Halide Abstraction Competes with Oxidative Addition in the Reactions of Aryl Halides with [Ni(PMe₉,₆Ph₁₋₇₈)₄]

Ignacio Funes-Ardoiz,¹ David J. Nelson,² and Feliu Maseras²[a, c]

c chem_201702331_sm_misinformation.pdf
Contents

COMPUTATIONAL DETAILS ... S2
BENCHMARK OF FUNCTIONALS ... S3
PHOSPHINE DISSOCIATION POTENTIAL ENERGY RELAXED SCAN FROM Ni(PMe₃)₄ S4
ALTERNATIVE MECHANISMS ... S5
 (A) Outer-sphere electron transfer from [Ni(PMe₃)₄] to ArX ... S5
 (B) Inner-sphere electron transfer from [Ni(PMe₃)₃] to ArX .. S6
 (C) Oxidative Addition Pathway from [Ni(PMe₃)₂] .. S7
MICROKINETIC MODEL ... S8
 (A) Reaction between [Ni(PMe₃)₄] to PhI in toluene ... S8
 (B) Reaction between [Ni(PMe₃)₄] to PhBr in THF .. S10
COORDINATES AND ENERGIES FOR MINIMA AND TRANSITION STATES .. S12
REFERENCES .. S74
COMPUTATIONAL DETAILS

Calculations were performed using Gaussian09 (Rev. D01)\(^1\) at the B3LYP level of theory\(^2,3,4\) with Grimme’s D3 dispersion correction.\(^5\) This correction renders B3LYP appropriate for studying organometallic chemistry.\(^6\) For optimizations and frequency calculations, the 6-31G(d) basis set\(^7,8,9\) was used for H, C, N, O, P, and Cl atoms, and the LANL2DZdp basis set/ECP\(^10\) used for Br and I, and LANL2LTZ(f)\(^11,12,13\) for Ni. The potential energies were refined using the same basis set for Br, I and Ni, and increasing the basis set for H, C, N, O, P and Cl, using 6-311+G(d,p).\(^14\) The solvent is experimentally significant, so all calculations were carried out in solvent (using the SMD method for implicit solvation), unless otherwise stated. Unless otherwise stated all calculations were carried out on THF. Toluene and n-hexane were used in specific cases (see the manuscript text for discussion of solvent effects).

The nature of each stationary point was verified using frequency analyses, and IRC calculations were used to verify that transition states linked the relevant minima. Free energy corrections were computed at 298 K and 1 atm. All energies quoted are Gibbs free energies in solution, in kcal mol\(^{-1}\). Enthalpies are given in the schemes, in brackets, in kcal mol\(^{-1}\).

In the case of open-shell singlet structures, where \(S^2\) is not zero, we corrected the energy by applying the Yamaguchi’s equation,\(^15,16,17,18\) in the form:\(^19\)

\[
E_{\text{singlet}} = \frac{2E_{\text{OSS}} - E_{\text{triplet}} \langle S^2 \rangle_{\text{OSS}}}{2 - \langle S^2 \rangle_{\text{OSS}}}
\]

where \(E_{\text{OSS}}\) is the energy of open-shell singlet calculation, \(E_{\text{triplet}}\) is the energy of the triplet state at the open-shell singlet geometry and \(\langle S^2 \rangle_{\text{OSS}}\) is the \(S^2\) value of the open-shell singlet calculation.

PEt\(_3\) has a number of possible conformations, so the ligands were truncated to PMe\(_3\), which has similar properties (Tolman electronic parameter = 2064.1 cm\(^{-1}\) for PMe\(_3\), 2061.7 cm\(^{-1}\) for PEt\(_3\); cone angle = 118° for PMe\(_3\), 132° for PEt\(_3\)).\(^20\) Tolman determined that both ligands undergo fast ligand exchange at a Ni\(^0\) centre in benzene or toluene solution, although PEt\(_3\) has a slightly greater propensity for dissociation.\(^21\)
BENCHMARK OF FUNCTIONALS

Table S1. Comparison of four different functionals on the key step of Ni(0) oxidation with PhI. Free energies in kcal/mol.

Method*	Ni(PMe₃)₄	Ni(PMe₃)₃	TSadox	TSabst
B3LYP-D3	0.0	7.8	16.2	10.0
TPSSh-D3	0.0	13.4	16.2	14.8
ωB97X-D	0.0	10.1	21.5	11.4
PBE1PBE-D3	0.0	12.2	19.4	11.4

* Single point energies on B3LYP-D3 geometries using the LANL2DZdp basis set/ECP for I, LANL2LTZ(f) for Ni and 6-311+G(d,p) for the rest of atoms, with free energy corrections from B3LYP-D3 calculations.

The evaluation of different functionals in the key step with PhI and PMe₃ as ligand shows minor differences among all of them. The open-shell single electronic structure for the halogen abstraction transition state was found to be the most stable electronic structure in all the cases (using the wavefunction stability evaluation of g09). We selected B3LYP-D3 as the functional because the dissociation energy of the phosphine was the most consistent with experimental data and the evaluation of the product ratio provides a full agreement with the experimental observations.
PHOSPHINE DISSOCIATION POTENTIAL ENERGY RELAXED SCAN FROM Ni(PMe₃)₄

Figure S1. Potential energy relaxed scan for the phosphine dissociation in Ni(PMe₃)₄ complex.

According to the scan, there is no activation barrier for the phosphine dissociation in Ni(PMe₃)₄ complex.
ALTERNATIVE MECHANISMS

(A) Outer-sphere electron transfer from [Ni(PMe3)4] to ArX

Electron transfer from [Ni(PMe3)4] to ArX could in theory occur via an outer sphere mechanism, to form [Ni(PMe3)4]+ and the radical anion of ArX; the latter would then spontaneously dissociate X⁻ to form an aryl radical. This was explored using Marcus-Hush theory, where the barrier to electron transfer can be estimated using equations S1-S3. This assumes that the major energetic barrier is the rearrangement of the products immediately following the electron transfer event. This has been successfully used to describe the reactions of aryl halides with ‘super electron donors’.22

\[\Delta G^\ddagger \approx \left(\frac{\lambda_i}{4} \cdot \left(1 + \frac{\Delta G}{\lambda_i} \right) \right)^2 \] (S1)

\[\lambda_i = \frac{1}{2} \cdot (\lambda_i^{NiP4^+} + \lambda_i^{ArX}) \] (S2)

\[\lambda_i^{(species)} = (E_N(R_C) - E_N(R_0)) + (E_C(R_N) - E_C(R_C)) \] (S3)

- \(\lambda_i \) is the internal reorganisation energy; \(\lambda_i^{NiP4^+} \) is the internal reorganisation energy of [Ni(PMe3)4]+; and \(\lambda_i^{ArX} \) is the internal reorganisation energy of ArX radical anion
- \(\Delta G \) is the free energy change of the reaction
- \(E_N(R_N) \) and \(E_C(R_C) \) are the energies of the neutral and charged species in their respective geometries; \(E_C(R_N) \) and \(E_N(R_C) \) are the single point energies of the neutral and charged geometries as charged and neutral species, respectively.

While the initial result with [Ni(PMe3)4] and PhI in THF was sensible (\(\Delta G^\ddagger = 15.6 \) kcal mol⁻¹), barriers for PhBr and in toluene and hexane were far too high to account for the NiI products observed, albeit in reduced quantities, in these reactions (see Table S2). The major contributor to these energies was the very large value of \(\Delta G \) for this process in non-polar solvents.

Solvent	Aryl Halide	\(\Delta G \) (kcal/mol)	\(\lambda_i \) (kcal/mol)	\(\Delta G^\ddagger \) (kcal/mol)
THF	PhI	1.2	59.9	15.6
THF	PhBr	11.8	63.6	22.3
Toluene	PhI	29.8	56.8	33.0
Hexane	PhI	38.3	61.6	40.5

Table S2. Calculated energies for outer-sphere electron transfer from [Ni(PMe3)4] to ArX.
(B) Inner-sphere electron transfer from $[\text{Ni}(\text{PMe}_3)_3]$ to ArX

Inner-sphere electron transfer from $[\text{Ni}(\text{PMe}_3)_3]$ to ArX could occur via complex $[\text{Ni}(\text{PMe}_3)_3(\text{XAr})]$, with a concomitant change in multiplicity from singlet to triplet. This cannot be described by a simple transition state, and instead requires the geometry at which the singlet and triplet have the same energy to be located, termed the minimum energy crossing point (MECP).

The software tool published by Harvey was used, and the MECP could be located for a number of examples. However, the energies of MECPs for aryl bromides were too high to compete with oxidative addition to $[\text{Ni}(\text{PMe}_3)_2]$ (see Table S3). Energies are quoted as a range, because these structures typically have imaginary frequencies when either or both of the singlet and triplet frequency calculations are performed; there is a small discrepancy in their free energies, because the MECP calculation seeks the geometry at which the potential energy E is the same for both singlet and triplet.

Table S3. Calculated minimum energy crossing points for inner-sphere electron transfer from $[\text{Ni}(\text{PMe}_3)_3]$ to ArX.

Solvent	Aryl Halide	MECP G_{rel} (kcal/mol)
THF	PhI	15.0 – 15.2
THF	PhBr	22.5 – 22.6
Toluene	PhI	16.5 – 16.8
Toluene	PhBr	23.9 – 24.6
Hexane	PhI	16.7 – 17.1
Hexane	PhBr	24.7 – 26.0
(C) Oxidative Addition Pathway from [Ni(PMe₃)₂]

Figure S2. Oxidative addition of PhI (purple), PhBr (brown), and PhCl (green) to [Ni(PMe₃)₂]. Energies are in kcal mol⁻¹.

The dissociation energy of the second phosphine is always higher than the oxidative addition transition state from [Ni(PMe₃)₃], so this mechanism is unfavourable in the three cases. We could not find the barrier for PhI oxidative addition, due to the high reactivity of this species with Ni(P)₂, which forms the Ni(II) product 9 directly.
MICROKINETIC MODEL

(A) Reaction between [Ni(PMe$_3$)$_4$] to PhI in toluene

We used the COPASI program package to run the reactions used in the microkinetic model, with the following equations:

\[
\begin{align*}
\text{(1)} & \quad [\text{Ni}^0(\text{PMe}_3)_4] + \text{PhI} \quad \xrightarrow{k_1} \quad [\text{Ni}^{II}(\text{PMe}_3)_3\text{Ph}]^+\text{I}^- + \text{PMe}_3 \\
\text{(2)} & \quad [\text{Ni}^0(\text{PMe}_3)_4] + \text{PhI} \quad \xrightarrow{k_2} \quad [\text{Ni}^I(\text{PMe}_3)_3\text{I}] + \text{Ph}^- + \text{PMe}_3 \\
\text{(3)} & \quad [\text{Ni}^I(\text{PMe}_3)_3\text{I}] \quad \xrightarrow{k_3} \quad [\text{Ni}^I(\text{PMe}_3)_2\text{I}] + \text{PMe}_3 \\
\text{(4)} & \quad [\text{Ni}^I(\text{PMe}_3)_2\text{I}] + \text{Ph}^- \quad \xrightarrow{k_4} \quad [\text{Ni}^{III}(\text{PMe}_3)_2\text{I}(\text{Ph})] \\
\text{(5)} & \quad \text{Ph}^- + \text{Ph-CH}_3 \quad \xrightarrow{k_5} \quad \text{PhH} + \text{PhCH}_2^-.
\end{align*}
\]

The activation energies and the associated kinetic constants are in Table 4.

Table S4. Calculated activation free energies and kinetic constants of kinetic model of the reaction between [Ni(PMe$_3$)$_4$] and PhI in toluene.

Reaction	ΔG^\ddagger (kcal/mol)	Kinetic constant (M$^{-1}$·s)
1	16.7	3.514
2	9.4	7.932e+5
3	10.0	2.784e+5
3(k$_{3}$)	3.7	1.18e+10
41	3.7	1.18e+10
5	10.6	1.046e+5

The reactions 3 and 4 are barrierless. For this reason, we considered them as diffusion-controlled, with the rate constant given by the equation $k_{\text{diff}} = 8k_bT/(3\eta)\cdot1000\cdotN_a$, in M$^{-1}$·s$^{-1}$. The viscosity of toluene at 298 K is 0.560 mPa·s. The diffusion rate constant would correspond to an associated activation free energy of 3.7 kcal/mol, calculated from Eyring equation.

The conditions used to analyze the time course of the reaction were 0.01s in 20 steps, obtaining the results in Table S5. The initial concentrations were taken from the experiments (0.005 M for species
A and B and solvent concentration calculated from the density at 25°C (12.2 M for THF). The numbers represent the concentration of labelled species in mol per litre (Table S5).

Table S5. Concentrations of different species in solution during reaction time in mol/L for the reaction between [Ni(PMe₃)₄] and PhI in toluene.

