Bunching and antibunching in four wave mixing NV center in diamond

Raza, Faizan; Ahmed, Irfan; Zhang, Dan; Imran, Al; Khan, Abubakkar; Lau, Condon; Zhang, Yanpeng

Published in:
AIP Advances

Published: 01/10/2018

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1063/1.5039979

Publication details:
Raza, F., Ahmed, I., Zhang, D., Imran, A., Khan, A., Lau, C., & Zhang, Y. (2018). Bunching and antibunching in four wave mixing NV center in diamond. AIP Advances, 8(10), [105320]. https://doi.org/10.1063/1.5039979

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity or commercial gain.

Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will remove access to the work immediately and investigate your claim.

Download date: 28/09/2020
Bunching and antibunching in four wave mixing NV center in diamond

Faizan Raza, Irfan Ahmed, Dan Zhang, Al Imran, Abubakkar Khan, Condon Lau, and Yanpeng Zhang

ARTICLES YOU MAY BE INTERESTED IN

Detection of nanowatt microwave radiation by the photoluminescence of an ensemble of negatively charged nitrogen vacancies in diamond
Applied Physics Letters 113, 192406 (2018); https://doi.org/10.1063/1.5053639

Efficient generation of nitrogen-vacancy center inside diamond with shortening of laser pulse duration
Applied Physics Letters 113, 211102 (2018); https://doi.org/10.1063/1.5054730

Scanning diamond NV center probes compatible with conventional AFM technology
Applied Physics Letters 111, 163106 (2017); https://doi.org/10.1063/1.4995813
Bunching and antibunching in four wave mixing NV center in diamond

Faizan Raza,1,a Irfan Ahmed,2,3,a Dan Zhang,1 Al Imran,1 Abubakkar Khan,1 Condon Lau,2,b and Yanpeng Zhang1,c

1Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China
2Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR
3Department of Electrical Engineering, Sukkur IBA University, 65200 Sindh, Pakistan

(Received 13 May 2018; accepted 8 October 2018; published online 17 October 2018)

The determination of classical and quantum states through photon bunching and antibunching like phenomena may have potential applications in quantum information processing and long-distance quantum communications. We report the photon bunching and multi anti-bunching like phenomena by generating multi-order fluorescence and four-wave mixing (FWM) at room temperature using the Nitrogen-vacancy (NV) center in diamond. We have implied FWM process to demonstrate the interference pattern emerging from NV of nano-crystals in classical, nonclassical and intermediate (classical and nonclassical) regimes. Intersystem crossing is controlled by the fluence of incident beams. The interference pattern from dominant ionization of NV− to NV0 and NV0 to NV− suggests the bunching and anti-bunching like phenomena of photons, respectively. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5039979

I. INTRODUCTION

Second-order coherence known as two-photon bunching led the emergence of quantum optics.1 The correlation and interference phenomena provide a solid foundation for development of quantum theory of photons.2 Paul Dirac considered the single photon interference in which superposition only comes from the photon itself.3 However, in the case of the generation of twin/paired photons, a similar statement can be established for interference of two photons, in which superposition comes from the pair of photons jointly measured (analogous definition of Dirac) sharing the same energy level as in multi-wave mixing (MWM).4,5 Recently, photon bunching in the case of polarized beam splitters (PBS) has been demonstrated using diamond NV defects.6 The classical-to-quantum transition with FWM7 and classical and nonclassical bunching control by nonlinear response of the media5,8 can be devised using FWM.

In this regard, due to stable photon emission9 with high quantum efficiency10 of nitrogen-vacancy (NV) color center, the negatively charged NV center in diamond is configured here with FWM process to realize the intersystem crossing (ISC) by changing the fluence of lasers, which can modify the nonlinear optical response of the media5,8 in nano-diamond (ND).

Multidressed suppression and enhancement of self-diffracted SP-FWM process is studied in hot atomic system including sodium hyperfine structures of the ground states.11 In rare earth doped Pr3+:YSO, AT-splitting caused by strong dressing effect is studied in both spectral and temporal signal in multi-level atomic systems.12,13 Unlike Pr3+:YSO and hot atomic systems, dressing
effect in NV center is very weak. We have studied competition between SP-FWM and multi-order fluorescence emission in hybrid signal in weak dressed atomic-like system.

