LETTER

Fire reduces riverine DOC concentration draining a watershed and alters post-fire DOC recovery patterns

Xinyuan Wei1,2, Daniel J Hayes1 and Ivan Fernandez1,3

1 School of Forest Resources, University of Maine, Orono, ME 04469, United States of America
2 Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
3 Climate Change Institute, University of Maine, Orono, ME 04469, United States of America

E-mail: weix@ornl.gov

Keywords: carbon cycle, carbon flux, dissolved organic carbon, fire, post-fire, watershed

Abstract

The loading of dissolved organic carbon (DOC) from soils to inland waters and ultimate transport to the ocean is a critical flux pathway in the terrestrial biosphere carbon cycle. Fires can significantly affect this flux through biogeochemical processes related to oxidation and mobilization of DOC in the soil. Therefore, in order to accurately estimate and model terrestrial carbon storage and export to the marine environment, we need to better understand the effects of fire on DOC flux. In this analysis, we compiled available observational data sets from seven watersheds across the conterminous United States generally spanning the years 1999–2019. We used these data sets to examine the effects of fire on riverine DOC concentration draining a watershed to study both the immediate impacts and the post-fire recovery patterns. Our results suggest that these fires result in an immediate decrease in riverine DOC concentration draining the watershed by 26 ± 15%, and the time required for DOC concentrations to recover to pre-fire levels was estimated to be, on average, approximately 9 months. During recovery, DOC concentration was 24 ± 11% lower than the long-term average for the watershed. In addition, the larger the proportion of the watershed that burned, the greater the concentration decrease and the longer the time period for post-fire recovery.

1. Introduction

Dissolved organic carbon (DOC) can be formed by the incomplete decomposition of soil organic carbon, exuded by plants, or introduced by the washout of organic compounds in throughfall [1, 2]. The total flux of DOC—from soils to inland waters via surface runoff, export from the watershed, and ultimate delivery to the ocean—is an important component of the global carbon cycle [3, 4]. Recent studies estimate that an average of 255 TgC yr\(^{-1}\) DOC is transported to oceans globally [5–7]. These large estimated quantities suggest that the lateral transport of carbon plays an important role in the overall dynamics of the terrestrial portion of the Earth’s carbon cycle [8–10] and therefore both its inter-annual dynamics and long-term trend need to be better characterized in order to reconcile the difference between top-down and bottom-up estimates of carbon exchange [11]. Current studies suggest that many environmental factors interact to control the process of DOC flux, including weather, atmospheric sulfur and nitrogen deposition, and land cover [12–15]. Disturbances such as fire and harvesting also affect the DOC loading from soils to inland waters [16, 17]. Thus, incorporating environmental factors, atmospheric depositions, and disturbances in modeling and estimates of inter-annual dynamics and long-term trends of DOC flux is required.

As one important disturbance in terrestrial ecosystems, fires directly release carbon to the atmosphere through biomass burning as well as create the potential long-term sink of pyrogenic carbon by incomplete combustion [18, 19]. Existing estimates of the terrestrial biosphere carbon budget have typically focused on quantifying the direct vertical release of carbon or the potential long-term carbon sink caused by fires [20, 21]; however, the impacts of fires on the lateral flux of DOC are rarely included in these estimates. Fires can influence the export of
DOC from watersheds by dramatically reducing the DOC content in the soil through the burning of soil organic carbon, as well as by affecting lateral transport of DOC through soil by altering soil properties (e.g. soil pH, sorption ability) [17, 22]. Schindler et al. [23] found that the riverine DOC concentration declined following a wildfire in boreal regions, presumably due to decreasing DOC loading from soils to streams. Santos et al. [24] concluded that the low-severity fire can increase the riverine DOC concentrations 1 year after the fire. Larouche et al. [25] suggested that potentially due to rapid ecosystem recovery after fire, riverine DOC concentrations in arctic headwater streams did not contain significantly decreasing. In tropical peatlands, Sazawa et al. [26] indicated that the leaching of DOC concentration from the burned soils was lower than that from the unburned soils. In addition, Uzun et al. [27] concluded that compared to unburned litter samples, the leaching capacity of DOC from burned litter samples decreased by 40 ± 20%. Therefore, including fire effects in models and carbon budget estimates is necessary to improve our understanding and quantification of the spatial and temporal dynamics of the terrestrial–aquatic DOC flux.

In existing estimates of DOC flux, including empirical models [e.g. 6, 7] and process-based terrestrial biosphere models [e.g. 28–30], fire effects on DOC flux are rarely or weakly represented. Climate change projections such as an extended fire season length, decreasing precipitation and increasing aridity due to earlier snowmelt and rising temperatures [31] lead to an increase in lightning caused fire ignitions as well as in burned area and fire severity [32–34]. Through intentional or accidental ignitions, human activities also contribute to the increasing fire frequency and severity [35]. Therefore, a quantitative understanding of fire effects on the DOC flux is necessary to improve current estimates and predictions of terrestrial ecosystem carbon dynamics. In this study, we compiled DOC concentration measurements together with an empirical model and fire records of seven watersheds from the conterminous United States to examine fire effects on the riverine DOC concentration and the post-fire recovery pattern draining a watershed. We hypothesize that fires reduce the riverine DOC concentration draining a watershed, and that the reduction levels are related to the proportion of the burned area in the watershed.

