Impact of Different Seed Rates on Yield and Economics of Direct Seeded Rice in Eastern Vidharbha Zone of Maharashtra, India

Usha R. Dongarwar¹, Nitin Patke², L.N. Dongarwar³ and Sumedh R. Kashiwar⁴*

¹Krishi Vigyan Kendra, Bhandara (Sakoli), Maharashtra - 441802, India
²Zonal Agricultural Research Station, Sindewahi, Maharashtra - 441222, India
³Dr. Panjabrao Deshmukh Krishi Vidhyapeeth, Akola, Maharashtra – 444001, India
⁴Institute of Agriculture, Visva-Bharati, Santiniketan, West Bengal - 731236, India

*Corresponding author

ABSTRACT

An experiment was conducted, for three consecutive years to evaluate the effect of seed rates on yield and economic traits in Bold as well as Fine seeded rice variety in terms of Direct-Seeded technique. The experiment was laid out in Factorial Randomized Block design and replicated thrice. Study concluded that Pooled means of seed rates at Sakoli indicated that sowing of 75 kg seed ha⁻¹ (3458 kg ha⁻¹) was expressively higher in grain yield but was at par with sowing of 50 kg seed ha⁻¹. As well as pooled mean at Sindewahi indicated that Variety Sye-2001 was higher in grain yield (3631 Kg ha⁻¹) of Rice than PKV HMT. The pooled mean of grain yield over three seasons and two locations revealed that variety Sye-2001 was significantly higher in grain yield over PKV HMT Variety. Among seed rates, 75 kg seed ha⁻¹ recorded significantly higher grain yield over other seed rates but was at par with 50 kg seed ha⁻¹. Interaction effect showed the variety Sye-2001 was significantly highest in grain yield at 75 kg seed ha⁻¹ and PKV HMT variety at 50 kg Seed ha⁻¹. Also the highest GMR, NMR and B:C ratio was recorded in Sye-2001 with 75 kg seed rate ha⁻¹ and in PKV HMT at 50 kg Seed ha⁻¹.

Keywords
Direct-seeded rice, Seed rate, GMR, NMR, Sye-2001, PKV-HMT

Article Info
Accepted: 04 February 2018
Available Online: 10 March 2018

Introduction

Seed rate has a great impact on plant density and the competitiveness of the crop stand, tiller, time to maturity and yield. Low plant density and improper sowing method are the most important factors of agronomic constraints for obtaining higher yields and have a positive influence on the yield of rice. Optimum plant density is the primary factor for obtaining higher yield in rice (Sivaesarajah et al., 1995). The increase in plant density increases total plant weight per unit area and decreases the total weight per plant (Yoyock et al., 1979). The number of plants per unit area has an impact on plant architecture, modifies growth and development pattern and effects on the production photosynthesis (Abuzar et al., 2011). The increase in plant density increases the yield up to a limit and thereafter a leveling off or decline in yield (Sivaesarajah et al., 1995). The reason for the reduction in yield is due to the reduction in resources per plant. So the reduction in yield
will not be compensated by increasing plant number. Direct seeding technique offers a useful option to reduce the limitations of transplanted rice. Direct seeding is being practiced in many developed countries where labour is scarce and expensive (Pingali et al., 1994). Direct-seeded rice occupies 26% of the total rice area in South Asia (Gupta et al., 2006). Direct seeding of rice avoids puddling, does not need continuous submergence, and thus reduces the overall water demand for rice culture. When rainfall at planting time is highly variable, direct seeding may help reduce the production risk (Singh et al., 2006). Direct seeding can also reduce the risk by avoiding terminal drought that lowers the yield of transplanted rice, especially if the latter is established late due to delayed rainfall. Direct seeding can facilitate crop intensification (Singh et al., 2008). In Vidharbha region of Maharashtra, rice is majorly grown by puddled transplanting method, which is laborious and costly method. The peak period of rice transplanting is in the month of July, which results in labour shortage at the time of transplanting. For this instance, the present study aimed to find out the suitable seed rate for bold and fine seeded rice under drill condition, effect of different seed rates on yield and yield attributing characters of drilled rice and the economics

Materials and Methods

The study was aimed to investigate the effect of different seed rates on yield and growth traits of bold and fine seeded rice varieties. Study conducted during three rainy (kharif) seasons of 2013-2016 at two locations Krishi Vigyan Kendra, Bhandara (Sakoli), Maharashtra, India and Zonal Agricultural Research Station, Sindewahi, Maharashtra, India. The experimental material comprised of two well-known rice varieties viz., Bold seeded: Sye-2001 (V1) and Fine seeded: PKV-HMT (V2) with five different seed rate combinations like Sowing of 50 kg seed ha⁻¹ (S1), 75 kg seed ha⁻¹ (S2), 100 kg seed ha⁻¹ (S3), 125 kg seed ha⁻¹ (S4) and 150 kg seed ha⁻¹ (S5). The experiment was planned in a Factorial Randomized Block Design and replicated thrice. The soil of experimental site was analyzed for initial soil nutrient status (Table 1) and the application of recommended dose of 125:62.5:62.5 kg NPK ha⁻¹ was common in all combinations. Date of Sowing and harvesting was strictly followed for consequent three years (Table 2).

