Maximum Likelihood Estimation of Frequencies of Known Haplotypes from Pooled Sequence Data

Darren Kessner¹, Tom Turner², John Novembre¹,³

May 2, 2014

¹Bioinformatics Interdepartmental Program, University of California, Los Angeles
²Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara
³Department of Ecology and Evolutionary Biology, University of California, Los Angeles

Submission: Research Article
Institution where work was done: UCLA
Keywords: maximum likelihood, EM algorithm, haplotype frequency estimation, pooled sequence data
Running Head: Haplotype Frequency Estimation from Pooled Sequence Data

Corresponding author:
John Novembre
Terasaki Life Sciences Building
610 Charles E. Young Drive, East
Los Angeles, CA 90095-7239
jnovembre@ucla.edu
Abstract

DNA samples are often pooled, either by experimental design, or because the sample itself is a mixture. For example, when population allele frequencies are of primary interest, individual samples may be pooled together to lower the cost of sequencing. Alternatively, the sample itself may be a mixture of multiple species or strains (e.g. bacterial species comprising a microbiome, or pathogen strains in a blood sample). We present an expectation-maximization (EM) algorithm for estimating haplotype frequencies in a pooled sample directly from mapped sequence reads, in the case where the possible haplotypes are known. This method is relevant to the analysis of pooled sequencing data from selection experiments, as well as the calculation of proportions of different strains within a metagenomics sample. Our method outperforms existing methods based on single-site allele frequencies, as well as simple approaches using sequence read data. We have implemented the method in a freely available open-source software tool.

Introduction

Pooled sequencing is a common experimental method in which DNA samples from multiple individuals are sequenced together. In some contexts, the pooling of individual samples is performed by the researcher; in others, the sample itself is a mixture of multiple individuals. When population allele frequencies are of primary interest, pooled sequencing approaches can reduce the cost and labor involved in sample preparation, library construction, and sequencing (Futschik and Schlötterer 2010; Cutler and Jensen 2010; Kofler et al. 2011; Orozco-terWengel et al. 2012; Huang et al. 2012).

For example, in experimental evolution studies, populations are selected for extreme values of a trait over several generations, followed by pooled sequencing to calculate allele frequencies at polymorphic sites across the genome (Nuzhdin et al. 2007; Burke et al. 2010; Earley and Jones 2011; Turner et al. 2011; Zhou et al. 2011). Typically, differences in single-site allele frequencies between an experimental population and a control population (or between two experimental populations selected in opposite directions) are used to identify regions of the genome that may have undergone selection during the course of the experiment, and thus contribute to the trait of interest. However, localizing such regions would be improved if haplotype frequencies were more easily able to be estimated from pooled data, as many of the most powerful tests for selection rely on haplotype information (Voight et al. 2006; Sabeti et al. 2007).

In certain cases, haplotype frequency estimation may be more feasible than others, such as when the investigator has prior knowledge about the founders of the pooled sample. For example, Turner and Miller (2012) used inbred lines from the Drosophila Genetic Reference Panel (DGRP) (Mackay et al. 2012) to create the founding population for the selection experiment. In such an experiment, individual haplotypes in the evolved populations will be, apart from de novo mutations, mosaics of haplotypes from the founding population, whose sequences are known. This structure should make it simpler to estimate haplotype frequencies, and in turn detect regions harboring adaptive variation, by searching for haplotypes that have increased in frequency locally during the experiment.
In many other contexts, biological samples are naturally pooled, and the researcher is interested in the relative proportions of various species or strains within the sample. For example, malaria researchers interested in drug resistance and vaccine efficacy testing have developed several laboratory and computational techniques for determining the proportions of different malaria parasite strains in blood samples (Cheesman et al. 2003; Hunt et al. 2005; Takala et al. 2006; Li et al. 2007; Hastings and Smith 2008; Hastings, Nsanzabana and Smith 2010). In metagenomics studies, it is common to compare the microbiota proportions of multiple individuals, or of different tissues or locations within a single individual (Ley et al. 2006). In these examples, the canonical haplotypes of the strains are known, and it is the relative frequencies that are of interest.

Indirect estimation of haplotype frequencies from unphased genotype data has a long history (see Niu (2004) for a review of these methods). Several approaches for estimating haplotype frequencies from pools containing multiple individuals have focused on the use of single-nucleotide polymorphism (SNP) allele frequencies obtained by array-based genotyping (Pe’er and Beckmann 2003; Ito et al. 2003; Wang, Kidd and Zhao 2003; Yang et al. 2003; Kirkpatrick et al. 2007; Zhang, Yang and Yang 2008; Kuk, Zhang and Yang 2009). Some examples of this class of methods have incorporated prior knowledge about haplotypes in the sample into the estimation (Gasbarra et al. 2009; Pirinen 2009). Most recently, Long et al. (2011) have proposed a method for estimating haplotype frequencies from SNP allele-frequency data obtained by pooled sequencing, using a regression-based approach with known haplotypes.

