Editorial: Multiple Herbicide-Resistant Weeds and Non-target Site Resistance Mechanisms: A Global Challenge for Food Production

Joel Torra 1, María Dolores Osuna 2, Aldo Merotto 3 and Martin Vila-Aiub 4*

1 Department d’Hortofructicultura, Botànica i Jardineria, Agrotecnio-CERCA Center, Universitat de Lleida, Lleida, Spain, 2 Center for Scientific and Technological Research of Extremadura (CICYTEX), Agrarian Research Center “Finca La Orden” Valdesequera, Badajoz, Spain, 3 Department of Crop Science, Faculty of Agronomy, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil, 4 Department of Ecology, IFEVA -CONICET, Faculty of Agronomy, University of Buenos Aires (UBA), Buenos Aires, Argentina

Keywords: cross-resistance, cytochrome P450 monooxygenase (CYP450), enhanced herbicide metabolism, glutathione-S-transferase (GST), glyphosate, rapid necrosis

Editorial on the Research Topic

Multiple Herbicide-Resistant Weeds and Non-target Site Resistance Mechanisms: A Global Challenge for Food Production

EVOLUTION OF MULTIPLE SURVIVAL MECHANISMS

The acquired inheritable trait of plants to survive and reproduce under herbicide exposure is defined as resistance. Herbicide resistance is an extraordinary example of adaptive evolution in weed species infesting agroecosystems with clear detrimental consequences on agriculture sustainability around the globe (Palumbi, 2001; Llewellyn et al., 2016). Multiple herbicide resistance is a compelling evolutionary process in which distinct survival mechanisms are present in a population or are combined within single plants, each endowing resistance to dissimilar site of action herbicides (Hall et al., 1994; Gaines et al., 2020). These multiple mechanisms may involve either target site (TSR) or non-target site resistance (NTSR) mechanisms or any combination endowing multiple resistance. Multiple resistance can evolve through unique events that sequentially select for resistance alleles within single plants and/or genetic exchange of independently evolved resistance mutations through pollen outcrossing among plants within or between populations. Regardless of the driving factor, the ultimate result is the stack of various distinct survival mechanisms at the plant and/or population level endowing broad resistance to multiple herbicides of dissimilar chemistries.

Genetic variability and reproductive biology of weed species are the most important factors that define the likelihood of multiple resistance evolution. Lolium rigidum, Alopecurus myosuroides, Raphanus raphanistrum, and Amaranthus spp. are among the weed species with the most remarkable ability to evolve multiple resistance through eco-evolution of TSR and NTSR mechanisms (Hall et al., 1997; Cocker et al., 1999; Walsh et al., 2004; Owen et al., 2014, 2015; Schultz et al., 2015; Han et al., 2016; Tétard-Jones et al., 2018). For instance, resistance due to reduced glyphosate and paraquat translocation co-evolving with an ACCase target site mutation has been identified in a single L. rigidum population (Yu et al., 2007), whereas other patterns of multiple resistance in this species reflect the presence of enhanced CYP-450 herbicide metabolism coexisting with ACCase, ALS, α-tubulin, and/or EPSPS point mutations...
Another striking example of multiple resistance is found in A. tuberculatus populations where PPO, ALS, and EPSPS target site mutations have been identified co-evolving with enhanced metabolism of PSII and HPPD inhibiting herbicides (Schultz et al., 2015). Novel resistance mechanisms in weeds have been identified recently although some were thought unlikely to evolve. For instance, glyphosate resistance is possible through aldoketoreductase (AKR)-based metabolism (Pan et al., 2019), up-regulation of an ABC membrane transporter pumping out glyphosate outside the cell (Pan et al., 2021) and programmed cell death causing rapid necrosis (Van Horn et al., 2018). Likewise, 2,4-D resistance due to either CYP-450 based metabolism (Giacomini et al., 2020), a double point mutation (Leclere et al., 2018) or 9-codon deletion in an auxin transcriptional repressor (Figueiredo et al., 2021), or rapid necrosis (De Queiroz et al., 2020) have also been reported. These recent findings highlight that herbicide selection for many survival mechanisms will occur and increase the chances for plants to harbor multiple resistance mechanisms. Multiple herbicide resistance highlights the concurrent dynamic spread of multiple resistance alleles in weeds which exposes a serious threat to productivity of current cropping systems.

