Cardy-Verlinde Formula and Achúcarro-Ortiz Black Hole

Mohammad R. Setare1 and Elias C. Vagenas2

1 Department of Physics, Sharif University of Technology, Tehran, Iran
and
Physics Department (Farmanich)
Institute for Studies in Theoretical Physics & Mathematics (IPM)
19395-5531 Tehran, Iran
and
Department of Science, Physics group, Kordestan University, Sanandeg, Iran
rezakord@yahoo.com

2 Departament d’Estructura i Constituents de la Matèria
and
CER for Astrophysics, Particle Physics and Cosmology
Universitat de Barcelona
Av. Diagonal 647, E-08028 Barcelona
Spain
evagenas@ecm.ub.es

Abstract

In this paper it is shown that the entropy of the black hole horizon in the Achúcarro-Ortiz spacetime, which is the most general two-dimensional black hole derived from the three-dimensional rotating BTZ black hole, can be described by the Cardy-Verlinde formula. The latter is supposed to be an entropy formula of conformal field theory in any dimension.
Introduction

Holography is believed to be one of the fundamental principles of the true quantum theory of gravity [1,2]. An explicitly calculable example of holography is the much-studied anti-de Sitter (AdS)/Conformal Field Theory (CFT) correspondence.

Lately, it has been proposed the duality of quantum gravity, in a de Sitter (dS) space, to a certain Euclidean CFT, living on a spacelike boundary of the dS space [3] (see also earlier works [4]-[7]). This duality is defined in analogy to the AdS$_d$/CFT$_{d-1}$ correspondence. Following this idea, several works on dS space have been carried out [6]-[29].

The Cardy-Verlinde formula proposed by Verlinde [30], relates the entropy of a certain CFT with its total energy and its Casimir energy in arbitrary dimensions. Using the AdS$_d$/CFT$_{d-1}$ and dS$_d$/CFT$_{d-1}$ correspondences, this formula has been shown to hold exactly for the cases of Schwarzschild-dS, Reissner-Nordström-dS, Kerr-dS, dS Kerr Newman-dS and topological dS black holes. In this paper, by using the Cardy-Verlinde formula, we have re-obtained the entropy of the Achúcarro-Ortiz black hole which is a two-dimensional black hole derived from the three-dimensional rotating BTZ black hole.

In 1992 Bañados, Teitelboim and Zanelli (BTZ) [31,32] showed that (2+1)-dimensional gravity has a black hole solution. This black hole is described by two (gravitational) parameters, the mass M and the angular momentum (spin) J. It is locally AdS and thus it differs from Schwarzschild and Kerr solutions since it is asymptotically anti-de-Sitter instead of flat spacetime. Additionally, it has no curvature singularity at the origin. AdS black holes, are members of this two-parametric family of BTZ black holes and they are very interesting in the framework of string theory and black hole physics [33,34].

For systems that admit 2D CFTs as duals, the Cardy formula [35] can be applied directly. This formula gives the entropy of a CFT in terms of the central charge c and the eigenvalue of the Virasoro operator l_0. However, it should be pointed out that this evaluation is possible as soon as one has explicitly shown (e.g using the AdS$_d$/CFT$_{d-1}$ correspondence) that the system under consideration is in correspondence with a 2D CFT [36,37].

Even in the most favorable case presented above, the use of the Cardy formula for the computation of the entropy of the gravitational system is far from trivial, since the central charge c and the eigenvalue l_0 of the Virasoro operator have to be expressed in terms of the gravitational parameters (M, J) [38].

