Red Clover (*Trifolium pratense*) and Zigzag Clover (*T. medium*) – A Picture of Genomic Similarities and Differences

Jana Dluhošová¹, Jan Ištvánek¹, Jan Nedělík² and Jana Řepková¹*

¹ Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia, ² Agricultural Research, Ltd., Troubsko, Czechia

The genus clover (*Trifolium* sp.) is one of the most economically important genera in the Fabaceae family. More than 10 species are grown as manure plants or forage legumes. Red clover’s (*T. pratense*) genome size is one of the smallest in the *Trifolium* genus, while many clovers with potential breeding value have much larger genomes. Zigzag clover (*T. medium*) is closely related to the sequenced red clover; however, its genome is approximately 7.5x larger. Currently, almost nothing is known about the architecture of this large genome and differences between these two clover species. We sequenced the *T. medium* genome (2n = 8x = 64) with ∼23x coverage and managed to partially assemble 492.7 Mbp of its genomic sequence. A thorough comparison between red clover and zigzag clover sequencing reads resulted in the successful validation of 7 *T. pratense*- and 45 *T. medium*-specific repetitive elements. The newly discovered repeats led to the set-up of the first partial *T. medium* karyotype. Newly discovered red clover and zigzag clover tandem repeats were summarized. The structure of centromere-specific satellite repeat resembling that of *T. repens* was inferred in *T. pratense*. Two repeats, TrM300 and TrM378, showed a specific localization into centromeres of a half of all zigzag clover chromosomes; TrM300 on eight chromosomes and TrM378 on 24 chromosomes. A comparison with the red clover draft sequence was also used to mine more than 105,000 simple sequence repeats (SSRs) and 1,170,000 single nucleotide variants (SNVs). The presented data obtained from the sequencing of zigzag clover represent the first glimpse on the genomic sequence of this species. Centromeric repeats indicated its allopolyploid origin and naturally occurring homogenization of the centromeric repeat motif was somehow prevented. Using various repeats, highly uniform 64 chromosomes were separated into eight types of chromosomes. Zigzag clover genome underwent substantial chromosome rearrangements and cannot be counted as a true octoploid. The resulting data, especially the large number of predicted SSRs and SNVs, may have great potential for further research of the legume family and for rapid advancements in clover breeding.

Keywords: zigzag clover karyotype, sequencing, FISH, comparative analysis, centromeric repeats
INTRODUCTION

The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

INTRODUCTION

The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.

Red clover (Trifolium pratense L.) is a high-quality fodder crop that is widely cultivated in most temperate regions both within Europe and worldwide. It is sown as a companion crop and a green manure crop to increase soil fertility. The main disadvantage of its breeding is a low persistency which is a highly beneficial attribute has determined its use as a manure plant or beneficial. The family Fabaceae is one of the largest and the most economically important families of flowering plants. The genus clover (Trifolium sp.) comprises of approximately 250 species, 20 of which have been commercially cultivated, making it one of the largest genera in this family (Ellison et al., 2006). Similar to other leguminous species, it is capable of fixing atmospheric nitrogen, which results in high protein forage as well as a reduced need for nitrogen fertilizer input (Taylor and Quesenberry, 1996). These beneficial attributes have determined its use as a manure plant or forage legume in livestock farming systems.
Repeat Content Characterization

Sequencing reads were used for the repeat content characterization of the zigzag clover genome both independently and in direct comparison with red clover by means of comparative clustering. The sequencing reads from red clover used in this comparative approach were obtained from previous studies (Ištvánek et al., 2014). Repeat content characterizations of both individual and comparative approaches were carried out by an all-to-all similarity comparison and by graph-based clustering using RepeatExplorer (Novák et al., 2013), a clustering-based repeat identification pipeline implemented in the Galaxy platform1.

A total of 4,022,796 (∼0.1×) Illumina reads were used as input for individual zigzag clover repeat content characterization. Repetitive sequences were sorted using a similarity-based clustering analysis, while groups of reads (clusters) containing more than 0.1% of used reads were inspected more closely. The annotation of resulting clusters was based on results from several analyses: graphical representations of all clusters were examined in SeqGrapheR (Novák et al., 2010) to identify tandem repeats. Structural features were identified using Dotter (Sonnhammer and Durbin, 1995). The identification of insertion sites in potential transposable elements was performed by program clview4. Additionally, similarity hits to known repeats included in various databases, such as RepeatMasker, with Repbase (implemented in RepeatExplorer) (Jurka et al., 2005) and BLAST (Altschul et al., 1990) searches of contigs assembled in the Galaxy platform1.

The repeat content of zigzag clover was directly compared to that of red clover by means of comparative clustering. Because of different ploidy levels and genome sizes, it was necessary to properly choose the number of reads that would be used for repeat content analysis. The genome content of both plants was measured by flow cytometry [Partec Ploidy Analyser-I (PA-I), Germany]. The internal reference standards used to measure red clover and zigzag clover were Glycine max and Zea mays, respectively. Only partial, equal proportions of sequences corrected for genome size and ploidy level were randomly chosen using a custom R script. The resulting pooled set of 127,504,257 bp from red clover and 208,446,121 bp from zigzag clover was used as an input for clustering in RepeatExplorer. The annotation of the resulting clusters was performed as described above. Each cluster was considered species-specific if the proportion of the other species in the whole cluster or selected contigs was less than 1%. The clusters evaluated as tandem repeats were analyzed by Tandem Repeats Finder (Benson, 1999) in order to discover their consensus monomer. Other species-specific clusters were analyzed in detail using SeqGrapheR (Novák et al., 2010) to identify the most conserved parts of their contigs suitable for the design of FISH probes. All of the analyzed FISH probes were subjected to pairwise hybridization with each other on both red clover and zigzag clover chromosomes.

