Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies

Dan Zhou 1,2, Weiwei Tang 3, Wenyi Wang 3, Xiaoyan Pan 3, Han-Xiang An Corresp., 3, Yun Zhang Corresp. 1, 2

1 Department of Translational medicine, Xiamen Institute of Rare Earth Materials, Xiamen, China
2 Department of Translational medicine, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Fuzhou, China
3 Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China

Corresponding Authors: Han-Xiang An, Yun Zhang
Email address: anhanxiang@yahoo.com, zhangy@fjirsm.ac.cn

Background: Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods: Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results: A total of 31 articles involving 35 observational studies with 2482 cases and 1212 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR=9.97, 95%CI=5.66-17.57). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR=0.62, 95%CI=0.42-0.93). Conclusion: APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC.
Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies

Dan Zhou¹,², Weiwei Tang³, Wenyi Wang³, Xiaoyan Pan³, Han-Xiang An³,⁴ and Yun Zhang¹,²,⁴

¹Department of Translational medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, China

²Department of Translational medicine, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, 350002, Chinese Academy of Sciences, China

³Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361001, China

⁴Each of the following is a corresponding author: Yun Zhang and Han-Xiang An. Yun Zhang, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, 17th Floor, Technovation Build, Ji-mei Rd, Xiamen, Fujian, 361021, China; Email: zhangy@fjirsm.ac.cn

Han-Xiang An, Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361001, China; Email: anhanxiang@yahoo.com
Background: Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results.

Methods: Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized.

Results: A total of 31 articles involving 35 observational studies with 2482 cases and 1212 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR=9.97, 95%CI=5.66-17.57). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR=0.62, 95%CI=0.42-0.93).

Conclusion: APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC.
Introduction

Breast cancer (BC) is the most common malignancy and the leading cause of cancer death among females in both well and poorly developed countries, accounting for approximately 15% of all cancer deaths in 2012 (Torre et al. 2015). It is well established that BC is a clinically and pathologically heterogeneous disease and has been categorized into five subtypes (i.e., luminal A and B, human epidermal growth receptor-2, triple negative and basal-like) based on various biological markers (Inoue & Fry 2015). Risk factors including reproductive, hormonal and environmental factors, have been associated with an increased incidence of BC (Harrison et al. 2015). Previous studies have reported that early detection using mammography is effective and can improve the overall survival rate (Brooks et al. 2010). However, false positive mammograms always result in the over-diagnosis and over-treatment of developing BC. Therefore, no acknowledged biomarker has yet been proven to be sufficiently sensitive and specific for routine use in clinical diagnosis.

Epigenetic as well as genetic alterations are both stable and heritable and occur in tumor suppressor genes involved in tumourigenesis. The most common epigenetic alteration involving aberrant DNA methylation, a reliable and sensitive biomarker for nearly all types of cancer including breast cancer, often leads to the transcriptional silencing of tumor suppressor genes (Zmetakova et al. 2013). Several studies have demonstrated that tumor DNA derived from malignant cells can be detected in various bodily fluids and serum of BC patients and can potentially serve as a non-invasive diagnostic material (Martínez-Galán et al. 2014). A growing
number of tumor suppressor genes has been shown to be directly involved in cell cycle regulation, DNA repair, cell signal transduction and angiogenesis (Dumitrescu 2012). Notably, the promoter methylation of genes involved in the canonical Wnt signaling pathway, which regulates cell differentiation, proliferation and homeostasis, are observed more often in BC patients compared with cancer-free controls (Klarmann et al. 2014).

The adenomatous polyposis coli (APC) gene is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin, which is regarded as a transcriptional activator (Virmani et al. 2001). The APC gene, located at chromosome 5q21-5q22, was originally implicated in colorectal cancer (Van der Auwera et al. 2008). The inhibition or down-regulation of APC expression through APC promoter methylation contributes to the formation of colorectal cancer (Ashktorab et al. 2013). Similar to the findings in colorectal cancer, APC promoter methylation is associated with various early- or late-stage human malignancies, including BC (Matsuda et al. 2009). The promoter hypermethylation of APC is most often related to the nuclear accumulation of β-catenin, which may result in the loss of cell growth control (Sparks et al. 1998). Thus, APC promoter methylation, which acts as a non-invasive biomarker, can be used to distinguish BC patients from cancer-free controls. However, recent studies have yielded conflicting results with regard to the significant association between APC methylation and BC pathogenesis. Wojdacz KT et al. reported that there was no significant difference in the frequency of APC methylation in peripheral blood leukocyte DNA between BC patients and cancer-free controls(Wojdacz et al. 2011a). CHO YH et al. also showed that the APC gene was rarely hypermethylated in blood DNA in BC patients (Cho et al. 2010).
Given these controversial results, we conducted this comprehensive meta-analysis of the current observational studies to evaluate the association between the aberrant methylation of the APC promoter and increased BC risk.

Materials & Methods

Search Strategy

Eligible studies were identified by searching the following databases until February 2016: the Cochrane Library, PubMed, Web of Science and Embase. No language restrictions or lower data limits were imposed; only abstracts, unpublished and incomplete studies were excluded. Titles, abstracts of potential references and reference lists from relevant studies were carefully checked. We performed the search strategy using the following search terms and their various combinations: “APC,” “Adenomatous polyposis coli,” “methylation,” “breast cancer,” “breast neoplasm” and “mammary carcinoma.”

Selection Criteria

The studies included in the present meta-analysis addressed the association between APC methylation and increased BC risk. Our inclusion criteria were as follows: (1) provided sufficient data on the frequency of APC methylation in BC patients and controls; (2) original observational studies in full-text form; and (3) when several studies overlapped, the most recent or large-scale article was selected. The following were exclusion criteria: (1) data based on reviews, animal models, case reports or cell line studies; (2) studies lacking key information necessary for calculations; (3) duplicated studies; and (4) studies including BC patients or controls who underwent radiotherapy and chemotherapy which may influence APC promoter methylation.
levels.

