STEREOGRAPHICALLY CONJUGATE DIFFERENTIAL SYSTEMS

V.N. Gorbuzov

Department of Mathematics and Computer Science,
Yanka Kupala Grodno State University,
Ozeshko 22, Grodno, 230023, Belarus
E-mail: gorbuzov@grsu.by

Abstract

Topological bases of behaviour of trajectories for autonomous differential systems of the second order on sphere are stated. Stereographic atlas of trajectories is constructed. Differential connections between trajectories of stereographically conjugate differential systems are established. The behaviour of trajectories in an neighbourhood of infinitely remote point of the phase plane is investigated. Examples of global qualitative research of trajectories of stereographically conjugate differential systems are given.

Key words: differential system, stereographic projection, atlas of manifold charts.

2000 Mathematics Subject Classification: 34A26, 34C05.

Contents

Introduction ... 2
§1. Stereographic atlas of sphere ... 2
 1. Stereographic projection of plane 2
 2. Stereographic atlas of sphere 4
§2. Stereographically conjugate differential system 6
 3. Bendixon’s transformation .. 6
 4. Form of stereographically conjugate differential system 7
 5. Stereographic atlas of trajectories for differential system 9
§3. Trajectories of stereographically conjugate differential systems 16
 6. Regular points and equilibrium states of stereographically conjugate
differential systems .. 16
 7. Stereographic cycles .. 20
 8. Symmetry of phase directional field for stereographically conjugate
differential systems .. 24
 9. Infinitely remote equilibrium state 25
References ... 31
Introduction

Research object is ordinary autonomous polynomial differential system of the second order

\[
\frac{dx}{dt} = \sum_{k=0}^{n} X_k(x, y) \equiv X(x, y), \quad \frac{dy}{dt} = \sum_{k=0}^{n} Y_k(x, y) \equiv Y(x, y),
\]

where \(X_k \) and \(Y_k \) are homogeneous polynomials of degree \(k \), \(k = 0, 1, \ldots, n \), on variables \(x \) and \(y \) such that \(|X_n(x, y)| + |Y_n(x, y)| \neq 0 \) on \(\mathbb{R}^2 \), and polynomials \(X \) and \(Y \) are relatively prime, i.e. they have no the common divisors which are distinct from real numbers.

This paper is a continuation of researches stated in [1] and the main results of this paper were originally published by the author in the articles [2] and [3].

§ 1. Stereographic atlas of sphere

1. Stereographic projection of plane

Let’s introduce three-dimensional rectangular Cartesian coordinate system \(O^*x^*y^*z^* \), combined with the right rectangular Cartesian coordinate system \(Oxy \), meeting conditions: the straight line \(OO^* \) is orthogonal to plane \(Oxy \), the length of the segment \(OO^* \) is equal to one unit of the scale of the system of coordinate \(Oxy \); the axis \(O^*x^* \) is codirected with the axis \(Ox \), the axis \(O^*y^* \) is codirected with the axis \(Oy \), and the axis \(O^*z^* \) is directed so that the system of coordinate \(O^*x^*y^*z^* \) will be right; a scale in the system of coordinate \(O^*x^*y^*z^* \) same, as well as in the system of coordinate \(Oxy \). We will construct the sphere with the centre \(O^* \) of unit radius:

\[
S^2 = \{(x^*, y^*, z^*): x^*^2 + y^*^2 + z^*^2 = 1\}.
\]

Points \(N(0, 0, 1) \) and \(S(0, 0, -1) \) are according to northern and southern poles of this sphere. Thus the southern pole \(S(0, 0, -1) \) coincides with the beginning \(O(0,0) \) of the system of coordinate \(Oxy \). The equation \(z^* = -1 \) is the equation in the system of coordinate \(O^*x^*y^*z^* \) of the plane \(Oxy \). The plane \(Oxy \) concerns by sphere (1.1) in the southern pole \(S(0, 0, -1) \).

On the plane \(Oxy \) arbitrarily we will choose the point \(M(x, y) \) and we will spend the ray with the beginning \(M \) through the northern pole \(N \). The ray \(MN \) intersects the sphere (1.1) in some point \(P \). Thereby to each point of the plane \(Oxy \) there correspond one point of the sphere (1.1), and to each point of the sphere (1.1), except the northern pole, there correspond one point of the plane \(Oxy \). Such projection is called stereographic projection of plane on sphere [4, pp. 83 – 84]. The point \(N \) is said to be the centre of stereographic projection (Fig. 1.1).

Lemma 1.1. Stereographic projection of plane is bijection between plane and sphere without northern pole (centre of this projection).

To spread correspondence to all sphere (1.1), we will arrive as follows. On the plane \(Oxy \) we introduce conditional infinitely remote point \(M_\infty \), which is pre-image of the northern pole \(N(0,0,1) \) by the stereographic projection.

The plane \(Oxy \) plus the infinitely remote point \(M_\infty \) (the image of this point under the stereographic projection of the plane \(Oxy \) on the sphere (1.1) is the northern pole \(N(0,0,1) \)) is called the extended plane \(Oxy \) and is denoted by \(\overline{Oxy} \), i.e. \(\overline{Oxy} = Oxy \cup M_\infty \).

The extended plane \(\overline{Oxy} \) consists of two parts: final (the plane \(Oxy \)) and infinite (the point \(M_\infty \)). Then, by the stereographic projection, for any sequence \(\{M_k\} \) of points \(M_k \) of the plane \(Oxy \) such that these points are leaving in infinity (tend to the point \(M_\infty \)), we get the unique correspondence sequence \(\{P_k\} \) of points \(P_k \) of the sphere (1.1) such that these points are tend to the northern pole \(N(0,0,1) \).
Suppose the point M is lying on the plane Oxy and has coordinates $M(x, y)$. Then, this point in space coordinate system $Ox^*y^*z^*$ has the coordinates $M(x, y, -1)$. The straight line MN in the coordinate system $Ox^*y^*z^*$ is the system of equations

$$\frac{x^*}{x} = \frac{y^*}{y} = \frac{z^* - 1}{-2}.$$

Using the stereographic projection with the centre in the northern pole $N(0,0,1)$, we obtain to the point $M(x, y, -1)$ corresponds the point $P(x^*, y^*, z^*)$, which is the point of intersection of the straight line MN and the sphere (1.1). Therefore the coordinates x^*, y^*, z^* of the point P are the solutions of the algebraic system of equations

$$\frac{x^*}{x} = \frac{y^*}{y} = \frac{1 - z^*}{2}, \quad x^{*2} + y^{*2} + z^{*2} = 1. \tag{1.2}$$

Assume that the point $P(x^*, y^*, z^*)$ lies on the sphere (1.1) and is not the northern pole $N(0,0,1)$. Then the applicate of this point is $z^* \in [-1; 1)$. Further, we solve the system of equations (1.2) for x^*, y^*, z^* at $-1 \leq z^* < 1$, and have the bijective reflexion

$$\psi_N : (x,y) \rightarrow (x^*(x,y), y^*(x,y), z^*(x,y)), \tag{1.3}$$

of the plane Oxy on the sphere (1.1) without the northern pole $N(0,0,1)$.

The coordinate functions of map (1.3) are continuously differentiable. The Jacobians

$$\frac{D(x^*, y^*)}{D(x,y)} = -16 \frac{x^2 + y^2 - 4}{(x^2 + y^2 + 4)^3}, \quad \frac{D(x^*, z^*)}{D(x,y)} = 64 \frac{y}{(x^2 + y^2 + 4)^3},$$

$$\frac{D(y^*, z^*)}{D(x,y)} = -64 \frac{x}{(x^2 + y^2 + 4)^3} \quad \text{for all } (x,y) \in \mathbb{R}^2$$

at the same time are nonvanishing in any point of the plane Oxy.

Hence, taking into account Lemma 1.1, we obtain the next statement.

Theorem 1.1. The stereographic map (1.3) of the plane Oxy on the sphere (1.1) without the northern pole $N(0,0,1)$ is a diffeomorphism.

The basic property of the diffeomorphism (1.3) [5, columns 222 – 223]: an angle between curves on the plane equals to the angle between stereographic images of these curves on the sphere.
2. Stereographic atlas of sphere

On the plane, that concerning the sphere (1.1) in the northern pole \(N(0,0,1)\), we introduce the right rectangular Cartesian coordinate system \(O^*uv\) such that its origin \(O^*(0,0)\) coincides with northern pole \(N(0,0,1)\) of sphere (1.1), the axis \(O^*u\) is codirected with the axis \(O^*x^*\), the axis \(O^*v\) is codirected with the axis \(O^*y^*\) (Fig. 2.1). Scale in the coordinate systems \(Oxy, O^*x^*y^*z^*\), and \(O^*uv\) is identical.

If the point \(M^*\) in the plane \(O^*uv\) has coordinates \(M^*(u,v)\), then this point in the space coordinate system \(O^*x^*y^*z^*\) has coordinates \(M^*(u,v,1)\). The straight line \(M^*S\) in the coordinate system \(O^*x^*y^*z^*\) is defined by the system of equations

\[
\frac{x^*}{u} = \frac{y^*}{v} = \frac{z^* + 1}{2},
\]

The image of the point \(M^*(u,v,1)\) by the stereographic projection with the centre in southern pole \(S(0,0,−1)\) of the sphere (1.1) is the point \(P(x^*,y^*,z^*)\), which is the point of intersection of the straight line \(M^*S\) and the sphere (1.1). Therefore the coordinates \(x^*,y^*,z^*\) of the point \(P\) are solutions of algebraic system of equations

\[
\frac{x^*}{u} = \frac{y^*}{v} = \frac{z^* + 1}{2}, \quad x^*^2 + y^*^2 + z^*^2 = 1. \tag{2.1}
\]

Let us consider the point \(P(x^*,y^*,z^*)\) such that this point lies on the sphere (1.1) and this point is not southern pole \(S(0,0,−1)\). Then its applicate \(z^* \in (−1;1]\).

Having resolved the system of equations (2.1) rather \(x^*, y^*, z^*\) at \(-1 < z^* \leq 1\), we receive the bijective reflexion

\[
\psi_S: (u,v) \to (x^*(u,v), y^*(u,v), z^*(u,v)), \tag{2.2}
\]

\[
x^*(u,v) = \frac{4u}{u^2 + v^2 + 4}, \quad y^*(u,v) = \frac{4v}{u^2 + v^2 + 4}, \quad z^*(u,v) = -\frac{u^2 + v^2 - 4}{u^2 + v^2 + 4} \text{ for all } (u,v) \in \mathbb{R}^2
\]

of the plane \(O^*uv\) on the sphere (1.1) without the southern pole \(S(0,0,−1)\).

The coordinate functions of map (2.2) are continuously differentiable. The Jacobians

\[
\frac{D(x^*, y^*)}{D(u,v)} = -16 \frac{u^2 + v^2 - 4}{(u^2 + v^2 + 4)^3}, \quad \frac{D(x^*, z^*)}{D(u,v)} = -64 \frac{v}{(u^2 + v^2 + 4)^3},
\]

\[
\frac{D(y^*, z^*)}{D(u,v)} = 64 \frac{u}{(u^2 + v^2 + 4)^3} \quad \text{for all } (u,v) \in \mathbb{R}^2
\]

at the same time are nonvanishing in any point of the plane \(O^*uv\).

Therefore the stereographic map (2.2) of the plane \(O^*uv\) on the sphere (1.1) without the southern pole \(S(0,0,−1)\) is a diffeomorphism.

The plane \(O^*uv\) plus the infinitely removed point \(M^*_\infty\) (the image of this point under the stereographic projection of the plane \(O^*uv\) on the sphere (1.1) is the southern pole \(S(0,0,−1)\)) is called the extended plane \(O^*uv\) and is denoted by \(\overline{O^*uv}\), i.e., \(\overline{O^*uv} = O^*uv \cup M^*_\infty\).

Let us cover the sphere (1.1) by two spheres \(U_1\) and \(U_2\), without accordingly the northern pole \(N(0,0,1)\) and the southern pole \(S(0,0,−1)\):

\[
U_1 = \{(x^*, y^*, z^*): x^*^2 + y^*^2 + z^*^2 = 1, \quad −1 \leq z^* < 1\}
\]

and

\[
U_2 = \{(x^*, y^*, z^*): x^*^2 + y^*^2 + z^*^2 = 1, \quad −1 < z^* \leq 1\}.
\]
We introduce the diffeomorphic maps

\[\varphi_1: (x^*, y^*, z^*) \rightarrow (x(x^*, y^*, z^*), y(x^*, y^*, z^*)) , \]

(2.3)

\[x(x^*, y^*, z^*) = \frac{2x^*}{1 - z^*} , \quad y(x^*, y^*, z^*) = \frac{2y^*}{1 - z^*} \quad \text{for all} \quad (x^*, y^*, z^*) \in U_1 , \]

\[\varphi_2: (x^*, y^*, z^*) \rightarrow (u(x^*, y^*, z^*), v(x^*, y^*, z^*)) , \]

(2.4)

\[u(x^*, y^*, z^*) = \frac{2x^*}{1 + z^*} , \quad v(x^*, y^*, z^*) = \frac{2y^*}{1 + z^*} \quad \text{for all} \quad (x^*, y^*, z^*) \in U_2 . \]

The map (2.3) is inverse to the map (1.3). Therefore the map (2.3) is diffeomorphic map of the sphere \(U_1 \) without the northern pole \(N(0,0,1) \) on the plane \(Oxy \), i.e., it is stereographic map of the sphere (1.1) on the plane \(Oxy \) from the centre in the northern pole \(N(0,0,1) \) [5, columns 222 – 223; 6, p. 37]. The map (2.4) is inverse to the map (2.2). Therefore the map (2.4) is diffeomorphic map of the sphere \(U_1 \) without the southern pole \(S(0,0, -1) \) on the plane \(O^*uv \), i.e., it is stereographic map of the sphere (1.1) on the plane \(O^*uv \) from the centre in the southern pole \(S(0,0, -1) \).

Thus two charts \((U_1, \varphi_1) \) and \((U_2, \varphi_2) \) of sphere (1.1) are constructed. The set of charts \((U_1, \varphi_1) \) and \((U_2, \varphi_2) \) are a stereographic atlas of sphere (1.1) [6, p. 103].

Let us establish connections between the local coordinate systems \(Oxy \) and \(O^*uv \) of stereographic atlas of sphere (1.1). The stereographic maps (1.3) and (2.2) are inverse to the maps (2.3) and (2.4) of the stereographic atlas of sphere (1.1), respectively, i.e.,

\[\varphi_1 \circ \psi_N^{-1} , \quad \psi_N = \varphi_1^{-1} \quad \text{and} \quad \varphi_2 \circ \psi_s^{-1} , \quad \psi_s = \varphi_2^{-1} . \]

Combining sequentially two diffeomorphic maps \(\psi_N \) and \(\psi_s^{-1} \), we obtain the diffeomorphic map (Fig. 2.1)

\[\varphi_{21} = \psi_s^{-1} \circ \psi_N = \varphi_2 \circ \psi_N , \]

(2.5)

of the plane \(Oxy \) without the origin \(O(0,0) \) on the plane \(O^*uv \) without the origin \(O^*(0,0) \).

Using the analytical representations (1.3) and (2.4) of the maps \(\psi_N \) and \(\varphi_2 \), we get the analytical representation of the diffeomorphic map (2.5) in the form

\[\varphi_{21}: (x, y) \rightarrow \left(\frac{4x}{x^2 + y^2} , \frac{4y}{x^2 + y^2} \right) \quad \text{for all} \quad (x, y) \in \mathbb{R}^2 \{ (0,0) \} , \]

(2.6)

The coordinate functions

\[u: (x, y) \rightarrow \frac{4x}{x^2 + y^2} , \quad v: (x, y) \rightarrow \frac{4y}{x^2 + y^2} \quad \text{for all} \quad (x, y) \in \mathbb{R}^2 \{ (0,0) \} \]

(2.7)

of the diffeomorphic map (2.6) are functions of transition [6, p. 99] from the local coordinates \((u, v)\) to the local coordinates \((x, y)\) of the stereographic atlas of sphere (1.1).

The diffeomorphic map

\[\varphi_{12}: (u, v) \rightarrow \left(\frac{4u}{u^2 + v^2} , \frac{4v}{u^2 + v^2} \right) \quad \text{for all} \quad (u, v) \in \mathbb{R}^2 \{ (0,0) \} \]

(2.8)

has the coordinate functions

\[x: (u, v) \rightarrow \frac{4u}{u^2 + v^2} , \quad y: (u, v) \rightarrow \frac{4v}{u^2 + v^2} \quad \text{for all} \quad (u, v) \in \mathbb{R}^2 \{ (0,0) \} . \]

(2.9)

The coordinate functions (2.9) are functions of transition from the local coordinates \((x, y)\) to the local coordinates \((u, v)\) of the stereographic atlas of sphere (1.1).
The diffeomorphic map (2.8), which is received as inverse map to the map (2.6), is an analytical representation of the map

\[\varphi_{12} = \psi^{-1}_N \circ \psi_S = \varphi_1 \circ \psi_S \]

of the plane \(O^*uv \) without the origin \(O^*(0,0) \) on the plane \(Oxy \) without the origin \(O(0,0) \).

Theorem 2.1. The diffeomorphic map (2.6) and the identity map of the plane \(Oxy \) on itself are a group of the second order.

Indeed, the transformation (2.6) is bijective

\[
(x, y) \xmapsto (x, y) \frac{4x}{x^2 + y^2}, \quad \frac{4y}{x^2 + y^2} \xmapsto \left(\frac{4x}{(x^2 + y^2)^2} + \frac{4y}{(x^2 + y^2)^2} \right) = (x, y) \quad \text{for all} \quad (x, y) \in \mathbb{R}^2 \setminus \{(0,0)\},
\]

and also, \(\varphi_{21} \circ I = I \circ \varphi_{21} = \varphi_{21} \) and \(I \circ I = I \), where \(I : (x, y) \to (x, y) \) for all \((x, y) \in \mathbb{R}^2 \). \(\blacksquare \)

§ 2. Stereographically conjugate differential system

3. Bendixon’s transformation

Bendixon’s transformation of the phase plane \(Oxy \) of the differential system (D) is the transformation

\[
x = \frac{4u}{u^2 + v^2}, \quad y = \frac{4v}{u^2 + v^2}.
\]

(3.1)

This transformation is constructed by the function of transition (2.9) from the local coordinates \(x, y \) to the local coordinates \(u, v \) of the stereographic atlas of sphere (1.1).

By Bendixon’s transformation (3.1), we reduces the differential system (D) to the differential system [7, p. 239]

\[
\begin{align*}
\frac{du}{dt} &= -\frac{u^2 - v^2}{4} X \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2} \right) - uv \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2} \right) \equiv U^*(u, v), \\
\frac{dv}{dt} &= -\frac{uv}{2} X \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2} \right) + \frac{u^2 - v^2}{4} Y \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2} \right) \equiv V^*(u, v).
\end{align*}
\]

(3.2)

Since \(X \) and \(Y \) are polynomials, we see that the system (3.2) has the form

\[
\begin{align*}
\frac{du}{dt} &= \frac{U(u, v)}{(u^2 + v^2)^m}, & \frac{dv}{dt} &= \frac{V(u, v)}{(u^2 + v^2)^m},
\end{align*}
\]

where \(U \) and \(V \) are polynomials such that they are not dividing simultaneously on \(u^2 + v^2 \), and \(m \) is an nonnegative integer.

The autonomous polynomial differential system

\[
\begin{align*}
\frac{du}{d\tau} = U(u, v), & \quad \frac{dv}{d\tau} = V(u, v),
\end{align*}
\]

(3.3)

where \((u^2 + v^2)^m d\tau = dt \), and the polynomials \(U \) and \(V \) are relatively prime, is called *stereographically conjugate* to the differential system (D).

Taking into account Theorem 2.1, we obtain the system (D) is stereographically conjugate.
to the system (3.3). And, using Bendixon’s transformation

\[
\begin{align*}
 u &= \frac{4x}{x^2 + y^2}, \\
 v &= \frac{4y}{x^2 + y^2},
\end{align*}
\]

we get the system (3.3) is reduced to the system (D). The differential systems (D) and (3.3) are stereographically mutually conjugate.

The phase plane Oxy (the extended phase plane \overline{Oxy}) of the differential system (D) and the phase plane O^*uv (the extended phase plane $\overline{O^*uv}$) of the differential system (3.3) are said to be stereographically conjugate.

