The analysis of morphometric data on rocky mountain wolves and artic wolves using statistical method

Muhammad Ammar Shafi, Mohd Saifullah Rusiman, Nor Shamsidah Amir Hamzah, Maria Elena Nor, Noor’ani Ahmad, Nur Azia Hazida Mohamad Azmi, Muhammad Faez Ab Latip, Ahmad Hilmi Azman

1Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
2Faculty of Science Computer and Mathematics, Universiti Teknologi Mara, Jabatan Universiti Kota Bharu, Kelantan, Malaysia

E-mail: ammar26121991@gmail.com, saifulah@uthm.edu.my

Abstract. Morphometrics is a quantitative analysis depending on the shape and size of several specimens. Morphometric quantitative analyses are commonly used to analyse fossil record, shape and size of specimens and others. The aim of the study is to find the differences between rocky mountain wolves and arctic wolves based on gender. The sample utilised secondary data which included seven variables as independent variables and two dependent variables. Statistical modelling was used in the analysis such as the analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA). The results showed there exist differentiating results between arctic wolves and rocky mountain wolves based on independent factors and gender.

1. Introduction

Morphometrics is quantitative analysis based on size and shape specimens’ concept [1]. Morphometric analyses are basically used on organisms, fossil record, mutations on shape and others. Morphometrics can be used to find the significance level of specimens, changing in shape of size specimens and relationship between same species of specimens or different species of specimens [4]. A major function of morphometrics is to confirm hypotheses about shape and size utilising statistical technique.

Figure 1. Rocky mountain wolf.
The Northern Rocky Mountains wolf also known as *Canis lupus* is a subspecies of the gray wolf from western United States by 1930s. This species population grew from 60 wolves in 1994 to 1704 wolves in 2015 at Montana, Idaho. The wolf population continued to grow in Oregon and Washington [2, 3]. The northern Rocky Mountains wolf generally weighs 32 to 61 kg and the body length of the wolf is around 26–32 inches. Furthermore, this species is one of the largest gray wolf in existence [6]. Generally, the species body are covered with dark coloured fur with black mixing the gray.

![Figure 2. Artic wolves.](image2.jpg)

The Arctic wolf is also called snow wolf/white wolf or *Melville Island wolf*. It is the only species to still be found in their naturally habitats [14]. This does not mean their habitat constants and can be predictable in the future. They hibernate extremely during the long and dark winters. During winter, temperatures drop as low as -40°C. They are able to survive up to a week without food due to the thick fur and large bones [7, 8]. The artic wolf is different from other wolves as they live in small family group. They will roam up to 2600 km2 to hunt for food [5]. It is because they are not fast runners and rely on their stamina to take down prey.

In statistical process control, an early assumption is needed which are the sample observation must be independent and process observation must follow a normal distribution. However, precise data are not always available. In real data, shifted or standard deviation may occur which cause the observation shifted to non-normal distribution [5, 9, 10]. There are other quite considerable studies were carried out to merge statistics with other areas nowadays [11, 12, 13].

2. Materials and Methods
The study used statistical software SPSS 20 and excels 2010 to analyse the data. The demographic characteristics were applied. There are seven independent variable and two dependent variables in the data. The suitable statistical methods to analyse in this study are analysis of variance (ANOVA) and multivariate analysis of variance (MANOVA) [16].

Source of Data Set
Data were taken from http://psych.colorado.edu taken from Skull morphometric data on Rocky Mountain and Arctic wolves (Canis Lupus L, 1990) and (Jolicoeur ,1959:1975). The title of the data is Morphometric data on Rocky Mountain and Arctic Wolves.

Description of Dataset
This data is all about two different types of wolves. One that live in rocky mountain and another at the arctic. This data have 36 observations which are taken from different wolves. This dataset contain 9 variables. The data have 7 quantitative variables and 2 qualitative variables. The 6 quantitative
variables are post, palatal width-1, palatal width-2, postg foramina width, interorbital width, braincase width and crown length.

Table 1. quantitative variables in Independent variable.

