On the notion of a differential operator in noncommutative geometry

G. Sardanashvily

Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia
E-mail: sard@grav.phys.msu.su
URL: http://webcenter.ru/~sardan/

Abstract. The algebraic notion of a differential operator on a module over a commutative ring is not extended to a module over a noncommutative ring.

Let K be a commutative ring and A a commutative K-ring. By a module P over a commutative ring A throughout is meant a central bimodule, i.e., $ap = pa$ for all $p \in P$ and $a \in A$. Let Q be another A-module. There are three equivalent definitions of a Q-valued differential operator on an A-module P [1, 2, 3] (see items (i) – (iii)). None of them is extended to modules over a noncommutative ring. Therefore, a different definition is suggested.

Note that the definition (iii) is based on the notion of jet modules of a commutative ring. These jet modules provide the standard formulation of the Lagrangian formalism on modules over commutative and graded commutative rings [2, 4, 5]. However, the notion of a jet module fails to be extended to a noncommutative ring.

(i) Let P and Q be modules over a commutative K-ring A. The K-module $\text{Hom}_K(P, Q)$ of K-module homomorphisms $\phi : P \rightarrow Q$ can be endowed with the two A-module structures

$$ (a \phi)(p) := a \phi(p), \quad (a \star \phi)(p) := \phi(ap), \quad a \in A, \quad p \in P. \quad (1) $$

For the sake of convenience, we will refer to the second one as the A^\star-module structure. Let us put

$$ \delta_c \phi = c \phi - c \star \phi, \quad c \in A. \quad (2) $$

An element $\Delta \in \text{Hom}_K(P, Q)$ is called a Q-valued s-order differential operator on P if

$$ \delta_{c_0} \circ \ldots \circ \delta_{c_s} \Delta = 0 $$

for any tuple of $s + 1$ elements c_0, \ldots, c_s of A. The set $\text{Diff}_s(P, Q)$ of these operators inherits the A-module structures (1), and $\text{Diff}_{s-1}(P, Q) \subset \text{Diff}_s(P, Q)$. For instance, zero
order differential operators are \mathcal{A}-module homomorphisms of P to Q, i.e., $\text{Diff}_0(P, Q) = \text{Hom}_{\mathcal{A}}(P, Q)$. For our purpose, it suffices to consider first order differential operators. A first order differential operator Δ satisfies the condition

$$\delta_a \circ \delta_b \Delta(p) = \Delta(abp) - a\Delta(bp) - b\Delta(ap) + ab\Delta(p) = 0, \quad b, a \in \mathcal{A}. \quad (3)$$

(ii) One can think of a ring \mathcal{A} as being an \mathcal{A}-module generated by its unit element 1. A Q-valued first order differential operator Δ on \mathcal{A} fulfils the relation

$$\Delta(ab) = a\Delta(b) + b\Delta(a) - ab\Delta(1), \quad \forall a, b \in \mathcal{A}. \quad (4)$$

It is a Q-valued derivation of \mathcal{A} if $\Delta(1) = 0$, i.e., the Leibniz rule

$$\Delta(ab) = a\Delta(b) + b\Delta(a), \quad \forall a, b \in \mathcal{A}, \quad (5)$$

holds. Hence, any first order differential operator on \mathcal{A} falls into the sum

$$\Delta(a) = a\Delta(1) + [\Delta(a) - a\Delta(1)]$$

of a zero order differential operator $a\Delta(1)$ and a derivation $\Delta(a) - a\Delta(1)$. Note that any zero order differential operator Δ on \mathcal{A} is uniquely given by its value $\Delta(1)$. Then, there is the \mathcal{A}-module isomorphism $\text{Diff}_0(\mathcal{A}, Q) = Q$ via the association

$$Q \ni q \mapsto \Delta_q \in \text{Diff}_0(\mathcal{A}, Q),$$

where Δ_q is defined by the equality $\Delta_q(1) = q$. Let us consider the \mathcal{A}-module morphism

$$h : \text{Diff}_1(\mathcal{A}, Q) \to Q, \quad h(\Delta) = \Delta(1). \quad (6)$$