Pooled sequence data provide two important sources of information beyond single-site allele frequencies: haplotype information from sequence reads that span multiple variant sites, and base quality scores, which give error probability estimates for each base call. Here we introduce a method to use this additional information to estimate haplotype frequencies from pooled sequence data, in the case where the constituent haplotypes are known. This method uses a probability model that naturally incorporates uncertainty in the reads by using the base quality scores reported with the sequence data. The method obtains a maximum likelihood estimate of the haplotype frequencies in the sample via an expectation-maximization (EM) algorithm (Dempster, Laird and Rubin 1977). We present results from realistic simulated data to show that the method outperforms allele-frequency based methods, as well as simple approaches that use sequence reads. The use of a fixed list of known haplotypes allows the algorithm to use data from much larger genomic regions than algorithms that enumerate all possible haplotypes in a region, which leads to much improved haplotype frequency estimates. We have implemented the method in an open-source software tool harp (see authors’ websites for software link).

Methods

We assume that there are H haplotypes represented in the pool, and that the sequence reads have been generated randomly according to the frequencies of the haplotypes. Informally, we use haplotype information contained in an individual read to probabilistically assign that read to one or more of the known haplotypes (Figure 1), and then use the probabilistic haplotype assignments...
to estimate the haplotype frequencies.

Figure 1: Haplotype information from individual reads can be combined across a genomic region to obtain haplotype frequency estimates. In this cartoon, there are 4 known haplotypes (black, green, blue, orange), with sequence data coming from a pool containing 25% green, 25% blue, and 50% orange haplotypes. Each read is probabilistically assigned to the known haplotypes. Some reads can be assigned with great certainty, e.g. the reads coming from the blue haplotype that cover two neighboring variant sites. Other reads (represented by two colors) are assigned with less certainty.

Probability Model

Let \(f = (f_1, \ldots, f_H) \) be the frequencies of the \(H \) haplotypes in the genomic region of interest. We can think of \(N \) sequence reads \(r = (r_1, \ldots, r_N) \) as being independently generated as follows. To generate read \(r_j \):

- choose the haplotype \(\eta_j \) to copy from:
 \[\eta_j \sim \text{Discrete}(f) \]

- choose a starting position uniformly at random in the genomic region, and copy read \(r_j \) from haplotype \(\eta_j \) starting at the chosen position

- draw base quality scores for the read from a fixed distribution (which can be determined empirically)

- introduce errors in the sequence read, with the probability of error in a base call given by the base quality score at that position

In practice, haplotypes may not be perfectly known, or there may be segregating variation within the strain represented by a particular haplotype. In such cases, International Union of Pure and Applied Chemistry (IUPAC) ambiguous base codes (e.g. \(R \) for purine, \(Y \) for pyrimidine, \(N \) for...
any, etc.) may be used in place of the standard bases (A, C, G, T) to indicate the uncertainty. We incorporate these cases into our probability model by assuming the true base at each segregating site is sampled from a discrete distribution with probabilities determined by the allele frequencies at that site within the strain (which may be known a priori or assumed to be uniform).

Haplotype Likelihood

Calculating the likelihood of a set of haplotype frequencies given read data under this model can be carried out as follows. Let \(L_j \) be the length of the \(j^{th} \) read \(r_j \), let \((r_j[1], \ldots, r_j[L_j])\) be the base calls, and let \(q_j = (q_j[1], \ldots, q_j[L_j]) \) be the base quality scores. Also, let \((\eta_j[1], \ldots, \eta_j[L_j])\) be the corresponding bases of haplotype \(\eta_j \). At read position \(i \), \(q_j[i] \) is the probability of sequencing error at that position: \(q_j[i] = P(r_j[i] \neq \eta_j[i]) \). Note that for paired-end data, \(r_j \) represents a read pair coming from a single haplotype, and that the positions within the read may not be contiguous.

We have \(P(\eta_j, r_j|f, q_j) = P(\eta_j|f)P(r_j|\eta_j, q_j) \). The first term \(P(\eta_j|f) \) is given by the discrete distribution with probabilities \(f \), and the second term \(P(r_j|\eta_j, q_j) \), the haplotype likelihood, can be calculated from the base quality scores, as follows.

First, we assume that sequencing errors within a single read are independent of each other:

\[
P(r_j|\eta_j, q_j) = \prod_{i=1}^{L_j} P(r_j[i]|\eta_j[i], q_j[i])
\]

Next, we need to specify how to calculate the terms in the above product, i.e. the probability of an observed base, given the true base and the base quality at that position. For simplicity, we assume that each of the 3 incorrect bases will be observed with equal probability:

\[
P(r_j[i]|\eta_j[i], q_j[i]) = \begin{cases}
1 - q_j[i] & \text{if } r_j[i] = \eta_j[i] \\
q_j[i]/3 & \text{if } r_j[i] \neq \eta_j[i]
\end{cases}
\]

More generally, we note that we can use a base error matrix (parametrized by base quality score) to allow for unequal probabilities, and that these probabilities can be estimated from the data by considering the monomorphic sites in the sample.

