A genetic variant in Rassf1a predicts outcome in mCRC patients treated with cetuximab plus chemotherapy: results from FIRE-3 and JACCRO 05 and 06 trials

A Sebio1,2, S Stintzing3, V Heinemann1, Y Sunakawa1, W Zhang1, W Ichikawa1, A Tsuji5, T Takahashi4, A Parek1, D Yang1, S Cao1, Y Ning1, S Stremitzer1, S Matsusaka1, S Okazaki1, A Barzi1, MD Berger1 and H-J Lenz1,6

The Hippo pathway is involved in colorectal cancer (CRC) development and progression. The Hippo regulator Rassf1a is also involved in the Ras signaling cascade. In this work, we tested single nucleotide polymorphisms within Hippo components and their association with outcome in CRC patients treated with cetuximab. Two cohorts treated with cetuximab plus chemotherapy were evaluated (198 RAS wild-type (WT) patients treated with first-line FOLFIRI plus Cetuximab within the FIRE-3 trial and 67 Ras WT patients treated either with first-line mFOLFOX6 or SOX plus Cetuximab). In these two populations, Rassf1a rs2236947 was associated with overall survival (OS), as patients with a CC genotype had significantly longer OS compared with those with CA or AA genotypes. This association was stronger in patients with left-side CRC (hazard ratio (HR): 1.79 (1.01–3.14); P = 0.044 and HR: 2.83 (1.14–7.03); P = 0.025, for Fire 3 and JACCRO cohorts, respectively). Rassf1a rs2236947 is a promising biomarker for patients treated with cetuximab plus chemotherapy.

The Pharmacogenomics Journal (2018) 18, 43–48; doi:10.1038/tpj.2016.69; published online 4 October 2016

INTRODUCTION

Salvador–Warts–Hippo pathway controls organ size by regulating tissue growth. In recent times, several studies have highlighted the implication of deregulated Hippo signaling in cancer development and progression. This novel pathway acts as a complex tumor suppressor network controlling cell growth, proliferation, stem-cell maintenance and epithelium mesenchymal transition. Hippo’s signaling core consists of a complex of kinases whose activation ultimately leads to the phosphorylation of the oncoproteins YAP and TAZ preventing their translocation to the nucleus. On the contrary, if YAP/TAZ are not phosphorylated they can translocate to the nucleus, where they regulate the activity of several transcription factors that control the expression of the Hippo target genes. These target genes include amphiregulin, Sox2 or Birc5 among others. Additionally, Hippo pathway interacts with other pathways such as Wnt, TGFβ or Notch. These pathways connections are of particular relevance for colorectal cancer (CRC) development and progression. Moreover, some of Hippo’s upstream regulators like Rassf1a are also crucial players in CRC. Rassf1a is a tumor suppressor that interacts with Ras signaling through a Ras interaction domain and with the Hippo pathway, specifically with MST, through a SARAH interaction domain. Rassf1a is also involved in microtubule stability, cell-cycle regulation and apoptosis. Rassf1a is methylated in a high percentage of CRC samples (12–81% depending on the series), representing an alternative mechanism of aberrant Ras signaling and, interestingly, a mutually exclusive relationship with KRAS mutations has been reported. Rassf1a has also been found to regulate the EGFR ligand amphiregulin by Hippo activation.

The growing interest in the Hippo pathway in cancer is slowly translating into multiple translational research works that underscore the clinical relevance of this pathway in CRC tumors. The expression of Hippo’s oncoproteins YAP and TAZ has been correlated with the prognosis of CRC patients. A potential explanation for this correlation could be that TAZ/YAP signaling contributes to chemoresistance conferring cancer stem cell-related traits. Recently, in colon cancer cell lines YAP was reported to contribute to 5-Fluorouracil resistance by inducing cellular quiescence as well as contributing to a stem cell-like phenotype. Not only the expression of YAP and TAZ appear to be useful in predicting the patients’ prognosis in CRC. Single nucleotide variations within genes involved in the Hippo pathway have also been investigated as biomarkers in colorectal cancer patients. In stages II and III colorectal cancer polymorphisms located within TAZ and Rassf1a were found to be associated with the recurrence risk. However, in the metastatic colorectal cancer (mCRC) setting to our knowledge genetic variants within genes involved in the Hippo pathway have not been evaluated. In mCRC, a combination of anti-EGFR therapies plus chemotherapy is considered as a standard of care in Ras wild-type (WT) patients. Despite of the presence of Ras mutations as strong biomarkers to select the patients that benefit the most from anti-EGFR, ~ 25–30% of the patients do not respond to treatment and,

