Hadronic Mass Moments in $B \to X_c \ell \nu$ Decays

K. Abe, K. Abe, I. Adachi, H. Aihara, K. Aoki, K. Arinstein, Y. Asano, T. Aso, V. Aulchenko, T. Asah, T. Aziz, S. Bahinipati, A. M. Bakich, V. Balagura, Y. Ban, S. Banerjee, E. Barberio, M. Barbero, A. Bay, I. Bedny, U. Bitenc, I. Bizjak, S. Blyth, A. Bondar, A. Bozek, M. Bräcko, J. Brodzicka, T. E. Browder, M.-C. Chang, P. Chang, Y. Chao, A. Chen, K.-F. Chen, W. T. Chen, B. G. Cheon, C.-C. Chiang, R. Chistov, S.-K. Choi, Y. Choi, Y. K. Choi, A. Chuvikov, S. Cole, J. Dalseno, M. Danilov, M. Dash, L. Y. Dong, R. Dowd, J. Dragic, D. Drutskoy, Y. Enari, D. Epifanov, F. Fang, S. Fratina, H. Fujii, G. G. Galyashev, A. Garmash, T. Gershon, A. Go, G. Gokhroo, P. Goldenzweig, B. Golob, A. Gorišek, M. Grosse Perdekamp, H. Guler, R. Guo, J. Haba, K. Harada, T. Hara, Y. Hasegawa, K. Hasuko, R. Hasegawa, M. Hazumi, T. Higuchi, H. Inuzuka, T. Hojo, T. Hokuue, Y. Hoshi, K. Hoshina, S. Hou, Y. B. Hsiung, Y. Igarashi, T. Iijima, K. Ikado, A. Imoto, K. Inami, A. Ishikawa, H. Ishino, K. Itoh, R. Itoh, M. Iwasaki, Y. Iwasaki, J. C. Jacoby, C.-M. Jen, K. Kakuno, J. H. Kang, J. S. Kang, P. Kapusta, S. U. Kataoka, N. Katayama, H. Kawai, N. Kawamura, T. Kawasaki, S. Kazi, N. Kent, H. R. Khan, A. Kibayashi, H. Kichimi, H. O. Kim, J. H. Kim, S. K. Kim, S. M. Kim, T. H. Kim, K. Kinoshita, N. Kishimoto, S. Korpar, Y. Kozakai, P. Křížan, P. Krokovny, T. Kubota, R. Kulasi, C. C. Kuo, H. Kurashiro, E. Kurihara, A. Kusaka, A. Kuzmin, Y. Kwon, J. S. Lange, G. Leder, S. E. Lee, Y.-J. Lee, T. Lesiak, J. Li, A. Limosani, S.-W. Lin, D. Liventsev, J. MacNaughton, F. Mandel, D. Marlow, H. Matsumoto, T. Matsumoto, A. Matyja, Y. Mikami, W. Mitaroff, K. Miyabayashi, H. Miyake, H. Miyata, Y. Miyazaki, R. Mizuk, D. Mohapatra, G. R. Moloney, T. Mori, A. Murakami, T. Nagamine, Y. Nagasaka, T. Nakagawa, I. Nakamura, E. Nakano, M. Nakao, H. Nakazawa, Z. Natkaniec, K. Neichi, S. Nishida, O. Nitoh, S. Noguchi, T. Nozaki, A. Ogawa, S. Ogawa, T. Okabe, S. Okuno, L. Olsen, Y. Onuki, W. Ostrowicz, H. Ozaki, P. Pakhlov, H. Palka, C. W. Park, H. Park, K. S. Park, N. Parslow, L. E. Piilonen, A. Poluektov, F. J. Ronga, N. Root, M. Rozanska, H. Sahoo, M. Saigo, S. Saih, Y. Sakai, H. Sakamoto, H. Sakaue, T. R. Sarangi, M. Satapathy, N. Satoyama, T. Schiefer, O. Schneider, P. Schönherr, J. Schürmann, C. Schwanda, A. J. Schwartz, T. Seki, K. Senyo, R. Seuster, M. E. Sevior, T. Shibata, H. Shibuya, J.-G. Shiu, B. Shwartz, V. Sidorov, J. B. Singh, A. Somov, N. Soni, R. Stamen, S. Stanic, M. Starič, A. Sugiyama, K. Sumisawa, T. Sumiyoshi, S. Suzuki, O. Tajima, N. Takada, F. Takasaki, K. Tamaï, N. Tamura, K. Tanabe, M. Tanaka, G. N. Taylor, Y. Teramoto, X. C. Tian, K. Trabelsi, Y. F. Tse, T. Tsuboyama, T. Tsukamoto, K. Uchida, U. Uchida, S. Uehara,
T. Uglov, K. Ueno, Y. Unno, S. Uno, P. Urquijo, Y. Ushiroda, G. Varner, K. E. Varvell, S. Villa, C. C. Wang, C. H. Wang, M.-Z. Wang, M. Watanabe, Y. Watanabe, L. Widhalm, C.-H. Wu, Q. L. Xie, B. D. Yabsley, A. Yamaguchi, H. Yamamoto, Y. Yamashita, M. Yamauchi, Heyoung Yang, J. Ying, S. Yoshino, Y. Yuan, Y. Yusa, H. Yuta, S. L. Zang, C. C. Zhang, J. Zhang, L. M. Zhang, Z. P. Zhang, V. Zhilich, T. Ziegler, and D. Zürcher (The Belle Collaboration)

