Name	Title
Zhang, Lancui	Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro
Ma, Gang	
Kato, Masaya	
Yamawaki, Kazuki	
Takagi, Toshihiko	
Kiriiwa, Yoshikazu	
Ikoma, Yoshinori	
Matsumoto, Hikaru	
Yoshioka, Terutaka	
Nesumi, Hirohisa	

Citation

Journal of Experimental Botany. 63(2), p. 871-886

Issue Date

2011-10-11

URL

http://hdl.handle.net/10297/6775

Version

author

Rights

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Experimental Botany following peer review. The definitive publisher-authenticated version is available online at: http://jxb.oxfordjournals.org/content/63/2/871.
Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro

Lancui Zhang1†, Gang Ma1,2†, Masaya Kato1*, Kazuki Yamawaki1, Toshihiko Takagi1, Yoshikazu Kiriiwa1, Yoshinori Ikoma3, Hikaru Matsumoto3, Hirohisa Nesumi3, Terutaka Yoshioka4

1Department of Biological and Environmental Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka 422-8529, Japan
2The United Graduate School of Agricultural Science, Gifu University (Shizuoka University), Yanagido, Gifu 501-1193, Japan
3Department of Citrus Research, National Institute of Fruit Tree Science, Okitsunakacho, Shimizu, Shizuoka 424-0292, Japan
4Shikoku Research Center, Nation Agricultural Research Center for Western Region, Senyu, Zentsuji, Kagawa, 765-8508 Japan

Lancui Zhang: lancuizhangzlc@163.com
Gang Ma: magangmg2101@163.com
Masaya Kato: amkato@ipc.shizuoka.ac.jp
Kazuki Yamawaki: abkyama@ipc.shizuoka.ac.jp
Toshihiko Takagi: abttaka@ipc.shizuoka.ac.jp
Yoshikazu Kiriiwa: akykiri@ipc.shizuoka.ac.jp
Yoshinori Ikoma: yoshino@affrc.go.jp
Hikaru Matsumoto: hikaruoo@affrc.go.jp
Hirohisa Nesumi: nesumi@affrc.go.jp
Terutaka Yoshioka: yt0517@affrc.go.jp

†These authors contributed equally to this article.
*Corresponding author: Masaya Kato

Telephone: 81-54-238-4830 Fax: 81-54-238-4830 Email: amkato@ipc.shizuoka.ac.jp

Date of submission: 4 March 2011
Number of figures: 10
Running title: Regulation of carotenoid metabolism in citrus
	Abbreviation	Description
35	ABA	abscisic acid
36	C-neo	9’-cis-neoxanthin
37	C-vio	9-cis-violaxanthin
38	GA	gibberellin
39	GGPP	geranylgeranyl diphosphate
40	HYb	β-ring hydroxylase
41	HYe	ε-ring hydroxylase
42	LCY	lycopene cyclase
43	LCYb	lycopene β-cyclase
44	LCYe	lycopene ε-cyclase
45	Lut	lutein
46	NAA	naphthalene acetic acid
47	NCED	9-cis-epoxycarotenoid dioxygenase
48	PDS	phytoene desaturase
49	PSY	phytoene by phytoene synthase
50	ZDS	ζ-carotene desaturase
51	Zea	zeaxanthin
52	α-Car	α-carotene
53	β-Car	β-carotene
54	β-Cry	β-cryptoxanthin
Abstract

In the present study, to investigate the mechanisms regulating carotenoid accumulation in citrus, we set up a culture system with juice sacs of three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck) and Lisbon lemon (Citrus limon Burm.f.) in vitro. The juice sacs of all the three varieties enlarged gradually with carotenoid accumulation. The changing patterns of carotenoid content and the expression of carotenoid metabolic genes in juice sacs in vitro were similar to those ripening on trees in the three varieties. Using this system, the changes in the carotenoid content and the expression of carotenoid metabolic genes in response to environmental stimuli were investigated. The results showed that carotenoid accumulation was induced by blue light treatment, but not affected by red light treatment in the three varieties. Different regulation of CitPSY expression, which was up-regulated by blue light, while unaffected by red light, led to different changes in carotenoid content in response to these two treatments in Satsuma mandarin and Valencia orange. In all three varieties, increases in carotenoid content were observed in sucrose and mannitol treatments. However, the accumulation of carotenoid in the two treatments was regulated by distinct mechanisms at the transcriptional level. With ABA treatment, gene expression investigated in this study was up-regulated in Satsuma mandarin and Lisbon lemon, indicating that ABA induced its own biosynthesis at the transcriptional level. This feedback
regulation of ABA led to decreases in carotenoid content. With GA treatment, carotenoid content were significantly decreased in the three varieties. Changes in the expression of genes related to carotenoid metabolism varied among the three varieties in response to GA treatment. These results provided insights into improving carotenoid content and composition in citrus during fruit maturation.

Key words: Carotenoid, citrus, *in vitro*, juice sacs, regulatory mechanism.
Introduction

Carotenoids, which are important natural isoprenoid pigments, fulfill a variety of critical functions in plants, such as the stabilization of lipid membranes, light harvesting for photosynthesis, as well as protecting the photosystem from photo-oxidation (Havaux, 1998; Ledford and Niyogi, 2005). In addition, carotenoids are also precursors of the plant hormone abscisic acid (ABA), and exploited as coloring agents in flowers and fruits to attract pollinators (Schwartz et al., 1997; Cunningham and Gantt, 1998). Carotenoids are important not only to the plants that produce them, but also to animals and humans. Some carotenoids containing β–ring moieties are the precursors of vitamin A, and have been proven to prevent the onset of certain chronic diseases and cancers (Giovannucci, 1999; Krinsky et al., 2003). In citrus, carotenoids are the pigments responsible for the external and internal coloration of the fruits, and their contents and compositions are important indexes for the commercial and nutritional quality of the fruits. Carotenoid content and composition are influenced by growing conditions, geographical origins and fruit maturity; therefore they vary greatly among citrus varieties. In Satsuma mandarin (*Citrus unshiu* Marc.), β-cryptoxanthin (β-cry) is accumulated predominantly in juice sacs (Goodner et al., 2001; Kato et al., 2004). In contrast, Valencia orange (*Citrus sinensis* Osbeck) mainly accumulates violaxanthin (vio) isomers with 9-cis-violaxanthin (c-vio) as the principal carotenoid (Molnár and Szabolcs, 1980; Lee and Castle, 2001). Lisbon lemon (*Citrus limon* Burm.f.) also
accumulates β-cry as the principal carotenoid, but it accumulates much lower level of carotenoid than Satsuma mandarin and Valencia orange. These citrus varieties, which exhibit different carotenoid profiles, are useful for investigating the mechanism of carotenoid accumulation. In the previous studies, the relationship between carotenoid accumulation and expression of genes related to carotenoid metabolism in different citrus varieties were investigated during natural ripening (Kato et al., 2004, 2006; Alquézar et al., 2009).