1Division of Medical Oncology, Sharon A. Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 2Medical Oncology Department, Santa Creu i Sant Pau Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; 3Department of Hematology and Oncology, Klinikum der Universitat, University of Munich, Munich, Germany; 4Department of Medical Oncology, Showa University, Yokohama, Japan; 5Department of Clinical Oncology, Kagawa University, Kagawa, Japan and 6Department of Preventive Medicine, Norris Comprehensive Cancer Center; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Correspondence: Professor H-J Lenz, Sharon A. Carpenter Laboratory, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA.
E-mail: LENZ@usc.edu
Received 21 March 2016; revised 17 May 2016; accepted 25 August 2016; published online 4 October 2016
moreover, survival among responders can vary significantly. The mechanisms for this lack of response and survival differences remain unknown. We hypothesized that the critical role of the Hippo pathway in CRC development and progression might play a role in these differences. In this work, we evaluated single nucleotide polymorphisms within the Hippo pathway as biomarkers in mCRC patients treated with cetuximab plus chemotherapy.

MATERIAL AND METHODS

Selected polymorphisms

A total of four single nucleotide polymorphisms (SNPs) were selected based on previously reported results and based on their potential relevance in cetuximab treated patients. The selected polymorphisms were: rs2073498 and rs2236947 located in the Rassf1a gene, rs558614 located in the LATS2 gene and rs3811715 located in the TAZ gene (also known as WWTR1). Rassf1 rs2073498 polymorphism is a missense change (Ala133Ser) located in exon three. LATS2 rs558614 polymorphism is also a missense change (Ala324Val) located in exon four. The rest of the analyzed polymorphisms are located intronicly.

DNA was extracted from FFPE tissue samples and genotypes were obtained using PCR-based direct sequencing. Five percent of the samples were re-sequence to ensure the accuracy of the results revealing a concordance higher than 99%. The author that performed the genotyping was blinded to the clinical data set.

Patients’ clinical characteristics

These four SNPs were tested first in cohort one that comprised of all Ras WT patients enrolled in the arm A of Fire three trial. Those SNPs significantly associated with survival were subsequently evaluated in an independent cohort two that included all Ras WT patients enrolled in JACCRO 05 and JACCRO 06 trials.

Cohort one consisted of a total of 199 Ras WT patients enrolled in the arm A of Fire three trial (NCT00433927) treated with FOLIRI plus cetuximab. Cohort two consisted of a total of 67 patients enrolled in JACCRO 05 (UMIN000004197) or 06 (UMIN000007022), who received oxaliplatin based chemotherapy (FOLFOX or SOX) plus cetuximab. The clinical characteristics of these two cohorts have been described in detail somewhere else.13,17,18

This study was performed following the REMARK recommendations for the reporting of biomarkers.19 The study was approved by the ethics committees and all patients signed an informed consent.

Statistical analysis

The endpoints of the current study included overall survival (OS), progression-free survival (PFS), and tumor response per RECIST 1.0. Overall survival was measured as the time from randomization or registration to death from any cause. PFS was defined as the time from the date of randomization in FIRE 3 and registration in JACCRO 05 or 06 to disease progression or death from any cause. PFS and OS were censored at the last follow-up if progression and death were not observed.

Deviations from distribution of the Hardy–Weinberg equilibrium were examined using χ^2 test. The true inheritance mode of the candidate polymorphisms had not been known yet, therefore a codominant, dominant or recessive model was assumed whenever appropriate. The associations of the SNPs and PFS or OS were analyzed using Kaplan Meier curves and log-rank tests. In the multivariatable Cox regression analysis, the model was adjusted by baseline prognostic factors. The associations between the SNPs and tumor responses were examined using χ^2 tests.

All analyses were conducted using SAS statistical package version 9.4 (SAS Institute, Cary, NC, USA). All tests were two-sided at a significance level of 0.05. P values were adjusted for multiple testing using the false discovery rate. The false discovery rate-adjusted P values $< 15\%$ were considered as statistically significant.

