Recombinant Spider Silk Protein eADF4(C16)-RGD Coatings Are Suitable for Cardiac Tissue Engineering

Der Medizinischen Fakultät
der Friedrich-Alexander-Universität
Erlangen-Nürnberg
zur

Erlangung des Doktorgrades Dr. med.
vorgelegt von

Johannes Philipp Maximilian Kramer
Als Dissertation genehmigt von der
Medizinischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Vorsitzender des Promotionsorgans: Prof. Dr. Markus F. Neurath

Gutachter: Prof. Dr. Felix Engel
Gutachterin: Prof. Dr. Kerstin Amann
Gutachter: Prof. Dr. Süleyman Ergün
Gutachter: Prof. Dr. Michael Gelinsky

Tag der mündlichen Prüfung: 14.02.2023
BETREUT DURCH

Prof. Dr. rer. nat. Dipl. Ing. Felix B. Engel

Experimentelle Nieren- und Herzkreislaufforschung

Nephropathologische Abteilung

Pathologisches Institut

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Erlangen, Deutschland
Für Uta Nestler
2.5.2.2. Beschichtung der Glasplättchen mit eADF4(C16)-RGD ... 16
2.5.2.3. Kontrollbeschichtungen Fibronectin und Gelatine, Verwendung von fetalem bovinen Serum .. 16
2.5.2.4. Immunfluoreszenzmikroskopie .. 17
2.5.2.4.1. Zellvitalität und Anheftung .. 18
2.5.2.4.2. Stimulation mit hypertrophie- und proliferationsinduzierenden Substanzen 19
2.5.2.5. Videoanalysen: Kymograph und MUSCLEMOTION .. 19
3. Originalpublikation ... 21
4. Anhänge ... 22
5. Literaturverzeichnis ... 24
6. Danksagung .. 37
1. Zusammenfassung
Ergebnisse der vorliegenden Arbeit wurden veröffentlicht in:
Kramer, J.P.M., Aigner, T.B., Petzold, J. et al. Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering. Sci Rep 10, 8789 (2020).
doi: 10.1038/s41598-020-65786-4

Ins Deutsche übersetzter Titel der Dissertation:
Beschichtungen aus dem rekombinanten Spinnenseideprotein eADF4(C16)-RGD sind für kardiales Tissue Engineering geeignet

1.1. Hintergrund und Ziel
Laut statistischem Bundesamt waren kardiovaskuläre Erkrankungen im Jahr 2018 mit 36,2% die häufigste Todesursache Deutschlands – hiervon gingen allein 13,4% auf den akuten Myokardinfarkt zurück [1]. Der mit dem Myokardinfarkt und anderen kardiovaskulären Erkrankungen einhergehende, irreversible Verlust von Kardiomyozyten [2] erschwert deren klinisches Management erheblich. Kardiales Tissue Engineering (zu Deutsch etwa Gewebekonstruktionsverfahren) bietet unter anderem die Perspektive, durch Implantation vitalen, ex vivo gezüchteten Gewebes den Verlust der Kardiomyozyten auszugleichen und die Funktion des geschwächten Herzens wiederherzustellen oder gar zu ersetzen.

Ziel der vorliegenden Arbeit war, die Eignung des rekombinant hergestellten und mit RGD, einer die Zelladhäsion fördernden Integrinbindungsdomäne [3], funktionalisierten Spinnenseideproteins eADF4(C16)-RGD für kardiales Tissue Engineering zu erforschen. eADF4(C16)-RGD kombiniert die Vorteile von Seidenmaterialien, darunter niedrige Immunogenität [4] und biologische Abbaubarkeit [5], mit der Möglichkeit einer ertragreichen Produktion bei gleichbleibend hoher Qualität [6]. Gleichzeitig kann eADF4(C16)-RGD mittels robotischer Verfahren ohne die Hinzugabe quervernetzender Additive oder Bindemittel 3D-gedruckt werden [7, 8].

1.2. Methoden
Zur Überprüfung der Eignung von eADF4(C16)-RGD für kardiales Tissue Engineering wurden die Interaktionen ventrikulärer Kardiomyozyten, Fibroblasten und Endothelzellen, isoliert aus den Herzen 3 Tage alter Sprague-Dawley Ratten, mit Beschichtungen aus eADF4(C16)-RGD überprüft. Alle Versuche erfolgten in 2D-Zellkultur unter serumreichen (10% FBS) sowie serumarmen Bedingungen (0,2% FBS).
Die Anheftung ventrikulärer Kardiomyozyten an eADF4(C16)-RGD im Vergleich zu Fibronektin wurde quantitativ und qualitativ mittels einer Calcein-AM und EthD-1 Zellvitalitätsuntersuchung und Immunfluoreszenzmikroskopie, die Anheftung von Fibroblasten und Endothelzellen qualitativ mittels Immunfluoreszenzmikroskopie untersucht. Darüber hinaus wurde überprüft, ob Kardiomyozyten auf eADF4(C16)-RGD adäquat auf extrazelluläre Stimuli reagieren. Kardiomyozyten auf eADF4(C16)-RGD und Fibronektin wurden hierzu mit dem Thymidinanalogon EdU und proliferationsinduzierenden Faktoren (FGF-1/p38i [9], 10% FBS [10]) inkubiert, und die DNS-Synthese fluoreszenzmikroskopisch untersucht und quantifiziert. Ebenfalls wurden Kardiomyozyten auf eADF4(C16)-RGD und Fibronektin, das in Kardiomyozyten pathologische Hypertrophie verursacht [11], sowie dem inerten Kontrollmaterial Gelatine [12] mit hypertrophieinduzierenden Substanzen (Phenylephrin [13], 10% FBS [14, 15]) stimuliert. Die Reaktion der Kardiomyozyten auf diese Stimuli wurde mittels des Hypertrophiemarkers ANP [16] immunfluoreszenzmikroskopisch untersucht und quantifiziert. Zuletzt wurden Videoanalysen mittels MUSCLEMOTION und Kymograph-Software (Fiji) genutzt, um das Schlagverhalten von Kardiomyozyten auf eADF4(C16)-RGD gegenüber Fibronektin quantitativ und qualitativ zu überprüfen.

1.3. Ergebnisse und Beobachtungen
Es bestand kein statistisch signifikanter Unterschied in Zahl oder Vitalität der auf Fibronektin und eADF4(C16)-RGD angehefteten Kardiomyozyten. Die Sarkomere der Kardiomyozyten zeigten eine physiologische Ausrichtung. Auf eADF4(C16)-RGD kultivierte Kardiomyozyten zeigten bei Stimulation mit FGF-1/p38i und 10% FBS eine erhöhte DNS-Synthese ohne statistischen Unterschied zu Fibronektin. Gleichzeitig reagierten Kardiomyozyten auf eADF4(C16)-RGD bei Stimulation mit Phenylephrin und 10% FBS mit einem statistisch signifikanten Anstieg von ANF (atrialer natriuretischer Faktor), ohne statistisch signifikanten Unterschied zu Gelatine. Schließlich zeigten Kardiomyozyten auf eADF4(C16)-RGD in der Videoanalyse vergleichbares Kontraktionsverhalten wie auf Fibronektin, aber eine deutlich höhere Kontraktionsgeschwindigkeit in serumarmer Umgebung (0,2% FBS). Gleichzeitig war die Relaxationsgeschwindigkeit der Kardiomyozyten auf eADF4(C16)-RGD höher als auf Fibronektin, ohne dass dieser Unterschied jedoch statistisch signifikant gewesen wäre. Auf eADF4(C16)-RGD kultivierte Kardiomyozyten formten kompakte zelluläre Aggregate, die mit leichter Arrhythmie assoziiert waren.
1.4. Schlussfolgerungen

Kardiomyozyten, Endothelzellen und Fibroblasten heften sich an eADF4(C16)-RGD an und die darauf kultivierten Kardiomyozyten zeigen eine physiologische Morphologie. eADF4(C16)-RGD lässt eine adäquate Reaktion der Kardiomyozyten sowohl auf proliferations-, als auch hypertrophieinduzierende Faktoren zu. Die erhöhte Kontraktionsgeschwindigkeit in serumarmer Umgebung im Vergleich zu Fibronektin könnte ein Hinweis darauf sein, dass auf eADF4(C16)-RGD kultivierte Kardiomyozyten in ihrem basalen Schlagverhalten weniger abhängig von externen Faktoren sind als auf Fibronektin. Hinweise auf eine erhöhte Relaxationsgeschwindigkeit der Kardiomyozyten auf eADF4(C16)-RGD könnten eine breitere Herzkatekontraktion in vivo ermöglichen. Die Kompaktierung der Kardiomyozyten auf eADF4(C16)-RGD könnte eine hohe Zelldichte und damit höhere Kontraktionsleistung ermöglichen. Allerdings sind die beobachteten Arrhythmien als problematisch zu bewerten und könnten in vivo zu ektoper Erregungsbildung führen. Möglicherweise könnte dies durch das Einbringen elektrokonduktiver Materialien kompensiert werden [17, 18].

Die Ergebnisse der vorliegenden Arbeit zeigen, dass Beschichtungen aus eADF4(C16)-RGD für kardiales Tissue Engineering geeignet sind. Dies eröffnet spannende Perspektiven für die Verwendung von eADF4(C16)-RGD, darunter der 3D-Druck funktionellen Herzgewebes mit aus hiPSC gewonnenen Kardiomyozyten und nicht-Kardiomyozyten und dessen Implantation zur Verbesserung der Herzmuskelfunktion in vivo bei diversen Herzmuskelerkrankungen.
2. Einordnung in den wissenschaftlichen Fachkontext

2.1. Myokardinfarkt

2.1.1. Definition und Epidemiologie

Der Myokardinfarkt ist definiert als eine ischämische Myokardnekrose. Diese ist am häufigsten das Resultat einer koronaren Herzkrankheit (KHK) als Unterform der Atherosklerose, welche über verschiedene Mechanismen zu einer Einengung der Koronararterien führt. Aufgrund der dadurch entstehenden Unterversorgung mit Sauerstoff und Nährstoffen geht das Gewebe im Versorgungsgebiet der Koronararterie zugrunde. Dies wird reflektiert in der universellen Definition von „myocardial injury“ (Myokardverletzung) durch die European Society of Cardiology (ESC), die eine Erhöhung des aus zugrunde gehenden Myozyten freigesetzten kardialen Troponins im Blut über die 99. Perzentile als Kriterium für das Vorliegen eines Myokardschadens definiert.