Carotenoid metabolism has been well documented in various plant species, including Arabidopsis (Park et al., 2002), tomato (Isaacson et al., 2002), pepper (Bouvier et al., 1998), tobacco (Busch et al., 2002), alga (Steinbrenner and Linden, 2001), citrus (Kato et al., 2004; Rodrigo et al., 2004; Rodrigo and Zacarías, 2007), and apricot (Marty et al., 2005; Kita et al., 2007). As shown in Fig. 1, the pathway of carotenoid metabolism in plants is a series of desaturation, cyclization, hydroxylation, and epoxidation steps (Cunningham and Gantt, 1998; Kato et al., 2004). The conversion of geranylgeranyl diphosphate (GGPP) to phytoene by phytoene synthase (PSY) is the first and rate-limiting step in the pathway. Two functionally similar enzymes, phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS), convert phytoene to lycopene via phytofluene, ζ-carotene and neuroporene. The cyclization of lycopene catalyzed by lycopene cyclase (LCY) is a key branch point in the pathway in citrus fruits, yielding α-carotene (α-car) and β-carotene (β-car). The genes of lycopene β-cyclase (LCYb) and lycopene ε-cyclase (LCYe) have been identified in citrus (Kato et
\(\alpha\)-Car is converted to lutein (lut), a major xanthophyll, by \(\varepsilon\)-ring hydroxylase (HYe) and \(\beta\)-ring hydroxylase (HYb). \(\beta\)-Car is converted to zeaxanthin (zea) via \(\beta\)-cry by a two-step hydroxylation, which is catalyzed by HYb, then zea is converted to vio by zea expoxidase (ZEP). In addition, carotenoid metabolism is closely related to the biosynthesis of plant hormones: abscisic acid (ABA) and gibberellin (GA). In higher plants, ABA is biosynthesized by the oxidative cleavage of certain xanthophylls. 9-Cis-epoxycarotenoid dioxygenases (NCED) catalyze the cleavage of 9-cis-violaxanthin (c-vio) or 9'-cis-neoxanthin (c-neo) to form \(C_{25}\) epoxy-apocarotenal and xanthoxin (\(C_{15}\)), from which the latter is the direct precursor of ABA. Similar to ABA, GA is also in close association with the biosynthesis of carotenoids. Like in the initial reaction of the carotenoid biosynthesis, GGPP is also the substrate for \(ent\)-copalyl diphosphate synthase, which together with \(ent\)-kaurene synthase lead to the metabolic flux into the biosynthesis of GA.

Recently, genes encoding enzymes for the main steps of carotenoid metabolism have been isolated and their expression has been characterized in plants (Kato et al., 2004, 2006; Kita et al., 2007; Alquézar et al., 2009). During fruit ripening, transcriptional regulation of carotenoid genes appears to be a major mechanism by which biosynthesis and accumulation of specific carotenoids are regulated. In tomato, increases in the gene expression of \(PSY\) and \(PDS\), and decreases in the gene expression of \(LCYb\) and \(LCYe\) led to the
accumulation of lycopene during fruit ripening (Pecker et al., 1996; Ronen et al., 1999). In our previous studies, we found that as fruit maturation progressed, a simultaneous increase in the expression of genes (CitPSY, CitPDS, CitZDS, CitLCYb, CitHYb and CitZEP) led to massive \(\beta, \beta \)-xanthophyll (\(\beta \)-cry, zea and vio) accumulation in the flavedo and juice sacs of Satsuma mandarin and Valencia orange (Kato et al., 2004). Meanwhile, the gene expression of CitNCED2 and CitNCED3 in Satsuma mandarin and the gene expression of CitNCED2 in Lisbon lemon were primarily responsible for the accumulation of ABA in juice sacs, while in Valencia orange the extremely low level of CitNCED2 was primarily responsible for the low level of ABA (Kato et al., 2006).

Carotenoid metabolism is a complicated process, which is regulated throughout the life cycle of a plant with dynamic changes in content and composition in response to environmental stimuli (Cazzonelli and Pogson, 2010). Light and sugar have been reported to be important environmental factors regulating carotenoid metabolism in plants (Huff, 1983, 1984; Alba et al., 2000; Domingo et al., 2001; Schofield and Paliyath, 2005; Wu et al., 2007; Liu et al., 2009). Additionally, plant hormones ABA and GA, which are closely involved in carotenoid metabolism, also play a crucial role in adjusting carotenoid content and composition in plants (Wan and Li, 2006; Rodrigo and Zacarias, 2007). To date, however, although significant advances have been made in understanding the accumulation of carotenoid and the expression of carotenoid metabolic genes during the maturation of citrus fruits, information about the changes in
carotenoid metabolism in response to various environmental stimuli in citrus fruits is still limited (Rodrigo and Zacarias, 2007; Matsumoto et al., 2009). The tissue culture technique is one of the key tools to study plants growth and development, by which undefined variables were minimized and medium compositions and environmental factors were carefully controlled. So far, several attempts have been performed to culture citrus in vitro using different plant tissues (Mukai et al., 2000; Harada et al., 2001; Khan et al., 2009). In the present study, to further investigate how the carotenoid accumulation is regulated in response to different environmental factors in citrus, we set up a culture system with juice sacs of three different citrus varieties, Satsuma mandarin, Valencia orange and Lisbon lemon. The juice sacs of the three varieties grew with carotenoid accumulation, and no callus formed throughout the experimental period. Using this system, the effects of environmental conditions (blue and red LED lights, sucrose and mannitol) and plant hormones (ABA and GA) on carotenoid content and composition, and the gene expression related to carotenoid biosynthesis and catabolism were investigated in the three varieties, Satsuma mandarin, Valencia orange and Lisbon lemon in vitro. This study gave more information on how carotenoid accumulation is regulated, which might provide new strategies to enhance carotenoid production in citrus.

Materials and methods

Plant materials
Satsuma mandarin (*Citrus unshiu* Marc.), Valencia orange (*Citrus sinensis* Osbeck) and Lisbon lemon (*Citrus limon* Burm.f.) cultivated at the National Institute of Fruit Tree Science, Department of Citrus Research, Okitsu (Shizuoka, Japan) were used as materials.

In vitro culture system

The fruits were surface-sterilized by a 10-min soak in 70% ethanol, a 30-min soak in 1% (w/v) NaOCl, and rinsed in sterile water. Juice sacs were excised from the equatorial region of the fruit, were placed on 10 ml of agar medium in culture tubes (22 × 120 mm) and incubated in the dark at 25 °C. The explants were placed with the endocarp side up, so that the juice sacs were not in contact with the Murashige and Skoog (MS) medium supplemented with 10% (w/v) sucrose and 1% (w/v) agar. The pH of the MS medium was adjusted to 5.7 and autoclaved. The explants were taken out of their tubes and the carotenoid content was determined every two weeks. The juice sacs were immediately frozen in liquid nitrogen, and kept at −80 °C until use.

Extraction and determination of ascorbic acid

The ascorbic acid content was assayed by HPLC. Each frozen sample was homogenized using a mortar and pestle in 10 volumes of extractant solution (3% metaphosphoric acid and 8% acetic acid). The homogenate was centrifuged at 14,000×g for 20 min, and then the supernatant was filtered through Miracloth (Calbiochem). The pH of the filtrate was adjusted by adding an equal volume of 0.2 M potassium-phosphate buffer (pH 7.5). The total ascorbic acid was assayed
by adding 0.5 ml of 6 mM dithiothreitol (DTT) to 0.1 ml of aliquot of filtrate and incubated in the dark at 30 °C for 15 min. After the sample was filtered through a 0.22-µm cellulose acetate filter (Advantec), a 20 µl aliquot was injected onto a J’sphere ODS-M80 column (YMC) attached to a LC-10AD pump (Shimadzu). The column kept at 20 °C was eluted with 1.5% ammonium dihydrogen phosphate (pH 3.8) at a flow rate of 1.0 ml min⁻¹. The ascorbic acid content was monitored at 245 nm (retention time 2.6 min) using an SPD-10A spectrophotometric detector (Shimadzu) attached to a chart recorder (C-R6A, Shimadzu). Peaks were converted to concentrations by using the dilution of stock ascorbic to construct a standard curve.

