SHEN’S CONJECTURE ON GROUPS WITH GIVEN SAME ORDER TYPE

L. JAFARI TAGHVASANI AND M. ZARRIN

Abstract. For any group G, we define an equivalence relation \sim as below:

$$\forall g, h \in G \quad g \sim h \iff |g| = |h|$$

the set of sizes of equivalence classes with respect to this relation is called the same-order type of G and denote by $\alpha(G)$. In this paper, we give a partial answer to a conjecture raised by Shen. In fact, we show that if G is a nilpotent group, then $|\pi(G)| \leq |\alpha(G)|$, where $\pi(G)$ is the set of prime divisors of order of G. Also we investigate the groups all of whose proper subgroups, say H have $|\alpha(H)| \leq 2$.

Keywords. Nilpotent groups, Same-order type.
Mathematics Subject Classification (2000). 20D60.

1. Introduction and results

Let G be a group, define an equivalence relation \sim as below:

$$\forall g, h \in G \quad g \sim h \iff |g| = |h|$$

the set of sizes of equivalence classes with respect to this relation is called the same-order type of G. For instance, the same-order type of the quaternion group Q_8 is \{1, 6\}. The only groups of type \{1\} are 1, \mathbb{Z}_2. In [3], Shen showed that a group of same-order type \{1, n\}\{(1, m, n)\} is nilpotent (solvable, respectively). Furthermore he gave the structure of these groups. In this paper, we give a partial answer to a conjecture raised by Shen in [3] and we prove that if G is a nilpotent group, then $|\pi(G)| \leq |\alpha(G)|$.

Given a class of groups \mathcal{X}, we say that a group G is a minimal non-\mathcal{X}-group, or an \mathcal{X}-critical group, if $G \not\in \mathcal{X}$, but all proper subgroups of G belong to \mathcal{X}. It is clear that detailed knowledge of the structure of minimal non-\mathcal{X}-groups can provide insight into what makes a group belong to \mathcal{X}. For instance, minimal non-nilpotent groups were analysed by Schmidt [2] and proved that such groups are solvable (see also [3]). Suppose that t be a positive integer and \mathcal{Y}_t be the class of all groups in which $|\alpha(G)| \leq t$. Here, we determine the structure of minimal non-\mathcal{Y}_2-group.

Denote by ϕ and S_n the Euler’s function and the number of elements of order n in a group G respectively. X_n is the set of all elements of order n in a group G. We use symbols $\pi_e(G)$ for the set of element orders.

2. Shen’s conjecture

In [3], Shen posed a conjecture as follows:
Let G be a group with same-order type \{1, n_2, \cdots, n_r\}. Then $|\pi(G)| \leq r$.
Here we give a partial answer to a this conjecture. Note that by Lemma 3 of [4],

$$|\pi(G)| \leq r$$

where r is the number of elements of order n_i in G.

In the next section, we give a partial answer to a conjecture raised by Shen.

1. Introduction and results

Let G be a group, define an equivalence relation \sim as below:

$$\forall g, h \in G \quad g \sim h \iff |g| = |h|$$

the set of sizes of equivalence classes with respect to this relation is called the same-order type of G. For instance, the same-order type of the quaternion group Q_8 is \{1, 6\}. The only groups of type \{1\} are 1, \mathbb{Z}_2. In [3], Shen showed that a group of same-order type \{1, n\}\{(1, m, n)\} is nilpotent (solvable, respectively). Furthermore he gave the structure of these groups. In this paper, we give a partial answer to a conjecture raised by Shen in [3] and we prove that if G is a nilpotent group, then $|\pi(G)| \leq |\alpha(G)|$.

Given a class of groups \mathcal{X}, we say that a group G is a minimal non-\mathcal{X}-group, or an \mathcal{X}-critical group, if $G \not\in \mathcal{X}$, but all proper subgroups of G belong to \mathcal{X}. It is clear that detailed knowledge of the structure of minimal non-\mathcal{X}-groups can provide insight into what makes a group belong to \mathcal{X}. For instance, minimal non-nilpotent groups were analysed by Schmidt [2] and proved that such groups are solvable (see also [3]). Suppose that t be a positive integer and \mathcal{Y}_t be the class of all groups in which $|\alpha(G)| \leq t$. Here, we determine the structure of minimal non-\mathcal{Y}_2-group.

