Automated quantification of one-dimensional nanostructure alignment on surfaces

Jianjin Dong1,2, Irene A Goldthorpe1,2 and Nasser Mohieddin Abukhdeir2,3,4

1Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
2Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada
3Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
4Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada

E-mail: nmabukhdeir@uwaterloo.ca

Received 3 March 2016, revised 6 April 2016
Accepted for publication 11 April 2016
Published 27 April 2016

Abstract
A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

Keywords: nanostructures, alignment, orientational ordering, image processing, nanowires

(Some figures may appear in colour only in the online journal)

1. Introduction

The application of image processing to materials and nanotechnology research has the potential to enable significant advancements, both fundamental and technological. A key activity in these research areas is the determination of quantitative relationships between material structure and properties, which can be enabled or augmented through the use of image processing methods.

Focusing on films and surfaces, imaging techniques have become increasingly more accurate and accessible to researchers, but suitable image processing methods have not advanced at the same pace. When successfully applied, image processing methods have resulted in an increased understanding of experimental observations in areas including nanoscale self-assembly [1–4], nanoparticle clustering [5], molecular topography [6], and nanorod/nanowire-coated films [7–10]. These examples also demonstrate that traditional image processing techniques alone are not sufficient and must be augmented through the identification of theoretically consistent metrics for quantification of material structure.

Films and surfaces composed of one-dimensional (1D) nanostructures—nanowires (NWs), nanorods (NRs), and nanotubes (NTs)—are the focus of a large sub-set of materials and nanotechnology research where image processing is gaining traction [7–10]. This area is significant in that 1D nanostructures are easily transferred onto arbitrary substrates [11–15] and a broad range of applications exist for these
materials in electronic, optical, sensing and energy devices [11, 12, 16, 17]. Alignment of 1D nanostructures on substrates has been demonstrated [18, 19] and the quality of alignment has been shown to qualitatively affect many useful material properties such as the ability to polarize light and increasing surface-enhanced Raman scattering [20–23].

Frequently, measurement of alignment of individual nanostructures has been done by hand through measuring the angle of alignment θ_i of individual 1D nanostructures [24–26] using scanning electron microscopy (SEM) images such as in figure 1. Not only is this approach tedious and time consuming, but it is also inaccurate and nearly impossible to execute without bias. Automating the process through the use of image processing is clearly desirable, yet few studies have execute without bias. Automating the process through the use of image processing methods and towards both quantitative and automated measurement of alignment through the use of image processing methods and the introduction of an appropriate orientational order parameter S:

$$S = (2 \cos^2 \theta_i - 1) = \frac{1}{N} \sum_{i=1}^{N} (2 \cos^2 \theta_i - 1), \quad (1)$$

where θ_i is the angle between the average alignment vector \mathbf{n} and the ith nanostructure alignment vector \mathbf{m}. S values range between 0 and 1, with values closer to 1 meaning the nanostructures are more aligned. To date there has been no rigorous basis developed for alignment quantification as is present in other fields such as orientational order quantification in liquid crystalline phases [27, 28]. Additionally, progress has been made in imaging processing of dispersed (non-overlapping) 1D nanostructures [9, 10], shown in figures 1(a) and (b), but these approaches fail for dense 1D nanostructure coverages where overlapping is present (see figure 1(c)). Thus, significant challenges still exist for automated alignment quantification and, with increasing numbers of 1D nanostructure devices and applications being developed, advances in image processing methods are as important as ever [29–31].

The overall objective of this work is to address two of the most significant current challenges in automated alignment quantification of 1D nanostructures on surfaces: (i) alignment metrics formulation and (ii) image processing of dense (overlapping) nanostructure films. An appropriate alignment metric was first introduced in [7], shown in equation (1). This orientational order parameter will be shown to be a coarse approximation for the orientational distribution function (ODF) of the nanostructures, especially for high-alignment cases. Thus, the first objective of this work is the derivation of a complete set of order parameters which enable reconstruction of the ODF of the 1D nanostructures on surfaces. Additionally, past approaches to image processing of nanostructured films were limited to disperse non-overlapping films [7–10]. Thus, the second objective of this work is to develop an enhanced image processing method which is able to robustly and seamlessly handle both disperse (non-overlapping) and dense (overlapping) nanostructured films.

