Flavor-changing decay $h \rightarrow \tau \mu$ at super hadron colliders

M.A. Arroyo-Ureña,a T.A. Valencia-Pérez,b R. Gaitán,a J.H. Montes de Oca Y.,a and A. Fernández-Téllezb

aDepartamento de Física, FES-Cuautitlán, Universidad Nacional Autónoma de México, C.P. 54770, Estado de México, México
bFacultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Pue., México

E-mail: marcofis@yahoo.com.mx, antonio.valenciap@alumno.buap.mx, rgaitan@unam.mx, josehalim@comunidad.unam.mx, afernand@fcfm.buap.mx

ABSTRACT: We study the flavor-changing decay $h \rightarrow \tau \mu$ with $\tau = \tau^- + \tau^+$ and $\mu = \mu^- + \mu^+$ of a Higgs boson at future hadron colliders, namely: a) High Luminosity Large Hadron Collider, b) High Energy Large Hadron Collider and c) Future hadron-hadron Circular Collider. The theoretical framework adopted is the Two-Higgs-Doublet Model type III. The free model parameters involved in the calculation are constrained through Higgs boson data, Lepton Flavor Violating processes and the muon anomalous magnetic dipole moment; later they are used to analyze the branching ratio of the decay $h \rightarrow \tau \mu$ and to evaluate the $gg \rightarrow h$ production cross section. We find that at the Large Hadron Collider is not possible to claim for evidence of the decay $h \rightarrow \tau \mu$ achieving a signal significance about of 1.46σ by considering its final integrated luminosity, 300 fb$^{-1}$. More promising results arise at the High Luminosity Large Hadron Collider in which a prediction of 4.6σ when an integrated luminosity of 3 ab$^{-1}$ and $\tan \beta = 8$ are achieved. Meanwhile, at the High Energy Large Hadron Collider (Future hadron-hadron Circular Collider) a potential discovery could be claimed with a signal significance around 5.04σ (5.43σ) for an integrated luminosity of 3 ab$^{-1}$ and $\tan \beta = 8$ (5 ab$^{-1}$ and $\tan \beta = 4$).

KEYWORDS: Beyond Standard Model, Higgs Physics

ArXiv ePrint: 2002.04120
1 Introduction

A lepton flavor violation (LFV) is a transition between e, μ, τ sectors that does not conserve lepton family number. Within the Standard Model (SM) with massless neutrinos, individual lepton number is conserved. Even with the addition of non-zero neutrino masses, processes that violate charged lepton number are suppressed by powers of m_ν^2/m_χ^2 [1] and they should be extremely sensitive to physics beyond the SM (BSM). Neutrino oscillations are a quantum mechanical consequence of the existence of nonzero neutrino masses and mixings. The experiments with solar, atmospheric, reactor and accelerator neutrinos [2–8] have provided evidences for the existence of this phenomenon [9–11] giving a clear signal of LFV. On the other hand, the observation of charged lepton flavor-violating (CLFV)
processes would be a non-trivial signal of physics BSM. However, no evidence of the LFV in the searches of lepton decays $\tau^- \rightarrow e^- e^- e^+$, $\tau^- \rightarrow \mu^- \mu^- \mu^+$ [12], and $\mu^- \rightarrow e^- e^- e^+$ [13], or radiative decays $\mu \rightarrow e \gamma$ [14], $\tau \rightarrow e \gamma$, $\tau \rightarrow e \gamma$ [15] which impose very restrictive bounds on the rates of these processes. Particularly interesting is the decay $h \rightarrow \tau \mu$, which was studied first by authors of [16], with subsequent analysis on the detectability of the signal appearing soon after [17, 18]. This motivated a plethora of calculations in the framework of several SM extensions, such as theories with massive neutrinos, supersymmetric theories, etc., [19–26]. The observation of the SM Higgs boson with a mass close to 125 GeV at the Large Hadron Collider (LHC) [27, 28] opened a great opportunity to search for physics BSM, in particular through the decay $h \rightarrow \tau \mu$. Currently the upper bounds reported by CMS and ATLAS collaborations [29, 30] are

\[
\text{BR}(h \rightarrow \tau \mu) < 0.25\% \text{(CMS)},
\]

\[
\text{BR}(h \rightarrow \tau \mu) < 0.28\% \text{(ATLAS)}.
\]

With this values, searches for decay $h \rightarrow \tau \mu$ look promising with luminosities larger than the one reached by the LHC (300 fb$^{-1}$). This could be achieved at the High Luminosity Large Hadron Collider (HL-LHC) [31] which will be a new stage of the LHC starting about 2026 with a center-of-mass energy of 14 TeV. The upgrade aims at increasing the integrated luminosity by a factor of ten (3 ab$^{-1}$, around year 2035) with respect to the final stage of the LHC. In addition, subsequent searches for the decay $h \rightarrow \tau \mu$ could be performed at the High Energy Large Hadron Collider (HE-LHC) [32] and at Future hadron-hadron Circular Collider (FCC-hh) [33], which will reach an integrated luminosity of up to 12 and 30 ab$^{-1}$ with center-of-mass energies of until 27 and 100 TeV, respectively.

On the theoretical side, one of the simplest models reported in the literature is the Two-Higgs-Doublet Model (2HDM) [34, 35], which offers a good opportunity for the analysis of decay $h \rightarrow \tau \mu$. The versions type I and type II of 2HDM are invariant under a Z_2 discrete symmetry and due to that some parameters of the scalar potential are complex in general, explicit CP violation can be induced. In particular, the λ_5 quartic interaction in the Higgs potential can lead to this. In the model type I only one of the doublets gives masses to the fermions [36], while in the model type II one doublet is assigned to give mass to the sector up and the other to the sector down, respectively. The Two-Higgs-Doublet Model type III (2HDM-III) both doublet scalar fields give masses to the up and down sectors. This general version generate Flavor Changing Neutral Currents (FCNC) in Higgs-fermions Yukawa couplings and CP violation (CPV) in the Higgs potential [36, 37]. In this paper, we search for the decay $h \rightarrow \tau \mu$ in the context of the 2HDM-III.

The organization of our work is as follows. In section 2 we discuss generalities of the 2HDM-III including the Yukawa interaction Lagrangian written in terms of mass eigenstates as well as the diagonalization of the mass matrix. Section 3 is devoted to the constraints on the relevant model parameter space whose values will be used in our analysis. The section 4 is focused on the analysis of the production cross section of the SM-like Higgs boson via the gluon fusion mechanism, the decay $h \rightarrow \tau \mu$ and its possible detection at super hadron colliders, namely: HL-LHC, HE-LHC and the FCC-hh. Finally, conclusions and outlook are presented in section 5.
2 Two-Higgs Doublet Model type III

The 2HDM includes two doublet scalar fields with the same hypercharge, $Y = 1$. The classification of the 2HDM types is based on the different ways to introduce Yukawa interactions and scalar potential. In this paper, the theoretical framework adopted is the 2HDM-III, where both doublets are used to induce interactions between fermions and scalars as described in this section. A characteristic of the 2HDM-III is that the fermion mass matrix is a linear combination of two Yukawa matrices, which is diagonalized by a bi-unitarity transformation. However, this bi-unitary transformation do not simultaneously diagonalize the two Yukawa matrices. As a result, FCNC can arise at tree level.

2.1 General Higgs potential in the 2HDM-III

The most general SU(2)$_L \times$ U(1)$_Y$ invariant scalar potential is given by [38, 39]:

$$V(\Phi_1, \Phi_2) = \mu_1^2 (\Phi_1^\dagger \Phi_1) + \mu_2^2 (\Phi_2^\dagger \Phi_2) - \left(\mu_{12}^2 (\Phi_1^\dagger \Phi_2) + \text{H.c.} \right) + \frac{1}{2} \lambda_1 (\Phi_1^\dagger \Phi_1)^2$$

$$+ \frac{1}{2} \lambda_2 (\Phi_2^\dagger \Phi_2)^2 + \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2) + \lambda_4 (\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1)$$

$$+ \left(\frac{1}{2} \lambda_5 (\Phi_1^\dagger \Phi_1)^2 + \left(\lambda_6 (\Phi_1^\dagger \Phi_1) + \lambda_7 (\Phi_2^\dagger \Phi_2) \right) (\Phi_1^\dagger \Phi_2) + \text{H.c.} \right),$$

where $\mu_{1,2}, \lambda_{1,2,3,4}$ are real parameters while $\mu_{12}, \lambda_{5,6,7}$ can be complex in general. The doublets are written as $\Phi_a^T = (\phi_a^+, \phi_a^0)$ for $a = 1, 2$. After the Spontaneous Symmetry Breaking (SSB) the two Higgs doublets acquire non-zero expectation values. The Vacuum Expectation Values (VEV) are selected as

$$\langle \Phi_a \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_a \end{pmatrix}, \ a = 1, 2;$$

where v_1 and v_2 satisfy $v_1^2 + v_2^2 = v^2$ for $v = 246$ GeV. Usually, in the 2HDM-I and II the terms proportional to $\lambda_{6,7}$ are removed by imposing the Z_2 discrete symmetry in which the doublets are transformed as $\Phi_1 \rightarrow \Phi_1$ and $\Phi_2 \rightarrow -\Phi_2$. This Z_2 discrete symmetry suppresses FCNC in Higgs-fermions Yukawa couplings at tree level. This is the main reason why Z_2 discrete symmetry is not introduced in the 2HDM-III.

