Children's erythrocyte fatty acids are associated with the risk of islet autoimmunity

Sari Niinistö1*, Iris Erlund2, Hye-Seung Lee3, Ulla Uusitalo3, Irma Salminen7, Carin Andrén Aronsson4, Hemang M. Parikh3, Xiang Liu3, Sandra Hummel5, Jorma Toppari6, Jin-Xiong She3, Åke Lernmark4, Annette G. Ziegler5, Marian Rewers8, Beena Akolkar9, Jeffrey P. Krischer3, David Galas10, Siba Das10, Nikita Sakhanenko10, Stephen S. Rich11, William Hagopian10, Jill M. Norris12,3, Suvi M. Virtanen1,13,14,31 & the TEDDY Study Group*

Our aim was to investigate the associations between erythrocyte fatty acids and the risk of islet autoimmunity in children. The Environmental Determinants of Diabetes in the Young Study (TEDDY) is a longitudinal cohort study of children at high genetic risk for type 1 diabetes (n = 8676) born between 2004 and 2010 in the U.S., Finland, Sweden, and Germany. A nested case–control design comprised 398 cases with islet autoimmunity and 1178 sero-negative controls matched for clinical site, family history, and gender. Fatty acids composition was measured in erythrocytes collected at the age of 3, 6, and 12 months and then annually up to 6 years of age. Conditional logistic regression models were adjusted for HLA risk genotype, ancestry, and weight z-score. Higher eicosapentaenoic and docosapentaenoic acid (n−3 polyunsaturated fatty acids) levels during infancy and conjugated linoleic acid after infancy were associated with a lower risk of islet autoimmunity. Furthermore, higher levels of some even-chain saturated (SFA) and monounsaturated fatty acids (MUFA) were associated with increased risk. Fatty acid status in early life may signal the risk for islet autoimmunity, especially n−3 fatty acids may be protective, while increased levels of some SFAs and MUFAs may precede islet autoimmunity.

Abbreviations

ALα Alphalinolenic acid
CLA Conjugated linoleic acid
DPA Docosapentaenoic acid
DHA Docosahexaenoic acid
DMA Dimethylacetal
EPA Eicosapentaenoic acid
GADA Glutamic acid decarboxylase
HLA Human leukocyte antigen
IAA Insulin autoantibody

1Health and Well-Being Promotion Unit, Public Health and Welfare Department, Finnish Institute for Health and Welfare, P.O. Box 30, 00271 Helsinki, Finland. 2Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland. 3Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, USA. 4Department of Clinical Sciences, Lund University, CRC, Skåne University Hospital, Malmö, Sweden. 5Institute of Diabetes Research, Helmholtz Zentrum München and Forschungsgemeinschaft Diabetes, Klinikum Rechts Der Isar, Technische Universität München and Forschungsgemeinschaft Diabetes e.V., Munich, Germany. 6Department of Physiology, University of Turku, Turku, Finland. 7Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, USA. 8National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA. 9Pacific Northwest Research Institute, Seattle, WA, USA. 10University of Virginia School of Medicine, Virginia, USA. 11Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, USA. 12Department of Social Sciences/Health Sciences, Tampere University and Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland. 13The Science Center of Pirkanmaa Hospital District, Tampere, Finland. 14These authors jointly supervised this work: Jill M. Norris and Suvi M. Virtanen. *A list of authors and their affiliations appears at the end of the paper. Email: sari.niinist@thl.fi
Erythrocyte fatty acid composition in infancy and the risk of islet autoimmunity.

Characteristics of children by matching factors are presented in Table 1, and erythrocyte fatty acid status in children in Supplementary information Table 1. Higher proportion of EPA and DPA at 3 months was associated with a lower risk for islet autoimmunity. In contrast, oleic acid (18:1n−9) at 3 months and palmitic acid (16:0) at 6 months were associated with an increased risk of islet autoimmunity (Table 2). Erythrocyte fatty acid composition of infants differed according to breastfeeding status defined as consumption of any breastmilk (yes/no) at the age of 3 or 6 months (Table 3). Non-breastfed infants exhibited higher levels of oleic acid (18:1n−9) and palmitic acid (16:0) than breastfed children, and these fatty acids were associated with an increased risk of islet autoimmunity. ALA (18:3n−3), LA (18:2n−6) and docosanoid acid (22:0) showed an interaction with breastfeeding at 3 months on the risk of islet autoimmunity (ALA p = 0.024, LA p = 0.038, docosanoid acid p = 0.027). In non-breastfed infants, ALA (OR 0.35, 95% CI 0.15–0.83) and LA (0.18, 0.04–0.76) were associated with a lower risk of islet autoimmunity, while no associations were observed in breastfed infants (ALA 1.09, 0.64–1.84; LA 1.06, 0.42–2.68). Docosanoid acid (22:0) was associated with an increased risk in non-breastfed infants (non-breastfed 3.31, 1.08–10.14; breastfed 0.82, 0.41–1.64).

