Tomographic Analysis of the Anatomical Parameters for the Insertion of Cortical Bone Screws

Carlos Fernando Pereira Silva Herrero1, Rafael Campos Fróes Marangoni1

1 Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, SP, Brasil

Rev Bras Ortop 2022;57(1):47–54.

Resumo

Objetivo Estudar os parâmetros anatômicos do trajeto de inserção do parafuso cortical e descrever sua técnica.

Métodos Analisaram-se exames de tomografia computadorizada de 30 pacientes, e as medidas nas vértebras de L1 a L5 bilateralmente. Um segundo observador avaliou dez exames aleatoriamente. Os parâmetros incluíram o ângulo lateral (AL) e o diâmetro do parafuso (DP) como variáveis axiais, e o ângulo cranial (AC) e o comprimento do parafuso (CP) como variáveis sagitais.

Resultados No total, havia 15 pacientes do sexo masculino (média de idade de 31,33 anos) e 15 do sexo feminino (média de idade de 32,01 anos). O AL variou de 13,8° a 20,89°, com uma tendência de aumento no sentido de proximal a distal. O AC variou de 17,5° a 24,9°, com tendência de diminuição no sentido caudal. O DP variou de 2,3 mm a 7,2 mm, havendo uma tendência ao aumento conforme avançamos de proximal a distal. O CP variou de 19 mm a 45 mm, havendo uma tendência de diminuição conforme avançamos de proximal (L1) a distal (L5). Não houve diferença estatística entre os sexos, nem diferenças na confiabilidade interobservador, quanto aos valores estudados quando comparados os lados.

Conclusão A trajetória do parafuso de trajeto cortical apresenta variações em diferentes populações. Assim, recomendamos o estudo pré-operatório de imagens para reduzir os riscos cirúrgicos relacionados à técnica.
Análise tomográfica dos parâmetros anatômicos Herrero, Marangoni

Introdução

A fixação posterior da coluna lombar é o tratamento de escolha para diversas patologias da coluna vertebral. Diversas ferramentas podem ser usadas no tratamento, incluindo os amarrilhos, os ganchos, os parafusos de trajeto pedicular (PTPs) e, mais recentemente, o parafuso de trajeto cortical (PTC).1,2

Atualmente, o método de fixação mais utilizado é feito com sistemas de parafusos pediculares, e tem como fundamento a ancoragem dos implantes no osso esponjoso dos pedículos e do corpo vertebral. Assim, esta técnica de fixação pode estar sujeita à falha, principalmente na presença osteoporose.1,2

Em 2009, Santoni et al.17 apresentaram um trajeto de inserção de parafusos pediculares conhecido como parafuso de trajeto cortical (cortical bone trajectory). Nesta técnica, a inserção do parafuso segue o trajeto distal-proximal e a direção médial-lateral, o que aumenta o contato com o osso cortical no pedículo e no corpo vertebral comparado ao método tradicional de fixação com PTPs.3-6 Estudos biomecânicos demonstraram que a técnica que usa os PTCs alcança resultados equivalentes ou melhores do que método tradicional.7-9

Apesar de a anatomia do trajeto do osso cortical ter sido documentada em populações europeias e asiáticas,10-12 seus parâmetros anatômicos podem variar entre populações diferentes. Nossa hipótese foi de que os parâmetros morfométricos do parafuso de trajeto cortical na população brasileira eram diferentes dos parâmetros previamente relatados na literatura, e que as técnicas utilizadas podem levar a erros de interpretação. Assim, o objetivo deste estudo foi descrever uma técnica de mensuração do trajeto do PTC, conduzindo uma avaliação detalhada do ponto de entrada, do trajeto, e das dimensões do PTC por meio de tomografia computadorizada (TC) em uma amostra da população brasileira.

Material e Métodos

O protocolo do estudo foi submetido e aprovado pelo Comitê de Ética em Pesquisa do Hospital em questão. Foram incluídos no estudo 15 pacientes do sexo masculino (idade média: 31,33 ± 8,5 anos) e 15 do sexo feminino (idade média: 32,01 ± 6,1 anos). Foram avaliadas retrospectivamente imagens de TC de um banco de dados selecionadas de modo aleatório. Foram selecionados exames de pacientes entre 18 e 45 anos de idade, e os pacientes com histórico de cirurgia prévia, evidência de doença degenerativa avançada, lesões traumáticas, infecção ou doença neoplásica na coluna vertebral foram excluídos com base no laudo radiológico e revisão posterior pelo avaliador.

