Exceptional points in the scattering continuum

J. Okołowicz,* and M. Płoszajczak§

* Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, PL-31342 Kraków, Poland
§ Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM – CNRS/IN2P3, BP 5027, F-14076 Caen Cedex 05, France

(Dated: September 15, 2009)

PACS numbers: PACS number(s): 25.70.Ef, 03.65Vf, 21.60.Cs, 25.40.Cm, 25.40.Ep

INTRODUCTION

The structure of loosely bound and unbound nuclei is strongly impacted by many-body correlations and non-perturbative coupling to the external environment of scattering states and decay channels [1, 2]. This is particularly important in exotic nuclei where new phenomena, at the borderline of nuclear structure and nuclear reactions, are expected. Some of them, like the halos [3], the segmentation of time scales in the context of non-Hermitian Hamiltonians [4], the alignment of near-threshold states with decay channels [5], and the resonance crossings [6, 7] appear in various open mesoscopic systems. Their universality is the consequence of the non-Hermitian nature of an eigenvalue problem in open quantum systems.

Resonances are commonly found in quantum systems, independently of their interactions, building blocks and energy scales involved. Much interest is concentrated on resonance degeneracies, the so-called exceptional points (EPs) [8]. Their connection to avoided crossings and spectral properties of Hermitian systems [8, 9] as well as the associated geometric phases have been discussed in simple models in considerable detail [10]. The interesting question is their manifestation in nuclear scattering experiments. Here, a much studied case was the 2^+ doublet in ^8Be [11, 12, 13, 14, 15]. Based on this example, von Brentano [16] discussed the width attraction for mixed resonances, and Hernández and Mondragón [17] showed that the true crossing of resonances can be obtained by the variation of two parameters in the Jordan block of rank two. In this latter analysis, it was shown that the resonating part of the scattering matrix (S-matrix) for one open channel and two internal states is compatible with the two-level formula of the R-matrix theory used in the experimental analysis of excitation functions of elastic scattering $^4\text{He}(\alpha,\alpha_0)^4\text{He}$ [15] and, hence, the 2^+ doublet in ^8Be may actually be close to the true resonance degeneracy.

Properties of atomic nucleus around the continuum threshold change rapidly with the nucleon number, the excitation energy and the coupling to the environment of scattering states. A consistent description of the interplay between scattering and resonant states requires an open system formulation of the nuclear shell model (see [1, 2, 18] for recent reviews). The real-energy continuum shell model [19, 20, 21] provides a suitable unified framework with the help of an effective non-Hermitian Hamiltonian. In this work, for the first time we focus on a realistic model of an unbound atomic nucleus to see whether one or more EPs can appear in the low energy continuum for sensible parameters of the open quantum system Hamiltonian. In particular, we discuss possible experimental signatures of the EPs and show the evolution of these signatures in the vicinity of the EP. Finally, on the example of spectroscopic factors we demonstrate the entanglement of resonance wave functions close to the EP.

FORMULATION OF THE CONTINUUM SHELL MODEL

Let us briefly review the Shell Model Embedded in the Continuum (SMEC) [21], which is a recent realization of the real-energy continuum shell model. The total function space of an A–particle system consists of the set of square-integrable functions $Q ≡ \{ \psi_i^A \}$, used in the standard nuclear Shell Model (SM), and the set of embedding scattering states $P ≡ \{ \zeta_E \}$. These two sets are obtained by solving the Schrödinger equation, separately for discrete (SM) states (the closed quantum system) and for scattering states (the environment). Decay channels ‘c’ are determined by the motion of an unbound particle in a state l_j relative to the $A−1$ nucleus with all nucleons on bounded single-particle (s.p.) orbits in the SM eigenstate $\psi_j^{A−1}$. Using these function sets, one defines projection operators:

$$\hat{Q} = \sum_{i=1}^{N} |\psi_i^A \rangle \langle \psi_i^A |; \quad \hat{P} = \int_0^\infty dE|\zeta_E \rangle \langle \zeta_E |$$

