q-Virasoro/W Algebra at Root of Unity and Parafermions

H. Itoyamaa,b,*, T. Ootab† and R. Yoshiokab‡

a Department of Mathematics and Physics, Graduate School of Science
Osaka City University

b Osaka City University Advanced Mathematical Institute (OCAMI)
3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

Abstract

We demonstrate that the parafermions appear in the r-th root of unity limit of q-Virasoro/W_n algebra. The proper value of the central charge of the coset model $\hat{sl}(n)_{r+\hat{sl}(n)_{m-n}}/\hat{sl}(n)_{m-n+r}$ is given from the parafermion construction of the block in the limit.
1 Introduction

Ever since the AGT relation [1, 2, 3] (the correspondence between the correlators of 2d QFT and the 4d instanton sum) was introduced, the both sides of the correspondence have been intensively studied by a number of people. For example, in the 2d side, the β-deformed matrix model is used in order to control the integral representation of the conformal block [4, 5, 6, 7, 8, 9, 10]. There are also some proposals for proving the 2d-4d connection [11, 12, 13, 14, 15]. Moreover similar correspondence has been found and examined [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Among these, we pay our attention, in this paper, to the correspondence between the coset model,

\[
\widehat{\mathfrak{sl}}(n)^r \oplus \widehat{\mathfrak{sl}}(n)^p \quad (1.1)
\]

and the $\mathcal{N} = 2$ $SU(n)$ gauge theory on $\mathbb{R}^4/\mathbb{Z}_r$ [20, 23]. Here $\widehat{\mathfrak{sl}}(n)^k$ stands for the affine Lie algebra in the representation of level k and r and p will be specified in this paper.

On the 2d CFT side, a quantum deformation (q-deformation) of the Virasoro algebra [27] and the W_n algebra [28, 29] is known, while the 4d gauge theories can be lifted to five-dimensional theories with the fifth direction compactified on a circle. There exists a natural generalization to the connection between the 2d theory based on the q-deformed Virasoro/W algebra and the five-dimensional $\mathcal{N} = 2$ gauge theory [30]. For recent developments, see, for example, [31, 32, 33, 34, 35, 36, 37]. In the previous paper [32], we proposed a limiting procedure to get the Virasoro/W block in the 2d side from that in the q-deformed version. On the other hand, we saw that the instanton partition function on $\mathbb{R}^4/\mathbb{Z}_r$ are generated from that on \mathbb{R}^5 at the same limit. This result means if we assume the 2d-5d connection, it is automatically assured that the Virasoro/W blocks generated by using the limiting procedure agree with the instanton partition function on $\mathbb{R}^4/\mathbb{Z}_r$. Our limiting procedure corresponds to a root of unity limit in q. A root of unity limit of the q-Virasoro algebra was also considered in [38]. Our limit is slightly different from this and is similar to the one used in order to construct the eigenfunctions of the spin Calogero-Sutherland model from Macdonald polynomials in [39, 40].

In the present paper we will elaborate our limiting procedure and show that the \mathbb{Z}_r-parafermionic CFT which has the symmetry described by (1.1) appears in the 2d side. We clarify also the relation between the free parameter p and the omega background parameters in the 4d side.

The paper is organized as follows: In the next section, we review the limiting procedure for q-Virasoro algebra [32]. In section 3, we consider the q-deformed screening current and charge and show that the \mathbb{Z}_r-parafermion currents are derived in a natural way. In section 4, we consider the generalization to q-W_n algebra.

2 Root of Unity Limit of q-Virasoro Algebra

In this section, we review the root of unity limit [32] of the q-deformed Virasoro algebra [27] which has two parameters q and $t = q^\beta$. The defining relation is

\[
f(z'/z)T(z)T(z') - f(z/z')T(z')T(z) = \frac{(1-q)(1-t^{-1})}{(1-p)} \left[\delta(pz/z') - \delta(p^{-1}z/z') \right], \quad (2.1)
\]
where \(p = q/t \) and

\[
f(z) = \exp \left(\sum_{n=1}^{\infty} \frac{1}{n} \frac{(1-q^n)(1-t^{-n})}{(1+p^n)} z^n \right).
\]

(2.2)

The multiplicative delta function is defined by

\[
\delta(z) = \sum_{n \in \mathbb{Z}} z^n.
\]

(2.3)

Using the \(q \)-deformed Heisenberg algebra \(\mathcal{H}_{q,t} \):

\[
[\alpha_n, \alpha_m] = -\frac{1}{n} \frac{(1-q^n)(1-t^{-n})}{(1+p^n)} \delta_{n+m,0}, \quad (n \neq 0),
\]

\[
[\alpha_n, Q] = \delta_{n,0},
\]

