PHOTOSYNTHETIC TRAITS OF CANOPY LEAVES OF *Dinizia excelsa* (Fabaceae)

Keila Rêgo Mendes1*, Marcos Bento1* and Ricardo Antonio Marenco2*

1 Received on 28.06.2018 accepted for publication on 30.08.2019.
2 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Botânica, Manaus, AM - Brasil. E-mail: <keila.inpa@gmail.com>.
3 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Ciências de Florestas Tropicais, Manaus, AM - Brasil. E-mail: <bento.marcos@gmail.com>.
4 Instituto Nacional de Pesquisas da Amazônia, Coordenação de Dinâmica Ambiental, Manaus, AM - Brasil. E-mail: <rmarenco@inpa.gov.br>.

*Corresponding author.

ABSTRACT – The response of leaf traits to irradiance and [CO₂] in canopy leaves of several tall trees remains to be determined under natural conditions. Thus, the objective of this work was to determine gas-exchange parameters in sun and shade leaves of *Dinizia excelsa* Ducke in 35–45 m tall trees of Central Amazonia. We assessed light saturated photosynthesis (*A*_\text{\text{pot}}), stomatal conductance (*g*\text{\text{s}}), mesophyll conductance (*g*\text{\text{c}}), transpiration rates (*E*), water use efficiency (WUE), intrinsic water use efficiency (WUE\text{\text{i}}), maximum electron transport rate (*J*\text{\text{\text{max}}}), the maximum carboxylation rate of Rubisco (*V*\text{\text{max}}\text{\text{cmax}}), intercellular CO₂ concentration (*C*\text{\text{i}}) specific leaf area (SLA) and fresh leaf thickness. We also estimated the CO₂ concentration at the chloroplast level (*C*\text{\text{c}}) and determined the light and CO₂ saturated photosynthesis (*A*\text{\text{pot}}). *A*\text{\text{pot}} was obtained at light saturation (1200 μmol m\text{-2} s\text{-1}), whereas *A*\text{\text{pot}}, *V*\text{\text{max}}\text{\text{cmax}} and *g*\text{\text{s}} were obtained after constructing *A*/*C*\text{\text{i}} response curves. There was a significant difference between sun and shade leaves in *C*\text{\text{i}} and *C*\text{\text{c}} but for other parameters no differences were observed. *A*\text{\text{pot}} was positively correlated with *g*\text{\text{s}}, *g*\text{\text{c}}, *E* and *J*\text{\text{max}} (p ≤ 0.05), as well as between *J*\text{\text{max}} and *V*\text{\text{max}}. Thicker leaves had higher values of *A*\text{\text{pot}}, *g*\text{\text{s}}, *C*\text{\text{i}} and *E*. *A*\text{\text{pot}} was limited by the electron transport rate and by low *g*\text{\text{s}}. The canopy of the tree caused a decrease in irradiance (30–40%), but this reduction was not enough to reduce important photosynthetic parameters. Thus, all resources allocated to leaf production led to maximum use of the solar energy received by the leaves, which allowed this species to grow at fairly rapid rates.

Keywords: Mesophyll conductance; Maximum carboxylation rates of Rubisco; Central Amazonia.

CARACTERÍSTICAS FOTOSSINTÉTICAS DE FOLHAS DE DOSSEL DE *Dinizia excelsa* (Fabaceae)

RESUMO – A resposta das características foliares à irradiância e concentração de CO₂ em folhas de dossel de várias espécies arbóreas de alto porte ainda permanece para ser determinada em condições naturais. Assim, o objetivo deste trabalho foi determinar parâmetros de troca gásosa em folhas de sol e sombra de *Dinizia excelsa* Ducke, em árvores de 35–45 m de altura, na Amazônia Central. Foram avaliados fotosíntese saturada de luz (*A*_\text{\text{pot}}), condutância estomática (*g*\text{\text{s}}), condutância do mesofi lo (*g*\text{\text{c}}), taxa de transpiração (*E*), eficiência de uso de água (WUE), eficiência intrínseca de uso de água (WUE\text{\text{i}}), taxa máxima de transporte de elétrons (*J*\text{\text{max}}), taxa máxima de carboxilação da Rubisco (*V*\text{\text{max}}\text{\text{cmax}}), concentração de CO₂ intercelular (*C*\text{\text{i}}), área foliar específica (SLA) e a espessura da folha fresca. Também foi estimada a concentração de CO₂ no nível de cloroplasto (*C*\text{\text{c}}) e determinada à fotosíntese saturada de luz e CO₂ (*A*\text{\text{pot}}). *A*\text{\text{pot}} foi obtido com saturação de luz (1200 μmol m\text{-2} s\text{-1}), enquanto que *A*\text{\text{pot}}, *V*\text{\text{max}}\text{\text{cmax}} e *g*\text{\text{s}} foram obtidos após a construção de uma curva de resposta *A*/*C*\text{\text{i}}. Houve diferença significativa entre as folhas de sol e sombra em *C*\text{\text{i}} e *C*\text{\text{c}} mas nenhuma diferença foi observada para outros parâmetros avaliados. *A*\text{\text{pot}} foi positivamente correlacionado com *g*\text{\text{s}}, *g*\text{\text{c}}, *E* e *J*\text{\text{max}}. As folhas mais espessas apresentaram maiores valores de *A*\text{\text{pot}}, *g*\text{\text{s}}, *C*\text{\text{i}} e *E*. *A*\text{\text{pot}} foi limitado pela taxa de transporte de elétrons e pelo baixo *g*\text{\text{s}}. A folhagem da copa da árvore causou diminuição da luminosidade (30–40%), mas essa redução...
mostro-se insuficiente para reduzir parâmetros importantes da fotosíntese. Dessa forma, todo recurso alocado a produção de folhas levou a um máximo aproveitamento da energia solar recebida pelas folhas, possibilitando que esta espécie tenha um crescimento moderadamente rápido.

