A yeast H2A–H2B promoter can be regulated by changes in histone gene copy number

Lorraine Moran,¹ David Norris,² and Mary Ann Osley¹

¹Program in Molecular Biology, Sloan Kettering Cancer Center, New York, New York 10021 USA; ²Dana Farber Cancer Institute, Boston, Massachusetts 02115 USA

The two divergently transcribed H2A–H2B gene pairs in yeast are differentially regulated as a function of the copy number of histone genes. Transcription of an HTA2–lacZ reporter gene is independent of histone gene copy number. Transcription of an HTA1–lacZ gene can be repressed or derepressed, depending on the number of HTA plus HTB genes in cells. Regulation by histone gene dosage is dependent on a negative site in the HTA1–HTB1 promoter and the products of regulatory genes that act through this site. The level of H2A plus H2B protein in the cell may signal the response to histone gene copy number, suggesting that transcription of the HTA1–HTB1 locus can be autogenously regulated. This phenomenon may be used, in part, to maintain the balanced synthesis of histones, a critical parameter in nucleosome assembly.

[Key Words: Histone genes; yeast; autogenous regulation]

Received November 22, 1989; revised version accepted February 21, 1990.

The majority of histone genes in eukaryotic cells show replication-dependent expression—their transcription is activated near the G1–S phase boundary [Hereford et al. 1982; Heintz et al. 1983; Sittman et al. 1983; Artishevsky et al. 1984], and histone mRNA is accumulated during the period of chromosome duplication [Hereford et al. 1981; Heintz et al. 1983]. Because the assembly of histones into nucleosomes occurs almost exclusively at replication forks [Stillman 1986], temporal regulation of histone gene expression may ensure that new histones are available as soon as DNA is replicated. In mammals, sequences both upstream and downstream of histone genes participate in cell-cycle control. The upstream sequences are part of histone gene promoters and include histone subtype-specific regulatory elements [Hanly et al. 1985; Sive et al. 1986; Artishevsky et al. 1987; LaBella et al. 1987]. These elements are the binding sites for factors that activate transcription as cells enter S phase [Dailey et al. 1986; Artishevsky et al. 1987; Fletcher et al. 1987]. The downstream sequences occur within the histone RNAs and are part of a structure involved in histone mRNA processing [Birchmeier et al. 1983; Stauber et al. 1986; Capasso et al. 1987]. These sequences are postulated to contribute to increased histone mRNA accumulation during chromosome replication [Capasso et al. 1987; Luscher and Schumperli 1987]. In budding yeast, periodic transcription is regulated by both positive and negative promoter elements that have been identified upstream of several histone genes [Osley et al. 1986]. Genes encoding regulatory proteins that act through the negative element have recently been identified [Osley and Lycan 1987]. In yeast, the role played by downstream sequences in cell-cycle regulation has not been clearly defined; these sequences have been postulated to have a regulatory function, as periodic accumulation of H2B mRNA can be observed during S phase even when the H2B gene is constitutively transcribed [Lycan et al. 1987].

Besides temporal control, histone biosynthesis is subject to a second, poorly understood regulatory event that establishes the appropriate quantitative level of each of the four core histone proteins. Equimolar amounts of these proteins are found in eukaryotic chromatin [A1-bright et al. 1979], suggesting that equivalent numbers of the core histones are synthesized. The importance of keeping histone synthesis balanced has been shown by recent studies in Saccharomyces cerevisiae. Gene dosage alterations that create imbalances in core histone stoichiometry (e.g., as a consequence of increasing or decreasing the ratio of H2A–H2B dimers to H3–H4 tetramers) perturb cellular functions such as chromosome segregation [Meeks-Wagner and Hartwell 1986] and transcription [Norris and Osley 1987; Clark-Adams et al. 1988; Han and Grunstein 1988]. It is therefore likely that cells have regulatory mechanisms to balance the synthesis of these essential chromosomal proteins.

We analyzed the phenomenon of balanced histone synthesis by examining the effects of changes in histone gene copy number on the expression of the two yeast loci that encode H2A and H2B [Hereford et al. 1979]. We found that the two loci respond very differently to the number of histone genes in cells. The expression of one
H2A–H2B locus is independent of histone gene copy number. However, the second H2A–H2B locus is regulated as a function of histone gene copy number: When the number of H2A–H2B loci reduced, this locus produces more mRNA; when the number of H2A–H2B loci increased, it synthesizes less mRNA. This regulation occurs primarily at the level of transcription, apparently in response to the levels of H2A and H2B protein in the cell. The histone proteins affect [either directly or indirectly] the products of regulatory genes [Osley and Lycan 1987] that act through a negative site [Osley et al. 1986] in the promoter of the regulated locus. These data suggest that at least one yeast histone locus is autoregulated. Thus, besides their structural role as constituents of nucleosomes, H2A and H2B may also have a regulatory role in determining the frequency with which transcription of some histone genes is initiated. We propose that this phenomenon may be used to help balance the synthesis of histones, thereby maintaining an equimolar stoichiometry among the four core histone proteins.

Results

Decreasing histone gene copy number differentially affects the expression of the two HTA–HTB loci

In S. cerevisiae, H2A and H2B are encoded by two non-allelic loci, HTA1–HTB1 and HTA2–HTB2, each of which contains a divergently transcribed pair of H2A and H2B genes [Hereford et al. 1979]. Although both loci are expressed [Hereford et al. 1981], their expression is not equivalent, with the HTA2–HTB2 locus accounting for the production of at least two-thirds of the H2A and H2B RNA in the cell [M.A. Osley, unpubl.]. We reported previously that reducing the HTA–HTB copy number by one-half produces variable phenotypes in yeast, depending on which locus is absent [Norris and Osley 1987]. A Δhta2–htb2 mutant appears indistinguishable from a wild-type strain, whereas a Δhta1–htb1 mutant shows alterations in a wide variety of intracellular processes. The differential effects of the deletions are the consequence of differences in the expression of the two HTA–HTB loci as a function of histone gene copy number. Northern blot analysis showed that wild-type and Δhta1–htb1 strains produce equivalent amounts of H2B2 mRNA, whereas a Δhta2–htb2 mutant produces significantly more H2B1 mRNA than a wild-type strain. These data could account for the biological effects of the HTA–HTB deletions if it is assumed that the major consequence of deleting the HTA1–HTB1 locus is a decrease in the intracellular levels of H2A and H2B. This view is supported by the finding that the yeast genome appears to have nucleosome-free regions in a Δhta1–htb1 strain [Norris et al. 1988].

Although both HTA–HTB loci are periodically transcribed at the G1–S phase boundary in the cell cycle [Hereford et al. 1982], the results with deletion mutants indicated that the HTA1–HTB1 locus can be additionally regulated in response to the number of HTA and HTB genes in the cell. This locus can therefore be considered to exhibit dosage compensation. To study this phenomenon in more detail, we have used either an HTA1– or HTA2–lacZ reporter gene to monitor the expression of the two HTA–HTB loci. Each fusion gene contains DNA sequences encoding the first 13 amino acids of either the HTA1 or HTA2 gene preceded by the entire intergenic region from the HTA1–HTB1 or HTA2–HTB2 locus. We have reported previously that periodic transcription of an HTA1–lacZ fusion gene is regulated by sequences located in the HTA1–HTB1 intergenic region [Osley et al. 1986]. If these or other sequences in the same intergenic region also regulate the response of this locus to histone gene dosage, we would expect expression of the fusion gene to be dependent on HTA–HTB copy number.

