RESUMO

Objetivo: Verificar as repercussões do teste de esforço submáximo na mecânica respiratória e na função pulmonar de escolares.

Métodos: Estudo transversal com escolares de 7 a 14 anos submetidos à avaliação da mecânica respiratória por sistema de oscilometria de impulso (IOS) e da função pulmonar pela espirometria. Realizou-se também o teste de caminhada de seis minutos (TC6), todos segundo os padrões da Sociedade Torácica Americana. O TC6 foi executado duas vezes com intervalo de 30 minutos entre cada teste. O IOS e a espirometria foram feitos antes do primeiro TC6 (pré-TC6) e repetidos imediatamente após o primeiro TC6 (pós-TC61) e após o segundo TC6 (pós-TC62). A comparação dos resultados nos três tempos do estudo se deu por análise de variância para medidas repetidas (teste post-hoc de Bonferroni) ou teste de Friedman, sendo significante p≤0,05.

Resultados: Participaram 21 sujeitos; 53% masculinos e idade média de 10,9±2,3 anos. Foram encontradas diferenças entre resistência total (R5) e resistência central das vias aéreas (R20) nos 3 tempos do estudo (p=0,025 e p=0,041, respectivamente). A análise post-hoc indicou aumento de resistência R5 entre pré-TC6 e pós-TC61 (R5=0,540±0,100 versus 0,590±0,150 kPa/L/s, p=0,013; e R20=0,440±0,800 versus 0,470±0,100 kPa/L/s, p=0,038). A única variável espirométrica com alteração no decorrer do tempo foi o fluxo expiratório forçado 25–75% (FEF25‑75%) (p=0,003).

Conclusões: As repercussões encontradas foram: aumento da resistência total e da resistência central das vias aéreas e redução do FEF25‑75% após o TC6 em escolares, sugerindo a necessidade de mais atenção na realização de testes submáximos em crianças com alguma predisposição a alterações das vias aéreas.

Palavras-chave: Criança; Oscilometria; Teste de função respiratória; Teste de esforço.

ABSTRACT

Objective: To verify repercussions of submaximal exercise testing on respiratory mechanics and pulmonary function in schoolchildren.

Methods: Cross-sectional study, with children aged 7 to 14 years, who had their respiratory mechanics assessed by impulse oscillometry (IOS), and pulmonary function by spirometry. They performed the six-minute walk test (6MWT), as per the standards by the American Thoracic Society. The 6MWT was performed twice with a 30-minute interval. IOS and spirometry were performed before the first 6MWT (Pre-6MWT) and immediately after the first (Post-6MWT 1) and second walking tests (Post-6MWT 2).

The results in these three phases were compared by analysis of variance for repeated measures (post-hoc Bonferroni test) or by the Friedman’s test, with p≤0.05 considered significant.

Results: Twenty-one subjects participated in the study: 53% were males and mean age was 10.9±2.3 years. There were differences between total resistance (R5) and central airway resistance (R20) at the three phases of assessment (p=0.025 and p=0.041, respectively). Post-hoc analysis indicated increase in R5 when Pre-6MWT and Post-6MWT were compared (R5=0.540±0.100 versus 0.590±0.150 kPa/L/s, p=0.013; and R20=0.440±0.800 versus 0.470±0.100 kPa/L/s, p=0.038). Forced expiratory flow 25–75% (FEF25‑75%) changed over time (p=0.003).

Conclusions: Repercussions were: increase in central and total airway resistance and reduction of FEF25‑75% after 6MWT in schoolchildren, suggesting that greater attention should be given to submaximal tests in children with predisposition to airways alterations.

Keywords: Child; Oscillometry; Respiratory function tests; Effort test.

*Autor correspondente. E-mail: cacaiss@yahoo.com.br (C.I.S. Schivinski).

Universidade Estadual de Campinas, Campinas, SP, Brasil.

Universidade do Estado de Santa Catarina, Florianópolis, SC, Brasil.

Recebido em 04 de abril de 2017; aprovado em 08 de outubro de 2017; disponível on-line em 23 de outubro de 2018.
INTRODUÇÃO

Entre os principais testes de avaliação da capacidade funcional utilizados em pediatria, encontra-se o teste de caminhada de seis minutos (TC6), considerado de baixo custo, fácil aplicação, confiável e reprodutível. Trata-se de um teste submáximo capaz de refletir a limitação dos indivíduos com doenças respiratórias crônicas. É comumente utilizado na avaliação de crianças com a finalidade de estabelecer valores/eqüações de referência e investigações de doenças respiratórias, neuromusculares e esqueléticas. Bem estabelecido na literatura, segue as diretrizes e recomendações da Sociedade Torácica Americana (American Thoracic Society — ATS) e da Sociedade Respiratória Europeia (European Respiratory Society — ERS).

