Long-term Exposure to Ethylene Affects Polyamine Levels and Sprout Development in ‘Russet Burbank’ and ‘Shepody’ Potatoes

Jin-Cheol Jeong
National Alpine Agricultural Experiment Station, RDA, Pyoungchang, Kangwon 232-950, Korea

Robert K. Prange and Barbara J. Daniels-Lake
Agriculture and Agri-Food Canada, Atlantic Food and Horticulture Research Centre, 32 Main St., Kentville, NS B4N 1J5, Canada

Abstract. Potato (Solanum tuberosum L. ‘Russet Burbank’ and ‘Shepody’) tubers were exposed to continuous 4 μL·L⁻¹ (166 μmol·m⁻³) ethylene in air. Treatment started after 8 weeks in storage and continued up to 33 weeks of storage at 9 °C over one (‘Russet Burbank’) or two (‘Shepody’) storage seasons. Tubers were sampled at 3 week (‘Shepody’) or 5 week (‘Russet Burbank’) intervals for polyamine content (putrescine, (PUT); spermidine, (SPD); and spermine, (SPM)) and sprout number and fresh weight per tuber. During the storage period, ‘Shepody’ had higher concentrations of all three polyamines and a higher PUT/(SPD + SPM) ratio, compared with ‘Russet Burbank’. All three polyamines in both cultivars increased during storage, and the increase was more rapid in ‘Shepody’ than in ‘Russet Burbank’. Regardless of cultivar and year, exposure to ethylene induced higher spermidine (SPD) content and a lower PUT/(SPD + SPM) ratio, compared with the air treatment. Sprouts appeared later and were smaller on ethylene-treated tubers and were more numerous in ‘Russet Burbank’. These long-term ethylene effects may be due, in part, to enhanced transformation of PUT to SPD.

The polyamines putrescine (PUT), spermidine (SPD), and spermine (SPM) are found in all living cells and have important growth-regulating properties in plants (Evans and Malmberg, 1989, Galston and Kaur-Sawhney, 1990). During polyamine (PA) biosynthesis, PUT is synthesized from ornithine or arginine via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), respectively, and is then converted to SPD and SPM (Smith, 1985). S-adenosylmethionine (SAM) participates in the biosynthesis of SPD and SPM, with S-adenosylmethionine decarboxylase (SAMDC) being a key enzyme in this metabolism (Walden et al., 1997). Interestingly, SAM is also the precursor of the plant hormone ethylene which, among other actions, promotes senescence (Adams and Yang, 1977). Although ethylene and PAs have opposite physiological effects, they share SAM as an intermediate in their biosynthesis (Apelbaum et al., 1985, Biondi et al., 1990).

PAs and ethylene may regulate each other’s synthesis, either directly or by metabolic competition for SAM (Evans and Malmberg, 1989). The inhibition of ethylene synthesis by PAs has been studied in a number of plant tissues (Icekson et al., 1986; Kakkar and Rai, 1993; Roberts et al., 1984). Exogenously applied PAs and ethylene inhibit each other’s biosynthesis (Apelbaum et al., 1981, 1982; Icekson et al., 1986). However, they may not compete for SAM. PA and ethylene biosynthetic pathways are not actively competing for SAM. PA inhibition each other’s biosynthesis (Apelbaum et al., 1981, 1982; Roberts et al., 1984). Exogenously applied PAs and ethylene may regulate each other’s synthesis, either directly or by metabolic competition for SAM (Evans and Malmberg, 1989, Galston and Kaur-Sawhney, 1990). During polyamine (PA) biosynthesis, PUT is synthesized from ornithine or arginine via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), respectively, and is then converted to SPD and SPM (Smith, 1985). S-adenosylmethionine (SAM) participates in the biosynthesis of SPD and SPM, with S-adenosylmethionine decarboxylase (SAMDC) being a key enzyme in this metabolism (Walden et al., 1997). Interestingly, SAM is also the precursor of the plant hormone ethylene which, among other actions, promotes senescence (Adams and Yang, 1977). Although ethylene and PAs have opposite physiological effects, they share SAM as an intermediate in their biosynthesis (Apelbaum et al., 1985, Biondi et al., 1990).