and projected Hamiltonians: $\hat{Q} H \hat{Q} \equiv H_{QQ}$, $\hat{P} H \hat{P} \equiv H_{PP}$, $\hat{Q} H \hat{P} \equiv H_{QP}$, $\hat{P} H \hat{Q} \equiv H_{PQ}$. Assuming $Q + P =$
the lowest particle emission threshold. Here it is assumed that the origin of $\text{Re} \left(\frac{\partial \omega}{\partial \varepsilon} \right)$ stands for the outgoing boundary in the scattering problem. \mathcal{H}_{QQ} is non-Hermitian for unbound states and its eigenstates $|\Phi_{\alpha}\rangle$ are linear combinations of SM eigenstates $|\psi_{\alpha}\rangle$. The eigenstates of \mathcal{H}_{QQ} are biorthogonal; the left $|\Phi_{\alpha}\rangle$ and right $|\Phi_{\alpha}\rangle$ eigenstates have the wave functions related by the complex conjugation. The orthonormality condition in the biorthogonal basis reads: $\langle \Phi_{\alpha} | \Phi_{\beta} \rangle = \delta_{\alpha,\beta}$. Similarly, the matrix element of an operator \hat{O} is $O_{\alpha \beta} = \langle \Phi_{\alpha} | \hat{O} | \Phi_{\beta} \rangle$.

The scattering function Ψ_{E}^{c} is a solution of a Schrödinger equation in the total function space:

$$\Psi_{E}^{c} = \zeta_{E}^{c} + \sum_{\alpha} a_{\alpha} \tilde{\Phi}_{\alpha},$$

where

$$a_{\alpha} \equiv \langle \Phi_{\alpha} | H_{QP} | \zeta_{E}^{c} \rangle / (E - \varepsilon_{\alpha}),$$

and

$$\tilde{\Phi}_{\alpha} \equiv (1 + G_{P}^{(+)} H_{PQ}) \Phi_{\alpha}.$$

Inside of an interaction region, the dominant contributions to Ψ_{E}^{c} are given by eigenfunctions Φ_{α} of the effective non-Hermitian Hamiltonian \mathcal{H}_{eff}:

$$\Psi_{E}^{c} \sim \sum_{\alpha} a_{\alpha} \Phi_{\alpha}.$$

For bound states, eigenvalues $\varepsilon_{\alpha}(E)$ of $\mathcal{H}_{QQ}(E)$ are real and $\varepsilon_{\alpha}(E) = E$. For unbound states, physical resonances can be identified with the narrow poles of the S-matrix \mathcal{S}, or using the Breit-Wigner approach which leads to a fixed-point condition \mathcal{G}. The SM states $|\psi_{\alpha}(J^{\pi})\rangle$ of the closed quantum system are interconnected via the coupling to common decay channels $|^{15}F(K^{\pi}) \otimes p_{l}\rangle_{E}$, with $K^{\pi} = 1/2^{+}, 5/2^{+}$, and $1/2^{-}$ which have the thresholds at $E = 0$ (the elastic channel), 0.67 MeV, and 2.26 MeV, respectively. In the ZBM model space, these are all possible one-proton (1p) decay channels in ^{16}Ne.

The size of a non-Hermitian correction to \mathcal{H}_{QQ} depends on two real parameters: the strength V_{0} of the continuum coupling in H_{QP} (H_{PQ}) and the system energy E. The range of relevant V_{0} values can be determined, for example, by fitting decay widths of the lowest states.

