低金属下における原始惑星系円盤の寿命
The Lifetime of Protoplanetary Disks in Low-metallicity Environments

安井 千香子 1, 小林 尚人 2, 齋藤 正雄 1, Alan T. Tokunaga3, 東谷 千比呂 4
Chikako Yasui1,*, Naoto Kobayashi2, Masao Saito1, Alan T. Tokunaga3, Chihiro Tokoku4

1 国立天文台, 2 東京大学, 3 ハワイ大学, 4 東北大学
1NAOJ, 2Institute of Astronomy, Univ. of Tokyo, 3IfA, Univ. of Hawaii, 4Univ. of Tohoku

近年、非常に多くの系外惑星が発見されておりが、発見された惑星は我々の予想に反して極めて多様な性質を持つことが分ってきた。現時点で知られている唯一の極めて明確な関係は、重元素量（金属量）が多い星ほど惑星が見つかる確率が急激に高くなる「惑星-金属量関係」である。これは、金属量こそが惑星形成を理解するキー・パラメータの一つである可能性を示唆している。

そこでわれわれは、金属量が異なる環境下における原始惑星系円盤の進化について研究をすすめている。そのファーストステップとして、金属量が太陽近傍よりも1/10 近くまで低いことで知られている銀河系の最外縁部に着目し、そこに存在する多数の星生成領域に対して「すばる」8.2m 光学赤外線望遠鏡を用い高感度な近赤外 (1-2.5um) 撮像サーベイ観測を行った。そして領域毎に、赤外超短を示す星の割合、すなわち原始惑星系円盤を持っている星の割合 (disk fraction) を導出し、領域の年齢との相関をとることで、円盤の蒸発のタイムスケール (円盤の寿命) を見積もった。

その結果、低金属量下の星生成領域の disk fraction は、同年齢の太陽近傍の領域と比較して系統的に (極端に) 低いことが明らかになった (図)。金属量が低いことから通常考えられる物理過程では、今回の観測で惑星の存在の有無が空洞になることを説明できないため、低金属量下では “円盤全体” が太陽近傍 (約5Myr) と比べて非常に早いタイムスケール (約1Myr) で消失することが強く示唆された。円盤の寿命が短くなると惑星が作りにくくなることから、系外惑星で広く知られている「惑星-金属量関係」を説明しうる 1 つの初めての明確な観測的証拠を示した。

キーワード: 原始惑星系円盤、金属量、円盤蒸発、系外惑星
Keywords: protoplanetary disk, metallicity, disk dispersal, exoplanet