**RECENT ADVANCES IN NTSR MECHANISMS**

Mechanisms that can contribute to NTSR are complex and involve several different gene types and families. This molecular and genetic complexity makes the identification of particular genes involved in NTSR difficult. Recent advances in this area have been the identification of putative NTSR genes contributing to enhanced herbicide metabolism (EHM). The latest finding has been the elucidation for the first time that up-regulation of the AKR enzyme contributes to glyphosate resistance in Echinocloa colon, by degrading glyphosate to its metabolite, aminomethylphosphonic acid (AMPA; Pan et al., 2019). This discovery further supports results published in this Research Topic, showing glyphosate metabolism in an E. crus-galli population from Portugal (Vázquez-García, Rojano-Delgado et al.). The identification of CYP-450 genes (phase I) that can degrade herbicides from different sites of action (SoA) has been carried out recently. CYP81A subfamily has been shown to metabolize herbicides from at least five chemically unrelated groups, both in L. rigidum and E. phyllopogon (Dimaano et al., 2020; Han et al., 2021). Unraveling which SoA and chemical herbicide families individual CYPs can metabolize, and their identification in different R species could help predicting metabolic-based cross-resistance patterns and thus assist in chemical options for weed management practices.

CYP-450 has been shown to endow herbicide resistance in broadleaf weed species too, as reported for Glebionis coronaria to ALS inhibitors in this Research Topic (Hada et al.). It is worth mentioning studies confirming that CYP-450 is involved in 2,4-D metabolism in A. tuberculatus (Figueiredo et al., 2018) and *Papaver rhoes* (Torra et al., 2021). Moreover, in *P. rhoes*, the same CYP-450 has been shown to confer cross-resistance to both 2,4-D and imazamox in several *R* populations (Torra et al., 2021).

Phase II herbicide metabolism mainly involves conjugation to GSH mediated by GSTs. Metabolic resistance to VLCFA inhibiting herbicides such as flufenacet and pyroxasulfone in Alopecurus myosuroides and *L. rigidum* populations is possible due to enhanced GST-mediated metabolism via differentially expressed GSTs (Dücker et al., 2019, 2020; Goggin et al., 2021). In this Research Topic, empirical evidence of herbicide metabolism via CYP-450 is provided in three articles (Yanniccari, Gigón et al.; Chen et al.; Hada et al.), of GST in two (Wang et al.; Rangani et al.), and of both CYP-450 and GST in five studies (Scarabel et al.; Shyam et al.; Suzukawa et al.; Franco-Ortega et al.; Torra et al.).

All types of resistance mechanisms can get stacked in *R* plants, both *TSR* and NTSR, but also different genes conferring EHM. Several studies have reported over-expression of many genes in NTSR plants compared to *S* ones, also including those encoding for degrading enzymes such as CYP-450 and GST (Gaines et al., 2020). However, this does not necessarily imply a process of recurrent selection and the concomitant slow accumulation of metabolic resistance genes in a *R* population. There is evidence that differentially expressed genes responsible for EHM could be under genomic co-expression clusters or across long chromosomal intervals (Giacomini et al., 2020). One major implication of this clustering is the likelihood of a shared mechanism of gene regulation for these regions with NTSR genes. Therefore, potentially, a single gene, that is, a single resistance mechanism, could be responsible of the reported over-expression of several genes involved in EHM and NTSR.

In this Research Topic, Franco-Ortega et al. suggested that plant responses to biotic and abiotic stressors are integrally linked to NTSR-based herbicide resistance mechanisms. Regulation of gene expression involved in stress-response and NTSR is probably a complex process but may include herbicide-responsive genes. Recently, HPPD-inhibiting herbicide responsive genes have been found in A. tuberculatus, with little overlap in gene expression patterns between *R* and *S* genotypes bringing out dynamic differences in response to herbicide treatment (Kohlhase et al., 2019). Similarly, a contributing article in the present Research Topic, points out that S-metolachlor (VLCFA inhibitor) can further increase the expression of two GSTs in *R* plants (Rangani et al.).

