AN INEQUALITY FOR THE NORM OF A POLYNOMIAL FACTOR

IGOR E. PRITSKER

(Communicated by Albert Baernstein II)

Abstract. Let \(p(z) \) be a monic polynomial of degree \(n \), with complex coefficients, and let \(q(z) \) be its monic factor. We prove an asymptotically sharp inequality of the form \(\|q\|_E \leq C_n \|p\|_E \), where \(\| \cdot \|_E \) denotes the sup norm on a compact set \(E \) in the plane. The best constant \(C_E \) in this inequality is found by potential theoretic methods. We also consider applications of the general result to the cases of a disk and a segment.

1. Introduction

Let \(p(z) \) be a monic polynomial of degree \(n \), with complex coefficients. Suppose that \(p(z) \) has a monic factor \(q(z) \), so that
\[
p(z) = q(z) r(z),
\]
where \(r(z) \) is also a monic polynomial. Define the uniform (sup) norm on a compact set \(E \) in the complex plane \(\mathbb{C} \) by
\[
\|f\|_E := \sup_{z \in E} |f(z)|.
\]
We study the inequalities of the following form
\[
\|q\|_E \leq C_n \|p\|_E, \quad \deg p = n,
\]
where the main problem is to find the best (the smallest) constant \(C_E \), such that (1.2) is valid for any monic polynomial \(p(z) \) and any monic factor \(q(z) \).

In the case \(E = D \), where \(D := \{ z : |z| < 1 \} \), the inequality (1.2) was considered in a series of papers by Mignotte [9], Granville [7] and Glesser [6], who obtained a number of improvements on the upper bound for \(C_D \). D. W. Boyd [3] made the final step here, by proving that
\[
\|q\|_D \leq \beta^n \|p\|_D,
\]
with
\[
\beta := \exp \left(\frac{1}{\pi} \int_0^{2\pi/3} \log \left(2 \cos \frac{t}{2} \right) dt \right).
\]

1991 Mathematics Subject Classification. Primary 30C10, 30C85; Secondary 11C08, 31A15.

Key words and phrases. Polynomials, uniform norm, logarithmic capacity, equilibrium measure, subharmonic function, Fekete points.

Research supported in part by the National Science Foundation grants DMS-9707065 and DMS-9707359.

©1997 American Mathematical Society
The constant $\beta = C_E$ is asymptotically sharp, as $n \to \infty$, and it can also be expressed in a different way, using Mahler’s measure. This problem is of importance in designing algorithms for factoring polynomials with integer coefficients over integers. We refer to [5] and [8] for more information on the connection with symbolic computations.

A further development related to (1.2) for $E = [-a, a]$, $a > 0$, was suggested by P. B. Borwein in [1] (see Theorems 2 and 5 there or see Section 5.3 in [2]). In particular, Borwein proved that if $\deg q = m$ then

$$|q(-a)| \leq \|p\|_{[-a,a]}a^{m-n}2^{n-1} \prod_{k=1}^{m} \left(1 + \cos \frac{2k-1}{2n} \pi \right),$$

where the bound is attained for a monic Chebyshev polynomial of degree n on $[-a, a]$ and a factor q. He also showed that, for $E = [-2, 2]$, the constant in the above inequality satisfies

$$\limsup_{n \to \infty} \left(\frac{2^{m-1} \prod_{k=1}^{m} \left(1 + \cos \frac{2k-1}{2n} \pi \right)}{\cap E} \right)^{1/n}$$

which hints that

$$C_{[-2,2]} = \exp \left(\int_{0}^{2/3} \log (2 + 2 \cos \pi x) \, dx \right) = 1.9081 \ldots ,$$

We find the asymptotically best constant C_E in (1.2) for a rather arbitrary compact set E. The general result is then applied to the cases of a disk and a line segment, so that we recover (1.3)-(1.4) and confirm (1.6).

