ComReg: A Complex Network Approach to Prioritize Test Cases for Regression Testing

Imrul Kayes1 and Jacob Chakareski2

1 Computer Science & Engineering
University of South Florida, Tampa, FL, USA
2 Electrical and Computer Engineering
University of Alabama, Tuscaloosa, Alabama, USA
imrul@mail.usf.edu, jacob@ua.edu

Abstract. Regression testing is a testing process that is performed to provide confidence that changes in a part of software do not affect other parts of the software. Execution of the all existing test cases is the best way to re-establish the confidence. However, regression testing is an expensive process; there might be insufficient resources (e.g., time, testers) to allow for the re-execution of all test cases. Regression test prioritization techniques attempt to re-order a regression test suite based on some criteria so that highest priority test cases are executed earlier.

This paper presents ComReg, a test case prioritization technique based on the dependency network of faults. We model a fault dependency network as a directed graph and identify leading faults to prioritize test cases for regression testing. We use a centrality aggregation technique which considers six network representative centrality metrics to identify leading faults in the fault dependency network. We also discuss the use of fault communities to select an arbitrary percentage of the test cases from a prioritized regression test suite. Finally, we present a case study which shows the use of the technique in a software development process.

Keywords: Testing, Regression testing, Fault network, Test case prioritization

1 Introduction

Regression testing is a testing process which is performed after a software is modified. The purpose of regression testing is to test the modified software with some test cases in order to re-establish our confidence that the software will perform according to the modified specification and the newly introduced changes do not hinder the behavior of the unchanged part of the software. In a development cycle, regression testing may begin after the detection and correction of faults in a tested software [1]. Regression test suite ensures that the evolution of an application does not result in a low quality software product. However, regression

* A part of the work was done when the author was a quality assurance engineer at SoftwarePeople, Copenhagen, Denmark (http://www.enfatico.com/).
testing has become a complex procedure because of some of the recent trends in software development paradigms. For example, short and iterative “Agile” software development imposes restrictions and constraints on how regression testing can be performed within limited resources [2].

Intuitively, the best way to re-gain confidence from regression testing is to execute all the existing test cases from a test suite. Unfortunately, regression testing is often directly associated with high costs. Beizer [3] points out that regression testing accounts for as much as one-half the cost of software maintenance. One industrial collaborator of Elbaum et al. reports that for one of their products of about 20,000 lines of code, the entire test suite requires seven weeks to run [4]. Some of the most well-studied software failures, for example the Ariane-5 rocket and the 1990 AT&T outage, were blamed on the failure to test changes in a software system [5].

In general, test case prioritization techniques seeks to schedule test cases in an order so that the tester obtains maximum benefit, even if the testing is prematurely halted at some arbitrary point [2]. Regression test prioritization aims to re-order a regression test suite so that those tests with highest priorities, according to some established criterion, are executed earlier in the process of regression testing than those with lower priorities [5]. Researchers have proposed various techniques for test case prioritization to re-order the test cases for regression testing. Those techniques focus on various aspects of product development, such as coverage-based approaches [7, 8, 9, 6], requirement-based approaches [10, 11] and constraint-based approaches [12, 13, 14]. However, none of the solutions addressed dependencies among faults in prioritization. In software testing, it is known that some faults are consequences of other faults (leading faults). Experience shows that in a software development process, mutually independent faults can be directly detected and removed, but dependent faults can be removed if and only if the leading faults have been removed [15]. We argue that test cases that reveal the leading faults should be executed first in a regression testing process in order to get an early confirmation that software is free from dependent faults.

We attempted a first step to prioritize regression testing based on fault dependency in [16]. We proposed an algorithm to prioritize test cases based on fault dependency and quantified the effectiveness using a new metric Average Percentage Fault Dependency Detected (APFDD). However, in [16], we only considered 1-hop neighborhood or dependencies of faults. This paper use a fault dependency network to prioritize test cases for regression testing. We leverage faults’ positions in the network to determine the leading faults.

The contributions of this work are:

- First, we describe ComReg which leverages fault dependency network to prioritize test cases for regression testing. We present a directed graph model for the fault dependency network and identify leading faults to prioritize test cases. Our identification of leading faults is based on a centrality aggregation techniques. Centralities can represent the position of a fault in a fault network. We propose an aggregation of different representative cen-
trality metrics (indegree, betweenness, closeness, eigenvector, pagerank, and hub centrality) into a final leading score to identify the leading faults.

- Second, we discuss the use of fault communities to select X% of the test cases from a prioritized regression test suite.
- Finally, we present a case study from the development of a software “Tartan-tula”. We discussed the test cases written for the software, the faults it exposed after testing, and the fault network from the faults. We show the identification of leading faults for prioritization. We also show the fault communities for test case selection from a prioritized regression test suite.

The rest of the paper is organized as follows. Section 2 introduces fault dependency-aware test case prioritization technique, ComReg. Section 3 presents a case study. Section 4 reviews related work and Section 5 concludes.

2 Fault Dependency-Aware Test Case Prioritization

2.1 Problem Statement

Based on Elbaum et al. [9], we define the prioritization of test cases for regression testing as following.

Given a test suite T, the set of permutations of T as PT and a function from PT to the real numbers as f, a prioritization of test cases for regression testing solution provides an ordered test suite T' such that for all T'', $f(T') \geq f(T'')$, where $T' \in PT$ and $T'' \in PT$.

PT represents the set of all possible prioritizations (orderings) of T and f is an utility function that, applied to any such ordering, yields an award value for that ordering. For example, let have n test cases as $(T_1, T_2, T_3, ..., T_n) \in T$. There are $n!$ number of orderings are possible for the test cases. Test case prioritization techniques attempt to find an order from those $n!$ number of orderings such that the order maximizes the utility function f.

