Local dissipation limits the dynamics of impacting droplets on smooth and rough substrates

Yuli Wang,1,2,a) Gustav Amberg,3,1,b) and Andreas Carlson2,c)

1) Department of Mechanics
The Royal Institute of Technology, 100 44 Stockholm, Sweden
2) Department of Mathematics
University of Oslo, 0851 Oslo, Norway
3) Södertörn University, 14189 Huddinge, Sweden

(Dated: 16 November 2016)

A droplet that impacts onto a solid substrate deforms in a complex dynamics. To extract the principal mechanisms that dominate this dynamics we deploy numerical simulations based on the phase field method. Direct comparison with experiments suggests that a dissipation local to the contact line limits the droplet spreading dynamics and its scaled maximum spreading radius β_{max}. By assuming linear response through a drag force at the contact line, our simulations rationalize experimental observations for droplet impact on both smooth and rough substrates, measured through a single contact line friction parameter μ_f. Moreover, our analysis shows that at low and intermediate impact speeds dissipation at the contact line limits the dynamics and we describe β_{max} by the scaling law $\beta_{\text{max}} \sim (Re\mu_l/\mu_f)^{1/2}$ that is a function of the droplet viscosity (μ_l) and its Reynolds number (Re).

a) yuli@mech.kth.se
b) gustav.amberg@sh.se
c) acarlson@math.uio.no
I. INTRODUCTION

Impact of liquid droplets onto a solid substrate is essential to applications such as spray coating1, ink-jet printing2, additive manufacturing3 and pesticide deposition4. Upon impact with the substrate the droplet deforms in a complex dynamics, where a gas film can become trapped underneath the droplet5–12 and as it spreads create a splash by droplet ejection at the tip of its spreading front13–17. The droplet deformation and spreading is typically driven by its inertia and hindered by viscous and surface tension forces. Two non-dimensional numbers are particularly relevant to characterize the dynamics, which is the Reynolds number $Re = \rho_l V_i^2 R / \mu_l$ giving the ratio between inertia and viscous forces and the Weber number $We = \rho_l V_i^2 2 R / \sigma$ which gives the ratio between inertia and surface tension forces. σ is the surface tension coefficient of the gas-liquid, ρ_l is the liquid density, μ_l is the liquid viscosity and V_i is the droplet impact speed. Besides inertia, viscosity and surface tension, we hypothesize and show that a dissipation local to the contact line can limit the droplet dynamics on both smooth and rough substrates.

One parameter that describes the droplet impact dynamics and is typically quantified is the spreading factor $\beta(t) = R(t)/R$, where $R(t)$ is the droplet spreading radius, R is the initial droplet radius and $\beta_{\text{max}} = \max(\beta(t))$, see Fig.1. Two primary regimes have been identified to describe β_{max}: an inertia-viscous regime where $\beta_{\text{max}} \sim Re^{1/5}18,19$ and an inertia-capillary regime where $\beta_{\text{max}} \sim We^{1/2}20,21$. A single law has been derived to connect these two regimes $\beta_{\text{max}} Re^{-1/5} \sim f(We Re^{-2/5})22$, which has rationalized experiments for a wide range of Re and We numbers23. Other scaling laws for β_{max} with different exponents for Re and We have been proposed24–30, which include additional effects such as the substrate wettability. A detailed description of these different scaling laws can be found in the recent review by Josserand and Thoroddsen31. However, none of these scaling laws describe β_{max} at the low impact speeds as they predict $\beta_{\text{max}} \to 0$ as $V_i \to 0$, which is not true for any case with an equilibrium contact angle $\theta_e < 180^\circ$. To mitigate this artifact the maximum spreading radius β_0 for $V_i = 0$ has been included into the analysis $\sqrt{\beta_{\text{max}}^2 - \beta_0^2} = Re^{1/4} We^{1/4} / (A + We^{1/4})$ that agrees favorably with experimental data for both low and high impact speeds32, where A is an ad-hoc fitting parameter.

Substrate roughness is another parameter that can influence the droplet impact dynamics33–37. Droplet impact on regular micro-textured substrates33,34,38 show that β_{max} is influenced by
the substrate topography. Even a substrate with small aspect ratio roughness hinders droplet spreading35, although the effect becomes less pronounced.

In this work we focus on describing $\beta(t)$ and β_{max} in the regime of non-splashing droplets31,39 i.e. small and intermediate impact speed. We show that as in a spontaneous droplet spreading process40,41, a detailed description of the physical processes at the contact line must be included to accurately describe the interface dynamics. Numerical experiments based on the phase field method and the Navier Stokes equations show that friction local to the contact line limits the dynamics and generates a significant dissipation. We treat the contact line friction parameter μ_f as a material property for each combination of air-liquid-solid, which should be independent of the impact speed. We determine the magnitude of μ_f by directly comparing the numerical simulations with several independent experiments23,25,32,34,35. Our assumption of linear response through a Stokes-like drag at the contact line shows that the simulations can accurately reproduce experimental observations. We further extend our analysis to rough substrates and rationalize the differences in the dynamics compared with smooth substrates. Finally, we show that the regime where the principal dissipation is local to the contact line is described by a scaling law based on the contact line friction parameter μ_f.

