Anti-CRISPR: A defense strategy of bacteriophages against bacteria

Anandu S and GN Tanuj

DOI: https://doi.org/10.22271/j.ento.2020.v8.i6n.7968

Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system is a sequence-specific adaptive immune strategy, widespread across prokaryotic systems conferring innate immunity against various bacteriophages and other MGEs like plasmids, genomic islands, integrative and conjugative elements. Even with the presence of such a sophisticated mechanism, the bacteria haven’t been always completely victorious against phages. This is due to Anti-CRISPR proteins produced by bacteriophages and other MGEs. Since their discovery in 2013, more than 60 Acr families have been identified to date and many more are yet to be known. Studies revealed diverse mechanisms adopted by Acrs through which they mediate their control over CRISPR defense system. With the development in this area, Acrs can be harnessed as potential control strategies for CRISPR-Cas technology. In this review, we focus on the discovery of various Anti-CRISPR proteins, their mechanism of action through which they can counteract the bacterial CRISPR-Cas system, and the potential applications of Acrs in gene editing and gene therapy technologies.

Keywords: Anti-CRISPR, bacteriophage, Cas protein, CRISPR, genome editing

Introduction
Phages and bacteria have been at war for millions of years where phages control the number and composition of the bacterial population. To combat this constant threat from phages, bacteria have evolved very diverse defense strategies that put checkpoints at various stages of phage’s life cycle. This includes phage attachment blockade, inhibiting DNA entry, development of restriction-modification systems, abortive infection systems (Abi), and interfering with phage assembly [1]. In addition to the above strategies bacteria have evolved a sequence-specific adaptive immune strategy called CRISPR Cas [2]. CRISPR arrays are the storehouses of data regarding the phages that have previously infected the bacterial cell. Cas proteins together with the CRISPR arrays constitute this RNA-guided nuclease complex. The host cell differentiates the self DNA and that of the invading foreign mobile genetic elements with the help of a short sequence called Protospacer Adjacent Moiety (PAM) [3]. As part of adaptive immunity, all the systems act through three main stages: adaptation or spacer acquisition, expression or biogenesis, and interference phase. In the first stage, the Cas1–Cas2 complex recognizes PAM and excising small portions of the target DNA called protospacers which are then integrated into CRISPR locus as spacer sequences. Other accessory factors such as Cas4, Cas1, Csn2, and reverse transcriptase (RT) can also be involved in the acquisition phase. In the next stage, the CRISPR locus is transcribed into a single pre-crRNA which is then processed into mature CRISPR RNAs (crRNAs) [4]. Each crRNA contains parts of the flanking repeats and a spacer sequence. At the interference stage, crRNA is recruited along with the Cas proteins to form ribonucleoprotein complexes, which go on surveying the cell for any matches with crRNA spacer sequences. If found, the nuclease activity is initiated either by the recruitment of new proteins or activation within the complex itself based upon the class of CRISPR Cas system. The CRISPR-Cas systems are grouped into two classes, six types and over 30 subtypes [5, 6, 7]. Class I CRISPR Cas system includes I, III, and IV types and uses multi-subunit Cas effector molecules to form Cascade complex. Whereas in Class 2 systems (II, V, and VI types) the target recognition, binding, and cleavage functions are carried out by single effector proteins. Due to this highly diverse and efficient mechanism, the CRISPR Cas system may confer protection to bacteria not only from the phages but also from other Mobile Genetic Elements (MGEs) like plasmids, genomic islands, integrative and conjugative elements [8].

Corresponding Author:
Anandu S
Division of Veterinary Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
Therefore it is possible to produce a robust and safer bacterial population with increased phage resistance and targeted interference with the distribution of the antibiotic resistance marker carrying plasmids [9].

Phages strike back: Anti-CRISPR Discovery
Owing to the bacterial defensive measures, phages have also strategized certain ways to evade this prokaryotic CRISPR-Cas system. One such way is through the acquisition of point mutations [10]. As discussed earlier, a crRNA guided match between spacer in CRISPR locus and protospacer in MGEs is required for the nuclease activity but mutations in the conserved PAM region evade this highly specific defense even in the presence of a perfect spacer-protospacer match [11]. At the same time mutations in the protospacers which confer mismatches inhibit CRISPR/Cas activity even though the PAM region is intact [11]. But hosts tend to restore their immunity by rapidly acquiring new spacers through positive feedback called “Priming”. By this robust process, even outdated spacers with many mismatches will be able to stimulate a rapid response giving the bacteria an advantage in an arms race with their opponents [12]. To evade the adaptive nature of this immune system, phage needs a different strategy where it can inactivate CRISPR-Cas system in a sequence-independent manner.

In 2013 the counteractive Anti-CRISPR proteins were found in phages that infect *Pseudomonas aeruginosa* [13]. Single locus coding for ten different proteins was identified through sequence analysis, out of which only five genes (acrF1-acrF5) were found with the ability to counteract the type I-F system in *Pseudomonas aeruginosa* through AcrF1-5 proteins. But more than half of the genes in this operon didn’t show any anti-CRISPR activity against type I-F systems [13]. Follow up studies revealed the presence of the second set of proteins comprising four distinct families (AcrIE1-4) acting against the type I-E system [14]. The loci of the genes coding for these two types of anti-CRISPR proteins showed a lot of similarity suggesting that these two groups worked together.

Search for new Anti-CRISPR proteins

Guilt by approach
It was found later that the phages which encoded for the Acrs have also encoded for Aca1 (Anti-CRISPR associated 1 and more interestingly absent in those phages lacking anti-CRISPR activity. It was observed that this Aca contains a helix-turn-helix motif which is commonly found in transcriptional regulators speculating the fact that Aca proteins may regulate the expression of Acr operon. By adopting the ‘guilt by association’ bioinformatics approach, a BLAST search was conducted using Aca1 to find out the proteins encoded by genes upstream of Aca1 homologs [15].

