بررسی شاخص‌های جوانشنگی بذر و محتوای آنتوسیانئی‌های گیاه‌های دان سیه (Guizotia abyssinica)

معنی‌گذاری نسبت، مجموعه سیستمی محاسبه‌شده

کیفیت میوسیک

مدقه: استفاده از فناوری نانو به عنوان روش‌هایی متنوع و کاربردی تجربی در تامین زيمنه‌ای علیکه در حال انجم است. کوده و مواد غذایی نانو دارای خواص مؤثری است که به توالی گیاهان به بسیار نازی جهت تهیه رشد گیاه کمک می‌کند. نانو در اکسید تیتانیوم خاصی فتوکاتالیزیسی آلاینی درد به عنوان یک کانالروز طبیعی عده در آبن. دستگاه‌های الکترونیکی بهبود بروز تبدیل و ذرات نانو به صورت سوسپنسر استفاده می‌شود. منابع دی‌اکسید سیلیسیوم سیستم بسیار مناسب است که شعله نانو در مخلوط طبیعی جوان‌سازی و نانوچه در سناریوی صرب بهبود گیاهی توان به صورت گروه‌هایی از گیاهان زراعی عصری ضروری است.

درصد نانو ذرات نانو در دست‌داره‌های دانسیسی قابل طبیعی سنجش تأثیر نانو ذرات در گیاه‌ها و نانو اثرات سودمندی رشد و نمو گیاهان در امور نانو ذرات کربنی کیک به مهم‌ترین مواد کاربردی در برنامه‌های صنعتی است. این مواد به روش‌های تولید، توانسته و ویژگی‌های فردی رشته‌های مورد نیاز به تولید مواد کامبوسیوم‌های Goizotia abyssinica (L.F) CASS. فتوکاتالیزیسی دارای مرزی و ذرات دی‌اکسید سیلیسیوم در سیستم‌های فتوکاتالیزیسی ضروری است.

درصد نانو ذرات نانو در دان森سیسی قابل طبیعی سنجش تأثیر نانو ذرات در گیاه‌ها و نانو اثرات سودمندی رشد و نمو گیاهان در امور نانو ذرات کربنی کیک به مهم‌ترین مواد کاربردی در برنامه‌های صنعتی است. این مواد به روش‌های تولید، توانسته و ویژگی‌های فردی رشته‌های مورد نیاز به تولید مواد کامبوسیوم‌های Goizotia abyssinica (L.F) CASS. فتوکاتالیزیسی دارای مرزی و ذرات دی‌اکسید سیلیسیوم در سیستم‌های فتوکاتالیزیسی ضروری است.

نیکی‌گره: با توجه به نتایج پژوهش حاضر، به نظر می‌رسد تأثیر نانو درات در گیاهان علائم برای اینکه گیاه، گونه، نوع و غلظت نانو درات بسیار بسیار. در بررسی اثرات نانو درات به عنوان روش‌هایی متنوع و کاربردی تجربی در تامین زيمنه‌ای علیکه در حال انجم است. نانو درات بسیار بسیار. در بررسی اثرات نانو درات به عنوان روش‌هایی متنوع و کاربردی تجربی در تامین زيمنه‌ای علیکه در حال انجم است. نانو درات بسیار بسیار. در بررسی اثرات نانو درات به عنوان روش‌هایی متنوع و کاربردی تجربی در تامین زيمنه‌ای علیکه در حال انجم است. نانو درات بسیار بسیار. در بررسی اثرات نانو درات به عنوان روش‌هایی متنوع و کاربردی تجربی در تامین زيمنه‌ای علیکه در حال انجم است. نانو درات بسیار بسیار. در بررسی اثرات نانو درات به عنوان روش‌هایی متنوع و کاربردی تجربی در تامین زيمنه‌ای علیکه در حال انجم است. نانو درات بسیار بسیار. در بررسی اثرات نانو درات به عنوان روش‌هایی متنوع و کاربردی T

DOR: 98.1000/2383-1251.1397.5.7310.2.1576.1607

DOI: 10.29252/yujis.5.2.73

rafei@sku.ac.ir
مقدمه

استفاده از فناوری نانو به عنوان رشته‌های منابع و کاربردی تقریباً در تمامی زمینه‌های علمی، در حال انجام است (کوتیگدا و همکاران، 2012). کوده و مواد مفیدی نانو دارای خواص متفاوت هستند که به تولید گیاهان بر حسب نیاز آن جهت تنظیم رشد گیاه کمک می‌کنند (سیدیگو، و همکاران، 2015).

تأثیر نانو دره دی اسید سیلیسیوم روی سلول‌های گیاهان هنوز مورد بحث است. در برخی تحقیقات مشخص شده است که نانو دره دی اسید سیلیسیوم اثر سمن دارد (دیوی با و همکاران، 2012). مسابع دی اسید سیلیسیوم پیشرفت و استفاده اسامی این نانو ذره‌های طبیعی، انرژی‌های نانوکی و نانوکی نهادی مهندسی هستند. دی اسید سیلیسیوم یکی از فراوان نانو ذره‌های رایج در محیط زیست به خصوص در ناحیه شریکه است (کوتیگدا و همکاران، 2013). چرخه سیلیسیوم در بسیاری از گیاهان رعای در افزایش اثرات ضوئی برای رشد محصول نیست، اما اثرات سودمندی بر رشد و نمو گیاهان درد (حقوقی و رسکلر، 2013).

