Inverse correlation between Interleukin-34 and gastric cancer, a potential biomarker for prognosis

CURRENT STATUS: Under Review

Cell & Bioscience □ BMC

Qinghua Liu, Ying Zhang, Jiwei Zhang, Kun Tao, Brett D Hambly, Shisan Bao

Qinghua Liu
Xuzhou Medical University

Ying Zhang
Xuzhou Medical University

Jiwei Zhang
Shanghai Jiao Tong University School of Medicine

Kun Tao
Shanghai Jiao Tong University School of Medicine

Brett D Hambly
The University of Sydney

Shisan Bao
the University of Sydney

✉️ bob.bao@sydney.edu.au Corresponding Author

ORCiD: https://orcid.org/0000-0002-6687-3846

Prescreen

10.21203/rs.3.rs-26741/v1

Subject Areas
Keywords

Inverse correlation between Interleukin-34 and gastric cancer, a potential biomarker for prognosis
Abstract

Background Gastric cancer (GC) is a malignancy with high morbidity/mortality, partly due to a lack of reliable biomarkers for early diagnosis. It is important to develop reliable biomarker(s) with specificity, sensitivity and convenience for early diagnosis. The role of tumour-associated macrophages (TAMs) and survival of GC patients are controversial. Macrophage colony stimulating factor (MCSF) regulates monocytes/macrophages. Elevated MCSF is correlated with invasion, metastasis and poor survival of tumour patients. IL-34, a ligand of the MCSF receptor, acts as a “twin” to MCSF, demonstrating overlapping and complimentary actions. IL-34 involvement in tumours is controversial, possibly due to the levels of MCSF receptors. While the IL34/MCSF/MCSFR axis is very important for regulating macrophage differentiation, the specific interplay between these cytokines, macrophages and tumour development is unclear.

Methods A multi-factorial evaluation could provide more objective utility, particularly for either prediction and/or prognosis of gastric cancer. Precision medicine requires molecular diagnosis to determine the specifically mutant function of tumours, and is becoming popular in the treatment of malignancy. Therefore, elucidating specific molecular signalling pathways in specific cancers facilitates the success of a precision medicine approach. Gastric cancer tissue arrays were generated from stomach samples with TNM stage, invasion depth and the demography of these patients (n = 185). Using immunohistochemistry/histopathology, MCSF, IL-34 and macrophages were determined.

Results We found that IL-34 may serve as a predictive biomarker, but not as an independent, prognostic factor in GC; MCSF inversely correlated with survival of GC in TNM III-IV subtypes. Increased CD68+ TAMs were a good prognostic factor in some cases and could be used as an independent prognostic factor in male T3 stage GC.

Conclusion Our data support the potency of IL-34, MCSF, TAMs and the combination of IL34/TAMs as novel biological markers for GC, and may provide new insight for both diagnosis and cellular therapy of GC.

Background

Gastric cancer (GC) is an important disease with high morbidity and mortality. Due to a lack of relatively convenient and reliable biomarkers, large numbers of GC are diagnosed at an advanced stage, with poor prognosis [1]. It is fundamentally important to develop reliable biomarker(s) with enough specificity, sensitivity and convenience for early diagnosis. Whilst cell mediated immunity may exhibit anti-tumour activity, epidemiological, preclinical and clinical studies demonstrate that chronic inflammation plays a vital role in the initiation and/or development of gastric cancer [2]. Chronic inflammation mediates tumourigenesis, including cellular survival, proliferation, migration, angiogenesis and metastasis via cytokine mediated signalling pathways.

The inflammatory microenvironment surrounding a tumour is a complex ecology of immune cells interconnected with tumour cells. Among the leucocytes present at the tumour site, macrophages are abundantly present at all stages of tumour progression [3]. Tumour-associated macrophages (TAMs) are correlated with poor survival of GC patients, as TAMs promote invasion and metastasis through enhancing angiogenesis [4]. However, others have reported a positive correlation between TAMs and five year survival rate of GC patients [5]. Multiple factors may contribute to this discrepancy, including tumour type and stage [6].

Macrophage colony stimulating factor (M-CSF) is a growth factor important in the regulation of differentiation, proliferation and survival of haematopoietic cell lineages [7]. Circulating M-CSF is increased in many tumours (e.g. breast, prostate and pancreatic cancers) and is positively correlated with invasion, metastasis and poor survival of tumour patients [8–10]. By contrast, monocytes/macrophages are able to kill cancerous cells by paraptosis, driven by over-expression of membrane M-CSF [11].

IL-34 was first identified by Lin et al in 2008, as a protein that is able to bind to CD14+ monocytes in peripheral
blood mononuclear cells. IL-34 stimulates the differentiation of monocytes into macrophages via the CSF-1 receptor [12]. Subsequently, IL-34, including mRNA and protein, can be detected in various tissues secreted by fibroblast-like cells. The order of the level of production in the tissues is: spleen, heart, brain, thymus, lung, kidney, liver, small intestine, colon, testes, ovary and prostate [13]. Using an IL-34 reporter gene, IL-34 a high level of expression has been detected in the skin and in the brain compared to other non-lymphoid and lymphoid tissues [14].

