In Vitro Assessment of Biopersistence Using Mammalian Cell Systems

Marie-Claude Jaurand

Laboratoire de Pathologie Cellulaire et Moléculaire de l’Environnement, INSERM U, CHU Henri Mondor, Créteil Cedex, France

Biopersistence of fibers in the respiratory airways is a concept including both the physical durability of the fibers and their chemical stability. Physical durability results from several events of diverse origins: fiber etopurization by the lung clearance mechanisms, internalization by scavenger cells and fiber splitting. Fibers residing in the lung milieu will be attacked and modified chemically, structurally, and physically (size and shape). Fiber toxicity, which is very likely to be dependent on physical fiber characteristics, will also be dependent on the duration of the fiber's stay in the tissue. Biopersistence, therefore, will be a key issue in determining fiber toxicity. So far, few in vitro systems have been used to study parameters involved in biopersistence. However, examples exist of investigations of fiber phagocytosis by mammalian cells in culture, either by macrophages, or epithelial or mesothelial cells, and studies have also been reported of the fate of internalized fibers in relation to fiber dimensions and chemical stability, especially within macrophages and mesothelial cells. The methods will be presented and discussed to determine to what extent the development of in vitro biophysical models could help in determining those parameters, known or thought to be relevant to fiber persistence. — Environ Health Perspect 102(Suppl 5):55-59 (1994)

Key words: biopersistence, epithelial cells, durability, in vitro cell systems, macrophages, man-made vitreous fibers, mesothelial cells, mineral fibers, particle internalization, solubility

Introduction

The concept of biopersistence is relatively new in research on the effects of respirable synthetic fibers and minerals. Its importance in solid particle toxicity has been developed mainly from biological studies carried out with man-made vitreous fibers (MMVF). But even in the early experiments on the effects of asbestos fibers on cells and animals, the notions involved in biopersistence were considered important in accounting for the effects of this kind of particulate matter.

Biopersistence of a particle can be defined as a parameter resulting from two factors, its chemical instability and its clearance. Some examples of the instability of asbestos fibers include the reported release of metal constituents of chrysotile administered in experimental animals (1) and the solubility in vivo of other fibers as demonstrated by a loss of constituents of amphiboles and MMVF during retention in the lung (2-4). Particle clearance also has been studied as a measure of physical persistence—the actual amount of fibers remaining in the tissue (5-8).

The concept of biopersistence currently is a key concept in the toxicity of mineral or synthetic fibers, although its meaning is not always well defined. The term durabil- ity used by some authors (9) is more related to chemical instability. Durability is generally considered a necessary attribute of a fiber presenting a health hazard, but how it is measured is not always clear (10). Clearance, and solubility, also are considered but they refer, variably, to short- or midterm clearance (5,8), half-time (7), or long-term persistence assessed by lung burden (11,12). Clearly, therefore, the notion of biopersistence cannot be said to be well defined; neither are the methods of assessment sufficiently standardized to establish to what extent toxicity and carcinogenicity depend on biopersistence. However, this does not mean that clearance and solubility are unimportant events in dust-related diseases.

Because of the chemical instability of many particle types in mammalian tissues, the first studies on the biopersistence of particles investigated their solubility characteristics. In vitro acellular systems have been developed to study the release of chemicals from fibers in conditions close to the physiological status (13-16) found in an organism. The conclusions are often difficult to extrapolate because many compartments of different compositions exist in an organism.

The clearance of particles can only be investigated in in vivo studies. The assays may, however, be difficult to interpret, especially with fibers, since it may be expected that while clearance would decrease the number of intrapulmonary fibers and thus reduce the risk, solubilization might actually increase the number of critical fibers. Complex phenomena may occur, since some fibers would be both split as short as shortened in vivo (17). Between in vivo studies and studies in in vitro acellular systems, in vitro cell systems offer a bridge that can provide a close assessment of biological likelihood, and an indication of the mechanisms of action of the particles in different parts of the organism. So far, few investigations of biopersistence have been made in in vitro cell systems. This article will summarize the methods that have been applied and will suggest further research to resolve the issues considered here.

Assessment of Biopersistence in In Vitro Cell Systems

Physical Biopersistence

In vitro cell systems should make it possible to investigate particle clearance. Many studies have indeed been carried out to investigate particle internalization, but few of them have been quantitative. Morphological studies have been performed mainly by scanning and transmission electron microscopy, with macrophages, epithelial, and mesothelial cells (18-23). No systematic study has compared the ability of different cell types

This paper was presented at the Workshop on Biopersistence of Respirable Synthetic Fibers and Minerals held 7-9 September 1992 in Lyon, France.

