Symmetric functions for the generating matrix of the Yangian of $\mathfrak{gl}_n(\mathbb{C})$

Natasha Rozhkovskaya
Department of Mathematics
Kansas State University, USA

Submitted: June 9, 2009; Accepted: Oct 13, 2009; Published: Oct 26, 2009
Mathematics Subject Classification: 05E05, 05E10, 17B37

Abstract

Analogues of classical combinatorial identities for elementary and homogeneous symmetric functions with coefficients in the Yangian are proved. As a corollary, similar relations are deduced for shifted Schur polynomials.

Introduction

In this note we prove some combinatorial relations between the analogues of symmetric functions for the Yangian of the Lie algebra $\mathfrak{gl}_n(\mathbb{C})$. The applications of the results are illustrated by deducing properties of Capelli polynomials and shifted symmetric polynomials. Some of these properties were obtained, for example, in [16] from the definitions of shifted symmetric functions. Here, due to the existence of evaluation homomorphism, they become immediate consequences of similar combinatorial formulas in the Yangian. The elementary symmetric functions in the Yangian of the Lie algebra $\mathfrak{gl}_n(\mathbb{C})$ are known to be generators of Bethe subalgebra. Bethe subalgebra finds numerous applications in quantum integrable models of XXX type and Gaudin type ([10], [11], [12]). We describe the inverse of the universal differential operator for higher transfer matrices of XXX model.

The author is very grateful to E. Mukhin for encouraging discussions and valuable remarks. She is grateful to the referee for the suggested improvements of the paper, to P. Pyatov, A. Chervov for sharing comments on the subject. The hospitality of Institut des Hautes Études Scientifiques and of Max Plank Institute for Mathematics in Bonn provided very inspiring atmosphere for the research. The project is supported in part by KSU Mentoring fellowship for WMSE.
Notations and Preliminary facts

The following notations will be used through the paper. All non-commutative determinants are defined to be row determinants. Namely, if \(X \) is a matrix with entries \((x_{ij})_{i,j=1,...,n}\) in an associative algebra \(A \), put

\[
\det X = rdet X = \sum_{\sigma \in S_n} (-1)^\sigma x_{1\sigma(1)} \cdots x_{n\sigma(n)},
\]

where the sum is taken over all permutations of \(n \) elements. We also define the following types of powers of the matrix \(X \):

\[
X^{[k]} := X_1 \cdots X_k \in \text{End}(\mathbb{C}^n)^{\otimes k} \otimes A,
\]

where

\[
X_s = \sum_{ij} 1 \otimes \cdots \otimes E_{ij} \otimes \cdots \otimes 1 \otimes x_{ij},
\]

and

\[
X^k := X \cdots X \in \text{End}(\mathbb{C}^n) \otimes A.
\]

(This is just regular multiplication of matrices).

Definition of Yangian

Let \(P_{l,m} \) be a permutation of \(l \)-th and \(k \)-th copies of \(\mathbb{C}^n \) in \((\mathbb{C}^n)^{\otimes k}\):

\[
P_{l,m} = \sum_{ij} 1 \otimes \cdots \otimes 1 \otimes E_{ij} \otimes \cdots \otimes E_{ji} \otimes \cdots \otimes 1.
\] \tag{1}

Let \(u \) be an independent variable. Consider the Yang matrix

\[
R(u) = 1 - \frac{P_{1,2}}{u} \in \text{End}(\mathbb{C}^n)^{\otimes 2}\llbracket u^{-1}\rrbracket.
\]

Definition 1. The Yangian \(Y(n) \) of the Lie algebra \(\mathfrak{gl}_n(\mathbb{C}) \) is an associative unital algebra, generated by the elements \(\{ t_{ij}^{(k)} \} \), \((i,j = 1 \ldots n, k = 1,2,\ldots)\), satisfying the relation

\[
R(u - v)T_1(u)T_2(v) = T_2(v)T_1(u)R(u - v).
\] \tag{2}

Here \(T(u) = (t_{ij}(u))_{1\leq i,j\leq k} \) is the generating matrix of \(Y(n) \): the entries of \(T(u) \) are formal power series with coefficients in \(Y(n) \):