Data extraction

The relevant data were extracted from the eligible studies independently by two authors (D Zhou and WW Tang). Differing opinions, if any, were resolved by discussion in accordance with the original literature. The following information was extracted in a predefined table: the name of the first author, the year of publication, the country of origin, the sample type, the experimental methods used to detect APC methylation, sample size, tumor stage, tumor grade and APC methylation frequencies. Additionally, we classified stage 0, I and II as early-stage BC and stage III and IV as late-stage BC, as confirmed by the AJCC staging system. Furthermore, grades I and II were combined as low-grade BC; grade III was regarded as high-grade BC. This meta-analysis was performed following the statement of preferred reporting items set by the PRISMA Group (File S1) (Moher et al. 2009).

Statistical analysis

All analyses were carried out using Review Manager 5.3 (Cochrane Collaboration) and Stata 12.0 (Stata Corporation) software. Forest plots were designed to estimate relative study-specific effects according to the 95% confidence interval (CI). The association between APC promoter methylation and BC risk was evaluated by calculating the odds ratio (OR) with corresponding 95%CI. For individual studies the OR was represented by a square and the 95%CI by a horizontal line in the centre of the forest plot. The OR and associated 95%CIs in the centre of the forest plot were plotted on a logarithmic scale. When a CI did not include 1.0, a correlation was deemed statistically significant. Heterogeneity between the included studies was quantified
through Q-tests based on the chi-square test and I² value. An I² value >50% and a p<0.10 denoted strong heterogeneity, an I² value =25-50% denoted a moderate degree of heterogeneity and an I² value <25% or a p>0.10 denoted mild heterogeneity (Higgins et al. 2003). A random effect model was used when statistical heterogeneity existed among studies (p<0.1). Otherwise, the fixed effect model was employed (Li et al. 2014). Moreover, the subgroup meta-analyses were also performed according to region, experimental methods for detecting APC methylation, and sample types in order to explore the potential origin of inter-study heterogeneity. In addition, we conducted a sensitivity analysis by removing a single study to examine the stability of the results. The funnel plot, Begg’s test and Egger’s test were investigated in order to determine the degree of publication bias. The treatment effect was plotted against a measure of study size in the funnel plot. When publication bias was present, the shape of the funnel plot was asymmetric. Trim and fill analysis was used to estimate the number of potential missing studies resulting from the asymmetry of the funnel plot.

Results

Study selection and Characteristics

The selection process is displayed as a flow chart in Fig. 1 based on the search strategies as previously described. After a careful initial search of the abstracts, 74 potentially relevant articles were identified excluding 1 duplicate and 93 irrelevant studies. Then, we reviewed the full text articles. Among these studies, 43 were excluded (21 articles did not design a control group; 9 articles focused on BC cell lines; 8 articles lacked available data; and 5 articles were reviews). Finally, 31 studies published from 2001 to 2016 involving 35 studies were included in this
systematic meta-analysis (PubMed 19, Web of Science 10, Embase 2).

The general characteristics of eligible studies were summarized and displayed in Table 1. A total of 2482 BC patients and 1212 controls were employed in multiple countries or regions including Asia (n=10) (Jin et al. 2001; Jing et al. 2010; Jung et al. 2013; Lee et al. 2004; Liu et al. 2007; Park et al. 2011b; Prasad et al. 2008; Zhang et al. 2007), Europe (n=13) (Fridrichova et al. 2015; Hoque et al. 2009; Jeronimo et al. 2008; Martins et al. 2011; Matuschek et al. 2010; Muller et al. 2003; Parrella et al. 2004; Rykova et al. 2004; Van der Auwera et al. 2009a; Van der Auwera et al. 2009b; Van der Auwera et al. 2008; Wojdacz et al. 2011b), Africa (n=2) (Hoque et al. 2006; Swellam et al. 2015), North America (n=9) (Brooks et al. 2010; Chen et al. 2011; Cho et al. 2010; Dulaimi et al. 2004; Lewis et al. 2005; Shinozaki et al. 2005; Taback et al. 2006; Virmani et al. 2001) and Oceania (n=1) (Pang et al. 2014). Furthermore, the methylated APC levels in BC patients and controls were examined with 6 methods. Of these methods, methylation specific PCR (MSP) was adopted in 17 studies, quantitative real-time MSP (QMSP) was used in 9 studies, methylation specific-multiplex ligation-dependent probe amplification (MethyLight) was used in 4 studies, methylation specific-multiplex ligation-dependent probe amplification (MS-MLPA) was employed in 2 studies, methylation-sensitive high-resolution melting analysis (MS-HRM) was used in 2 studies and pyrosequencing was used in only 1 study. Furthermore, BC tissues (i.e., fresh frozen tissues, formalin fixed paraffin-embedded tissues and tissues from surgery), samples derived from blood (i.e., blood cells and serum) and needle aspirated fluid (NAF) were enrolled to assess the methylation levels of the APC promoter.

Meta-analysis
The pooled results of this meta-analysis reflected the association between APC promoter methylation and BC pathogenesis (Fig. 2). Due to the existence of significant heterogeneity among the included studies (p<0.00001, $I^2=68\%$), the random effect model was adopted to evaluate the combined effects of APC promoter methylation. The overall analysis indicated that the frequency of APC promoter methylation was remarkably higher in BC patients than in cancer-free controls. The combined OR for 35 included relevant studies showed that APC methylation was significantly correlated with increased BC risk and the absence of APC expression played an important role in BC pathogenesis (OR=9.97, 95%CI=5.66-17.57).

Sensitivity analysis

A sensitivity analysis was conducted by omitting one individual study every time to evaluate the stability of the pooled OR and to choose the heterogeneous study. As shown in Fig. 3, the combined OR between APC methylation and increased BC risk was indeed reliable without heterogeneous studies.