2. Theory

Quantification of orientational order of materials through the introduction of appropriate orientational order parameters has been rigorously addressed in the area of liquid crystal physics [28]. Orientational order in liquid crystal phases is traditionally quantified by a finite set of orientational order parameters [27]:

$$S_{2n} = \langle P_{2n}(\cos \theta_i) \rangle, \quad (2)$$

where n is a positive integer, P_{2n} is the Legendre polynomial of order $2n$, and θ_i is the angle between the average alignment vector \mathbf{n} and the ith molecular alignment vector \mathbf{m}. These order parameters were derived from a statistical mechanics representation of three-dimensional molecular alignment, the ODF for non-polar uniaxial molecules (in spherical coordinates):

$$\int_0^\pi f(\theta) \sin \theta d\theta = 1, \quad (3)$$

where the ODF can be shown to have the form [27]:

$$f(\theta) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{4n+1}{2} S_{2n} P_{2n}(\cos \theta) \quad (4)$$
and thus a finite set of scalar order parameters defined by equation (2) can be interpreted as a reduced-basis approximation of the exact ODF.

While liquid crystal phases are composed of molecules whose orientation is inherently three-dimensional, nanostructures deposited on surfaces have orientation that is essentially two-dimensional. Thus equations (2)–(4) are not applicable for the two-dimensional case. Past research has been performed on liquid crystal phases constrained to two-dimensions in which a two-dimensional orientational order parameter $S = \langle \cos 2\theta_i \rangle$ was first introduced by Straley in [32]. This can be shown to be equivalent to equation (1) using simple trigonometric identities. For two-dimensional liquid crystal phases, the scalar order parameter was later expanded on in [33] introducing a two-dimensional alignment tensor:

$$Q = (2m_i m_i - \delta)$$

which provides a simple approach to compute the average molecular alignment vector \mathbf{n} through eigenvalue decomposition of Q.

The derivation of a suitable set of two-dimensional orientational order parameters in this work closely follows that of Zannoni in [27] for the three-dimensional case. An ODF for a set of non-polar cylindrically symmetric objects constrained to two-dimensions must obey the following constraints:

$$f(\theta) = f(\theta + i\pi),$$

where i is an integer and the normalization condition:

$$\int_0^{2\pi} f(\theta) d\theta = 1.$$

An appropriate orthogonal expansion for $f(\theta)$ exists in terms of a Fourier cosine series,

$$f(\theta) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} S_n \cos n\theta,$$

which is further constrained by equation (6) to include terms with only even integers:

$$f(\theta) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} S_{2n} \cos 2n\theta.$$

As with the three-dimensional orientational order case, this expansion defines a consistent set of orientational order parameters:

$$S_{2n} = \langle \cos 2n\theta_i \rangle = N^{-1} \sum_{i=1}^{N} \cos 2n\theta_i$$

the first of which $S \equiv S_2$ is consistent with equation (1). Through computation of these order parameters the ODF (equation (9)) may be reconstructed with increasing accuracy as higher order S_{2n} terms are included.

3. Computational methods

Image processing of microscopy images typically consists of four sequential tasks [10]: filtering, thresholding, object detection, and shape fitting. In this work, both filtering and thresholding methods are used which are essentially unchanged from past work [7–10], although they will be summarized here for clarity. However, the presented image processing method differs substantially from past approaches in that mathematical morphology methods [34, 35] are used for object detection and characterization, as opposed to computationally intensive shape fitting tasks used in past work [7–10].

The filtering and thresholding tasks are used to remove measurement noise from the raw microscopy image and segment the grayscale image into a binary image, respectively. A non-local denoising filter [36, 37] is used with a length scale chosen to be smaller than the smallest characteristic nanostructure. Depending on the variation of background intensity in the image, either Otsu’s method [37, 38] or adaptive thresholding [37] is used on the filtered grayscale image to generate a binary image where each pixel is either foreground (1) or background (0). This binary image is the starting point for automated identification of 1D nanostructures. Sample binary images resulting from filtering and thresholding of a sub-region of figure 1(c) are shown in figures 2(a) and (b), respectively.

