Non-clairvoyant Precedence Constrained Scheduling

Naveen Garg† Anupam Gupta‡ Amit Kumar§ Sahil Singla¶

May 7, 2019

Abstract

We consider the online problem of scheduling jobs on identical machines, where jobs have precedence constraints. We are interested in the demanding setting where the jobs sizes are not known up-front, but are revealed only upon completion (the non-clairvoyant setting). Such precedence-constrained scheduling problems routinely arise in map-reduce and large-scale optimization. In this paper, we make progress on this problem. For the objective of total weighted completion time, we give a constant-competitive algorithm. And for total weighted flow-time, we give an $O(1/\epsilon^2)$-competitive algorithm under $(1 + \epsilon)$-speed augmentation and a natural “no-surprises” assumption on release dates of jobs (which we show is necessary in this context).

Our algorithm proceeds by assigning virtual rates to all the waiting jobs, including the ones which are dependent on other uncompleted jobs, and then use these virtual rates to decide on the actual rates of minimal jobs (i.e., jobs which do not have dependencies and hence are eligible to run). Interestingly, the virtual rates are obtained by allocating time in a fair manner, using a Eisenberg-Gale-type convex program (which we can also solve optimally using a primal-dual scheme). The optimality condition of this convex program allows us to show dual-fitting proofs more easily, without having to guess and hand-craft the duals. We feel that this idea of using fair virtual rates should have broader applicability in scheduling problems.
1 Introduction

We consider the problem of online scheduling of jobs under precedence constraints. We seek to minimize the average weighted flow time of the jobs on multiple parallel machines, in the online non-clairvoyant setting. Formally, there are m identical machines, each capable of one unit of processing per unit of time. A set of $[n]$ jobs arrive online. Each job has a processing requirement p_j and a weight w_j, and is released at some time r_j. If the job finishes at time C_j, its flow or response time is defined to be $C_j - r_j$. The goal is to give a preemptive schedule that minimizes the total (or, equivalently, the average) weighted flow-time $\sum_{j \in I} w_j \cdot (C_j - r_j)$. The main constraints of our model are the following: (i) the scheduling is done online, so the scheduler does not know of the jobs before they are released; (ii) the scheduler is non-clairvoyant—when a job arrives, the scheduler knows its weight but not its processing time p_j. (It is only when the job finishes its processing that the scheduler knows the job is done, and hence knows p_j); And (iii) there are precedence constraints between jobs given by a partial order $([-n], \prec)$: $j \prec j'$ means job j' cannot be started until j is finished. Naturally, the partial order should respect release dates: if $j \prec j'$ then $r_j \leq r_j'$. (We will require a stronger assumption for some of our results.)

This model for constrained parallelism is a natural one, both in theory and in practice. In theory, this precedence-constrained (and non-clairvoyant!) scheduling model (with other objective functions) goes back to Graham’s work on list scheduling [Gra66]. In practice, most languages and libraries produce parallel code that can be modeled using precedence DAGs [RS08, ALLM16, GKR16]. Often these jobs (i.e., units of processing) are distributed among some m workstations or servers, either in server farms or on the cloud, i.e., they use identical parallel machines.

1.1 Our Results and Techniques

Weighted Completion Time. We develop our techniques on the problem of minimizing the average weighted completion time $\sum_j w_j C_j$. Our convex-programming approach gives us:

Theorem 1.1. There is a 10-competitive deterministic online algorithm for minimizing the average weighted completion time on parallel machines with both release dates and precedences, in the online non-clairvoyant setting.

For this result, at each time t, the algorithm has to know only the partial order restricted to $\{j \in [n] \mid r_j \leq t\}$, i.e., the jobs released by time t. The algorithmic idea is simple in hindsight: the algorithm looks at the minimal unfinished jobs (i.e., they do not depend on any other unfinished jobs): call them I_t. If J_t is the set of (already released and) unfinished jobs at time t, then $I_t \subseteq J_t$. To figure out how to divide our processing among the jobs in I_t, we write a convex program that fairly divides the time among all jobs in the larger set J_t, such that (a) these jobs can “donate” their allocated time to some preceding jobs in I_t, and that (b) the jobs in I_t do not get more than 1 unit of processing per time-step.

For this fair allocation, we maximize the (weighted) Nash Welfare $\sum_{j \in J_t} w_j \log R_j$, where R_j is the virtual rate of processing given to job $j \in J_t$, regardless of whether it can currently be run (i.e., is in I_t). This tries to fairly distribute the virtual rates among the jobs [Nas50], and can be solved using an Eisenberg-Gale-type convex program. (We can solve this convex program in our setting using a simple primal-dual algorithm, see §6.) The proof of Theorem 1.1 is via writing a linear-programming relaxation for the weighted completion time problem, and fitting a dual to it. Conveniently, the dual variables for the completion time LP naturally fall out of the dual (KKT) multipliers for the convex program!

Weighted Flow Time. We then turn to the weighted flow-time minimization problem. We first observe that the problem has no competitive algorithm if there are jobs j that depend on jobs released before r_j. Indeed, if OPT ever has an empty queue while the algorithm is processing jobs, the adversary could give a stream of tiny new jobs, and we would be sunk. Hence we make an additional no-surprises assumption
about our instance: when a job \(j \) is released, all the jobs having a precedence relationship to \(j \) are also released at the same time. In other words, the partial order is a collection of disjoint connected DAGs, where all jobs in each connected component have the same release date. A special case of this model has been studied in [RS08, ALLM16] where each DAG is viewed as a "hyper-job" and there are no precedence constraints between different hyper-jobs. In this model, we show:

Theorem 1.2. There is an \(O(1/\varepsilon^2) \)-competitive deterministic non-clairvoyant online algorithm for the problem of minimizing the average weighted flow time on parallel machines with release dates and precedences, under the no-surprises and \((1 + \varepsilon)\)-speedup assumptions.

Interestingly, the algorithm for weighted flow-time is almost the same as for weighted completion time. In fact, exactly the same algorithm works for both the completion time and flow time cases, if we allow a speedup of \((2 + \varepsilon)\) for the latter. To get the \((1 + \varepsilon)\)-speedup algorithm, we give preference to the recently-arrived jobs, since they have a smaller current time-in-system and each unit of waiting proportionally hurts them more. This is along the lines of strategies like LAPS and WLAPS [EP12].

1.2 The Intuition

Consider the case of unit weight jobs on a single machine. Without precedence constraints, the round-robin algorithm, which runs all jobs at the same rate, is \(O(1) \)-competitive for the flow-time objective with a 2-speed augmentation. Now consider precedences, and let the partial order be a collection of disjoint chains: only the first remaining job from each chain can be run at each time. We generalize round-robin to this setting by running all minimal jobs simultaneously, but at rates proportional to length of the corresponding chains. We can show this algorithm is also \(O(1) \)-competitive with a 2-speed augmentation. While this is easy for chains and trees, let us now consider the case when the partial order is the union of general DAGs, where each DAG may have several minimal jobs. Even though the sum of the rates over all the minimal jobs in any particular DAG should be proportional to the number of jobs in this DAG, running all minimal jobs at equal rates does not work. (Indeed, if many jobs depend on one of these minimal jobs, and many fewer depend on the other minimal jobs in this DAG, we want to prioritize the former.) Instead, we use a convex program to find rates. Our approach assigns a “virtual rate” \(R_j \) to each job in the DAG (regardless of whether it is minimal or not). This virtual rate allows us to ensure that even though this job may not run, it can help some minimal jobs to run at higher rates. This is done by an assignment problem where these virtual rates get translated into actual rates for the minimal jobs. The virtual rates are then calculated using Nash fairness, which gives us max-min properties that are crucial for our analysis.

Analysis Challenges: In typical applications of the dual-fitting technique, the dual variables for each job encode the *increase in total flow-time* caused by arrival of this job. Using this notion turns out to create problems. Indeed, consider a minimal job of low weight which is running at a high rate (because a large number of jobs depend on it). The increase in overall flow-time because of its arrival is very large. However the dual LP constraints require these dual variables to be bounded by the weights of their jobs, which now becomes difficult to ensure. To avoid this, we define the dual variables directly in terms of the virtual rates of the jobs, given by the convex program.

Having multiple machines instead of a single machine creates new problems. The *actual rates* assigned to any minimal job cannot exceed 1, and hence we have to throttle certain actual rates. Again the versatility of the convex program helps us, since we can add this as a constraint. Arguing about the optimal solution to such a convex program requires dealing with the suitable KKT conditions, from which we can infer many useful properties. We also show in §6 that the optimal solution corresponds to a natural "water-filling" based algorithm.

Finally, we obtain matching results for the case of \((1 + \varepsilon)\)-speed augmentation. Im et al. [IKM18] gave a general-purpose technique to translate a round-robin based algorithm to a LAPS-like algorithm. In our
setting, it turns out that the LAPS-like policy needs to be run on the virtual rates of jobs. Analyzing this algorithm does not follow in a black-box manner (as prescribed by [IKM18]), and we need to adapt our dual-fitting analysis suitably.

1.3 Related Work and Organization

Completion Time. Minimizing \(\sum_j w_j C_j \) on parallel machines with precedence constraints has \(O(1) \)-approximations in the offline setting: Li [Li17] improves on [HSSW97, MQS98] to give a \(3.387+\varepsilon \)-approximation. For related machines, the precedence constraints make the problem much harder: there is a \(O(\log m/\log \log m) \)-approximation [Li17] improving on a prior \(O(\log m) \) result [CS99], and a hardness of \(o(1) \) under certain complexity assumptions [BN15]. In the online setting, any offline algorithm for (a dual problem to) \(\sum_j w_j C_j \) gives an clairvoyant online algorithm, losing \(O(1) \) factors [HSSW97]. Two caveats: it is unclear (a) how to make this algorithm non-clairvoyant, and (b) how to solve the (dual of the) weighted completion time problem with precedences in poly-time.

Flow Time without Precedence. To minimize \(\sum_j w_j (C_j - r_j) \), strong lower bounds are known for the competitive ratio of any online algorithm even on a single machine [MPT94]. Hence we use speed augmentation [KP00]. For the general setting of non-clairvoyant weighted flow-time on unrelated machines, Im et al. [IKM14] showed that weighted round-robin with a suitable migration policy yields a \((2 + \varepsilon) \)-competitive algorithm using \((1 + \varepsilon) \)-speed augmentation. They gave a general purpose technique, based on the LAPS scheduling policy, to convert any such round-robin based algorithm to a \((1 + \varepsilon) \)-competitive algorithm while losing an extra \(1/\varepsilon \) factor in the competitive ratio. Their analysis also uses a dual-fitting technique [AGK12, GKP12]. However, they do not consider precedence constraints.