Palavras-Chave: Condução do mesofílo; Taxa de carboxilação da Rubisco; Amazônia Central.

1. INTRODUCTION

In the last decades the effect of the increase of atmospheric CO$_2$ concentration on plant physiology has been intensively investigated due to its presumed consequences on climate changes (Manter and Kerrigan, 2004; Knauer et al., 2019). It is well-known that stomata play an important role on carbon uptake, as they impose the first major diffusional limitation to CO$_2$ diffusion, from the atmosphere to carboxylation sites (Nascimento and Marencio, 2013; Xiong et al., 2018). The photosynthetic capacity of a leaf depends on diffusive (i.e. stomatal conductance – g_s and mesophyll conductance – g_m) and non-diffusive factors (i.e. the maximum carboxylation rate of Rubisco – V_{cmax} and maximum electron transport rate, J_{max}). V_{cmax} and J_{max} can be obtained from response curves of photosynthesis to intercellular CO$_2$ concentration - A/C_i (Farquhar et al., 1980; Stinziano et al., 2019). Both V_{cmax} and J_{max} are important parameters in modeling studies that aim to predict the impacts of climate change on plant functioning (Knauer et al., 2019).

Among the factors that affect photosynthesis, the response of stomatal functioning to environmental and endogenous factors has been the subject of much research (Terashima et al., 2011; Mendes and Marencio, 2014; Marencio et al., 2017). Although g_m is also quite relevant to CO$_2$ diffusion and photosynthesis, it attracted less attention in the past decades, but in recent studies, the importance of g_m to carbon assimilation has been highlighted (Flexas et al., 2016; Knauer et al., 2019). Nevertheless, research is still needed to assess the relevance of g_m in tropical species, particularly the Amazonian species.

The strata of tropical forests, as well as gap opening and closing lead to the formation of a light gradient in the canopy of a tree. This gradient can lead to changes in the strategy of the leaf for light capture and light use efficiency, and thereby to variations in leaf structure and physiology (Givnish, 1984; Clark and Clark, 1992; Marencio et al., 2017). In fact, light is probably the most important environmental factor affecting plant establishment, growth and survival (Niinemets et al., 2015; Gitelson et al., 2017).

The angelim (Dinizia excelsa Ducke, Fabaceae) is an emerging tree that can reach 50–60 m in height and 1.0 to 1.8 m in diameter (Lorenzi, 1992). It has a dense wood -0.91 g cm$^{-3}$ (Fearnside, 1997), and trees over 20 cm in diameter have a growth rate of 5.30 mm per year (Schwartz et al., 2016). In the emergent phase, the angelim canopy stands out in the forest landscape; hence it is not shaded by neighboring trees. It has wide distribution in the Brazilian Amazon, can occur in density of one individual per 6 ha, and the trees have good silvicultural performance (Dick, 2001; Ferreira et al., 2004). Angelim is economically important in silvicultural systems and in the timber industry. The wood of angelim is resistant to the attack of fungi and termites, and it is used in the manufacture of decorative plates, construction, shipbuilding, woodworking, and carpentry (Melo and Varela, 2006; Oliveira et al., 2008). In addition, the angelim can also be used in garden and urban afforestation (Lorenzi, 1992).

Gas exchange studies of Amazonian tree species under natural conditions are relevant due to current trends in global warming and atmospheric CO$_2$ enrichment (Magrin et al., 2014). Thus, measurements of gas exchange parameters (e.g. g_s, A_{max}, V_{cmax} and J_{max}) in Amazonian species is of paramount importance for the construction of models aimed at predicting the performance of Amazonian ecosystems. Thus, the objective of this work was to determine the effect of leaf position in the canopy stratum on leaf traits of angelim trees in the Central Amazon. Leaf trait measurements included light saturated photosynthesis (A_{max}), g_s, g_m, transpiration (E), water use efficiency (WUE), intrinsic water use efficiency (WUEi), J_{max}, V_{cmax}, intercellular CO$_2$ concentration (C_i), specific leaf area (SLA) and fresh leaf thickness (FLT). It was also estimated the concentration of CO$_2$ at chloroplast level (C_s) and determined light and CO$_2$ saturated photosynthesis (A_{po}).
2. MATERIALS AND METHODS

The study was conducted at a 10-ha plot of a dense terra-firme forest fragment at the Colosso Reserve (02°24’13.2”S, 59°51’54”W). The region has a humid equatorial climate, with annual precipitation of 2240 mm, distributed over a rainy season from November to May (> 180 mm per month) and a mild dry season from June to September (≤ 100 mm per month). October is a transitional month. The average annual air temperature is 26.7°C, and the average relative humidity is 84%.

In this study, six trees (35-45 m in height and 1.30-2.00 m in diameter) of angelim (Dinizia excelsa Ducke, Fabaceae) were used. In the experiment we used a completely randomized design with two treatments and six replications (trees). The treatments were the leaves from two positions in the canopy: upper part of the tree (hereinafter referred to as sun leaves, which were under direct solar radiation) and lower part of the canopy (shade leaves), which received about 60-70% of total solar radiation. From these canopy strata branches were detached for data collection. They were about 7 to 12 cm in diameter and approximately 12 m in length. All branches were above the canopy of neighboring trees and the lower branches of a tree were shaded only by the upper ones. We used detached branches because of the impossibility of accessing the canopy of the tree for data collection.

