Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling

Vyacheslav A. Korshunov, PhD; Elaine M. Smolock, PhD; Mary E. Wines-Samuelson, PhD; Abrar Faiyaz, BS; Deanne M. Mickelsen, BS; Breandan Quinn, MS; Calvin Pan, PhD; George J. Dugbartey, PhD; Chen Yan, PhD; Marvin M. Doyley, PhD; Aldons J. Lusis, PhD; Bradford C. Berk, MD, PhD

BACKGROUND: Carotid artery intima/media thickness (IMT) is a hallmark trait associated with future cardiovascular events. The goal of this study was to map new genes that regulate carotid IMT by genome-wide association.

METHODS AND RESULTS: We induced IMT by ligation procedure of the left carotid artery in 30 inbred mouse strains. Histologic reconstruction revealed significant variation in left carotid artery intima, media, adventitia, external elastic lamina volumes, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio in inbred mice. The carotid remodeling trait was regulated by distinct genomic signatures with a dozen common single-nucleotide polymorphisms associated with left carotid artery intima volume, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio. Among genetic loci on mouse chromosomes 1, 4, and 12, there was natriuretic peptide receptor 2 (Npr2), a strong candidate gene. We observed that only male, not female, mice heterozygous for a targeted Npr2 deletion (Npr2+/−) exhibited defective carotid artery remodeling compared with Npr2 wild-type (Npr2+/+) littermates. Fibrosis in carotid IMT was significantly increased in Npr2+/− males compared with Npr2+/− females or Npr2+/+ mice. We also detected decreased Npr2 expression in human atherosclerotic plaques, similar to that seen in studies in Npr2+/− mice.

CONCLUSIONS: We found that components of carotid IMT were regulated by distinct genetic factors. We also showed a critical role for Npr2 in genetic regulation of vascular fibrosis associated with defective carotid remodeling.

Key Words: carotid artery ■ genome-wide association ■ inbred mice ■ Npr2 ■ vascular remodeling

Atherosclerosis is a complex disorder regulated by multiple genetic and environmental factors. Recently, many candidate genetic mechanisms have been proposed but most do not have major effects on development of human atherosclerosis. A reliable clinical measure of atherosclerosis progression is carotid intima/media thickness (IMT), which predicts cardiovascular complications. Genetic linkage studies in Framingham Heart and Dominican Family cohorts identified significant quantitative traits loci (QTLs) on human chromosome (chr)7q, chr12q, and chr14q that control carotid IMT. Genome-wide association (GWA) studies mapped a number of single-nucleotide polymorphisms (SNPs) associated with variation in carotid IMT. Despite such advances, those studies were underpowered and there are technical limitations to assessing specific mechanisms of carotid IMT and atherosclerotic plaque progression and regression in humans.

We developed a robust mouse model of carotid IMT and showed significant genetic effects in 5 inbred strains of mice. A forward genetic approach followed by congenic mapping was effective in uncovering 3 carotid intima modifier QTLs on mouse chr2, chr11, and chr18. Additional QTLs were identified on mouse chr5, chr9, chr12, and chr13, that contribute...
Korshunov et al Npr2 in Carotid Remodeling

CLINICAL PERSPECTIVE

What Is New?
• Genetic variation in natriuretic peptide receptor 2 (Npr2) associated with defective carotid artery remodeling in a panel of mice that represent a human population.
• Male but not female mice with a targeted Npr2 deletion exhibited defective carotid artery remodeling with increased fibrosis.
• Expression of the Npr2 was reduced in human atherosclerotic plaques.

What Are the Clinical Implications?
• Npr2 is a plausible target for new diagnostic and therapeutic approaches to treat vascular disease.

METHODS

The authors declare that all supporting data are available within the article and its online supplementary material.

Animals
We studied flow-induced carotid remodeling in 9- to 12-week-old male mice from 30 inbred strains (Table S1). We purchased 10 mice per strain, 4 sham and 6 ligated, from the Jackson Laboratory (Bar Harbor, Maine). However, some of the inbred mouse strains exhibited poor survival and required additional mice, as we recently reported for 129X1 in a comparison with C57BL/6J. We also used male and female Npr2 wild-type (Npr2+/+) and Npr2 heterozygous (Npr2+/-) littermate mice from our recently established colony. Presence of Npr2 alleles was determined by genotyping, as described previously. We were unable to use Npr2 knockout (Npr2−/−) mice for surgery because of low body weights. Experimental mice were housed individually under a 12-hour light/12-hour dark cycle with free access to water and chow. All animal procedures were approved by the animal care committee of the University of Rochester and were in accordance with the Guide for the Care and Use of Laboratory Animals.

Tail-Cuff Plethysmography
Systolic blood pressure (BP) and heart rate were collected with a BP-2000 (Visitech Systems, Apex, North Carolina) system in Npr2 mice. We performed our experiments according to a method described previously. Briefly, animals were anesthetized with a cocktail of ketamine and xylazine (130 and 9 mg/kg, respectively, intraperitoneally). The neck area was opened by a midline incision and the bifurcation of the left carotid artery (LCA) was isolated. The internal and external LCA branches were ligated with 6-0 silk, leaving the occipital artery intact. The neck opening was closed with a 6-0 coated Vicryl suture. An analgesic flunixin meglumine (120 mg/kg, intraperitoneally) was given immediately after and once per day for 3 days after the surgery. A plastic box with additional bedding material was given to mice housed individually after the surgery.

Carotid Artery Ligation
We studied flow-induced carotid remodeling 2 weeks after the ligation procedure in all mice, as described previously. Briefly, animals were anesthetized with a cocktail of ketamine and xylazine (130 and 9 mg/kg, respectively, intraperitoneally). The neck area was opened by a midline incision and the bifurcation of the left carotid artery (LCA) was isolated. The internal and external LCA branches were ligated with 6-0 silk, leaving the occipital artery intact. The neck opening was closed with a 6-0 coated Vicryl suture. An analgesic flunixin meglumine (120 mg/kg, intraperitoneally) was given immediately after and once per day for 3 days after the surgery. A plastic box with additional bedding material was given to mice housed individually after the surgery.

Vascular Ultrasound
We measured blood flow in the LCA in inbred mouse strains with a ultrasonic transit-time volume flowmeter (Transonic Systems, Ithaca, New York) before termination, as described elsewhere. Carotid artery imaging in anesthetized Npr2 mice was done with a Vevo2100 machine (FUJIFILM VisualSonics, Toronto, Ontario, Canada) as described in our previous work.

Nonstandard Abbreviations and Acronyms

3D 3-dimensional
BP systolic blood pressure
chr human chromosome
EEL external elastic lamina
eNOS endothelial nitric oxide synthase
IMT intima/media thickness
LCA left carotid artery
Npr2−/− Npr2 knockout
Npr2 natriuretic peptide receptor 2
Npr2+/- Npr2 heterozygous
Npr2+/- Npr2 wild-type
QTLs quantitative traits loci
SNP single-nucleotide polymorphism

to carotid atherosclerosis. A plausible approach to identification of atherosclerosis traits includes GWA studies in a panel of mouse inbred strains. In an earlier study, we utilized this approach and identified several causative genes that control the elevated heart rate trait. The primary goal of this study was to use GWA to identify new genes that regulate carotid remodeling. By studying 30 strains of mice, we characterized a genetic locus that houses a novel gene candidate—natriuretic peptide receptor 2 (Npr2)—that regulates carotid artery remodeling.
Histology and Morphometry
Two weeks after ligation, mice were perfusion fixed under anesthesia; carotids were collected, processed, and stained with hematoxylin and eosin; followed by morphometry analyses (MCID image software), as described elsewhere.11 We evaluated 10 area divisions of the LCA from the bifurcation every 200 μm through the 2-mm length. Averaged area measurements of the LCA for each group were used to produce 3-dimensional (3D) images with MATLAB programming (The Mathworks, Natick, Massachusetts), as described elsewhere.26 Unstained LCA sections of ligated Npr2 mice were processed with an Alcin Blue kit (ScienCell Research Laboratories, Carlsbad, California) or PicroSirius Red kit (Abcam, Cambridge, Massachusetts). We also stained consecutive cross-sections of human endarterectomy with rabbit anti-NPR2 (1:100; overnight at +4°C; Abcam), mouse sections of human endarterectomy with rabbit anti-Massachusetts). We also stained consecutive cross-sections of human endarterectomy with rabbit anti-

Genome-Wide Association of Carotid Remodeling in 30 Inbred Strains of Mice
GWA mapping for carotid remodeling traits was done using an efficient mixed-model association method with a significance for P-value thresholds (4.1×10−6) on the basis of power calculations in a similar number of mouse strains.28 The GWA results on variation for LCA intima, media, adventitia, and external elastic lamina (EEL) volumes, intima/media ratio, and (intima+media)/EEL×100% are listed in Tables S2 through S7. We observed greater variation in LCA media, EEL, and adventitia volumes (Figures S3 through S6). There was disparity in the relationship between LCA intima volume and (intima+media)/EEL×100%. For example, below 40% LCA (intima+media)/EEL×100% was observed in mouse strains without (eg, BTBR) or with (eg, C3H) intima (Figure 1D). In contrast, mouse strains with a greater percentage of LCA (intima+media)/EEL×100% had small (SM) vs large (SJL) LCA intima volume (Figure 1E). Thus, we characterized a significant variation in response to vascular injury across 30 inbred mouse strains permitting GWA studies for carotid remodeling traits.

Human Samples
Cross-sections of de-identified human endarterectomy samples from 3 patients undergoing surgery on a carotid artery were collected with the approval from the subjects review board of the University of Rochester School of Medicine and Dentistry Research (RSRB00069961).

Statistical Analysis
Results are presented as mean±SEM. Statistical significance was determined using JMP version 13.0.0 software (SAS). Initial analyses of data sets across experiments showed a normal distribution. Two groups were compared using Student’s t test. One-way ANOVA was evaluated for each parameter with post-hoc comparisons of means using the Tukey–Kramer honestly significant difference test. We performed multivariate and linear regression analyses between LCA intima volumes and LCA (intima-media)/EEL×100% to determine pairwise correlations in the experimental groups. P<0.05 was considered significant.

RESULTS
Variation of the Remodeling Traits Across 30 Inbred Mouse Strains
A forward genetic approach followed by congenic mapping was effective in revealing the causes of increased LCA intima.13–15 To map the carotid intima trait, we investigated variation in the most common inbred strains (Figure 1A). We found that relative changes in LCA blood flow were similar among the studied strains compared with RCA blood flow after ligation (Table S1). However, the same reduction in blood flow resulted in significant variation in carotid arteries on the basis of 3D reconstruction of histologic measurements across the strains (Figures S1 through S3). There were 5 inbred strains that significantly differed in LCA intima volume from controls or other strains, whereas no intima was detected in controls (Figure 1A). Similar results were observed for intima/media ratio and (intima+media)/EEL×100% across 30 mouse strains (Figure 1B and 1C). We observed greater variation in LCA media, EEL, and adventitia volumes (Figures S3 through S6). There was disparity in the relationship between LCA intima volume and (intima+media)/EEL×100%. For example, below 40% LCA (intima+media)/EEL×100% was observed in mouse strains without (eg, BTBR) or with (eg, C3H) intima (Figure 1D). In contrast, mouse strains with a greater percentage of LCA (intima+media)/EEL×100% had small (SM) vs large (SJL) LCA intima volume (Figure 1E). Thus, we characterized a significant variation in response to vascular injury across 30 inbred mouse strains permitting GWA studies for carotid remodeling traits.

GWA Analysis of Carotid Remodeling Traits in 30 Inbred Strains of Mice
Most SNPs were associated with LCA intima/media ratio after ligation (Figure 2B and Table S6). Importantly, there were common SNPs regulating LCA intima volume, intima/media ratio, and
Among 12 common SNPs, we discovered 6 candidate genes (Slc24a4, solute carrier family 24 sodium/potassium/calcium exchanger, member 4; Tln1, talin 1; Npr2, natriuretic peptide receptor 2; Fam221b, family with sequence similarity 221, member B; Tmem8b, transmembrane protein 8B; Spaar, small regulatory polypeptide of amino acid response) known to regulate carotid intima and remodeling (Table). Our findings are supported by another mouse genetic study that proposed Npr2...

Figure 1. Variation in carotid remodeling in 30 mouse strains.

A, Left carotid artery (LCA) intima volume, \(\times 10^{-6} \) \(\mu m^3 \). B, LCA intima/media ratio. C, LCA (intima+media)/EEL\(\times 100\% \). Open circles indicate controls. Black circles indicate ligated mice. Values are mean\(\pm \)SEM; *P<0.05 vs control or other mouse strains. n=4 to 6 per group. D, Representative 3-dimensional (3D) reconstructions of the 2 mm-length from the bifurcation of the ligated LCA in mice with low values of LCA (intima+media)/EEL\(\times 100\% \). E, Representative 3D reconstructions of mouse strains with a greater percentage of LCA (intima+media)/EEL\(\times 100\% \). Black color shows lumen, yellow indicates intima, red indicates media, and green indicates adventitia volume. EEL indicates external elastic lamina.
Figure 2. GWA of carotid remodeling traits in 30 mouse strains.
A, GWA of LCA intima volume, $x10^{-6}$ μm3. B, GWA of LCA intima/media ratio. C, GWA of LCA (intima+media)/EEL\times100%. Each circle represents an SNP. Mouse chromosomes are presented on the X-axis. Blue lines show significance threshold. Black rhombi point to common regions of significant SNPs associated with LCA intima, intima/media ratio, and (intima+media)/EEL\times100% traits in 30 inbred mouse strains. EEL indicates external elastic lamina; GWA, genome-wide association; LCA, left carotid artery; and SNP, single-nucleotide polymorphism.
with its ligand, C-type natriuretic peptide, as candidate genes in high blood pressure.30,31 Thus, we found that Npr2 is a plausible candidate for regulation of carotid remodeling traits in response to injury.

