Abstract. Dark Higgs is very generic in dark matter models where DM is stabilized by some spontaneously broken dark gauge symmetries. Motivated by tentative GeV scale γ-ray excess from the galactic center (GC), we investigate a scenario where a pair of dark matter X annihilates into a pair of dark Higgs H_2, which subsequently decays into standard model particles through its mixing with SM Higgs boson. Besides the two-body decay of H_2, we also include multibody decay channels of the dark Higgs. We find that the best-fit point is around $M_X \simeq 95.0$ GeV, $M_{H_2} \simeq 86.7$ GeV, $\langle \sigma v \rangle \simeq 4.0 \times 10^{-26}$ cm3/s and gives a p-value $\simeq 0.40$. Implication of this result is described in the context of dark matter models with dark gauge symmetries. Since such a dark Higgs boson is very difficult to produce at colliders, indirect DM detections of cosmic γ-rays could be an important probe of dark sectors, complementary to collider searches.

Keywords: dark matter theory, gamma ray theory, dark matter experiments, gamma ray experiments

ArXiv ePrint: 1504.03908
1 Introduction

Firm evidences for dark matter (DM) come exclusively from the gravitational interaction at the moment. A popular scenario in particle physics models, DM as weakly-interacting massive particles (WIMP), generally predicts that DM should have a mass between $\mathcal{O}(\text{GeV}) - \mathcal{O}(\text{TeV})$, with a weak-scale annihilation cross section around $3 \times 10^{-26} \text{cm}^3/\text{s}$. If those annihilation final states go to standard model particles eventually, there might be notable excesses in cosmic rays and gamma ray searches.

By analyzing Fermi-LAT’s public data, several groups [1–11] have been claiming that there might be some excess in the gamma-ray signals from Galactic center,\(^1\) inner Galaxy and even some Dwarf Galaxy [13]. The excess is at $E_\gamma \sim \mathcal{O}(\text{GeV})$ energy scale and its morphology against the distance to galaxy center is consistent with signals from WIMP DM annihilation, which has motivated intense discussions about DM model-constructions and constraints [14–81]. Besides DM interpretation, astrophysical origins of the excess have also been actively investigated [82–92]. For instance, refs. [82, 90] showed that gamma-ray emission from unresolved millisecond pulsars is compatible with the excess and can account for at least part of the excess. And refs. [91, 92] argued that the excess might be comprised entirely of point sources. Recently, Fermi-LAT collaboration published a paper [93] on search for DM from Milky Way dwarf spheroidal galaxies and gave stringent constraints. However, since dwarf galaxies might have different DM density profiles from Milky Way halo, such constraints would be relaxed then.

In this paper, we shall exclusively consider DM interpretations. As a first step, it is natural to investigate the GeV excess through annihilation channels that a pair of DM goes to two SM particles directly, such as $q\bar{q}, c\bar{c}, b\bar{b}, t\bar{t}, t^\pm t^{\mp}, gg, hh, WW, ZZ$ and also their different combinations with some branching fractions. After all, no new particle has been found yet at the LHC, except the Higgs boson. This method has provided valuable information for the favored DM mass and annihilation cross section ranges. Discussions has been extended to cascade two-body decay through new mediators, such as Z' and dark Higgs H_2, which are ubiquitous in new physics beyond SM. In particular, light mediator ($M_{Z'}; H_2 < 1 \text{ GeV}$) [57] and heavy Z' [28] cases have been investigated thoroughly.

This work is intended to investigate GeV scale gamma-ray excess in models where DM annihilates into a pair of heavy dark Higgs ($> 1 \text{ GeV}$) which subsequently could decay into multi-body final states such as WW^* or W^*W^*, where W^* is a virtual W boson. The aim

\(^1\)Recently, Fermi-LAT also released an paper with some excess [12].
is to provide the ranges of the favored dark Higgs mass, DM mass and the annihilation cross section, which might be useful for particle physics model building, such as hidden sector DM models with local dark gauge symmetries. This work differs from many previous investigation in one essential aspect: we take into account consistently all possible decay modes for heavy dark Higgs, not restricted to its two-body decays.

This paper is organized as follows. In section 2, we discuss the theoretical motivation and establish our formalism and notations. In section 3, we present our numerical results on the best-fit parameters. Then in section 4, we briefly discuss the implications for DM relic density and constraints from our results. Finally, we give a summary.

2 Formalism

We shall consider the following annihilation channel for self-conjugate DM X,

$$X + X \rightarrow H_2 + H_2,$$

followed by

$$H_2 \rightarrow SM + SM (+SM).$$

Here H_2 denotes the dark Higgs, distinguishing it from the SM-like Higgs H_1 with $M_{H_1} \approx 125$ GeV. In ref. [37], the present authors showed that dark Higgs is very generic in dark matter models with dark gauge symmetries, and the GC γ-ray excess can be easily accommodated with the above mechanism (see also refs. [21, 22, 38] for related works).

H_2 can decay into SM particles through its small mixing with H_1. The mixture between H_2 and H_2 can be easily achieved in particle physics model building.

For example, a real scalar DM X and a complex scalar Φ (dark Higgs that breaks local dark gauge symmetries) can have the following interactions,

$$L \supset -\lambda \phi X^2 \Phi^\dagger \Phi - \lambda \phi H \Phi^\dagger H^\dagger H, \quad (2.1)$$

where H is the SM Higgs doublet. After gauge (or even possible global) symmetry breaking,

$$H \rightarrow \left(0, \frac{v_h + h}{\sqrt{2}}\right)^T, \quad \phi \rightarrow \frac{v_\phi + \phi}{\sqrt{2}}, \quad (2.2)$$

where v_h and v_ϕ are the vacuum expectation values, two neutral scalars h and ϕ will mix with each other through the Higgs portal coupling $\lambda \phi H$, resulting in two mass eigenstates H_1 and H_2 with

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h \\ \phi \end{pmatrix}, \quad (2.3)$$

in terms of the mixing angle α.