To assess the effect of branch detachment on stomatal conductance (g_s), a previous study was carried out using two gas exchange systems (Li-6400, Li-Cor, Lincoln, NE) with a 2-cm2 integrated fluorescence chamber head (Li-6400-40, Li-Cor). Just after detachment, the branch was taken to the gas exchange instrument for data collection. The time lag from branch detachment up to the leaflet insertion in the leaf chamber of the gas exchange system was about 10 minutes. After a stabilization period (5–10 min) at ambient CO$_2$ (380 µmol mol$^{-1}$), photosynthetically active radiation (PAR) of 1200 µmol m$^{-2}$ s$^{-1}$ (light saturation) and ambient temperature (27 °C), photosynthetic rates (A) as a function of the intercellular CO$_2$ concentration – C_i (A/C_i response curves) were measured. The A/C_i response curves were generated by increasing the reference CO$_2$ concentration from 50 to 2000 µmol mol$^{-1}$ in nine steps, i.e. 380, 250, 100, 50, 380, 550, 1000, 1,500 and 2,000 µmol mol$^{-1}$ (Long and Bernacchi, 2003). Light saturated photosynthesis (A_{sat}) was determined at light saturation (a value determined in a previous experiment) and a CO$_2$ concentration of 380 µmol mol$^{-1}$. Whereas the light and CO$_2$ saturated photosynthesis (hereinafter termed potential photosynthesis – A_{pot}) was measured at light saturation and a reference CO$_2$ concentration of 2000 µmol mol$^{-1}$. The maximum carboxylation rate of Rubisco (V_{cmax}) and maximum electron transport rate (J_{max}) were calculated according to Farquhar et al. (1980).

$$A_{i} = \frac{V_{cmax}(C; \Gamma^*)}{[C_i + K_c(1+O/K_c)]}$$

$$A_{f} = \frac{J_{max}(C; \Gamma^*)}{[(4C_i + 8\Gamma^*)]}$$

Where A_i and A_f denote the net photosynthetic rates limited by Rubisco activity and electron transport rate (A), respectively. Γ^* represents the CO$_2$ compensation point in the absence of respiration in the light; C_i is the intercellular CO$_2$ concentration, O represents the oxygen concentration in the intercellular spaces; K_c and K_s represent the Michaelis-Menten constant of Rubisco for carboxylation and oxygenation, respectively. V_{cmax} values were standardized to 25 °C (Medlyn et al., 1999).

The quantum yield of the photosystem II system (Φ_{psII}) was calculated as previously described (Nascimento and Marenco, 2013). C_i values were determined according to Epron et al. (1995), whereas g_m was obtained as follows: $g_m = A/(C_i - C)$. We also calculated, water use efficiency (WUE) the photosynthesis to transpiration ratio (A/E) and the intrinsic water use efficiency (WUEi) the A/g_s ratio. Data were collected...
from September to November 2010 from two healthy and physiologically mature leaflets per stratum, and from six trees and two canopy strata per tree.

To assess the effect of treatments on leaf morphology, fresh leaflet thickness (FLT) was measured in two leaflets from each canopy stratum on each tree with digital calipers (0.01 mm accuracy). The leaflet thickness was determined in the middle portion of the leaves, avoiding major veins. The leaf area was determined with an area meter (Li-3000, Li-Cor), and the dry matter was determined after oven-drying at 72°C until constant mass. Specific leaf area (SLA) was determined as the leaf area to leaf mass ratio.

For further information we also measured the chlorophyll content, SPAD values, fresh leaf thickness (FLT), and absolute chlorophyll content (a, b and a + b) in sun and shade leaflets of *Dinizia excelsa*. Different capital letters denote significant differences (p = 0.05, t-test) between the canopy strata (sun and shade leaflet).

Table 1 – Light saturated photosynthesis (A_{max}), light and CO$_2$ saturated photosynthesis (A_{pot}), stomatal conductance (g_s), mesophyll conductance (g_m), intercellular CO$_2$ concentration (C_i), chloroplast CO$_2$ concentration (C_c), vapor pressure deficit (VPD), leaf temperature (T_{leaf}), water use efficiency (WUE), intrinsic water use efficiency (WUE$_i$), the maximum carboxylation rate of Rubisco (V_{cmax}), electron transport rate (J_{max}), F_v/F_m ratio, specific leaf area (SLA), chlorophyll content, SPAD values, fresh leaf thickness (FLT), and absolute chlorophyll content (a, b and a + b) in sun and shade leaflets of *Dinizia excelsa*. Different capital letters denote significant differences (p = 0.05, t-test) between the canopy strata (sun and shade leaflet). Each value represents the mean (± SE) of six trees and two leaflets per tree.