The fusion genes were integrated in single copy into the genome of three isogenic strains: a wild-type strain that contained the normal complement of HTA–HTB loci, and either a Δhta1–htb1 or Δhta2–htb2 mutant. The levels of HTA–lacZ mRNA produced by each fusion gene and HTB1 or HTB2 mRNA produced by each endogenous HTB gene were then measured. Figure 1 shows that in these strains the fusion genes behave qualitatively like their counterpart full-length HTB genes. The levels of the two HTA2–HTB2 transcripts are the same in all the strains (Fig. 1b). In contrast, the levels of the two HTA1–HTB1 transcripts are higher in both deletion mutants than in the wild-type strain (Fig. 1a). For example, the HTA1 fusion transcript is 4-fold more abundant in the Δhta1–HTB1 strain and 14-fold more abundant in the Δhta2–HTB2 strain. The levels of HTB1 mRNA are also elevated in the Δhta2–htb2 strain (5-fold higher than in the wild-type strain). It is not immediately apparent why the abundance of HTB1 mRNA is lower than HTA1 fusion mRNA in the same mutant. One possibility may be that the full-length HTB1 gene is regulated at more levels than the fusion gene; for example, we have reported previously that the HTB1 gene is regulated both transcriptionally and post-transcriptionally, whereas an HTA1–lacZ gene is only regulated transcriptionally [Lycan et al. 1987]. Even if this is the case, the results indicate that transcriptional control plays an important role in this regulatory phenomenon. We therefore used the fusion gene to study the transcriptional aspect of dosage regulation.

Expression of the HTA1–HTB1 locus is repressed by extra copies of histone genes

If transcription of the HTA1–HTB1 locus is regulated by HTA–HTB copy number, we might expect this locus to be repressed when extra copies of histone genes are present. To examine the effects of elevated histone gene copy number, we first integrated an HTA1– or HTA2–lacZ fusion gene into the genome of a wild-type yeast strain. The two lacZ reporter strains were then individually transformed with high-copy-number plasmids carrying complete copies of each of the four histone loci. As shown in Figure 2 (lanes 1–5), the levels of the two

GENES & DEVELOPMENT 753
HTAI-lacZ mRNA but by only two- to threefold (lanes 4 and 5). The differential effects of H2A–H2B versus H3–H4 plasmids on HTAI-lacZ transcript levels is not the result of differences in the copy number of the histone containing plasmids; each plasmid is present at ~10 copies per cell [data not shown]. Thus, transcription of the HTAI-lacZ gene is more sensitive to the copy number of HTA–HTB genes. We find that even one to two extra copies of an HTA–HTB locus can cause repression: HTAI fusion mRNA levels are reduced almost 10-fold when the HTA1–HTB1 locus is introduced into yeast on a low-copy-number plasmid (lane 7).

The levels of endogenous HTB1 mRNA also change in cells transformed with high-copy-number HTA–HTB plasmids (Fig. 3, left). However, there are again quantitative differences in the effects of histone gene dosage on the regulation of a full-length HTB1 gene versus an HTA1-lacZ gene; the amount of full-length histone transcript is consistently less affected by copy number. For example, a high-copy-number HTA2–HTB2 plasmid reduces the amount of chromosomal HTB1 mRNA by three- to fivefold (lane 2). A similar effect is seen on the

Figure 1. Effect of a decrease in HTA–HTB copy number on the expression of the two loci encoding H2A and H2B. A HIS3* LEU2* plasmid carrying either an HTAI-lacZ [pftusA1-3His] or HTA2-lacZ [pftusA3-5His] fusion gene was integrated in single copy into the LEU2 locus of three isogenic yeast strains: strain GRF167, which contains both the HTA1–HTB1 and HTA2–HTB2 loci [WT], strain DN106, which contains a deletion of the HTA1–HTB1 locus [Δhtai1-htb1], and strain DN105, which contains a deletion of the HTA2–HTB2 locus [Δhtas2-htb2]. Each of these strains was grown into midexponential phase, and total RNA was prepared. The levels of HTAI or HTA2 fusion mRNA, HTB1 or HTB2 mRNA, and RP51A mRNA were measured by a quantitative S1 nuclease digestion assay after annealing with specific end-labeled probes, electrophoresis on denaturing polyacrylamide gels, and autoradiography. (a) Levels of mRNAs from genes controlled by the HTA1–HTB1 promoter; (b) levels of mRNAs from genes controlled by the HTA2–HTB2 promoter. Because the same probe was used to detect HTA1-lacZ and HTA2-lacZ mRNA, the differences in the autoradiographic signals represent real differences in the expression of these two genes. Any unlabeled bands represent reannealed probes.

HTA2–HTB2 transcripts are only nominally affected by the presence of any one of the extra histone loci. An exception is seen in a strain transformed with a high-copy-number HTA2–HTB2 plasmid [Fig. 2, lane 5], where almost eightfold more HTB2 RNA accumulates. This increase is proportional to the copy number of the plasmid that carries the HTA2–HTB2 locus [data not shown]. In contrast, the HTA1–HTB1 locus again shows dosage compensation [Fig. 3, left]. The level of HTA1-lacZ mRNA is reduced 10-fold in a strain transformed with a high-copy-number HTA2–HTB2 plasmid [lane 2] and 20-fold in a strain transformed with a high-copy-number HTA1–HTB1 plasmid [lane 3]. The two H3–H4 gene pairs in high copy number also reduce the levels of

Figure 2. Expression of the HTA2–HTB2 locus is not affected by the presence of histone genes in high copy number. A HIS3* LEU2* plasmid carrying an HTA2–lacZ fusion gene [pftusA3-5His] was integrated in single copy into the LEU2 locus of wild-type strain GRF167. This strain was subsequently transformed with high-copy-number histone plasmids: [Lane 1] YEp24 (vector); [lane 2] pDN1 (HTA1–HTB1); [lane 3] pCC65 [HHT1–HHF1]; [lane 4] pCC66 [HHT2–HHF2]; [lane 5] pCC223 (HTA2–HTB2). The levels of HTA2–lacZ, HTB2, and RP51A mRNAs were measured by a quantitative S1 nuclease digestion assay after hybridization to end-labeled probes, electrophoresis on denaturing polyacrylamide gels, and autoradiography. Any bands not identified represent reannealed probes.
Yeast histone gene transcription

Figure 3. Expression of the HTA1–HTB1 locus is repressed by the presence of histone genes in high copy number. (Left) A wild-type [Hir+] strain (M30-2B) with a copy of an HTA1–lacZ fusion gene integrated at the HTA1–HTB1 locus was transformed with high-copy-number histone plasmids: (Lane 1) YEp24 (vector); (lane 2) pCC29.3 [HTA2-HTB2]; (lane 3) pDN1 (HTA1-HTB1); (lane 4) pCC65 [HHT1-HHF1]; (lane 5) pCC66 [HHT2-HHF2]; (lane 6) pCC67 (HTA1-HTB1 and HHT1-HHF1); (lane 7) this same strain was also transformed with a low-copy-number histone plasmid YCp50-HTA1-HTB1 (HTA1-HTB1~~). (Right) A hir3 mutant strain (Hir-; M30-3A) with a copy of an HTA1–lacZ fusion gene integrated at the HTA1–HTB1 locus was transformed with two high-copy-number plasmids: (Lane 1) YEp24 (vector); (lane 2) pCC223 (HTA2-HTB2). The levels of HTA1–lacZ and HTB1 mRNAs were measured in a quantitative S1 nuclease digestion assay after hybridization to end-labeled probes, electrophoresis on denaturing polyacrylamide gels, and autoradiography. Unidentified bands represent reannealed probes.

