Supporting Information for

Characterization of a [4Fe-4S]-Dependent LarE Sulfur Insertase that Facilitates Nickel-Pincer Nucleotide Cofactor Biosynthesis in *Thermotoga maritima*

Shramana Chatterjee¹, Kristine F. Parson², Brandon T. Ruotolo², John McCracken³, Jian Hu³,⁴, and Robert P. Hausinger¹,⁴,*

From the ¹Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; ²Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ³Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; and ⁴Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA

Running Title: [4Fe-4S]-dependent sulfur-transferase LarE
Figure S1. Sequence comparison of LarE_{rm} to selected other LarE sequences. The sequences were chosen from those identified by BLAST using the non-redundant GenBank coding sequence translations with E-scores below e-73. Full species names for the genera shown are: *Thermotoga maritima*, *Ignisphaera aggregans*, *Candidatus Hydrothermae bacterium*, *Thermococci archaeon*, *Deltaproteobacteria bacterium*, *Methanotrichaceae archaeon*, *Methanoseta sp. PtaU1.Bin112*, *Methanothrix soehngenii GP6*, *Methanophagales archaeon*, *Methanoregula formicica*, *Thermoplasmata archaeon*, *Euryarchaeota archaeon*, *Actinomyctetia bacterium*, *Armatimonadetes bacterium*, *Anoxybacter fermentans*, *Zhaonella formicivorans*, *Calderihabitans maritimus*, *Carboxythermus hydrogenoformans*, *Thermoanaerobacteraceae bacterium*, *Chloroflexi bacterium*, *Geospirillum subterraneus*, *Firmicutes bacterium*, *Halocella sp. SP3-1*, *Dictyoglomi bacterium*, *Dictyoglomus thermophilum*, *Clostridium homopropionicum*, *Synergistales bacterium 54_24*, *Acetomicrobium sp. S15* (DSM 107314). The sequence alignment was performed using Multalin (43). Identities are shown in red font. An SGGXDS motif associated with PP-loop pyrophosphatase family members is indicated by the green bar. Three cysteines associated with a CXXC-C motif are shown by the two blue segments. A fourth cysteine present in three sequences is shown by the yellow star.
Figure S2. Mass spectrometric analysis reveals a lack of change for LarE_{Tm} during P2TMN synthesis. The His₆-tagged LarE subunit lacking its amino-terminal methionine residue remains unchanged in size when comparing samples that were incubated with P2CMN, 20 mM MgCl₂, and 2 mM ATP for 0, 30, and 60 min. The small peak at m/z 31,186 likely represents His₆-tagged LarE in a mixed disulfide linkage with βME.

Figure S3: SEC MALS analysis of His₆-tagged LarE_{Tm}. The results indicate a dimeric quaternary structure.
Figure S4. Comparison of cysteine desulfurase sequences and structures from *E. coli* (IscS\textsubscript{Ec}) and one of two related proteins in *T. maritima* (IscS\textsubscript{Tm}). (a) Sequence alignment. (b) Crystal structure of IscS\textsubscript{Ec} (PDB: 3LVK) including the bound pyridoxal phosphate (space fill depiction) and showing the cysteine residue (stick view) that forms a persulfide. (c) Homology model of IscS\textsubscript{Tm} depicting the conserved cysteine residue (stick view).
Table S1

Native mass spectrometry peak list for the 12+ monomeric species of LarE_{Tm}

LarE_{Tm} Monomer + Species	Theoretical m/z	Actual (peak) m/z	Difference (m/z)
Na⁺⁺	2634.8	2635.1	0.3
Fe	2637.5	2637.5	0.0
[Fe-S]	2640.2	2640.3	0.1
[Fe-2S]	2642.8	2642.8	0.0
[2Fe-S]	2644.8	2645.7	0.9
[2Fe-2S]	2647.5	2648.3	0.8
[2Fe-3S]	2650.2	2650.9	0.7
[3Fe-3S]	2654.8	2654.0	0.8
[3Fe-4S]	2657.5	2657.3	0.2
[4Fe-4S]	2662.2	2661.9	0.3

^a For each species shown, the numbers within the brackets represent the total number of iron and sulfur atoms associated with the LarE_{Tm} monomer subunit and do not necessarily equate to the type of bound iron-sulfur cluster. The masses tabulated include the theoretical m/z, the actual (peak) m/z, and the calculated difference, with values near zero providing confidence in the iron and sulfur content assignments.

Table S2

Native mass spectrometry peak list for the 15+ dimeric species of LarE_{Tm}

15+ Dimer (63,476 Daltons)

LarE_{Tm} Dimer + Species	Theoretical m/z	Actual (peak) m/z	Difference (m/z)
[3Fe-4S][3Fe-4S]	4256.2	4257.4	1.2
[4Fe-4S][4Fe-4S]	4263.7	4262.6	1.1
[4Fe-5S][4Fe-5S]	4265.8	4264.8	1.0
[4Fe-5S][5Fe-5S]	4271.7	4273.1	1.4
[5Fe-5S][5Fe-5S]	4275.4	4275.5	0.1

^a For each species shown, the numbers within the brackets represent the total number of iron and sulfur atoms associated with each LarE_{Tm} subunit in the dimer and do not necessarily equate to the type of bound iron-sulfur cluster. The masses tabulated include the theoretical m/z, the actual (peak) m/z, and the calculated difference, with values near zero providing confidence in the iron and sulfur content assignments.
References:
CORPET, F. (1988) Multiple sequence alignment with hierarchical clustering. *Nucl. Acids Res.* 16 (22), 10881-10890