Supplementary Figure 1. Phylogenetic tree of insulin receptor protein sequences identified across Animalia, including selected representatives of Insecta. *Sycon raphanus* InR sequences were set as outgroup. Duplication events in non-insect phyla are marked with arrowheads. The topology and branching supports were inferred using RAxML maximum likelihood algorithm with WAG + F model (-ln = 131220.705824), the bootstrap values calculated from 1000 replicates are shown for nodes represented in more than 50% of trees. InR, insulin receptor; IRR, insulin receptor-related receptor; IGF1R, insulin-like growth factor 1 receptor.

Phylogenetic tree of insulin receptor protein sequences identified across Animalia, including selected representatives of Insecta.
Supplementary Figure 2. Phylogenetic tree and nomenclature of insect insulin receptors and decoy of insulin receptors identified in the Cluster II in 98 species from 23 orders. The tree represents the full version of the simplified tree given in Figure 1 of the main text. Orange arrow marks the Cluster II duplication within Polynoeptera. Red arrow (DR2) marks the loss of the tyrosine kinase domain giving rise to the decoy of insulin receptor gene DR2 (red) in Mecopterida, a group of advanced Holometabola including Diptera, Lepidoptera, Trichoptera and Mecoptera. Asterisks mark the duplication identified in Tribolium castaneum and the multiple duplications in Auchenorrhyncha. The topology and branching supports were inferred using RAxML maximum likelihood algorithm with WAG+Γ model (-ln = 285839.374747) the bootstrap values calculated from 500 replicates are shown for nodes represented in more than 50% of trees. Black dots in the right part of the figure indicate the insect orders included in phylegetic analyses in previous studies, the boxes give the nomenclature used by previous studies for the identified InR genes. Bold marking in brackets shows the InR nomenclature used in this study for P. simplex and P. apterus InRs.
Supplementary Figure 3. Phylogenetic tree and nomenclature of insect insulin receptors and decoy of insulin receptors identified in the Cluster I in 98 species from 23 orders. The tree represents the full version of the simplified tree given in Figure 1 of the main text. Green arrow marks the Cluster I duplication in Gerromorpha, blue arrow (SDR) marks the loss of the tyrosine kinase domain in Muscomorpha, giving rise to the secreted decoy of insulin receptor gene SDR (blue). Asterisks mark the duplication identified in Pyrrhocoridae and in Thermobia domestica. The topology and branching supports were inferred using RAxML maximum likelihood algorithm with WAG + Γ model (-ln = 285839.37447) the bootstrap values calculated from 500 replicates are shown for nodes represented in more than 50% of trees. Black dots in the right part of the figure indicate the insect orders included in phylogenetic analyses in previous studies, the boxes give the nomenclature used by previous studies for the identified InR genes. Bold marking in brackets shows the InR nomenclature used in this study for P. simplex and P. apterus InRs.
Supplementary Figure 4. Phylogenetic tree of insect insulin receptor genes and two homologous decoy receptor genes identified in 98 species from 23 orders. The numbers in condensed branches indicate the numbers of species. Orange arrow marks the Cluster II duplication within Polynoptera, red arrow (DR2) marks the loss of the tyrosine kinase domain in advanced Holometabola, giving rise to the decoy of insulin receptor gene DR2 (red). Green arrow marks the Cluster I duplication in Gerromorpha, blue arrow (SDR) marks the loss of the tyrosine kinase domain in Muscomorpha, giving rise to the secreted decoy of insulin receptor gene SDR (blue). The topology and branching supports are based on Bayesian inference (PhyloBayes v4.1).
Supplementary Figure 5. Detailed phylogenetic tree of insulin receptor gene sequences identified in eight species of Blattodea and five species of Phasmatodea. The topology and branching were inferred using RAxML maximum likelihood algorithm with WAG + Γ model (-ln = 44434.953962), the bootstrap values calculated from 500 replicates are shown for nodes represented in more than 50% of trees.
Supplementary Figure 6. Detailed phylogenetic tree of insulin receptor gene sequences identified in five species of Orthoptera and major insect lineages for comparison. Orthopteran representatives are marked in red. The topology and branching were inferred using RAxML maximum likelihood algorithm with WAG + Γ model (-ln = 103575.553052; WAG + Γ model), the bootstrap values calculated from 500 replicates are shown for nodes represented in more than 50% of trees.
Supplementary Figure 7. Detailed phylogenetic tree of insulin receptor gene sequences identified in five species of Orthoptera and major insect lineages for comparison. Orthopteran representatives are marked in red. The topology and branching were inferred using Bayesian inference (WAG + Γ model; chain length = 1 million; MrBayes).
Supplementary Figure 8. Expression pattern of three InRs in somatic tissues and gonads of sterile workers (pseudergates) and neotenic reproductives of both sexes 10 days after their moult from workers in the termite *Prorhinotermes simplex*. The graphs show qRT-PCR values of the three genes relative to those of the *rp49* reference gene and log-transformed to reduce heteroscedasticity. Bars show means, whiskers standard deviations. The transformed data was subjected to two-way analysis of variance with sex and tissues as factors. Gonads (absent in workers) were compared separately between males and females using a t-test. 1-3 asterisks denote significant expression differences at p<0.05, p<0.01, and p<0.001, respectively, between different tissues of each caste/sex. Columns marked with different letters indicate significant inter-caste or inter-sex expression differences at p<0.05 for individual tissues.