The two-dimensional (2D) limit of the Cardy-Verlinde proposal is interesting for various reasons. The main motivation to study 2D black holes and 2D gravity is to use them as the useful laboratory for more complicated 4D cousins [39,40,41]. On the same time, quite much is known about (basically quantum) Cardy-Verlinde formula in four dimensions. For instance, the quantum origin for 4D entropy in relation with Cardy-Verlinde
formula is explicitly discussed in number of works \[42, 43, 44\]. Using the AdS\(_d\)/CFT\(_{d-1}\) correspondence, it is known that there are 2D gravitational systems that admit 2D CFTs as duals \[36, 45\]. As mentioned before, one can make direct use of the original Cardy formula \[35\] to compute the entropy \[36, 45, 46\]. A comparison of this result with the corresponding one derived from a 2D generalization of the Cardy-Verlinde formula could be very useful in particular for understanding of the puzzling features of the AdS\(_d\)/CFT\(_{d-1}\) correspondence in two dimensions \[47\].

Also of great interest in extending the Cardy-Verlinde formula to \(d = 2\) is the clarification of the meaning of the holographic principle for 2D spacetimes. The boundaries of spacelike regions of 2D spacetimes are points therefore the notion of holographic bound is far from trivial. Furthermore, a generalization of the work of Verlinde to two spacetime dimensions presents several difficulties, essentially for dimensional reasons. Since the black hole horizons are isolated points, one cannot establish an area law \[48\]. Additionally, the spatial coordinate is not a “radial” coordinate due to a scale symmetry and hence one cannot impose a natural normalization on it \[49\].

1 Achúcarro-Ortiz Black Hole

The black hole solutions of Bañados, Teitelboim and Zanelli \[31, 32\] in \((2 + 1)\) spacetime dimensions are derived from a three dimensional theory of gravity

\[
S = \int dx^3 \sqrt{-g} (^{(3)}R + 2\Lambda)
\]

with a negative cosmological constant \((\Lambda = \frac{1}{l^2} > 0)\).

The corresponding line element is

\[
ds^2 = -\left(-M + \frac{r^2}{l^2} + \frac{J^2}{4r^2}\right)dt^2 + \frac{dr^2}{\left(-M + \frac{r^2}{l^2} + \frac{J^2}{4r^2}\right)} + r^2\left(d\theta - \frac{J}{2r^2}dt\right)^2
\]

There are many ways to reduce the three dimensional BTZ black hole solutions to the two dimensional charged and uncharged dilatonic black holes \[50, 51\]. The Kaluza-Klein reduction of the \((2 + 1)\)-dimensional metric \((2)\) yields a two-dimensional line element:

\[
ds^2 = -g(r)dt^2 + g(r)^{-1}dr^2
\]

where

\[
g(r) = \left(-M + \frac{r^2}{l^2} + \frac{J^2}{4r^2}\right)
\]

with \(M\) the Arnowitt-Deser-Misner (ADM) mass, \(J\) the angular momentum (spin) of the BTZ black hole and \(-\infty < t < +\infty, 0 \leq r < +\infty, 0 \leq \theta < 2\pi\).
The outer and inner horizons, i.e. \(r_+ \) (henceforth simply black hole horizon) and \(r_- \) respectively, concerning the positive mass black hole spectrum with spin \((J \neq 0) \) of the line element \((2) \) are given as

\[
r^2_{\pm} = \frac{l^2}{2} \left(M \pm \sqrt{M^2 - \frac{J^2}{l^2}} \right)
\]

and therefore, in terms of the inner and outer horizons, the black hole mass and the angular momentum are given, respectively, by

\[
M = \frac{r^2_+}{l^2} + \frac{J^2}{4r^2_+}
\]

and

\[
J = \frac{2r_+r_-}{l}
\]

with the corresponding angular velocity to be

\[
\Omega = \frac{J}{2r^2_+}.
\]

The Hawking temperature \(T_H \) of the black hole horizon is

\[
T_H = \frac{1}{2\pi r_+} \sqrt{\left(\frac{r^2_+}{l^2} + \frac{J^2}{4r^2_+} \right)^2 - \frac{J^2}{l^2}}
\]

\[
= \frac{1}{2\pi r_+} \left(\frac{r^2_+}{l^2} - \frac{J^2}{4r^2_+} \right).
\]