PARAMETER	SUN LEAFLET	SHADE LEAFLET
A_{max} (µmol m$^{-2}$ s$^{-1}$)	8.7 ± 1.3 A	5.9 ± 0.7 A
A_{pot} (µmol m$^{-2}$ s$^{-1}$)	24.1 ± 4.0 A	19.3 ± 2.1 A
g_s (mol m$^{-2}$ s$^{-1}$)	0.13 ± 0.03 A	0.07 ± 0.02 A
g_m (mol m$^{-2}$ s$^{-1}$ bar$^{-1}$)	0.07 ± 0.009 A	0.05 ± 0.005 A
C_i (µmol mol$^{-1}$)	232.6 ± 11.4 A	201.8 ± 11.6 B
C_c (µmol mol$^{-1}$)	107.9 ± 5.3 A	93.8 ± 5.4 B
V_{cmax} (µmol m$^{-2}$ s$^{-1}$)	41.1 ± 4.9 A	38.4 ± 3.3 A
J_{max} (µmol m$^{-2}$ s$^{-1}$)	101.2 ± 14.6 A	80.6 ± 8.3 A
VPD (kPa)	1.8 ± 0.2 A	1.9 ± 0.2 A
T_{leaf} (°C)	33.4 ± 0.8 A	33.6 ± 0.8 A
WUE (mmol mol$^{-1}$)	4.4 ± 0.6 A	5.2 ± 0.2 A
WUE, (µmol mol$^{-1}$)	76.4 ± 9.5 A	108.3 ± 13.3 A
F_v/F_m (unitless)	0.78 ± 0.005 A	0.78 ± 0.005 A
SLA (m2 kg$^{-1}$)	7.8 ± 0.5 A	7.5 ± 0.4 A
FLT (mm)	0.20 ± 0.003 A	0.16 ± B
SPAD	68.1 ± 4.4 A	57.2 ± 3.7 A
Chlorophyll a (µmol m$^{-2}$)	362.1 ± 42.7 A	317.6 ± 19.4 A
Chlorophyll b (µmol m$^{-2}$)	93.6 ± 26.0 A	98.1 ± 19.3 A
Chlorophyll a + b (µmol m$^{-2}$)	470.8 ± 39.9 A	415.7 ± 27.9 A
Photosynthetic traits of canopy leaves...

ropophyll content of leaf pigment in 80% acetone and measured the SPAD values with a chlorophyll meter (SPAD-502-Minolta, Japan), as previously described (Mendes et al., 2013; Gouvêa and Marenco, 2018).

Data were subjected to analysis of variance (ANOVA) and the t test was used to determine significant differences between sun and shade leaves. The relationships between quantitative variables (e.g. \(A_{\text{max}} \) versus \(V_{\text{cmax}} \), \(A_{\text{pot}} \) versus \(J_{\text{max}} \)) were examined by regression analysis. Pearson’s correlation coefficient was used to evaluate the relationships between gas exchange variables and morphological traits (SLA and leaflet thickness). Statistical analyzes were performed using Statistica 10.0 software (StatSoft, Tulsa, OK, USA).

3. RESULTS

There was no significant difference between sun and shade leaves in \(A_{\text{max}}, A_{\text{pot}}, C_{i}, g_{s}, V_{c}, V_{\text{cmax}}, V_{\text{m}}, V_{\text{pot}}, T_{\text{leaf}}, WUE, WUEi \) SPAD values, and chlorophyll contents (p ≥ 0.05; Table 1). Only \(C_{i} \) and \(C_{c} \) showed differences between canopy strata, i.e. sun versus shade leaflet (p ≤ 0.05; Table 1). On average, the \(A_{\text{max}} \) and \(A_{\text{pot}} \) values were 8.7 and 24.1 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) for the sun leaves, whereas shade leaves had \(A_{\text{max}} \) and \(A_{\text{pot}} \) values of 5.9 and 19.3 \(\mu \text{mol m}^{-2} \text{s}^{-1} \), respectively (Table 1). In ambient \([\text{CO}_2]\), the \(g_{s} \) values were 46% (sun leaves) and 29% (shade leaves) lower than those recorded for \(g_{s} \) (Table 1). The maximum quantum efficiency of PS II (\(F_{v}/F_{m} \) ratio) did not vary between sun and shade environment. There was a significant effect of the ambient condition on FLT (p ≤ 0.05; Table 1). Mean FLT values were 0.20 and 0.16 mm for the sunny and shade conditions, respectively. However, SLA showed no significant differences between the sun and shade environment (p ≥ 0.05; Table 1). As the ambient condition had no effect on gas exchange parameters (\(A_{\text{max}}, A_{\text{pot}}, g_{s} \) and \(g_{m} \)), data from both environments were pooled for correlation analysis.

\(A_{\text{max}} \) was positively correlated with \(g_{s} \) (r = 0.95, Table 2), \(g_{m} \) (r = 0.96), and \(E \) (r = 0.92). However, \(A_{\text{max}} \) negatively correlated with VPD (r = –0.52), \(T_{\text{leaf}} \) (r = –0.32) and WUE (r = –0.28). There was a positive correlation between \(g_{s} \) and \(g_{m} \) (r = 0.83, Table 2), and, it was also found that \(g_{s} \) decreased with increasing in VPD and \(T_{\text{leaf}} \) (r = –0.65 and r = –0.46; respectively). However, there was a weak correlation between \(g_{m} \) and VPD (r = –0.37) and \(T_{\text{leaf}} \) (r = –0.20), and between WUE and \(g_{s} \) (r = –0.30) and \(g_{m} \) (r = –0.155). WUE and WUEi were positively correlated with the \(g_{m}/g_{s} \) ratio (r = 0.99; Fig. 1).

At ambient \([\text{CO}_2]\), \(C_{i} \) and \(C_{c} \) were positively correlated with \(g_{s} \) (r = 0.78) and \(g_{m} \) (r = 0.42, Table 2). There was also a positive correlation between \(J_{\text{max}} \) and \(V_{\text{cmax}} \) (r = 0.81), and between \(V_{\text{cmax}} \) (and \(J_{\text{max}} \)) and \(A_{\text{max}} \) and \(A_{\text{pot}} \) (Table 2).

