Statistical origin and properties of kappa distributions

George Livadiotis
Southwest Research Institute, USA
glivadiotis@swri.edu

Abstract. Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as space and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by kappa distributions, or combinations thereof. Empirical kappa distributions have become increasingly widespread across space and plasma physics. A breakthrough in the field came with the connection of kappa distributions to non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, namely, (i) the concept of temperature; (ii) the physical meaning of the kappa index; (iii) the N-particle description of kappa distributions; and the (iv) the generalization to phase-space kappa distribution of a Hamiltonian with non-zero potential.

1. Introduction

Classical particle systems are de facto characterized by the absence of correlations among the individual particle energies. The statistical behavior of these systems has been successfully described by the Boltzmann-Gibbs (BG) statistical mechanics and the Maxwellian distribution of velocities. Space plasmas are collisionless and correlated particle systems, characterized by stationary states out of thermal equilibrium that exhibit a non-Maxwellian behavior; this is typically described by kappa distributions and combinations thereof.

The kappa distributions have been used to describe numerous space plasma populations. Single types of kappa distributions are usually sufficient to satisfactorily model these plasma populations (e.g., [1-3]). Occasionally, more complicated models of kappa distributions are employed (e.g., [4-6]).

Among many others, some examples of space plasma applications are the following: (i) the inner heliosphere, including solar wind (e.g., [4, 7-18], solar spectra (e.g., [19,20]), solar corona (e.g., [21-24]), solar energetic particles (e.g., [25,26]), corotating interaction regions (e.g., [27]), and solar flares related (e.g., [28-31]); (ii) the planetary magnetospheres, including magnetosheath (e.g., [32,33]), near magnetopause (e.g., [34]), magnetotail (e.g., [35]), ring current (e.g., [36]), plasma sheet (e.g., [37-39]), ionosphere (e.g., [40]), magnetospheric substorms (e.g., [41]), magnetospheres of giant planets, such as Jovian (e.g., [42,43]), Saturnian (e.g., [2,44,45]), Uranian (e.g., [46]), Neptunian (e.g., [47]), magnetospheres of planetary moons, such as Io (e.g., [48]) and Enceladus (e.g., [49]), or cometary magnetospheres (e.g., [50,51]); (iii) the outer heliosphere and the inner heliosheath (e.g., [12-15,52-66]); (iv) beyond the heliosphere, including HII regions (e.g., [67]), planetary nebula (e.g., [68,69]), and supernova magnetospheres (e.g., [70]); or other space plasma-related analyses (e.g., [57,58,71-93]). (See also: [6,94,95], and references therein.)
Empirical kappa distributions have been introduced in mid-60’s by Binsack (1966) [96], Olbert (1968) [97], and Vasyliūnas (1968) [1], while the statistical origin of kappa distributions is determined within the framework of non-extensive statistical mechanics [94]. Their connection with statistical mechanics was shown and studied in detail in about half century later (see [98], and references therein). Non-extensive statistical mechanics is a consistent generalization of the classical statistical mechanics, which is based on a mono-parametric (q-index) entropic formula [99]. The theoretical q-exponential distribution, which results from the maximization of entropy in the canonical ensemble, and the empirical kappa distribution, have identical formulation under the transformation of their indices, $q = 1 + 1/\kappa$.

Having understood the physical underpinnings of the statistical mechanics connected with kappa distributions, it is straightforward to employ all the statistical well-grounded equations and capabilities for analyses that seek to apply kappa distributions in datasets, simulations, modeling, and theory of space plasmas. In Section 2 we describe the statistical origin of kappa distributions in detail. In Section 3 we show: (i) the concept of temperature; (ii) the physical meaning of the kappa index; (iii) the N-particle description of kappa distributions; and the (iv) the generalization to phase-space kappa distribution of a Hamiltonian with non-zero potential. Finally, Section 4 briefly summarizes the conclusions.

2. Statistical origin

2.1. Motivation

Classical particle systems reside in a special stationary state, the thermal equilibrium - the concept that any flow of heat (thermal conduction, thermal radiation) is in balance. At thermal equilibrium particles were described by the Boltzmann distribution of energies or the Maxwell distribution of velocities. This was the only known stationary state by the time BG statistical mechanics was built and applied. However, space plasmas have been observed in other stationary states. Since these are described by non-Maxwellian behavior and the Maxwell distribution was known as the only distribution interwoven with thermal equilibrium, the space plasma stationary states were called “out of thermal equilibrium”. They were also called “non-thermal”, but this is fairly unjustified, because these new types of stationary states are quite thermalized and surely described by a temperature.

Once we realized that non-equilibrium stationary states exist, the challenge is to understand their statistics and the involved statistical mechanics. They are characterized by a non-Maxwellian behavior, but the Maxwell distribution is still showing the right path to describe and express the new distributions and their statistics. Indeed, one way to understand this is via the variation of the temperature: If the particles are characterized by a Maxwellian distribution, where its temperature is not fixed but varies under certain statistics, it can lead to other stationary states (for details, see: [95], Chapter 6). Moreover, here we show some other way to understand how the Maxwell distribution and BG statistical mechanics can lead to the non-equilibrium stationary states observed in space plasmas.

Two basic functions are involved in the formulation of BG statistical mechanics: The exponential and logarithmic functions; the former describes the canonical distribution and the latter the entropic function. Both functions can be written using the Euler’s limit,

$$\exp(x) = \lim_{\kappa \to \infty} \left(1 - \frac{x}{\kappa}\right)^{-\kappa} \quad \Leftrightarrow \quad \ln(x) = \lim_{\kappa \to \infty} \left[\kappa \cdot \left(1 - x^{-1/\kappa}\right)\right], \quad (1)$$

Setting the definitions

$$\exp_\kappa(x) \equiv \left(1 - \frac{x}{\kappa}\right)^{-\kappa}, \quad \ln_\kappa(x) \equiv \kappa \cdot \left(1 - x^{-1/\kappa}\right), \quad (2)$$

known as deformed exponential and logarithmic functions, respectively, we have
Note that these functions are inverse to each other for any value of the kappa index.

The exponential function is used in the Boltzmann distribution, that is, the (canonical) distribution maximizes the BG entropy under the constraints of the canonical ensemble. This can be written as

\[p_i \propto \exp \left(- \frac{\varepsilon_i}{k_B T} \right) = \lim_{\kappa \to \infty} \exp \left(- \frac{1}{\kappa} \cdot \frac{\varepsilon_i}{k_B T} \right) = \lim_{\kappa \to \infty} \left(1 + \frac{1}{\kappa} \cdot \frac{\varepsilon_i}{k_B T} \right)^{-\kappa} . \]

On the other hand, the logarithmic function is used in the entropy formulation. This is expressed in terms of a discrete probability distribution \(\{ p_i \} \), which can be written as

\[S = \sum_i p_i \cdot \ln(1/ p_i) = \lim_{\kappa \to \infty} \sum_i p_i \cdot \ln_\kappa(1/ p_i) = \lim_{\kappa \to \infty} \sum_i \left\{ \kappa \cdot \left[p_i - p_i^{1/\kappa} \right] \right\} . \]

At this point, we note that while space physics community is used in the notation of the kappa index, the statistical mechanics community is using the \(q \)-index; both the indices are simply related:

\[\kappa = \frac{1}{q-1} \iff q = 1 + \frac{1}{\kappa} . \]