For all three InRs, the analyses were evaluated as highly significant, especially due to the significant contribution of the tissues to the total variance (p<10^{-4} for all three InRs) and the interaction effects (p<7×10^{-3} for all three InRs). The contribution of caste was retrieved as highly significant for InR3 (p<10^{-4}), while being marginally non-significant for InR2 (p=0.056) and non-significant for InR1 (p=0.12). Post-hoc comparison highlighted several trends in InR expression among tissues. First, InR2 is highly upregulated in the digestive tube of all castes, while the other two InRs show an opposite pattern, having the smallest expression in the digestive tube, except for workers and InR1. This points to an eventual differential role of the InRs in the nutrient sensing. Last but not least, all InRs had larger expression in the body cavity than in heads in workers and in males (except for InR2 in males).

Intercaste differences included significantly higher expressions of all three InRs in heads of females (InR2 also in males) when compared to workers. The same applied for InR3 and the digestive tube. Separate evaluation of InR expression in gonads of reproductives revealed a dramatic difference in InR3 expression in favor of female gonads when compared to very low values in male testes, making the InR3 a female biased gene in all tissues but body cavity. InR1 had high expression values and InR2 moderate expression in gonads of both sexes without striking inter-sex differences.
Supplementary Figure 9. Protein domains and alignments of InRs and decoys of insulin receptors in selected insect taxa. A. Protein domains recognized in a typical InR (*D. melanogaster*). B. Detail of protein alignment covering Furin-like cystein-rich domain. Red asterisks indicate cysteine residues identified as InR1-specific by Xu et al. (2015), the orange asterisk highlights additional residue unique to Cluster I InRs and SDRs. C. Detail of protein alignment covering transmembrane domain identified in InRs and DR2s. Small black asterisk indicates C terminus in DR2 proteins. N-terminal part of protein tyrosine kinase domain is highlighted in InRs.
Supplementary Figure 10. Protein domains and alignments of InRs and decoys of insulin receptors in selected insect taxa compared to epidermal growth factor receptor (EGFR). A. Protein domains recognized in a typical InR (*D. melanogaster*). B. L1 receptor L-domain. C. L2 receptor L-domain. D. Fibronectin type III superfamily in InRs and Growth factor receptor cysteine-rich domain superfamily in EGFRs.
Supplementary Figure 11. Detailed phylogenetic tree of insulin receptor gene sequences identified in 15 species of Hymenoptera. The topology and branching were inferred using RAxML maximum likelihood algorithm with WAG + Γ model (-ln = 59986.190587; WAG + Γ model), the bootstrap values calculated from 1000 replicates are shown for nodes represented in more than 50% of trees.
Supplementary Figure 12. Expression pattern of InR and decoy receptor genes SDR and DR2 in somatic tissues and gonads of adult fruit flies Drosophila melanogaster. The graphs show qRT-PCR values of the three genes relative to those of the control reference gene rp49 and log-transformed to reduce heteroscedasticity. Bars show means, whiskers standard deviations. The transformed data was subjected to two-way analysis of variance with sex and tissues as factors. 1-3 asterisks denote significant expression differences at probability values p<0.05, p<0.01, and p<0.001, respectively, between different tissues of each sex. Columns marked with different letters indicate significant inter-sex differences at p<0.05 for individual tissues.

