A Revised Host Galaxy Association for GRB 020819B: A High-Redshift Dusty Starburst, Not a Low-Redshift Gas-Poor Spiral

Daniel A. Perley, Thomas Krühler, Patricia Schady, Michał J. Michałowski, Christina C. Thöne, Dirk Petry, John F. Graham, Jochen Greiner, Sylvio Klose, Steve Schulze, and Sam Kim

ABSTRACT
The purported spiral host galaxy of GRB 020819B at z = 0.41 has been seminal in establishing our view of the diversity of long-duration gamma-ray burst environments: optical spectroscopy of this host provided evidence that GRBs can form even at high metallicities, while millimetric observations suggested that GRBs may preferentially form in regions with minimal molecular gas. We report new observations from VLT (MUSE and X-shooter) which demonstrate that the purported host is an unrelated foreground galaxy. The probable radio afterglow is coincident with a compact, highly star-forming, dusty galaxy at z = 1.9621. The revised redshift naturally explains the apparent nondetection of CO(3-2) line emission at the afterglow site from ALMA.

There is no evidence that molecular gas properties in GRB host galaxies are unusual, and limited evidence that GRBs can form readily at super-Solar metallicity.

Key words: gamma-ray burst: specific—020819B

1 INTRODUCTION
The majority of long-duration gamma-ray bursts (GRBs) in the low-redshift universe originate from low-mass, low-metallicity, irregular dwarf galaxies (e.g., Le Floc’h et al. 2003; Fruchter et al. 2006; Modjaz et al. 2009; Graham & Fruchter 2013; Perley et al. 2016). GRB 020819B stands out as the most notable exception. This burst was detected by the High Energy Transient Explorer (HETE-2) two years prior to the launch of Swift; follow-up using the Very Large Array identified a fading radio source (the probable afterglow) positionally coincident with the outskirts of a large spiral galaxy at z = 0.41 (Jakobsson et al. 2005). The spiral galaxy is massive (Küçü Yoldas et al. 2010), and metal-rich (Levesque et al. 2010b; L10). Although the location of the radio afterglow is far (3′′, or 16 kpc in projection) from the spiral’s nucleus and a “blob” of optical emission distinct from the rest of the galaxy is visible at this location, spectroscopy reported by L10 established that this blob was at the same redshift as the spiral and that its metallicity was above Solar (12+log[O/H] = 9.0 ± 0.1, on the Kewley & Dopita 2002 diagnostic). This represented perhaps the clearest demonstration that GRBs can successfully form even in metal-rich environments.

The properties of this galaxy have also attracted follow-up at longer wavelengths. It is one of the few GRB hosts to be observed with the Atacama Large Millimetre Observatory (ALMA) to date, as part of the study of Hatsukade et al. 2014 (H14). While a source at the afterglow site is well-detected in the millimetre continuum (Fν = 0.14 mJy at...
formation in these regions, possibly involving the direct col-
density. This could originate from a different mode of star-
lower than for any well-studied class of galaxy, suggesting
ated massive foreground galaxy are both low (circle and the probability of a source aligning with an unre-
spiral galaxy. These two assumptions are justified primar-
error circle by J05 must indeed be the GRB afterglow. Sec-
sumptions. First, the variable radio source reported in the
ation with the massive spiral hinges on two important as-
emission line at z = 0.41 is present at the afterglow
1.2 mm), indicating that this region is rich in dust, no molec-
ar gal gas emission was detected in spectroscopic-mode obser-
covered the expected wavelength of the CO(3-2) emission line at z = 0.41. The inferred gas-to-dust ratio is
lower than for any well-studied class of galaxy, suggesting
GRBs may prefer regions of very low molecular gas
density. This could originate from a different mode of star-
formation in these regions, possibly involving the direct col-
d of atomic gas (Michałowski et al. 2015).
No optical counterpart was identified for this burst and
therefore no absorption redshift was obtained, so its associ-
ation with the massive spiral hinges on two important as-
ments. First, the variable radio source reported in the
error circle by J05 must indeed be the GRB afterglow. Sec-
cond, this radio source must have originated from within the
spiral galaxy. These two assumptions are justified primar-
ly by statistical arguments. The probability of an unrelated
fading radio source appearing in the HETE-2 X-ray error
circle and the probability of a source aligning with an unrel-
ated massive foreground galaxy are both low (\(\sim 10^{-2}\)), but
not so low as to be implausible.
The considerable importance given to this GRB merits
urther scrutiny of this issue. In this Letter, we re-analyze
the archival data originally presented by L10 and H14 and
also present extensive new observations of this system, in-
cluding near-infrared spectroscopy of the blob at the after-
glow site. Our observations demonstrate that the reported
GRB counterpart lies in a background galaxy, unrelated to
the z = 0.41 spiral widely assumed by previous authors to be
the host. Our observations and basic results are presented in §2. We reassess the probabilistic arguments used to asso-
ate the GRB with the radio counterpart, and the radio
counterpart with the candidate host galaxies, in §3. Our
conclusions, including a summary of the properties of the
high-redshift galaxy that represents the probable host, are
then presented in §4.