One can show that any Q-valued first order differential operator $\Delta \in \text{Diff}_1(P, Q)$ on P uniquely factorizes

$$\Delta : P \overset{i_\Delta}{\to} \text{Diff}_1(\mathcal{A}, Q) \overset{h}{\to} Q \quad (7)$$

through the morphism h (6) and some homomorphism

$$f_\Delta : P \to \text{Diff}_1(\mathcal{A}, Q), \quad (f_\Delta p)(a) = \Delta(ap), \quad a \in \mathcal{A}, \quad (8)$$

of the \mathcal{A}-module P to the \mathcal{A}^\ast-module $\text{Diff}_1(\mathcal{A}, Q)$. Hence, the assignment $\Delta \mapsto f_\Delta$ defines the isomorphism

$$\text{Diff}_1(P, Q) = \text{Hom}_{\mathcal{A}}(P, \text{Diff}_1(\mathcal{A}, Q)). \quad (9)$$
(iii) Given an \(\mathcal{A} \)-module \(P \), let us consider the tensor product \(\mathcal{A} \otimes_{K} P \) over \(K \). We put
\[
\delta^b(a \otimes p) = (ba) \otimes p - a \otimes (bp), \quad p \in P, \quad a, b \in \mathcal{A}.
\]
(10)
Let us denote by \(\mu^{k+1} \) the submodule of \(\mathcal{A} \otimes_{K} P \) generated by elements of the type
\[
\delta^b \circ \cdots \circ \delta^k (a \otimes p).
\]
The \(k \)-order jet module \(\mathcal{J}^k(P) \) of the module \(P \) is defined as the quotient of the \(K \)-module \(\mathcal{A} \otimes_{K} P \) by \(\mu^{k+1} \). We denote its elements \(a \otimes_k p \). In particular, the first order jet module \(\mathcal{J}^1(P) \) consists of elements \(a \otimes p \) modulo the relations
\[
\delta^a \circ \delta^b (1 \otimes p) = 1 \otimes (abp) - a \otimes (bp) - b \otimes (ap) + ab \otimes p = 0.
\]
(11)
The \(K \)-module \(\mathcal{J}^1(P) \) is endowed with the following two \(\mathcal{A} \)-module structures:
\[
b(a \otimes_k p) := ba \otimes_k p, \quad b \ast (a \otimes_k p) := a \otimes_k (bp).
\]
(12)
There exists the module morphism
\[
J^1 : P \ni p \rightarrow 1 \otimes_1 p \in \mathcal{J}^1(P)
\]
(13)
of the \(\mathcal{A} \)-module \(P \) to the \(\mathcal{A}^* \)-module \(\mathcal{J}^1(P) \) such that \(\mathcal{J}^1(P) \) seen as an \(\mathcal{A} \)-module is generated by elements \(J^1 p, p \in P \). Conversely, there is the epimorphism
\[
\pi_0^1 : \mathcal{J}^1(P) \ni a \otimes_1 p \rightarrow ap \in P.
\]
(14)
A glance at \(\delta_b (2) \) and \(\delta^b (10) \) shows that the morphism \(J^1 \) (13) is a first order differential operator on \(P \). As a consequence, any \(Q \)-valued first order differential operator \(\Delta \) on \(P \) uniquely factorizes
\[
\Delta : P \xrightarrow{J^1} \mathcal{J}^1(P) \xrightarrow{f^A} Q
\]
(15)
through the morphism \(J^1 \) (13) and some \(\mathcal{A} \)-module homomorphism \(f^A : \mathcal{J}^1(P) \rightarrow Q \). The assignment \(\Delta \mapsto f^A \) defines the isomorphism
\[
\text{Diff}_1(P, Q) = \text{Hom}_{\mathcal{A}}(\mathcal{J}^1(P), Q).
\]
(16)

Now, let \(\mathcal{A} \) be a noncommutative \(K \)-ring and \(P \) a \(\mathcal{A} \)-bimodule. Let \(\mathcal{Z}_A \) be the center of \(\mathcal{A} \) and \(\mathcal{Z}_P \) the center of \(P \) (i.e., \(\mathcal{Z}_P \) consists of elements \(p \in P \) such that \(ap = pa \) for all \(a \in \mathcal{A} \)). Let \(Q \) be another \(\mathcal{A} \)-bimodule. The \(K \)-module \(\text{Hom}_K(P, Q) \) can be provided
with the left \mathcal{A}-module structures (1) and the similar right ones. The left \mathcal{A}-module homomorphisms $\Delta : P \to Q$ obey the conditions $\delta_c \Delta = 0$ and, therefore, can be regarded as left Q-valued zero order differential operators on P. One can also write the condition (3). However, a problem is that, if \mathcal{A} is noncommutative, zero order differential operators (e.g., $Q = P$ and $\Delta = \text{Id}_P$) fail to satisfy this condition.

