MAXIMAL REPRESENTATION DIMENSION OF FINITE p-GROUPS

SHANE CERNELE, MASoud KAMGARPOUR, AND ZINOVY REICHSTEIN

Abstract. The representation dimension $\text{rdim}(G)$ of a finite group G is the smallest positive integer m for which there exists an embedding of G in $\text{GL}_m(\mathbb{C})$. In this paper we find the largest value of $\text{rdim}(G)$, as G ranges over all groups of order p^n, for a fixed prime p and a fixed exponent $n \geq 1$.

1. Introduction

The representation dimension of a finite group G, denoted by $\text{rdim}(G)$, is the minimal dimension of a faithful complex linear representation of G. In this paper we determine the maximal representation dimension of a group of order p^n. We are motivated by a recent result of N. Karpenko and A. Merkurjev [KM07, Theorem 4.1], which states that if G is a finite p-group then the essential dimension of G is equal to $\text{rdim}(G)$. For a detailed discussion of the notion of essential dimension for finite groups (which will not be used in this paper), see [BR97] or [JLY02, §8]. We also note that a related invariant, the minimal dimension of a faithful complex projective representation of G, has been extensively studied for finite simple groups G; for an overview, see [TZ00, §3].

Let G be a p-group of order p^n and r be the rank of the centre $Z(G)$. A representation of G is faithful if and only if its restriction to $Z(G)$ is faithful. Using this fact it is easy to see that a faithful representation ρ of G of minimal dimension decomposes as a direct sum

$$\rho = \rho_1 \oplus \cdots \oplus \rho_r$$

of exactly r irreducibles; cf. [MR09, Theorem 1.2]. Since the dimension of any irreducible representation of G is $\leq \sqrt{|G:Z(G)|}$ (see, e.g., [W03, Corollary 3.11]) and $|Z(G)| \geq p^r$, we conclude that

$$\text{rdim}(G) \leq rp^{(n-r)/2}.$$
Let
\[f_p(n) := \max_{r \in \mathbb{N}} (r p^{\lfloor (n-r)/2 \rfloor}). \]

It is easy to check that \(f_p(n) \) is given by the following table:

\(n \)	\(p \)	\(f_p(n) \)
even	arbitrary	\(2p^{(n-2)/2} \)
odd	odd	\(p^{(n-1)/2} \)
odd, \(\geq 3 \)	2	\(3p^{(n-3)/2} \)
1	2	1

We are now ready to state the main result of this paper.

Theorem 1. Let \(p \) be a prime and \(n \) be a positive integer. For almost all pairs \((p, n)\), the maximal value of \(\text{rdim}(G) \), as \(G \) ranges over all groups of order \(p^n \), equals \(f_p(n) \). The exceptional cases are
\[(p, n) = (2, 5), (2, 7) \text{ and } (p, 4), \text{ where } p \text{ is odd.}\]

In these cases the maximal representation dimension is 5, 10, and \(p + 1 \), respectively.

The proof will show that the maximal value of \(\text{rdim}(G) \), as \(G \) ranges over all groups of order \(p^n \), is always attained for a group \(G \) of nilpotency class \(\leq 2 \). Moreover, if \((p, n)\) is non-exceptional, \(n \geq 3 \) and \((p, n) \neq (2, 3), (2, 4)\), the maximum is attained on a special class of \(p \)-groups of nilpotency class 2. We call these groups **generalized Heisenberg groups** since their representation theory looks very similar to the usual Heisenberg group (the group of unipotent upper triangular \(3 \times 3 \) matrices); see Section 2.4.

The rest of this paper is structured as follows. In §2 we introduce generalized Heisenberg groups and study their irreducible representations. In §3, we prove Theorem 1.

Acknowledgement. We would like to thank Hannah Cairns, Robert Guralnick, Chris Parker, Burt Totaro, and Robert Wilson for helpful discussions. We are also grateful to the referee for constructive comments.

2. Generalized Heisenberg Groups

2.1. Spaces of alternating forms

Let \(V \) be a finite dimensional vector space over an arbitrary field \(F \). Let \(\mathcal{A}(V) \) denote the space of bilinear alternating forms on \(V \); that is, linear maps \(b : V \otimes V \to F \) satisfying \(b(v, v) = 0 \).