\(V_{\text{cmax}} \) and \(J_{\text{max}} \) were positively correlated with \(g_{s} \) (r ≥ 0.6) and \(g_{m} \) (r ≥ 0.9, Table 2). Gas exchange parameters were correlated with SLA and FLT (Table 2). Thicker leaves had higher values of \(A_{\text{max}} \) (r = 0.34), \(C_{i} \) (r = 0.52), \(C_{c} \) (r = 0.52) and \(E \) (r = 0.38). SLA was negatively correlated with VPD, \(T_{\text{leaf}} \), \(V_{\text{cmax}} \) and \(J_{\text{max}} \) (p ≤ 0.05). On the other hand, FLT had no effect on \(g_{s} \), \(V_{\text{cmax}} \) and \(J_{\text{max}} \) (p ≥ 0.05). Finally, SLA increased with increasing LIFT, which was not expected (r = 0.58, p ≤ 0.001). In Figure 2, irrespective of the environment (sun – shade), the initial portion of the curve showed a linear association between photosynthesis (\(A \)) and \(C_{i} \) and \(C_{c} \), indicating a limitation imposed by Rubisco carboxylation rate. The increase of both \(C_{i} \) and \(C_{c} \) led \(A \) to increase to the point of photosynthesis limitation by electron transport rate (dashed line in Figure 2). Below the colimitation point (\(C_{i} \) values of 433–544 \(\mu \text{mol mol}^{-1} \), indicated by the vertical line in Figure 2 A, B), \(A \) was limited by Rubisco carboxylation rates. The \(C_{i} \) values at the colimitation point were 201–252 \(\mu \text{mol mol}^{-1} \) (indicated by the vertical line in Figure 2 C, D). On the other hand, above the colimitation point (high \([\text{CO}_2]\) concentration) \(A \) was limited by electron transport rates (dashed lines in Figure 2).

The \(g_{m} \) values varied as a function of \(C_{i} \) or \(C_{c} \) (Fig. 3). At low \([\text{CO}_2]\) concentrations (\(C_{c} \leq 400 \mu \text{mol mol}^{-1} \)), \(g_{m} \) increased linearly with increasing \(C_{i} \) or \(C_{c} \) (Fig. 3). On the contrary, \(g_{m} \) decreased at high \([\text{CO}_2]\) concentrations (Fig. 3). In comparison with \(g_{m} \) values recorded at ambient \([\text{CO}_2]\) (\(C_{c} \) of 200-300 \(\mu \text{mol mol}^{-1} \)), \(g_{m} \) decreased 70% at high \([\text{CO}_2]\) concentration (Fig. 3).

4.DISCUSSION

The mean \(F_{v}/F_{m} \) value recorded in this study (0.78; Table 1) is within the range of values for non-stressed leaves, i.e. \(F_{v}/F_{m} \) of about 0.80 (Björkman...
and Demmig, 1987). Very low Fv/Fm values indicate the occurrence of photoinhibition. Therefore, it is concluded that in this study there was no photoinhibition of photosynthesis in D. excelsa.

The Amax values observed in this study are similar to those found in other studies, such as D. excelsa (Miranda et al., 2005; Minquartia guianensis, Coussapoa orthoneura and Protium opacum (Magalhães et al., 2009; Marenco et al., 2014). The chloroplast CO2 concentration (Cc) was around 50% lower than the concentration observed in the intercellular space (Table 1). Taking Cc as the base line, the decline in Cc is due to the barriers against CO2 diffusion, from the intercellular space to the carboxylation site in the chloroplast (Niinemets et al., 2015; Tosens and Lla-

Table 2 – Pearson’s correlation matrix between light saturated photosynthesis (Amax), light and CO2 saturated photosynthesis (Apot), stomatal conductance (g), mesophyll conductance (g), intercellular CO2 concentration (Ci), chloroplast CO2 concentration (Cc), transpiration (E), vapor pressure deficit (VPD), leaf temperature (Tleaf), water use efficiency (WUE), intrinsic water use efficiency (WUEi), the maximum carboxylation rate of Rubisco (Vcmax), electron transport rate (Jmax), specific leaf area (SLA), fresh leaf thickness (FLT) in Dinizia excelsa. *: significant (p ≤ 0.05); **: significant (p ≤ 0.01), ns: not significant (p > 0.05).

Parameter	Amax	Apot	g	Ci	Cc	E	VPD	Tleaf	WUE	WUEi	Vcmax	Jmax	SLA	FLT
Amax	0.75**	0.95**	0.88**	0.66**	0.92**	-0.52**	-0.32**	-0.28**	-0.40**	0.82**	0.81**	-0.30**	0.35**	-0.30**
Apot	-0.60**	-0.82**	-0.83**	-0.42**	-0.42**	-0.37**	-0.37**	-0.33**	-0.37**	0.92**	0.94**	-0.30**	0.46**	-0.30**
g	0.96**	0.82**	0.83**	0.42**	0.42**	0.74**	0.74**	0.74**	0.74**	0.74**	0.74**	0.74**	0.74**	0.74**
Ci	0.66**	0.30**	0.78**	0.42**	0.42**	1.0**	1.0**	1.0**	1.0**	1.0**	1.0**	1.0**	1.0**	1.0**
Cc	0.92**	0.74**	0.90**	0.85**	0.74**	-0.34**	-0.29**	-0.29**	-0.29**	0.92**	0.92**	-0.29**	0.42**	-0.29**
E	-0.32**	-0.03ns	-0.46**	-0.20ns	-0.38**	-0.38**	-0.20ns	-0.38**	-0.38**	-0.20ns	-0.38**	-0.38**	-0.20ns	-0.38**
VPD	-0.21**	-0.21ns	-0.15ns	-0.09**	-0.09**	-0.09**	-0.09**	-0.09**	-0.09**	-0.09**	-0.09**	-0.09**	-0.09**	-0.09**
Tleaf	0.82**	0.73**	0.65**	0.92**	0.21ns	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**
WUE	0.82**	0.73**	0.65**	0.92**	0.21ns	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**
WUEi	0.82**	0.73**	0.65**	0.92**	0.21ns	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**
Vcmax	0.82**	0.73**	0.65**	0.92**	0.21ns	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**
Jmax	0.82**	0.73**	0.65**	0.92**	0.21ns	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**	0.67**
SLA	-0.05ns	-0.30*	0.10ns	-0.18ns	0.24ns									
FLT	0.34*	0.08ns	0.20ns	-0.20ns	0.20ns									