Variables	label	Descriptions
X1	post palatal length,	post palatal length
X2	palatal width-1	palatal width outside the first upper molars
X3	palatal width-2	palatal width inside the second upper molars
X4	postg foramina width	width between the postglenoid foramina
X5	interorbital width	interorbital width
X6	braincase width	least width of the braincase
X7	crown length	crown length of the first upper molar

Table 2. qualitative variables in Independent variable.

Variables	Descriptions
Sex	1=male wolf 2=female wolf
Location	1=rocky mountain 2=arctic

Levene Test for Equality of Variances

Levene’s test (Levene 1960) is used to test if k samples have equal variances. Equal variances across samples is called homogeneity of variance. Some statistical tests, for example the analysis of variance, assume that variances are equal across groups or samples [16]. The Levene test can be used to verify that assumption. There are the procedures for levene test:

Step 0: Check the assumptions
Step 1: State the null, H_0 and alternative hypothesis, H_1
Step 2: Decide on the significant level, α
Step 3: Determine the critical value and rejection region

Critical value	Classical approach	P-value approach
F_a ($df = t-1$, $df_f = N-t$)	N/A	$p-value \leq \alpha$
Rejection region	$F_{Levene} \geq F_a$ ($df = t-1$, $df_f = N-t$)	$p-value \leq \alpha$

Step 4: Compute Levene’s Statistic

$$F_{levene} = \frac{\sum_{i=1}^{n} n_i (D_i - \bar{D})^2}{(t-1)} = \frac{\sum_{i=1}^{n} \sum_{i=1}^{n} (D_{g} - D_{i})^2}{(N-t)}$$ \hspace{1cm} (1)

Step 5: Make decision
If the value of the test statistic, F_{Levene}, falls in the rejection region or if $p-value \leq \alpha$, then reject H_0; otherwise, fail to reject H_0.
Step 6: Conclusion from step 5(decision).
Kolmogorov-Smirnov Goodness-of-Fit Test
The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with a specific distribution. The Kolmogorov-Smirnov (K-S) test is based on the empirical distribution function (ECDF). Given \(N \) ordered data points \(Y_1, Y_2, ..., Y_N \), the ECDF is defined as [16],

\[
E_N = \frac{n(i)}{N}
\]

(2)

where \(n(i) \) is the number of points less than \(Y_i \) and the \(Y_i \) are ordered from smallest to largest value. This is a step function that increases by \(1/N \) at the value of each ordered data point. The steps procedure for Kolmogorov-Smirnov test:

Step 0: \(H_0 \): The data follow a specified distribution
\(H_a \): The data do not follow the specified distribution

Step 1: The Kolmogorov-Smirnov test statistic is defined as

\[
D = \max \left(F(Y_i) - \frac{i-1}{N}, \frac{i}{N} - F(Y_i) \right)
\]

(3)

where \(F \) is the theoretical cumulative distribution of the distribution being tested which must be a continuous distribution.

Step 3: Significant level, \(\alpha \)

Step 4: Critical value

The hypothesis regarding the distributional form is rejected if the test statistic, \(D \), is greater than the critical value obtained from a table. There are several variations of these tables in the literature that use somewhat different scaling for the K-S test statistic and critical regions. These alternative formulations should be equivalent, but it is necessary to ensure that the test statistic is calculated in a way that is consistent with how the critical values were tabulated.

Shapiro-wilk normality test
The Shapiro–Wilk test is a test of normality in frequent statistics. It is usually used by researcher to check the normality in their analysis [16]. The formula to find the Shapiro-wilk test is:

\[
W = \frac{\left(a_i x_i \right)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

(4)

where

\(x_{i0} \) (with parentheses enclosing the subscript index \(i \)) is the \(i \)th order statistic
\(\bar{x} \) is the sample mean
\(a_i \) is the constant

Multivariate Analysis of Variance (MANOVA)
Multivariate analysis of variance (MANOVA) is simply an ANOVA with two or more dependent variables. Moreover, ANOVA tests for the difference in means between two or more groups, while MANOVA tests for the difference in two or more vectors of means. A multivariate analysis of variance (MANOVA) could be used to test this hypothesis [15, 16].