IL-34 is also a ligand of the M-CSF receptor, and acts as a “twin” to the M-CSF cytokine, demonstrating overlapping and complimentary actions [15]. IL-34 acts similarly to MCSF in promoting osteoclastic differentiation of giant cell tumours [16], but IL-34 also displays singular function during brain development [17]. Furthermore, the role of IL-34 in tumours is controversial particularly in the development, metastasis and prognosis of cancers, although the response to MCSF is tumour-type dependant, possibly due to the levels of M-CSF receptors [18].

Studies have long sought specific biological markers that could characterize GC [19]. However, no existing marker(s) have proven to be sufficiently specific to GC. While the IL34/M-CSF/MCSFR axis is very important for regulating macrophage differentiation [20], the specific interplay between these cytokines, macrophages and the development of tumours is unclear. Accordingly, a multi-factor evaluation could provide more objective utility, particularly for either prediction and/or prognosis of gastric cancer, compared to studies in the current literature.

Conventional chemotherapy kills cancers non-specifically, based on the high rate of cancer cell division. Precision medicine is becoming popular in the treatment of malignancy, which tailors intervention to the individual patient with customization of medical decisions and healthcare [21]. However, the success of a precision medicine approach relies on the identification of highly specific targets in each specific tumour. Therefore, elucidating specific molecular signalling pathways in specific cancers is necessary to facilitate the success of a precision medicine approach.

In our current study, we determined the production of M-CSF and IL-34, and the number of infiltrating CD68+ TAMs in GC. The relationship between M-CSF, IL-34 and CD68+ TAMs infiltration in GC was explored with a view to elucidate potential molecular targets.

Results

IL-34, M-CSF and CD68+ TAMs in GC

The expression levels of IL-34, M-CSF and CD68+ TAMs in GC were investigated. Following immunohistochemical staining (Fig. 1), the densities of IL-34, M-CSF and the number of CD68+ TAMs were determined and are presented as box plots, including medians and 25th and 75th percentiles. IL-34 and MCSF were decreased > 40% and > 95%, respectively, in GC compared to tumour adjacent gastric tissues (p < 0.05), whereas CD68+ TAMs were increased 5.5 fold (p < 0.05) (Fig. 1).

Correlation between IL-34, M-CSF and CD68+ TAMs in GC and clinicopathological parameters

Associations between clinicopathological parameters and IL-34, M-CSF and CD68+ TAMs are listed (Table 1, Fig. 2 and supplementary Figs. 1, 2). IL-34 was associated with age, gender and tumour differentiation of GC patients (Fig. 2). There was less IL-34 (decreased 46.70%) in the group of patients aged ≤ 60 years compared to patients aged > 60 (p < 0.05). Lower IL-34 (decreased 60.86%) was also observed in female compared to male GC patients (p < 0.05). In addition, there was a significant correlation between IL-34 and differentiation of GC (low differentiation group of GC had 73.56% decreased IL-34 compared to the high differentiation group) (p < 0.05), suggesting that IL-34 correlates with the state of differentiation of gastric cancer. There was no correlation between IL-34 and other parameters, such as tumour size, lymph node metastasis, tumour invasion depth and TNM stage of GC.
Characteristics	patients	IL-34	CD68	MCSF					
		Median	Median	Median	p	Median	Median	Median	p
All cancer	180	33827	< 0.001	1366	< 0.001	36.61	< 0.001		
Noncancer (non)	159	57921		246.0		1007			
Gender									
Male	140	37935	0.030	1325	> 0.999	38.02	> 0.999		
Female	40	14847	1535			27.25			
Age									
≤ 60	79	20658	0.048	1066	0.083	25.53	0.742		
> 60	101	38759	1702			48.79			
Tumour size (diameter)									
< 5 cm	87	40818	0.358	1418	> 0.999	45.35	> 0.999		
≥ 5 cm	93	24419	1321			32.54			
Lymph node metastasis									
No	75	43296	> 0.999	1715	0.169	48.20	> 0.999		
Yes	105	30495	1185			28.30			
Differentiation									
High	14	78613	H/L: 0.043	1250		223.8	H/L: 0.051		
			H/M: 0.499				H/M: 0.471		
			M/L: 0.495				M/L: 0.791		
Moderate	78	39376		1757		40.12			
Low	88	20788		1186		26.00			
Tumour invasion depth									
Correlation of decreased IL-34, MCSF but increased CD68⁺TAMs with overall survival of GC patients

To evaluate whether decreased IL-34, MCSF and increased CD68⁺TAMs correlated with survival of GC patients, low and high cut-off points for IL-34, MCSF and CD68 were defined by ROC curve analysis (Fig. 3). Kaplan-Meier survival curves were constructed to compare high and low expression of IL-34, MCSF and CD68⁺TAMs in the survival of GC patients. IL-34 correlated positively with prognosis of GC patients (\(P = 0.024 \), Fig. 4). However, there was no correlation of M-CSF or CD68⁺TAMs with the prognosis of GC patients (Fig. 4). Moreover, no significant differences were observed in CD68⁺TAMs and M-CSF with any clinicopathological parameter of GC (supfig 1, 2).