Infants’ fatty acid status at the age of 3 and 6 months was not associated with the risk of multiple islet autoimmunity (Supplementary information Table 2), but some associations with IAA first and GADA first outcomes were observed. DPA (22:5n−3) at 3 months showed a protective association with IAA first autoimmunity, while a high ratio of n−6n−3 PUFA at 6 months was associated with a higher risk (Supplementary information Table 3). For GADA first, a protective association was observed for AA (20:4n−6) and adrenic acid (22:4n−6) at 6 months, while myristic acid (14:0) at 6 months was associated with a higher risk (Supplementary information Table 4).

Erythrocyte fatty acid composition in children aged 1–6 years and the risk of islet autoimmunity.

In childhood (1–6 years of age), CLA showed an inverse association with islet autoimmunity (Table 3). In
contrast, higher stearic (18:0) and nervonic (24:1\(\text{n}_{-9}\)) acids and a high ratio of \(\text{n}_{-6} : \text{n}_{-3}\) PUFA were associated with an increased risk of islet autoimmunity. Furthermore, stearic acid (18:0), cis vaccenic acid (18:1\(\text{n}_{-7}\)), and dimethylacetal form of 18:0 (DMA18) were associated with a higher risk of multiple islet autoimmunity in childhood (Supplementary information Table 2). A high ratio of \(\text{n}_{-6} : \text{n}_{-3}\) PUFA was associated with an increased risk of IAA first (Supplementary information Table 3), while there were no associations for GADA first (Supplementary information Table 4).

None of the false discovery rate adjusted \(p\) values for the associations between fatty acids and the risk of islet autoimmunity, multiple islet autoimmunity, IAA first or GADA first were statistically significant.

Discussion

Our study showed some associations between erythrocyte fatty acid composition and the risk of islet autoimmunity. EPA (20:5\(\text{n}_{-3}\)) and DPA (22:5\(\text{n}_{-3}\)) in early infancy were associated with a lower risk of islet autoimmunity. Furthermore, stearic acid (18:0), cis vaccenic acid (18:1\(\text{n}_{-7}\)), and dimethylacetal form of 18:0 (DMA18) were associated with a higher risk of multiple islet autoimmunity in childhood (Supplementary information Table 2). A high ratio of \(\text{n}_{-6} : \text{n}_{-3}\) PUFA was associated with an increased risk of IAA first (Supplementary information Table 3), while there were no associations for GADA first (Supplementary information Table 4).

None of the false discovery rate adjusted \(p\) values for the associations between fatty acids and the risk of islet autoimmunity, multiple islet autoimmunity, IAA first or GADA first were statistically significant.

The results support the view that long-chain \(\text{n}_{-3}\) PUFAs are protective, especially at an early age. They may affect the activation and development of the immune system in infancy, the maturation of the gut such as microbiota, permeability, and barrier function as well as inflammatory responses, with long-term consequences\(^1\).

Our results are in line with some animal studies\(^2\) as well as two prospective studies\(^5-7\) although different \(n - 3\) fatty acids (ALA, EPA, DPA, DHA) were associated with reduced risk in the different studies. This may be explained by differences in exposure measurements, outcomes and supplementation policies. The fact that our study indicates a protective role for EPA and DPA, and results from the DAISY study for DPA\(^6\), raises the question whether infants at risk of type 1 diabetes might benefit from supplementation with EPA and DPA also, not