Note that if position \(i \) is a segregating site in the strain represented by haplotype \(\eta_j \), the likelihood is calculated by summing over the possible bases:

\[
P(r_j[i]|\eta_j[i], q_j[i]) = \sum_{b \in \{A,C,G,T\}} P(r_j[i]|\eta_j[i] = b, q_j[i]) P(\eta_j[i] = b)
\]

where \(P(\eta_j[i] = b) \) is the frequency of base \(b \) at that site within the strain. For sites where the possible bases are known, but not the allele frequencies, we set the allele frequencies to be equal, e.g. .5 for biallelic sites, and .25 for sites with no information.

For clarity, we suppress the dependence on the base quality scores in what follows.
Simple Approaches

We explored two simple approaches for estimating haplotype frequencies. The first method is a simple string match algorithm, where sequence reads are fractionally assigned (with equal weight) to haplotypes with which they are identical up to a specified maximum number of mismatches. For example, a read that matches two haplotypes is assigned .5 to each. The fractional assignments are then summed, to obtain counts for each haplotype, and dividing by the number of reads gives the haplotype frequency estimate.

The second method, which we call a soft string match, uses the probability model described above to calculate the vector of haplotype likelihoods \(l_j \) for each read \(r_j \). Thus, the soft string match makes use of the base quality scores from the reads. The haplotype likelihood vector \(l_j \) is normalized so that the components sum to 1, which we take to be our probabilistic haplotype assignment. As with the fractional assignments above, the probabilistic assignments are averaged to obtain the haplotype frequency estimate.

EM Algorithm

In addition to the simple approaches, we developed a full likelihood approach to obtain maximum likelihood estimates of the haplotype frequencies under the probability model described above.

We assume that our reads are generated independently, so our complete data likelihood is:

\[
L(f | \eta, r) = P(\eta, r | f) = \prod_{j=1}^{N} P(\eta_j, r_j | f)
\]

We observe the reads \(r \), but treat the haplotype assignments \(\eta \) as missing data, so we are interested in the marginal likelihood,

\[
L(f | r) = P(r | f) = \sum_{\eta} P(\eta, r | f)
\]

which we maximize by iteratively calculating haplotype frequency estimates via the EM algorithm: \(f^{(0)}, f^{(1)}, \ldots \).

First we describe the iteration step of the algorithm; we assume we have \(f^{(i)} \) and show how to obtain \(f^{(i+1)} \). In the appendix, we show that this is the formal EM algorithm of Dempster, Laird and Rubin (1977).

We let \(l_{j,h} = P(r_j | \eta_j = h) \), and let \(l_j = (l_{j,1}, \ldots, l_{j,H}) \) be the vector of haplotype likelihoods for read \(j \). Note that the haplotype likelihood vectors can be calculated once and cached, before the actual EM iteration.

Given \(f^{(i)} \), we define \(p_j = (p_{j,1}, \ldots, p_{j,H}) \) to be the haplotype posterior vector for read \(j \), where

\[
p_{j,h} = P(\eta_j = h | r_j, f^{(i)})
\]
Intuitively, p_j is a probabilistic haplotype assignment of read r_j, with each component $p_{j,h}$ representing the probability that the read came from haplotype h (given our current haplotype frequency estimate $f^{(i)}$). Note that:

$$P(\eta_j = h | r_j, f^{(i)}) \propto P(r_j | \eta_j = h) P(\eta_j = h | f^{(i)}) = l_{j,h} f^{(i)}_h$$

so p_j can be obtained by taking the component-wise product $l_j \circ f^{(i)}$, and normalizing so that the vector components sum to 1. As a special case, if $f^{(0)}$ is uniform, then in the first iteration, p_j is just l_j normalized.

Our updated estimate $f^{(i+1)}$ is given by the average of the haplotype posterior vectors:

$$f^{(i+1)} = \frac{\sum_j p_j}{N}$$

Finally, we must specify how to choose our initial haplotype frequency estimate $f^{(0)}$, as well as convergence criteria for the iteration. For our first initial estimate we use the uniform distribution $f^{(0)}_h = 1/H$. We also use additional random initial estimates drawn from a symmetric Dirichlet distribution to start multiple runs of the algorithm, since there is a possibility that the EM algorithm will climb to a non-global local maximum on the likelihood surface. For the termination condition, we specify a threshold ϵ, and halt the iteration when the squared distance between estimates falls below the threshold: $|f^{(i+1)} - f^{(i)}|^2 < \epsilon$. In practice, we found a value of $\epsilon = 10^{-8}$ to work well and this value is used in the results presented below.

Base Quality Score Recalibration

We observed inconsistencies between the reported base quality scores in our experimental data sets and empirical error rates based on sequence reads covering monomorphic sites in the known haplotypes (see Results), which motivated the development of a recalibration method to correct for these inconsistencies.