The above Lagrangian is just one example of many DM models with Higgs portal. One can also consider the case with a real scalar ϕ,

$$L \supset -\lambda_1 X^2 \phi - \lambda_2 X^2 \phi^2 - \lambda_3 \phi^2 H^\dagger H - \lambda_4 \phi^2 H^\dagger H, \quad (2.4)$$

Again after the electroweak symmetry breaking,

$$H \rightarrow \left(0, \frac{v_h + h}{\sqrt{2}}\right)^T, \quad (2.5)$$
Figure 1. Feynman diagram due to the effective operator $X^2H_2^2$ for fermionic X or $X_\mu X^\mu H_2^2$ for vector X. The actual annihilation process may occur through s or t channel, and contact interaction. Details in the gray bubble depend on various ultraviolet completions. The produced H_2s can have two-, three- or even four-body decay channels.

H and ϕ are mixed. We can also consider a model with fermionic X with

$$\mathcal{L} \supset -\lambda_1 \bar{X} \gamma_5 X \phi - \lambda_2 \phi H^H H - \lambda_3 \phi^2 H^H H. \quad (2.6)$$

All the above models can easily evade current experimental bounds when α is very small (see discussion in ref. [94] for example). If one assumes all other possible new particles are heavy, DM X will dominantly annihilate into H_2's.

To be as general as possible, we shall just work with the effective operator, $X^2H_2^2$ ($\bar{X} \gamma_5 X H_2^2$ for fermionic X), and consider the annihilation process in figure 1, assuming that other particles in the dark sector are all heavy enough.

The produced H_2's could be either relativistic or non-relativistic for $M_{H_2} \ll M_X$ or $M_{H_2} \approx M_X$, respectively. Different kinematics might lead to significant differences in the gamma-ray spectra. Moreover, depending on the mass of H_2, M_{H_2}, H_2 can dominantly decay into 2 or 3 standard model particles. In our numerical calculation, we use PYTHIA-6.4 [95] to simulate and tabulate dN_f^f/dE_γ for the interesting ranges of M_X and M_{H_2}. In particular, we focus on $M_X \geq 5$ GeV and $M_{H_2} \geq 1$ GeV.

The general differential flux of the gamma-ray from the annihilation of self-conjugate DM is given by

$$\frac{d^2 \Phi}{dE_\gamma d\Omega} = \frac{1}{8\pi} \sum_f \frac{\langle \sigma v \rangle_{\text{ann}}^f}{M_{\text{DM}}^2} \frac{dN_f^f}{dE_\gamma} \int_0^\infty dr \rho^2 \left(r' \left(r, \theta \right) \right), \quad (2.7)$$

where $\langle \sigma v \rangle_{\text{ann}}^f$ is the velocity-averaged annihilation cross section for the annihilation channel f, dN_f^f/dE_γ is prompt gamma-ray spectrum, $r' = \sqrt{r_\odot^2 + r^2 - 2r_\odot r \cos \theta}$, r is the distance to earth from the DM annihilation point, $r_\odot \simeq 8.5$ kpc for solar system and θ is the observation angle between the line-of-sight and the center of Milky Way. An extra factor 1/2 needs to be included for non-self-conjugate DM, such as complex scalars or Dirac fermions. In our considered case, we have only one annihilation channel, $X + X \rightarrow H_2 + H_2$.

For DM density distribution, we use the following generalized NFW profile [96],

$$\rho \left(r \right) = \rho_\odot \left[\frac{r_\odot}{r} \right]^\gamma \left[1 + \frac{r_\odot}{r_c} \right]^{3-\gamma}, \quad (2.8)$$

with parameters $r_c \simeq 20$ kpc and $\rho_\odot \simeq 0.4$ GeV/cm3. We shall adopt the index $\gamma = 1.26$ if not stated otherwise.
Figure 2. Three illustrative cases for gamma-ray spectra in contrast with CCW data points [11]. All masses are in GeV unit and σv with cm3/s. Line shape around $E \approx M_{H^2}/2$ is due to decay modes, $H_2 \rightarrow \gamma\gamma, Z\gamma$.

3 Numerical analysis

We first show three cases for the gamma-ray spectrum in figure 2. The vertical axis marks the conventional

$$E^2 dN/dE \equiv E^2 \frac{1}{\Delta\Omega} \int_{\Delta\Omega} \frac{d^2\Phi}{dE\gamma d\Omega}$$

where $\Delta\Omega$ indicates the region of interest. The 24 data points we used to compare with are from ref. [11], denoted as CCW hereafter.

As we can see, different parameter sets can give different spectrum shape, especially in the high energy regime. When the branching ratios of $H_2 \rightarrow \gamma\gamma, Z\gamma$ are increasing, we can see the gamma lines more easily around $E \approx M_{H^2}/2$. Since the annihilation cross section is at order of 10^{-26} cm3/s and the branching ratios of $H_2 \rightarrow \gamma\gamma, Z\gamma$ are around 0.2% at most, the considered parameters are still consistent with constraint from gamma-line searches.

We now use the χ^2 function and find its minimum to find out the best fit:

$$\chi^2 (M_X, M_{H^2}, \langle \sigma v \rangle) = \sum_{i,j} (\mu_i - f_i) \Sigma^{-1}_{ij} (\mu_j - f_j),$$

where μ_i and f_i are the predicted and measured fluxes in the i-th energy bin respectively, and Σ is the 24 \times 24 covariance matrix. We take the numerical values for f_i and Σ from CCW [11]. Minimizing the χ^2 against f_i with respect to M_X, M_{H^2} and $\langle \sigma v \rangle$ gives the best-fit points, and then two-dimensional 1σ, 2σ and 3σ contours are defined at $\Delta\chi^2 \equiv \chi^2 - \chi^2_{\text{min}} = 2.3, 6.2$ and 11.8, respectively.
Figure 3. The regions inside solid(black), dashed(blue) and long-dashed(red) contours correspond to 1σ, 2σ and 3σ, respectively. The red dots inside 1σ contours are the best-fit points. In the left panel, we vary freely M_X, M_{H_2} and $\langle \sigma v \rangle$. While in the right panel, we fix the mass of H_2, $M_{H_2} \simeq M_X$.