On the other hand, once the scalar potential (2.1) is diagonalized, the mass-eigenstates fields are generated. The charged components of Φ_a lead to a physical charged scalar boson and the pseudo-Goldstone bosons associated with the W gauge fields, these are given as follows:

$$G_W^\pm = \phi_1^\pm \cos \beta + \phi_2^\pm \sin \beta,$$

$$H^\pm = -\phi_1^\pm \sin \beta + \phi_2^\pm \cos \beta,$$

where the mixing angle β is defined through $\tan \beta = v_2/v_1 (= t_\beta)$.

The charged scalar boson mass is given by:

$$m_{H^\pm}^2 = \frac{\mu_{12}^2}{s_\beta c_\beta} - \frac{1}{2} v^2 \left(\lambda_4 + \lambda_5 + t_\beta^{-1} \lambda_6 + t_\beta \lambda_7 \right),$$

$$v = 246 \text{ GeV}.$$
where we defined \(\cos \beta (\sin \beta) = c_\beta (s_\beta)\). Meanwhile, the imaginary part of the neutral component of the \(\Phi_a\), i.e., \(\text{Im}(\Phi^0)\), defines the \(\mathcal{CP}\)-odd state and the pseudo-Goldstone boson related to the \(Z\) gauge boson. The corresponding neutral rotation is given by:

\[
G_Z = \text{Im}(\phi_1^0) c_\beta + \text{Im}(\phi_2^0) s_\beta, \\
A^0 = -\text{Im}(\phi_1^0) s_\beta + \text{Im}(\phi_2^0) c_\beta,
\]

where the superscript 0 denotes the neutral part of the doubles. The \(\mathcal{CP}\)-odd scalar boson mass reads as follows:

\[
m_A^2 = m_{H^\pm}^2 + \frac{1}{2} v^2 (\lambda_4 - \lambda_5).
\]

On the other side, the real part of the neutral component of the \(\Phi_a\), i.e., \(\text{Re}(\Phi^0)\), defines the \(\mathcal{CP}\)-even states, namely: the SM-like Higgs boson \(h\) and a heavy scalar boson \(H\).

The physical \(\mathcal{CP}\)-even states are written as:

\[
H = \text{Re}(\phi_1^0) c_\alpha + \text{Re}(\phi_2^0) s_\alpha, \\
h = -\text{Re}(\phi_1^0) s_\alpha + \text{Re}(\phi_2^0) c_\alpha,
\]

with

\[
\tan 2 \alpha = \frac{2m_{12}}{m_{11} - m_{22}};
\]

where \(m_{11}, m_{12}, m_{22}\) are elements of the real part of the mass matrix \(M\),

\[
\text{Re}(M) = \begin{pmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \end{pmatrix},
\]

with:

\[
m_{11} = m_A^2 s_\beta^2 + v^2 \left(\lambda_1 c_\beta^2 + \lambda_5 s_\beta^2 + 2\lambda_6 c_\beta s_\beta \right), \\
m_{12} = -m_A^2 c_\beta s_\beta + v^2 \left[(\lambda_3 + \lambda_4) c_\beta s_\beta + \lambda_6 c_\beta^2 + \lambda_7 s_\beta^2 \right], \\
m_{22} = m_A^2 c_\beta^2 + v^2 \left(\lambda_2 s_\beta^2 + \lambda_5 c_\beta^2 + 2\lambda_7 c_\beta s_\beta \right).
\]

Finally, the neutral \(\mathcal{CP}\)-even scalar masses are written as follows:

\[
m_{H, h}^2 = \frac{1}{2} \left(m_{11} + m_{22} \pm \sqrt{(m_{11} - m_{22})^2 + 4m_{12}^2} \right).
\]

2.2 Yukawa Lagrangian of the THDM-III

In the most general case both doublets can participate in the interactions with the fermion fields. The Yukawa Lagrangian is written as

\[
\mathcal{L}_Y = Y_u^i \bar{Q}_L^i \tilde{\Phi}_1 u_R + Y_d^i \bar{Q}_L^i \tilde{\Phi}_2 d_R + Y_e^i \bar{Q}_L^i \Phi_1 \ell_R + Y_{\ell}^i \bar{L}_L^i \Phi_1 \ell_R + Y_{\ell}^i \bar{L}_L^i \Phi_2 \ell_R + H.c.,
\]
with

\[
Q'_L = \begin{pmatrix} u'_L \\ d'_L \end{pmatrix}, \quad L'_L = \begin{pmatrix} \nu'_L \\ e'_L \end{pmatrix},
\]

\[
\Phi_1 = \begin{pmatrix} \phi'_1 \\ \phi'_1 \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi'_2 \\ \phi'_2 \end{pmatrix}, \quad (2.18)
\]

\[
\Phi_j = i\sigma_2\Phi^*_j.
\]

The apostrophe superscript in fermion fields stands for the interaction basis. The left-handed doublets and right-handed singlets are denoted with the subscripts \(L\) and \(R\), respectively. \(Y_f^i (i = 1, 2; f = u, d, \ell)\) are the 3 \(3\) Yukawa matrices.

Introducing the expressions (2.18) in (2.17) and after the SSB, the neutral Yukawa Lagrangian is given by:

\[
\mathcal{L}_Y^0 = \bar{u}' \frac{1}{\sqrt{2}} (v_1 Y_{1u}^v + v_2 Y_{2u}^v) u' + \bar{d}' \frac{1}{\sqrt{2}} (v_1 Y_{1d}^d + v_2 Y_{2d}^d) d'
\]

\[
+ \bar{u}' \left[\frac{1}{\sqrt{2}} (Y_{1u}^u c_\alpha + Y_{2u}^u s_\alpha) H + \frac{1}{\sqrt{2}} (\overline{c_\alpha Y_{1u}^u c_\beta - Y_{2u}^u c_\beta}) \gamma^5 A \right] u'
\]

\[
+ \bar{d}' \left[\frac{1}{\sqrt{2}} (Y_{1d}^d c_\alpha + Y_{2d}^d s_\alpha) H + \frac{1}{\sqrt{2}} (-Y_{d1}^v s_\alpha + Y_{d2}^v c_\alpha) \right] h
\]

\[
+ i \frac{1}{\sqrt{2}} (\overline{Y_{1d}^d c_\beta + Y_{d2}^d c_\beta}) \gamma^5 A] d'
\]

The first two terms are associated with the masses of the fermion particles, as we will see below; while the rest define the couplings of the scalar bosons with fermion pairs. The corresponding charged lepton part is obtained by replacing \(d \to \ell\).

2.2.1 Diagonalization of the fermion mass matrices

The first two terms of eq. (2.19) are associated to the fermion mass matrices:

\[
M_f = \frac{1}{\sqrt{2}} \begin{pmatrix} v_1 Y_{1f}^f + v_2 Y_{2f}^f \end{pmatrix}, \quad f = u, d, \ell.
\]

We assume that mass matrices have a structure of four zero textures \([40-44]\), namely:

\[
M_f = \begin{pmatrix} 0 & D_f & 0 \\ D_f & C_f & B_f \\ 0 & B_f & A_f \end{pmatrix}, \quad (2.21)
\]

The elements of a real matrix of the type (2.21) are related to the eigenvalues \(m_i\), \(i = 1, 2, 3\) \([41]\), through the following invariants:

\[
\det (M) = -D^2 A = m_1 m_2 m_3,
\]

\[
\text{Tr} (M) = C + A = m_1 + m_2 + m_3.
\]

\[
\lambda (M) = CA - D^2 - B = m_1 m_2 + m_1 m_3 + m_2 m_3,
\]

\(-5\)
where we have omitted the subscript f to not overload the notation. From eqs. (2.22) we find a relation between the components of the mass matrix of four zero textures and the eigenvalues m_i ($i = 1, 2, 3$), namely:

\[
A = m_3 - m_2,
\]

\[
B = m_3 \sqrt{\frac{r_2(r_2 + r_1 - 1)(r_2 + r_2 - 1)}{1 - r_2}},
\]

\[
C = m_3(r_2 + r_1 + r_2),
\]

\[
D = \sqrt{\frac{m_1 m_2}{1 - r_2}},
\]

with $r_i = m_i/m_3$.