Carotid Remodeling in Npr2-Npr2+/- Mice

We confirmed earlier genetic studies in mice on a causal role for the Npr2 gene in salt-induced kidney injury.12 As we reported for direct BP measurements, tail-cuff systolic BP (114–117 mm Hg) and heart rate (574–618 beats/min) profiles were similar between Npr2+/- and Npr2+/- males and females (not shown). We found that a carotid ligation procedure resulted in a similar reduction of blood flow (Table S8) or estimated shear stress (not shown) between Npr2+/- and Npr2+/- littermates compared with sham animals. However, there were significant differences in LCA remodeling on the basis of histologic evaluation across Npr2 genotypes (Figure 3). We observed a significant increase in LCA intima/media ratio, adventitia, and EEL volumes versus sham animals (Figure 3B and 3D). Unlike Npr2+/- males, we found that Npr2+/- females exhibited significantly increased LCA EEL after ligation (Figure 3). Thus, we confirmed that the Npr2 gene plays a role in carotid artery response to injury, but only in males.

Relationship Between Carotid Intima Volume and Stenosis in Npr2+/- Mice

In a previous study we reported a strong correlation between increase in LCA intima volume and LCA (intima+media)/EEL\texttimes100% in 5 inbred mouse strains, as also seen in human atherosclerosis.12 In the present work we found a significant correlation (R=0.6959, P<0.001) between LCA intima volume and (intima+media)/EEL\texttimes100% among 30 inbred strains of mice (Figure 4A). However, this correlation was not significant in Npr2+/- (R=0.3872) animals when compared with Npr2+/- (R=0.7928, P<0.01) littermates (Figure 4B). Furthermore, there was essentially no correlation between LCA intima volume and (intima+media)/EEL\texttimes100% among 30 inbred strains of mice (Figure 4A). However, this correlation was not significant in Npr2+/- (R=0.3872) animals when compared with Npr2+/- (R=0.7928, P<0.01) littermates (Figure 4B). These results show that even partial depletion of Npr2 resulted in a defective carotid artery remodeling response, but only in males.

Differences in Carotid Fibrosis in Npr2 Mice

We recently showed that pharmacologic intervention could improve carotid remodeling by inhibiting fibrosis after injury.21 Representative images of LCA cross-sections stained with Alcian Blue show remodeling differences between male Npr2+/- versus male Npr2+/- (Npr2 females are shown in insets in Figure 5A and 5B). The relative staining expression within the LCA intima/media (black brackets) was significantly greater in Npr2+/- versus male Npr2+/- and Npr2+/- females (Figure 5C). An increase in fibrosis in Npr2+/- males was also confirmed by PicroSirius Red staining of carotid arteries after ligation (Figure S7). Our data suggest that decreased carotid...
Figure 3. Flow-dependent carotid remodeling in Npr2 mice.
A. Representative 3-dimensional (3D) reconstructions of the 2-mm length from the bifurcation of the LCA after sham or ligation operation in males of Npr2 wild-type (Npr2+/+) and Npr2 heterozygous (Npr2+/-) mice. B, Representative 3D reconstructions of LCA after sham or ligation operation in females of Npr2+/+ and Npr2+/- mice. Black indicates lumen, yellow indicates intima, red indicates media, and green indicates adventitia volume. C, Quantifications of LCA intima/media ratio, adventitia, and EEL volume in males of Npr2+/+ and Npr2+/- mice. D, Quantifications of LCA intima/media ratio, adventitia, and EEL volume in females of Npr2+/+ and Npr2+/- mice. Open circles indicate individual sham LCAs. Black circles indicate ligated LCAs. Gray lines indicate mean values. EEL indicates external elastic lamina; and LCA, left carotid artery. *P<0.05 vs sham; †P<0.05 vs Npr2+/- males; ‡P<0.05 vs Npr2+/- females. n=3 to 6 per group.
remodeling in male Npr2−/− mice is, in part, due to an increase in vascular fibrosis.

Decreased NPR2 Expression in Human Atherosclerotic Plaque

We identified a significant 4-fold reduction in NPR2+ immunoreactivity within the atherosclerotic...
lesions (dark bar) compared with the medial compartment (white brackets) of human carotid artery (Figure 6A). The NPR2 protein expression profile showed the same decline as a smooth muscle-specific staining (smooth muscle actin+) in human lesions (Figure 6B). In contrast, macrophage-specific staining (CD68+) was increased in lesions compared with media in human endarterectomy samples (Figure 6C).

DISCUSSION

The significant variation in response to vascular injury across 30 inbred mouse strains allowed us to identify 12 common SNPs associated with variation in LCA intima volume, intima/media ratio, and (intima+media)/EEL×100% traits. Our findings suggest that the gene discovered, *Npr2*, is a plausible candidate for regulation of carotid remodeling traits in response to vascular injury.
A rare genetic disorder, acromesomelic dysplasia, type Maroteaux, presents with short-limbed dwarfism after homozygous loss-of-function mutations in human NPR2.35 The highest association of the NPR2 was found with body height and fibrinogen levels in a large-scale GWA, which is relevant to earlier findings in a small genetic study in humans and after Npr2 perturbation in mice.23,35 Npr2, also known as Npr-B, belongs to a family of natriuretic peptide–binding proteins and represents 1 of the 5 transmembrane guanyl cyclases found in humans.36 A primary ligand for Npr2, C-type natriuretic peptide, can relax aortic rings, probably by binding to Npr2 and increasing cyclic guanosine monophosphate production that activates protein kinase Gi, which phosphorylates target proteins.37 A downstream target of Npr2-dependent signaling, protein kinase Gi phosphorylates and activates a myosin light-chain phosphatase that increases the calcium levels necessary for cell contraction, which lowers calcium sensitivity. Activation of the Npr2/cyclic guanosine monophosphate axis in pericytes is responsible for relaxation of precapillary arterioles and capillaries.38 Genetic studies in mice suggested that C-type natriuretic peptide and Npr2 are candidate genes in salt-induced BP.35 We and others showed that Npr2 has no significant role in BP homeostasis in mice.22,23 However, experiments in genetically manipulated mice, hypertensive rats, and in a large human GWA study showed that C-type natriuretic peptide production by endothelial cells is most important for reduction of BP.23,39–42 Herein, we found that Npr2 is critical for adaptation of the carotid artery in response to vascular injury. A striking difference in carotid sizes in Npr2−/− mice was also related to a significant decrease in intima volume. A moderate increase in carotid fibrosis in Npr2+/− mice resulted in a constrictive carotid phenotype in a nonfibrotic C57BL/6 background, as we recently reported.21 These data support our idea of genetic regulation of the unique cellular and biochemical processes in carotid artery disease.43 Our GWA findings are supported by the alteration in carotid remodeling in Npr2+/− mice and significant reduction of NPR2 expression in human atherosclerotic plaque. We believe that future clinical studies will uncover Npr2-mediated mechanisms of carotid IMT in humans.

Another significant finding in our study is that male, but not female, Npr2−/− mice exhibited constrictive carotid artery remodeling in response to low blood flow. The molecular basis for sex bias in carotid IMT development may be because of direct vasoprotective properties of estrogen on endothelial cells by antagonizing inflammatory responses such as tumor necrosis factor-α signaling.47 For example, in a surgical injury model, female mice had a >90% reduction in carotid intima formation relative to males, which was attenuated by ovariectomy.48 Functional
genetic studies in rodents have identified several sexual dimorphic factors contributing to carotid remodeling that were not apparent from human data, including lower endothelial nitric oxide synthase messenger RNA levels in female aorta versus male, and less oxidized phospholipid levels in females. Intriguingly, greater carotid pathologic remodeling in male mice mirrors sexual dimorphism in vascular injury response and disease in humans. Data from the AXA study, the Gutenberg Heart study, and an Okinawa–Nagano study revealed that men have higher carotid IMT levels relative to women. Furthermore, several risk factors for carotid IMT display sexual dimorphism: In the Tromso study, fibrinogen levels and amount of physical activity were associated with carotid IMT in men only, whereas triglyceride levels were associated with carotid IMT in women only. Other risk factors for carotid IMT, such as age, systolic BP, HDL, total cholesterol, body mass index, and smoking, did not correlate strongly with carotid IMT in a sex-specific manner. When combined, both human and mouse carotid artery data strongly suggest a protective role for estrogen in regulating vascular intima growth responses, which contribute to progression of carotid atherosclerosis and artery occlusion.

In conclusion, we have demonstrated the power of using mouse genetic analyses to identify candidate genes, and provide novel evidence for the role of Npr2 in the genetic regulation of vascular fibrosis associated with increased flow-dependent carotid remodeling. Future studies will explore the underlying mechanisms by which Npr2 regulates fibrosis toward the goal of developing new clinical therapeutic approaches to treating vascular disease.

ARTICLE INFORMATION
Received August 12, 2019; accepted March 12, 2020.

Affiliations
From the Department of Medicine, Aab Cardiovascular Research Institute, Rochester, NY (V.A.K., E.M.S., M.E.W.-S., D.M.M., B.Q., G.J.D., C.Y., B.C.B.); University of Rochester Neurorestoration Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (B.C.B.); Department of Electrical & Computer Engineering, University of Rochester and Hajim School of Engineering & Applied Sciences, Rochester, NY (A.F., M.M.D.); Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA (C.P., A.J.L.).

Acknowledgments
The authors thank Janice Gerloff and Kathy Donlon for help with animal handling and histologic evaluation of mouse arteries.

Sources of Funding
This study was supported in part by funds from the University of Rochester Award 2016 (to V.A.K. and M.M.D.), R01 HL134910 (to C.Y.), HL42488 (to A.J.L.), and HL140958 (to B.B.B.) the National Institutes of Health.

Disclosures
V.A.K. has received a research support from Novartis Pharmaceuticals Corp. The remaining authors have no disclosures to report.

Supplementary Materials
Tables S1–S8
Figures S1–S7

REFERENCES
1. Luis AJ. Atherosclerosis. Nature. 2000;407:233–241.
2. O’Donnell CJ, Cupples LA, D’Agostino RB, Fox CS, Hoffmann U, Hwang SJ, Ingelsson E, Liu C, Murabito JM, Polsak JF, et al. Genome-wide association study for subclinical atherosclerosis in major arterial territories in the NHLBI’s Framingham Heart Study. BMC Med Genet. 2007;8(suppl 1):S4.
3. Xie G, Myint PK, Voora D, Laskowitz DT, Shi P, Ren F, Wang H, Yang Y, Huo Y, Gao W, et al. Genome-wide association study on progression of carotid artery intima media thickness over 10 years in a Chinese cohort. Atherosclerosis. 2015;243:30–37.
4. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med. 1999;340:14–22.
5. Fox CS, Cupples LA, Chazaro I, Polak JF, Wolf PA, D’Agostino RB, Ordovas JM, O’Donnell CJ. Genomewide linkage analysis for internal carotid artery intimal medial thickness: evidence for linkage to chromosome 12. Am J Hum Genet. 2004;74:253–261.
6. Sacco RL, Blanton SH, Silfr S, Beecham A, Glover K, Gardener H, Wang L, Sabala E, Joo SH, Rundek T. Heritability and linkage analysis for carotid intima-media thickness: the family study of stroke risk and carotid atherosclerosis. Stroke. 2009;40:2307–2312.
7. Sundstroem A, Wiener HW, Irwin MR, Aouizerat BE, Overton ET, Lazar J, Liu C, Hodis HN, Limdi NA, Wegner KM, et al. Genome-wide admixture and association study of subclinical atherosclerosis in the Women’s Interagency HIV Study (WHI). PLoS One. 2017;12:e0188725.
8. Peters SA, den Ruijter HM, Palmer MK, Grobbee DE, Crouse JR III, O’Leary DH, Evans GW, Raichlen JS, Bots ML. Extensive or restricted ultrasound protocols to measure carotid intima-media thickness: analysis of completeness rates and impact on observed rates of change over time. J Am Soc Echocardiogr. 2012;25:91–100.
9. Lorenz MW, Polak JF, Kavousi M, Mathiesen EB, Tuomainen TP, Sander D, Pilchard M, Catapano AL, Robertson CM, et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data. Lancet. 2012;379:2053–2062.
10. Zhang Y, Guallar E, Qiao Y, Wasserman BA. Is carotid intima-media thickness as predictive as other noninvasive techniques for the detection of coronary artery disease? Arterioscler Thromb Vasc Biol. 2014;34:1341–1345.
11. Korshunov VA, Berk BC. Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler Thromb Vasc Biol. 2003;23:2185–2191.
12. Korshunov VA, Berk BC. Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined. Circulation. 2004;110:220–226.
13. Korshunov VA, Berk BC. Genetic modifier loci linked to intima formation induced by low flow in the mouse carotid. Arterioscler Thromb Vasc Biol. 2009;29:47–53.
14. Smolock EM, Burke RM, Wang C, Thomas T, Batchu SN, Qiu X, Zettel M, Fujiwara K, Berk BC, Korshunov VA. Intima modifier locus 2 controls endothelial cell activation and vascular permeability. Physiol Genomics. 2014;46:624–833.
15. Smolock EM, Machleder DE, Korshunov VA, Berk BC. Identification of a genetic locus on chromosome 11 that regulates leukocyte infiltration in mouse carotid artery. Arterioscler Thromb Vasc Biol. 2013;33:1014–1019.
16. Li Q, Li Y, Zhang Z, Gilbert TR, Matsumoto AH, Dobrin SE, Shi W. Quantitative trait locus analysis of carotid atherosclerosis in an intercross between C57BL/6 and C3H apolipoprotein E-deficient mice. Stroke. 2008;39:166–173.
17. Rowan JS, Zhang Z, Wang Q, Fang Y, Shi W. New quantitative trait loci for carotid atherosclerosis identified in an intercross derived from apolipoprotein E-deficient mouse strains. Physiol Genomics. 2013;45:332–342.
18. Grainger AT, Jones MB, Chen MH, Shi W. Polygenic control of carotid atherosclerosis in a BALB/cJ x SM/J interscross and a combined cross involving multiple mouse strains. G3 (Bethesda). 2017;7:731–739.