RESULTS

The median follow up for cohort one was 34.1 months (range $0.03–70.8$) and the median OS reached 33.1 months. For the JACCRO 05 and 06 cohort, the median follow up was 31.6 months (range $5.5–42.9$) and the median survival was 33.9 months.

Of all the analyzed samples, genotypes were achieved in at least 90% of the cases for each polymorphism. In those failed cases, genotypes were not obtained due to a limited DNA quantity or poor DNA quality.

The four analyzed polymorphisms were within the probabilities limits of the Hardy–Weinberg equilibrium ($P>0.05$). For the Fire three cohort, the minor allele frequency was 47% and for the Japanese cohort 27% (expected 46% and 21% respectively, according to www.Ensembl.org).

In cohort one, the rs2236947 polymorphism was associated with overall survival. In the dominant model, patients with a CC genotype had a median OS of 46.3 months (95% CI; 21.8–70.8), whereas patients with a CA or AA genotypes had a median OS of 30.6 (95% CI, 23.9–38.3); $P=0.023$. In the multivariable Cox regression model adjusting for sex, ECOG performance status (0 vs 1–2) and primary tumor site (right, left vs NA) and number of metastatic sites (1–2 vs 3 or more) the hazard ratio (HR) was 1.50 (95% CI, 0.94–2.38); $P=0.088$. This SNP did not associate with the response rate or the PFS in this population.

The rest of the analyzed polymorphisms did not yield any association regarding response rate, PFS or OS. Table 2 shows in detail all the analyzed associations.

Table 1. Baseline characteristics of the two cohorts

	Cohort 1: Fire-3 Arm A	Cohort 2: JACCRO 05 and 06
	N = 297	N = 77
Age, years		
Median (range)	64 (38–79)	63 (39–79)
≤ 65	158	45
> 65	139	32
Sex		
M	213	44
F	84	33
ECOGPS		
0	154	69
1–2	143	6
Primary tumor site		
Right	54	11
Left	236	64
Unknown	7	2
Metastatic sites, n		
1	123	33
> 1	174	44
Time to mets		
Synchronous	217	59
Metachronous	75	18
Unknown	5	
Adjuvant therapy		
No	226	71
Yes	66	6
Unknown	5	
Mutation status		
All RAS wildtype	199	67
Mutant	39	10
Unknown	59	
The rs2236947 located in the Rassf1a gene was analyzed in the second cohort of patients. In this population, the rs2236947 was also associated with OS: patients harboring a CC genotype had a median OS of 42.8 months (95% CI, 27.1–42.8) compared with the patients with a CA or AA genotypes whose median OS was 19.0 months (95% CI, 13.4–42.9); \(P = 0.057 \). In the multivariable Cox regression model adjusting for ECOG performance status the HR was 2.72 (95% CI, 1.23–6.04); \(P = 0.014 \). In this cohort, an association was found also regarding PFS. Table 3 shows in detail these results.

These polymorphisms were also evaluated in an exploratory cohort of 190 patients enrolled in the arm B of the FIRE 3 arm and treated with FOLFIRI plus Bevacizumab. In this population no associations were found regarding response, PFS or OS based on the rs2236947 genotype (Online only Supplementary Table 1).

Subgroup analysis

The association of Rassf1a rs2236947 with OS was stronger in patients bearing left-side tumors. In cohort one, patients with a CC genotype had a median OS of 59.0 months (95% CI, 23.8–70.8) compared with 38.3 (95% CI, 23.4–70.1) months for the patients with a CA or AA genotypes, \(P = 0.013 \). In multivariable analysis this association remained statistically significant with a HR of 1.79 (1.01–3.14); \(P = 0.044 \) (Figure 1, Table 4). No association was found regarding Rassf1a rs2236947 genotype in patients harboring right-side colon tumors.