Apesar de ser um teste de exercício e da literatura relatar possíveis mudanças no calibre das vias aéreas como importante determinante no fluxo de ar e no trabalho respiratório durante atividades físicas, pouco se sabe sobre a relação dinâmica da resistência das vias aéreas com sua execução. Segundo a ATS, o broncoespasmo induzido pelo exercício descreve o estreitamento agudo das vias aéreas com sua execução. Assim, até o presente momento, não foram encontrados estudos que avaliem a repercussão de um teste de esforço submáximo em variáveis do IOS e da espirometria em crianças e adolescentes. Nesse contexto, o objetivo do estudo foi verificar o comportamento da mecânica respiratória e da função pulmonar em escolares submetidos ao TC6.

MÉTODO

Trata-se de um estudo de corte transversal com escolares, aprovado pelo Comitê de Ética em Pesquisa da Universidade do Estado de Santa Catarina (UDESC), sob número 99/2011, desenvolvido em Florianópolis (Santa Catarina, Brasil). A coleta de dados foi realizada em instituições públicas e particulares do ensino fundamental e médio da Grande Florianópolis no período de outubro de 2012 a dezembro de 2014. Os responsáveis foram informados sobre o estudo e, diante da concordância na participação, assinaram o Termo de Consentimento Livre e Esclarecido e responderam a um questionário (International Study of Asthma and Allergies in Childhood 20 – ISAAC), módulo asma e módulo rinite, válido para a língua portuguesa.

A amostra da corrente pesquisa foi recrutada por meio da seleção dos participantes do estudo para determinar as equações de referência para o IOS em crianças e adolescentes brasileiros saudáveis. A pesquisa incluiu escolares de ambos os sexos, com idades entre 6 e 14 anos, sem história de prematuridade nem exposição passiva ao tabagismo, sem infecção respiratória até duas semanas antes das avaliações e sem comprometimento respiratório como asma e rinite alérgica, segundo a nota de corte do questionário (ISAAC):
Assunção MS et al.

- módulo de asma: ≥5 pontos para crianças de 6 a 9 anos; ≥6 pontos para crianças de 10 a 14 anos);20,23;
- módulo rinite alérgica: ≥4 pontos para crianças de 6 a 9 anos; ≥3 pontos para crianças de 10 a 14 anos).20,21

Excluíram-se as crianças que não conseguiram realizar todas as etapas da avaliação adequadamente.

O peso dos escolares foi verificado por meio de uma balança digital de vidro Ultra Slim W903 Wiso® (Santa Catarina, Brasil), e a altura, com o estadiômetro portátil Sanny® (São Paulo, Brasil). Classificou-se o índice de massa corporal (IMC) de acordo com as curvas de percentis da Organização Mundial da Saúde (OMS) (http://www.telessaudebrasil.org.br/apps/calculadoras/page=7).24

Todos os participantes foram submetidos a manobras expiratórias forçadas da espirometria pelo JaegerTM MasterScreen® IOS (Erich Jaeger, Alemanha) (módulo espirometria), conforme as recomendações da ATS/ERS.13 Para que não houvesse um excessivo número de manobras que pudesse interferir na interpretação dos resultados, no decorrer das etapas do estudo, cada participante realizou três ou quatro manobras expiratórias forçadas, respeitando-se os critérios de três manobras aceitáveis e duas reproduzíveis.

A análise da mecânica respiratória foi realizada com o sistema de IOS JaegerTM MasterScreen® IOS (Erich Jaeger, Alemanha) (módulo oscilometria de impulso) acoplado ao mesmo equipamento, de acordo com as normas da ATS/ERS.25,26 As crianças foram orientadas a realizar respirações espontâneas em volume corrente, com a boca acoplada em um bocal. Adotou-se um tempo de gravação para aquisição de dados entre 20 e 30 segundos, com 3 medidas para cada uma. Considerou-se a melhor medida entre as 3, respeitando-se critérios de aceitabilidade das manobras e diferença mínima de 10% entre os parâmetros das 3 medidas. Foram levados em conta os parâmetros de: resistência respiratória total (R5) e central (R20); reatância respiratória (X5); impedância respiratória (Z5); frequência de ressonância (Fres) e área de reatância (AX).