2. Data and methods

2.1. Dissolved organic carbon (DOC) data

The data sets used to estimate the pre- and post-fire daily riverine DOC concentration draining a watershed were obtained from long-term observational data provided by the US Geological Survey (USGS) National Water Information System (NWIS; https://waterdata.usgs.gov/nwis/). From these, we compiled the measured DOC concentration and the date of each measurement along with daily water discharge over the available time period, which differed for each watershed but overall included the years 1999–2017. Seven watersheds (tables 1, S1 (available online at stacks.iop.org/ERL/16/024022/mmedia)) were selected based on their data sets satisfying all of four criteria: (a) the riverine DOC concentration draining a watershed should have more than 100 measurements of DOC concentration in different days; (b) the DOC concentration was recorded at least ten times during the post-fire year; (c) all of the daily discharge measurements were recorded during the time period analyzed; (d) a watershed should have at least one fire that burned at least 5% of this watershed during the analysis period. The first, second and third criteria were required to realize the estimate of daily riverine DOC concentration draining a watershed (see section 2.3). The fourth criterion was required to observe major fire effects on DOC flux, because smaller fires are not likely to detectably change the DOC flux in this database. The boundary of each selected watershed was obtained from the USGS Watershed Boundary Dataset (WBD) from the National Geospatial Program (NGP; www.usgs.gov/core-science-systems/ngp/national-hydrography). The seven watersheds selected varied greatly in size and ranged from 151 km² (North Sylvamore) to 2927 km² (Suwannee Watershed).

2.2. Fire records and land cover data

Fire records including the start date, fire size, fire boundary map, and burn severity were obtained from the Monitoring Trends in Burn Severity (MTBS, www.mtbs.gov/) (table 1), which provides the extent of individual fires across all lands of the United States from 1984 to present. The burn severity layers categorized each fire into one of six types: not available (because of clouds, cloud shadows, and data gaps), increased greenness (increased post-fire vegetation response), unburned to low, low, moderate, and high [36]. Because burn severity maps are raster maps with a spatial resolution of 30 × 30 m, the average value of all pixels within an individual fire was calculated to represent the burn severity of this fire (table 1). Note that pixels having no burn severity information (value = 1) was not included in this calculation.

The most recent National Land Cover Database 2016 (NLCD2016) [37], provided by the Multi-Resolution Land Characteristics (MRLC) consortium (www.mrlc.gov/), was used to characterize each watershed. For this analysis, we aggregated the 16 classes of the original NLCD2016 into eight land cover types: developed area, open water, agriculture land, herbaceous, shrub, forest, woody wetland, and herbaceous wetland (figure S1, table S2). The land cover type for woody wetlands included the areas where forest or shrub accounts for greater than 20% of
2.3. DOC concentration estimation

The limited number of directly measured riverine DOC concentrations draining the watershed precluded the analysis of pre- and post-fire trajectories of DOC concentrations. Therefore, reconstructing the daily DOC concentration using available records was required to analyze the fire effects on riverine DOC concentrations draining the watershed. Hirsch et al. [38] proposed the Weighted Regressions on Times, Discharges, and Season (WRTDS) model (equation (1)) to estimate daily riverine DOC concentration draining a watershed with direct measurements:

$$\ln(C_{WF}) = \xi + \alpha \ln(Q) + \beta_f + \gamma \sin(2\pi t_m) + \delta \cos(2\pi t_s) + \varepsilon$$

where C_{WF} is the daily DOC concentration (mg l$^{-1}$) estimated by the original WRTDS model, Q is the daily discharge (l), t_f is the order of the year (i.e. 1, 2, 3 ... T), t_m is the order of month (i.e. 1, 2, 3 ... 12), and t_s is the order of the day (i.e. 1, 2, 3 ... 365 or 366). Parameters ξ, α, β, γ, and δ are fitted coefficients, and ε is the unexplained variation.