Probe Design and Production

Fluorescent in situ hybridization probes for tandem repeats with a short consensus monomer (up to 80 bp) were synthesized as oligonucleotides by Sigma-Aldrich (Haverhill, United Kingdom). Unmodified lyophilized DNA oligonucleotides corresponding to both complementary DNA strands were resuspended in water to a final concentration of 100 µM. Equal volumes of both oligonucleotides were mixed together in a tube and heated to 95°C for 5 min. Immediately after heating, the tube was transferred to a beaker containing 0.5 L of ∼95°C water. After slow cooling at room temperature to ∼30°C, the resulting double-strand DNA was quantified using a NanoDrop spectrophotometer (Thermo Scientific, Vienna, Austria). FISH probes from sequences other than short tandem repeats were designed for the most conserved part of their contigs. Probe sequences were selected manually to obtain a high level of sequence complexity with sufficient length and coverage. A specific pair of primers was selected for each element using Primer3 (Untergasser et al., 2012), OligoCalc (Kibbe, 2007), OligoAnalyzer v3.1 (Owczarzy et al., 2008), and PrimerBlast (Ye et al., 2012). Probe sequences were amplified by PCR containing 1× GoTaq Reaction buffer (Promega), 0.2 mM dNTPs, 1 µM primers, 0.5 U of Taq Polymerase (Promega) and 20 ng of gDNA. PCR products were separated by agarose electrophoresis, excised from the gel, purified with a PCR purification kit (Qiagen) and quantified using a NanoDrop spectrophotometer.

Probe Labeling and FISH

Root tips from red clover and zigzag clover were synchronized overnight on ice and stored in Carnoy’s fixative at −20°C. Chromosome spreads were prepared after pretreatment with pectolytic enzyme mixture (0.3%pectolyse, 0.3% cellulase, and 0.3% cytohelicase in 1× citrate buffer) by the SteamDrop method according to Kirov et al. (2014) with a Double SteamDrop modification. All of the probes were labeled by nick translation using Biotin or DIG Nick Translation Mix (Roche). Then, 100 ng of labeled probe was ethanol precipitated and resuspended in 25 µl of hybridization buffer containing 50% formamide and 10% dextran sulfate in 2× SSC. The mixture was denatured by incubation at 95°C for 5 min and immediately placed on ice. Slides with chromosome spreads were treated with 100 µg/ml RNase A (Sigma) in 2× SSC for 1 h at 37°C, washed twice for 5 min in 2× SSC, treated with 0.1 mg/ml pepsin in 10 mM HCl for 2 min at 37°C, washed as before, post-fixed in 4% formaldehyde in 2× SSC, washed again and dehydrated in an increasing ethanol series (70, 90, and 96% ethanol, 5 min each). The probes were applied to suitable chromosome spreads, codenaturated at 80°C for 2 min and left to
hybridize overnight at 37°C in a humid box. Post-hybridization washing was carried out at 42°C with the following steps: 2× SSC twice for 5 min, 10% formamide/0.1× SSC twice for 5 min, 2× SSC for 5 min and 4× SSC/0.05% Tween-20. Biotin- or DIG-labeled probes were immunodetected with streptavidin-Cy3 (GE Healthcare, Buckinghamshire, United Kingdom; dilution 1:1000) and anti-DIG-FITC (Roche, Mannheim, Germany; dilution 1:200) antibodies. The slides were counterstained with DAPI in Vectashield (Vector Laboratories, Burlingame, CA, United States). An Olympus BX-51 fluorescence microscope was used for sample evaluation; the micrographs were captured using an Olympus DP72 CCD camera and Cell®P imaging system (Olympus). Suitable images were pseudocolored and merged in Adobe CS6 Photoshop.

DNA Markers

Simple sequence repeat (SSR) loci within the partially assembled genomic sequence of zigzag clover were identified by SSR Locator (da Maia et al., 2008). Each SSR site was defined as a monomer occurring at least 12×, a dimer at least 6×, tri- and tetramers at least 4×, and penta- and hexamers at least 3×. Primers with Tm near 60°C were designed for potential SSR markers, and the number of PCR products was predicted for each primer pair.

To identify potential single nucleotide variants (SNVs) in zigzag clover, the reference sequence of red clover (Istvánék et al., 2014) was used. Zigzag clover sequencing reads were mapped to the reference using bwa v0.7.5 (Li and Durbin, 2010). SAMTools v0.1.19 (Li et al., 2009) was used to convert between BAM and SAM formats; the sorted of mapped reads, marking PCR duplicates, and indexing were performed by Picard v1.801. To remap sequence reads in proximity to InDel, the recalibration of base qualities and SNV calling GATK v2.7 (McKenna et al., 2010) was performed. Custom Perl scripts were used to further process and identify species-specific and interspecific markers.

RESULTS

Genome Assembly

The Illumina sequencing of zigzag clover resulted in 724.4 million 100-bp-long paired-end reads from a single genomic library. The average fragment size of the genomic library was 750 bp, and raw genome coverage of ~25× was achieved. Raw data were filtered as described above, leaving an average genome coverage of 21.1×. Features of this partially assembled, 492.7 Mbp-long genomic sequence are described in Supplementary Table S1.

Repeat Content Characterization

A total of 4,022,796 sequencing reads of zigzag clover were used to predict the proportion of repetitive elements in the newly sequenced genome. In the clustering-based approach of the RepeatExplorer pipeline, the clusters contained 69% of all analyzed reads, with 32% being assigned to the nine largest clusters representing the most abundant repetitive elements in the genome (Figure 1). A total of 14% of the analyzed reads belonged to the largest cluster, representing elements from the lineage of Chromoviruses from Ty3/Gypsy retrotransposons. The lineages of Ty3/Gypsy retrotransposons occupy as much as 28.14% of the genome, making retrotransposons the most abundant class of repetitive elements. Together with Ty1/Copia elements, they form more than one-third (36.66%) of the zigzag clover genome (Supplementary Table S2). In both cases, all of the main retrotransposon lineages are present in the genome of zigzag clover, although their abundances differ substantially. The present DNA transposons (2.89%) belong to all main groups, with PIF/Harbinger and Mutator forming 57.4% of all DNA transposons found. In total, detailed inspection and annotation successfully described 46.67% of the genome size consisting of different repetitive elements.

