Laryngopharyngeal reflux, gastroesophageal reflux and dental disorders: A systematic review

Jerome R. Lechien, Carlos M. Chiesa-Estomba, Christian Calvo Henriquez, Francois Mouawad, Cyrielle Ristagno, Maria Rosaria Barillari, Andrea Nacci, Cyril Bouland, Luigi Laino, Sven Saussez

1 Laryngopharyngeal Reflux Study Group of Young-Otolaryngologists of the International Federations of Otorhinolaryngological Societies (YO-IFOS), 2 Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, School of Medicine, University Paris Saclay, Paris, France, 3 Department of Otorhinolaryngology—Head & Neck Surgery, Hospital Universitario Donostia, San Sebastian, Spain, 4 Department of Otorhinolaryngology and Head and Neck Surgery, Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain, 5 Department of Otorhinolaryngology and Head and Neck Surgery, CHRU de Lille, Lille, France, 6 Edwards-Realty, Mons, Belgium, 7 Division of Phoniatrics and Audiology, Department of Mental and Physical Health and Preventive Medicine, University of Naples SUN, Naples, Italy, 8 Department of Biomedical and Clinical Sciences, Phoniatric Unit, L. Sacco Hospital, University of Milan, Milan, Italy, 9 ENT Audiology and Phoniatric Unit, University of Pisa, Pisa, Italy, 10 Department of Stomatology-Maxillofacial Surgery, CHU Saint-Pierre, Brussels, Belgium, 11 Multidisciplinary Department of Medical-Surgical and Dental Specialties, L. Vanvitelli University, Napoli, Italy, 12 Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium, 13 Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium

Abstract

Objectives
To investigate the role of gastroesophageal reflux disease (GERD) and laryngopharyngeal reflux (LPR) in the development of dental disorders.

Methods
The first outcome was review of the role of reflux in the development of dental disorders in adults. The second outcome was review of the potential pathophysiological mechanisms underlying the association between reflux and dental disorders. Three investigators screened publications for eligibility and exclusion based on predetermined criteria through a literature search conducted on PubMed, Cochrane Library, and Scopus according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Results
From 386 publications, 24 studies were kept for analysis. Objective approaches were used in 16 studies to confirm GERD diagnosis. Pharyngeal reflux episodes (LPR) were considered in 2 studies. No study considered nonacid reflux. The study results supported a higher prevalence of dental erosion and caries in reflux patients compared with healthy individuals.
Patients with dental erosion have a higher prevalence of reflux than controls. The pathophysiological mechanisms would involve changes in the saliva physiology. No study investigated the microbiota modifications related to reflux although the findings are supporting the critical role of microbiota change in the development of dental disorders. There is an important heterogeneity between studies about diagnostic methods and clinical outcome evaluation.

Conclusion

The involvement of reflux in the development of dental disorders is not formally demonstrated and requires future investigations considering pharyngeal acid and nonacid reflux episodes and in particular their potential impact on oral microbiota.

Introduction

Laryngopharyngeal reflux (LPR) is an inflammatory condition of the upper aerodigestive tract tissues related to direct and indirect effect of gastroduodenal content reflux, which induces morphological changes in the upper aerodigestive tract [1]. The incidence of LPR-associated symptoms ranges from 10 to 30% of people of Western countries [2,3] and would be increasing concerning the changes in a modern lifestyle and dietary habits [4]. The LPR is involved in the development of many otolaryngological diseases through the deposit of gastroduodenal enzymes into the mucosa of the upper aerodigestive tract. Thus, pepsin has been identified in the laryngeal [5], hypopharyngeal [6], oral [7], nasal [7], tears [8], and Eustachian mucosa as well as in the secretion of chronic rhinosinuses [9] and chronic media otitis [10]. The involvement of reflux in the development of dental disorders has been suspected for several decades. Reflux would be responsible for increasing risk of oral mucosa inflammation [11], dental caries [11] and erosion [12]. Nowadays, the pathophysiological mechanisms underlying the development of dental disorders related to reflux are still poorly understood. Many hypotheses have been proposed including the reduction of the salivary buffering capacity or the modification of the pharyngeal/oral microbiota by acid reflux episodes [13].

The aim of this paper is to review the current literature about the role of reflux in the development of the following dental disorders: mucosa inflammation, dental erosion and caries.

Materials and methods

The criteria for considering studies for the systematic review were based on the population, intervention, comparison, and outcome (PICO) framework [14]. The review was conducted regarding the PRISMA checklist for systematic reviews [15].

Types of studies

The studies were included if they investigated the association between reflux and dental disorders (i.e., mucosa inflammation, dental erosion and caries) through clinical prospective, retrospective, randomized or non-randomized studies, or basic science research published in English or French in peer-reviewed journals. We considered the studies conducted in an adult population. Only studies reporting data for more than 10 patients were considered.
Participants, inclusion/exclusion criteria

Papers were included for analysis if they reported the diagnostic method for reflux disease (LPR or gastroesophageal reflux disease (GERD)). The clinical papers were included if the authors attempted a rigorous diagnosis of LPR or GERD through symptoms, findings, or objective testing. For GERD, the consideration of international criteria was appreciated (Johnson & DeMeester score [16]; Montreal criteria [17]). Patients with positive pH-monitoring or (hypopharyngeal-esophageal) multichannel intraluminal impedance-pH monitoring ((HE) MII-pH) were considered as LPR patients. Patients with reflux esophagitis or positive DeMeester score at the pH-study were considered as GERD patients. Patients with a clinical diagnosis of LPR or GERD without objective testing were considered as ‘suspected LPR or GERD patients’.

Outcomes

The main study outcome was a review of the potential causal association between reflux and the following dental disorders: mucosa inflammation, dental erosion and caries. Gingivitis and periodontitis were considered as mucosa inflammation disorders. The definitions and the tools used for the assessment of these dental disorders are available in Table 1 [18–21]. Authors summarized the following characteristics of studies: the method/criteria used for the reflux diagnosis, the prevalence of dental disorders in the reflux population or the prevalence of reflux in the dental disorder population, the outcome used for the study of association between reflux and dental disorders, and the comparison of outcome with a control-group. The second study outcome was a review of the basic science studies for evaluating ways in which reflux might lead to dental disorders. Heterogeneity among included articles on patient population, means of reflux diagnosis, and outcomes measurements limited ability to combine data statistically into a formal meta-analysis, limiting analysis of the current Systematic Review to qualitative rather than a quantitative summary of the available information. The Tool to Assess Risk of Bias in Cohort Studies developed by the Clarity Group and Evidence Partners was used for the bias/heterogeneity analyses of the included studies [22].

Intervention and comparison

Because the objective of this systematic review is to analyze the potential relationship between reflux and dental disorders, the included studies did not have to detail treatment approaches or response.

Table 1. Definitions of dental disorders included in the present review.

Disorder	Definition	Assessment tools
Dental Erosion	The loss of hard dental tissue by a chemical process without bacterial involvement.	Tooth Wear Index (TWI)
Tooth decay (dental caries)	The destruction of the outer surface (enamel) of a tooth.	Decayed Missing Filled (DMF) Index
Gingivitis	The non-destructive disease causing inflammation of the gums.	Papillary Marginal Attached (PMA) Index
Periodontitis	The chronic multifactorial inflammatory disease associated with dysbiotic plaque biofilms and characterized by progressive destruction of the tooth-supporting apparatus.	PMA Index.