Illumina base quality scores have different interpretations, depending on the Illumina version. In our experimental data set, corresponding to Illumina versions 1.5 - 1.7, the scores range from 2 to 40, with the score q representing an error probability given by the Phred scale:

$$P(error) = 10^{-q/10}$$

For example, a base quality score of 20 gives an error probability of 1/100. The special score of 2 indicates that the base should not be used in downstream analysis.

To recalibrate, we examine monomorphic sites to calculate an observed error rate $P_{obs}(q)$ for each possible base quality score q. These observed error rates can then be used directly in the haplotype likelihood calculation in place of the Phred scale error rates, or to create a new BAM file with recalibrated base quality scores.
Implementation

We implemented both simple approaches and the EM algorithm described above in a C++ program called harp (Haplotype Analysis of Reads in Pools). The program takes as input a standard BAM file with mapped sequence reads, a reference sequence in FASTA format, and known haplotypes in the SNP data format used by the Drosophila Genetic Reference Panel (DGRP) project (Mackay et al. 2012). Support for other data formats is currently under development. The software uses the samtools API for random access to BAM files (Li et al. 2009). The program includes many options for the user to customize the analysis, including choice of algorithm, the genomic region to analyze, parameters for sliding windows within the region, convergence threshold for the EM algorithm, parameters used to generate multiple random initial estimates to avoid local maxima, and base quality score recalibration. The program also calculates standard errors for the haplotype frequency estimates, using general properties of the EM algorithm and maximum likelihood estimators (see the Appendix for details on this calculation).

Evaluation

To evaluate the performance of the algorithms, we used simulated pooled sequence data based on experimental data from selection experiments in *Drosophila melanogaster* (Turner and Miller 2012). The data consisted of Illumina 85bp and 100bp paired-end sequence reads generated from 4 pools of 120 *D. melanogaster* individuals each, sequenced at 200x average coverage. For our known haplotypes, we used the publicly available SNP data from 162 Drosophila inbred lines representing Freeze 1 of the DGRP project. The published haplotypes include ambiguous base codes (e.g. R for A or G) to represent sites that have multiple alleles still segregating within the inbred line. The ambiguous base code N is used at sites where there was not enough sequence data to make a base call.

We used the following procedure to simulate pooled sequence data:

- Generate a haplotype frequency distribution (the true distribution) from a symmetric Dirichlet distribution, with single parameter α chosen to produce frequency distributions similar to those observed in the real data ($\alpha = .2$).
- Draw random paired-end sequence reads by choosing the haplotype according to the true distribution, the starting position uniformly at random over the given genomic region, and the paired end distance according to a Poisson distribution fitting the real data.
- For segregating sites denoted by ambiguous base codes, draw allele frequencies according to a symmetric Dirichlet distribution. Choose the true base at a segregating site according to the allele frequencies. (For biallelic sites denoted by a 2-base ambiguous code, e.g. R for A or G, we set the Dirichlet parameter $\alpha = 1$, i.e. the allele frequency was chosen uniformly at random. For sites denoted by N (any) in the haplotype, we set $\alpha = .1$, as we expect that most of these sites have an allele that is at or near fixation).
• Generate base quality scores according to the empirical distribution obtained from the real data, and introduce sequencing errors with error rates determined by the base quality scores.

Algorithm performance was evaluated by calculating the sum of squared errors between the true haplotype frequencies used to simulate the data and the frequencies estimated by the EM algorithm: $$\sum_{h=1}^{H} (f_{h}^{true} - f_{h}^{estimated})^2$$.

Results

Comparison With Existing Allele-Frequency Based and Simple Sequence Based Methods

We first evaluated the performance of the EM algorithm in comparison to single-site allele-frequency based methods and the simple sequence-based methods discussed above (see Methods). To represent the allele-frequency based methods, we chose hippo, which is a freely available program that has been shown to outperform other allele-frequency based methods for estimating haplotype frequencies (Pirinen 2009). One property of this class of methods is that all possible haplotypes in the region are considered during the estimation. This results in an exponential growth in the number of haplotypes (and thus memory usage and algorithm running time) as the region width increases. To improve performance, the hippo method allows one to specify known haplotypes, which we do here. We found it difficult to obtain results on our simulated data for regions larger than about 2kb (though this distance scale is driven largely by the relatively high Drosophila-specific levels of diversity we simulate here).

In this comparison, we simulated data from a pool of 20 haplotypes with 100bp paired-end sequence reads and 200x pooled coverage, with 100 replicates each from genomic regions ranging in size from 500bp to 50kb.

We found that the simple methods using sequence reads outperformed the method based on single-site allele frequencies, and that the EM algorithm performed vastly better than all of the other methods (Figure 2). The soft stringmatch method showed a distinct improvement over the stringmatch method, due to the incorporation of information from the base quality scores.

The EM algorithm’s increased performance can be attributed to the sharing of information across all of the reads in the genomic region. In contrast to the other methods, the EM algorithm’s performance improves as the width of the region increases. This improvement comes from the fact that more variant sites are available to distinguish between haplotypes, in addition to the increased amount of data on which to base the inference.