In addition, a direct comparison of the repeat content of both the zigzag clover and red clover genomes was performed by comparative clustering. The genome content (2C) estimated by flow cytometry was 1.963 pg (SD: 0.029) for red clover and 7.054 pg (SD: 0.054) for zigzag clover. According to the octoploid nature of the zigzag clover genome, only half of the DNA content was considered as if both plants had equal ploidy levels, so that the coverage of the haploid genome was the same. The measured values were converted to Mb according to Dolezel et al. (2003). For the purposes of comparative clustering, the genome sizes of tetraploid red clover and tetraploid zigzag clover were calculated as 810 and 1,457 Mbp. A total of 1,307,142 reads from red clover and 2,347,960 reads from zigzag clover were pooled together and subjected to repeat content characterization.

The similarity-based clustering of the reads resulted in 286,417 clusters containing from 2 to 37,866 reads. The clusters included 65.5% of all analyzed reads; the remaining 1,255,666 reads were classified as singlets. The proportions of reads included in the resulting clusters from red clover and zigzag clover were 61.2 and 67.9%, respectively. A total of 336 largest clusters containing at least 0.01% of all analyzed reads represented 41.6% of all analyzed reads, and 286,081 smaller clusters with 2–363 reads contained a total of 870,253 reads, which was 23.9% of the input.

The further inspection of the 336 largest clusters, such as an evaluation of the presence of insertion sites or subrepeats, resulted in the successful classification of repeat types in the majority of these clusters. A summary of the classification and the genome proportion of each repeat type in both species are shown in Figure 2 and Table 1.

Although the most prevalent repetitive elements in both species belong to LTR retroelements, zigzag clover has a much larger proportion of Ty3/Gypsy retroelements. This difference in the proportion of Ty3/Gypsy, especially the lineage Chromovirus, seemed to be the main cause of the different proportion of the whole repetitive fraction. Other types of repetitive elements did not show such substantial differences; their proportions in both species were more or less the same.

A detailed analysis was performed for species-specific clusters in which the proportion of the other species was less than 1% of all of the containing reads. A total of 7 and 45 species-specific clusters were identified for red clover and zigzag clover, respectively (Table 2). A subset of 6 and 18 specific clusters was chosen for validation based on the length of the assembled contigs...
and their coverage (Table 3). FISH probes were designed from one to several merged contigs depending on their total length and coverage.

FISH Validation

Fluorescent *in situ* hybridization probes for selected tandem repeats with a short monomer sequence (CL12, CL198, and CL354) were synthesized as complementary oligonucleotides with a length of up to 80 bp containing one to several monomer motifs. A consensus monomer sequence identified for all species-specific tandem repeat clusters is listed in Supplementary Table S3. FISH probes for other species-specific clusters were prepared from amplified DNA resulting from PCR reactions with cluster-specific primers (Supplementary Table S4). These PCR reactions were also used as a preliminary validation of the species-specificity and of the predicted length. The products of amplification from all of the studied clusters were present in the expected species alone; their lengths exactly matched the predicted ones in all cases (Supplementary Figure S1).
TABLE 1 | Repeat composition of the red clover and zigzag clover genomes estimated from Illumina sequencing data by comparative clustering.

Classification	Genome proportion (%)			
Repeat type	Family	Lineage	T. pratense	T. medium
Retroelements	Ty3/Gypsy	Chromovirus	15.93	33.81
		Athila	6.65	26.29
	Ty3/Gypsy	Tat/Ogre	3.27	17.03
		other	1.95	6.04
		Ty1/Copia	1.17	2.46
		other	0.27	0.76
	Ty1/Copia	Maximus/SIRE	8.59	7.16
		Angela	4.67	4.30
		Ivana/Oryco	0.95	0.37
		Tork	0.36	0.81
		AkeI	0.40	0.67
		Bianca	0.47	0.24
		TAR	0.44	0.16
		AkeI/Retrofit	0.30	0.09
		Other	0.06	0.02
DNA transposons	LINE	3.22	0.45	0.28
	SINE	0.10	0.10	0.02
	Other	0.14	0.14	0.07
Satellite repeats	Mutator	2.63	0.45	0.28
	Mariner	1.05	0.78	0.32
	RC/Helitron	0.57	0.32	0.32
	hAT	0.53	0.19	0.19
	PIF/Harbinger	0.36	0.32	0.32
	CACTA	0.50	0.12	0.12
	Other	0.12	0.43	0.43
		0.09	0.09	0.09
rDNA	2.63	0.82		
Unclassified	1.79	0.59		
Total	31.93	45.65		

The validation of species-specificity was also performed by FISH on both red clover and zigzag clover chromosome spreads. All of the analyzed elements hybridized only to chromosomes of the predicted species; no fluorescent signal was observed in the other species. Four studied elements specific to red clover hybridized to well-distinguishable positions on several chromosomes (Table 4). Probes derived from CL12 and CL172 hybridized to the centromeric position of all 28 chromosomes. We presume that these elements might be directly connected to the centromere constitution as centromere-specific repeats. Probes from CL167 and CL198 hybridized to the pericentromeric region on 4 and 6 chromosomes, respectively. Probes derived from CL55 and CL127 showed a uniformly dispersed fluorescent signal along all red clover chromosomes. The fluorescent signals of analyzed elements are shown in Figure 3.

Fluorescent in situ hybridization was also performed for all repetitive elements specific to zigzag clover. Only four elements hybridized to well-distinguishable positions on several chromosomes (Figures 4A–E); the remaining (18 elements) hybridized dispersely along all of the chromosomes of zigzag clover without any specific pattern (Figure 4F). The probes derived from CL9 and CL17 hybridized to the centromeric position of 32 chromosomes. Both probes hybridized to the same chromosomes with the same localization, although the proportion of each element differed on individual chromosomes (Figures 4A–C). Eight chromosomes showed a higher proportion

TABLE 2 | Number of species-specific clusters according to their classification.