4. Form of stereographically conjugate differential system

The form of the differential system (3.3) (this system is stereographically conjugate to the system (D)) depends on whether divides on $x^2 + y^2$ or not divides on $x^2 + y^2$ the polynomial

\[
W_n: (x, y) \rightarrow xY_n(x, y) - yX_n(x, y) \quad \text{for all} \quad (x, y) \in \mathbb{R}^2.
\]

If $W_n(x, y) \neq (x^2 + y^2)P(x, y)$ on \mathbb{R}^2, where P is some polynomial, then the differential system (3.3) has the form

\[
\begin{align*}
 \frac{du}{d\tau} &= \frac{v^2 - u^2}{4} + \sum_{j=0}^{n} (u^2 + v^2)^{n-j} X_j(4u, 4v) - \frac{uv}{2} \sum_{j=0}^{n} (u^2 + v^2)^{n-j} Y_j(4u, 4v) \equiv U_n(u, v), \\
 \frac{dv}{d\tau} &= \frac{-uv}{2} \sum_{j=0}^{n} (u^2 + v^2)^{n-j} X_j(4u, 4v) + \frac{u^2 - v^2}{4} \sum_{j=0}^{n} (u^2 + v^2)^{n-j} Y_j(4u, 4v) \equiv V_n(u, v), \quad (4.1)
\end{align*}
\]

where $(u^2 + v^2)^n d\tau = dt$.

Suppose $W_n(x, y) = (x^2 + y^2)P(x, y)$ for all $(x, y) \in \mathbb{R}^2$, where P is some polynomial and the case $P(x, y) = 0$ for all $(x, y) \in \mathbb{R}^2$ is not excluded.

Now if the identities hold

\[
\begin{align*}
 -2y(xY_{n-r+1}(x, y) - yX_{n-r+1}(x, y)) - (x^2 + y^2)X_{n-r+1}(x, y) &= (x^2 + y^2)^{k-r+1} K_r(x, y), \\
 2x(xY_{n-r+1}(x, y) - yX_{n-r+1}(x, y)) - (x^2 + y^2)Y_{n-r+1}(x, y) &= (x^2 + y^2)^{k-r+1} Q_r(x, y), \quad (4.2)
\end{align*}
\]

for all $(x, y) \in \mathbb{R}^2$, $r = 1, \ldots, k$,

where the natural number k such that $2k \leq n + 2$, K_r and Q_r, $r = 1, \ldots, k$, are some polynomials, then the differential system (3.3) has the form

\[
\begin{align*}
 \frac{du}{d\theta_k} &= \frac{v^2 - u^2}{4} \sum_{j=0}^{n-k} (u^2 + v^2)^{n-j-k} X_j(4u, 4v) - \frac{uv}{2} \sum_{j=0}^{n-k} (u^2 + v^2)^{n-j-k} Y_j(4u, 4v) + \\
 &\quad + \frac{k}{4^{2k-2r-1}} K_r(4u, 4v) \equiv U_k(u, v), \\
 \frac{dv}{d\theta_k} &= \frac{-uv}{2} \sum_{j=0}^{n-k} (u^2 + v^2)^{n-j-k} X_j(4u, 4v) + \frac{u^2 - v^2}{4} \sum_{j=0}^{n-k} (u^2 + v^2)^{n-j-k} Y_j(4u, 4v) + \\
 &\quad + \frac{k}{4^{2k-2r-1}} Q_r(4u, 4v) \equiv V_k(u, v), \quad \text{where} \quad (u^2 + v^2)^{n-k} d\theta_k = dt. \quad (4.3)
\end{align*}
\]
Example 4.1. Consider the autonomous differential system

\[\frac{dx}{dt} = a_0 \equiv X(x, y), \quad \frac{dy}{dt} = b_0 \equiv Y(x, y), \quad |a_0| + |b_0| \neq 0, \] (4.4)

with \(W_0(x, y) = b_0 x - a_0 y \neq (x^2 + y^2)P(x, y) \) on \(\mathbb{R}^2 \), where \(P \) is some polynomial.

The stereographically conjugate system to the differential system (4.4) is the system

\[\frac{du}{dt} = -\frac{a_0}{4} u^2 - \frac{b_0}{2} uv + \frac{a_0}{4} v^2, \quad \frac{dv}{dt} = \frac{b_0}{4} u^2 - \frac{a_0}{2} uv - \frac{b_0}{4} v^2, \quad |a_0| + |b_0| \neq 0. \] (4.5)

Example 4.2. Let us consider the autonomous linear system

\[\frac{dx}{dt} = a_0 + a_1 x + a_2 y \equiv X(x, y), \quad \frac{dy}{dt} = b_0 + b_1 x + b_2 y \equiv Y(x, y), \] (4.6)

where \(|a_1| + |a_2| + |b_1| + |b_2| \neq 0 \).

If \(|a_1 - b_2| + |a_2 + b_1| \neq 0, \ |a_1| + |a_2| + |b_1| + |b_2| \neq 0 \), then the stereographically conjugate system to the autonomous linear system (4.6) is the differential system

\[\frac{du}{d\tau} = -a_1 u^3 - (a_2 + 2b_1)u^2 v + (a_1 - 2b_2)uv^2 + a_2 v^3 - \frac{1}{4} a_0 u^4 - 2b_0 u^3 v - 2b_0 uv^3 + \frac{1}{4} a_0 v^4 \equiv U_0(u, v), \] (4.7)

\[\frac{dv}{d\tau} = b_1 u^3 - (2a_1 - b_2)u^2 v - (2a_2 + b_1)uv^2 - 2b_2 v^3 + b_0 u^4 - 2a_0 u^3 v - 2a_0 uv^3 + b_0 v^4 \equiv V_0(u, v), \]

where \((u^2 + v^2) d\tau = dt \).

If \(b_2 = a_1, \ b_1 = -a_2, \ |a_1| + |a_2| \neq 0 \), then the stereographically conjugate system to the autonomous linear system (4.6) is the differential system

\[\frac{du}{dt} = -a_1 u + a_2 v - \frac{a_0}{4} u^2 - \frac{b_0}{2} uv + \frac{a_0}{4} v^2 \equiv U_1(u, v), \] (4.8)

\[\frac{dv}{dt} = -a_2 u - a_1 v + \frac{b_0}{4} u^2 - \frac{a_0}{2} uv - \frac{b_0}{4} v^2 \equiv V_1(u, v). \]

Example 4.3. Consider the autonomous quadratic system

\[\frac{dx}{dt} = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 xy + a_5 y^2 \equiv X(x, y), \] (4.9)

\[\frac{dy}{dt} = b_0 + b_1 x + b_2 y + b_3 x^2 + b_4 xy + b_5 y^2 \equiv Y(x, y), \]

where \(|a_3| + |a_4| + |a_5| + |b_3| + |b_4| + |b_5| \neq 0 \).

If \(|a_5 - a_3 + b_4| + |a_4 + b_3 - b_5| \neq 0, \ |a_3| + |a_4| + |a_5| + |b_3| + |b_4| + |b_5| \neq 0 \), then the stereographically conjugate system to the system (4.9) is the differential system

\[\frac{du}{d\tau} = -4a_3 u^4 - 4(a_4 + 2b_3)u^3 v + 4(a_3 - 2b_4 - a_5)u^2 v^2 + 4(a_4 - 2b_5)uv^3 + 4a_5 v^4 - a_1 u^5 + (2b_1 - a_2)u^4 v - 2b_2 u^3 v^2 - 2b_1 u^2 v^3 + (a_1 - 2b_2)uv^4 + a_2 v^5 \]

\[- \frac{a_0}{4} u^6 - \frac{b_0}{2} u^5 v - \frac{a_0}{4} u^4 v^2 - b_0 u^3 v^3 + \frac{a_0}{4} u^2 v^4 - \frac{b_0}{2} uv^5 + \frac{a_0}{4} v^6 \equiv U_0(u, v), \] (4.10)
\[
\frac{dv}{d\tau} = 4b_3u^4 + 4(b_4 - 2a_3)u^3v - 4(b_3 + 2a_4 + b_5)u^2v^2 - 4(b_4 + 2a_5)uv^3 - 4b_5v^4 +
\]
\[
+ b_1u^5 + (b_2 - 2a_1)u^4v - 2a_2u^3v^2 - 2a_1u^2v^3 - (b_1 + 2a_2)uv^4 - b_2v^5 +
\]
\[
+ \frac{b_0}{4}u^6 - \frac{a_0}{2}u^5v + \frac{b_0}{4}u^4v^2 - a_0u^3v^3 - \frac{b_0}{4}u^2v^4 - \frac{a_0}{2}uv^5 - \frac{b_0}{4}v^6 \equiv V_0(u, v),
\]

where \((u^2 + v^2)^2d\tau = dt\).

If \(a_4 = b_5 - b_3, a_5 = a_3 - b_4, |b_2 - a_1| + |b_1 + a_2| + |2a_3 - b_4| + |b_3 + b_5| \neq 0\), and \(|a_3 + |b_5 - b_3| + |a_3 - b_4| + |b_3| + |b_4| + |b_5| \neq 0\), then the stereographically conjugate system to the system (4.9) is the differential system

\[
\frac{du}{d\theta} = -4a_3u^2 - 4(b_3 + b_5)uv + 4(a_3 - b_4)v^2 - a_1u^3 - (a_2 + 2b_1)u^2v +
\]
\[
+ (a_1 - 2b_2)uv^2 + 2a_2v^3 - \frac{a_0}{4}u^4 - \frac{b_0}{2}u^3v - \frac{b_0}{2}uv^3 + \frac{a_0}{4}v^4 \equiv U_1(u, v),
\]

(4.11)

\[
\frac{dv}{d\theta} = -4b_3u^2 - 4(b_4 - 2a_3)uv + 4b_5v^2 + b_1u^3 + (b_2 - 2a_1)u^2v -
\]
\[
-(b_1 + 2a_2)uv^2 - b_2v^3 + \frac{b_0}{4}u^4 - \frac{a_0}{2}u^3v - \frac{a_0}{2}uv^3 - \frac{b_0}{4}v^4 \equiv V_1(u, v),
\]

where \((u^2 + v^2)d\theta = dt\).

If \(a_4 = b_5, a_5 = -a_3, b_3 = -b_5, b_4 = 2a_3, b_2 = a_1, b_1 = -a_1, |a_3| + |b_5| \neq 0\), then the stereographically conjugate system to the system (4.9) is the differential system

\[
\frac{du}{dt} = -4a_3 - a_1u + a_2v - \frac{a_0}{4}u^2 - \frac{b_0}{2}uv + \frac{a_0}{4}v^2 \equiv U_2(u, v),
\]

(4.12)

\[
\frac{dv}{dt} = 4b_5 - a_2u - a_1v + \frac{b_0}{4}u^2 - \frac{a_0}{2}uv - \frac{b_0}{4}v^2 \equiv V_2(u, v).
\]

5. Stereographic atlas of trajectories for differential system

Using the plane

\[\{(x^*, y^*, z^*): z^* = 1 - \varepsilon_1\}, \quad 0 < \varepsilon_1 < 1,\]

we divide the sphere (1.1) on two parts and take the part

\[S_1^2 = \{(x^*, y^*, z^*): x^{*2} + y^{*2} + z^{*2} = 1, \quad -1 \leq z^* \leq 1 - \varepsilon_1\}\]

without the northern pole \(N(0, 0, 1)\). Number \(\varepsilon_1 \in (0; 1)\) such that stereographic images of all equilibrium states and the isolated closed trajectories of system (D), which are lying in the final part of the extended phase plane \(\overline{Oxy}\), are located on the part \(S_1^2\) of sphere (1.1).

Let the circle \(K(x, y)\) be the circle lying on the phase plane \(Oxy\) with the centre in the origin of coordinates \(O\) and being pre-image of the part \(S_1^2\) of sphere (1.1) by the stereographic projection with the projection centre in the northern pole \(N(0, 0, 1)\) (Fig. 5.1).

Using the plane

\[\{(x^*, y^*, z^*): z^* = \varepsilon_2 - 1\}, \quad 0 < \varepsilon_2 < 1,\]

we divide the sphere (1.1) on two parts and take the part

\[S_2^2 = \{(x^*, y^*, z^*): x^{*2} + y^{*2} + z^{*2} = 1, \quad \varepsilon_2 - 1 \leq z^* \leq 1\},\]
without the southern pole $S(0,0,-1)$. Number $\varepsilon_2 \in (0;1)$ such that stereographic images of all equilibrium states and the isolated closed trajectories of system (3.3), which are lying in the final part of the extended phase plane O^*uv, are located on the part S^2_2 of sphere (1.1).

Let the circle $K(u,v)$ be the circle lying on the phase plane O^*uv with the centre in the origin of coordinates O^* and being pre-image of the part S^2_2 of sphere (1.1) by the stereographic projection of the plane O^*uv with the projection centre in the southern pole $S(0,0,-1)$ (Fig. 5.2).

The ordered pair $(K(x,y),K(u,v))$ of the circles $K(x,y)$ and $K(u,v)$ with trajectories of systems (D) and (3.3) plotted on them is called stereographic atlas of trajectories for system (D). Then (by Theorem 2.1) the ordered pair $(K(u,v),K(x,y))$ is stereographic atlas of trajectories for system (3.3).

Correspondence between the circles $K(x,y)$ and $K(u,v)$ is shown on Fig. 5.3.

Using the numbers $1, \ldots, 40$, we reflect correspondences between halfneighbourhoods of points, which are lying on the coordinate axes and concentric circles with the centre in the origin of coordinates.
Example 5.1. Trajectories of the differential system (4.4) are the parallel straight lines
\[b_0x - a_0y = C, \quad C \in \mathbb{R}. \]

Trajectories of the differential system (4.5) are the equilibrium state \(O^*(0,0) \) and adjoining curves to this equilibrium state
\[\frac{b_0 u - a_0 v}{u^2 + v^2} = C^*, \quad |u| + |v| \neq 0, \quad C^* \in \mathbb{R}, \quad C^* = 4C. \]

The behaviour of trajectories on the sphere (1.1) for the stereographically mutually conjugate systems (4.4) and (4.5) is represented on Fig. 5.4 for \(a_0 = 1, \) \(b_0 = 0. \)

The circles on Fig. 5.5 are stereographic atlases of trajectories for systems (4.4) and (4.5).

Notice that the equilibrium state \(O^*(0,0) \) of the homogeneous quadratic system (4.5) is complicated and consists of two elliptic Bendixon’s sectors, which are limited by the trajectories-rays of the straight line \(v = 0. \)

Example 5.2. Trajectories of the linear system
\[\frac{dx}{dt} = x, \quad \frac{dy}{dt} = y \quad (5.1) \]
are \(O \)-rays of the family of straight lines
\[C_1 y + C_2 x = 0, \quad C_1, C_2 \in \mathbb{R}, \]
and the equilibrium state (unstable dicritical node) \(O(0,0). \)
Trajectories of the stereographically conjugate system

\[
\frac{du}{dt} = -u, \quad \frac{dv}{dt} = -v
\]

(5.2)

are \(O\)-rays of the family of straight lines

\[C_1v + C_2u = 0, \quad C_1, C_2 \in \mathbb{R},\]

and the equilibrium state (stable dicritical node) \(O^*(0,0)\).

The behaviour of trajectories on the sphere (1.1) for the stereographically mutually conjugate systems (5.1) and (5.2) is represented on Fig. 5.6. The stereographic images of trajectories for the differential systems (5.1) and (5.2) on the sphere (1.1) are semicircles of meridians of sphere (1.1), which are adjoining to the northern and to the southern poles, and also the northern and the southern poles of sphere (1.1).

The circles on Fig. 5.7 are stereographic atlases of trajectories for systems (5.1) and (5.2).

Example 5.3. Trajectories of the linear system

\[
\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -x
\]

(5.3)

are the concentric circles

\[x^2 + y^2 = C, \quad C \in (0; +\infty),\]

and the equilibrium state (centre) \(O(0,0)\).

The direction of movement along trajectories for the differential system (5.3) are defined by the tangential vectors

\[
\vec{a}(x,y) = (y,-x) \quad \text{for all} \quad (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.
\]
Trajectories of the stereographically conjugate system

\[\frac{du}{dt} = v, \quad \frac{dv}{dt} = -u \] (5.4)

are the concentric circles

\[u^2 + v^2 = C^*, \quad C^* \in (0; +\infty), \quad C^* = 4C, \]

and the equilibrium state (centre) \(O^*(0,0) \).

The stereographic images of trajectories for systems (5.3) and (5.4) on the sphere (1.1) are parallels, the northern and the southern poles of sphere (1.1) (Fig. 5.8).

The circles on Fig. 5.9 are stereographic atlases of trajectories for systems (5.3) and (5.4).

Example 5.4. Trajectories of the linear system

\[\frac{dx}{dt} = x - y, \quad \frac{dy}{dt} = x + y \] (5.5)

are the logarithmic spirals

\[(x^2 + y^2) \exp\left(-\arctan \frac{y}{x} \right) = C, \quad C \in (0; +\infty), \]

and the equilibrium state (unstable focus) \(O(0,0) \).

Trajectories of the stereographically conjugate system

\[\frac{du}{dt} = -u - v, \quad \frac{dv}{dt} = u - v \] (5.6)

are the logarithmic spirals

\[(u^2 + v^2) \exp\left(-\arctan \frac{v}{u} \right) = C^*, \quad C^* \in (0; +\infty), \quad C^* = 4C, \]

and the equilibrium state (stable focus) \(O^*(0,0) \).

Trajectories of the stereographically mutually conjugate systems (5.5) and (5.6) on the sphere (1.1) are represented on Fig. 5.10. The circles on Fig. 5.11 are stereographic atlases of trajectories for the differential systems (5.5) and (5.6).

Example 5.5. Trajectories of the linear system

\[\frac{dx}{dt} = x, \quad \frac{dy}{dt} = -y \] (5.7)

are \(O \)-curves of the family \(xy = C, \quad C \in \mathbb{R}, \) and the equilibrium state (saddle such that its separatrices are the coordinate \(O \)-rays) \(O(0,0) \).
Trajectories of the stereographically conjugate system

\[
\frac{du}{d\tau} = -u^3 + 3uv^2, \quad \frac{dv}{d\tau} = -3u^2v + v^3, \quad (u^2 + v^2) \, d\tau = dt,
\]

are \(O^*\)-curves of the family

\[
\frac{uv}{(u^2 + v^2)^2} = C^*, \quad C^* \in \mathbb{R}, \quad C^* = 16C,
\]

and the complicated equilibrium state \(O^*(0,0)\). This equilibrium state is consisting of four elliptic Bendixon’s sectors, which are limited by the coordinate \(O^*\)-rays and organised by lemniscates of Bernoulli.

The behaviour of trajectories on the sphere (1.1) for the stereographically mutually conjugate systems (5.7) and (5.8) is represented on Fig. 5.12. The circles on Fig. 5.13 are stereographic atlases of trajectories for the differential systems (5.7) and (5.8).

Fig. 5.12

Fig. 5.13

Example 5.6. Trajectories of the linear differential system

\[
\frac{dx}{dt} = x, \quad \frac{dy}{dt} = 2y
\]

are \(O\)-curves of the family

\[
C_1y + C_2x^2 = 0, \quad C_1, C_2 \in \mathbb{R},
\]

and the equilibrium state (simple unstable node) \(O(0,0)\).

Trajectories of the stereographically conjugate system

\[
\frac{du}{d\tau} = -u^3 + 3uv^2, \quad \frac{dv}{d\tau} = -2v^3, \quad (u^2 + v^2) \, d\tau = dt,
\]

are \(O^*\)-curves of the family

14
\[C_1^* v(u^2 + v^2) + C_2^* u^2 = 0, \quad C_1^*, C_2^* \in \mathbb{R}, \quad C_1^* = C_1, \quad C_2^* = 4C_2, \]

and the complicated equilibrium state (stable node) \(O^*(0,0) \).

The behaviour of trajectories on the sphere (1.1) for the stereographically mutually conjugate systems (5.9) and (5.10) is represented on Fig. 5.14. The circles on Fig. 5.15 are stereographic atlases of trajectories for the differential systems (5.9) and (5.10).

Example 5.7. Trajectories of the linear system

\[
\frac{dx}{dt} = x + y, \quad \frac{dy}{dt} = y
\]

are \(O \)-curves of the family

\[y \exp \left(-\frac{x}{y} \right) = C, \quad C \in \mathbb{R}, \]

and the equilibrium state (unstable degenerate node) \(O(0,0) \).

Trajectories of the stereographically conjugate system

\[
\frac{du}{d\tau} = -u^3 - u^2 v - uv^2 + v^3, \quad \frac{dv}{d\tau} = -u^2 v - 2uv^2 - v^3, \quad (u^2 + v^2) d\tau = dt,
\]

are \(O^* \)-curves of the family

\[\frac{v}{u^2 + v^2} \exp \left(-\frac{u}{v} \right) = C^*, \quad C^* \in \mathbb{R}, \quad C^* = 4C, \]

and the complicated equilibrium state (stable node) \(O^*(0,0) \).

Trajectories of the stereographically mutually conjugate systems (5.11) and (5.12) on the sphere (1.1) are represented on Fig. 5.16. The circles on Fig. 5.17 are stereographic atlases of trajectories for the differential systems (5.11) and (5.12).
§3. Trajectories of stereographically conjugate differential systems

6. Regular points and equilibrium states of stereographically conjugate differential systems

Suppose the point \(M(x, y)\) of the phase plane \(Oxy\) is distinct from the origin of coordinates \(O(0,0)\). Then the image of the point \(M(x, y)\) of the phase plane \(Oxy\) for system (D) under the diffeomorphically map (2.6) is the point \(M^*(\frac{4x}{x^2 + y^2}, \frac{4y}{x^2 + y^2})\) of the phase plane \(O^*uv\) for system (3.3) and the point \(M^*\) is distinct from the origin of coordinates \(O^*(0,0)\).

