Data Article

Data on genome analysis of *Bacillus velezensis* LS69

Guoqiang Liu, Yingying Kong, Yajing Fan, Ce Geng, Donghai Peng, Ming Sun*

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People’s Republic of China

ARTICLE INFO

Article history:
Received 17 March 2017
Received in revised form 25 April 2017
Accepted 27 April 2017
Available online 5 May 2017

ABSTRACT

The data presented in this article are related to the published entitled “Whole-genome sequencing of *Bacillus velezensis* LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria” (Liu et al., 2017) [1]. Genome analysis revealed *B. velezensis* LS69 has a good potential for biocontrol and plant growth promotion. This article provides an extended analysis of the genetic islands, core genes and amyloolysin loci of *B. velezensis* LS69.

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Microbiology
Type of data	Table, text file, figure
How data was acquired	Genome sequencing: HiSeq. 2500 platform (Biomarker Technologies, Beijing, China), Bioinformatics approaches: NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP), antiSMASH (http://antismash.secondarymetabolites.org),

DOI of original article: http://dx.doi.org/10.1016/j.jbiotec.2017.03.018

* Corresponding author.

E-mail address: m98sun@mail.hzau.edu.cn (M. Sun).

http://dx.doi.org/10.1016/j.dib.2017.04.053

2352-3409/© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
BAGEL3 (http://bagel.molgenrug.nl/index.php/bagel3), IslandViewer 3 (http://www.pathogenomics.sfu.ca/islandviewer/), BPGA (Bacterial Pan Genome Analysis tool) (http://sourceforge.net/projects/bpgatool/), multiple alignments using Clustal Omega at EBI.

Data format	Analyzed
Experimental factors	Genome sequencing, genome annotation, active metabolites prediction, multiple alignments
Experimental features	Whole-genome sequencing of *Bacillus velezensis* LS69 was performed by using Illumina HiSeq. 2500 platform. Secondary metabolites clusters of *B. velezensis* LS69 were predicted by using antiSMASH and BAGEL3. Genetic islands in *B. velezensis* strain LS69 were predicted by using IslandViewer 3. COG distribution of the core genes, accessory genes and unique genes were analyzed by using BPGA pipeline. Blast analysis was performed to reveal the differences between amylolysin loci in *B. velezensis* LS69 and the corresponding loci in other *B. velezensis* strains.

Data source location

Bacillus velezensis LS69 was isolated from the rice field of Lichuan city, Hubei Province (China).

Data accessibility

The whole genome sequence of *B. velezensis* LS69 has been deposited in GenBank under the accession number CP015911.

Value of the data

- *Bacillus velezensis* LS69 were found to contain an abundant of gene clusters required for synthesizing antimicrobial metabolites and promoting plant growth. Most of unique genes for strain LS69 were clustered in the seven genetic islands. Here we provided an detailed analysis of the genes on the genetic islands.
- *Bacillus velezensis* strains were known to produce versatile metabolites with antimicrobial activity and secrete a variety of compounds promoting plant-growth. Here we provided an analysis of the COG distribution of the core genes, accessory genes and the unique genes in 12 *B. velezensis* strains.
- Our data provide an extended analysis of the amylolysin cluster, which was found to be unique for the *B. velezensis* LS69 by comparative analysis with the highly homologous *B. velezensis* strains.

1. Data

Genomic islands are clusters of genes of probable horizontal origin, and they usually play an important role in antimicrobial resistance and virulence in microbes [2]. Fig. 1 shows the seven genomic islands predicted in the *Bacillus velezensis* LS69. Supplementary Table 1 provides an overview of the genes on the genetic islands. In the *B. velezensis* LS69, most of the unique genes were clustered on these islands. Fig. 2 shows the COG distribution of the core genes, accessory genes and the unique genes in 12 *B. velezensis* strains. Fig. 3 provides an extended analysis of the amylolysin cluster in *B. velezensis* LS69 and the corresponding genetic loci in other *B. velezensis* strains.

2. Experimental design, materials and methods

2.1. Genome sequencing, assembly and genetic islands prediction

The *B. velezensis* LS69 was isolated from the rice field of Lichuan city of Hubei Province (China) [1]. Whole genome sequencing produced about 1GB clean data using Illumina HiSeq. 2500 platform. A
3,917,761-bp circular chromosome was yielded by sequence assembly and gap closure. The completed genome was annotated by using NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/). The annotations data has been deposited in GenBank under the accession number CP015911(https://www.ncbi.nlm.nih.gov/nuccore/CP015911.1?report=gbwithparts&log$=seqview). The genetic islands of *B. velezensis* LS69 were predicted by submitting the genbank file to the IslandViewer 3 (http://www.pathogenomics.sfu.ca/islandviewer/resources/) [2]. 147 protein coding genes were clustering on the seven genetic islands.

2.2. Analysis of the COG distribution of core genes in 12 *B. velezensis* strains

To evaluate the evolutionary relationships of *B. velezensis* LS69, 16 *Bacillus* strains were selected to construct the *gyrA* (nucleotides 135–986 of *gyrA*) based neighbor-joining tree. The core-pan genes analysis was performed by BPGA pipeline in *B. velezensis* LS69 and the highly homologous *B. velezensis* strains [3]. These strains include the CBMB205, SQR9, FZB42, YJ11-1-4, CAU B946, JJ-D34, JS25R, NAU-B3, UCMB5033, UCMB5113 and YAU B9601-Y2. The core genome of these strains consists of 2,762 orthologous genes.

