INTRODUCTION

Several gecko species (e.g. Hemidactylus frenatus and Gehyra mutilata) are often found in and around houses. These, so-called ‘house’ geckos, are very well adapted to urban life and are often observed feeding opportunistically on insects attracted to artificial lights at night (Tkaczenko et al., 2014). This provides them an easily accessible food source in locations generally lacking predators. In these conditions they reach higher densities in urban settings in comparison to their natural habitats (Weterings et al., 2018; Perry & Fisher, 2006).

Besides this interesting adaptation, common insectivorous gecko species have been reported recently to feed on food other than insects (Weterings, 2017; Weterings & Weterings, 2018; Tanalgo & Hughes, 2017). For example, Hemidactylus platyurus and H. frenatus were observed feeding on rice in a bin (Weterings, 2017) and Gekko monochirius feeding on bread from a plastic bag (Weterings & Weterings, 2018). To get an impression of how common this opportunistic feeding behaviour is among various insectivorous house-dwelling gecko species, we undertook an internet-based survey with ecologists, herpetologists and reptile enthusiasts that is reported here.

METHODS

We developed a short online questionnaire that participants could complete when they observed a gecko feeding on non-insect foods. It consisted of a short introduction to ensure that only non-insect foods were recorded followed by four questions:

1. Where did the gecko feed?
 a. In a garbage bin
 b. On a table
 c. On dirty dishes
 d. Other...

2. What did the gecko consume?
 a. Insects or other invertebrates
 b. Fruit or vegetables
 c. Rice
 d. Bread
 e. Eggs
 f. Unsure
 g. Other...

3. What species did you observe feeding on non-insect food items?
 a. Asian house gecko (Hemidactylus frenatus)
 b. Mediterranean house gecko (H. turcicus)
 c. Tropical house gecko (H. mabouia)
 d. Flat-tailed house gecko (H. platyurus)
 e. Brooke’s house gecko (H. brookii)
 f. Indo-Pacific gecko (H. garnotii)
 g. Common four-clawed gecko (G. mutilata)
 h. Other unknown Hemidactylus species
 i. Not sure what species
 j. Others...

4. Where did you make the observations?
 4.1 Locality (village, town, park, research station...)
 4.2 District/County
 4.3 Province/State
 4.4 Country

The first three questions were multiple-choice, however, participants were given the freedom to submit alternative responses. The third question was accompanied by photographs of the various common house gecko species.

The questionnaire was shared on the ECOLOG listserver, on www.fieldherpforum.com, and on several Facebook pages and groups including the Facebook groups of the Societa Europaea Herpetologica and HerpResearch among others. The results of the questionnaire were plotted using the GGPLOT2 (Wickham, 2009) library in RStudio v1.1.383 (RStudio, 2017) built on R v3.5.3 (R Development Team, 2019).
RESULTS

We received a total of 80 responses of which 74 included gecko feeding on non-insect foods. Most responses came from south-east Asia and the United States of America (Fig. 1). In total ten species, which are considered insectivorous, were observed feeding on non-insect foods. The species *H. platyurus*, *H. frenatus* and *G. mutilata* accounted for 72% of the observations (Fig 2). The most commonly consumed non-insect food was cooked rice followed by fruit and vegetables and baked goods such as bread, cookies and crackers. Some geckos were observed feeding on very particular food items. *P. laticauda* was, for example, observed feeding on an alcoholic tropical drink in Hawaii. *Gehyra mutilata* was observed eating garlic sauce from a bowl on a table top in Indonesia. On Vanuatu, a tropical paradise in the Pacific Ocean, *H. frenatus* was seen eating chocolate cream from a cake. Geckos were mostly observed feeding on the alternative food items on table tops (41%), followed by dirty dishes (11%), floors (9%), garbage bins (7%), walls (3%) and a variety of other locations (30%).

DISCUSSION

Our survey shows that opportunistic feeding in geckos is more common than the incidental reports suggest (Weterings, 2017; Tanalgo & Hughes, 2017; Weterings & Weterings, 2018). Such feeding has been recorded for all common invasive house geckos, except for *Hemidactylus garnotii*, and also from other house-dwelling gecko species that are not considered invasive. These observations have largely come from south-east Asia, a direct consequence of the professional network of the authors, consequently Africa and South America are considered to be under-represented. There have been several dietary studies of house geckos including *H. frenatus*, *H. mabouia*, *H. platyurus*, *G mutilata* and *H. turcicus* (Tyler, 1961; Saenz, 1996; Ramires & Fraguas, 2004; Rocha & Anjos, 2007; Diaz Perez et al., 2012; Tkaczenk

Figure 1. Map showing the location (black dots) were geckos were observed feeding on non-insect food. Circles show areas where the black dots overlap, numbers indicate the number of observations within a circle.

