Inner hair cell stereocilia are embedded in the tectorial membrane

Pierre Hakizimana & Anders Fridberger

Mammalian hearing depends on sound-evoked displacements of the stereocilia of inner hair cells (IHCs), which cause the endogenous mechanoelectrical transducer channels to conduct inward currents of cations including Ca\(^{2+}\). Due to their presumed lack of contacts with the overlaying tectorial membrane (TM), the putative stimulation mechanism for these stereocilia is by means of the viscous drag of the surrounding endolymph. However, despite numerous efforts to characterize the TM by electron microscopy and other techniques, the exact IHC stereocilia-TM relationship remains elusive. Here we show that Ca\(^{2+}\)-rich filamentous structures, that we call Ca\(^{2+}\) ducts, connect the TM to the IHC stereocilia to enable mechanical stimulation by the TM while also ensuring the stereocilia access to TM Ca\(^{2+}\). Our results call for a reassessment of the stimulation mechanism for the IHC stereocilia and the TM role in hearing.
Sound transduction into nerve signals happens when sound-evoked vibrations of the stereocilia of the inner hair cells (IHCs) and outer hair cells (OHCs) cause an indiscriminate entry of K\(^+\) and Ca\(^{2+}\) into the cells through open mechanoelectrical transducer (MET) channels\(^1\)–\(^3\). These currents activate the OHC-based cochlear amplifier, essential for hearing faint sounds\(^6\)–\(^7\) and cause the IHCs to produce electrical discharges in the auditory nerve\(^8\)–\(^9\).

Patch-clamp recordings from isolated hair cells have established that extracellular [Ca\(^{2+}\)], which a recent discovery of high [Ca\(^{2+}\)] in the tectorial membrane (TM)\(^10\) helped estimate at 40–150 µM\(^11\), contributes to the regulation of hearing sensitivity.

Because the stereocilia of OHCs are attached to the TM\(^12\), their motions are proportional to the basilar membrane (BM) displacements\(^13\)–\(^14\).

However, the IHC stereocilia stimulation mechanism is poorly understood.

Comparison of cochlear microphonic (CM) recordings in OHC-less and control guinea pigs in the early 70s suggested that the IHC stereocilia must be freestanding from the TM because their responses depended on the BM velocity\(^15\)–\(^16\).

This generally agrees with the intracellular recordings from the IHCs that showed phase difference relative to CM recordings\(^17\). However, the obvious constraints imposed by the insertion of the recording electrodes\(^18\) might complicate the interpretation of these data.

While electron micrographs of the organ of Corti (OC) from the guinea pig freeze-dried samples have showed a good tissue preservation, the TM was detached from both the OHC and IHC stereocilia\(^19\). Today, the preservation of the TM-stereocilia relationship in fixed tissues remains a challenge\(^20\).

Here we use reflected light and fluorescence confocal microscopy to investigate the TM-stereocilia relationship in the guinea pig. We show that IHC and OHC stereocilia are similarly TM-embedded and that Ca\(^{2+}\) ducts connect the TM to the stereocilia of IHCs and OHCs.

Our results challenge the classic anatomical representation of the OC\(^21\) and show that the TM-embedment enables the stereocilia of OHCs and IHCs to directly access the TM mechanical stimulation and Ca\(^{2+}\).

Results

IHC stereocilia are TM-embedded. Pioneered in the 80s\(^,\)\(^22\), the temporal bone preparation from the guinea pig makes it possible to investigate sound transduction in functional and largely intact OC\(^10\)\(^,\)\(^23\)–\(^26\). Its CM recordings exhibit amplitudes and nonlinearity (Fig. 1a, b, c) generally consistent with those measured in living animals\(^27\). In addition, its cochlear mechanical responses are consistent with those obtained in vivo in intact cochleae\(^28\) and in vivo OC confocal imaging\(^29\) has confirmed that the hair cell morphology is well preserved in our preparation. This suggests that the native morphological organization and physiology of the OC and the TM, are most likely preserved in this preparation, making it suitable for investigating TM-IHC stereocilia relationships.

Although the TM appears nearly completely transparent to white light\(^30\), we realized recently that it reflects the green laser light, which we used to acquire confocal images of the TM and OC in situ. Staining with fluorescence dyes is not necessary and therefore image acquisition can be achieved through an intact Reissner’s membrane.

In the reflected light images, the reticular lamina (RL) was brighter than the TM, making it easier to distinguish an interface line between the two structures, with no obvious gap between them (Fig. 1d). This is consistent with the fact that the stereocilia in the OHC region are attached to the TM\(^12\)–\(^31\). However, the TM-RL attachment, which contrasts with the traditional schematic representation of the OC\(^21\), indicates in addition that the OHC stereocilia are TM-embedded. Furthermore, the TM-RL attachment in the IHC region was surprising and suggests that the IHC stereocilia, too, are TM-embedded.

To test the TM-RL attachment strength, we stimulated the OC with a sound intensity of 103 dB sound pressure level (SPL), which causes the RL to move towards the BM\(^32\) (see Supplementary Movie 1). Surprisingly, the TM was pulled along while its shared interface with the RL, including in the IHC region, remained tight, causing the TM to drastically compress as it adjusted to the deformation of the OC (Supplementary Movie 1). This behavior was seen in all 37 preparations tested and indicated that the TM and RL were firmly attached in the IHC and OHC regions alike.

Immediately after the acoustic overstimulation stopped, the TM relaxed faster than the RL, causing a TM-RL gap to briefly appear (Supplementary Movie 1 and Fig. 1e), suggesting that the TM-RL attachments were overstretched by the OC contraction. However, this gap recovered (Supplementary Movie 1 and Fig. 1f) and Fig. 1g vs. h), indicating that it represented rather a pathological state.