The area \(A_H \) of the black hole horizon is

\[
A_H = 2\pi l \left(\frac{M + \sqrt{M^2 - \frac{J^2}{l^2}}}{2} \right)^{1/2}
\]

\[
= 2\pi r_+
\]

and thus the entropy of the two-dimensional Achúcarro-Ortiz black hole, if we employ the well-known Bekenstein-Hawking area formula \((S_{BH}) \) for the entropy \([53, 54, 55] \), is given by

\[
S_{bh} = \frac{1}{4\hbar G} A_H = S_{BH}.
\]

Using the BTZ units where \(8\hbar G = 1 \), the entropy of the two-dimensional Achúcarro-Ortiz black hole takes the form

\[
S_{bh} = 4\pi r_+.
\]
2 Cardy-Verlinde Formula

In a recent paper, Verlinde [30] propound a generalization of the Cardy formula which holds for the (1 + 1) dimensional Conformal Field Theory (CFT), to (n + 1)-dimensional spacetime described by the metric

\[ds^2 = -dt^2 + R^2 d\Omega_n \]

(14)

where \(R \) is the radius of an \(n \)-dimensional sphere.

The generalized Cardy formula (hereafter named Cardy-Verlinde formula) is given by

\[S_{\text{CFT}} = \frac{2\pi R}{\sqrt{ab}} \sqrt{E_C (2E - E_C)} \]

(15)

where \(E \) is the total energy and \(E_C \) is the Casimir energy. The definition of the Casimir energy is derived by the violation of the Euler relation as

\[E_C \equiv n (E + pV - TS - \Phi Q) \]

(16)

where the pressure of the CFT is defined as \(p = E/nV \). The total energy may be written as the sum of two terms

\[E(S, V) = E_E(S, V) + \frac{1}{2} E_C(S, V) \]

(17)

where \(E_E \) is the purely extensive part of the total energy \(E \). The Casimir energy \(E_C \) as well as the purely extensive part of energy \(E_E \) expressed in terms of the radius \(R \) and the entropy \(S \) are written as

\[E_C = \frac{b}{2\pi R} S^{1-\frac{1}{n}} \]

(18)

\[E_E = \frac{a}{4\pi R} S^{1+\frac{1}{n}} \]

(19)

After the work of Witten on AdS\(_d\)/CFT\(_{d-1}\) correspondence [56], Savonije and Verlinde proved that the Cardy-Verlinde formula [15] can be derived using the thermodynamics of AdS-Schwarzschild black holes in arbitrary dimension [57].

3 Entropy of Achúcarro-Ortiz black hole in Cardy-Verlinde Formula

We would like to derive the entropy of the two-dimensional Achúcarro-Ortiz black hole [13] from the Cardy-Verlinde formula [15]. First, we evaluate the Casimir energy \(E_C \) using (16). It is easily seen from [9] and [13] that

\[T_H S_{\text{bh}} = 2 \left(\frac{r_+^2}{l^2} - \frac{J^2}{4r_+^2} \right) \]

(20)
while from (7) and (8) we have
\[\Omega J = \frac{J^2}{2r_+^2}. \]
(21)

Since the two-dimensional Achúcarro-Ortiz black hole is asymptotically anti-de-Sitter, the total energy is \(E = M \) and thus the Casimir energy, substituting (6), (20) and (21) in (16), is given as
\[E_C = \frac{J^2}{2r_+}. \]
(22)

where in our analysis the charge \(Q \) is the angular momentum \(J \) of the two-dimensional Achúcarro-Ortiz black hole, the corresponding electric potential \(\Phi \) is the angular velocity \(\Omega \) and \(n = 1 \). Making use of expression (18), Casimir energy \(E_C \) can also be written as
\[E_C = \frac{b}{2\pi R}. \]
(23)