Exceptional Points in the Scattering Continuum of ^{16}Ne

Let us investigate properties of EPs on the example of ^{16}Ne. SM eigenstates in this nucleus correspond to a complicated mixture of configurations associated with the dynamics of the ^{16}O core. Our goal is to see if EPs can be possibly found in the scattering continuum of atomic nucleus at low excitation energies and for physical strength of the continuum coupling. SMEC calculations are performed in $p_{1/2}, d_{5/2}, s_{1/2}$ model space. For H_{QQ} we take the ZBM Hamiltonian \mathcal{H} which correctly describes the configuration mixing around $N = Z = 8$ shell closure. The residual coupling H_{QP} between \mathcal{Q} and the embedding continuum \mathcal{P} is generated by the contact force: $H_{QP} = H_{PQ} = V_{0} \delta(r_{1} - r_{2})$. For each J^{π}, the SM states $|\psi_{\alpha}(J^{\pi})\rangle$ of the closed quantum system are interconnected via the coupling to common decay channels $|^{15}F(K^{\pi}) \otimes p_{l}\rangle_{E}$, with $K^{\pi} = 1/2^{+}, 5/2^{+}$, and $1/2^{-}$ which have the thresholds at $E = 0$ (the elastic channel), 0.67 MeV, and 2.26 MeV, respectively. In the ZBM model space, these are all possible one-proton (1p) decay channels in ^{16}Ne.
in ^{15}F. For the present Hamiltonian, experimental decay widths of the ground state $1/2^+_1$ and the first excited state $5/2^+_1$ in ^{15}F are reproduced using $V_0 = -3500 \pm 450 \text{ MeV-fm}^3$ and $V_0 = -1100 \pm 50 \text{ MeV-fm}^3$, respectively. The error bars in V_0 reflect experimental uncertainties of those widths. The weak dependence of $1p$ decay widths on the sign of V_0 is generated by the channel-channel coupling and disappears in a single-channel case.

![Graph](image_url)

FIG. 1: The map of $J^\pi = 1^-$ exceptional points in the continuum of ^{16}Ne as found in SMEC. For more details, see the description in the text.

Fig. 1 shows energies E and strengths V_0 which correspond to $J^\pi = 1^-$ EPs in the scattering continuum of ^{16}Ne. Decay channels $[^{15}\text{F}(K^\pi) \otimes p_{l_j}](E)$ with $K^\pi = 1/2^+, 5/2^+$, and $1/2^-$ have been included with proton partial waves: $p_{1/2}, p_{3/2}$ for $K^\pi = 1/2^+$, $p_{3/2}, f_{3/2}, f_{7/2}$ for $K^\pi = 5/2^+$, and $s_{1/2}, d_{3/2}$ for $K^\pi = 1/2^-$. The number of 1^- SM states is 3 and, hence, the maximal number of 1^- EPs in SMEC could be 6. Indeed, all of them exist at $E < 20 \text{ MeV}$ in a physical range of V_0 values ($1100 \text{ MeV-fm}^3 < |V_0| < 3500 \text{ MeV-fm}^3$). They have been found by scanning the energy dependence of all eigenvalues over a certain range of V_0, searching for all real-energy crossings or width crossings (avoided crossings). Once found, we have tuned V_0 to find out whether these crossings evolve into EPs at some combination of V_0 and E. One should stress that the passage through EP always occurs if, e.g., the real-energy crossing moves towards $E = 0$. Since such a crossing cannot move into the region $E < 0$, therefore it converts into an avoided crossing via the formation of an EP.

The lowest EP in Fig. 1 is seen at $V_0^{(cr)} = -1617.4 \text{ MeV-fm}^3$ and $E = 2.33 \text{ MeV}$. This EP corresponds to a degeneracy of the first two 1^- eigenvalues of $\mathcal{H}_{QQ}(E)$ for $V_0 < 0$. Energy E_i and width Γ_i of 1^-_1 and 1^-_2 eigenvalues are shown in Fig. 2 as a function of the scattering energy. For $E > 2.33 \text{ MeV}$, width of these two eigenvalues grow apart very fast. $E_1(E)$ (solid line) and $E_2(E)$ (dotted line) cross again for $E \simeq 3.2 \text{ MeV}$. At this energy, Γ_1 and Γ_2 are different and, hence, the corresponding eigenfunctions are different as well.

The upper part of Fig. 2 shows the phase shifts δ_{l_j} for $p^{+^{15}\text{F}}$ elastic scattering as a function of the proton energy for $p_{1/2}$ (dashed-dotted line) and $p_{3/2}$ (dashed line) partial waves. In the partial wave $p_{1/2}$, the elastic scattering phase shift exhibits a jump by 2π at the EP with $J^\pi = 1^-$. This unusual jump in the elastic scattering phase shift is an unmistakable and robust signal of a double-pole of the S-matrix (EP) which persists also in its neighborhood, as shall be discussed below.