Figure 3 is our main result. In the left panel, M_X, M_{H_2} and $\langle \sigma v \rangle$ are freely varied, so that the total degree of freedom (d.o.f.) is 21. The red dot represents the best-fit point with

$$M_X \simeq 95.0 \text{ GeV}, \quad M_{H_2} \simeq 86.7 \text{ GeV}, \quad \langle \sigma v \rangle \simeq 4.0 \times 10^{-26} \text{ cm}^3/\text{s},$$

(3.3)

gives $\chi^2_{\text{min}} \simeq 22.0$, with the corresponding p-value equal to 0.40.

We also notice that there are two separate regimes, one in the low mass region and the other in high mass region. The higher mass region is basically aligned with $M_{H_2} \simeq M_X$ since otherwise a highly-boosted H_2 would give a harder gamma-ray spectrum. In this region, H_2 mostly decays into $b\bar{b}$. As one increases the mass of H_2, $H_2 \to W^+l^-\nu_l$, $H_2 \to Zl^+_l\nu_l$, $H_2 \to \gamma\gamma$ and $H_2 \to \gamma Z$ become more and more important, and all of them give harder gamma-ray spectra either due to the leptonic final states or the gamma lines. Eventually, χ^2 increases significantly when $M_{H_2} \geq 150 \text{ GeV}$.

In the low mass region, the contours are scattered but centered around $M_{H_2} \simeq 10 \text{ GeV}$ and such a light H_2 most likely decays into $b\bar{b}$, $c\bar{c}$ and $\tau^+\tau^-$. Since $c\bar{c}$ and $\tau^+\tau^-$ would give harder spectra than $b\bar{b}$ does, we would need a lower M_X to fit the data, which is exactly what we see in figure 2 (dotted curve). Increasing the branching ratios of $c\bar{c}$ and $\tau^+\tau^-$ would require a even lower M_X.

In the right panel, we show a special case in which $M_{H_2} \simeq M_X$, so that the produced H_2s are non-relativistic. In such a case, the d.o.f. is now 22. The best-fit parameters are

$$M_X \simeq M_{H_2} \simeq 97.1 \text{ GeV}, \quad \langle \sigma v \rangle \simeq 4.2 \times 10^{-26} \text{ cm}^3/\text{s},$$

(3.4)

which gives $\chi^2_{\text{min}} \simeq 22.5$ and the p-value equal to 0.43. An interesting thing is that $M_X \simeq M_{H_2} \simeq 125 \text{ GeV}$ also give a good-fit. This point is equivalent to the channel that DM X annihilates into SM Higgs, which has been already found in previous study [51, 56].

In the left panel of figure 4, we fix the mass of dark Higgs to the best-point value, $M_{H_2} = 86.7$, and vary M_X and $\langle \sigma v \rangle$. We show 1σ, 2σ and 3σ contours in terms of solid(black),
Figure 4. Regions inside solid (black), dashed (blue) and long-dashed (red) contours correspond to 1σ, 2σ and 3σ, respectively. The red dots inside 1σ contours are the best-fit points. In the left panel, we fix \(M_{H_2} = 86.7 \text{GeV} \), but vary freely \(M_X \) and \(\langle \sigma v \rangle \). For comparison, in the right panel we consider \(XX \to bb \) channel.

dashed (blue) and long-dashed (red) curves, respectively. To compare with \(bb \) channel, we also present 3σ region in the right panel of figure 4. The best-fit point is around

\[
M_X \approx 49.4 \text{GeV}, \quad \langle \sigma v \rangle \approx 1.75 \times 10^{-26} \text{cm}^3/\text{s},
\]

which gives \(\chi^2_{\text{min}} \approx 24.4 \) and a p-value, 0.34.

For completeness and comparison, we also show similar plots in figure 5 based on the analysis of Inner Galaxy from ref. [10]. All parameters are the same as previous except \(\gamma = 1.18 \) for the DM profile as used ref. [10]. As shown in figure 5, the regions inside contours are much smaller than those in figures 3 and 4. This is due to the fact that uncertainties in ref. [10] are purely statistical. All the best-fit points give \(\chi^2 \sim 44 \), and the minimal \(\chi^2 \) is reached when \(M_X \approx 87.0 \text{GeV}, M_{H_2} \approx 82.1 \text{GeV} \) and \(\langle \sigma v \rangle \approx 4.7 \times 10^{-26} \text{cm}^3/\text{s} \) with \(\chi^2_{\text{min}}/\text{d.o.f} \approx 42.6/(22 - 3) \) which corresponds to a p-value, \(1.5 \times 10^{-3} \). It seems that this is not a good fit. However, according to ref. [10], any value of \(\chi^2 \lesssim 50 \) should be taken as a reasonable “good fit”, given the large systematic uncertainties associated with the background templates choice. Nevertheless, we can easily see that the favored regions are consistent with those in figures 3 and 4 within 2–3σ.

4 Relic abundance and phenomenology

So far, we have not discussed any actual concrete DM models, how the correct relic abundance can be achieved and how one can test or constrain this scenario further. Generally, such topics are highly model dependent and the conclusions would differ significantly from one case to another. Still, we can give some general implications from the results obtained earlier in this letter.

From eqs. (3.3) and (3.4), we notice that the best-fit annihilation cross section for dark Higgs channel is bigger than the canonical value for thermal DM \(X \), \(2 \sim 3 \times 10^{-26} \text{cm}^3/\text{s} \),
although still consistent within 2-3σ range. Larger \(\langle \sigma v \rangle \) would mean a smaller relic abundance for \(X \). However, the correct relic density can still be reached if we extend the above minimal DM model setup. For example, we may introduce another heavy DM component \(Y \) and the total energy fraction of \(\Omega_Y + \Omega_X \) is just the observed \(\Omega_{\text{DM}} \). Suppose \(Y \) froze out in the early universe but had decayed into \(X \) pairs with a lifetime shorter than the age of Universe. This can be easily achieved if we introduce the following interactions:

\[
\delta \mathcal{L} = y_1 Y^2 X^2 + y_2 M_X Y X^2.
\]

When \(y_2 \) is small enough, say less than \(10^{-12} \), \(Y \) would decay into \(X \) pair after BBN epoch or the freeze-out of \(X \)'s. Before its decay, \(Y \)'s relic abundance was determined by \(y_1 \) through

\[M_X \geqslant 82.1 \text{ GeV}.
\]
the efficient annihilation process, \(Y + Y \rightarrow X + X\). Although \(y_2\) is small, it is still technically natural or natural by 't Hooft’s naturalness argument because if \(y_2\) is zero, we have an additional \(Z_2\) symmetry for particle \(Y\).