In this paper, we show the classical bunching of indistinguishable photons in both two and three modes under the phonon induced mixing state of ISC in a three level V-type system with spontaneous emission of FWM by changing the fluence of the non-resonant beam. The setting of non-resonant beam to high fluence is termed as high gain regime to achieve bunching like effect. We also demonstrate the photon multi anti-bunching like effect in the low gain of spontaneous parametric FWM (SP-FWM) by fine fluence tuning of the resonant beam and fixing the non-resonant beam. The setting of resonant beam and fixing the non-resonant beam is termed as precise quantum threshold to achieve anti-bunching like effect. Furthermore, we observed intermediate (classical and nonclassical) state by exciting system in medium gain regime. For the first time, we observed multi antibunching like effect using slow light.

II. EXPERIMENTAL SETUP AND THEORETICAL MODEL

We used two tunable dye lasers (narrow scan with a 0.04 cm$^{-1}$ linewidth) pumped by an injection-locked single mode Nd:YAG laser (Continuum powerlite DLS 9010, 10 Hz repetition rate, 5 ns pulse width) which are used to generate the pumping fields $E_1 (\omega_1, \Delta_1)$ and $E_2 (\omega_2, \Delta_2)$ with detuning $\Delta_i = \omega_{mn} - \omega_i$, where ω_{mn} denotes the corresponding atomic transition frequency and ω_i is the laser frequency. The sample used in our experiment was a bulk NV center crystal, consisting of substitutional nitrogen-lattice vacancy pairs orientated along the [100] crystalline direction. The sample used in our experiment contains 0.05% nitrogen per diamond crystal. The sample held in a container at 77 K in a cryostat. Acquisition time of the experiment is 100ms. The NV center is known to exist in negative (NV$^-$) and neutral (NV0) charged states as shown in Fig. 1(e). The features of NV$^-$ and NV0 are their optical zero phonon lines (ZPL) at 1.945eV (637nm) and 2.156eV (575nm) respectively. The NV$^-$ center is treated as a three-level system with a ground triplet state (3A), a triplet excited state (3E), and an intermediate singlet state (1A). The ground and excited energy level of site NV0 is labeled by 2E and 2A$_1$ respectively. In our experiment, with E_1 (575nm) and E_2 (637nm) excitations, the hybrid signals which include SP-FWM and fourth-order fluorescence (FL) signals, are generated simultaneously. Figure 1(c) shows hybrid signals detected by D3. The sharp peak shown in fig. 1(c) comes from direct transition from 3E, $m_s = 0$ to 3A$_2$, $m_s = 0$ with SP-FWM signal emission. The second peak relates to intersystem crossing (ISC) by phonon assisted transition and then decays to the ground state with fluorescence emission. In Fig. 1(c2), t_1-t_4 represents time position of boxcar gate of the hybrid signal.

By opening E_1 and E_2 fields, the Stokes E_s and anti-Stokes E_{as} are generated with phase-matching condition $k_1 + k_2 = k_{as} + k_s$. Both E_s and E_{as} are detected pair of photomultiplier tube

FIG. 1. (a) and (b) three level system in NV center exited by two and three laser beams, respectively. (c) Time domain signal from the NV center, where t_1-t_4 are different positions of boxcar gate. (d) Experimental setup. (e) The NV0 and NV$^-$ charge state inter-conversion mechanism.
PMT1 and PMT3, respectively as depicted in Fig. 1(d). The FL signal generated along with SP-FWM is also detected by PMT2. The perturbation chain of E_{as} in a V-type three level system is $p_{00}^{(0)} \rightarrow p_{20}^{(1)} \rightarrow p_{00}^{(2)} \rightarrow p_{10as}^{(3)}$. The density matrix for anti-Stokes in a V-type system can be written as

$$\rho_{as}^{(3)} = \frac{-iG_1G_2G_3}{(\Gamma_{10} + i\Delta_1)(\Gamma_{00} + i\Delta_2 - \Delta_1 + \Delta_0 + d_1)}$$

