A Collection of Strains Containing Genetically Linked Alternating Antibiotic Resistance Elements for Genetic Mapping of Escherichia coli

 MITCHELL SINGER, TANIA A. BAKER,† GAVIN SCHNITZLER,‡ SHAWN M. DEISCHEL, MANJU GOEL, WILLIAM DOVE, KATHRYN J. JAACKS,§ ALAN D. GROSSMAN,§ JAMES W. ERICKSON, AND CAROL A. GROSS*

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706

INTRODUCTION

Escherichia coli and the closely related enteric bacterium Salmonella typhimurium are two of the most completely characterized organisms in biology and continue to be widely studied to gain further understanding of basic biological processes. The early development of excellent genetic methodologies, such as conjugation (13, 16, 25, 40, 65, 66) and generalized transduction (29, 41, 66), for these organisms contributed significantly to their choice as a focus of investigation. These discoveries allowed for the construction of a genetic map of E. coli as early as 1964 (56). This map identified the position of approximately 100 genes. Today, over 1,000 genes have been identified and mapped to the E. coli chromosome (2), which has been divided into 100 min, each consisting of approximately 47 kilobase pairs of DNA (2, 37, 44). This rapid increase in information about the organization of the genome has been facilitated by continued genetic advances including the development of specialized transducing bacteriophages (62), the utilization of transposons (3–6, 26, 27, 35, 36), the construction of hybrid transposons (5, 61), and the development of an in vivo cloning technique involving mini-Mu (22, 23). The accumulated data resulting from these advances have resulted in various catalogs of information including the genetic maps of E. coli (2) and S. typhimurium (53), a physical map and ordered phage clone bank of E. coli (37), the gene-protein index of E. coli (51), and the various catalogs of genomic insertions (5) and Hfr and F' strains (42, 43). With the availability of such information and technologies, the use of E. coli and S. typhimurium species as model systems in the study of basic biological problems cannot be matched.

Despite the wealth of information about E. coli, it is estimated that less than half of the total number of genes have been identified to date. Additional genes are being identified at an accelerating rate. The use of classical mapping techniques to locate mutations which may identify new genes can be cumbersome and time-consuming. The development of fast and simple mapping procedures will facilitate the identification and characterization of previously unknown genes. Kleckner et al. (36) were the first to suggest...
the use of transposons conferring resistance to various antibiotics as a selectable marker in matings or transductions obviates the need to develop conditions under which the actual mutation must be selected. We have devised a rapid mapping strategy which takes advantage of transposons located at defined positions in the E. coli genome to be used as selectable markers in Hfr mating and P1 transductions.

We have constructed a coordinated set of strains containing either the transposon Tn10 (encoding tetracycline resistance) or Tn10kan (encoding kanamycin resistance) to facilitate the mapping of mutations in E. coli. The development of this mapping kit involved the construction of 182 isogenic strains, each of which contains either a Tn10 or a Tn10kan at a known position on the chromosome. The set contains antibiotic resistance elements around the entire chromosome that are linked by P1 transduction. Most positions are represented by both Tn10 and Tn10kan insertions. These strains can be used to rapidly map mutations to within a 1-min region of the chromosome by using a two-step mapping procedure. In the first step, the mutation is mapped to a 5- to 15-min region of the chromosome by using overlapping Hfr strains containing either Tn10 or Tn10kan as the selectable marker. In the second step, P1 transduction is used to place the mutation between pairs of antibiotic resistance elements located about 1 min apart. We discuss the construction of this mapping kit and its various uses in mapping mutations, facilitating strain construction, and other genetic manipulations.

MATERIALS AND METHODS

Bacterial Strains, Phages, and Growth Conditions

All bacterial strains used were derivatives of E. coli K-12, and are described in Table 1. P1 vir was used for P1 transductions. λ1104 (gyrB7-hisNdisG9424:cin10kan, c1857 Pam80 rnm) (61), λNKS61 (λh221 Oam29 c1857 Tn10) (20), and λNKS67 (λh221 c1857 Oam29 Pam80 recT1) (20) were obtained from N. Kleckner. T4GT7 (T4antE51 antC77 rNB5069 ort) (64) was obtained from C. Georgopoulos. The λ clone bank of Kohara et al. (37), containing ordered E. coli fragments cloned into λ EMBL4 [λ shbl λ1'9189 < polylinker (Spa-EcorIII) intr-29 nin44 c1857 trpe polylinker (EcorI-Sall) > KH54 chlC sr14A' nin5 sr14A'] or λK001 [λ shbl λ1'9189 int (linker) sr14A ninL. 45 χshdII λ4(bio) (linker) Δshblλ13-6hbl4]KH54 sr14A' chlC nr15 sr14A' shdIIα)], was obtained from F. Blattner.

Bacterial cultures were grown in LB medium (47) and supplemented with tetracycline (10 μg/ml), kanamycin (30 μg/ml), chloramphenicol (15 μg/ml), or ampicillin (50 μg/ml) when indicated. For solid support medium, 1.5% Bacto-Agar (Difco Laboratories) was included. Cultures used for λ infections were grown in N2Y medium (46) supplemented with 0.2% maltose. For the scoring of auxotrophic markers, M9 minimal plates (47) supplemented with the appropriate amino acids at 20 μg/ml were used. Sugar utilization phenotypes were scored on MacConkey agar plates (45), supplemented with the appropriate sugar at 1.0%.

Genetic Manipulations

P1 transductions were performed as described by Miller (47), and transductions with phage T4GT7 were done as described by Young and Edlin (64). Random insertion pools with Tn10, Tn10kan, or Tn5 were constructed as described by Kleckner et al. (36). Hfr mating strains were performed as described by Miller (47), with the following modifications. Recipient and donor cells were mixed and incubated for 35 min at 37°C. Mating mixtures were diluted 10-fold into fresh LB (or M9 salts for matings involving KL228 or KL14) and then vortexed vigorously for 2 min to disrupt mating aggregates. Serial dilutions were plated on selective plates and incubated overnight at 37°C. When selection was for Kan', cells were grown for 1 h in 10 ml of LB broth (or M9 glucose plus leucine for matings involving KL228 or KL14) following disruption of the mating pairs, to allow expression of the Kan' gene prior to plating on selective plates.

Construction of the Mapping Strains

We have constructed a series of isogenic mapping strains containing Tn10, Tn10kan, Tn5, or Tn9 at specific sites in the genome. The source of each of these insertions is indicated in Table 1. All insertions obtained from other laboratories were first transduced into MG1655. MG1655 is λ' and does not contain any known nonsense suppressors. These phenotypes are required for the conversion of Tn10 to Tn10kan as described below. In addition, placing the insertions in a common wild-type genetic background eliminated potential strain-specific effects, such as inversions and small deletions, which could affect mapping results.

Conversion of Tn10 to Tn10kan. To obtain insertions conferring different antibiotic resistances at the same location in the chromosome, we and others (7) have used recombination to replace the antibiotic resistance gene of a transposon resident in the chromosome with the antibiotic resistance gene from an incoming transposon, generating a transposon with a different antibiotic resistance element at the same location as the original element. In this case, a Tn10 transposon on the chromosome was replaced by an incoming Tn10kan transposon carried on a defective λ phage, λ1104. Reciprocal recombination between the incoming phage and the chromosome occurs within the IS10 elements which flank both antibiotic resistance genes of Tn10 and Tn10kan. This generates a Tn10kan element at the same location in the chromosome as the initial Tn10. Because λ1104 can neither replicate nor stably integrate in MG1655, the other product of this recombination event, λ1104 Tet', is diluted out of the population. Thus, this process produces a Kan' Tet' recombinant.

MG1655 derivatives containing the Tn10 to be converted were infected with λ1104 at a multiplicity of infection of 1.0, plated on LB-kanamycin plates to select for Kan' cells, and scored for Tet'. As described above, the cells derived from the desired recombination event will be Kan' Tet'. In contrast, cells in which the Tn10kan moved to the chromosome by transposition would be Kan' Tet'. Kan' Tet' candidates were obtained with a frequency between 1 × 10^-4 and 1 × 10^-5 per input phage, which is similar to the reported transposition frequency of 1 × 10^-5 for Tn10 (61).

P1 transductions between each Kan' Tet' candidate and its parental Tn10 strain were used to show that the Tn10kan transposon was located at the position as the original Tn10. P1 vir grown on the parental Tn10 strains was used as the donor to transduce the Kan' Tet' candidates to Tet'. Between 100 and 200 Tet' transductants were then scored for their Kan' phenotype. If at least a Kan' Tet' transductants were Kan', the Tn10kan was considered to be 100% linked to the original Tn10 and placed in the mapping set. Between 10 and 90% of the Kan' Tet' candidates obtained for any one conversion attempt showed the expected 100% linkage to...
Line	Insertion position	Strain	Genotype	Source or construction
Hfr strains				
1	00.00	NK5148	rpsL lacZU118 thr-34::Tn10	N. Kleckner
2	00.00	CAG18442	MG1655 thr-34::Tn10	N. Kleckner
3	00.00	CAG18425	MG1655 thr-3091::Tn10kan	N. Kleckner
4	00.75	NK6034	rpsL lacZU118 car-96::Tn10	N. Kleckner
5	00.75	CAG12093	MG1655 car-96::Tn10	N. Kleckner
6	00.75	CAG18620	MG1655 car-3092::Tn10kan	N. Kleckner
7	02.00	FMJ201	zac-3051::Tn10	D. Clark, formerly zac::Tn10
8	02.00	CAG12095	MG1655 zac-3051::Tn10	D. Clark, formerly zac::Tn10
9	02.00	CAG12131	MG1655 zac-3093::Tn10kan	D. Clark, formerly zac::Tn10
10	03.50	SJ16	panD2 metB1 relA1 spoT1 gyrA216 yh-1 zac-220::Tn10	C. O. Rock (30, 31)
11	03.50	CAG12025	MG1655 Zac-220::Tn10	C. O. Rock (30, 31)
12	03.50	CAG12105	MG1655 Zac-3094::Tn10kan	C. O. Rock (30, 31)
13	04.75	JW353	thr-1 leuB6 thyA6 met-89 thi-1 deoC1 lacY1 rpsL67 tonA1 supE44 Zac-502::Tn10	B. Bachmann
14	04.75	CAG18436	MG1655 Zac-502::Tn10	B. Bachmann
15	04.75	CAG18580	MG1655 Zac-3095::Tn10kan	B. Bachmann
16	06.25	CAG1681	proAB81::Tn10	Lab collection
17	06.25	CAG18447	MG1655 proAB81::Tn10	Lab collection
18	06.25	CAG18515	MG1655 proAB9096::Tn10kan	Lab collection
19	06.75	CAG18633	MG1655 Zac-3198::Tn10kan	Lab collection
20	07.75	RS1071	leuB6 trp-31 hisG1 argG6 metB1 gal-6 rafA1 xyl-7 mtl-2 rpsL104 tonA2 supE44 Zac-281::Tn10	B. Bachmann
21	07.75	CAG12080	MG1655 Zac-281::Tn10	B. Bachmann
22	08.00	CAG1538	lacZU118 rpsL lacX42::Tn10	Lab collection
23	08.00	CAG18439	MG1655 lacZU118 lacX42::Tn10	Lab collection
24	08.00	CAG18420	MG1655 lacZU118 lacX4098::Tn10	Lab collection

