Inherited amino acid substitutions at position 21, 22, or 23 of amyloid β (Aβ) lead to presenile dementia or stroke. Insulin-degrading enzyme (IDE) can hydrolyze Aβ wild type, yet whether IDE is capable of degrading Aβ bearing pathogenic substitutions is not known. We studied the degradation of all of the published Aβ genetic variants by recombinant rat IDE (rIDE). Mono­meric Aβ wild type, Flemish (A21G), Italian (E22K), and Iowa (D23N) variants were readily degraded by rIDE with a similar efficiency. However, proteolysis of Aβ Dutch (E22Q) and Arctic (E22G) was significantly lower as compared with Aβ wild type and the rest of the mutant peptides. In the case of Aβ Dutch, inefficient proteolysis was related to a high content of β structure as assessed by circular dichroism. All of the Aβ variants were cleaved at Glu³-Phe⁴ and Phe⁴-Arg⁵ in addition to 13–15 and 18–21. SDS-stable Aβ dimers were highly resistant to proteolysis by rIDE regardless of the variant, suggesting that IDE recognizes a conformation that is available for interaction only in monomeric Aβ. These results raise the possibility that upregulation of IDE may promote the clearance of soluble Aβ in hereditary forms of Aβ diseases.

The accumulation of amyloid β peptide (Aβ) in the brain is a central process in a number of human neurodegenerative disorders that may be grouped as “amyloid β diseases” (1). In Alzheimer’s disease, Aβ is mainly found within senile plaques in the neuropil and vascular lesions, whereas in sporadic and hereditary amyloid angiopathies, Aβ deposits are mainly associated with cortical and leptomeningeal vessels leading to stroke or multi-infarct dementia. To a lesser extent, cerebral Aβ deposits are also present in normal aging (2). Autosomal dominant mutations in the amyloid β precursor protein (Aβ PP) gene result in amino acid substitutions at position 21, 22, or 23 of Aβ sequence. Although these Aβ variants present with a primarily vascular deposition, they translate into different clinical phenotypes. In this regard, Aβ Arctic (E22G) and Aβ Iowa (D23N) are characterized by presenile dementia and Aβ Flemish (A21G) is associated with early onset dementia and cerebral hemorrhage, whereas Aβ Dutch (E22Q) and Aβ Italian (E22K) variants have a predominant vascular phenotype characterized by massive strokes (3–7). The underlying mechanism of aggregation and deposition in vivo may be strongly influenced by the type of amino acid substitution as well as the location of mutations in the Aβ peptide. In vitro studies have shown that Aβ E22Q and Aβ D23N form typical amyloid fibrils at a higher rate than wild-type Aβ and that Aβ E22G assembles into unique protofibrils that may be toxic to neurons (3, 8–10). In the case of Aβ A21G, overproduction of the peptide may contribute as a pathogenic mechanism (11, 12). Regarding Aβ E22K, deposition seems not to be related with fibril formation rate, and yet this variant may be toxic to human cerebrovascular smooth muscle cells in culture (6, 13). In addition to the intrinsic aggregation properties of Aβ and its genetic variants and the rate of their production, recent studies (14, 15) in animal models have suggested that a defective clearance may influence the progressive accumulation of Aβ in the neuropil and cerebral vessels. Among the mechanisms that remove Aβ peptides from the brain, degradation by several proteases including nephrilysin, endothelin-convertase enzyme, and insulin degrading enzyme (IDE) is now being considered as an important component of the Aβ clearance process (16, 17). Reduced in vivo (18, 19) and in vitro (20) IDE is a highly conserved thiol metallopro­tease with ubiquitous expression including the brain (20–22). Regarding its physiological role, IDE has been implicated in cellular growth and differentiation, modulation of proteasomal activity, and steroid signaling (23, reviewed in Ref. 24). In addition to insulin for which the protease has a Kₘ in the low nanomolar range, IDE is known to degrade several peptides capable of forming amyloid fibrils in vitro and in vivo including glucagon, amylin, atrial natriuretic peptide, calcitonin, and Aβ (25, 26, reviewed in Ref. 27). Studies using rat and human brain tissue homogenates, IDE-transfected cell lines, and primary neuronal cultures have supported a role of IDE in Aβ degradation in vitro (28–31). Moreover, IDE has been shown to...
proteolytic activity was determined using [125I]insulin as described and Rosner (34). Purity, as assessed by SDS-PAGE, was (Amersham Biosciences) following the method described by Chesneau with the same restriction enzymes to generate the pET-IDE construct. Xho and facilitate cloning. The PCR DNA fragment was digested with Bam HI and cloned into pET-30a (kindly provided by Richard Roth, Stanford University), entirely capable of degrading Aβ, that are thought to be more toxic to neurons or vascular cells than typical amyloid fibrils (33). However, whether IDE is capable of degrading Aβ bearing pathogenic amino acid substitutions and how these changes may affect specificity is not known. The aim of our work was to study the degradation of Aβ genetic variants associated with human disease by recombinant IDE in vitro and to characterize the proteolytic products from each of these Aβ mutant peptides.

