Data Article

Data set on the diversity and core members of bacterial community associated with two specialist fruit flies *Bactrocera melastomatos* and *B. umbrosa* (Insecta, Tephritidae)

Sze-Looi Songa,b,*, Hoi-Sen Yongc, Kah-Ooi Chuad,*, Phaik-Eem Limb, Praphathip Eamsobhanae

a Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
b Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
c Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
d Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, Malaysia
e Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

A R T I C L E I N F O

Article history:
Received 13 July 2022
Revised 1 October 2022
Accepted 2 November 2022
Available online 8 November 2022

Dataset link: Bioproject PRJNA528573
(Original data)

Keywords:
Next generation sequencing
Miseq
Microbiome
16S rRNA gene
Dacinæ

A B S T R A C T

Bactrocera melastomatos Drew & Hancock and *Bactrocera umbrosa* (Fabricius) are fruit flies of the subfamily Dacinae under the family Tephritidae [1]. *B. melastomatos* occurs in India (Andaman Island), Thailand, Peninsular Malaysia, Singapore, and Indonesia (Sumatra, Kalimantan, Java) [1] while *B. umbrosa* is distributed from southern Thailand and Malaysia to New Guinea and New Caledonia [2]. The adult male flies of *B. melastomatos* are attracted to Cue lure while the adult male flies of *B. umbrosa* are attracted to methyl eugenol [3]. Fruit flies of *Bactrocera melastomatos* infest Melastomataceae while those of *B. umbrosa* infest Moraceae. We compare the diversity of microbiota associated with the wild adult males of these two specialist fruit flies infesting different families of host plants. Targeted 16S rRNA gene (V3-V4 region) was sequenced using the Illumina MiSeq platform. Six bacterial phyla (Actinobacteria, Armatimonadetes, Bacteroidetes, Cyanobacteria/Melainabacteria group, Firmicutes, Proteobacteria) were detected at 97% similarity clustering and 0.001% abundance filtering. Four phyla (Actinobacteria, Bac-
teroidetes, Firmicutes, Proteobacteria) were present in all the specimens studied. Proteobacteria was the predominant phylum in both B. melastomatos and B. umbrosa. Enterobacteriaceae was the predominant family in UM B. melastomatos and B. umbrosa, and Orbaceae was the predominant family in Awana B. melastomatos. Klebsiella was the predominant genus in B. umbrosa, Citrobacter in UM B. melastomatos, and Orbus in Awana B. melastomatos. Double Wolbachia infections were present in UM B. melastomatos. In general, the bacterial diversity and richness varied within and between the samples of B. melastomatos and B. umbrosa.

© 2022 Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Microbiology: Microbiome
Specific subject area	Metagenomics
Type of data	Tables
	Figures
	Fastq files
How the data were acquired	Illumina MiSeq System (2 × 250 bp paired-end reads)
Data format	Raw and Analyzed
Description of data collection	Wild adult male flies of B. melastomatos were collected by means of Cue lure, while those of B. umbrosa were collected by methyl eugenol. These fruit flies were collected in Peninsular Malaysia – B. melastomatos: 2 specimens from Universiti Malaya (UM) campus and 3 from Awana Genting Resort (Awana); B. umbrosa: 5 specimens from Universiti Malaya campus. Total DNA was extracted from the sample and the 16S rRNA gene amplicon (V3-V4 region) was sequenced by the Illumina MiSeq system.

Data source location

Institution	Universiti Malaya
City/Town/Region	Kuala Lumpur
Country	Malaysia
Latitude and longitude (and GPS coordinates, if possible) for collected samples/data	Universiti Malaya (UM) campus (3.1201°N, 101.6544°E) and Awana Genting Resort (Awana) (3.2381°N, 101.4680°E)

Data accessibility

Repository name	GenBank Sequence Read Archive [4]
Data identification number	Data are available at the NCBI with Bioproject PRJNA528573
Direct URL to data	https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA528573&o=acc_s%3Aa

Value of the Data

- The data provide information on the core members and different taxa of the bacterial community associated with B. melastomatos which infests only the fruits of Melastomataceae and B. umbrosa which infests only Artocarpus fruits of Moraceae.
- The data are useful for comparative analysis of abundance and core members of the bacterial community with other specialist as well as generalist fruit flies.
- The data are useful for culture-dependent technique on the microbiota associated with these two species of specialist fruit flies.
- The data are valuable for developing pest management programme in controlling the fruit flies infesting host plants.
1. Data Description

The high throughput sequencing generated a total of 2205662 raw sequence reads. After quality filtering and chimera removal, the samples were obtained with sequences ranging from about 59907 in BU2 to 85783 in BM7. The number of reads varied among the specimens of B. melastomatos (74176–76713 in Awana samples and 61018–85783 in UM samples) and B. umbrosa (59907–81575). The species richness varied considerably within and across the three groups of samples (Fig. 1). The raw datasets for 16S rRNA gene amplicon sequencing generated for this paper have been deposited in the GenBank Sequence Read Archive (accession number PRJNA528573).