All three genes are expressed in all studied tissues of both sexes and have similar expression patterns with low values in the digestive tube and higher expression in the head and gonads. Another general trend is a male-biased expression, most pronounced in the case of DR2. Two-way analysis of variance with sex and tissue as considered factors revealed that for InR and SDR, the tissue differences are the main driving force for the total significance of the tests (p<10^{-4} and p<5×10^{-4}, respectively), while the inter-sex differences are of secondary importance (p<4×10^{-3} and p=0.21, interaction p=0.15 and 0.84, respectively). By contrast, the male-female difference was evaluated as the main contributor to the overall significance in DR2 (p<4×10^{-4}), compared to the tissues (p<10^{-2}, interaction p=0.7).
Supplementary Figure 13. Expression pattern of three InRs in somatic tissues and gonads of adult linden bugs Pyrrhocoris apterus. The graphs show qRT-PCR values of the three genes relative to those of the control reference gene rp49. Bars show means, whiskers standard deviations. The data was subjected to two-way analysis of variance with sex and tissues as factors. 1-3 asterisks denote significant expression differences at $p<0.05$, $p<0.01$, and $p<0.001$, respectively, between different tissues of each sex. Columns marked with different letters indicate significant inter-sex differences at $p<0.05$ for individual tissues.

Both InR1a and InR1b genes are expressed in adults of both sexes, just as it is the case for the Cluster II InR (KX087105, hereafter InR2). InR1a shows the highest transcript abundances in all tissues of both sexes, while InR1b the lowest. Expression patterns for all three genes are tissue-specific, the most pronounced differences are observed for InR1b, which show a downregulation in the digestive tube. Some tissues also show a significant effect of sex on the InR expression.
Supplementary Figure 14. Pyrrhocoris apterus InR transcripts, design of dsRNA and RNAi efficiencies. **A.** *P. apterus* InR transcripts with highlighted open reading frames and positions, for which gene-specific dsRNAs were designed. **B.** Sequence similarity between dsRNA and the corresponding regions in paralogous transcripts agrees with the close relationship between *InR1a* and *InR1b*. **C.** Expression levels (mean±SD) of *InR1a* (left) and *InR1b* (right) indicate gene-specific targeting in heads of the fourth instar larvae after injection of *egfp* (control), *InR1a* or *InR1b* dsRNA. 1-3 asterisks denote significant differences at p<0.05, p<0.01, and p<0.001, respectively, in expression levels resulting from one-way ANOVA followed with Dunnett posthoc test (*egfp* set as control) on log-transformed data.
Supplementary Figure 15. *Pyrrhocoris apterus* insulin-like peptide (*Pilp*) genes. A. *Pilp* transcripts with highlighted open reading frames and positions, for which dsRNAs were designed. B. Sequence similarity between dsRNA and the corresponding region in paralogous transcripts agrees with the close relationship between *Pilp2* and *Pilp3*. C. Expression levels of *Pilp1* (left graph) and *Pilp2*+*3* (right graph) in heads of the fourth instar larvae after injection of *egfp* (control), *Pilp1* or *Pilp2*+*3* dsRNA. 1-3 asterisks denote significant differences at p<0.05, p<0.01, and p<0.001, respectively, in expression levels resulting from one-way ANOVA followed with Dunnett posthoc test (*egfp* set as control) on log-transformed data.
Supplementary Figure 16. Gene structures of two *Tribolium castaneum* InR paralogs identified in the Cluster II compared to representative DR2 genes and Cluster II InR of *Apis mellifera*. A. Schematic depiction of exon (boxes) and intron (dotted lines) structure and homologous intron-exon boundaries (gray vertical lines). White, dark grey and blue color in exons correspond to exon coding in panel B. Regions coding for protein tyrosine kinase (dark orange) and transmembrane domain (light orange) are highlighted. B. Detail of amino acid sequence alignment with exons indicated as color coded boxes under each sequence.
Supplementary Materials and Methods

Expression of *D. melanogaster* InR, DR2 and SDR

White eye (*w1118*) *D. melanogaster* strain flies were grown on standard corn meal diet at 25 °C. Five days after adult eclosion male and female flies were CO₂-anesthetized and heads, digestive tubes, and gonads were dissected. RNA isolation, reverse transcription and qRT PCR were performed as in *P. apterus* experiments, with *Drosophila*-specific primers (Supplementary table 3, Supplementary Material online). The analysis was performed with three biological replicates, each consisting of pooled tissues from 25 individuals. The quantified transcripts were normalized to the level of the reference gene *rp49* (Bazalova and Dolezel 2017), the results log-transformed to reduce heteroscedasticity and analyzed using two-way ANOVA (tissue and sex as predictors) in GraphPad 5.00.