Results and Discussion

Growth traits

Average results observed in growth traits as influenced by various seed rates on Bold and Fine seeded variety throughout three-year shows, as seed rate increases the plant height, grains panicle⁻¹, length of panicle and effective tillers sq. m⁻¹ decreases eventually (Table 3). In term of plant height V1 showed up 94.09 cm, was at its best among entire treatment combinations for three years followed by V1V2S3 attended 90.36 cm and V1V2S2 was at 89.30 cm. Number of tillers sq. m⁻¹ was recorded highest in V1 (531.73) but the fine seeded variety V2 showed 442.73 tillers sq. m⁻¹ (Table 3). Some different trends had been noticed like the number of tillers sq. m⁻¹ was increasing as seed rate increases in both varieties. Number of effective tillers sq. m⁻¹ was noticed superior at V1V2S3 (289.17) and V1V2S2 (285.33) in Bold as well as Fine seeded variety. Seed rate of 50 and 75 kg ha⁻¹ results the average panicle length of 20.95 cm and 20.25 cm but V1 showed the highest panicle length of 21.59 cm in consecutive three years average record (Table 3). The fine seeded variety V2 recorded the highest 179.09 grains panicle⁻¹ afterward V1V2S2 and V1V2S3 were at par to each other throughout the growing seasons. Miller et al., (1991) found that panicle is a key factor that determines and contributes 89% of differences in yield. These results are in line with those of Kenneth et al.,
(1996) who reported rough rice has gained high yield in the optimum plant stand. \(V_1V_2S_3 \) and \(V_1V_2S_2 \) showed the significantly highest grain yield sq. m\(^{-1}\) of 389.33 and 377.20 but in terms of variety \(V_1 \) results the high in grain yield. This is in agreement with the studies reported by Mahajan et al., (2004), Hardev et al., (2014) and Rajiv et al., (2013). Basically \(V_1 \) is Bold seeded variety so it has the high test weight of 25.72 g and \(V_2 \) was at 14.34 g. Similar results showing that yield of rice linearly increased with seed rate (density) has been reported by Baloch et al., (2002). The plants at low seed rate have sufficient space and this enables to utilize more nutrients, water and solar radiation for better photosynthesis. Hence, the individual plants performed better. This is in agreement with the studies reported by Baloch et al., (2002), Akbar et al., (2004), Prasad et al., (1999), IRRI (2008), Subbaiah et al., (2002), Gill et al., (2008), Sharma et al., (1992), Mahajan et al., (2006), Dongarwar et al., (2015) and Abou-Khalifa et al., (2014).

Yield traits

Pooled means of three consecutive years at ZARS Sindewahi location point to bold seeded variety \(V_1 \) - Sye-2001 for highest grain yield of 3631 Kg ha\(^{-1}\) than PKV HMT at 3167 kg ha\(^{-1}\). \(V_1V_2S_2 \) (75 kg ha\(^{-1}\) seed rate) was recorded significantly highest yield over other treatment with 3710 kg ha\(^{-1}\) of yield (Table 4). Interaction effects between variety and seed rate resulted as significant. \(V_1 \) - Sye-2001 recorded 4162 kg ha\(^{-1}\) grain yield, which was superior, over all other combinations, and \(V_2 \) - PKV HMT, recorded significantly higher yield, in seed rate \(S_1 \) - 50 kg seed ha\(^{-1}\) of 3710 kg ha\(^{-1}\) (Table 5). This is in agreement with the studies reported by Zhao et al., (2007), Chauhan et al., (2011), Gill et al., (2006), Phuong et al., (2005), Dongarwar et al., (2015) and Kaun et al., (2014). Pooled means of KVK, Bhandara (Sakoli) location for entire three years indicated that, variety \(V_1 \) - Sye-2001 was significantly higher, in grain yield of rice, with 3225 kg ha\(^{-1}\) of grain yield. Whereas \(V_2 \) - PKV HMT recorded grain yield of 2581 kg ha\(^{-1}\). Among various seed rates, \(V_1V_2S_2 \) (75 kg seed ha\(^{-1}\)) showed 3458 kg ha\(^{-1}\) of grain yield was higher but was at par with sowing of \(V_1V_2S_1 \) (50 kg seed ha\(^{-1}\)) with the yield of 3319 kg ha\(^{-1}\) (Table 6). The seed rate 50 kg and 75 kg ha\(^{-1}\) were at par with each other and significantly superior over other treatments. Pooled means of interaction of variety and seed rate at KVK, Bhandara (Sakoli) revealed that variety bold seeded \(V_1 \) - Sye-2001 was higher yield at \(S_2 \) (75 kg ha\(^{-1}\)) and fine seeded PKV HMT recorded best results at \(S_1 \) (50 kg ha\(^{-1}\)) seed rates (Table 7). Zhao et al., (2007), Chauhan et al., (2011), Gill et al., (2006), Phuong et al., (2005) and Kaun et al., (2014) also reported similar results. The results of pooled mean of grain yield over three seasons of both locations revealed that bold seeded \(V_1 \) - Sye-2001 variety recorded 3578 kg ha\(^{-1}\) of grain yield, which was expressively higher grain yield over fine seeded \(V_2 \) - PKV HMT Variety with 2874 kg ha\(^{-1}\) of yield.

