ON FEEBLY COMPACT SHIFT-CONTINUOUS TOPOLOGIES ON THE SEMILATTICE $\exp_n \lambda$

OLEG GUTIK AND OLEKSANDRA SOBOL

Abstract. We study feebly compact topologies τ on the semilattice $(\exp_n \lambda, \cap)$ such that $(\exp_n \lambda, \tau)$ is a semitopological semilattice and prove that for any shift-continuous T_1-topology τ on $\exp_n \lambda$ the following conditions are equivalent: (i) τ is countably pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly compact; (iv) $(\exp_n \lambda, \tau)$ is an H-closed space.

Dedicated to the memory of Professor Vitaly Sushchansky

We shall follow the terminology of [6, 8, 9, 13]. If X is a topological space and $A \subseteq X$, then by $\text{cl}_X(A)$ and $\text{int}_X(A)$ we denote the closure and the interior of A in X, respectively. By ω we denote the first infinite cardinal and by \mathbb{N} the set of positive integers.

A subset A of a topological space X is called regular open if $\text{int}_X(\text{cl}_X(A)) = A$.

We recall that a topological space X is said to be

- quasiregular if for any non-empty open set $U \subset X$ there exists a non-empty open set $V \subset U$ such that $\text{cl}_X(V) \subseteq U$;
- semiregular if X has a base consisting of regular open subsets;
- compact if each open cover of X has a finite subcover;
- countably compact if each open countable cover of X has a finite subcover;
- countably compact at a subset $A \subseteq X$ if every infinite subset $B \subseteq A$ has an accumulation point x in X;
- countably pracompact if there exists a dense subset A in X such that X is countably compact at A;
- feebly compact (or lightly compact) if each locally finite open cover of X is finite [3];
- d-feebly compact (or DFCC) if every discrete family of open subsets in X is finite (see [12]);
- pseudocompact if X is Tychonoff and each continuous real-valued function on X is bounded.

According to Theorem 3.10.22 of [8], a Tychonoff topological space X is feebly compact if and only if X is pseudocompact. Also, a Hausdorff topological space X is feebly compact if and only if every locally finite family of non-empty open subsets of X is finite [3]. Every compact space and every sequentially compact space are countably compact, every countably compact space is countably pracompact, and every countably pracompact space is feebly compact (see [2]), and every H-closed space is feebly compact too (see [10]). Also, it is obvious that every feebly compact space is d-feebly compact.

A semilattice is a commutative semigroup of idempotents. On a semilattice S there exists a natural partial order: $e \leq f$ if and only if $ef = fe = e$. For any element e of a semilattice S we put

$$\uparrow e = \{ f \in S : e \leq f \}.$$

A topological (semitopological) semilattice is a topological space together with a continuous (separately continuous) semilattice operation. If S is a semilattice and τ is a topology on S such that (S, τ) is a topological semilattice, then we shall call τ a semilattice topology on S, and if τ is a topology on S such that (S, τ) is a semitopological semilattice, then we shall call τ a shift-continuous topology on S.

Date: August 24, 2018.
2010 Mathematics Subject Classification. Primary 22A26, 22A15, Secondary 54D10, 54D30, 54H12.
Key words and phrases. Topological semilattice, semitopological semilattice, compact, countably compact, feebly compact, H-closed, semiregular space, regular space.
For an arbitrary positive integer \(n \) and an arbitrary non-zero cardinal \(\lambda \) we put

\[
\exp_n \lambda = \{ A \subseteq \lambda : |A| \leq n \}.
\]

It is obvious that for any positive integer \(n \) and any non-zero cardinal \(\lambda \) the set \(\exp_n \lambda \) with the binary operation \(\cap \) is a semilattice. Later in this paper by \(\exp_n \lambda \) we shall denote the semilattice \((\exp_n \lambda, \cap) \).