19. Bennett BJ, Farber CR, Orozco L, Kang HM, Ghazalpour A, Siemers N, Neubauer M, Neuhaus I, Yordanova R, Guan B, et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res. 2010;20:281–290.

20. Smolock EM, Ilyushkina IA, Ghazalpour A, Gerloff J, Muraszew AN, Lusis AJ, Korshunov VA. A genetic locus on mouse chromosome 7 controls elevated heart rate. Physiol Genomics. 2012;44:689–698.

21. Korshunov VA, Quinn B, Faiyaz A, Ahmed R, Sowden MP, Doyley MM, Berk SC. Selective-elicitive efficacy of sacubitril/valsartan on carotid fibrosis in response to injury in two inbred mouse strains. Br J Pharmacol. 2019;176:2795–2807.

22. Dugbar ley GJ, Quinn B, Luo L, Mickel sen DM, Ture SK, Morrell CN, Czyzjy J, Doyley MM, Yan C, Berk SC, et al. The protective role of natriuretic peptide receptor 2 against high salt injury in the renal papilla. Am J Pathol. 2019;189:1721–1731.

23. Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Animals. National Research Council: guide for the care and use of laboratory animals. 2011.

24. Batchu SN, Hughson A, Gerloff J, Korshunov VA. Role of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci USA. 2004;101:17300–17305.

25. Animals. National Research Council: guide for the care and use of laboratory animals. 2011.

26. Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Animals. National Research Council: guide for the care and use of laboratory animals. 2011.

27. Gerloff J, Korshunov VA. Immune modulation of vascular resident cells by Axl orchestrates carotid intima-media thickening. Am J Pathol. 2012;180:2134–2143.

28. Kang HM, Zaiten NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskini E. Efficient control of population structure in model organism association mapping. Genetics. 2008;178:1709–1723.

29. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.

30. Sugiyama F, Churchill GA, Higgins DC, Johns C, Makikantip KS, Gavars H, Paigen B. Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics. 2001;71:70–77.

31. Rehemudula D, Nakayama T, Soma M, Takahashi Y, Uwabo J, Sato M, Allston DC. Linkage analysis of neointimal hyperplasia and vascular wall transformation after balloon angioplasty. Physiol Genomics. 2006;25:286–293.

32. Yuan Z, Pei H, Roberts DJ, Zhang Z, Rowland JS, Matsumoto AH, Shi W. Quantitative trait locus analysis of neointimal formation in an intercross between C57BL/6 and C3H/HeJ apolipoprotein E-deficient mice. Circ Cardiovasc Genet. 2009;2:220–228.

33. Wentzel JJ, Krams R, Slater CR. Letter regarding article by Korshunov and Berk, “strain-dependent vascular remodeling: the ‘Glagov phenomenon’ is genetically determined”. Circulation. 2005;111:e119; author reply e119

34. Bartels CF, Bulemzic H, Pudlaty P, Rhee DK, van Ravenswaaij-Arts C, Pauli RM, Mundlos S, Chitayat D, Shih LY, Al-Gazali LI, et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet. 2004;75:27–34.

35. Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27:47–72.

36. Drewett JG, Fendly BM, Garbers DL, Lowe DG. Natriuretic peptide receptor B (guanylyl cyclase-B) mediates C-type natriuretic peptide relaxation of precontracted rat aorta. J Biol Chem. 1995;270:4688–4674.

37. Spianec K, Chen W, Werner F, Nikolaev VO, Nareue T, Koch F, Werner A, Eder-Negrin P, Dieuguez-Hurtado R, Adams RH, et al. Endothelial C-type natriuretic peptide acts on pericytes to regulate microcirculatory flow and blood pressure. Circulation. 2018;138:494–508.

38. Moyes AJ, Kambata RS, Villar I, Bubb KJ, Baliga RS, Lumsden NG, Xiao F, Gane PJ, Rebold SK, Worthington RJ, et al. Endothelial C-type natriuretic peptide maintains vascular homeostasis. J Clin Invest. 2014;124:4039–4051.

39. Nakao K, Kawahara K, Nishikimi T, Nakagawa Y, Kinoshita H, Minami T, Kuwabara Y, Yamada C, Yamada Y, Tokudome T, et al. Endothelium-derived C-type natriuretic peptide contributes to blood pressure regulation by maintaining endothelial integrity. Hypertension. 2017;69:286–296.

40. Canfeti C, Cerniello FM, Gobetto MN, Sueiro ML, Costa MA, Arraz C. Vascular tone regulation induced by C-type natriuretic peptide: differences in endothelium-dependent and -independent mechanisms involved in normotensive and spontaneously hypertensive rats. PLoS One. 2016;11:e0167817.

41. International Consortium for Blood Pressure Genome-Wide Association S, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Wajng SJ, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–109.

42. Korshunov VA, Schwartz SM, Berk SC. Vascular remodeling: hemo- dynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol. 2007;27:1722–1728.

43. Wang D, Opalir S, Chen YF, McCrory MA, Feng W, Szalai AJ. Estrogen treatment abolges neointima formation in human C-reactive protein transgenic mice. Arterioscler Thromb Vasc Biol. 2005;25:2094–2099.

44. Arnal JF, Fontaine C, Bilon-Gales A, Favre J, Laurell H, Lenfant F, Gourdy P, Estrogen receptors and endothelium. Arterioscler Thromb Vasc Biol. 2010;30:1506–1512.

45. Dworatzek E, Mahmoodzadeh S. Targeted basic research to highlight the role of estrogen and estrogen receptors in the cardiovascular system. Pharmacol Res. 2017;119:27–35.

46. Xing D, Feng W, Miller AP, Weathington NM, Chen YF, Novak L, Blaock JE, Opalir S. Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation. Am J Physiol Heart Circ Physiol. 2007;292:H2607–H2612.

47. Tolbert T, Thompson JA, Bouchard P, Opalir S. Estrogen-induced vasoprotection is independent of inducible nitric oxide synthase expression: evidence from the mouse carotid artery ligation model. Circulation. 2001;104:2740–2745.

48. Chu Y, Heistad DD, Knudtson KL, Lamping KG, Faraci FM. Quantification of mRNA for endothelial NO synthase in mouse blood vessels by real-time polymerase chain reaction. Arterioscler Thromb Vasc Biol. 2002;22:611–616.

49. Liu J, Lu W, Chen R, McIntyre TM. Circulating bioologically active oxidized phospholipids show on-going and increased oxidative stress in older male mice. Redox Biol. 2013;1:110–114.

50. Gariety J, Salomom J, Denarie N, Laski F, Megnien JL, Levenson J, Herkenhoff S, Bickel C, Klimpe S, Gori T, et al. Sex differences in early artery wall thickness and coronary risk profile in a French working cohort: the AXA Study. Arterioscler Thromb Vasc Biol. 1998;18:584–590.

51. Sinnning C, Wild PS, Echavarria FM, Wilde S, Schnabel R, Lubos E, Herkenhoff S, Bickel C, Kimpe S, Gori T, et al. Sex differences in early carotid atherosclerosis (from the community-based Gutenberg-Heart Study). Am J Cardiol. 2011;107:1841–1847.

52. Shimabukuro M, Hasegawa Y, Higa M, Armano R, Yamada H, Mizushima S, Masuzaki H, Sata M. Subclinical carotid atherosclerosis burden in the Japanese: comparison between Okinawa and Nagano residents. J Atheroscler Thromb. 2015;22:854–868.

53. Stensland-Bugge E, Bonaa KH, Joakimsen O, Njolstad I. Sex differences in large-artery wall thickness and coronary risk profile in a French working cohort: the AXA Study. Arterioscler Thromb Vasc Biol. 1998;18:584–590.

54. Stensland-Bugge E, Bonaa KH, Joakimsen O. Age and sex differences in early carotid atherosclerosis: the Tromso study. Circulation. 2000;111:e119; author reply e119

55. Stensland-Bugge E, Bonaa KH, Joakimsen O, Njolstad I. Sex differences in large-artery wall thickness and coronary risk profile in a French working cohort: the AXA Study. Arterioscler Thromb Vasc Biol. 1998;18:584–590.
SUPPLEMENTAL MATERIAL
Table S1. Changes of blood flow after carotid ligation across 30 inbred mouse strains.

Mouse strains	LCA Blood flow changes to control, %	RCA Blood flow changes to control, %
129X1/SvJ, 129X1	-82 ± 4	64 ± 13
A/J, A	-80 ± 10	83 ± 36
AKR/J, AKR	-80 ± 2	92 ± 18
BALB/cJ, BALB	-82 ± 6	57 ± 35
BTBR T+ Itpr3f/J, BTBRT	-86 ± 8	87 ± 15
BUB/BnJ, BUB	-92 ± 3	12 ± 15
C3H/HeJ, C3H	-79 ± 0	78 ± 24
C3HeB/FeJ, C3HEB	-82 ± 3	155 ± 15
C57BL/6J, C57BL	-89 ± 2	80 ± 8
C57L/J, C57L	-88 ± 5	35 ± 16
C58/J, C58	-93 ± 2	-13 ± 8
CBA/J, CBA	-90 ± 4	74 ± 4
CE/J, CE	-85 ± 4	81 ± 0
DBA/2J, DBA	-80 ± 3	59 ± 2
FVB/NJ, FVB	-79 ± 3	64 ± 13
I/LnJ, ILN	-93 ± 2	103 ± 19
KK/HIJ, KK	-95 ± 0	1 ± 16
LG/J, LG	-72 ± 4	69 ± 18
LP/J, LP	-92 ± 1	58 ± 12
MA/MyJ, MA	-82 ± 7	180 ± 4
NOD/LtJ, NOD	-87 ± 5	20 ± 4
NON/LtJ, NON	-73 ± 8	72 ± 15
NZB/B1NJ, NZB	-88 ± 2	78 ± 28
NZW/LacJ, NZW	-87 ± 3	53 ± 9
PL/J, PL	-87 ± 0	46 ± 32
RIIIS/J, RIIIS	-95 ± 1	72 ± 15
SEA/GnJ, SEA	-93 ± 1	66 ± 3
SJL/J, SJL	-82 ± 10	26 ± 13
SM/J, SM	-97 ± 1	58 ± 28
SWR/J, SWR	-90 ± 1	-2 ± 21

LCA, left carotid artery. RCA, right carotid artery.
Table S2. Significant SNPs associated with LCA intima volume in 30 inbred mouse strains.

dbSNP	Chromosome	Position, bp	p-value	Effect size
rs38940843	6	101397279	8.84E-16	11.8286
rs39087800	6	101412875	8.84E-16	11.8286
rs47480301	16	71716616	7.98E-10	11.0697
rs48569540	12	98832072	1.36E-08	11.1906
rs27831183	4	43542462	5.19E-08	9.69708
rs28320686	4	43620641	5.19E-08	9.69708
rs28320653	4	43645470	5.19E-08	9.69708
rs28320604	4	43650523	5.19E-08	9.69708
rs28320543	4	43662649	5.19E-08	9.69708
rs28320511	4	43688855	5.19E-08	9.69708
rs28311534	4	43732460	5.19E-08	9.69708
rs36294984	12	102175044	5.43E-08	9.67966
rs36281276	12	102181524	5.43E-08	9.67966
rs36677986	1	165121248	5.59E-08	9.66759
rs37370522	1	165124350	5.59E-08	9.66759
rs38372684	1	165124376	5.59E-08	9.66759
rs47497019	16	70626697	1.36E-07	10.6743
rs39750878	19	3995639	2.04E-07	10.2718
rs37877606	19	4003976	2.04E-07	10.2718
rs51910283	14	113914779	2.10E-07	10.28
rs37621976	14	114273384	2.10E-07	10.28
rs47106961	14	114918729	2.10E-07	10.28
rs46464669	14	114921628	2.10E-07	10.28
rs45841162	14	115030414	2.10E-07	10.28
rs27605802	2	171299100	3.00E-07	10.2073
rs50433974	13	60669054	3.65E-07	9.20322
rs47419227	16	72782312	3.93E-07	9.25304
rs48298153	16	72788432	3.93E-07	9.25304
rs48931505	16	72788858	3.93E-07	9.25304
rs48184804	16	72788906	3.93E-07	9.25304
rs47318646	16	72789323	3.93E-07	9.25304
rs37071291	6	100325877	4.59E-07	10.5823
SNP	N	Position	P-value	OR
--------------	---	---------------	-------------	----------
rs36697249	1	165125538	4.83E-07	9.20222
rs36283974	6	101145567	1.40E-06	10.5364
rs37705272	6	101418487	1.43E-06	10.3656
rs4203146	16	73624179	1.50E-06	8.80081
rs4203158	16	73626715	1.50E-06	8.80081
rs4203159	16	73627098	1.50E-06	8.80081
rs49791987	16	73634287	1.50E-06	8.80081
rs4203186	16	73637376	1.50E-06	8.80081
rs4203509	16	73865267	1.50E-06	8.80081
rs4203550	16	73885132	1.50E-06	8.80081
rs4303146	16	73769593	2.16E-06	8.60563
rs49296290	1	164345397	2.50E-06	9.5115
rs27916937	2	48877169	2.92E-06	9.61417
rs27918756	2	49953267	2.92E-06	9.61417
rs27918720	2	49959001	2.92E-06	9.61417
rs27918614	2	50000652	2.92E-06	9.61417
rs27918554	2	50032628	2.92E-06	9.61417
rs27918534	2	50044326	2.92E-06	9.61417
rs49704766	2	50285472	2.92E-06	9.61417
rs28295363	2	50858835	2.92E-06	9.61417
rs28295360	2	50859030	2.92E-06	9.61417
rs27930813	2	50956084	2.92E-06	9.61417
rs27602702	2	170907558	2.92E-06	9.61417
rs47868731	14	115246865	3.12E-06	9.67611
rs49720353	14	115417489	3.12E-06	9.67611
rs46884614	14	115579774	3.12E-06	9.67611
rs51463268	14	115580256	3.12E-06	9.67611
rs30604832	14	70561864	3.29E-06	9.2204
Marker	Chromosome	Position	*p*-value	log10(p)
-------------	------------	-----------	------------	----------
rs50052151	17	31594946	3.30E-06	9.64921
rs49741305	17	31597321	3.30E-06	9.64921
rs50385858	18	54841501	3.33E-06	9.61579
rs37738336	18	78267254	3.33E-06	9.61579
rs37234714	18	78267687	3.33E-06	9.61579
rs37792462	18	78277154	3.33E-06	9.61579
rs38103448	18	78466732	3.33E-06	9.61579
rs36981969	18	78471727	3.33E-06	9.61579
rs36387979	18	78471745	3.33E-06	9.61579
rs38025680	18	78494820	3.33E-06	9.61579
rs38606622	18	78558805	3.33E-06	9.61579
rs38648125	18	79112446	3.33E-06	9.61579
rs37191882	18	79120190	3.33E-06	9.61579
rs36853173	18	79126472	3.33E-06	9.61579
rs47705897	1	167745338	3.57E-06	8.94812
rs48039498	1	167745486	3.57E-06	8.94812
rs47739937	1	167745525	3.57E-06	8.94812
Table S3. Significant SNPs associated with LCA media volume in 30 inbred mouse strains.