Continued on following page
Line	Insertion position	Strain	Genotype	Source or construction
25	09.00	CAG8091	galK rpsL proC zbi-3053::Tn10	Lab collection
26	09.00	CAG18091	MG1655 proC zbi-3053::Tn10	P1(CAG8091) x MG1655
27	09.00	CAG18091	MG1655 proC zbi-3053::Tn10	Tn10kan conversion of CAG18091
28	09.50	P2719	araD ompr relA rpsL naqT7 thiA ΔargF-lacY169 thiA txx-247::Tn10	P. Reeves (48)
29	09.50	CAG12148	MG1655 txx-247::Tn10	P1(P2719) x MG1655
30	09.50	CAG18143	MG1655 txx-3100::Tn10kan	Tn10kan conversion of CAG12148
31	10.50	SG20253	zbi-3053::Tn10	S. Gottesmann (60)
32	10.50	CAG12017	MG1655 zbi-3053::Tn10	P1(SG20253) x MG1655
33	10.50	CAG12107	MG1655 zbi-3100::Tn10kan	Tn10kan conversion of CAG12017
34	11.50	ML45	zbi-3053::Tn10	J. Croman (50), formerly zbi-::Tn10
35	11.50	CAG12154	MG1655 zbi-3053::Tn10	P1(M145) x MG1655
36	12.25	NK6051	relA spoT1 thi-1 ΔargF-lacY169 parE79::Tn10	B. Bachmann
37	12.25	CAG12171	MG1655 parE79::Tn10	P1(NK6051) x MG1655
38	12.25	CAG18566	MG1655 parE200::Tn10kan	Tn10kan conversion of CAG12171
39	13.25	CAG12021	MG1655 zbi-3105::Tn10	Lab collection
40	13.25	CAG12116	MG1655 zbi-3200::Tn10kan	Tn10kan conversion of CAG12021
41	14.50	RK4342	pro-3 entA403 supE44 his-218 rpsL109 xyl-5 or xyl-7	D. Clark (1)
42	14.50	CAG12149	MG1655 zbi-601::Tn10	P1(RK4342) x MG1655
43	14.50	CAG18421	MG1655 zbi-3104::Tn10kan	Tn10kan conversion of CAG12149
44	15.00	SK2257	thyA6 rpsL120 devC1 zbi-280::Tn10	B. Bachmann
45	15.00	CAG12077	MG1655 zbi-280::Tn10	P1(SK2257) x MG1655
46	15.00	CAG18513	MG1655 zbi-3105::Tn10kan	Tn10kan conversion of CAG12077
47	16.25	P2217	lacZ(Am) trpAm) rpsL thi supE44 zbi-3057::Tn10	P. Reeves, formerly zbi-::Tn10
48	16.25	CAG18433	MG1655 zbi-3057::Tn10	P1(P2217) x MG1655
49	16.25	CAG18514	MG1655 zbi-3106::Tn10	Tn10kan conversion of CAG18433
50	16.75	CAG18087	galK rpsL nadA57::Tn10	Lab collection
51	16.75	CAG12147	MG1655 nadA57::Tn10	P1(CAG18087) x MG1655
52	16.75	CAG18341	MG1655 nadA3052::Tn10kan	Tn10kan conversion of CAG12147
53	17.75	CAG18392	galK2 galT1 cdxE(bisB28) bioC1 bioA24 zbi-29::Tn10	Lab collection
54	17.75	CAG18493	MG1655 zbi-29::Tn10	P1(CAG18392) x MG1655
55	17.75	CAG18531	MG1655 zbi-3108::Tn10kan	Tn10kan conversion of CAG18493
56	18.75	S43314	pro galK2 rpsL yviH50 conAo41 zbi-3058::Tn10	K. Hammer, formerly zbi::Tn10
57	18.75	CAG12034	MG1655 zbi-3058::Tn10	P1(S43314) x MG1655
58	18.75	CAG12112	MG1655 zbi-3109::Tn10kan	Tn10kan conversion of CAG12034
59	20.00	RW1230	hisG4 thi-1 lacY1 galK2 supE44 mal-1 ΔargF-proA62 xyl-5 or xyl-7, zbi-1230::Tn10	R. Weisberg
60	20.00	CAG18478	MG1655 zbi-1230::Tn10	P1(RW1230) x MG1655
61	20.00	CAG18528	MG1655 zbi-3108::Tn10kan	Tn10kan conversion of CAG18478
62	21.00	DC304	zbi-3059::Tn10	D. Clark, formerly zbi::Tn10
63	21.00	CAG12094	MG1655 zbi-3059::Tn10	P1(DC304) x MG1655
64	21.00	CAG12130	MG1655 zbi-3111::Tn10kan	Tn10kan conversion of CAG12094
65	22.25	DC305	pyrD134 his89 galK2 malA1 xyl-7 mal-2 rpsL118 zve-282::Tn10	D. Clark
66	22.25	CAG18466	MG1655 zve-282::Tn10	P1(DC305) x MG1655
67	22.25	CAG18613	MG1655 zve-3112::Tn10kan	Tn10kan conversion of CAG18466
68	22.75	JY34	trp locZ rpsL thi supP5::Tn5	J. Wood (24)
69	22.75	CAG18703	MG1655 supP5::Tn5	PMJL34 (24) x MG1655
70	24.25	TL212	fbbB5301 ppxF25 relA rpsL150 malT100(Con) devC1 araD139 ΔargF-lacY169 ΔmalE144 zve-726::Tn10	T. Larson (39)

Continued on following page
TABLE 1—Continued

Line	Insertion position	Strain	Genotype	Source or construction
71	24.25	CAG12078	MG1655 :zce-226::Tn10	P1(TL212) × MG1655
72	24.25	CAG12124	MG1655 :zce-311::Tn10kan kan	Tn10kan conversion of CAG12078
73	25.25	RS3242	trpE61 :tna-5 dadaR1 trpaA2 zcf-117::Tn10	B. Bachmann
74	25.25	CAG18463	MG1655 :zcf-117::Tn10	P1(RS3242) × MG1655
75	25.25	CAG18516	MG1655 :zcf-311::Tn10kan	Tn10kan conversion of CAG18463
76	25.75	RS3040	F' :fadR11::Tn10	B. Bachmann
77	25.75	CAG18497	MG1655 :fadR11::Tn10kan	P1(RS3040) × MG1655
78	25.75	CAG18544	MG1655 :fadR11::Tn10	Tn10kan conversion of CAG18497
79	26.75	ORN125	zcg-3060::Tn10	P. Orndorff (55), formerly zcg::Tn10
80	26.75	CAG12016	MG1655 :zcg-3060::Tn10	P1(ORN125) × MG1655
81	26.75	CAG12106	MG1655 :zcg-311::Tn10kan	Tn10kan conversion of CAG12016
82	27.25	JW380	zch-506::Tn10	B. Bachmann
83	27.25	CAG12169	MG1655 :zch-506::Tn10	P1(JW380) × MG1655
84	27.25	CAG18551	MG1655 :zch-311::Tn10kan	Tn10kan conversion of CAG12169
85	28.50	PK1085	zci-233::Tn10	T. Hill (28)
86	28.50	CAG12028	MG1655 :zci-233::Tn10	P1(PK1085) × MG1655
87	28.50	CAG12111	MG1655 :zci-311::Tn10kan	Tn10kan conversion of CAG12028
88	29.50	EC2111	araD139 2argE-lacU169 rpsL thi met-1 trp-3 fmr-501 trp-3 zje-301::Tn10	D. Clark, formerly zci::Tn10
89	29.50	CAG12081	MG1655 :zje-301::Tn10 fmr-501?	P1(EC2111) × MG1655
90	31.00	FM1200	trg-2::Tn10	D. Clark (described in reference 10)
91	31.00	CAG12026	MG1655 :trg-2::Tn10	P1(FM1200) × MG1655
92	31.00	CAG12108	MG1655 :trg-312::Tn10kan	Tn10kan conversion of CAG12026
93	32.00	PLK1269	trpA9605 his-85 thyA714 ilv-632 dec-70 trpR55 pro-48 arg-59 tss-84 rac zde-235::Tn10 zdd-230::Tn9	P. Kuempel (9)
94	32.00	CAG18461	MG1655 :zde-235::Tn10	P1(PLK1269) × MG1655
95	32.00	CAG18576	MG1655 :zde-311::Tn10kan	Tn10kan conversion of CAG18461
96	32.75	PK1220	zdd-230::Tn9	P. Kuempel (9)
97	32.75	CAG12027	MG1655 :zdd-230::Tn9	P1(PK1220) × MG1655
98	33.50	PLK1253	trpA9605 his-85 thyA714 ilv-632 dec-70 trpR55 pro-48 arg-59 tss-84 rac zde-234::Tn10 zdd-230::Tn9	P. Kuempel (9)
99	33.50	CAG18459	MG1655 :zde-234::Tn10	P1(PLK1253) × MG1655
100	34.50	CAG18637	MG1655 :zdf-3062::Tn5	This work
101	35.75	UT152	ara napA argE(Am) rpoB(RpF) thi tyrS565 zdg-603::Tn10	B. Bachmann
102	35.75	CAG18462	MG1655 :zdf-603::Tn10	P1(UT152) × MG1655
103	35.75	CAG18567	MG1655 :zdf-3121::Tn10kan	Tn10kan conversion of CAG18462
104	36.00	CAG18629	MG1655 :zdf-3198::Tn10kan	This work
105	37.50	DF949	tonA22 ompF627 gnd-1 relA1 pir-10 spo115 zdh-925::Tn10	D. Fraenkel (17)
106	37.50	CAG12151	MG1655 :zdh-925::Tn10	P1(DF949) × MG1655
107	37.50	CAG18568	MG1655 :zdh-3122::Tn10kan	Tn10kan conversion of CAG12151
108	38.25	BJW72	thr-1 ara-14 leuB6 lacY1 tss-33 supE44 galK2 xth-3 his44 rbfD1 rpsL51 kgK51 metL xyl-5 argE3 thi-1 dtgnt-proA62 rac zdi-276::Tn10	B. Bachmann
109	38.25	CAG18464	MG1655 :zdi-276::Tn10	P1(BJW72) × MG1655
110	38.25	CAG18518	MG1655 :zdi-3122::Tn10kan	Tn10kan conversion of CAG18464
111	39.50	DC369	fadR16 btaD12 mel-1 supF58 zdi-225::Tn10	D. Clark
112	39.50	CAG18465	MG1655 :zdi-225::Tn10	P1(DC369) × MG1655
113	39.50	CAG18578	MG1655 :zdi-3124::Tn10kan	Tn10kan conversion of CAG18465