Let have t test cases $(T_1, T_2, T_3, ..., T_t)$ in the test suite T. After running those test cases for a system testing we have got n faults such as $(F_1, F_2, F_3, ..., F_n)$ as F. There exist a one to many relation from T to F, $R : T \rightarrow F$, such that for each test case $t \in T$ there exist one or more faults $f \in F$. Our goal is to prioritize the test suite and select X% of the test cases for regression testing.

2.2 Our Approach-ComReg

We propose ComReg, a fault dependency-aware test case prioritization for regression testing. ComReg is based on the fact that mutually independent faults can be directly detected and removed, but dependent faults can be removed if an only if the leading faults have been removed [15]. Microsoft also reports that 80 percent of the errors and crashes in Windows and Office are caused by 20 percent of the entire pool of faults [17]. We propose to prioritize a regression test suite based on leading faults and to run X% of the test cases which contain leading faults. So, in fault dependency-aware test case prioritization, an order of
the test cases attempts to maximize the utility function \(f \) that determines the number of the leading faults.

However, the problem of detecting leading faults is not trivially solvable. The challenge is due to the fact that faults’ not only have local effects (e.g., Fault A is dependent on fault B, so A could not be removed before removing B), but also faults’ have global effects too (e.g., Fault A is dependent on fault B and Fault B is dependent on Fault C. Fault A could not be removed before removing Fault A and Fault B). We present various scenarios of fault dependencies considering two faults F1 and F2 in Figure 1. Some of the scenarios are listed below.

- Fault F1 is dependent on Fault F2, or vice versa
- a) Fault F1 is dependent on Fault F2; b) other faults are dependent on Fault F1; c) vice versa of (a) and (b)
- a) Fault F1 is dependent on Fault F2; b) other faults are dependent on Fault F2; c) vice versa of (a) and (b)
- a) Fault F1 is dependent on Fault F2; b) other faults are dependent on Fault F1; c) other faults are dependent on Fault F2 (d) vice versa of (a), (b) and (c)

So, it appears that if we consider all faults and their dependencies, the situation becomes very complex. All faults and their dependencies can be captured by a complex network as shown in Figure 2. The network is comprised of 77 faults (shown as nodes) and 254 dependencies (shown as edges). There is an edge from Fault A to Fault B if Fault A is dependent on Fault B. The leading faults in the network are those who occupy central positions.

Formally, we model a fault dependency network as a directed graph \(F = (V, E) \), where a node \(v \in V \) is a fault and an edge \(e_{ij} \in E \) from \(v_i \in V \) to \(v_j \in V \) denotes that the fault \(v_i \) is dependent on the fault \(v_j \). The number of nodes and edges are \(|V| = n \) and \(|E| = m \) respectively. The directed graph can be represented by a \(n \times n \) matrix \(F_{n \times n} \), where an entry \(F(i,j) \):

\[
F(i,j) = \begin{cases}
1 & \text{if } e_{ij} \in E \\
0, & \text{otherwise}
\end{cases}
\]

The position of a node in the network can be represented in network analysis by different centrality metrics. For example, the larger the number connections a fault receive from it’s direct neighbors, the higher number of other faults depend on the fault. Without removing the faults all dependent faults could not be removed. Alternatively, the larger the number of paths between other pairs of faults a fault is part of, the more it can control the fault propagation between distant faults. Based on this intuition, we conjecture that a fault’s position is determined by and manifests via its centrality in the fault network.

We propose to aggregate different representative centrality metrics into a final leading score to identify the leading faults based on [18]. In [18], the authors used centrality aggregation technique to identify influential bloggers in a blogging network. We define the leading score of a fault (node) as the average
of the positions of that node in decreasing order of centrality scores over various centrality metrics. Specifically, each centrality metric assigns each node a score that can be used to order nodes in decreasing order of importance (according to that centrality). This allows each fault to receive a rank according to each centrality metric: the first ranked fault will be the most central one, the last ranked will be the one with the lowest centrality score. Faults having the same centrality score are given the same rank. A fault’s final rank is the average rank over all centrality measures. We selected six representative centrality metrics as the focus of our study: indegree, betweenness, closeness, eigenvector, pagerank, and hub centrality.

Degree centrality is defined as the number of links that a node has. In a directed graph like fault dependency graph, two types of degree centralities are possible: indegree and outdegree centrality. For a node, the number of direct incoming connections is characterized as indegree of the node. On the other hand, the number of direct outgoing connections is characterized as out degree of the node. Although simple, indegree centrality intuitively captures an important aspect of a fault’s potential leading position: faults who have many incoming connections from many other faults are those that make other faults to depend. In our fault dependency graph F, the indegree centrality of a fault i can be represented by the following equation.

\[
\text{indegree}(i) = \sum_{1 \leq j \leq n} F_{ji} \tag{2}
\]
Fig. 2: A fault dependency network of 77 nodes and 254 dependencies. Node size is proportional to in-degree.
Betweenness centrality, which measures the extent to which a node lies on the shortest paths between other nodes, was introduced as a measure for quantifying the control of a human on the communication between other humans in a social network [19]. Faults with high betweenness centrality may have considerable influence within a fault dependency network by virtue of their control over fault propagation among other faults. The nodes with highest betweenness are also the ones whose removal from the network will most disrupt communications between other nodes because they lie on the largest number of paths taken by faults [20]. Formally, the betweenness centrality of a node is the sum of the fraction of all-pairs shortest paths that pass through:

$$C(v) = \sum_{s,t \in V} \frac{\sigma(s,t|v)}{\sigma(s,t)}$$

where v is the set of nodes, $\sigma(s,t)$ is the number of shortest (s,t) paths, and $(s,t|v)$ is the number of those paths passing through some nodes v other than s,t. If $s = t$, $\sigma(s,t) = 1$, and if $v \in s,t, \sigma(s,t|v) = 0$. Our implementation of betweenness for this research is based on the Brandes algorithm [21].