تأثیر نانو دره کرومینی یکی از مواد امیدوار کننده در فناوری نانو است و امروزه از مهم‌ترین مواد کاربردی در برنامه‌های صنعتی است. این مواد با روش‌های تولید منتقل و پیوسته خاصی می‌توانند نقش مهمی در تولید مواد کامپوزیت کاربردهای شیمی، الکترونیک و دیگر انرژی داشته باشند (هلاند و همکاران، 2007). گیاهان در شرایط تنش مستعد تولید نانو ذرات طبیعی و ضوئی، برای ادامه رشد خود می‌شوند (وگاند، و)

---

9 Kalteh
10 Asteraceae
11 Bhat and Murth
12 Asilbekova
13 Nel
14 Ghodak

---

1 Kotttegoda
2 Siddiqui
3 Kenanakis and Katsarakis
4 Dimkpa
5 Kumar
6 Haghighi and Pessarakli
7 Hellland
8 Wang
مواد و روش

آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار در آزمایشگاه تحقیقاتی علوم و تکنولوژی بندر دانشکده کشاورزی دانشگاه شهید رجایی در سال 1395 انجام شد. نمادهای مورد آزمایش شامل سه ناحیه ذره دی.اکسید نیتراتوم، دی.اکسید سیلیسوم و ناحیه کمرینی (۳) عناوین فاکتور اول هر کدام با چهار گل‌های مختلف، ۴۰ و ۶۰ میلی‌گرم بر لیتر (به عنوان فاکتور دوم) بوده و کاهش‌های دانه‌ای از شرکت پاکان بذر اسفناج خردی‌ریا شدند. ابتدا بذرانهای بوده و آبوده با استفاده از پنس سترون از بذرانهای سالم جدا گردیدند. بذرانهای دانه‌سانه به دو کل اتیلیک ۱۰ درصد به بسته ۲۰ ناهید و سپس به پاکورت سدیم ۱۰ درصد تغییر به بسته ۵ دقیقه ضعف غروی و سه ای چهار گرفته از مدفوع شدند. تعادل ۲۵ بردر درون هر برخی پلاستیکی از ایندیس ۱۰ سانتی‌متر روز کاهش مناسب و انتی‌سیب سونی به عنوان سیب کشت فاز گرفت. سپس، محلول‌های تیمه به شکل‌های نه‌سانه به هر گل‌های مختلف ذکر شده به تعداد چندانها و نسبت نوری ۸-۱۷ ساعت (روشنایی- ناریکی) به مدت هفته روز قرار داده شد.

معیار جوانه‌زی بذرها در شرایط آزمایشگاهی، خروج ریشه‌چه حداقل به طول ۲ میلی‌متر در نظر گرفته شد. بیش از ۷۰ درصد جوانه‌زی متوقف و بره‌کشی شاخص‌های جوانه‌زی و محصول آنتوسیانین رشد گیاهچه به حالت گیاهچه در فرمول‌های ۱، بخش‌های
شاخه‌های مورفولوژیکی گیاهچه نظر وزن دارد. در خشک ریشه‌چه و ساقه به سه‌گانه از ترازو دیجیتال دقت ۱۰۰۰ گرم بر حسب میلی‌گرم و طول ریشه‌چه و ساقه به سه‌گانه از کولسپ بر حسب سانتی‌متر، اندام‌گریزی شد.

برای انتخاب گیاهچه‌های آنتوسیانین‌ها ابتدا ۲۵۰ میلی‌گرم از اندام تازه گیاه به ۵ میلی‌لیتر محلول

1 TiO₂
2 SiO₂
3 Carbon nanotubes
Table 1. Equations of germination indices and radicle anthocyanins content of Niger

| شاخص (Index) | رابطه (Equation) | منبع (Reference) |
|---------------|------------------|-----------------|
| Germination percentage | $GP = \frac{SN}{GN}$ | راسکار و لاوار 2011 |
| Germination rate | $GR = \frac{GI}{i}$ | آل کاپی 2012 |
| Mean of daily germination | $MDG = \frac{\sum FGP}{D}$ | هاکوری و همکاران 1984 |
| Germination index | $GI = \frac{(SN \times Ti \times Ni)}{S}$ | اسکانت و همکاران 1984 |
| Seedling vigor index | $Vigor Index = \frac{RL2}{(RL)}$ | آگریوال 2003 |
| Percentage of radicle resistance | $RL2 = \frac{RL(Control)}{RL(Treatment)}$ | راسکار و لاوار 2013 |

GN: Total number of germinated seeds, SN, Number of tested seeds, Gi, number of germinated seeds in day i, Ti, Number of days after sowing, FGP, Final germination percentage, D, Test period, Ti, Counting time after planting (day), Ni, Number of germinated seeds per day of counting, S, Total number of sowed seeds, PL, Pedicel length (cm), RL, Radicle length (cm)

Table 2. Variance analysis of germination indices of Niger seed under experimental treatments

| ضریب تغییرات (درصد) | میانگین مربعات (Mean squares) |
|-----------------------|-------------------------------|
| نوع نانو ذره | درجه آزادی df | درصد جوانزینی | سرعت جوانزینی | متوسط جوانزینی زوده |
| Nanoparticle type (N) | 2 | 2.3** ns | 0.2 ns | 0.05 ns |
| غلظت | | | | | |
| Concentration (C) | 3 | 11.4** | 7.9* | 0.02** |
| نوع غلظت $N \times C$ | 6 | 0.8 ns | 0.9 ns | 0.02 ns |
| Error | 24 | 1.0 | 2.5 | 0.02 |

$**$ and $*ns$ show not significant, significant at 5% and 1% probability levels, respectively.

1. Scott
2. Feizi
3. AL-Kaisi
4. Hunter
5. Agrawal
6. Raskar and Laware
جدول 3- مقایسه میانگین اثر تیمارهای غلظت‌های نانوذرات بر بازنشستگی و شاخص‌های جوانه‌زنی بذر دانسی

| غلظت نانوذرات (میلی‌گرم در لیتر) | نتیجه‌گیری | سرعت جوانه‌زنی (درصد/روز) | سرعت جوانه‌زنی (درصد/روز) | میزان روزانه رونق | میانه روزانه رونق |
|----------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|
| 0                               | 100%           | 44.3a           | 14.3a           |                 |                 |
| 10                              | 99.8%          | 44.3a           | 14.2a           |                 |                 |
| 30                              | 98.6b          | 43.2b           | 14.1b           |                 |                 |
| 60                              | 97.5b          | 42.3b           | 13.9b           |                 |                 |

میانگین‌های دارای حداکثر یک حرف مشابه در هر ستون بر اساس آزمون LSD 

In each column, means having at least one common letter are not significantly different at 5% probability level.