\[
t_{ij}(u) = \sum_{k=0}^{\infty} \frac{t_{ij}^{(k)}}{u^k}, \quad t_{ij}^{(k)} \in Y(n), \quad t_{ij}^{(0)} = \delta_{i,j}.
\]
The definition of $Y(n)$ implies that many formulas involving its generating matrix $T(u)$ contain the shifts of the parameter u. To simplify some of these formulas, it is convenient to introduce a shift-variable τ (we follow [18], [10], [1] in this approach). Any element $f(u)$ of $Y(n)[[u^{-1}]]$ we identify with the operator of multiplication by this formal power series, acting on $Y(n)[[u^{-1}]]$. Let $\tau^{\pm} = e^{\pm i \theta}$. These operators also act on $Y(n)[[u^{-1}]]$ by shifts of the variable u:

$$
\tau^{\pm}(g(u)) = e^{\pm i \theta}(g(u)) = g(u \pm 1), \quad g(u) \in Y(n)[[u^{-1}]].
$$

(3)

Thus, under this identification of shifts τ^{\pm} and the elements $f(u)$ of $Y(n)[[u^{-1}]]$ with differential operators acting on the algebra $Y(n)[[u^{-1}]]$, we can write the following commutation relation:

$$
\tau^{\pm} f(u) = f(u \pm 1) \tau^{\pm}.
$$

(4)

We will use the relation (4) to write the formulas for symmetric functions $e_k(u, \tau), h_k(u, \tau), p^\pm_k(u, \tau)$, defined in the next section.

Symmetrizer and antisymmetrizer.

Define the projections to the symmetric and antisymmetric part of $(\mathbb{C}^n)^\otimes k$:

$$
A_k = \frac{1}{k!} \sum_{\sigma \in S_k} (-1)^\sigma \sigma, \quad S_k = \frac{1}{k!} \sum_{\sigma \in S_k} \sigma.
$$

These are the elements of the group algebra $\mathbb{C}[S_k]$ of the permutation group, acting on $(\mathbb{C}^n)^\otimes k$ by permuting the tensor components. The operators enjoy the listed below properties.

Proposition 1. (a)

$$
A_k^2 = A_k \quad \text{and} \quad S_k^2 = S_k.
$$

(b) With abbreviated notations $R_{ij} = R_{ij}(v_i - v_j)$, write

$$
R(v_1, \ldots, v_m) = (R_{m-1,m})(R_{m-2,m}R_{m-2,m-1}) \cdots (R_{1,m} \cdots R_{1,2}).
$$

Then $A_k = \frac{1}{k!}R(u, u - 1, \ldots u - k + 1)$, and $S_k = \frac{1}{k!}R(u, u + 1, \ldots u + k - 1)$.

(c)

$$
A_k T_1(u) \cdots T_m(u - k + 1) = T_k(u - k + 1) \cdots T_1(u) A_k,
$$

$$
S_k T_1(u) \cdots T_k(u + k - 1) = T_k(u + k - 1) \cdots T_1(u) S_k.
$$

(d)

$$
\text{tr}(A_n T_1(u) \cdots T_n(u - n + 1)) = q\text{det} T(u).
$$

(3)

(The expression $q\text{det}(T(u)$ is called the quantum determinant of the matrix $T(u)$ and is defined by $q\text{det}(T(u) = \sum_{\sigma \in S_n} t_{\sigma(1),1}(u) \cdots t_{\sigma(n),n}(u - n + 1)$, [7], [8].)

(e)

$$
A_{k+1} = \frac{1}{k+1} A_k R_{k,k+1} \left(\frac{1}{k}\right) A_k,
$$

$$
R_{k,k+1} = \sum_{\sigma \in S_k} t_{\sigma(1),1}(u) \cdots t_{\sigma(k+1),k+1}(u - n + 1).
$$

(2009), #R128
\[S_{k+1} = \frac{1}{k+1} S_k R_{k,k+1} \left(-\frac{1}{k} \right) S_k. \]

(h) Put
\[B^+_l := \frac{1}{l!} R_{l-1,l} \left(\pm \frac{1}{l-1} \right) R_{l-2,l-1} \left(\pm \frac{1}{l-2} \right) \ldots R_{1,2} \left(\pm 1 \right). \]

Then
\[S_k = B^+_2 B^+_3 \ldots B^+_k, \quad A_k = B^-_2 B^-_3 \ldots B^-_k. \]