EXPERIMENTAL PROCEDURES

Expression and Purification of Recombinant Rat IDE—The plasmid pECE-IDE (kindly provided by Richard Roth, Stanford University), containing the coding region of rat IDE cDNA was used as a template for the PCR amplification of a truncated version of IDE using sense 5΄-AGCCAGAGTCTCAATGATAACCGCCAT-3΄ (nucleotides 139–155) and antisense 5΄-TTCTCGAGGAGTTTTGCCGCCATGA-3΄ (nucleotides 3072–3056) primers of the rat IDE cDNA sequence. Sites for the restriction enzymes BamHI and XhoI, respectively, were introduced to facilitate cloning. The PCR DNA fragment was digested with BamHI and XhoI and cloned into pET-30a (+) (Novagen) previously digested with the same restriction enzymes to generate the pET-IDE construct. Recombinant IDE 42-1019 (rIDE) was expressed in Escherichia coli BL21 and purified to homogeneity using a Hi Trap Ni-chelating column (Amersham Biosciences) following the method described by Chesneau and Rosenzweig (34). Purity, as assessed by SDS-PAGE, was >95%. rIDE proteolytic activity was determined using [125I]insulin as described below.

Production of Anti-IDE Polyclonal Antibodies—A region between amino acids 97 and 273 of the rat IDE sequence was amplified by PCR using as template pECE-IDE with the following primers: forward 5΄-CTGACGGGATCCCTGCAGACCTCTGCA-3΄ and reverse 5΄-CAATGCT-GAATTCTTCTCACCAGATT-3΄. After digestion with BamHI and EcoRI, the 530-bp insert was subcloned into pGEX2T vector (Amersham Biosciences). GST-IDE97–273 fusion protein was expressed and purified according to the manufacturer’s suggestions. After immunization of New Zealand rabbits with GST-IDE97–273, the antiserum (BC2) was found to react with IDE, m, Aβ monomers; d, Aβ dimers. Bars represent the mean ± S.E. of three independent experiments. * p < 0.01 (Student’s t test) as compared with Aβ WT.

New Zealand rabbits with GST-IDE97–273, the antiserum (BC2) was sequentially purified using a BL21/GST lysate coupled to CNBr-activated Sepharose (Amersham Biosciences) and a GST-agarose (Sigma) affinity columns, respectively. Specificity of anti-IDE antiserum BC2 was tested by Western blot against GST, GST-IDE97–273, purified rIDE (see above), and soluble fractions from human and rat brain and liver in which a single 115-kDa band was detected (data not shown).

Synthetic Peptides—Synthetic Aβ(1–40)–peptides such as Aβ WT, Aβ A21G, Aβ E22Q, Aβ E22K, Aβ E22G, Aβ D23N, and Aβ(1–40)/Aβ (1–42) containing the rodent sequence (35) were synthesized by the W. M. Keck Foundation (Yale University, CT). All of the peptides were purified by reverse-phase high pressure liquid chromatography, and their purity was evaluated by amino acid sequence analysis and laser desorption mass spectrometry. Lyophilized aliquots of the peptides were dissolved at a concentration of 70 μM in distilled water as determined with a bicinchoninic acid assay (Pierce) after centrifugation at 10,000 rpm for 15 min to eliminate large aggregates. The supernatant was aliquoted and stored at −80°C.

