Optimization of regeneration and transformation system in finger millet (Eleucine coracana L.)

Dabhi Kirti, Patel Swati and Jha Sanjay

DOI: https://doi.org/10.22271/chemi.2020.v8.i3w.9441

Abstract
A proficient in vitro regeneration protocol and transformation system is a requisite for genetic improvement of finger millet. Finger millet (Eleucine coracana L.) GN-4 was used for optimization of regeneration protocol. Using seed as a explants, highest frequency of callus induction was observed on MS supplemented with 2,4-D (1.0 mg.L⁻¹), Proline (500 mg.L⁻¹) and Casein enzyme hydrolysate (300 mg.L⁻¹). Among the different combinations used for shoot initiation, MS with kinetin (1.50 mg.L⁻¹) and BAP (0.50 mg.L⁻¹) produced maximum number of shoots (11.00) having highest shoot length (11.2 cm). Within six days, maximum numbers of roots (12.3) were obtained on half strength MS basal media fortified with NAA (1 mg.L⁻¹). In hardening process, maximum survival (44.51%) of plantlets with minimum days for new sprouting (4.4 days) was reported in vermicompost: sand: cocopeat (1:1:1 v.v) mixture. Agrobacterium tumefaciens mediated genetic transformation system was optimized and putative transgenic plants were confirmed by PCR. When the effect of the age of the callus and co-cultivation duration were evaluated, forty five days old co-cultivated callus for five days yielded 1.33% frequency of transformation.

Keywords: Agrobacterium mediated transformation, finger millet, indirect regeneration.

Introduction
Finger millet is an allotetraploid (2n=4x=36), grown globally on more than 4 million hectares both in South East Asia and Africa, mainly India and Nepal [1]. Finger millet, commonly known as “Ragi” is an important minor cereal belongs to Poaceae family [2] and cultivated extensively in many regions of India [3]. Total production of millet grains was 762,712 metric tons and the top producer was India with an annual output of 334,500 tons contributing 43.85% of total in year 2013. In India, finger millet production is on 6th after wheat, rice, maize, sorghum and bajra [4]. It constitutes about 81% of the minor millets produced in India, mainly grown in the states of Uttar Pradesh, Bihar, Tamil Nadu, Karnataka and Andhra Pradesh [5].

Finger millet is most important crop for people having low income because it is highly rich in calcium (0.38%), protein (6%–13%), dietary fiber (18%), carbohydrates (65%–75%), minerals (2.5%–3.5%), phytates (0.48%), tannins (0.61%), phenolic compounds (0.3–3%) and trypsin inhibitory factors, and hence could be used as nutraceuticals also [5]. Finger millet is also known for its other benefits to health like it is anti-diabetic, anti-tumorogenic, atherosclerogenic antioxidant and antimicrobial properties [6]. Finger millet is high in dietary fiber, also has medicinal attributes and used for making special foods for diabetics, gluten-free food for people suffering from celiac disease and weaning foods for infants [6]. As it is economically viable and also possess all these properties, it will have a immense future in the nutraceutical industry for reduction of chronic pathologies. As infants, age old females and sick person needs more calcium in their diet, it is used in preparations of foods for them [7].

Commercial production of finger millet products like cakes, biscuits, puddings, pasta, noodles, papad etc. are done by small scale industries, therefore it is considered as a industrially important crop. Most finger millet yield loss is due to fungal infection [8] and it is also susceptible to various abiotic stresses, particularly drought and salinity stress, in the field [9]. Genetic improvement of finger millet is a way to combat with this loss. Therefore it is indeed to have a in vitro regeneration pathway and a good transformation protocol for finger millet improvement.
Therefore here we attempted in vitro plant regeneration and transformation study in finger millet using hpt II as a marker gene to develop transgenic using Agrobacterium mediated gene transfer method.

Materials and method

Seed material of finger millet genotype GN-4 obtained from Hill Millet Research station, Waghai (Dang), NAU, Gujarat, India.

Surface sterilization of explants

Seeds were surface sterilized in 0.1% (w/v) mercuric chloride for 6 minutes followed by 4-5 times rinses in sterile deionized water. Seven to eight seeds were placed in petriplates containing basal MS medium [10] and incubated in the dark condition for germination.