Flow Time with Precedence. Much less is known for flow-time problems with precedence constraints. For the offline setting on identical machines, [KL18] give \(O(1) \)-approximations with \(O(1) \)-speedup, even for general delay functions. In the current paper, we achieve a \(\text{poly}(1/\varepsilon) \)-approximation with \((1 + \varepsilon) \)-speedup for flow-time. Interestingly, [KL18] show that beating a \(n^{1-c} \)-approximation for any constant \(c \in [0, 1) \) requires a speedup of at least the optimal approximation factor of makespan minimization in the same machine environment. However, this lower bound requires different jobs with a precedence relationship to have different release dates, which is something our model disallows. (Appendix §5 gives another lower bound showing why we disallow such precedences in the online setting.)

In the online setting, [RS08] introduced the DAG model where each job is a directed acyclic graph (of tasks) released at some time, and a job/DAG completes when all the tasks in it are finished, and we want to minimize the total unweighted flow-time. They gave a \((2 + \varepsilon) \)-speed \(O(\kappa/\varepsilon) \)-competitive algorithm, where \(\kappa \) is the largest antichain within any job/DAG. [ALLM16] show \(\text{poly}(1/\varepsilon) \)-competitiveness with \((1 + \varepsilon) \)-speedup, again in the non-clairvoyant setting. The case where jobs are entire DAGs, and not individual nodes within DAGs, is captured in our weighted model by putting zero weights for all original jobs, and adding a unit-weight zero-sized job for each DAG which now depends on all jobs in the DAG. Assigning arbitrary weights to individual nodes within DAGs makes our problem quite non-trivial—we need to take into account the structure of the DAG to assign rates to jobs. Another model to capture parallelism and precedences uses speedup functions [ECBD97, Edm99, EP12]: relating our model to this setting remains an open question.

Our work is closely related to Im et al. [IKM18] who use a Nash fairness approach for completion-time and flow-time problems with multiple resources. While our approaches are similar, to the best of our understanding their approach does not immediately extend to the setting with precedences. Hence we have to introduce new ideas of using virtual rates (and being fair with respect to them), and throttling the induced actual rates at 1. The analyses of [IKM18] and our work are both based on dual-fitting; however, we need some new ideas for the setting with precedences.
Organization. The weighted completion time case is solved in §2. A \((2 + \varepsilon)\)-speedup result for weighted flow-time is in §3; this is improved to a \((1 + \varepsilon)\)-speedup in §4. The proof that we need the "no-surprises" assumption on release dates is in §5. Finally, we show how to solve the convex program in §6. Some deferred proofs can be found in §7.

2 Minimizing Weighted Completion Time

In this section, we describe and analyze the scheduling algorithm for the problem of minimizing weighted completion time on parallel machines. Recall that the precedence constraints are given by a DAG \(G\), and each job \(j\) has a release date \(r_j\), processing size \(p_j\) and weight \(w_j\).

2.1 The Scheduling Algorithm

We first assume that each of the \(m\) machines run at rate 2 (i.e., they can perform 2 units of processing in a unit time). We will show later how to remove this assumption (at a constant loss of competitive ratio).

We begin with some notation. We say that a job \(j\) is waiting at time \(t\) (with respect to a schedule) if \(r_j \leq t\), but \(j\) has not been processed to completion by time \(t\). We use \(J_t\) to denote the set of waiting jobs at time \(t\). Note that at time \(t\), the algorithm gets to see the subgraph \(G_t\) of \(G\) which is induced by the jobs in \(J_t\).

We say that a job \(j\) is unfinished at time \(t\) if it is either waiting at time \(t\), or its release date is at least \(t\) (and hence the algorithm does not even know about this job). Let \(U_t\) denote the set of unfinished jobs at time \(t\). Clearly, \(J_t \subseteq U_t\). At time \(t\), the algorithm can only process those jobs in \(J_t\) which do not have a predecessor in \(G_t\) — denote these minimal jobs by \(I_t\): they are independent of all other current jobs. For every time \(t\), the scheduling algorithm needs to assign a rate to each job \(j \in I_t\). We now describe how it decides on these rates.

Consider a time \(t\). The algorithm considers a bipartite graph \(H_t = (I_t, J_t, E_t)\) with vertex set consisting of the minimal jobs \(I_t\) on left and the waiting jobs \(J_t\) on right. Since \(I_t \subseteq J_t\), a job in \(I_t\) appears as a vertex on both sides of this bipartite graph. When there is no confusion, we slightly overload terminology by referring to a job as a vertex in \(H_t\). The set of edges \(E_t\) are as follows: let \(j_l \in I_t, j_r \in J_t\) be vertices on the left and the right side respectively. Then \((j_l, j_r)\) is an edge in \(E_t\) if and only if there is a directed path from \(j_l\) to \(j_r\) in the DAG \(G_t\).

The following convex program now computes the rate for each vertex in \(I_t\). It has variables \(z_e^j\) for each edge \(e \in E_t\). For each job \(j\) on the left side, i.e., for \(j \in I_t\), define \(L_j^j := \sum_{e \in \partial_j} z_e^j\) as the sum of \(z_e^j\) values of edges incident to \(j\). Similarly, define \(R_j^j := \sum_{e \in \partial_j} z_e^{j'}\) for a job \(j' \in J_t\), i.e., on the right side. The objective function is the Nash bargaining objective function on the \(R_j^j\) values, which ensures that each waiting job gets some attention. In §6 we give a combinatorial algorithm to efficiently solve this convex program.

\[
\begin{align*}
\max \sum_{j \in I_t} w_j \ln R_j^j & \quad \text{(CP)} \\
L_j^j = \sum_{j' \in J_t, (j, j') \in E_t} z_{jj'}^j & \quad \forall j \in I_t \tag{1} \\
R_j^j = \sum_{j' \in I_t, (j', j) \in E_t} z_{jj'}^{j'} & \quad \forall j \in J_t \tag{2} \\
L_j^j \leq 1 & \quad \forall j \in I_t \tag{3} \\
\sum_{j \in I_t} L_j^j \leq m & \quad \forall e \in E_t \tag{4} \\
z_e^j \geq 0 & \quad \forall e \in E_t \tag{5}
\end{align*}
\]

Let \((z^j, L^j, R^j)\) be an optimal solution to the above convex program. We define the rate of a job \(j \in I_t\) as being \(L_j^j\).
Although we have defined this as a continuous time process, it is easy to check that the rates only change if a new job arrives, or if a job completes processing. Also observe that we have effectively combined the m machines into one in this convex program. But assuming that all events happen at integer times, we can translate the rate assignment to an actual schedule as follows. For a time slot $[t, t+1]$, the total rate is at most m (using (4)), so we create m time slots $[t, t+1]_i$, one for each machine i, and iteratively assign each job j an interval of length L_j within these time slots. It is possible that a job may get assigned intervals in two different time slots, but the fact that $L_j \leq 1$ means it will not be assigned the same time in two different time slots. Further, we will never exceed the slots because of (4). Thus, we can process these jobs in the m time slots on the m parallel machines such that each job j gets processed for L_j amount of time and no job is processed concurrently on multiple machines. This completes the description of the algorithm; in this, we assume that we run the machines at twice the speed. Call this algorithm \mathcal{A}.

The final algorithm \mathcal{B}, which is only allowed to run the machines at speed 1, is obtained by running \mathcal{A} in the background, and setting \mathcal{B} to be a slowed-down version of \mathcal{A}. Formally, if \mathcal{A} processes a job j on machine i at time $t \in \mathbb{R}_{\geq 0}$, then \mathcal{B} processes this at time $2t$. This completes the description of the algorithm.

2.2 A Time-Indexed LP formulation

We use the dual-fitting approach to analyze the above algorithm. We write a time-indexed linear programming relaxation (LP) for the weighted completion time problem, and use the solutions to the convex program (CP) to obtain feasible primal and dual solutions for (LP) which differ by only a constant factor.

We divide time into integral time slots (assuming all quantities are integers). Therefore, the variable t will refer to integer times only. For every job j and time t, we have a variable $x_{j,t}$ which denotes the volume of j processed during $[t, t+1]$. Note that this is defined only for $t \geq r_j$. The LP relaxation is as follows:

$$\min \sum_{j,t} w_j \cdot t \cdot x_{j,t} / p_j$$ (LP)

$$\sum_{t \geq r_j} x_{j,t} / p_j \geq 1 \quad \forall j$$ (6)

$$\sum_{j} x_{j,t} \leq m \quad \forall t$$ (7)

$$\sum_{s \leq t} x_{s,t} / p_j \geq \sum_{s \leq t} x_{s',t} / p_j \quad \forall t, j < j'$$ (8)

The following claim, whose proof is deferred to the appendix, shows that it is a valid relaxation.

Claim 2.1. Let opt denote the weighted completion time of an optimal off-line policy (which knows the processing time of all the jobs). Then the optimal value of the LP relaxation is at most opt.

The (LP) has a large integrality gap. Observe that the LP just imagines the m machines to be a single machine with speed m. Therefore, (LP) has a large integrality gap for two reasons: (i) a job j can be processed concurrently on multiple machines, and (ii) suppose we have a long chain of jobs of equal size in the DAG G. Then the LP allows us to process all these jobs at the same rate in parallel on multiple machines. We augment the LP lower bound with another quantity and show that the sum of these two lower bounds suffice.

A chain C in G is a sequence of jobs j_1, \ldots, j_k such that $j_1 < j_2 < \ldots < j_k$. Define the processing time of C, $p(C)$, as the sum of the processing time of jobs in C. For a job j, define chain_j as the maximum over all chains C ending in j of $p(C)$. It is easy to see that $\sum_j w_j \cdot (r_j + \text{chain}_j)$ is a lower bound (up to a factor 2) on the objective of an optimal schedule.

We now write down the dual of the LP relaxation above. We have dual variables α_j for every job j, and β_t for every time t, and $y_{s,j \rightarrow j'}$

$$\max \sum_j \alpha_j - m \sum_t \beta_t$$ (DLP)
\[
\alpha_j - w_j \cdot t + \sum_{s \geq t} \left(\sum_{j' < j} y_{s, j \rightarrow j'} - \sum_{j' < j} y_{s, j' \rightarrow j} \right) \leq p_j \cdot \beta_t \quad \forall j, t \geq r_j
\]

(9)

\[
\alpha_j, \beta_t \geq 0
\]

We write the dual constraint (9) in a more readable manner. For a job \(j \) and time \(s \), let \(y_{s, j}^{in} \) denote \(\sum_{j' < j} y_{s, j' \rightarrow j} \), and define \(y_{s, j}^{out} \) similarly. We now write the dual constraint (9) as

\[
\alpha_j - w_j \cdot t + \sum_{s \geq t} \left(y_{s, j}^{out} - y_{s, j}^{in} \right) \leq p_j \cdot \beta_t \quad \forall j, t \geq r_j
\]

(10)

2.3 Properties of the Convex Program

We now prove certain properties of an optimal solution \((z^t, \tilde{L}^t, \tilde{R}^t)\) to the convex program \((CP)\). The first property, whose proof is deferred to the appendix, is easy to see:

Claim 2.2. If \(\sum_{j \in I_t} \tilde{L}_j^t < m \), then \(\tilde{L}_j^t = 1 \) for all \(j \in I_t \).