SDS-PAGE and Western Blot—Proteins obtained from E. coli BL21 lysates and after the different steps of purification were analyzed by 7.5% SDS-PAGE in Tris-Tricine gels. Aβ peptides were run on 12.5% Tris-Tricine SDS-PAGE. For Western blot analysis, proteins were transferred onto nitrocellulose membranes (Hybond ECL, Amersham Biosciences) and incubated with anti-Aβ monoclonal antibody 6E10 (Signet Laboratories) at 1:1000, anti-IDE monoclonal 9B12 (kindly provided by Richard Roth) at 1:1000, and polyclonal antibody BC2 (kindly provided by Richard Roth at 1:1000). Immunoreactivity was detected with peroxidase-labeled IgG and ECL Plus (Amersham Biosciences). Immunoblots were scanned with ImageQuant 5.1 software (Amersham Biosciences).

In-gel Tryptic Digestion of IDE and Amino Acid Sequencing—After SDS-PAGE and Coomassie Blue staining, the band of 125 kDa was cut and the gel slice was incubated in 100 mM ammonium bicarbonate, pH 8.3 containing 45 mM dithiothreitol for 30 min at 60°C. The tube was cooled at room temperature, and 100 mM iodoacetamide was added.
followed by incubation for 30 min in the dark at room temperature. The gel was then washed in 50% acetonitrile, 100 mM ammonium bicarbonate with shaking for 1 h, cut in pieces, and transferred to a small tube. Acetonitrile was added to shrink the gel pieces, and the sample was dried in arotary evaporator. The gel pieces were re-swollen with 10 μl of 100 mM ammonium bicarbonate, pH 8.3, containing trypsin at a 10:1 ratio (w/w, substrate/ enzyme). The sample was incubated overnight at 37 °C, and digestion products were extracted twice from the gel with 50% acetonitrile, 0.1% trifluoroacetic acid. Selected peaks were applied to a 477A protein-peptide sequencer (Applied Biosystems) and subjected to Edman degradation sequence analysis at the Laboratorio Nacional de Investigación y Servicios en Peptidos y Proteínas facility (CONICET).

Degradation Assays—1 μg of each Aβ synthetic peptide was incubated alone or with 500 ng of purified rIDE in 10 μl of 100 mM sodium phosphate buffer, pH 7, in the presence or absence of 1 mM 1,10-phenanthroline. After 30, 60, 90, and 120 min of incubation at 37 °C, samples were analyzed by SDS-PAGE and Western blot with 6E10 as described above. After each time point, degradation by rIDE was expressed as the percentage of remaining Aβ activity. After each time point, the sample was run on SDS-PAGE, and the remaining intact [125I]insulin was analyzed and quantitated with a STORM 840 PhosphorImager (Amersham Biosciences).

Circular Dichroism (CD) Spectra—Aliquots of Aβ synthetic peptides freshly dissolved at 60 μM in 10 mM Tris-HCl buffer, pH 7.5, were loaded into a 0.1-cm path length cell. Results are expressed as mean residue ellipticity in units of deg cm² dmol⁻¹ after subtraction of buffer spectra and smoothing with algorithm provided by JASCO. Spectra: 1, Aβ E22G; 2, Aβ WT; 3, Aβ D23N; 4, Aβ A21G; 5, Aβ E22K and 6, Aβ E22Q.