Figure 4. Expression of the HTA1–HTB1 locus is not affected by the presence of HTA–HTB regulatory sequences in high copy number. (A) A wild-type [Hir+] strain (M30-2B) containing a copy of an HTA1–lacZ fusion gene integrated at the HTA1–HTB1 locus was transformed with high-copy-number histone plasmids: (Lane 1) YEp24 (vector); (lane 2) pDN1 (HTA1-HTB1); (lane 3) pHTA1-HTBlp (HTA1-HTB1 intergenic region); (lane 4) pCC223 (HTA2-HTB2); (lane 5) pHTA2-HTB2p (HTA2-HTB2 intergenic region). (B) A hir3 mutant [Hir-] strain (M30-3A) containing a copy of an HTA1–lacZ fusion gene integrated at the HTA1–HTB1 locus was transformed with high-copy-number histone plasmids: (Lane 1) YEp24 (vector); (lane 2) pHTA1-HTBlp (HTA1–HTB1 intergenic region); (lane 3) pHTA1-HTBlp (HTA1–HTB1 intergenic region); (lane 4) pCC223 (HTA2-HTB2); (lane 5) pHTA2-HTB2p (HTA2-HTB2 intergenic region). The levels of HTA1–lacZ and HTB1 mRNAs were measured in a quantitative S1 nuclease assay after hybridization to end-labeled probes, electrophoresis on denaturing polyacrylamide gels, and autoradiography. Bands not labeled represent reannealed probes.

The HTA1–HTB1 locus may be regulated by the products of the locus

The response of the HTA1–HTB1 locus to an increase in HTA–HTB copy number is explained most easily by a model of autogenous feedback regulation. We propose that the products of either HTA–HTB locus, that is, H2A and H2B, can specifically repress (either directly or indirectly) transcription of the divergently transcribed HTA1–HTB1 gene pair (Osley et al. 1986). However, an alternative explanation for the results is that there is normally a limiting amount of a histone- or HTA-HTB-specific positive transcription factor in cells. If the HTA2–HTB2 locus competes more efficiently than the HTA1–HTB1 locus for this factor, this could account for the disproportionate level of HTA1–HTB1 and HTA2–HTB2 transcripts in wild-type cells. Hence, derepression of the HTA1–HTB1 locus in a Δhta2–htb2 strain might occur because of decreased competition for the factor, repression of the same locus on the addition of extra HTA–HTB loci might represent increased competition for the factor. To address this question, high-copy-number plasmids carrying the entire HTA1–HTB1 or HTA2–HTB2 intergenic region (where transcriptional regulatory sequences reside), but only truncated HTA and HTB genes, were transformed into a wild-type strain that contained an HTA1–lacZ reporter gene (Fig. 4A). In contrast to the strong repression caused by extra copies of complete HTA–HTB loci [lanes 2 and 4], multiple copies of HTA–HTB intergenic sequences do not decrease the levels of HTA1–lacZ mRNA [lanes 3 and 5]. The amount of fusion mRNA actually increases slightly
under these conditions, suggesting that some inhibitor may be titrated out by the promoter sequences on the plasmids. Thus, histone promoter sequences in high copy number are not sufficient, by themselves, to confer repression. These data suggested that an entire histone-coding region is required for the regulatory effect.

We then asked whether a high-copy-number plasmid carrying a single full-length HTA or HTB gene could repress transcription of the HTA1 fusion gene. Two high-copy-number plasmids, one carrying a full-length HTB1 gene and the other carrying a full-length HTA1 gene plus a full-length but nonfunctional HTBI gene that harbors a frameshift mutation at amino acid 80 [Rykowski et al. 1981], were transformed into an HTA1–lacZ reporter strain [Fig. 5]. In contrast to the effects of plasmids carrying full-length copies of both an HTA and an HTB gene (lanes 2 and 3), plasmids carrying a single functional HTA or HTB gene do not cause repression of the fusion gene (lanes 4 and 5). In addition, the amount of HTB1 mRNA that is produced is now proportional to the expected copy number of these plasmids, suggesting that the HTB1 gene carried on the plasmids is also no longer regulated. These data support the idea that both a full-length HTA gene plus a full-length HTB gene must be present in high copy number in the same cell to repress transcription. The results also suggest that the products of the HTA and HTB genes—the H2A and H2B proteins—may be the actual signals of feedback regulation, as a full-length but nonfunctional HTB1 gene cannot substitute for a wild-type HTB1 gene (lane 5).

If feedback regulation is a response to the intracellular concentration of H2A plus H2B, it might possibly be triggered by the levels of H2A–H2B heterodimers. Several studies have indicated that the formation of nucleosomes in vivo is dependent on an equimolar ratio of H2A–H2B dimers to H3–H4 tetramers [Meeks-Wagner and Hartwell 1986; Clark-Adams et al. 1988]. An increase or decrease in HTA–HTB copy number might be expected to produce an imbalance in the stoichiometric ratio. If this imbalance is the effector of HTA1–HTB1 regulation, then any situation that restores the correct stoichiometric ratio should also abolish the regulatory signal. Thus, an HTA1–lacZ gene should not be repressed when all four core histone genes are present in high copy number in the same cell. However, a plasmid carrying both the HTA1–HTB1 locus plus the HHT1–HHF1 locus still results in significant repression of the fusion gene (Fig. 3, left, lane 6). These results suggest that the absolute levels of H2A and H2B in the cell (either as monomers or as heterodimers) might be more critical for the regulatory effect.

Feedback regulation requires a negative site in the HTA1–HTB1 promoter and HIR gene products that act through this site

Functional analysis of the HTA1–HTB1 promoter has identified two classes of regulatory sequences: reiterated upstream activating sequences (UAS) elements that activate transcription periodically and a unique negative site [Osley et al. 1986]. Deletion of the negative site leads to derepressed transcription of the HTA1–HTB1 locus and the independence of this locus from cell-cycle controls. Because of its effects on the level of HTA1–HTB1 transcription, the negative site was the likely element to regulate the response to HTA–HTB copy number. To test this possibility, an HTA1–lacZ reporter gene that contains a deletion of the negative site was integrated into the genome of a wild-type yeast strain. We showed previously that this mutant fusion gene was derepressed almost fivefold compared to a wild-type fusion gene [Osley et al. 1986]. The strain containing the mutant gene was subsequently transformed with a high-copy-number HTA2–HTB2 plasmid [Fig. 6]. Whereas a wild-type fusion gene is repressed by the amplified HTA2–HTB2 locus [Fig. 3, left, lane 2], the mutant gene remains derepressed under the same conditions [Fig. 6, lane 2]. These results support the idea that transcriptional regulation plays a significant role in autogenous
feedback control and identify the negative site as a necessary element in this response. Because we have been unable to identify a similar negative site in the HTA2–HTB2 promoter (C. Higgins and M.A. Osley, unpubl.), these data also provide a possible explanation for the failure of the HTA2–HTB2 locus to be feedback-controlled.