where $d_1 = \left|G_2^2\right|/[(\Gamma_{12} + i(\Delta_1 - \Delta_2))]$ is the dressing effect. $G_i = \mu_i/E_i/h$ is the Rabi frequency of E_i with the electric dipole moment (μ_i) of levels $|i\rangle$ and $|j\rangle$. Γ_{ij} is the transverse decay rate. Lifetimes of anti-Stokes signal can be written as $\Gamma = \Gamma_{10} + \Gamma_{00} + \Gamma_{20}$. The intensities of the E_3 and E_{as} are described as $\delta \tilde{I}_{S/AS}(t) = I_{0(S/AS)}e^{-\Gamma_{S/AS}t}$ where $\delta \tilde{I}_{S(AS)} \propto \left|\rho_{10(S)}^{(3)}\right|^2$ and $\delta \tilde{I}_{0(AS)} \propto \left|\rho_{20(AS)}^{(3)}\right|^2$. Now we discuss FL signal in V-type system generated via perturbation chain $p_{00}^{(0)} \rightarrow p_{10}^{(1)} \rightarrow p_{00}^{(2)} \rightarrow p_{20}^{(3)} \rightarrow p_{00}^{(4)} \rightarrow p_{30}^{(5)} \rightarrow p_{33}^{(6)}$. Can be written as

$$\rho_{33}^{(6)} = \frac{|G_1|^2|G_2|^2|G_3|^2}{(\Gamma_{10} + i\Delta_1)(\Gamma_{20} + i\Delta_2 + d_1')(\Gamma_{00} + d_2')}(\Gamma_{20} + i\Delta_3)\Gamma_{00}\Gamma_{22}$$

where $d_1' = \left|G_2^2\right|/[(\Gamma_{10} + |G_2|^2)/(\Gamma_{20} + i\Delta_1)]$ and $d_2' = \left|G_2^2\right|/[(\Gamma_{00} + i\Delta_3)]$ are the nested and cascaded dressing effect caused the fields, respectively. The third order correlation function can be normalized as

$$G_3^{(3)}(\tau_1, \tau_2, \tau_3) \propto 1 + \sin^2\left(\Delta\omega(\tau_1 - \tau_2)/2\right) + \sin^2\left(\Delta\omega(\tau_2 - \tau_3)/2\right) + \sin^2\left(\Delta\omega(\tau_3 - \tau_1)/2\right)$$

$$+ 2\sin\left(\Delta\omega(\tau_1 - \tau_2)/2\right)\sin\left(\Delta\omega(\tau_2 - \tau_3)/2\right)\sin\left(\Delta\omega(\tau_3 - \tau_1)/2\right)$$

$$G_s^{(3)}(\tau_1, \tau_2) = 4(1 + \alpha_s^2)S_1e^{-[\Gamma_{10}\tau_1 + \Gamma_{20}(\tau_1 + \tau_2)]} + 2\alpha_s^2S_2[\cos(\Delta\tau_1 + \phi)e^{-[\Gamma_{10}\tau_1 + \Gamma_{20}(\tau_1 + \tau_2)]}]$$

$$\times 2\alpha_s^2S_3[\cos(\Delta\tau_1 + \phi)e^{-\Gamma_2\tau_2}] + 2R_1R_2R_{33}$$

Where $\tau_i \neq \tau_j \neq \tau_k, \tau_1 = \tau_2 - \tau_2, \tau_2 = \tau_2 - \tau_3$ and $\tau_3 = \tau_3 - \tau_1$.