On the other side, without losing generality, a hierarchy between the eigenvalues m_i such that $-m_1 - i - m_2 - i - m_3$ and $0 | m_2 | A | m_3$, is assumed. Under these considerations, the mass matrix can be diagonalized by the bi-unitary transformation $\hat{M}_f = V_L^f M_f V_R = \text{Diag} \{ m_{f_1}, m_{f_2}, m_{f_3} \}$. The fact that M_f is hermitian, implies that $V_L = V_R \equiv V_f$ which is given by $V_f = O_f P_f$, with $P_f = \text{Diag} \{ e^{i \alpha_f}, e^{i \beta_f}, 1 \}$ and

\[
O_f = \begin{pmatrix}
\frac{m_{f_2} m_{f_3} (A - m_{f_1})}{A(m_{f_3} - m_{f_1}) (m_{f_3} - m_{f_2})} & \frac{m_{f_1} m_{f_3} (m_{f_2} - A)}{A(m_{f_3} - m_{f_1}) (m_{f_3} - m_{f_2})} & \frac{m_{f_1} m_{f_3} (A - m_{f_3})}{A(m_{f_3} - m_{f_1}) (m_{f_3} - m_{f_2})} \\
\frac{-m_{f_1} (m_{f_1} - A)}{(m_{f_2} - m_{f_1}) (m_{f_3} - m_{f_1})} & \frac{m_{f_2} (A - m_{f_2})}{(m_{f_2} - m_{f_2}) (m_{f_2} - m_{f_2})} & \frac{m_{f_1} (m_{f_2} - A)}{(m_{f_2} - m_{f_2}) (m_{f_2} - m_{f_2})} \\
\frac{m_{f_1} (A - m_{f_2}) (m_{f_2} - A)}{A(m_{f_2} - m_{f_1}) (m_{f_2} - m_{f_2})} & \frac{m_{f_2} (A_{m_{f_1}}) (m_{f_2} - A)}{A(m_{f_2} - m_{f_1}) (m_{f_2} - m_{f_2})} & \frac{m_{f_1} (m_{f_2} - A)}{(m_{f_2} - m_{f_2}) (m_{f_2} - m_{f_2})}
\end{pmatrix},
\]

(2.24)

where we identify to m_{f_i} ($i = 1, 2, 3$) as the physical fermion masses. A remarkable fact is that V_f must reproduces the observed CKM matrix elements (V_{CKM}), which is achieved as $V_{\text{CKM}} = V_L^f V_d$. In ref. [41] and in a previous research by one of us [44] a numerical analysis was presented, in which the V_{CKM} matrix is reproduced satisfactorily. It is worth mentioning that the CP phase can be identified through the matrix $P_f = \text{Diag} \{ e^{i \alpha_f}, e^{i \beta_f}, 1 \}$.

Once the bi-unitary transformation is applied, the fermion mass matrix is transformed as

\[
\hat{M}_f = \frac{v_1}{\sqrt{2}} \tilde{Y}_1 + \frac{v_2}{\sqrt{2}} \tilde{Y}_2, \quad \tilde{Y}_{1,2} = V_f^\dagger Y_{1,2} V_f.
\]

(2.25)

Unitary matrices only diagonalize to the fermion mass matrices M_f, leaving Yukawa matrices, in general, as non-diagonal. Then, FCNC are induced at tree level.

2.2.2 Flavor-changing neutral scalar interactions

The eq. (2.25) not only defines the mass matrix but also provide relations between the Yukawa matrices. In order to obtain the interactions in terms of only one Yukawa matrix,
the eq. (2.25) can be written in two possible forms:

\[\tilde{Y}_1^f = \frac{\sqrt{2}}{v_1} \tilde{M}_f - \tan \beta \tilde{Y}_2^f \]
(2.26)

\[\tilde{Y}_2^f = \frac{\sqrt{2}}{v_2} \tilde{M}_f - \cot \beta \tilde{Y}_1^f. \]
(2.27)

On the other side, the Yukawa Lagrangian (2.19) after being expanded in terms of mass eigenstates, which is achieved with the transformations \(f_L = V_{fL}^\dagger f' \), \(f_R = V_{fR}^\dagger f' \), can be written in different versions [45], however, we choose to write the Yukawa interactions as a function of \(\tilde{Y}_2 \). From now on, in order to simplify the notation, the subscript 2 in the Yukawa couplings will be omitted.

The interactions between fermions and the neutral scalar bosons are explicitly written as

\[\mathcal{L}_Y = \frac{g}{2} \left(\frac{m_{\ell_i}}{m_W} \right) \tilde{\ell}_i \left[- \sin \alpha \frac{\delta_{ij}}{\cos \beta} + \frac{\sqrt{2}}{\tan \beta} \left(\frac{m_W}{m_{\ell_i}} \right) \tilde{Y}_{ij}^\ell \right] \ell_j h
+ \frac{g}{2} \left(\frac{m_{\ell_i}}{m_W} \right) \tilde{\ell}_i \left[- \sin \alpha \frac{\delta_{ij}}{\cos \beta} + \frac{\sqrt{2}}{\tan \beta} \left(\frac{m_W}{m_{\ell_i}} \right) \tilde{Y}_{ij}^\ell \right] \ell_j H
+ \frac{i g}{2} \left(\frac{m_{\ell_i}}{m_W} \right) \tilde{\ell}_i \left[- \sin \alpha \frac{\delta_{ij}}{\cos \beta} + \frac{\sqrt{2}}{\tan \beta} \left(\frac{m_W}{m_{\ell_i}} \right) \tilde{Y}_{ij}^\ell \right] \gamma^5 \ell_j A
+ \frac{g}{2} \left(\frac{m_{d_i}}{m_W} \right) \tilde{d}_i \left[- \sin \alpha \frac{\delta_{ij}}{\cos \beta} + \frac{\sqrt{2}}{\tan \beta} \left(\frac{m_W}{m_{d_i}} \right) \tilde{Y}_{ij}^d \right] d_j h
+ \frac{g}{2} \left(\frac{m_{d_i}}{m_W} \right) \tilde{d}_i \left[- \sin \alpha \frac{\delta_{ij}}{\cos \beta} + \frac{\sqrt{2}}{\tan \beta} \left(\frac{m_W}{m_{d_i}} \right) \tilde{Y}_{ij}^d \right] d_j H
+ \frac{i g}{2} \left(\frac{m_{d_i}}{m_W} \right) \tilde{d}_i \left[- \sin \alpha \frac{\delta_{ij}}{\cos \beta} + \frac{\sqrt{2}}{\tan \beta} \left(\frac{m_W}{m_{d_i}} \right) \tilde{Y}_{ij}^d \right] \gamma^5 d_j A
+ \frac{g}{2} \left(\frac{m_u}{m_W} \right) \tilde{u}_i \left[\sin \alpha \frac{\delta_{ij}}{\sin \beta} + \frac{\sqrt{2}}{\cos \beta} \left(\frac{m_W}{m_u} \right) \tilde{Y}_{ij}^u \right] u_j H
+ \frac{g}{2} \left(\frac{m_u}{m_W} \right) \tilde{u}_i \left[\sin \alpha \frac{\delta_{ij}}{\sin \beta} + \frac{\sqrt{2}}{\cos \beta} \left(\frac{m_W}{m_u} \right) \tilde{Y}_{ij}^u \right] u_j H
+ \frac{i g}{2} \left(\frac{m_u}{m_W} \right) \tilde{u}_i \left[\sin \alpha \frac{\delta_{ij}}{\sin \beta} + \frac{\sqrt{2}}{\cos \beta} \left(\frac{m_W}{m_u} \right) \tilde{Y}_{ij}^u \right] \gamma^5 u_j A, \]
(2.28)

where \(i \) and \(j \) stand for the fermion flavors, in general \(i \neq j \). The first term in eq. (2.28) between brackets corresponds to the contribution of the THDM-II over the SM result, while the term proportional to \(\tilde{Y}_{ij}^f \) is the new contribution from the THDM-III. Finally, from eq. (2.25), the rotated Yukawa matrices \(\tilde{Y}_{ij}^f \) are given by:

\[\tilde{Y}_{ij} = \frac{\sqrt{m_{\ell_i} m_j}}{v} \chi_{ij}, \]
(2.29)

i.e., the Cheng-Sher ansatz [35] times the factor \(\chi_{ij} \), which is expected to be of the order of one.
Figure 1. Feynman diagram of the Higgs boson production via the gluon fusion mechanism with its subsequent decay into $\tau \mu$ pair. The $g^\text{HDM-III}_{\text{H}}^g$ coupling can be consulted in eq. (2.28).

