Motivic Milnor fibers and Jordan normal forms of Milnor monodromies *

Yutaka MATSUI† Kiyoshi TAKEUCHI‡

Abstract

By calculating the equivariant mixed Hodge numbers of motivic Milnor fibers introduced by Denef-Loeser, we obtain explicit formulas for the Jordan normal forms of Milnor monodromies. The numbers of the Jordan blocks will be described by the Newton polyhedron of the polynomial.

1 Introduction

In this paper, by using motivic Milnor fibers introduced by Denef-Loeser [4] and [5], we obtain explicit formulas for the Jordan normal forms of Milnor monodromies. Let $f(x) = \sum_{v \in Z^n} a_v x^v \in \mathbb{C}[x_1, \ldots, x_n]$ be a polynomial on \mathbb{C}^n such that the hypersurface $f^{-1}(0) = \{ x \in \mathbb{C}^n \mid f(x) = 0 \}$ has an isolated singular point at $0 \in \mathbb{C}^n$. Then by a fundamental theorem of Milnor [15], the Milnor fiber F_0 of f at $0 \in \mathbb{C}^n$ has the homotopy type of bouquet of $(n-1)$-spheres. In particular, we have $H_j(F_0; \mathbb{C}) \simeq 0$ ($j \neq 0, n-1$).

Denote by $\Phi_{n-1,0} : H^{n-1}(F_0; \mathbb{C}) \sim \longrightarrow H^{n-1}(F_0; \mathbb{C})$ (1.1) the $(n-1)$-th Milnor monodromy of f at $0 \in \mathbb{C}^n$. By the theory of monodromy zeta functions due to A’Campo [1] and Varchenko [26] etc., the eigenvalues of $\Phi_{n-1,0}$ were fairly well-understood. See Oka’s book [17] for an excellent exposition of this very important result. However to the best of our knowledge, it seems that the Jordan normal form of $\Phi_{n-1,0}$ is not fully understood yet. In this paper, we give a combinatorial description of the Jordan normal form of $\Phi_{n-1,0}$ by using motivic Milnor fibers (For a computer algorithm by Brieskorn lattices, see Schulze [22] etc.).

From now on, let us assume also that f is convenient and non-degenerate at $0 \in \mathbb{C}^n$ (see Definitions 4.4 and 4.5). Note that the second condition is satisfied by generic polynomials f. Then we can describe the Jordan normal form of $\Phi_{n-1,0}$ very explicitly as follows. We call the convex hull of $\bigcup_{v \in \text{supp}(f)} \{ v + \mathbb{R}^n_+ \}$ in \mathbb{R}^n_+ the Newton polyhedron of f and denote it by $\Gamma_+(f)$. Let q_1, \ldots, q_l (resp. $\gamma_1, \ldots, \gamma'_{l'}$) be the 0-dimensional (resp. 1-dimensional) faces of $\Gamma_+(f)$ such that $q_i \in \text{Int}(\mathbb{R}^n_+)$ (resp. the relative interior $\text{rel.int}(\gamma_i)$ of γ_i is contained in $\text{Int}(\mathbb{R}^n_+)$). For each q_i (resp. γ_i), denote by $d_i > 0$ (resp. $e_i > 0$) its lattice distance

*2010 Mathematics Subject Classification: 14E18, 14M25, 32C38, 32S35, 32S40,
†Department of Mathematics, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan. E-mail: matsui@math.kindai.ac.jp
‡Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8571, Japan. E-mail: takemicro@nifty.com
dist($q_i, 0$) (resp. dist($\gamma_i, 0$)) from the origin $0 \in \mathbb{R}^n$. For $1 \leq i \leq l'$, let Δ_i be the convex hull of $\{0\} \cup \gamma_i$ in \mathbb{R}^n. Then for $\lambda \in \mathbb{C} \setminus \{1\}$ and $1 \leq i \leq l'$ such that $\lambda^{e_i} = 1$ we set

$$n(\lambda)_i = \sharp \{v \in \mathbb{Z}^n \cap \text{rel.int}(\Delta_i) \mid \text{ht}(v, \gamma_i) = k\} + \sharp \{v \in \mathbb{Z}^n \cap \text{rel.int}(\Delta_i) \mid \text{ht}(v, \gamma_i) = e_i - k\},$$

where k is the minimal positive integer satisfying $\lambda = \zeta_{e_i}^k (\zeta_{e_i} := \exp(2\pi \sqrt{-1}/e_i))$ and for $v \in \mathbb{Z}^n \cap \text{rel.int}(\Delta_i)$ we denote by $\text{ht}(v, \gamma_i)$ the lattice height of v from the base γ_i of Δ_i. Then in Section 4 we prove the following result which describes the number of Jordan blocks for each fixed eigenvalue $\lambda \neq 1$ in $\Phi_{n-1,0}$. Recall that by the monodromy theorem the sizes of such Jordan blocks are bounded by n.

Theorem 1.1 Assume that f is convenient and non-degenerate at $0 \in \mathbb{C}^n$. Then for any $\lambda \in \mathbb{C}^* \setminus \{1\}$ we have

(i) The number of the Jordan blocks for the eigenvalue λ with the maximal possible size n in $\Phi_{n-1,0}$: $H^{n-1}(F_0; \mathbb{C}) \overset{\sim}{\longrightarrow} H^{n-1}(F_0; \mathbb{C})$ is equal to $\sharp \{q_i \mid \lambda^{e_i} = 1\}$.

(ii) The number of the Jordan blocks for the eigenvalue λ with size $n - 1$ in $\Phi_{n-1,0}$ is equal to $\sum_{i: \lambda^{e_i} = 1} n(\lambda)_i$.

Namely the Jordan blocks for the eigenvalues $\lambda \neq 1$ in the monodromy $\Phi_{n-1,0}$ are determined by the lattice distances of the faces of $\Gamma_+(f)$ from the origin $0 \in \mathbb{R}^n$. The monodromy theorem asserts also that the sizes of the Jordan blocks for the eigenvalue 1 in $\Phi_{n-1,0}$ are bounded by $n - 1$. In this case, we have the following result. Denote by Π_f the number of the lattice points on the 1-skeleton of $\partial \Gamma_+(f) \cap \text{Int}(\mathbb{R}^n_+)$.

Theorem 1.2 In the situation of Theorem 1.1 we have

(i) (van Doorn-Steenbrink [6]) The number of the Jordan blocks for the eigenvalue 1 with the maximal possible size $n - 1$ in $\Phi_{n-1,0}$ is Π_f.

(ii) The number of the Jordan blocks for the eigenvalue 1 with size $n - 2$ in $\Phi_{n-1,0}$ is equal to $2 \sum_{\gamma} l^*(\gamma)$, where γ ranges through the compact faces of $\Gamma_+(f)$ such that $\dim \gamma = 2$ and $\text{rel.int}(\gamma) \subset \text{Int}(\mathbb{R}^n_+)$. In particular, this number is even.

Note that Theorem 1.2 (i) was previously obtained in van Doorn-Steenbrink [6] by using different methods. Roughly speaking, the nilpotent part for the eigenvalue 1 in the monodromy $\Phi_{n-1,0}$ is determined by the convexity of the hypersurface $\partial \Gamma_+(f) \cap \text{Int}(\mathbb{R}^n_+)$. Thus Theorems 1.1 and 1.2 generalize the well-known fact that the monodromies of quasi-homogeneous polynomials are semisimple. In fact, by our results in Sections 2 and 4 a general algorithm for computing all the spectral pairs of the Milnor fiber F_0 is obtained. This in particular implies that we can compute the Jordan normal form of $\Phi_{n-1,0}$ completely. Note that the spectrum of F_0 obtained in Saito [20] and Varchenko-Khovanskii [27] is not enough to deduce the Jordan normal form. Moreover, if any compact face of $\Gamma_+(f)$ is prime (see Definition 2.9) we obtain also a closed formula for the Jordan normal form. See Section 4 for the details.
This paper is organized as follows. In Section 2 we introduce some generalizations of the results of Danilov-Khovanskii [3] obtained in [14]. By them we obtain a general algorithm for computing the equivariant mixed Hodge numbers of non-degenerate toric hypersurfaces. In Section 3 we recall some basic definitions and results on motivic Milnor fibers introduced by Denef-Loeser [4] and [5]. Then in Section 4 by rewriting them in terms of the Newton polyhedron \(\Gamma_+(f) \) with the help of the results in Section 2 and [14], we prove various combinatorial formulas for the Jordan normal form of the Milnor monodromy \(\Phi_{n-1,0} \). Although our proof for the eigenvalue 1 in this paper is very different from the one in [14], our results in Section 4 are completely parallel to those for monodromies at infinity obtained in [14]. We thus find a striking symmetry between local and global. Finally, let us mention that in [7] the results for the other eigenvalues \(\lambda \neq 1 \) in this paper were already generalized to the monodromies over complete intersection subvarieties in \(\mathbb{C}^n \).

