A note on continuity of strongly singular Calderón-Zygmund operators in Hardy-Morrey spaces

Marcelo de Almeida, Tiago Picon and Claudio Vasconcelos

Abstract In this note we address the continuity of strongly singular Calderón-Zygmund operators on Hardy-Morrey spaces $HM^p(\mathbb{R}^n)$, assuming weaker integral conditions on the associated kernel. Important examples that falls into this scope are pseudodifferential operators on the Hörmander classes $Op(S^m_{\sigma, \mu}(\mathbb{R}^n))$ with $0 < \sigma \leq 1$, $0 \leq \mu < 1$, $\mu \leq \sigma$ and $m \leq -n(1 - \sigma)/2$.

1 Introduction

J. Álvarez and M. Milman [1] introduced a new class of Calderón-Zygmund operators, called strongly singular Calderón-Zygmund operator and established continuity of those operators in real Hardy space $H^q(\mathbb{R}^n)$. More precisely, a continuous function $K \in C(\mathbb{R}^{2n} \setminus \Delta)$, where $\Delta = \{ (x, x) : x \in \mathbb{R}^n \}$ is a δ-kernel of type σ, if there exists some $0 < \delta \leq 1$ and $0 < \sigma \leq 1$ such that

$$|K(x, y) - K(x, z)| + |K(y, x) - K(z, x)| \leq C \frac{|y - z|^\delta}{|x - z|^{n+\frac{\delta}{\sigma}}}$$

for all $|x - z| \geq 2|y - z|^\sigma$. A bounded linear operator $T : S(\mathbb{R}^n) \rightarrow S'(\mathbb{R}^n)$ is called a strongly singular Calderón-Zygmund operator, if it is associated to a δ-kernel of

Marcelo de Almeida
Departamento de Matemática, Universidade Federal de Sergipe, Aracaju, SE, 49000-000, Brasil e-mail: marcelo@mat.ufs.br

Tiago Picon
Departamento de Computação e Matemática, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brasil e-mail: picon@ffclrp.usp.br

Claudio Vasconcelos
Departamento de Matemática, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brasil e-mail: claudio.vasconcelos@estudante.ufscar.br
type σ in the sense $\langle T f, g \rangle = \int \int K(x, y) f(y) g(x) dy dx$, for all $f, g \in S(\mathbb{R}^n)$ with disjoint supports; it has bounded extension from $L^2(\mathbb{R}^n)$ to itself and in addition T and T^* extend to a continuous operator from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, where

$$\frac{1}{p} = \frac{1}{2} + \frac{\beta}{n}$$

for some $\left(1 - \sigma \right)^2 \leq \beta < \frac{n}{2}$. When $\sigma = 1$ and $\beta = 0$ we recover the standard non-convolution Calderón-Zygmund operators (see [4]).

The authors in [1, Theorem 2.2] established the continuity of those classes of operators in real Hardy spaces $H^p(\mathbb{R}^n)$ as follows: under the condition $T^*(1) = 0$, strongly singular Calderón-Zygmund operators associated to a kernel satisfying (1) are bounded from $H^p(\mathbb{R}^n)$ to itself for every $0 < q < 1$ where

$$\frac{1}{q_0} := \frac{1}{2} + \frac{\beta \left(\frac{\delta}{2} + \frac{\beta}{4} \right)}{n \left(\frac{\delta}{2} - \delta + \beta \right)}.$$

(2)

The case $q = q_0$ is still open, however the conclusion continues to hold replacing the target space by $L^p(\mathbb{R}^n)$ (see [2, Theorem 3.9]).

In this note, we establish results on continuity of strongly singular Calderón-Zygmund operators on Hardy-Morrey spaces $\mathcal{HM}^{\alpha,\beta}(\mathbb{R}^n)$ assuming weaker integral conditions on the kernel, introduced by the second and third authors in [12]. Let $0 < \sigma \leq 1$, $r \geq 1$ and $\delta > 0$. We say that $K(x, y)$ associated to T is a $D_{\delta,r}$ kernel of type σ if

$$\left(\int_{C_j(z, \ell)} |K(x, y) - K(z, z)|^r + |K(y, x) - K(z, x)|^r \, dx \right)^{\frac{1}{r}} \lesssim |C_j(z, \ell)|^{\frac{1}{r} - 1} 2^{-j \delta}$$

(3)

for $\ell \geq 1$ and

$$\left(\int_{C_j(z, \ell')} |K(x, y) - K(z, z)|^r + |K(y, x) - K(z, x)|^r \, dx \right)^{\frac{1}{r}} \lesssim |C_j(z, \ell')|^{\frac{1}{r} - 1 + \frac{\delta}{r} \left(\frac{1}{2} - \frac{\delta}{r} \right)} 2^{-j \delta}$$

(4)

for $\ell < 1$, where $z \in \mathbb{R}^n$, $|y - z| < \ell$, $0 < \rho \leq \sigma$ and $C_j(z, \eta) := \{x \in \mathbb{R}^n : 2^j \eta < |x - z| \leq 2^{j+1} \eta\}$. Those conditions also covers the standard case $\sigma = 1$, by choosing $\rho = \sigma$ in (4), and in that case both conditions are the same. It is easy to check that D_{δ,r_1} condition is stronger than D_{δ,r_2} for $r_1 > r_2$ and any $\delta > 0$ and $0 < \sigma \leq 1$. Moreover, δ-kernels of type σ satisfying (1) also satisfies $D_{\delta,r}$ condition for all $r \geq 1$. It has also been shown in [12, Proposition 5.3] that pseudodifferential operators associated to symbols in the Hörmander classes $S_{\mu,m}^\sigma(\mathbb{R}^n)$ with $0 < \sigma \leq 1$, $0 \leq \mu < 1$, $\mu \leq \sigma$ and $m \leq -n(1 - \sigma)/2$, satisfies the $D_{1,r}$ condition for $1 \leq r \leq 2$. We refer to [12] for more details. In particular, the continuity of operators associated to symbols given by $e^{i|\xi|^\mu} |\xi|^{-m}$ away from the origin are also examples of this type of operators and have been extensively studied, for instance in [5, 6, 8, 13].

Our main result is the following:
Theorem 1 Let T be a strongly singular Calderón-Zygmund operator associated to a $D_{\delta, r}$ kernel of type σ for some $1 \leq r \leq 2$. Under the assumptions that $T^\ast (x^\alpha) = 0$ for every $|\alpha| \leq \lfloor \delta \rfloor$, T can be extended to a bounded operator from $\mathcal{HM}^1_q (\mathbb{R}^n)$ to itself for any $0 < q < \lambda < r$ and $q_0 < q \leq 1$, where q_0 is given by (2).