Then, the canonical distribution and entropy are written in a limit form as follows:

\[p_i \propto \exp \left(- \frac{\varepsilon_i}{k_B T} \right) = \lim_{\kappa \to \infty} \left(1 + \frac{1}{\kappa} \cdot \frac{\varepsilon_i}{k_B T} \right)^{-\kappa} \]

\[S = \sum_i p_i \cdot \ln(1/ p_i) = \lim_{\kappa \to \infty} \sum_i \left\{ \kappa \cdot \left[p_i - p_i^{1/\kappa} \right] \right\} = \lim_{q \to 1} \sum_i \left(\frac{p_i - p_i^q}{q-1} \right) . \]

We define the kappa dependent distribution and entropy,

\[p_{\kappa i} = \frac{1}{Z} \left(1 + \frac{1}{\kappa} \cdot \frac{\varepsilon_i}{k_B T} \right)^{-\kappa} , \quad S_\kappa = \sum_i \left\{ \kappa \cdot \left[p_i - p_i^{1/\kappa} \right] \right\} . \]

\(Z \) is an auxiliary partition function, e.g., see: [100]). Hence, we have that

\[p_i = \lim_{\kappa \to \infty} p_{\kappa i} , \quad S = \lim_{\kappa \to \infty} S_\kappa . \]

Therefore, the special stationary state at thermal equilibrium can be described by a specific value of the kappa index of the distribution \(p_{\kappa i} \) and entropy \(S_\kappa \), that is, \(\kappa \to \infty \). However, what is the physical meaning of the states that correspond to finite values of the kappa index? As we will see, these finite kappa indices describe the non-equilibrium stationary states observed in space plasmas. The formed \(p_{\kappa i} \) and \(S_\kappa \) constitute the kappa distribution and its associated Tsallis entropy.

2.2. Entropy maximization

Consider a system described by a discrete energy distribution, that is, energy \(\varepsilon_1 \) with probability \(p_1 \), energy \(\varepsilon_2 \) with probability \(p_2 \), \ldots, energy \(\varepsilon_W \) with Probability \(p_W \). The classical BG entropy is given by

\[S = S(p_1, p_2, \ldots, p_W) = - k_B \cdot \sum_{i=1}^{W} p_i \ln(p_i) , \]

while the Tsallis entropy is
\[S = S(p_1, p_2, ..., p_W) = k_B \cdot \frac{1}{q-1} \left(1 - \sum_{k=1}^{W} p_k^q \right) = k_B \cdot \frac{1}{q-1} \sum_{k=1}^{W} (p_k - p_k^q) . \]

We expand the entropic form in terms of \((q-1)\):

\[p_k^q = p_k \cdot e^{(q-1) \ln p_k} = p_k \cdot \left[1 + (q-1) \cdot \ln p_k + \frac{1}{2} (q-1)^2 \cdot \ln^2 p_k + O((q-1)^3) \right] \]

\[\Rightarrow \sum_{k=1}^{W} p_k^q \approx 1 + (q-1) \sum_{k=1}^{W} p_k \ln p_k + \frac{1}{2} (q-1)^2 \sum_{k=1}^{W} p_k \ln^2 p_k + O((q-1)^3) \]

\[\Rightarrow \frac{1}{q-1} \cdot \left(1 - \sum_{k=1}^{W} p_k^q \right) \approx -\sum_{k=1}^{W} p_k \ln p_k - \frac{1}{2} (q-1) \sum_{k=1}^{W} p_k \ln^2 p_k + O((q-1)^2) . \]

Hence, the Tsallis entropy can be approximated by the BG entropy and expanding \((q-1)\) terms:

\[S = k_B \cdot \frac{1}{q-1} \left(1 - \sum_{k=1}^{W} p_k^q \right) \approx -k_B \cdot \sum_{k=1}^{W} p_k \ln p_k - k_B \cdot \frac{1}{2} (q-1) \sum_{k=1}^{W} p_k \ln^2 p_k + O((q-1)^2) . \]

The expansion to infinite \((q-1)\) terms is

\[S = k_B \cdot \frac{1}{q-1} \left(1 - \sum_{k=1}^{W} p_k^q \right) = -k_B \cdot \sum_{k=1}^{W} p_k \ln p_k - k_B \cdot \sum_{n=2}^{\infty} \frac{1}{n!} (q-1)^n \cdot \sum_{k=1}^{W} p_k \ln^n p_k \]

Therefore, Tsallis entropy recovers to BG entropy for \(q \to 1\).

The Gibbs’ path (1902) [101] for the maximization of the entropy \(S(p_1, p_2, ..., p_W)\) under the constraints of canonical ensemble, i.e., (i) normalization \(1 = \sum_{k=1}^{W} p_k\), and (ii) fixed internal energy \(U = \sum_{k=1}^{W} p_k \varepsilon_k\), involves maximizing the functional

\[G(p_1, p_2, ..., p_W) = S(p_1, p_2, ..., p_W) + \lambda_1 \sum_{k=1}^{W} p_k - \lambda_2 \sum_{k=1}^{W} p_k \varepsilon_k . \]

that is, setting

\[\frac{\partial}{\partial p_j} G(p_1, p_2, ..., p_W) = 0 , \; \forall \; j : 1, ..., W . \]

Next, we examine the BG and Tsallis entropic formulations. For the BG entropy we find

\[p_j = \exp(\lambda_1 - 1) \cdot \exp(-\lambda_2 \varepsilon_j) , \]

or using the mean-less energies, \(\varepsilon_j - U\),

\[p_j = \exp(\lambda_1 - 1 - \lambda_2 U) \cdot \exp[-\lambda_2 (\varepsilon_j - U)] . \]

The case of Tsallis entropy is rather more complicated. The non-extensive statistical mechanics is interwoven with the concept of escort probabilities [102]. The escort probability distribution \(\{p_k\}_{k=1}^{W}\) is constructed from the ordinary probability distribution, \(\{p_k\}_{k=1}^{W}\), as \(p_k \propto p_k^q\), \(\forall \; k = 1, ..., W\). The interpretation for the internal energy \(U\) is given by the escort expectation value of energy, \(U = \sum_{k=1}^{W} p_k \varepsilon_k\), which complicates the functional \(G\) that needs to be maximized.
Another, fairly simpler way of approaching the entropy maximization within the framework of non-extensive statistical mechanics is given by avoiding the notion of escort probabilities \[100\]. Then, a different \(Q\)-index characterizes the canonical distribution, e.g., \(Q = q^{-1}\),

\[
p_j = \left[1 + (1-Q) \cdot (\lambda_1 - 1)\right]^{-\frac{Q}{q^{-1}}} \cdot \left[1 + (Q-1) \cdot \frac{\lambda_2 e_j}{1 + (1-Q) \cdot (\lambda_1 - 1)}\right]^{-\frac{Q}{q^{-1}}}.
\]

(18)

We enter the mean-less energies, \(e_j - U\),

\[
p_j = \left[1 + (1-Q) \cdot (\lambda_1 - 1 + \lambda_2 U)\right]^{-\frac{Q}{q^{-1}}} \cdot \left[1 + (Q-1) \cdot \frac{\lambda_2 (e_j - U)}{1 + (1-Q) \cdot (\lambda_1 - 1 + \lambda_2 U)}\right]^{-\frac{Q}{q^{-1}}}.
\]

(19)

Then, using the typical notation of the kappa index, \(\kappa \equiv (Q-1)^{-1}\), we construct the kappa distribution,

\[
p_j \propto \left[1 + \frac{1}{\kappa} \cdot \beta(e_j - U)\right]^{-\kappa^{-1}},
\]

(20)

where we set the (inverse) temperature as \(\beta \equiv \lambda_2 /[1 + (1-Q) \cdot (\lambda_1 - 1 + \lambda_2 U)]\).