PAs and ethylene may regulate each other’s synthesis, either directly or by metabolic competition for SAM (Evans and Malmberg, 1989). The inhibition of ethylene synthesis by PAs has been studied in a number of plant tissues (Icekson et al., 1986; Kakkar and Rai, 1993; Roberts et al., 1984). Exogenously applied PAs and ethylene inhibit each other’s biosynthesis (Apelbaum et al., 1981, 1982; Icekson et al., 1986). However, they may not compete for SAM. PA and ethylene biosynthetic pathways are not actively competing for SAM. PA inhibition each other’s biosynthesis (Apelbaum et al., 1981, 1982; Roberts et al., 1984). Exogenously applied PAs and ethylene may regulate each other’s synthesis, either directly or by metabolic competition for SAM (Evans and Malmberg, 1989, Galston and Kaur-Sawhney, 1990). During polyamine (PA) biosynthesis, PUT is synthesized from ornithine or arginine via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), respectively, and is then converted to SPD and SPM (Smith, 1985). S-adenosylmethionine (SAM) participates in the biosynthesis of SPD and SPM, with S-adenosylmethionine decarboxylase (SAMDC) being a key enzyme in this metabolism (Walden et al., 1997). Interestingly, SAM is also the precursor of the plant hormone ethylene which, among other actions, promotes senescence (Adams and Yang, 1977). Although ethylene and PAs have opposite physiological effects, they share SAM as an intermediate in their biosynthesis (Apelbaum et al., 1985, Biondi et al., 1990).
Materials and Methods

PLANT MATERIAL. Medium-size (≈200 g) ‘Russet Burbank’ and ‘Shepody’ potato tubers were obtained in October from four growers in New Brunswick and Prince Edward Island, Canada. Six to ten tubers (≈1.2 to 2.0 kg) were put into mesh bags and each bag designated a treatment unit.

STORAGE CONDITIONS AND ETHYLENE TREATMENTS. Two experiments were conducted over 2 years (1998–99 and 1999–2000). In the first year, the effect of long-term ethylene exposure on PA metabolism in ‘Russet Burbank’ (long dormancy) and ‘Shepody’ (short dormancy) was investigated. For each cultivar, bags of tubers from four separate growers were placed in plastic polyvinyl chloride mesh baskets, with one basket assigned for each grower, and stored in two 0.67-m³ airtight stainless steel cabinets. All cabinets were ventilated during two 6-h periods per day, interspersed by two 6-h static periods without ventilation. One of the two cabinets for each cultivar was randomly assigned as an air control cabinet while the other was designated as the ethylene-treated chamber. Potato tubers were cured at 13 °C for 4 weeks, cooled by 1 °C per week for the 4 following weeks, and then stored at 9 °C.

The ethylene treatment was applied by addition of ethylene gas to the ventilation air stream after cooling (initial 8 weeks of storage) to maintain a constant ethylene concentration of 4 µL·L⁻¹ (166 µmol·m⁻³) in the cabinet, while control potatoes (air) received no additional treatment. In the second year, ‘Shepody’ potato tubers only were prepared by the same method as mentioned above with the ethylene treatment being applied similarly to the first year.

SPROUT DEVELOPMENT AND FREE PA CONTENT. Sprout development and PA content were evaluated at each removal date (every 3 weeks for ‘Shepody’ or 5 weeks for ‘Russet Burbank’) during the storage period. Sprout development was evaluated by determining the number and fresh weight of sprouts (over 2 mm) per tuber.

The methods described by Flores and Galston (1982) and Olson and Nowak (1988) were slightly modified in this experiment to determine free PAs. Samples of tissue (1 cm in diameter, 3 mm thickness) were removed from the apical bud region of tubers. Two grams of chopped tissue was homogenized for 1.5 min in 20 mL of 5% (v/v) cold perchloric acid containing 1,6-diaminohexane as an internal standard and cooled in an ice bath for 1 h. The cooled homogenate was then centrifuged at 25,000 g for 20 min. A 2-mL aliquot of supernatant was pipetted into a 15 mL test tube followed by addition of 2 mL 2 mol·L⁻¹ NaOH and 25 µL of 100% benzoyl chloride. After 45 min at 34 °C, 3 mL saturated NaCl and 3 mL anhydrous diethyl ether were added to each test tube, followed by shaking for 2 min. Two milliliters of the ether phase was transferred to another tube, followed by evaporation under nitrogen at 40 °C. The residue was dissolved in 400 µL of 100% methanol [high-performance liquid chromatography (HPLC) grade] and filtered through a 0.2-µm filter (Whatman Inc., Clifton, N.J.).