Let the image of the origin of coordinates \(O(0,0)\) of the extended plane \(\overline{Oxy}\) be the infinitely remote point \(M_{\infty}^*\) of the stereographically conjugate extended plane \(\overline{O^*uv}\), and let the image of the infinitely remote point \(M_{\infty}\) of the extended plane \(\overline{Oxy}\) be the origin of coordinates \(O^*(0,0)\) of the stereographically conjugate extended plane \(\overline{O^*uv}\).

Then such extension of the map \(\varphi_{21}\) is the bijective map \(\overline{\varphi_{21}}\) of the extended phase plane \(\overline{Oxy}\) of system (D) to the extended phase plane \(\overline{O^*uv}\) of system (3.3). The points \(M\) and \(M^*\), \(O\) and \(M_{\infty}^*\), \(M_{\infty}\) and \(O^*\) are stereographically mutually conjugate. Also a curve \(l\) on the extended plane \(\overline{Oxy}\) and its image \(l^*\) on the extended plane \(\overline{O^*uv}\) under the map \(\overline{\varphi_{21}}\) are stereographically mutually conjugate curves.

The map (2.6) is the superposition (2.5) of stereographic maps. Then, taking into account the basic property of stereographic projection (Subsection 1), we get

Property 6.1. Angle between curves is equal to angle between stereographically conjugate curves to them.

A point of the phase plane \(Oxy\) is a regular point of system (D) if this point is not an equilibrium state of system (D). The infinitely remote point \(M_{\infty}\) of the extended phase plane \(\overline{Oxy}\) is called regular infinitely remote point of system (D) if the origin of coordinates \(O^*(0,0)\) of the phase plane \(O^*uv\) is not an equilibrium state of system (3.3). If the point \(O^*(0,0)\) is an equilibrium state of system (3.3), then the infinitely remote point \(M_{\infty}\) of the extended phase plane \(\overline{Oxy}\) is infinitely remote equilibrium state of system (D) of the same form.

Thus every point of the extended phase plane \(\overline{Oxy}\) is either a regular point or an equilibrium state of system (D). Every trajectory of system (D) on the extended phase plane \(\overline{Oxy}\) is an equilibrium state or consists of regular points.

The map (2.6) of the plane \(Oxy\) without the origin of coordinates \(O(0,0)\) to the stereographically conjugate plane \(O^*uv\) without the origin of coordinates \(O^*(0,0)\) is diffeomorphic. Then, by Property 6.1, for trajectories of the stereographically mutually conjugate systems (D) and (3.3) on the extended phase planes \(\overline{Oxy}\) and \(\overline{O^*uv}\), we have

Property 6.2. Stereographically mutually conjugate points of the extended phase planes \(\overline{Oxy}\) and \(\overline{O^*uv}\) are simultaneously either regular points or equilibrium states for the same form of the differential systems (D) and (3.3).

Since the map (2.6) is the superposition (2.5), we have

Property 6.3 (6.4). The image of closed curve on the plane \(Oxy\), which is passing (not passing) through the origin of coordinates \(O(0,0)\), is not closed (closed) curve on the stereographically conjugate plane \(O^*uv\), which is not passing through the origin of coordinates \(O^*(0,0)\).

For example, using calculations and the Bendixon transformation (3.1), we obtain

Property 6.5. The image of:

a) a circle

\[(x + a)^2 + (y + b)^2 = a^2 + b^2, \quad |a| + |b| \neq 0,\]

which is passing through the origin of coordinates \(O(0,0)\) of the plane \(Oxy\);
b) a circle
\[(x + a)^2 + (y + b)^2 = r^2, \quad r > 0, \quad r^2 \neq a^2 + b^2,\]
which is not passing through the origin of coordinates \(O(0,0)\) of the plane \(Oxy\);
c) a circle
\[x^2 + y^2 = r^2, \quad r > 0,\]
with the center in the origin of coordinates \(O(0,0)\) of the plane \(Oxy\);
d) a point \(A(a,b),\ |a| + |b| \neq 0,\) which lies inside (outside) of a circle
\[x^2 + y^2 = r^2, \quad r > 0;\]
e) a straight line
\[Ax + By = 0, \quad |A| + |B| \neq 0,\]
which is passing through the origin of coordinates \(O(0,0)\) of the plane \(Oxy\);
f) the coordinate straight line \(x = 0 (y = 0)\) of the plane \(Oxy\);
g) a straight line
\[Ax + By + C = 0, \quad |A| + |B| \neq 0, \quad C \neq 0,\]
which is not passing through the origin of coordinates \(O(0,0)\) of the plane \(Oxy\);
on the stereographically conjugate plane \(O^*uv\) is:
a) the straight line
\[au + bv + 2 = 0;\]
b) the circle
\[u + \frac{4a}{a^2 + b^2 - r^2} + v + \frac{4b}{a^2 + b^2 - r^2} = \frac{4r^2}{(a^2 + b^2 - r^2)^2};\]
c) the circle
\[u^2 + v^2 = \frac{4}{r^2};\]
d) the stereographically conjugate point
\[A^*\left(\frac{4a}{a^2 + b^2}, \frac{4b}{a^2 + b^2}\right);\]
which lies outside (inside) of the circle
\[u^2 + v^2 = \frac{4}{r^2};\]
e) the straight line
\[Au + Bv = 0,\]
which is passing through the origin of coordinates \(O^*(0,0)\);
f) the coordinate straight line \(u = 0 (v = 0)\);
g) the circle
\[\left(u + \frac{2A}{C}\right)^2 + \left(v + \frac{2B}{C}\right)^2 = \frac{4(A^2 + B^2)}{C^2},\]
which is passing through the origin of coordinates \(O^*(0,0)\).

The stereographically mutually conjugate differential systems (5.1) and (5.2) were considered in Example 5.2. Trajectories of these systems (Fig. 5.6 and 5.7) lie on the straight lines, which are passing through the origins of coordinates \(O(0,0)\) and \(O^*(0,0)\) of the phase planes \(Oxy\) and \(O^*uv\) accordingly (Property 6.5, case e).
Example 6.1. If we replace x by $x-1$ and y by $y-1$ in the linear differential system (5.1), then we obtain the linear differential system
\[
\frac{dx}{dt} = x - 1, \quad \frac{dy}{dt} = y - 1.
\] (6.1)

Trajectories of the linear differential system (6.1) are the unstable dicritical node $A(1,1)$ and A-rays of the family of lines
\[
\frac{y-1}{x-1} = C, \quad -\infty \leq C \leq +\infty.
\]

Trajectories of the stereographically conjugate differential system
\[
\frac{du}{dt} = -u + \frac{1}{4} u^2 + \frac{1}{2} uv - \frac{1}{4} v^2, \quad \frac{dv}{dt} = -v - \frac{1}{4} u^2 + \frac{1}{2} uv + \frac{1}{4} v^2
\] (6.2)
are the dicritical nodes $O^*(0,0)$ (stable) and $A^*(2,2)$ (unstable), the segment $O^* A^*$ without endpoints, O^*-ray, A^*-ray of the straight line $v = u$, and the arcs of the circles
\[
\left(u - \frac{2C}{C-1}\right)^2 + \left(v + \frac{2}{C-1}\right)^2 = \frac{4(C^2 + 1)}{(C-1)^2}, \quad C \in \mathbb{R} \setminus \{1\},
\]
which are adjoining to the equilibrium states O^* and A^* (the centres of circles lie on the straight line $u + v - 2 = 0$).

The circles on Fig. 6.1 are stereographic atlases of trajectories for the differential systems (6.1) and (6.2).

![Fig. 6.1](image_url)

Example 6.2. If we replace x by $x-1$ and y by $y-1$ in the linear differential system (5.3), then we get the linear differential system
\[
\frac{dx}{dt} = y - 1, \quad \frac{dy}{dt} = -x + 1.
\] (6.3)

Trajectories of system (6.3) are the center $A(1,1)$ and the concentric circles
\[(x - 1)^2 + (y - 1)^2 = C, \quad C \in (0; +\infty).\]

Trajectories of the stereographically conjugate system
\[
\frac{du}{dt} = v + \frac{1}{4} u^2 - \frac{1}{2} uv - \frac{1}{4} v^2, \quad \frac{dv}{dt} = -u + \frac{1}{4} u^2 + \frac{1}{2} uv - \frac{1}{4} v^2
\] (6.4)
are the straight line $u + v - 2 = 0$, the circles

\[x = \frac{C}{C-1}, \quad y = \frac{C}{C-1}, \quad C \in (0; +\infty).\]
\[
\left(u - \frac{4}{2 - C} \right)^2 + \left(v - \frac{4}{2 - C} \right)^2 = \frac{16C}{(2 - C)^2}, \quad C \in (0; 2) \sqcup (2; + \infty),
\]
the centres \(O^*(0, 0)\) and \(A^*(2, 2)\).

The circles on Fig. 6.2 are stereographic atlases of trajectories for the differential systems (6.3) and (6.4).

Example 6.3. Trajectories of Jacobi’s system

\[
\frac{dx}{dt} = 1 + x - y + x(x + y - 1), \quad \frac{dy}{dt} = y(x + y - 1)
\]

are the curves of family

\[
\frac{x^2 + (y - 1)^2}{y^2} \exp\left(-2 \arctan \frac{y - 1}{x}\right) = C, \quad 0 \leq C \leq + \infty.
\]

Among these curves are the straight line \(y = 0\) and the unstable focus \(A(0, 1)\).

Trajectories of the stereographically conjugate system

\[
\frac{du}{d\theta} = -4u^2 - 4uv + u^2v + 2uv^2 - v^3 - \frac{1}{4} u^4 + \frac{1}{4} v^4,
\]

\[
\frac{dv}{d\theta} = v\left(-4u - 4v - u^2 + 2uv + v^2 - \frac{1}{2} u^3 - \frac{1}{2} uv^2\right),
\]

where \((u^2 + v^2) d\theta = dt\), are the curves of family

\[
\frac{16u^2 + (u^2 + v^2 - 4v)^2}{v^2} \exp\left(-2 \arctan \frac{4v - u^2 - v^2}{4u}\right) = C^*, \quad 0 \leq C^* \leq + \infty, \quad C^* = 16C.
\]

Among these curves are \(O^*\)-rays of the straight line \(v = 0\), the unstable focus \(A^*(0, 2)\), and the complicated equilibrium state \(O^*(0, 0)\), which is consisting from hyperbolic, elliptic and accompanying it two parabolic Bendixon’s sectors.
The circles on Fig. 6.3 are stereographic atlases of trajectories for the differential systems (6.5) and (6.6).

Example 6.4. If we replace \(x \) by \(x \) and \(y \) by \(y + 1 \) in the differential system (6.5), then we have Jacobi’s differential system

\[
\frac{dx}{dt} = x - y + x(x + y), \quad \frac{dy}{dt} = (y + 1)(x + y). \tag{6.7}
\]

The curves of family

\[
\frac{x^2 + y^2}{(y - 1)^2} \exp\left(-2 \arctan \frac{y}{x}\right) = C, \quad 0 \leq C < +\infty,
\]

are trajectories of Jacobi’s differential system (6.7). Among these curves are the straight line \(y = -1 \) and the unstable focus \(O(0,0) \).

Trajectories of the stereographically conjugate system

\[
\frac{du}{d\theta} = -(4u^2 + 4uv + u^3 + u^2v + uv^2 + v^3), \quad \frac{dv}{d\theta} = -4uv - 4v^2 + u^3 - u^2v + uv^2 - v^3, \tag{6.8}
\]

where \((u^2 + v^2)d\theta = dt\), are the curves of family

\[
\frac{u^2 + v^2}{(u^2 + v^2 - 4v)^2} \exp\left(-2 \arctan \frac{v}{u}\right) = C^*, \quad 0 \leq C^* < +\infty, \quad 16C^* = C.
\]

Among these curves are the complicated equilibrium state \(O^*(0,0) \), which is consisting from hyperbolic, elliptic and accompanying it two parabolic Béndixon’s sectors.

The circles on Fig. 6.4 are stereographic atlases of trajectories for the differential systems (6.7) and (6.8).

![Fig. 6.4](image-url)

7. Stereographic cycles

Using Property 6.4 and the diffeomorphic map (2.6), we obtain

Property 7.1 (7.2). The image of a cycle (limit cycle) of the differential system (D), which is not passing through the origin of coordinates \(O(0,0) \) of the phase plane \(Oxy \), on the phase plane \(O^*uv \) is a cycle (limit cycle) of the differential system (3.3), which is not passing through the origin of coordinates \(O^*(0,0) \).

Using Property 6.3 and the diffeomorphic map (2.6), we get

Property 7.3 (7.4). The image of a cycle (limit cycle) of the differential system (D), which is passing through the origin of coordinates \(O(0,0) \) of the phase plane \(Oxy \), on the phase plane \(O^*uv \) is an open trajectory of the differential system (3.3), which is not passing through the origin of coordinates \(O^*(0,0) \).
Definition 7.1. A **stereographic cycle** of system (D) is a trajectory of system (D) such that the stereographic image of this trajectory on the sphere (1.1) is a closed curve and each point of this curve is image of a regular point (final or infinitely remove) of system (D).

Definition 7.2. A stereographic cycle of system (D) is called a **limit stereographic cycle** of system (D) if the stereographic image of this stereographic cycle on the sphere (1.1) has a neighbourhood without a stereographic image of other stereographic cycle of system (D).

Property 7.5 (7.6). A cycle (limit cycle) of system (D) is a stereographic cycle (limit stereographic cycle) of system (D).

Definition 7.3. A stereographic cycle (limit stereographic cycle) is called **open** if this cycle is passing through the infinitely remote point M_∞ of the extended phase plane $O\overline{x}y$.

Property 7.7 (7.8). The image of a stereographic cycle (limit stereographic cycle) of the differential system (D), which is passing through the origin of coordinates $O(0,0)$ of the phase plane $O\overline{x}y$, on the phase plane O^*uv is an open stereographic cycle (open limit stereographic cycle) of the differential system (3.3).

Property 7.9 (7.10). The image of a cycle (limit cycle) of system (D), which is passing through the origin of coordinates $O(0,0)$ of the phase plane $O\overline{x}y$, on the phase plane O^*uv is an open stereographic cycle (open limit stereographic cycle) of system (3.3).

For instance, the straight line-trajectory $u + v - 2 = 0$ is an open stereographic cycle of the differential system (6.4).

Example 7.1. Trajectories of the differential system [8, p. 88]

$$\frac{dx}{dt} = x(x^2 + y^2 - 1) - y(x^2 + y^2 + 1), \quad \frac{dy}{dt} = x(x^2 + y^2 + 1) + y(x^2 + y^2 - 1) \quad (7.1)$$

are the curves [9; 1]

$$\frac{x^2 + y^2}{(x^2 + y^2 - 1)^2} \exp\left(2 \arctan \frac{y}{x}\right) = C, \quad 0 \leq C \leq +\infty.$$

Among these curves are the equilibrium state $O(0,0)$ (stable focus) and the unstable limit cycle $x^2 + y^2 = 1$.

Trajectories of the stereographically conjugate system

$$\frac{du}{d\theta} = u(u^2 + v^2 - 16) - v(u^2 + v^2 + 16), \quad \frac{dv}{d\theta} = u(u^2 + v^2 + 16) + v(u^2 + v^2 - 16), \quad (7.2)$$

where $(u^2 + v^2) d\theta = dt$, are the curves
\[\frac{u^2 + v^2}{(u^2 + v^2 - 16)^2} \exp\left(2 \arctan \frac{v}{u}\right) = C^*, \quad 0 \leq C^* \leq +\infty, \quad 16C^* = C. \]

Among these curves are the equilibrium state \(O^*(0,0) \) (stable focus) and the unstable limit cycle \(u^2 + v^2 = 16 \).

Trajectories on the sphere (1.1) for the stereographically mutually conjugate differential systems (7.1) and (7.2) are represented on Fig. 7.1. The circles on Fig. 7.2 are stereographic atlases of trajectories for the differential systems (7.1) and (7.2).

Example 7.2. Trajectories of Darboux’s system \([10]\)

\[
\frac{dx}{dt} = -y - x(x^2 + y^2 - 1), \quad \frac{dy}{dt} = x - y(x^2 + y^2 - 1) \tag{7.3}
\]

are the curves \([9; 1]\)

\[
\frac{x^2 + y^2}{1 - x^2 - y^2} \exp\left(-2 \arctan \frac{y}{x}\right) = C, \quad -\infty \leq C \leq +\infty.
\]

Among these curves are the equilibrium state \(O(0,0) \) (unstable focus) and the stable limit cycle \(x^2 + y^2 = 1 \).

Trajectories of the stereographically conjugate system

\[
\frac{du}{d\theta} = 16u - u^3 - u^2v - uv^2 - v^3, \quad \frac{dv}{d\theta} = 16v + u^3 - u^2v + uv^2 - v^3, \tag{7.4}
\]

where \((u^2 + v^2) d\theta = dt \), are the curves

\[
\frac{1}{u^2 + v^2 - 16} \exp\left(-2 \arctan \frac{u}{v}\right) = C^*, \quad -\infty \leq C^* \leq +\infty, \quad 16C^* = C.
\]

Among these curves are the equilibrium state \(O^*(0,0) \) (unstable dicritical node) and the stable limit circle \(u^2 + v^2 = 16 \).

Trajectories on the sphere (1.1) for the stereographically mutually conjugate differential systems (7.3) and (7.4) are represented on Fig. 7.3. The circles on Fig. 7.4 are stereographic atlases of trajectories for the differential systems (7.3) and (7.4).

Example 7.3. If we replace \(x \) by \(x - 1 \) and \(y \) by \(y \) in the differential system (7.3), then we obtain Darboux’s differential system

\[
\frac{dx}{dt} = -2x - y + 3x^2 + y^2 - x(x^2 + y^2), \quad \frac{dy}{dt} = -1 + x + 2xy - y(x^2 + y^2). \tag{7.5}
\]
The curves of family
\[
\frac{(x - 1)^2 + y^2}{1 - (x - 1)^2 - y^2} \exp\left(-2 \arctan \frac{y}{x - 1}\right) = C, \quad -\infty \leq C \leq +\infty,
\]
are trajectories of the differential system (7.5). Further, the equilibrium state \(A(1,0)\) is an unstable focus of system (7.5) and the circle \((x - 1)^2 + y^2 = 1\), which is passing through the origin of coordinates \(O(0,0)\), is a stable limit cycle of system (7.5).

Trajectories of the stereographically conjugate system
\[
\begin{align*}
\frac{du}{d\theta} &= 16u - 12u^2 + 4v^2 + 2u^3 - u^2v - 2uv^2 - v^3 + \frac{1}{2} u^3v + \frac{1}{2} uv^3, \\
\frac{dv}{d\theta} &= 16v - 16uv + u^3 + 4u^2v + uv^2 - \frac{1}{4} u^4 + \frac{1}{4} v^4,
\end{align*}
\]
where \((u^2 + v^2) d\theta = dt\), are the curves of family
\[
\frac{(u - 4)^2 + v^2}{u - 2} \exp\left(2 \arctan \frac{4v}{(u - 2)^2 + v^2 - 4}\right) = C^*, \quad -\infty \leq C^* \leq +\infty, \quad C^* = 8C.
\]

Among these curves are the straight line \(u = 2\), which is an open limit stereographic cycle, the unstable dicritical node \(O^*(0,0)\), and the unstable focus \(A^*(4,0)\).

The circles on Fig. 7.5 are stereographic atlases of trajectories for the differential systems (7.5) and (7.6).

\textbf{Fig. 7.5}

\textbf{Example 7.4.} If we replace \(u\) by \(u + 2\) and \(v\) by \(v\) in the differential system (7.6), then we get the differential system
\[
\begin{align*}
\frac{du}{d\theta} &= -8u + 2uv + 2u^2v + 2uv^2 - 2uv^2 + \frac{1}{2} u^3v + \frac{1}{2} uv^3, \\
\frac{dv}{d\theta} &= 4 + 4u + 2v^2 - u^3 + 4u^2v + uv^2 - \frac{1}{4} u^4 + \frac{1}{4} v^4.
\end{align*}
\]

The curves of family
\[
\frac{(u - 2)^2 + v^2}{u} \exp\left(2 \arctan \frac{4v}{u^2 + v^2 - 4}\right) = C^*, \quad -\infty \leq C^* \leq +\infty,
\]
are trajectories of system (7.7). Moreover, the straight line \(u = 0\) is an open limit stereographic cycle, \(A_1(-2,0)\) is an unstable dicritical node, and \(A_2(2,0)\) is an unstable focus.

