ABSTRACT

Aim: To determine the effect of integrated use of inorganic phosphorus along with phosphorus solubilising bacteria and farmyard manure on nutrient content and uptake in Bt-Cotton.

Study Design: The experiment was laid out in randomized block design with three replications.

Place of Study: At College Farm, Agricultural College, Bapatla, Guntur district.

Methodology: After the preliminary layout, the Tulasi-BG II hybrid of cotton was used as a test crop, with a spacing of 90 cm x 60 cm in the experimental site. Plant samples were collected at 45, 90 DAS, and harvest. Plant samples were shade dried and kept in hot air oven at 75°C until a constant weight was obtained. Samples were powdered and then analysed using standard chemical procedures.

Results: The uptake of macronutrients viz., N, P, and K was markedly influenced by the treatments with maximum values recorded by the treatment that received 60 kg P₂O₅ ha⁻¹ + FYM + PSB. Their uptake significantly differed with increase in dose of phosphorus applied at all growth stages.
Combined use of 60 kg P$_2$O$_5$ ha$^{-1}$ + FYM + PSB resulted in a significant increase in uptake of all micronutrients (Zn, Cu, Mn, and Fe) at all stages except Cu at 90 DAS.

Conclusion: Application of phosphorus combined with FYM and PSB not only reduce inorganic phosphorus fertilization but also enhance the uptake of nutrients and plant nutrient content by providing favourable conditions for plant growth. Application of 30 kg P$_2$O$_5$ ha$^{-1}$ + PSB + FYM was found to be on a par with addition of only 60 kg ha$^{-1}$P$_2$O$_5$. Hence the P dose can be reduced to half by integrating with PSB and FYM.

Keywords: Phosphorus; PSB; FYM; Bt-Cotton.

1. INTRODUCTION

Cotton (*Gossypium hirsutum* L.) is globally considered as one of the most important commercial crops. Being a cash crop, it is grown worldwide. About 30 million hectares of fertile land are engaged in cotton cultivation in almost 70 different countries of the world. China is the world’s largest cotton producer and consumer with an average lint yield of 14.38 g m$^{-2}$ during 2013 followed by the US, India, and Pakistan. Due to its indeterminate growth habit, cotton exhibits morphological adaptation, such as modifying the canopy arrangement with phosphorus (P) application [1]. The utilization of mineral fertilizers is sought as an effective strategy to improve soil nutrient and boost cotton yield.

Phosphorus is very important in crop production after nitrogen (N); however, its resources are limited worldwide [2]. The P application improves root architecture by increasing the length, width, and diameter of root. Hence, P uptake by the plants is predominantly controlled by the availability and acquisition of P [3]. Therefore, the P deficiency inhibits cotton growth and development by declining biomass accumulation, leading to lower seed cotton yield [4].

The organic manures play an important role in crop production [5]. It acts on the soil physical properties, organic matter promotes the formation of soil crumbs, thus makes the soil friable and thereby facilitates the proper movement of air and water as well as infiltration of rain water. Organic matter decomposition acts on insoluble nutrient reserves in the soil and make them available biologically. Organic matter provides food for the beneficial microorganisms and also adds plant nutrients to the soil during [6].

Approximately 15-20 per cent of applied fertilizer phosphorus is utilized by the crops rest of the added phosphorus gets fixed in the soil and becoming unavailable to crop plants [7]. Thus, the availability of phosphorus is the major problem in productivity of crops concerning not only its actual deficiency in soil but also its availability to crop plants. Integrated phosphorus management (IPM) is the only viable strategy for increasing phosphorus availability. The IPM helps to restore and sustain soil fertility, crop productivity and also economically beneficial. In view of this, the present investigation was undertaken to determine the response of Bt-Cotton to different levels of phosphorus, FYM and microbial inoculation of PSB to study the effect of integrated use of phosphorus on yield and uptake of nutrients by Bt-cotton.