TABLE I

Aβ fragment	Aβ WT	Aβ A21G	Aβ E22K	Aβ E22Q	Aβ E22G	Aβ D23N	Aβ ro dent						
Obs.	Calc.												
1–13	1561.8	1561.6	NF										
1–14	1699	1698.3	1699.5	1693.7	1699.5	1698.7	1699.4	1698.4	1699.3	1698.7	1603.7	1602.6	
1–18	2167.9	2167.3	NF	2165.6	2167.3	NF	2168.9	2167.3	2168.1	2167.3	2072.9	2071.2	
1–19	2315.1	2314.5	2315.6	2314.5	NF		2315.7	2314.5	2315.3	2314.5	2292.2	2218.4	
1–20	2462.6	2461.7	NF	2462.9	2461.7	NF	NF	NF	3019.2	3019.2			
1–26	NF	NF	NF	NF	NF	3261.3	3261.5	3168.2	3166.5	3168.2	3166.5		
1–28	NF	NF	NF	NF	NF	3019.2	3019.2	NF					
4–13	1246.4	1246.3	1246.8	1246.3	1246.7	1246.3	1246.7	1246.3	1246.7	1246.3	1151.2	1150.2	
4–14	1383.7	1383.5	1384.2	1385.5	1384.2	1383.4	1384.2	1385.5	1383.9	1385.5			
4–19	2000	1999.2	NF	NF	NF	NF	NF	1338.6	1338.5				
5–14	1236.3	1236.3	1236.8	1236.3	1237.3	1236.3	1226.3	1236.3	1236.3	1236.3			
14–20	NF	NF	NF	NF	NF	2315.1	2314.5	2315.6	2314.5	2220.2	2218.4		
14–28	1719.4	1718.9	1705.8	1704.9	NF	NF	NF	NF	1647.4	1648.9			
15–26	NF	1338.6	1338.5										
15–28	1582	1581.8	1568.3	1567.8	NF	NF	NF	NF	1510.5	1509.7			
15–40	NF	NF	NF	NF	NF	2650.5	2648.2	NF	2578.5	2579.1			
19–28	NF												
19–40	2180.4	2180.6	NF										
20–40	NF	NF	NF	2020.3	2019.4	2033.5	2032.4	1962.1	1961.3	2033.1	2032.3	2034.6	2033.5
21–40	NF	NF	NF	1886.6	1885.3	1886.5	1885.2	1814.6	1814.1	1885.7	1885.2	1887.5	1886.2
27–40	NF	NF	NF	NF	NF	2650.5	2648.2	NF	2578.5	2579.1			
29–40	NF	NF	1084.9	1085.4	NF	NF	NF	NF	1327.7	1327.7			
28–40	NF	NF	NF	NF	NF	1084.9	1085.4	NF	NF	NF			

FIG. 3. Schematic representation of cleavage sites within Aβ WT, Aβ ro dent, and Aβ human genetic variants by rIDE. Arrows indicate loss of cleavage under the experimental conditions tested. The lines represent identity of amino acid sequence and cleavage sites. Amino acid substitutions in each Aβ variant are shown in circles.

FIG. 4. Circular dichroism spectra of Aβ variants. Aliquots (400 μg) of each peptide were dissolved in 1.5 ml of 10 mM Tris-HCl buffer, pH 7.5. After centrifugation at 14,000 rpm for 5 min to remove aggregates, CD spectra were recorded in a JASCO spectropolarimeter J-720 in a 0.1-cm path length cell. Results are expressed as mean residue ellipticity in units of deg cm² dmol⁻¹ after subtraction of buffer spectra and smoothing with algorithm provided by JASCO. Spectra: 1, Aβ E22G; 2, Aβ WT; 3, Aβ D23N; 4, Aβ A21G; 5, Aβ E22K and 6, Aβ E22Q.
was carried out using angiotensin I (average mass = 1296.5 Da) and insulin (average mass = 5733.5 Da).

Isolation of Aβ from Leptomeningeal Vessels—Leptomeningeal vascular amyloid from a patient with hereditary cerebral hemorrhage with amyloidosis Dutch type (HCHWA-D) was isolated as described previously (36). Leptomeninges were dissected from brain coronal sections, cut with scissors into 1–3-mm pieces, and placed in 0.1 M Tris-HCl, pH 8, on ice. Tissue was then washed by resuspension in 0.1 M Tris-HCl, pH 8, containing protease inhibitors (buffer A) and centrifuged at 800 × g for 5 min at 4 °C. The procedure was repeated 5 times. The material was collected by filtration through a 50-μm nylon mesh and the filtrate was centrifuged at 10,000 × g for 12 min. The pellet was resuspended in 2% SDS in 0.1 M Tris-HCl, pH 8, and incubated for 1 h at 37 °C in the absence (panel A) or in the presence (panel B) of rIDE. St, standard (insulin mass/2H). Insets, calculated and observed masses of Aβ E22Q species and predicted peptides. The presence of one or two formic acid molecules is indicated by F or 2F, respectively. Ox, oxidized. Panel C, Western blot analysis with monoclonal 6E10 after incubation of Aβ E22Q from HCHWA-D leptomeningeal vessels with rIDE. Synthetic Aβ E22Q (lane 1) and HCHWA-D amyloid incubated for 1 h at 37 °C alone (lane 2) and with rIDE (lane 3) are shown. Left, molecular masses in kilodaltons.