23
Trajectories of the stereographically conjugate system

\[
\frac{dx}{dt} = -32x - 8xy + 8x^3 - 8x^2y - 8xy^2 - 2x^3y - 2xy^3,
\]

\[
\frac{dy}{dt} = -16 - 16x - 8y^2 + 4x^3 + 16x^2y - 4xy^2 + x^4 - y^4,
\]

where \((x^2 + y^2)\, dt = d\theta\), are the curves of family

\[
\frac{(x - 2)^2 + y^2}{x} \exp\left(2\arctan \frac{4y}{4 - x^2 - y^2}\right) = C^*, \quad -\infty \leq C^* \leq +\infty.
\]

Among these curves are the straight line \(x = 0\), which is open limit stereographic cycle, the unstable dicritical node \(A^*_1(-2,0)\), and the unstable focus \(A^*_2(2,0)\).

The circles on Fig. 7.6 are stereographic atlases of trajectories for systems (7.7) and (7.8).

8. Symmetry of phase directional field

for stereographically conjugate differential systems

Using the analytical conditions of symmetry of phase directional field for differential system [11; 1], we obtain criteria of symmetry for stereographically conjugate differential systems.

Property 8.1. The following statements are equivalent:

1. The phase directional field of system (D) is symmetric with respect to the origin of coordinate of the phase plane \(Oxy\);
2. The identity \(X(x, y)Y(-x, -y) - X(-x, -y)Y(x, y) = 0\) for all \((x, y) \in \mathbb{R}^2\) is true;
3. The phase directional field of system (3.3) is symmetric with respect to the origin of coordinate of the phase plane \(O^*uv\);
4. The identity \(U(u, v)V(-u, -v) - U(-u, -v)V(u, v) = 0\) for all \((u, v) \in \mathbb{R}^2\) is true.

For example, the phase directional fields of stereographically conjugate differential systems (4.4) and (4.5) with \(a_0 = b_0\), (5.1) and (5.2), (5.3) and (5.4), (5.5) and (5.6), (5.7) and (5.8), (5.9) and (5.10), (5.11) and (5.12), (7.1) and (7.2), (7.3) and (7.4) have such type of symmetry.

Property 8.2. The following statements are equivalent:

1. The phase directional field of the differential system (D) is symmetric with respect to the coordinate axis \(Ox\);
2. The identity \(X(x, y)Y(-x, -y) + X(x, -y)Y(x, y) = 0\) for all \((x, y) \in \mathbb{R}^2\) is true;
3. The phase directional field of the differential system (3.3) is symmetric with respect to the coordinate axis \(O^*u\);
4. The identity \(U(u, v)V(u, -v) + U(u, v)V(u, v) = 0\) for all \((u, v) \in \mathbb{R}^2\) is true.
For example, the phase directional fields of stereographically conjugate differential systems (4.4) and (4.5) with $a_0b_0 = 0$, (5.1) and (5.2), (5.3) and (5.4), (5.7) and (5.8), (5.9) and (5.10) have such type of symmetry.

Property 8.3. The following statements are equivalent:
1. The phase directional field of the differential system (D) is symmetric with respect to the coordinate axis Oy;
2. The identity $X(x, y)Y(-x, y) + X(-x, y)Y(x, y) = 0$ for all $(x, y) \in \mathbb{R}^2$ is true;
3. The phase directional field of the differential system (3.3) is symmetric with respect to the coordinate axis O^*v;
4. The identity $U(u, v)V(-u, v) + U(-u, v)V(u, v) = 0$ for all $(u, v) \in \mathbb{R}^2$ is true.

For example, the phase directional fields of stereographically conjugate differential systems (4.4) and (4.5) with $a_0b_0 = 0$, (5.1) and (5.2), (5.3) and (5.4), (5.7) and (5.8), (5.9) and (5.10) have such type of symmetry.

Property 8.4. The following statements are equivalent:
1. The phase directional field of the differential system (D) is symmetric with respect to the straight line $y = x$;
2. The identity $X(x, y)X(y, x) - Y(x, y)Y(y, x) = 0$ for all $(x, y) \in \mathbb{R}^2$ is true;
3. The phase directional field of the differential system (3.3) is symmetric with respect to the straight line $v = u$;
4. The identity $U(u, v)U(v, u) - V(u, v)V(v, u) = 0$ for all $(u, v) \in \mathbb{R}^2$ is true.

For example, the phase directional fields of stereographically conjugate differential systems (4.4) and (4.5) with $|a_0| = |b_0|$, (5.1) and (5.2), (5.3) and (5.4), (5.7) and (5.8), (6.1) and (6.2), (6.3) and (6.4) have such type of symmetry.

Property 8.5. The following statements are equivalent:
1. The phase directional field of the differential system (D) is symmetric with respect to the straight line $y = -x$;
2. The identity $X(-x, -y)X(y, x) - Y(-x, -y)Y(y, x) = 0$ for all $(x, y) \in \mathbb{R}^2$ is true;
3. The phase directional field of the differential system (3.3) is symmetric with respect to the straight line $v = -u$;
4. The identity $U(-u, -v)U(v, u) - V(-u, -v)V(v, u) = 0$ for all $(u, v) \in \mathbb{R}^2$ is true.

For example, the phase directional fields of stereographically conjugate differential systems (4.4) and (4.5) with $|a_0| = |b_0|$, (5.1) and (5.2), (5.3) and (5.4), (5.7) and (5.8) have such type of symmetry.

9. Infinitely remote equilibrium state

By Property 6.2, the infinitely remote point M_∞ of the extended phase plane \overline{Oxy} is an equilibrium state of system (D) if and only if the point $O^*(0, 0)$ is an equilibrium state of system (3.3). Note also that the equilibrium states M_∞ and O^* have the same type.

Behaviour of trajectories for the differential system (D) in an neighbourhood of the infinitely remote point M_∞ of the extended phase plane \overline{Oxy} is defined by behaviour of trajectories for the differential system (D) in an neighbourhood of the infinitely remote straight line of the projective phase plane $\mathbb{PR}(x, y)$ [12; 1].

Let L be an infinitely remote equilibrium state of system (D) on the projective phase plane $\mathbb{PR}(x, y)$. Then, consider two forms of Bendixon’s sectors for the equilibrium state L: interior form and exterior form. Points of infinitely remote straight line of the projective phase plane $\mathbb{PR}(x, y)$, which are lying in a punctured neighborhood of the equilibrium state L, belong to exterior Bendixon’s sectors and don’t belong to interior Bendixon sectors.
Thus we have the following

Property 9.1. Interior Bendixon’s sector of the equilibrium state L corresponds to Bendixon’s sector of the equilibrium state M_∞ with the same type and the same direction of movement along trajectories.

Exterior Bendixon’s sectors of infinitely remote equilibrium states of the projective phase plane $\mathbb{P}\mathbb{R}(x, y)$ are collapsing and forming Bendixon’s sectors of the infinitely remote equilibrium state M_∞ of the extended phase plane \overline{Oxy}. In addition, note that [12; 1]: if the system (D) is projectively nonsingular, then the infinitely remote straight line of the projective phase plane $\mathbb{P}\mathbb{R}(x, y)$ consists of trajectories of this system.

Thus we have the following assertions.

Suppose L_1 and L_2 are adjacent infinitely remove equilibrium states on the circle of the projective circle $\mathbb{P}\mathbb{K}(x, y)$ [12; 1] for the differential system (D).

Property 9.2. If the projectively nonsingular system (D) has adjacent exterior Bendixon’s sectors for the equilibrium states L_1 and L_2 such that these sectors are:

- a) parabolic;
- b) hyperbolic;
- c) one is parabolic, another is hyperbolic;
- d) one is hyperbolic, another is elliptic,

then these sectors are collapsing to Bendixon’s sector of the type:

- a) elliptic;
- b) hyperbolic;
- c) parabolic;
- d) elliptic

for the equilibrium state M_∞.

Example 9.1. The differential system [5, pp. 84 – 85; 1]

$$\frac{dx}{dt} = 1 - x^2 - y^2, \quad \frac{dy}{dt} = xy - 1$$

(9.1)

on the projective phase plane $\mathbb{P}\mathbb{R}(x, y)$ has one equilibrium state (node), which is lying on «extremities» of the axis Ox.

Fig. 9.1

The equilibrium state $O^*(0, 0)$ of the stereographically conjugate system

$$\frac{du}{d\theta} = 4u^4 - 8u^2v^2 - 4v^4 - \frac{1}{4}u^6 + \frac{1}{2}u^5v - \frac{1}{4}u^4v^2 + u^3v^3 + \frac{1}{4}u^2v^4 + \frac{1}{2}uv^5 + \frac{1}{4}v^6,$$

$$\frac{dv}{d\theta} = 12u^3v + 4uv^3 - \frac{1}{4}u^6 - \frac{1}{2}u^5v - \frac{1}{4}u^4v^2 - u^3v^3 + \frac{1}{4}u^2v^4 - \frac{1}{2}uv^5 + \frac{1}{4}v^6,$$

(9.2)
where \((u^2 + v^2)^2 d\theta = dt\), consists of two elliptic sectors, which are divided with the help of two parabolic sectors (Property 9.2, case a).

Using the qualitative research [1] of behaviour of trajectories for system (9.1), we get the circles on Fig. 9.1 compose stereografic atlases of trajectories for systems (9.1) and (9.2).

Example 9.2. The differential system [13, pp. 61–65]

\[
2 \frac{dx}{dt} = 2y + i(x - iy)^q - i(x + iy)^q, \quad 2 \frac{dy}{dt} = -2x + (x - iy)^q + (x + iy)^q \tag{9.3}
\]

at \(i = \sqrt{-1}\), \(q = 4\) and \(q = 5\) is projectively nonsingular [12].

Moreover, all infinitely remove equilibrium states on the projective phase plane \(\mathbb{P}\mathbb{R}(x, y)\) are nodes (see Fig. 2.12 in [13, p. 65] or Fig. 8.9 and Fig. 8.10 in [12]).

If \(q = 4\), then the differential system (9.3) has the form

\[
\frac{dx}{dt} = y + 4x^3y - 4xy^3, \quad \frac{dy}{dt} = -x + x^4 - 6x^2y^2 + y^4 \tag{9.4}
\]

and the stereographically conjugate system to the system (9.4) is the differential system

\[
\frac{du}{d\theta} = v(-384u^5 + 1280u^3v^2 - 384uv^4 + u^8 + 4u^6v^2 + 6u^4v^4 + 4u^2v^6 + v^8), \tag{9.5}
\]

\[
\frac{dv}{d\theta} = 64u^6 - 960u^4v^2 + 960u^2v^4 - 64v^6 - u^9 - 4u^7v^2 - 6u^5v^4 - 4u^3v^6 - uv^8,
\]

where \((u^2 + v^2)^4 d\theta = dt\).
If \(q = 5 \), then the differential system (9.3) has the form

\[
\frac{dx}{dt} = x + 5x^4 - 10x^2y^3 + y^5, \quad \frac{dy}{dt} = -x + x^5 - 10x^3y^2 + 5xy^4
\]

(9.6)

and stereographically conjugate system to the system (9.6) is the differential system

\[
\frac{du}{d\theta} = v(-1792u^6 + 8960u^4v^2 - 5376u^2v^4 + 256v^6 + u^{10} + 5u^8v^2 + 10u^6v^4 + 10u^4v^6 + 5u^2v^8 + v^{10}), \\
\frac{dv}{d\theta} = u(256u^6 - 5376u^4v^2 + 8960u^2v^4 - 1792v^6 - u^{10} - 5u^8v^2 - 10u^6v^4 - 10u^4v^6 - 5u^2v^8 - v^{10}),
\]

(9.7)

where \((u^2 + v^2)^5 d\theta = dt\).

By Property 9.2, the equilibrium state \(O^* (0,0) \) both for the differential system (9.5) and for the differential system (9.7) consists of elliptic Bendixon's sectors.

The circles, which are forming stereographic atlases of trajectories for the differential systems (9.4) and (9.5), are constructed on Fig. 9.2, and the circles, which are forming stereographic atlases of trajectories for the differential systems (9.6) and (9.7), are constructed on Fig. 9.3.

Example 9.3. The differential system [5, pp. 85–87; 14, pp. 209–212]

\[
\frac{dx}{dt} = -1 + x^2 + y^2, \quad \frac{dy}{dt} = -5 + 5xy
\]

(9.8)

on the projective phase plane \(\mathbb{P}R(x,y) \) has three equilibrium states: a saddle and two stable nodes. The saddle is lying on the «extremities» of the straight line \(y = 0 \). The first stable node lies on the «extremities» of the straight line \(y = -2x \) and the second stable node lies on the «extremities» of the straight line \(y = 2x \).

The stereographically conjugate differential system

\[
\frac{du}{d\theta} = -4u^4 - 40u^2v^2 + 4v^4 + \frac{1}{4}u^6 + \frac{5}{2}u^5v + \frac{1}{4}u^4v^2 + 5u^3v^3 - \frac{1}{4}u^2v^4 + \frac{5}{2}uv^5 - \frac{1}{4}v^6, \\
\frac{dv}{d\theta} = 12u^3v - 28uv^3 - \frac{5}{4}u^6 + \frac{1}{2}u^5v - \frac{5}{4}u^4v^2 + u^3v^3 + \frac{5}{4}u^2v^4 + \frac{1}{2}uv^5 + \frac{5}{4}v^6,
\]

(9.9)

where \((u^2 + v^2)^2 d\theta = dt\), has the equilibrium state \(O^* (0,0) \), which is consisting of two elliptic Bendixon’s sectors and two parabolic Bendixon’s sectors (Property 9.2, cases a, c).

Using the qualitative research [1] of behaviour of trajectories for the differential system (9.8), we can build the circles on Fig. 9.4, which are forming stereographic atlases of trajectories for the differential systems (9.8) and (9.9).
Property 9.3. If the boundary circle of the projective circle \(\mathbb{PK}(x,y) \) is orthogonal intersected by each trajectory of the projectively singular differential system \(D \), then the infinitely remote equilibrium state \(M_{\infty} \) is a dicritical node.

For example, such differential system is Darboux’s system (7.3). The projective atlas of trajectories for this system is constructed on Fig. 7.4 in [1], and the stereographic atlas of trajectories for this system is constructed on Fig. 7.4.

Example 9.4. In the papers [11; 1], we did the qualitative research of behaviour of trajectories on the projective phase plane \(\mathbb{PR}(x,y) \) for the differential systems

\[
\frac{dx}{dt} = -y + x^3, \quad \frac{dy}{dt} = x(1 + xy), \tag{9.10}
\]

\[
\frac{dx}{dt} = x(x^2 + y^2 - 1)(x^2 + y^2 - 9) - y(x^2 + y^2 - 2x - 8), \tag{9.11}
\]

\[
\frac{dx}{dt} = x(2x^2 + 2y^2 + 1)\left((x^2 + y^2)^2 + x^2 - y^2 + \frac{1}{10}\right) - y(2x^2 + 2y^2 - 1), \tag{9.12}
\]

and also the projective atlases of trajectories for these systems were built.

Trajectories of each of these systems intersect orthogonally the boundary circle of the projective circle \(\mathbb{PK}(x,y) \).

The stereographically conjugate systems to the differential systems (9.10), (9.11), (9.12) accordingly are the differential systems

\[
\frac{du}{d\theta} = -(16u^3 + u^4v + 2u^2v^3 + v^5), \quad \frac{dv}{d\theta} = u(-16uv + u^4 + 2u^2v^2 + v^4), \tag{9.13}
\]

where \((u^2 + v^2)^2 \frac{d\theta}{dt} = dt\),

\[
\frac{du}{d\theta} = -256u + 160u^3 - 16u^2v + 160uv^2 - 16v^3 + 8u^3v + 8uv^3 - 9u^5 + 8u^4v - 18u^3v^2 + 16u^2v^3 - 9uv^4 + 8v^5, \tag{9.14}
\]

\[
\frac{dv}{d\theta} = -256v + 16u^3 + 160u^2v + 160uv^2 + 16v^3 - 8u^4 - 8u^2v^2 - 8u^5 - 9u^4v - 16u^3v^2 - 18u^2v^3 - 8uv^4 - 9v^5,
\]

where \((u^2 + v^2)^2 \frac{d\theta}{dt} = dt\),

\[
\frac{du}{d\theta} = -8192u - 768u^3 + 1280uv^2 - \frac{96}{5} u^5 - 32u^4v + \frac{288}{5} u^3v^2 - 64u^2v^3 - \frac{256}{5} uv^4 - 32v^5 - \frac{1}{10} u^7 - 3u^6v + \frac{1}{10} u^5v^2 - 5u^4v^3 + \frac{1}{2} u^3v^4 - u^2v^5 + \frac{3}{10} uv^6 + v^7, \tag{9.15}
\]

\[
\frac{dv}{d\theta} = -8192v - 1280u^2v + 768v^3 + 32u^5 - \frac{256}{5} u^4v + 64u^3v^2 + \frac{288}{5} u^2v^3 + 32uv^4 - \frac{96}{5} v^5 + u^7 - \frac{3}{10} u^6v - u^5v^2 - \frac{1}{2} u^4v^3 - 5u^3v^4 - \frac{1}{10} u^2v^5 - 3uv^6 + \frac{1}{10} v^7,
\]

where \((u^2 + v^2)^3 \frac{d\theta}{dt} = dt\).
The circles, which are forming stereographic atlases of trajectories for the differential systems (9.10) and (9.13), are constructed on Fig. 9.5. The circles, which are forming stereographic atlases of trajectories for the differential systems (9.11) and (9.14), are constructed on Fig. 9.6. And the circles, which are forming stereographic atlases of trajectories for the differential systems (9.12) and (9.15), are constructed on Fig. 9.7.
References

1. V.N. Gorbuzov, Projective atlas of trajectories of differential systems, *Mathematics. Dynamical Systems* (arXiv: 1401.1000v1 [math.DS]. Cornell Univ., Ithaca, New York), 2014, 61 p.

2. V.N. Gorbuzov, Stereographic atlas of trajectories for differential systems of the second order (Russian), *Vestnik of the Yanka Kupala Grodno State University*, 2014, Ser. 2, No. 1(170), 12-20.

3. V.N. Gorbuzov, Trajectories of stereographic conjugate differential systems (Russian), *Vestnik of the Yanka Kupala Grodno State University*, 2014, Ser. 2, No. 3(180), 27-36.

4. M.A. Lavrentiev and B.V. Shabat, *Methods of the theory of functions of a complex variable* (Russian), Nauka, Moscow, 1987.

5. The *mathematical encyclopaedia* (Russian), Vol. 5, Soviet encyclopaedia, Moscow, 1984.

6. A.S. Mishchenko and A.T. Fomenko, *A course of differential geometry and topology* (Russian), Moscow State University, Moscow, 1980.

7. A.A. Andronov, E.A. Leontovich, I.I. Gordon, and A.G. Maier, *Qualitative theory of second order dynamical systems* (Russian), Nauka, Moscow, 1966.

8. H. Poincaré, *On curves defined by differential equations* (Russian), GITTL, Moscow-Leningrad, 1947.

9. V.N. Gorbuzov and P.B. Pavlyuchik, Linear and open limit cycles of differential systems (Russian), *Vestnik of the Yanka Kupala Grodno State University*, 2013, Ser. 2, No. 3(159), 23-32.

10. V.N. Gorbuzov and A.A. Samodurov, *The Darboux equation and its analogs* (Russian), Grodno State University, Grodno, 1985.

11. V.N. Gorbuzov, Trajectories of projective reduced differential systems (Russian), *Vestnik of the Yanka Kupala Grodno State University*, 2012, Ser. 2, No. 1(126), 39-52.

12. V.N. Gorbuzov, The projective atlas of trajectories of differential systems of the second order (Russian), *Vestnik of the Yanka Kupala Grodno State University*, 2011, Ser. 2, No. 2(111), 15-26.

13. K.S. Sibirsky, *Algebraic invariants of differential equations and matrices* (Russian), Shtiinca, Chisinau, 1976.

14. S. Lefschetz, *Differential equations: geometric theory* (Russian), IL, Moscow, 1961.
СТЕРЕОГРАФИЧЕСКИ СОПРЯЖЕННЫЕ
ДИФФЕРЕНЦИАЛЬНЫЕ СИСТЕМЫ

В.Н. Горбузов

Факультет математики и информатики,
Гродненский государственный университет имени Янки Купалы,
Ожешко 22, Гродно, Беларусь, 230023
E-mail: gorbuzov@grsu.by

Резюме

Изложены топологические основы поведения траекторий автономных дифференциальных систем второго порядка на сфере. Построен стереографический атлас траекторий. Установлены дифференциальные связи между траекториями стереографически сопряженных дифференциальных систем. Исследовано поведение траекторий в окрестности бесконечно удаленной точки фазовой плоскости. Приведены примеры глобального качественного исследования траекторий стереографически сопряженных дифференциальных систем.

Ключевые слова: дифференциальная система, стереографическая проекция, атлас карт многообразия.

