Coordination Behavior of a P_4-Butterfly Complex towards Transition Metal Lewis Acids: Preservation versus Rearrangement

Julian Müller and Manfred Scheer$^{[a]}$

Dedicated to Professor Gerhard Erker on the occasion of his 75th birthday.

Abstract: The reactivity of the P_4 butterfly complex ((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η1-P$_3$)$_2$) (1, Cp'''$=\eta^1$-C$_5$H$_5$Bu$_3$) towards divalent Co, Ni and Zn salts is investigated. The reaction with the bromide salts leads to ((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$(MBr)$_2$) (M = Co (2Co), Ni (2Ni), Zn (2Zn)) in which the P_4 butterfly scaffold is preserved. The use of the weakly ligated Co complex [Co(NCCCH$_3$)$_3$][SbF$_6$]$_2$, results in the formation of ((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$)[SbF$_6$]$_2$ (3), which represents the second example of a homoleptic-like octaphospha-metalla-sandwich complex. The formation of the threefold positively charged complex 3 occurs via redox processes, which among others also enables the formation of [((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$][Co][SbF$_6$]$_2$ (4), bearing a rare octaphosphabicyclo[3.3.0]octane unit as a ligand. On the other hand, the reaction with [Zn(NCCCH$_3$)$_3$][PF$_6$]$_2$, yields the spiro complex [((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$][Zn][PF$_6$]$_2$ (5) under preservation of the initial structural motif.

Introduction

Oligophosphorus compounds are a versatile usable class of compounds and are therefore in the focus of current research. As they typically exhibit several sterically accessible lone pairs, these compounds show a manifold coordination chemistry.$^{[3-9]}$ Some of the most prominent representatives are the bis(diphenyl)phosphines of the type P_nH$_n$P(CH$_3$)$_n$PPH$_n$ (dpmm, n = 1; dppe, n = 2; dppp, n = 3) that can act as monodentate,$^{[9]}$ chelating bidentate$^{[8-9]}$ or non-chelating bidentate$^{[6-9]}$ ligands. Due to their preference to form chelate complexes with small bite angles, these ligands are especially useful in homogeneous catalysis.$^{[2,3,10]}$ Compounds with a higher phosphorus content show an even more diverse coordination chemistry. For example, the monoanionic P$_4$ chain ([BF$_2$P-B-P-BF$_2$]$,^-[1]$ is able to coordinate up to two [Cr(CO)$_5$] fragments in an η3-fashion,$^{[12]}$ while linear tetraphosphines can undergo a [4 + 1] cycloaddition to give five membered metallacycles.$^{[12]}$ Furthermore, cyclic systems of tetraphosphines$^{[13]}$ and pentaphosphines$^{[14]}$ can also act as bidentate ligands. Here, regardless of the ring size, the oligophosphines always stabilize the metal center in a 1,3-coordination mode. However, the highest diversity of coordination modes is found for phosphorus ligands that do not bear any organic substituents.$^{[15]}$ These so called P_n ligands are usually obtained by reactions of white phosphorus (P$_4$) with either main group or transition metal moieties.$^{[15]}$ One of the first steps in the activation of the tetrahedral P_4 molecule is the formation of a tetraphosphabicyclo[1.1.0]butane unit$^{[16,17]}$ which can be stabilized by forming either mononucleophiles$^{[16,18]}$ or binucleophiles$^{[19-22]}$ P_4 butterfly complexes.

Our group could show that the P_4 butterfly complex [((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$] (1, Cp'''$=\eta^1$-C$_5$H$_5$Bu$_3$) also fulfils the requirements of a bidentate ligand (Figure 1, top left), which mimics the dpmm ligand.$^{[23,24]}$ In 1, the central P_4 butterfly unit coordinates the Lewis acids via its two “wing-tip” phosphorus atoms. This results in complexes that can best be compared with the corresponding dpmp complexes since they exhibit a very similar geometry, steric bulk and bite angle. However, in contrast to dpmm, we could also show that 1 is electronically very flexible. On the one hand, 1 can act as a 4-electron donor. This is demonstrated in the case of [Cu(NCCCH$_3$)$_3$][BF$_4$]$_2$, where the monoaadduct [((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$][Cu(NCCCH$_3$)$_3$][BF$_4$]$_2$ (A) as well as the spiro compound [((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$][Cu][BF$_4$]$_2$ (B) can be obtained, depending on the stoichiometry (Figure 1).$^{[25]}$ On the other hand, reactivity studies with Fe salts have shown that the reaction outcome is strongly dependent on the nature of the ligands since the ligands influence the electron affinity of the metal center. Therefore, the reaction with [FeBr$_2$·dme] (dme = dimethoxyethane) yields the neutral coordination compound [((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$][FeBr$_2$] (C).$^{[26]}$ However, performing the same reaction in the presence of an Fe1 salt with more labile acetoniyl ligands, an isomerization of the butterfly unit to an aromatic cyclo-P$_4$[Fe$_2$] entity ([Fe] = [Cp'''Fe(CO)$_2$]) is observed, which now acts as a 6-electron donor (Figure 1, top right). This leads to the formation of the first octaphosphorus-iron-sandwich complex [((Cp'''Fe(CO)$_2$)$_3$(μ$_3$η$^{1-3}$, P$_3$)$_2$][Fe][PF$_6$]$_2$ (D). The conditions of the isomerization of 1 are still not fully understood. However, the results