Table 2. Hippo pathway SNPs and clinical outcomes in patients with all RAS WT mCRC treated with first-line FOLFIRI+Cetuximab in FIRE-3

Tumor response, RECIST	Progression-Free survival (PFS)	Overall survival (OS)					
SNP	N	CR+PR	s.d.+PD	Median, ms (95% CI)	HR (95% CI)	Median, ms (95% CI)	HR (95% CI)
RASSF1a rs2073498							
C/C	155	98 (74%)	34 (26%)	10.0 (8.0, 11.5)	1 (reference)	29.8 (23.7, 38.3)	1 (reference)
C/A	31	26 (84%)	5 (16%)	11.1 (9.5, 14.3)	0.74 (0.50, 1.10)	0.84 (0.56, 1.28)	0.003 (0.14)
A/A	4	3 (75%)	1 (25%)	10.5 (8.0, 13.0)	0.95 (0.67, 1.34)	0.91 (0.64, 1.29)	0.002 (0.14)
P value\(^d\)				0.35	0.13	0.42	0.20
RASSF1a rs2236947							
C/C	57	37 (66%)	12 (24%)	10.1 (7.8, 11.1)	1 (reference)	36.3 (21.8, 70.8)	1 (reference)
C/A	132	88 (78%)	25 (22%)	10.5 (9.3, 13.0)	0.95 (0.67, 1.34)	0.91 (0.64, 1.29)	0.002 (0.14)
A/A	1	1 (100%)	0 (0%)	13.0 (6.1, 70.8)	0.53 (0.23, 1.20)	0.58 (0.25, 1.36)	0.016 (0.20)
P value\(^d\)				0.04	0.17	0.36	0.11
LATS rs228614							
A/A	120	80 (78%)	22 (22%)	10.4 (9.2, 13.0)	1 (reference)	38.7 (27.1, 49.8)	1 (reference)
A/G	55	35 (63%)	13 (27%)	10.0 (7.8, 11.8)	1.15 (0.81, 1.63)	1.10 (0.77, 1.57)	0.023 (0.14)
G/G	11	5 (45%)	3 (27%)	13.0 (6.1, 70.8)	0.53 (0.23, 1.20)	0.58 (0.25, 1.36)	0.002 (0.14)
P value\(^d\)				0.46	0.17	0.36	0.11
TAZ rs3811715							
C/C	124	77 (78%)	26 (25%)	10.4 (9.0, 12.2)	1 (reference)	33.4 (24.4, 45.0)	1 (reference)
C/T	57	42 (75%)	12 (22%)	10.6 (8.0, 13.3)	0.98 (0.70, 1.36)	1.03 (0.73, 1.43)	0.017 (0.20)
T/T	4	4 (100%)	0 (0%)	13.0 (6.1, 70.8)	0.53 (0.23, 1.20)	0.58 (0.25, 1.36)	0.017 (0.20)
P value\(^d\)				0.84	0.89	0.88	0.50

\(^a\) Wald test for PFS and OS in the multivariable Cox regression model. \(^b\) Adjusting for sex (male vs female), ECOG performance status (0 vs 1–2), primary tumor site (right, left vs NA) and number of metastatic disease (1, 2 vs 3+). \(^c\) A dominant model was used. \(^d\) \(P \) value was based on Fisher’s exact test for response, log-rank test for PFS and OS in the univariable analysis. \(^e\) \(P \) value adjusted by false discovery rate.

Table 3. Rassf1a rs2236947 and clinical outcomes in Japanese patients with all RAS WT mCRC treated with first-line oxaliplatin+ cetuximab in JACCRO 05 and 06

Tumor response, RECIST	Progression-Free survival (PFS)	Overall survival (OS)					
SNP	N	CR+PR	s.d.+PD	Median, ms (95% CI)	HR (95% CI)	Median, ms (95% CI)	HR (95% CI)
All patients							
C/C	35	26 (74%)	6 (19%)	13.8 (6.6, 17.4)	1 (reference)	42.8 (27.1, 42.8)	1 (reference)
C/A, A/A\(^d\)	27	20 (77%)	6 (23%)	9.4 (5.8, 11.3)	1.44 (0.81, 2.54)	1.69 (0.93, 3.07)	0.005 (0.14)
P value\(^d\)				0.18	0.088	0.014	0.014
Left-sided CRC							
C/C	31	24 (77%)	4 (14%)	15.2 (8.8, 18.0)	1 (reference)	32.3 (13.4, 42.9)	1 (reference)
C/A, A/A\(^d\)	21	17 (81%)	4 (19%)	10.0 (8.5, 11.7)	1.75 (0.91, 3.34)	1.98 (1.02, 3.84)	0.283 (1.14, 7.03)
P value\(^d\)				0.71	0.059	0.045	0.025

