Nest usurpation by a common eider toward a long-tailed duck

Isabeau Pratte,1,2 Mark Maftei2 & Mark L. Mallory1,2

1 Biology Department, Acadia University, 15 University Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
2 High Arctic Gull Research Group, 109 Kings Road, Bamfield, British Columbia V0R 1B0, Canada

Keywords
Nest takeover; sea ducks; Somateria mollissima; Clangula hyemalis; High Arctic; limited habitat.

Abstract
Intraspecific and non-obligate brood parasitism and nest takeover is well documented in common eiders (Somateria mollissima borealis) nesting in the Arctic. However, we report the takeover of a long-tailed duck (Clangula hyemalis) nest by a female common eider on Nasaruvaalik Island, Nunavut, Canada. The high nesting density due to limited habitat in the region may have contributed to this seemingly risky behaviour, which provides no clear benefits to the eider.

Observation of nest takeover
The nest takeover we observed took place on 2 July 2013. We found an active long-tailed duck nest containing three warm eggs, within approximately 10 m of at least three active eider nests, while numerous failed or non-breeding female eiders (wandering “aunts”; Goudie et al. 2000) were also present in the area. On 2 July, from a blind, we observed a female eider walk towards the female long-tailed duck incubating its clutch. The eider used its bill to grab the long-tailed duck by the neck, pull it off the nest, and immediately take its place. The female long-tailed duck remained close by while the female eider sat on the nest for a few minutes before eventually leaving. After the eider departed, the long-tailed duck
resumed incubation. Less than an hour later, presumably the same female eider returned and again dislodged the female long-tailed duck from its nest. This time the eider sat on the nest for a few hours before leaving, at which time the long-tailed duck returned and resumed incubation. Between 3 and 8 July, we twice observed an eider (presumably the same one) sitting on the long-tailed duck nest, while the female long-tailed duck stood nearby. On 10 July, one egg was missing from the clutch and by 12 July the remainder of the clutch disappeared, and the long-tailed duck female had left. We did not record any eider eggs laid in this nest. On 16 July, we found a female eider sitting on a different long-tailed duck nest containing one egg, which ultimately did not hatch (abandoned as of 12 August).

Discussion

Because female eiders assemble in groups based on relatedness (McKinnon 2006), conspecific parasitism, egg adoption and nest takeover might confer some benefits to females since in this species females often take care of the ducklings together (Robertson 1998; McKinnon 2006). To our knowledge, this is the first evidence that female common eiders may take over the nests of sympatrically nesting species of waterfowl, leading to host abandonment of the nest. Why a female eider takes over the nest of another waterfowl species without laying any eggs remains unclear, since it does not intuitively present selective advantages.

Andersson et al. (2015) observed that nesting and/or brooding common eiders react more aggressively towards unrelated parasitic females than towards kin, but that parasitic females are not typically aggressive themselves. It may be that aggressive hosts quickly deter parasitic females, or that aggressive hosts “mask” a low-level aggression in parasitic female eiders—a response absent in the highly passive and submissive long-tailed duck we observed being usurped.

Kristjansson & Jónsson (2015) have observed shared nest attendance between females at a dense colony (2000 nests ha⁻¹) of eiders in Iceland. They attributed this unusual behaviour to the visual stimulus of many nests close to each other. Despite the lower density of nests found at Nasaruvaalik Island (maximum 161 nests ha⁻¹), a similar phenomenon could have prompted the takeover we observed. Moreover, the action of sitting on eggs increases the secretion of prolactin in female eiders, which encourages both incubation behaviour as well as the “helping” behaviour of aunts (Criscuolo et al. 2002).

Conclusion

If increased nesting densities result in more frequent and/or more direct interaction between eiders and long-tailed ducks at Nasaruvaalik Island, eiders may eventually have a negative effect on the small long-tailed duck population at this site, particularly if nearby nesting options are limited (Maftei et al. 2015). Our observations, although anecdotal, add to a growing body of evidence (e.g., Maftei et al. 2016), which suggests that birds breeding in dense multi-species colonies at isolated sites in the high Arctic may exhibit unusual interspecific behaviours.