dbSNP	Chromosome	Position, bp	p-value	Effect size
rs4167895	16	30058454	3.73E-06	-9.53356
Table S4. Significant SNPs associated with LCA adventitia volume in 30 inbred mouse strains.

dbSNP	Chromosome	Position, bp	p-value	Effect size
rs47073871	13	20636267	6.61E-08	12.1977
rs26883269	11	36643969	1.35E-07	11.8225
rs26883268	11	36644267	1.35E-07	11.8225
rs6223990	11	36649077	1.35E-07	11.8225
rs26883254	11	36657106	1.35E-07	11.8225
rs26883252	11	36657385	1.35E-07	11.8225
rs26883248	11	36658108	1.35E-07	11.8225
rs26883247	11	36658209	1.35E-07	11.8225
rs26883238	11	36660335	1.35E-07	11.8225
rs26883211	11	36666657	1.35E-07	11.8225
rs46269877	11	36667397	1.35E-07	11.8225
rs50176409	11	36667580	1.35E-07	11.8225
rs26883183	11	36676089	1.35E-07	11.8225
rs26933638	11	36682571	1.35E-07	11.8225
rs28212174	11	39241249	1.35E-07	11.8225
rs36410510	19	11159100	1.43E-07	12.2065
rs3678405	13	19913279	1.93E-07	11.8037
rs29607886	13	21048396	2.82E-07	11.642
rs36302909	13	38317257	3.09E-07	11.8565
rs29600146	13	20855501	3.43E-07	12.0104
rs31653947	15	25783771	4.07E-07	13.8686
rs32023348	15	25789703	4.07E-07	13.8686
rs36719773	15	25792839	4.07E-07	13.8686
rs31876896	15	25793549	4.07E-07	13.8686
rs36896622	13	19623895	4.81E-07	11.5772
rs36608337	13	19631552	4.81E-07	11.5772
rs36444549	13	19633288	4.81E-07	11.5772
rs38251579	13	19691192	4.81E-07	11.5772
rs36733180	13	19691255	4.81E-07	11.5772
rs47114836	13	19722060	4.81E-07	11.5772
rs36735954	13	19765425	4.81E-07	11.5772
rs37428520	13	19767050	4.81E-07	11.5772
rs	Chromosome	Position	p_value	Beta
-------------	------------	------------	---------	----------
rs38026141	13	19820179	4.81E-07	11.5772
rs36661788	13	19821058	4.81E-07	11.5772
rs38303318	13	19821229	4.81E-07	11.5772
rs36594603	13	19822595	4.81E-07	11.5772
rs38318713	13	19823039	4.81E-07	11.5772
rs36391344	13	19902374	4.81E-07	11.5772
rs37799072	13	19974390	4.81E-07	11.5772
rs36781926	13	20013348	4.81E-07	11.5772
rs47829231	13	20013404	4.81E-07	11.5772
rs49358850	13	20024700	4.81E-07	11.5772
rs36640438	13	20068362	4.81E-07	11.5772
rs36487463	13	20076501	4.81E-07	11.5772
rs6297328	13	20119946	4.81E-07	11.5772
rs6299142	13	20179306	4.81E-07	11.5772
rs36690570	13	20186083	4.81E-07	11.5772
rs3678954	13	20188891	4.81E-07	11.5772
rs6248419	13	20205439	4.81E-07	11.5772
rs36600957	13	20254709	4.81E-07	11.5772
rs45982807	13	20301917	4.81E-07	11.5772
rs51047263	13	20312500	4.81E-07	11.5772
rs6203049	13	20315428	4.81E-07	11.5772
rs52320861	13	20322495	4.81E-07	11.5772
rs47549236	13	20365143	4.81E-07	11.5772
rs51484684	13	20371046	4.81E-07	11.5772
rsID	Chromosome	Position	P_value	Log10(P)
--------------	------------	----------	---------	----------
rs48961319	13	20374137	4.81E-07	11.5772
rs45651638	13	20379366	4.81E-07	11.5772
rs46580187	13	20382923	4.81E-07	11.5772
rs47760603	13	20414115	4.81E-07	11.5772
rs47538017	13	20420858	4.81E-07	11.5772
rs48892010	13	20421811	4.81E-07	11.5772
rs48148404	13	20469092	4.81E-07	11.5772
rs48951151	13	20471221	4.81E-07	11.5772
rs49018822	13	20481493	4.81E-07	11.5772
rs49995885	13	20511487	4.81E-07	11.5772
rs48592377	13	20539128	4.81E-07	11.5772
rs48864424	13	20552932	4.81E-07	11.5772
rs48292864	13	20569654	4.81E-07	11.5772
rs49769390	13	20571147	4.81E-07	11.5772
rs6372032	13	20572873	4.81E-07	11.5772
rs51129769	13	20575619	4.81E-07	11.5772
rs47155818	13	20597561	4.81E-07	11.5772
rs49531202	13	20608709	4.81E-07	11.5772
rs46266953	13	20684736	4.81E-07	11.5772
rs46868266	13	20685797	4.81E-07	11.5772
rs50160653	13	20719255	4.81E-07	11.5772
rs47901231	13	20744950	4.81E-07	11.5772
rs33839559	13	20772091	4.81E-07	11.5772
rs33840365	13	20772735	4.81E-07	11.5772
rs33837937	13	20788119	4.81E-07	11.5772
rs51945080	13	20812645	4.81E-07	11.5772
rs46188139	13	20812888	4.81E-07	11.5772
rs29594544	13	20859622	4.81E-07	11.5772
rs29594550	13	20859808	4.81E-07	11.5772
rs29597333	13	20882992	4.81E-07	11.5772
rs29598246	13	20883087	4.81E-07	11.5772
rs29593003	13	20894217	4.81E-07	11.5772
rs29593889	13	20916452	4.81E-07	11.5772
rs29604183	13	20991627	4.81E-07	11.5772
rs29598075	13	20992544	4.81E-07	11.5772
rs29606454	13	21000504	4.81E-07	11.5772
rs	Chromosome	Position	p-Value	Log10(p)
------------	------------	----------	---------	----------
rs29606460	13	21000754	4.81E-07	11.5772
rs29607083	13	21048311	4.81E-07	11.5772
rs29604312	13	21073825	4.81E-07	11.5772
rs29607857	13	21132420	4.81E-07	11.5772
rs29607860	13	21132455	4.81E-07	11.5772
rs29609872	13	21141111	4.81E-07	11.5772
rs29611566	13	21142121	4.81E-07	11.5772
rs29610464	13	21164813	4.81E-07	11.5772
rs6263463	13	21171748	4.81E-07	11.5772
rs29638163	13	21223147	4.81E-07	11.5772
rs29639114	13	21249985	4.81E-07	11.5772
rs49949392	13	21261961	4.81E-07	11.5772
rs29647362	13	21281847	4.81E-07	11.5772
rs29641986	13	21292978	4.81E-07	11.5772
rs29643897	13	21295276	4.81E-07	11.5772
rs29646900	13	21298273	4.81E-07	11.5772
rs29644942	13	21337054	4.81E-07	11.5772
rs29645930	13	21357606	4.81E-07	11.5772
rs29645533	13	21371512	4.81E-07	11.5772
rs49062226	13	21372890	4.81E-07	11.5772
rs29644278	13	21394529	4.81E-07	11.5772
rs29648727	13	21430577	4.81E-07	11.5772
rs29652368	13	21434110	4.81E-07	11.5772
rs29653437	13	21465037	4.81E-07	11.5772
rs29654897	13	21507746	4.81E-07	11.5772
rs29649704	13	21522488	4.81E-07	11.5772
rs29650319	13	21547080	4.81E-07	11.5772
rs48094376	13	21558999	4.81E-07	11.5772
rs46647627	13	21559343	4.81E-07	11.5772
rs6355688	13	21566688	4.81E-07	11.5772
rs6353554	13	21609738	4.81E-07	11.5772
rs6354633	13	21609929	4.81E-07	11.5772
rs29651488	13	21627510	4.81E-07	11.5772
rs29657594	13	21658122	4.81E-07	11.5772
rs29658436	13	21659208	4.81E-07	11.5772
rs29655552	13	21676021	4.81E-07	11.5772
SNP	Chromosome	Position	P-value	Log10(p-value)
-------------	------------	------------	-----------	----------------
rs29652356	13	21700527	4.81E-07	11.5772
rs29658054	13	21752519	4.81E-07	11.5772
rs29652814	13	21758217	4.81E-07	11.5772
rs47150906	13	52211251	4.81E-07	11.5772
rs46309028	13	52211325	4.81E-07	11.5772
rs48741080	13	20962352	7.16E-07	11.7107
rs47509073	1	77255403	7.61E-07	11.7479
rs32950486	1	777609490	7.61E-07	11.7479
rs36872577	1	78067450	7.61E-07	11.7479
rs6407549	1	78079879	7.61E-07	11.7479
rs48353307	12	97613323	9.44E-07	11.641
rs52231845	16	18838734	1.25E-06	12.1417
rs4207614	16	77738835	1.26E-06	13.9067
rs4207615	16	77738908	1.26E-06	13.9067
rs48357981	16	77739452	1.26E-06	13.9067
rs4207617	16	77744195	1.26E-06	13.9067
rs48226387	16	77749862	1.26E-06	13.9067
rs4207656	16	77773830	1.26E-06	13.9067
rs4207659	16	77774195	1.26E-06	13.9067
rs46962439	16	77795529	1.26E-06	13.9067
rs4207710	16	77821575	1.26E-06	13.9067
rs4207711	16	77823818	1.26E-06	13.9067
rs4207712	16	77824526	1.26E-06	13.9067
rs48139016	15	48841397	1.53E-06	11.976
rs46494410	15	48856141	1.53E-06	11.976
rs47208714	15	49205685	1.53E-06	11.976
rs37217592	1	94081116	3.28E-06	11.5744
rs36408043	1	94147963	3.28E-06	11.5744
rs37952899	1	94169057	3.28E-06	11.5744
rs31116994	14	68371424	3.74E-06	11.5098
Table S5. Significant SNPs associated with LCA EEL volume in 30 inbred mouse strains.

dbSNP	Chromosome	Position, bp	p-value	Effect size
rs32595130	9	44253578	5.08E-07	27.908
rs32598526	9	44276639	5.08E-07	27.908
rs49698155	15	27049944	1.66E-06	27.0288
rs33417562	17	12417424	2.24E-06	-27.0414
rs31653947	15	25783771	3.12E-06	29.1715
rs32023348	15	25789703	3.12E-06	29.1715
rs36719773	15	25792839	3.12E-06	29.1715
rs31876896	15	25793549	3.12E-06	29.1715
Table S6. Significant SNPs associated with LCA intima-to-media ratio in 30 inbred mouse strains.

