Cross-sectional Study

Knowledge, attitude and practice of medical students towards COVID19 in Sudan: A cross sectional study among 19 universities

Mohammed Alfatih, Khabab Abbasher Hussien Mohamed Ahmed, Radi Tofaha Alhusseini, Elfatih A. Hasabo, Lina Hemmeda, Walaa Elnaieem, Rua Isameldin Bakhiet Mohamed, Monzer Omer Ahmed Abdalla, Khadija ala Abdalmaqasud mumhmed, Osama Mohammed Nowar Taha, Yaman Shurki Adel Husni Yousef, Rawan Raad Hassan Alrufai, Ahmed Emadaldeen Ahmed Mohammed Alamin, Muzamil Musa Mohamed Musa, Saida abdallah mohammed taha abdallah, Mohammed Mahmood Fadelallah Eljack, Basaier Mohammed Almaldeen Kharif, Areej Imad Aldeen Mohamed Idris, Sara Mohamed Abdalla Idris, Mohammed Ahmed Abugibba Mohamed, Malaz Salah Osman Gurashi, Mohammed Alfateh omer Mohammed, Ahmed Bukhari Mohamed Ahmed, Isra Mohamed Hassan Nasr, Abdlrhman saeed mohammed saeed, Mohammed Eltahier Abdalla Omer, Ahmed ElSayed, Mohannad Abdalfdeel Almahie Shaban

a Faculty of Medicine, Alzaiem Alazhari University, Khartoum, Sudan
b Faculty of Medicine, University of Khartoum, Khartoum, Sudan
c Faculty of Medicine, University of Gezira, Wad Madani, Sudan
d Faculty of Medicine, Omdurman Islamic University, Omdurman, Sudan
e Faculty of Medicine, Elzira University, Khartoum, Sudan
f Faculty of Medicine, Sudan University of Science and Technology, Khartoum, Sudan
g Faculty of Medicine, West Kordofan University, Al-Falih, Sudan
h Faculty of Medicine, Al Neelain University, Khartoum, Sudan
i Faculty of Medicine, Alzaiem Alazhari University, Khartoum, Sudan
j Faculty of Medicine, University of Khartoum, Khartoum, Sudan
k Faculty of Medicine, Omdurman Islamic University, Omdurman, Sudan
l Faculty of Medicine, Sudan University of Science and Technology, Khartoum, Sudan
m Faculty of Medicine, West Kordofan University, Al-Falih, Sudan
n Faculty of Medicine, University of Khartoum, Khartoum, Sudan

* Corresponding author.
E-mail addresses: mohammed.22.alfatih@gmail.com (M. Alfatih), Khabab9722@gmail.com (K.A.H. Mohamed Ahmed), radi.tuffaha1995@gmail.com (R.T. Alhusseini), elfatih.ahmed.hasabo@gmail.com (E. A. Hasabo), lina.hemmeda@gmail.com (L. Hemmeda), walaabaaladaldir@gmail.com (W. Elnaieem), doc.ruabakhiet@gmail.com (R.I.B. Mohamed), Mezoma302813@gmail.com (M.O.A. Abdalla), doctor.khadija.44@gmail.com (K. Abdalmagoud mumhmed), osamanowar@gmail.com (O.M.N. Taha), dr.yaman55@gmail.com (Y.S.A. Husni Yousef), rawanaaxd@gmail.com (R.R. Hassan Alrufai), ahmed311113@gmail.com (A.E. Ahmed Mohamed Alamin), muzzamel.musa@gmail.com (M.M.M. Musa), Saltkateeb529@gmail.com (S. taha abdallah), m.mahmoud96@gmail.com (M.M. Fadelallah Eljack), basar397@gmail.com (B.M.A. Kharif), areejemad@gmail.com (A.I.A. Mohamed Idris), SM1992019@gmail.com (S.M.A. Idris), mohamedaaalmar7@hotmail.com (M.A.A. Mohamed), malazsalah43@gmail.com (M.S.O. Gurashi), wdafateh@gmail.com (M.A. omer Mohammed), ahmed.sokhri@gmail.com (A.B.M. Ahmed), isranas213@gmail.com (I.M.H. Nasr), ABODY19972014@gmail.com (A. saeed), Mohamedeltefahier100@gmail.com (M.E.A. Omer), asaelsayed@hotmail.com (A. ElSayed).