Callus induction and shoot initiation

MS basal medium in the presence of different plant growth regulators like 2,4-D (1.0 mg.L⁻¹), Proline (100-700 mg.L⁻¹) and Casein enzyme hydrolysate (CEH) (100-700 mg.L⁻¹) used separately and in combination. Plant growth regulators like BAP and Kinetin as well as in combinations of Kinetin (0.5-2.0 mg.L⁻¹), BAP (0.5 mg.L⁻¹) and NAA (0.5-2.0 mg.L⁻¹) were tried to obtain maximum shoot induction and multiplication. Murashige and Skoog (MS) medium containing 3% (w/v) sucrose and 0.8% agar was used in all the experiments. Plant growth regulators at different concentrations were incorporated into the basal media and pH was adjusted to 5.8 with 1 N NaOH or 1 N HCl before autoclaving at 121°C and 15 lbs.Inch⁻². All the cultures were incubated in a culture room at a temperature of 25 ± 2°C with relative humidity at 55 ± 5 per cent and plates were kept in dark condition for callus induction. For shoot initiation and multiplication, cultures were exposed to a photoperiod of 16 h light and 8 h dark with 55±5% of relative humidity (RH). From the different plant growth regulators and their combinations which showed highest response in terms of shoot induction were used to study effect of subculturing and multiple shooting.

In vitro rooting and acclimatization

The trial on in vitro rooting was conducted on half MS medium solidified with 0.8 per cent agar. Each medium was supplemented with different concentrations of NAA (0.05-2.0 mg.L⁻¹) and IBA (0.05-2.0 mg.L⁻¹). After four weeks of incubation on rooting medium, the in vitro raised plantlets of finger millet with well-developed 10-15 roots were taken out from the culture tubes. The roots were washed thoroughly to remove adhering agar. The rooted plantlets of finger millet were then transplanted in plastic cups containing combination of sand, vermicompost and cocopeat after drenching it with 1.0 per cent bavistin and covered with cups. These plantlets were irrigated initially with one-third strength MS medium for five days. These were allowed to grow initially in culture room conditions (25 ± 2 °C, 55 ± 5% RH, under 16h of photoperiod). Cuts were removed after the new sprouting of leaves and these plantlets were hardened in soil for more growth.

Bacterial strain and plasmid

Rs-AFP2 gene was amplified from the plasmid pFAJ3105 [11] and cloned at BamHI site of pAHC17 under maize Ubiquitin (Ub1) promoter [12], to obtain pUb1-Rs. Plasmid pUb1-Rs was digested and cloned at HindIII site in pCAMBIA-1305.2 (Cambia, Australia) to obtain pUb1-Rs-T [13]. The binary vector (pUb1-Rs-T) was mobilized into Agrobacterium tumefaciens strain LBA4404 harbouring pSB1 [14].

Hygromycin sensitivity test

The test was performed in order to check the sensitivity of cultured tissues to hygromycin. Different concentration of hygromycin (0, 20, 40, 60, 80,100 mg.L⁻¹) were added to pre sterilized molten MS medium by filter sterilizations through 0.22 µm pore size membrane filter. The treatment devoid of hygromycin was used as a control. Isolated callus were inoculated at different concentrations of hygromycin. Effect of the antibiotic concentration on callus was observed to determine its optimum concentration in selection media.

Agrobacterium mediated transformation and regeneration of transgenic plants

Agrobacterium tumefaciens strain harbouring hpt II marker gene was used for transformation. Single, isolated colonies from YEB [15] medium plates were inoculated individually in 50ml YEP [15] medium containing 50mg.L⁻¹ kanamycin and 10mg.L⁻¹ rifampicin and was grown at 28°C with 200 rpm in an incubator shaker (Kuhner Germany). The culture was harvested at 0.4-0.6 O.D. at 600 nm and was utilized for transformation experiments. The culture was centrifuged at 5000 × g for 10 minutes. The pellet was resuspended in an induction medium (NH₄Cl 1.0 g.L⁻¹, MgSO₄·7H₂O 0.3 g.L⁻¹, KCl 0.15 g.L⁻¹, CaCl₂ 0.1 g.L⁻¹, FeSO₄·7H₂O 0.0025 g.L⁻¹, KH₂PO₄ 0.272 g.L⁻¹, 2N morpholin ethanol sulfonic acid [MES] 0.390 g.L⁻¹, Glucose 5.0 g.L⁻¹ and pH should be maintained 7.2) with 100μM acetosyringone and incubated for 4 hour in an incubator shaker at 175 rpm and 26°C temperature. After this incubation period, the bacteria was centrifuged at 5000 rpm for 10 minutes and the pellet was resuspended in liquid co-cultivation media i.e liquid MS medium having MES 193 mg.L⁻¹, Glucose 2% and pH 5.65 incorporated with 100 μM acetosyringone and grown for 2 hours at 26°C and 150 rpm in an incubator shaker. This culture was further used for infection of finger millet callus.