This table presents the scientific definitions of the dental disorders studied in the present review and the clinical scores used in the included papers for their assessment. All clinical score/index are characterized by a high score in pathological cases.

https://doi.org/10.1371/journal.pone.0237581.t001
Search strategy

Three independent authors (JRL, CMCE and MRB) conducted a PubMed, Cochrane Library and Scopus search to identify articles published between January 1990 and December 2019 about the role of reflux in the development of dental disorders. There was a high degree of agreement between authors (p<0.05). Clinical and experimental studies were screened if they had database abstracts, available full-texts or titles referring to the condition. The following keywords were used: ‘reflux’; ‘laryngitis’; ‘laryngopharyngeal’; ‘gastroesophageal’; ‘dental’; ‘teeth’; ‘decay’; ‘caries’; ‘erosion’; and ‘mucosa’. Authors analyzed the number of patients, study design, inclusion and exclusion criteria, quality of trial and evidence level (EL).

Results

Initial screening identified 386 papers. Among these papers, 22 articles met our inclusion criteria and were kept for analysis (Fig 1, Table 2) [11–13,23–41]. Two additional basic research studies were included. These studies investigated the relationship between reflux, dental erosion [42,43] and mucosal inflammation [43].

Reflux and dental erosion

Dental erosion in reflux patients. A total of 18 papers investigated the relationship between reflux and dental erosion in patients with a suspected or confirmed diagnosis of reflux [13,23–34,36,38–41]. The prevalence of dental erosion in reflux patients ranged from 16% to 44%, [27,28,31,34,36,39–41] whereas dental erosion occurred in <20% of healthy individuals [31,36,40]. Overall, controlled studies showed that GERD patients have a significantly higher rate or severity score of dental erosion compared with healthy individuals (Table 2) [13,29–31,36,40].

According to dual-probe esophageal pH testing, Schroeder et al. found a higher prevalence of dental erosion in LPR patients (N = 7/10; 70%) compared with GERD patients (N = 3/10; 30%) or controls (N = 1/10; 10%) [24]. In the same vein, Moazez et al. reported that patients with pharyngeal acid or weakly acid reflux episodes had higher tooth wear index scores than healthy individuals [12].

About the location of erosions, Gregory-Head et al. found that reflux was associated with the development of dental erosion in both mandibular and maxillary surfaces [29]. However, the results of the study of Loffeld et al. suggested a differential impact of reflux on the tooth damage [27]. Thus, the rate of upper incisor damage (32.5%) was higher than the rate of lower incisor damage (7.8%) in patients with positive GERD regarding Johnson & DeMeester score. These authors also reported that the duration of GERD complaints was positively associated with the presence of upper incisor damage [27]. Similar findings have been suggested by Filipi et al., who observed that a long GERD history was significantly associated with a higher risk of caries and dental erosion [33].

Reflux in patients with dental erosion. Four studies focused on the prevalence of reflux in patients with dental erosion [23,25,26,38]. The prevalence of GERD-symptoms or findings (esophagitis or positive pH testing) in patients with dental erosion ranged from 64% to 75% [25,26,38]. Bartlett et al. found that 64% of patients with dental erosion had pathologic distal reflux regarding Johnson & DeMeester score [26]. Moreover, they reported that GERD patients with oral acid pH had higher tooth wear index scores. In the same vein, Meurman et al. reported that the severity of dental erosion was higher in patients with suspected or confirmed GERD compared with subjects with dental erosion but no GERD [23]. More recently, Wilder-Smith et al. did not report a significant association between the characteristics of the distal reflux episodes (acid or weakly acid) and the severity of dental erosion [38].
Fig 1. Chart flow.