Time (s)	A	B	C	D	E	F	G	H	I	J	K
0	0.005	0.005	0	0	0	0	0	0	9.39	0.000	0
0.001	1.01E-03	1.01E-03	1.77E-08	4.67E-03	3.32E-03	6.83E-07	1.68E-05	6.57E-04	9.39E+00	3.34E-03	3.34E-03
0.005	7.20E-04	7.20E-04	1.90E-08	5.00E-03	3.56E-03	3.49E-07	1.68E-05	7.05E-04	9.39E+00	3.58E-03	3.58E-03
0.002	5.60E-04	5.60E-04	1.97E-08	5.19E-03	3.69E-03	2.11E-07	1.68E-05	7.32E-04	9.39E+00	3.71E-03	3.71E-03
0.0025	4.58E-04	4.58E-04	2.01E-08	5.31E-03	3.78E-03	1.41E-07	1.68E-05	7.49E-04	9.39E+00	3.79E-03	3.79E-03
0.003	3.88E-04	3.88E-04	2.04E-08	5.39E-03	3.83E-03	1.01E-07	1.68E-05	7.61E-04	9.39E+00	3.85E-03	3.85E-03
0.0035	3.36E-04	3.36E-04	2.07E-08	5.45E-03	3.88E-03	7.60E-08	1.68E-05	7.69E-04	9.39E+00	3.89E-03	3.89E-03
0.004	2.96E-04	2.96E-04	2.08E-08	5.50E-03	3.91E-03	5.91E-08	1.68E-05	7.76E-04	9.39E+00	3.93E-03	3.93E-03
0.0045	2.65E-04	2.65E-04	2.10E-08	5.53E-03	3.94E-03	4.74E-08	1.68E-05	7.81E-04	9.39E+00	3.95E-03	3.95E-03
0.005	2.40E-04	2.40E-04	2.11E-08	5.56E-03	3.96E-03	3.88E-08	1.68E-05	7.86E-04	9.39E+00	3.97E-03	3.97E-03
0.0055	2.19E-04	2.19E-04	2.12E-08	5.59E-03	3.97E-03	3.23E-08	1.68E-05	7.89E-04	9.39E+00	3.99E-03	3.99E-03
0.006	2.03E-04	2.03E-04	2.13E-08	5.61E-03	3.99E-03	2.74E-08	1.68E-05	7.92E-04	9.39E+00	4.01E-03	4.01E-03
0.0065	1.87E-04	1.87E-04	2.13E-08	5.62E-03	4.00E-03	2.35E-08	1.68E-05	7.95E-04	9.39E+00	4.02E-03	4.02E-03
0.007	1.74E-04	1.74E-04	2.14E-08	5.64E-03	4.01E-03	2.03E-08	1.68E-05	7.97E-04	9.39E+00	4.03E-03	4.03E-03
0.0075	1.63E-04	1.63E-04	2.14E-08	5.65E-03	4.02E-03	1.78E-08	1.68E-05	7.99E-04	9.39E+00	4.04E-03	4.04E-03
0.008	1.53E-04	1.53E-04	2.15E-08	5.66E-03	4.03E-03	1.57E-08	1.68E-05	8.00E-04	9.39E+00	4.05E-03	4.05E-03
0.0085	1.44E-04	1.44E-04	2.15E-08	5.67E-03	4.04E-03	1.40E-08	1.68E-05	8.02E-04	9.39E+00	4.05E-03	4.05E-03
0.009	1.36E-04	1.36E-04	2.15E-08	5.68E-03	4.04E-03	1.25E-08	1.68E-05	8.03E-04	9.39E+00	4.06E-03	4.06E-03
0.0095	1.29E-04	1.29E-04	2.15E-08	5.69E-03	4.05E-03	1.11E-08	1.68E-05	8.04E-04	9.39E+00	4.07E-03	4.07E-03
0.01	1.23E-04	1.23E-04	2.16E-08	5.70E-03	4.05E-03	1.02E-08	1.68E-05	8.05E-04	9.39E+00	4.07E-03	4.07E-03

The ratio of Ni(I) vs Ni(II) (83:17 in this case) was obtained using the following formula:

\[
\frac{[Ni(I)]}{[Ni(II)]} = \frac{[PhH]}{[[Ni(II)(PMe_3)_3Ph]^+I^-] + [Ni(II)(PMe_3)_2(Ph)I]}
\]
We ran the same microkinetic model for the reaction between Ni complex and PhBr in THF. The reactions were:

\[
\begin{align*}
[Ni^0(\text{PMe}_3)_4] + \text{PhBr} & \xrightarrow{k_1} [Ni^{\text{III}}(\text{PMe}_3)_3\text{Ph}]^+\text{Br}^- + \text{PMe}_3 & (1) \\
[Ni^0(\text{PMe}_3)_4] + \text{PhBr} & \xrightarrow{k_2} [Ni^{\text{III}}(\text{PMe}_3)_3\text{Br}] + \text{Ph}^- + \text{PMe}_3 & (2) \\
[Ni^{\text{III}}(\text{PMe}_3)_3\text{Br}] & \xrightarrow{k_3} [Ni^{\text{III}}(\text{PMe}_3)_2\text{Br}] + \text{PMe}_3 & (3) \\
[Ni^{\text{III}}(\text{PMe}_3)_2\text{Br}] + \text{Ph}^- & \xrightarrow{k_4} [Ni^{\text{III}}(\text{PMe}_3)_2\text{I}(\text{Ph})] & (4) \\
\text{Ph}^- + \text{Ph-CH}_3 & \xrightarrow{k_5} \text{PhH} + \text{PhCH}_2^- & (5)
\end{align*}
\]

The activation energies and the associated kinetic constants are in Table S6:

Table S6. Calculated activation free energies and kinetic constants of kinetic model of the reaction between [Ni(\text{PMe}_3)_4] and PhBr in THF.

Reaction	ΔG^\ddagger (kcal/mol)	Kinetic constant (M$^{-1}$·s$^{-1}$)
1	15.0	62.015
2	16.3	6.904
3	6.0	2.471e+8
3(k_3)	3.6	1.45e+10
4‡	3.6	1.45e+10
5	9.5	6.700e+5

The reactions 3 and 4 are also barrierless. We applied the same methodology that above, using the experimental value of 0.456 mPa·s for the viscosity of THF.25 The associated activation free energy was calculated from Eyring equation and is 3.6 kcal/mol.
Table S7. Concentrations of different species in solution along reaction time in mol/L for the reaction between [Ni(PMe3)4] and PhBr in THF.

Time (s)	A	B	C	D	E	F	G	H	I	J	K
0	1.22E-03	1.22E-03	3.40E-03	4.10E-03	5.94E-05	8.72E-13	2.47E-04	7.23E-05	1.22E+01	3.06E-04	3.06E-04
9	4.85E-04	4.85E-04	4.06E-03	4.89E-03	7.95E-05	1.33E-13	2.77E-04	9.56E-05	1.22E+01	3.57E-04	3.57E-04
18	3.73E-04	3.73E-04	4.16E-03	5.01E-03	8.37E-05	7.83E-14	2.81E-04	9.33E-05	1.22E+01	3.64E-04	3.64E-04
27	3.03E-04	3.03E-04	4.23E-03	5.08E-03	8.47E-05	5.15E-14	2.84E-04	1.02E-04	1.22E+01	3.69E-04	3.69E-04
36	2.55E-04	2.55E-04	4.27E-03	5.13E-03	8.61E-05	3.64E-14	2.86E-04	1.03E-04	1.22E+01	3.72E-04	3.72E-04
45	2.20E-04	2.20E-04	4.30E-03	5.17E-03	8.72E-05	2.71E-14	2.87E-04	1.04E-04	1.22E+01	3.74E-04	3.74E-04
54	1.94E-04	1.94E-04	4.32E-03	5.20E-03	8.79E-05	2.10E-14	2.88E-04	1.05E-04	1.22E+01	3.76E-04	3.76E-04
63	1.73E-04	1.73E-04	4.34E-03	5.22E-03	8.85E-05	1.67E-14	2.89E-04	1.06E-04	1.22E+01	3.78E-04	3.78E-04
72	1.56E-04	1.56E-04	4.36E-03	5.24E-03	8.90E-05	1.36E-14	2.90E-04	1.07E-04	1.22E+01	3.79E-04	3.79E-04
81	1.42E-04	1.42E-04	4.37E-03	5.25E-03	8.94E-05	1.13E-14	2.91E-04	1.07E-04	1.22E+01	3.80E-04	3.80E-04
90	1.31E-04	1.31E-04	4.38E-03	5.27E-03	8.98E-05	9.53E-15	2.91E-04	1.07E-04	1.22E+01	3.80E-04	3.80E-04
99	1.21E-04	1.21E-04	4.39E-03	5.28E-03	9.01E-05	8.15E-15	2.91E-04	1.08E-04	1.22E+01	3.81E-04	3.81E-04
108	1.13E-04	1.13E-04	4.40E-03	5.29E-03	9.03E-05	7.05E-15	2.91E-04	1.08E-04	1.22E+01	3.81E-04	3.81E-04
117	1.05E-04	1.05E-04	4.40E-03	5.29E-03	9.05E-05	6.16E-15	2.91E-04	1.08E-04	1.22E+01	3.82E-04	3.82E-04
126	9.88E-05	9.88E-05	4.41E-03	5.30E-03	9.07E-05	5.43E-15	2.92E-04	1.09E-04	1.22E+01	3.82E-04	3.82E-04
135	9.31E-05	9.31E-05	4.42E-03	5.31E-03	9.09E-05	4.82E-15	2.92E-04	1.09E-04	1.22E+01	3.83E-04	3.83E-04
144	8.80E-05	8.80E-05	4.42E-03	5.31E-03	9.11E-05	4.30E-15	2.92E-04	1.09E-04	1.22E+01	3.83E-04	3.83E-04
153	8.34E-05	8.34E-05	4.42E-03	5.32E-03	9.12E-05	3.87E-15	2.92E-04	1.09E-04	1.22E+01	3.83E-04	3.83E-04
162	7.93E-05	7.93E-05	4.43E-03	5.32E-03	9.13E-05	3.50E-15	2.92E-04	1.09E-04	1.22E+01	3.84E-04	3.84E-04

The conditions that are used to analyze the time course of the reaction were 180 s in 20 steps, obtaining the Table S7. The initial concentrations were taken from the experiments (0.005 M for species A and B and solvent concentration calculated from the density at 25ºC (12.2 M for THF). The numbers represent the concentration of labelled species in mol per litre.

The ratio of Ni(I) vs Ni(II) (8:92 in this case) was obtained using the following formula:

\[
\frac{[Ni(I)]}{[Ni(II)]} = \frac{[PhH]}{[[Ni(II)(PMe_3)_3Ph]^+Br^-] + [Ni(II)(PMe_3)_2(Ph)Br]} \]
COORDINATES AND ENERGIES FOR MINIMA AND TRANSITION STATES

Energies are given in Hartrees and correspond to the potential energy with the large basis set (first line) and to the free energy correction (second line). The energies used to compute all the profiles were calculated by the sum of \(E + G_{\text{corr}} \). In the case of open-shell singlet structures, the values of the potential energy at triplet electronic structure and the \(S^2 \) of the open-shell singlet are also provided.

Coordinates are Cartesian coordinates in \(\text{Å} \).

In Tetrahydrofuran

	\(E \)	\(G_{\text{corr}} \)
\(\text{Ni(PMe}_3\text{)}_4 \)		
Ni	2.97381100	7.49675000 11.85409900
P	1.37271500	8.84467500 11.13266300
P	2.20232100	6.27155600 13.51844500
C	0.89366400	8.16982600 10.75440800
C	1.64237000	9.81235900 9.56509700
C	2.55471800	6.82320300 15.26175000
C	0.36359500	6.01879000 13.68224400
C	2.73487100	4.49313900 13.67924800
C	0.06919600	10.85075300 11.84660400
C	1.76215600	10.90192100 12.40329800
H	-0.99638400	8.94063300 10.36095200
H	-0.76101600	7.74569400 11.66173000
Ni	1.69654200	9.12553800 8.71509500
P	2.95943000	10.35007200 9.62310200
P	2.17994800	7.84212700 15.40599100
C	3.63677800	6.83117300 15.43347000
C	-0.12463500	6.98511600 13.85086800
C	0.11165200	5.34883700 14.51507000
H	2.35690800	3.92165300 12.82559900
H	2.36069900	4.03111600 14.60259900
P	4.57490600	8.84467500 12.57536000
P	3.74530100	6.27155500 10.18975400
C	5.05958000	10.25113000 11.45389700
C	6.26790600	8.16982500 12.95379100
C	4.30525000	9.81235900 14.14310200
C	3.39290300	6.82320300 8.44644900
C	5.58042600	6.01879000 10.02559500
C	3.21275000	4.49313900 10.02895100
C	5.87842600	10.85075200 11.86159500
C	4.18546600	10.90192100 11.30480100
C	6.94400500	8.94063200 13.34724800
C	6.70863700	7.74569400 12.04646900

	\(E \)	\(G_{\text{corr}} \)
\(\text{Ni(PMe}_3\text{)}_3 \)		
Ni	2.96964300	7.43814400 11.73948900
P	1.78588200	9.17165100 11.21717900
P	2.68132400	6.67241600 13.74450700
C	1.79598400	10.58439200 12.42689000
C	-0.04185000	8.88681400 11.07773000
C	2.06963900	10.11393500 9.63767100
C	3.57495300	7.68797300 15.01798000
C	0.97020400	6.63470300 14.49173100
C	3.25422900	4.69617000 14.22969100
H	1.15551600	11.41351500 12.09851300
H	2.82005700	10.95508000 12.54912700
H	-0.59829000	9.79329300 10.87757200
H	-0.40559000	8.42471400 12.01072500
H	1.96570000	9.43010700 8.78771700
H	3.09258400	10.50757700 9.63084000
Ni(PMe₃)₂

\[
\text{E} = -1091.70993065
\]
\[
\text{G}_{\text{corr}} = 0.185935
\]