We now write down the KKT conditions for the convex program. (In fact, we can use (1) and (2) to replace \(\tilde{L}_j^t \) and \(\tilde{R}_j^t \) in the objective and the other constraints.) Then letting \(\theta_j^t \geq 0, \eta_j^t \geq 0, \nu_e^t \geq 0 \) be the Lagrange multipliers corresponding to constraints (3), (4) and (5), we get

\[
\frac{w_j}{\tilde{R}_j^t} = \theta_j^t + \eta_j^t - \nu_e^t \quad \forall e = (j', j), j', j \in J_t
\]

(11)

\[
\theta_j^t (\tilde{L}_j^t - 1) = 0 \quad \forall j \in I_t
\]

(12)

\[
\eta_j^t (\sum_{j \in I_t} \tilde{L}_j^t - m) = 0 \quad \forall e \in E_t
\]

(13)

\[
\nu_e^t \cdot \tilde{z}_e^t = 0 \quad \forall e \in E_t
\]

(14)

We derive a few consequences of these conditions, the proofs are deferred to the appendix.

Claim 2.3. Consider a job \(j \in J_t \) on the right side of \(H_t \). Then \(w_j \geq \tilde{R}_j^t \cdot \eta_j^t \).

Claim 2.4. Consider a job \(j \in J_t \) on the right side of \(H_t \). Suppose \(j \) has a neighbor \(j' \in I_t \) such that \(\tilde{L}_{j'}^t < 1 \) and \(\tilde{z}_{j'j}^t > 0 \). Then \(w_j = \tilde{R}_j^t \cdot \eta_j^t \).

A crucial notion is that of an active job:

Definition 2.5 (Active Jobs). A job \(j \in J_t \) is active at time \(t \) if it has at least one neighbor in \(I_t \) (in the graph \(H_t \)) running at rate strictly less than 1.

Let \(J_t^{act} \) denote the set of active jobs at time \(t \). We can strengthen the above claim as follows.

Corollary 2.6. Consider an active job \(j \) at time \(t \). Then \(w_j = \tilde{R}_j^t \cdot \eta_j^t \).

Claim 2.7. \(w(J_t^{act})/m \leq \eta_j^t \leq w(J_t)/m \).

2.4 Analysis via Dual Fitting

We analyze the algorithm \(A \) first. We define feasible dual variables for \((DLP)\) such that the value of the dual objective function (along with the chain \(\gamma \) values that capture the maximum processing time over all chains ending in \(j \)) forms a lower bound on the weighted completion time of our algorithm. Intuitively, \(\alpha_j \) would be the weighted completion time of \(j \), and \(\beta_t \) would be \(1/2m \) times the total weight of unfinished jobs at
time \(t \). Thus, \(\sum_{j} \alpha_{j} - m \sum_{t} \beta_{t} \) would be at 1/2 times the total weighted completion time. This idea works as long as all the machines are busy at any point of time, the reason being that the primal LP essentially views the \(m \) machines as a single speed-\(m \) machine. Therefore, we can generate enough dual lower bound if the rate of processing in each time slot is \(m \). If all machines are not busy, we need to appeal to the lower bound given by the chain, values.

We use the notation used in the description of the algorithm. In the graph \(H_{t} \), we had assigned rates \(\bar{L}_{j} \) to all the nodes \(j \) in \(I_{t} \). Recall that a vertex \(j \in J_{t} \) on the right side of \(H_{t} \) is said to be active at time \(t \) if it has a neighbor \(j' \in I_{t} \) for which \(\bar{L}_{j'} < 1 \). Otherwise, we say that \(j \) is inactive at time \(t \). We say that an edge \(e = (j_{1}, j_{r}) \in E_{t} \), where \(j_{1} \in I_{t}, j_{r} \in J_{t} \) is active at time \(t \) if the vertex \(j_{r} \) is active. Let \(A_{t} \) denote the set of active edges in \(E_{t} \). Let \(e = (j_{1}, j_{r}) \) be an edge in \(E_{t} \). By definition, there is a path from \(j_{1} \) to \(j_{r} \) in \(G_{t} \) – we fix such a path \(P_{e} \). As before, let \(C_{j} \) denote the completion time of job \(j \). The dual variables are defined as follows:

- For each job \(j \) and time \(t \), we define quantities \(\alpha_{j,t} \). The dual variable \(\alpha_{j} \) would be equal to \(\sum_{t \geq 0} \alpha_{j,t} \).

 Fix a job \(j \). If \(t \notin [r_{j}, C_{j}] \) we set \(\alpha_{j,t} \) to 0. Now, suppose \(j \in J_{t} \). Consider the job \(j \) as a vertex in \(J_{t} \) (i.e., right side) in the bipartite graph \(H_{t} \). We set \(\alpha_{j,t} \) to \(w_{j} \) if \(j \) is active at time \(t \), otherwise it is inactive.

- For each time \(t \), we set \(\beta \) to \(1/2m \cdot w(U_{t}) \) (Recall that \(U_{t} \) is the set of unfinished jobs at time \(t \)).

- We now need to define \(\gamma_{t,j'} \), where \(j' < j \). If \(j \) or \(j' \) does not belong to \(J_{t} \), we set this variable to 0. So assume that \(j, j' \in J_{t} \) (and so the edge \((j', j) \) lies in \(G_{t} \)). We define

 \[\gamma_{t,j'} := \eta_{j'} \cdot \sum_{e:e \in A_{t}, (j' \rightarrow j) \in P_{e}} z_{e}^{t}. \]

 In other words, we consider all the active edges \(e \) in the graph \(H_{t} \) for which the corresponding path \(P_{e} \) contains \((j', j) \). We add up the fractional assignment \(z_{e}^{t} \) for all such edges.

This completes the description of the dual variables.

We first show that the objective function for (DLP) is close to the weighted completion time incurred by the algorithm. The proof is deferred to the appendix.

Claim 2.8. The total weighted completion time of the jobs in \(A \) is at most \(2(\sum_{j} \alpha_{j} - m \cdot \sum_{t} \beta_{t}) + \sum_{j} w_{j} \cdot \text{chain}_{j} + 2r_{j} \).

We now argue about feasibility of the dual constraint (9). Consider a job \(j \) and time \(t \geq r_{j} \). Since \(\alpha_{j,s} \leq w_{j} \) for all time \(s, \sum_{s \leq t} \alpha_{j,s} \leq w_{j} \cdot t \). Therefore, it suffices to show:

\[
\sum_{s \leq t} \alpha_{j,s} + \sum_{s \geq t} \left(\gamma_{s,j}^{\text{out}} - \gamma_{s,j}^{\text{in}} \right) \leq p_{j} \cdot \beta_{t} \tag{15}
\]

Let \(t_{j}^{*} \) be the first time \(t \) when the job \(j \) appears in the set \(I_{t} \). This would also be the first time when the algorithm starts processing \(j \) because a job that enters \(I_{t} \) does not leave \(I_{t} \) before completion.

Claim 2.9. For any time \(s \) lying in the range \([r_{j}, t_{j}^{*}] \), \(\alpha_{j,s} + \gamma_{s,j}^{\text{out}} - \gamma_{s,j}^{\text{in}} = 0 \).

Proof. Fix such a time \(s \). Note that \(j \notin I_{s} \). Thus \(j \) appears as a vertex on the right side in the bipartite graph \(H_{s} \), but does not appear on the left side. Let \(e \) be in active edge in \(H_{s} \) such that the corresponding path \(P_{e} \) contains \(j \) as an internal vertex. Then \(z_{e}^{s} \) gets counted in both \(\gamma_{s,j}^{\text{out}} \) and \(\gamma_{s,j}^{\text{in}} \). There cannot be such a path \(P_{e} \) which starts with \(j \), because then \(j \) will need to be on the left side of the bipartite graph. There could be paths \(P_{e} \) which end with \(j \) – these will correspond to active edges \(e \) incident with \(j \) in the graph \(H_{t} \) (this happens only if \(j \) itself is active). Let \(\Gamma(j) \) denote the edges incident with \(j \). We have shown that

\[
\gamma_{s,j}^{\text{out}} - \gamma_{s,j}^{\text{in}} = -\eta^{s} \cdot \sum_{e \in \Gamma(j) \cap A_{s}} z_{e}^{s}. \tag{16}
\]
If \(j \) is not active, the RHS is 0, and so is \(\alpha_{j,s} \). So we are done. Therefore, assume that \(j \) is active. Now, \(A(s) \) contains all the edges incident with \(j \), and so, the RHS is same as \(-\eta^t \cdot \bar{R}^j_t\). But then, Corollary 2.6 implies that \(-\eta^t \cdot \bar{R}^j_t = -w_j\). Since \(\alpha_{j,s} = w_j \), we are done again.

Coming back to inequality (15), we can assume that \(t \geq t^*_j \). To see this, suppose \(t < t^*_j \). Then by Claim 2.9 the LHS of this constraint is same as

\[
\sum_{s \geq t^*_j} \alpha_{j,s} + \sum_{s \geq t^*_j} (\gamma_{s,j}^{\text{out}} - \gamma_{s,j}^{\text{in}}).
\]

Since \(\beta_t \geq \beta_{t^*_j} \) (the set of unfinished jobs can only diminish as time goes on), (15) for time \(t \) follows from the corresponding statement for time \(t^*_j \). Therefore, we assume that \(t \geq t^*_j \). We can also assume that \(t \leq C_j \), otherwise the LHS of this constraint is 0.

Claim 2.10. Let \(s \in [t^*_j, C_j] \) be such that \(j \) is inactive at time \(s \). Then \(\alpha_{j,s} + \gamma_{s,j}^{\text{out}} - \gamma_{s,j}^{\text{in}} \leq \eta^s \cdot \bar{L}^s_j \).

Proof. We know that \(\alpha_{j,s} = 0 \). As in the proof of Claim 2.9, we only need to worry about those active edges \(e \) in \(\mathcal{H}^j_s \) for which \(P_e \) either ends at \(j \) or begins with \(j \). Since any edge incident with \(j \) as a vertex on the right side is inactive, we get (let \(\Gamma(j) \) denote the edges incident with \(j \), where we consider \(j \) on the left side)

\[
\alpha_{j,s} + \gamma_{s,j}^{\text{out}} - \gamma_{s,j}^{\text{in}} = \eta^s \cdot \sum_{e \in \Gamma(j) \cap A(s)} \bar{z}^e \leq \eta^s \cdot \bar{L}^s_j,
\]

because \(\eta^s \geq 0 \) and \(\bar{L}^s_j = \sum_{e \in \Gamma(j)} \bar{z}^e \).