Proof. The properties (a) – (d) are contained in Propositions 2.9 – 2.11 in [7]. The property (e) can be shown by induction. The statement of (h) follows from (e). Note that (b) and (h) give different presentations of symmetrizer and antisymmetrizer in terms of R-matrices. For example, by (b), \(A_3 = \frac{1}{6} R_{23}(1) R_{13}(2) R_{12}(1) \), and by property (h), \(A_3 = \frac{1}{12} R_{12}(1) R_{23}(1) R_{12}(1) \). The expressions (h) for the symmetrizer and antisymmetrizer are simple to deduce, but the author is not aware of its appearance in the preceding literature. \[\square \]

Elementary and homogeneous symmetric functions

Definition 2. The following formal power sums in \(u^{-1} \) with coefficients in \(Y(n) \) are the analogues of ordinary symmetric functions:

Elementary symmetric functions:
\[e_k(u) = \text{tr} \left(A_k T_1(u) \ldots T_k(u - k + 1) \right), \quad k = 1, 2, \ldots, n. \]

Homogeneous symmetric functions:
\[h_k(u) = \text{tr} \left(S_k T_1(u) \ldots T_k(u + k - 1) \right), \quad k = 1, 2, \ldots. \]

Power sums:
\[p^\pm_k(u) = \text{tr} \left(T(u) T(u \pm 1) \ldots T(u \pm (k - 1)) \right), \quad k = 1, 2, \ldots. \]

Bethe subalgebra

Let \(Z \) be a matrix of size \(n \) by \(n \) with complex coefficients. Consider \(\mathcal{B}(\mathfrak{gl}_n(\mathbb{C}, Z)) \) – the commutative subalgebra of the Yangian \(Y(n) \), generated by the coefficients of all the series
\[b_k(u, Z) = \text{tr} \left(A_n T_1(u) \ldots T_k(u - k + 1) Z_{k+1} \ldots Z_n \right), \quad k = 1, 2 \ldots n. \]

It is called *Bethe subalgebra* (see, for example [3], [4], [5], [14]). The introduced above elements \(e_k(u) \) are proportional to generators of the (degenerate) Bethe subalgebra – with \(Z \) being the identity matrix:

Lemma 1. \(e_k(u) = \frac{n!}{k!(u-1)^{n-k}} b_k(u, Id) \) for \(k = 1, 2, \ldots, n. \)
Proof. Let \(\text{tr}_{(1..a)} \) denote the trace by the first \(a \) components in the tensor product \((\text{End} (\mathbb{C}^n))^{\otimes (m+1)}\) for some fixed \(m \), where \(m = 0, 1, \ldots, (n-1) \). By Proposition 1 (c), (e), and the cyclic property of the trace, we obtain that

\[
\text{tr}_{(1...m+1)}\left(A_{m+1} T_1(u) \ldots T_k(u-k+1) \otimes 1^{\otimes m+1-k}\right) = \frac{(n-1)}{m+1} \text{tr}_{(1...m)}\left(A_m T_1(u) \ldots T_k(u-k+1) \otimes 1^{\otimes m-k}\right).
\]

From (5) one can show by induction that

\[
b_k(u, \text{Id}) = \text{tr}_{(1...n)}(A_n T_1(u) \ldots T_k(u-k+1) \otimes 1^{\otimes n-k}) = \frac{(n-1)^{n-k} k!}{n!} e_k(u).
\]

Remark. In case of \(Z \) with simple spectrum, the corresponding Bethe subalgebra is a maximal commutative subalgebra of \(Y(n) \). In the case of \(Z = \text{Id} \) subalgebra \(\mathcal{B}(\mathfrak{gl}_n(\mathbb{C}, \text{Id})) \) does not enjoy this property, but the center of \(Y(n) \) is contained in the Bethe subalgebra properly. For example, the algebra \(\mathcal{B}(\mathfrak{gl}_n(\mathbb{C}, \text{Id})) \) contains the coefficients of the series \(\text{tr}(T(u)T(u-1) \ldots T(u-k)) \), which are not central in general.

