Physical Properties of the Transiting Planetary System
TrES-3

Jae Woo Lee, Jae-Hyuck Youn, Seung-Lee Kim, Chung-Uk Lee, and Jae-Rim Koo
Korea Astronomy and Space Science Institute, Daejeon, 305-348, Korea
jwlee@kasi.re.kr, jhyoon@kasi.re.kr, slkim@kasi.re.kr, leecu@kasi.re.kr, koojr@kasi.re.kr

(Received ; accepted)

Abstract

We present four new transits of the planetary system TrES-3 observed between 2009 May and 2010 June. Among these, the third transit by itself indicates possible evidence for brightness disturbance, which might be the result of the planet blocking a cool starspot on the stellar surface. A total of 109 transit times, including our measurements, were used to determine the improved ephemeris with a transit epoch of 2454185.910944±0.000072 HJED and an orbital period of 1.30618700±0.00000015 d. We analyzed the transit light curves using the JKTEBOP code and adopting the quadratic limb-darkening law. In order to derive the physical properties of the TrES-3 system, the transit parameters are combined with the empirical relations from eclipsing binary stars and stellar evolutionary models. The stellar mass and radius obtained from a calibration using T_A, $\log \rho_A$ and [Fe/H] are consistent with those from the isochrone analysis. We found that the exoplanet TrES-3b has a mass of 1.93±0.07 M_{Jup}, a radius of 1.30±0.04 R_{Jup}, a surface gravity of $\log g_b$=3.45±0.02, a density of 0.82±0.06 ρ_{Jup}, and an equilibrium temperature of 1641±23 K. The results are in good agreement with theoretical models for gas giant planets.

Key words: planets and satellites: general — stars: planetary systems: individual (TrES-3) — stars: spots — techniques: photometric

1. Introduction

Since the first discovery of a transiting planet around HD 209485 (Charbonneau et al. 2000; Henry et al. 2000), about 100 extrasolar planets have been found to transit their parent stars during the past decade. Transit light curves provide us the opportunity to measure the relative size of both the star and planet, the orbital inclination, and the stellar limb-darkening coefficients. Together with radial-velocity measurements, the observations of transits allow the precise stellar and planetary parameters to be determined and then provide constraints on
fundamental models of planet formation and evolution. This is similar to the situations earlier found in well-detached eclipsing and single-lined spectroscopic binaries. Planetary transits have been mainly modeled via the analytical formulae given by Mandel & Agol (2002) and Giménez (2006), both of which require the approximations that the planets are spherical. Because planetary systems are a special case of binary star systems, their transits can be analyzed by eclipsing binary models based on numerical integration. Giménez (2006) and Southworth (2008) have shown that the detached binary code using biaxial ellipsoids works very well for the study of transiting planets.

The present paper is concerned with the extrasolar planetary system TrES-3 consisting of a nearby G-type dwarf and a massive hot Jupiter. This was discovered to be a transiting planet with a short orbital period of about 31 hours, a mass of 1.90 M\textsubscript{Jup}, and a radius of 1.30 R\textsubscript{Jup} by the Trans-atlantic Exoplanet Survey (TrES) network (O’Donovan et al. 2007). Since then, the system has been the subject of several investigations and its observational history was reviewed in a recent paper by Southworth (2010). In this work, we report and analyze four new transits of the TrES-3 system and present improved system parameters based on all data collected from the literature and obtained in our CCD photometry. One of our main intentions is to show that the work done in the field of eclipsing binaries can be applied satisfactorily to transiting planetary systems.

2. Observations

We observed four transits of TrES-3 at two observing sites, Sobaeksan Optical Astronomy Observatory (SOAO) in Korea and the Mt. Lemmon Optical Astronomy Observatory (LOAO) in Arizona, USA. The first transit was observed on the night of 2009 May 7 using a SITE 2K CCD camera attached to the 61-cm reflector at SOAO. The other three were observed between 2010 April and June using an FLI IMG4301E CCD camera attached to the 1.0 m reflector at LOAO. A summary of the observations is given in Table 1, where we present observing interval, site, filter, binning mode, exposure time, and numbers of observed points. The instrument and reduction method for each site have been described by Lee et al. (2007) and Lee et al. (2009b) in the same order.