Furthermore, to determine whether IL-34 was an independent prognostic marker for GC, we performed univariate and multivariate Cox regression analysis, including IL-34, age, gender, tumour differentiation, lymph node invasion, tumour size, the depth of tumour invasion and TNM stage. The effect of IL-34 on patient survival in GC was determined. Univariate analysis (Table 2) revealed that IL-34 positively correlated with survival of GC patients, but inversely correlated with advanced TNM stage, lymph node metastasis, the depth of tumour invasion and tumour diameter. In multivariate analysis (Table 2), only advanced TNM stage remained a significant independent prognostic factor of decreased survival of patients.

Table 2

Univariate and multivariate analysis of IL-34 and clinicopathological factors affecting survival of patients with GC

Variables	Univariate analysis	Multivariate analysis				
	HR (95%CI)	\(p \)-value	HR (95%CI)	\(p \)-value		
IL-34 (low/high)	2.205(1.072–4.537)	0.032	1.457(0.639–3.325)	0.371		
Gender						
	Odds Ratio	95% CI	p-value			
--------------------------------	------------	------------	---------			
Female/male	0.886	(0.443-1.775)	0.733			
Age (≤ 60/>60)	1.058	(0.573-1.955)	0.857			
Diameter(< 5/≥5, cm)	0.363	(0.189-0.698)	0.002	0.495	(0.217-1.129)	0.095
Lymph node metastasis						
No/yes	0.267	(0.122-0.582)	0.001	0.772	(0.274-2.173)	0.624
Tumour differentiation						
Low (reference)	1		0.545			
High	0.725	(0.218-2.411)	0.600			
Moderate	0.693	(0.349-1.375)	0.294			
Invasion depth						
T4	1		0.142	1		0.955
T1	0.000	(0.000-)	0.977	0.900	(0.000-)	1.000
T2	0.261	(0.084-0.808)	0.020	1.528	(0.326-7.165)	0.591
T3	0.750	(0.380-1.478)	0.405	1.049	(0.463-2.378)	0.909
TNM						
IV (reference)	1		0.000	1		0.001
I	0.000	(0.000-)	0.966	0.000	(0.000-)	0.969
II	0.085	(0.028-0.260)	0.000	0.075	(0.021-0.270)	0.000
III	0.195	(0.068-0.559)	0.002	0.154	(0.047-0.503)	0.002

Further analysis of correlation of M-CSF and CD68⁺ TAMs with overall survival in subtypes of GC patients

Kaplan-Meier analysis was also applied to further compare overall survival according to M-CSF and CD68⁺ TAMs in different subtypes of GC. As results show in Fig. 3, M-CSF correlated significantly with the survival of patients in TNM III-IV tumour stage. CD68⁺ TAMs correlated with survival significantly in male GC patients, larger tumour size (diameter ≥ 5 cm), lymph node metastasis and tumour invasion depth T3. There was no significance in other subtypes between survival and M-CSF and CD68⁺ TAMs (sfig 3–6).
Furthermore, to examine whether M-CSF and CD68$^+$TAMs were independent prognostic markers for subtypes in GC, we again performed univariate and multivariate Cox regression analysis, including M-CSF and CD68$^+$TAMs, age, gender, tumour differentiation, lymph node invasion, tumour size, the depth of tumour invasion and TNM stage to study the effects of M-CSF and CD68$^+$TAMs on patient survival in GC subtypes.

In the T3 stage subtype of GC using univariate analysis (Table 3), an inverse correlation was observed between survival of GC patients and CD68$^+$TAMs, TNM stage or lymph node metastasis, respectively. In multivariate analysis, CD68$^+$TAMs and TNM stage remained as significant independent prognostic factors of survival of GC patients. Univariate analysis in subtype of GC: male GC patients (Table 4), demonstrated an inverse correlation between survival of GC patients and CD68$^+$TAMs, tumour diameter, advanced TNM stage and lymph node metastasis. In multivariate analysis, CD68$^+$TAMs, tumour diameter ≥ 5 cm and TNM stage remained as significant independent prognostic factors of survival of male GC patients. Univariate analysis in subtypes of GC: tumour diameter ≥ 5 cm (Table 5) and lymph node metastasis subtypes (Table 6) of univariate analysis, an inverse correlation between survival of GC patients and CD68$^+$TAMs and TNM stage was observed. However, only TNM stage remained a significant independent prognostic factor of survival of GC patients in multivariate analysis in both subtypes. In the TNM III-IV subtype of GC patients there was no significant outcome in M-CSF using univariate analysis (supplementary table 1).
Table 3

Univariate and multivariate analysis of CD68 + TAMs and clinicopathological factors affecting survival of patients in T3 stage of GC