Proteins were identified on the basis of their gene location that they should be located on the same strand as that of the aca 1 and should be of less than 200 amino acid residues as all the previously found anti-CRISPRs were in the range of 50-139 residues. These BLAST queries revealed homologous in many members of Proteobacteria. Further cloning of these homologous into expression plasmids followed by bacteriophage plaque assay revealed another new set of anti CRISPR protein families- AcrIF6-10 inactivating type I-F system. It was also found that AcrIF6 (paes) inactivated both type I-F and type I-E systems which were totally unexpected. After the initial discovery of AcrIF6 and its homologous, a gene coding for HTH protein was found downstream to the active anti-CRISPR AcrIF6 (Oceanimonas smirnovii) encoding gene. Assuming that this helix-turn-helix protein is also associated with Acrs, genes coding for anti-CRISPRs were found upstream to the genes coding for homologous of HTH protein leading to the discovery of Aca 2, a new family in Aca proteins [15].

Hypothesizing that the anti-CRISPRs inhibiting type II systems would also exist, the same bioinformatic approach which was previously employed was used to search for Cas 9 inhibitors. BLAST searches with Aca 2, a candidate anti-CRISPR gene coding for 91 residues hypothetical protein in *Brackiella oedipodis* was identified upstream to aca 2 gene. On finding that the homologous of this protein existed in the species possessing type II-C CRISPR-Cas system and considering the fact *N. meningitides* strain 8013 harbors a well-established type II-C system, NmeCas9 was employed to trace the genes encoding for Cas 9 inhibitors. This led to the discovery of three anti CRISPR protein families (AcrIC1-3) [16]. After the initial discovery of acriC1, it was observed that all its homologous except acriC1 (Boe) were not found adjacent to aca 1 and aca 2 genes but upstream to a variety of genes coding for HTH proteins. This fact led to the discovery of a new member of the Aca family- Aca 3 protein [16], whose BLAST queries led to the discovery of AcriC2Nme and AcriC3Nme proteins. In 2018, two other novel anti-CRISPR families (AcriC4, 5) were reported in strains of *Haemophilus parainfluenzae* and *Simonsiella muelleri* [17].

Employing the same ‘guilt by association’, BLAST queries for the search of aca1 homologous in *Pseudomonas* genomes led to the discovery of seven new genes families upstream of aca1 [24]. They were acriE5-7, acriF11, two genes with no inhibitory activity (orf1 and orf2), and a chimera, acriE4-F7 which was able to inhibit both type IE and IF systems acriF1 was found associated with genes coding for DNA binding motifs which were characterized as aca4-7 [24]. In search of other aca genes, aca4 was used to identify a new *Pseudomonas* Anti-CRISPR, acriF12 [24]. Two more types IF Acs (AcriF13, 14) and Acrs inhibiting type I-C and V-A systems (AcriC1, AcriV1–3) were found while investigating for genes adjacent to acriF11 in *Moraxella* strains [24]. It was also found that the acriV1 gene potently inhibited Cas12a in both human and bacterial cells providing a new tool for the regulation of Cas12a [24].

Self-targeting spacers:
In 2017, a bioinformatics tool based on ‘self-targeting’ was employed trace type II-A CRISPR Cas 9 inhibitors [19]. According to this bacteria which contain spacers targeting self-genes, require inactivation of CRISPR-Cas to avoid self-destruction [13, 18]. This led to the discovery of four types of II-A CRISPR Cas 9 inhibitors in *Listeria monocytogenes* namely AcriIIA1, AcriIIA2, AcriIIA3, and AcriIIA4 [19]. Among these proteins, it was found that AcriIIA2 and AcriIIA4 were able to block SpyCas9 activity in bacterial and human cells [19].

Phage-first approach
There were other means employed for the discovery of new anti-CRISPRs like the identification of self-targeting spacers and phage-oriented approaches [10]. In a phage-oriented approach, phages were screened for their ability to escape CRISPR mediated immune response [20]. During this process, *Streptococcus thermophilus* DGCC7854 strain organisms were infected with a set of five virulent phages. Out of these
five phages, host cells were able to develop immunity against four but not against phage D4276. Individual genes from the resistant phage D4276 are systematically cloned onto plasmids and expressed in Streptococcus thermophilus followed by plating with CRISPR sensitive phage to check for phage titer which led to the discovery of acrI5 gene [20]. These Acr homologues were detected in virulent phage genomes making AcrI5 the first anti-CRISPR to be discovered in the virulent phage [20]. In 2018, another protein named AcrIIA6 was found in S. thermophilus phage D1811 [21]. 38% of the analyzed virulent S. thermophilus phages possessed either AcrI5 or AcrIIA6, whereas all temperate phages had one of these two Acrs [21], confirming that virulent phages can also carry Acr genes and these Acrs are closely related between temperate and virulent phages. In the same study out of all the Acrs tested AcrIIA5 showed the broadest activity and in a concurrent in vitro study, AcrIIA5 was able to inhibit type IIC systems of Neisseria meningitides and Campylobacter jejuni [22].