This paper is a continuation of \([11]\) where we study feebly compact topologies \(\tau \) on the semilattice \(\exp_n \lambda \) such that \((\exp_n \lambda, \tau) \) is a semitopological semilattice. Therein, all compact semilattice \(T_1 \)-topologies on \(\exp_n \lambda \) were described. In \([11]\) it was proved that for an arbitrary positive integer \(n \) and an arbitrary infinite cardinal \(\lambda \) every \(T_1 \)-semitopological countably compact semilattice \((\exp_n \lambda, \tau) \) is a compact topological semilattice. Also, there we construct a countably pracompact \(H \)-closed quasiregular non-semiregular topology \(\tau^2_k \) such that \((\exp_2 \lambda, \tau^2_k) \) is a semitopological semilattice with the discontinuous semilattice operation and show that for an arbitrary positive integer \(n \) and an arbitrary infinite cardinal \(\lambda \) a semiregular feebly compact semitopological semilattice \(\exp_n \lambda \) is a compact topological semilattice.

In this paper we show that for any shift-continuous \(T_1 \)-topology \(\tau \) on \(\exp_n \lambda \) the following conditions are equivalent: (i) \(\tau \) is countably pracompact; (ii) \(\tau \) is feebly compact; (iii) \(\tau \) is \(d \)-feebly compact; (iv) \((\exp_n \lambda, \tau) \) is an \(H \)-closed space.

The proof of the following lemma is similar to Lemma 4.5 of \([5]\) or Proposition 1 from \([11]\).

Lemma 1. Every Hausdorff \(d \)-feebly compact topological space with a dense discrete subspace is countably pracompact.

We observe that by Proposition 1 from \([11]\) for an arbitrary positive integer \(n \) and an arbitrary infinite cardinal \(\lambda \) every shift-continuous \(T_1 \)-topology \(\tau \) on \(\exp_n \lambda \) is functionally Hausdorff and quasiregular, and hence it is Hausdorff.

Proposition 1. Let \(n \) be an arbitrary positive integer and \(\lambda \) be an arbitrary infinite cardinal. Then for every \(d \)-feebly compact shift-continuous \(T_1 \)-topology \(\tau \) on \(\exp_n \lambda \) the subset \(\exp_n \lambda \setminus \exp_{n-1} \lambda \) is dense in \((\exp_n \lambda, \tau) \).

Proof. Suppose to the contrary that there exists a \(d \)-feebly compact shift-continuous \(T_1 \)-topology \(\tau \) on \(\exp_n \lambda \) such that \(\exp_n \lambda \setminus \exp_{n-1} \lambda \) is not dense in \((\exp_n \lambda, \tau) \). Then there exists a point \(x \in \exp_{n-1} \lambda \) of the space \((\exp_n \lambda, \tau) \) such that \(x \notin \text{cl}_{\exp_n \lambda}(\exp_n \lambda \setminus \exp_{n-1} \lambda) \). This implies that there exists an open neighbourhood \(U(x) \) of \(x \) in \((\exp_n \lambda, \tau) \) such that \(U(x) \cap (\exp_n \lambda \setminus \exp_{n-1} \lambda) = \emptyset \). The definition of the semilattice \(\exp_n \lambda \) implies that every maximal chain in \(\exp_n \lambda \) is finite and hence there exists a point \(y \in U(x) \) such that \(\uparrow y \cap U(x) = \{ y \} \). By Proposition 1(iii) from \([11]\), \(\uparrow y \) is an open-and-closed subset of \((\exp_n \lambda, \tau) \) and hence \(\uparrow y \) is a \(d \)-feebly compact subspace of \((\exp_n \lambda, \tau) \).

It is obvious that the subspace \(\uparrow y \) of \(\exp_n \lambda \) is algebraically isomorphic to the semilattice \(\exp_k \lambda \) for some positive integer \(k \leq n \). This and above arguments imply that without loss of generality we may assume that \(y \) is the isolated zero of the \(d \)-feebly compact semitopological semilattice \((\exp_n \lambda, \tau) \).

Hence we assume that \(\tau \) is a \(d \)-feebly compact shift-continuous topology on \(\exp_n \lambda \) such that the zero \(0 \) of \(\exp_n \lambda \) is an isolated point of \((\exp_n \lambda, \tau) \). Next we fix an arbitrary infinite sequence \(\{ x_i \}_{i \in \mathbb{N}} \) of distinct elements of cardinal \(\lambda \). For every positive integer \(j \) we put

\[
a_j = \{ x_{n(j-1)+1}, x_{n(j-1)+2}, \ldots, x_{nj} \}.
\]