2.3. General entropy

Here we assume that the entropic function is given in terms of an unknown function \(f(x)\):

\[
S = S(p_1, p_2, ..., p_W) = k_B \sum_{k=1}^W f(p_k).
\]

(21)

We claim that the exact form of \(f(x)\) can be determined by considering basic physical properties like the macroscopic additivity among energies and entropies.

First, the maximization of entropy gives

\[
f'(p_j) + \lambda_1 - \lambda_2 e_j = 0,
\]

(22)

and given the energy additivity among two parts of the system, A and B, i.e., \(e_{\gamma}^{A+B} = e_{\gamma}^A + e_{\gamma}^B\), we obtain (for constant \(\lambda_1\) and \(\lambda_2\)):

\[
f'(p_{\gamma}^{A+B}) - \lambda_1 = f'(p_{\gamma}^A) + f'(p_{\gamma}^B).
\]

(23)

Then, applying \(\sum_{\gamma=1}^W \sum_{\gamma=1}^W p_{\gamma}^{A+B}\times\) on both sides of Eq.(23), we derive

\[
\sum_{\gamma=1}^W \left[\pm f'(p_{\gamma}^{A+B}) - 1\right] p_{\gamma}^{A+B} = \sum_{\gamma=1}^W \left[\pm f'(p_{\gamma}^A) - 1\right] p_{\gamma}^A + \sum_{\gamma=1}^W \left[\pm f'(p_{\gamma}^B) - 1\right] p_{\gamma}^B.
\]

(24)

Second, the entropy additivity among the same two parts of the system, \(S^{A+B} = S^A + S^B\), gives

\[
\sum_{\gamma=1}^W f(p_{\gamma}^{A+B}) = \sum_{\gamma=1}^W f(p_{\gamma}^A) + \sum_{\gamma=1}^W f(p_{\gamma}^B).
\]

(25)

The only solution for having both relations (24) and (25) is to have the proportionality

\[
f(x) \propto \left[\frac{1}{\kappa} \cdot f'(x) - 1\right] \cdot x.
\]

(26)
Solving this differential equation we find
\[f(x) = \lambda_1 \frac{x-x^q}{\lambda_1 c - 1}, \quad (27) \]
where \(c \) is the proportionality constant. Setting \(\lambda_1 \equiv k_B = 1 \) and \(q \equiv \frac{\lambda_1}{c} \), we end up with the Tsallis entropy, as given by Eq.(11),
\[S(p_1, p_2, ..., p_w) = k_B \sum_{k=1}^W f(p_k) \text{ with } f(x) = \frac{1}{q-1} \cdot (x-x^q). \quad (28) \]
(For more details, see: \cite{103}.)

3. Statistical properties

3.1. The concept of temperature

The standard formulation of the kinetic energy is
\[P(\varepsilon_K) \propto \left(1 + \frac{1}{\kappa - \frac{\varepsilon_K}{k_B T}} \cdot \varepsilon_K^{\frac{1}{\kappa - 1}} \right)^{-\kappa - 1} \cdot \varepsilon_K^\frac{1}{\kappa - 1}, \quad (29) \]
while sometimes a different formulation of a kappa distribution is also used,
\[P(\varepsilon_K) \propto \left(1 + \frac{1}{\kappa \cdot k_B T} \cdot \varepsilon_K^{\frac{\kappa - 1}{\kappa}} \right)^{-\kappa - 1} \cdot \varepsilon_K^{\frac{1}{\kappa - 1}}, \quad (30) \]
where the parameter \(T_\kappa \) is not the actual temperature of the particle system, but a quantity dependent on both the actual temperature \(T \) and the kappa index.

The temperature can kinetically defined by the mean kinetic energy,
\[\langle \varepsilon_K \rangle = \frac{1}{2} d_\kappa k_B T, \quad (31) \]
where \(d_\kappa \) is the kinetic degrees of freedom. If a thermal parameter other than the temperature is used for characterizing the kappa distribution, it must be expressed in terms of the temperature (and possibly, the kappa index). For example, in Eq.(30), the parameter \(T_\kappa \) can be derived from the mean kinetic energy,
\[\langle \varepsilon_K \rangle = \frac{1}{2} d_\kappa k_B T_\kappa / (\kappa - \frac{1}{2} d_\kappa). \quad (32) \]
Comparing Eqs.(31,32) we derive the relation \((\kappa - \frac{1}{2}) \cdot k_B T = \kappa \cdot k_B T_\kappa \); hence, we find that \(T_\kappa \) (and not \(T \)) depends on the kappa index, i.e., \(T_\kappa = T_\kappa(T, \kappa) \) (see: \cite{6}; \cite{95}, Chapter 1).

The correct definition and use of temperature in the formulation of the kappa distribution can be helpful for understanding the properties of this distribution. For example, we may ask, are there types of kappa distributions with different exponents? No, the generated types would be equivalent with the standard kappa distribution: Let’s assume that the kappa distribution can be generalized to have an arbitrary exponent,
\[P(\varepsilon) \propto \left(1 + \frac{1}{\kappa - \frac{\varepsilon}{k_B T}} \cdot \varepsilon^{\frac{\kappa - a}{2}} \right)^{-\kappa - a} \cdot \varepsilon^{\frac{5}{2} - a} - a < \kappa \leq \infty. \quad (33) \]
How can this be equivalent to the standard kappa distribution, i.e.,
The parameter T in Eq.(33) is not the actual temperature but a quantity depended on the actual temperature (and the kappa index). By substituting the parameter T in Eq.(33) with the actual temperature T_{real}, derived from the mean kinetic energy,

$$<e> = \frac{3}{2}k_B T_{\text{real}} = \cdots = \frac{\kappa - \frac{3}{2}}{\kappa + a - \frac{5}{2}} \frac{1}{k_B} T_{\text{real}},$$

we find

$$P(e) \propto \left(1 + \frac{1}{\kappa - \frac{3}{2}} \frac{1}{k_B T_{\text{real}}}
ight)^{-(\kappa + a - 1)}<e>, \quad \frac{3}{2} < \kappa + a - 1 \leq \infty .$$

Then, we note that the kappa index κ appears always in the quantity $\kappa + a - 1$. Hence, we redefine the kappa index, so that $\kappa + a - 1 \rightarrow \kappa$, thus, the distribution (33) becomes

$$P(e) \propto \left(1 + \frac{1}{\kappa - \frac{3}{2}} \frac{1}{k_B T_{\text{real}}}
ight)^{-(\kappa + a - 1)}<e>, \quad \frac{3}{2} < \kappa \leq \infty ,$$

which is the standard kappa distribution formulation.

3.2. The physical meaning of the kappa index

The kappa index depends on the kinetic degrees of freedom, d_K:

$$\kappa = \kappa(d_K) = \text{constant} + \frac{1}{2} d_K, \quad \text{with} \quad \kappa_0 = \kappa(d_K), -\frac{1}{2} d_K = \text{invariant kappa index}.$$

Therefore, the d_K-dimensional kappa distribution of the velocities of 1-particle can be written using the dependent kappa index, κ, or the invariant kappa index, κ_0,

$$P(\vec{u}; T; \kappa) \propto \left(1 + \frac{1}{\kappa - \frac{d_K}{2}} \frac{u^2}{\Theta^2}
ight)^{-\kappa}, \quad \frac{3}{2} < \kappa - \frac{d_K}{2} \leq \infty .$$

The physical meaning of the kappa index is interwoven with the statistical correlation between the energy of the particles. It has been shown that a simple relation exists between the correlation and the kappa index, $R = \frac{1}{2} d_k / \kappa = \frac{1}{2} d_k / (\kappa_0 + \frac{1}{2} d_k)$ [59,78] (see also: [95], Chapter 5). The largest value of the kappa index is infinity, corresponding to the system residing at thermal equilibrium. This is a special stationary state for which the particles are characterized by zero correlation. The whole structure of classical statistical mechanics is based on this ideal property that the energies of any two particles are uncorrelated (i.e., zero covariance). On the other hand, the smallest possible value of the kappa index is $\kappa_0 \rightarrow 0$ (or $\kappa \rightarrow -\frac{1}{2} d_k$) and corresponds to the furthest state from thermal equilibrium, a state called anti-equilibrium [14].