Closeness centrality measures the mean distance from a node to other nodes, assuming that faults propagate along the shortest paths. Formally, the closeness centrality ($C(x)$) of a node x is defined as follows:

$$C(x) = \frac{n - 1}{\sum_{y \in U, y \neq x} d(x,y)}$$

where $d(x,y)$ is the distance between node x and node y; U is the set of all nodes; d is the average distance between x and the other nodes. In our fault dependency network, this centrality measure estimates the amount of faults a fault may have access to compared to other faults. Specifically, a fault with lower mean distance to others can reach others faster.

The centrality of a node does not only depend on the number of its adjacent nodes, but also on their relative importance. Eigenvector centrality allocates relative scores to all nodes in the network such that high-score neighbors contribute more to the score of the node. Formally, Bonacich [22] defines the eigenvector centrality $C(v)$ of a node v as the function of the sum of the eigenvector centralities of the adjacent nodes, i.e.

$$C(v) = \frac{1}{\lambda} \sum_{(v,t) \in E} c(t)$$

where λ is a constant. This can be rewritten in vector notation, resulting in an eigenvector equation with well-known solutions.

Originally designed as an algorithm to rank web pages [23], PageRank computes a ranking of the nodes in a graph based on the structure of the incoming links. The algorithm assigns a numerical weighting to each node of a network with the purpose of “measuring” its relative importance within the network.
Hubs and authorities are other relevant centralities for the fault network context. In a graph, authorities are nodes that contain useful information on a topic of interest; hubs are nodes that know where the best authorities are to be found [20]. A high authority centrality node is pointed to by many hubs, i.e., by many other nodes with high hub centrality. A high hub centrality node points to many nodes with high authority centrality. These two centralities can play a significant role also in our work of finding leading faults. They can infer that the faults that have high hub and authority centrality are not only leading but also they are connected with leading faults.

2.3 Fault Communities to Select X% of Test Cases

A common approach of regression testing is to select and run X% of the test cases from a prioritized test suite. However, an optimal selection is always challenging. On one hand, a few selection of test cases might remain a significant portion of the software virtually untested. One the other hand, too many selection of test cases will require to test the entire system again. However, in a fault network, fault communities could be leveraged to select X% of the test cases. Complex networks show communities in them: a community is a subset of nodes within which node to node connections are dense, but between which connections are less dense [24]. Communities are natural outcomes of real-world networks. For example, e-mail network [25], social application network [26], mobile communication network [27], blogging network [28], and yeast protein-protein interaction network [29] revealed community structures. Figure 2 shows communities in a fault network; nodes in a community are colored the same.

Newman proposed a community detection algorithm [30] based on modularity maximization. Modularity is an utility function that computes the quality of a particular division of a network into communities. It is defined as the fraction of the edges that fall within the given community minus the expected such fraction if edges were distributed at random.

\[Q = (E_1 - E_2) \] (6)

Where \(E_1 \) = fraction of edges within communities and \(E_2 \) = expected fraction of such edges.

The expected fraction of edges is typically evaluated within a random graph conditioned on the degree sequence of the original network. In that random graph, the probability of an edge between two nodes \(i \) and \(j \) is \((k_i * k_j) / 2m\), where \(k_i \) is the degree of node \(i \) and \(m \) is the total number of edges in the network. The modularity can then be written

\[Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i * k_j}{2m} \right) \delta(c_i, c_j) \] (7)

\[\delta(c_i, c_j) = \begin{cases}
1 & \text{if } i \text{ and } j \text{ belong to the same community} \\
0, & \text{otherwise}
\end{cases} \] (8)
Prioritizing Test Cases for Regression Testing

Where A_{ij} is the matrix representation of the graph, δ is the Kronecker delta, c_i is the label of the community to which node i is assigned.

The authors describe the modularity for an undirected graph. However, the modularity can be extended for a directed graph such as fault dependency network. In a random directed graph, the probability of an edge from node j to node i is $(k^\text{out}_i \cdot k^\text{in}_j) / m$. Then for the fault dependency network the above equation could be written as

$$Q = \frac{1}{m} \sum_{ij} \left(F_{ij} - \frac{k^\text{out}_i \cdot k^\text{in}_j}{m} \right) \delta(c_i, c_j)$$

(9)

Where F is a fault dependency matrix and F_{ij} is 1 if there is an edge from j to i and zero otherwise.

We propose to apply the community detection algorithm to uncover communities of the faults. After detecting communities, the faults in the same communities with a leading fault could be identified and corresponding test cases could be executed as a regression test. Moreover, all modules in software are not same in terms of fault tolerance. For example, login credentials authentication or a module that processes financial transaction are more crucial than a module that prints documents. Furthermore, Pareto principle (known as 80-20 rule) applies to software systems. Pareto principle [31] states that for many events, roughly 80% of the effects come from 20% of the causes. The Standish Group’s report shows that in a software system, 45% of features are never used, 19% of features are rarely used, 19% of features are used sometimes, 13% of features are used often and only 7% of features are always used [32]. So, in sum, only 20% of software features are often and always used. It becomes apparent that ensuring quality of those 20% of software features is vital. Fault communities could be leveraged to ensure the quality of prioritized features (e.g., 20% of software features). Leading faults and faults from their communities revealed by the test cases (which target prioritized features) could be used in selecting regression test cases. This way a regression testing can ensure a high customer satisfaction.