Then \(a_j \in \exp_n \lambda \) and moreover \(a_j \) is a greatest element of the semilattice \(\exp_n \lambda \) for each positive integer \(j \). Also, the definition of the semilattice \(\exp_n \lambda \) implies that for every non-zero element \(a \) of \(\exp_n \lambda \) there exists at most one element \(a_j \) such that \(a_j \in \uparrow a \). Then for every positive integer \(j \) by Proposition 1(iii) of \([11]\), \(a_j \) is an isolated point of \((\exp_n \lambda, \tau) \), and hence the above arguments imply that \(\{ a_1, a_2, \ldots, a_j, \ldots \} \) is an infinite discrete family of open subset in the space \((\exp_n \lambda, \tau) \). This contradicts the \(d \)-feebly compactness of the semitopological semilattice \((\exp_n \lambda, \tau) \). The obtained contradiction implies the statement of our proposition.

\[\square\]
The following example show that the converse statement to Proposition [11] is not true in the case of topological semilattices.

Example 1. Fix an arbitrary cardinal \(\lambda \) and an infinite subset \(A \) in \(\lambda \) such that \(|\lambda \setminus A| \geq \omega \). By \(\pi : \lambda \rightarrow \exp_1 \lambda : a \mapsto \{ a \} \) we denote the natural embedding of \(\lambda \) into \(\exp_1 \lambda \). On \(\exp_1 \lambda \) we define a topology \(\tau_{dm} \) in the following way:

1. all non-zero elements of the semilattice \(\exp_1 \lambda \) are isolated points in \((\exp_1 \lambda, \tau_{dm}) \); and
2. the family \(\mathcal{B}_{dm} = \{ U_B = \{ 0 \} \cup \pi(B) : B \subseteq A \text{ and } A \setminus B \text{ is finite} \} \) is the base of the topology \(\tau_{dm} \) at zero 0 of \(\exp_1 \lambda \).

Simple verifications show that \(\tau_{dm} \) is a Hausdorff locally compact semilattice topology on \(\exp_1 \lambda \) which is not compact and hence by Corollary 8 of [11] it is not feebly compact.

Remark 1. We observe that in the case when \(\lambda = \omega \) by Proposition 13 of [11] the topological space \((\exp_1 \lambda, \tau_{dm}) \) is collectionwise normal and it has a countable base, and hence \((\exp_1 \lambda, \tau_{dm}) \) is metrizable by the Urysohn Metrization Theorem [14]. Moreover, if \(|B| = \omega \) then the space \((\exp_1 \lambda, \tau_{dm}) \) is metrizable for any infinite cardinal \(\lambda \), as a topological sum of the metrizable space \((\exp_1 \omega, \tau_{dm}) \) and the discrete space of cardinality \(\lambda \).

Remark 2. If \(n \) is an arbitrary positive integer \(\geq 3 \), \(\lambda \) is any infinite cardinal and \(\tau^n_c \) is the unique compact semilattice topology on the semilattice \(\exp_n \lambda \) defined in Example 4 of [11], then we construct more stronger topology \(\tau^n_{dm} \) on \(\exp_n \lambda \) then \(\tau^n_c \) in the following way. Fix an arbitrary element \(x \in \exp_n \lambda \) such that \(|x| = n - 1 \). It is easy to see that the subsemilattice \(\uparrow x \) of \(\exp_n \lambda \) is isomorphic to \(\exp_1 \lambda \), and by \(h : \exp_1 \lambda \rightarrow \uparrow x \) we denote this isomorphism.