Among different seed rates \(V_1V_2S_2 \) (75 kg seed ha\(^{-1}\)) recorded 3584 kg ha\(^{-1}\) of grain yield which was significantly higher grain yield, over other seed rates but was at par, with \(S_1 \) (50 kg seed ha\(^{-1}\)) which was with 3485 kg ha\(^{-1}\) of yield (Table 8). Interaction effect between variety and seed rate revealed that that \(V_1 \) Sye-2001 variety recorded 4167 kg ha\(^{-1}\) of grain yield, which was significantly higher grain yield at \(S_2 \) - 75 kg seed ha\(^{-1}\). \(V_2 \) PKV HMT variety recorded yield of 3483 kg ha\(^{-1}\) at \(S_1 \) (50 kg seed ha\(^{-1}\)) (Table 9). This is in agreement with the studies reported by Kumhar et al., (2016), Payman et al., (2008), Walia et al., (2009), Baloch et al., (2002), Akbar et al., (2004), Prasad et al., (1999), IRRI 2008, Subbaiah et al., (2002), Gill et al., (2008), Sharma et al., (1992), Mahajan et al., (2006) and Abou-Khalifa et al., (2014).
Table 1: Initial soil fertility status of ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Particulars	Locations	Method used
	ZARS Sindewahi	
	KVK, Sakoli	
pH	7.30	pH meter (Piper, 1966)
EC (dsm⁻¹)	0.22	Conductivity meter (Jackson, 1967)
Organic Carbon (%)	0.48	Walkley and Black method (Jackson, 1967)
Available N kg/ha	221.00	Alkaline permanganate method (Subbiah & Asija, 1956)
Available P2O5 kg/ha	30.2	Olsen’s method (Jackson, 1967)
Available K2O kg/ha	290.00	Neutral normal ammonium acetate method (Jackson, 1967)

Table 2: Dates of sowing and harvesting at ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Parameter	Date of Sowing	Date of Harvesting		
	Sindewahi	Sakoli	Sindewahi	Sakoli
First Year	01.07.2013	08.07.2013	08.11.2013	15.11.2013
Second Year	01.07.2014	08.07.2014	28.11.2014	11.11.2014
Third Year	01.07.2015	08.07.2015	10.11.2015	20.11.2015

Table 3: Average Ancillary Characters as influenced by different seed rates at ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Treatments	Plant Height (cm)	No. of tillers sq. m⁻¹	No. of effective tillers sq. m⁻¹	Length of panicle (cm)	No. of grains per panicle	Grain yield sq.m⁻¹ (g)	Test weight (g)
V₁	91.09	531.73	275.33	21.59	114.12	371.20	25.72
V₂	84.92	442.44	236.26	19.57	179.09	303.46	14.34
V₁V₂S₁	86.20	461.67	232.67	20.25	137.43	288.33	20.13
V₁V₂S₂	89.30	481.50	285.33	20.95	156.53	377.00	19.96
V₁V₂S₃	90.36	469.50	289.17	21.10	159.25	389.33	20.17
V₁V₂S₄	88.25	512.33	253.50	20.63	148.65	351.50	20.19
V₁V₂S₅	85.92	520.44	218.33	19.98	131.15	280.50	19.72
Table 4: Pooled Mean of grain yield of Rice (Kg ha\(^{-1}\)) as influenced by various treatments at Sindewahi, Maharashtra, India