HPLC analysis was performed with a liquid chromatograph (model 1100; Agilent Technologies, Palo Alto, Calif.). The mobile phase consisted of 43 acetonitrile : 57 water (v/v) at a flow rate of 1.0 mL·min⁻¹. Sample solutions were eluted isocratically.

Fig. 1. Changes in the polyamine levels of ‘Russet Burbank’ (RB, Year 1) and ‘Shepody’ (Shep, Years 1 and 2) potato tubers as affected by continuous exposure to air or 4 µL·L⁻¹ ethylene during storage at 9 °C. (A) Putrescine (PUT), (B) spermidine (SPD), (C) spermine (SPM), and (D) PUT/(SPD + SPM), (Ratio).

J. AMER. SOC. HORT. SCI. 127(1):122–126. 2002.
at room temperature through a reverse phase C_8 ODS analytical (4.6 × 250 mm, 3-μm particle size) and guard column, with PA detection occurring at 245 nm via an ultra violet detector. The PA content of samples was calculated from a standard curve of individual PAs using benzoyl-1,6-diaminohexane as an internal standard.

**Statistical analyses.** The polyamine data were modeled using a mixed model including the fixed effects: treatment (air and ethylene), time (modeled as a quadratic regression), cultivar and the interaction of these effects; and the random effects: year, cultivar × year × treatment interaction and the cultivar × year × time interaction. This model was fitted using PROC GLM in SAS release 8.01 (SAS Inst. Inc., Cary, N.C.). The residuals were checked, and there was no evidence that the assumptions of analysis of variance (ANOVA) were violated.

To describe the delay in the onset of sprouting the following segmented exponential growth model incorporating a delay parameter was fitted for each chamber using PROC NLIN in SAS release 8.01:

\[
y = \begin{cases} 
0 & x_i < \delta \\
\exp(\beta x_i - \delta) - 1 & x_i \geq \delta 
\end{cases}
\]

where \( y \) represents the average number of sprouts per tuber, \( x_i \) represents the time in weeks, \( \beta \) represents the exponential increase parameter, and \( \delta \) represents the delay parameter. The estimate of the delay parameter was then used as a summary statistic in a two-factor ANOVA [factors: cultivar and treatment (air and ethylene)] fitted using PROC GLM in SAS release 8.01. Unless otherwise noted, results were considered significant if \( P \leq 0.05 \). The figures were prepared using SigmaPlot software (SPSS, Inc., Richmond, Calif.).

**Results**

**Effect of long-term ethylene exposure on PA content.** ‘Shepody’ tubers, compared with ‘Russet Burbank’, had higher concentrations of PUT, SPD, and SPM. As storage time increased, all three PAs increased in both cultivars, but more in ‘Shepody’ than ‘Russet Burbank’ (cultivar × storage time: PUT, \( P < 0.001 \); SPD, \( P = 0.002 \); SPM, \( P = 0.010 \)) (Fig. 1A–C). The PUT/(SPD + SPM) ratio was higher in ‘Shepody’ than in ‘Russet Burbank’ (\( P = 0.019 \)) (Fig. 1D) and it increased with storage time (\( P < 0.001 \)) without any interaction with cultivar.

Ethylene treatment increased SPD (\( P = 0.043 \)) (Fig. 1B) and this response was not affected by cultivar (treatment × cultivar, \( P = 0.208 \)) or storage time (treatment × storage time, \( P = 0.144 \)). Ethylene treatment decreased the PUT/(SPD + SPM) ratio (\( P = 0.024 \)) (Fig. 1D) and this response was not altered by cultivar (treatment × cultivar, \( P < 0.128 \)) or storage time (treatment × storage time, \( P = 0.105 \)). Ethylene treatment did not influence PUT (\( P = 0.114 \)) (Fig. 1A) or SPM levels (\( P = 0.132 \)) (Fig. 1C).