[a] J. Müller, Prof. M. Scheer
University of Regensburg
Institute of Inorganic Chemistry
93040 Regensburg (Germany)
E-mail: Manfred.Scheer@ur.de

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under:
https://doi.org/10.1002/chem.202005025.

© 2020 The Authors. Published by Wiley-VCH GmbH.

Communication

doi.org/10.1002/chem.202005025

Chem. Eur. J. 2021, 27, 3675 – 3681

Wiley Online Library

3675 © 2020 The Authors. Published by Wiley-VCH GmbH
with FeII have shown, that the reactivity is strongly dependent on the nature of the ligands of the Lewis acid. To investigate this phenomenon further and to rationalize under what conditions what kind of coordination behavior is to be expected, we investigated the reaction of the butterfly complex 1 with various divalent transition metal compounds.

Herein, we report on detailed studies of the coordination behavior of the butterfly complex 1 towards 3d transition metal-based Lewis acids. A preservation of the P\textsubscript{2} butterfly framework is observed in most of the reactions. However, it could also be shown that 1 has a high tendency to rearrange in the presence of weakly ligated d4 metals, which yields complexes that contain cyclo-P\textsubscript{2}P\textsubscript{2} units ([Fe \equiv Cp''Fe(CO)\textsubscript{2}]) or the rare octaphosphabicyclo[3.3.0]octane unit as ligands.

Result and Discussion

The reactions of 1 with 1.1 equivalents of the divalent bromide salts CoBr\textsubscript{2}, [NiBr\textsubscript{2}·dme] or ZnBr\textsubscript{2} lead to the formation of \(\{\text{[Cp''Fe(CO)\textsubscript{2}]_2(mu}_\eta^2-P\textsubscript{2})\} \) (M = Co (2Co), Ni (2Ni), Zn (2Zn)), respectively, which can be isolated in moderate crystalline yields (Scheme 1). The molecular structures of 2Co, 2Ni and 2Zn (Figures 2, S2 and S3) reveal that the P\textsubscript{2} butterfly unit is still intact and coordinates the Lewis acidic metal atom always via the two “wing-tip” phosphorus atoms. The metal centers are coordinated in a distorted tetrahedral fashion, which is indicated by the twist angles of the P1-M1-P2 plane to the Br1-M1-Br2 plane of 86.15(1)\textdegree (2Co), 84.39(4)\textdegree (2Ni) and 85.92(2)\textdegree (2Zn), respectively. The trend in the covalence radii24 of Fe (\(r_\text{Fe} = 1.16 \text{\AA}\), Co (\(r_\text{Co} = 1.11 \text{\AA}\)) and Zn (\(r_\text{Zn} = 1.18 \text{\AA}\)) is nicely reflected in the metal phosphorus bond lengths of C (2.4364(7)/2.4823(8) \text{\AA}),24 2Co (2.3614(11)/2.3959(11) \text{\AA}, 2Ni (2.3389(15)/2.3607(14) \text{\AA}, 2Zn (2.4479(6)/2.5002(6) \text{\AA}. However, the P–Ni bond lengths of 2Ni are longer compared to the ones in the square planar complex \([\text{dppm} \cdot \text{NiBr}_2]\) (2.143(2) \text{\AA} and 2.152(2) \text{\AA}).31 The deviation of the geometry of the nickel center (d4 configuration) from the preferred square planar geometry ([dppm]NiBr\textsubscript{2}) to a distorted tetrahedral geometry (2Ni) must be caused by the steric bulk of 1 that does not allow a square planar geometry at the nickel atom. With 70.102(18)\textdegree the bite angle of the P\textsubscript{2} butterfly unit in 2Zn is almost identical with the corresponding angle in C (70.27(3))31. The cobalt and nickel analogues exhibit a slightly larger bite angle of 73.55(4)\textdegree (2Co) and 72.08(5)\textdegree (2Ni). However, the bite angle in 2Ni is smaller compared to the one in [dppm]NiBr\textsubscript{2} (75.62(8)\textdegree).31 In all three compounds the P–P bond lengths are in the range of a common P–P single bond as it was observed for C24