Innerhalb der EU-28 Staaten waren im Jahre 2016 35,7% der Todesfälle kardiovaskulär bedingt, Deutschland lag in diesem Zeitraum mit 37,2% über dem Durchschnitt. 36,2% der Todesfälle in Deutschland im Jahr 2018 waren durch Herz-Kreislauf-Erkrankungen bedingt. Der akute Myokardinfarkt allein machte von diesen 13,4% aus. Die World Health Organization (WHO) geht von kardiovaskulären Erkrankungen als weltweit führende Todesursache aus, mit näherungsweise 17.9 Millionen Todesfällen im Jahr 2016. Hierdurch ergibt sich für Deutschland und international sozioökonomisch sowie gesamtgesellschaftlich eine erhebliche Krankheitslast, die auch anhand der Zahl der durch sie verlorenen DALYs (disability-adjusted-life-years, behinderungskorrigierte Lebensjahre) deutlich wird: Über 64 Millionen DALYs wurden 2015 in Europa durch kardiovaskuläre Erkrankungen verloren, 23% der insgesamt verlorenen DALYs. Gleichzeitig hat sich die altersstandardisierte Inzidenz kardiovaskulärer Erkrankungen der ESC-Mitgliedsstaaten in den letzten 27 Jahren nicht oder nur sehr gering verringert. Bei der Interpretation der Statistiken ist zu beachten, dass kardiovaskuläre Erkrankungen neben dem Myokardinfarkt auch den plötzlichen Herztod und die Myokarditiden, aber auch zerebrovaskuläre Erkrankungen wie Hirnblutungen und -infarkte beinhalten.

2.1.2. Ätiologie und Risikofaktoren

Der Myokardinfarkt lässt sich ätiologisch in zwei Typen unterteilen. Typ I wird in der Regel hervorgerufen durch atherosklerotische Plaqueruptur. Diese kann zu Thrombusbildung und Einblutung führen und so das Lumen des Koronargefäßes verengen oder okkludieren. Typ II-Myokardinfarkte werden durch eine Sauerstoffuntersorgung und daraus folgendem
Untergang des Herzmuskelgewebes (ohne ursächliche Plaqueruptur) verursacht. Dies beinhaltet eine Vielzahl vaskulärer sowie nicht-vaskulärer Genesen, darunter erhöhter myokardialer Sauerstoffbedarf aufgrund tachykarder Herzrhythmusstörungen, Anämie, koronare Embolien sowie Koronararteriendiastesektion. [20]

In der 2004 veröffentlichten INTERHEART Fall-Kontroll-Studie wurden Risikofaktoren für den akuten Myokardinfarkt bei 15.000 Fällen in 52 Ländern untersucht. 90% des attributablen Risikos (AR) für Männer und 95% des AR für Frauen waren durch folgende Risikofaktoren bedingt: Rauchen, erhöhter ApoB/ApoA1 Quotient, Vorgeschichte einer arteriellen Hypertonie, Diabetes mellitus, abdominelle Adipositas, psychosoziale Faktoren, kein täglicher Konsum von Obst und Gemüse, regelmäßiger Alkoholgenuss sowie keine regelmäßige physische Aktivität. Diese Risikofaktoren galten für jedes Alter, Geschlecht und jede Region. [26] Hierdurch wird der Stellenwert der Lebensführung in der Prävention cardiovasculärer Erkrankungen deutlich, wie beispielsweise im „Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2016-2025“ der WHO ausgeführt [27].

2.1.3. Klinisches Management und Therapie

Patienten mit Myokardinfarkt äußern klassischerweise die Beschwerden des akuten Koronarsyndroms (ACS), dessen Leitsymptom Brustschmerz ist. Mittels elektrokardiographischer (EKG)-Diagnostik ergeben sich daraus folgende Übergruppen, die von der European Heart Association in unterschiedlichen Leitlinien behandelt werden:

1. Nicht-ST-Hebungs-ACS, je nach Vorliegen einer Myokardnekrose weiter zu unterteilen in den nicht-ST-Hebungs-Myokardinfarkt (NSTEMI) und die instabile Angina pectoris [28]

2. ST-Hebungs-ACS, wobei die ST-Hebung in der Regel auf eine akute und totale koronare Okklusion hinweist und ein bereits eingetretener oder bevorstehender ST-Hebungs-Myokardinfarkt (STEMI) hochwahrscheinlich ist. [29]

Präklinisch steht die Erfassung und Einschätzung der ACS-Symptomatik im Vordergrund. Sobald von einem ACS ausgegangen wird, kann durch EKG-Diagnostik zwischen STEMI und ggf. NSTEMI unterschieden werden, und ein Blutserum-Test auf kardiales Troponin die Diagnose unterstützen (siehe 2.1.1). Soweit verfügbar, kann mittels Echokardiographie, Koronarangiographie und anderer bildgebender Verfahren der Schweregrad des Myokardinfarktes eingeschätzt und die Therapieindikation konkretisiert werden. [19]
Therapeutisch können bei einem Myokardinfarkt verschiedene Akutmaßnahmen ergriffen werden: [28, 29]

1. **Anti-ischämische Therapie**: Im engeren Sinne umfasst dies die Reduktion des kardialen Sauerstoffverbrauchs und die Maximierung des kardialen Sauerstoffangebotes. Dies kann beispielsweise die supportive Gabe von Sauerstoff und Betablockern, welche die Herzaktion ökonomisieren, beinhalten. Zusätzlich kann eine Symptomkontrolle mittels anxiolytisch und/oder analgesierend wirkender Opiode beziehungsweise Benzodiazepine in Erwägung gezogen werden.

2. **Reduktion der Thrombusbildung**: Durch Gabe von Thrombozytenaggregationshemmern (z.B. Acetylsalicylsäure [ASS] sowie P2Y12-Inhibitoren wie Clopidogrel) und/oder Antikoagulantien (zum Beispiel unfractioniertes Heparin, Enoxaparin) kann die Thrombusbildung reduziert werden.

Je nach Verfügbarkeit, Vorerkrankungen und klinischer Ausprägung des Myokardinfarktes kann eine interventionelle und/oder operative Strategie zur Wiederherstellung des koronaren Blutflusses erfolgen. In der perkutanen koronaren Intervention (PCI) können Koronararterien mittels arterieller Katheter durch Ballon- oder Stentangioplastie aufgeweitet und Stenosen behoben werden. Die koronare Bypasschirurgie hingegen hat zum Ziel, okkludierte Gefäßabschnitte zu überbrücken. Bei fehlender Indikation bzw. Kontraindikationen für eine PCI oder Bypasschirurgie kann bei einem STEMI eine konservative Therapie mittels Fibrinolytika (beispielsweise Streptokinase, Urokinase) erfolgen. Kurz- sowie langfristige Komplikationen des Myokardinfarktes wie Herzinsuffizienz, kardiogener Schock und Herzrhythmusstörungen müssen erfasst und behandelt werden. Zuletzt kommt der tertiären Prävention durch Optimierung des kardiovaskulären Risikoprofils und lebenslanger Einnahme von ASS eine besondere Bedeutung zu. [19, 28, 29]

2.1.4. **Neuartige Therapieansätze**

Die Unfähigkeit des menschlichen Herzens, einmal verlorene Kardiomyozyten zu ersetzen, hat bisher die Entwicklung vielfältiger Therapieansätze bedingt [2]. Ein Ansatz ist die Xenotransplantation von Schweineherzen, mit der Längin et al. in einer 2018 erschienen Studie einen wichtigen Erfolg erzielen konnten. Paviane mit xenotransplantierten Herzen aus genetisch modifizierten Schweinen überlebten bis zu 195 Tage. Die Arbeit erfüllte die von der *International Society for Heart and Lung Transplantation* (Internationale Gesellschaft für Herz- und Lungentransplantation) in einem Bericht geforderten präklinischen Bedingungen.
für den Beginn klinischer Versuche im Menschen. [30, 31] Weitere Ansätze zielen insbesondere darauf ab, die Anzahl der Kardiomyozyten im Herzen zu erhöhen. Sie reichen von Stammzelltherapie, der Aktivierung endogener Stammzellen sowie der Anregung vorhandener Kardiomyozyten zur Proliferation, bis hin zu Tissue Engineering (siehe 2.2). [32-34]

2.2. Tissue Engineering

2.2.1. Allgemeine Definition und technische Verfahren

Tissue Engineering (zu Deutsch etwa Gewebekonstruktionsverfahren) hat im weitesten Sinne zum Ziel, biologisches Gewebe künstlich zu erzeugen. Die erstmalige Definition des Begriffes geht auf einen Antrag Y.C. Fungs, ein Vorreiter im Feld der Biomechanik und des Bioingenieurwesens, an die National Science Foundation der Vereinigten Staaten von Amerika, im Jahre 1985 zurück. Er plädierte für die Einrichtung eines „Center for the Engineering of Living Tissues“ (zu Deutsch etwa „Zentrum für Ingenieurswesen lebender Gewebe“) als Schnittstelle zwischen biochemischer bzw. zellbiologischer Forschung einerseits, sowie klinisch-physiologisch orientierter Forschung an Organen und Organsystemen andererseits. Fungs Antrag wurde abgewiesen. Trotzdem erfreute sich das Feld in den kommenden Jahren und Jahrzehnten wachsender Beliebtheit. [35, 36]

Die potenziellen Anwendungen von Tissue Engineering sind vielfältig. So kann ein Ziel sein, an künstlich hergestelltem Gewebe Krankheitsmodelle zu erforschen [37] oder pharmakologische Testungen vorzunehmen [38], und so nicht nur die Notwendigkeit von Tierexperimenten zu reduzieren, sondern der Forschung ein dem Menschen näheres Modell zu bieten. Mittels Tissue Engineering könnte es auch gelingen, Gewebe zur Implantation in den menschlichen Körper herzustellen. Hierbei gilt es, die Funktion eines Organs zu verbessern oder wiederherzustellen, oder gar ein krankes Organ gänzlich zu ersetzen [39]. Diese Perspektive erscheint nicht zuletzt angesichts niedriger Organspendezahlen [40] vielversprechend.

Um sich dem komplexen Ziel zu nähern, artifiziell im Labor Gewebe herzustellen, kommt den verwendeten Materialien und technischen Verfahren eine besondere Bedeutung zu. Überblickend können unter anderem folgende Verfahren sowie deren Vor- und Nachteile abgegrenzt werden:

- De- und anschließende Rezellularisierung von Gewebe: Dieses Verfahren bietet den Vorteil, dass lediglich eine bereits bestehende Struktur, beispielsweise ein für eine Transplantation zu altes menschliches Organ, von Zellen befreit wird, und daraufhin
neue Zellen aufgebracht werden, welche die Matrix rezellularisieren. Zusätzlich können native Konstrukte wichtige physiologische Signale für eingebrachte Zellen liefern. Nachteilig ist, dass die zur Dezellularisierung verwendeten Substanzen die Matrix schädigen oder in ihr verbleiben können. [39, 41-46]

- Tintenstrahldruck: Analog zu kommerziell erhältlichen Papierdruckern werden Flüssigkeiten mit enthaltenen Zellen mittels thermischer oder akustischer Energie ausgebracht und so Gewebe gebildet. Vorteile sind niedrige Kosten und Kompatibilität mit verschiedenen biologischen Materialien, ein Nachteil, dass man mit diesem Verfahren auf eine niedrige Tintenviskosität angewiesen ist. [39, 47, 48]

- Mikroextrusionsdruck: Robotisch gestützt werden beispielsweise wässrige Gele (Hydrogele) mittels pneumatischer oder hydraulischer Energie aus einer Düse gepresst. Vorteilhaft ist bei dieser Technik, dass im Gegensatz zum Tintenstrahldruckverfahren hohe Zelldichten verwendet werden können. Ein Nachteil ist, dass die Viabilität der ausgebrachten Zellen generell niedriger ist als bei Tintenstrahldruckverfahren. [39, 47, 49-53]

