Intra-amniotic LPS amplifies hyperoxia-induced airway hyperreactivity in neonatal rats

Chang Won Choi1,2, Beyong Il Kim1,2, Stanley N. Mason3, Erin N. Potts-Kant4, Mulugu V. Brahmajothi3 and Richard L. Auten3

BACKGROUND: We previously showed that intra-amniotic lipopolysaccharide (LPS) amplifies alveolar hypoplasia induced by postnatal hyperoxia. We determined whether the priming effect of intra-amniotic LPS amplifies hyperoxia-induced airway hyperreactivity (AHR).

METHODS: LPS or normal saline was injected into the amniotic cavities of pregnant rats at the 20th day of gestation. After birth, rat pups were exposed to 60% O2 or air for 14 d. On postnatal day 14, rat pups underwent forced oscillometry, which included a challenge with nebulized methacholine, and the lungs were harvested for morphological studies.

RESULTS: Hyperoxia significantly increased airway reactivity and decreased compliance. Intra-amniotic LPS further increased hyperoxia-induced AHR but did not further impair respiratory system compliance. Hyperoxia-induced changes in lung parenchymal and small airway morphology were not further altered by intra-amniotic LPS. However, combined exposure to intra-amniotic LPS and hyperoxia increased the proportion of degranulating mast cells in the hilar airways.

CONCLUSION: Intra-amniotic LPS amplified postnatal hyperoxia-induced AHR. This was associated with increased airway mast cell degranulation, which has previously been linked with hyperoxia-induced AHR. There were no morphologic changes of parenchyma or airways that would account for the LPS augmentation of hyperoxia-induced AHR.

Prenatal inflammation contributes to the development of bronchopulmonary dysplasia (BPD) by itself or combined with a variety of postnatal injuries (1). We previously showed that intra-amniotic lipopolysaccharide (LPS) exacerbates postnatal hyperoxia-impaired alveolarization (2). Along with alveolar and pulmonary vascular hypoplasia (3,4), airway hyperreactivity (AHR) is a common feature of clinical BPD (5). In follow-up studies of the pulmonary function of preterm infants with BPD, AHR persisted until school age or young adulthood (6,7).

Hyperoxia induces AHR in neonatal animals (8,9). The exact mechanisms by which hyperoxia causes AHR have not been firmly established. However, the disruption of nitric oxide–cyclic guanosine 59-monophosphate signaling (10), impaired airway relaxation via a mechanism involving prostaglandin–cyclic adenosine 59-monophosphate signaling (11), increased activity of brain-derived neurotrophic factor–tyrosine kinase B signaling (12), prolonged 20-kDa myosin regulatory light-chain phosphorylation (13), and mast cell accumulation in the Airways have been associated with hyperoxia-induced AHR (14,15).

There are conflicting data on the effect of prenatal inflammation or chorioamnionitis on airway reactivity in early childhood (16–18). Some authors have reported that chorioamnionitis during preterm gestation is an independent risk factor for AHR in young infancy and childhood (16,17). By contrast, other authors have reported the attenuation of ovalbumin-induced airway inflammation and AHR by prenatal inflammation (18). However, to our knowledge, the combined effects of prenatal inflammation (such as in chorioamnionitis) and postnatal hyperoxia on airway reactivity have not been reported. We hypothesized that prenatal inflammation would amplify hyperoxia-induced AHR. Prenatal inflammatory exposure such as air pollutant or antigen exposures have previously been shown to increase postnatal AHR induced by allergic sensitization (19) or ozone (20).

RESULTS

Body Weight
As expected, animals in the hyperoxia-exposed groups had decreased weight gain as compared with those in the air-exposed groups. Intra-amniotic LPS administration did not affect postnatal weight gain in either the hyperoxia-exposed animals or the air-exposed animals (Figure 1).