3 Model parameter space

In order to evaluate the branching ratio of the $h \rightarrow \tau \mu$ decay and the production cross section of the SM-like Higgs boson by the gluon fusion mechanism, we need to analyze the 2HDM-III free model parameter space. The most relevant 2HDM-III parameters involved in this work are the $\cos(\alpha - \beta) = c_{\alpha \beta}$ and $\tan \beta$ because $g_h\tau\mu$ and $g_{\text{H}}\text{tt}$ couplings are proportional to them. Figure 1 illustrates this.

To constrain the above mentioned parameters, we consider the LHC Higgs boson data, the decay $B_0^0 \rightarrow \mu^+ \mu^-$, the tau lepton decays $\tau \rightarrow \ell_i \ell_j \ell_j$ and $\tau \rightarrow \ell_i \gamma$ as well as the experimental constraint on the $h \rightarrow \tau \mu$ and the muon anomalous magnetic dipole moment δa_μ. Direct searches for additional heavy neutral CP-even and CP-odd scalars through $gb \rightarrow \phi \rightarrow \tau \tau$ [46, 47], with $\phi = H, A$ are also used in order to constrain their masses, we denote them as m_H, m_A. Finally, the charged scalar boson mass m_{H^\pm} is constrained with the upper limit on $\sigma(pp \rightarrow h^{\pm}) \times BR(H^{\pm} \rightarrow \tau^\pm \nu)$ [48] and the decay $b \rightarrow s \gamma$ [49-54].

3.1 Constraint on $c_{\alpha \beta}$ and t_β

In order to have values of $c_{\alpha \beta}$ in accordance with current experimental results, we use the coupling modifiers κ-factors reported by ATLAS and CMS collaborations [55, 56]. They are defined as following:

$$\kappa_{pp}^2 = \frac{\sigma(pp \rightarrow h^{2\text{HDM-III}})}{\sigma(pp \rightarrow h^{\text{SM}})} \quad \text{or} \quad \kappa_{x \bar{x}}^2 = \frac{\Gamma(h^{2\text{HDM-III}} \rightarrow x\bar{x})}{\Gamma(h^{\text{SM}} \rightarrow x\bar{x})}. \quad (3.1)$$

where $\Gamma(H_i \rightarrow x\bar{x})$ is the decay width of H_i into $x\bar{x} = b\bar{b}, \tau^+\tau^-, ZZ, WW, \gamma\gamma$ and gg; with $H_i = h^{2\text{HDM-III}}$ and h^{SM}. Here $h^{2\text{HDM-III}}$ is the SM-like Higgs boson coming from 2HDM-III and h^{SM} is the SM Higgs boson; $\sigma(pp \rightarrow H_i)$ is the Higgs boson production cross section via proton-proton collisions. In addition, we also consider the current experimental limits on the tau decays $\tau \rightarrow \mu \gamma, \tau \rightarrow \ell_i \ell_j \ell_j, \delta a_\mu, B_s^0 \rightarrow \mu^- \mu^+$ [57] and the direct upper bound on the branching ratio of the Higgs boson into $\tau \mu$ pair [58, 59]. All the necessary formulas to perform our analysis of the model parameter space are presented in appendix A.

In figure 2 we present the $c_{\alpha \beta} - t_\beta$ planes in which the shadowed areas represent the allowed regions by:

2(a) The decay $B_s^0 \rightarrow \mu^+ \mu^-$,

2(b) Coupling modifiers κ_X, ...
2(c) Lepton Flavor Violating Processes: $\tau \to \mu \gamma$, $\tau \to l_i l_j \ell_j$, δa_μ and $h \to \tau \mu$.

2(d) Intersection of all individual allowed regions in which we display both the most up-to-date results reported by LHC and the expected results at the HL-LHC and HE-LHC for Higgs boson data [60] and for the decay $B_s^0 \to \mu^+ \mu^-$ [61].

We find strong restrictions for the 2HDM-III parameter space on the $c_{\alpha \beta} - t_\beta$ plane. We observe that $c_{\alpha \beta} \approx 0.05$ admits a value of $t_\beta \approx 8$ for all cases, while $c_{\alpha \beta} = 0$ allows $t_\beta \approx 12, 11, 10$ for the LHC, HL-LHC and HE-LHC, respectively. The graphics were generated with the package SpaceMath [62]. An important point is the fact that the 2HDM-III is able to accommodate the current discrepancy between the theoretical SM prediction and the experimental measurement of the muon anomalous magnetic dipole moment a_μ.

However, from figure 2, we note that the allowed region by δa_μ is out of the intersection of the additional observables. This happens by choosing the parameters shown in table 1. We find that δa_μ is sensitive to $\chi_{\tau \mu}$ which is set to the unit in order to obtain the best fit of the model parameter space. Under this choice, δa_μ is explained with high values of t_β.

3.2 Constraint on m_H, m_A and m_{H^\pm}

3.2.1 m_H and m_A

The ATLAS and CMS collaborations presented results of a search for additional neutral Higgs bosons in the ditau decay channel [46, 47]. The former of them searched through the process $gb \to \phi \to \tau \tau$, with $\phi = A, H$; figure 3 shows the Feynman diagram of this reaction. However, no evidence of any additional Higgs boson was observed. Nevertheless, upper limits on the production cross section $\sigma(gb \to \phi)$ times branching ratio $\mathrm{BR}(\phi \to \tau \tau)$ were imposed. In this work we focus on the particular case of the search carried out by the ATLAS collaboration.

In figure 4(a), we present the $\sigma(gb \to Hb) \times \mathrm{BR}(H \to \tau \tau)$ as a function of m_H for illustrative values of $t_\beta = 5, 8, 40$ and $c_{\alpha \beta} = 0.05$. Figure 4(b) shows the same but as a function of m_A and values for $t_\beta = 8, 30, 40$. In both plots, the black points and red crosses represent the expected and observed values at 95% CL upper limits, respectively; while the green (yellow) band indicates the interval at $\pm 1\sigma$ ($\pm 2\sigma$) with respect to the expected value. We implement the Feynman rules in CalcHEP [63] in order to evaluate $\sigma(gb \to \phi b) \times \mathrm{BR}(\phi \to \tau \tau)$.

From figure 4(a) we note that $m_H \lesssim 690$ GeV ($m_H \lesssim 510$ GeV) are excluded at 2σ (1σ) for $t_\beta = 8$, while for $t_\beta \lesssim 4$ the upper limit on $\sigma(gb \to \phi b) \times \mathrm{BR}(\phi \to \tau \tau)$ is easily accomplished. Although $t_\beta = 40$ is discarded, as shown in figure 2, we include it to have an overview of the behavior of the model. On the other side, from figure 4(b), we observe that $m_A \lesssim 710$ GeV ($m_H \lesssim 610$ GeV) are excluded at 2σ (1σ) for $t_\beta = 8$.

3.2.2 Constraint on the charged scalar mass m_{H^\pm}

The discovery of a charged scalar H^\pm would constitute unambiguous evidence of new physics. Direct constraints can be obtained from collider searches for the production and decay of on-shell charged Higgs bosons. These limits are very robust and model-independent
Figure 2. The shadowed areas represent the allowed regions in the plane $c_{\alpha\beta}-t_{\beta}$: (a) $B_s^0 \to \mu^+\mu^-$, (b) Coupling modifiers κ-factors, (c) LFV processes and (d) Intersection of all allowed regions in which we show the cases for the LHC, HL-LHC and HE-LHC.

Figure 3. Feynman diagram of the production of ϕ in association with a bottom quark at LHC, with a subsequent decay into $\tau\tau$ pair.
Figure 4. The observed and expected at 95% CL upper limits on the production cross section times ditau branching ratio for a scalar boson produced via b-associated production as a function of (a) the CP-even mass for $t_\beta =$ 5, 8, 40 and (b) the CP-odd mass for $t_\beta =$ 8, 30, 40. We take $c_{\alpha\beta} = 0.05$.

if the basic assumptions on the production and decay modes are satisfied [64–67]. More recently the ATLAS collaboration reported a study on the charged Higgs boson produced either in top-quark decays or in association with a top quark. Subsequently the charged Higgs boson decays via $H^\pm \rightarrow \tau^\pm \nu_\tau$ with a center-of-mass energy of 13 TeV [48]. We analyze this process through the CalcHEP package, however, we find that this process is not a good way to impose a stringent bound on m_{H^\pm}.