Variables	Univariate analysis	Multivariate analysis		
	HR (95%CI)	p-value	HR (95%CI)	p-value
CD68 (low/high)	3.080(1.135–8.360)	0.027	5.471(1.825–16.397)	0.002
Gender				
Female/male	0.638(0.216–1.886)	0.416		
Age (≤ 60/>60)	1.052(0.479–2.310)	0.900		
Diameter(< 5/≥5, cm)	0.464(0.196-1.100)	0.081		
Lymph node metastasis				
No/yes	0.407(0.167-0.993)	0.048	0.363(0.123–1.075)	0.067
Tumour differentiation				
Low (reference)	1	0.436		
High	0.269(0.035–2.059)	0.206		
Moderate	0.825(0.348–1.955)	0.663		
TNM				
IV (reference)	1	0.019	1	0.007
II	0.140(0.029–0.683)	0.015	0.061(0.011–0.351)	0.002
III	0.337(0.070–1.619)	0.174	0.101(0.016–0.634)	0.014

Table 4

Univariate and multivariate analysis of CD68 + TAMs and clinicopathological factors affecting survival of male patients of GC

Variables	Univariate analysis	Multivariate analysis		
	HR (95%CI)	p-value	HR (95%CI)	p-value
	Value 1	Value 2	p-value	
--------------------------	------------------	------------------	---------	
CD68 (low/high)	3.843 (1.773-8.329)	3.905 (1.599-9.538)	0.003	
Age (≤60/>60)	0.876 (0.441-1.740)	0.706		
Diameter(<5 vs ≥ 5, cm)	0.308 (0.150-0.636)	0.393 (0.172-0.901)	0.027	
Lymph node metastasis				
No/yes	0.300(0.133-0.677)	0.847 (0.328-2.186)	0.731	
Tumour differentiation				
Low (reference)	1	0.737		
High	0.633 (0.186-2.153)	0.464		
Moderate	0.848 (0.402-1.790)	0.666		
Invasion depth				
T4	1	0.366		
T1	0.000 (0.000-)	0.975		
T2	0.300 (0.080-1.129)	0.075		
T3	0.740 (0.332-1.652)	0.462		
TNM				
IV (reference)	1	0.002		
I	0.000 (0.000-)	0.000 (0.000-)	0.977	
II	0.104 (0.030-0.356)	0.137 (0.035-0.529)	0.004	
III	0.299 (0.094-0.948)	0.232 (0.066-0.816)	0.023	
Table 5

Univariate and multivariate analysis of CD68 + TAMs and clinicopathological factors affecting survival of GC in subtype of diameter ≥ 5 cm

Variables	Univariate analysis	Multivariate analysis		
	HR (95%CI)	p-value	HR (95%CI)	p-value
CD68 (low/high)	2.222(1.014–4.872)	0.046	1.781(0.776–4.087)	0.173
Gender				
female/male	0.778(0.349–1.733)	0.539		
Age (≤ 60/>60)	0.924(0.442–1.928)	0.832		
Lymph node metastasis				
No/yes	0.820(0.311–2.165)	0.689		
Tumour differentiation				
Low (reference)	1	0.533	1	0.007
High	1.100(0.144–8.377)	0.927	0.125(0.027–0.568)	0.007
Moderate	0.636(0.284–1.426)	0.272	0.184(0.047–0.724)	0.015
Invasion depth				
T4	1	0.548		
T2	0.610(0.131–2.836)	0.529		
T3	0.645(0.286–1.453)	0.290		
TNM				
IV (reference)	1	0.007	1	0.025
II	0.095(0.022–0.412)	0.002	0.125(0.027–0.568)	0.007
III	0.157(0.040–0.616)	0.008	0.184(0.047–0.724)	0.015
Table 6
Univariate and multivariate analysis of clinicopathological factors affecting survival of GC in subtype of lymph node metastasis

Variables	Univariate analysis	Multivariate analysis		
	HR (95%CI)	p-value	HR (95%CI)	p-value
CD68 (low/high)	2.220 (1.083–4.553)	0.029	1.559 (0.706–3.443)	0.272
Gender				
female/male	0.968 (0.472–1.988)	0.930		
Age (≤ 60/>60)	0.957 (0.497–1.843)	0.896		
Diameter (< 5/>≥5 cm)	0.773 (0.384–1.557)	0.472		
Tumour differentiation				
Low (reference)	1	0.360	1	0.360
High	0.772 (0.230–2.598)	0.676		
Moderate	0.570 (0.263–1.237)	0.155		
Invasion depth				
T4		0.529		
T2	0.538 (0.174–1.660)	0.281		
T3	0.774 (0.378–1.584)	0.483		
TNM				
IV (reference)	1	0.001	1	0.011
II	0.083 (0.022–0.314)	0.000	0.113 (0.027–0.476)	0.003
III	0.152 (0.046–0.498)	0.002	0.188 (0.055–0.647)	0.008

Correlation of combinations of IL-34, M-CSF and CD68 + TAMs with overall survival of subtypes of GC patients

Kaplan-Meier analysis was further applied to compare overall survival of GC patients according to combinations...
of IL-34, M-CSF and CD68+TAMs (Fig. 4). Patients with high IL-34 plus high CD68+TAMs had the longest survival of GC patients, while those with low IL-34 plus low CD68+TAMs had low survival. Thus, there were no significance in the combination of IL-34 and MCGS, CD68+TAMs and M-CSF.