Expression of InRs in the termite *P. simplex* and its caste and tissue specificity

The three *InR* genes identified in *Prorhinotermes simplex* (Rhinotermitidae) were investigated with respect to mRNA levels and eventual caste and tissue-specific expression. For this purpose, we compared their expression in workers (pseudergates), ten-day-old neotenic males and females. The neotenics were obtained from orphaned groups of 100 workers, kept together with 15 soldiers in 9 cm Petri dishes on moistened sand and offered with blocks of spruce wood (permanent darkness, 26°C). In such groups, the workers start to differentiate into neotenics within 10 days. Groups were controlled every 12h, freshly molted neotenics removed and held for ten days in new groups of 50 workers.

Four biological replicates were prepared for each caste and tissue, each of them from pooled tissues of four individuals. Total RNA was isolated using TRI Reagent® (Sigma Aldrich) following the manufacturer's protocol. RNA isolates were treated with RQ1 RNase-Free DNase (Promega) to eliminate contaminant DNA. cDNA template was generated from 0.7 μg of the respective total RNA using the SuperScript III First-Strand Synthesis System (Invitrogen by Life Technologies) and random hexamers. The sequences of specific primers used for amplification are given in supplementary table 3 (Supplementary Material online). qRT-PCR was performed as published earlier (Jirošová et al. 2017). The resulting data was log-transformed to reduce heteroscedasticity and analyzed using two-way ANOVA (tissue and caste/sex as predictors) in GraphPad 5.00.

Expression of *P. apterus* InRs and its sex and tissue specificity

Adults of *Pyrrhocoris apterus* strain Oldrichovec (Pivarciova et al. 2016) were kept in 0.5 liter glass jars on linden seeds and water *ad libitum* in long photoperiod (18 hrs light: 6 hrs dark) at 25 °C. Brain, fat body, digestive tube and gonads were dissected in RNAse-free Ringer's solution from males and females 10 days after adult eclosion, anesthetized by CO₂. Four biological replicates for each tissue and organ were prepared, each from pooled tissues of five individuals. Total RNA was isolated with the Trizol reagent (Invitrogen). After Turbo DNase (Ambion/ThermoFisher) treatment, 1 μg of total RNA was used for cDNA synthesis using the SuperScript III reverse transcriptase (Invitrogen). Relative transcript levels were measured by quantitative PCR using the qPCR 2x SYBR Master Mix (Top Bio) and the C1000 Thermal Cycler (Bio-Rad). Primers sequences are listed below in supplementary table 3. All measured transcripts were normalized to the level of the reference gene *rp49* (Dolezel et al. 2007). The data was analyzed using two-way ANOVA (tissue and sex as predictors) in GraphPad 5.00.

Identification of *P. apterus* insulin-like peptide (*Pilp*) transcripts

Insect insulin-like peptides (ILPs) from *Drosophila melanogaster* (Dilp1-8), *Bombyx mori* (bombyxin A1-10, B1-12, C1-2, E1, F1, G1) and *Nilaparvata lugens* (NlILP1-4) were used as a query in BLAST searches in our in-house *P. apterus* transcriptomic databases. Candidate hits were validated by reciprocal BLAST searches in NCBI database, protein alignments with insect ILPs, and by position of characteristic Cysteine residues in the preprohormone. The mRNA sequences of three identified *P. apterus insulin-like peptide* (*Pilp*) transcripts were confirmed by PCR and Sanger sequencing.
RNAi-mediated silencing of InRs and Pilps in P. apterus

For each InR, gene-specific fragment was designed within the open reading frame in regions where stretches of identity between P. apterus paralogs where the shortest. In case of the closely related paralogs InR1a and InR1b, specificity of silencing was confirmed by qRT-PCR from whole head extracts of 4th instar larvae three days after RNAi. The protocol was identical to tissue-specific quantification, with the exception that RNA was isolated from individual heads and processed separately for RNAi efficiency assessments. Because Pilp2 and Pilp3 only differ by several SNPs, both genes were targeted by one common dsRNA. By contrast, Pilp1 is clearly distinct from Pilp2+3. Therefore, one Pilp1-targeting and one Pilp2+3-targeting fragment were designed within the open reading frame and 5’ untranslated region. The resulting primers are given in supplementary table 4 (Supplementary Material online).