But effects of fire on the riverine DOC draining a watershed is not included in WRTDS model. Because fire size, fire severity and time since the last fire can affect the DOC concentration exported from a watershed [24], it is necessary to incorporate these effects on estimating the DOC concentration in this model. Therefore, we added these three fire effects as variables in the WRTDS model and named the new model WRTDS-fire (equation (2)). We then applied the updated WRTDS-fire model to estimate the daily riverine DOC concentration draining a watershed:

$$\ln(C_{WF}) = \ln(C_{WF}) + \theta f + \rho fs + \mu e^{-\text{tolf}}$$

where C_{WF} is the daily DOC concentration (mg l$^{-1}$) estimated by the WRTDS-fire model adding to equation (1), f as the size of the fire (percentage of the total area), fs as the class of burn severity (2, 3 ... 6), and t_{olf} as the time since last fire (i.e. 1, 2, 3 ... n days). Parameters θ and μ are fitted coefficients. The process to organize the fire data was described in text S1.

To estimate fitted coefficients, a bootstrapping estimation method was applied. First, in a watershed, 20 DOC records were randomly selected from its records pool and the rest of the records were used to estimate these fitted coefficients. Secondly, this process was repeated 100 times and each fitted coefficient was the mean value of its 100 estimates.

Table 1. Descriptions of the seven watersheds analyzed in this study, including the time periods of recorded riverine dissolved organic carbon (DOC) concentration draining a watershed, and the burn information for each fire record. (Burn severity: not available = 1, increased greenness (increased post-fire vegetation response) = 2, unburned to low = 3, low = 4, moderate = 5, and high = 6).

Watershed	DOC Drainage (km^2)	Time period	Sample size	Year	Month	Day	Size (km^2)	Size (%)	Burn severity
Merced	469	2000–2017	511	2001	7	10	37.1	8	5
Mogollon	231	2012–2019	146	2012	4	9	178.1	77	5
North Sylamore	151	1981–2019	163	2007	3	18	13.7	9	3
Santa Ana	2169	1971–2019	415	2016	3	2	15.4	10	3
Sopchoppy	264	2013–2019	143	2013	4	8	79.5	30	5
Suwannee	2927	1971–2019	492	2011	5	30	183.7	6	3
West Clear	624	1996–2019	230	2017	4	6	136.2	5	4

vegetated area and the soil or substrate is periodically saturated with or covered with water [37]. Fires analyzed in this study mostly occurred in the forest and woody wetland areas (figure S2).
between recorded and estimated DOC concentration for a given day, and a two-sample t-test was performed to test for differences within each watershed. Since the p-value can be controlled by the sample size \([40, 41]\), we calculated the p-value with a bootstrapping method. We conducted this bootstrapping procedure in four steps: first, we randomly selected 30 daily pairs of recorded and estimated DOC concentrations from each watershed’s time-series data set; second, we calculated a p-value from the 30 paired recorded and estimated data sets for each watershed; third, the first and second steps were repeated 100 times to obtain 100 p-values for each watershed; and fourth, the mean of these 100 p-values was calculated to represent the p-value of that watershed:

\[
AD = \frac{\text{abs}(C_e - C_r) \times 100}{C_r} \quad (3)
\]

where AD is the absolute difference (%), \(C_r\) is the estimated DOC concentration, \(C_e\) is the recorded DOC concentration in the same day. A lower AD indicates a higher similarity.

2.4. Analysis methods
We analyzed the time-series DOC concentration data for each watershed with the timing of fire events to determine length of the time that was required for the post-fire DOC concentration to recover to long-term average levels (figure 1). For a watershed, the long-term average level of daily DOC concentration was the average DOC concentration calculated from estimates in a given day of every year during the analyzed time period. To decide the length of recovery time, we used the stable status decision method AD in the measured mean presented by Wei and Larsen [39], updated to incorporate the moving average to overcome impacts of random fluctuations and re-named the moving average mean stable decision method. A time step of 30 d (approximately 1 month) was used in this study; after a fire, the moving average DOC concentration of every 30 d was calculated. The beginning of the recovery period was measured from the day of a fire to the day when the moving average DOC concentration: (a) exceeded the lower boundary of the 90% confidence interval of the long-term average level of daily DOC concentration, and (b) was greater than the lower threshold of the subsequent 29 d (30 d or approximately 1 month in total higher than the lower boundary of the 90% confidence interval).

We examined the relationships between fire properties (i.e. fire severity and burned area) and the post-fire changes to DOC concentration (i.e. immediate change and average change over the recovery period). The instant change is the change in DOC concentration exported from the watershed in the first day of the fire event. The average change in DOC concentration is the average change of daily DOC concentration during the recovery time period.

