The first-principles study on Mo-doped monolayer ReS₂

He Li · Ying Wang · Guili Liu · Lin Wei · Duo Wang

Received: 11 January 2022 / Accepted: 6 March 2022 / Published online: 19 March 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Based on the first-principles calculations, the electronic structure and optical properties of the Mo-doped monolayer rhenium disulfide (ReS₂) model are calculated, and the system stability, bond length, charge difference density, band structure, photoabsorption coefficient, system stability, and reflectivity are analyzed. The calculation results show that doping changes the structural stability of the system, which gradually decreases with an increasing concentration of doping. The calculation of band structure and density of states indicated that the band gap value of the system decreases continuously to 0 with increasing doping concentration, while the average charge population of atoms at doping sites keeps increasing with the better electron-losing ability of atoms. Compared with the intrinsic monolayer ReS₂, the peak of systemic reflectivity at different doping concentrations has corresponding degrees of redshift in a certain wavelength range, as demonstrated by the optical properties.

Keywords ReS₂ · Doping · Band gap · Electronic structure · Optical property

Introduction
Two-dimensional transition metal sulfides (TMDs) have been known since 1960. More than 40 kinds of TMD materials and their basic properties were conducted as early as 1969 [1–3], with the most topical materials in Group VI, MoS₂ and WS₂, being the most prevalent [4, 5]. Recently, rhenium disulfide (ReS₂) semiconductor materials in Group VII have attracted widespread attention because of their undeniable enormous application potential. Rhenium disulfide (ReS₂) consists of three atomic layers, S-Re-S, in which Re and S covalently bond together, and has unique structural, optoelectronic, and chemical properties that have led to subsequent studies of various properties of rhenium disulfide [6–14].

In the design and application of nano-devices, the tunability of the band gap is essential for materials. Rhenium disulfide, which exhibits semiconducting transition metal properties, cannot be effectively used in micro- and nano-devices yet. Thus, its modification has become a research hotspot. There have been many researchers to modulate the intrinsic properties of rhenium disulfide such as band gap, transport characteristics, and magnetic properties by adsorption, stretching, and straining [15–18]. Rhenium disulfide has no transition from direct to indirect band gap, making it unique among semiconductor transition metal dihalides, while atomic substitutional doping becomes a new feasible strategy due to its effective modulation for band gap. Meantime, transition metal sulfides have received increasing attention as electrochemical energy storage and electrode conversion materials for lithium-ion batteries and hydrogen evolution reactions, and so on. However, most of them show a low electrical conductivity, which significantly limits their electrochemical performance. Therefore, metal heteroatom doping can be used for modulating the electronic structure, which is an effective strategy to solve this problem.
Deniz et al. [19] studied the structural, electronic, and magnetic properties of substitutionally doped ReS$_2$ monolayers at either the S or Re site systematically via first-principles density functional calculations, confirming that Mo, Nb, Ti, and V atoms can be easily incorporated in a single layer of ReS$_2$ as substitutional impurities. This particular phenomenon aroused an interest in the field, and the substitutional doping of rhenium disulfide was also conducted through experiments. Zheng and the co-workers [20] investigated the optical properties of Au-doped ReS$_2$ using piezoreflectance (PzR) measurements. They characterized the polarization property and identified the origin of the excitonic transitions as well. Obodo et al. [21] proved that a ferro- or a non-magnetic ground state could be obtained by choosing dopant ions in ReS$_2$ and ReSe$_2$ monolayers with the method of quantum mechanical calculations. Liang et al. [22] prepared
Au-doped ReS$_2$ layer crystals by chemical vapor method, analyzing the impact of Au in the conductivity, anisotropy, and photoconductivity spectra of doped ReS$_2$. After the substitutional doping of rhenium disulfide by metallic elements was achieved, transition elements also aroused interests, among which molybdenum was hot. Yen et al. [23] grew Mo-doped disulfide single crystals employing chemical vapor transport method, finding that the activation energy of the impurity carriers increased with doping. Qin et al. [24] realized substitutional Mo-doped monolayer rhenium disulfide via chemical vapor deposition, promoting the application in the optoelectronics field. Wang et al. [25] optimized Mo-doped rhenium disulfide nanosheets anchored on brush-like carbon arrays, which exhibited excellent electrochemical properties. Following atomic substitutional Mo-doped rhenium disulfide, an increasing number of researchers studied its photoelectric properties and magnetism. However, few studies have focused on the effect of different doping concentrations on the band gap evolution and electronic structure of rhenium disulfide supercell. Do rhenium disulfides optimized by substitutional Mo doping exhibit new properties at different doping concentrations, and does the band gap change regularly? Al-Dulaimi et al. [26] synthesized polycrystalline thin films of Mo-doped rhenium disulfide alloys via aerosol-assisted chemical vapor deposition (AACVD) and found that the interlayer spacing increased and the vibrational modes of ReS2 destructed with increasing Mo content in the ReS$_2$ substrate. Qin et al. [27] constructed a supercell model of ReS$_2$ to study the band gap variation at two different doping concentrations using first-principles software. Nevertheless, the above studies are merely limited to the structure, strain, and band gap changes at different concentrations, and the effect of different concentrations of Mo atomic doping on the electronic structure and optical properties of rhenium disulfide remains to be investigated, among which whether the band structure can achieve zero band gap remains to be explored.