The classical, single stationary state at equilibrium is generalized into a whole set of different non-equilibrium stationary states, each labeled by a separate kappa index, an arrangement called the κ-spectrum (Figure 1). Hence, the parameter kappa provides a suitable measure of the “thermodynamic distance” of stationary states from equilibrium.
The κ-spectrum. For $\kappa \to \infty$, the system resides at thermal equilibrium; for $\kappa \to \frac{3}{2}$, the furthest possible stationary state from thermal equilibrium is attained, the anti-equilibrium. This is shown comparing with the correlation coefficient R. The classical case of systems residing in thermal equilibrium ($\kappa \to \infty$) corresponds to zero correlation ($R \to 0$), while the other extreme state of “anti-equilibrium” ($\kappa \to \frac{3}{2}$) indicates a maximum correlation ($R \to 1$). (Adopted from [95], Chapter 5)

Furthermore, observations showed an empirical separation of the κ-spectrum that characterizes space plasmas [12,15,59,95]: While the inner heliosphere plasmas reside in near equilibrium states with large kappa indices, generally $\kappa>2.5$, analysis of the IBEX ENA-spectra showed that inner heliosheath resides in states far from equilibrium with small kappa indices $\kappa<2.5$ (Figure 2). The distinction in near-/far-equilibrium regions can be explained by the entropy associated with kappa distributions, which exhibits different functional behavior within the two regions (for details, see: [57] and [95], Chapters 2 and 10).

Density, temperature and kappa index are independent parameters. Various correlations and trends appear in several space plasmas do not constitute universal relations, as these are subject to the location, time, and plasma parameters. This behavior is expected, as there are many factors causing correlations between those three thermodynamic parameters (e.g., potential energy, e.g., [77] and [95], Chapters 3 and 5). This is similar to the classical case at thermal equilibrium, where density and temperature are independent parameters, but polytropes apply correlations and trends among their values.

Figure 3 illustrates the parameter values of space plasmas. In particular, it plots the representative values of density n, temperature T, and kappa index κ of ~40 different space plasmas. The kappa indices were collected from the results of one or more published analyses. We also calculate the measure $M=1/(\kappa-0.5)$, an alternative of the kappa index κ. This is a measure of how far the system
resides from thermal equilibrium [12, 59, 80]. We observe a general trend characterizing space plasmas: The higher the temperature, the closer to thermal equilibrium, that is, the higher the kappa index.

3.3. The N-particle description of kappa distributions

The advantage of using the invariant kappa index, κ_0, instead of the dimensionality dependent kappa index, κ, is that we can express the N-particle kappa distribution, that is, the ($d_K N$)-dimensional kappa distribution of the velocities of N-particles

$$P(\vec{u}_1, \ldots, \vec{u}_N) = \left(\frac{4}{\pi \kappa_0^3} \right) \frac{1}{\kappa_0} \frac{\Gamma(\kappa_0 + 1 + \frac{d_K}{2} N)}{\Gamma(\kappa_0 + 1)} \left[1 + \frac{1}{\kappa_0^2} \sum_{n=1}^{N} \left(\vec{u}_{(n)} - \vec{u}_0 \right)^2 \right]^{-\kappa_0^{-1} \frac{1}{2} d_K N} \cdot (40)$$

The N-particle kappa distribution in terms of the kinetic energies, $\epsilon_{K(a)} = \frac{1}{2} m (\vec{u}_{(a)} - \vec{u}_0)^2$, is

$$P(\epsilon_{K(1)}, \ldots, \epsilon_{K(N)}) = \left(\frac{\kappa_0 k_B T}{2} \right)^{\frac{d_K}{2} N} \frac{\Gamma(\kappa_0 + 1 + \frac{d_K}{2} N)}{\Gamma(\kappa_0 + 1) \cdot \Gamma\left(\frac{d_K}{2} N \right)} \left(1 + \frac{1}{\kappa_0^2} \sum_{n=1}^{N} \epsilon_{K(a)} \right)^{-\kappa_0^{-1} \frac{1}{2} d_K N} \prod_{n=1}^{N} \epsilon_{K(a)}^{-\frac{1}{2} d_K N} \cdot (41)$$

For example, the two-particle velocity distribution, with $d_K=3$ degrees of freedom per particle, is

$$P(\vec{u}_1, \vec{u}_2) = \frac{4}{\pi} \frac{1}{\kappa_0^3} (\kappa_0 + 1)(\kappa_0 + 2)(\kappa_0 + 3) \left[1 + \frac{1}{\kappa_0^2} \left(\frac{\vec{u}_{(1)} - \vec{u}_0}{\kappa_0^2} \right)^2 \right]^{-\kappa_0^{-4}} \cdot (42a)$$

or, in terms of the kinetic energy,

$$P(\epsilon_{K(1)}, \epsilon_{K(2)}) = \frac{4}{\pi} \frac{1}{k_B T} \left(\kappa_0 + 1 \right) \left(\kappa_0 + 2 \right) \left(\kappa_0 + 3 \right) \left[1 + \frac{1}{\kappa_0} \frac{\epsilon_{K(1)} + \epsilon_{K(2)}}{k_B T} \right]^{-\kappa_0^{-4}} \cdot (42b)$$

Therefore, the variance, co-variance, and (Pearson’s) correlation R, are given by
\[\sigma_{(1)}^2 = \left(\mathbb{E}_K(1)^2 \right) - \left(\mathbb{E}_K(1) \right)^2 = \frac{3}{2} \frac{\kappa_0 + \frac{3}{2}}{\kappa_0 - 1}, \quad (43a) \]

\[\sigma_{(2)}^2 = \left(\mathbb{E}_K(1)^2 \mathbb{E}_K(2)^2 \right) - \left(\mathbb{E}_K(1) \mathbb{E}_K(2) \right)^2 = \frac{1}{4} \frac{1}{\kappa_0 - 1}, \quad (43b) \]

\[R = \frac{\sigma_{(2)}^2}{\sigma_{(1)}^2} = \frac{\frac{3}{2} \frac{3}{2}}{\kappa_0} = \frac{3}{\kappa_0}. \quad (43c) \]

3.4. Non-zero potential energy

So far we have presented and discussed kappa distributions of the velocities or kinetic energies, considering the absence of any potential energy. In the presence of a potential energy \(\Phi \), however, the kappa distribution depends on both the velocities (kinetic energies) and the positions, thus it describes the particle phase-space. Indeed, the phase-space kappa distribution is given by

\[
P(\vec{r}, \vec{u}) \propto \left[1 + \frac{1}{\kappa_0} \cdot \mathbb{E}_K(\vec{u}) \cdot \Phi(\vec{r}) \right]^{-\kappa_0 - \frac{1}{2} \frac{1}{d_k} + \frac{1}{2} \frac{d_k}{d_\Phi}}, \quad \Phi(\vec{r}) > 0 , \quad (44a)\]

\[
P(\vec{r}, \vec{u}) \propto \left[\frac{\Phi(\vec{r}) \mathbb{E}_K(\vec{u})}{\kappa_0 k_B T} - 1 \right]^{-\kappa_0 - \frac{1}{2} \frac{1}{d_k} + \frac{1}{2} \frac{d_k}{d_\Phi}}, \quad \Phi(\vec{r}) < 0 , \quad (44b)\]

