

Mab_3168c, a Putative Acetyltransferase, Enhances Adherence, Intracellular Survival and Antimicrobial Resistance of Mycobacterium abscessus

Sheng-Hui Tsai¹, Gwan-Han Shen²,³,⁴, Chao-Hsiung Lin⁵, Jiue-Ru Liu¹, Hsin-Chih Lai⁶,⁷,⁸, Shiau-Ting Hu¹*

¹ Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C., ² Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Veterans General Hospital, Taichung, Taiwan, R.O.C., ³ Institute of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C., ⁴ Institute of Nursing Care, Hungkuang University, Taichung, Taiwan, R.O.C., ⁵ Department of Life Sciences and Institute of Genome Sciences, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C., ⁶ Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, R.O.C., ⁷ Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Taoyuan, Taiwan, R.O.C., ⁸ Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, R.O.C.

Abstract

Mycobacterium abscessus is a non-tuberculous mycobacterium. It can cause diseases in both immunosuppressed and immunocompetent patients and is highly resistant to multiple antimicrobial agents. M. abscessus displays two different colony morphology types: smooth and rough morphotypes. Cells with a rough morphotype are more virulent. The purpose of this study was to identify genes responsible for M. abscessus morphotype switching. With transposon mutagenesis, a mutant with a Tn⁵ inserted into the promoter region of the mab_3168c gene was found to switch its colonies from a rough to a smooth morphotype. This mutant had a higher sliding motility but a lower ability to form biofilms, aggregate in culture, and survive inside macrophages. Results of bioinformatic analyses suggest that the putative Mab_3168c protein is a member of the GCN5-related N-acetyltransferase superfamily. This prediction was supported by the demonstration that the mab_3168c gene conferred M. abscessus and M. smegmatis cells resistance to amikacin. The multiple roles of mab_3168c suggest that it could be a potential target for development of therapeutic regimens to treat diseases caused by M. abscessus.

Introduction

Mycobacterium abscessus is a rapid growing mycobacterium. It has emerged as an important pathogen of soft tissue, pulmonary, and disseminated infections in both immunocompromised and immunocompetent patients [1,2,3,4]. The soft tissue infections are mainly due to penetrating trauma or surgery. A study of 86 nontuberculous mycobacterial infections of surgical wound and tympanic membrane in central Taiwan found that 100% of these cases were caused by M. abscessus [5,6,7,8].

M. abscessus is one of the most drug-resistant, rapid-growing mycobacteria [2,9,10]. Like other mycobacteria [11], M. abscessus has a complex hydrophobic cell wall that constitutes an efficient permeability barrier. Based on analyses of genomic sequences, M. abscessus is predicted to produce β-lactamas, aminoglycoside phosphotransferases, and aminoglycoside acetyltransferases that may confer multiple drug resistance [12]. M. abscessus is an intracellular pathogen [13,14]. In culture, M. abscessus exhibits two different colony morphology types referred to as rough and smooth morphotypes [13,15]. These morphotypes correlate with the virulence of M. abscessus, and cells with a rough morphotype are more virulent.

The mmpL6h gene in the glycopeptidolipid biosynthesis pathway has been shown to be responsible for switching M. abscessus colonies from a smooth to a rough morphotype [16]. In this study, we identified a gene designated mab_3168c, whose function was unknown, and found that mab_3168c controlled the switching of M. abscessus colony morphology from a rough to a smooth morphotype. We also found that mab_3168c played a role in biofilm formation, intracellular survival, and resistance to antimicrobial agents.

Results

Screening and Identification of M. abscessus Mutants with Colony Morphotype Switching

In order to identify the genes involved in M. abscessus colony morphology switching, Tn⁵ transposon mutagenesis was performed. A mutant designated mab_3168c::Tn (Fig. 1A) that switched its colonies from a rough to a smooth morphotype was identified. Characterization of the genome of this mutant revealed that the transposon was inserted into a place 56 bp upstream from the initiation codon (GTG) of mab_3168c (GenBank accession no. NC_010397) and 76 bp downstream from the stop codon of ispG.
(mab_3168c) (Fig. 1B). To confirm that this morphotype switching was due to the defect in mab_3168c, the intact mab_3168c gene was cloned into the E. coli/mycobacterium shuttle vector pYUB412A to generate pYUB412A-mab_3168c and then introduced into the mab_3168c::Tn mutant. This complementation was found to almost completely convert the colonies of the mab_3168c::Tn mutant from a smooth back to a rough morphotype (Fig. 1A), suggesting that the mab_3168c gene conferred M. abscessus the ability to form rough colonies. Since this complementation was not complete (Fig. 1A), RT-PCR was performed to determine mRNA levels of mab_3168c. No mab_3168c mRNA band was detected in the samples from the mab_3168c::Tn mutant (Fig. 1C), and mab_3168c mRNA levels in the mab_3168c complemented mutant were approximately 60% that of the wild type (Fig. 1D). This result suggested that the incomplete complementation of morphotype was due to sub-optimal expression of the mab_3168c gene introduced into the mutant.