III. RESULTS AND DISCUSSION

Herein, we investigated two-photon bunching and antibunching like phenomenon by changing fluence of off resonant E_1 beam from 89 (mJ/cm²) to 12 (mJ/cm²). For measuring and calculating two-photon bunching, we blocked the PMT3 and kept the rest of the PMTs on scanning mode. The second order correlation function can be described as $G^{(2)}(\tau_1) = \left\langle \delta \tilde{I}_{1}(\tau_1)\delta \tilde{I}_{2}(\tau_2) \right\rangle$. Where τ_1 is the selected time delay and $\delta \tilde{I}_{1/2}(\tau_1/2)$ are intensity fluctuations. By simplifying $G^{(2)}(\tau_1)$, two photon bunching and anti-bunching can be written as $G^{(2)}(\tau_1) \propto 1 + \sin^2(\Delta\omega(\tau_1 - \tau_2)/2)$ and $G_s^{(2)}(\tau_1) = \left|\rho_{33}^{(6)}\right|^2e^{-2\Gamma_{11}^2}\left|\rho_{11}^{(2)}\right|^2$ respectively. Where R_{33} and R_{E} are constants. By opening E_1 and E_2 fields, E_s and E_{as} are generated along with FL emission in a composite channel. The competition between SP-FWM and FL composite signal determines the sign of correlation function to be positive or negative (Fig. 2(a1)–(a6)). By changing fluence of E_1 from 89 (mJ/cm²) to 12 (mJ/cm²), photon bunching is switched to photon antibunching like phenomenon. In order to understand switch between classical (bunching) and nonclassical (antibunching), we use double dressing effect of E_1 and E_2 beams. Dressing effect can be used to control precise emission of FL and SP-FWM emission in a composite signal. In case of single dressing field, FL signal $\rho_{11}^{(2)} = \left|\rho_{11}^{(2)}\right|^2/|\Gamma_{11}|^2 + \left|\rho_{11}^{(2)}\right|^2/|\Gamma_{11}|^2$ increases gradually with increasing fluence of E_1. However, in double dressing scenario, dressing effect dependence on fluence is slightly reversed. When E_1 is at 89 (mJ/cm²), strong FL signal $\rho_{22}^{(4)} = \left|\rho_{22}^{(4)}\right|^2/(\Gamma_{10} + i\Delta_1)(\Gamma_{20} + i\Delta_2 + d_1)\Gamma_{11}\Gamma_{00}$
comes from strong dressing effect of composite channel behaves as pure SP-FWM channel due to significant increase in SP-FWM, which antibunching like phenomena is observed as shown in Figs. 2(b2)–2(b3). As fluence of the resonant E to decrease in dressing effect of less than zero. All results shown in Fig. 2(b) suggests antibunching like effect. Precisely meets that theoretical results of antibunching like effect depicted in Fig. 2(c2).

FIG. 2. Measured second-order temporal correlation function (a1)-(a3) by changing the fluence of E1 (575 nm) from 89 (mJ/cm²) to 12 (mJ/cm²) and fixing E2 (637 nm) at 12 (mJ/cm²). (b1)-(b3) by changing the fluence of E2 (637 nm) from 89 (mJ/cm²) to 12 (mJ/cm²) and fixing E1 (575 nm) at 12 (mJ/cm²). (c1) and (c2) Simulated second-order temporal correlation functions corresponding to (a1) and (b1), respectively.

(Where d_{11} = |G_{21}|^2/|\Gamma_{00} + |G_{11}|^2/(\Gamma_{10} + i\Delta_1)|) emission from substate ^2A_1 (NV^0) results in strong photon bunching as shown in Fig. 2(a1). Intensity of FL \rho_{FL} = \rho_{FL}^{(3)} dominates overall SP-FWM \rho_{SP-FWM} = \rho_{SP-FWM}^{(3)} in composite signal i-e \rho = \rho_{FL} + \rho_{SP-FWM} due to strong dressing effect of E1 i-e |G_{21}|^2/|G_{11}|^2 < 1 as seen from the variable d_{11}. When P_1 of E1 is gradually decreased, amplitude of photon bunching decreases as fluence of E1 is reduced as shown in Fig. 2(a3). The photon bunching calculated in Figs. 2(a1)–2(a3) is the result of the dominant classical emission of FL photons due to the fluence of the E1 beam under high gain regime under double dressed state, and hence said to be classical bunching. Figure 2(c1) shows the calculated two photon bunching which corresponds to Figs. 2(a1).