2 Preliminary notions and results

In this section, we recall our results in [14, Section 2] which will be used in this paper. They are slight generalizations of the results in Danilov-Khovanskii [3].

Definition 2.1

Let \(g(x) = \sum_{v \in \mathbb{Z}^n} a_v x^v \ (a_v \in \mathbb{C}) \) be a Laurent polynomial on \((\mathbb{C}^*)^n \).

(i) We call the convex hull of \(\text{supp}(g) := \{ v \in \mathbb{Z}^n \mid a_v \neq 0 \} \subset \mathbb{R}^n \) the Newton polytope of \(g \) and denote it by \(NP(g) \).

(ii) For \(u \in (\mathbb{R}^n)^* \), we set \(\Gamma(g; u) := \{ v \in NP(g) \mid \langle u, v \rangle = \min_{w \in NP(g)} \langle u, w \rangle \} \).

(iii) For \(u \in (\mathbb{R}^n)^* \), we define the \(u \)-part of \(g \) by \(g^u(x) := \sum_{v \in \Gamma(g; u)} a_v x^v \).

Definition 2.2 ([9])

Let \(g \) be a Laurent polynomial on \((\mathbb{C}^*)^n \). Then we say that the hypersurface \(Z^* = \{ x \in (\mathbb{C}^*)^n \mid g(x) = 0 \} \) of \((\mathbb{C}^*)^n \) is non-degenerate if for any \(u \in (\mathbb{R}^n)^* \) the hypersurface \(\{ x \in (\mathbb{C}^*)^n \mid g^u(x) = 0 \} \) is smooth and reduced.

In the sequel, let us fix an element \(\tau = (\tau_1, \ldots, \tau_n) \in T := (\mathbb{C}^*)^n \) and let \(g \) be a Laurent polynomial on \((\mathbb{C}^*)^n \) such that \(Z^* = \{ x \in (\mathbb{C}^*)^n \mid g(x) = 0 \} \) is non-degenerate and invariant by the automorphism \(l_\tau := (\mathbb{C}^*)^n \xrightarrow{\tau} (\mathbb{C}^*)^n \) induced by the multiplication by \(\tau \). Set \(\Delta = NP(g) \) and for simplicity assume that \(\dim \Delta = n \). Then there exists \(\beta \in \mathbb{C} \) such that \(l_\tau^* g = g \circ l_\tau = \beta g \). This implies that for any vertex \(v \) of \(\Delta = NP(g) \) we have \(\tau v = \tau_1^{n_1} \cdots \tau_n^{n_n} = \beta \). Moreover by the condition \(\dim \Delta = n \) we see that \(\tau_1, \tau_2, \ldots, \tau_n \) are roots of unity. For \(p, q \geq 0 \) and \(k \geq 0 \), let \(h^{p,q} (H_k^c(Z^*; \mathbb{C})) \) be the mixed Hodge number of \(H_k^c(Z^*; \mathbb{C}) \) and set

\[
e^{p,q}(Z^*) = \sum_k (-1)^k h^{p,q}(H_k^c(Z^*; \mathbb{C})) \tag{2.1}
\]

as in [3]. The above automorphism of \((\mathbb{C}^*)^n \) induces a morphism of mixed Hodge structures \(l_\tau^* : H_k^c(Z^*; \mathbb{C}) \xrightarrow{\tau} H_k^c(Z^*; \mathbb{C}) \) and hence \(\mathbb{C} \)-linear automorphisms of the \((p,q) \)-parts \(H_k^c(Z^*; \mathbb{C})^{p,q} \) of \(H_k^c(Z^*; \mathbb{C}) \). For \(\alpha \in \mathbb{C} \), let \(h^{p,q}(H_k^c(Z^*; \mathbb{C}))_\alpha \) be the dimension of the \(\alpha \)-eigenspace \(H_k^c(Z^*; \mathbb{C})^{p,q}_\alpha \) of this automorphism of \(H_k^c(Z^*; \mathbb{C})^{p,q} \) and set

\[
e^{p,q}(Z^*)_\alpha = \sum_k (-1)^k h^{p,q}(H_k^c(Z^*; \mathbb{C}))_\alpha \tag{2.2}
\]
We call \(e^{p,q}(Z^*)_\alpha \) the equivariant mixed Hodge numbers of \(Z^* \). Since we have \(\ell^r_r = \text{id}_{Z^*} \) for some \(r \gg 0 \), these numbers are zero unless \(\alpha \) is a root of unity. Obviously we have

\[
e^{p,q}(Z^*) = \sum_{\alpha \in \mathbb{C}} e^{p,q}(Z^*)_\alpha, \quad e^{p,q}(Z^*)_\alpha = e^{q,p}(Z^*)_{\alpha^*}. \tag{2.3}
\]

In this setting, along the lines of Danilov-Khovanskii \footnote{3} we can give an algorithm for computing these numbers \(e^{p,q}(Z^*)_\alpha \) as follows. First of all, as in \footnote{3 Section 3} we have the following result.

Proposition 2.3 (\footnote{14, Proposition 2.6}) For \(p, q \geq 0 \) such that \(p + q > n - 1 \), we have

\[
e^{p,q}(Z^*)_\alpha = \begin{cases} (-1)^{n+p+1} \binom{n}{p+1} & (\alpha = 1 \text{ and } p = q), \\ 0 & (\text{otherwise}), \end{cases} \tag{2.4}
\]

(we used the convention \(\binom{a}{b} = 0 \) \((0 \leq a < b)\) for binomial coefficients).

For a vertex \(w \) of \(\Delta \), consider the translated polytope \(\Delta^w := \Delta - w \) such that \(0 < \Delta^w \) and \(\tau^w = 1 \) for any vertex \(v \) of \(\Delta^w \). Then for \(\alpha \in \mathbb{C} \) and \(k \geq 0 \) set

\[
\ell^*(k\Delta)_\alpha = \{ v \in \text{Int}(k\Delta^w) \cap \mathbb{Z}^n \mid \tau^v = \alpha \} \in \mathbb{Z}_+: = \mathbb{Z}_{\geq 0}. \tag{2.5}
\]

We can easily see that these numbers \(\ell^*(k\Delta)_\alpha \) do not depend on the choice of the vertex \(w \) of \(\Delta \). We define a formal power series \(P_\alpha(\Delta; t) = \sum_{i \geq 0} \varphi_{\alpha,i}(\Delta) t^i \) by

\[
P_\alpha(\Delta; t) = (1 - t)^{n+1} \left\{ \sum_{k \geq 0} \ell^*(k\Delta)_\alpha t^k \right\}. \tag{2.6}
\]

Then we can easily show that \(P_\alpha(\Delta; t) \) is actually a polynomial as in \footnote{3 Section 4.4].

Theorem 2.4 (\footnote{14, Theorem 2.7}) In the situation as above, we have

\[
\sum_q e^{p,q}(Z^*)_\alpha = \begin{cases} (-1)^{p+n+1} \binom{n}{p+1} + (-1)^{n+1} \varphi_{\alpha,n-p}(\Delta) & (\alpha = 1), \\ (-1)^{n+1} \varphi_{\alpha,n-p}(\Delta) & (\alpha \neq 1). \end{cases} \tag{2.7}
\]

By Proposition 2.3 and Theorem 2.4 we can now calculate the numbers \(e^{p,q}(Z^*)_\alpha \) on the non-degenerate hypersurface \(Z^* \subset (\mathbb{C}^*)^n \) for any \(\alpha \in \mathbb{C} \) as in \footnote{3 Section 5.2}. Indeed for a projective toric compactification \(X \) of \((\mathbb{C}^*)^n \) such that the closure \(\overline{Z^*} \) of \(Z^* \) in \(X \) is smooth, the variety \(\overline{Z^*} \) is smooth projective and hence there exists a perfect pairing

\[
H^{p,q}(\overline{Z^*}; \mathbb{C})_\alpha \times H^{n-1-p,n-1-q}(\overline{Z^*}; \mathbb{C})_{\alpha^*} \longrightarrow \mathbb{C} \tag{2.8}
\]

for any \(p, q \geq 0 \) and \(\alpha \in \mathbb{C}^* \) (see for example \footnote{28 Section 5.3.2}2). Therefore, we obtain equalities \(e^{p,q}(Z^*)_\alpha = e^{n-1-p,n-1-q}(\overline{Z^*})_{\alpha^*} \) which are necessary to proceed the algorithm in \footnote{3 Section 5.2}. We have also the following analogue of \footnote{3 Proposition 5.8}.

Proposition 2.5 (\footnote{14, Proposition 2.8}) For any \(\alpha \in \mathbb{C} \) and \(p > 0 \) we have

\[
e^{p,0}(Z^*)_\alpha = e^{0,p}(Z^*)_{\alpha^*} = (-1)^{n-1} \sum_{\Gamma \subset \Delta, \dim \Gamma = p+1} \ell^*(\Gamma)_\alpha. \tag{2.9}
\]
The following result is an analogue of [3, Corollary 5.10]. For $\alpha \in \mathbb{C}$, denote by $\Pi(\Delta)_\alpha$ the number of the lattice points $v = (v_1, \ldots, v_n)$ on the 1-skeleton of $\Delta^w = \Delta - w$ such that $\tau^v = \alpha$, where w is a vertex of Δ.