(2.4)

the \(q \)-Virasoro operator \(T(z) \) can be realized as

\[
T(z) =: \exp \left(\sum_{n \neq 0} \alpha_n z^{-n} \right) :p^{1/2}q^{\sqrt{\beta} \alpha_0}+: \exp \left(-\sum_{n \neq 0} \alpha_n (pz)^{-n} \right) :p^{-1/2}q^{-\sqrt{\beta} \alpha_0},
\]

(2.5)

The \(q \)-deformed chiral bosons are defined in terms of the \(q \)-deformed Heisenberg algebra as

\[
\tilde{\varphi}^{(\pm)}(z) = \tilde{\varphi}^{(\pm)}_0(z) + \tilde{\varphi}^{(\pm)}_R(z),
\]

(2.6)

where

\[
\tilde{\varphi}^{(\pm)}_0(z) = \beta^{\pm1/2}Q + \frac{2}{r} \beta^{\pm1/2} \alpha_0 \log z^r + \sum_{n \neq 0} \frac{(1+p^{-nr})}{(1-\xi^{nr})} \alpha_{nr} z^{-nr},
\]

\[
\tilde{\varphi}^{(\pm)}_R(z) = \sum_{r=1}^{\infty} \sum_{n \in \mathbb{Z}} \frac{(1+p^{-nr})}{(1-\xi^{nr})} \alpha_{nr} z^{-nr}.
\]

(2.7)

Here \(\xi_+ = q, \xi_- = t \).

Let us consider the simultaneous \(r \)-th root of unity limit in \(q \) and \(t \) which is given by

\[
q = \omega e^{-\frac{1}{\sqrt{\beta}} h}, \quad t = \omega e^{\sqrt{\beta} h}, \quad p = e^{Q_E h}, \quad h \to 0,
\]

(2.8)

where \(\omega = e^{\frac{2\pi i}{r}} \) and \(Q_E = \sqrt{\beta} - \frac{1}{\sqrt{\beta}} \). Since \(t = q^\beta \), this limit is possible if the parameter \(\beta \) takes the rational number such as

\[
\beta = \frac{rm_- + 1}{rm_+ + 1},
\]

(2.9)

where \(m_\pm \) are non-negative integers. In the limit, we have two types of bosons \(\phi(w) \) and \(\varphi(w) \) [32] respectively given by

\[
\lim_{h \to 0} \tilde{\varphi}^{(\pm)}_0(z) = \sqrt{\frac{2}{r}} \beta^{\pm1/2} \phi(w),
\]

\[
\lim_{h \to 0} \tilde{\varphi}^{(\pm)}_R(z) = \sqrt{\frac{2}{r}} \varphi(w),
\]

(2.10)
where \(w = z^r \) and
\[
\phi(w) = Q_0 + a_0 \log w - \sum_{n \neq 0} \frac{a_n}{n} w^{-n},
\]
(2.11)
\[
\varphi(w) = \sum_{\ell=1}^{r-1} \varphi^{(\ell)}(w), \quad \varphi^{(\ell)}(w) = \sum_{n \in \mathbb{Z}} \frac{\tilde{a}_{n+\ell/r}}{n + \ell/r} w^{-n-\ell/r}.
\]
(2.12)

The commutation relations are
\[
[a_m, a_n] = m \delta_{m+n,0}, \quad [a_n, Q_0] = \delta_{n,0},
\]
\[
[\tilde{a}_{n+\ell/r}, \tilde{a}_{-m-\ell'/r}] = (n + \ell/r) \delta_{m,m'} \delta_{\ell,\ell'}.
\]
(2.13)

The boson \(\phi(w) \) and the twisted boson \(\varphi(w) \) play an important role for the appearance of the \(\mathbb{Z}_r \)-parafermions.

3 \(\mathbb{Z}_r \)-parafermionic CFT

The \(q \)-deformed screening current and the charge are defined respectively by
\[
S^{(\pm)}(z) =: e^{\varphi^{(\pm)}(z)} :, \quad Q^{(\pm)}_{[a,b]} = \int_a^b d\xi_{\pm} z S^{(\pm)}(z),
\]
(3.1)
where the Jackson integral is defined by
\[
\int_0^a d\xi_{\pm} z f(z) = a(1-q) \sum_{k=0}^{\infty} f(aq^k)q^k.
\]
(3.2)

Multiplying the regularization factor, we obtain the screening charge in the root of unity limit, up to normalization,
\[
Q^{(\pm)}_{[a',b']} \equiv \lim_{h \to 0} \frac{(1-q^r)}{(1-q)} Q^{(\pm)}_{[a,b]} = \int_{a'}^{b'} dw \psi_1(w) : e^{\sqrt{r} \phi(w)} :,
\]
(3.3)
where we have defined [41]
\[
\psi_1(w) = \frac{A_r}{w^{(r-1)/r}} \sum_{k=0}^{r-1} \omega^k : \exp \left\{ \sqrt{\frac{2}{r}} \phi^{(k)}(w) \right\} :.
\]
(3.4)