Let \(K \) be a subspace of \(\mathcal{A}(V) \). Then \(K \) defines a map \(\omega_K : V \times V \to K^* \) as follows. Let \(j : \mathcal{A}(V)^* \to K^* \) denote the dual of the natural injection \(K \hookrightarrow \mathcal{A}(V) \). Then \(\omega_K \) is defined to be the composition
\[
(3) \quad V \times V \xrightarrow{\Lambda^2(V)} \mathcal{A}(V)^* \xrightarrow{j} K^*.
\]

\(\omega_K \)
where the first map is the natural projection and the second one is the canonical identification of the two spaces.

2.2. Symplectic subspaces.

Definition 2. A subspace \(K \subseteq \mathcal{A}(V) \) is **symplectic** if every nonzero element of \(K \) is non-degenerate, as a bilinear form on \(V \).

Remark 3. Equivalently, \(K \subset \mathcal{A}(V) \) is symplectic if and only if for every nonzero linear map \(K^* \rightarrow F \) the composition \(V \times V \xrightarrow{\omega_K} K^* \rightarrow F \) is non-degenerate.

Clearly nontrivial symplectic subspaces of \(\mathcal{A}(V) \) can exist only if \(\dim(V) \) is even.

Lemma 4. Suppose \(V \) is an \(F \)-vector space of dimension \(2m \). If \(F \) admits a field extension of degree \(m \) then there exists an \(m \)-dimensional symplectic subspace \(K \subset \mathcal{A} \).

Proof. Choosing a basis of \(V \), we can identify \(\mathcal{A}(V) \) with the space of alternating \(2m \times 2m \)-matrices. Let \(f: \text{M}_m(F) \rightarrow \mathcal{A}(V) \) be the linear map
\[
A \mapsto \begin{bmatrix} 0 & A \\ -A^T & 0 \end{bmatrix}.
\]
If \(W \) is a linear subspace of \(\text{M}_m(F) = \text{End}_F(F^m) \) such that \(W \setminus \{0\} \subset \text{GL}_m(F) \) then \(K = f(W) \) is a symplectic subspace.

It thus remains to construct an \(m \)-dimensional linear subspace \(W \) of \(\text{M}_m(F) \) such that \(W \setminus \{0\} \subset \text{GL}_m(F) \). Let \(E \) be a degree \(m \) field extension of \(F \). Then \(E \) acts on itself by left multiplication. This gives an \(F \)-vector space embedding of \(\Psi: E \hookrightarrow \text{End}_F(E) \) such that \(\Psi(e) \) is invertible for all \(e \neq 0 \). \(\square \)

2.3. Groups associated to spaces of alternating forms. Let \(V \) be a finite-dimensional vector space over a field \(F \). Let \(K \) be a subspace of \(\mathcal{A}(V) \) and let \(\omega_K \) denote the induced map \(V \times V \rightarrow K^* \), see (3). Choose a bilinear map \(\beta: V \times V \rightarrow K^* \) such that
\[
\omega_K(v, w) = \beta(v, w) - \beta(w, v).
\]
To see that this can always be done, note that if \(\{e_i\} \) is a basis of \(V \), we can define \(\beta \) by
\[
\beta(e_i, e_j) = \begin{cases}
\omega_K(e_i, e_j), & \text{if } i > j \\
0, & \text{otherwise.}
\end{cases}
\]
We also remark that \(\beta \) is uniquely determined by \(\omega_K \), up to adding a symmetric bilinear form \(V \times V \rightarrow K^* \).

Definition 5. Let \(H = H(V, K, \beta) \) denote the group whose underlying set is \(V \times K^* \) and whose multiplication is given by
\[
(v, t) \cdot (v', t') = (v + v', t + t' + \beta(v, v')).
\]
If K is a symplectic subspace, we will refer to H as a generalized Heisenberg group.

Example 6. Suppose ω is a nondegenerate alternating bilinear form on $V = F \oplus F$, where F is a field of characteristic not equal to 2. Let K be the span of ω in $A(V)$. Then $H(V,K,\frac{1}{2}\omega)$ is isomorphic to the group of unipotent upper triangular 3×3 matrices over F. This group is known as the Heisenberg group.