Treatment	Grain yield kg ha\(^{-1}\) 2013-14	2014-15	2015-16	Pooled mean
Main plot : Varieties				
V\(_1\)	3441	3427	4023	3631
V\(_2\)	3298	2781	3422	3167
SE\(\text{Em}\)±	110	91.0	49	39
CD @ 5%	NS	554	298	236
CV %	12.62	11.36	8.10	6.42
Sub Plot Seed rates				
V\(_1\)/V\(_2\)/S\(_1\)	3578	3245	3968	3597
V\(_1\)/V\(_2\)/S\(_2\)	3612	3392	4125	3710
V\(_1\)/V\(_2\)/S\(_3\)	3448	3099	3697	3415
V\(_1\)/V\(_2\)/S\(_4\)	3217	2991	3545	3251
SE\(\text{Em}\)±	114	98	119	78
CD @ 5%	341	295	356	233.0
CV %	8.26	7.75	7.80	5.60
Interaction between Variety x Seed Rate				
SE\(\text{Em}\)±	161	139	168	110
CD @ 5%	NS	433	522	342
CV %	8.26	7.75	7.80	5.60

Table 5: Pooled Interaction effect of Grain yield as influenced by different seed rates at Sindewahi, Maharashtra, India

Treatments	S\(_1\)	S\(_2\)	S\(_3\)	S\(_4\)	S\(_5\)	Mean
V\(_1\)	3484	4162	3697	3514	3296	3631
V\(_2\)	3710	3257	3132	2988	2750	3167
Mean	3597	3710	3415	3251	3023	
SE\(\text{Em}\)±				110		
CD @ 5%	NS		433	522	342	
CV %	8.26	7.75	7.80	5.60		

Table 6: Pooled Mean of grain yield of Rice (Kg ha\(^{-1}\)) as influenced by various treatments at Sakoli, Maharashtra, India

Treatment	Grain yield kg ha\(^{-1}\) 2013-14	2014-15	2015-16	Pooled mean
Main plot : Varieties				
V\(_1\)	3424	3275	3878	3225
V\(_2\)	2436	2471	2835	2581
SE\(\text{Em}\)±	118	52	61	44
CD @ 5%	720	317	370	266
CV %	15.63	7.02	7.01	5.55
Sub Plot Seed rates				
V\(_1\)/V\(_2\)/S\(_1\)	3079	3226	3652	3319
V\(_1\)/V\(_2\)/S\(_2\)	3322	3265	3788	3458
V\(_1\)/V\(_2\)/S\(_3\)	2872	2810	3276	2986
V\(_1\)/V\(_2\)/S\(_4\)	2710	2594	3183	2829
V\(_1\)/V\(_2\)/S\(_5\)	2667	2471	2884	2674
SE\(\text{Em}\)±	128	139	126	74
CD @ 5%	383	416	379	222
CV %	10.67	11.82	9.22	5.95
Interaction between Variety x Seed Rate				
SE\(\text{Em}\)±	181	196	179	105
CD @ 5%	562	610	556	327
CV %	10.67	11.82	9.22	5.95
Table 7: Pooled Interaction effect of Grain yield as influenced by different seed rates at Sakoli, Maharashtra, India

Treatments	S₁	S₂	S₃	S₄	S₅	Mean
V₁	3383	4172	3515	3360	3197	3525
V₂	3255	2744	2456	2299	2151	2581
Mean	3319	3458	2986	2829	2674	

	SEm±	CD @ 5%	CV %
	105	327	5.95

Table 8: Pooled mean of grain yield (Kg ha⁻¹) as influenced by different treatments at ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Treatment	Grain yield (Kg ha⁻¹)	Sindewahi	Sakoli	Pooled mean (Kg ha⁻¹)
Main plot: Varieties				
V₁	3631	3225	3578	
V₂	3167	2581	2874	
SEm±	39	44	30	
CD @ 5%	236	266	183	
CV %	4.42	5.55	3.61	
Sub Plot: Seed rates				
V₁V₂S₁	3597	3319	3458	
V₁V₂S₂	3710	3458	3584	
V₁V₂S₃	3415	2986	3200	
V₁V₂S₄	3251	2829	3040	
V₁V₂S₅	3023	2674	2848	
SEm±	78	74	53	
CD @ 5%	233.0	222	159	
CV %	5.60	5.95	4.02	

Interaction between Variety x Seed Rate

	SEm±	CD @ 5%	CV %
	110	105	75
	342	327	233
CV %	5.60	5.95	4.02

Table 9: Pooled Interaction effect of Grain yield as influenced by different seed rates at ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Treatments	S₁	S₂	S₃	S₄	S₅	Mean
V₁	3434	4167	3606	3437	3246	3578
V₂	3483	3001	2794	2644	2450	2874
Mean	3458	3584	3200	3040	2848	