PMe₃

\[
\text{E} = -461.173291179
\]
\[
\text{G}_{\text{corr}} = 0.084310
\]
Atom	X	Y	Z
Ni	-0.49706400	0.85226400	-0.02368300
P	0.01251600	0.52395400	-2.15370000
P	-1.49145900	-0.97581000	0.70533100
P	1.42367600	1.04561800	1.05462400
P	-1.80334900	2.60489900	0.24991400
C	1.44599200	1.50065700	-2.82277500
C	1.58777700	2.82186900	-2.36496000
H	0.87764400	3.26073000	-1.64199200
C	2.63543100	3.63129200	-2.80649600
H	2.71366800	4.65272600	-2.44247100
C	3.58266900	3.12311500	-3.70047800
H	4.40850900	3.74499500	-4.03692100
C	4.36370500	1.80793000	-4.15444000
H	4.19856600	1.40170300	-4.84581900
C	2.40074000	1.00476600	-3.72544200
C	2.33039800	-0.01259800	-0.09841600
H	-1.25265400	0.87681700	-3.47387900
H	-2.14416600	0.27210800	-3.27470100
C	-0.87875100	0.64356400	-4.47868900
C	-1.53122900	1.93466000	-3.43637800
C	0.45981000	-1.21197800	-2.63527000
H	-0.37075600	-1.86526600	-2.34484200
C	1.35010000	-1.52974500	-2.08220500
C	0.63660500	-1.33981400	-3.70938400
C	-2.50142700	-1.91250700	-0.54081700
C	-2.31480100	-3.26828100	-0.85570700
H	-1.57569000	-3.85922200	-0.32841100
C	-3.07014800	-3.88233000	-1.86133600
C	-2.90794000	-4.93073300	-2.09493400
C	-4.03654600	-3.15737200	-2.56063700
C	-4.62264800	-3.63567300	-3.34112900
C	-4.23998400	-1.80810100	-2.25135500
C	-4.98763600	-1.23121700	-2.79067800
C	-3.47235500	-1.19386600	-1.26174200
C	-3.61022300	-0.13670100	-1.05729600
C	-2.75428100	-0.82552000	2.06837600
C	-3.51818900	-0.98231000	1.77632000
C	-2.25263000	-0.45766700	2.97021900
C	-3.23954100	-1.78240600	2.29665000
C	-0.43652600	-2.32011200	1.43071300
C	0.12415400	-1.89283200	2.26718100
C	0.28595900	-2.66588800	0.68385200
C	-1.01630100	-3.17576000	1.79752000
C	1.44036000	0.45618400	2.81741300
C	0.30475000	0.73953000	3.59775500
C	-0.52847300	1.25974500	3.13913100
C	0.22032500	0.32062800	4.92731500
C	-0.66813800	0.55082500	5.51070500
C	1.26816400	-0.40728100	5.50010800
C	1.20116200	-0.74593800	6.53083900
C	2.39923900	-0.70153700	4.73529000
C	3.21762700	-1.26989600	5.17095000
C	2.48802200	-0.26730000	3.40832700
C	3.38110100	-0.50650400	2.83910300

\[G_{corr} = 0.601644 \]

\[\text{Ni(PMe}_2\text{Ph)}_3 \]

\[E = -2128.30803416 \]

\[G_{corr} = 0.493835 \]
Ni(PMe₃Ph)₂

\[
\begin{align*}
\text{E} &= -1475.2954173 \\
G_{\text{corr}} &= 0.28227
\end{align*}
\]

\[
\begin{align*}
\text{Ni} &= 2.92241100 \quad 7.11859900 \quad 5.19863800 \\
P &= 3.47235300 \quad 5.05218800 \quad 5.30225500 \\
P &= 2.40996600 \quad 9.18799300 \quad 5.00638500 \\
C &= 2.11340800 \quad 8.3268800 \quad 5.01141200 \\
C &= 2.32833800 \quad 2.44477700 \quad 5.01571100 \\
H &= 3.24058800 \quad 2.04670600 \quad 5.19499900 \\
\text{Ni(PMe₂Ph)} &
\]

\[
\begin{align*}
\text{PhMe₃P—Ni—PMe₃Ph} \\
\text{E} &= -822.264490723 \\
G_{\text{corr}} &= 0.130288
\end{align*}
\]

\[
\begin{align*}
\text{Ni} &= 3.64952100 \quad 7.12531700 \quad 5.00244100 \\
P &= 3.41747500 \quad 5.11515900 \quad 5.25861700 \\
C &= 2.50041500 \quad 4.21075400 \quad 3.92761400 \\
P &= 2.24237300 \quad 8.23860200 \quad 4.00590600 \\
H &= 2.58070100 \quad 2.26020700 \quad 4.86635100 \\
C &= 1.55079100 \quad 2.18047800 \quad 2.98316600 \\
H &= 1.35592300 \quad 1.11348400 \quad 3.05667000 \\
C &= 1.10918500 \quad 2.89706000 \quad 1.86640400 \\
P &= 0.57117600 \quad 2.38864500 \quad 1.07077800 \\
C &= 0.36195300 \quad 4.2683000 \quad 1.77702400 \\
P &= 0.12235200 \quad 4.8312900 \quad 0.9130500 \\
C &= 0.25074500 \quad 4.9188800 \quad 2.80286100
\end{align*}
\]
\[G_{corr} = 0.132457 \]
\[E = -652.964031445 \]
\[G_{corr} = 0.801946 \]
\[E = -3548.5036579 \]
\[G_{corr} = 0.132457 \]
\[E = -652.964031445 \]
\[G_{corr} = 0.801946 \]
\[E = -3548.5036579 \]
Ni(PMePh$_2$)$_3$

\[E = -1858.88033969 \]
\[G_{corr} = 0.588582 \]
\[Ni = 8.95691010 \text{ 10.55166600 3.71532900} \]
\[\text{Ni(PPh}_3\text{)}_4 \]

\[\begin{align*}
E & = -4315.67341777 \\
G_{\text{corr}} & = 1.003185
\end{align*} \]

Ni \(\text{PPh}_3\) \(\text{Ni(PPh}_3\text{)}_4\)

\begin{align*}
\text{P} & : -1.19882300 \quad -0.44166600 \quad 0.01868500 \\
\text{C} & : -0.58479000 \quad 0.57761700 \quad -1.40342600 \\
\text{C} & : -1.47037300 \quad 0.88000500 \quad -2.44556800 \\
\text{C} & : 0.74092500 \quad 1.03645900 \quad -3.49812500 \\
\text{C} & : -1.04780700 \quad 1.61866600 \quad -3.55411100 \\
\text{H} & : -2.50452300 \quad 0.53393200 \quad -2.39059700 \\
\text{C} & : 1.16584100 \quad 1.77564100 \quad -2.59375900 \\
\text{C} & : 1.43952500 \quad 0.82193600 \quad -0.68572200 \\
\text{C} & : 0.27155500 \quad 2.06731000 \quad -3.62953000 \\
\text{C} & : -1.74831300 \quad 1.84574300 \quad -4.35376400 \\
\text{C} & : 2.19379100 \quad 2.12549900 \quad -2.64718800 \\
\text{C} & : 0.60313200 \quad 2.64495300 \quad -4.48856200 \\
\text{C} & : -0.11094700 \quad -1.94065500 \quad -0.16172500 \\
\text{C} & : 0.95659900 \quad -1.69504300 \quad -0.15159400 \\
\text{C} & : -0.32582500 \quad -2.65911500 \quad 0.63622400 \\
\text{C} & : -0.35467700 \quad -2.41836200 \quad -1.11669300 \\
\text{C} & : -0.41203600 \quad 0.43923800 \quad 1.44440300 \\
\text{C} & : -0.68192000 \quad 1.80931500 \quad 1.61881300 \\
\text{C} & : 0.37817000 \quad -0.21224400 \quad 2.40447600 \\
\text{C} & : -0.16435100 \quad 2.50833900 \quad -2.70825600 \\
\text{C} & : -1.29061100 \quad 2.33641400 \quad 0.88747400 \\
\text{C} & : 0.89057200 \quad 0.48787900 \quad 3.50132300 \\
\text{C} & : 0.60612700 \quad -1.26938100 \quad 2.30535400 \\
\text{C} & : 0.62491100 \quad 1.84896900 \quad 3.65600200 \\
\text{H} & : -0.37694700 \quad 3.56885400 \quad 2.81787500 \\
\text{H} & : 1.50352000 \quad -0.03450100 \quad 4.23175200 \\
\text{H} & : 1.02759600 \quad 2.39243100 \quad 4.50672700 \\
\end{align*}
Atom	X	Y	Z
P	9.10187700	8.45462600	4.94328600
C	9.97374500	7.02050600	4.13351700
H	10.29676000	6.69494900	4.48063700
H	8.47836300	7.22239400	5.28677400
C	11.99370800	6.69473800	3.80103500
H	13.01338320	5.46341200	4.09634500
C	11.38744000	5.00530500	2.74726100
H	10.01341110	4.23191500	2.11136000
C	10.07393500	5.31864000	2.39262600
H	9.58698700	4.79020600	1.57700700
C	9.16206000	6.31123100	3.08132200
H	8.35460600	6.53522500	2.78507200
C	7.35442200	7.82605500	4.79261100
C	6.65904600	8.59817000	3.76640200
H	6.97809400	9.14526300	3.14622000
C	5.26332200	7.91190500	3.55412700
H	4.76316800	8.34039300	2.74676800
C	4.71535900	6.93488700	4.38907000
H	3.69590800	6.59157500	4.23789500
C	5.49225400	6.40381100	5.42733500
H	5.06929500	5.64623500	6.08514700
C	6.80075000	6.83822300	5.62322400
H	7.38609000	6.40840700	6.42979600
P	11.56165600	11.11721200	5.21215000
C	11.52704000	11.88361800	6.91666400
C	10.32341100	12.37090000	7.48292500
H	9.42536400	12.28750000	6.83934000
C	10.25259300	12.95785500	6.95889000
H	9.92959600	13.31534500	9.06655500
C	11.40401800	13.06460100	9.47616200
H	11.35749600	13.51271700	10.46539100
C	12.62186100	12.58935700	9.87565200
H	13.52615800	12.67256100	9.57048040
C	12.68301500	12.00708700	7.71052800
H	13.63676100	11.64395900	7.33847100
C	13.66811500	12.35812200	4.34003800
C	13.06095000	13.58249100	4.91042000
C	12.78088300	13.82963500	5.92754100
C	13.79818100	14.51607000	4.17588100
H	14.07985100	15.45699100	4.64231800
C	14.17153800	14.24704500	2.85766100
C	14.74458300	14.97470400	2.28901000
C	13.79044500	13.03563700	2.27702600
H	14.05691600	12.80788800	1.24815700
C	13.03894800	12.11417200	3.00653800
C	12.71691100	11.20727900	2.51521500
C	12.77404000	9.73859800	5.57844900
C	12.67234200	9.02908000	6.79089700
C	13.75503100	9.32878900	4.66145700
C	13.51946400	7.95640400	7.03764600
H	11.93121800	9.31088900	7.52856400
C	14.59671400	8.24846800	4.93965300
C	13.88064100	9.84720100	3.72003100
C	14.48520700	7.55621000	6.14672900
H	13.41195800	7.43014800	8.01849700

\[E = -3279.08460787 \]

\[\text{G}_{\text{corr}} = 0.735357 \]

Ni(PPh₃)₃
Name	X	Y	Z
C	7.45234400	8.65417300	0.84096400
H	7.63155300	8.23393300	1.82776900
C	10.95421900	9.57189200	1.28440000
C	11.96813000	9.63308600	2.25591000
H	11.78627900	10.18138300	3.17769100
C	13.18068300	8.97959050	2.06177000
H	13.95157700	9.02601700	2.82594400
C	13.39218700	8.22808700	0.89866800
H	14.33155600	7.70108800	0.75289100
H	12.38707800	8.14981500	-0.06788800
C	12.54499200	7.56717600	-0.97222400
C	11.17572000	8.82829900	0.12013500
H	10.40512200	8.76466200	-0.64345800
P	7.12552800	10.21040300	6.38278400
C	5.92922200	11.09785400	5.74359900
H	6.42341700	10.72140900	7.00670600
H	7.46196900	10.90828500	7.25740000
C	5.59485000	10.10256100	7.94085900
H	6.00016100	8.91771800	8.90843700
H	4.25667800	9.83970900	7.63068500
H	3.61359600	9.34584800	8.35586500
C	3.75417000	10.21040300	6.38278400
C	2.71435800	10.01452000	6.13238900
C	4.58234200	10.83829400	5.44688300
C	4.17427200	11.11504100	4.47938700
C	7.96901000	13.10545600	5.30704800
C	7.40642800	13.83818300	6.63627500
C	6.41021900	13.59240600	6.72331500
C	8.11980000	14.87532100	9.66686500
C	7.67233100	15.43154600	7.78651200
C	9.40510800	15.19616600	6.52089800
C	9.96046200	16.00159200	6.99448000
C	9.97584500	14.47485200	5.46778700
C	10.97593000	14.71580100	5.11840900
C	9.26321100	13.43463000	4.86899100
C	9.70959000	12.85636100	4.06374600
P	9.05279500	8.60018700	4.91027800
C	10.45809000	7.46459600	4.49516900
C	11.59952800	7.30476100	5.29227400
C	11.68002600	7.83072000	6.23912600
C	12.64119300	6.46592700	4.87947700
C	13.52183900	6.35874000	5.50739300
C	12.54896400	5.77083900	3.67293200
C	13.35884500	5.12047500	3.35278900
C	11.41154300	5.92359600	2.87129700
C	11.33722000	5.39708400	1.92355700
C	10.38242200	6.77021100	2.37498400
C	9.51507000	6.90500300	2.63327800
C	7.70169400	7.36439500	5.18441600
C	6.39155900	7.74437900	4.85597900
C	6.21598300	8.73364900	4.44808400
C	5.32335040	6.86586200	5.05064400
C	4.31457400	7.18151800	4.79853400
C	5.55511700	5.58925000	5.56819600
C	4.72645000	4.90202300	5.71872600

Ni(PPh₃)₂

\[
\text{Ni(PPh₃)₂} = \text{Ph}_3\text{P} - \text{Ni} - \text{PPh₃}
\]

\[
\begin{align*}
\text{E} &= -2242.46752288 \\
\text{G}_{\text{corr}} &= 0.47734
\end{align*}
\]

Name	X	Y	Z
Ni	-1.29396100	1.93989600	-0.01465100
P	-2.05630200	3.89533300	-0.39166100
C	-2.90685900	4.68036000	1.04850900
C	-2.92276700	6.06035900	1.30058700
H	-2.40181000	6.74269100	0.63516600
C	-3.60553500	6.56620100	2.41076000
C	-3.60949100	7.63690600	2.59738300
C	-4.27870200	5.70093400	3.27677500
H	-4.80640700	6.09736800	4.14033600
C	-4.26366600	4.32376000	3.03557600
H	-4.77618000	3.64491300	3.71121400

S21
\[
\begin{align*}
E &= -1205.8504571 \\
G_{\text{corr}} &= 0.227205 \\
E &= -1036.54805321 \\
G_{\text{corr}} &= 0.227205
\end{align*}
\]
S23

PhBr

\[
E = -244.896841005
\]

\[G_{\text{corr}} = 0.059764\]

PhCl

\[
E = -691.950425949
\]

\[G_{\text{corr}} = 0.061491\]

PhI

\[
E = -243.107736972
\]

\[G_{\text{corr}} = 0.058614\]

PhH

\[
E = -232.324141291
\]

\[G_{\text{corr}} = 0.073358\]
H Abstraction TS: Ph• + THF

\[
\begin{align*}
E &= -464.165098393 \\
G_{\text{corr}} &= 0.161901 \\
v &= -902.54 \text{ cm}^{-1}
\end{align*}
\]

1-I-PMe₃

\[
\begin{align*}
E &= -1796.04683539 \\
G_{\text{corr}} &= 0.375599 \\
\end{align*}
\]
\[
1\text{-I-PPh}_3
\]

\[
E = -3522.20848963
\]

\[
G_{\text{corr}} = 0.817953
\]
\[
\begin{align*}
\text{Ni} & \quad -1.26659300 \quad -0.71246100 \quad 0.36778700 \\
\text{H} & \quad 7.02266300 \quad 7.14542200 \quad 3.50342300 \\
\text{C} & \quad 5.59266000 \quad 7.58129400 \quad 5.06088200 \\
\text{C} & \quad 5.42067000 \quad 7.86371500 \quad 6.41805900 \\
\text{H} & \quad 8.98485000 \quad 7.28841400 \quad 4.98188000 \\
\text{C} & \quad 9.76264200 \quad 12.16537100 \quad 0.66706100 \\
\text{P} & \quad -3.52146500 \quad -0.88934500 \quad -0.01169600 \\
\end{align*}
\]

