Phosphorylation of the G_{q/11}-coupled M_{3}-Muscarinic Receptor Is Involved in Receptor Activation of the ERK-1/2 Mitogen-activated Protein Kinase Pathway*

David C. Budd, Gary B. Willars, John E. McDonald, and Andrew B. Tobin‡

From the Department of Cell Physiology and Pharmacology, University of Leicester, P. O. Box 138, Medical Sciences Building, University Road, Leicester, LE1 9HN, United Kingdom

We investigated the role played by agonist-mediated phosphorylation of the G_{q/11}-coupled M_{3}-muscarinic receptor in the mechanism of activation of the mitogen-activated protein kinase pathway, ERK-1/2, in transfected Chinese hamster ovary cells. A mutant of the M_{3}-muscarinic receptor, where residues Lys^{370}-Ser^{425} of the third intracellular loop had been deleted, showed a reduced ability to activate the ERK-1/2 pathway. This reduction was evident despite the fact that the receptor was able to couple efficiently to the phospholipase C second messenger pathway. Importantly, the ERK-1/2 responses to both the wild-type M_{3}-muscarinic receptor and ΔLys^{370}-Ser^{425} receptor mutant were dependent on the activity of protein kinase C. Our results, therefore, indicate the existence of two mechanistic components to the ERK-1/2 response, which appear to act in concert. First, the activation of protein kinase C through the diacylglycerol arm of the phospholipase C signaling pathway and a second component, absent in the ΔLys^{370}-Ser^{425} receptor mutant, that is independent of the phospholipase C signaling pathway. The reduced ability of the ΔLys^{370}-Ser^{425} receptor mutant to activate the ERK-1/2 pathway correlated with an ~80% decrease in the ability of the receptor to undergo agonist-mediated phosphorylation. Furthermore, we have previously shown that M_{3}-muscarinic receptor phosphorylation can be inhibited by a dominant negative mutant of casein kinase 1α and by expression of a peptide corresponding to the third intracellular loop of the M_{3}-muscarinic receptor. Expression of these inhibitors of receptor phosphorylation reduced the wild-type M_{3}-muscarinic receptor ERK-1/2 response. We conclude that phosphorylation of the M_{3}-muscarinic receptor on sites in the third intracellular loop by casein kinase 1α contributes to the mechanism of receptor activation of ERK-1/2 by working in concert with the diacylglycerol/PKC arm of the phospholipase C signaling pathway.

It is now clear that mitogenic signals mediated by the mitogen-activated protein (MAP) kinase, ERK-1 and ERK-2, can be initiated by both receptor-tyrosine kinases (RTKs) and by the heptahedral G-protein-coupled receptors (GPCRs). The activation of the ERK-1/2 pathway by GPCRs is mediated by any one of a number of mechanisms (1) probably reflecting the diversity of receptors within this large gene family. These mechanisms appear quite distinct; for example, ERK-1/2 activation has been shown to proceed via a tyrosine kinase-dependent mechanism for some receptors and a tyrosine kinase-independent manner for others (2, 3). Despite this diversity, common features do exist, the most prominent of which is that GPCRs activate ERK-1/2 by acting initially through "classical" heterotrimeric G-protein signaling pathways (4). For example, stimulation of ERK-1/2 by G_{q}-coupled receptors, such as M_{2}-muscarinic, and α_{2A}-adrenergic receptors, is pertussis toxin sensitive indicating a role of G_{i}-proteins (5, 7). It is proposed that liberation of β_{y}-subunits from G_{i}-proteins is responsible for the initiation of tyrosine phosphorylation (3, 8), possibly by the activation of Src or Src-like tyrosine kinases (9, 10, 11), that ultimately results in Ras-dependent ERK-1/2 activation (3, 6, 7, 12).

Similarly, G_{q/11}-coupled receptors that stimulate phospholipase C and the subsequent hydrolysis of phosphatidylinositol 4,5-bisphosphate to produce the second messengers inositol 1,4,5-trisphosphate (Ins(1,4,5)P_{3}) and diacylglycerol, activate the ERK-1/2 pathway via G_{q/11}-heterotrimeric G-proteins. In this case there is evidence for the involvement of both β_{y}-subunits (6, 13, 14) and G_{o/11}-subunits (3, 10, 12, 14, 15). Furthermore, the activation of ERK-1/2 by these receptors appears to be dependent on PKC because inhibition of PKC either abolishes (3, 15–17) or significantly diminishes (18–20) the ERK-1/2 response to G_{q/11}-coupled receptors. This is particularly apparent for the M_{3}-muscarinic receptor where the ERK-1/2 response is blocked by >85% by either PKC inhibition or PKC down-regulation (21–24).