	F Test	Sig.	SEm±	CD @ 5%	CV %
		75		233	4.02
Table.10 Average Cost of cultivation, GMR, NMR and B:C ratio as influenced by different treatments at ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Treatment	Pooled Grain yield (Q/ha)	Cost of cultivation	Gross Monetary Return (Rs/ha)	Net Monetary Return(Rs/ha)	B:C ratio
Main plot : Varieties					
V₁	3578	33500	50092	18047	1.49
V₂	2874	34000	51736	18714	1.52
F Test	Sig	Sig	NS		
SEm±	30	355	493		
CD @ 5%	183	2159	3001		
CV %	3.61	2.70	10.39		
Sub Plot: Seed rates					
V₁S₁	3458	32375	55380	24271	1.71
V₁S₂	3584	33062	56175	24506	1.69
V₁S₃	3200	33750	50391	17850	1.49
V₁S₄	3040	34348	47849	14568	1.38
V₁S₅	2848	35125	44776	10760	1.27
F Test	Sig	Sig	Sig		
SEm±	53	890	1080		
CD @ 5%	159	2667	3239		
CV %	4.02	4.28	14.40		
Interaction between Variety x Seed Rate					
F Test	Sig.	Sig	Sig		
SEm±	75	1258	1528		
CD @ 5%	233	3916	4756		
CV %	4.02	4.28	14.40		

Table.11 Interaction effect on GMR as influenced by different seed rates at ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Treatments	S₁	S₂	S₃	S₄	S₅	Mean	
V₁	48074	58341	50487	48114	45451	50093	
V₂	62688	54011	50296	47856	44103	51737	
Mean	55381	56176	50392	47850	44777		
SEm±	1258						
CD @ 5%	3916						
CV %	4.28						

Table.12 Interaction effect on NMR as influenced by different seed rates at ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Treatments	S₁	S₂	S₃	S₄	S₅	Mean	
V₁	17277	27067	18558	15246	12085	18047	
V₂	31264	21946	17143	13889	9330	18714	
Mean	24271	24506	17850	14568	10707		
SEm±	1528						
CD @ 5%	4756						
CV %	14.40						
Table 13 Treatment wise Cost of cultivation (INR ha\(^{-1}\)) at ZARS Sindewahi and KVK, Bhandara (Sakoli), Maharashtra, India

Treatments	Cost of cultivation (INR ha\(^{-1}\))
V\(_1\)S\(_1\)	32250.00
V\(_1\)S\(_2\)	32875.00
V\(_1\)S\(_3\)	33500.00
V\(_1\)S\(_4\)	34125.00
V\(_1\)S\(_5\)	34750.00
V\(_2\)S\(_1\)	32500.00
V\(_2\)S\(_2\)	33250.00
V\(_2\)S\(_3\)	34000.00
V\(_2\)S\(_4\)	34750.00
V\(_2\)S\(_5\)	35500.00

Economics traits

Labour saving of Direct Seeded Rice reduces 11.2% of total production cost as well as Direct Seeded Rice methods have several advantages over transplanting (Singh et al., 2005; Naresh et al., 2010). In addition to higher economic returns, Direct Seeded Rice crops are faster and easier to plant and less labor intensive (Jehangir et al., 2005). Thus, it is necessary to change the cultivation system from transplanting to direct seeded rice (Sanjitha Rani and Jayakiran, 2010).

In terms of Gross monetary return, V\(_1\)V\(_2\)S\(_2\) recorded the highest GMR with 56175 INR ha\(^{-1}\), in the same combination Net monetary return was also noticed higher with 24506 INR ha\(^{-1}\) with the B:C Ratio of 1.69 (Table 10). Whereas other combinations were not up to the mark for recommendations. The interaction effect of both locations for GMR, NMR and B: C stated that V\(_1\) was best with 58341 INR ha\(^{-1}\), 27067 INR ha\(^{-1}\) of GMR and NMR respectively only when it is transplanted with the seed rate of S\(_2\) - 75 kg ha\(^{-1}\) (Table 11). Effect on fine seeded variety V\(_2\)-PKV HMT was high in V\(_2\)S\(_1\) combination, which was reported 62688 INR ha\(^{-1}\), 31264 INR ha\(^{-1}\) of GMR and NMR respectively (Table 12). This is in agreement with the studies reported by Huang et al., (2013), Mehala et al., (2016), Singh et al., (2005), Rao et al., (2007), Naresh et al., (2010), Jagagir et al., (2005), Younas et al., (2016), Awan et al., (2005), Kahloon et al., (2012) and Mazher et al., (2017). The cost of cultivation of entire combinations has shown the normal phenomenal results of cultivars as the seed rate increases the cost of cultivations also increases (Table 13). These results were in accordance to Kumar et al., (2011) reported that labor saving of 86% and cost saving of 87% in Direct Seeded Rice compared to manual transplanting.