Specific fragments were PCR amplified from head total cDNA by PPP Master Mix (Top Bio, Czech Republic), PCR products were purified by QIAquick PCR Purification Kit (Qiagen), ligated into the pGEM-T Easy vector (Promega) and verified by Sanger sequencing. Templates for dsRNA in-vitro synthesis were prepared from pGEM-T Easy clones by PCR using M13 forward and pGEM-RNAi reverse 5’-TAATACGACTCATAAGGGACACTATAAGATCT-3’ primer replacing SP6 to T7 promoter. Double-stranded RNA was synthesized using MEGAscript T7 Transcription Kit (Ambion/ThermoFisher) following the manufacturer’s protocol. dsRNA was then precipitated by adding 0.1 volume of sodium acetate (pH = 5) and 2.5 volume of 100 % ethanol and after spinning and washing it was dissolved in Ringer's solution. As a negative control, 720bp long egfp ORF in pEGFP-N1 (Clontech) was digested with SalI and NotI restriction enzymes and subcloned to pBlueScript KS (-) plasmid. T3 promoter in pBlueScript plasmid was replaced by T7 promoter in in vitro dsRNA transcription template by using M13F 5’- GTAAAACGACGGCCAGTG - 3’ and Blue-RNAi-R 5’-AATACGACTCATAAGGGACACAAAG - 3’ primers.

One-day-old 4th-instar P. apterus larvae of both strains were CO2-anesthetized, attached using a double-sided tape to a small tray and injected ventrolaterally into the abdomen under the stereomicroscope using a micromanipulator (Narishige, Japan) equipped with a borosilicate glass capillary needle. 1 µl of 3-4 µg/µl dsRNA dissolved in Ringer’s solution was administered to each larva, which was then transferred to a glass jar supplemented with linden seeds, water, and a folded filter paper. Adult animals were CO2-anesthetized and scored for wing length. The obtained proportions of long-winged vs. short-winged adult phenotypes were compared with the control treatment using an equivalent of Dunnett test adjusted for proportion data (Zar 1999).
Supplementary Table 1. Insect taxa studied in phylogenetic analyses of InRs and decoy of InRs

Higher unit	order	species	acc. number	note
Ametabola	Zygentoma	Lepisma saccharina	KX087106	
		Thermobia domestica	GASM02067420	
			GASM02067910	
Palaeoptera	Ephemeroptera	Ecdyonurus insignis	GCLC01041336	
		Ephemerana	GCLC01095620	
		Eurylophella sp.	GAKU01018742	
			GAKU01018485	
			GAZ00105571	
	Odonata	Cordulegaster boltonii	GAY001000057	
		Epiphielia superstes	GAVV01013590	
		Megaloprepus caerulatus	GAVY01062158	
Polyneoptera	Plecoptera	Leuctra sp.	GAUF01084507	
			GAUF01012297	
		Perla marginata	GAVT01011223	
	Zoraptera	Zorotypus caudelli	GAYA00104618	
			GAYA0030434	
	Orthoptera	Ceuthophilus sp.	GAU002040867	
		Gryllus bimaculatus	GFMG01298068	
		Laupla cerasina	GG001005618	
		Tettix subulata	GAS002008536	
			GAS002009651	
			GSO00101905	
		Xyla variegata	GCP01033443	
			GCP01052609	
	Mantophasmatodea	Tanzaniophasma sp.	GAX80105547	
			GAX802030434	
	Phasmatodea	Aretoa asperimus	GAWC01082819	
			GAWC010105012	
		Extatosoma tiaratum	GAWS001046894	
			GAWG01048820	
			GAWG01064895	
	Medauroidea extradentata		GAWD001037141	
			GAWD001049541	
			GAWD001065334	
			GAWD002032211	
			GAWD002044630	
			GAWD002032289	
			GFRG01028988	
			GFRG010121056	
			GFRG01012227	
	Blattodea	Blattella germanica	HG581866	
			KN196784_1	
			KN196784_2	
	Cryptocercus wrighti		GA2N00045874	
			GA2N00040031	
			GA2N00048104	
	Cryptoterme sequana		XP_023702637	
			XP_023702527	
	Embrimaterme neotenicus		MN000103	
			MN000104	
			MN000105	
	Lamprobatta albipalpus		GCP010144670	
			GCP010150496	
			GCP010150204	
	Panchlora nivea		GGLV01034977	
			GGLV0105863	
			GGLV01061540	
	Prothrinotermes simplex		MHS60589	
			MHS60588	
			MHS60587	
	Zoortermopsis nevadensis		KDR13786	
			KDR21367	
			KDR21366	
Paraneoptera	Thysanoptera	Frankliniella occidentalis	GP002677828	
		Philaethripidae gen. sp.	GCP010249007	
	Sternorrhyncha	Acrystosiphon pisum	XP_001942660	
			XP_001859197	
		Adelges tsuga	GBX01018946	
			GBX01018510	
		Aphidius rufus	ARD07922	
		Bemisia tabaci	XP_018897134	
		Daktulosphaira vitifoliae	GDEB01056903	
		Diaphorina citri	GDEB01025952	
			GDEB01020876	
			XP_00879213	
			GAC01009847	
			XP_015363980	
			XP_015379515	
Supplementary Table 1, continued