The \(^1\text{H}\) NMR spectra of 2Co, 2Ni and 2Zn each show three signals for the two magnetically equivalent Cp'' ligands. The \(^1\text{H}\) NMR spectrum of 2Zn reveals two broad singlets at \(\delta = 1.42 \text{ppm and } \delta = 1.37 \text{ppm with an integral ratio of 18:9 which can be assigned to the three } 8\text{Bu groups. The broad signal with an integral of 2 at } \delta = 5.11 \text{ppm can be assigned to the two aryl } \text{H atoms of the Cp'' ligands. Since compound 2Co and 2Ni are paramagnetic, the signals in the } \text{1H NMR spectra are strongly shifted. The } \text{1H NMR spectrum of 2Co exhibits three broad signals at } \delta = -3.7, -5.8 \text{ and } -26.1 \text{ ppm with an} \text{}}
integral ratio of 18:9:2. In the case of 2Ni, the signals with an integral ratio of 9:18:2 are shifted to δ = 3.9, 3.3 and −15.8 ppm, respectively.

The 31P({H} NMR spectrum of 2Zn in CD2Cl2 reveals two sharp triplets of an A2X3 spin system at δ = −43.1 ppm and δ = −309.6 ppm (JPP = 198 Hz). In comparison to the chemical shifts of 2Zn, the signals of 1 (δ = −81.4 ppm and δ = −325.0 ppm)6,7 and A (δ = −73.2 ppm and δ = −313.7 ppm)26 are shifted to lower ppm values.

The 31P({H} NMR spectrum of 2Ni in CD2Cl2 shows only one very broad signal at δ = −267.3 ppm (ωPP = 575 Hz) while 2Co is 31P NMR silent. During the synthesis of 2Ni a diamagnetic byproduct is formed which can be observed in the 31P({H} NMR spectrum (CD2Cl2) of the reaction solution in form of an AAXX' spin system at δ = 97.4 ppm and 198.8 ppm. The corresponding coupling constants are summarized in Table S4.24,26 The integral ratio of main product to side product is 10:1. Despite several attempts, the exact structure of this byproduct could not be clarified yet, but according to the chemical shift as well as the coupling pattern, the presence of a cyclo-P4 unit is very likely. The formation of this byproduct may be attributed to a partial fragmentation of 1 as this can generate metal species that can be coordinated by 1. The formation of cyclo-P4 containing complexes, induced by a partial fragmentation of 1, has already been observed.26

The 31P({H} NMR spectrum of 2Ni in CD2Cl2 shows only one very broad signal at δ = −267.3 ppm (ωPP = 575 Hz) while 2Co is 31P NMR silent. During the synthesis of 2Ni a diamagnetic byproduct is formed which can be observed in the 31P({H} NMR spectrum (CD2Cl2) of the reaction solution in form of an AAXX' spin system at δ = 97.4 ppm and 198.8 ppm. The corresponding coupling constants are summarized in Table S4.24,26 The integral ratio of main product to side product is 10:1. Despite several attempts, the exact structure of this byproduct could not be clarified yet, but according to the chemical shift as well as the coupling pattern, the presence of a cyclo-P4 unit is very likely. The formation of this byproduct may be attributed to a partial fragmentation of 1 as this can generate metal species that can be coordinated by 1. The formation of cyclo-P4 containing complexes, induced by a partial fragmentation of 1, has already been observed.26

Although 2Co and 2Ni are paramagnetic, they are EPR silent, indicating the presence of high spin d7 and d8 configurations, respectively. The same behavior was observed for complex C where a high spin d7 configuration could be verified for the central iron atom.24 According to the applied Evans method25 compound 2Co possesses an effective magnetic moment of μeff = 4.8 μB. Although the value is higher than 3.9 μB which is expected for three unpaired electrons, it is in good agreement with experimentally found values of tetrahedrally coordinated Co6 complexes (μeff = 4.3–4.7 μB).26 Complex 2Ni exhibits an effective magnetic moment of μeff = 2.7 μB that fits to two unpaired electrons. However, this value is smaller compared to other tetrahedrally coordinated Ni6 compounds that have magnetic moments within the range of μeff = 3.3–4.0 μB.26 On the other hand, complexes of [NIX,L] (X = Cl, Br, I; L = bis-diphosphines) are mainly described to be diamagnetic caused by the square planar geometry.7,8,30

The unexpected formation of the sandwich complex D in the reaction of 1 with [Fe(NCCCH3)6][PF6]24 inspired us to investigate the reaction of 1 with M6 compounds containing labile ligands. Therefore, we reacted two equivalents of 1 with 1.05 equivalents of [M(NCCCH3)6][X2] (M = Co, n = 6, X = PF6, SbF6, Scheme 2; M = Ni, n = 6, X = PF6, SbF6, Scheme 3; M = Zn, n = 4, X = PF6, Scheme 4).