As the Tn3 was inserted 76 bp downstream of the ispG gene, ispG mRNA levels were also determined and found to be the same in the wild type, mab_3168c::Tn mutant, and the complemented strains (Fig. 1C). These results indicated that the Tn3 insertion inactivated mab_3168c but did not affect the expression of its neighboring gene, ispG which encodes 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase [12,17]. For simplicity, the mab_3168c::Tn mutant and mab_3168c-complemented mab_3168c::Tn mutant will be referred to as the mutant and the complemented mutant, respectively, hereafter.

Increased Sliding Motility of the mab_3168c Mutant

Previous studies [18] have shown that the smooth strains of M. smegmatis and M. avium have a higher sliding ability. Therefore, the motility of the mutant cells on agar plates was examined. As shown in Fig. 2, the wild type M. abscessus cells were non-motile (0.07±0.02 mm), whereas the mutant cells were highly motile (1.55±0.13 mm). The complemented mutant cells regained the non-motile phenotype (0.25±0.05 mm). These results indicated that mab_3168c played a major role in inhibiting the motility of M. abscessus.

Decreased Cell Surface Hydrophobicity, Biofilm Formation and Lysozyme Susceptibility of the mab_3168c Mutant

Since the hydrophobicity of cell surface is associated with the sliding activity of mycobacteria [19], experiments were performed to investigate whether the hydrophobicity of the mutant was altered. M. abscessus cells of the wild type, mutant, and complemented mutant were grown in liquid Middlebrook 7H9 medium without Tween 80 for 3 days. The mutant exhibited a homogenously dispersed culture, whereas the cultures of both the wild type and complemented mutant had a clear supernatant with cells aggregated in the bottom of the culture tube (Fig. 3A). To adjust for possible variations in growth rates of the 3 strains, an aggregation index of each culture, which is the value of the number of aggregated cells divided by that of dispersed cells, was calculated. The mutant culture was found to have an aggregation index less than 2.5, while the wild type and complemented mutant cultures had aggregation indices of 12±1.2 and 7±0.9, respectively (Fig. 3B). These results indicated that the mutant had a greatly reduced ability to aggregate.

As cell surface hydrophobicity is a determinant of adhesion [20,21], the ability of the mutant to form biofilms was examined. Cells were grown in wells of a 96-well polystyrene plate for 6 days. As shown in Fig. 4A and 4B, substantial formation of biofilms was observed in the wells of wild type M. abscessus cultures (OD595 = 0.430±0.03). In contrast, biofilm formation by the mutant was diminished (OD595 = 0.113±0.005), and the complemented mutant regained the biofilm-forming ability (OD595 = 0.378±0.03). These results indicated that the mab_3168c gene conferred M. abscessus cells the ability to form biofilms by increasing the cell surface hydrophobicity. The reduced ability of the mutant to form biofilm was not due to decreased growth rate because the mutant cells grew equally well as the wild type cells in Middlebrook 7H9 medium (Fig. 4C).

The susceptibility of the mutant to lysozyme was then assessed. Cells were grown in 7H9 broth containing varying amounts (0, 0.5, and 2.5 mg/ml) of lysozyme. The results showed that the mutant cells were much more susceptible to 0.5 mg/ml of lysozyme than the wild type cells (19% vs. 51% survival) (Fig. 5). Cells of the complemented mutant were found to be almost as resistant to lysozyme as those of the wild type (59% vs. 51% at 0.5 mg/ml lysozyme) (Fig. 5).