Todos os exames de TC haviam sido feitos no mesmo aparelho, Big Bore 16-slice (Philips Healthcare, Cleveland, OH, EUA), seguindo o protocolo padrão da instituição. Para cada vértebra, havia imagens de reconstrução axial, sagital e coronal com 1 mm de espessura. Foram selecionadas imagens desde a primeira vértebra lombar (L1) até a quinta vértebra lombar (L5).

Os parâmetros axiais foram o ângulo lateral (AL), formado entre o trajeto do parafuso e o plano sagital, e o máximo diâmetro do parafuso (DP), a maior distância entre duas retas paralelas ao trajeto que tangenciam as corticais do pedículo. Os parâmetros sagitais incluíram o ângulo cranial (AC), formado entre o trajeto do parafuso e a placa terminal superior, e o comprimento do parafuso (CP), a distância entre o ponto de entrada e o cortical lateral da vértebra. Os parâmetros lineares foram medidos em milímetros, e os angulares, em graus.
Dois observadores realizaram as medidas de maneira independente utilizando o programa de análise de imagens OsiriX, (Pixmeo SARL, Bernex, Suíça). O primeiro realizou a avaliação dos exames de 30 pacientes, e o segundo, a avaliação dos exames de 10 pacientes selecionados aleatoriamente dentre os 30 primeiros para a estimativa da confiabilidade interobservador.

O frequente desafio de transformar dados diagnósticos de imagem em informações cirurgicamente úteis envolve a dificuldade de descrever estruturas tridimensionais, tal como o trajeto do parafuso cortical, em duas dimensões. Para obter dados clinicamente aplicáveis a partir de imagens de TC, a avaliação multiplanar (axial, sagital e coronal) foi utilizada de maneira simultânea para medir todos os parâmetros.

Análise das Imagens

A primeira etapa da avaliação do trajeto do parafuso cortical envolveu a realização do alinhamento do eixo horizontal (pontilhado fino) nas imagens sagital e coronal com a placa terminal superior, e do eixo vertical (linha contínua) na imagem axial com o eixo sagital central da vértebra. Após essa etapa, localizava-se o centro do pedículo e inseria-se um ponto de marcação fixo (ponto fixo 1: ponto preto) nos três planos (Figura 1).

Para a determinação do ponto de entrada, utilizou-se a imagem no plano coronal, que corta o istmo dos pedículos, e os eixos foram deslocados, de modo que o eixo vertical (linha contínua) tocsse no córtex medial do pedículo, e o eixo horizontal (pontilhado fino) estivesse sobre o córtex inferior do pedículo. Foi marcado um ponto fixo na imagem axial, na projeção do eixo vertical (linha contínua) no córtex posterior da lâmina (Figura 2; ponto fixo 2: ponto branco).

Após esta etapa, o centro do eixo foi reposicionado no ponto fixo 1, no centro do pedículo, e, na imagem coronal, o eixo horizontal (pontilhado fino) foi deslocado para o córtex inferior do pedículo (Figura 3). Na imagem axial, o eixo foi então girado de forma que o eixo vertical (linha contínua)
encontrasse o ponto fixo 2. Assim, os cortes das imagens sagitais são gerados no eixo do trajeto do parafuso, o que permite uma correta mensuração. O trajeto do parafuso no plano axial foi determinado por uma linha reta que une o ponto fixo 1 (centro do eixo na imagem axial) ao ponto fixo 2 (Figuras 3 e 4).

Para a medição do AL, utilizou-se a imagem axial. Determinou-se a linha sagital vertebral, uma reta formada pela união do eixo central do processo espinhoso e o ponto médio de largura do canal vertebral, e, então, mediu-se o ângulo formado pelo trajeto do parafuso e essa linha (Figura 4).

O CP e o AC foram mensurados no corte sagital que passa pelo eixo do parafuso. Uma linha reta entre os pontos fixos 1 e 2 nesse corte, com início no ponto fixo 1 e término na cortical oposta, determina o máximo CP. O AC foi medido entre uma reta na placa terminal superior e o trajeto do parafuso no corte sagital inclinado (Figura 5).

Por fim, para determinar o DP, os eixos no corte sagital foram encontrados no ponto fixo 1, e o eixo horizontal foi inclinado até se igualar ao trajeto do parafuso desenhado. O DP foi medido como a distância entre duas retas paralelas ao trajeto que tangenciam o córtex medial e o córtex lateral do pedículo (Figura 6).