If $P = \mathcal{A}$, a Q-valued zero order differential operator Δ on \mathcal{A} takes its value $\Delta(1)$ only in the center Z_Q of Q. Therefore, one can rewrite the condition (4) as

$$\Delta(ab) = a\Delta(b) + \Delta(a)b - ab\Delta(1), \quad \forall a, b \in \mathcal{A}.$$

This provides the definition of a Q-valued first order differential operator Δ on \mathcal{A}. It is the sum of a Q-valued derivation ∂ of \mathcal{A} which obeys the Leibniz rule

$$\partial(ab) = (\partial a)b + a\partial b, \quad a, b \in \mathcal{A}, \quad (17)$$

and some zero order differential operator. Therefore, we have $\Delta(1) \in Z_Q$. The Q-valued first order differential operators on \mathcal{A} make up a left $Z\mathcal{A}$-module $\text{Diff}_1(\mathcal{A}, Q)$. Then, one may try to define a Q-valued first order differential operator on an \mathcal{A}-bimodule P as the composition $\Delta = h \circ f$ (7). However, such an operator takes its values only in the center Z_Q of Q since $\Delta(p) = (fp)(1) \in Z_Q$.

The composition (15) fails to provide the definition of a differential operator on a module over a noncommutative ring either. The key point is that the jet module of a noncommutative ring is ill defined. Namely, the projection π_0^1 (14) of the zero element (11) in $J^1(P)$ fails to be zero in P.

Using the fact that derivations of a noncommutative K-ring \mathcal{A} with values in an \mathcal{A}-bimodule are well defined, one can suggest the following definition of first order differential operators on modules over a noncommutative rings. Let P and Q be bimodules over a noncommutative K-ring \mathcal{A}. A K-module homomorphism $\Delta \in \text{Hom}_K(P, Q)$ of P to Q is said to be a Q-valued first order differential operator on P if it obeys the condition

$$\Delta(ab) = (\overrightarrow{\partial} a)(pb) + a\Delta(p)b + a(\overleftarrow{\partial} b)(p), \quad (18)$$

where $\overrightarrow{\partial}$ and $\overleftarrow{\partial}$ are derivations of \mathcal{A} which take their values in the modules $\text{Hom}^r_\mathcal{A}(P, Q)$ and $\text{Hom}^l_\mathcal{A}(P, Q)$ of right \mathcal{A}-module homomorphisms and left \mathcal{A}-module homomorphisms of P to Q, respectively. Namely, $(\overrightarrow{\partial} a)(pb) = (\overrightarrow{\partial} a)(p)b$ and $(\overleftarrow{\partial} b)(ap) = a(\overleftarrow{\partial} b)(p)$. Note that $\text{Hom}^r_\mathcal{A}(P, Q)$ and $\text{Hom}^l_\mathcal{A}(P, Q)$ are \mathcal{A}-bimodules such that

$$(a\phi)(p) := a\phi(p), \quad (\phi a)(p) := \phi(ap), \quad \phi \in \text{Hom}^r_\mathcal{A}(P, Q),$$

$$(a\varphi)(p) := \varphi(pa), \quad (\varphi a)(p) := \varphi(p)a, \quad \varphi \in \text{Hom}^l_\mathcal{A}(P, Q),$$
for all $a \in A$.

For instance, let $P = P^*$ be a differential calculus over a K-ring A provided with an associative multiplication \circ and a coboundary operator d. Then, d is a P-valued first order differential operator on P. It obeys the condition (18) which reads

$$d(apb) = (da) \circ pb + a(dp)b + ap \circ db.$$

Another important example is a Dubois–Violette connection ∇ on an A-bimodule P [2, 3, 6]. It associates to every A-valued derivation u of A a P-valued first order differential operator ∇_u which obeys the Leibniz rule

$$\nabla_u(apb) = u(a)pb + a\nabla_u(p)b + apu(b).$$

References

[1] I.Krasil’schik, V.Lychagin and A.Vinogradov, *Geometry of Jet Spaces and Nonlinear Partial Differential Equations* (Gordon and Breach, Glasgow, 1985).

[2] L.Mangiarotti and G.Sardanashvily, *Connections in Classical and Quantum Field Theory* (World Scientific, Singapore, 2000).

[3] L.Mangiarotti and G.Sardanashvily, Jets and connections in commutative and noncommutative geometry, *E-print arXiv: math-ph/9911030*.

[4] G.Giachetta, L.Mangiarotti and G.Sardanashvily, Iterated BRST cohomology, *Lett. Math. Phys.* **53** (2000) 143.

[5] G.Sardanashvily, Cohomology of the variational complex in field-antifield BRST theory, *Mod. Phys. Lett. A* **16** (2001) 1531.

[6] M.Dubois-Violette and P.Michor, Connections on central bimodules in noncommutative differential geometry, *J. Geom. Phys.* **20** (1996) 218.