Therapeutic Management of Anemia Due to Trypanosomosis in Dogs

Abstract

Trypanosomosis is one of the fatal diseases in canines. Inappropriate usage of the trypanosomacidal drugs leads to development of the resistance organisms. Present communication report the successful treatment of the clinical trypanosomosis with two doses of injection diminazene aceturate at the rate of 3.5 mg per kg body weight intramuscularly. Two dogs with clinical trypanosomosis were noticed with the signs of fever; tachycardia and tachypnea congested mucus membranes, corneal opacity and enlarged lymph nodes. Dogs revealed lowered the red blood cell count, hemoglobin, packed cell volume, serum total protein; albumin and glucose levels. *Trypanosoma evansi* organisms were noticed in the blood smears. The clinical and biochemical improvement was recorded in both the dogs and dogs were free from anemia after one month of therapy.

Keywords: Anaemia; Trypanosoma evansi; Dog; Diminazene aceturate

Introduction

Trypanosomosis is a haemoprotozoan disease of domestic and wild animals, spread by tabanid flies bites. The disease generally causes fever; anemia, myocarditis, corneal opacity and it is a fatal disease in canines [1]. Now a day’s many numbers of trypanosomacidal drugs are available including suramin, quinapyramine and diminazene. But, a single dose of the drug is not effective for horses, mules and dogs since diminazene aceturate neither crosses the blood-brain barrier nor insufficient doses were unable to control the *T. evansi* infection [2,3]. Present communication; put a record on the therapeutic efficacy of two doses of diminazene aceturate injections to treat dogs with *T. evansi* infection.

Materials and Methods

Two adult dogs were presented to the Hospital with a history of inappetence, dullness, progressive emaciation, corneal opacity, congested mucus membranes, and persistent fever. Both the dogs were treated with antibiotics and antipyretics at local hospitals with partial relief of symptoms. Clinical examination of the dogs revealed elevated rectal temperature, pulse rate, respiratory rate; pale and congested mucus membranes, corneal opacity, bilateral lacrimation and generalized debility (Figures 1&2). Peripheral blood was collected and examined under light microscopy for haemoprotozonas which revealed the presence of motile trypanosomes. Microscopic examination of Giemsa stained blood smear revealed the presence of *Trypanosoma evansi* organisms in between the red blood cells (Figure 3). Further blood was collected for haematological and biochemical analysis [4]. Dogs were treated with two doses of injection diminazene aceturate @3.5mg/kg body weight intramuscularly at 96 hours interval, inj. meloxicam @0.3mg/kg body weight subcutaneous for first three days, five doses of inj. iron dextran (imferon) 10mg/kg body weight intramuscularly at 48 hours interval and oral supplementation of iron containing syrup (Dexorange) @10 gram per day daily. Post-treatment, the parasitemia was estimated by direct microscopic examination of blood and stained smears.

Results and Discussion

Microscopic examination of blood smears revealed 24.3 ± 2.62 microns length trypanosome with sub-terminal kinatoplast with undulating membrane. The kinatoplast of the parasites were sub-terminal, the undulating membranes were well developed and there was a substantial free flagellum. Based on the morphology
Therapeutic Management of Anemia Due to Trypanosomosis in Dogs

and micrometry it was confirmed as *Trypanosoma evansi* [5]. Haematological finding were in two dogs were as haemoglobin (6.6, 5.4g/dL), total erythrocyte count (3.4 X 10⁶, 3.1 X 10⁶/µL), packed cell volume (18%, 17.4%) and higher total leucocyte count (9800, 11200/µL), neutrophils (42-38%), eosinophils (6-4%), lymphocytes (51.5%) and monocytes (1.1%). Biochemical findings were glucose (53.68mg/dL), total protein (5.43, 5.66mg/dL), albumin (1.79, 1.62mg/dL), blood urea nitrogen (48.12, 56.60mg/dL) and creatinine (2.20, 2.86mg/dL). Recorded haemat-biochemical findings before and after therapy were presented in the Table 1. By the seventh day of treatment, clinical signs were disappeared and the parasites were not found in blood smears.

Table 1: Haematological and biochemical assessment during the treatment.