Remark 7. It is easy to see that (5) is indeed a group law with the inverse given by $(v,t)^{-1} = (-v,-t+\beta(v,v))$ and the commutator given by

$$(6) \quad [(v_1,t_1),(v_2,t_2)] = (0,\omega_K(v_1,v_2)).$$

As ω_K is surjective, we see that $[H,H] = K^*$. Moreover, (6) also shows that $K^* \subset Z(H)$, and that equality holds unless the intersection $\cap_{k \in K} \ker(k)$ is nontrivial. In particular, $Z(H) = K^*$ if K contains a symplectic form.

Remark 8. A non-abelian finite p-group S is called special if $Z(S) = [S,S]$ and $S/[S,S]$ is elementary abelian; see [1156, §2.3]. Suppose K is a subspace of $A(V)$ such that $\cap_{k \in K} \ker(k)$ is trivial. Then over the finite field F_p, the groups $H(V,K,\beta)$ are examples of non-abelian special p-groups. We are grateful to the referee for pointing this out.

Remark 9. If β and β' both satisfy (4) then $H(V,K,\beta)$ may not be isomorphic to $H(V,K,\beta')$. For example, let V be a 2-dimensional vector space over $F = \mathbb{F}_2$, K be the one-dimensional (symplectic) subspace generated by $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and β, β' be bilinear forms on V defined by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, respectively. Then β and β' both satisfy (4), but $H(V,K,\beta)$ is isomorphic to the quaternion group while $H(V,K,\beta')$ is isomorphic to the dihedral group of order 8.

On the other hand, it is easy to see that $H(V,K,\beta)$ and $H(V,K,\beta')$ are always isoclinic. (Two groups S and T are isoclinic if there are isomorphisms $f : S/Z(S) \to T/Z(T)$ and $g : [S,S] \to [T,T]$ such that if $a, b \in S$ and $a', b' \in T$ with $f(aZ(S)) = a'Z(T)$ and $f(bZ(S)) = b'Z(T)$, then we have $g([a,b]) = [a',b']$, see [1140].)

2.4. **Representations.** Let p be an arbitrary prime and let $F = \mathbb{F}_p$ be the finite field of p elements. Fix, once and for all, a homomorphism $\tau : (\mathbb{F}_p,+) \to \mathbb{C}^\times$. Let W be a vector space over F. Using τ, we identify the algebraic dual $W^* = \text{Hom}(W,F)$ with the Pontryagin dual $\text{Hom}(W,\mathbb{C}^\times)$. It is clear that a bilinear alternating map $W \times W \to \mathbb{F}_p$ is non-degenerate if and only if the composition $W \times W \to \mathbb{F}_p \xrightarrow{\tau} \mathbb{C}^\times$ is non-degenerate.

Now let V be a vector space over F, K a subspace of $A(V)$, and $\omega = \omega_K$ the associated map. Choose β satisfying (4) and let $G = H(V,K,\beta) = V \times K^*$. Recall that K^* is in the center of G (Remark 7); in particular, it acts via a character on every irreducible representation of G.
Lemma 10. Let \(\rho \) be an irreducible representation of \(G \) such that \(K^* \) acts by \(\psi \). Assume \(\psi \circ \omega : V \times V \to \mathbb{C}^\times \) is non-degenerate.

(a) If \(g \in G, \ g \notin K^* \), then \(\text{Tr}(\rho(g)) = 0 \).
(b) \(\dim(\rho) = \sqrt{|V|} \).
(c) \(\rho \) is uniquely determined (up to isomorphism) by \(\psi \).

Proof. (a) Let \(g \in G \setminus K^* \). Since \(\psi \circ \omega \) is non-degenerate there exists \(h \in G \) such that \(\psi \circ \omega (gK^*, hK^*) \neq 1 \). Observe that \(\rho([g, h]) = \psi([g, h]) \text{Id} \), and that \(\rho(h^{-1}gh) = \rho(g) \rho([g, h]) \). Taking the trace of both sides, we have \(\text{Tr}(\rho(g)) = \psi([g, h]) \text{Tr}(\rho(g)) \). Since \(\psi([g, h]) \neq 1 \) we must have \(\text{Tr}(\rho(g)) = 0 \).