Herein, we systematically calculated the system, electronic structure, and optical properties of substitutional Mo-doped monolayer rhenium disulfide, which compared with pure rhenium disulfide system. Furthermore, the evolution in band gap, electronic structure, and optical properties of doped ReS$_2$ system was discussed. It is expected that our studies will provide some references in the application of semiconductor devices.

Computational methods and models

Methods

The calculation module used in this work was Cambridge Sequential Total Energy Package (CASTEP) in Material Studio 8.0, which optimizes and simulates monolayer rhenium disulfide under different conditions based on first-principles [28]. For the exchange–correlation energy, the Perdew-Burke-Ernzerhof (PBE) functional within generalized-gradient approximation (GGA) was utilized [29–32].

In reciprocal lattice, the first Brillouin Zone (K-points) was divided into 7×7×1 Monkhorst–Pack grid for batch calculation with the plane wave cutoff energy of 400 eV to ensure favorable convergence during the calculation. The following thresholds were used for convergence of the structure: energy iteration convergence accuracy of 1.0×10$^{-6}$ eV/atom for individual atoms; internal stress convergence value of 0.05 GPa; interatomic interaction forces less than 0.01 eV/Å; and displacement of atoms less than 0.001 Å during geometry optimization.

The following thresholds were used for the convergence of structure: energy iteration convergence accuracy of 1.0×10$^{-6}$ eV/atom for individual atom; internal stress convergence of 0.05 GPa; the interaction force convergence between atoms less than 0.01 eV/Å; and displacement of atoms less than 0.001 Å during geometry optimization.

A 4×4×1 supercell model of rhenium disulfide constructed using MS is shown in Fig. 1a, for a single cell of rhenium disulfide with total 3 atoms. Figure 1b–d show the supercell models with the number of Mo atoms substitutionally doped at one, two, and three, respectively.

Table 1: Bond length of Mo1-S15 in doped monolayer ReS$_2$ system

System	$d_{\text{Mo-S}}$/Å	Variation
Re$_{16}$S$_{32}$	2.5049	0
Re$_{15}$S$_{32}$Mo	2.55646	2.06%
Re$_{14}$S$_{32}$Mo$_2$	2.58808	3.32%
Re$_{13}$S$_{32}$Mo$_3$	2.60870	4.14%
Calculated results and models

Stability of doping system

We calculated the formation energy and binding energy of doped ReS\(_2\) system in order to investigate the structural stability. The formation energy is defined as shown in Eq. (1) [33]:

\[E_{\text{form}} = E_{\text{tot}}[X] - E_{\text{tot}}[\text{ReS}_2] - \sum n_i E_i \]

(1)

where \(E_{\text{tot}}[X] \) and \(E_{\text{tot}}[\text{ReS}_2] \) are the total energy after doping and without doping, respectively. When \(n_i > 0 \), it is defined as the number of atoms doped into the system, while \(n_i < 0 \) means the number of atoms removed from the system. \(E_{\text{form}} \) is the system formation energy, where a negative value indicates a stable structure, and a positive value indicates that the structure exists but requires energy to maintain it. The formation energy is calculated as 1.4116 eV, 2.3871 eV, and 3.8252 eV for Mo atom doping concentrations of 1, 2, and 3, respectively, indicating that the structure after Mo atom substitution doping still needs the energy to maintain and increases with the doping concentration. Compared with the intrinsic monolayer rhenium disulfide, the more atoms are doped, the greater the effect on the formation energy.