Additionally, it is obvious that the quantity \(2E - E_C \) is given, by substituting (20) and (21) in (16), as
\[2E - E_C = 2\frac{r_+^2}{l^2}. \]
(24)

The purely extensive part of the total energy \(E_E \) by substituting (21) in (17), is given as
\[E_E = \frac{r_+^2}{l^2}. \]
(25)

whilst by substituting (13) in (19), it takes the form
\[E_E = \frac{4\pi a}{R} r_+^2. \]
(26)

At this point it is useful to evaluate the radius \(R \). By equating the right hand sides of (22) and (23), the radius is written as
\[R = \frac{br_+^2}{\pi J^2}. \]
(27)

while by equating the right hand sides (25) and (26) it can also be written as
\[R = 4\pi a l^2. \]
(28)

Therefore, the radius expressed in terms of the arbitrary positive coefficients \(a \) and \(b \) is
\[R = 2r_+ \left(\frac{J}{J} \right) \sqrt{ab}. \]
(29)

Finally, we substitute expressions (22), (24) and (29) which were derived in the context of thermodynamics of the two-dimensional Achúcarro-Ortiz black hole, in the Cardy-Verlinde formula (15) which in turn was derived in the context of CFT
\[S_{\text{CFT}} = \frac{2\pi}{\sqrt{ab}} 2r_+ \left(\frac{J}{J} \sqrt{ab} \right) \sqrt{\frac{J^2}{2r_+^2} \frac{r_+^2}{l^2}} \]
(30)
and we get
\[S_{\text{CFT}} = S_{\text{bh}} \]

(31)

It has been proven that the entropy of the two-dimensional Achúcarro-Ortiz black hole can be expressed in the form of Cardy-Verlinde formula.

4 Conclusions

Among the family of \(AdS_d/CFT_{d-1} \) dualities, the pure gravity case \(AdS_3/CFT_2 \) is the best understood. In contrast, although some progress has been made in understanding AdS/CFT correspondence in two space-time dimensions \([36, 47]\), \(AdS_2/CFT_1 \) remains quite enigmatic. The aim of this paper is to further investigate the \(AdS_2/CFT_1 \) correspondence in terms of Cardy-Verlinde entropy formula. Naively, one might expect that holographic dualities in a two-dimensional bulk context would be the simplest cases of all. This may certainly be true on a calculational level; however, one finds such two-dimensional dualities to be plagued with conceptually ambiguous features \([58]\). One of the remarkable outcomes of the AdS/CFT and dS/CFT correspondence has been the generalization of Cardy’s formula (Cardy-Verlinde formula) for arbitrary dimensionality as well as for a variety of AdS and dS backgrounds. In this paper, we have shown that the entropy of the black hole horizon of Achúcarro-Ortiz spacetime can also be rewritten in the form of Cardy-Verlinde formula.

5 Acknowledgments

The work of E.C.V. has been supported by the European Research and Training Network “EUROGRID-Discrete Random Geometries: from Solid State Physics to Quantum Gravity” (HPRN-CT-1999-00161).

References

[1] G. ’t Hooft, *Dimensional Reduction in Quantum Gravity*, gr-qc/9310026; L. Susskind, J. Math. Phys. 36 (1995) 6377, hep-th/9409089.

[2] R. Bousso, JHEP 9907 (1999) 004, hep-th/9905177; ibid. 9906 (1999) 028, hep-th/9906022; ibid. 0104 (2001) 035, hep-th/0012052.

[3] A. Strominger, JHEP 0110 (2001) 034, hep-th/010613; M. Spradlin, A. Strominger and A. Volovich, *Les Houches Lectures on De Sitter Space*, hep-th/0110007.