Treatments

The juice sacs were cultured for two weeks under the same conditions as described above, and then irradiated with blue (peak wavelength, 470 nm) and red (peak wavelength, 660 nm) LED lights at an intensity of 50 μmol m⁻²s⁻¹ for two weeks. For the sucrose and mannitol treatments, the explants with the endocarp side up were placed on MS medium supplemented with 15% (w/v) sucrose or 6% (w/v) mannitol for four weeks. For the ABA and GA treatments, the explants with the endocarp side up were placed on MS medium supplemented with ABA (10 μM) and GA₃ (10 μM) for four weeks. Juice sacs cultured in the dark for four weeks were used as the control. After each treatment, the juice sacs were immediately frozen in liquid nitrogen, and kept at ~80 °C until use.
Extraction and determination of carotenoids

The identification, extraction and quantification of carotenoid in citrus have been described previously (Kato et al., 2004). β-Car, β-cry, all-trans-violaxanthin (t-vio), c-vio and lut were quantified in the juice sacs of Satsuma mandarin, Valencia orange and Lisbon lemon during the experimental period. The contents of carotenoids were expressed as µg g⁻¹ fresh weight. Carotenoid quantification was performed in three replicates.

Total RNA extraction and real-time quantitative RT-PCR

Total RNA was extracted from the juice sacs of Satsuma mandarin, Valencia orange and Lisbon lemon fruits at different stages according to the method described by Ikoma et al. (1996). The total RNA was cleaned up with the RNeasy Mini Kit (Qiagen, Hilden, Germany) with on-column DNase digestion. The reactions of reverse transcription (RT) were performed with 2 µg of purified RNA and a random hexamer at 37 °C for 60 min using TaqMan Reverse Transcription Reagents (Applied Biosystems).

TaqMan MGB probes and sets of primers for CitPSY, CitPDS, CitZDS, CitLCYb, CitHYb, CitZEP, CitNCED2 and CitNCED3 were designed on the basis of the common sequences among the three varieties for each gene with the Primer Express software (Applied Biosystems; Kato et al., 2007; Alquézar et al., 2009). For endogenous control, the TaqMan Ribosomal RNA Control Reagents VIC Probe (Applied Biosystems) was used. TaqMan real-time PCR was carried out with the TaqMan Universal PCR Master Mix (Applied Biosystems) using
ABI PRISM 7300 (Applied Biosystems) according to the manufacturer’s instructions. Each reaction contained 900 nM primers, a 250 nM TaqMan MGB Probe, and template cDNA. The thermal cycling conditions were 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s and 60 °C for 60 s. The levels of gene expression were analyzed with ABI PRISM 7300 Sequence Detection System Software (Applied Biosystems) and normalized with the results of 18S ribosomal RNA. Real-time quantitative RT-PCR was performed in three replicates for each sample.

Statistical analysis

All values are shown as the mean ± SE for three replicates. The data were analyzed, and Tukey’s HSD test was used to compare the means at $P < 0.05$.

Results

Tissue culture of citrus juice sacs in vitro

The juice sacs of Satsuma mandarin, Valencia orange and Lisbon lemon were cultured *in vitro* for eight weeks. As shown in Fig. 2, the juice sacs of all three varieties enlarged rapidly without the formation of callus throughout the experimental period. In Satsuma mandarin and Valencia orange the juice sacs turned yellow gradually, while in Lisbon lemon the changes in the color of juice sacs were less obvious during the experimental period (Fig. 2).

Changes in the carotenoid content and the gene expression related to carotenoid metabolism
Changes in the content and composition of carotenoid were examined every two weeks. Massive accumulation of carotenoids, especially β,β-xanthophylls, occurred in Satsuma mandarin and Valencia orange during the experimental period (Fig. 3, A and B). In Satsuma mandarin, the contents of β-cry, t-vio and c-vio increased rapidly along with the total carotenoid accumulation throughout the experimental period. In Valencia orange, the contents of t-vio and c-vio increased significantly in the first four weeks. In Lisbon lemon, the total carotenoid content remained extremely low, although β-cry accumulated gradually throughout the experimental period (Fig. 3C). The content of lut, a major β,ε-carotenoid, increased clearly in the first two weeks and then remained constant in the three varieties.

The expression of a set of genes to produce β,β-xanthophylls (CitPSY, CitPDS, CitZDS, CitLCYb1, CitLCYb2, CitHYb and CitZEP) increased from the second week after cultured in vitro in Satsuma mandarin and Valencia orange. Moreover, the gene expression levels of CitZDS, CitLCYb1 and CitLCYb2 were higher in Satsuma mandarin than those in Valencia orange. In contrast, the gene expression levels of CitHYb and CitZEP were much higher in Valencia orange than those in Satsuma mandarin. In Lisbon lemon, the expression of a set of genes that produce β,β-xanthophylls, increased slightly from the sixth week after cultured in vitro. However, the gene expression levels of CitPSY, CitZDS, CitLCYb2, CitHYb and CitZEP were much lower than those in Satsuma mandarin and Valencia orange (Fig. 4).
Effects of blue and red LED lights on carotenoid content and gene expression related to carotenoid metabolism

With the treatment of blue light, the accumulations of β-cry, t-vio and lut were induced significantly along with an increase in the total carotenoid content in Satsuma mandarin (Fig. 5A). In Valencia orange, the contents of β-car, t-vio and lut were increased by the treatment with blue light, as a result the total carotenoid content was much higher than that in the control (Fig. 5B). In Lisbon lemon, the three carotenoids detected in this study (β-car, β-cry and lut) were clearly increased by the blue light treatment (Fig. 5C). In contrast to blue light treatment, red light treatment had no obvious effects on the contents of the carotenoids investigated in the present study in Satsuma mandarin and Valencia orange. In Lisbon lemon, the red light treatment induced a slight increase in β-cry, while it did not affect the contents of other carotenoids.

As shown in Fig. 6, in Satsuma mandarin, the gene expression of CitPSY, CitPDS, CitZDS, CitLCYb1, CitHYb, CitZEP and CitNCED3 was up-regulated simultaneously by blue light (Fig. 6A). In Valencia orange, the expression of genes investigated in the present study was up-regulated by blue light, except for CitNCED3 (Fig. 6B). In Lisbon lemon, the induction of CitPSY, CitZDS, CitLCYb1, CitLCYb2, CitZEP and CitNCED3 was observed in the blue light treatment (Fig. 6C).

Red light treatment did not affect the gene expression of CitPSY, CitPDS, CitZDS or CitLCYb1, while slightly increased the gene expression of CitHYb,
CitZEP, CitNCED2 and CitNCED3 in Satsuma mandarin (Fig. 6A). Similar to Satsuma mandarin, in Valencia orange, noticeable increase in the gene expression of CitPSY, CitPDS, CitZDS was not observed in the red light treatment. The gene expression of CitLCYb1, CitLCYb2, CitNCED2 and CitNCED3 was up-regulated in red light-treated Valencia orange (Fig. 6B). In Lisbon lemon, the expression of the genes investigated in the present study was up-regulated by the red light treatment, except for CitHYb (Fig. 6C).