	Case children Total n = 398	Control children Total n = 1178
Clinical center, n (%)		
Colorado	56 (14.1)	162 (13.8)
Georgia	27 (6.8)	78 (6.6)
Washington	36 (9.1)	107 (9.1)
Finland	113 (28.4)	339 (28.8)
Germany	35 (8.8)	105 (8.9)
Sweden	131 (32.9)	387 (32.9)
Sex, n (%)		
Female	178 (44.7)	530 (45.0)
Male	220 (55.3)	648 (55.0)
Status regarding first degree relative		
First degree relative with type 1 diabetes	88 (22.1)	259 (22.0)
General population	310 (77.9)	917 (78.0)
HLA genotype, n (%)		
High risk (DR3/4)	210 (52.8)	420 (35.7)
Moderate risk (other genotypes)	187 (47.0)	747 (63.4)
Missing	1 (0.2)	11 (0.9)
Ancestry, mean (SD)		
Principal component 1	0.0017 (0.0074)	0.0013 (0.0078)
Principal component 2	-0.0003 (0.0109)	-0.0016 (0.0094)
Breastfed, n (%)		
At 3 months	307 (77.1)	903 (76.7)
At 6 months	252 (63.3)	778 (66.0)
Missing information	1 (0.3)	4 (0.3)
Weight z score, mean (SD)		
At 3 months	0.68 (0.95)	0.41 (1.03)
At 6 months	0.47 (1.00)	0.24 (1.01)
Over 1–6 years	0.20 (1.04)	0.01 (0.99)

Table 1. Characteristics of TEDDY children with islet autoimmunity and control children.
An important finding in this study was that the major even-chain SFAs [palmitic (16:0), stearic (18:0)], and MUFAs [oleic (18:1 n−9) and nervonic (24:1 n−9) acids], were associated with an increased risk of islet autoimmunity. Furthermore, for the multiple islet autoimmunity endpoint, stearic (18:0) and cis vaccenic acid (18:1 n−7) showed increased risk. The above-mentioned fatty acids are mainly produced endogenously in the liver from shorter-chain fatty acids, as well as by de novo lipogenesis32. The increase in SFA and MUFA levels may reflect changes taking place in fatty acid metabolism, before islet autoimmunity. Interestingly, similar associations have been observed for type 2 diabetes in large prospective cohorts32,33, possibly reflecting some of the pathogenic disturbances caused by a failure in insulin secretion and signaling34. Even-chain SFAs could also have detrimental effects per se, e.g. palmitic acid (16:0) has been associated with activation of inflammatory cytokines and lipotoxicity in pancreatic beta cells34.

Table 2. The risk of islet autoimmunity associated with erythrocyte fatty acid status in TEDDY nested case-control study. aConditional logistic regression analysis with centered log-ratio transformed variables (except for the ratio of sum n−6 and sum n−3) was adjusted for HLA genotype DR3/4, ancestry (PC1 and PC2), and weight z-score. bDocosanoid acid (22:0) showed interaction with breastfeeding at 3 months of age ($p = 0.024$). cLA showed interaction with any breastfeeding at 3 months of age ($p = 0.038$). dALA showed interaction with any breastfeeding at 3 months of age ($p = 0.027$).
Breastfeeding status affected erythrocyte fatty acid composition in infants in the current study, which is in line with previous findings for serum fatty acids. This is probably explained by differences in fatty acid content of breast milk and infant formula, but may also be caused by some other differences between the breastfed and formula-fed infants. Interestingly, breastfeeding in early infancy modified the association between ALA and LA status and the risk of islet autoimmunity. Higher ALA and LA status showed an inverse association in non-breastfed infants, while no association was seen in breastfed infants. The results indicate that an adequate intake of these essential fatty acids is even more important for infants not receiving any breast milk, and emphasize importance of fatty acid composition of infant formulas, the main source of the essential fatty acids in non-breastfed infants.

In our study, CLA (18:2\(\text{n-7}\)) was associated with a lower risk of islet autoimmunity in children aged 1–6 years. The main dietary source of CLA is dairy products, although it is also derived from fish and meat and it is produced endogenously to some degree. CLA has been shown to exhibit various anti-inflammatory, antiobesogenic and type 2 antidiabetic properties. However, the protective association observed in our study may also be a consequence of increased \(n-3\) PUFA levels. CLA supplementation has been shown to increase plasma levels of EPA, for instance. Our finding does not support the earlier prospective observation of positive associations between serum CLA and some dairy biomarkers and the risk of advanced islet autoimmunity.