2.3. Prediction of the NRPS, PKS and bacteriocins gene clusters involved in synthesis of secondary metabolites

Bioinformatic tools antiSMASH [4] and BAGEL3 [5] were used to mining for the gene clusters involved in synthesizing polyketides and bacteriocins. 34 potential gene clusters were predicted in the strain LS69. Through comparative analysis with the clusters reported, ten gene clusters were found to be involved in nonribosomal synthesis of polyketides and bacteriocins. The reference gene clusters were download from the NCBI (these reference sequences are supported by corresponding papers). The accession number of the reference sequences for annotation and comparison were shown: surfactin of *Bacillus subtilis* (locus_tag of the *srfABCD,yccA,sfp,yce*: BSU03480/BSU03490/BSU03510/BSU03520/BSU03530/BSU03570/BSU03580); iturin of *Bacillus subtilis* (GenBank: AB050629.1); fengycin of *Bacillus subtilis* (GenBank accession number of the *fenABCDE*: AF023464/
L42523/AF087452/AJ011849/AF023465); bacillibactin of Bacillus subtilis (GenBank: JQ073774.1); bacilysin of Bacillus subtilis (locus_tag of the bacABCDE,ywfG: BSU37740/BSU37730/BSU37720/BSU37710/BSU37700, BSU37690); macrolactin of B. amyloliquefaciens FZB42 (AJ 6340602.2); bacillaene of B.amyloliquefaciens FZB42 (AJ 6340601.2); difficidin of B.amyloliquefaciens FZB42 (AJ 6340602.2); amyloysisin of Bacillus amyloliquefaciens GA1 (KC415250.1); amylocyclin of B.amyloliquefaciens FZB42 (locus_tag of the acnBACDEF: RBAM_029240/RBAM_029230/RBAM_029220/RBAM_029210/RBAM_029200/RBAM_029190).

2.4. Extended analysis of the amylolysin cluster in B. velezensis LS69

The amylolysin cluster was predicted by using BAGEL3, and annotated by comparative analysis with the corresponding cluster reported in B. amyloliquefaciens GA1 (whole genome sequence of strain GA1 has not yet been made public). Extended analysis showed the 16 kb fragment (including the amylolysin cluster) was unique for the strain LS69. This fragment was missing in the other highly homologous B. velezensis strains (FZB42, YJ11-1-4, CAU B946, JJ-D34, JS25R, NAU-B3, UCMB5033, UCMB5113 and YAU B9601-Y2).

Fig. 2. Clusters of Orthologous Groups (COG) distribution of the core genes, accessory genes and unique genes in Bacillus velezensis strains. BPGA pipeline was used to determine the COG distribution. A total of 12 B. velezensis strains were selected, including the strain LS69, CBMB205, SQR9, FZB42, YJ11-1-4, CAU B946, JJ-D34, JS25R, NAU-B3, UCMB5033, UCMB5113 and YAU B9601-Y2.
Fig. 3. Genetic loci associated with producing amylolysin in Bacillus velezensis LS69. Compared with other highly homologous B. velezensis strains, one 16 kb fragment was found to be unique for the strain LS69. This genetic loci was predicted to be mainly involved in synthesizing amylolysin in B. velezensis LS69 by blast analysis. Green box shows the core cluster of amylolysin by comparative with the amylolysin reported in B. amyloliquefaciens GA1. In B. velezensis FZB42 and other B. velezensis strains, the corresponding loci was found to encode anion permease. The flanking sequences of amylolysin loci share over 98% sequence identity in strain LS69 and other B. velezensis strains. The flanking sequences encode the same proteins altronate hydrolyase and hypothetical protein.

Acknowledgements

This work was supported by Grants from China 948 Program of Ministry of Agriculture (2016-X21), Huazhong Agricultural University Independent Scientific & Technological Innovation Foundation (52902-0900205216) and the Open Project Program of Key Laboratory of Bio-organic Fertilizer Creation, Ministry of Agriculture, PR China (BOFC2015KA02).

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.04.053.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.04.053.

References

[1] G. Liu, Y. Kong, Y. Fan, C. Geng, D. Peng, M. Sun, Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria, J. Biotechnol. (2017).
[2] B.K. Dhillon, M.R. Laird, J.A. Shay, G.L. Winsor, R. Lo, F. Nizam, S.K. Pereira, N. Wagelechner, A.G. McArthur, M.G. Langille, IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis, Nucleic Acids Res. 43 (2015) W237–W243.
[3] N.M. Chaudhari, V.K. Gupta, C. Dutta, BPGA-an ultra-fast pan-genome analysis pipeline, Sci. Rep. 6 (2016) 24373.
[4] T. Weber, K. Blin, S. Duddela, D. Krug, H.U. Kim, R. Brucoleri, S.Y. Lee, M.A. Fischbach, R. Müller, W. Wohlleben, R. Breitling, E. Takano, M.H. Medema, antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids Res. 43 (2015) W237–W243.
[5] A.J. van Heel, A. de Jong, M. Montalbán-López, J. Kok, O.P. Kuipers, BAGEL3: automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides, Nucleic Acids Res. 41 (2013) W448–W453.