Fix an arbitrary subset \(A \) in \(\lambda \) such that \(|\lambda \setminus A| \geq \omega \). For every zero element \(y \in \exp_n \lambda \setminus \uparrow x \) we assume that the base \(\mathcal{B}^n_{dm}(y) \) of the topology \(\tau^n_{dm} \) at the point \(y \) coincides with the base of the topology \(\tau^n_{c} \) at \(y \), and assume that \(\uparrow x \) is an open-and-closed subset and the topology on \(\uparrow x \) is generated by the map \(h : (\exp_2 \lambda, \tau^2_{c}) \rightarrow \uparrow x \). We observe that \((\exp_n \lambda, \tau^n_{dm}) \) is a Hausdorff locally compact topological space, because it is the topological sum of a Hausdorff locally compact space \(\uparrow x \) (which is homeomorphic to the Hausdorff locally compact space \((\exp_1 \lambda, \tau_{dm}) \) from Example [11] and an open-and-closed subspace \(\exp_n \lambda \setminus \uparrow x \) of \((\exp_n \lambda, \tau^n_{dm}) \). It is obvious that the set \(\exp_n \lambda \setminus \exp_{n-1} \lambda \) is dense in \((\exp_n \lambda, \tau^n_{dm}) \). Also, since \(\uparrow x \) is an open-and-closed subsemilattice with zero \(x \) of \((\exp_n \lambda, \tau^n_{dm}) \), the continuity of the semilattice operations in \((\exp_n \lambda, \tau^n_{dm}) \) and \((\exp_n \lambda, \tau^n_{c}) \) and the property that the topology \(\tau^n_{dm} \) is more stronger than \(\tau^n_{c} \), imply that \((\exp_n \lambda, \tau^n_{dm}) \) is a topological semilattice. Moreover, the space \((\exp_n \lambda, \tau^n_{dm}) \) is not \(d \)-feebly compact, because it contains an open-and-closed non-\(d \)-feebly compact subspace \(\uparrow x \).

Arguments presented in the proof of Proposition [11] and Proposition 1(iii) of [11] imply the following corollary.

Corollary 1. Let \(n \) be an arbitrary positive integer and \(\lambda \) be an arbitrary infinite cardinal. Then for every \(d \)-feebly compact shift-continuous \(T_1 \)-topology \(\tau \) on \(\exp_n \lambda \) a point \(x \) is isolated in \((\exp_n \lambda, \tau) \) if and only if \(x \in \exp_n \lambda \setminus \exp_{n-1} \lambda \).

Remark 3. We observe that the example presented in Remark 2 implies there exists a locally compact non-\(d \)-feebly compact semitopological semilattice \((\exp_n \lambda, \tau^n_{dm}) \) with the following property: a point \(x \) is isolated in \((\exp_n \lambda, \tau^n_{dm}) \) if and only if \(x \in \exp_n \lambda \setminus \exp_{n-1} \lambda \).

The following proposition gives an amazing property of the system of neighbourhood of zero in a \(T_1 \)-feebly compact semitopological semilattice \(\exp_n \lambda \).

Proposition 2. Let \(n \) be an arbitrary positive integer, \(\lambda \) be an arbitrary infinite cardinal and \(\tau \) be a shift-continuous feebly compact \(T_1 \)-topology on the semilattice \(\exp_n \lambda \). Then for every open neighbourhood \(U(0) \) of zero 0 in \((\exp_n \lambda, \tau) \) there exist finitely many \(x_1, \ldots, x_m \in \lambda \) such that

\[
\exp_n \lambda \setminus cl_{\exp_n \lambda}(U(0)) \subseteq \uparrow x_1 \cup \cdots \cup \uparrow x_m.
\]
Proof. Suppose to the contrary that there exists an open neighbourhood $U(0)$ of zero in a Hausdorff feebly compact semitopological semilattice $(\exp n \lambda, \tau)$ such that

$$\exp n \lambda \setminus \cl_{\exp n \lambda}(U(0)) \nsubseteq \uparrow x_1 \cup \cdots \cup \uparrow x_m$$

for any finitely many $x_1, \ldots, x_m \in \lambda$.

We fix an arbitrary $y_1 \in \lambda$ such that $(\exp n \lambda \setminus \cl_{\exp n \lambda}(U(0))) \cap \uparrow y_1 \neq \emptyset$. By Proposition 1(iii) of \cite{11} the set $\uparrow y_1$ is open in $(\exp n \lambda, \tau)$ and hence the set $(\exp n \lambda \setminus \cl_{\exp n \lambda}(U(0))) \cap \uparrow y_1$ is open in $(\exp n \lambda, \tau)$ too. Then by Proposition \cite{11} there exists an isolated point $m_1 \in \exp n \lambda \setminus \exp n-1 \lambda$ in $(\exp n \lambda, \tau)$ such that $m_1 \in (\exp n \lambda \setminus \cl_{\exp n \lambda}(U(0))) \cap \uparrow y_1$. Now, by the assumption there exists $y_2 \in \lambda$ such that

$$(\exp n \lambda \setminus \cl_{\exp n \lambda}(U(0))) \cap (\uparrow y_2 \cup \uparrow y_1) \neq \emptyset.$$ Again, since by Proposition 1(iii) of \cite{11} both sets $\uparrow y_1$ and $\uparrow y_2$ are open-and-closed in $(\exp n \lambda, \tau)$, Proposition \cite{11} implies that there exists an isolated point $m_2 \in \exp n \lambda \setminus \exp n-1 \lambda$ in $(\exp n \lambda, \tau)$ such that

$$m_2 \in (\exp n \lambda \setminus \cl_{\exp n \lambda}(U(0))) \cap (\uparrow y_2 \cup \uparrow y_1).$$