Given a binary image, past work [7, 10] used least-squares fitting of ellipses to foreground objects to identify candidate 1D nanostructures. This single operation both uniquely identifies foreground objects and provides approximations of their morphological quantities such as major axis length, minor axis length, aspect ratio, eccentricity, and axes orientations. This approach has limited applicability in that nanostructures need to be non-overlapping and thus is useful only for dispersed samples such as shown in figures 1(a) and (b).

In order to robustly and seamlessly process images with both non-overlapping and overlapping nanostructure films, a topological skeleton [35] generated from the binary image is used in the presented method. A topological skeleton preserves foreground object shape but reduces its representation to a simple set of discretized curves which are more amenable to characterization. There are many methods for generating topological skeletons from a binary image; in this work morphological operators are used, specifically using the hit-or-miss transform [35]. This approach is chosen in that morphological operators are also used to determine end-points and branch-points (overlapping areas) of 1D nanostructures from the topological skeleton. Given a binary image in figure 2(b), the resulting topological skeleton is shown in figure 2(c).

Characterization of the 1D nanostructures is facilitated by identification of end-points and branch-points in the topological skeleton. End-points in the topological skeleton correspond to end-points of the nanostructures in the image, while branch-points correspond to overlap areas of nanostructures. These points are efficiently identified through the use of mathematical morphology operations on the topological skeleton (figure 2(c)); sample output is shown in figure 2(d). For each object in the binary image, end-points and branch-points located within them may then be grouped together for
further analysis (section 4.2), including a second level of filtering to exclude features below a certain length threshold introduced by the presence of noise in the source image.

Through the use of the topological skeleton, the presented image processing method does not directly use the diameter (or minor length scale) of the nanostructure, which will be much smaller than the length (or major length scale) for a 1D nanostructure. Thus, given that the resolution of the imaging method is sufficient to resolve the nanostructure length accurately, increasing the resolution beyond that threshold will not have a significant effect on the resulting topological skeleton.

4. Results and discussion

4.1. Dispersed (non-overlapping) nanowire films

A distinguishing feature of 1D nanostructure-covered films is that they are able to be fabricated with an extremely high degree of alignment with $S > 0.9$ [10], as shown in figures 1(b) and (c). Conversely, orientational order found in liquid crystalline materials is typically low, where $S \approx 0.3$–0.6. In high alignment regimes, single orientational order parameter measures of alignment [7] are insufficient for accurate reconstruction of the ODF, $f(\theta)$, and thus not adequate for rigorous quantification of alignment. In order to demonstrate this, SEM images of disperse (non-overlapping) 1D nanostructure-covered films were analyzed using the image processing method presented in [10]. Figure 1(a) was used for the low alignment case and figure 1(b) for the high alignment case; order parameters (equation (10)) up to order 50 were computed. Figures 3(a) and (b) show histograms of the angle θ_i between the orientation of individual nanostructures and the average orientational axis. As is seen in figure 3(a), the single order parameter approximation is adequate for the low alignment case in that higher order parameters quickly approach zero, shown in figure 3(c). However, the single order parameter approximation fails for the high alignment case, where a relatively complex ODF is reconstructed (figure 3(b)) and higher order parameters are nonzero up to order 30 (figure 3(c)). Given that the ODF is smooth, convergence of the reconstructed ODF is found as higher order parameters approach zero. This is qualitatively shown in figure 3(c) for both the low and high alignment cases. Sample size also affects the quality of the ODF reconstruction; oscillations observed as order increases result from the relatively small sample size used for ODF reconstruction. This is manifested in the reconstructions, figures 3(a)–3(b), through oscillations at larger values of θ_i. Once again, oscillation in the higher order parameters is also observed due to the relatively small sample size.

These results show that a single orientational parameter is useful to determine if order is present (or not) and its approximate degree, but it does not reveal details of the orientational distribution of the nanostructures. Two well-aligned samples with the same S could have a very different composition of nanostructure orientations, and this composition can affect the properties of the aggregate film. An example of two images with similar S values but different higher order parameters is discussed in section 4.3.