https://doi.org/10.1016/j.amsu.2022.104874

Available online 13 November 2022
2049-0801/© 2022 The Author(s). Published by Elsevier Ltd on behalf of IS Publishing Group Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

On the January 7, 2020, the Chinese Centre for Disease Control and Prevention (CCDC) isolated the causative agent from throat swab samples, and the name Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was given to this virus. The World Health Organization (WHO) then renamed it Coronavirus disease-19 (COVID-19) [1]. Coronaviruses are a large family of enveloped RNA viruses that can infect a broad range of animals; including camels, cattle, cats, and bats. In relatively rare events, vectors can transmit coronaviruses to humans, and continued circulation results in human-to-human exposure [2].

COVID-19 is the third coronavirus emerging in the human population in the past two decades; as preceded by the severe acute respiratory syndrome (SARS) outbreak in 2002 and the Middle East Respiratory Syndrome (MERS) outbreak in 2012 [3,4]. All these coronaviruses have originated in bats [2]. In January 2020, the WHO described the COVID-19 outbreak as an international public health emergency. Thereafter, in March 2020, the WHO announced the disease as a pandemic [5,6].

This pandemic has captured the attention of the world due to severe political, social, psychological, and economic influences, necessitating a strong international concern and collaborative efforts from all countries to prevent the serious spread of COVID-19 [1]. More than 8 million cases were reported in Africa until September 17, 2021, with more than 226 million cases reported worldwide. Since the first occurrence of COVID-19 in Sudan on March 13, 2020, more than 38 000 cases have been confirmed and recorded, with a sum of 2833 lives lost and 31 590 cases recovered, with studies indicating a case fatality rate of 7.7% [2,3]. The firing of case numbers compelled Sudan’s government to implement immediate health measures such as isolating infected individuals and implementing personal protective measures. People are advised to avoid overcrowding and maintain proper social distancing. Hand hygiene should also be maintained through frequent hand washing and the use of hand sanitizers. Wearing facemasks and avoiding touching one’s face with one’s hands have also been shown to effectively prevent the spread of COVID-19 [7–9].

While community perception of these measures remains a source of contention. Only a few studies have been conducted in this area, demonstrating that the potency of government interventional policies was highly reliant on people’s adherence to these control measures, which was heavily influenced by their knowledge, attitude, and practice toward COVID-19 [10].

With students returning to their institutions to resume their postponed educational schedules, the seriousness of applying preventive measures can fall back on the overall population as a single case may affect entire students and thus the rest of the community; however, despite this, only a few studies have been conducted in Sudanese medical students to assess their knowledge, attitude, and practice towards Covid-19. We intend to assess medical students’ knowledge, attitudes, and practices regarding COVID-19 in 19 Sudanese universities in this cross-sectional study.

2. Methodology

2.1. Study setting

This cross-sectional study was conducted on universities that have medical schools in Sudan. The included medical schools were chosen according to their willingness to participate. A minimum of 100 medical students from each university were randomly included in this study. Out of 24 medical schools in Sudan, only 19 medical schools met our criteria to be included in this study.

2.2. Study participants

Medical students on the selected medical schools constituted our targeted participants. These students were approached by a member of the study team from their own university. The students were asked for their consent to participate, and those who agreed were given a link to the study questionnaire on a Google form. The students were approached on the social media platforms that are widely used amongst students in Sudan (Facebook and WhatsApp). This approach was complemented by telephone calls to stress the importance of our study in some instances. Additionally, the messages on the social media platforms were repeated if the response rate slowed down. Respondents were required to sign in to fill the Google form using their Google account to ensure only one response per participant. During the period from the 7th to the April 18, 2020, all the required responses were collected.

This a cross-sectional study in is fully compliant with the STROCSS 2021 criteria [11].

2.3. Data collection method

The study instrument was an online well-structured non-shuffled questionnaire developed by the authors. The questionnaire was initially
self-tested by the authors before implementation and a pilot study was done on 40 participants. Our questionnaire was delivered through Google forms questionnaire timed for 3 min and consisted of two parts:

Part one: Demographic data, which had six variables (age, gender, academic year, university name, marital status, and nationality).