Studies have also indicated that the Ca^{2+} mobilization arm of the phospholipase C signaling pathway is important in the activation of ERK-1/2 by G_{q/11}-coupled receptors. Bradykinin, LPA (25), and α_{1B}-adrenergic (10) receptor-stimulated ERK-1/2 responses were shown to be dependent on changes in intracellular Ca^{2+}. Receptor-mediated Ca^{2+} mobilization is proposed to activate the Ca^{2+}/PKC-sensitive tyrosine protein kinase, Pyk2 (26), which is thought to act upstream of Ras in the Erk-1/2 pathway (10, 25). In the case of receptors such as the angiotensin AT_{1} (27), bradykinin (28), CCK_{A} (29), chemokine CXCR1/2 (19), and purinergic P_{2Y} receptors (20, 29), the activation of ERK-1/2 is proposed to be via transactivation of RTKs, a process that is dependent on Ca^{2+} mobilization and dependent protein kinase; RTK, receptor-tyrosine kinases; CHO, Chinese hamster ovary cells.

* This work was supported by Wellcome Trust Grant No. 047600/Z/96. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed. Tel.: 0116-2522935; Fax: 0116-2523996; E-mail: TBA@le.ac.uk.

The abbreviations used are: MAP, mitogen-activated protein; [Ca^{2+}]_{i}, intracellular calcium concentration; CKIα, casein kinase 1α; ERK, extracellular-regulated protein kinases; GPCR, G-protein-coupled receptor; GRK, G-protein-coupled receptor kinase; Ins(1,4,5)P_{3}, inositol (1,4,5)-trisphosphate; PKC, protein kinase C; PKA, cAMP-dependent protein kinase; RTK, receptor-tyrosine kinases; CHO, Chinese hamster ovary cells.
subsequent activation of Pyk2 or related kinases. These studies indicate that the mechanism for G_{q11}-coupled receptor-mediated ERK-1/2 activation is dependent on the coupling of the receptor to G_{q11}-heterotrimeric G-proteins and subsequent phospholipase C signaling through Ca$^{2+}$ mobilization and PKC activation. A further component in the activation of the ERK-1/2 pathway by GPCRs has recently been suggested from studies on the β_{2}-adrenergic receptor where receptor phosphorylation has been shown to play a central role. The β_{2}-adrenergic receptor is phosphorylated by both PKA and the G-protein coupled receptor kinases (GRKs) (30). PKA phosphorylation of the receptor on sites on the third intracellular loop has been proposed to act as a “molecular switch” coupling the receptor to G-proteins and subsequently the activation of the ERK-1/2 pathway via the generation of β_{Y}-subunits (31). The β_{2}-adrenergic receptor can also be phosphorylated in an agonist-dependent manner by the GRKs, particularly GRK-2. This has classically been considered to result in the recruitment of β-arrestin and receptor desensitization (30). However, recent studies have shown that β-arrestin can act as an adaptor protein recruiting activated c-Src to the plasma membrane in a process that is essential in the activation of the ERK-1/2 pathway by the β_{2}-adrenergic receptor (32).

In the present paper, we investigate the role played by receptor phosphorylation in the activation of the ERK-1/2 pathway by the G_{q11}-coupled M_{3}-muscarinic receptor. This receptor is rapidly phosphorylated on serine following agonist occupation (33). However, in contrast to the β_{2}-adrenergic receptor, which is phosphorylated by the GRKs, M_{3}-muscarinic receptors are phosphorylated in an agonist-dependent manner on sites in the third intracellular loop of casein kinase 1\(\alpha\) (CK1\(\alpha\)) (34, 35).

Deletion of a region of the third intracellular loop of the human M_{3}-muscarinic receptor (Lys370–Ser425) reduced receptor phosphorylation by ~80% (35). Furthermore, expression of a dominant negative mutant of CK1\(\alpha\) or a peptide corresponding to the third intracellular loop of the receptor, reduced receptor phosphorylation (35). Using these reagents in the present study, we investigate the role played by agonist-mediated receptor phosphorylation in the activation of the ERK-1/2 pathway.