2. MATERIALS AND METHODS

The experiment was carried out at the Agricultural College Farm, Bapatla, Andhra pradesh, in *kharif* season with 10 treatments replicated thrice in a randomized block design. Tulasi-BG II hybrid of cotton was used as a test crop, with a spacing of 90 cm x 60 cm. The treatments comprised of T$_1$ = RDP (60 kg P$_2$O$_5$ ha$^{-1}$); T$_2$ = RDP + PSB; T$_3$ = 50% RDP + PSB; T$_4$ = PSB; T$_5$ = RDP + FYM; T$_6$ = 50% RDP + FYM; T$_7$ = FYM; T$_8$ = RDP + PSB + FYM; T$_9$ = 50% RDP + FYM and T$_{10}$ = PSB + FYM. FYM and PSB were applied @10 t ha$^{-1}$ and 5 kg ha$^{-1}$, respectively. The mean values of various weather parameters pertaining to the crop growth period of previous 20 years and current season were recorded from the India Meteorological Department Observatory, Bapatla, to arrive at a general distribution of different weather parameters over the years and their deviation in current crop growing season. During experimentation the study area experienced average maximum and minimum temperatures of 32.24°C and 21.90°C, respectively with a total rainfall of 627.8 mm over 30 rainy days.

The initial composite sample collected from experimental field and analyzed for physical, physico-chemical properties, nutrient status,
bacterial population and phosphatase activity. The results of the analyses indicated that the soil was clay loam in texture, with slightly alkaline in reaction (pH 7.8), nonsaline (EC 0.39 dS m⁻¹) and medium (5.5 g kg⁻¹) organic carbon content. The bulk density was 1.39 Mg m⁻³. The soil was low in nitrogen (203 kg ha⁻¹), medium in phosphorus (32.18 kg ha⁻¹) and high in potassium (750 kg ha⁻¹). Farmyard Manure @ 10 t ha⁻¹ was applied 10 days prior to sowing while phosphorus solubilising bacteria @ 5 kg ha⁻¹ was applied one day before sowing. Phosphorus was applied as per the treatments basally at sowing whereas, the recommended dose of nitrogen and potassium (120 and 60 kg ha⁻¹, respectively) were applied in four equal splits at 20, 40, 60, and 80.

Plant samples were collected at 45, 90 DAS, and at harvest. Biomass at 45, 90 DAS, and harvest was calculated expressed as kg ha⁻¹. The plant samples were shade dried and then kept in oven at 75°C until constant weights were obtained. The samples were ground and analysed chemically to know the nitrogen, phosphorus, potassium and micronutrients (Zn, Cu, Mn, and Fe) in the plant. Uptake was calculated by multiplying the Nutrient content with biomass at different plant growth stages. Standard procedures were followed to analyze plant nutrient content and Fisher’s method of analysis of variance was followed for analysis and interpretation of the data as suggested by Panse and Sukhatme [8]. Data analysis tool pack in MS-Excel software was used to analyze the data and the means were separated at a significance level of 0.05 (P).

3. RESULTS

3.1 Nitrogen

The nitrogen content in a cotton plant (Table 1 and Fig. 1) showed decreasing trend and the uptake of nitrogen increased from 45 DAS to harvest. The higher nitrogen uptake at harvest even with lower concentration of nitrogen is due to the substantial increase in biomass production. Among all the treatments more uptake of nitrogen was observed in the treatments receiving combined application of FYM and PSB over their individual applications with inorganic phosphorus. Irrespective of the treatment the uptake of nitrogen was low where no inorganic phosphorus was applied. Combined application of 60 kg P₂O₅ ha⁻¹ + PSB + FYM (T₆) recorded significantly higher values over all other treatments at 45 DAS, 90 DAS, and at harvest (16.62, 104.37, 151.10 kg ha⁻¹, respectively). At all the stages lowest value was recorded in T₁. The data also indicated that the increase in P level (0-60 kg P₂O₅ ha⁻¹) along with FYM and PSB resulted in a significant increase in the uptake of nitrogen ranging from 11.51 to 16.62 kg ha⁻¹, 72.91 to 104.37 kg ha⁻¹ and 77.87 to 151.10 kg ha⁻¹ at 45, 90 DAS, and at harvest respectively. A similar increase in N uptake at high levels of P with FYM or PSB was observed but with lower values.

