Class D OXA-48 Carbapenemase in Multidrug-Resistant Enterobacteria, Senegal

Olivier Moquet, Coralie Bouchiat, Alfred Dieudonné Kinana, Abdoulaye Seck, Omar Arouna, Raymond Bercion, Sébastien Breurec, Benoît Garin

To cite this version:

Olivier Moquet, Coralie Bouchiat, Alfred Dieudonné Kinana, Abdoulaye Seck, Omar Arouna, et al.. Class D OXA-48 Carbapenemase in Multidrug-Resistant Enterobacteria, Senegal. Emerging Infectious Diseases, Centers for Disease Control and Prevention, 2011, 17 (1), pp.143-144. 10.3201/eid1701.100224 . hal-01348289

HAL Id: hal-01348289
https://hal.archives-ouvertes.fr/hal-01348289
Submitted on 26 Jul 2016
2. Antoniadis A, Casals J. Serological evidence of human infection with Congo-Crimean hemorrhagic fever virus in Greece. Am J Trop Med Hyg. 1982;31:1066–7.

3. Antoniadis A, Alexiou-Daniel S, Malisiovas N, Doutsos I, Polyzoni T, Leduc JW, et al. Seroepidemiological survey for antibodies to arboviruses in Greece. Arch Virol 1990;Suppl 1:277–85.

4. Papa A, Maltezou HC, Tsiodras S, Dalla VG, Papadimitriou T, Pierrouatsakos I, et al. A case of Crimean-Congo haemorrhagic fever in Greece, June 2008. Euro Surveill. 2008;13(33):18952.

5. Papa A, Dalla V, Papadimitriou E, Kartalis GN, Antoniadis A. Emergence of Crimean-Congo haemorrhagic fever in Greece. Clin Microbiol Infect. 2010;16:843–7.

6. Maltezou HC, Papa A, Tsiodras S, Dalla V, Maltezos E, Antoniadis A. Crimean-Congo hemorrhagic fever in Greece: a public health perspective. Int J Infect Dis. 2009;13:713–6. DOI: 10.1016/j.ijid.2008.11.011

Address for correspondence: Anna Papa, Department of Microbiology, Medical School Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; email: annap@med.auth.gr

Class D OXA-48 Carbapenemase in Multidrug-Resistant Enterobacteria, Senegal

To the Editor: Class D OXA β-lactamases are characterized as penicillins that can hydrolyze oxacillin and cloxacillin and are poorly inhibited by clavulanic acid and EDTA. OXA-48 is one of the few members of this family to possess notable carbapenem-hydrolyzing activity (1). First described in 2004 in Turkey, OXA-48 has recently started to spread in Europe and the Middle East (2). We report the recent emergence of the plasmid-encoded blaOXA-48 gene in multidrug-resistant Enterobacteriaceae recovered from patients in Dakar, Senegal, in hospitals and in the community.

From November 2008 through October 2009, 11 Enterobacteriaceae isolates (8 Klebsiella pneumoniae, 1 Escherichia coli, 1 Enterobacter cloacae, and 1 Enterobacter sakazakii) with reduced susceptibility to imipenem were identified at the Institut Pasteur (Dakar, Senegal). Antibacterial drug susceptibility was determined by the disk diffusion method and interpreted according to the European Committee on Antimicrobial Susceptibility Testing guidelines (www.eucast.org). Nine isolates were resistant to expanded-spectrum cephalosporins and also to other antibacterial drug classes.

The isolates were recovered from 6 patients with urinary tract infections, 4 patients with surgical infections, and 1 patient with omphalitis. Nine infections were hospital acquired (Le Danlec and Principal Hospitals). Because the patients died before antibacterial drug susceptibility testing could be completed, all 5 patients with surgical infections or omphalitis received only empirical therapy with amoxicillin/clavulanate. One patient with a nosocomial urinary tract infection caused by a co-trimoxazole–susceptible strain was successfully treated with this antibacterial agent. The antibacterial drug regimens of the remaining 4 patients were not known, and they were lost to follow-up. We determined the MICs of imipenem, meropenem, and ertapenem by using the Etest method (AB Biodisk, Solna, Sweden), which showed that 9 isolates were susceptible to imipenem and meropenem but either intermediate susceptible or resistant to ertapenem (Table). The 2 imipenem-nonsusceptible isolates were susceptible or intermediate susceptible to meropenem, and both were resistant to ertapenem.