Decreased Intracellular Survival of the mab_3168c Mutant in Macrophages

The correlation between lysozyme susceptibility and intracellular survival of M. abscessus cells was then evaluated. THP-1 macrophages were infected with wild type, mutant, and complemented mutant at a multiplicity of infection (MOI) of 1. At 2, 24, and 72 hours post infection, the number of M. abscessus cells survived inside the macrophages was determined by CFU counts. No significant difference in macrophage intracellular survival was observed at 2 and 24 hours after infection. However, the mutant was found to survive more poorly at 72 hours post infection with a lower CFU count ([7.0±3.3]×10^6) than the wild type ([2.2±0.56]×10^7) and the complemented mutant ([3.2±0.13]×10^7) (Fig. 6A). To confirm this result, confocal microscopy was performed to enumerate intracellular mycobacteria. The result showed that the number of mab_3168c::Tn mutant was significantly lower (average 6 vs. 20 organisms per cell) than that of wild type and complemented (approximately 16 organisms per cell) strains at 72 hours post infection (Fig 6B). To show that this lower intracellular organism count was not due to death of infected THP-1 cells, the viability of uninfected and infected cells was assessed by determining LDH levels in culture supernatants. As shown in Fig. 6C, similar levels of LDH were observed in the culture supernatants of THP-1 cells infected with wild type, mutant, and complemented mutant (approximately 10% of that of total cell lysate). Very little LDH was detected in the culture supernatant of uninfected cells. Taken together, these results demonstrated that mab_3168c was required for intracellular survival of M. abscessus in macrophages.

Bioinformatics Analysis of mab_3168c

Bioinformatic analyses of the Mab_3168c protein were performed to investigate its possible functions (data not shown). A large number of proteins with a significant homology to the 270-aa Mab_3168c protein were found by BLASTP. Most of these proteins were members of the GGN5-like N-acetyltransferase (GNAT) superfamily. Reversed Position Specific Blact (RPS-BLAST) analyses revealed the presence of an acetyltransferase domain of the pfam00583 family. This domain extends from residues 203 to 259 of the putative Mab_3168c protein and contains the consensus sequence V/I-x-x-x-Q/R-x-x-G-x-G/A of acetyltransferases [22]. Results of 3D-PSSM prediction also showed that Mab_3168c bears a strong structural similarity to several acetyltransferases of the GNAT family, especially to the aminoglycoside 6'-N-acetyltransferase of Enterococcus faecium. These
Figure 1. **Identification of *mab_3168c*::Tn mutant.** (A) Colony morphology of wild type, *mab_3168c::Tn*, and complemented strains of *M. abscessus*. Five days old colonies of *M. abscessus* on 7H11 agar were viewed from the top of the colonies, demonstrating rough and smooth morphologies. (B) Schematic representation of the *mab_3168c* locus and the inserted EZ-Tn5TM_^{Kan}^R transposon (EPICENTRE[®]). Numbers shown on top of the figure are nucleotide positions of the *M. abscessus* genome. Primer KAN-2-FP-1 was used to sequence the insertion junctions of Tn5. (C) mRNA levels of *mab_3168c* and *ispG* of wild type, *mab_3168c::Tn* mutant, and complemented strains. The 16S rRNA levels were used as the internal control. The 16S rRNA levels determined without reverse transcription served as the negative control for contamination from chromosomal DNA. This experiment was repeated two times. (D) The intensities of the *mab_3168c* mRNA and the 16S rRNA bands were determined by densitometry. The relative intensity value of each sample was obtained by dividing the intensity value of its *mab_3168c* mRNA band by that of its 16S rRNA band. The arbitrary unit of the *mab_3168c* mRNA band of each strain was calculated as the relative density value of its *mab_3168c* mRNA band divided by that of the wild type.

doi:10.1371/journal.pone.0067563.g001
results suggest that Mab_3168c may function as an acetyltransferase.