Figure 2. A bar chart showing the number of observations of non-insect food for different gecko species. The pie chart shows each food type as a percentage of all observations.
et al., 2014; Barragán-Ramírez et al., 2015). In most of these studies, only insects were found in the diet although a few mention the presence of vegetal items within the stomach content (Iturriaga & Marrero 2013; Barragán-Ramírez et al., 2015). In these cases, vegetal content was considered to be ingested accidentally, i.e. not part of the gecko’s diet. However, existing research into house gecko diet may be biased towards recording insects for two reasons. First, when gecko foraging is observed this is often on walls where artificial lighting attracts large numbers of insects (Tkaczzenko et al., 2014; Aowpol et al., 2006). Second, when examining stomach contents, it is relatively easy to identify the hard exoskeleton of arthropods but identifying fruit, vegetables, ice-cream or dog-food from the stomach-gunk is often impossible.

Opportunistic behaviours and adaptability to new and changing environmental conditions facilitate the rapid colonisation of species in new habitats (Whitney & Gabler 2008, Chapple et al., 2012). Many of the gecko species reported in this study can be found in regions outside their native range and so are considered highly invasive (Weterings & Vetter, 2017). The opportunistic feeding behaviour that is observed in these gecko species may be an important factor in successful invasion. During periods of low insect abundance, for example during accidental transport (stowaways), these species are able to eat other foods so allowing them to survive.

REFERENCES

Aowpol, A., Thirakhupt, K., Nabhitanbhatana, J. & Voris, H. K. (2006). Foraging ecology of the Tokay gecko *Gekko gecko* in a residential area in Thailand. *Amphibia-Reptilia* 27: 491–503.

Barragán-Ramírez, J. L., Reyes-Luis, O. E., de Jesús Ascencio-Arrayaga, J., Navarrete-Heredia, J. L., & Vásquez-Bolaños, M. (2015). Diet and reproductive aspects of the exotic gecko *Gehyra mutilata* (Wiegmann, 1834) (Sauria: Gekkonidae) in the urban area of Chapala, Jalisco, Mexico. *Acta Zoológica Mexicana* 3: 67–71.

Chapple, D., Simmonds, S. M. & Wong, B. B. M. (2012). Can behavioral and personality traits influence the success of unintentional species introductions? *Trends in Ecology & Evolution* 27: 57–64.

Díaz Perez, J. A., Davila Suarez, J. A., Alvarez Garcia, D. M. & Sampedro Marin, A. C. (2012). Dieta de *Hemidactylus frenatus* (Sauria: Gekkonidae) en un área urbana de la región Caribe Colombiana. *Acta Zoológica Mexicana* 28: 613–616.

Iturriaga, M. & Marrero, R. (2013). Feeding ecology of the Tropical House Gecko *Hemidactylus mabouia* (Sauria: Gekkonidae) during the dry season in Havana, Cuba. *Herpetology Notes* 6: 11–17.

Perry, G. & Fisher, R. (2006). Night lights and reptiles: observed and potential effects. In: *Ecological Consequences of Artificial Night Lighting* 169–191 pp. (C. Rich, T. Longcore, Eds.). Island Press, Washington.

Ramires, E. N. & Fraguas, G. M. (2004). Tropical house gecko (*Hemidactylus mabouia*) predation on brown spiders (*Loxosceles intermedia*). *Journal of Venomous Animals and Toxins Including Tropical Diseases* 10: 185–190.

Weterings, R. Development Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Whitney, K. D. & Gabler, C. A. (2008). Rapid evolution in a nocturnal invasive alien lizard species, *Hemidactylus mabouia* Moreau de Jonnès, 1818 (Gekkonidae), living in an outcrop rocky area in southeastern Brazil. *Revista Brasileira de Biologia* 67: 485–91.

Weterings, R. & Weterings, P. (2018). Observations of the warty house gecko, *Gekko monochrus* (Schlegel, 1836), feeding on bread. *Herpetology Notes* 11: 319–320.

Weterings, R. (2017). Observations of an opportunistic feeding strategy in flat-tailed house geckos (*Hemidactylus platyurus*) living in buildings. *Herpetology Notes* 10: 133–135.

Weterings, R. & Vetter, K. C. (2017). Invasive house geckos (*Hemidactylus spp.*): their current, potential and future distribution. *Current Zoology* 64: 559–573.

Weterings, R., Umponstira, C. & Buckley, H. L. (2018) Landscape variation influences trophic cascades in dengue vector food webs. *Science Advances* 4: eaap9534

Accepted: 6 August 2019