Treatments	Uptake of nitrogen (kg ha⁻¹)		
	45 DAS	90 DAS	Harvest
T₁-60 kg P₂O₅ ha⁻¹	12.26 (2.27)*	75.59 (1.96)	89.05 (1.55)
T₂-60 kg P₂O₅ ha⁻¹+PSB	13.27 (2.31)	79.65 (2.02)	102.82 (1.59)
T₃-30 kg P₂O₅ ha⁻¹+PSB	10.43 (2.17)	64.93 (1.88)	73.03 (1.45)
T₄-PSB	9.02 (2.09)	54.98 (1.78)	64.31 (1.33)
T₅-60 kg P₂O₅ ha⁻¹+FYM	14.98 (2.45)	95.11 (2.14)	126.01 (1.72)
T₆-30 kg P₂O₅ ha⁻¹+FYM	12.51 (2.32)	78.73 (2.03)	83.66 (1.59)
T₇-FYM	10.53 (2.25)	67.77 (1.95)	73.31 (1.48)
T₈-60 kg P₂O₅ ha⁻¹+PSB+FYM	16.62 (2.52)	104.37 (2.22)	151.10 (1.81)
T₉-30 kg P₂O₅ ha⁻¹+PSB+FYM	13.40 (2.39)	87.00 (2.09)	91.80 (1.69)
T₁₀-PSB+FYM	11.51 (2.31)	72.91 (2.00)	77.87 (1.55)
SEM*	0.62	1.94	2.87
CD@0.05	1.86	5.77	8.53
CV (%)	8.68	4.31	5.33

*Data in paranthesis indicate concentration of nutrients in percent
3.2 Phosphorus

With the advancement of the crop growth, phosphorus uptake (Table 2 and Fig. 2) was increased up to 90 DAS in all the treatments but at harvest higher values were recorded only in combined treatments, which received 60 kg P₂O₅ ha⁻¹ + PSB (T₂-22.42 kg ha⁻¹), 60 kg P₂O₅ ha⁻¹ + FYM (T₅-26.70 kg ha⁻¹) and 60 kg P₂O₅ ha⁻¹ + PSB + FYM (T₈-32.10 kg ha⁻¹). Comparatively lower uptake at harvest at the same dose of phosphorus inferred that the phosphorus use efficiency was more when combined with both PSB and FYM than their individual application as indicated by significantly highest uptake in T₈ followed by T₅ and T₂.

3.3 Potassium

Uptake of potassium (Table 3 and Fig. 3) also followed the same increasing trend of nitrogen with advancement of growth. At all stages of crop growth, the highest potassium uptake was recorded by the T₈ treatment followed by T₅ and the lowest in T₄.

Potassium uptake by the crop was significantly increased due to the application of phosphorus up to 60 kg ha⁻¹ P₂O₅ with PSB, FYM and their combination at all stages, which might be due to increased biomass. The results were in accordance with those of Pagaria et al. [9] and Muthuchamy and Subramanian [10].

Table 2. Effect of phosphorus levels, PSB and FYM on uptake of phosphorus by Bt-cotton

Treatments	Uptake of phosphorus (kg ha⁻¹)	45 DAS	90 DAS	Harvest
T₁-60 kg P₂O₅ ha⁻¹	3.34 (0.62)*	20.07 (0.52)	18.54 (0.32)	
T₂-60 kg P₂O₅ ha⁻¹ + PSB	3.71 (0.65)	21.53 (0.55)	22.42 (0.35)	
T₃-30 kg P₂O₅ ha⁻¹ + PSB	2.64 (0.55)	15.76 (0.46)	13.37 (0.27)	
T₄-PSB	1.95 (0.45)	11.65 (0.38)	9.54 (0.20)	
T₅-60 kg P₂O₅ ha⁻¹ + FYM	4.09 (0.67)	25.50 (0.57)	26.70 (0.36)	
T₆-30 kg P₂O₅ ha⁻¹ + FYM	2.98 (0.56)	18.85 (0.49)	15.17 (0.29)	
T₇-FYM	2.28 (0.49)	14.19 (0.41)	10.76 (0.22)	
T₈-60 kg P₂O₅ ha⁻¹ + PSB+FYM	4.56 (0.69)	27.55 (0.59)	32.10 (0.39)	
T₉-30 kg P₂O₅ ha⁻¹ + PSB+FYM	3.38 (0.60)	21.14 (0.51)	16.61 (0.31)	
T₁₀-PSB+FYM	2.60	15.89	11.82	
SEM	0.16	0.52	0.64	
CD@0.05	0.48	1.54	1.90	
CV	7.88	4.64	6.25	