Ty3/Gypsy	Ty1/Copia	Tandem repeat	DNA transposon	Unknown	Σ	
T. pratense	1	3	3	7		
T. medium	5	5	2	1	32	45
TABLE 3 | Selected *T. pratense*- and *T. medium*-specific contigs, number of comprising reads and their annotation.

Number of *T. pratense* reads	Number of *T. medium* reads	Σ	% of the other species in selected contigs*	Cluster annotation
T. pratense				
CL12	19,305	4	19,309	0.02 Tandem repeat 38 bp
CL55	8,440	404	8,844	0.46 Unknown
CL127	3,171	26	3,197	0 Unknown
CL167	2,198	10	2,208	0 Tandem repeat 1,586 bp
CL172	2,031	19	2,050	0.62 Unknown
CL198	1,297	226	1,523	0.34 Tandem repeat 29 bp
T. medium				
CL9	9	21,219	21,228	0 Unknown
CL17	1	16,378	16,379	0 Unknown
CL50	949	8,494	9,443	0 Ty3/Gypsy Tat/Ogre integrase
CL53	3,410	5,600	9,010	0 Ty1/Copia Maximus/SIRE GAG
CL64	53	7,798	7,851	0 Unknown
CL102	9	4,758	4,767	0 Tandem repeat 179 bp
CL106	0	4,392	4,392	0 Unknown
CL110	20	4,172	4,192	0 Ty1/Copia
CL122	6	3,368	3,374	0.01 Ty1/Copia Maximus/SIRE GAG
CL140	0	2,997	2,997	0 Unknown
CL146	239	2,518	2,757	0 Unknown
CL150	3	2,622	2,625	0 Unknown
CL153	0	2,566	2,566	0 Unknown
CL164	0	2,266	2,266	0 Unknown
CL195	0	1,603	1,603	0 Ty1/Copia
CL198	1	1,600	1,601	0 Unknown
CL197	0	1,570	1,570	0 Unknown
CL354	63	252	315	0.80 Tandem repeat 60 bp

*Contigs used for design of FISH probes.

TABLE 4 | Table of all of the newly discovered *Trifolium*-specific tandem repeats.

Name	Cluster	Proportion (%)	Basic motif (bp)	Annotation	Localization
T. pratense					
TrP175	CL12	1.48	175	Centromeric repeat	All chromosomes
TrP1586	CL167	0.169	1,586	Pericentromeric repeat	4/28 chromosomes
TrP671	CL172	0.16	671*	Pericentromeric repeat	All chromosomes
TrP29	CL198	0.10	29	Pericentromeric repeat	6/28 chromosomes
T. medium					
TrM378	CL9	0.906	378*	Centromeric repeat	32/64 chromosomes
TrM300	CL17	0.70	300*	Centromeric repeat	32/64 chromosomes
TrM179	CL102	0.20	179	Subtelomeric repeat	24/64 chromosomes
TrM60	CL354	0.01	60	Pericentromeric repeat	4/64 chromosomes

*Precise length of basic motif cannot be determined, the presented value is the length of PCR-amplified segment.

of CL17 elements; the remaining 24 chromosomes had a higher proportion of elements from CL9.

The probes derived from CL102 hybridized as a satellite on the terminal part of the short arm of 24 chromosomes of zigzag clover. The probes derived from CL354 hybridized to the pericentromeric region of four chromosomes. The localization of both CL102 and CL354 fluorescent signals is shown in Figures 4D,E.

All zigzag clover-specific probes were subjected to pair-wise hybridization with each other. The results were also merged with previously published 5S and 45S rDNA hybridization (Dluhošová et al., 2016; Figure 4G) to further assign analyzed elements to individual chromosomes. A simplified graphical representation showing the localization of CL9, CL17, CL102, CL354 and rDNA loci and the number of respective chromosomes in zigzag clover is shown in Figure 5.
Partially assembled genomic sequence of 492.7 Mbp was used to predict SSR markers. We identified and designed primers for 105,275 candidate SSR markers, corresponding to 1 SSR marker every 30 kbp. The most prevalent basic motifs were trimeric, monomeric and dimeric, together comprising 70.12% of all SSR markers. A comprehensive summary of the characteristics of the predicted SSR markers is available in Supplementary Table S5. Single nucleotide variants were identified using the coding sequence of red clover (Ištvánek et al., 2014), which enabled the identification of species-specific and interspecific candidate SNP markers in zigzag clover. A total of 1,173,317 variants were found, consisting of 133 InDels and 1,173,184 SNVs (24,592 SNVs were multiallelic). Compared to the 418 Mbp-long reference red clover genome and 3,152 Mbp-long zigzag clover genome, the predicted SNVs represent the frequency of 1 SNV every 70.1 bp and 1 SNV every 112.4 bp in interspecific density of species-specific SNVs in the used reference sequence of red clover genome and 3,152 Mbp-long zigzag clover genome, were multiallelic. Compared to the 418 Mbp-long reference red clover genome and 3,152 Mbp-long zigzag clover genome, the predicted SNVs represent the frequency of 1 SNV every 70.1 bp and 1 SNV every 112.4 bp in interspecific density of species-specific SNVs in the used reference sequence of red clover genome and 3,152 Mbp-long zigzag clover genome, were multiallelic. Compared to the 418 Mbp-long reference red clover genome and 3,152 Mbp-long zigzag clover genome, the predicted SNVs represent the frequency of 1 SNV every 70.1 bp and 1 SNV every 112.4 bp in interspecific density of species-specific SNVs in the used reference sequence of red clover genome and 3,152 Mbp-long zigzag clover genome, were multiallelic. Compared to the 418 Mbp-long reference red clover genome and 3,152 Mbp-long zigzag clover genome, the predicted SNVs represent the frequency of 1 SNV every 70.1 bp and 1 SNV every 112.4 bp in interspecific density of species-specific SNVs in the used reference sequence of red clover genome and 3,152 Mbp-long zigzag clover genome, were multiallelic.