Crystalline structure

The intrinsic electronic properties of monolayer rhenium disulfide were simulated using MS (Material studio). The structure of rhenium disulfide was optimized with the optimized lattice parameters of \(a = 6.52 \) Å and \(b = 6.42 \) Å, which are in agreement with the experimental data (\(a = 6.51 \) Å and \(b = 6.41 \) Å [34], \(a = 6.51 \) Å and \(b = 6.41 \) Å [35]). The optimized monolayer rhenium disulfide has a special hexagonal crystal structure consisting of sulfur atoms and metal atoms sandwiched between layers of sulfur atoms, where the Re–Re bond length, Re–S bond length, and S–S bond length are 2.78 Å, 2.44/2.38 Å, and 3.25 Å, respectively, which are in agreement with the experimental data of 2.81 Å, 2.43/2.37 Å, and 3.25 Å [36].

The bond length of the rhenium disulfide system will be inevitably affected by doping with Mo atoms. And its distribution of rhenium disulfide structure was discussed by numbering the atoms of the rhenium disulfide model as shown in Fig. 2. It is found that the bond length with the surrounding atoms was distorted owing to doping with Mo atoms and changed at different sites.

The bond lengths of the Mo atoms substitutionally doped at different concentrations with the surrounding S atoms with the farthest distance are 2.55646 Å, 2.58808 Å, and 2.60870 Å, with the relative changes of 2.06%, 3.32%, and 4.14%, respectively, corresponding to one, two, and three Mo atoms doped, respectively, as observed in Table 1 which presents the structure parameters of pure ReS\(_2\) and system optimized by substitutional Mo doping at different concentrations. It is demonstrated that the bond length and the corresponding amount of change gradually increase as more number of doped atoms, as a result of the more intense energy transfer, and the bond length change may be also relative to the band gap change to some extent.

Influence of substitutional Mo doping on rhenium disulfide

The electronic properties of the intrinsic rhenium disulfide and Mo-doped rhenium disulfide systems were calculated...
using CASTEP, and the first Brillouin zone used was the closed path \(G(0,0,0) \rightarrow M(0,0.500,0) \rightarrow K(0.333,0.333,0) \rightarrow G(0,0,0) \). Figure 3 shows the energy band structure for intrinsic monolayer rhenium disulfide, where the rightmost shows density of states regarded as the projection of the energy band structure. As shown in the figure, the intrinsic monolayer rhenium disulfide is a direct band gap semiconductor with a band gap value of 1.489 eV, which is closer to the 1.440 eV in the literature \[37\] with the error of only 3.4%, while the band gap value of the intrinsic monolayer rhenium disulfide is also in keeping with the results in the reference \[38\]. It is seen that the peak density of states of intrinsic monolayer rhenium disulfide located at \(-4\) eV, and the DOS curve exhibited a trough trend at the Fermi energy level with a value of 0 which corresponds to the band gap of the band structure. The density of states structure of rhenium disulfide also demonstrated several energy levels in the curve other than the Fermi level also close to 0, which proves that the energy band structure of rhenium disulfide possesses a large modification space and is more suitable for application in energy band engineering.

As can be seen from Figs. 4 and 5, the band gap decreases from 1.489 eV to 1.321 eV when one Mo atom doped and continues to 0.559 eV when the number of atoms increases to two, which corresponds to a medium band gap semiconductor. When the doped atoms rise to three, the band gap decreases continuously, even eventually reaching 0 eV, corresponding to a zero gap semiconductor which makes it a material with metallicity. In the range of our current study, the band gap reduces with an increasing number of

![Figure 4](image_url)

Fig. 4 Band structure of rhenium disulfide doped with one Mo atom (a), two Mo atoms (b), three Mo atoms (c), and band gap variation (d)
single Mo atoms doped, meaning that the minimum energy required for valence electron to guide band declines. When doped two or three atoms, the band gap value goes down more significantly with a more obvious decline of band gap, and the minimum energy required for valence electron to guide band falls down more deeply. The density of states plotted for different numbers of doped atoms shows that the density of states of the system varies slightly with the number of doped atoms, and its range where the number of electronic states near the Fermi plane is 0 shrinks with an increasing number of doped atoms, corresponding to the energy band structure.