Ca\(^{2+}\) is required for the integrity of various sensory structures of the OC\(^33\)–\(^34\) but its effect on the TM integrity is poorly documented. Swapping endolymph with perilymph affected TM thickness but the results largely varied from one study to another\(^35\)–\(^36\). Millimolar concentrations of Ca\(^{2+}\)-chelating agents are routinely used to remove the TM from the RL\(^37\), but micromolar concentrations deplete TM Ca\(^{2+}\) without detaching the TM and had a reversible effect on mechanotransduction\(^10\). This suggests that low levels of Ca\(^{2+}\)-chelating agents could be used to investigate Ca\(^{2+}\) depletion effect on the TM relationships with the RL and stereocilia in functional OC.

Figure 1i and Supplementary Movie 2 show that before ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetracetic acid (EGTA) application, the TM rested tightly on the RL. However, upon 100 µM EGTA application through a thin glass electrode, the TM swelled rapidly, causing its normally “biconvex” shape to look more circular (Fig. 1i, Supplementary Movie 2); a behavior consistent in six preparations tested. These shape changes also caused a small TM-RL gap to appear in the OHC region (Fig. 1j, Supplementary Movie 2). Although these changes were largely reversible (Supplementary Movie 2), they also suggested that Ca\(^{2+}\) depletion caused the TM interactions with the RL and stereocilia to weaken.

To investigate this possibility, we subjected the TM-RL junction to acoustic overstimulation in five of the preparations above immediately after EGTA application.

As shown by Supplementary Movie 2, after a brief acoustic overstimulation, the TM detached from the RL in all five preparations tested. Typically, when overstimulation stopped, the TM-RL attachments tended to recover (Supplementary Movie 2) but repeated EGTA injections combined with overstimulation eventually caused the TM to permanently detach from the RL, leaving the OC TM-less (Fig. 1m and Supplementary Movie 2). This indicates that the TM-RL attachments were robust but also Ca\(^{2+}\)-dependent.

To gain a deeper insight into the TM-stereocilia relationship, we combined reflected light and fluorescence confocal imaging after OC staining with the membrane dye di-3-aneppds\(^10\).

High-resolution reflected light confocal images showed that the TM rested on the OC, where it intimately interacted with the RL, seen as a bright structure that spans from the inner phalangeal cells to the Hensen’s cells (Fig. 2a). A close inspection of the RL revealed weaker reflectivity zones in the OHC regions that delimited adjacent cuticular plates of the three OHC rows (Fig. 2a), in direct contact with the TM.
Surprisingly, the head region of the pillar cells was poorly reflective (Fig. 2a). A survey of the literature showed that this region is highly enriched in actin filaments, a characteristic shared with the stereocilia. This similarity could explain why both structure types had a poor reflectivity (Fig. 2a).

In the fluorescence channel, di-3-aneppdhq-stained the hair cells and their stereocilia (Fig. 2b).

Overlay of the reflected light and fluorescence channels showed that the OHC somatic and cuticular plate signals from both channels matched (Fig. 2c, d). In addition, the overlay demonstrated that the IHC stereocilia were TM-embedded (Fig. 2d). The image also shows that the OHC stereocilia were not merely attached to the TM but were rather TM-embedded (Fig. 2c).

Ca²⁺ ducts ensure stereocilia access to TM Ca²⁺. To further investigate the TM-stereocilia relationships, we used a Ca²⁺ ratiometric indicator where Cal-520L, a bright and sensitive low affinity Ca²⁺ dye, and Cy5, a bright Ca²⁺-insensitive fluorophore, were conjugated to a 10 kDa-dextran. Because Cal-520L/Cy5 were spectrally independent, their presence made the conjugate a reliable ratiometric Ca²⁺ indicator. Typically, 2D OC confocal
Fig. 1 The TM interacts tightly with the RL including in the IHC region. a–c Effect of sound pressure level (SPL) on CM amplitude in the cochlear apical region in the temporal bone preparation from the guinea pig. When the eardrum is acoustically stimulated by a speaker inserted in the ear canal, the hair cells produce the CM (the individual examples shown in a were recorded in response to a 180-Hz tone burst at 74 and 54 dB SPL respectively). The peak-to-peak amplitudes from the raw CM waveforms were plotted against frequency and for several dB SPL values to generate the frequency-tuning curves shown in b (the individual curves shown in b are from the same preparation as a). The CM peak-to-peak amplitudes associated with the frequency-tuning curves were then averaged for 26 preparations and plotted against dB SPL to produce the plot shown in c (solid line, mean; error bar, s.e.m.). Source data are provided as a Source data file. d Reflected light confocal image of the OC. Note the sealed TM-RL interface including within the IHC region. e Acoustic overstimulation (OS)-induced contraction of the OC exposed a TM-RL gap. f When the OS stopped, the TM-RL gap resealed. g 3D reconstruction (29 z-stacks with a spacing of 1 µm) of the OC before acoustic overstimulation. h 3D reconstruction (26 z-stacks with a spacing of 1 µm) of the OC after the preparation was allowed to recover from OS. i Image of the OC showing a tight TM-RL interface before EGTA treatment. j Upon EGTA injection, the TM swelled markedly, which exposed a TM-RL gap. k 3D reconstructions of the OC before (l) and after EGTA injection (m) show that the TM swelling associated with Ca²⁺ removal by EGTA caused the TM to loosen from the RL (both reconstructions were obtained from 41 z-stacks with a spacing of 1 µm). l When the EGTA injection was followed by OS, the TM detached from the RL. All scalebars 50 µm. Data in d–h were representative of 37 different preparations. Data in i–l were representative of six preparations; Data in m are representative of five preparations.

images associated with the two fluorophores were acquired simultaneously within minutes of the indicator injection.

To visualize purely Ca²⁺-dependent signals, the Cal-520L and Cy5 2D confocal images were divided on a pixel-by-pixel basis, which resulted in ratiometric images of the OC, where the ratio in each pixel depends on Ca²⁺ (Fig. 3a, b).