(the operator "[x]_+" means \([x]_+ = 0 \) when \(x \leq 0\)), where the kinetic and potential degrees of freedom are

\[
\frac{1}{2} d_k = \frac{\mathbb{E}_K}{k_B T}, \quad \frac{1}{2} d_\Phi = \frac{\Phi}{k_B T}. \quad (45)\]

If the phase-space kappa distribution is integrated over the positions, we arrive at the standard kappa distribution of velocities

\[
\int d\vec{r} \rightarrow P(\vec{u}) \propto \left[1 + \frac{1}{\kappa_0} \cdot \mathbb{E}_K(\vec{u}) \right]^{-\kappa_0 - \frac{1}{2} \frac{1}{d_k}}. \quad (46)\]

If the phase-space kappa distribution is integrated over the velocities, we derive the new type of positional kappa distribution

\[
\int d\vec{u} \rightarrow P(\vec{r}) \propto \left[1 + \frac{\Phi(\vec{r})}{\kappa_0 k_B T} \right]^{-\kappa_0 - \frac{1}{2} \frac{1}{d_\Phi}}, \quad \Phi(\vec{r}) > 0 , \quad (47a)\]

\[
\int d\vec{u} \rightarrow P(\vec{r}) \propto \left[\frac{\Phi(\vec{r})}{\kappa_0 k_B T} - 1 \right]^{-\kappa_0 - \frac{1}{2} \frac{1}{d_\Phi}}, \quad \Phi(\vec{r}) < 0 . \quad (47b)\]

We proceed with central attractive potentials, \(\Phi(\vec{r}) = \Phi(r) \). Two characteristic examples are the attractive power-laws with positive or negative exponents, corresponding to oscillation and gravitation types, respectively:

(i) Oscillation type, \(\Phi(r) = \frac{1}{r^b} k \cdot r^{-b} \):

- Phase-Space distribution:
\[P(\vec{r}, \vec{u}) \propto \left[1 + \frac{1}{\kappa_0} \cdot \left(\frac{E_K(\vec{u})}{k_B T} + \frac{d_B}{r_0} \left(\frac{\vec{p}}{r_0} \right) \right) \right]^{-1 - \frac{1}{d} + \frac{1}{d_k} - \frac{1}{d},} \]

(48a)

- Positional distribution:

\[P(\vec{r}) \propto \left[1 + \frac{d_B}{r_0} \left(\frac{\vec{p}}{r_0} \right) \right]^{-1 - \frac{1}{d} + \frac{1}{d_k},} \]

(48b)

(ii) Gravitation type, \(\Phi(r) = -\frac{1}{2} k \cdot r^{-b} \):

- Phase-Space distribution:

\[P(\vec{r}, \vec{u}) \propto \left[\frac{1}{\kappa_0} \cdot \left(\frac{r_0}{\vec{p}} \right)^b - \frac{E_K}{k_B T} \right]^{-1 - \frac{1}{d} + \frac{1}{d_k},} \]

(49a)

- Positional distribution:

\[P(\vec{r}) \propto \left[\frac{r_0}{\vec{p}} \right]^b - 1 \]

(49b)

- Involved parameters for \(\Phi(r) = \pm \frac{1}{2} k r^{-b} \):

\[r_0 = \left(\frac{1}{\kappa_0} \right)^{\frac{1}{b}} = \left(\frac{d_B k_B T}{\frac{1}{b} k} \right)^{\frac{1}{b}} , \quad \frac{1}{b} d_B = \pm \frac{\langle \Phi \rangle}{k_B T} = \frac{\frac{1}{b} k}{k_B T} r_0^{-b} = \frac{1}{b} d_t. \]

(49c)

Below, we present two examples.

3.4.1. Generalized barometric formula

The potential energy is \(\Phi(z) \propto z \), e.g., \(\Phi(z) = mg \cdot z \) or \(\Phi(z) = qE \cdot z \). The Hamiltonian is \(H(z, \vec{u}) = m (\vec{u} - \vec{u}_0)^2 + mg \cdot z \). We find:

- Phase-Space distribution:

\[P(z, E_K; \kappa_0, T) \propto \left[1 + \frac{1}{\kappa_0} \cdot \left(\frac{E_K}{k_B T} + \frac{z}{z_0} \right) \right]^{-1 - \frac{2}{d_k} + \frac{1}{d},} \]

(50a)

- Positional distribution:

\[P(z; \kappa_0, T) \propto \left(1 + \frac{1}{\kappa_0} \cdot \frac{z}{z_0} \right)^{-1 - \frac{2}{d_k}} \]

with \(z_0 = \frac{k_B T}{mg} \).

(50b)

- Density, \(n \):

\[n(z) \propto P(z) , \quad n(z) = n(0) \left(1 + \frac{1}{\kappa_0} \cdot \frac{z}{z_0} \right)^{-1 - \frac{2}{d_k},} \]

(50c)

- Local Temperature \(T(z) \):
\[\frac{d}{dt} k_B T(z) = \int_0^\infty \frac{P(z, \varepsilon_K) \varepsilon_K d\varepsilon_K}{P(z, \varepsilon_K) d\varepsilon_K} = \frac{d}{dt} k_B T(z) \left(1 + \frac{1}{\kappa_0} \frac{z}{z_0} \right) \]

\[T(z) = T(0) \left(1 + \frac{1}{\kappa_0} \frac{z}{z_0} \right). \]

(50d)

Note that the spatial average of the local temperature, \(T(z) \), is the global temperature, \(T \).

- Thermal Pressure, \(p(z) = n(z) \cdot k_B T(z) \):

The generalized barometric formula is given by

\[p(z; \kappa_0) = p(0) \left(1 + \frac{1}{\kappa_0} \frac{mg z}{k_B T} \right)^{-\kappa_0^{-1}} \]

with \(p(z; \kappa_0 \to \infty) = p(0) \exp \left(- \frac{mg z}{k_B T} \right). \)

(50e)

3.4.2. Oscillation

Let the 1-dimensional oscillation described by the Hamiltonian: \(H(z, u_z) = \frac{1}{2} m (u_z - u_{z0})^2 + \frac{1}{2} k \cdot z^2 \).

- Phase-Space distribution:

\[P(z, u_z) \propto \left[1 + \frac{1}{\kappa_0} \left(\frac{\varepsilon_k (u_z) + \frac{1}{2} \left(\frac{z}{z_0} \right)^2 }{k_B T} \right) \right]^{-\kappa_0^{-2}} \]

or \(P(z, u_z) \propto \left[1 + \frac{1}{\kappa_0} \frac{u_z^2 + (k/m) \cdot z^2}{\theta^2} \right]^{-\kappa_0^{-2}}. \)

(51a)

- Positional distribution:

\[P(z) \propto \left[1 + \frac{1}{2\kappa_0} \left(\frac{z}{z_0} \right)^2 \right]^{-\kappa_0^{-\frac{1}{2}}} \]

or \(P(z) \propto \left[1 + \frac{1}{\kappa_0} \frac{(k/m) \cdot z^2}{\theta^2} \right]^{-\kappa_0^{-\frac{1}{2}}}, \) with \(z_0 = \sqrt{\frac{k_B T}{k}}. \)

(51b)

These kappa distributions were used by \([49]\) to describe the 1-dimensional speed and altitude of OH in the plasma near Enceladus. Interestingly, the kappa distribution used for describing the OH velocities and the kappa distribution used for describing the OH positions had the same kappa index and temperature, as it is predicted by the theory (Figure 4).