Figure 1 – Water use efficiency (WUE) and intrinsic water use efficiency (WUEi) as a function of the gmax/gs ratio in Dinizia excelsa. Each symbol corresponds to the mean of two leaves per tree.
nisto, 2018). The greatest resistance to internal diffusion of CO$_2$ seems to be related to plasma membranes and chloroplast membranes (Warren, 2009; Peguero-Pina et al., 2017).

At the ambient CO$_2$ concentration (380 µmol mol$^{-1}$) there was a close relationship between A_{max} and g_s and g_m (Table 2). This occurs because both conductances determine the CO$_2$ flux to the carboxylation site in the chloroplast (Flexas et al., 2013). Stomatal and mesophyll resistance to CO$_2$ flux account for about 40% of photosynthesis limitation in well-irrigated plants (Yamori et al., 2006; Tosens et al., 2016). Thus, the strong correlation between g_s and g_m indicates a coupling between these parameters. The high correlation between A_{max} and g_s (and g_m) suggests that diffusive factors were of paramount importance for determining carbon assimilation in D. excelsa. The decline of g_s under high VPD conditions corroborates that some ambient conditions can lead to a reduction in photosynthetic rates. Park and Furukawa (1999) showed that photosynthesis and stomatal conductance measured in tropical trees decreased due to increased VPD. Stomatal response to air humidity, temperature and VPD has been studied for decades, and it is known that stomata respond to changes in leaf tissue water content or to variations in guard cell water potential (Buckley, 2019).

Figure 2 – Photosynthesis as a function of the intercellular [CO$_2$], C_i (A, B) and chloroplast [CO$_2$], C_c (C, D) in sun leaflet (open circle, ○) and shade leaflet (closed circle, ●). The solid line shows the photosynthesis limitation imposed by Rubisco carboxylation rate (A_c), and the dashed line indicates the photosynthesis limitation imposed by electron transport rate (A_j). The vertical solid line shows the value of C_i and C_c at the colimitation point of A_c and A_j. The numerals (in the panels) show the values for C_i and C_c in µmol mol$^{-1}$ at the colimitation point. Each symbol represents the mean of six trees and two leaflets per tree.

Figura 2 – Fotossíntese em função da concentração intercelular de [CO$_2$], C_i (A, B) e da [CO$_2$] no cloroplasto C_c (C, D) no folíolo de sol (círculo aberto, ○) e folíolo de sombra (círculo fechado, ●). A linha sólida mostra a limitação da fotossíntese imposta pela taxa de carboxilação de Rubisco (A_c), e a linha tracejada indica a limitação da fotossíntese imposta pela taxa de transporte de elétrons (A_j). A linha vertical sólida mostra o valor de C_i e C_c no ponto de colimitação de A_c e A_j. Os numerais (nos painéis) mostram os valores para C_i e C_c em µmol mol$^{-1}$ no ponto de colimitação. Cada símbolo representa a média de seis árvores e dois folhetos (de duas folhas) por árvore.
Transpiration (E) was strongly correlated with g_s, which is expected as the stomata play a key role in the control of leaf transpiration. Although g_m is expected to have little impact on leaf transpiration (Ouyang et al., 2017), in this study we found a positive correlation between g_s and g_m, which helps to explain the positive correlation between g_m and WUEi, as reported by Jahan et al. (2014). A high g_m/g_s ratio contributes to increased water use efficiency, particularly under water stress. Thus, it has been suggested that plants with potential for acclimation to drought have a high g_m/g_s ratio (Giuliani et al., 2013). The strong relationship observed between the g_m/g_s ratio and WUE and WUEi found in this study supports the hypothesis of coupling between g_s and g_m. These results suggest that in *Dinizia excelsa* water efficiency can be increased by improving g_m.

Besides g_s, g_m also affects the photosynthetic capacity of the leaf, as shown by the close correlation between V_{cmax}, J_{max}, and g_m (Table 2). Indeed, V_{cmax} and J_{max} were more influenced by g_m than by g_s. In Figure 2, one can see that Rubisco carboxylation rate was the most limiting factor for photosynthesis (up to the CO$_2$ concentration indicated by the arrows), which is in agreement with Sage and Kubien (2007) and Mendes et al. (2017). At higher CO$_2$ concentrations, however, the electron transport rate became the most limiting factor a closer correlation between A_{pot} and J_{max} was observed, which is in agreement with Mendes et al., (2017).

It was observed that g_m showed a rapid response (minutes) to changes in CO$_2$ concentration. However, it is unknown whether this response is a pattern also shared by other Amazonian tree species. At C_i values of 0–400 μmol mol$^{-1}$ ($C_c < 200$ μmol mol$^{-1}$), g_m increased linearly with increasing CO$_2$ until it reached a maximum value (at $C_c \approx 300$ μmol mol$^{-1}$). On the other hand, at high C_i values g_m decreased with increasing CO$_2$ concentration, which suggests that at that CO$_2$ condition photosynthesis is no longer limited by the availability of CO$_2$ at the intercellular spaces but by mesophyll resistance and electron transport rates.