Respiratory System Mechanics
The pressure–volume loops of the four treatment groups clearly demonstrated that hyperoxia impaired pulmonary respiratory system mechanics (Figure 2a). Hyperoxia exposure significantly increased baseline total airway resistance. Intra-amniotic LPS exposure further increased baseline total airway resistance in hyperoxia-exposed animals but not in air-exposed animals. Hyperoxia exposure significantly increased the total AHR to methacholine. Intra-amniotic
LPS administration further increased the total AHR to methacholine in hyperoxia-exposed animals but not in air-exposed animals (Figure 2b). There were no significant differences with respect to Newtonian (large airway) resistance at baseline or during methacholine nebulization among the four experimental groups (Figure 2c). Hyperoxia exposure significantly decreased compliance at baseline and during methacholine nebulization. Intra-amniotic LPS administration did not further decrease respiratory system compliance in either hyperoxia-exposed animals or air-exposed animals (Figure 2d). At baseline and during methacholine nebulization, tissue damping, which is closely related to tissue resistance and reflects energy dissipation in the lung tissue, was significantly increased by hyperoxia exposure. Intra-amniotic LPS administration further increased tissue damping at baseline and during methacholine nebulization in hyperoxia-exposed animals but not in air-exposed animals (Figure 2e). At baseline and during methacholine nebulization, tissue elastance estimates, which reflect energy conservation in the lung tissue, were significantly increased by hyperoxia exposure. Intra-amniotic LPS administration further increased the tissue elastance estimates at baseline and during methacholine nebulization in hyperoxia-exposed animals but not in air-exposed animals (Figure 2f).

Figure 1. Group body weights on day 14. Data are based on animals that survived to day 14. Body weights in the hyperoxia-exposed groups (V+O₂ and LPS+O₂) were significantly lower than those of the air-exposed groups (V+Air and LPS+Air). No significant difference in body weight was present between hyperoxia-exposed groups or between air-exposed groups. Data are the mean ± SD (eight per group). *P < 0.05 vs. V+Air group. LPS, lipopolysaccharide; V, vehicle.

Figure 2. Effects of intra-amniotic LPS or vehicle plus postnatal air or hyperoxia exposure on respiratory system mechanics at postnatal day 14. Four experimental groups are shown by solid line (V+Air), dotted line (LPS+Air), dashed line (V+O₂), and double line (LPS+O₂). (a) The pressure–volume loops of the individual groups. (b) Total respiratory system resistance in response to increasing methacholine challenges. (c) Newtonian (large airway, low-frequency oscillation) respiratory system resistance demonstrating lack of treatment effect on methacholine provocation. (d) Compliance, (e) tissue damping, and (f) tissue elastance were significantly greater in the hyperoxia-exposed groups than in the air-exposed groups. Within the hyperoxia-exposed groups, the LPS+O₂ group had significantly greater tissue damping and tissue elastance than the V+O₂ group. Data are the mean ± SD (eight per group). †P < 0.05 vs. V+O₂ group. LPS, lipopolysaccharide; V, vehicle.
Light Microscopy Findings of Lung Tissue
Photomicrographs of lung tissue sections from hyperoxia-exposed animals stained with Hart’s elastin and malachite green showed thick tortuous elastic fibers along the alveolar walls instead of in the normal location at the septal tips. By contrast, elastic fibers were mainly located at the septal tips or crests in air-exposed animals (arrows in V+Air panel in Figure 3a). Regarding alveolar development, although hyperoxia-exposed animals showed a thicker interstitium than air-exposed animals, there were no notable differences in alveolar size. Intra-amniotic LPS administration did not have a large effect on alveolar appearance in this model of BPD, in either hyperoxia-exposed animals or air-exposed animals (Figure 3a).

Morphometric Evaluation of Alveolar Development
As expected, the alveolar volume density, which provides an estimate of the alveolar number, was significantly decreased in hyperoxia-exposed animals relative to air-exposed animals. Intra-amniotic LPS administration did not affect the alveolar volume density in either postnatal treatment group (Figure 3b). The alveolar surface density, which provides an estimate of the alveolar surface area, did not differ significantly among the four treatment groups (Figure 3c).

Alveolar Septal Crest Development
The alveolar secondary septal crest density was significantly lower in the V (vehicle, normal saline)+O₂, LPS+Air, and LPS+O₂ groups than in the V+Air group. There were no significant differences in the alveolar secondary septal crest density among the LPS+Air, V+O₂, and LPS+O₂ groups (Figure 3d).

Airway Structure
Hyperoxia significantly increased the peribronchial α-smooth muscle actin (SMA) fluorescence density divided by the bronchial perimeter, which estimates the peribronchial smooth muscle bulk in both intra-amniotic LPS-exposed animals and intra-amniotic vehicle-exposed animals (21). Intra-amniotic LPS administration did not affect the peribronchial α-SMA fluorescence density divided by the bronchial perimeter in either hyperoxia-exposed animals or air-exposed animals (Figure 4a,b). No periodic–Schiff/
Choi et al.