2 OBSERVATIONS AND RESULTS

2.1 MUSE observations

The putative host galaxy was observed using the Multi Unit
Spectroscopic Explorer (MUSE; Bacon et al. 2010) integral
field unit spectrograph at the VLT. Observations were ob-
tained on 2016-07-09 as part of ESO program 097.D-1054 and
consisted of three dithered exposures with an integra-
time of 1200 s each. They cover a field of view of 1×1’
sampled in spatial pixels of 0.2” and in wavelength steps of
1.25 Å spanning a wavelength range of 4800–9300 Å.
The MUSE data were reduced and calibrated in a stan-
dard manner using version 1.6 of the ESO pipeline
(Weilbacher et al. 2014). We cleaned sky-background resid-
uals that were present after the pipeline reduction as de-
scribed in Soto et al. (2016). The stellar PSF has a full-
width at half maximum of 0.9” in a reconstructed MUSE
image centred around 9000 Å. A small astrometric shift
was then applied to align the final data cube with archival
Gemini-North Multi-Object Spectrograph (GMOS) imaging
of the field.

An Hα map of the galaxy formed from the data cube is
presented in Figure 1 (contours). The radio afterglow loca-
tion is designated by a circle. We do not detect any sig-
nificant Hα emission at this location to a limiting flux of
\(F_{\text{H}\alpha} < 0.8 \times 10^{-17} \text{ erg cm}^{-2} \text{s}^{-1}\). We also extracted a one-
dimensional spectrum at the location of the radio transient
and detected no lines anywhere within our spectral range,
which covers all major emission lines at z = 0.41.

2.2 Archival Keck observations

The MUSE data directly contradict the reported strong
Hα and [N\(\text{ii}\)] detections at the GRB location reported by
L10 using LRIS observations acquired in November 2009
\(F_{\text{H}\alpha} = 41.4 \times 10^{-17} \text{ erg cm}^{-2} \text{s}^{-1}\). We downloaded their ob-
servations from the Keck Observatory Archive and indepen-
dently reanalyzed them using our own data analysis tools.
Although L10 report that they chose a position angle (PA)
to cover the host nucleus and afterglow site simultaneously,
at the PA value of 9.5° quoted in their paper (confirmed by archive metadata) this would not have been possible. Com-
parison of the two-dimensional spectra to our continuum and
Hα imaging demonstrates that the slit was positioned
west of the nucleus, roughly at the position indicated by the
dashed lines in Figure 1. The two traces visible in the 2D
spectrum (interpreted by L10 as the “nucleus” and “site”
spectra) correspond to star-forming regions in the western
spiral arm. The slit partially intersected the blob at the af-
terglow site, but no line emission is detected at this position
in the 2D spectra.