Hence by induction we can construct a sequence $\{y_i : i = 1, 2, 3, \ldots\}$ of distinct points of λ and a sequence of isolated points $\{m_i : i = 1, 2, 3, \ldots\} \subset \exp n \lambda \setminus \exp n-1 \lambda$ in $(\exp n \lambda, \tau)$ such that for any positive integer k the following conditions hold:

(i) $(\exp n \lambda \setminus \cl_{\exp n \lambda}(U(0))) \cap (\uparrow y_k \setminus (\uparrow y_1 \cup \cdots \cup \uparrow y_{k-1})) \neq \emptyset$; and

(ii) $m_k \in (\exp n \lambda \setminus \cl_{\exp n \lambda}(U(0))) \cap (\uparrow y_k \setminus (\uparrow y_1 \cup \cdots \cup \uparrow y_{k-1}))$.

Then similar arguments as in the proof of Proposition \cite{11} imply that the following family

$\{\{m_i\} : i = 1, 2, 3, \ldots\}$

is infinite and locally finite, which contradicts the feebly compactness of $(\exp n \lambda, \tau)$. The obtained contradiction implies the statement of the proposition. \qed

Proposition 1(iii) of \cite{11} implies that for any element $x \in \exp n \lambda$ the set $\uparrow x$ is open-and-closed in a T_1-semitopological semilattice $(\exp n \lambda, \tau)$ and hence by Theorem 14 from \cite{3} we have that for any $x \in \exp n \lambda$ the space $\uparrow x$ is feebly compact in a feebly compact T_1-semitopological semilattice $(\exp n \lambda, \tau)$. Hence Proposition \cite{2} implies the following proposition.

Proposition 3. Let n be an arbitrary positive integer, λ be an arbitrary infinite cardinal and τ be a shift-continuous feebly compact T_1-topology on the semilattice $\exp n \lambda$. Then for any point $x \in \exp n \lambda$ and any open neighbourhood $U(x)$ of x in $(\exp n \lambda, \tau)$ there exist finitely many $x_1, \ldots, x_m \in \uparrow x \setminus \{x\}$ such that

$$\uparrow x \setminus \cl_{\exp n \lambda}(U(x)) \subseteq \uparrow x_1 \cup \cdots \cup \uparrow x_m.$$ The main results of this paper is the following theorem.

Theorem 1. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then for any shift-continuous T_1-topology τ on $\exp n \lambda$ the following conditions are equivalent:

(i) τ is countably pracompact;

(ii) τ is feebly compact;

(iii) τ is d-feebly compact;

(iv) the space $(\exp n \lambda, \tau)$ is H-closed.

Proof. Implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are trivial and implication (iii) \Rightarrow (i) follows from Proposition 1 of \cite{11}, Lemma \cite{1} and Proposition \cite{11}.

Implication (iv) \Rightarrow (ii) follows from Proposition 4 of \cite{10}.

(ii) \Rightarrow (iv) We shall prove this implication by induction.

By Corollary 2 from \cite{11} every feebly compact T_1-topology τ on the semilattice $\exp 1 \lambda$ such that $(\exp 1 \lambda, \tau)$ is a semitopological semilattice, is compact, and hence $(\exp 1 \lambda, \tau)$ is an H-closed topological space.
Next we shall show that if our statements holds for all positive integers $j < k \leq n$ then it holds for $j = k$. Suppose that a feebly compact T_1-semitopological semilattice $(\exp_k \lambda, \tau)$ is a subspace of Hausdorff topological space X. Fix an arbitrary point $x \in X$ and an arbitrary open neighbourhood $V(x)$ of x in X. Since X is Hausdorff, there exist disjoint open neighbourhoods $U(x) \subseteq V(x)$ and $U(0)$ of x and zero 0 of the semilattice $\exp_k \lambda$ in X, respectively. Then $\text{cl}_X(U(0)) \cap U(x) = \emptyset$ and hence by Proposition 2 there exists finitely many $x_1, \ldots, x_m \in \lambda$ such that

$$\text{exp}_k \lambda \cap U(x) \subseteq \uparrow x_1 \cup \cdots \cup \uparrow x_m.$$