*Data in paranthesis indicate concentration of nutrients in per cent
Table 3. Effect of phosphorus levels, PSB and FYM on uptake of potassium by *Bt*-cotton

Treatments	45 DAS (kg ha\(^{-1}\))	90 DAS (kg ha\(^{-1}\))	Harvest (kg ha\(^{-1}\))
T\(_1\)-60 kg P\(_2\)O\(_5\) ha\(^{-1}\)	16.56(3.07)*	104.78(2.72)	115.73(2.02)
T\(_2\)-60 kg P\(_2\)O\(_5\) ha\(^{-1}\)+PSB	17.99(3.13)	111.28(2.82)	138.31(2.13)
T\(_3\)-30 kg P\(_2\)O\(_5\) ha\(^{-1}\)+PSB	15.33(3.18)	97.54(2.82)	111.03(2.20)
T\(_4\)-PSB	13.46(3.12)	84.68(2.75)	102.76(2.13)
T\(_5\)-60 kg P\(_2\)O\(_5\) ha\(^{-1}\)+FYM	19.76(3.23)	131.26(2.95)	167.53(2.28)
T\(_6\)-30 kg P\(_2\)O\(_5\) ha\(^{-1}\)+FYM	17.27(3.22)	110.84(2.87)	138.51(2.25)
T\(_7\)-FYM	14.92(3.18)	99.58(2.87)	110.40(2.23)
T\(_8\)-60 kg P\(_2\)O\(_5\) ha\(^{-1}\)+PSB+FYM	22.45(3.40)	143.37(3.05)	194.46(2.33)
T\(_9\)-30 kg P\(_2\)O\(_5\) ha\(^{-1}\)+PSB+FYM	18.83(3.35)	123.47(2.97)	121.22(2.23)
T\(_10\)-PSB+FYM	16.56(3.32)	115.33(2.97)	119.82(2.38)
SEM\(_+\)	0.89	2.79	3.28
CD\(_{0.05}\)	2.65	10.36	10.84
CV	8.93	4.48	4.57

Data in paranthesis indicate concentration of nutrients in percent

Fig. 2.

Fig. 3.
Critical observation of data revealed that the highest dose of phosphorus along with PSB and FYM resulted in maximum uptake of nitrogen, phosphorus and potassium followed by combination with only FYM or PSB. It was also observed that treatment receiving 30 kg P₂O₅ ha⁻¹ + FYM + PSB (T₉: 18.83, 123.47, 121.22 kg ha⁻¹) recorded higher uptake than only 60 kg P₂O₅ ha⁻¹ (T₁-16.56, 104.78, 115.73 kg ha⁻¹) but were on a par with each other at 45, 90 DAS, and at harvest. Among different levels of phosphorus, higher nutrient uptake was recorded at a maximum dose of phosphorus.

3.4 Micronutrients

The highest and lowest zinc uptake (Table 4 and Fig. 4) at 45, 90 DAS and at harvest were recorded in T₅ (22.45, 144, and 223 kg ha⁻¹) and T₆ (18.55, 106, and 133 kg ha⁻¹), respectively. However, the zinc uptake at 90 DAS was markedly influenced by integration of PSB + FYM at all levels of phosphorus (T₈, T₉, and T₁₀) while at harvest the treatments T₅ (60 kg P₂O₅ ha⁻¹ + PSB + FYM) and T₆ (60 kg P₂O₅ ha⁻¹ + FYM) were superior over only inorganic phosphorus application (T₁).