The proof relies on showing that T maps atoms into molecules and a molecular decomposition in $\mathcal{HM}^1_q (\mathbb{R}^n)$ for $0 < q \leq 1$ and $q \leq \lambda < \infty$ under restriction $\lambda < r$ (see Theorem 3 and the Remark 2). As an immediate consequence of previous theorem, we also obtain the continuity of standard non-convolution Calderón-Zygmund operators ($\sigma = 1$) associated to kernels satisfying integral conditions. The corresponding result in the convolution setting for kernels satisfying derivative conditions can be found in [9, Section 2.2].

Corollary 1 Under the same hypothesis of the previous theorem, if T is a standard Calderón-Zygmund operator, then it is bounded from $\mathcal{HM}^1_q (\mathbb{R}^n)$ to itself provided that $n/(n + \delta) < q \leq 1$.

The organization of the paper is as follows. In Section 2 we recall some basic definitions and a general atomic and molecular decomposition of Hardy-Morrey spaces. In particular, in Section 2.1 we present an atomic decomposition in terms of \mathcal{F} atoms by showing the equivalence with classical \mathcal{F}_∞ atomic space and in Section 2.2 we show an appropriated molecular decomposition of Hardy-Morrey spaces. Finally, in Section 3 we present the proof of Theorem 1 showing that T maps atoms into molecules.

Notation: throughout this work, the symbol $f \lesssim g$ means that there exist a constant $C > 0$, not depending on f nor g, such that $f \leq C g$. By a dyadic cube we mean cubes on \mathbb{R}^n, open on the right whose vertices are adjacent points of the lattice $(2^{-k} \mathbb{Z})^n$ for some $k \in \mathbb{Z}$. Given a set $A \subset \mathbb{R}^n$ we denote by $|A|$ its Lebesgue measure. Given a cube Q (dyadic or not), we will always denote its center and side-length by x_Q and ℓ_Q respectively. By Q^\ast we mean the cube with same center as Q and side-length $2\ell_Q$. We also denote by $\int_Q f(x)dx := \frac{1}{|Q|} \int_Q f(x)dx$.

2 Hardy-Morrey spaces $\mathcal{HM}^1_q (\mathbb{R}^n)$

In this section, we recall and present some properties of Hardy-Morrey spaces. For $0 < q \leq \lambda < \infty$, the Morrey spaces, denoted by $\mathcal{M}^1_q (\mathbb{R}^n)$, are defined to be the set of measurable functions $f \in L^q_{\text{loc}} (\mathbb{R}^n)$ such that

$$
\|f\|_{\mathcal{M}^1_q} := \sup_J \|J^\frac{1}{q - 1} \left(\int_J |f(y)|^q dy \right)^\frac{1}{q} \| < \infty,
$$

where the supremum is taken over all cubes $J \subset \mathbb{R}^n$.

For any tempered distribution \(f \in S'(\mathbb{R}^n) \) and any fixed \(\varphi \in S(\mathbb{R}^n) \) with \(\int \varphi \neq 0 \), consider the smooth maximal function \(M_\varphi f(x) = \sup_{\varepsilon > 0} |(\varphi_\varepsilon \ast f)(x)| \), where \(\varphi_\varepsilon(x) = \varepsilon^{-n} \varphi(x/\varepsilon) \). For any \(0 < q \leq \lambda < \infty \), we say that \(f \in S'(\mathbb{R}^n) \) belongs to Hardy-Morrey space \(H_{\mathcal{M}^q_\lambda}(\mathbb{R}^n) \) if the smooth maximal function \(M_\varphi f \in \mathcal{M}^q_\lambda(\mathbb{R}^n) \). The functional \(\| f \|_{H_{\mathcal{M}^q_\lambda}} := \| M_\varphi f \|_{\mathcal{M}^q_\lambda} \) defines a quasi-norm as \(0 < q < 1 \) and is a norm if \(q \geq 1 \).

In the same way as Hardy spaces, the Hardy-Morrey spaces have also equivalent maximal characterizations (see \([10, \text{Section 2}]\)). Clearly, Hardy-Morrey spaces cover the classical Hardy spaces \(H^p(\mathbb{R}^n) \) when \(\lambda = q \) and Morrey spaces \(\mathcal{M}^q_\lambda(\mathbb{R}^n) \) if \(1 < q \leq \lambda < \infty \).

2.1 Atomic decomposition in Hardy-Morrey spaces

Definition 1 \([9, \text{Definiton 2.2}]\). Let \(0 < q \leq 1 \leq r \leq \infty \) with \(q < r \) and \(q \leq \lambda < \infty \). A measurable function \(a_Q \) is called a \((q, \lambda, r)\)-atom if it is supported on a cube \(Q \subset \mathbb{R}^n \) and satisfies: (i) \(\| a_Q \|_{L_r} \leq |Q|^{1/r} \) and (ii) \(\int_{\mathbb{R}^n} x_\alpha a_Q(x) dx = 0 \) for all \(\alpha \in \mathbb{N}_0^n \) such that \(|\alpha| \leq N_q := \lfloor (1/q - 1) \rfloor \), where \(\lfloor \cdot \rfloor \) denotes the floor function.

The following lemma is an extension of \([3, \text{Proposition 2.5}]\) and the proof will be presented for completeness.

Proposition 1 Let \(0 < q \leq 1 \leq r \leq \infty \) with \(q < r \) and \(q \leq \lambda < \infty \) with \(\lambda \leq r \). If \(f \) is a compactly supported function in \(L^r(\mathbb{R}^n) \) satisfying the moment condition

\[
\int_{\mathbb{R}^n} x_\alpha f(x) dx = 0 \quad \text{for all } |\alpha| \leq N_q,
\]

then it belongs to \(H_{\mathcal{M}^q_\lambda}(\mathbb{R}^n) \) and moreover \(\| f \|_{H_{\mathcal{M}^q_\lambda}} \leq \| f \|_{L^r} |Q|^{1/r - 1/r} \) for all cube \(Q \supset \text{supp} \, (f) \). In particular, if \(f = a_Q \), then \(\| a_Q \|_{H_{\mathcal{M}^q_\lambda}} \leq 1 \) uniformly.