Differential herbicide translocation between *S* and *R* plants constitutes another set of NTSR mechanisms. Membrane carrier proteins (ABC family) are already being unveiled and suggested to be involved in phase III of EHM (Gaines et al., 2020). Although reduced glyphosate translocation was described as a resistance mechanism long ago, only recently the first glyphosate cell membrane carrier has been identified (ABCC-type transporter) conferring glyphosate resistance in *E. colon* (Pan et al., 2021). Active root exudation as a NTSR mechanism has been recently reviewed by Ghanizadeh and Harrington (2020). This mechanism could contribute to imazamox resistance in *Euphorbia heterophylla* (Rojano-Delgado et al., 2020).
et al., 2019) and MCPA resistance in *Rapahanus raphanistrum* (Jugulam et al., 2013).

**Rapid Necrosis: An Intriguing Mechanism of Herbicide Resistance**

A fast and localized effect of glyphosate and 2,4-D has been identified in *Ambrosia trifida* (Brabham et al., 2011) and *Conyza sumatrensis* (De Queiroz et al., 2020). This phenomenon has been called rapid necrosis (RN), and was primarily proposed as Phoenix resistance (Gressel, 2009) as apparent “dead” plants were able to regrow a few days after herbicide treatment. The physiological basis of this surviving mechanism is unknown and thus, the classification of RN as TSR or NTSR is difficult. The RN caused by 2,4-D may be related to defective Aux/IAA repressors, TIR1/AFB receptors and ARF transcription factors and in that case would be classified as TSR since these proteins are directly related to the 2,4-D action. Exogenous application of aromatic amino acids decreased RN in *A. trifida* caused by glyphosate (Moretti et al., 2018), indicating a potential TSR mechanism of resistance.

In both 2,4-D and glyphosate cases, a potential reduced herbicide translocation resistance mechanism could be related to ABC transporters (Pan et al., 2021), however, alterations in translocation and cell exclusion resulting in 2,4-D and glyphosate resistance were not identified with the RN phenotype. Some evidence suggests that programmed cell death may be caused not only by pathogens as originally discovered but also triggered by other biotic and abiotic stresses such as herbicides (Burke et al., 2020). Several studies have reported the influence of environmental effects on the occurrence and variability of RN (Harre et al., 2018; De Queiroz et al., 2020), which highlight the difficulties of studying RN under the variable conditions found in the field and experimental conditions. Distinguishing the biochemical processes that cause RN from those that are the consequence of RN is needed to better understand this intriguing herbicide resistance mechanism.

**Contributions in the Research Topic**

Contributions in this Research Topic reported both TSR and NTSR mechanisms. Eight out of 13 articles reported mechanisms of TSR nature (all substitutional mutations), which in some cases can confer cross-resistance to different herbicide chemistries within the same SoA (Scarabel et al.; Vázquez-García, Alcántara-De La Cruz et al.; Yannicciari, Gigón et al.; Hada et al.; Torra et al.). Among these contributions, we shall highlight those reporting multiple-resistance through the accumulation of several substitutional point mutations in different herbicide target enzymes involving ALS, ACCase and EPSPS inhibitors (Scarabel et al.; Vázquez-García, Alcántara-De La Cruz et al.).

In relation to NTSR mechanisms, three contributions reported about herbicide differential absorption and translocation (Suzukawa et al.; Vázquez-García, Rojano-Delgado et al.; Yannicciari, Vázquez-García et al.), whereas most of them (11 out 13) documented cross-resistance due to some level of EHM. It is also remarkable that seven contributions demonstrated the co-evolution of TSR and NTSR mechanisms at both plant and population level.