2. Results

Our solution of the above problem is based on certain ideas from the logarithmic potential theory (cf. [12] or [13]). Let $\text{cap}(E)$ be the logarithmic capacity of a compact set $E \subset \mathbb{C}$. For E with $\text{cap}(E) > 0$, denote the equilibrium measure of E (in the sense of the logarithmic potential theory) by μ_E. We remark that μ_E is a positive unit Borel measure supported on E, supp $\mu_E \subset E$ (see [13, p. 55]).

Theorem 2.1. Let $E \subset \mathbb{C}$ be a compact set, $\text{cap}(E) > 0$. Then the best constant C_E in (1.2) is given by

$$C_E = \max_{u \in \partial E} \frac{\exp \left(\int_{|z-u| \geq 1} \log |z-u| \, d\mu_E(z) \right)}{\text{cap}(E)}.$$

Furthermore, if E is regular then

$$C_E = \max_{u \in \partial E} \exp \left(\int_{|z-u| \leq 1} \log |z-u| \, d\mu_E(z) \right).$$
The above notion of regularity is to be understood in the sense of the exterior Dirichlet problem (cf. [13, p. 7]). Note that the condition \(\text{cap}(E) > 0 \) is usually satisfied for all applications, as it only fails for very thin sets (see [13, pp. 63-66]), e.g., finite sets in the plane. But if \(E \) consists of finitely many points then the inequality (1.2) cannot be true for a polynomial \(p(z) \) with zeros at every point of \(E \) and for its linear factors \(q(z) \). On the other hand, Theorem 2.1 is applicable to any compact set with a connected component consisting of more than one point (cf. [13, p. 56]).

One can readily see from (1.2) or (2.1) that the best constant \(C_E \) is invariant under the rigid motions of the set \(E \) in the plane. Therefore we consider applications of Theorem 2.1 to the family of disks \(D_r := \{ z : |z| < r \} \), which are centered at the origin, and to the family of segments \([-a, a] \), \(a > 0 \).

Corollary 2.2. Let \(D_r \) be a disk of radius \(r \). Then the best constant \(C_{D_r} \), for \(E = D_r \), is given by

\[
C_{D_r} = \begin{cases}
\frac{1}{r}, & 0 < r \leq \frac{1}{2}, \\
\frac{1}{r} \exp \left(\frac{\pi}{2} \int_0^{\pi - 2 \arcsin \frac{r}{2}} \log \left(2r \cos \frac{x}{2} \right) \, dx \right), & r > \frac{1}{2}.
\end{cases}
\]

(2.3)

Note that (1.3)-(1.4) immediately follow from (2.3) for \(r = 1 \). The graph of \(C_{D_r} \), as a function of \(r \), is in Figure 1.

![Figure 1. \(C_{D_r} \) as a function of \(r \).](image)

Corollary 2.3. If \(E = [-a, a] \), \(a > 0 \), then

\[
C_{[-a,a]} = \begin{cases}
\frac{2}{a}, & 0 < a \leq \frac{1}{2}, \\
\frac{2}{a} \exp \left(\int_a^a \frac{\log(t + a)}{\pi \sqrt{a^2 - t^2}} \, dt \right), & a > \frac{1}{2}.
\end{cases}
\]

(2.4)
Observe that (2.4), with $a = 2$, implies (1.6) by the change of variable $t = 2 \cos \pi x$. We include the graph of $C_{[-a,a]}$, as a function of a, in Figure 2.

![Figure 2. $C_{[-a,a]}$ as a function of a.](image)

We now state two general consequences of Theorem 2.1. They explain some interesting features of C_E, which the reader may have noticed in Corollaries 2.2 and 2.3. Let

$$
\text{diam}(E) := \max_{z, \zeta \in E} |z - \zeta|
$$

be the Euclidean diameter of E.

Corollary 2.4. Suppose that $\text{cap}(E) > 0$. If $\text{diam}(E) \leq 1$ then

$$
C_E = \frac{1}{\text{cap}(E)}.
$$

(2.5)

It is well known that $\text{cap}(D_r) = r$ and $\text{cap}([-a,a]) = a/2$ (see [12, p. 135]), which clarifies the first lines of (2.3) and (2.4) by (2.5).