\(^a\) Wald test for PFS and OS in the multivariable Cox regression model. \(^b\) Adjusting for ECOG performance status (0 vs 1), and regimen (FOLFOX vs SOX). \(^c\) A dominant model was used. \(^d\) \(P \) value was based on Fisher’s exact test for response, log-rank test for PFS and OS in the univariable analysis.
In cohort 2, patients harboring a CC genotype had a median OS of 42.8 months (95% CI, 30.5–42.8) whereas patients with a CA or AA genotypes had a median OS of 23.2 (13.4–42.9), \(P = 0.056 \). In the multivariable analysis the HR was 2.83 (1.14–7.03); \(P = 0.025 \) (Figure 2, Table 3).

In this cohort, the rs2236947 SNP was also associated with PFS in patients harboring left-side tumors. Patients with a CC genotype had a median PFS of 15.2 months (95% CI, 8.8–18.0) compared with 10.0 months (95% CI, 8.5–11.7) for the patients with a CA or AA genotype, \(P = 0.059 \). In multivariable analysis the HR was 1.98 (95% CI, 1.02–3.84); \(P = 0.045 \).

DISCUSSION

The polymorphism rs2236947 located in the Rassf1 gene was found to be associated with overall survival in two independent cohorts of patients treated with chemotherapy plus the anti-EGFR monoclonal antibody cetuximab. Moreover, this association appears to be stronger in patients bearing left-sided tumors. Additionally, in the JACCRO population this SNP was also associated with progression-free survival.

Rassf1a is a tumor suppressor frequently methylated in colorectal cancer. Rassf1a is involved not only in Ras signaling, but also it is a recognized upstream regulator of Hippo signaling.

Figure 1. Rassf1a rs2236947 is associated with OS in Ras WT left-sided mCRC patients treated with FOLFIRI plus cetuximab in Fire 3. *Wald test in the multivariable Cox Regression model adjusting for sex, ECOG and number of metastatic sites.

Figure 2. Rassf1a rs2236947 is associated with OS in Ras WT left-sided mCRC patients treated with oxaliplatin-based chemotherapy plus cetuximab. *Wald test in the multivariable Cox Regression model adjusting for ECOG and regime (FOLFOX vs SOX).

Table 4. Hippo pathway SNPs and clinical outcomes in patients with all Ras WT left-sided mCRC treated with first-line FOLFIRI+Cetuximab in Fire-3

SNP	N	CR+PR	s.d.+PD	Median, ms (95%CI)	HR (95%CI)a	HR (95%CI)b	
RASSF1a rs2073498	C/C	120	83 (79%)	22 (21%)	10.4 (9.3,12.9)	1 (reference)	1 (reference)
	C/A§	33	23 (82%)	5 (18%)	12.2 (9.6,14.3)	0.81 (0.53,1.24)	0.82 (0.53,1.28)
P valuec		0.80			0.32	0.39	
RASSF1a rs2236947	C/C	47	32 (80%)	8 (20%)	10.4 (9.2,12.2)	1 (reference)	1 (reference)
	C/A,A/A	103	74 (81%)	17 (19%)	11.5 (9.6,14.1)	0.98 (0.66,1.45)	0.92 (0.62,1.38)
P valuec		1.00			0.92	0.69	
LATS rs558614	A/A	95	68 (83%)	14 (17%)	12.2 (9.7,14.1)	1 (reference)	1 (reference)
	A/G	42	29 (76%)	9 (24%)	9.9 (7.8,11.8)	1.23 (0.82,1.83)	1.23 (0.80,1.89)
	G/G	10	5 (63%)	3 (38%)	13.0 (6.1,10.8)	0.49 (0.20,1.22)	0.51 (0.20,1.28)
P valuec		0.27			0.12	0.19	
TAZ rs3811715	C/C	98	65 (76%)	20 (24%)	10.4 (8.1,12.2)	1 (reference)	1 (reference)
	C/T§	47	35 (85%)	6 (15%)	12.9 (10.3,14.1)	0.87 (0.60,1.28)	0.90 (0.61,1.32)
T/T§		0.35			0.48	0.59	

*Wald test for PFS and OS in the multivariable Cox regression model. Adjusting for sex (male vs female), ECOG performance status (0 vs 1–2), and number of metastatic disease (1, 2 vs 3+). \(P \) value was based on Fisher’s exact test for response, log-rank test for PFS and OS in the univariable analysis. Value adjusted by false discovery rate.