میانگین‌های نانوذرات بر سرعت جوانه‌زنی نشان داد که بیشترین سرعت جوانه‌زنی در تیمار شاده و غلظت 10 میلی‌گرم بر لیتر و کمترین سرعت جوانه‌زنی در غلظت 60 میلی‌گرم بر لیتر حاصل شد (جدول 3). افزایش غلظت نانوذرات، سبب کاهش سرعت جوانه‌زنی شد و این بدان معنی است که با افزایش غلظت، اثر سبب در گیاه‌های ایجاد شده که بیشتر سرعت جوانه‌زنی نسبت به تیمار شاده بود. نتایج نشان داد که در افزایش هر واحد سرعت جوانه‌زنی بیشتری به دست آمد. در این تحقیق، نشان داد که اثر نوع نانوذرات بر جوانه‌زنی ممکن است بدان بستگی داشته باشد. نیاز به بیشترین تحقیقات و تحلیل‌های گسترده برای بهتر کردن در تحقیقات می‌باشد.

سیدی‌گو و ال والیپی (2014) با بررسی اثر کاربرد نانوذرات آبیکس سیلیسیوم در غلظت‌های صفر، 4، 8 و 12 گرم بر لیتر بر گیاه‌زنی بذر برنج بیان داشتند که این نانوذرات در غلظت 8 گرم بر لیتر سبب افزایش معنی‌داران سرعت درصد جوانه‌زنی شد. نتایج نشان داد که غلظت 8 گرم بر لیتر نانوذرات دارای اندازه‌گیری معنی‌داران سرعت درصد جوانه‌زنی بود.

از فهرست سلیسیوم تیتر و اصل و همکاران (2011) در یوزه و همکاران (2010) و همکاران (2014) بیان داشتند که نانوذرات کربن در غلظت‌های بالای 20 میلی‌گرم بر لیتر به دلیل ممکن بودن آب اطراف سلیسیوم به درون آن، با منعکس‌گری تغییرات می‌باشد. سپس ایجاد سبب در گیاه می‌شود.

سرعت جوانه‌زنی

اگرچه تجزیه واریانس داده‌های صفت سرعت جوانه‌زنی نشان داد که اثر نوع نانوذرات و برهمکنش بین نوع و غلظت نانوذرات بر این صفت معنی‌دار نشد، تیمار غلظت‌های مختلف نانوذرات بر صفت مذکور در سطح احتمال 5 درصد معنی‌دار بود (جدول 3). مقایسه

1 Siddique and Al-Alawi
2 Tiwari
3 Azimi
رد صفحه نشان داد (جدول ۲). مقیاسه میانگین متوسط جوانژنی روزانه نشان داد که بیشترین و کمترین متوسط جوانژنی روزانه به ترتیب در غلظت ۱۰ و ۸۰ میلی‌گرم بر لیتر به دست آمد (جدول ۳). مطالعه اثر غلظت‌های مختلف نانو دی‌اکسید سیلیسیوم (صرف، ۵) در غلظت‌های ۲۰ و ۶۰ میلی‌گرم بر لیتر) بر خصوصیات جوانژنی نشان داد که اثر تیمار غلظت‌های مختلف نانو ذرات بر درصد جوانژنی و متوسط جوانژنی روزانه در سطح احتمال ۱ درصد معنی‌دار بود.

در این مطالعه، غلظت‌های بالای نیوژن تأثیر مثبتی بر بهبود جوانژنی نداشت (عطیمی و همکاران، ۲۰۱۶). در پژوهش حاضر افزایش غلظت نانو ذرات از ۱۰ به ۶۰ میلی‌گرم بر لیتر، سبب کاهش متوسط درصد جوانژنی روزانه گردید. با این توجه به اینکه اثر تیمار نانو ذرات بر درصد و سرعت جوانژنی و متوسط جوانژنی روزانه معینی دارد نشان داد، این صفات نسبت به نوع نانو ذرات واکنش نشان داد. همچنین عدم معنی‌داری برخی از نتایج و غلظت نانو ذرات بر درصد، سرعت و متوسط جوانژنی روزانه نشان داد که تأثیر نانو ذرات در غلظت‌های مختلف بر صفات مذکور یکسان است (جدول ۲).

شناخت جوانژنی

اثر غلظت نانو ذرات و برهمکنش بین نو و غلظت نانو ذره بر شناخت جوانژنی در سطح احتمال ۱ درصد معنی‌دار دارد. مقیاسه میانگین برهمکنش بین نو و غلظت نانو ذرات نشان داد که بیشترین شناخت جوانژنی در نانو ذره دی‌اکسید سیلیسیوم و در غلظت ۳۰ میلی‌گرم بر لیتر و کمترین آن در تیمار با نانو ذره دی‌اکسید سیلیسیوم در غلظت ۶۰ میلی‌گرم بر لیتر و نانو ذره کنک در غلظت ۲۰ میلی‌گرم بر لیتر مشاهده شد (جدول ۵). نتایج پژوهش نشان داد که نانو سیلیسیوم و تیتابیوم سبب بهبود شناخت‌های جوانژنی شدند (لو و همکاران، ۲۰۰۲). همچنین، حسنی و همکاران (۲۰۱۳) با انجام پژوهشی مشابه بررسی تأثیر نانو ذره در دی‌اکسید تیتابیوم و در غلظت‌های صفر، ۱۰، ۲۰ و ۳۰(

3 Khodakovskaya
4 Crabtree
5 Lukacova

1 Lu
2 Hatami
Table 4. Variance analysis of germination indices of Niger seed under experimental treatments

| Nanoparticle type | Germination index (Mean square) | Radicle length | Plumule length | Vigor index | Radicle resistance |
|-------------------|---------------------------------|----------------|----------------|-------------|-------------------|
|                   | (N)                             |                |                |             |                   |
| Concentration (C) |                                  |                |                |             |                   |
| N × C             |                                 |                |                |             |                   |
|                   |                                  |                |                |             |                   |
| Error             |                                 |                |                |             |                   |
| Nanoparticle type | 2                               | 0.0006 ns      | 1.7**          | 1.3**       | 2.9**             |
| (N)               |                                 |                |                |             | 549.3*            |
| Concentration (C) | 3                               | 0.003**        | 0.3'           | 0.1**       | 2.9**             |
| N × C             | 6                               | 0.005**        | 0.4**          | 0.5**       | 1.2**             |
|                   | 24                              | 0.0005         | 0.1            | 0.1         | 0.2               |
|                   |                                 |                |                |             | 29.4              |

ns,  * and ** show not significant, significant at 5% and 1% probability level, respectively.