**Effect of long-term ethylene exposure on tuber sprouting.** After continuous ethylene treatment started on week 8, the first sprout occurred after 8.7 weeks ± 0.46 (se) in ‘Shepody’, the short dormancy cultivar, and after 15.0 weeks ± 0.65 in ‘Russet Burbank’, averaged between the two treatments (cultivar, \( P = 0.016 \)). Continuous ethylene exposure delayed the appearance of first sprout by about 5.3 weeks, from 9.2 ± 0.57 (control) to 14.5 ± 0.57 weeks (ethylene) (treatment, \( P = 0.017 \)). The values are the combined data from the two cultivars since this response was not affected by cultivar (treatment × cultivar, \( P = 0.269 \)).

Individual sprout weight and number of sprouts per tuber, measured on the last removal for each cultivar, were both affected by an interaction between cultivar and treatment (\( P < 0.001 \)) (Table 1). Individual sprout weight on control tubers was lower in ‘Shepody’ than in ‘Russet Burbank’. Ethylene treatment lowered individual sprout weight, more in ‘Russet Burbank’ than in ‘Shepody’.

Sprout number per tuber was low in ‘Russet Burbank’ control tubers and this was increased by ethylene (Table 1). Conversely, sprout number per tuber was high in ‘Shepody’ control tubers and this was not increased by ethylene.

**Discussion**

It has been suggested that PAs play an important role in the regulation of plant growth and development (Evans and Malmberg, 1989). During the long-term storage of potato seed tubers, the activities of PA biosynthetic enzymes, ODC and SAMDC, increase with progressive sprouting, and the level of PAs in the apical buds increases simultaneously (Kaur-Sawhney et al., 1982).

In this study, we observed that PAs increased dramatically in all treatments (Fig. 1). The higher amount of PAs in ‘Shepody’, compared with ‘Russet Burbank’, combined with an earlier and more rapid increase may explain, in part, the shorter dormancy period of ‘Shepody’, compared with ‘Russet Burbank’. A similar trend of PAs with dormancy has also been shown in germinating corn (Zea mays L.) seed (Suzuki and Hirasawa, 1980) and Jerusalem artichoke (Helianthus tuberosus L.) tubers (Bagni et al., 1980).

Ethylene exposure differentially influences PUT, SPD, and SPM. In deepwater rice (Oryza sativa L.), ethylene promotes a significant accumulation of SPD, but PUT increases only slightly (Cohen and Kende, 1986). Park and Lee (1994) reported that ethylene treatment increases the levels of SPD and SPM in suspension cultured cells of tobacco (Nicotiana tabacum L.), while PUT is not affected. More recently, Munoz et al. (1999) showed that continuous CO_2 treatment during the storage of cherimoya (Annona cherimola Mill.) led to a decline in PUT and a major accumulation of SPD and SPM without any effect on ADC activity. In this study, the long-term exposure of potato tubers to ethylene resulted in a SPD increase (Fig. 1B). These findings agree with some of the reports mentioned above but contrast with data from rice coleoptiles (Lee and Chu, 1992), in which there is a greater accumulation of PUT than SPD and SPM in ethylene-treated coleoptiles. Apelbaum et al. (1985) and Ickson et al. (1985) demonstrated that exposing pea (Pisum sativum L.) seedlings to ethylene inhibits the activities of ADC and SAMDC. Thus, the effect of ethylene on PA metabolism may be species specific (Friedman et al., 1989). As for potato tubers, our results show that the induction of a higher SPD and a lower PUT/(SPD + SPM) ratio with continuous exposure to ethylene requires further research to reveal how this induction may occur. Ethylene may be acting directly on critical enzymes, such as SAMDC, or it may be acting first by binding to ethylene binding sites which then induces enzyme up- or down-regulation. Preliminary research with 1-methylcyclopropene (1-MCP), which inhibits the attachment of ethylene to its receptor sites (Sisler and Serek, 1997), suggests that ethylene acts on PAs by first binding to its receptor sites (Sisler and Serek, 1997), and this response was not affected by cultivar (treatment × cultivar, \( P = 0.105 \)). Ethylene treatment did not influence PUT (\( P = 0.114 \)) (Fig. 1A) or SPM levels (\( P = 0.132 \)) (Fig. 1C).
sprouting after ethylene is stopped (Rylski et al., 1974; Prange, 1982), in mung bean [Vigna radiata (L.) R. Wilcz.] hypocotyl cuttings during rooting (Friedman et al., 1982), and in apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] pollen during tube growth (Bagni et al., 1981). Northcott and Nowak (1988) observed an increase in polyamine concentration when hydrogen cyanamide was applied to potato tubers as a dormancy release agent. The response included more intensive sprouting in the apical eyes. Polyamines are known to affect the synthesis and activity of macromolecules, membrane permeability, and some steps in mitosis and meiosis (Galston and Kaur-Sawhney, 1995). A high PA content has also been linked to the promotion of a wide variety of plant growth and developmental processes (Galston and Kaur-Sawhney, 1995). In particular, the transformation of PUT to SPD increases the cell division rate and a corresponding decrease in the PUT/(SPD and SPM) ratio, play a key role in this relationship.