3. Results

3.1. Model performance
Comparisons of the DOC concentration estimates using the WRTDS-fire model showed good agreement with the recorded measurements across the seven watersheds analyzed in this study (figure 2, table 2). The mean of the recorded average daily DOC concentrations in rivers draining these seven watersheds was 11.44 ± 2.36 mg l\(^{-1}\), similar to the 11.62 ± 1.72 mg l\(^{-1}\) of the estimated concentrations (table 2). The recorded concentrations ranged from 1.23 ± 0.16 mg l\(^{-1}\) in the North Sylamore watershed to 36.61 ± 7.63 mg l\(^{-1}\) in Sopchoppy. Comparatively, the estimated concentrations ranged from 1.29 ± 0.07 mg l\(^{-1}\) to 38.22 ± 6.37 mg l\(^{-1}\) between the same two watersheds. The mean AD (see section 2.3) across all watersheds was 3.6 ± 1.2%, ranging from 0.6 ± 0.2% in the Merced watershed to 8.8 ± 2.3% in West Clear watershed. The \(R^2\) between estimated DOC concentrations and records had a minimum value of 0.48 of Santa Ana watershed and a maximum value of 0.88 of Mogollon watershed with a mean of 0.69 (figure S3). In addition, the p-value ranged from 0.29 (Suwannee watershed) to 0.61 (Santa Ana watershed) with a mean of 0.39, giving us high confidence that the estimated DOC concentrations were not significantly different from the recorded measurements overall or in any of the individual watersheds.

3.2. Fire effects and post-fire recovery patterns
The summarized results suggest that the length of recovery time required for daily riverine DOC concentration draining a watershed to return to its long-term average level ranged from 219 d in the Merced watershed (fire date: 15 August 2014, fire size: 5% of this watershed) to 402 d in Mogollon (fire date: 9 May 2012, fire size: 77% of this watershed) to 267 ± 55 d of all fires in the seven watersheds (table 3). The average of the immediate post-fire change in DOC concentration was −26 ± 15%, ranging from −75% in the Mogollon watershed (fire date: 9 May 2012, fire size: 77% of this watershed) to −8% in West Clear (fire date: 21 June 1996, fire size: 5% of this watershed). During the recovery time period, the average change of daily DOC concentration was −24 ± 11%, which ranged from −33 ± 15% in the Mogollon watershed (fire date: 9 May 2012, fire size: 77% of this watershed) to −17 ± 10% in Sopchoppy (fire date: 24 February 2017, fire size: 9% of this watershed).

3.3. Relationships
Our analysis of post-fire changes in riverine DOC concentration draining a watershed (short-term change and the average change during the recovery period) and the properties of the fire (fire severity, burned area) revealed several strong correlations among these factors (figure 3). The results show that...
the length of recovery time was correlated on a logarithmic scale with burned area within the watershed (figure 3(a), $R^2 = 0.82$, p-value < 0.00), where greater burned areas were coincident with longer recovery times. The immediate change in DOC concentration was linearly correlated with the burned area (figure 3(b), $R^2 = 0.82$, p-value < 0.00), and increasing burned area was coincident with a decrease in DOC concentration. The immediate change in DOC concentration was linearly correlated with the length of recovery time (figure 3(c) and $R^2 = 0.60$, p-value < 0.00), and increasing recovery was coincident with a decrease in DOC concentration.

4. Discussion

As hypothesized, our results suggest that fires can significantly and rapidly reduce riverine DOC concentrations draining a watershed, and that these reduced concentrations can persist over a post-fire recovery period of time that is related to the proportion of the fire. There are several ways in which burning can cause significant soil organic carbon loss through both combustion in the fire itself as well as with the reduction in DOC produced post-fire as a result of the modified post-burn environment (notably the loss of above and belowground plant cover) [42]. First, during the fire, a large quantity of soil organic carbon including DOC is directly combusted and released to the atmosphere as gas emissions [17]. Second, high temperatures at the soil surface during the fire can thermochemically convert soil organic carbon to more recalcitrant pyrogenic carbon [43, 44]. The result is that, post-fire, a certain amount of soil organic carbon becomes protected from physical degradation and microbial decomposition [45]. This means that there will be less labile organic carbon in the soil available for incomplete decomposition, thus reducing a key pathway for DOC production. Third, vegetation mortality from the fire will result in a reduction in the amount and quality of DOC exuded by roots in the post-fire environment [46]. Fourth, the complete or partial removal of tree canopies during or after the fire will reduce the DOC production...
introduced by the washout of organic compounds in throughfall [47]. Fifth, fires can affect soil microbial abundance and enzyme activities [48, 49]. The direct combustion and heat transfer to soils during fires can lead to heat-induced mortality of soil microbes and thus reduce rates of organic carbon decomposition.
Table 3. The average daily DOC concentration (mg l\(^{-1}\)), recovery time (days), immediate post-fire change in daily DOC concentration (%), and average change in daily DOC concentration during the recovery time period (%).