Proposition 2. Let the matrices \(B^\pm_k \) be defined as in Proposition 1, (h). Then for \(k = 1, 2, \ldots, n \)

\[
e_k(u) = \text{tr} \left(B^-_k T_1(u) \ldots T_k(u-k+1) \right),
\]

\[
h_k(u) = \text{tr} \left(B^+_k T_1(u) \ldots T_k(u+k-1) \right),
\]

\[
e_k(u+k-1) = \text{tr} \left(A_k T_1(u) \ldots T_k(u+k-1) \right),
\]

\[
h_k(u-k+1) = \text{tr} \left(S_k T_1(u) \ldots T_k(u-k+1) \right).
\]

Proof. By Proposition 1 part (e),

\[
e_k(u) = \frac{1}{k} \text{tr} \left(A_{k-1} R_{k-1,k} \left(\frac{1}{k-1} \right) A_{k-1} T_1(u) \ldots T_k(u-k+1) \right),
\]

\[
= \frac{1}{k} \text{tr} \left(R_{k-1,k} \left(\frac{1}{k-1} \right) A_{k-1} T_1(u) \ldots T_k(u-k+1) A_{k-1} \right),
\]

\[
= \frac{1}{k} \text{tr} \left(R_{k-1,k} \left(\frac{1}{k-1} \right) A_{k-1} T_1(u) \ldots T_k(u-k+1) \right).
\]

The last equality follows from properties (c) and (a) of the Proposition 1. Applying the same Proposition 1 part (e) to \(A_{k-1} \), and observing, that \(A_{k-2} \) commutes with \(R_{k-1,k} \left(\frac{1}{k-1} \right) \), we obtain that

\[
e_k(u) = \frac{1}{k(k-1)} \text{tr} \left(R_{k-1,k} \left(\frac{1}{k-1} \right) R_{k-2,k-1} \left(\frac{1}{k-2} \right) A_{k-2} T_1(u) \ldots T_k(u-k+1) \right).
\]

Proceeding by induction, we obtain the first statement of (6). The second formula is proved similarly, and the last two can be checked directly. \(\square \)
For $k = 1, 2, \ldots n$, introduce the following notations:

$$
e_k(u, \tau) = \text{tr} \left(A_k(T(u)^{-1})^{[k]} \right),$$

$$h_k(u, \tau) = \text{tr} \left((S_kT(u))^{[k]} \right),$$

$$p_k^\pm(u, \tau) = \text{tr} \left((T(u)^{\pm 1})^k \right).$$

(8)

Observe that

$$e_k(u, \tau) = e_k(u)^{\tau^{-k}}, \quad h_k(u, \tau) = h_k(u)^{\tau^k}, \quad p_k^\pm(u, \tau) = p_k^\pm(u)^{\tau^{\pm k}}.$$

(9)

As it was mentioned, the insertion of the shift τ in the formulas allows to write some relations in the classical form:

Proposition 3. Let $\lambda = (\lambda_1, \ldots \lambda_m)$ be a composition of number k, $1 \leq k \leq n$ (the order of parts is important). Let $a_i = \lambda_1 + \cdots + \lambda_i$, $(i = 1, 2, \ldots m)$. Then

$$e_k(u, \tau) = \sum_{\lambda} \frac{(-1)^{k-m}}{a_1a_2\ldots a_m} p_{\lambda_1}^-(u, \tau) \cdots p_{\lambda_m}^-(u, \tau),$$

(10)

$$h_k(u, \tau) = \sum_{\lambda} \frac{1}{a_1a_2\ldots a_m} p_{\lambda_1}^+(u, \tau) \cdots p_{\lambda_m}^+(u, \tau),$$

(11)

where the sums in both equations are taken over all compositions λ of the number k.

Remark. Compare these formulas with (2.14') in Chapter 1.2 of [6].

Proof. We will prove (10), the arguments for (11) follow the same lines. The matrix B_k^- can be written as a sum of terms of the form

$$(P_{m-1,m} \cdots P_{a_{m-1},a_{m-1}}) \cdots (P_{a_1,a_1} \cdots P_{1,2}),$$

with permutation matrices $P_{k,l}$, defined by (1). Each term in this sum corresponds to a decomposition λ of number k, and the coefficients of these terms in the sum are exactly $(-1)^{k-m}(a_1a_2\ldots a_m)^{-1}$. Then from (6), the elementary symmetric functions are the sums of the products of terms of the following form:

$$\text{tr} \left(P_{a_{i-1},a_i} \cdots P_{a_{i-1},a_{i-1}} T_{a_i-1}(u - a_{i-1} + 1) \cdots T_{a_i}(u - a_i + 1) \right).$$

(12)

The following statement can be checked directly.