2000 Mathematics Subject Classification: 34A26, 34C05.

Содержание

Введение .. 2
§1. Стереографический атлас сферы ... 2
 1. Стереографическая проекция плоскости .. 2
 2. Стереографический атлас сферы .. 4
§2. Стереографически сопряженная дифференциальная система 6
 3. Преобразование Бендиксона ... 6
 4. Вид стереографически сопряженной дифференциальной системы 7
 5. Стереографический атлас траекторий дифференциальной системы 10
§3. Траектории стереографически сопряженных дифференциальных систем .. 16
 6. Регулярные точки и состояния равновесия стереографически сопряженных дифференциальных систем .. 16
 7. Стереографические циклы ... 20
 8. Симметричность фазового поля направлений стереографически сопряженных дифференциальных систем ... 24
 9. Бесконечно удаленные состояния равновесия 26
Список литературы ... 31
Введение

Объектом исследования является обыкновенная автономная полиномиальная дифференциальная система второго порядка

\[
\begin{align*}
\frac{dx}{dt} &= \sum_{k=0}^{n} X_k(x, y) \equiv X(x, y), \\
\frac{dy}{dt} &= \sum_{k=0}^{n} Y_k(x, y) \equiv Y(x, y),
\end{align*}
\]

где \(X_k \) и \(Y_k \) — однородные полиномы по переменным \(x \) и \(y \) степени \(k, k = 0, 1, \ldots, n \), такие, что \(|X_n(x, y)| + |Y_n(x, y)| \neq 0 \) на \(\mathbb{R}^2 \), а полиномы \(X \) и \(Y \) — взаимно простые, т.е. не имеют общих делителей, отличных от вещественных чисел.

Данная работа является продолжением исследований, изложенных в [1], а ее основные результаты опубликованы в статьях [2] и [3].

§ 1. Стереографический атлас сферы

1. Стереографическая проекция плоскости

Введем трехмерную прямоугольную декартову систему координат \(O^{*}x^{*}y^{*}z^{*} \), совмещенную с правой прямоугольной декартовой системой координат \(Oxy \), соблюдая условие: прямая \(OO^{*} \) ортогональна плоскости \(Oxy \), длина отрезка \(OO^{*} \) равна одной единице масштаба системы координат \(Oxy \); ось \(O^{*}x^{*} \) сопоставлена с осью \(Ox \), ось \(O^{*}y^{*} \) сопоставлена с осью \(Oy \), а ось \(O^{*}z^{*} \) направлена так, что система координат \(O^{*}x^{*}y^{*}z^{*} \) будет правой; масштаб в системе координат \(O^{*}x^{*}y^{*}z^{*} \) такой же, как и в системе координат \(Oxy \). Построим сферу с центром \(O^{*} \) единичного радиуса:

\[
S^2 = \{(x^{*}, y^{*}, z^{*}) : x^{*2} + y^{*2} + z^{*2} = 1\}.
\]

Точки \(N(0, 0, 1) \) и \(S(0, 0, -1) \) — соответственно северный и южный полюсы этой сферы. При этом южный полюс \(S(0, 0, -1) \) совпадает с началом \(O(0, 0) \) системы координат \(Oxy \). Уравнение \(z^{*} = -1 \) является уравнением в системе координат \(O^{*}x^{*}y^{*}z^{*} \) плоскости \(Oxy \). Плоскость \(Oxy \) касается сферы (1.1) в южном полюсе \(S(0, 0, -1) \).

На плоскости \(Oxy \) произвольным образом выберем точку \(M(x, y) \) и проведем луч с началом в точке \(M \) через северный полюс \(N \). Луч \(MN \) пересекает сферу (1.1) в некоторой точке \(P \). Тем самым, каждой точке плоскости \(Oxy \) сопоставляется одна точка сферы, а каждой точке сферы, отличной от северного полюса, сопоставляется, одна точка плоскости \(Oxy \). Такую проекцию назовем стереографической проекцией плоскости на сферу [4, c. 83 – 84]. Точку \(N \) будем называть центром стереографической проекции (рис. 1.1).

Лемма 1.1. Стереографическая проекция плоскости является биекцией между плоскостью и сферой с выколотым северным полюсом — центром этой проекции.

Чтобы распространить соответствие на всю сферу (1.1), на плоскости \(Oxy \) введем условную бесконечно удаленную точку \(M_{\infty} \), считая ее прообразом северного полюса \(N(0, 0, 1) \) при стереографическом проецировании. Плоскость \(Oxy \), пополненную бесконечно удаленной точкой \(M_{\infty} \), образом которой при стереографическом проецировании на сфере (1.1) является северный полюс \(N(0, 0, 1) \), назовем расширенной плоскостью \(Oxy \) и обозначим \(Oxy_{\infty} \), т.е. \(Oxy_{\infty} = Oxy \cup M_{\infty} \). Расширенная плоскость \(Oxy_{\infty} \) состоит из двух частей: конечной — собственно плоскость \(Oxy \), и бесконечной — точка \(M_{\infty} \). Тогда любой последовательности \{\(M_k \)\} точек \(M_k \) плоскости \(Oxy \), удаленных в бесконечность (стремящихся к точке \(M_{\infty} \)), с помощью стереографической проекции однозначно сопоставляется последовательность \{\(P_k \)\} точек \(P_k \) сферы (1.1), стремящихся к северному полюсу \(N(0, 0, 1) \).
Пусть точка M расположена на плоскости Oxy и имеет координаты $M(x,y)$. Тогда в пространственной системе координат $O^*x^*y^*z^*$ эта же точка имеет координаты $M(x,y, -1)$. Прямая MN в системе координат $O^*x^*y^*z^*$ задается системой уравнений

$$\frac{x^*}{x} = \frac{y^*}{y} = \frac{z^* - 1}{-2}.$$

При стереографическом проецировании с центром в северном полюсе $N(0,0,1)$ точке $M(x,y, -1)$ соответствует точка $P(x^*, y^*, z^*)$, являющаяся точкой пресечения прямой MN и сферы (1.1). Поэтому координаты x^*, y^*, z^* точки P суть решения алгебраической системы уравнений

$$x^* = \frac{1 - z^*}{2}, \quad x^*^2 + y^*^2 + z^*^2 = 1. \tag{1.2}$$

Будем считать, что точка $P(x^*, y^*, z^*)$ лежит на сфере (1.1) и не является северным полюсом $N(0,0,1)$. Тогда ее аппликата $z^* \in [-1; 1)$. Разрешив систему уравнений (1.2) относительно x^*, y^*, z^* при $-1 \leq z^* < 1$, получим биективное отражение

$$\psi_N : (x,y) \rightarrow (x^*(x,y), y^*(x,y), z^*(x,y)), \tag{1.3}$$

$$x^*(x,y) = \frac{4x}{x^2 + y^2 + 4}, \quad y^*(x,y) = \frac{4y}{x^2 + y^2 + 4}, \quad z^*(x,y) = \frac{x^2 + y^2 - 4}{x^2 + y^2 + 4} \quad \forall (x,y) \in \mathbb{R}^2$$

плоскости Oxy на сферу (1.1), проколотую в северном полюсе $N(0,0,1)$. Координатные функции отображения (1.3) непрерывно дифференцируемы. Якобианы

$$\frac{D(x^*, y^*)}{D(x,y)} = -16 \frac{x^2 + y^2 - 4}{(x^2 + y^2 + 4)^3}, \quad \frac{D(x^*, z^*)}{D(x,y)} = 64 \frac{y}{(x^2 + y^2 + 4)^3},$$

$$\frac{D(y^*, z^*)}{D(x,y)} = -64 \frac{x}{(x^2 + y^2 + 4)^3} \quad \forall (x,y) \in \mathbb{R}^2$$

одновременно не обращаются в нуль в любой точке плоскости Oxy. Следовательно, с учетом леммы 1.1 имеет место

Теорема 1.1. Стереографическое отображение (1.3) плоскости Oxy на сферу (1.1), проколотую в северном полюсе $N(0,0,1)$, является диффеоморфизмом.

Основное свойство диффеоморфизма (1.3) состоит в том, что [5, стб. 222 — 223] угол между кривыми на плоскости и угол между стереографическими образами этих кривых на сфере равны.
2. Стереографический атлас сферы

На плоскости, касающейся сферы (1.1) в северном полюсе \(N(0,0,1) \), введем правую прямоугольную декартову систему координат \(O^*uv \) так, что ее начало \(O^*(0,0) \) совпадает с северным полюсом \(N(0,0,1) \) сферы (1.1), ось \(O^*u \) соприкасается с осью \(O*x^* \), ось \(O^*v \) соприкасается с осью \(O*y^* \) (рис. 2.1). Масштаб в системах координат \(Oxy, O*x^*y^*z^*, O^*uv \) одинаков.

Если в плоскости \(O^*uv \) точка \(M^* \) имеет координаты \(M^*(u,v) \), то в пространственной системе координат \(O*x^*y^*z^* \) эта же точка имеет координаты \(M^*(u,v,1) \). Прямая \(M^*S \) в системе координат \(O*x^*y^*z^* \) задается системой уравнений

\[
\frac{x^*}{u} = \frac{y^*}{v} = \frac{z^* + 1}{2}. \tag{2.1}
\]

При стереографическом проецировании с центром в южном полюсе \(M^* \) имеет координаты \(M^*(u,v) \), то в пространственной системе координат \(O*x^*y^*z^* \) эта же точка имеет координаты \(M^*(u,v,1) \). Примыкание \(M^*S \) в системе координат \(O*x^*y^*z^* \) задается системой уравнений

\[
\frac{x^*}{u} = \frac{y^*}{v} = \frac{z^* + 1}{2}, \quad x^*^2 + y^*^2 + z^*^2 = 1. \tag{2.1}
\]

Будем считать, что точка \(P(x^*,y^*,z^*) \) лежит на сфере (1.1) и не является южным полюсом \(S(0,0,-1) \). Тогда ее аппликата \(z^* \in (-1;1] \). Разрешив систему уравнений (2.1) относительно \(x^*, y^*, z^* \) при \(-1 < z^* \leq 1 \), получим биективное отображение

\[
\psi_S: (u,v) \rightarrow (x^*(u,v),y^*(u,v),z^*(u,v)) \tag{2.2}
\]

плоскости \(O^*uv \) на сферу (1.1), проколотую в южном полюсе \(S(0,0,-1) \). Координатные функции отображения (2.2) непрерывно дифференцируемы. Якобианы

\[
\frac{D(x^*,y^*)}{D(u,v)} = -16 \frac{u^2 + v^2 - 4}{(u^2 + v^2 + 4)^3}, \quad \frac{D(x^*,z^*)}{D(u,v)} = -64 \frac{v}{(u^2 + v^2 + 4)^3},
\]

\[
\frac{D(y^*,z^*)}{D(u,v)} = 64 \frac{u}{(u^2 + v^2 + 4)^3}, \quad \forall (u,v) \in \mathbb{R}^2
\]

одновременно не обращаются в нуль в любой точке плоскости \(O^*uv \). Следовательно, стереографическое отображение (2.2) плоскости \(O^*uv \) на сферу (1.1), проколотую в южном полюсе \(S(0,0,-1) \), является диффеоморфизмом.

Плоскость \(O^*uv \), пополненная бесконечной удаленной точкой \(M^*_\infty \), образом которой при стереографическом проецировании плоскости \(O^*uv \) на сферу (1.1) является южный полюс \(S(0,0,-1) \), есть расширенная плоскость \(O^*uv \), которую обозначим \(\overline{O^*uv} \), т.е.

\[
\overline{O^*uv} = O^*uv \cup M^*_\infty.
\]

Покроем сферу (1.1) двумя сферами \(U_1 \) и \(U_2 \), проколотыми соответственно в северном \(N(0,0,1) \) и южном \(S(0,0,-1) \) полюсах:

\[
U_1 = \{(x^*,y^*,z^*): x^*^2 + y^*^2 + z^*^2 = 1, \quad -1 \leq z^* < 1\}
\]

и

\[
U_2 = \{(x^*,y^*,z^*): x^*^2 + y^*^2 + z^*^2 = 1, \quad -1 < z^* \leq 1\}.
\]
Вводим диффеоморфные отображения

\[\varphi_1: (x^*, y^*, z^*) \rightarrow (x(x^*, y^*, z^*), y(x^*, y^*, z^*)). \]

(2.3)

\[x(x^*, y^*, z^*) = \frac{2x^*}{1 - z^*}, \quad y(x^*, y^*, z^*) = \frac{2y^*}{1 - z^*}, \quad \forall (x^*, y^*, z^*) \in U_1, \]

\[\varphi_2: (x^*, y^*, z^*) \rightarrow (u(x^*, y^*, z^*), v(x^*, y^*, z^*)). \]

(2.4)

\[u(x^*, y^*, z^*) = \frac{2x^*}{1 + z^*}, \quad v(x^*, y^*, z^*) = \frac{2y^*}{1 + z^*}, \quad \forall (x^*, y^*, z^*) \in U_2. \]

Отображение (2.3) является обратным к отображению (1.3), а значит, отображение (2.3) есть диффеоморфное отображение сферы \(U \), проколотой в северном полюсе \(N(0,0,1) \), на плоскость \(Oxy \) — стереографическое отображение сферы (1.1) на плоскость \(Oxy \) из центра в северном полюсе \(N(0,0,1) \) [5, стб. 222 — 223; 6, с. 37].

Отображение (2.4) является обратным к отображению (2.2), а значит, отображение (2.4) есть диффеоморфное отображение сферы \(U_2 \), проколотой в южном полюсе \(S(0,0,-1) \), на плоскость \(O^*uv \) — стереографическое отображение сферы (1.1) на плоскость \(O^*uv \) из центра в южном полюсе \(S(0,0,-1) \).

Таким образом, построены две карты \((U_1, \varphi_1) \) и \((U_2, \varphi_2) \) сферы (1.1). Множество карт \((U_1, \varphi_1) \) и \((U_2, \varphi_2) \) образуют стереографический атлас сферы (1.1) [6, с. 103].

Установим связь между локальными системами координат \(Oxy \) и \(O^*uv \) стереографического атласа сферы (1.1). Для этого используем стереографические отображения (1.3) и (2.2), которые являются взаимобратными соответственно с отображениями (2.3) и (2.4) стереографического атласа сферы (1.1):

\[\varphi_1 = \psi_N^{-1}, \quad \psi_N = \varphi_1^{-1} \quad \text{и} \quad \varphi_2 = \psi_S^{-1}, \quad \psi_S = \varphi_2^{-1}. \]

Выполним последовательно два диффеоморфных отображения \(\psi_N = \psi_S^{-1} \), которые составят диффеоморфное отображение

\[\varphi_{21} = \psi_S^{-1} \circ \psi_N = \varphi_2 \circ \psi_N \quad \text{(2.5)} \]

плоскости \(Oxy \), проколотой в начале координат \(O(0,0) \), на плоскость \(O^*uv \), проколотую в начале координат \(O^*(0,0) \) (рис. 2.1).

Учитывая аналитические задания (1.3) и (2.4) отображений \(\psi_N \) и \(\varphi_2 \), получаем аналитическое задание диффеоморфного отображения (2.5) в виде

\[\varphi_{21}: (x, y) \rightarrow \left(\frac{4x}{x^2 + y^2}, \frac{4y}{x^2 + y^2} \right), \quad \forall (x, y) \in \mathbb{R}^2 \setminus \{(0,0)\}. \quad \text{(2.6)} \]

Координатные функции

\[u: (x, y) \rightarrow \frac{4x}{x^2 + y^2}, \quad v: (x, y) \rightarrow \frac{4y}{x^2 + y^2}, \quad \forall (x, y) \in \mathbb{R}^2 \setminus \{(0,0)\} \quad \text{(2.7)} \]

dиффеоморфного отображения (2.6) есть функции перехода [6, с. 99] от локальных координат \((u, v) \) к локальным координатам \((x, y) \) стереографического атласа сферы (1.1).

У диффеоморфного отображения

\[\varphi_{12}: (u, v) \rightarrow \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2} \right), \quad \forall (u, v) \in \mathbb{R}^2 \setminus \{(0,0)\} \quad \text{(2.8)} \]

координатные функции
В.Н. Горбузов

Стереографически сопряженные дифференциальные системы

\[x: (u, v) \rightarrow \frac{4u}{u^2 + v^2}, \quad y: (u, v) \rightarrow \frac{4v}{u^2 + v^2} \quad \forall (u, v) \in \mathbb{R}^2 \setminus \{(0, 0)\} \quad (2.9) \]

есть функции перехода от локальных координат \((x, y)\) к локальным координатам \((u, v)\) стереографического атласа сферы \((1.1)\).

Диффеоморфное отображение \((2.8)\), полученное как обратное отображение к отображению \((2.6)\), есть аналитическое задание отображения

\[\varphi_{12} = \psi^{-1}_N \circ \psi_S = \varphi_1 \circ \psi_S \]

плоскости \(O^*uv\), проколотой в начале координат \(O^*(0, 0)\), на плоскость \(Oxy\), проколотую в начале координат \(O(0, 0)\).

Теорема 2.1. Диффеоморфное отображение \((2.6)\) и тождественное отображение плоскости \(Oxy\) на себя образуют группу второго порядка.

Действительно, преобразование \((2.6)\) взаимообратимо:

\[
(x, y) \stackrel{\varphi_{21}}{\rightarrow} \left(\frac{4x}{x^2 + y^2}, \frac{4y}{x^2 + y^2}\right) \stackrel{\varphi_{21}}{\rightarrow} \left(\frac{4 \cdot 4x}{(x^2 + y^2)^2} - \frac{uv}{2}\right) = (x, y) \quad \forall (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},
\]

а также, \(\varphi_{21} \circ I = I \circ \varphi_{21} = \varphi_{21}\) и \(I \circ I = I\), где \(I: (x, y) \rightarrow (x, y) \quad \forall (x, y) \in \mathbb{R}^2.\)

§ 2. Стереографически сопряженная дифференциальная система

3. Преобразование Бендиксона

Преобразованием Бендиксона фазовой плоскости \(Oxy\) дифференциальной системы \((D)\) назовем преобразование

\[x = \frac{4u}{u^2 + v^2}, \quad y = \frac{4v}{u^2 + v^2}; \quad (3.1) \]

построенное на основании функции перехода \((2.9)\) от локальных координат \(x, y\) к локальным координатам \(u, v\) стереографического атласа сферы \((1.1)\).

Заменим Бендиксона \((3.1)\) дифференциальную систему \((D)\) приведим к дифференциальной системе [7, c. 239]

\[
\frac{du}{dt} = -\frac{u^2 - v^2}{4} X \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2}\right) - \frac{uv}{2} Y \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2}\right) \equiv U^* (u, v),
\]

\[
\frac{dv}{dt} = -\frac{uv}{2} X \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2}\right) + \frac{u^2 - v^2}{4} Y \left(\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2}\right) \equiv V^* (u, v).
\]

Поскольку \(X\) и \(Y\) — полиномы, то систему \((3.2)\) можно записать в виде

\[
\frac{du}{dt} = \frac{U(u, v)}{(u^2 + v^2)^m}; \quad \frac{dv}{dt} = \frac{V(u, v)}{(u^2 + v^2)^m},
\]

где \(U\) и \(V\) — полиномы, не делящиеся одновременно на \(u^2 + v^2\), а число \(m\) — целое неотрицательное.
Автономную полиномиальную дифференциальную систему

\[
\frac{du}{d\tau} = U(u,v), \quad \frac{dv}{d\tau} = V(u,v),
\] (3.3)

где \((u^2 + v^2)^m dt = dt\), у которой правые части \(U\) и \(V\) суть взаимно простые полиномы, назовем стереографически сопряженной к дифференциальной системе \((D)\).

Согласно теореме 2.1 система \((D)\) является стереографически сопряженной к системе \((3.3)\), и с помощью преобразования Бендикисона

\[
u = \frac{4x}{x^2 + y^2}, \quad v = \frac{4y}{x^2 + y^2}
\]

система \((3.3)\) приводится к системе \((D)\). Дифференциальные системы \((D)\) и \((3.3)\) являются стереографически взаимосопряженными.

Фазовую плоскость \(Oxy\) (расширенную фазовую плоскость \(Oxy\)) системы \((D)\) и фазовую плоскость \(O^*uv\) (расширенную фазовую плоскость \(O^*uv\)) системы \((3.3)\) назовем стереографически сопряженными.

4. Вид стереографически сопряженной дифференциальной системы

Вид стереографически сопряженной к дифференциальной системе \((D)\) дифференциальной системы \((3.3)\) зависит от того, делится ли на \(x^2 + y^2\) или нет полином

\[
W_n: (x,y) \rightarrow xY_n(x,y) - yX_n(x,y) \quad \forall (x,y) \in \mathbb{R}^2.
\]

Если

\[
W_n(x,y) \neq (x^2 + y^2)P(x,y) \quad \text{на } \mathbb{R}^2,
\]

где \(P\) — некоторый полином, то дифференциальная система \((3.3)\) имеет вид

\[
\frac{du}{d\tau} = \frac{u^2 - u^2}{4} \sum_{j=0}^{n} (u^2 + v^2)^{n-j} X_j(4u,4v) - \frac{uv}{2} \sum_{j=0}^{n} (u^2 + v^2)^{n-j} Y_j(4u,4v) \equiv U_0(u,v),
\]

\[
\frac{dv}{d\tau} = -\frac{uv}{2} \sum_{j=0}^{n} (u^2 + v^2)^{n-j} X_j(4u,4v) + \frac{u^2 - v^2}{4} \sum_{j=0}^{n} (u^2 + v^2)^{n-j} Y_j(4u,4v) \equiv V_0(u,v),
\]

где \((u^2 + v^2)^n dt = dt\).