Here \(A_r \) is the normalization factor and we have introduced
\[
\phi^{(k)}(w) \equiv \varphi(e^{2\pi i k}w).
\]
(3.5)

The correlation function is given by
\[
\langle \phi^{(k)}(w) \phi^{(k')}(w') \rangle = \log \frac{(1 - \omega^{k-k'} (w'/w)^{1/r})^r}{1 - w'/w} = \log \frac{(1 - w'/w)^{r-1}}{\prod_{j=1}^{r-1} (1 - \omega^{k-k+j} (w'/w)^{1/r})^r}.
\]
(3.6)
Note that
\[
\phi^{(k+1)}(w) = \phi^{(k)}(e^{2\pi i}w), \quad \phi^{(r+k)}(w) = \phi^{(k)}(w), \quad \sum_{k=0}^{r-1} \phi^{(k)}(w) = 0. \tag{3.7}
\]

For example, we consider the \(r = 2\) case. In the limit, we obtain
\[
\lim_{q \to 1} S(z) = :e^{\sqrt{\beta} \phi(w)} e^{\varphi(w)} :, \tag{3.8}
\]
and after the appropriate normalization, we obtain the following screening charge for the superconformal block [42, 43]:
\[
Q_{[a^2,b^2]} = \int_{a^2}^{b^2} dw \psi(w) : e^{\sqrt{\beta} \phi(w)} :, \tag{3.9}
\]
where
\[
\psi(w) \equiv \frac{i}{2\sqrt{2w}} \left(:e^{\varphi(w)} : - :e^{-\varphi(w)} : \right), \quad \langle \psi(w_1)\psi(w_2) \rangle = \frac{1}{w_1 - w_2}, \tag{3.10}
\]
is the NS fermion.

From now on we will show that the \(Z_r\)-parafermions appear in the general \(r\)-th root of unity limit. In particular, \(\psi_1(w)\) will be shown to work as the first parafermion current.

The \(Z_r\)-parafermion algebra consists of \((r - 1)\) currents \(\psi_\ell(w) (\ell = 1, \cdots, r - 1)\) satisfying the following defining relations [44]:
\[
\psi_\ell(w)\psi_{\ell'}(w') = \frac{c_{\ell,\ell'}}{(w - w')^{2\ell'/r}} \left\{ \psi_{\ell + r}(w') + O(w - w') \right\}, \quad \ell + \ell' < r, \tag{3.11}
\]
\[
\psi_\ell(w)\psi^\dagger_{\ell'}(w') = c_{\ell,r - \ell}(w - w')^{-2(r - \ell')/r} \left\{ \psi_{\ell - r}(w') + O(w - w') \right\}, \quad \ell' < \ell \tag{3.12}
\]
\[
\psi_\ell(w)\psi^\dagger_{\ell'}(w') = (w - w')^{-2\Delta_\ell} \left\{ 1 + \frac{2\Delta_\ell}{c_p}(w - w')^{2} T_{PF}(w) + O((w - w')^3) \right\}, \tag{3.13}
\]
where \(\psi^\dagger_{\ell}(w) = \psi_{r-\ell}(w)\) and
\[
\Delta_\ell = \frac{\ell(r - \ell)}{r}, \quad c_p = \frac{2(r - 1)}{r + 2}. \tag{3.14}
\]

are the conformal dimension of \(\psi_\ell(w)\) and the central charge of the parafermionic stress tensor \(T_{PF}\). The explicit form of \(T_{PF}(w)\) is given in [45]. The coefficients \(c_{\ell,\ell'}\) are given by
\[
c_{\ell,\ell'} = \sqrt{\frac{(\ell + \ell')!(r - \ell)!(r - \ell')!}{\ell!\ell'!(r - \ell - \ell')!r!}}. \tag{3.15}
\]

The OPE of (3.4) is
\[
\psi_1(w)\psi_1(w') \equiv \frac{c_{1,1}}{(w - w')^{2/r}} \left\{ \psi_2(w) + O(w - w') \right\}. \tag{3.16}
\]
Here we have defined the second parafermion,
\[
\psi_2(w) = \frac{A_r}{c_{1,1}w^{2(r-2)/r}} \sum_{k,k'=0}^{r-1} \omega^{k+k'}(1 - \omega^{k'-k})^2 \ e^{\sqrt{\tau}(\phi^{(k)}(w) + \phi^{(k')})(w))} :. \tag{3.17}
\]
Similarly, the \((\ell + 1)\)-th parafermion is obtained from \(\ell\)-th parafermion by

\[
\psi_{\ell+1}(w) \equiv \lim_{w'\to w} \frac{w - w'}{c_{1,\ell}} \psi_1(w') \psi_\ell(w).
\]