A avaliação da capacidade funcional foi realizada por intermédio do TC6, conduzido segundo as recomendações da ATS em um corredor plano e coberto de 30 metros. Utilizaram-se como materiais: cronômetro digital Polar Fs2c BLK® (Kempele, Finlândia) para marcar o tempo, oxímetro digital Nonin Onyx 9500® (Minnesota, Estados Unidos) para mensurar a frequência cardíaca (fc) e a saturação periférica de oxigênio (SpO2) e esfígmanômetro Prestige Medical® (Califórnia, Estados Unidos) para afetar a pressão arterial (PA). A avaliação da sensação da dispneia foi realizada mediante a escala modificada de Borg. Foram considerados como valores esperados para a distância percorrida os propostos pela equação de Priessnitz et al.19 para crianças brasileiras.

As análises dos parâmetros do IOS e da espirometria foram performadas nas condições de repouso, ou seja, antes do primeiro TC6 (pré-TC61), imediatamente após o primeiro TC6 (pós-TC61) e após o segundo TC6 (pós-TC62), conforme a Figura 1. Além da higidez para a corrente investigação, exigiu-se que a amostra final fosse composta das crianças e dos adolescentes que não tivessem ultrapassado o número total de 12 manobras expiratórias forçadas na espirometria, considerando as três etapas de avaliação (pré-TC6, pós-TC61, e pós-TC62).

Para o cálculo do tamanho amostral, pensou-se em um estudo piloto do qual participaram crianças saudáveis de 7 a 14 anos. Em razão da sua representatividade na carga mecânica total do sistema respiratório, a variável selecionada para verificar alterações de forma mais específica foi a impedância respiratória. Os participantes apresentaram a média no pré-TC6 de 0,5 kPa/L/s e desvio padrão de 0,11 kPa/L/s e no pós-TC61, de 0,6 kPa/L/s, com desvio padrão de 0,15 kPa/L/s, sendo a diferença detectada de 0,1 kPa/L/s. O nível de significância foi fixado em 5%, com poder de teste de 80%. Com essas estatísticas, a amostra necessária para o estudo era de 19 indivíduos.

Realizou-se a análise dos dados por meio do software Statistical Package for the Social Sciences® (SPSS) 20.0 (IBM, Nova York, Estados Unidos). Inicialmente, verificou-se a distribuição dos dados pelo teste de Shapiro-Wilk e, na sequência, aplicou-se o teste ANOVA (post-hoc Bonferroni) para medidas

Figura 1 Fluxograma da sequência dos procedimentos realizados para avaliação das repercussões do teste de caminhada de seis minutos na mecânica respiratória e função pulmonar de escolares saudáveis.

TC6: teste de caminhada de seis minutos; IOS: sistema de oscilometria de impulso; pré-TC61: pré-teste de caminhada de seis minutos; pós-TC61: após o primeiro teste de caminhada de seis minutos; pós-TC62: após o segundo teste de caminhada de seis minutos; TC61: primeiro teste de caminhada de seis minutos; TC62: segundo teste de caminhada de seis minutos.
repetidos ou teste de Friedman para comparação dos resultados nos três tempos do estudo. O nível de significância adotado foi de 5% (p≤0,05).

RESULTADOS

Do total de 864 crianças e adolescentes avaliados no estudo de Assumpção et al.,22, do qual participaram 123 indivíduos, 21 escolares (10 meninos) conseguiram realizar as manobras espirométricas conforme os critérios de inclusão preestabelecidos e constituíram a amostra final examinada.

A idade dos estudantes variou de 7 a 14 anos, com média de 10,9 anos. Não houve exclusões durante a realização dos testes (intercorrências e/ou desistências), e todos os escolares atenderam aos critérios determinados para a realização do presente estudo.

Dados descritivos referentes a peso, altura, IMC e distância percorrida no TC6 estão apresentados na Tabela 1. De acordo com a classificação da OMS, a amostra foi constituída de 21 crianças, sendo 14 classificadas como eutróficas (peso adequado) e sete crianças classificadas como não eutróficas (quatro com sobrepeso e três obesas). Não houve diferença entre parâmetros basais cardiorrespiratórios das variáveis espirométricas e parâmetros oscilométricos no estudo.

Somente nove crianças apresentaram desempenho acima do esperado, conforme os valores de referência para crianças brasileiras. A descrição dos parâmetros cardiorrespiratórios do primeiro e do segundo TC6 encontra-se na Tabela 2.

Após os dois testes, observou-se diferença entre os parâmetros de resistência total das vias aéreas (R5) e resistência das vias aéreas centrais (R20) (p=0,041 e p=0,025, respectivamente) (Tabela 3). Pela análise post-hoc, identificou-se aumento significativo de R5 imediatamente após o primeiro TC6 (R5: 0,540 ± 0,110 versus 0,590 ± 0,150 kPa/L/s; p=0,013), assim como de R20 (0,440 ± 0,800 versus 0,470 ± 0,100 kPa/L/s; p=0,038). O aumento de R20 também foi significativo ao se comparar o pré-TC6 e o pós-TC62 (0,440 ± 0,800 versus 0,470 ± 0,110 kPa/L/s; p=0,034).