Part two: Knowledge, attitudes, and practice, which had 35 questions. Following the guidelines for clinical and community management of COVID-19 by the National Health Commission of the People’s Republic of China (24), the COVID-19 knowledge questionnaire was developed by the authors. Further questions about the attitudes and practices towards COVID-19 were added to this questionnaire. This part had 23 questions regarding knowledge of COVID-19. A correct answer was assigned 1 point and an incorrect/unknown answer was assigned 0 points. Making the knowledge score ranges from zero to 23 points, with a higher score denoting a better knowledge of COVID-19. Attitudes towards COVID-19 were measured by two questions and respondents’ practice was assessed by 10 questions.

2.4. Statistical analysis

Statistical analysis was performed using the using R software version 4.0.2. Data were presented as number (percentages). Chi-square test and fisher exact test were used to find the difference in knowledge attitude and practice of COVID-19 between males and females. A p-value of less than 0.05 was used to determine the level of significance.

3. Results

3.1. Sociodemographic characteristics

About 2603 medical students from 19 universities responded to the survey (Table 1). As expected, 90.9% were between 18 and 24 years of age with 90.4% of them being between the first and fifth year of medical school, and almost equally distributed through the first to fifth academic years, while those in the sixth year being less represented; this later fact was because 12 out of the 19 medical schools had a 5-year program only. There is only equal representation for the 19 universities. More details could be found on Table 2.

3.2. Knowledge

Of all the respondents 74.7% take their covid-19 information from social media, and 29.3% from medical journals. Almost 86.9% Participants responded that the most common clinical symptoms of COVID 19 were added to this questionnaire. This part developed by the authors. Further questions about the attitudes and practices towards COVID-19 were added to this questionnaire. This part had 23 questions regarding knowledge of COVID-19. A correct answer was assigned 1 point and an incorrect/unknown answer was assigned 0 points. Making the knowledge score ranges from zero to 23 points, with a higher score denoting a better knowledge of COVID-19. Attitudes towards COVID-19 were measured by two questions and respondents’ practice was assessed by 10 questions.

Table 2

Variables	N	Gender	p-value	Overall, N = 2,740
Age, years	2740	Female, N = 1,741	<0.001	
18-20	1046	739	307	
	(38.2%)	(42.4%)	(30.7%)	
21-22	905	576	329	
	(33.0%)	(33.1%)	(22.9%)	
23-24	540	324	216	
	(19.7%)	(18.6%)	(21.6%)	
24-25	165	75	90	
	(6.0%)	(4.3%)	(9.0%)	
26 or more	84	57	57	
	(3.1%)	(1.6%)	(5.7%)	
University	2740		<0.001	
Ahfad University for	111	111	0 (0.0%)	
Women	(4.1%)	(6.4%)		
AlNeelain University of Medicine	331	209	122	
Alzaime Alazhari	104	49	55	
University	(3.8%)	(2.8%)	(5.5%)	
Bahri University	45	31	14	
	(1.6%)	(1.8%)	(1.4%)	
Dajani University	105	71	34	
	(3.8%)	(4.1%)	(3.4%)	
El Razi university	113	60	53	
	(4.1%)	(3.4%)	(5.3%)	
Ibn Sina University	106	56	50	
	(3.9%)	(3.2%)	(5.0%)	
Igda college	15	6	9 (0.9%)	
	(0.5%)	(0.3%)		
International university of Africa	18	0.7%	14	
	(0.7%)	(4.2%)	(3.4%)	
Karany University	177	134	43	
	(6.5%)	(7.7%)	(4.3%)	
Khartoum University	206	135	71	
	(7.5%)	(7.8%)	(7.1%)	
National Ribat University	40	10.5	25	
University	(3.8%)	(3.4%)	(4.3%)	
National University – Medicine	103	60	43	
	(3.8%)	(3.4%)	(4.3%)	
Nile valley university	126	81	45	
	(4.6%)	(4.7%)	(4.5%)	
Omdurman Islamic	213	142	71	
university	(7.8%)	(8.2%)	(7.1%)	
Shendi University	106	70	36	
	(3.9%)	(4.0%)	(3.6%)	
Sudan international university	115	80	35	
	(4.2%)	(4.6%)	(3.5%)	
Sudan University of Science and Technology	103	73	30	
	(3.8%)	(4.2%)	(3.0%)	
UMST	27	16	11	
	(1.0%)	(0.9%)	(1.1%)	
University of bakht alruda college of medicine	110	56	54	
	(4.0%)	(3.2%)	(5.4%)	
University of Gezira	109	68	41	
	(4.0%)	(3.5%)	(4.1%)	
University of Kassala	16	6	10	
	(0.6%)	(0.3%)	(1.0%)	
University of medical science and technology	95	66	29	
	(3.5%)	(3.8%)	(2.9%)	
University of science and technology	108	67	41	
	(3.9%)	(3.8%)	(4.1%)	
West Kordouan University	138	65	73	
University	(5.0%)	(3.7%)	(7.3%)	
Level	2740			
Level 1	415	257	158	
	(15.1%)	(14.8%)	(15.8%)	
Level 2	525	365	160	
	(19.2%)	(21.0%)	(16.0%)	
Level 3	513	338	175	
	(18.7%)	(19.4%)	(17.5%)	
Level 4	543	327	216	
	(19.8%)	(18.8%)	(21.6%)	
Level 5	104874			