We also examined the importance of the negative site in feedback regulation by another approach. We previously constructed plasmids carrying hybrid CYC1–lacZ genes regulated by CYC1 UAS elements, CYC1 UAS elements plus the HTA1–HTB1 negative site, or isolated HTA1–HTB1 UAS elements (Osley et al. 1986). Each of these plasmids was transformed into three isogenic strains: a wild-type strain, and a Δhta2–htb2 mutant. We have shown previously that the isolated negative site represses CYC1–lacZ transcription >10-fold in wild-type strains (Osley et al. 1986). If this site is solely responsible for regulating the response to HTA–HTB copy number, we would expect that it would not repress the CYC1–lacZ gene when the HTA–HTB copy number is reduced, because in these situations an HTA1–lacZ gene is derepressed (cf. Fig. 1). As shown in Table 1, the expression of a CYC1 fusion gene regulated by the HTA1–HTB1 UAS does not change significantly among the three strains. In contrast, in the Δhta1–htb1 mutant, the repression of the CYC1–lacZ gene by the HTA1–HTB1 negative site is partly eliminated. However, the negative site still efficiently represses the CYC1–lacZ gene in the Δhta2–htb2 mutant, a strain that shows 14-fold derepression of an HTA1 fusion gene. We must therefore conclude that although the negative site is a necessary element for regulating the feedback response, it may not be sufficient. It may also be the case that the isolated negative site is a more sensitive monitor of the feedback signal and that the differences in its regulation in the two deletion mutants reflect both qualitative [H2A and H2B subtypes] and quantitative [H2A and H2B levels] differences in this signal between the strains.

We reported previously on the isolation and partial characterization of hir (histone regulation) mutants that are defective in the regulation of the HTA1–HTB1 locus [Osley and Lycan 1987]. The mutations derepress transcription of this locus and relieve it from cell-cycle controls. Because the HIR gene products act (either directly or indirectly) through the negative site in the HTA1–HTB1 promoter, we wished to determine whether hir mutants show altered feedback regulation. An HTA1–lacZ fusion gene was integrated into the genome of hir1, hir2, and hir3 mutants, which were then subsequently transformed with high-copy-number plasmids carrying each of the four histone loci. No transformants arose in any of the hir strains upon the introduction of plasmids carrying either the HTA1–HTB1, HHT1–HHF1, or HHF2–HHF2 locus, although HIR* strains can be transformed with these same plasmids. Because the hir mutations cause derepressed expression of each of these three histone loci (Osley and Lycan 1987), we assume that the production of H2A and H2B or H3 and H4 by histone

Table 1. Effects of isolated regulatory elements from the HTA1–HTB1 promoter on feedback regulation

Strain	pLGΔ312	pLG-CCR15	pLG-UAS
GRF167	1.0	0.08	1.9
DN105FOA	1.0	0.05	2.1
DN106FOA	1.0	0.24	2.6

High-copy-number URA3* plasmids carrying a CYC1–lacZ fusion gene controlled by the CYC1 UAS elements (pLGΔ312), the CYC1 UAS elements plus the 67-bp HTA1–HTB1 negative site (pLG-CCR15), or three 16-bp UAS elements from the HTA1–HTB1 promoter (pLG-UAS) were transformed into three isogenic yeast strains: a wild-type strain (GRF167), a Δhta2–htb2 strain (DN105FOA), and a Δhta1–htb1 strain (DN106FOA). Each strain was grown to midexponential phase in selective medium, and the levels of β-galactosidase were measured in cell extracts. The numbers represent relative values [to the level of enzyme produced by a CYC1–lacZ gene controlled by the CYC1 UAS elements] obtained from assays performed on duplicate cultures in at least three separate experiments. Miller units of β-galactosidase produced by a CYC1–lacZ gene controlled by the CYC1 UAS elements are 26.2 (GRF167), 29.7 (DN105FOA), and 4.5 (DN106FOA).
genes carried on high-copy-number plasmids is grossly unbalanced in the mutant backgrounds. This imbalance may lead to deleterious effects on some essential cellular processes and, hence, result in lethality. This view is supported by the observation that only high-copy-number plasmids that carry complete HTA1–HTB1 or HHT–HHF loci are unable to transform hir mutants; high-copy-number plasmids carrying either individual HTA1 or HTB1 genes or HTA–HTB regulatory sequences can transform wild-type and hir strains with almost equal efficiency. A low-copy-number plasmid carrying a complete HTA1–HTB1 locus is also able to transform hir mutants.

Only the HTA2–HTB2 locus can be transformed into hir mutants on a high-copy-number plasmid. We assume that this locus has no effect on cell viability because it is the only one of the four histone loci whose expression is not derepressed by the hir mutations (Osley and Lycan 1987). This fortuitous situation allowed us to examine the effects of a high-copy-number HTA2–HTB2 plasmid on gene expression in a hir3 mutant background [Fig. 3]. We find that the HTA1–lacZ gene is no longer repressed by elevated HTA2–HTB2 copy number in the hir strain (right), the fusion gene is actually derepressed in the mutant compared to a wild-type strain (cf. Fig. 3, left, lane 1 to right, lane 1). The effects of the hir mutation are not limited to high-copy-number repression because the same mutation also eliminates repression resulting from a low-copy-number HTA1–HTB1 plasmid [data not shown]. In addition, the hir3-associated derepression of the HTA1–lacZ gene is unaffected by high-copy-number plasmids that carry either HTA–HTB regulatory sequences [Fig. 4B] or individual HTA1 or HTB1 genes. Finally, the levels of HTA2–lacZ mRNA are not altered in a hir3 mutant, either in the presence or in the absence of a high-copy-number HTA2–HTB2 plasmid. It is therefore likely that the HIR gene products have a direct role in the feedback regulation of the HTA1–HTB1 locus. Their function in this regulatory response may be coupled, in some way, to the intracellular levels of H2A and H2B.

An aspect of cell-cycle-regulated transcription is altered in a Δhata1–htb1 strain

One of the characteristic phenotypes of hir mutant strains is a failure to turn off transcription of the HTA1–HTB1 locus following a block in chromosome replication (Osley and Lycan 1987). Because we have shown that hir mutations also affect feedback regulation, it is possible that feedback regulation, itself, mediated through HIR proteins, is actually responsible for the cell-cycle response. We therefore asked whether a Hir+ phenocopy could be created in Hir+ cells merely by deleting an HTA–HTB locus. As indicated in Figure 7, a Δhata1–htb1 strain [lanes 3 and 4] behaves as if it were a hir mutant because, unlike a wild-type strain [lanes 1 and 2], transcription of an HTA1–lacZ fusion gene is not repressed after inhibition of chromosome replication. This result is consistent with the idea that feedback regulation may play a role in this particular cell-cycle response; because the intracellular levels of H2A and H2B are presumably decreased in a Δhata1–htb1 mutant, the HIR proteins may not be able to repress transcription.