Conversely, the decay $b \rightarrow s\gamma$ imposes stringent limits on m_{H^\pm} because a new ingredient with respect to the SM contribution [49–52] is the presence of the charged scalar boson coming from 2HDM-III which gives contributions to the Wilson coefficients of the effective theory as is shown in the refs. [53, 54].

In figure 5 we show R_{quark} at NLO in QCD as a function of the charged scalar boson mass for $t_\beta =$ 2, 5, 10, where R_{quark} is defined as following:

$$R_{\text{quark}} = \frac{\Gamma(b \rightarrow X_\gamma)}{\Gamma(b \rightarrow X_{\text{eVV}})}, \quad (3.2)$$

We observe that for $t_\beta =$ 2, the charged scalar boson mass $100 \text{ GeV} \lesssim m_{H^\pm}$ (700 GeV $\lesssim m_{H^\pm}$) is excluded, at 2σ (1σ); while $t_\beta =$ 10 imposes a more restrictive lower bound $1.6 \text{ TeV} \lesssim m_{H^\pm}$ (3.2 TeV $\lesssim m_{H^\pm}$) at 2σ (1σ).

In summary, table 1 shows the values of the 2HDM-III parameters involved in the subsequent calculations.

4 Search for the $h \rightarrow \tau\mu$ decay at future hadron colliders

We are interested in a possible evidence for the $h \rightarrow \tau\mu$ decay at future hadron collider. Thus, in this section we analyze the LFV process of the Higgs boson decaying into a $\tau\mu$
Figure 5. R_{quark} at NLO in QCD as a function of the charged scalar boson mass for $t_{\beta} = 2, 5, 10$. Solid line represents the experimental central value while red crosses indicate the theoretical SM central value. Green and yellow bands stand for 1σ and 2σ, respectively. R_{quark} is defined in the main text.

![Figure 5](image-url)

Table 1. Values of the parameters used in the calculations.

Parameter	Values
$c_{\alpha\beta}$	0.05
t_{β}	0.1-8
$\chi_{\tau\mu}$	1
$m_H = m_A$	800 GeV

pair and its production at future hadron colliders via the gluon fusion mechanism. We first analyze the behavior of the branching ratio of the $h \to \tau\mu$ decay as a function of t_{β} for $\chi_{\tau\mu} = 0.1, 0.5, 1$ and $c_{\alpha\beta} = 0.05$. Figure 6 shows the $BR(h \to \tau\mu)$ as a function of t_{β} including the upper limit on $BR(h \to \tau\mu)$ reported by CMS and ATLAS collaborations [58, 59].

We analyze three scenarios that correspond to each of the future hadron colliders, namely:

- **Scenario A (SA)**: HL-LHC at a center-of-mass energy of 14 TeV and integrated luminosities in the interval 0.3-3 ab$^{-1}$,
- **Scenario B (SB)**: HE-LHC at a center-of-mass energy of 27 TeV and integrated luminosities in the range 0.3-12 ab$^{-1}$,
- **Scenario C (SC)**: FCC-hh at a center-of-mass energy of 100 TeV and integrated luminosities from 10 to 30 ab$^{-1}$.

4.1 Number of signal and background events

Once the free model parameters were constrained in section 3, we now turn to evaluate the number of events produced of the signature $gg \to h \to \tau\mu$.
Parton distribution functions [74]. We generate 10^5 interfaced with Pythia8 LanHEP rst implement the relevant Feynman rules via Delphes 3 [73] for detector simulations. Subsequently, we generate 10^5 signal and background events, the last ones at NLO in QCD. We used CT10 parton distribution functions [74].

$\chi_{\tau\mu} = 0.1$, 0.5, 1. The horizontal line represents the upper limit on $BR(h \to \mu \tau)$. See table 1.

In figure 7 we present the $\sigma(gg \to h)BR(h \to \mu \tau)$ as a function of t_β (left axis) and the Events-t_β plane (right axis) for scenarios SA, SB and SC. In all figures, the dark area represents the consistent region with allowed parameter space found in section 3 (see table 1). We observe that the maximum signal number of events (N^{SA}_S) produced are of the order of $N^{SA}_S = O(10^5)$, $N^{SB}_S = O(10^6)$, $N^{SC}_S = O(10^7)$, by considering $t_\beta = 8$ and $\chi_{\tau\mu} = 1$. Where we consider the most up-to-date constrains reported by LHC, in which a value for t_β of up to 8 is allowed for $c_{\alpha\beta} = 0.05$ (see figure 2(d)).

4.2 Monte Carlo analysis

We will now analyze the signature of the decay $h \to \mu \tau$, with $\mu \tau = \tau^- \mu^+ + \tau^+ \mu^-$ and its potential SM background. The ATLAS and CMS collaborations [68, 69] searched two τ decay channels: electron decay $\tau \to e\nu_\tau\nu_e$ and hadron decay $\tau_h \mu$. In our analysis, we will concentrate on the electron decay. As far as our computation scheme is concerned, we first implement the relevant Feynman rules via LanHEP [70] for MadGraph5 [71], later it is interfaced with Pythia8 [72] and Delphes 3 [73] for detector simulations. Subsequently, we generate 10^5 signal and background events, the last ones at NLO in QCD. We used CT10 parton distribution functions [74].
Signal and SM background processes. The signal and background processes are as following:

- **Signal**: the signal is $gg \rightarrow h \rightarrow \tau \mu \rightarrow e\nu e\nu \mu$. The electron channel must contain exactly two opposite-charged leptons, namely, one electron and one muon. Therefore, we search for the final state $e\mu$ plus missing energy due to neutrinos not detected.

- **Background**: the main SM background arises from:
 1. Drell-Yan process, followed by the decay $Z \rightarrow \tau \tau \rightarrow e\nu e\nu \mu$.
 2. WW production with subsequent decays $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$.
 3. ZZ production, later decaying into $Z \rightarrow \tau \tau \rightarrow e\nu e\nu \mu$ and $Z \rightarrow \nu\nu$.

Signal significance. The main kinematic cuts to isolate the signal are the collinear and transverse mass defined as following:

$$m_{col}(e\mu) = \frac{m_{inv}(e\mu)}{\sqrt{x}}, \quad \text{with} \quad x = \frac{\mid \vec{P}_T^e \mid}{\mid \vec{P}_T^e \mid + \mid \vec{E}_T^{miss} \mid}$$

(4.1)

and

$$M_T^\ell = \sqrt{2\mid \vec{P}_T^e \mid \mid \vec{E}_T^{miss} \mid (1 - \cos \Delta \phi_{\vec{P}_T^e - \vec{E}_T^{miss}})}.$$

(4.2)

In figure 8 we show the distribution of collinear mass versus number of signal events for the scenarios (a) SA, (b) SB and (c) SC with integrated luminosities of 3, 12 and 30 ab$^{-1}$, respectively. In all scenarios we consider $t_\beta = 5, 8$. We use the package MadAnalysis5 [75] to analyze the kinematic distributions. Additional cuts applied both signal and background [68, 69] are shown in table 2 for scenario SA. The kinematic cuts associated to scenarios SB and SC are available electronically in [76]. We also display the event number of the signal (N_S) and background (N_B) once the kinematic cuts were applied. The signal significance considered is defined as the ratio $N_S/\sqrt{N_S + N_B}$. The efficiency of the cuts for the signal and background are: $\epsilon_S \approx 0.13$ and $\epsilon_B \approx 0.014$, respectively.

We find that at the LHC is not possible to claim for evidence of the decay $h \rightarrow \tau \mu$ achieving a signal significance about 1.46σ by considering its final integrated luminosity, 300 fb$^{-1}$. More promising results arise at HL-LHC in which a prediction of about 4.6σ, once an integrated luminosity of 3 ab$^{-1}$ and $t_\beta = 8$ are achieved. Meanwhile, at HE-LHC...
Table 2. Kinematic cuts applied to the signal and main SM background for scenario SA, i.e, at HL-LHC with a center-of-mass energy $\sqrt{s} = 14$ TeV and $\mathcal{L}_{\text{int}} = 3$ ab$^{-1}$ for $t_\beta = 8$.

Cut number	Cut	N_S	N_B	$N_S/\sqrt{N_S+N_B}$		
Initial (no cuts)	57665	200089020	4.08			
1	$	\eta'	< 2.3$	25282	132346436	2.1975
2	$	\eta'	< 2.1$	16378	106936728	1.5837
3	$0.1 < \Delta R(e, \mu)$	16355	106801230	1.5825		
4	$10 < p_T(e)$	15533	38846174	2.4817		
5	$20 < p_T(\mu)$	12119	20357367	2.6852		
6	$10 < \text{MET}$	11185.9	20086662	2.4952		
7	$100 < m_{\text{cal}}(e, \mu) < 150$	9645.1	9330510	3.1560		
8	$25 < M_T(e)$	8669.4	4827617	3.942		
9	$15 < M_T(\mu)$	7869	2867711	4.6404		

Figure 9. Signal significance as a function of t_β and integrated luminosities associated to each scenario: (a) SA, (b) SB and (c) SC.