1 Aomori University, Aomori
2 Budker Institute of Nuclear Physics, Novosibirsk
3 Chiba University, Chiba
4 Chonnam National University, Kwangju
5 University of Cincinnati, Cincinnati, Ohio 45221
6 University of Frankfurt, Frankfurt
7 Gyeongsang National University, Chinju
8 University of Hawaii, Honolulu, Hawaii 96822
9 High Energy Accelerator Research Organization (KEK), Tsukuba
10 Hiroshima Institute of Technology, Hiroshima
11 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
12 Institute of High Energy Physics, Vienna
13 Institute for Theoretical and Experimental Physics, Moscow
14 J. Stefan Institute, Ljubljana
15 Kanagawa University, Yokohama
16 Korea University, Seoul
17 Kyoto University, Kyoto
18 Kyungpook National University, Taegu
19 Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
20 University of Ljubljana, Ljubljana
21 University of Maribor, Maribor
22 University of Melbourne, Victoria
23 Nagoya University, Nagoya
24 Nara Women’s University, Nara
25 National Central University, Chung-li
26 National Kaohsiung Normal University, Kaohsiung
27 National United University, Miaoli
28 Department of Physics, National Taiwan University, Taipei
29 H. Niewodniczanski Institute of Nuclear Physics, Krakow
30 Niigata Dental University, Niigata
31 Niigata University, Niigata
32 Nova Gorica Polytechnic, Nova Gorica
33 Osaka City University, Osaka
34 Osaka University, Osaka
35 Panjab University, Chandigarh
36 Peking University, Beijing
37 Princeton University, Princeton, New Jersey 08544
38 RIKEN BNL Research Center, Upton, New York 11973
Abstract

We report measurements of the first and second moments of the hadronic invariant mass squared distribution, $\langle M_X^2 \rangle$ and $\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$, in $B \to X_c \ell \nu$ decays for minimum lepton momenta ranging from 0.7 to 1.5 GeV/c in the B meson rest frame. The measurement uses $B \bar{B}$ events in which the hadronic decay of one B meson is fully reconstructed and the semileptonic decay of the other B is inferred from the presence of an identified lepton. These results are obtained from a 140 fb$^{-1}$ data sample collected near the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric energy e^+e^- collider.
Recently, there have been intense theoretical and experimental efforts toward predicting the moments of the hadronic invariant mass squared distribution in $B \to X_c e \nu$ decays. The idea is that using the Operator Product Expansion (OPE), the hadronic mass moments (and other inclusive observables in B decays) can be predicted in terms of the b-quark mass m_b and other non-perturbative parameters. Conversely, by measuring the moments of B decay spectra and the semileptonic B decay rate, one can then extract these parameters and $|V_{cb}|$.

The analysis is based on the data recorded with the Belle detector at the asymmetric energy e^+e^- collider KEKB, operating at a center-of-mass (c.m.) energy near the $\Upsilon(4S)$ resonance. KEKB consists of a low energy ring (LER) of 3.5 GeV positrons and a high energy ring (HER) of 8 GeV electrons. The Belle detector is a large-solid-angle magnetic spectrometer consisting of a three-layer silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. The responses of the ECL, CDC (dE/dx) and ACC detectors are combined to provide clean electron identification. Muons are identified in the instrumented iron flux-return (KLM) located outside of the coil. Charged hadron identification relies on the information from the CDC, ACC and TOF sub-detectors.