Fig. 3 shows the elastic and inelastic cross sections for $^{15}\text{F}(p, p')$ in the vicinity of an EP. The solid line represents a sum of different partial contributions of both parities with $J \leq 5$ whereas the dashed line shows the resonance part of 1^- contribution in these cross sections. The cross sections are plotted as a function of center of mass scattering energy for $V_0^{(cr)} = -1617.4 \text{ MeV-fm}^3$. The elastic cross section at the EP shows a character-
Behavior of scattering wave functions in the vicinity of the exceptional point

A true crossing of two resonant states is accidental and, hence, improbable in nuclear scattering experimentation. In this section, we will investigate the behavior of scattering states in the vicinity of an EP (the double-pole of the S-matrix) as the observation of such a situation is more plausible.

Fig. 4 exhibits the phase shifts $\delta_{1/2}$ for $p^{+^{15}}F$ elastic scattering as a function of the proton energy for various values of the strength V_0 ($V_0=-1800$ MeV·fm3 (long-dashed line), -1700 MeV·fm3 (dashed-dotted line), -1617.4 MeV·fm3 (solid line), -1500 MeV·fm3 (short-dashed line) and -1430 MeV·fm3 (dotted line)).

The above discussion of the double-poles of the S-matrix (EPs) and their manifestation in the many-body scattering continuum concerns 1^- states. The same analysis for $J^\pi = 0^+, 2^+$ states of 16Ne gives qualitatively similar results. Also in these two cases, the number of EPs is maximal but only a fraction of them appears in the relevant range of E and V_0 values.

A true crossing of two resonant states is accidental and, hence, improbable in nuclear scattering experimentation.
of the double-pole.

From these two examples, one can see that the characteristic jump by 2π of the elastic scattering phase shift remains a robust signature of the EP in all close-to-critical regimes of the coupling to the continuum: the subcritical coupling ($|V_0| < |V_0^{(cr)}|$), the critical coupling ($|V_0| = |V_0^{(cr)}|$), and the overcritical coupling ($|V_0| > |V_0^{(cr)}|$), where real and/or imaginary parts of two eigenvalues coincide.

Next two figures show the elastic and inelastic cross sections for 15F(p, p') in the vicinity of the EP with $J^\pi = 1^-$ in the subcritical (Fig. 7) and overcritical (Fig. 8) regimes of the continuum coupling. The curves shown by solid lines in Figs. 7, 8 represent a sum of different partial contributions of both parities with $J \leq 5$. The curves shown by dashed lines exhibit the resonance part of 1^- contribution in these cross sections. The qualitative features of the cross sections for the subcritical ($V_0 = -1560$ MeV-fm3) and overcritical ($V_0 = -1680$ MeV-fm3) couplings remain same as for the critical coupling (see Fig. 3). In both cases, one see a double-hump shape in the elastic cross sections and a single-hump shape in the inelastic cross section. One observes also a strong asymmetry in widths and heights of two peaks and a small shift of the position of the interference minimum in between the two peaks with respect to the energy which the EP is found for a critical coupling.

Entangled eigenstates of the effective Hamiltonian

Complex and biorthogonal eigenstates of the effective non-Hermitian Hamiltonian provide a convenient basis in which the resonant part of the scattering function can be expressed. These eigenstates are obtained by an orthogonal and, in general, non-unitary transformation of SM eigenstates [1] which is a consequence of their mixing via coupling to common decay channels. The same coupling is responsible for the entanglement of two eigenstates involved in building of an EP, as illustrated in Fig. 9 on the example of spectroscopic factors.