Análise Estatística

Foram avaliados 300 pedículos das vértebras lombares de L1 a L5. As médias e desvíos padrão dos parâmetros lineares e angulares foram calculados em cada nível e para os pacientes do sexo feminino e masculino separadamente. Os valores
foram comparados com os do teste \(t \) de Student após o teste de normalidade de Shapiro-Wilk.

A confiabilidade interobservador foi estimada utilizando o teste de Spearman, e foi considerada ruim para valores entre 0 e 0,21; fraca, entre 0,21 e 0,40; moderada, entre 0,41 e 0,60; boa, entre 0,61 e 0,80; e muito boa, entre 0,81 e 1,0.

Utilizamos o nível de significância estatística \(p < 0,05 \) para todos os parâmetros, e o programa Stata (Statacorp, College Station, TX, EUA), versão 14.1, para a análise estatística.

Resultados

Parâmetros Sagitais

O CP geral variou de 19 mm a 45 mm. A menor média encontrada foi no nível L5 do lado direito, com 2,65 cm em pacientes do sexo feminino, enquanto a maior média encontrada foi no nível L2 direito, medindo 3,36 cm em pacientes do sexo masculino. Houve uma tendência de diminuição nas medidas do CP conforme avançamos de proximal (L1) para distal (L5) (*Figura 7*). No entanto, não encontramos diferença estatística quando comparamos os valores do CP entre os pedículos dos dois lados e entre os pacientes de ambos os sexos.

A média do AC variou de 17,2° a 25,3°. As menores médias foram identificadas no nível L5, e as maiores, no nível L1. Não houve diferença estatística entre os sexos ou entre os lados direito e esquerdo, com uma tendência à diminuição nos valores médios conforme avançamos de proximal (L1) para distal (L5) (*Figura 8*).
Parâmetros Axiais
O DP geral variou de 2,3 mm a 7,2 mm. A menor média encontrada foi no nível L2 do lado direito em pacientes do sexo feminino, com 4,14 mm, enquanto a maior, no nível L5 do lado direito em pacientes do sexo masculino, com 6,1 mm. Houve uma tendência ao aumento nas medidas do DP conforme avançamos de proximal para distal (Figura 9). Não foi encontrada diferença estatística quando comparados os valores do DP entre os dois lados ou entre os pacientes de ambos os sexos.

A média do AL variou de 12,8° a 22,0°. A menor média foi identificada no nível L1 à esquerda em pacientes do sexo feminino, e a maior, no nível L4 à direita em pacientes do sexo masculino. Não houve diferença estatística entre os sexos ou os dois lados. Houve uma tendência ao aumento dos valores de proximal para distal (Figura 10).

A tabela 1 resume os parâmetros medidos em pacientes de ambos os sexos por nível da coluna lombar.

Confiabilidade Interobservador
Na análise da confiabilidade interobservador por meio do teste de Spearman, não foram evidenciadas diferenças na análise de nenhum dos parâmetros, tanto sagitais quanto axiais, e a confiabilidade foi qualificada como moderada.

Discussão
O trajeto do osso cortical com o uso de PTCs é uma técnica nova de instrumentação da coluna vertebral. Com seu trajeto caudal-cranial e medial-lateral, espera-se obter uma maior força de fixação, particularmente em pacientes com osso osteoporótico e idosos, pois baseia-se no maior contato do parafuso com osso cortical denso. Pelo que sabemos, esta é a primeira vez que as dimensões do trajeto do parafuso cortical em uma amostra da população brasileira são analisadas com relação ao sexo e ao nível da coluna vertebral.

Essa fixação tem se mostrado promissora, pois aumenta a força de arrancamento em 30%, e a resistência dos parafusos e o torque insercional in vivo em 1,7 vezes em comparação com a fixação com PTPs. Matsukawa et al. em sua avaliação de elementos finitos, encontraram que os PTCs apresentam uma força de fixação por parafuso individual maior do que os PTPs, e uma rigidez adequada ao teste de flexo-extensão em uma montagem de vértebras pareadas, apesar de a montagem com os PTPs ser superior quando avaliadas a flexão lateral e a rotação axial. Por outro lado, Baluch et al. relataram que os PTCs têm maior resistência ao teste de perda por fadiga quando comparados com os PTPs.

Além das superioridades biomecânicas dos parafusos, a técnica exige menor dissecação de partes moles devido ao seu trajeto medial-lateral. Com uma abordagem minimamente invasiva, diminui-se a trauma e a necrose da musculatura multifida, fato relacionado com a dor lombar persistente após a cirurgia, bem como com uma reabilitação mais precoce.