3 Case Study

The goal of the case study was to prioritize a test suite of size N and identify $X\%$ of the test cases from the suite for regression testing. To accomplish the goal, we developed a medium-scale English vocabulary learning software, “Tarantula”. In the process of development, we wrote test cases, executed the test cases, applied our method to prioritize the test cases and identified $X\%$ of the test cases for regression testing. In this section, we first give a detail overview of the functionalities of “Tarantula”. Then we describe the test cases and relevant faults we have got applying the test cases in an initial developed product. We explain the features of Tarantula so that readers can understand underlying goals of the test cases. Finally, we present the leading faults using our centrality aggregation method. We also show and discuss the relevance of using community detection techniques in the fault network.
3.1 An Overview of Tarantula

Tarantula is an English vocabulary learning software, which is built targeting high frequency GRE words. When a user installs and runs the software, she is presented with 50 word lists. Figure 3 shows the first window of Tarantula. The word lists consist of 4054 words and when a user hovers a mouse on a word list icon it shows the first and the last word of the word list. Users can click on a word list icon to exercise various features of that word list. However, users can use the random button (upper right corner in Figure 3) to select a random word list (see Figure 4). When users select a word list, relevant features of the word list are shown in a separate option window as shown in Figure 5. There are several options available in the option window for users to learn and practice words of a word list. The options are: “Learn WordList”, “Multiple Choice”, “Reverse Challenge”, “Words Jam” and “Flip Words”. Users can click a radiobutton to select an option. “Learn WordList” feature shows the words and their meanings from the word list serially (see in Figure 6). Users can use “Next” and “Prev” buttons to view next and previous word respectively. There is a counter which indicates the serial number or position of the word in the word list.

![Fig. 3: First window of Tarantula.](image)

“Multiple Choice” feature shows a random word from the word list with five possible meanings (see Figure 7). Meanings are from the same word list taken randomly, and of them one is appropriate for the word shown. When users clicks a meaning of the word, the “Result” label shows whether the selection is right or wrong. There is a timer label which increases in each second to show how much time a user is taking. The “Count” label shows the number of words a user has practiced. Users can click on a “Next” button to get a new word. “Reverse Challenge” feature is the opposite of “Multiple Choice” feature. “Reverse Challenge” feature shows a random meaning from the word list with five possible words (see Figure 8). Words are from the same word list taken randomly, and
Fig. 4: Random window in Tarantula.

Fig. 5: Option window of Tarantula.

Fig. 6: Learn wordlist feature of Tarantula.
of them one is appropriate for the meaning shown. When users click a word of the meaning, the “Result” label shows whether the selection is right or wrong. ‘Count”, ‘Next” and “Timer” functionalities are similar to the functionalities of “Multiple Choice” feature.

“Words Jam” feature shows ten words from the word list on one side and their meanings from the word list on the other side. Words’ and their meanings’ positions on each side is random (see Figure 9). Users have to click a word and then the meaning of the word (or vice versa). If the meaning of the word is right then both of them will be disappeared from the Jam. Users can load a new Jam
by clicking “Load Next Jam” button. A counter shows the number of the Jam a user is practicing. “Flip Words” feature shows a random word from the word list to guess (see Figure 10). Users can click “Flip” button to see the meaning of the word. Users can use “Next button” for a new word. A counter also counts the number of words the user has seen.

Fig. 9: Words jam feature in Tarantula.

Fig. 10: Flip Words feature in Tarantula.
3.2 Development of Tarantula

Tarantula is a Desktop application, written in C# programming language and using Microsoft Visual Studio 2010 platform. The software consists of 19390 lines of code. Tarantula can be installed from https://github.com/ImrulKayes/Tarantula/blob/master/Tarantula1.0.msi. The code of Tarantula is publicly available at GitHub (https://github.com/ImrulKayes/Tarantula).

We first developed a Web crawler using Python programming language to crawl a subset of HTML pages from [33]. Those pages contain all the words and their meanings. We parsed the crawled HTML pages using a Parser (also written in Python). The Parser went through all HTML pages and extracted words and meanings using regular expressions. Then we created the repository of fifty word lists (4054 words) from extracted words and meanings. Finally, we used the repository as a word Database for Tarantula.

3.3 Test Cases and Faults

Based on the required features, we wrote fifty test cases before the development. We ran the test cases after finishing an iteration of the development cycle. Sixteen of the test cases revealed twenty three faults. The test cases and the faults are below.

- **Test Case #1**
 Action: click on a Word List icon to enable the system to load the words of the list with their meanings.
 Expected result: the Word List should be loaded with features.
 Fault #1: the Word List is unavailable due to missing of the file.

- **Test Case #2**
 Action: select the Learn Word List option from the Radiobuttons of a word list.
 Expected result: a random word from the word list and it’s meaning should be shown.
 Fault #2: the word in the selected word list is not generated.
 Fault #3: the meaning in the selected word list is not available.

- **Test Case #3:**
 Action: click on the Next button in the Learn Word List feature.
 Expected result: a new random word from the word list and it’s meaning should be shown.
 Fault #4: Next button does not generate a random word.
 Fault #5: Next button does not generate a meaning.

- **Test Case #4:**
 Action: Click on the Previous button event in the Learn Word List feature.
 Expected result: a new random word from the word list and it’s meaning
should be shown.
Fault #6: Previous button does not generate a random word.
Fault #7: Previous button does not generate a meaning.

- **Test Case #5:**
 Action: check the Count functionality in the Learn Word List feature by clicking on Next and Previous buttons.
 Expected result: Count should be increased by one on clicking Next button and count should be decreased by one on clicking Previous button.
 Fault #8: Count does not increase after clicking the Next button.
 Fault #9: Count does not decrease after clicking the Previous button.