Figure 4. Density and velocity distribution of the OH cloud at Saturn. The vertical density profile is well fit to a positional kappa distribution (see: Eq.(51b); [95], Chapter 3). The velocity distribution of individual particles is non-Maxwellian, and also well fit to a kappa distribution. (Taken from [49])

4. Conclusions

Empirical kappa distributions have become increasingly widespread across space and plasma physics. Space plasmas from the solar wind to planetary magnetospheres and the outer heliosphere are systems out of thermal equilibrium, described by kappa distributions. A breakthrough in the field came with the connection of kappa distributions to non-extensive statistical mechanics. This paper presented important aspects of the statistical origin of kappa distributions, as well as theoretical developments and applications, such as (i) the concept of temperature; (ii) the physical meaning of the kappa index;
(iii) the N-particle description of kappa distributions; and the (iv) the generalization to phase-space kappa distribution of a Hamiltonian with non-zero potential.

References

[1] Vasyl'yuñas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839–2884.

[2] Dialynas, K., S. M. Krimigis, D. G. Mitchell, D. C. Hamilton, N. Krupp, and P. C. Brandt 2009 Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. J. Geophys. Res. 114, A01212.

[3] Yoon, P. H.; L.F. Ziebell, R. Gaelzer, R.P. Lin, L. Wang, 2012 Langmuir turbulence and suprathermal electrons, Space Sci. Rev. 173, 459–489.

[4] Štverák, S., Maksimovic M., Travniek P. M., Marsch E., Fazakerley A. N., and Scime E. E. 2009 Radial evolution of nonthermal electron populations in the low-latitude solar wind: Helios, Cluster, and Ulysses Observations. J. Geophys. Res. 114, A05104.

[5] Lazar, M., V. Pierrard, R. Schlickeiser and S. Poedts 2012 Modeling space plasma dynamics with anisotropic Kappa distributions, Astrophys. Space Sci. 33, 97-107.

[6] Livadiotis, G. 2015 Statistical background and properties of kappa distributions in space plasmas. J. Geophys. Res. 120, 1607–1619.

[7] Maksimovic, M., V. Pierrard and J. Lemaire 1997 A kinetic model of the solar wind with Kappa distributions in the corona. Astron. Astrophys. 324, 725-734.

[8] Pierrard, V., M. Maksimovic, and J. Lemaire 1999 Electron velocity distribution function from the solar wind to the corona. J. Geophys. Res. 104, 17021-17032.

[9] Mann, G., H. T. Classen, E. Kepler, and E. C. Roelof 2002 On electron acceleration at CIR related shock waves. Astron. Astrophys. 391, 749–756.

[10] Marsch, E. 2006 Kinetic physics of the solar corona and solar wind, Living Rev. Sol. Phys. 3, 1.

[11] Zouganelis, I. 2008 Measuring suprathermal electron parameters in space plasmas: Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind. J. Geophys. Res. 113, A08111.

[12] Livadiotis, G. and McComas, D.J. 2010 Exploring transitions of space plasmas out of equilibrium. Astrophys. J. 714, 971.

[13] Livadiotis, G. and McComas, D.J. 2011 The influence of pick-up ions on space plasma distributions. Astrophys. J. 738, 64.

[14] Livadiotis, G. and McComas, D.J. 2013 Understanding kappa distributions: A toolbox for space science and astrophysics. Space Sci. Rev. 75, 183–214.

[15] Livadiotis, G. and McComas, D.J. 2013 Near-equilibrium heliosphere – Far-equilibrium heliosheath. AIP Conf. Proc. 1539, 344-350.

[16] Yoon, P. H. 2014 Electron kappa distribution and quasi-thermal noise. J. Geophys. Res. 119, 7074.

[17] Pierrard, V. and Pieters, M. 2015 Coronal heating and solar wind acceleration for electrons, protons, and minor ions, obtained from kinetic models based on kappa distributions. J. Geophys. Res. 119, 9441.

[18] Pavlos, G.P.; O.E. Malandraki, E.G. Pavlos, A.C. Iliopoulos, L.P. Karakatsanis 2016 Non-extensive statistical analysis of magnetic field during the March 2012 ICME event using a multi-spacecraft approach. Physica A 464, 149–181.

[19] Dzifčáková, E., and J. Dudík 2013 H to Zn ionization equilibrium for the non-Maxwellian electron κ-distributions: Updated calculations, Astrophys. J. Suppl. Ser. 206, 6.

[20] Dzifčáková, E., J. Dudík, P. Kotrč, F. Fárník and A. Zemanová 2015 KAPPA: A package for synthesis of optically thin spectra for the non-Maxwellian κ-distributions based on the Chianti database. Astrophys. J. Suppl. Ser. 217, 14.

[21] Owocki, S.P., and J.D. Scudder 1983 The effect of a non-Maxwellian electron distribution on oxygen and iron ionization balances in the solar corona. Astrophys. J. 270, 758-768.
[22] Vocks, C., G. Mann, and G. Rausche 2008 Formation of suprathermal electron distributions in the quiet solar corona. *Astron. Astrophys.* **480**, 527–536.

[23] Lee, E., D. R. Williams, and G. Lapenta 2013 Spectroscopic indication of suprathermal ions in the solar corona, arXiv:1305.2939v.

[24] Cranmer, S. R. 2014 Suprathermal electrons in the solar corona: Can nonlocal transport explain heliospheric charge states? *Astrophys. J. Lett.* **791**, L31.

[25] Xiao, F., C. Shen, Y. Wang, H. Zheng, and S. Whang 2008 Energetic electron distributions fitted with a kappa-type function at geosynchronous orbit. *J. Geophys. Res.* **113**, A05203.

[26] Laming, J. M., J. D. Moses, Y.-K. Ko, C. K. Ng, C. E. Rakowski, and A. J. Tylka (2013), On the remote detection of suprathermal ions in the solar corona and their role as seeds for solar energetic particle production. *Astrophys. J.* **770**, 73.

[27] Chotoo, K., et al. 2000 The suprathermal seed population for corotating interaction region ions at 1AU deduced from composition and spectra of H+, He++, and He+ observed by Wind. *J. Geophys. Res.* **105**, 23107–23122.

[28] Mann, G., A. Warmuth, and H. Aurass 2009 Generation of highly energetic electrons at reconnection outflow shocks during solar flares. *Astron. Astrophys.* **494**, 669-675.

[29] Livadiotis, G. and McComas, D.J. 2013 Evidence of large scale phase space quantization in plasmas. *Entropy* **15**, 1118-1132.

[30] Bian, N., G.A. Emslie, D.J. Stackhouse, and E.P. Kontar 2014 The formation of a kappa-distribution accelerated electron populations in solar flares. *Astrophys. J.* **796**, 142.

[31] Jeffrey, N. L. S., Fletcher, L., and Labrosse, N. 2016 First evidence of non-Gaussian solar flare EUV spectral line profiles and accelerated non-thermal ion motion. *Astron. Astrophys.* **590**, A99.

[32] Formisano, V., G. Moreno, F. Palmiotto, and P. C. Hedgecock 1973 Solar Wind Interaction with the Earth’s Magnetic Field 1. Magnetosheath, *J. Geophys. Res.* **78**, 3714-3730.

