Determination Methodology for Stability Domain of Hybrid Electric Power System with Multiple Excitation Sources

Zhongyan Li¹,² and Donghai Hu³*
¹School Of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
²Jinlong United Automotive Industry (Suzhou) Co., Ltd. Suzhou, 215123, China
³School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

*Corresponding E-mail: 1000004735@ujs.edu.cn

Abstract. Irregular internal excitation (engine excitation and motor excitation) and external load excitation can cause torsional vibration in hybrid electric propulsion system which even leads to the break of shaft. The objective of this paper is to determine the stability domain of hybrid electric power system under different drive mode with multiple excitation sources. To achieve the goal, the simplified three-mass torsional model of hybrid electric power system is established. Then we apply the multi-scale method to solve the nonlinear torsional model. Finally we set different parameters of engine speed to simulate torsional vibration characteristics of hybrid electric power system. The simulation results exhibit that the torsional vibration characteristics of hybrid electric power system under two drive mode are different because the directional relationship of the moment of engine and permanent magnet synchronous motor (PMSM) is distinctive. It’s hard to eliminate the torsional vibration of hybrid electric propulsion system due to phase difference between the engine excitation and the load excitation.

1. Introduction

In recent years, deteriorating energy and environmental problems promote the development of electric power systems and hybrid electric power systems [1,2]. Nevertheless, the application of electric power systems have encountered shortcomings, such as long charging time, limited operating range and lifespan. On the other hand, hybrid electric power systems have been applied increasingly for their flexible working mode, wide operating range and low emission [3,4,5]. Usually, the hybrid electric power system is composed of two power sources: one is the combination of engine and generator, and the other is the combination of motor and battery [6,7]. However, due to the complexity of the configuration of hybrid electric power system and strong nonlinearity of engine and permanent magnet synchronous motor (PMSM), irregular engine excitation and electromagnetic excitation can cause torsional vibration which even leads to the break of shaft [8,9]. So it’s essential to analyze the torsional characteristics of hybrid electric power system to determine the stability domain with the engine and PMSM participated in.

The hybrid electric power system is a multi-degree of freedom (DOF) nonlinear system with multiple excitation sources. It is considered that the mass distribution of the hybrid electric power system is lumped [10]. Tang et al. [11] established a 16-DOF torsional vibration model of hybrid...
electric vehicle power system. The model is applied to analyze the torsional vibration characteristics and give the theoretical prediction of the natural frequency and corresponding vibration modes. The dynamic model was also used to present the torsional modes of hybrid electric power system in hybrid driving mode. The results indicate that the low frequency vibration is concentrated on the vehicle and wheels. Engine noise is the main noise in the hybrid driving mode. Tang et al. [12] developed a simplified three-mass torsional model of the hybrid electric power system to determine the dominant frequency. The results show that the simplified model can be used to describe the low frequency vibration characteristics of the hybrid electric power system accurately. However, the simplified three-mass model concentrates on the unbalanced torque of engine and does not consider the electromechanical coupling relationship between the engine and motor. Chen et al. [13] established the two-mass torsional vibration model of hybrid electric power system considering electromechanical coupling. Yue et al. [14] specifically analyzed the amplitude-frequency characteristic of torsional vibration in two different modes of the hybrid electric power system (boosting mode and generating mode). The corresponding results of the engine were compared to reveal that the coexistence of electromagnetic torque of motor and the engine torque changes the torsional vibration characteristics of the original engine shafting and intensifies the amplitude of the torsional vibration. Zuo et al. [15] built a multi-body dynamic model based on a simplified structure of a parallel hybrid system. The incentive model of engine was established in MATLAB, the dynamic simulation results show that the change of engine cylinder pressure is the main reason that affects the torsional vibration of the shaft system. However, many researches focus on the influence of engine excitation, as well as the analysis of natural frequencies and corresponding modalities of hybrid electric power system.