Alcian blue–positive airway epithelial cells indicating airway epithelial mucous metaplasia were observed in either the small or large airways of the LPS+Air, V+O₂, or LPS+O₂ group. Occasional periodic–Schiff/Alcian blue–positive cells were observed in the large (>200 μm) airways in the V+Air group (Figure 4c). Polarized microscopy images of lung tissue sections stained with picrosirius red showed increased collagen deposition around the small airways, which indicates that more airway remodeling occurred in hyperoxia-exposed animals than in air-exposed animals. There were no obvious differences in collagen deposition according to intran-amiotic LPS administration in either hyperoxia-exposed animals or air-exposed animals (Figure 4d).

Alveolar α-SMA

Alveolar α-SMA fluorescence intensity divided by Hoechst 33342 (DNA stain) fluorescence intensity, which estimates the alveolar myofibroblast abundance, was significantly increased by hyperoxia exposure in both intran-amiotic LPS-exposed animals and intran-amiotic vehicle-exposed animals. Prenatal...
LPS exposure had no significant effect on the alveolar α-SMA fluorescence intensity in air-exposed animals (Figure 4e,f).

Mast Cell Accumulation and Degranulation
Toluidine blue-stained intact and degranulating mast cells were observed in the hilar airways in all treatment groups (Figure 5a,b). However, in the medium- or small-sized (<200 μm) airways, mast cells were not observed in any treatment group. The number of mast cells was higher in hyperoxia-exposed animals, but this was not statistically significant (Figure 5c). The proportion of degranulating mast cells was significantly increased in animals exposed to both intra-amniotic LPS and hyperoxia as compared with animals exposed to either or neither of them (Figure 5d).

DISCUSSION
In our previous work, we showed that prenatal intra-amniotic LPS, a model for chorioamnionitis, worsened severe postnatal hyperoxia-induced alveolar hypoplasia. Because modern-day BPD is characterized by a more heterogeneous effect on alveolar development (22) but is often complicated by a high risk of developing AHR (23), we performed studies using a milder hyperoxia exposure regimen that was previously shown to produce a more patchy effect on alveolar development (24) and AHR (14). Using this model system, exposure to moderate hyperoxia (60%) increased baseline airway resistance and induced AHR to nebulized methacholine challenge, and these effects were amplified by prenatal intra-amniotic LPS administration. Because there were no significant differences in the Newtonian (large airway) resistance at baseline or during methacholine nebulization among the four experimental groups, the observed increased baseline airway resistance and AHR are presumably the result of structural and/or functional changes in small airways. Moreover, tissue damping and tissue elastance were also increased by hyperoxia exposure and further increased by intra-amniotic LPS administration. Because tissue damping and tissue elastance are related to the physical properties of lung tissue, these findings suggest that the physical properties of lung tissue (e.g., fibrosis, collagen and extracellular matrix deposition, and hypercellularity) were changed and might contribute to changes in respiratory system resistance. Because impairments in alveolar stability and direct effects on airway structure could contribute to small airway stability, we evaluated alveolar and airway morphology. The effects of hyperoxia on the alveolar structure were comparable to previously reported effects on the number of alveoli and secondary crest development (14,25). Likewise, we did not observe major effects on smooth muscle bulk with this regimen in any treatment group, which is consistent with our earlier observation (14) but contrasts with other reports of significant smooth muscle hyperplasia in juvenile rats subjected to postnatal hyperoxia beginning at a later age (8,26).

Other researchers have observed that hyperoxia exposure can alter parenchymal contractile elements that can contribute to AHR (10,12), which is consistent with our observation that alveolar α-SMA was increased by hyperoxia exposure, but...
we did not observe additive effects of prenatal LPS exposure. This result may suggest that the alterations in AHR are attributable to functional alterations in the intrinsic properties of airway smooth muscle contraction or relaxation (11,13,27,28) or to alterations in neural signaling (29,30). Increased peribronchial smooth muscle bulk has been observed in 21-d-old rats exposed to hyperoxia (8). In BPD patients, an increased number of peribronchial smooth muscle cells is frequently observed (31). Increased peribronchial smooth muscle bulk contributes to increased airway resistance and AHR in individuals with asthma (32). The increased airway resistance and AHR induced by hyperoxia could be explained by structural changes in the small airways (8,9,26,33). We found increased peribronchial smooth muscle bulk in animals exposed to hyperoxia. However, the further increases in airway resistance and the amplified AHR due to intra-amniotic LPS administration were not explained by the difference in peribronchial smooth muscle bulk. Neither the extent of airway epithelial mucous metaplasia nor peribronchial collagen deposition explained the further increases in airway resistance or the amplified AHR due to intra-amniotic LPS administration.