The copper uptake (Table 4 and Fig. 5) was significantly influenced by the treatment T₅ (60 kg P₂O₅ ha⁻¹ + PSB + FYM) and 60 kg P₂O₅ ha⁻¹ + FYM i.e., 31.64, 28.75 kg ha⁻¹, respectively). At 90 DAS, the integrated PSB + FYM at different levels of phosphorus (T₈, T₉, and T₁₀ i.e., 296, 280, and 228 kg ha⁻¹) and T₅ (60 kg P₂O₅ ha⁻¹ + FYM) recorded marked superiority over only inorganic phosphorus. At harvest, the integrated treatments receiving the maximum dose of inorganic Phosphorus (T₈, T₉, and T₂) were superior over only inorganic phosphorus. The highest manganese was observed at 90 DAS (106, 133 kg ha⁻¹) while no marked influence was noticed at 90 DAS.

Table 4. Effect of phosphorus levels, PSB and FYM on uptake of zinc and copper by Bt-cotton

Treatments	Zinc (g ha⁻¹)	Copper (g ha⁻¹)				
	45 DAS	90 DAS	Harvest	45 DAS	90 DAS	Harvest
T₁-60 kg P₂O₅ ha⁻¹	18.55	106	133	18.00	110	161
	(34.46)*	(27.47)	(23.21)	(33.47)	(28.46)	(27.00)
T₂-60 kg P₂O₅ ha⁻¹ + PSB	19.22	106	153	18.16	125	166
	(33.50)	(26.91)	(23.52)	(31.77)	(31.77)	(25.55)
T₃-30 kg P₂O₅ ha⁻¹ + PSB	18.87	93	130	14.97	95	156
	(38.99)	(26.86)	(25.71)	(31.30)	(27.58)	(30.95)
T₄-PSB	15.32	90	132	21.30	115	133
	(35.49)	(29.18)	(27.55)	(34.87)	(37.50)	(27.60)
T₅-60 kg P₂O₅ ha⁻¹ + FYM	20.03	126	186	26.29	126	210
	(32.87)	(28.30)	(25.35)	(43.53)	(28.37)	(28.65)
T₆-30 kg P₂O₅ ha⁻¹ + FYM	19.10	109	147	17.32	126	146
	(35.35)	(28.09)	(27.95)	(32.53)	(32.47)	(27.60)
T₇-FYM	17.80	106	139	15.91	104	110
	(37.74)	(30.67)	(28.11)	(33.83)	(29.95)	(22.25)
T₈-60 kg P₂O₅ ha⁻¹ + PSB + FYM	22.45	144	223	20.06	138	218
	(33.70)	(30.73)	(26.53)	(30.46)	(29.40)	(26.00)
T₉-30 kg P₂O₅ ha⁻¹ + PSB + FYM	20.53	139	155	18.96	129	133
	(36.20)	(33.29)	(28.59)	(33.90)	(30.93)	(24.50)
T₁₀-PSB + FYM	17.74	137	148	14.65	100	117
	(35.45)	(35.29)	(29.31)	(29.23)	(27.28)	(23.30)
SEM	2.08	8.9	18	1.40	9.59	11
CD@0.05	6.18	26	52	4.15	NS	24
CV	13.73	14	16	14.07	14	9

*Data in paranthesis indicate concentration of nutrients in ppm
Table 5: Effect of phosphorus levels, PSB and FYM on uptake of manganese and iron by Bt-Cotton