Discussion

We demonstrated that decreased IL-34 in GC was inversely correlated with tumour differentiation, age and female gender of GC patients, which is consistent with others showing that younger, particularly female GC patients had more severe malignancy than older, male patients [22, 23]. Decreased IL-34 was closely related to the poor survival rate of GC patients, but not as an independent prognostic factor. Liu et al. demonstrate that > 60% of GC patients had low M-CSF, using positive expression rate only [24]. This is in line with our current study revealed that M-CSF was decreased in GC compared to the control. However, there was no correlation between M-CSF and clinic-pathological parameters, as well as, prognosis of GC in the current study. Interestingly, in TNM IIIIV subtype of GC, decreased M-CSF was inversely correlated with prognosis of GC, but M-CSF still cannot be considered an independent prognostic factor.

IL-34 induces differentiation of leukaemia cells into monocyte-like, macrophage-like cells and mature macrophages through the JAK/STAT and PI3K/Akt signalling pathways [25, 26], suggesting that IL-34 enhances differentiation of other cancers, and supporting our current finding that IL34 was correlated with the differentiation of GC. Our data may provide an explanation for the possible role of IL-34 in the development of GC, i.e. IL-34 also regulates GC differentiation, which would have potential clinical relevance regarding IL-34 as a therapeutic target for malignancy.

IL-34 and M-CSF can induce macrophage polarization, mainly into the M2 phenotype, which subsequently leads to M2 macrophage mediated immunosuppression [27], promoting tumour progression and metastasis [25]. However, a controversial report showed no significant correlation between the serum level of M-CSF and the stage and prognosis in GC patients [28]. Anti-M-CSF antibody doesn’t induce cytotoxic effects on breast cancer in vitro, which may be either due to a differential effect in these different cancer models and/or variance between in vivo and in vitro [29]. Additionally, IL-34- and MCSF-induced macrophages can switch memory T cells into Th17 cells [18] to support anti-tumour immunity in established ovarian cancers [30].

Macrophage mediated host cellular immunity is important in tumour oncogenesis [31]. Monocytes differentially polarize into M1 and M2 macrophages [32], but TAMs M1 and M2 polarization is rarely observed [33]. CD68 is frequently used as a marker of infiltrated TAMs, regardless of their polarization state in many studies. Our data showed there was no correlation between CD68+TAMs and any clinicopathological parameters, as well as, prognosis of GC, except for increased number of CD68+TAMs in GC. We found there was better prognosis in GC patients with high CD68+TAMs in males, with GC size ≥ 5 cm, lymph node metastasis and T3 subtypes. This is consistent with findings in colon and colorectal cancers [34, 35], but not in other cancer [36, 37].

TAMs are mixed phenotype, expressing M1 or M2 markers [38], and may be influenced by different microenvironments in different regions and/or in different individuals. The functions of TAMs can be modified by cancer and cancer cell secretions, which in turn could affect tumour growth and differentiation [39]. However, our current observation invites speculation that the increased infiltrating CD68+TAMs may be M1 dominant, contributing to anti-tumour activity, which will be determined in our future experiments.

A significant correlation was observed between the combination of IL-34/CD68 and the prognosis of GC. Tumours with high IL-34 plus high CD68+TAMs had the best prognosis, tumours with high or low IL-34 plus low or high CD68+TAMs had mid-level prognosis and tumours with low IL-34 plus low CD68+TAMs had the worst prognosis in GC patients. Our results verified a significant correlation between the combination of IL-34 and CD68+TAMs and prognosis of GC patients. The precise underlying mechanism of IL-34/MCSF/MCSFR axis in tumorigenesis, particular in GC, will be determined in future work. Finally, our data may also provide useful information in personalised decision making for precision medicine, which may substantially reduce adverse effects of
chemotherapy, and improve the outcome.

At this stage, our data demonstrate that IL-34 and its related markers M-CSF and TAM correlated well with prognosis of gastric cancer patients, particularly in the male gastric cancer patients. Our observation suggests IL-34 might be a potential biomarker for predicting the prognosis of gastric cancer patients. However, there is still a long way to go before IL-34 can be used for this purpose. This practical issue is currently being investigated using IL-34 transgenic and IL-34 gene knockout mice, as well as further investigation ex-vivo in human tissues. Clinical application is also being examined in gastric biopsy samples.

Our current observation is based on immunohistochemistry exclusively. However it remains to be clarified whether mRNA for IL-34, MCSF and macrophages markers are also expressed in the same way, which will be determined in our future experiment.