2.2.2. **Kardiales Tissue Engineering**

Im Jahre 1986 verbuchte das Feld des kardiovaskulären Tissue Engineerings seinen ersten Erfolg – in einer in *Science* erschienenen Studie konstruierten Weinberg und Bell aus glatten Muskelzellen, Kollagen und Dacrongittern ein *in vitro* funktionales Gefäßmodell [54]. Seitdem hat sich das Feld weiterentwickelt: Zimmermann *et al.* konnten 2006 die Herzfunktion immunsupprimierter Ratten nach einem Herzwandinfarkt durch Implantation eines Transplantates aus Kollagen Typ I und Matrigel¹ signifikant verbessern [55]. Shiba *et al.* zeigten 2012, dass Transplantate mit aus humanen embryonalen Stammzellen gewonnenen Kardiomyozyten (hESC-CM) im Meerschweinchenmodell arrhythmogen wirkten und synchron mit dem nativen Herzmuskel kontrahierten [56]. Weinberger *et al.* konnten in einer 2016 publizierten Arbeit die linksventrikuläre Funktion kältegeschädigter Herzen in Meerschweinchen mittels aus hiPSC-CM hergestellten Transplantaten gegenüber der Kontrolle um 31% verbessern [57]. Auch im Schweinemodell zeigte sich kardiales Tissue

¹ eine gelatinöse Mixtur aus Proteinen, die von Engelbreth-Holm-Swarm [EHS] Maus-Sarkomzellen sezerniert wird und vor allem aus Laminin, Nidogen, Kollagen und Heparansuflat-Proteoglykanen besteht
Engineering als klinisch umsetzbar: Über Infarktgebiete aufgenähte Transplantate, die mit aus humanen induzierten pluripotenten Stammzellen gewonnenen Kardiomyozyten (hiPSC-CM) gefertigt wurden, verbesserten in einer 2012 erschienen Studie von Kawamura et al. im Schweinemodell die Herzfunktion signifikant und verringerten linksventrikuläres Remodeling [58].

Tissue Engineering ist gleichwohl nicht mehr nur auf präklinische Studien und Tiermodelle begrenzt. Menasché et al. konnten 2015 in einem ersten klinischen Fallbericht hESC-Herz-Progenitorzellen in einem Fibringerüst operativ auf das Herz eines 68-jährigen Patienten mit schwerer Herzenssuffizienz nach abgelaufenem Herznarkt aufbringen. Nach drei Monaten zeigte sich der Zustand des Patienten deutlich verbessert. Es zeigten sich keine Komplikationen, Arrhythmien, Tumorbildung oder andere nachteilige Effekte der Therapie. Zu beachten ist jedoch, dass in der Operation ebenfalls Bypasschirurgie durchgeführt wurde, weshalb Aussagen zum klinischen Effekt des aufgebrachten Transplantats nicht möglich sind. [59] Es bleibt abzuwarten, wann erste in ausreichender Qualität und Größe angelegte Studien klinisch relevante Ergebnisse hervorbringen können.

Erste Erfolge darin, Herzmuskelgewebe nach menschlichem Vorbild zu fertigen, wurden ebenfalls bereits erzielt. Lee et al. konnten mittels 3D-Druck und unter Verwendung hochauflösender Bildgebung kontraktionsfähige Ventrikel mit komplexer mikrovaskulärer Architektur und funktionsfähigen Herzkappen nach dem direkten anatomischen Vorbild eines menschlichen Herzens herstellen [60]. Noor et al. stellten aus einer humanen Gewebeprobe pluripotente Stammzellen sowie ein personalisiertes Hydrogel her und fertigten hieraus vaskularisiertes Herzmuskelgewebe, das den immunologischen, anatomischen und biologischen Verhältnissen des Spenders angepasst war [61].

Ein bedeutender Vorteil des Tissue Engineering gegenüber anderen neuartigen Verfahren zur Behandlung kardiovaskulärer Erkrankungen ist die Tatsache, dass damit terminal differenziertes, funktionsfähiges Gewebe ex vivo unter kontrollierten Bedingungen hergestellt werden könnte. Dies würde gegenüber anderen Verfahren (siehe 2.1.4) nicht nur ein geringeres Risiko für die Entstehung von Teratomen oder Malignomen bedingen. Die Herzregeneration müsste auch zu einem geringeren Grad mit eigenen körperlichen Ressourcen bewältigt werden. Ein eingebrachtes Transplantat, theoretisch sogar als ganzes Herz, könnte sehr schnell Pumpleistung übernehmen. Dies könnte geringere Rekonvaleszenzzeiten und damit, bei schweren Verläufen, eine kritische Senkung der Mortalität bedingen. Sollte es möglich werden, ganze Herzen zu transplantieren, wären keine allogen Organtransplantationen mehr notwendig und Versorgungseingriffe würden
umgangen. Die Gefahr einer Abstoßungsreaktion und die bei allogenen
Organtransplantationen notwendige Immunsuppression könnten auf ein Minimum reduziert
werden.

2.3. Spinnenseide
2.3.1. Einführung
Alle Webspinnen (Spinnentiere der Ordnung Aranae), sowie einige Insektenordnungen, sind
in der Lage Seide zu produzieren [62]. Die ältesten Nachweise von Spinnwarzen, und damit
Webspinnen, in Fossilien datieren ca. 400 Millionen Jahre zurück [63]. Insekten produzieren
Seide meist nur während eines bestimmten Lebensabschnittes – so spinnt sich beispielsweise
der Seidenspinner Bombyx mori zur Verpuppung in einen seidenen Kokon ein, welcher zur
Herstellung von Seidentextilien genutzt wird. Spinnen hingegen produzieren
unterschiedlichste Formen von Seide mit mannigfaltigen Einsatzzwecken. Sie bauen Rad-
und Trichternetze, kleiden ihre Wohnhöhlen mit Seide aus, bauen damit Kokons für ihre
Eiablage, oder aber auch Netze für die Aufnahme ihrer Samenflüssigkeit. Spinnen seilen sich
an ihrer Seide ab, sie nutzen sie als Sicherungsleine, spinnen damit ihre Beute ein, oder lassen
sich an ihr über weite Distanzen durch die Lüfte tragen. [62] So kann die Gartenkreuzspinne
Araneus diadematus mit sieben spezialisierten Spinndrüsen ebenso viele verschiedene Arten
von Spinnenseide produzieren, davon allein fünf für die Konstruktion ihres Radnetzes.
Wissenschaftliche Beachtung findet aufgrund seiner simplen Gewinnung und mechanischen
Eigenschaften vor allem der Abseilfaden aus der großen Ampullendrüse. [64]

Spinnenseide besteht aus repetitiven Aminosäuresequenzen verschiedener Abfolgen, die
für strukturelle Besonderheiten verantwortlich sind: Glycin-Prolin-Glycin-X-X (wobei X
variable Aminosäuren darstellt, häufig jedoch Glutamin), alaninreiche Abschnitte, Glycin-
Glycin-X, sowie Platzhaltersequenzen, und längere nicht-repetitive terminale Sequenzen [6,
65-72]. Das zentrale Protein der Spinnseide, Spidroin genannt, wird in der A-Zone der
Spinndrüsen als wässrige Spinnlösung von spezialisierten Zylinder epithelien produziert, der
dünne Film, der den Spinnfaden umgibt, in der B-Zone [73]. Durch ihren flüssig-kristallinen
Charakter erhält die Spinnlösung nematische Eigenschaften, und ist in der Lage, zwar als
Flüssigkeit durch die Drüsegänge zu fließen, jedoch die Ausrichtung ihrer Proteinmoleküle
beizubehalten [73-76]. Wenn die Spinne ihren Faden aus den Spinnwarzen herauszieht,
werden die Proteinmoleküle der Spinnlösung ausgerichtet und es entstehen über
Wasserstoffbrücken antiparallele Beta-Faltblätter [73, 77]. Zusammen mit den im distalen
Abschnitt der Drüsegänge gelegenen Protonenpumpen, die eine Ansäuerung der
Spinnlösung bewirken, wird hierdurch die wässrige Phase bereits vor Ausstritt der Seide aus den Spinnwarzen zum großen Teil abgeschieden [73, 77, 78].

Die mechanischen Eigenschaften von Spinnenseide sind vielfältig. Die Gattung der Kreuzspinnen, *Araneus*, ist in der Lage Seide zu produzieren, deren Festigkeit mit 1,1 Gigapascal (GPa) höher ist als die von Nylonfaser (0,95 GPa) und der Kokonseide von *Bombyx mori* (0,6 GPa), jedoch geringer als die von hochfestem Stahl (1,5 GPa) und Kevlar (3,6 GPa). Im Vergleich hat sie mit 0,27 eine durchweg höhere Dehnbarkeit (ε_{max}) als die genannten Materialien (ε_{max} Nylonfaser 0,18; Kokonseide von *Bombyx mori* 0,18; hochfester Stahl 0,008; Kevlar 0,013) sowie mit 160 Megajoule pro Kubikmeter (MJm^{-3}) eine höhere Zähigkeit (Nylonfaser 80; Kokonseide von Bombyx mori 70; hochfester Stahl 6; Kevlar 50 MJm^{-3}). [79-84] Dies wird ermöglicht durch die Einbettung alaninreicher kristalliner Proteinregionen, welche der Seide ihre Festigkeit geben, in eine prolinreiche amorphe Proteinmatrix, welche der Seide ihre Flexibilität und Dehnbarkeit gibt [79, 85, 86]. Spinnenseide ist ebenfalls biokompatibel und biologisch abbaubar, wie zahlreiche *in vivo* und *in vitro* Studien zeigen konnten [87-92].

2.3.2. Kurze Historie der menschlichen Nutzung

Menschen nutzen Spinnenseide seit Jahrtausenden. Bereits die alten Griechen verwendeten Spinnenseide als Wundauflage. Aborigines und manche Urvölker Neuguineas konstruierten aus ihr Fischernetze und Fischhaken. Eine der frühesten Erwähnungen der Spinnenseide als Nutzmaterial findet sich in den Schriften von René-Antoine Ferchault de Réaumur, der 1709 vergeblich versuchte, mit aus Eierkokons gewonnener Spinnenseide Handschuhe und Garmaschen anzufertigen. Bon de Saint-Hilaire versuchte nicht viel später, Spinnen für die Seidenproduktion auf engem Raum zu halten, scheiterte jedoch am kannibalistischen Verhalten der Tiere – ein Problem, das bis heute besteht. Im 19. Jahrhundert baute der britische Erfinder Daniel Rolt eine Maschine, die laut Aufzeichnungen binnen zwei Stunden fast fünfenthalb Kilometer Abseilfaden von 24 Spinnen auf eine Spule aufwickeln konnte, und gewann dafür 1830 eine Auszeichnung der *Society of Arts*. Im frühen 20. Jahrhundert wurde Spinnenseide beispielsweise zur Herstellung von Fadenkreuzen für Zieloptiken verwendet. [93]

Auch im Zeitalter der künstlichen Polymerfasern gibt es für native Spinnenseide noch Anwendungen, jedoch wird sie aufgrund der aufwändigen Gewinnung nur in Einzelprojekten oder eng umschriebenen technischen Gebieten genutzt. Beispielsweise wurde sie 2011 in der Konstruktion eines Interferometers eingesetzt [94]. 2012 wurden aus der Seide von 300
Exemplaren von *Nephila maculata* Violinsaiten mit besonders weicher und tiefer Klangfarbe angefertigt [95]. Aufgrund der mechanischen und biologischen Eigenschaften (siehe 2.3.1) besteht heute ein großes Interesse daran, das Naturprodukt Spinnenseide auf industrielle Weise möglichst exakt zu replizieren.