A. Models and Methods

We describe the multiphase system by using the phase field method42, which considers the two binary phases (gas liquid) as a mixture. The mathematical model is composed of the Cahn-Hilliard equation43 Eq. (1,2), which is coupled with the Navier-Stokes equations Eq. (3,4) for an incompressible fluid flow42;

\begin{align}
\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C &= \gamma \nabla^2 \phi \\
\phi &= -\frac{3}{2 \sqrt{2}} \frac{\sigma}{\epsilon} \left(\epsilon \nabla^2 C - \frac{C^3 - C}{\epsilon} \right) \\
\rho(C) \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) &= -\nabla P + \nabla \cdot (\mu(C)(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)) + \phi \nabla C \\
\nabla \cdot \mathbf{u} &= 0.
\end{align}

$C = C(r, z, t)$ is an order parameter that varies smoothly from $C = -1$ (gas) to $C = 1$ (liquid) between the two immiscible phases and $|C| < 1$ indicates that the interfacial region
that has a finite thickness ϵ. $\phi = \phi(r, z, t) = \delta F(r, z, t)/\delta C$ is the chemical potential, given by the variation of the systems postulated free energy $F(r, z, t)$ that has an interfacial and bulk free energy term. The free energy is required to reduce with time i.e. $\gamma > 0$ and γ is the mobility factor that controls the interfacial diffusion. $u = u(r, z, t)$ is the velocity, $P = P(r, z, t)$ is the pressure, whereas the density $\rho(C) = (1 + C)\rho_l/2 + (1 - C)\rho_g/2$ and the viscosity $\mu(C) = (1 + C)\mu_l/2 + (1 - C)\mu_g/2$ are interpreted as function of C. The air surrounding the droplet is assumed at atmospheric pressure with a density $\rho_g = 1.23\text{kg/m}^3$ and a viscosity $\mu_g = 1.81 \times 10^{-5}\text{Pa.s}$. The material properties of the droplet, along with the impact speeds, equilibrium contact angles and range of simulated Re numbers and We numbers are listed in Table I.

All simulations are performed with a no-slip boundary condition for the velocities at the solid substrate ($u = 0$) and all other boundaries are assumed to be in contact with ambient air at constant pressure ($P = 0$) and with no-flux of the chemical potential ($\nabla \phi \cdot n = 0$ with n as the boundary normal). To model the contact line dynamics we use the non-equilibrium boundary condition\(^{44}\),

$$
\frac{2\sqrt{2}}{3} \sigma \epsilon \nabla C \cdot n + \sigma \cos(\theta_e) g'(C) = -\mu_f \epsilon \frac{\partial C}{\partial t}
$$

where μ_f is interpreted as a friction factor at the contact line and $g(C) = -2/4 - 3/4C + 1/4C^3$ provides a transition for the dry (gas-solid) or wet (liquid-solid) substrate surface tension. For $\mu_f = 0$ we assume local equilibrium at the contact line and the interface adopts the equilibrium contact angle θ_e, but if $\mu_f > 0$ the contact angle becomes dynamic and allowed to deviate from θ_e.

We use the following scaling; $\mu^*(C) = \mu(C)/\mu_l$, $\rho^*(C) = \rho(C)/\rho_l$, $u^* = u/V_i$, $t^* = tV_i/R$, $P^* = PR/(\mu_l V_i)$, $\phi^* = \phi 2\sqrt{2}\epsilon/(3\sigma)$ to make Eq.\(^\text{[1]}\)-Eq.\(^\text{[5]}\) non-dimensional, where the superscript $*$ denotes non-dimensional variables. In addition to the Reynolds number Re four non-dimensional numbers appear in the equations; the Capillary number $Ca = We/Re = V_i\mu_l/\sigma$ gives the ratio of the viscous force to the surface tension force, the non-dimensional friction parameter $D_w = (\epsilon \mu_f V_i)/(R\sigma)$ gives the ratio of the contact line friction force to the surface tension force, the Cahn number $Cn = \epsilon/R = 0.005$ gives the ratio of the interface thickness and the droplet radius, and the Péclet number $Pe = 2\sqrt{2}V_i\epsilon R/(3\sigma \gamma) = 100$ gives the ratio of advection to diffusion. Both Cn and Pe are fixed in all of our simulations such that the results satisfy the sharp interface criterion\(^{45,46}\), $\epsilon = 0.005R$ and
\[\gamma = \frac{2\sqrt{2}V_i R}{\sigma}. \] The contour line \(C = 0 \) is interpreted as the droplet interface and used to extract \(\beta(t), \beta_{\max} \) and \(\theta_d(t) \).