Proposition 2.6 ([14, Proposition 2.9]) In the situation as above, for any $\alpha \in \mathbb{C}^*$ we have

$$e^{0,0}(Z^*)_\alpha = \begin{cases} (-1)^{n-1}(\Pi(\Delta)_{1} - 1) & (\alpha = 1), \\ (-1)^{n-1}\Pi(\Delta)_{\alpha - 1} & (\alpha \neq 1). \end{cases} \quad (2.10)$$

For a vertex w of Δ, we define a closed convex cone $\text{Con}(\Delta, w)$ by $\text{Con}(\Delta, w) = \{r \cdot (v-w) \mid r \in \mathbb{R}_+, v \in \Delta\} \subset \mathbb{R}^n$.

Definition 2.7 ([3]) Let Δ and Δ' be two n-dimensional integral polytopes in $(\mathbb{R}^n, \mathbb{Z}^n)$. We denote by $\text{som}(\Delta)$ (resp. $\text{som}(\Delta')$) the set of vertices of Δ (resp. Δ'). Then we say that Δ' majorizes Δ if there exists a map $\Psi: \text{som}(\Delta') \longrightarrow \text{som}(\Delta)$ such that $\text{Con}(\Delta, \Psi(w)) \subset \text{Con}(\Delta', w)$ for any vertex w of Δ'.

For an integral polytope Δ in $(\mathbb{R}^n, \mathbb{Z}^n)$, we denote by X_{Δ} the toric variety associated with the dual fan of Δ (see Fulton [8] and Oda [16] etc.). Recall that if Δ' majorizes Δ there exists a natural morphism $X_{\Delta'} \longrightarrow X_{\Delta}$.

Proposition 2.8 ([14, Proposition 2.12]) Let Δ and Δ' be as above. Assume that an n-dimensional integral polytope Δ' in $(\mathbb{R}^n, \mathbb{Z}^n)$ majorizes Δ by the map $\Psi: \text{som}(\Delta') \longrightarrow \text{som}(\Delta)$. Then for the closure Z^*_1 of Z^* in $X_{\Delta'}$, we have

$$\sum_q e^{p,q}(Z^*_1) = \sum_{\Gamma < \Delta'} (-1)^{\dim \Gamma + p + 1} \left\{ \binom{\dim \Gamma}{p+1} - \binom{b_\Gamma}{p+1} \right\} + \sum_{\Gamma < \Delta'} (-1)^{\dim \Gamma + 1} \sum_{i=0}^{\min\{b_\Gamma, p\}} \binom{b_\Gamma}{i} \left(-1\right)^i \varphi_{1, \dim \Gamma - 1}^{\Psi(\Gamma)}(\Psi(\Gamma)), \quad (2.11)$$

where for $\Gamma < \Delta'$ we set $b_\Gamma = \dim \Gamma - \dim \Psi(\Gamma)$.

Definition 2.9 Let Δ be an n-dimensional integral polytope in $(\mathbb{R}^n, \mathbb{Z}^n)$.

(i) (see [3, Section 2.3]) We say that Δ is prime if for any vertex w of Δ the cone $\text{Con}(\Delta, w)$ is generated by a basis of \mathbb{R}^n.

(ii) (see [14, Definition 2.10]) We say that Δ is pseudo-prime if for any 1-dimensional face $\gamma < \Delta$ the number of the 2-dimensional faces $\gamma' < \Delta$ such that $\gamma < \gamma'$ is $n-1$.

By definition, prime polytopes are pseudo-prime. Moreover any face of a pseudo-prime polytope is again pseudo-prime. For $\alpha \in \mathbb{C} \setminus \{1\}$ and a face $\Gamma < \Delta$, set $\varphi_\alpha(\Gamma) = \sum_{i=0}^{\dim \Gamma} \varphi_{\alpha, i}(\Gamma)$. Then as in [3, Section 5.5 and Theorem 5.6] we obtain the following result.
Proposition 2.10 ([14, Corollary 2.15]) Assume that $\Delta = NP(g)$ is pseudo-prime. Then for any $\alpha \in \mathbb{C} \setminus \{1\}$ and $r \geq 0$, we have

$$\sum_{p+q=r} e^{p,q}(Z^*)_{\alpha} = (-1)^{n+r} \sum_{\Gamma \prec \Delta} \left\{ \sum_{\Gamma' \prec \Gamma} (-1)^{\dim \Gamma'} \tilde{\varphi}_{\alpha}(\Gamma') \right\}. \quad (2.12)$$

The following lemma will be used later.

Lemma 2.11 Let γ be a d-dimensional prime polytope. Then for any $0 \leq p \leq d$ we have

$$\sum_{\Gamma \prec \gamma} (-1)^{\dim \Gamma} \left(\dim \Gamma \right)_p = \sum_{\Gamma \prec \gamma} (-1)^{d+\dim \Gamma} \left(\dim \Gamma \right) \quad (2.13)$$

Proof. For a polytope Δ, denote the number of the j-dimensional faces of Δ by $f_{\Delta,j}$ and set $f_{\Delta,-1} = 1$. Let γ^\vee be the dual polytope of γ. Then γ^\vee is simplicial and we have $f_{\gamma^\vee,j} = f_{\gamma,d-1-j}$ for any $0 \leq j \leq d$. Hence (2.13) follows from the Dehn-Sommerville equations (see [23] etc.) for simplicial polytopes. \qed

3 Motivic Milnor fibers

In [4] and [5] Denef and Loeser introduced motivic Milnor fibers. In this section, we recall their definition and basic properties. Let $f \in \mathbb{C}[x_1, x_2, \ldots, x_n]$ be a polynomial such that the hypersurface $f^{-1}(0) = \{x \in \mathbb{C}^n \mid f(x) = 0\}$ has an isolated singular point at $0 \in \mathbb{C}^n$. Then by a fundamental theorem of Milnor [15], for the Milnor fiber F_0 of f at 0 we have $H^j(F_0; \mathbb{C}) \cong 0 \ (j \neq 0, n - 1)$. Denote by $\Phi_{n-1,0} : H^{n-1}(F_0; \mathbb{C}) \to H^{n-1}(F_0; \mathbb{C})$ the $(n-1)$-th Milnor monodromy of f at $0 \in \mathbb{C}^n$. Let $\pi : X \to \mathbb{C}^n$ be an embedded resolution of $f^{-1}(0)$ such that $\pi^{-1}(0)$ and $\pi^{-1}(f^{-1}(0))$ are normal crossing divisors in X. Let D_1, D_2, \ldots, D_m be the irreducible components of $\pi^{-1}(0)$ and denote by Z the proper transform of $f^{-1}(0)$ in X. For $1 \leq i \leq m$ denote by $a_i > 0$ the order of the zero of $g := f \circ \pi$ along D_i. For a non-empty subset $I \subset \{1, 2, \ldots, m\}$ we set $D_I = \gcd(a_i)_{i \in I} > 0$, $D_I = \bigcap_{i \in I} D_i$ and

$$D_I^0 = D_I \setminus \left\{ \left(\bigcup_{i \notin I} D_i \right) \cup Z \right\} \subset X. \quad (3.1)$$

Moreover we set

$$Z_I^0 = \left(D_I \setminus \left(\bigcup_{i \notin I} D_i \right) \right) \cap Z \subset X. \quad (3.2)$$