Based on 31P NMR spectroscopic investigations, the reaction of 1 with [Co(NCCCH3)6][X2] (X = PF6, SbF6) leads to the formation of a variety of products (Scheme 2). The use of the salt with the better soluble hexafluorophosphate anion only allowed the characterization of the already known compounds ([Cp"Fe(CO)2]2(μ3-P)(μ1-P)(Cp"Fe)][PF6]24 (E) and [Cp"Fe(CO)2]2[PF6]n (F) by single crystal X-ray structure analysis, 31P NMR
spectroscopy and mass spectrometry (see supporting information). However, switching to the less soluble hexafluoroantimonate anion additionally allows the isolation of \((\text{[Cp}'''\text{Co}]{\text{CO}}_4)]{\text{PF}_6}\) (3) (3\%) and few crystals of \((\text{[Cp}'''\text{Fe}]{\text{CO}}_4)]{\text{PF}_6}\) (4) \((\text{[Cp}'''\text{Fe}]{\text{CO}}_4)]{\text{SbF}_6}\) (4). The central \(\text{P}_4\) unit of 4 is a rare example of an octaphosphabicyclo[3.3.0]octane unit which must have been formed by a dime-}

ization of 1 in the presence of a \([\text{Co}]{\text{CO}}_4\)\(^{1+}\) unit. Complex 3 however, contains two cyclo-\(\text{P}_4\)(\(\text{Fe}\)) units that coordinate the central cobalt atom in an \(\eta^1\) coordination mode each. Therefore, 3 represents the second example of a homoletic-like octaphospha-metalla-sandwich complex.24 The threefold positive charge of 3 indicates that the central cobalt atom must be in the oxidation state of +III. Hence, 3 is isoelectronic to D34 which shows that the isomerization has a high tendency to occur in the presence of weakly ligated d\(^{8}\) metals. The charge of the complex also reveals that redox processes are involved in the formation of 3. Surprisingly, the cyclic voltamogram of \([\text{Co}]{\text{NCCCH}_3}_4]{\text{PF}_6}\) in CH\(_2\)Cl\(_2\) reveals that the \(\text{Co}^{3+}\) ion can only be reduced electrochemically, but not oxidized (Figure S33). On the other hand, 1 can be both oxidized and reduced electrochemically but both processes are irreversible (Figure S34). Therefore, the \(\text{Co}^{3+}\) ion is most likely produced chemically by a reduction of 1 during the reaction. However, the use of an excess of 1 as well as the addition of \([\text{CP}_2\text{Fe}]{\text{PF}_6}\) as an electron acceptor did not enhance the formation of 3 significantly. The driving force for this oxidation is most likely the isomerization of the butterfly units to the aromatic cyclo-\(\text{P}_4\)(\(\text{Fe}\)) units (see Figure 1, top), since DFT calculations showed that the analogue reaction of \([\text{Fe}]{\text{NCCCH}_3}_4]\(^{2+}\) and 1 is exothermic by \(-118.76\) kJ\ mol\(^{-1}\).24 The redox processes must also induce a degradation of 1, since all characterized side products indicate a partial decomposition of 1. The tendency of butterfly complexes to decompose and rearrange in the presence of reactive species or under harsh reaction conditions has already been discussed in the literature.19,20,24 Despite intensive efforts it was not possible to identify other products of this reaction that would allow a better insight into the reaction pathway.

This is mainly hindered by the very similar solubility of all the products since all are charged and bear the well soluble \(\text{Cp}'''\) ligand.

The single-crystal X-ray structure analysis of 3 reveals that the \(\text{P}_4\) butterfly units have isomerized into cyclo-\(\text{P}_4\) units that coordinate as 6 \(\pi\)-electron donors to the central \(\text{Co}\) atom (Figure 3). The P–P bond lengths vary from 2.135(2) to 2.154(2) Å and are between a P–P single \((=2.22\) Å)25 and a P–P double bond \((=2.04\) Å).31 Compared to other cyclo-\(\text{P}_4\)–