Watershed	Fire size (%)	Recovery time (days)	Immediate change (%)	Average change (%)
Merced	7.91	239	-10	-31 ± 12
Mogollon	4.82	219	-17	-25 ± 11
	77.01	402	-75	-33 ± 15
	9.1	224	-29	-29 ± 14
	7.04	319	-20	-31 ± 10
North Sylamore	9.17	—	-32	—
	10.23	259	-34	-26 ± 8
Santa Ana	5.62	220	-14	-29 ± 13
	30.09	—	-46	—
	8.02	—	-21	—
Sopchappy	7.21	254	-16	-21 ± 11
	8.52	259	-9	-17 ± 10
	20.19	309	-31	-19 ± 8
	8.23	—	-25	—
Suwannee	28.99	322	-43	-21 ± 9
	6.28	209	-20	-18 ± 11
	3.58	196	-11	-19 ± 9
	5.14	207	-8	-28 ± 12
West Clear	19.77	322	-29	-19 ± 8
	8.48	246	-23	-29 ± 11
Mean	14.36	262	-26	-24 ± 11

Figure 3. The relationship between length of recovery time of riverine DOC concentration draining a watershed and burned area within the watershed (a), the relationship between the immediate, post-fire change in DOC concentration and burned area (b), and the relationship between post-fire change in DOC concentration and the length of recovery time (c).

and subsequent DOC production [50]. At the same time, fires alter soil physical and chemical properties such as hydrophobicity and nutrient concentrations, and these changes may in turn have negative consequences for microbial activity and thus DOC production in the soil [51].

In addition to the consequences for DOC production, fires can also affect the riverine DOC concentration draining a watershed by physically changing the hydrological conditions for DOC movement from soils to inland waters [52]. By removing vegetation, fires alter soil properties that may induce the water repellency and reduce the soil water retention time, which have been reported to decrease DOC concentration in surface runoff [53, 54].

Our analysis estimates that, on average, it takes a relative short time period of 9 months after a fire for the riverine DOC concentration draining the watershed to recover to its long-term average level, ranging from 196 to 402 d in this study. Fires can increase the soil pH [54] and thus decrease its DOC sorption ability. With less sorption more DOC will be released to inland waters, which would accelerate the post-fire recovery of DOC concentration to the long-term average level. Fire-produced charcoal may reduce the sorption of phenolic compounds, which can otherwise inhibit microbial activity [55], thus promoting post-fire soil decomposition and DOC production [56]. Likewise, the deposition of ash following fires can increase soil pH and stimulate microbial activity, which accelerates the turnover of the remaining organic matter and produces DOC in the soil [51]. After fires, vegetation regeneration provides biomass inputs to the soil organic carbon
pool for decomposition and DOC production [57]. In addition, through vegetation removal by burning, fires may accelerate soil erosion [58] and increase DOC loading from soils to inland waters [59]. Parro et al [60] indicated that root biomass in burned areas was essentially the same as unburned forest and Turco et al [61] found that after 2 years, the post-fire forest soil organic carbon was not significantly lower than the pre-fire level. Our results suggest that fire can significantly and rapidly reduce riverine DOC concentrations draining the watershed; however, the mechanisms described above induced by the fire can accelerate the recovery of DOC concentrations to pre-fire levels, although reflecting a novel suite of dynamic equilibria for DOC production in the watershed. The size of these fires ranged from 5% to 77% with an average of 13% with no complete watershed fires that could partially explain the reason for the relatively short recovery period.

In aquatic ecosystems, a portion of the DOC loading from soils to inland waters will be decayed and released to the atmosphere as outgassing and a portion will be buried as sediment, while the remaining will be transported out of the watershed [62]. However, the extent of open water in these seven watersheds is no more than 1% (table S2), so the biogeochemical processes related to DOC flux in open waters are not included in this study.

Burn severity provided by the MTBS data is mapped using the Normalized Burn Ratio, which is calculated from pre- and post-fire Landsat imagery and categorized into six classes (i.e. not available, increased greenness, unburned to low, low, moderate, and high) [36]. This burn severity characterization relates principally to visible changes in living and non-living biomass, fire products (scorch, char, ash), and soil exposure, and thus it represents effects of fire on vegetation biomass, particularly in the upper strata [36]. Our results suggest that there are no obvious relationships between the changes of DOC concentration (i.e. short-term change and average change during the recovery time period) exported from watersheds and the MTBS measures of burn severity. This is potentially related to the limited number of categories used to classify the burn severity, and the limitations of this method in representing the fire effects on soil carbon loss. In these seven analyzed watersheds, North Sylamore and Suwannee had 6% and 4% overlayed burned area (percentage of the total watershed area), respectively (figure S2). Therefore, the limited number of suitable watersheds and small proportion of overlayed burned area constrain the analysis of the difference in DOC flux patterns affected by spatially independent and dependent fires. Another limitation of this study is that, since the measurements of pre- and post-fire soil pH, soil microbial abundance and enzyme activities as well as soil carbon content are not available, the major source of this decreasing riverine DOC concentration draining the watershed is not identified in this study.