(3.18)

In particular,

\[
\psi_1^\dagger(w) \equiv \psi_{r-1}(w) = \frac{B_r}{w^{(r-1)/r}} \sum_{\ell=1}^{r-1} \omega^\ell \exp \left\{ -\sqrt{\frac{2}{r}} \phi^{(\ell)}(w) \right\},
\]

(3.19)

where \(B_r\) is a constant which can be determined by the relation

\[
\langle \psi_1(w) \psi_1^\dagger(w') \rangle = \frac{1}{(w - w')^{2(r-1)/r}}.
\]

(3.20)

After all, we have the chiral boson \(\phi(w)\) coupled to \(Q_E\) and the \(\mathbb{Z}_r\)-parafermion \(\psi_\ell(w)\). Therefore, the stress tensor of the whole system is

\[
T(w) = T_B(w) + T_{PF}(w),
\]

(3.21)

where \(T_B(w)\) stands for the usual stress tensor for the chiral boson field. The central charge is

\[
c^{(r)} = 1 - \frac{6Q_E^2}{r} + \frac{2(r-1)}{r+2} = \frac{3r}{r+2} - \frac{6Q_E^2}{r}.
\]

(3.22)

Because \(\beta\) is restricted to the rational number \((2.9)\), \((3.22)\) is written as

\[
c^{(r,m,s)} = \frac{3r}{r+2} - \frac{6rs^2}{m(m+rs)}.
\]

(3.23)

where we have set \(m = rm_+ + 1\) and \(s = m_+ - m_-.\) Especially, when \(s = 1\),

\[
c^{(r,m,1)} = \frac{3r}{r+2} - \frac{6r}{m(m+r)},
\]

(3.24)

is the central charge of the unitary series of the \(\mathbb{Z}_r\)-parafermionic CFT [46].

The form of the screening charge in the case of general \(r\) is the same as that of eq. \((3.9)\).

4 Root of Unity Limit of \(q\)-\(W_n\) Algebra

In this section, we consider the generalization to the \(q\)-\(W_n\) algebra [29]. We denote by \(h\) the Cartan subalgebra of \(\mathfrak{sl}(n)\) Lie algebra. The \(q\)-\(W_n\) algebra is expressed in terms of the following \(h\)-valued \(q\)-deformed boson,

\[
\{e_a, \varphi^{(\pm)}(z)\} \equiv \tilde{\varphi}_a^{(\pm)}(z) = \tilde{\varphi}_{0,a}^{(\pm)}(z) + \tilde{\varphi}_{R,a}^{(\pm)}(z),
\]

(4.1)

where

\[
\tilde{\varphi}_{0,a}^{(\pm)}(z) = \beta^{\pm \frac{1}{2}} Q_a + \beta^{\pm \frac{1}{2}} \alpha_{0,a} \log z + \sum_{n \neq 0} \frac{1}{\xi^{(nr/2)}_{\pm}} \xi^{-nr/2}_{\pm} \alpha_{nr,a} z^{-nr},
\]

(4.2)

\[
\tilde{\varphi}_{R,a}^{(\pm)}(z) = \sum_{\ell=1}^{r-1} \tilde{\varphi}_{\ell,a}^{(\pm)}(z) = \sum_{\ell=1}^{r-1} \sum_{n \in \mathbb{Z}} \xi^{(nr+\ell/2)}_{\pm} \frac{1}{\xi^{-(nr+\ell/2)}_{\pm}} \alpha_{nr+\ell,a} z^{-(nr+\ell)},
\]

(4.3)
and \(e_a (a = 1, \cdots, n - 1) \) are the simple roots and \(\langle , \rangle : \mathfrak{h}^* \otimes \mathfrak{h} \rightarrow \mathbb{C} \) is the canonical pairing. The commutation relations are given by

\[
[Q_a, \alpha_{0,b}] = C_{ab},
\]

\[
[\alpha_{n,a}, \alpha_{m,b}] = \frac{1}{n} (q^{n/2} - q^{-n/2})(t^{n/2} - t^{-n/2}) C_{ab} \delta_{n+m,0},
\]

\[
[Q_a, Q_b] = 0, \quad [\alpha_{0,a}, \alpha_{0,b}] = 0,
\]

where \(C_{ab} \) is the Cartan matrix of \(A \) type and

\[
C_{ab}(p) = \left[2 \right] p \delta_{a,b} - p^{1/2} \delta_{a,b-1} - p^{-1/2} \delta_{a-1,b}.
\]

The \(q \)-number is defined by

\[
[q^n]_q = \frac{q^{n/2} - q^{-n/2}}{q^{1/2} - q^{-1/2}}.
\]