Then, as in [5, Section 3.3], we can construct an unramified Galois covering $\tilde{D}_I^0 \to D_I^0$ of D_I^0 as follows. First, for a point $p \in D_I^0$ we take an affine open neighborhood $W \subset X \setminus \left\{ \bigcup_{i \notin I} D_i \cup Z \right\}$ of p on which there exist regular functions $\xi_i \ (i \in I)$ such that $D_i \cap W = \{\xi_i = 0\}$ for any $i \in I$. Then on W we have $g = f \circ \pi = g_{1,W}(g_{2,W})^{d_I}$, where we set $g_{1,W} = g \prod_{i \in I} \xi_i^{-a_i}$ and $g_{2,W} = \prod_{i \in I} \xi_i^{2d_I}$. Note that $g_{1,W}$ is a unit on W and $g_{2,W} : W \to \mathbb{C}$ is a regular function. It is easy to see that D_I^0 is covered by such affine open subsets W. Then as in [5, Section 3.3] by gluing the varieties

$$\tilde{D}_{I,W}^0 = \{(t, z) \in \mathbb{C}^* \times (D_I^0 \cap W) \mid t^{d_I} = (g_{1,W})^{-1}(z)\} \quad (3.3)$$
together in the following way, we obtain the variety \tilde{D}_f^0 over D_f^0. If W' is another such open subset and $g = g_{1,W'}(g_{2,W'})^{d_2}$ is the decomposition of g on it, we patch $\tilde{D}_{I,W}^0$ and $\tilde{D}_{I,W'}^0$ by the morphism $(t, z) \mapsto (g_{2,W'}(z)(g_{2,W})^{-1}(z) \cdot t, z)$ defined over $W \cap W'$. Now for $d \in \mathbb{Z}_{>0}$, let $\mu_d \simeq \mathbb{Z}/d\mathbb{Z}$ be the multiplicative group consisting of the d-roots in \mathbb{C}. We denote by $\hat{\mu}$ the projective limit $\lim_{\rightarrow d}$ of the projective system $\{\mu_i\}_{i \geq 1}$ with morphisms $\mu_{id} \rightarrow \mu_i$ given by $t \mapsto t^d$. Then the unramified Galois covering \tilde{D}_f^0 of D_f^0 admits a natural μ_d-action defined by assigning the automorphism $(t, z) \mapsto (\zeta_d t, z)$ of \tilde{D}_f^0 to the generator $\zeta_d := \exp(2\pi\sqrt{-1}/d_1) \in \mu_d$. Namely the variety \tilde{D}_f^0 is equipped with a good $\hat{\mu}$-action in the sense of Denef-Loeser [5, Section 2.4]. Note that also the variety Z_f^0 is equipped with the trivial good $\hat{\mu}$-action. Following the notations in [5], denote by $M_C^{\hat{\mu}}$ the ring obtained from the Grothendieck ring $K_0^{\hat{\mu}}(\text{Var}_C)$ of varieties over \mathbb{C} with good $\hat{\mu}$-actions by inverting the Lefschetz motive $\mathbb{L} \simeq \mathbb{C} \in K_0^{\hat{\mu}}(\text{Var}_C)$. Recall that $\mathbb{L} \in K_0^{\hat{\mu}}(\text{Var}_C)$ is endowed with the trivial action of $\hat{\mu}$.

Definition 3.1 (Denef and Loeser [4] and [5]) We define the motivic Milnor fiber $S_{f,0} \in M_c^{\hat{\mu}}$ of f at $0 \in \mathbb{C}^n$ by

$$S_{f,0} = \sum_{l \neq 0} \left\{ (1 - L)^{d-1}[D_f^0] + (1 - L)^{d}[Z_f^0] \right\} \in M_c^{\hat{\mu}}. \quad (3.4)$$

As in [5] Section 3.1.2 and 3.1.3], we denote by HS^{mon} the abelian category of Hodge structures with a quasi-unipotent endomorphism. Let $K_0(\text{HS}^{\text{mon}})$ be its Grothendieck ring. Then as in [5], to the cohomology groups $H^j(F_0; \mathbb{C})$ and the semisimple parts of their monodromy automorphisms, we can naturally associate an element

$$[H_f] \in K_0(\text{HS}^{\text{mon}}). \quad (3.5)$$

To describe the element $[H_f] \in K_0(\text{HS}^{\text{mon}})$ in terms of $S_{f,0} \in M_c^{\hat{\mu}}$, let

$$\chi_h : M_c^{\hat{\mu}} \rightarrow K_0(\text{HS}^{\text{mon}}) \quad (3.6)$$

be the Hodge characteristic morphism defined in [5] which associates to a variety Z with a good μ_d-action the Hodge structure

$$\chi_h([Z]) = \sum_{j \in \mathbb{Z}} (-1)^j [H^j_c(Z; \mathbb{Q})] \in K_0(\text{HS}^{\text{mon}}) \quad (3.7)$$

with the actions induced by the one $z \mapsto \exp(2\pi\sqrt{-1}/d)z$ ($z \in Z$) on Z. Then we have the following fundamental result.

Theorem 3.2 (Denef-Loeser [4, Theorem 4.2.1]) In the Grothendieck group $K_0(\text{HS}^{\text{mon}})$, we have

$$[H_f] = \chi_h(S_{f,0}). \quad (3.8)$$

For $[H_f] \in K_0(\text{HS}^{\text{mon}})$ also the following result due to Steenbrink [24] and Saito [19], [21] is fundamental.
Theorem 3.3 (Steenbrink [24] and Saito [19, 21]) In the situation as above, we have

(i) Let $\lambda \in \mathbb{C}^* \setminus \{1\}$. Then we have $e^{p,q}([H_f])_\lambda = 0$ for $(p, q) \notin [0, n-1] \times [0, n-1]$.
Moreover for $(p, q) \in [0, n-1] \times [0, n-1]$ we have

$$e^{p,q}([H_f])_\lambda = e^{n-1-q,n-1-p}([H_f])_\lambda.$$
(3.9)

(ii) We have $e^{p,q}([H_f])_1 = 0$ for $(p, q) \notin \{(0,0)\} \cup ([1, n-1] \times [1, n-1])$ and $e^{0,0}([H_f])_1 = 1$. Moreover for $(p, q) \in [1, n-1] \times [1, n-1]$ we have

$$e^{p,q}([H_f])_1 = e^{n-q,n-p}([H_f])_1.$$
(3.10)

We can check these symmetries of $e^{p,q}([H_f])_\lambda$ by calculating $\chi_h(S_{f,0}) \in K_0(HS^{\text{mon}})$ explicitly by our methods (see Section 4) in many cases. Since the weights of $[H_f] \in K_0(HS^{\text{mon}})$ are defined by the monodromy filtration, we have the following result.

Theorem 3.4 In the situation as above, we have

(i) Let $\lambda \in \mathbb{C}^* \setminus \{1\}$ and $k \geq 1$. Then the number of the Jordan blocks for the eigenvalue λ with sizes $\geq k$ in $\Phi_{n-1,0} : H^{n-1}(F_0; \mathbb{C}) \to H^{n-1}(F_0; \mathbb{C})$ is equal to

$$(-1)^{n-1} \sum_{p+q=n-2+k,n-1+k} e^{p,q} (\chi_h(S_{f,0}))_\lambda.$$
(3.11)

(ii) For $k \geq 1$, the number of the Jordan blocks for the eigenvalue 1 with sizes $\geq k$ in $\Phi_{n-1,0}$ is equal to

$$(-1)^{n-1} \sum_{p+q=n-1+k,n+k} e^{p,q} (\chi_h(S_{f,0}))_1.$$
(3.12)

4 Jordan normal forms of Milnor monodromies

Our methods in [13] can be applied also to the Jordan normal forms of local Milnor monodromies. Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be a polynomial such that the hypersurface $\{x \in \mathbb{C}^n \mid f(x) = 0\}$ has an isolated singular point at $0 \in \mathbb{C}^n$.

Definition 4.1 Let $f(x) = \sum_{v \in \mathbb{Z}_+^n} a_v x^v \in \mathbb{C}[x_1, \ldots, x_n]$ be a polynomial on \mathbb{C}^n.

(i) We call the convex hull of $\bigcup_{v \in \text{supp}(f)} \{v + \mathbb{R}_+^n\}$ in \mathbb{R}_+^n the Newton polyhedron of f
and denote it by $\Gamma_+(f)$.

(ii) The union of the compact faces of $\Gamma_+(f)$ is called the Newton boundary of f and
 denoted by Γ_f.

(iii) We say that f is convenient if $\Gamma_+(f)$ intersects the positive part of any coordinate
axis in \mathbb{R}_+^n.

Definition 4.2 ([9]) We say that a polynomial $f(x) = \sum_{v \in \mathbb{Z}_+^n} a_v x^v$ ($a_v \in \mathbb{C}$) is non-
degenerate at $0 \in \mathbb{C}^n$ if for any face $\gamma \prec \Gamma_+(f)$ such that $\gamma \subset \Gamma_f$ the complex
hypersurface $\{x \in (\mathbb{C}^*)^n \mid f_\gamma(x) = 0\}$ in $(\mathbb{C}^*)^n$ is smooth and reduced, where we set
$f_\gamma(x) = \sum_{v \in \gamma \cap \mathbb{Z}_+^n} a_v x^v$.