Acknowledgements

Thanks to the dedication and passion of Shanti Davis. The observations were made while conducting research on ground nesting seabirds at Nasaruvaalik Island, Nunavut, a project supported by Natural Resources Canada (1300051), Environment Canada Grant (1403025), the Canadian Wildlife Federation Grant (no specific number) and the Nunavut General Monitoring Program (13-EC-22).

References

Alison R. 1975. Breeding biology and behavior of the oldsquaw (Clangula hyemalis L.). Ornithological Monograph 18. Tampa, FL: American Ornithologists’ Union.

Andersson M., Waldeck P., Hanssen S.A. & Moe B. 2015. Female sociality and kin discrimination in brood parasitism: unrelated females fight over egg laying. Behavioural Ecology 26, 755–762.

Criscuolo E., Gabrielsen G.W., Gendner J.-P. & Le Maho Y. 2002. Body mass regulation during incubation in female common eiders Somateria mollissima. Journal of Aquatic Ecosystem Stress and Recovery 1, 83–88.

Eadie J.M. & Savard J.P.L. 2015. Breeding systems, spacing behavior, and reproductive behavior of sea ducks. In J.P.L. Savard et al. (eds.): Ecology and conservation of North American sea ducks. Pp. 325–360. New York: CRC Press.

Goudie R.L., Robertson G.J. & Reed A. 2000. Common eider (Somateria mollissima). In A. Poole (ed.): The birds of North America online. Ithaca, NY: Cornell Lab of Ornithology. Accessed on the internet at http://bna.birds.cornell.edu/bna/species/546 on 25 May 2016.

Kristjansson T.O. & Jónsson J.E. 2015. Cooperative incubation behaviour in a super dense common eider Somateria mollissima colony. Bird Study 62, 146–149.

Lyon B.E. & Eadie J.M. 2008. Conspecific brood parasitism in birds: a life-history perspective. Annual Review of Ecology Evolution and Systematics 39, 343–363.

Maftei M., Davis S.E. & Mallory M.L. 2015. Assessing regional populations of ground-nesting marine birds in the Canadian High Arctic. Polar Research 1, article no. 25055, doi: http://dx.doi.org/10.3402/polar.v34.25055
Maftei M., Davis S.E. & Mallory M.L. 2016. Observations of heterospecific courtship behaviour in an isolated population of Ross’s gull (Rhodostethia rosea). Arctic. Accessed on the internet at http://arctic.ucalgary.ca/papers-appear-arctic on 14 October 2016.

McKinnon L. 2006. Genetic evidence for kin-based female social structure in common eiders (Somateria mollissima). Behavioural Ecology 17, 614–621.

Pratte I., Davis S.E., Maftei M. & Mallory M.L. 2016. Aggressive neighbors and dense nesting: nest site choice and success in High-Arctic common eiders. Polar Biology 39, 1597–1604.

Robertson G.J. 1998. Egg adoption can explain joint egg-laying in common eiders. Behavioural Ecology and Sociobiology 43, 289–296.

Robertson G.J. & Savard J.-P.L. 2002. Long-tailed duck (Clangula hyemalis). In A. Poole (ed.): The birds of North America online. Ithaca, NY: Cornell Lab of Ornithology. Accessed on the internet at http://bna.birds.cornell.edu/bna/species/65 on 25 May 2016.

Waldeck P. & Andersson M. 2006. Brood parasitism and nest takeover in common eiders. Ethology 112, 616–624.

Waldeck P., Hagen J.I., Hanssen S.A. & Andersson M. 2011. Brood parasitism, female condition and clutch reduction in the common eider Somateria mollisima. Journal of Avian Biology 42, 231–238.