Similar to the \(q \)-Virasoro case, we consider the limit,

\[
q = \omega^k e^{-\frac{b}{\sqrt{r}h}}, \quad t = \omega^k e^{-\sqrt{r}h}, \quad p = q/t = e^{Q \epsilon h}, \quad \omega = e^{\frac{2\pi i}{r}}, \quad h \rightarrow +0,
\]

where \(\omega = e^{\frac{2\pi i}{r}} \) and \(k \) is a natural number mutually prime to \(r \). The condition to be able to take this limit is that \(\beta \) is a rational number,

\[
\beta = \frac{rm_- + k}{rm_+ + k},
\]

where \(m_\pm \) are non-negative integers. Taking this limit,

\[
\lim_{h \rightarrow 0} \varphi_0^a(z) = \frac{1}{\sqrt{r}} \beta^{1/2} \phi^a(w),
\]

\[
\lim_{h \rightarrow 0} \varphi_R^a(z) = \frac{1}{\sqrt{r}} \varphi^a(w),
\]

we obtain

\[
\phi^a(w) = Q^a_0 + a_0^a \log w - \sum_{n \neq 0} \frac{1}{n} a_n^a w^{-n},
\]

\[
\varphi(w) = \sum_{\ell=1}^{r-1} \varphi_\ell(w), \quad \varphi_\ell(w) = \sum_{n \in \mathbb{Z}} \sum_{\ell=1}^{r-1} \frac{1}{n + \ell/r} \tilde{a}_n^a \epsilon^r_{n+\ell/r} w^{-(n+\ell/r)},
\]

Here we have normalized as

\[
Q^a = \frac{1}{\sqrt{r}} Q_0^a, \quad \alpha_0^a = \sqrt{r} a_0^a,
\]

\[
\alpha_{nr}^a = -(-1)^{nk} \sqrt{r} \epsilon^r_{n} a_n^a,
\]

\[
\alpha_{nr+\ell}^a = \frac{e^{i \pi k(nr+\ell)/2} - e^{-i \pi k(nr+\ell)/2}}{\sqrt{r}(n+\ell/r)} \tilde{a}_n^a \epsilon^r_{n+\ell/r}.
\]
The commutation relations are
\[
[Q^a, a^b_0] = C_{ab}, \quad [Q^a, Q^b] = 0, \quad [a^a_0, a^b_0] = 0,
\]
(4.16)
\[
[a^a_n, a^b_m] = nC_{ab}\delta_{n+m,0},
\]
(4.17)
\[
[\tilde{a}^a_{n+\ell/r}, \tilde{a}^b_{-m-\ell/r}] = \left(n + \frac{\ell}{r}\right) C_{ab}\delta_{n,m}\delta_{\ell,\ell'}.
\]
(4.18)

The correlation functions are
\[
\langle \phi^a(w) \phi^b(w') \rangle = C_{ab} \log(w - w'),
\]
(4.19)
\[
\langle \varphi^{a}_{\ell}(w) \varphi^{b}_{\ell'}(w') \rangle = \delta_{\ell+\ell',r} C_{ab} \sum_{k=0}^{r-1} \omega^{-k\ell} \log \left[1 - \omega^k \left(\frac{w'}{w} \right)^{\frac{r}{r-1}} \right],
\]
(4.20)
\[
\langle \varphi^a(w) \varphi^b(w') \rangle = C_{ab} \log \left[\frac{(1 - (w'/w)^{1/r})^r}{1 - (w'/w)} \right].
\]
(4.21)

For each \(e_a\), we define
\[
\psi_{e_a}(w) = \frac{A_r}{w^{(r-1)/r}} \sum_{\ell=0}^{r-1} \omega^\ell : \exp \left[\sqrt{\frac{1}{r} \phi^{(\ell)}_a}(w) \right] :,
\]
(4.22)

where \(A_r\) is a normalization factor and
\[
\phi^{(\ell)}_a(w) \equiv \varphi_a(e^{2\pi i \ell/w}).
\]
(4.23)

Let \(\alpha = \sum_{a=1}^{n-1} n_a e_a \in Q\), where \(n_a\) are non-negative integers and \(Q\) denotes the root lattice. We obtain the corresponding parafermion, up to its normalization,
\[
\psi_\alpha \sim \prod \psi_{e_a}^{n_a}.
\]
(4.24)

The independent parafermion can be given only for the case \(\alpha \in Q/rQ\). Not of all \(\psi_\alpha\) are independent;
\[
1 \sim \psi_{e_a} \cdots \psi_{e_a}
\]
(4.25)

For example, in the the case of \(\mathfrak{sl}(3)\) algebra and \(r = 4\), the corresponding parafermions are drawn in the Fig. 1. We define the parafermion associated with negative of a simple root by
\[
\psi^{-e_a} \sim \psi_{e_a} \psi_{e_a} \cdots \psi_{e_a}
\]
(4.26)