We used previously described PCRs (1,3–7) to screen for carbapenem-hydrolyzing β-lactamase genes (blaVIM, blaIMP, blaPEC, and blaOXA-48), as well as plasmid-encoded blaCTX-M, blaAmpC, and blaTEM β-lactamase genes; the aac(6′)-Ib aminoglycoside resistance gene; the quinolone resistance genes qnrA, B, S; the tetracycline resistance genes tetA, B, D; and class 1 integron. The blaCTX-M, blaVIM, and aac(6′)-Ib genes and the variable region of class 1 integron were then characterized by direct DNA sequencing of the PCR products. blaCTX-M was present in all 11 isolates. blaVIM, blaIMP, and blaPEC were not detected. The qnr genes were present in 7 isolates resistant to ciprofloxacin. The aac(6′)-Ib-cr variant was present in 7 isolates resistant to gentamicin, tobramycin, and ciprofloxacin.

The 9 isolates resistant to expanded-spectrum cephalosporins all harbored the blaCTX-M-15 gene. The E. coli isolate also harbored the plasmid-encoded blaAmpC gene ACT-1; blaCTX-M-15, blaOXA-48, and aac(6′)-Ib-cr were associated in 6 isolates. Long-range PCRs showed that these latter 4 genes were located in the same “multidrug resistance region,” as described in Senegal (6). Positive conjugation experiments with sodium azide–resistant E. coli J53 showed through PCR results, plasmid DNA extraction, and antibiogram patterns of the obtained transconjugants that blaOXA-48 was located on a 70-kb self-conjugative plasmid.

The genetic environment of blaOXA-48 was then investigated by PCR with primers specific for insertion sequence IS1999 and for the 5′ part of blaOXA-48 (1). blaOXA-48 was found to be part of a Tn1999 composite transposon composed of 2 copies of the insertion sequence IS1999, as reported (2). Further sequencing of the IS1999 located upstream of blaOXA-48 showed that it was consistently truncated by the insertion sequence IS199, as initially described in Turkey and more recently in Lebanon and Egypt (2,8).

XbaI pulsed-field gel electrophoresis was then used to study the genetic relatedness of the 8 K. pneumoniae
isolates. Three isolates had similar restriction profiles and had been recovered from 3 patients concurrently hospitalized at Le Dantec Hospital, suggesting nosocomial transmission. A class 1 integron harboring the dfrA1 trimethoprim-resistance gene was detected in the 3 clonal isolates.

Together, these findings show the recent emergence of bla\textsubscript{OXA-48} in Senegal in community and hospital settings. They may also suggest the spread of the same major carrying plasmid between the Middle East and Africa. Although 9 of the 11 isolates were found to be susceptible to imipenem on the basis of their MICs, their MICs were nonetheless higher than those of bla\textsubscript{OXA-48}-negative isolates. This raises 2 issues. First, these strains might go undetected during routine antibacterial drug susceptibility testing, a problem that could be overcome by using ertapenem, a compound more susceptible to carbapenemases. Second, the clinical efficacy of imipenem on such strains is uncertain. The frequency of acquired carbapenemases, which emerged early after imipenem introduction in Senegal (2008), is probably strongly underestimated, partly owing to the limited availability of reliable clinical laboratories (9). Because multidrug resistance is prevalent among Enterobacteriaceae isolated in Dakar hospitals (B. Garin, unpub. data) and in rural communities (6), the emergence of bla\textsubscript{OXA-48} is a clear cause for concern.

