^{-1}(x_{out}) \) geometrically means to find the intersection between \(\vec{r} \) and a plane \(\begin{pmatrix} x_{in,1} \\ x_{in,2} \\ x_{out} = \text{constant} \end{pmatrix} \) for a given \(x_{out} \), which for a strictly monotone plane in either of the input variables \(x_{in,1} \) and \(x_{in,2} \) results in a geometric line

\[
\text{IR}^2: \quad \vec{t}_{in} = \begin{pmatrix} x_{line, in,1} \\ x_{line, in,2} \end{pmatrix} = \begin{pmatrix} x_{line, in,1} \\ m^{-3}(x_{out}, x_{line, in,1}) \end{pmatrix}
\]

constituted by an infinite number of points. This solution is undesired, because for calculating a modulator’s inverse function \(m_\tau^{-1}(net_\tau^{-1}(t), k_{\tau,1}, k_{\tau,2}, ..., k_{\tau,h(v)}) \) in (30) a
modulator must render exactly one point \(\left(\begin{array}{c}
X_{point_{in,1}} \\
X_{point_{in,2}}
\end{array} \right) \) instead of a line \(\tilde{\vec{t}}_{in} \).

However, the ambiguity of \(\tilde{\vec{t}}_{in} \) can be dissolved by taking into account additional information as resulting from the algorithm proposed in section IV.B:

During step (7) all functions

\[
net_u(t_j) \bigg|_{j=j_{min}..j_{max}, \, j=1..c}
\]

are calculated based on all of their input variables for all given points in time. When doing that for modulator \(\vec{V} \) it is useful to memorize for each \(t_j \) a point

\[
IR^2: \quad \vec{q}_e(t_j) = \left(\begin{array}{c}
X_{mem_{in,1}}^{\tilde{t}(t_j)} \\
X_{mem_{in,2}}^{\tilde{t}(t_j)}
\end{array} \right)
\]

representing the modulator \(\vec{V} \)'s input variable values.

At algorithm step (5) which implies calculation of inverse functions due to (30), for modulators such memorized point \(\tilde{\vec{q}}_e(t_j) \) from the previous cycle can be used to determine unambiguous input variable values by selecting the one point of \(\tilde{\vec{t}}_{in}(t_j) \) being closest to \(\tilde{\vec{q}}_e(t_j) \) by calculating

\[
\text{minimum}(\vec{\tilde{t}}_{in}(t_j) - \tilde{\vec{q}}_e(t_j)) \rightarrow \left(\begin{array}{c}
X_{point_{in,1}}^{\tilde{t}(t_j)} \\
X_{point_{in,2}}^{\tilde{t}(t_j)}
\end{array} \right)
\]

where \(X_{point_{in,1}}^{\tilde{t}(t_j)} \) and \(X_{point_{in,2}}^{\tilde{t}(t_j)} \) represent the input values rendered by modulator \(\vec{V} \)'s inverse function where each of them corresponds to \(net_e^{-1}(t) \) in (30).

4) Calculating inverse function of a NMPC summator

Like for modulators also for summators all of them are calculated during step (7)

\[
net_u(t_j) \bigg|_{j=j_{min}..j_{max}, \, j=1..c}
\]

based on all of their input variables for all given points in time course of a forward pass. When doing that for the summator \(u \) it is useful to memorize for each \(t_j \) the summators output value \(X_{mem_{out,u}}(t_j) \) and for each of its input variable values \(X_{mem_{in,y,u}}(t_j) \) with \(y \) input variables, \(y \in \{1..c\} \).

When calculating the backward pass leading to a summator \(u \) as implied in step (5) and resulting in \(X_{out,u}(t_j) \) the values memorized from the previous cycle in step (7) can be used to calculate the deviation between previous cycle and current cycle by

\[
\Delta x_{out,u}(t_j) = x_{out,u}(t_j) - x_{mem_{out,u}}(t_j)
\]

This deviation now can be propagated to the current input variables \(X_{in,y,u}(t_j) \) by distributing the output deviation equally over the input variables by

\[
x_{in,y,u}(t_j) = x_{mem_{in,y,u}}(t_j) + \frac{\Delta x_{out,u}(t_j)}{y}
\]

If during many calibration cycles the value for \(x_{out,u}(t_j) \) as calculated during forward pass approaches each time closer the one calculated during backward pass the deviation \(\Delta x_{out,u}(t_j) \) becomes smaller and smaller. This way also the input variable values \(X_{in,y,u}(t_j) \) calculated during forward pass are approaching that ones calculated during backward pass.