Effects of sucrose and mannitol on carotenoid content and gene expression related to carotenoid metabolism

The treatments with sucrose and mannitol induced the accumulation of carotenoids in the juice sacs of Satsuma mandarin, Valencia orange and Lisbon lemon (Fig. 7). In Satsuma mandarin and Valencia orange, the contents of carotenoids investigated in the present study were simultaneously increased by the treatments with sucrose and mannitol. In Lisbon lemon, β-car and β-cry contents were increased by the treatments with sucrose and mannitol. The content of lut was increased by the mannitol treatment, while it was not significantly affected by the sucrose treatment in Lisbon lemon.

In Satsuma mandarin, the gene expression of CitPSY, CitZDS, CitNCED2 and CitNCED3 was up-regulated, while the gene expression of CitLCYb2, CitHYb and CitZEP was down-regulated by the treatment with sucrose. In Valencia orange, the gene expression of CitPSY, CitNCED2 and CitNCED3 was up-regulated, while the gene expression of CitPDS, CitZDS, CitLCYb1,
CitLCYb2, CitHYb and CitZEP was down-regulated by the treatment with sucrose. In Lisbon lemon, the gene expression of CitPSY, CitZDS, CitNCED2 and CitNCED3 was up-regulated by the sucrose treatment. With the treatment of mannitol, the gene expression of CitPSY, CitZDS and CitZEP was slightly down-regulated, while the gene expression of CitLCYb2, CitHYb, CitNCED2 and CitNCED3 was up-regulated in Satsuma mandarin (Fig. 8A). In Valencia orange, the gene expression of CitPSY, CitPDS, CitZDS, CitLCYb1, CitHYb and CitZEP was down-regulated, while the gene expression of CitLCYb2, CitNCED2 and CitNCED3 was up-regulated by mannitol treatment (Fig. 8B). In Lisbon lemon, the up-regulation of gene expression of CitPSY, CitPDS, CitZDS, CitLCYb1, CitLCYb2, CitNCED2 and CitNCED3, and the down-regulation of gene expression of CitHYb and CitZEP were observed in the mannitol treatment (Fig. 8C).

Effects of ABA and GA on carotenoid content and gene expression related to carotenoid metabolism

In Satsuma mandarin, the contents of t-vio, c-vio and lut were increased slightly by the treatment with ABA. While the content of β-cry, the prominent carotenoid accumulated in Satsuma mandarin, was decreased significantly along with a decrease in the total carotenoid content by ABA treatment. With GA treatment, the contents of β-cry, t-vio, c-vio and lut were simultaneously decreased, and as a result the total carotenoid content was much lower than that of the control (Fig. 9A). In Valencia orange, the contents of β-car, t-vio, c-vio
and lut were decreased significantly by the treatments with ABA and GA (Fig. 9B). In Lisbon lemon, the contents of total carotenoid, β-car and lut were decreased by ABA and GA treatments, while β-cry content was not affected by the two treatments (Fig. 9C).

In Satsuma mandarin and Lisbon lemon, the expression of genes detected in the present study (CitPSY, CitPDS, CitZDS, CitLCYb1, CitLCYb2, CitHYb, CitZEP, CitNCED2 and CitNCED3) was simultaneously up-regulated by the treatment with ABA (Fig. 10, A and C). In Valencia orange, the gene expression of CitPSY, CitPDS, CitLCYb1 and CitHYb was up-regulated, while the gene expression of CitNCED2 and CitNCED3 was down-regulated by the treatment with ABA (Fig. 10B).

With the treatment of GA, the gene expression of CitPSY, CitPDS, CitZDS, CitHYb, CitZEP and CitNCED2 was up-regulated, while the gene expression of CitLCYb1, CitLCYb2 and CitNCED3 was down-regulated in Satsuma mandarin. In Valencia orange, the expression of the genes investigated in this study was simultaneously down-regulated by the treatment with GA, except for CitLCYb1.

In Lisbon lemon, the expression of CitPSY, CitPDS, CitZDS, CitLCYb1, CitHYb, CitZEP and CitNCED2 was up-regulated, while the expression of CitLCYb2 was not affected by the treatment with GA (Fig. 10).

Discussion

Carotenoid accumulation in vitro

Carotenoid metabolism is a complicated process in plants, which is affected
by developmental requirements and environmental stimuli (Cazzonelli and Pogson, 2010). It is difficult to evaluate the effects of environmental stimuli on carotenoid metabolism in the fruits ripening on trees, as the growing conditions on trees are not uniform and hard to be controlled. In the present study, to further investigate the regulation of carotenoid metabolism in citrus, we firstly developed an *in vitro* system, in which undefined variables were minimized and medium compositions and environmental factors were carefully controlled. In this system, the juice sacs enlarged gradually with carotenoid accumulation and no callus formed throughout the experimental period in the three citrus varieties, Satsuma mandarin, Valencia orange and Lisbon lemon. In our previous study, sugar accumulation in the juice sacs has been reported using the same culture system (Mukai et al., 2000). This study showed that sugar contents gradually increased until two months, and then increased rapidly. The pattern of sugar accumulation was similar to that of juice sacs in field-grown fruits. After eight weeks, the sugar content reached 4.01% in the juice sacs cultured *in vitro*, which is similar to that in the intact fruits (3.91%). In the present study, the changes in carotenoid contents were detected in the juice sacs of the three varieties cultured *in vitro*. After eight weeks, in Satsuma mandarin and Lisbon lemon, the content of β-cry, which is the predominantly accumulated carotenoid, reached 5.5 μg g⁻¹ and 0.13 μg g⁻¹, respectively. In Valencia orange, c-vio was abundant, which increased significantly in the first four weeks, and reached 0.8 μg g⁻¹ after eight weeks. It has been reported that a change from β,ε-carotenoid accumulation to
β,β-xanthophylls accumulation occurred in the flavedo and juice sacs of citrus fruits during the ripening process (Kato et al., 2004; Alquézar et al., 2008). In this study, the accumulation of β,β-xanthophylls was observed in the three citrus varieties during the experimental period, whereas the content of lut, which is a major β,ε-carotenoid in citrus, clearly increased in the first two weeks and then remained constant. The changes in the carotenoid content and composition in the three citrus varieties cultured in vitro were similar to those in citrus fruits ripening on trees (Kato et al., 2004; Alquézar et al., 2008). In addition, the changes of ascorbic acid in the juice sacs cultured in vitro were also detected. During the experimental period, the ascorbic acid content kept constant at a lower level in Satsuma mandarin, while it decreased significantly in Valencia orange and Lisbon lemon (Table S1). The changes in the ascorbic acid content in the juice sacs cultured in vitro were similar to those in the intact fruits.

Transcriptional regulation of carotenoid genes is a major mechanism by which the biosynthesis and accumulation of specific carotenoids are regulated during fruit ripening (Kato et al., 2004, 2006; Kita et al., 2007; Alquézar et al., 2009). In the present study, simultaneous increases in the gene expression of CitPSY, CitPDS, CitZDS, CitLCYb1, CitLCYb2, CitHYb and CitZEP were observed in Satsuma mandarin and Valencia orange. Compared with Satsuma mandarin and Valencia orange, the gene expression of CitPSY, CitZDS, CitLCYb1, CitHYb and CitZEP was much lower in Lisbon lemon. Additionally, the mRNA levels of CitZDS, CitLCYb1 and CitLCYb2 were higher in Satsuma
mandarin than those in Valencia orange. In contrast, the mRNA levels of *CitHYb*
and *CitZEP* were higher in Valencia orange than those in Satsuma mandarin.
The differences in the gene expression led to the differences in the
β,β-xanthophylls composition between Satsuma mandarin and Valencia orange.
The changing patterns of the gene expression in the three citrus varieties *in vitro*
were similar to those in the citrus fruits during nature ripening process (Kato *et al.*, 2004). Therefore, in the present study we successfully set up a culture
system of citrus juice sacs *in vitro*, in which carotenoid metabolism in the juice
sacs was similar to that in the intact fruits. This system was useful to further
investigate the regulation of carotenoid metabolism by different environmental
factors in citrus fruits *in vitro*.