(continued on next page)
is dry cough, and 87.2% said it’s fever, and about 27.7% indicated dry cough, fatigue and fever as the main combination of clinical symptoms for COVID-19. Also, Respiratory droplets had been identified as the main route of spread of COVID-19 by 94.1% and it was highly associated with the academic year of the medical students with a P value of (<.6), and 86.3% identified that asymptomatic persons cannot spread the virus. 97.2% said that people who contacted someone infected with the COVID-19 virus should be immediately isolated for an observation period of 14 days. (50.9%) have confidence that Sudan can win the battle against the COVID-19. More details about medical students’ knowledge could be obtained from Table 3.

3.3. Practice

A total of 72.2% do not go to crowded places most of them were females 78.2%. Females were also more likely to wear masks when leaving home (58.6%) with a P value = <-0.001 (significant). Regarding the use of hand sanitizer, (38.1%) said that they always use hand sanitizer after touching foreign surfaces outside their house and 9.3% answered never. Near 93.1% said that they wash their hands with soap first thing when they get back home with females (95.2%) being slightly better. Only 6.5% never used tissue after sneezing, with females being significantly better at using tissues (P value < .001). About 43.1% of females do not shake hands during this COVID-19 pandemic and when asked about frequency of shaking hands it was less among females with most of them answering sometime 70.31% which was significantly different from males with a p-value < 0.001). In addition, only 27.5% of medical students said that they still hug people. Refer to (Table 4) to explore more.

3.4. Overall results

We used a rating score to demonstrate the knowledge and practice of knowledge and awareness of medical students about COVID-19. Table 3 Knowledge and awareness of medical students about COVID-19.

Table 3 Knowledge and awareness of medical students about COVID-19.

Variables	N	Gender	Overall, N = 2,740^a	Gender, N = 1,741^b	p-value^b
The main clinical symptoms of COVID-19 are? (can choose many answer)	2740				
Dry cough	2382	1495	887	0.029	
Fever	2390	1514	876	0.6	
Fatigue	1303	797	506	0.014	
Myalgia	628	385	243	0.2	
I don’t know	45	33	12	0.2	
What symptoms are uncommon in COVID-19 patients? (can choose many answer)	2740				
Rummy nose	1310	841	469	0.5	
Sputum	1405	893	512	>0.9	
Sneeze	802	515	287	0.6	
I don’t know	732	443	289	0.047	
First initial symptom of COVID19?	2740				
Headache	1323	865	458	0.3	
I don’t know	520	325	195	0.4	
Loss of smell sensation	277	180	97	0.2	
I don’t know	175	104	71	0.2	
Sneeze	374	225	149	0.2	
I don’t know	71	42	29	0.2	
Which COVID-19 cases are most likely to develop to severe cases? (can choose many answer)	2740				
Elderly	2290	1454	836	>0.9	
Young	169	112	57	0.4	
Chronic disease patients	2316	1475	841	0.7	
Females	48	21	27	0.004	
Obese	281	161	120	0.022	
I don’t know	50	32	18	>0.9	
Persons with COVID-19 cannot infect the virus to others when they don’t have a fever	2740				
FALSE	2364	1499	865		
I don’t know	273	177	96		
TRUE	103	65	38	0.9	