Continued on following page
TABLE 1—Continued

Line	Insertion position	Strain	Genotype	Source or construction
114	40.25	DC374	fadR awcC fadF zeu-3098::Tn10	D. Clark, formerly zeu::Tn10
115	40.25	CAG12074	MG1655 zeu-3098::Tn10	Pl(DC374) × MG1655
116	40.25	CAG12122	MG1655 zeu-3125::Tn10kan	Tn10kan conversion of CAG12074
117	40.75	N3041	InTerD-rrmE1 edc-51::Tn10	B. Bachmann
118	40.25	CAG18486	MG1655 edc-51::Tn10	Pl(N3041) × MG1655
119	40.75	CAG18561	MG1655 edc-3126::Tn10kan	Tn10kan conversion of CAG18486
120	42.25	N3024	InTerD-rrmE1 urrC79::Tn10	B. Bachmann
121	42.25	CAG12156	MG1655 urrC79::Tn10	Pl(N3024) × MG1655
122	43.00	CAG18453	MG1655 zed-3099::Tn10	Lab collection
123	43.00	CAG18563	MG1655 zed-3128::Tn10kan	Tn10kan conversion of CAG18451
124	44.25	DC411	thi-1 thr-1 leu-6 metG58 hisC5 proA2 metB his 2GalK2 rpsL urrC72::Tn10	D. Clark, formerly zee::Tn10
125	44.25	CAG12099	MG1655 zee-3129::Tn10	Pl(DC411) × MG1655
126	44.25	CAG12176	MG1655 zee-3189::Tn10kan	Tn10kan conversion of CAG12099
127	45.75	LA5606	mgl-500::Tn10	W. Boos (12)
128	45.75	CAG12179	MG1655 mgl-500::Tn10	Pl(LA5606) × MG1655
129	46.50	LA5651	thl-1 leuB lacYI phoA14 rpsL14 malA1 metB his 2GalK2 rpsL urrC72::Tn10	W. Boos (11)
130	46.50	CAG12998	MG1655 zee-222::Tn10	Pl(LA5651) × MG1655
131	46.50	CAG12100	MG1655 zee-3138::Tn10kan	Tn10kan conversion of CAG12998
132	47.75	CS1230	opmC61 gyaA1 zee-298::Tn10	B. Bachmann, formerly zee-298::Tn10
133	47.75	CAG12177	MG1655 zee-298::Tn10	Pl(CS1230) × MG1655
134	47.75	CAG18577	MG1655 zee-3142::Tn10kan	Tn10kan conversion of CAG12177
135	48.50	DL2	zee-722::Tn10	D. Clark
136	48.50	CAG12178	MG1655 zee-722::Tn10	Pl(DL2) × MG1655
137	48.50	CAG12183	MG1655 zee-3145::Tn10kan	Tn10kan conversion of CAG12178
138	49.50	DC334	arcr4 dsdA7 argB1 thi-1 malA1 lacYI or lacZ4 xyl-7 metB::supE44::Tn10	D. Clark, formerly zee-223::Tn10
139	49.50	CAG18484	MG1655 zee-222::Tn10	Pl(DC334) × MG1655
140	49.50	CAG18552	MG1655 zee-3144::Tn10kan	Tn10kan conversion of CAG18484
141	50.50	RS3338	fadR901 fadL771::Tn10	B. Bachmann (described in reference 52)
142	50.50	CAG18483	MG1655 fadL771::Tn10	Pl(RS3338) × MG1655
143	51.00	RS3116	arcr4 fadL701 dsdA1 ilD188 thi-1 malA1 xyl-7 metB::supE44::Tn10	B. Bachmann (formerly zaf-1::Tn10)
144	51.00	CAG18467	MG1655 zaf-1::Tn10	Pl(RS3116) × MG1655
145	51.00	CAG18522	MG1655 zaf-3135::Tn10kan	Tn10kan conversion of CAG18467
146	51.75	S01024	relA1 metC99 spoT1 thi-1 supC510::Tn10	B. Bachmann
147	51.75	CAG18468	MG1655 supC510::Tn10	Pl(HisD1024) × MG1655
148	51.75	CAG18565	MG1655 supC3146::Tn10kan	Tn10kan conversion of CAG18468
149	52.75	CAG18632	MG1655 zaf-3135::Tn10kan	This work
150	53.25	NK6056	HinfIPO1 relA1 spoT1 thi-1 Δmgt-lacI5 purC80::Tn10	B. Bachmann
150a	53.25	CAG18470	MG1655 purC80::Tn10	Pl(NK6056) × MG1655
150b	53.25	CAG18524	MG1655 purC3147::Tn10kan	Tn10kan conversion of CAG18470
152	53.50	CAG18631	MG1655 zaf-3135::Tn10kan	This work
153	54.00	N3007	InTerD-rrmE1 gau-26::Tn10	B. Bachmann
154	54.00	CAG18469	MG1655 gau-26::Tn10	Pl(N3007) × MG1655
Line	Insertion position	Strain	Genotype	Source or construction
------	--------------------	--------------------	---	--
155	54.75	BW280	HiP(P045) nadB7 ung-1 relA1 spoT1 thi-1	B. Weiss (18), formerly
			zff-208::Tn10	zff-208::Tn10 × MG1655
156	54.75	CAG18481	MG1655 zff-208::Tn10	Pl(WB280) × MG1655
157	54.75	CAG18570	MG1655 zff-3139::Tn10kan	Tn10kan conversion of CAG18481
158	55.75	NK6042	HiP(P045) relA1 spoT1 thi-1 Δgpt-lac5::nadB51::Tn10	B. Bachmann
159	55.75	CAG18480	MG1655 nadB51::Tn10	Pl(NK6042) × MG1655
160	55.75	CAG18412	MG1655 nadB51::Tn10kan	Tn10kan conversion of CAG18480
161	56.75	NK6024	HiP(P045) relA1 spoT1 thi-1 Δgpt-lac5::pheA18::Tn10	B. Bachmann
162	56.75	CAG12158	MG1655 pheA18::Tn10	Pl(NK6024) × MG1655
163	56.75	CAG18608	MG1655 pheA18::Tn10kan	Tn10kan conversion of CAG12158
164	57.50	CAG18642	MG1655 zfb-3131::Tn10	This work
165	58.25	CAG18562	MG1655 zfb-3143::Tn10kan	This work
166	59.25	N3002	IN(rrnD-rrnEI) cysC95::Tn10	R. W. Lloyd
167	59.25	CAG12173	MG1655 cysC95::Tn10	Pl(N3002) × MG1655
168	59.25	CAG12182	MG1655 cysC315::Tn10kan	Tn10kan conversion of CAG12173
169	60.25	JK1015	fuc-3072::Tn10	D. Clark, formerly
170	60.25	CAG12079	MG1655 fuc-3072::Tn10	Pl(JK1015) × MG1655
171	60.25	CAG12115	MG1655 fuc-3154::Tn10	Tn10kan conversion of CAG12079
172	60.75	DFB264	MG1655 recD1901::Tn10	D. Biek (8)
173	62.00	DC366	lysA22 argA21 cysC43 rpsL104 zgc-3074::Tn10	D. Clark (15), formerly
174	62.00	CAG18709	MG1655 zgc-3074::Tn10	P1(DC367) × MG1655
175	62.00	CAG18212	MG1655 zgc-3154::Tn10kan	Tn10kan conversion of CAG12082
176	63.50	DF264	HiP(P0241) relA1 spoT1 pgk-2 pit-10 tonA22	B. Bachmann
177	63.50	CAG12168	MG1655 zgd-210::Tn10	Pl(DF264) × MG1655
178	63.50	CAG18604	MG1655 zgd-3156::Tn10kan	Tn10kan conversion of CAG12168
179	64.25	S01023	relA1 spoT1 thi-1 napG511::Tn10	B. Bachmann
180	64.25	CAG18472	MG1655 napG511::Tn10	Pl(S01023) × MG1655
181	64.25	CAG18559	MG1655 napG517::Tn10kan	Tn10kan conversion of CAG18474
182	65.00	NK6027	relA1 spoT1 thi-1 Δgpt-lac5 metC162::Tn10	B. Bachmann
183	65.00	CAG18475	MG1655 metC162::Tn10	Pl(NK6027) × MG1655
184	65.00	CAG18527	MG1655 metC3158::Tn10kan	Tn10kan conversion of CAG18475
185	66.25	P2727	his rpsL tolC210::Tn10	P. Reeves (49)
186	66.25	CAG12184	MG1655 tolC210::Tn10	Pl(P2727) × MG1655
187	67.00	CAG18164	zhb-3075::Tn10	Lab collection
188	67.00	CAG12152	MG1655 zhb-3075::Tn10	Pl(CAG18164) × MG1655
189	67.00	CAG18574	MG1655 zhb-3159::Tn10kan	Tn10kan conversion of CAG12152
190	68.75	SK2262	leuB6 hisG1 argG6 metB1 lacY1 gal-6 xyl-7 met2 rpsL104 tonA22 tsx-1 supE44 zgi-203::Tn10	B. Bachmann, formerly
191	68.75	CAG12072	MG1655 zgi-203::Tn10	Pl(SK2262) × MG1655
192	68.75	CAG12115	MG1655 zgi-3198::Tn10kan	Tn10kan conversion of CAG12072
193	70.00	DV6	metB1 panD2 relA1 spoT1 gyrA216 X' zhu-6::Tn10	C. O. Rock (59)
194	70.00	CAG12153	MG1655 zhu-6::Tn10	Pl(DV6) × MG1655
195	70.00	CAG18605	MG1655 zhu-316::Tn10kan	Tn10kan conversion of CAG12153
196	71.75	JW375	superE44 zhb-3082::Tn10	D. Clark, formerly
197	71.75	CAG12071	MG1655 zhb-3082::Tn10	Pl(JW375) × MG1655
198	71.75	CAG12120	MG1655 zhb-3169::Tn10kan	Tn10kan conversion of CAG12071

Continued on following page
Line	Insertion position	Strain	Genotype	Source or construction
199	72.00	DV9	metB1 panB2 relA1 spoT1 gyrA216 k+ zhe-9::Tn10	C. O. Rock (59)
200	72.00	CAG12159	MG1655 zhe-9::Tn10	Pl(DV9) × MG1655
201	72.00	CAG18606	MG1655 zhe-317::Tn10	Tnl0kan conversion of CAG12159
202	72.75	JK372	zhe-3083::Tn10	D. Clark, formerly zhe-9::Tn10
203	72.75	CAG12075	MG1655 zhe-3083::Tn10	Pl(JK372) × MG1655
204	72.75	CAG12133	MG1655 zhe-317::Tn10	Tnl0kan conversion of CAG12075
205	74.00	CAG18612	gal-3 crsG zhe-3084::Tn10	Lab collection
206	74.00	CAG18456	MG1655 crsG zhe-3084::Tn10	Pl(CAG18612) × MG1655
207	74.00	CAG18556	MG1655 crsG zhe-317::Tn10	Tnl0kan conversion of CAG18456
208	74.50	CAG8007	trp(Am) lac(Am) pho(Am) supC(Ts) spoH165(Am) zhe-3085::Tn10	Lab collection
209	74.50	CAG18452	MG1655 zhe-3085::Tn10	Pl(CAG8007) × MG1655
211	75.50	CAG2228	relA1 spoT1 thi-1 pveI zib-207::Tn10	T. Yura (57)
212	75.50	CAG18450	MG1655 zib-207::Tn10	Pl(CAG2228) × MG1655
213	75.50	CAG18573	MG1655 zib-317::Tn10	Tnl0kan conversion of CAG18450
214	76.50	CAG18638	MG1655 zhe-3086::Tn10	This work
215	77.75	CAG18639	MG1655 zhe-3087::Tn10	This work
216	78.50	CAG18640	MG1655 zib-3076::Tn10	This work
217	80.00	CAG12175	MG1655 zib-3077::Tn10	This work
218	80.75	BW322	relA1 spoT1 thi-1 pveI zib-207::Tn10	B. Weiss (18), formerly zib-901::Tn10
219	80.75	CAG12163	MG1655 zib-207::Tn10	Pl(BW322) × MG1655
220	80.75	CAG18569	MG1655 zib-316::Tn10	Tnl0kan conversion of CAG12163
221	81.75	RK4901	rbc argH metB his pveL cysE lac mtl rpsL zib-901::Tn10	R. Kadner (33), formerly zib-901::Tn10
222	81.75	CAG18492	MG1655 zib-901::Tn10	Pl(RK4901) × MG1655
223	81.75	CAG18572	MG1655 zib-316::Tn10	Tnl0kan conversion of CAG18492
224	83.00	JW355	asusB2 relA1 thyA95 spoT1 thi-1 deo-33 zib-501::Tn10	B. Bachmann, formerly zib-501::Tn10
225	83.00	CAG18499	MG1655 zib-501::Tn10	Pl(JW355) × MG1655
226	83.00	CAG18558	MG1655 zib-316::Tn10	Tnl0kan conversion of CAG18499
227	83.75	SK2210	tss-3 supF42 hisG4 rpsL281 xyl-7 mtl-1 argH1 zib-290::Tn10	B. Bachmann
228	83.75	CAG18501	MG1655 zib-290::Tn10	Pl(SK2210) × MG1655
229	83.75	CAG18592	MG1655 zib-316::Tn10	Tnl0kan conversion of CAG18501
230	84.50	MBGO	araC(Am) araD metB lacZ(Am) rpsL zib-500::Tn10	J. Beckwith
231	84.50	CAG18431	MG1655 zib-500::Tn10	Pl(MBGO) × MG1655
232	84.50	CAG18599	MG1655 zib-316::Tn10	Tnl0kan conversion of CAG18431
233	85.50	RK4349	rbc argH metB proB ema rpsL his Δlac metE3079::Tn10	R. Kadner
234	85.50	CAG18491	MG1655 metE3079::Tn10	Pl(RK4349) × MG1655
235	86.25	RS3087	fadAB101::Tn10	R. Simons
236	86.25	CAG18496	MG1655 fadAB101::Tn10	Pl(RS3087) × MG1655
237	86.25	CAG18557	MG1655 fadAB165::Tn10	Tnl0kan conversion of CAG18496
238	87.00	SK1861	rpsL196 trp49825 zib-35::Tn10	S. Kushner
239	87.00	CAG18495	MG1655 zib-35::Tn10	Pl(SK1861) × MG1655
240	87.00	CAG18601	MG1655 zib-316::Tn10	Tnl0kan conversion of CAG18495
241	87.50	CAG18636	MG1655 zib-3088::Tn10	This work
242	88.50	JW383	thr-1 leuB6 eda-50 hisG4 metF159 thi-1 ara-14 lac Y1 xyl-5 mtl-1 rpsL136 tonA31 tsx-78 Δgal-attX)99 zib-501::Tn10	B. Bachmann, formerly zib-501::Tn10
243	88.50	CAG18477	MG1655 zib-501::Tn10	Pl(JW383) × MG1655
244	88.50	CAG18560	MG1655 zib-316::Tn10	Tnl0kan conversion of CAG18477