8
Recall that generic polynomials having a fixed Newton polyhedron are non-degenerate at $0 \in \mathbb{C}^n$. From now on, we always assume also that $f = \sum_{v \in \mathbb{Z}_+^n} a_v x^v \in \mathbb{C}[x_1, \ldots, x_n]$ is convenient and non-degenerate at $0 \in \mathbb{C}^n$. For each face $\gamma < \Gamma_+(f)$ such that $\gamma \subset \Gamma_f$, let $d_\gamma > 0$ be the lattice distance of γ from the origin $0 \in \mathbb{R}^n$ and Δ_γ the convex hull of $\{0\} \cup \gamma$ in \mathbb{R}^n. Let $\mathbb{L}(\Delta_\gamma)$ be the $(\dim \gamma + 1)$-dimensional linear subspace of \mathbb{R}^n spanned by Δ_γ and consider the lattice $M_\gamma = \mathbb{Z}^n \cap \mathbb{L}(\Delta_\gamma) \simeq \mathbb{Z}^{\dim \gamma - 1}$ in it. Then we set $T_{\Delta_\gamma} := \text{Spec}(\mathbb{C}[M_\gamma]) \simeq (\mathbb{C}^*)^{\dim \gamma + 1}$. Moreover let $\mathbb{L}(\gamma)$ be the smallest affine linear subspace of \mathbb{R}^n containing γ and for $v \in M_\gamma$ define their lattice heights $\text{ht}(v, \gamma) \in \mathbb{Z}$ from $\mathbb{L}(\gamma)$ in $\mathbb{L}(\Delta_\gamma)$ so that we have $\text{ht}(0, \gamma) = d_\gamma > 0$. Then to the group homomorphism $M_\gamma \longrightarrow \mathbb{C}^*$ defined by $v \mapsto \zeta_{d_\gamma}^{\text{ht}(v, \gamma)}$ we can naturally associate an element $\tau_\gamma \in T_{\Delta_\gamma}$. We define a Laurent polynomial $g_\gamma = \sum_{v \in M_\gamma} b_v x^v$ on T_{Δ_γ} by

$$b_v = \begin{cases} a_v & (v \in \gamma), \\ -1 & (v = 0), \\ 0 & \text{(otherwise)}. \end{cases} \quad \text{(4.1)}$$

Then we have $NP(g_\gamma) = \Delta_\gamma$, $\text{supp}(g_\gamma) \subset \{0\} \cup \gamma$ and the hypersurface $Z^*_\Delta_\gamma = \{ x \in T_{\Delta_\gamma} \mid g_\gamma(x) = 0 \}$ is non-degenerate by [14, Proposition 5.3]. Moreover $Z^*_{\Delta_\gamma} \subset T_{\Delta_\gamma}$ is invariant by the multiplication $t_{\tau_\gamma} : T_{\Delta_\gamma} \xrightarrow{\sim} T_{\Delta_\gamma}$ by τ_γ, and hence we obtain an element $[Z^*_{\Delta_\gamma}]$ of \mathcal{M}_C^μ. Let $\mathbb{L}(\gamma)' \simeq \mathbb{R}^{\dim \gamma}$ be a linear subspace of \mathbb{R}^n such that $\mathbb{L}(\gamma) = \mathbb{L}(\gamma)' + w$ for some $w \in \mathbb{Z}^n$ and set $\gamma' = \gamma - w \subset \mathbb{L}(\gamma)'$. We define a Laurent polynomial $g'_\gamma = \sum_{v \in \mathbb{L}(\gamma)' \cap \mathbb{Z}^n} b'_v x^v$ on $T(\gamma) := \text{Spec}(\mathbb{C}[\mathbb{L}(\gamma)' \cap \mathbb{Z}^n]) \simeq (\mathbb{C}^*)^{\dim \gamma}$ by

$$b'_v = \begin{cases} a_{v+w} & (v \in \gamma'), \\ 0 & \text{(otherwise)}. \end{cases} \quad \text{(4.2)}$$

Then we have $NP(g'_\gamma) = \gamma'$ and the hypersurface $Z^*_\gamma = \{ x \in T(\gamma) \mid g'_\gamma(x) = 0 \}$ is non-degenerate. We define $[Z^*_\gamma] \in \mathcal{M}_C^\mu$ to be the class of the variety Z^*_γ with the trivial action of μ. Finally let $S_\gamma \subset \{1, 2, \ldots, n\}$ be the minimal subset of $\{1, 2, \ldots, n\}$ such that $\gamma \subset \{(y_1, y_2, \ldots, y_n) \in \mathbb{R}^n \mid y_i = 0 \text{ for any } i \notin S_\gamma\} \simeq \mathbb{R}^{n-S}$ and set $m_\gamma := \dim \gamma - 1 \geq 0$. Then as in the same way as [14, Theorem 5.7] we obtain the following theorem.

Theorem 4.3 In the situation as above, we have

(i) In the Grothendieck group $K_0(\text{HS}^{\text{mon}})$, we have

$$\chi_h(S_{f,0}) = \sum_{\gamma \in \Gamma_f} \chi_h((1 - \mathbb{L})^{m_\gamma} \cdot [Z^*_\Delta_\gamma]) + \sum_{\gamma \in \Gamma_f} \chi_h((1 - \mathbb{L})^{m_\gamma+1} \cdot [Z^*_\gamma]). \quad \text{(4.3)}$$

(ii) Let $\lambda \in \mathbb{C}^* \setminus \{1\}$ and $k \geq 1$. Then the number of the Jordan blocks for the eigenvalue λ with sizes $\geq k$ in $\Phi_{n-1,0} : H^{n-1}(F_0 ; \mathbb{C}) \xrightarrow{\sim} H^{n-1}(F_0 ; \mathbb{C})$ is equal to

$$(-1)^{n-1} \sum_{p+q=n-k,n-1+k} \left\{ \sum_{\gamma \subset \Gamma_f} \chi_h((1 - \mathbb{L})^{m_\gamma} \cdot [Z^*_\Delta_\gamma])) \lambda \right\}. \quad \text{(4.4)}$$
(iii) For $k \geq 1$, the number of the Jordan blocks for the eigenvalue 1 with sizes $\geq k$ in $\Phi_{n-1,0}$ is equal to

\[(-1)^{n-1} \sum_{p+q=n-1+k,n+k} \left\{ \sum_{\gamma_i \in \Gamma_f} e^{p,q}(\chi_h((1 - L)^{m_{\gamma_i}} \cdot [Z_{\gamma_i}^0])) \right\}_1 + \sum_{\gamma_i \in \Gamma_f, \dim \gamma_i \geq 1} e^{p,q}(\chi_h((1 - L)^{m_{\gamma_i} + 1} \cdot [Z_{\gamma_i}^0])) \left\}_1 . \]

(4.5)

Proof. Since (ii) and (iii) follow from (i) and Theorem 3.4, it suffices to prove (i). The proof is very similar to the one in Varchenko [20]. Let Σ_1 be the dual fan of $\Gamma_+(f)$ in \mathbb{R}^n_+ and Σ its smooth subdivision. Denote by X_Σ the smooth toric variety associated to Σ (see Fulton [8] and Oda [16] etc.). Since the union of the cones in Σ is \mathbb{R}^n_+, there exists a proper morphism $\pi: X_\Sigma \to \mathbb{C}^n$. By the convenience of f, we can construct the smooth fan Σ without subdividing the cones contained in $\partial \mathbb{R}^n_+$ (see [17, Lemma (2.6), Chapter II]). Then π induces an isomorphism $X_\Sigma \setminus \pi^{-1}(0) \cong \mathbb{C}^n \setminus \{0\}$. Moreover, by the non-degeneracy at $0 \in \mathbb{C}^n$ of f, the proper transform Z of the hypersurface $\{x \in \mathbb{C}^n \mid f(x) = 0\}$ in X_Σ is smooth and intersects T-orbits in $\pi^{-1}(0)$ transversally. Let D_1, \ldots, D_m be the toric divisors in $\pi^{-1}(0) \subset X_\Sigma$. For a non-empty subset $I \subset \{1, 2, \ldots, m\}$ we set $D_I = \bigcap_{i \in I} D_i$ and

\[D_I^\circ = D_I \setminus \left(\bigcup_{\iota \in I} D_{\iota} \right) \subset X_\Sigma \]

(4.6)

and define its unramified Galois covering \tilde{D}_I° as in Section 3. Moreover we set

\[Z_I^0 = \left(D_I \setminus \bigcup_{\iota \in I} D_{\iota} \right) \cap Z \subset X_\Sigma \]

(4.7)

and denote by $[Z_I^0] \in \mathcal{M}_{\mathbb{C}}^\ell$ the class of the variety Z_I^0 with the trivial action. Then, unlike the global object $S_{f,0}^\circ$ in [14], Denef-Loeser’s “local” motivic Milnor fiber $S_{f,0}$ contains not only $(1 - L)^{t-1}[\tilde{D}_I^\circ]$ but also $(1 - L)^{t-1}[Z_I^0]$ (see Definition 3.1). These new elements yield the second term in the right hand side of (4.5). Finally, in the Grothendieck group $K_0(\text{HS}^{\text{mon}})$ we can rewrite $\chi_h(S_{f,0})$ in terms of the dual fan Σ_1 (i.e. in terms of $\Gamma_+(f)$) as in the same way as the proof of [14, Theorem 5.7 (i)]. This completes the proof. \qed