The normalization can be determined by the correlation functions [47],
\[
\langle \psi_\alpha(w) \psi^{-\alpha}(w') \rangle = (w - w')^{-2 + \frac{\alpha^2}{r}}
\]
(4.27)

where \(\alpha^2 = (\alpha, \alpha)\). In particular,
\[
\langle \psi_{e_a}(w) \psi^{-e_a}(w') \rangle = (w - w')^{-2 - \frac{1}{r}}.
\]
(4.28)
Fig. 1: The parafermions in the case of \(\mathfrak{sl}(3) \) and \(r = 4 \).

In the case of the \(\mathfrak{sl}(2) \) algebra, we obtain the first \(\mathbb{Z}_r \)-parafermion,

\[
\psi_1(w) = \psi_{e_1}(w).
\] (4.29)

Similar to the case of \(n = 2 \) (3.22), the central charge is given by

\[
c_n^{(r)} = \frac{n(n-1)(r-1)}{r+n} + (n-1) \left(1 - n(n+1) \frac{Q_E^2}{r} \right)
= \frac{r(n^2-1)}{r+n} - n(n^2-1) \frac{Q_E^2}{r}.
\] (4.30)

When we set \(m = rm_+ + k \), \(m_- = m_+ + s \) in (4.8), this central charge becomes

\[
c_n^{(r,m,s)} = \frac{r(n^2-1)}{r+n} - \frac{rs^2n(n^2-1)}{m(m+rs)}
= \frac{(n^2-1)r(mn - n)(mn + n + r)}{(r+n)(m \frac{m+n}{s} + r)},
\] (4.31)

which is the same as that of the coset model,

\[
\mathfrak{sl}(n)_r \oplus \mathfrak{sl}(n)\frac{m}{s} - n \sim \mathfrak{sl}(n)_{\frac{m+n}{s} + r}.
\] (4.32)

Compared with (1.1) we find

\[
p = \frac{m}{s} - n.
\] (4.33)

In the case of \(s = 0 \) corresponding to \(Q_E = 0 \), we have the central charge of the usual Sugawara stress tensor for \(\mathfrak{sl}(n)_r \),

\[
c_n^{(r,m,0)} = \frac{r(n^2-1)}{r+n} = c_{\mathfrak{sl}(n)_r}.
\] (4.34)
It is well-known that the affine Lie algebra \(\widehat{\mathfrak{sl}}(n)_r \) is represented by parafermions and an auxiliary boson \([47]\). In the case of \(s = 1 \), because (4.31) becomes
\[
\epsilon_n^{(r,m,1)} = \frac{(n^2 - 1)r(m-n)(m+n+r)}{(r+n)m(m+r)},
\]
the model gives us the unitary series of the coset,
\[
\frac{\widehat{\mathfrak{sl}}(n)_r \oplus \widehat{\mathfrak{sl}}(m-n)}{\widehat{\mathfrak{sl}}(m-n+r)}.
\]

We can see how the level \(p \) is related with the omega-background parameters \(\epsilon_1 \) and \(\epsilon_2 \) in the 4-d side. Since \(\beta = -\epsilon_1/\epsilon_2 \), (4.8) yields the condition to the ratio of these parameters. Therefore, when we introduce the free parameter \(\epsilon \), \(\epsilon_{1,2} \) can be written respectively as
\[
\epsilon_1 = \epsilon(p+n+r), \quad \epsilon_2 = -\epsilon(p+n).
\]
This result suggests that the Nekrasov-Shatashvili limit \(\epsilon_1 \to 0 \) (resp. \(\epsilon_2 \to 0 \)) of the \(\mathcal{N} = 2 \) gauge theory on the \(\mathbb{R}^4/\mathbb{Z}_r \) corresponds to the critical level limit \(p + r \to -n \) (resp. \(p \to -n \)) of the coset model.

Acknowledgments

We thank D. Serban for valuable discussions. The authors’ research is supported in part by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan(23540316).

References

[1] L. F. Alday, D. Gaiotto and Y. Tachikawa, “Liouville Correlation Functions from Four-dimensional Gauge Theories,” Lett. Math. Phys. 9, 167-197 (2010) [arXiv:0906.3219 [hep-th]].

[2] N. Wyllard, “\(A_{N-1} \) conformal Toda field theory correlation functions from conformal \(\mathcal{N} = 2 \) \(SU(N) \) quiver gauge theories,” JHEP 0911, 002 (2009) [arXiv:0907.2189 [hep-th]].

[3] A. Mironov and A. Morozov, “On AGT relation in the case of \(U(3) \),” Nucl. Phys. B 825, 1-37 (2010) [arXiv:0908.2569 [hep-th]].