Continued on following page
Line	Insertion position	Strain	Genotype	Source or construction
245	89.50	CAG8396	lysA29	Lab collection
246	89.50	MG12185	lacZ(Am) relAI rpsE argE66::Tn10	
247	90.25	NKS139	I1nrrD-nrrE1 thr-39::Tn10	
248	90.25	CAG18500	MG1655 thr-39::Tn10	
249	90.25	CAG18618	MG1655 thr-3178::Tn10kan	
250	90.75	RS162	thr-l lonB6 tonA21 lacY1 supE44 thyA6 rpsL67 thi-l	
			donB252 dicC1	
			zji-504::Tn10	
251	90.75	CAG18498	MG1655 zji-504::Tn10	
252	90.75	CAG18615	MG1655 zji-3179::Tn10kan	
253	91.50	TSI6	[araD139] f1B5301 ptsF25 relAI epsL150	
			dcbC1	
			DeltaF-lacU169 malF3089::Tn10	
254	91.50	CAG12164	MG1655 malF3089::Tn10	
255	91.50	CAG18609	MG1655 malF1809::Tn10kan	
256	92.50	CAG18630	MG1655 zji-3181::Tn10kan	
257	93.75	AKK231	Hfr(P2A) relAI spoT1 ilv-299 metB1 ampC1	
			zji-2231::Tn10	
258	93.75	CAG18488	MG1655 zji-2231::Tn10	
259	93.75	CAG18671	MG1655 zji-3182::Tn10kan	
260	94.50	AKK241	Hfr(P2A) relAI spoT1 ilv-299 metB1 ampC1	
			zji-2241::Tn10	
261	94.50	CAG18487	MG1655 zji-2241::Tn10	
262	94.50	CAG18555	MG1655 zji-3183::Tn10kan	
263	95.75	GR401	[araD139] f1B5301 ptsF25 relAI epsL150	
			dcbC1	
			rbsR the araE1 DeltaF-lacU169 Deltahis-gbd	
			cysA30::Tn10	
264	95.75	CAG12073	MG1655 cysA30::Tn10	
265	95.75	CAG12114	MG1655 cysA185::Tn10kan	
266	96.75	DF1062	[araD139] galmE5 galkH6 relAI epsL150 spoT1 hsdR2	
			Deltaarab-17679 (lat17Y)74 zji-920::Tn10	
267	96.75	CAG12019	MG1655 zji-920::Tn10	
268	96.75	CAG12110	MG1655 zji-3180::Tn10kan	
269	98.25	SK597	thr-l relAI zji-6::Tn10	
270	98.25	CAG18429	MG1655 zji-6::Tn10	
271	98.25	CAG18610	MG1655 zji-3187::Tn10kan	
272	99.50	SK472	relAI thr-l spoT1 serB22 zji-202::Tn10	
273	99.50	CAG18430	MG1655 zji-202::Tn10	
274	99.50	CAG18619	MG1655 zji-3188::Tn10kan	

Other strains
1. MG1655 Wild type
2. SC12 lact(Am) trp(Am) pho(Am) mal(Am) supC(Ts) malT
3. CAG12184 SC12 zbi-23::Tn10
4. CAG1284 SC12 cysE zii-4901
5. CAG12185 SC12 cysE zii-207::Tn10
6. CAG12186 SC12 cysE zii-3160::Tn10kan
7. CAG12187 SC12 zgl-3174::Tn10kan
8. CAG12179 MG1656 purE79::Tn10
9. CAG8408 MG1655 btaB3191::Tn10kan
10. CAG3002 MG1655 btaB3192::Tn10
11. CAG1564 rpsL1 lacZ1U18 trpB38::Tn10
12. CAG18579 MG1655 trpB3193::Tn10kan
13. CAG18458 MG1655 trpB38::Tn10
their Tn10 parent, indicating that they contained a Tn10kan at the same chromosomal location as in the parent. The remainder were located close to but separable from the original Tn10. These candidates, which probably arose from one of the types of chromosomal rearrangement known to be mediated by Tn10 (121, 34), were not further analyzed. When the original Tn10 was located in an easily scorable gene, we also determined whether the Tn10kan showed the predicted 100% linkage to that gene by P1 transduction. For example, CAG18425 (Table 1, mapping strains, line 3) should contain a Tn10kan in the thr gene. P1 vir grown on CAG18425 was used to transduce MG1655 strains to KanR, and transductants were scored for a Thr− phenotype. Only candidates which gave 100% KanR Thr− transductants were considered to have a Tn10kan within the thr gene. All of the 13 Tn10kan insertions tested in this way contained a Tn10kan insertion 100% linked to the original Tn10.

Filling in the transduction gaps. In determining the P1 cotransduction frequencies between Tn10 and Tn10kan transposons, we identified several transduction gaps, i.e., regions where two adjacent drug resistance insertions were not linked by P1 transduction. To close these gaps, we obtained additional insertions by a variety of techniques. In general, random insertion pools were made in strain MG1655 as described above. In most cases, P1 vir was then grown on each pool and used to select insertions which closed a transduction gap as outlined below. Each newly isolated insertion was mapped relative to insertions flanking the gap to determine whether the new insertion aided in closing the gap.

(i) Selection of insertions by cotransduction with nearby auxotrophic markers. In several instances, transduction gaps occurred near easily selectable auxotrophic markers. In these cases, P1 vir grown on random Tn10kan pools was used to transduce auxotrophic strains simultaneously to prototrophy and antibiotic resistance, thus targeting the Tn10kan to the region of the gap. The map position of each insertion was determined with respect to the auxotrophic marker used and the Tn10 transposons which defined the transduction gap. New insertions which closed the transduction gap were placed in the collection.

Strains CAG18447, CAG18470, and CAG12164 (Table 1, mapping strains, lines 17, 151a, and 254, respectively), containing proAB, purC, and malF mutations, respectively, were simultaneously transduced to KanR and to either Pro−, Pur−, or Mal− by using P1 vir grown on Tn10kan pools from MG1655. Independent KanR Pro+, KanR Pur+, and KanR Mal− transductants were purified. Strain CAG12158 was simultaneously transduced to Tet− Phe+ by using P1 vir grown on Tn10 pools from MG1655. New insertions were then mapped with respect to the insertions which defined the transduction gap. Strains CAG18580, CAG18633, CAG18632, CAG18631, and CAG18630 (Table 1, mapping strains, lines 15, 19, 152, 149, 164, and 256, respectively) were constructed in this manner. For their cotransduction frequencies with flanking Tn10 transposons, see Table 2 (crosses 8 to 11, 72 to 75, 80, 81, 126 and 127). For linkage to nearby markers, see Table 3 (crosses 6, 7, 37, 38, 88, and 89).

(ii) Selection of insertions by cotransduction with a nearby Tn10. In some instances, an easily selectable auxotrophic marker was not located near one of the identified transduction gaps. In these cases, we targeted Tn10kan transposons to the region of the transduction gap by ampicillin enrichment for KanR transductants that remove the resident Tn10, as first shown by Foster (19). This strategy takes advantage of the fact that tetracycline, a bacteriostatic antibiotic, will protect Tet+ cells from being killed by penicillin.

Strains containing a Tn10 transposon located at one end of the transduction gap were transduced to KanR by using P1 vir grown on a random Tn10kan pool and enriched for transductants which became Tet+. KanR transductants were pooled, diluted 1:100, and then grown overnight. We enriched for KanR Tet− transductants with two rounds of ampicillin treatment as described by Jin and Gross (32), except that KanR survivors were selected on LB-kanamycin plates. To identify KanR Tet− transductants, we replica plated colonies onto LB-kanamycin-tetracycline and LB-kanamycin plates. Between 10 and 70% of the survivors exhibited a KanR Tet− phenotype. To determine the location of the new Tn10kan transposons with respect to nearby Tn10, we then mapped each candidate with respect to nearby Tn10 transposons by P1 transduction. Strains CAG18629, CAG18562, and CAG18636 (Table 1, mapping strains, lines 104, 165, and 241, respectively) were obtained in this manner. For their cotransduction frequencies with flanking Tn10 transposons, see Table 2 (crosses 50, 51, 82, 83, 119, and 120).

(iii) Isolation of insertions by simultaneous cotransduction of two antibiotic resistance markers with phage T4. The two approaches described above were most suitable for gaps that could be filled with a single insertion. A third approach was used to isolate several new insertions to link the one large transduction gap located between 76 and 80 min. In this case we made random pools on strains carrying insertions that defined this transduction gap. New insertions located near the transduction gap were isolated by demanding simultaneous transduction of both antibiotic resistance markers with phage T4G7, which can transduce approximately 3.5 min of the E. coli chromosome. These new insertions would be located within about 3.5 min of the targeted insertion. Each new insertion was then mapped by P1 transduction to determine its map position. Insertions that closed the transduction gap were kept and placed in the mapping collection.

Random Tn10kan pools were made on the Tn10-containing strains CAG8023 and CAG12185 (Table 1, additional strains, lines 3 and 5), and Tn10 pools were made on the Tn10kan-containing strains CAG12186 and CAG12187 (Table 1, additional strains, lines 6 and 7). Each of these strains carries an insertion at one end of the transduction gap. Strains on which the pools were made contained either the malT marker located 1 min to the left of the gap or the cysE marker located 1 min to the right of the gap, or both markers, which enabled us to screen against new insertions located outside the transduction gap. Phage T4G7T7 was grown on these random insertion pools and used to transduce MG1655 simultaneously to Tet+ and KanR, and the transductants were scored for their Mal and Cys phenotypes. Transductants that retained the Mal+ and Cys− phenotypes of the recipient will have the insertion positioned to the right of mal and to the left of cys. Most of these insertions will be located within the transduction gap. P1 vir stocks grown on purified candidates were used to transduce MG1655 to Tet− or KanR, and transductants were scored for the other antibiotic resistance marker. This transduction had two purposes. The first was to separate the new antibiotic resistance markers from the initial antibiotic resistance marker. The new Tn10 and Tn10kan transposons identified were then mapped against each other to establish linkage by P1 transduction. The second was to identify transductants containing the initial antibiotic resistance marker and the newly selected antibiotic resistance marker. These are candidates for new insertions linked to the outermost insertions.
which defined the gap. These Tn10 and Tn10kan transposons were then separated from each other by P1 transduction and mapped with respect to the outside markers, and the other new antibiotic resistance markers were identified. Strains CAG18638, CAG18639, CAG18640, and CAG12175 (Table 1, mapping strains, lines 214 to 217, respectively) were constructed in this manner. For the transduction frequencies for the insertions closing the gap, see Table 2 (crosses 105 to 110).

A similar approach was used to isolate insertions which closed the transduction gap between 33.5 and 35.5 min. In this case, random Tn5 pools were made on strains CAG18459 and CAG18462 (Table 1, mapping strains, lines 99 and 102, respectively), which defined this gap. P1 vir was then grown on each pool, and MG1655 was simultaneously transduced to Tet' and Kan' and analyzed as above. Strain CAG18637 (Table 1, mapping strains, line 100) was isolated by this technique. For the linkage of the insertions to nearby markers, see Table 2 (crosses 48 and 49).