Figure 7 also shows that a Δhata2–htb2 mutant [lanes 5 and 6] is still phenotypically Hir+, as HTA1–lacZ transcription is turned off following the replication block. Although this strain is derepressed for HTA1–HTB1 transcription, it can clearly respond normally to at least one aspect of cell-cycle control. Thus, in this strain, feedback regulation can be separated from cell-cycle regulation. This is not the case in a Δhata1–htb1 mutant, where the two regulatory phenomena are apparently connected.

Discussion

We initiated a study of the mechanisms that regulate the balanced synthesis of histones in vivo. Very little is known about this aspect of histone biosynthesis, although it must be of critical importance to the cell because the unbalanced synthesis of these proteins produces pleiotropic phenotypes (Meeks-Wagner and Hart-
well 1986; Norris and Osley 1987; Clark-Adams et al. 1988). To study the balanced synthesis of H2A and H2B, we either increased or decreased the number of histone genes in yeast cells. We measured the effects of these changes in histone gene copy number on the regulation of the two HTA–HTB loci by using HTA–lacZ reporter genes to monitor their expression. We found that the expression of the HTA2 gene is insensitive to the number of histone genes in the cell, whereas the HTA1 gene is regulated by histone gene copy number. The HTA1 gene produces 10- to 20-fold less RNA when between 1 and 10 additional copies of HTA and HTB genes are present and 4- to 14-fold more RNA when the HTA–HTB copy number is reduced by one-half. We have shown that transcription of the HTA1–HTB1 locus can be regulated by HTA–HTB copy number; this regulation is dependent on a negative site in the HTA1–HTB1 promoter and at least three gene products that act through the negative site. Our studies additionally demonstrate that the functional products of the HTA and HTB genes must be made to see the effects of gene dosage. Although we cannot eliminate the possibility that the histone proteins affect transcription only indirectly, the simplest interpretation of this result is that it is the amount of H2A plus H2B protein in the cell that is the actual feedback signal. We therefore propose that the transcription of the gene dosage-sensitive HTA1–HTB1 locus can be autogenously regulated. This form of regulation is in addition to the temporal control of transcription that occurs at the G1–S phase boundary.

We reported previously that the stability of mRNA produced by the HTA1–HTB1 locus can also be affected by the copy number of this locus [Osley and Hereford 1981]. The half-life of full-length HTB1 mRNA is decreased approximately twofold in response to a chromosomal duplication of the HTA1–HTB1 locus. However, our studies with an HTA1 fusion gene indicate that changes in HTA–HTB copy number also affect the regulation of transcription. It is therefore likely that the effects of gene dosage on full-length HTA1 or HTB1 genes represent the contributions of transcriptional as well as post-transcriptional controls. Because the HTA1 fusion gene does not appear to contain sequences that regulate mRNA stability [Lycan et al. 1987], this could also account for the quantitatively different responses of the full-length gene and fusion gene to altered histone gene dosage.

The observation that transcription of the HTA1–HTB1 locus, but not the HTA2–HTB2 locus, is under autogenous control may be accounted for by differences in both the cis- and trans-acting regulation of these two histone promoters. A search of the HTA2–HTB2 promoter has identified several DNA sequences with similarity to the HTA1–HTB1 UAS consensus element [Osley et al. 1986] but no sequences with similarity to the HTA1–HTB1 negative site, which is required for feedback control [C. Higgins and M.A. Osley, unpubl.]. In addition, hir mutations, which both derepress HTA1–HTB1 transcription and eliminate autogenous control, have no effect on either the basal level of HTA2–HTB2 transcription [Osley and Lycan 1987] or on the failure of this locus to respond to histone gene copy number.

Although the HTA2–HTB2 locus is not feedback-regulated, several observations suggest that transcription of both HHT–HHF loci might be autogenously controlled. First, a 15-bp sequence found in the 67-bp HTA1–HTB1 negative site has been noted in the two HHT–HHF promoters [Breeden 1988; M. Smith, pers. comm.]. Second, hir mutations have been shown to derepress transcription of both the HTA1–HTB1 and the two HHT–HHF loci (Osley and Lycan 1987). However, it has been reported that when either HHT–HHF locus is deleted, the remaining locus does not produce more RNA (Cross and Smith 1988). Although these data suggest that the HHT–HHF loci are not dosage compensated, it is not known whether either of these two loci can be regulated by changes in HTA–HTB copy number.

Two models, not necessarily mutually exclusive, can be proposed to account for autogenous regulation of the HTA1–HTB1 locus. In the first model, regulation occurs by direct protein–protein interactions among the factors regulating HTA1–HTB1 transcription. One HIR gene could encode a repressor that binds to the HTA1–HTB1 negative site; this repressor may interact with one or more additional transcription factors to inhibit the initiation of transcription. H2A and H2B would be corepressors, interacting [directly or indirectly] with the repressor to affect its DNA binding or activity. In this model of autogenous control, the histone proteins may function as classic regulatory molecules. This may account for the observation that transcription is repressed following a twofold change in HTA–HTB copy number, as if regulation is triggered by only small differences in histone levels. In the second model, autogenous regulation occurs through the well-known structural roles of H2A and H2B in nucleosomes, by the creation of altered chromatin structure. The formation or maintenance of nucleosomes in the HTA1–HTB1 promoter could be altered by imbalances in the levels of H2A–H2B dimers. These chromatin alterations could affect the binding or activity of a transcription factor at the negative site [e.g., a HIR gene product] or other sites in the promoter. As a result, the initiation of transcription may either be stimulated or repressed. This model is supported by data demonstrating that both constituents of an H2A–H2B heterodimer [i.e., H2A plus H2B] are required for feedback regulation, and by the observation that yeast chromatin structure is altered when the levels of H2A–H2B dimers are reduced [Norris et al. 1988].

This is not the only example in yeast where changes in histone gene copy number have been found to affect transcription. When the number of histone genes is either reduced or elevated, the his4-912~ mutant allele is suppressed and the cell becomes phenotypically His+. This system, altered histone levels suppress the effects of the δ insertion in HIS4 by changing the site where transcription is initiated: instead of using the initiation site in the δ element, the cell now utilizes the natural HIS4* initiation site [Clark-Adams et al. 1988]. This is in contrast to the effects of histone levels on HTA1–HTB1
transcription, where similar alterations appear to affect the frequency with which transcription is initiated. Histone levels differentially affect the transcription of these two loci in other ways as well. The most notable difference is the observation that the his4-9128 allele is suppressed only in a Δhta1-htbl strain, HTA1-HTB1 transcription, on the other hand, is derepressed by a deletion of either HTA–HTB locus. A second difference is the finding that any histone locus in high copy number can suppress the his4-9128 mutation. In contrast, HTA1-HTB1 transcription is significantly repressed only when loci encoding H2A and H2B are present in high copy number. Finally, the effects of high-copy-number histone genes on his4-9128 transcription can be abrogated by restoring the stoichiometric balance among the four core histones. HTA1–HTB1 transcription is still repressed under the same conditions. Whether these differences reflect fundamentally different regulatory mechanisms remains to be determined.