Increased Susceptibility of the Mutant to Amikacin

As the aminoglycoside 6\'-N-acetyltransferase of *Enterococcus faecium* contributes to its aminoglycoside resistance [23], the possibility that *mab_3168c* conferred *M. abscessus* antibiotic resistance was examined. Cells of the wild type, mutant, and complemented mutant were grown on 7H11 agar plates with or without rifampin, ciprofloxacin, or amikacin. Other aminoglycosides such as kanamycin, neomycin, paromomycin, ribostamycin, and gentamycin B were not tested because the transposon used for mutagenesis contains the kanamycin-resistance gene, which also confers resistance to these aminoglycosides. No difference in susceptibility to rifampin and ciprofloxacin was observed among the three different strains (data not shown). However, cells of the mutant were more sensitive to amikacin than those of the wild type and the complemented mutant (Fig. 7A). In an overnight culture inoculated with 10^7 or 10^8 CFU/ml, the growth of mutant cells was completely inhibited by 20 \(\mu \)g/ml of amikacin, and the growth of the culture inoculated with 10^8 was inhibited by 6.1\pm4.4\% with a survival rate of (4.1\pm3.0) x 10^{-5}, which was calculated as the CFUs on the amikacin plate divided by those on the plate without amikacin. Cells of the complemented mutant were almost as resistant as those of the wild type to 20 \(\mu \)g/ml of amikacin, with a survival rate of (4.1\pm3.0) x 10^{-5} and (7.8\pm2.0) x 10^{-4}, respectively (Fig. 7A). To confirm amikacin susceptibility, the E test was carried out. As shown in Table 1, the amikacin MICs of both the wild type and complemented strains were 4 \(\mu \)g/ml, but the MIC of the *mab_3168c* mutant was only 2 \(\mu \)g/ml.

To further confirm that the *mab_3168c* gene conferred resistance to amikacin, it was introduced into a different mycobacterium, *M. smegmatis*, and then assayed the transformants for their susceptibility to amikacin. The MIC value of *M. smegmatis* cells containing pYUB412A-*mab_3168c* was two-fold higher than those containing the vector pYUB412A (0.25 vs. 0.12 \(\mu \)g/ml) (Fig. 7B and Table 1).

Discussion

In this study, we showed that loss of *mab_3168c* expression resulted in alterations in colony morphology, cell surface hydrophobicity, sliding motility, biofilm forming ability, amikacin and lysozyme resistance, and intracellular survivability of *M. abscessus*. Although bioinformatic analyses revealed the presence of a sequence motif characteristic of the GCN5-related N-acetyltransferase (GNAT), it remains to be determined whether the putative Mab_3168c protein is an acetyltransferase as our repeated attempts to express the *mab-3168c* gene have not been successful.

The relationship between an acetyltransferase and colony morphology was first determined in *M. smegmatis* [24]. In this organism, disruption of the *atf1* gene was found to cause its colonies to switch from a smooth to a rough morphotype [24]. The *atf1* gene encodes an O-acetyltransferase which is believed to acetylate glycopeptidolipids (GPLs) [24]. However, we did not observe any differences in the lipid profiles of both the wild type and *mab_3168c* mutant cells by thin-layer chromatography (TLC) and MALDI-TOF analysis (data not shown).

It was unexpected to observe that the cell wall lipid profiles of the wild type with a rough morphotype and the mutant with a smooth morphotype had the same lipid profiles as GPL is believed to make mycobacterial colonies smooth [16,19,24,25]. One
strains shown are means ± standard deviations of three independent experiments. Data were analyzed by one-way ANOVA and Fisher’s PLSD test. The asterisk sign (*) represents $p < 0.05$ of each culture was measured at the indicated time points.

Figure 4. Biofilm-forming capability of M. abscessus cells. (A) Cultures of wild type, mab_3168c::Tn, and complemented strains were grown on 96-well PVC plates for 6 days. The plates were washed and then stained with crystal violet. (B) Optical density readings of the three strains grown on 96-well PVC plates for 6 days. The plates were washed and stained with crystal violet. (C) Growth rates of M. abscessus variants. Cells were grown in 7H9 medium supplemented with OADC (10%) and Tween 80 (0.05%), and the OD600 value of each culture was measured at the indicated time points.

doi:10.1371/journal.pone.0067563.g004

Figure 5. Susceptibility to lysozyme of M. abscessus cells. Bacteria were inoculated at 10^7 CFU/ml into 7H9 broth containing indicated concentrations of lysozyme and incubated at 37°C for 24 hours, followed by enumeration of CFU on 7H11 plate. Results shown are means ± standard deviations of three independent experiments. Data were analyzed by one-way ANOVA and Fisher’s PLSD test. The asterisk sign (*) represents $p < 0.05$ of mab_3168c::Tn versus wild type or mab_3168c::Tn versus complemented strain.