RESULTS

Expression and Characterization of Recombinant Rat IDE—Our IDE bacterial expression vector pET-IDE encodes rat IDE (positions 42–1019) with a His$_6$ tag at its N terminus to facilitate the purification of the protease with a Ni-affinity column. After elution with a step gradient of increasing imidazole concentrations, we obtained a highly purified recombinant protein with an apparent molecular mass of 125 kDa as assessed by SDS-PAGE. Western blot using our polyclonal antibody BC2 specifically recognized this 125-kDa fusion protein (Fig. 1A). Unexpectedly, the protein did not display immunoreactivity on Western blot with monoclonal 9B12, a well characterized anti-rat IDE antibody (data not shown) (37). To determine its identity, we performed “in-gel” digestion with trypsin followed by separation on microbore high pressure liquid chromatography and N-terminal amino acid sequence of a tryptic fragment. The sequence NVLPLPEF matched positions 282–288 of rat IDE (20), confirming the identity of our recombinant protease and suggesting that 9B12 may indeed recognize a posttranslationally modified epitope in rat IDE that is not present in IDE expressed in bacteria. To characterize the activity of recombinant rIDE, we analyzed the degradation of [35S]insulin. After 1 h of incubation, rIDE was able to digest [35S]insulin and this activity was totally inhibited by EDTA-1,10-phenantroline and blocked to 80% in the presence of 1 μM unlabeled insulin (Fig. 1B). These results are fully consistent with the reported characterization of human recombinant IDE expressed in E. coli (34) and rat recombinant IDE produced in a baculovirus-insect cell system (32).

Degradation of Aβ WT and Aβ Genetic Variants by rIDE—We followed the degradation of Aβ WT and Aβ genetic variants by rIDE using SDS-PAGE and Western blot with monoclonal 6E10 that recognizes an epitope within positions 1–16 of Aβ (38) The relative amount of Aβ monomers and dimers that remained intact after incubation with rIDE was estimated by densitometry. This method allowed an accurate discrimination between monomeric and oligomeric Aβ as opposed to high pressure liquid chromatography or trichloroacetic acid precipitation (28, 29). The absence of Aβ degradation products on Western blots may reflect the loss of the 6E10 epitope attributed to rIDE activity. Alternatively, the Aβ N-terminal fragments generated by the protease may be too small to be detected on SDS-PAGE. Under the conditions of our assay, the quantitation of degradation showed linearity up to 90 min of incubation (data not shown); therefore, a 60-min incubation was the time selected for the comparative analysis. As indicated in Fig. 2, A and B, monomeric Aβ WT, Aβ A21G, Aβ E22K, and Aβ D23N were degraded at 75.2 ± 3, 81.5 ± 9.2, 79.5 ± 12, and 84.7 ± 7.6%, respectively. rIDE was substantially less efficient in degrading Aβ E22Q and Aβ E22G monomers (42.3 ± 3, 35.4 ± 6%, respectively, p < 0.01 as compared with Aβ WT). In the presence of 1,10-phenantroline, degradation of Aβ WT was inhibited almost completely (Fig. 2B). In contrast to Aβ monomers, degradation of