The purpose of this paper is to determine the stability domain of hybrid electric power system under two typical drive mode. A simplified three-mass nonlinear torsional model of hybrid electric power system under various drive mode was developed using the lumped parameter method in Section 2. The first-order approximate solution of the model was solved by multi-scale method in Section 3. The nonlinear dynamics theory was applied to reveal the torsional vibration characteristics of hybrid electric power system. Section 4 introduces the results of the influences of variable engine speed on the nonlinear torsional vibration characteristics of hybrid electric power system. Finally, conclusions are drawn in Section 5.

2. Nonlinear torsional model of hybrid electric power system

2.1. Electromagnetic torque model of PMSM

Considering the torsional vibration angle of PMSM, the rotor synthesis fundamental wave magnetomotive force is given below [16,17]:

$$ F(\alpha, t) = F_{1m} \cos(\omega t - \alpha) + F_{2m} (\omega t - \alpha + (p\phi + \psi + \pi / 2)) $$

(1)

Electromagnetic torque of PMSM is given below when the torsional vibration angle is ϕ.

$$ T_M = F_m (\sin \psi \sin (p\phi) - \cos \psi \cos (p\phi)) $$

(2)

Where, $F_m = p\pi R \Lambda_0 F_{in} F_{in}$; R is inner radius of stator; l represents effective length of rotor; Λ_0 is air gap permeability of PMSM.

The simplified equation of electromagnetic torque of PMSM is shown using Taylor approximation.

$$ T_M = k_0 + k_1 \phi - k_2 \phi^2 - k_3 \phi^3 $$

(3)

Where, $k_0 = -F_m \cos \psi$, $k_1 = p F_m \sin \psi$, $k_2 = p^2 F_m / 2 \cos \psi$, $k_3 = p^3 F_m / 6 \sin \psi$.

2.2. Mechanical torque model of engine

The unbalanced force sources of a four-cylinder engine are mainly composed of reciprocating moment of inertia T_j and combustion gas moment T_g. The combustion gas moment T_g can be expressed by
the following infinite series using the Fourier series theory [18,19].

\[T_g = T_0 + \sum_{r=1}^{\infty} c_r \sin k_r \alpha + \theta_k \]

(4)

Since the fourth-order and higher-order unbalanced moments are only 2.5% of that of second-order, it is mainly necessary to consider the second-order imbalance torque.

\[
\begin{align*}
T_j &= 2\lambda m_j r^2 \omega_j^2 \sin 2\alpha \\
T_e &= -rD^2(a_4 \sin 2\alpha + b_4 \cos 2\alpha) / 4
\end{align*}
\]

(5)

Where, \(m_j \) represents reciprocating equivalent mass of piston connecting rod group; \(r \) is crank radius; \(D \) is piston diameter; \(\lambda \) represents connecting rod ratio.

In actual analysis of engine torsional vibration, only the interference torque \(T_g \) generated by changeable gas pressure is generally considered. Furthermore, the cosine component in combustion gas moment \(T_g \) is small compared with the sine component. Considering torsional vibration angel, simplified mechanical torque model of engine is given below.

\[T_e = T_0 + \frac{\pi rD^2}{4} a_4 \sin 2\alpha \]

(6)

2.3. Nonlinear torsional model under boosting mode

A schematic representation of hybrid electric power system is shown in figure 1. The hybrid electric power system gets into the compound driving mode when the clutch is locked, and the PMSM drives, together with the engine [20,21].

Figure 1. Schema of hybrid electric power system

The mechanical rotation equations is given below:
\[
\begin{align*}
J_1 \ddot{\theta}_1 + C_1 (\dot{\theta}_1 - \dot{\theta}_2) + K_1 (\theta_1 - \theta_2) = & T_E \\
J_2 \ddot{\theta}_2 + C_2 (\dot{\theta}_2 - \dot{\theta}_1) + K_2 (\theta_2 - \theta_1) = & T_{st} \\
J_3 \ddot{\phi}_1 + C_3 (\dot{\phi}_1 - \dot{\phi}_2) + K_3 (\phi_1 - \phi_2) = & -T_L
\end{align*}
\]

Where \(J_1, J_2 \) and \(J_3 \) represent the moment of inertia of engine, PMSM and load respectively; \(\theta_1, \theta_2, \theta_3 \) represent rotation angles at the end of the two shafts; \(C_1 \) and \(C_2 \) are damping coefficient; \(K_1 \) and \(K_2 \) are stiffness of the two shaft respectively.