In paddy, a labor saving of 95-99% in Direct Seeded Rice was recorded compared to transplanting during three years. Sehrawat et al., (2010) also observed 13-16% labor saving in Direct Seeded Rice as compared to manual puddled transplanted rice. Kumar (2011) also recorded similar findings and found higher B: C ratio in Direct Seeded Rice as compared to transplanted rice. To get the highest grain yield, Gross monetary returns and net monetary returns from drilled rice in Eastern Vidarbha Zone of Maharashtra, 75 kg seed ha\(^{-1}\) for course varieties and 50 kg seed rate ha\(^{-1}\) for fine varieties with application of 125: 62.5: 62.5 kg NPK ha\(^{-1}\) is recommended. This is in agreement with the studies reported by
Husaain et al., (2013), Awan et al., (2005), Kumar et al., (2011), Iqbal et al., (2015), Seharawat et al., (2010), Gangawar et al., (2008) and Sidhu et al., (2014).

References

Abou Khalifa A.A., ELkhoby, W., and Okasha, E. M. 2014. Effect of sowing dates and seed rates on some rice Cultivars. African Journal of Agricultural Research. 9(2): 196-201.

Abuzar M.R., Sadozai G.U., Baloch M.S., Shah A.A., Javid T., and N. Hussain N., Effect of plant population densities on yield of maize, *The J. of Ani. and Plant Sci.*, 21(4), 692-695 (2011).

Akbar N. and Ehsanullah. 2004. Agro-Qualitative Responses of Direct Seeded Fine Rice to Different Seeding Densities, *Pak. J. of Agric. Sci.*, 41, 1-2.

Annual Maharashtra State Rice Workshop Progress Report, 4-5 March, 2014 pp. 12.

Awan, T. H., I. Ali, C. M. Anwar, G. M. Sarwar, C. M. Ahmad, Z. Manzoor and M. Yaqub (2005). Economic effect of different plant establishment techniques on rice production. In Proc. Int. Seminar on Rice Crop, RRI, KSK, Lahore, Punjab- Pakistan. 2-3, October 2005. Pp: 226–231.

Baloch A.W., Soomro A.M. and Ahmed M., Optimum plant density for high yield in rice, *Asian J. Plant Sci.*, 1, 25–27 (2002).

Chauhan BS, Singh VP, Kumar A and Johnson DE. 2011. Relations of rice seeding rates to crop and weed growth in aerobic rice. *Field Crops Research* 121: 105-115.

Dongarwar, U. R., Khedikar, G. R., Kashiwar S. R., and Dongarwar L., 2015, Effect of different Organic Sources Available with Farmers on Paddy (*Oryza sativa*) in Bhandara District of Maharashtra, Journal of Agricultural Engineering and Food Technology, 2 (2), 142-144.

Gangwar, K.S., Tomar. O.K. and Pandey D.K. 2008. Productivity and economics of transplanted and direct-seeded rice (*Oryza sativa*)-based cropping systems in Indo-Gangetic plains. *Indian J. Agric. Sci.* 78: 655-58.

Gill M.S., Ashwini K. and Pardeep K. 2008. Growth and yield of rice (*Oryza sativa*) cultivars under various methods and times of sowing. *Indian Journal of Agronomy.* 51(2): 123-127.

Gill MS, Kumar P and Kumar A. 2006. Growth and yield of direct-seeded rice (*Oryza sativa*) as influenced by seeding technique and seed rate under irrigated conditions. *Indian Journal of Agronomy* 51(4): 283-287.

Gupta R K, Ladha J K, Singh S, Singh R G, Jat M L, Saharawat Y, Singh V P, Singh S S, Singh G, Sah G, Gathala M, Sharma R K, Gill M S, Alam Murshed, Mujeeb Ur Rehman Hafiz, Singh U P, Mann, Riaz A Pathak, Chauhan H, Bhattacharyya B S and Malik P R K. 2006. Production Technology for direct seeded rice. *Rice- Wheat Consortium for the Indogangetic Plains*, pp 16. New Delhi.

Hardev, R. Singh, J. P. Bohra, J. S. Singh K. R. and Sutaliya, J. M. 2014. Effect of seeding age and plant spacing on growth, yield, nutrient uptake and economics of rice genotypes under system of rice intensification. *Indian J. Agron.*, 59(2): 256-260.

Huang, H.-P., S.-M. Ma, E.-D. Lin, et al., (2013). Benefits comparison analysis of different rice and wheat cropping patterns to adapt to climate change. *Adv. Clim. Change Res.*, 4(3), doi:10.3724/SP.J.1248.2013.182.

Hussain, S., Ramzan, M., Rana, M. A., Mann R. A. and Akhter, M. 2013. Effect of various planting techniques on yield and yield components of rice. *The Journal of Animal & Plant Sciences*, 23(2): 672-674.