L10 also observed the host system in November 2008 at
a PA of 345.88°. These observations do unambiguously cover
both the nucleus and the GRB location (solid green lines in
Figure 1). We downloaded and reanalyzed these observations.
Figure 2. X-shooter observations reveal the redshift of the likely host of GRB 020819B (the “blob” at the radio position in Figure 1) to be $z = 1.9621$. We detect strong emission lines from [O II]3726,3729, [O III]5007, and Hα, as well as weaker emission from [O III]λ4959 and Hβ. Red lines show central wavelengths of the individual transitions at this redshift. Regions of the spectrum strongly affected by telluric absorption or sky-line emission residuals are shown in a lighter colour.

also; no significant line emission is observed at the location of the blob in the 2D spectrum.

2.3 X-shooter observations

The nondetection of emission lines at both optical and millimeter wavelengths at the afterglow site led us to suspect that the “blob” at this location, treated as a star-forming region within the $z = 0.41$ galaxy by L10, H14, and other authors, is a separate galaxy at significantly higher redshift. To test this hypothesis, we acquired optical and NIR spectroscopy of the source using X-shooter (Vernet et al. 2011) on the VLT via ESO program DDT 297.A-5055.

Data were obtained on two different nights starting on 2016-08-08 and 2016-08-30. Observations consisted of several nodded frames with a total on-source integration time of 4960 s in the optical arms (wavelength range 3200–10000 Å) and 5280 s in the NIR arm (10000–25000 Å). X-shooter’s slits were positioned using blind offsets from a field star, and oriented at the parallactic angle. To reduce, combine and calibrate our X-shooter data, we used the ESO-supplied pipeline (Goldoni et al. 2006) and our own software.

Several emission lines are securely detected in the NIR portion of the reduced spectrum (Figure 2) at the afterglow location. Particularly strong (>10σ) lines are observed at (air, heliocentric) wavelengths of 14830 and 19440 Å. These wavelengths identify them unambiguously as [O II]λ5007 and Hα (respectively) at a common redshift of $z = 1.9621 \pm 0.0001$. We also detect, at lower significance (3–6σ), emission lines at the wavelengths of redshifted Hβ, [O III]λ4959 and [O III]λ3727. We do not detect significant emission from [N II] or Lyman-α, or at any other wavelength (although optical emission lines from the $z = 0.41$ galaxy can be seen elsewhere on the slit).

The velocity width of both strong lines is large at $\sigma = 190 \pm 20$ km s$^{-1}$, but much less than broad-line AGN. Likewise, the line ratios between [O III], Hβ, [N II], and Hα are characteristic of star-forming galaxies (Baldwin et al. 1981) and rule out significant contribution from an active nucleus. Assuming the line flux to originate entirely from star-formation, the Hα flux corresponds to a minimum star-formation rate (SFR) of 21 M$_{\odot}$yr$^{-1}$ (Kennicutt 1998), we assume a cosmology of $\Omega_M=0.3$, $\Omega_{\Lambda}=0.7$, $h=0.7$.

Incorporating a dust-extinction correction of $E_{B-V} = 0.55^{+0.37}_{-0.27}$ mag from the Balmer decrement, this increases to 76^{+103}_{-55} M$_{\odot}$yr$^{-1}$.

The weak detection of Hβ and nondetection of [N II] make it difficult to estimate metallicity or other line parameters precisely. We ran the Monte Carlo code of Bianco et al. (2016) on our line flux values (Table 1) to calculate the metallicity using various diagnostics and calibrations, and estimate a value between 8.29 (using Pettini & Pagel 2004 O3N2) and 8.81 (using Kobulnicky & Kewley 2004 N2Hα), corresponding to approximately 0.5–1.1 Z$_{\odot}$.

2.4 ALMA Reanalysis

The ALMA observations first reported by H14, covering four 1.875 GHz spectral frequency windows centred at 245.072, 246.947, 260.500 and 262.375 GHz, would not have covered the frequencies of any strong molecular transitions at $z = 1.9621$. Nevertheless, we carefully reanalyzed the observations in the standard ALMA data analysis package CASA (version 4.6), performing a blind search of the entire spectrum at the afterglow site for line features. None were found, although we verify the continuum detection at a flux level consistent with value originally reported by H14.

3 DISCUSSION

Our results rule out the conclusions of L10 and H14 which claim that the local environment of this GRB has highly super-Solar metallicity or that it is depleted in molecular gas. No strong constraints can currently be placed on either the metallicity or the molecular gas mass in the higher-redshift galaxy at the GRB position with our data, although the metallicity is probably subsolar.