A metaanálise realizada por Hu et al. evidenciou que a fixação com PTCs apresenta menor perda sanguínea, menor tempo de internação, menor incidência de doença do nível adjacente, e menor comprimento de incisão comparado com a fixação com PTPs. Porém, não há diferença estatísticas entre as duas técnicas com relação aos protocolos de avaliação clínica, incidência de complicações peroperatórias, ou no tempo cirúrgico. Ainda assim, Sakaura et al. relataram bons resultados no seguimento de pacientes com espondilolistese tratados com arthrodes por via minimamente invasiva, embora essa técnica não tenha demonstrado superioridade estatística quando comparada com a fixação com PTPs. Para pacientes obesos, a fixação com PTCs também pode ser uma técnica vantajosa devido ao profundo tecido adiposo da região lombar, o que torna desafiador a inserção dos PTPs.
O PTC provou-se ser vantajoso em evitar a violação da cortical medial ou lateral do pedículo quando comparado ao PTP, preservando, assim, a integridade das estruturas neurais, embora complicações tenham sido relatadas, principalmente no início da curva de aprendizado da técnica. Outras complicações potenciais são a soltura precoce dos implantes, infecção, fratura da pars interarticularis ou do pedículo, e lesão da raiz nervosa. Uma desvantagem do PTC consiste na limitação de realizar montagens híbridas devido ao fato de as cabeças dos parafusos não estarem alinhadas com os PTPs, dificultando a colocação da haste.

Embora essa técnica já tenha ganhado certa popularidade nos últimos anos, existem poucos estudos que avaliam a morfologia do trajeto e tamanho dos implantes adequados para diferentes populações visando uma cirurgia mais segura e menor taxa de complicações. O primeiro grande estudo com análise morfométrica por meio de exame de TC foi realizado por Matsukawa et al. em uma amostra da população japonesa, que ajudou a desenvolver a técnica hoje consistente na utilização de PTC, para diferentes populações. Quanto ao DP, observamos uma grande variabilidade nos tamanhos: Matsukawa et al. encontraram ângulos variando entre 4,5 mm e 5,0 mm, e nossos resultados variaram entre 3,16 mm e 3,59 mm, ou seja, semelhante aos diâmetros dos implantes utilizados. Em nosso estudo, encontramos valores entre 4,3 mm e 5,9 mm, e Zhang et al. também apresentou diferenças entre os estudos, uma vez que nossos resultados variaram entre 4,3 mm e 5,3 mm.

Nível	Comprimento médio do parafuso (mm)	Diâmetro médio do parafuso (mm)	Ângulo lateral médio (°)	Ângulo cranial médio (°)
L1	3,18 ± 0,55	4,4 ± 0,77	14,04 ± 3,28	24,53 ± 3,59
L2	3,19 ± 0,37	4,30 ± 0,68	14,13 ± 2,88	22,54 ± 3,16
L3	2,98 ± 0,46	4,36 ± 0,81	17,64 ± 3,25	27,26 ± 3,34
L4	2,81 ± 0,38	4,61 ± 0,56	20,84 ± 3,76	21,6 ± 3,47
L5	2,74 ± 0,29	5,88 ± 0,64	20,82 ± 3,98	17,52 ± 3,0

Portanto, a descrição da técnica de medição do presente estudo leva em consideração o trajeto ideal do parafuso, alterando o eixo do corte sagital para coincidir com o trajeto do parafuso; assim, conseguimos obter a medida exata dos parâmetros. Para os parafusos com comprimento e diâmetro aumentados podem violar as cílios, e onde o disco vertebral. Portanto, consideramos fundamental a avaliação radiológica prévia ao procedimento cirúrgico envolvendo a utilização do PTC.

Embora nossos resultados não apresentem diferença estatística entre os sexos, observa-se uma média maior nos parâmetros avaliados em pacientes do sexo masculino, fato que pode justificar-se pelo tamanho relativamente pequeno da amostra. A limitação do presente estudo; porém, este é o primeiro estudo a englobar uma amostra da população brasileira, com alto nível de miscigenação, e a descrever uma técnica pormenorizada da técnica de medição.