International Rice Research Institute (IRRI). 2008. *Rice Production Training Module: Method of Planting Rice*. IRRI, Los Barios, Laguna, Philippines. pp. 1-13.

Iqbal, M. F., Hussain, M., Waqar, M. Q., and Ali, M. A. 2015. Effect of sowing methods on disease of paddy. *Int. J. Adv. Mutli-discip. Res.* 2(10):4-7.

Jackson, M.L., 1973. Soil Chemical Analysis. *Printice Hall Inc. Englewood Cliffs.* N. J. U.S.A.
Jehangir, W. A., Masih, I., Ahmed, S., Gill, M. A., Ahmad, M., Mann, R. A, Chaudhary, M. R., and Turral, H. 2005. Sustaining crop water productivity in rice-wheat systems of South Asia: a case study from Punjab Pakistan. In: Draft Working Paper. Inter. Water Manag. Ins. Lahore, Pakistan.

Kahloon, M.H., M.F. Iqbal, M. Farooq, L. Ali, M. Fiaz and I. Ahmad. 2012. A comparison of conservation technologies and traditional techniques for sowing of wheat. J. Anim. Plant Sci. 3: 827-830.

Kashiwar, S. R., Kumar, D., Dongarwar, U. R., Mondal, B., and Nath, T. 2016. Experiences, challenges and Opportunities of Direct Seeded Rice in Bhandara District of Maharashtra. Journal of Energy Research and Environmental Technology (3) 2: 141-145.

Kaur, S., and Singh, S. 2014. Influence of crop density on weeds, growth and yield of direct-seeded rice. Indian Journal of Weed Science 46(4): 318–321.

Kenneth and Ronnie S. Halms, Seeding rate effect on rough rice yield, head rice and total milled rice, Agron. J., 88, 82-84 (1996)

Kumar, V. and Ladha, J. K. 2011. Direct seeding of rice: Recent developments and future research needs. Adva. Agro. 111: 297-413.

Mahajan G, Chauhan B S and Johnson D E. 2009. Weed management in northwestern Indo-Gangetic Plains. Journal of Crop Improvement 23: 366–82.

Mahajan G, Sardana V, Brar AS and Gill MS. 2006. Effect of seed rates, irrigation intervals and weed pressure on productivity of direct-seeded rice (Oryza sativa). Indian Journal of Agricultural Science 76 (12):756-759.

Mahajan, G. Sardana, V. Brar, A. S. and Gill, M. S. 2004. Grain yield comparison among rice (Oryza sativa L.) varieties under direct seeding and transplanting. Haryana J. Agron., 20 (1/2):68-70.

Mazher Farid Iqbal, Muzzammil Hussain and Abdul Rashheed. (2017). Direct seeded rice: purely a site specific technology. Int. J. Adv. Res. Biol. Sci. 4(1): 53-57. DOI: http://dx.doi.org/10.22192/ijarbs.2017.04.01.006

Mehala Vinay, et al., (2016) Impact of Direct Seeded Rice on Economics of Paddy Crop in Haryana. International Journal of Agriculture Sciences, ISSN: 0975-3710 & E-ISBN: 0975-9107, Volume 8, Issue 62, pp.:3525-3528.

Miller B.C., Hill J.E. and Roberts S.R., Plant population effects on growth and yield in water seeded rice, Agron. J., 83, 291-297 (1991)

Naresh R.K., Gupta Raj K., Singh B., Kumar Ashok; Shahi U.P., Pal Gajendra;Singh,Adesh; Yadav Ashok Kumar,and Tomar S.S. 2010. Assessment of No-Tillage and Direct Seeding Technologies in rice-wheat rotation for Saving of Water and Labor in Western IGP. Progr. Agri. Int. J. 10 (2): 205-218.

Payman G and Singh S. 2008. Effect of seed rate, spacing and herbicide use on weed management in direct seeded upland rice (Oryza sativa L.). Indian Journal of Weed Science 40 (1&2): 11-15

Phuong LT, Denich M, Vlek PLG and Balasubramanian V. 2005. Suppressing weeds in direct-seeded lowland rice: Effects of methods and rates of seeding. Journal of Agronomy and Crop Sciences 191:185-194.

Pingali, P.L. and Rosegrant, M.W. 1994. Confronting the environmental consequences of the green revolution. In: Proceedings of the 18th Session of the international Rice Commission, Rome. FAO, Rome, Italy, pp. 59-69

Piper C. S., 1966. Soil and plant analysis. Hans publishers, Bombay. 368.

Prasad, M.K., S.B. Singh, J.M Singh and RP. Sinha. 1999. Effect of seeding method, seed rate and nitrogen splitting on yield attributes of direct seeded rice. Ind. J. App. Bio. 9(1): 55-57.

