SUPPLEMENTARY MATERIAL

Novel Illudalane Sesquiterpenes from Encephalartos villosus Lehm.
Antimicrobial activity.

Abeer Temraz

Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
Department of Pharmacognosy, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr-City, Cairo, Egypt.

Abstract

Phytochemical investigation of Encephalartos villosus Lehm. leaves afford two new illudalane sesquiterpenes namely Encephaldiene 1 and Encephaldiene 2 together with four known flavone glycosides, Luteolin-7-rutinoside, Luteolin-7-glucoside, Luteolin-7-rhamnoside and Apigenin-7-glucoside. The structures of the isolated compounds were elucidated by means of spectroscopic methods including 1D and 2D NMR experiments along with HRESIMS spectrometry.

Antimicrobial activity of CHCl$_3$ and MeOH extracts was investigated. Both extracts showed antibacterial activity against Gram-positive bacteria Streptococcus pneumonia and Bacillus subtilis, and antifungal activity against Aspergillus fumigatus. While CHCl$_3$ extract showed additional activity against Gram-negative bacteria Escherichia coli.

Keywords: Encephalartos villosus, illudalane sesquiterpenes, encephaldiene, antimicrobial activity.
Table S1. 1H and 13C NMR data of compounds 1–2 (CDCl$_3$, 600 MHz)a.

Position	δ_H	δ_C	δ_H	δ_C
1a	1.30 br d (18.4)	23	1.3 br d (18.4)	23
1b	1.43 br d (18.4)		1.45 br d (18.4)	
2		132		127
3		32	1.25 m	32
4	4.25 dd (7, 12)	68	4.20 dd (7.1, 12)	68
5	2.33 ddd(7, 7.5, 12)	34	2.33 ddd(7.1, 7.7, 12)	30
6	1.68 m	39	1.68 m	39
7	7.70 dd(12)	129	7.70 d(12)	129
8	7.55 dd (12)	131	7.50 d (12)	131
9		167		168
10a	1.26 br d (16.6)	29	1.25 br d (16.6)	29
10b	1.31 br d (16.6)		1.30 br d (16.6)	
11		38		39
12	0.92 S	14	0.91	11
13	0.89 S	14.5	0.92	14
14	0.90 S	11	0.89 d (7.8)	14
15	0.93 S	12	-	-

aJ values are in parentheses and reported in Hz; chemical shifts are given in ppm; assignments were confirmed by DQF-COSY, HSQC, and HMBC experiments.
Figure S1. Diagnostic HMBC NMR correlations of compounds 1 & 2.
Figure S2: 1H NMR of compounds 1.
Figure S3: 13C NMR of compounds 1.
Figure S4: HSQC correlations of compounds 1.
Figure S5: HMBC correlations of compounds 1.
Figure S6: COSY correlations of compounds 1.
Figure S7: ^1H NMR of compounds 2.
Figure S8: 13C NMR of compounds 2.
Figure S9: HSQC correlations of compounds 2.
Figure S10: HMBC correlations of compounds 2.
Figure S11: COSY correlations of compounds 2.
Figure S12. Antimicrobial activity of CHCl₃ and MeOH extracts of *Encephalartos villosus* as compared to reference antibiotics.