Claim 2.11. Let \(s \in [t^*_j, C_j] \) be such that \(j \) is active at time \(s \). Then \(\alpha_{j,s} + \gamma_{s,j}^{\text{out}} - \gamma_{s,j}^{\text{in}} \leq \eta^s \cdot \bar{L}^s_j \).

Proof. The argument is very similar to the one in the previous claim. Since \(j \) is active, \(\alpha_{j,s} = w_j \). As before we only need to worry about the active edges \(e \) for which \(P_e \) either ends or begins with \(j \). Any edge which is incident with \(j \) on the right side (note that there will only be one such edge – one the one joining \(j \) to its copy on the left side of \(\mathcal{H}^j_t \)) is active. The following inequality now follows as in the proof of Claim 2.10:

\[
\alpha_{j,s} + \gamma_{s,j}^{\text{out}} - \gamma_{s,j}^{\text{in}} \leq w_j + \eta^s \cdot \bar{L}^s_j - \eta^s \cdot \bar{R}^j_t.
\]

The result now follows from Corollary 2.6.

The above two claims show that the LHS of (15) is at most \(\sum_{s=t}^{C_j} \eta^s \cdot \bar{L}^s_j \). Note that for any such time \(s \), the rate assigned to \(j \) is \(\bar{L}^s_j \), and so, we perform \(2 \cdot \bar{L}^s_j \) amount of processing on \(j \) during this time slot. It follows that \(\sum_{s=t}^{C_j} \bar{L}^s_j \leq p_j/2 \). Now Claim 2.7 shows that \(\eta^s \leq w(U_j)/m \leq w(U_t)/m \), and so we get

\[
\sum_{s=t}^{C_j} \eta^s \cdot \bar{L}^s_j \leq \frac{p_j \cdot w(U_j)}{2m} = p_j \cdot \beta_t.
\]

This shows that (15) is satisfied. We can now prove our algorithm is constant competitive.

Theorem 2.12. The algorithm \(\mathcal{B} \) is 10-competitive.

Proof. We first argue about \(\mathcal{A} \). We have shown that the dual variables are feasible to (DLP), and so, Claim 2.8 shows that the total completion time of \(\mathcal{A} \) is at most \(2\text{opt} + \sum_j w_j(\text{chain}_j + 2r_j) \), where \(\text{opt} \) denotes the optimal off-line objective value. Clearly, \(\text{opt} \geq \sum_j w_j \cdot r_j \) and \(\text{opt} \geq \sum_j w_j \cdot \text{chain}_j \). This implies that \(\mathcal{A} \) is 5-competitive. While going from \(\mathcal{A} \) to \(\mathcal{B} \) the completion time of each job doubles. \qed
3 Minimizing Weighted Flow Time

We now consider the setting of minimizing the total weighted flow time, again in the non-clairvoyant setting. The setting is almost the same as in the completion-time case: the major change is that all jobs which depend on each other (i.e., belong to the same DAG in the “collection of DAGs view” have the same release date). In §5 we show that if related jobs can be released over time then no competitive online algorithms are possible.

As before, let J_t denote the jobs which are waiting at time t, i.e., which have been released but not yet finished, and let G_t be the union of all the DAGs induced by the jobs in J_t. Again, let I_t denote the minimal set of jobs in J_t, i.e., which do not have a predecessor in G_t and hence can be scheduled.

Theorem 3.1. There exists an $O(1/\epsilon)$-approximation algorithm for non-clairvoyant DAG scheduling to minimize the weighted flow time on m parallel machines, when there is a speedup of $2 + \epsilon$.

The rest of this section gives the proof of Theorem 3.1. The algorithm remains unchanged from §2 (we do not need the algorithm B now): we write the convex program (CP) as before, which assign rates \bar{L}_j to each job $j \in I_t$. The analysis again proceeds by writing a linear programming relaxation, and showing a feasible dual solution. The LP is almost the same as (LP), just the objective is now (with changes in red):

$$\sum_{j,t} w_j \frac{(t - r_j) \cdot x_{j,t}}{p_j}.$$

Hence, the dual is also almost the same as (DLP): the new dual constraint requires that for every job j and time $t \geq r_j$:

$$\alpha_j + \sum_{s \geq t} (\gamma_{s,j}^\text{out} - \gamma_{s,j}^\text{in}) \leq \beta_t \cdot p_j + w_j(t - r_j). \tag{17}$$

3.1 Defining the Dual Variables

In order to set the dual variables, define a total order $<$ on the jobs as follows: First arrange the DAGs in order of release dates, breaking ties arbitrarily. Let this order be D_1, D_2, \ldots, D_t. All jobs in D_i appear before those in D_{i+1} in the order $<$. Now for each dag D_i, arrange its jobs in the order they complete processing by our algorithm. Note that this order is consistent with the partial order given by the DAG. This also ensures that at any time t, the set of waiting jobs in any DAG D_i form a suffix in this total order (restricted to D_i).

For a time t and $j \in J_t$, let $I[j \in J_t]\text{act}$ denote the indicator variable which is 1 exactly if j is active at time t. The dual variables are defined as follows:

- For a job $j \in J_t$, we set $\alpha_j := \sum_{i=\tau}^C \alpha_{j,t}$, where the quantity $\alpha_{j,t}$ as defined as:

 $$\alpha_{j,t} := \frac{1}{m} \left[w_j \cdot I[j \in J_t]\text{act} \cdot \left(\sum_{j' \in J_t : j' \leq j} R_{j'}^t \right) + R_j^t \cdot \left(\sum_{j' \in J_t : j' < j} w_{j'} \right) \right].$$

- The variable $\beta_t := \frac{w(J_t)}{(1+c)\cdot m}$. Recall that the machines are allowed $2(1 + \epsilon)$-speedup.
- The definition of the y variables changes as follows. Let $(j' \to j)$ be an edge in the DAG G_t. Earlier we had considered paths P_e containing $(j' \to j)$ only for the active edges e. But now we include all edges. Moreover, we replace the multiplier η_j by η_j^f, where $\eta_j^f := \frac{1}{m} \cdot \left(\sum_{j' \in J_t : j' \leq j} w_{j'} \right)$. In other words, we define

 $$y_{t,j' \to j} := \eta_j^f \cdot \sum_{e : e \in H_t, (j' \to j) \in P_e} z_e^t.$$
In the following sections, we show that these dual settings are enough to “pay for” the flow time of our solution (i.e., have large objective function value), and also give a feasible lower bound (i.e., are feasible for the dual linear program).

3.2 The Dual Objective Function

We first show that $\sum_j \alpha_j - m \sum_t \beta_t$ is close to the total weighted flow-time of the jobs. The quantity chain_j is defined as before. Notice that chain_j is still a lower bound on the flow-time of job j in the optimal schedule because all jobs of a DAG are simultaneously released. The following claim, whose result is deferred to the appendix, shows that the dual objective value is close to the weighted flow time of the algorithm.

Claim 3.2. The total weighted flow-time is at most $\frac{2}{3}\left(\sum_j \alpha_j - m \sum_t \beta_t + \sum_j w_j \cdot \text{chain}_j\right)$.

3.3 Checking Dual Feasibility

Now we need to check the feasibility of the dual constraint (17). In fact, we will show the following weaker version of that constraint:

$$\alpha_j + 2 \sum_{s \geq t} \left(y^\text{out}_{s,j} - y^\text{in}_{s,j} \right) \leq \beta_t \cdot p_j + 2w_j(t - r_j).$$

(18)

This suffices to within another factor of 2: indeed, scaling down the α and β variables by another factor of 2 then gives dual feasibility, and loses only another factor of 2 in the objective function. We begin by bounding $\alpha_{j,s}$ in two different ways.

Lemma 3.3. For any time $s \geq r_j$, we have $\alpha_{j,s} \leq 2w_j$.

Proof. Consider the second term in the definition of $\alpha_{j,s}$. This term contains $\sum_{j' \in J^\text{act}, j' < j} w_{j'}$. By Corollary 2.6, for any $j' \in J^\text{act}$ we have $w_{j'} = \tilde{R}^s_{j'} \cdot \eta^s$. Therefore,

$$\sum_{j' \in J^\text{act}, j' < j} w_{j'} \leq \eta^s \cdot \sum_{j' \in J^\text{act}, j' < j} \tilde{R}^s_{j'} \leq \eta^s \cdot \sum_{j' \in J^\text{act}} \tilde{R}^s_{j'}.$$

Now we can bound $\alpha_{j,s}$ by dropping the indicator on the first term to get

$$\frac{1}{m} \cdot \left[\left(w_j \cdot \sum_{j' \in J^\text{act}, j' < j} \tilde{R}^s_{j'} \right) + \tilde{R}^s_j \cdot \left(\eta^s \cdot \sum_{j' \in J^\text{act}, j' < j} \tilde{R}^s_{j'} \right) \right] \leq \frac{1}{m} \cdot \left[\sum_{j' \in J^\text{act}} \tilde{R}^s_{j'} + \sum_{j' \in J^\text{act}} \tilde{R}^s_{j'} \right],$$

the last inequality using Claim 2.3. Simplifying, $\alpha_{j,s} \leq \frac{2}{m} \cdot w_j \cdot \sum_{j' \in J^\text{act}} \tilde{R}^s_{j'} = 2w_j$. \qed

Here is a slightly different upper bound on $\alpha_{j,s}$.

Lemma 3.4. For any time $s \geq r_j$, we have $\alpha_{j,s} \leq 2\eta^s_j \cdot \tilde{R}^s_j$.

Proof. The second term in the definition of $\alpha_{j,s}$ is at most $\eta^s_j \cdot \tilde{R}^s_j$, directly using the definition of η^s_j. For the first term, assume j is active at time s, otherwise this term is 0. Now Corollary 2.6 shows that $w_j = \eta^s_j \cdot \tilde{R}^s_j$, so the first term can be bounded as follows:

$$\frac{w_j}{m} \cdot \sum_{j' \in J^\text{act}, j' \leq j} \tilde{R}^s_{j'} = \frac{\tilde{R}^s_j \cdot \eta^s_j}{m} \cdot \sum_{j' \in J^\text{act}, j' \leq j} \tilde{R}^s_{j'} \leq \frac{\tilde{R}^s_j \cdot \eta^s_j}{m} \cdot \sum_{j' \in J^\text{act}, j' \leq j} w_{j'} = \tilde{R}^s_j \cdot \eta^s_j,$$

which completes the proof. \qed
To prove (18), we write $\alpha_j = \sum_{s=t}^{t-1} \alpha_{j,s} + \sum_{s=t} \alpha_{j,s}$, and use Lemma 3.3 to cancel the first summation with the term $2w_j(t - r_j)$. Hence, it remains to prove

$$\sum_{s \geq t} \alpha_{j,s} + 2 \sum_{s \geq t} (y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}}) \leq \beta_t \cdot p_j. \quad (19)$$

Let t_j^* be the time at which the algorithm starts processing j. We first argue why we can ignore times $s < t_j^*$ on the LHS of (19).