V. CALIBRATION AS HYPOTHESIS TESTING

A specific NMPC-graph can be understood as hypothesis about the causal dynamic structure of some system producing the calibration data.

Each of \(c \) calibration records is supposed to match state equation (20) with given values for \(P \subseteq X \). During calibration each regression constant \(k_{u,v} \) is one free variable within the state equation to be calculated in the course of solving the inverse problem as shown in section 0. For not being underdetermined there need to be at least as many equations populated by values for \(P \) as free variables, i.e. at least as many calibration records as regression constants. A good base for calibration will be given if \(c \)

- is much greater than the amount of regression constants \(k_{u,v} \).
- is sufficiently large for covering all relevant system behavior.

If the NMPC-graph is representing the system’s nature well calibration error \(\hat{E} \) of its corresponding NMPC-model is expected to result small after termination of the algorithm described in section IV.B. It expresses the maximum absolute deviation of any of the given NMPC-parameter values versus the ones calculated based on (20) over all calibration records. If it results small, i.e. as small portion of all of the NMPC-parameter value ranges \([P_{min,u}, P_{max,u}] \) the calibration succeeded and the NMPC-model is likely to represent the system well. In such case the hypothesis given by a NMPC-graph can be assumed as relevant.

VI. SOLVING THE STATE EQUATION

Once, regression parameters \(k_{u,1}, k_{u,2}, \ldots, k_{u,h(u)} \) of all calibratable NMPC-functions \(u \) as calculated in (25) and (27) have been determined by calibration, the NMPC-parameter values within the nonlinear state equation as introduced in section III.A can be solved numerically by a fixed-point iteration process. However, as net-functions of the NMPC-model generally are multivariate and potentially nonlinear a satisfying fixed-point iteration algorithm will be non-trivial.
There are numerous possible fixed-point iteration methods to solve the nonlinear state equation [23]. In following there will not be presented a fully specified algorithm but the properties it needs to have.

One possible starting method might be a Gauss-Seidel process [25][26] which seeks to approximate the solution value for \(p_v(t) \) of the current NMPC-model calibration cycle within an interval \([P_{v_{\min}}, P_{v_{\max}}]\) for each of all \(z\) NMPC-parameters by

\[
(\omega+1) p_v(t) = \text{net}(\omega+1) p_v(t), (\omega+1) p_v(t), ..., \text{net}(\omega) p_v(t), (\omega) p_v(t), (\omega+1) p_v(t), (\omega+1) p_v(t), (\omega+1) p_v(t), (\omega+1) p_v(t)_{0 \leq z \leq 2}
\]

where \(w+1\) is current and \(w\) is previous iteration, \(v = 1...z \) identifies the currently calculated NMPC-parameter, and \(\text{net}_v\) is the net-function determining the value of the current NMPC-parameter depending on all other NMPC-parameters and, in recursive systems, also from itself. The starting value \(p_v(t)_{0}\) is \(p_v(t)\) which is the value determined during the previous NMPC-model calibration cycle or some guess value for the first calibration cycle.

Convergence of the iteration process is given as long as

\[
(\omega+2) p_v(t) - (\omega+1) p_v(t) < (\omega+1) p_v(t) - (\omega+1) p_v(t)
\]

for all \(w\) iterations. Iteration should be aborted when

\[
(\omega+1) p_v(t) - (\omega+1) p_v(t) < \epsilon
\]

with \(\epsilon\) as acceptable iteration error.

As soon as (38) is not fulfilled anymore, an alternative iteration method needs to be applied for finding a new \(p_v(t)\). In such case (37) will be only used to test abortion criterion by (39). Starting with the value for \(p_v(t)\) such method will probe different values for \(p_v(t)\) within

\[
[P_{v_{\min}}, P_{v_{\max}}]
\]

trying to either fulfill (39) or

\[
(\omega+1) p_v(t) - (\omega+1) p_v(t) \rightarrow \text{minimum}
\]

with the closest distance to the value of \(p_v(t)\) possible. Such method is expected to be computationally costly in comparison to a converging fixed-point iteration method, but is not limited by convergence criteria.