(b) Since \(\rho \) is irreducible, and the trace of \(\rho \) vanishes outside of \(K^* \), we have:

\[
1 = \frac{1}{|G|} \sum_{g \in G} \text{Tr}(\rho(g)) \overline{\text{Tr}(\rho(g))} = \frac{1}{|G|} \sum_{g \in K^*} \text{Tr}(\rho(g)) \overline{\text{Tr}(\rho(g))} = \frac{1}{|G|} \dim(\rho)^2 \sum_{g \in K^*} \text{Tr}(\psi(g)) \overline{\text{Tr}(\psi(g))} = \dim(\rho)^2 \frac{|K^*|}{|G|}.
\]

Thus \(\dim \rho = \sqrt{\frac{|G|}{|K^*|}} = \sqrt{|V|} \).
(c) We have completely described the character of \(\rho \), and it follows that \(\rho \) is uniquely determined by \(\psi \). Indeed,

\[
\text{Tr}(\rho(g)) = \begin{cases} \sqrt{|V|} \cdot \psi(g), & \text{if } g \in K^* \text{ and } \\ 0, & \text{otherwise.} \end{cases}
\]

In view of Remark \ref{rem:...}, the following proposition is a direct consequence of the above lemma.

Proposition 11. The irreducible representations of a generalized Heisenberg group \(H = H(V, K, \beta) \) are exhausted by the following list:

(i) \(|V| \) one-dimensional representations, one for every character of \(V \).
(ii) \(|K| - 1 \) representations of dimension \(\sqrt{|V|} \), one for every nontrivial character \(\psi : K^* \to \mathbb{C}^\times \).

The next corollary is also immediate upon observing the centre of a generalized Heisenberg groups \(H = H(G, K, \beta) \) equals \(K^* \); see Remark \ref{rem:...}

Corollary 12. The representation dimension of a generalized Heisenberg group \(H = H(V, K, \beta) \) equals \(\dim(K) \sqrt{|V|} \).
If G is a finite Heisenberg group in the usual sense (as in Example 6) then for each nontrivial character χ of $Z(G)$ there is a unique irreducible representation ψ of G whose central character is χ; cf. [GH07, §1.1]. This is a finite group variant of the celebrated Stone-von Neumann Theorem. For a detailed discussion of the history and the various forms of the Stone-von Neumann theorem we refer the reader to [R04]. We conclude this section with another immediate corollary of Proposition 11 which tells us that over the field \mathbb{F}_p every generalized Heisenberg group has the Stone-von Neumann property. This corollary will not be needed in the sequel.

Corollary 13. Two irreducible representations of a generalized Heisenberg group with the same nontrivial central character are isomorphic.

Corollary 13 is the reason we chose to use the term “generalized Heisenberg group” in reference to the groups $H(V,K,\beta)$, where K is a symplectic subspace. Special p-groups (Remark 8) which are not generalized Heisenberg groups may not have the Stone-von Neumann property; see Remark 18.

3. Proof of Theorem 1

The case where $n \leq 2$ is trivial; clearly $\text{rdim}(G) = \text{rank}(G)$ if G is abelian. We will thus assume that $n \geq 3$.

In the non-exceptional cases of the theorem, in view of the inequality (2), it suffices to construct a group G of order p^n with $\text{rdim}(G) = f_p(n)$. Here $f_p(n)$ is the function defined just before the statement of Theorem 1.

If $(p,n) = (2,3)$ or $(2,4)$, we take G to be the elementary abelian group $(\mathbb{Z}/2\mathbb{Z})^3$ and $(\mathbb{Z}/2\mathbb{Z})^4$, yielding the desired representation dimension of 3 and 4, respectively. For all other non-exceptional pairs (p,n), we take G to be a generalized Heisenberg group as described in the table below. Here $H(V,K)$ stands for $H(V,K,\beta)$, for some β as in (4). In each instance, the existence of a symplectic subspace K of suitable dimension is guaranteed by Lemma 4 and the value of $\text{rdim}(H(V,K))$ is given by Corollary 12.

n	p	$\dim(V)$	$\dim(K)$	$\text{rdim}(H(V,K))$
even, ≥ 6	arbitrary	$n - 2$	2	$2p^{(n-2)/2}$
odd, ≥ 3	odd	$n - 1$	1	$p^{(n-1)/2}$
odd, ≥ 9	2	$n - 3$	3	$3p^{(n-3)/2}$

This settles the generic case of Theorem 1. We now turn our attention to the exceptional cases. We will need the following upper bound on $\text{rdim}(G)$, strengthening (2).