The assumptions should fulfill before using ANOVA or MANOVA. The assumptions required such as normal distribution, linearity and homogeneity of variances. The assumptions play the important rule in statistical analysis based on requirement needed [16].
3. Results

MANOVA

MANOVA and some of statistical methods have been applied in this research to fulfil the objectives in this research. The results come out stated as below:

Tests of Normality	Kolmogorov-Smirnov	Shapiro-Wilk				
	Statistic	df	Sig.	Statistic	df	Sig.
postpalatal length						
Rm	.194	20	.047	.915	20	.079
Ar	.181	16	.169	.963	16	.723
palatal width-1						
Rm	.221	20	.011	.901	20	.044
Ar	.164	16	.200	.930	16	.243
palatal width-2						
Rm	.152	20	.200	.950	20	.364
Ar	.121	16	.200	.971	16	.853
postg foramina width						
Rm	.143	20	.200	.915	20	.078
Ar	.159	16	.200	.918	16	.158
interorbital width						
Rm	.139	20	.200	.949	20	.350
Ar	.131	16	.200	.965	16	.757
braincase width						
Rm	.159	20	.197	.936	20	.204
Ar	.187	16	.138	.940	16	.346
crown length						
Rm	.114	20	.200	.971	20	.774
Ar	.118	16	.200	.977	16	.934

Table 3 above shows the test for normality for all the variables on each group. All the *P* value from the Shapiro-Wilk statistic are greater than 0.05 thus it can be concluded that all variables are normally distributed.

| Table 4. Box's Test of Equality of Covariance Matrices. |
Box's M	25.615
F	0.981
df1	21
df2	3801.91
Sig.	0.484

An assumption of the MANOVA is that the covariance matrices of the dependent variables are the same across groups (determined by levels of the independent variable) in the population. This is the multivariate analogue of the assumption of equal variances for the ANOVA. Box's M tests that assumption as in Table 4. In the case at hand the *p* value of 0.484 suggests that the hypothesis of equal covariance matrices cannot be rejected. So we have not violated an assumption of MANOVA, and may feel confident in continuing (at least in respect to this assumption).
Table 5. Multivariate test.

Effect	Pillai's Trace	Wilks' Lambda	Hotelling's Trace	Roy's Largest Root
Intercept	0.999	0.001	1550.79	1550.79
wolf_location	0.838	0.162	5.155	5.155

Table 6. Levene's Test of Equality of Error Variances.

postpalatal length	F	df1	df2	Sig.
palatal width-2	1.159	1	34	0.289
postg foramina width	0.105	1	34	0.747
interorbital width	2.793	1	34	0.104
braincase width	2.102	1	34	0.156
crown length	1.801	1	34	0.189

The standard Levene's test is a statistical tool to test the assumption of equal variances for each dependent variable. All six dependent variables showed nonsignificant p value with value greater than 0.05, so the null hypotheses regarding equal variances can not be rejected for either dependent variable, thus ANOVA are fine (Table 5-6).

Manova for Rocky Mountain (rm)

Table 7. Normality values.

wolf_se	Kolmogorov-Smirnov*	Shapiro-Wilk					
x	Statistic	df	Sig.	Statistic	df	Sig.	
postpalatal length	male	0.115	10	0.200*	0.974	10	0.925
	female	0.2	10	0.200*	0.953	10	0.703
palatal width-1	male	0.164	10	0.200*	0.873	10	0.109
	female	0.154	10	0.200*	0.919	10	0.353
palatal width-2	male	0.19	10	0.200*	0.914	10	0.308
	female	0.175	10	0.200*	0.956	10	0.735
postg foramina width	male	0.199	10	0.200*	0.93	10	0.445
	female	0.16	10	0.200*	0.938	10	0.528
interorbital width	male	0.165	10	0.200*	0.957	10	0.756
	female	0.259	10	0.056	0.892	10	0.179
braincase width	male	0.152	10	0.200*	0.917	10	0.331
	female	0.214	10	0.200*	0.898	10	0.208
crown length	male	0.166	10	0.200*	0.954	10	0.72
	female	0.207	10	0.200*	0.934	10	0.491
Table 7 shows the test for normality for all the variables on each group. All the P value > 0.05 in Shapiro-Wilk statistic, thus can be concluded that all variables are normally distributed.