Suppose that \(\phi_{10}, \phi_{20}, \phi_{30} \) are the torsion angles at the ends of the shaft of the hybrid electric propulsion system under the action of constant torques \(T_{E0}, T_{M0} \) and \(T_{L0} \) respectively. \(\phi_1, \phi_2 \) and \(\phi_3 \) are the torsional vibration angles at the end of the shaft under different excitation, respectively. We can get equations shown below:

\[
\begin{align*}
\theta_i = & \phi_{i0} + \phi_{10} + \phi_2 + \phi_3, \theta_3 = \phi_{30} + \phi_3 \\
\phi_{10} = & \phi_{20} = \phi_{30} = 0, \dot{\phi}_{20} = \dot{\phi}_{30} = 0 = 0
\end{align*}
\]

The equivalent torsional vibration equations of the hybrid electric propulsion system under the engine torque disturbance \(\Delta T_E \), electromagnetic torque disturbance term \(\Delta T_{st} \) and the load torque disturbance term \(\Delta T_L \) is given as below:

\[
\begin{align*}
J_1 \ddot{\phi}_1 + C_1 (\dot{\phi}_1 - \dot{\phi}_2) + K_1 (\phi_1 - \phi_2) = & \Delta T_E \\
J_2 \ddot{\phi}_2 + C_2 (\dot{\phi}_2 - \dot{\phi}_1) + C_3 (\dot{\phi}_3 - \dot{\phi}_1) + K_2 (\phi_2 - \phi_1) + K_3 (\phi_3 - \phi_1) = & \Delta T_{st} \\
J_3 \ddot{\phi}_3 + C_3 (\dot{\phi}_3 - \dot{\phi}_2) + K_3 (\phi_3 - \phi_2) = & -\Delta T_L
\end{align*}
\]

We substitute the following equations into Eqs.9 \(\Delta T_E = r \pi D^2 a \sin 2 \alpha / 4 \), \(\Delta T_M = k \phi_1 - k_2 \phi_2 - k_3 \phi_3 \), \(\Delta T_L = F \cos (\omega t) \). New variables are set \(x_i = \phi_1 - \phi_2, x_2 = \phi_2 - \phi_3 \). The nonlinear torsional vibration model of hybrid electric propulsion system is given below:

\[
\begin{align*}
\ddot{x}_1 + A_1 x_1 + \mu_1 \dot{x}_1 + \mu_2 \dot{x}_2 + (A_2 x_1^2 + B_2 x_2^2 + A_3 x_1^3 + B_3 x_2^3 + D_2 x_1 x_2 + D_3 x_1^2 x_2) = & f_1 \sin (\Omega t) \\
\ddot{x}_2 + A_4 x_2 + \mu_3 \dot{x}_2 + (A_5 x_2^2 + B_5 x_1^2 + A_6 x_2^3 + B_6 x_1^3 + D_4 x_1 x_2 + D_5 x_1^2 x_2) = & f_2 \sin (\Omega t)
\end{align*}
\]

Where,

\[
\begin{align*}
A_i = & k_i m_i J_1 + (k_i + K_i), A_2 = k_2 m_2 J_2, A_3 = k_3 m_3 J_2, A_4 = k_4 m_4 J_1, B_2 = k_2 m_2 J_2, B_3 = k_3 m_3 J_2, B_4 = k_4 m_4 J_1, D_1 = \frac{2m_1 m_2}{J_2}, \\
D_2 = & \frac{3n_1 m_1 m_2}{J_2}, D_3 = -\frac{3n_2 m_2 m_2}{J_2}, \mu_i = C_i J_1 + \frac{C_i}{J_2}, H_i = \frac{K_i J_1 + K_i}{J_2}, \mu_2 = \frac{C_2}{J_2}, \frac{C_2}{J_3}, \mu_3 = \frac{C_2}{J_2}, \frac{C_2}{J_3},
\end{align*}
\]

3. Theoretical analysis of stability domain
First the small parameter \(\varepsilon \) and the following scale transformation [22] are introduced.