Leaf thickness is one of the key leaf traits that affect g_m (Terashima et al., 2011). However, the significance of this effect was not detected in *D. excelsa* probably because there was little variation in FLT (0.16–0.21 mm). However, it is worth noting that FLT positively affected g_s, C_i and C_c. This suggests that in thicker leaves there was an increase in the volume of intercellular space, perhaps as a mechanism to maximize mesophyll CO$_2$ concentration. A large intercellular space can contribute to reduce the effect CO$_2$
limitation under partial stomatal closure (Shao et al., 2008). SLA values recorded at the lower part of the canopy (shade leaflets, Table 2) were lower than those reported for understory trees (12 and 22 m² kg⁻¹) in the central Amazon (Mendes et al., 2013), which indicates that even leaves of the innermost part of the canopy were receiving relatively high levels of solar radiation. An increase in SLA is often related to a decrease in leaf thickness. Thus, the results presented in this study differ from the classical pattern that shows a negative relationship between SLA and leaf thickness (Niinemets, 1999). This discrepancy can be attributed to the fact that in this study leaf thickness was measured in fresh leaves, and variation in leaf water contents may lead to divergence with the most common SLA-leaf thickness relationship.

5. CONCLUSIONS

The canopy leaves of angelim causes a decrease in irradiance (30-40%), which does not appear to be high enough to negatively affect important gas exchange parameters, such as \(V_{\text{cmax}} \) and \(J_{\text{max}} \). This is quite important for the carbon economy of the tree, as it allows a maximum use of the solar energy received by the leaves. This ultimately contributes to enhance carbon uptake. As a result this species has a fairly fast growth rate, even when it produces wood of high density. On the other hand, an open canopy can lead to high transpiration rate, which might have a negative impact on photosynthesis if drought periods become longer as predicted by climate models.

In the study it is shown that the mesophyll resistance plays an important role in CO₂ diffusion. Therefore, it is recommended whenever possible to include \(g_m \) values in gas exchange calculations to obtain more accurate values of photosynthetic parameters. At low [CO₂] the photosynthetic rates were limited by Rubisco carboxylation rate, but at high [CO₂] photosynthesis was limited by both \(g_m \) and the electron transport rate. Changes in CO₂ concentrations have an effect on \(g_m \), which has its maximum at \(C_a \) values of about 300 μmol mol⁻¹. However, a substantial increase in atmospheric CO₂ concentration may lead to an increase (> 50%) of the mesophyll resistance. The results presented in this study may be useful in the construction of climate models that aim to predict the effects of global climate change on the Amazon ecosystem.

6. ACKNOWLEDGEMENTS

To the Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTI-INPA). We thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for scholarships (KRM and MB) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for fellowship to RAM.

7. REFERÊNCIAS

Björkman O, Demmig B. Photon yield of O₂ evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 1987;170(4):489-504.

Buckley TN. How do stomata respond to water status? New Phytologist. 2019;224(1). doi: 10.1111/nph.15899.

Clark DA, Clark DB. Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecol Monogr. 1992;62(3):315-344.

Dick CW. Habitat change, African honeybees and fecundity in the Amazonian tree Dinizia excelsa (Fabaceae). In: Bierregaard ROJ, Gascon C, Mesquita RCG, Lovejoy TE (Ed.). Lessons from Amazonia: the ecology and conservation of a fragmented tropical forest. New Haven: Yale University Press; 2001. p.146-157.

Epron D, Godard D, Cornic G, Genty B. Limitation of net CO₂ assimilation rate by internal resistances to CO₂ transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant Cell Environ. 1995;18(1):43-51.

Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO₂ assimilation in leaves of C3 species. Planta. 1980;149(1):78-90.

Fearnside PM. Wood density for estimating forest biomass in Brazilian Amazonia. For Ecol Manag. 1997;90(1):59-87.

Ferreira GC, Hopkins MJG, Secco RS. Contribuição ao conhecimento morfológico das espécies de leguminosas comercializadas no estado do Pará, como “angelim”. Acta Amazonica. 2004;34(2):219-232.
Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Doutte C, Gago J, et al. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 2016;39(5):965-982.

Flexas J, Niinemets U, Gallé A, Barbour MM, Centritto M, Díaz-Espejo A, et al. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research. 2013;117(1-3):45-59.

Gitelson AA, Gamon JA, Solovchenko A. Multiple drivers of seasonal change in PRI: implications for photosynthesis I. Leaf level. Remote Sensing of Environment. 2017;191:110-116.

Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiology. 2013;162(3):1632–1651.

Givnish TJ. Leaf and canopy adaptations in tropical forests. In: Medina E, Mooney HA, Vázquez-Yánes C (eds). Physiological ecology of plants in the wet tropics. W. Junk, The Hague Netherlands; 1984. p.51-84.

Gouvea PRS, Marenco RA. Is a reduction in stomatal conductance the main strategy of Garcinia brasiliensis (Clusiaceae) to deal with water stress? Theoretical and Experimental Plant Physiology. 2018;30(4):321-33.

Jahan E, Amthor JS, Farquhar GD, Trethowan R, Barbour M. Variation in mesophyll conductance among Australian wheat genotypes. Functional Plant Biology. 2014;41(6):568–580.