In cohort 2, patients harboring a CC genotype had a median OS of 42.8 months (95% CI, 30.5–42.8) whereas patients with a CA or AA genotypes had a median OS of 23.2 (13.4–42.9), \(P = 0.056 \). In the multivariable analysis the HR was 2.83 (1.14–7.03); \(P = 0.025 \) (Figure 2, Table 3).

In this cohort, the rs2236947 SNP was also associated with PFS in patients harboring left-side tumors. Patients with a CC genotype had a median PFS of 15.2 months (95% CI, 8.8–18.0) compared with 10.0 months (95% CI, 8.5–11.7) for the patients with a CA or AA genotype, \(P = 0.059 \). In multivariable analysis the HR was 1.98 (95% CI, 1.02–3.84); \(P = 0.045 \).
interacting with MST through its SARAH domain. The critical importance of Ras signaling in mCRC is widely known. Regarding Rassf1a is implicated in Ras signaling, and Ras signaling is of high importance in tumors could be associated to these molecular differences. Nonetheless, due to the low value of rs2236947 patients treated with chemotherapy plus cetuximab regardless of conclusion that this SNP has no value in this population.

(rs13100173) located in the HYAL3 gene. However, whether this intronically and its functionality is not known. This SNP is in the Japanese cohort was also associated with PFS whereas no association of Rassf1a regulation and the expression of target genes. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

ACKNOWLEDGMENTS

Ana Sebio is a recipient of a Juan Rodés contract from the Instituto de Salud Carlos III (JR14/00006). Martin D. Berger received a grant from the Swiss Cancer League (BIL KLS-3334-02-2014) and the Wemer and Hedgy Berger-Janser Foundation for cancer research. This work was supported in part by an award from the National Cancer Institute (P30CA14089), the Wunderglo Project and the Daniel Butler Research Fund. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health.

REFERENCES

1 Harvey KE, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13: 246–257.
2 Sebio A, Lenz HJ. Molecular pathways: hippo signaling, a critical tumor suppressor. Clin Cancer Res: Off J Am Assoc Cancer Res 2015; 21: 5002–5007.
3 Bernascone I, Martin-Belmonte F. Crossroads of Wnt and Hippo in epithelial tissues. Trends Cell Biol 2013; 23: 380–389.
4 Matallanas D, Romano D, Yee K, Meissl K, Kucerova L, Piazzolla D et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 2007; 27: 962–975.
5 Fernandez MS, Carneiro F, Oliveira C, Seruca R. Colorectal cancer and RASSF1A family–a special emphasis on RASSF1A. Int J Cancer 2013; 132: 251–258.
6 van Engeland M, Roemen GM, Brink M, Pachen MM, Weijenberg MP, de Bruijn AP et al. K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 2002; 21: 3792–3795.
7 Miranda E, Destro A, Malesci A, Balladore E, Bianchi P, Baryshnikova E et al. Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer 2006; 95: 1101–1107.
8 Ahn EY, Kim JS, Kim GL, Park YN. RASSF1A-mediated regulation of AREG via the Hippo pathway in hepatocellular carcinoma. Mol Cancer Res: MCR 2013; 11: 748–758.
9 Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147: 759–772.
10 Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 2015; 34: 681–690.
11 Touil Y, Igdoujil W, Corvaisier M, Dessein AF, Vandomme J, Monte D et al. Colorectal cancer cells escape SFU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res: Off J Am Assoc Cancer Res 2014; 20: 837–846.
12 Sebio A, Matsuaksa S, Zhang W, Yang D, Ning Y, Stremitzer S et al. Germline polymorphisms in genes involved in the Hippo pathway as recurrence biomarkers in stages II/III colon cancer. Pharmacogenom J 2015; 16: 312–319.
13 Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15: 1065–1075.
14 Douillard JY, Oliner KS, Siena S, Tabernerio J, Burkes R, Arguel B et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. NEngl J Med 2013; 369: 1023–1034.
15 Lenz H, Niedzwiecki D, Innocenti F, Blankie C, Mahony MR, O’Neill BH et al. CALGB/ SWOG 80405: Phase III trial of inoreconone+S/5-Fu/Leucovorin/FOLFIRI) or Oxaliplatin/ 5-Fu/Leucovorin (mFOLFOX6) with Bevacizumab (BV) or Cetuximab (CET) for patients (pts) with expanded Ras analyses untreated metastatic adenocarcinoma of the colon or rectum (mCRC). Ann Oncol 2014; 25 (Suppl 4): doi: 10.1093/annonc/mdu348.13.
16 Stintzing S, Jung A, Rossius L, Modest DP, Fischer von Weikersthal L, Deck T et al. Analysis of KRAS/NRAS and BRAF mutations in FIRE-3: A randomized phase III study of FOLFIRI plus cetuximab or bevacizumab as first-line treatment for wild-type (WT) KRAS (exon 2) metastatic colorectal cancer (mCRC) patients. Eur J Cancer 2013; 49: abstract 17.
17 Tsuji A, Sunakawa Y, Yata D, Takinishi Y, Kotak M, Tanioka H et al. JACCRO CC-06. A Phase II study of cetuximab and mFOLFOX6 in mCRC including prospective early tumor shrinkage analysis. Ann Oncol 2013; 24: iv 38–iv121.
18 McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM et al. Reporting recommendations for tumour MARKer prognostic studies (REMARK). Eur J Cancer 2005; 41: 1690–1696.