\[
\begin{align*}
A_i \rightarrow \varepsilon A_i, i = 2,3; B_i \rightarrow \varepsilon B_i, i = 2,3; D_i \rightarrow \varepsilon D_i, i = 1,2,3 \\
E_1 \rightarrow \varepsilon E_1, G_1 \rightarrow \varepsilon G_1, \mu_i \rightarrow \varepsilon \mu_i, f_i = \varepsilon f_i, i = 1,2,3
\end{align*}
\]

The two-degree-of-freedom nonlinear model with the combination of parameter excitation and external excitation is shown as follows.

\[
\begin{align*}
\ddot{x}_1 + \varepsilon \omega_1^2 x_1 + \varepsilon (A_1 x_1^2 + B_1 x_2^2 + A_3 x_1^3 + B_3 x_2^3 + D_2 x_1 x_2 + D_3 x_1^2 x_2 + \mu_4 \dot{x}_1 + \mu_2 \dot{x}_2) = & \varepsilon f_1 \sin (\Omega t) \\
\ddot{x}_2 + \varepsilon \omega_2^2 x_2 - \varepsilon (A_2 x_2^2 + B_2 x_1^2 + A_6 x_2^3 + B_6 x_1^3 + D_4 x_1 x_2 + D_5 x_1^2 x_2 - \mu_4 \dot{x}_1 - \mu_2 \dot{x}_2) = & \varepsilon f_2 \sin (\Omega t)
\end{align*}
\]
We use the method of multiple scales to find the first-order uniform asymptotic solution of Eqs. 12.

\[
\begin{align*}
\omega_1(t, \epsilon) &= x_{10}(T_0, T_1) + \epsilon x_{11}(T_0, T_1) \\
\omega_2(t, \epsilon) &= x_{20}(T_0, T_1) + \epsilon x_{21}(T_0, T_1)
\end{align*}
\]

(13)

Where, \(T_0 = t, T_1 = \epsilon t \).

We introduce two tuning parameters \(\sigma_1 \) and \(\sigma_2 \).

\[
\omega_1^2 = \Omega^2 + \epsilon^2 \sigma_1, \omega_2^2 = \Omega^2 + \epsilon^2 \sigma_2
\]

(14)

Eqs. 13 and 14 are substituted into Eqs. 12 to make the coefficients of the same power of \(\epsilon \) on both sides of the equation equal.

\(\epsilon^0 \):

\[
\begin{align*}
D_0^2 x_{10} + \omega_1^2 x_{10} &= 0 \\
D_0^2 x_{20} + \omega_2^2 x_{20} &= 0
\end{align*}
\]

(15)

\(\epsilon^1 \):

\[
\begin{align*}
D_0^2 x_{11} + \Omega^2 x_{11} &= -2D_1 D_0 x_{10} - (A_2 x_{10}^2 + B_2 x_{20}^2 + A_3 x_{10}^3 + B_3 x_{20}^3 + D_1 x_{10} x_{20} + D_2 x_{10}^2 x_{20} + D_3 x_{10} x_{20}^2) \\
-\mu_1 \dot{x}_{10} - \mu_2 \dot{x}_{20} + f_1 \sin(\Omega t) &
\end{align*}
\]

\[
\begin{align*}
D_0^2 x_{21} + \Omega^2 x_{21} &= -2D_1 D_0 x_{20} + (A_2 x_{10}^2 + B_2 x_{20}^2 + A_3 x_{10}^3 + B_3 x_{20}^3 + D_1 x_{10} x_{20} + D_2 x_{10}^2 x_{20} + D_3 x_{10} x_{20}^2) \\
-\mu_1 \dot{x}_{10} - \mu_2 \dot{x}_{20} + f_2 \sin(\Omega t) &
\end{align*}
\]

(16)

The solution of the complex form of Equation 15 can be expressed as follows:

\[
\begin{align*}
x_{10} &= A(T_1, T_2) e^{i\alpha t_1} + CC \\
x_{20} &= B(T_1, T_2) e^{i\beta t_1} + CC
\end{align*}
\]

(17)

Where \(CC \) represents the complex conjugate.

