Superfluid density and critical velocity near the fermionic Berezinskii-Kosterlitz-Thouless transition

Brendan C. Mulkerin1, Lianyi He2, Paul Dyke1, Chris Vale1, Xia-Ji Liu1,3, and Hui Hu1

1Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
2State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
3Kavli Institute for Theoretical Physics, UC Santa Barbara, USA

In this work we present our theoretical investigation of superfluidity in a strongly interacting Fermi gas confined to two dimensions at finite temperature \cite{Mulkerin2017}. Using a Gaussian pair fluctuation theory (GPF) in the superfluid phase, we calculate the superfluid density and determine the critical temperature and chemical potential at the Berezinskii-Kosterlitz-Thouless transition.

The theoretical description of pairing in a 2D interacting Fermi gas at finite temperature is a long-standing challenge due to strongly enhanced quantum and thermal fluctuations. We generalize the GPF theory for finite temperatures below the superfluid transition, solving a crucial technical problem of removing divergences in numerics \cite{Tempere2008}. This enables us to calculate the superfluid density, the key quantity in characterizing the BKT transition, beyond the mean-field and taking into account quantum fluctuations. Through a microscopic calculation of the critical velocity, beyond the phenomenological Landau quasi-particle picture, we predict the occurrence of a significant discontinuity in the critical velocity across the transition, associated with the universal jump in superfluid density \cite{Kosterlitz1973}, which, if observed experimentally, would provide an unambiguous proof of the fermionic BKT transition.

\cite{Mulkerin2017} B. C. Mulkerin, L. He, P. Dyke, C. J. Vale, X.-J. Liu, and H. Hu, ArXiv e-prints (2017), arXiv:1702.07091 [cond-mat.quant-gas].
\cite{Tempere2008} J. Tempere, S. N. Klimin, J. T. Devreese, and V. V. Moshchalkov, Phys. Rev. B 77, 134502 (2008).
\cite{Kosterlitz1973} J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).