Table 7: Normality test

An assumption of the MANOVA is that the covariance matrices of the dependent variables are the same across groups (determined by levels of the independent variable) in the population. This assumption is also applied in ANOVA by looking at Box's M tests value (Table 8). The significance value showed to be greater than 0.05 and suggestion have been made. It is suggested that the hypothesis of equal covariance matrices can not be rejected and not violated.

Table 8: Equality covariance

Table 9: Multivariate test

Table 10: Levene's Test of Equality of Error Variances

The test in Table 9 shows there are no significant values with p-value> 0.05. Thus, the \(H_0 = \text{equal variances} \) cannot be rejected. The tests Between-Subjects effects above shows (Table 10) that only variables ‘braincase width’ is not significantly different. The other variables are significantly different between male and female Rocky Mountain wolves.
Table 11. Test of normality.

	wolf_sex						
		Kolmogorov-Smirnov	Shapiro-Wilk				
		Statistic	df	Sig.	Statistic	Df	Sig.
postpalatal length	male	0.198	10	.200*	0.92	10	0.358
	female	0.272	6	0.188	0.878	6	0.259
palatal width-1	male	0.264	10	0.047	0.846	10	0.053
	female	0.292	6	0.121	0.765	6	0.028
palatal width-2	male	0.117	10	.200*	0.987	10	0.992
	female	0.25	6	.200*	0.887	6	0.303
postg foramina width	male	0.212	10	.200*	0.91	10	0.283
	female	0.187	6	.200*	0.917	6	0.483
interorbital width	male	0.196	10	.200*	0.92	10	0.36
	female	0.318	6	0.058	0.771	6	0.032
braincase width	male	0.191	10	.200*	0.931	10	0.46
	female	0.269	6	0.2	0.906	6	0.412
crown length	male	0.153	10	.200*	0.947	10	0.633
	female	0.154	6	.200*	0.989	6	0.987

Table 11 shows the test for normality for all the variables according to each group. Most of the the \(P \) value from the Shapiro-Wilk statistic are greater than 0.05 except for ‘palatal width-1’, thus it can be concluded that only variable ‘palatal width-1’ for female are non normally distributed.

Table 12. Box’s Test of Equality of Covariance Matrices.

Box's M	13.73	F	0.874	df1	10
df2	506.163	Sig.	0.557		

Table 13. Multivariate test.

Effect	Value	F	df	Error df	Sig.		
Intercept		Pillai's Trace	0.999	3653.223b	4	11	0
		Wilks' Lambda	0.001	3653.223b	4	11	0
		Hotelling's Trace	1328.45	3653.223b	4	11	0
		Roy's Largest Root	1328.45	3653.223b	4	11	0
wolf_sex		Pillai's Trace	0.325	\(1.327^b \)	4	11	0.32
		Wilks' Lambda	0.675	\(1.327^b \)	4	11	0.32
		Hotelling's Trace	0.483	\(1.327^b \)	4	11	0.32
		Roy's Largest Root	0.483	\(1.327^b \)	4	11	0.32
The MANOVA above shows that the p-value greater than alpha 0.05, thus we can conclude that the means vector between male and female for artic wolves are equal (Table 12-13).

Discriminant analysis

Table 14. Box M-Test.

	Box's M	3.616
F	Approx.	0.543
	df1	6
	df2	7271.569
	Sig.	0.775

The Box M-Test above (Table 14) tests the null hypothesis of equal population covariance matrices. Since the p value is greater than alpha (0.05), the study failed to reject H_0. Therefore, it can be concluded that the population covariance matrices are equal for all group.

Table 15. Prior Probabilities for Groups.

wolf_location	Prior	Cases Used in Analysis	
		Unweighted	Weighted
rm	0.556	20	20
ar	0.444	16	16
Total	1	36	36

Table 15 shows the prior probabilities for groups for wolve rocky mountion is 0.556 and for arctic is 0.444. The prior probability is unequal since the number of observation for RM wolves and AR wolves are not equal.

Table 16. Classification results.

	wolf_location	Predicted Group Membership	Total	
		rm	ar	
Original		20	0	20
%		1	15	16
		100	0	100
		6.3	93.8	100

* 97.2% of original grouped cases correctly classified.