Effects of blue and red LED lights on carotenoid metabolism

In higher plants, sensing of light is carried out by various light photoreceptors
(Briggs, 2001). Thus, plants exhibit different responses to various lights. In the
present study, the results showed that total carotenoid content was increased by
the treatment with blue light (peak wavelength, 470 nm) in Satsuma mandarin,
Valencia orange and Lisbon lemon. Wu *et al.* (2007) reported that β-car content
was much higher in the red light-treated group than blue light-treated group in
leaves and stems of pea seedlings. In tomatoes, the accumulation of lycopene
along with an increase in total carotenoid content was also observed in response
to red light treatment (Schofield and Paliyath, 2005; Liu *et al*., 2009). However,
our results showed that irradiation with red light (peak wavelength, 660 nm) did
not affect the content or composition of carotenoid in Satsuma mandarin and Valencia orange. In Lisbon lemon, red light slightly increased the content of β-cry, while the total carotenoid content was not significantly affected (Fig. 5). These results indicated that regulatory effects of the blue and red lights on carotenoid accumulation were cultivar-dependent, and in citrus blue light treatment was more effective to induce carotenoid accumulation than red light. PSY, which is a rate-limiting enzyme for carotenoid biosynthesis, is regulated by light through a phytochrome-mediated process (von Lintig et al., 1997; Alba et al., 2000). Bohne and Linden (2002) found that in Chlamydomonas reinhardtii blue light was effective to up-regulate the gene expression of PSY, whereas illumination with red light had no effects on the expression of this gene. In the present study, we found that the gene expression of CitPSY was up-regulated by the treatment with blue light in Satsuma mandarin, Valencia orange and Lisbon lemon. The elevated expression of CitPSY was well consistent with the accumulation of carotenoids in the three varieties treated with blue light. In contrast to blue light, red light did not have significant effects on the gene expression of CitPSY in Satsuma mandarin and Valencia orange. Welsch et al. (2003) reported that the cis-acting elements in response to blue and red lights were separated and located in different positions of the PSY promoter. In Satsuma mandarin and Valencia orange, the difference in the regulation of CitPSY in response to the blue and red lights might be related to the different cis-acting elements for the two treatments in the CitPSY promoter.
Effects of sucrose and mannitol on carotenoid metabolism

In citrus fruits, sugar treatment promoted the accumulation of carotenoids and advanced the rate of color break, in which the color of the citrus peel changed from green to orange (Huff, 1983, 1984; Domingo et al. 2001). In the previous study, we found that sucrose (5%, 10% and 15%) and mannitol (0%, 3% and 6%) concentration-dependently induced the carotenoid accumulation in the juice sacs of citrus (data not shown). In the recent years, sugars are reported to act as primary messenger in signal transduction processes that trigger gene expression in plants and regulate many important processes (Foyer et al., 1997; Loreti et al., 2005). To date, however, it is still unknown how the carotenoid metabolism is regulated by sugar at the transcriptional level in citrus fruits. In the present study, the results showed that the gene expression of \textit{CitPSY} simultaneously increased by sucrose treatment in Satsuma mandarin, Valencia orange and Lisbon lemon. The higher expression level of \textit{CitPSY} contributed to the increases in the carotenoid contents in the sucrose treated samples of the three citrus varieties. In tomato fruit, increase in the expression of PSY was also observed in the sucrose treatment (Telef et al., 2006). In the treatment with mannitol, a simultaneous increase in the gene expression of \textit{CitLCYb2} was observed in all three varieties. \textit{LCYb2} is a key gene for the regulation the flux of carotenones into the β,β-branch of the pathway to lead to the increase of xanthophylls in citrus (Alquézar et al., 2009). In the mannitol treatment, the up-regulation of \textit{CitLCYb2} contributed to the accumulation of carotenoids in the three varieties. These results suggested
that the sucrose- and mannitol-induced carotenoid accumulations were mediated by regulating different steps of the carotenoid biosynthetic pathway in citrus fruits. In addition, the two carotenoid catabolic genes, \textit{CitNCED2} and \textit{CitNCED3}, were up-regulated simultaneously by the sucrose and mannitol treatments in the three citrus varieties. The expression of NCED, the rate-limiting enzyme for ABA biosynthesis, is highly activated by stress conditions. Iuchi et al. (2000) found that the induction of \textit{VuNCED1} was mainly responsible for ABA biosynthesis under water stress in cowpea. Increases in NCED genes expression in response to drought stress were also observed in Arabidopsis, maize and tomato (Burbidge \textit{et al.}, 1997; Schwartz \textit{et al.}, 1997; Qin and Zeevaart, 1999).

Sucrose and mannitol not only provide the common sources of carbon in tissue cultures, but also might induce osmotic stress. Therefore, the up-regulation of \textit{CitNCED2} and \textit{CitNCED3} in the three citrus varieties \textit{in vitro} might be attributed to the osmotic stress caused by sucrose and mannitol.

\textbf{Effects of plant hormones on carotenoid metabolism}

In higher plants, the biosynthesis of ABA, which is formed by the oxidative cleavage of c-vio and c-neo, is involved in the carotenoid biosynthesis pathway (Fig.1). As ABA and carotenoids share some steps in their biosynthesis pathways, ABA level is closely related with carotenoids contents (Rodrigo \textit{et al.}, 2003; Sarmad \textit{et al.}, 2007). In our previous study, we found that ABA accumulation in Satsuma mandarin, Valencia orange, and Lisbon lemon
exhibited different changing patterns during fruit maturation, which indicated that the physiological role of ABA accumulation may be involved in the formation of different profiles of carotenoids in the three citrus varieties (Kato et al., 2006). In this study, the content of total carotenoid was decreased clearly by the treatment with ABA in Satsuma mandarin, Valencia orange and Lisbon lemon (Fig. 9). The expression of the genes investigated in the present study (CitPSY, CitPDS, CitZDS, CitLCYb1, CitLCYb2, CitHYb, CitZEP, CitNCED2 and CitNCED3) was simultaneously up-regulated by the treatment with ABA in Satsuma mandarin and Lisbon lemon, which indicated that ABA treatment induced its own biosynthesis at the transcriptional level in the two citrus varieties (Fig. 10). This positive feedback regulation of ABA led to decreases in the carotenoid content in Satsuma mandarin and Lisbon lemon. In Valencia orange the gene expression of CitPSY, CitPDS, CitZDS, CitLCYb1 and CitHYb was up-regulated, while the gene expression of CitNCED2 and CitNCED3 was down-regulated by the treatment with ABA. The ABA content of Valencia orange was much lower than that of Satsuma mandarin and Lisbon lemon (Kato et al., 2006). The extremely low level of ABA was closely related to the low mRNA level of CitNCED2 in the juice sacs of Valencia orange. The differences in the regulation of NCED genes expression between the Valencia orange and the other two citrus varieties in response to ABA treatment might be attributed to the differences in the metabolism of ABA between Valencia orange and the other two varieties.
Similar to ABA, GA is also closely related to the biosynthesis of carotenoids (Fig. 1). It has been shown that treatment with GA has an important effect on carotenoid metabolism by modification of the early steps of the carotenoid biosynthetic pathway (Iglesias et al., 2001; Rodrigo and Zacarías, 2007, Zhou et al., 1996). The results in this paper showed that the total carotenoid content was decreased by the treatment with GA in Satsuma mandarin, Valencia orange and Lisbon lemon (Fig. 9). However, changes of gene expression varied among the three varieties in response to GA treatment (Fig. 10). In the GA-treated Valencia orange, the gene expression of CitPSY, CitPDS, CitZDS, CitLCYb2, CitHYb and CitZEP was simultaneously down-regulated, which was well consistent with the decrease in the carotenoid content. In Satsuma mandarin, the down-regulation of gene expression of CitLCYb1 and CitLCYb2, which were the key genes related to the biosynthesis of xanthophylls, led to the decreases in the content of β-cry, t-vio and c-vio in the treatment with GA. In Lisbon lemon, the gene expression of CitPSY, CitPDS, CitZDS, CitLCYb1, CitHYb and CitZEP was up-regulated by the treatment with GA, which was not well consistent with the decrease in the carotenoid content in GA-treated Lisbon lemon. Other regulatory mechanism, such as post-transcriptional factors and other genes in the methyl erythritol phosphate pathway (MEP), may also be involved in regulation of the carotenoid content in Lisbon lemon in response to GA treatment.