Coordination of insertions to ordered \(\lambda \) clones. To coordinate the insertion map to the ordered clone bank of Kohara et al. (37), we identified \(\lambda \) clones capable of complementing insertions and point mutations in selectable genes. The \(\lambda \)EMBL4 and \(\lambda \)2001 cloning vectors used for the ordered Kohara clone bank are \(\lambda \) cl1: thus, this set of clones is unable to form stable lysogens. To perform complementation analysis, we used \(\lambda \) wild-type (\(\lambda \) cl1) helper phage to supply \(\lambda \) repressor in \(\lambda \)trans. Dicycogen strains containing wild-type \(\lambda \) and a particular \(\lambda \) clone from the region of interest were constructed by coinfecting stationary-phase cells with \(\lambda \) wild type (multiplicity of infection, 5) and the \(\lambda \) clone (multiplicity of infection, 1) being examined. Infected cells were incubated for 2 h at 37°C and then plated on selective plates and NZY plates as a control for dicycogen formation. This allowed the identification of \(\lambda \) clones able to complement or rescue specific auxotrophic mutations.

RESULTS AND DISCUSSION

The mapping kit we present consists of two sets of strains. The first set contains seven Hfr strains and permits the initial mapping of a mutation to a relatively small portion of the chromosome. The second set contains 182 P1 mapping strains with antibiotic resistance elements at approximately 1-min intervals. We have constructed isogenic strains containing one of two different antibiotic resistance markers at most locations on the chromosome. These mapping strains are used as donors for P1 transductions and allow the localization of unknown mutations to about 1 min or less on the chromosome. The overall mapping strategy relies on selecting for transfer of the antibiotic resistance marker from the donor to the recipient and then scoring the transductants for the presence or loss of the mutant phenotype. Both mapping sets are described below.

Hfr Mapping Set

Construction and characterization of Hfr strains. Two subsets of Hfr strains, differing only in the antibiotic resistance marker they carry, have been constructed for initial mapping of mutations and are described in Fig. 1 and Table 1. Subset 1 contains a Tn10 transposon and subset 2 contains a Tn10kan transposon inserted about 20 min from the origin of transfer of each Hfr.

We have determined the mating efficiency of each Hfr strain in the mapping kit by using the mating conditions described in Materials and Methods. Data for the Tn10 derivatives are presented in Table 4. Note that the different Hfr strains exhibit different efficiencies of mating. HfrH, for example, mates with high efficiency, whereas Hfr strains KL228 and KL14 have a relatively low efficiency of mating. The mating efficiency is not affected by the type of insertion, either Tn10 or Tn10kan, used (data not shown).

We have mapped the origin of transfer of each Hfr with respect to nearby insertions. Each Hfr was mated with strains containing independent antibiotic resistance elements near the reported origin of transfer. Exconjugants were scored for loss of the antibiotic resistance element in the recipient. Antibiotic resistance elements that are removed by the incoming Hfr are transferred early by the Hfr; those that remain are transferred later. Using this strategy, we have been able to place the origin of each Hfr between two adjacent antibiotic resistance markers. The earliest insertion transferred by each Hfr is shown in Fig. 1.

Hfr mapping strategy. Hfr strains transferring overlapping regions of the chromosome were used to localize the position of mutations to a small region of the chromosome. Each Hfr strain carries a selectable antibiotic resistance element approximately 20 min from its respective origin of transfer. Matings were performed as described in Materials and Methods, and the strains were plated onto selective plates. Wild-type alleles of mutations located between the origin of transfer and the selected antibiotic resistance marker were incorporated into exconjugants with a high probability (within the range of 15 to 100%). Scoring as few as 10 to 30 exconjugants is sufficient to establish whether a particular Hfr strain transfers the region in which the mutation is located. By comparing which Hfr strains give wild-type

Fig. 1. Hfr mapping set. 1. HfrH; 2. KL227; 3. KL208; 4. KL196; 5. KL16; 6. KL228; 7. KL14. Arrowheads indicate the origin and direction of transfer for each Hfr; bars indicate the positions of insertions used as selective markers. See Table 1 for genotypes. The position of each origin has been mapped between two insertions, and the first insertion transferred is shown for each Hfr.
recombinants, the position of the mutation can be determined to about a 5- to 15-min interval. This mapping strategy has been used by Wanner (60).

This method involves a single timed mating and only one type of selective plate, and it does not require the use of multiply marked donor or recipient strains, thereby allowing more flexibility in the choice of strain background for mutant selections. By using this approach, a large number of mutations can be easily mapped to a small region of the chromosome in a short time. Once the unknown mutation has been placed in a 5- to 15-min interval on the chromosome, its position can be localized further by P1 transduction, using the mapping strains discussed below. This allows for mapping to within a 1-min interval on the E. coli chromosome. It should be noted that the Hfr strains presented here are a subset of the various Hfr strains available (42, 43, 60), and this method can be used with other Hfr strains. In addition, other Hfr mapping techniques, such as determination of the time of entry (47, 53), can be used to narrow down the map position of mutation.

P1 Mapping Set

Our goal was to assemble a collection of isogenic strains, each containing a single antibiotic resistance marker, such that the set of strains would contain antibiotic resistance markers around the entire chromosome with adjacent insertions linked by P1 transduction. These strains are then used in conjunction with the Hfr strains described above to locate the map positions of mutations to within a 1-min region. This is similar to an approach described by Kukral et al. (38), who constructed 279 S. typhimurium strains carrying randomly spaced Tn10Δ163Δ17 elements. Below, we present a collection of strains that contain at least one of two different antibiotic resistance elements at known positions and link the entire E. coli chromosome by P1 transduction, coordinate the positions of these insertions to the standard E. coli map of Bachmann (2), and explain the use of these strains in the mapping of mutations.

Construction of the P1 mapping set. To construct the P1 mapping strains, we started with a collection of strains containing Tn10 insertions located around the chromosome. In addition, a few strains contained either a Tn9 or a Tn5 transposon. The origin and type of insertion present in each strain are indicated in Table 1. Each insertion was then transduced into MG1655 by using phage P1 as discussed in Materials and Methods.

To determine the linkage between nearby Tn10 transposons, it was necessary for adjacent Tn10 transposons to encode different antibiotic resistances. To accomplish this, we constructed each Tn10 transposon to a Tn10kan transposon by homologous recombination between the IS10 elements of the resident Tn10 on the chromosome and the IS10 elements of the incoming Tn10kan, carried on a defective λ phage (see Materials and Methods for the procedure and criteria for conversion). About 90% of the Tn10 transposons were amenable to conversion to Tn10kan; despite several attempts, the remainder were resistant. Resistance to conversion is most likely to result from some property of the insertion itself, for example, lack of homology between the resident Tn10 and the Tn10kan on either side of the tetracycline resistance marker as in the case of the mini-Tn10 element Tn/0163Δ17 (61). Less likely possibilities are that the insertion is in a region of the chromosome in which homologous recombination is low or that it is in a gene affecting the conversion process.

To determine the linkage between adjacent insertions, we mapped the position of each Tn10 by P1 transduction relative to each nearby Tn10kan (or Tn9 or Tn5). In general, P1 vir stocks grown on Tn10 strains were used to transduce Tn10kan (or Tn9 or Tn5) strains to Tet', and transductants were scored for Kan' (or Cam' in the case of Tn9). For the cotransduction frequencies obtained, see Table 2. Because the packaging of the DNA by phage P1 is not completely random, transduction frequencies between two markers can vary depending upon whether the donor or recipient carries that marker. In some cases, transductions were performed in both directions, using strains containing a particular insertion as both donor and recipient. In such cases, both sets of data are presented in Table 2. Variability depending upon the direction of transduction can be observed in Table 2 (crosses 93, 94, 136, and 137).

In several places, existing Tn10 transposons were unlinked by P1 transduction to the nearest converted Tn10kan. This led to the identification of several transduction gaps. To close these transduction gaps, we isolated additional Tn10, Tn10kan, and Tn5 insertions. Several strategies, described in detail in Materials and Methods, were used to target insertions to the regions containing these transduction gaps. All newly identified insertions were subsequently mapped with respect to existing antibiotic resistance insertions, which defined the transduction gap. Insertions that were linked to existing antibiotic resistance elements by P1 transduction were added to the collection. Complete cotransduction data for all of the insertions are presented in Table 2.

Location of the antibiotic resistance elements on the standard E. coli map. To coordinate the linkage data for the antibiotic resistance insertions with the standard E. coli map, we mapped a number of insertions with respect to nearby genes. Table 3 contains our data for the linkage of these insertions to additional markers, as well as data taken from the literature when appropriate. The sources of data are indicated in Table 3. As a result of these mapping studies, we have changed the alphanumeric map position designation for several insertions to more accurately reflect their map positions. In each case the allele number of the original insertion has been kept as described by Chumley et al. (14) and is indicated in Table 1.

We constructed the accumulated linkage data presented in Tables 2 and 3 to map distance (in minutes) by using the empirical equation $F = (1 - D/L)$ (63). In this equation, F is the cotransduction frequency, D is the distance in minutes, and L is the length of chromosomal DNA packaged by P1. L is normally considered to be 2 min; however, we have adjusted it to 1.8 min because our mapping procedure requires each transducing particle to carry an antibiotic insertion of about 0.2 min in length in addition to chromosomal DNA.

Once the cotransduction frequencies were converted into minutes, the position of each insertion was aligned to the standard E. coli genetic map. We first assigned map locations to insertions in known genes and to insertions with high linkage (>0.8 cotransduction frequencies) to known genes. These insertions are designated by an asterisk in Fig. 2. These map locations served as reference points for aligning the remainder of the insertions to the standard E. coli genetic map. The remainder of the insertions were intercalated between the insertions already aligned on the standard map on the basis of the calculated map distances between each insertion. The insertion map generated is shown in Fig. 2. In cases in which two P1 transductions were performed with the same insertion strains as the donor in one cross and the
TABLE 2. Linkage between insertion elements

Cross no.	Position of insertion (min)*	Recipient	Insertion allele no.	Donor	Cotransduction by PI Transduction		
	Recipient	Donor	thr-3091::Tnl0kan	car-96::Tnl0kan	car-96::Tnl0kan	car-96::Tnl0kan	
1	0.00	0.75	0.00	0.00	0.00	0.00	0.00
2	0.75	0.00	0.00	0.00	0.00	0.00	0.00
3	0.75	2.00	0.00	0.00	0.00	0.00	0.00
4	3.50	2.00	0.00	0.00	0.00	0.00	0.00
5	3.50	4.75	0.00	0.00	0.00	0.00	0.00
6	4.75	3.50	0.00	0.00	0.00	0.00	0.00
7	4.75	4.75	0.00	0.00	0.00	0.00	0.00
8	4.75	6.25	0.00	0.00	0.00	0.00	0.00
9	6.25	4.75	0.00	0.00	0.00	0.00	0.00
10	6.25	6.75	0.00	0.00	0.00	0.00	0.00
11	7.75	6.75	0.00	0.00	0.00	0.00	0.00
12	8.00	7.75	0.00	0.00	0.00	0.00	0.00
13	8.00	9.00	0.00	0.00	0.00	0.00	0.00
14	9.00	8.00	0.00	0.00	0.00	0.00	0.00
15	9.00	9.50	0.00	0.00	0.00	0.00	0.00
16	9.50	9.00	0.00	0.00	0.00	0.00	0.00
17	9.50	10.50	0.00	0.00	0.00	0.00	0.00
18	10.50	9.50	0.00	0.00	0.00	0.00	0.00
19	10.50	11.50	0.00	0.00	0.00	0.00	0.00
20	11.50	12.25	0.00	0.00	0.00	0.00	0.00
21	13.25	12.25	0.00	0.00	0.00	0.00	0.00
22	13.25	14.50	0.00	0.00	0.00	0.00	0.00
23	15.00	14.50	0.00	0.00	0.00	0.00	0.00
24	16.25	15.00	0.00	0.00	0.00	0.00	0.00
25	16.25	16.75	0.00	0.00	0.00	0.00	0.00
26	16.75	17.75	0.00	0.00	0.00	0.00	0.00
27	17.75	16.75	0.00	0.00	0.00	0.00	0.00
28	18.75	17.75	0.00	0.00	0.00	0.00	0.00
29	18.75	17.75	0.00	0.00	0.00	0.00	0.00
30	20.00	20.00	0.00	0.00	0.00	0.00	0.00
31	20.00	21.00	0.00	0.00	0.00	0.00	0.00
32	21.00	22.25	0.00	0.00	0.00	0.00	0.00
33	22.75	22.25	0.00	0.00	0.00	0.00	0.00
34	22.75	24.25	0.00	0.00	0.00	0.00	0.00
35	24.25	25.25	0.00	0.00	0.00	0.00	0.00
36	25.25	25.75	0.00	0.00	0.00	0.00	0.00
37	25.75	25.75	0.00	0.00	0.00	0.00	0.00
38	25.75	26.75	0.00	0.00	0.00	0.00	0.00