Пусть

\[
W_n(x,y) = (x^2 + y^2)P(x,y) \quad \forall (x,y) \in \mathbb{R}^2,
\]

где \(P\) — некоторый полином (не исключается случай \(P(x,y) = 0 \forall (x,y) \in \mathbb{R}^2\)). Тогда, если имеют место тождества

\[
-2y(xY_{n-r+1}(x,y) - yX_{n-r+1}(x,y)) - (x^2 + y^2)X_{n-r+1}(x,y) = (x^2 + y^2)^{k-r+1} K_r(x,y),
\]

\[
2x(xY_{n-r+1}(x,y) - yX_{n-r+1}(x,y)) - (x^2 + y^2)Y_{n-r+1}(x,y) = (x^2 + y^2)^{k-r+1} Q_r(x,y)
\]

\((4.2)\)

\(\forall (x,y) \in \mathbb{R}^2, \quad r = 1, \ldots, k,\)

где натуральное число \(k\) такое, что \(2k \leq n + 2\), а \(K_r\) и \(Q_r, r = 1, \ldots, k,\) суть некоторые полиномы, то дифференциальная система \((3.3)\) имеет вид
является дифференциальной системой

\[
\frac{du}{d\theta_k} = \frac{v^2 - u^2}{4} \sum_{j=0}^{n-k} (u^2 + v^2)^{n-j-k} X_j(4u, 4v) - \frac{uv}{2} \sum_{j=0}^{n-k} (u^2 + v^2)^{n-j-k} Y_j(4u, 4v) + \\
+ \sum_{r=1}^k 4^{2k-2r-1} K_r(4u, 4v) \equiv U_k(u, v),
\]

(4.3)

\[
\frac{dv}{d\theta_k} = -\frac{uv}{2} \sum_{j=0}^{n-k} (u^2 + v^2)^{n-j-k} X_j(4u, 4v) + \frac{u^2 - v^2}{4} \sum_{j=0}^{n-k} (u^2 + v^2)^{n-j-k} Y_j(4u, 4v) + \\
+ \sum_{r=1}^k 4^{2k-2r-1} Q_r(4u, 4v) \equiv V_k(u, v),
\]

где \((u^2 + v^2)^{n-k} d\theta_k = dt\).

Пример 4.1. Рассмотрим автономную дифференциальную систему

\[
\frac{dx}{dt} = a_o \equiv X(x, y), \quad \frac{dy}{dt} = b_o \equiv Y(x, y), \quad |a_o| + |b_o| \neq 0,
\]

(4.4)

у которой \(W_o(x, y) = b_o x - a_o y \neq (x^2 + y^2)P(x, y)\) на \(\mathbb{R}^2\), где \(P\) — некоторый полином.

Стереографически сопряженной к стационарной линейной системе (4.6) является система

\[
\frac{du}{dt} = -\frac{a_o}{4} u^2 - \frac{b_o}{2} uv + \frac{a_o}{4} v^2, \quad \frac{dv}{dt} = \frac{b_o}{4} u^2 - \frac{a_o}{2} uv - \frac{b_o}{4} v^2, \quad |a_o| + |b_o| \neq 0.
\]

(4.5)

Пример 4.2. Рассмотрим стационарную линейную систему

\[
\frac{dx}{dt} = a_o + a_1 x + a_2 y \equiv X(x, y), \quad \frac{dy}{dt} = b_o + b_1 x + b_2 y \equiv Y(x, y),
\]

(4.6)

где \(|a_1| + |a_2| + |b_1| + |b_2| \neq 0\).

Стереографически сопряженной к стационарной линейной системе (4.6) при

\[
|a_1 - b_2| + |a_2 + b_1| \neq 0, \quad |a_1| + |a_2| + |b_1| + |b_2| \neq 0
\]

является дифференциальная система

\[
\frac{du}{d\tau} = -a_1 u^3 - (a_2 + 2b_1) u^2 v + (a_1 - 2b_2) uv^2 + a_2 v^3 - \\
- \frac{1}{4} a_o u^4 - 2b_o u^3 v - 2b_o uv^3 + \frac{1}{4} a_o v^4 \equiv U_o(u, v),
\]

(4.7)

\[
\frac{dv}{d\tau} = b_1 u^3 - (2a_1 - b_2) u^2 v - (2a_2 + b_1) uv^2 - b_2 v^3 + b_o u^4 - 2a_o u^3 v - 2a_o uv^3 + b_o v^4 \equiv V_o(u, v),
\]

где \((u^2 + v^2) d\tau = dt\).

Стереографически сопряженной к стационарной линейной системе (4.6) при

\[
b_2 = a_1, \quad b_1 = -a_2, \quad |a_1| + |a_2| \neq 0
\]

является дифференциальная система

\[
\frac{du}{dt} = -a_1 u + a_2 v - \frac{a_o}{4} u^2 - \frac{b_o}{2} uv + \frac{a_o}{4} v^2 \equiv U_1(u, v),
\]

(4.8)

\[
\frac{dv}{dt} = -a_2 u - a_1 v + \frac{b_o}{4} u^2 - \frac{a_o}{2} uv - \frac{b_o}{4} v^2 \equiv V_1(u, v).
\]
Пример 4.3. Рассмотрим автономную квадратичную систему

\[
\frac{dx}{dt} = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 x y + a_5 y^2 \equiv X(x, y),
\]

\[
\frac{dy}{dt} = b_0 + b_1 x + b_2 y + b_3 x^2 + b_4 x y + b_5 y^2 \equiv Y(x, y),
\]

где \(|a_3| + |a_4| + |a_5| + |b_3| + |b_4| + |b_5| \neq 0.

При \(|a_3| + |a_4| + |a_5| + |b_3| + |b_4| + |b_5| \neq 0\) стереографически сопряженной к системе (4.9) является дифференциальная система

\[
\frac{du}{d\tau} = -4a_3 u^4 - 4(a_1 + 2b_3) u^3 v + 4(a_3 - 2b_4 - a_5) u^2 v^2 + 4(a_4 - 2b_5) u v^3 + 4a_5 v^4 -
-a_1 u^5 + (2b_1 - a_2) u^4 v - 2b_2 u^3 v^2 - 2b_1 u^2 v^3 + (a_1 - 2b_2) u v^4 + a_2 v^5 -
\frac{a_4}{4} u^6 - \frac{b_5}{2} u^5 v - \frac{a_6}{4} u^4 v^2 - b_0 u^3 v^3 + \frac{a_6}{4} u^2 v^4 - \frac{b_0}{2} u v^5 + \frac{a_0}{4} v^6 \equiv U_0(u, v),
\]

\[
\frac{dv}{d\tau} = 4b_3 u^4 + 4(b_4 - 2a_3) u^3 v - 4(b_3 + 2a_4 + b_5) u^2 v^2 - 4(b_4 + 2a_5) u v^3 - 4b_5 v^4 +
+b_1 u^5 + (b_2 - 2a_1) u^4 v - 2a_2 u^3 v^2 - 2a_1 u^2 v^3 - (b_1 + 2a_2) u v^4 - b_2 v^5 +
\frac{b_6}{4} u^6 - \frac{a_0}{2} u^5 v + \frac{b_4}{4} u^4 v^2 - a_0 u^3 v^3 - \frac{b_0}{4} u^2 v^4 - \frac{a_0}{2} u v^5 - \frac{b_0}{4} v^6 \equiv V_0(u, v),
\]

где \((u^2 + v^2)^2 d\tau = dt.\)

В случае \(a_4 = b_5 = b_3 = a_3 = a_1 = b_4 = 2a_3 = b_2 = a_1 = a_2 = b_3 = b_5 \neq 0\), стереографически сопряженной к системе (4.9) является дифференциальная система

\[
\frac{du}{d\theta} = -4a_3 u^2 - 4(b_3 + b_5) u v + 4(a_3 - b_4) v^2 - a_1 u^3 - (a_2 + 2b_1) u^2 v +
\]

\[
+(a_1 - 2b_2) u v^2 + 2a_2 v^3 - \frac{a_6}{4} u^4 - \frac{b_5}{2} u^3 v - \frac{b_0}{2} u^2 v^2 + \frac{a_0}{4} v^4 \equiv U_1(u, v),
\]

\[
\frac{dv}{d\theta} = -4b_3 u^2 + 4(b_4 - 2a_3) u v + 4b_5 v^2 + b_1 u^3 + (b_2 - 2a_1) u^2 v -
\]

\(- (b_1 + 2a_2) u v^2 - b_2 v^3 + \frac{b_4}{4} u^4 - \frac{a_0}{2} u^3 v - \frac{a_0}{2} u^2 v^2 - \frac{b_0}{4} v^4 \equiv V_1(u, v),
\]

где \((u^2 + v^2)^2 d\theta = dt.\)

При \(a_4 = 2b_5 = a_5 = -a_3, b_3 = -b_5, b_4 = 2a_3, b_2 = a_1, b_1 = -a_1\), стереографически сопряженной к системе (4.9) является дифференциальная система

\[
\frac{du}{dt} = -4a_3 - a_4 u + a_2 v - \frac{a_6}{4} u^2 - \frac{b_5}{2} u v + \frac{a_0}{4} v^2 \equiv U_2(u, v),
\]

\[
\frac{dv}{dt} = 4b_5 - a_2 u - a_1 v + \frac{b_4}{4} u^2 - \frac{a_0}{2} u v - \frac{b_0}{4} v^2 \equiv V_2(u, v).
\]
5. Стереографический атлас траекторий дифференциальной системы

Плоскостью
\[\{(x^*, y^*, z^*) : z^* = 1 - \varepsilon_1 \}, \quad 0 < \varepsilon_1 < 1, \]
sферу (1.1) разделим на две части и возьмем часть
\[S_1^2 = \{(x^*, y^*, z^*) : x^{*2} + y^{*2} + z^{*2} = 1, \quad -1 \leq z^* \leq 1 - \varepsilon_1 \}, \]
которая не содержит северный полюс \(N(0, 0, 1) \). Число \(\varepsilon_1 \in (0; 1) \) выберем так, чтобы на части \(S_1^2 \) сферы (1.1) были расположены стереографические образы всех состояний равновесия и изолированных замкнутых траекторий системы (D), лежащих в конечной части расширенной фазовой плоскости \(\overline{Oxy} \). За круг \(K(x, y) \) примем круг, лежащий на фазовой плоскости \(Oxy \) с центром в начале координат \(O \) и являющийся прообразом части \(S_1^2 \) сферы (1.1) при стереографическом проецировании с центром проекции в северном полюсе \(N(0,0,1) \) (рис. 5.1).

![Рис. 5.1](image)

Плоскостью
\[\{(x^*, y^*, z^*) : z^* = \varepsilon_2 - 1 \}, \quad 0 < \varepsilon_2 < 1, \]
sферу (1.1) разделим на две части и возьмем часть
\[S_2^2 = \{(x^*, y^*, z^*) : x^{*2} + y^{*2} + z^{*2} = 1, \quad \varepsilon_2 - 1 \leq z^* \leq 1 \}, \]
которая не содержит южный полюс \(S(0,0,-1) \). Число \(\varepsilon_2 \in (0; 1) \) выберем так, чтобы на части \(S_2^2 \) сферы (1.1) были расположены стереографические образы всех состояний равновесия и изолированных замкнутых траекторий системы (3.3), лежащих в конечной части расширенной фазовой плоскости \(\overline{O^*uv} \). За круг \(K(u, v) \) примем круг, лежащий на фазовой плоскости \(O^*uv \) с центром в начале координат \(O^* \) и являющийся прообразом части \(S_2^2 \) сферы (1.1) при стереографическом проецировании плоскости \(O^*uv \) с центром проекции в южном полюсе \(S(0,0,-1) \) (рис. 5.2).

Упорядоченную пару \((K(x, y), K(u, v)) \) кругов \(K(x, y) \) и \(K(u, v) \) с нанесенными на них траекториями систем (D) и (3.3) соответственно назвем стереографическим атласом траекторий системы (D). Тогда (согласно теореме 2.1) упорядоченная пара \((K(u, v), K(x, y)) \) — стереографический атлас траекторий системы (3.3).
Стереографически сопряженные дифференциальные системы

Рис. 5.2

Соответствие между кругами $K(x, y)$ и $K(u, v)$ показано на рис. 5.3. Числами 1,…, 40 отражены соответствия между полукрестностями точек, лежащих на координатных осях и концентрических окружностях с центром в начале координат.

Рис. 5.3

Пример 5.1. Траекториями системы (4.4) являются параллельные прямые

$$b_0 x - a_0 y = C, \quad C \in \mathbb{R}.$$

Траекториями системы (4.5) являются состояние равновесия $O^*(0, 0)$ и примыкающие к нему кривые

$$\frac{b_0 u - a_0 v}{u^2 + v^2} = C^*, \quad |u| + |v| \neq 0, \quad C^* \in \mathbb{R}, \quad C^* = 4C.$$

При $a_0 = 1$, $b_0 = 0$ на рис. 5.4 изображено поведение траекторий на сфере (1.1) стереографически взаимосопряженных систем (4.4) и (4.5). Круги, образующие стереографические атласы траекторий систем (4.4) и (4.5), построены на рис. 5.5.

Заметим, что состояние равновесия $O^*(0, 0)$ однородной квадратичной системы (4.5) является сложным и состоит из двух эллиптических секторов Бендикина, ограниченных траекториями-лучами прямой $v = 0$.
Пример 5.2. Траекториями линейной системы

\[
\frac{dx}{dt} = x, \quad \frac{dy}{dt} = y
\] \hspace{1cm} (5.1)

являются \(O\)-лучи семейства прямых \(C_1y + C_2x = 0\), \(C_1, C_2 \in \mathbb{R}\), и состояние равновесия \(O(0,0)\) — неустойчивый дикритический узел.

Траекториями стереографически сопряженной системы

\[
\frac{du}{dt} = -u, \quad \frac{dv}{dt} = -v
\] \hspace{1cm} (5.2)

являются \(O\)-лучи семейства прямых \(C_1v + C_2u = 0\), \(C_1, C_2 \in \mathbb{R}\), и состояние равновесия \(O^*(0,0)\) — устойчивый дикритический узел.

На рис. 5.6 изображено поведение траекторий на сфере (1.1) стереографически взаимосопряженных дифференциальных систем (5.1) и (5.2): стереографическими образами траекторий систем (5.1) и (5.2) на сфере (1.1) являются полуокружности меридианов сферы (1.1), примыкающие к северному и южному полюсам, а также северный и южный полюсы сферы (1.1). На рис. 5.7 построены круги, образующие стереографические атласы траекторий дифференциальных систем (5.1) и (5.2).

Пример 5.3. Траекториями линейной системы

\[
\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -x
\] \hspace{1cm} (5.3)

являются концентрические окружности \(x^2 + y^2 = C\), \(C \in (0; +\infty)\), и состояние равновесия \(O(0,0)\) — центр. Направление движения вдоль траекторий системы (5.3) определяет касательные векторы \(\vec{a}(x,y) = (y, -x) \ \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}\).
Траекториями стереографически сопряженной системы

\[
\frac{du}{dt} = v, \quad \frac{dv}{dt} = -u \tag{5.4}
\]

являются концентрические окружности \(u^2 + v^2 = C^*, \ C^* \in (0; +\infty), \ C^* = 4C, \) и состояние равновесия \(O^*(0,0) \) — центр.

Стереографическими образами траекторий систем (5.3) и (5.4) на сфере (1.1) являются параллели, северный и южный полюсы сферы (1.1) (рис. 5.8). На рис. 5.9 построены круги, образующие стереографические атласы траекторий систем (5.3) и (5.4).

Рис. 5.8

Рис. 5.9

Пример 5.4. Траекториями линейной системы

\[
\frac{dx}{dt} = x - y, \quad \frac{dy}{dt} = x + y \tag{5.5}
\]

являются логарифмические спирали

\[
(x^2 + y^2) \exp\left(-\arctg \frac{y}{x}\right) = C, \ C \in (0; +\infty),
\]

и состояние равновесия \(O(0,0) \) — неустойчивый грубый фокус.

Траекториями стереографически сопряженной системы

\[
\frac{du}{dt} = -u - v, \quad \frac{dv}{dt} = u - v \tag{5.6}
\]

являются логарифмические спирали

\[
(u^2 + v^2) \exp\left(-\arctg \frac{v}{u}\right) = C^*, \ C^* \in (0; +\infty), \ C^* = 4C,
\]

и состояние равновесия \(O^*(0,0) \) — устойчивый грубый фокус.

Рис. 5.10

Рис. 5.11
На рис. 5.10 изображены траектории на сфере (1.1) стереографически взаимосопряженных систем (5.5) и (5.6). На рис. 5.11 построены круги, образующие стереографические атласы траекторий систем (5.5) и (5.6).

Пример 5.5. Траекториями линейной системы

\[\frac{dx}{dt} = x, \quad \frac{dy}{dt} = -y \]

являются O-кривые семейства \(xy = C, \ C \in \mathbb{R} \), и состояние равновесия O(0, 0) — седло, сепаратрисами которого являются координатные O-лучи.

Траекториями стереографически сопряженной системы

\[\frac{du}{d\tau} = -u^3 + 3uv^2, \quad \frac{dv}{d\tau} = -3u^2v + v^3, \quad (u^2 + v^2) \, d\tau = dt, \]

являются \(O^* \)-кривые семейства

\[\frac{uv}{(u^2 + v^2)^2} = C^*, \quad C^* \in \mathbb{R}, \ C^* = 16C, \]

и сложное состояние равновесия \(O^*(0, 0) \), которое состоит из четырех эллиптических секторов Бендексона, ограниченных координатными \(O^* \)-лучами, и образованных лемнискатами Бернулли.

На рис. 5.12 изображено поведение траекторий на сфере (1.1) стереографически взаимосопряженных систем (5.7) и (5.8). На рис. 5.13 построены круги, образующие стереографические атласы траекторий систем (5.7) и (5.8).

Пример 5.6. Траекториями линейной системы

\[\frac{dx}{dt} = x, \quad \frac{dy}{dt} = 2y \]

(5.9)
являются O-кривые семейства
\[C_1 y + C_2 x^2 = 0, \quad C_1, C_2 \in \mathbb{R}, \]
и состояние равновесия $O(0,0)$ — простой неустойчивый узел.

Траекториями стереографически сопряженной системы
\[
\frac{du}{d\tau} = -u^3 - 3uv^2, \quad \frac{dv}{d\tau} = -2v^3, \quad (u^2 + v^2) d\tau = dt, \tag{5.10}
\]
являются O^*-кривые семейства
\[C_1^* v(u^2 + v^2) + C_2^* u^2 = 0, \quad C_1^*, C_2^* \in \mathbb{R}, \quad C_1^* = C_1, \quad C_2^* = 4C_2, \]
и сложное состояние равновесия $O^*(0,0)$ — устойчивый узел.

На рис. 5.14 изображены траектории на сфере (1.1) стереографически взаимосопряженных систем (5.9) и (5.10). На рис. 5.15 построены круги, образующие стереографические атласы траекторий систем (5.9) и (5.10).

Рис. 5.14
Рис. 5.15

Пример 5.7. Траекториями линейной системы
\[
\frac{dx}{dt} = x + y, \quad \frac{dy}{dt} = y \tag{5.11}
\]
являются O-кривые семейства
\[y \exp\left(-\frac{x}{y}\right) = C, \quad C \in \mathbb{R}, \]
и состояние равновесия $O(0,0)$ — неустойчивый вырожденный узел.

Траекториями стереографически сопряженной системы
\[
\frac{du}{d\tau} = -u^3 - u^2 v - uv^2 + v^3, \quad \frac{dv}{d\tau} = -u^2 v - 2uv^2 - v^3, \quad (u^2 + v^2) d\tau = dt, \tag{5.12}
\]
являются O^*-кривые семейства
\[\frac{v}{u^2 + v^2} \exp\left(-\frac{u}{v}\right) = C^*, \quad C^* \in \mathbb{R}, \quad C^* = 4C, \]
и сложное состояние равновесия $O^*(0,0)$ — устойчивый узел.

На рис. 5.16 изображены траектории на сфере (1.1) стереографически взаимосопряженных систем (5.11) и (5.12). На рис. 5.17 построены круги, образующие стереографические атласы траекторий систем (5.11) и (5.12).
§ 3. Траектории стереографически сопряженных дифференциальных систем

6. Регулярные точки и состояния равновесия стереографически сопряженных дифференциальных систем

При диффеоморфном отображении (2.6) образом точки \(M(x, y) \) фазовой плоскости \(Oxy \) системы (D), отличной от начала координат \(O(0, 0) \), является точка

\[
M^*(\frac{4x}{x^2 + y^2}, \frac{4y}{x^2 + y^2})
\]

фазовой плоскости \(O^*uv \) системы (3.3), отличная от начала координат \(O^*(0, 0) \).