[33] Ogasawara, K., Angelopoulos, V., Dayeh, M.A., Fuselier, S.A., Livadiotis, G., McComas, D.J., McFadden, J.P. 2013 Characterizing the dayside magnetosheath using ENAs: IBEX and THEMIS observations. *J. Geophys. Res.* **118**, 3126-3137.

[34] Ogasawara, K., Dayeh, M.A., Funsten, H.O., Fuselier, S.A., Livadiotis, G., and McComas, D.J. 2015 Interplanetary magnetic field dependence of the suprathermal energetic neutral atoms originated in subsolar magnetopause. *J. Geophys. Res.* **120**, 964-972.

[35] Grabbe, C. 2000 Generation of broadband electrostatic waves in Earth's magnetotail. *Phys. Rev. Lett.* **84**, 3614.

[36] Pisarenko, N. F., E.Yu. Budnik, Yu.I. Ermolaev, I.P. Kirpichev, V.N. Lutsenko, E.I. Morozova, and E.E. Antonova 2002 The ion differential spectra in outer boundary of the ring current: November 17, 1995 case study. *J. Atm. Solar-Terr. Phys.* **64**, 573 – 583.

[37] Christon, S. P. 1987 A comparison of the Mercury and earth magnetospheres: electron measurements and substorm time scales. *Icarus* **71**, 448-471.

[38] Wang, C.-P., L. R. Lyons, M. W. Chen, R. A. Wolf, and F. R. Toffoletto 2003 Modeling the inner plasma sheet protons and magnetic field under enhanced convection. *J. Geophys. Res.* **108**, 1074.

[39] Kletzing, C. A., J. D. Scudder, E. E. Dors, and C. Curto 2003 Auroral source region: Plasma properties of the high latitude plasma sheet. *J. Geophys. Res.* **108**, 1360.

[40] Ogasawara, K., Livadiotis, G., Grubbs, G.A., Jahn, J-M., Michell, R., Samara, M., Sharber, J. R., and Winningham, J. D. 2017 Properties of suprathermal electrons associated with discrete auroral arcs. *Geophys. Res. Lett.* In Press.

[41] Hapgood, M., C. Perry, J. Davies and M. Denton 2011 The role of suprathermal particle measurements in CrossScale studies of collisionless plasma processes, *Planet. Space Sci.* **59**, 618–629.

[42] Collier, M.R., and D.C. Hamilton 1995 The relationship between kappa and temperature in the energetic ion spectra at Jupiter. *Geophys. Res. Lett.* **22**, 303-306.
[43] Mauk, B. H., D. G. Mitchell, R. W. McEntire, C. P. Paranicas, E. C. Roelof, D. J. Williams, S. M. Krimigis, and A. Lagg 2004 Energetic ion characteristics and neutral gas interactions in Jupiter’s magnetosphere. J. Geophys. Res. 109, A09S12.

[44] Livi, R., Goldstein, J., Burch, J. L., Cray, F., Rymer, A. M., Mitchell, D. G., and Persoon, A. M. 2014 Multi-instrument analysis of plasma parameters in Saturn’s equatorial, inner magnetosphere using corrections for spacecraft potential and penetrating background radiation. J. Geophys. Res. 119, 3683.

[45] Carbary, J. F., M. Kane, B. H. Mauk and S. M. Krimigis 2014 Using the kappa function to investigate hot plasma in the magnetospheres of the giant planets. J. Geophys. Res. 119, 8426–8447.

[46] Mauk, B. H., S. M. Krimigis, E. P. Keath, A. F. Cheng, T. P. Armstrong, L. J. Lanzerotti, G. Krimigis, S. M., et al. 1989 Hot plasma and energetic particles in Neptune’s magnetosphere. J. Geophys. Res. 94, 24683–24695.

[47] Jurac, S., M. A. McGrath, R. E. Johnson, J. D. Richardson, V. M. Vasyliunas, and A. Eviatar 2002 Saturn: Search for a missing water source. Geophys. Res. Lett. 29, 2172.

[48] Broiles, T.W., Livadiotis, G., Burch, J.L., Chae, K., Clark, G., Cravens, T.E., Davidson, R., Eriksson, A., Frahm, R.A., Fuselier, S.A., Goldstein, J., Goldstein, R, Henri, P, Madanian, H, Mandt, KE, Mokashi, P., Pollock, C., Rahmati, A., Samara, M., Schwartz, S.J. 2016 Characterizing cometary electrons with kappa distributions. J. Geophys. Res. 121, 7407-7422.

[49] Broiles, T.W., Burch, J.L., Chae, K., Clark, G., Cravens, T.E., Eriksson, A., Frahm, R.A., Gasc, S., Goldstein, R, Henri, P, Koenders, C., Livadiotis, G., Mandt, K.E., Mokashi, P., Nemeth, Z., Rubin, M. and Samara, M. 2016 Statistical analysis of suprathermal electron drivers at 67P/Churyumov-Gerasimenko. MNRAS 462, S312-S322.

[50] Decker, R. B. and Krimigis, S. M. 2003 Voyager observations of low-energy ions during solar cycle 23. Adv. Space Res. 32, 597–602.

[51] Decker, R. B., et al. 2005 Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020–2024.

[52] Heerikhuisen, J., Pogorelov, N. V., Florinski, V., Zank, G. P. and le Roux, J. A. 2008 The effects of a k-distribution in the heliosheath on the global heliosphere and ENA flux at 1 AU. Astrophys. J. 682, 679-689.

[53] Heerikhuisen, J., Zirnstein, E., Pogorelov, N. 2015 k-distributed protons in the solar wind and their charge-exchange coupling to energetic hydrogen. J. Geophys. Res. 120, 1516–1525.

[54] Zank, G. P.; J. Heerikhuisen, N. V. Pogorelov, R. Burrows, D. J. McComas 2010 Microstructure of the heliospheric termination shock: implications for energetic neutral atom observations. Astrophys. J. 708, 1092.

[55] Livadiotis, G. 2014 Lagrangian temperature: Derivation and physical meaning for systems described by kappa distributions. Entropy 16, 4290-4308.

[56] Livadiotis, G. 2016, Curie law for systems described by kappa distributions. EPL 113, 10003.

[57] Livadiotis, G. and McComas, D.J. 2011 Invariant kappa distribution in space plasmas out of equilibrium. Astrophys. J. 741, 88.

[58] Livadiotis, G. and McComas, D.J. 2012 Non-equilibrium thermodynamic processes: Space plasmas and the inner heliosheath. Astrophys. J. 749, 11.

[59] Livadiotis, G., McComas, D.J, Dayeh, M.A., Funsten, H.O. and Schwadron, N.A. 2011 First sky map of the inner heliosheath temperature using IBEX spectra. Astrophys. J. 734, 1.

[60] Livadiotis, G., McComas, D. J., Randol, B., Möbius, E., Dayeh, M. A., Frisch, P. C., Funsten, H. O., Schwadron, N. A. and Zank, G. P. 2012 Pick-up ion distributions and their influence
on ENA spectral curvature. *Astrophys. J.* **751**, 64.

[63] Livadiotis, G., McComas, D. J., Schwadron, N. A., Funsten, H. O. and Fuselier, S. A. 2013 Pressure of the proton plasma in the inner heliosheath. *Astrophys. J.* **762**, 134.

[64] Fuselier, S. A., Allegrini, F., Bzowski, M., Dayeh, M. A., Desai, M., Funsten, H. O., Galli, A., Heirtzler, D., Janzen, P., Kubiak, M. A., Kucharek, H., Lewis, W., Livadiotis, G., McComas, D. J., Möbius, E., Petrinec, S. M., Quinn, M., Schwadron, N., Sokol, J. M., Trattner, K. J., Wood, B. E., Wurz, P. 2014 Low energy neutral atoms from the heliosheath. *Astrophys. J.* **784**, 89.