In order to study the charge distribution and electron transfer, the charge density difference and Mulliken charge population of substitutional Mo-doped ReS$_2$ system were calculated in this paper. The charge density difference of substitutional Mo-doped ReS$_2$ system is shown in Fig. 6, and the charge population of Mo atoms and surrounding Re atoms under the effect of substitutional Mo doping are listed in Table 2. When doped with one Mo atom, Mo1 replaces Re10; when doped with two Mo atoms, Mo1 replaces Re10 and Mo2 replaces Re7; when doped with three Mo atoms, Mo1 replaces Re10, Mo2 replaces Re7, and Mo3 replaces Re9, relatively.

![Fig. 5](image_url)
Fig. 5 DOS of rhenium disulfide doped with one Mo atom (a), two Mo atoms (b), three Mo atoms (c), and DOS variation (d)
Figure 6 shows the systematic charge density difference with a different number of doped atoms, where the purple part indicates the distribution. It is seen that the distribution of charge density difference in the system with a different number of doped atoms is relatively uniform, in which the charge mainly concentrated on the bonds between Re-S and Mo-S. It can be inferred that charge transfer occurred between Re and S as well as Mo and S, which is especially manifest between the doped Mo atoms and their nearby S atoms. When the monolayer of intrinsic rhenium disulfide is doped with Mo atoms in place, the value of charge accumulation in the bonding region between the doped Mo atoms and S atoms disperses, and the electronegativity strengthens with an increasing number of doped atoms. In contrast, the charge accumulates more dramatically in the area between Re atoms and S atoms near the Mo atoms, with a mainly weakened electronegativity. Associated with Mulliken charge population, it can be observed that the charge population of doped Mo atoms increases to a varying degree compared to that of original Re sites in the intrinsic rhenium disulfide system. In other words, when doped with one atom, the charge population of Mo1 (formerly Re10) goes up from 0.16 to 0.38, even more than two times, with an atomic loss of 0.22 e. When doped with two atoms, the charge population of Mo1 increases from 0.16 to 0.32, and that of Mo2 (formerly Re7) also increases from 0.16 to 0.32 in comparison with the intrinsic ReS2 system. Furthermore,
when dopant atoms increase to three, Mo1, Mo2, and Mo3 (formerly Re9) increase to 0.33, 0.34, and 0.37, respectively, in keeping with the conclusion obtained by the charge density difference. At the same time, the average charge population of the atoms at the three doping positions has been increasing with the increase of Mo atoms doped, of which values are closer to each other. In addition, the charge between Mo and S atoms also transfers more frequently with the increase of the number of doped atoms. Simultaneously, the electron losing ability of the atoms at the three doping positions becomes stronger.

Influence of substitutional Mo doping on optical property of rhenium disulfide

To study the effect of different concentrations of Mo doping on the optical property of the monolayer rhenium disulfide system, the curves of systematic absorption coefficient and reflectivity were plotted, as shown in Figs. 7 and 8. Meanwhile, the locations (wavelength) of the highest reflection peak and absorption peak, as well as their characteristic values in the Mo-doped monolayer rhenium disulfide system, are listed in Table 3 and Table 4. It can be seen that the light starts to reflect in all doped systems at a wavelength of 63 nm from Fig. 7a and b. The original system shows a reflection peak at a wavelength of about 188.64 nm with the value of 0.354 cm\(^{-1}\) from Fig. 7a–b and Table 3. The increase in the number of doped atoms causes redshift of the highest reflection peak to different degrees with respect to the original ReS\(_2\) system. Moreover, the light is not absorbed in the Mo-doped ReS\(_2\) system with the wavelength range from 0 to 64 nm, while it starts to be absorbed when the wavelength reaches 64 nm, as illustrated in Fig. 8a and b. It is observed that the absorption coefficient of the original system grows to a maximum value of 77,176.4 cm\(^{-1}\) at a wavelength of about 369.20 nm from Fig. 8a–b and Table 4.