Strengths of the study include a nested case–control design within a large-scale birth cohort, a high number of islet autoimmunity cases, as well as prospectively collected data. Furthermore, we used fatty acid biomarkers, which reflect long-term dietary intake, biosynthesis, and metabolism. In addition, we analyzed a relatively large number of medium to long-chain-length fatty acids from several biosynthetic pathways. We adjusted the results with weight because it is associated with both type 1 diabetes development and status of some of the fatty acids. The effect of weight adjustment was, however, relatively small. It can be considered a limitation that our study included children aged 1–6 years.

| Table 3. | The difference between fatty acid status of breastfed and not breastfed children at the age of 3 and 6 months in TEDDY nested case–control study. The difference between fatty acid status of breastfed and not breastfed children at the age of 3 and 6 month was tested by fitting a linear regression model for CLR transformed fatty acid (except for the ratio of sum \(n-6\) and sum \(n-3\)), adjusted for case–control status. |

Fatty Acid	Parameter estimate (SE)	\(p\) value	Parameter estimate (SE)	\(p\) value
SFA				
Myristic acid 14:0	−0.11 (0.02)	<0.0001	0.03 (0.02)	0.090
Pentadecanoic acid 15:0	0.21 (0.02)	<0.0001	0.22 (0.02)	<0.0001
Palmitic acid 16:0	−0.25 (0.01)	<0.0001	−0.19 (0.01)	<0.0001
Heptadecanoic acid 17:0	0.09 (0.02)	<0.0001	0.14 (0.01)	<0.0001
iso–heptadecanoic acid i17:0	0.91 (0.03)	<0.0001	0.78 (0.03)	<0.0001
Stearic acid 18:0	−0.12 (0.01)	<0.0001	−0.09 (0.01)	<0.0001
Eicosanoic acid 20:0	−0.29 (0.02)	<0.0001	−0.24 (0.02)	<0.0001
Docosanoic acid 22:0	−0.18 (0.02)	<0.0001	−0.14 (0.02)	<0.0001
Tetraicosanoic acid 24:0	−0.22 (0.02)	<0.0001	−0.18 (0.02)	<0.0001
MUFA				
Palmitoleic acid 16:1\(\text{n-7}\)	0.34 (0.03)	<0.0001	0.22 (0.02)	<0.0001
Cis vaccenic acid 18:1\(\text{n-7}\)	0.10 (0.01)	<0.0001	0.06 (0.01)	<0.0001
Oleic acid 18:1\(\text{n-9}\)	−0.25 (0.01)	<0.0001	−0.21 (0.01)	<0.0001
11–eicosanoic acid 20:1\(\text{n-9}\)	−0.32 (0.03)	<0.0001	−0.32 (0.02)	<0.0001
Nervonic acid 24:1\(\text{n-9}\)	−0.34 (0.02)	<0.0001	−0.28 (0.02)	<0.0001
n–6 PUFA				
LA 18:2\(\text{n-6}\)	−0.34 (0.02)	<0.0001	−0.28 (0.01)	<0.0001
DGLA 20:3\(\text{n-6}\)	−0.04 (0.02)	0.042	−0.09 (0.02)	<0.0001
AA 20:4\(\text{n-6}\)	−0.08 (0.02)	<0.0001	−0.11 (0.01)	<0.0001
Arachidonic acid 20:4\(\text{n-6}\)	−0.26 (0.02)	<0.0001	−0.29 (0.02)	<0.0001
n–3 PUFA				
ALA 18:3\(\text{n-3}\)	−0.37 (0.03)	<0.0001	−0.34 (0.02)	<0.0001
EPA 20:5\(\text{n-3}\)	0.57 (0.05)	<0.0001	0.48 (0.04)	<0.0001
DPA 22:5\(\text{n-3}\)	0.31 (0.02)	<0.0001	0.32 (0.02)	<0.0001
DHA 22:6\(\text{n-3}\)	0.03 (0.02)	0.118	−0.01 (0.02)	0.679
Other				
CLA 18:2\(\text{n-7}\) ct/tc10,12	0.82 (0.04)	<0.0001	0.73 (0.03)	<0.0001
DMA16	−0.16 (0.01)	<0.0001	−0.16 (0.01)	<0.0001
DMA18	−0.06 (0.01)	<0.0001	−0.06 (0.01)	<0.0001
Ratio \(n-6:n-3\) PUFA	−1.36 (0.12)	<0.0001	−1.09 (0.07)	<0.0001
study design does not allow us to draw causal inferences about the observed associations between erythrocyte fatty acid levels and the risk of islet autoimmunity. Further, we did not analyze maternal or child dietary intake of fatty acids. However, this will be done in future research. Also, our study population was selected on the basis of HLA-conferred risk of type 1 diabetes, which limits its generalizability to the whole population.