It is noteworthy that α-SMA was expressed not only around airways and vessels but also around alveoli. The α-SMA expressed around alveoli comes primarily from alveolar myofibroblasts (34). An excessive number of myofibroblasts is found in pulmonary fibrosis (35), and dysregulated myofibroblast development has been implicated in BPD (36). We found markedly increased alveolar α-SMA levels along the alveolar and saccular walls in hyperoxia-exposed animals. In air-exposed animals, α-SMA was observed primarily at the developing secondary crests or tips of secondary septa, which are normal locations for myofibroblasts in 14-d-old rats. It is not clear whether the increased amount of α-SMA or its abnormal distribution in hyperoxia-exposed animals suggest excessive fibrosis or the abnormal developmental regulation of myofibroblasts in this model system, but because there were no further alterations in the amount or distribution of α-SMA induced by intra-amniotic LPS administration, it is unlikely to account for the changes in airway resistance and the amplified AHR. However, we did not identify the mechanisms associated with the dysregulation of the myofibroblast population and how this dysregulation affects AHR, which should be examined through future study. Therefore, the results so far suggest that the amplifying effect of intra-amniotic LPS on hyperoxia-induced AHR, which is our primary observation, was not explained by an anatomic or structural change.

Mast cells play a role in the development of hyperoxia-induced AHR, given that treatment with cromolyn and blockade of mast cell recruitment have both been shown to mitigate AHR (14). Granules from the degranulating mast cells, which are rich in histamine and other mediators, can induce vagal reflex bronchospasm (37). Regarding the underlying mechanism of the amplifying effect of intra-amniotic LPS on hyperoxia-induced AHR, vagal reflex bronchospasm induced by granules from degranulating mast cells in the hilair airways might be responsible. Although we did not find LPS-augmented changes in mast cell degranulation in small airways, emerging evidence suggests that the respiratory system performs as a “united airways” system (38), so large airway mast cell degranulation may have effects on small airway inflammation, which could contribute to AHR.

We did not explore functional or biochemical changes in the airway smooth muscle, neural signaling, or inflammatory markers, which are important limitations of our study. The loss of the bronchopulmonary contraction–modulatory effect of nitric oxide (27), impaired airway relaxation due to impaired prostaglandin E2 release and cyclic adenosine 59-monophosphate accumulation (11), prolonged 20-kDa myosin regulatory light-chain phosphorylation (13), and increased levels of brain-derived neurotrophic factor (12) have been suggested as potential mechanisms for hyperoxia-induced AHR. Functional alterations in neural signaling could also contribute to this AHR (29,30). These functional and/or biochemical changes in the airway smooth muscle, neural signaling, or inflammatory markers will require further studies.

We have previously shown that antenatal inflammation has a priming effect on the hyperoxia effects on postnatal alveolar development (2). To our knowledge, our present study is the first to demonstrate the amplifying effect of antenatal inflammation on postnatal hyperoxia-induced AHR using a model system designed to mimic so-called “new BPD.” We speculate that preterm infants exposed to antenatal inflammation (chorioamnionitis) and postnatal oxidative stress would be at greater risk of developing reactive airway disease than their peers who are not exposed to chorioamnionitis. AHR is one of the major consequences of BPD, and BPD patients are at particular risk for viral associated wheezing. Patients who develop BPD after exposure to chorioamnionitis may require more intensive evaluation for such complications.
Inflammation and airway hyperreactivity

