Understanding and predicting user dissatisfaction in a neural generative chatbot

Abigail See, Christopher D. Manning
Typical dialogue evaluation setup

Neural generative models perform increasingly well in this environment

[Zhang et al 2019, Adiwardana et al 2020, Roller et al 2020]
Real-life dialogue settings

possibly spoken conversation + noisy environment + latency constraints + intrinsic reward

user
own expectations
own personality

Neural generative models are less well-explored in this environment.
Chirpy Cardinal 1.0

- An open-domain socialbot
- Won 2nd place in third Alexa Prize (2019-2020)
- Alexa customers speak \(\text{Smiley Face} \) to socialbots voluntarily
- Bots must be fast \(\text{Clock} \) and manage the noisy home environment

For more details: stanfordnlp.github.io/chirpycardinal

Neural Generation Meets Real People: Towards Emotionally Engaging Mixed-Initiative Conversations, Paranjape, See* et al, Alexa Prize Proceedings, 2020*
Neural Chat component

The Neural Chat component uses a neural generator to discuss the user's personal experiences and emotions.

Discussion starts with a handwritten starter question. Topics include: hobbies, food, everyday activities, family/friends.

Subsequent responses are generated by a GPT2-medium model finetuned on EmpatheticDialogues (Rashkin et al, 2019).

Decoding algorithm: top-p sampling

Towards empathetic open-domain conversation models: A new benchmark and dataset, Rashkin et al, 2019
Dissatisfaction type	Example
Clarification	*what do you mean*
Misheard	*that's not what i said*
Privacy	*none of your business*
Repetition	*you already said that*
Criticism	*you’re bad at this*
Offensive	*will you talk dirty*
Negative Navigation	*change the subject*
Stop	*goodbye*
Any	*Any of the above*
Neural generative error types

1. Repetition
2. Redundant question
3. Unclear
4. Hallucination
5. Ignoring
6. Logical error
7. Insulting
Neural generative error types

1. Repetition
2. Redundant question
3. Unclear
4. Hallucination
5. Ignoring
6. Logical error
7. Insulting

What are your plans today?

i don’t know

Sorry to hear that. What will you do today?
Neural generative error types

1. Repetition
2. Redundant question
3. Unclear
4. Hallucination
5. Ignoring
6. Logical error
7. Insulting

i went jogging with my sister

Sounds nice. Do you have a sister?
Neural generative error types

1. Repetition
2. Redundant question
3. Unclear
4. Hallucination
5. Ignoring
6. Logical error
7. Insulting

How’s quarantine been for you?

it’s been ok thanks

I see. What is it?
Neural generative **error types**

1. Repetition
2. Redundant question
3. Unclear
4. Hallucination
5. Ignoring
6. Logical error
7. Insulting
Neural generative **error types**

1. Repetition
2. Redundant question
3. Unclear
4. Hallucination
5. Ignoring
6. Logical error
7. Insulting
Neural generative error types

1. Repetition
2. Redundant question
3. Unclear
4. Hallucination
5. Ignoring
6. Logical error
7. Insulting

my cat threw up on the couch

Oh no! Did you get a new cat?
Neural generative error types

1. Repetition
2. Redundant question
3. Unclear
4. Hallucination
5. Ignoring
6. Logical error
7. Insulting

i’m feeling lonely

Oh, I suppose you have no friends?
What causes dissatisfaction?

We annotate 900 examples:

- **User response u**
 - kind of bored to be honest
 - stuck inside all day

- **Bot utterance b**
 - How are you feeling today?
 - I'm sorry to hear that! Why are you bored?

- **context c**
 - User utterance unclear?
 - User already dissatisfied?
 - Bot error types
 - Dissatisfaction type(s)
Neural generative error frequency

- 22% of user utterances are unclear
- In 12% contexts, the user is already dissatisfied

53% of bot utterances contain an error
Neural generative error frequency

- 22% of user utterances are unclear
- In 12% contexts, the user is already dissatisfied

This accounts for some of the more basic errors.

53% of bot utterances contain an error → 46.4%

Most frequent remaining errors:
- Redundant questions
- Logical errors
How do bot errors cause dissatisfaction?

Subsequent dissatisfaction types

Clarification Misheard Repetition Criticism Privacy Offensive Neg nav Stop

Bot errors

Bot repetitive
Bot redundant
Bot unclear
Bot hallucination
Bot ignore
Bot logical error
Bot insulting
How do bot errors cause dissatisfaction?

Subsequent dissatisfaction types

Bot errors	Clarification	Misheard	Repetition	Criticism	Privacy	Offensive	Neg nav	Stop
Bot repetitive	✓		✓	✓	✓	✓	✓	✓
Bot redundant		✓						
Bot unclear	✓							✓
Bot hallucination		✓						
Bot ignore	✓							
Bot logical error	✓							
Bot insulting						✓	✓	

✓ indicates positive Logistic Regression coefficient with feature significance (p<0.05) using Likelihood Ratio Test
How do bot errors cause dissatisfaction?

Subsequent dissatisfaction types
Clarification
Bot repetitive
Bot redundant
Bot unclear
Bot hallucination
Bot ignore
Bot logical error
Bot insulting
Any bot error

✓ indicates positive Logistic Regression coefficient with feature significance (p<0.05) using Likelihood Ratio Test.
Privacy boundaries vary

I’m struggling with depression.

How are you feeling?

What did you have for lunch?

none of your business
Learning to predict dissatisfied utterances

We train a **Dissatisfaction Predictor** to predict the **dissatisfaction score** of the user’s response:

- **How are you doing today?**
- **ok but my cat threw up on the couch**
- **oh no! did you get a new cat?**

Dissatisfaction score (provided by classifier): **0.64**
Choosing better bot utterances

We use the Dissatisfaction Predictor to choose the best bot utterance:

P(dissatisfied)=0.14

P(dissatisfied)=0.48
Choosing better bot utterances

Human preference test:
Top-p (nucleus) sample 20 responses; compare predictor-best to randomly-sampled

Predictor-best	46.3%
Random	35.6%
No preference	18.1%

The dissatisfaction predictor can help avoid poor-quality bot utterances!

Binomial test p-value = 0.03
Null hypothesis: Predictor-best > Random
In summary

Real-life deployment brings unique challenges.

Neural generative models fail if you carelessly unleash them in real-life settings.

Some real-life challenges like user dissatisfaction can also be learning signals.