RASSF1A SNP predicts survival in mCRC patients

A Sebio et al

CONFICT OF INTEREST

The authors declare no conflict of interest.
20 Hecht JR, Douillard JY, Schwartzberg L, Grothey A, Kopetz S, Rong A et al. Extended RAS analysis for anti-epidermal growth factor therapy in patients with metastatic colorectal cancer. Cancer Treat Rev 2015; 41: 653–659.
21 Wang L, Shi S, Guo Z, Zhang X, Han S, Yang A et al. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLOS One 2013; 8: e65539.
22 Yuen HF, McCrudden CM, Huang YH, Tham JM, Zhang X, Zeng Q et al. TAZ expression as a prognostic indicator in colorectal cancer. PLOS One 2013; 8: e54211.
23 Touil Y, Igoudjil W, Corvaisier M, Dessein AF, Vandomme J, Monte D et al. Colon cancer cells escape SFU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res: Off J Am Assoc Cancer Res 2013; 20: 837–846.
24 Song S, Honjo S, Jin J, Chang SS, Scott AW, Chen Q et al. The hippo coactivator YAP1 mediates EGFR overexpression and confers chemoresistance in esophageal cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 2015; 21: 2580–2590.
25 Lee KW, Lee SS, Kim SB, Sohn BH, Lee HS, Jang HJ et al. Significant association of oncogene YAP1 with poor prognosis and cetuximab resistance in colorectal cancer patients. Clin Cancer Res: Off J Am Assoc Cancer Res 2015; 21: 357–364.
26 Bauer KM, Hummon AB, Buechler S. Right-side and left-side colon cancer follow different pathways to relapse. Mol Carcinog 2012; 51: 411–421.
27 Lee GH, Mailetzis G, Askari A, Bernardo D, Al-Hassi HO, Clark SK. Is right-sided colon cancer different to left-sided colorectal cancer – a systematic review. Eur J Surg Oncol 2015; 41: 300–308.
28 Maus MK, Hanna DL, Stephens CL, Astrow SH, Yang D, Grimminger PP et al. Distinct gene expression profiles of proximal and distal colorectal cancer: implications for cytotoxic and targeted therapy. Pharmacogenom J 2015; 15: 354–362.
29 Brule SY, Jonker DJ, Karapetis CS, O’Callaghan CJ, Moore MJ, Wong R et al. Location of colon cancer (right-sided versus left-sided) as a prognostic factor and a predictor of benefit from cetuximab in NCIC CO.17. Eur J Cancer 2015; 51: 1405–1414.
30 von Einem JC, Heinemann V, von Weikersthal LF, Vehling-Kaiser U, Stach M, Hass HG et al. Left-sided primary tumors are associated with favorable prognosis in patients with KRAS codon 12/13 wild-type metastatic colorectal cancer treated with cetuximab plus chemotherapy: an analysis of the AIO KRK-0104 trial. J Cancer Res Clin Oncol 2014; 140: 1607–1614.
31 The ENCODE project consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.