SHORT COMMUNICATION

Antidiarrheal and antispasmodic activities of *Trillium govanianum* rhizomes extract: involvement of calcium channel blockade

Naveed Muhammad\(^a\), Shafiq Ur Rahman\(^b,c*\), Hilal Uddin\(^a\), Omer Shehzad\(^a\), Muhammad Ismail\(^c\), Niaz Ali\(^d\), Aslam Khan\(^e\), Muhammad Shahid\(^f\), Abid Ullah\(^b\), Shujaat Ahmad\(^b\), Haya Hussain\(^b\), Ikram ul Haq\(^g\), Sara Vitalini\(^i,j,k\) and Marcello Iriti\(^h,i,j,k\)

\(^a\)Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan; \(^b\)Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir, Pakistan; \(^c\)Department of Pharmacy, University of Peshawar, Peshawar, Pakistan; \(^d\)Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan; \(^e\)College of Science and Health Professions King Saud bin, Abdulaziz University for Health Sciences Jeddah, Kingdom of Saudi Arabia; \(^f\)Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan; \(^g\)National Institute of Health, Islamabad, Pakistan; \(^h\)Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy; \(^i\)Phytochem Lab, Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy; \(^j\)National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze, Italy; \(^k\)BAT Center-Interuniversity Center for Studies on Biospired Agro-Environmental Technology, University of Napoli “Federico II”, Portici, Napoli, Italy

ABSTRACT

The antidiarrheal effect of methanolic extract of *Trillium govanianum* Wall. ex D. Don (Melanthiaceae alt. Trilliaceae) was studied at doses of 12.5, 25, and 50 mg/kg in different animal models of diarrhea including castor oil (6 mL/kg), magnesium sulfate (2 gm/kg), sodium picosulfate (2 mL/kg) and lactitol (0.25 mL/kg). The antispasmodic effect of *T. govanianum* was studied on isolated rabbit’s jejunum, using acetylcholine as tissue stabiliser and verapamil as calcium channel blocker. *T. govanianum* attenuated the diarrhea by producing a significant decrease in the number and weight of stool, and an increase in stool latency time. *T. govanianum* completely inhibited both spontaneous as well as high potassium induced contractions of isolated rabbit’s jejunum, which was analogous to verapamil. Moreover, *T. govanianum* produced a right shift in calcium concentration response curve, confirming its calcium channel blocking activity. These findings provide scientific ground to its medicinal use in diarrhea and gut spasms.
1. Introduction

Diarrhea is still a major health problem particularly in children, and recently there has been an increase in the research underlying characterisation of novel pathways in intestinal fluid transport, increase awareness of naturally derived therapies, and development of new tools and models for efficient screening of potential anti-diarrheal therapeutic remedies (Thiagarajah et al. 2015). The traditional use of natural products including medicinal plants has immensely improved the pharmacotherapy of different diseases and provided lead compounds that possess significant therapeutic value in various pathological conditions (Petrovska 2012; Islam et al. 2015; Shahid et al. 2017).

Trillium govanianum Wall. ex D. Don (Melanthiaceae alt. Trilliaceae) is a perennial herb, distributed in South Asia, especially in India, China, Pakistan and Bhutan (Rani et al. 2013). The rhizome of *T. govanianum* is used in the traditional system of medicine in Indian subcontinent and China for the treatment of different ailments. In folk medicine, the rhizome is used to cure dysentery, backache, healing of wound, skin boils, menstrual and sexual disorders (Mahmood et al. 2012; Shah et al. 2015; Sharma et al. 2018).

Previous phytochemical studies revealed that *T. govanianum* rhizomes are a rich source of secondary metabolites like fatty acid (compound 1), phytoecdysteroids (compound 2, 3), steroids (compound 4, 5) and saponins (compound 6, 7, 8) (Figure S3) (Ur Rahman et al. 2015, 2017; Singh et al. 2020). Furthermore, analgesic, anti-inflammatory, antifungal, antibacterial, cytotoxicity, anti-leishmanial and anticancer activities were documented (Ur Rahman et al. 2015, 2016, 2017; Khan et al. 2018, 2020). However, to the best of our knowledge, studies concerning the therapeutic efficacy of *T. govanianum* as an antidiarrheal agent have not been carried out. Therefore, the present study, we evaluated mechanistically the crude methanolic extract for antidiarrheal potential using *in vitro* and *in vivo* animal models.