But for any $x \in \lambda$ the subsemilattice $\uparrow x$ of $\text{exp}_k \lambda$ is algebraically isomorphic to the semilattice $\exp_{k-1} \lambda$. Then by Proposition 1(iii) of [11] and Theorem 14 from [3], $\uparrow x$ is a feebly compact T_1-semitopological semilattice, and the assumption of our induction implies that $\uparrow x_1, \ldots, \uparrow x_m$ are closed subsets of X. This implies that

$$W(x) = U(x) \setminus (\uparrow x_1 \cup \cdots \cup \uparrow x_m)$$

is an open neighbourhood of x in X such that $W(x) \cap \text{exp}_k \lambda = \emptyset$. Thus, $(\text{exp}_k \lambda, \tau)$ is an H-closed space. This completes the proof of the requested implication.

The following theorem gives a sufficient condition when a d-feebly compact space is feebly compact.

Theorem 2. Every quasiregular d-feebly compact space is feebly compact.

Proof. Suppose to the contrary that there exists a quasiregular d-feebly compact space X which is not feebly compact. Then there exists an infinite locally finite family \mathcal{U}_0 of non-empty open subsets of X.

By induction we shall construct an infinite discrete family of non-empty open subsets of X.

Fix an arbitrary $U_1 \in \mathcal{U}_0$ and an arbitrary point $x_1 \in U_1$. Since the family \mathcal{U}_0 is locally finite there exists an open neighbourhood $U(x_1) \subseteq U_1$ of the point x_1 in X such that $U(x_1)$ intersects finitely many elements of \mathcal{U}_0. Also, the quasiregularity of X implies that there exists a non-empty open subset $V_1 \subseteq U(x_1)$ such that $\text{cl}_X(V_1) \subseteq U(x_1)$. Put

$$\mathcal{U}_1 = \{U \in \mathcal{U}_0 : U(x_1) \cap U = \emptyset\}.$$

Since the family \mathcal{U}_0 is locally finite and infinite, so is \mathcal{U}_1. Fix an arbitrary $U_2 \in \mathcal{U}_1$ and an arbitrary point $x_2 \in U_2$. Since the family \mathcal{U}_1 is locally finite, there exists an open neighbourhood $U(x_2) \subseteq U_2$ of the point x_2 in X such that $U(x_2)$ intersects finitely many elements of \mathcal{U}_1. Since X is quasiregular, there exists a non-empty open subset $V_2 \subseteq U(x_2)$ such that $\text{cl}_X(V_2) \subseteq U(x_2)$. Our construction implies that the closed sets $\text{cl}_X(V_1)$ and $\text{cl}_X(V_2)$ are disjoint and hence so are V_1 and V_2. Next we put

$$\mathcal{U}_2 = \{U \in \mathcal{U}_1 : U(x_2) \cap U = \emptyset\}.$$

Also, we observe that it is obvious that $U(x_1) \cap U = \emptyset$ for each $U \in \mathcal{U}_1$.

Suppose for some positive integer $k > 1$ we construct:

(a) a sequence of infinite locally finite subfamilies $\mathcal{U}_1, \ldots, \mathcal{U}_{k-1}$ in \mathcal{U}_0 of non-empty open subsets in the space X;

(b) a sequence of open subsets U_1, \ldots, U_k in X;

(c) a sequence of points x_1, \ldots, x_k in X and a sequence of their corresponding open neighbourhoods $U(x_1), \ldots, U(x_k)$ in X;

(d) a sequence of disjoint non-empty subsets V_1, \ldots, V_k in X

such that the following conditions hold:

(i) \mathcal{U}_i is a proper subfamily of \mathcal{U}_{i-1};

(ii) $U_i \in \mathcal{U}_{i-1}$ and $U_i \cap U = \emptyset$ for each $U \in \mathcal{U}_j$ with $i \leq j \leq k$;

(iii) $x_i \in U_i$ and $U(x_i) \subseteq U_i$;