Conclusão

O parafuso de trajeto do osso cortical apresenta uma variação em suas características morfométricas relacionadas com o trajeto anatômico de inserção, quando avaliamos as diferentes vértebras lombares, não apresentando na amostra estudada diferença estatística entre os sexos. Assim, recomendamos um estudo pré-operatório de imagens detalhado para reduzir os riscos cirúrgicos relacionados à técnica.

Rev Bras Ortop Vol. 57 No. 1/2022 © 2022. Sociedade Brasileira de Ortopedia e Traumatologia. All rights reserved.
Suporte Financeiro
Não houve suporte financeiro de fontes públicas, comerciais, ou sem fins lucrativos.

Conflito de Interesses
Os autores declaram não haver conflito de interesses.

Referências
1 Cook SD, Barbera J, Rubi M, Salkeeld SL, Whitecloud TS 3rd. Lumbo-sacral fixation using expandable pedicle screws. an alternative in reoperation and osteoporosis. Spine J 2001;1(02):109–114
2 Mobbs RJ. The “medio-latero-superior trajectory technique”: an alternative cortical trajectory for pedicle fixation. Orthop Surg 2013;5(01):56–59
3 Phan K, Ramachandran V, Tran TM, et al. Systematic review of cortical bone trajectory versus pedicle screw techniques for lumbar spinal spine fusion. J Spine Surg 2017;3(04):679–688
4 Kojima K, Asamoto S, Kobayashi Y, Ishikawa M, Fukui Y. Cortical bone trajectory and traditional trajectory—a radiological evaluation of screw-bone contact. Acta Neurochir (Wien) 2015;157(07):1173–1178
5 Mai HT, Mitchell SM, Hashmi SZ, Jenkins TJ, Patel AA, Hsu WK. Differences in bone mineral density of fixation points between lumbar cortical and traditional pedicle screws. Spine J 2016;16(07):835–841
6 Zhang R, Gao H, Li H, et al. Differences in bone mineral density of trajectory between lumbar cortical and traditional pedicle screws. J Orthop Surg Res 2019;14(01):128–135
7 Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine (Phila Pa 1976) 2014;39(04):E240–E245
8 Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K. Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. J Neurosurg Spine 2015;23(04):471–478
9 Baluch DA, Patel AA, Lullo B, et al. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine (Phila Pa 1976) 2014;39(22):E1297–E1302
10 Matsukawa K, Yato Y, Nemoto O, Imabayashi H, Asazuma T, Nemoto K. Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech 2013;26(06):E248–E253
11 Zhang H, Ajiboye RM, Shamie AN, Wu Q, Chen Q, Chen W. Morphometric measurement of the lumbar canal spine for minimally invasive cortical bone trajectory implant using computed tomography. Eur Spine J 2016;25(03):870–876
12 Senolgu M, Karadag A, Kinali B, Bozkurt B, Middlebrooks EH, Grande AW. Cortical Bone Trajectory Screw for Lumbar Fixation: A Quantitative Anatomic and Morphometric Evaluation. World Neurosurg 2017;103:694–701
13 Hung CW, Wu MF, Hong RT, Weng MJ, Yu GF, Kao CH. Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg 2016;145:41–45
14 Chen YR, Deb S, Pham L, Singh H. Minimally Invasive Lumbar Pedicle Screw Fixation Using Cortical Bone Trajectory - A Prospective Cohort Study on Postoperative Pain Outcomes. Cureus 2016;8(07):e714–e726
15 Hu JN, Yang XF, Li CM, Li XX, Ding YZ. Comparison of cortical bone trajectory versus pedicle screw techniques in lumbar fusion surgery: A meta-analysis. Medicine (Baltimore) 2019;98(33):e16751–e16758
16 Sakaura H, Miwa T, Yamashita T, Kuroda Y, Ohwada T. Cortical bone trajectory screw fixation versus traditional pedicle screw fixation for 2-level posterior lumbar interbody fusion: comparison of surgical outcomes for 2-level degenerative lumbar spondylolisthesis. J Neurosurg Spine 2018;28(01):57–62
17 Santoni BG, Hynes RA, McGilvray KC, et al. Cortical bone trajectory for lumbar pedicle screws. Spine J 2009;9(05):366–373
18 Dayani F, Chen YR, Johnson E, et al. Minimally invasive lumbar pedicle screw fixation using cortical bone trajectory - Screw accuracy, complications, and learning curve in 100 screw placements. J Clin Neurosci 2019;61:106–111
19 Patel SS, Cheng WK, Danisa OA. Early complications after instrumentation of the lumbar spine using cortical bone trajectory technique. J Clin Neurosci 2016;24:63–67