In the search for archaeal Acrs, a similar approach was employed in lytic rvdirus SIRV2 infecting crenarchaeon Sulfolobus islandicus LAL14/1 (23) possessing I-D, I-A, and III-B systems. LAL14/1 has 5 repeating CRISPR arrays with 13 spacers targeting SIRV2 with few mismatches, but still, the phage was able to infect its host suggesting the existence of anti-CRISPR proteins. A mutant of SIRV2 (SIRV2M) was characterized by a 4kb deletion with no ability to infect LAL14/1. But infectivity of SIRV2M was restored on cloning with SIRV3 genes (each gene cloned individually) which were found in the deleted fragment. The gene which was able to restore the infectivity was identified and it was shown that this gene coded for Acr ID1 which directly interacts with Cas10d subunit [23]. Acr ID1 was the first Acr discovered in archaeal phages and it is also the first one of its kind acting against type I-D CRISPR-Cas systems [23].

Self-Targeting Spacer Searcher

As a next step in the discovery of Acrs, Self-Targeting Spacer Searcher (STSS) was adopted as a bioinformatic pipeline to search for self-targeting examples in the NCBI prokaryotic database [25]. It employed CRISPR Recognition Tool (CRT) to predict all possible self-targeting spacers in bacterial genomes containing CRISPR arrays [26]. Four strains of M. bovoculi were identified to contain self-targeting spacers for type-V system and a cell-free transcription-translation (TXTL) system was employed [22] to confirm the presence of Acr genes in their genomes. As a result AcrVA1, AcrVA4, and AcrVA5 proteins were found to inhibit Cas12a activity in TXTL assay [25].

Identification of Acrs from Metagenomic libraries

In the quest for further Acrs, researchers developed a synthetic circuit to screen for Acrs against type IIA systems in metagenomic libraries [27]. By cloning SpyCas9 with guide RNA that targets the antibiotic resistance gene, a genetic circuit was designed to rapidly select metagenomic libraries containing Acrs using simple antibiotic selection. As a result of four Cas9 antagonists, AcrI7–10 were identified [27]. A similar search strategy was used to recover AcrI11 from a Lachnospiraceae phage [28]. AcrIIA11 was able to inhibit spyCas9 of both human and bacterial cells and its homologues are distributed across diverse bacteria. Its interaction with conserved residues of Cas9 can be implied from the broad spectrum of inhibition. It was said that AcrIIA11 binds both spyCas9 and dsDNA and inhibits DNA cleavage [29]. The exact mechanism is yet to be elucidated but AcrIIA11’s is different from previously characterized type IIA Acrs [19, 20, 21, 27].

Other Anti-CRISPR proteins

AcrI1A1 exhibits a broad spectrum inhibitory effect on Type II-A and II-C Cas9s including a highly diverged Listeria Cas9 [19, 20, 29]. But during lytic cycle, AcrI1A1 alone isn’t enough for Cas9 inactivation and requires additional Acrs to inhibit Cas9-DNA binding [29]. Probing into this, researchers identified acrIIA12 which is found in every Acr locus coding for acrIIA1. This new Acr was able to inhibit LmoCas9 but not SpyCas9 [29]. By employing STSS and Guilt-By-Association approaches to screen for SauCas9 inhibitors, researchers identified three new bifunctional SauCas9 inhibitors: AcrI13–AcrI15 [30]. These new Acrs share a common N-terminal region and different C-terminal regions which are speculated to be responsible for inhibition of SauCas9 mediated target DNA cleavage via distinct mechanisms [30]. Till recent times the Anti-CRISPR genes have been discovered in the genomes of phages or prophages. In 2020, Mahendra et al., used Listeria acrIIA1 gene as a marker to identify acr loci (four distinct inhibitors acr IIA16-19) on the various MEGs of Firmicutes [31]. It was understood that these Acrs protect plasmid DNA during conjugation and phage DNA during infection. in vitro studies suggested that AcrI1A16-19 inactivate Cas9 mediated cleavage of foreign DNA and in vitro, they might modulate the expression, stability, and loading of sgRNA [31].

Recently a III-B system inhibitor called AcrI1B1 was identified in Sulfolobus virus SIRV2 [32]. AcrI1B1 was found to inhibit type-III associated RNase called Csx1. In the search for other archaeal Acrs, a new family of Acrs (AcrIII-1) that rapidly degrade cyclic tetra-adenylate (cA4) was identified [33]. As it targets cA4 signaling molecules rather than specific CRISPR effector proteins; this family of Acrs has a broad host range. This viral ring nuclease is widely distributed in archaeal and bacterial viruses and also in provirus [33]. Smargon et al. identified two type VI-B CRISPR systems that lack Cas1 and Cas2 and contain Cas13b [34]. Cas13b is a RNA guided RNase with Csx27 repressing and Csx28 enhancing its activity. Csx27, although appears to be a Cas protein represses Cas13b-mediated RNA interference [34, 35]. Recently two new Anti-CRISPRs: AcrI20 and AcrI21 were identified using a combination of STTS and a machine learning-based method called AcRanker [61]. AcrI20 contains only 64 amino acids making the smallest known Acr to date. AcrI20 inhibits SinCas9 with high potency and SauCas9 with low potency whereas AcrI21 has a broader inhibition range. Researchers speculate that due to its high negative charge, AcrI20 may inhibit DNA cleavage by a mechanism similar to that of PAM mimicry; whereas nucleic acid binding might be the potential mechanism of inhibition employed by AcrI21 [61]. A websolver implementation for AcRanker is available at http://acranker.pythonanywhere.com/.

By using an integrated approach with STTS and TXTL systems to screen and characterize Cas13a inhibitors, researchers identified a series of acrV1-7 genes [62]. These Acrs can interact with Cas13 or the Cas13-cRNA binary complex and inhibit Cas13a based RNA targeting in both human and bacterial cells. A new web server called AcrFinder
A system for nomenclature of Acr proteins and genes was introduced in 2015 [16]. It is established as: the type of CRISPR Cas system inhibited, followed by a numerical value representing the protein family given in the order of its discovery and then a subscript representing the source of that protein [38]. For example: an Acr inhibiting type IF system and in 9th position the order of its discovery is represented as AcrI9.