Fig. 5. Degradation of Aβ E22Q from HCHWA-D leptomeningeal vessels by rIDE. MALDI-TOF MS analysis of native Aβ E22Q extracted in formic acid after incubation for 1 h at 37 °C in the absence (panel A) or in the presence (panel B) of rIDE. St, standard (insulin mass/2H). Insets, calculated and observed masses of Aβ E22Q species and predicted peptides. The presence of one or two formic acid molecules is indicated by F or 2F, respectively. Ox, oxidized. Panel C, Western blot analysis with monoclonal 6E10 after incubation of Aβ E22Q from HCHWA-D leptomeningeal vessels with rIDE. Synthetic Aβ E22Q (lane 1) and HCHWA-D amyloid incubated for 1 h at 37 °C alone (lane 2) and with rIDE (lane 3) are shown. Left, molecular masses in kilodaltons.
characterization of Aβ proteolytic products—Aβ WT proteolytic products generated by rIDE were consistent with previous reports with the major sites of cleavage at His1–His3, His3–4, Gln22–Phe19, Gln22–Phe19–Phe20, Phe20–Ala21, and Lys28–Gly29 (28, 32, 39). All of the Aβ fragments observed by MALDI-TOF MS are summarized in Table I, and Fig. 3 shows a schematic representation of the cleavage sites. Several fragments starting at Phe4 and Arg5 were found in Aβ WT and in all of the Aβ variants. These peptides were not the products of truncated synthesis as shown by MS analysis of undigested Aβ peptides and were not found when Aβ was incubated with rIDE in the presence of 1,10-phenantroline (data not shown). Moreover, Phe and Arg as P1 residues are compatible with the known specificity of IDE (28, 41). Therefore, it seemed probable that rIDE was capable of hydrolyzing Aβ Glu1–Phe4 and Phe4–Arg5 peptide bonds. In Aβ A21G, there was a consistent absence of fragments ending at Phe20 or starting at Gly21, suggesting the specific loss of a cleavage site. Notably, when we analyzed the digestion of rodent Aβ that present Gly instead of Arg at position 5, no fragments indicative of hydrolysis at the Phe4–Gly5 site were found, neither in rodent Aβ–(1–40) (Table I and Fig. 3) nor in rodent Aβ–(1–42) (data not shown), whereas all of the other cleavage sites present in human Aβ WT were conserved. The Dutch variant Aβ E22Q showed the apparent loss of sites at Val18–Phe19 and Lys28–Gly29, whereas in the Italian variant Aβ E22K, the latter cleavage site was also absent. This peptide bond has been reported to be resistant to IDE in Aβ WT–(1–42) (32), and therefore, its hydrolysis by IDE may depend upon oligomerization rather than primary structure. Alternatively, the presence of Gly at P1 may impose a subsite restriction as suggested by the loss of cleavage sites in the Aβ Flemish and rodent variants. The Iowa type Aβ D23N differed notably from all of the other Aβ peptides studied. Fragments consistent with positions 1–26, 15–26, and 27–40 were found, indicating the cleavage at the Ser26–Asn27 bond (Table I and Fig. 3) and pointing to the possible importance of the Asp23 in the folding of the Aβ peptide.

Effect of Aβ Secondary Structure Upon Degradation by rIDE—To study the possible influence of secondary structure of Aβ variants on the susceptibility to degradation by rIDE, we performed CD analysis of all of the peptides freshly dissolved in aqueous buffer at neutral pH without previous incubation and after the removal of large aggregates by centrifugation. As expected, Aβ E22Q displayed a negative peak at 220 nm and a positive peak at 195 nm consistent with a β structure in solution (6). In contrast, Aβ WT, Aβ A21G, Aβ E22G, Aβ E22Q, and Aβ D23N showed a strong negative peak at 198 nm corresponding to unordered structures (Fig. 4).

Degradation of Aβ E22Q Purified from Leptomeningeal Vessels by rIDE—To determine whether rIDE was capable of degrading the Dutch Aβ variant present in affected human tissue, we used purified Aβ from leptomeningeal vessels from a case of HCHWA-D that was extensively characterized previously (36). After the removal of formic acid by reverse-phase C18 Zip Tip and equilibration of the sample at neutral pH, Aβ Dutch was incubated with rIDE and degradation characterized as above. Western blot showed that Aβ Dutch was extensively aggregated into SDS-resistant oligomers of ∼22–25 kDa that were unmodified in the presence of rIDE (Fig. 5C). However, MALDI-TOF MS analysis revealed the disappearance of monomeric Aβ Dutch and the generation of two fragments, positions 1–19 and 1–20 (Fig. 5, A and B), that were not seen in the presence of 1,10-phenantroline (data not shown).