1-Br-PMe₃

\[
\begin{align*}
E & = -1797.838352 \\
G_{\text{corr}} & = 0.37561
\end{align*}
\]

1-Cl-PMe₃

\[
\begin{align*}
E & = -2244.89074075 \\
G_{\text{corr}} & = 0.378569
\end{align*}
\]
TS-1-2-1-PMe₂Ph

\[E = -2371.42764175 \]

\[\Delta G_{corr}^\circ = 0.528074 \]

Ni
-1.74979600 3.37904100 0.08652900
P
-1.25700300 3.37594500 -2.08759300
P
 0.19711900 3.46751600 1.17526800
P
-3.18227900 5.04013700 0.40522900
C
 0.22383400 4.42093300 -2.47387000
C
 0.12572000 5.82191800 -2.40823400
H
-0.82953400 6.29058400 -2.20045000
C
 1.24784300 6.63044500 -2.58942200
H
 1.14155100 7.71072300 -2.53162200
C
 2.49978000 6.05661500 -2.83037300
H
 3.37608500 6.68546600 -2.96456000
C
 2.61364800 4.66594500 -2.89681600
H
 3.58044300 4.20562000 -3.08533700
C
 1.48655800 3.85685500 -2.72331500
H
 1.60475900 2.77882900 -2.77762700
C
-2.50073400 4.10732400 -3.26200000
H
-3.41017400 3.49793500 -3.21666000
C
-2.13243100 4.12789600 -4.29483200
H
-2.75568300 5.12511400 -2.95682300
C
-0.85705500 1.84842200 -3.07423800
C
-1.77636400 1.27709000 -3.19962100
H
-0.13015900 1.22072200 -2.55110100
C
-0.46549500 2.10619300 -4.06485600
C
 0.24234300 3.44704000 3.02459400
C
-0.25474700 4.56762800 3.71409200
C
-0.58457500 5.43953200 3.15489500
C
-0.35315500 4.57278000 5.10413200
C
-0.79991700 5.45112500 5.61537700
C
 0.03834500 3.44773700 5.83979900
C
-0.04235400 3.44663000 6.92364800
C
 0.54217000 2.33120900 5.16396900
C
 0.85635400 1.45479100 5.73313800
C
 0.64694100 2.33235800 3.77487500
C
 1.03395000 1.44757700 3.27831600
C
 1.40661600 2.12432200 2.74324000
C
 0.97113900 1.13194300 0.89424700
C
 2.34332000 2.19999100 1.30804000
C
 1.63028600 2.23060700 -0.32450000
C
 1.31282600 4.92262400 0.86607800
C
 0.80123700 5.85834500 1.09729000
C
 1.58856400 4.94103400 -0.19003300
C
 2.22334900 4.85146400 1.47217100
C
-2.56082600 6.69432400 -0.15126100
C
-3.03570300 7.34926300 -1.29970700
C
-3.84846000 6.92494800 -1.87985000
C
-2.46872700 8.55522400 -1.72606700
C
-2.84810000 9.03793300 -2.62337800

TS-1-2-1-PMethylPh

\[E = -2946.81030933 \]

\[\Delta G_{corr}^\circ = 0.678608 \]

Ni
-2.39362100 0.71517600 -0.00066400
P
-1.97553200 1.34589900 -0.75826200
C
-3.46716100 2.39100200 -1.13934200
C
-4.19916500 2.13501700 -2.31230600
C
-3.84503600 1.39603300 -3.02235300
C
-5.39338900 2.80742800 -2.57788300
C
-5.94095600 2.58930000 -3.49155000
C
-5.88432000 3.75371700 -1.67335300
C
-6.81693100 4.27385500 -1.87550400
C
-5.16004400 4.02879000 -0.51384000
C
-5.52448300 4.76930200 0.19637300
C
-3.96231900 3.35842100 -0.24950500
C
-3.41730600 3.59028800 0.65937100
C
-1.01087200 2.48029200 0.34458700
C
-1.30303300 2.44361900 1.71661400
C
-2.05411100 1.75321800 2.07901600
C
-0.63199200 3.26980800 2.61987900
C
-0.88676900 3.22520400 3.67557900
C
 0.37083600 4.12941500 2.16666000
C
 0.90613800 4.76518000 2.86725400
C
 0.68640600 4.16278300 0.80512500
C
 1.46993700 4.82456000 0.44414500
C
-0.00365800 3.35224300 -0.10054800
\[E = -3522.177200 \]
\[G_{corr} = 0.828053 \]
H -4.89409300 1.81887100 3.63959100
C -3.32743100 2.03418400 2.18696600
C -3.72657300 1.21328400 1.60786600
C -0.14550600 3.75277600 0.08685700
C -0.68849600 5.02422800 -0.17521800
H -1.75778000 5.13611900 -0.32850000
C 0.13159800 6.19458400 -0.24035100
C -0.30591900 7.12229900 -0.45031000
C 1.51070700 6.02973500 -0.03336000
H 2.14898400 6.90788700 -0.08764700
C 2.05849900 4.77755500 0.24592100
H 3.12668500 4.66324600 0.40810300
C 1.22987100 3.65408600 0.30690100
H 1.66128200 2.68773600 0.51707000
P 1.91455700 0.00775700 1.11206000
C 2.10253300 0.87485000 2.74901000
C 1.11595200 1.77135200 3.16628100
H 0.23684700 1.90409400 2.55245900
C 1.23361000 2.46765000 4.37189900
H 0.44377500 3.15028200 4.67307700
C 2.35069500 2.26852100 5.18361500
C 2.44666700 2.80393000 6.12478600
C 3.34775400 1.37177800 4.78144400
H 4.22171100 1.21020600 5.40738900
C 3.22503200 0.68165800 3.57566000
C 4.00886200 -0.07228000 3.27524200
C 3.35591900 0.75866200 0.18159900
C 4.11824100 1.83226000 0.67477900
C 3.91588800 2.24632600 1.65545200
C 5.13803800 2.40250100 -0.09252200
H 5.70580300 3.23620300 0.31061000
C 5.42938100 1.90852200 -1.36536100
H 6.22306900 2.35386600 -1.95958300
C 4.68356800 0.84044300 -1.86771000
C 4.88362800 0.44448500 -2.85995800
C 3.65563000 0.28430800 -1.10630000
C 3.07145100 -0.51784000 -1.53370600
C 2.62631600 -1.64948900 1.60742700
C 2.18826600 -2.23311400 2.81107900
C 3.54570100 -2.36516000 0.82771200
C 2.64057900 -3.49037100 3.21157500
C 1.84853100 -1.07089900 3.46622900
C 3.99934300 -3.62675800 1.22717000
C 3.92810900 -1.95029300 -0.09507000
C 3.54712000 -4.19804200 2.41705400
C 2.28403800 -3.91369100 4.14735000
C 4.71432700 -4.15665500 0.60271100
C 3.90200800 -5.17742600 2.72713000
C -2.43095300 2.58603300 -1.13414000
C -1.98067800 3.18808000 -2.32545400
C -3.77716800 2.18803700 -1.07432900
C -2.84684000 3.40652800 -3.39781600
C -0.94582900 3.49022200 -2.42692100
C -4.64549300 2.40936600 -2.14656200
H -4.17342400 1.70313200 -0.19336700
C -4.18714600 3.02279200 -3.31397200
H -2.46351000 3.87146900 -4.30209700
H -5.68318300 2.09622400 -2.06431800
H -4.86262700 3.19338700 -4.14789900
C 0.51711600 1.09461300 -3.21514500
C 1.32662600 2.06259500 -2.60656000
C 1.73281000 3.20460900 -3.29756300
H 1.61601400 1.92625200 -1.57483100
C 0.51923300 2.43980200 -5.24162800
H -0.50346300 0.56139200 -5.04780000
C 1.32292300 3.39993900 -6.41885600
H 2.34881000 3.94403000 -2.79313300
H 0.19710700 2.58314000 -6.27004400
H 1.62296100 4.29394800 -5.15947600
I -1.39476300 -0.76157800 3.45212600
C -1.23931100 -1.42543000 1.36322200
C -2.26925500 -1.02800000 0.47308600
C -0.68116500 -2.72605600 1.21632900
C -2.74949000 -1.93421300 -0.49622800
H -2.84801600 -0.13755200 0.66863300
C -1.13780900 -3.57989000 0.22529200
H 0.08294100 -3.63574000 1.90395000
C -2.19751900 -3.19742700 -0.62064800
H -3.57157900 -1.62848800 -1.13512800
H -0.68692500 -4.56416500 0.12519200
H -2.58038600 -3.88931600 -1.36414900

\[
\begin{align*}
E &= -1797.83515434 \\
G_{\text{corr}} &= 0.376299
\end{align*}
\]

TS-1-2-Br-PMe₃
atom	x	y	z
H	-4.46708700	0.73853400	1.48450400
H	-4.30153500	1.38579700	-0.14299600
C	-0.08395800	-1.23399800	-1.78089400
H	-3.81880200	-0.37676400	-2.40858900
H	-3.57686000	-2.11892700	-2.17546500
C	-5.16776000	-1.39176900	-1.84440100
H	-5.40727400	-0.73219900	-2.99808900
C	-0.13842600	-0.12391200	-3.86578700
H	0.28324600	-1.56581700	-2.91077000
C	-1.42325600	-1.14036500	-3.16057000
C	1.37056400	1.75957500	1.98863000
H	2.37675900	1.44853000	2.28417200
H	-1.46190000	2.44249600	-1.13415900
C	-0.88621900	2.26352600	-2.82404700
C	1.31888500	0.93415400	1.45576800
H	2.00849700	0.17445100	-1.08407200
H	1.61313000	1.23419700	-2.26728000
C	1.73766800	1.81015100	-0.82090400
C	1.23997400	-3.11262000	-0.28563700
C	1.79681000	-2.61872100	0.51870100
C	0.51660000	2.61872100	-0.51870100
C	1.51709000	-4.17262000	-0.31834800
C	1.52306200	-2.64208000	0.82358900
C	1.31818000	-3.91937900	-1.33165900
C	-1.15531400	-3.45720700	-2.29154500
H	-0.88670800	-4.92763900	-1.32211200
C	-2.39715500	-4.00121900	-1.14572100
C	-0.81645000	-3.98245800	1.48861000
C	-0.23750000	-3.59375900	2.33090400
C	-1.87340000	-3.97990900	1.77336600
C	-0.50121400	-5.01054500	1.27372600

TS-1-2-Cl-PMe3

\[
E = -2244.88655801 \\
G_{corr} = 0.375799
\]

atom	x	y	z
Ni	-1.23252900	-0.77061800	0.35454000
P	-0.39112000	0.25867200	-1.43565400
P	-0.57644300	-2.90774000	-0.00475400
P	-3.53626200	-0.93447600	-0.04528100
C	-0.81171000	0.42225500	1.71381400
C	-1.47089600	-0.49380800	2.58062200
C	0.55292000	0.73837300	1.94636900
C	-0.72318600	-1.14949700	3.59698500
H	-2.55301100	-0.53049500	2.63065500
C	1.26169900	0.06361700	2.92740900
H	1.03966300	1.49203100	1.33877400
C	0.62776900	-0.89436600	3.75409000
H	-1.23891800	-1.82418500	4.27664800
C	2.32177200	0.27205600	3.05724500
H	1.19668800	-1.39906200	4.53075000
C	-4.40836400	-2.31869500	0.82307900
H	-4.25148300	-2.25210400	1.90338200
H	-5.48661400	-2.31816000	0.62057300
H	-3.98935900	-3.27825100	0.50106900

2-I-PMe3

\[
E = -1796.11261245 \\
G_{corr} = 0.377983
\]

atom	x	y	z
Ni	-1.34730500	-1.28806300	-0.05416300
P	0.13800300	-0.01722600	-1.18121900
P	-0.74326100	-3.31385500	-0.98594800
P	-3.38744800	-1.83419900	0.77960900
C	-1.40212600	0.17175600	1.21355600
C	-0.58311700	0.07766000	2.33223500
C	-2.13038100	1.37032500	1.19689000
C	-0.50799000	0.82572200	3.39705100
C	0.00752700	-0.99297300	2.37673000
C	-2.06431700	2.27712000	2.26152500
C	-2.74733200	1.61728900	0.33740200
C	-1.25519200	2.00708100	3.36738700

S33
$G_{corr} = 0.674795$

$E = -2946.88279278$

$G_{corr} = 0.674795$

2-I-PMe$_2$H

\[
\text{PhMeP}^+\text{PMe$_2$H}^-
\]

$E = -2946.88279278$

2-I-PMe$_2$H

$E = -2946.88279278$
Element	X	Y	Z
C	13.77761500	9.93459500	3.40376000
H	12.25141600	8.84491600	3.26391700
C	14.07015100	10.96697000	5.20071200
H	13.22820400	12.52188700	6.44893500
H	14.58013300	9.32734800	3.89121300
H	15.09932400	11.17278100	5.48485100
I	9.81287400	13.92470900	8.17378800
Ni	9.35558800	10.48196500	4.19095400
P	9.33807600	10.20429700	1.79316600
C	7.96021900	9.265613800	1.03570300
C	6.75993000	9.90573200	0.68930600
H	6.67119500	10.98238100	0.76271200
C	5.66216000	9.16066700	0.25446200
H	4.74295500	9.67396200	0.01817000
C	5.74405200	7.68233000	1.70101000
C	4.98745200	7.18989500	0.16507500
H	6.92974900	7.12287300	0.52949300
C	7.00074900	6.03973600	0.48038800
C	8.02848900	7.86321200	0.96507600
H	8.93483300	7.34402000	0.12544700
C	10.89202000	9.46296200	1.13876800
C	12.03632000	9.81321300	1.78020900
H	12.06879900	10.40696400	2.68702200
C	13.32459400	9.41092100	1.26398900
C	14.23669090	9.67395500	1.79703000
C	13.37259200	8.63978400	0.10081400
H	14.32958700	8.31063000	0.29740700
C	12.18677800	8.29392000	0.55149900
H	12.21676800	7.70324600	1.46330800
C	10.95417000	8.71282800	0.04561200
H	10.04719400	8.45724500	0.58271600
P	8.04590200	12.38190700	0.44131000
C	7.09975100	12.24380700	6.02106800
H	6.86620500	13.33692000	6.86596200
C	7.25012000	14.31984900	6.61631100
H	6.14643600	13.16785300	8.05203200
C	5.97861200	14.02306300	8.70103400
H	5.64975200	11.91579000	8.40592500
C	5.09282800	11.78504400	9.33023400
C	5.88304400	10.81568500	7.57066000
C	5.51540200	9.82962500	7.84167200
C	6.61042300	10.98171700	6.39299400
H	6.82715900	11.01181700	5.77501000
C	8.83714300	14.03860000	4.51089100
C	8.10731100	15.22552000	4.32243300

$$G_{corr} = 0.824754$$

$$E = -3522.2418558$$

S36
2-Br-PMe₃

\[
\begin{align*}
E & = -1797.88492862 \\
G_{\text{corr}} & = 0.379868
\end{align*}
\]