The elimination conditions for secular term is shown below.

\[
\begin{align*}
-2D_1 A\Omega - 3A_4 A^2 \bar{A} - 3B_4 B^2 \bar{B} - D_1 \bar{A}^2 B - D_3 \bar{A} B^2 - \mu_1 A\Omega - \mu_2 B\Omega &= 0 \\
-2D_1 B\Omega - 3A_4 A^2 \bar{A} - 3B_4 B^2 \bar{B} - D_1 \bar{A}^2 B - D_3 \bar{A} B^2 - \mu_1 B\Omega - \mu_2 A\Omega &= 0
\end{align*}
\]

(18)

We let \(A = (x_1 + iy_1)/2, B = (x_2 + iy_2)/2 \) and bring to Eqs. 18 and separate the real imaginary part to get the following average equations.

\[
\begin{align*}
x'_1 &= 0.5 \mu_1 x_1 + 0.5 \mu_2 x_2 + Na_1 \\
y'_1 &= -0.5 \mu_1 y_1 - 0.5 \mu_2 y_2 + Na_2 \\
x'_2 &= 0.5 \mu_1 x_1 + 0.5 \mu_2 x_2 + Na_3 \\
y'_2 &= 0.5 \mu_1 y_1 - 0.5 \mu_2 y_2 + Na_4
\end{align*}
\]

(19)

Where, \(Na_i, i = 1, 2, 3, 4 \) is nonlinear functions and the symbol ‘ represents the derivative of the slow time scale \(T_1 \).

The characteristic equation at the zero solution has the following form:

\[
\lambda^4 + R_1 \lambda^3 + R_2 \lambda^2 + R_3 \lambda + R_4 = 0
\]

(20)
According to the Routh-Hurwitz principle [23], the stability conditions is given as follows.

\[
\begin{align*}
R_1 > 0 \\
R_1 R_2 - R_3 > 0 \\
R_1 (R_1 R_2 - R_3) - R_2^2 R_4 > 0 \\
R_1 > 0
\end{align*}
\]

(21)

4. Numerical simulation results of stability domain

4.1. Under boosting mode

Time history diagram and phase portraits of \(x_1 \) obtained by simulation when \(\omega_1 = 150, \omega_2 = 200 \), \(\omega_3 = 250 \) are shown in figure 2. The initial values are set to be \(x_{10} = x_{20} = \dot{x}_{10} = \dot{x}_{20} = 0 \), and the load excitation frequency is set to be \(\omega_2 = 20 \).

The Poincaré bifurcation diagram of \(x_1 \) with variation of parameter the rotational speed of engine \(\omega_1 \) is shown in figure 4. When \(150 < \omega_1 < 200 \), the torsional vibration of shaft between engine and PMSM gets gradually stable, while the torsional vibration of the shaft gradually loses stability with increasing engine speed when \(200 < \omega_1 < 250 \).

Time history diagram and phase portraits of \(x_2 \) obtained by simulation when \(\omega_1 = 150, \omega_3 = 200 \) are shown in figure 3. The initial values are set to be \(x_{10} = x_{20} = \dot{x}_{10} = \dot{x}_{20} = 0 \), and the load excitation frequency is set to be \(\omega_2 = 20 \). The Poincaré bifurcation diagram of \(x_2 \) with variation of parameter the rotational speed of engine \(\omega_1 \) is shown in figure 5.
Figure 4. The Poincaré bifurcation diagram of x_1 with variation of parameter the rotational speed of engine ω_1.

Figure 5. The Poincaré bifurcation diagram of x_2 with variation of parameter the rotational speed of engine ω_1.

Figure 6. The Poincaré bifurcation diagram of x_1 with variation of load excitation frequency.

Figure 7. Time history and phase portraits of x_2 with different load excitation frequency.

4.2. Under generating mode

Time history diagram and phase portraits of x_1 obtained by simulation are shown in figure 6. The initial values are set to be $x_{10}=x_{20}=x_{1t0}=x_{2t0}=0$, and the engine speed is set to be $\omega_1=200$. The Poincaré bifurcation diagram of x_1 with variation of load excitation frequency ω_2 is shown in figure 8.