Proof Let \(J \subset \mathbb{R}^n \) be an arbitrary cube and \(Q \) a cube such that \(\text{supp} \, (f) \subset Q \). Split the integral over \(J \) into \(J \cap Q^* \) and \(J \setminus Q^* \). Since the maximal function \(M_\varphi \) is bounded from \(L^r(\mathbb{R}^n) \) to itself for every \(1 < r \leq \infty \), it follows that

\[
\int_{J \cap Q^*} |M_\varphi f(x)|^q dx \leq \| M_\varphi f \|_{L^r}^q |J \cap Q^*|^{1 - \frac{q}{r}} \leq \| f \|_{L^r}^q |J \cap Q^*|^{1 - \frac{q}{r}}.
\]

For \(r = 1 \) and \(0 < q < 1 \), setting \(R = \| f \|_{L^1}|J \cap Q^*|^{-1} \) and using that \(M_\varphi \) satisfies weak \((1, 1)\) inequality we get the analogous inequality:

\[
\int_{J \cap Q^*} |M_\varphi f(x)|^q dx = \int_0^\infty \omega^{q-1} \left| \{ x \in J \cap Q^* : |M_\varphi f(x)| > \omega \} \right| d\omega \\
\leq |J \cap Q^*| \int_0^R \omega^{q-1} d\omega + \| f \|_{L^1} \int_R^\infty \omega^{q-2} d\omega \leq \| f \|_{L^1}^q |J \cap Q^*|^{1 - q}.
\]

(6)
If $|Q| < |J|$, since $q/\lambda - 1 \leq 0$ and $1 - q/r > 0$ for all $1 \leq r < \infty$, one has $|J|^{q/\lambda - 1} |J \cap Q|^{1-q/r} \leq |Q|^{1-q/r}$. On the other hand, if $|J| < |Q|$, using that $\lambda \leq r$ it follows $|J|^{\frac{q}{\lambda} - \frac{1}{r}} |J \cap Q|^{1 - \frac{q}{r}} = |J|^{\frac{q - 1}{r}} \left(\frac{|J \cap Q|}{|J|} \right)^{\frac{1}{r}} \leq |Q|^{\frac{q - 1}{r}}$. Hence $|J|^{\frac{q}{r} - 1} \int_{J \cap Q^c} |M_{\varphi} f(x)|^q dx \leq \|f\|_{L^r}^q |Q|^{1 - \frac{q}{r}}$.

To estimate the integral on $J \setminus Q^c$, using the moment condition (5) we write $\varphi_t * f(x) = \int f(y) (\varphi_t(x-y) - P_{\varphi_t}(y)) dy$, where $P_{\varphi_t}(y) = \sum_{|\alpha| \leq N_q} C_{\alpha} \partial^\alpha \varphi_t(x) (-y)^\alpha$ denotes the Taylor polynomial of degree N_q of the function $y \mapsto \varphi_t(x-y)$. The standard estimate of the remainder term (see [11, p. 106]) yields $|\varphi_t(x-y) - P_{\varphi_t}(y)| \leq |y - x_Q|^{N_q+1} |x - x_Q|^{-n+\varepsilon}$ and since supp $(f) \subseteq Q$, we have the pointwise control

$$|M_{\varphi} f(x)| \leq \frac{\ell^{N_q+1}}{|x - x_Q|^n + N_q+1} \int_{Q} |f(y)| dy \leq \frac{\ell^{N_q+1}}{|x - x_Q|^n + N_q+1} \|f\|_{L^r} |Q|^{1 - \frac{1}{r}}.$$

If $|Q| < |J|$, since $N_q + 1 > n (1/q - 1)$, we estimate $|J|^{\frac{q}{r} - 1} \int_{J \setminus Q^c} |M_{\varphi} f(x)|^q dx$ by

$$\|f\|_{L^r}^q |Q|^{\frac{q}{r} - 1} \int_{Q^c \setminus J} |x - x_Q|^{-q(n+\varepsilon)} dx \leq \|f\|_{L^r}^q |Q|^{\frac{q}{r} - \frac{1}{r}}.$$

Finally, if $|J| < |Q|$ we use

$$|J|^{\frac{q}{r} - 1} \int_{J \setminus Q^c} |M_{\varphi} f(x)|^q dx \leq \|f\|_{L^r}^q |J|^{\frac{q}{r} - 1} |Q|^{\frac{q}{r} - \frac{1}{r}} \ell^{nq} |J \setminus Q^c| \leq \|f\|_{L^r}^q |Q|^{\frac{q}{r} - \frac{1}{r}},$$

which concludes the proof. \(\square\)

Given $1 \leq r \leq \infty$, we denote the atomic space $\mathfrak{atHM}^{1,r}_q(\mathbb{R}^n)$ by the collection of $f \in S'(\mathbb{R}^n)$ such that $f = \sum_{Q \in \mathcal{D}} s_Q a_Q$ in $S'(\mathbb{R}^n)$, where $\{a_Q\}$ are (q, λ, r)-atoms and $\{s_Q\}$ is a sequence of complex scalars satisfying

$$\|s_Q\|_{i,q} := \sup_f \left(\left| \left(\sum_{Q \subset J} \left| \frac{1}{|Q|^{1/\lambda}} |s_Q| \right|^q \right)^{\frac{1}{q}} \right| < \infty.$$

The functional $\|f\|_{\mathfrak{atHM}^{1,r}_q} := \inf \{ \|s_Q\|_{i,q} : f = \sum_{Q \in \mathcal{D}} s_Q a_Q \}$, where the infimum is taken over all such atomic representations, defines a quasi-norm in $\mathfrak{atHM}^{1,r}_q(\mathbb{R}^n)$. Clearly, if $1 \leq r_1 < r_2 \leq \infty$ then $\mathfrak{atHM}^{1,r_1}_q(\mathbb{R}^n)$ is continuously embedded in $\mathfrak{atHM}^{1,r_2}_q(\mathbb{R}^n)$. The converse of this simple embedding is the content of the next result.