2.4. Rekombinantes Spinnenseideprotein eADF4

2.4.1. Charakterisierung

Der Abseilfaden der Gartenkreuzspinne *Araneus diadematus* besteht im Wesentlichen aus dem hydrophilen Protein ADF3 (*Araneus diadematus* Fibroin 3) und dem hydrophoben Protein ADF4 [96] in einem molekularen Verhältnis von etwa 2 zu 3 [6, 66, 67, 97]. Die Proteine besitzen eine molekulare Masse von ca. 180-720 Kilodalton [98-100]. ADF4 besteht zum größten Teil aus Wiederholungen einer Aminosäuresequenz, die innerhalb des Proteins nur wenig variiert. Nach Mittelung der Variation wurde diese als „C-modul“ bezeichnet (Sequenz im Buchstabencode für Aminosäuren: GSSAAAAAAASGPGGYGPENQGPSGPGGYGPGGP). Die für diese Aminosäuren kodierenden Nukleinsäuren wurden für eine Expression durch Bakterien angepasst und werden 16-fach wiederholt als das Protein „C16“ mittels *Escherischia coli* hergestellt. Durch Erhitzung und darauffolgende Präzipitation durch Hinzugabe von Ammoniumsulfat wird das rekombinant produzierte Protein eADF4(C16) aufgereinigt. Auf diese Weise kann eADF4 in gleichbleibender Qualität im industriellen Maßstab hergestellt werden, was es von natürlichen Seiden deutlich abhebt und für medizinische Zwecke geeignet macht. [6, 96] eADF4(C16) besitzt darüber hinaus niedrige Immunogenität [4] und ist biologisch abbaubar [5].

eADF4(C16) lässt sich aufgrund seiner rekombinannten Herstellung auf vielfältige Weise modifizieren, um beispielsweise für Zwecke des Tissue Engineering die Anheftung von Zellen zu begünstigen. Es konnte gezeigt werden, dass das natürliche Vorkommen der aus drei Aminosäuren bestehenden Integrinbindungsdomäne RGD (Arginin-Glycin-Asparagin) [3] in der Seide des Seidenwurms *Antheraea mylitta* gegenüber der Seide des Seidenspinners *Bombyx mori*, die keine solche Domäne besitzt, eine verbesserte Anheftung von Kardiomyozyten ermöglicht [101]. Eine RGD-Domäne besitzt ebenfalls das Protein Fibronectin [102], an das neonatale Kardiomyozyten binden [103]. Fibronectin ist ein Bestandteil der extrazellulären Matrix des Herzens und anderer Organe [11, 104, 105]. Durch die C-terminale Anfügung eines RGD-Motifs an eADF4(C16), entweder durch chemische oder genetische Modifikation, konnte das RGD-funktionalisierte Protein eADF4(C16)-RGD
hergestellt werden. Für diese Arbeit wurde die genetisch modifizierte Form verwendet. Mit ähnlichem Ziel wurde im Rahmen von Knochen-Tissue-Engineering eADF4 erfolgreich mit den Peptiden Osteopontin und Sialoprotein aus nichtkollagenem Knochen funktionalisiert, um die Anheftung und Remineralisierung muriner (aus Mäusen stammender) Proteoblasten zu verbessern [106]. Abseits des Tissue Engineering konnte eADF4 mit zellpenetrierenden Peptiden (Tat- und Rs) funktionalisiert werden, um beispielsweise im Rahmen von „targeted drug therapy“ (zu Deutsch etwa gezielte Pharmakotherapie) eine bessere Aufnahme von Spinnenseidepartikeln in Zellen zu ermöglichen (siehe 2.4.2) [107]. Auch das C-Modul von eADF4 wurde bereits modifiziert, um Zellanheftung zu begünstigen: Es konnte gezeigt werden, dass Zellen sich aufgrund ihrer negativ geladenen Glykokalyx an Beschichtungen aus dem ebenfalls negativ geladenen eADF4(C16) schlecht anheften können. Durch den Austausch von Glutaminsäure gegen Lysin im C-Modul von eADF4(C16) entsteht eADF4(κ16), welches im direkten Vergleich eine deutlich verbesserte Adhäsion muriner Fibroblasten sowie eine mit Fibronektin vergleichbare Anheftung neonataler Rattenkardiomyozyten erlaubte. [108, 109]

Neben den vielfältigen Möglichkeiten, das Protein eADF4 zu modifizieren und zu funktionalisieren, lässt sich eADF4(C16) zu verschiedensten Morphologien verarbeiten, darunter Filme [110, 111], Nanofibrillen [112], Hydrogele [113], Schäume [114], Kolloide [115], nicht-gewobene Matten [116], Kapseln [117, 118] und Partikel [119, 120]. Ebenfalls kann eADF4(C16)-RGD mittels robotischer Verfahren ohne die Hinzugabe quervernetzender Additive oder Bindemittel 3D-gedruckt werden [7, 8], was vielfache Applikationen im Tissue Engineering ermöglicht.

2.4.2. Medizinische Anwendungen der Varianten

Varianten des Spinnenseideproteins eADF4 können für verschiedenste medizinische Zwecke genutzt werden, darunter insbesondere das Tissue Engineering. Filme aus eADF4(κ16) konnten bereits als ein für kardiales Tissue Engineering geeignetes Material identifiziert werden [109]. Matrices aus eADF4(C16) erlaubten in vivo intrinsische Neoangiogenese und de novo Gewebeformation. Durch Beeinflussung des Faserdurchmessers konnte auch die Vaskularisierung gesteigert werden. [121] Rohre aus Chitosan, ein Abkömmling des Chitins, und eADF4(C16)-RGD boten in vitro eine gute Leitstruktur für das Wachstum peripherer Nerven. Dies könnte langfristig die bisherige Praxis, größere Unterbrechungen peripherer Nerven mit autologen Transplantaten überbrücken zu müssen, und die damit einhergehenden
Hebedefekte, ersetzen. [122, 123] Auch für Tissue Engineering von Knochengewebe könnte eADF4(C16) zukünftig als Matrix genutzt werden [106, 124].

eADF4(C16) kann als Vehikel für den Transport von Medikamenten genutzt werden [113]. Es konnte ebenfalls gezeigt werden, dass Hydrogele aus eADF4(C16) ein geeignetes Vehikel für die Verabreichung von Biologika darstellen [125]. Mikrokapseln und Mikropartikel aus Varianten von eADF4 können Substanzen mit hohem Molekulargewicht, beispielsweise Enzyme oder Nukleinsäuren, aufnehmen und abgeben, was insbesondere für gezielte pharmazeutische Therapie im Sinne einer „targeted drug therapy“ von Interesse ist [117-119, 126-128]. Desoxyribonukleinsäure (DNS)-funktionalisierte Hydrogele aus eADF4(C16) sind ebenfalls als Träger für empfindliche Proteine und Enzyme geeignet und können diese durch Hinzugabe eines Triggers gezielt freisetzen. Dies könnte für bioanalytische Geräte genutzt werden, bei denen die spezifische Immobilisation und Freisetzung von Biokatalysatoren technisch schwer zu realisieren ist. [129] Da gezeigt werden konnte, dass eADF4(C16) die Anheftung und Biofilmbildung durch verschiedene Pilze und Bakterien hemmt, könnte das Protein unter anderem zur Beschichtung von Prothesen genutzt werden, um Infektionen zu reduzieren [130, 131]. Eine Beschichtung polymerer Biomaterialien mit eADF4(C16) könnte ebenfalls sinnvoll sein, wenn eine Anheftung körpereigener Zellen nicht gewünscht ist, beispielsweise bei Kathetern [132]. In Ratten reduzierte eine Beschichtung mit eADF4(C16) bereits die Kapselbildung um Silikonimplantate [4].

2.5. Zielsetzung und Erläuterungen zur Methodik

2.5.1. Zielsetzung
Ziel der vorliegenden Arbeit war, durch eine erste Eignungsprüfung des rekombinannten Spinnenseideproteins eADF4(C16)-RGD für kardiales Tissue Engineering den Grundstein für weitere Forschung zu legen. Die gewählten Verfahren, wie die Verwendung von 2D- statt 3D-Zellkultur sowie von drei Tage alten (p3), neonatalen, ventrikulären Rattenkardiomyozyten (im Folgenden p3NVRKM) statt hiPSC-CM / hESC-CM, waren auf diese Zielsetzung ausgerichtet. Die durchgeführten Versuche sollten die Interaktion zwischen Kardiomyozyten und eADF4(C16)-RGD beleuchten und Hinweise darauf geben, ob sie sich auf der Matrix physiologisch verhalten. Im Folgenden sollen die zentralen Aspekte der verwendeten Verfahren erklärt werden.
2.5.2. Erläuterungen zur Methodik

2.5.2.1. Zellkultur neonataler, ventrikulärer Rattenkardiomyozyten und nicht-Kardiomyozyten

Aus Rattenherzen isolierte Zellen werden bereits seit den 1960er Jahren für wissenschaftliche Studien verwendet [133]. Mittels p3NVRKM ist es verhältnismäßig kosteneffizient möglich, die Interaktion von Kardiomyozyten mit einem Material wie eADF4(C16)-RGD zu überprüfen. Neonatale Kardiomyozyten sind unkomplizierter zu isolieren und kultivieren als adulte Kardiomyozyten [134] und kontrahieren spontan in Kultur [135]. Ihr neonataler Phänotyp entspricht aber nicht vollständig dem reifer Kardiomyozyten [136] und sie haben gegenüber aus menschlichen Zellen gewonnenen Kardiomyozyten den Nachteil des Tiermodells. Andererseits konnte im Mausmodell gezeigt werden, dass Herzgewebe aus neonatalen Kardiomyozyten gegenüber Stammzellen zum Teil eine verbesserte physiologische Funktion (beispielsweise hinsichtlich Kontraktilität und Elektrophysiologie) hat [137]. Zusätzlich hatten aus murinen Stammzellen gewonnene Kardiomyozyten teilweise einen geringeren Differenzierungs- und Reifegrad [136].

Das Herz enthält neben den Kardiomyozyten auch eine Vielzahl anderer Zellen, beispielsweise Fibroblasten und Endothelzellen [138]. Die Anwesenheit dieser nicht-Kardiomyozyten verbessert Funktion und Struktur eines Herzmuskel-Surrogates [139]. Für das Überleben eines entsprechend großen Gewebeverbandes, der nicht nur durch Diffusion aus dem umgebenden Gewebe ernährt wird, ist Vaskularisierung essentiell [140]. Aus diesem Grund wurden zur Isolation der Zellen zwei Protokolle verwendet, die eine gezielte Aufreinigung je nach benötigtem Zelltyp ermöglichten.