Lemma 2. For any k matrices $X(1), \ldots, X(k)$ of the size $n \times n$ with the entries in an associative non-commutative algebra A, one has

$$\text{tr} \left(P_{k-1,k} P_{k-2,k-1} \cdots P_{1,2} (X(1))_1 (X(2))_2 \cdots (X(k))_k \right) = \text{tr} (X(1)X(2) \cdots X(k)).$$

(13)
From Lemma 2, the expression in (12) is nothing else but $p_{\lambda_i}(u - a_{i-1} + 1)$. Thus, $e_k(u)$ is the sum of terms of the form

$$(-1)^{k-m}(a_1a_2 \ldots a_m)^{-1}p_{\lambda_1}(u)p_{\lambda_2}(u - a_1) \ldots p_{\lambda_m}(u - a_{m-1}),$$

and (10) follows.

The following Newton identities and some of their corollaries are discussed in [1], using the technics of so-called Manin matrices. Here we give an alternative proof, using the RTT algebras with R-matrices that satisfy Hecke type condition.

Proposition 4. (Newton’s formula) For any $m = 1, 2, \ldots, n + 1$,

$$
\sum_{k=0}^{m-1} (-1)^{m-k-1} e_k(u, \tau) p_{m-k}^-(u, \tau) = m e_m(u, \tau),
$$

(14)

$$
\sum_{k=0}^{m-1} h_k(u, \tau) p_{m-k}^+(u, \tau) = m h_m(u, \tau).
$$

(15)

Proof. By (7),

$$m e_m(u) = \operatorname{tr} \left(R_{m-1,m} \left(\frac{1}{m-1} \right) A_{m-1} T_1(u) \ldots T_m(u - m + 1) \right) = \operatorname{tr} \left(A_{m-1} T_1(u) \ldots T_m(u - m + 1) \right) - (m - 1) \operatorname{tr} \left(P_{m-1,m} A_{m-1} T_1(u) \ldots T_m(u - m + 1) \right) = e_{m-1}(u) p_1(u - m + 1) - (m - 1) \operatorname{tr} \left(A_{m-1} T_1(u) \ldots T_m(u - m + 1) P_{m-1,m} \right),$$

Applying the cyclic property of the trace, and the Proposition 1, (c) and (e) to the second term in the last expression, we obtain that

$$m e_m(u) = e_{m-1}(u) p_1(u - m + 1) - \operatorname{tr} \left(A_{m-2} T_1(u) \ldots T_m(u - m + 1) P_{m-1,m} \right) + (m - 2) \operatorname{tr} \left(A_{m-2} T_1(u) \ldots T_m(u - m + 1) P_{m-1,m} P_{m-2,m-1} \right),$$

and by induction,

$$m e_m(u) = e_{m-1}(u) p_1(u - m + 1) - \operatorname{tr} \left(A_{m-2} T_1(u) \ldots T_m(u - m + 1) P_{m-1,m} \right) + \operatorname{tr} \left(A_{m-3} T_1(u) \ldots T_m(u - m + 1) P_{m-1,m} P_{m-2,m-1} \right) + \ldots + (-1)^{m-1} \operatorname{tr} \left(T_1(u) \ldots T_m(u - m + 1) P_{m-1,m} \ldots P_{1,2} \right).
$$

(16)

Applying Lemma 2 to the terms of the sum, we conclude that each of them has the form

$$(-1)^{m-k-1} e_k(u) p_{m-k}^-(u - k),$$

and the Newton’s formula for elementary symmetric functions $e_m(u, \tau)$ follows.

The proof for homogeneous functions is similar.
Corollary 1. (a) Coefficients of \(\{p_k^-(u)\} \) belong to the Bethe subalgebra \(B(n) \). Therefore, they commute. (See also the Remark after the Proposition 7 in the end of the paper).