In conclusion, carotenoid metabolism was investigated in response to different environmental conditions (blue and red LED lights, sucrose and
mannitol) and plant hormones (ABA and GA) in three citrus varieties, Satsuma
mandarin, Valencia orange and Lisbon lemon *in vitro*. The results showed that
carotenoid accumulation was induced by the blue light, sucrose and mannitol
treatments, while it was suppressed by the ABA and GA treatments in the three
citrus varieties. The carotenoid metabolism in the three citrus varieties was not
sensitive to the red light treatment, by which the total carotenoid content was not
significantly affected. In addition, gene expression results showed that
carotenoid metabolism in response to these treatments was highly regulated at
the transcriptional level in Satsuma mandarin, Valencia orange and Lisbon
lemon. The results presented here provide more insights into the regulatory
mechanism of carotenoid metabolism in citrus, which might facilitate the
improvement in carotenoid content and composition in citrus.

Acknowledgements

This work was supported by Grant-in-Aid for Young Scientists (22780020)
and JSPS Postdoctoral Fellowships for Research Abroad. We would like to
thank Dr. Susanne Baldermann for her critical reading and revision of the
manuscript.
References

Alba R, Cordonnier-Pratt MM, Pratt LH. 2000. Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production in tomato. *Plant Physiology* **123**, 363-370.

Alquézar B, Rodrigo MJ, Zacarías L. 2008. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. *Phytochemistry* **69**, 1997-2007.

Alquézar B, Zacarías L, Rodrigo MJ. 2009. Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation. *Journal of Experimental Botany* **60**, 1783-1797.

Bohne F, Linden H. 2002. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. *Biochimica et Biophysica Acta* **1579**, 26-34.

Bouvier F, Backhaus RA, Camara B. 1998. Induction and control of chromoplast-specific carotenoid genes by oxidative stress. *Journal of Biological Chemistry* **273**, 30651-30659.

Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J, Jarillo JA, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rudiger W, Sakai T, Takano M, Wada M, Watson JC. 2001. The phototropin family of photoreceptors. *Plant Cell* **13**, 993-997.

Burbidge A, Grieve TM, Jackson A, Thompson A, Taylor I. 1997. Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE) isolated from a wilt related tomato (Lycopersicon esculentum Mill.) library. *Journal of Experimental Botany* **47**, 2111-2112.

Busch M, Seuter A, Hain R. 2002. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. *Plant Physiology* **128**, 439-453.

Cazzonelli CI, Pogson BJ. 2010. Source to sink: regulation of carotenoid biosynthesis in plants. *Trends in Plant Science* **15**, 266-274.

Cunningham FX, Gantt E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. *Annual Review of Plant Physiology and Plant Molecular Biology* **49**, 557-583.

Domingo JI, Francisco RT, Francisco L, Edwardo PM, Manuel T. 2001. In
vivo sucrose stimulation of colour change in citrus fruit epicarps; Interaction between nutritional and hormonal signals. Physiologia Plantarum 112, 244-250.

Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. 1997. Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiologia Plantarum 100, 241-254.

Giovannucci E. 1999. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. Journal of the National Cancer Institute 91, 317-331.

Goodner KL, Rouseff RL, Hofsommer HJ. 2001. Orange, mandarin, and hybrid classification using multivariate statistics based on carotenoid profiles. Journal of Agricultural and Food Chemistry 49, 1146-1150.

Harada H, Mukai H, Takagi T. 2001. Effects of explant age, growth regulators and carbohydrates on sugar accumulation in Citrus juice vesicles cultured in vitro. Scientia Horticulturae 90, 109-119.

Havaux M. 1998. Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science 3, 147-151.

Huff A. 1983. Nutritional control of regreening and degreening in citrus peel segments. Plant Physiology 73, 243-249.

Huff A. 1984. Sugar regulation of plastic interconversions in epicarp of citrus fruits. Plant Physiology 73, 307-312.

Iglesias DJ, Tadeo FR, Legaz F, Primo-Millo E, Talon M. 2001. In vivo sucrose stimulation of color change in citrus fruit epicarps: Interactions between nutritional and hormonal signals. Physiologia Plantarum 112, 244-250.

Ikoma Y, Yano M, Ogawa K, Yoshioka T, Xu ZC, Hisada S, Omura M, Moriguchi T. 1996. Isolation and evaluation of RNA from polysaccharide-rich tissues in fruit for quality by cDNA library construction and RT-PCR. Journal of the Japanese Society for Horticultural Science 64, 809-814.

Isaacson T, Ronen G, Zamir D, Hirschberg J. 2002. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14, 333-342.
Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. 2000. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought tolerant cowpea. *Plant Physiology* **123**, 553-562.

Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M. 2004. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. *Plant Physiology* **134**, 824-837.

Kato M, Matsumoto H, Ikoma Y, Okuda H, Yano M. 2006. The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. *Journal of Experimental Botany* **57**, 2153-2164.

Kato M, Matsumoto H, Ikoma Y, Kuniga T, Nakajima N, Yoshida T, Yano M. 2007. Accumulation of carotenoids and expression of carotenoid biosynthetic genes and carotenoid cleavage dioxygenase genes during fruit maturation in the juice sacs of ‘Tamami,’ ‘Kiyomi’ tangor, and ‘Wilking’ mandarin. *Journal of the Japanese Society for Horticultural Science* **76**, 103-111.

Khan EU, Fu XZ, Wang J, Fan QJ, Huang XS, Zhang GN, Shi J, Liu JH. 2009. Regeneration and characterization of plants derived from leaf *in vitro* culture of two sweet orange (Citrus sinensis (L) Osbeck) cultivars. *Scientia Horticulturae* **120**, 70-76.

Kita M, Kato M, Ban Y, Honda C, Yaegaki H, Ikoma Y, Moriguchi T. 2007. Carotenoid accumulation in Japanese Apricot (*Prunus mume* Siebold & Zucc.): molecular analysis of carotenogenic gene expression and ethylene regulation. *Journal of Agricultural and Food Chemistry* **55**, 3414-3420.

Krinsky NI, Landrum JT, Bone RA. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. *Annual Review of Nutrition* **23**, 171-201.