As shown by Fig. 3a–d, Ca²⁺ ratiometric imaging produced Ca²⁺ signals within the stereocilia while also revealing high Ca²⁺ filamentous structures, or Ca²⁺ ducts, that radially spanned the TM to attach to the IHC and OHC stereocilia.

Although most of these Ca²⁺ ducts ran parallel to each other, they also branched occasionally, especially closer to the stereocilia attachment points, where they contacted stereocilia bundles in IHCs, row 1 OHCs, row 2 OHCs, and row 3 OHCs (Fig. 3a–d) and these findings were consistent in several locations of the cochlear apical region imaged in 12 preparations.

Since the Ca²⁺ concentration in the stereocilia has remained elusive despite its critical importance for hearing, we used the ratiometric images to quantify the stereocilia bundle Ca²⁺ ratios (Fig. 3e). In IHCs, the Ca²⁺ ratio was 0.94 ± 0.02 (n = 19 IHCs from 11 preparations, mean ± s.e.m.). In row 1 OHCs, the Ca²⁺ ratio was 0.91 ± 0.03 (mean ± s.e.m.; n = 22 row 1 OHCs from ten preparations). In row 2 OHCs, the Ca²⁺ ratio was 0.88 ± 0.03 (mean ± s.e.m.; n = 34 row 2 OHCs from eight preparations). In row 3 OHCs, the Ca²⁺ ratio was 0.94 ± 0.01 (mean ± s.e.m.; n = 33 row 3 OHCs from eight preparations). The Ca²⁺ ratio differences between the stereocilia types were not statistically significant (p = 0.1, Kruskal–Wallis test).

Interestingly, the Ca²⁺ indicator produced a signal in the cell bodies (Fig. 3a–d), possibly due to accumulation of the indicator from the injection site (Fig. 3f) via endocytosis typical to dextrans.

To determine whether Ca²⁺ from the ducts is transported to the stereocilia, we assessed Ca²⁺ mobility in the ducts relative to the stereocilia. Specifically, we monitored the fluorescence recovery of the dextran-conjugated Ca²⁺ dye Cal-520L after photobleaching (FRAP, reviewed in 40) a 1 micron-wide spot.
within a Ca\(^{2+}\) duct-rich region and in same-location IHC stereocilia near the center of the bundle (Fig. 3g).

After photobleaching the Ca\(^{2+}\) signal (i.e., Cal-520L fluorescence), it recovered rapidly in both regions of interest (Fig. 3h). On average, the mobile fractions were 0.75 ± 0.01 and 0.76 ± 0.02 in the stereocilia and same-location Ca\(^{2+}\) duct region, respectively (mean ± s.e.m, \(n = 41\) same-location TM-IHC stereocilia from five preparations). The difference was not statistically significant (\(p = 0.7\), Wilcoxon signed-rank test). The recovery halftime in Ca\(^{2+}\) duct region was 2.89 ± 0.11 s (mean ± s.e.m, \(n = 41\) same-location TM-IHC stereocilia from five preparations). For the stereocilia bundles, the recovery halftime was significantly shorter, i.e., 2.58 ± 0.10 s (\(p = 0.002\), Wilcoxon signed-rank test).

The high mobile fraction of as much as 75–76% suggests that much of the Ca\(^{2+}\) in the stereocilia and Ca\(^{2+}\) ducts was freely mobile while the reminder could have a role in maintaining the integrity of the TM and sensory structures as discussed above.

Assuming that some form of Ca\(^{2+}\) equilibrium exists between the Ca\(^{2+}\) ducts and the stereocilia thanks to their attachments, the faster flow of stereocilia Ca\(^{2+}\) into the cell would drive the ducts’ Ca\(^{2+}\) into the stereocilia due to the Le Chatelier principle.

Together, the data described above indicate that the Ca\(^{2+}\) ducts attach the TM to the stereocilia of IHCs and OHCs and support that the Ca\(^{2+}\) ducts ensure these stereocilia access to TM Ca\(^{2+}\).

Sound-evoked mechanical responses of the TM and stereocilia.

The TM-embedment of the IHC stereocilia raises the question of how these stereocilia are stimulated.

To address this issue, we stained the TM (known to have a high negative charge-density\(^{41}\)), with the cationic dye di-3-aneppdhq\(^{10}\) and then investigated the sound-evoked motions of same-location TM and stereocilia by high-speed confocal imaging\(^{42}\).

Figure 4a shows the fluorescence pattern across the di-3-aneppdhq-stained OC. Di-3-aneppdhq-stained the hair cells and their stereocilia (Fig. 4a) whose morphology was similar to what is seen in vivo\(^{29}\). Surprisingly, di-3-aneppdhq-stained also the TM (Fig. 4a), indicating that adjusting the microscope sensitivity can reveal more details in the TM (compare Figs. 4a and 2b). Although the TM staining was relatively weak, it was enough to see that the IHC and OHC stereocilia bundles were TM-embedded (Fig. 4a).

A close examination of the TM revealed 1 µm-wide granular structures (GSs) randomly distributed across the TM (Fig. 4a). Remarkably, one GS can be seen near the RL, supporting the TM-RL attachment (Fig. 4a).
We then used GS-stereocilia bundle pairs (Fig. 4b–e) to investigate the sound-evoked mechanical relationship between the TM and stereocilia in IHC and OHC regions by high-speed confocal imaging42, which allows for acquisition of 12 images at 12 equidistant phases of the acoustic stimulus. Row 1 OHC stereocilia bundles (Fig. 4c) were not included because their stereocilia bundles do not often appear perfectly straight when viewed in the cross-section orientation.