https://doi.org/10.1371/journal.pone.0237581.g001
References	Design	EL	Patients characteristics	Reflux diagnosis	Outcome association	Results	Main findings
Meurman [23]	Prospective	B	Gr1: 28 erosion +	1. GERD symptoms	Ass. mucosal changes & Reflux	-	Patients with dental erosion have a higher score at the Maratka classification (reflux severity) compared with individuals without erosion. There are no mucosal and saliva changes associated with reflux.
Meurman [23]	Controlled	Gr2: 89 erosion -	2. In some patients:	Single-probe pH study		Gr1 > Gr2	
Meurman [23]			Gender: 78M/39F	Saliva buffering capacity, viscosity and flow rate.		Gr1 = Gr2	
Meurman [23]			Age: 54–49 yo				
Schroeder [24]	Prospective	B	Gr1: 12 erosion +	1. GERD symptoms	Prevalance GERD—LPR	Gr1: N = 9 & 7	Patients with GERD or LPR at the dual-probe pH metry had a higher proportion of dental erosion. The proportion of dental erosion was particularly higher in LPR. There were no saliva disorders associated with reflux.
Schroeder [24]	Controlled	Gr2-3: 10 GERD	2. Dual-probe pH metry	Saliva: pH, flow rates, buffering		Gr1: N = 0	
Schroeder [24]			Gr4: 10 CT	capacity, Ca2+ & Phosphorus level			
Schroeder [24]			Gender & Age: N.A.	Dental erosion (Gr2, 3, 4)	N = 7; 4; 1		
Gudmundsson [25]	Prospective	C	N = 14 erosion	1. Dual-probe pH metry	Esophagitis GI endoscope (N = 12)	N = 9	75% of patients with dental erosion and who benefited from GI endoscopy had esophagitis.
Gudmundsson [25]	Uncontrolled	Gr2: 89F	Gender: 12M/2F				
Gudmundsson [25]			Age: 8–39 yo				
Barfett [26]	Prospective	B	Gr1: 36 palatal erosion	1. GERD symptoms		N = 23	64% of patients with dental erosions had GERD at the pH monitoring (pH < 4, 4% of time). Patients with acid pH in distal esophagus had lower oral pH. The acid oral pH was associated with a higher tooth wear index.
Barfett [26]	Controlled	Gr2: 10 CT	2. Dual-probe pH metry			Relation between:	
Barfett [26]			Gender: N.A.				
Barfett [26]			Johnson & DeMeester	Esophageal distal & oral pH		+	
Barfett [26]			Age: 15–74 yo				
Löffeld [27]	Retrospective	C	N = 198 GERD	1. GERD symptoms			GERD patients have a higher % of incisor damage. The duration of complaints was positively associated with the presence of upper incisor damage.
Löffeld [27]			Gender: 118M/80F				
Löffeld [27]			Johnson & DeMeester	Esophageal distress & oral pH		+	
Löffeld [27]			Age: 17–93 yo				
Jarvinen [28]	Prospective	C	Gr1: 20 esophagitis +	1. GERD symptoms	Dental erosion prevalence (Gr1—2)	N = 4; 0	20% of patients with esophagitis have dental erosion.
Jarvinen [28]	Uncontrolled	Gr2: 48 esophagitis -	2. Reflux esophagitis				
Jarvinen [28]			Gender & Age: N.A.				
Gregory-Head [29]	Prospective	B	Gr1: 10 GERD—Gr2: 10 CT	1. GERD symptoms	TWI score	GERD > CT	Tooth wear index score was significantly higher in patients with GERD compared with patients with GERD-symptoms and no reflux at the pH monitoring.
Gregory-Head [29]	Controlled	Gr2: 10 CT	2. Dual-probe pH metry			GERD > CT	
Gregory-Head [29]			Gender: N.A.				
Gregory-Head [29]			Johnson & DeMeester	Maxillary surface involvement		GERD > GT	
Gregory-Head [29]			Age: 18–69 yo				
Manoz [30]	Prospective	B	Gr1: 181 GERD	1. GERD symptoms	Dental erosion prevalence	GERD > CT	The % and severity of dental erosion was higher in GERD patients compared with controls. There were no differences between groups about the periodontal status.
Manoz [30]	Controlled	Gr2: 72 CT	2. GI endoscopy			Periodontal status:	
Manoz [30]			Gender: 71M/110F				
Johnson & DeMeester			Johnson & DeMeester				
Manoz [30]			Age: 17–93 yo				
Löffeld [27]	Retrospective	C	N = 198 GERD	1. GERD symptoms	Upper incisor damage (%)	32.5%	
Löffeld [27]			Gender: 118M/80F				
Löffeld [27]			Johnson & DeMeester	Esophageal distress & oral pH		+	
Löffeld [27]			Age: 17–93 yo				
Oginni [31]	Prospective	B	Gr1: 125 GERD	1. GERD symptoms	Impaired TWIs & Gr differences		Dental erosion is significantly more prevalent in GERD patients compared with CT.
Oginni [31]	Controlled	Gr2: 100 CT	2. Reflux esophagitis			GERD patients 16%; GERD > CT	
Oginni [31]			Gender: 57M/68F				
Johnson & DeMeester			Johnson & DeMeester				
Oginni [31]			Age: 43 yo				
Mogaez, 2005 [12]	Prospective	B	Gr1: 31 LPR—Gr2: 7 CT	1. LPR symptoms	% of distal pH < 4	LPR > CT	The proportion of palatal tooth wear was higher in patients with a high number of pharyngeal reflux episodes compared with controls.
Mogaez, 2005 [12]	Controlled	Gr1: 19M/12F	2. Dual-probe pH metry			LPR > CT	
Mogaez, 2005 [12]			Gender: 19M/12F				
Mogaez, 2005 [12]			Johnson & DeMeester	Maxillary surface involvement		GERD > CT	
Mogaez, 2005 [12]			Age: 48 yo				
Holbrook [32]	Prospective	C	N = 91 erosion & GERD	1. GERD symptoms	Low salivary buffering	10.4%	10% of suspected GERD patients had low salivary buffering capacity, which was associated with dental erosion.
Holbrook [32]	Uncontrolled	Symptoms			Ass. LSB & erosion		
Holbrook [32]			Gender & Age: N.A.				
Holbrook [32]			Johnson & DeMeester	Low esophageal pH		17.7%	
Filipi [33]	Prospective	C	N = 24 GERD	1. GERD symptoms	Buffering capacity reduction	N = 13	Patients with a long history of GERD had a higher risk of caries and erosions compared with short GERD history patients. 54% had buffering capacity disorder.
Filipi [33]	Uncontrolled	Gender: 7M/17F	2. Single-probe pH metry	Caries & erosion prevalences	long GERD history > short GERD history		
Filipi [33]			Age: 46 yo				
Filipi [33]			Johnson & DeMeester				

(Continued)
References	Design	EL	Patients characteristics	Reflux diagnosis	Outcome association	Results	Main findings
Correa [13]	Prospective	B	Gr1 = 30 GERD—Gr2 = 30 CT	1. LPR symptoms	Dental erosion number & severity	GERD > CT	GERD patients have a higher number (and severity) of dental erosion than CT. The saliva buffering capacity is abnormal in GERD patients.
	Controlled	Gender: 10M/20F	2. Single-probe pH metry	Saliva buffering capacity	CT > GERD		
		Age: 33 yo	3. GI endoscopy				
Yoshikawa [34]	Prospective	B	Gr1 = 40 GERD	1. GERD symptoms	Decayed missing filled index	GERD > CT	Oral symptoms in GERD are likely to be associated with impaired salivary flow volume. GERD patients have a higher number of decay, erosion, and gingival disorders compared with CT.
	Controlled	Gr2 = 50 CT	Montreal criteria	Papillary, marginal, attached index	GERD > CT		
		Gender: 21M/19F	Oral Hygiene Index				
		Age: 69 yo	Dental erosion prevalence (GERD)	24.3%			
			Salivary flow volume	CT > GERD			
Song [35]	Retrospective	B	Gr1 = 280 periodontis	1. GERD symptoms	Ass. GERD & Periodontis	+	GERD is a risk factor for developing caries and chronic periodontis.
		Gr2 = 280 CT	Montreal criteria	Ass. GERD & caries	+		
		Gender: 140M/140F					
		Age: 49 yo					
Alavi [36]	Prospective	B	Gr1 = 31 GERD—Gr2 = 71 CT	1. GERD symptoms	GERD dental erosion prevalence	22.6%	22.6% of GERD patients had dental erosion, which was significantly higher compared with CT.
	Controlled	Gender: N.A.	2. Reflux esophagitis	CT dental erosion prevalence	7%		
		Age: 30–50 yo	Comparison GERD vs CT	GERD > CT			
Deppe [37]	Prospective	C	N = 71 GERD/NERD	1. GERD symptoms	Oral mucosa erythema/ulcer	N = 19 (22%)—0 (0%)	27% of GERD patients have oral mucosa acidic irritation.
	Uncontrolled	Gender: 30M/41F	2. Reflux esophagitis	Acidic palatal mucosa lesions	N = 10 (14%)		
		Age: 50 yo	Acidic tongue mucosa lesions	N = 4 (6%)			
Wilder-Smith, [38]	Prospective	C	N = 374 erosion +	1. GERD symptoms	MII-pH GERD prevalence	69%	69% of patients with dental erosion had GERD at the MII-pH. There was no significant association between reflux characteristics and dental erosion severity.
	Uncontrolled	Gender: 222M/127F	2. Acid reflux (MII-pH)				
		Age: 35 yo					
Vinesh [39]	Prospective	C	N = 142 GERD	1. GERD symptoms	Dental erosion (%)	44.0%	Dental erosion, periodontitis and gingivitis are the most prevalent dental disorders found in GERD patients.
	Uncontrolled	Gender: N.A.	Periodontis (%)	25.5%			
		Age: N.A.	Gingivitis—gingival ulcer (%)	9.9%—2%			
			Gingival or palatal erythema (%)	5.7%—2.8%			
			Mouth floor erythema (%)	1.4%			
Milan [40]	Prospective	B	Gr1 = 143 GERD	1. GERD symptoms	GERD dental erosion prevalence	25.9%	GERD patients had a higher prevalence of dental erosion compared with CT.
	Controlled	Gr2 = 274 CT	Montreal criteria	CT dental erosion prevalence	17.2%		
		Gender: 43M/100F	Comparison GERD vs CT	GERD > CT			
		Age: 43 yo					
Watanabe [11]	Retrospective	C	Gr1 = 105 GERD	1. GERD symptoms	Salivary flow volume	CT > GERD	Oral soft tissue disorders, dental erosions and caries are associated with GERD.
		Gr2 = 50 NER	Montreal criteria	PMA Index scores	GERD > CT		
		Gender: 57M/48F	Gr1: reflux esophagitis	OHI-S	GERD > CT		
		Age: 66 yo	Gr2: non-erosive reflux	Decay indices	GERD > CT		
Warsi [41]	Prospective	C	N = 187 GERD	1. GERD symptoms	Oral submucous fibrosis (%)	66.3%	35.3% of GERD patients have dental erosion. Nausea, vomiting, esophagitis, xerostomia, ulcer, gingivitis, & angular cheilitis were associated with GERD.
	Uncontrolled	Gender: 109M/78F	2. GI endoscopy	Oral ulceration (%)	59.4%		
		Age: N.A.	Dental erosion prevalence (%)	35.3%			