5. Conclusion

Our results suggest that fires can significantly reduce the riverine DOC concentration draining a watershed immediately and over a post-fire recovery period. To better characterize the short-term carbon budget and the inter-annual dynamics of carbon fluxes at regional watershed scale, the fire effects on DOC export from watersheds should be included. The increasing size of fire within a watershed is coincident with decreasing riverine DOC concentration draining that watershed. Based on this analysis, we estimated that it takes approximately 9 months for the riverine DOC concentration draining a watershed to recover to its long-term average level. In addition, if excluding the fire effects, the riverine DOC concentration draining a watershed could be overestimated, and its temporal dynamics not adequately characterized. Our results also suggest that empirical and process-based models (e.g. TEM6 [28], TRIPLEX-HYDRA [5]) using riverine DOC concentration draining a watershed to estimate the DOC export from a given region, which typically do not account for fire effects, will be (a) unable to characterize the temporal dynamics of DOC concentration in rivers, and (b) likely to overestimate the total amount exported from watersheds with burned area during the post-fire year.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://doi.org/10.7910/DVN/2N9YN2. The WRTDS-fire model can be accessed in GitHub (https://github.com/xinyuanwylb19/WRTDS-fire-Model.git).

Acknowledgments

This project was supported by the USDA National Institute of Food and Agriculture, McIntire-Stennis Project No. ME0-41907 through the Maine Agricultural and Forest Experiment Station. Maine Agricultural and Forest Experiment Publication Number 3782. In addition, this research was supported by the US Department of Agriculture (Grant No. 2014-67003-22070) and supported as part of the Next Generation Ecosystem Experiments—Tropics project, funded by the US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER). This research was also supported by the Scientific Discovery through Advanced Computing (SciDAC) program, a partnership between the BER and the Advanced...
Scientific Computing Research (ASCR) Program at DOE. Oak Ridge National Laboratory is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725.