Conclusions

In summary, the system of ReS\(_2\) doped with Mo atoms is calculated by means of density functional theory and its formation energy, and bond lengths are analyzed relatively to investigate the effect of Mo doping on the stability of ReS\(_2\). The results indicate an increase of formation energy and a decrease of bonding energy for ReS\(_2\) when more Mo atoms doped. Namely, the stability shows a negative correlation with the number of doped atoms. The influence of doping on electronic structure is concluded by studying the bond

Table 2 The Mulliken charge population of Mo atoms under the effect of substitutional Mo doping

Doped atoms	0	1	2	3	4
Re3	0.23	0.23	0.17	0.19	
Re6	0.23	0.23	0.21	0.17	
Re13	0.16	0.16	0.16	0.19	
Re14	0.23	0.20	0.17	0.15	
Re7/Mo2	0.16	0.15	0.32	0.34	
Re9/Mo3	0.22	0.19	0.23	0.37	
Re10/Mo1	0.16	0.38	0.32	0.33	
Average charge population of doped atoms	0.18	0.24	0.29	0.35	

Fig. 7 Reflectivity of light under monolayer rhenium disulfide at different doping concentrations (a) and the partial enlarged detail (b)
structure, density of states, charge density difference, and charge population. Band structure and density of states studies show that the direct band gap of ReS$_2$ is not changed and the Fermi energy level cannot be moved under the effect of Mo doping, while the band gap can be tuned. The band gap shrinks with an increasing number of Mo atoms doped, and even becomes zero band gap when doped with three atoms, which makes it exhibit metallic properties.

The analysis of charge density difference and charge population demonstrates that the charge transfer occurs on the bonds Re-S and Mo-S. The charge accumulation in the bonding region between the doped Mo atoms and S atoms disperses, and the electronegativity strengthens with an increasing number of doped atoms. The charge population of doped Mo atoms increases to a varying degree compared to that of original Re sites in the intrinsic rhenium disulfide system, and the average charge population of the atoms at the three doping positions has been increasing with the increase of Mo atoms doped. It is can be seen by studying the optical property that the increase in the number of doped atoms causes redshift of the highest reflection peak to different degrees with respect to the original ReS$_2$ system. The results above show that substitutional Mo doping is less sensitive to the systematic optical property but more to the band gap value and the degree of charge transfer.

Table 3

Doping atoms	Wavelength (nm)	Characteristic value (cm$^{-1}$)
0	188.64	0.353696
1	189.12	0.365639
2	195.10	0.268123
3	195.19	0.328682

Table 4

Doping atoms	Wavelength (nm)	Characteristic value (cm$^{-1}$)
0	369.20	77176.4
1	366.40	76401.1
2	376.02	69054.9
3	350.89	71613.2

Fig. 8 Photoabsorption coefficient under monolayer rhenium disulfide at different doping concentrations (a) and the partial enlarged detail (b)

Table 3 The wavelength and characteristic value of the highest reflection peak for monolayer rhenium disulfide under substitutional Mo doping

Table 4 The wavelength and characteristic value of the highest absorption peak for monolayer rhenium disulfide under substitutional Mo doping

Author contribution All authors contributed to the study conception and design. Material preparation, conceptualization, translation, and methodology were performed by He Li, Ying Wang, GuiLi Liu, Lin Wei, and Duo Wang. The first draft of the manuscript was written by He Li, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by the National Natural Science Foundation of China (Grant Number 51371049), the Natural Science Foundation of Liaoning Province (Grant Number 20102173), and the
Liaoning Provincial Department of Education Project (Grant Number LZGD2019003).

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability Code availability not applicable to this article as no codes were used during the current study.

Declarations

Ethics approval N/A.

Consent to participate N/A.

Consent for publication Manuscript is approved by all authors for publication.

Conflict of interest The authors declare no competing interests.