Пусть образом начала координат \(O(0, 0) \) расширенной плоскости \(Oxy \) является бесконечно удаленная точка \(M_\infty \) стереографически сопряженной расширенной плоскости \(O^*uv \), а образом бесконечно удаленной точки \(M_\infty \) расширенной плоскости \(Oxy \) является начало координат \(O^*(0, 0) \) стереографически сопряженной расширенной плоскости \(O^*uv \). Такое продолжение отображения \(\varphi_{21} \) есть биективное отображение расширенной фазовой плоскости \(Oxy \) системы (D) на расширенную фазовую плоскость \(O^*uv \) системы (3.3). Точки \(M \) и \(M^* \), \(O \) и \(M_\infty \), \(M_\infty \) и \(O^* \) являются стереографически взаимосопряженными. Также при отображении \(\varphi_{21} \) фазовая кривая \(l \) на расширенной плоскости \(Oxy \) и ее образ \(l^* \) на расширенной плоскости \(O^*uv \) будут стереографически взаимосопряженными кривыми.

Согласно основному свойству стереографической проекции (пункт 1) и тому, что отображение (2.6) есть суперпозиция (2.5) стереографических отображений, получаем

Свойство 6.1. Угол между кривыми равен углу между стереографически сопряженными к ним кривыми.

Точка фазовой плоскости \(Oxy \) является регулярной точкой системы (D), если она не является состоянием равновесия системы (D). Бесконечно удаленную точку \(M_\infty \) расширенной фазовой плоскости \(Oxy \) будем считать регулярной бесконечно удаленной точкой системы (D), если начало координат \(O^*(0, 0) \) фазовой плоскости \(O^*uv \) не является состоянием равновесия системы (3.3). Если точка \(O^*(0, 0) \) есть состояние равновесия системы (3.3), то бесконечно удаленную точку \(M_\infty \) расширенной фазовой плоскости \(Oxy \) примем за бесконечно удаленное состояние равновесия системы (D) такого же вида.

Таким образом, каждая точка расширенной фазовой плоскости \(Oxy \) — регулярная или состояние равновесия дифференциальной системы (D). На расширенной фазовой плоскости \(Oxy \) каждая траектория дифференциальной системы (D) является состоянием равновесия или состоит из регулярных точек.
На основании диффеоморфности отображения (2.6) плоскости Oxy, проколотой в начале координат O(0,0), на стереографически сопряженную плоскость O∗uv, проколотую в начале координат O∗(0,0), и учтивая свойство 6.1, получаем, что на расширенных фазовых плоскостей Oxy и O∗uv траектории стереографически взаимосопряженных систем (D) и (3.3) такие, что имеет место

Свойство 6.2. Стереографически взаимосопряженные точки расширенных фазовых плоскостей Oxy и O∗uv являются одновременно или регулярными или состояниями равновесия одного и того же вида систем (D) и (3.3).

Из того, что отображение (2.6) есть суперпозиция (2.5), следуют

Свойство 6.3 (6.4). Образом замкнутой на плоскости Oxy кривой, проходящей (не проходящей) через начало координат O(0,0), является незамкнутая (замкнутая) кривая на стереографически сопряженной плоскости O∗uv, не проходящая через начало координат O∗(0,0).

Например, вычислениями, используя преобразование Бендиксона (3.1), получаем

Свойство 6.5. Образ:
а) проходящей через начало координат O(0,0) плоскости Oxy окружности

\[(x + a)^2 + (y + b)^2 = a^2 + b^2, \quad |a| + |b| \neq 0;\]

б) не проходящей через начало координат O(0,0) плоскости Oxy окружности

\[(x + a)^2 + (y + b)^2 = r^2, \quad r > 0, \quad r^2 \neq a^2 + b^2;\]

e) окружности

\[x^2 + y^2 = r^2, \quad r > 0,\]

с центром в начале координат O(0,0) плоскости Oxy;

g) точки A(a, b), |a| + |b| \neq 0, если она лежит внутри (вне) окружности

\[x^2 + y^2 = r^2, \quad r > 0;\]

d) проходящей через начало координат O(0,0) плоскости Oxy прямой

\[Ax + By = 0, \quad |A| + |B| \neq 0;\]

e) координатной прямой x = 0 (y = 0) плоскости Oxy;

ж) не проходящей через начало координат O(0,0) плоскости Oxy прямой

\[Ax + By + C = 0, \quad |A| + |B| \neq 0, \quad C \neq 0;\]

на стереографически сопряженной плоскости O∗uv является:

а) прямая au + bv + 2 = 0;

б) окружность

\[\left(\frac{u + \frac{4a}{a^2 + b^2 - r^2}}{a^2 + b^2 - r^2}\right)^2 + \left(\frac{v + \frac{4b}{a^2 + b^2 - r^2}}{a^2 + b^2 - r^2}\right)^2 = \frac{4r^2}{(a^2 + b^2 - r^2)^2};\]

в) окружность

\[u^2 + v^2 = \frac{4}{r^2};\]

g) стереографически сопряженная точка A∗\left(\frac{4a}{a^2 + b^2}, \frac{4b}{a^2 + b^2}\right), лежащая вне (внутри) окружности u^2 + v^2 = \frac{4}{r^2};

д) проходящая через начало координат O∗(0,0) прямая Au + Bv = 0;

ew) координатная прямая u = 0 (v = 0);

ж) не проходящая через начало координат O∗(0,0) окружность

\[\left(\frac{u + \frac{2A}{C}}{C}\right)^2 + \left(\frac{v + \frac{2B}{C}}{C}\right)^2 = \frac{4(A^2 + B^2)}{C^2}.\]
В примере 5.2 (рис. 5.6 и 5.7) рассмотрены стереографически взаимосопряженные дифференциальные системы (5.1) и (5.2) с траекториями, лежащими на прямых, проходящих через начало координат $O(0,0)$ и $O^*(0,0)$ фазовых плоскостей Oxy и O^*uv соответственно (свойство 6.5, случай д).

Пример 6.1. Заменим x на $x - 1$, y на $y - 1$ систему (5.1) приводим к системе

$$\frac{dx}{dt} = x - 1, \quad \frac{dy}{dt} = y - 1. \quad (6.1)$$

Траекториями линейной дифференциальной системы (6.1) являются неустойчивый дикритический узел $A(1,1)$ и A-лучи пучка прямых

$$\frac{y - 1}{x - 1} = C, \quad -\infty \leq C \leq +\infty.$$

Траекториями стереографически сопряженной системы

$$\frac{du}{dt} = -u + \frac{1}{4} u^2 + \frac{1}{2} uv - \frac{1}{4} v^2, \quad \frac{dv}{dt} = -v - \frac{1}{4} u^2 + \frac{1}{2} uv + \frac{1}{4} v^2 \quad (6.2)$$

являются дикритические узлы $O^*(0,0)$ (устойчивый) и $A^*(2,2)$ (неустойчивый), отрезок O^*A^* без концов, O^*-луч и A^*-луч прямой $v = u$, дуги окружностей

$$(u - 2C)^2 + (v + 2C)^2 = 4(C^2 + 1)(C - 1)^2, \quad C \in \mathbb{R}\{1\},$$

примыкающие к состояниям равновесия O^* и A^* (центры окружностей лежат на прямой $u + v - 2 = 0$).

Круги, образующие стереографические атласы траекторий систем (6.1) и (6.2), построены на рис. 6.1.

Рис. 6.1

В примере 5.3 (рис. 5.8 и 5.9) рассмотрены стереографически взаимосопряженные системы (5.3) и (5.4), траекториями которых являются концентрические окружности, стягивающиеся в центры O и O^* соответственно (свойство 6.5, случай в).

Пример 6.2. Заменим x на $x - 1$, y на $y - 1$ систему (5.3) приводим к системе

$$\frac{dx}{dt} = y - 1, \quad \frac{dy}{dt} = -x + 1. \quad (6.3)$$

Траекториями системы (6.3) являются центр $A(1,1)$ и концентрические окружности

$$(x - 1)^2 + (y - 1)^2 = C, \quad C \in (0; +\infty).$$

Траекториями стереографически сопряженной системы

$$\frac{du}{dt} = v + \frac{1}{4} u^2 - \frac{1}{2} uv - \frac{1}{4} v^2, \quad \frac{dv}{dt} = -u + \frac{1}{4} u^2 + \frac{1}{2} uv - \frac{1}{4} v^2 \quad (6.4)$$
являются прямая \(u + v - 2 = 0 \), окружности
\[
\left(u - \frac{4}{2-C} \right)^2 + \left(v - \frac{4}{2-C} \right)^2 = \frac{16C}{(2-C)^2}, \quad C \in (0; 2) \sqcup (2; +\infty),
\]
центры \(O^*(0,0) \) и \(A^*(2,2) \).

Круги, образующие стереографические атласы траекторий систем (6.3) и (6.4), построены на рис. 6.2.

\[\text{Рис. 6.2}\]

Пример 6.3. Траекториями системы Якоби
\[
\frac{dx}{dt} = 1 + x - y + x(x + y - 1), \quad \frac{dy}{dt} = y(x + y - 1) \tag{6.5}
\]
являются кривые семейства
\[
\frac{x^2 + (y - 1)^2}{y^2} \exp \left(-2 \arctg\frac{y - 1}{x} \right) = C, \quad 0 \leq C \leq +\infty,
\]
среди которых прямая \(y = 0 \) и неустойчивый фокус \(A(0,1) \).

\[\text{Рис. 6.3}\]

Траекториями стереографически сопряженной системы
\[
\frac{du}{d\theta} = -4u^2 - 4uv + u^2v + 2uv^2 - v^3 - \frac{1}{4} u^4 + \frac{1}{4} v^4,
\]
\[
\frac{dv}{d\theta} = v \left(-4u - 4v - u^2 + 2uv + v^2 - \frac{1}{2} u^3 - \frac{1}{2} uv^2 \right), \tag{6.6}
\]
где \((u^2 + v^2)d\theta = dt\), являются кривые семейства
\[
\frac{16u^2 + (u^2 + v^2 - 4v)^2}{v^2} \exp \left(-2 \arctg\frac{4v - u^2 - v^2}{4u} \right) = C^*, \quad 0 \leq C^* \leq +\infty, \quad C^* = 16C,
\]
среди которых \(O^*\)-лучи прямой \(v = 0 \), неустойчивый фокус \(A^*(0,2) \) и сложное состоя-
явление равновесия $O^*(0,0)$, состоящее из гиперболического, эллиптического и сопровождающих его двух параболических секторов Бендиксона.

Крути, обозначающие стереографические атласы траекторий систем (6.5) и (6.6), построены на рис. 6.3.

Пример 6.4. Заменой x на x, y на $y+1$ систему (6.5) приводим к системе Якоби

$$
\frac{dx}{dt} = x - y + x(x + y), \quad \frac{dy}{dt} = (y + 1)(x + y).
$$

(6.7)

Кривые семейства

$\frac{x^2 + y^2}{(y - 1)^2} \exp\left(-2\arctg\frac{y}{x}\right) = C, \quad 0 \leq C \leq +\infty,$

являются траекториями системы (6.7), среди которых траектория-прямая $y = -1$ и неустойчивый фокус $O(0,0)$.

Траекториями стереографически сопряженной системы

$$
\frac{du}{d\theta} = -(4u^2 + 4uv + u^3 + u^2v + uv^2 + v^3), \quad \frac{dv}{d\theta} = -4uv - 4v^2 + u^3 - u^2v + uv^2 - v^3, \quad (6.8)
$$

где $(u^2 + v^2)d\theta = dt$, являются кривые семейства

$$
\frac{u^2 + v^2}{(u^2 + v^2 - 4v^2)} \exp\left(-2\arctg\frac{v}{u}\right) = C^*, \quad 0 \leq C^* \leq +\infty, \quad 16C^* = C,
$$

среди которых сложное состояние равновесия $O^*(0,0)$, состоящее из гиперболического, эллиптического и двух сопровождающих его параболических секторов Бендиксона.

Крути, обозначающие стереографические атласы траекторий систем (6.7) и (6.8), построены на рис. 6.4.

![Рис. 6.4](image)

7. Стереографические циклы

На основании свойства 6.4 и диффеоморфности отображения (2.6) получаем

Свойство 7.1 (7.2). Образом не проходящего через начало координат $O(0,0)$ фазовой плоскости $O\bar{x}u$ цикла (предельного цикла) дифференциальной системы (D) на фазовой плоскости O^*uv является не проходящий через начало координат $O^*(0,0)$ цикл (предельный цикл) дифференциальной системы (3.3).

На основании свойства 6.3 и диффеоморфности отображения (2.6) получаем

Свойство 7.3 (7.4). Образом проходящего через начало координат $O(0,0)$ фазовой плоскости $O\bar{x}u$ цикла (предельного цикла) дифференциальной системы (D) на фазовой плоскости O^*uv является не проходящая через начало координат $O^*(0,0)$ незамкнутая траектория дифференциальной системы (3.3).
Определение 7.1. Траекторию системы (D), стереографическим образом которой на сфере (1.1) является замкнутая кривая, каждая точка которой является образом регулярной точки (конечной или бесконечно удаленной) системы (D), назовем стереографическим циклом системы (D).

Определение 7.2. Предельным стереографическим циклом системы (D) назовем такой ее стереографический цикл, у стереографического образа которого на сфере (1.1) существует окрестность, в которой нет стереографического образа другого стереографического цикла системы (D).

Свойство 7.5 (7.6). Цикл (предельный цикл) системы (D) является ее стереографическим циклом (предельным стереографическим циклом).

Определение 7.3. Стереографический цикл (предельный стереографический цикл) системы (D), проходящий через бесконечно удаленную точку M_{∞} расширенной фазовой плоскости \overline{Oxy}, назовем разомкнутым.

Свойство 7.7 (7.8). Образом проходящего через начало координат $O(0, 0)$ фазовой плоскости Oxy стереографического цикла (предельного стереографического цикла) системы (D) на фазовой плоскости $O*uv$ является разомкнутый стереографический цикл (разомкнутый предельный стереографический цикл) системы (3.3).

Свойство 7.9 (7.10). Образом проходящего через начало координат $O(0, 0)$ фазовой плоскости Oxy цикла (предельного цикла) системы (D) на фазовой плоскости $O*uv$ является разомкнутый стереографический цикл (разомкнутый предельный стереографический цикл) системы (3.3).

Так, прямая-траектория $u + v = 2 = 0$ является разомкнутым стереографическим циклом дифференциальной системы (6.4).

Пример 7.1. Траекториями системы [8, с. 88]

\[
\frac{dx}{dt} = x(x^2 + y^2 - 1) - y(x^2 + y^2 + 1), \quad \frac{dy}{dt} = x(x^2 + y^2 + 1) + y(x^2 + y^2 - 1) \tag{7.1}
\]

являются [9; 1] кривые, заданные уравнением

\[
\frac{x^2 + y^2}{(x^2 + y^2 - 1)^2} \exp \left(2 \arctg \frac{y}{x} \right) = C, \quad 0 \leq C \leq +\infty,
\]

среди которых состояние равновесия $O(0, 0)$ (устойчивый фокус) и неустойчивый предельный цикл $x^2 + y^2 = 1$.

![Рис. 7.1](image1.png)

![Рис. 7.2](image2.png)

Траекториями стереографически сопряженной системы

\[
\frac{du}{d\theta} = u(u^2 + v^2 - 16) - v(u^2 + v^2 + 16), \quad \frac{dv}{d\theta} = u(u^2 + v^2 + 16) + v(u^2 + v^2 - 16), \tag{7.2}
\]

21
где \((u^2 + v^2) \, d\theta = dt\), являются кривые, заданные уравнением

\[
\frac{u^2 + v^2}{(u^2 + v^2 - 16)^2} \exp\left(2 \arctg \frac{v}{u}\right) = C^*, \quad 0 \leq C^* \leq +\infty, \quad 16C^* = C,
\]

среди которых состояние равновесия \(O^*(0, 0)\) (устойчивый фокус) и неустойчивый предельный цикл \(u^2 + v^2 = 16\).

На рис. 7.1 изображены траектории на сфере (1.1) стереографически взаимосопряженных дифференциальных систем (7.1) и (7.2). Круги, образующие стереографические атласы траекторий систем (7.1) и (7.2), построены на рис. 7.2.

Пример 7.2. Траекториями системы Дарбу [10]

\[
\frac{dx}{dt} = -y - x(x^2 + y^2 - 1), \quad \frac{dy}{dt} = x - y(x^2 + y^2 - 1)
\]

являются [9; 1] кривые, заданные уравнением

\[
\frac{x^2 + y^2}{1 - x^2 - y^2} \exp\left(-2 \arctg \frac{y}{x}\right) = C, \quad -\infty \leq C \leq +\infty,
\]

среди которых состояние равновесия \(O(0, 0)\) (неустойчивый фокус) и устойчивый предельный цикл \(x^2 + y^2 = 1\).

Траекториями стереографически сопряженной системы

\[
\frac{du}{d\theta} = 16u - u^3 - u^2v - uv^2 - v^3, \quad \frac{dv}{d\theta} = 16v + u^3 - u^2v + uv^2 - v^3,
\]

где \((u^2 + v^2) \, d\theta = dt\), являются кривые, заданные уравнением

\[
\frac{1}{u^2 + v^2 - 16} \exp\left(-2 \arctg \frac{v}{u}\right) = C^*, \quad -\infty \leq C^* \leq +\infty, \quad 16C^* = C,
\]

среди которых состояние равновесия \(O^*(0, 0)\) (неустойчивый дикритический узел) и устойчивый предельный цикл \(u^2 + v^2 = 16\).

На рис. 7.3 изображены траектории на сфере (1.1) стереографически взаимосопряженных дифференциальных систем (7.3) и (7.4). Круги, образующие стереографические атласы траекторий систем (7.3) и (7.4), построены на рис. 7.4.

![Рис. 7.3](image1)

![Рис. 7.4](image2)

Пример 7.3. Заменой \(x\) на \(x - 1\), \(y\) на \(y\) систему (7.3) приводим к системе Дарбу

\[
\frac{dx}{dt} = -2x - y + 3x^2 + y^2 - x(x^2 + y^2), \quad \frac{dy}{dt} = -1 + x + 2xy - y(x^2 + y^2).
\]

(7.5)
Кривые семейства
\[
\frac{(x-1)^2+y^2}{1-(x-1)^2-y^2} \exp\left(-2 \arctg \frac{y}{x-1}\right) = C, \quad -\infty \leq C \leq +\infty,
\]
являются траекториями системы (7.5). При этом состояние равновесия \(A(1,0) \) — неустойчивый фокус, а окружность \((x-1)^2+y^2=1\), проходящая через начало координат \(O(0,0)\), суть устойчивый предельный цикл системы (7.5).

Траекториями стереографически сопряженной системы
\[
\frac{du}{d\theta} = 16u - 12u^2 + 4v^2 + 2u^3 - u^2v - 2uv^2 - v^3 + \frac{1}{2} u^3v + \frac{1}{2} uv^3,
\]
\[
\frac{dv}{d\theta} = 16v - 16uv + u^3 + 4u^2v + uv^2 - \frac{1}{4} u^4 + \frac{1}{4} v^4,
\]
где \((u^2+v^2)d\theta = dt\), являются кривые семейства
\[
\frac{(u-4)^2+v^2}{u-2} \exp\left(2 \arctg \frac{4v}{(u-2)^2+v^2-4}\right) = C^*, \quad -\infty \leq C^* \leq +\infty, \quad C^* = 8C,
\]
среди которых прямая \(u=2\), являющаяся разомкнутым предельным стереографическим циклом, неустойчивый дикритический узел \(O^*(0,0)\) и неустойчивый фокус \(A^*(4,0)\).

Круги, образующие стереографические атласы траекторий дифференциальных систем (7.5) и (7.6), построены на рис. 7.5.

Рис. 7.5

Пример 7.4. Заменой \(u\) на \(u+2\), \(v\) на \(v\) систему (7.6) приводим к системе
\[
\frac{du}{d\theta} = -8u + 2uv + 2u^3 + 2u^2v - 2uv^2 + \frac{1}{2} u^3v + \frac{1}{2} uv^3,
\]
\[
\frac{dv}{d\theta} = 4 + 4u + 2v^2 - u^3 + 4u^2v + uv^2 - \frac{1}{4} u^4 + \frac{1}{4} v^4.
\]
Кривые семейства
\[
\frac{(u-2)^2+v^2}{u} \exp\left(2 \arctg \frac{4v}{u^2+v^2-4}\right) = C^*, \quad -\infty \leq C^* \leq +\infty,
\]
являются траекториями системы (7.7), среди которых прямая \(u=0\), являющаяся разомкнутым предельным стереографическим циклом, неустойчивый дикритический узел \(A_1(-2,0)\) и неустойчивый фокус \(A_2(2,0)\).
Траекториями стереографически сопряженной системы

\[
\frac{dx}{dt} = -32x - 8xy + 8x^3 - 8x^2y - 8xy^2 - 2x^3y - 2xy^3,
\]

\[
\frac{dy}{dt} = -16 - 16x - 8y^2 + 4x^3 + 16x^2y - 4xy^2 + x^4 - y^4,
\]

где \((x^2 + y^2) dt = d\theta\), являются кривые семейства

\[
\frac{(x-2)^2 + y^2}{x} \exp\left(2 \arctg \frac{4y}{4 - x^2 - y^2}\right) = C^*, \quad -\infty \leq C^* \leq +\infty,
\]

среди которых прямая \(x = 0\), являющаяся разомкнутым предельным стереографическим циклом, неустойчивый диkritический узел \(A^*_1(-2,0)\) и неустойчивый фокус \(A^*_2(2,0)\).