The $\Upsilon(4S)$ dataset used for this study corresponds to an integrated luminosity of 140 fb$^{-1}$, or about 152 million $B\bar{B}$ events. Another 15 fb$^{-1}$ taken 60 MeV below the resonance are used to subtract the non-BB (continuum) background. Full detector simulation based on GEANT is applied to Monte Carlo (MC) simulated events. The size of the MC samples is equivalent to about 2.4 times the integrated luminosity. At the generator level, the decay $B \to D^* \ell \nu$ is simulated using a HQET-based model. The ISGW2 model is used for the decays $B \to D \ell \nu$ and $B \to D^{**} \ell \nu$. The non-resonant $B \to D(\ast) \pi \ell \nu$ component is generated according to the model of Goity and Roberts. QED bremsstrahlung in semileptonic decays is simulated by the PHOTOS package.

After selecting hadronic events, we fully reconstruct the hadronic decay of one B meson (B_{tag}) using the decay modes $B^+ \to D^{(*)0} \pi^+ + D^{(*)0} \rho^+ + D^{(*)0} \pi^+ + B^0 \to D^{(*)-} \pi^+ + D^{(*)-} \rho^+ + D^{(*)-} \pi^+ + D^{(*)0} \pi^+$ and $B^0 \to D^{(*)0} \pi^+$ pairs of photons satisfying $E_{\gamma} > 50$ MeV and 117 MeV/$c^2 < m(\gamma\gamma) < 150$ MeV/c^2 are combined to form π^0 candidates. K^0_S mesons are reconstructed from pairs of oppositely charged tracks with invariant mass within ± 30 MeV/c^2 of the K^0_S mass and decay vertex displaced from the interaction point. Candidate ρ^+ and ρ^0 mesons are reconstructed in the $\pi^+ \pi^0$ and $\pi^+ \pi^-$ decay modes, requiring their invariant masses to be within ± 150 MeV/c^2 of the ρ mass. Candidate a_1^+ mesons are obtained by combining a ρ^0 candidate with a charged pion and requiring an invariant mass between 1.0 and 1.6 GeV/c^2. D candidates are searched for in the $K^- \pi^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^- \pi^-, K^0_S \pi^+ \pi^-$ and $K^0_S \pi^0$ decay modes. The $K^- \pi^+ \pi^0$ and $K^0_S \pi^+ \pi^- \pi^0$ decay modes are used to reconstruct D^+ mesons. Charmed mesons are selected in a window corresponding to ± 3 times the mass resolution in the respective decay mode. D^{**} mesons are reconstructed by pairing a charmed meson with a low momentum pion, $D^{**} \to D^0 \pi^+, D^+ \pi^0$. The decay modes $D^{*0} \to D^0 \pi^0$ and $D^{*0} \to D^0 \gamma$ are used to search for neutral charmed vector mesons.

For each B_{tag} candidate, the beam-constrained mass M_{bc} and the energy difference ΔE are calculated

$$M_{bc} = \sqrt{(E_{\text{beam}})^2 - (\vec{p}_B)^2}, \quad \Delta E = E_B - E_{\text{beam}},$$

where E_{beam} is the beam energy in the c.m. system and \vec{p}_B and E_B are the 3-momentum and
the energy of the B_{tag} candidate in the same frame, respectively. The signal region for B_{tag}

is defined by the selections $M_{bc} > 5.27 \text{ GeV} / c^2$ and $|\Delta E| < 50 \text{ MeV}$. If multiple candidates

are found in a single event, the best candidate is chosen based on ΔE and other variables.

Semileptonic decays of the other B meson (B_{signal}) are selected by searching for an identified

carged lepton (electron or muon) within the remaining particles in the event. Events

with multiple identified leptons are rejected. In the lepton momentum range relevant to this

analysis, electrons (muons) are selected with an efficiency of 92% (89%) and

the probability to misidentify a pion as an electron (a muon) is 0.25% (1.4%) [19, 20].

For analysis, electrons (muons) are selected with an efficiency of 92% (89%) and

the probability to misidentify a pion as an electron (a muon) is 0.25% (1.4%) [19, 20].