[4] M.-I. Park, Phys. Lett. B 440 (1998) 275, hep-th/9806119.
[5] C.M. Hull, JHEP 9807 (1998) 021, hep-th/9806146; ibid. 9811 (1998) 017, hep-th/9807127; C.M. Hull and R.R. Khuri, Nucl. Phys. B 536 (1998) 219, hep-th/9808069; ibid. Nucl. Phys. B 575 (2000) 231, hep-th/9911082.

[6] P.O. Mazur and E. Mottola, Phys. Rev. D 64 (2001) 104022, hep-th/0106151.

[7] V. Balasubramanian, P. Horava and D. Minic, JHEP 0105 (2001) 043, hep-th/0103171.

[8] M.-I. Park, Nucl. Phys. B 544 (1999) 377, hep-th/9811033.

[9] M. Li, JHEP 0204 (2002) 005, hep-th/0106184.

[10] S. Nojiri and S.D. Odintsov, Phys. Lett. B 519 (2001) 145, hep-th/0106191; S. Nojiri and S.D. Odintsov, JHEP 0112 (2001) 033, hep-th/0107134; S. Nojiri, S.D. Odintsov and S. Ogushi, Phys. Rev. D 65 (2002) 023521, hep-th/0108172; S. Nojiri, S.D. Odintsov and S. Ogushi, Int. J. Mod. Phys. A 17 (2002) 4809, hep-th/0205187.

[11] D. Klemm, A.C. Petkou and G. Siopsis, Nucl. Phys. B 601 (2001) 380, hep-th/0101076; D. Klemm, Nucl. Phys. B 625 (2002) 295, hep-th/0106247; S. Cacciatori and D. Klemm, Class. Quant. Grav. 19 (2002) 579, hep-th/0110031.

[12] Y.-h. Gao, Symmetries, Matrices, and de Sitter Gravity, hep-th/0107067.

[13] J. Bros, H. Epstein and U. Moschella, Phys. Rev. D 65 (2002) 84012, hep-th/0107091.

[14] E. Halyo, De Sitter Entropy and Strings, hep-th/0107169.

[15] A.J. Tolley and N. Turok, Quantization of the massless minimally coupled scalar field and the dS/CFT correspondence, hep-th/0108119.

[16] T. Shiromizu, D. Ida and T. Torii, JHEP 0111 (2001) 010, hep-th/0109057.

[17] B. McInnes, Nucl. Phys. B 627 (2002) 311, hep-th/0110061.

[18] A. Strominger, JHEP 0111 (2001) 049, hep-th/0110087.

[19] V. Balasubramanian, J. de Boer and D. Minic, Phys. Rev. D 65 (2002) 123508, hep-th/0110108.

[20] Y. S. Myung, Mod. Phys. Lett. A 16 (2001) 2353, hep-th/0110123.

[21] B. Carneiro da Cunha, Phys. Rev. D 65 (2002) 104025, hep-th/0110169.

[22] R.G. Cai, Y.S. Myung and Y.Z. Zhang, Phys. Rev. D 65 (2002) 084019, hep-th/0110234.
[23] U.H. Danielsson, JHEP 0203 (2002) 020, hep-th/0110265.

[24] A.M. Ghezelbash and R.B. Mann, JHEP 0201 (2002) 005, hep-th/0111217; A.M. Ghezelbash, D. Ida, R.B. Mann and T. Shiromizu, Phys. Lett. B 535 (2002) 315, hep-th/0201004.

[25] M.H. Dehghani, Phys. Rev. D 66 (2002) 044006, hep-th/0205129; ibid. D 65 (2002) 104030, hep-th/0201128; ibid. D 65 (2002) 104003, hep-th/0112002.

[26] S. Ogushi, Mod. Phys. Lett. A 17 (2002) 51, hep-th/0111008.

[27] M.R. Setare, Mod. Phys. Lett. A 17 (2002) 2089, hep-th/0210187.

[28] M. R. Setare and R. Mansouri, *Holographic Thermodynamic on the Brane in Topological Reissner-Nordström de Sitter Space*, to appear in Int. J. Mod. Phys. A, hep-th/0210252.