Table 5. Mean comparison of the interaction effect of type and concentration of nanoparticles on some germination indices of Niger seed

| Nanoparticle type | Concentration (mg/l) | Germination index | Radicle length (cm) | Plumule length (cm) | Vigor index | Radicle resistance (%) |
|-------------------|----------------------|-------------------|---------------------|---------------------|-------------|------------------------|
|                   |                      |                   |                     |                     |             |                        |
| CNT               | 0                    | 1.27e             | 5.6ab               | 4.7a                | 10.3a       | 100.0bc                |
|                   | 10                   | 1.36bc            | 4.8ab               | 3.9bc               | 8.6a        | 85.0d                  |
|                   | 30                   | 1.33b             | 4.7d                | 3.1d                | 7.7d        | 84.5l                  |
|                   | 60                   | 1.29e             | 5.6b                | 4.7e                | 13.2e       | 101.2bc                |
| SiO₂              | 0                    | 1.29e             | 5.6ab               | 4.7a                | 10.3a       | 100.0bc                |
|                   | 10                   | 1.36bc            | 4.8ab               | 3.9bc               | 8.6a        | 85.0d                  |
|                   | 30                   | 1.33b             | 4.7d                | 3.1d                | 7.7d        | 84.5l                  |
|                   | 60                   | 1.29e             | 5.6b                | 4.7e                | 13.2e       | 101.2bc                |

In each column, means having at least one common letter are not significantly different at 5% probability level.

In each column, means having at least one common letter are not significantly different at 5% probability level.

In each column, means having at least one common letter are not significantly different at 5% probability level.

In each column, means having at least one common letter are not significantly different at 5% probability level.

In each column, means having at least one common letter are not significantly different at 5% probability level.

In each column, means having at least one common letter are not significantly different at 5% probability level.

In each column, means having at least one common letter are not significantly different at 5% probability level.

In each column, means having at least one common letter are not significantly different at 5% probability level.

In each column, means having at least one common letter are not significantly different at 5% probability level.
آسکندری نسب و همکاران: بررسی شاخص‌های جوانه‌زی بذر و محیط‌آمیزی بره‌های گیاه‌های دانه‌ی زی...
نتایج پژوهشی نشان داد که نانو تیوب‌های کربنی چند جداساز سبب تجمیع انرژی و یا دفع آن‌ها در گیاهان زراعی شدند. این نانو دراز‌ترین نانو به عنوان ناقل انتقال، انرژی‌های صمیمی‌های خوراکی محلول‌ها را به داخل رشد گیاهان خرد در هم‌اندازه بازی، تحت نبی‌زدایی جریان تعقیب می‌کردند. نانو دراز‌ترین نانو در زمان‌ها و همکاران (2016) در پژوهشی تند در گیاهان (3) را به دست آورد. نانو تیوب‌کرین در غلظت‌های 100، 200 و 300 میلی‌گرم بر لیتر بر محیط‌های جوان‌شی گیاه بالا، نشان دادند که نانو تیوب کرین غلظت‌ها در غلظت‌های 300 میلی‌گرم بر لیتر به‌عنوان تیرین که در قطره‌ی مواد اثربخشی بدون اثرات غیر مثبت، جذب شده است. مهم‌ترین روش غلظت با پژوهش نیز، با افزایش غلظت نانو تیوب کرین در ردیه‌های مثبت و سازگاری با دندان‌های مختلف گیاهان شوند (دخانکواسب)، نشانده می‌شود که نانو تیوب کرین در مواد بازی همکاران، سبب افزایش جذب آن و ایجاد سبیل‌های تام‌دار و انتقال الکترون‌های نزدیک‌تر از نانو به‌عنوان مبتنی بر گیاه‌گردی در اختلال مصرف ماده‌های در نتیجه می‌باشد (مکسیمکس، 2007).

محتوای آنتوسیانین‌ها

نتیجه‌های ارزیابی حاصل از محتوای آنتوسیانین‌های رشد شبیه‌نما نشان داد که اثر تیم‌های این غلظت‌های نانو دراز و همکار شدن آن‌ها در این صفت در سطح احتمال 1 درصد معنی‌دار نیست (جدول 6). نتایج مقایسه‌‌ی میانگین‌های همکاری نانو به غلظت و غلظت نانو دراز نشان داد که پیشتری کمتر محتوای آنتوسیانین‌ها در تیم‌های نانو تیوب کرین و نانو در این سیستم‌های غلظت‌های 60 میلی‌گرم بر لیتر و کم‌ترین آن در تیمار شاهد مشاهده شد (جدول 7).

5 Heldt and Piechull
6 Maksymiec
2 Tadayon
3 Noroozi
1 Chen
جدول 6- نتایج تجزیه واریانس شاخص‌های جوانه‌زی بذر و محتوای آنتوسیانین ریشهچه دانسیا تحت تیمارهای آزمایشی

**Table 6. Variance analysis of germination indices of Niger seed and content of radicle Anthocyanin under experimental treatments**

| میانگین مربعات (Mean square) | نوک/نامشه (N) | محتوی آنتوسیانین | وزن تر ساقه (mg) | وزن خشک ساقه (mg) | وزن تر ریشهچه (mg) | وزن خشک ریشهچه (mg) |
|-----------------------------|--------------|------------------|-----------------|-----------------|-----------------|-----------------|
| 2                           | 15.9**       | 1763.1**         | 75.14**         | 490.4'          | 9.8'            |
| 3                           | 44.1**       | 1801.6**         | 43.8**          | 2150.1**        | 21.8**          |
| 6                           | 3.9**        | 7513.1**         | 152.6**         | 786.4**         | 20.2**          |
| 24                          | 0.1          | 165.2            | 3.4             | 94.9            | 3.5             |
| ضریب تغییرات (درصد) CV (%)| 4.9          | 2.5              | 1.2             | 5.0             | 3.4             |

ns, * and ** show not significant, significant at 5% and 1% probability levels, respectively.