DISCUSSION

Our results demonstrated that rIDE was capable of degrading all of the synthetic Aβ variants associated with human disease and Aβ Dutch purified from leptomeningeal vessels. However, the efficiency of degradation of synthetic Aβ monomeric species by rIDE was significantly lower for Aβ E22Q and Aβ E22G as compared with Aβ WT and the rest of the variant Aβ peptides studied. The concentrations of Aβ peptides used in our assays were above the critical concentration of Aβ (1–40) for the formation of high molecular weight oligomers (41), and therefore, it is likely that aggregation of Aβ strongly influenced the rate of degradation by rIDE. In the case of the Aβ Dutch variant, a possible slower rate of degradation could be explained by the high content of β structure as shown by CD analysis. This result was fully consistent with several in vitro studies that have demonstrated the fast rate of assembly into stable fibrils of this Aβ mutant (8, 9, 36). The early deposition of Aβ E22Q and onset of symptoms in HCHWA-D patients strongly suggest that such mechanism may be relevant in vivo. Moreover, the amyloidogenic conformation of Aβ E22Q may be dominant because Aβ WT has been also found in the HCHWA-D vascular deposits (42). The Aβ Arctic variant peptide in turn has been shown to self-assemble rapidly into protofibrils that may be toxic to neural cells (3). Although the major quantitative differences in degradation were seen upon Aβ E22Q and Aβ E22G, it is unlikely that they reflect a protease-resistant conformation of these monomeric Aβ species. The models based on NMR have shown a similar coiled flexible structure in aqueous solution for Aβ E22Q and Aβ WT (43, 44). Moreover, we have previously demonstrated that at physiological concentrations in the low nanomolar range, Aβ WT and Aβ E22Q were degraded at a similar rate by endogenous brain IDE (29). Thus, it seems more likely that monomeric Aβ Dutch and Arctic variants were “hidden” from rIDE into higher oligomers or aggregates during incubation in physiological buffer that were then partially dissociated upon SDS treatment for Western blot analysis. It was notorious that all of the SDS-resistant Aβ dimers including those from Aβ WT were poorly degraded by rIDE, consistent with the resistance to proteolysis of native Aβ WT-soluble oligomers in cultured cells overexpressing Aβ PP (33). However, it cannot be concluded from these experiments whether Aβ dimers or higher oligomers are the resistant species to degradation by rIDE. The separation of stable Aβ oligomers by gel filtration under native conditions is needed to clarify this issue. In any case, our results and previous reports (28, 48) support that IDE recognizes a motif on monomeric Aβ within positions 18–22, a known hydrophobic stretch that is critical for amyloid formation (45–47). It may be possible that when these residues participate in peptide self-assembly, they are no longer accessible to IDE catalytic site. Our findings on Aβ D23N showed an apparent discrepancy with those presented recently by Van Nostrand et al. (10). In these reported experiments, Aβ Iowa and Aβ Dutch variants behaved similarly in terms of secondary structure and fibrillation rate after 48 h of incubation. Nevertheless, it is possible that at much shorter times of incubation, such as in our degradation and CD experiments, the rate of assembly into a β structure may be substantially faster for Aβ E22Q as compared with Aβ D23N, resulting in a higher resistance to proteolysis by rIDE. The Aβ Iowa peptide was different among all of the Aβ variants, because it presented a unique site of cleavage by rIDE at Ser26–Asn27. The possibility of multiple subsite interactions allowing different alignments of substrate relative to the site of catalysis in IDE has been recently demonstrated with the use of fluorogenic substrates (40). It remains to be addressed whether Asn instead of Asp at position 23 of Aβ, being at P1,
Amyloid β Genetic Variants Are Degraded by IDE