higher unit order	species	acc. number	note
Paraneoptera	Myzus persicae	XP_022180848, XP_022180005	
Paraneoptera	Pachysyrelfa venusta	GAAP01019620, GAAP01066619+21	
Paraneoptera	Phenacoccus solenopsis	GGT01015335, GGT01013183	
Paraneoptera	Campylodactyla latipes	GCVW01051784	
Paraneoptera	Clastoptera arizonana	GDC01010167, GDC01006489	
Paraneoptera	Cuerna arida	GEC01003109	
Paraneoptera	Diceroprocta seminicta	GGHY01012960	
Paraneoptera	Euscelidius varieatus	GFTU01000789, GFTU01000338, GFTU01001093	
Paraneoptera	Graminella nigrifrons	GAQX01001714, GAQX01006206, GAQX01002061	
Paraneoptera	Graphocephala atrapunctata	GBQ01020846_03005496	
Paraneoptera	Homalodisca luteola	GECU01004804, GECU01010637	
Paraneoptera	Homalodisca viripennis	HVIT002229_PA, HVIT005314_PA, HVIT005312_PA, HVIT016189_PA	
Paraneoptera	Mapuche sp.	GCXU01004447_1045662	
Paraneoptera	Neotibicen dorsatus	GCYV01005367, GCYV01004607, AY24639	
Paraneoptera	Nilaparvata lugens	GCXU01002061	
Paraneoptera	Alydus pilosus	GCVW01036674, GCWY01047286	
Paraneoptera	Anasa tristis	XP_014256336, XP_014242611	
Paraneoptera	Aquarius paludum	INR1, INR1-like	
Paraneoptera	Cimex lectularius	XP_014256336, XP_014242611	
Paraneoptera	Gerris buenoi	INR1, INR1-like	
Paraneoptera	Halymorpha halys	XP_014217440, XP_014273515	
Paraneoptera	Hebrus sp.	INR2, INR1, INR1-like	
Paraneoptera	Hydrometra cumata	INR2, INR1, INR1-like	
Paraneoptera	Jadera haematoloma	AVT56265, AVT56264	
Paraneoptera	Largus californicus	GCXW01035597, GCXW01053901	
Paraneoptera	Limnopus dissoritis	INR2, INR1, INR1-like	
Paraneoptera	Lygus hesperus	JAG02168, JAG020929	
Paraneoptera	Mesovelia furcata	INR2, INR1, INR1-like	
Paraneoptera	Microvelia longipes	INR2, INR1, INR1-like	
Paraneoptera	Oncapeltus fasciatus	AVT56270	
Paraneoptera	Pagasa sp.	GCXW01035597, GCXW01053901	
Paraneoptera	Podisus maculiventris	GFUB01078628, GFUB01066485	
Paraneoptera	Pyrrhocoris apterus	KKO87104, KKO87103, KKO87105	
Paraneoptera	Rhagovelia antillea	INR2, INR1, INR1-like	
Paraneoptera	Rhodnius prolixus	GECX01013918, GECX01019799	