References

1. Wang QH, Kalantar ZK, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712. https://doi.org/10.1038/nnano.2012.193

2. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. https://doi.org/10.1038/NCHEM.1589

3. Wang B, Liu Y, Ishigaki K, Matsubayashi K, Cheng J, Lu W, Sun Y, Uwatoko Y (2017) Pressure-induced bulk superconductivity in a layered transition-metal dichalcogenide 1T-tantalum selenium. Phys Rev B 95:220501 (R). https://doi.org/10.1103/PhysRevB.95.220501

4. Li Z (2018) Synthesis of sulfur-rich MoS2 nanoflowers for enhanced hydrogen evolution reaction performance. Electrochim Acta 283:306–312. https://doi.org/10.1016/j.electacta.2018.06.135

5. Yao Y, Jin Z, Chen Y, Gao Z, Yan J, Liu H (2018) Graphdiyne-WSe2 2D-Nanohybrid electrolystacs for high-performance hydrogen evolution reaction. Carbon 129:228–235. https://doi.org/10.1016/j.carbon.2017.12.024

6. Pradhan NR, Rhodes D, Feng S, Xin Y (2014) Field-effect transistors based on few-layered α-MoTe2. ACS Nano 8:5911–5920. https://doi.org/10.1021/nn501013c

7. Fang H, Chuan S, Chang CT, Takei K, Takahashi T, Javey A (2012) High-Performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett 12:3788–3792. https://doi.org/10.1021/nl301702r

8. Yin Z, Li H, Jiang L, Shi Y, Sun Y (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80. https://doi.org/10.1021/nn2024557

9. Huang YH, Peng CC, Chen RS, Huang YS, Ho CH (2014) Transport properties in semiconductor NbS2 nanoflakes. Appl Phys Lett 105:093106. https://doi.org/10.1063/1.4894857

10. Wu JX, Mao NN, Xie LM, Xu H, Zhang J (2015) Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman Spectroscopy1. Angew Chem Int Ed 54:2366. https://doi.org/10.1002/anie.201410108

11. Jo SH, Park HY, Kang DH, Shim J, Jeon J, Choi S, Kim M, Park Y, Lee J, Song YJ, Lee SJ, Park JH (2016) Broad detection range rhenium diselenide photodetector enhanced by (3-Aminopropyl) Triethoxysilane and triphenylphosphine treatment. Adv Mater 28:6711. https://doi.org/10.1002/adma.201601248

12. Yang SX, Wang C, Sahin H, Chen H, Li Y, Li SS, Suslu A, Peeters FM, Liu Q, Li JB, Tongay S (2015) Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett 15:1660. https://doi.org/10.1021/nl504276a

13. Wang D, Shao YC, Zhang D, Hi Sun, Wang B (2020) Application of porous carbon-coated silicon microspheres in the anode of lithium-ion batteries. J Shenyang Univ Technol 42(03):287–291. https://doi.org/10.7688/j.issn.1000-1646.2020.03.009

14. Zhang AL, Li Q, Wang S, Sanxi L (2020) Effect of electropolymeryzation of thiophene on carbon fiber on the properties of composite materials. J Shenyang Univ Technol 42(3):276–280. https://doi.org/10.7688/j.issn.1000-1646.2020.03.007

15. Yamurcu karades M, Bacakisz C, Senger RT (2017) Hydrogen-induced structural transition in single layer ReSe2. 2D Mater 4:035013. https://doi.org/10.1088/2053-1583/aa7c8e This Ac

16. Li LY, Li Y, Tang C (2016) Strain engineering and photocatalytic application of single-layer ReSe2. Int J Hydrogen Energy 42:161. https://doi.org/10.1016/j.ijhydene.2016.11.097

17. Luo M, Shen YH, Song YX (2017) Structural and magnetic properties of transition-metal adsorbed ReSe2 monolayer. Jpn J Appl Phys 56(5):055701.1-055701.4. http://iopscience.iop.org/1347-4065/56/5/055701. Accessed 14 July 2021

18. Loh GC, Pandey R (2015) Robust magnetic domains in fluorinated ReSe2 monolayer. Phys Chem Chem Phys 17:18843. https://doi.org/10.1039/c5cp02593a