The galaxy at $z = 1.96$ is a remarkable object in its own right, and may be relevant to understanding GRB

© 2016 RAS, MNRAS 000.
progenitors if indeed this source is genuinely the host of GRB020819B. This association is not definitive, although we argue that it is likely. The two alternative possibilities (that the radio counterpart is not the afterglow, or that the radio counterpart is genuine but that $z = 1.96$ galaxy is not the host) are addressed below.

3.1 Is the purported radio afterglow of GRB020819B associated with the burst?

As we have noted already, the afterglow of GRB020819B was localized only in the radio band; furthermore the observations are only at one frequency and cover a limited span in time. It is at least possible that the source represents an unrelated variable object, such as an AGN or quasar. Fortunately, the final HETE-2 error circle is relatively small ($\sim 80''$ in radius; Villasenor et al. 2004), so the probability of coincidental appearance of a variable source is not high. Frail & Berger (2003) estimated the probability of finding a strongly-variable source in the original HETE-2 error circle to be 2%; our own independent calculation using variability statistics from Oke et al. (2011) provides a similar value of 4%. Other lines of argument also support association with the GRB: the afterglow fades monotonically and exhibits no further flaring activity over observations spanning >100 days, and it is localized to a star-forming, high-redshift galaxy with no direct evidence of AGN activity.

It is still conceivable that the source is not really the afterglow. It is interesting, in particular, that radio emission remains detectable at this location more than 10 years after the burst (Greiner et al. 2016) report a flux density of $31 \pm 8 \mu$Jy at 3 GHz. This is more than can be readily explained by star-formation: it would imply an SFR (Murphy et al. 2011) of $\sim 800 M_\odot$ yr$^{-1}$, conflicting with the estimate from the ALMA continuum. It could represent lingering emission from the GRB afterglow, but this would require a much slower late-time decay than predicted by standard models (Greiner et al. 2016). Further observations are needed: the discovery of additional flares would greatly decrease our confidence.

3.2 Is the radio counterpart associated with the high-redshift coincident galaxy?

We can also question whether it is actually the high-redshift galaxy that represents the chance alignment: perhaps the GRB does indeed originate in the outskirts of the $z = 0.41$ galaxy, but its location happened to line up with an unrelated, luminous galaxy at higher redshift! The statistical probabilities of an arbitrary position on the sky landing within $3''$ of an $R = 19.5$ mag galaxy and within $0.5''$ of an $R = 24.0$ mag galaxy are in fact rather similar.

Several lines of argument favor associating the GRB with the higher-redshift counterpart. Most notably, there is extensive star-formation occurring within the high redshift galaxy and none (down to our detection limits) in the section of the lower redshift galaxy consistent with the observed afterglow position. GRBs are generally observed to explode in the densest and most active star-forming regions of their hosts, typically close to the centres (Bloom et al. 2002; Fruchter et al. 2006; Blanchard et al. 2016); to find one in the outskirts of a galaxy in a region with no detectable star-formation or continuum emission to deep limits would be very unusual.

Furthermore, this is a “dark” burst with no optical afterglow detection: reanalysis of the NIR data of Klose et al. (2003) confirms no variability at the putative radio afterglow position or anywhere else in the final HETE-2 error circle (limiting magnitude $K > 19$). The dark burst host population is dominated by massive, highly star-forming, and dusty galaxies at $z = 1 - 3$ (e.g., Krühler et al. 2011; Rossi et al. 2012; Perley et al. 2013); the properties of the background galaxy are consistent with this population. The foreground galaxy, while massive, contains little dust (H14) and no evidence for obscured star-formation outside its nucleus.

Even if the GRB did originate from the halo of the $z = 0.41$ galaxy, the results of L10 and H14 would still be ruled out, since the metallicity and dust-to-gas ratio at the afterglow site cannot be constrained by their observations.