For \(b\bar{b}\) channel, the best-fit cross section, eq. (3.5), is a little smaller than the canonical value. This is not a problem at this stage since the right panel of figure 4 shows that canonical value of thermal cross section is within 1-2\(\sigma\) range. Even if it is a problem, we can still imagine that in some concrete models, there could exist some other annihilation channels whose cross sections have velocity dependence or \(p\)-wave suppression, \(\langle \sigma v \rangle \propto v^2\).

For instance, if fermionic DM \(X\) has interaction, \(XX\phi\), then \(X + \bar{X} \rightarrow 2\phi\) is much more suppressed nowadays than at the freeze-out time. Then the sum of cross sections to \(\phi\phi\) and \(b\bar{b}\) has a canonical value at the freeze-out time but only \(b\bar{b}\) channel is important now for its indirect detections.

Here we briefly discuss the related possible particle phenomenology in an explicit UV complete model. We shall note phenomenology is highly model-dependent and we refer to our previous works [21, 37, 38, 94] for some detailed examples. Our discussion here is just focused on the following Lagrangian with \(U_X(1)\) gauge symmetry:

\[
\mathcal{L} = \mathcal{L}_{\text{SM}} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + (D_{\mu} \Phi)^\dagger (D^{\mu} \Phi) - \lambda_{\Phi} \left(\Phi^\dagger \Phi - v_\Phi^2 / 2 \right)^2
- \lambda_{hh} \left(\Phi^\dagger \Phi - v_\Phi^2 / 2 \right) \left(H^\dagger H - v_H^2 / 2 \right),
\]

where in the SM Lagrangian the Higgs potential term is \(\lambda_{hh} \left(H^\dagger H - v_H^2 / 2 \right)^2\) and the covariant derivative is defined as \(D_{\mu} \Phi = (\partial_{\mu} - ig_X X_{\mu}) \Phi\).

A nonzero vacuum expectation value \(v_\Phi\) breaks \(U(1)X\) spontaneously. Afterwards, \(X_\mu\) gets mass \(M_X = g_X v_\Phi\) and the dark Higgs field \(\phi\) will mix with the SM Higgs field \(h\) through the Higgs portal term, resulting in two mass eigenstates, \(H_1\) and \(H_2\). The mixing angle \(\alpha\) in the matrix eq. (2.3) is determined by

\[
\sin 2\alpha = \frac{2\lambda_{HH} v_H v_\Phi}{m_{H_2}^2 - m_{H_1}^2}.
\]

In this model, gauge boson \(X_\mu\) is the dark matter because its only couplings, \(X_\mu X^{\mu} H_{1,2}^2\) and \(X_\mu X^{\mu} H_{1,2}\), have accidental \(Z_2\) symmetry which ensure the stability.

The mixing angle is constrained by Higgs signal strength and invisible decay at the LHC [106, 107],

\[
\sin^2 \alpha \lesssim 0.2, \quad \text{and} \quad \lambda_{HH} \lesssim 10^{-2} \quad \text{for} \quad M_{H_2} < 62.5 \text{GeV}.
\]

Due to the allowed small mixing, the dominant annihilation processes for small scalar self-coupling are shown in figure 6, their thermal cross section \(\langle \sigma v \rangle\) to determine the relic density is given by

\[
\langle \sigma v \rangle = \frac{g_X^4 \cos^4 \alpha}{144 \pi M_X^2} \left[3 - \frac{8 (M_{H_2}^2 - 4M_X^2)}{M_{H_2}^2 - 2M_X^2} + \frac{16 \left(M_{H_2}^4 - 4M_{H_2}^2 M_X^2 + 6M_X^4 \right)}{(M_{H_2}^2 - 2M_X^2)^2} \right].
\]

For the above formula, we can determine the required gauge coupling \(g_X\) for correct DM density. For instance, if \(M_{H_2} \ll M_X\), \(\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{cm}^3/\text{s}\) gives

\[
g_X \sim \frac{0.2}{\cos \alpha} \left(\frac{M_X}{100 \text{ GeV}} \right)^{1/2}.
\]
While if $M_{H_2} \simeq M_X$, $\langle \sigma v \rangle \sim 3 \times 10^{-26}$cm3/s would give

$$g_X \sim \frac{0.24}{\cos \alpha} \left(\frac{M_X}{100 \text{ GeV}} \right)^{1/2}.$$

The scalar mixing also lead to possible signal for direct detection of DM. The spin-independent scattering cross section for exchanging scalar mediators is calculated as

$$\sigma_p^{SI} = \frac{g_X^2 m_p^2 f_p^2 \sin^2 2\alpha}{4\pi v_H^2} \left(\frac{1}{M_{H_1}^2} - \frac{1}{M_{H_2}^2} \right)^2,$$

$$\simeq 2.2 \times 10^{-45} \text{ cm}^2 \left(\frac{9 Xs_\alpha c_\alpha}{10^{-2}} \right)^2 \left(\frac{75 \text{ GeV}}{M_{H_2}} \right)^4 \left(1 - \frac{M_{H_2}^2}{M_{H_1}^2} \right)^2,$$

(4.4)

which can easily satisfy LUX [108] limit for small mixing angle $\sin \alpha \lesssim 0.05$. This also means that direct detection can place a much stronger limit on $\sin \alpha$ for light dark higgs. Since the production cross section of this second higgs goes like $\sin^2 \alpha$, it would be very challenge for probe it at the LHC.

5 Summary

In the letter, we have explored a possibility that the GeV scale γ-ray excess from the galactic center is due to DM pair annihilation into a pair of dark Higgs, followed by the dark Higgs decay into the SM particles through its small mixing with the SM Higgs boson. Including the correlations among different parameters and varying M_X and M_{H_2} independently, we find that the best fit is obtained if

$$M_X \simeq 95.0 \text{ GeV}, \quad M_{H_2} \simeq 86.7 \text{ GeV}, \quad \langle \sigma v \rangle \simeq 4.0 \times 10^{-26} \text{ cm}^3/s$$

If we impose $M_X \simeq M_{H_2}$, we get a similar result (see table 1). This information could be important inputs in dark matter models with dark Higgs boson.