Lemma Let $0 < q < 1 \leq r$ with $q < r$ and $q \leq \lambda < \infty$. Then $\mathfrak{atHM}^{1,r}_q(\mathbb{R}^n) = \mathfrak{atHM}^{1,\infty}_q(\mathbb{R}^n)$ with comparable quasi-norms.
The proof is based on the corresponding theorem for Hardy spaces (see [7, Theorem 4.10]). Let \(a_Q \) be a \((q, \lambda, r)\)-atom and we show that \(a_Q = \sum_j s_{Q_j}a_{Q_j} \), where \(\{s_{Q_j}\}_j \) are \((q, \lambda, \infty)\)-atoms and \(\|s_{Q_j}\|_{L^{q,\lambda}} \leq C \) independently. Consider \(b_Q = |Q|^{1/4} a_Q \) and since \(\int_Q |b_Q(x)|^r \, dx \leq |Q| \), from Calderón-Zygmund decomposition applied for \(|b_Q|^r \in L^1(Q) \) at level \(\alpha^r > 0 \), there exists a sequence \(\{Q_j\}_j \) of disjoint dyadic cubes (subcubes of \(Q \)) such that \(|b_Q(x)| \leq \alpha, \ \forall x \notin \bigcup_j Q_j \), \(\alpha^r \leq \int_{Q_j} |b_Q(x)|^r \, dx \leq 2^n \alpha^r \) and \(\bigcup_j |Q_j| \leq \alpha^{-r} \int_Q |b_Q(x)|^r \, dx \leq |Q| \alpha^{-r} \). Let \(P_{N_q} \) to be the space of polynomials in \(\mathbb{R}^n \) with degree at most \(N_q \) and \(P_{N_q, j} \) its restriction to \(Q_j \). Since \(P_{N_q, j} \) is a subspace of the Hilbert space \(L^2(Q_j) \), let \(P_{Q_j} b P_{N_q, j} \) to be the unique polynomial such that \(\int_{Q_j} [b_Q(x) - P_{Q_j}(b)(x)]^2 \, dx = 0 \) for all \(|\beta| \leq N_q \).

Now we write \(b_Q = g_0 + \sum_j h_j \), where \(h_j(x) = [b_Q(x) - P_{Q_j}(b)(x)] \mathbb{I}_{Q_j}(x) \) and \(g_0(x) = b_Q(x) \) if \(x \notin \bigcup_j Q_j \) and \(g_0(x) = P_{Q_j}(b)(x) \) if \(x \in Q_j \). Clearly \(\int h_j(x) \xi^2 \, dx = 0 \) and since \(|g_0(x)| \leq c\alpha \) almost everywhere (see [11, Remark 2.1.4 p. 104]), this implies

\[
\left(\int_{Q_j} |h_j(x)|^r \, dx \right)^{1/r} \leq \left(\int_{Q_j} |b_Q(x)|^r \, dx \right)^{1/r} + \left(\int_{Q_j} |g_0(x)|^r \, dx \right)^{1/r} \leq c\alpha.
\]

For each \(j_0 \in \mathbb{N} \), let \(b_{j_0}(x) := (c\alpha)^{-1} h_{j_0}(x) \) and write \(b_Q(x) = g_0(x) + (c\alpha) \sum_{j_0} b_{j_0}(x) \), where \(\int_{Q_{j_0}} |b_{j_0}(x)|^r \, dx \leq |Q_{j_0}| \). Applying the previous argument for each \(b_{j_0} \) we obtain the identity

\[
b_Q = g_0 + (c\alpha) \sum_{j_0} b_{j_0} = g_0 + c\alpha \sum_{j_0} g_{j_0} + (c\alpha)^2 \sum_{j_0,j_1} b_{j_0,j_1},
\]

where \(\sum_{j_0,j_1} |b_{j_0,j_1}(x)|^r \, dx \leq |Q_{j_0,j_1}| \) and \(\{Q_{j_0,j_1}\}_j \) is a sequence of disjoint dyadic cubes (subcubes of \(Q_{j_0} \)) such that \(|g_{j_0}(x)| \leq c\alpha \) a.e., \(\alpha^r \leq \int_{Q_{j_0,j_1}} |b_{j_0,j_1}(x)|^r \, dx \leq 2^n \alpha^r \) and \(|\bigcup_{j_1} Q_{j_0,j_1}| \leq c\alpha^{-r} \int_{Q_{j_0}} |b_{j_0}(x)|^r \, dx \leq |Q_{j_0}| \alpha^{-r} \). Employing an induction argument, we can find a family \(\{Q_{k_{-1}, \ldots, k_{-1}}\}_j := \{Q_{j_0, \ldots, j_{k-1}}\}_j \) of disjoint dyadic sub-cubes of \(Q_{k_{-1}} := \bigcup_{j_0, j_1, \ldots, j_{k-1}} \) for \(k = 1, 2, \ldots \) with \(i_{k-1} = \{j_0, j_1, \ldots, j_{k-1}\} \) such that

\[
b_Q = g_0 + c\alpha \sum_{i_1} g_{i_1} + (c\alpha)^2 \sum_{i_2} g_{i_2} + \cdots + (c\alpha)^{k-1} \sum_{i_{k-1}} g_{i_{k-1}} + (c\alpha)^k \sum_{i_k} h_{i_k}, \quad (7)
\]

in which \(g_{i_{k-1}} \) and \(h_{i_k} \), for every \(i_k = (j_0, j_1, \ldots, j_{k-1}, f) \), satisfies \(|g_{i_k}(x)| \leq c\alpha \) a.e. \(x \in \mathbb{R}^n \), \(\alpha^r \leq \int_{Q_{i_{k-1}, f}} |h_{i_k}(x)|^r \, dx \leq 2^n \alpha^r \) and \(|\bigcup_{i_{k-1}} Q_{i_{k-1}, f}| \leq c|Q_{i_{k-1}}| \alpha^{-r} \). The sum at (7) is interpreted as \(\sum_{i_{k-1}} g_{i_{k-1}} := \sum_{j_0 \in \mathbb{N}} \cdots \sum_{j_{k-1} \in \mathbb{N}} g_{j_0, \ldots, j_{k-1}} \) (analogously
to \(\sum_{i} h_{i} \). We claim that the reminder term \((ca)^k \sum_{i} h_{i} \) in (7) goes to zero in \(L^{1}(\mathbb{R}^n) \) as \(k \to \infty \). Indeed, writing \(Q_k := Q_{i_{k-1},j} \) for some fixed \(j \) we have

\[
\int_{\mathbb{R}^n} |h_{i_k}(x)| \, dx = \int_{Q_{i_k}} |h_{i_k}(x)| \, dx \leq \left(\int_{Q_{i_k}} |h_{i_k}(x)|^r \, dx \right)^{\frac{1}{r}} |Q_{i_k}|^{1-\frac{1}{r}} \leq c a |Q_{i_k}|
\]

and iterating \((k + 1)\)-times the previous argument one has

\[
\sum_{i_k} |Q_{i_k}| \leq \left(\frac{c}{a^r} \right)^{k+1} |Q|.
\]