DISCUSSION

In our study, the genome of zigzag clover was sequenced using a standard Illumina sequencing workflow and assembled into a partial genomic sequence of 492.7 Mbp. As a result of several conditions, such as the very large haploid size of zigzag clover genome, polyploid nature, high proportion of repetitive sequences, cross-pollination and use of a single sequencing library, final de novo assembly is very fragmented, does not cover the whole genomic sequence and thus is not suitable for the comprehensive annotation. However, it is sufficient for comparative purposes and characterization of repeat content that can provide us with highly valuable information about the species-specific repeats. Such repeats can be further utilized for the future precise assessment of the hybrid state of *T. pratense × T. medium* progeny as well as can help to understand former genomic changes that occurred during red clover and zigzag clover speciation. Although the zigzag clover genome (3,154 Mbp) is currently the largest sequenced genome in legume family, the proportion (46.74%) of fully annotated repetitive elements described in our study is comparable to that of other leguminous species (*G. max* 1.1 Gbp with 59% repetitive features).
FIGURE 5 | Karyotype and a simplified graphical representation of all 64 chromosomes of zigzag clover showing the localization of repetitive elements TrM378, TrM300, TrM179, TrM60, and 5S and 45S rDNA loci. (A) Metaphase chromosomes of zigzag clover. (B) Metaphase zigzag clover chromosomes arranged into the karyotype. Chromosomes were not put into pairs because of insufficient differences among individual chromosomes. (C) Localization of fluorescent signals of individual tandem repeats with their corresponding graphical representations. Hybridization signals of TrM378 and TrM300 are summarized within one signal but represented by two different schemes considering the predominant element. (D) Counts of the individual type of chromosomes presented in all 64 chromosomes of zigzag clover. Scale bar: 10 µm.

FIGURE 6 | Frequency of basic SSR motifs in candidate SSR markers predicted from genomic sequences.

count content (Schmutz et al., 2010), C. cajan 833.07 Mbp with 51.67% (Varshney et al., 2012), and C. arietinum 738.09 Mbp with 49.41% (Varshney et al., 2013). However, a detailed inspection was performed only for clusters containing more than 0.1% of analyzed reads, and many clusters representing repeat elements with a very small abundance were not inspected. This overall
repeat content might be slightly underestimated because of the low number of reads included in the analysis (only 0.1× coverage). An analysis of higher proportion of reads was not possible due to RepeatExplorer capacity limitations. Therefore, it is likely that the genome of zigzag clover contains more repetitive elements, presumably almost 70% of the genome, as shown in Figure 1. The most prevalent repetitive elements in zigzag clover are Ty3/Gypsy retrotransposons (28.14%), such as in the majority of sequenced legumes (Sato et al., 2008; Schmutz et al., 2010; Young et al., 2011; Varshney et al., 2012, 2013), except for red clover, where Ty1/Copia retrotransposons are the most abundant (Ištvánek et al., 2014). On the other hand, the zigzag clover genome possesses fewer retrotransposons from the Ty1/Copia lineage (7.80%) and DNA transposons (2.89%) compared to red clover (12.22 and 6.07%, respectively) (Ištvánek et al., 2014). However, both species had mostly PIF/Harbinger transposons and CACTA the least frequently (unlike other legume species (Schmutz et al., 2010; Young et al., 2011; Varshney et al., 2012, 2013), even though their frequencies were very different. Compared to other legume species, zigzag clover had the smallest content of DNA transposons, as 16.50, 4.53, 3.40, and 3.31% DNA transposons were identified in the genomes of G. max (Schmutz et al., 2010), C. cajan (Varshney et al., 2012), M. truncatula (Young et al., 2011), and L. japonicus (Sato et al., 2008), respectively.

Repeat content characterization performed as a comparative approach (Table 1) showed some interesting dissimilarities between the results obtained from individual red clover (Ištvánek et al., 2014) and zigzag clover analyses. The most striking dissimilarity is a significant difference between the overall repeat content of both species. While the red clover repeat content represented 45.14% (Ištvánek et al., 2014), which was almost the same as that of zigzag clover (46.74%), clustering performed as a comparative approach showed a difference of 6.7% in terms of non-singlet reads and even 13.72% for 336 largest clusters. Another significant difference could be seen in the prevalence of individual DNA transposon lineages. While both clovers had the PIF/Harbinger transposons as the most prevalent if considered individually, in the comparative analysis, none of these species had this lineage as the most prevalent. We presume that this difference was caused mainly by the divergence of species-specific PIF/Harbinger transposons, which led to their assignment into different clusters. These clusters were then too small to be fully annotated.

A comparative analysis of both repeat contents showed that major differences between these clovers included the expansion of Ty3/Gypsy retrotransposons, specifically 6.65% in red clover and 26.29% in zigzag clover. In absolute numbers, Ty3/Gypsy spanned approximately 54 Mbp in red clover, while in octoploid zigzag clover, it was more than 766 Mbp. We presume that this dramatic difference in proportions of Ty3/Gypsy elements, especially the lineage chromovirus, is the main cause of the increased zigzag clover genome size. These results agreed with other comparisons of related species with different genome sizes, such as Oryza sativa and O. australiensis (Piegu et al., 2006; Zuccolo et al., 2007), Arabidopsis thaliana and A. lyrata (Hu et al., 2011), Zea mays and Z. luxurians (Tenailleon et al., 2011), and species of the Orobanchaceae family (Piednoël et al., 2012). The observed dominance of LTR retrotransposons in the fraction of highly repeated sequences has been previously shown to be a common feature of higher plant genomes in which retroelements represent one of the major forces driving genome size evolution (Hawkins et al., 2006; Neumann et al., 2006).

A comparative analysis of both repeat contents was used to select both red clover- and zigzag clover-specific repetitive elements. We successfully identified seven red clover-specific repetitive elements spanning 2.83% of its genome and 45 zigzag clover-specific repetitive elements spanning 10.10% of the zigzag clover genome, representing approximately 23 and 294.4 Mbp of their genomes, respectively. This higher proportion of zigzag clover-specific repeats also contributed to the increase in the genome size and probably assisted in the evolutionary diversification of both clovers (Kraaijeveld, 2010).