Let $\Omega_1(Z(G))$ be the subgroup of elements $g \in Z(G)$ such that $g^p = 1$.

Lemma 14. Let G be a p-group and $r = \text{rank}(Z(G)) = \text{rank}(\Omega_1(Z(G)))$.

(a) Let ρ_1 be an irreducible representation of G such that $\text{Ker}(\rho_1)$ does not contain $\Omega_1(Z(G))$. Then there are irreducible representations ρ_2, \ldots, ρ_r
of G such that $\rho_1 \oplus \cdots \oplus \rho_r$ is faithful. In particular,
\[\mathrm{rdim}(G) \leq \dim(\rho_1) + (r-1)\sqrt{|G:Z(G)|}. \]
(b) If $\Omega_1(Z(G))$ is not contained in $[G,G]$, then
\[\mathrm{rdim}(G) \leq 1 + (r-1)\sqrt{|G:Z(G)|}. \]

The lemma can be deduced from [KM07, Remark 4.7] or [MR09, Theorem 1.2]; for the sake of completeness we give a self-contained proof.

Proof. (a) Let χ_1 be the restriction to $\Omega_1(Z(G))$ of the central character of ρ_1. By our assumption χ_1 is nontrivial. Complete χ_1 to a basis $\chi_1, \chi_2, \ldots, \chi_r$ of the r-dimensional \mathbb{F}_p-vector space $\Omega_1(Z(G))^*$ and choose an irreducible representation ρ_i such that $\Omega_1(Z(G))$ acts by χ_i. (The representation ρ_i can be taken to be any irreducible component of the induced representation $\text{Ind}_{G_i}^{G(Z)(G)}(\chi_i)$.) The restriction of $\rho : = \rho_1 \oplus \cdots \oplus \rho_r$ to $\Omega_1(Z(G))$ is faithful. Hence, ρ is a faithful representation of G. As we mentioned in the introduction $\dim(\rho_i) \leq \sqrt{|G:Z(G)|}$ for every $i \geq 2$, and part (a) follows.

(b) By our assumption there exists a one-dimensional representation ρ_1 of G whose restriction to $\Omega_1(Z(G))$ is nontrivial. Now apply part (a). \hfill \Box

We are now ready to prove Theorem 1 in the three exceptional cases.

3.1. Exceptional case 1: p is odd and $n = 4$.

Lemma 15. Let p be an odd prime and G be a group of order p^4.

(a) Then $\mathrm{rdim}(G) \leq p + 1$.

(b) Suppose $Z(G) \cong (\mathbb{Z}/p\mathbb{Z})^2$ and $G/Z(G) \cong (\mathbb{Z}/p\mathbb{Z})^2$. Then $\mathrm{rdim}(G) = p + 1$.

Proof. (a) We argue by contradiction. Assume there exists a group of order p^4 such that $\mathrm{rdim}(G) \geq p + 2$. If $|Z(G)| \geq p^3$ or $G/Z(G)$ is cyclic then G is abelian and $\mathrm{rdim}(G) = \text{rank}(G) \leq 4 \leq p + 1$, a contradiction. If $Z(G)$ is cyclic then $\mathrm{rdim}(G) \leq p$ by (2), again a contradiction.

Thus $Z(G) \cong G/Z(G) \cong (\mathbb{Z}/p\mathbb{Z})^2$. This reduces part (a) to part (b).

(b) Here $\Omega_1(Z(G)) = Z(G)$ has rank 2. Hence, a faithful representation ρ of G of minimal dimension is the sum of two irreducibles $\rho_1 \oplus \rho_2$, as in (1), each of dimension 1 or p.

Clearly $\dim(\rho_1) = \dim(\rho_2) = 1$ is not possible, since in this case G would be abelian, contradicting $[G : Z(G)] = p^2$. It thus remains to show that $\mathrm{rdim}(G) \leq p + 1$. Since $G/Z(G)$ is abelian, $[G,G] \subset Z(G)$. Hence, by Lemma 14(b) we only need to establish that $[G,G] \not\subseteq Z(G)$.