Experimental Procedures

Cell Culture—CHO cell lines were grown in medium consisting of αMEM supplemented with 10% fetal calf serum, 100 IU/ml penicillin, 100 μg/ml streptomycin, and 2.5 μg/ml fungizone. Cells were grown in a 5% CO$_2$, 95% air, humidified incubator at 37 °C. The ΔLys370–Ser425 receptor mutant clone 2 was maintained in basicitide (5 μg/ml).

Generation of the Dominant Negative Mutant of CK1\(\alpha\) (F-CK1αK46R)—The dominant negative mutant of CK1\(\alpha\) (F-CK1αK46R) was generated by point mutagenesis of the lysine residue at position 46, which represents the invariant lysine at the ATP binding site of CK1\(\alpha\). The lysine residue was mutated to an arginine as described previously (35).

Generation of the Third Intracellular Loop Peptide (3i-Loop Peptide)—The sequence encoding amino acids Ser346–Leu368 from the third intracellular loop of the M_{3}-muscarinic receptor was cloned into BamHI and EcoRI sites in pcDNA-3 (Invitrogen) as described previously (35).

Generation of the M_{3}-Muscarinic Receptor Deletion Mutant ΔLys370Ser425—Two stably transfected CHO cell lines expressing the M_{3}-muscarinic receptor deletion mutant ΔLys370–Ser425 were used in the present study. Clone 1 was generated by digestion of the M_{3}-muscarinic receptor coding sequence contained in pcDNA-3 (Invitrogen) with HindIII and then religating the plasmid. This removed the coding sequence for amino acids Lys370–Ser425 inclusive, but maintained the reading frame of the remaining cDNA. This construct was transfected into CHO cells, and clones were selected using medium supplemented with G-418 (200 μg/ml). The second clone used (clone 2) originated from another transfection where the cDNA encoding the ΔLys370–Ser425 receptor mutant was subcloned into pcDNA-6 (Invitrogen). Clones from this transfection were selected using medium supplemented with blasticidin (5 μg/ml).

Transient Transfections of CHO Cells—Cells were plated onto 6-well dishes 24 h before transfection. Cells (15–20% confluent) were transfected with either 3 μg of P-FKClαK46R or 3i-loop peptide per well using 8 μl of Fugene 6 transfection reagent (Roche Molecular Biochemicals). Cells were used 48 h after transfection. Using a green fluorescent protein expression construct, we estimated that the transfection efficiency was ~70%.

Quantification of M_{3}-Muscarinic Receptor Expression—M_{3}-Muscarinic receptor expression on intact plated-down cells was determined using a saturating concentration of the hydrophilic muscarinic antagonist $[^{3}H]$N-methyl scopolamine ($[^{3}H]$NMS, ~0.5 nM) as described previously (35). Nonspecific binding was determined in the presence of 20 μM atropine and was <3% of the total binding.

Mass Ins(1,4,5)P$_3$ Determination—Cells grown in 24-well dishes were washed with Krebs/HEPES buffer (HEPES (10 mM), NaCl (118 mM), KH$_2$PO$_4$ (1.17 mM), KCl (4.3 mM), MgSO$_4$·7H$_2$O (1.17 mM), CaCl$_2$ (1.3 mM), NaHCO$_3$ (25.0 mM), glucose (11.7 mM), pH 7.4) and challenged with agonist for the appropriate times. Incubations were terminated by addition of EDTA and freon/tri-n-octylamine as described previously (36). Extracts were brought to pH 7 by addition of NaHCO$_3$ and stored at 4 °C until analysis. Ins(1,4,5)P$_3$ mass measurements were performed using a radio-receptor assay described previously (37).

ERK-1/2 Assay—CHO cells grown to confluence in 6-well plates were serum-starved for 1 h in Krebs/HEPES buffer and then stimulated with the appropriate agents. Stimulation was terminated by aspiration, and cells were incubated for 10 min in lysis buffer (Tris (20 mM), Nonidet P-40 (0.5%), NaCl (250 mM), EDTA (3 mM), EGTA (3 mM), phenylmethylsulfonyl fluoride (1 mM), Na$_3$VO$_4$ (1 mM), dithiothreitol (1 mM), benzamidine (5 μg/ml), pH 7.6) at 4 °C. Solubilized CHO cell lysates were pre-cleared by centrifuging at 14,000 rpm for 5 min. Endogenous MAP kinase was immunoprecipitated using 0.2 μg of anti-Erk-1/2 antisera (Santa Cruz). Protein A-Sepharose immobilized MAP kinase was washed twice in lysis buffer and twice in assay buffer (HEPES (20 mM), β-glycerophosphate (20 mM), MgCl$_2$ (10 mM), dithiothreitol (1 mM), Na$_3$VO$_4$ (50 μM), pH 7.2). Washed pellets were resuspended in assay buffer (Tris (20 mM), β-glycerophosphate (20 mM), MgCl$_2$ (10 mM), dithiothreitol (1 mM), benzamidine (5 μg/ml), pH 7.6) at 4 °C. Solubilized CHO cell lysates were left to proceed for 20 min at 37 °C. Reactions were terminated by the addition of 25% trichloroacetic acid and spotted onto P81 phosphocellulose paper squares (Whatman). Squares were washed four times with 0.05% orthophosphoric acid and once with acetone, and radioactivity associated with the EGFr was determined by liquid scintillation counting.