At this stage we cannot make any strong statement about the existence of dark Higgs with mass close to the DM mass ~ 95GeV. However dark Higgs is very generic in DM models where DM is stabilized by some spontaneously broken local (or even global) dark gauge symmetries [21, 22, 37, 66, 97–105]. Since the dark Higgs boson is a SM singlet scalar, it is very difficult to find it at colliders although there are some interesting constraints from the LHC data on the SM Higgs signal strengths [106]. It is simply more difficult to produce them at colliders when the mixing angle is small. It is very amusing to notice that indirect
Channels	Best-fit parameters	χ^2_{min}/d.o.f.	p-value
$XX \rightarrow H_2H_2$ (with $M_{H_2} \neq M_X$)	$M_X \simeq 95.0$ GeV, $M_{H_2} \simeq 86.7$ GeV, $\langle \sigma v \rangle \simeq 4.0 \times 10^{-26}$ cm3/s	22.0/21	0.40
$XX \rightarrow H_2H_2$ (with $M_{H_2} = M_X$)	$M_X \simeq 97.1$ GeV, $\langle \sigma v \rangle \simeq 4.2 \times 10^{-26}$ cm3/s	22.5/22	0.43
$XX \rightarrow H_1H_1$ (with $M_{H_1} = 125$ GeV)	$M_X \simeq 125$ GeV, $\langle \sigma v \rangle \simeq 5.5 \times 10^{-26}$ cm3/s	24.8/22	0.30
$XX \rightarrow b\bar{b}$	$M_X \simeq 49.4$ GeV, $\langle \sigma v \rangle \simeq 1.75 \times 10^{-26}$ cm3/s	24.4/22	0.34

Table 1. Summary table for the best fits with three different assumptions.

DM detection experiments can be more sensitive to such a dark Higgs than the collider experiments. Compared with more popular dark photon scenario, it is more natural to have flavor dependent couplings of dark Higgs boson to the SM fermions, since its couplings are basically the same as those of the SM Higgs boson modulo the mixing angle effect. This fact makes much easier DM model building [21, 22]. It remains to be seen whether this fit survives in the future data sets, and if there would be any indication of such a dark Higgs from the future collider experiments.

Acknowledgments

We are grateful to C. Weniger for sharing the covariant matrix and an example script. We thank the KIAS Center for Advanced Computation for providing computing resources. YT thanks Xiaodong Li for helpful discussions. This work is supported in part by National Research Foundation of Korea NRF-2015R1A2A1A05001869, and by the NRF grant funded by the Korea government (MSIP) (No. 2009-0083526) through Korea Neutrino Research Center at Seoul National University (PK).

References

[1] L. Goodenough and D. Hooper, Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope, arXiv:0910.2998 [inSPIRE].

[2] D. Hooper and L. Goodenough, Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [inSPIRE].

[3] A. Boyarsky, D. Malyshev and O. Ruchayskiy, A comment on the emission from the Galactic Center as seen by the Fermi telescope, Phys. Lett. B 705 (2011) 165 [arXiv:1012.5839] [inSPIRE].

[4] D. Hooper and T. Linden, On The Origin Of The Gamma Rays From The Galactic Center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [inSPIRE].

[5] K.N. Abazajian and M. Kaplinghat, Detection of a Gamma-Ray Source in the Galactic Center Consistent with Extended Emission from Dark Matter Annihilation and Concentrated Astrophysical Emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [inSPIRE].

[6] C. Gordon and O. Macias, Dark Matter and Pulsar Model Constraints from Galactic Center Fermi-LAT Gamma Ray Observations, Phys. Rev. D 88 (2013) 083521 [Erratum ibid. D 89 (2014) 049901] [arXiv:1306.5725] [inSPIRE].
[7] D. Hooper and T.R. Slatyer, Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter, *Phys. Dark Univ.* 2 (2013) 118 [arXiv:1302.6589] [inSPIRE].

[8] W.-C. Huang, A. Urbano and W. Xue, Fermi Bubbles under Dark Matter Scrutiny. Part I: Astrophysical Analysis, *arXiv:1307.6862* [inSPIRE].

[9] K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat, Astrophysical and Dark Matter Interpretations of Extended Gamma-Ray Emission from the Galactic Center, *Phys. Rev. D* 90 (2014) 023526 [arXiv:1402.4090] [inSPIRE].

[10] T. Daylan, D.P. Finkbeiner, D. Hooper, T. Linden, S.K.N. Portillo, N.L. Rodd et al., The Characterization of the Gamma-Ray Signal from the Central Milky Way: A Compelling Case for Annihilating Dark Matter, *arXiv:1402.6703* [inSPIRE].

[11] F. Calore, I. Cholis and C. Weniger, Background model systematics for the Fermi GeV excess, *JCAP* 03 (2015) 038 [arXiv:1409.0042] [inSPIRE].

[12] A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd, Effective field theory approach to the Galactic Center gamma-ray excess, *Phys. Rev. D* 90 (2014) 115003 [arXiv:1403.5027] [inSPIRE].

[13] D.G. Cerdeño, M. Peiró and S. Robles, Low-mass right-handed sneutrino dark matter: SuperCDMS and LUX constraints and the Galactic Centre gamma-ray excess, *JCAP* 08 (2014) 005 [arXiv:1404.2572] [inSPIRE].

[14] A. Berlin, D. Hooper and S.D. McDermott, Simplified Dark Matter Models for the Galactic Center Gamma-Ray Excess, *Phys. Rev. D* 89 (2014) 035004 [arXiv:1404.3716] [inSPIRE].

[15] P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, *JCAP* 09 (2014) 013 [arXiv:1404.5257] [inSPIRE].

[16] C. Boehm, M.J. Dolan and C. McCabe, A weighty interpretation of the Galactic Centre gamma-ray excess, *Phys. Rev. D* 90 (2014) 023531 [arXiv:1404.4977] [inSPIRE].