(continued on next page)
Table 3 (continued)

Variables	N	Overall, Male, N = 2,740	Gender, Female, N = 1,741	p-value^a				
Eating or contacting wild animals would result in the infection by the COVID-19 virus?	FALSE	793	495	298	(29.8%)	(28.4%)	(29.8%)	0.5
	I don’t know	564	370	194	(20.6%)	(21.3%)	(19.4%)	
	TRUE	1383	876	507	(50.5%)	(50.3%)	(50.8%)	
When doing normal hospital work wearing general medical masks to prevents infection by the COVID-19 virus?	FALSE	611	275	236	(22.3%)	(21.5%)	(23.6%)	
	I don’t know	147	87	60	(5.4%)	(5.0%)	(6.0%)	
	TRUE	1982	1279	703	(72.3%)	(73.5%)	(70.4%)	
COVID-19 virus spreads via respiratory droplets of infected individuals?	FALSE	69	50	19	(2.5%)	(2.9%)	(1.9%)	
	I don’t know	94	55	39	(3.4%)	(3.2%)	(3.9%)	
	TRUE	2577	1636	941	(94.1%)	(94.0%)	(94.2%)	
Wear general medical masks to prevent the infection by the COVID-19 virus	FALSE	8	5	3	(0.3%)	(0.3%)	(0.3%)	0.57
	I don’t know	1083	676	407	(39.5%)	(38.8%)	(40.8%)	
	TRUE	1648	1060	588	(60.2%)	(60.9%)	(59.9%)	
It is not necessary for children and young adults to take measures to prevent the infection by the COVID-19 virus?	FALSE	2346	1511	835	(85.6%)	(86.8%)	(83.6%)	0.15
	I don’t know	104	58	46	(3.8%)	(3.3%)	(4.6%)	
	TRUE	290	172	118	(10.6%)	(9.9%)	(11.8%)	
To prevent the infection by COVID-19, individuals should avoid going to crowded places such as bus stations and avoid taking busy public transportation?	FALSE	75	40	35	(2.7%)	(2.3%)	(3.5%)	
	I don’t know	63	38	25	(2.3%)	(2.2%)	(2.5%)	
	TRUE	2602	1663	939	(95.0%)	(95.5%)	(94.0%)	
Isolation of people who are infected with the COVID-19 virus is an effective way to reduce the spread of the virus?	FALSE	62	34	28	(2.3%)	(2.0%)	(2.8%)	
	I don’t know	86	50	36	(3.1%)	(2.9%)	(3.6%)	
	TRUE	2592	1657	935	(94.6%)	(95.2%)	(93.6%)	
People who have contact with someone infected with the COVID-19 virus should be immediately isolated in a proper place. In general, the observation period is 14 days?	FALSE	29	18	11	(1.1%)	(1.0%)	(1.1%)	0.7
	I don’t know	47	27	20	(1.7%)	(1.6%)	(2.0%)	
	TRUE	2664	1696	968	(97.2%)	(97.4%)	(96.9%)	
How is the new greeting for the coronavirus?	By elbow	2191	1382	809	(80.0%)	(79.4%)	(81.0%)	0.2
	By hand	247	153	94	(9.0%)	(8.8%)	(9.4%)	
	I don’t know	302	206	96	(11.0%)	(11.8%)	(9.6%)	
Do you think that Coronavirus can spread in hot tropical climate?	No	454	305	149	(16.6%)	(17.5%)	(14.9%)	0.078
	Yes	2286	1436	850	(83.4%)	(82.5%)	(85.1%)	
What is most sensitive test for Coronavirus?	Chest CT scan	613	397	216	(22.4%)	(22.8%)	(21.6%)	0.003
	Chest MRI	220	145	75	(8.0%)	(8.3%)	(7.5%)	
	Chest X Ray	254	185	69	(9.3%)	(10.6%)	(6.9%)	
	RT-PCR (True)	1653	1014	639	(60.3%)	(58.2%)	(64.0%)	
What is most accurate sample to test for Coronavirus?	Broncho-alveolar lavage	739	432	307	(27.0%)	(24.8%)	(30.7%)	0.005
	CBC	256	159	97	(9.3%)	(9.1%)	(9.7%)	
	Nasal swap (True)	1485	977	508	(54.2%)	(56.1%)	(50.9%)	
	Sputum sample	260	173	87	(9.5%)	(9.9%)	(8.7%)	
	Do you think that Coronavirus (COVID-19) can spread by Air? (Yes)	1482	952	530	(54.1%)	(54.7%)	(53.1%)	0.2