The current results confirm earlier prospective findings that long-chain n−3 PUFA may protect from islet autoimmunity indicating possibility for early dietary intervention in terms of prevention. In addition, changes in the metabolism or intake of other fatty acids, such as even-chain SFAs and MUFAs, and CLA, may precede islet autoimmunity. Further studies are warranted to elucidate the role of individual fatty acids and fatty acid metabolism in type 1 diabetes etiology.

Methods
TEDDY cohort. The current study was carried out in a nested case–control design within the international prospective the Environmental Determinants of Diabetes in the Young (TEDDY) birth cohort of children with increased genetic risk for type 1 diabetes. The study population was recruited between September 2004 and February 2010 in six clinical sites from the U.S. (Colorado, Georgia and Washington), Finland, Sweden, and Germany. The criteria for increased genetic risk were defined by HLA-associated risk genotypes separately for children from general population and children having a first degree relative with type 1 diabetes. In the general population, HLA-associated risk genotypes were DR3/4, DR3/3, DR4/4 and DR4/842. Additional eligible genotypes were DR4/1, DR4/13, DR4/9, and DR3/9 in infants with first degree relative with type 1 diabetes. Of the screened 421 047 newborns, 21 321 were eligible based on the genetic risk and, of them 8676 participated to the follow up before age of 4 months (Fig. 1). Children are followed until the age of 15 years or type 1 diabetes diagnose at 3–6 months intervals. Autoantibodies for insulin autoantibodies (IAA), glutamate decarboxylase (GADA) and islet antigen 2 (IA-2A) were measured. Islet autoimmunity was defined as being persistent confirmed positive for at least one autoantibody out of the three measured. Written informed consent was obtained for all children from a parent and/or legal guardian. All methods were carried out in accordance with relevant guidelines and regulations. The TEDDY study was approved by the following ethical institutional review boards: the Colorado Multiple Institutional Review Board, the Hospital District of Southwest Finland Committee on Ethics, the University of Florida Health Center Institutional Review Board, the Augusta University Institutional Review Board (Georgia), the Ethik-Kommission der Bayerischen Landesarztekammer (Germany), the University of Pittsburgh Institutional Review Board, the Lund University Committee for Continuing Ethical Review (Sweden), the Western Institutional Review Board (Washington), and the University of South Florida Institutional Review Board. The study is also monitored by an External Evaluation Committee formed by the U.S. National Institutes of Health.

A nested case–control design and outcomes. Children’s erythrocytes’ fatty acid composition was analyzed in a nested case–control design as described previously43. Matching factors were the clinical site, sex and family history of type 1 diabetes (first degree relative vs. not). A control was defined as a participant who had not developed persistent islet autoimmunity by the time when the corresponding matched case developed it, within ± 45 days of the event time. The nested case–control set was based on the data collected as of 31 May 2012.
The study included 398 persistent islet autoimmunity cases with an available fatty acid status (385 cases with three controls; 10 cases with two controls; 3 cases with one control) (Fig. 1). In islet autoimmunity cases, median age of seroconversion was 21 months (interquartile range 12–32 months). Multiple islet autoimmunity (repeated positivity for at least two autoantibodies), primary positivity for IAA alone (IAA first), and GADA alone (GADA first) were analyzed as secondary outcomes. From 398 islet autoimmunity cases 233 had multiple islet autoimmunity, 193 had IAA first and 131 had GADA first outcomes. For multiple islet autoimmunity median age was 19 months (interquartile range 12–27), for IAA first 15 months (9–26 months) and for GADA first 27 months (17–42 months).

Erythrocyte sample collection, processing and measurement of fatty acids. Blood samples were obtained from the children by venipuncture at the age of 3 and 6 months and 1, 2, 3, 4, 5, and 6 years at clinic visits. For the participants living far away from their nearest TEDDY clinic, a family periatrician collected the blood samples, which were sent to the TEDDY clinic within 24 h for processing (long distance protocol). All samples were aliquoted into dedicated, barcoded, and color-coded cryovials. To the blood sample used for fatty acid analysis, 2-propanol with 50 mg/L of butylated hydroxytoluene were added. The samples were then shipped frozen to the TEDDY Repository and immediately stored at − 80 °C. Collection and processing of samples are previously described in more detail.