What is the biological significance of autogenous regulation? One role may be to keep the synthesis of H2A–H2B and H3–H4 in balance, thereby ensuring that the correct number of nucleosomes is formed or that the correct structure of nucleosomes is maintained. We have shown that a change in the nuclease sensitivity of chromatin results from an imbalance in core histone stoichiometry [Norris et al. 1988] Other studies have also shown that these imbalances result in pleiotropic cellular phenotypes [Meeks-Wagner and Hartwell 1986; Norris and Osley 1987; Clark-Adams et al. 1988]. Therefore, feedback regulation may function in cellular homeostasis to control the assembly of histones into chromatin. A second function may be to alter the intracellular levels of particular H2A and H2B subtypes. The two HTA–HTB loci encode different protein subtypes [Wallis et al. 1980; Choe et al. 1982], but only one locus is feedback-regulated. Derepression or repression of the HTA1–HTB1 locus could be used to either increase or decrease the ratio of nucleosomes that it encodes. If nucleosomes that are formed from these particular subtypes specifically affect some cellular processes, this mechanism may function to alter their distribution in chromatin. Finally, autogenous regulation may have a role in one or more aspects of cell-cycle-regulated transcription. A Δhta1-htbl mutant fails to turn off transcription of an HTA1-lacZ reporter gene when chromosome replication is blocked. One interpretation of this result is that the intracellular levels of H2A and H2B affect the execution of this particular regulatory response. For example, when DNA synthesis is inhibited, the failure of histones to be assembled into nucleosomes at stalled replication forks may provide a sufficient regulatory signal to repress transcription. However, this cannot be the only mechanism to turn off transcription in S phase. Transcription of the HTA2–HTB2 locus is also repressed following a replication block, although this locus is not regulated by histone levels or the products of identified HIR genes. It is therefore likely that cell-cycle regulation involves a combination of both temporal and feedback controls.

Materials and methods

Media and growth conditions

The following yeast media were used: YPD medium is 10 g of yeast extract, 20 g of peptone, and 20 g of glucose per liter. SD medium is 6.7 g of yeast nitrogen base without amino acids per liter, 2% glucose, and appropriate amino acid supplements [Sherman et al. 1982]. YM-1 medium [Hartwell 1967] was used to grow cells to be treated with hydroxyurea (HU). Log phase cells were treated with 0.2 M HU for 30 min [Lyczak et al. 1987]. Yeast cells were transformed by the lithium chloride method [Ito et al. 1983], with selection on SD/2% agar plates lacking the appropriate amino acid.

Integrating plasmids

pfusA1-3His This construction of plasmid pfasA1-3 has been described [Osley and Hereford 1982]. This plasmid contains the 13 amino-terminal amino acids of HTA1 fused to the lacZ structural gene, the entire intergenic region from the HTA1–HTB1 locus, a truncated HTB1 gene, and two sequences present 3′ to the HTB1 gene. A 4.3-kb PstI fragment containing the LEU2 gene is present as a selectable marker. Plasmid pfasA1-3His was constructed by inserting a 1.7-kb BamHI fragment containing the HIS3 gene into a unique BamHI site on pfasA1-3.

pfusA3-5His This plasmid is similar to pfas1-3His, except that it contains a fusion of the 13 amino-terminal amino acids of HTA2 to the lacZ gene, the HTA2–HTB2 intergenic region, a truncated HTB2 gene, and sequences 3′ to the HTB2 gene.

pfus1del-lacZ This plasmid is derived from pΔ16+, which has been described previously [Osley et al. 1986]. It contains a fusion of the 13 amino-terminal amino acids of HTA1 to the lacZ gene, the HTA1–HTB1 intergenic region with a S0-bp deletion that removes the negative site, and a truncated HTB1 gene. Plasmid pfas1del-lacZ is an integrating form of pΔ16+ made by deletion of the CEN IV sequences on the latter plasmid.

High-copy-number replicating plasmids

High-copy-number plasmids were constructed using the origin of replication from the 2-μ circle plasmid Yep24 [Botstein et al. 1979].

dN1 A 6.4-kb BamHI fragment that contains the HTA1–HTB1 locus [Hereford et al. 1979], including the full-length HTA1 and HTB1 genes, the entire intergenic region between HTA1 and HTB1, and the PRT1 (protein 1) gene 3′ to HTA1, was inserted into the unique BamHI site on plasmid Ylp5 [Parent et al. 1985]. A 2.3-kb EcoRI fragment containing the origin sequences from the high-copy-number 2-μ plasmid was then inserted into the unique EcoRI site of Ylp5.

dCC23 A 3.7-kb EcoRI–BamHI fragment containing the HTA2–HTB2 locus [Hereford et al. 1979], which includes the full-length HTA1 and HTB1 genes, the entire intergenic region between these two genes, and the PRT2 (protein 2) gene, was cloned into the EcoRI and BamHI sites of Ylp5. The 2.3-kb EcoRI fragment containing the 2-μ plasmid origin sequences was then cloned into the EcoRI site of Ylp5.

pCC65 A 6.7-kb HindIII fragment containing the HHF1–HHF1 locus [Smith and Anderson 1983; Smith and Murray
1983), which includes the full-length HHT1 and HHT1 genes and intergenic sequences between the two genes, as well as a gene of unknown function (SMT1), was inserted into the HindIII site on plasmid YEp24 [Clark-Adams et al. 1988].

pCG656 Two HindIII fragments of 2.6 and 1.5 kb containing the HHT2–HHT2 locus [Smith and Anderson 1983; Smith and Murray 1983], which includes the full-length HHT2 and HHT2 genes and the intergenic sequences between these genes, were inserted into the HindIII site on plasmid YEp24 [Clark-Adams et al. 1988].

pCG67 A 6.4-kb BamHI fragment containing the HTA1–HTB1 locus and a 5.4-kb HindIII–BamHI fragment containing the HHT1–HHT1 locus were inserted into the HindIII and BamHI sites on plasmid pCG542 [Clark-Adams et al. 1988].

pHTA1–HTB1p A 1.1-kb HindIII fragment containing the entire HTA1–HTB1 intergenic region and coding sequences for 13 amino acids of H2A-1 and 80 amino acids of H2B-1 was inserted into the HindIII site of YIp5. The 2.3-kb EcoRI fragment containing the 2-μ plasmid origin was then inserted into the unique EcoRI site on this plasmid.

pHTA2–HTB2p A 0.97-kb HindIII fragment from the HTA2–HTB2 locus, which contains the entire intergenic region and 13 amino acids of H2A-2 and 80 amino acids of H2B-2, was inserted into the HindIII site of YIp5. The 2.3-kb EcoRI fragment containing the 2-μ plasmid replication origin was then inserted into the EcoRI site on this plasmid.

pHTB1 The HTB1 gene was reconstituted in pUC13 first by insertion of the 0.8-kb HindIII–BamHI fragment, which contains the 3′ end of the HTB1 gene, into the HindIII and BamHI sites of pUC13 and then insertion of the 1.1-kb HindIII fragment, which contains the HTA1–HTB1 intergenic region and the 5′ end of the HTB1 gene, into the unique HindIII site on this plasmid. The URA3 gene was added as a 1.1-kb BamHI fragment into the unique BamHI site, and the 2.3-kb EcoRI origin fragment from the 2-μ plasmid was inserted into the EcoRI site.