(continued on next page)
Among medical students in Sudan, was an overall good knowledge of the wave of the pandemic. This study showed that the knowledge score was assessed by the source of information that medical students get. About (80%) in the practice of the respondents [13], We attribute this good level to the source of information that medical students get. In their study among medical students in the government medical college in Uttarakhan, India, which demonstrated good knowledge (92.7%) and about (80%) in the practice of the respondents [13]. We attribute this good level to the source of information that medical students get.

In this cross-sectional study, we provided an insight of knowledge and awareness and knowledge of medical students is highly crucial. This study set out with the aim of assessing the knowledge and awareness and knowledge of medical students in Sudan concerning the novel corona virus COVID-19. In this cross-sectional study, we provided an insight of knowledge and awareness and knowledge of medical students is highly crucial. This study set out with the aim of assessing the knowledge and awareness and knowledge of medical students in Sudan concerning the novel corona virus COVID-19.

Table 3 (continued)

Variables	N	Overall, N – 2,740	Gender, N – 1,741
Do you think that smoking can have a protective effect against Corona-virus (COVID 19)? (Yes)	311	207	104
What is the mortality rate of COVID19?	2740	<0.001	
1-2%	309	190	119
10-20%	458	349	109
2-3%	808	488	320
3-5%	721	417	304
5-10%	444	297	147
What is transmission route of Corona-virus (COVID 19)?	2740	0.03	
through the respiratory droplets (True)	2300	1449	851
through contact by skin	273	183	90
through the body fluids	134	94	40
through the infected wounds	33	15	18
Do you agree that COVID 19 will finally be successfully controlled?	2740	0.6	
Agree	1885	1210	675
Disagree	389	241	148
I don’t know	466	290	176

which was from (100–90) excellent, (89–80) very good, (79–70) good, (69–60) faire, (59–50) borderline and below (50%) fail. This study has found that medical students in Sudan demonstrated very good knowledge (88.9%) and good practice (78.6%) toward Covid-19.

Table 4

Variables	N	Overall, N – 2,740	Gender, N – 1,741	
Do you have confidence that Sudan can win the battle against the Corona-virus (COVID 19)? (Yes)	2740	1389	903	486
Do you use hand sanitizer?	2740	1884	1210	674
Do you still shake hands with people after Corona-virus pandemic? (Yes)	2740	1627	991	
Do you use hand sanitizer after touching foreign surfaces outside your house? (Yes)	2740	2122	1415	
Do you wash your hands with soap first thing when you get back home? (Yes)	2740	2552	1657	
Do you use tissue paper when you sneeze or cough?	2740	1164	832	

4. Discussion

With the emergence of COVID-19 from the city of Wuhan, China in 2019 [1,2] and its rapid spread around the globe with more than 23 000 cases in Sudan, more than 2.5 million cases in Africa and more than 80 million cases around the globe until the end of December 2020 [9,12], knowledge, awareness and practice (KAP) about COVID-19 among medical students is highly crucial. This study set out with the aim of assessing the knowledge and awareness and knowledge of medical students in Sudan concerning the novel corona virus COVID-19.

In this cross-sectional study, we provided an insight of knowledge and practice towards COVID-19 among medical students during the first wave of the pandemic. This study showed that the knowledge score among medical students in Sudan, was an overall good knowledge of (80.9%), in addition about (78.6%) of the participants had good practice. These findings are similar with that of Sonam Maheshwari (2019) in their study among medical students in the government medical college in Uttarakhan, India, which demonstrated good knowledge (92.7%) and about (80%) in the practice of the respondents [13]. We attribute this good level to the source of information that medical students get.