[29] M.R. Setare and M.B. Altaie, *The Cardy-Verlinde formula and entropy of Topological Kerr-Newman black holes in de Sitter spaces*, to appear in Eur. Phys. J. C.

[30] E. Verlinde, *On the Holographic Principle in a Radiation Dominated Universe*, hep-th/0008140.

[31] M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69 (1992) 1849, hep-th/9204099.

[32] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Phys. Rev. D 48 (1993) 1506, gr-qc/9302012.

[33] J. Maldacena, J. Michelson and A. Strominger, JHEP 9902 (1999) 011, hep-th/9812073.

[34] M. Spradlin and A. Strominger, JHEP 9911 (1999) 021, hep-th/9904143.

[35] J.A. Cardy, Nucl. Phys. B 270 (1986) 186.

[36] M. Cadoni and S. Mignemi, Phys. Rev. D 59 (1999) 081501, hep-th/9810251; M. Cadoni and S. Mignemi, Nucl. Phys. B 557 (1999) 165, hep-th/9902040.

[37] A. Strominger, JHEP 9802 (1998) 009, hep-th/9712251.

[38] M. Cadoni, P. Carta, M. Cavaglìa and S. Mignemi, Phys. Rev. D 65 (2002) 024002, hep-th/0105113.

[39] R. Balbinot and A. Fabbri, Phys. Lett. B 459 (1999) 112, gr-qc/9904034.
[40] R. Balbinot, A. Fabbri, P. Nicolini and P.J. Sutton, Phys. Rev. D 66 (2002) 024014, hep-th/0202036
[41] R. Balbinot, A. Fabbri and I. Shapiro, Nucl. Phys. B 559 (1999) 301, hep-th/9904162
[42] S. Nojiri and S.D. Odintsov, Int. J. Mod. Phys. A 16 (2001) 3273, hep-th/0011115
[43] S. Nojiri and S.D. Odintsov, Class. Quant. Grav. 18 (2001) 5227, hep-th/0103078
[44] I. Brevik, K.A. Milton and S.D. Odintsov, Annals Phys. 302 (2002) 120, hep-th/0202048
[45] M. Cadoni and M. Cavaglià, Phys. Rev. D 63 (2001) 084024, hep-th/0008084; M. Cadoni and M. Cavaglià, Phys. Lett. B 499 (2001) 315, hep-th/0005179
[46] A.J.M. Medved, Class. Quant. Grav. 19 (2002) 2503, hep-th/0201079.
[47] A. Strominger, JHEP 9901 (1999) 007, hep-th/9809027; S. Cacciatori, D. Klemm and D. Zanon, Class. Quant. Grav. 17 (2000) 1731, hep-th/9910065
[48] M. Cadoni, P. Carta and S. Mignemi, Nucl. Phys. B 632 (2002) 383, hep-th/0202180
[49] M. Cadoni and P. Carta, Phys. Lett. B 522 (2001) 126, hep-th/0107234
[50] A. Achucarro and M.E. Ortiz, Phys. Rev. D 48 (1993) 3600, hep-th/9304068
[51] D.A. Lowe and A. Strominger, Phys. Rev. Lett. 73 (1994) 1468, hep-th/9403186
[52] A. Kumar and K. Ray, Phys. Lett. B 351 (1995) 431, hep-th/9410068
[53] J.D. Bekenstein, Phys. Rev. D 7 (1973) 2333.
[54] J.D. Bekenstein, Phys. Rev. D9 (1974) 3292.
[55] S.W. Hawking, Phys. Rev. D 13 (1976) 191.
[56] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505, hep-th/9803131.
[57] I. Savonije and E. Verlinde, Phys. Lett. B 507 (2001) 305, hep-th/0102042.
[58] A.J.M. Medved, Phys. Rev. D 67 (2003) 084016, hep-th/0209029