The validation of selected elements was performed via FISH with fluorescent-labeled probes designed from corresponding sequencing data. FISH validation confirmed the
species-specificity of all 6 and 18 elements of red clover and zigzag clover, respectively. We presumed that the CL12 repetitive element with a basic motif of 38-nt was the main repetitive element of the centromere in red clover. However, other studies have reported repetitive elements directly associated with centromere structures of different lengths, generally approximately 180 bp (Wang et al., 2009; Mehrotra and Goyal, 2014; Plohl et al., 2014), resembling the length of DNA wrapped around one nucleosome (Kubis et al., 1998; Macas et al., 2002). After the detailed reanalysis of CL12, we were able to find other basic repetitive motifs of approximately 175 bp (TrP175), consisting of three copies of our analyzed 38-nt-long element interrupted with two copies of 30-nt-long AT-rich elements. This 30-nt-long element was only a shorter version of our 38-nt-long element, lacking its first 8-nt. All 30-nt-long copies were almost identical, with only minor shifts in the position of GC bases within poly-AT tracts or prolongation in individual poly-AT tracts. The resulting structure of centromere-specific satellite repeat TrP175 derived from CL12 is thus summarized in Figure 7. Centromeric repeat TrP175 resembled centromere repeat of another clover species, TrR350, which was identified in T. repens (Ansari et al., 2004). They were similar in terms of GC content (32% in TrR350 and 33% in TrP175), inner structure comprising shorter submotives (24-nt long in TrR350) and high occurrence of tracts similar to the CAAAA motif. TrR350 was substantially increased (Zalaapa et al., 2012). In zigzag clover, partially assembled genomic sequence was used to predict SSR markers. The high frequency of predicted SSR markers (1 SSR marker every 30 kbp) can be successfully utilized in breeding programs. Candidate SNVs can be used for the additional saturation of zigzag clover genome by SNPs using high-throughput screening technologies, e.g., SNP arrays (Viquez-Zamora et al., 2013; Yu et al., 2014). The classification into species-specific and interspecific categories also enables the study of differences between clover species and their use in breeding programs encompassing an available interspecific hybrid of red and zigzag clover (Repková et al., 2006b; Jakešová et al., 2011). However, the number of predicted SNVs is influenced by many circumstances, such as the number of individual plants analyzed, natural sequence variability in the population and allogamy. Compared with other plant species [Prosopis alba: 1 SNP every 2,512 bp (Torales et al., 2013); Capsicum annuum: 1 SNP every 2,253 bp (Ashrafti et al., 2012); oak: 1 SNP every 471 bp (Ueno et al., 2010); and Eucalyptus grandis: 1 SNP every 192 bp (Novaes et al., 2008)], SNV density found in zigzag clover (1 SNP every 70.1 bp) was the highest; however, only one clone was analyzed without establishing frequency of occurrence. The polyploid nature and lack of artificial selection in zigzag clover may also be the reason. On the other hand, great sequence variability was discovered also in red clover (1 SNP every 144.6 bp (Ištvanek et al., 2017). The high density of SNP markers provides us with an opportunity to study specific genes, key enzymes and even whole biosynthetic and metabolic pathways.

AUTHOR CONTRIBUTIONS

JD prepared biological material, performed repeat content characterizations and comparative analyses and designed and performed FISH experiments. JI processed raw sequencing data, assembled the partial genomic sequence, and identified DNA
markers. JR and JN designed the study and supervised all aspects of the presented analyses. All of the authors contributed to the analysis of data and the writing of the manuscript and approved the final manuscript.

FUNDING

The authors thank the Ministry of Agriculture of the Czech Republic (Grant No. QI111A019) and the Ministry of Education, Youth and Sports (Grant No. MUNI/A/0824/2017) for financial support. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum was provided under the program “Projects of Large Research, Development, and Innovations Infrastructures” (CESNET LM2015042) and is greatly appreciated. In particular, access to the CERIT-SC computing and storage facilities provided by the CERIT-SC Center, provided under the program “Projects of Large Research, Development, and Innovations Infrastructures” (Cerit Scientific Cloud LM2015085), is greatly appreciated.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2018.00724/full#supplementary-material

REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/0022-2836(86)90330-2

Ansari, H. A., Ellison, N. W., Griffiths, A. G., and Williams, W. M. (2004). A lineage-specific centromeric satellite sequence in the genus Trifolium. Chromosome Res. 12, 357–367. doi: 10.1023/B:CHRO.0000034099.19570b7

Ashrafi, H., Hill, T., Stoffel, K., Kozik, A., Yao, J., Chin-Wo, S. R., et al. (2012). De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 13:571. doi: 10.1186/1471-2164-13-571

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580. doi: 10.1093/nar/27.2.573

Cidade, F. W., Vigna, B. B., de Souza, F. H., Valls, J. F. M., Dall’Agnol, M., Zucchi, M. I., et al. (2013). Genetic variation in polyloid forage grass: assessing the molecular genetic variability in the Paspalum genus. BMC Genet. 14:50. doi: 10.1186/1471-2156-14-50

da Maia, L. C., Palmieri, D. A., de Souza, V. Q., Kopp, M. M., de Carvalho, F. I. F., and Costa de Oliveira, A. (2008). SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics 2008:412696. doi: 10.1155/2008/412696

De Vega, J. J., Ayling, S., Hegarty, M., Kudrna, D., Goicoechea, J. L., Ergon, Á., et al. (2015). Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 5:17394. doi: 10.1038/srep17394

Dellaporta, S. L., Wood, J., and Hicks, J. B. (1983). A plant DNA minipreparation: new modification of an alkaline method. Plant Mol. Biol. Rep. 1, 19–21. doi: 10.1007/BF02712670

Dluhošová, J., Řepková, J., Jakešová, H., and Nedělník, J. (2016). Impact of interspecific hybridization of T. pratense x T. medium and backcrossing on genetic variability of progeny. Czech J. Genet. Plant Breed. 52, 125–131. doi: 10.17221/115/2016-CJGPB