4 CONCLUSIONS

A brief summary of the available multiwavelength constraints of the new, probable host galaxy is provided in Table 1. The Hα luminosity and the millimetre flux (fit against a variety of starburst galaxy templates; Silva et al. 1998; Michalowski et al. 2010) both imply an SFR of between 30–120 M_\odot yr$^{-1}$, consistent with a luminous infrared galaxy (LIRG). LIRGs are uncommon among GRB hosts generally, but have been observed to host heavily obscured GRBs before (e.g., Le Floc’h et al. 2006; Perley & Perley 2013).

Gravitational lensing by the foreground galaxy could conceivably contribute to the apparently high luminosity. The foreground galaxy’s halo mass is unknown, but for $M_{\text{nucl}} = 10^{12} M_\odot$ the Einstein radius would overlap the burst location, magnifying both the GRB and its host by a potentially large factor. This would provide a natural explanation for the otherwise-coincidental foreground alignment and decrease the inferred luminosity and SFR of the high-z galaxy somewhat. Direct evidence for lensing in the form of multiple images or episodes is, however, lacking.

The metal dependence of GRB formation has been hotly debated for the past decade. As the GRB host with the highest well-determined metallicity (both overall and site-specific), GRB020819B has been instrumental in establishing a case for a GRB progenitor that is able to function at metallicities above Z_\odot. Our discovery that the nearby spiral is not the host therefore has important implications for the GRB metallicity dependence within the super-Solar regime. While there are other cases of super-Solar metallicity hosts (e.g., Elliott et al. 13; Krühler et al. 2013), most of these originate at high redshifts where offsets and metallicity gradients are difficult to measure. Low-z examples are sparing, and generally also not secure: GRB050826, for example (12+log(O/H)]=8.83; Levesque et al. 2014), also lacks an afterglow absorption spectrum or an associated supernova. Swift has now detected over 1000 bursts, some of which (~ 1%; Cobb & Bailyn 2008) are destined to closely align with foreground galaxies. While it may yet be the case that
Table 1. Properties of the Probable Host Galaxy

Property	Value	Reference
Redshift	1.9621 ± 0.0001	
B mag	26.10 ± 0.50	J05
R mag	23.98 ± 0.06	J05
K mag	20.80 ± 0.30	J05
Hα flux	14.9 ± 1.2	J05
Hβ flux	3.0 ± 0.9	
Oiiλ3727 flux	7.2 ± 2.0	
Oiiiλ4959 flux	3.2 ± 0.6	
Oiiiλ5007 flux	9.7 ± 0.7	
Niiλ6583 flux	2.9 ± 1.7	
1.2 mm flux density	140 ± 30 µJy	H14
3 GHz flux density	31 ± 8 µJy	Greiner et al., 2016
Velocity width (σ)	190±20 km s⁻¹	

a Magnitudes are Vega, uncorrected for foreground extinction.
b Units of all line fluxes are 10⁻¹⁷ erg cm⁻² s⁻¹⁻¹

GRBs can and do form above Solar metallicity, the frequency of such events is (at minimum) likely to be lower than previously believed. We suggest that future studies of this topic approach low-z approaches more closely. The correspondence of the archival Keck observations with the known host galaxy is confirmed by the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the NASA. We thank E. Levesque for confirming the identity of the archival Keck observations. We also thank D. A. Kann, M. Modjaz, and the anonymous referee for useful comments, and acknowledge useful discussions with D. Watson, J. Fynbo, and J. Hjorth.

ACKNOWLEDGMENTS

DAP acknowledges support from a Marie Skłodowska-Curie Individual Fellowship within the Horizon 2020 EU Framework Programme for Research and Innovation (H2020-MSCA-IF-2014-660113). PS and TK acknowledge support through the Sofja Kovalevskaja Award to PS. SS and SK acknowledge support from FONDEYT (310534, 3130488). This research has made use of the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the NASA. We thank E. Levesque for confirming the identity of the archival Keck observations. We also thank D. A. Kann, M. Modjaz, and the anonymous referee for useful comments, and acknowledge useful discussions with D. Watson, J. Fynbo, and J. Hjorth.