Abbreviations: Ass. = association; CT = control(s); EL = evidence level; GERD (s) = gastroesophageal reflux disease (symptoms); GI = gastrointestinal; Gr = group; LPR = laryngopharyngeal reflex; LSB = low salivary buffering; M/F = male/female; MII-pH = multichannel intraluminal impedance pH-monitoring; N.A. = not available; NER = non-erosive reflux; OHI-S = Simplified Oral Hygiene Index; PMA = Papillary Marginal Attached; TWIs = tooth wear index score; yo = years old.

https://doi.org/10.1371/journal.pone.0237581.t002
Reflux, caries and oral mucosa disorders. Three studies investigated the relationship between reflux and caries in adults [11,34,35]. Initially, Yoshikawa et al. observed higher scores of decayed missing filled index in GERD patients compared with controls [34]. Two years later, Song et al. retrospectively supported the positive association between the presence of GERD symptoms and the development of both periodontitis and caries [35]. The results of these two studies were corroborated in the controlled study of Watanabe et al., who found stronger scores of decay indices in GERD patients compared with healthy subjects [11].

The involvement of reflux in the development of both gingival and periodontal disorders has been studied in 5 studies [11,30,37,39,41]. Munoz et al. did not find significant differences between patients with positive esophageal pH testing and healthy individuals in the periodontal status, including plaque index, hemorrhagic index, and gingival recessions [30]. More recently, Vinesh et al. reported a periodontitis rate of 25.5% in GERD patients [39]. In the same study, the authors reported that <10% of GERD patients had oral mucosa or gingival inflammation findings (erythema, ulcer) [39]. These results did not corroborate those of Yoshikawa et al. and Watanabe et al. who reported more frequently mucosa inflammatory findings (papillary, marginal, attached index) in GERD patients compared with controls [11,34].

Other mucosal changes have been reported in the study of Deppe et al. where 27% of GERD or non-erosive reflux patients had findings suggesting oral irritation (e.g. palatal, buccal and tongue erythema) [37]. The proportion of reflux patients affected by oral mucosal changes was higher in the study of Warsi et al.: these authors found that 66.3% and 59.4% of GERD patients had oral submucous fibrosis and oral ulceration(s), respectively [41].

Potential mechanisms of association

Clinical studies. The impact of reflux on the saliva physiology is the most studied field for explaining the relationship between reflux, dental erosion, caries and mucosa inflammation [11,13,23,32–34]. The occurrence of lower salivary buffering capacity in GERD patients has been supported in three studies [14,32,33]. Among the other saliva impairments, studies supported that the low oral pH [32] and the low salivary flow rate [11,34] may be additional factors contributing to the development of dental erosion in GERD patients. Moreover, two studies reported that the oral hygiene index was better in healthy individuals compared with GERD patients [11,34].

Experimental research. Higo et al. explored the association between dental erosion and GERD in a surgically induced reflux rat model [42]. They observed a significant higher rate of dental erosion, alveolar bone destruction and osteomyelitis in reflux rats compared with controls 30 weeks after the surgery. In a similar rat model, Shimazu et al. investigated the development of dental and oropharyngeal lesions [43], in particular pathological changes in the tooth and pharynx on experimental rat model of chronic acid GERD, elucidating the possible association between gastric acid reflux and oral and pharyngeal diseases. The oral cavities were observed histologically every 2 weeks until 20 weeks and the results reported a shorter molar crown heights in GERD rats with dental erosion (10-weeks after) and dentin exposure (20-weeks after), associated with inflammatory cell infiltration of neutrophils and lymphocytes and fibrosis both in the periodontal pocket and in the posterior part of the tongue mucosa.

Epidemiological analysis

The vast majority of the studies were controlled studies. Overall, 11 studies were prospective controlled (EL: B), 8 were prospective uncontrolled (EL: C), and 3 were retrospective chart reviews (EL: C). There was an important heterogeneity between studies about the reflux
diagnosis approaches. The reflux diagnosis consisted of GERD symptoms ± objective examination(s) in the majority of studies (N = 20).

The reflux diagnosis was based on GERD symptoms and demonstrated reflux esophagitis (N = 7) [11,27,28,31,36,37,41]; GERD symptoms only (N = 5) [32,34,35,39,40]; two other groups using Montreal criteria) [34,35]; or GERD symptoms and positive findings at the single- [30,33] or dual-probe pH monitoring (N = 5) [24,26,29]. Among the authors using the pH monitoring for the diagnosis, 4 authors used Johnson & DeMeester criteria [23,26,29,33], whereas other used composite criteria or did not provide the detailed information for the GERD diagnosis [12,13,24,25,30,38]. Among the composite approaches, Meurman et al. recognized using single-probe pH monitoring in some patients of the cohort; the diagnosis of other patients being based on GERD symptoms only [23]. Correa et al. included patients with both GERD and LPR symptoms, but the diagnosis confirmation was based on the positive distal acid reflux episodes at the single-probe esophageal pH monitoring [13]. Wilder-Smith et al. considered acid and weakly acid reflux episodes through MII-pH findings in patients with GERD symptoms [38]. The detection of acid pharyngeal reflux episodes was considered for the diagnosis of LPR in 2 studies [12,25]. Many authors did not exclude cofactors that may lead to dental disorders, such as bruxism, alcohol or tobacco consumption, medication, radiation and history of dental procedures. The bias analysis is reported in Table 3. For the LPR diagnosis, the following criteria/ratings were considered for the analysis: No = authors based the diagnosis on symptoms or findings only; Probably no = authors based the diagnosis on single probe esophageal pH monitoring or esophagitis; Probably yes = authors based the diagnosis on dual/triple esophageal/pharyngeal probe pH monitoring or pepsin detection in tissue; Yes = authors based the diagnosis on impedance pH monitoring considering acid/nonacid pharyngeal reflux episodes. For the exclusion criteria/confounding factors, the following criteria/ratings were considered for the analysis: No = many conditions were not excluded and the risk of bias in the study results is high; Probably no = some conditions were not excluded and the risk of bias in the study results may be significant; Probably yes = the majority of confounding conditions were excluded and the risk of bias in the study results may be low; Yes = authors carefully excluded the majority of confounding conditions that may bias the interpretation of the study results. For the outcome of association, the following criteria/ratings were considered for the analysis: No = outcomes are not adequate to demonstrate potential association; Probably no = outcomes are less adequate to demonstrate potential association; probably yes = outcomes may be adequate to demonstrate potential association; yes = outcomes are adequate to demonstrate potential association.