(iv) V_i is an open subset of U_i with $\text{cl}_X(V_i) \subseteq U(x_i)$,

for all $i = 1, \ldots, k$, and

(v) $\text{cl}_X(V_1), \ldots, \text{cl}_X(V_k)$ are disjoint.
Next we put
\[\mathcal{U}_k = \{ U \in \mathcal{U}_{k-1} : U(x_1) \cap U = \ldots = U(x_k) \cap U = \emptyset \}. \]

Since the family \(\mathcal{U}_{k-1} \) is infinite and locally finite, there exists a subfamily \(\mathcal{U}_k \) in \(\mathcal{U}_{k-1} \) which is infinite and locally finite. Fix an arbitrary \(U_{k+1} \in \mathcal{U}_k \) and an arbitrary point \(x_{k+1} \in U_{k+1} \). Since the family \(\mathcal{U}_k \) is locally finite, there exists an open neighbourhood \(U(x_{k+1}) \subseteq U_{k+1} \) of the point \(x_{k+1} \) in \(X \) such that \(U(x_{k+1}) \) intersects finitely many elements of \(\mathcal{U}_k \). Since the space \(X \) is quasiregular, there exists a non-empty open subset \(V_{k+1} \subseteq U(x_{k+1}) \) such that \(\text{cl}_X(V_{k+1}) \subseteq U(x_{k+1}) \). Simple verifications show that the conditions \((i) - (iv)\) hold in the case of the positive integer \(k+1 \).

Hence by induction we construct the following two infinite countable families of open non-empty subsets of \(X \):
\[\mathcal{U} = \{ U_i : i = 1, 2, 3, \ldots \} \quad \text{and} \quad \mathcal{V} = \{ V_i : i = 1, 2, 3, \ldots \} \]
such that \(\text{cl}_X(V_i) \subseteq U_i \) for each positive integer \(i \). Since \(\mathcal{U} \) is a subfamily of \(\mathcal{U}_0 \) and \(\mathcal{U}_0 \) is locally finite in \(X \), \(\mathcal{U} \) is locally finite in \(X \) as well. Also, above arguments imply that \(\mathcal{V} \) and
\[\overline{\mathcal{V}} = \{ \text{cl}_X(V_i) : i = 1, 2, 3, \ldots \} \]
are locally finite families in \(X \) too.

Next we shall show that the family \(\mathcal{V} \) is discrete in \(X \). Indeed, since the family \(\overline{\mathcal{V}} \) is locally finite in \(X \), by Theorem 1.1.11 of [8] the union \(\bigcup \overline{\mathcal{V}} \) is a closed subset of \(X \), and hence any point \(x \in X \setminus \bigcup \overline{\mathcal{V}} \) has an open neighbourhood \(O(x) = X \setminus \bigcup \overline{\mathcal{V}} \) which does not intersect the elements of the family \(\mathcal{V} \). If \(x \in \text{cl}_X(V_i) \) for some positive integer \(i \), then our construction implies that \(U(x_i) \) is an open neighbourhood of \(x \) which intersects only the set \(V_i \in \mathcal{V} \). Hence \(X \) has an infinite discrete family \(\mathcal{V} \) of non-empty open subsets in \(X \), which contradicts the assumption that the space \(X \) is \(d \)-feebly compact. The obtained contradiction implies the statement of the theorem.

We finish this note by some simple remarks about dense embedding of an infinite semigroup of matrix units and a polycyclic monoid into \(d \)-feebly compact topological semigroups which follow from the results of the paper [5].

Let \(\lambda \) be a non-zero cardinal. On the set \(B_\lambda = (\lambda \times \lambda) \cup \{0\} \), where \(0 \notin \lambda \times \lambda \), we define the semigroup operation “.” as follows
\[(a, b) \cdot (c, d) = \begin{cases} (a, d), & \text{if } b = c; \\ 0, & \text{if } b \neq c. \end{cases} \]
and \((a, b) \cdot 0 = 0 \cdot (a, b) = 0 \cdot 0 = 0\) for \(a, b, c, d \in \lambda \). The semigroup \(B_\lambda \) is called the semigroup of \(\lambda \times \lambda \)-matrix units (see [7]).