[17] S. Mondal and I. Saha, Confronting the Galactic Center Gamma Ray Excess With a Light Scalar Dark Matter, *JCAP* 02 (2015) 035 [arXiv:1405.0206] [inSPIRE].
[25] A. Martin, J. Shelton and J. Unwin, *Fitting the Galactic Center Gamma-Ray Excess with Cascade Annihilations*, Phys. Rev. D 90 (2014) 103513 [arXiv:1405.0272] [inSPIRE].

[26] A. Berlin, P. Gratia, D. Hooper and S.D. McDermott, *Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess*, Phys. Rev. D 90 (2014) 015032 [arXiv:1405.5204] [inSPIRE].

[27] T. Mondal and T. Basak, *Class of Higgs-portal Dark Matter models in the light of gamma-ray excess from Galactic center*, Phys. Lett. B 744 (2015) 208 [arXiv:1405.4877] [inSPIRE].

[28] J.M. Cline, G. Dupuis, Z. Liu and W. Xue, *The windows for kinetically mixed dark matter and the galactic center gamma ray excess*, JHEP 08 (2014) 131 [arXiv:1405.7691] [inSPIRE].

[29] T. Han, Z. Liu and S. Su, *Light Neutralino Dark Matter: Direct/Indirect Detection and Collider Searches*, JHEP 08 (2014) 093 [arXiv:1406.1181] [inSPIRE].

[30] W. Detmold, M. McCullough and A. Pochinsky, *Dark Nuclei I: Cosmology and Indirect Detection*, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [inSPIRE].

[31] L. Wang and X.-F. Han, *A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess*, Phys. Lett. B 739 (2014) 416 [arXiv:1406.3598] [inSPIRE].

[32] W.-F. Chang and J.N. Ng, *Minimal model of Majoronic dark radiation and dark matter*, Phys. Rev. D 90 (2014) 065034 [arXiv:1406.4691] [inSPIRE].

[33] C. Arina, E. Del Nobile and P. Panci, *Dark Matter with Pseudoscalar-Mediated Interactions Explains the DAMA Signal and the Galactic Center Excess*, Phys. Rev. Lett. 114 (2015) 011301 [arXiv:1406.5542] [inSPIRE].

[34] C. Cheung, M. Papucci, D. Sanford, N.R. Shah and K.M. Zurek, *NMSSM Interpretation of the Galactic Center Gamma-Ray Excess*, Phys. Rev. D 90 (2014) 075011 [arXiv:1406.6372] [inSPIRE].

[35] J. Huang, T. Liu, L.-T. Wang and F. Yu, *Supersymmetric subelectroweak scale dark matter, the Galactic Center gamma-ray excess and exotic decays of the 125 GeV Higgs boson*, Phys. Rev. D 90 (2014) 115006 [arXiv:1407.0038] [inSPIRE].

[36] C. Balázs and T. Li, *Simplified Dark Matter Models Confront the Gamma Ray Excess*, Phys. Rev. D 90 (2014) 055026 [arXiv:1407.0174] [inSPIRE].

[37] P. Ko and Y. Tang, *Galactic center γ-ray excess in hidden sector DM models with dark gauge symmetries: local Z3 symmetry as an example*, JCAP 01 (2015) 023 [arXiv:1407.5492] [inSPIRE].

[38] S. Baek, P. Ko and W.-I. Park, *Local Z2 scalar dark matter model confronting galactic GeV-scale γ-ray*, Phys. Lett. B 747 (2015) 255 [arXiv:1407.6588] [inSPIRE].

[39] N. Okada and O. Seto, *Galactic Center gamma-ray excess from two-Higgs-doublet-particle dark matter*, Phys. Rev. D 90 (2014) 083523 [arXiv:1408.2583] [inSPIRE].

[40] N.F. Bell, S. Horiuchi and I.M. Shoemaker, *Annihilating Asymmetric Dark Matter*, Phys. Rev. D 91 (2015) 023505 [arXiv:1408.5142] [inSPIRE].

[41] E. Hardy, R. Lasenby and J. Unwin, *Annihilation Signals from Asymmetric Dark Matter*, JHEP 07 (2014) 049 [arXiv:1402.4500] [inSPIRE].

[42] A.D. Banik and D. Majumdar, *Low Energy Gamma Ray Excess Confronting a Singlet Scalar Extended Inert Doublet Dark Matter Model*, Phys. Lett. B 743 (2015) 420 [arXiv:1408.5795] [inSPIRE].

[43] D. Borah and A. Dasgupta, *Galactic Center Gamma Ray Excess in a Radiative Neutrino Mass Model*, Phys. Lett. B 741 (2015) 103 [arXiv:1409.1406] [inSPIRE].

[44] M. Cahill-Rowley, J. Gainer, J. Hewett and T. Rizzo, *Towards a Supersymmetric Description of the Fermi Galactic Center Excess*, JHEP 02 (2015) 057 [arXiv:1409.1573] [inSPIRE].
[45] J.-H. Yu, Vector Fermion-Portal Dark Matter: Direct Detection and Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 095010 [arXiv:1409.3227] [inSPIRE].

[46] J. Guo, J. Li, T. Li and A.G. Williams, NMSSM explanations of the Galactic center gamma ray excess and promising LHC searches, Phys. Rev. D 91 (2015) 095003 [arXiv:1409.7864] [inSPIRE].

[47] J. Cao, L. Shang, P. Wu, J.M. Yang and Y. Zhang, Supersymmetry explanation of the Fermi Galactic Center excess and its test at LHC run II, Phys. Rev. D 91 (2015) 055005 [arXiv:1410.3239] [inSPIRE].

[48] Z.-H. Yu, X.-J. Bi, Q.-S. Yan and P.-F. Yin, Tau Portal Dark Matter models at the LHC, Phys. Rev. D 91 (2015) 035008 [arXiv:1410.3347] [inSPIRE].

[49] M. Freytsis, D.J. Robinson and Y. Tsai, Galactic Center Gamma-Ray Excess through a Dark Shower, Phys. Rev. D 91 (2015) 095003 [arXiv:1409.7864] [inSPIRE].

[50] M. Heikinheimo and C. Spethmann, Galactic Centre GeV Photons from Dark Technicolor, JHEP 12 (2014) 084 [arXiv:1410.4842] [inSPIRE].