Let q_1, \ldots, q_l (resp. $\gamma_1, \ldots, \gamma_{\ell'}$) be the 0-dimensional (resp. 1-dimensional) faces of $\Gamma_+(f)$ such that $q_i \in \text{Int}(\mathbb{R}^n_+)$ (resp. rel.int(γ_i) $\subset \text{Int}(\mathbb{R}^n_+)$). Here rel.int($\cdot$) stands for the relative interior. For each q_i (resp. γ_i), denote by $d_i > 0$ (resp. $e_i > 0$) the lattice distance dist$(q_i, 0)$ (resp. dist$(\gamma_i, 0)$) of it from the origin $0 \in \mathbb{R}^n$. For $1 \leq i \leq \ell'$, let Δ_i be the convex hull of $\{0\} \cup \gamma_i$ in \mathbb{R}^n. Then for $\lambda \in \mathbb{C} \setminus \{1\}$ and $1 \leq i \leq \ell'$ such that $\lambda^{e_i} = 1$ we set

\[n(\lambda)_i = \sharp\{v \in \mathbb{Z}^n \cap \text{rel.int}(\Delta_i) \mid \text{ht}(v, \gamma_i) = k\} + \sharp\{v \in \mathbb{Z}^n \cap \text{rel.int}(\Delta_i) \mid \text{ht}(v, \gamma_i) = e_i - k\} , \]

(4.8)

where k is the minimal positive integer satisfying $\lambda = c_{e_i}^k$ and for $v \in \mathbb{Z}^n \cap \text{rel.int}(\Delta_i)$ we denote by $\text{ht}(v, \gamma_i)$ the lattice height of v from the base γ_i of Δ_i. As in the same way as [14, Theorem 5.9], by using Propositions 2.5 and 2.6 and Theorem 4.3 (ii), we obtain the following theorem.
Theorem 4.4 In the situation as above, for \(\lambda \in \mathbb{C}^* \setminus \{1\} \), we have

(i) The number of the Jordan blocks for the eigenvalue \(\lambda \) with the maximal possible size \(n \) in \(\Phi_{n-1,0} \) is equal to \(\sharp \{ q_i \mid \lambda^{q_i} = 1 \} \).

(ii) The number of the Jordan blocks for the eigenvalue \(\lambda \) with size \(n-1 \) in \(\Phi_{n-1,0} \) is equal to \(\sum_{i} \chi_{e_i=1} n(\lambda)_i \).

Note that by Theorem 4.3 and our results in Section 2 we can always calculate the whole Jordan normal form of \(\Phi_{n-1,0} \). From now on, we shall rewrite Theorem 4.3(ii) more explicitly in the case where any face \(\gamma \) \(\prec \Gamma_j \) such that \(\gamma \subset \Gamma_j \) is prime (see Definition 2.9(i)). Recall that by Proposition 2.3 for \(\lambda \in \mathbb{C}^* \setminus \{1\} \) and a face \(\gamma \prec \Gamma_j \) such that \(\gamma \subset \Gamma_j \) we have \(e^{p,q}(Z_{\Delta_{\gamma}})_{\lambda} = 0 \) for any \(p, q \geq 0 \) such that \(p + q > \dim \Delta_{\gamma} - 1 = \dim \gamma \).

So the non-negative integers \(r \geq 0 \) such that \(\sum_{p+q=r} e^{p,q}(Z_{\Delta_{\gamma}})_{\lambda} \neq 0 \) are contained in the closed interval \([0, \dim \gamma]\) \(\subset \mathbb{R} \).

Definition 4.5 For a face \(\gamma \prec \Gamma_j \) such that \(\gamma \subset \Gamma_j \) and \(k \geq 1 \), we define a finite subset \(J_{\gamma,k} \subset [0, \dim \gamma] \cap \mathbb{Z} \) by

\[
J_{\gamma,k} = \{ 0 \leq r \leq \dim \gamma \mid n - 2 + k \equiv r \mod 2 \}. \tag{4.9}
\]

For each \(r \in J_{\gamma,k} \), set

\[
d_{k,r} = \frac{n - 2 + k - r}{2} \in \mathbb{Z}_+. \tag{4.10}
\]

If a face \(\gamma \prec \Gamma_j \) such that \(\gamma \subset \Gamma_j \) is prime, then the polytope \(\Delta_{\gamma} \) is pseudo-prime (see Definition 2.9(ii)). Then by Proposition 2.10 for \(\lambda \in \mathbb{C}^* \setminus \{1\} \) and an integer \(r \geq 0 \) such that \(r \in [0, \dim \gamma] \) we have

\[
\sum_{p+q=r} e^{p,q}(\chi_{h([Z_{\Delta_{\gamma}}])})_{\lambda} = (-1)^{\dim \gamma + r + 1} \sum_{\substack{\Gamma \subset \Delta_{\gamma} \\dim \Gamma = r + 1}} \left\{ \sum_{\substack{\Gamma' \subset \Gamma \\dim \Gamma' = r + 1}} (-1)^{\dim \Gamma'} \varphi_{\lambda}(\Gamma') \right\}. \tag{4.11}
\]

For simplicity, we denote this last integer by \(e(\gamma, \lambda)_r \). Then by Theorem 4.3(ii) we obtain the following result.

Theorem 4.6 Assume that any face \(\gamma \prec \Gamma_j \) such that \(\gamma \subset \Gamma_j \) is prime. Let \(\lambda \in \mathbb{C}^* \setminus \{1\} \) and \(k \geq 1 \). Then the number of the Jordan blocks for the eigenvalue \(\lambda \) with sizes \(\geq k \) in \(\Phi_{n-1,0} \): \(H^{n-1}(F_0; \mathbb{C}) \xrightarrow{\sim} H^{n-1}(F_0; \mathbb{C}) \) is equal to

\[
(-1)^{n-1} \sum_{\gamma \subset \Gamma_j} \left\{ \sum_{r \in J_{\gamma,k}} (-1)^{d_{k,r}} \left(m_{\gamma} \right) d_{k,r} \cdot e(\gamma, \lambda)_r + \sum_{r \in J_{\gamma,k+1}} (-1)^{d_{k+1,r}} \left(m_{\gamma} \right) d_{k+1,r} \cdot e(\gamma, \lambda)_r \right\}, \tag{4.12}
\]

where we used the convention \(\binom{a}{b} = 0 \) (0 \(\leq a < b \)) for binomial coefficients.

By combining the proof of [3, Theorem 5.6] and [14, Proposition 2.14] with Theorem 4.3(iii), if any face \(\gamma \prec \Gamma_j \) such that \(\gamma \subset \Gamma_j \) is prime we can also describe the Jordan blocks for the eigenvalue 1 in \(\Phi_{n-1,0} \) by a closed formula. Since this result is rather involved, we omit it here.
Remark 4.7 Our results above are different from the previous ones due to Danilov [2] and Tanabé [25]. For example, in [2] and [25] they assume a stronger condition that the Newton polyhedron $\Gamma_+(f)$ itself is prime. We could weaken their condition, because our Propositions 2.13 and 2.14 and Proposition 2.10 are generalizations of the corresponding results in [3] to pseudo-prime polytopes.

We can also obtain the corresponding results for the eigenvalue 1 by rewriting Theorem 4.3 (iii) more simply as follows.

Theorem 4.8 In the situation of Theorem 4.3, for $k \geq 1$ the number of the Jordan blocks for the eigenvalue 1 with sizes $\geq k$ in $\Phi_{n-1,0}$ is equal to

$$(-1)^{n-1} \sum_{p+q=n-2-k, n-1-k} \left\{ \sum_{\gamma \subset \Gamma_f} e^{p,q} \left(\chi_h \left((1-L)^{m_{\gamma}} [Z_{\Delta,\gamma}^*] \right) \right) \right\}. \quad (4.13)$$

As in the same way as [14, Theorems 5.11 and 5.12], by using Propositions 2.5 and 2.6 and Theorem 4.8, we obtain the following corollary. Denote by Π_f the number of the lattice points on the 1-skeleton of $\Gamma_f \cap \text{Int}(\mathbb{R}^n_+)$. Also, for a compact face $\gamma \subset \Gamma_+(f)$ we denote by $l^*(\gamma)$ the number of the lattice points on rel.int(γ).

Corollary 4.9 In the situation as above, we have

(i) (van Doorn-Steenbrink [6]) The number of the Jordan blocks for the eigenvalue 1 with the maximal possible size $n-1$ in $\Phi_{n-1,0}$ is Π_f.

(ii) The number of the Jordan blocks for the eigenvalue 1 with size $n-2$ in $\Phi_{n-1,0}$ is equal to $2 \sum \gamma l^*(\gamma)$, where γ ranges through the compact faces of $\Gamma_+(f)$ such that $\text{dim}\gamma = 2$ and $\text{rel.int}(\gamma) \subset \text{Int}(\mathbb{R}^n_+)$.\n
Note that Corollary 4.9 (i) was previously obtained in van Doorn-Steenbrink [6] by different methods. Theorem 4.8 asserts that by replacing $\Gamma_+(f)$ with the Newton polyhedron at infinity $\Gamma_\infty(f)$ in [11], [13] and [14] etc. the combinatorial description of the local monodromy $\Phi_{n-1,0}$ is the same as that of the global one Φ_{n-1}^∞ obtained in [14, Theorem 5.7 (iii)]. Namely we find a beautiful symmetry between local and global. Theorem 4.8 can be deduced from the following more precise result.