The numerical simulations are performed with FemLego47, a symbolic finite element toolbox that solves partial differential equations. All simulations are performed in an axi-symmetric coordinate system where the domain extends \(10R \) in the \(r \) direction and \(5R \) in the \(z \) direction. An adaptive mesh refinement method is used to enable a high resolution of the interface with a minimum mesh size of \(\Delta r \approx \Delta z \approx 0.001R \), which resolves the interface with \(Cn/\Delta r \approx 5 \) cells. The droplet’s center of mass is initialized at a height \(z = 1.5R \) from the solid substrate and the dynamic contact angle \(\theta_d(t) \) is measured at a height of \(z = 100\mu m \) using linear interpolation along \(C = 0 \) similar to the method used to in the experimental analysis that we are directly comparing against32.

The phase field method has previously been used with success to simulate droplet impact dynamics48,49 to quantify the early spreading and bubble entrapment, in accordance with experimental observations50. However, none of these account for a dynamic contact angle treatment in Eq.(5) with \(\mu_f > 0 \) or quantify the maximum spreading radius of the droplet, which we will show are two intertwined processes needed to rationalize the impact dynamics of droplets on smooth and rough solid substrates.

![FIG. 1. Sketch of the axi-symmetric computational domain and the droplets initial condition with \(R \) the initial droplet radius and \(V_i \) the impact speed. The spreading radius \(R(t) \) and the apparent dynamic contact angle \(\theta_d(t) \) is illustrated as the droplet has spread onto the solid substrate.](image-url)
TABLE I. Simulated material properties and droplet impact conditions on substrates with different equilibrium contact angles (θ_e([steel, stainless steel, aluminium, grooved stainless steel]$_{air-water}$)=[61°, 90°, 94°, 130°] and θ_e([steel]$_{air-glycerol/water}$)=[52°]).

	ρ_l (kg·m$^{-3}$)	μ_l (Pa·s)	σ (N·m$^{-1}$)	R (mm)	V_i (m/s)	θ_e (°)	Re	We
water	1000	0.001	0.073	1	0.28-4.85	61,90,94,130	320-104	0.6-664
glycerol-water	1158	0.01	0.068	0.92	0.19-9.28	52	40-1956	1-2653

II. RESULTS AND DISCUSSIONS

A. Droplet impact on smooth substrate

Phase field simulations of droplets that spontaneously spread onto a solid substrate has shown that in order to accurately describe the contact line dynamics a local dissipation by using $\mu_f > 0$ in Eq.5 is required41. The mathematical form of Eq.5 comes from the assumption of linear response with a reduction of the free energy in time, and can be interpreted as a Stokes-like drag at the contact line. We interpret this wall-interface friction parameter μ_f as a physical property that depends on the combination of the gas-liquid-solid. We hypothesize that parts of the parameter space that compose the droplet impact dynamics can only be described with an accurate local treatment of the dynamic contact angle through μ_f.

Since μ_f is not known a-priori we determine its magnitude by directly comparing simulations with experiments25,32, where μ_f is identified as the best-match with $\beta(t)$ (see Fig.2). Our simulations of droplets of water and glycerol-water mixture show that μ_f clearly affects the spreading dynamics as well as the shape of the droplet. For water droplets on steel $\mu_f \sim 0.52$Pa.s, while increasing its viscosity by introducing glycerol ($\mu_l = 0.01$Pa.s) also increases $\mu_f \sim 0.72$Pa.s. These magnitudes for μ_f are in accordance with previous measurements on spontaneous spreading droplets ($V_i = 0$)41. Our simulations clearly show that μ_f controls the time scale for $\theta_d(t)$ to approach the equilibrium angle, where $\theta_d(t)$ is the droplets apparent contact angle, see Fig.2(b,d). It is noteworthy that the assumption of local equilibrium, i.e. equilibrium contact angle, over-predicts the spreading factor $\beta(t)$ and its maximum $\beta_{max} = \max(\beta(t))$ for both liquids. Thus, to obtain agreement between the simulations and experiments we need to account for dissipation at the contact line and
FIG. 2. Comparison of experimental data (markers) and numerical simulations (lines) for a droplet impacting onto smooth substrates with a speed \(V_i = 1 \text{m/s} \). Influence of (a-b) \(\beta(t) \) and (c-d) \(\theta_d(t) \) as a function of the viscosity (\(\mu_l \)) and the contact line friction parameter (\(\mu_f \)), using the same definition of \(\beta(t) \) as reported in experiments\cite{32,35}.

the local equilibrium assumption fails to capture the spatiotemporal droplet dynamics, see Fig. 2(b,d).