(FCC-hh) a potential discovery could be claimed with a signal significance of around 5.04σ ($\sim 5.43\sigma$) for an integrated luminosity of 9 ab$^{-1}$ and $t_\beta = 6$ (15 ab$^{-1}$ and $t_\beta = 3$). To illustrate the above, in figure 9 we present the signal significance as a function of t_β for integrated luminosities associated with each scenario, namely:

- **SA**: from 0.3 ab$^{-1}$ at 3 ab$^{-1}$ for the HL-LHC,
- **SB**: from 3 ab$^{-1}$ at 12 ab$^{-1}$ for the HE-LHC,
- **SC**: from 10 ab$^{-1}$ at 30 ab$^{-1}$ for the FCC-hh.

Finally, we present in figure 10 an overview of the signal significance as a function of the integrated luminosity for representative values of t_β.

5 Conclusions

In this article we have studied the LFV decay $h \rightarrow \tau \mu$ within the context of the 2HDM type III and we analyze its possible detectability at future super hadron colliders, namely, HL-LHC, HE-LHC and the FCC-hh.
We find the allowed model parameter space by considering the most up-to-date experimental measurements and later is used to evaluate the Higgs boson production cross section via the gluon fusion mechanism and the branching ratio of the $h \rightarrow \tau \mu$ decay.

A Monte Carlo analysis of the signal and its potential SM background was realized. We find that the closest evidence could arise at the HL-LHC with a prediction of the order of 4.66σ for an integrated luminosity of 3 ab^{-1} and $\tan \beta = 8$. On the other hand, a potential discovery could be claimed at the HE-LHC (FCC-hh) with a signal significance about $5.046\sigma (5.43\sigma)$ for an integrated luminosity of 3 ab^{-1} and $\tan \beta = 8$ (5 ab^{-1} and $\tan \beta = 4$).

If the decay considered in this research is observed in a future super hadron collider, then it will be a clear signal of physics BSM.

Acknowledgments

Marco Antonio Arroyo Ureña especially thanks to PROGRAMA DE BECAS POSDOCTORALES DGAPA-UNAM for postdoctoral funding. This work was supported by projects Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PA-PIIT) with registration codes IA107118 and IN115319 in Dirección General de Asuntos de Personal Académico de Universidad Nacional Autónoma de México (DGAPA-UNAM), and Programa Interno de Apoyo para Proyectos de Investigación (PIAPI) with registration code PIAPI1844 in FES-Cuautitlán UNAM and Sistema Nacional de Investigadores (SNI).
of the Consejo Nacional de Ciencia y Tecnología (CONACYT) in México. Also we would like to thank CONACYT for the support of the author T. A. Valencia-Pérez with a doctoral grant and thankfully acknowledge computer resources, technical advise and support provided by Laboratorio Nacional de Supercómputo del Sureste de México.

A Complementary formulas used in the analysis of the model parameter space

In this appendix we present the analytical expressions in order to obtain the constraints on both diagonal and LFV couplings as is shown in figure 2.

A.1 SM-like Higgs boson into f_if_j

We first start with the expression for the width decay of SM-like Higgs boson into fermion pair, which is given by:

$$\Gamma(h \rightarrow f_if_j) = \frac{g_{h_f^2f_j}^2 N_c m_h}{128 \pi} \left(4 - \left(\sqrt{\lambda_{f_i}} + \sqrt{\lambda_{f_j}} \right)^2 \right) \left(4 - \left(\sqrt{\lambda_{f_i}} - \sqrt{\lambda_{f_j}} \right)^2 \right)^{1/2},$$

(A.1)

where $\lambda_{f_k} = 4 m_{f_k}^2 / m_h^2$, with $k = i, j$; N_c is the color number. In our case $g_{h_{\tau \tau \mu}} = \frac{c_{\tau \tau \mu}}{\sqrt{2} s_{\tau \tau \mu}} \tilde{Y}_{\tau \mu}$ with $\tilde{Y}_{\tau \mu} = \sqrt{m_{\tau \tau / m_{\mu}}}$ $\chi_{\tau \mu}$. We set $\chi_{\tau \mu} = 1$.

A.2 Tau decays $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \bar{\mu} \mu$

As far as the $\tau \rightarrow \mu \gamma$ decay is concerned, it arises at the one-loop level and receives contributions of $\phi = h, H, A$. Feynman diagrams for this process are displayed in figure 11 (a). The decay width is given by:

$$\Gamma(\tau \rightarrow \mu \gamma) = \frac{\alpha m_\tau^5}{64 \pi^4} \left(|A_S|^2 + |A_P|^2 \right),$$

(A.2)

where the A_S and A_P coefficients indicate the contribution from A and H, respectively. In the limit of $g_{\phi \tau \tau} \gg g_{\phi \mu \mu} \gg g_{\phi ee}$ and $m_\tau \gg m_\mu \gg m_e$, they can be approximated as [77]

$$A_S = A_P \approx \sum_{\phi = h, H, A} \frac{g_{\phi \tau \tau} g_{\phi \mu \tau}}{12 m_\phi^2} \left(3 \ln \left(\frac{m_\phi^2}{m_\tau^2} \right) - 4 \right).$$

(A.3)

Two-loop contributions can be relevant, their expressions are reported in [77], in our research we consider this contribution. The current experimental limit on the branching ratio is $BR(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$.

As for the $\tau \rightarrow \mu \bar{\mu} \mu$ decay, it receives contributions from ϕ as depicted in the Feynman diagram of figure 11 (b). The tree-level decay width can be approximated as

$$\Gamma(\tau \rightarrow \mu \bar{\mu} \mu) \approx \frac{m_\tau^5}{256 \pi^3} \left(\frac{S_h^2}{m_h^2} + \frac{S_H^2}{m_H^2} + \frac{S_H^2}{m_H^2} + \frac{2 S_H S_h}{3 m_A^2} \left(\frac{S_h}{m_h^2} + \frac{S_H}{m_H^2} \right) \right),$$

(A.4)

where $S_\phi = g_{\phi \mu \mu} g_{\phi \tau \tau}$. The upper bound on the branching ratio is $BR(\tau \rightarrow \mu \bar{\mu} \mu) < 2.1 \times 10^{-8}$ [57].
Figure 11. Feynman diagrams that contribute to (a) $\tau \rightarrow \mu \gamma$ and (b) $\tau \rightarrow \mu \mu$ decays with exchange of a scalar boson ϕ. We omit both the bubble diagrams for the LFV decay $\tau \rightarrow \mu \gamma$, because only serve to cancel the ultraviolet divergences.

Figure 12. Feynman diagram for the decay $B_s^0 \rightarrow \mu^+\mu^-$.

A.3 Muon anomalous magnetic dipole moment

The muon AMDM also receives contributions from ϕ, which are induced by a triangle diagram similar to the diagram of figure 11(a) but with two external muons. The corresponding contribution can be approximated for $m_\phi \gg m_f$ as [77]

$$\delta a_\mu \sim \frac{m_\mu}{16\pi^2} \sum_{\phi=h,H,A} \sum_{l=\mu,\tau} \frac{m_f g_{\phi\mu l}^2}{m_\phi^2} \left(2 \ln \left(\frac{m_\phi}{m_f^2} \right) - 3 \right),$$

where one must take into account the NP corrections to the $g_{\mu\mu}$ coupling only. If H and A are too heavy, the dominant NP contribution would arise from the SM Higgs boson.

The discrepancy between the experimental value and the SM theoretical prediction is

$$\Delta a_\mu = a_\mu^{exp} - a_\mu^{SM} = (2.88 \pm 0.63 \pm 0.49) \times 10^{-9}. \quad (A.6)$$

Thus, the requirement that this discrepancy is accounted for by eq. (A.5) leads to the bound $1.32 \times 10^{-9} \leq \Delta a_\mu \leq 4.44 \times 10^{-9}$ with 95% C.L.