جدول 7- مقایسه میانگین برهمکنش نوک و غلظت نانو ذرات بر شاخص‌های جوانه‌زی و محتوای آنتوسیانین ریشهچه دانسیا

**Table 7. Mean comparison of the interaction effect of type and concentration of nanoparticles on germination indices and content of radicle Anthocyanin of Niger**

| نانو ذره | غلظت | محتوی آنتوسیانین (mmol g⁻¹) | وزن تر ساقه (mg) | وزن خشک ساقه (mg) | وزن تر ریشهچه (mg) | وزن خشک ریشهچه (mg) |
|----------|-------|-----------------------------|-----------------|-----------------|-----------------|-----------------|
| CNT      | 0     | 2.4'                        | 530.0'          | 154.7'          | 208.3'          | 54.0'           |
|          | 10    | 2.7'                        | 520.0'          | 156.0'          | 211.3'          | 56.3'           |
|          | 30    | 3.8'                        | 476.7'          | 148.4'          | 170.0'          | 51.5'           |
|          | 60    | 7.0'                        | 481.7'          | 144.6'          | 190.0'          | 54.6'           |
|         | 0     | 2.4'                        | 530.0'          | 154.6'          | 208.3'          | 54.0'           |
|         | 10    | 2.7'                        | 520.0'          | 156.0'          | 211.3'          | 56.3'           |
|         | 30    | 3.8'                        | 476.7'          | 148.4'          | 170.0'          | 51.5'           |
|         | 60    | 7.0'                        | 481.7'          | 144.6'          | 190.0'          | 54.6'           |
|         | 0     | 2.4'                        | 530.0'          | 154.7'          | 208.3'          | 54.0'           |
|         | 10    | 2.7'                        | 520.0'          | 156.0'          | 211.3'          | 56.3'           |
|         | 30    | 3.8'                        | 476.7'          | 148.4'          | 170.0'          | 51.5'           |
|         | 60    | 7.0'                        | 481.7'          | 144.6'          | 190.0'          | 54.6'           |
|         | 0     | 2.4'                        | 530.0'          | 154.6'          | 208.3'          | 54.0'           |
|         | 10    | 2.7'                        | 520.0'          | 156.0'          | 211.3'          | 56.3'           |
|         | 30    | 3.8'                        | 476.7'          | 148.4'          | 170.0'          | 51.5'           |
|         | 60    | 7.0'                        | 481.7'          | 144.6'          | 190.0'          | 54.6'           |
|         | 0     | 2.4'                        | 530.0'          | 154.6'          | 208.3'          | 54.0'           |
|         | 10    | 2.7'                        | 520.0'          | 156.0'          | 211.3'          | 56.3'           |
|         | 30    | 3.8'                        | 476.7'          | 148.4'          | 170.0'          | 51.5'           |
|         | 60    | 7.0'                        | 481.7'          | 144.6'          | 190.0'          | 54.6'           |
|         | 0     | 2.4'                        | 530.0'          | 154.6'          | 208.3'          | 54.0'           |
|         | 10    | 2.7'                        | 520.0'          | 156.0'          | 211.3'          | 56.3'           |
|         | 30    | 3.8'                        | 476.7'          | 148.4'          | 170.0'          | 51.5'           |
|         | 60    | 7.0'                        | 481.7'          | 144.6'          | 190.0'          | 54.6'           |

In each column, means having at least one common letter are not significantly different at 5% probability level.
بی‌پوشش‌های بذر ایران/ سال نجم/ شهره دوم/ 1397

وزن‌تر ساقه‌چه

نتایج حاصل از تجزیه واریانس وزن‌تر ساقه‌چه نشان داد که اثر تیمر نوع، غلظت‌های نانو ذرات و برهمکش بین آن‌ها این صفت در سطح احتمال 1 درصد معنی‌دار بود (جدول 1) مقایسه میانگین حاصل از داده‌های برهمکش بین نوع و غلظت نانو ذرات نشان داد که بیشترین میزان وزن‌تر ساقه‌چه در نانو تیوب کربن و در غلظت 30 میلی‌گرم بر لیتر و کمترین آن در نانو در کم‌جدول و در غلظت 30 و 60 میلی‌گرم بر لیتر مشاهده شد، اگر چه این تیمار با تیمار نانو در کم‌جدول سیلیس و غلظت در غلظت 10 و 30 میلی‌گرم بر لیتر و نانو تیوب کربن در غلظت 10 و 30 میلی‌گرم بر لیتر هیچگونه تفاوت معنی‌داری نداشت (جدول 2).

وزن‌تر ریشه‌چه

نتایج حاصل از تجزیه واریانس وزن‌تر ریشه‌چه نشان داد که اثر تیمار نوع، غلظت‌های نانو ذرات و برهمکش بین آن‌ها این صفت در سطح احتمال 5 درصد و اثر تیمار غلظتهای مختلف بر وزن‌تر و غلظت‌های مختلف و در سطح احتمال 1 درصد و اثر تیمار نوع و غلظت‌های مختلف بر وزن‌تر در سطح احتمال 1 درصد معنی‌دار بود (جدول 3). نتایج مقایسه میانگین برهمکش بین نوع و غلظت نانو ذرات نشان داد که بیشترین وزن‌تر ریشه‌چه در نانو در کم‌جدول و در غلظت 60 و 30 میلی‌گرم بر لیتر و نانو در کم‌جدول و در غلظت 60 و 30 میلی‌گرم بر لیتر مشاهده شد که این تیمار با تیمار مشاهده شد که این تیمار با تیمار نانو در کم‌جدول سیلیس و غلظت در غلظت 10 و 30 میلی‌گرم بر لیتر و نانو تیوب کربن در غلظت 10 و 30 میلی‌گرم بر لیتر هیچگونه تفاوت معنی‌داری نداشت (جدول 4).