Effects of Region Width, Coverage, and Read Length

We next evaluated the performance of the EM algorithm with respect to increasing region width and coverage. In this evaluation, we simulated pooled data (100bp paired-end) from all 162 haplotypes, 100 replicates each in genomic regions ranging in size from 25kb to 400kb, at coverages ranging from 25x to 300x. We found that performance increases substantially as coverage increases, especially
Figure 2: Comparison of the EM algorithm to known allele-frequency based and simple sequence-based methods. Each algorithm was run on simulated pooled 100bp paired-end sequence data from 20 haplotypes at 200x coverage, with 100 replicates for each region width.

at the lower coverage levels (25x - 100x), and also as the region width increases (Figure 3). In particular, for larger regions (≥ 100kb) at moderate pooled coverage (200x), the sum of squared errors is less than 10^{-4}, which corresponds to a root mean squared error of less than a tenth of a percent per haplotype.

We also evaluated the effect of increasing read lengths on the performance of the EM algorithm. We simulated paired-end sequence data in a 200kb region with sequence read lengths ranging from 50bp to 500bp (100 replicates each). In each case, we generated 200,000 read pairs (200x coverage for 100bp reads). As expected, longer read length also increases performance, due to the additional haplotype information contained in individual reads (Figure 4).

Robustness to Sequencing Errors

Next, we studied the effects of sequence read errors on the haplotype frequency estimation. We calculated an empirical base quality score distribution, which we shifted to obtain simulated data sets with specified error rates. In our experimental data sets, the sequence error rate calculated from the base quality scores was generally in the range of .05 – .07 (errors per base call), depending on the region. On simulated data sets (162 haplotypes, 200kb region, 100bp paired-end reads, 200x coverage), we found that the EM algorithm maintains good performance (sum of squared errors
≈ 10^{-4}), even with error rates of 2-3x empirical error rates (Figure 5).

Effects of Haplotype Diversity

We investigated the effects of haplotype diversity, quantified by the Shannon entropy (in natural log units) of the true haplotype frequency distribution, on the performance of the EM algorithm. We simulated pooled 100bp paired-end sequence data from 162 haplotypes at 200x coverage in a 200kb region. We generated the haplotype frequencies using symmetric Dirichlet distributions with parameter values ranging from .005 to 10, for a total of 550 replicates, which were binned by Shannon entropy (Figure 6). We found that the EM algorithm performs best for low entropy frequency distributions, where there are a few haplotypes at high frequency. Performance degrades as the entropy increases, with a slight improvement for high-entropy (nearly uniform) distributions. This behavior can be explained by the fact that missing information leads to uniform estimates, which will give better results for near-uniform distributions.
The computation of haplotype likelihoods is dependent on the correct reporting and interpretation of base quality scores. By looking at monomorphic sites in our experimental data sets, we calculated an observed error rate $P_{\text{obs}}(\text{error})$ for each possible base quality score, which maps to an empirical base quality score q_{obs} according to:

$$q_{\text{obs}} = -10 \log_{10} P_{\text{obs}}(\text{error})$$

We observed that the reported base quality scores in our experimental data sets were consistently inaccurate (Figure 7A). This motivated the development of a recalibration method to correct for inaccurate reporting of base quality scores (see Methods).

In order to test our recalibration method, we simulated data sets (162 haplotypes, 100bp paired-end reads, 200kb region, 200x coverage) using the empirical error rate for each base quality score to generate sequence read errors. For each of 100 replicates, we ran the EM algorithm with and without recalibration of the base quality scores. We found the algorithm has higher accuracy with the base quality score recalibration (Figure 7B).
Empirical error rates were found to be in the range of .05 - .07 errors per base call. The algorithm was run on simulated pooled 100bp paired-end sequence data from 162 haplotypes in a 200kb region, with 100 replicates for each error rate.

Random Initial Estimates To Avoid Local Maxima

We investigated the possibility that the EM algorithm could converge to non-global local maxima on the likelihood surface. We simulated data sets (162 haplotypes, 100bp paired-end reads, 200x coverage, empirical error rates) over a range of region sizes from 10kb to 200kb, starting from a uniform initial estimate in addition to a varying number of random initial estimates (0, 25, 50, 100), with 100 replicates for each combination. We found that running the algorithm multiple times with random initial estimates did not improve performance, indicating that the EM algorithm finds the global maximum reliably starting from a uniform initial estimate.

Discussion

We have presented a new method for estimating the frequencies of known haplotypes from pooled sequence data, using the haplotype information contained in individual sequence reads. We showed that the method outperforms methods based on allele frequencies, as well as simple methods using sequence data. Using data from larger genomic regions improves the accuracy of the estimate. Increased coverage and longer read lengths also improve the performance of the
Figure 6: The EM algorithm performs best when the true frequency distribution has low entropy. The algorithm was run on simulated pooled 100bp paired-end sequence data from 162 haplotypes at 200x coverage in a 200kb region (550 replicates binned by Shannon entropy in natural log units).

algorithm. The method generally performs better for haplotype frequency distributions with lower entropy than those with higher entropy. The method incorporates uncertainty in the sequence reads by using the reported base quality scores. Recalibration of base quality scores using monomorphic sites in the pooled data leads to better performance.