Address correspondence to Dr. Marie-Claude Jaurand Laboratoire de Pathologie Cellulaire et Moléculaire de l’Environnement, INSERM U 139, CHU Henri Mondor, 94010 Créteil Cedex, France. Telephone 33 49 81 36 66. Fax 33 49 81 35 33.
to ingest a particle of a given type. It has been found generally that both epithelial cells and macrophages may ingest particulate matter. Less clear-cut results have been obtained with nonembryonic fibroblasts; both an absence of internalization (24) and an easy uptake have been reported (25,26). Fibers longer than the cell and extruding fibers often are noted with different cell types (19,21–23). Ex vivo studies have confirmed that particle internalization occurs in vivo (27–29). Quantitative determination of internalized particles is difficult to achieve, but it has been reported with Syrian hamster embryo cells treated with MMVF (30) and rat tracheal epithelial cells treated with chrysotile and crocidolite (31).

While internalization of particles has been widely studied, phagocytosis has not always been looked for where, within the phagocytic vacuole of the lysosome, degradation of the fiber occurs. Chrysotile fibers are readily phagocytized by rat pleural mesothelial cells involving the lysosomal enzyme degradation (20). This is important since in the internalization process, particles are exposed to different environments—extracellular, intraphagosomal or cytoplasmic (32–34), each differing in its chemical attack (Figure 1). Because of these differences in the chemical nature of the different parts of the cell, studies of particle internalization and phagocytosis are an essential preliminary to the study of the biopersistence of a particle.

Because of the relationship of particle dimensions to fiber carcinogenicity as demonstrated by Stanton et al. (35) and confirmed by others (36–38), the influence of dimensions on the fate of intracellular fibers following internalization also has been investigated. In several studies a perinuclear localization of the fibers has been reported in certain cell systems (30,31,39,40). Short crocidolite fibers have been found to concentrate in the perinuclear region (41), a finding also observed with chrysotile (42). Moreover, studies carried out with Syrian hamster embryo cells have indicated that long fibers are internalized preferentially to short fibers (30). All these observations are important, since they suggest that when cells are exposed to fibers of variable size distribution, long fibers would be ingested preferentially. The longest fibers might then interact with the chromosomes and be involved in cell transformation while the smallest fibers, if internalized, would follow saltatory cell movements (41).

These studies all indicate that particle physical biopersistence may be assessed in in vitro cell systems, in which the amount and size of the particles taken up are determined, both for macrophages and for epithelial cells, and possibly also for fibroblasts. This would give a measure of the ability of the macrophages to clear the particles, and of the likelihood that the epithelial cells would suffer chromosome damage, leading to cell transformation. In addition, if fibroblasts were used, the interstitial migration could be assessed.

These studies can be performed by classical morphological electron microscopy, but they will be significant only if fibers of relevant dimensions are used and if the experimental conditions are well defined. These conditions include the nature of the culture media and the addition of certain biological macromolecules (surfactants, mucus components; see below).

Chemical Biopersistence

The chemical stability of particles in in vitro cell systems has been investigated in several studies. Physical studies, in which macrophages, epithelial, or mesothelial cells have been used are summarized in Table 1.

In all experiments both fibers and nonfibrous material displayed chemical instability. When the same particle has been studied in different cell systems, a difference has been observed between the efficiency of macrophages and epithelial cells (43,47), possibly due to a pH effect, among others (see below). These studies emphasize the difference between the phagosome compartment of macrophages and epithelial cells, in particular their pH.

Certain in vitro studies (45,46) have shown a good correlation with in vivo studies. However, in one study, using an acellular dissolution system (45), there was no correlation neither with the in vivo study nor with the in vitro cell system.

A wide range of methods of analysis of particle solubility in cell systems has been used including radioactive tracing, microprobe analysis, atomic adsorption and size calculation. It would be of interest to use standard particles to compare the limits of the different methods of analysis applied to such a standard.

In summary, these results indicate that chemical biopersistence can be assessed with in vitro cell systems. Different cell types and methods of investigation could be used and would merit development. At present, insufficient data are available to compare the results obtained in in vitro acellular systems with those in cellular systems. It would be useful to make the comparison using fibers that had been tested in animals.