Subgroup analysis

Due to the significant existence of inter-study heterogeneity (p<0.00001, $I^2=68\%$), subgroup analysis based on region, experimental methods for the detection of APC methylation and sample types were carried out to appraise the sources of the heterogeneity (Table 2). With regard to subgroup analysis based on region, heterogeneity in Asian subgroups disappeared completely ($I^2=0\%$) and the pooled OR value was 27.21[13.51, 54.81]. The I^2 value representing heterogeneity in the European and North American subgroups decreased by 8% and 26%, compared with the overall I^2 value. Furthermore, their OR values also decreased to 5.50[2.69,
11.22] and 3.79[1.70, 8.45]. In the African subgroup, the OR was 172.05[1.76, 16792.96] with higher heterogeneity ($I^2=80\%$) due to the small subset containing only 2 studies. These results indicated that the heterogeneity might result from different regions and APC methylation was remarkably related to increased BC risk without geographical restrictions. For the subgroup analyses based on sample types, the blood or serum group (OR=11.79, 95%CI=3.02-46.06) made the largest contribution to the heterogeneity ($I^2=80\%$). In the tissue subgroup, the OR was 10.68[5.50, 20.75] with lower heterogeneity ($I^2=53\%$). Moreover, heterogeneity in the NAF subgroups could be ignored ($I^2=6\%$). These results confirmed the stable association between APC methylation and BC risk in different sample types. For studies based on the methods used to detect the methylation of the APC promoter, the combined OR value was 18.18 for MSP (95%CI=7.96-41.52), 3.92 for QMSP (95%CI=1.77-8.70), 8.05 for MethyLight (95%CI=1.50-43.12) and 31.81 for MS-MLPA (95%CI=5.30-191.06). Heterogeneity in the QMSP ($I^2=40\%$) and MS-MLPA ($I^2=0\%$) subgroups was far lower than that of the MethyLight and MS-HRM subgroups ($I^2=83\%$).

To assess the association between APC methylation and tumor stage, 11 studies comprising 681 BC patients were pooled to calculate the OR. The results showed that the frequency of APC promoter methylation was significantly lower in early-stage patients than in late-stage patients (OR=0.62, 95%CI=0.42-0.93, $I^2=34\%$). Meanwhile, the OR of 8 studies revealed that the association between APC methylation and tumor grade was not statistically significant (OR=0.78, 95%CI=0.51-1.21, $I^2=0\%$).

Publication bias
We used the funnel plot, Begg’s test and Egger’s test to evaluate the degree of publication bias. The shape of the funnel plot had no obvious asymmetry (Fig. 4A). Moreover, Begg’s test (Pr>|z|=0.196>0.05) suggested no significant publication bias (Fig. 4B). Interestingly, Egger’s test revealed evident statistical proof for the existence of publication bias (p>|t|=0.000<0.05).

Therefore, we carried out trim and fill analysis to identify and revise the bias. As shown in Fig. 4C, 13 adjusted studies were added to the initial meta-analysis. The corrected OR was still highly significant for the association between APC methylation and BC risk (OR=1.621, 95%CI=1.081-2.144), further proving the stability of our meta-analysis.

Discussion

To the best of our knowledge, this is the first meta-analysis to systematically evaluate the association between APC promoter methylation and BC pathogenesis. BC is a significant clinical and public health problem and is mainly attributed to epigenetic and genetic changes. Epigenetic alternation involving DNA methylation is a relatively early event that serves as a tumor molecular biomarker candidate in BC and can be detected in all pathological tumor stages. The APC gene is considered to be a tumor suppressor gene, and the silencing of its expression may result in cell-to-cell adhesion disorders and the disruption of the Wnt signaling pathway. APC methylation, a contributing factor to the absence of APC expression, is often linked to β-catenin accumulation and TCF/LEF-induced transcription(Klarmann et al. 2008). Numerous studies have reported that APC methylation is highly specific for BC and can be used as a biomarker in the diagnosis of BC (Dumitrescu 2012; Van der Auwera et al. 2008). De-Pu Zhang et al. found that β-catenin overexpression was significantly associated with an unfavourable prognosis in patients
with breast cancer (Zhang et al. 2015). However, the role of APC methylation in BC pathogenesis remains controversial.

To resolve these contradictory results, we gathered relevant studies and carried out this meta-analysis using systematic statistical methods. Herein, we included a total of 35 studies with 2482 cases and 1212 controls published from 2001 to 2016. Our results based on the pooled OR revealed that the level of APC methylation was observably higher in BC patients compared to cancer-free controls, which indicated that APC methylation could serve as a potential biomarker for BC diagnosis, regardless of the various sample types detected, APC methylation detection methods applied and cases employed in different regions.

Then, we conducted subgroup analysis to identify the sources of the heterogeneity and found that various sample types, methylation detection methods and cases employed in different regions all contributed to the heterogeneity. In subgroup analysis based on sample types, the results showed that APC methylation was significantly related to BC pathogenesis, whether in tissue, blood or serum and NAF. Cell-free DNA in serum and plasma, which mostly originates from tumor cell degradation, can be collected and examined for epigenetic alterations with various malignancies (Anker et al. 1999). The sample materials including blood or serum, used for extracting DNA are often stored for different time periods which will produce false positives and false negatives. Thus, blood samples should be examined as rapidly as possible after being collected. Therefore, the accuracy of cell-free DNA largely depends on the standardized storage conditions. NAF is a rapid, minimally invasive and cheap diagnostic means with high sensitivity.

The accuracy of NAF mainly relies on the experience of the cytopathologist which may result in
an increasing trend for false negatives (Jeronimo et al. 2003). In subgroup analysis based on methylation detection methods, significant associations were observed when examined using MSP, QMSP, MethyLight and MS-MLPA, except for MS-HRM. Among these, the pooled OR derived from studies using MS-MLPA was the maximum with no heterogeneity. The diagnostic accuracy of MS-MLPA was not affected by sample types (Park et al. 2011a). Cut-off values and primers based on different CPG islands which were used in different studies, contributed to the heterogeneity of other methods. In subgroup analysis based on different regions, APC methylation was significantly correlated with BC patients in all included regions. The results indicated that although the genetic factors, environments and life styles were totally different, the correlation was still strong and stable. Therefore, an appropriate APC methylation detection method considering the regions and sample types employed is essential for routine clinical diagnosis. Additionally, we found that the status of APC methylation increased notably in late-stage patients compared with early-stage ones, which indicated that APC methylation might be closely related to the malignant evolution of BC.