Claim 3.5. Let s be a time satisfying $r_j \leq s < t_j^*$. Then $\alpha_{j,s} + 2(y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}}) \leq 0$.

Proof. While computing $y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}}$, we only need to consider paths P_e for edges e in H_s which have j as end-point. Since j does not appear on the left side of H_s, this quantity is equal to $-\eta_j^+ \cdot \bar{R}_j$. The result now follows from Lemma 3.4. \square

So using Claim 3.5 in (19), it suffices to show

$$\sum_{s \geq \max\{t, t_j^*\}} \alpha_{j,s} + 2 \sum_{s \geq \max\{t, t_j^*\}} (y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}}) \leq \beta_t \cdot p_j. \quad (20)$$

Note that we still have β_t on the right hand side, even though the summation on the left is over times $s \geq \max\{t, t_j^*\}$. The proof of the following claim is deferred to appendix.

Claim 3.6. Let s be a time satisfying $s \geq \max\{t, t_j^*\}$. Then $\alpha_{j,s} + 2(y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}}) \leq 2(1 + \epsilon)\beta_t \cdot L_s^j$.

Hence, the left-hand side of (20) is at most $2(1 + \epsilon)\beta_t \cdot \sum_{s \geq \max\{t, t_j^*\}} L_s^j$. However, since job j is assigned a rate of \bar{L}_j^s and the machines run at speed $2(1 + \epsilon)$, we get that this expression is at most $p_j \cdot \beta_t$, which is the right-hand side of (20). This proves the feasibility of the dual constraint (18).

Proof of Theorem 3.1. In the preceding §3.3 we proved that the variables $\alpha_j/2$, $\beta_t/2$ and $\gamma_{t',\cdots,j}$ satisfy the dual constraint for the flow-time relaxation. Since $\sum_{f} (\alpha_f/2) - m \sum_{f} (\beta_f/2)$ is a feasible dual, it gives a lower bound on the cost of the optimal solution. Moreover, $\sum_{f} w_f \cdot \text{chain}_f$ is another lower bound on the cost of the optimal schedule. Now using the bound on the weighted flow-time of our schedule given by Claim 3.2, this shows that we have an $O(1/\epsilon)$-approximation with $2(1 + \epsilon)$-speedup. \square

In §4 we show how to use a slightly different scheduling policy that prioritizes the last arriving jobs to reduce the speedup to $(1 + \epsilon)$.

4 An $O(1/\epsilon^2)$-competitive Algorithm with $(1 + \epsilon)$-speed

Theorem 3.1 requires $(2 + \epsilon)$ speedup. In this section, we improve the speed scaling requirement to $(1 + \epsilon)$. We prove the following:

Theorem 4.1. There exists an $O(1/\epsilon^2)$-approximation algorithm for non-clairvoyant DAG scheduling to minimize weighted flow time on parallel machines when there is a speedup of $1 + \epsilon$.

For ease of exposition, we assume a $(1 + 3\epsilon)$-speedup in the proof of Theorem 4.1.
4.1 The Algorithm

The algorithm remains unchanged – we shall assign rates I_j^t to each job $j \in I_t$. These rates are derived by a suitable convex program. This convex program is again same as (CP), except that the objective function now changes to

$$\sum_{j \in J} \hat{w}_{j,t} \ln \hat{R}_j^t,$$

where we replace the weight w_j of job j by a new time dependent quantity $\hat{w}_{j,t}$ defined as follows.

Definition 4.2 (Weight $\hat{w}_{j,t}$). Consider a time t, and let $J_{<j,t}$ denote the set of jobs in I_t which appear before j in the ordering \prec. Define $J_{\leq j,t}$ similarly (it includes j as well). Let k denote $1/\varepsilon$. We define

$$\hat{w}_{j,t} := \frac{w(J_{\leq j,t})^k - w(J_{<j,t})^k}{w(J_t)^k}.$$

It is easy to check that $\sum_{j \in J_t} \hat{w}_{j,t} = 1$. Moreover, since $f(x) = x^k$ is a convex function, we have the following easy fact.

Fact 4.3. We have

$$kw_j \cdot \frac{w(J_{<j,t})^k}{w(J_t)^k} \leq \hat{w}_{j,t} \leq kw_j \cdot \frac{w(J_{\leq j,t})^k}{w(J_t)^k}.$$

This completes the description of the algorithm.

4.2 The Convex Program and Nice Times

We now briefly indicate how the analysis of the algorithm gets adapted to this algorithm. The KKT condition (11) now changes to

$$\frac{\hat{w}_{j,t}}{R_j^t} = \theta_{j,t}^e + \eta_{j}^t - v_{j}^t \quad \forall e = (j', j), j' \in I_t, j \in J_t. \quad (21)$$

The KKT conditions (12)–(14) remain unchanged. Hence, Claim 2.3 and Corollary 2.6 get restated thus:

Claim 4.4. Consider a job $j \in J_t$. Then $\hat{w}_{j,t} \geq R_j^t \cdot \eta_{j}^t$. Further, if j is active at time t, then $\hat{w}_{j,t} = R_j^t \cdot \eta_{j}^t$.

We now introduce a useful definition.

Definition 4.5 (Nice time). We say that a time t is nice if $w(J_t^{\text{act}}) \geq (1 - \varepsilon) \cdot w(J_t)$.

Let T^{nice} denote the set of nice time slots. Claim 2.7 can now be restated as:

Claim 4.6. For any time t, we have $\hat{w}(J_t^{\text{act}})/m \leq \eta_{j}^t \leq \hat{w}(J_t)/m$. Further, if $t \in T^{\text{nice}}$, then $1/e \leq \eta_{j}^t \cdot m \leq 1$.

Proof. The first statement follows as in Claim 2.7. So, it remains to prove the second claim. Again, $m \cdot \eta_{j}^t \leq 1$ follows from the fact that $\hat{w}(J_t) = 1$ (by definition). Now, let us estimate $\hat{w}(J_t^{\text{act}})$. Again by definition of \hat{w}, it is easy to see that

$$\hat{w}(J_t^{\text{act}}) \geq \frac{w(J_t^{\text{act}})^k}{w(J_t)^k} \geq (1 - \varepsilon)^k \geq 1/e.$$

The definitions of the dual variables α, β, γ get slightly modified. The quantity $\alpha_{j,s}$ is non-zero only when s is nice. In other words,

$$\alpha_{j,s} := \frac{1}{m} \sum_{j' \in J_t^{\text{act}}} \left(\sum_{j' \in J_t^{\text{act}}} \hat{R}_{j'}^t \right) \cdot \hat{R}_{j'}^t \cdot \hat{w}_{j,s}.$$
Claim 4.7. The total weighted flow-time of the jobs is at most
\[\frac{2}{\epsilon} \left(\sum_j \alpha_j - m \cdot \sum_t \beta_t \right) + \frac{2}{\epsilon^2} \cdot \sum_j w_j \cdot \text{chain}_j. \]

Proof. Consider a nice time \(t \in T^{\text{nice}} \). As in the proof of Claim 3.2, we get
\[\sum_{j \in J_t} \alpha_j \cdot t = w(J_t) \leq (1 - \epsilon) \cdot w(J_t), \]
where the last inequality follows from the fact that \(t \) is nice. The following inequality follows as in the proof of Claim 3.2 (note that the machines run at speed \((1 + 3\epsilon)\) now).
\[\sum_t w(J_t \setminus J_t^{\text{act}}) \leq \sum_j w_j \cdot \text{chain}_j \frac{1}{1 + 3\epsilon} \leq \sum_j w_j \cdot \text{chain}_j. \]

Now consider a \(t \notin T^{\text{nice}} \). This means \(w(J_t^{\text{act}}) \leq (1 - \epsilon) \cdot w(J_t) \), or \(w(J_t) \leq \frac{1}{\epsilon} w(J_t \setminus J_t^{\text{act}}) \). Thus,
\[\sum_{t \notin T^{\text{nice}}} w(J_t) \leq \frac{1}{\epsilon} \cdot \sum_{t \notin T^{\text{nice}}} w(J_t \setminus J_t^{\text{act}}) \leq \frac{1}{\epsilon} \cdot \sum_j w_j \cdot \text{chain}_j. \]

This means
\[\sum_t w(J_t) = \sum_{t \in T^{\text{nice}}} w(J_t) + \sum_{t \notin T^{\text{nice}}} w(J_t) \leq \frac{1}{1 - \epsilon} \cdot \sum_j \alpha_j + \frac{1}{\epsilon} \cdot \sum_j w_j \cdot \text{chain}_j - m \cdot \sum_t \beta_t, \]
which implies the claim because the total weighted flow-time equals \(\sum_t w(J_t) \). \(\square \)

4.3 Checking Dual Feasibility

We now want to check the dual constraint (17), so fix a job \(j \). Lemmas 3.3 and 3.4 get modified as follows.

Lemma 4.8. For any time \(s \geq r_j \), we have \(\alpha_{j,s} \leq ke \cdot w_j \).

Proof. We can assume that \(s \) is nice, otherwise \(\alpha_{j,s} = 0 \). Consider the first term in the definition of definition of \(\alpha_{j,s} \). Since \(\sum_{j' : j, j' \leq j} \hat{R}_{j'} = \sum_{j' : j, j' \leq j} \hat{L}_{j'}) \leq m \), this term
\[\frac{1}{m} \left[w_j \cdot \sum_{j' : j, j' \leq j} \hat{R}_{j'} \right] \leq w_j. \]

Now consider the second term of \(\alpha_{j,s} \). By Claim 4.4 we have \(\hat{R}_{j'} \leq \frac{w_{j,s}}{\eta^s} \), which implies
\[\frac{1}{m} \hat{R}_{j'} \leq \frac{w_{j,s}}{mn^s} \cdot \sum_{j' : j, j' < j} w_{j'} \]

Now using Fact 4.3,
\[\frac{1}{m} \hat{R}_{j'} \leq \frac{1}{mn^s} k w_j \cdot \frac{w_j \cdot J_{(j,s)}}{w(J_s)^k} \leq \frac{k \cdot w_j}{mn^s} \leq ke \cdot w_j, \]
where the last inequality follows from Claim 4.6. \(\square \)
Lemma 4.9. For any time \(s \geq r_j \), we have \(\alpha_{j,s} \leq (1 + \varepsilon) \cdot \eta_j^s \cdot \hat{R}_j^s \).