Olivier Moquet, Coralie Bouchiat, Alfred Kinana, Abdoulaye Seck, Omar Arouna, Raymond Bercion, Sebastien Breurec, and Benoît Garin

Author affiliations: Institut Pasteur, Dakar, Senegal (O. Moquet, C. Bouchiat, A. Kinana, A. Seck, S. Breurec, B. Garin); and Hopital Principal, Dakar (O. Arouna, R. Bercion)

DOI: 10.3201/eid1701.100224

References

1. Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48:15–22. DOI: 10.1128/AAC.48.1.15–22.2004
2. Carrér A, Poirel L, Yilmaz M, Akan OA, Feriha C, Cuzon G, et al. Emerging spread of OXA-48-encoding plasmid from Turkey and beyond. Antimicrob Agents Chemother. 2010;54:1369–73. DOI: 10.1128/AAC.01312-09
3. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20:440–58. DOI: 10.1128/CMR.00001-07
4. Poirel L, Naas T, Nicolas D, Collet L, Belard E, Raymond JT, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44:891–7. DOI: 10.1128/AAC.44.4.891-897.2000
5. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40:2153–62. DOI: 10.1128/JCM.40.6.2153-2162.2002
6. Ruppé E, Woerther PL, Diop A, Sene AM, Da Costa A, Arlet G, et al. Carriage of CTX-M-15-producing Escherichia coli isolates among children living in a remote village in Senegal. Antimicrob Agents Chemother. 2009;53:3135–7. DOI: 10.1128/AAC.00139-09
7. Guessennd N, Bihoreau M, Gouyon V, Kaouss-Ndour A, EkaZe E, Lambert T, et al. OXA-48 enzyme is responsible for the plasmid-mediated resistance to carbapenems of Enterobacteriaceae isolated in Dakar, Senegal. J Antimicrob Chemother. 2009;64:283–91. DOI: 10.1093/jac/dkp503
8. Carrér A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother. 2008;52:2950–4. DOI: 10.1128/AAC.01672-07
9. Carrér A, Poirel L, Eraksoy H, Cagatay A, Badur S, Nordmann P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother. 2008;52:2950–4. DOI: 10.1128/AAC.01672-07
10. Guessennd N, Bihoreau M, Gouyon V, Kaouss-Ndour A, EkaZe E, Lambert T, et al. OXA-48 enzyme is responsible for the plasmid-mediated resistance to carbapenems of Enterobacteriaceae isolated in Dakar, Senegal. J Antimicrob Chemother. 2009;64:283–91. DOI: 10.1093/jac/dkp503

Address for correspondence: Olivier Moquet, Laboratoire de Biologie Medicale, Institut Pasteur, BP 220, Dakar, Senegal; email: olivier.biomed@gmail.com

Table. Resistance genes and carbapenem MICs of 11 Enterobacteriaceae isolates, Senegal, 2008–2009*

Isolate	Species	Origin†	bla\textsubscript{OXA-48}	bla\textsubscript{CTX-M-15}	bla\textsubscript{TEM}	aac-6'-lb	gnr	tet	dfr	IPM (μg/mL)	MEM	ERT	
17176	Klebsiella pneumoniae	1	+	+	–	–	–	-	-	A,D	1	0.38	1.5
22184	K. pneumoniae†	2	+	+	+	+	cr	S	A	1	0.38	1.5	
20254	K. pneumoniae†	3	+	+	+	+	cr	S	A	1	0.38	1.5	
10243	K. pneumoniae†	3	+	+	+	+	cr	S	A	1	0.38	1.5	
19220	K. pneumoniae	2	+	+	+	+	cr	B	A,D	–	0.5	0.19	0.75
18212	K. pneumoniae	2	+	–	–	–	–	–	–	3	2	12	
18220	K. pneumoniae	3	+	–	–	–	–	–	–	1	0.38	1.5	
06003	K. pneumoniae	4	+	–	–	–	–	–	–	2	0.25	0.75	
HPD	Enterobacter cloaceae	3	+	+	+	+	cr	B,S	B	–	4	3	8
20247	Enterobacter sakazakii	5	+	+	+	cr	–	–	–	0.5	1	3	
24246	Escherichia coli	4	+	+	+	+	cr	S	–	–	2	0.5	2
JS3	E. coli	4	+	–	–	–	–	–	–	0.12	0.03	0.03	
TC	E. coli	1	+	–	–	–	–	–	–	0.5	0.19	0.75	

*IPM, imipenem; MEM, meropenem; ERT, ertapenem; TC, transconjunctivates.
†Origin: 1, postsurgical visceral infection; 2, postsurgical orthopedic infection; 3, nosocomial urinary tract infection; 4, community-acquired urinary tract infection; 5, omphalocele infection.
‡Clonally related isolates.