**Determination of Intracellular Ca$^{2+}$ Concentrations (Ca$^{2+}_{i}$)—Confluent monolayers of cells in 175 cm2 flasks were harvested and resuspended in 2.5 ml of Krebs/HEPES buffer. A 0.5-ml aliquot of this was removed for determination of cellular autofluorescence. Fura-2-acetoxyethyl ester (Fura-2-AM, 5 μM) was added to the remaining 2 ml, which was then left for ~40 min at room temperature with gentle mixing. Supernatant containing intracellular Fura-2-AM was removed following gentle centrifugation of the 0.5-ml aliquots. Cells were resuspended in a cuvette containing 3 ml of Krebs/HEPES buffer at 37 °C. Using a Perkin-Elmer LS-5B spectrofluorimeter with a cuvette water jacket to maintain the temperature at 37 °C, emission at 509 nm was recorded following excitation at both 340 and 380 nm. The excitation ratio was recorded every 1 s and corrected to $[Ca^{2+}_{i}]$, as previously reported (38) using 0.1% Triton X-100 in the presence of a saturating [Ca$^{2+}$]$_{i}$ to determine R$_{max}$ and the addition of EGTA to determine R$_{min}$. Cells were challenged with 10–50 μM of agonist. Initial experiments were conducted in the presence of 1.3 mM extracellular [Ca$^{2+}$] as represented in Fig. 4B. In experiments to determine the potency of intracellular Ca$^{2+}$ mobilization by the full agonist methacholine (represented in Fig. 4C), the experiments were conducted in Ca$^{2+}$-free medium where the Krebs/HEPES buffer had been supplemented with EGTA to reduce extracellular [Ca$^{2+}$] to ~100 nM (determined using Fura-2). This was to ensure that the ability of the agonist to mobilize intracellular Ca$^{2+}$ stores was being measured, because any changes in intracellular Ca$^{2+}$ concentrations under these conditions would have been the result of release of Ca$^{2+}$ from intracellular stores with no contribution being made form an influx of extracellular Ca$^{2+}$.

RESULTS

ERK-1/2 Activation by a Phosphorylation-deficient Mutant of the M_{3}-Muscarinic Receptor—Previous studies from our lab-
wild-type M₃-muscarinic receptor (CHO-m3 cells) showed a 10-

obtained previously using another distinct M₃-muscarinic re-

expressing the wild-type receptor and two separate clones: clone 1 (A), clone 2 (B), expressing the ΔLys370–Ser425 receptor mutant. The data presented represent the mean ± S.E. for three experiments.

oratory and others (21–24) have shown that M₃-muscarinic receptors activate the ERK-1/2 pathway in a PTX-insensitive, PKC-dependent manner. The time course for ERK-1/2 activation peaks at 5 min then falls to a plateau, which is maintained for at least 20 min (21). To test whether receptor phosphorylation plays a role in the regulation of the ERK-1/2 pathway, a mutant M₃-muscarinic receptor was used where residues Lys370–Ser425 of the third intracellular loop of the human M₃-muscarinic receptor had been deleted. This mutant receptor, termed ΔLys370–Ser425, had previously been demonstrated to show an ~80% decrease in its ability to undergo agonist-mediated phosphorylation (35). Two stably transfected CHO cell lines were prepared expressing the ΔLys370–Ser425 receptor at levels comparable with the wild-type controls (B_{max} values in fmols of receptor/mg protein: wild type = 908 ± 3, ΔLys370–Ser425 mutant clone 1 = 782 ± 67, mutant clone 2 = 1209 ± 10).