Discussion

Direct and indirect treatment costs due to dental diseases worldwide are estimated from $144 to $442 billion yearly, corresponding to an average of 4.6% of global health expenditure [44]. Dental erosion and caries are among the most prevalent dental diseases, the latter affecting more than 2.5 billion people worldwide [45]. In that context, the identification of favoring factors, such as reflux, makes particularly sense to reduce the considerable economic burden to society related to the management of these disorders.

The main finding of this review is the identification of an important heterogeneity between studies in the method used for the reflux diagnosis. Thus, the large majority of studies considered the reflux diagnosis through GERD criteria (GERD symptoms, reflux esophagitis, esophageal distal reflux episodes) and only two studies really distinguished LPR from GERD [12,25]. Nowadays, there is no consensus about the LPR diagnosis criteria, but many authors agree that LPR may be highly suspected in case of laryngopharyngeal symptoms, findings and ≥1 acid or
nonacid pharyngeal reflux episodes at the 24-hour HEMII-pH [46–48]. In the majority of studies, the authors did not investigate the occurrence of pharyngeal reflux episodes and did not consider nonacid reflux, which concerns more than 50% of LPR patients [47,48]. The only consideration of reflux diagnosis though GERD criteria is a selection bias because heartburn and other GERD-associated digestive complaints are not present in all LPR patients, and less than 50% of GERD patients have LPR regarding the HEMII-pH [1,49]. For this reason, it is still difficult to draw a clear conclusion about the impact of LPR in the development of dental disorders. We can state that the prevalence of dental erosion and (to a lesser extent) caries appears to be higher in GERD patients compared with healthy individuals.

The heterogeneity in the patient inclusion criteria may explain the inconsistencies between studies, particularly in the assessment of salivary function. Indeed, some authors identified a significant rate of impaired salivary function in GERD patients [13,32,33], while Meurman et al. did not find significant abnormalities [23]. The lack of consideration of pharyngeal reflux episodes is particularly problematic for the analysis of salivary function because to have an impact on the saliva secretion and composition. Reflux has to be characterized by pharyngeal/oral reflux episodes. The current controversial results found in the literature are probably due to the study of different profiles of patients; some patients having GERD and LPR other subjects having GERD without LPR.

However, the study of the modifications of the saliva function makes sense in the reflux context. Saliva is composed of many protective factors (e.g. epidermal growth factor, mucus,

Table 3. Bias analysis.

References	LPR diagnosis	Cofactors	Outcomes of association
Meurman [23]	Probably no	Probably yes	Probably yes
Schroeder [24]	Probably yes	Yes	Probably yes
Gudmundsson [25]	Probably yes	N.A.	No
Bartlett [26]	Probably yes	Probably no	Probably no
Loffeld [27]	Probably no	N.A.	Probably no
Jarvinen [28]	Probably no	N.A.	Probably no
Gregory-Head [29]	Probably yes	Probably yes	Probably yes
Munoz [30]	Probably no	Probably yes	Probably yes
Moaazez, 2005	Probably yes	N.A.	Probably yes
Oginni [31]	Probably no	Probably no	Probably no
Holbrook [32]	No	Probably yes	Probably no
Filipi [33]	Probably no	N.A.	Probably no
Correa [13]	Probably no	Probably no	Probably no
Yoshikawa [34]	No	Probably no	Probably yes
Song [35]	No	Probably no	Probably no
Alavi [36]	Probably no	N.A.	No
Deppe [37]	Probably no	Probably no	Probably no
Wilder-Smith [38]	Probably yes	Yes	Probably yes
Vinesh [39]	No	N.A.	Probably no
Milani [40]	No	Probably yes	No
Watanabe [11]	Probably no	Probably yes	Probably yes
Warsi [41]	Probably no	Probably no	Probably no

The Tool to Assess Risk of Bias in Cohort Studies developed by the Clarity Group and Evidence Partners was used for the bias/heterogeneity analyses of the included studies.22 Abbreviations: N.A. = not available.

https://doi.org/10.1371/journal.pone.0237581.t003
bicarbonate), which are modified by LPR [50–52]. For example, some works have demonstrated that pepsin negatively impacts the function of carbonic anhydrase type III, which is an essential enzyme for the production of bicarbonate in the pharyngolaryngeal mucosa [53]. Besides, Samuels et al. reported that pepsin might impair the expression of different mucin genes, leading to dehydration of the mucus, which becomes less protective [54]. In the same way, LPR is associated with a decrease of epidermal growth factor in the saliva, which may decrease the healing of mucosal lesions [52]. According to these observations and the results of the studies included in the present review, it is reasonable to suspect that reflux may lead to saliva impairments, which may involve flow rate and buffering capacity. The modification of saliva composition and secretion could be associated with a decrease in the dental hygiene status of reflux patients, which is supported in two studies [23,34].

Dental erosion may be related to other etiologies than LPR, including bruxism [55], extrinsic acids (fruit juices, carbonated and isotonic drinks) [56], medication [57], eating disorders [57], alcohol and tobacco [30], radiation and history of dental procedures [58]. The epidemiological analysis found that a significant number of authors did not consider these confounding factors in their studies, leading to potential biases.

Strangely, there is an important expanding research area that has not been explored in patients with both reflux and dental disorders: the laryngopharyngeal and oral microbiota. The study of the microbiota is an expanding area in many digestive diseases because it would be associated with the development and the therapeutic response of some inflammatory diseases [59]. In oral and dental disorders, recent studies reported the protective role of some bacteria such as Akkermansia muciniphila against the development of periodontal disorders in animal models [60]. Another recent paper supported the pivotal role of oral microbiota in regulating human oral health [61]. According to the characteristics of oral microbiota, some patients would develop more frequently caries than others, due to complex interaction between the commensal microbiota, host susceptibility and environmental factors [62]. Because LPR is associated with laryngopharyngeal and oral pH changes [25,63] and involves the reflux of many digestive enzymes, it is conceivable that the reflux disease may change the local microbiota, which could be associated with modulation of the local inflammation. In the same vein, the consumption of proton pump inhibitors (PPI) is known to be associated with oral microbiota changes [64,65]. Note that, to date, only one study investigated the dental health of GERD patients throughout a PPI clinical course. Wilder-Smith et al. found that erosive tooth wear did not progress over the 12-month PPI course [66]. The microbiota of patients with laryngeal carcinoma seems to be modified [67]. To our knowledge, there is no study extensively investigating this field of research. Only two studies suggested potential modification of the prevalence of Streptococcus mutans in GERD children [68], but they did not investigate the other commensal microorganisms. Naturally, it is currently impossible to state that LPR induces microbiota changes, but this hypothesis has to be investigated in future experimental and clinical studies. Moreover, the future studies could consider the role of diet in both the oral microbiota changes and the development of reflux. Indeed, both exogenous acids (from the diet) and endogenous acids (from stomach juice) are known to dissolve the enamel mineral, resulting in dental erosions [69].