Resistance to ALS, ACCase, and EPSPS inhibiting herbicides are the most reported cases in this Research Topic, with 8, 7, and 5 contributions, respectively, which agrees with the SoA herbicides most related to herbicide resistance worldwide (Heap, 2021). Resistance to pre-emergence herbicides in different cropping systems is reported, as multiple resistance in combination to the three previously mentioned post-emergence SoA herbicides. Resistance to microtubule assembly (Suzukawa et al.; Chen et al.; Franco-Ortega et al.; Rangani et al.; Torra et al.), PSII (Shyam et al.; Franco-Ortega et al.; Torra et al.), synthetic auxins (Shyam et al.; Suzukawa et al.; Franco-Ortega et al.; Torra et al.), and both PPO and HPPD in a single six-way-resistant Palmer amaranth (*Amaranthus palmeri*) population (Shyam et al.) are contributions in this Special Issue.

Ten out of 13 contributions reported on herbicide resistance in grass weed species, and three in broadleaf weeds. *Lolium* ssp. is the most reported genus in the Research Topic (six articles), followed by *A. myosuroides* and *Bromus* ssp. (2), and *E. crus-galli* and *Beckmannia syzigachne* (1). Among dicots, two articles reported on the global invasive weed species *A. palmeri* (Shyam et al.; Rangani et al.) and one contribution on *Glebionis coronaria* (Hada et al.).

**CURRENT RESEARCH GAPS AND PROSPECTS**

(1) Multiple herbicide resistance may result from co-evolution of both NTRS and TSR mechanisms (Vila-Aiub et al., 2005; Powles and Yu, 2010; Bostamam et al., 2012; Gherekhloo et al., 2017; Peterson et al., 2018; Cao et al., 2021). An intriguing question is the evolutionary and ecological consequences of the interaction between NTSR and TSR mechanisms in protecting single plants from herbicide damage (Raymond et al., 1989). For instance, point resistance mutations co-existing with up-regulation of herbicide metabolism (EHM by CYP-450 or GST), both endowing resistance to herbicides targeting the same SoA are ubiquitous in resistant weeds (Tardif and Powles, 1994; Chen et al., 2020a,b). Do these resistance mechanisms combine their effects on plant protection in an additive or multiplicative mode? Would it be possible for a single mechanism to endow the maximum protection level making the addition of a second mechanism an ecological redundancy?

(2) Improved understanding of the biology of plant systems will benefit the understanding of gene regulation of NTSR and the effects of environmental factors on the evolution of herbicide resistance. Further studies related to epigenetic regulation caused by direct or indirect herbicide effects will further increase our understanding of herbicide resistance. The NTSR mechanisms associated with EHM are dependent on a complex gene regulation of herbicide metabolism (Raymond et al., 1989). For instance, point resistance mutations co-existing with up-regulation of herbicide metabolism (EHM by CYP-450 or GST), both endowing resistance to herbicides targeting the same SoA are ubiquitous in resistant weeds (Tardif and Powles, 1994; Chen et al., 2020a,b). Do these resistance mechanisms combine their effects on plant protection in an additive or multiplicative mode? Would it be possible for a single mechanism to endow the maximum protection level making the addition of a second mechanism an ecological redundancy?

(3) Improved understanding of the biology of plant systems will benefit the understanding of gene regulation of NTSR and the effects of environmental factors on the evolution of herbicide resistance. Further studies related to epigenetic regulation caused by direct or indirect herbicide effects will further increase our understanding of herbicide resistance. The NTSR mechanisms associated with EHM are dependent on a complex gene regulation of herbicide metabolism (Raymond et al., 1989). For instance, point resistance mutations co-existing with up-regulation of herbicide metabolism (EHM by CYP-450 or GST), both endowing resistance to herbicides targeting the same SoA are ubiquitous in resistant weeds (Tardif and Powles, 1994; Chen et al., 2020a,b). Do these resistance mechanisms combine their effects on plant protection in an additive or multiplicative mode? Would it be possible for a single mechanism to endow the maximum protection level making the addition of a second mechanism an ecological redundancy?
information will reveal a fascinating environmental-plant-herbicide interaction system.