Круги, образующие стереографические атласы траекторий дифференциальных систем (7.7) и (7.8), построены на рис. 7.6.

Рис. 7.6

8. Симметричность фазового поля направлений стереографически сопряженных дифференциальных систем

На основании аналитических условий симметричности фазового поля направлений дифференциальной системы [11; 1] получаем критерии симметричности для стереографически сопряженных дифференциальных систем.

Свойство 8.1. Равносильными являются следующие утверждения:

1. Фазовое поле направлений системы (D) симметрично относительно начала координат фазовой плоскости Oxu;
2. Выполняется тождество

\[
X(x, y)Y(-x, -y) - X(-x, -y)Y(x, y) = 0 \quad \forall (x, y) \in \mathbb{R}^2;
\]

3. Фазовое поле направлений системы (3.3) симметрично относительно начала координат фазовой плоскости \(O^*uv\);
4. Выполняется тождество

\[
U(u, v)V(-u, -v) - U(-u, -v)V(u, v) = 0 \quad \forall (u, v) \in \mathbb{R}^2.
\]

Например, такой симметричностью обладают фазовые поля направлений стереографически сопряженных систем (4.4) и (4.5) при \(a_0 = b_0\), (5.1) и (5.2), (5.3) и (5.4), (5.5) и (5.6), (5.7) и (5.8), (5.9) и (5.10), (5.11) и (5.12), (7.1) и (7.2), (7.3) и (7.4).

Свойство 8.2. Равносильными являются следующие утверждения:

1. Фазовое поле направлений дифференциальной системы (D) симметрично относительно координатной оси Ox;
2. Выполняется тождество
\[X(x,y)Y(x,-y) + X(x,-y)Y(x,y) = 0 \quad \forall (x,y) \in \mathbb{R}^2; \]

3. Фазовое поле направлений дифференциальной системы (3.3) симметрично относительно координатной оси \(O^*_u \);

4. Выполняется тождество
\[U(u,v)V(u,-v) + U(u,-v)V(u,v) = 0 \quad \forall (u,v) \in \mathbb{R}^2. \]

Например, такой симметричностью обладают фазовые поля направлений стереографически сопряженных дифференциальных систем (4.4) и (4.5) при \(a_0 b_0 = 0, (5.1) \) и (5.2), (5.3) и (5.4), (5.7) и (5.8), (5.9) и (5.10).

Свойство 8.3. Равносильными являются следующие утверждения:
1. Фазовое поле направлений дифференциальной системы (D) симметрично относительно координатной оси \(O_y \);
2. Выполняется тождество
\[X(x,y)Y(-x,y) + X(-x,y)Y(x,y) = 0 \quad \forall (x,y) \in \mathbb{R}^2; \]

3. Фазовое поле направлений дифференциальной системы (3.3) симметрично относительно координатной оси \(O^*_v \);
4. Выполняется тождество
\[U(u,v)V(-u,v) + U(-u,v)V(u,v) = 0 \quad \forall (u,v) \in \mathbb{R}^2. \]

Например, такой симметричностью обладают фазовые поля направлений стереографически сопряженных дифференциальных систем (4.4) и (4.5) при \(a_0 b_0 = 0, (5.1) \) и (5.2), (5.3) и (5.4), (5.7) и (5.8), (5.9) и (5.10).

Свойство 8.4. Равносильными являются следующие утверждения:
1. Фазовое поле направлений дифференциальной системы (D) симметрично относительно прямой \(y = x \);
2. Выполняется тождество
\[X(x,y)X(y,x) - Y(x,y)Y(y,x) = 0 \quad \forall (x,y) \in \mathbb{R}^2; \]

3. Фазовое поле направлений дифференциальной системы (3.3) симметрично относительно прямой \(v = u \);
4. Выполняется тождество
\[U(u,v)U(v,u) - V(u,v)V(v,u) = 0 \quad \forall (u,v) \in \mathbb{R}^2. \]

Например, такой симметричностью обладают фазовые поля направлений стереографически сопряженных дифференциальных систем (4.4) и (4.5) при \(|a_0| = |b_0|, (5.1) \) и (5.2), (5.3) и (5.4), (5.7) и (5.8), (6.1) и (6.2), (6.3) и (6.4).

Свойство 8.5. Равносильными являются следующие утверждения:
1. Фазовое поле направлений дифференциальной системы (D) симметрично относительно прямой \(y = -x \);
2. Выполняется тождество
\[X(-x,-y)X(y,x) - Y(-x,-y)Y(y,x) = 0 \quad \forall (x,y) \in \mathbb{R}^2; \]

3. Фазовое поле направлений дифференциальной системы (3.3) симметрично относительно прямой \(v = -u \);
4. Выполняется тождество
\[U(-u,-v)U(v,u) - V(-u,-v)V(v,u) = 0 \quad \forall (u,v) \in \mathbb{R}^2. \]
Например, такой симметричностью обладают фазовые поля направлений стереографически сопряженных дифференциальных систем (4.4) и (4.5) при \[|a_0| = |b_0|\], (5.1) и (5.2), (5.3) и (5.4), (5.7) и (5.8).

9. Бесконечно удаленные состояния равновесия

В соответствии со свойством 6.2 бесконечно удаленная точка \(M_\infty\) расширенной фазовой плоскости \(\overline{Oxy}\) является состоянием равновесия системы (D), если и только если точка \(O^*(0,0)\) является состоянием равновесия системы (3.3), причем у состояний равновесия \(M_\infty\) и \(O^*\) один и тот же вид.

Поведение траекторий системы (D) в окрестности бесконечно удаленной точки \(M_\infty\) расширенной фазовой плоскости \(\overline{Oxy}\) определяется поведением ее траекторий в окрестности бесконечно удаленной прямой проектной фазовой плоскости \(\mathbb{PR}(x,y)\) [12; 1].

Пусть \(L_1\) — бесконечно удаленное состояние равновесия системы (D) на проектной фазовой плоскости \(\mathbb{PR}(x,y)\). Секторы Бендиксона состояния равновесия \(L_1\) разделены на два вида: внутренние и внешние. Точки бесконечно удаленной прямой проектной фазовой плоскости \(\mathbb{PR}(x,y)\), лежащие в проколотой окрестности состояния равновесия \(L_1\), принадлежат внешним секторам Бендиксона и не принадлежат внутренним секторам Бендиксона. При этом имеет место

Свойство 9.1. Внутреннему сектору Бендиксона состояния равновесия \(L_1\) соответствует сектор Бендиксона состояния равновесия \(M_\infty\) такого же вида с таким же направлением движения вдоль траекторий.

Внешние секторы Бендиксона бесконечно удаленных состояний равновесия проектной фазовой плоскости \(\mathbb{PR}(x,y)\) стягиваются, образуя секторы Бендиксона бесконечно удаленного состояния равновесия \(M_\infty\) расширенной фазовой плоскости \(\overline{Oxy}\). При этом существенное значение имеет то, что [12; 1] у проектно неособой системы (D) бесконечно удаленная прямая проектной фазовой плоскости \(\mathbb{PR}(x,y)\) состоит из траекторий. Это позволяет указать следующие закономерности.

Пусть \(L_1\) и \(L_2\) — соседние бесконечно удаленные состояния равновесия на окружности проектного круга \(\mathbb{PK}(x,y)\) [12; 1] системы (D).

Свойство 9.2. Если у проектно неособой системы (D) смежные внешние секторы Бендиксона состояний равновесия \(L_1\) и \(L_2\): а) параболические; б) гиперболические; в) один — параболический, другой — гиперболический; г) один — гиперболический, другой — эллиптический, то они стягиваются в: а) эллиптический; б) гиперболический; в) параболический; г) эллиптический сектор Бендиксона состояния равновесия \(M_\infty\).
Пример 9.1. На проективной фазовой плоскости \(\mathbb{PR}(x,y) \) у дифференциальной системы [5, с. 84 — 85; 1]

\[
\frac{dx}{dt} = 1 - x^2 - y^2, \quad \frac{dy}{dt} = xy - 1 \tag{9.1}
\]

одно состояние равновесия — узел, которое лежит на «концах» оси \(Ox \).

Состояние равновесия \(O^*(0,0) \) стереографически сопряженной системы

\[
\frac{du}{d\theta} = 4u^4 - 8u^2v^2 - 4v^4 - \frac{1}{4}u^6 + \frac{1}{2}u^5v - \frac{1}{4}u^4v^2 + u^3v^3 + \frac{1}{4}u^2v^4 + \frac{1}{2}uv^5 + \frac{1}{4}v^6, \\
\frac{dv}{d\theta} = 12u^3v + 4uv^3 - \frac{1}{4}u^6 - \frac{1}{2}u^5v - \frac{1}{4}u^4v^2 - u^3v^3 + \frac{1}{4}u^2v^4 - \frac{1}{2}uv^5 + \frac{1}{4}v^6,
\]
где \((u^2 + v^2)^2 \, d\theta = dt\), состоит из двух эллиптических секторов, разделенных двумя параболическими секторами (свойство 9.2, случай а). Учитывая качественное исследование [1] поведения траекторий системы (9.1), на рис. 9.1 построены круги, образующие стереографические атласы траекторий систем (9.1) и (9.2).

Пример 9.2. Дифференциальная система [13, с. 61 — 65]

\[
2 \frac{dx}{dt} = 2y + i(x - iy)^q - i(x + iy)^q, \quad 2 \frac{dy}{dt} = -2x + (x - iy)^q + (x + iy)^q \quad \tag{9.3}
\]

при \(i = \sqrt{-1}, \ q = 4 \) и \(q = 5 \) является проективно неособой [12], а все бесконечно удаленные состояния равновесия на проективной фазовой плоскости \(\mathbb{PR}(x,y) \) являются узлами (см. рис. 2.12 из [13, с. 65] или рис. 8.9 и 8.10 из [12]).

При \(q = 4 \) система (9.3) имеет вид

\[
\frac{dx}{dt} = y + 4x^3y - 4xy^3, \quad \frac{dy}{dt} = -x + x^4 - 6x^2y^2 + y^4, \quad \tag{9.4}
\]

а стереографически сопряженной к ней является система

\[
\frac{du}{d\theta} = v(-384u^5 + 1280u^3v^2 - 384uv^4 + u^8 + 4u^6v^2 + 6u^4v^4 + 4u^2v^6 + v^8), \\
\frac{dv}{d\theta} = 64u^6 - 960u^4v^2 + 960u^2v^4 - 64v^6 - u^9 - 4u^7v^2 - 6u^5v^4 - 4u^3v^6 - uv^8,
\]
где \((u^2 + v^2)^2 \, d\theta = dt\).

При \(q = 5 \) система (9.3) имеет вид

\[
\frac{dx}{dt} = y + 5x^4y - 10x^2y^3 + y^5, \quad \frac{dy}{dt} = -x + x^5 - 10x^3y^2 + 5xy^4, \quad \tag{9.6}
\]

а стереографически сопряженной к ней является система

\[
\frac{du}{d\theta} = v(-1792u^6 + 8960u^4v^2 - 5376u^2v^4 + 256v^6 + u^{10} + 5u^8v^2 + 10u^6v^4 + 10u^4v^6 + 5u^2v^8 + v^{10}), \\
\frac{dv}{d\theta} = u(256u^6 - 5376u^4v^2 + 8960u^2v^4 - 1792v^6 - u^{10} - 5u^8v^2 - 10u^6v^4 - 10u^4v^6 - 5u^2v^8 - v^{10}),
\]
где \((u^2 + v^2)^5 \, d\theta = dt\).

Согласно свойству 9.2 состояние равновесия \(O^*(0,0) \) как дифференциальной системы (9.5), так и дифференциальной системы (9.7) состоит из эллиптических секторов Бен-
В.Н. Горбузов

Стереографически сопряженные дифференциальные системы

диксона. Круги, образующие стереографические атласы траекторий дифференциальных систем (9.4) и (9.5), построены на рис. 9.2, а круги, образующие стереографические атласы траекторий дифференциальных систем (9.6) и (9.7), построены на рис. 9.3.

Рис. 9.2

Рис. 9.3

Пример 9.3. На проективной фазовой плоскости \(\mathbb{P}^2(x, y) \) у дифференциальной системы [5, с. 85 — 87; 14, с. 209 — 212]

\[
\begin{align*}
\frac{dx}{dt} &= -1 + x^2 + y^2, \\
\frac{dy}{dt} &= -5 + 5xy
\end{align*}
\]

(9.8)

три состояния равновесия: седло, лежащее на «концах» прямой \(y = 0 \), и два устойчивых узла, одно из которых лежит на «концах» прямой \(y = -2x \), а другое лежит на «концах» прямой \(y = 2x \).

У стереографически сопряженной системы

\[
\begin{align*}
\frac{du}{d\theta} &= -4u^4 - 40u^2v^2 + 4v^4 + \frac{1}{4}u^6 + \frac{5}{2}u^5v + \frac{1}{4}u^4v^2 + 5u^3v^3 - \frac{1}{4}u^2v^4 + \frac{5}{2}uv^5 - \frac{1}{4}v^6, \\
\frac{dv}{d\theta} &= 12u^3v - 28uv^3 - \frac{5}{4}u^6 + \frac{1}{2}u^5v - \frac{5}{4}u^4v^2 + u^3v^3 + \frac{5}{4}u^2v^4 + \frac{1}{2}uv^5 + \frac{5}{4}v^6;
\end{align*}
\]

(9.9)

где \((u^2 + v^2)^2 d\theta = dt\), состояние равновесия \(O^*(0, 0) \), состоящее из двух эллиптических и двух параболических секторов Бендикиона (свойство 9.2, случаи а и в). Учитывая качественное исследование [1] поведения траекторий системы (9.8), на рис. 9.4 построены круги, образующие стереографические атласы траекторий систем (9.8) и (9.9).
Свойство 9.3. Если граничная окружность проективного круга $PK(x, y)$ пересекается каждой траекторией проективно особой системы (D) ортогонально, то бесконечно удалённое состояние равновесия M_∞ является дикритическим узлом.

Такой, например, является дифференциальная система Дарбу (7.3), проективный атлас траекторий которой построен на рис. 16.3 из [1], а стереографический атлас траекторий построен на рис. 7.4.

Пример 9.4. В [11; 1] качественно исследовано поведение траекторий на проективной фазовой плоскости $PR(x, y)$ и построены проективные атласы траекторий систем

$$\begin{align*}
\frac{dx}{dt} &= -y + x^3, \\
\frac{dy}{dt} &= x(1 + xy), \\
\frac{dx}{dt} &= x(x^2 + y^2 - 1)(x^2 + y^2 - 9) - y(x^2 + y^2 - 2x - 8), \\
\frac{dy}{dt} &= x(x^2 + y^2 - 1)(x^2 + y^2 - 9) + x(x^2 + y^2 - 2x - 8), \\
\frac{dx}{dt} &= x(2x^2 + 2y^2 + 1)((x^2 + y^2)^2 + x^2 - y^2 + \frac{1}{10}) - y(2x^2 + 2y^2 - 1), \\
\frac{dy}{dt} &= x(2x^2 + 2y^2 - 1)((x^2 + y^2)^2 + x^2 - y^2 + \frac{1}{10}) + x(2x^2 + 2y^2 + 1).
\end{align*}$$

Граничную окружность проективного круга $PK(x, y)$ траектории каждой из этих систем пересекают ортогонально.

Стереографически сопряженными к системам (9.10), (9.11), (9.12) соответственно являются системы

$$\begin{align*}
\frac{du}{d\theta} &= -(16u^3 + u^4v + 2u^2v^3 + v^5), \\
\frac{dv}{d\theta} &= u(-16uv + u^4 + 2u^2v^2 + v^4), \\
\frac{du}{d\theta} &= -256u + 160u^3 - 16u^2v + 160uv^2 - 16v^3 + 8u^3v + 8uv^3 - 9u^5 + 8u^4v - 18u^3v^2 + 16u^2v^3 - 9uv^4 + 8v^5, \\
\frac{dv}{d\theta} &= -256v + 16u^3 + 160u^2v + 160uv^2 + 160v^3 - 8u^4 - 8u^2v^2 - 8u^5 - 9u^4v - 16u^3v^2 - 18u^2v^3 - 8uv^4 - 9v^5,
\end{align*}$$

где $(u^2 + v^2)^2 d\theta = dt$.

Рис. 9.4
\[\frac{du}{d\theta} = -8192u - 768u^3 + 1280uv^2 - \frac{96}{5} u^5 - 32u^4v + \frac{288}{5} u^3v^2 - 64u^2v^3 - \]
\[- \frac{256}{5} uv^4 - 32v^5 - \frac{1}{10} u^7 - 3u^6v + \frac{1}{10} u^5v^2 - 5u^4v^3 + \frac{1}{2} u^3v^4 - u^2v^5 + \frac{3}{10} uv^6 + v^7, \]
\[\frac{dv}{d\theta} = -8192v - 1280u^2v + 768v^3 + 32u^5 - \frac{256}{5} u^4v + 64u^3v^2 + \frac{288}{5} u^2v^3 + \]
\[+ 32uv^4 - \frac{96}{5} v^5 + u^7 - \frac{3}{10} u^6v - u^5v^2 - \frac{1}{2} u^4v^3 - 5u^3v^4 - \frac{1}{10} u^2v^5 - 3uv^6 + \frac{1}{10} v^7, \] (9.15)
где \((u^2 + v^2)^3 d\theta = dt.\)

Круги, образующие стереографические атласы траекторий дифференциальных систем (9.10) и (9.13), построены на рис. 9.5, дифференциальных систем (9.11) и (9.14) — на рис. 9.6, дифференциальных систем (9.12) и (9.15) — на рис. 9.7.
Список литературы

1. Gorbuзов V.N. Projective atlas of trajectories of differential systems // Mathematics. Dynamical Systems (arXiv: 1401.1000v1 [math.DS]. Cornell Univ., Ithaca, New York). – 2014. – P. 1 – 61.

2. Горбузов В.Н. Стереографический атлас траекторий дифференциальных систем второго порядка // Веснiк Гродзенскага дзяржаўнага ўніверсітэта. Сер. 2. – 2014. – № 1(170). – С. 12 – 20.

3. Горбузов В.Н. Траектории стереографически сопряженных дифференциальных систем // Веснiк Гродзенскага дзяржаўнага ўніверсітэта. Сер. 2. – 2014. – № 3(180). – С. 27 – 36.

4. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. – М.: Наука, 1987. – 688 с.

5. Математическая энциклопедия. Т. 5. – М.: Сов. энцикл., 1984. – 1248 с.

6. Мищенко А.С., Фоменко А.Т. Курс дифференциальной геометрии и топологии. – М.: Изд-во Моск. ун-та, 1980. – 439 с.

7. Андронов А.А., Леонтович Е.А., Гордон И.И., Майер А.Г. Качественная теория динамических систем второго порядка. – М.: Наука, 1966. – 568 с.

8. Пуанкаре А. О кривых, определяемых дифференциальными уравнениями. – М.;Л.: ГИТТЛ, 1947. – 392 с.

9. Горбузов В.Н., Павлючик П.Б. Линейные и разомкнутые предельные циклы дифференциальных систем // Веснiк Гродзенскага дзяржаўнага ўніверсітэта. Сер. 2. – 2013. – № 3(159). – С. 23 – 32.

10. Горбузов В.Н., Самодуров А.А. Уравнение Дарбу и его аналоги. – Гродно: ГрГУ, 1985. – 94 с.

11. Горбузов В.Н. Траектории проективно приведённых дифференциальных систем // Веснiк Гродзенскага дзяржаўнага ўніверсітэта. Сер. 2. – 2012. – № 1(126). – С. 39 – 52.

12. Горбузов В.Н. Проективный атлас траекторий дифференциальных систем второго порядка // Веснiк Гродзенскага дзяржаўнага ўніверсітэта. Сер. 2. – 2011. – № 2(111). – С. 15 – 26.

13. Сибирский К.С. Алгебраические инварианты дифференциальных уравнений и матриц. – Кишинёв: Штинца, 1976. – 268 с.

14. Лежнелш С. Геометрическая теория дифференциальных уравнений. – М.: ИЛ, 1961. – 387 с.