In order to make an artificial comparison source that would be optimal for each transit, we monitored a few tens of stars imaged on the chip at the same time as the observing target. After potentially useful field stars were examined in detail for any peculiar light variations, about 10 candidate comparisons were combined by a weighted average. Then, the transit light curves from the artificial reference star were normalized by fitting a linear function of time to the out-of-transit data to remove time-varying atmospheric effects. Four resultant transits are displayed in Figure 1 as differential magnitudes versus HJD.
3. Light-Curve Analysis and Transit Times

As shown in Figure 1, the observed duration and depth of the LOAO I transit is shorter and shallower than those of the R band by about 6 min and 0.003 mag, respectively. For the same R band, the third transit is longer in duration and deeper in depth than the fourth one and also displays a possible brightening around the mid-transit time. If this feature is real, it would be ascribed to a large starspot or a complex of smaller spots occulted by the planet (Silva 2003; Rabus et al. 2009) and thus would be evidence for magnetic activity on the surface of the parent star. As with the observed variations in eclipse times of binary stars with convective outer layers (cf. Lee et al. 2009b), such activity may cause transit timings to be shifted from conjunction instants.

To derive the transit parameters of TrES-3, we modeled its light curves using the JKTEBOP code (Southworth et al. 2004a,b), where the SOAO data were used only to obtain a mid-transit time because of large scatter. The code is based on the EBOP program (Etzel 1981; Popper & Etzel 1981) originally developed to simulate detached eclipsing binary stars using biaxial spheroids. A transit light curve is dependent on the orbital period (P), the fractional radius of the star ($r_A=R_A/a$), the ratio of the radii ($k=r_b/r_A$), the orbital inclination (i), and the limb-darkening coefficients (LDCs) to the host star, where R_A is the stellar radius and a is the orbital semi-major axis. Throughout this paper, we refer to the star and planet of the TrES-3 system with the subscripts ‘A’ and ‘b’, respectively.

In this analysis, we assumed a circular orbit (Fressin et al. 2010; Croll et al. 2010) and used $P=1.30618700$ d determined from our analysis of transit timings below. Initial quadratic LDCs were taken from the tables of Claret (2000), using the atmospheric parameters of $T_A=5650\pm75$ K, $g_A=4.4\pm0.1$, and $[\text{Fe/H}]=-0.19\pm0.08$ (Sozzetti et al. 2009). We used r_A+r_b and k as the fitting parameters, because these parameters are more weakly correlated than between r_A and r_b and between r_A and r_A+r_b (Southworth 2008). The best results for each bandpass are given in columns (2) and (3) of Table 2, where the R-band solution was obtained from fitting the linear LDC (u_A) but fixing the non-linear LDC (v_A). Figure 2 displayed the light curves with best-fitting models and residuals. We chose the weighted means of individual solutions listed in the fourth column of the table as our final transit parameters. From those values and the stellar velocity amplitude ($K_A=369\pm11$ m s$^{-1}$) of Sozzetti et al. (2009), we computed the stellar density of $\rho_A=1.639\pm0.050$ ρ_\odot and the planetary surface gravity and zero-albedo equilibrium temperature of $g_b=28.2\pm1.1$ m s$^{-2}$ and $T_{eq}=1641\pm23$ K, respectively.