To show that $[G,G] \not\subseteq Z(G)$, note that the commutator map
\[\Psi : G/Z(G) \times G/Z(G) \to [G,G] \]
\[(gZ(G), g'Z(G)) \to [g,g'] \]
can be thought of as an alternating bilinear map from \mathbb{F}_p^2 to itself. Viewed in this way, Ψ can be written as $\Psi(v, v') = (w_1(v, v'), w_2(v, v'))$ for alternating
maps w_1 and w_2 from $(\mathbb{F}_p)^2$ to \mathbb{F}_p. Since the space of alternating maps is a one-dimensional vector space over \mathbb{F}_p, w_1 and w_2 are scalar multiples of each other. Hence, the image of Ψ is a cyclic group of order p, and $[G,G] \subseteq Z(G)$, as claimed.

To finish the proof of Theorem 1 in this case, note that G_0 is a non-abelian group of order p^3, satisfies the conditions of Lemma 15(b). Thus the maximal representation dimension of a group of order p^4 is $p + 1$, for any odd prime p.

3.2. Exceptional case 2: $p = 2$ and $n = 5$.

Lemma 16. Let G be a group of order 32. Then $\text{rdim}(G) \leq 5$.

Proof. We argue by contradiction. Assume there exists a group of order 32 and representation dimension ≥ 6. Let $r = \text{rank}(Z(G))$. Then $1 \leq r \leq 5$ and (2) shows that $\text{rdim}(G) \leq 5$ for every $r \neq 3$.

Thus we may assume $r = 3$. If $|Z(G)| \geq 16$ or $G/Z(G)$ is cyclic then G is abelian, and $\text{rdim}(G) = \text{rank}(G) \leq 5$. We conclude that $Z(G) \simeq (\mathbb{Z}/2\mathbb{Z})^3$ and $G/Z(G) \simeq (\mathbb{Z}/2\mathbb{Z})^2$. Applying the same argument as in the proof of Lemma 15(b), we see that $[G,G] \subseteq Z(G)$, and hence $\text{rdim}(G) \leq 5$ by Lemma 14(b), a contradiction.

To finish the proof of Theorem 1 in this case, note that the elementary abelian group of order 2^5 has representation dimension 5. Thus the maximal representation dimension of a group of order 2^5 is 5.

3.3. Exceptional case 3: $p = 2$ and $n = 7$.

Lemma 17. If $|G| = 128$ then $\text{rdim}(G) \leq 10$.

Proof. Again, we argue by contradiction. Assume there exists a group G of order 128 and representation dimension ≥ 11. Let r be the rank of $Z(G)$. By (2), $r = 3$; otherwise we would have $\text{rdim}(G) \leq 10$.

As we explained in the introduction, this implies that a faithful representation ρ of G of minimal dimension is the direct sum of three irreducibles ρ_1, ρ_2 and ρ_3, each of dimension $\leq \sqrt{2^7/|Z(G)|}$. If $|Z(G)| > 8$, then $\dim(\rho_1) \leq 2$ and $\text{rdim}(G) = \dim(\rho_1) + \dim(\rho_2) + \dim(\rho_3) \leq 6$, a contradiction.

Therefore, $Z(G) \cong (\mathbb{Z}/2\mathbb{Z})^3$ and $\dim(\rho_1) = \dim(\rho_2) = \dim(\rho_3) = 4$. By Lemma 14(a) this implies that the kernel of every irreducible representation of G of dimension 1 or 2 must contain $Z(G)$. In other words, any such representation factors through the group $G/Z(G)$ of order 16. Consequently, if m_i is the number of irreducible representations of G of dimension i then $m_1 + 4m_2 = 16$. We can now appeal to [JNO90, Tables I and II], to show that no group of order 2^7 has these properties. From Table I we can determine which groups G (up to isoclinism, cf. Remark 4) have $|Z(G)| = 8$ and using Table II we can determine m_1 and m_2 for these groups. There is no group G with $|Z(G)| = 8$ and $m_1 + 4m_2 = 16$. □
We will now construct an example of a group G of order 2^7 with $\operatorname{rdim}(G) = 10$. Let $V = (\mathbb{F}_2)^4$ and let K be the 3-dimensional subspace of $A(V)$ generated by the following three elements:

$$
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}, \\
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}, \\
\begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}.
$$

Let $G := H(V, K, \beta) = V \times K^*$ for some β as in (14). Note that K contains only one non-zero degenerate element (the sum of the three generators).