There is another anti-CRISPR database described by Dong et al in 2018 [39]. Some of the currently available bioinformatics tools for Acr research include CRISPRminer [64], Self-targeting Spacer Searcher [25], AcrCatalog [63], AcrFinder [60] and AcRanker [61].

Anti-CRISPR mechanisms

Class I Acrs

Class I Acr proteins discovered till now inhibit type I CRISPR-Cas system. Some of their mechanisms are still unknown while some Acr proteins block DNA cleavage by interacting with Cas 3 nuclease, the most common way is by interacting with the cascade complex and preventing DNA binding [40].

AcrI1F uses three different binding modes for inhibiting the cascade complex in which two molecules each binding to Cas7f.3-Cas7f.4 and Cas7f.5- Cas7f.6 interfaces respectively by interacting with the basic residues on Cas7f creates a steric hindrance for crRNA to access the target DNA. Another binding mode adapted by AcrI1F is binding to Cas7f.6, which is in close proximity to the region crucial for DNA binding [13, 41, 42].

AcrI2F acts by DNA mimicry as the negatively charged surface gives it a DNA duplex resemblance by exhibiting a pseudo helical distribution. Thereby interacts with basic residues on type I-F Csy complex and sterically hinders the access of dsDNA to cascade complex by pushing the Cas8F hook away from Cas7.6f and bringing out conformational change [13, 41]. In the same way, AcrI1F0 acts by DNA mimicry and interacts with the groove formed by Cas7f.6 and the Cas8f hook which normally accommodates for target dsDNA binding thereby locking Cas8f in a DNA binding fashion [15, 43]. The archaeal Acr protein, AcrID1 directly interacts with Cas10d protein which is the large subunit of Cas10 DNase activity. Csx27, although appears to be a Cas protein, inhibits Cas9 nuclease activity by multiple mechanisms like: a) interaction with RuvC active site thereby blocking nuclease activity, b) Mimics PAM region and binds to PAM interacting domain (PID) of Cas9 thereby preventing DNA binding, c) Impeding the conformation change of HNH domain, d) inhibit target dsDNA unwinding by interacting with phosphatase lock loop [19, 48, 49, 50, 51]. Similarly AcrI2A2 associates with WED domain, PAM interacting domain, HNH, and REC2 domains and overlaps with AcrI2A4 while binding with PIDs [60, 52, 53].

AcrI2A2 due to its high negative charge, interacts with arginine-rich bridge helix thereby hinders sgRNA loading to Cas9 [54]. AcrI2C1 interacts with highly conserved catalytic residues present on HNH domain of NmCas9 thereby creating a catalytically dead Cas9 [55]. Whereas AcrI2C3 binds to the surface opposite to the active site of HNH domain which may allow PAM detection but inhibits R loop formation. In addition to this AcrI2C3 interacts with REC lobe which causes AcrI2C3-Cas9 dimerization which prevents the loading stage. AcrI2C3 specifically binds only with NmCas9 [54, 55]. Both AcrI2C4 and AcrI2C5 bind to Cas9 and inhibit DNA binding stage but the exact mechanism isn’t clearly understood [17].

AcrI2A6 recognizing sites and PAM are structurally close and thereby acts as an allosteric inhibitor of Cas9 and induces its dimerization [59]. AcrI2A11 was the 1st ever reported Acr that can bind with both dsDNA and Cas protein. It uses a distinct mechanism to bind with the conserved residues on Cas9 inhibiting DNA cleavage but not the target recognition [28].

AcrI2A13-15 share a common conserved N terminal region and distinct C terminal regions speculated to be responsible for DNA cleavage inhibition [30]. AcrI2A16-19 interacts with Cas9 via a distinct mechanism thereby preventing Cas9 mediated DNA cleavage; studies show that these Acrs are able to modulate sgRNA expression, loading, and stability [31].

A cellular enzyme named viral ring nuclease (Acr III-1) specifically binds with cA4 and rapidly cleaves the signaling molecule thereby neutralizing type III CRISPR defense system [33]. Generally, the IIB1 systems require an additional RNase called Csx1 while targeting middle or late genes. AcrI2B1 inhibits Cmr-α and Cmr-γ complexes which are required for cyclic oligoadenylates synthesis thereby inhibiting Csx1 signaling pathway [32]. It was also found that AcrI2B1 doesn’t show any effect on early gene targeting or Cas10 DNase activity. Csx27, although appears to be a Cas protein represses Cas13b-mediated RNA interference [34].

AcrVa5 acts as an acetyltransferase and acetylates the lys residues on Cas12a that are required for PAM recognition thereby preventing binding of dsDNA substrates to Cas [57]. AcrVa4 binds with residues on REC domain which are involved in pre-crRNA processing and crRNA binding, maybe by mimicking pre-crRNA, bringing out the conformational changes which further blocks the target DNA binding [56, 65]. AcrVa1 due to high negative charge on its surface, mimics the PAM of target DNA and binds with Cas12a and subsequent cleavage of crRNA by its RNase activity [56, 58].
Applications of Anti-CRISPR proteins

Due to the growing importance of CRISPR-Cas technology, the application areas of Anti-CRISPRs are also tremendous. Importantly Acrs can be used to regulated Cas mediated activities to minimize its off-target effects without disturbing the on target ones [71]. Acrs have been applied for the regulation of CRISPR interference and CRISPR-activation in both bacterial and mammalian cells [69]. They can also be used as section markers for engineering viral genomes acrD1 was used as a selection marker for knocking out the selected genes from SIRV2 [69]. CRISPR-Cas systems have been reported in this field. But this problem be overcome by equipping CRISPR mediated immune strategy has been a great hurdle in these.