The next Corollary shows how the constant C_E behaves under dilations of the set E. Let αE be the dilation of E with a factor $\alpha > 0$.

Corollary 2.5. If E is regular then

$$
\lim_{\alpha \to +\infty} C_{\alpha E} = 1.
$$

(2.6)

Thus Figures 1 and 2 clearly illustrate (2.6).

We remark that one can deduce inequalities of the type (1.2), for various L_p norms, from Theorem 2.1, by using relations between L_p and L_∞ norms of polynomials on E (see, e.g., [11]).

3. **Proofs**

Proof of Theorem 2.1. The proof of this result is based on the ideas of [3] and [10]. For $u \in \mathbb{C}$, consider a function

$$
\rho_u(z) := \max(|z - u|, 1), \quad z \in \mathbb{C}.
$$
One can immediately see that \(\log \rho_u(z) \) is a subharmonic function in \(z \in \mathbb{C} \), which has the following integral representation (see [12, p. 29]):

\[
(3.1) \quad \log \rho_u(z) = \int \log |z - t| \, d\lambda_u(t), \quad z \in \mathbb{C},
\]

where \(d\lambda_u(u + e^{i\theta}) = d\theta/(2\pi) \) is the normalized angular measure on \(|t - u| = 1|.

Let \(u \in \partial E \) be such that

\[
\|q\|_E = |q(u)|.
\]

If \(z_k, \ k = 1, \ldots, m, \) are the zeros of \(q(z) \), counted according to multiplicities, then

\[
(3.2) \quad \log \|q\|_E = \sum_{k=1}^{m} \log |u - z_k| \leq \sum_{k=1}^{m} \log \rho_u(z_k)
\]

by (3.1).

We use the well known Bernstein-Walsh lemma about the growth of a polynomial outside of the set \(E \) (see [12, p. 156], for example):

Let \(E \subset \mathbb{C} \) be a compact set, \(\text{cap}(E) > 0 \), with the unbounded component of \(\mathbb{C} \setminus E \) denoted by \(\Omega \). Then, for any polynomial \(p(z) \) of degree \(n \), we have

\[
(3.3) \quad |p(z)| \leq \|p\|_E e^{ng_\Omega(z, \infty)}, \quad z \in \mathbb{C},
\]

where \(g_\Omega(z, \infty) \) is the Green function of \(\Omega \), with pole at \(\infty \). The following representation for \(g_\Omega(z, \infty) \) is found in Theorem III.37 of [13, p. 82]).

\[
(3.4) \quad g_\Omega(z, \infty) = \log \left\{ \frac{1}{\text{cap}(E)} + \int |z - t| \, d\mu_E(t) \right\}, \quad z \in \mathbb{C}.
\]

It follows from (3.1)-(3.4) and Fubini’s theorem that

\[
\frac{1}{n} \log \left(\frac{\|q\|_E}{\|p\|_E} \right) \leq \int \log \frac{|p(t)|^{1/n}}{\|p\|_E^{1/n}} \, d\lambda_u(t) \leq \int g_\Omega(t, \infty) \, d\lambda_u(t)
\]

\[
= \log \left\{ \frac{1}{\text{cap}(E)} + \int |z - t| \, d\mu_E(t) \right\}
\]

\[
= \log \left\{ \frac{1}{\text{cap}(E)} + \int \log \rho_u(z) \, d\mu_E(z) \right\}.
\]