dbSNP	Chromosome	Position, bp	p-value	Effect size					
rs27674148	4	7102117	2.80E-13	0.211489					
rs27737825	4	29648251	2.80E-13	0.211489					
rs36677986	1	165121248	1.01E-12	0.204791					
rs37370522	1	165124350	1.01E-12	0.204791					
rs38372684	1	165124376	1.01E-12	0.204791					
rs36294984	12	102175044	1.02E-12	0.204791					
rs36281276	12	102181524	1.02E-12	0.204791					
rs27831183	4	43542462	1.04E-12	0.20448					
rs28320686	4	43620641	1.04E-12	0.20448					
rs28320653	4	43645470	1.04E-12	0.20448					
rs28320604	4	43650523	1.04E-12	0.20448					
rs28320543	4	43662649	1.04E-12	0.20448					
rs28320511	4	43688855	1.04E-12	0.20448					
rs28311534	4	43732460	1.04E-12	0.20448					
rs38940843	6	101397279	8.49E-11	0.206547					
rs39087800	6	101412875	8.49E-11	0.206547					
rs50242724	3	34405923	1.06E-10	0.200376					
rs47993102	15	7033810	9.69E-10	0.19749					
rs27134887	2	16236183	1.63E-09	0.193885					
rs27605802	2	171299100	2.21E-09	0.206106					
rs36739925	9	39493014	2.25E-09	0.194116					
rs32998299	7	56915547	4.48E-09	0.199285					
rs46101910	7	57451000	4.48E-09	0.199285					
rs38361786	7	57470793	4.48E-09	0.199285					
rs27648232	2	179835451	4.53E-09	0.199145					
rs27678709	2	179869730	4.53E-09	0.199145					
rs36484548	14	116035561	6.04E-09	0.199359					
rs37878104	14	116035938	6.04E-09	0.199359					
rs36578717	14	116935757	6.04E-09	0.199359					
rs50464390	14	116263623	6.04E-09	0.199359					
rs36670143	14	116349890	6.04E-09	0.199359					
rs38987302	14	116417450	6.04E-09	0.199359					
rs47765000	14	117018624	6.04E-09	0.199359					
rs48764245	16	30572961	6.06E-09	0.200082					
rs48527511	16	30588279	6.06E-09	0.200082					
rs50991760	16	30619586	6.06E-09	0.200082					
rs37125075	18	68612691	6.30E-09	0.198834					
rs36597862	18	68685395	6.30E-09	0.198834					
rs47765000	14	117018624	6.04E-09	0.199359					
rs48764245	16	30572961	6.06E-09	0.200082					
rs48527511	16	30588279	6.06E-09	0.200082					
rs50991760	16	30619586	6.06E-09	0.200082					
rs37125075	18	68612691	6.30E-09	0.198834					
rs36597862	18	68685395	6.30E-09	0.198834					
rs27689045	4	7044109	6.32E-09	0.198671					
rs27673999	4	7137905	6.32E-09	0.198671					
rs27673998	4	7137926	6.32E-09	0.198671					
rs2765948	4	7170558	6.32E-09	0.198671					
rs27009097	4	7211496	6.32E-09	0.198671					
rs27709075	4	7213943	6.32E-09	0.198671					
rs27691238	4	7232617	6.32E-09	0.198671					
rs27687701	4	7583955	6.32E-09	0.198671					
rs27737810	4	29656779	6.32E-09	0.198671					
rs27737803	4	29677730	6.32E-09	0.198671					
rs27723164	4	29794635	6.32E-09	0.198671					
rs6237544	4	29795573	6.32E-09	0.198671					
rs27748033	4	29997199	6.32E-09	0.198671					
rs27786591	4	30541140	6.32E-09	0.198671					
rs27786545	4	30566381	6.32E-09	0.198671					
rs49665559	4	30804028	6.32E-09	0.198671					
rs27741284	4	31055741	6.32E-09	0.198671					
rs27612140	4	139882104	6.32E-09	0.198671					
rs27612099	4	139892826	6.32E-09	0.198671					
rs27552432	4	142064805	6.32E-09	0.198671					
rs27552330	4	142086314	6.32E-09	0.198671					
rs36240801	6	100082220	6.55E-09	0.199186					
rs27044336	11	118808786	8.12E-08	0.183893					
rs26996028	11	120310104	8.12E-08	0.183893					
rsID	Position	Effect Size	P-value	Minor Allele Frequency					
-----------	----------	-------------	---------	------------------------					
rs31460283	14	75499722	8.35E-07	0.183679					
rs27657799	4	7196977	8.37E-08	0.183807					
rs32921099	12	99458647	1.31E-07	0.185488					
rs27567843	4	13940935	1.71E-07	0.187519					
rs33689626	1	15534580	2.21E-07	0.182525					
rs51833298	12	11699402	2.60E-07	0.180779					
rs45951608	12	11699437	2.60E-07	0.180779					
rs6218946	11	11900163	2.82E-07	0.180494					
rs27029509	11	11984383	2.82E-07	0.180494					
rs50185419	16	6892543	2.95E-07	0.180757					
rs47397360	17	14392836	3.48E-07	0.181558					
rs31317930	14	7370391	3.91E-07	0.186536					
rs37071291	6	10032588	3.95E-07	0.198601					
rs46912210	3	32213292	4.22E-07	0.188115					
rs50599709	3	32214276	4.22E-07	0.188115					
rs51153728	3	32214591	4.22E-07	0.188115					
rs48838546	10	11812215	4.86E-07	0.177113					
rs36996707	9	65937308	5.07E-07	0.196914					
rs27079841	2	4508832	5.62E-07	0.179491					
rs27108869	2	10254363	5.62E-07	0.179491					
rs27163089	2	14471057	5.62E-07	0.179491					
rs27846958	4	45447167	6.11E-07	0.16913					
rs51350682	17	48110423	6.68E-07	0.178579					
rs27916937	2	48877169	7.66E-07	0.189528					
rs27918756	2	49953267	7.66E-07	0.189528					
rs27918720	2	49959001	7.66E-07	0.189528					
rs27918614	2	50000652	7.66E-07	0.189528					
rs27918554	2	50032628	7.66E-07	0.189528					
rs27918534	2	50044326	7.66E-07	0.189528					
rs49704766	2	50285472	7.66E-07	0.189528					
rs28295363	2	50858835	7.66E-07	0.189528					
rs28295360	2	50859030	7.66E-07	0.189528					
rs27930813	2	50956084	7.66E-07	0.189528					
rs27602702	2	17090755	7.66E-07	0.189528					
rs51654688	14	74098899	8.28E-07	0.168017					
rs36697249	1	16512553	8.34E-07	0.168486					
SNP	Chro	Pos	p-value	q-value					
--------------	------	-------	---------	---------					
rs47868731	14	115246865	8.56E-07	0.189731					
rs49720353	14	115417489	8.56E-07	0.189731					
rs46884614	14	115579774	8.56E-07	0.189731					
rs51463268	14	115580256	8.56E-07	0.189731					
rs50433974	13	60669054	9.01E-07	0.165023					
rs50052151	17	31594946	9.13E-07	0.189667					
rs49741305	17	31597321	9.13E-07	0.189667					
rs37738336	18	78267254	9.48E-07	0.188616					
rs37792462	18	78277154	9.48E-07	0.188616					
rs38103448	18	78466732	9.48E-07	0.188616					
rs36981969	18	78471727	9.48E-07	0.188616					
rs36387979	18	78471745	9.48E-07	0.188616					
rs38025680	18	78494820	9.48E-07	0.188616					
rs38606622	18	78558805	9.48E-07	0.188616					
rs38648125	18	79112446	9.48E-07	0.188616					
rs37191882	18	79120190	9.48E-07	0.188616					
rs36853173	18	79126472	9.48E-07	0.188616					
rs6227786	9	65041134	1.10E-06	0.193507					
rs50974505	14	113243033	1.48E-06	0.193465					
rs37713099	12	82598244	1.53E-06	0.170075					
rs51910283	14	113914779	1.93E-06	0.187818					
rs37621976	14	114273384	1.93E-06	0.187818					
rs47106961	14	114918729	1.93E-06	0.187818					
rs46464669	14	114921628	1.93E-06	0.187818					
rs45841162	14	115030414	1.93E-06	0.187818					
rs39750878	19	3995639	1.94E-06	0.187811					
rs37877606	19	4003976	1.94E-06	0.187881					
rs27064906	2	3745455	2.24E-06	0.187249					
rs27084059	2	3951933	2.24E-06	0.187249					
rs27084039	2	3973509	2.24E-06	0.187249					
rs27084038	2	3973614	2.24E-06	0.187249					
rs27083978	2	4015868	2.24E-06	0.187249					
rs27083970	2	4017538	2.24E-06	0.187249					
rs27120219	2	20380126	2.24E-06	0.187249					
rsID	Genotype	Gene	Cyto	p-Value	p-Value_adjusted				
--------	----------	------	------	---------	-----------------				
rs27166088	2			2.24E-06	0.187249				
rs27151056	2			2.24E-06	0.187249				
rs27151005	2			2.24E-06	0.187249				
rs27135890	2			2.24E-06	0.187249				
rs27121261	2			2.24E-06	0.187249				
rs27133382	2			2.24E-06	0.187249				
rs27118422	2			2.24E-06	0.187249				
rs27151783	2			2.24E-06	0.187249				
rs27135890	2			2.24E-06	0.187249				
rs27121261	2			2.24E-06	0.187249				
rs27133382	2			2.24E-06	0.187249				
rs27151783	2			2.24E-06	0.187249				
rs27135890	2			2.24E-06	0.187249				
rs27121261	2			2.24E-06	0.187249				
rs27133382	2			2.24E-06	0.187249				
SNP	A1	Position	P-value	OR					
----------------	----	-----------	----------	----------					
rs27213269	2	24447533	2.24E-06	0.187249					
rs27198390	2	24499434	2.24E-06	0.187249					
rs27932296	2	48832467	2.24E-06	0.187249					
rs6187921	2	48887353	2.24E-06	0.187249					
rs27916902	2	48894879	2.24E-06	0.187249					
rs27916900	2	48895865	2.24E-06	0.187249					
rs27916849	2	48913139	2.24E-06	0.187249					
rs27916844	2	48926474	2.24E-06	0.187249					
rs27916833	2	48930698	2.24E-06	0.187249					
rs27901449	2	49138884	2.24E-06	0.187249					
rs27955117	2	49204203	2.24E-06	0.187249					
rs27917423	2	49405162	2.24E-06	0.187249					
rs27917345	2	49427912	2.24E-06	0.187249					
rs27935023	2	49687605	2.24E-06	0.187249					
rs27919660	2	49695214	2.24E-06	0.187249					
rs27919621	2	49700389	2.24E-06	0.187249					
rs27919611	2	49702655	2.24E-06	0.187249					
rs27919469	2	49750464	2.24E-06	0.187249					
rs27919455	2	49752446	2.24E-06	0.187249					
rs27919453	2	49753024	2.24E-06	0.187249					
rs27919449	2	49753604	2.24E-06	0.187249					
rs27904302	2	49810939	2.24E-06	0.187249					
rs27904273	2	49815489	2.24E-06	0.187249					
rs27933693	2	49910566	2.24E-06	0.187249					
rs27918516	2	50053612	2.24E-06	0.187249					
rs27918484	2	50091904	2.24E-06	0.187249					
rs27903090	2	50115233	2.24E-06	0.187249					
rs27953609	2	50193174	2.24E-06	0.187249					
rs48978839	2	50206898	2.24E-06	0.187249					
rs27931271	2	50264371	2.24E-06	0.187249					
rs27931240	2	50275403	2.24E-06	0.187249					
rs27916657	2	50348144	2.24E-06	0.187249					
rs27916616	2	50395652	2.24E-06	0.187249					
rs28312297	2	50777209	2.24E-06	0.187249					
rs28312138	2	50822178	2.24E-06	0.187249					
rs27899866	2	51042318	2.24E-06	0.187249					
SNP	Genomic Position	P-Value	q-Value						
--------------	------------------	-----------	----------						
rs27899685	51068226	2.24E-06	0.187249						
rs27899164	52516936	2.24E-06	0.187249						
rs27899159	52517632	2.24E-06	0.187249						
rs27898972	52583478	2.24E-06	0.187249						
rs27945850	52588879	2.24E-06	0.187249						
rs27602656	170911813	2.24E-06	0.187249						
rs27602655	170911854	2.24E-06	0.187249						
rs27605849	171288259	2.24E-06	0.187249						
rs27605801	171299137	2.24E-06	0.187249						
rs27899164	52588879	2.24E-06	0.187249						
rs27899159	171288259	2.24E-06	0.187249						
rs27898972	171299137	2.24E-06	0.187249						
rs27602656	171288259	2.24E-06	0.187249						
rs27602655	171299137	2.24E-06	0.187249						
rs27605849	171345147	2.24E-06	0.187249						
rs27605801	171421492	2.24E-06	0.187249						
rs27899164	171421492	2.24E-06	0.187249						
rs27899159	171421807	2.24E-06	0.187249						
rs27898972	171423211	2.24E-06	0.187249						
rs27602656	171587184	2.24E-06	0.187249						
rs27602655	171612393	2.24E-06	0.187249						
rs27605849	171867408	2.24E-06	0.187249						
rs27605801	171895272	2.24E-06	0.187249						
rs27601303	171900522	2.24E-06	0.187249						
rs6379063	171953354	2.24E-06	0.187249						
rs2789141	171957502	2.24E-06	0.187249						
rs27327681	172016660	2.24E-06	0.187249						
rs27327581	172035600	2.24E-06	0.187249						
rs27617172	172162814	2.24E-06	0.187249						
rs27617048	172193718	2.24E-06	0.187249						
rs27617043	172194058	2.24E-06	0.187249						
rs27617042	172194145	2.24E-06	0.187249						
rs27617009	172197172	2.24E-06	0.187249						
rs27616998	172197766	2.24E-06	0.187249						
rs27616990	172202866	2.24E-06	0.187249						
rs27616988	172203604	2.24E-06	0.187249						
rs27600924	172267919	2.24E-06	0.187249						
rs27600896	172271313	2.24E-06	0.187249						
rs27600843	172288410	2.24E-06	0.187249						
rs27629692	172343902	2.24E-06	0.187249						
rs27629663	172359439	2.24E-06	0.187249						
rs27629657	172361480	2.24E-06	0.187249						
rs27615007	2	172420022	2.24E-06	0.187249					
rs27631754	2	172527860	2.24E-06	0.187249					
rs27631730	2	172532334	2.24E-06	0.187249					
rs27616315	2	172577536	2.24E-06	0.187249					
rs27620456	2	172708097	2.24E-06	0.187249					
rs27622582	2	172911393	2.24E-06	0.187249					
rs27646790	2	173124920	2.24E-06	0.187249					
rs27646752	2	173130347	2.24E-06	0.187249					
rs27630129	2	173150912	2.24E-06	0.187249					
rs27630122	2	173152574	2.24E-06	0.187249					
rs37182992	6	100262813	2.30E-06	0.186851					
rs37851939	6	100334161	2.30E-06	0.186851					
rs37159729	6	100457929	2.30E-06	0.186851					
rs37130761	6	100458485	2.30E-06	0.186851					
rs37509694	6	100488096	2.30E-06	0.186851					
rs36768945	6	100496446	2.30E-06	0.186851					
rs46220858	6	100551518	2.30E-06	0.186851					
rs37331742	6	100603283	2.30E-06	0.186851					
rs37599571	6	100615633	2.30E-06	0.186851					
rs37485021	6	100670349	2.30E-06	0.186851					
rs37835999	6	100710282	2.30E-06	0.186851					
rs36356436	6	100746705	2.30E-06	0.186851					
rs37523399	6	100758372	2.30E-06	0.186851					
rs38859161	6	101264457	2.30E-06	0.186851					
rs37305906	6	101339233	2.30E-06	0.186851					
rs37259471	6	101397480	2.30E-06	0.186851					
rs47196097	6	101509287	2.30E-06	0.186851					
rs47252577	6	101517832	2.30E-06	0.186851					
rs46129572	6	101521121	2.30E-06	0.186851					
rs51950730	6	101582836	2.30E-06	0.186851					
rs48786028	6	101583288	2.30E-06	0.186851					
rs51991104	6	101596254	2.30E-06	0.186851					
rs47472468	6	101596973	2.30E-06	0.186851					
rs49181543	6	101651784	2.30E-06	0.186851					
rs47773375	6	101777451	2.30E-06	0.186851					
SNP	Chr	Position	P-Value	Effect Size					
--------------	-----	---------------	-----------	-------------					
rs37165011	6	101892688	2.30E-06	0.186851					
rs37411844	6	101895559	2.30E-06	0.186851					
rs37333750	6	101903734	2.30E-06	0.186851					
rs38314964	6	101976927	2.30E-06	0.186851					
rs48770127	6	102282679	2.30E-06	0.186851					
rs47565150	6	102339659	2.30E-06	0.186851					
rs45970744	6	102359810	2.30E-06	0.186851					
rs50852732	6	102652778	2.30E-06	0.186851					
rs52231024	6	102652974	2.30E-06	0.186851					
rs46218148	6	102655850	2.30E-06	0.186851					
rs47526411	6	102730256	2.30E-06	0.186851					
rs31469826	6	115184005	2.30E-06	0.186851					
rs31477042	6	115207538	2.30E-06	0.186851					
rs31479875	6	115269652	2.30E-06	0.186851					
rs31481914	6	115306598	2.30E-06	0.186851					
rs49852072	6	115339814	2.30E-06	0.186851					
rs47764649	6	115340179	2.30E-06	0.186851					
rs51852708	6	115405435	2.30E-06	0.186851					
rs31487387	6	115618564	2.30E-06	0.186851					
rs31485615	6	115664788	2.30E-06	0.186851					
rs31506628	6	115833148	2.30E-06	0.186851					
rs31509720	6	115926256	2.30E-06	0.186851					
rs31533971	6	116235275	2.30E-06	0.186851					
rs31550603	6	116497408	2.30E-06	0.186851					
rs31788820	6	128252327	2.30E-06	0.186851					
rs31839496	6	128252565	2.30E-06	0.186851					
rs31793823	6	128264396	2.30E-06	0.186851					
rs31799547	6	128507555	2.30E-06	0.186851					
rs37150717	6	129338475	2.30E-06	0.186851					
rs37634542	6	129341584	2.30E-06	0.186851					
rs48795228	6	129554062	2.30E-06	0.186851					
rs36278193	6	143347253	2.30E-06	0.186851					
rs31304784	14	70904084	2.40E-06	0.190442					
Marker	Chromosome	Position	p-value	Log10(p-value)	MAF	w2	p2	MAF2	Log10(p2)
---------	------------	----------	---------	----------------	-----	----	----	------	-----------
rs32852280	9	64699010	2.42E-06	0.187219					
rs32848652	9	64700955	2.42E-06	0.187219					
rs32850571	9	64703662	2.42E-06	0.187219					
rs6339767	9	64720436	2.42E-06	0.187219					
rs32851366	9	64745203	2.42E-06	0.187219					
rs32854298	9	64753457	2.42E-06	0.187219					
rs32854300	9	64753572	2.42E-06	0.187219					
rs32851032	9	64763876	2.42E-06	0.187219					
rs51879675	9	64826513	2.42E-06	0.187219					
rs32855198	9	64838249	2.42E-06	0.187219					
rs32855202	9	64838339	2.42E-06	0.187219					
rs32856006	9	64839052	2.42E-06	0.187219					
rs32857452	9	64842744	2.42E-06	0.187219					
rs32858227	9	64843175	2.42E-06	0.187219					
rs32857683	9	64875411	2.42E-06	0.187219					
rs32859362	9	64894357	2.42E-06	0.187219					
rs32860865	9	64896280	2.42E-06	0.187219					
rs32856871	9	64904515	2.42E-06	0.187219					
rs32860754	9	64935162	2.42E-06	0.187219					
rs32866194	9	64981655	2.42E-06	0.187219					
rs32870970	9	65001832	2.42E-06	0.187219					
rs46214676	9	65034247	2.42E-06	0.187219					
rs6307648	9	65058108	2.42E-06	0.187219					
rs32871788	9	65064210	2.42E-06	0.187219					
rs32875097	9	65090563	2.42E-06	0.187219					
rs51870844	9	65113799	2.42E-06	0.187219					
rs48176760	9	65117923	2.42E-06	0.187219					
rs32871114	9	65130317	2.42E-06	0.187219					
rs32872948	9	65139321	2.42E-06	0.187219					
rs32872950	9	65139367	2.42E-06	0.187219					
rs32872922	9	65157954	2.42E-06	0.187219					
rs32872036	9	65185410	2.42E-06	0.187219					
rs32872040	9	65185481	2.42E-06	0.187219					
rs32874104	9	65189192	2.42E-06	0.187219					
rs32874112	9	65189958	2.42E-06	0.187219					
rs32873338	9	65205501	2.42E-06	0.187219					
rs	chrom	position	p-value	log10(p-value)					
---------------	-------	------------	---------	---------------					
rs32875710	9	65218600	2.42E-06	0.187219					
rs32875921	9	65227746	2.42E-06	0.187219					
rs32871690	9	65234725	2.42E-06	0.187219					
rs32873167	9	6526991	2.42E-06	0.187219					
rs32876758	9	65260301	2.42E-06	0.187219					
rs48809159	9	65341061	2.42E-06	0.187219					
rs50645978	9	65341099	2.42E-06	0.187219					
rs48414260	9	65341276	2.42E-06	0.187219					
rs32880505	9	65396070	2.42E-06	0.187219					
rs32881912	9	65398829	2.42E-06	0.187219					
rs32883089	9	65401821	2.42E-06	0.187219					
rs32883785	9	65402078	2.42E-06	0.187219					
rs32886150	9	65410898	2.42E-06	0.187219					
rs50184450	9	65470313	2.42E-06	0.187219					
rs32885884	9	65475896	2.42E-06	0.187219					
rs32887586	9	65477586	2.42E-06	0.187219					
rs32883357	9	65484958	2.42E-06	0.187219					
rs32889980	9	65491421	2.42E-06	0.187219					
rs32890134	9	65514407	2.42E-06	0.187219					
rs32890997	9	65515306	2.42E-06	0.187219					
rs32890626	9	65561591	2.42E-06	0.187219					
rs32892041	9	65564244	2.42E-06	0.187219					
rs6232791	9	65575074	2.42E-06	0.187219					
rs6247483	9	65575452	2.42E-06	0.187219					
rs32894226	9	65619024	2.42E-06	0.187219					
rs24885773	9	65634022	2.42E-06	0.187219					
rs24884254	9	65640186	2.42E-06	0.187219					
rs32896801	9	65661916	2.42E-06	0.187219					
rs32894204	9	65667987	2.42E-06	0.187219					
rs32895646	9	65673528	2.42E-06	0.187219					
rs32900421	9	65710462	2.42E-06	0.187219					
rs32897212	9	65722044	2.42E-06	0.187219					
rs24884041	9	65732034	2.42E-06	0.187219					
rs24884037	9	65760237	2.42E-06	0.187219					
rs24884115	9	65762099	2.42E-06	0.187219					
rs24884112	9	65763237	2.42E-06	0.187219					
rs24884060	9	65816633	2.42E-06	0.187219					
rs24884053	9	65821735	2.42E-06	0.187219					
rs48708836	9	65873512	2.42E-06	0.187219					
rs46376427	9	65890664	2.42E-06	0.187219					
rs49301527	9	65896382	2.42E-06	0.187219					
rs6334245	9	65963822	2.42E-06	0.187219					
rs6334314	9	65963869	2.42E-06	0.187219					
rs36633306	9	65968509	2.42E-06	0.187219					
rs36763036	9	65969370	2.42E-06	0.187219					
rs37278900	9	66020606	2.42E-06	0.187219					
rs38157230	9	66030932	2.42E-06	0.187219					
rs36734976	9	66048735	2.42E-06	0.187219					
rs37581780	9	66082002	2.42E-06	0.187219					
rs36661510	9	66087589	2.42E-06	0.187219					
rs36924121	9	66100085	2.42E-06	0.187219					
rs37023011	9	66101034	2.42E-06	0.187219					
rs63790901	9	66116329	2.42E-06	0.187219					
rs48184290	9	66134887	2.42E-06	0.187219					
rs24885776	9	66139020	2.42E-06	0.187219					
rs36661307	9	66173381	2.42E-06	0.187219					
rs39679507	9	66173485	2.42E-06	0.187219					
rs38375545	9	66177635	2.42E-06	0.187219					
rs37119462	9	66181805	2.42E-06	0.187219					
rs36617605	9	66196460	2.42E-06	0.187219					
rs36970576	9	66213444	2.42E-06	0.187219					
rs36329340	9	66224405	2.42E-06	0.187219					