Proof. The second term in definition of \(\alpha_{j,s} \) from (22) is easy to bound because

\[
\frac{\hat{R}_j^s}{m} \cdot \sum_{j' \in J_{\text{out}}: j' < j} w_{j'} \leq \hat{R}_j \cdot \eta_j^s
\]

by the definition of \(\eta_j^s \). It remains to bound the first term. Assume that \(j \) is active. By Claim 4.4 and the definition of \(\hat{w}_j^s \), we get

\[
\frac{w_j}{m} \cdot \sum_{j' \in J_{\text{out}}: j' < j} \hat{R}_j^s = \frac{w_j}{m \cdot \eta_j} \cdot \sum_{j' \in J_{\text{out}}: j' < j} \hat{w}_j^s = \frac{w_j}{m \cdot \eta_j^s} \cdot \frac{w(J_{<j,s})^k}{w(j)^k}.
\]

Using Fact 4.3, the above can be upper bounded by

\[
\frac{\hat{w}_{j,s} \cdot w(J_{<j,s})}{k \cdot m \cdot \eta_j} = \frac{\hat{R}_j^s \cdot \eta_j^s}{k},
\]

where the last term follows from the fact that \(j \) is active. This proves the claim because

\[
\alpha_{j,s} \leq \frac{\hat{R}_j^s}{m} \cdot \sum_{j' \in J_{\text{out}}: j' < j} w_{j'} + \frac{w_j}{m} \cdot \sum_{j' \in J_{\text{out}}: j' < j} \hat{R}_j^s \leq \hat{R}_j \cdot \eta_j^s + \frac{\hat{R}_j^s \cdot \eta_j^s}{k}. \tag{24}
\]

The rest of the arguments follow as in the previous section. We can show in a similar manner that for any job \(j \) and time \(t \):

\[
\alpha_j + (1 + \varepsilon) \cdot \sum_{s \geq t} \left(y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}} \right) \leq \beta_t \cdot p_j + k \varepsilon \cdot w_j \cdot (t - r_j). \tag{23}
\]

This suffices because it implies that \(\frac{\alpha_j}{k \varepsilon}, \frac{\beta_j}{k \varepsilon} \), and \((1 + \varepsilon) \frac{\hat{R}_j}{k \varepsilon} \) are feasible dual solutions, which loses only another factor of \(k \varepsilon \) in the objective function \(\sum_j \alpha_j - m \sum_t \beta_t \).

We first argue using Lemma 4.8 that it suffices to show

\[
\sum_{s \geq t} \alpha_{j,s} + (1 + \varepsilon) \cdot \sum_{s \geq t} \left(y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}} \right) \leq \beta_t \cdot p_j,
\]

and then further simplify it to showing

\[
\sum_{s \geq \max\{t, t_j^*\}} \alpha_{j,s} + (1 + \varepsilon) \cdot \sum_{s \geq \max\{t, t_j^*\} \setminus \{t, t_j^*\}} \left(y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}} \right) \leq \beta_t \cdot p_j \tag{24}
\]

because for any time \(s \) satisfying \(r_j \leq s < t_j^* \), a variant of Claim 3.5 shows \(\alpha_{j,s} + (1 + \varepsilon)(y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}}) \leq 0 \). Here we get a factor \((1 + \varepsilon) \) instead of factor 2 in Claim 3.5 because Lemma 4.9 has \((1 + \varepsilon) \) factor unlike Lemma 3.4. Finally, Claim 3.6 now gets modified as follows; we omit the proof since it is essentially unchanged.

Claim 4.10. Let \(s \) be a time satisfying \(s \geq \max\{t, t_j^*\} \). Then \(\alpha_{j,s} + (1 + \varepsilon)(y_{s,j}^{\text{out}} - y_{s,j}^{\text{in}}) \leq (1 + 3\varepsilon) \beta_t \cdot \hat{L}_j^s \).

Hence, the left-hand side of (24) is at most \((1 + 3\varepsilon) \beta_t \cdot \sum_{s \geq \max\{t, t_j^*\}} \hat{L}_j^s \). However, since job \(j \) is assigned a rate of \(\hat{L}_j^s \) and the machines run at speed \((1 + 3\varepsilon) \), we get that this expression is at most \(p_j \cdot \beta_t \), which is the right-hand side of (24). This proves the feasibility of the dual constraint (23).
4.4 Wrapping Up

Proof of Theorem 4.1. In the preceding §4.3 we proved that the variables $\frac{\alpha_j}{ke}$, $\frac{\beta_j}{ke}$, and $(1 + \varepsilon)\frac{\gamma}{ke}$ satisfy the dual constraint for the flow-time relaxation.

Since $\sum_j (\frac{\alpha_j}{ke}) - \sum_j (\frac{\beta_j}{ke})$ is a feasible dual, it gives a lower bound on the cost of the optimal solution. Moreover, $\sum_j w_j \cdot \text{chain}_j$ is another lower bound on the cost of the optimal schedule. Now using the bound on the weighted flow-time of our schedule given by Claim 4.7, this shows that we have an $O(1/\varepsilon^2)$-approximation with $(1 + 3\varepsilon)$-speedup.

\[\Box\]

5 Lower Bounds

For the problem of minimizing weighted completion time under precedence constraints, we allow the jobs in the DAG to arrive over time, and hence different jobs can have different release dates. (All we require is that the release dates respect the order given by the DAG, so a job with an earlier release date cannot depend on a job with a later one.) However, in the case of weighted flow-time minimization, we insist that jobs in the same DAG have the same release date. We now show that this assumption is necessary: if we allows jobs in a DAG to arrive over time, there are strong lower bounds even for a single machine and in the clairvoyant setting (i.e., when the algorithm knows the size of a job when it arrives).

Theorem 5.1 (Lower Bound). Any randomized online algorithm for the problem of minimizing unweighted flow-time on a single machine with precedence constraints and release dates has an unbounded (expected) competitive ratio even in the clairvoyant setting. This lower bound holds even if we allow the speed of the machine to be augmented by a factor of c, for any constant $c > 0$.

Proof. We give a probability distribution over inputs, and show that the expected competitive ratio of any deterministic algorithm is unbounded. By Yao’s Lemma, this implies the desired lower bound.

Initially, n jobs arrive at time 0, each of them has size 1. At time 1, we choose one of these jobs uniformly at random, say $j \in [n]$, and release n^3 new jobs where each new job j' depends on j, i.e., $j < j'$. Hence the precedence graph is a star with n^3 leaves, rooted at j, along with the items in $[n] \setminus \{j\}$ which are unrelated to elements of this star. These n^3 new jobs have 0 size. The parameter n is assumed to be much larger than the speedup c.

Let us first consider the offline optimum. It schedules the job j in the interval $[0, 1]$ and so completes it—the n^3 jobs arriving at time 1 can now be finished immediately, and hence the flow-time for them is zero. It finally schedules the remaining $n - 1$ jobs of size 1 that had arrived at time 0. Their total flow-time is $O(n^2)$.

Now consider any deterministic online algorithm. By time 1, it can perform $c \ll n$ amounts of processing, and so at least half the jobs will have seen less than $1/2$ amount of processing. The randomly chosen job j is such a job with probability at least $1/2$. If this event happens, the flow-time of the arriving n^3 jobs would be at least $n^2/2$, and hence the expected flow-time of this algorithm is $\Omega(n^3)$.

\[\Box\]

This shows why we need our assumption that the release times of any two related jobs is the same. This is a reasonable assumption for many settings, e.g., in [RS08, ALLM16] where each job is a DAG of tasks. We extend their model from minimizing unweighted flow-time of jobs to weighted flow-time of tasks.

6 Solving the Convex Program

Our results in the previous sections rely on solving the convex program (CP) to assign rates to the minimal jobs. In this section we show that we do not need a generic convex program solver for this purpose: we can run an efficient "water-filling" algorithm instead. Indeed, combinatorial algorithms to solve the Eisenberg-Gale convex program (and other problems in market equilibria) have been studied widely, starting with the work of Devanur et al. [DPSV08]. Specifically, the constraints (1), (2), (3), and (5) in (CP) are a
special case of the Eisenberg-Gale convex program for linear Fisher markets when the utility derived from different goods is the same. On one hand, this means our setting is easier and we can use water-filling to solve the program (whereas such a simple algorithm does not suffice with general utilities [DPSV08]). On the other hand it does not seem possible to use the prior results directly, since we have an additional global constraint (4) in (CP).

Since this convex program is solved once at every time \(t \) during the online algorithm, we consider a fixed time \(t \) and remove all subscripts involving \(t \) in this section. We have a bipartite graph \(H \) with the left side being \(I \) and the right side denoted by \(J \). We shall use \(E \) to denote the set of edges here. Every vertex \(j \in I \) has an associated variable \(L_j \) and the vertices \(j \in J \) have variables \(R_j \) associated with them. Further we have a variable \(z_e \) for every edge \(e \in E \). For a subset \(J' \) of \(J \), define \(\Gamma(J') \) as its set of neighbors in \(I \). For a vertex \(v \), define \(\delta(v) \) to be the set of edges incident to it. There is a notion of time in our algorithm that increases at a uniform rate. We use \(T \) to denote this time variable. Our algorithm maintains a feasible solution at all times \(T \).

The idea of the algorithm is to proceed in phases, and to simultaneously increase all \(R_j \) values (initialized at 0) at rate \(w_j \) while maintaining feasibility. A phase ends when the algorithm can no longer perform this increase. This could be because of two reasons: (i) there is a tight set \(J' \subseteq J \) with \(|\Gamma(J')| = w(J') \cdot T \) or (ii) the constraint \(\sum_{j \in J} R_j \leq m \) is tight. In the former case we make progress by removing sets \(J' \) and \(\Gamma(J') \), and in the latter case we finish with an optimal solution to (CP).

Formally, in a phase \(p \) we shall consider a sub-graph \(H^{(p)} \) of \(H \). The left and the right sides of \(H^{(p)} \) are denoted \(I^{(p)} \) and \(J^{(p)} \), respectively. In fact, \(H^{(p)} \) is the subgraph of \(H \) induced by \(I^{(p)} \) and \(J^{(p)} \), and so, it will suffice to specify the latter two sets. The algorithm is described in Algorithm 1. Although in this description we raise \(T \) (and hence \(R_j \)) continuously, this can be implemented in polynomial time using parametric-flows [GGT89]. We now argue the algorithm’s correctness (i.e., it outputs a feasible solution) and then prove its optimality.

6.1 Correctness

In order to prove correctness we need to show that the fractional assignments mentioned in Steps 10 and 16 can always be found. We first show the algorithm always maintains \(L_j \leq 1 \) for all \(j \in I \). In Claim 6.3 we argue that \(\sum_{j \in I} L_j \leq m \), which implies feasibility for (CP).

We show that the following invariant is always maintained at any time \(T \) during the algorithm.

Claim 6.1. Consider a time \(T \) during a phase \(p \) of the algorithm. There exist non-negative values \(z_e \) for all edges \(e \) in the graph \(H_p \) such that the following conditions are satisfied:

- For every \(j \in J^{(p)} \), we have \(\sum_{e \in \delta(j)} z_e = w_j \cdot T \).
- For every \(j \in I^{(p)} \), we have \(\sum_{e \in \delta(j)} z_e \leq 1 \).