- **Test Case #6:**
 Action: select the Multiple Choice option from the Radiobuttons of a word list.
 Expected result: a random word from the wordlist and its possible choices of meanings should be shown. The meanings are also from the same wordlist.
 Fault #10: the word is not generated.
 Fault #11: meanings are not available.

- **Test Case #7:**
 Action: verify the functionality of the Multiple Choice option. Select the right meaning of the word. Select a wrong meaning of the word.
 Expected result: the system should show “Correct” if the choice is right, otherwise it will show a message saying that the choice is wrong.
 Fault #12: the “wrong” message is not shown.

- **Test Case #8:**
 Action: verify Timer functionality of the Multiple Choice option. Select the Multiple Choice option from the Radiobuttons of a word list. Then click the Next button.
 Expected result: The Timer should start from a zero value. It will increase by one after each second. Clicking the Next button should set it a zero value.
 Fault #13: the Counter does not increase.

- **Test Case #9:**
 Action: select the Words Jam option from the Radiobuttons of a word list.
 Expected result: ten words and their meaning should be shown for matching from the word list.
 Fault #14: words in Words Jam are missing.
 Fault #15: meanings in Words Jam are missing.

- **Test Case #10:**
 Action: click a word and then click its meaning in the Words Jam feature. Click a meaning and then click its corresponding word in the Words Jam feature.
Expected result: the word and the meaning should be disappeared.
Fault #16: the word is not disappeared.

- Test Case #11:
 Action: in Words Jam feature, click a word and click a wrong meaning of the word.
 Expected result: the word and the meaning should not be disappeared.
 Fault #17: the word disappears.

- Test Case #12:
 Action: click Load Next Jam in Words Jam feature.
 Expected result: ten words and their meanings should be shown to match and Jam counts should be increased by one.
 Fault #18: Jam Count does not increase.

- Test Case #13:
 Action: select Flip Words option from the Radiobuttons of a word list.
 Expected result: a random word should be shown which will allow the users to guess the meaning of the word.
 Fault #19: the word is not generated.

- Test Case #14:
 Action: click the Flip button in Flip Words feature.
 Expected result: The meaning of the word should be shown and the text “Flip” of the button should be changed as “Next”.
 Fault #20: meaning is not available.
 Fault #21: text does not change.

- Test Case #15:
 Action: check the Random word list generator, click the Rand button.
 Expected result: a random word list number should be generated.
 Fault #22: the random generator does not generate a random number.

- Test Case #16:
 Action: click the Go to Word List button of the random wordlist generator.
 Expected result: the word list should be loaded with features.
 Fault #23: the word list is not loaded.

3.4 Properties of the Fault Network

The fault dependency matrix of the 23 faults is shown in Table 1. Figure 11 shows the largest component of the fault network (22 faults), where node size is proportional to in-degree of the node. We used Gephi (https://gephi.org/) to visualize and obtain structural properties of the network. The structural properties of the fault network (largest component) are presented in Table 2.
A notable characteristic of the fault network is the high clustering coefficient. Given a network $G = (V,E)$, the clustering coefficient C_i of a node $i \in V$ is the proportion of all the possible edges between neighbors of the node that actually exist in the network \[20\]. The clustering coefficient is defined as:

$$C = \frac{3 \times \text{Number of triangles}}{\text{Number of connected triples of the nodes}} \quad (10)$$

In the fault network, for a node $v_i \in V$ there could be $k_i(k_i - 1)$ links exist among the neighborhood of v_i, where k_i is the number of neighbor of v_i. So, the

Faults	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 1: Fault dependency matrix.

Nodes	Edges	Average In-degree	Average Path length	Average Clustering Coefficient
22	97	3.95	1.074	0.165

Table 2: Structural properties of the fault network.
local clustering coefficient of fault v_i in the fault network is:

$$C = \frac{|\{e_{jk} : v_j, v_k \in \text{Neighbor}(V_i), e_{jk} \in E\}|}{k_i \ast (k_i - 1)}$$ \hspace{1cm} (11)

The clustering coefficient for the whole network is the average of the local clustering coefficients of all the nodes n:

$$C = \frac{1}{n} \sum_{i=1}^{n} C_i$$ \hspace{1cm} (12)

A high clustering coefficient in the fault networks implies that a fault's connections are interconnected and have a greater effect on one another. The small average path length (1.074), comparable with that of the corresponding random graph of the same size (1.675), together with the high average clustering coefficient (the fault network has average clustering coefficient 0.416 where a same size random graph has 0.295), places the fault network in the category of small-world graphs [34].

3.5 Leading Faults and Prioritized Test Cases

As described in Section 2, we use centrality metrics to rank leading faults in the network. To manage the fault network and compute centralities, we used Python...
Prioritizing Test Cases for Regression Testing

2.7 with the NetworkX library. Faults that appear among the top 10 in multiple centrality metrics are represented in color in Table 3. The average rank of the top 10 leading faults and their average ranks considering all centralities are shown in Table 4. Out of the 10 leading faults listed on each centrality, 6 faults (60%) are common in all the centralities. To observe more closely, we plot the ranks of top 10 of the faults assigned by all centralities, showed in Figure 12. As expected, a fault’s assigned ranks from centralities form a cluster and together with all the clusters we can visualize a straight line. This shows that all the centralities tend to rank the same fault in the top.

Note Pareto principle described in Section 2—for many events, roughly 80% of the effects come from 20% of the causes. Pareto principle also holds for the fault dependency network. In the fault dependency network, 78 out of 97 (80.41%) edges are incident on top 5 nodes out of 23 nodes (21.73%). It shows that 80.41% of the fault dependencies are due to 21.73% of faults—almost equal figures from Pareto principle.