The Further Development of in Vitro Cell Systems

Certain factors have to be considered for the development of in vitro cell systems—the particle dimensions, the nature of culture media, and the cell viability. (These factors also may need to be considered in the development of in vitro acellular systems.)

Particle Dimension

Investigation of the potential effects on the respiratory airways is significant only if particles of "respirable" dimensions are used. This is also true in the study of biopersistence, where the solubility of a particle is dependent on its dimensions (49,50). If very long fibers encounter a macrophage or an epithelial cell, a combination of both intracellular and extracellular solubility may come into play; in macrophages the dissolution rate is higher for smaller particles (Table 1). Both the dimensions of fibers and the method of analysis must be carefully chosen. The medium used to cul-

Figure 1. (A) Schematic representation of the different cell components. (B) Schematic representation of particle fate after deposition in the respiratory airways. A particle can be exposed to different environments, and may encounter different extracellular media. If free particles are internalized, they are first in contact with the cell membrane, then phagocytosis may occur and the particles become enclosed in a phagocytic vacuole, and so may be cleared. If particles are toxic, cell death may occur exposing the internalized particles to cytoplasmic and extracellular medium, possibly modified by the release of necrotic cell factors.
ture the cells is important and contains proteins and lipids; therefore it is necessary to determine fiber dimensions in the plain medium used to culture the cells.

Nature of the Culture

Many additives are present in culture media to preserve cell homeostasis. These include proteins, which are liable to be adsorbed at the surface of the particles, modifying the susceptibility of the particle to attack (51,56). The addition of proteins, as either albumin or serum, is not recommended, since proteins are already present in the interstitial fluid and in the cellular fluid, where a concentration of 300 mg/ml may be found (57).

Mucus is present at the bronchus surface, and surfactant, which contains phospholipids, at the alveolar surface. In vivo, particles may interact with these macromolecules, which will cover partly or totally the particle surface (55). This could alter the parameters governing biopersistence, and may affect deposition (58) or biological effects (59).

Cell Viability

When solubility is being determined by chemical measurement of elements released in the cell, the effect of cell death is critical, since it is associated with a release into the extracellular medium of intracellular components including metals. If fiber dissolution releases toxic elements in the cell—iron or silicon for instance—this may cause cell death (60–64), making it difficult to decide if the elements detected in the filtrate are due to an action of the culture medium on the fiber or arise from the intracellular component.

In conclusion, biopersistence can be studied in in vivo cell systems, which, if they are correctly standardized, should make very efficient assays. Human and animal bodies are “black boxes” where many different environments coexist, each involved in different aspects of biopersistence. The data obtained so far show that in vitro experiments can be designed to investigate all these aspects, provided the necessary basic research is done to support their development.

Table 1. In vitro solubility with cell systems.

Cell types	Particle	Solubility in medium	Solubility in cells	Method	Reference
Rabbit alveolar macrophages (AM)	UICC Rhodesian chrysotile, 2–4 μg/cm²	Not tested	Yes	AM > PMC	Microprobe analysis Si/mg S/mg
Rat pleural mesothelial cells (PMC)	MnO₂, 0.1–0.5 μm; 10 μg/ml	Yes	Yes	Human = rabbit	Mn in filtrate atomic absorption
Human AM	Be metal powder	Yes	Yes	Hot-pressed > powder	Be in filtrate atomic absorption
Dog AM	57Cr²⁺, < 2 μm	Small > large	Yes	Human < dog Small > large	57Cr in filtrate atomic absorption
Rat AM	Glass fibers, 35 μg/ml	Not tested	Yes	AM > NEC	Particle size
Rat nasal epithelial cells (NEC)	Glass fibers, 200 μg/ml	Yes	Yes	Si > Fe, Al	Elements in filtrate atomic absorption