We derived the mid-transit time for each light curve with the JKTEBOP code and the transit parameters of Table 2. The results are given in Table 3 together with those taken from Sozzetti et al. (2009), Gibson et al. (2009), and the Exoplanet Transit Database\(^1\) (Poddaný

\(^1\) http://var2.astro.cz/ETD/)
et al. 2010), where the times are linked to be the coordinated universal timescale (UTC). As advocated by Bastian (2000), we transformed the HJD timings to the Terrestrial Time (TT) scale so as to use a uniform time system. These are listed as HJED (Heliocentric Julian Ephemeris Date) in the second column of the table. The entire collection of 109 transit timings from the literature and our observations has been used to determine the following refined ephemeris of TrES-3:

\[C_{\text{tr}} = \text{HJED} \, 2,454,185.910944(72) + 1.30618700(15) E, \]

where \(E \) is the number of orbital cycles elapsed from the reference epoch and the parenthesized numbers are the 1σ-error values for the last digit of each term of the ephemeris. The uncertainties of individual times were taken as weights. The linear least-squares fit yields \(\chi^2=264.98 \) for 107 degrees of freedom. Our period is somewhat longer than those of Sozzetti et al. (2009, \(P=1.3061858 \pm 0.0000005 \) d) and Gibson et al. (2009, \(P=1.3061864 \pm 0.0000005 \) d).

The observed \((O)\) minus calculated \((C_{\text{tr}})\) mid-transit times from this ephemeris are given in the fifth column of Table 3 and plotted in Figure 3, wherein our timings are marked by the filled circles. As can be seen in the figure, these residuals show a short-term scatter of about \(\pm 0.0025 \) d, which is several times larger than the typical timing precision \((< 0.001 \) d). This could be produced by the presence of additional planets in the TrES-3 system (e.g., WASP-3, Maciejewski et al. 2010), which is similar to the case of two planets around the binary star system HW Vir discovered by using eclipse timings (Lee et al. 2009a). In order to see if the residuals represent real and periodic variations, we used the discrete Fourier transform program PERIOD04 (Lenz & Breger 2005). The power spectra indicate a frequency of 0.507 c/d (corresponding to 1.97 d) close to the outer 3:2 mean motion resonance but it is difficult to confirm this periodicity because of the very low-amplitude signal to noise ratio of 2.8. It is possible that the timing scatter may arise from the presence of surface inhomogeneities linked to magnetic activity such as a starspot.

4. Results and Discussion

Double-lined spectroscopic and eclipsing binaries can provide a direct determination of the mass and radius for each component star. However, because transiting planetary systems display in general radial velocities of only the parent stars, their absolute dimensions cannot be determined directly from the observed quantities. In order to obtain the physical properties of the TrES-3 system, we have applied both the parameters calculated above and the spectroscopic measurements \((K_A, T_A, [\text{Fe/H}])\) of Sozzetti et al. (2009) to the empirical relations from eclipsing binary stars and stellar evolutionary models. The planet velocity amplitude \(K_b\) was used as a variable governing the process to find the best match between the observations and predictions, as in the method described by Southworth (2009). We performed \(K_b\) searches over the range of 50 to 250 km s\(^{-1}\) in our subsequent analyses.
First of all, we calculated the physical properties of the transiting system using the mass–radius and mass–temperature (hereafter M–R–T) relations from well-studied eclipsing binaries (Southworth 2009). The procedure is to look for the stellar mass and hence K_b satisfying simultaneously the two relations. This consists of calculating the χ^2 fitting statistic,

$$
\chi^2 = \left[\frac{r_A - (R_A,\text{pred}/a)}{\sigma_{r_A}} \right]^2 + \left[\frac{T_A - T_A,\text{pred}}{\sigma_{T_A}} \right]^2,
$$

where σ_{r_A} and σ_{T_A} are the uncertainties corresponding to the observed values of r_A and T_A, and R_A,pred and T_A,pred are the relation-predicted values. The K_b-search results appear as the dotted curve in Figure 4 and the system parameters are listed in the second column of Table 4. Here, the quantity Θ denotes the Safronov (1972) number.