[51] P. Agrawal, B. Batell, P.J. Fox and R. Harnik, WIMPs at the Galactic Center, JCAP 05 (2015) 011 [arXiv:1411.2592] [inSPIRE].

[52] K. Cheung, W.-C. Huang and Y.-L.S. Tsai, Non-abelian Dark Matter Solutions for Galactic Gamma-ray Excess and Perseus 3.5 keV X-ray Line, JCAP 05 (2015) 053 [arXiv:1411.2619] [inSPIRE].

[53] G. Arcadi, Y. Mambrini and F. Richard, Z-portal dark matter, JCAP 03 (2015) 018 [arXiv:1411.2985] [inSPIRE].

[54] D. Hooper, Z’ mediated dark matter models for the Galactic Center gamma-ray excess, Phys. Rev. D 91 (2015) 035025 [arXiv:1411.4079] [inSPIRE].

[55] Q. Yuan and K. Ioka, Testing the millisecond pulsar scenario of the Galactic center gamma-ray excess with very high energy gamma-rays, Astrophys. J. 802 (2015) 124 [arXiv:1411.4363] [inSPIRE].

[56] F. Calore, I. Cholis, C. McCabe and C. Weniger, A Tale of Tails: Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics, Phys. Rev. D 91 (2015) 063003 [arXiv:1411.4647] [inSPIRE].

[57] J. Liu, N. Weiner and W. Xue, Signals of a Light Dark Force in the Galactic Center, JHEP 08 (2015) 050 [arXiv:1412.1485] [inSPIRE].

[58] A. Biswas, Explaining Low Energy γ-ray Excess from the Galactic Centre using a Two Component Dark Matter Model, arXiv:1412.1663 [inSPIRE].

[59] K. Ghorbani and H. Ghorbani, Scalar Split WIMPs in the Future Direct Detection Experiments, arXiv:1501.00206 [inSPIRE].

[60] K. Ghorbani and H. Ghorbani, Two-portal Dark Matter, Phys. Rev. D 91 (2015) 123541 [arXiv:1504.03610] [inSPIRE].

[61] D.G. Cerdeno, M. Peiro and S. Robles, Fits to the Fermi-LAT GeV excess with RH sneutrino dark matter: implications for direct and indirect dark matter searches and the LHC, Phys. Rev. D 91 (2015) 123530 [arXiv:1501.01296] [inSPIRE].

[62] A. Biswas, D. Majumdar and P. Roy, Nonthermal two component dark matter model for Fermi-LAT γ-ray excess and 3.55 keV X-ray line, JHEP 04 (2015) 065 [arXiv:1501.02666] [inSPIRE].

[63] A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z Portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [inSPIRE].
[64] M. Kaplinghat, T. Linden and H.-B. Yu, Galactic Center Excess in γ Rays from Annihilation of Self-Interacting Dark Matter, Phys. Rev. Lett. 114 (2015) 211303 [arXiv:1501.03507] [nSPIRE].

[65] A. Berlin, A. DiFranzo and D. Hooper, 3.55 keV line from exciting dark matter without a hidden sector, Phys. Rev. D 91 (2015) 075018 [arXiv:1501.03496] [nSPIRE].

[66] C.-H. Chen and T. Nomura, SU(2)$_X$ vector DM and Galactic Center gamma-ray excess, Phys. Lett. B 746 (2015) 351 [arXiv:1501.07413] [nSPIRE].

[67] J. Guo, Z. Kang, P. Ko and Y. Orikasa, Accidental dark matter: Case in the scale invariant local $B-L$ model, Phys. Rev. D 91 (2015) 115017 [arXiv:1502.00508] [nSPIRE].

[68] M.R. Buckley, E. Charles, J.M. Gaskins, A.M. Brooks, A. Drlica-Wagner, P. Martin et al., Search for Gamma-ray Emission from Dark Matter Annihilation in the Large Magellanic Cloud with the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 102001 [arXiv:1502.01020] [nSPIRE].

[69] K.P. Modak and D. Majumdar, Confronting Galactic and Extragalactic γ-rays Observed by Fermi-lat With Annihilating Dark Matter in an Inert Higgs Doublet Model, Astrophys. J. Suppl. 219 (2015) 37 [arXiv:1502.05682] [nSPIRE].

[70] A. Achterberg, S. Amoroso, S. Caron, L. Hendriks, R. Ruiz de Austri and C. Weniger, A description of the Galactic Center excess in the Minimal Supersymmetric Standard Model, JCAP 08 (2015) 006 [arXiv:1502.05703] [nSPIRE].

[71] T. Gherghetta, B. von Harling, A.D. Medina, M.A. Schmidt and T. Trott, SUSY implications from WIMP annihilation into scalars at the Galactic Center, Phys. Rev. D 91 (2015) 105004 [arXiv:1502.07173] [nSPIRE].

[72] G. Elor, N.L. Rodd and T.R. Slatyer, Multistep cascade annihilations of dark matter and the Galactic Center excess, Phys. Rev. D 91 (2015) 103531 [arXiv:1503.01773] [nSPIRE].

[73] J. Kopp, J. Liu and X.-P. Wang, Boosted Dark Matter in IceCube and at the Galactic Center, JHEP 04 (2015) 105 [arXiv:1503.02669] [nSPIRE].

[74] X.-J. Bi, L. Bian, W. Huang, J. Shu and P.-F. Yin, Interpretation of the Galactic Center excess and electroweak phase transition in the NMSSM, Phys. Rev. D 92 (2015) 023507 [arXiv:1503.03749] [nSPIRE].

[75] T. Appelquist et al., Stealth Dark Matter: Dark scalar baryons through the Higgs portal, Phys. Rev. D 92 (2015) 075030 [arXiv:1503.04203] [nSPIRE].

[76] A. Rajaraman, J. Smolinsky and P. Tanedo, On-Shell Mediators and Top-Charm Dark Matter Models for the Fermi-LAT Galactic Center Excess, arXiv:1503.05919 [nSPIRE].