2-Cl-PMe₃

\[
\begin{align*}
E & = -2244.9507208 \\
G_{\text{corr}} & = 0.382069
\end{align*}
\]
Atom	X	Y	Z
H	-2.73170800	-2.62414100	2.81906200
H	-4.46187700	-2.88325400	2.46841600
C	-3.21061300	-3.69231500	1.48634200
C	-4.02328500	0.03787400	1.92121400
H	-5.01781500	-2.23547000	2.29968000
H	-3.35095300	0.22245000	2.76053200
H	-4.09465100	0.94976900	1.32131000
C	-4.87351300	-1.58555400	-0.22447900
H	-4.73343600	-0.99053900	-1.13103100
H	-5.00384100	-2.63608000	-0.48378900
C	-5.77379400	-1.24765700	0.29980000
C	2.06114500	-1.88818400	-1.24685900
H	2.98984900	-1.36955500	-1.51021800
H	2.29221800	-2.65228400	-0.49744600
C	1.67552200	-2.37963600	-2.14168400
C	0.87231700	0.69348700	-1.77115100
C	0.30067900	0.39382400	-2.65204000
C	0.37927200	1.56670500	-3.36413100
C	1.89819800	0.95519400	-2.05504200
C	1.95775600	0.01810400	0.79742400
H	2.05401000	0.07045580	1.61293100
C	2.94988400	0.22045700	0.37853800
C	1.53955600	0.94248000	1.19943000
C	-1.00237500	-2.30761200	-3.31676700
C	0.00484600	-1.88636300	-3.34100700
C	-1.05097000	-3.15705300	-4.00781800
C	-1.70066300	-1.52537500	-3.62951300
C	-3.09176800	-3.66586200	-2.02131300
H	-3.80594600	-2.95359600	-2.43956900
H	-2.90017800	-4.44996100	-2.76296100
H	-3.51814100	-1.12966900	-1.12752200
C	-0.47920200	-4.31413200	-1.23834000
H	0.55240700	-0.05168500	-1.00078700
H	-0.90888700	-4.81629200	-0.36176000
H	-0.48608800	-5.01724100	-2.07927600
Cl	-2.83582000	0.67862500	-2.23140800

3-I-PMe2Ph

![Image]

\[
E = -1718.51055427
\]

\[
G_{corr} = 0.367239
\]

3-I-PMe3

\[
E = -1334.92584591
\]

\[
G_{corr} = 0.268058
\]

Ni

-0.88779600 1.2886800 0.17164000

P

-1.92336000 0.82913900 -1.78754000

P

0.26010600 1.35214600 2.12148600

C

-0.67528100 0.97875500 3.12273600

C

0.17869600 2.09458200 -0.08611000

C

0.07412500 2.82157300 -2.28383300

C

1.16445900 2.26212000 -0.45888300

H

1.81846800 3.12936100 -0.42016900

C

1.31626700 1.30022000 -5.07201300

C

2.08863800 1.43527000 -5.82615300

C

0.47624200 0.19482700 -5.10936500

C

0.59386700 -0.55021000 -5.89191200

C

-0.51654700 0.02775000 -4.13975100

H

-1.15658700 -0.84925400 -4.17888600

C

-3.30824500 1.89347500 -2.38107900

H

-4.11875700 1.87470800 -1.64533200

H

-3.67037000 1.52215900 -3.34353200

S38
Atom	X	Y	Z
C	-2.96523600	2.92386300	-2.49482700
H	-2.66097000	-0.84540100	-1.96651600
C	-3.37488400	-0.99081900	-1.14915000
H	-1.89174700	-1.61607000	-1.89342700
H	-3.19204100	-0.93927300	-2.91917200
C	-0.74057700	0.45272400	3.36398800
C	-2.11951100	0.72377300	3.40708900
H	-0.40055900	0.27958400	4.33633200
C	-2.40512000	-0.89380100	5.18704500
H	-3.04869500	-1.41293900	5.88961000
C	-1.03729900	-1.16952100	5.14929900
H	-0.61333600	-1.90598800	5.82194200
C	-2.06447700	-0.50179600	2.45021200
H	0.85305700	-0.73471600	4.22634800
C	1.92462100	0.57195500	2.14644100
H	1.86061600	-0.48950200	1.90995000
C	2.40016800	0.69913700	3.12145800
H	2.54105900	1.06613500	3.38800000
C	0.61216400	2.96358700	2.94520800
H	-0.32225000	3.48455000	3.16372400
H	1.21182800	3.58905000	2.92701100
C	1.62423600	2.79221700	3.87704000
C	-0.19395500	-0.48161600	0.02175500
H	0.93378300	-0.74482900	-0.77601900
H	-0.78247000	-1.56246300	0.70173200
C	1.45418100	-0.20333900	-0.89251800
H	1.40930000	0.06749900	-1.31981000
C	-0.26443000	-2.85765800	0.59114200
H	-1.65219600	-1.39181000	1.33091600
C	0.85695000	-3.10153000	-0.20804800
C	2.32713000	-2.41529200	-1.51788300
C	-0.73844700	-3.67316300	1.12924400
H	1.26023700	-4.10739200	-0.29617100
I	-1.80826200	3.77488400	0.35355800

3-I-PMePh₂

\[
\begin{align*}
\text{E} &= -2102.09126305 \\
G_{corr} &= 0.464839
\end{align*}
\]

Atom	X	Y	Z
Ni	1.40454700	0.74332100	-1.73438000
P	0.50619900	0.95557600	-3.32110600
C	0.04501500	2.24782700	-3.62684300
H	0.27767600	3.08052200	-2.96833400
C	-0.72810000	2.47045300	-4.76675600
H	-1.07753100	3.47454800	-4.99252800
C	-1.05479900	1.40449000	-5.61045700
H	-1.65854100	1.57655400	-6.49748300
C	-0.60522000	0.11715900	-5.30748700
3-I-PPh₃

Energy (E): -2485.66788399
Gcorr: 0.564945

Atom	X	Y	Z
H	-0.45721800	3.62292700	2.61751200
H	-1.93080700	3.06926300	3.47524500
PhP			Ni
C	-0.18342600	-1.11965200	0.00127000
C	-1.15088600	-0.43098300	-0.41739300
H	-1.58399100	0.84721600	0.48721600
C	-1.56026900	-0.91475700	-5.28042000
H	-2.30787400	-0.36970500	-5.82798200
C	-1.01632400	-2.10096700	-5.76221500
H	-1.33917600	-2.48173800	-6.72752700
C	-0.05459500	-2.78936600	-5.02213000
H	0.37922600	-3.70747700	-5.40962900
C	0.36583600	-2.30055100	-3.78079900
H	1.12644300	-2.84267500	-3.23008000
C	1.68749500	-1.40972400	-1.02902300
H	2.96838700	-0.92242800	-0.74061500
C	3.23212200	0.10220000	-0.97736600
H	3.90584900	-1.74433000	-0.11055400
C	4.89354600	-1.35246200	0.11663100
H	3.57548400	-3.05638100	0.23437100
C	4.30765500	-3.69239000	0.72461500
H	2.29514000	-3.54527800	-0.04199100
C	2.02589400	-4.56150400	0.23363400
H	1.35175500	-2.72375100	-0.65761200
C	0.34893100	-3.10124000	-0.84149100
H	-2.42605900	0.95622900	1.66722300
C	-2.96952800	-0.28390200	2.90345200
H	-2.74442700	-1.64295200	2.63930300
H	-2.26819300	-1.93495400	1.70968200
C	-3.13215100	-2.61556300	3.56324600
H	-2.95211300	-3.66493600	3.34639100
C	-3.74524900	-2.23870600	4.76016100
H	-4.04849900	-2.99538600	5.47878000
C	-3.96093300	-0.88527500	5.03756000
H	-4.42855200	-0.58685600	5.97189700
C	-3.56938500	0.08906100	4.11899700
H	-3.71916800	1.13826300	4.35521900
C	-1.64899100	2.27388100	2.69854600
C	-1.73667600	3.62429300	2.32978200
H	-2.34210600	3.92371300	1.48006200
C	-1.04944700	4.60123900	3.05469500
C	-1.12951400	5.64382500	2.75819100
C	-0.27075400	4.24213800	4.15644500
H	0.26367700	5.00304200	4.71898300
C	-0.18233800	2.89866000	4.53187000
H	0.42558300	2.60746700	5.38411200
C	-0.86349900	1.92082300	3.80836400
H	-0.76625400	0.88042200	4.09876900
3-Br-PMe₃

\[
\begin{align*}
E &= -1336.71315151 \\
G_{\text{corr}} &= 0.270212
\end{align*}
\]

3-Cl-PMe₃

\[
\begin{align*}
E &= -1783.76597845 \\
G_{\text{corr}} &= 0.270514
\end{align*}
\]

S41
4-I-PMe₃

\[E = -1796.05427209 \]

\[G_{corr} = 0.373122 \]

4-I-PMe₂Ph

\[E = -2371.44101625 \]

\[G_{corr} = 0.520621 \]
4-Br-PMe₃

\[E = -1797.83621232 \]

\[G_{\text{corr}} = 0.373538 \]
	H	H	H	H	H	H	H	H	H
	0.39063600	10.67328000	12.38705700						
	-0.07021500	8.05016400	9.24130100						
	1.76915800	10.77816700	8.69836200						
	3.52067800	5.25109200	8.27049300						
	4.86066600	8.48527900	11.92885700						
	1.01547500	4.80380500	10.45015900						
	4.20618100	10.16954000	15.10315200						
	5.59316500	9.73434600	11.40472600						
	5.10300000	7.09690700	14.55306600						
Br	0.78679500	6.93691200	13.42165500						
C	1.54549600	5.54112800	14.54133900						
C	2.88301100	5.21043900	14.34091400						
C	0.76483800	4.90026100	15.50304200						
C	3.45709900	4.20873000	15.12831300						
H	3.14419900	2.77438900	16.70997000						
	1.17139000	1.29443500	1.96033000						
	3.94746900	2.93379800	3.69217000						
	5.71772900	3.40626400	1.07181000						
	5.19280700	0.04063300	2.54094000						
	0.27772800	0.11414900	2.65444300						
	1.12778100	0.45978700	1.71067700						
	0.49229800	-0.02861200	4.02533200						
	0.00000000	0.00000000	0.00000000						
	2.22525300	-1.20031700	2.16197600						
	0.04328500	-0.33277500	0.66495200						
	1.59497800	0.77038200	4.45747900						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
	0.00000000	0.00000000	0.00000000						
Atom	X	Y	Z						
------	------------	------------	------------						
C	-2.77862900	-0.79961800	-3.11662200						
C	-0.66522600	-1.85110300	-1.03576200						
C	-3.45658000	-2.43370100	-1.09571500						
H	0.62494300	3.47568900	1.02696100						
H	-0.66179500	3.78404000	-0.16544300						
H	0.69126600	1.54968000	2.76036000						
C	0.53632100	0.20553300	1.59624300						
H	-2.52675700	2.40545000	3.23548600						
C	-2.56546400	3.73232300	2.06560700						
C	-1.48434700	-0.10029100	-3.39835900						
C	-2.32581800	-0.38839200	-3.45149000						
H	0.14566800	-1.13013300	-1.18887300						
H	-0.53393600	-2.68680600	-1.73293900						
C	-3.46471100	-2.76340900	-0.05171200						
C	-3.17153000	-3.27582400	-1.73866400						
C	-1.60024500	0.21723700	-2.53585600						
H	-1.22299400	3.50235500	3.09668800						
C	0.46634000	2.46755200	-0.41807000						
H	-0.55110400	0.29366600	-0.57137000						
C	-4.66198400	0.10816400	1.61614300						
C	-1.92010500	-1.75569100	-3.62601200						
C	-2.37030700	-2.41823600	3.84460600						
C	-1.60563700	-2.95235600	3.14808300						
C	-1.84267400	-1.32403000	1.72179800						
C	-3.56458500	-3.44244100	4.49029300						
C	-5.30708100	-2.21152000	4.11400400						
C	-2.23529900	-3.70814600	4.14309300						
C	-0.57091400	-3.15713700	2.87905200						
C	-4.52029700	-4.03127400	5.26479300						
C	-1.69165900	-4.50262000	4.64814100						

TS-4-5-I-PMe2Ph

\[
\begin{align*}
E (OSS) &= -2371.43028050 \\
E (T) &= -2371.41605770 \\
S^2(OSS) &= 0.5479 \\
G_{corr} &= 0.519749 \\
\nu &= -276.90 \text{ cm}^{-1}
\end{align*}
\]

Atom	X	Y	Z
Ni	-0.34083600	0.44923300	0.01234500
P	0.04180000	-0.14834500	-0.20972030
C	-1.65254700	-1.15548400	0.87201600
P	1.49086700	0.73557400	1.28600800
C	1.63446600	0.56804900	-2.68730000
C	1.71899800	1.96512500	-2.85211000
H	0.83959500	2.57708400	-2.63917300
C	2.92418800	2.57764300	-3.16521600
H	2.96855600	3.65870500	-3.27125600