Infection and co-cultivation of the explants

For infection, 30, 45 and 60 days old callus on MS medium were taken as a explants. The latter were shacked with Agrobacterium culture and excess moisture was removed by blotting with sterilized Whatman No.1 filter paper. After infection, explants were put on solid co-cultivation media in dark for 3, 5 and 7 days respectively.

Selection of putative transgenic plant

After co-cultivation, explants were washed six times with sterile distilled water containing 250 mg.L⁻¹ cefotaxime. Washed calli were blotted dry using a sterile paper towel and cultured on the selection medium consisting of MS with 250mg.L⁻¹ cefotaxime and 40 mg.L⁻¹ hygromycin. Callus which was not inoculated with Agrobacterium tumefaciens were placed on the selection medium served as a negative control. The petridishes were incubated at a temperature of 28°C under an 18 hours photoperiod and sub-cultured every 2 weeks for a period of 7 weeks. The resistant calli obtained after 7 weeks, were transferred to shoot and root regeneration media respectively and used for molecular analysis.
Confirmation of putative transformed plants through PCR

Genomic DNA isolated from leaves of plants by the CTAB method with minor modification [10]. Plasmid DNA was isolated by standard alkaline lysis method [10]. PCR amplification of a hptII gene was carried out in Biometra thermal cycler using specific primers (Forward primer: 5’CCCTGATGCCATCCGAAGACG3’ and the reverse primer: 5’GAGGACACGTGATGCATCCC 3’) to ensure integration of gene. The PCR reaction mixture consisted of 50 ng genomic DNA in a final volume of 20 µL containing 1X PCR buffer, 1.2 µL MgCl₂, 250 µM dNTPs, 1 µL each of primer and 0.3 units of Taq DNA polymerase. Amplification was carried out by Initial denaturation at 94 °C for 4 min followed by 30 amplification cycle at 94 °C for 50 sec, 53 °C for 1, 72 °C for 1 min. After completion of the 30 cycles, final extension was carried out at 72 °C for 5 min. PCR products were separated by electrophoresis with a 1.2% agarose gel and analysed.

Statistical analysis

Completely Randomized Design (CRD) was used for all the experiments. The data were subjected to analysis of variance (ANOVA) and treatment means were compared using the critical difference (CD) at a 1% level of significance [17].

Results

Increasing population demands higher production of a nutritious food like finger millet. In Indian scenario finger millet yield losses are mainly due to disease manifestation. Present investigation describes successful protocol of in vitro regeneration and Agrobacterium mediated gene transfer, through callus derived from seeds in finger millet plants.

In vitro callus induction from finger millet seeds

Finger millet (genotype GN-4) seeds from the field are generally found with loads bacterial and fungal spores. Therefore it is mandatory to do surface sterilization. Mercuric chloride (HgCl₂) for 6 min which is found to be effective sterilant to reduce the risk of contamination (data not shown) and the successful establishment of the explants in the culture medium. As 2, 4-D is found to be most suitable for induction of callus in cereals [18], it was used in different concentration. Callus formation was induced by using 45 days old seeds (Figure 1a) and applying different concentration of 2, 4-D with combination of proline and casein enzyme hydrolysate (CEH). After 1 week of incubation in dark, soft watery white callus formation has been started from the seeds. Maximum 57.24% callus induction was observed on MS media supplemented with 2, 4-D 100 mg/L, proline 500mg/L and CEH 300mg/L from seeds after 28 days of incubation in dark c) Callus maintenance d) Shoot induction and multiplication on MS + BAP (0.50 mg/L)+ Kinetin (1.50 mg/L)+ NAA (1.0 mg/L) d) Shoot elongation e) In vitro rooting f) Primary hardening of regenerated plants g) Growth of plant in soil