[77] J.M. Cline, G. Dupuis, Z. Liu and W. Xue, Multimediator models for the galactic center gamma ray excess, Phys. Rev. D 91 (2015) 115010 [arXiv:1503.08213] [nSPIRE].

[78] K. Kong and J.-C. Park, Bounds on dark matter interpretation of Fermi-LAT GeV excess, Nucl. Phys. B 888 (2014) 154 [arXiv:1404.3741] [nSPIRE].

[79] T. Bringmann, M. Vollmann and C. Weniger, Updated cosmic-ray and radio constraints on light dark matter: Implications for the GeV gamma-ray excess at the Galactic center, Phys. Rev. D 90 (2014) 123001 [arXiv:1406.6027] [nSPIRE].

[80] M. Cirelli, D. Gaggero, G. Giesen, M. Taoso and A. Urbano, Antiproton constraints on the GeV gamma-ray excess: a comprehensive analysis, JCAP 12 (2014) 045 [arXiv:1407.2173] [nSPIRE].

[81] I. Cholis, D. Hooper and T. Linden, A Critical Reevaluation of Radio Constraints on Annihilating Dark Matter, Phys. Rev. D 91 (2015) 083507 [arXiv:1408.6224] [nSPIRE].
Q. Yuan and B. Zhang, Millisecond pulsar interpretation of the Galactic center gamma-ray excess, *JHEAp* 3-4 (2014) 1 [arXiv:1404.2318] [SPIRE].

E. Carlson and S. Profumo, Cosmic Ray Protons in the Inner Galaxy and the Galactic Center Gamma-Ray Excess, *Phys. Rev. D* 90 (2014) 023015 [arXiv:1405.7685] [SPIRE].

J. Petrović, P.D. Serpico and G. Zaharijaš, Galactic Center gamma-ray “excess” from an active past of the Galactic Centre?, *JCAP* 10 (2014) 052 [arXiv:1405.7928] [SPIRE].

B.D. Fields, S.L. Shapiro and J. Shelton, Galactic Center Gamma-Ray Excess from Dark Matter Annihilation: Is There A Black Hole Spike?, *Phys. Rev. Lett.* 113 (2014) 151302 [arXiv:1406.4856] [SPIRE].

I. Cholis, D. Hooper and T. Linden, Challenges in Explaining the Galactic Center Gamma-Ray Excess with Millisecond Pulsars, *JCAP* 06 (2015) 043 [arXiv:1407.5625] [SPIRE].

B. Zhou, Y.-F. Liang, X. Huang, X. Li, Y.-Z. Fan, L. Feng et al., GeV excess in the Milky Way: The role of diffuse galactic gamma-ray emission templates, *Phys. Rev. D* 91 (2015) 123010 [arXiv:1406.6948] [SPIRE].

C. Gordon and O. Macias, Can Cosmic Rays Interacting With Molecular Clouds Explain The Galactic Center Gamma-Ray Excess?, *PoS CRISM2014* (2015) 042 [arXiv:1410.7840] [SPIRE].

R.M. O’Leary, M.D. Kistler, M. Kerr and J. Dexter, Young Pulsars and the Galactic Center GeV Gamma-ray Excess, [arXiv:1504.02477] [SPIRE].

J. Petrović, P.D. Serpico and G. Zaharijaš, Millisecond pulsars and the Galactic Center gamma-ray excess: the importance of luminosity function and secondary emission, *JCAP* 02 (2015) 023 [arXiv:1411.2980] [SPIRE].

R. Bartels, S. Krishnamurthy and C. Weniger, Strong support for the millisecond pulsar origin of the Galactic center GeV excess, [arXiv:1506.05104] [SPIRE].

S. Baek, P. Ko, W.-I. Park and Y. Tang, Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays, *JCAP* 06 (2014) 046 [arXiv:1402.2115] [SPIRE].

T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, *JHEP* 05 (2006) 026 [hep-ph/0603175] [SPIRE].

J.F. Navarro, C.S. Frenk and S.D.M. White, The Structure of cold dark matter halos, *Astrophys. J.* 462 (1996) 563 [astro-ph/9508025] [SPIRE].

S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, *JHEP* 02 (2012) 047 [arXiv:1112.1847] [SPIRE].

S. Baek, P. Ko, W.-I. Park and E. Senaha, Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, *JHEP* 11 (2012) 116 [arXiv:1209.4163] [SPIRE].

S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs Portal Vector Dark Matter: Revisited, *JHEP* 05 (2013) 036 [arXiv:1212.2131] [SPIRE].

S. Baek, P. Ko and W.-I. Park, Singlet Portal Extensions of the Standard Seesaw Models to a Dark Sector with Local Dark Symmetry, *JHEP* 07 (2013) 013 [arXiv:1303.4280] [SPIRE].
[101] S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, \textit{JCAP} 10 (2014) 067 [arXiv:1311.1035] [inSPIRE].

[102] P. Ko and Y. Tang. Self-interacting scalar dark matter with local Z_3 symmetry, \textit{JCAP} 05 (2014) 047 [arXiv:1402.6449] [inSPIRE].

[103] P. Ko and Y. Tang, $\nu\Lambda$MDM: A model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2, \textit{Phys. Lett. B} 739 (2014) 62 [arXiv:1404.0236] [inSPIRE].

[104] S. Baek, P. Ko and W.-I. Park, Invisible Higgs Decay Width vs. Dark Matter Direct Detection Cross Section in Higgs Portal Dark Matter Models, \textit{Phys. Rev. D} 90 (2014) 055014 [arXiv:1405.3530] [inSPIRE].

[105] V.V. Khoze and G. Ro, Dark matter monopoles, vectors and photons, \textit{JHEP} 10 (2014) 061 [arXiv:1406.2291] [inSPIRE].

[106] K. Cheung, P. Ko, J.S. Lee and P.-Y. Tseng, Bounds on Higgs-Portal models from the LHC Higgs data, \textit{JHEP} 10 (2015) 057 [arXiv:1507.06158] [inSPIRE].

[107] CMS collaboration, A combination of searches for the invisible decays of the Higgs boson using the CMS detector, CMS-PAS-HIG-15-012 (2015).

[108] LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, \textit{Phys. Rev. Lett.} 112 (2014) 091303 [arXiv:1310.8214] [inSPIRE].