Concentration-response analysis of CHO cells expressing the wild-type M₃-muscarinic receptor (CHO-m3 cells) showed a receptor-mediated ERK-1/2 activation with a half-maximal response (EC_{50}) to the agonist carbachol of 45 ± 1.3 nM (n = 3, ± S.E., Fig. 1.) This is very similar to the EC_{50} value that we obtained previously using another distinct M₃-muscarinic receptor-transfected CHO cell line (21). In contrast to the wild-type receptor, the mutant receptor showed a rightward shift in the ERK-1/2 concentration-response curve to carbachol (Fig. 1). The EC_{50} values for the two clonal cell lines expressing the ΔLys370–Ser425 mutant were 660 ± 100 nM and 300 ± 100 nM (n = 3, ± S.E.) for clones 1 and 2, respectively. These EC_{50} values were significantly different from the wild-type receptor values (p < 0.05, Student’s t test). In addition to a reduction in the potency of carbachol, there was also a reduction in the maximal ERK-1/2 response with clone 1 showing a 23 ± 7% reduction and clone 2 a 61 ± 5% reduction (n = 3, ± S.E.) in the maximal carbachol response compared with wild-type receptor controls (Fig. 1). The time course for activation of ERK-1/2 was not, however, significantly different between the control and mutant receptors (data not shown).

To test for the possibility of clonal variation between the wild-type CHO-m3 cells and mutant receptor cell lines, concentration-response curves for serum-induced ERK-1/2 activation were carried out. The concentration-response curves for serum-activated ERK-1/2 in the mutant receptor CHO cell lines were not significantly different from that of the CHO-m3 cells (Fig. 2). This indicated that there was no clonal difference in the ERK-1/2 pathway stimulated by serum.

PKC Dependence of Muscarinic ERK-1/2 Responses—We have previously shown that the wild-type M₃-muscarinic receptor-mediated ERK-1/2 response is dependent on PKC because inhibition of PKC using Ro-318220 or down-regulation of PKC reduced the muscarinic-ERK-1/2 response by >90% (21). The ΔLys370–Ser425 receptor mutant response also appeared to be sensitive to PKC inhibition in a manner similar to the wild-type receptor. The phorbol 12,13-dibutyrate ERK-1/2 responses in the CHO-m3 cells and cells expressing ΔLys370–Ser425 receptor mutant (clone 2) were completely inhibited by the PKC inhibitor Ro-318220 (Fig. 3). The ERK-1/2 responses to carbachol in the CHO-m3 cells and the cells expressing the ΔLys370–Ser425 receptor mutant were inhibited (~90%) by Ro-318220 (Fig. 3).
the phospholipase C pathway in a manner analogous to the dominant mutant of CK1α. We demonstrated that transient expression of a dominant negative mutant appears to give a more robust Ins(1,4,5)P3 response than the wild-type receptor, suggesting that the receptor may be more efficiently coupled to phospholipase C (35). In the present study, this characteristic is evident by an ~3.0-fold greater production of Ins(1,4,5)P3 at maximal agonist concentration (Fig. 4A).

We have reported previously that despite the fact that the ΔLys370–Ser425 receptor mutant was able to drive a larger Ins(1,4,5)P3 response, the potency of the full agonist carbachol to mediate an Ins(1,4,5)P3 response was not significantly different between the mutant and wild-type receptors, which had EC50 values of 9.71 ± 1.9 μM and 7.14 ± 3.2 μM (n = 3, ± S.E.), respectively (35).

The ability of the ΔLys370–Ser425 receptor mutant (clone 1) to mobilize intracellular Ca2+ was also tested. The time course for receptor-mediated increases in intracellular Ca2+ for both mutant and wild-type receptors were similar (Fig. 4B). Interestingly, in contrast to the Ins(1,4,5)P3 response, there was no significant difference in the magnitude of the Ca2+ mobilization response between the wild-type and ΔLys370–Ser425 receptor mutant. Similarly, the concentration-response curves for peak Ca2+ mobilization were not significantly different with EC50 values of 166 ± 70 nM and 258 ± 50 nM (n = 3, ± S.E.) for the wild-type M3-muscarinic receptor and ΔLys370–Ser425 receptor mutant, respectively (Fig. 4C). (Note; in these Ca2+ mobilization experiments the full agonist methacholine was used. Both methacholine and carbachol are full agonists at the M3-muscarinic receptor and promote almost identical responses.)