Theorem 4.10 In the situation as above, for any $0 \leq p, q \leq n-2$ we have

$$\sum_{\gamma \subset \Gamma_f} e^{p,q} \left(\chi_h \left((1-L)^{m_{\gamma}} [Z_{\Delta,\gamma}^*] \right) \right)_1 = \sum_{\gamma \subset \Gamma_f} e^{p+1,q+1} \left(\chi_h \left((1-L)^{m_{\gamma}} [Z_{\Delta,\gamma}^*] + (1-L)^{m_{\gamma}+1} [Z_{\gamma}^*] \right) \right)_1. \quad (4.14)$$

We can easily see that Theorem 4.10 follows from Proposition 4.11 below. For $[V] \in K_0(HS^\text{mon})$, let $e([V])_1 = \sum_{p,q=0}^{\infty} e^{p,q}([V])_1 t_1^p t_2^q$ be the generating function of $e^{p,q}([V])_1$ as in [3].
Proposition 4.11 We have
\[\sum_{\gamma \subset \Gamma_f} e \left(\chi_h \left(\left(1 - L \right)^{m-1} \left[Z_{\gamma}^* + [Z_{\gamma}] \right] \right) \right) = 1 - (t_1 t_2)^n. \] (4.15)

From now on, we shall prove Proposition 4.11. First, we apply Proposition 2.8 to the case where \(\Delta = \Delta_\gamma \) for a face \(\gamma \) of \(\Gamma_+(f) \) such that \(\gamma \subset \Gamma_f \). Let \(\gamma' \) be a prime polytope in \(\mathbb{R}^{\dim \gamma} \) which majorizes \(\gamma \) and consider the Minkowski sum \(\gamma'' = \gamma + \gamma' \) (resp. \(\square_{\gamma''} := \Delta_\gamma + \gamma' \)) in \(\mathbb{R}^{\dim \gamma} \) (resp. \(\mathbb{R}^{\dim \gamma + 1} \)). Then \(\square_{\gamma''} \) is a \((\dim \gamma + 1)\)-dimensional truncated pyramid whose top (resp. bottom) is \(\gamma' \) (resp. \(\gamma'' \)) (see Figure 1 below). In particular, \(\square_{\gamma''} \) is prime. Since the dual fan of \(\gamma'' \) coincides with that of \(\gamma' \), the prime polytope \(\gamma'' \) majorizes \(\gamma \).

By extending \(\Psi \) to a morphism \(\widetilde{\Psi} : \text{som}(\square_{\gamma''}) \rightarrow \text{som}(\Delta_\gamma) \) as
\[\widetilde{\Psi}(w) = \begin{cases} \Psi(w) & (w \in \text{som}(\gamma'')), \\ \{0\} & (w \in \text{som}(\gamma')) \end{cases}, \] (4.16)
we see that the prime polytope \(\square_{\gamma''} \) majorizes \(\Delta_\gamma \).

\[\frac{\gamma'}{\square_{\gamma''}} \]

Figure 1

Proposition 4.12 For the closure \(\overline{Z_{\gamma}}^r \) of \(Z_{\gamma}^r \) in \(X_{\square_{\gamma''}} \), we have
\[\sum_{q} e^{p,q}(\overline{Z_{\gamma}}^r)_1 = \sum_{\tau \prec \gamma''} (-1)^{\dim \tau + p} \binom{\dim \tau}{p}. \] (4.17)

Proof. It suffices to rewrite Proposition 2.8 in this case. For a face \(\Gamma \) of \(\square_{\gamma''} \), we set \(b_\Gamma = \dim \Gamma - \dim \widetilde{\Psi}(\Gamma) \). Note that the set of faces of \(\square_{\gamma''} \) consists of those of \(\gamma' \) and \(\gamma'' \) and side faces. Each side face of \(\square_{\gamma''} \) is a truncated pyramid \(\square_{\tau} \) whose bottom is \(\tau \prec \gamma'' \). Since \(\dim \square_{\tau} = \dim \Gamma + 1 \) and \(b_{\square_{\tau}} = b_{\tau} \) for \(\tau \prec \gamma'' \), we have
\[\sum_{\Gamma \prec \square_{\gamma''}} (-1)^{\dim \Gamma + p + 1} \left\{ \binom{\dim \Gamma}{p + 1} - \binom{b_{\Gamma}}{p + 1} \right\} = \sum_{\tau \prec \gamma''} (-1)^{\dim \tau + p} \binom{\dim \tau}{p} \] (4.18)
and
\[\sum_{\Gamma \prec \square_{\gamma''}} (-1)^{\dim \Gamma + 1} \sum_{i=0}^{\min\{b_{\Gamma},p\}} \binom{b_{\Gamma}}{i} (-1)^i \varphi_{1,\dim \widetilde{\Psi}(\Gamma)-p+i}(\widetilde{\Psi}(\Gamma)) = \sum_{\tau \prec \gamma''} (-1)^{\dim \tau + 1} \sum_{i=0}^{\min\{b_{\tau},p\}} \binom{b_{\tau}}{i} (-1)^i \varphi_{1,\dim \widetilde{\Psi}(\tau)-p+i}(\widetilde{\Psi}(\tau)) - \varphi_{1,\dim \widetilde{\Psi}(\square_{\tau})-p+i}(\widetilde{\Psi}(\square_{\tau})), \] (4.19)
where the faces τ of the top γ' of $\square_{\gamma''}$ are neglected by the condition $\dim \Psi(\tau) = 0$. By $\Psi(\square_{\gamma}) = \Delta_{\Psi(\tau)}$ and Lemma 4.13 below, the last term is equal to 0. □

Lemma 4.13 For any face γ of $\Gamma_+ (f)$ such that $\gamma \subset \Gamma_f$, we have

$$\varphi_{1,j+1}(\Delta_{\gamma}) = \varphi_{1,j}(\gamma).$$

(Proof. By the relation $t^*((k + 1)\Delta_{\gamma})_1 - t^*(k\Delta_{\gamma})_1 = t^*(k\gamma)_1$ ($k \geq 0$) we have

$$P_1(\Delta_{\gamma}; t) = tP_1(\gamma; t).$$

By comparing the coefficients of t^{j+1} in both sides, we obtain (4.20). □

The following proposition is a key in the proof of Proposition 4.11.

Proposition 4.14 For any face γ of $\Gamma_+ (f)$ such that $\gamma \subset \Gamma_f$, we have

$$e(\chi_h([Z_{\Delta_{\gamma}}^*] + [Z_{\gamma}^*]))_1 = (t_1t_2 - 1)^{\dim \gamma}.$$

(Proof. It is enough to prove

$$e^{p,q}(Z_{\gamma}^*)_1 + e^{p,q}(Z_{\Delta_{\gamma}}^*)_1 = (-1)^{\dim \gamma + p} \binom{\dim \gamma}{p} \cdot \delta_{p,q},$$

where $\delta_{p,q}$ is Kronecker’s delta. We consider the closure $\overline{Z_{\Delta_{\gamma}}}$ of $Z_{\Delta_{\gamma}}$ in $X_{\square_{\gamma''}}$. Then by the proofs of Propositions 2.8 and 4.12 we have

$$e^{p,q}(\overline{Z_{\Delta_{\gamma}}})_1 = \sum_{\tau \prec \gamma''} \left\{ e^{p,q}((C^*)^{b_{\tau}} \times Z_{\Psi(\tau)}^*)_1 + e^{p,q}((C^*)^{b_{\tau}} \times Z_{\Psi(\square_{\gamma})}^*)_1 \right\}$$

$$= \sum_{\tau \prec \gamma''} \sum_{i=0}^{b_{\tau}} \binom{b_{\tau}}{i} (-1)^{i + b_{\tau}} \left\{ e^{p-q-i}(Z_{\Psi(\tau)}^*)_1 + e^{-i,q-i}(Z_{\Psi(\square_{\gamma})}^*)_1 \right\}. \hspace{1cm} (4.24)$$

Let us prove (4.23) by induction on $\dim \gamma$. In the case $\dim \gamma = 0$, we can prove (4.23) easily by Propositions 2.3 and 2.6. Assume that for any $\sigma \subset \Gamma_f$ such that $\dim \sigma < \dim \gamma$ (4.23) holds. Then by $b_{\gamma''} = 0$ and (4.23) we have

$$e^{p,q}(\overline{Z_{\Delta_{\gamma}}})_1 = e^{p,q}(Z_{\gamma}^*)_1 + e^{p,q}(Z_{\Delta_{\gamma}}^*)_1 + \delta_{p,q} \sum_{\tau \preceq \gamma''} (-1)^{\dim \tau + p} \binom{\dim \tau}{p}. \hspace{1cm} (4.26)$$