After determining \(\mu_f \) (Table 2) from an experiment for one impact speed \(V_i \), we now assume \(\mu_f \) to be a constant material parameter that must be independent of \(V_i \). We challenge our hypothesis that \(\mu_f \) is unique for a specific air-liquid-solid combination by directly comparing our simulations with experiments\cite{32,35} for different \(V_i \). It is clear that as we increase \(V_i \) the droplets aspect ratio i.e. maximum height divided by \(\beta_{\text{max}} \), decreases at \(\beta(t) = \beta_{\text{max}} \). The simulated droplet shapes are in very good agreement with the experiments at \(\beta_{\text{max}} \),
TABLE II. Measurement of μ_f as a combination of air-liquid-solid combination.

liquid – substrate	θ_e (°)	μ_f (Pa·s)	experiments
glycerol/water-steel 52°	0.72	Ref.[32]	
water-stainless steel 90°	0.08	Ref.[25]	
water-steel 61°	0.52	Ref.[32]	
water-aluminium 94°	0.08	Ref.[35]	

where the difference in profiles (Fig.3(a) and (c-d)) is caused by the experimental side-view photos. Since the simulations show a slice through the droplet, they represent its actual shape. The dash-dot lines in panels to the right in Fig.3 illustrate how the shape of the droplet would look if we instead would have made a side-view image. Our simulations also capture the entrapment of an air bubble at the symmetry axis at the wall, as seen in Fig.3(a-c).

It is clear that μ_f needs to be determined individually for each air-liquid-substrate combination. A too small value for μ_f causes an over-prediction of β_{max}, while a too large value for μ_f causes an under-prediction of β_{max}, see Fig.4. We want to highlight that the value

![FIG. 3. Comparison of the experimental (the left half, their Fig.2) and numerical (the right half) droplet shape as it impacts onto a steel substrate. (a) A water droplet (1 mPa.s) with $\mu_f = 0.52$Pa.s and $V_i = 0.57$m/s. (b-d) A glycerol-water droplet (10 mPa.s) with $\mu_f = 0.72$Pa.s and (b) $V_i = 0.28$m/s, (c) $V_i = 0.6$m/s, (d) $V_i = 1.86$m/s.](image-url)
for μ_f determined from a single experiment is also the best-fit for a range of impact speeds V_i and shows that μ_f is not a function of V_i.

![Graph](image-url)

FIG. 4. The maximum spreading factor $\beta_{\text{max}} = \max(\beta(t))$ as a function of impact speed V_i and μ_f. (a) Droplets with a glycerol-water mixture impacting onto a steel substrate, where the dashed line is interpolated experimental data32 (their Fig.4). (b) Water droplets impacting onto an aluminum substrate, where the dashed line is interpolated experimental data35 (their Fig.4(b)).

B. Droplet impact on textured substrates

Another parameter that can influence droplet spreading upon impact is the substrate topography34,38. For spontaneous spreading of droplets ($V_i = 0$) the friction factor μ_f has already been shown to rationalize spreading dynamics on rough substrates where the
magnitude of μ_f depends on the substrate roughness factor (S). To test if our description of the contact line dynamics can provide a universal framework that can effectively bridge impact dynamics on smooth and rough substrates, we test the relation for the effective contact line friction parameter $\mu_{\text{eff}} \sim S \mu_f^{51}$, having already estimated the value for μ_f for the smooth substrate. The geometry of the textured substrate gives the following roughness factor,

$$S = \frac{b + w - 2d \cos(\alpha) + 2d / \sin(\alpha)}{b + w},$$

(6)

which is the ratio of the real area and projected area of the substrate. b, w, d, α are geometric parameters describing the grooved substrate, see inset in Fig.5. If the contact line friction parameter μ_f is known for the corresponding flat substrate, the effective friction μ_{eff} can easily be determined once the geometry of the micro-textured substrate is known.

We compare our simulations with experiments on substrates that have grooves along one direction with different aspect ratios. In Fig.5 the effective contact line friction parameter μ_{eff} is determined by matching the experimental data for the TS11 substrate with a roughness factor $S_{11} = 1.27$, where we test the relation $\mu_{\text{eff}} \sim S \mu_f^{51}$ for the substrates TS140 ($S_{140} = 1.79$) and TS220 ($S_{220} = 2.45$). Although our assumption of axial-symmetry is slightly violated in the experiments, the linear relationship between S and μ_{eff} rationalizes β_{max} for the spreading perpendicular to the grooves. This is also believed to be the primary cause for the difference in μ_f found for a water droplet impacting on the smooth ($\mu_f = 0.08\text{Pa.s}$) and textured ($\mu_f = 0.28\text{Pa.s}$) stainless steel substrate.