In this study, continuous ethylene treatment induced an immediate increase in SPD, but instead of an immediate increase in SPD likely promotes cell division in eyes and the development of sprouts, but the continued presence of exogenous ethylene counteracts the growth of these new sprouts, resulting in many uniform but small sprouts.

**Table 1. Effect of continuous 4 μL·L⁻¹ ethylene treatment during long-term storage at 9 °C on tuber sprout weight and number after 33 and 23 weeks of storage of 'Russet Burbank' and 'Shepody' potatoes, respectively. Continuous ethylene treatment was started after the 8th week of storage. The data were transformed to Log₁₀ values for statistical analysis. Each value represents the back transformed mean while the value in parentheses represents the Log₁₀ mean ± sl.**

| Cultivar     | Treatment | Sprout fresh wt (g/sprout) | Sprouts (no./tuber) |
|--------------|-----------|----------------------------|---------------------|
| Russet Burbank| Control   | 4.00 (0.60 ± 0.13)         | 3.35 (0.53 ± 0.08)  |
|              | Ethylene  | 0.03 (–1.49 ± 0.13)        | 8.07 (0.91 ± 0.08)  |
| Shepody      | Control   | 0.69 (–0.16 ± 0.08)        | 8.74 (0.94 ± 0.05)  |
|              | Ethylene  | 0.07 (–1.13 ± 0.06)        | 7.22 (0.85 ± 0.04)  |

**Literature Cited**

Adams, D.O. and S.F. Yang. 1977. Methionine metabolism in apple tissue. Implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. 60:892–896.

Apelbaum, A., A.C. Burgoon, J.D. Anderson, M. Lieberman, R. Ben-Arie, and A.K. Mattoo. 1981. Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol. 68:453–456.

Apelbaum, A., A. Goldlust, and I. Icekson. 1985. Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiol. 79:635–640.

Apelbaum, A., I. Icekson, A.C. Burgoon, and M. Lieberman. 1982. Inhibition by polyamines of macromolecular synthesis and its implication for ethylene production and senescence processes. Plant Physiol. 70:1221–1223.

Bagni, N., P. Adamo, D. Serafini-Fracassini, and V.R. Villanueva. 1981. RNA, protein and polyamines during tuber growth in germinating apple pollen. Plant Physiol. 68:727–730.

Bagni, N., B. Malucelli, and P. Torrigiani. 1980. Polyamines, storage substances and abscisic acid-like inhibitors during dormancy and very early activation of Helianthus tuberosus tuber tissues. Physiol. Plant. 345:341–345.

Biondi, S., T. Diaz, I. Iglesias, G. Gamberini, and N. Bangi. 1990. Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol. Plant. 78:475–483.

Cohen, E. and H. Kende. 1986. The effect of submergence, ethylene and gibberellin on polyamines and their biosynthetic enzyme in deepwater rice internodes. Planta 169:498–504.

Evans, P.T. and R.L. Mukerji. 1989. Do polyamines have roles in plant development? Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 40:235–269.

Flores, H.E. and A.W. Galston. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69:701–706.

Friedman, R.A. Altman, and U. Bachrach. 1982. Polyamines and root formation in mung bean hypocotyl cuttings. I. Effects of exogenous compounds and changes in endogenous polyamine content. Plant Physiol. 70:844–848.

Friedman, R.A. Altman, and N. Levin. 1989. The effect of salt stress on polyamine biosynthesis and content in mung bean plants and in halophytes. Physiol. Plant. 76:295–302.

Galston, A.W. and R. Kaur-Sawhney. 1990. Polyamines in plant physiology. Plant Physiol. 94:406–410.