continued on following page
Cross no.	Position of insertion (mm)*	Insertion allele no.	Cotransduction by P1 Transduction†	Frequency	Avg value*	
Recipient	Donor	Recipient	Donor			
39	26.75	27.25	zeb-3066::Tn10kan	zeb-506::Tn10	0.40	
40	27.25	26.75	zeb-3117::Tn10kan	zeb-3066::Tn10	0.51	0.45
41	28.50	27.50	zeb-3118::Tn10kan	zeb-506::Tn10	0.04	
42	28.50	29.50	zeb-3118::Tn10kan	zeb-3061::Tn10	0.11	
43	29.50	31.00	zeb-3061::Tn10	trg-3120::Tn10kan	0.02	
44	32.00	31.00	zeb-3117::Tn10kan	trg-2::Tn10	0.03	
45	32.00	32.75	zeb-225::Tn10	zeb-230::Tn9	0.18	
46	32.75	32.00	zeb-220::Tn9	zeb-235::Tn10	0.24	0.21
47	32.75	33.50	zeb-230::Tn9	zeb-234::Tn10	0.18	
48	33.50	34.50	zeb-3062::Tn5	zeb-234::Tn10	0.04	
49	34.50	35.75	zeb-3062::Tn5	zeb-235::Tn10	0.01	
50	35.75	36.00	zeb-603::Tn10	zeb-3198::Tn10kan	0.32	
51	36.00	37.50	zeb-3198::Tn10kan	zeb-925::Tn10	0.05	
52	38.25	37.50	zeb-3123::Tn10kan	zeb-925::Tn10	0.14	
53	38.25	39.50	zeb-3123::Tn10kan	zeb-223::Tn10	0.08	
54	39.50	40.25	zeb-3124::Tn10kan	zeb-3068::Tn10	0.10	
55	40.25	39.50	zeb-3068::Tn10	zeb-3124::Tn10kan	0.19	0.15
56	40.25	41.00	zeb-3068::Tn10	ede-3126::Tn10kan	0.10	
57	41.00	42.25	ede-3126::Tn10kan	uvrC279::Tn10	0.07	
58	42.25	41.00	uvrC279::Tn10	ede-3126::Tn10kan	0.06	0.06
59	42.25	43.00	uvrC279::Tn10	zeb-3128::Tn10kan	0.25	
60	43.00	42.25	zeb-3128::Tn10kan	uvrC279::Tn10	0.16	0.18
61	44.25	43.00	zeb-3129::Tn10	zeb-3128::Tn10kan	0.03	
62	44.25	45.75	zeb-3189::Tn10kan	mgl-500::Tn10	0.005	
63	45.75	46.50	mgl-500::Tn10	zeb-3130::Tn10kan	0.06	
64	46.50	47.75	zeb-3130::Tn10kan	zeb-298::Tn10	0.03	
65	47.75	46.50	zeb-3142::Tn10kan	zeb-223::Tn10	0.01	0.02
66	47.75	48.50	zeb-3142::Tn10kan	zeb-723::Tn10	0.30	
67	48.50	49.50	zeb-723::Tn10	zeb-3144::Tn10kan	0.05	
68	50.50	49.50	fasI771::Tn10	zeb-3144::Tn10kan	0.02	
69	50.50	51.00	fasI771::Tn10	zfb-3135::Tn10kan	0.32	
70	51.00	51.75	zfb-1::Tn10	nupC3146::Tn10kan	0.22	
71	51.75	51.00	nupC3146::Tn10kan	zfb-1::Tn10	0.12	0.18
72	52.75	51.75	zfb-3071::Tn10kan	nupC510::Tn10	0.19	
73	52.75	53.25	zfb-3071::Tn10kan	purC81::Tn10	0.42	
74	53.25	53.50	purC81::Tn10	zfe-3138::Tn10kan	0.45	
75	53.50	54.00	zfe-3138::Tn10kan	gna-26::Tn10	0.35	

Continued on following page
TABLE 2—Continued

Cross no.	Position of insertion (min)	Insertion allele no.	Cotransduction by PI Transduction†	Frequency	Avg value
76	54.00	gna-26::Tn10	zff-3139::Tn10kan	0.25	
77	55.75	nadB3140::Tn10kan	zff-209::Tn10	0.17	
78	55.75	nadB3140::Tn10kan	pheA1B::Tn10	0.04	
79	56.75	pheA3141::Tn10kan	nadB51::Tn10	0.08	0.06
80	56.75	pheA3141::Tn10kan	zff-3131::Tn10	0.32	
81	57.50	zff-3131::Tn10	pheA3141::Tn10kan	0.35	0.33
82	57.50	zff-3131::Tn10	zff-3143::Tn10kan	0.30	
83	58.25	zff-3143::Tn10kan	cysC95::Tn10	0.03	
84	59.50	cysC95::Tn10	fuc-3154::Tn10kan	0.05	
85	60.25	fuc-3154::Tn10kan	recD901::Tn10	0.48	
86	60.75	recD901::Tn10	zge-3155::Tn10kan	0.05	
87	63.50	zge-3156::Tn10kan	zge-3074::Tn10	0.02	
88	63.75	zge-3156::Tn10kan	nupG51::Tn10	0.37	
89	64.25	nupG3157::Tn10kan	zge-3156::Tn10	0.28	0.32
90	64.25	nupG3157::Tn10kan	metC162::Tn10	0.11	
91	65.00	metC3158::Tn10kan	nupG51::Tn10	0.08	0.06
92	66.25	tolC210::Tn10	metC3158::Tn10kan	0.24	
93	66.25	tolC210::Tn10	zgb-3159::Tn10kan	0.24	
94	67.00	tolC210::Tn10	zgb-3159::Tn10	0.05	0.15
95	67.00	zgb-3159::Tn10	zgb-203::Tn10	0.005	
96	70.00	zgb-3168::Tn10kan	zgb-203::Tn10	0.07	
97	70.00	zgb-3168::Tn10kan	zgb-3082::Tn10	0.02	
98	71.75	zgb-3169::Tn10kan	zgb-3082::Tn10	0.06	0.04
99	72.00	zgb-3170::Tn10kan	zgb-3082::Tn10	0.31	
100	72.00	zgb-3170::Tn10kan	zgb-3083::Tn10	0.18	
101	72.75	zgd-3083::Tn10	zhe-3172::Tn10kan	0.05	
102	74.00	zhe-3172::Tn10kan	zhe-3085::Tn10	0.32	
103	74.50	zhe-3173::Tn10kan	zhe-3085::Tn10	0.26	
104	75.50	zhe-3174::Tn10kan	zhe-3085::Tn10	0.29	0.27
105	75.50	zhe-3174::Tn10kan	zhe-3086::Tn10	0.22	
106	76.50	zhe-3174::Tn10kan	zhe-3086::Tn10	0.26	0.24
107	76.50	zhe-3086::Tn10	zhe-3087::Tn10kan	0.02	
108	77.75	zhe-3087::Tn10kan	zhe-3076::Tn10	0.17	
109	78.50	zhe-3076::Tn10	zhe-3077::Tn10kan	0.02	
110	80.00	zhe-3076::Tn10	zhe-207::Tn10	0.20	
111	81.75	zhe-3076::Tn10	zhe-207::Tn10	0.11	
112	83.00	zhe-3076::Tn10	zhe-4901::Tn10	0.04	

Continued on following page
TABLE 2—Continued

Cross no.	Position of insertion (min)^a	Recipient	Donor	Insertion allele no.	Recipient	Donor	Cotransduction by P1 Transduction^b	Frequency	Avg value^c
113	83.75	zic-3163::Tn10kan	zid-501::Tn10	0.14					
114	84.50	zic-3164::Tn10kan	zie-296::Tn10	0.25					
115	84.50	metE3079::Tn10	0.07						
116	85.50	metE3079::Tn10	0.11	0.09					
117	85.50	fadA3165::Tn10	0.50						
118	87.00	fadAB101::Tn10	0.33						
119	87.00	zih-35::Tn10	0.35						
120	87.50	zii-3167::Tn10kan	zii-3088::Tn10kan	0.03					
121	88.50	zii-3167::Tn10kan	argE396::Tn10	0.7					
122	89.50	argE396::Tn10	0.4	0.55					
123	90.25	thi-3178::Tn10kan	argE396::Tn10	0.14					
124	90.75	thi-39::Tn10	0.17						
125	91.50	malF3180::Tn10kan	zjb-504::Tn10	0.28					
126	91.50	malF2::Tn10	0.05						
127	92.50	zic-3181::Tn10	zic-3081::Tn10kan	0.05					
128	93.50	zic-3182::Tn10kan	zic-2241::Tn10	0.11					
129	94.50	zic-3183::Tn10kan	zic-2241::Tn10	0.18	0.15				
130	94.50	cycA30::Tn10	0.02						
131	95.75	cycA30::Tn10	0.02						
132	96.75	zic-3186::Tn10kan	zih-920::Tn10	0.51					
133	96.75	cycA30::Tn10	0.40	0.45					
134	96.75	zic-3186::Tn10kan	zic-6::Tn10	0.005					
135	98.25	zic-3187::Tn10kan	zic-6::Tn10	0.005	0.005				
136	98.25	zic-3188::Tn10kan	zic-6::Tn10	0.28					
137	99.50	zic-3187::Tn10kan	zic-202::Tn10	0.07	0.17				
138	99.25	zic-3188::Tn10kan	thr-H4::Tn10	0.21					
139	00.00	thr-H4::Tn10	0.24	0.22					

^a Positions are based on assigning thr-14::Tn10 a position of 0 min. All other positions were calculated from the equation by Wu (83), modified as described in the text.

^b Linkage determinations were based on scoring at least 100 transductants. In cases in which cotransduction frequencies were <0.05, at least 200 transductants were scored.

^c When available, the average of transduction data in both directions was used to determine the map position listed in Fig. 2.

reciprocal in the second, the map position was determined by averaging the two frequencies obtained (Table 2).

The map positions we derived were in excellent agreement with the standard genetic map of E. coli, indicating the strength of these mapping techniques. It is important to remember that the standard genetic map is a compilation of many data, including results from Hfr and P1 transduction experiments from many laboratories (2). The insertion map we present in Fig. 2 is based on the P1 cotransduction frequencies between a series of insertions that are converted into minutes and then fitted onto the standard map. In general, the map in Fig. 2 should be used as a guide to determine which insertions one may wish to use for mapping purposes (see below). In some instances, cotransduction frequencies may vary as a result of differences in strain backgrounds. Once mutations have been mapped between insertions, more detailed mapping should include the mapping of mutations with respect to known genes in any given region. This can be done by referring to the standard genetic map (2).