Thus, \(\int (ca)^k \sum_{i_k} h_{i_k}(x) \, dx \leq (ca)^{k+1} \sum_{i_k} |Q_{i_k}| \leq (c^2a^{1-r})^{(k+1)} |Q| \). That means, \((ca)^k \sum_{i_k} h_{i_k}(x) \) goes to 0 in \(L^{1}(\mathbb{R}^n) \) as \(k \to \infty \), provided that \(c^2a^{1-r} < 1 \). Therefore,

\[
b_Q = g_{i_0} + ca \sum_{i_1} g_{i_1} + (ca)^2 \sum_{i_2} g_{i_2} + \cdots + (ca)^{k-1} \sum_{i_{k-1}} g_{i_{k-1}} + (ca)^k \sum_{i_k} g_{i_k} + \cdots
\]

in \(L^{1}(\mathbb{R}^n) \), where \(|g_{i_k}(x)| \leq ca \) a.e. and for all \(|\beta| \leq N_q \) we have \(\int x^\beta g_{i_k}(x) \, dx = \int x^\beta b_{i_k}(x) \, dx + \sum_{j} \int_{Q_{i_{k-1},j}} x^\beta P_{Q_{i_{k-1},j}} b(x) \, dx = \int x^\beta b_{i_k}(x) \, dx = 0 \). From the above considerations it is clear that \(a_{i_0} := (ca)^{-1} |Q|^{-1/4} g_{i_0} \) and \(a_{i_k} := (ca)^{-1} |Q_{i_k}|^{-1/4} g_{i_k} \) are \((q, \lambda, \infty)\)–atoms, for all \(k = 1, 2, \ldots \). Moreover, we can write

\[
a_Q = a_{i_0} a_{i_0} + \sum_{i_1} s_{i_1} a_{i_1} + \sum_{i_2} s_{i_2} a_{i_2} + \cdots + \sum_{i_k} s_{i_k} a_{i_k} + \cdots
\]

where each coefficient \(\{s_{i_k}\} \) is defined by \(s_{i_k} = (ca)^{k+1} |Q_{i_k}|^{-1/4} |Q_{i_k}|^{1/4} \). It remains to show that \(\|\{s_{i_k}\}_k\|_{\lambda,q} \leq C \), uniformly. Fixed \(J \subset \mathbb{R}^n \) a dyadic cube, we may estimate

\[
|J|^q \sum_{k=0}^{\infty} \sum_{Q_{i_k} \subset J} |s_{i_k}|^q |Q_{i_k}|^{1-\frac{q}{2}} = |J|^q \sum_{k=0}^{\infty} (ca)^{q(k+1)} \left(\sum_{Q_{i_k} \subset J} |Q_{i_k}| \right) \leq |J|^q \sum_{k=0}^{\infty} (ca)^{q(k+1)} \left(\frac{c}{a^r} \right)^{k+1} \leq C
\]

provided \(c^{q+1}a^{q-r} < 1 \) (weaker than the previous one) and \(q \leq \lambda \). Note that here we have used a refinement of (8) given by \(\sum_{i_k} : Q_{i_k} \subset J \) \(|Q_{i_k}| \leq \left(\frac{c}{a^r} \right)^{k+1} |J \cap Q| \) and the uniform control \(|J|^{q/2} |Q|^{-q/2} |J \cap Q| \leq 1. \)

The previous lemma allow us to study Hardy-Morrey spaces \(\mathcal{HM}^q_{\lambda}(\mathbb{R}^n) \) with any of the atomic spaces \(\mathcal{A} \mathcal{HM}^q_{\lambda,r}(\mathbb{R}^n) \) for \(1 \leq r \leq \infty \) provided \(q < r \). In addition, we announce an atomic decomposition in terms of \((q, \lambda, r)\)–atoms, which is a direct consequence of the one proved in [10, p. 100] for \((q, \lambda, \infty)\)–atoms and the Lemma 1, since they are in particular \((q, \lambda, r)\)–atoms.

Theorem 2 Let \(0 < q \leq 1 \leq r \leq \infty \) with \(q < r \) and \(q \leq \lambda < \infty \). Then, \(f \in \mathcal{HM}^q_{\lambda}(\mathbb{R}^n) \) if and only if there exist a collection of \((q, \lambda, r)\)–atoms \(\{a_Q\}_Q \) and
a sequence of complex numbers \(\{s_Q\}_Q \) such that \(f = \sum_Q s_Q a_Q \) in \(S'(\mathbb{R}^n) \) and \(\|f\|_{\mathcal{A}^{\lambda}_q} \approx \|f\|_{\mathcal{M}_q^\lambda}. \)

2.2 Molecular decomposition in Hardy-Morrey spaces

Definition 2 Let \(0 < q \leq 1 \leq r < \infty \) with \(q < r, \, q \leq \lambda < \infty, \) and \(s > n (r/q - 1). \) A function \(m(x) \) is called a \((q, \lambda, s, r)\)-molecule in \(\mathcal{M}_q^\lambda(\mathbb{R}^n), \) or simply an \(L^r \) molecule, if there exist a cube \(Q \) such that

\[
(M_1) \quad \int_{\mathbb{R}^n} |m(x)|^r \, dx \leq \ell_Q^{-n(1-\frac{s}{r})} \\
(M_2) \quad \int_{\mathbb{R}^n} |m(x)|^r |x - x_Q|^s \, dx \leq \ell_Q^{1+n(1-\frac{s}{r})}
\]

and also the cancellation condition \((M_3)\)

\[
\int_{\mathbb{R}^n} m(x) x^\alpha \, dx = 0 \text{ for all } |\alpha| \leq N_q.
\]

Remark 1 Equivalently, we can replace the previous global estimates by \((M_1)\) on \(2Q \) and \((M_2)\) on \(2Q^c. \)

Lemma 2 Let \(m(x) \) to be an \(L^r \) molecule. Then \(m = \sum_Q a_Q a_Q + \sum_Q b_Q b_Q \) in \(L^r(\mathbb{R}^n), \) where each \(\{a_Q\}_Q \) are \((q, \lambda, r)\)-atoms and \(\{b_Q\}_Q \) are \((q, \lambda, \infty)\)-atoms, for a suitable sequence of scalars \(\{d_Q\}_Q \) and \(\{t_Q\}_Q. \)