Using the definition of \(\rho_u(z) \), we obtain from the above estimate that

\[
\|q\|_E \leq \left(\max_{u \in \partial E} \exp \left(\frac{\int \log \rho_u(z) \, d\mu_E(z)}{\text{cap}(E)} \right) \right)^n \|p\|_E
\]

\[
= \left(\max_{u \in \partial E} \exp \left(\frac{\int_{|z-u| \geq 1} \log |z - u| \, d\mu_E(z)}{\text{cap}(E)} \right) \right)^n \|p\|_E.
\]
Hence

\[C_E \leq \max_{u \in \partial E} \exp \left(\frac{\int_{|z-u| \geq 1} \log |z-u| \, d\mu_E(z)}{\text{cap}(E)} \right). \]

(3.5)

In order to prove the inequality opposite to (3.5), we consider the \(n \)-th Fekete points \(\{a_{k,n}\}_{k=1}^{n} \) for the set \(E \) (cf. \[12\] p. 152). Let

\[p_n(z) := \prod_{k=1}^{n} (z - a_{k,n}) \]

be the Fekete polynomial of degree \(n \). Define the normalized counting measures on the Fekete points by

\[\tau_n := \frac{1}{n} \sum_{k=1}^{n} \delta_{a_{k,n}}, \quad n \in \mathbb{N}. \]

It is known that (see Theorems 5.5.4 and 5.5.2 in \[12\] pp. 153-155)

\[\lim_{n \to \infty} \|p_n\|_{E}^{1/n} = \text{cap}(E). \]

(3.6)

Furthermore, we have the following weak* convergence of counting measures (cf. \[12\] p. 159):

\[\tau_n \rightharpoonup \mu_E, \quad \text{as } n \to \infty. \]

(3.7)

Let \(u \in \partial E \) be a point, where the maximum on the right hand side of (3.5) is attained. Define the factor \(q_n(z) \) for \(p_n(z) \), with zeros being the \(n \)-th Fekete points satisfying \(|a_{k,n} - u| \geq 1 \). Then we have by (3.7) that

\[\lim_{n \to \infty} \|q_n\|_{E}^{1/n} \geq \lim_{n \to \infty} |q_n(u)|^{1/n} = \lim_{n \to \infty} \exp \left(\frac{1}{n} \sum_{|a_{k,n} - u| \geq 1} \log |u - a_{k,n}| \right) \]

\[= \exp \left(\lim_{n \to \infty} \int_{|z-u| \geq 1} \log |u - z| \, d\tau_n(z) \right) \]

\[= \exp \left(\int_{|z-u| \geq 1} \log |u - z| \, d\mu_E(z) \right). \]

Combining the above inequality with (3.6) and the definition of \(C_E \), we obtain that

\[C_E \geq \lim_{n \to \infty} \|q_n\|_{E}^{1/n} \geq \exp \left(\int_{|z-u| \geq 1} \log |z-u| \, d\mu_E(z) \right) \]

\[\frac{\text{cap}(E)}{\text{cap}(E) \cdot \int_{|z-u| \geq 1} \log |z-u| \, d\mu_E(z)}. \]

This shows that (2.1) holds true. Moreover, if \(u \in \partial E \) is a regular point for \(\Omega \), then we obtain by Theorem III.36 of \[13\] p. 82) and (3.4) that

\[\log \frac{1}{\text{cap}(E)} + \int \log |u - t| \, d\mu_E(t) = g_{\Omega}(u, \infty) = 0. \]

Hence

\[\log \frac{1}{\text{cap}(E)} + \int_{|z-u| \geq 1} \log |u - t| \, d\mu_E(t) = - \int_{|z-u| \leq 1} \log |u - t| \, d\mu_E(t), \]

which implies (2.1) by (2.4). \(\square \)
Proof of Corollary 2.2. It is well known [13, p. 84] that \(\text{cap}(D_r) = r \) and \(\frac{d}{d\theta}(r e^{i\theta}) = d\theta/(2\pi) \), where \(d\theta \) is the angular measure on \(\partial D_r \). If \(r \in (0, 1/2] \) then the numerator of \((2.1) \) is equal to 1, so that

\[
C_{D_r} = \frac{1}{r}, \quad 0 < r \leq 1/2.
\]