P1 mapping strategy. The 182 mapping strains described above were designed to be used in conjunction with the Hfr mapping set presented. Once a mutation has been mapped with either of the Hfr subsets to a 5- to 15-min region, P1 transductions are performed to locate the mutation to an interval of approximately 1 min. The mapping strains co-
TABLE 3. Linkage of insertions to known nearby markers

Cross no.	Position of insertion	Insertion	Marker(s)	Cotransduction frequency by P1 transduction	Reference (if not this work)
1	00.00	thr-34::Tn10	ser	0.76	
2	00.75	car-96::Tn10	leu	0.16	
3	00.75	car-96::Tn10	araBAD	0.62	
4	02.00	zac-3051::Tn10	araBAD	0.40	
5	02.00	zac-3051::Tn10	leu	0.80	
6	04.75	zac-3095::Tn10::kan	proAB	0.07	
7	06.75	zac-3198::Tn10::kan	proAB	0.12	
8	08.00	lac-42::Tn10	proC	0.08	
9	08.00	zac-3053::Tn10	proC	0.60	
10	16.75	nadA57::Tn10	bio	0.12	
11	16.75	nadA57::Tn10	gal	0.80	
12	17.75	zhi-29::Tn10	gal	0.07	
13	21.00	zeb-3059::Tn10	pyrD	0.70	
14	22.25	zec-282::Tn10	pyrD	0.10	
15	22.25	zec-282::Tn10	fabA	0.09	D. Clark
16	22.25	zec-282::Tn10	purA	0.40	D. Clark
17	25.25	zecf-117::Tn10	purB	0.90	
18	27.25	zecf-506::Tn10	trpA	0.43	B. Bachmann
19	27.25	zecf-506::Tn10	tyrT	0.83	
20	28.50	zecf-233::Tn10	trpA	0.25	
21	29.50	zecf-3061::Tn10	fmr	0.95	
22	37.50	zecf-925::Tn10	pki	0.55	
23	37.50	zecf-925::Tn10	pps	0.65	
24	39.50	zecf-225::Tn10	ptsM	0.25	D. Clark
25	39.50	zecf-225::Tn10	fabI	0.42	D. Clark
26	39.50	zecf-225::Tn10	gap	0.58	D. Clark
27	43.00	zecf-3069::Tn10	his	0.05	
28	44.25	zecf-3129::Tn10	his	0.68	
29	47.75	zecf-298::Tn10	gyrA	0.30	
30	47.75	zecf-298::Tn10	ompC	0.77	B. Bachmann
31	48.50	zecf-723::Tn10	gyrA	0.86	
32	49.50	zecf-223::Tn10	purF	0.18	
33	51.00	zecf-1::Tn10	purF	0.11	
34	51.00	zecf-1::Tn10	araC	0.20	
35	51.00	zecf-1::Tn10	fadL	0.35	
36	51.00	zecf-1::Tn10	bsdA	0.80	B. Bachmann
37	52.75	zecf-3071::Tn10::kan	purC	0.45	
38	53.75	zecf-3138::Tn10::kan	purC	0.52	
39	55.00	zecf-208::Tn10	ung	0.04	
40	55.00	zecf-208::Tn10	nadB	0.08	
41	55.00	zecf-208::Tn10	gviA	0.90	

Continued on following page.
Cross no.	Position of insertion\(^t\)	Insertion	Marker(s)	Cotransduction frequency by PI transduction	Reference (if not this work)
42 60.25	fuc-3972::Tn10	relA	0.45		
43 60.25	fuc-3972::Tn10	arg	0.59		
44 60.25	fuc-3972::Tn10	cynC	0.38		
45 61.75	zgc-3074::Tn10	thy	0.40		
46 65.00	metC162::Tn10	rpoD	0.09		
47 66.25	tolC210::Tn10	metC	0.45		
48 66.25	tolC210::Tn10	rpoD	0.60		
49 67.00	zgh-3075::Tn10	rpoD	0.90		
50 68.75	zgi-203::Tn10	argG	0.80		
51 70.00	zhu-6::Tn10	argG	0.27		
52 71.75	zih-3082::Tn10	aroE	0.81		
53 71.75	zih-3082::Tn10	rpsL	0.60		
54 72.00	zhe-9::Tn10	rpsL	0.30		
55 72.00	zhe-9::Tn10	aroE	0.50		
56 72.75	zbd-3083::Tn10	aroE	0.12		
57 74.00	zhe-3085::Tn10	rpsL	0.29		
58 74.00	zhe-3085::Tn10	madT	0.25		
59 74.50	zhe-3084::Tn10	rpsL	0.50		
60 74.50	zhe-3084::Tn10	madT	0.60		
61 75.50	zhf-50::Tn10	rpoH (rpsH)	0.60		
62 75.50	zhf-50::Tn10	madT	0.70		
63 76.50	zku-3886::Tn10	rpoH	0.50		
64 80.75	zib-207::Tn10	cysE	0.33		
66 81.75	zic-4901::Tn10	gltC (gltS)	0.52		
67 81.75	zic-4901::Tn10	pvrE	0.70		
68 83.00	zid-501::Tn10	asa	0.50		B. Bachmann
69 83.00	zid-501::Tn10	bgi	0.72		B. Bachmann
70 83.00	zid-501::Tn10	dnaA	0.90		
71 83.75	zic-296::Tn10	ilv	0.66		
72 83.75	zic-296::Tn10	cya	0.06		
73 84.50	itv-500::Tn10	cya	0.48		
74 85.50	metE3079::Tn10	cya	0.42		
75 86.25	fadAB101::Tn10	metE	0.15		
76 87.00	zib-15::Tn10	polA	0.64		S. Kushner
77 88.50	zib-501::Tn10	argE	0.58		
78 88.50	zib-501::Tn10	metF	0.90		
79 88.50	zib-501::Tn10	rpoB	0.42		
80 89.50	argE86::Tn10	thi	0.14		
81 89.50	argE86::Tn10	rpoB	0.53		
82 89.50	argE86::Tn10	metA	0.05		
83 90.25	thi-39::Tn10	rpoB	0.90		
84 90.25	thi-39::Tn10	metA	0.05		
85 90.25	thi-39::Tn10	argH	0.34		

Continued on following page
containing an antibiotic resistance marker in the appropriate region serve as donor strains for P1 transductions, and the mutant strain serves as the recipient. Transductants are selected on the basis of the antibiotic resistance marker of the donor used and then scored for the presence or absence of the mutant phenotype. The cotransduction frequencies between the insertion and the mutation can then be used to place the mutation between two linked antibiotic resistance insertions, and the relative map position can be determined. Additional markers from the standard genetic map can then be used to perform three-factor crosses to align the mutation to other genes in the region, when additional markers are available in the region of interest.

A unique practical advantage of this system is that the P1 mapping set contains two different antibiotic resistance markers at most positions on the chromosome and allows for the mapping of mutations in genetic backgrounds that already contain one antibiotic resistance marker (either Tet' or Kan'). For example, the recipient strain may contain an antibiotic resistance marker linked to a transcriptional or translational fusion necessary to score the mutant phenotype. Alternatively, the original mutation may have been selected by insertion mutagenesis, bringing with it either a Tn10 or a Tn5. As long as the recipient contains only one of the antibiotic resistance markers described here (Tet' or Kan'), the P1 mapping strains containing an alternative antibiotic resistance gene can be used as described above to locate the mutation.

An additional benefit of this mapping set is the ability to generate linked antibiotic insertions (with one of two antibiotic resistances) on either side of the mutation of interest. Once obtained, these insertions can be used to facilitate subsequent genetic manipulations involving the mutation. For example, they can be used to construct strains containing markers closely linked on either side of the original mutation. Conversely, the insertions can be used to remove markers on either side of the desired mutation. This is often important when selection for a particular phenotype generates multiple, closely linked mutations.

The mapping strategy described above is most easily applicable for locating mutations with strong, selectable phenotypes. Mutations that have weak or unstable phenotypes or phenotypes that must be analyzed by biochemical assay are not amenable to this approach. In these cases, a strategy of chromosome replacement can be used. This strategy takes advantage of the mapping strains containing alternating antibiotic resistance elements. We can replace DNA segments between two insertions by selecting for one antibiotic resistance marker and scoring for the loss of the adjacent marker. Using this technique, we can walk down the chromosome in the region in which the mutation has been located, systematically replacing one segment after another. For each replacement, only one or two transductants need be assayed to determine whether the mutation has been removed. This is in contrast to the usual method, in which 100 or so transductants must be scored to determine accurate linkage to an insertion.

Once the mutation has been located between two antibiotic resistance markers, a similar strategy can be used to move it from one strain background to another. In this case, phage P1 would be grown on the strain containing the mutation and a linked antibiotic resistance marker. The recipient strain would have the linked antibiotic resistance marker on the other side of the mutation. Transductants would be selected for the antibiotic resistance marker from the donor and screened for transductants that had lost the flanking antibiotic resistance marker on the other side. Virtually all of these transductants should have the mutant phenotype.

Cross no.	Position of insertion	Insertion	Marker(s)	Cotransduction frequency by P1 transduction	Reference (if not this work)
86	90.75	zjb-504::Tn10	metA	0.16	
87	91.50	malF::Tn10	metA	0.09	
88	92.50	zje-318I::Tn10kan	malF	0.10	
89	92.50	zje-318I::Tn10kan	melAB	0.16	
90	93.75	zjd-2231::Tn10	ampC	0.66	B. Bachmann
91	93.75	zjd-2231::Tn10	melB	0.80	
92	94.50	zje-2241::Tn10	ampC	0.51	B. Bachmann
93	94.50	zje-2241::Tn10	melB	0.23	
94	99.50	zji-202::Tn10	thr	0.01	
95	99.50	zji-202::Tn10	serB	0.06	

* As in Table 2.

Table 3—Continued

Table 4. Hfr mating efficiencies

Hfr strain	Total no. of exconjugants	Mating efficiency
HfrH	2.1×10^4	2.1×10^3
KL14	8.2×10^2	8.2×10^5
KL16	2.2×10^3	2.2×10^4
KL96	1.3×10^3	1.3×10^4
KL208	4.2×10^4	4.2×10^4
KL227	8.9×10^3	8.9×10^4
KL228	3.6×10^2	3.6×10^5

* Mating efficiency is defined as the number of exconjugants divided by the number of donors used. Matings were done as described in Materials and Methods.
FIG. 2. Insertion map. Asterisks indicate insertions used to align the insertion map to the standard E. coli genetic map of Bachmann (2). Each insertion was placed onto the standard genetic map as described in the text. Numbers between insertions represent the P1 cotransduction frequency indicated as percent cotransduction (Table 2). Minute designations are to the left of the bar.
TABLE 5. Correlation between the Kohara physical map and the insertion map showing identification of complementing λ clones.

Location	Position (min)	Comple-	Location of point mutation	Position (min)	Comple-
		menting λ clone no.			menting λ clone no.
thr	0.00	9E4	dnaK	0.00	6H3
proAB	0.25	8G4	ara	0.50	8H1
proC	0.90	6A12	leu	0.75	6F3
purE	12.25	6E7	his	44.00	2H10
argA	20.25	6H3	argG	69.00	18H7
trp	27.75	AF1			
purC	53.25	4C11			
cysC	59.25	12G1			
ltv	84.50	2E6			
metE	85.50	7G1			
argE	89.50	4G11			

* Clone number as in Kohara et al. (37).

Correlation between Our Insertion Map and the Physical Map of E. coli

Once mutations have been mapped and novel loci have been identified, it is usually important to clone the novel gene. To facilitate the cloning of such genes, we have correlated our insertion map to the ordered clone bank of Kohara et al. (37) by determining clones that complement or rescue auxotrophic mutations. As described in Materials and Methods, coinfection with λ λ' was necessary to form stable lysogens required for complementation analysis. The λ clones able to complement or rescue strains carrying insertions or point mutations in genes with selectable phenotypes were identified and are listed in Table 5. The λ clones which identify the position of additional markers determined by Kohara et al. (37) are listed in Table 6. These clones should be used as reference points to determine which clones may carry the wild-type allele of the mutation of interest. Once a novel locus has been mapped, a λ clone carrying the wild-type allele can be identified by screening clones in the vicinity of the mapped locus. This method will allow for the quick screening of a small number of λ clones, from 5 to 10, to identify clones carrying the wild-type gene of interest.

