Editorial: The role of tumor microenvironment in primary liver cancer therapeutic resistance

Zhangya Pu1, Zhigang Ren2, Qiuran Xu3, Xiaochen Wang4, Jian Chen5 and Jiang Chen6*

1Department of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 2Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 3Laboratory of Molecular Diagnosis, Zhejiang Provincial People’s Hospital and Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China, 4Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States, 5Department of Research and Development, BioAtla, Inc., San Diego, CA, United States, 6Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China

KEYWORDS
hepatocellular carcinoma, tumor microenvironment, immune infiltration, biomarkers, prognostic model

Editorial on the Research Topic: The role of tumor microenvironment in primary liver cancer therapeutic resistance

Hepatocellular carcinoma (HCC) is the most prevalent histological type of primary liver cancer, ranking as the sixth most common malignancy and the third leading cause of cancer-related death worldwide (1). Currently, despite the tremendous advancement in the diagnosis and treatment of HCC, especially the increasing attention paid to immunotherapies targeting the tumor microenvironment (TME), only a small population of patients benefit from it owing to the therapeutic resistance and the 5-year of overall survival remains largely unsatisfactory, with the efficacy of <18% (2–4). Hence, further integrative analyses of the diversity of TME and identification of novel diagnostic and prognostic biomarkers can not only improve immunotherapeutic responsiveness but also decode the possible new molecular mechanisms of HCC initiation and progression.

This Research Topic aims to highlight the latest valuable biomarkers, gene signature sets, and prognostic-related molecular models assisting in the diagnosis, prediction of prognosis, and evaluation of immunotherapy efficacy in HCC patients. Research articles contributing to the topic are performed by multiple bioinformatic analyses underlying publicly available online databases including TCGA (http://cancergenome.nih.gov/), ICGC (https://dcc.icgc.org/), and GEO (https://www.ncbi.nlm.nih.gov/geo/), combined with in vivo animal models, including tumor xenograft implantation and lung metastasis assay, and in vitro experimental methods, such as western blot, qRT-PCR,
m6A scores were involved with tumor progression, shorter individual patients according to the differential m6A respectively. Moreover, they calculated the m6A scores for m6Acluster 2, and m6Acluster 3, highly consistent with N6-methyladenosine (m6A) modification patterns in the malignant progression, prognosis, and TME of HCC. Li et al. constructed transcriptional m6A modification-related genes with prognostic values. The high m6A scores were involved with tumor progression, shorter survival possibility, and immunotherapy non-response. Additionally, the specific m6A regulator of YTHDF1 was overexpressed in HCC tissues and associated with low infiltration of CD3+ and CD8+ T cell types in HCC TME. Gu et al. used the HCC cohort from TCGA database to develop three 5-methylcytosine (m5C) modification subtypes and further assessed its correlation to TME, showing that Cluster-2 had a distinct survival advantage over the others. Moreover, the m5C regulator of DNMT1 was significantly upregulated in HCC samples than that in the normal tissues and was related to a poor prognosis in HCC patients. Simultaneously, upregulated expression of DNMT1 was positively correlated to several subtypes of immune cell infiltration. Xing et al. developed a prognostic model of WM-score according to the multi-layer RNA modification phenotype-related genes after integrating bioinformatic analyses of the HCC cohort in TCGA database. Later, they indicated the credible performance of WM-score value in predicting anti-tumor drug resistance and immunotherapeutic response for HCC patients.

Previously studies reported that lactate produced by aerobic glycolysis could serve as a vital signaling marker to influence the intercellular interactions, resulting in regulating the composition and function of TME. However, the specific regulatory processes are still limited (9–11). Li et al. established a lactate metabolism-related gene signature (LMRGS) using the TCGA-HCC dataset as the training cohort and the ICGC-LIRI-JP dataset was regarded as an externally validated cohort. Furthermore, they carefully evaluated the correlation of LMRGS with clinical outcomes and the TME traits of HCC patients. The results displayed that the patients within the high-LMRGS group were prone to have a shorter survival possibility and higher tumor mutation burden (TMB). Meanwhile, this population experienced a suppressed TME, with infiltrating inhibitory immune cells of follicular helper T cells and regulatory T cells and expressing repressive immune checkpoints.

This Research Topic presented the current status of updated knowledge correlated to HCC according to the comprehensive bioinformatic analyses of publicly online cancer-related databases, combined with experimental models, providing us with a variety of prognostic biomarkers or specific gene sets, as well as their predictive value of TME characteristics in HCC. We hope that this Research Topic contributes to the advancement of the diagnosis and outcome of HCC patients, especially in response to immunotherapeutic strategies.

Author contributions

ZP specialized in the Research Topic and wrote the paper text. ZR, QX, XW, JianC, and JiangC are editors of the Research Topic. All authors contributed to the article and approved the submitted version.
Acknowledgments

We put much gratitude to all authors of the manuscripts published on the specific Research Topic for their great endeavor and the reviewers for their stringent and exquisite review process. We still extend our gratitude to the editorial board of the Frontiers in Oncology for their great support.

Conflict of interest

Author JianC was employed by BioAtla, Inc.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2021) 71:209–49. doi:10.3322/caac.21660

2. Fu Y, Liu S, Zeng S and Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res (2019) 38:396. doi:10.1186/s13046-019-1396-4

3. Ruf B, Heinrich B and Gretten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol (2021) 18:112–27. doi:10.1038/s41423-020-00572-w

4. Villanueva A. Hepatocellular carcinoma. N Engl J Med (2019) 380:1450–62. doi:10.1056/NEJMra1713263

5. Zhou Y, Huang Y, Hu K, Zhang Z, Yang J and Wang Z. HIF1A activates the transcription of IncRNA RAET1K to modulate hypoxia-induced glycolysis in hepatocellular carcinoma cells via miR-100-5p. Cell Death Dis (2020) 11:176. doi:10.1038/s41419-020-2366-7

6. Hu M, Fu Q, Jing C, Zhang X, Qin T and Pan Y. IncRNA HOTAIR knockdown inhibits glycolysis by regulating miR-130a-3p/HIF1A in hepatocellular carcinoma under hypoxia. BioMed Pharmacother (2020) 125:109703. doi:10.1016/j.biopha.2019.109703

7. Marasco G, Serenari M, Renzulli M, Alemanni LV, Rossini B, Pettinari I, et al. Clinical impact of sarcopenia assessment in patients with hepatocellular carcinoma undergoing treatments. J Gastroenterol (2020) 55:927–43. doi:10.1007/s00535-020-01711-w

8. Imai K, Takai K, Miwa T, Maeda T, Hanai T, Shiraki M, et al. Increased visceral adipose tissue and hyperinsulinemia raise the risk for recurrence of non-b non-c hepatocellular carcinoma after curative treatment. Cancers (Basel) (2021) 13:1542. doi:10.3390/cancers13071542

9. Dong Q, Zhou C, Ren H, Zhang Z, Cheng F, Xiong Z, et al. Lactate-induced MRP1 expression contributes to metabolism-based etoposide resistance in non-small cell lung cancer cells. Cell Commun Signal (2020) 18:167. doi:10.1186/s12964-020-00653-3

10. Liao ZX, Kempson JM, Hsieh CC, Tseng SJ and Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discovery Today (2021) 26:2508–14. doi:10.1016/j.drudis.2021.07.014

11. Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, et al. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics (2021) 11:3839–52. doi:10.7150/thno.53749