In the case $p + q > \dim \gamma$, by Proposition 2.3 we have

$$e^{p,q}(\overline{Z_{\Delta_{\gamma}}})_1 = \delta_{p,q} \sum_{\tau \preceq \gamma''} (-1)^{\dim \tau + p} \binom{\dim \tau}{p}. \hspace{1cm} (4.27)$$

Therefore, also in the case $p + q < \dim \gamma$, by the Poincaré duality for $\overline{Z_{\Delta_{\gamma}}}$ ($\square_{\gamma''}$ is prime) and Lemma 2.11, we have

$$e^{p,q}(\overline{Z_{\Delta_{\gamma}}})_1 = e^{\dim \gamma - p, \dim \gamma - q}(\overline{Z_{\Delta_{\gamma}}})_1$$

$$= \delta_{p,q} \sum_{\tau \preceq \gamma''} (-1)^{\dim \tau + \dim \gamma - p} \binom{\dim \tau}{\dim \gamma - p} \binom{\dim \gamma - p}{p}. \hspace{1cm} (4.29)$$

$$= \delta_{p,q} \sum_{\tau \preceq \gamma''} (-1)^{\dim \tau + p} \binom{\dim \tau}{p}. \hspace{1cm} (4.30)$$

14
In the case \(p + q = \text{dim} \gamma \), by Proposition \ref{proposition:4.12} and the previous results we have
\[
e^{p,q}(Z^*_{\Delta,\gamma})_1 = \sum_{q'} e^{p,q'}(Z^*_{\Delta,\gamma})_1 - (1 - \delta_{p,q})e^{p,p}(Z^*_{\Delta,\gamma})_1 \quad (4.31)
\]
\[
= \delta_{p,q} \sum_{\tau < \gamma} (-1)^{\dim \tau + p} \binom{\dim \tau}{p} . \quad (4.32)
\]
By (4.26), we obtain (4.23) for any \(p, q \). \(\Box \)

Now we can finish the proof of Proposition \ref{proposition:4.11} as follows. By Proposition \ref{proposition:4.14}, we have
\[
\sum_{\gamma \subset \Gamma_f} \chi_h \left((1 - L)^{m_{\gamma} + 1}([Z^*_{\Delta,\gamma}] + [Z^*_f]) \right)_1 = \sum_{\gamma \subset \Gamma_f} (1 - t_1 t_2)^{m_{\gamma} + 1}(t_1 t_2 - 1)^{\text{dim} \gamma} \quad (4.33)
\]
\[
= \sum_{l=1}^{n} (1 - t_1 t_2)^l \sum_{i S_i = l} (-1)^{\text{dim} \gamma} \quad (4.34)
\]
\[
= \sum_{l=1}^{n} (1 - t_1 t_2)^l \binom{n}{l} (-1)^{l-1} \quad (4.35)
\]
\[
= 1 - (t_1 t_2)^n . \quad (4.36)
\]

\[\begin{align*}
\text{Remark 4.15} & \quad \text{Following the proof of [14, Theorem 5.16], we can easily give another proof to the Steenbrink conjecture which was proved by Varchenko-Khovanskii [27] and Saito [20] independently. For an introduction to this conjecture, see an excellent survey in Kulikov [10] etc.}
\end{align*}\]

\[\begin{align*}
\text{Remark 4.16} & \quad \text{For a polynomial map } f: \mathbb{C}^n \rightarrow \mathbb{C}, \text{ it is well-known that there exists a finite subset } B \subset \mathbb{C} \text{ such that the restriction}
\end{align*}\]
\[
\mathbb{C}^n \setminus f^{-1}(B) \rightarrow \mathbb{C} \setminus B \quad (4.37)
\]
of \(f \) is a locally trivial fibration. We denote by \(B_f \) the smallest such subset \(B \subset \mathbb{C} \). For a point \(b \in B_f \), take a small circle \(C_b(b) = \{ x \in \mathbb{C} \mid |x - b| = \varepsilon \} \) \((0 < \varepsilon < 1) \) around \(b \) such that \(B_f \cap \{ x \in \mathbb{C} \mid |x - b| \leq \varepsilon \} = \{ b \} \). Then by the restriction of \(\mathbb{C}^n \setminus f^{-1}(B_f) \rightarrow \mathbb{C} \setminus B_f \) to \(C_b(b) \subset \mathbb{C} \setminus B_f \) we obtain a geometric monodromy automorphism \(\Phi^b_j: f^{-1}(b + \varepsilon) \sim \rightarrow f^{-1}(b + \varepsilon) \) and the linear maps
\[
\Phi^b_j: H^j(f^{-1}(b + \varepsilon); \mathbb{C}) \sim \rightarrow H^j(f^{-1}(b + \varepsilon); \mathbb{C}) \quad (j = 0, 1, \ldots) \quad (4.38)
\]
associated to it. The eigenvalues of \(\Phi^b_j \) were studied in [13, Sections 3 and 4] etc. If \(f \) is tame at infinity, as in [14 Section 4] we can introduce a motivic Milnor fiber \(S^b_j \in \mathcal{M}^b \) along the central fiber \(f^{-1}(b) \) to calculate the numbers of the Jordan blocks for the eigenvalues \(\lambda \neq 1 \) in \(\Phi^b_{n-1} \). This result can be easily obtained by using the proof of Sabbah [18 Theorem 13.1]. It would be an interesting problem to construct a motivic object to calculate the eigenvalue 1 part of \(\Phi^b_{n-1} \).
References

[1] N. A’Campo, La fonction zèta d’une monodromie, Comment. Math. Helv., 50 (1975), 233-248.

[2] V. I. Danilov, Newton polyhedra and vanishing cohomology, Functional Anal. Appl., 13 (1979), 103-115.

[3] V. I. Danilov and A. G. Khovanskii, Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math. Ussr Izvestiya, 29 (1987), 279-298.

[4] J. Denef and F. Loeser, Motivic Igusa zeta functions, J. Alg. Geom., 7 (1998), 505-537.

[5] J. Denef and F. Loeser, Geometry on arc spaces of algebraic varieties, Progr. Math., 201 (2001), 327-348.

[6] M. G. M. van Doorn and J. H. M. Steenbrink, A supplement to the monodromy theorem, Abh. Math. Sem. Univ. Hamburg 59, (1989), 225-233.

[7] A. Esterov and K. Takeuchi, Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, arXiv:1009.0230, to appear in Int. Math. Res. Not.

[8] W. Fulton, Introduction to toric varieties, Princeton University Press, 1993.

[9] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31.

[10] V. S. Kulikov, Mixed Hodge structures and singularities, Cambridge University Press, 1998.

[11] A. Libgober and S. Sperber, On the zeta function of monodromy of a polynomial map, Compositio Math., 95 (1995), 287-307.

[12] Y. Matsui and K. Takeuchi, Milnor fibers over singular toric varieties and nearby cycle sheaves, Tohoku Math. J., 63 (2011), 113-136.

[13] Y. Matsui and K. Takeuchi, Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Mathematische Zeitschrift, 268 (2011), 409-439.

[14] Y. Matsui and K. Takeuchi, Monodromy at infinity of polynomial maps and Newton polyhedra, with Appendix by C. Sabbah, to appear in Int. Math. Res. Not.

[15] J. Milnor, Singular points of complex hypersurfaces, Princeton University Press, 1968.

[16] T. Oda, Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, 1988.

[17] M. Oka, Non-degenerate complete intersection singularity, Hermann, Paris (1997).

[18] C. Sabbah, Hypergeometric periods for a tame polynomial, Port. Math., 63 (2006): 173-226.
[19] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci., 24 (1988), 849-995.

[20] M. Saito, Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann., 281 (1988), 411-417.

[21] M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci., 26 (1990), 221-333.

[22] M. Schulze, Algorithms for the Gauss-Manin connection, J. Symbolic Comput., 32 (2001), 549-564.

[23] D. M. Y. Sommerville, The relations connecting the angle-sums and volume of a polytope in space of n dimensions, Proc. Royal Society London, Ser. A, 115 (1927), 103-119.

[24] J. H. M. Steenbrink, Mixed Hodge structures on the vanishing cohomology, Real and Complex Singularities, Sijthoff and Noordhoff, Alphen aan den Rijn, (1977), 525-563.

[25] S. Tanabé, Combinatorial aspects of the mixed Hodge structure, RIMS Kôkyûroku, 1374 (2004), 15-39.

[26] A. N. Varchenko, Zeta-function of monodromy and Newton’s diagram, Invent. Math., 37 (1976), 253-262.

[27] A. N. Varchenko and A. G. Khovanskii, Asymptotic behavior of integrals over vanishing cycles and the Newton polyhedron, Dokl. Akad. Nauk SSSR, 283 (1985), 521-525.

[28] C. Voisin, Hodge theory and complex algebraic geometry, I, Cambridge University Press, 2007.