containing compounds, the P–P bond lengths of 3 are in good agreement.24,32,33 The geometry of the cyclo-\(\text{P}_4\) units is with P–P angles from 83.17(8) to 96.62(8)° slightly distorted compared to the square 2\(_2\)\(^{2+}\) anion of \([\text{Cs}]{\text{P}_6}{\text{e}}_2\text{NH}_3\) \((89.76(4)\) and 90.24(4)°).33 The deformation is most likely induced by the two sterically demanding \(\text{Fe}\) fragments that stabilize each cyclo-\(\text{P}_4\) unit. However, compared to the analogue iron complex D34 the P–P–P angles of 3 are slightly closer to the ideal value of 90°. The planar \(\text{P}_4\) rings in 3 (sums of the P–P–P angles are 359.95 and 359.96°) are almost parallel with an \(\text{P}_4\) cont.\(\text{Co}–\text{P}_4\) cont. angle of 178.00°(7). The two cyclo-\(\text{P}_4\) units are in an eclipsed conformation while D shows an intermediate state between the staggered and the eclipsed conformation.34 However, DFT calculations have predicted that the hypothetical \([\text{P}_4]\text{Co}^3\)–

anion containing square cyclo-\(\text{P}_4\) ligands has a staggered conformation \((D_4\)\) symmetry).34 The \(\text{Fe}–\text{P}\) distances vary from 2.1972(17) to 2.2055(17) Å and are shorter than the corresponding distances in D \((2.2255(9)\) to 2.2317(9) Å)34 and 1 \((2.348(2)\) and 2.3552(19) Å).19

The \(^1\)H NMR spectrum (CD\(_2\)CN) of 3 shows three broad signals for the magnetically equivalent \(\text{Cp}'''\) ligands at δ = 6.01, 1.44 and 1.39 ppm with an integral ratio of 2:9:18. The \(\text{P}^1\) (\(^1\)H) NMR spectrum (CD\(_2\)CN) of 3 reveals an AXX\(\) spin system at δ = 196.8 and 144.1 ppm (coupling constants are summarized

![Figure 3](image-url)
in Table S5). Compared to the iron containing complex D (δ = 114.3 and 91.7 ppm in CD$_2$Cl$_2$) the signals of 3 are strongly shifted downfield.

The molecular structure of 4 reveals the formation of a mono-cationic complex that contains an octaphospha-bicyclo[3.3.0]octane cage (Figure 4), which can be derived from the realgar structure type with a [Co(CO)$_3$]$^{3+}$ fragment inserted into the P4–P8 bond. The P$_3$ unit can also be described as two fused P$_3$ rings that are twisted due to the coordination of the [Co(CO)$_3$]$^{3+}$ fragment. The only comparable complex with a yet more symmetrical P$_3$ unit is [(phen)$_2$][CP$_{2}$Co]$_2$[μ$_2$-I,μ$_2$-I11:P$_4$].$^{[35]}$

However, the dicobalt complex consists of two allylic subunits (P–P bond length of 2.1519(6)–2.1580(6) Å) that are connected via P–P single bonds (2.1947(6)–2.2247(6) Å),$^{[35]}$ while the P–P bond lengths in 4 vary from 2.1928(17) Å to 2.2308(18) Å. The only exceptions are the P1–P8 (2.116(2) Å) and P4–P5 (2.111(2) Å) bonds that are shorter due to the side-on coordination of the cobalt atom. The four Co–P bond lengths in 4 are not equal. The distances to the phosphorus atoms that are also coordinated by an iron fragment are shorter (Co1–P1 (2.2533(1) Å), Co1–P5 (2.2551(17) Å) compared to the substituent free P atoms P4 (2.4058(18) Å) and P8 (2.4098(17) Å). The Fe–P distances vary from 2.2996(15) Å to 2.3115(15) Å and are slightly shortened compared to the ones in 1.$^{[19]}$

The question whether the central [M(CO)$_3$] fragment in 4 contains an iron or a cobalt atom cannot be unambiguously clarified by single crystal structure analysis. Therefore, a solution of 4 was investigated by ESI mass spectrometry, where the presence of cobalt was confirmed by the detection of the molecular ion peak at m/z = 1743.4. The 31P(1H) NMR spectrum of 4 in thf–d$_8$ shows an AA'MM'OO'XX' spin system at δ = 303.9, 234.2, −151.4 and −272.9 ppm (coupling constants are summarized in Table S6). Due to the diamagnetic nature of 4, it can be concluded that 4 also contains cobalt in the oxidation state +III, which means that the ligand constitutes a P$_8^{11+}$ unit.