In electron events, we attempt to recover bremsstrahlung photons by searching for a

charged lepton are assigned to the hadronic system. The missing 4-momentum in the

event is calculated, assigning the pion mass to all charged particles except identified kaons,

\[p_{\text{miss}} = (p_{\text{LER}} + p_{\text{HER}}) - p_{B_{\text{tag}}} - p_\ell - p_X , \]

(2)

where the indices LER and HER refer to the colliding beams. As only the neutrino in

$B \to X_\ell \ell \nu$ should be missing in the event, the missing mass is required to be consistent

with zero, $|M_{\text{miss}}^2| < 3 \text{ GeV}^2 / c^4$. To improve the resolution in M_X^2, we constrain the neutrino

mass to zero, $p_\nu = (|p_{\text{miss}}|, \bar{p}_{\text{miss}})$, and recalculate the 4-momentum of the X system,

\[p'_X = (p_{\text{LER}} + p_{\text{HER}}) - p_{B_{\text{tag}}} - p_\ell - p_\nu . \]

(3)

The M_X^2 resolution (defined as half width at the half maximum) obtained in this way is

about 800 MeV$^2 / c^4$.

For the rest of the analysis, the remaining events are divided into four sub-samples, de-

pending on the charge of B_{tag} (B^+, B^0) and on the lepton type (electron, muon). In each

of these sub-samples and for each lepton momentum threshold considered in the analysis

($p_\ell^* > 0.7, 0.9, 1.1, 1.3$ and $1.5 \text{ GeV} / c$ [21]), the backgrounds in the M_X^2 distribution are
determined, taking into account contributions from the following sources: continuum back-

ground, $B \bar{B}$ events with a misreconstructed B_{tag} candidate, and background from secondary

or fake leptons. The background shapes in M_X^2 are determined from the MC simulation,

except for the continuum where the off-resonance data is used. The shape of the fake muon

background is corrected by the ratio of the pion fake rate in the experimental data over the

same quantity in the MC simulation, as measured using $K_S^0 \to \pi^+ \pi^-$ decays. The continuum

background is scaled by the on- to off-resonance luminosity ratio, taking into account

the cross-section difference. The combinatorial B_{tag} background is normalized using the

5.20 GeV$ / c^2 < M_{bc} < 5.25$ GeV$ / c^2$ sideband. The normalization of the secondary or fake

lepton background is found from the real data by fitting the lepton momentum distribution.

The purity of the $B \to X_\ell \ell \nu$ signal depends on the sub-sample and the lepton momentum

threshold, typical values being around 75%. Table 1 shows the numbers of signal events and

purities for each combination of B_{tag} charge, lepton type and lepton momentum threshold.

In each of the four sub-samples and for each lepton momentum threshold, the M_X^2 dis-

tribution is measured in 39 bins in the range from 0 to 13 GeV$^2 / c^4$ (bin width 0.333 GeV$^2 / c^4$) and,
after subtraction of all backgrounds, the finite detector resolution in M_X^2 is unfolded

using the Singular Value Decomposition (SVD) algorithm [22], as illustrated in Fig. 1. The
TABLE I: Number of $B \rightarrow X_c \ell \nu$ signal and signal purity in the four sub-samples, as a function of the lepton momentum threshold. The yields are quoted with their statistical uncertainty; the corresponding signal purity is given in brackets.

p_{\min} (GeV)	$B^+ \text{ electron}$	$B^+ \muon$	$B^0 \text{ electron}$	$B^0 \muon$
0.7	3893 ± 79 (72.3%)	3626 ± 84 (68.7%)	2212 ± 64 (66.4%)	2154 ± 64 (65.0%)
0.9	3659 ± 75 (74.0%)	3484 ± 78 (71.1%)	2072 ± 58 (66.4%)	2067 ± 58 (70.2%)
1.1	3285 ± 70 (75.2%)	3159 ± 73 (72.9%)	1886 ± 53 (66.4%)	1925 ± 52 (76.1%)
1.3	2742 ± 64 (75.9%)	2740 ± 66 (75.0%)	1595 ± 46 (66.4%)	1632 ± 47 (79.4%)
1.5	2152 ± 56 (77.7%)	2132 ± 56 (76.8%)	1195 ± 39 (66.4%)	1297 ± 41 (83.0%)

FIG. 1: (a) Measured and (b) unfolded M_X^2 distribution for $p_\ell^* > 0.7$ GeV/c. On the left plot, the continuum-subtracted M_X^2 distribution is shown by points with error bars. The hatched histogram corresponds to the background from secondary or fake leptons; $B\bar{B}$ events in which B_{tag} is misreconstructed are shown by the double-hatched histogram. The right plot is the result of the unfolding. In both plots, contributions from B^+ and B^0 tags, and from electron and muon events are added.