The method relies on the probabilistic assignment of sequence reads to the known haplotypes. The method works best when the SNP density (the number of SNPs per base pair) is high enough so that individual read pairs will cover multiple SNPs. In the DGRP Drosophila strains, the SNP density is \(\sim 1/20 \) SNP/bp so that 100bp paired-end reads contain on average 10 SNPs per pair, which is sufficient for this probabilistic assignment. As sequence read lengths increase with advances in sequencing technology, we anticipate that this method will be useful for a wide variety of organisms.

This method has immediate application in the analysis of pooled data from artificial selection experiments where the founding haplotypes are known. In essence, by using information from the founding population, we are able to infer haplotype information about the final pooled population, which has previously only been available when individuals have been sequenced separately. This haplotype information can then be used for various purposes (e.g. to look for signatures of selection).

It should be noted that in the experimental evolution setting, the haplotype frequency estimates obtained are local, and will vary across the genome due to recombination over the course of the
Figure 7: A) Reported base quality scores do not match empirical scores calculated from real data using monomorphic sites. B) Recalibration of base quality scores using monomorphic sites improves performance. The EM algorithm was run with and without base quality score recalibration on simulated pooled 100bp paired-end sequence data from 162 haplotypes at 200x coverage in a 200kb region. Sequence errors in the simulated data were introduced with probabilities given by the empirical error rates.

In the case where a recombination has occurred within the region under consideration, nearly all sequence reads coming from the recombinant haplotype will come from one or the other of the two original haplotypes. Because of this, reads from the recombinant haplotype will contribute to the frequency estimates of both of the original haplotypes, with the exact proportion determined by the location of the recombination point within the region. The few reads that span a recombination point will have very low haplotype likelihoods, and will contribute negligibly to the final estimate. In practice, one can choose the width of the genomic region used for the estimation to be smaller than the expected length scale of recombination. For example, in Drosophila selection experiments lasting 25 generations, we expect to see recombination breakpoints at a scale of ≈ 1mb, whereas our method obtains very accurate results with much smaller regions of ≈ 100 kb.

In addition to applications in experimental evolution, we anticipate that our method will find application in the estimation of proportions of known pathogen strains in naturally pooled samples (e.g. blood samples), as well as in metagenomics contexts. Haplotype frequency estimation from pools may also be useful in QTL mapping studies. In studies with recombinant inbred lines, several generations of inbreeding are carried out with lines that are derived from mixed populations founded by multiple strains, and the parent of origin for each segment in each inbred line is inferred and correlated with phenotypic trait values. As an alternative, it may be possible to perform haplotype frequency estimation from pooled sequencing of the mixed populations directly and map traits by correlating haplotype frequencies with trait values.

The software implementing the method, harp, is open source and available for download, and can be easily integrated into existing analysis pipelines.
Figure 8: The EM algorithm shows no improvement from using multiple random initial estimates, showing that it converges to the global maximum reliably. The EM algorithm was run on simulated pooled 100bp paired-end sequence data from 162 haplotypes at 200x coverage, over a range of region widths, with varying numbers of random initial estimates.

Acknowledgments

This work was supported by the National Institutes of Health (Training Grant in Genomic Analysis and Interpretation T32 HG002536 for D.K., R01 GM053275 for J.N., and R01 GM098614 for T.T.) and by the NSF (EF-0928690 for J.N.) and the Searle Scholars Program (J.N.). We thank Ken Lange for his suggestions on the standard error calculations.

References

Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD. 2010. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature. 467:587–90.

Cheesman SJ, de Roode JC, Read AF, Carter R. 2003. Real-time quantitative PCR for analysis of genetically mixed infections of malaria parasites: technique validation and applications. Molecular and Biochemical Parasitology. 131:83–91.

Cutler DJ, Jensen JD. 2010. To pool, or not to pool? Genetics. 186:41–3.
Dempster A, Laird N, Rubin D. 1977. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological). 39:1–38.

Earley EJ, Jones CD. 2011. Next-generation mapping of complex traits with phenotype-based selection and introgression. Genetics. 189:1203–9.

Futschik A, Schlötterer C. 2010. The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics. 186:207–18.

Gasbarra D, Kulathinal S, Pirinen M, Sillanpää MJ. 2009. Estimating haplotype frequencies by combining data from large DNA pools with database information. IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM. 8:36–44.

Hastings IM, Nsanzabana C, Smith Ta. 2010. A comparison of methods to detect and quantify the markers of antimalarial drug resistance. The American journal of tropical medicine and hygiene. 83:489–95.

Hastings IM, Smith Ta. 2008. MalHaploFreq: a computer programme for estimating malaria haplotype frequencies from blood samples. Malaria journal. 7:130.

Huang W, Richards S, Carbone Ma, et al. (25 co-authors). 2012. Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proceedings of the National Academy of Sciences. pp. 1–7.