Dolezel, J., Bartos, J., Vojtášková, J., and Dolezel, J. (2004). Molecular phylogenetics of the clover genus (Trifolium-Leguminosae). Mol. Phylogenet. Evol. 39, 688–705. doi: 10.1016/j.ympev.2004.01.004

Gong, Z., Wu, Y., Kobliková, A., Torres, G. A., Wang, K., Jovan, M., et al. (2012). Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24, 3559–3574. doi: 10.1105/tpc.112.100511

Hawkins, J. S., Kim, H., Nason, J. D., Wing, R. A., and Wendel, J. F. (2006). Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 16, 1252–1261. doi: 10.1101/gr.5282006

Hu, T. T., Pattyn, P., Bakker, E. G., Cao, J., Cheng, J.-F., Clark, R. M., et al. (2011). The Arabidopsis lyrata sequence and the basis of rapid genome size change. Nat. Genet. 43, 476–481. doi: 10.1038/ng.807

Huang, X., and Madan, A. (1999). CAP3: a DNA sequence assembly program. Genome Res. 9, 868–877. doi: 10.1101/gr.9.9.868

Isobe, S. N., Hisano, H., Sato, S., Hirakawa, H., Okumura, K., Shirasawa, K., et al. (2012). Comparative genetic mapping and discovery of linkage disequilibrium across linkage groups in white clover (Trifolium repens L.). G3 3, 607–617. doi: 10.1534/g3.112.002600

IIIvánková, J., Dluhošová, J., Dluhoš, P., Pátková, L., Nedělník, J., and Řepková, J. (2017). Gene classification and mining of molecular markers useful in red clover (Trifolium pratense) breeding. Front. Plant Sci. 8:367. doi: 10.3389/fpls.2017.00367

IIIvánková, J., Jaros, M., Krenek, A., and Řepková, J. (2014). Genome assembly and annotation for red clover (Trifolium pratense; Fabaceae). Am. J. Bot. 101, 327–337. doi: 10.3732/ajb.1300340

Jakešová, H., Hampel, D., Řepková, J., and Nedělník, J. (2014). Evaluation of feeding characteristics in variety Pramedi – interspecific hybrid Trifolium pratense × Trifolium medium. Česká ž. 12, 183–186.

Jakešová, H., Řepková, J., Hampel, D., Čechová, L., and Hofbauer, J. (2011). Variation of morphological and agronomic traits in hybrids of Trifolium pratense × T. medium and a comparison with the parental species. Czech J. Genet. Plant Breed. 47, 28–36. doi: 10.17221/2/2011-CJGPB

Jurka, J., Kapitonov, V. V., Pavlicek, A., Klouman, O., Kohny, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467. doi: 10.1159/000105-0041-9

Kao, W. C., Chan, A. H., and Song, Y. S. (2011). Echo: a reference-free short-read error correction algorithm. Genome Res. 21, 1181–1192. doi: 10.1101/gr.111351.110

Kibbe, W. A. (2007). OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46. doi: 10.1093/nar/gkm234

Kirov, I., Divashuk, M., Van Laere, K., Soloviev, A., and Khustaleva, L. (2014). An easy “SteamDrop” method for high quality plant chromosome preparation. Mol. Cytogenet. 7:21. doi: 10.1186/1755-8166-7-21

Kopecký, D., Loureiro, J., Zwerszykowski, Z., Ghesquière, M., and Dolezel, J. (2006). Genome constitution and evolution in Lolium x Festuca hybrid cultivars (Festulolium). Theor. Appl. Genet. 113, 731–742. doi: 10.1007/s00122-006-0341-z

Kraaidfeld, K. (2010). Genome size and species diversification. Evol. Biol. 37, 227–233. doi: 10.1162/jeb.1162-010-9903-9

Kubis, S., Schmidt, T., and Heslop-Harrison, J. S. (1998). Repetitive DNA elements as a major component of plant genomes. Annu. Bot. 82(Suppl. 1), 45–55. doi: 10.1006/anbo.1998.0779

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595. doi: 10.1093/bioinformatics/btp089

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. doi: 10.1093/bioinformatics/btp352
Macas, J., Mészáros, T., and Nouzová, M. (2002). PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18, 28–35. doi: 10.1093/bioinformatics/18.1.2

Macas, J., Neumann, P., Novák, P., and Jiang, J. (2010). Global sequence characterization of rice centromeric satellite based on oligonucle frequency analysis in large-scale sequencing data. Bioinformatics 26, 2101–2108. doi: 10.1093/bioinformatics/btq343

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., et al. (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303. doi: 10.1101/gr.107524.110

Mehrotta, S., and Goyal, V. (2014). Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics 12, 164–171. doi: 10.1016/j.gpb.2014.07.003

Neumann, P., Kobližková, A., Navrátilová, A., and Macas, J. (2006). Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics 173, 1047–1056. doi: 10.1534/genetics.106.056259

Nováks, E., Drost, D. R., Farmerie, W. G., Pappas, G. J., Grattapaglia, D., Sederoff, R. R., et al. (2010). High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312. doi: 10.1186/1471-2164-9-312

Novák, P., Neumann, P., and Macas, J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378. doi: 10.1186/1471-2105-11-378

Novák, P., Neumann, P., Pech, J., Steinhaisl, J., and Macas, J. (2013). RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29, 792–793. doi: 10.1093/bioinformatics/btt054

Owczyr, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Alnababri, H. G., et al. (2008). IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 36, W163–W169. doi: 10.1093/nar/gkn198

Piednoël, M., Aberer, A. J., Schneeweiss, G. M., Macas, J., Novak, P., Gundlach, H., et al. (2012). Next-generation sequencing reveals the impact of repetitive DNA expansion of Hordeum vulgare in a wild relative of rice. Genome Res. 22, 1262–1269. doi: 10.1101/gr.126496.111

Plohl, M., Meštrović, N., and Mravinc, B. (2014). Centromere identity from the DNA point of view. Chromosoma 123, 313–325. doi: 10.1007/s00442-014-0462-0

Qi, L. M., Li, G. J., Long, Y. M., Hulke, B. S., Gong, L., and Markell, S. G. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183. doi: 10.1038/nature08670