A recent study by Torres et al. (2010) showed that accurate values for the stellar masses and radii could be estimated from T_A, $\log g_A$, and [Fe/H]. Enoch et al. (2010, hereafter ECPH) suggested a new calibration, replacing $\log g_A$ with $\log \rho_A$, and showed that the results of the relations are consistent with those known for the host stars of 17 WASP transiting planets. In transiting systems, stellar densities are obtained from the analysis of light curves directly and precisely (Seager & Mallén-Ornelas 2003). Accordingly, the calibrated mass and radius of $M_A,\text{ECPH}= 0.968 \pm 0.017 \, M_\odot$ and $R_A,\text{ECPH}= 0.822 \pm 0.011 \, R_\odot$ were used to minimize the χ^2 expressed as:

$$
\chi^2 = \left[\frac{M_A,\text{ECPH} - M_A,\text{pred}}{\sigma_{M_A,\text{ECPH}}} \right]^2 + \left[\frac{R_A,\text{ECPH} - R_A,\text{pred}}{\sigma_{R_A,\text{ECPH}}} \right]^2,
$$

where M_A,pred and R_A,pred are the stellar mass and radius predicted from the observed quantities and the K_b values appearing as the dashed curve in Figure 4. The results are given in the third column of Table 4.

At the final stage, we used the stellar evolutionary models from the Yonsei–Yale (Y2) series (Yi et al. 2001; Demarque et al. 2004) to constrain the physical properties of the TrES-3 system. A series of the isochrones was extracted by considering both the metallicities allowed by the observational errors in [Fe/H] and the ages in step of 0.1 Gyr for each metallicity. The provisional mass M_A from K_b was interpolated within the Y2 models to obtain the model-predicted radius R_A,pred and temperature T_A,pred. This process also finds the velocity amplitude of K_b such that the observed properties of the star are best fitted to the predictions of theoretical models by re-using Equation (2) over the range of K_b from 142 to 250 km s$^{-1}$, because stellar models are not available for masses below 0.40 M_\odot. Our final results are displayed as the solid curve in Figure 4 and listed in the fourth column of Table 4. Despite its large error, the evolutionary age indicates that the transiting system is likely to be young.

We determined the stellar and planetary parameters of the TrES-3 system using the planet velocity amplitude K_b as a key parameter, following the basic concept and procedure of Southworth (2009). As listed in Table 4, the physical properties based on the Y2 evolutionary

\[\text{Wide Angle Search for Planets, http://www.superwasp.org/} \]
models are consistent with the results using the ECPH calibration within the uncertainties, but not with those of the M–R–T relation. This indicates that the empirical calibration on T_A, log ρ_A and [Fe/H] allows one to infer the masses and radii of extrasolar parent stars from the observed values and is a valid alternative to stellar isochrone analysis. New and independent estimates for the system parameters confirm the previously published properties of this system.

Our results from the Y^2 isochrones indicate that TrES-3A hosts a transiting planet with a mass of 1.93 M$_{\text{Jup}}$, a radius of 1.30 R$_{\text{Jup}}$, a semi-major axis of 0.023 AU, and an age of 0.2 Gyr. We compared the mass and radius to the theoretical predictions with an orbital separation of 0.02 AU for 300 Myr given by Fortney et al. (2007), whose models offer the predicted radii for planets of various masses, core masses, orbital distances, and ages, orbiting a solar-like star. The planetary radii interpolated from their tabulated values are 1.32, 1.30, 1.28, 1.24, and 1.16 R$_{\text{Jup}}$ for the models with no core, and core masses of 10, 25, 50, and 100 M$_{\oplus}$, respectively. Thus, our measured radius is within the expected radii for gas giant planets and TrES-3b has a core mass less than \sim38 M$_{\oplus}$. This agrees with the prediction of Burrows et al. (2007) that there is a positive correlation between a planetary core mass and its host star’s metallicity.

By combining our four timings with data from the literature, we obtained an improved transit ephemeris, which will be used as a reference for future study. More accurate and continuous transit observations will help to identify and understand the possible transiting timing variations of this planetary system.