REFERENCES

1. Holmes A, Morgan A. Leaching of constituents of chrysotile asbestos in vivo. Nature (London) 5099:441–442 (1967).
2. Langer AM, Rubin IB, Selikoff IJ, Pooley FD. Chemical characterization of uncoated asbestos fibers from the lungs of asbestos workers by electron microprobe analysis. J Histochem Cytochem 20:735–740 (1972).
3. Jaurand MC, Bignon J, Sébastien P, Goni J. Leaching of chrysotile asbestos in human lungs. Environ Res 14:245–254 (1977).
4. Morgan A, Holmes A, Davison, W. Clearance of sized fibers from the rat lung and their solubility in vivo. Ann Occup Hyg 25:317–331 (1982).
5. Lippmann M, Yeates DB, Albert RE. Deposition, retention, and clearance of inhaled particles. Br J Ind Med 37:337–362 (1980).
6. Hammad YZ. Deposition and elimination of MMMF. In: Proceedings of Biological Effects of Man-made Mineral Fibres, Vol 2. Lyon:International Agency for Research on Cancer, 1984;303–322.
7. Bellmann B, Muhle H, Pott F, König H, Klöppel H, Spurny K. Persistence of man-made mineral fibres (MMMF) and asbestos in rat lungs. Ann Occup Hyg 31:693–709 (1987).
8. Roggli VL, George MH, Brody AR. Clearance and dimensional changes of crocidolite asbestos fibers isolated from lungs of rats following short-term exposure. Environ Res 42:94–105 (1987).
9. Davis JMG. A review of experimental evidence for the carcinogenicity of man-made vitreous fibers. Scand J Work Environ Health 12:12–17 (1986).
10. Pott F, Roller M, Rippe RM, Germann P-G, Bellmann B. Tumours by the intrapulmonary and intrapleural routes and their significance for the classification of mineral fibres. In: Proceedings of Mechanisms in Fibre Carcinogenesis 22–25 October 1990, Albuquerque, NM. NATO ASI Series. Series A, Life Sciences, Vol 223 (Brown RC, Hoskins JA, Johnson, NF, eds). New York: Plenum Press, 1991;547–505.
11. Le Bouffant L, Daniel H, Henin JP, Martin JC, Normand C, Tichoux, G, Trolard F. Experimental study on long-term effects of inhaled MMMF on the lungs of rats. Ann Occup Hyg 31:765–790 (1987).
12. Smith DM, Ortiz LW, Archuleta RF, Jognson NF. Long-term health effects in hamsters and rats exposed chronically to man-made vitreous fibres. Ann Occup Hyg 31:731–754 (1987).
13. Förster H. The behaviour of mineral fibres in physiological solutions. In: Proceedings of Biological Effects of Man-made Mineral
Fibres, Vol 2. Proceedings of a WHO/IARC conference held 20–22 April 1982, in Copenhagen. Copenhagen: World Health Organization, 1984: 27–59.

14. Klingholtz R, Steinkopf B. The reactions of MMMF in physiological model fluid and in water. In: Protein-Induced Effects of Man-made Mineral Fibres, Vol 2. Proceedings of a WHO/IARC conference held 20–22 April 1982, in Copenhagen. Copenhagen: World Health Organization, 1984: 60–86.

15. Mogensen G. The durability of mineral fibers in various buffer solutions. Rivista della Sper 5:135–138 (1984).

16. Scholte H, Condradt R. In vitro study of the chemical durability of silicic acid fibers in air. In: Proceedings of a WHO/IARC conference held 20–22 April 1982, in Copenhagen. Copenhagen: World Health Organization, 1984: 692–697.

17. Cook PM, Palekar LD, Coffin DL. Interpretation of the carcinogenicity of amosite asbestos and ferroactinolite on the basis of retained fiber dose and characteristics in vivo. Toxicol Lett 13:151–158 (1982).

18. Mossman BT, Kessler JB, Ley BW, Craighhead JE. Interaction of crocidolite asbestos with hamster respiratory mucosa in organ culture. Lab Invest 36:131–139 (1977).

19. Miller K, Handfield RIM, Kagan E. The effect of different mineral dusts on the mechanism of phagocytosis: a scanning electron microscopy study. Environ Res 15:139–154 (1978).

20. Jaurand MC, Kaplan H, Thiotte J, Pinchon MC, Bernaudin JF, Bignon J. Phagocytosis of chrysotile fibers by pleural mesothelial cells in culture. Am J Pathol 94:529–538 (1979).

21. McLeome R, Corson M, Mace M, Arnott M, Jenkins T, Snodgrass D, Martin R, Wray N, Brinkley BR. Phagocytosis of asbestos fibers by human pulmonary alveolar macrophages. Cancer Lett 6:183–192 (1979).

22. Haugen A, Schaffer PW, Lechner JF, Stoner GD, Trump BF. Cellular ingestion, toxic effects, and lesions observed in human bronchial epithelial tissue and cells cultured with asbestos and glass fibers. Int J Cancer 30:265–272 (1982).

23. Wang NS, Jaurand MC, Magne L, Kheuang L, Pinchon MC, Bignon J. The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture. A scanning and electron microscopic study. Am J Pathol 126:343–349 (1987).