4.2. Optimized image processing method

Given the combination of image segmentation and mathematical morphology image processing methods reviewed in

Figure 2. (a) A denoised sub-region of the SEM image from figure 1(c) (rotated, scale is 5 μm), (b) the binary image generated through thresholding of the sub-region using Otsu’s method, (c) the topological skeleton generated through morphological analysis of the binary image, (d) end-point (red) and branch-point (blue) pixels identified through further morphological analysis of the topological skeleton (superimposed on the original image), and (e) a flow chart summarizing the image processing tasks and corresponding outputs (in parenthesis).
section 3, for a given image of 1D nanostructures, sets of end points and branch points for each contiguous feature can be computed. For dispersed films (figures 1(a) and (b)), 1D nanostructure orientation and length can be easily approximated from this data in that each feature should have only two end-points and no branch-points since there are no overlapping nanostructures. Given for each feature a pair of end points \(\{ \mathbf{r}_1, \mathbf{r}_2 \} \), the nanostructure alignment vector is \(\mathbf{m}_i = l_i^{-1}(\mathbf{r}_1 - \mathbf{r}_2) \) with the nanostructure length \(l_i = ||\mathbf{r}_1 - \mathbf{r}_2||_2 \).

In the frequent case of overlapping 1D nanostructures, the identification of end points for each of them becomes significantly more difficult. Instead of developing a complex iterative method to determine end points, a more simple method is proposed. Given the case where two or more 1D nanostructures overlap, a single feature in the binary image (figure 4(a)) will contain multiple 1D nanostructures and at least one branch-point will be identified within it. The addition of an intermediate step is proposed where branch points within the topological skeleton computed from the binary image are removed and treated as if they are background pixels. The modified topological skeleton now has no branch points and, for example, a feature which originally had two nanostructures overlapping now corresponds to four separate non-overlapping nanostructures. The method for non-overlapping nanostructures may now be applied in that each feature in the modified topological skeleton has no branch points and only two end points. The result of applying this image processing method to the SEM image shown in figure 2(a) is shown in figure 4(b).

This approach does result in a loss of information in that the original topological skeleton is modified such that contiguous nanostructures are now non-contiguous. The
Implication of this is that determination of original nanostructure length is not possible, but orientation is unaffected. Within the present context of quantifying alignment of the nanostructures, this can be resolved through a reformulation of equation (10). Assuming that each nanostructure has an equal length l_i and, thus, equal contribution to the orientational order of the film:

$$S_{2n} = (IN)^{-1} \sum_{i=1}^{N} l_i \cos 2\theta_i = (N)^{-1} \sum_{i=1}^{N} \cos 2\theta_i, \quad (11)$$

Now, taking into account that each nanostructure can have different lengths l_i, a weighted average can be used:

$$S_{2n}^w = L^{-1} \sum_{i=1}^{N} l_i \cos 2\theta_i, \quad (12)$$

where $L = \sum_i l_i$ is the total length of nanostructures present in the image and, as with the unweighted case, $S^w \equiv S_{2n}^w$. This approach both accounts for the differing length of nanostructures in the orientational order parameter formulation and circumvents the need for identification of a unique set of nanostructures in the image. Any nanostructure or combination of nanostructures may be decomposed into an arbitrary set of smaller nanostructures without any effect on the order parameters computed through equation (12), unlike with equation (10), which weights each nanostructure orientation equally. Furthermore, even for non-overlapping samples, equation (12) might be more appropriate than equation (10) if one desires the alignment of longer nanostructures to be weighted more heavily than shorter ones. It should be noted that if any of the nanostructures are tilted out-of-plane of the surface, the measured lengths from the image are actually projected lengths of the nanostructures on the surface. While this possible measurement inaccuracy will have a small effect on the weighting of the length-weighted order parameters, the measured orientations of the nanostructures will be unaffected.