The authors wish to thank the staffs of SOAO and LOAO for assistance with our observations. This research has made use of the Simbad database maintained at CDS, Strasbourg, France.
References

Bastian, U. 2000, Inf. Bull. Variable Stars, No. 4822
Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007, ApJ, 661, 502
Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. 2000, ApJ, 529, L45
Claret, A. 2000, A&A, 363, 1081
Croll, B., Jayawardhana, R., Fortney, J., Lafreniere, D., & Albert, L. 2010, ApJ, 718, 920
Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJS, 155, 667
Enoch, B., Cameron, A. C., Parley, N. R., & Hebb, L. H. 2010, A&A, 516, A33 (ECPH)
Etzel, P. B. 1981, in Photometric and Spectroscopic Binary Systems, eds. E. B. Carling and Z. Kopal
 (Dordrecht: Reidel), 111
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661
Fressin, F., et al. 2010, ApJ, 711, 374
Gibson, N. P., et al. 2009, ApJ, 700, 1078
Giménez, A., 2006, A&A, 450, 1231
Henry, G. W., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2000, ApJ, 529, L41
Lee, J. W., Kim, C.-H., & Koch, R. H. 2007, MNRAS, 379, 1665
Lee, J. W., Kim S.-L., Kim C.-H., Koch R. H., Lee C.-U., Kim H.-I., & Park J.-H. 2009a, AJ, 137, 3181
Lee, J. W., Youn, J.-H., Lee, C.-U., Kim, S.-L., & Koch, R. H. 2009b, AJ, 138, 478
Lenz, P., & Breger, M. 2005, Comm. Asteroseismology, 146, 53
Maciejewski, G., et al. 2010, MNRAS, 407, 2625
Mandel, K., & Agol, E. 2002, ApJ, 580, L171
O’Donovan, F. T., et al. 2007, ApJ, 663, L37
Poddaný, S., Brát, L., & Pejcha, O. 2010, New Astron., 15, 297
Popper, D. M., & Etzel, P. B. 1981, AJ, 86, 102
Rabus, M., et al. 2009, A&A, 494, 391
Safronov, V. S. 1972, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets
 (Jerusalem: Israel Program for Scientific Translation)
Seager, S., & Mallén-Ornelas, G. 2003, ApJ, 585, 1038
Silva, A. V. R. 2003, ApJ, 585, L147
Southworth, J. 2008, MNRAS, 386, 1644
Southworth, J. 2009, MNRAS, 394, 272
Southworth, J. 2010, MNRAS, 408, 1689
Southworth, J., Maxted, P. F. L., & Smalley, B. 2004a, MNRAS, 349, 547
Southworth, J., Maxted, P. F. L., & Smalley, B. 2004b, MNRAS, 351, 1277
Sozzetti, A., et al. 2009, ApJ, 691, 1145
Torres, G., Andersen, J., & Giménez, A. 2010, A&ARv, 18, 67
Yi, S., Demarque, P., Kim, Y.-C., Lee, Y.-W., Ree, C. H., Lejeune, T., & Barnes, S. 2001, ApJS, 136, 417
Fig. 1. Light curves of TrES-3 in individual runs. Each transit is labeled by the telescope and filter used.
Fig. 2. Phased light curves of TrES-3. LOAO R curve is displaced vertically for clarity. The continuous curves represent the solutions obtained with the best-fit parameters listed in Table 2. The residuals from the fit are offset from zero and plotted at the bottom in the same order as the transit curves. The circle, plus, and ‘x’ symbols indicate the second to fourth transits, respectively.
Fig. 3. $O - C_{tr}$ residuals for TrES-3b constructed with the transit ephemeris newly derived in this work. Literature data are plotted as the open circles while our measurements as the filled ones.
Fig. 4. Behavior of χ^2 as a function of K_b. The dotted, dashed, and solid curves represent the K_b-search results obtained from the M–R–T relation, the ECPH calibration, and the Y^2 model, respectively, showing a minimum value at 181.6, 189.8, and 188.8 km s$^{-1}$ in the same order.
Transit	UT Date	Observing Interval (HJD+2,450,000)	Site	Filter	Binning Mode	Exposure Time (s)	\(N_{\text{obs}} \)
1	2009 05 07	4,959.07–4,959.25	SOAO	I	2×2	90	88
2	2010 04 08	5,294.81–5,294.95	LOAO	I	1×1	160-250	46
3	2010 06 11	5,358.78–5,358.97	LOAO	R	2×2	60-80	196
4	2010 06 15	5,362.77–5,362.90	LOAO	R	1×1	100	158

Table 1. Observing log of TrES-3.
Table 2. Transit parameters of TrES-3.