doi:10.1371/journal.pone.0067563.g005

However, it survives better in macrophages. In this study, we found that the mab_3168c mutant formed smooth colonies, gained the sliding motility, but lost the ability to survive inside macrophages. These three properties are opposite to those of the ΔmmpL4b mutant. However, similar to the ΔmmpL4b mutant, the mab_3168c mutant also lost the ability to form biofilms. These results suggest that biofilm formation is controlled by multiple mechanisms, and both mmpL4b and mab_3168c genes regulate biofilm formation. Further support of this hypothesis is the finding that inactivation of the lsr2 gene renders M. smegmatis hyper motile and unable to form biofilms [27], very similar to the mab_3168c mutant. The lsr2 mutant also has no changes in cell wall lipid profiles [27,28]. In M. tuberculosis, Lsr2 is a nucleoid-associated protein, similar to the histone-like nucleoid structural protein H-NS [29,30] and is involved in the regulation of cell wall synthesis [31] as well as transcription suppression of many genes [30]. Although lsr2 and mab_3168c mutants are phenotypically similar, lsr2 and mab_3168c genes are distinct with no significant sequence homologies.

The mab_3168c gene was shown to confer M. abscessus resistance to amikacin which is a semisynthetic aminoglycoside derived from kanamycin. Many bacteria that are resistant to gentamicin and tobramycin are sensitive to amikacin. Therefore, amikacin is often used to treat M. abscessus infections [32]. Aminoglycoside resistance may be due to decreased cell permeability, alterations in ribosome binding, or inactivation by aminoglycoside modifying enzymes [33]. It is likely that mab_3168c is involved in cell wall synthesis making M. abscessus cells less permeable to amikacin. It is also possible that Mab_3168c acetylates amikacin rendering it inactive. In addition to Mab_3168c, M. abscessus may also produce other enzymes that can inactivate antibiotics as analyses of genomic sequences revealed its potential to produce β-lactamases and aminoglycoside converting enzymes including aminoglycoside O-phosphotransferases and aminoglycoside N-acetyltransferases [12,34,35]. This property could explain the multiple drug resistance of M. abscessus.

We also found that inactivation of mab_3168c decreased the ability of M. abscessus to survive inside macrophages. This defect is likely due to increased susceptibility to lysozyme. This possibility is supported by the finding that disruption of the aminoglycoside 2'-
N-acetyltransferase gene, \textit{acc(2')-Id}, renders \textit{M. smegmatis} susceptible to lysozyme [36].

In conclusion, compared to the known characteristics of different members of the GNAT superfamily, we predict that \textit{mab}_3168c is an N-acetyltransferase. Inactivation of \textit{mab}_3168c may cause changes in the structure of the cell wall, resulting in a pleiotropic phenotype of \textit{M. abscessus} with altered colony morphotype, increased sliding motility, reduced cellular aggregation and ability to survive inside macrophages, and increased susceptibility to amikacin. Since \textit{mab}_3168c plays a role in many different cellular functions, it could be a good target for development of drugs against \textit{M. abscessus}.

\textbf{Materials and Methods}

\textbf{Bacterial Strains and Culture Condition}

\textit{M. abscessus} strain cs1c [5] was obtained from Institute of Respiratory Therapy, China Medical University, Taichung, Taiwan. Mycobacteria were grown at 37°C on Middlebrook 7H11 (Difco, USA) agar supplemented with 10% OADC (Oleic acid-bovine albumin-dextrinase-catalase) (Becton Dickinson, USA) or in Middlebrook 7H9 broth (Difco, USA) containing 10% OADC, 0.2% glycerol, and 0.05% Tween 80. Colony morphology was examined at 50X magnification using a Nikon SMZ645 Stereo Microscope. Apramycin and hygromycin were used when required at concentrations of 30 and 50 \(\mu\)g/ml, respectively.

\textbf{Transposon Mutagenesis and Genetic Analysis of Mutants}

The \textit{M. abscessus} transposon mutant library was generated using the EZ-Tn5TM <KAN-2>Tnp TransposomeTM Kit (EPICENTRE, USA). Approximately 2000 mutants were screened to detect the ones with altered colony morphology. The Tn5 insertion site in the chromosome was identified by inverted PCR using KAN-2 FP-1 forward and KAN-2 RP-1 reverse primers (Fig. 1B) and by DNA sequencing.