4.3 Dense (overlapping) nanowire films

Combining the ODF and image processing methods from sections 4.1 and 4.2 results in a highly robust and descriptive method for quantification of 1D nanostructure alignment. The combined approach was applied to the dense nanostructure film shown in figure 1(c) in order to both demonstrate its application and compare the use of non-weighted (equation (10)) and weighted (equation (12)) order parameters to reconstruct the ODF. Figures 5(a) and (b) show reconstructions of the ODF using single and multiple order parameters for the unweighted (S_{2n}) and weighted (S_{2n}^w) formulations, respectively. The nanostructures in the SEM image shown in figure 1(c) are highly aligned and, thus, the single order parameter approximation again is found to be insufficient in reconstructing the ODF. Instead, orientational order parameters up to order 200 were required to reconstruct the ODF due to the extremely high alignment, where $S \rightarrow 1$.

Comparing the multiple order parameter reconstructions, a non-negligible correction of the unweighted ODF (figure 5(a)) is found when compared to the more accurate weighted ODF reconstruction (figure 5(b)). Figure 5(c) shows the magnitude of orientational order parameters of increasing order, which also shows a non-negligible difference.

In order to further support the use of multiple orientational order parameter quantification of alignment, length weighted order parameters were also computed for the dispersed nanostructure images shown in figures 1(a) and (b). These images were already shown to have nanostructures with low and high alignment, respectively. Figure 6 shows length-weighted orientational order parameter plots for each of these images. Focusing on the single order parameter metric (S^w), there is a clear difference in its magnitude for the poorly aligned nanostructure image (figure 1(a)) compared to those for the highly aligned nanostructure images (figures 1(b) and (c)). However, for the two highly aligned nanostructure images, the difference in S^w is very small. This implies that the single order parameter quantification of orientational order is not suitable for distinguishing between different highly aligned samples. Taking into account multiple orientational order parameters enables this comparison, with the caveat that the orientational order parameters and ODF quantify alignment only. Other metrics such as nanostructure shape or morphology could be included in the comparison, but would require the introduction of additional metrics.

A simple way to compare the ODFs from each image is through treating the set of orientational order parameters (for each image) as a vector $\mathbf{S}^w = [S_{2n}^w]$ and compute the Euclidean distance between vectors from pairs of images. This value can be interpreted as a similarity metric, the smaller its value the more similar the orientational character of the nanostructures shown in the pair of images is, the larger the more different. Table 1 shows the similarity metric values resulting from comparing each of the three SEM images for both the single and multiple order parameter cases. Both the single and multiple order parameter similarity metrics are found to result in large values comparing the poorly aligned image to both highly aligned images. While this is correct in both cases, when comparing the highly aligned images to each other the single order parameter similarity metric is very small, which incorrectly implies that these images have very similar alignment characteristics. The multiple order parameter similarity metric performs well for all cases, indicating that the poorly aligned sample is less similar to the aligned samples and the aligned samples are similar but distinct.

5. Conclusions

Both alignment quantification metrics and an image processing method were presented and applied to microscopy images of 1D nanostructures on surfaces. An appropriate set of two-dimensional orientational order parameters were derived which enable reconstruction of the ODF with which nanostructure alignment is rigorously quantified. The use of high-order orientational order parameters is shown to be necessary for quantification of highly aligned nanostructures, where past single parameter methods are shown to be insufficient.
Additionally, an image processing method based on mathematical morphology operations is presented which is robust in the presence of measurement uncertainty and nanostructure overlap.

The results of this work provide researchers in nanoscience and nanotechnology with a robust method for the determination of structure/property relationships where alignment of 1D nanostructures is significant. Subsequently, a fully documented open-source implementation of the method is provided for general use.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[1] Harrison C, Adamson D H, Cheng Z, Sebastian J M, Sethuraman S, Huse D A, Register R A and Chaikin P M 2000 Science 290 1558–60
[2] Harrison C, Angelescu D, Trawick M, Cheng Z, Huse D, Chaikin P, Vega D, Sebastian J, Register R and Adamson D 2004 Europhys. Lett. 67 800
[3] Abukhdeir N M and Rey A D 2008 New J. Phys. 10 063025
[4] Abukhdeir N M and Vlachos D G 2011 ACS Nano 5 7168–75
[5] Murthy C R, Gao B, Tao A R and Arya G 2015 Nanoscale 7 9793–805
[6] Chen S w W, Odorico M, Meillan M, Vellutini L, Teulon J M, Parot P, Bennetau B and Pellequer J L 2013 Nanoscale 5 10877–86
[7] Hu Z, Fischlein M D, Querner C and Dmdic M 2006 Nano Lett. 6 2585–91
[8] Jeon Y J, Kang H W, Ko S H and Sung H J 2013 Meas. Sci. Technol. 24 035303
[9] Mohammadimasoudi M, Penninck L, Aubert T, Gomes R, Hens Z, Strubbe F and Neys K 2013 Opt. Mater. Express 3 2045–54
[10] Dong J, Abukhdeir N M and Goldthorpe I A 2015 Nanotechnology 26 485302
[11] Xia Y, Yang F, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353–89