from Ser26-Asn37, may determine a new site of cleavage that seems atypical in light of the preference of IDE for hydrophobic and basic residues at P\textsubscript{i} \((27, 40) \). In addition to overproduction and an enhanced aggregability imposed by amino acid substitutions, A\(β \) may accumulate in the brain due to defective clearance. In transgenic mice expressing human A\(β \) PP with pathogenic mutations that promote the activity of \(β \)-secretase such as the double K670N/M671L substitution, the time course of amyloid deposition shows an exponential increase after 9–10 months of age (15, 49). Yet, the rate of A\(β \) production and \(β \)-secretase activity seems to remain constant throughout the life span of these mice (14). A defect in reverse transport to the systemic circulation as shown for the A\(β \) Dutch variant (50, 51) together with inefficient local proteolysis may determine a rise in the levels of A\(β \) in the brain and therefore accelerate its rate of aggregation and deposition (16, 29, 52). In the case of human diseases associated with mutations clustered within the middle portion of A\(β \), such accumulation shows a remarkable predisposition for vessels in which A\(β \) oligomers may be toxic to endothelial and smooth muscle cells. Our results in vitro raise the possibility that upregulation of IDE may promote the clearance of these A\(β \) genetic variants in vivo. In this regard, it is noteworthy that A\(β \) pathogenic mutants seem to be highly resistant to proteolysis by neprilysin in vitro, and therefore, increasing the activity of neprilysin may be insufficient to prevent A\(β \) deposition in certain hereditary forms of amyloid \(β \) diseases (53). Yet, the apparent resistance of A\(β \) oligomers to proteolysis by rIDE suggests that any strategy to lower A\(β \) based on the enhancement of this endogenous protease should aim at the degradation of A\(β \) at its monomeric state.

Acknowledgment—We thank Richard Roth (Stanford University) for the generous gift of pECE-IDE and 9B12 antibody.

REFERENCES
1. Castaño, E. M., and Frangione, B. (1988) Lab. Invest. 58, 122–123
2. Coria, F., Castaño, E. M., and Frangione, B. (1987) Am. J. Pathol. 129, 422–428
3. Nilsberth, C., Westlind-Danielsson, A., Eckman, C. B., Condron, M. M., Axelrod, J., Nilsen, T., Stenmark, K., and Eckman, E. A. (1990) Nature Neurosci. 4, 887–893
4. Kamino, K., Orr, H. T., Payami, H., Wijsman, E. M., Alonso, M. E., Pulst, S. M., Podlisny, M. B., and Kirschner, D. A. (1992) J. Biol. Chem. 267, 22870–22878
5. Gasparini, L., Gouras, G. K., Wang, R., Gross, R. S., Beal, M. F., Greengard, P., and Xu, H. (2001) J. Neurosci. 21, 2561–2570
6. Mukherjee, A., Song, E., Hikho-Ehmnn, M., Goodman, J. P., St. Pyrek, J., Castan˜o, E. M., and Frangione, B. (1992) J. Biol. Chem. 267, 30745–30752
7. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. (2002) Nature 416, 535–539
8. Nilsberth, C., Westlind-Danielsson, A., Eckman, C. B., Condron, M. M., Axelrod, J., Nilsen, T., Stenmark, K., and Eckman, E. A. (1990) Nature Neurosci. 4, 887–893
9. Levy, E., Carman, M. D., Fernandez-Madrid, I. J., Power, M. D., Lieberburg, I., van Duinen, S. G., Bots, G. T., Luyendijk, W., and Frangione, B. (1990) Science 248, 1124–1126
10. Wnisiewski, T., Ghiso, J., and Frangione, B. (1991) Biochem. Biophys. Res. Commun. 173, 1247–1254
11. Castaño, E. M., Prelli, F., Wnisiewski, T., Golubek, A., Kumar, R. A., Soto, C., and Frangione, B. (1995) Biochem. J. 306, 599–604
12. Van Nostrant, W. E., Melcher, J. P., Cho, H. S., Greenberg, S. M., and Rebeck, G. W. (2001) J. Biol. Chem. 276, 32860–32866
13. De Jonghe, C., Zehr, C., Yager, D., Prada, C. M., Younkin, S., Hendriks, L., Van Broeckhoven, C., and Eckman, E. A. (1998) Neurobiol. Dis. 5, 281–286
14. Walsh, D. M., Hartley, D. M., Condron, M. M., Selkoe, D. J., and Teplow, D. B. (2000) Biochem. J. 355, 869–877
15. Melcher, J. P., McVoy, T., and Van Nostrant, W. E. (2000) J. Neurochem. 74, 2209–2212