(3) Current recommendations for pesticide resistance prevention are based on rotation and mixing of different SoA pesticides (Bourguet et al., 2013; Baym et al., 2016). However, rotation and/or mixing of herbicides resulting in a similar selection pressure for a particular resistance mechanism (e.g., EHM) will increase the risk of resistance evolution (Comont et al., 2020). The advances in the knowledge of NTSR mechanisms will be necessary for making resistance management decisions involving the use of herbicides targeting different metabolic networks, assuming it is possible to avoid development of some of these resistance mechanisms by modifying management.

AUTHOR CONTRIBUTIONS

All authors conceived and wrote this Editorial contribution for the Research Topic Multiple Herbicide-Resistant Weeds and Nontarget Site Resistance Mechanisms: A Global Challenge for Food Production.

ACKNOWLEDGMENTS

We acknowledge the support of the Editorial Board of Frontiers in Plant Science. Thank you for the feedback and comments provided from peer-reviewers. JT acknowledges support from the Spanish Ministry of Science, Innovation, and Universities (grant Ramón y Cajal RYC2018-023866-I).

REFERENCES

Baym, M., Stone, L. K., and Kishony, R. (2016). Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351:aad3292. doi: 10.1126/science.aad3292
Bostamam, Y., Malone, J., Dolman, F. C., Boutsalis, P., and Preston, C. (2012). Rigid ryegrass (Lolium rigidum) populations containing a target site mutation in EPPS and reduced glyphosate translocation are more resistant to glyphosate. Weed Technol. 60, 474–479. doi: 10.1614/WS-D-11-00154.1
Bourguet, D., Delmotte, F., Franck, P., Guillemaud, T., Reboud, X., Vacher, C., et al. (2013). Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 28, 110–118. doi: 10.1016/j.tree.2012.09.001
Brabham, C. B., Gerber, C. K., and Johnson, W. G. (2011). Fate of glyphosate-resistant giant ragweed (Ambrosia trifida) in the presence and absence of glyphosate. Weed Sci. 59, 506–511. doi: 10.1614/WS-D-11-00050.1
Burke, R., Schwarz, J., Sherwood, O. L., Inada, Y., Mccabe, P. P., and Kacprzyk, J. (2020). Stressed to death: the role of transcription factors in plant programmed cell death induced by abiotic and biotic stimuli. Front. Plant Sci. 11:1235. doi: 10.3389/fpls.2020.01235
Burnet, M. W. M., Christopher, J. T., Holtum, J. A. M., and Powles, S.B. (1994a). Identification of 2 mechanisms of sulfonylurea resistance within one population of rigid ryegrass (Lolium rigidum) using a selective germination medium. Weed Sci. 42, 468–473. doi: 10.1614/00431745:000076785
Burnet, M. W. M., Hart, Q., Holtum, J. A. M., and Powles, S.B. (1994b). Resistance to nine herbicide classes in a population of rigid ryegrass (Lolium rigidum). Weed Sci. 42, 369–377. doi: 10.1614/00431745:000076645
Cao, Y., Wei, S., Huang, H., Li, W., Zhang, C., and Huang, Z. (2021). Target-site mutation and enhanced metabolism confer resistance to thifensuluron-methyl in a multiple-resistant redroot pigweed (Amaranthus retroflexus) population. Weed Sci. 69, 161–166. doi: 10.1614/WS-D-20-01182.2020.93
Chen, J., Chu, Z., Han, H., Goggin, D. E., Yu, Q., Sayer, C., et al. (2020a). A Val202-Pho α-tubulin mutation and enhanced metabolism confer dinotrotoxiline resistance in a single Lolium rigidum population. Pest Manag. Sci. 76, 645–652. doi: 10.1002/pms.3561
Chen, J., Huang, H., Wei, S., Cui, H., Li, X., and Zhang, C. (2020b). Glyphosate resistance in Eleusine indica: EPPS overexpression and P06A mutation evolved in the same individuals. Pesticide Biochem. Physiol. 1:14. doi: 10.1016/j.pestbp.2020.01.014
Chen, J., Yu, Q., Owen, M., Han, H., and Powles, S. (2018). Dinotrotoxiline herbicide resistance in multiple-resistant Lolium rigidum population. Pest Manag. Sci. 74, 925–932. doi: 10.1002/pms.4790