As mentioned above, Wojdacz TK et al. examined the use of methylation biomarkers as screening tools for BC diagnosis (Wojdacz et al. 2011b). They found no significant difference in the frequency between 180 BC patients and 108 healthy controls and a weak association between APC methylation and BC pathogenesis. This discrepancy mainly resulted from the methylation detection method. They used MS-HRM which may yield heterogeneous methylation values derived from the primer and cut-off values, and it tended to produce a lower evaluation of methylation when applying less methylated samples (Migheli et al. 2013).
Surprisingly, only Egger’s linear regression showed an obvious publication bias other than Begg’s test and funnel plots. Egger M et al. suggested that Egger’s test was more sensitive than Begg’s test (Egger et al. 1997). The publication bias mainly resulted from the inclusion criteria. Only full-text published studies were collected in this meta-analysis. Therefore, unpublished studies and conference abstracts were not included. Additionally, other study characteristics including the source of funding and prevailing theories at the time of publication, can contribute to publication bias. However, we included a large number of BC patients (n=2482) to ensure the reliability of the meta-analysis and minimize the potential publication bias.

Although the meta-analysis indeed confirmed the significance of a correlation between APC methylation and BC pathogenesis, several limitations should be considered. First, the sample sizes used in several studies were small, which may have increased the risk of publication bias and limited the results of the meta-analysis. Second, the quality of the selected studies varied, as we included high-quality and low-quality studies. Therefore, heterogeneity likely existed. Third, the cut-off points of APC methylation and the primers based on CPG islands were difficult to unify. Thus, we were unable to calculate the pooled sensitivity and specificity of APC methylation.

In conclusion, the results of our meta-analysis highlight the clinical significance and scientific value of APC promoter methylation in the diagnosis of BC. Consequently, APC methylation is a potential biomarker for monitoring BC development. However, given the limitations listed above, high-quality studies with large-scale and consistent standards should be carried out. The guidelines for the reporting of tumor marker studies recommended by the National Cancer
Institute are necessary for adaptation to high-quality studies (McShane et al. 2005).

References

Anker P, Mulcahy H, Chen XQ, and Stroun M. 1999. Detection of circulating tumour DNA in
the blood (plasma/serum) of cancer patients. *Cancer Metastasis Rev* 18:65-73.

Ashktorab H, Rahi H, Wansley D, Varma S, Shokrani B, Lee E, Daremipouran M, Laiyemo A,
Goel A, Carethers JM, and Brim H. 2013. Toward a comprehensive and systematic methylome
signature in colorectal cancers. *Epigenetics* 8:807-815. 10.4161/epi.25497

Brooks JD, Cairns P, Shore RE, Klein CB, Wirgin I, Afanasyeva Y, and Zeleniuch-Jacquotte A.
2010. DNA methylation in pre-diagnostic serum samples of breast cancer cases: results of a
nested case-control study. *Cancer Epidemiol* 34:717-723. 10.1016/j.canep.2010.05.006

Chen KM, Stephen JK, Raju U, and Worsham MJ. 2011. Delineating an epigenetic continuum
for initiation, transformation and progression to breast cancer. *Cancers (Basel)* 3:1580-1592.
10.3390/cancers3021580

Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M, Dalay N, and Santella RM. 2010.
Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal
tissues and blood from breast cancer patients. *Anticancer Res* 30:2489-2496.

Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, and Cairns P. 2004. Tumor suppressor
gene promoter hypermethylation in serum of breast cancer patients. *Clin Cancer Res* 10:6189-
6193. 10.1158/1078-0432.CCR-04-0597

Dumitrescu RG. 2012. Epigenetic markers of early tumor development. *Methods Mol Biol*
Egger M, Davey Smith G, Schneider M, and Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 315:629-634.

Fridrichova I, Smolkova B, Kajabova V, Zmetakova I, Krivulcik T, Mego M, Cierna Z, Karaba M, Benca J, Pindak D, Bohac M, Repiska V, and Danihel L. 2015. CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. *Transl Res* 165:717-730. 10.1016/j.trsl.2014.12.006

Harrison K, Hoad G, Scott P, Simpson L, Horgan GW, Smyth E, Heys SD, and Haggarty P. 2015. Breast cancer risk and imprinting methylation in blood. *Clin Epigenetics* 7:92. 10.1186/s13148-015-0125-x

Higgins JP, Thompson SG, Deeks JJ, and Altman DG. 2003. Measuring inconsistency in meta-analyses. *BMJ* 327:557-560. 10.1136/bmj.327.7414.557

Hoque MO, Feng Q, Toure P, Dem A, Critchlow CW, Hawes SE, Wood T, Jeronimo C, Rosenbaum E, Stern J, Yu M, Trink B, Kiviat NB, and Sidransky D. 2006. Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. *J Clin Oncol* 24:4262-4269. 10.1200/JCO.2005.01.3516

Hoque MO, Prencipe M, Poeta ML, Barbano R, Valori VM, Copetti M, Gallo AP, Brait M, Maiello E, Apicella A, Rossiello R, Zito F, Stefania T, Paradiso A, Carella M, Dallapiccola B, Murgo R, Carosi I, Bisceglia M, Fazio VM, Sidransky D, and Parrella P. 2009. Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. *Cancer Epidemiol Biomarkers Prev* 18:2694-2700. 10.1158/1055-9965.EPI-08-0821
Inoue K, and Fry EA. 2015. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer. *Genet Epigenet* 7:19-32. 10.4137/GEG.S35500

Jeronimo C, Costa I, Martins MC, Monteiro P, Lisboa S, Palmeira C, Henrique R, Teixeira MR, and Lopes C. 2003. Detection of gene promoter hypermethylation in fine needle washings from breast lesions. *Clin Cancer Res* 9:3413-3417.