\textbf{Complementation of Mutants with \textit{mab}_3168c}

The mycobacterial shuttle vector pYUB412 [37] was used as a backbone in which the hygromycin-resistance gene was replaced by an apramycin-resistance gene to construct pYUB412A. Genomic DNA of \textit{M. abscessus} was used as template for PCR to amplify the region encompassing the whole-length \textit{mab}_3168c.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Strain} & \textbf{MIC (\(\mu\)g/ml)} \\
\hline
\textit{M. abscessus} wild type & 4 \\
\textit{mab}_3168c::Tn & 2 \\
Complemented & 4 \\
\hline
\textit{M. smegmatis} vector only & 0.12 \\
\textit{mab}_3168c & 0.25 \\
\hline
\end{tabular}
\caption{Amikacin E-test.}
\end{table}

doi:10.1371/journal.pone.0067563.t001

\textbf{Figure 6. Intracellular survival of \textit{M. abscessus} cells.} (A) THP-1 macrophages were co-cultured with wild type, \textit{mab}_3168c::Tn, or complemented \textit{M. abscessus} cells at an MOI of 1 for 2 hours at 37°C. Mycobacterial CFUs in THP-1 cell lysates were then determined at the indicated time points. (B) The number of intracellular \textit{M. abscessus} variants was determined by confocal microscopy. At the indicated time, the \textit{M. abscessus}-infected THP-1 macrophages were fixed and permeabilized prior to staining the intracellular mycobacteria with auramine-O. Organisms in at least 100 cells per slide were counted. (C) Viability of \textit{M. abscessus}-infected THP-1 macrophages. THP-1 macrophages were infected with wild type, \textit{mab}_3168c::Tn mutant, and complemented mutant for 72 hours. The levels of LDH activity in the culture supernatants were measured. Results shown are means ± standard deviations of three independent experiments. Data were analyzed by one-way ANOVA and Fisher’s PLSD test. The asterisk sign (*) represents \(p<0.05\) of \textit{mab}_3168c::Tn versus wild type or \textit{mab}_3168c::Tn versus complemented strain.

doi:10.1371/journal.pone.0067563.g006
Mab_3168c Enhances Antimicrobial Resistance

Determination of mRNA Levels by RT-PCR

M. abscessus cells were grown to mid-log phase. The cells were harvested, resuspended in 1 ml TRIzol (Invitrogen, USA), and lysed by beating with 0.1 mm silica/zirconium beads in a Mini-beadbeater (Biospec, USA). RNA was isolated by conventional phenol/chloroform extraction and isopropanol precipitation. RT-PCR was performed to examine mab_3168c and isg6 mRNA expression by using the following primer pairs: 16S rRNA, 5'-TCAGCTTGTGGTGGCTATGG-3' forward and 5'-ACGCGACAAAGACCTAGAGCT-3' reverse; mab_3168c, 5'-ACGCGACGGTGCCGCGG-3' forward and 5'-TTAGCTGACGAGGACGGTCG-3' reverse; isg6, 5'-TGTGGAGCGCTTGTGGTCAAA-3' forward and 5'-CCCGGCTGACGGCGGTTGGC-3' reverse.

Sliding Motility Test

One colony of each mycobacterium was inoculated in the center of a motility plate, consisting of Middlebrook 7H9 with 0.3% agar. The inoculated plates were incubated at 37°C for 5 days [18]. The sliding distance was measured in millimeters.

Aggregation Capability Assay

Mycobacterial cells were incubated in a tube containing 5 ml of Middlebrook 7H9 broth at a concentration of OD600 = 0.1 and incubated on a shaker at 37°C for 3 days. After allowing the culture tube to stand still for 3 hours, the upper portion of the culture containing dispersed cells was removed, and its OD600 value was determined. The OD600 of the bottom portion of culture was measured after the aggregated cells had been completely suspended by vortexing with glass beads of 4.5 mm in diameter (Biospec, USA) as described previously [13,39]. The aggregation index was calculated as the ratio of optical density of aggregated cells to that of dispersed cells.

Biofilm Formation

Mycobacterial cells at a concentration of OD600 = 0.1 were inoculated in 100 μl of Middlebrook 7H9 broth in each well of a sterile 96-well, flat-bottom polystyrene plate (BD, USA). After 6 days of incubation, the medium in each well was removed, and the wells were washed with sterile PBS to remove non-adherent cells. The wells were then stained with 0.5% (wt/vol) crystal violet for 1 hour. After washing with PBS, the stained biofilms were photographed. To quantitate cells, cells in each biofilm were suspended in 100% ethanol, and the OD595 value of the cell suspension was determined [40].