The bicyclic monoid \(B(p, q) \) is the semigroup with the identity 1 generated by two elements \(p \) and \(q \) subject only to the condition \(pq = 1 \) [7]. For a non-zero cardinal \(\lambda \), the polycyclic monoid \(P_\lambda \) on \(\lambda \) generators is the semigroup with zero given by the presentation:
\[P_\lambda = \left\langle \{ p_i \}_{i \in \lambda}, \{ p_i^{-1} \}_{i \in \lambda} \mid p_i p_j^{-1} = 1, p_i p_j^{-1} = 0 \text{ for } i \neq j \right\rangle \]
(see [5]). It is obvious that in the case when \(\lambda = 1 \) the semigroup \(P_1 \) is isomorphic to the bicyclic semigroup with adjoined zero.

By Theorem 4.4 from [5] for every infinite cardinal \(\lambda \) the semigroup of \(\lambda \times \lambda \)-matrix units \(B_\lambda \) does not densely embed into a Hausdorff feebly compact topological semigroup, and by Theorem 4.5 from [5] for arbitrary cardinal \(\lambda \geq 2 \) there exists no Hausdorff feebly compact topological semigroup which contains the \(\lambda \)-polycyclic monoid \(P_\lambda \) as a dense subsemigroup. These theorems and Lemma [1] imply the following two corollaries.

Corollary 2. For every infinite cardinal \(\lambda \) the semigroup of \(\lambda \times \lambda \)-matrix units \(B_\lambda \) does not densely embed into a Hausdorff \(d \)-feebly compact topological semigroup.

Corollary 3. For arbitrary cardinal \(\lambda \geq 2 \) there exists no Hausdorff \(d \)-feebly compact topological semigroup which contains the \(\lambda \)-polycyclic monoid \(P_\lambda \) as a dense subsemigroup.
The proof of the following corollary is similar to Theorem 5.1(5) from [4].

Corollary 4. There exists no Hausdorff topological semigroup with the d-feeably compact square which contains the bicyclic monoid \(C(p, q)\) as a dense subsemigroup.

Acknowledgements

We acknowledge Alex Ravsky and the referee for their comments and suggestions.

References

[1] A. V. Arhangel’skii, *On spaces with point-countable base*, Topological Spaces and Their Mappings, Riga, 1985, P. 3–7 (in Russian).

[2] A. V. Arkhangel’skii, *Topological Function Spaces*, Kluwer Publ., Dordrecht, 1992.

[3] R. W. Bagley, E. H. Connell, and J. D. McKnight, Jr., *On properties characterizing pseudo-compact spaces*, Proc. Amer. Math. Soc. 9:3 (1958), 500–506.

[4] T. Banakh, S. Dimitrova, and O. Gutik, *Embedding the bicyclic semigroup into countably compact topological semigroups*, Topology Appl. 157:18 (2010), 2803–2814.

[5] S. Bardyla and O. Gutik, *On a semitopological polycyclic monoid*, Algebra Discr. Math. 21:2 (2016), 163–183.

[6] J. H. Carruth, J. A. Hildebrant and R. J. Koch, *The Theory of Topological Semigroups*, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.

[7] A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroups*, Vols. I and II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961 and 1967.

[8] R. Engelking, *General Topology*, 2nd ed., Heldermann, Berlin, 1989.

[9] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, *Continuous Lattices and Domains*, Cambridge Univ. Press, Cambridge, 2003.

[10] O. V. Gutik and O. V. Ravsky, *Pseudocompactness, products and topological Brandt \(\lambda^0\)-extensions of semitopological monoids*, Math. Methods and Phys.-Mech. Fields 58:2 (2015), 20–37; reprinted version: J. Math. Sci. 223:1 (2017), 18-38.

[11] O. Gutik and O. Sobol, *On feebly compact topologies on the semilattice \(\exp_n \lambda\)*, Mat. Stud. 46:1 (2016), 29–43.

[12] M. Matveev, *A survey of star covering properties*, Topology Atlas preprint, April 15, 1998.

[13] W. Ruppert, *Compact Semitopological Semigroups: An Intrinsic Theory*, Lect. Notes Math., 1079, Springer, Berlin, 1984.

[14] P. Urysohn, *Zum Metrisationsproblem*, Math. Ann. 94 (1925), 309–315.

Faculty of Mechanics and Mathematics, National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine

E-mail address: o_gutik@franko.lviv.ua, ovgutik@yahoo.com, olesyasobol@mail.ru