To quantify the sound-evoked motion of the TM and stereocilia, the image series above were analysed by optical flow algorithms in MATLAB42, which tracks and stores the coordinates of these structures across the acoustic phases. Plotting these phase-dependent positions in a two-dimensional-space (transversal vs. radial directions) yield elliptical trajectories, for the TM (red trajectories, Fig. 4b, d, e) and stereocilia (blue trajectories, Fig. 4b, d, e) in the IHC and OHC
regions. Trajectories from different preparations were then fitted with ellipse equations (see Methods) for statistical analysis of the associated parameters.

Figure 4f–h, shows the averaged sound-evoked motion trajectories of the TM and stereocilla from the IHCs, row 2 OHCs, and row 3 OHCs, respectively when the intensity and the frequency of the sound stimulus were respectively = 80 dB SPL and =200 Hz (the best frequency, BF). It was evident that the motion amplitude of the TM was smaller relative to same-location stereocilla. However, this behavior was a common feature in both the IHCs and OHCs as detailed below.

In the IHC region, the TM moved nearly transversally towards the BM, with a major peak-to-peak amplitude of 116 ± 7 nm (mean ± s.e.m.; n = 21 same-location TM and IHCs from nine preparations, red plots, Fig. 4f). In the row 2 OHC region (Fig. 4g), the TM moved with an amplitude of 178 ± 11 nm (mean ± s.e.m.; n = 23 same-location TM and row 2 OHCs from 12 preparations) while in row 3 OHC region (Fig. 4h) the TM motion had a peak-to-peak amplitude of 183 ± 13 nm (mean ± s.e.m.; n = 17 same-location TM and row 3 OHCs from 13 preparations).

In agreement with past studies24,25,43, the motion trajectory at the stereocilla bundle tip was radially inclined and the major axis peak-to-peak amplitude was larger relative to the TM across the OC (Fig. 4f–h). In the IHC region (Fig. 4f, blue trajectory), the peak-to-peak motion amplitude of the stereocilla bundle tip was 180 ± 13 nm (mean ± s.e.m.; n = 21 same-location TM and IHCs from nine preparations) and the difference relative to the same-location TM counterpart was significant (p = 0.00006, Wilcoxon signed-rank test). In row 2 OHCs (Fig. 4g, blue trajectory), the stereocilla tip motion amplitude was 224 ± 14 nm (mean ± s.e.m.; n = 23, same-location TM and row 2 OHCs from 12 preparations), which was significantly larger relative to same-location TM counterpart (p = 0.00003, Wilcoxon signed-rank test). In row 3 OHC stereocilla (Fig. 4h, blue trajectory), the peak-to-peak motion amplitude of the stereocilla tip was 251 ± 22 nm (mean ± s.e.m.; n = 17, same-location TM and row 3 OHCs from 13 preparations), which in this case was also significantly larger compared to same-location TM motion amplitude (p = 0.0003, Wilcoxon signed-rank test).

Plotting the average trajectories on their approximative location on the composite image of the OC from Fig. 2c, confirms that the peak-to-peak motion amplitude for the TM was smaller relative to same-location bundle tip, irrespective of the hair cell type (Fig. 4i). Since our data above show that the TM and stereocilla are attached, the difference in their motion amplitudes indicates that the TM-stereocilla links stretched during sound stimulation.

As shown by Fig. 5a–c, the stereocilla and TM responded to frequencies between 150 and 500 Hz and the motions were tuned. In addition, same-location TM and stereocilla had a similar BF, irrespective of the hair cell type. Although the BF exhibited small variations with values of 230–240 Hz for the IHC and row 3 OHC regions, and 200 Hz for the row 2 OHC region, this was clearly not a parameter that distinguished IHC from OHC regions (Fig. 5a–c). The differences between the TM and stereocilla motion amplitudes seen across frequency indicate that the TM-stereocilla links stretched in a frequency-dependent fashion both in the IHC and OHC regions.

Radially, the stereocilla motion amplitude remained larger relative to same-location TM (Fig. 5d–f). In the IHC region, the stereocilla motion amplitude was 80 ± 11 nm compared to 25 ± 4 nm for same-location TM (Fig. 5d, blue vs. red traces; mean ± s.e.m.; n = 21 same-location TM and IHCs from nine preparations; p = 0.0005, Wilcoxon signed-rank test). In the row 2 OHC region, the stereocilla motion amplitude was 45 ± 7 nm compared to 28 ± 4 nm for same-region TM (Fig. 5e, blue vs. red traces; mean ± s.e.m.; n = 23 same-location TM and row 2 OHCs from 12 preparations; p = 0.009, Wilcoxon signed-rank test). In the row 3 OHC region, the stereocilla motion amplitude was 54 ± 13 nm compared to 38 ± 9 nm for same-region TM (Fig. 5f, blue vs. red traces; mean ± s.e.m.; n = 17 same-location TM and row 3 OHCs from 13 preparations; p = 0.36, Wilcoxon signed-rank test). The larger IHC radial response is consistent with the fact that the cochlear amplifier boosts the IHC motion radially33.

Remarkably, the stereocilla radial motion BF compared poorly to that of the TM (Fig. 5d–f). In IHCs, the BF was 230 Hz for the stereocilla, compared to 270 Hz for same-location TM (Fig. 5d). In the row 2 OHC region, the stereocilla BF was 200 Hz compared to 270 Hz for same-location TM (Fig. 5e). In the row 3 OHC region, however, both the stereocilla and same-location TM had an identical BF of 270 Hz (Fig. 5f), and the higher BF could be explained by the larger distance from the pivot point. However, the radial motion BF was clearly not a good discriminator that distinguished the IHCs from the OHCs.

A key argument frequently advanced by supporters of the IHC stimulation by viscous drag is that the IHC vs. OHC motions exhibit a phase difference as large as 180°15,44, which would cause the IHCs and OHCs as well as the associated TM regions to move antiphase44–46.

To address this issue, we examined the motion phases for the stereocilla bundle tip and same-location TM for frequencies between 150 and 500 Hz (Fig. 5g–i). The phase data were then analyzed with linear mixed modeling (LMM, see Methods).