Rajiv, S. K. 2013. Response of basmati (Oryza sativa L.) rice varieties to system of rice intensification (SRI) and conventional methods of rice cultivation. Ann. Agric. Res., 34 (1): 50-56.

Rao, A.N., Johnson, D.E., Shivaprasad, B., Ladha, J.K. and Mortimer, A.M. 2007. Weed management in direct-seeded rice. Adv. Agro. 93: 153-255.
Sanjitha Rani T. and Jayakiran K. 2010. Evaluation of different planting techniques for economic feasibility in Rice. Elec. J. Envir. Agri. Food Chem. 9 (1):150-153.

Seharawat, Y.S., Bhagat Singh, Malik, R.K., Ladha, J. K., Gathala, M., Jat, M.L. and Kumar, V. 2010. Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Res., 116: 260-267.

Sharma, A. R. 1992. Effect of varying seed rates and transplanting colonel tillers on the performance of rice under intermediate deep water conditions (0-80 cm). Journal of Agricultural Science. 119(2): 171-177

Sidhu, A. S., Kooner, R. and Verma, A. 2014. On-farm assessment of direct-seeded rice production system under central Punjab conditions. Journal of Crop and Weed, 10(1): 56-60

Singh S, Ladha J K, Gupta R K, Bhushan L and Rao A N. 2008. Weed management in aerobic rice systems under varying establishment methods. Crop Protection, 27: 660–9.

Singh Samar, Sharma R K, Govindra Singh, Singh S S, Singh U P, Gill M A, Jat M L, Sharma S K, Malik R K, Josan A S and Gupta R K. 2005. Direct Seeded Rice: A Promising Resource Conserving Technology. Rice-Wheat Consortium for the Indo-Gangetic Plains, New Delhi.

Singh Y, Singh G, Johnson D, Mortimer M. 2005. Changing from transplanted rice to direct seeding in the rice-wheat cropping system in India. In: Rice is Life: Scientific Perspectives for the 21st Century, Tsukuba, Japan: Proceeding of the Word Rice Research Conference, 4-7 November 2004; pp. 198-201.

Singh, S.P. Sreedevi, B. Kumar, R.M. and Subbaiah, S.V. 2008. Grain yield and economics of wet direct sown rice under different establishment methods and nitrogen schedules. Oryza 45 (3):245-246.

Singh, Y. P. Singh, G. Singh, S. P. Kumar, A. Sharma, G., Singh, M.K. Mortin, M. and Johnson, D. E. 2006. Effect of weed management and crop establishment methods on weed dynamics and grain yield of rice. Indian J. Weed Sci., 38 (1 and 2): 20-24.

Sivaesarajah K., Sangakkara U.R. and Sandanam S., Effect of plant density, nitrogen and gypsum on yield parameters of groundnut (Arachis hypogea L.) in regosols of Batticloa district, Trop. Agric. Res., 7, 112-123 (1995)

Subbaiah S. V., Balasubramanian V. and Krishnaiah K. 2002. Evaluation of drum seeder in puddle rice fields. AMA, Agricultural Mechanization in Asia, Africa and Latin America. 33(4): 23-26.

Subbiah, B.V. and Asija, G.L. 1956. A rapid procedure for the estimation of available nitrogen in soil. Curr. Sci. 25: 259.

Walia US, Bhullar MS, Nayyar S and Sidhu AS. 2009. Role of seed rate and herbicides on growth and yield of direct-dry seeded rice. Indian Journal of Weed Science 41 (1 & 2): 33-36.

Younas, M., Rehman, M. A., Hussain, A., Ali, L., and Waqar, M. Q. 2016. Economic Comparison of Direct Seeded and Transplanted Rice: Evidences From Adaptive Research Area of Punjab Pakistan. Asian J Agri Biol, 2016, 4(1): 1-7.

Yoyock J.Y., Effects of variety and spacing on growth, development and dry matter distribution in groundnut at 2 locations in Nigeria, Exp. Agric., 15, 339-351 (1979)

Zhao DL, Bastiaans L, Atlin GN and Spiertz JHL. 2007. Interaction of genotypes by management on vegetative growth and weed suppression of aerobic rice. Field Crops Research 100(1): 327-340.

How to cite this article:

Usha R. Dongarwar, Nitin Patke, L.N. Dongarwar and Sumedh R. Kashiwar. 2018. Impact of Different Seed Rates on Yield and Economics of Direct Seeded Rice in Eastern Vidharbha Zone of Maharashtra, India. Int.J.Curr.Microbiol.App.Sci. 7(03): 32-42.
doi: https://doi.org/10.20546/ijcmas.2018.703.004