In this cross-sectional study, we provided an insight of knowledge and practice towards COVID-19 among medical students during the first wave of the pandemic. This study showed that the knowledge score among medical students in Sudan, was an overall good knowledge of (80.9%), in addition about (78.6%) of the participants had good practice. These findings are similar with that of Sonam Maheshwari (2019) in their study among medical students in the government medical college in Uttarakhan, India, which demonstrated good knowledge (92.7%) and about (80%) in the practice of the respondents [13]. We attribute this good level to the source of information that medical students get.

In this cross-sectional study, we provided an insight of knowledge and practice towards COVID-19 among medical students during the first wave of the pandemic. This study showed that the knowledge score among medical students in Sudan, was an overall good knowledge of (80.9%), in addition about (78.6%) of the participants had good practice. These findings are similar with that of Sonam Maheshwari (2019) in their study among medical students in the government medical college in Uttarakhan, India, which demonstrated good knowledge (92.7%) and about (80%) in the practice of the respondents [13]. We attribute this good level to the source of information that medical students get.
bias. On the other hand, the study included 19 universities so reflecting Ethical declaration

4-5-20) before conducting data collection.

Ethics Committee, Federal Ministry of Health of Sudan (Ethical number: 38-586)

importance of the knowledge of newly emerging diseases and the results were very positive, further education and awareness should be good knowledge and good practice toward COVID-19. Although the form of self-administered questionnaires so there is a risk of information bias. On the other hand, the study included 19 universities so reflecting the overall knowledge of Sudanese medical students with generalizable findings and up-to-date information that improve preventive measures for COVID-19.

5. Conclusion

This study has found that medical students in Sudan demonstrated good knowledge and good practice toward COVID-19. Although the results were very positive, further education and awareness should be carried out to increase the preparedness of medical students toward such pandemics and public health modules should focus more on the importance of the knowledge of newly emerging diseases and the practices towards them.

Ethical approval

Ethical clearance was obtained from the National Health Research Ethics Committee, Federal Ministry of Health of Sudan (Ethical number: 4-5-20) before conducting data collection.

Ethical declaration

Ethical clearance was obtained from the National Health Research Ethics Committee, Federal Ministry of Health of Sudan (Ethical number: 4-5-20) before conducting data collection. At the time of data collection written consent was obtained from the study participants, each participant was asked to check a question asking about his free will to participate in the study, the obtained information was confidentially handled and processed through all the research period. All the costs of doing this study were borne by the authors who had no conflict of interest.

Funding

The authors received no specific funding for this work.

Author contribution

Study design, data collection, results interpretation, and writing: Mohammed Alfateh, Khabab Abbasser Hussien Mohamed Ahmed, Elfasih A. Hasabo, Lina Hemmeda, Walaaa Elnaaim.

Study design, data analysis, ethical clearance acquisition, and writing,: Radi Tofaha Alhusseini, Rua Isameldin Bakhiet Mohamed, Monzer Omer Abdalla, Khadija aia Abdalmaqsud muhammad, Osama Mohammed Nowar Taha, Yaman Shurki Adel Husni Yousef, Rawan Raad Hassan Alrufai, AHMED EMADALDEEN AHMED, MOHAMMED ALAMIN, Muzamil Musa Mohamed Musa, Saidea abdallah mohammed taha Abdallah, MOHAMMED MAHMoud FADEL ALLAH MOHAMMED, Basaier Mohammed Alamaldeen Kharif, Areej Imad Aldeen Mohamed Idris, Sara Mohamed Abdalla Idris 13 Mohammed Ahmed Abugibba Mohamed, Malaz Salah Osman Gurashi, Mohammed Alfateh omer Mohammed, Ahmed Bukhari Mohamed Ahmed.

Study design, data collection, revising and editing the drafted manuscript: Isra Mohamed Hassan Nasr, Abdhirhman saeed mahammed saeed, Mohammed Eltahier Abd la Omer, Ahmed Elsayed, Mohammad Abdalfdeel Almahie Shaban.

Registration of research studies

Name of the registry: Not applicable.