For the IHC stereocilla bundle tip, the phase decreased from −1.61 ± 0.09 to −10.89 ± 0.08 rad (mean ± s.e.m.; n = 21 same-location TM and IHCs from nine preparations; Fig. 5g, blue trace). For same-location TM, the phase decreased from −1.56 ± 0.08 to −10.51 ± 0.19 rad (mean ± s.e.m.; n = 21 same-location TM and IHCs from nine preparations; Fig. 5g, red trace). The two traces were similar (p = 0.1, LMM, n = 21 same-location TM and IHCs from nine preparations). The phase-frequency function had a slope of −0.024 rad/Hz and the frequency dependency of the phase was statistically significant (p = 6 × 10−213, LMM, n = 21 same-location TM and IHCs from nine preparations).

In the row 2 OHC region, the stereocilla bundle and TM phases decreased from −1.71 ± 0.08 to −10.91 ± 0.11 rad (mean ± s.e.m.; n = 23 same-location TM and row 2 OHCs from 12 preparations; Fig. 5h, blue trace) and from −1.75 ± 0.07 to −10.83 ± 0.11 rad (mean ± s.e.m.; n = 23 same-location TM and
row 2 OHCs from 12 preparations; Fig. 5h, red trace), respectively. The two phase-frequency functions overlapped \((p = 0.8, \text{LMM}, n = 23\) same-location TM and row 2 OHCs from 12 preparations). The associated slope was \(-0.024\) rad/Hz and the frequency dependency of the phase was statistically significant \((p = 1 \times 10^{-232}, \text{LMM}, n = 23\) same-location TM and row 2 OHCs from 12 preparations).

In the row 3 OHC region, the phase for the stereocilia bundle and TM decreased from \(-1.76 \pm 0.09\) to \(-11.06 \pm 0.15\) rad (mean ± s.e.m. \(n = 17\) same-location TM and row 3 OHCs from 13 preparations; Fig. 5i, blue trace) and from \(-1.77 \pm 0.09\) to \(-10.87 \pm 0.14\) rad (mean ± s.e.m. \(n = 17\) same-location TM and row 3 OHCs from 13 preparations; Fig. 5i, red trace), respectively. The two phase-frequency functions were undistinguishable \((p = 0.5, \text{LMM}, n = 17\) same-location TM and row 3 OHCs from 13 preparations).
LMM, \(n = 17 \) same-location TM and row 3 OHCs from 13 preparations) and the associated slope was \(-0.024 \text{ rad/Hz}\). The frequency dependency of the phase was statistically significant \((p = 2 \times 10^{-177})\). LMM, \(n = 17 \) same-location TM and row 3 OHCs from 13 preparations).

These results show that during acoustic stimulation, IHC and OHC stereocilia experience a similar mechanical relationship with TM and are consistent with the stereocilia-TM-embedding in both the IHC and OHC regions.

Mechanical measurement on isolated TM fragments from the mice have suggested that the TM has its own longitudinally propagating traveling waves\(^{47,48}\) that could stimulate stereocilia in the cochlea\(^{49}\) exist in the cochlea.\(^{49}\) Although various types of traveling waves have been shown to propagate through the cochlea,\(^{47,48}\) and to activate the MET channels. However, this has yet to be demonstrated in a functional cochlea.

To address this issue, we evaluated the radial motion phases of the stereocilia bundle and same-location TM for frequencies between 150 and 500 Hz (Fig. 5j–l). The data were then analyzed by LMM.

In the IHC region, the stereocilia phase decreased from 1.67 ± 0.08 rad to \(-6.67 \pm 0.47\) rad with a slope of \(-0.0231 \text{ rad/Hz}\) (mean ± s.e.m.; \(n = 21 \) same-location TM and IHCs from nine preparations; Fig. 5j, blue trace). For same-location TM, the phase decreased from 0.034 ± 0.43 to \(-4.42 \pm 1.64\) rad with a slope of \(0.0124 \text{ rad/Hz}\) (mean ± s.e.m.; \(n = 21 \) same-location TM and IHCs from nine preparations; Fig. 5j, red trace). The slope difference between the two phase-frequency functions was statistically significant \((p = 0.0001, \text{LMM, } n = 21 \text{ same-location TM and IHCs from nine preparations})\).

In addition, the phase dependency in frequency and structure type were statistically significant with \(p = 1 \times 10^{-28}\) and 0.001, respectively (LMM).

In the row 2 OHC region, the phase associated to the stereocilia decreased with a slope of \(-0.0228\) rad/Hz from 1.36 ± 0.27 to \(-6.78 \pm 0.37\) rad (mean ± s.e.m.; \(n = 23 \) same-location TM and row 2 OHCs from 12 preparations; Fig. 5k, blue trace). For the same-location TM, the phase decreased with a slope of \(-0.0108\) rad/Hz from 0.11 ± 0.42 to \(-3.42 \pm 1.12\) rad (mean ± s.e.m.; \(n = 23 \) same-location TM and row 2 OHCs from 12 preparations; Fig. 5k, red trace). The slopes associated with the two phase-frequency functions were statistically different \((p = 2 \times 10^{-7}, \text{LMM, } n = 23 \text{ same-location TM and row 2 OHCs from 12 preparations})\). In addition, the effect of the frequency on the phase was statistically significant \((p = 2 \times 10^{-36}, \text{LMM})\).

In the row 3 OHC region, the phase associated to the stereocilia bundle decreased with a slope of \(-0.0212\) rad/Hz from \(-0.30 \pm 0.42\) to \(-7.68 \pm 0.63\) (mean ± s.e.m.; \(n = 17 \) same-location TM and row 3 OHCs from 13 preparations; Fig. 5l, blue trace). For the TM, the phase decreased with a slope \(-0.0095\) rad/Hz from \(-0.46 \pm 0.38\) to \(-3.40 \pm 1.90\) rad (mean ± s.e.m.; \(n = 17 \) same-location TM and row 3 OHCs from 13 preparations; Fig. 5l, red trace). These slopes were statistically different \((p = 0.0002, \text{LMM, } n = 17 \text{ same-location TM and row 3 OHCs from 13 preparations})\).