2. Results and discussion

2.1. Antidiarrheal activity of *Trillium govanianum* extract

The effect of *T. govanianum* methanolic extract at various doses (12.5, 25, and 50 mg/kg) in the castor oil induced diarrhea is shown in Table S1. The tested doses
significantly increased ($p < 0.001$) the latency to diarrhea and reduced the number and weight of stools, as compared to the control group.

The effect of *T. govanianum* methanolic extract at various doses (12.5, 25, and 50 mg/kg) in the magnesium sulfate induced diarrhea is shown in Table S1. The tested doses exhibited significant reduction in the number ($p < 0.001$) and weight ($p < 0.01$) of stool as compared to the control group.

The effect of *T. govanianum* methanolic extract at various doses (12.5, 25, and 50 mg/kg) in the sodium picosulfate induced diarrhea is shown in Table S2. The lowest dose (12.5 mg/kg), significantly increased the latency time ($p < 0.001$).

The effect of *T. govanianum* methanolic extract at various doses (12.5, 25, and 50 mg/kg) in the lactitol induced diarrhea is shown in Table S3. The total number of stool significantly decreased at doses of 12.5 mg/kg ($p < 0.01$), and 25–50 mg/kg ($p < 0.001$). This effect of *T. govanianum* was analogous to the positive control drug loperamide (4 mg/kg) in all tested models.

2.2. Effect of Trillium govanianum extract in the charcoal meal transit test

The effect of *T. govanianum* methanolic extract at various doses (12.5, 25, and 50 mg/kg) on the gastrointestinal transit time of charcoal meal is shown in Table S4. *T. govanianum* showed a similar gastrointestinal motility inhibitory action like that of loperamide.

2.3. Effect of Trillium govanianum extract on KCl-induced contractions

The mechanism underlying the reduction in the frequency of bowel movements by *T. govanianum* extract was investigated. The effect of *T. govanianum* extract on the isolated rabbit jejunum is shown in Figure 1A. The extract completely inhibited both spontaneous as well as high K$^+$ induced contractions of the isolated preparations (rabbit’s jejunum) at concentrations of 5 and 3 mg/mL, and the effect was comparable to the standard drug, verapamil, which inhibited the high K$^+$ induced as well as spontaneous contractions at concentrations of 3 and 1 μM, respectively, as shown in Figure 1B. The isolated rabbit jejunum is a spontaneously gut contracting model (Gilani et al. 2010), allowing to examine the relaxant effect, without inducing contraction. *T. govanianum* inhibited high K$^+$ induced and spontaneous contractions in the rabbit’s jejunum.

2.4. Effect of Trillium govanianum extract on calcium channels

The calcium channel blocking mediated myorelaxant effect was investigated by drawing the calcium chloride curves in the presence and absence of extract, and these were then compared with calcium channel blocker, verapamil. The extract at concentrations of 0.1–0.3 mg/mL caused a rightward shift of the calcium concentration response curves (Figure 2A) and exhibited the suppression of the maximum contractile effect that was comparable to the verapamil at tested concentrations of 0.03–0.1 μM (Figure 2B).
As the tested doses of *T. govanianum* relaxed the high K⁺ induced contractions in an analogous pattern to verapamil, it can be argued that the antidiarrheal effect of *T. govanianum* primarily involves inhibition of calcium channels. This effect (Ca⁺⁺ antagonist) was further confirmed from the shift of Ca⁺⁺ concentration response curves to the right with inhibition of the maximum response, in a similar trend to verapamil.