The overall bacterial community in the samples of B. melastomatos and B. umbrosa consisted of six phyla, 11 classes, 23 orders, 64 families, 64 genera, and 122 putative species (Table 1; Supplementary Tables S1, S2). Of the six bacterial phyla, four – *Actinobacteria*, *Bacteroidetes*, *Firmicutes*, and *Proteobacteria* – were represented in all the fruit fly specimens, forming the core members of the bacterial community (Table 1; Supplementary Tables S1–S3). *Proteobacteria* was the predominant phylum (relative abundance from 78.84 ± 22.71% in B. umbrosa to 90.25 ± 6.99% in Awana B. melastomatos), followed by *Bacteroidetes* (5.18 ± 0.51% in UM B. melastomatos to 8.54 ± 7.66% in Awana B. melastomatos). *Firmicutes* (from 0.87 ± 0.74% in Awana B. melastomatos to 17.09 ± 15.60% in B. umbrosa), and *Actinobacteria* (the least abundant with very low relative abundance, from 0.01 ± 0.01% in UM B. melastomatos to 0.05 ± 0.06% in B. umbrosa) (Supplementary Table S3).

![Fig. 1.](image)

Fig. 1. The richness of bacterial communities in *Bactrocera melastomatos* (BM3–BM5, Awana Genting Resort; BM6–BM7, Universiti Malaya) and *Bactrocera umbrosa* samples (BU2–BU6, Universiti Malaya) from Peninsular Malaysia.

Table 1

Phylum	BM3	BM4	BM5	BM6	BM7	BU2	BU3	BU4	BU5	BU6
Actinobacteria	0.10	0.01	0.01	0.00	0.01	0.16	0.03	0.01	0.06	0.00
Armatimonadetes	0	0.00	0.01	0	0	0	0	0	0	0
Bacteroidetes	3.72	17.37	4.52	5.54	4.82	1.93	27.17	3.80	0.16	6.83
Cyanobacteria										
Melainabacteria group	0.03	0.01	0.13	0	0	0	0	0	0	0
Firmicutes	1.26	0.01	1.35	31.63	0.01	4.02	15.52	35.32	0.11	30.48
Proteobacteria	94.65	82.19	93.91	62.78	94.90	93.94	57.03	60.80	99.31	62.44
Unassigned	0.25	0.40	0.08	0.05	0.26	0.36	0.24	0.06	0.36	0.24
The core bacterial OTUs detected in the samples of Bactrocera melastomatos and Bactrocera umbrosa from Peninsular Malaysia.

Phylum	Class	Order	Family	Genus	Species
Actinobacteria	Actinobacteria	Bacteroidales	Porphyromonadaceae	Microbacter	M. margulisae
Bacteroidetes	Bacteroida	Flavobacteriales	Flavobacteriaceae	Enterococcus	E. moraviensis
Firmicutes	Bacilli	Lactobacillales	Enterococcaceae		
Proteobacteria	Alphaproteobacteria	Burkholderiales	Burkholdriaceae		
			Desulfovibrionales		
	Betaproteobacteria	Enterobacteriales	Enterobacteriaceae		
	Gammaproteobacteria	Orbales	Orbaceae		

Total 4 8 7 7 11 13

The diversity of bacterial OTUs in the samples of Bactrocera melastomatos (BM) and Bactrocera umbrosa (BU) from Peninsular Malaysia; BM3–BM5, Awana Genting Resort; BM6–BM7, Universiti Malaya; BU2–BU6, Universiti Malaya; PD, phylogenetic diversity.