Sequences available in Armisén et al. (2018) whole genome shotgun.
Higher unit	Order	Species	acc. number	note
Paraneoptera	Psocodea			
		Coccinella sanguinea	GDFG001033096	
		Sericinus undulatus	GCDX00101296	
		Syntarsus capitatus	GCVW00102679	
		Pedicululus humanus corporis	GAYV00100422	
			XMJ00043015	
Holometabola	Hymenoptera	Acromyrmex echinatior	XP_011062671	used only in detailed analysis (Figure S8)
		Apis mellifera	XP_011051377	used only in detailed analysis (Figure S8)
			NP_001233506	
		Athalia rosae	LDC105688867	
		Bombus terrestris	XP_02255985	
		Cephus cinctus	XP_022560956	
		Cephalthera woodsia	XP_011444410	used only in detailed analysis (Figure S8)
		Copidosoma floridanum	XP_014208001	used only in detailed analysis (Figure S8)
		Fopius arisanus	XP_0113000057	
		Nasonia vitripennis	XP_008203941	
		Neodiprion lecontei	XP_01518357	used only in detailed analysis (Figure S8)
		Solenopsis invicta	JF304723	
		Trachymyrmex zeteki	XP_0218305319	used only in detailed analysis (Figure S8)
		Trichogramma pretiosum	XP_014228758	used only in detailed analysis (Figure S8)
		Trichomalous sarcoptae	XP_011882700	used only in detailed analysis (Figure S8)
		Vollenhovia emeryi	XP_011864732	used only in detailed analysis (Figure S8)
		Wasmannia auropunctata	XP_011696536	used only in detailed analysis (Figure S8)
Holometabola	Coleoptera	Dendroctonus ponderosae	XP_019755880	
		Leptinotarsa decemlineata	XP_023030119	
		Pogonius chalcoides	XP_02301333	
		Tribolium castaneum	XP_01829423	
Holometabola	Raphidioptera	Xanthostigma xanthostigma	GAUX00204510	
		Chrysopa pallens	GAUX00204470	
Holometabola	Neuroptera		AVKX0043099	
			AVKX0043099	
Holometabola	Lepidoptera	Bombyx mori	NP_001037011	
			XP_00925605	DR2
		Danaus plexippus	ENH505707	DR2
		Plutella xylostella	XP_011567916	DR2
			XP_011567028	DR2
Holometabola	Trichoptera	Anulapilia sp.	GATX01009528	DR2
		Platycerthys radians	GATX01012065	DR2
		Ceratophylus gallinae	GAXC00202916	DR2
		Ctenocladus felis	GAXC00202878	DR2
Holometabola	Siphonaptera		GAUX002019316	
		Aedes aegypti	Q39105	
		Anopheles sinensis	FAA011010	DR2
		Ceratitis capitata	KF84958	DR2
		Clunio marinus	KF849143	DR2
		Drosophila melanogaster	AAF452722	DR2
		Liogma simplicicornis	AAF452727	DR2
		Musca domestica	NP_635048	SDR
		Nyssomyia neivai	NP_724517	DR2
		Sarcoptes peregrina	GJAY006400	SDR
Holometabola	Diptera	Aedes aegypti	Q39105	
		Anopheles sinensis	FAA011010	DR2
		Ceratitis capitata	KF84958	DR2
		Clunio marinus	KF849143	DR2
		Drosophila melanogaster	AAF452722	DR2
		Liogma simplicicornis	AAF452727	SDR
		Musca domestica	NP_635048	SDR
		Nyssomyia neivai	NP_724517	DR2
		Sarcoptes peregrina	GJAY006400	SDR

Supplementary Table 1, continued
Supplementary Table 2. Accession numbers of genomic sequences used for gene structure analysis

higher unit	order	species	acc. number	note
Crustacea	Cladocera	Daphnia pulex	FLTH02000001.1	Cluster I
			FLTH02000008	Cluster II
Palaeoptera	Ephemeroptera	Ephemeria danica	AYNO2013259.1	Cluster I
Polyneoptera	Phasmatodea	Prophorimorphus simplex	MH560587	Cluster I (InR1 in this study)
			MH560588	Cluster II (InR2 + InR3 in this study)
Polyneoptera	Blattodea	Geras buenoi	KZ651042.1	Cluster I (InR1)
			JHBY02104847.1	Cluster I (InR1-like)
			KZ651190.1	Cluster II
		Palaeoptera	MN987938	Cluster I (InR1a in this study)
			MN987939	Cluster II (InR2 in this study)
		Paraneoptera	CM009478.1	Cluster I
			PGTA01000614	Cluster II
		Paraneoptera	DS238541.1	Cluster I
			NC_037639.1	Cluster I
			NC_037646.1	Cluster II
		Holometabola	KZ651042.1	Cluster I
			JHBY02104847.1	Cluster I (InR1-like)
			KZ651190.1	Cluster II
		Paraneoptera	KZ651042.1	Cluster I
			JHBY02104847.1	Cluster I (InR1-like)
			KZ651190.1	Cluster II
		Holometabola	NW_004582016.1	Cluster I
			NW_004581734.1	Cluster II (DR2)
		Paraneoptera	KX087101	Cluster I (InR1)
			KX087104	Cluster II (DR2)
			KX087105	Cluster I (InR1-like)
			GDF101014277	Cluster I
		Drosophila melanogaster	KX087103	Cluster I (InR1)
			KX087104	Cluster II (DR2)
			KX087105	Cluster I (InR1-like)
			NM_170460	Cluster I