Hunt P, Fawcett R, Carter R, Walliker D. 2005. Estimating SNP proportions in populations of malaria parasites by sequencing: validation and applications. Molecular and biochemical parasitology. 143:173–82.

Ito T, Chiku S, Inoue E, Tomita M, Morisaki T, Morisaki H, Kamatani N. 2003. Estimation of Haplotype Frequencies, Linkage-Disequilibrium Measures, and Combination of Haplotype Copies in Each Pool by Use of Pooled DNA Data. American journal of human genetics. pp. 384–398.

Kirkpatrick B, Armendariz CS, Karp RM, Halperin E. 2007. HAPLOPOOL: improving haplotype frequency estimation through DNA pools and phylogenetic modeling. Bioinformatics (Oxford, England). 23:3048–55.

Kofler R, Orozco-terWengel P, De Maio N, Pandey RV, Nolte V, Futschik A, Kosiol C, Schlötterer C. 2011. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PloS one. 6:e15925.

Kuk AYC, Zhang H, Yang Y. 2009. Computationally feasible estimation of haplotype frequencies from pooled DNA with and without Hardy-Weinberg equilibrium. Bioinformatics. 25:379–86.

Lange K. 2010. Numerical Analysis for Statisticians (Statistics and Computing). Springer, 2nd ed. edition.
Ley R, Turnbaugh PJ, Klein S, Gordon JI. 2006. Human gut microbes associated with obesity. Nature. 444.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England). 25:2078–9.

Li X, Foulkes AS, Yucel RM, Rich SM. 2007. An expectation maximization approach to estimate malaria haplotype frequencies in multiply infected children. Statistical applications in genetics and molecular biology. 6:Article33.

Long Q, Jeffares DC, Zhang Q, Ye K, Nizhynska V, Ning Z, Tyler-Smith C, Nordborg M. 2011. PoolHap: inferring haplotype frequencies from pooled samples by next generation sequencing. PloS one. 6:e15292.

Mackay TFC, Richards S, Stone Ea, et al. (52 co-authors). 2012. The Drosophila melanogaster Genetic Reference Panel. Nature. 482:173–178.

Niu T. 2004. Algorithms for inferring haplotypes. Genetic epidemiology. 27:334–47.

Nuzhdin SV, Harshman LG, Zhou M, Harmon K. 2007. Genome-enabled hitchhiking mapping identifies QTLs for stress resistance in natural Drosophila. Heredity. 99:313–21.

Orozco-terWengel P, Kapun M, Nolte V, Kofler R, Flatt T, Schlötterer C. 2012. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Molecular ecology. .

Pe’er I, Beckmann JS. 2003. Resolution of haplotypes and haplotype frequencies from SNP genotypes of pooled samples. Proceedings of the seventh annual international conference on Computational molecular biology - RECOMB ’03. pp. 237–246.

Pirinen M. 2009. Estimating population haplotype frequencies from pooled SNP data using incomplete database information. Bioinformatics. 25:3296–302.

Sabeti PC, Varilly P, Fry B, et al. (248 co-authors). 2007. Genome-wide detection and characterization of positive selection in human populations. Nature. 449:913–8.

Takala SL, Smith DL, Stine OC, Coulibaly D, Thera Ma, Doumbo OK, Plowe CV. 2006. A high-throughput method for quantifying alleles and haplotypes of the malaria vaccine candidate Plasmodium falciparum merozoite surface protein-1 19 kDa. Malaria journal. 5:31.

Turner TL, Miller PM. 2012. Investigating natural variation in Drosophila courtship song by the evolve and resequence approach. Genetics. 191:633–42.
Appendix: Formal EM Calculation

Expectation step: We calculate the expectation of the complete data log-likelihood, where the expectation is taken over the posterior distribution of the missing data given the observed data and the current estimate. Recall that $p_{j,h} = P(\eta_j = h | r_j, f^{(i)})$ is the probability that read r_j came from haplotype h, given our current haplotype frequency estimate $f^{(i)}$.
\[Q(f|f^{(i)}) = E_{\eta|r,f^{(i)}} \log L(f|\eta, r) \]
\[= E_{\eta|r,f^{(i)}} \sum_j \log P(\eta_j, r_j|f) \]
\[= \sum_j E_{\eta|r,f^{(i)}} \log P(\eta_j, r_j|f) \]
\[= \sum_j \sum_h P(\eta_j = h|r_j, f^{(i)}) \log P(h, r_j|f) \]
\[= \sum_j \sum_h p_{j,h} \log P(r_j|h) + \log P(h|f) \]
\[= \sum_j \sum_h p_{j,h} \log f_h + C \]
\[= \log \prod_h f_h^{\sum_j p_{j,h}} + C \]

where \(C \) is a constant independent of \(f \).

Maximization step: Our next estimate \(f^{(i+1)} \) is given by the \(f \) that maximizes the expected log-likelihood:

\[f^{(i+1)} = \arg \max_f Q(f | f^{(i)}) \]

First note that the function \(R(f) = \prod_h f_h^{\alpha_h} \) is maximized by \(f_h = \alpha_h / \sum_i \alpha_i \). (For example, the maximum likelihood estimator for the parameters of a multinomial distribution is given by the vector of count proportions.)