rs6340549	9	66225900	2.42E-06	0.187219					
rs37270612	9	66261184	2.42E-06	0.187219					
rs36554703	9	66275014	2.42E-06	0.187219					
rs50129629	9	66305937	2.42E-06	0.187219					
rs48524343	9	66306657	2.42E-06	0.187219					
rs6362034	9	66348426	2.42E-06	0.187219					
rs6172573	9	66352312	2.42E-06	0.187219					
rs50430893	9	66365122	2.42E-06	0.187219					
rs46755430	9	66380486	2.42E-06	0.187219					
rs48325416	9	66383060	2.42E-06	0.187219					
rs	Chrm	Pos	p-value	Minor Allele Frequency					
-------------	------	----------	---------	------------------------					
rs50177983	9	66400613	2.42E-06	0.187219					
rs49605255	9	66406179	2.42E-06	0.187219					
rs52554987	9	66418314	2.42E-06	0.187219					
rs47353345	9	66439796	2.42E-06	0.187219					
rs46217906	9	66469229	2.42E-06	0.187219					
rs51183659	9	66469243	2.42E-06	0.187219					
rs46584626	9	66490398	2.42E-06	0.187219					
rs6362722	9	66507267	2.42E-06	0.187219					
rs6169928	9	66517104	2.42E-06	0.187219					
rs38022936	9	66540233	2.42E-06	0.187219					
rs36930708	9	66540328	2.42E-06	0.187219					
rs36418824	9	66540567	2.42E-06	0.187219					
rs46349242	9	66555842	2.42E-06	0.187219					
rs36536487	9	66560034	2.42E-06	0.187219					
rs37158762	9	66570343	2.42E-06	0.187219					
rs37051185	9	66581054	2.42E-06	0.187219					
rs37139390	9	66581658	2.42E-06	0.187219					
rs36614623	9	66602994	2.42E-06	0.187219					
rs37235617	9	66616750	2.42E-06	0.187219					
rs36608021	9	66630631	2.42E-06	0.187219					
rs36660038	9	66640455	2.42E-06	0.187219					
rs36783766	9	66641845	2.42E-06	0.187219					
rs49847984	9	66651704	2.42E-06	0.187219					
rs37624441	9	66657534	2.42E-06	0.187219					
rs37122966	9	66671871	2.42E-06	0.187219					
rs37021337	9	66673302	2.42E-06	0.187219					
rs48930973	9	66699226	2.42E-06	0.187219					
rs39298035	9	66724182	2.42E-06	0.187219					
rs36667140	9	66725166	2.42E-06	0.187219					
rs49596940	9	66802830	2.42E-06	0.187219					
rs39796135	9	66824421	2.42E-06	0.187219					
rs37673474	9	66839675	2.42E-06	0.187219					
rs6377151	9	66848263	2.42E-06	0.187219					
rs47793028	9	66858481	2.42E-06	0.187219					
rs49075721	9	66868958	2.42E-06	0.187219					
rs48326305	9	66872432	2.42E-06	0.187219					
rs	Major Allele	Genotype Count	p-value	Minor Allele Count					
-----------------	--------------	----------------	---------	--------------------					
rs46080556	9	66876025	2.42E-06	0.187219					
rs50136739	9	66876783	2.42E-06	0.187219					
rs47800115	9	66884052	2.42E-06	0.187219					
rs52485209	9	66902531	2.42E-06	0.187219					
rs48523627	9	66924266	2.42E-06	0.187219					
rs50650303	9	66927613	2.42E-06	0.187219					
rs50840957	9	66941054	2.42E-06	0.187219					
rs48578047	9	66964037	2.42E-06	0.187219					
rs45660894	9	66965627	2.42E-06	0.187219					
rs48048032	9	66990434	2.42E-06	0.187219					
rs51039463	9	66994269	2.42E-06	0.187219					
rs50397550	9	66994826	2.42E-06	0.187219					
rs51360544	9	67004075	2.42E-06	0.187219					
rs50881271	9	67015640	2.42E-06	0.187219					
rs50447914	9	67055454	2.42E-06	0.187219					
rs36407996	9	67081696	2.42E-06	0.187219					
rs36406680	9	67120379	2.42E-06	0.187219					
rs37730895	9	67198553	2.42E-06	0.187219					
rs37171453	9	67213739	2.42E-06	0.187219					
rs38653051	9	67215139	2.42E-06	0.187219					
rs36959002	9	67223854	2.42E-06	0.187219					
rs48407326	9	67240599	2.42E-06	0.187219					
rs38024759	9	67247568	2.42E-06	0.187219					
rs6389883	9	67256949	2.42E-06	0.187219					
rs6179724	9	67259349	2.42E-06	0.187219					
rs36301708	9	67298377	2.42E-06	0.187219					
rs37598571	9	67299074	2.42E-06	0.187219					
rs36684028	9	67324068	2.42E-06	0.187219					
rs36786833	9	67325207	2.42E-06	0.187219					
rs47421561	9	67362118	2.42E-06	0.187219					
rs37370249	9	67363140	2.42E-06	0.187219					
rs6381804	9	67366554	2.42E-06	0.187219					
rs36337872	9	67368543	2.42E-06	0.187219					
rs46461457	9	67380565	2.42E-06	0.187219					
rs38234424	9	67384488	2.42E-06	0.187219					
rs36281188	9	67386107	2.42E-06	0.187219					
SNP	Ch	bp	P-value	MAF					
-----------	----	------	---------	------					
rs36786965	9	67386283	2.42E-06	0.187219					
rs48276669	9	67431341	2.42E-06	0.187219					
rs47628064	9	67468927	2.42E-06	0.187219					
rs51589062	9	67474508	2.42E-06	0.187219					
rs50956561	9	67478226	2.42E-06	0.187219					
rs48804034	9	67528104	2.42E-06	0.187219					
rs45961172	9	67530287	2.42E-06	0.187219					
rs46393388	9	67543354	2.42E-06	0.187219					
rs46422899	9	67565248	2.42E-06	0.187219					
rs50939336	9	67565941	2.42E-06	0.187219					
rs48921695	9	67568312	2.42E-06	0.187219					
rs49219739	9	67597773	2.42E-06	0.187219					
rs46993452	9	67614457	2.42E-06	0.187219					
rs49029424	9	67621728	2.42E-06	0.187219					
rs50733633	9	67626228	2.42E-06	0.187219					
rs51293074	9	67653478	2.42E-06	0.187219					
rs51178860	9	67681851	2.42E-06	0.187219					
rs46762458	9	67685792	2.42E-06	0.187219					
rs46146118	9	67729263	2.42E-06	0.187219					
rs51975935	9	67750936	2.42E-06	0.187219					
rs50616476	9	67768793	2.42E-06	0.187219					
rs46196644	9	67770385	2.42E-06	0.187219					
rs47221881	9	67782164	2.42E-06	0.187219					
rs51516768	9	67825448	2.42E-06	0.187219					
rs37056690	9	67870379	2.42E-06	0.187219					
rs37515812	9	67877173	2.42E-06	0.187219					
rs6376979	9	67912645	2.42E-06	0.187219					
rs37483426	9	67920361	2.42E-06	0.187219					
rs37548819	9	67934006	2.42E-06	0.187219					
rs36398937	9	67940714	2.42E-06	0.187219					
rs49963291	9	67984424	2.42E-06	0.187219					
rs38851612	9	67989941	2.42E-06	0.187219					
rs36573305	9	68011350	2.42E-06	0.187219					
rs36412564	9	68015658	2.42E-06	0.187219					
rs52421902	9	68092334	2.42E-06	0.187219					
rs38365838	9	68113486	2.42E-06	0.187219					
SNP	Chromosome	Position	Effect Size	P-value					
----------------	------------	------------	-------------	----------					
rs36893466	9	68114160	2.42E-06	0.187219					
rs39137551	9	68123570	2.42E-06	0.187219					
rs36860226	9	68130997	2.42E-06	0.187219					
rs36499040	9	68193156	2.42E-06	0.187219					
rs37299115	9	68201216	2.42E-06	0.187219					
rs36521496	9	68244865	2.42E-06	0.187219					
rs51788589	9	68267747	2.42E-06	0.187219					
rs46101141	9	68267961	2.42E-06	0.187219					
rs48247578	9	68287820	2.42E-06	0.187219					
rs49272507	9	68329208	2.42E-06	0.187219					
rs51890913	9	68329246	2.42E-06	0.187219					
rs32899324	1	37117183	2.48E-06	0.173227					
rs50852207	1	37183892	2.48E-06	0.173227					
rs27933562	2	49930373	2.48E-06	0.18925					
rs32783618	7	122433524	2.48E-06	0.188622					
rs38406333	7	122855517	2.48E-06	0.188622					
rs37453036	7	122860942	2.48E-06	0.188622					
rs36818312	7	122865367	2.48E-06	0.188622					
rs37087696	7	122900423	2.48E-06	0.188622					
rs32789419	7	123174641	2.48E-06	0.188622					
rs32787906	7	123185641	2.48E-06	0.188622					
rs32826698	7	123519724	2.48E-06	0.188622					
rs32826128	7	123527459	2.48E-06	0.188622					
rs32826436	7	123531710	2.48E-06	0.188622					
rs32829515	7	123565988	2.48E-06	0.188622					
rs36834890	7	123856680	2.48E-06	0.188622					
rs36294141	7	123902465	2.48E-06	0.188622					
rs50630266	17	23720072	2.52E-06	0.186879					
rs48611889	17	24285997	2.52E-06	0.186879					
rs50014732	17	24435639	2.52E-06	0.186879					
rs49461674	17	24483561	2.52E-06	0.186879					
rs50405353	17	24483574	2.52E-06	0.186879					
rs51675770	17	24495899	2.52E-06	0.186879					
rs47699973	17	24503673	2.52E-06	0.186879					
rs50226428	17	24535060	2.52E-06	0.186879					
rs48601304	17	24635864	2.52E-06	0.186879					
SNP	Chromosome	Position	p-value	Manhattan Distance					
--------------	------------	------------	-------------	--------------------					
rs33782923	17	24899206	2.52E-06	0.186879					
rs33779096	17	24971323	2.52E-06	0.186879					
rs33802475	17	30492953	2.52E-06	0.186879					
rs50266335	17	30586877	2.52E-06	0.186879					
rs46547505	17	31084416	2.52E-06	0.186879					
rs46748440	17	31087109	2.52E-06	0.186879					
rs47438016	17	31487307	2.52E-06	0.186879					
rs47633451	17	31505852	2.52E-06	0.186879					
rs51775106	17	31548425	2.52E-06	0.186879					
rs49568236	17	31676037	2.52E-06	0.186879					
rs47184414	13	63671652	2.52E-06	0.176545					
rs50150006	13	63672826	2.52E-06	0.176545					
rs51457735	13	63843692	2.52E-06	0.176545					
rs50629131	13	64083663	2.52E-06	0.176545					
rs49040996	9	68306235	2.54E-06	0.189775					
rs36547346	3	143594304	2.60E-06	0.187495					
rs37049682	3	144088150	2.60E-06	0.187495					
rs37028917	3	144271879	2.60E-06	0.187495					
rs31122786	3	144451668	2.60E-06	0.187495					
rs31130591	3	144529580	2.60E-06	0.187495					
rs31132213	3	144530683	2.60E-06	0.187495					
rs49003163	16	11587678	2.61E-06	0.188633					
rs32380990	16	18826645	2.61E-06	0.188633					
rs36865528	14	70579191	2.63E-06	0.186997					
rs51203742	14	70611106	2.63E-06	0.186997					
rs51466029	14	70651811	2.63E-06	0.186997					
rs51037137	14	70723822	2.63E-06	0.186997					
rs31309663	14	70855222	2.63E-06	0.186997					
rs31298280	14	70907194	2.63E-06	0.186997					
rs31304978	14	70908593	2.63E-06	0.186997					
rs31297889	14	70933545	2.63E-06	0.186997					
rs31296879	14	70934602	2.63E-06	0.186997					
rs31293835	14	70974074	2.63E-06	0.186997					
rs31267930	14	71120652	2.63E-06	0.186997					
rs49092964	14	71364188	2.63E-06	0.186997					
rs31256901	14	71463651	2.63E-06	0.186997					
SNP	Chromosome	Position	P-value	OR					
-------------	------------	------------	----------	----------					
rs31214112	14	72014914	2.63E-06	0.186997					
rs31205096	14	72216874	2.63E-06	0.186997					
rs31173006	14	72368728	2.63E-06	0.186997					
rs31173036	14	72408668	2.63E-06	0.186997					
rs49250200	14	72580443	2.63E-06	0.186997					
rs48180495	14	72591169	2.63E-06	0.186997					
rs32591326	14	112970164	2.63E-06	0.186997					
rs32587188	14	113007007	2.63E-06	0.186997					
rs32587187	14	113007094	2.63E-06	0.186997					
rs32586383	14	113007200	2.63E-06	0.186997					
rs32586382	14	113007219	2.63E-06	0.186997					
rs32585642	14	113008061	2.63E-06	0.186997					
rs32590163	14	113055639	2.63E-06	0.186997					
rs32590162	14	113055754	2.63E-06	0.186997					
rs32590160	14	113056206	2.63E-06	0.186997					
rs32590159	14	113056500	2.63E-06	0.186997					
rs32584459	14	113120554	2.63E-06	0.186997					
rs32585422	14	113169948	2.63E-06	0.186997					
rs46443620	14	113298551	2.63E-06	0.186997					
rs45897207	14	113319523	2.63E-06	0.186997					
rs46656813	14	113400430	2.63E-06	0.186997					
rs46230773	14	113854086	2.63E-06	0.186997					
rs36946267	14	114306538	2.63E-06	0.186997					
rs37953083	14	114540082	2.63E-06	0.186997					
rs36802107	14	114636310	2.63E-06	0.186997					
rs49275031	14	114892919	2.63E-06	0.186997					
rs51178582	14	114917562	2.63E-06	0.186997					
rs47245173	14	114964311	2.63E-06	0.186997					
rs49571658	14	115294533	2.63E-06	0.186997					
rs37540045	14	115932244	2.63E-06	0.186997					
rs45636865	18	54850772	2.66E-06	0.186605					
rs38214383	18	61387563	2.66E-06	0.186605					
rs37024448	18	78265495	2.66E-06	0.186605					
rs36499872	18	78267384	2.66E-06	0.186605					
rs37174498	18	78284846	2.66E-06	0.186605					
rs36246283	18	78288093	2.66E-06	0.186605					
SNP	Chromosome	Position	P-Value	Minor Allele Frequency					
-------------	------------	----------	----------	------------------------					
rs38088637	18	78288249	2.66E-06	0.186605					
rs36958520	18	78515056	2.66E-06	0.186605					
rs38453406	18	78570136	2.66E-06	0.186605					
rs36812229	18	78573776	2.66E-06	0.186605					
rs36572546	18	78833976	2.66E-06	0.186605					
rs37059141	18	79133055	2.66E-06	0.186605					
rs36773308	18	79551436	2.66E-06	0.186605					
rs36979510	18	79580713	2.66E-06	0.186605					
rs37133203	18	79659832	2.66E-06	0.186605					
rs37159329	18	79799060	2.66E-06	0.186605					
rs37711686	18	79821159	2.66E-06	0.186605					
rs31788822	6	128252463	2.72E-06	0.188208					
rs38517973	12	34390181	2.74E-06	0.18675					
rs50678858	12	40390604	2.74E-06	0.18675					
rs51417406	12	40433048	2.74E-06	0.18675					
rs48446038	12	40441515	2.74E-06	0.18675					
rs52004744	12	40442081	2.74E-06	0.18675					
rs47637586	12	40455711	2.74E-06	0.18675					
rs46688704	12	40460571	2.74E-06	0.18675					
rs51892410	12	40472185	2.74E-06	0.18675					
rs47617362	12	40485362	2.74E-06	0.18675					
rs49597178	12	40497717	2.74E-06	0.18675					
rs49408352	12	40512673	2.74E-06	0.18675					
rs51917699	12	40549995	2.74E-06	0.18675					
rs6406921	12	40551005	2.74E-06	0.18675					
rs6158770	12	40551021	2.74E-06	0.18675					
rs47044169	12	40613897	2.74E-06	0.18675					
rs48640898	12	40615533	2.74E-06	0.18675					
rs46265499	12	40624758	2.74E-06	0.18675					
rs51154266	12	40731979	2.74E-06	0.18675					
rs46863397	12	40766528	2.74E-06	0.18675					
rs48589483	12	40777836	2.74E-06	0.18675					
rs47155090	12	40816920	2.74E-06	0.18675					
rs46957913	12	41093470	2.74E-06	0.18675					
rs47860722	12	41100409	2.74E-06	0.18675					
rs52655445	12	41131066	2.74E-06	0.18675					
SNP	Chrom	Position	Log10 P	q-value					
---------------	-------	------------	----------	---------					
rs50482991	12	41155385	2.74E-06	0.18675					
rs52641334	12	41171005	2.74E-06	0.18675					
rs48012314	12	41180082	2.74E-06	0.18675					
rs48169814	12	41186871	2.74E-06	0.18675					
rs49647331	12	41198993	2.74E-06	0.18675					
rs49802817	12	41208451	2.74E-06	0.18675					
rs47317447	12	41274173	2.74E-06	0.18675					
rs49859855	12	41315677	2.74E-06	0.18675					
rs47572612	12	41328983	2.74E-06	0.18675					
rs47705013	12	41556179	2.74E-06	0.18675					
rs47477177	12	41879056	2.74E-06	0.18675					
rs37392247	12	41912478	2.74E-06	0.18675					
rs38404497	12	42011536	2.74E-06	0.18675					
rs37488356	12	42206995	2.74E-06	0.18675					
rs39301134	12	42215044	2.74E-06	0.18675					
rs36649878	12	42218064	2.74E-06	0.18675					
rs37416213	12	42220729	2.74E-06	0.18675					
rs38056502	12	42261053	2.74E-06	0.18675					
rs37058868	12	42273041	2.74E-06	0.18675					
rs37950782	12	42275018	2.74E-06	0.18675					
rs52446866	12	42606401	2.74E-06	0.18675					
rs50556895	12	42811172	2.74E-06	0.18675					
rs49205249	12	43166382	2.74E-06	0.18675					
rs47243609	12	43475726	2.74E-06	0.18675					
rs47611098	12	43524402	2.74E-06	0.18675					
rs45875181	12	43547274	2.74E-06	0.18675					
rs46707868	12	43548849	2.74E-06	0.18675					
rs47031384	12	43606072	2.74E-06	0.18675					
rs47438399	12	43758566	2.74E-06	0.18675					
rs50445852	12	43820452	2.74E-06	0.18675					
rs49202778	12	43822368	2.74E-06	0.18675					
rs49482445	12	43822383	2.74E-06	0.18675					
rs48848535	12	43822550	2.74E-06	0.18675					
rs48997369	12	43862892	2.74E-06	0.18675					
rs47405685	12	43868356	2.74E-06	0.18675					
rs46744108	12	43940386	2.74E-06	0.18675					
rs	Chr	Start	p-Value	MAF					
----------------	-----	-------	---------	------					
rs46605173	12	43947883	2.74E-06	0.18675					
rs46701417	12	43948865	2.74E-06	0.18675					
rs46982381	12	43951257	2.74E-06	0.18675					
rs50193577	12	43999974	2.74E-06	0.18675					
rs50508021	12	44000379	2.74E-06	0.18675					
rs50382375	12	44001675	2.74E-06	0.18675					
rs49596358	12	44111764	2.74E-06	0.18675					
rs50897661	12	44116715	2.74E-06	0.18675					
rs49100471	12	44117467	2.74E-06	0.18675					
rs32099746	12	66651744	2.74E-06	0.18675					
rs32103889	12	66655570	2.74E-06	0.18675					
rs32105513	12	66657143	2.74E-06	0.18675					
rs32106376	12	66657163	2.74E-06	0.18675					
rs32103589	12	66659406	2.74E-06	0.18675					
rs32104856	12	66660259	2.74E-06	0.18675					
rs49854700	12	66765365	2.74E-06	0.18675					
rs32118287	12	66781304	2.74E-06	0.18675					
rs32124847	12	66828267	2.74E-06	0.18675					
rs32134439	12	66878270	2.74E-06	0.18675					
rs32135355	12	66878316	2.74E-06	0.18675					
rs32138767	12	66922108	2.74E-06	0.18675					
rs32136238	12	66949881	2.74E-06	0.18675					
rs32142893	12	66953539	2.74E-06	0.18675					
rs32145817	12	67040862	2.74E-06	0.18675					
rs32152920	12	67072386	2.74E-06	0.18675					
rs32167185	12	67142263	2.74E-06	0.18675					
rs32168474	12	67142909	2.74E-06	0.18675					
rs32177250	12	67169632	2.74E-06	0.18675					
rs32198994	12	67468744	2.74E-06	0.18675					
rs32199002	12	67468982	2.74E-06	0.18675					
rs46668322	12	68156344	2.74E-06	0.18675					
rs36371914	12	68334112	2.74E-06	0.18675					
rs36776748	12	68474862	2.74E-06	0.18675					
rs46555639	12	90056273	2.74E-06	0.18675					
rs47768273	12	92263340	2.74E-06	0.18675					
rs51645668	12	92961979	2.74E-06	0.18675					
rs27166134	2	20407398	2.82E-06	0.188845					
rs27184167	2	23662908	2.82E-06	0.188845					
rs38267918	5	131234070	2.83E-06	0.187513					
rs37837392	5	131238990	2.83E-06	0.187513					
rs37215995	5	131251642	2.83E-06	0.187513					
rs36989849	5	131371412	2.83E-06	0.187513					
rs37498312	5	131371431	2.83E-06	0.187513					
rs37355302	5	131375527	2.83E-06	0.187513					
rs37253900	5	131375972	2.83E-06	0.187513					
rs37100728	5	131400484	2.83E-06	0.187513					
rs36391382	5	131400832	2.83E-06	0.187513					
rs38388261	5	131403419	2.83E-06	0.187513					
rs31201166	14	72163050	2.84E-06	0.1891					
rs47865024	19	3125547	2.87E-06	0.186874					
rs37406791	19	3290669	2.87E-06	0.186874					
rs36463751	19	3430247	2.87E-06	0.186874					
rs36739976	19	3613434	2.87E-06	0.186874					
rs37552721	19	5168078	2.87E-06	0.186874					
rs37361176	19	5191219	2.87E-06	0.186874					
rs36396226	19	5193282	2.87E-06	0.186874					
rs37209662	19	5228289	2.87E-06	0.186874					
rs38152662	19	5343175	2.87E-06	0.186874					
rs36979098	19	5433187	2.87E-06	0.186874					
rs37399532	19	5515642	2.87E-06	0.186874					
rs36464166	19	5619157	2.87E-06	0.186874					
rs38870454	1	9690292	2.90E-06	0.187437					
rs30737389	1	120556824	2.90E-06	0.187437					
rs45920082	1	121034640	2.90E-06	0.187437					
rs32868148	9	65094739	3.01E-06	0.188935					
rs50469542	9	66416150	3.01E-06	0.188935					
rs27574360	4	133884437	3.24E-06	0.186498					
rs27578237	4	134271709	3.24E-06	0.186498					
rs27578194	4	134283929	3.24E-06	0.186498					
rs27578147	4	134306671	3.24E-06	0.186498					
rs27578114	4	134315926	3.24E-06	0.186498					
rs27578111	4	134316358	3.24E-06	0.186498					
SNP	Chromosome	Position	p-Value	MAF					
-------------	------------	----------------	---------	-------					
rs27578022	4	134336464	3.24E-06	0.186498					
rs31846156	15	87292777	3.37E-06	0.173925					
rs32108716	12	66694958	3.40E-06	0.189138					
rs51955425	16	72788939	3.53E-06	0.183817					
rs4203146	16	73624179	3.57E-06	0.160604					
rs4203158	16	73626715	3.57E-06	0.160604					
rs4203159	16	73627098	3.57E-06	0.160604					
rs49791987	16	73634287	3.57E-06	0.160604					
rs4203186	16	73637376	3.57E-06	0.160604					
rs4203509	16	73865267	3.57E-06	0.160604					
rs4203550	16	73885132	3.57E-06	0.160604					
rs51994823	17	33766971	3.65E-06	0.169664					
rs49629788	17	33767492	3.65E-06	0.169664					
rs51346762	17	33791241	3.65E-06	0.169664					
rs46439310	17	34046644	3.65E-06	0.169664					
rs26828028	11	31235263	3.74E-06	0.167762					
rs52649558	12	42642305	3.75E-06	0.183467					
rs32122316	12	66822676	3.86E-06	0.194331					
Table S7. Significant SNPs associated with LCA intima+media/EELx100% in 30 inbred mouse strains.