Jeronimo C, Monteiro P, Henrique R, Dinis-Ribeiro M, Costa I, Costa VL, Filipe L, Carvalho AL, Hoque MO, Pais I, Leal C, Teixeira MR, and Sidransky D. 2008. Quantitative hypermethylation of a small panel of genes augments the diagnostic accuracy in fine-needle aspirate washings of breast lesions. *Breast Cancer Res Treat* 109:27-34. 10.1007/s10549-007-9620-x

Jin Z, Tamura G, Tsuchiya T, Sakata K, Kashiwaba M, Osakabe M, and Motoyama T. 2001. Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers. *Br J Cancer* 85:69-73. 10.1054/bjoc.2001.1853

Jing F, Yuping W, Yong C, Jie L, Jun L, Xuanbing T, and Lihua H. 2010. CpG island methylator phenotype of multigene in serum of sporadic breast carcinoma. *Tumour Biol* 31:321-331. 10.1007/s13277-010-0040-x

Jung EJ, Kim IS, Lee EY, Kang JE, Lee SM, Kim DC, Kim JY, and Park ST. 2013. Comparison of methylation profiling in cancerous and their corresponding normal tissues from korean patients with breast cancer. *Ann Lab Med* 33:431-440. 10.3343/alm.2013.33.6.431

Klarmann GJ, Decker A, and Farrar WL. 2008. Epigenetic gene silencing in the Wnt pathway in breast cancer. *Epigenetics* 3:59-63.
Klarmann GJ, Decker A, and Farrar WL. 2014. Epigenetic gene silencing in the Wnt pathway in breast cancer. *Epigenetics* 3:59-63. 10.4161/epi.3.2.5899

Lee A, Kim Y, Han K, Kang CS, Jeon HM, and Shim SI. 2004. Detection of Tumor Markers Including Carcinoembryonic Antigen, APC, and Cyclin D2 in Fine-Needle Aspiration Fluid of Breast. *Arch Pathol Lab Med* 128:1251-1256. 10.1043/1543-2165(2004)128<1251:DOTMIC>2.0.CO;2

Lewis CM, Cler LR, Bu DW, Zochbauer-Muller S, Milchgrub S, Naftalis EZ, Leitch AM, Minna JD, and Euhus DM. 2005. Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. *Clin Cancer Res* 11:166-172.

Li S, Zeng XT, Ruan XL, Weng H, Liu TZ, Wang X, Zhang C, Meng Z, and Wang XH. 2014. Holmium laser enucleation versus transurethral resection in patients with benign prostate hyperplasia: an updated systematic review with meta-analysis and trial sequential analysis. *PLoS One* 9:e101615. 10.1371/journal.pone.0101615

Liu Z, Yang L, Cui DX, Liu BL, Zhang XB, Ma WF, and Zhang Q. 2007. [Methylation status and protein expression of adenomatous polyposis coli (APC) gene in breast cancer]. *Ai Zheng* 26:586-590.

Martínez-Galán J, Torres B, del Moral R, Muñoz-Gámez JA, Martín-Oliva D, Villalobos M, Núñez MI, Luna JdD, Oliver FJ, and Almodóvar JMRd. 2014. Quantitative detection of methylated ESR1 and 14-3-3-σ gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. *Cancer Biology & Therapy* 7:958-965. 10.4161/cbt.7.6.5966
Martins AT, Monteiro P, Ramalho-Carvalho J, Costa VL, Dinis-Ribeiro M, Leal C, Henrique R, and Jeronimo C. 2011. High RASSF1A promoter methylation levels are predictive of poor prognosis in fine-needle aspirate washings of breast cancer lesions. *Breast Cancer Res Treat* 129:1-9. 10.1007/s10549-010-1160-0

Matsuda Y, Schlange T, Oakeley EJ, Boulay A, and Hynes NE. 2009. WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. *Breast Cancer Res* 11:R32. 10.1186/bcr2317

Matuschek C, Bolke E, Lammering G, Gerber PA, Peiper M, Budach W, Taskin H, Prisack HB, Schieren G, Orth K, and Bojar H. 2010. Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease. *Eur J Med Res* 15:277-286.

McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, and Statistics Subcommittee of the NCIEWGoCD. 2005. Reporting recommendations for tumor marker prognostic studies (REMARK). *J Natl Cancer Inst* 97:1180-1184. 10.1093/jnci/dji237

Migheli F, Stoccoro A, Coppede F, Wan Omar WA, Failli A, Consolini R, Seccia M, Spisni R, Miccoli P, Mathers JC, and Migliore L. 2013. Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. *PLoS One* 8:e52501. 10.1371/journal.pone.0052501

Moher D, Liberati A, Tetzlaff J, Altman DG, and Group P. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *J Clin Epidemiol* 62:1006-1012. 10.1016/j.jclinepi.2009.06.005
Muller HM, Widschwendter A, Fieg l H, Ivarsson L, Goebel G, Perkmann E, Marth C, and
Widschwendter M. 2003. DNA methylation in serum of breast cancer patients: an independent
prognostic marker. *Cancer Res* 63:7641-7645.