Since the reaction of 1 with [Co(NCCH$_3$)$_3$][X]$_2$ (X = PF$_6$, SbF$_6$) leads to the formation of several side products, we investigated if the selectivity is increased when starting the reaction with compound 2Co (Scheme 2). Therefore, 2Co was treated with 1 and an excess (3 equivalents) of Tl[PF$_6$] in order to eliminate the two bromido ligands by the formation of TlBr. This should lead to vacancies in the coordination sphere of the Co(I) center while it is still bound to 1. However, the 31P(1H) NMR spectrum of the reaction mixture indicates that this alternative reaction pathway does not lead to an increased selectivity, since the obtained NMR spectrum is comparable to the one of the reaction of 1 with [Co(NCCH$_3$)$_3$][X]$_2$.

The reaction of 1 with [Ni(NCCH$_3$)$_3$][X]$_2$ (X = PF$_6$, SbF$_6$) leads also to the formation of several products (Scheme 3, 31P(1H) NMR of the reaction mixture is depicted in Figure S27). Despite several attempts, only the nickel-free fragmentation products E and F could be isolated and characterized, which were also observed in the analogue reaction with [Co(NCCH$_3$)$_3$][X]$_2$. The appearance of these degradation products indicates that 1 partially decomposes during the reaction with [Ni(NCCH$_3$)$_3$][X]$_2$ which might also be induced by redox processes.

In contrast, stirring 1 with [Zn(NCCH$_3$)$_3$][PF$_6$] leads to the quantitative formation of ([Cp$'''$"Fe(CO)$_3$]$_2$[μ$_2$-I,μ$_2$-I11:P$_4$])Zn[PF$_6$] (5; Scheme 4; 68%, > 95% according to 31P NMR spectroscopy). The spiro complex 5 bears two still intact P$_4$ butterfly units that coordinate the central zinc atom. The preservation of the P$_4$ butterfly scaffold can be explained by the electronic properties of Zn$^{11+}$ that has a d10 configuration. Therefore, the isomerization to cyclo-P$_4$ units (6n-electron donors) is not expected, but the preservation of the P$_4$ butterfly scaffold (4n-electron donor) enables the formation of a stable 18 valence electron complex. The existence of such spiro complexes was already observed for B.$^{[20]}$

The molecular structure of 5 reveals that the central Zn$^{11+}$ cation is coordinated by two butterfly units (Figure 5). The distorted tetrahedral geometry at Zn1 is indicated by a twist angle of the Zn1-P1-P2 plane to the Zn1-P1'-P2' plane of 75.5814(5)$^{[23]}$. This twist angle is slightly larger than the one in B (74.882(2)$^{[23]}$ but much smaller than the one in [Zn(n$^{-1}$-η$_2$-P(Pr)$_3$)$_2$N$_2$] (87.53(5)$^{[23]}$). The Zn–P bond lengths of 2.4471(11) and 2.4536(11) Å are in good agreement with the ones of complex 2Zn (2.4479(6), 2.5002(6) Å). The bite angle of 73.34(3)$^{[23]}$ is approx. 3° larger compared to 2Zn which can be explained by the steric repulsion of the four [Fe] fragments. With 2.2102(15)–2.2252(15) Å the distances between the “wing-tip” and the “bridge-head” P atoms are in the region of P–P single bonds, while the P3–P4 bond (2.1803(16) Å) has a slight double bond character. Compared to 1,$^{[18]}$ the P–P bond lengths are slightly elongated which indicates a widening of the P$_4$ butterfly scaffold during coordination of the Zn$^{11+}$ cation. At the same time, the Fe–P distances (2.2806(12), 2.2832(12) Å) are slightly shortened compared to the free ligand complex 1 (2.348(2), 2.3552(19) Å)$^{[18]}$.
The 1H NMR spectrum (CD$_2$Cl$_2$) of 5 shows the characteristic signals for the magnetically equivalent Cp" ligands at $\delta = 5.00$, 1.45 and 1.42 ppm. The 31P(1H) NMR spectrum (CD$_2$Cl$_2$) of 5 reveals an AA'X'X" spin system at $\delta = -13.2$ and -295.3 ppm (coupling constants are summarized in Table S8) for the cation and a septet at $\delta = -143.8$ ppm for the two PF$_6^-$ anions. Moreover, we were also interested in whether 5 can also be formed starting from 2Zn. Therefore, 2Zn is treated with the halogen abstractor Ti[PF$_6$] in the presence of 1. The quantitative formation of 5 was confirmed by 31P NMR spectroscopy.