Schwarzacher, T., Leitch, A. R., Bennett, M. D., and Heslop-Harrison, J. S. (1989). In situ localization of parental genomes in a wide hybrid. Ann. Bot. 64, 315–324. doi: 10.1002/axs.880747

Simpson, J., Wong, K., Jackman, S., Schein, J., Jones, S., and Birol, I. (2009). Abyss: a parallel assembler for short read sequence data. Genome Res. 19, 1117–1123. doi: 10.1101/gr.089352.108

Soldanová, M., Lštvaněk, J., Řepková, J., and Dreiseitl, A. (2013). Newly discovered genes for resistance to powdery mildew in the subtilomeric region of the short arm of barley chromosome 7H. Czech J. Genet. Plant Breed. 49, 95–102. doi: 10.17221/33/2013-CJGBP

Sonnhhammer, E. L., and Durbin, R. (1995). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, G1–G10. doi: 10.1016/0378-1119(95)00714-8

Taylor, N., and Quesenberry, K. H. (1996). Red Clover Science. Dordrecht: Kluwer Academy Publishing. doi: 10.1007/978-94-015-869-2

Tenaillon, M. I., Hufford, M. B., Gaut, B. S., and Ross-Ibarra, J. (2011). Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol. Evol. 3, 219–229. doi: 10.1093/gbe/evr008

Tórales, S. L., Riva-Roldán, M., Pomponio, M. F., González, S., Acuña, C. V., Fernández, P., et al. (2013). De novo assembly and characterisation of leaf transcriptome for the development of functional molecular markers of the extremophile multipurpose tree species Prosopis alba. BMC Genomics 14:705. doi: 10.1186/1471-2164-14-705

Ueno, S., Le Provost, G., Léger, V., Klopp, C., Noirot, C., Frigerio, J.-M., et al. (2010). Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC Genomics 11:650. doi: 10.1186/1471-2164-11-650

Untergasser, A., Cutucutea, I., Koressaar, T., Ye, J., Jarvelin, M., Remm, M., et al. (2012). Primer3–new capabilities and interfaces. Nucleic Acids Res. 40:e11. doi: 10.1093/nar/gks96

Varshney, R. K., Chen, W., Li, Y., Bharti, A. K., Saxena, R. K., Slueter, J. A., et al. (2012). Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol. 30, 83–89. doi: 10.1038/nbt.222

Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., et al. (2013). Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 31, 240–246. doi: 10.1038/nbt.2291

Vázquez-Zamora, M., Vosman, B., van de Geest, H., Bovy, A., Visser, R. G. F., Finkers, R., et al. (2013). Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics 14:354. doi: 10.1186/1471-2164-14-354

Vizintin, I., Javornik, B., and Bohanec, B. (2006). Genetic characterization of selected Trifolium species as revealed by nuclear DNA content and ITS rDNA region analysis. Plant Sci. 170, 859–866. doi: 10.1016/j.plantsci.2005.12.007

Wang, G., Zhang, X., and Jin, W. (2009). An overview of plant centromeres. J. Genet. Genomics 36, 529–537. doi: 10.1016/S1353-8054(09)60228-7

Wang, L., Zeng, Z., Zhang, W., and Jiang, J. (2014). Three potato centromeres are associated with distinct haplotypes with or without megabase-sized satellite repeat arrays. Genetics 194, 397–401. doi: 10.1534/genetics.113.160135

Watson, L. E., Sayed-Ahmed, H., and Badr, A. (2000). Molecular phylogeny of old world Trifolium (Fabaceae), based on plastid and nuclear markers. Plant Syst. Evol. 224, 153–171. doi: 10.1007/ BF00986340

Ye, J., Coulouris, G., Zaretskaya, I., Cutucutea, I., Rozen, S., and Madden, T. L. (2012). Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:145. doi: 10.1186/1471-2165-13-134

Younas, M., Xiao, Y., Cai, D., Yang, W., Ye, W., Wu, J., et al. (2012). Molecular characterization of oilseed rape accessions collected from...
multi continents for exploitation of potential heterotic group through SSR markers. *Mol. Biol. Rep.* 39, 5105–5113. doi: 10.1007/s11033-011-1306-0

Young, N. D., Debellé, F., Oldroyd, G. E. D., Geurts, R., Cannon, S. B., Udvardi, M. K., et al. (2011). The *Medicago* genome provides insight into the evolution of rhizobial symbioses. *Nature* 480, 520–524. doi: 10.1038/nature10625

Yu, H., Xie, W., Li, J., Zhou, F., and Zhang, Q. (2014). A whole-genome SNP array (RICE6K) for genomic breeding in rice. *Plant Biotechnol. J.* 12, 28–37. doi: 10.1111/pbi.12113

Zalapa, J. E., Cuevas, H., Zhu, H., Steffan, S., Senalik, D., Zeldin, E., et al. (2012). Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. *Am. J. Bot.* 99, 193–208. doi: 10.3732/ajb.1100394

Zhang, H.-B., Zhao, X., Ding, X., Paterson, A. H., and Wing, R. A. (1995). Preparation of megabase-size DNA from plant nuclei. *Plant J.* 7, 175–184. doi: 10.1046/j.1365-313X.1995.07010175.x

Zhao, N., Yu, X., Jie, Q., Li, H., Li, H., Hu, J., et al. (2013). A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweet potato. *Mol. Breed.* 32, 807–820. doi: 10.1007/s11032-013-9908-y

Zuccolo, A., Sebastian, A., Talag, J., Yu, Y., Kim, H., Collura, K., et al. (2007). Transposable element distribution, abundance and role in genome size variation in the genus *Oryza*. *BMC Evol. Biol.* 7:152. doi: 10.1186/1471-2148-7-152

Conflict of Interest Statement: JN was employed by company Agricultural Research, Ltd., Troubsko, Czechia.

The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer AG and handling Editor declared their shared affiliation.

Copyright © 2018 Dluhošová, Ištvánek, Nedˇelník and ˇRepková. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.