Conclusion

Reduced IL-34 was associated with poor differentiation, poor survival rate, relatively young patients and female GC patients. IL-34 may serve as a predictive biomarker, but not as an independent, prognostic factor in GC. MCSF inversely correlated with survival of GC in TNM III-IV subtype, but was also not an independent prognostic factor. Increased CD68+TAMs were a good prognostic factor of GC in male, tumour diameter ≥ 5 cm, lymph node metastasis and T3 subtypes. CD68+TAMs could therefore be used as an independent prognostic factor in male T3 stage GC. Furthermore, the combination of IL-34 and CD68+TAMs might serve as a useful prognostic marker in GC. These results collectively support the potency of IL-34, M-CSF, CD68+TAMs and the combination of IL34 and CD68+TAMs as novel biological markers for GC, thus may provide new insight for both diagnosis and cellular therapy of GC.

Methods

Patients and samples

GC tissue and adjacent histologically normal gastric tissue (control) was obtained from 180 GC patients undergoing gastrectomy without prior chemotherapy in Xuzhou Medical University, China, (2008–2010). These GC patients were 140 males and 40 females (aged 23–85 years) (Table 1) with complete clinical information. Among them, 77 had follow-up until their death or until their most recent contact (May, 2015). At the time of the most recent contact, 14 of 77 were still alive, whereas 42 were dead and the other 21 were lost contacts during the following-up. Among the 14 surviving patients, the longest survival period was 76 months. The tissues within the pathology blocks were obtained from the patients at surgery. The consent for surgery included consent for the tissues to be used for diagnostic and research purpose in an unidentified manner. A written explanation of the surgical procedures and the potential research use of the tissues was provided to the patient prior to surgery. All of the patients were adults who were older than 16 years. This study was approved by the Human Ethical Committee, Xuzhou Medical University (xyfylw2012002).

Immunohistochemistry

Sections (5 µm) from tissue microarray blocks were labelled with three antibodies, as described previously [40]. The antibodies were: rabbit anti-IL-34 polyclonal antibody (bs-18170R, Beijing Biosynthesis Biotechnology, China), rabbit anti-M-CSF (Abcam, Cambridge, UK) and mouse monoclonal anti-CD68 (Dako, Copenhagen, Denmark). HRPconjugated secondary antibody (Beijing Sequoia Jinqiao Biological Technology) was used. The specific target(s) was visualized with 3, 3’-diaminobenzidine (DAB) detection kit and counterstained with hematoxylin. IL-34, M-CSF and CD68 production was quantified.

Briefly, all the images were taken by an Olympus BX51 microscope with fixed exposure time and light sources to avoid any additional unwanted errors. The quantitative analysis was conducted using ImagePro Plus 7.1 software.
The positive staining threshold was defined by an independent pathologist in a double-blind fashion. The defined threshold was applied to analyse all of the images, using a pre-programmed macro in ImagePro Plus 7.1 software to obtain the objective positive value (pixels) of the staining. The positive pixels were expressed as image units. The mean of these values represents the amount of staining per treatment group used for subsequent statistical comparison, as described below.

Statistical analysis

The SPSS 16.0 statistical software package was used for the statistical analysis. Comparison between two groups was performed via Mann-Whitney U test. Comparisons among multi-groups were performed via Kruskal-Wallis test. Low and high cutoff values for cytokine expression was defined by ROC curve analysis. Survival curves were plotted by the Kaplan-Meier method and compared by the log-rank test. Cox’s proportional hazards model was used to identify the prognostic factors that influenced survival. $p < 0.05$ was considered statistically significant.

Abbreviations

Abbreviation	Description
CRC	gastric cancer
IL	Interleukin
TAM	tumour associate macrophages
M-CSF	macrophage colony stimulating factor
AUC	area under the curve
ROC	receiver operating characteristic
TNM	tumour, node and metastasis
NFκB	nuclear factor kappa B
MAPKs	Mitogen-activated protein kinase
DCs	dendritic cells
Declarations

Ethics and consent to participate: The consent for surgery included consent for the tissues to be used for diagnostic and research purpose in an unidentified manner. The informed consent obtained from study participants was written. A written explanation of the surgical procedures and the potential research use of the tissues was provided to the patient prior to surgery. All of the patients were adults who were older than 16 years. This study was approved by the Human Ethical Committee, Xuzhou Medical University (xyfylw2012002).

Consent for publication: NA

Availability of data and material: Yes

Competing interests: Nil

Funding: This study was supported by grants from National Natural Science Foundation of China (NO. 81502030) for the reagents and histopathology and immunohistochemistry, and The Bosch small equipment grands SB), the University of Sydney, Australia for image analysis. Liu was a recipient of a Travel fellowship, Minster of Education, Jiangsu Province, China (QL) sponsored Dr Liu’s stipend during her stay in Australia.

Authors’ contributions:
- QL: performed the experiment, analysed the data, and wrote manuscript
- YZ: immunohistochemistry
- JZ, KT, BH and SB: designed the experiment and critical reviewed the manuscript
- SB and QL: provided financial support for the experiment
- all authors have read and approved the manuscript.