Fig. 9 exhibits the real part of the spectroscopic factor $\text{Re}(S^2) = \text{Re} \left(|^{16}\text{Ne}(1^-_n)||^{15}\text{F}(1/2^+_1) \otimes p(0p_{1/2})|^1_1^{-}\right)^2$ in 16Ne in three regimes of continuum coupling: (a) the subcritical regime ($V_0 = -1560$ MeV-fm3), (b) the critical regime ($V_0^{(cr)} = -1617.4$ MeV-fm3), and (c) the overcritical regime ($V_0 = -1680$ MeV-fm3). The solid (short-dashed) lines show the spectroscopic factors for
\[\Phi(1^{-})(E) \langle \Phi(1^{-})(E) \rangle \] eigenvalues of the effective Hamiltonian \(H_{QQ}(E) \) as a function of the scattering energy \(E \). For a critical coupling (plot (b)), the spectroscopic factors for \(\Phi(1^{-}) \) and \(\Phi(1^{-}) \) wavefunctions diverge at the EP (the double-pole of the S-matrix) but their sum (long-dashed line in Fig. 9) remains finite and constant over a whole region of scattering energies surrounding the EP.

In that sense, \(\Phi(1^{-}) \) and \(\Phi(1^{-}) \) resonance wavefunctions form an inseparable doublet of eigenfunctions with entangled spectroscopic factors. This entanglement is a direct consequence of the energy dependence of coefficients \(b_{\alpha i} \):

\[\langle \Phi_{\alpha} \rangle = \sum_{i} b_{\alpha i}(E) \langle \psi_{i} \rangle, \]

in a decomposition of \(H_{QQ}(E) \) eigenstates in the basis of SM eigenstates.

One may notice that the energy dependence of \(\text{Re}(S^2) \) in the vicinity of the double-pole for \(1^{-} \) and \(1^{-} \) eigenstates is quite different in all three regimes of the continuum coupling. In particular, in the overcritical regime of coupling, an EP yields entangled states in a broad range of scattering energies. The strongest entanglement is found at the scattering energy which corresponds to the point of the closest approach of eigenvalues in the complex plane for all regimes of coupling. Obviously, the entanglement of resonance eigenfunctions in the vicinity of an EP is a generic phenomenon in open quantum systems which is manifested in matrix elements and expectation values for any operator which does not commute with the Hamiltonian.
CONCLUSIONS

In conclusion, we have shown in SMEC studies of the one-nucleon continuum that EPs exist for realistic values of the continuum coupling strength. In the studied case of 16Ne, few of those EPs appear at sufficiently low excitation energies to be seen in the excitation function as individual peaks associated with a jump by 2π of the elastic scattering phase shift. The occurrence of an EP leaves also characteristic imprints in its neighborhood, i.e. for avoided crossing of resonances. In all close-to-critical regimes of the continuum coupling where real and/or imaginary parts of the two eigenvalues coincide, one finds qualitatively similar features of the elastic scattering phase shift and the elastic cross-section as found for the critical coupling at around the EP (the double-pole of the S-matrix). This gives a real chance that EPs or their traces may actually be searched for experimentally in the atomic nucleus. The well-known case of 2^+ doublet in 8Be, where resonance energies and widths are 16023 ± 3 keV, 107 ± 0.5 keV and 16925 ± 3 keV, 74.4 ± 0.4 keV, respectively [15], nearly satisfies the resonance conditions in the close-to-critical regime of couplings. Various situations in this regime have been studied experimentally in the microwave cavity [27].

Avoided crossing of two resonances with the same quantum numbers provide the valuable information about the configuration mixing in open quantum systems. As the formation of any EP in the scattering continuum depends on a subtle interplay between internal Hamiltonian (H_{QQ}) and the coupling to the external environment of decay channels, its finding provides a stringent test of an effective nucleon-nucleon interaction and the configuration mixing in the open quantum system regime. Such tests are crucial for a quantitative description of atomic nuclei in the vicinity of drip lines.

We wish to thank W. Nazarewicz for stimulating discussions and suggestions.