C. Energy budget

Our results show that the local interface-wall contact line friction can affect the droplet impact dynamics, and we want next to determine its dissipative contribution and to compare it against the other primary contributions in the energy budget. To do this, we extract the different rates of energy and dissipations, where the principal contributions are; the rate of change of kinetic energy $R_\rho = \frac{1}{2} \int_\Omega \partial_t (\rho(C)u^2) / \partial t d\Omega$, the rate of viscous dissipation $R_\mu = \int_\Omega \mu(C) (\nabla u + \nabla u^T) : \nabla u d\Omega$, and the rate of contact line dissipation $R_{\mu_f} = \int_\Gamma \epsilon \mu_f (\partial C / \partial t)^2 d\Gamma$. Ω is here the entire volume and Γ is the substrate area. In the droplet impact dynamics we observe that at early times $t^* < 0.25$ the magnitude of R_ρ^* decreases rapidly, while $R_{\mu_f}^*$ on the other hand increases, see Fig.6. A minimum in R_ρ^* and
FIG. 5. β_{max} for water droplets impacting onto micro-textured stainless steel substrates with grooves along one direction (see inset). The filled markers are numerical simulations with $\mu_{\text{eff}} \sim S\mu_f$. The hollow markers are experimental results (Fig.3(b) in34). The inset shows the geometric parameters (w, b, d and α) for the grooved substrate (Fig.1 in34).

A maximum in $R^{*}_{\mu_f}$ take place at $t^* \approx 0.25$, whereas both slowly approach zero as the velocities decrease. Surprisingly, viscous dissipation appears to not play an important role in this regime as both $R^{*}_{\mu_f}$ and R^{*}_{ρ} are much larger for $\beta(t) < \beta_{\text{max}}$.

D. Scaling laws for $\beta_{\text{max}}(\mu_f)$

Since our simulations fall into both the inertia-viscous and the inertia-capillary regime, we can further test if our numerical simulations are also consistent with existing scaling laws. We compare our numerical data for $\mu_f = 0$ (Fig7a) and the measured μ_f (Fig7b) with another set of independent experimental data23 for impacting droplets of different fluids. We use the scaling law for $\beta_{\text{max}} = Re^{5/8}f(WeRe^{-2/5})$ that couples the inertia-viscous and inertia-capillary regime22,23 and illustrated by the line in Fig7. We see in Fig7(a) that $\mu_f = 0$ creates results that deviate from the scaling law and the experiments. One exception is the simulations of water droplets, this is not surprising as the Reynolds number for water is ten times larger than for the glycerol-water mixture and inertial effects are therefore much more dominant. Including the effect of contact line dissipation by using the values for μ_f
FIG. 6. The non-dimensional rate of change of kinetic energy \(R^*_\rho = \int_\Omega \frac{1}{2} Ca \frac{1}{2} Re \frac{\partial (\rho^* u^* C)}{\partial x} d\Omega \), rate of viscous dissipation \(R^*_\mu = \int_\Omega Ca \mu^* (C) (\nabla u^* + \nabla u^* T) : \nabla u^* d\Omega \) and contact line dissipation \(R^*_\mu f = \int_{\Gamma} D_w (\frac{\partial C}{\partial t})^2 d\Gamma \) for a glycerol-water droplet (10 mPa.s) impacting with; \(V_i = 1 \text{m/s}, R = 0.92 \text{mm} \) and \(\mu_f = 0.72 \text{Pa.s} \) i.e. \(Re = 212, Ca = 0.15, We = 31.4 \). \(t^*_\text{max} = 2.41 \) is here the time in which the droplet is most deformed along r-direction \(\beta^\text{max} = 1.83 \).

determined in Fig.2,4 makes the simulated data for \(We Re^{-\frac{2}{5}} > 1 \) fit well with the scaling law \(\beta^\text{max} = Re^{\frac{1}{5}} f(We Re^{-\frac{2}{5}}) \) and the experiments. However, it is clear that for the regime where the effect from \(\mu_f \) is expected to be important i.e. \(We Re^{-\frac{2}{5}} < 1 \), both the experiments and the simulations deviate from the existing scaling law.