Die Zellkultur erfolgte auf beschichteten Glasplättchen in sogenannten 24-well-plates (Zellkulturplatten mit 24 Vertiefungen im Raster 6x4 mit je 12mm Durchmesser). Für die Versuche, die zu Abbildung 6 der Originalpublikation geführt haben, wurden hingegen beschichtete Objekträger mit aufgeklebten Zellkulturschalen verwendet.

Nach Entnahme der Herzen aus drei Tage alten Sprague-Dawley Ratten und Abtrennung der Atria wurden diese grob gestückelt. Abhängig vom Versuchsaufbau, und ob ventrikuläre Kardiomyozyten allein, oder auch andere nicht-Kardiomyozyten wie Endothelzellen isoliert werden sollten, wurde das Gewebe mit verschiedenen Substraten und Enzymen versetzt und in einem Apparat bei 37°C verdaut. Nach Zentrifugations- und Waschschritten wurden die isolierten Zellen direkt in 24-well-plates ausgesät (im Falle der Versuche, die in der Originalpublikation zu Abbildung 3b-c geführt haben), oder zuerst in Zellkulturschalen ausgebracht und einige Zeit kultiviert (restliche Versuche). Dieser letzte
Vorgang reinigt die Zahl der Kardiomyozyten auf, da diese sich langsamer an die Zellkulturschalen anheften als nicht-Kardiomyozyten: Der an Kardiomyozyten reiche Überstand kann somit nach Kultivierung entnommen und die an der Zellkulturschale angehefteten nicht-Kardiomyozyten können verworfen werden. Die Isolation aufgereinigter Kardiomyozyten geschah nach Petzold et al. [109], die Isolation von Kardiomyozyten zusammen mit nicht-Kardiomyozyten mit Änderungen nach Sadoshima et al. [141].

2.5.2.2. Beschichtung der Glasplättchen mit eADF4(C16)-RGD
Die Beschichtung der Glasplättchen mit eADF4(C16)-RGD und die entsprechenden Materialanalysen wurden durch Dr. rer. nat. Tamara B. Aigner durchgeführt. Hierfür wurde eADF4(C16)-RGD in Ameisensäure gelöst und die Plättchen in diese Lösung eingetaucht. Nach Verdampfung der Ameisensäure konnte die molekulare Struktur des Proteinfilms mittels Spektroskopie analysiert werden. Durch Messung des Kontaktwinkels zwischen der Beschichtung und darauf aufgebrachten Wassertropfen wurde die Hydrophobizität der Beschichtung bestimmt. [142]

Aufgrund elektrostatischer Abstoßung erfolgte in vielen Fällen eine Delamination der Beschichtung des negativ geladenen Spinnenseideproteins [108] von den ebenfalls negativ geladenen Silikatglasplättchen [143]. Um dem entgegen zu wirken, wurden die Oberflächen der Zellkulturplättchen mittels 3-Aminopropyltriethoxysilan (APTES) behandelt, waren somit positiv geladen, und zogen nun die negativ geladene eADF4(C16)-RGD-Beschichtung an. Hierdurch trat keine Ablösung der Seide von den Glasplättchen mehr auf. [142]

2.5.2.3. Kontrollbeschichtungen Fibronektin und Gelatine, Verwendung von fetalem bovinem Serum
Fibronektin ist ein natürliches Protein der extrazellulären Matrix das zahlreiche biologische Funktionen erfüllt [102] und an das neonatale Kardiomyozyten binden [103]. Es enthält zudem, so wie eADF4(C16)-RGD, eine RGD-Domäne, und wurde im Kontext von kardialem Tissue Engineering bereits erfolgreich als Kontrollsubstanz für Seidenmaterialien eingesetzt [101, 109]. Allerdings löst Fibronektin in Kardiomyozyten pathologische Hypertrophie aus [11]. Daraus ergibt sich die Notwendigkeit für die Verwendung einer möglichst inerten Negativkontrolle, die das Verhalten von Zellen nicht beeinflusst. Diese Kriterien erfüllt das im Tissue Engineering etablierte Material Gelatine [12].

Fetales bovines Serum (FBS, auch FCS, fetales Kälber serum) wird häufig in der Zellkultur als Wachstumsstimulator verwendet [144]. Eine niedrige FBS-Konzentration im
Zellkulturmedium ist mit reduzierter Zellvitalität assoziiert [145], gleichzeitig induziert FBS jedoch Hypertrophie in neonatalen Rattenkardiomyozyten [146]. Somit wurden Versuche sowohl mit einer Konzentration von 10% als auch 0,2% FBS im Zellkulturmedium durchgeführt.

2.5.2.4. Immunfluoreszenzmikroskopie

Das Protokoll der Immunfluoreszenzmikroskopie unterschied sich je nach Experiment. Folgendes bezieht sich auf das Protokoll für die Abbildungen 3, 4 und 5 der Originalpublikation. Nach Fixierung der Zellen mit 3,7% Paraformaldehyd erfolgten weitere Wasch- und Behandlungsschritte. Die Glasplättchen wurden daraufhin aus den 24-well-plates entnommen, die Zellen gefärbt und mikroskopiert. Dies erfolgte mittels Immunfluoreszenzverfahren. Hier wird zuerst ein primärer Antikörper, der gegen ein spezifisches zu untersuchendes Epitop gerichtet ist – beispielsweise das Protein sarcomeric-alpha-Aktinin – in Lösung auf die Glasplättchen gegeben und inkubiert. Damit die Antikörper an das gewünschte Epitop binden können, müssen im Vorfeld die Zellen mit einem Detergens (hier 0,5% Triton X) permeabilisiert werden. Daraufhin werden unspezifische Bindungsstellen für Proteine mit einer Pufferlösung blockiert, sodass der Antikörper maximal spezifisch an das Epitop binden kann. Diese enthielt in der vorliegenden Arbeit aus Rinderserum gewonnenes Albumin (BSA, bovines Serumalbumin) in gepuffterer Salzlösung (PBS, phosphatgepufferte Salzlösung) sowie ein weiteres Detergens (0,2% Tween). Um die Bindung des primären Antikörpers sichtbar zu machen, wird nach Inkubation und Waschung ein mittels Fluoreszenzfarbstoff markierter sekundärer Antikörper aufgebracht. Nach erneuter Inkubation und Waschung können die Glasplättchen auf einem Objekträger fixiert und mikroskopiert werden. Durch Bestrahlung mit Licht einer definierten Wellenlänge können die markierten Strukturen unter dem Mikroskop sichtbar gemacht werden.

Hier ist zu beachten, dass, wenn mehrere Epitope getrennt sichtbar gemacht werden sollen, die primären Antikörper von unterschiedlichen Tierarten stammen sollten, da die sekundären, fluoreszenzmarkierten Antikörper gegen eine bestimmte Tierart gerichtet sind. Alternativ können primäre Antikörper derselben Tierart mit unterschiedlichen Isotypen und gegen diese spezifischen Isotypen gerichtete Sekundärantikörper verwendet werden. So ergibt sich beispielsweise, dass ein Maus-Antikörper, der gegen alpha-Aktinin gerichtet ist (Maus-anti-alpha-Aktinin), durch einen mit grün leuchtendem Fluoreszenzfarbstoff markierten Esel-Antikörper, der gegen Mausproteine gerichtet ist (Esel-anti-Maus), sichtbar
gemacht werden kann. Soll zusätzlich noch getrennt davon und bei denselben Zellen das Protein atrialer natriuretischer Faktor (ANF) sichtbar gemacht werden, darf der hierfür verwendete Antikörper nicht erneut ein Maus-Antikörper desselben Isotyps sein – sonst würden die Proteine ANF und alpha-Aktinin unter dem Fluoreszenzmikroskop beide grün aufleuchten. Es wird also beispielsweise, um ANF zu markieren, ein primärer Hase-Antikörper verwendet (Hase-anti-ANF), der mit einem rot aufleuchtenden Esel-anti-Hase-Antikörper sichtbar gemacht werden kann.

Für die Experimente, die zu Abbildung 2 der Originalpublikation geführt haben, wurden die Zellen nach Abschluss der Kultivierung mit Substanzen inkubiert, fixiert, gewaschen und dann unverzüglich mikroskopiert (siehe 2.5.2.4.1). Für die Experimente, die zu Abbildungen 3-5 der Originalpublikation geführt haben, erfolgten zwischen Fixierung und Mikroskopie weitere Behandlungs- und Färbeschritte. Für die Experimente, die zu Abbildung 6 der Originalpublikation geführt haben, wurden die lebenden Zellen nach Entnahme aus dem Brutschrank nativ mikroskopiert. Die Seide und DNS der Zellkerne wurden mittels des Fluoreszenzfärbstoffes Hoechst 33342 sichtbar gemacht. Durch die Sichtbarmachung der Zellstrukturen und Proteine konnte daraufhin neben der Anfertigung von Bildaufnahmen eine Auszählung der Zellen erfolgen.

2.5.2.4.1. Zellvitalität und Anheftung

Um Gewebe im Labor herzustellen, muss ein Material gewählt werden, das es Zellen erlaubt, sich auszubreiten und einen Verband zu bilden – bei kardialem Tissue Engineering ist dies von besonderer Bedeutung, denn nur unter Bildung entsprechender Zell-Zell-Kontakte können Kardiomyozyten elektrische Erregung aneinander weiterleiten und rhythmisch koordiniert schlagen. Mittels Immunfluoreszenzmikroskopie konnte die Morphologie und Zahl der angehefteten Zellen untersucht werden. Die Vitalität der Zellen wurde mittels Calcein-acetoxymethylester (Calcein-AM) und Ethidium-Homodimer-1 (EthD-1) untersucht. Calcein-AM wird von lebenden Zellen aufgenommen und durch Esterasen zu Calcein gespalten, welches unter Fluoreszenzlicht grün (530nm) leuchtet. EthD-1 hingegen bindet an die DNS toter Zellen, deren Zellmembran durchlässig ist, und leuchtet danach unter Fluoreszenzlicht rot (617nm). [147, 148] Nach Kultivierung wurden die Zellen mit den Stoffen inkubiert, fixiert, gewaschen und sofort unter Fluoreszenzlicht mikroskopiert.
2.5.2.4.2. Stimulation mit hypertrophie- und proliferationsinduzierenden Substanzen

Kardiomyozyten unterliegen im Körper, beispielsweise während der Schwangerschaft oder sportlicher Aktivität, hypertrophen Stimuli [149]. Gleichzeitig verursacht beispielsweise Fibronectin Hypertrophie in neonatalen Rattenkardiomyozyten [150] und in vivo pathologische Herzhypertrophie, nicht aber physiologisches Wachstum [11]. Es besteht insofern die Anforderung an ein Material für kardiales Tissue Engineering, Kardiomyozyten eine Reaktion auf hypertrophiestimulierende Faktoren zu ermöglichen, sich aber in dieser Hinsicht selbst möglichst inert zu verhalten. Mit Gelatine als Negativ- und Fibronectin als Positivkontrolle (siehe 2.5.2.3) wurden die Effekte der hypertrophen Stimuli Phenylephrin (PE) [13] und 10% FBS [14, 15, 151] auf Kulturen von p3NVRKM verglichen. Per Fluoreszenzmikroskopie wurde das Vorhandensein von ANF, der in hypertrophen Kardiomyozyten in der Umgebung des Nukleus exprimiert wird [16] und in der Vergangenheit erfolgreich als Marker für kardiomyozytäre Hypertrophie verwendet wurde [109], detektiert.