Parameters	0th Day	7th-9th Day	14th-17th Day	21st Day-22nd Day	28th Day-33rd Day
Hb (gm%)	6	5.4	7.1	6.6	8.4
PCV (%)	18	17.4	23	19	26
Albumin (g/dL)	1.79	1.62	2.1	1.68	2.7
Total protein (g/dL)	5.43	5.66	7.21	7.22	7.8
Glucose (mg/dL)	53	68	70	54	110

The severity of canine trypanosomosis ranges from acute, subacute to chronic forms. In dogs an acute and fatal type is commonly seen and death possibly occurs in 2-4 weeks after infection [6]. During the chronic infection, progressive weakness, anorexia, anaemia, intermittent fever, conjunctivitis, swelling of limbs, enlarged superficial lymph nodes and bilateral corneal opacity are noticed [7]. Haemat-biochemical findings observed in the present study were in according with the previous studies and the anaemic changes are attributable to extra vascular destruction of red blood cell which may be through the process of erythrophagocytosis or metabolic product and toxins liberated from the parasites. Hypoglycaemia was noticed in these dogs and it is due to utilization of blood glucose by parasites in circulation. Observed reduced serum albumin levels were may be due to decreased liver biosynthesis and progressive loss of albumin in urine [4]. Due to tissue damage and kidney dysfunction, uremia and elevated creatinine levels were noticed in the present study [8]. Diminazene aceturate is the commonly used drug to control trypanosomosis in animals in Africa which have been in use for over 40 years [9]. Mechanism of action of this drug involved the disruption of DNA synthesis, inhibition of adenosylmethionine decarboxylase or related processes [10]. Recently, diminazene aceturate resistant *Trypanosoma evansi* organisms isolated from a buffalo [11]. Two doses of diminazene aceturate were given intra muscularly at a dosage of 3.5mg/kg body weight were effective for *Trypanosoma evansi* infections in dogs.

Conclusion

Uneventful recovery was noticed in dogs suffering from anemia caused by trypanosomosis by using two doses of diminazene aceturate along with the iron supplements.

Acknowledgements

The authors are thankful to the authorities of Sri Venkateswara Veterinary University for providing the facilities to carry out the work.
Conflicts of Interest

The author declares there are no conflicts of interest.

References

1. Reddy BS, Kumari KN, Sivajothi S, Rayulu VC (2016) Haematobiochemical and thyroxin status in Trypanosoma evansi infected dogs. J Parasit Dis 40: 491-495.
2. Tuntasuvan D, Jarabrum W, Viseshakul N, Mohkaew K, Borisutsuwan S, et al. (2003) Chemotherapy of surra in horses and mules with diminazene aceturate. Vet Parasitol 110(3): 222-233.
3. Herrera HM, Davila AM, Norek A, Abreu UG, Souza SS, et al. (2004) Enzootiology of Trypanosoma evansi in Pantanal, Brazil. Vet Parasitol 125(3-4): 263-275.
4. Sivajothi S, Rayulu VC, Reddy BS (2015) Haematological and biochemical changes in experimental Trypanosoma evansi infection in rabbits. J Parasit Dis 39: 216-220.
5. Sivajothi S, Rayulu VC, Reddy BS (2015) Rapid serodiagnosis of Trypanosoma evansi in dogs by colloidal dye immunobinding assay. Comp Clin Pathol 12(4): 1497-1500.
6. Sivajothi S, Reddy BS (2017) Trypanosoma evansi infection in a cat -a rare case. Comp Clin Pathol.
7. Soulsby EJL (1982) Helminths, Arthropods and protozoa of domesticated animals. (7th edn), Bailliere Tindall, London, pp. 533.
8. Aquino LPCT, Machado RZ, Alessi AC, Satana AE, Castvcrol MB, et al. (2002) Hematological, biochemical and anathomopathological aspects of the experimental infection with Trypanosoma evansi in dogs. Arq Bras Med Vet Zootec 54(1).
9. Geerts S, Holmes PH, Eisser MC, Diall O (2001) African bovine trypanosomiasis: the problem of drug resistance. Trends Parasitol 17: 25-28.
10. Balana Ruze R, Garzon PT, Ordonez Esouderno D, Garriedo Pertieria A (1986) Inhibition of diamine oxidase and S-adenosylmethionine decarboxylase by diminazene aceturate (berenil). Biochem Pharmacol 35(9): 1597-1600.
11. Sivajothi S, Reddy BS (2016) Polypeptide profiles of diminazene aceturate resistant Trypanosoma evansi organisms isolated from a buffalo. J Veter Sci Med 4(1): 1-4.