References

[1] Zarnetske J P, Rouda M, Abbott B W, Saisers J and Raymond P A 2018 Generality of hydrologic transport limitation of watershed organic carbon flux across ecoregions of the United States Geophys. Res. Lett. 45 11702–11
[2] Wen H, Perdrial J, Abbott B W, Bernals S, Dupas R, Godsey S E, Harpold A, Rizzo D, Underwood K and Adler T 2020 Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale Hydrol. Earth Syst. Sci. 24 945–66
[3] Butman D, Stackpoole S, Stets E, McDonald C P, Clow D W and Striegel R G 2016 Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting Proc. Natl. Acad. Sci. 113 58–63
[4] Tans S E, Foppa I B, Hood E and Kritzberg E S 2018 Beyond respiration: controls on lateral carbon fluxes across the terrestrial–aquatic interface Limnol. Oceanogr. Lett. 3 76–88
[5] Li M, Peng C, Zhou X, Yang Y, Guo Y, Shi G and Zhu Q 2019 Modeling global riverine DOC flux dynamics from 1951 to 2015 J. Adv. Model. Earth. Syst. 11 514–30
[6] Harrison J A, Caraco N and Seitzinger S P 2005 Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model Glob. Chang. Biol. 9 588–604
[7] Atkenhead J and McDowell W H 2000 Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales Glob. Chang. Biol. 14 127–38
[8] Battin T J, Luyssaert S, Kaplan L A, Aulenbaker A K, Richter A and Tranvik L J 2009 The boundless carbon cycle Nat. Geosci. 2 598
[9] Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S and Andersson A J 2013 Anthropogenic perturbation of the carbon fluxes from land to ocean Nat. Geosci. 6 597
[10] Bai X, Daighneau A, Fernandez I, Frank J, Hayes D, Johnson B, Wei X and Weiskittel A 2020 State of Maine’s carbon budget, 2006–2016 (version 1.0) Center for Research on Sustainable Forests
[11] Hayes D J et al 2018 Chapter 2: the North American carbon budget Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (Washington, DC: US Global Change Research Program) pp 71–108
[12] Winterdahl M, Laudon H, Lyon S W, Pers C and Bishop K 2016 Sensitivity of stream dissolved organic carbon to temperature and discharge: implications of future climates J. Geophys. Res.: Biogeosci. 121 126–44
[13] Raymond P A, Saisers J E and Sobczak W V 2016 Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept Ecology 97 5–16
[14] Meyer-Jacob C, Tolu J, Bigler C, Yang H and Bindler R 2015 Early land use and centennial scale changes in lake–water organic carbon prior to contemporary monitoring Proc. Natl. Acad. Sci. 112 201501505
[15] Wei X 2020 A synthesis program: reducing uncertainties of the terrestrial biosphere carbon cycle at various spatial and temporal scales Electronic Theses and Dissertations 3173 (available at: https://digitalcommons.library.umaine.edu/etd/3173)
[16] Dean C, Kirkpatrick J B and Friedland A J 2017 Conventional intensive logging promotes loss of organic carbon from the mineral soil Glob. Change Biol. 23 1–11
[17] Shihata H, Petrone K C, Hinzman L D and Boone R D 2003 Effect of fire on dissolved organic carbon and inorganic solutes in spruce forest in the permafrost region of interior Alaska Soil Sci. Plant Nutr. 49 25–9
[18] Giglio L, Randerson J T and Verger G R 2013 Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4) J. Geophys. Res.: Biogeosci. 118 317–28
[19] Bird M I, McBeath A V, Ascough P L, Levchenko V A, Wurster C M, Munksgaard N C, Smernik R J and Williams A 2017 Loss and gain of carbon during char degradation Soil Biol. Biochem. 106 80–9
[20] Wei X, Hayes D J, Fraver S and Chen G 2018 Global pyrogenic carbon production during recent decades has created the potential for a large, long-term sink of atmospheric CO2 J. Geophys. Res.: Biogeosci. 123 3682–96
[21] van Wees D and van der Werf G R 2019 Modelling biomass burning emissions and the effect of spatial resolution: a case study for Africa based on the Global Fire Emissions Database (GFED) Geosci. Model. Dev. 12 6481–703
[22] Aaltonen H, Köster K, Köster E, Berninger F, Zhou X, Karhu K, Biasi C, Bruckman V, Palviainen M and Pumpenman J 2019 Forest fires in Canada underpinning permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality Biogeochemistry 143 257–74
[23] Schindler D W, Curtis P J, Bayley S E, Parker B R, Beaty K G and Stainon M P 1997 Climate-induced changes in the dissolved organic carbon budgets of boreal lakes Biogeochemistry 36 9–28
[24] Santos F, Wymore A S, Jackson B K, Sullivan S M P, McDowell W H and Berhe A A 2019 Fire severity, time since fire, and site-level characteristics influence streamwater chemistry at baseflow conditions in the Sierra Nevada, California, USA Fire Ecol. 15 3
[25] Larouche J R, Abbott B W, Bowden W B and Jones B 2015 The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams Biogeosciences Discuss. 12 4221–33
[26] Sazawa K, Wakiimoto T, Fukushima M, Yustiawati Y, Syawal M S, Hata N, Taguchi S, Tanaka S, Tanaka D and Karamitzi H 2018 Impact of peat fire on the soil and export of dissolved organic carbon in tropical peat soil, Central Kalimantan, Indonesia ACS Earth Space Chem. 2 692–701
[27] Uzun H, Zhang W, Olivares C I, Erdem C U, Coates T A, Karamanl T and Chow A T 2020 Effect of prescribed fires on the export of dissolved organic matter, precursors of disinfection by-products, and water treatability Water Res. 187 116585
[28] Kicklighter D W, Hayes D J, McClelland J W, Peterson B J, McGuire A D and Melloville J M 2013 Insights and issues with simulating terrestrial DOC loading of Arctic river networks Ecol. Appl. 23 1817–36
[29] Nakhavali M, Friedlingstein P, Laurierlard R, Tang J, Chadburn S, Camino-Serrano M, Guenet B, Harper A, Walmsey D and Peichl M 2018 Representation of dissolved organic carbon in the JULES land surface model (v4.2- JULES-DOCM) Geosci. Model. Dev. 11 593–609
[30] Laurierlard R, Guenet M, Camino-Serrano M, Guenet B, Guimberteau M, Ducharme A, Polcher J and Ciais P 2019 ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial–aquatic continuum of the Amazon basin Geosci. Model. Dev. 10 10
[31] Hurteau M D and North M 2010 Carbon recovery rates following different wildfire risk mitigation treatments For. Ecol. Manage. 260 930–7
[32] di Virgilio G, Evans J P, Blake S A, Armstrong M, Dowdy A J, Sharpley J and McClure R 2019 Climate change increases the potential for extreme wildfires Geophys. Res. Lett. 46 8517–26
[33] Abatzoglou J T, Williams A P and Barbero R 2019 Global emergence of anthropogenic climate change in fire weather indices Geophys. Res. Lett. 46 326–36
[34] Holden Z A, Swanson A, Luce C H, Jolly W M, Maneta M, Oyler J W, Warren D A, Parsons R and Affleck D 2018 Decreasing fire season precipitation increased recent western US forest wildfire activity Proc. Natl Acad. Sci. 115 E8349–57

[35] Marlon J R, Bartlein P J, Gavin D G, Long C J, Anderson R S, Briels C E, Brown K J, Colombaroli D, Hallett J D and Power M J 2012 Long-term perspective on wildfires in the western USA Proc. Natl Acad. Sci. 109 E335–43

[36] Eldenshnik J, Schwind B, Brewer K, Zha Z-L, Quayle B and Howard S 2007 A project for monitoring trends in burn severity Fire Ecol. 3 3–21

[37] Yang L, Jin S, Danielson P, Homer C, Gass L, Bender S M, Case A, Costello C, Dewitz J and Fry J 2018 A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies ISPRS J. Photogramm. Remote Sens. 146 108–23