Proof The proof follows the corresponding result for Hardy spaces [7, Theorem 7.16]. Let \(m \) to be a \((q, \lambda, s, r)\)-molecule centered in the cube \(Q. \) For each \(j \in \mathbb{N}, \) let \(Q_j := Q(x_j, \ell_j) \) in which \(\ell_j = 2^j \ell_Q. \) Consider the collection of annulus \(\{E_j\}_{j \in \mathbb{N}_0} \) given by \(E_0 = Q \) and \(E_j = Q \setminus Q_{j-1} \) for \(j \geq 1, \) and let \(m_j(x) := m(x) 1_{E_j}(x). \) By the same arguments presented in the proof of Lemma 1, there exist polynomials \(\{\phi_j^\gamma(x)\}_{|\gamma| \leq N_q} \) uniquely determined in \(E_j \) such that

\[
2^j \ell_Q^{-|\gamma|} |\phi_j^\gamma(x)| \leq 1 \quad \text{and} \quad \frac{1}{|E_j|} \int_{E_j} \phi_j^\gamma(x) x^\beta \, dx = \begin{cases} 1, & \gamma = \beta \\ 0, & \gamma \neq \beta \end{cases}
\]

where the implicit constant is uniformly on \(E_j. \) Let \(m_j^\gamma = \int_{E_j} m_j(x) x^\gamma \, dx \) and consider \(P_j(x) = \sum_{|\gamma| \leq N_q} m_j^\gamma \phi_j^\gamma(x). \) Splitting \(m = \sum_{j=0}^{\infty} (m_j - P_j) + \sum_{j=0}^{\infty} P_j, \) with convergence in \(L^r(\mathbb{R}^n), \) we claim that for each \(j, \) \(m_j - P_j \) is multiple of a \((q, \lambda, r)\)-atom and \(P_j \) is a finite linear combination of \((q, \lambda, \infty)\)-atoms.

For the first sum, since \(m_j \) and \(P_j \) are supported on \(E_j, \) so is \(m_j - P_j \) and by definition one has the desired vanish moments up to the order \(N_q. \) It remains show that \(m_j - P_j \) satisfies the size estimate. Indeed, from conditions \((M_1)\) and \((M_2)\) it follows that for every \(j \in \mathbb{N}_0 \)

\[
|m_j|_{L^s} \leq |E_j|^{\frac{1}{r} - \frac{1}{s}} (2^j)^{-n(\frac{s}{r} - 1)}.
\]

(11)
Also, from (10) it follows $|P_j(x)| \leq \left(\sum_{|\beta| \leq N_q} |\phi^\beta_p(x)|2^{j|\beta|} \right) \int_{E_j} |m_j(x)| dx \lesssim |E_j|^{-\frac{1}{2}}|m_j|_{L^r}$, where the implicit constants are independent of j. Hence, if we write $(m_j - P_j)(x) = d_j a_{Q_j}(x)$ for $d_j = \|m_j - P_j\|_{L^r} |Q_j|^{\frac{1}{r} - \frac{1}{2}}$ and $a_{Q_j} = \frac{m_j - P_j}{\|m_j - P_j\|_{L^r}} |Q_j|^{\frac{1}{r} - \frac{1}{2}}$, for each $j \in \mathbb{N}_0$, it is clear that $\{a_{Q_j}\}_j$ is a sequence of (q, λ, r)-atoms supported on Q_j. Moreover, from (11) we have $\|m_j - P_j\|_{L^r} \lesssim \|m_j\|_{L^r} \lesssim |Q_j|^{\frac{1}{r} - \frac{1}{2}} (2^j)^{-\frac{rn(\frac{1}{r} - \frac{1}{2})}{2}}$. Hence, since $s > n(r/q - 1)$

$$\sum_{j=0}^\infty |d_j|^q |Q_j|^{1 - \frac{q}{2}} \leq |Q|^{1 - \frac{q}{2}} \sum_{j=0}^\infty (2^j)^q \left(2^j)^{-\frac{rn(\frac{1}{r} - \frac{1}{2})}{2}}\right) \leq |Q|^{1 - \frac{q}{2}}.$$

For the second sum, let $\psi^j_\gamma(x) := N^{j+1}_\gamma \left| |E_{j+1}|^{-\frac{1}{2}} \phi^{j+1}_\gamma(x) - |E_j|^{-\frac{1}{2}} \phi^j_\gamma(x) \right|$, where $N^j_\gamma = \sum_{E_k \in E_j} m_\gamma \mathcal{L}_k = \sum_{E_k \in E_j} \mathcal{L}_k \mathcal{M}_Q(x) \chi_{E_j} dx$. Then, we can represent P_j (using the vanish moments (M_j)) as $\sum_{j=0}^\infty P_j(x) = \sum_{j=0}^\infty \sum_{|\gamma| \leq N_q} \psi^j_\gamma(x)$. The function ψ^j_γ is supported on E_{j+1} and by construction also satisfies vanish moments conditions up to the order N_q. It remains to check the size condition. Since $|\gamma| \leq n(1/\lambda - 1)$ and $s > n(r/q - 1)$ we have $|N^{j+1}_\gamma| \leq |Q_j|^{-1/4} (2^j)^{1/(1/2 - 1)}$. The previous estimate and $(2^j \ell_Q)^{|\gamma|} |\phi^j_\gamma(x)| \leq C \text{ yields for all } x \in E_j$

$$|N^{j+1}_\gamma| |E_j|^{-\frac{1}{2}} \phi^j_\gamma(x) \leq C |Q_j|^{\frac{1}{r} - \frac{1}{2}} (2^j)^{1/(1/2 - 1/2)}.$$

Let $\psi^j_\gamma = t_j b^j_\gamma$, where $t_j = (2^j)^{-\frac{1}{2}}$ and $b^j_\gamma(x) = (2^j)^{1/(1/2 - 1)} |\phi^j_\gamma(x)|$. Hence, we can write $\sum_{j=0}^\infty P_j(x) = \sum_{j=0}^\infty \sum_{|\gamma| \leq N_q} t_j b^j_\gamma(x)$, and for each $j \in \mathbb{N}$ the function $b^j_\gamma(x)$ is a (q, λ, ω)-atom, since it is supported on E_{j+1} and satisfies $|b^j_\gamma(x)| \lesssim |Q_j|^{\frac{1}{r} - \frac{1}{2}}$, as desired. Moreover from $s > n(r/q - 1)$ one has

$$\sum_{j=0}^\infty |t_j|^q |Q_j|^{1 - \frac{q}{2}} = |Q|^{1 - \frac{q}{2}} \sum_{j=0}^\infty (2^j)^q \left(2^j)^{-\frac{rn(\frac{1}{r} - \frac{1}{2})}{2}}\right) \leq |Q|^{1 - \frac{q}{2}}.$$

Now we ready to announce a molecular decomposition in Hardy-Morrey spaces.

Theorem 3 Let $\{m_\gamma\}_Q be a collection of L^r–molecules and $\{s_\gamma\}_Q$ be a sequence of complex numbers such that $\|\{s_\gamma\}_Q\|_{L,q} < \infty$. If the series $f = \sum_{\gamma} s_\gamma m_\gamma$ converges in $S'(\mathbb{R}^n)$ and $\lambda < r$, then $f \in \mathcal{M}^\lambda_\gamma(\mathbb{R}^n)$ and moreover, $\|f\|_{\mathcal{M}^\lambda_\gamma} \lesssim \|\{s_\gamma\}_Q\|_{L,q}$ with implicit constant independent of f.