dbSNP	Chromosome	Position, bp	p-value	Effect size
rs36294984	12	102175044	1.64E-07	5.35241
rs36281276	12	102181524	1.64E-07	5.35241
rs36677986	1	165121248	1.68E-07	5.35456
rs37370522	1	165124350	1.68E-07	5.35456
rs38372684	1	165124376	1.68E-07	5.35456
rs27831183	4	43542462	1.72E-07	5.35142
rs28320686	4	43620641	1.72E-07	5.35142
rs28320653	4	43645470	1.72E-07	5.35142
rs28320604	4	43650523	1.72E-07	5.35142
rs28320543	4	43662649	1.72E-07	5.35142
rs28320511	4	43688855	1.72E-07	5.35142
rs28311534	4	43732460	1.72E-07	5.35142
rs49300701	12	70834268	4.29E-07	5.28592
rs32825856	12	98293756	4.29E-07	5.28592
rs32826743	12	98311790	4.29E-07	5.28592
rs32831405	12	98324424	4.29E-07	5.28592
rs32832502	12	98431791	4.29E-07	5.28592
rs32833315	12	98431830	4.29E-07	5.28592
rs32835668	12	98440111	4.29E-07	5.28592
rs27077445	11	92536007	6.75E-07	5.31958
rs47184414	13	63671652	1.56E-06	5.28121
rs50150006	13	63672826	1.56E-06	5.28121
rs51457735	13	63843692	1.56E-06	5.28121
rs50629131	13	64083663	1.56E-06	5.28121
rs31846156	15	87292777	1.62E-06	5.2561
rs27077330	11	92579730	3.95E-06	4.97734
rs27077326	11	92580059	3.95E-06	4.97734
rs27077313	11	92580950	3.95E-06	4.97734
rs27077297	11	92594015	3.95E-06	4.97734
rs27062266	11	92606779	3.95E-06	4.97734
rs4140244	11	92609707	3.95E-06	4.97734
rs27062241	11	92609733	3.95E-06	4.97734
Table S8. Blood flow profiles in the left carotid arteries across the groups.