Conclusions

We have reported on the versatile coordination behavior of the butterfly complex 1. On the one hand, 1 acts as a bidentate ligand for divalent bromide salts to give complexes 2Co, 2Ni, and 2Zn. In these compounds the P_4 butterfly unit coordinates the Lewis acids via the two “wing-tip” phosphorus atoms. Thereby, the exhibited bite angles are comparable to analogue dpdm complexes. On the other hand, however, the formation of two unidentified side products, which exhibit an altered P_4 scaffold and occur during the synthesis of 2Ni and 2Zn, indicates that complex 1 is electronically highly flexible. This behavior is especially emphasized in the reaction with [Co(NCCH$_3$)$_3$][SbF$_6$], which leads to 3 as the second example of a homoleptic octaphospha-metal-sandwich complex. Here, the P_4 ligands act as 6ν-electron donors, which is enabled by isomerization to aromatic cyclo-P_4 ligands. However, surprisingly the starting material [Co(NCCH$_3$)$_3$][SbF$_6$] gets at least partly oxidized from Co$^2+$ to Co$^3+$ which also leads to an unselective degradation of 1 and the formation of several byproducts, like the monocationic compound 4, a product of a dimerization of 1 in the presence of a [Co(CO)$_3$]$^{2+}$ fragment. Complex 4 contains a P_4 unit which represents a rare all-phosphorus derivative of bicyclo[3.3.0]octane. The reaction of 1 and [Zn(NCCH$_3$)$_3$][PF$_6$] leads to the formation of the spiro complex 5 that still bears intact P_4 butterfly units. However, this outcome highlights that the isomerization is not dependent on the nature of the ligand only, but also strongly related with electronic properties of the metal. Therefore, this study clearly shows that the rearrangement of 1 is feasible in the presence of weakly ligated d0 metals only.

Experimental Section

Crystallographic data: Deposition numbers 2026542 (2Co), 2026543 (2Ni), 2026544 (2Zn), 2026545 (3), 2026546 (4), 2026547 (5), 2026548 ([Cp"Fe(CO)$_3$][PF$_6$]), and 2026549 ([Cp"Fe(CO)$_3$][SbF$_6$]) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Sche 384/38-1). We thank Martin Weber for the measurement and interpretation of the cyclic voltammograms. Open access funding enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflict of interest.

Keywords: chelate ligands · cyclo-P_4 ligands · P_4 butterfly complexes · P_4 transformation · phosphorus

[1] K. H. Whitmire, Coord. Chem. Rev. 2018, 376, 114.
[2] J. A. Gillespie, D. L. Dodds, P. C. J. Kamer, Dalton Trans. 2010, 39, 2751.
[3] S. M. Mansell, Dalton Trans. 2017, 46, 15157.
[4] a) L.-S. Luh, U. B. Eke, L.-K. Liu, Organometallics 1995, 14, 440; b) Y. B. Malyshева, D. V. Moiseев, A. V. Gushchín, V. A. Dodonov, Russ. J. Gen. Chem. 2005, 75, 1766; c) D. V. Moiseev, Y. B. Malysheva, A. S. Shavyrin, Y. A. Kurskii, A. V. Gushchin, J. Organomet. Chem. 2005, 690, 3652.
[5] B. Gabor, S. Holle, P. W. Jolly, R. Mynott, J. Organomet. Chem. 1994, 466, 201.
[6] S. M. Jing, V. Balasanthiran, V. Pagar, J. C. Gallucci, T. V. RajanBabu, J. Am. Chem. Soc. 2017, 139, 18034.
[7] M. Schultz, F. Eisenträger, C. Regius, F. Rominger, P. Hanno-Igels, P. Jakob, I. Gruber, P. Hofmann, Organometallics 2012, 31, 207.
[8] J. A. S. Bomfim, F. P. de Souza, C. A. L. Figueiras, A. G. de Sousa, M. T. P. Gambardella, Polyhedron 2003, 22, 1567.
[9] A. M. Messinis, S. L. J. Luckham, P. W. Wells, D. Gianollo, E. K. Gibson, H. M. O'Brien, H. A. Sparkes, S. A. Davis, J. Callison, D. Elloríaga, O. Hernández-Fajardo, R. B. Bedford, Nat. Catal. 2019, 2, 123.
[10] a) M.-N. Birkholz n, Z. Freixa, P. W. N. M. van Leeuwen, Chem. Soc. Rev. 2009, 38, 1099; b) P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek, P. Dierkes, Chem. Rev. 2000, 100, 2741; c) P. Dierkes, P. W. N. M. van Leeuwen, Dalton Trans. 1999, 1519.
[11] V. Balema, H. Goesmann, E. Matern, G. Fritz, Z. Anorg. Allg. Chem. 1996, 622, 35.

[12] a) H. Binder, B. Schuster, W. Schwarz, K. W. Klinkhammer, Z. Anorg. Allg. Chem. 1999, 625, 699; b) D. Bongert, H.-D. Hausen, W. Schwarz, G. Heckmann, H. Binder, Z. Anorg. Allg. Chem. 1996, 622, 1167; c) S. Gómez-Ruiz, B. Gallego, E. Hey-Hawkins, Dalton Trans. 2009, 2915; d) S. Gómez-Ruiz, R. Wolf, E. Hey-Hawkins, Dalton Trans. 2008, 1982; e) K. Issleib, F. R. Krech, E. Lapp, Synth. React. Inorg. Met. Org. Chem. 1977, 7, 253.