Lipid Extraction and Analysis

Total lipids from mycobacterial cells of plate-grown cultures were extracted with chloroform/methanol (2:1, v/v) at 36°C for 60 min with sonication. The extracted lipids were spotted on an aluminum-backed silica gel60 TLC plate (MERCK, Germany) and resolved with a solvent containing chloroform and methanol at a ratio of 90:10 (v/v) or chloroform, methanol, and water at a ratio of 100:16:2 (v/v) or 60:16:2 (v/v) as previously described [41,42]. To visualize lipids, the plate was sprayed with 1% 1-naphthol, 5% H2SO4 in ethanol and then charred with a heat gun until spots of hues characteristic of different lipid classes appeared. The mass of each lipid species was determined by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) spectrometry with a pulse laser emitting at 337 nm. Samples were mixed with 2,5-dihydroxybenzoic acid as the matrix and analyzed in reflectron mode with an accelerating voltage of 25 kV.

Lysozyme Susceptibility Assay

M. abscessus cells (10⁷/ml) were incubated in 7H9 broth containing various concentrations of lysozyme (0.5 mg/ml and 2.5 mg/ml) and incubated at 37°C for 24 hours, followed by enumeration of CFU on 7H11 agar plates.

Figure 7. Contribution of mab_3168c to aminoglycoside resistance. (A) Anti-mycobacterial effects of amikacin against various M. abscessus strains were determined by plating indicated number of cells on 7H11 agar plates. The experiments were repeated 3 times. One representative picture of each of the 3 days old cultures without antibiotics and the 5 days old cultures with antibiotics is shown. (B) Representative picture of each of the 3 days old cultures without cells on 7H11 agar plates. The experiments were repeated 3 times. One representative picture of the E or pYUB412A-Amikacin susceptibility of antibiotics and the 5 days old cultures with antibiotics is shown. (B) Representative picture of each of the 3 days old cultures without cells on 7H11 agar plates. The experiments were repeated 3 times. One representative picture of the E or pYUB412A-Amikacin susceptibility of antibiotics and the 5 days old cultures with antibiotics is shown. (B) Representative picture of each of the 3 days old cultures without cells on 7H11 agar plates. The experiments were repeated 3 times. One representative picture of the E or pYUB412A-Amikacin susceptibility of antibiotics and the 5 days old cultures with antibiotics is shown. (B) Representative picture of each of the 3 days old cultures without cells on 7H11 agar plates. The experiments were repeated 3 times. One representative picture of the E or pYUB412A-Amikacin susceptibility of antibiotics and the 5 days old cultures with antibiotics is shown.
Infection of Human Macrophages

THP-1 cells, a human acute monocytic leukemia cell line, were obtained from the American Type Culture Collection (ATCC) and cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS, Gibco) at 37°C in a humidified CO2 incubator. THP-1 cells were differentiated into adherent macrophages by adding 500 ng/ml of phorbol-12-myristate-13-acetate (PMA) to the culture. Two days after addition of PMA, the cells were infected with mycobacteria at a multiplicity of infection (MOI) of 1 for 2 hours at 37°C. The infected macrophages were washed with sterile PBS to remove extracellular mycobacteria, lysed by 1% Triton X-100, and then plated on 7H11 agar plates to determine the colony forming unit of intracellular mycobacteria as described previously [43,44,45].

Viability of M. abscessus-infected THP-1 macrophages was evaluated by measuring the levels of lactate dehydrogenase (LDH) in culture supernatants. THP-1 macrophages were infected with wild type, mab_3168c: Tn mutant, and complemented mutant. The levels of LDH activity in the culture supernatants were determined using a CytoTox 96 assay kit (Promega, USA) according to manufacturer’s protocol.

Confocal Microscopy

Infected macrophages were fixed with 4% paraformaldehyde for 15 min and permeabilized with 0.1% Triton-X 100 for 20 min. The intracellular mycobacteria were stained with auramine (Sigma, USA) for 20 min at 25°C, treated with 0.5% acetic acid alcohol for 3 min, and then examined under a confocal laser scanning microscope (Leica SP5 confocal Microscopy equipped with a 100X NA1.4 objective lens).

Antimicrobial Susceptibility Test

Susceptibility to amikacin was determined by the E test. M. abscessus and M. smegmatis cells were incubated in 7H9 medium until their culture turbidity reached McFarland standard of 1.0 (~3×10^8 CFU/ml). This cell suspension was then spread on a 7H11 agar plate (10 cm) supplemented with 10% OADC using a cotton swab. An amikacin E test strip (Oxoid) was then placed on the plate, and the plate was incubated for 3–5 days until the MIC was read. The value shown on the strip at the place where the strip intersected the growth inhibition zone was the amikacin MIC of the organism tested. The MIC data presented were average of duplicate determinations.