[38] Hirsch R M, Moyer D L and Archfield S A 2010 Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs J. Am. Water Resour. Assoc. 46 857–80

[39] Wei X and Larsen C 2018 Assessing the minimum number of time since last fire sample-points required to estimate the fire cycle: influences of fire rotation length and study area scale Forests 9 708

[40] White J W, Rassweiler A, Samhouri J F, Stier A C and White C 2014 Ecologists should not use statistical significance tests to interpret simulation model results Oikos 123 385–8

[41] Wei X and Larsen C P 2019 Methods to detect edge effects reductions in fire frequency in simulated forest landscapes ISPRS Int. J. Geo-Inf. 8 277

[42] Pellegrini A F, Ahlström A, Hobbie S E, Reich P B, Nieradzki I P, Staver A C, Scharenbroch B C, Junpponen A, Andereg W R and Randerson J T 2018 Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity Nature 553 194–8

[43] Santin C, Doerr S H, Kane E S, Masielo C A, Ohlson M, Rosa J M, Preston C M and Dittmar T 2016 Towards a global assessment of pyrogenic carbon from vegetation fires Glob. Change Biol. 22 76–91

[44] Kázařová Y, Bogomolova I and Glaser B 2014 Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 13C analysis Soil Biol. Biochem. 70 229–36

[45] Jones M W, Santin C, van der Werf G R and Doerr S H 2019 Global fire emissions buffered by the production of pyrogenic carbon Nat. Geosci. 12 742–7

[46] Schadel C, Bader M K-F, Schuur E A, Baisi C, Bracho R, Capek P, de Baets S, Diakovi K, Ernakovich J and Estop-Aragones C 2016 Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils Nat. Clim. Change 6 950–3

[47] Godoy-Silva D, Nogueira R F and Campos M L A 2017 A 13 year study of dissolved organic carbon in rainwater of an agro-industrial region of São Paulo state (Brazil) heavily impacted by biomass burning Sci. Total Environ. 609 476–83

[48] Bowker M A, Belnap J, Rosentreter R and Graham B 2004 Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA Appl. Soil Ecol. 26 41–52

[49] Hedo J, Lucas-Borja M, Wic C, Andrés-Abellán M and de Las Heras J 2015 Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semi-arid Aleppo pine (Pinus halepensis M.) forest stands Solid Earth 6 243–52

[50] Certini G, Nocentini C, Knicker H, Arfaioli P and Rumpel C 2011 Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests Geoderma 167 148–55

[51] Certini G 2005 Effects of fire on properties of forest soils: a review Oecologia 143 1–10

[52] Ebel B A 2013 Wildfire and aspect effects on hydrologic states after the 2010 Fourmile Canyon Fire Vadose Zone J. 12 1–19

[53] García-Corona R, Benito E, de Blas E and Varela M 2004 Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils Int. J. Wildland Fire 13 195–9

[54] Alauzis M A V, Mazzarino M A J, Raffaele E and Roselli L A 2004 Wildfires in NW Patagonia: long-term effects on a Nothofagus forest soil For. Ecol. Manage. 192 131–42

[55] Hättenschwiler S and Vitousek P M 2000 The role of polyphenols in terrestrial ecosystem nutrient cycling Trends Ecol. Evol. 15 238–43

[56] Wardle D A, Nilsson M-C, Gallet C and Zackrisson O 1998 An ecosystem-level perspective of allelopathy Biol. Rev. 73 305–19

[57] Latham P and Tappeiner J 2002 Response of old-growth conifers to reduction in stand density in western Oregon forests Tree Physiol. 22 137–46

[58] del Pino J S N and Ruiz-Gallardo J-R 2015 Modelling post-fire soil erosion hazard using ordinal logistic regression: a case study in south-eastern Spain Geomorphology 232 117–24

[59] Janeau J-L, Gillard L-C, Grellier S, Jouquet P, Le T P Q, Luu T N M, Ngo Q A, Orange D, Pham D R and Tran D T 2014 Soil erosion, dissolved organic carbon and nutrient losses under different land use systems in a small catchment in northern Vietnam Agric. Water Manage. 146 314–23

[60] Parro K, Köster K, Jögeste K, Seglini K, Sims A, Stanturf J A and Metslaid M 2019 Impact of post-fire management on soil respiration, carbon and nitrogen content in a managed hemiboreal forest J. Environ. Manage. 233 371–7

[61] Turco M, Rosa-Cánovas J J, Bedía J, Jerez S, Montávez J P, Llasat M C and Provenzale A 2018 Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models Nat. Commun. 9 3821

[62] Cole J J, Prairie Y T, Caraco N F, McDowell W H, Tramvik I J, Striegel R G, Duarte C M, Kortelainen P, Downing J A and Middelburg J J 2007 Pluming the global carbon cycle: integrating inland waters into the terrestrial carbon budget Ecosystems 10 172–85