3. Experimental
Provided as supplementary material.

4. Conclusion
In conclusion, the methanolic extract of *T. govanianum* displayed a potent *in-vivo* antidiarrheal and *in-vitro* anti-spasmodic effects. Our findings showed that *T. govanianum* possesses promising Ca⁺⁺ antagonists-like constituents(s), which provides scientific basis to its medicinal use in diarrhea and gut spasms.

Disclosure statement
No potential conflict of interest was reported by the authors.

ORCID
Shafiq Ur Rahman http://orcid.org/0000-0002-0162-4478

References
Gilani AH, Khan A, Khan AU, Bashir S, Rehman N, Mandukhail SR. 2010. Pharmacological basis for the medicinal use of *Holarrhena antidisenterica* in gut motility disorders. Pharm Biol. 48(11):1240–1246.
Islam NU, Khan I, Rauf A, Muhammad N, Shahid M, Shah MR. 2015. Antinociceptive, muscle relaxant and sedative activities of gold nanoparticles generated by methanolic extract of *Euphorbia milii*. BMC Compl Altern Med. 15(1):1–11.
Khan KM, Nahar L, Mannan A, Ul-Haq I, Arfan M, Ali Khan G, Hussain I, Sarker S. 2018. Cytotoxicity, In vitro anti-leishmanial and fingerprint HPLC- photodiode array analysis of the roots of *Trillium govanianum*. Nat Prod Res. 32(18):2193–2201.
Khan KM, Sarker SD, Khan GA, Saleem H, Khan SA, Mannan A. 2020. Phytochemical profiling and evaluation of modified resazurin microtiter plate assay of the roots of *Trillium govanianum*. Nat Prod Res. 34(19):2837–2841.
Mahmood A, Mahmood A, Malik RN, Malik RN. 2012. Indigenous knowledge of medicinal plants from Leepa valley, Azad Jammu and Kashmir, Pakistan. J Ethnopharmacol. 143(1):338–346.
Petrovska BB. 2012. Historical review of medicinal plants’ usage. Pharmacogn Rev. 6(11):1–5.
Rani S, Rana J, Rana P. 2013. Ethnomedicinal plants of Chamba district, Himachal Pradesh, India. J Med Plants Res. 7:3147–3157.
Shah A, Bharati KA, Ahmad J, Sharma M. 2015. New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. J Ethnopharmacol. 166:119–128.
Shahid M, Subhan F, Ahmad N, Ullah I. 2017. A bacosides containing Bacopa monnieri extract alleviates allodynia and hyperalgesia in the chronic constriction injury model of neuropathic pain in rats. BMC Complement Altern Med. 17(1):293.

Sharma OR, Arya D, Goel S, Vyas K, Shinde P. 2018. Trillium govanianum Wall. Ex D. Don (Nagchatri): An important Ethno medicinal Plant of Himalayan region (Himachal Pradesh). J Med Plants. 6:11–13.

Singh PP, Suresh PS, Bora PS, Bhatt V, Sharma U. 2020. Govanoside B, a new steroidal saponin from rhizomes of Trillium govanianum. Nat Prod Res. :1–9.

Thiagarajah JR, Donowitz M, Verkman AS. 2015. Secretory diarrhoea: mechanisms and emerging therapies. Nat Rev Gastroenterol Hepatol. 12(8):446–457.

Ur Rahman S, Adhikari A, Ismail M, Shah MR, Khurram M, Anis I, Ali F. 2017. A new trihydroxylated fatty acid and phytoecdysteroids from rhizomes of Trillium govanianum. Rec Nat Prod. 11:323–327.

Ur Rahman S, Adhikari A, Ismail M, Shah MR, Khurram M, Shahid M, Ali F, Haseeb A, Akbar F, Iriti M. 2016. Beneficial effects of Trillium govanianum rhizomes in pain and inflammation. Molecules. 21:1095.

Ur Rahman S, Ismail M, Shah MR, Adhikari A, Anis I, Ahmad MS, Khurram M. 2015. Govanoside A, a new steroidal saponin from rhizomes of Trillium govanianum. Steroids. 104:270–275.