A única variável espirométrica que apresentou mudança significativa após os testes foi o fluxo expiratório forçado entre 25–75% (FEF25‑75%) (p=0,003), identificado pelo teste de Friedman. Para detalhar o momento em que essa alteração ocorreu, utilizou-se a análise múltipla. Observou-se que esse parâmetro diminuiu entre os momentos pré e pós-TC61 (85,900 ± 19,900% versus 80,800 ± 20,200%; p=0,010), assim como nos momentos pré e pós-TC6 2 . O FEF25‑75% (escore Z) também apontou alteração significativa.

Tabela 1 Média e desvio padrão das variáveis antropométricas.

Variáveis antropométricas	Média±desvio padrão	Mediana (mínimo–máximo)
Peso (kg)	41,1±10,8	42,9 (23,9–59,0)
Altura (cm)	147,9±12,3	147,2 (126,8–167,0)
IMC (kg/m²)	18,4±2,8	18,5 (13,2–25,3)

Cm: centímetros; kg: quilograma; IMC: índice de massa corpórea; kg/m²: quilograma por metro ao quadrado.

Tabela 2 Descrição dos parâmetros cardiorrespiratórios do primeiro e do segundo teste de caminhada de seis minutos.

Parâmetros avaliados	TC6₁	TC6₂	TC6₁	TC6₂
PA (mmHg)	99/59	106/64	101/61	107/63
FC (bpm)	81,1±13,5	128,5±22,7	128,5±22,7	128,5±22,7
SpO₂ (%)	98,8±0,3	99,8±0,5	98,8±0,5	98,8±0,5
FR (rpm)	19,3±2,8	25,5±4,4	18,7±2,8	26,4±4,6
Borg	0,4±0,7	0,4±0,7	0,4±0,7	0,4±0,7
DP (m)	583,3±100,5	605,1±92,6	605,1±92,6	605,1±92,6
Vel (m/s)	1,6±0,2	1,6±0,2	1,6±0,2	1,6±0,2

TC6: teste de caminhada de seis minutos; TC6₁: primeiro teste de caminhada de seis minutos; TC6₂: segundo teste de caminhada de seis minutos; PA (mmHg): pressão arterial, em milímetros de mercúrio; FC (bpm): frequência cardíaca; FR (rpm): frequência respiratória; DP (m) distância percorrida, em metros; Vel (m/s): velocidade, em metros por segundo. Valores expressos em média e desvio padrão; mínimo e máximo.
quando comparados o pré-TC6 e o pós-TC6, (p<0,001). No presente estudo, somente quatro crianças apresentaram valores de FEF25-75% basal abaixo do valor de 70% (Tabela 4).

DISCUSSÃO

A verificação do comportamento da mecânica respiratória e da função pulmonar em escolares submetidos a testes submáximos de esforço permite a compreensão das alterações no sistema respiratório. Particularmente, o presente estudo demonstrou que o TC6 foi capaz de alterar a variável espirométrica de FEF25-75%. Considerada uma medida importante dos fluxos respiratórios, permite a avaliação da permeabilidade das vias aéreas, uma vez que representa a velocidade da saída do ar exclusive dos brônquios.27 Observou-se que esse parâmetro diminuiu tanto quanto comparado o pré-TC6 e o pós-TC6 (p=0,028). O IOS tem sido utilizado como ferramenta para análise de efeito de procedimentos e terapêuticas. Nessa linha, Lee et al.,31 ao avaliarem as características da obstrução das vias aéreas em 47 jovens asmáticos (média de 20,7 anos) após um teste de provocação brônquica com metacolina em esteira, observaram que R5 aumentou no grupo que apresentou hiper-responsividade das vias aéreas aos 5 e 10 minutos após o término do teste. Os autores concluíram que o IOS pode ser útil para a realização de avaliações objetivas e para a melhoria da compreensão de obstrução de vias aéreas induzida por exercício em jovens asmáticos. Esse achado valorizou o IOS como um instrumento útil para o diagnóstico precoce da asma. Na corrente pesquisa, o aumento de R5 após o TC6 também pode ser justificado pela instabilidade de pequenas vias aéreas durante o esforço físico, apesar de se tratar de estímulo relativamente rápido e que envolve esforço submáximo.