Proof Suppose $f = \sum_{\gamma} s_\gamma m_\gamma$ in $S'(\mathbb{R}^n)$ and $\|\{s_\gamma\}_Q\|_{L,q} < \infty$. Since $0 < q \leq 1$, for a fixed dyadic cube $J \subset \mathbb{R}^n$ we may estimate $\int_J |M_{|\cdot|} f(x)|^q dx$ by
Estimate of I_1. From Lemma 2, write $m_Q = \sum_{j=0}^{\infty} d_j a_{Q_j}$ (convergence in L^r) where \(\{a_{Q_j}\} \) are $\langle q, \lambda, r \rangle$-atoms and moreover $\sum_{j=0}^{\infty} |d_j| q |Q_j|^{1-\frac{r}{q}} \leq |Q|^{1-\frac{r}{q}}$. It follows from analogous estimates of Proposition 1 that

\[I_1 \leq \sum_{Q \subseteq J} |s_Q|^q \int_{\mathbb{R}^n} |M_{\varphi} m_Q(x)|^q dx + \sum_{J \subseteq Q} |s_Q|^q \int_{\mathbb{R}^n} |M_{\varphi} m_Q(x)|^q dx : = I_1 + I_2. \]

Estimate of I_2. Since $1 < r < \infty$ and M_{φ} is bounded on $L^r(\mathbb{R}^n)$, it follows

\[|J|^{q-1} \int_{\mathbb{R}^n} |M_{\varphi} m_Q(x)|^q dx \leq |J|^q \left(\sum_{j=0}^{\infty} (2^j \ell_Q)^{-r} \int_{E_j} |m_Q(x)|^r |x-x_Q|^s dx \right)^{\frac{q}{r}} \leq |J|^q |Q| q (\frac{1}{q}) \left(\sum_{j=0}^{\infty} 2^{-js} \right)^{\frac{q}{r}} \leq \left(\frac{|J|}{|Q|} \right)^{q (\frac{1}{q})}. \]

If $r = 1$ and $0 < q < 1$, we proceed like in (6) and then

\[|J|^{q-1} \left[|J| \int_0^{\infty} \omega^{q-1} d\omega + |Q|^{q-1} \omega^{q-2} d\omega \right] \leq \left(\frac{|J|}{|Q|} \right)^{q (\frac{1}{q})}. \]

Fixed a dyadic cube J, we point out there exists a subset $N \subseteq \mathbb{N}$ such that each cube $J \subseteq Q$ is uniquely determined by a dyadic cube $Q_{k,J} \in \{Q \text{ dyadic : } J \subseteq Q \text{ and } \ell_Q = 2^k \ell_J \}$. Hence, we can write

\[\sum_{Q \subseteq J} |s_Q|^q \left| \frac{|J|}{|Q|} \right|^q = \sum_{k \in N} |s_{Q_{k,J}}|^q 2^{-kq\gamma} \]

with $\gamma := 1/\lambda - 1/r > 0$. Then,

\[|J|^{q-1} \sum_{Q \subseteq J} |s_Q|^q \|M_{\varphi}(a_Q)\|_{L^q(J)}^q \leq \sum_{k \in N} \left| \frac{Q_{k,J}}{Q} \right|^{1-\frac{q}{2}} |Q_{k,J}|^{\frac{q}{2}-1} 2^{-kq\gamma} \leq \sum_{k \in N} \left(\sum_{Q \subseteq Q_{k,J}} |s_Q|^q |Q|^{1-\frac{q}{2}} \right) |Q_{k,J}|^{\frac{q}{2}-1} 2^{-kq\gamma} \leq \| \{s_Q\}_Q \|_{L^q(J)} \sum_{k \in N} 2^{-kq \gamma} \leq \| \{s_Q\}_Q \|_{L^q}. \]

\[\square \]
Remark 2 The Theorem 3 covers [9, Theorem 2.6] when \(r = 2 \) where the natural restriction \(\lambda < 2 \) was omitted.

3 Proof of Theorem 1

Proof Let \(a \) be a \((q, \lambda, r)\)–atom supported in the cube \(Q \). From Theorem 3, it suffices to show that \(Ta \) is a \((q, \lambda, s, r)\)– molecule associated to \(Q \). Suppose first that \(\ell_Q \geq 1 \). Since \(T \) is bounded in \(L^2(\mathbb{R}^n) \) to itself and \(1 \leq r \leq 2 \), condition \((M_1)\) follows by

\[
\int_{2Q} |Ta(x)|^r \, dx \leq |2Q|^{1-\frac{r}{p}} \|Ta\|_{L^p}^r \leq |Q|^{1-\frac{r}{p}} \|a\|_{L^p}^r \leq |Q|^{1-\frac{r}{p}} \ell_Q n^{1-\frac{r}{p}}. \tag{12}
\]

For \((M_2)\) using the moment condition of the atom \(a \), Minkowski inequality and (3), we estimate \(\int_{2Q^c} |Ta(x)|^r |x-x_Q|^\delta \, dx \) by

\[
\sum_{j=1}^\infty \int_{2Q^c} \left| K(x,y) - K(x,x_Q) \right| a(y) \, dy |x-x_Q|^\delta \, dx \\
\leq \sum_{j=1}^\infty \left(2^j \ell_Q \right)^s \int_{2Q^c} |a(y)| \left(\int_{C_j(x_Q, \ell_Q)} \left| K(x,y) - K(x,x_Q) \right| \, dy \right)^\frac{r}{s} \, dx \\
\leq \sum_{j=1}^\infty \left(2^j \ell_Q \right)^{s-n(r-1)} 2^{-jr} \ell_Q n^{1-\frac{r}{p}} \ell_Q^{r-n(1-\frac{r}{p})} \sum_{j=1}^\infty 2^{j(s-n(r-1)+r)} \leq \ell_Q^{s+n(1-\frac{r}{p})},
\]

assuming \(s < n(r-1)+r\delta \). We remark that for the case \(r = 1 \), one needs to consider \((q, \lambda, s, 1)\)–molecules and hence \(0 < q \leq \lambda < 1 \). Suppose now that \(\ell_Q < 1 \). Since \(T \) is a bounded operator from \(L^p(\mathbb{R}^n) \) to \(L^2(\mathbb{R}^n) \) and \(1 < r \leq 2 \), condition \((M_1)\) follows by

\[
\int_{2Q} |Ta(x)|^r \, dx \leq |2Q|^{1-\frac{r}{p}} \|Ta\|_{L^p}^r \leq |Q|^{1-\frac{r}{p}} \|a\|_{L^p}^r \leq |Q|^{1-\frac{r}{p}} \ell_Q^{r+n(1-\frac{r}{p})} \approx |Q|^{1-\frac{r}{p}}.
\]