وزن خشک ساقه‌چه

تجزیه واریانس وزن خشک ساقه‌چه نشان داد که اثر تیمار نوع، غلظت‌های نانو ذرات و برهمکش بین آن‌ها این صفت در سطح احتمال 1 درصد معنی‌دار بود (جدول 4) مقایسه میانگین برهمکش بین نوع و غلظت نانو ذرات نشان داد که بیشترین وزن خشک

---

3 Suriyaprabha
4 Nazar Aliyana
5 Zhu and Gong
همکاران (1370) یک گروه که سبز سپ افراشیق قطر ریشه و محیطی لیگوئی را در مراحل اولیه جوانه در گیاه کلاس یک همنهی، نتایج پژوهشی نشان داد که نانو ذرات سیلس سپ افراشیق ضخامت دیواره سلولی آند جوی در گیاه نشویند. بنفشه و همکاران، 2016.1. با توجه به این افراشیق مقدر سیلیسیوم از طریق افراشیق کربن این نانو ذره و ردی به شکل این نشر در دیواره سلولی و افراشی ضخامت دیواره سلولی سبز افراشیق وزن ریشه می‌گردد.

نتیجه‌گیری

به نقطه می‌رسد تأثیر نانو ذرات در گیاهان غلافه بر ایمپکت به گیاه، گونه، نوع و غلظت نانو ذرات بستگی دارد. به گونه‌ای که سیر در تقلبی و فیزیولوژی گیاه نیز تحقیق است. در پژوهش حاضر نیز هر کدام از سه نانو ذره در اکسید تیناتویوم، سیلیسیوم و نانو تیوب کربن آزمایش شدند. نتایجشان نشان داد که وزن ریشه و وزن تر ریشه نشان داد که اثرات مختلف سبز سپ افراشیق از صفر به 60 میلی‌گرم بر لیتر در حالت 70 درجه سانتی‌گراد ثابت می‌شود.

وزن خشک ریشه‌چه

نتایج مقایسه معیاری نشان داد که اثر نانو ذرات بر وزن خشک ریشه‌چه در سطح احتمال 0.05 رصد و اثر نیم‌درصد غلظت نانو ذرات با هم مقایسه کرده و نتایج نانو ذرات در سطح احتمال 0.01 معنی‌دار بود (جدول ۶). مقایسه نشان داد که سبز سپ افراشیق با هم مقایسه کرده و نتایج نانو ذرات در سطح احتمال 0.01 معنی‌دار بود (جدول ۶). نتایج نشان داد که این نژاد که نانو ذرات در سطح احتمال 0.01 معنی‌دار بود (جدول ۶). نتایج نشان داد که این نژاد که نانو ذرات در سطح احتمال 0.01 معنی‌دار بود (جدول ۶). نتایج نشان داد که این نژاد که نانو ذرات در سطح احتمال 0.01 معنی‌دار بود (جدول ۶). نتایج نشان داد که این نژاد که نانو ذرات در سطح احتمال 0.01 معنی‌دار بود (جدول ۶).

*Yang* و *Kuai*
Abbasi Khalaki, M., Ghorbani, A., and Moameri, M. 2016. Effects of silica and silver nanoparticles on seed germination traits of *Thymus kotschyanus* in laboratory conditions. Journal of Rangeland Science, 6(3): 221-231.

Agrawal, R. 2003. Seed Technology, Published Company PVT. LTD. New Delhi. India.

AL-Kaisi W.A., Muhsen T.A.A., and Hamed, A.S. 2012. Effect of mycorrhiza (*Glomus mosseae*) and superphosphate on physiological characters of *Hordeum vulgare*. Journal of the College of Basic Education, 18: 765-784.

Asilbekova, D.T., Ulchenko, N.T., Rakhimova, N.K., Nigmatullaev, A.M., and Glushenkova, A.I. 2005. Seed lipids from *Crotalaria alata* and *Guizotia abyssinica*. Chemistry of Natural Compounds, 41: 596-597. [https://doi.org/10.1007/s10600-005-0217-5](https://doi.org/10.1007/s10600-005-0217-5)

Azimi, R., Heshmati, Gh., and Kavandi Habib, R. 2016. Evaluation of SiO$_2$ nanoparticle effects on seed germination in *Astragalus squarrosus*. Journal of Rangeland Science, 6(2): 135-143.

Azimi, R., Jankju Borzelabad, M., Feizi, H., and Azimi, A. 2014. Interaction of SiO$_2$ nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (*Agropyron elongatum* L.). Polish Journal of Chemical Technology, 16(3): 25-29. [https://doi.org/10.2478/pjct-2014-0045](https://doi.org/10.2478/pjct-2014-0045)

Bhat, J.G., and Murth. H.N. 2008. Haploid plant regeneration from unpollinated ovule cultures of *Niger* (*Guizotia abyssinica* (L. f.) Cass.). Russian Journal of Plant Physiology, 55: 241-245. [https://doi.org/10.1134/S1021443708020118](https://doi.org/10.1134/S1021443708020118)

Callebaut, A., Hendrickx, G., Voets, A.M., and Motte, J.C. 1990. Anthocyanins in cell cultures of *Aiuga reptans*. Phytochem, 29(7): 2153-2158. [https://doi.org/10.1016/0031-9422(90)83027-X](https://doi.org/10.1016/0031-9422(90)83027-X)

Chen, G., Qiu, J., Liu, Y., Jiang, R., and Cai, S. 2015. Carbon nanoparticles act as contaminant carriers and translocate within plants. Scientific Reports, 5:1-9. [https://doi.org/10.1126/science.282.5396.2000](https://doi.org/10.1126/science.282.5396.2000)

Crabtree, R.H. 1998. A new type of hydrogen bond. Science, 282: 2000-2001. [https://doi.org/10.1126/science.282.5396.2000](https://doi.org/10.1126/science.282.5396.2000)

Dimkpa, C.O., McLean, J.E., Latta, D.E., Manango, E., Britt, D.W., Johnson, W.P., Boyanov, M.I., and Anderson, A.J. 2012. CuO and ZnO nanoparticles; phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14: 1-15. [https://doi.org/10.1007/s11051-012-1125-9](https://doi.org/10.1007/s11051-012-1125-9)

Feizi, H., Ramezani Moghadam, P., and Fotovat, A. 2011. Wheat seed reaction to different concentrations of titanium dioxide nanoparticles compared to non-nano particles. The 2nd National Conference on Seed Science and Technology, Islamic Azad University, Mashhad Branch. Iran. [In Persian with English Summary].