VII. OUTLOOK

The algorithm described so far is suited to serve as implementation base for a prediction software solution. Such will consist of two parts:

The first part will be a calibration engine which consumes a formal description of a NMPC-graph and historic time-series data measured from the scenario which later on shall be predicted. From that input the software will derive the NMPC-model by a calibration process as described in section 0.

The second part of such software solution will be a time-series predictor. It will consume a previously calibrated NMPC-model and time-series scenario data for predicting the scenario’s behavior in future. From that it derives the time-series prediction due to the principle described in section VI.

Such a software solution already has been implemented and is available as freeware edition [27]. A user manual containing a complete description for calibrating and predicting a scenario according to the one presented in III.B also has been published [28].

APPENDIX – GLOSSARY

Terms of the NMPC methodology	backward pass	Calculating the output of a NMPC-component from backward by solely applying inverse net-functions throughout the NMPC-network.
bilateral coupling	Superclass of following couplings: differential, integrative, and synchronous coupling.	
calibration	Derivation of a NMPC-model by (a) a NMPC-graph and (b) given calibration records via a complex regression algorithm, potentially under the condition of multivariate, nonlinear, temporal, and recursive network structure.	
differential coupling	NMPC-component where the growth of one output state variable depends potentially nonlinearly on the acceleration of one input state variable over the independent variable.	
dynamic	Time related behavior, see also temporal.	

Terms of the NMPC methodology	forward pass	Calculating the input of a NMPC-component from forward by solely applying net-functions throughout the NMPC-network.
independent variable	A NMPC-graph describes a dynamic system whose behavior depends on one independent variable, i.e. this variable is independent from any other variable or constant within the NMPC-model. It is also the independent variable used in bilateral couplings. Typically, this independent variable represents the time measure.	
integrative coupling	NMPC-component where the growth of one output state variable depends potentially nonlinearly on the level of one input state variable over the independent variable.	
inverse net-function	Abstract function which calculates some state variable value within the NMPC-network by applying a cascade of inverse NMPC-functions starting with one or more NMPC-parameters as inputs.	
latent variable All state variables whose corresponding value cannot or is not being measured within their corresponding real world system. The meaning is the same like for the conventions of Structural Equation Modeling.

m-function Monotone function at the base of each bilateral coupling type.

manifest variable All state variables whose corresponding value is being measured within their corresponding real world system. The meaning is the same like for the conventions of Structural Equation Modeling.

modulator NMPC-component where the value of one output state variable depends potentially nonlinearly on the values of two input state variables.

monotone function In the context of NMPC-graph a mathematical function where a rising input variable results in a rising output variable at every point of the definition interval of the function.

net-function Abstract function which calculates some state variable value within the NMPC-network by applying a cascade of NMPC-functions starting with one or more NMPC-parameters as inputs.

NMPC-component One of following components within any NMPC-graph: Either a NMPC-parameter, an operator, or a bilateral coupling.

NMPC-function Either an operator or a bilateral coupling.

NMPC-graph Path diagram of a Nonlinear Monotonic Parameter Coupling system description, exclusively formed by NMPC-components and their mutual connections.

NMPC-model A strictly mathematical representation of the NMPC-graph where all constants of all equations, i.e. the shape of all of its mathematical functions, are fixed and fully specified. Independent and state variables remain fluctuating.

As soon as a NMPC-model contains integrative and/or differential couplings it forms an ordinary differential equation (ODE) system over the independent variable.

operator One of following components within a NMPC-graph: either a summator or a modulator.

(NMPC-)parameter NMPC-component representing a state variable. (NMPC-)parameters represent some or all of the manifest or latent state variables. All manifest variables need to be presented to the NMPC-model by parameters.

Typically, parameters are placed within NMPC-graph in such way that they represent observables or other meaningful values.

relevant hypothesis A NMPC-graph is termed to be a relevant hypothesis as soon as its best calibrated NMPC-model can reproduce the NMPC-parameter values of all calibration records sufficiently well.

state variable All variables which are input to or result from the equations within the NMPC-model. Each state variable holds a real number value describing the state of the dynamic system dependent on the independent variable and parameters, i.e. other state variables. The sets of latent and manifest variables are exclusively composing the set of state variables.

summator NMPC-component where the value of one output state variable is the linear sum of two up to many values of its input state variables.

synchronous coupling NMPC-component where the growth of one output state variable depends potentially nonlinearly on the independent variable.

temporal Time related, typically integrative or differential functions.