This particular strategy required for cloning depends upon the nature of the mutation. If the mutant allele is recessive, λ clones carrying the wild-type allele can be obtained by complementation. When the wild-type allele is selectable, λ clones which span the location of the mutation are used to make lysogens and the wild-type phenotype is selected. If the wild-type allele cannot be selected but can be scored, it may be useful to first confirm the formation of dilsogenic clones, by demonstrating the release of both turbid (helper) and clear (clone) plaques, before screening dilsogenic for the wild-type phenotype. If the mutant allele is dominant, λ clones carrying the wild-type allele must be obtained by recombination. In this case, confirmed dilsogenic containing λ clones spanning the location of the mutation, are plated under selective conditions, Wild-type recombinants should appear at significantly higher frequency than revertants on the selective plates. The survivor recombination approach can also be used in instances when λ clones of interest do not express the wild-type gene on the cloned fragment. In such cases, wild-type recombinants can be obtained as described above.

TABLE 6. Correlation between the Kohara physical map and the insertion map indicating additional markers

Gene	Position (min)	λ clone no.	λ clone no.	λ clone no.	λ clone no.
lacZ	08.00	10A6	28.25	18H6	
ntrR	29.50	3G3	37.50	12H	
mgl	45.75	7F1	54.00	8E3	
pyrG	59.75	8B9	67.00	19F2	
cml	79.75	6F2	80.75	17G2	
cya	85.00	12G1	90.00	18B7	
melAB	93.50	8H1	99.50	12A4	

* Clone numbers are from Kohara et al. (37). Only one clone number is given for each position. Additional overlapping clone numbers are not given.

ACKNOWLEDGMENTS

We are grateful to all of the researchers who contributed strains for this project and to William Walters, Julie Baskfield, and Kip Maddon for their technical assistance. We thank C. M. Berg for suggesting the alignment of our insertion map to the standard E. coli map. We are also grateful to C. M. Berg, J. H. Miller, T. Yura, T. Donahue, and T. Kiley for critically reading this manuscript. This work was supported by Public Health Service grant 5 RO1 AI19635 from the National Institute of Allergy and Infectious Diseases.

LITERATURE CITED

1. Abdurashid, N., and D. P. Clark. 1987. Isolation and genetic analysis of mutations allowing the degradation of furans and related compounds. J. Bacteriol. 169:1267-1271.
2. Bachmann, B. J. 1983. Linkage map of Escherichia coli K-12 edition. Microbiol. Rev. 47:180-230.
3. Berg, C. M., and D. E. Berg. 1981. Bacterial transposons. p. 107-116. In D. Schlesinger (ed.), Microbiology—1981. American Society for Microbiology, Washington, D.C.
4. Berg, C. M., and D. E. Berg. 1983. The prokaryotic transposable element Tn5. Bio/Technology 1:417-435.
5. Berg, C. M., and D. E. Berg. 1986. Uses of transposable elements and maps of known insertions. p. 1071-1109. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
6. Berg, C. M., C. A. Grallin, A. Wang, A. W. Whalen, and D. E. Berg. 1983. Transductional instability of Tn5-induced mutation: generalized and specialized transduction of Tn7 by bacterio- phage PI. Genetics 105:259-263.
7. Berg, C. M., K. J. Shaw, and D. E. Berg. 1980. The FtsG gene is expressed in Escherichia coli K-12. Gene 12:165-170.
8. Biek, D. P., and S. N. Cohen. 1986. Identification and characterization of recD, a gene affecting plasmid maintenance and recombination. J. Bacteriol. 167:594-603.
9. Bitner, R. M., and P. L. Kuepema. 1981. PI transduction map spanning the replication terminus of Escherichia coli K-12. Mol. Gen. Genet. 184:208-212.
10. Bitner, R. M., and P. L. Kuepema. 1982. PI transduction mapping of the tyr loci in race and race strains of Escherichia coli K-12. J. Bacteriol. 149:529-533.
11. Boos, W., C. Bantlow, D. Benner, and E. Roller, 1983. cit: a gene conferring resistance to colicin I. Maps between mgl and tpf on the Escherichia coli chromosome. Mol. Gen. Genet. 191:401-406.
12. Boos, W., I. Steinacher, and D. Engelhardt-Altendorf. 1982. Mapping of mgb, the structural gene of the galactose-binding protein of Escherichia coli. Mol. Gen. Genet. 184:508-518.
13. Cavalli, L. L., J. Lederberg, and E. Lederberg. 1953. An infective factor controlling sex compatibility in Bacterium coli. J. Gen. Microbiol. 8:99-103.
14. Chumley, F. G., R. Menzel, and J. R. Roth. 1978. Hfr formation directed by Tn10. Genetics. 91:693-655.
15. Clark, D. P., and J. E. Cronan. 1980. Acetaldehyde coenzyme A dehydrogenase of Escherichia coli. J. Bacteriol. 144:179-184.
16. Curtiss, R., and D. R. Stallings. 1969. Probability of F integration and frequency of stable Hfr donors in F populations of Escherichia coli K-12. Genetics 63:285.
17. Daldal, F., J. Babul, V. Guixe, and D. G. Fraenkel. 1982. An alteration in phosphofructokinase 2 of Escherichia coli which impairs gluconeogenic growth and improves growth on sugars. J. Bacteriol. 126:373-379.
18. Duncan, B. K., and B. Weiss. 1982. Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J. Bacteriol. 151:750-755.
19. Foster, T. J. 1975. Tetracycline-sensitive mutants of the F-like R factors R100 and R1001. Mol. Gen. Genet. 117:85-88.
20. Füll, T. M., J. M. Lundhdon, S. Hanley-Way, S. M. Halling, and N. Kleckner. 1981. Three Tn10-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell 23:213-227.
21. Grindley, N. D. F., and R. R. Reed. 1985. Transpositional recombination in prokaryotes. Annu. Rev. Biochem. 54:863-896.
22. Groisman, E. A., and M. J. Casadaban. 1986. Mini-mu bacteriophage with plasmid replicons for in vivo cloning and lac gene fusing. J. Bacteriol. 168:357-364.
23. Groisman, E. A., E. A. Castillo, and M. J. Casadaban. 1984. In vivo DNA cloning and adjacent gene fusing with a mini-mu-lac bacteriophage containing a plasmid replicon. Proc. Natl. Acad. Sci. USA 81:1480-1483.
24. Grothe, S., R. L. Krogsgard, K. J. McClellan, J. L. Milner, and J. M. Wood. 1986. Pholone transport and osmotic stress response in Escherichia coli. J. Bacteriol. 166:253-259.
25. Hayes, W. 1953. Observations on a transmissible agent determining sexual differentiation in B. coli. J. Gen. Microbiol. 8:72-8.
26. Heffron, F. 1983. Tn3 and its relatives, p. 223-260. In J. A. Shapiro (ed.). Mobile genetic elements. Academic Press, Inc., New York.
27. Heffron, F., B. J. McCarthy, H. Ohtsubo, and E. Ohtsubo. 1979. DNA sequence analysis of the transposon Tn3: three genes and three sites involved in transposition of Tn3. Cell 18:1153-1164.
28. Hiss, J. M., J. E. Hill, and P. Krogsrud. 1988. Altered molecular form of acyl carrier protein associated with beta- ketoacyl-acyl carrier protein synthase II. J. Bacteriol. 169:1469-1473.
29. Jin, D. J., and J. C. Gross. 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202:45-58.
30. Kadner, R. J., and D. M. Shattuck-Eidens. 1983. Genetic control of the hexose phosphate transport system of Escherichia coli: mapping of deletion and insertion mutations in the ushp region. J. Bacteriol. 155:1052-1061.
31. Kleckner, N. 1981. Transposable elements in prokaryotes. Annu. Rev. Genet. 15:341-404.
32. Kleckner, N. 1983. Transposon Tn10. p. 261-298. In J. A. Shapiro (ed.). Mobile genetic elements. Academic Press, Inc., New York.
33. Kleckner, N., J. Roth, and D. Botstein. 1977. Genetic engineering in vivo using transposable drug resistance elements. J. Mol. Biol. 116:155-159.
34. Kohara, Y., K. Adiyama, and K. Isomo. 1987. The physical map of the whole Es. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:995-998.
35. Kukral, A. M., K. L. Strauch, R. A. Maurer, and C. G. Miller. 1987. Genetic analysis in Salmonella typhimurium with a small collection of randomly spaced insertions of transposon Tn5 derivatives for transposon mutantesis and for construction of lacZ operon fusions by transposition. Gene 32:369-379.
36. Larson, T. J., D. N. Ludtke, and R. M. Bell. 1984. sn-Glycerol-3-phosphate auxotrophy of plbB strains of Escherichia coli: evidence that a second mutation, pibX is required. J. Bacteriol. 169:711-717.
37. Lederberg, J., and E. L. Tatum. 1946. Gene recombination in Escherichia coli. Nature (London) 158:558.
38. Lennox, E. S. 1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190-206.
39. Low, K. B. 1972. Escherichia coli K-12 F-prime factors old and new. Bacteriol. Rev. 36:387-407.
40. Low, K. B. 1973. Rapid mapping of conditional and auxotrophic mutations in Escherichia coli K-12. J. Bacteriol. 113:798-812.
41. MacConkey, A. 1905. Lactose-fermenting bacteria in faeces. J. Hyg. 5:333.
42. Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
43. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
44. Misra, R., and P. Reeves. 1985. Molecular characterisation of the Kmr mutation of Escherichia coli K-12. Gene 40:337-342.
45. Morona, R., and P. Reeves. 1981. Molecular cloning of the tolC locus of Escherichia coli K-12 with the use of transposon Tn10. Mol. Gen. Genet. 184:430-433.
46. Narasimhan, M. L., J. L. Lampi, and J. E. Cronan. 1986. Genetic and biochemical characterization of an Escherichia coli mutant deficient in acetyl-coenzyme A thioesterase II. J. Bacteriol. 165:911-917.
47. Neidhardt, F. C., V. Vaughan, T. A. Phillips, and P. L. Bloch. 1983. Gene-protein index of Escherichia coli K-12. Microbiol. Rev. 47:231-284.
48. Oliver, D. B. 1985. Identification of five new essential genes involved in the synthesis of a secreted protein in Escherichia coli. J. Bacteriol. 161:285-291.
49. Sanderson, K. E., and J. Roth. 1983. Linkage map of Salmonella typhimurium. edition VI. Microbiol. Rev. 47:410-453.
50. Schafani, R. A., and J. A. Wechsler. 1981. Deoxyribonucleic acid initiation mutation dnaB252 is suppressed by elevated dnaC gene dosage. J. Bacteriol. 146:518-421.
51. Spears, P. A., D. Schauer, and P. E. Orndorff. 1986. Metastable regulation of type I piliation in Escherichia coli and isolation and characterization of a phenotypically stable mutant. J. Bacteriol. 168:179-185.
52. Taylor, A. L., and C. D. Trotter. 1964. The genetic map of Escherichia coli K-12. Genetics 50:659-677.
53. Tobe, S., K. Ito, and T. Yura. 1984. Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli. Mol. Gen. Genet. 195:10-16.
54. Trisler, P., and S. Gottesman. 1984. Ion transpositional regulaion of genes necessary for capsular polysaccharide synthesis in Escherichia coli K-12. J. Bacteriol. 164:124-131.
55. Vallari, D. S., and C. O. Rock. 1985. Isolation and characterization of Escherichia coli pantothenate permease (panP) mutants. J. Bacteriol. 164:136-142.
56. Wanner, B. L. 1986. Novel regulatory mutants of the phosphate transport region in Escherichia coli K-12. J. Mol. Biol. 191:39-59.
57. Way, J. C., M. A. Davis, D. Morisato, D. E. Roberts, and N. Kleckner. 1984. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369-379.
58. Weisberg, R. A. 1987. Specialized transduction, p. 1169-1176. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasianik,
63. Wu, T. T. 1966. A model for three point analysis of random general transduction. Genetics 54:405-410.
64. Young, K. K. Y., and G. Edlin. 1983. Physical and genetical analysis of bacteriophage T4 generalized transduction. Mol. Gen. Genet. 192:241-246.
65. Zinder, N. D. 1960. Sexuality and mating in Salmonella. Science 131:924-926.
66. Zinder, N. D., and J. Lederberg. 1952. Genetic exchange in Salmonella. J. Bacteriol. 64:679-699.