pHTA1–HTB1p A 2.3-kb EcoRI fragment encompassing the 2-μ plasmid origin of replication was inserted into the EcoRI site of plasmid pMR2 [Rykowski et al. 1981]. This plasmid contains a complete HTA1–HTB1 locus with a wild-type, full-length HTA1 gene, the entire intergenic region, and a full-length HTB1 gene with a frameshift mutation at amino acid 80.

pLG312 This URA3 plasmid carries a CYCI–lacZ fusion gene controlled by the two CYCI UAS elements and CYCI TATA sequences [Guarente and Ptashne 1981]. This plasmid replicates at high copy number because it contains the 2-μ plasmid origin of replication.

pLG-UAS This plasmid contains a substitution of three consensus 16-bp UAS elements from the HTA1–HTB1 locus for the CYCI UAS elements that are located in a 140-bp SmaI–Xhol fragment in plasmid pLG312 (Osley et al. 1986).

pLG-CCR15 A 67-bp HindIII–SmaI fragment, which contains the negative site from the HTA1–HTB1 locus, was inserted into the SmaI site located between the CYCI UAS elements and TATA region in plasmid pLG312 (Osley et al. 1986).

Yeast histone gene transcription

Low-copy-number replicating plasmids

The URA3 CEN vector YCp50 (Johnston and Davis 1984) was used to provide histone genes in low copy number.

Ycpl5-HTA1-HTB1 A 6.4-kb BamHI fragment containing the entire HTA1–HTB1 locus was inserted into the BamHI site of YCp50.

Yeast strains

The strains DN105 [MATa his3 ura3 Δhth2–htb2 :: URA3] and DN106 [MATa his3 ura3 Δhth1–htb1 :: URA3], which were isolated by gene transplacement of wild-type strain GRF167 [MATa his3 ura3], have been described previously [Norris and Osley 1987]. To measure the effects of a reduction in HTA–HTB copy number on the expression of the two HTA–HTB loci, HTA1–lacZ or HTA–lacZ reporter genes were integrated into strain GRF167 and each deletion strain by plasmid integration. Plasmids pufA1-3His and pufA3-5His were partially digested with Sall to cut within the LEU2 locus, and the resulting linearized plasmids were transformed into each of the three strains. Because the strains are Leu+, stable integrants were isolated by selection for histidine prototrophs.

Ura− derivatives of strains DN105 and DN106 were made by selection on SD plates containing 5-fluoro-orotic acid [Boeke et al. 1984]. These derivatives are DN105FOA and DN106FOA, and they were used to study the effects of a reduction in histone gene copy number on the expression of CYC1–lacZ genes carrying isolated HTA1–HTB1 promoter elements.

Strain M30-2B [MATa ura3-52 trpl his3-7 leu2-3 leu1-12 ade2 HTA1–lacZ :: LEU2] was used to measure the effects of high-copy-number histone genes on expression of the HTA1–HTB1 locus in a wild-type strain. Strain M30-3A [MATa ura3-52 trpl his3 leu2-3 leu1-12 HTA1–lacZ :: LEU2 his3] was used to measure the effects of the same high-copy-number histone genes in a his3 mutant (formerly his30, Osley and Lycan 1987) background. Each of these strains contains a single copy of an HTA1–lacZ fusion gene integrated at the HTA1–HTB1 locus. Strain GRF167 containing a copy of an HTA2–lacZ fusion gene integrated at the leu2 locus was used to measure the effects of high-copy-number histone genes on expression of the HTA2–HTB2 locus.

To study the role of the HTA1–HTB1 negative site in dosage compensation, plasmid pufA1-3His–lacZ was partially linearized with Sall to direct its integration to the leu2 locus of wild-type strain DBY747 [MATa ura3-52 leu2-3 his3 trpl hir3] or hir3 mutant strain M30-9C [MATa ura3-52 leu2-3 his3 trpl hir3].

RNA analysis

Strains were grown in supplemented SD medium to midexponential phase of growth. Total RNA was extracted from 30–40 ml of cells, as described previously [Hereford et al. 1981]. Quantitative S1 nuclease digestion assays were performed with 20 μg of RNA, as outlined in Lycan et al. [1987]. Double-stranded probes were end-labeled with polynucleotide kinase. A 1.2-kb Xhol–ClaI fragment labeled at a ClaI site in lacZ was isolated from plasmid pLG312 and used to detect all fusion RNA species. A 700-bp SacI–HindIII fragment and a 600-bp Acc–HindIII fragment labeled at the HindIII site at amino acid 80 in HTB1 and HTB2, respectively, were used to measure the levels of the two HTB RNAs. As an internal control, a Sall–Avoll fragment labeled at the Avoll site in the second exon of the RP51A gene [Tecem and Rosbash 1983] was used to measure the level of RNA produced by this ribosomal protein gene. Fol-
lowing digestion with 1200 units of S1 nuclease enzyme [BRL] per milliliter, protected fragments were separated on 4% polyacrylamide/8 M urea gels and detected by autoradiography. Quantitation was performed with an LKB ultrasonic laser densitometer. \(HTA-lacZ \) and \(HTB \) mRNA levels were calculated as the ratio of these mRNA species to the level of \(RPS1A \) mRNA.

\(\beta \)-Galactosidase assay

Cells were grown in supplemented SD medium lacking uracil to mid-exponential phase of growth. Duplicate samples were centrifuged to pellet cells, and the resulting cell pellets were frozen at \(-80^\circ C\). Cells were lysed by vortexing with glass beads, and \(\beta \)-galactosidase was measured as described previously [Osley and Hereford 1982].

Acknowledgments

We thank Barbara Dunn and Peter Sherwood for critical comments and advice and Cynthia Higgins for expert technical help. This work was supported by National Institutes of Health grant GM-40118 to M.A.O.

References

Albright, S.C., P.P. Nelson, and W.T. Garrard. 1979. Histone molar ratios among different electrophoretic forms of monon- and dinucleosomes. *J. Biol. Chem.* 254: 1065–1073.

Artishevsky, A., A.M. Delegeane, and A. Lee. 1984. Use of a cell cycle mutant to delineate the critical period for the control of histone mRNA in the mammalian cell cycle. *Mol. Cell. Biol.* 4: 2364–2369.

Artishevsky, A., S. Wooden, A. Sharma, E. Resendez, Jr., and A. Lee. 1987. Cell-cycle regulatory sequences in a hamster histone promoter and their interactions with cellular factors. *Nature* 328: 823–827.

Birchmeier, C., W. Folk, and M.L. Birnstiel. 1983. The terminal RNA stem-loop structure and 80 bp of spacer DNA are required for the formation of 3' termini of sea urchin H2A mRNA. *Cell* 35: 433–440.

Botstein, D., S.C. Falco, S.E. Stewart, M. Brennan, S. Scherer, D.T. Sinchcombe, K. Struhl, and R.W. Davis. 1979. Sterile host yeasts [SHY]: A eucaryotic system of biological containment for recombinant DNA experiments. *Genes Dev.* 8: 17–24.