To improve the scaling prediction for \(\beta^\text{max} \) we include the influence from the contact line dissipation into the approximation for the energy balance,

\[
\int \Omega 2 \frac{1}{\partial t} \frac{\partial (\rho u^2)}{\partial t} d\Omega \approx \int \Omega \mu_l (\nabla u + \nabla u^T) : \nabla u d\Omega + \int R \mu_f V_c^2 dR + \int s \frac{\partial s}{\partial t} ds \tag{7}
\]

with the contact line speed defined as \(V_c = \partial R(t)/\partial t \). Note that the contact line dissipation is independent of the interface thickness and can be re-written\(^{49}\) as \(\int_{\Gamma} \epsilon \mu_f (\partial C/\partial t)^2 d\Gamma = \int_{Rc} \mu_f V_c^2 dR_c \) with \(R_c \) as the radial position of the contact line. \(s \) is the droplet surface area and the last term on the right hand side of Eq.(7) is the rate of change of droplet surface energy. Based on the approximated energy balance we assume the following scaling relations\(^{31}\) for a droplet that has spread to \(R_{\text{max}} \) and has a height \(h \); \(u^2 \sim V_i^2 \), \(\nabla u \sim V_i/h \), \(t \sim R_{\text{max}}/V_i \),
FIG. 7. The maximum spreading factor β_{max} for different liquids, from experiments23,32,35 (symbols; +, \times, *) and simulations (hollow markers). The dashed line is illustrating31 the scaling relation $\beta_{\text{max}} = Re^{1/5}f(WeRe^{-2/5})$. (a) Comparing experiments23,32,35 with numerical simulations for $\mu_f = 0$. (b) Comparing experiments23,32,35 with numerical simulations for μ_f as reported Table 2.

$V_c \sim V_i$, $\Omega \sim R^3$, $\Gamma \sim R_{\text{max}}$, $s \sim R_{\text{max}}^2$. In addition mass conservation of the incompressible droplet demands that its volume remains constant and that $R^3 \sim hR_{\text{max}}^2$. By introducing these scaling relations into Eq.7 we get the following expressions:
\[\int_{\Omega} \frac{\partial (\rho_i u^2)}{\partial t} d\Omega \sim \frac{\rho_i V_i^3 R^3}{R_{\text{max}}} \]
\[\int_{\Omega} \mu_i (\nabla u + \nabla u^T) : \nabla u d\Omega \sim \frac{\mu_i V_i^2 R_{\text{max}}^4}{R^3} \]
\[\int_{\Gamma} \mu_f V_i^2 d\Gamma \sim \mu_f V_i^2 R_{\text{max}} \]
\[\int_{s} \frac{\partial s}{\partial t} ds \sim \sigma V_i R_{\text{max}}. \]

Now substituting these scaling relations into Eq. (7) and rearranging the terms give \(\beta_{\text{max}} \) as a function of the contact line friction parameter \(\mu_f \),
\[Re = \beta_{\text{max}}^2 \left(\frac{\mu_f}{\mu_i} + \frac{1}{Ca} + \beta_{\text{max}}^3 \right). \]

Three separate regimes appear, where we immediately see that the two limits \(\frac{\mu_f}{\mu_i} + \frac{1}{Ca} \ll \beta_{\text{max}}^3 \) (\(\beta_{\text{max}} \sim Re^{\frac{1}{2}} \)) and \(\frac{\mu_f}{\mu_i} + \beta_{\text{max}}^3 \ll \frac{1}{Ca} \) (\(\beta_{\text{max}} \sim We^{\frac{1}{2}} \)) recovers the classical scaling laws. However, we identify a new regime for small and intermediate impact speeds i.e. \(\frac{1}{Ca} + \beta_{\text{max}}^3 \ll \frac{\mu_f}{\mu_i} \) with \(\beta_{\text{max}} \sim (\mu_i Re/\mu_f)^{\frac{1}{2}} \). To test this new scaling law we plot the data for \(\mu_f/\mu_i > 5(\beta_{\text{max}}^3 + 1/Ca) \) from the simulations and experiments, which follows \(\beta_{\text{max}} \sim (Re\mu_i/\mu_f)^{\frac{1}{2}} \), see Fig. 8(a), instead of \(\beta_{\text{max}} \sim We^{\frac{1}{2}} \) or \(\beta_{\text{max}} \sim Re^{\frac{1}{2}} \), see Fig. 8(b,c).

III. CONCLUSIONS

We have investigated the dynamics of droplets impacting onto solid substrates as a function of their viscosity, substrate wettability and substrate topography by deploying numerical simulations. By assuming linear response through a Stokes-like drag at the contact line, our simulations rationalize experimental observations for droplet impact on both smooth and rough substrates. Our results highlight that at low impact speeds the dissipation at the contact line needs to be included to predict the droplet spreading dynamics. We propose a scaling relation for this regime that is dominated by contact line dissipation \(\beta_{\text{max}} \sim (\frac{\mu_f}{\mu_i} Re)^{\frac{1}{2}} \), complementing the classical scaling laws for \(\beta_{\text{max}} \) i.e. \(\beta_{\text{max}} \sim We^{\frac{1}{2}} \) and \(\beta_{\text{max}} \sim Re^{\frac{1}{2}} \) that are also identified in the numerical simulations. Moreover, our simulations highlight the link between substrate roughness and the effective contact line friction factor \(\mu_{\text{eff}} \) that can provide a unifying framework to describe droplet impact dynamics.
FIG. 8. Scalings for β_{max} with data from droplet impact on different substrates where $\frac{\mu_l}{\mu_f} > 5(\beta_{\text{max}}^3 + \frac{1}{c\alpha})$. (a) β_{max} as a function of $\frac{\mu_l}{\mu_f} Re$. (b) β_{max} as a function of Re. (c) β_{max} as a function of We. Note that for the grooved substrates S11, S140 and S220, we use the measured values for μ_{eff}.