Assume that \(r > 1/2 \). We set \(z = re^{i\theta} \) and let \(u_0 = re^{i\theta_0} \) be a point where the maximum in \((2.1) \) is attained. On writing

\[
|z - u_0| = 2r \left| \sin \theta - \frac{\theta_0}{2} \right|
\]

we obtain that

\[
C_{D_r} = \frac{1}{r} \exp \left(\frac{1}{2\pi} \int_{\theta_0 + \frac{2\pi}{2}}^{2\pi + \theta_0 - \frac{2\pi}{2}} \log \left| 2r \sin \frac{\theta - \theta_0}{2} \right| d\theta \right)
\]

\[
= \frac{1}{r} \exp \left(\frac{1}{2\pi} \int_{\frac{\pi}{2} - \frac{2\pi}{2}}^{\frac{2\pi}{2} - \pi} \log \left(2r \cos \frac{x}{2} \right) dx \right)
\]

\[
= \frac{1}{r} \exp \left(\frac{1}{\pi} \int_{0}^{\pi} \log \left(2r \cos \frac{x}{2} \right) dx \right),
\]

by the change of variable \(\theta - \theta_0 = \pi - x \). \(\square \)

Proof of Corollary 2.3. Recall that \(\text{cap}([-a, a]) = a/2 \) (see [13, p. 84]) and

\[
d\mu_{[-a,a]}(t) = \frac{dt}{\pi \sqrt{a^2 - t^2}}, \quad t \in [-a, a].
\]

It follows from (2.1) that

(3.8) \[
C_{[-a,a]} = \frac{2}{a} \exp \left(\max_{u \in [-a,a]} \int_{[-a,a] \setminus (u-1,u+1)} \frac{\log |t-u|}{\pi \sqrt{a^2 - t^2}} dt \right).
\]

If \(a \in (0, 1/2] \) then the integral in (3.8) obviously vanishes, so that \(C_{[-a,a]} = 2/a \). For \(a > 1/2 \), let

(3.9) \[
f(u) := \int_{[-a,a] \setminus (u-1,u+1)} \frac{\log |t-u|}{\pi \sqrt{a^2 - t^2}} dt.
\]

One can easily see from (3.9) that

\[f'(u) = \int_{u+1}^{a} \frac{dt}{u(t-u) \sqrt{a^2 - t^2}} < 0, \quad u \in [-a, 1-a],\]

and

\[f'(u) = \int_{-a}^{u-1} \frac{dt}{u(t-u) \sqrt{a^2 - t^2}} > 0, \quad u \in [a-1,a].\]

However, if \(u \in (1-a, a-1) \) then

\[f'(u) = \int_{u+1}^{a} \frac{dt}{u(t-u) \sqrt{a^2 - t^2}} + \int_{-a}^{u-1} \frac{dt}{u(t-u) \sqrt{a^2 - t^2}}.
\]

It is not difficult to verify directly that

\[
\int \frac{dt}{\pi (u-t) \sqrt{a^2 - t^2}} = \frac{1}{\pi \sqrt{a^2 - u^2}} \log \left| \frac{a^2 - ut + \sqrt{a^2 - t^2} \sqrt{a^2 - u^2}}{t - u} \right| + C,
\]
which implies that
\[f'(u) = \frac{1}{\pi \sqrt{a^2 - u^2}} \log \left(\frac{a^2 - u^2 + u + \sqrt{a^2 - (u-1)^2 \sqrt{a^2 - u^2}}}{a^2 - u^2 - u + \sqrt{a^2 - (u+1)^2 \sqrt{a^2 - u^2}}} \right), \]
for \(u \in (1-a, a-1) \). Hence
\[f'(u) < 0, \quad u \in (1-a, 0), \quad \text{and} \quad f'(u) > 0, \quad u \in (0, a-1). \]
Collecting all facts, we obtain that the maximum for \(f(u) \) on \([-a, a]\) is attained at the endpoints \(u = a \) and \(u = -a \), and it is equal to
\[\max_{u \in [-a, a]} f(u) = \int_{1-a}^{a} \frac{\log(t + a)}{\pi \sqrt{a^2 - t^2}} dt. \]
Thus (2.3) follows from (3.8) and the above equation. □