Table 1: Callus formation from seed of finger millet in presence of combinations of different growth regulators

Table 1: Callus formation from seed of finger millet in presence of combinations of different growth regulators

Tr. No.	Plant growth regulators (mg.L⁻¹) with MS	(%) of callus formation		
	2,4-D	Proline	CEH	
F₁	1.0	100	100	29.99
F₂	1.0	100	300	32.58
F₃	1.0	100	500	33.00
F₄	1.0	100	700	34.45
F₅	1.0	300	100	36.87
F₆	1.0	300	300	39.04
F₇	1.0	300	500	42.32
F₈	1.0	300	700	45.57
F₉	1.0	500	100	50.78
F₁₀	1.0	500	300	57.24
F₁₁	1.0	500	500	45.19
F₁₂	1.0	500	700	41.75
F₁₃	1.0	700	100	38.65
F₁₄	1.0	700	300	33.83
F₁₅	1.0	700	500	33.41
F₁₆	1.0	700	700	28.41

Effect of serial sub culturing on multiple shoot regeneration through callus

To establish the exact number of subcultures to produce maximum number of superior quality plants, the best growth regulator combination of previous experiment were used for three cycles of subculture.

In vitro rooting and hardening

Plants having well established roots were removed, washed and further were transplanted in poly bags having different potting mixture after drenching it with 1.0 per cent bavistin. Maximum survival (44.51%) of plantlets with minimum days
for new sprouting (4.4 days) was reported in Vermicompost: Sand: Coco peat (1:1:1 v/v) (Supplementary table 1).

Production of Putative Transgenic Plants

Hygromycin sensitivity was checked to determine necessary selection condition for recovery of transformants. After this study 40 mg.L⁻¹ hygromycin was used to allow selected growth of transformed calli and killing non transformants. Under hygromycin selection pressure, most of the callus killed and some of the callus that was initially green, killed gradually, leaving only a few green callus (Figure 2 a, b). Rooting of the transformed shoot apices occurred when they were transferred from hygromycin selection medium to hygromycin free medium (Figure 2d). Co-cultivation duration for five days on an average gave maximum frequency of transformation (1.33%) while co-cultivation period for three days and seven days gave 0.33% and 1% frequency of transformation. No transformants obtained with thirty days and seven days gave 0.33% and 0.50% transformation (1.33%) while co-cultivation for five days on an average gave maximum frequency of transformation.

Figure 2: Selection of putative transgenic plant a) Finger millet calli on a selective media after Agrobactrium infection b) Putative transformed callus and shoot formation on shoot induction media c) Shoot multiplication d) Root initiation e, f) Primary and secondary hardening of putative transformed plant.

Table 2: Effect of different combination of auxins and cytokinins for shoot and root formation from callus

Tr. No.	Cytokinin + Auxin (mg.L⁻¹) with MS	Multiplication (%)	No. of shoots	Shoot length (cm)		
	BAP	Kin	NAA			
E1	0.50	0.50	0.50	20.65	3.3	6.7
E2	0.50	0.50	1.00	24.26	3.8	5.3
E3	0.50	0.50	1.50	23.31	5.6	6.5
E4	0.50	0.50	2.00	22.79	5.0	6.3
E5	0.50	1.00	0.50	24.18	4.4	5.0
E6	0.50	1.00	1.00	27.89	5.8	8.0
E7	0.50	1.00	1.50	25.92	6.0	8.7
E8	0.50	1.00	2.00	27.66	7.0	6.3
E9	0.50	1.50	0.50	32.37	8.3	8.5
E10	0.50	1.50	1.00	39.30	11.0	11.2
E11	0.50	1.50	1.50	34.72	9.6	7.9
E12	0.50	1.50	2.00	30.44	8.0	6.6
E13	0.50	2.00	0.50	26.00	6.4	5.8
E14	0.50	2.00	1.00	22.79	5.8	6.0
E15	0.50	2.00	1.50	18.96	4.6	5.6
E16	0.50	2.00	2.00	15.83	3.1	6.5
S. Em. ±	0.30	0.20	0.30			
C.D. at 5%	0.87	0.58	0.88			
C. V. %	1.99	2.43	3.47			