REFERENCES

1. R. Dykhuizen, “Review of impact and solidification of molten thermal spray droplets,” Journal of Thermal Spray Technology 3, 351–361 (1994).
2. D. Attinger, Z. Zhao, and D. Poulikakos, “An experimental study of molten microdroplet surface deposition and solidification: transient behavior and wetting angle dynamics,” Journal of Heat Transfer 122, 544–556 (2000).
3. S. Fathi, P. Dickens, and F. Fouchal, “Regimes of droplet train impact on a moving surface in an additive manufacturing process,” Journal of Materials Processing Technology 210, 550–559 (2010).
4. V. Bergeron, D. Bonn, J. Y. Martin, and L. Vovelle, “Controlling droplet deposition with polymer additives,” Nature 405, 772–775 (2000).
5. N. Z. Mehdizadeh, S. Chandra, and J. Mostaghimi, “Formation of fingers around the edges of a drop hitting a metal plate with high velocity,” Journal of Fluid Mechanics 510, 353–373 (2004).
S. Mandre, M. Mani, and M. P. Brenner, “Precursors to splashing of liquid droplets on a solid surface,” Physical Review Letters 102, 134502 (2009).

L. Duchemin and C. Josserand, “Curvature singularity and film-skating during drop impact,” Physics of Fluids (1994-present) 23, 091701 (2011).

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a film of air: drops impacting on a surface,” Physical Review Letters 108, 074503 (2012).

W. Bouwhuis, R. C. van der Veen, T. Tran, D. L. Keij, K. G. Winkels, I. R. Peters, D. van der Meer, C. Sun, J. H. Snoeijer, and D. Lohse, “Maximal air bubble entrainment at liquid-drop impact,” Physical Review Letters 109, 264501 (2012).

Y. Liu, P. Tan, and L. Xu, “Compressible air entrapment in high-speed drop impacts on solid surfaces,” Journal of Fluid Mechanics 716, R9 (2013).

C. W. Visser, P. E. Frommhold, S. Wildeman, R. Mettin, D. Lohse, and C. Sun, “Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns,” Soft matter 11, 1708–1722 (2015).

E. Li and S. T. Thoroddsen, “Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface,” Journal of Fluid Mechanics 780, 636–648 (2015).

M. M. Driscoll and S. R. Nagel, “Ultrafast interference imaging of air in splashing dynamics,” Physical Review Letters 107, 154502 (2011).

K. Yokoi, “Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle,” Soft Matter 7, 5120–5123 (2011).

C. W. Visser, Y. Tagawa, C. Sun, and D. Lohse, “Microdroplet impact at very high velocity,” Soft matter 8, 10732–10737 (2012).

G. Riboux and J. M. Gordillo, “Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing,” Physical Review Letters 113, 024507 (2014).

L. Xu, W. W. Zhang, and S. R. Nagel, “Drop splashing on a dry smooth surface,” Physical Review Letters 94, 184505 (2005).

A. I. Fedorchenko, A.-B. Wang, and Y.-H. Wang, “Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface,” Physics of Fluids (1994-present) 17, 093104 (2005).
19I. V. Roisman, R. Rioboo, and C. Tropea, “Normal impact of a liquid drop on a dry surface: model for spreading and receding,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 458 (The Royal Society, 2002) pp. 1411–1430.

20T. Bennett and D. Poulikakos, “Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface,” Journal of Materials Science 28, 963–970 (1993).

21G. Lagubeau, M. A. Fontelos, C. Josserand, A. Maurel, V. Pagneux, and P. Petitjeans, “Spreading dynamics of drop impacts,” Journal of Fluid Mechanics 713, 50–60 (2012).

22J. Eggers, M. A. Fontelos, C. Josserand, and S. Zaleski, “Drop dynamics after impact on a solid wall: theory and simulations,” Physics of Fluids (1994-present) 22, 062101 (2010).

23N. Laan, K. G. de Bruin, D. Bartolo, C. Josserand, and D. Bonn, “Maximum diameter of impacting liquid droplets,” Physical Review Applied 2, 044018 (2014).

24B. L. Scheller and D. W. Bousfield, “Newtonian drop impact with a solid surface,” AIChE Journal 41, 1357–1367 (1995).

25M. Pasandideh-Fard, Y. Qiao, S. Chandra, and J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Physics of Fluids (1994-present) 8, 650–659 (1996).