The importance of phage strategy has been increasing due to the alarming threats from anti-bacterial resistance and the CRISPR mediated immune strategy has been a great hurdle in this field. But this problem be overcome by equipping therapeutic phages with Acrs which protect the phages from destruction while they mediate them carry out their anti-bacterial effects [69]. Engineered optogenetic Acr variants, when co-expressed with CRISPR effector molecules were able to mediate both genome and epigenome editing [69]. Acr proteins can be applied to regulate or inhibit the drive strength. Recently AcrIIA2 and AcrIIA4 mediated inhibition of gene drives has been demonstrated in yeast model system [70]. miRNA regulated Acr switches were used for cell type specific activation or inactivation of Cas9 [72]. This can greatly reduce the effect of Cas nuclelease activity on unintended cells of a given group of cells or organisms. In vivo effects of this strategy was demonstrated by Lee et al., in adult mice by restricting Nme2Cas9 activity to only liver cells while sparing the heart cells [73]. Acrs were also used in production of helper dependant adeno virus vector where in AcrIIA2 and AcrIIA4 were used to inhibit viral self-cleavage by SpyCas9 [74].

Table 1: Anti-CRISPR protein families

Name	type inhibited	Stage inhibited	Originating species	Ref
AcrICl	I-C	Unknown	*Moraxella bovoculi* prophage	24
AcrIDl	I-D	DNA abinding	*Sulfobolus islandicus rudivirus* 3	23
AcrIE1	I-E	DNA cleavage	*Pseudomonas aeruginosa* phage JBD5	14
AcrIE2	I-E	Unknown	*P. aeruginosa* phage JBD88a	14
AcrIE3	I-E	Unknown	*P. aeruginosa* phage DSM3	14
AcrIE4	I-E	Unknown	*P. aeruginosa* phage D3112	14
AcrIE4-F7	I-E/I-F	Unknown	*Pseudomonas citroellolis* prophage	24
AcrIE5	I-E	Unknown	*Pseudomonas ottiditis* prophage	24
AcrIE6	I-E	Unknown	*P. aeruginosa* prophage	24
AcrIE7	I-E	Unknown	*P. aeruginosa* prophage	24
AcrIF1	I-F	DNAbinding	*P. aeruginosa* phage JBD30	13
AcrIF2	I-F	DNAbinding	*P. aeruginosa* phage D3112	13
AcrIF3	I-F	DNA cleavage	*P. aeruginosa* phage JBD5	13
AcrIF4	I-F	DNAbinding	*P. aeruginosa* phage JBD26	13
AcrIF5	I-F	Unknown	*P. aeruginosa* phage JBD5	13
AcrIF6	I-F	Unknown	*P. aeruginosa* prophage	15
AcrIF7	I-F	Unknown	*P. aeruginosa* prophage	15
AcrIF8	I-F	Unknown	*Pectobacterium* phage ZF40	15
AcrIF9	I-F	Unknown	*Vibrio parahaemolyticus* mobile element	15
AcrIF10	I-F	DNAbinding	*Shewanella xiamenensis* prophage	15
AcrIF11	I-F	Unknown	*P. aeruginosa* prophage	24
AcrIF12	I-F	Unknown	*P. aeruginosa* mobile element	24
AcrIF13	I-F	Unknown	*Moraxella catarrhalis* prophage	24
AcrIF14	I-F	Unknown	*Moraxella phage Mca5*	24
AcrIIA1	II-A	Unknown	*Listeria monocytogenes* prophage J0161a	19
AcrIIA2	II-A	DNAbinding	*L. monocytogenes* prophage J0161a	19
AcrIIA3	II-A	Unknown	*L. monocytogenes* prophage SLCC2482	19
AcrIIA4	II-A	DNAbinding	*L. monocytogenes* prophage J0161b	19
AcrIIA5	II-A	Unknown	*Streptococcus thermophilus* phage D4276	20
AcrIIA6	II-A	DNAbinding	S. thermophilus phage D1811	21
AcrIIA7	II-A	Unknown	Metagenomic libraries from human gut	27
AcrIIA8	II-A	Unknown	Metagenomic libraries from human gut	27
AcrIIA9	II-A	Unknown	Metagenomic libraries from human gut	27
AcrIIA10	II-A	Unknown	Metagenomic libraries from human gut	27
AcrIIA11	II-A	DNA cleavage	*Clostridium sp.* from human gut metagenome	28-29
AcrIIA12	II-A	DNA abinding	*Listeria monocytogenes* prophage	29
AcrIIA13	II-A	DNA cleavage	*Staphylococcus schleiferii* prophage	30
AcrIIA14	II-A	DNA cleavage	*Staphylococcus simulans* prophage	30
AcrIIA15	II-A	DNA cleavage	*Staphylococcus delphini* prophage	30
AcrIIA16	II-A	DNA cleavage	*Listeria monocytogenes* Plasmid	31
AcrIIA17	II-A	DNA cleavage	*Enterococcus faecalis* Plasmid	31
AcrIIA18	II-A	DNA cleavage	*Streptococcus macedonicus* prophage	31
AcrIIA19	II-A	DNA cleavage	*Staphylococcus simulans* Plasmid	31
AcrIIA20	II-A	Unknown	*Streptococcus iniae* Prophage	61
AcrIIA21	II-A	Unknown	*Streptococcus agalactiae* prophage	61
Conclusion
Since their discovery CRISPR-Cas systems have emerged as potential players in many areas like gene editing, screening of libraries, epigenetic editing, diagnostics, therapeutics and many more. With their growing popularity the need for tools which control and modulate CRISPR-Cas has also greatly increased. The research in Anti-CRISPR discovery and its applications has accelerated in the recent past which shows the increasing interest in this area. With the advancements in bioinformatics tools for the discovery of new Acr protein families, it is anticipated that many new Acr families will be discovered in the near future owing to their vast distribution in prokaryotic systems. In addition to this, the exact mechanisms of many Anti-CRISPR proteins are still to be elucidated. Though the research in the field of Anti-CRISPRs has become prominent initially due to the popularity of CRISPR-Cas technologies, Acrs since then emerged as an important tool for many biotechnological applications. All that has been understood in this area is just a beginning and we expect many more exciting discoveries are yet to come in future.