Conclusion

The involvement of reflux in the development of dental erosion, caries, and mucosa inflammation is not demonstrated. The lack of use of HEMII-pH, the heterogeneity between studies, and the low level of evidence of studies limit the drawn of clear conclusion. Future clinical controlled studies should consider all types of laryngopharyngeal reflux, the detection of
gastrogastric proteins in the saliva and the potential interaction between diet, reflux and oral microbiota. The future demonstration of relationship between LPR and oral disorders makes sense regarding the prevalence of both patients with a long history of reflux and dental disorders.

Supporting information

S1 Checklist. PRISMA 2009 checklist. (DOC)

Author Contributions

Conceptualization: Jerome R. Lechien, Christian Calvo Henriquez, Francois Mouawad, Cyrielle Ristagno, Antonio Schindler, Cyril Bouland, Luigi Laino, Sven Saussez.

Data curation: Jerome R. Lechien, Christian Calvo Henriquez, Francois Mouawad, Cyrielle Ristagno, Cyril Bouland.

Formal analysis: Jerome R. Lechien, Christian Calvo Henriquez, Francois Mouawad, Andrea Nacci, Cyril Bouland.

Investigation: Jerome R. Lechien, Carlos M. Chiesa-Estomba, Christian Calvo Henriquez, Francois Mouawad, Cyrielle Ristagno, Antonio Schindler.

Methodology: Jerome R. Lechien, Carlos M. Chiesa-Estomba, Francois Mouawad, Cyrielle Ristagno, Maria Rosaria Barillari, Antonio Schindler, Sven Saussez.

Supervision: Jerome R. Lechien, Maria Rosaria Barillari, Andrea Nacci, Luigi Laino, Sven Saussez.

Validation: Jerome R. Lechien, Maria Rosaria Barillari, Luigi Laino, Sven Saussez.

Writing – original draft: Jerome R. Lechien.

Writing – review & editing: Carlos M. Chiesa-Estomba, Christian Calvo Henriquez, Maria Rosaria Barillari, Andrea Nacci, Cyril Bouland, Sven Saussez.

References

1. Lechien JR, Akat LM, Hamdan AL, et al. Evaluation and Management of Laryngopharyngeal Reflux Disease: State of the Art Review. Otolaryngol Head Neck Surg. 2019 May; 160(5):762–782. https://doi.org/10.1177/0194599819827488 PMID: 30744489

2. Kamani T, Penney S, Mitra I, Pothula V. The prevalence of laryngopharyngeal reflux in the English population. Eur Arch Otorhinolaryngol. 2012; 269(10):2219–25. https://doi.org/10.1007/s00405-012-2028-1 PMID: 22576243

3. Spantideas N, Drosou E, Bougea A, Assimakopoulos D. Laryngopharyngeal reflux disease in the Greek general population, prevalence and risk factors. BMC Ear Nose Throat Disord. 2015; 15:7. https://doi.org/10.1186/s12901-015-0020-2 PMID: 26696776

4. Lechien JR, Bobin F, Muls V, Horoi M, Thill MP, Dequanter D, et al. Patients with acid, high-fat and low-protein diet have higher laryngopharyngeal reflux episodes at the impedance-pH monitoring. Eur Arch Otorhinolaryngol. 2019. https://doi.org/10.1007/s00405-019-05711-2 PMID: 31679054

5. Samuels TL, Handler E, Syring ML, et al. Mucin gene expression in human laryngeal epithelia: effect of laryngopharyngeal reflux. Ann Otol Rhinol Laryngol. 2008; 117(9):688–95. https://doi.org/10.1177/000348940811709011 PMID: 18834673

6. Johnston N, Wells CW, Samuels TL, Blumin JH. Pepsin in nonacidic refluxate can damage hypopharyngeal epithelial cells. Ann Otol Rhinol Laryngol. 2009; 118(9):677–85. https://doi.org/10.1177/00034894091180913 PMID: 19810610
7. Sereg-Bahar M, Jerin A, Jansa R, Stabuc B, Hocevar-Boltezar I. Pepsin and bile acids in saliva in patients with laryngopharyngeal reflux—a prospective comparative study. Clin Otolaryngol. 2015; 40 (3):234–9. https://doi.org/10.1111/coa.12358 PMID: 25516364

8. Iannella G, Di Nardo G, Plateroti R, Rossi P, Plateroti AM, Mariani P, et al. Investigation of pepsin in tears of children with laryngopharyngeal reflux disease. Int J Pediatr Otorhinolaryngol. 2015; 79 (12):2312–5. https://doi.org/10.1016/j.ijpolorl.2015.10.034 PMID: 26586244

9. Ren JJ, Zhao Y, Wang J, Ren X, Xu Y, Tang W, et al. PepsinA as a Marker of Laryngopharyngeal Reflux Detected in Chronic Rhinosinusitis Patients. Otolaryngol Head Neck Surg. 2017; 156(5):893–900. https://doi.org/10.1177/0194599817697055 PMID: 28457223

10. Formánek M, Zeleník K, Kominek P, Matoušek P. Diagnosis of extraesophageal reflux in children with chronic otitis media using Peptest. Int J Pediatr Otorhinolaryngol. 2015; 79(5):677–9. https://doi.org/10.1016/j.ijpolorl.2015.02.013 PMID: 25736547

11. Watanabe M, Nakatani E, Yoshikawa H, et al. Oral soft tissue disorders are associated with gastro-oesophageal reflux disease: retrospective study. BMC Gastroenterol. 2017; 17(1):92. https://doi.org/10.1186/s12876-017-0650-5 PMID: 28784097

12. Moazzez R, Bartlett D, Anggiansah A. Dental erosion, gastro-oesophageal reflux disease and saliva: how are they related? J Dent 2004; 32: 489–94. https://doi.org/10.1016/j.jdent.2004.03.004 PMID: 15240067

13. Corrêa MC, Lerco MM, de Cunha ML, Henry MA. Salivary parameters and teeth erosions in patients with gastroesophageal reflux disease. Arg Gastroenterol. 2012; 49(3):214–8. https://doi.org/10.1590/s0004-28032012000300009 PMID: 23011245

14. Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak. 2007; 7:16. https://doi.org/10.1186/1472-6947-7-16 PMID: 17573961

15. McInnes MDF, Moher D, Thombs BD, et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA. 2018; 319 (4):388–396. https://doi.org/10.1001/jama.2017.19163 PMID: 29362800

16. Johnson LF, DeMeester TR. Development of the 24-hour intraesophageal pH monitoring composite scoring system. J Clin Gastroenterol. 1986; 8 Suppl 1:52–8.