(b) (C.f. Example 8, Chapter 1.2 of [6]). For \(m=1,2,\ldots,n \),

\[
m! e_m(u) = \det \begin{pmatrix} p_1(u) & 1 & 0 & \cdots & 0 \\ p_2(u) & p_1(u-1) & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_m(u) & p_{m-1}(u-1) & p_{m-2}(u-2) & \cdots & p_1(u-m+1) \end{pmatrix},
\]

\[
m! h_m(u) = \det \begin{pmatrix} p_1^+(u) & -1 & 0 & \cdots & 0 \\ p_2^+(u) & p_1^+(u+1) & -2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_m(u) & p_{m-1}^+(u+1) & p_{m-2}^+(u+2) & \cdots & p_1^+(u+m-1) \end{pmatrix},
\]

\[
p_m(u) = \det \begin{pmatrix} e_1(u) & 1 & 0 & \cdots & 0 \\ 2 e_2(u) & e_1(u-1) & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m e_m(u) & e_{m-1}(u-1) & e_{m-2}(u-2) & \cdots & e_1(u-m+1) \end{pmatrix},
\]

\[
(-1)^{m-1} p_m^+(u) = \det \begin{pmatrix} h_1(u) & 1 & 0 & \cdots & 0 \\ 2 h_2(u) & h_1(u+1) & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ m h_m(u) & h_{m-1}(u+1) & h_{m-2}(u+2) & \cdots & h_1(u+m-1) \end{pmatrix}.
\]

Inverse of the universal differential operator

Consider the universal differential operator for XXX model: the formal polynomial in variable \(\tau^{-1} \), which is the generating function of the elements \(e_k(u) \) (see e.g. [10], [18]):

\[
E(u, \tau) = \sum_{k=0}^{n} (-1)^k e_k(u, \tau).
\]

Using the Newton’s identities, it is easy to describe the inverse of this operator.

Namely, for \(m=1,2,\ldots \) define \(h_m^-(u) \) and \(h_m^-(u, \tau) \) by the following formulas:

\[
h_m^-(u, \tau) := \tau^{-m} h_m^-(u),
\]

where

\[
m! h_m^-(u) = \det \begin{pmatrix} p_1^-(u) & -1 & \cdots & 0 \\ p_2^-(u+1) & p_1^-(u+1) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ p_{m-1}^-(u+m-2) & p_{m-2}^-(u+m-2) & \cdots & -m+1 \\ p_m(u+m-1) & p_{m-1}^-(u+m-1) & \cdots & p_1^-(u+m-1) \end{pmatrix}.
\]
Let
\[H^-(u, \tau) = \sum_{i=0}^{\infty} h_i^-(u, \tau), \]
where \(h_0^-(u, \tau) = 1 \). The following proposition follows directly from Newton’s identities.

Proposition 5. (a) The generating functions \(H(u, \tau) \), \(E(u, \tau) \) satisfy the following identity:
\[E(u, \tau)H^-(u + 1, \tau) = 1 \]
(b) The coefficients of the elements \(\{ h_k^-(u) \} \) belong to Bethe subalgebra and commute.

The relation to elementary symmetric functions is given by
\[e_k(u) = \det (h_{j-i+1}(u-j+1)). \]

One can go further and introduce combinatorial analogues of Schur functions:

Definition 3. Let \(\lambda = (\lambda_1, \ldots, \lambda_k) \) be a partition of number \(m \) with not more than \(n \) parts. The Schur function \(s_\lambda(u) \) is the formal series in \(u^{-1} \) with coefficients in \(Y(n) \), defined by
\[s_\lambda(u) := \det [h_{j-i}^-(u-j+1)]_{1 \leq i,j \leq n}. \quad (17) \]

Proposition 6. Let \(\lambda' \) be the conjugate partition to \(\lambda \), and assume that it has not more than \(n \) parts. Then
\[s_\lambda(u) := \det [e_{j-i}^+(u)]_{1 \leq i,j \leq n}. \quad (18) \]

Proof. The proof is the same as in classical case (see [6], (2.9), (2.9’), (3.4), (3.5)). For any positive number \(N \) such that \(1 \leq N \leq n \) consider the matrices
\[H^- = [h_{j-i}^-(u-j+1)]_{0 \leq i,j \leq N}, \quad E = [(-1)^{i-j}e_{j-i}(u)]_{0 \leq i,j \leq N}. \]

Here \(h_k^-(u) = e_k(u) = 0 \) for any \(k < 0 \). The Newton’s identities show that these matrices are inverses of each other. Therefore, each minor of \(H^- \) is equal to the complementary cofactor of the transpose of \(E \), which implies the equality of determinants in (17) and (18) (c.f. [6], formulas (2.9), (2.9’)). \(\square \)

Connection to Capelli polynomials and Shifted Schur polynomials

In this section we show that the proved above identities immediately imply similar relations between Capelli polynomials and shifted Schur polynomials. The theory of higher Capelli polynomials is contained in [13], [15]. The detailed account on shifted symmetric functions and their applications is developed in [16]. Here we briefly remind the main definitions, following these three references.