The unfolded distribution has 15 bins in the range from M_X^2 to about 15 GeV2/c4 (bin width 1 GeV2/c4, except around the narrow states D, D^*, D_1 and D_2^*). We calculate the first and second moment, $\langle M_X^2 \rangle$ and $\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$, for each unfolded M_X^2 spectrum separately, after applying a small correction for different bin-to-bin efficiencies. The final results for a given lepton momentum threshold are obtained by taking the average over the four sub-samples. The unfolding, moment calculation and averaging procedure has been studied on MC simulated events and no significant bias has been found.

The results for the first and second hadronic mass moment are shown in Fig. 2 and Tables II and III. All results are preliminary. Note that the moment measurements for different lepton momentum thresholds are highly correlated due to overlapping data samples.
FIG. 2: (a) First and (b) second hadronic mass moment, $\langle M_X^2 \rangle$ and $(\langle M_X^2 \rangle - \langle M_X^2 \rangle)^2$, for different lepton threshold momenta. The error bars indicate the statistical and total errors. Note that the individual moments are highly correlated. All results are preliminary.

p_{min}^* (GeV/c)	$\langle M_X^2 \rangle$ (GeV2/c4)	$\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$ (GeV4/c8)
0.7	4.383 ± 0.037 ± 0.051	0.047
0.9	4.330 ± 0.033 ± 0.041	0.036
1.1	4.277 ± 0.029 ± 0.035	0.028
1.3	4.173 ± 0.028 ± 0.037	0.026
1.5	4.132 ± 0.030 ± 0.031	0.019

TABLE II: First hadronic mass moment $\langle M_X^2 \rangle$ for different lepton threshold momenta. The first error on $\langle M_X^2 \rangle$ is statistical and the second is the estimated systematic uncertainty. The right-most three columns show the different components of the systematic error. All results are preliminary.

We have estimated the correlations due to this overlap in Table [IV].

We consider three sources of systematic error, shown separately in columns three to five of Tables [IV] and [V]: the uncertainty related to the detector modeling and the background subtraction, the uncertainty related to unfolding and the moment extraction procedure, and the uncertainty related to the X_c model in the MC simulation. The total systematic error is the quadratic sum of these three components.

The uncertainty related to the detector modeling and the background subtraction is estimated by varying the normalizations of the different background components and some of the selections used in the analysis (namely the B_{tag} signal region and the requirement on M_{miss}^2). The uncertainty related to unfolding and moment extraction is obtained by varying the effective rank parameter in the SVD algorithm, dis- and enabling the bin-to-bin efficiency
correction and changing the binning of the unfolded distribution. The X_c model uncertainty is determined by varying the fractions of $B \to D^* \ell \nu, B \to D \ell \nu$ and $B \to D^{*+}/D^{(*)}\pi \ell \nu$ within $\pm 10\%$, $\pm 10\%$ and $\pm 30\%$, respectively, and summing the individual variations in quadrature. These ranges of variation roughly correspond to the experimental uncertainties [23] in the isospin averaged branching ratios.

In summary, we have measured the first and second moments of the hadronic invariant mass squared distribution, $\langle M_X^2 \rangle$ and $\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$, in $B \to X_c \ell \nu$ decays for minimum lepton momenta ranging from 0.7 to 1.5 GeV/c in the B rest frame. The results obtained are compatible with theoretical expectations [1] and recent measurements from other experiments [6, 7]. In addition, we have estimated the correlations of the moment measurements. These measurements can be used as input to a global fit analysis, which is expected to lead to an improved determination of the CKM matrix element $|V_{cb}|$.

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the National Institute of Informatics for valuable computing and Super-SINET network.