Table 3: Top 10 faults according to each centrality measurement, sorted in increasing order by rank from left to right. IDC: in-degree centrality, BC: betweenness centrality, CC: closeness centrality, EC: eigenvector centrality, PG: page-rank centrality, and HC: hub centrality. Faults common to all centralities are colored the same.

IDC	Fault #1	Fault #2	Fault #3	Fault #4	Fault #5	Fault #14	Fault #15	Fault #6	Fault #13	Fault #7
BC	Fault #1	Fault #2	Fault #3	Fault #4	Fault #15	Fault #14	Fault #17	Fault #21	Fault #21	Fault #13
CC	Fault #1	Fault #2	Fault #3	Fault #4	Fault #15	Fault #5	Fault #6	Fault #7	Fault #8	Fault #9
EC	Fault #1	Fault #2	Fault #3	Fault #4	Fault #5	Fault #6	Fault #7	Fault #8	Fault #9	Fault #15
PC	Fault #1	Fault #2	Fault #3	Fault #4	Fault #5	Fault #13	Fault #14	Fault #15	Fault #6	Fault #11
HC	Fault #1	Fault #2	Fault #3	Fault #4	Fault #5	Fault #6	Fault #7	Fault #8	Fault #9	Fault #15

Finally, our prioritized ordering of the test cases for regression testing based on leading faults’ exposure in test cases is: T1, T2, T3, T4, T9, T11, T5, T8, T14, T6, T10, T12, T13, T7, T16, T15 (T denotes a test case).

3.6 Community Detection Techniques

We used a popular modularity maximization approach, Louvain method [35], to detect fault communities in the network. Louvain method is a greedy optimization method that attempts to optimize the modularity of a partition of the fault network. The optimization is performed in two steps: modularity maximization and community aggregation. In modularity maximization step, the method looks for “small” communities by optimizing modularity locally. In community aggregation step, it aggregates nodes who belong to the same community and builds a new network whose nodes are the communities. Two steps are repeated iteratively until a maximum of modularity is attained and a hierarchy of communities

3 http://networkx.github.io/
Table 4: Average rank of the top ten faults.

Faults’ ID	Average Rank
Fault#1	1.00
Fault#2	1.33
Fault#3	2.33
Fault#4	3.33
Fault#15	5.16
Fault#5	5.33
Fault#6	6.00
Fault#14	6.17
Fault#7	6.5
Fault#17	7.00

is produced. Applying the algorithm in the fault network we have got three fault communities: community #1 (pink color nodes in Figure 11) has seven faults, community #2 (green color nodes in Figure 11) has nine faults and community #3 (violet color nodes in Figure 11) has six faults. Leading faults are distributed among communities. For example, community #1, community #2 and community #3 have one, two and two top leading faults respectively out of top five leading faults. As discussed in the Section 2, leading faults and faults from their communities revealed by the test cases (which target prioritized features) could be used in selecting regression test cases. For example, leading fault Fault #1’s community has eight faults originated from seven test cases (46.66% of test cases).

4 Related Work

Different solutions have been proposed to prioritize test cases for regression testing. In this section, we discuss test case prioritization techniques from the literature.

Coverage-based prioritization techniques aim to achieve higher fault detection rates by maximizing early coverage. The solutions are inspired by the intuition that early maximization of structural coverage will also maximize early fault detection. Rothermel et al. proposed a family of techniques [7, 8] for test-case prioritization based on several coverage criteria. They considered different types of coverages: branch-total, branch-additional, statement-total, statement-additional, Fault Exposing Potential (FEP)-total, and FEP-additional. A branch-total coverage solution prioritizes test cases according to the number of branches covered by individual test cases. On the other hand, branch-additional prioritizes test cases according to the additional number of branches covered by individual test cases. Statement-total and statement-additional coverage based solutions are similar to previous two approaches, but rather than considering branches, they consider statements. The FEP-total and FEP-additional are based on pro-
Program mutation. Program mutation produce a mutant version of the program by introducing modifications to the program source. The prioritization techniques prioritize the test cases such that the test cases can reveal the difference between the original program and the mutant. The authors introduced a metric Average Percentage of Fault Detection (APFD) to quantify the success of a prioritization. Elbaum et al. [9, 6] further proposed prioritization techniques covering coverage criterion at the function level, while Do et al. [36] considered the coverage criteria at the block level. Korel et al. discussed several model-based test prioritization heuristics in [37, 38]. Their coverage criteria is system model; they identified elements of the model related to source-code modifications and applied heuristics to prioritize test cases so that early fault detection in the modified system is maximized. Jones and Harrold described a fine-grain coverage criterion in [39], which considers a modified condition/decision coverage.

Requirement-based approaches consider a software’s requirements as a basis for prioritization of test cases. Srikanth et al. [10] prioritized test cases based on four factors: requirements volatility, customer priority, implementation complexity, and fault proneness of the requirements. Krishnamoorthy et al. [11] adopted a similar approach. Their prioritization is based on six factors: customer priority, changes in requirement, implementation complexity, completeness, traceability and fault impact. However, a potential weakness of requirement-based approaches is that requirement properties are subjective and thus estimations might be biased.