Ledford HK, Niyogi KK. 2005. Singlet oxygen and photo-oxidative stress management in plants and algae. *Plant, Cell & Environment* **28**, 1037-1045.

Lee HS, Castle WS. 2001. Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and Budd Blood orange juices. *Journal of Agricultural and Food Chemistry* **49**, 877-882.

Liu LH, Zabaras D, Bennett LE, Aguas P, Woonton BW. 2009. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities
of tomatoes during post-harvest storage. *Food Chemistry* **115**, 495-500.

Loreti E, Poggi A, Novi G, Alpi A, Perata P. 2005. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. *Plant Physiology* **137**, 1130-1138.

Marty I, Bureau S, Sarkissian G, Gouble B, Audergon JM, Albagnac G. 2005. Ethylene regulation of carotenoid accumulation and carogenogenic gene expression in colour-contrasted apricot varieties (*Prunus armeniaca*). *Journal of Experimental Botany* **56**, 1877-1886.

Matsumoto H, Ikoma Y, Kato M, Nakajima N, Hasegawa Y. 2009. Effect of postharvest temperature and ethylene on carotenoid accumulation in the flavedo and juice sacs of Satsuma mandarin (*Citrus unshiu* Marc.) fruit. *Journal of Agricultural and Food Chemistry* **57**, 4724-4732.

Molnár P, Szabolics J. 1980. β-Citraurin epoxide, a new carotenoid from Valencia orange peel. *Phytochemistry* **19**, 633-637.

Mukai H, Takagi T, Harada H, Murai Y. 2000. Sugar accumulation by *in vitro* cultured juice vesicles of Satsuma mandarin. *Journal of the Japanese Society for Horticultural Science* **69**, 57-59.

Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ. 2002 Identification of carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. *Plant Cell* **14**, 321-332.

Pecker I, Gabbay R, Cunningham FX Jr, Hirschberg J. 1996. Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. *Plant Molecular Biology* **30**, 807-819.

Qin X, Zeevaart JA. 1999. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. *Proceedings of the National Academy of Sciences of the United States of America* **96**, 15354-15361.

Rodrigo MJ, Marcos JF, Zacarías L. 2004. Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (*Citrus sinensis* L.) during fruit development and maturation. *Journal of Agricultural and Food Chemistry* **52**, 6724-6731.

Rodrigo MJ, Zacarías L. 2007. Effect of postharvest ethylene treatment on
carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (*Citrus sinensis* L. Osbeck) fruit. *Postharvest Biology and Technology* **43**, 14-22.

Ronen G, Cohen M, Zamir D, Hirschberg J. 1999. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. *The Plant Journal* **17**, 341-351.

Sarmad J, Shariati M, Madadkar Haghjou M. 2007. Relationship between endogenous abscisic acid and β-carotene synthesis in the unicellular green alga *Dunaliella*. *American-Eurasian Journal of Agricultural & Environmental Science* **2**, 559–564.

Schofield A, Paliyath G. 2005. Modulation of carotenoid biosynthesis during tomato fruit ripening through phytochrome regulation of phytoene synthase activity. *Plant Physiology Biochemistry* **43**, 1052-1060.

Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. 1997. Specific oxidative cleavage of carotenoids by VP14 of maize. *Science* **276**, 1872-1874.

Steinbrenner J, Linden H. 2001. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga *Haematococcus pluvialis*. *Plant Physiology* **125**, 810-817.

Telef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D, Gallusci P. 2006. Sucrose deficiency delays lycopene accumulation in tomato fruit pericarp discs. *Plant Molecular Biology* **62**, 453-469.

von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, Kleinig H. 1997. Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in *Sinapis alba* and *Arabidopsis thaliana* seedlings. *The Plant Journal* **12**, 625-634.

Wan XR, Li L. 2006. Regulation of ABA level and water-stress tolerance of *Arabidopsis* by ectopic expression of a peanut 9-cis-epoxycarotenoid dioxygenase gene. *Biochemical and Biophysical Research Communications* **347**, 1030-1038.

Welsch R, Medina J, Giuliano G, Beyer P, Von Lintig J. 2003. Structural and functional characterization of the phytoene synthase promoter from *Arabidopsis thaliana*. *Planta* **216**, 523-534.
Wu MC, Hou CY, Jiang CM, Wang YT, Wang CY, Chen HH, Chang HM. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. *Food Chemistry* **101**, 1753-1758.

Zhou YC, Tang YL, Tan XJ, Guo JR. 1996. Effects of exogenous ABA, GA$_3$ and cell-wall-degrading enzyme activity, carotenoid content in ripening mango fruit. *Acta Phytophysiologica Sinica* **22**, 421-426.
Figure legends

Fig. 1. Carotenoid metabolic pathway in citrus. GGPP, geranylgeranyl diphosphate. The gene expression of the *CitPSY, CitPDS, CitZDS, CitLCYb1, CitLCYb2, CitHYb, CitZEP, CitNCED2* and *CitNCED3* was analyzed by real-time PCR in this study.

Fig. 2. Changes in the appearance of juice sacs in the three citrus varieties during culture *in vitro*. A, Satsuma mandarin; B, Valencia orange; C, Lisbon lemon.

Fig. 3. Changes in the carotenoid content in juice sacs of the three citrus varieties during culture *in vitro*. A, Satsuma mandarin; B, Valencia orange; C, Lisbon lemon. Total car, total carotenoids. β-car, β-carotene. β-cry, β-cryptoxanthin. T-vio, all-trans-violaxanthin. C-vio, 9-*cis*-violaxanthin. Lut, lutein. The value for total carotenoids was the sum of identified carotenoids. Columns and bars represent the means and SE (n=3), respectively.

Fig. 4. Changes in the expression of carotenoid metabolism related genes in juice sacs of the three citrus varieties. The results shown are the mean ± SE for triplicate samples.

Fig. 5. Effect of blue and red LED lights on the carotenoid content in juice sacs of the three citrus varieties. A, Satsuma mandarin; B, Valencia orange; C, Lisbon lemon. Total car, total carotenoids. β-car, β-carotene. β-cry, β-cryptoxanthin. T-vio, all-trans-violaxanthin. C-vio, 9-*cis*-violaxanthin. Lut, lutein. The value for total carotenoids was the sum of identified carotenoids. Columns and bars represent the means and SE (n=3), respectively. The letters a, b and c indicate significant differences among the control, blue light and red light treatments at the 5% level by Tukey’s HSD test.

Fig. 6. Effect of blue and red LED lights on the expression of carotenoid
metabolism related genes in juice sacs of the three citrus varieties. A, Satsuma mandarin; B, Valencia orange; C, Lisbon lemon. Columns and bars represent the means and SE (n=3), respectively. The letters a, b and c indicate significant differences among the control, blue light and red light treatments at the 5% level by Tukey’s HSD test.

Fig. 7. Effect of sucrose and mannitol on the carotenoid content in juice sacs of the three citrus varieties. A, Satsuma mandarin; B, Valencia orange; C, Lisbon lemon. Total car, total carotenoids. β-car, β-carotene. β-cry, β-cryptoxanthin. T-vio, all-trans-violaxanthin. C-vio, 9-cis-violaxanthin. Lut, lutein. The value for total carotenoids was the sum of identified carotenoids. Columns and bars represent the means and SE (n=3), respectively. The letters a, b and c indicate significant differences among the control, sucrose and mannitol treatments at the 5% level by Tukey’s HSD test.