Groups	Parameters	Mean Velocity	End Diastolic Velocity	Peak Systolic velocity	VTI	Mean Gradient	Pulsatility
		mm/s	mm/s	mm/s	mm	mmHg	index
Npr2+/+	Sham	303 ± 63	135 ± 24	521 ± 107	64 ± 11	0.430 ± 0.181	1.27 ± 0.05
n=5	Ligated	38 ± 6	5 ± 1	74 ± 13	6 ± 0	0.006 ± 0.002	1.79 ± 0.11
Npr2+/-	Sham	233 ± 28	119 ± 15	405 ± 50	51 ± 3	0.227 ± 0.057	1.21 ± 0.11
n=4	Ligated	42 ± 15	12 ± 4	87 ± 29	6 ± 1	0.010 ± 0.006	1.78 ± 0.14

n, Number of mice. *, p<0.05 vs. proper sham group.
Supplemental Figure Legends:

Figure S1. Variation in carotid remodeling in ten inbred mouse strains. Representative 3-dimensional reconstructions of the 2mm-length from the bifurcation of the left carotid artery after sham (SHAM) or ligation (LIG) operation in males of 129X1/SvJ (129X1), A/J (A), AKR/J (AKR), BALB/cJ (BALB), BTBR T+ Itpr3tf/J (BTBRT), BUB/BnJ (BUB), C3H/HeJ (C3H), C3HeB/FeJ (C3HEB), C57BL/6J (C57BL), C57L/J (C57L) mice. Black color shows lumen, yellow – intima, red – media, green – adventitia volume.

Figure S2. Variation in carotid remodeling in ten inbred mouse strains. Representative 3-dimensional reconstructions of the 2mm-length from the bifurcation of the left carotid artery after sham (SHAM) or ligation (LIG) operation in males of C58/J (C58), CBA/J (CBA), CE/J (CE), DBA/2J (DBA), FVB/NJ (FVB), I/LnJ (ILN), KK/HIJ (KK), LG/J (LG), LP/J (LP), MA/MyJ (MA) mice. Black color shows lumen, yellow – intima, red – media, green – adventitia volume.

Figure S3. Variation in carotid remodeling in ten inbred mouse strains. Representative 3-dimensional reconstructions of the 2mm-length from the bifurcation of the left carotid artery after sham (SHAM) or ligation (LIG) operation in males of NOD/LtJ (NOD), NON/LtJ (NON), NZB/BINJ (NZB), NZW/LacJ (NZW), PL/J (PL), RIIIS/J (RIIIS), SEA/GnJ (SEA), SJL/J (SJL), SM/J (SM), SWR/J (SWR) mice. Black color shows lumen, yellow – intima, red – media, green – adventitia volume.

Figure S4. Genome-wide association (GWA) of the left carotid artery (LCA) media trait in 30 mouse strains. A. GWA of LCA media volume, \(x10^6 \mu m^3\). Open circles are controls. Black circles are ligated mice. Values are mean±SEM; *, p<0.05 vs. control or other mouse strains. n=4-6 per group. B. GWA of LCA media volume. Each circle represents a SNP. Mouse
chromosomes are on X-axis. Gray line shows a threshold of significance.

Figure S5. Genome-wide association (GWA) of the left carotid artery (LCA) external elastic lamina (EEL) trait in 30 mouse strains. A. GWA of LCA EEL volume, x10^6 μm^3. Open circles are controls. Black circles are ligated mice. Values are mean±SEM; *, p<0.05 vs. control or other mouse strains. n=4-6 per group. B. GWA of LCA EEL volume. Each circle represents a SNP. Mouse chromosomes are on X-axis. Gray line shows a threshold of significance.

Figure S6. Genome-wide association (GWA) of the left carotid artery (LCA) adventitia trait in 30 mouse strains. A. GWA of LCA adventitia volume, x10^6 μm^3. Open circles are controls. Black circles are ligated mice. Values are mean±SEM; *, p<0.05 vs. control or other mouse strains. n=4-6 per group. B. GWA of LCA adventitia volume. Each circle represents a SNP. Mouse chromosomes are on X-axis. Gray line shows a threshold of significance.

Figure S7. Increases in PicroSirius Red staining in male Npr2^{+/−} mice. A. A representative image of PicroSirius Red-stained ligated left carotid artery (LCA) in male Npr2 wild type (Npr2^{+/+}) mouse. B. A representative image of PicroSirius Red-stained ligated LCA in male Npr2 heterozygous (Npr2^{+/−}) mouse. Insets are corresponding females. Scale bar is 100μm. Black brackets indicate intima-media area. C. A quantification of fibrosis (red color) in intima-media area of the LCA, %. Individual Npr2^{+/+} mice are shown as black circles. Open circles indicate Npr2^{+/−} mice. Gray lines are mean values; *, p<0.05 vs. Npr2^{+/+} males; †, p<0.05 vs. Npr2^{+/−} females. n=3 animals per group.
Figure S1
Figure S2
Figure S3
Figure S6

GWA LCA adventitia volume, $-\log_{10}(p \text{ value})$

LCA adventitia volume, $\times 10^6 \mu m^3$

129X1
A
AKR
BALB
BTBRT
BUB
C3H
C3HEB
C57BL
C57L
C58
CBA
CE
DBA2
FVB
ILN
KK
LG
LP
MA
NOD
NON
NZB
NZW
PL
RIII
SEA
SJL
SM
SWR

Control
Ligated

*
Figure S7