Als Möglichkeit, die Dichte an Kardiomyozyten durch Stimulation von Zellteilung innerhalb eines gedruckten Herzmuskeltransplantates zu erhöhen, wurde die Reaktion der auf eADF4(C16)-RGD kultivierten Kardiomyozyten auf die proliferationsstimulierenden Faktoren Fibroblastenwachstumsfaktor 1 (FGF-1) und den Inhibitor der p38 mitogenaktivierten Proteinkinase (p38i) [9] sowie 10% FBS [10] überprüft. 5-ethyl-2'-deoxyuridin (EdU), ein Thymidin-Analogon mit terminaler Alkin-Gruppe, wurde daraufhin dem Zellkulturmedium hinzugefügt. Bei DNS-Synthese wurde das von den Zellen aufgenommene EdU in die DNS eingebaut. Später konnte durch Hinzugabe fluoreszenzmarkierter Azide, die mit der Alkin-Gruppe des EdU reagieren, diese DNS-Synthese in der Fluoreszenzmikroskopie sichtbar gemacht werden. [152]

2.5.2.5. Videoanalysen: Kymograph und MUSCLEMOTION

Wenn es langfristig um die Herstellung eines in vivo implantierbaren und die Herzmuskelfunktion verbessernden Transplantates geht, ist das Kontraktionsverhalten der Kardiomyozyten auf ihrem Substrat von großer Bedeutung. Hierzu wurden die p3NVRKM nicht auf Glässchalen, sondern direkt auf Objektträgern mit aufgeklebten Zellkulturkammern kultiviert (siehe 2.5.2.1). Dies ermöglichte es, die Zellen nach Entnahme aus dem Brutschrank direkt unter Phasenkontrast zu mikroskopieren und deren Schlagverhalten zu analysieren. Per Kymograph-Software (Fiji) und Auszählung wurde die Schlagfrequenz der Kardiomyozyten in 10-sekündigen Videos bestimmt. Hier wurde im
Video über die Zelle hinweg, beispielsweise durch die Zellmembran, eine Linie gelegt. Für jedes Einzelbild des Videos ergaben sich aufgrund der Kontraktion der Zellen unterschiedliche Bildinhalte für die Koordinaten dieser Linie. Ähnlich wie beim EKG die elektrische Aktivität gegenüber der Zeit aufgetragen wird, konnte als visuelle Darstellung der Membranauslenkung über die Zeit hinweg die Kontraktion der Zellen verbildlicht, und darüber hinaus die Zahl der Kontraktionen gezählt werden. Zusätzlich ermöglichte dies einerseits, die Rhythmik der Kontraktionen zu visualisieren, andererseits aber auch die Rhythmusunterschiede zwischen verschiedenen Ansammlungen von Kardiomyozyten darzustellen, und so Hinweise auf das Vorliegen von Arrhythmien zu geben. So konnten die mittels Kymographen generierten Bilder zwischen benachbarten Ansammlungen von Kardiomyozyten verglichen werden. Eine visuelle Darstellung des Verfahrens findet sich in Abbildung 6 der Originalpublikation. Mittels MUSCLEMOTION Software [153] konnten weitere Parameter der Videos ausgewertet werden, darunter insbesondere die Kontraktionsgeschwindigkeit der Zellen. Die MUSCLEMOTION-Analysen wurden durch Dr. rer. nat. Kaveh Roshanbinfar durchgeführt [142].
3. Originalpublikation

Kramer, J.P.M., Aigner, T.B., Petzold, J. et al. Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering. Sci Rep 10, 8789 (2020).
doi: 10.1038/s41598-020-65786-4
4. Anhänge

4.1. Liste der Abkürzungen

Abkürzungen werden in alphabetischer Reihenfolge nachfolgend genannt. Wird im allgemeinen Gebrauch vornehmlich die englischsprachige Abkürzung verwendet, so steht eine Übersetzung ins Deutsche in kursiver Schrift darunter.

Abkürzung	Bedeutung	Deutsch
ACS	acute coronary syndrome	akutes Koronarsyndrom
ANF	atrial natriuretic factor	atrialer natriuretischer Faktor
APTES	3-Aminopropyltriethoxysilan	3-Amino-Propyl-triethoxysilan
AR	attributales Risiko	
ASS	Acetylsalicylsäure	
BSA	bovine serum albumin	bovines Serumalbumin
Calcein-AM	Calcein-acetoxylymethylester	
DNS	Desoxyribonukleinsäure	
(e)ADF3 / 4	(recombinantly engineered) Araneus diadematus	(rekombinant hergestelltes) Araneus diadematus
EdU	5-ethynyl-2'-deoxyuridin	
EKG	Elektrokardiographie	
EthD-1	Ethidium-Homodimer-1	
FBS, FCS	fetal bovine serum, fetal calf serum	fetales bovines Serum, fetales Kälberserum
FGF-1	fibroblast growth factor 1	Fibroblastenwachstumsfaktor 1
GPA	Gigapascal	
hESC-CM	human embryonic-stem-cell-derived cardiomyocytes	aus humanen embryonalen Stammzellen gewonnene Kardiomyozyten
hiPSC-CM	human induced-pluripotent-stem-cell-derived cardiomyocytes	aus humanen induzierten pluripotenten Stammzellen gewonnene Kardiomyozyten
Abbreviation	Description	
--------------	-------------	
ICD-10	International Classification of Diseases and Related Health Problems, 10th revision	
KHK	koronare Herzkrankheit	
MJm3	Megajoule pro Kubikmeter	
nm	Nanometer	
(N)STE-ACS	(non-)ST-elevation-acute-coronary-syndrome	
(N)STEMI, NSTEMI	(non-)ST-elevation-myocardial-infarction	
PBS	phosphate buffered saline	
PCI	percutaneous coronary intervention	
p3NVRKM	3 Tage alte neonatale ventrikuläre Rattenkardiomyozyten	
p38i	p38 mitogen-activated protein kinase inhibitor	
WHO	World Health Organization	
ε, ε_{max}	Dehnung, maximale Dehnung	
5. Literaturverzeichnis

1. Statistisches Bundesamt. Gestorbene: Deutschland, Jahre, Todesursachen, Geschlecht. Verfügbar unter: https://www-genesis.destatis.de/genesis/online?operation=previous&levelindex=2&levelid=1599410774928&levelid=1599410587621&step=1#breadcrumb (zitiert 06.09.2020).
2. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326-35.
3. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238(4826):491.
4. Zeplin PH, Maksimovikj NC, Jordan MC, Nickel J, Lang G, Leimer AH, Römer L, Scheibel T. Spider Silk Coatings as a Bioshield to Reduce Periprosthetic Fibrous Capsule Formation. Adv Funct Mater. 2014;24(18):2658–66.
5. Müller-Herrmann S, Scheibel T. Enzymatic Degradation of Films, Particles, and Nonwoven Meshes Made of a Recombinant Spider Silk Protein. ACS Biomater Sci Eng. 2015;1:247-59.
6. Scheibel T. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microbial Cell Factories. 2004;3(1):14.
7. DeSimone E, Schacht K, Pellert A, Scheibel T. Recombinant spider silk-based bioinks. Biofabrication. 2017;9(4):044104.
8. Schacht K, Jungst T, Schweinlin M, Ewald A, Groll J, Scheibel T. Biofabrication of cell-loaded 3D spider silk constructs. Angewandte Chemie. 2015;54(9):2816-20.
9. Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & development. 2005;19(10):1175-87.
10. Engel FB, Schebesta M, Keating MT. Anillin localization defect in cardiomyocyte binucleation. Journal of molecular and cellular cardiology. 2006;41(4):601-12.
11. Konstandin MH, Völkers M, Collins B, Quijada P, Quintana M, De La Torre A, Ormachea L, Din S, Gude N, Toko H, et al. Fibronectin contributes to pathological cardiac hypertrophy but not physiological growth. Basic Research in Cardiology. 2013;108(5):375.
12. Mari CE, Laura Saenz del B, Jose LP, Gorka O. Gelatin as Biomaterial for Tissue Engineering. Current Pharmaceutical Design. 2017;23(24):3567-84.
13. Taylor JM, Rovin JD, Parsons JT. A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. Journal of Biological Chemistry. 2000;275(25):19250-7.
14. Treadwell PE, Ross JD. Characterization of human cells: Variation in growth rate, volume, morphology and growth efficiency in media supplemented with human serum or bovine fetal serum. Experimental Cell Research. 1963;29(1):356-79.

15. Carrel A, Ebeling AH. Age and Multiplication of Fibroblasts. Journal of Experimental Medicine. 1921;34(6):599-623.

16. Spiltoir JI, Stratton MS, Cavasin MA, Demos-Davies K, Reid BG, Qi J, Bradner JE, McKinsey TA. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. Journal of molecular and cellular cardiology. 2013;63:175-9.

17. Roshanbinfar K, Vogt L, Greber B, Diecke S, Boccaccini AR, Scheibel T, Engel FB. Electroconductive Biohybrid Hydrogel for Enhanced Maturation and Beating Properties of Engineered Cardiac Tissues. Advanced Functional Materials. 2018;28(42):1803951.

18. Roshanbinfar K, Mohammadi Z, Sheikh-Mahdi Mesgar A, Dehghan MM, Oommen OP, Hilborn J, Engel FB. Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering. Biomater Sci. 2019.

19. Herold G. Innere Medizin. Köln: Herold, Gerd; 2018. 1002 p.

20. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD, Group ESD. Fourth universal definition of myocardial infarction (2018). European heart journal. 2018;40(3):237-69.

21. Eurostat. Cardiovascular diseases statistics 2019. Verfügbar unter: https://ec.europa.eu/eurostat/statistics-explained/index.php/Cardiovascular_diseases_statistics#Deaths_from_cardiovascular_diseases (zitiert 06.09.2020).

22. World Health Organization. Cardiovascular diseases (CVDs): World Health Organization; 2017. Verfügbar unter: https://www.who.int/news-room/factsheets/detail/cardiovascular-diseases-(cvds) (zitiert 06.09.2020).

23. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, Burns R, Rayner M, Townsend N. European Cardiovascular Disease Statistics 2017. Brussels: European Heart Network; 2017.

24. Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, Mossialos EA, Maggioni AP, Kazakiewicz D, May HT, et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019 (Executive Summary). European Heart Journal - Quality of Care and Clinical Outcomes. 2020;6(1):7-9.

25. World Health Organization. ICD-10 Version: 2019: World Health Organization; 2019. Verfügbar unter: https://icd.who.int/browse10/2019/en/#/IX (zitiert 06.09.2020).
26. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The Lancet. 2004;364(9438):937-52.

27. World Health Organization - Regional Office for Europe. Action Plan for the Prevention and Control of Noncommunicable Diseases in the WHO European Region; 2016. Verfügbar unter: https://www.euro.who.int/__data/assets/pdf_file/0008/346328/NCD-ActionPlan-GB.pdf (zitiert 06.09.2020).

28. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). European heart journal. 2016;37(3):267-315.

29. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European heart journal. 2017;39(2):119-77.

30. Cooper DKC, Keogh AM, Brink J, Corris PA, Klepetko W, Pierson RN, III, Schmoeckel M, Shirakura R, Warner Stevenson L. Report of the xenotransplantation advisory committee of the international society for heart and lung transplantation: The present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. The Journal of Heart and Lung Transplantation. 2000;19(12):1125-65.

31. Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Bachr A, Egerer S, Bauer A, et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 2018;564(7736):430-3.

32. Leone M, Engel FB. Advances in heart regeneration based on cardiomyocyte proliferation and regenerative potential of binucleated cardiomyocytes and polyploidization. Clin Sci (Lond). 2019;133(11):1229-53.

33. Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, Leor J, Perrino C, Schulz R, Ytrehus K, et al. Position Paper of the European Society of
Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European heart journal. 2016;37(23):1789-98.

34. Ogle BM, Bursac N, Domian I, Huang NF, Menasche P, Murry CE, Pruitt B, Radisic M, Wu JC, Wu SM, et al. Distilling complexity to advance cardiac tissue engineering. Science translational medicine. 2016;8(342):342ps13.

35. Weinberger F, Mannhardt I, Eschenhagen T. Engineering Cardiac Muscle Tissue: A Maturating Field of Research. Circulation research. 2017;120(9):1487-500.

36. Viola J, Lal B, Grad O. The Emergence of Tissue Engineering as a Research Field. National Science Foundation; 2003.

37. MacQueen LA, Sheehy SP, Chantre CO, Zimmerman JF, Pasqualini FS, Liu X, Goss JA, Campbell PH, Gonzalez GM, Park S-J, et al. A tissue-engineered scale model of the heart ventricle. Nature Biomedical Engineering. 2018;2(12):930-41.

38. Jensen G, Morrill C, Huang Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharmaceutica Sinica B. 2018;8(5):756-66.

39. Dzobo K, Thomford NE, Senthebana DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells International. 2018;2018:2495848.

40. Deutsche Stiftung Organtransplantation. Jahresbericht Organspende und Transplantation in Deutschland 2019. Frankfurt am Main: Deutsche Stiftung Organtransplantation; 2020.

41. Badylak SF, Taylor D, Uygun K. Whole-Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annual Review of Biomedical Engineering. 2011;13(1):27-53.

42. Bourgine PE, Pippenger BE, Todorov A, Tchang L, Martin I. Tissue decellularization by activation of programmed cell death. Biomaterials. 2013;34(26):6099-108.

43. Carvalho JL, de Carvalho PH, Gomes DA, Goes AM. Characterization of Decellularized Heart Matrices as Biomaterials for Regular and Whole Organ Tissue Engineering and Initial In-vitro Recellularization with Ips Cells. J Tissue Sci Eng. 2012;Suppl 11:002.

44. Choi YC, Choi JS, Kim BS, Kim JD, Yoon HI, Cho YW. Decellularized Extracellular Matrix Derived from Porcine Adipose Tissue as a Xenogeneic Biomaterial for Tissue Engineering. Tissue Engineering Part C: Methods. 2012;18(11):866-76.
45. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233-43.
46. Destefani AC, Sirtoli GM, Nogueira BV. Advances in the Knowledge about Kidney Decellularization and Repopulation. Frontiers in Bioengineering and Biotechnology. 2017;5(34).
47. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology. 2014;32(8):773-85.
48. Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D Biofabrication Strategies for Tissue Engineering and Regenerative Medicine. Annual Review of Biomedical Engineering. 2014;16(1):247-76.
49. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, Warren WL, Williams SK. Three-Dimensional BioAssembly Tool for Generating Viable Tissue-Engineered Constructs. Tissue Engineering. 2004;10(9-10):1566-76.
50. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubrue P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020-41.
51. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M. A review of rapid prototyping techniques for tissue engineering purposes. Annals of Medicine. 2008;40(4):268-80.
52. He K, Wang X. Rapid prototyping of tubular polyurethane and cell/hydrogel constructs. Journal of Bioactive and Compatible Polymers. 2011;26(4):363-74.
53. Wang X, He K, Zhang W. Optimizing the fabrication processes for manufacturing a hybrid hierarchical polyurethane–cell/hydrogel construct. Journal of Bioactive and Compatible Polymers. 2013;28(4):303-19.
54. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397-400.
55. Zimmermann WH, Melnychenko I, Wasmiejer G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature medicine. 2006;12(4):452-8.
56. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheili V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H, et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature. 2012;489(7415):322-5.
57. Weinberger F, Breckwoldt K, Pecha S, Kelly A, Geertz B, Starbatty J, Yorgan T, Cheng KH, Lessmann K, Stolen T, et al. Cardiac repair in guinea pigs with human
engineered heart tissue from induced pluripotent stem cells. Science translational medicine. 2016;8(363):363ra148.
58. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, et al. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 2012;126(11 Suppl 1):S29-37.
59. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. European heart journal. 2015;36(30):2011-7.
60. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482.
61. Noor N, Shapira A, Edri R, Gal I, Wertheim L, Dvir T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv Sci (Weinh). 2019;6(11):1900344-.
62. Foelix RF. Biology of Spiders. Third Edition. New York: Oxford University Press; 2011. 419 p.
63. Shear WA, Palmer JM, Coddington JA, Bonamo PM. A Devonian Spinneret: Early Evidence of Spiders and Silk Use. Science. 1989;246(4929):479.
64. Römer L, Scheibel T. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion. 2008;2(4):154-61.
65. Colgin MA, Lewis RV. Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions". Protein Sci. 1998;7(3):667-72.
66. Guerette PA, Ginzinger DG, Weber BH, Gosline JM. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science. 1996;272(5258):112-5.
67. Hinman MB, Lewis RV. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem. 1992;267(27):19320-4.
68. Craig CL, Riekel C. Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders. Comp Biochem Physiol B Biochem Mol Biol. 2002;133(4):493-507.
69. Sponner A, Unger E, Grosse F, Weisshart K. Conserved C-termini of Spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules. 2004;5(3):840-5.
70. Xu M, Lewis RV. Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A. 1990;87(18):7120-4.

71. Hayashi CY, Lewis RV. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol. 1998;275(5):773-84.

72. Beckwitt R, Arcidiacono S. Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J Biol Chem. 1994;269(9):6661-3.

73. Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature. 2001;410(6828):541-8.

74. Knight DP, Vollrath F. Liquid crystals and flow elongation in a spider's silk production line. Proceedings of the Royal Society of London Series B: Biological Sciences. 1999;266(1418):519-23.

75. Willcox PJ, Gido SP, Muller W, Kaplan DL. Evidence of a Cholesteric Liquid Crystalline Phase in Natural Silk Spinning Processes. Macromolecules. 1996;29(15):5106-10.

76. Kerkam K, Viney C, Kaplan D, Lombardi S. Liquid crystallinity of natural silk secretions. Nature. 1991;349(6310):596-8.

77. Knight DP, Knight MM, Vollrath F. Beta transition and stress-induced phase separation in the spinning of spider dragline silk. Int J Biol Macromol. 2000;27(3):205-10.

78. Vollrath F, Knight DP, Hu XW. Silk production in a spider involves acid bath treatment. Proceedings of the Royal Society B: Biological Sciences. 1998;265(1398):817-20.

79. Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol. 1999;202(Pt 23):3295-303.

80. Denny M. The Physical Properties of Spider's Silk and Their Role in the Design of Orb-Webs. The Journal of Experimental Biology. 1976;65(2):483.

81. Wainwright SA, Biggs WD, Currey JD, Gosline JM. Mechanical Design in Organisms. Princeton: Princeton University Press; 1982. 423 p.

82. Gordon J. The Science of Structures and Materials. New York: W. H. Freeman; 1988. 217 p.

83. Vincent J. Structural Biomaterials. Princeton: Princeton University Press; 1982. 204 p.

84. Gordon J. Structures of Why things don't fall down. Middlesex: Penguin Books; 1978. 395 p.

85. Spieß K, Lammel A, Scheibel T. Recombinant Spider Silk Proteins for Applications in Biomaterials. Macromolecular Bioscience. 2010;10(9):998-1007.
86. Hayashi CY, Shipley NH, Lewis RV. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol. 1999;24(2-3):271-5.

87. Schäfer-Nolte F, Hennecke K, Reimers K, Schnabel R, Allmeling C, Vogt PM, Kuhbier JW, Mirastschijski U. Biomechanics and Biocompatibility of Woven Spider Silk Meshes During Remodeling in a Rodent Fascia Replacement Model. Annals of Surgery. 2014;259(4).

88. Vollrath F, Barth P, Basedow A, Engström W, List H. Local tolerance to spider silks and protein polymers in vivo. In Vivo. 2002;16(4):229-34.

89. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL. The inflammatory responses to silk films in vitro and in vivo. Biomaterials. 2005;26(2):147-55.

90. Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif. 2008;41(3):408-20.

91. Radtke C, Allmeling C, Waldmann KH, Reimers K, Thies K, Schenk HC, Hillmer A, Guggenheim M, Brandes G, Vogt PM. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One. 2011;6(2):e16990.

92. Kuhbier JW, Allmeling C, Reimers K, Hillmer A, Kasper C, Menger B, Brandes G, Guggenheim M, Vogt PM. Interactions between spider silk and cells - NIH/3T3 fibroblasts seeded on miniature weaving frames. PLoS One. 2010;5(8):e12032.

93. Lewis R. Unraveling the Weave of Spider Silk. BioScience. 1996;46(9):636-8.

94. Duarte FJ, Taylor TS, Black AM, Davenport WE, Varmette PG. N-slit interferometer for secure free-space optical communications: 527 m intra interferometric path length. Journal of Optics. 2011;13(3):035710.

95. Osaki S. Spider Silk Violin Strings with a Unique Packing Structure Generate a Soft and Profound Timbre. Physical Review Letters. 2012;108(15):154301.

96. Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T. Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry. 2004;43(42):13604-12.