Lung Mechanics
On postnatal day 14, eight pups per treatment group were anesthetized with ketamine 40 mg/kg and xylazine 10 mg/kg, tracheostomized with 20-gauge tracheal cannulae, attached to an electrocardiogram monitor and then attached to a mechanical ventilator equipped with pressure transducers (FlexiVent, SCIREQ, Montreal, Canada). Anesthetized pups were given pancuronium bromide (0.8 mg/kg, i.p.) to block spontaneous breathing, as previously described in detail (39). A positive end-expiratory pressure of 3 cm H2O was established by submerging the expiratory limb 3 cm below the surface of a water-filled graduated cylinder. After recruitment inflations and after the baseline airway resistance was stabilized, three increasing doses of methacholine (10, 25, and 100 mg/ml) were administered using a nebulizer (Aeroneb, SCIREQ, Aergen, Galway, Ireland) according to the manufacturer’s directions, with an interval of ~2 min between doses. The lungs were inflated to total capacity after each methacholine dose, which allowed the airway resistance to return to baseline before subsequent doses were administered. After baseline recruitment maneuvers to achieve total lung capacity, measurements of the baseline total respiratory system resistance, compliance, and elastance were made using the linear single-compartment model with multiple linear regression as described by the manufacturer. Large airway (Newtonian) resistance, tissue damping, and tissue elastance were estimated using the constant phase model fitted to the input impedance. Pups were killed with sodium pentobarbital 200 mg/kg i.p.

Morphometric Evaluation of Alveolar Development
After the animals were killed, the lungs were inflation fixed with 4% paraformaldehyde at 30 cm H2O pressure for ~1 h and then immersion fixed overnight at 4 °C. After fixation, two random sections were obtained from the center third of the left lungs from eight animals per treatment group. Sections were stained with Hart’s elastin and counterstained with malachite green according to the manufacturer’s directions (Sigma-Aldrich St Louis, MO) for maximum contrast and then digitally imaged using a Nikon E400 microscope at ×200 magnification with an Olympus DP11 digital camera. Three random, non-overlapping images per section were color thresholded using image analysis software (Metamorph version 6; Molecular Dynamics, West Chester, PA) to create binary black and white images. The images were overlaid with an array of test points to obtain the alveolar volume density, which is an estimate of the alveolar number. The alveolar volume density was determined by dividing the number of points that fell within the alveolar tissue by the number of points within the alveolar parenchyma. Likewise, an array of test lines of known length was digitally overlaid, and the number of intercepts of septal tissue per test line length were automatically counted to obtain the alveolar surface density (an estimate of the alveolar surface area) as we have previously described in detail (39).

Alveolar Septal Crest Development
The septal crest density was measured as previously described in detail (24). In brief, elastin-stained alveolar septal tips were counted in Hart’s elastin–stained sections from eight animals per treatment group. The number of septal tips in each high-power field (×400) was divided by the alveolar volume density for each image to account for the potentially confounding effects of variable inflation.

Airway Structure
After fixation, the right middle lobe of the lung was removed and cut perpendicular to the hilar bronchi to expose the major airways before paraffin embedding. The airway smooth muscle bulk was estimated by selecting two random high-power fields (×400) from two sections immunostained with monoclonal anti-α-SMA–cy3 fluorescent antibody (Sigma-Aldrich) per animal. Hoechst 33342 (Pierce) were overlaid, and the number of intercepts of septal tissue that were also stained with α-SMA were excluded from the regions of interest. The data are presented as the mean ± SD. Group differences were evaluated with a one-way ANOVA, followed by post hoc analysis using Fisher’s least significant difference (PASW Statistics 17; IBM, Armonk, NY). Statistical significance was defined as P < 0.05.

ACKNOWLEDGMENT
Some of these study results were presented in the form of an abstract at the Pediatric Academic Societies Meeting, Denver, Colorado, 30 April–3 May 2011.

STATEMENT OF FINANCIAL SUPPORT
This work is supported by a grant of the Basic Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (2010-0021644) and by the Brumley Neonatal-Perinatal Research Institute.

Disclosure: The authors declared no conflict of interest.