A.4 Decay $B_s^0 \rightarrow \mu^-\mu^+$

B_s^0 meson decay into $\mu^-\mu^+$ pair is both interesting and stringent due to its sensitivity to constrain BSM theories. The SM theoretical prediction is 3.66×10^{-9} [78] while the experimental value is $(3.00 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$ [57]. In the context of the THDM-III, the decay $B_s^0 \rightarrow \mu^-\mu^+$ is mediated by the SM-like Higgs boson, the heavy scalar H and the pseudoscalar A and it arises at tree level. Feynman diagram at the quark level is shown in...
The branching ratio for this decay is given by [79]

\[
\begin{align*}
\text{BR} \left[B_s \rightarrow \mu^+ \mu^- \right] &=
\frac{G_F^4 M_W^4}{8\pi^5} \sqrt{1 - 4 \frac{m_\mu^2}{M_{B_s}^2}} M_{B_s} f_{B_s}^2 m_\mu^2 \tau_{B_s} \\
&\times \left[\frac{M_{B_s}^2 (C^\text{obs}_P - C^\text{obs}_A)}{2 (m_b + m_s) m_\mu} - \left(C^\text{obs}_A - C^\text{obs}_A \right) \right]^2 \\
&+ \left[\frac{M_{B_s}^2 (C^\text{obs}_S - C^\text{obs}_S)}{2 (m_b + m_s) m_\mu} \right]^2 \times \left(1 - 4 \frac{m_\mu^2}{M_{B_s}^2} \right) \right]
\end{align*}
\] (A.7)

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] M. Raidal et al., Flavour physics of leptons and dipole moments, *Eur. Phys. J. C* 57 (2008) 13 [arXiv:0801.1826] [nSPIRE].

[2] SNO collaboration, Measurement of the rate of $\nu_e + d \rightarrow p + p + e^-$ interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, *Phys. Rev. Lett.* 87 (2001) 071301 [nucl-ex/0106015] [nSPIRE].

[3] SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, *Phys. Rev. Lett.* 89 (2002) 011301 [nucl-ex/0204008] [nSPIRE].

[4] KAMLAND collaboration, First results from KamLAND: Evidence for reactor anti-neutrino disappearance, *Phys. Rev. Lett.* 90 (2003) 021802 [hep-ex/0212021] [nSPIRE].

[5] KAMLAND collaboration, Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, *Phys. Rev. Lett.* 94 (2005) 081801 [hep-ex/0406035] [nSPIRE].

[6] SUPER-KAMIOKANDE collaboration, Evidence for oscillation of atmospheric neutrinos, *Phys. Rev. Lett.* 81 (1998) 1562 [hep-ex/9807003] [nSPIRE].

[7] SUPER-KAMIOKANDE collaboration, Evidence for an oscillatory signature in atmospheric neutrino oscillation, *Phys. Rev. Lett.* 93 (2004) 101801 [hep-ex/0404034] [nSPIRE].
[8] K2K collaboration, Measurement of neutrino oscillation by the K2K experiment, *Phys. Rev. D* 74 (2006) 072003 [hep-ex/0606032] [inspire].

[9] B. Pontecorvo, Mesonium and anti-mesonium, *Zh. Eksp. Teor. Fiz.* 33 (1957) 549 [Sov. Phys. JETP 6 (1957) 429].

[10] B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, *Zh. Eksp. Teor. Fiz.* 34 (1958) 247 [Sov. Phys. JETP 7 (1958) 172].

[11] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, *Prog. Theor. Phys.* 28 (1962) 870 [inspire].

[12] K. Hayasaka et al., Search for lepton flavor violating decays into three leptons with 719 million produced $\tau^+\tau^-$ pairs, *Phys. Lett. B* 687 (2010) 139 [arXiv:1001.3221] [inspire].

[13] SINDRUM collaboration, Search for the decay $\mu^+ \to e^+ e^+ e^-$, *Nucl. Phys. B* 299 (1988) 1 [inspire].

[14] MEG collaboration, Search for the lepton flavor violating decay $\mu^+ \to e^+ \gamma$ with the full dataset of the MEG experiment, *Eur. Phys. J. C* 76 (2016) 434 [arXiv:1605.05081] [inspire].

[15] BABAR collaboration, Searches for lepton flavor violation in the decays $\tau^\pm \to e^\pm \gamma$ and $\tau^\pm \to \mu^\pm \gamma$, *Phys. Rev. Lett.* 104 (2010) 021802 [arXiv:0908.2381] [inspire].

[16] J. Diaz-Cruz and J.J. Toscano, Lepton flavor violating decays of Higgs bosons beyond the standard model, *Phys. Rev. D* 62 (2000) 116005 [hep-ph/9910233] [inspire].

[17] T. Han and D. Marfatia, $h \to \mu \tau$ at hadron colliders, *Phys. Rev. Lett.* 86 (2001) 1442 [hep-ph/0008141] [inspire].

[18] K.A. Assamagan, A. Deandrea and P.-A. Delsart, Search for the lepton flavor violating decay $A_0/H_0 \to \tau^\pm \mu^\pm$ at hadron colliders, *Phys. Rev. D* 67 (2003) 035001 [hep-ph/0207302] [inspire].

[19] J.L. Diaz-Cruz, A more flavored Higgs boson in supersymmetric models, *JHEP* 05 (2003) 036 [hep-ph/0207030] [inspire].

[20] E. Arganda, A.M. Curiel, M.J. Herrero and D. Temes, Lepton flavor violating Higgs boson decays from massive seesaw neutrinos, *Phys. Rev. D* 71 (2005) 035011 [hep-ph/0407302] [inspire].

[21] A. Brignole and A. Rossi, Anatomy and phenomenology of mu-tau lepton flavor violation in the MSSM, *Nucl. Phys. B* 701 (2004) 3 [hep-ph/0404211] [inspire].

[22] J.L. Diaz-Cruz, D.K. Ghosh and S. Moretti, Lepton flavour violating heavy Higgs decays within the νMSSM and their detection at the LHC, *Phys. Lett. B* 679 (2009) 376 [arXiv:0809.5158] [inspire].

[23] S. Chamorro-Solano, A. Moyotl and M.A. Pérez, Lepton flavor changing Higgs Boson decays in a two Higgs doublet model with a fourth generation of fermions, *J. Phys. G* 45 (2018) 075003 [arXiv:1707.00100] [inspire].

[24] S. Chamorro-Solano, A. Moyotl and M.A. Perez, The decay $h \to \mu \tau$ in the Littlest Higgs model with T-parity, *J. Phys. Conf. Ser.* 761 (2016) 012051.

[25] A. Lami and P. Roig, $H \to \ell \ell'$ in the simplest little Higgs model, *Phys. Rev. D* 94 (2016) 056001 [arXiv:1603.09663] [inspire].

[26] M.A. Arroyo-Ureña, J.L. Diaz-Cruz, G. Tavares-Velasco, A. Bolaños and G. Hernández-Tomé, Searching for lepton flavor violating flavon decays at hadron colliders, *Phys. Rev. D* 98 (2018) 015008 [arXiv:1801.00839] [inspire].
[27] ATLAS collaboration, *Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC*, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [insPIRE].

[28] CMS collaboration, *Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC*, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [insPIRE].

[29] ATLAS collaboration, *Searches for lepton-flavour-violating decays of the Higgs boson in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, Phys. Lett. B 800 (2020) 135069 [arXiv:1907.06131] [insPIRE].

[30] CMS collaboration, *Search for lepton flavour violating decays of a neutral heavy Higgs boson to $\tau\nu$ and $e\nu$ in proton-proton collisions at $\sqrt{s} = 13$ TeV*, JHEP 03 (2020) 103 [arXiv:1911.10267] [insPIRE].

[31] G. Apollinari, O. Brünning, T. Nakamoto and L. Rossi, *High luminosity Large Hadron Collider HL-LHC*, CERN Yellow Rep. (2015) 1 [arXiv:1705.08830] [insPIRE].

[32] M. Benedikt and F. Zimmermann, *Proton colliders at the energy frontier*, Nucl. Instrum. Meth. A 907 (2018) 200 [arXiv:1803.09723] [insPIRE].

[33] N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, *Physics opportunities of a 100 TeV proton-proton collider*, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [insPIRE].

[34] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, *The Higgs hunter’s guide*, Addison-Wesley, Reading, U.S.A. (2000).

[35] T.P. Cheng and M. Sher, *Mass matrix Ansatz and flavor nonconservation in models with multiple Higgs doublets*, Phys. Rev. D 35 (1987) 3484 [insPIRE].

[36] H.E. Haber, G.L. Kane and T. Sterling, *The Fermion mass scale and possible effects of Higgs bosons on experimental observables*, Nucl. Phys. B 161 (1979) 493 [insPIRE].

[37] H. Fritzsch, *Quark masses and flavor mixing*, Nucl. Phys. B 155 (1979) 189 [insPIRE].

[38] J.F. Gunion and H.E. Haber, *The CP conserving two Higgs doublet model: the approach to the decoupling limit*, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [insPIRE].