Effect of the CK1α Dominant Negative Mutant (F-CK1α-K46R) and the 3i-Loop Peptide on M3-Muscarinic Receptor-mediated ERK-1/2 Activation—Our previous studies had shown that CK1α was able to phosphorylate the M3-muscarinic receptor in an agonist-dependent manner (34). Furthermore, we demonstrated that transient expression of a dominant negative mutant of CK1α (F-CK1α-K46R) was able to reduce receptor phosphorylation by ~40% (35). In these earlier studies, we also showed that expression of a peptide corresponding to the third intracellular loop of the M3-muscarinic receptor (Ser345–Leu463), named the 3i-loop peptide, resulted in inhibition of receptor phosphorylation by >70% (35). To test the role that receptor phosphorylation might play in ERK-1/2 activation we transiently transfected F-CK1α-K46R and the 3i-loop peptide into CHO-m3 cells stably expressing the M3-muscarinic receptor. Expression of F-CK1α-K46R and the 3i-loop peptide resulted in the reduction of the carbachol-mediated ERK-1/2 response by 53.9 ± 7.7% and 49.4 ± 3.2%, respectively (Fig. 5A).

Control experiments were designed to test the ability of F-CK1α-K46R or the 3i-loop peptide to inhibit nonreceptor-mediated ERK-1/2 activation. Hence, the effect of transient transfection of F-CK1α-K46R or the 3i-loop peptide on the...
phorbol 12,13-dibutyrate ERK-1/2 response in native CHO-K1 cells was tested. It was found that neither F-CK1α-K46R or the 3i-loop peptide had any significant effect on the phorbol ester-mediated ERK-1/2 response in these cells (Fig. 5B).

It is interesting to note that in experiments where phorbol esters were used to stimulate ERK-1/2 activity in CHO-m3 cells the F-CK1α-K46R construct inhibited the phorbol ester response by 31% (data not shown). The fact that the F-CK1α-K46R construct had very little effect on the phorbol ester response in CHO-K1 cells, but a significant effect in CHO-m3 cells, would suggest that in CHO-m3 cells the M3-muscarinic receptor itself might contribute to the phorbol ester ERK-1/2 response. This may be because of the fact that phorbol esters are able to mediate phosphorylation of the agonist-unoccupied M3-muscarinic receptor (33). This and other possibilities are presently under investigation.

Analysis of the ERK-1/2 concentration-response curves to carbachol demonstrated that in addition to reducing the maximal response the 3i-loop peptide and F-CK1α-K46R significantly (p < 0.05, Student’s t test) reduced the potency of carbachol by 15.7-fold and 1.8-fold, respectively (Fig. 6).

DISCUSSION

Despite intensive research, the mechanisms employed by GPCRs in the activation of the ERK-1/2 pathway are generally poorly understood. One reason for this is that GPCRs are able to employ a number of diverse mechanisms in the activation of ERK-1/2 depending on the receptor type and the cellular environment (4). For example, M3-muscarinic receptor ERK-1/2 responses have been shown to operate in both a Ras-dependent (6) and Ras-independent (3) fashion using a mechanism, which in some cell types, employs tyrosine phosphorylation (2) and in others acts in a tyrosine kinase-independent manner (3). To add a further level of complexity, it has now become clear that a number of Gq/11-coupled receptors can simultaneously employ at least two independent mechanisms to activate the ERK-1/2 pathway (20, 24, 39). Despite this diversity there is one overriding common feature in the mechanisms employed by Gq/11-coupled receptors, namely, the involvement of the Gq/11-heterotrimeric G-proteins and the subsequent activation of the phospholipase C signaling pathway. Both the Ins(1,4,5)P3/Ca2⁺ mobilization and diacylglycerol/PKC arms of the phospholipase C signaling pathway have been implicated to play a role and in many instances appear to provide the primary signal that links receptor activation to the initiation of the ERK-1/2 pathway.

We have shown previously that Gq/11-coupled M3-muscarinic receptors expressed in CHO cells stimulate the ERK-1/2 pathway in a PKC-dependent manner (21). This was confirmed in the present study and is consistent with previous reports from other laboratories (22–24) and would suggest that activation of
PKC by the M₃-muscarinic receptor is sufficient to stimulate ERK-1/2. This conclusion could be applied to a large number of Gq/11-coupled receptors that show PKC-dependent activation of ERK-1/2, such as prostaglandin F₂α, P₂Y2-purinergic, CCK (18), M₁-muscarinic, α₁-adrenergic (3), and bradykinin (17) receptors. Furthermore, the ability of phorbol esters to increase ERK-1/2 activity (40) provides evidence that simply stimulating PKC is sufficient to drive the activation of ERK-1/2.