Denote by ϕ and S_n the Euler’s function and the number of elements of order n in a group G respectively. X_n is the set of all elements of order n in a group G. We use symbols $\pi_e(G)$ for the set of element orders.

2. Shen’s conjecture

In [3], Shen posed a conjecture as follows:
Let G be a group with same-order type \{1, n_2, \cdots, n_r\}. Then $|\pi(G)| \leq r$.
Here we give a partial answer to a this conjecture. Note that by Lemma 3 of [4],
we can assume that G is finite. To prove Shen’s conjecture we need the following interesting lemmas.

Lemma 2.1. Suppose that G is a nilpotent group, $m, n \in \pi_e(G)$ and $(m, n) = 1$. Then

$$S_{mn}^G = S_m^G S_n^G.$$

Proof. Let $g \in X_{mn}$. As $(m, n) = 1$, so there exist $y, z \in G$, such that $o(y) = m$, $o(z) = n$ and $g = yz$. So $g \in X_m X_n$ and $X_{mn} \subseteq X_m X_n$. On the other hand, if $y \in X_m$ and $z \in X_n$, then, as G is nilpotent, we can obtain that $yz = zy$ and so $o(yz) = o(zy) = o(z) o(y) = mn$. It follows that $X_m X_n \subseteq X_{mn}$ and so $X_{mn} = X_m X_n$.

Corollary 2.2. Let G be a nilpotent group, $m \in \pi_e(G)$ and $m = p_1^{b_1} p_2^{b_2} \cdots p_t^{b_t}$. Then

$$S_m^G = S_{p_1}^{G_{p_1}} S_{p_2}^{G_{p_2}} \cdots S_{p_t}^{G_{p_t}}.$$

Theorem 2.3. Let G be a nilpotent group. Then

1. If $|\pi(G)| \leq 2$, then $|\pi(G)| \leq |\alpha(G)|$.
2. If $|\pi(G)| \geq 3$, then $\pi(G) \leq |\alpha(G)| - 1$.

Proof. (1). If $|\pi(G)| = 1$, then G is a p-group and obviously $|\pi(G)| \leq |\alpha(G)|$. Let $\pi(G) = \{p, q\}$. Since G is nilpotent, $G = P \times Q$, where $|P| = p^n$ and $|Q| = q^m$ are p-sylow and q-sylow subgroups of G, respectively. If $p = 2$ and $q = 1$, then $G \cong Z_2 \times Q$. Clearly $\alpha(G) = \alpha(Q)$. Now if $exp(Q) = q$, then $s_q^Q = q^{m - 1}$. So $|\alpha(G)| = |\alpha(Q)| = |\pi(G)| = 2$. Otherwise if $exp(Q) \neq q$, then there exists $x \in Q$ such that $o(x) = q^2$ and since $S_q \neq S_p$, so $|\alpha(G)| \geq 3$ and $|\alpha(G)| \geq 3 > |\pi(G)|$. In other values of p and n, in view of Lemma 2.1 the conclusion is trivial.

(2). By hypothesis since G is nilpotent, so $G = P_1 \times \cdots \times P_n$, where P_i’s are p_i-sylow subgroups of G and $p_1 < p_2 < \cdots < p_n$. We prove by induction on n. If $n = 3$, the $\alpha(P_1) \cup \alpha(P_2) \cup \alpha(P_3) \supseteq \{r, t\}$, for distinct numbers r and t, so $\alpha(G) \supseteq \{1, r, t, t\}$, as desired.