TABLE III: Same as Table I for the second hadronic mass moment $\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$.

p^*_min (GeV/c)	$\langle M_X^2 \rangle$	$\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$
	0.7 0.9 1.1 1.3 1.5	0.7 0.9 1.1 1.3 1.5
$\langle M_X^2 \rangle$	1.000 0.922 0.807 0.620 0.533	0.782 0.720 0.622 0.471 0.415
0.9	1.000 0.875 0.672 0.579	0.705 0.781 0.674 0.511 0.450
1.1	1.000 0.768 0.661	0.561 0.622 0.770 0.583 0.514
1.3	1.000 0.861	0.347 0.384 0.476 0.759 0.670
1.5	1.000	0.342 0.379 0.470 0.749 0.778
$\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$	1.1	1.000 0.902 0.728 0.456 0.440
1.3	1.000 0.907 0.506 0.487	
1.5	1.000	

TABLE IV: Estimated correlation coefficients for the different moment measurements due to overlapping data samples.

p^*_min (GeV/c)	$\langle M_X^2 \rangle$	$\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$
	0.7 0.9 1.1 1.3 1.5	0.7 0.9 1.1 1.3 1.5
$\langle M_X^2 \rangle$	1.000 0.922 0.807 0.620 0.533	0.782 0.720 0.622 0.471 0.415
0.9	1.000 0.875 0.672 0.579	0.705 0.781 0.674 0.511 0.450
1.1	1.000 0.768 0.661	0.561 0.622 0.770 0.583 0.514
1.3	1.000 0.861	0.347 0.384 0.476 0.759 0.670
1.5	1.000	0.342 0.379 0.470 0.749 0.778
$\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle$	1.1	1.000 0.902 0.728 0.456 0.440
1.3	1.000 0.907 0.506 0.487	
1.5	1.000	
support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 01324; the Ministry of Science and Technology of the Russian Federation; the Ministry of Higher Education, Science and Technology of the Republic of Slovenia; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

[1] P. Gambino and N. Uraltsev, Eur. Phys. J. C 34, 181 (2004).
[2] C.W. Bauer, Z. Ligeti, M. Luke, A.V. Manohar, Phys. Rev. D 67 (2003), 054012.
[3] A. Falk and M. Luke, Phys. Rev. D 57, 424 (1998).
[4] A. Falk, M. Luke and M. Savage, Phys. Rev. D 53, 2491 (1996); ibid. 53, 6316 (1996).
[5] J. Abdallah, et al. (DELPHI Collab.), submitted to Eur. Phys. J. (CERN-EP-PH/2005-015).
[6] S.E. Csorna, et al. (CLEO Collab.), Phys. Rev. D 70, 032002 (2004).
[7] B. Aubert, et al. (BABAR Collab.), Phys. Rev. D 69, 111104 (2004).
[8] M. Voloshin and M. Shifman, Sov. J. Nucl. Phys. 45, 292 (1987); J. Chay, H. Georgi and B. Grinstein, Phys. Lett. B 247, 399 (1990); I. Bigi, N. Uraltsev and A. Vainshtein, Phys. Lett. B 293, 430 (1992).
[9] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[10] A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth. A 479, 117 (2002).
[11] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003), and other papers included in this volume.
[12] R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1 (1984).
[13] J. Duboscq et al. (CLEO Collaboration), Phys. Rev. Lett. 76, 3898 (1996).
[14] N. Isgur and D. Scora, Phys. Rev. D 52, 2783 (1995). See also N. Isgur et al., Phys. Rev. D 39, 799 (1989).
[15] J.L. Goity and W. Roberts, Phys. Rev. D 51, 3459 (1995).
[16] E. Barberio and Z. Was, Comp. Phys. Comm. 79, 291 (1994).
[17] The selection of hadronic events is described in K. Abe et al. (Belle Collaboration), Phys. Rev. D 64, 072001 (2001).
[18] Throughout this paper, the inclusion of the charge conjugate mode is implied.
[19] K. Hanagaki et al., Nucl. Instr. and Meth. A 485, 490 (2002).
[20] A. Abashian et al., Nucl. Instr. and Meth. A 491, 69 (2002).
[21] Throughout this paper, quantities calculated in the B meson rest frame are denoted by an asterisk.
[22] A. Höcker and V. Kartvelishvili, Nucl. Instr. Meth. A 372, 469 (1996).
[23] S. Eidelman et al., Phys. Lett. B 592, 1 (2004).