Let \(E = \{ e_{ij} \} \) be the matrix of generators of \(\mathfrak{gl}_n(\mathbb{C}) \). Let \(\lambda = (\lambda_1, \ldots, \lambda_k) \) be a partition of a number \(m \) with not more than \(n \) parts. Let \(\{ c_i \} \) be the set of contents of a column tableau of shape \(\lambda \) (see [13] for more details). Consider the Schur projector \(F_\lambda \) in the tensor power \((\mathbb{C}^n)^\otimes m\) to the irreducible \(\mathfrak{gl}_n(\mathbb{C}) \)-component \(V_\lambda \).
Definition 4. The higher Capelli polynomial \(c_\lambda(u) \) is a polynomial in variable \(u \) and coefficients in the universal enveloping algebra \(U(\mathfrak{gl}_n(\mathbb{C})) \), defined by

\[
c_\lambda(u) = \text{tr}(F_\lambda \otimes 1 (u - c_1 + E)_1 \ldots (u - c_k + E)_k).
\] (19)

The coefficients of Capelli polynomials \(c_\lambda(u) \) are in the center of \(U(\mathfrak{gl}_n(\mathbb{C})) \). The Capelli element \(c_\lambda(u) \) acts in the irreducible representation \(V_\mu \) with the highest weight \(\mu \) by multiplication by a scalar, which is the shifted symmetric polynomial \(\text{Capelli element} \) \(c \)

We identify the corresponding Capelli elements with their shifted Schur polynomials, and

\[
\text{Let } ev : Y(n) \to U(\mathfrak{gl}_n(\mathbb{C})) \text{ be the evaluation homomorphism:}
\]

\[
ev : T(u) \mapsto 1 + \frac{E}{u}.
\]

Under this map the defined above symmetric functions in \(Y(n) \) map to the following Capelli elements:

\[
ev (e_k(u)) = \frac{e_k(u - k + 1)}{(u \downarrow k)}, \quad \text{ev (h}_k(u) = \frac{h_k(u + k - 1)}{(u \uparrow k)},
\]

where

\[(u \downarrow k) = u(u - 1) \ldots (u - k + 1) \quad \text{and} \quad (u \uparrow k) = u(u + 1) \ldots (u + k - 1).
\]

Moreover, set

\[p_m(u) = \text{tr} ((E + u) \ldots (E + u + m - 1)).\]

Then

\[
ev (p^-_m(u + m - 1)) = ev (p^+_m(u)) = \frac{p_m(u)}{(u \uparrow m)},
\]

and this implies

\[ev (h^-_m(u)) = ev (h_m(u)).\]

The eigenvalue of the central polynomial \(p_k(u) \in U(\mathfrak{gl}_n(\mathbb{C}))[u] \) in the irreducible representation \(V_\mu \) can be easily found, using the classical formula for the eigenvalues of Casimir operators from [17]. The eigenvalue of \(\text{tr } E^k \) is given by the formula

\[
\text{tr } E^k(\mu) = \sum_{i=1}^{n} \gamma_i m_i^k,
\] (20)
where
\[m_i = \mu_i + n - i, \quad \gamma_i = \prod_{j \neq i} \left(1 - \frac{1}{m_i - m_j} \right). \]

Accordingly, the shifted symmetric polynomial \(p_k^*(u) \) which gives the eigenvalue of \(p_k(u) \) is
\[p_k^*(u) = \sum_{i=1}^{n} \gamma_i (m_i + u)(m_i + u + 1) \ldots (m_i + u + k - 1). \]

The combinatorial identities in the Yangian imply immediately the corresponding relations between Capelli polynomials. Some of them are listed below.