In other words, there is only one non-trivial character χ of K^* such that $\chi \circ \omega : V \times V \to \mathbb{C}^\times$ is degenerate. By Remark (7)

(7) $[G, G] = Z(G) = K^*$.

Let ρ be a faithful representation of G of minimal dimension. As we explained in the Introduction, ρ is the sum of rank $(Z(G)) = 3$ irreducibles. Denote them by ρ_1, ρ_2, and ρ_3, and their central characters by χ_1, χ_2 and χ_3, respectively. Since ρ is faithful, χ_1, χ_2 and χ_3 form an \mathbb{F}_2-basis of $\Omega_1(Z(G))^* \cong (\mathbb{Z}/2\mathbb{Z})^3$. By Lemma (10), for each nontrivial character χ of K^* except one, there is a unique irreducible representation ψ of G such that χ is the central character to ψ, and $\dim \psi = 4$. Thus at least 2 of the irreducible components of ρ, say, ρ_1 and ρ_2 must have dimension 4. By Lemma (17), $\dim(\rho) \leq 10$, i.e., $\dim(\rho_3) \leq 2$. But every one-dimensional representation of G has trivial central character. We conclude that $\dim(\rho_3) = 2$ and consequently $\operatorname{rdim}(G) = \dim(\rho) = 4 + 4 + 2 = 10$.

Thus the maximal representation dimension of a group of order 2^7 is 10.

Remark 18. The group G constructed above has 16 one-dimensional representations with trivial central character, 4 two-dimensional representations with non-trivial degenerate central character, and 6 four-dimensional representations with pair-wise distinct non-degenerate central characters. In view of (7), H is a non-abelian special 2-group which does not enjoy the Stone-Von Neumann property (Corollary 13).

References

[BR97] J. Buhler, Z. Reichstein, *On the essential dimension of a finite group*, Compositio Math. 106 (1997), no. 2, 159–179.

[GH07] Sh. Gurevich, R. Hadani, *The geometric Weil representation*, Selecta Math. (N.S.) 13 (2007), no. 3, 465–481.

[H40] P. Hall, *The classification of prime-power groups*, J. Reine Angew. Math. 182 (1940), 130–141.

[HH56] P. Hall, G. Higman, *On the p-length of p-soluble groups and reduction theorem for Burnside’s problem* Proc. of London Math. Soc. (3), no. 6 (1956), 1-42.

[JNO90] R. James, M. F. Newman, E. A. O’Brien, *The groups of order 128*, J. Algebra 129 (1990), no. 1, 136–158.

[JLY02] C. U. Jensen, A. Ledet, N. Yui, *Generic Polynomials: Constructive Aspects of The Inverse Galois Problem*, Cambridge University Press, 2002.
10 SHANE CERNELE, MASOUD KAMGARPOUR, AND ZINOVY REICHSTEIN

[KM07] N. A. Karpenko, A. S. Merkurjev, Essential dimension of finite p-groups, Inventiones Math., 172, no. 3 (2008), 491–508.

[MR09] A. Meyer, Z. Reichstein, Some consequences of the Karpenko-Merkurjev theorem, Documenta Math., Extra Volume dedicated to Andrei A. Suslin’s Sixtieth Birthday (2010), 445–457.

[R04] J. Rosenberg, A selective history of the Stone-von Neumann theorem, Operator algebras, quantization, and noncommutative geometry, 331–353, Contemp. Math. 365, Amer. Math. Soc., Providence, RI, 2004.

[TZ00] P. H. Tiep, A. E. Zalesskii, Some aspects of finite linear groups: a survey, Algebra, 12, J. Math. Sci. (New York) 100 (2000), no. 1, 1893–1914.

[W03] S. H. Weintraub, Representation theory of finite groups: algebra and arithmetic, Graduate Studies in Mathematics, 59, American Mathematical Society, Providence, RI, 2003.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA

scernele@math.ubc.ca, masoud@math.ubc.ca, reichst@math.ubc.ca