Fig. 8. Effect of sucrose and mannitol on the expression of carotenoid metabolism related genes in juice sacs of the three citrus varieties. A, Satsuma mandarin; B, Valencia orange; C, Lisbon lemon. Columns and bars represent the means and SE (n=3), respectively. The letters a, b and c indicate significant differences among the control, sucrose and mannitol treatments at the 5% level by Tukey’s HSD test.

Fig. 9. Effect of ABA and GA on the carotenoid content in juice sacs of the three citrus varieties. A, Satsuma mandarin; B, Valencia orange; C, Lisbon lemon. Total car, total carotenoids. β-car, β-carotene. β-cry, β-cryptoxanthin. T-vio,
all-trans-violaxanthin. C-vio, 9-cis-violaxanthin. Lut, lutein. The value for total carotenoids was the sum of identified carotenoids. Columns and bars represent the means and SE (n=3), respectively. The letters a, b and c indicate significant differences among the control, ABA and GA treatments at the 5% level by Tukey’s HSD test.

Fig. 10. Effect of ABA and GA on the expression of carotenoid metabolism related genes in juice sacs of the three citrus varieties. A, Satsuma mandarin; B, Valencia orange; C, Lisbon lemon. Columns and bars represent the means and SE (n=3), respectively. The letters a, b and c indicate significant differences among the control, ABA and GA treatments at the 5% level by Tukey’s HSD test.
Fig. 1

Gibberellins (GAs) → GGPP

GGPP → Phytoene synthase (CitPSY)

Phytoene → Phytoene desaturase (CitPDS)

ζ-Carotene → ζ-Carotene desaturase (CitZDS)

Lycopene → Lycopene β-cyclases (CitLCYβ1 or CitLCYβ2)

δ-Carotene → Lycopene β-cyclases (CitLCYβ1 or CitLCYβ2)

α-Carotene →
- Lycopene β-cyclases (CitLCYβ1 or CitLCYβ2)
- ε-Ring hydroxylase
- β-Ring hydroxylase (CitHYβ)

β-Carotene →
- β-Ring hydroxylase (CitHYβ)
- β-Cryptoxanthin
- β-Cryptoxanthin epoxidase (CitZEP)

Lutein

Lutein

Zeaxanthin → Zeaxanthin epoxidase (CitZEP)

All-trans-violaxanthin → 9-cis-violaxanthin

9-cis-violaxanthin → 9-cis-Epoxycarotenoid dioxygenases (CitNCED2 or CitNCED3)

Xanthoxin C25 Epoxy-apocarotenal

Abscisic acid (ABA)
Fig. 2

A

B

C

0 week 2 week 4 week 6 week 8 week
Fig. 3

A

Week	Total car	β-Cry	T-vio	C-vio	Lut
0					
2	0.0				
4	0.0				
6	0.0				
8	0.0				

B

Week	Total car	β-Car	T-vio	C-vio	Lut
0					
2	0.0				
4	0.0				
6	0.0				
8	0.0				

C

Week	Total car	β-Cry	β-Car	Lut
0				
2	0.0			
4	0.0			
6	0.0			
8	0.0			

Week
Fig. 4

- Satsuma mandarin
- Valencia orange
- Lisbon lemon

mRNA levels (arbitrary units)

Week

CitPSY CitPDS CitZDS CitLCyb1 CitLCyb2
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

CitHYb CitZEP CitNCED2 CitNCED3
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
0 5 10 15 20 25 0 5 10 15 20 25

30 45 60 75 90 180

0 3 6 9 12 15 18
Fig. 5

A

	Control	Blue	Red
Total car	![Graph](#)	![Graph](#)	![Graph](#)
Carotenoid content (µg gFW −1)	![Graph](#)	![Graph](#)	![Graph](#)

B

	Control	Blue	Red
Total car	![Graph](#)	![Graph](#)	![Graph](#)
β-Car	![Graph](#)	![Graph](#)	![Graph](#)
T-vio	![Graph](#)	![Graph](#)	![Graph](#)
C-vio	![Graph](#)	![Graph](#)	![Graph](#)
Lut	![Graph](#)	![Graph](#)	![Graph](#)

C

	Control	Blue	Red
Total car	![Graph](#)	![Graph](#)	![Graph](#)
β-Cry	![Graph](#)	![Graph](#)	![Graph](#)
β-Car	![Graph](#)	![Graph](#)	![Graph](#)
T-vio	![Graph](#)	![Graph](#)	![Graph](#)
C-vio	![Graph](#)	![Graph](#)	![Graph](#)
Lut	![Graph](#)	![Graph](#)	![Graph](#)
Fig. 7

A

Control Sucrose Mannitol

Total car (µg gFW⁻¹)

B

Control Sucrose Mannitol

Total car (µg gFW⁻¹)

C

Control Sucrose Mannitol

Total car (µg gFW⁻¹)
Fig. 8

A

mRNA levels (arbitrary units)

Gene	Control	Sucrose	Mannitol
CitPSY	a	b	c
CitPDS	a	a	a
CitZDS	a	b	a
CitLCYb1	a	b	c
CitLCYb2	a	b	c
CitHYb	a	b	c
CitZEP	a	b	c
CitNCED2	a	b	c
CitNCED3	a	b	c

B

mRNA levels (arbitrary units)

Gene	Control	Sucrose	Mannitol
CitPSY	a	b	c
CitPDS	a	a	a
CitZDS	a	b	a
CitLCYb1	a	b	c
CitLCYb2	a	b	c
CitHYb	a	b	c
CitZEP	a	b	c
CitNCED2	a	b	c
CitNCED3	a	b	c

C

mRNA levels (arbitrary units)

Gene	Control	Sucrose	Mannitol
CitPSY	a	b	c
CitPDS	a	a	a
CitZDS	a	b	a
CitLCYb1	a	b	c
CitLCYb2	a	b	c
CitHYb	a	b	c
CitZEP	a	b	c
CitNCED2	a	b	c
CitNCED3	a	b	c
Fig. 9

A

B

C

Control ABA GA Control ABA GA Control ABA GA Control ABA GA

Total car

Carotenoid content (µg g FW$^{-1}$)

β-Cry

T-vio

C-vio

Lut

Control ABA GA Control ABA GA Control ABA GA Control ABA GA

Total car

Carotenoid content (µg g FW$^{-1}$)

β-Cry

T-vio

C-vio

Lut

Control ABA GA Control ABA GA Control ABA GA Control ABA GA

Total car

Carotenoid content (µg g FW$^{-1}$)

β-Cry

T-vio

C-vio

Lut

Control ABA GA Control ABA GA Control ABA GA Control ABA GA
Fig. 10

A

B

C

mRNA levels (arbitrary units)
Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro

Lancui Zhang1†, Gang Ma1,2†, Masaya Kato1*, Kazuki Yamawaki1, Toshihiko Takagi1, Yoshikazu Kiriiwa1, Yoshinori Ikoma3, Hikaru Matsumoto3, Hirohisa Nesumi3, Terutaka Yoshioka4

Supplemental Table 1 The changes in ascorbic acid content in the juice sacs cultured in vitro and in vivo

	Ascorbic acid content (μmol g⁻¹)					
	Satsuma mandarin	Valencia orange	Lisbon lemon			
	0 week	8 week	0 week	8 week	0 week	8 week
In vitro	2.16±0.39	1.86±0.14	5.85±0.07	2.79±0.21	6.26±0.21	2.91±0.29
In vivo	2.16±0.39	1.81±0.23	5.85±0.07	3.53±0.29	6.26±0.21	3.71±0.40

† Authors to whom correspondence should be addressed.