Treatments	Manganese (g ha\(^{-1}\))	Iron (g ha\(^{-1}\))				
	45 DAS	90 DAS	Harvest	45 DAS	90 DAS	Harvest
T1-60 kg P\(_2\)O\(_5\) ha\(^{-1}\)	19.05	187	249	174	1043	1313
	(33.93)	(48.60)	(43.23)	(321.63)	(270.07)	(229.17)
T2-60 kg P\(_2\)O\(_5\)ha\(^{-1}\)+PSB	24.20	197	303	191	1088	1510
	(41.70)	(49.67)	(46.80)	(331.93)	(275.47)	(232.90)
T3-30 kg P\(_2\)O\(_5\)ha\(^{-1}\)+PSB	20.17	161	256	152	901	1131
	(41.90)	(46.63)	(50.60)	(316.07)	(260.33)	(224.00)
T4-PSB	17.08	149	219	133	759	1036
	(39.87)	(48.67)	(45.57)	(308.70)	(246.67)	(215.07)
T5-60 kg P\(_2\)O\(_5\)ha\(^{-1}\)+FYM	28.75	247	359	208	1301	1795
	(47.13)	(55.60)	(48.87)	(341.33)	(292.27)	(244.67)
T6-30 kg P\(_2\)O\(_5\)ha\(^{-1}\)+FYM	22.62	208	267	173	1029	1184
	(43.27)	(53.63)	(50.77)	(325.30)	(265.40)	(223.77)
T7-FYM	24.88	191	238	147	889	1087
	(54.30)	(55.03)	(48.23)	(313.50)	(255.73)	(219.33)
T8-60 kg P\(_2\)O\(_5\)ha\(^{-1}\)+PSB+FYM	31.64	296	382	233	1412	2101
	(48.43)	(63.00)	(45.73)	(351.87)	(300.50)	(250.97)
T9-30 kg P\(_2\)O\(_5\)ha\(^{-1}\)+PSB+FYM	25.83	280	268	183	1166	1274
	(47.43)	(67.30)	(49.30)	(327.30)	(280.03)	(233.97)
T10-PSB+FYM	21.55	228	231	160	1032	1113
	(43.47)	(58.60)	(45.93)	(318.73)	(264.77)	(221.30)
SEM+	2.04	13	13	10	57	73
CD@0.05	6.09	40	40	29	169	217
CV	15.04	11	8	10	9	9

*Data in paranthesis indicate concentration of nutrients in ppm
Effect of phosphorus levels, PSB and FYM on Copper content and uptake by \textit{Bt-Cotton}

![Graph showing Copper Uptake and Content by Bt-Cotton](image)

Fig. 5.

Effect of phosphorus levels, PSB and FYM on manganese content and uptake by \textit{Bt-Cotton}

![Graph showing Manganese Uptake and Content by Bt-Cotton](image)

Fig. 6.
Iron uptake (Table 5 and Fig. 7) was markedly influenced by the treatments receiving maximum phosphorus (60 kg P₂O₅ ha⁻¹) with FYM (T₅) and PSB+FYM (T₈) at all growth stages and harvest. The uptake of all the micronutrient cations (Zn, Cu, Mn, and Fe) followed an increasing trend with advancement of crop growth.

4. DISCUSSION

Higher values of nitrogen uptake were recorded at a maximum dose of phosphorus that may be due to the increased volume of the root system which absorbs more amounts of nitrogen. The synergistic relationship between the two primary nutrients also might have favoured the higher nitrogen uptake. Application of FYM either alone or in combination with PSB increased the availability of nitrogen due to direct addition of nitrogen by the organic sources to the soil pool, enhanced fixation of nitrogen in the presence of readily available water-soluble P, and also increased mineralization with an increase in microbial population by the addition of organic matter and PSB. Similar results of a significant increase in nitrogen uptake due to phosphorus and FYM application were reported by Waghmare [11] and Baskar [12].

The marked influence of the application of FYM and PSB in combination with 60 kg ha⁻¹ phosphorus on its uptake by cotton could be due to increased biomass obtained as a result of high availability of nutrients released during the decomposition of FYM and also solubilisation of native phosphorus by phosphate solubilizing microbes. The results were coinciding with Ravankar [13] and Patidar and Mali [14].

The increase in uptake of potassium in organic treated plots and PSB inoculated plots may be due to solubilisation and release of native and fixed forms of potassium, charging the soil solution with K⁺ ions. The increase in uptake with time may be ascribed to split application of potassic fertilizers and the role of organics and PSB in increasing the use efficiency of applied fertilizers. The results are coinciding with those of Mahavishnan and Bhanurekha, [15].

An increase in uptake of micronutrients with phosphorus application could be due to the proliferation of roots, which might have helped in increased uptake of all the micronutrients. Application of FYM increased uptake of micronutrients (Zn, Cu, Mn, and Fe) by the crop, which might be due to chelation of Zn, Cu, Mn,
and Fe by organic compounds formed on decomposition of FYM making them more available, on the other hand, FYM itself acts as a source of all micronutrients rendering them more available through mineralization.