[4] R. Dijkgraaf and C. Vafa, “Toda Theories, Matrix Models, Topological Strings, and \(\mathcal{N} = 2 \) Gauge Systems,” [arXiv:0909.2453 [hep-th]].

[5] H. Itoyama, K. Maruyoshi and T. Oota, “The Quiver Matrix Model and 2d-4d Conformal Connection,” Prog. Theor. Phys. 123, 957-987 (2010) [arXiv:0911.4244 [hep-th]].

[6] A. Mironov, A. Morozov and Sh. Shakirov, “Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions,” JHEP 1002, 030 (2010) [arXiv:0911.5721 [hep-th]].
A. Mironov, A. Morozov and Sh. Shakirov, “Conformal blocks as Dotsenko-Fateev Integral Discriminants,” J. Mod. Phys. A 25, 3173-3207 (2010) [arXiv:1001.0563 [hep-th]].

H. Itoyama and T. Oota, “Method of generating q-expansion coefficients for conformal block and $\mathcal{N} = 2$ Nekrasov function by β-deformed matrix model,” Nucl. Phys. B 838, 298-330 (2010) [arXiv:1003.2929 [hep-th]].

A. Mironov, A. Morozov and And. Morozov, “Matrix model version of AGT conjecture and generalized Selberg integrals,” Nucl. Phys. B 843, 534-557 (2011) [arXiv:1003.5752 [hep-th]].

H. Itoyama, T. Oota and N. Yonezawa, “Massive scaling limit of the β-deformed matrix model of Selberg type,” Phys. Rev. D 82, 085031 (2010) [arXiv:1008.1861 [hep-th]].

A. Mironov, A. Morozov and Sh. Shakirov, “A direct proof of AGT conjecture at $\beta = 1$,” JHEP 1102, 067 (2011) [arXiv:1012.3137 [hep-th]].

S. Kanno, Y. Matsuo and H. Zhang, “Extended Conformal Symmetry and Recursion Formulae for Nekrasov Partition Function,” JHEP 1308, 028 (2013) [arXiv:1306.1523 [hep-th]].

A. Morozov and A. Smirnov, “Towards the Proof of AGT Relations with the Help of the Generalized Jack Polynomials,” Lett. Math. Phys. 104 585-612 (2014) [arXiv:1307.2576 [hep-th]].

S. Mironov, And. Morozov and Y. Zenkevich, “Generalized Jack polynomials and the AGT relations for the SU(3) group,” JETP Lett. 99, 109-113 (2014) [arXiv:1312.5732 [hep-th]].

Y. Matsuo, C. Rim and H. Zhang, “Construction of Gaiotto states with fundamental multiplets through Degenerate DAHA,” arXiv:1405.3141 [hep-th].

G. Bonelli, K. Maruyoshi and A. Tanzini, “Instantons on ALE spaces and super Liouville conformal field theories,” JHEP 1107, 079 (2011) [arXiv:1105.5800 [hep-th]].

T. Nishioka and Y. Tachikawa, “Central charges of para-Liouville and Toda theories from M-5-branes,” Phys. Rev. D 84, 046009 (2011) [arXiv:1106.1172 [hep-th]].

B. Estienne, V. Pasquier, R. Santachiara and D. Serban, “Conformal blocks in Virasoro and W theories: Duality and the Calogero-Sutherland model,” Nucl. Phys. B 860, 377-420 (2012) [arXiv:1110.1101 [hep-th]].
[22] Y. Ito, “Ramond sector of super Liouville theory from instantons on an ALE space,” Nucl. Phys. B 861, 387-402 (2012) [arXiv:1110.2176 [hep-th]].

[23] M. N. Alfimov and G. M. Tarnopolsky, “Parafermionic Liouville field theory and instantons on ALE spaces,” JHEP 1202, 036 (2012) [arXiv:1110.5628 [hep-th]].

[24] A. A. Belavin, M. A. Bershtein, B. L. Feigin, A. V. Litvinov and G. M. Tarnopolsky, “Instanton moduli spaces and bases in coset conformal field theory,” Commun. Math. Phys. 319, 269-301 (2013) [arXiv:1111.2803 [hep-th]].

[25] A. A. Belavin, M. A. Bershtein and G. M. Tarnopolsky, “Bases in coset conformal field theory from AGT correspondence and Macdonald polynomials at the roots of unity,” arXiv:1211.2788 [hep-th].

[26] M. N. Alfimov, A. A. Belavin and G. M. Tarnopolsky, “Coset conformal field theory and instanton counting on $\mathbb{C}^2/\mathbb{Z}_p$,” JHEP 1308, 134 (2013) [arXiv:1306.3938 [hep-th]].