In addition, the effect of the frequency and structure type on the phase were statistically significant \((p = 5 \times 10^{-19}, \text{LMM})\).

Although various types of traveling waves have been shown to exist in the cochlea\(^{49,52}\), the radial phase data above constitute the first in situ demonstration for the existence of the TM own traveling waves\(^{47}\).

How deep are the IHC stereocilia-TM-embedded? To determine how deep the TM-stereocilia embedding was, we stained the OC with dextran-conjugated zFluor. According to the supplier (AAT Bioquest, USA), zFluor is much more photostable i.e., brighter than Cy5 for identical spectral characteristics.

To our surprise, zFluor produced not only a strong labeling in the TM but also in the hair cell membrane as well as their stereocilia and cuticular plates (Fig. 6a–d).

Historically, only potentiometric dyes have been known to stain hair cells\(^{33–35}\). That zFluor produced a strong labeling both in the hair cell membranes, their cuticular plates and stereocilia, suggests that zFluor could be a reliable potentiometric dye.

A close examination of the TM region revealed that zFluor stained the Hensen’s stripe as well as GSs similar to the ones seen in the confocal images of the di-3-aneppdq-stained TM (Fig. 4). Remarkably, some of these GSs localized as low as the level of IHC cuticular plates, as seen in di-3-aneppdq-stained TM images (compare Figs. 4a and 6), indicating that the full length of the IHC and OHC stereocilia bundles were embedded within the TM. Furthermore, zFluor stained TM structures that greatly resembled the Ca\(^{2+}\) ducts and which contacted the IHC and OHC stereocilia in a similar fashion as Ca\(^{2+}\) ducts (Fig. 6).

If zFluor stained the hair cells due to their membrane electrical properties as argued above, the staining of the GSs and Ca\(^{2+}\) ducts could reflect the existence of a unique electrical micro-environment in these structures, presumably conferred by Ca\(^{2+}\).

Overall, these zFluor imaging data are consistent with the data above that showed that the TM remained attached to the IHC stereocilia even when acoustically stimulated at 150–500 Hz.

To determine whether the TM-stereocilia links remained stable at even higher frequencies, we stimulated IHC stereocilia and same-location TM at 1 kHz and visualized the motion by high-speed confocal imaging\(^{42}\). This is 5x the BF for the cochlear region of interest (Fig. 5a–f). To ensure that these low frequency hearing structures responded with a visible motion to such a high frequency, the SPL was increased to 103 dB SPL.

As shown by the Supplementary Movie 3 and Fig. 6d, which is a still image extracted from this movie, the TM and the IHC stereocilia moved with different motion patterns while the stereocilia bundle remained fully embedded in the TM, which is consistent with the data described above.

To investigate whether the GSs were regularly distributed along the cochlear spiral, we systematically acquired confocal images of the zFluor-stained TM and IHC stereocilia (see Fig. 6a, c, d for the exact frame size) every single µm and up to 14–35 µm in five animals, giving us access to a total of 130 optical sections for the TM-IHC regions for GS quantification. Of these sections, 116 (or about 90% of them) had at least one GS and only 14 of them lacked a GS. In average, the number of GSs was 2.1 ± 0.1 per optical section (mean ± s.e.m.). These data suggest that the GSs were somewhat regularly distributed longitudinally.

We note that GS-like structures have been observed by immunogold electron microscopy in the TM from the guinea pig, with irregular size and position distribution, while some of them formed clusters that could be consistent with our GSs\(^{56}\).
Discussion

In this study we have shown that Ca\(^{2+}\) ducts connect the TM to the stereocilia of IHCs and OHCs and that the TM-RL interface was tighter than previously thought. Specifically, the stereocilia of IHCs and OHCs were similarly TM-embedded. This similarity in stereocilia-TM relationship across hair cell types caused the IHC and OHC stereocilia to be phase-locked during sound stimulation. The IHC stereocilia remained TM-embedded even when the stimulus frequency was five times the BF, suggesting that the IHC stereocilia-TM links are stable at high frequencies.

Phylogenetically speaking, the emergence of TM elements some 320 million years ago has generally improved the hair cell frequency sensitivity compared to TM-less OCs\(^5\)\(^7\). However, the TM tends to be more useful for high frequency than for low frequency hearing\(^5\)\(^7\), raising the question of why amniotes conserved the TM in their low frequency hearing regions if it was barely relevant?

The presence of Ca\(^{2+}\) ducts could also address a prominent dichotomy that has long dodged the stereocilia: the resting MET channel \(P_{\text{open}}\) requires 40 to 150 µM in [Ca\(^{2+}\)]\(^1\)\(^1\)\(^1\), which is substantially higher than available in endolymph (typically 20 µM)\(^1\)^\(^0\)^\(^5\)\(^8\). Ca\(^{2+}\) ducts could resolve this issue by directly funnelling high TM Ca\(^{2+}\) concentration to the stereocilia.

Interestingly, Ca\(^{2+}\) removal weakened and disrupted the attachments of the TM to the RL and stereocilia. It is already known that proteins such as stereocilin attach the TM to the OHC stereocilia\(^1\)\(^2\). However, the expression of otoancorin near the IHC cuticular plate\(^5\)\(^9\) suggests that this could be one of the proteins that attach the IHC stereocilia to the TM. Our study suggests that the function of these proteins could be Ca\(^{2+}\)-dependent and will most likely spur interest into the Ca\(^{2+}\) dependency of their function.

While the exact molecular nature of the Ca\(^{2+}\) ducts will certainly be addressed by future studies, we also expect that their discovery will inspire research into the physiological role of the TM, whose function has been until recently thought to be mostly mechanical.