24. Wade MJ, Lipkin LE, Frank AL. Studies of in vitro asbestos–cell interaction. J Environ Pathol Toxicol 2:1029–1039 (1979).

25. Richards RJ, Hext PM, Blundell G, Henderson WJ, Volcan BE. Ultrastructural changes in lung fibroblast cultures exposed to chrysotile asbestos. Br J Exp Pathol 55:275–281 (1974).

26. Joseph LB, Stephens RE, Otoleghni AC, Lipets PD, Newman HL. Morphological transformation in vitro of normal human fibroblasts by chrysotile. Environ Health Perspect 51:17–22 (1983).

27. Suzuki Y, Churg J, Ono T. Phagocytic activity of the alveolar epithelial cells in pulmonary asbestosis. Am J Pathol 69:373–388 (1972).

28. Dodson RF, Williams MG, Hurst GA. Early response of free airway cells to “asbestos”: a correlated study using electron microscopy and energy dispersive X-ray analysis. Lung 157:143–154 (1980).

29. Macdonald JL, Kane AB. Identification of asbestos fibers within single cells. Lab Invest 55:177–185 (1986).

30. Hesterberg TW, Butterck CJ, Oshimura M, Brody AR, Barrett JC. Role of phagocytosis in Syrian hamster cell transformation and cytogenetic effects induced by asbestos and short and long glass fibers. Cancer Res 46:5795–5802 (1986).

31. Hesterberg TW, Riehe DG, Barrett JC, Nettekoven P. Mechanisms of cytotoxicity of asbestos fibers in rat tracheal epithelial cells in culture. Toxicol In Vitro 1:59–65 (1987).

32. De Duve C, De Bary T, Poole B, Trouet A, Tulpen P, Van Hoof F. Lysosomotropic agents. Biochem Pharmacol 33:2495–2531 (1974).

33. Harington JS. The biological effects of mineral fibres, especially asbestos, as seen from in vitro and in vivo studies. Ann Anat Pathol 21:155–198 (1976).

34. Giesow MJ, D’Arcy Hart P, Young MR. Temporal changes of lysosome and proteoglycan pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J Cell Biol 86:645–652 (1981).

35. Stanton MF, Layard M, Tegeris A, Miller E, May, M, Morgan E, Smith A. Relation of particle dimension to carcinogenicity in amphibole asbestos and other fibrous minerals. J Natl Cancer Inst 67:965–975 (1981).

36. Jaurand MC, Fleury J, Monchaux G, Nebut M, Bignon J. Pleural carcinogenic potency of mineral fibers (asbestos, ataphtulite) and their cytotoxicity on cultured cells. J Natl Cancer Inst 79:797–804 (1987).

37. Oechler GW. A reappraisal of the Stanton et al. pleural sarcoma data. Environ Res 54:194–205 (1991).

38. Van der Meeren A, Fleury J, Nebut M, Monchaux G, Janson X, Jaurand MC. Mesothelioma in rats following intraperitoneal injection of chrysotile and phosphorhydrous chrysotile (chrysophosphate). Int J Cancer 50:937–942 (1992).

39. Johnson NF, Davies R. Effects of asbestos on the P388D1 macrophage like cell line: preliminary ultrastructural observations. Environ Health Perspect. 51:109–117 (1983).

40. Jaurand MC. Mechanisms of fibre genotoxicity. In: Mechanisms in fibre carcinogenesis (Brown RC, Hoskins JA, Johnson NF, eds). Proceedings of the Workshop on Mechanisms in Fibre Carcinogenesis, Albuquerque, NM, 22–25 October 1990, NATO ASI Series. Series A, Life Sciences, Vol. 223, New York: Plenum Press, 1991:287–307.

41. Cole RW, Ault JG, Hayden, JH. Rieder Cl. Crocidolite asbestos fibers undergo size-dependent microtubule-mediated transport after endocytosis in vertebrate lung epithelial cells. Cancer Res 51:4942–4947 (1991).

42. Malorni W, Ioso F, Falchi M, Donelli G. On the mechanisms of cell internalization of chrysotile fibers: an immunocytochemical and ultrastructural study. Environ Res 52:164–177 (1990).

43. Jaurand MC, Gaulditch A, Halpern S, Bignon J. In vitro biodegradation of chrysotile asbestos by alveolar macrophages and mesothelial cells in culture: comparison with a pH effect. Br J Ind Med 41:389–395 (1984).