19. Çakır D, Peeters FM, Hasan S (2014) Doping of rhenium disulphide monolayers: a systematic first principles study. Phys Chem Chem Phys 16(31):16771–16779. https://doi.org/10.1039/c4cp02007c

20. Zheng JY, Lin DY, Ying SH (2009) Piezoreflectance study of band-edge excitons of ReSe2: Au. Jpn J Appl Phys 48:052302. https://doi.org/10.1143/JJAP.48.052302

21. Obodo KO, Ouma C, Obodo JT (2017) Influence of transition metal doping on the electronic and optical properties of ReSe2 and ReSe2 monolayers. Phys Chem Chem Phys 19:19050. https://doi.org/10.1039/c7cp0455e

22. Liang CH, Tong KK, Huang YS (2009) In-plane anisotropic electrical and optical properties of gold-doped rhenium disulphide. J Mater Sci Mater Electron 20:476–479. https://doi.org/10.1007/s10990-006-9167-2

23. Yen PC, Chen MJ, Huang YS (2002) Preparation and characterization of molybdenum-doped ReS2 single crystals. J Phys Condens Matter 14(18):4737–4746. http://iopscience.iop.org/0953-8984/14/18/308. Accessed 14 July 2021

24. Qin JK, Shao WZ, Xu CY (2017) Chemical vapor deposition growth of degenerate p-type Mo-doped ReS2 films and its homojunction. ACS Appl Mater Interfaces 9(18):15583–15588. https://doi.org/10.1021/acsami.7b02101

25. Wang JC, He JJ, Odunmaku GO, Zhao S, Gou QZ, Han G, Xu CH, Frauenheim T, Li M (2021) Regulating the electronic structure of ReS2 by Mo doping for electrocatalysis and lithium storage. Chem Eng J 414:128811. https://doi.org/10.1016/j.cej.2021.128811

26. Al-Dulaimi N, Shakban MAI, Lewis EA (2021) Synthesis of molybdenum-doped rhenium disulphide alloy using aerosol-assisted chemical vapour deposition. Mater Sci Semicond Process 127(9):105718. https://doi.org/10.1016/j.mssp.2021.105718

27. Qin JK (2019) ReS2 two-dimensional material and its heterostructure preparation and photoelectric properties. Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
28. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.78.1396

29. Maki-Jaskari MA, Rantala TT (2011) Band structure and optical parameters of the SnO2 (110) surface. Phys Rev B 64:075407–075414. https://doi.org/10.1103/PhysRevB.64.075407

30. Cicero G, Catellani A, Galli G (2004) Atomic control of water interaction with biocompatible surfaces: the case of SiC (001). Phys Rev Lett 93:016102–016106. https://doi.org/10.1103/PhysRevLett.93.016102

31. Pfommer BG, Cote M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-Newton method. J Comput Phys 131:233–240. https://doi.org/10.1006/jcph.1996.5612

32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

33. Van de Walle CG, Neugebauer J (2004) First-principles calculations for defects and impurities: Applications to III-nitrides. J Appl Phys 95(8):3851–3879. https://doi.org/10.1063/1.1682673

34. Murray HH, Kelty SP, Chianelli RR (1994) Structure of rhenium disulfide [J]. Inorg Chem 33(19):4418–4420. https://doi.org/10.1021/ic00097a037

35. Sheng Y, Hao Z, Eshun K (2016) Strain-engineering the anisotropic electrical conductance in ReS2 monolayer [J]. Appl Phys Lett 108(19):191901. https://doi.org/10.1063/1.4947195

36. Yu ZG, Cai Y, Zhang YW (2015) Robust direct bandgap characteristics of One- and Two-Dimensional ReS2 [J]. Sci Rep 5:13783. https://doi.org/10.1038/srep13783

37. Liu E, Fu Y, Wang Y, Feng Y, Liu H, Wan X, Zhou W, Wang B, Shao L, Ho CH (2015) Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat Commun 6:6991. https://doi.org/10.1038/ncomms7991

38. Zhao K, Huang F, Dai CML (2018) Temperature dependence of phonon modes, optical constants, and optical band gap in two-dimensional ReS2 Films [J]. J Phys Chem C 122(51). https://doi.org/10.1021/acs.jpcc.8b08095

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.