Sample	Shannon (H)	Simpson (D)	Goods coverage	Chao1	Observed OTUs	PD whole tree
BM3	2.32	0.55	1.00	450.85	365	13.05
BM4	1.57	0.43	1.00	253.16	210	7.29
BM5	1.99	0.51	1.00	400.02	305	12.06
BM6	2.81	0.78	1.00	291.50	262	11.37
BM7	2.68	0.72	1.00	464.52	406	10.33
BU2	1.93	0.50	1.00	438.02	375	11.57
BU3	2.79	0.80	1.00	520.02	419	12.89
BU4	2.75	0.77	1.00	507.61	387	13.29
BU5	1.14	0.26	1.00	350.11	301	8.97
BU6	2.07	0.62	1.00	355.02	299	13.15

Of the four core phyla, the respective number of core OTUs were: Proteobacteria – 4 classes, 4 orders, 4 families, 9 genera, 11 species; Bacteroidetes – 2 classes, 2 orders, 2 families, 1 genus, 1 species; Firmicutes – 1 class, 1 order, 1 family, 1 genus, 1 species; Actinobacteria – 1 class (Table 2, Supplemental Table S1). Gammaproteobacteria was the predominant class (mean relative abundance of 80.52 ± 1.06% in Awana B. melastomatos, 59.94 ± 36.28% in UM B. melastomatos and 71.79 ± 21.77% in B. umbrosa). In Awana B. melastomatos, the predominant OTUs were: order Orbales (47.87 ± 41.37%), family Orbaceae (47.87 ± 41.37%), genus Orbus (45.59 ± 39.35%), and species Orbus sasakiae (45.59 ± 39.34%) (Supplementary Tables S1, 3). On the other hand, the predominant OTUs in UM B. melastomatos were: order Enterobacteriales (43.17 ± 59.95%), family Enterobacteriaceae (43.17 ± 59.95%), genus Citrobacter (23.26 ± 32.55%), and species Citrobacter freundii (23.19 ± 32.45%). In B. umbrosa, the predominant OTUs were: order Enterobacteriales (56.03 ± 41.13%), family Enterobacteriaceae (56.03 ± 41.13%), genus Klebsiella (26.53 ± 35.06%), and species Klebsiella oxytoca (25.75 ± 34.75%).

In general, the bacterial OTU diversity varied within and between the samples of B. melastomatos and B. umbrosa (Table 3; Figs. 2–4). The richness also varied within and between the samples. The bacterial community in the UM B. melastomatos samples were more diverse than the Awana B. melastomatos and B. umbrosa samples. On the other hand, the bacterial community in the B. umbrosa samples were more variable. Non-parametric statistical test analysis of simi-
Fig. 2. The relative abundance (%) of bacterial phyla in samples of wild adult male *Bactrocera melastomatos* (BM) and *Bactrocera umbrosa* (BU) from Peninsular Malaysia; BM3–BM5 (Awana Genting Resort), BM6–BM7 (Universiti Malaya), BU2–BU6 (Universiti Malaya).

Fig. 3. The frequency distribution of 11 core bacterial genera in samples of wild adult male *Bactrocera melastomatos* (BM) and *Bactrocera umbrosa* (BU) from Peninsular Malaysia; BM3–BM5 (Awana Genting Resort), BM6–BM7 (Universiti Malaya), BU2–BU6 (Universiti Malaya).
Fig. 4. The comparison of bacterial genera diversity in samples of wild adult male *Bactrocera melastomatos* (BM) and *Bactrocera umbrosa* (BU) from Peninsular Malaysia; BM3–BM5 (Awana Genting Resort), BM6–BM7 (Universiti Malaya), BU2–BU6 (Universiti Malaya).

Significance (ANOSIM) showed non significant differences in bacterial diversity between the samples \((p = 0.30; R = 0.083; \text{number of permutations} = 999) \). Both the Shannon index and Simpson index indicate that the mean bacterial diversity (Awana *B. melastomatos* sample: \(H = 1.96 \pm 0.22, D = 0.50 \pm 0.04 \); UM *B. melastomatos* sample: \(H = 2.75 \pm 0.07, D = 0.75 \pm 0.03 \); *B. umbrosa* sample: \(H = 2.14 \pm 0.30, D = 0.59 \pm 0.10 \)) was not significantly different between the samples – ANOVA test: Shannon index \(F = 1.29, p = 0.33 \); Simpson index \(F = 1.33, p = 0.32 \).