44. Lundborg M, Eklund A, Lind B, Camper P. Dissolution of metals by human and rabbit alveolar macrophages. Br J Ind Med 42:642–645 (1985).

45. André S, Méviére Hm, Lantenois G, Boyer M, Nolihé D, Maire S. Beryllium metal solubility in the lung; comparison of metal and hot-pressed forms by in vivo and in vitro dissolution biosays. Human Toxicol 6:233–240 (1987).

46. Kreyling WG, Godleski JJ, Kariya ST, Rose RM, Brain JD. In vivo dissolution of uniform coalbit oxide particles by human and canine alveolar macrophages. Am J Respir Cell Mol Biol 2:413–422 (1990).

47. Johnson NF. Phagosomal pH and glass fiber dissolution in cultured rat nasal epithelial cells and alveolar macrophages: a preliminary study. Environ Health Perspect 102(Suppl 5):97–102 (1994).

48. Luoto K, Holopainen M, Karpinen K, Perander M, Savolainen K. Dissolution of man-made vitreous fibers in rat alveolar macrophage culture and Gamble saline solution: influence of different media and chemical composition of the fibers. Environ Health Perspect 102(Suppl 5):103–107 (1993).

49. Bernstein DM, Drew RT, Schildlovsky G, Kuschnier M. Pathogenicity of MMMF and the contrasts with natural fibers. In: Biological Effects of Man-made Mineral Fibres, Vol 2. Proceedings of a WHO/IARC conference held 22–24 April 1992 in Copenhagen. Copenhagen: World Health Organization, 1984:169–195.

50. Morgan A, Holmes A. The deposition of MMMF in the respiratory tract of the rat, their subsequent clearance, solubility in vivo and protein coating. In: Biological Effects of Man-made Mineral Fibres, Vol 2. Proceedings of a WHO/IARC Conference held 22–24 April 1992 in Copenhagen. Copenhagen: World Health Organization, 1984:1–17.

51. Jones BM, Edwards JH, Wagner JC. Adsorption of serum proteins by inorganic dusts. Br J Ind Med 29:287–292 (1972).

52. Morgan A. Adsorption of human serum albumin by asbestosfimnerals and its application to the measurement of surface areas of dispersed samples of chrysotile. Environ Res 7:330–341 (1974).

53. Desai R, Richards RJ. The adsorption of biological macromolecules by mineral dusts. Environ Res 16:449–464 (1978).

54. Chang MJW, Joseph LB, Stephens RE, Hart RW. Adsorption of macromolecules on mineral fibers. J Am Coll Toxicol 21:187–192 (1983).

55. Jaurand MC, Baillif P, Thomassin JH, Magne L, Touray JC. An
XPS and chemical adsorption of biological molecules on the chrysotile asbestos surface. J Colloid Interface Sci 95:1–9 (1983).

56. Valerio F, Balducci D, and Scarabelli L. Selective adsorption of serum proteins by chrysotile and crocidolite. Environ Res 41:432–439 (1986).

57. Harper H. Métabolisme de l’eau et des sels minéraux. Précis de Biochimie. Les Presses de l’Université Laval Québec. Paris: A. Colin Pub, 1969:417–441.

58. Davis JMG, Bolton RE, Douglas AN, Jones AD, Smith T. Effects of electrostatic charge on the pathogenicity of chrysotile asbestos. Br J Ind Med 45:292–299 (1988).

59. Brown RC, Cartthew P, Hoskins JA, Sara E, Simpson CF. Surface modification can affect the carcinogenicity of asbestos. Carcinogenesis 11:1883–1885 (1990).

60. Rahman Q, Beg MU, Viswanathan PN, Zaidi SH. Solubility of kaolin, talc, and mica dusts under physiological conditions. Environ Physiol Biochem 3:286–294 (1973).

61. Goodlick LA, Kane AB. Role of reactive oxygen metabolites in crocidolite asbestos toxicity to mouse macrophages. Cancer Res 46:5558–5566 (1986).

62. Hansen K, Mossman BT. Generation of superoxide O2− from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 47:1681–1686 (1987).

63. Lund IG, Aust AE. Iron-catalyzed reactions may be responsible for the biochemical and biological effects of asbestos. Biofactors 3:83–89 (1991).

64. Nagase M, Abe Y, Chigira M, Udagawa E. Toxicity of silica-containing calcium phosphate glasses demonstrated in mice. Biomaterials 13:172–175 (1992).