TS-4-5-I-PMe2Ph

\[
\begin{align*}
E (OSS) &= -2371.43028050 \\
E (T) &= -2371.41605770 \\
S^2(OSS) &= 0.5479 \\
G_{corr} &= 0.519749 \\
\nu &= -276.90 \text{ cm}^{-1}
\end{align*}
\]
\begin{table}
\centering
\begin{tabular}{cccc}
\hline
 & C & H & P \\
\hline
\text{C} & -4.47000300 & 2.58088400 & 1.29879100 \\
\text{C} & -3.67916900 & 2.57981000 & 3.98680900 \\
\text{H} & -1.69349800 & 3.00022500 & 3.24416500 \\
\text{C} & -5.40920000 & 2.32666900 & 2.30906200 \\
\text{H} & -4.77373500 & 2.56384700 & 0.25395200 \\
\text{C} & -5.01291900 & 2.32344900 & 3.65047000 \\
\text{H} & -3.36740300 & 2.57338800 & 5.02938900 \\
\text{H} & -6.44596700 & 2.12573300 & 2.04633000 \\
\text{H} & -5.74104200 & 2.11813200 & 4.43117300 \\
\hline
\text{E (OSS)} & -2946.81831720 \\
\text{E (T)} & -2946.80534049 \\
\text{S^2(OSS)} & 0.5464 \\
\text{G_{corr}} & 0.670258 \\
\hline
\end{tabular}
\caption{TS-4-5-I-PMePh$_2$}
\end{table}
\[S_2(OSS) = 0.5443 \]
\[G_{corr} = 0.372202 \]
\[v = -285.62 \text{ cm}^{-1} \]
\[\text{Ni} \quad 0.99546000 \quad -0.07223400 \quad 0.07217300 \]
\[\text{TS}-4-5-Br-PMe}_3 \]
\[E(\text{OSS}) = -1797.8223389 \]
\[E(T) = -1797.8047425 \]
\[S^2(\text{OSS}) = 0.5443 \]
\[G_{corr} = 0.372202 \]
\[v = -285.62 \text{ cm}^{-1} \]
\[\text{Ni} \quad 0.95826500 \quad -4.18057000 \quad -1.63092700 \]
\[\text{P} \quad 1.23643400 \quad 5.16741900 \quad -2.66310100 \]
\[\text{C} \quad -0.65690300 \quad 3.32729500 \quad -6.06907200 \]
\[\text{H} \quad 0.35656700 \quad 5.32846100 \quad -4.99445700 \]
\[-1.49822600 \quad -1.37237200 \quad 1.16386300 \]
\[-1.04456900 \quad -3.05897400 \quad -1.70845700 \]
\[0.29115200 \quad -5.66035400 \quad 0.13497200 \]
\[-1.23532000 \quad -2.28589800 \quad 1.83060500 \]
\[-0.07818000 \quad -5.79632800 \quad -1.19324700 \]
\[0.94715900 \quad -6.25861200 \quad 0.65098000 \]
\[0.54864300 \quad -3.67050100 \quad 0.03306100 \]
\[3.52163700 \quad -3.8749900 \quad -1.55618400 \]
\[0.58464300 \quad -3.67050100 \quad 0.03306100 \]
\[TS-4-5-Cl-PMe}_3 \]
\[E(\text{OSS}) = -1797.8223389 \]
\[E(T) = -1797.8047425 \]
\[S^2(\text{OSS}) = 0.5443 \]
\[G_{corr} = 0.372202 \]
\[v = -285.62 \text{ cm}^{-1} \]
\[\text{Ni} \quad 0.95826500 \quad -4.18057000 \quad -1.63092700 \]
\[\text{P} \quad 1.23643400 \quad 5.16741900 \quad -2.66310100 \]
\[\text{C} \quad -0.65690300 \quad 3.32729500 \quad -6.06907200 \]
\[\text{H} \quad 0.35656700 \quad 5.32846100 \quad -4.99445700 \]
\[-1.49822600 \quad -1.37237200 \quad 1.16386300 \]
\[-1.04456900 \quad -3.05897400 \quad -1.70845700 \]
\[0.29115200 \quad -5.66035400 \quad 0.13497200 \]
\[-1.23532000 \quad -2.28589800 \quad 1.83060500 \]
\[-0.07818000 \quad -5.79632800 \quad -1.19324700 \]
\[0.94715900 \quad -6.25861200 \quad 0.65098000 \]
\[0.54864300 \quad -3.67050100 \quad 0.03306100 \]
\[TS-4-5-Br-PMe}_3 \]
\[E(\text{OSS}) = -1797.8223389 \]
\[E(T) = -1797.8047425 \]
\[S^2(\text{OSS}) = 0.5443 \]
\[G_{corr} = 0.372202 \]
\[v = -285.62 \text{ cm}^{-1} \]
\[\text{Ni} \quad 0.95826500 \quad -4.18057000 \quad -1.63092700 \]
\[\text{P} \quad 1.23643400 \quad 5.16741900 \quad -2.66310100 \]
\[\text{C} \quad -0.65690300 \quad 3.32729500 \quad -6.06907200 \]
\[\text{H} \quad 0.35656700 \quad 5.32846100 \quad -4.99445700 \]
\[-1.49822600 \quad -1.37237200 \quad 1.16386300 \]
\[-1.04456900 \quad -3.05897400 \quad -1.70845700 \]
\[0.29115200 \quad -5.66035400 \quad 0.13497200 \]
\[-1.23532000 \quad -2.28589800 \quad 1.83060500 \]
\[-0.07818000 \quad -5.79632800 \quad -1.19324700 \]
\[0.94715900 \quad -6.25861200 \quad 0.65098000 \]
\[0.54864300 \quad -3.67050100 \quad 0.03306100 \]

S50
S2(OSS) = 1.0067
E (T) = -1796.05665155
E (OSS) = -1796.05732288

Ni -0.62583000 0.66902000 0.02368500
Cl 0.60732300 0.62395700 1.48038700
H 3.03027300 -3.68048400 4.85448100
H 0.63961800 -3.12686500 5.23401400
H 4.34166500 -2.45919400 3.12703300
C 2.55569100 -2.90133700 4.26349700
C 1.20799400 -2.58950500 4.47732100
C 3.29384600 -2.14662200 3.91961200
C 0.58388500 -1.58523100 3.71963300
C 2.67623400 -1.21251400 2.53262400
C 3.03027300 -3.68048400 4.85448100
Cl 0.60732300 0.62395700 1.48038700

Gcorr = 0.366149

\[
P\end{align*}

5-I-PMe\textsubscript{3}

E (OSS) = -1796.05732288
E (T) = -1796.05665155
S^2(OSS) = 1.0067
Gcorr = 0.366149

Ni -0.62583000 0.66902000 0.02368500
P -1.21459500 2.27719400 -1.52055600
C -1.59541400 3.90919700 -0.75042900
C -2.77287800 1.91895600 -2.43877600
C -0.58524000 2.75157000 -2.88104000
H -1.97539300 4.62646200 -1.48736700
H -0.69109300 4.31914200 -0.28898500
C -3.05842200 2.75133400 -3.09273100
C -3.57373000 1.73183400 -1.71626900
H 0.12216000 1.88801300 -3.52897800
H 0.90012900 3.06789400 -2.45640200
P 0.92071400 1.77038500 1.30936900
P -0.26235200 -1.26585900 -1.16032400
C 2.12032600 2.82469800 0.37654700
C 2.06860700 0.74664000 2.33593400

5-I-PMe\textsubscript{2}Ph

\[
P\end{align*}

E (OSS) = -2371.44147589
E (T) = -2371.44128873
S^2(OSS) = 1.0117
Gcorr = 0.516916

Ni -0.47346700 0.63783000 -0.19883400
P 0.06944800 -0.28957200 -2.22969100
P -1.77334800 -1.00075600 0.75351400
P 1.27933300 1.02946800 2.12852300
C 1.72530300 0.37709700 -2.67487600
C 1.82546400 1.73960900 -3.01012100
\[
\begin{align*}
\text{E (OSS)} &= -2946.82852389 \\
\text{E (T)} &= -2946.82830820 \\
\text{S^2 (OSS)} &= 1.0113 \\
\text{G_{corr}} &= 0.66871
\end{align*}
\]
Atoms	Coordinates
C	-3.71351700 1.88107100 4.22070900
H	-4.14516200 1.01513300 4.71570400
C	-3.15992400 1.73884000 2.94692700
H	-3.14961600 0.76149100 2.47733500
C	-1.04349600 4.22527500 0.31405700
C	-1.71789100 5.32598900 -0.23653500
C	-2.75410000 5.23439900 -0.54573200
C	-1.06068800 6.54842900 -0.39345700
H	-0.50726000 7.39054600 -0.83060400
C	0.26881700 6.69113200 0.01339900
H	0.77784500 7.64321700 -0.11173900
C	0.94079800 5.60526000 0.58125500
H	1.97606000 5.70068600 0.89507100
C	0.28696800 4.38172800 0.72606900
C	0.81672400 5.33460000 1.14420000
C	1.76003800 0.63596600 1.45006800
C	1.61419700 1.02358300 3.24760000
C	0.35435700 1.34367800 3.76936000
C	-0.51350900 1.34541700 3.12114900
C	0.19870900 1.64040000 5.12618600
C	-0.78820000 1.88499300 5.50943500
C	1.30694900 1.61415300 5.97448200
C	1.19124300 1.84382800 7.03050000
C	2.56816500 2.18966000 5.46567000
C	3.43088700 1.25169800 6.12605700
C	2.72159100 0.98310000 4.11197300
C	3.70154100 0.71780700 3.74230100
C	2.96175900 1.88167000 0.80786600
C	3.37696000 3.00442200 1.53911300
C	3.03939100 3.14825800 2.56014100
C	4.22087000 3.95533900 0.95903900
C	4.53233300 4.81966700 1.54058500
C	4.66680600 3.79757800 -0.35527400
C	5.32176700 4.53972500 -0.80373600
C	4.26613000 2.67692500 -1.08858500
H	4.60398700 2.54002000 -2.11239200
C	3.41880200 1.73020000 -0.51395700
C	3.11466300 0.86734000 -1.09668000
C	2.77799900 -0.91180800 1.52095900
C	2.13290200 -2.09221900 1.92725200
C	4.14777000 -0.95829400 1.22367600
C	2.84134000 -3.28958300 2.02740700
C	1.07152700 -2.80873300 2.15251900
C	4.85285700 -2.16161200 1.31555100
C	4.67512500 -0.06306000 0.91320800
C	4.20394300 -3.30532000 1.71684200
C	2.32474000 -4.19150300 2.34358300
C	5.91285600 -2.17963000 1.07508700
C	4.75397400 -4.26522200 1.78874500

5-Br-PMe₃

E(OSS) = \(-1797.8345227\)
E(T) = \(-1797.8341439\)
S²(OSS) = \(1.0115\)

Gcorr = 0.368688
\[
E(T) = -2.244.88718919 \\
S^\text{OSS} = 1.0118 \\
G_{\text{corr}} = 0.370729
\]
Atoms	\(x \)	\(y \)	\(z \)
Ni	3.19335000	7.61491500	11.71328600
P	1.42114100	8.89806000	11.02938100
C	0.92926700	10.20501400	12.23542700
C	-0.14454400	7.94826000	10.80984700
C	1.53713400	9.85467100	9.45469000
H	0.00722700	10.71403700	11.93061000
H	1.73419900	10.94368500	12.31335900
H	-0.99097200	8.60345000	10.57235500
H	-0.35757600	7.39969300	11.73337800
H	1.66951500	9.16654200	8.61384500
H	2.41126400	10.51382600	9.49478900
P	4.67452100	9.10374900	12.61927200
P	3.72089000	6.19142300	10.00155600
C	5.17192800	10.56633900	11.60707600
C	6.29539000	8.30412600	12.99476300
C	4.24443100	9.87646900	14.23909700
C	3.47263200	6.77897500	8.26781500
C	5.51298200	5.74015200	9.99938200
C	2.91216400	4.53276300	9.96311700
H	5.94598000	11.16362400	12.10392800
H	4.29733600	11.20496000	11.42812700
H	6.99713300	9.00042000	13.46914000
H	6.73882700	7.92256500	12.06883300
H	4.00335100	9.08339400	14.95427800
H	3.35683100	10.50649200	14.12017600
H	3.98225500	7.73355400	8.13028300
H	2.40375800	6.92744900	8.08120600
H	6.11448200	6.64307500	9.84946500
H	5.74919300	5.01732500	9.20899900
H	3.14119400	4.00121000	10.89240200
H	3.25166400	3.93747700	9.10942800
H	0.78299700	9.74915000	13.21948000
H	-0.01831900	7.21718900	10.00393800
H	0.63923400	10.46021600	9.28337800
H	3.86141000	6.05808400	7.53849000
H	5.77644700	5.30789500	10.97047500
H	1.82558000	4.65920500	9.90808200
H	5.06726700	10.48533600	14.63304300
H	5.55019000	10.22549200	10.63980000
H	6.12182700	7.45502400	13.66458500
I	2.49872700	6.02825200	13.83966400