Discussion

Finger millet variety GN-4 is having a greater yield but major breakthrough is fungal blast. Therefore for development of resistance to fungal pathogen Rs-AFP2 gene was successively transferred in finger millet. Here indirect organogenesis method was used for in vitro regeneration using seeds as explants. Less reports of callus induction was obtained from culturing of seeds, but many have reported induction of embryogenic callus from shoot tip as explants. CEH is acting as a source of calcium, micronutrients and vitamins, while proline is used for osmotic adjustment and free radical scavenging [23]. BAP in the concentration of 0.50 mg.L⁻¹ and Kinetin in 1.50 mg.L⁻¹ were effective for shoot initiation and multiplication from soft callus. Further NAA (2.00 mg.L⁻¹) was found to best auxin for good root number and quality within 8.7 days. Satish et al. 2015[24] has reported best rooting in half-strength MS medium containing 2.8 μM indole-3-acetic acid (IAA) in finger millet cultivar 'CO (Ra)-14', 'Pyur-2', and 'Try-1'. In present study, within six days 47.49% of root formation was there using half strength MS and NAA. Combinations of auxins and cytokinins are most often used in plant regeneration experiments, with the actual concentration of

Table 3: Effect of auxins and the strategy of media on induction of in vitro rooting in finger millet

Tr. No.	Auxin (mg.L⁻¹) with ½ MS	Rooting (%)	Days taken for root initiation	No. of roots/plant	
	NAA	IBA			
R₁	-	-	34.04	7.7	5.3
R₂	0.50	-	43.66	7.3	6.3
R₃	1.00	-	47.49	6.0	12.3
R₄	1.50	-	45.19	6.3	7.0
R₅	2.00	-	49.99	8.7	8.3
R₆	-	0.50	29.33	9.0	5.7
R₇	-	1.00	26.08	8.3	4.7
R₈	-	1.50	27.74	9.7	5.0
R₉	2.00	33.83	7.7	4.3	
S. Em. ±	0.51	0.26	0.25		
C.D. at 5%	1.47	0.77	0.72		
C. V. %	2.34	3.76	2.94		
these phyto-hormones varying from genotype to genotype [25]. Among the different subcultures, multiplication rate gradually increased till third subculture afterwards it showed declining trend and even the length of shoot after third subculture decreased gradually, it is similar to the findings of [26, 27]. Soil, sand and vermiculite in equal proportion for hardening and obtained 60% survivability in six genotypes of finger millet [28]. Since finger millet is a monocot plant it has low wound response for Agrobacterium infection, and the absence of associated activation of virulence genes in this plant causes a lower transformation efficiency compared with dicot plants [2]. In present investigation, it was found that several parameters like age of explants and days of co-cultivation also effect frequency of transformants.

Conclusion

A reproducible in vitro regeneration and transformation protocol has been developed using seed derived callus. PCR analysis of R1 generation indicates stable inheritance of transgene in finger millet. Till date very limited protocols are available, so this study proved the utility of development of transgenic plants with other agronomically important traits which enhances commercial cultivation of finger millet.

Acknowledgments: The author conveys heartfelt thanks to Dean PG Studies, Navsari Agricultural University, Navsari for providing necessary funds and facilities for the present research work.