Proof. We prove the following statement by induction on phase \(p \): at any time \(T \) during a phase \(p \) of the algorithm, \(w(J') \cdot T \leq |J'| \) for every subset \(J' \subseteq J^{(p)} \) and \(I' = \Gamma(J') \). It is easy to see that once we show this statement, the desired result follows by Hall’s matching theorem.

It is clearly true for \(p = 0 \). Suppose it is true for some time \(T = T_1 \) in phase \(p \), and we increase \(T \) from \(T_1 \) to \(T_2 \) during this phase. Consider a subset \(J' \) of \(J^{(p)} \), and let \(I' \) denote \(\Gamma(J') \). By induction hypothesis, \(w(J') \cdot T_1 \leq |I'| \). As we raise \(T \), the LHS will increase but the RHS remains unchanged. If the two become equal, this phase will end. Since \(T_2 \) also lies in this phase, \(w(J') \cdot T_2 \) must be at most \(|I'| \), and the invariant continues to hold at time \(T_2 \).

Now suppose we go from phase \(p \) to phase \(p + 1 \) at time \(T \). Let \(J', J'' \) be as defined in Step 6. Suppose this invariant is violated at time \(T \) in phase \(p + 1 \), i.e., there exist subsets \(J'' \) and \(I'' = \Gamma(J'') \) of \(J^{(p+1)} \) and \(I^{(p+1)} \), respectively, for which \(w(J'') \cdot T > |I''| \). Now consider the set of vertices \(J' \cup J'' \) in \(H^{(p)} \). Clearly
Γ(J' ∪ J'') = I' ∪ I''. But then w(J' ∪ J'') · T > |I'| + |I''| = |I' ∪ I''|, which contradicts the fact that the invariant condition always holds in phase p.

Corollary 6.2. The algorithm will find the desired matching is Steps 10 and 16.

Proof. Consider the assignment required in Step 10. Let z be the assignment guaranteed by Claim 6.1, and consider its restriction to edges in E'. Since I' = Γ(J'), it follows that

\[
\sum_{e \in E', e \in \delta(j)} z_e = \sum_{e \in H(p), e \in \delta(j)} z_e = R_j.
\]

We also know that for any j ∈ I',

\[
\sum_{e \in E', e \in \delta(j)} z_e \leq 1.
\]

But note that \(\sum_{j \in I'} R_j = \sum_{j \in I'} L_j\). The former quantity is equal to \(w(J') \cdot T\), while the latter is at most \(|I'|\). But we know from the condition in Step 6 that they are equal. Therefore \(L_j = 1\) for all \(j \in I'\). This yields the desired assignment for Step 10. The desired assignment for Step 16 follows directly from Claim 6.1. □

Algorithm 1 Solving the Convex Program (CP)

1: Initialize \(T \leftarrow 0, p \leftarrow 0\).
2: Initialize \(H(p) \leftarrow H, I(p) \leftarrow I, J(p) \leftarrow J\).
3: Initialize the variables \(z, L, R\) to 0.
4: repeat
5: Raise \(T\) at a uniform rate till one of the following two events happen:

6: (i) There is a subset \(J' \subseteq J(p)\) for which the set \(I' = \Gamma(J')\) has cardinality \(w(J') \cdot T\).
7: For every \(j \in J'\), set \(R_j \leftarrow w_j \cdot T\).
8: For every \(j \in I'\), set \(L_j \leftarrow 1\).
9: Let \(E'\) be the set of edges between \(I'\) and \(J'\).
10: For every edge \(e \in E'\), set \(z_e\) to values satisfying:

\[
\sum_{e \in E', e \in \delta(j)} z_e = R_j, \forall j \in J'; \sum_{e \in E', e \in \delta(j)} z_e = L_j, \forall j \in I'.
\]

11: \(J(p+1) \leftarrow J(p) \setminus J'\) and \(I(p+1) \leftarrow I(p) \setminus I'\).
12: Terminate if \(J(p+1) = \emptyset\).
13: \(p \leftarrow p + 1\), Goto Step 4.

14: (ii) \(\sum_{j \in J(p)} w_j \cdot T + |I \setminus J(p)| = m\).
15: For every \(j \in J(p)\), set \(R_j \leftarrow w_j \cdot T\).
16: For every edge \(e\) in \(H(p)\), set \(z_e\) to values satisfying:

\[
\sum_{e \in H(p), e \in \delta(j)} z_e = R_j, \forall j \in J(p); L_j := \sum_{e \in H(p), e \in \delta(j)} z_e \leq 1, \forall j \in I(p).
\]

17: Terminate.
18: until \(T\) cannot be raised.

We now know the algorithm always ensures that \(L_j \leq 1\) for all \(j \in I\). Next we show that it maintains the invariant \(\sum_{j \in I} L_j \leq m\). This will show that these values are feasible for (CP).
Claim 6.3. When the algorithm terminates, $\sum_{j \in I} L_j \leq m$. Further, if it terminates after executing Step 14, then $\sum_{j \in I} L_j = m$.

Proof. We first show by induction on phase p that the following condition always holds for all T:

$$\sum_{j \in I(p)} w_j \cdot T + |I \setminus I(p)| \leq m.$$

It clearly holds for $p = 0$. As in the proof of Claim 6.1, if it holds at any time during a phase, it will continue to hold during a later point of time in this phase. Now suppose the condition holds at some time T during a phase p and we go to phase $(p + 1)$ at T. This happens because we reach Step 6 during this phase. We claim that

$$\sum_{j \in I(p)} w_j \cdot T + |I \setminus I(p)| = \sum_{j \in I(p+1)} w_j \cdot T + |I \setminus I(p+1)|.$$

This easily follows from the fact that $\sum_{j \in J} R_j = w(J') \cdot T = \sum_{j \in I'} L_j = |I'|$, where I' and J' are as defined in Step 6. Therefore the invariant continues to hold in phase $(p + 1)$.

Suppose we reach Step 14 during phase p. Note that for every $j \in I \setminus I(p)$, we have $L_j = 1$. In this phase $\sum_{j \in J(p)} w_j \cdot T = \sum_{j \in J(p)} L_j$. The condition in Step 14 shows that this quantity is equal to $m - |I \setminus I(p)|$. Therefore, $\sum_{j \in I} L_j = m$.

Thus, we have shown that the quantities z, L, R satisfy all the constraints in (CP). Now we prove their optimality.

6.2 Optimality

To prove optimality, we will define non-negative dual variables θ, η, ν which satisfy the KKT conditions (11)–(14). We give some notations first. Let ℓ denote the index of the final phase (the algorithm could end because of Steps 6 or 14). For any phase p, let $I(\Delta p)$ denote $I(p) \setminus I(p+1)$ (this set is same as J' used in Step 6). Define $I(\Delta p)$ similarly. Since $I(\Delta p) = I(J(\Delta p))$ in the graph $H(p)$, there cannot be an edge in H between $I(\Delta p)$ and $I(\Delta p')$ for some $p' > p$ (though there could be an edge between $I(\Delta p')$ and $I(p)$). In case $p = \ell$, define $I(\Delta p)$ and $I(\Delta p)$ as $I(p)$ and $I(p)$, respectively. Let T_p denote the time at which phase p ends.

Now we define the dual variables:

- θ: Let $j \in I(\Delta p)$, where either $p \neq \ell$, or $p = \ell$ but the last phase ends in Step 6. Define θ_j to be $1/T_p$. If $j \in I(\ell)$ and the phase ℓ ends in Step 14, then define θ_j to be 0.

- η: If the last phase ℓ ends in Step 14, define η to be $1/T_\ell$. Otherwise, define η to be 0.

- ν: If the end-points of e belong to $I(\Delta p)$ and $I(\Delta p)$ for some phase p, then ν_e is defined to be 0. The only other possibility is that the end-points of e belong to $I(\Delta p')$ and $I(\Delta p')$, respectively, where $p' > p$. In this case, define ν_e to be $1/T_p - 1/T_{p'}$. Clearly, $\nu_e \geq 0$ for all edges e.

Checking KKT conditions is easy. To check (12), note that if $\theta_j > 0$ then j is assigned L_j value in Step 6 of a phase, and so, $L_j = 1$. To check (13), note that if $\eta > 0$ then we are in Step 14 of the last phase, and so, Claim 6.3 shows that $\sum_{j \in I} L_j = m$. To check (14), clearly if $\nu_e > 0$, then $z_e = 0$. Finally, to check (11), consider an edge $e = (j, j')$ with $j \in I(\Delta p)$ and $j' \in I(\Delta p')$ for some $p' \geq p$. Note that $\theta_j + \eta = \frac{1}{T_p}$ and $\frac{\nu_e}{\eta} = \frac{1}{T_{p'}}$. But then ν_e is exactly the difference between these two terms.

Since the KKT conditions (11)–(14) are satisfied, this proves the optimality of our algorithm.
7 The Missing Proofs

7.1 Proofs for Section 2

Proof of Claim 2.1. Consider an optimal schedule \(S \), and let \(x_{j,t} \) be the volume of \(j \) processed during \([t, t+1]\). Constraint (6) states that the total amount of processing on \(j \) must be at least (in fact, it will be equal to) \(p_j \). Constraint (7) requires that the total amount of processing that can happen during a slot \([t, t + 1]\) is at most \(m \) because each machine can perform 1 unit of processing during this time slot. Constraint (8) can be justified as follows: suppose \(j \) precedes \(j' \), and consider a time \(t \). Then the LHS of this constraint denotes the fraction to which \(j \) has been processed till time \(t \), and the RHS denotes this quantity for \(j' \). In the schedule \(S \), if the RHS is positive, then it must be the case that \(j \) has been completed by time \(t \), and so the LHS would be 1. Finally, we consider the objective function. Let \(C_j \) be the completion time of \(j \). Clearly, \(x_{j,t} = 0 \) for \(t > C_j \), and so, \(\sum_t \frac{t \cdot x_{j,t}}{p_j} \leq C_j \cdot \frac{x_{j,t}}{p_j} = C_j \).

Proof of Claim 2.2. Suppose \(\sum_{j \in I_t} \bar{L}_j^t < m \), but \(L_j^t < 1 \) for some \(j \in I_t \). Let \(e \) be an edge incident with \(j \) (since there is a copy of \(j \) on the right side of the bipartite graph, we know that \(j \) has at least one edge incident with it). We can raise the \(z_e \) value of this edge while maintaining feasibility. But this will increase the objective value, a contradiction.

Proof of Claim 2.3. Constraint (11) implies that \(\bar{R}_j^t > 0 \) and so there is a vertex \(j' \in I_t \) such that \(e = (j', j) \in H_t \) with \(z_e > 0 \). Now (14) shows that \(v_e^t = 0 \), and so \(w_j/\bar{R}_j^t = \eta_j^t + \theta_j^t \geq \eta_j^t \). Hence the proof.