Emails for the authors
- QL: liuqinghua1@126.com
- YZ: 807411916@qq.com
- JZ: 398164963@qq.com
- KT: taokun@shtrhospital.com
- BH: brett.hambly@sydney.edu.au
- SB: bob.bao@sydney.edu.au

Acknowledgements: we appreciate the assistance from the Department of Pathology, Xuzhou Medical University, China.

References
1. Yoon H, Kim N. Diagnosis and management of high risk group for gastric cancer. Gut Liver. 2015;9(1):5–17.
2. Chai EZ, Siveen KS, Shanmugam MK, Arfuso F, Sethi G. Analysis of the intricate relationship between chronic inflammation and cancer. Biochem J. 2015;468(1):1–15.
3. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.
4. Zhang J, Yan Y, Yang Y, Wang L, Li M, Wang J, Liu X, Duan X, Wang J. High Infiltration of Tumor-Associated Macrophages Influences Poor Prognosis in Human Gastric Cancer Patients, Associates With the Phenomenon of EMT. Med (Baltim). 2016;95(6):e2636.
5. Wang B, Xu D, Yu X, Ding T, Rao H, Zhan Y, Zheng L, Li L. Association of intra-tumoral infiltrating macrophages and regulatory T cells is an independent prognostic factor in gastric cancer after radical resection. Ann Surg Oncol. 2011;18(9):2585–93.
6. Koide N, Nishio A, Sato T, Sugiyama A, Miyagawa S. Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol. 2004;99(9):1667–74.
7. Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, Yeung YG. Biology and action of colony-stimulating factor-1. Mol Reprod Dev. 1997;46(1):4–10.
8. Lawicki S, Omyla J, Mroczko B, Szmitkowski M, Czygier M. [Plasma level of macrophage-colony stimulating factor (M-CSF) in the course of breast cancer treatment]. Pol Arch Med Wewn. 2004;112(4):1181–7.
9. Ide H, Hatake K, Terado Y, Tsukino H, Okegawa T, Nutahara K, Higashihara E, Horie S. Serum level of macrophage colony-stimulating factor is increased in prostate cancer patients with bone metastasis. Hum Cell. 2008;21(1):1–6.
10. Groblewska M, Mroczko B, Wereszczynska-Siemiatkowska U, Mysliwiec P, Kedra B, Szmitkowski M. Serum levels of granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) in pancreatic cancer patients. Clin Chem Lab Med. 2007;45(1):30–4.
11. Jadus MR, Chen Y, Boldaji MT, Delgado C, Sanchez R, Douglass T, Al-Atar U, Schulz W, Lloyd C, Wepsic HT. Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins. Cancer Gene Ther. 2003;10(5):411–20.
12. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, Halenbeck R, Wu G, Zhou A, Behrens D, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science. 2008;320(5877):807–11.
13. Dembic Z: Cytokines of the Immune System: Interleukins. In: The Cytokines of the Immune System: The Role of Cytokines in Disease Related to Immune Response. 1 edn. Edited by Dembic Z: Elservier; 2015: 143–239.
14. Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kundig TM, Frei K, Ginhoux F, Merad M, et al. Stromal-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 2012;37(6):1050–60.
15. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol 2014, 6(6).
16. Baud'huin M, Renault R, Charrier C, Riet A, Moreau A, Brion R, Gouin F, Duplomb L, Heymann D. Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis. J Pathol. 2010;221(1):77–86.
17. Nandi S, Gokhan S, Dai XM, Wei S, Enikolopov G, Lin H, Mehler MF, Stanley ER. The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol. 2012;367(2):100–13.
18. Foucher ED, Blanchard S, Preisser L, Descamps P, Ifrah N, Delneste Y, Jeannin P. IL-34- and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1alpha. Eur J Immunol. 2015;45(4):1092–102.
19. Lorenzon L, Cippitelli C, Avantifiori R, Uccini S, French D, Torrissi MR, Ranieri D, Mercantini P, Canu V, Blandino G, et al: Down-regulated miRs specifically correlate with non-cardial gastric cancers and Lauren's classification system. J Surg Oncol 2017.
20. Hashimoto D, Chow A, Greter M, Saenger Y, Kwan WH, Leboeuf M, Ginhoux F, Ochando JC, Kunisaki Y, van Rooijen N, et al. Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation. J Exp Med. 2011;208(5):1069–82.
21. Verma M. Personalized medicine and cancer. J Pers Med. 2012;2(1):1-14.
22. Pyo JH, Lee H, Min BH, Lee JH, Choi MG, Lee JH, Sohn TS, Bae JM, Kim KM, Ahn HS, et al. A Risk Prediction Model Based on Lymph-Node Metastasis in Poorly Differentiated-Type Intramuscosal Gastric Cancer. PLoS One. 2016;11(5):e0156207.
23. Nakamura T, Yao T, Niho Y, Tsuneyoshi M. A clinicopathological study in young patients with gastric carcinoma. J Surg Oncol. 1999;71(4):214–9.
24. Liu H, Zhang H, Shen Z, Lin C, Wang X, Qin J, Qin X, Xu J, Sun Y. Increased Expression of CSF-1 Associates With Poor Prognosis of Patients With Gastric Cancer Undergoing Gastrectomy. Med (Baltim). 2016;95(9):e2675.
25. Segaliny AI, Mohamadi A, Dizier B, Lokajczyk A, Brion R, Lanel R, Amiaud J, Charrier C, Boisson-Vidal C, Heymann D. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment. Int J Cancer. 2015;137(1):73–85.
26. Booker BE, Clark RS, Pellom ST, Adunyah SE. Interleukin-34 induces monocytic-like differentiation in leukemia cell lines. Int J Biochem Mol Biol. 2015;6(1):1–16.
27. Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, Delsneste Y, Jeannin P. IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages. Antagonistic effects of GM-CSF and IFNgamma. PLoS One. 2013;8(2):e56045.
28. Zhou R, Zhou Y, Chen Z. Exploration of macrophage colony-stimulating factor as a new type of tumor marker. Biomed Rep. 2013;1(6):845-9.
29. Rietkotter E, Bleckmann A, Bayerlova M, Menck K, Chuang HN, Wenske B, Schwartz H, Erez N, Binder C, Hanisch UK, et al. Anti-CSF-1 treatment is effective to prevent carcinoma invasion induced by monocyte-derived cells but scarcely by microglia. Oncotarget. 2015;6(17):15482–93.
30. Zou W, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010;10(4):248–56.
31. Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy LM, Maiti SN, Thomas G, Zhou S, Wang Q, Elakkad A, et al: Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight 2016, 1(2).
32. Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol. 2013;35(5):585–600.
33. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.
34. Erreni M, Mantovani A, Allavena P. Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. Cancer Microenvironment. 2011;4(2):141–54.
35. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R. High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res. 2007;13(5):1472–9.
36. Kumagai S, Marumo S, Shoji T, Sakuramoto M, Hirai T, Nishimura T, Arima N, Fukui M, Huang CL. Prognostic impact of preoperative monocyte counts in patients with resected lung adenocarcinoma. Lung Cancer. 2014;85(3):457–64.
37. Reinartz S, Schumann T, Finkenlagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schworer AM, Wagner U, Muller-Brusselbach S, et al. Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer. 2014;134(1):32–42.
38. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.
39. Nabeshima A, Matsumoto Y, Fukushima J, Iura K, Matsunobu T, Endo M, Fujiwara T, Iida K, Fujiwara Y, Hatano M, et al. Tumour-associated macrophages correlate with poor prognosis in myxoid liposarcoma and promote cell motility and invasion via the HB-EGF-EGFR-P13K/Akt pathways. Br J Cancer. 2015;112(3):547–55.
40. Puranik R, Fox OJ, Sullivan DS, Duflo J, Bao S. Inflammatory characteristics of premature coronary artery disease. Int J Cardiol. 2010;145(2):288–90.
Figure 1 Representative immunohistochemical staining of IL-34, MCSF and CD68 + TAMs their densities in noncancerous and GC tissues