REFERENCES
1. Van Marter LJ, Dammann O, Allred EN, et al.; Developmental Epidemiology Network Investigators. Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr 2002;140:171–6.
2. Choi CW, Kim BI, Hong JS, Kim EK, Kim HS, Choi JH. Bronchopulmonary dysplasia in a rat model induced by intra-amniotic inflammation and postnatal hyperoxia: morphometric aspects. Pediatr Res 2009;65:323–7.
3. Hussain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol 1998;29:710–7.
4. Tomasheski JF Jr, Oppermann HC, Vawter GF, Reid LM. Bronchopulmonary dysplasia: a morphometric study with emphasis on the pulmonary vasculature. Pediatr Pathol 1984;4:469–87.
5. Robin B, Kim YJ, Huth J, et al. Pulmonary function in bronchopulmonary dysplasia. Pediatr Pulmonol 2004;37:236–42.
6. Khoronen P, Laitinen J, Hyödynmaa E, Tammela O. Respiratory outcome in school-aged, very-low-birth-weight children in the surfactant era. Acta Paediatr 2004;93:316–21.
7. Halvorsen T, Skadberg BT, Eide GE, Roksund O, Aksnes L, Øymar K. Characteristics of asthma and airway hyper-responsiveness after premature birth. Pediatr Allergy Immunol 2005;16:487–94.

8. Hershenson MB, Aghili S, Punjabi N, et al. Hyperoxia-induced airway hyperresponsiveness and remodeling in immature rats. Am J Physiol 1992;262(3 Pt 1):L263–9.

9. Denis D, Fayon MJ, Berger P, et al. Prolonged moderate hyperoxia induces hyperresponsiveness and airway inflammation in newborn rats. Pediatr Res 2001;50:515–9.

10. Ali NK, Jafari A, Sopi RB, Prakash YS, Martin RJ, Zaidi SI. Role of arginase in impairing relaxation of lung parenchyma of hyperoxia-exposed neonatal rats. Neonatology 2012;101:106–15.

11. Mhanna MJ, Haxhiu MA, Jaber MA, et al. Hyperoxia impairs airway relaxation in immature rats via a cAMP-mediated mechanism. J Appl Physiol 2004;96:1854–60.

12. Sopi RB, Martin RJ, Haxhiu MA, et al. Role of brain-derived neurotrophic factor in hyperoxia-induced enhancement of contractility and impairment of relaxation in lung parenchyma. Am J Physiol Lung Cell Mol Physiol 2008;295:L348–55.

13. Smith PG, Dreshaj A, Chaudhuri S, Onder BM, Mhanna MJ, Martin RJ. Hyperoxic conditions inhibit airway smooth muscle myosin phosphatase in rat pups. Am J Physiol Lung Cell Mol Physiol 2007;292:L68–73.

14. Schultz ED, Potts EN, Mason SN, Foster WM, Auten RL. Mast cells mediate hyperoxia-induced airway hyper-reactivity in newborn rats. Pediatr Res 2010;68:70–4.

15. Bhattacharya S, Go D, Krenitsky DL, et al. Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia. Am J Respir Crit Care Med 2012;186:349–58.

16. Getahun D, Strickland D, Zeiger RS, et al. Effect of chorioamnionitis on early childhood asthma. Arch Pediatr Adolesc Med 2010;164:187–92.

17. Kumar R, Yu Y, Story RE, et al. Prematurity, chorioamnionitis, and the development of recurrent wheezing: a prospective birth cohort study. J Allergy Clin Immunol 2008;121:878–84.e6.

18. Cao L, Wang J, Zhu Y, Tseu I, Post M. Maternal endotoxin exposure attenuates allergic airway disease in infant rats. Am J Physiol Lung Cell Mol Physiol 2010;298:L670–7.

19. Fedulov AV, Leme A, Yang Z, et al. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol 2008;38:57–67.

20. Auten RL, Potts EN, Mason SN, Fischer B, Huang Y, Foster WM. Maternal exposure to particulate matter increases postnatal ozone-induced airway hyperreactivity in juvenile mice. Am J Respir Crit Care Med 2009;180:1218–26.

21. Seow CY, Schellenberg RR, Paré PD. Structural and functional changes in the airway smooth muscle of asthmatic subjects. Am J Respir Crit Care Med 1998;158(5 Pt 3):S179–86.

22. Mosca F, Colaghi M, Fumagalli M. BDP: old and new problems. J Matern Fetal Neonatal Med 2011;24(Suppl 1):80–2.

23. Pandya HC, Kotecha S. Chronic lung disease of prematurity: clinical and pathophysiological correlates. Monaldi Arch Chest Dis 2001;56:270–5.

24. Yi M, Jankov RP, Belcastro R, et al. Opposing effects of 60% oxygen and neutrophil influx on alveologenesis in the neonatal rat. Am J Respir Crit Care Med 2004;170:1188–96.