In order to switch pure FL emission (classical) to pure SP-FWM emission (nonclassical)^7,12 double dressing effect is used. Next, we set E1 to low threshold (12 (mJ/cm²)) and change the fluence of E2 (637nm) from 89 (mJ/cm²) to 12 (mJ/cm²), to obtain quantum threshold to excite spin state |^3A_2, ms=0> to |^2E, ms=0> (NV^+). The curves obtained with the said experimental conditions are calculated using \rho_{FL} = \rho_{FL}^{(3)} and presented in Figs. 2(b1)–2(b3). At first, E2 is set at 89 (mJ/cm²) to achieve the ionization from NV^0 to NV^+. When E2 is at high fluence, population transfer happens from spin state |^3A_2, ms=0> to |^1E, ms=0> (NV-) which leads to the prominent emission of SP-FWM. Composite channel behaves as pure SP-FWM channel due to significant increase in SP-FWM, which comes from strong dressing effect of E2 (|G_{21}|^2/(\Gamma_{12} + i(\Delta_1 - \Delta_2)) mentioned in Eq. (1). As fluence of E2 is reduced, the interference between the Stokes and anti-Stokes emission becomes dominant, and antibunching like phenomena is observed as shown in Figs. 2(b2)–2(b3). As fluence of the resonant beam is set to 1 (mJ/cm²), the anti-bunching like effect becomes more prominent (Fig. 2(b3)) due to decrease in dressing effect of E2. The bunching count at \tau=0 is less than the side peaks and also less than zero. All results shown in Fig. 2(b) suggests antibunching like effect. This phenomenon precisely meets that theoretical results of antibunching like effect depicted in Fig. 2(c2).

By varying fluence of E1 from 63 (mJ/cm²) to 25 (mJ/cm²) (medium gain regime), composite signal that includes prominent FL and SP-FWM emission can be obtained. Unlike Fig. (2), we cannot observe switch between pure photon bunching to antibunching like effect in Fig. (3). The three photon bunching calculated in Figs. 3(a1)–3(a4) are obtained using Eq. (3), which shows the direct relationship of off-resonant field with indistinguishable photon bunching. When P_1 of E1 is 63 (mJ/cm²), dominant FL emission \rho_{FL}^{(3)} and weak SP-FWM emission is observed as shown in Fig. 3(a1). As the P_1 of E1 decreases, the photon bunching count decreases, leading to the reduced amplitude of \rho_{FL}^{(3)} (t_1, t_2, t_3) in a positive scale. One must note that this is the minimum count achieved with E1 is set at medium fluence and E2 at 2 (mJ/cm²). To achieve upper quantum threshold under SP-FWM configuration and emission from NV^-, we fix the fluence of E1 at 12 mJ/cm² and change E2 from 63 (mJ/cm²) to 25 (mJ/cm²). When E2 is at 63 (mJ/cm²), SP-FWM emission is enhanced in
composite channel but still FL emission is observed. The dressing effect of E_1 and E_2 beams does not cancel each other as they both have significant contributions at medium fluence. In Figs. 3(b1)–3(b4), a small dip is observed along with dominant peaks, which can be explained from strong FL emission in composite signal when E_1 is set at medium fluence. In Figs. 3(b1)–3(b4), when E_2 is set at medium fluence, dip becomes more prominent than peak which suggests that antibunching-like effect. Although, SP-FWM $\rho^{(3)}_{20}$ is dominant but FL emission cannot be ignored which is evident small peak in Figs. 3(b1)–3(b4).