Mathematical placeholders

\[a_u(\ldots) \] Monotone function of a summator \(u \), always defined as linear sum of its signed input state variable values.

\[a^t \] Inverse function of a summator.

\[\tilde{a}_{u,v}(x) \] Signed input \(v \) of summator \(u \) determining whether input is added positively or negatively.

\[c \] Number of calibration records.

\[\tilde{d}(x) \] Differential coupling function of component \(u \).

\[\tilde{g}_u \] Monotone function of a differential coupling, potentially with nonlinear shape.

\[\varepsilon \] Iteration abortion limit for the difference between values of two successive fixed-point iteration steps or Gauss-Seidel process steps of one NMPC-parameter.

\[\varepsilon_u \] Calibration error over all calibration records for NMPC-parameter \(u \) during one calibration cycle.

\[\hat{\varepsilon} \] Calibration error over all calibration records for all NMPC-parameters during one calibration cycle.

\[\hat{\varepsilon}^r \] Calibration error over all calibration records for all NMPC-parameters after simulated annealing random modifications during one calibration cycle.

\[g_u \] Generic monotone function generalizing NMPC-function for a bilateral coupling \(i_s(x), d_s(x), s_s(x) \) in one input state variable and with one output state variable whose shape is fully defined by its regression constants \(k_{uv} \).

\[h(u) \] Number of regression parameters for a calibratable NMPC-function of NMPC-component \(u \).

\[i_d(x) \] Integrative coupling function of component \(u \).

\[\tilde{i}(x) \] Monotone function of an integrative coupling, potentially with nonlinear shape.

\[j \] Index of some variable or function, \(\in \mathbb{N} \)

\[k_{uv} \] Regression constants of either a generic monotone function \(g_u \) for a bilateral coupling or a modulator \(m_v \).

\[l \] Index of some variable or function, \(\in \mathbb{N} \).

\[\tilde{i}_{in} \] An intersection line on a modulator’s plane which is obtained during calculation of the inverse function of a modulator.

\[m(x) \] General monotone function, potentially with nonlinear shape.

\[m(x_{in1}, x_{in2}) \] Function of a modulator being monotone and potentially nonlinear in each of its input variables.

\[m^{-1} \] Inverse function of a modulator.

\[n \] Number of state variables within the NMPC-graph.

\[p_u \] NMPC-parameter \(u \) within the NMPC-graph.
\(p \) Column vector of all NMPC-parameters \(p \), within the NMPC-graph.

\(q \) Maximum number of choices to combine two state variables as inputs for one modulator.

\(\tilde{q} \) Memorized input state variable value set for supporting subsequent calculation of a modulator’s inverse function.

\(r \) A row index within the matrices corresponding to state variable \(x \).

\(j \) Position vector describing the plane of a modulator.

\(s_u(x) \) Synchronous coupling function of component \(u \).

\(\tilde{s}(x) \) Monotone function of a synchronous coupling, potentially with nonlinear shape.

\(t \) Independent variable, typically representing time.

\(u \) Index uniquely identifying a NMPC-component within an NMPC-graph, \(u \in \mathbb{N} \).

\(v \) Index of some variable or function, \(v \in \mathbb{N} \).

\(w \) Index of some variable or function, \(w \in \mathbb{N} \).

\(x_{in} \) Input state variable used in the definition of a NMPC-component.

\(x_{out} \) Output state variable used in the definition of a NMPC-component.

\(x_v \) Latent or manifest state variable within the NMPC-graph.

\(X \) Column vector of all state variables \(x \), within the NMPC-graph.

\(y(u) \) Number of input state variables \(x \), of NMPC-function \(u \) with \(j \in \mathbb{N} \).

\(z \) Number of NMPC-parameters.