2. Experimental Design, Materials and Methods

2.1. Materials and Methods

2.1.1. Sample Collection and DNA Extraction

Wild adult male flies of *B. melastomatos* were collected by means of Cue lure, while those of *B. umbrosa* were collected by methyl eugenol. These fruit flies were collected in Peninsular Malaysia – *B. melastomatos*: 2 specimens from Universiti Malaya (UM) campus \((3.1201^\circ N, 101.6544^\circ E) \) and 3 from Awana Genting Resort (Awana) \((3.2381^\circ N, 101.4680^\circ E) \); *B. umbrosa*: 5 specimens from Universiti Malaya campus. They were preserved immediately in absolute ethanol and stored in deep freezer until used for DNA extraction. These fruit flies are not endangered or protected by law and permits are not required to study them. The entire single insect was used for DNA extraction following the manufacturer’s instructions for G-spinTM Total DNA Extraction Mini Kit (iNtRON Biotechnology, Inc, Korea).
2.1.2. Targeted Metagenomics Sequencing

Demultiplexed raw sequences were extracted from the Illumina MiSeq system in FASTQ format and FastQC software was used to evaluate the quality of sequences [5]. The CLC Genomic Workbench v.7.5.1 was used to pair, merge, trim and filter the raw sequences (https://www.qiagenbioinformatics.com/). Ambiguous bases, low quality reads and sequences with read length below 200 bp were discarded. UCHIME was used to identify and remove the potential chimeric sequences [6,7]. UCLUST by open-reference OTU picking approach in Quantitative Insights into Microbial Ecology (Qiime v.1.9.0) was used to cluster the sequence reads into Operational Taxonomic Units (OTUs) at 97% similarity [6,8]. A representative sequence for each OTU was selected for taxonomic assignment with reference to the Greengene 13_8-release database [9] and additionally blasted against the NCBI 16S microbial database to gain additional insight into species level.

2.1.3. Bioinformatics and Statistical Analyses

Alpha and beta diversity analyses, and Principal Coordinate Analysis (PCoA) were performed as earlier described [10,11]. One-way ANOVA with post-hoc Tukey HSD test was used to compare the mean relative abundance of OTUs of different samples. A heatmap with OTU abundance and hierarchical clustering of samples was generated using R version 3.2.4 with Euclidean distances specified [12].

Ethics Statements

These fruit flies are not endangered or protected by law and permits are not required to study them.

CRediT Author Statement

S.-L. Song: Writing, Methodology, Software; H.-S. Yong: Writing – original draft preparation, Supervision, Conceptualization; K.-O. Chua: Writing, Methodology; P.-E. Lim: Writing – review & editing; P. Eamsobhana: Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Data Availability

Bioproject PRJNA528573 (Original data) (GenBank Sequence Read Archive).

Acknowledgments

We thank our institutions for providing various research facilities and other support. This work was funded by the Universiti Malaya (H-5620009 to HSY).
Supplementary Materials

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.dib.2022.108727.

References

[1] R.A. Drew, M.C. Romig, Tropical fruit flies (Tephritidae Dacinae) of South-East Asia: Indomalaya to North-West Australia, CABI, 2013.

[2] R.I. Vargas, J.C. Piñero, L. Leblanc, An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region, Insects 6 (2015) 297–318.

[3] H.S. Yong, S.L. Song, P.E. Lim, P. Eamsobhana, I.W. Suana, Complete mitochondrial genome of three Bactrocera fruit flies of subgenus Bactrocera (Diptera: Tephritidae) and their phylogenetic implications, PloS ONE 11 (2016) e0148201.

[4] National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988]– [cited 2022 July 13]. Available from: https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA528573&o=acc_s%3Aa.

[5] S. Andrews, FastQC: a quality control tool for high throughput sequence data [WWW document]. (2010) URL http: //www.bioinformatics.babraham.ac.uk/projects/fastqc.

[6] R.C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics 26 (2010) 2460–2461.

[7] R.C. Edgar, B.J. Haas, J.C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity and speed of chimera detection, Bioinformatics 27 (2011) 2194–2200.

[8] J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, … R. Knight, QIIME allows analysis of high-throughput community sequencing data, Nature Methods 7 (2010) 335–336.

[9] T.Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, … G.L. Andersen, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microbiol. 72 (2006) 5069–5072.

[10] H.S. Yong, S.L. Song, K.O. Chua, P.E. Lim, Predominance of Wolbachia endosymbiont in the microbiota across life stages of Bactrocera latifrons (Insecta: Tephritidae), Meta Gene 14 (2017) 6–11.

[11] H.S. Yong, S.L. Song, K.O. Chua, P.E. Lim, High diversity of bacterial communities in developmental stages of Bactrocera cucurbitae (Insecta: Tephritidae) revealed by Illumina MiSeq sequencing of 16S rRNA gene, Curr. Microbiol. 74 (2017) 1076–1082.

[12] T.F. Khang, O.Y.M. Soo, W.R. Tan, L.H.S. Lim, Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution, PeerJ 4 (2016) e1668.