In Fig. 4, by introducing E_3, photon bunching and multi antibunching like effect is observed in double V-type system by varying boxcar gate position. The anti-Stokes signal can be written via perturbation chain $\rho^{(0)}_{00} \rightarrow \rho^{(1)}_{10} \rightarrow \rho^{(2)}_{20} \rightarrow \rho^{(3)}_{30} \rightarrow \rho^{(4)}_{40} \rightarrow \rho^{(5)}_{50}$ as $\rho^{(5)}_{50} = G_1 G_2 G_3 / d_0 d_1 d_2 d_3 d_4$, which will be parametrically amplified13,16 where d_1 is the dressing effect. In Fig. 4(a), the experimental conditions are same as that of Fig. 2(a) besides the introduction of E_3. At high fluence of E_1, pure photon bunching is observed which can be explained from strong dressing effect of $E_1 (|G_2|^2 / |G_1|^2 < 1)$ mentioned in Eq. (2) and shown in Fig. 4(a1). One can notice that as boxcar gate position is changed from t_1 to t_4 (Fig. 1(c)), the SP-FWM emission increases gradually in comparison with the FL. SP-FWM emission is enhanced when gate position is at t_4. Next in order to demonstrate the multi antibunching like phenomenon, E_1 beam is set at 1 (mJ/cm²). At précised quantum threshold the influence of E_3 beam becomes strong. Switch between FL emission (Fig. 4(A)) and SP-FWM (Fig. 4(B)) can be explained by nested dressing condition $|G_2|^2 / |G_1|^2 > 1$ (Eq. (3)). In Figs. 4(b1)–4(b4), multi antibunching like effect is observed which can be explained from slow light effect of E_3. By introducing E_3 beam under the quantum threshold, $\rho^{(5)}_{50}$ emission along with group
velocity $v_g = - (\partial \rho_{10}^{(1)} / \partial \Delta_3)_{\Delta_3=0}$ and the trigger time $t_1 = S / v_g$ of PMT1 will change, which is very much similar to the effect of an internal delay τ_1 of Eq. (4) caused by $\rho_{as}^{(5)}$.

IV. CONCLUSION

In conclusion, second order and third order photon counting has been demonstrated experimentally and theoretically. The four-wave mixing process was configured to demonstrate the interference pattern. The intersystem crossing and phonon-induced mixing by changing the fluence of laser beams suggested the photon bunching and antibunching like effect. Moreover, the shift from the classical (bunching) to the quantum (antibunching) state, has been demonstrated by controlling the quantum threshold of SP-FWM configuration. These results have applications in designing logic gates and solid state quantum computation.

ACKNOWLEDGMENTS

National Key R&D Program of China (2017YFA0303700); National Natural Science Foundation of China (11474228, 61605154, 11604256); Key Scientific and Technological Innovation Team of Shaanxi Province (2014KCT-10).

1 R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046–1048 (1956).
2 A. Schwarzkopf, D. A. Anderson, N. Thaicharoen, and G. Raithe, Physical Review A 88, 061406 (2013).
3 P. A. M. Dirac, National Library, 4th ed. (Oxford University Press, 1981).
4 J. Wen, S. Du, and M. H. Rubin, Phys. Rev. A 75, 1–11 (2007).
5 S. Du, J. Wen, and M. H. Rubin, JOSA B 25, C98 (2008).
6 S. Meuret, L. H. G. Tizzi, T. Cazimajou, R. Boureller, H. C. Chang, F. Treussart, and M. Kociak, Phys. Rev. Lett. 114, 1–5 (2015).
7 R. Z. Vered, Y. Shaked, Y. Ben-Or, M. Rosenbluh, and A. Pe’Er, Phys. Rev. Lett. 114, 1–6 (2015).
8 S. Du, E. Oh, J. Wen, and M. H. Rubin, Phys. Rev. A 76, 4–7 (2007).
9 A. Khalid, K. Chung, R. Rajasekharan, D. W. M. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, Sci. Rep. 5, 11179 (2015).
10 F. A. Inam, M. D. W. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, ACS Nano 7, 3833–3843 (2013).
11 F. Wen, H. Lan, D. Zhang, C. Li, H. Chen, and Y. Zhang, JOSA B 31, 2384–2389 (2014).
12 H. Lan, C. Li, C. Lei, H. Zheng, R. Wang, M. Xiao, and Y. Zhang, Laser Physics Lett. 12, 015404 (2015).
13 C. Li, Z. Jiang, Y. Tian, Z. Liu, X. Wang, R. Wang, and Y. Zhang, LP. 25, 095402 (2015).
14 R. J. Glauber, Phy. Rev. 130, 2529–2539 (1963).
15 Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, and M. Xiao, Sci. Rep. 5, 15058 (2015).
16 H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, and Y. Zhang, Sci. Rep. 3, 1885 (2013).