Table 16 shows the confusion matrix of group predicted. All cases for Rocky Mountain wolves are correctly predicted. On the other hand, one Arctic wolf is misclasified into Rocky Mountain’s group. Thus the total perfomance for the discriminant function analysis is 97.2% correct.

4. Conclusions and Discussions

This study applied ANOVA and MANOVA statistical method to analyze the data. There exist differences between arctic wolves and rocky mountain wolves based on many factors. As results, the rocky mountain wolves are different between male and female wolf and there is no difference between male and female for artic wolves. The rocky mountain wolves and artic wolves profile are not parallel.
Further research recommended increasing the precision in RM wolves and artic wolves by using another statistical model or method such as Fisher linear discriminant function and exploratory factor analysis.

Acknowledgement
The research work is supported by FRGS (Fundamental Research Grant Scheme) grant (vot 1498), Ministry of Higher Education, Malaysia.

References
[1] Adams D C and Erik O-C 2013 Geomorph: An R Package For The Collection And Analysis Of Geometric Morphometric Shape Data Methods in Ecology and Evolution 393-399
[2] Fred C L, Scott E H and Charles J J 1994 Prevention And Control Of Wildlife Damage Cooperative Extension Division Institute of Agriculture and Natural Resources (University of Nebraska – Lincoln)
[3] Faulkner J 1987 Northern Rocky Mountain Wolf Recovery Plan U.S, Fish and Wildlife Service in cooperation with the Northern Rocky Mountain Wolf Recovery Team 119
[4] Klingenberg and Peter C 2011 Morphtm: An Integrated Software Package For Geometric Morphometrics Molecular Ecology Resources 353-357
[5] Lakshmi D and Yellamma K 2013 The Promontory Role Of Trace Element And Nutrients On Morphometric Traits In The Silkworm Bombyx mori Int. J. Pure App. Biosci 11-18
[6] Petersen M 2011 Insular And Disjunct Distribution Of The Arctic Wolf In Greenland Polar Biology 1447–1454
[7] Petersen M 2012 Decline And Extermination Of An Arctic Wolf Population In East Greenland Arctic 65(2) 155-186
[8] David M 2015 Annual Arctic Wolf Pack Size Related to Arctic Hare Numbers Arctic 60(3) 300-311
[9] Bin Shafi M A, Bin Rusiman M S and Che Yusof N S H 2014 Determinants Status of Patient After Receiving Treatment at Intensive Care Unit: A Case Study in Johor Bahru. I4CT 2014 - 1st International Conference on Computer, Communications, and Control Technology, Proceedings 30 September 2014, 6914150 80 – 82
[10] Shafi M A and Rusiman M S 2015 The Use of Fuzzy Linear Regression Models for Tumor Size in Colorectal Cancer in Hospital Of Malaysia Applied Mathematical Sciences 9 (56) 2749-2759
[11] Rusiman M S, Nasibov E and Adnan R 2011 The Optimal Fuzzy C-regression Models (OFCRM) in Miles per Gallon of Cars Prediction, Proceedings – 2011 IEEE Student Conference on Research and Development, SCOReD 2011, 6148760 333-338
[12] Rusiman M S, Hau O C, Abdullah A W, Sufahani S F, Azmi N A 2017 An Analysis of Time Series for the Prediction of Barramundi (Ikan Siakap) Price in Malaysia Far East Journal of Mathematical Sciences 102(9) 2081-2093
[13] Nor M E, Rusiman M S, Mohamad N A I and Lee M H 2017 Directional Change Error Evaluation in Time Series Forecasting AIP Conference Proceedings 1830 (1) 080013
[14] Siminski D P 2000 Mexican Wolf SSP Annual Meeting And Reunion Binacional Sobre El Lobo Mexicano (Arizona-Sonora Desert Museum Tucson, Arizona)
[15] Awang Z 2010 Research Methodology for Business and Social Science Malaysia (Universiti Teknologi Mara Publication Centre (UPENA))
[16] Awang Z 2012 Research Methodology and Data Analysis 2nd ed Selangor (Dee Sega Enterprise)