26T. Mao, D. Kuhn, and H. Tran, “Spread and rebound of liquid droplets upon impact on flat surfaces,” AIChE Journal 43, 2169–2179 (1997).

27S. Chandra and C. Avedisian, “On the collision of a droplet with a solid surface,” in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 432 (The Royal Society, 1991) pp. 13–41.

28D. Vadillo, A. Soucemarianadin, C. Delattre, and D. Roux, “Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces,” Physics of Fluids (1994-present) 21, 122002 (2009).

29C. Ukiwe and D. Y. Kwok, “On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces,” Langmuir 21, 666–673 (2005).

30C. Clanet, C. Béguin, D. Richard, and D. Quéré, “Maximal deformation of an impacting drop,” Journal of Fluid Mechanics 517, 199–208 (2004).

31C. Josserand and S. Thoroddsen, “Drop impact on a solid surface,” Annual Review of Fluid Mechanics 48, 365–391 (2016).
32. J. Lee, N. Laan, K. de Bruin, G. Skantzaris, N. Shahidzadeh, D. Derome, J. Carmeliet, and D. Bonn, “Universal rescaling of drop impact on smooth and rough surfaces,” Journal of Fluid Mechanics 786, R4 (2015).

33. R. Kannan and D. Sivakumar, “Drop impact process on a hydrophobic grooved surface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 317, 694–704 (2008).

34. V. Vaikuntanathan and D. Sivakumar, “Maximum spreading of liquid drops impacting on groove-textured surfaces: Effect of surface texture,” Langmuir 32, 2399–2409 (2016).

35. J. B. Lee, D. Derome, R. Guyer, and J. Carmeliet, “Modeling the maximum spreading of liquid droplets impacting wetting and nonwetting surfaces,” Langmuir 32, 1299–1308 (2016).

36. P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, and D. Lohse, “Drop impact upon micro-and nanostructured superhydrophobic surfaces,” Langmuir 25, 12293–12298 (2009).

37. R. C. van der Veen, M. H. Hendrix, T. Tran, C. Sun, P. A. Tsai, and D. Lohse, “How microstructures affect air film dynamics prior to drop impact,” Soft matter 10, 3703–3707 (2014).

38. S. Robson and G. R. Willmott, “Asymmetries in the spread of drops impacting on hydrophobic micropillar arrays,” Soft matter 12, 4853–4865 (2016).

39. A. Yarin, “Drop impact dynamics: splashing, spreading, receding, bouncing,” Annual Review of Fluid Mechanics 38, 159–192 (2006).

40. A. Carlson, M. Do-Quang, and G. Amberg, “Dissipation in rapid dynamic wetting,” Journal of Fluid Mechanics 682, 213–240 (2011).

41. A. Carlson, G. Bellani, and G. Amberg, “Contact line dissipation in short-time dynamic wetting,” EPL (Europhysics Letters) 97, 44004 (2012).

42. D. Jacqmin, “Calculation of two-phase navier–stokes flows using phase-field modeling,” Journal of Computational Physics 155, 96–127 (1999).

43. J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. i. interfacial free energy,” The Journal of chemical physics 28, 258–267 (1958).

44. D. Jacqmin, “Contact-line dynamics of a diffuse fluid interface,” Journal of Fluid Mechanics 402, 57–88 (2000).

45. P. Yue, C. Zhou, and J. J. Feng, “Sharp-interface limit of the cahn–hilliard model for moving contact lines,” Journal of Fluid Mechanics 645, 279–294 (2010).
46. F. Magaletti, F. Picano, M. Chinappi, L. Marino, and C. M. Casciola, “The sharp-interface limit of the cahn–hilliard/navier–stokes model for binary fluids,” Journal of Fluid Mechanics 714, 95–126 (2013).

47. G. Amberg, R. Tönhardt, and C. Winkler, “Finite element simulations using symbolic computing,” Mathematics and Computers in Simulation 49, 257–274 (1999).

48. V. Khatavkar, P. Anderson, P. Duineveld, and H. Meijer, “Diffuse-interface modelling of droplet impact,” Journal of Fluid Mechanics 581, 97–127 (2007).

49. Q. Zhang, T.-Z. Qian, and X.-P. Wang, “Phase field simulation of a droplet impacting a solid surface,” Physics of Fluids (1994-present) 28, 022103 (2016).

50. Y. Wang, M. Do-Quang, and G. Amberg, “Events and conditions in droplet impact: a phase field prediction,” International Journal of Multiphase Flow 87, 54–65 (2016).

51. J. Wang, M. Do-Quang, J. J. Cannon, F. Yue, Y. Suzuki, G. Amberg, and J. Shiomi, “Surface structure determines dynamic wetting,” Scientific reports 5, 10–11 (2015).