17. Vakil N, van Zanten SV, Kahrilas P, Dent J, Jones R; Global Consensus Group. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol. 2006; 101(8):1900–20; quiz 1943. https://doi.org/10.1111/j.1572-0241.2006.00630.x PMID: 16928254

18. Smith BG, Knight JK. An index for measuring the wear of teeth. Br Dent J. 1984; 156:435–8. https://doi.org/10.1038/sj.bdj.4809187 PMID: 6952171

19. Eslamipour F, Borzabadi-Farahani A, Asgari I. The relationship between aging and oral health inequalities assessed by the DMFT index. Eur J Paediatr Dent. 2010; 11:193–9. PMID: 21250771

20. Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018; 89 Suppl 1:S173–S182.

21. Wei SH, Lang KP. Periodontal epidemiological indices for children and adolescents: I. gingival and periodontal health assessments. Pediatr Dent. 1981; 3:353–60. PMID: 6952173

22. Viswanathan M, Berkman ND, Dryden DM, Hartling L. Assessing Risk of Bias and Confounding in Observational Studies of Interventions or Exposures: Further Development of the RTI Item Bank. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013. http://www.ncbi.nlm.nih.gov/books/NBK154461/. Accessed October 20, 2019.

23. Meurman JH, Toskala J, Nuutinen P, Klemetti E. Oral and dental manifestations in gastroesophageal reflux disease. Oral Surg Oral Med Oral Pathol 1994; 78: 583–9. https://doi.org/10.1016/0030-4220 (94)90168-6 PMID: 7838463

24. Schroeder PL, Filler SJ, Ramirez B, Lazarchik DA, Vaezi MF, Richter JE. Dental erosion and acid reflux disease. Ann Intern Med 1995; 122: 809–15. https://doi.org/10.7326/0003-4819-122-11-19950610-00010 PMID: 7741364

25. Gudmundsson K, Kristjansson G, Theodors A, Holbrook WP. Tooth erosion, gastroesophageal reflux, and salivary buffer capacity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995; 79(2):185–9. https://doi.org/10.1016/1079-2104(95)00280-x PMID: 7614182

26. Bartlett DW, Evans DF, Anggiansah A, Smith BG. A study of the association between gastro-oesophageal reflux and palatal dental erosion. Br Dent J 1996; 181: 125–31. https://doi.org/10.1038/sj.bdj.4809187 PMID: 8840581
27. Loffeld RJ. Incisor teeth status in patients with reflux oesophagitis. Digestion 1996; 57: 388–90. https://doi.org/10.1159/00021365 PMID: 8913699

28. Jarvinen V, Meurman JH, Hyvarinen H, Rytoma I, Murtona H. Dental erosion and upper gastrointestinal disorders. Oral Surg Oral Med Oral Pathol 1988; 65: 298–303. https://doi.org/10.1016/0030-4220(88)90113-2 PMID: 3162579

29. Gregory-Head BL, Curtis DA, Kim L, Cello J. Evaluation of dental erosion in patients with Gastroesophageal reflux disease. J Prosthet Dent 2000; 83: 675–80. PMID: 10842138

30. Munoz JV, Herreros B, Sanchiz V, et al. Dental and periodontal lesions in patients with gastro-oesophageal reflux disease. Dig Liver Dis 2003; 35: 461–7. https://doi.org/10.1016/s1590-8658(03)00215-9 PMID: 12870730

31. Oginni AO, Agbakwuru EA, Ndububa DA. The prevalence of dental erosion in Nigerian patients with gastro-oesophageal reflux disease. BMC Oral Health 2005; 5: 1. https://doi.org/10.1186/1472-6831-5-1 PMID: 15740613

32. Holbrook WP, Furuholm J, Gudmundsson K, Theodors A, Meurman JH. Gastric reflux is a significant causative factor of tooth erosion. J Dent Res. 2009; 88(5):422–6. https://doi.org/10.1177/0022034509336530 PMID: 19493884

33. Filipi K, Halackova Z, Filipi V. Oral health status, salivary factors and microbial analysis in patients with active gastro-oesophageal reflux disease. Int Dent J. 2011; 61(4):231–7. https://doi.org/10.1111/j.1875-595X.2011.00063.x PMID: 21851356

34. Yoshikawa H, Furuta K, Ueno M, et al. Oral symptoms including dental erosion in gastroesophageal reflux disease are associated with decreased salivary flow volume and swallowing function. J Gastroenterol. 2012; 47(4):412–20. https://doi.org/10.1007/s00535-011-0515-6 PMID: 22200941

35. Song JY, Kim HH, Cho EJ, Kim TY. The relationship between gastroesophageal reflux disease and chronic periodontitis. Gut Liver. 2014; 8(1):35–40. https://doi.org/10.5009/gnl.2014.8.1.35 PMID: 24516699

36. Alavi G, Alavi A, Saberfiroozi M, Sarbazi A, Motamedi M, Hamedani Sh. Dental Erosion in Patients with Gastroesophageal Reflux Disease (GERD) in a Sample of Patients Referred to the Motahari Clinic, Shiraz, Iran. J Dent (Shiraz). 2014; 15(1):33–8.

37. Deppe H, Mücke T, Wagenpfel S, Kesting M, Rozej A, Bajbouj M, et al. Erosive esophageal reflux vs. non erosive esophageal reflux: oral findings in 71 patients. BMC Oral Health. 2015; 15:84. https://doi.org/10.1186/s12903-015-0069-8 PMID: 26208714

38. Wilder-Smith CH, Mücke T, Wagenpfel S, Kesting M, Rozej A, Bajbouj M, et al. Erosive esophageal reflux vs. non erosive esophageal reflux: oral findings in 71 patients. BMC Oral Health. 2015; 15:84. https://doi.org/10.1186/s12903-015-0069-8 PMID: 26208714

39. Listl S, Galloway J, Mossey PA, Marcones W. Global Economic Impact of Dental Diseases. J Dent Res. 2015; 94(10):1355–61. https://doi.org/10.1177/0022034516602879 PMID: 26318590

40. Kassebaum NJ, Smith AGC, Bernabe E, Fleming TD, Reynolds AE, Vos T, et al. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2017: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors. J Dent Res 2017 Apr 1; 96(4):380e7.

41. Higo T, Mukaisho K, Ling ZQ, Oue K, Chen KH, Araki Y, et al. An animal model of intrinsic dental erosion caused by gastro-oesophageal reflux disease. Oral Dis. 2009; 15(5):360–5. https://doi.org/10.1111/j.1601-0825.2009.01561.x PMID: 19371399

42. Shimazu R, Yamamoto M, Minesaki A, Kuratomi Y. Dental and oropharyngeal lesions in rats with chronic acid reflux esophagitis. Auris Nasus Larynx. 2018; 45(3):522–526. https://doi.org/10.1016/j.anl.2017.08.011 PMID: 28882408

43. Listl S, Galloway J, Mossey PA, Marcones W. Global Economic Impact of Dental Diseases. J Dent Res. 2015; 94(10):1355–61. https://doi.org/10.1177/0022034516602879 PMID: 26318590

44. Kassebaum NJ, Smith AGC, Bernabe E, Fleming TD, Reynolds AE, Vos T, et al. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2017: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors. J Dent Res 2017 Apr 1; 96(4):380e7.