Proof of Corollary 2.5. Note that the numerator of (2.1) is equal to 1, because \(|z-u| \leq 1, \forall z \in E, \forall u \in \partial E\). Thus (2.5) follows immediately. □

Proof of Corollary 2.4. Observe that \(C_E \geq 1 \) for any \(E \in \mathbb{C} \), so that \(C_{\alpha E} \geq 1 \). Since \(E \) is regular, we use the representation for \(C_E \) in (2.2). Let \(T : E \to \alpha E \) be the dilation mapping. Then \(|Tz-Tu| = \alpha |z-u|, \ z, u \in E, \) and \(d\mu_{\alpha E}(Tz) = d\mu_E(z) \). This gives that
\[C_{\alpha E} = \max_{Tu \in \partial(\alpha E)} \exp \left(-\int_{|Tz-Tu| \leq 1} \log |Tz-Tu| d\mu_{\alpha E}(Tz) \right) \]
\[= \max_{u \in \partial E} \exp \left(-\int_{|z-u| \leq 1/\alpha} \log(\alpha |z-u|) d\mu_E(z) \right) \]
\[= \max_{u \in \partial E} \exp \left(-\int_{|z-u| \leq 1/\alpha} \log \alpha - \log(\alpha |z-u|) d\mu_E(z) \right) \]
\[< \max_{u \in \partial E} \exp \left(-\int_{|z-u| \leq 1/\alpha} \log |z-u| d\mu_E(z) \right), \]
where \(\alpha \geq 1 \). Using the absolute continuity of the integral, we have that
\[\lim_{\alpha \to +\infty} \int_{|z-u| \leq 1/\alpha} \log |z-u| d\mu_E(z) = 0, \]
which implies (2.6). □

References

1. P. B. Borwein, *Exact inequalities for the norms of factors of polynomials*, Can. J. Math. **46** (1994), 687-698.
2. P. Borwein and T. Erdélyi, *Polynomials and Polynomial Inequalities*, Springer-Verlag, New York, 1995.
3. D. W. Boyd, *Two sharp inequalities for the norm of a factor of a polynomial*, Mathematika **39** (1992), 341-349.
4. D. W. Boyd, *Sharp inequalities for the product of polynomials*, Bull. London Math. Soc. **26** (1994), 449-454.
5. D. W. Boyd, *Large factors of small polynomials*, Contemp. Math. **166** (1994), 301-308.
6. P. Glesser, *Nouvelle majoration de la norme des facteurs d’un polynôme*, C. R. Math. Rep. Acad. Sci. Canada **12** (1990), 224-228.
7. A. Granville, *Bounding the coefficients of a divisor of a given polynomial*, Monatsh. Math. **109** (1990), 271-277.
[8] S. Landau, *Factoring polynomials quickly*, Notices Amer. Math. Soc. 34 (1987), 3-8.

[9] M. Mignotte, *Some useful bounds*, In “Computer Algebra, Symbolic and Algebraic Computation” (B. Buchberger et al., eds.), pp. 259-263, Springer-Verlag, New York, 1982.

[10] I. E. Pritsker, *Products of polynomials in uniform norms*, to appear in Trans. Amer. Math. Soc.

[11] I. E. Pritsker, *Comparing norms of polynomials in one and several variables*, J. Math. Anal. Appl. 216 (1997), 685-695.

[12] T. Ransford, *Potential Theory in the Complex Plane*, Cambridge University Press, Cambridge, 1995.

[13] M. Tsuji, *Potential Theory in Modern Function Theory*, Chelsea Publ. Co., New York, 1975.

Department of Mathematics, 401 Mathematical Sciences, Oklahoma State University, Stillwater, OK 74078-1058, U.S.A.

E-mail address: igor@math.okstate.edu