6-I-PMe₃

\[
E = -1564.41378215 \\
G_{corr} = 0.285068
\]
\[
6\text{-I-PMe}_2\text{Ph}
\]

\[
\begin{align*}
E &= -2139.7985927 \\
G_{\text{corr}} &= 0.434689
\end{align*}
\]

\[
\begin{array}{cccc}
\text{C} & 0.97962900 & 0.91500400 & 5.48958500 \\
\text{H} & 2.22347900 & 0.06583000 & 3.95828900 \\
\text{C} & 1.42179900 & 0.76664800 & 4.17039000 \\
\text{C} & 0.83291800 & 1.51040900 & 3.13717500 \\
\text{H} & 2.22347900 & 0.06583000 & 3.95828900 \\
\end{array}
\]

\[
\begin{align*}
6\text{-I-PMePh}_2
\end{align*}
\]

\[
\begin{align*}
E &= -2715.18416817 \\
G_{\text{corr}} &= 0.58561
\end{align*}
\]

\[
\begin{array}{cccc}
\text{C} & -0.04558100 & 1.81404600 & 5.79150300 \\
\text{H} & -0.38593700 & 1.92848000 & 6.81729900 \\
\text{C} & -0.63738600 & 2.56121500 & 4.76757500 \\
\text{H} & -1.44175400 & 3.25563100 & 4.99298900 \\
\text{C} & -0.20922250 & 2.40174900 & 3.44913600 \\
\text{H} & -0.69712220 & 2.95188800 & 2.64769400 \\
\text{C} & 2.48677900 & -0.04467300 & 1.29934200 \\
\text{H} & 1.97514100 & -0.97590500 & 1.56313200 \\
\text{H} & 3.35185000 & 0.93665500 & 1.95762500 \\
\text{P} & 2.84201300 & -0.12808800 & 0.26660300 \\
\text{C} & 2.42417600 & 2.81434900 & 1.12461400 \\
\text{H} & 1.83768800 & 3.73674200 & 1.18151500 \\
\text{H} & 2.87084900 & 2.75110500 & 0.12724700 \\
\text{C} & 3.21752200 & 2.83703700 & 1.87984100 \\
\text{I} & -1.56805600 & 3.63130000 & -0.51879800 \\
\end{array}
\]

\[
\begin{align*}
\text{Ni} & 0.77183100 & 0.79556700 & 0.03949200 \\
\text{P} & 0.80753700 & 0.85591400 & -2.25606400 \\
\text{C} & -0.73225800 & 0.13153800 & -2.96427300 \\
\text{C} & -1.86958400 & 0.92691100 & -3.17833600 \\
\text{H} & -1.81996300 & 2.00293400 & -3.04201500 \\
\text{C} & -3.07996900 & 0.34641000 & -3.56649900 \\
\text{H} & -3.95010200 & 0.97711200 & -3.72994600 \\
\text{C} & -3.17188300 & -1.03620100 & -3.74701900 \\
\text{H} & -4.11407400 & -1.48696800 & -4.06479000 \\
\text{C} & -2.04229000 & -1.83481700 & -3.54444600 \\
\text{C} & -2.10170100 & -2.91071900 & -3.68719500 \\
\text{C} & -0.83281000 & -1.25731500 & -3.15659200 \\
\text{C} & 0.03346700 & -1.89137700 & -2.99336500 \\
\text{C} & 2.12623800 & -0.15772600 & -3.03843200 \\
\text{C} & 2.82698600 & -1.06694800 & -2.23297800 \\
\text{C} & 2.60346100 & -1.12769900 & -1.17319300 \\
\text{C} & 3.80774000 & -1.89444400 & -2.78586900 \\
\text{C} & 4.33557800 & -2.59776300 & -2.14857500 \\
\text{C} & 4.10164700 & -1.81389300 & -4.14826700 \\
\text{C} & 4.86726000 & -2.45303900 & -4.58002800 \\
\text{C} & 3.40761800 & -0.90906000 & -4.95924000 \\
\text{C} & 3.63246800 & -0.84615600 & -6.02089300 \\
\text{C} & 2.42187100 & -0.08853600 & -4.40998500 \\
\text{C} & 1.88017800 & 0.59721400 & -5.05552200 \\
\text{C} & 0.94198700 & 2.49319800 & -3.10153700 \\
\text{C} & 0.78656700 & 2.42615600 & -4.18725000 \\
\text{C} & 1.93998700 & 2.89549600 & -2.90102600 \\
\text{C} & 0.20800000 & 3.18391100 & -2.67726600 \\
\text{C} & -0.80083700 & 2.33419500 & 0.77010800 \\
\text{C} & -1.11560400 & 2.07758000 & 2.56197400 \\
\text{C} & -0.12738300 & 2.45055500 & 3.48903300
\end{align*}
\]
Atom	X	Y	Z
H	-0.28338900	2.15943400	5.55024200
C	-1.41985700	1.47653700	5.29084700
H	-1.53697000	1.24391000	6.34598200
C	2.40106700	1.09200800	4.37444000
H	-3.28419000	0.55462300	4.71063500
C	-2.25246000	1.39024800	3.01699800
H	-3.02015200	1.07053000	2.31977800
C	-0.21380800	4.07512300	0.67898400
H	-0.93476600	5.13050100	1.26172900
C	-1.84861800	4.96215000	1.81372000
H	-0.47645500	6.44279100	1.14607800
C	-1.03776000	7.25394500	1.60258900
H	0.70524000	6.14470000	0.46431600
C	1.06064500	7.73780600	0.35901800
C	1.42880400	5.66993400	0.13206400
H	2.35084000	5.87389900	-0.67008700
C	0.97243900	4.35398900	-0.01306300
C	1.54197800	3.53571200	-0.44170200
H	-2.49890700	2.48286000	0.05334800
H	-3.12140300	3.16284400	0.64422000
C	-2.98224300	1.50498600	0.00039000
H	-2.40790100	2.87820700	-0.96193300
P	0.19163300	-1.07276100	1.26852400
C	1.02094300	-2.56613000	0.58144500
C	2.34977100	-2.84887800	0.94144000
H	2.85660400	-2.24075300	1.68467500
C	3.03911800	-3.89854000	0.33203200
H	4.06602400	-4.10688800	0.62192100
C	2.41603100	-4.67713500	-0.64809600
H	2.95553300	-5.49111700	-1.12417100
C	1.09574700	-4.40028900	-1.01287600
H	-0.60261000	0.00019500	-1.77325200
C	0.40268500	-3.35217800	-0.40422500
H	-0.62092400	-3.14537600	-0.70148900
C	-1.59326500	-1.50545800	1.26658500
C	-2.35936000	-1.10658800	0.16031500
H	-1.88049100	-0.57110900	-0.65330400
C	-3.72869200	-1.37774300	0.10706200
H	-4.30371000	-1.06628900	-0.76078100
C	-4.35057300	-2.03580900	1.17119000
H	-5.41800700	-2.23791000	1.13912300
C	-3.59556800	-2.43426900	2.27894700
H	-4.07553100	-2.94713100	3.10864600
C	-2.22364700	-2.17842800	2.32475400
H	-1.65253800	-2.49579800	3.19181500
C	0.67114600	-1.10269600	3.04895800
H	0.63805300	-2.10899900	3.47753600
C	0.00065900	-0.44258800	3.60485300
C	1.68550300	-0.70314100	3.13386400
I	3.28360800	1.28260500	0.98221000

6-I-PPh₃

\[
E = -3290.56151807
\]

\[
G_{corr} = 0.735468
\]
6-Br-PMe₃

\[
E = -1566.19226774
\]

\[
G_{corr} = 0.287107
\]
\[E = -1552.04429788 \]

\[G_{\text{corr}} = 0.182396 \]

8-Br-PMe₃

\[\text{Ni} \quad -2.51527500 \quad 1.80092000 \quad -0.03276900 \]
\[\text{P} \quad -4.38851900 \quad 1.48763400 \quad -1.18364500 \]
\[\text{C} \quad -5.42814700 \quad 0.19073800 \quad -0.37829600 \]
\[\text{Br} \quad -4.40243900 \quad 0.95404800 \quad -2.95305400 \]
\[\text{C} \quad -5.53034900 \quad 2.93934200 \quad -1.21686000 \]
\[\text{E} \quad -6.41317600 \quad 0.10190500 \quad -0.85156400 \]
\[\text{P} \quad -5.55218000 \quad 0.44620700 \quad 0.68028500 \]
\[\text{C} \quad -5.44884200 \quad 0.86884900 \quad -3.32584000 \]
\[\text{H} \quad -3.92640700 \quad -0.01728000 \quad -3.05528200 \]
\[\text{H} \quad -5.04366800 \quad 3.77575200 \quad -1.73080100 \]
\[\text{P} \quad -5.74682800 \quad 3.24839400 \quad -0.18913800 \]
\[\text{C} \quad 0.84711000 \quad 1.01423100 \quad -1.07728500 \]
\[\text{C} \quad 0.50677000 \quad 0.16478500 \quad -0.01508200 \]
\[\text{C} \quad -0.97523200 \quad -0.22175500 \quad -2.43164100 \]
\[\text{H} \quad 0.59936000 \quad 3.04152600 \quad -1.17650700 \]
\[\text{H} \quad -0.32606200 \quad 2.81174100 \quad -2.67435900 \]
\[\text{H} \quad 0.84549000 \quad 0.85786600 \quad 0.76098000 \]
\[\text{H} \quad 1.37125500 \quad -0.16925600 \quad -0.60104700 \]
\[\text{H} \quad -1.55022300 \quad 0.23092300 \quad -3.24509000 \]
\[\text{C} \quad -1.53561000 \quad -1.08148600 \quad -2.04845000 \]
\[\text{C} \quad -4.91174100 \quad -0.77349200 \quad -0.43968200 \]
\[\text{C} \quad 0.88047200 \quad 1.36260200 \quad -3.56781700 \]
\[\text{C} \quad -6.47074300 \quad 2.70394900 \quad -1.72917700 \]
\[\text{H} \quad 1.16291800 \quad 1.86504700 \quad -2.20074200 \]
\[\text{H} \quad 0.04842400 \quad -0.70315200 \quad 0.47080400 \]
\[\text{H} \quad -0.01359900 \quad -0.57019400 \quad -2.82716000 \]
\[\text{C} \quad -1.89536400 \quad 2.30945900 \quad 1.70066000 \]
\[\text{C} \quad -3.20549600 \quad 2.91896000 \quad 1.56358300 \]
\[\text{C} \quad -4.27886400 \quad 2.46159500 \quad 2.39853800 \]
\[\text{C} \quad -4.11752400 \quad 1.38229200 \quad 3.23048300 \]
\[\text{C} \quad -2.84792000 \quad 0.73501200 \quad 3.31437900 \]
\[\text{C} \quad -1.76043100 \quad 1.20268900 \quad 2.61272000 \]
\[\text{C} \quad -3.29064200 \quad 3.91571200 \quad 1.13276200 \]
\[\text{C} \quad -5.22225000 \quad 3.00345500 \quad 2.37495700 \]
\[\text{C} \quad -4.93930000 \quad 1.03241300 \quad 3.85335300 \]
\[\text{C} \quad -2.72962000 \quad -0.13928000 \quad 3.96092500 \]
\[\text{Br} \quad -0.78725900 \quad 0.73586900 \quad 2.72885000 \]

7-Cl-PMe₃

\[E = -1552.04429788 \]

\[G_{\text{corr}} = 0.182396 \]

\begin{align*}
\text{Ni} & \quad 3.06690600 \quad 7.31937300 \quad 11.59599400 \\
\text{Br} & \quad 4.53599100 \quad 6.21555900 \quad 10.09988000 \\
\text{H} & \quad 0.34253200 \quad 6.17763100 \quad 13.76685600 \\
\text{H} & \quad 4.69483900 \quad 7.72734000 \quad 14.78979100 \\
\text{P} & \quad 0.40746900 \quad 8.08955500 \quad 10.21980800 \\
\text{P} & \quad 4.28453600 \quad 4.89796700 \quad 13.99716200 \\
\text{H} & \quad 2.65338700 \quad 4.31490100 \quad 13.62245200 \\
\text{H} & \quad 1.40658800 \quad 10.96868500 \quad 9.63695700 \\
\text{P} & \quad 3.40688500 \quad 4.83554700 \quad 15.28569700 \\
\text{P} & \quad 1.40338200 \quad 9.98270000 \quad 13.51978600 \\
\text{H} & \quad -0.19563400 \quad 8.08955500 \quad 10.21980800 \\
\text{P} & \quad 4.28453600 \quad 4.89796700 \quad 13.99716200 \\
\text{H} & \quad 2.65338700 \quad 4.31490100 \quad 13.62245200 \\
\text{H} & \quad 1.40658800 \quad 10.96868500 \quad 9.63695700 \\
\end{align*}
\[G_{\text{corr}} = 0.268325 \]
\[E = -1783.69729748 \]

\[G_{\text{corr}} = 0.268563 \]
\[E = -1783.69729748 \]

\[\nu_{\text{Ni}} = -2.60106300 \quad 1.65679100 \quad 0.00721300 \]

\[\text{TS-8-9-Br-PMe}_{3} \]

\[G_{\text{corr}} = 0.268325 \]
\[v = -85.30 \text{ cm}^{-1} \]

\[\nu_{\text{Ni}} = -2.60106300 \quad 1.65679100 \quad 0.00721300 \]

\[\text{TS-8-9-Cl-PMe}_{3} \]

\[G_{\text{corr}} = 0.269087 \]
\[v = -104.13 \text{ cm}^{-1} \]

\[\nu_{\text{Ni}} = -0.80924900 \quad 0.56031400 \quad -0.1255070 \]

\[\text{Cl} \]

\[-2.60106300 \quad 1.65679100 \quad 0.00721300 \]
\[
G_{\text{corr}} = 0.268779 \\
E = -1334.70742817 \\
G_{\text{corr}} = 0.268779
\]

9-Br-PMe₃

\[
E = -1336.69800763 \\
G_{\text{corr}} = 0.271175
\]

9-I-PMe₃
Gcorr = 0.270617
E = -1783.75121852
9-Cl-PMe₃

Cl
Me₃P
Ni

E = -1783.75121852
Gcorr = 0.270617

Ni -1.66158000 0.51749800 -0.01575800
P -0.21648400 -0.68257500 1.45203100
C -2.86027200 1.38547500 1.88710500
C -2.42448100 2.38335800 2.77399600
C -1.99047800 2.06959500 4.06051500
C -1.98751600 0.74050000 4.50530300
C -2.42208600 -0.26661800 3.63999300
C -2.84608400 0.05664800 2.34736700
C -2.43524700 3.42245900 2.45338300
H -1.65832100 0.49487100 5.50991700
H -1.65832100 2.86267500 4.73269400
H -2.43524700 3.42245900 2.45338300

Cl -3.47625700 1.53010200 0.95223600

TS-9-3-I-PMe₃

E = -1334.89533628

Gcorr = 0.265005
v = -88.03 cm⁻¹
TS-9-3-Br-PMe3

Element	x	y	z
Ni	0.71481000	1.22553000	-0.03001400
P	-0.48274500	3.04627000	-0.97831300
C	-1.43605900	3.86803000	0.37238000
C	-1.79203400	2.73018900	-2.23942500
C	0.43314200	4.47372200	-1.71463700
H	-1.99258300	4.73828700	0.00432300
H	-0.74611400	4.18705700	1.16113300
P	2.55352300	0.68320500	-0.99142800
C	2.07813800	0.17636500	-2.69552300
C	3.85228400	1.95522600	-1.24535800
C	3.46790400	-0.76434000	-0.33441400
H	1.63524700	1.02841400	-2.20817000
C	1.33202600	-0.62227400	-2.63956000
C	3.41084000	2.83675000	-1.72116700
H	4.65372200	1.56320600	-1.88157800
H	3.86903200	-0.52168200	0.65353600
C	4.28885400	-1.04096500	-1.00519500
H	-2.13681500	3.14760800	-1.97049200
H	-1.33229300	2.35883500	-3.16211700
H	-0.24207700	5.29949800	-1.97049200
C	2.95280900	-0.17970200	-3.25290600
H	4.26977000	2.25072600	-0.27888100
H	2.77825400	-1.60817000	-0.23434800
C	1.78582400	1.56724300	1.44928400
C	1.89417200	0.62190200	2.48136600
C	2.41474600	0.99310400	3.72550100
C	2.85479000	2.30303000	3.94479800
C	2.77585200	3.24220600	2.91253000
C	2.25860000	2.87139400	1.66522300
H	1.54544100	-0.39262500	2.31388300
H	2.47598300	0.25731700	4.52466200
H	3.26216600	2.58759100	4.91169100
H	3.12375300	4.26058900	3.07196300
H	2.21411400	3.60036800	0.85929000
Br	-1.02463200	-0.51900700	0.31646300