Galston, A.W. and R. Kaur-Sawhney. 1995. Polyamines as endogenous growth regulators. p. 158–178. In: P.J. Davies (ed.). Plant hormones. 2nd ed. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Icekson, J., A. Goldlust, and A. Apelbaum. 1985. Influence of ethylene on S-adenosylmethionine decarboxylase activity in etiolated pea seedlings. J. Plant Physiol. 119:335–346.
Kakkar, R.K. and V.K. Rai. 1993. Plant polyamines in flowering and fruit ripening. Phytochemistry 33:1281–1288.

Kaur-Sawhney, R., L. Shih, and A. Galston. 1982. Relation of polyamine biosynthesis to the initiation of sprouting in potato tubers. Plant Physiol. 69:411–415.

Kushad, M.M., G. Yelenosky, and R. Knight. 1988. Interrelationship of polyamine and ethylene biosynthesis during avocado fruit development and ripening. Plant Physiol. 87:463–467.

Lee, T.M. and C. Chu. 1992. Ethylene-induced polyamine accumulation in rice (Oryza sativa L.) coleoptiles. Plant Physiol. 100:238–245.

Mikitzel, L.J. and N.R. Knowles. 1989. Polyamine metabolism of potato seed-tubers during long-term storage and early sprout development. Plant Physiol. 91:183–189.

Munoz, M.T., P. Aguado, N. Ortega, M.I. Escribano, and C. Merodio. 1999. Regulation of ethylene and polyamine synthesis by elevated carbon dioxide in cherimoya fruit stored at ripening and chilling temperatures. Austral. J. Plant Physiol. 26:201–209.

Northcott, D. and J. Nowak. 1988. Effects of hydrogen cyanamide on seed potato. Potato Res. 31: 95–103.

Olson, A.R. and J. Nowak. 1988. Free polyamines in post pollination placenta and ovules of potato. HortScience 23:1042–1044.

Park, K.Y. and S.H. Lee. 1994. Effects of ethylene and auxin on polyamine levels in suspension cultured tobacco cells. Physiol. Plant. 90:382–390.

Pedros, A.R., M.R. MacLeod, H.A. Ross, D. McRae, A.F. Tiburcio, H.V. Davies, and M.A. Taylor. 1999. Manipulation of S-adenosylmethionine decarboxylase activity in potato tubers. An increase in activity leads to an increase in tuber number and a change in tuber size distribution. Planta 209:153–160.

Prange, R.K., W. Kalt, B. Daniel-Lake, C.L. Liew, R.T. Page, J.R. Walsh, P. Dean, and R. Coffin. 1998. Using ethylene as a sprout control agent in stored ‘Russet Burbank’ potatoes. J. Amer. Soc. Hort. Sci. 123:463–469.

Roberts, D.R., M.A. Walker, J.E. Thompson, and E.B. Dumbroff. 1984. The effects of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production and polyamine levels in cut carnation flowers. Plant Cell Physiol. 25:315–322.

Rylski, L., L. Rappaport, and H.K. Pratt. 1974. Dual effects of ethylene on potato dormancy and sprout growth. Plant Physiol. 53: 658–662.

Schwartz, M., A. Altman, Y. Cohen, and T. Arzee. 1986. Localization of ornithine decarboxylase and changes in polyamine content in root meristems of Zea mays. Physiol. Plant. 67:485–492.

Shen, H. and A.W. Galston. 1985. Correlations between polyamine ratio and growth patterns in seedling roots. Plant Growth Regulat. 3:353–363.

Sisler, E.C. and M. Serek. 1997. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol. Plant. 100:577–582.

Smith, T.A. 1985. Polyamines. Annu. Rev. Plant Physiol. 36:117–143.

Suzuki, Y. and E. Hirasawa. 1980. S-adenosylmethionine decarboxylase of corn seedlings. Plant Physiol. 66:1091–1094.

Walker, M.A., D.R. Roberts, C.Y. Shih, and E.B. Dumbroff. 1989. A requirement for polyamines during the cell division phase of radicle emergence in seeds of Acer saccharum. Plant Cell Physiol. 26:967–972.

Walker, M.A., D.R. Roberts, J.L. Waite, and E.B. Dumbroff. 1989. Relationships among cytokinins, ethylene and polyamines during the stratification–germination process in seeds of Acer saccharum. Physiol. Plant. 76:326–332.