Pang JM, Deb S, Takano EA, Byrne DJ, Jene N, Boulghourjian A, Holliday A, Millar E, Lee CS,
O'Toole SA, Dobrovic A, and Fox SB. 2014. Methylation profiling of ductal carcinoma in situ
and its relationship to histopathological features. *Breast Cancer Res* 16:423. 10.1186/s13058-
014-0423-9

Park CK, Kim J, Yim SY, Lee AR, Han JH, Kim CY, Park SH, Kim TM, Lee SH, Choi SH, Kim
SK, Kim DG, and Jung HW. 2011a. Usefulness of MS-MLPA for detection of MGMT promoter
methylation in the evaluation of pseudoprogression in glioblastoma patients. *Neuro Oncol*
13:195-202. 10.1093/neuonc/noq162

Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, and Kang
GH. 2011b. Promoter CpG island hypermethylation during breast cancer progression. *Virchows
Arch* 458:73-84. 10.1007/s00428-010-1013-6

Parrella P, Poeta ML, Gallo AP, Prencipe M, Scintu M, Apicella A, Rossiello R, Liguoro G,
Seripa D, Gravina C, Rabitti C, Rinaldi M, Nicol T, Tommasi S, Paradiso A, Schittulli F,
Altomare V, and Fazio VM. 2004. Nonrandom distribution of aberrant promoter methylation of
cancer-related genes in sporadic breast tumors. *Clin Cancer Res* 10:5349-5354. 10.1158/1078-
0432.CCR-04-0555

Prasad CP, Mirza S, Sharma G, Prashad R, DattaGupta S, Rath G, and Ralhan R. 2008.
Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/beta-catenin
pathway in invasive ductal carcinoma of breast. *Life Sci* 83:318-325. 10.1016/j.lfs.2008.06.019

Rykova EY, Skvortsova TE, Laktionov PP, Tamkovich SN, Bryzgunova OE, Starikov AV, Kuznetsova NP, Kolomiets SA, Sevostianova NV, and Vlassov VV. 2004. Investigation of tumor-derived extracellular DNA in blood of cancer patients by methylation-specific PCR. *Nucleosides Nucleotides Nucleic Acids* 23:855-859. 10.1081/NCN-200026031

Shinozaki M, Hoon DS, Giuliano AE, Hansen NM, Wang HJ, Turner R, and Taback B. 2005. Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. *Clin Cancer Res* 11:2156-2162. 10.1158/1078-0432.CCR-04-1810

Sparks AB, Morin PJ, Vogelstein B, and Kinzler KW. 1998. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. *Cancer Res* 58:1130-1134.

Swellam M, Abdelmaksoud MD, Sayed Mahmoud M, Ramadan A, Abdel-Moneem W, and Hefny MM. 2015. Aberrant methylation of APC and RARbeta2 genes in breast cancer patients. *IUBMB Life* 67:61-68. 10.1002/iub.1346

Taback B, Giuliano AE, Lai R, Hansen N, Singer FR, Pantel K, and Hoon DS. 2006. Epigenetic analysis of body fluids and tumor tissues: application of a comprehensive molecular assessment for early-stage breast cancer patients. *Ann N Y Acad Sci* 1075:211-221. 10.1196/annals.1368.029

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, and Jemal A. 2015. Global cancer statistics, 2012. *CA Cancer J Clin* 65:87-108. 10.3322/caac.21262

Van der Auwera I, Bovie C, Svensson C, Limame R, Trinh XB, van Dam P, Van Laere SJ, Van Marck E, Vermeulen PB, and Dirix LY. 2009a. Quantitative assessment of DNA hypermethylation in the inflammatory and non-inflammatory breast cancer phenotypes. *Cancer*
Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, Van Marck EA, Vermeulen PB, and Dirix LY. 2009b. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. *Br J Cancer* 100:1277-1286. 10.1038/sj.bjc.6605013

Van der Auwera I, Van Laere SJ, Van den Bosch SM, Van den Eynden GG, Trinh BX, van Dam PA, Colpaert CG, van Engeland M, Van Marck EA, Vermeulen PB, and Dirix LY. 2008. Aberrant methylation of the Adenomatous Polyposis Coli (APC) gene promoter is associated with the inflammatory breast cancer phenotype. *Br J Cancer* 99:1735-1742. 10.1038/sj.bjc.6604705

Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT, Farinas AJ, Milchgrub S, Euhus DM, Gilcrease M, Herman J, Minna JD, and Gazdar AF. 2001. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. *Clin Cancer Res* 7:1998-2004.

Wojdacz TK, Thstrup BB, Cold S, Overgaard J, and Hansen LL. 2011a. No difference in the frequency of locus-specific methylation in the peripheral blood DNA of women diagnosed with breast cancer and age-matched controls. *Future Oncol* 7:1451-1455. 10.2217/fon.11.123

Wojdacz TK, Thstrup BB, Overgaard J, and Hansen LL. 2011b. Methylation of cancer related genes in tumor and peripheral blood DNA from the same breast cancer patient as two independent events. *Diagn Pathol* 6:116. 10.1186/1746-1596-6-116

Zhang DP, Li XW, and Lang JH. 2015. Prognostic Value of beta-catenin Expression in Breast
Cancer Patients: a Meta-analysis. *Asian Pac J Cancer Prev* 16:5625-5633.

Zhang JJ, Ouyang T, Wan WH, Xu GW, and Deng GR. 2007. [Detection and significance of APC gene promoter hypermethylation in serum of breast cancer patients]. *Ai Zheng* 26:44-47.

Zmetakova I, Danihel L, Smolkova B, Mego M, Kajabova V, Krivulcik T, Rusnak I, Rychly B, Danis D, Repiska V, Blasko P, Karaba M, Benca J, Pechan J, and Fridrichova I. 2013. Evaluation of protein expression and DNA methylation profiles detected by pyrosequencing in invasive breast cancer. *Neoplasma* 60:635-646. 10.4149/neo_2013_082
Figure 1 (on next page)

Flow chart of the collection of studies for this meta-analysis.
Records identified through The Cochrane library, Pubmed, Web of Science and Embase database searching (n=168)

Records after duplicates removed (n=167)

Records screened (n=74)

Records excluded (n=93) Irrelevant to breast cancer (n=93)

Full-text articles assessed for eligibility (n=31) PubMed 19, Web of Science 10, Embase 2

Full-text articles excluded (n=43) No control group (n=21) Focus on tumor cell (n=9) Review (n=5) Lack available data (n=8)

Studies included in qualitative synthesis (n=35)

Studies included in quantitative synthesis (meta-analysis) (n=35)
Figure 2 (on next page)

Forest plot of APC promoter methylation and breast cancer risk based on the random effects model.