[13] A. Forster, C. S. Cundy, M. Green, F. Stone, Inorg. Nucl. Chem. Lett. 1966, 2, 233.

[14] a) M. A. Bush, V. R. Cook, P. Woodward, Chem. Commun. (London) 1967, 630; b) S. J. Geier, D. W. Stephan, Chem. Commun. 2008, 2779; c) D. M. Yufanyi, T. Grrell, E. Hey-Hawkins, Eur. J. Inorg. Chem. 2019, 1557.

[15] a) B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164; b) M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236; c) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, Chem. Rev. 2010, 110, 4178.

[16] A. P. Ginsberg, W. E. Lindsell, J. Am. Chem. Soc. 1971, 93, 2082.

[17] I. Krosing, L. van Wullen, Chem. Eur. J. 2002, 8, 700.

[18] a) S. Dürr, D. Ertler, U. Radius, Inorg. Chem. 2012, 51, 3904; b) O. J. Scherer, M. Swarovsky, H. Swarovsky, G. Wolmershäuser, Angew. Chem. Int. Ed. Engl. 1988, 27, 694; Angew. Chem. 1988, 100, 738.

[19] O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110.

[20] O. J. Scherer, G. Schwarz, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1996, 622, 951.

[21] a) S. Pelties, D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, Chem. Commun. 2014, 50, 7014; b) S. Heinl, M. Scheer, Chem. Sci. 2014, 5, 3221.

[22] C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077; Angew. Chem. 2014, 126, 9233.

[23] C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2015, 54, 13116; Angew. Chem. 2015, 127, 13309.

[24] J. Müller, S. Heinl, C. Schwarzmaier, G. Balázs, M. Keilwerth, K. Meyer, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 7312; Angew. Chem. 2017, 129, 7418.

[25] P. Pyykölä, M. Atsumi, Chem. Eur. J. 2009, 15, 186.

[26] These signals were mistakenly assigned to [[Cp”Fe(CO)]$_2$]$_2$[µ$_3$N]$_2$-P$_4$][Cp”Fe(CO)]” in the previous work.

[27] a) D. F. Evans, J. Chem. Soc. 1959, 2003; b) G. A. Bain, J. F. Berry, J. Chem. Educ. 2008, 85, 532.

[28] B. N. Figgis, R. S. Nyholm, J. Chem. Soc. 1954, 12.

[29] A. B. P. Lever, Inorg. Chem. 1965, 4, 763.

[30] a) C. Ercolani, J. V. Quagliano, L. M. Vallarino, Inorganica Chim. Acta 1973, 7, 413; b) G. R. van Hecke, W. D. Horrocks, Inorg. Chem. 1966, 5, 1968.

[31] P. Pyykölä, M. Atsumi, Chem. Eur. J. 2009, 15, 12770.

[32] a) A. Cavallé, N. Saffon-Merceron, N. Nebra, M. Fustier-Boutignon, N. Mézaïles, Angew. Chem. Int. Ed. 2018, 57, 1874; Angew. Chem. 2018, 130, 1892; b) U. Chakraborty, J. Leitl, B. Muhlendorf, M. Bodensteiner, S. Pelties, R. Wolf, Dalton Trans. 2014, 47, 3693; c) F. Dielmann, A. Timoshkin, M. Piesch, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2017, 56, 1671; Angew. Chem. 2017, 129, 1693; d) M. Modl, S. Heinl, G. Balázs, F. Delgado Calvo, M. Caporali, G. Manca, M. Keilwerth, K. Meyer, M. Peruzzini, M. Scheer, Chem. Eur. J. 2019, 25, 6300; e) M. Piesch, S. Reichl, M. Seidl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2019, 58, 16563; Angew. Chem. 2019, 131, 16716; f) O. J. Scherer, R. Winter, G. Wolmershäuser, Z. Anorg. Allg. Chem. 1993, 619, 827.

[33] F. Kraus, J. C. Aschenbrenner, N. Korber, Angew. Chem. Int. Ed. 2003, 42, 4030; Angew. Chem. 2003, 115, 4162.

[34] Z. Li, C. Zhao, L. Chen, J. Mol. Struct. 2007, 810, 1.

[35] M. Piesch, M. Seidl, M. Scheer, Chem. Sci. 2020, 11, 6745.

[36] D. A. Dickie, R. A. Kemp, Organometallics 2014, 33, 6511.