97. Work RW, Young CT. The Amino Acid Compositions of Major and Minor Ampullate Silks of Certain Orb-Web-Building Spiders (Araneae, Araneidae). The Journal of Arachnology. 1987;15(1):65-80.
98. Candelas GC, Cintron J. A spider fibroin and its synthesis. Journal of Experimental Zoology. 1981;216(1):1-6.
99. Kaplan D, Adams WW, Farmer B, Viney C. Silk polymers: materials science and biotechnology: ACS Publications; 1993.
100. Jackson C, O'Brien JP. Molecular weight distribution of Nephila clavipes dragline silk. Macromolecules. 1995;28(17):5975-7.
101. Patra C, Talukdar S, Novoyatleva T, Velagala SR, Muhlfeld C, Kundu B, Kundu SC, Engel FB. Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials. 2012;33(9):2673-80.
102. Pankov R, Yamada KM. Fibronectin at a glance. Journal of Cell Science. 2002;115(20):3861.
103. Borg TK, Rubin K, Lundgren E, Borg K, Obrink B. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol. 1984;104(1):86-96.
104. Lu F, Ma FF, Zhang W, Li Y, Wei FY, Zhou L. Qualitative research of alternatively splice variants of fibronectin in different development stage of mice heart. J Thorac Dis. 2015;7(12):2307-12.
105. Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 2017;127(5):1600-12.
106. Neubauer VJ, Scheibel T. Spider Silk Fusion Proteins for Controlled Collagen Binding and Biomineralization. ACS Biomaterials Science & Engineering. 2020;6(10):5599-608.
107. Elsner MB, Herold HM, Müller-Herrmann S, Bargel H, Scheibel T. Enhanced cellular uptake of engineered spider silk particles. Biomaterials Science. 2015;3(3):543-51.
108. Wohlrab S, Muller S, Schmidt A, Neubauer S, Kessler H, Leal-Egana A, Scheibel T. Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials. 2012;33(28):6650-9.
109. Petzold J, Aigner TB, Touska F, Zimmermann K, Scheibel T, Engel FB. Surface Features of Recombinant Spider Silk Protein eADF4(κ16)-Made Materials are Well-Suited for Cardiac Tissue Engineering. Advanced Functional Materials. 2017;27(36):1701427.
110. Slotta U, Tammer M, Kremer F, Koelsch P, Scheibel T. Structural Analysis of Spider Silk Films. Supramolecular Chemistry. 2006;18(5):465-71.
111. Spieß K, Wohlrab S, Scheibel T. Structural characterization and functionalization of engineered spider silk films. Soft Matter. 2010;6(17):4168-74.
112. Slotta U, Hess S, Spiess K, Stromer T, Serpell L, Scheibel T. Spider silk and amyloid fibrils: a structural comparison. Macromol Biosci. 2007;7(2):183-8.

113. Schacht K, Scheibel T. Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules. 2011;12(7):2488-95.

114. Schacht K, Vogt J, Scheibel T. Foams Made of Engineered Recombinant Spider Silk Proteins as 3D Scaffolds for Cell Growth. ACS Biomaterials Science & Engineering. 2016;2(4):517-25.

115. Exler JH, Hümmerich D, Scheibel T. The amphiphilic properties of spider silks are important for spinning. Angewandte Chemie. 2007;46(19):3559-62.

116. Leal-Egaña A, Lang G, Mauerer C, Wickinghoff J, Weber M, Geimer S, Scheibel T. Interactions of Fibroblasts with Different Morphologies Made of an Engineered Spider Silk Protein. Advanced Engineering Materials. 2012;14(3):B67-B75.

117. Hermanson KD, Hümmerich D, Scheibel T, Bausch AR. Engineered Microcapsules Fabricated from Reconstituted Spider Silk. Advanced Materials. 2007;19(14):1810-5.

118. Blüm C, Nichtl A, Scheibel T. Spider Silk Capsules as Protective Reaction Containers for Enzymes. Advanced Functional Materials. 2014;24(6):763-8.

119. Slotta UK, Rammensee S, Gorb S, Scheibel T. An Engineered Spider Silk Protein Forms Microspheres. Angewandte Chemie International Edition. 2008;47(24):4592-4.

120. Lammel A, Schwab M, Slotta U, Winter G, Scheibel T. Processing conditions for the formation of spider silk microspheres. ChemSusChem. 2008;1(5):413-6.

121. Steiner D, Lang G, Fischer L, Winkler S, Fey T, Greil P, Scheibel T, Horch RE, Arkudas A. Intrinsic Vascularization of Recombinant eADF4(C16) Spider Silk Matrices in the Arteriovenous Loop Model. Tissue Eng Part A. 2019;15(21-22):1504-13.

122. Aigner TB, Haynl C, Salehi S, O'Connor A, Scheibel T. Nerve guidance conduit design based on self-rolling tubes. Materials Today Bio. 2020;5:100042.

123. Pawar K, Welzel G, Haynl C, Schuster S, Scheibel T. Recombinant Spider Silk and Collagen-Based Nerve Guidance Conduits Support Neuronal Cell Differentiation and Functionality in Vitro. ACS Applied Bio Materials. 2019;2(11):4872-80.

124. Hardy JG, Torres-Rendon JG, Leal-Egaña A, Walther A, Schlaad H, Cölfen H, Scheibel TR. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering. Materials. 2016;9(7).

125. Kumari S, Bargel H, Anby MU, Lafargue D, Scheibel T. Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals. ACS Biomaterials Science & Engineering. 2018;4(5):1750-9.
126. Hermanson KD, Harasim MB, Scheibel T, Bausch AR. Permeability of silk microcapsules made by the interfacial adsorption of protein. Physical Chemistry Chemical Physics. 2007;9(48):6442-6.
127. Dobelhofer E, Scheibel T. Engineering of recombinant spider silk proteins allows defined uptake and release of substances. J Pharm Sci. 2015;104(3):988-94.
128. Aigner T, Scheibel T. Self-Rolling Refillable Tubular Enzyme Containers Made of Recombinant Spider Silk and Chitosan. ACS Applied Materials & Interfaces. 2019;11(17):15290-7.
129. Humenik M, Preiß T, Gödrich S, Papastavrou G, Scheibel T. Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release. Materials Today Bio. 2020;6:100045.
130. Kumari S, Lang G, DeSimone E, Spengler C, Trossmann VT, Lücker S, Hudel M, Jacobs K, Krämer N, Scheibel T. Engineered spider silk-based 2D and 3D materials prevent microbial infestation. Materials Today. 2020.
131. Kumari S, Lang G, DeSimone E, Spengler C, Trossmann VT, Lücker S, Hudel M, Jacobs K, Krämer N, Scheibel T. Data for microbe resistant engineered recombinant spider silk protein based 2D and 3D materials. Data in Brief. 2020;32:106305.
132. Borkner CB, Wohlrab S, Möller E, Lang G, Scheibel T. Surface Modification of Polymeric Biomaterials Using Recombinant Spider Silk Proteins. ACS Biomaterials Science & Engineering. 2017;3(5):767-75.
133. Harary I, Farley B. In vitro Studies of Single Isolated Beating Heart Cells. Science. 1960;131(3414):1674-5.
134. Louch WE, Sheehan KA, Wolska BM. Methods in cardiomyocyte isolation, culture, and gene transfer. Journal of molecular and cellular cardiology. 2011;51(3):288-98.
135. Harary I, Farley B. In vitro studies on single beating rat heart cells. I. Growth and organization. Exp Cell Res. 1963;29:451-65.
136. Peter AK, Bjerke MA, Leinwand LA. Biology of the cardiac myocyte in heart disease. Molecular Biology of the Cell. 2016;27(14):2149-60.
137. Feinberg AW, Ripplinger CM, van der Meer P, Sheehy SP, Domian I, Chien KR, Parker KK. Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Reports. 2013;1(5):387-96.
138. Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. American journal of physiology Heart and circulatory physiology. 2007;293(3):H1883-91.
139. Naito H, Melnychenko I, Didié M, Schneiderbanger K, Schubert P, Rosenkranz S, Eschenhagen T, Zimmermann W-H. Optimizing Engineered Heart Tissue for Therapeutic Applications as Surrogate Heart Muscle. Circulation. 2006;114(1_supplement):I-72-I-8.
140. Patra C, Boccaccini AR, Engel FB. Vascularisation for cardiac tissue engineering: the extracellular matrix. Thrombosis and haemostasis. 2015;113(3):532-47.
141. Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem. 1992;267(15):10551-60.
142. Kramer JPM, Aigner TB, Petzold J, Roshanbinfar K, Scheibel T, Engel FB. Recombinant spider silk protein eADF4(C16)-RGD coatings are suitable for cardiac tissue engineering. Sci Rep. 2020;10(1):8789.
143. Hubbard D, Lucas GL. Ionic charges of glass surfaces and other materials, and their possible role in the coagulation of blood. Journal of applied physiology. 1960;15:265-70.
144. Yao T, Asayama Y. Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine and Biology. 2017;16(2):99-117.
145. Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circulation research. 1998;83(5):516-22.
146. Dambrot C, Braam SR, Tertoolen LG, Birket M, Atsma DE, Mummery CL. Serum supplemented culture medium masks hypertrophic phenotypes in human pluripotent stem cell derived cardiomyocytes. Journal of cellular and molecular medicine. 2014;18(8):1509-18.
147. Papadopoulos NG, Dedoussis GVZ, Spanakos G, Gritzapis AD, Baxevanis CN, Papamichail M. An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. Journal of Immunological Methods. 1994;177(1):101-11.
148. Hayes AW. Principles and Methods of Toxicology. Dritte Auflage. New York: Raven Press; 1994. 1468 p.
149. Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. Journal of molecular and cellular cardiology. 2016;97:245-62.
150. Ogawa E, Saito Y, Harada M, Kamitani S, Kuwahara K, Miyamoto Y, Ishikawa M, Hamanaka I, Kajiyama N, Takahashi N, et al. Outside-in Signalling of Fibronectin Stimulates Cardiomyocyte Hypertrophy in Cultured Neonatal Rat Ventricular Myocytes. Journal of molecular and cellular cardiology. 2000;32(5):765-76.
151. Aswad H, Jalabert A, Rome S. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro. BMC Biotechnology. 2016;16(1):32.

152. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A. 2008;105(7):2415-20.

153. Sala L, van Meer Berend J, Tertoolen Leon GJ, Bakkers J, Bellin M, Davis Richard P, Denning C, Dieben Michel AE, Eschenhagen T, Giacomelli E, et al. MUSCLEMOTION. Circulation research. 2018;122(3):e5-e16.
6. Danksagung
Ich möchte Prof. Dr. rer. nat. Dipl. Ing. Felix B. Engel für seine intensive Betreuung während meiner Doktorarbeit sowie die gute Zusammenarbeit während der Vorbereitung unserer Publikation herzlichst danken. Frau Prof. Dr. med. Kerstin U. Amann danke ich sehr für die Möglichkeit, in Ihrer Abteilung meine Forschungsarbeiten durchzuführen. Für die unschätzbare Gelegenheit meines Forschungsaufenthaltes am University College London im Rahmen des TRENAL Programmes danke ich Prof. Dr. Engel und Prof. Dr. med. Felix Knauf sowie Dr. Jennifer Rohn. Des Weiteren danke ich Jana Petzold dafür, dass sie mir mit großer Geduld alle notwendigen Labortechniken beibrachte und mich immer unterstützte. Ich möchte ebenfalls den weiteren Koautoren der Originalpublikation, Prof. Dr. rer. nat. Thomas Scheibel, Dr. rer. nat. Kaveh Roshanbinfar und Dr. rer. nat. Tamara B. Aigner, für die gute Zusammenarbeit und den wertvollen kollegialen Austausch danke. Darüber hinaus danke ich allen noch nicht genannten und ehemaligen Mitarbeitern der Arbeitsgruppe von Prof. Dr. Engel, darunter Dr. rer. nat. Robert Becker, Dr. rer. nat. Marina Leone, Dr. Silvia Vergarajauregui, Dr. rer. nat. Gentian Musa, Dr. rer. nat. Swati Srivastava, Salvador Cazorla Vázquez, Jennifer Redlingshöfer und Tilman Esser, für ihre immense Unterstützung und die schöne Zeit im Labor. Meiner Verlobten Nora Mittag und meinen Eltern danke ich für ihre ausdauernde Unterstützung während meiner Promotion.