Breeden, L. 1988. Cell cycle-regulated promoters. *Trends Genet.* 4: 249–253.

Capasso, O., G.C. Bleecker, and N. Heintz. 1987. Sequences controlling histone H4 mRNA abundance. *EMBO J.* 6: 1825–1831.

Choe, I., D. Kolodrubetz, and M. Grunstein. 1982. The two yeast histone H2A genes encode similar protein subtypes. *Proc. Natl. Acad. Sci.* 79: 1484–1487.

Clark-Adams, C.D., D. Norris, M.A. Osley, J.S. Fassler, and F. Winston. 1988. Changes in histone gene dosage alter transcription in yeast. *Genes Dev.* 2: 150–159.

Cross, S.L. and M.M. Smith. 1988. Comparison of the structure and cell cycle expression of mRNAs encoded by two histone H3-H4 loci in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 8: 945–954.

Dailey, L., S.M. Hanly, R.G. Roeder, and N. Heintz. 1986. Distinct transcription factors bind specifically to two regions of the human histone H4 promoter. *Proc. Natl. Acad. Sci.* 83: 7241–7245.

Fletcher, C., N. Heintz, and R.G. Roeder. 1987. Purification and characterization of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2b gene. *Cell* 51: 773–781.

Guarente, L. and M. Ptashne. 1981. Fusion of *Escherichia coli lacZ* to the cytochrome c gene of *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci.* 78: 2199–2203.

Han, M. and M. Grunstein. 1988. Nucleosome loss activates yeast downstream promoters in vivo. *Cell* 55: 1137–1145.

Hanly, S.M., G.C. Bleecker, and N. Heintz. 1985. Identification of promoter elements necessary for transcriptional regulation of a human histone H4 gene in vitro. *Mol. Cell. Biol.* 5: 380–389.

Hartwell, L.H. 1967. Macromolecular synthesis in temperature sensitive mutants of yeast. *J. Bacteriol.* 93: 1662–1670.

Heintz, N., H.L. Sive, and R.G. Roeder. 1983. Regulation of human histone gene expression: Kinetics of accumulation and changes in the rate of synthesis and half life of individual histone mRNAs during the HeLa cell cycle. *Mol. Cell. Biol.* 202: 539–550.

Hereford, L.M., K. Fahrner, J. Woolford, Jr., M. Rosbash, and D.B. Kaack. 1979. Isolation of yeast histone genes H2A and H2B. *Cell* 18: 1261–1271.

Herodorm, L.M., M.A. Osley, Jr. Ludwig H.L., and C.S. McLaughlin. 1981. Cell-cycle regulation of yeast histone mRNA. *Cell* 24: 367–375.

Hereford, L.M., S. Bromley, and M.A. Osley. 1982. Periodic transcription of yeast histone genes. *Cell* 30: 305–310.

Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. *J. Bacteriol.* 153: 163–168.

Johnston, M. and R.W. Davis. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 4: 1440–1448.

LaBella, F., H.L. Sive, R.G. Roeder, and N. Heintz. 1987. Cell cycle regulation of a human histone H2b gene is mediated by the H2b subtype-specific consensus element. *Genes Dev.* 2: 32–39.

Luscher, B. and D. Schumperli. 1987. RNA 3' processing regulates histone mRNA levels in a mammalian cell cycle mutant. A processing factor becomes limiting in G1-arrested cells. *EMBO J.* 6: 1721–1726.

Lycan, D.E., M.A. Osley, and L.M. Hereford. 1987. Role of transcriptional and posttranscriptional regulation in expression of histone genes in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* 7: 614–621.

Meeks-Wagner, D. and L.H. Hartwell. 1986. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. *Cell* 44: 53–63.

Norris, D. and M.A. Osley. 1987. The two gene pairs encoding H2A and H2B play different roles in the *Saccharomyces cerevisiae* life cycle. *Mol. Cell. Biol.* 7: 3473–3481.

Norris, D., B.L. Dunn, and M.A. Osley. 1988. The effect of histone gene deletions on chromatin structure in *Saccharomyces cerevisiae*. *Science* 242: 759–761.

Osley, M.A. and L.M. Hereford. 1981. Yeast histone genes show dosage compensation. *Cell* 24: 377–384.

—. 1982. Identification of a sequence responsible for periodic synthesis of yeast histone 2A mRNA. *Proc. Natl. Acad. Sci.* 79: 7689–7693.

Osley, M.A. and D.E. Lycan. 1987. Trans-acting mutations that alter transcription of *Saccharomyces cerevisiae* histone genes. *Mol. Cell. Biol.* 7: 4204–4210.

Osley, M.A., J. Gould, S. Kim, M. Kane, and L.M. Hereford. 1986. Identification of sequences in a yeast histone promoter involved in periodic transcription. *Cell* 45: 537–544.

Parent, S.A., C.M. Fenimore, and K.A. Bostian. 1985. Vector
Yeast histone gene transcription

systems for the expression, analysis and cloning of DNA sequences in *S. cerevisiae*. *Yeast* 1: 83–138.

Rykowski, M.C., J.W. Wallis, J. Choe, and M. Grunstein. 1981. Histone H2B subtypes are dispensable during the yeast cell cycle. *Cell* 25: 477–487.

Sherman, F., G.R. Fink, and J.B. Hicks. 1982. *Methods in yeast genetics*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Sittman, D.B., R.A. Graves, and W.F. Marzluff. 1983. Histone mRNA concentrations are regulated at the level of transcription and mRNA degradation. *Proc. Natl. Acad. Sci.* 80: 1849–1853.

Sive, H.L., N. Heintz, and R.G. Roeder. 1986. Multiple sequence elements are required for maximal in vitro transcription of a human histone H2b gene. *Mol. Cell. Biol.* 6: 3329–3340.

Smith, M.M. and O.S. Andresson. 1983. DNA sequences of yeast H3 and H4 histone genes from two non-allelic gene sets encode identical H3 and H4 proteins. *J. Mol. Biol.* 169: 663–690.

Smith, M.M. and K. Murray. 1983. Yeast H3 and H4 histone messenger RNAs are transcribed from two non-allelic gene sets. *J. Mol. Biol.* 169: 641–661.

Stauber, C., B. Luscher, R. Eckner, E. Lotscher, and D. Schumperli. 1986. A signal regulating mouse histone H4 mRNA levels in a mammalian cell cycle mutant and sequences controlling RNA 3' processing are both contained within the same 80-bp fragment. *EMBO J.* 5: 3297–3303.

Stillman, B. 1986. Chromatin assembly during SV40 DNA replication. *Cell* 45: 555–565.

Teem, J. and M. Rosbash. 1983. Expression of a β-galactosidase gene containing the ribosomal protein S1 intron is insensitive to the mra2 mutation of yeast. *Proc. Natl. Acad. Sci.* 80: 4403–4407.

Wallis, J.W., L.M. Hereford, and M. Grunstein. 1980. Histone H2B genes of yeast encode two different proteins. *Cell* 22: 799–805.
A yeast H2A-H2B promoter can be regulated by changes in histone
gene copy number.

L Moran, D Norris and M A Osley

Genes Dev. 1990, 4:
Access the most recent version at doi:10.1101/gad.4.5.752