[1] J. Okołowicz, M. Płoszajczak, and I. Rotter, Phys. Rep. 374, 271 (2003).
[2] N. Michel, W. Nazarewicz, M. Płoszajczak, and T. Vertse, J. Phys. G: Nucl. Part. Phys. 36, 013101 (2009).
[3] K. Rüisager, D.V. Fedorov, and A.S. Jensen, Europhys. Lett. 49, 547 (2000).
[4] P. Kleinwächter, and I. Rotter, Phys. Rev. C 32, 1742 (1985);
E. Persson, I. Rotter, H.-J. Stöckmann, and M. Barth, Phys. Rev. Lett. 85, 2478 (2000).
[5] K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. Extra Number, 464 (1968);
A.I. Baz’ et al., Scattering, Reactions and Decay in Non-relativistic Quantum Mechanics, IPST, 1969;
R. Chatterjee, J. Okołowicz, and M. Płoszajczak, Nucl. Phys. A 764, 528 (2006).
[6] M.R. Zirnabaüer, J.J.M. Verbaarschot, and H.A. Weidenmüller, Nucl. Phys. A 411, 161 (1983).
[7] W.D. Heiss, and W.-H. Steeb, J. Math. Phys. 32, 3003 (1991).
[8] W.D. Heiss, and A.L. Sannino, Phys. Rev. A43, 4159 (1991).
[9] J. Dukelsky, J. Okołowicz, and M. Płoszajczak, J. Stat. Mech. L07001 (2009).
[10] W.D. Heiss, M. Müller, and I. Rotter, Phys. Rev. E 58, 2894 (1998);
W.D. Heiss, Phys. Rev. E 61, 929 (2000);
C. Dembowski et al., Phys. Rev. Lett. 86, 787 (2001); ibid. 90, 034101 (2003);
F. Keck, H.J. Korsch, and S. Mossmann, J. Phys. A 36, 2125 (2003).
[11] J.B. Marion, Phys. Lett. 14, 315 (1965).
[12] P. Paul, Z. Naturf. 21a, 914 (1966).
[13] F.C. Barker, Nucl. Phys. 83, 418 (1966).
[14] C.P. Browne, W.D. Callender, and J. Erskine, Phys. Lett. 23, 371 (1966).
[15] F. Hinterberger, P.D. Eversheim, P. von Rossen, B. Schüller, R. Schönhagen, M. Thenée, R. Göring, T. Brami, and H.J. Hartmann, Nucl. Phys. A 299, 397 (1978).
[16] P. von Brentano, Phys. Lett. B 246, 320 (1990); ibid. B 265, 14 (1991).
[17] E. Hernández, and A. Mondragón, Phys. Lett. B 326, 1 (1994).
[18] A. Volya, and V. Zelevinsky, Phys. Rev. C 74, 064314 (2006).
[19] H. Feshbach, Ann. Phys. 5, 357 (1958); ibid. 19, 287 (1962).
[20] U. Fano, Phys. Rev. 124, 1866 (1961); C. Mahaux, and H.A. Weidenmüller, Shell Model Approach to Nuclear Reactions (North Holland, Amsterdam, 1969);
H.W. Barz, I. Rotter, and J. Höhn, Nucl. Phys. A 275, 111 (1977).
[21] K. Bennaceur, F. Nowacki, J. Okołowicz, and M. Płoszajczak, Nucl. Phys. A 651, 289 (1999).
[22] J. Rotureau, J. Okołowicz, and M. Płoszajczak, Nucl. Phys. A 767, 13 (2006).
[23] A.F.J. Siegert, Phys. Rev. 56, 750 (1939);
T. Berggren, Nucl. Phys. A 109, 265 (1968).
[24] R. de la Madrid, Eur. J. Phys. 26, 287 (2005).
[25] A.P. Zuker, B. Buck, and J.B. McGrory, Phys. Rev. Lett. 21, 39 (1968).
[26] M. Müller, F.M. Dittes, W. Iskraka, and I. Rotter, Phys. Rev. E 52, 5961 (1995);
I. Rotter, Phys. Rev. E 68, 016211 (2003).
[27] M. Philipp, P. von Brentano, G. Pascaovici, and A. Richter, Phys. Rev. E 62, 1922 (2000).