45. Higo T, Mukaisho K, Ling ZQ, Oue K, Chen KH, Araki Y, et al. An animal model of intrinsic dental erosion caused by gastro-oesophageal reflux disease. Oral Dis. 2009; 15(5):360–5. https://doi.org/10.1111/j.1601-0825.2009.01561.x PMID: 19371399

46. Shimazu R, Yamamoto M, Minesaki A, Kuratomi Y. Dental and oropharyngeal lesions in rats with chronic acid reflux esophagitis. Auris Nasus Larynx. 2018; 45(3):522–526. https://doi.org/10.1016/j.anl.2017.08.011 PMID: 28882408
47. Lee JS, Jung AR, Park JM, Park MJ, Lee YC, Eun YG. Comparison of Characteristics According to Reflux Type in Patients With Laryngopharyngeal Reflux. Clin Exp Otorhinolaryngol. 2018; 11(2):141–145. https://doi.org/10.1016/j.clex.2018.02.004 PMID: 28993603

48. Lechien JR, Bobin F, Muls V, et al. Validity and reliability of the reflux symptom score. Laryngoscope. 2019. https://doi.org/10.1002/lary.28017 PMID: 30983002

49. Habermann W, Schmid C, Neumann K, Devaney T, Hammer HF. Reflux symptom index and reflux finding score in otolaryngologic practice. J Voice. 2012; 26(3):e123–7. https://doi.org/10.1016/j.jvoice.2011.02.004 PMID: 21477986

50. Luo HN, Yang QM, Sheng Y, et al. Role of pepsin and pepsinogen: linking laryngopharyngeal reflux with otitis media with effusion in children. Laryngoscope. 2014; 124(7):E294–300. https://doi.org/10.1002/lary.24538 PMID: 24284944

51. Min HJ, Hong SC, Yang HS, Mun SK, Lee SY. Expression of CAIII and Hsp70 Is Increased the Mucous Membrane of the Posterior Commissure in Laryngopharyngeal Reflux Disease. Yonsei Med J. 2016; 57(2):469–74. https://doi.org/10.3349/ymj.2016.57.2.469 PMID: 26847302

52. Eckley CA, Sardinha LR, Rizzo LV. Salivary concentration of epidermal growth factor in adults with reflux laryngitis before and after treatment. Ann Otol Rhinol Laryngol. 2013; 122(7):440–4. https://doi.org/10.1177/000348941312200705 PMID: 23951695

53. Samuels TL, Handler E, Syring ML, Pajewski NM, Blumin JH, Kerschner JE, et al. Mucin gene expression in human laryngeal epithelia: effect of laryngopharyngeal reflux. Ann Otol Rhinol Laryngol. 2008; 117(9):688–95. https://doi.org/10.1177/000348940811700911 PMID: 18340703

54. O’ Sullivan EA, Curzon ME, Roberts GJ, Milla PJ, Stringer MD. Gastroesophageal reflux and its relationship to erosion of primary and permanent teeth. Eur J Oral Sci 1998; 106:765–9. https://doi.org/10.1046/j.0909-8836.1998.eos106302.x PMID: 9672098

55. Friesen LR, Bohaty B, Onikul R, et al. Is histologic esophagitis associated with dental erosion: a cross-sectional observational study? BMC Oral Health. 2017; 17(1):116. https://doi.org/10.1186/s12903-017-0408-z PMID: 28797247

56. Farahmand F, Sabbaghian M, Ghoudousi S, Seddighoraei N, Abbasi M. Gastroesophageal reflux disease and tooth erosion: a cross-sectional observational study. Gut Liver. 2013; 7(3):278–281. https://doi.org/10.5009/gnl.2013.7.3.278 PMID: 23710307

57. Linnett V, Seow WK, Connor F, Shepherd R. Oral health of children with gastro-oesophageal reflux disease: a controlled study. Aust Dent J 2002; 47:156–62. https://doi.org/10.1111/j.1834-7819.2002.tb00321.x PMID: 12139271

58. Rapozo DC, Bernardazzi C, de Souza HS. Diet and microbiota in inflammatory bowel disease: The gut in disarray. World J Gastroenterol. 2017; 23(12):2124–2140. https://doi.org/10.3748/wjg.v23.i12.2124 PMID: 28405140

59. Hucker O, Mulhall H, Rubín G, et al. Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J Clin Periodontol. 2019. https://doi.org/10.1111/jcpe.13214 PMID: 31674889

60. Minty M, Caneilll T, Serino M, Burcelin R, Tercé F, Blasco-Baque V. Oral microbiota-induced periodontitis: a new risk factor of metabolic diseases. Rev Endocr Metab Disord. 2019. https://doi.org/10.1007/s11154-019-09526-8 PMID: 31741266

61. Inquinbert C, Bourgeois O, Giraudet N, Tramini P, Viennet S, Dussart C, et al. Microbiota of interdental space of adolescents according to Risk of Caries: A cross-sectional study protocol. Contemp Clin Trials Commun. 2019; 16:10044. https://doi.org/10.1016/j.conctec.2019.10044 PMID: 31709310

62. Inquinbert C, Bourgeois O, Giraudet N, Tramini P, Viennet S, Dussart C, et al. Microbiota of interdental space of adolescents according to Risk of Caries: A cross-sectional study protocol. Contemp Clin Trials Commun. 2019; 16:10044. https://doi.org/10.1016/j.conctec.2019.10044 PMID: 31709310

63. Loke C, Lee J, Sander S, Mei L, Farella M. Factors affecting intra-oral pH—a review. J Oral Rehabil. 2016; 43(10):778–85. https://doi.org/10.1111/joor.12429 PMID: 27573678

64. Yasutomi E, Hoshi N, Adachi S, et al. Proton Pump Inhibitors Increase the Susceptibility of Mice to Oral Infection with Enteropathogenic Bacteria. Dig Dis Sci. 2018; 63(4):881–889. https://doi.org/10.1007/s10620-017-4905-3 PMID: 29327263

65. Mishiro T, Oka K, Kuroki Y, et al. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. J Gastroenterol Hepatol. 2018; 33(5):1059–1066. https://doi.org/10.1111/jgh.14040 PMID: 29105152
66. Wilder-Smith CH, Materna A, Martig L, Lussi A. Longitudinal study of gastroesophageal reflux and erosive tooth wear. BMC Gastroenterol. 2017; 17(1):113. https://doi.org/10.1186/s12876-017-0670-1 PMID: 29070010

67. Gong H, Shi Y, Xiao X, Cao P, Wu C, Tao L, et al. Alterations of microbiota structure in the larynx relevant to laryngeal carcinoma. Sci Rep. 2017 Jul 14; 7(1):5507. https://doi.org/10.1038/s41598-017-05576-7 PMID: 28710395

68. Ersin NK, Öncan Ö, Tümgor G, Aydoğdu S and Hilmioğlu S. Oral and dental manifestations of gastroesophageal reflux disease in children: a preliminary study. Pediatr Dent 2006; 28: 279–84. PMID: 16805363

69. Bohmer CJ, Klinkenberg-Knol EC, Niezen-de Boer MC, Meuwissen PR, Meuwissen SG. Dental erosions and gastro-oesophageal reflux disease in institutionalized intellectually disabled individuals. Oral Dis 1997; 3: 272–5. https://doi.org/10.1111/j.1601-0825.1997.tb00053.x PMID: 9643224