Proof of Claim 2.4. Let \(e \) denote the edge \((j', j)\). Now (12) and (14) imply that \(v_e^t = 0 \) and \(\theta_j^t = 0 \). The claim now follows from (11).

Proof of Corollary 2.6. By definition there is a neighbor \(j' \in I_t \) of \(j \) such that \(\bar{L}_{j'}^t < 1 \). Let \(e' \) denote the edge \((j', j)\). If \(z_{e'} > 0 \), then we are done by Claim 2.4 above. So assume \(z_{e'} = 0 \). Since \(\bar{R}_{j'}^t > 0 \). There must be an edge \(e'' = (j'', j) \) incident with \(j \) such that \(z_{e''} > 0 \). Again, if \(\bar{L}_{e''} < 1 \), we are done by the Claim above. So, assume that \(\bar{L}_{j''}^t = 1 \). Now consider reducing \(z_{e''} \) by a tiny amount and increasing \(z_{e'} \) by the same amount. This maintains feasibility of all constraints. Since \(\bar{R}_{j'}^t \) remains unchanged, we remain at an optimal solution. Now we can apply Claim 2.4.

Proof of Claim 2.7. Let us prove the upper bound first. If \(\eta_j^t = 0 \), there is nothing to prove. So assume \(\eta_j^t > 0 \). Constraint (13) now implies that

\[
\eta_j^t = \eta_j^t \cdot \frac{1}{m} \cdot \sum_{j \in I_t} \bar{L}_j^t = \eta_j^t \cdot \frac{1}{m} \cdot \sum_{j \in I_t} \bar{R}_j^t,
\]

the latter using (1) and (2). Now using Claim 2.3, we can bound \(\eta_j^t \bar{R}_j^t \leq w_j \) in (25), giving us \(\eta_j^t \leq \frac{1}{m} \sum_{j \in I_t} w_j \), and hence the upper bound. For the lower bound, suppose \(\eta_j^t > 0 \). Then for every job \(j \in J_t \) and for every edge \((j', j) \in E_t \), we must have \(\theta_j^t > 0 \). This means each of the jobs in \(J_t \) is inactive, and hence \(w(f_t^{act}) = 0 \), which proves the claim. The other case is when \(\eta_j^t > 0 \), and then we get:

\[
\eta_j^t \stackrel{(25)}{=} \eta_j^t \cdot \frac{1}{m} \cdot \sum_{j \in J_t} \bar{R}_j^t \geq \eta_j^t \cdot \frac{1}{m} \cdot \sum_{j \in J_t} \bar{R}_j^t = w(f_t^{act})/m,
\]

where the last equality follows from Corollary 2.6.

Proof of Claim 2.8. Fix a job \(j \). Let \(C \) be the chain in \(G \) which ends with \(j \) and satisfies \(p(C) = \text{chain}_j \). Consider a time \(t \leq C_j \), the completion time of \(j \). Suppose \(\alpha_j^t = 0 \). Considering \(j \) as a vertex in \(I_t \) (i.e., right side) in the bipartite graph \(H_t \), it must be the case that all its neighbors get rate 1. Exactly one job in the chain \(C \), say \(j' \), belongs to the set \(I_t \). Since \((j', j) \) is an edge in \(H_t \), it must be the case that \(j' \) gets rate 1. Thus, we conclude that whenever \(\alpha_j^t = 0 \), there is a job in \(C \) which is processed for 2 units during \([t, t + 1]\).
(recall that the machines in A run at speed 2). Therefore, $w_j(C_j - r_j) \leq \alpha_j + w_j \cdot \text{chain}_j/2$. Summing over all jobs, we get
\[\sum_j w_j C_j \leq \sum_j w_j (r_j + \text{chain}_j/2) + \sum_j \alpha_j. \]

Now observe that for any time t, $m \beta t$ is equal to $w(U_t)/2$, and so, $m \cdot \sum_t \beta t = \sum_j w_j C_j/2$. Subtracting this from the inequality above yields the desired result. \square

7.2 Proofs for Section 3

Proof of Claim 3.2. Suppose t is a time at which all machines are busy (i.e., $\sum_j J_j L_j = m$). We first argue that $\sum_{j \in J_t} \alpha_{j,t}$ is equal to $w(f_t^{\text{act}})$. Indeed, observe that $w(f_t^{\text{act}})$ appears in either $\alpha_{j,t}$ or $\alpha'_{j,t}$ depending on whether j' is otherwise. Hence, we get
\[\sum_{j \in J_t} \alpha_{j,t} = \frac{1}{m} \sum_{j \in J_t} w_j \cdot [j \in f_t^{\text{act}}] \cdot \sum_{j \in J_t} \bar{R}_j = \frac{1}{m} \sum_{j \in J_t} w_j \cdot \sum_{j \in J_t} J_t = w(f_t^{\text{act}}). \quad (26) \]

We now argue that
\[\sum_t w(J_t \setminus J_t^{\text{act}}) = \sum_j w_j \cdot \text{chain}_j/(2 + 2\epsilon). \]

Indeed, consider a job $j \in J_t \setminus J_t^{\text{act}}$. All its neighbors in G_t are running at rate 1. Therefore, we must be running a job in the chain which defines chain$_j$. The factor $2(1 + \epsilon)$ comes from the machine speedup. Observe that if all machines are not completely busy at time t, then all jobs in J_t are inactive (Claim 2.2). Combining this with (26), we see that the total weighted flow-time is
\[\sum_t w(f_t^{\text{act}}) + \sum_t w(J_t \setminus J_t^{\text{act}}) = \sum_j \alpha_j + \sum_j w_j \cdot \text{chain}_j/(2 + 2\epsilon). \]

The claim follows because $m \cdot \sum_t \beta_t$ is $1/(1 + \epsilon)$ times the total weighted flow-time, which means the difference
\[\sum_j \alpha_j - m \sum_t \beta_t + \sum_j w_j \cdot \text{chain}_j \geq (1 - \frac{1}{1 + \epsilon}) \cdot \sum_t w(J_t) \geq \frac{\epsilon}{2} \cdot \sum_t w(J_t). \]

This finishes the proof of the claim because $\sum_t w(J_t)$ is the total weighted flow-time. \square

Proof of Claim 3.6. We begin by bounding $2(\eta_{s,j} - \eta_{s,j}^{\text{in}})$. As in the proof of Claim 3.5, the contribution from paths P_e for which j lies on the right side of H_s is $-2\eta_j f_j^{\text{act}}$, which by Lemma 3.4 cancels $\alpha_{j,s}$. Thus we get
\[\alpha_{j,s} + 2(\eta_{s,j}^{\text{out}} - \eta_{s,j}^{\text{in}}) = \sum_{j' \in J_s, e=(j \to j') \in E_s} \eta_j^{s} \cdot \bar{z}_e. \]

Finally, recall that all jobs in a DAG have the same release time. Hence, any job j' in the summation above is released at the same time as j. Moreover, any job $j'' \in J_s$ which contributes towards $\eta_j^{s} = \frac{1}{m} \cdot (\sum_{j' \in J_s, j'' \leq j'} w_{j''})$ has been also released at or before r_j. Therefore, $\eta_j^{s} \leq w(J_t)/m = (1 + \epsilon)\beta t$ by definition of βt. This implies
\[\alpha_{j,s} + 2(\eta_{s,j}^{\text{out}} - \eta_{s,j}^{\text{in}}) \leq 2 \sum_{j' \in J_s, e=(j \to j') \in E_s} (1 + \epsilon)\beta t \cdot \bar{z}_e = 2(1 + \epsilon)\beta t \cdot \bar{L}_j^{s}, \]

where we use $\bar{L}_j^{s} = \sum_{j' \in J_s, e=(j \to j') \in E_s} \bar{z}_e$. \square
References

[AGK12] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time explained by dual fitting. In SODA ’12, pages 1228–1241. ACM, New York, 2012.

[ALLM16] Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallel DAG jobs online to minimize average flow time. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 176–189, 2016.

[BN15] Abbas Bazzi and Ashkan Norouzi-Fard. Towards tight lower bounds for scheduling problems. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 118–129, 2015.

[CS99] Fabián A. Chudak and David B. Shmoys. Approximation algorithms for precedence-constrained scheduling problems on parallel machines that run at different speeds. J. Algorithms, 30(2):323–343, 1999.

[DPSV08] Nikhil R Devanur, Christos H Papadimitriou, Amin Saberi, and Vijay V Vazirani. Market equilibrium via a primal–dual algorithm for a convex program. Journal of the ACM (JACM), 55(5):22, 2008.

[ECBD97] Jeff Edmonds, Donald D. Chinn, Tim Brecht, and Xiaotie Deng. Non-clairvoyant multiprocessor scheduling of jobs with changing execution characteristics (extended abstract). In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 120–129, 1997.

[Edm99] Jeff Edmonds. Scheduling in the dark. In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 179–188, 1999.

[EP12] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup curves. ACM Trans. Algorithms, 8(3):Art. 28, 10, 2012.

[GKT89] Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989.

[GKP12] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual for non-linear optimization with applications to speed scaling. In Approximation and Online Algorithms - 10th International Workshop, WAOA 2012, Ljubljana, Slovenia, September 13-14, 2012, Revised Selected Papers, pages 173–186, 2012.

[GKR’16] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan Kulkarni. GRAPHENE: packing and dependency-aware scheduling for data-parallel clusters. In 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016., pages 81–97, 2016.

[Gra66] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45(9):1563–1581, 1966.

[HSSW97] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize average completion time: off-line and on-line approximation algorithms. Math. Oper. Res., 22(3):513–544, 1997.

[IKM18] Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from competitive equilibrium: Non-clairvoyant scheduling under polyhedral constraints. J. ACM, 65(1):3:1–3:33, 2018.

[IKMP14] Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk Pruhs. Selfishmigrate: A scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 531–540, 2014.

[KL18] Janardhan Kulkarni and Shi Li. Flow-time optimization for concurrent open-shop and precedence constrained scheduling models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, pages 16:1–16:21, 2018.
[KP00] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. *J. ACM*, 47(4):617–643, 2000.

[Li17] Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear programming relaxations. In *58th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2017*, pages 283–294. IEEE Computer Soc., Los Alamitos, CA, 2017.

[MPT94] Rajeev Motwani, Steven Phillips, and Eric Torng. Nonclairvoyant scheduling. *Theoretical Computer Science*, 130(1):17–47, 1994.

[MQS98] Alix Munier, Maurice Queyranne, and Andreas S. Schulz. Approximation bounds for a general class of precedence constrained parallel machine scheduling problems. In *Integer programming and combinatorial optimization (Houston, TX, 1998)*, volume 1412 of *Lecture Notes in Comput. Sci.*, pages 367–382. Springer, Berlin, 1998.

[Nas50] John F. Nash. The bargaining problem. *Econometrica*, 18(2):155–162, 1950.

[RS08] Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints. In *Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008*, pages 491–500, 2008.