Acknowledgements: None

Funding: The authors received no funding in relation to this article.

Compliance with ethical standards

Declaration of Interest: All authors declare that there exist no commercial or financial relationships that could, in any way, lead to a potential conflict of interest.

References
1. Seed KD. Battling Phages: How Bacteria Defend against Viral Attack. PLOS Pathogens 2015;11(6):e1004847. https://doi.org/10.1371/journal.ppat.1004847
2. Mojica FJM, Diez-Villaseñor C, Garcia-Martinez J, Soria E. Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution 2005;60(2):174-182. https://doi.org/10.1007/s00239-004-0046-3
3. Horvath P, Romero DA, Couët-Monvoisin AC et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 2008;190:1401-1412. https://doi.org/10.1128/JB.01415-07
4. Jiang F, Doudna JA. CRISPR–Cas9 Structures and Mechanisms. Annual Review of Biophysics 2017;46(1):505-529. https://doi.org/10.1146/annurev-biophy-062215-010822
5. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol 2015;13:722-736. https://doi.org/10.1038/nrmicro3569
6. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Current opinion in microbiology 2017;37:67-78. https://doi.org/10.1016/j.mib.2017.05.008
7. Koonin EV, and Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019;374:20180087. https://doi.org/10.1098/rstb.2018.0087
8. Pawluk A, Davidson AR, Maxwell K. Anti-CRISPR: discovery, mechanism and function. Nature reviews. Microbiology 2017;16(1):12-17. https://doi.org/10.1038/nrmicro.
9. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010;468(7320):67-71. https://doi.org/10.1038/nature09523
10. Maxwell KL. The Anti-CRISPR Story: A Battle for Survival. Molecular Cell 2017;68(1):8-14. https://doi.org/10.1016/j.molcel.2017.09.002
11. FJM Mojica C, Diez-Villaseñor J, Garcia-Martinez C, Almendros. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009;155(3):733-740. https://doi.org/10.1099/mic.0.023960-0
12. Peter C, Fineran, Matthias JH, Gerritzten, Maria, Suárez-Diez, Tim Künne, Jos Boekhorst, Sacha AFT, van Hijum, Raymond HJ, Staals and Stan JJ Brouns. Degenerate target sites mediate rapid primed CRISPR adaptation. Proceedings of the National Academy of Sciences 2014;111(16):E1629-E1638. https://doi.org/10.1073/pnas.1400071111
13. Bondy-Denomy J, Pawluk A, Maxwell KL et al. Bacteriophage genes that inactivate the CRISPR/Cas

AcrIIC1	II-C	DNA cleavage	Brackiella oedipodis ICE	16
AcrIIC2	II-C	Guide loading	Neisseria meningitidis prophage	16
AcrIIC3	II-C	DNA binding	Neisseria meningitidis prophage	16
AcrIIC4	II-C	DNA binding	Haemophilus parainfluenzae prophage	17
AcrIIC5	II-C	DNA binding	Simonsiella muelleri prophage	17
AcrIII-1	Degradation of cA4	Sulfolobus islandicus and others with type III sys.	33	
AcrIIIb1	III-B	Cas1 RNase interference	Sulfolobus islandicus rudivirus 2	32
AcrV4	V-A	DNA binding	Moraxella bovoculi prophage	24,25
AcrV4	V-A	Unknown	M. bovoculi prophage	24
AcrV4	V-A	Unknown	M. bovoculi prophage	24
AcrV4	V-A	DNA binding	M. bovoculi mobile element	25
AcrV4	V-A	DNA binding	M. bovoculi mobile element	25
Csx27	I-B	Repress Cas13b	BERGEVELLA zoohelcum	34
AcrVIA1	V-A	Unknown	Leptotrichia wadei F0279 prophage	62
AcrVIA2	VI-A	Unknown	Leptotrichia wadei F0279 prophage	62
AcrVIA3	VI-A	Unknown	Leptotrichia wadei F0279 prophage	62
AcrVIA4	VI-A	Unknown	Leptotrichia wadei F0279 prophage	62
AcrVIA5	VI-A	Unknown	Leptotrichia wadei F0279 prophage	62
AcrVIA6	VI-A	Unknown	Rhodobacter capsulatus R121 prophage	62
AcrVIA7	VI-A	Unknown	Leptotrichia buccalitis DSM 1135 prophage	62
bacterial immune system. Nature 2013;493:429-432. https://doi.org/10.1038/nature11723.