Fatty acids were analysed from erythrocytes by a gas chromatographic method modified from previously published methods. Erythrocyte fatty acid composition was analysed using an Agilent 6890 gas chromatograph (Hewlett Packard, Palo Alto, CA, USA) with a split injector and hydrogen as the carrier gas. We employed a capillary column Omegawax 320 (length: 30 m, I.D.: 0.32 mm, phase layer: 0.25 μm; Supelco, Bellefonte, PA, USA). The percentage composition of fatty acid methyl esters was normalized to 100% in each sample. Samples of the cases and their controls at each age point were processed in the same batch to minimize potential batch effects. The laboratory was blinded regarding the case–control status of the samples. Total 4012 samples were processed for the islet autoimmunity analysis, but 44 samples were excluded due to not passing the laboratory’s quality control. The median number of analyzed samples per child was 3 (min = 1, max = 7). We determined altogether 25 different fatty acids.

Dietary data. We collected information about breastfeeding duration, which was asked at the 3 and 6 months clinic visits. Parents or primary caretaker recorded the infant feeding information in a notebook that was given at the first clinical visit at 3 months. Clinical staff checked the booklet together with the primary caretaker at every clinical visit and entered the dietary information into the TEDDY database. The definition of any breastfeeding included breastfeeding, even in small amounts, and in combination with other foods. In the statistical analyses we used two categories for any breastfeeding: breastfed/not breastfed at cross-sectional time point either 3 or 6 months of age.

Genetic measurements. Children in the study cohort were genotyped for the major type 1 diabetes associated class II haplotypes as well as for single-nucleotide polymorphisms (SNPs) defining type 1 diabetes risk outside HLA region. Ancestry was estimated based on the principal components analysis (PCA) from the ImmunoChip data using the entire cohort. EIGENSTRAT software was used after selecting one subject per family. Two largest principal components were used in this study for defining population stratification.

Statistical analysis. Fatty acid status for each child was generated as a percentage of the total 25 fatty acids. Since the sum is restricted to 100, the fatty acid status carries only a relative information, which may produce spurious findings without data normalization. Thus, we used the centered log-ratio (CLR) transformed fatty acid status for statistical comparisons, except for the ratio of sum n−6 and sum n−3 PUFA. Sum of n−6 PUFA was obtained by summing up LA, dihomogammalinolenic acid (DGLA), arachidonic acid (AA) and adrenic acid. Sum of n−3 PUFA was the sum of ALA, EPA, DPA and DHA. As the change after 1 year old was ignorable, we analyzed fatty acid status at early age (3 months), along with the average status from 1 to 6 years old. Conditional logistic regression examined the association between islet autoimmunity and fatty acid status at early age while adjusting for HLA genotype, ancestry and weight z-score at the age corresponding to fatty acid status. The average weight from 1 to 6 years old was adjusted for the average status from 1 to 6 years old. Weight z score was obtained from Centers for Disease Control and Prevention standardized growth charts. Interaction between fatty acid status at early age and whether any breastfeeding took place at the corresponding age on the risk of islet autoimmunity was examined by testing an interaction term in the conditional logistic regression model. One unit change in a CLR transformed fatty acid status corresponds to the fatty acid status in percentage times 1.83. Association between fatty acid status at early age and the corresponding breastfeeding status was assessed using a linear regression model adjusted for the case–control status. Two-sided p values are reported. Statistical significance was determined when the p value was < 0.05. All statistical analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC).

Since 26 defined fatty acids were analyzed for each outcome, false discovery rate adjusted p values were calculated for multiple testing correction.

Data availability
The datasets generated and analyzed during the current study will be made available in the NIDDK Central Repository at https://www.niddkrepository.org/studies/teddy.
Acknowledgements
We express our gratitude to the TEDDY study families for their continued participation in the study. The TEDDY Study Group is acknowledged for collaboration. For biochemical analysis of fatty acids, we acknowledge the Dietary Biomarkers Laboratory: Iris Erlund, Ph.D., Irma Salminen, Jouko Sundvall, Nina Kangas, Petra Arohonka. Finnish Institute for Health and Welfare, Helsinki, Finland.