Constraint-based approaches consider different constraints and practical complications in test case prioritization. Kim et al. [40] consider resource and time constraints. The resource and time constraint do not allow the execution of the entire test suite for a regression testing. They proposed a heuristic that uses historical information to do test case prioritization. Alsphaug et al. [14] consider a situation when regression testing is performed in a time constrained environment. They empirically compared seven Knapsack solvers (e.g., greedy, dynamic programming and the core algorithm) and identified a test suite reordering that rapidly covers the test requirements and always terminates within a specified testing time limit. Walcott et al. [13] proposed a genetic algorithm based time-aware test case prioritization technique and empirically compared the approach with the initial ordering, the reverse ordering and two control techniques (random prioritization and fault-aware prioritization). They defined a metric to evaluate the effectiveness of prioritization in a time-constrained environment. Zhang et al. [12] also studied time-aware test case prioritization problem. Their proposed test case prioritization is based on integer linear programming. They empirically showed that their two proposed techniques outperform genetic algorithms-based time-aware test case prioritization and four other traditional techniques for test-case prioritization.

Researchers used a number of other criteria to prioritize test cases. Sherriff et al. prioritized test cases based on historical change records in [11]. They proposed a methodology for determining the effect of a software feature change and then prioritized regression test cases by gathering software change records and ana-
Analyzing them through singular value decomposition, Leon et al. [42] introduced distribution-based filtering and prioritized test cases based on the distribution of the profiles of test cases in the multi-dimensional profile space. Sampath et al. [43] prioritized test cases for web applications. They prioritized test suites by test lengths, frequency of appearance of request sequences and systematic coverage of parameter-values and their interactions. Rummel et al. [44] introduced a prioritization technique based on data-flow analysis. They focused on the definition and use of program variables for the data-flow analysis. Jeffrey et al. [45] prioritized test cases using relevant slices. Qu et al. [46] prioritized test cases in a black box environment.

However, none of the above solutions considered dependencies among faults in prioritizing test cases for regression test. In software testing, it is known that some faults are consequences of other faults (leading faults). So, intuitively, test cases that revealed the leading faults should be executed first in a regression testing in order to get an early confirmation that software is free from dependent faults. In [16] we took the first step to prioritize regression testing based on fault dependency. We proposed an algorithm to prioritize test cases based on fault dependency. We also proposed a metric Average Average Percentage Fault Dependency Detected (APFDD) to quantify how rapidly a prioritized test suite can detect dependencies among faults. However, that work only considered 1-hop neighborhood or dependencies of faults. This paper leverages a fault network for prioritization.

5 Summary and Discussions

In this paper, we have presented ComReg, which uses a fault dependency network to prioritize test cases for regression testing. We have modeled a fault dependency network as a directed graph and identified leading faults to prioritize test cases. We have leveraged a network centrality aggregation technique in fault dependency network to identify leading faults. The centrality aggregation technique considers six representative centrality metrics such as indegree, betweenness, closeness, eigenvector, pagerank and hub centrality and offers a final leading score to identify the leading faults. Our discussions on fault communities shed light on selecting X% of the test cases from a prioritized regression test suite. Finally, we have presented a case study. In the case study, we have developed an English vocabulary learning software, “Tarantula” and identified leading faults from a fault network after running a set of test cases at the end of the first phase of the development. We have showed the fault communities in the fault network for test case selection from a prioritized regression test suite.

Fault dependency network might not be a connected graph. For example, in our fault dependency network of Tarantula consists of two components. However, small-world networks tend to have giant components (e.g., [47, 48, 49]). A giant component is a connected subgraph that contains a majority of the entire graph’s nodes [50]. The giant component fills most of the network—usually more than half and not infrequently over 90%—while the rest of the network is divided
into a large number of small components disconnected from the rest \[20\]. Our small-world fault dependency network also has one giant component (22 nodes). So, if a fault network has a large number of nodes and if it shows a large number of connected components, the giant component could be leveraged to detect the leading faults.