Proposition 7.
\[e_k^*(u - k) = \sum_{\lambda} \frac{(-1)^{k-m}}{a_1a_2 \ldots a_m} p_{\lambda_1}^*(u - a_1) \ldots p_{\lambda_m}^*(u - a_m), \quad (21) \]
\[h_k^*(u + k - 1) = \sum_{\lambda} \frac{1}{a_1a_2 \ldots a_m} p_{\lambda_1}^*(u) \ldots p_{\lambda_m}^*(u + a_{m-1}), \quad (22) \]
\[\sum_{k=0}^{m} (-1)^k e_k^*(u - k + 1) h_{m-k}^*(u - k) = \delta_{m,0}. \quad (23) \]

Remark. 1) The defined here polynomials \(p_k^*(u) \) do not coincide with the shifted power sums under the same notation in [16].

2) The identity (23) is similar to the relation (12.18), [16] on the generating functions of the elements \(e_k^*, h_k^*. \)

3) The images of \(p_k^\pm(u) \) under the evaluation homomorphism coincide up to a shift of the variable, but we do not know yet a simple combinatorial relation between those two series, and for this reason we do not state that the coefficients of \(p_k^*(u) \) belong to the Bethe subalgebra. We believe that such relation can be obtained from some anti-automorphism of the Yangian (or may be, its double), applied to the universal R-matrix.

References

[1] A. Chervov, G. Falqui, *Manin matrices and Talalaev’s formula*, J. Phys. A 41, 19, (2008).

[2] A. Isaev, O. Ogievetsky, P. Pyatov, *Generalized Cayley-Hamilton-Newton identities*, Czechoslovak J. Phys. 48 (11) (1998), 1369–1374.

[3] V. E. Kopernin, N. M. Bogoliubov, A. G. Izergin, *Quantum Inverse Scattering Method and Correlation Functions*, Cambridge University Press, Cambridge 1993.

[4] A. N. Kirillov, N. Reshetikhin, *Yangians, Bethe ansatz and combinatorics*, Lett. Math. Phys, 12 (1986), 199–208.
[5] P. P. Kulish, E. K. Sklyanin, *Quantum spectral transform method: recent developments in Integrable Quantum Field Theories*, Lecture Notes in Phys. 151, Springer, Berlin-Heidelberg, (1982), 61 – 119.

[6] I. G. Macdonald, *Symmetric functions and Hall polynomials*, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, (1979).

[7] A. Molev, *Yangians and their applications*, Handbook of algebra, North-Holland, Amsterdam, 3, (2003), 907–959.

[8] A. Molev, *Yangians and classical Lie algebras*, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 143, (2007).

[9] A. Molev, M. Nazarov, G. Olshanski, *Yangians and Classical Lie algebras*, Russian Math. Surveys 51 (2) (1996), 205–282.

[10] E. Mukhin, V. Tarasov, A. Varchenko, *Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel*, SIGMA Symmetry Integrability Geom. Methods Appl. 3, (2007), (electronic).

[11] E. Mukhin, V. Tarasov, A. Varchenko, *Schubert calculus and representations of general linear group*, arXiv: 0711.4079.

[12] E. Mukhin, V. Tarasov, A. Varchenko, *Gaudin Hamiltonians generate the Bethe algebra of a tensor power of vector representation of \(gl_N \)*, arXiv:0904.2131.

[13] M. Nazarov, *Capelli elements in the classical universal enveloping algebras*, Combinatorial methods in representation theory, (Kyoto, 1998), Adv. Stud. Pure Math., 28, Kinokuniya, Tokyo, (2000), 261–285.

[14] M. Nazarov, G. Olshanski, *Bethe subalgebras in twisted Yangians*, Comm. Math. Phys, 178 (2), (1996), 483–506.

[15] A. Okounkov, *Quantum immanants and higher Capelli identities*, Transform. Groups, 1, (1996), no. 1-2, 99–126.

[16] A. Okounkov, G. Olshanski, *Shifted Schur functions*, St. Petersburg Math. J., 9, 2,1998, 239–300.

[17] A. M. Perelomov, V. S. Popov, *Casimir operators for semi-simple Lie groups*, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 32, 1968, 1368–1390.

[18] D. V. Talalaev, *The quantum Gaudin system*, Funct. Anal. Appl. 40, 1, 2006, 73–77.