REFERENCES

[1] Saeed Ghahramani; Fundamentals of Probability with Stochastic Processes, Pearson, Prentice Hall; 3rd edition; 2005; pp. 1-2

[2] John A. Sokolowski, Catherine M. Banks; Modeling and Simulation Fundamentals: Theoretical Underpinnings and Practical Domains; Wiley; 2010; pp. 99-102

[3] Robert C. MacCallum, James T. Austin; Applications of Structural Equation Modeling in Psychological Research; Annual Review of Psychology (2000); Volume 51; 201-226

[4] Randall E. Schumacker (Ed), George A. Marcoulides (Ed); Interaction and nonlinear effects in structural equation modeling; Mahwah, NJ, US; Lawrence Erlbaum Associates Publishers Interaction and nonlinear effects in structural equation modeling; (1998); 265 pp; PsycINFO Database Record; 2012

[5] Fan Yang-Wallentin; Kaisa Yang-Hansen; Non-linear structural equation modeling; Structural Equation Modeling in Educational Research: Concepts and Applications / Timothy Teo and Myint Swe Khine; Rotterdam: SensePublishers; 2009; pp. 317-328

[6] K.J. Friston, L. Harrison, W.D. Penny; Dynamic Causal Modeling; NeuroImage; 19(4):1273-1302; 2003

[7] David E. Rumelhard, Geoffrey E. Hinton, Ronald J. Williams; Learning representations by back-propagation errors; Nature; Vol. 323; 1986; pp. 533-536

[8] Usama M. Fayyad, Keki B. Irani; On the handling of Continuous-Valued Attributes in Decision Tree Generation; Machine Learning; Vol. 8; 1992; pp. 87-102

[9] Christopher J.C. Burges, Usama Fayyad; A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery; Vol. 2; 1998; pp. 121-167

[10] St. Russel, P. Norvig; Artificial Intelligence – A modern approach; Prentice Hall; 3rd edition; 2010; pp. 727-736

[11] St. Russel, P. Norvig; Artificial Intelligence – A modern approach; Prentice Hall; 3rd edition; 2010; pp. 697-707

[12] St. Russel, P. Norvig; Artificial Intelligence – A modern approach; Prentice Hall; 3rd edition; 2010; pp. 744-747

[13] St. Russel, P. Norvig; Artificial Intelligence – A modern approach; Prentice Hall; 3rd edition; 2010; pp. 513-538, 590-598

[14] St. Russel, P. Norvig; Artificial Intelligence – A modern approach; Prentice Hall; 3rd edition; 2010; pp. 546-550

[15] http://data.oecd.org: OECD.Stat

[16] N. Gregory Mankiw, Principles of Economics, Cengage Learning, 2014

[17] Michael Wickens; How did we get to where we are now? Reflections on 50 years of macroeconomic and financial econometrics; No. 14/17; Department of Economics and Related Studies University of York Heslington; 2014

[18] Gottfried Anger, Inverse Problems in Differential Equations; Akademie-Verlag Berlin; Kluwer; 1990

[19] J. O. Ramsay, G. Hooker, D. Campbell, J. Cao; Parameter estimation for differential equations: a generalised smoothing approach; J. Royal Statistical Society. B (2007), 69, Part 5, pp. 741-796

[20] A. Ronald Gallant; Multivariate Nonlinear Regression; Wiley, 2008

[21] Gordon K. Smyth; Nonlinear regression; Encyclopedia of Environmetrics; John Wiley & Sons; 2002; Vol. 3; pp. 1405-1411

[22] William G. Goffe, Garry D. Ferrier, John Rogers; Global optimization of statistical functions with simulated annealing; Journal of Econometrics 60; 1994; pp. 65-99

[23] C. T. Kelley; Iterative Methods for Linear and Nonlinear Equations; Society for Industrial and Applied Mathematics – SIAM; 1995

[24] L. Ridgway Scott; Numerical Analysis; Princeton University Press; 2011; pp. 15-27, 97-128

[25] J. G. Verwer; Gauss-Seidel Iteration for Stiff ODEs from Chemical Kinetics; SIAM Journal on Scientific Computing, 1994

[26] Mark Adams, Marian Brezina, Jonathan Hu, Ray Tuminaro; Parallel multigrid smoothing: polynomial versus Gauss-Seidel; Journal of Computational Physics; Volume 188, Issue 2, 2003, pp. 593–610

[27] www.cynerelo.com

[28] www.cynerelo.com/documentation