14. Pawluk A, Bondy-Denomy J, Cheung VHW, Maxwell KL, Davidson AR. A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa. Mbio 2014,5(2). https://doi.org/10.1128/mbio.00896-14

15. Pawluk A et al. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nature Microbiology 2016;1(8). https://doi.org/10.1038/nmicrobiol.2016.85

16. Pawluk A et al. Naturally Occurring Off-Switches for CRISPR-Cas9 Cell 2016;167(7):1829-1838.e9. https://doi.org/10.1016/j.cell.2016.11.017

17. Lee Mir J, et al. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins. mBio 2018;9(6). https://doi.org/10.1128/mbio.02321-18

18. Edgar Qimron R. The Escherichia coli CRISPR System Protects from Lysogenization, Lysogens and Prophage. https://doi.org/10.1128/mbio.02321-18

19. Rauch B J, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Kr ozan NJ. Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell 2017;168(1-2):150-163.e9. https://doi.org/10.1016/j.cell.2016.12.009

20. Hynes AP, Rousseau GM, Lemay ML, Horvath P, Romero DA, Fremaux C. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nature Microbiology 2017;2(10):1374-1380. https://doi.org/10.1038/s41564-017-0004-7

21. Hynes AP et al. Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nature Communications 2018;9(1). https://doi.org/10.1038/s41467-018-05092-w

22. Marshall et al. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System. Molecular Cell 2018;69(1):146-157.e3. https://doi.org/10.1016/j.molcel.2017.12.007

23. He F, Bhoobalan-Chitty, Y et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nature Microbiology 2018;3(4):461-469. https://doi.org/10.1038/s41564-018-0120-z

24. Marino ND et al. Discovery of widespread Type I and Type V CRISPR-Cas inhibitors. Science, 2018, eaau5174. https://doi.org/10.1126/science.aau5174

25. Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science, 2018, eaau5138. https://doi.org/10.1126/science.aau5138

26. Bland TL, Ramsey F, Sabree M, Lowe Brown K, Kyrpides NC, Hugenholtz. CRISPR recognition tool (CRT): A tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 2007. https://doi.org/10.1186/1471-2105-8-209

27. Uribe RV, van der Helm E, Misiakowski MA, Lee SW, Kol S, Sommer MOA. Discovery and Characterization of Cas9 Inhibitors Disseminated across Seven Bacterial Phyla. Cell Host & Microbe 2019. https://doi.org/10.1016/j.chom.2019.01.003

28. Forsberg KJ et al. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome. Elife 2019. https://doi.org/10.7554/eLife.46540

29. Osuna et al. Listeria phages induce Cas9 degradation to protect lysogenic genomes. bioRxiv 2019. https://doi.org/10.1101/787200

30. Watters et al. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. PNAS. 2020;117(12):6531-6539. https://doi.org/10.1073/pnas.1917668117

31. Mahendra C, Christie KA, Osuna BA et al. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nat Microbiol, 2020, 620-629. https://doi.org/10.1038/s41564-020-0692-2

32. Bhoobalan-Chitty Y, Johansen TB, Di Cianni N, Peng X. Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein. Cell. https://doi.org/10.1016/j.cell.2019.09.003

33. Athukorala JS et al. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Nature 2020;577(7791):572-575. https://doi.org/10.1038/s41586-019-1909-5

34. Smargon AA et al. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Molecular Cell 2017;65(4):618-630.e7. https://doi.org/10.1016/j.molcel.2016.12.023

35. Marino ND, Pinilla-Redondo R, Csตรงร B, Bondy-Denomy J. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nature Methods 2020. https://doi.org/10.1038/s41592-020-0771-6

36. Hwang S, Maxwell KL. Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems. The CRISPR Journal 2019;2(1):23-30. https://doi.org/10.1089/crispr.2018.0052

37. Davidson AR et al. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems. Annual Review of Biochemistry 2020,89(1). https://doi.org/10.1146/annurev-biochem-011420-111224

38. Bondy-Denomy et al. A Unified Resource for Tracking Anti-CRISPR Names. The CRISPR Journal 2018(15):304-305. https://doi.org/10.1089/crispr.2018.0043

39. Dong C, Hao GF, Hua HL, Liu S, Labena AA, Chai G et al. Anti-CRISPRdb: a comprehensive online resource for anti-CRISPR proteins. Nucleic acids research 2018;46(D1):D393-D398. https://doi.org/10.1093/nar/gkx835

40. Trasanidou D, Gerós AS, Mohanraj P, Nieuwenweg X. Inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins in diverse mechanisms of phage-encoded anti-crisprs. FEMS Microbiology Letters 2019;366(9). https://doi.org/10.1093/femsle/fnz098

41. Zhu Y, Zhang F, Huang Z. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. BMC Biol 2018;16:32. https://doi.org/10.1186/s12915-018-0504-9

42. Peng R, Xu Y, Zhu T, Li N, Qi J, Chai Y, et al. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Cell research 2017;27(7):853-864. https://doi.org/10.1038/cr.2017.79

43. Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P, Merk A et al. Cryo-EM Structures Reveal Mechanism of Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex. Cell. 2017;171(2):414-426.e12. https://doi.org/10.1016/j.cell.2017.09.006

44. Wang X, Yao D, Xu J et al. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat Struct Mol Biol 2016;23:868-870 https://doi.org/10.1038/nsmb.3269
45. Vorontsova D, Datsenko KA, Medvedeva S, Bondy-Denomy J, Savitskaya EE, Poughach K et al. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Research 2015;43(22):10848-10860. https://doi.org/10.1093/nar/gkv1261

46. Rollins MF, Choudhury S, Carter J, Golden SM, Wilkinson RA, Bondy-Denomy J et al. Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclelease activity. Proceedings of the National Academy of Sciences of the United States of America 2017;114(26):E5113-E5121. https://doi.org/10.1073/pnas.1616395114

47. Pawluk A, Shah M, Mejdani M, Calmettes C, Moraes TF, Davidson AR et al. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein. mBio 2017;8(6):e01751-17. https://doi.org/10.1128/mBio.01751-17

48. Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science (New York, N.Y.) 2016;351(6275):867-871. https://doi.org/10.1126/science.aad8282

49. Dong D, Guo M, Wang S et al. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 2017;546:436-439. https://doi.org/10.1038/nature22377

50. Yang H, Patel DJ. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. Molecular cell 2017;67(1):117-127.e5. https://doi.org/10.1016/j.molcel.2017.05.024

51. Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH. Disabling Cas9 by an anti-CRISPR DNA mimic. Science advances 2017;3(7):e1701620. https://doi.org/10.1126/sciadv.1701620

52. Liu L, Yin M, Wang M, Wang Y. Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race. Molecular Cell 2018. https://doi.org/10.1016/j.molcel.2018.11.011

53. Jiang F, Liu JJ, Osuna BA et al. Temperature-responsive competive inhibition of CRISPR-Cas9. Mol Cell 2019;73:601-106605. https://doi.org/10.1016/j.molcel.2018.11.016

54. Zhu Y, Gao A, Zhan Q, Wang Y, Feng H, Liu S et al. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins. Molecular cell 2019;74(2):296-309.e7. https://doi.org/10.1016/j.molcel.2019.01.038

55. Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ, Edraki A et al. A Broad-Spectrum Inhibitor of CRISPR-Cas9. Cell 2017;170(6):1224-1233.e15. https://doi.org/10.1016/j.cell.2017.07.037

56. Zhang H, Li Z, Daczkowski CM, Gabel C, Mesecar AD, Chang L. Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins. Cell Host & Microbe 2019. https://doi.org/10.1016/j.chom.2019.05.004

57. Dong L, Guan X, Li N et al. An anti-CRISPR protein disables type V Cas12a by acetylation. Nat Struct Mol Biol 2019;26:308-314 https://doi.org/10.1038/s41594-019-0206-1

58. Knott GJ, Thornton BW, Lobha MJ, Liu JJ, Al-Shayeb B, Watters KE. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nature structural & molecular biology 2019;26(4):315-321. https://doi.org/10.1038/s41594-019-0208-z

59. Fuchsbaue O et al. Cas9 Allosteric inhibition by the anti-CRISPR protein AcrIIA6. Mol. Cell 2019;76:922-937.e7. https://doi.org/10.1016/j.molcel.2019.09.012

60. Haidong Yi, Le Huang, Bowen Yang, Javi Gomez, Han Zhang, Yanbin Yin. AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses, Nucleic Acids Research 2020,351. https://doi.org/10.1093/nar/gkaa351

61. Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA. Machine learning predicts new anti-CRISPR proteins. Nucleic acids research 2020;48(9):4698-4708. https://doi.org/10.1093/nar/gkaa219

62. Lin et al. CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells, Molecular Cell 2020. https://doi.org/10.1016/j.molcel.2020.03.033

63. Gussow AB, Shmakov SA, Makarova KS, Wolf YI, Bondy-Denomy J, Koonin EV. Vast diversity of anti-CRISPR proteins predicted with a machine-learning approach. BioRxiv. 2020;2020.01.23.916767. https://doi.org/10.1101/2020.01.23.916767

64. Zhang F, Zhao S, Ren C et al. CRISPRMiner is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions. Commun Biol. 2018; 180. https://doi.org/10.1038/s42003-018-0184-6

65. Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ et al. Structural basis for AcrVAA12a. eLife 2019;8:e49110. https://doi.org/10.7554/eLife.49110

66. Nakamura M, Srinivasan P, Chavez M, Carter MA, Dominguez AA et al. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat Commun 2019;10:194. https://doi.org/10.1038/s41467-018-0158-x

67. Nobrega FL, Costa AR, Klusken LD, Azeredo J. Revisiting phage therapy: new applications for old resources. Trends Microbiol 2015;23:185-91. https://doi.org/10.1016/j.tim.2015.01.006

68. Bubeck F, Hoffmann MD, Hartevedt Z et al. Engineered ant CRISPR proteins for optogenetic control of CRISPR-Cas9. Nature methods 2018;15(11):924-927. https://doi.org/10.1038/s41592-018-0178-9

69. Mayo-Muñoz D, He F, Jørgensen JB, Madsen PK, Bhooabal-Chitty Y, Peng X. Anti-CRISPR-Based and CRISPR-Based Genome Editing of Sulfolobus islandicus Rod-Shaped Virus 2. Viruses 2018;10(12):695. https://doi.org/10.3390/v10120695

70. Baggall EM, Goetting SC, Goeckel ME et al. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 2018;164(4):464-474. https://doi.org/10.1099/mic.0.000635

71. Shin J, Jiang F, Liu JJ, et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Science advances 2018;3(7):e1701620. https://doi.org/10.1126/sciadv.1701620

72. Hirosawa M, Fujita Y, Parr CJC et al. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic acids research 2017;45(13):e118. https://doi.org/10.1093/nar/gkw309

73. Lee J, Mou H, Ibraheim R et al. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 2019;25(11):1421-1431. https://doi.org/10.1007/s12615-019-01704-6

74. Palmer DJ, Turner DL, Ng P et al. Production of Cas9 switch. Nucleic acids research 2017;45(13):e118. https://doi.org/10.1093/nar/gkw309

75. Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA. Machine learning predicts new anti-CRISPR proteins. Nature 2019;568(7750):511-515. https://doi.org/10.1038/s41586-019-0914-y

76. Doudna JA. Machine learning predicts new anti-CRISPR proteins. Nature 2019;568(7750):511-515. https://doi.org/10.1038/s41586-019-0914-y