Cocker, K. M., Moss, S. R., and Coleman, J. O. D. (1999). Multiple mechanisms of resistance to fenoxaprop-P-ethyl in United Kingdom and other European populations of herbicide-resistant Alopecurus myosusoides (Black-Grass). Pesticide Biochem. Physiol. 65, 169–180. doi: 10.1006/pbep.1999.2439
Comont, D., Lowe, C., Hull, R., Crook, L., Hicks, H. L., Onkokesung, N., et al. (2020). Evolution of generalist resistance to herbicide mixtures reveals a trade-off in resistance management. Nat. Commun. 11, 1–9. doi: 10.1038/s41467-020-18079-3
De Queiroz, A. R., Delatorre, C. A., Lucio, F. R., Rossi, C. V., Zobiole, L. H., and Merotto, A. (2020). Rapid necrosis: a novel plant resistance mechanism to 2, 4-D. Weed Sci. 68, 6–18. doi: 10.1017/wsc.2019.65
Dimaano, N. G., Yamaguchi, T., Fukushima, K., Tominaga, T., and Iwakami, S. (2020). Functional characterization of cytochrome P450 CYP81A subtype to disclose the pattern of cross-resistance in Echiinochloa frumentacea. Plant Mol. Biol. 102, 403–416. doi: 10.1007/s11103-019-09954-3
Dücker, R., Parcharidou, E., and Beffa, R. (2020). Flufenacet activity is affected by GST inhibitors in blackgrass (Alopecurus myosusoides) populations with reduced flufenacet sensitivity and higher expression levels of GSTs. Weed Sci. 68, 451–459. doi: 10.1017/wsc.2020.54
Dücker, R., Zöllner, P., Lümmen, P., Ries, S., Collavo, A., and Beffa, R. (2019). Glutathione transferase plays a major role in flu fenacet resistance of ryegrass (Lolium spp.) field populations. Pest Manag. Sci. 75, 3084–3092. doi: 10.1002/ps.5425
Figueiredo, M. R., Kuepper, A., Malone, J. M., Petrovic, T., Figueiredo, A. B. T., Campagnola, G., et al. (2021). An in-frame deletion mutation in the degron tail of auxin co-receptor IAA2 confers resistance to the herbicide 2, 4-D in Stismbrium orientale. bioRxiv. 2021:433994. doi: 10.1101/2021.03.04.433994
Figueiredo, M. R., Leibhart, L. J., Reicher, Z. J., Tranel, P. J., Nissen, S. J., Westra, P., et al. (2018). Metabolism of 2, 4-dichlorophenoxyacetic acid contributes to resistance in a common waterhempp (Amaranthus tuberculatus) population. Pest Manag. Sci. 74, 2356–2362. doi: 10.1002/ps.4811
Gaines, T. A., Duke, S. O., Morran, S., Rigon, C. A., Tranel, P. J., Küpper, A., et al. (2020). Mechanisms of evolved herbicide resistance. J. Biol. Chem. 295, 10307–10330. doi: 10.1074/jbc.REV120.013572
Ghanizadeh, H., and Harrington, K. C. (2020). Perspective: root exudation of herbicides as a novel mode of herbicide resistance in weeds. Pest Manag. Sci. 76, 2543–2547. doi: 10.1002/ps.5850
Gherekhloo, J., Fernández-Moreno, P. T., Alcántara-De La Cruz, R., Sánchez-González, E., Cruz-Hipolito, H. E., Domínguez-Valenzuela, J. A., et al. (2017). Pro-106-Ser mutation and EPPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Sci. Rep. 7:1. doi: 10.1038/s41598-017-06772-1
Giacomini, D. A., Patterson, E. L., Küpper, A., Beffa, R., Gaines, T. A., and Tranel, P. J. (2020). Coexpression clusters and allele-specific expression in metabolism-based herbicide resistance. Genome Biol. Evol. 12, 2267–2278. doi: 10.1093/gbe/eva191
Goggin, D. E., Cavthray, G. R., Flematti, G. R., Bringans, S. D., Lim, H., Beckie, H. J., et al. (2021). Pyroxasulfone-resistant annual ryegrass (Lolium rigidum) has enhanced capacity for glutathione transferase-mediated pyroxasulfone conjugation. J. Agri. Food Chem. 2021:0c07458. doi: 10.1021/acs.jafc.0c07458
Gressel, J. (2009). Evolving understanding of the evolution of herbicide resistance. Pest Manag. Sci. 65, 1164–1173. doi: 10.1002/ps.1842
Hall, L., Holtum, J., and Powles, S. (1994). “Mechanisms responsible for cross resistance and multiple resistance,” in Herbicide Resistance in Plants: Biology
Palumbi, S. R. (2001). Evolution - humans as the world's greatest evolutionary force. Plenum Press, New York.