Author contributions
S.N. contributed to the study design, analysis, interpretation of data, the drafting of the manuscript, and critical revision of the manuscript. I.E. contributed to the study design, analysis, interpretation of data, and critical revision of the manuscript, and supervised fatty acid laboratory analyses. H.-S.L. performed statistical analysis, contributed to the interpretation of data, and revision of the manuscript. U.U., I.S., C.A.A., H.P., X.L., S.H., J.T., J.X.S., Å.L., A.G.Z., M.R., B.A., J.K., D.G., S.D., N.S., S.R., and W.H. contributed to the acquisition and interpretation of data, and critical revision of the manuscript. All authors approved the final version of the article. S.N., H.-S.L., and S.M.V. are the guarantors of this work, had full access to all the data in the study, and take responsibility for the integrity of the data and the accuracy of the data analysis.

Funding
The TEDDY Study is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK100955, UC4 DK112243, UC4 DK117483, and Contract No. HHSN26720070014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and Prevention (CDC), and JDRF. This work supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR001082) as well as by the Academy of Finland (Grant 276475). Role of the funder/sponsor: The sponsors of this study were represented on the Steering Committee and played a role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. The corresponding author had the final decision to submit the manuscript for publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-82200-9.

Correspondence and requests for materials should be addressed to S.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
the TEDDY Study Group

Colorado Clinical Center

Aaron Barbour8, Kimberly Bautista8, Judith Baxter8, Daniel Felipe-Morales8, Kimberly Driscoll8, Brigitte I. Frohnert8, Marisa Stahl8, Patricia Gesualdo8, Michelle Hoffman8, Rachel Karban8, Edwin Liu8, Stesha Peacock8, Hanan Shorrosh8, Andrea Steck8, Megan Stern8, Erica Villegas8 & Kathleen Waugh8

Finland Clinical Center

Olli G. Simell6, Annika Adamsson15, Suvi Ahonen1,13, Mari Åkerlund1,13, Leena Hakola13, Anne Hekkala16,17, Henna Holappa16,17, Heikki Hyöty13, Anni Ikonen16,17, Jorma Ilonen6,18, Sinikka Jämminkii13, Sanna Jokipuu13, Leena Karlsson15, Jukka Kero6,15, Miia Kähönen16,17, Mikael Knip13, Minna-Liisa Koivikko16,17, Merja Koskinen13, Mirva Koreasalo1,13, Kalle Kurppa13, Marjo Kytölä13, Tiina Latva-Aho16,17, Katri Lindfors13, Maria Lönnrot13, Elina Mäntymäki15, Markus Mattilla13, Maija Miettinen1, Katja Multasuo16,17, Teija Mykkänen16,17, Tiina Niininen13, Mia Nyblom13, Sami Oikainen13, Paula Ollikainen16, Zhian Othmani15, Sirpa Pohjola16,17, Petra Rajala15, Jenna Rautanen1, Anne Riikonen1,13, Eija Riski15, Miia Pekkola13, Minna Romo15, Satu Ruohonen1,13, Suvi Simell6, Maija Sjöberg15, Aino Stenius16,17, Päivi Tossavainen16,17, Mari Vähä-Mäkilä6, Sini Vainionpää15, Eeva Varjonen15,17, Riitta Veijola16,17 & Irene Viinikangas16,17
15Hospital District of Southwest Finland, Turku University Hospital, Turku, Finland. 16University of Oulu, Oulu, Finland. 17Oulu University Hospital, Oulu, Finland. 18University of Kuopio, Kuopio, Finland.

Georgia/Florida Clinical Center

Desmond Schatz3, Diane Hopkins7, Leigh Steed7, Jennifer Bryant7, Katherine Silvis7, Michael Haller7, Melissa Gardiner7, Richard McIndoe7, Ashok Sharma7, Stephen W. Anderson19, Laura Jacobsen3 & John Marks3
7Medical College of Georgia, Augusta University, Augusta, GA, USA. 19Pediatric Endocrine Associates, Atlanta, USA.

Germany Clinical Center

Ezio Bonifacio20, Cigdem Gezginci5, Anja Heublein5, Eva Hohoff21, Annette Knopff5, Charlotte Koch5, Sibylle Koletzko22, Claudia Ramminger5, Roswith Roth5, Jennifer Schmidt5, Marlon Scholz5, Joanna Stock5, Katharina Warncke5, Lorena Wendel5 & Christiane Winkler5
20Center for Regenerative Therapies, TU Dresden, Dresden, Germany. 21Department of Nutritional Epidemiology, University of Bonn, Bonn, Germany. 22Dr. Von Hauner Children's Hospital, Department of Gastroenterology, Ludwig Maximillians University Munich, Munich, Germany.