Knauer J, Zaehle S, Zaehle S, Kauwe MGde, Bahar NHA, Evans JR, Medlyn BE, et al. Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model. Global Change Biology. 2019;25(5):1820-1838.

Long SP, Bernacchi CJ. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot. 2003;54(392):2393-2401.

Lorenzi H. Árvores Brasileiras: manual de identificação e cultivo da plantas nativas do Brasil. São Paulo: Plantarum, 1992. 352 p.

Magalhães NS, Marenco RA, Mendes KR. Aclimatação de mudas de acariquara à alta irradiação. Pesqui Agropecu Bras. 2009;44(7):687-694.

Magrin NGO, et al. Central and South America. In: Barros VR, Field CB (Ed.). In: Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York, USA: Cambridge University Press, Cambridge, United Kingdom and; 2014. p.1499-1566.

Manter DK, Kerraigan J. A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. J Exp Bot. 2004;55 (408):2581-2588.

Marenco R, Camargo MAB, Antezana-Vera SA, Oliveira MF. Leaf trait plasticity in six forest tree species of central Amazonia. Photosynthetica. 2017;55(4):679–688.

Marenco RA, Antezana-Vera SA, Gouvea PRS, Camargo M, Oliveira MF, Santos JKS. Fisiologia de espécies florestais da Amazônia: fotossíntese, respiração e relações hídricas. Revista Ceres. 2014;61(Suppl.):786-799.

Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow M, Ceulemans R, et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-a of model parameters. Plant Cell Environ. 1999;22(12):1475-1495.

Melo MFF, Varela VP. Aspectos morfológicos de frutos, sementes, germinação e plântulas de duas espécies florestais da Amazônia: I. Dinizia excelsa Ducke (Angelim-Pedra). II Cedrelinga catenaeformis Ducke (Cedrorana) - Leguminosae: mimosoideae. Revista Brasileira de Sementes. 2006;28(1):54-62.

Mendes KR, Marenco RA. Is stomatal conductance of Central Amazonian saplings influenced by circadian rhythms under natural conditions? Theor Exp Plant Physiol. 2014;26(2):115-125.

Mendes KR, Marenco RA, Magalhães NS. Crescimento e eficiência fotosintética de uso do nitrogênio e fósforo em espécies florestais da Amazônia na fase juvenil. Revista Árvore. 2013;37(4):707-716.
Photosynthetic traits of canopy leaves...

Mendes KR, Marenco RA, Nascimento HCS. Velocidade de carboxilação da rubisco e transporte de elétrons em espécies arbóreas em resposta a fatores do ambiente na Amazônia Central. Ciência Florestal. 2017;27(3):947-959.

Miranda EJ, Vourlitis GL, Priante Filho N, Priante PC, Campelo JH, Suli GS, et al. Seasonal variation in the leaf gas exchange of tropical forest trees in the rain forest–savanna transition of the southern Amazon Basin. Journal of Tropical Ecology. 2005;21(4):451–460.

Nascimento HCS, Marenco RA. Mesophyll conductance variations in response to diurnal environmental factors in Myrcia paivae and Minquartia guianensis in Central Amazonia. Photosynthetica. 2013;51(3):457-464.

Niinemets Ü. Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 1999;144(1):35-47.

Niinemets Ü, Keenan TF, Hallik L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist. 2015;205(3):973-993.

Oliveira AN, Amaral IL, Ramos MBP, Nobre AD, Couto LB, Sahdo RM. Composição e diversidade florístico-estrutural de um hectare de floresta densa de terra firme na Amazônia Central, Amazonas, Brasil. Acta Amazonica. 2008;38(4):627-641.

Ouyang W, Struik PC, Yin X, Yang J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. Journal of Experimental Botany. 2017;68(18):5191–5205.

Park SY, Funakawa A. Photosynthetic and stomatal responses of two tropical and two temperate trees to atmospheric humidity. Photosynthetica. 1999;36:181-186.

Peguero-Pina JJ, Sancho-Knapik D, Gil-Pelegrín E. Ancient cell structural traits and photosynthesis in today’s environment. Journal of Experimental Botany. 2017;68(7):1389-1392.

Sage RF, Kubien DS. The temperature response of C3 and C4 photosynthesis. Plant, Cell & Environment. 2007;30(9):1086-1106.

Schwartz G, Bais ALS, Peña-Cloros M, Hoogstra-Klein M, Mohren GMJ, Arts BJM. Profitability of silvicultural treatments in logging gaps in the Brazilian Amazon. Journal of Tropical Forest Science. 2016;28(1):68-78.

Shao HB, Chu LY, Jaleel CA, Zhao CX. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies. 2008;331(3):215-225.

Stinziano JR, Adamson RK, Hanson DT. Using multirate rapid A/Ci curves as a tool to explore new questions in the photosynthetic physiology of plants. New Phytologist. 2019;222(2):785-792.

Terashima I, Hanba YT, Tholen D, Niinemets Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiology. 2011;155(1):108–116.

Tosens T, Laanisto L. Mesophyll conductance and accurate photosynthetic carbon gain calculations. Journal of Experimental Botany. 2018;69(22):5315-5318.

Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriqui M, et al. The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytologist. 2016;209(4):1576-1590.

Warren CR. Soil water deficits decrease the internal conductance to CO2 transfer but atmospheric water deficits do not. J Exp Bot. 2009;59(2):327-334.

Xiong D, Douthe C, Flexas J. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant, cell & environment. 2018;41(2):436-450.

Yamori W, Noguchi K, Hanba YT, Terashima I. Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant and Cell Physiology. 2006;47:1069–1080.