[65] Zirnstein, E. J. and McComas, D. J. 2015 Using kappa functions to characterize outer heliosphere proton distributions in the presence of charge-exchange. *Astrophys. J.* **815**, 31.

[66] Zank, G. P. 2015 Faltering steps into the galaxy: The boundary regions of the heliosphere. *Ann. Rev. Astron. Astrophys.* **53**, 449.

[67] Nicholls, D. C., Dopita, M. A., Sutherland, R. S. 2012 Resolving the Electron Temperature Discrepancies in H II Regions and Planetary Nebulae: κ-distributed Electrons. *Astrophys. J.* **752**, 148.

[68] Nicholls, D. C., Dopita, M. A., Sutherland, R. S., Kewley, L. J., Palay, E. 2013 Measuring nebular temperatures: the effect of new collision strengths with equilibrium and κ-distributed electron energies. *Astrophys. J. Supp.* **207**, 21.

[69] Zhang, Y., Liu, X.-W. and Zhang B. 2014 H-I free-bound emission of planetary nebulae with large abundance discrepancies: Two-component models vs. κ-distributed electrons. *Astrophys. J.* **780**, 93.

[70] Raymond, J. C., P. F. Winkler, W. P. Blair, J.-J. Lee, and S. Park 2010 Non-Maxwellian Hα profiles in Tycho's supernova remnant, *Astrophys. J.* **712**, 901.

[71] Milovanov A. V., and L. M. Zelenyi 2000 Functional background of the Tsallis entropy: “coarse-grained” systems and “kappa” distribution functions, *Nonlin. Processes Geophys.* **7**, 211–221.

[72] Saito, S., F. R. E. Forme, S. C. Buchert, S. Nozawa, R. Fujii 2000 Effects of a kappa distribution function of electrons on incoherent scatter spectra, *Ann. Geophys.* **18**, 1216-1223.

[73] Du, J. 2004 The nonextensive parameter and Tsallis distribution for self-gravitating systems. *EPL* **67**, 893–899.

[74] Yoon, P. H.; T. Rhee, C. M. Ryu, 2006 Self-consistent formation of electron κ distribution: 1. Theory, *J. Geophys. Res.* **111**, A09106.

[75] Raadu, M. A., and Shafiq, M. 2007 Test charge response for a dusty plasma with both grain size distribution and dynamical charging. *Phys. Plasmas* **14**, 012105.

[76] Livadiotis, G. 2009 Approach on Tsallis statistical interpretation of hydrogen-atom by adopting the generalized radial distribution function. *J. Math. Chem.* **45**, 930-939.

[77] Livadiotis, G. 2015 Kappa distribution in the presence of a potential energy. *J. Geophys. Res.* **120**, 880.

[78] Livadiotis, G. 2015 Kappa and q indices: Dependence on the degrees of freedom. *Entropy* **17**, 2062.

[79] Tribeche, M., Mayout, S. and Amour, R. 2009 Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma. *Phys. Plasmas* **16**, 043706.

[80] Livadiotis, G. and McComas, D.J. 2010 Measure of the departure of the q-metastable stationary states from equilibrium. *Phys. Scr.* **82**, 035003.

[81] Livadiotis, G. and McComas, D.J. 2014 Electrostatic shielding in plasmas and the physical meaning of the Debye length. *J. Plasma Phys.* **80**, 341-378.

[82] Baluku, T. K.; M. A. Hellberg, I. Kourakis, N. S. Saini, 2010 Dust ion acoustic solitons in a plasma with kappa-distributed electrons. *Phys. Plasmas* **17**, 053702.

[83] Le Roux, J. A.; G. M. Webb, A. Shalchi, G. P. Zank 2010 A generalized nonlinear guiding center theory for the collisionless anomalous perpendicular diffusion of cosmic rays.
Astrophys. J. 716, 671-692.

[84] Eslami, P., Mottaghizadeh, M., and Pakzad, H. R. 2011 Nonplanar dust acoustic solitary waves in dusty plasmas with ions and electrons following a q-nonextensive distribution. Phys. Plasmas 18, 102303.

[85] Kourakis, I., Sultana, S., Hellberg, M. A. 2012 Dynamical characteristics of solitary waves, shocks and envelope modes in kappa-distributed non-thermal plasmas: an overview. Plasma Phys. Control. Fusion 54, 124001.

[86] Randol, B. M. and Christian, E.R. 2016 Coupling of charged particles via Coulombic interactions: Numerical simulations and resultant kappa-like velocity space distribution functions. J. Geophys. Res. 121, 1907–1919.

[87] Varotsos, P.A., Sarlis, N.V., Skordas, E.S., 2014 Study of the temporal correlations in the magnitude time series before major earthquakes in Japan. J. Geophys. Res. 119, 9192–9206

[88] Nicolaou, G., Livadiotis, G., and Moussas, X. 2014 Long term variability of the polytropic Index of solar wind protons at ~1AU. Sol. Phys. 289, 1371-1378.

[89] Fisk, L. A., and G. Gloeckler 2014 The case for a common spectrum of particles accelerated in the heliosphere: Observations and theory. J. Geophys. Res. 119, 8733.

[90] Viñas, A. F., P. S. Moya, R. E. Navarro, J. A. Valdivia, J. A. Araneda, and V. Muñoz 2015 Electromagnetic fluctuations of the whistler-cyclotron and firehose instabilities in a Maxwellian and Tsallis-kappa-like plasma, J. Geophys. Res. 120, 3307-3317.

[91] Ourabah, K., Ait Gougam, L., and Tribeche, M. 2015 Nonthermal and suprathermal distributions as a consequence of Superstatistics. Phys. Rev. E. 91, 012133.

[92] Dos Santos, M. S., L. F. Ziebell, and R. Gaelzer 2016 Ion firehose instability in a dusty plasma considering product-bi-kappa distributions for the plasma particles. Phys. Plasmas 23, 013705.

[93] Nicolaou, G. and Livadiotis, G. 2016 Misestimation of temperature when applying Maxwellian distributions to space plasmas described by kappa distributions. Astrophys. Space Sci 361, 359.

[94] Tsallis, C. 2009 Introduction to Nonextensive Statistical Mechanics, New York: Springer.

[95] Livadiotis, G. 2017 Kappa distribution: Theory & Applications in plasmas Netherlands, UK, US: Elsevier.

[96] Binsack, J. H. 1966 Plasma studies with the IMP-2 satellite, Ph.D. Thesis, MIT.

[97] Olbert, S. 1968 Summary of experimental results from M.I.T. detector on IMP-1, in Physics of the Magnetosphere, R. L. Carovillano, J. F. McClay, and H. R. Radoski (Eds), New York: Springer, 641.

[98] Livadiotis, G. and McComas, D.J. 2009 Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114, A11105.

[99] Tsallis, C. 1988 Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479.

[100] Livadiotis, G. 2017 On the simplification of statistical mechanics for space plasmas. Submitted.

[101] Gibbs, J.W., 1902, Elementary Principles in Statistical Mechanics, Scribner's sons, New York.

[102] Beck C. and Schlögl F. 1993 Thermodynamics of Chaotic Systems, Cambridge University Press.

[103] Livadiotis, G. 2017 Derivation of the entropic formula for the statistical mechanics of space plasmas. Submitted.

Acknowledgments
The work was supported in part by the project NNX17AB74G of NASA’s HGI Program.