Thus, one model for ERK-1/2 activation by Gq/11-coupled receptors, including the M₃-muscarinic receptor, would be that receptor-mediated PKC activation is sufficient to provide the signal that elicits the ERK-1/2 response.

Our data, however, using the ΔLys⁷⁷₀–Ser⁴²₅ M₃-muscarinic receptor mutant would suggest that this simple model is not correct. Deletion of Lys⁷⁷₀–Ser⁴²₅ in the third intracellular loop of the human M₃-muscarinic receptor resulted in a reduction in the ability of the receptor to stimulate ERK-1/2 activity. This reduction was evident despite the fact that the receptor was efficiently coupled to the phospholipase C signaling pathway.

In fact this study, consistent with our previous report (35), demonstrates that the ΔLys⁷⁷₀–Ser⁴²₅ receptor mutant is more efficiently coupled to the phospholipase C pathway than the wild-type receptor. This suggests that deletion of residues Lys⁷⁷₀–Ser⁴²₅ removes a domain involved in the ERK-1/2 pathway. It is of course possible that deletion of residues Lys⁷⁷₀–Ser⁴²₅ reduces in its ability to undergo agonist-dependent phosphorylation by ~80% (35).

The reduced ability of the ΔLys⁷⁷₀–Ser⁴²₅ receptor mutant to undergo agonist-mediated phosphorylation correlates with the reduction in the receptor ERK-1/2 response and suggests that there is a link between receptor phosphorylation and activation of the ERK-1/2 pathway. It is of course possible that deletion of residues Lys⁷⁷₀–Ser⁴²₅ removes a domain involved in the ERK-1/2 response but which is not connected with receptor phosphorylation. This, in itself, is an intriguing possibility and one that is being actively tested in our laboratory at the moment.

The most prominent PKC-independent mechanism assigned to Gq/11-coupled receptor activation of ERK-1/2 is via the activity of the Ca²⁺-sensitive tyrosine kinase Pyk2 or related kinases (25). Ins(1,4,5)P₃-dependent increases in intracellular Ca²⁺ has been demonstrated to stimulate Pyk2 activity resulting in “transactivation” of RTKs and subsequent activation of the ERK-1/2 pathway (18–20, 27–29). We can, however, eliminate the involvement of this process in the explanation of the results obtained with the ΔLys⁷⁷₀–Ser⁴²₅ receptor mutant for two reasons. First, the muscarinic receptor ERK-1/2 response in CHO cells is independent of changes in intracellular Ca²⁺ (22) suggesting that Pyk2 is not involved in the M₃-muscarinic receptor response in these cells. Second, GPCR transactivation of RTKs via Pyk2 is a process that involves Ins(1,4,5)P₃-mediated increases in intracellular Ca²⁺ (26). Because the ΔLys⁷⁷₀–Ser⁴²₅ receptor couples efficiently to the phospholipase C pathway, stimulating Ca²⁺ mobilization in an identical manner to the wild-type receptor, the involvement of a Ca²⁺-sensitive mechanism would not explain the lack of responsiveness of this receptor mutant.

Hence, the data presented here identifies a novel component of the M₃-muscarinic receptor ERK-1/2 response that is independent of activation of the Gq/11/phospholipase C pathway and dispels the notion that Gq/11-coupled receptors mediate ERK-1/2 activation by solely stimulating PKC or activating tyrosine phosphorylation via Ins(1,4,5)P₃-dependent increases in intracellular Ca²⁺.

We next tested the possibility that the novel component of the M₃-muscarinic receptor ERK-1/2 response involved agonist-mediated phosphorylation of the receptor. Our earlier studies had shown that the M₃-muscarinic receptor is rapidly phosphorylated on serine in an agonist-dependent manner (33). Extensive studies by our group have identified CK1α as a cellular kinase able to phosphorylate the M₃-muscarinic receptor (also the M₁-muscarinic receptor and rhodopsin) in an agonist-dependent manner (34, 35, 41, 42). These studies established for the first time a mechanism for agonist-dependent phosphorylation of GPCRs that was distinct from that of the GRKs. During these studies we suggested that sites within the third intracellular loop of the M₃-muscarinic receptor were important for the phosphorylation of the receptor. To test this we generated the ΔLys⁷⁷₀–Ser⁴²₅ receptor mutant, which lacked eight potential serine phosphate acceptor sites and the putative CK1α binding site (His³⁷⁴–Val³⁹¹) (35). Consistent with our hypothesis, the ΔLys⁷⁷₀–Ser⁴²₅ receptor mutant was reduced in its ability to undergo agonist-dependent phosphorylation by ~80% (35).