Time history diagram and phase portraits of x_2 obtained by simulation when $\omega_2=2, \omega_2=5, \omega_2=20$, are shown in figure 7. The initial values are set to be $x_{10}=x_{20}=x_{1t0}=x_{2t0}=0$, and the load excitation frequency is set to be $\omega_2=200$. The Poincaré bifurcation diagram of x_2 with variation of load excitation frequency ω_2 is shown in figure 9.
5. Conclusion

In this paper, a three-mass torsional vibration model of engine-PMSM-load of hybrid electric propulsion system is established by using lumped parameter method. Using nonlinear dynamics theory, the influence of different engine speed and load excitation frequency on nonlinear torsional vibration stability of hybrid electric propulsion system is studied. We get the following conclusions:

(1) There is a phase difference between the engine excitation and the load excitation in the hybrid electric propulsion system, which makes the hybrid electric propulsion system hard to eliminate the torsional vibration;

(2) With the engine speed as the control parameter, the torsional vibration characteristics of the two shaft are different because the directional relationship of the moment of engine and PMSM is distinctive from that of PMSM and load. When $150 < \omega_1 < 200$, the torsional vibration of shaft between engine and PMSM gets gradually stable, while the torsional vibration of the shaft gradually loses stability with increasing engine speed when $200 < \omega_1 < 250$.

(3) With the load excitation frequency as the control parameter, as the load excitation frequency increases, the torsional vibration of the hybrid electric propulsion system gradually loses stability.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 51275291), National Natural Science Foundation of China (grant no. 51705208) and China Postdoctoral Science Foundation (grant no. 2018M632240).

References

[1] Liang L, Wang X, and Song J 2016 MECH SYST SIGNAL PR 87 17-29.
[2] Chan C.C 2007 PROCE IEEE 95 704-718.
[3] Chao Y, Song J, Li L and Cao D 2016 MECH SYST SIGNAL PR 77 649-664.
[4] Bradley T H, and Frank A A 2009 Renew. Sust. Energ. Rev 13 115-128.
[5] Inman S, El-Gindy M, Haworth D C 2003 INT J HEAVY VEH SYST 10 167-187.
[6] Yang Y, Hu X, Pei H and Peng Z 2016 Appl. Energy 168 683-690.
[7] JonasFredriksson, HenrikWeiefors and BoEgardt 2002 Veh. Syst. Dyn 37 359-376.
[8] Guo X and He H 2016 MATEC Web of Conferences 81 p08002.
[9] Abouobaia E, Bhat R and Sedaghati R 2015 J INTEL MAT SYST STR 1 1-13.
[10] Ebrahimi M, Farshidianfar A and Bartlett H 2003 Proc. Inst. Mech. Eng. Part D-J 215 217-229.
[11] Tang X, Jin Y, Zhang J, Zou L and Yu H 2014 Proc. Inst. Mech. Eng. Part D-J 228 94-103.
[12] Tang X, Yang W, Hu X and Zhang D 2017 *MECH SYST SIGNAL PR* **85** 329-338.
[13] Chen K, Hu J and Peng Z 2017 *Energy Procedia* **105** 3164-3172.
[14] Yue D, Miao D and Zhang J 2008 *Auto. Eng* **3** 211-214.
[15] Zuo J, Liu S, Huang Z and Hu Q 2012 *Appl. Mech. Mat* **190** 825-831.
[16] Yu Y and Mi Z 2013 *J Appl. Math* 1-11.
[17] Chen X, Yuan S and Peng Z 2015 *Nonlinear Dyn* **80** 541-552.
[18] Burston, Amanda, Ward B and Davies R 2001 *MON NOT R ASTRON SOC* **326** 403-415.
[19] Ying G, Meng G and Jing J 2009 *Arch. Appl. Mech* **79** 287-299.
[20] Chen L, Xi G and Sun J 2012 *IEEE VEH TECHNOL* **61** 2936-2949.
[21] Du C and Ding X 2015 *IAEAC* 905-910.
[22] Cacan, Martin R, Stephen L and Leamy M 2014 *Nonlinear Dyn* **78** 1205-1220.
[23] Cermak, J and Nechvatal L 2017 *Nonlinear Dyn* **87** 939-954.