REFERENCES

Bacon, R., et al. 2010, in Proc. SPIE, Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III, 773508

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5

Bianco, F. B., Modjaz, M., Oh, S. M., Fierroz, D., Liu, Y. Q., Kewley, L., & Graur, O. 2016, Astronomy and Computing, 16, 54

Blanchard, P. K., Berger, E., & Fong, W. 2016, ApJ, 817, 144

Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. 2002, AJ, 123, 1111

Cobb, B. E., & Bailyn, C. D. 2008, ApJ, 677, 1157

Elliott, J., et al. 2013, A&A, 556, A23

Frail, D. A., & Berger, E. 2003, GCN Circulars, 1842

Fruchter, A. S., et al. 2006, Nature, 441, 463

Goldoni, P., Boyer, F., François, P., Horrobin, M., Blanc, G., Vernet, J., Modigliani, A., & Larsen, J. 2006, in SPIE Conf. Ser., Vol. 6269

Graham, J. F., & Fruchter, A. S. 2013, ApJ, 774, 119

Greiner, J., et al. 2016, ArXiv/1606.08285

Hatsukade, B., Ohta, K., Endo, A., Nakanishi, K., Tamura, Y., Hashimoto, T., & Kohno, K. 2014, Nature, 510, 247

Jakobsson, P., et al. 2005, ApJ, 629, 45

Kennicutt, R. C. 1998, ARAA, 36, 189

Kewley, L. J., & Dopita, M. A. 2002, ApJS, 142, 35

Klose, S., et al. 2003, ApJ, 592, 1025

Kobulnicky, H. A., & Kewley, L. J. 2004, ApJ, 617, 240

Krühler, T., et al. 2011, A&A, 534, A108

—. 2015, A&A, 581, A125

Küpcü Yoldaş, A., Greiner, J., Klose, S., Krühler, T., & Savaglio, S. 2010, A&A, 515, L2

Le Floc'h, E., Charmandaris, V., Forrest, W. J., Mirabel, I. F., Armus, L., & Devost, D. 2006, ApJ, 642, 636

Le Floc'h, E., et al. 2003, A&A, 400, 499

Levesque, E. M., Kewley, L. J., Berger, E., & Zahid, H. J. 2010a, AJ, 140, 1557

Levesque, E. M., Kewley, L. J., Graham, J. F., & Fruchter, A. S. 2010b, ApJL, 712, L26

Michałowski, M. J., Hjorth, J., & Watson, D. 2010, A&A, 514, A67

Michałowski, M. J., et al. 2015, A&A, 582, A78

Modjaz, M., et al. 2008, AJ, 135, 1136

Murphy, E. J., et al. 2011, ApJ, 737, 67

Ofek, E. O., Frail, D. A., Breslauer, B., Kulkarni, S. R., Chandra, P., Gal-Yam, A., Kasliwal, M. M., & Gehrels, N. 2011, ApJ, 740, 65

Perley, D. A., & Perley, R. A. 2013, ApJ, 778, 172

Perley, D. A., et al. 2013, ApJ, 778, 128

—. 2016, ApJ, 817, 8

Pettini, M., & Pagel, B. E. J. 2004, MNRAS, 348, L59

Rossi, A., et al. 2012, A&A, 545, A77

Silva, L., Granato, G. L., Bressan, A., & Danese, L. 1998, ApJ, 509, 103

Soto, K. T., Lilly, S. J., Bacon, R., Richard, J., & Conselice, C. 2016, MNRAS, 458, 3210

Stanway, E. R., Levan, A. J., Tanvir, N. R., Wiersema, K., & van der Laan, T. P. R. 2015, ApJL, 798, L7

Vernet, J., et al. 2011, A&A, 536, A105

Villaseñor, J., et al. 2004, in American Institute of Physics Conference Series, Vol. 727, Gamma-Ray Bursts: 30 Years of Discovery, ed. E. Fenimore & M. Galassi, 626–629

Weilbacher, P. M., Streicher, O., Urrutia, T., Pécontal-Roussel, A., Jarno, A., & Bacon, R. 2014, in Astronomical Society of the Pacific Conference Series, Vol. 485, Astro-
nomical Data Analysis Software and Systems XXIII, ed.
N. Manset & P. Forshay, 451