Unique Identifying number or registration ID: Not applicable.

Hyperlink to your specific registration (must be publicly accessible and will be checked): Not applicable.

Guarantor

Lina Hemmeda.

Consent

At the time of data collection written consent was obtained from the study participants, each participant was asked to check a question asking about his free will to participate in the study, the obtained information was confidentially handled and processed through all the research period.

Provenance and peer review

Not commissioned, externally peer reviewed.

Declaration of competing interest

The authors declare that there are no competing interests.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jamsu.2022.104874.

References

[1] WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February [Internet], [cited 2022 Jan 30]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020, 2020.

[2] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding [Internet], Lancet (London, England) 395 (10224) (2020 Feb 22) [cited 2022 Jan 30], https://pubmed.ncbi.nlm.nih.gov/32007145/, 565-74. Available from.

[3] N. Lee, D. Hui, A. Wu, P. Chan, P. Cameron, G.M. Joynt, et al., A major outbreak of severe acute respiratory syndrome in Hong Kong [Internet], N. Engl. J. Med. 348 (20) (2003 May 15) [cited 2022 Jan 30], https://pubmed.ncbi.nlm.nih.gov/12682352/, 1986-94. Available from.

[4] B. Hijawi, M. Abdallat, A. Sayydeydh, S. Alqarawii, A. Haddadin, N. Jaarour, et al., Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation, East Mediterr Heal J – La Rev Sante la Mediterr Orien – al-Majallah al-sihyab li-shaqar al-mutawatiss 19 (Suppl 1) (2013) 512-518.

[5] WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 January [Internet], [cited 2022 Jan 30]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-january-2021, 2021.

[6] WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March [Internet], [cited 2022 Jan 30]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020, 2020.

[7] M.Y.E. Yousif, M.M.F.A. Eljack, M.S. Haroun, K. Abbasher Hussien Ahmed, O. Amir, M. Alfatih, et al., Clinical characteristics and risk factors associated with severe disease progression among COVID-19 patients in wad medani isolation centers: a multicenter retrospective cross-sectional study, Health Sci Rep 5 (2) (2022 Mar 1).

[8] K. Abbasher Hussien Mohamed Ahmed, E.A. Hasabo, M.S. Haroun, M. Mah Fadelallah Eljach, E.H. Salih, F.O.O. Alatyeb, et al., Clinical characteristics, complications, and predictors of outcome of hospitalized adult Sudanese patients.
with COVID-19 and malaria coinfection in Sudan: a multicenter retrospective cross-sectional study, J. Med. Virol. 94 (8) (2022 Aug 1) 3685–3697.

[9] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia [Internet], N. Engl. J. Med. 382 (13) (2020 Mar 26) [cited 2022 Jan 30], https://pubmed.ncbi.nlm.nih.gov/31995857/, 1199–207. Available from.

[10] A.T. Angelo, D.S. Alemayehu, A.M. Dacho, Knowledge, attitudes, and practices toward covid-19 and associated factors among university students in Mizan Tepi University, 2020, Infect. Drug Resist. 14 (2021) 349–360.

[11] G. Mathew, R. Agha, for the STROCSS Group, Strocss 2021: strengthening the Reporting of cohort, cross-sectional and case-control studies in Surgery, Int. J. Surg. 96 (2021), 106165.

[12] National Health Commission of the People’s Republic of China, A Protocol for Community Prevention and Control of the 2019 Novel Coronavirus (2019-nCoV) Infected Pneumonia, 2020.

[13] S. Maheshwari, P.K. Gupta, R. Sinha, P. Rawat, Knowledge, attitude, and practice towards coronavirus disease 2019 (COVID-19) among medical students: a cross-sectional study, J Acute Dis 9 (3) (2020) 100–104.

[14] L.T. Phan, T.V. Nguyen, Q.C. Luong, T.V. Nguyen, H.T. Nguyen, H.Q. Le, et al., Importation and human-to-human transmission of a novel coronavirus in Vietnam [Internet], N. Engl. J. Med. 382 (9) (2020 Feb 27) [cited 2022 Jan 30], https://pubmed.ncbi.nlm.nih.gov/31991079/, 872–4. Available from.