Sweden Clinical Center

Daniel Agardh4, Maria Ask4, Rasmus Bennet4, Corrado Cilio4, Susanne Dahlberg4, Helene Engqvist4, Emelie Ericson-Hallström4, Annika Björne Fors4, Lina Fransson4, Thomas Gard4, Monika Hansen4, Hanna Jisser4, Fredrik Johansen4, Berglind Jonsdottir4, Helena Elding Larsson4, Marielle Lindström4, Markus Lundgren4, Marlena Maziarz4, Maria
Månsson-Martinez4, Jessica Melin4, Zeliha Mestan4, Caroline Nilsson4, Karin Ottosson4, Kobra Rahmati4, Anita Ramelius4, Falastin Salami4, Anette Sjöberg4, Birgitta Sjöberg4, Carina Törn4 & Åsa Wimar4

Washington Clinical Center

Michael Killian10, Claire Cowen Crouch10, Jennifer Skidmore10, Masumeh Chavoshi10, Arlene Meyer10, Jocelyn Meyer10, Denise Mulenga10, Nole Powell10, Jared Radtke10, Matei Romancik10, Shreya Roy10, Davey Schmitt10 & Sarah Zink10

Pennsylvania Satellite Center

Dorothy Becker23, Margaret Franciscus23, MaryEllen Dalmagro-Elias Smith23, Ashi Daftary23, Mary Beth Klein23 & Chrystal Yates23

23Children's Hospital of Pittsburgh of UPMC, Pittsburgh, USA.

Data Coordinating Center

Sarah Austin-Gonzalez3, Maryouri Avendano3, Sandra Baethke3, Brant Burkhardt3, Martha Butterworth3, Joanna Clasen3, David Cuthbertson3, Christopher Eberhard3, Steven Fiske3, Jennifer Garmeson3, Veena Gowda3, Kathleen Heyman3, Belinda Hsiao3, Christina Karges3, Francisco Perez Lara3, Qian Li3, Shu Liu3, Kristian Lynch3, Colleen Maguire3, Jamie Malloy3, Cristina McCarthy3, Cassandra Remedios3, Chris Shaffer3, Laura Smith3, Susan Smith3, Noah Sulman3, Roy Tamura3, Dena Tewey3, Michael Toth3, Kendra Vehik3, Ponni Vijayakandipan3 & Jimin Yang3

Past staff

Michael Abbondondolo3, Lori Ballard3, Rasheedah Brown3, Stephen Dankyi3, David Hadley3, Wendy McLeod3, Aubrie Merrell3, Steven Meulemans3 & Ryan Quigley3

Autoantibody Reference Laboratories

Liping Yu8, Dongmei Miao8, Polly Bingley24, Alistair Williams24, Kyla Chandler24, Ilana Kelland24, Yassin Ben Khoud24, Huma Zahid24 & Matthew Randell24

24Bristol Medical School, University of Bristol, Bristol, UK.

Dietary Biomarkers Laboratory

Jouko Sundvall2, Nina Kangas2 & Petra Arohonka2

HLA Reference Laboratory

Masumeh Chavoshi10, Jared Radtke10, Sarah Zink10, Previously Henry Erlich25, Steven J. Mack25 & Anna Lisa Fear25

25Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, USA.

SNP Laboratory

Wei-Min Chen11, Suna Onengut-Gumuscu11, Emily Farber11, Rebecca Roche Pickin11, Jonathan Davis11, Jordan Davis11, Dan Gallo11, Jessica Bonnie11 & Paul Campolieto11

Repository

Sandra Ke26 & Niveen Mulholland26

26NIDDK Biosample Repository at Fisher BioServices, Rockville, USA.
Other contributors

Kasia Bourcier27, Thomas Briese28, Suzanne Bennett Johnson29 & Eric Triplett30

27National Institutes of Allergy and Infectious Diseases, Palo Alto, USA. 28Columbia University, New York, USA. 29Florida State University, Tallahassee, USA. 30University of Florida, Gainesville, USA.