The reduced ability of the ΔLys⁷⁷₀–Ser⁴²₅ receptor mutant to undergo agonist-mediated phosphorylation correlates with the reduction in the receptor ERK-1/2 response and suggests that there is a link between receptor phosphorylation and activation of the ERK-1/2 pathway. It is of course possible that deletion of residues Lys⁷⁷₀–Ser⁴²₅ removes a domain involved in the ERK-1/2 response but which is not connected with receptor phosphorylation. This, in itself, is an intriguing possibility and one that is being actively tested in our laboratory at the moment.

We further investigated the role of receptor phosphorylation in the M₃-muscarinic receptor-mediated ERK-1/2 response by...
inhibiting phosphorylation of the wild-type receptor. We have previously demonstrated that inhibition of CK1α-mediated M₃-muscarinic receptor phosphorylation could be achieved using either a dominant negative mutant of CK1α, F-CK1α-K46R, or expression of a mutant of the third intracellular loop of the M₃-muscarinic receptor (3i-loop peptide) that acted as a pseudo-substrate for CK1α (35). In the present study, expression of these constructs resulted in rightward shift in the concentration-response curve for carbachol-mediated ERK-1/2 activation and a reduction in the maximal ERK-1/2 response. The effect of these inhibitors of receptor phosphorylation appeared to be specific for the M₃-muscarinic-mediated ERK-1/2 response because expression of these constructs in CHO-K1 cells did not greatly affect the phorbol ester-mediated ERK-1/2 response. Furthermore, previously we have shown that F-CK1α-K46R did not prevent the receptor from coupling to the phospholipase C pathway but in fact increased the ability of the receptor to activate phospholipase C (35). Thus, the depressed ERK-1/2 response observed in the presence of inhibitors of receptor phosphorylation is receptor specific and produces a response in the wild-type receptor that is very similar to that observed for the phosphorylation-deficient ΔLys^370-Ser^425 receptor mutant. These data suggest, therefore, that agonist-mediated phosphorylation of the M₃-muscarinic receptor contributes to the mechanism of ERK-1/2 activation.

This conclusion is supported by recent reports linking phosphorylation of the β₂-adrenergic receptor to the regulation of ERK-1/2 activity. PKA-mediated phosphorylation of the β2-adrenergic receptor has been demonstrated to act as a “molecular switch” resulting in the coupling of the receptor to the ERK-1/2 pathway via G protein βγ-subunits (31). Furthermore, agonist-mediated GRK-2 phosphorylation has been shown to recruit a β-arrestin-c-Src complex to the β2-adrenergic receptor (32). Preventing the ability of these constructs resulted in a rightward shift in the concentration-response curve for carbachol-mediated ERK-1/2 activation and a reduction in the maximal ERK-1/2 response. The effect of these inhibitors of receptor phosphorylation appeared to be specific for the M₃-muscarinic-mediated ERK-1/2 response because expression of these constructs in CHO-K1 cells did not greatly affect the phorbol ester-mediated ERK-1/2 response. Furthermore, previously we have shown that F-CK1α-K46R did not prevent the receptor from coupling to the phospholipase C pathway but in fact increased the ability of the receptor to activate phospholipase C (35). Thus, the depressed ERK-1/2 response observed in the presence of inhibitors of receptor phosphorylation is receptor specific and produces a response in the wild-type receptor that is very similar to that observed for the phosphorylation-deficient ΔLys^370-Ser^425 receptor mutant. These data suggest, therefore, that agonist-mediated phosphorylation of the M₃-muscarinic receptor contributes to the mechanism of ERK-1/2 activation.

In conclusion, we propose that agonist-mediated receptor phosphorylation via CK1α initiates a process that acts in concert with PKC to mediate a full M₃-muscarinic receptor ERK-1/2 response (Fig. 7). The exact nature of the mechanism initiated by receptor phosphorylation is presently unclear but appears not to involve Gi/11 heterotrimeric G-proteins nor the activation of the phospholipase C second messenger signaling cascade. We are presently pursuing the possibility that phosphorylation of sites in the third intracellular loop of the M₃-muscarinic receptor recruits an adaptor protein that is important in the activation of the ERK-1/2 pathway in a manner analogous to β-arrestin-c-Src and the β2-adrenergic receptor.

Acknowledgments—We thank Prof. Nahorski who, together with Drs. A. B. Tobin and G. B. Willars, initiated the work on the ΔLys^370-Ser^425 receptor mutant.