References

[1] Leung, H.K.N., White, L.: Insights into regression testing [software testing]. In: Software Maintenance, 1989., Proceedings., Conference on. (1989) 60–69
[2] Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey. Software Testing, Verification and Reliability 22 (2012) 67–120
[3] Beizer, B.: In: Software testing techniques. Dreamtech Press (2003)
[4] Malishevsky, A.G., Ruthruff, J.R., Rothermel, G., Elbaum, S.: Cost-cognizant test case prioritization. Department of Computer Science and Engineering, University of Nebraska-Lincoln, Technical Report (2006)
[5] Hamlet, D., Maybee, J.: In: The Engineering of Software: A Technical Guide for the Individual. 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2000)
[6] Elbaum, S., Malishevsky, A., Rothermel, G.: Test case prioritization: a family of empirical studies. Software Engineering, IEEE Transactions on 28 (2002) 159–182
[7] Rothermel, G., Untch, R., Chu, C., Harrold, M.: Test case prioritization: an empirical study. In: Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Conference on. (1999) 179–188
[8] Rothermel, G., Untch, R., Chu, C., Harrold, M.: Prioritizing test cases for regression testing. Software Engineering, IEEE Transactions on 27 (2001) 929–948
[9] Elbaum, S., Malishevsky, A.G., Rothermel, G.: Prioritizing test cases for regression testing. In: Proceedings of the 2000 ACM SIGSOFT international symposium on Software testing and analysis. ISSTA ’00, New York, NY, USA, ACM (2000) 102–112
[10] Srikanth, H., Williams, L., Osborne, J.: System test case prioritization of new and regression test cases. In: Empirical Software Engineering, 2005. 2005 International Symposium on. (2005) 10 pp.–
[11] Krishnamoorthi, R., Sahaaya Arul Mary, S.: Factor oriented requirement coverage based system test case prioritization of new and regression test cases. Information and Software Technology 51 (2009) 799–808
[12] Zhang, L., Hou, S.S., Guo, C., Xie, T., Mei, H.: Time-aware test-case prioritization using integer linear programming. In: Proceedings of the eighteenth international symposium on Software testing and analysis. ISSTA ’09, New York, NY, USA, ACM (2009) 213–224
[13] Walcott, K.R., Sofka, M.L., Kapfhammer, G.M., Roos, R.S.: Time-aware test suite prioritization. In: Proceedings of the 2006 international symposium on Software testing and analysis. ISSTA ’06, New York, NY, USA, ACM (2006) 1–12
[14] Alspaugh, S., Walcott, K.R., Belanich, M., Kapfhammer, G.M., Sofka, M.L.: Efficient time-aware prioritization with knapsack solvers. In: Proceedings of the 1st ACM international workshop on Empirical assessment of software engineering languages and technologies: held in conjunction with the 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE) 2007. WEASEL-Tech ’07, New York, NY, USA, ACM (2007) 13–18
[15] Huang, C.Y., Lin, C.T.: Software reliability analysis by considering fault dependency and debugging time lag. Reliability, IEEE Transactions on 55 (2006) 436–450
[16] Kayes, M.: Test case prioritization for regression testing based on fault dependency. In: Electronics Computer Technology (ICECT), 2011 3rd International Conference on. Volume 5. (2011) 48–52
[17] Rooney, P.: Microsoft’s ceo: 80-20 rule applies to bugs, not just features. http://www.crn.com/news/security/18821728/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm (2002)
[18] Freeman, L.: A set of measures of centrality based upon betweenness. Sociometry 40 (1977) 35–41
[19] Newman, M.E.J. In: Networks: An Introduction. Oxford University Press (2010)
[20] Brandes, U.: On variants of shortest-path betweenness centrality and their generic computation. Social Networks 30 (2008) 136–145
[21] Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology 2 (1972) 113–120
[22] Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Stanford InfoLab (1999)
[23] Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99 (2002) 7821–7826
[24] Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: E-mail as spectroscopy: Automated discovery of community structure within organizations. The Information Society 21 (2005) 143–153
[25] Nazir, A., Raza, S., Chuah, C.N.: Unveiling facebook: a measurement study of social network based applications. In: Proceedings of the 8th ACM SIGCOMM conference on Internet measurement. IMC ’08, New York, NY, USA, ACM (2008) 43–56
[26] Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.L.: Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences 104 (2007) 7332–7336
[27] Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: Structure and evolution of blogspace. Commun. ACM 47 (2004) 35–39
[28] Chen, J., Yuan, B.: Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22 (2006) 2283–2290
[29] Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Physical review E 69 (2004) 026113
[30] Pareto, V. In: Manual of political economy Tr. by Ann S. Schwier. Macmillan, London (1927)
[31] Duong, L.: Applying the “80-20 rule” with the standish group’s statistics on software usage. http://bit.ly/beBOf1 (2009)
[32] WordHacker: Gre word list. http://www.wordhacker.com/en/article/Barron_gre_list_a.htm (2006)
[33] Watts, D.J., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393 (1998) 440–442
Prioritizing Test Cases for Regression Testing

[35] Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008 (2008) P10008

[36] Do, H., Rothermel, G., Kinneer, A.: Empirical studies of test case prioritization in a junit testing environment. In: Software Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium on. (2004) 113–124

[37] Korel, B., Tahat, L.H., Harman, M.: Test prioritization using system models. In: Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International Conference on, IEEE (2005) 559–568

[38] Korel, B., Koutsogiannakis, G., Tahat, L.: Application of system models in regression test suite prioritization. In: Software Maintenance, 2008. ICSM 2008. IEEE International Conference on. (2008) 247–256

[39] Jones, J., Harrold, M.: Test-suite reduction and prioritization for modified condition/decision coverage. Software Engineering, IEEE Transactions on 29 (2003) 195–209

[40] Kim, J.M., Porter, A.: A history-based test prioritization technique for regression testing in resource constrained environments. In: Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference on. (2002) 119–129

[41] Sherriff, M., Lake, M., Williams, L.: Prioritization of regression tests using singular value decomposition with empirical change records. In: Software Reliability, 2007. ISSRE ’07. The 18th IEEE International Symposium on. (2007) 81–90

[42] Leon, D., Podgurski, A.: A comparison of coverage-based and distribution-based techniques for filtering and prioritizing test cases. In: Software Reliability Engineering, 2003. ISSRE 2003. 14th International Symposium on. (2003) 442–453

[43] Sampath, S., Bryce, R., Viswanath, G., Kandimalla, V., Koru, A.: Prioritizing user-session-based test cases for web applications testing. In: Software Testing, Verification, and Validation, 2008 1st International Conference on. (2008) 141–150

[44] Rummel, M.J., Kapfhammer, G.M., Thall, A.: Towards the prioritization of regression test suites with data flow information. In: Proceedings of the 2005 ACM symposium on Applied computing. SAC ’05, New York, NY, USA, ACM (2005) 1499–1504

[45] Jeffrey, D., Gupta, R.: Test case prioritization using relevant slices. In: Computer Software and Applications Conference, 2006. COMPSAC ’06. 30th Annual International. Volume 1. (2006) 411–420

[46] Qu, B., Nie, C., Xu, B., Zhang, X.: Test case prioritization for black box testing. In: Computer Software and Applications Conference, 2007. COMPSAC 2007. 31st Annual International. Volume 1. (2007) 465–474

[47] Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. SIGCOMM Comput. Commun. Rev. 29 (1999) 251–262

[48] Aiello, W., Chung, F., Lu, L.: Random evolution in massive graphs. In: Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on. (2001) 510–519

[49] Redner, S.: How popular is your paper? an empirical study of the citation distribution. The European Physical Journal B-Condensed Matter and Complex Systems 4 (1998) 131–134

[50] Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Physical Review E 64 (2001) 026118