To estimate the global \((M_2)\) condition, we consider \(0 < \rho \leq \sigma \leq 1 \) a parameter that will be chosen conveniently later, denote by \(2Q^\rho := Q(x_Q, 2\ell_Q^\rho) \) and split the integral over \(\mathbb{R}^n \) into \(2Q^\rho \) and \((2Q^\rho)^c \). For \(2Q^\rho \) we use the boundedness from \(L^\rho(\mathbb{R}^n) \) to \(L^2(\mathbb{R}^n) \) again and obtain

\[
\int_{2Q^\rho} |Ta(x)|^r |x-x_Q|^\delta \, dx \leq \ell_Q^{\rho s+n(1-\frac{r}{p})} \|4Q^\rho |^r \|Ta\|_{L^p}^r \leq \ell_Q^{\rho s+n(1-\frac{r}{p})} \|a\|_{L^p}^r \\
\leq \ell_Q^{\rho s+n(1-\frac{r}{p})} \leq \ell_Q^{s+n(1-\frac{r}{p})}.
\]
assuming \(s \leq -n \left(1 - \frac{r}{2} \right) + \frac{nr}{1 - \rho} \left(\frac{1}{p} - \frac{1}{2} \right) \). For \((2Q^p)^c\), we use (4) to estimate
\[\int (2Q^p)^c |Ta(x)|^r |x - x_Q|^s dx \] by

\[\sum_{j=1}^{\infty} (2^j \ell_j^{Q^c})^s \left\{ \int_Q |a(y)| \left(\int_{C_j(x_Q, \ell_j^{Q^c})} |K(x, y) - K(x, x_Q)|^p dx \right)^{\frac{1}{p}} dy \right\}^r \]

\[\leq \sum_{j=1}^{\infty} (2^j \ell_j^{Q^c})^s \left(C_j(x_Q, \ell_j^{Q^c}) \right)^{\frac{1}{p} + \frac{n}{n - \rho}} \left(2 \frac{r}{p} \right)^r \ell_j^{Q^c} \left(\frac{n}{p} \right) \]

\[\approx \ell_j^{Q^c} \left[1 + \frac{n}{n - \rho} \right] \sum_{j=1}^{\infty} 2^{-n(r - 1)} \]

\[\leq \ell_j^{Q^c} \left[1 + \frac{n}{n - \rho} \right] \]

where the convergence follows assuming \(s < n(r - 1) + \frac{nr}{1 - \rho} \) and we choose \(\rho \) to be such that \(r + \frac{r\delta}{n - \rho} \left(r - 1 + \frac{r\delta}{n - \rho} \right) = \rho \left(1 - \frac{r}{2} \right) + \frac{r}{p} \Leftrightarrow \rho := \frac{n \left(1 - \frac{1}{p} \right) + \delta}{\frac{n}{2} + \frac{\delta}{\sigma}} \).

By the choice of \(\rho \) we have

\[-n \left(1 - \frac{r}{2} \right) + \frac{nr}{1 - \rho} \left(\frac{1}{p} - \frac{1}{2} \right) < n(r - 1) + r\delta < n(r - 1) + \frac{r\delta}{\sigma} \]

In particular, collecting the restrictions on \(s \) we get

\[n \left(\frac{r}{q} - 1 \right) < s \leq -n \left(1 - \frac{r}{2} \right) + \frac{nr}{1 - \rho} \left(\frac{1}{p} - \frac{1}{2} \right) \Rightarrow \frac{1}{q} < \frac{1}{2} + \frac{\beta (\frac{\delta}{\sigma} + \frac{1}{2})}{n \left(\frac{\delta}{\sigma} - \delta + \beta \right)} := \frac{1}{q_0} \]

We point out that when \(\sigma = 1 \), only condition \(s < n(r - 1) + r\delta \) is imposed to verify \((M_1)\) and \((M_2)\). Condition \((M_3)\), given formally by \(T''(x^\sigma) = 0 \) for all \(|x| \leq N_q \), is trivially valid, since \(n/(n + \delta) < q_0 < q \leq 1 \) implies \(N_q \leq \lfloor \delta \rfloor \).

Remark 3 The previous proof remains the same if one consider integral conditions incorporating derivatives of the kernel. For a complete discussion and the precise definition of such conditions see [12, Section 4.2].

References

1. J. Álvarez and M. Milman, \(H^p \) Continuity Properties of Calderón-Zygmund-type Operators, Journal of Mathematical Analysis and Applications. 118 (1986), 63–79
2. J. Álvarez and M. Milman, Vector valued inequalities for strongly singular Calderón-Zygmund operators, Revista Matemática Iberoamericana 2 (1986), 405–426.
Continuity of strongly singular C-Z operators in Hardy-Morrey spaces

3. M. de Almeida and T. Picon, Atomic decomposition, Fourier transform decay and pseudodifferential operators on localizable Hardy-Morrey spaces, https://arxiv.org/abs/2011.10176, 2021.

4. R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels. Astérisque, no. 57 (1978), 210 p.

5. M. D'Abbicco, M. Ebert and T. Picon, The critical exponent(s) for the semilinear fractional diffusive equation, Journal of Fourier Analysis and Applications 25 (2019), 696–731.

6. C. Fefferman, Inequalities for strongly singular convolution operators, Acta Mathematica 124 (1970), no. 1, 9–36.

7. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.

8. I. Hirschman, On multiplier transformations, Duke Mathematical Journal 26 (1959), no. 2, 221–242.

9. H. Jia and H. Wang, Singular integral operator, Hardy-Morrey space estimates for multilinear operators and Navier-Stokes equations, Mathematical Methods in the Applied Sciences 33 (2010), no. 14, 1661–1684.

10. H. Jia and H. Wang, Decomposition of Hardy-Morrey spaces, Journal of Mathematical Analysis and Applications. 354 (2009), no. 1, 99–110.

11. E. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton Univ. Press, Princeton, NJ, 1993.

12. C. Vasconcelos and T. Picon, On the continuity of strongly singular Calderón-Zygmund-type operators on Hardy spaces. https://arxiv.org/abs/2112.12607, 2021.

13. S. Wainger, Special trigonometric series in k dimensions, Memoirs of the American Mathematical Society, no. 59, American Mathematical Society, 1965.