Now assume the conclusion is true for $G_{n-1} = P_1 \times \cdots \times P_{n-1}$. Let for any $1 \leq i \leq n - 1$, $\alpha(P_i) = \{n_i, 1, \cdots, n_i\}$ and S_{p_i}, for $1 \leq i \leq n - 1$ be the maximum number of the set $\alpha(P_i)$. Now for any $l \in \pi_e(G_{n-1})$, assume that $l = p_i^{\beta_1} \cdots p_r^{\beta_r}$, where $1 \leq r \leq n - 1$. By the maximality of S_{p_i}’s, we have

$$S_l = S_{p_1^{\beta_1} \cdots p_r^{\beta_r}} = S_{p_1^{\beta_1}} \cdots S_{p_r^{\beta_r}} \leq S_{p_1^{b_1}} \cdots S_{p_n^{b_n}}$$

Besides, $S_{p_n}^{G_{n-1}} \neq 0$ and since $\phi(p_n) = p_n - 1 \mid S_{p_n}$, so $S_{p_n} \neq 1$. Hence we have

$$S_l \leq S_{p_1^{b_1}} \cdots S_{p_n^{b_n}} \leq S_{p_1^{b_1}} \cdots S_{p_n^{b_n}} S_{p_n} = S_{p_1^{b_1} \cdots p_n^{b_n}}$$

It follows that $S_{p_1^{b_1} \cdots p_n^{b_n}} \in \alpha(G_n) \setminus \alpha(G_{n-1})$. Therefore

$$|\alpha(G_n)| = |\alpha(G)| \geq |\alpha(G_{n-1})| + 1$$
and so by induction hypothesis:
\[|\pi(G)| = n = n - 1 + 1 < |\alpha(G_{n-1})| + 1 \leq |\alpha(G_n)| = |\alpha(G)|. \]
and the conclusion is proved. \(\square\)

3. On same-order type of subgroups of a group

In this section, we determine the structure of minimal non-\(\mathcal{Y}_2\)-group, as follows.

Theorem 3.1. Let \(G\) be minimal non-\(\mathcal{Y}_2\)-group. Then \(G\) is a Frobenius or 2-Frobenius group.

Proof. Let \(H\) be a non-trivial proper subgroup of \(G\) and \(p \in \pi(H)\). Suppose, on the contrary, that \(q \in \pi(G)\) and \(q \neq p\). Since \(p \mid 1 + s^H_p\) and \(q \mid 1 + s^H_q\), so \(s^H_p, s^H_q \neq \{0, 1\}\), hence \(s^H_p = s^H_q = n_H\). Now as \(H\) is nilpotent, according to Lemma 2.1, we have \(s^H_{pq} = s^H_p s^H_q = n^2_H\), a contradiction. Thus \(H\) is a \(p\)-group. On the other hand, since
\[p \mid 1 + s^H_p + s^H_p, \]
so \(s^H_{p^2} \neq \{1, n_H\}\), since otherwise \(p \mid 1\), a contradiction. Hence \(s^H_{p^2} = 0\). It follows that every proper subgroup of \(G\) is \(p\)-group of exponent \(p\). If \(p, q \in \pi(G)\), then \(G\) has no element of order \(pq\). If \(G\) is nilpotent, then \(G\) is a \(p\)-group of exponent \(p\) and it is easy to see that such groups are in \(\mathcal{Y}_2\), a contrary. If \(G\) is non-nilpotent, then, as proper subgroup of \(G\) has the same-order type \(\{1, n\}\), Theorem 2.1 of Shen follows that \(G\) is a Schmidt group and so \(|\pi(G)| = 2\). Now, as \(G\) has no element of order \(pq\), Theorem A of [1], completes the proof. \(\square\)

References

[1] Williams, J.S. Prime graph components of finite groups. J. Algebra 69 (1981) 487-513.

[2] O. Yu. Schmidt, Groups all of whose subgroups are nilpotent, Mat. Sbornik 31 (1924), 366-372. (Russian).

[3] R. Shen, On groups with given same order type. Comm. Algebra 40 (2012), 2140-2150.

[4] R. Shen, C. Shao, Q. Jiang, W. Mazurov, A new characterization \(A_5\), Monatsh. Math. 160 (2010), 337-341.

[5] M. Zarrin, A generalization of Schmidt’s Theorem on groups with all subgroups nilpotent, Arch. Math. (Basel) 99 (2012), 201-206.

Department of Mathematics, University of Kurdistan, P. O. Box: 416, Sanandaj, Iran

E-mail address: L.jafari@sci.uok.ac.ir and Zarrin@ipm.ir