Positive IL-34, MCSF and CD68 + TAMs were stained in brown mainly expressed in the cytoplasm of gastric cancer and noncancerous tissues. The densities of IL-34 and MCSF were decreased in GC compared to tumour adjacent gastric tissues, whereas the density of CD68 was increased. Magnification, 600 ×
Figure 2 Correlation of IL-34 expression with age, gender and differentiation subtypes IL-34 decreased in the groups of GC patients aged less than or equal to 60 years old, female and low differentiation subtypes of GC.
Figure 3 ROC and combination analysis of IL-34, MCSF, and GC

IL-34

Sensitivity

1 - Specificity

AUC = 0.624

MCSF

Sensitivity

1 - Specificity

AUC = 0.7

IL-34 combined with MCSF

Percent survival

month

p = 0.060

IL-34 combined with

Percent survival

months

p = 0.019
ROC and combination analysis of IL-34, MCSF and CD68+ TAMs for prognosis of GC ROC curves analysis displaying the diagnostic of GC by expression levels of IL-34, MCSF and CD68. Area under the curve, IL-34: 48550, AUC=0.624; MCSF: 233.7, AUC=0.775; CD68: 768.7, AUC=0.878. Kaplan-Meier survival analysis of combination of IL-34, MCSF and CD68+ TAMs for prognosis of GC, the combination of IL-34 and CD68+ TAMs had relationship with the prognosis of GC patients.
Survival analysis of IL-34, MCSF and CD68+ TAMs for prognosis of GC Kaplan-Meier survival analysis of GC patients: decreased IL-34 expression correlates with a poor survival for GC patients. Decreased MCSF expression correlates with poor survival of GC patients in TNM III-IV stage. Increased CD68+ TAMs expression correlates with good survival of GC patients in male, Diameter ≥5cm, lymph node metastasis and T3 stage.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- sFig6.jpg
- sFig3.jpg
- sFig2.jpg
- sFig1.jpg
- sFig4.jpg
- sFig5.jpg
- SupplementaryTable1.docx