Supplementary Table 3. Primers used for qRT PCR analyses of InRs and decoy of InR

species	gene	accession number	forward primer (5’-3’)	reverse primers (5’-3’)
Prophorimorphus simplex	InR1	MH560587	CTGCCAGGCTTACAGACGCT	ATGGTGCCGTGTCACTCAT
	InR2	MH560589	CCCCGGCTAGCAGGAGATTTTGG	AGCCAGACTCACATATTTCAGGATT
	InR3	MH560588	TCCCGCGATGCTTGGATG	TCTCGAGGACCATCCATG
	rp49	GASE02006626	CTGGTGCATAACGGAAGGACT	CAGGGAGGACCTAGCATTTGTGA
Pyrrhocoris apterus	InR1a	KX087103	TGTAATGTCGATGCCAGCAAG	GTGACACTGAGAAAACGACCC
	InR1b	KX087104	TCCTGAGGTAGGGAAGTAC	CGTCAAGGGTTCTACTAAGAGGA
	InR2	KX087105	GGGCTGCGAGGACCTGTAGG	CTGCGAGGACTCTAGCCTGAG
	rp49	GDF101014277	CCGATATGAAAACCTAGGAGAAAAC	GAGAGTCTGCTGCCGTTTTT
Drosophila melanogaster	InR	CG18402; AAF55903	AAGTCTGCGGTTAGCACT	TCTCGGCGAGAGACCTAGAT
	SDR	CG3837; NP_650408	CATGAGAAGTGGTGATG	CTGCGAGGACTCTAGCCTGAG
	DR2	CG10702; NP_724157	GATGTGAGAAGCCTCAT	CACCAAAACGAGAACAGAG
	rp49	NM_170460	GATATGAAAGTGGTGTCACA	CACCAAAACGAGAACAGAG

Supplementary Table 4. Primers used for dsRNA templates in P. apterus

gene	accession number	forward primer (5’-3’)	reverse primers (5’-3’)
InR1a	KX087103	CTGTAGAATGGCCTACCAA	GCATGCAAATTTGTCCTCAT
InR1b	KX087104	GGATAGATTGGGGATTGGA	AGCAGCGACCTTGCTCAGTAG
InR2	KX087105	TTTACGCTACCTACCAAAAGAC	GTTAGACGAGCAGACGAGTACCA
Pilp1	MN200106	ACTGTGTTTACAGGAGCTCC	ACCTGTGTAACCTCTCAGTTCTAGAG
Pilp2/3	MN200107/MN200108	AGAAGAGCATTGGAGCAGCA	CACCGCTGAGAGCAGAGG
Supplementary references

Bazalova O, Dolezel D. 2017. Daily activity of the housefly, Musca domestica, is influenced by temperature independent of 3' UTR period gene splicing. G3 7:2637‒2649.

Dolezel D, Sauman I, Kostal V, Hodkova M. 2007. Photoperiodic and food signals control expression pattern of the clock gene, period, in the linden bug, Pyrrhocoris apterus. J Biol Rhythms 22:335-342.

Jirošová A, Jančařík A, Menezes RC, Bazalová O, Dolejšová K, Vogel H, Jedlička P, Buček A, Brabcová J, Majer P, Hanus R, Svatoš A. 2017. Co-option of the sphingolipid metabolism for the production of nitroalkene defensive chemicals in termite soldiers. Insect Biochem Mol Biol 82:52‒61.

Pivarciova L, Vaneckova H, Provaznik J, Wu BC, Pivarci M, Peckova O, Bazalova O, Cada S, Kment P, Kotwica-Rolinska J, Dolezel D. 2016. Unexpected geographic variability of the free running period in the linden bug Pyrrhocoris apterus. J Biol Rhythms 31:568‒576.

Zar JH. 1999. Biostatistical analysis. New Jersey: Prentice Hall, Inc.