Parameter	LOAO I	LOAO R	Weighted Mean
$r_A + r_b$	0.1957±0.0021	0.1950±0.0025	0.1954±0.0023
k (= r_b/r_A)	0.1556±0.0042	0.1650±0.0042	0.1603±0.0042
i (deg)	81.47±0.14	82.06±0.14	81.77±0.14
u_A	0.304	0.456±0.069	
v_A	0.300	0.264	
T_0 (HJD)†	5294.86383±0.00038	5358.86636±0.00018	
r_A	0.1693±0.0015	0.1674±0.0023	0.1687±0.0017
r_b	0.02635±0.00084	0.02763±0.00068	0.02712±0.00074

† HJD 2,450,000 is suppressed.
Table 3. Observed transit times of TrES-3. A sample is shown here: the full version is available in its entirety in a machine-readable form in the online journal.

HJD	HJED\(^a\)	Uncertainty	E	O–C\(_{tr}\)	References\(^b\)
(2,450,000+)	(2,450,000+)				
4,185.91043	4,185.91118	±0.00020	0	0.00024	Sozzetti et al. (2009)
4,198.97315	4,198.97390	±0.00022	10	0.00109	Sozzetti et al. (2009)
4,214.64630	4,214.64705	±0.00028	22	0.00000	Sozzetti et al. (2009)
4,215.95208	4,215.95283	±0.00021	23	−0.00041	Sozzetti et al. (2009)
4,239.46166	4,239.46241	±0.00047	41	−0.00220	Fabjan (TRESCA)
4,256.4457	4,256.44645	±0.00150	54	0.00141	Vanmunster (AXA)
4,337.4288	4,337.42955	±0.00120	116	0.00092	Hentunen (AXA)
4,354.4102	4,354.41095	±0.00160	129	0.00189	Bel (AXA)
4,388.3696	4,388.37035	±0.00340	155	0.00043	Dufoer (AXA)
4,504.6196	4,504.62035	±0.00240	244	−0.00022	Naves (AXA)
4,521.5977	4,521.59845	±0.00130	257	−0.00255	Brát (TRESCA)

\(^a\) HJD in the terrestrial time scale.
\(^b\) AXA (Amateur eXoplanet Archive), TRESCA (TRansiting ExoplanetS and CAndidates).
Table 4. Physical properties of the TrES-3 system.

Parameter	M–R–T	ECPH	Y² Model
K_b (km s$^{-1}$)	181.6±8.2	189.8±3.0	188.8±2.3
M_A (M$_\odot$)	0.839±0.085	0.958±0.034	0.944±0.025
R_A (R$_\odot$)	0.800±0.037	0.836±0.016	0.832±0.013
log g_A (cgs)	4.555±0.059	4.574±0.022	4.572±0.018
ρ_A (ρ$_\odot$)	1.639±0.050	1.639±0.050	1.639±0.050
M_b (M$_{Jup}$)	1.786±0.170	1.950±0.085	1.931±0.074
R_b (R$_{Jup}$)	1.252±0.066	1.308±0.041	1.302±0.038
log g_b (cgs)	3.451±0.018	3.451±0.018	3.451±0.018
ρ_b (ρ$_{Jup}$)	0.850±0.111	0.813±0.060	0.817±0.056
T_{eq} (K)	1641±23	1641±23	1641±23
Θ	0.0749±0.0106	0.0717±0.0045	0.0721±0.0039
a (AU)	0.02209±0.00099	0.02308±0.00037	0.02297±0.00028
Age (Gyr)	0.2±1.0		