[39] J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, *Off-diagonal terms in Yukawa textures of the Type-III 2-Higgs doublet model and light charged Higgs boson phenomenology*, JHEP 07 (2013) 044 [arXiv:1212.6818] [insPIRE].

[40] H. Fritzsch and Z.-z. Xing, *A symmetry pattern of maximal CP-violation and a determination of the unitarity triangle*, Phys. Lett. B 353 (1995) 114 [hep-ph/9502297] [insPIRE].

[41] G.C. Branco, D. Emmanuel-Costa and R. Gonzalez Felipe, *Texture zeros and weak basis transformations*, Phys. Lett. B 477 (2000) 147 [hep-ph/9911418] [insPIRE].

[42] J. Lorenzo Daz-Cruz, *The Higgs profile in the standard model and beyond*, Rev. Mex. Fis. 65 (2019) 419 [arXiv:1904.06878] [insPIRE].

[43] J.L. Diaz-Cruz, R. Noriega-Papaqui and A. Rosado, *Mass matrix ansatz and lepton flavor violation in the THDM-III*, Phys. Rev. D 69 (2004) 095002 [hep-ph/0401194] [insPIRE].

[44] M.A. Arroyo-Ureña, J.L. Diaz-Cruz, E. Díaz and J.A. Orduz-Ducuara, *Flavor violating Higgs signals in the texturized two-Higgs doublet model (THDM-Tx)*, Chin. Phys. C 40 (2016) 123103 [arXiv:1306.2343] [insPIRE].

[45] R. Gaitán, R. Martinez, J.H.M. de Oca and E.A. Garcés, *SM Higgs boson and $t \rightarrow cZ$ decays in the 2HDM type-III with CP-violation*, Phys. Rev. D 98 (2018) 035031 [arXiv:1710.04262] [insPIRE].
ATLAS collaboration, *Search for heavy resonances decaying to a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36.1 fb$^{-1}$ of pp collision data at $\sqrt{s} = 13$ TeV with the ATLAS detector*, ATLAS-CONF-2017-055 (2017).

CMS collaboration, *Search for additional neutral MSSM Higgs bosons in the $\tau\tau$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV*, JHEP 09 (2018) 007 [arXiv:1803.06553] [inSPIRE].

ATLAS collaboration, *Search for charged Higgs bosons decaying via $H^\pm \to \tau^\pm \nu_\tau$ in the τ+jets and τ+lepton final states with 36 fb$^{-1}$ of pp collision data recorded at $\sqrt{s} = 13$ TeV with the ATLAS experiment*, JHEP 09 (2018) 139 [arXiv:1807.07915] [inSPIRE].

K.G. Chetyrkin, M. Misiak and M. Münz, *Weak radiative B meson decay beyond leading logarithms*, Phys. Lett. B 400 (1997) 206 [Erratum ibid. 425 (1998) 414] [hep-ph/9612313] [inSPIRE].

K. Adel and Y.-P. Yao, $O(\alpha_s)$ calculation of the decays $b \to s + \gamma$ and $b \to s + g$, Phys. Rev. D 49 (1994) 4945 [hep-ph/9308349] [inSPIRE].

A. Ali and C. Greub, *Photon energy spectrum in $B \to X_s + \gamma$ and comparison with data*, Phys. Lett. B 361 (1995) 146 [hep-ph/9506374] [inSPIRE].

C. Greub, T. Hurth and D. Wyler, *Virtual $O(\alpha_s)$ corrections to the inclusive decay $b \to s\gamma$*, Phys. Rev. D 54 (1996) 3350 [hep-ph/9603404] [inSPIRE].

M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, *Next-to-leading QCD corrections to $B \to X_s\gamma$: standard model and two Higgs doublet model*, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [inSPIRE].

M. Misiak and M. Steinhauser, *Weak radiative decays of the B meson and bounds on M_{H^\pm} in the two-Higgs-doublet model*, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [inSPIRE].

ATLAS collaboration, *Combined measurements of Higgs boson production and decay using up to 80 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment*, ATLAS-CONF-2018-031 (2018).

CMS collaboration, *Combined measurements of Higgs boson couplings in proton-proton collisions at $\sqrt{s} = 13$ TeV*, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [inSPIRE].

Particle Data Group collaboration, *Review of particle physics*, Phys. Rev. D 98 (2018) 030001 [inSPIRE].

CMS collaboration, *Search for lepton flavour violating decays of the Higgs boson to $\mu\tau$ and $e\tau$ in proton-proton collisions at $\sqrt{s} = 13$ TeV*, JHEP 06 (2018) 001 [arXiv:1712.07173] [inSPIRE].

ATLAS collaboration, *Searches for lepton-flavour-violating decays of the Higgs boson in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, ATLAS-CONF-2019-013 (2019).

M. Cepeda et al., *Report from working group 2: Higgs physics at the HL-LHC and HE-LHC*, CERN Yellow Rep. Monogr. 7 (2019) 221 [arXiv:1902.00134] [inSPIRE].

ATLAS collaboration, *Prospects for the $B(R^{(*)}_{(j)} \to \mu^+\mu^-)$ measurements with the ATLAS detector in the Run 2 and HL-LHC data campaigns*, ATL-PHYS-PUB-2018-005 (2018).

M.A. Arroyo-Ureña and T.A. Valencia-Pérez, *SpaceMath version 1.0. A Mathematica package for beyond the standard model parameter space searches*, arXiv:2008.00564.

A. Belyaev, N.D. Christensen and A. Pukhov, *CalcHEP 3.4 for collider physics within and beyond the Standard Model*, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [inSPIRE].
[64] CMS collaboration, Search for a charged Higgs boson in pp collisions at $\sqrt{s} = 8$ TeV, *JHEP* **11** (2015) 018 [arXiv:1508.07774] [nSPIRE].

[65] ATLAS collaboration, Search for a light charged Higgs boson in the decay channel $H^+ \rightarrow c\bar{s}$ in $t\bar{t}$ events using pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector, *Eur. Phys. J. C* **73** (2013) 2465 [arXiv:1302.3694] [nSPIRE].

[66] CMS collaboration, Search for a light charged Higgs boson decaying to $c\bar{s}$ in pp collisions at $\sqrt{s} = 8$ TeV, *JHEP* **12** (2015) 178 [arXiv:1510.04252] [nSPIRE].

[67] CMS collaboration, Search for Charged Higgs boson to $c\bar{s}$ in pp collisions at $\sqrt{s} = 8$ TeV, *JHEP* **12** (2015) 178 [arXiv:1510.04252] [nSPIRE].

[68] ATLAS collaboration, Search for lepton-flavour-violating decays of the Higgs and Z bosons with the ATLAS detector, *Eur. Phys. J. C* **77** (2017) 70 [arXiv:1604.07730] [nSPIRE].

[69] CMS collaboration, Search for lepton-flavour-violating decays of the Higgs boson, *Phys. Lett. B* **749** (2015) 337 [arXiv:1502.07400] [nSPIRE].

[70] A. Semenov, *LanHEP — A package for automatic generation of Feynman rules from the Lagrangian. Version 3.2*, *Comput. Phys. Commun.* **201** (2016) 167 [arXiv:1412.5016] [nSPIRE].

[71] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, *JHEP* **06** (2011) 128 [arXiv:1106.0522] [nSPIRE].

[72] T. Sjöstrand, *PYTHIA 8 status report*, in the proceedings of *HERA and the LHC: 4th Workshop on the Implications of HERA for LHC Physics*, May 26, CERN, Switzerland (2008), arXiv:0809.0303 [nSPIRE].

[73] DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, *JHEP* **02** (2014) 057 [arXiv:1307.6346] [nSPIRE].

[74] J. Gao et al., *CT10 next-to-next-to-leading order global analysis of QCD*, *Phys. Rev. D* **89** (2014) 033009 [arXiv:1302.6246] [nSPIRE].

[75] E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, *Comput. Phys. Commun.* **184** (2013) 222 [arXiv:1206.1599] [nSPIRE].

[76] https://drive.google.com/open?id=1LRixxTVcGpfrmJ321Y8PRPSWcdBES

[77] R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, *JHEP* **03** (2013) 026 [arXiv:1209.1397] [nSPIRE].

[78] M. Beneke, C. Bobeth and R. Szafron, Power-enhanced leading-logarithmic QED corrections to $B_q \rightarrow \mu^+\mu^-$, *JHEP* **10** (2019) 232 [arXiv:1908.07011] [nSPIRE].

[79] A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, *Phys. Rev. D* **87** (2013) 094031 [arXiv:1303.5877] [nSPIRE].