A presente pesquisa também analisou a resposta do IOS ao TC6 e identificou aumento significativo de R5 após o teste (p=0,028). O IOS tem sido utilizado como ferramenta para análise de efeito de procedimentos e terapêuticas. Nessa linha, Lee et al.,31 ao avaliarem as características da obstrução das vias aéreas em 47 jovens asmáticos (média de 20,7 anos) após um teste de provocação brônquica com metacolina em esteira, observaram que R5 aumentou no grupo que apresentou hiper-responsividade das vias aéreas aos 5 e 10 minutos após o término do teste. Os autores concluíram que o IOS pode ser útil para a realização de avaliações objetivas e para a melhoria da compreensão de obstrução das vias aéreas induzida por exercício em jovens asmáticos. Esse achado valorizou o IOS como um instrumento útil para o diagnóstico precoce da asma. Na corrente pesquisa, o aumento de R5 após o TC6 também pode ser justificado pela instabilidade de pequenas vias aéreas durante o esforço físico, apesar de se tratar de estímulo relativamente rápido e que envolve esforço submáximo.

Tabela 3 Análises dos parâmetros oscilométricos pré-TC6, pós-TC6, e pós-TC6_2.

Parâmetros oscilométricos	Pré-TC6	Pós-TC6	Pós-TC6	p-valor
R5 (Kpa/L/s)	0,54±0,11	0,59±0,15	0,57±0,15	0,025*
	0,50 (0,35–0,88)	0,62 (0,03–1,24)	0,59 (0,31–1,15)	
R20 (Kpa/L/s)	0,44±0,08	0,47±0,10	0,47±0,11	0,041*
	0,45 (0,30–0,65)	0,48 (0,31–0,75)	0,48 (0,26–0,78)	
X5 (Kpa/L/s)	-0,14±0,05	-0,14±0,06	-0,14±0,05	0,830
	-0,15 (-0,27–0,06)	-0,43 (-0,31–0,05)	-0,14 (-0,31–0,05)	
Z5 (Kpa/L/s)	0,56±0,11	0,61±0,15	0,59±0,16	0,051
	0,59 (0,35–0,93)	0,64 (0,31–1,29)	0,62 (0,31–1,19)	
Fres (Hz)	16,39±4,44	17,10±4,87	16,89±5,36	0,854
	16,87 (9,26–25,62)	17,66 (9,24–30,17)	17,18 (9,40–30,80)	
Ax (Kpa/L/s)	0,80±0,40	0,89±0,58	0,88±0,66	0,810
	0,77 (0,14–2,62)	0,87 (0,12–5,64)	0,78 (0,15–4,18)	

TC6: teste de caminhada de seis minutos; TC6: primeiro teste de caminhada de seis minutos; DP: desvio padrão; mín: mínimo; máx: máximo; *significância do teste ANOVA (post-hoc Bonferroni) para medidas repetidas (p<0,05); ‘significância entre pré-TC6 e pós-TC6; ‘significância entre pré-TC6 e pós-TV6; ‘significância entre pré-TC6 e pós-TV6; R5: resistência total; R20: resistência central; X5: reatância a 5 Hz; Z5: impedância respiratória a 5 Hz; Fres: frequência de ressonância; Hz: Hertz; AX: área de reatância; Kpa/L/s: unidade de medida em Kilopascal por litro por segundo; Kpa/L: Kilopascal por litro.
Além da asma, na fibrose cística o IOS tem sido considerado um método relevante. Vendrusculo et al.32 evidenciaram relação entre força muscular respiratória e mecânica pulmonar nessa população, e Díez et al.33 constataram correlação entre VEF1/CVF e alguns parâmetros oscilométricos (Z, R5, X5). Moreau et al.34 já haviam identificado relação inversa entre os valores de R5, Z e Fres e os parâmetros espirométricos como o VEF1 em 15 crianças com fibrose cística entre 4 e 19 anos.

De maneira complementar, o IOS e a espirometria foram recentemente utilizados para avaliar a função pulmonar de 2.621 crianças e adolescentes suecos em idade escolar (149 pré-termo e 2.472 a termo). Os autores observaram que na idade de 8 anos o VEF1 foi menor em indivíduos do sexo feminino pré-termo, em comparação a meninas a termo, mas não em indivíduos do sexo masculino nascidos prematuros. Para o grupo pré-termo, o IOS demonstrou maior resistência ajustada a 5 Hz para indivíduos do sexo masculino em comparação com o mesmo grupo a termo.35

Estudos usando os dois instrumentos e relacionando-os a testes de exercício, como na presente investigação, são escassos, assim como a avaliação de populações saudáveis. O IOS tem sido empregado como ferramenta para identificação e

Tabela 4 Análises dos parâmetros espirométricos pré-TC6, pós-TC6, e pós-TC62.