References

1. Upadhyaya HD, Gowda CL, Pandir RP, Reddy VG, Singh S. Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genet. Resour. Crop Evol. 2006; 53:679-685.
2. Dida MM, Srinivasachary S, Ramakrishnan JL, Bennetzen MD, Devos K. Population structure and diversity in finger millet (Eleusine coracana L.) germplasm. Tropical Plant Biol. 2014; 1:131-141.
3. Chandra D, Chandra SP, Sharma AK. Review of Finger millet (Eleusine coracana L. Gaertn): A power house of health benefitting nutrients. Food Sci. Human Wellness. 2016; 5:149-155.
4. Shukla A, Lalit A, Sharma V, Vats S, Alam A. Pearl and finger millets: the hope of food security. J Appl Res 2015; 1(2):59-66.
5. Devi PB, Vijayabharathirai R, Satyabhama S, Malleshi NG, Priyadarshini VB. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci. Technol. 2014; 51(6):1021-1040.
6. Tylor JR, Schober TJ, Bean SR. Novel food and non-food uses for sorghum and millets. J Cereals 2008; 44:252-271.
7. Vanderjagt DJ, Brock HS, Melah GS, El Nafaty AU, Crossy MJ, Glew RH et al. Nutritional factors associated with anemia in pregnant women in Northern Nigeria. J Health Popul. Nutr. 2007; 25:75-81.
8. Jagga-Chugh S, Kachhwaha S, Sharma M, Kothari-Chajer A, Kothari SL. Optimization of factors influencing microprojectilebombardment-mediated genetic transformation of seed-derived callus and regeneration of transgenic plants in Eleusine coracana (L.) Gaertn. Plant Cell Tiss Organ Cult. 2012; 109:401-410.
9. Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M et al. Stable expression of mtLD gene imparts multiple stress tolerance in finger millet. PLoS ONE. 2014; 9(6):e99110.
10. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiol. 1962; 15:473-497.
11. Francois IE, De Bolle MF, Dwyer G, Goderis IJ, Woutors PF, Verhaert PD et al. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol. 2002; 128:1346-1358.
12. Christensen AH, Quail P. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 1996; 5:213-218.
13. Jha S, Chattoo B. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res. 2010; 19:373-384.
14. Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNAs for cotransformation of higher plants with higher order of efficiency. Plant Cell Rep. 2010; 29:313-322.
15. Takan JP, Chipli J, Muthumeenakshi S, Talbot NJ, Manyasa EO, Bandypadhyay R et al. Magnaporthewyrae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Mol Biotechnol. 2012; 50(2):145-158.
16. Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990; 12:13-15.
17. Panse VG, Sukhatme PV. Statistical analysis for agricultural workers. 1985; ICAR, New Delhi.
18. Jabeen M, Sirirwardana S, Selection for salt tolerance in rice (Oryza sativa L.). Mod. Trends. Pl. Sci. Res. Pak. 1987; 164-169.
19. Anjaneyulu E, Aratittulla IH, Hemalatha S, Bharat Raj S, Balaji M. An efficient protocol for callus induction and plant regeneration in Finger millet (Eleusine coracana L.). World Appl. Sci. J. 2011; 12(7):919-923.
20. Cesmar SA, Ignacimuthu S. Agrobacterium-mediated transformation of finger millet (Eleusine coracana L.) Gaertn. using shoot apex explants. Plant Cell Rep. 2011; 30:1759-1770.
21. Cesmar SA, Ignacimuthu S. Somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana L. Gaertn.). In Vitro cell Dev Biol Plant. 2008; 44:427-435.
22. Anju C, Rabinndran R, Velazhahan R, Ravikesavan R. Callusing and Regeneration in Finger Millet [Eleusine coracana (L.) Gaertn.] Research Journal of Agricultural Sciences. 2016; 7(2):324-329.
23. Smirnoff N, Cumes QJ et al. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989; 28:1057-1060.
24. Satish L, Cesmar SA, Shilpa I, Rency AS, Rathinapriya P, Manikandan R et al. Direct plant regeneration from in vitro derived shoot apical meristems of finger millet (Eleusine coracana L. Gaertn.). In Vitro Cell Dev Biol. Plant. 2015; 51(2):192-200.
25. Pande A, Dosad S, Chawla HS, Arora S, Braz J. In-vitro organogenesis and plant regeneration from seed-derived
callus cultures of finger millet (*Eleusine coracana*). Braz J Bot. 2014; 38(1):19-23.

26. Baskaran P, Raja Rajeswari B, Jayabalan NA. Simple approach to improve plant regeneration from callus culture of *Sorghum bicolor* for crop improvement. Journal of Agricultural Technology. 2005; 1(1):179-192.

27. Yadav K, Singh N. Factors influencing *in vitro* plant regeneration of Liquorice (*Glycyrrhiza glabra* L.) Iran J Biotechnol. 2012; 10(3):161-167.

28. Patil SM, Sawardekar SV, Bhave SG, Sawant SS, Jambhale ND, Gokhle NB et al. Development of somaclones and their genetic diversity analysis through RAPD in finger millet (*Eleusine coracana* L. Gaertn.). Indian J Genet. 2009; 69(2):132-139.

29. Babu AG, Geetha KN, Manjunatha V, Shankar AG. An efficient high throughput plant regeneration and transformation protocol for production of transgenics tolerant to salt in finger millet. Int J Forestry Crop Improv. 2012; 3:16-20.