TS-9-3-Cl-PMe3

Element	x	y	z
Ni	-0.46345900	1.07262400	-0.11445600
P	-1.64277900	2.96437400	-0.98048100
C	-2.43743500	3.79902700	0.46244500
In Toluene

Ni(PMe₃)₆

\[\begin{align*}
G_{\text{corr}} &= 0.403970 \\
E &= -2014.13708291
\end{align*} \]

Ni(PMe₃)₃

\[\begin{align*}
G_{\text{corr}} &= 0.294185 \\
E &= -1552.92426336
\end{align*} \]
Ni(PMe₃)₂

\[
\begin{align*}
E &= -1091.70878163 \\
G_{corr} &= 0.186059
\end{align*}
\]

Atom	X	Y	Z
Ni	2.97653100	7.45276000	11.84232000
P	1.82795000	9.14246000	11.22109500
C	2.32165900	10.94878800	12.58173000
P	0.68642000	8.83952400	11.04859000
C	1.07201500	10.86214700	11.59584000
H	0.53716000	10.41595600	12.47698000
H	3.20431800	10.27569000	12.10376000
H	3.22795000	8.96275000	12.03769000
H	5.16331800	8.49120000	11.92517000
H	3.14702800	6.96274000	12.02537000
H	6.04531000	6.54254000	12.04697000
H	2.67125000	4.95123400	12.02137000
H	3.30302800	3.64532800	12.02537000
H	4.30432000	3.14702800	12.04697000
H	1.53231800	2.09623400	12.02137000
H	1.65021500	1.05621800	12.02537000
C	4.02451200	1.04521800	12.04697000

PhI

\[
\begin{align*}
E &= -243.107411301 \\
G_{corr} &= 0.058655
\end{align*}
\]

Atom	X	Y	Z
C	2.37157500	-0.21732900	0.00004300
C	3.76822800	-0.23265400	0.00051000
C	4.45944700	0.98171500	-0.00005600
C	3.76393600	2.19238200	-0.00103400
C	2.36761900	2.19011800	-0.00148000
C	1.66000600	0.98489800	-0.00094800
H	4.31110600	-1.17155600	0.00129100
H	5.54623300	0.97381700	0.00029700
H	4.30742100	3.13298200	-0.00147600
I	1.81887400	3.12816300	-0.00226200

Ph•

\[
\begin{align*}
E &= -231.634469524 \\
G_{corr} &= 0.059636
\end{align*}
\]

Atom	X	Y	Z
C	1.08903600	-0.03726000	0.00006800
C	2.48710300	-0.02944900	0.00046800
C	3.19309100	1.17730400	-0.00006300
C	2.50138000	2.40050800	-0.00093800
C	1.12511000	2.33023600	-0.00131100
C	0.37584200	1.17352000	-0.00088100
H	0.54732900	-0.98048800	0.00048500
H	3.03023100	-0.97063200	0.00119900
H	4.28086300	1.17485100	0.00024600
H	3.03752200	3.34612200	-0.00135700
H	-0.71121200	1.18196800	-0.00119500

Toluene

\[
\begin{align*}
E &= -271.65526549 \\
G_{corr} &= 0.098610
\end{align*}
\]

Atom	X	Y	Z
C	5.36852300	-0.42567700	0.02178100
H	4.47301500	-0.85534500	0.49141000
H	5.87686300	0.17269100	0.78652500
H	6.02627100	-1.25935300	-0.24677800
Toluene radical

\[E = -271.002248804 \]
\[G_{\text{corr}} = 0.085412 \]

TS-1-2-I-PMe₃

\[E = -1796.04472876 \]
\[G_{\text{corr}} = 0.377611 \]

H Abstraction TS: Ph⊂ + Toluene

\[E = -503.285594423 \]
\[G_{\text{corr}} = 0.170965 \]
4-I-PMe₃

E = -1796.05331975
Gcorr = -0.374202

TS-4-5-I-PMe₃

E (OSS) = -1796.04305854
E (T) = -1796.02642847
S²(OSS) = 0.6013
Gcorr = 0.371398
v = -188.75 cm⁻¹
E (OSS) = -1796.0490861
E (T) = -1796.04880792
S^2(OSS) = 1.0098
G_{corr} = 0.369947

5-I-PMe₃

6-I-PMe₃
C -4.17073000 2.07806700 0.93713600 C 0.98561800 6.78770700 14.52758800
C -5.20502000 -0.18462800 0.93713600 C 3.21612900 5.00879800 14.14315600
C -3.71537500 1.84136500 -1.88501700 H 1.06731200 11.36551300 12.18679200
H -5.13735100 2.54125700 0.70425000 H 2.70003000 10.85700500 12.69592800
H -3.40975300 2.86365600 0.99811800 H -0.66755400 9.73261700 10.80900900
H -6.09094100 0.42899800 -0.69384000 H -0.48658800 8.32496400 11.89205900
H -5.35087600 -0.74269800 0.43972200 H 2.09272000 9.40044900 8.84533200
H -3.55483700 1.18376100 -2.74671500 H 3.16784900 10.45810900 9.76951400
H -2.90261900 2.57640500 -1.86908300 H 3.34566500 8.57878000 15.02748100
P -0.41917700 0.93142700 0.69769200 H 4.72298100 7.67434800 14.76902600
P -0.96025700 -1.86388100 -1.49890000 H 0.59966400 7.81254300 14.50468800
C 0.36832000 2.34285100 -0.38093900 H 0.97072900 6.42970200 15.56371600
C 1.45901800 0.06443300 1.00569400 H 2.61246500 4.32647600 13.53548700
C -0.45114800 1.75441900 2.31875600 H 3.11262400 4.74087500 15.20133100
C 0.06553300 -1.13830000 -2.85632700 H 1.27001500 10.12157700 13.44506400
C 0.10925200 -3.24578600 -0.90411300 H -0.21515500 8.13603900 10.15179000
C -2.26680500 -2.77092200 -2.43936500 H 1.46406800 10.93554000 9.51324400
H 1.20553300 2.91013500 0.04293100 H 4.26021300 4.88926600 13.83718800
H -0.48304700 3.01876100 -0.51857700 H 0.32163600 6.15787600 13.92568000
H 2.21298200 0.72914500 1.44426200 H 3.54516700 7.31616200 16.06226700
H 1.85020500 -0.30440000 0.06586400 I 4.75342400 6.19204700 10.2449700
H -0.70886200 0.98519200 3.05354400 i
H -1.30629200 2.43263400 2.23085400
H 0.97406800 -0.69586400 -2.43361700
H -0.49920900 -0.34275900 -3.35401200
H 0.99547200 -2.83431100 -0.40903800
H 0.42646300 -3.91106000 -1.71673700
H -2.91041000 -3.29548200 -1.72511300
H -1.84768200 -3.49675300 -3.14646500
H -4.23258200 1.58340400 1.91170300
H -5.07727700 -0.91280700 -1.29921900
H -4.66769300 2.37070500 -2.01253700
H 0.35840700 -1.88907400 -3.60093100
H -0.44854300 -3.82098000 -0.15809500
H -2.88293000 -2.05157500 -2.99025600
H 0.42104200 2.31937900 2.66880900
H 0.65791700 1.96145200 -1.36634900
H 1.27401900 -0.77149300 1.68817600
H -2.49903000 -2.01070500 2.17983600

7-I-PMe₃

\[
E = -1103.20076166
\]
\[
G_{corr} = 0.179104
\]

Ni	3.02107300	7.39600400	11.66721000
P	1.70436400	9.17505000	11.25412200
P	2.68797800	6.74398900	13.81325500
C	1.67778300	10.51280700	12.50681500
C	-0.09120800	8.81947700	10.99845700
C	2.13905100	10.09063600	9.69413400
C	3.66405900	7.70987000	15.04595400
In n-Hexane

PhH

\[
\begin{align*}
E & = -232.323983605 \\
G_{corr} & = 0.073465 \\
C & \begin{array}{ccc}
3.70589900 & 1.91299500 & 0.09731400 \\
5.02855700 & 2.16828700 & -0.27308500 \\
5.30587000 & 2.86508100 & -1.45295300 \\
4.25182000 & 3.30556600 & -2.26273300 \\
2.92907100 & 3.05022800 & -1.89226100 \\
2.65602400 & 2.35345000 & -0.71257900 \\
3.49371700 & 1.37081000 & 1.01535700 \\
5.84529900 & 1.82523200 & 0.35707100 \\
4.46380500 & 3.84788300 & -3.18074700 \\
2.11242000 & 3.39344200 & -2.52243700 \\
1.62680800 & 2.15474600 & -0.42445400 \\
6.33077500 & 3.06381900 & -1.74109800 \\
\end{array}
\end{align*}
\]

Hexane

\[
\begin{align*}
E & = -237.171989133 \\
G_{corr} & = 0.158283 \\
C & \begin{array}{ccc}
4.30635300 & 1.65426000 & -0.70126800 \\
4.96429200 & 2.26450200 & -1.33697500 \\
3.30432200 & 1.72035900 & -1.14707800 \\
4.77290600 & 0.19029800 & -0.75004600 \\
4.10385100 & -0.42259700 & -0.12725000 \\
4.66018800 & -0.18425700 & -1.77768600 \\
6.22335100 & -0.32579000 & -0.30265000 \\
\end{array}
\end{align*}
\]

H Abstraction TS: Ph• + Hexane

\[
\begin{align*}
E & = -468.799635792 \\
G_{corr} & = 0.228793 \\
v & = -1304.15 \text{ cm}^{-1} \\
C & \begin{array}{ccc}
0.55681800 & -0.96172200 & 0.0587600 \\
1.92526500 & -0.67751400 & 0.1599400 \\
2.49884800 & 0.16891700 & -0.7778010 \\
1.76974000 & 0.74242900 & -1.80926800 \\
0.40163500 & 0.45395200 & -1.90396200 \\
-0.20007000 & -0.39613100 & -0.97151900 \\
0.08461400 & -1.62301700 & 0.78183600 \\
2.51910700 & -1.11513500 & 0.95975500 \\
\end{array}
\end{align*}
\]
H 2.24418000 1.40278500 -2.53235200 H 9.92103100 -1.49168100 0.26597300
H -0.19135800 0.89186500 -2.70395800 H 9.90679100 -1.42357600 -1.50253200
H -1.26129000 -0.61873800 -1.04778100 H 9.97536600 -2.98950200 -0.67811700
C 5.15691000 0.66655100 -0.54524300 C 5.31896300 1.48871800 0.72097900
H 5.39731900 1.24462000 -1.44718000 H 5.00364400 0.91841000 1.60424500
H 3.92261800 0.45474300 -0.67194100 H 6.36411000 1.78915300 0.87951600
C 5.82140000 -0.70265900 -0.55585400 H 4.71734900 2.40425700 0.68133600
H 5.48939900 -1.27445800 0.32354600
H 5.47745400 -1.26359200 -1.43635800
C 7.35937700 -0.65076200 -0.56795900
H 7.71936500 -0.12366500 0.32654300
H 7.69465200 -0.05641300 -1.43097500
C 8.00628800 -2.04019400 -0.62570700
H 7.65072900 -2.56801500 -1.52205000
H 7.66481200 -2.63414000 0.23423000
C 9.53651900 -1.98552100 -0.63559200
REFERENCES

1 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lippari, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

2 Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

3 C. Lee, W. Yang, R.G. Parr Phys. Rev. B. Condens. Matter 1988, 37, 785-789.

4 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623-11627.

5 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104-19.

6 N. Fey, B. M. Ridgway, J. Jover, C. L. McMullin, J. N. Harvey, J. N. Dalton Trans. 2011, 40, 11184-11191.

7 M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654-3665.

8 P. C. Hariharan, J. A. Pople, Theoret. Chim. Acta 1973, 28, 213-222.

9 W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261.

10 W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-298.

11 P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-284.

12 L. E. Roy, P. J. Hay, R. L. Martin, J. Chem. Theor. Comput. 2008, 4, 1029-1031.

13 A. W. Ehlers, M. Böhmé, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, Chem. Phys. Lett. 1993, 208, 111-114.

14 R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 1980, 72, 650-654.

15 K. Yamaguchi, F. Jensen, A. Dorigo, K. N. Houk, Chem. Phys. Lett. 1988, 149, 537-542.

16 S. Yamanaka, T. Kawakami, H. Nagao, K. Yamaguchi, Chem. Phys. Lett. 1994, 231, 25-33.

17 M. H. Lim, S. E. Worthington, F. J. Dulles, C. J. Cramer, in Chemical Applications of Density Functional Theory, Vol. 629 (Eds. B. B. Laird, R. B. Ross, T. Ziegler), American Chemical Society, Washington DC, 1996; p 402.

18 H. Isobe, Y. Takano, Y. Kitagawa, T. Kawakami, S. Yamanaka, K. Yamaguchi, K. N. Houk, Mol. Phys. 2002, 100, 717-727.

19 H. Yu, Y. Fu, Q. Guo, Z. Lin, Organometallics 2009, 28, 4443-4451.

20 C. A. Tolman, Chem. Rev. 1977, 77, 313-348.

21 C. A. Tolman, W. C. Seidel, L. W. Gosser, J. Am. Chem. Soc. 1974, 96, 53-60.

22 J. A. Murphy, S.-Z. Zhou, D. W. Thomson, F. Schoenebeck, M. Mahesh, S. R. Park, T. Tuttle, L. E. A. Berlouis, Angew. Chem. Int. Ed. 2007, 46, 5178-5183.

23 a) L. E. Rush, P. G. Pringle, J. N. Harvey, Angew. Chem. Int. Ed. 2014, 53, 8672-8676. b) C. H. Bamford, C. F. H. Tipper, R. G. Compon, Comprehensive Chemical Kinetics, Vol. 25, Elsevier, B.V., Amsterdam, 1985.

24 Taken from Sigma-Aldrich database: http://www.sigmaaldrich.com/chemistry/solvents/toluene-center.html

25 Taken from Sigma-Aldrich database: http://www.sigmaaldrich.com/chemistry/solvents/tetrahydrofuran-center.html