Neve, P., Sadler, J., and Powles, S. B. (2004). Multiple herbicide resistance in a weed species. Proc. Natl. Acad. Sci. U. S. A. 101, 13200–13205.

Raymond, M., Heckel, D. G., and Scott, J. G. (1989). Interactions between pesticidal genes - model and experiment. Genetics 123, 543–551.

Rojano-Delgado, A. M., Portugal, J. M., Palma-Bautista, C., Alcántara-De La Cruz, R., Torra, J., Alcántara, E., et al. (2019). Target site as the main mechanism of resistance to imazamox in a Euphorbia heterophylla biotype. Sci. Rep. 9, 1–11.

Schultz, J. L., Chatham, L. A., Riggins, C. W., Tanel, P. J., and Bradley, K. W. (2015). Distribution of herbicide resistances and molecular mechanisms conferring resistance in Missouri waterhemph (Amaranthus rudis Sauer) populations. Weed Sci. 63, 336–345. doi: 10.1614/WS-D-14-01021

Tardif, F. I., and Powles, S. B. (1994). Herbicide multiple-resistance in a Lolium rigidum biotype is endowed by multiple mechanisms - isolation of a subset with resistant acetyl-CoA carboxylase. Physiol. Plant. 91, 488–494. doi: 10.1111/j.1399-3054.1994.tb02978.x

Tétard-Jones, C., Saddábin, F., Moss, S., Hull, R., Neve, P., and Edwards, R. (2018). Changes in the proteome of the weed blackgrass correlating with multiple-herbicide resistance. Plant J. 94, 709–720. doi: 10.1111/tpj.13892

Torra, J., Rojano-Delgado, A. M., Menéndez, J., Salas, M., and De Prado, R. (2021). Cytochrome P450 metabolism-based herbicide resistance to imazamox and 2,4-D in Papaver rhouas. Plant Physiol. Biochem. 160, 51–61. doi: 10.1016/j.plaphy.2021.01.007

Van Horn, C. R., Moretti, M. L., Robertson, R. R., Segobye, K., Weller, S. C., Young, B. G., et al. (2018). Glyphosate resistance in Ambrosia trifida: part 1. Novel rapid cell death response to glyphosate. Pest Manag. Sci. 74, 1071–1078. doi: 10.1002/ps.4567

Vila-Aiub, M. M., Neve, P., Steadman, K. J., and Powles, S. B. (2005). Ecological fitness of a multiple herbicide-resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes. J. Appl. Ecol. 42, 288–298. doi: 10.1111/j.1365-2664.2005.01017.x

Walsh, M. J., Powles, S. B., Beard, B. R., and Porter, S. A. (2004). Multiple-herbicide resistance across four modes of action in wild radish (Raphanus raphanistrum). Weed Sci. 52, 8–13. doi: 10.1614/WS-03-016R

Yu, Q., Cairns, A., and Powles, S. (2007). Glyphosate, parquat and ACCCase. Multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 225, 499–513. doi: 10.1007/s00425-006-0364-3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Torra, Osuna, Merotto and Vila-Aiub. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.