Variáveis espirométricas	Pré-TC6 Média±dp Mediana (mín–máx)	Pós-TC6 Média±dp Mediana (mín–máx)	Pós-TC62 Média±dp Mediana (mín–máx)	p-valor
CVF (L)	2,6±0,6 2,5 (1,7–4,0)	2,6±0,7 2,5 (1,6–4,1)	2,6±0,6 2,6 (1,8–4,0)	0,611
CVF %	97,6±6,6 97,5 (87,5–114,0)	97,4±7,4 98,2 (86,4–116,6)	96,6±8,7 95,7 (79,9–114,5)	0,551
CVF (escor Z)	-0,1±0,6 -0,3 (-1,1–1,6)	-0,2±0,6 -0,3 (-1,2–1,8)	-0,2±0,7 -0,3 (-1,7–1,7)	0,764
VEF1 (L)	2,2±0,5 2,1 (1,5–3,5)	2,2±0,5 2,2 (1,5–3,3)	2,2±0,4 2,1 (1,5–3,0)	0,058
VEF1 %	90,4±5,4 89,6 (80,4–100,2)	88,8±5,7 87,8 (78,4–100,7)	87,4±6,1 86,8 (78,2–101,8)	0,053
VEF1 (escor Z)	-0,3±0,5 -0,3 (-1,0–0,6)	-0,3±0,9 -0,6 (-1,2–3,0)	-0,5±0,6 -0,6 (-1,5–0,8)	0,200
PFE (L/s)	4,9±1,2 4,3 (2,9–7,5)	4,8±1,1 4,6 (2,6–7,4)	4,8±1,1 4,6 (2,4–7,5)	0,438
PFE %	85,3±11,9 81,7 (64,2–108,9)	82,6±10,8 81,6 (58,0–110,8)	83,6±11,2 82,1 (53,6–111,4)	0,105
PFE (escor Z)	4,7±0,7 4,8 (3,4–6,3)	4,5±0,6 4,4 (3,4–6,3)	4,6±0,7 4,5 (3,0–6,4)	0,170
FEF25-75% (L)	2,6±0,7 2,4 (1,3–4,7)	2,5±0,8 2,3 (1,2–4,3)	2,4±0,8 2,2 (1,4–4,8)	0,608
FEF25-75% %	85,9±19,9 80,8 (55,5–136,7)	80,8±20,2 74,5 (52,0–125,2)	77,9±19,4 72,2 (44,0–120,3)	0,003*
FEF25-75% (escor Z)	-0,3±0,8 -0,6 (-1,8–1,6)	-0,4±1,2 -0,9 (-2,2–3,3)	-0,6±1,2 -1,1 (-2,9–2,2)	0,001*
VEF1/CVF	0,8±0,0 0,8 (0,7–0,9)	0,8±0,0 0,8 (0,7–0,9)	0,8±0,0 0,8 (0,7–0,9)	0,189
VEF1/CVF (escor Z)	-0,2±0,9 -0,3 (-2,0–1,7)	-0,2±1,0 -0,1 (-2,3–2,3)	-0,4±0,8 -0,5 (-2,1–1,3)	0,079

TC6: teste de caminhada de seis minutos; TC62: segundo teste de caminhada de seis minutos; DP: desvio padrão; mín: mínimo; máx: máximo; ∗significância do teste de Friedman (p≤0,05); †significância entre pré-TC6 e pós-TC6; ‡significância entre pré-TC6 e pós-TC62; CVF (L): capacidade vital forçada em litros; CVF %: capacidade vital forçada em porcentagem; VEF1 (L): volume expiratório forçado no primeiro segundo em litros; VEF1 %: volume expiratório forçado no primeiro segundo em porcentagem; PFE (L/s): pico de fluxo expiratório forçado em litros por segundo; PFE %: pico de fluxo expiratório forçado em porcentagem; FEF25-75% (L): fluxo expiratório forçado entre 25–75% da CVF em litros; FEF25-75% %: fluxo expiratório forçado entre 25–75% da CVF em porcentagem; relação VEF1/CVF: índice de Tiffeneau.

Rev Paul Pediatr.
acompanhamento de alterações do sistema respiratório decorrentes de disfunções como asma e fibrose cística, o que dificulta comparações e o estabelecimento de parâmetros de normalidade. Nesse âmbito, a condução de estudos sobre a compreensão e a utilização das medições das resistências respiratórias ainda é pouco frequente e carente de elucidações.

Em relação aos resultados encontrados, verificou-se a proporção de crianças com sobrepeso e obesidade, no entanto, após análise estatística detalhada, não se identificou diferença nos valores espirométricos e oscilométricos entre os participantes dessa amostra. Portanto, optou-se por não conduzir grupos específicos associados à massa corpórea. Quanto à etnia dos participantes do estudo, todos foram classificados como brancos. Na literatura, ainda não foram encontrados estudos que correlacionassem a diferença étnica com o desempenho no TC6, apesar dessa característica sabidamente influenciar a função pulmonar.

