Rlgraph: Flexible Computation Graphs for Deep Reinforcement learning

MICHAEL SCHAARSCHMIDT, SVEN MIKA, KAI FRICKE, EIKO YONEKI
RLgraph

- Framework that designs and implements RL computation
- Metagraph outlining high-level data flow, followed by execution

API, Component configuration	Prebuilt models, inference
RLgraph component graph	Model design, dataflow composition
TensorFlow	Local backends variables/operations
PyTorch	Distributed execution engine
...	Execution, orchestration
Distributed TF	Hardware: CPU, GPU, TPU, FPGAs...

Figure 1. RLgraph stack for using and designing RL algorithms.
Reinforcement Learning

• ML technique that interacts with environment to make decisions
• Expanded use in gaming, robots, 3D scene simulators
RL Execution Difficulties

• Frequent problem environment interaction
• Highly varied states, resources, models
Novelty

- Novel meta-graph that generalizes dataflow to high level
- Claims to be “the first common interface to tensorflow and pytorch”
 - Rlib
 - Distributed Tensorforce
- Works on static and define-by-run graphs
- Updated systems since
 - Rlib Flow
 - MSRL
Rlgraph Creation

- Component composition phase
- Assembly phase
- Graph compilation/building phase

Figure 2. Example memory component with three API methods.
RLgraph Execution

- Graph executors
- Backend support and generalization

![Figure 4. RLgraph execution stack.](image)
Results

- Tested on tensorflow and pytorch
- Low build overhead
- Multiple GPU success

(a) Single worker throughput. (b) Training times for *Pong*.

Figure 6. Distributed sample throughput on *Pong*.

Figure 7. Single task throughput and learning comparison.
RLgraph Solution

- Logical component composition separation supports any distributed execution paradigm
- No restrictions on execution supports static and define-by-run backend
- High level abstractions Fast development cycles
- Individually built and tested components Incremental building and testing
Figure 11. TensorBoard visualization of DeepMind’s IMPALA learner (left).
RLgraph Impact & Future Work

- Pluggable
- Open source
- RL use cases only increasing

Fig. A1: Interface for teachers to write hints and prompts.
• Schaarschmidt, M., Mika, S., Fricke, K., & Yoneki, E. (2018). RLgraph: Flexible Computation Graphs for Deep Reinforcement Learning. *CoRR*, *abs/1810.09028*. Retrieved from http://arxiv.org/abs/1810.09028

• Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Gonzalez, J., … Stoica, I. (2017). Ray RLLib: A Composable and Scalable Reinforcement Learning Library. *CoRR*, *abs/1712.09381*. Retrieved from http://arxiv.org/abs/1712.09381

• Liang, E., Wu, Z., Luo, M., Mika, S., & Stoica, I. (2020). Distributed Reinforcement Learning is a Dataflow Problem. *CoRR*, *abs/2011.12719*. Retrieved from https://arxiv.org/abs/2011.12719

• Zhu, H., Zhao, B., Chen, G., Chen, W., Chen, Y., Shi, L., … Chen, L. (2022). MSRL: Distributed Reinforcement Learning with Dataflow Fragments. *arXiv [Cs.LG]*. Retrieved from http://arxiv.org/abs/2210.00882