Fig. 6 IHC stereocilia are fully TM-embedded. a, b The confocal images of the (dextran-conjugated) zFluor-stained OC show that zFluor stained the IHCs and OHCs as well as the TM. In addition, the zFluor fluorescence patterns revealed filamentous structures that contacted the stereocilia in similar fashion as the Ca\(^{2+}\) ducts, suggesting that the Ca\(^{2+}\) ducts had electrical properties that activated zFluor. The dye stained also the granular structures (GSs) as well as the Hensen’s stripe (HS) most likely due to the associated electrical environments. c 3D reconstruction of the IHC and the associated TM region. The 3D structure was rotated to show the opposite side of the view seen in a. Again, the GSs and Ca\(^{2+}\) duct-like structures can easily be visualized. In addition, some GSs surprisingly localized close to the cell’s cuticular plate, which is part of the RL, as seen in Fig. 4a, supporting that the TM-embedded the entire length of the IHC stereocilia bundles. The 3D reconstruction was prepared in Imaris 9.2 from 35 z-stacks with a z-step of 1 µm. d High-speed confocal image of the IHC stereocilia and the associated TM region captured during acoustic stimulation with a 1 kHz-tone, i.e., 5x their best frequency, and at 103 dB SPL. Again, the IHC stereocilia bundle can be seen TM-embedded even when stimulated with such a high frequency tone. The GS captured between the HS and the stereocilia bundle suggests that some GSs could have a connective role that links the HS to the base and tip of the stereocilia bundle. Data in a–d were representative of five different preparations. All scalebars 5 µm.
Methods
The temporal bone preparation from the guinea pig. This study complied with all relevant ethical regulations for animal testing and research. All the animal procedures described in this study were approved by the Regional Ethics Committee in Linköping, Sweden (Permit number DNR 5111-2019).

Young adult guinea pigs of either sex (Dunkin Hartley, 200–400 g i.e., 2 to 5 weeks old) were anesthetized with a sodium pentobarbital intraperitoneal injection (0.8 mL, 50 mg/mL) and then decapitated. Immediately, the temporal bone was carefully and rapidly excised and mounted in a custom-built chamber, after which the bulla was gently opened with a fine scalpel and scissors in order to gain access to the cochlea. Right after this step, the entire preparation was immersed in an oxygenated (95% O2; and 5% CO2) cell culture medium (minimum essential medium with Earle’s balanced salts, room temperature). Because of the special design of the custom experimental chamber, the cochlea and the middle ear were immersed in the medium while the outer ear was shielded to allow for natural sound stimulation with a computer-controlled speaker inserted in the ear canal. With a fine scalpel, two small openings were made at the apex and base of the cochlea. A plastic tube was then fitted into the basal opening to allow perfusion of scala tympani with the medium above gently flowing (~0.6 mL/h) from an external (4 mL) tank. The apical opening allowed the perfusion medium to flow out and was used for confocal imaging and electrophysiological recording of sound-evoked responses of OC. Because of the immersion of the middle ear, the effective sound stimulus intensity decreased by at least 20 dB SPL. The values given in the present paper were therefore corrected accordingly.

Electrophysiology recording. For the recording of CM responses (1x1 amplifier (Dagan Instruments) of the OC, a thin capillary glass (World Precision Instruments) was pulled with a standard puller and filled with an endothym-mimicking solution containing 1.3 mM NaCl, 31 mM KHCO3, 128.3 mM KCl, and 0.023 mM CaCl2 (pH 7.4, osmolality 300 mos/kg) as well as a fluorescent dye or EGTA (100 μM) where indicated and beveled at an angle of 20° to 3–7 MΩ. The electrode was then used to penetrate the Reissner’s membrane with a stereocilia manipulator. Dye and pharmacological agents dissolved in the electrolyte as above were administrated either electrophoretically or by a gentle pressure injection, where indicated, with a Picospritzer. The CM data acquisition was achieved using Biorhodys’ CM recording system. The OC was imaged in the preparation above with a laser scanning confocal microscope (LSM 780 (ZEN 2012 black edition software), Zeiss, Germany). The microscope and the preparation are housed in a light protected Faraday enclosure stabilized by a vibration-damping table. A 40x, 0.8 NA water immersion lens (Nikon NIR APO) was used for reflected light confocal imaging of the OC and Ca2+ fluorescence confocal imaging with the ratiometric indicator Cal-520L/Cy5-Dextran Conjugate also known as RatioWorksTM (Cal-520L: excitation, 498 nm; emission, 521 nm; Cy5: excitation 651 nm; emission, 670 nm) as well the fluorescent dye or EGTA (100 μM) where indicated and beveled at an angle of 20° to 3–7 MΩ. The electrode was then used to penetrate the Reissner’s membrane with a stereocilia manipulator. Dye and pharmacological agents dissolved in the electrolyte as above were administrated either electrophoretically or by a gentle pressure injection, where indicated, with a Picospritzer. The CM data acquisition was achieved using custom LabView software.

Confocal imaging. The OC was imaged in the preparation above with a laser scanning confocal microscope (LSM 780 (ZEN 2012 black edition software), Zeiss, Germany). The microscope and the preparation are housed in a light protected Faraday enclosure stabilized by a vibration-damping table. A 40x, 0.8 NA water immersion lens (Nikon NIR APO) was used for reflected light confocal imaging of the OC and Ca2+ fluorescence confocal imaging with the ratiometric indicator Cal-520L/Cy5-Dextran Conjugate also known as RatioWorksTM (Cal-520L: excitation, 498 nm; emission, 521 nm; Cy5: excitation 651 nm; emission, 670 nm) as well the fluorescent dye or EGTA (100 μM) where indicated and beveled at an angle of 20° to 3–7 MΩ. The electrode was then used to penetrate the Reissner’s membrane with a stereocilia manipulator. Dye and pharmacological agents dissolved in the electrolyte as above were administrated either electrophoretically or by a gentle pressure injection, where indicated, with a Picospritzer. The CM data acquisition was achieved using custom LabView software.