5 The image processing code developed and used in this work is provided in the supplementary information available at (stacks.iop.org/nano/27/235701/mmedia).
[12] Vigderman L, Khanal B P and Zubarev E R 2012 Adv. Mater. 24 4811–41
[13] Park S, Vosguerichian M and Bao Z 2013 Nanoscale 5 1727–52
[14] Long Y Z, Yu M, Sun B, Gu C Z and Fan Z 2012 Chem. Soc. Rev. 41 4560–80
[15] Liu B, Wang C, Liu J, Che Y and Zhou C 2013 Nanoscale 5 9483–502
[16] Lieber C M and Wang Z L 2007 MRS Bull. 32 99–108
[17] Zhang Q, Huang J Q, Qian W Z, Zhang Y Y and Wei F 2013 Small 9 1237–65
[18] Liu X, Long Y Z, Liao L, Duan X and Fan Z 2012 ACS Nano 6 1888–900
[19] Lau P H, Takei K, Wang C, Yu J, Kim J, Yu Z, Takahashi T, Cho G and Javey A 2013 Nano Lett. 13 3864–9
[20] Feng J, Ma X, Mao H, Liu B and Zhao X 2011 J. Mater. Res. 26 2691–700
[21] Sun Y, Liu K, Miao J, Wang Z, Tian B, Zhang L, Li Q, Fan S and Jiang K 2010 Nano Lett. 10 1747–53
[22] Park J H and Joo Y L 2014 Soft Matter 10 3494–505
[23] Qi H, Glembocki O and Prokes S 2012 J. Nanomaterials 2012 1
[24] Yu G, Cao A and Lieber C M 2007 Nat. Nanotechnol. 2 372–7
[25] Yao J, Yan H and Lieber C M 2013 Nat. Nanotechnol. 8 329–35
[26] Gao F et al 2015 Appl. Phys. Lett. 106 041605
[27] Zannoni C 1988 Order parameters and orientational distributions in liquid crystals Polarized Spectroscopy of Ordered Systems (Berlin: Springer) pp 57–83
[28] de Gennes P and Prost J 1995 The Physics of Liquid Crystals 2nd ed (New York: Oxford University Press)
[29] Durham J W III and Zhu Y 2012 ACS Appl. Mater. Interfaces 5 256–61
[30] Duan S k, Niu Q l, Wei J f, He J b, Yin Y a and Zhang Y 2015 Phys. Chem. Chem. Phys. 17 8106–12
[31] Trotsenko O, Tokarev A, Gruzd A, Enright T and Minko S 2015 Nanoscale 7 7155–61
[32] Straley J P 1971 Phys. Rev. A 4 675–81
[33] Cuesta J A and Frenkel D 1990 Phys. Rev. A 42 2126–36
[34] Haralick R M, Sternberg S R and Zhuang X 1987 IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9 532–50
[35] Dougherty E R, Lotufo R A and (Optical Engineering SPIE T I S) 2003 Hands-on Morphological Image Processing vol 71 (Washington, DC: SPIE Optical Engineering Press)
[36] Buades A, Coll B and Morel J M 2011 Image Process. Line 1 http://www.ipol.im/pub/art/2011/bcm_nlnm/
[37] Bradski G and Kaehler A 2008 Learning OpenCV: Computer vision with the OpenCV library (Sebastopol, CA: OReilly & Associates)
[38] Otsu N 1979 IEEE Trans. Syst. Man Cybern. 9 62–6