Since \(\log \) is monotonic and

\[\sum_h \sum_j p_{j,h} = \sum_j 1 = N \text{ (the number of reads)}, \]

\(Q(f|f^{(i)}) \) is maximized when, for all \(h \):

\[f_h = \frac{\sum_j p_{j,h}}{N} \]

In other words, our next estimate \(f^{(i+1)} \) is given by the average of the posterior vectors:

\[f^{(i+1)} = \frac{\sum_j p_j}{N} \]
Appendix: Calculation of Standard Errors

We use general properties of the EM algorithm and maximum likelihood estimators to calculate standard errors for our haplotype frequency estimates, following Lange (2010). For brevity, we let $L(f)$ be the log-likelihood of f. Our strategy to calculate standard errors of our maximum likelihood estimate \hat{f} is as follows:

1. estimate the observed information $I = -d^2L(\hat{f})$
2. \hat{f} is asymptotically normal with covariance matrix I^{-1}, so the standard error estimates are the square roots of the diagonals of I^{-1}

One slight complication is that our estimate \hat{f} is subject to a linear constraint (the frequencies must sum to 1). Below, we also show how to adjust this calculation to handle this constraint.

Calculating d^2L

Let g be the minorizing function for the EM algorithm:

$$g(f|f_0) = Q(f|f_0) + L(f_0) - Q(f_0|f_0)$$

Then g satisfies the relations for all f, f_0:

$$g(f|f_0) \leq L(f)$$
$$g(f_0|f_0) = L(f_0)$$

Note that $\nabla g(f|f_0) = \nabla Q(f|f_0)$. Also, $L(f) - g(f|f_0)$ is minimized $f = f_0$, so $\nabla L(f) - \nabla g(f|f_0) = 0$ at $f = f_0$. This means that $\nabla L(f_0) = \nabla Q(f_0|f_0)$. Note that $\nabla Q(f_0|f_0)$ is the gradient $\nabla Q(f|f_0)$ computed as a function of f, then evaluated at $f = f_0$.

In summary, we can write the score function $S = (S_1, \ldots, S_H)^T$, defined to be the gradient of the log-likelihood, as:

$$S(f) = \nabla L(f) = \nabla Q(f|f)$$

Since $dS = d^2L$, we need to find the partial derivatives of S.

Recall that we have:

$$Q(f|f_0) = \sum_h (\sum_j p_{j,h}) \log f_h$$

where $p_{j,h}$ is the haplotype posterior vector, representing the probability that read r_j came from haplotype h.

21
Note that the $p_{j,h}$ depend on f_0, but not f, so the partial derivatives of $Q(f|f_0)$ have a simple form:

$$ \frac{\partial Q(f|f_0)}{\partial f_h} = \sum_j p_{j,h}(f_0) \frac{f_h}{f_h} $$

Now we evaluate at $f = f_0$, and drop the subscript:

$$ S_h(f) = \frac{\sum_j p_{j,h}(f)}{f_h} $$

We can now compute partial derivatives of the score function:

$$ \frac{\partial S_h}{\partial f_k} = \frac{1}{f_h} \sum_j \frac{\partial p_{j,h}}{\partial f_k} - \frac{1}{f_h^2} \sum_j p_{j,h} $$

To compute the partial derivatives of $p_{j,h}$, first write $p_{j,h}$ as:

$$ p_{j,h} = \frac{l_{j,h}f_h}{P_j} $$

where $P_j = \sum_h l_{j,h}f_h$ is the total probability of read r_j. Since $\frac{\partial P_j}{\partial f_k} = l_{j,k}$, we have:

$$ \frac{\partial p_{j,h}}{\partial f_k} = \frac{l_{j,h}f_h}{P_j} \frac{1}{f_h} = l_{j,h}f_h \frac{1}{P_j} $$

Adjusting for the linear constraint

We continue to follow [Lange (2010)] to handle the linear constraint $\sum_h f_h = 1$. Let $V = 1_H^t = (1 \cdots 1)$ be the row vector with H 1’s, so we can write our constraint as $Vf = 1$.

We let W be a matrix with $H - 1$ column vectors orthogonal to V:

$$ W = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ -1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & -1 \end{pmatrix} $$
We reparametrize by β, using the relation $f = \alpha + W\beta$, where α satisfies the constraint $V\alpha = 1$. As a function of β, the log-likelihood $L(\alpha + W\beta)$ has observed information $-W^t d^2 L(\alpha + W\beta) W$, which gives an estimate $\text{Var}(\hat{\beta}) = -[W^t d^2 L(\hat{f}) W]^{-1}$. This gives the estimate $\text{Var}(f) = \text{Var}(W\hat{\beta}) = -W[W^t d^2 L(\hat{f}) W]^{-1} W^t$, where $d^2 L(\hat{f})$ was estimated above.