The small squares and horizontal lines represent the OR and 95% CI of individual studies. If the 95% CI included 1, the difference in APC methylation between patients with breast cancer and controls was not significant. The centre of the diamond represents the combined treatment effect (calculated as a weighted average of individual ORs) and the horizontal tips represent the 95% CI. OR represents the odds ratio. 95% CI represents the 95% confidence interval.
Study or Subgroup	breast cancer Events	total	control Events	total	weight	odds ratio M-H. Random. 95% CI
Brooks JD 2010	1	49	6	142	3.0%	0.47 [0.06, 4.02]
Chen KM 2011	12	17	1	10	2.8%	21.60 [2.13, 218.58]
Cho YH 2010	21	40	12	27	4.4%	1.38 [0.52, 3.68]
Dulaimi E 1 2004	15	34	0	6	2.1%	10.33 [0.54, 197.97]
Dulaimi E 2 2004	10	34	0	20	2.2%	17.57 [0.97, 318.41]
Fridrichova I 2015	144	206	9	2.2%	43.93 [2.52, 766.48]	
Hoque MO 2006	8	47	0	38	2.2%	16.57 [0.92, 297.10]
Hoque MO 2009	56	112	3	32	4.1%	9.67 [2.78, 33.57]
Jeronimo C 2008	55	66	10	12	3.6%	1.00 [0.19, 5.21]
Jin Z 2001	18	50	0	21	2.2%	24.48 [1.40, 427.99]
Jing F 2010	14	50	0	50	2.2%	40.12 [2.32, 694.45]
Jung EJ 2013	19	60	0	60	2.2%	56.86 [3.34, 968.06]
Lee A 2004	14	33	0	19	2.2%	29.00 [1.61, 520.88]
Lewis CM 2005	15	27	14	55	4.5%	3.66 [1.39, 9.67]
Liu Z 2007	28	76	0	76	2.3%	89.91 [5.36, 1506.95]
Martins AT 2011	144	178	18	33	4.7%	3.53 [1.62, 7.70]
Matuschek C 2010	25	85	2	22	3.7%	4.17 [0.91, 19.18]
Müller HM 2003	23	26	0	10	2.1%	141.00 [6.67, 2980.83]
Pang JM 2014	39	80	0	15	2.2%	29.51 [1.71, 509.92]
Park SY 2011	72	85	7	30	4.4%	18.20 [6.48, 51.07]
Parrelle P 2004	15	54	1	10	3.0%	3.46 [0.40, 29.72]
Prasad CP 1 2008	6	32	0	5	2.1%	2.70 [0.13, 55.26]
Prasad CP 2 2008	11	50	0	50	2.2%	29.41 [1.68, 514.42]
Rykova EY 2004	4	10	0	6	2.0%	9.00 [0.40, 203.30]
Shinozaki M 2005	74	151	0	10	2.2%	20.19 [1.16, 350.67]
Swellam M 2015	113	121	0	66	2.2%	1775.94 [100.88, 312654.00]
Taback B 2006	1	33	0	10	1.9%	0.97 [0.04, 25.64]
Van der A L 2009	60	100	0	9	2.2%	28.38 [1.61, 501.35]
Van der A L 1 2008	28	51	3	27	4.0%	9.74 [2.60, 36.49]
Van der A L 2 2008	53	54	7	9	2.5%	15.14 [1.21, 189.44]
Van der A L 2009	15	78	1	19	3.0%	4.29 [0.53, 34.68]
Virmani AK 2001	19	45	3	28	4.0%	6.09 [1.60, 23.16]
Wojdacz TK 2011	24	180	13	108	4.7%	1.12 [0.55, 2.31]
Zhang JJ 1 2007	38	84	0	84	2.3%	139.92 [8.40, 2330.21]
Zhang JJ 2 2007	26	84	0	84	2.3%	76.56 [4.57, 1281.31]

Total (95% CI):

- breast cancer: 2482
- control: 1212
- 100.0%
- 9.97 [5.66, 17.57]

Total events: 1220

Heterogeneity:
- Tau² = 1.63
- Chi² = 106.88, df = 34 (P < 0.00001)
- I² = 68%

Test for overall effect: Z = 7.95 (P < 0.00001)
Figure 3 (on next page)

Sensitive analysis of pooled OR based on the random effects model.

The results were calculated by omitting each study in turn. The circles represent the individual studies in this meta-analysis. The two ends of the dotted lines represent the 95%CI. OR represents the odds ratio. 95%CI represents the 95% confidence interval.
Meta-analysis estimates, given named study is omitted

Lower CI Limit	Estimate	Upper CI Limit
Brooks JD 2010
Chen KM 2011
Cho YH 2010
Dulaimi E 1 2004
Dulaimi E 2 2004
Fridrichova J 2015
Hoque MO 2006
Hoque MO 2009
Jerohimo C 2008
Jin Z 2001
Jing E 2010
Jung EJ 2013
Lee A 2004
Lewis CM 2005
Liu Z 2007
Martins AT 2011
Matuschek C 2010
Müller HM 2003
Pang JM 2014
Park SY 2011
Parrella P 2004
Prasad CP 1 2008
Prasad CP 2 2008
Prasad CP 2 2008
Rykova EY 2004
Shinozaki M 2005
Swellam M 2015
Tabbak B 2006
Van der AI 2009
Van der AI 2008
Van der AJ 2008
Van der AJ 2009
Virmani AK 2001
Wojdacz TK 2011
Zhang JJ 2007
Zhang JJ 2 2007
Figure 4 (on next page)

Publication bias analysis

(A) The funnel plot of APC methylation and breast cancer risk. The log of OR against the standard error of the log of the OR was plotted in this graph. (B) The Begg’s plot of APC methylation and breast cancer risk. The circles represent the individual studies in this meta-analysis. The line in the centre represents the pooled OR. (C) The Begg’s plot of publication bias after trim-and-fill analysis. The circles represent the included studies. The diamonds represent the presumed missing studies. OR represents the odds ratio.
Table 1 (on next page)