Data availability
All relevant data that support the findings of this study are included within this published article and its Supplementary Movies and the Source Data File. Any remaining data supporting the findings from this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Received: 22 July 2020; Accepted: 6 April 2021; Published online: 10 May 2021

References
1. Denk, W., Holt, J. R., Shepherd, G. M. & Corey, D. P. Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15, 1311–1321 (1995).
2. Kawashima, Y. et al. Mechanotransduction in mouse inner ear hair cells requires Cacna1c. Neuron 121, 4796–4809 (2019).
3. Pan, B. et al. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79, 504–515 (2013).
4. Hudspeth, A. J. & Corey, D. P. Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl Acad. Sci. USA 74, 2407–2411 (1977).
5. Corey, D. P. & Hudspeth, A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281, 675–677 (1979).
6. Gale, J. E. & Ashmore, J. F. An intrinsic frequency limit to the cochlear amplifier. Nature 389, 63–66 (1997).
7. Liberman, M. C. et al. Prenist is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419, 300–304 (2002).
8. Issa, N. P. & Hudspeth, A. J. The entry and clearance of Ca2+ at individual presynaptic active zones of hair cells from the bullfrog’s sacculus. Proc. Natl Acad. Sci. USA 93, 9527–9532 (1996).
19. Bredberg, G., Lindeman, H. H., Ades, H. W., West, R. & Engström, H. Scanning

20. Raufer, S., Guinan, J. J. & Nakajima, H. H. Cochlear partition anatomy and

17. Cheatham, M. A. & Dallos, P. Response phase: a view from the inner hair cell.

18. Dallos, P., Santos-Sacchi, J. & Flock, A. Intracellular recordings from cochlear

22. Ulfendahl, M., Flock, A. & Khanna, S. M. Isolated cochlea preparation for the

14. Rhode, W. S. & Geisler, C. D. Model of the displacement between opposing

16. Russell, I. J. & Sellick, P. M. Low-frequency characteristics of intracellularly

15. Dallos, P., Billone, N. C., Durrant, J. D., Wang, C.-Y. & Raynor, S. Cochlear

31. Verpy, E. et al. Stereocilin connects outer hair cell stereocilia to one another

29. Tomo, I. et al. Imaging the living inner ear using intravital confocal

30. Richter, C.-P., Emadi, G., Getnick, G., Quesnel, A. & Dallos, P. Tectorial

35. Kronester-Frei, A. The effect of changes in endolymphatic ion concentrations

34. Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell

36. Shah, D. M., Freeman, D. M. & Weiss, T. F. The osmotic response of

9. Yu, X. L., Lewis, E. R. & Feld, D. Seismic and auditory tuning curves from

241

238

206 (1983).

132

–

124

+K

, and Ca2+

+ concentration. Hear. Res. 87, 187–207 (1995).

12. Ballestros, A., Fenoll-Ferrer, C. & Swartz, K. J. Structural relationship between

57. Manley, G. A. Cochlear mechanisms from a phylogenetic viewpoint.

54. Ramamoorthy, S., Wilson, T. M., Wu, T. & Nuttall, A. L. Non-uniform

37. Fischer, J. A. N., Kowalik, L. & Hudspeth, A. J. Imaging electrical resonance in

43. Tomo, I., Boutet de Monvel, J. & Fridberger, A. Sound-evoked radial strain in

50. Cooper, N. P. & Rhode, W. S. Fast travelling waves, slow travelling waves and

48. Ghaffari, R., Aranyosi, A. J., Richardson, G. P. & Freeman, D. M. Tectorial

52. Temchin, A. N., Recio-Spinoso, A., Cai, H. & Ruggero, M. A. Traveling waves

41. Jacob, S., Tomo, I., Fridberger, A., de Monvel, J. B. & Ulfendahl, M. Rapid

42. Jacob, S., Tomo, I., Fridberger, A., de Monvel, J. B. & Ulfendahl, M. Rapid

40. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent

47. Shah, D. M., Freeman, D. M. & Weiss, T. F. The osmotic response of
tectorial membrane calcium. Proc. Natl Acad. Sci. USA 116, 5756–5764 (2019).

49. Cooper, N. P. & Rhode, W. S. Nonlinear mechanics at the apex of the guinea-

51. Temchin, A. N., Recio-Spinoso, A., Cai, H. & Ruggero, M. A. Traveling waves

53. Nakagawa, T., Oghalai, J. S., Saggau, P., Rabbitt, R. D. & Brownell, W. E.

55. Fisher, J. A. N., Kowalik, L. & Hudspeth, A. J. Imaging electrical resonance in

56. Shah, D. M., Freeman, D. M. & Weiss, T. F. The osmotic response of

57. Manley, G. A. Cochlear mechanisms from a phylogenetic viewpoint.

58. Zwaanepoel, I. et al. Otoconin, an inner ear protein restricted to the

59. Bosher, S. K. & Warren, R. L. Very low calcium content of cochlear
doendrum, an extracellular fluid. Biophys. J. 105, 2666–2675 (2013).

60. Prasad, S. et al. Radixin modulates the function of outer hair cell stereocilia.

10. Strimbu, C. E., Prasad, S., Hakizimana, P. & Fridberger, A. Control of hearing

11. Ulfendahl, M., Flock, A. & Knahan, S. M. isolated cochlear preparation for the

12. Ballestros, A., Fenoll-Ferrer, C. & Swartz, K. J. Structural relationship between

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22870-1

NATURE COMMUNICATIONS | (2021)2012:26044 | https://doi.org/10.1038/s41467-021-22870-1 | www.nature.com/naturecommunications
Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-22870-1.

Correspondence and requests for materials should be addressed to P.H.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.