[27] J. Shiraishi, H. Kubo, H. Awata and S. Odake, “A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions,” Lett. Math. Phys. 38, 33-51 (1996) [arXiv:q-alg/9507034].

[28] B. Feigin and E. Frenkel, “Quantum \mathcal{W}-Algebras and Elliptic Algebras,” Commun. Math. Phys. 178, 653-678 (1996) [arXiv:q-alg/9508009].

[29] H. Awata, H. Kubo, S. Odake and J. Shiraishi, “Quantum \mathcal{W}_N Algebras and Macdonald Polynomials,” Commun. Math. Phys. 179, 401-416 (1996) [arXiv:q-alg/9508011].

[30] H. Awata and Y. Yamada, “Five-Dimensional AGT Relation and the Deformed β-Ensemble,” Prog. Theor. Phys. 124, 227-262 (2010) [arXiv:1004.5122 [hep-th]].

[31] F. Nieri, S.Pasquetti and F. Passerini, “3d & 5d gauge theory partition functions as q-deformed CFT correlators,” arXiv:1303.2626 [hep-th].

[32] H. Itoyama, T. Oota and R. Yoshioka, “2d-4d Connection between q-Virasoro/W Block at Root of Unity Limit and Instanton Partition Function on ALE Space,” Nucl. Phys. B 877, 506-537 (2013) [arXiv:1308.2068 [hep-th]]; “q-Virasoro algebra at root of unity limit and 2d-4d connection,” J. Phys. Conf. Ser. 474, 012022 (2013).

[33] M.-C. Tan, “An M-Theoretic Derivation of a 5d and 6d AGT Correspondence, and Relativistic and Elliptized Integrable Systems,” JHEP 1312, 031 (2013) [arXiv:1309.4775 [hep-th]].

[34] D. Orlando, “A stringy perspective on the quantum integrable model/gauge correspondence,” arXiv:1310.0031 [hep-th].

[35] L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, “Non-Lagrangian theories from brane junctions,” JHEP 1401, 175 (2014) [arXiv:1310.3841 [hep-th]].

[36] F. Nieri, S. Pasquetti, F. Passerini and A. Torrielli, “5D partition functions, q-Virasoro systems and integrable spin-chains,” arXiv:1312.1294 [hep-th].
[37] H. Itoyama, A. Mironov and A. Morozov, “Matching branches of non-perturbative conformal block at its singularity divisor,” arXiv:1406.4750 [hep-th].

[38] P. Bouwknegt and K. Pilch, “The Deformed Virasoro Algebra at Roots of Unity,” Commun. Math. Phys. 196, 249-288 (1998) [arXiv:q-alg/9710026].

[39] K. Takemura and D. Uglov, “The orthogonal eigenbasis and norms of eigenvectors in the spin Calogero-Sutherland model,” J. Phys. A 30, 3685-3718 (1997).

[40] D. Uglov, “Yangian Gelfand-Zetlin Bases, \mathfrak{gl}_N-Jack Polynomials and Computation of Dynamical Correlation Functions in the Spin Calogero-Sutherland Model,” Commun. Math. Phys. 191, 663-696 (1998).

[41] G. Cristofano, G. Maiella and V. Marotta, “A twisted conformal field theory description of the quantum Hall effect,” Mod. Phys. Lett. A 15, 547-555 (2000) [arXiv:cond-mat/9912287].

[42] Y. Kitazawa, N. Ishibashi, A. Kato, K. Kobayashi, Y. Matsuo and S. Odake, “Operator product expansion coefficients in $N = 1$ superconformal theory and slightly relevant perturbation,” Nucl. Phys. B 306, 425-444 (1988).

[43] L. Alvarez-Gaumé and Ph. Zaugg, “Structure constants in the $N = 1$ superoperator algebra,” Annals Phys. 215, 171-230 (1992) [arXiv:hep-th/9109050].

[44] A. B. Zamolodchikov and V. A. Fateev, “Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in Z_N-symmetric statistical systems,” Zh. Eksp. Teor. Fiz. 89, 380-399 (1985) [Sov. Phys. JETP 62, 215-225 (1985)]; “Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts Z_3 model,” Teor. Mat. Fiz. 71, 163-178 (1987) [Theor. Math. Phys. 71, 451-462 (1987)].

[45] V. Marotta, “Stress-tensor for parafermions from winding subalgebras of affine algebras,” Mod. Phys. Lett. A 13, 853-860 (1998) [arXiv:hep-th/9712031].

[46] A. B. Zamolodchikov, “Exact solutions of conformal field theory in two dimensions and critical phenomena,” Rev. Math. Phys. 1, 197-234 (1989).

[47] D. Gepner, “New Conformal Field Theories Associated with Lie Algebras and Their Partition Function,” Nucl. Phys. B 290, 10-24 (1987).