Ghodak, G., Deuk Seo, Y., Sung and Lee, D. 2011. Hazardous phytotoxic nature of cobalt and zinc oxid nanoparticles assessed using *Allium cepa*. Journal of Hazard Mater, 186(1): 952-955. [https://doi.org/10.1016/j.jhazmat.2010.11.018](https://doi.org/10.1016/j.jhazmat.2010.11.018)

Haghighi, M., Afifipour, Z., and Mozafarian, M. 2012. The effect of N-Si on tomato seed germination under salinity levels. Journal of Biological and Environmental Science, 6(16): 87-90.

Haghighi, M., and Pessarakli, M. 2013. Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (*Solanum lycopersicum* L.) at early growth stage. Scientia Horticulturae, 161: 111-117. [https://doi.org/10.1016/j.scienta.2013.06.034](https://doi.org/10.1016/j.scienta.2013.06.034)

Hatami, M., Ghorbanpour, M., and Salehiarjomand, H. 2014. Nano-anatase TiO$_2$ modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. Journal of Environment Biological, 8(22): 53-59.
Heldt, H.W., and Piechull, B. 2011. Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components, Plant Biochemistry, 4: 446-447. https://doi.org/10.1016/B978-0-12-384986-1.00018-1

Helland, A., Wick, P., Koehler, A., Schmid, K., and Som, C. 2007. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environmental Health Perspectives, 115(8): 1125-1131. https://doi.org/10.1089/ehp.9652

Hunter E.A., Glasbey C.A., and Naylor, R.E. 1984. The analysis of data from germination tests. Journal of Agriculture Science, 102: 207-213. https://doi.org/10.1017/S0021859600041642

Kalteh, M., Alipour, Z.T., Ashraf, Sh., Marashi Aliabadi, M., and Falah Noosratabadi, A.R. 2014. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress, Journal of Chemical Health Risks, 4(3): 49-55.

Kenanakis, G., and Katsarakis, N. 2014. Chemically grown TiO$_2$ on glass with superior photocatalytic properties. Journal of Environmental Chemical Engineering, 2: 1748-1775. https://doi.org/10.1016/j.jece.2014.07.015

Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li Z., and Watanabe, F. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 3(10): 3221-3227. https://doi.org/10.1021/nn900887m

Kottegoda, N., Mmunaweera, L., Madusanka, N., and Karunarathne, V. 2011. A green slow release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science, 101: 43-78.

Kuai, J., Sun, Y., Guo, C., Zhao, L., Zuo, Q., WU, J., and Zhou, G. 2017. Root-apphied silicon the early bud stage increases the rapeseed yield and optimizes the mechanical harvesting characteristics. Field Crops Research, 200: 88-97. https://doi.org/10.1016/j.fcr.2016.10.007

Kumar P., Pirjola L., Ketzel M.M., and Harrison R. 2013. Nanoparticle emissions from 11 non-vehicle exhaust sources – a review. Atmospheric Environment, 67: 252-277. https://doi.org/10.1016/j.atmosenv.2012.11.011

Liang, Y., Sun, W., Zhu Y.G., and Christie, P. 2007. Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants, a review. Environmental Pollution, 147(2): 422-428. https://doi.org/10.1016/j.envpol.2006.06.008

Lu, C.M., Zhang, C.Y., Wen, J.Q., Wu, G.R., and Tao M.X. 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and is mechanism, Soybean Science, 21(3): 168-172.

Lukacova, Z., Svubova, R., Kohanova, J., and Lux, A. 2013. Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplastic barrier development. Plant Growth Regulation, 70: 89-103. https://doi.org/10.1007/s10725-012-9781-4

Mahmoodzadeh, H., Nabavi, M., and Kashefi, H. 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus L.). Journal of Ornamental Plants (Journal of Ornamental and Horticultural Plants), 3(1): 25-32.

Maksymiec, W. 2007. Signaling responses in plant to heavy metal stress. Acta Physiologiae Plantarum, 29: 177-187. https://doi.org/10.1007/s11738-007-0036-3

Nazar Aliyan, S., Majd, A., Aheyriyan, S., Ghahramani Nezhad, F., Najafi, F., and Gregor, M. 2016. Effect of silica and silica nanoparticles on the germination of seeds and growth of fennel plants (Trigonella foenum-graecum L.). Journal of Evolutionary Biology, 3: 53-62.

Nel, A., Xia, T., Madler, L., and Li, N. 2006. Toxic potential of materials at the nano level. Science Magazine, 311: 622-627.
Noroozi, M., Amoo Aghayi, R., and Noroozi, S. 2012. Evaluation of germination ability of soybean seeds using multi-wall carbon nanotubes. Defective defense in the agricultural sector. Qeshm Island. Civil Defense. [In Persian with English Summary].

Noroozi, S. 2013. The effects of nano-silvers, zinc and multi wall carbon nanotube on nodulation, growth, yield and components of yield of faba bean (Vicia faba L.), Shahrekord University, Iran. [In Persian with English Summary].

Rahimi, M. 2015. Effect of some nanoparticles on seed germination of hulled and hulless barley varieties (Hordeum vulgare L.), Shahrekord University, Iran. [In Persian with English Summary].

Raskar, S., and Laware, S.L. 2013. Effect of titanium dioxide nano particles on seed germination and germination indices in onion. Plant Sciences Feed, 3(9): 103-107.

Roohipazadeh, G., Majd, A., and Arbabian, S. 2015. The effect of sodium silicate and silica nanoparticles on seed germination and growth in the Vicia faba L., Tropical Plant Research, 2(2): 85-89.

Scott S.J., Jones R.A., and Williams W.A. 1984. Review of data analysis methods for seed germination. Crop Science, 24: 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x

Siddiqui, M.H., Al-Whaibi, M., Firoz, M., Y. and Al-Khaishany, M.Y. 2015. Nanoparticles and Their Impact on Plants Nanotechnology and Plant Science, 303 p.