5. CONCLUSION

It can be concluded that integration of inorganic phosphorus (60 kg ha\(^{-1}\) P\(_2\)O\(_5\)), PSB and FYM resulted in the highest uptakes of N, P and K. Highest uptakes were recorded by the integrated treatment that received 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) + PSB + FYM, followed by 60 kg P\(_2\)O\(_5\) ha\(^{-1}\) + FYM. The uptake of all macronutrients was significantly influenced by levels of phosphorus applied. Uptake of all the micronutrients was markedly influenced by the treatments and FYM treated plots recorded superior values than other treatments. Application of 30 kg P\(_2\)O\(_5\) ha\(^{-1}\) + PSB + FYM was found to be on a par with addition of only 60 kg ha\(^{-1}\)P\(_2\)O\(_5\). Hence the P dose can be reduced to half by integrating with PSB and FYM.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Imade SR, Kubde KJ, Thaku MR, Gude BA. Response of biofertilizer under different levels of phosphorus and sulphur to yield, nutrient uptake and quality of soybean. Annals of Plant Physiology. 2010;24(1):21-24.

2. Nagdive SJ, Bhalerao PD, Dongarwar UR, Goud VV. Effect of irrigation and nutrient management on yield, quality and uptake of nutrients by mustard (Brassica juncea L.). Journal of Soils & Crops. 2007;17(1):128-132.

3. Pathak J, Pal RL. Effect of integrated plant nutrient management on content and uptake of phosphorus by Indian Mustard. Progressive Agriculture. 2016;16(1):61-66.

4. Singh H, Sharma KN, Arora BR. Influence of continuous fertilization to a fixed maize-wheat sequence on the changes in chemical pools of soil phosphorus and potassium. National Seminar on Development of Soil Sciences- Abstract; 1993;134-136.

5. Usman K, Khan N, Khan MU, Rehman A, Ghulam S. Impact of tillage and herbicides on weed density, yield and quality of cotton in wheat based cropping system. J. Integr. Agr. 2013;12:1568-1579.

6. Das A, Prasad M, Shivay YS, Subha KM. Productivity and sustainability of cotton (Gossypium hirsutum L.) cropping system as influenced by prilled urea, farmyard manure and Azotobacter. J. Agron. Crop Sci. 2004;190:298-304.

7. Toro M. Phosphate solubilising microorganisms in the rhizosphere of native plants from tropical savannas: An adaptive strategy to acid soils/ In: Velaquez C, Rodriguez-Barrueco, E (eds). Developments in Plant and Soil Science. Springer. Netherlands. 2007:249-252.

8. Panse, V.G. and Sukhatme, P.V. 1978. Statistical methods for agricultural workers. ICAR, New Delhi. 199-211.

9. Pagaria TM, Ravankar HN, Khonde HW, Gawande RP, Labaria GS. Effect of FYM with and without fertilizer on the yield and chemical composition of cotton under rainfed condition. Punjab Rao Krishi Vidyapeeth Research Journal. 1995;19(1):87-88.

10. Muthuchamy I, Subramanian K. Design and performance of paired row drip irrigation system on yield attributes of cotton. Madras Agricultural Journal. 2004;91(1-3):19-22.

11. Waghmare DN. Effect of Organic Manuring In Cotton. M.Sc (Agriculture) thesis submitted to Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola; 1998.

12. Baskar K. Effect of integrated use of inorganic fertilizers and FYM or green leaf manure on uptake and nutrient use efficiency of rice-rice system on an Inceptisol. Journal of the Indian Society of Soil Science. 2003;51(1):47-51.

13. Ravankar HN, Patil RH, Mohod NB, Deshmukh PW. Effect of organic farming on yield and soil fertility under cotton-sorghum-soybean rotation. Punjab Rao Krishi Vidyapeeth Research Journal. 2000;24(2):80-82.

14. Patidar M, Mali AL. Integrated nutrient management in sorghum (Sorghum bicolor) and its residual effect on wheat (Triticum aestivum). Indian Journal of Agricultural Sciences. 2001;71(9):587-590.
15. Mahavishnan K, Bhanurekha K. Production potential and quality parameters of cotton (Gossypium hirsutum L.) as influenced by integrated nutrient management option in cotton - sunflower cropping system. Indian Journal of Agricultural Research. 2007; 42(2):147 - 149.

© 2021 Rushi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/68571