Acknowledgments

We thank Dr. Chao-Hung Lee for discussion and critical editing of the manuscript.

Author Contributions

Conceived and designed the experiments: SHT GHS STH. Performed the experiments: SHT CHL JRL. Analyzed the data: SHT GHS CHE JRL STH. Contributed reagents/materials/analysis tools: GHS CHL HCL STH. Wrote the paper: SHT STH.

References

1. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
2. Brown-Elliott BA, Wallace RJ Jr (2002) Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clinical microbiology reviews 15: 716–746.
3. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
4. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
5. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
6. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
7. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
8. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
9. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
10. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
11. Griffith DE, Girard WM, Wallace RJ Jr (1993) Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. The American review of respiratory disease 147: 1271–1278.
28. Arora K, Whiteford DC, Lau-Bonilla D, Davitt CM, Dahl JL (2008) Inactivation of lsr2 results in a hypermotile phenotype in Mycobacterium smegmatis. Journal of bacteriology 190: 4291–4300.

29. Gordon BR, Imperial R, Wang L, Navarre WW, Liu J (2008) Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. Journal of bacteriology 190: 7052–7059.

30. Gordon BR, Li Y, Wang L, Sintsova A, van Bakel H, et al. (2010) Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America 107: 5154–5159.

31. Colangel R, Helb D, Vîlčeva C, Hazbon MH, Lee CG, et al. (2007) Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS pathogens 3: e77.

32. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, et al. (2011) Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 52: 565–571.

33. Jana S, Deb JK (2006) Molecular understanding of aminoglycoside action and resistance. Applied microbiology and biotechnology 70: 140–150.

34. Ho, II, Chan CY, Cheng AF (2000) Aminoglycoside resistance in Mycobacterium kansasii, Mycobacterium avium-M. intracellulare, and Mycobacterium fortuitum: are aminoglycoside-modifying enzymes responsible? Antimicrobial agents and chemotherapy 44: 39–42.

35. van Ingen J, Boeree MJ, van Soolingen D, Mouton JW (2012) Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 15: 149–161.

36. Ainsa JA, Perez E, Pelicic V, Berthet FX, Gicquel B, et al. (1997) Aminoglycoside 2’-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2’)-Ic gene from Mycobacterium tuberculosis and the aac(2’)-Id gene from Mycobacterium smegmatis. Molecular microbiology 24: 431–441.

37. Balasubramanian V, Pavelka MS Jr, Bardarov SS, Martin J, Weinbrod TR, et al. (1996) Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. Journal of bacteriology 178: 273–279.

38. Stokes RW, Norris-Jones R, Brooks DE, Beveridge TJ, Doxsey D, et al. (2004) The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infection and immunity 72: 5676–5686.

39. Davidson LB, Nessar R, Kemaiah P, Perkins DJ, Byrd TF (2011) Mycobacterium abscessus glycopeptidolipid prevents respiratory epithelial TLR2 signaling as measured by HbetaD2 gene expression and IL-8 release. PLoS one 6: e29148.

40. Esteban J, Martin-de-Hijas NZ, Kinnari TJ, Ayala G, Fernandez-Roblas R, et al. (2006) Biofilm development by potentially pathogenic non-pigmented rapidly growing mycobacteria. BMC microbiology 6: 104.

41. Ripoll F, Deshayes C, Paquet S, Laval F, Beretti JL, et al. (2007) Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae. BMC genomics 8: 114.

42. Naka T, Nakata N, Mawata S, Yamamoto R, Doo M, et al. (2011) Structure and host recognition of serotype 13 glycopeptidolipid from Mycobacterium intracellular. Journal of bacteriology 193: 5766–5774.

43. Fairbairn IP, Stober CB, Kumararatne DS, Lammas DA (2001) ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X(7)-dependent process inducing bacterial death by phagosome-lysosome fusion. Journal of immunology 167: 3300–3307.

44. Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, et al. (2010) Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS pathogens 6: e1001230.

45. Chen CC, Tsai SH, Lu CC, Hu ST, Wu TS, et al. (2012) Activation of an NLRP3 inflammasome restricts Mycobacterium kansasii infection. PLoS One 7: e36292.