General characteristics of the eligible studies.
Author	Year	County/Region	Method	Sample type	M/N	Stage(M/N)	Grade(N/M)			
Brooks JD	2010	USA	QMSP	Serum	1/49	6/142	-			
Chen KM	2011	USA	MS-MLPA	FFT	12/17	1/10	-			
Cho YH	2010	USA	MethyLight	FFT	21/40	12/27	-			
Dulaimi E 1	2004	USA	MSP	Surgery	15/34	0/6	14/29			
Dulaimi E 2				Seru	10/34	0/20	9/29			
Fridrichova I	2015	Slovak Republic	Pyro	FFPET	144/206	0/9	-			
Hoque MO	2006	West Africa	QMSP	Blood	8/47	0/38	-			
Hoque MO	2009	Italy	QMSP	FFPET	56/112	3/32	-			
Jeronimo C	2008	Portugal	QMSP	FFPET	55/66	10/12	-			
Jin Z	2001	Japan	MSP	Surgery	18/50	0/21	13/36			
Jing F	2010	China	MSP	Serum	14/50	0/50	7/25			
Jung EJ	2013	Korea	MS-MLPA	Surgery	19/60	0/60	17/53			
Lee A	2004	Korea	MSP	NAF	14/33	0/19	13/31			
Lewis CM	2005	USA	MSP	NAF	15/27	14/55	13/40			
Liu Z	2007	China	MSP	Surgery	28/76	0/76	15/54			
Martins AT	2011	Portugal	QMSP	NAF	144/178	18/33	-			
Matuschek C	2010	Germany	MethyLight	Blood	25/85	2/22	5/42			
Müller HM	2003	Austria	MethyLight	Serum	23/26	0/10	-			
Pang JM	2014	Australia	MS-HRM	FFPET	39/80	0/15	-			
Park SY	2011	South Korea	MethyLight	FFPET	72/85	7/30	-			
Parrella P	2004	Italy	MSP	Tissue	15/54	1/10	-			
Prasad CP 1	2008	India	MSP	Surgery	6/32	0/5	2/19			
Prasad CP 2				Serum	11/50	0/50	4/28			
Rykova EY	2004	Russia	MSP	Blood	4/10	0/6	-			
Shinozaki M	2005	USA	MSP	FFPET	74/151	0/10	-			
Swellam M	2015	Egypt	MSP	Serum	113/121	0/66	81/86			
Taback B	2006	USA	QMSP	Blood	1/33	0/10	-			
Van der A I	2009	Belgium	QMSP	FFT	60/100	0/9	-			
Van der A I 1	2008	Belgium	MSP	FFPET	28/51	3/27	-			
Van der A I 2				QMSP	53/54	7/9	-			
Van der A I	2009	Belgium	QMSP	Blood	15/78	1/19	-			
Virmani AK	2001	USA	MSP	Surgery	19/45	3/28	-			
Author(s)	Year	Country	Methodology	Tissue	M	N				
------------	------	---------	-------------	--------	---	---				
Wojdacz TK	2011	Denmark	MS-HRM	Blood	24/180	13/108				
Zhang JJ 1	2007	China	MSP	Surgery	38/84	0/84	30/66	8/18		
Zhang JJ 2			Serum		26/84	0/10	20/66	6/18		
Total					1220/2482	101/2482	219/511	88/170	146/286	88/183

MSP, methylation specific PCR. QMSP, quantitative real-time MSP. Pyro, Pyrosequencing. MS-HRM, methylation-sensitive high-resolution melting analysis. FFPET, formalin fixed paraffin-embedded tissue. FFT, fresh frozen tissue. NAF, needle aspirate fluid. MS-MLPA, methylation specific-multiplex ligation-dependent probe amplification. M, number of APC promoter methylated patients. N, number of control.
Table 2 (on next page)

Subgroup analysis for the association between APC promoter methylation and breast cancer.
Table 2. Subgroup analysis for the relationship between APC promoter methylation and BC.

Subgroup	No	BC M/N	Control M/N	OR(95%CI)	Heterogeneity test		
					I²	p	Chi²
Sample types							
Tissue	19	772/1397	47/480	10.68[5.50,20.75]	53%	0.004	38.28
Blood or Serum	13	275/847	22/625	11.79[3.02,46.06]	80%	<0.00001	60.52
NAF	3	173/238	32/107	3.95[2.10,7.42]	6%	0.34	2.13
Region							
Asia	10	246/604	7/479	27.21[13.51,54.81]	0%	0.69	6.47
Europe	13	646/1200	58/306	5.50[2.69,11.22]	60%	0.003	30.00
North America	9	168/430	36/308	3.79[1.70,8.45]	42%	0.09	13.83
Africa	2	121/168	0/104	172.05[1.76,16792.96]	80%	0.02	5.07
Oceania	1	39/80	0/15	29.51[1.71,509.92]	NA	NA	NA
Methods							
MSP	17	448/986	21/617	18.18[7.96,41.52]	54%	0.004	35.03
QMSP	9	393/717	45/304	3.92[1.77,8.70]	40%	0.10	13.27
MethyLight	4	141/236	21/89	8.05[1.50,43.12]	83%	0.0006	17.29
MS-MLPA	2	31/77	1/70	31.81[5.30,191.06]	0%	0.58	0.31
MS-HRM	2	63/260	13/123	4.49[0.14,146.62]	83%	0.02	5.76
Pyro	1	144/206	0/9	43.93[2.52,766.48]	NA	NA	NA

NAF, needle aspirate fluid. MSP, methylation specific PCR. QMSP, quantitative real-time MSP. Pyro, Pyrosequencing. MS-MLPA, methylation specific-multiplex ligation-dependent probe amplification. MS-HRM, methylation-sensitive high-resolution melting analysis. NA, not available. M, number of APC promoter methylated patients. N, number of control.