Para garantir a validade interna e a da pesquisa, na seleção da amostra houve uma rígida preocupação no controle referente ao histórico de saúde e prematuridade, além da verificação da ausência de doenças pulmonares e valores espirométricos de acordo com a normalidade, de maneira que os participantes de ambos os grupos não tivessem interferências desses fatores. Além disso, evitou-se um possível viés no que concerne à repercussão de manobras expiratórias forçadas, uma vez que se limitou à inclusão de crianças que não excedessem o total de 12 manobras. Embora a amostra fosse pequena, atingiu o cálculo amostral prévio e, tendo sido controlados os possíveis vieses apontados, parece ter sido representativa de escolares saudáveis. A seleção dos participantes da amostra e os critérios de inclusão, como número máximo de manobras expiratórias forçadas, viabilizaram o controle da validade externa do estudo, assim como a ausência de relação entre o TC6 e o fato do escolar ser considerado eutrófico ou não.

A importância do presente trabalho deve-se à possibilidade de se esclarecer a relação entre o IOS e outros instrumentos de avaliação, principalmente os já estabelecidos na comunidade científica, como a espirometria e o TC6. Estudos multicéntricos, com indivíduos separados agrupados por sexo, peso e idade, estatura e etnia, são necessários para maior acurácia dos resultados encontrados no presente estudo. Assim, a compreensão das respostas fisiológicas e respiratórias diante do esforço físico deve ser norteados por estudos com amostras maiores.

O presente trabalho examinou o comportamento da mecânica respiratória e da função pulmonar de crianças e adolescentes submetidos ao TC6, identificando aumento das resistências das vias aéreas (total e central), além da diminuição significativa do FEF25-75% após o teste. Tais achados implicam clinicamente mais atenção e cautela na realização de testes submáximos em crianças que apresentam alguma predisposição a alterações das vias aéreas, especialmente quando são submetidas a testes de exercício, assim como é feito em crianças com asma e fibrose cística.

Financiamento
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - bolsa.

Conflito de interesses
Os autores declaram não haver conflito de interesses.

REFERÊNCIAS

1. Aquino ES, Mourão FA, Souza RK, Clicério BM, Coelho CC. Comparative analysis of the six‑minute walk test in healthy children and adolescents. Rev Bras Fisioter. 2010;14:75-80.

2. Lammers AE, Hislop AA, Flynn Y, Haworth SG. The 6‑minute walk test: normal values for children of 4‑11 years of age. Arch Dis Child. 2008;93:464‑8.

3. Boyce D, Pullins E, McCormack MC, Mathai SC, Khair R. Safety of the six‑minute walk test in chronic lung disease. Abstract of the American Thoracic Society 2016 International Conference; 2016 May 13-18; San Francisco, USA. p. A5722.

4. Geiger R, Strasak A, Trembl B, Gasser K, Kleinsasser A, Fischer V, et al. Six‑minute walk test in children and adolescents. J Pediatr. 2007;150:395‑9.

5. Saad HB, Prefaut C, Missaoui R, Mohamed IH, Tabka Z, Hayot M. Reference equation for 6‑min walk distance in healthy North African children 6‑16 years old. Pediatr Pulmonol. 2009;44:316‑24.

6. Klepper SE, Muir N. Reference values on the 6‑minute walk test for children living in the United States. Pediatr Phys Ther. 2011;23:32‑40.

7. Bartels B, Groot JF, Terwee CB. The six‑minute walk test in chronic pediatric conditions: a systematic review of measurement properties. Phys Ther. 2013;93:529‑41.

8. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six‑minute walk test. Am J Respir Crit Care Med. 2002;166:111‑7.
Oscilometria de impulso e teste de caminhada em escolares

9. Holland AE, Spruit MA, Troosters T, Puhani PA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44:1428-46.

10. Gotshall RW. Airway response during exercise and hyperpnoea in non-asthmatic and asthmatic individuals. Sports Med. 2006;36:513-27.

11. Wanrooij VH, Willeboordse M, Dompeling E, Kant KD. Exercise training in children with asthma: a systematic review. Br J Sports Med. 2014;48:1024-31.

12. Parsons JP, Hallstrand TS, Mastronarde JG, Kaminsky DA, Rundell KW, Hull JL, et al. An official American Thoracic Society clinical practice guideline: exercise-induced bronchoconstriction. Am J Respir Crit Care Med. 2013;187:1016-27.

13. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Priesnitz CV, Rodrigues GH, Stumpf CS, Viapiana G, Cabral CP, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319-38.

14. Komarow HD, Myles IA, Uzzaman A, Metcalfe DD. Impulse oscillometry in the evaluation of diseases of the airways in children. Ann Allergy Asthma Immunol. 2011;106:191-9.

15. Shirai T, Kurosawa H. Clinical application of the forced oscillation technique. Intern Med. 2016;55:559-66.

16. Assumpção MS, Gonçalves RM, Ferreira LG, Schivinski CI. Impulse oscillometry system in pediatrics: review. Medicina (Ribeirão Preto). 2014;47:131-42.

17. Bickel S, Popler J, Lesnick B, Eid N. Impulse oscillometry: interpretation and practical applications. Chest. 2014;146:841-7.

18. Priesnitz CV, Rodrigues GH, Stumpf CS, Viapiana G, Cabral CP, Stein RT, et al. Reference values for the 6-min walk test in healthy children aged 6-12 years. Pediatr Pulmonol. 2009;44:1174-9.

19. Okuro RT, Schivinski CI. Six-minute walk test in pediatrics: the relationship between performance and anthropometric parameters. Fisioter Mov. 2013;26:219-28.

20. Solé D, Vanna AT, Yamada E, Rizzo MC, Naspetz CK. International study of asthma and allergies in childhood (ISAAC) written questionnaire: validation of the asthma component among Brazilian children. JInvestigAllergolClinImmunol. 1997;8:376-82.

21. Vanna AT, Yamada E, Arruda LK, Naspetz CK, Solé D. International study of asthma and allergies in childhood: validation of the rhinitis symptom questionnaire and prevalence of rhinitis in schoolchildren in São Paulo, Brazil. Pediatr Allergy Immunol. 2001;12:95-101.

22. Assumpção MS, Gonçalves RM, Martins R, Bobbio TG, Schivinski CI. Reference equations for impulse oscillometry system parameters in Brazilian healthy children and adolescents. Respir Care. 2016;61:1090-9.

23. Behl RK, Kashyap S, Sarkar M. Prevalence of bronchial asthma in school children of 6-13 years of age in Shimla City. Indian J Chest Dis Allied Sci. 2010;52:145-8.

24. Brazil - Ministério da Saúde [homepage on the Internet]. Telessaúde Brasil Redes [cited 2015 may 15]. Available from: http://www.telessaudebrasil.org.br/apps/calculadoras/page=7

25. Beydon N, Lombardi E, Allen J, Arets H, Aurora P, Bisgaard H, et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007;175:1304-45.

26. Oostveen E, MacLeod D, Lorino H, Farré R, Hantos Z, Desager K, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003;22:1026-41.

27. Costa D, Jamami M. Bases fundamentais da espirometria. Rev Bras Fisioter. 2001;5:95-102.

28. Gonçalves RM, Ferreira LG, Schivinski CI. Oscillometry in the evaluation of diseases of the airways in children. J Investig Allergol Clin Immunol. 1997;8:376-82.

29. Rodrigues JC, Takahashi A, Olmos FM, Souza JB, Bussamra MH, Cardieri JM. Effect of body mass index on asthma severity and exercise-induced bronchial reactivity in overweight and obese asthmatic children. Rev Paul Peadiatr. 2007;25:207-13.

30. Fonseca‑Guedes CH, Cabral AL, Martins MA. Exercise‑induced bronchospasm in children: comparison of FEV1 and FEF25‑75% responses. Pediatr Pulmonol. 2003;36:49-54.

31. Lee JY, Seo JH, Kim HY, Jung YH, Kwon JW, Kim BJ, et al. Reference values of impulse oscillometry and its utility in the diagnosis of asthma in young Korean children. J Asthma. 2012;49:811-6.

32. Vendrusculo FM, Heinzmann‑Filho JP, Piva TC, Marostica PJ, Donadio MV. Inspiratory muscle strength and endurance in children and adolescents with cystic fibrosis. Respir Care. 2016;61:184-91.

33. Díez JM, Villa Asensi JR, Vecchi AA. Resistance by oscillometry. Comparison of its behavior in patients with asthma and cystic fibrosis. Rev Clin Esp. 2006;206:95-7.

34. Moreau L, Crenesse D, Berthier F, Albertini M. Relationship between impulse oscillometry and spirometric indices in cystic fibrosis children. Acta Paediatr. 2011;100:1595-1601.

35. Thunqvist P, Gustafsson PM, Schultz ES, Bellander T, Berggren-Broström E, Norman M, et al. Lung function at 8 and 16 years after moderate‑to‑late preterm birth: a prospective cohort Study. Pediatrics. 2016;137.