Siddiqui, M.H., and Al-Whaibi, M. 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum Mill). Journal of Biological Sciences, 21(1): 13-17. https://doi.org/10.1016/j.jbs.2013.04.005

Suriyaprabha, R., Karunakaran, G., Yuvaakumar, R., Prabu, P., Rajendran, V., and Kannan, N. 2012. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. Journal of Nanoparticles Research, 14: 1294-1296. https://doi.org/10.1007/s11051-012-1294-6

Tadayon, M.R., Falah, S.A., Fadaei Tehrani, A.A., and Norouzi, S. 2013. Effects of multi wall carbon nanotube and nanosilver on some physiological and morphological traits of faba bean (Vicia faba L.). Journal of Plant Process and Function, 2: 61-72. [In Persian with English Summary].

Tiwari, D. K., Dasqupta-Schubert, N., Villasenor Cendejas, L.M., Villages, J., Carreto Montoya, L., Borjas Garcia, S.E. 2014. Interfacing carbon nanotubes (CNT) with plants: Enhancements of growth, water and ionic nutrient uptake in maize (Zea mays) and implication for nano-agriculture. Applied Nanoscience, 4: 577-591. https://doi.org/10.1007/s13204-013-0236-7

Wang, X., Wei, Z., Liu, D., and Zhao, G. 2011. Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African Journal of Biotechnology, 10: 545-549.

Wang, X.D., Ou-yang, C., Fan, Z., Gao, S., Chen, F., and Tang, L. 2010. Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal and Plant Science, 6: 700-708.

Yang, F.S., You, W.J., Liu, C., Gao, F.Q., and Yang, P. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing Spinach. Biological Trace Element Research, 110: 179-190. https://doi.org/10.1385/BTER:110:2:179

Zhang, L., Hong, F. Lu, S., and Liu, C. 2005. Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 105: 83-91. https://doi.org/10.1385/BTER:104:1:083
Zhu, H., Han, J., Xiao, J.Q., and Jin, Y. 2008. Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring, 10: 713–717. https://doi.org/10.1039/b805998e

Zhu, Y., and Gong, H. 2014. Beneficial effect of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34: 455-472.
Investigation of Seed Germination Indices and Anthocyanin Content of Niger (Guizotia abyssinica) Seedling under the Effect of Three Nanoparticles

Moazzameh Eskandarinasab¹, Mohammad Rafieiollahsaini², Partoo Roshandel³ and Mahmoud Reza Tadayon⁴

Extended abstract

Introduction: The use of nanotechnology as a diverse and applied discipline is ongoing in almost all areas of science. Fertilizers and nano-nutrients have the effective properties which help the production of plants, depending on their needs to regulate the plant growth. Plants under stress conditions tend to produce natural nanoparticles to continue their growth. Nano TiO₂ has a highly photocatalytic effect and as a catalyst, it is mainly used in water, electronic devices, conversion and storage equipment of energy as suspension. Sources of SiO₂ are very diverse, including natural nanoparticles, anthropogenic particles and engineering nanoparticles. Although silicon is not an essential element for growth and development. Today, carbon nanotubes are one of the most important materials in industrial programs. These materials, with different production methods and specific properties, can play an important role in the production of composite materials and have applications in medicine, electronics and energy storage. The Niger plant, with the scientific name of Goizotia abyssinica (L.F) Cass, belongs to the Asteraceae family. Its seeds are used in pharmacy, food industry, green manure and for feeding birds and cows. Therefore, the purpose of this experiment was to investigate the effect of type and concentration of three nanoparticles on some germination characteristics and anthocyanins content in Niger medicinal-oily plant.

Materials and Methods: In order to evaluate the effect of three nanoparticles on seed germination of Niger, an experiment was conducted as factorial in a completely randomized design with four replications. The treatments of TiO₂, SiO₂, and CNT were used as the first factor while their concentrations in four levels (zero, 10, 30 and 60 mg/l) were considered as the second factor. In this study, the traits of germination percentage, germination rate and mean of daily germination, germination and vigour index, length, fresh and dry weight of radicle and plumule, anthocyanin content and radicle resistance percentage were measured.

Results: The germination percentage, germination rate and mean of daily germination decreased by increases in nanoparticles concentration. The favorable effect of TiO₂ on germination index was obtained at the concentration of 30 mg/l and radicle dry weight at the concentration of 10 mg/l, compared to the control. The positive effect of SiO₂ was obtained on germination index and radicle dry weight at the concentrations of 10 and 60 mg/l, the anthocyanin content and the fresh and dry weight of plumule at the concentration of 60 mg/l, compared to the control. In addition, the appropriate effect of CNT on germination index was observed at the concentration of 10 and 30 mg/l, the anthocyanin content and radicle dry weight at the concentration of 60 mg/l and plumule fresh weight at the concentration of 30 mg/l.

Conclusions: According to the results of this study, it seems that the effect of nanoparticles in plants, apart from the plant itself, species, type and concentration of nanoparticles, varies depending on the growth stage and physiology of the plant. It seems that nanoparticles can increase the water absorption of seeds at some concentrations and increase seedling growth, which is because of their positive effects. Anthocyanins are produced by exposure to stress due to their antioxidant activity. In general, it can be said that increasing the concentration of nanoparticles causes the oxidative stress in the plant and the subsequent increase. Therefore, it is recommended that by investigating the bad effects of nanoparticles on plants, if necessary, use be made of nanoparticles at low concentrations (less than 60 mg/l) to increase the plant's efficiency.

Keywords: CNT, Mean of daily germination, Radicle dry weight, SiO₂, TiO₂

Highlights:

1- The effect of kind and concentration of nanoparticles on seed germination indices and anthocyanin content of Niger seedling.

2- Investigating the interaction effect of nanoparticle type and concentration as the physical priming factor of seeds on seed germination of multi-purpose Niger plant.

¹ M.Sc. Student of Seed Technology and Sciences, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
² Assistant Professor of Agronomy Department, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
³ Associate Professor of Agronomy Department, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

*Corresponding author, E-mail address: rafiei@sku.ac.ir

(Received: 12.12.2017; Accepted: 05.06.2018)