Article Addendum

Linoleic acid inhibits TRP channels with intrinsic voltage sensitivity

Implications on the mechanism of linoleic acid action

Moshe Parnas, Maximilian Peters and Baruch Minke*

Departments of Physiology and the Kühne Minerva Center for Studies of Visual Transduction; Faculty of Medicine of the Hebrew University; Jerusalem, Israel

Key words: TRP channels, open channel block, divalent cations, lipids, membrane

Open channel block (OCB) is a process by which ions bind to the inside of a channel pore and block the flow of ions through that channel. Repulsion of the blocking ions by membrane depolarization is a known mechanism for open channel block removal. For the 
N-methyl-D-aspartate (NMDA) channel, this mechanism is necessary for channel activation and is involved in neuronal plasticity. Several types of Transient Receptor Potential (TRP) channels, including the Drosophila TRP and TRP-Like (TRPL) channels, also exhibit open channel block. For the Drosophila TRP and TRPL channels, removal of open channel block is necessary for the production of the physiological response to light. Recently, we have shown that lipids such as polyunsaturated fatty acids (PUFAs), represented by linoleic acid (LA), alleviate OCB under physiological conditions, from the Drosophila TRP and TRPL channels and from the mammalian NMDA channel. Here we show that OCB removal by LA is not confined to the Drosophila TRPs but also applies to mammalian TRPs such as the heat activated TRPV3 channel. TRPV3 shows OCB alleviation by LA, although it shares little amino acid sequence homology with the Drosophila TRPs. Strikingly, LA inhibits the heat-activated TRPV1 and the cold temperature-activated TRPM8 channels, which are intrinsic voltage sensitive channels and do not show OCB. Together, our findings further support the notion that lipids do not act as second messengers by direct binding to a specific site of the channels but rather act indirectly by affecting the channel-plasma membrane interface.

Open channel block (OCB) is a process by which ions have access to intra-channel binding sites inside the pore of an ion channel and block the flow of ions through that channel. The known mechanism of OCB removal is repulsion of the blocking ion by depolarization. Activation of the NMDA channel is a notable example for OCB and its removal in brain neurons. In the case of the ligand-gated NMDA channel, ligand binding by itself is not sufficient to allow cationic influx through the channel's pore at resting membrane potential because of the OCB by Mg²⁺. Removal of this Mg²⁺ OCB by depolarization¹ allows activation of the NMDA channel, and serves as a coincidence detector of pre- and post-synaptic activities in the brain.² The Drosophila transient receptor potential (TRP) and TRP-like (TRPL) channels are also subject to OCB. However, puzzlingly, these channels mediate light-induced current in the absence of previous membrane depolarization. Recently we have reported on a novel mechanism of OCB alleviation by lipids. OCB causes an outwardly rectifying current voltage relationship (I-V curve) typical for the TRPL and NMDA channels. Application of lipids such as the polyunsaturated fatty acid linoleic acid (LA), results in a linearization of the I-V curve for both TRPL and NMDA channels in the presence of blocking cations. We have shown that lipids alleviate OCB from both NMDA and TRPL channels by facilitating the passage rate of the blocking cations in the channels' pore. Furthermore, we have suggested that the effect of lipids is indirect and operates by modulating the interactions between the membrane lipids and the channels. Thus, lipids do not affect the TRPL channel as second messengers, but rather as modifiers of membrane lipid-channel interactions.

The TRP superfamily is evolutionary conserved and plays important roles in signal transduction of many cells types.³⁻⁹ Experimental evidence has suggested that several mammalian members of the TRP family that show outward rectification (e.g., TRPC2,¹⁰ TRPC6,¹¹ TRPV3,¹² TRPM6,¹³ and TRPM7,¹⁴) undergo OCB. However, the physiological mechanism underlying the alleviation of OCB in these channels is still unknown. In contrast, some other TRP channels reveal outward rectification that is not due to OCB. Rather, these TRP channels are thought to have intrinsic voltage sensitivity. Examples for extensively studied TRP channels in which their voltage dependence does not arise from OCB are the heat-activated TRPV1 and the cold temperature-activated TRPM8 channels.⁹

Addendum to: Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shaag A, et al. Membrane lipid modulations remove divalent open channel block from TRP and NMDA channels. J Neurosci 2009; 29:2371–83; PMID: 19244513; DOI: 10.1523/JNEUROSCI.4280-08.2009.

*Correspondence to: Baruch Minke; Department of Physiology; Faculty of Medicine; The Hebrew University; P. O. Box 12272; Jerusalem 91120 Israel; Tel.: +972.2.6758407; Fax: +972.2.6439736; Email: minke@md.huji.ac.il

Submitted: 04/24/09; Revised: 04/26/09; Accepted: 04/26/09

Previously published online as a E-publication:
http://www.landesbioscience.com/journals/channels/article/8873
Linoleic acid inhibits voltage sensitive TRP channels

Figure 1. LA removed divalent open channel block from the TRPV3 channel. LA affected the mammalian TRPV3 channel in a similar manner to the effect on the previously reported TRP channel. Representative I-V curves measured from S2 cells expressing the TRPV3 channel by whole cell patch clamp recordings, using voltage ramps from -100 mV to 100 mV in 1 s. The channel was activated by application of 2-APB (100 μM, green curve, 2), in a similar manner to a previous report. Application of 40 μM LA resulted in a change from an outwardly rectifying to an almost linear I-V curve (black curve 5) with a faster change at positive membrane potentials relative to negative membrane potentials. The outwardly rectifying I-V curve was restored upon application of 2 mM La3+ (violet curve 6, n = 6). In control experiments when no LA was applied, no linearization was observed (data not shown).

If alleviation of OCB by lipids is a general phenomenon, it is expected that lipid application will cause linearization of the I-V curve of mammalian TRP channels that reveal OCB but that have not been examined in our previous study. To test this possibility, we examined in the present study the effect of LA on I-V curve of the mammalian TRPV3 channel, which shows divalent open channel block. TRPV3 expressed in S2 cells was slightly activated by application of 2-aminoethoxydiphenylborate (2-APB 12), which produced an outwardly rectifying current as measured by whole-cell patch recordings (Fig. 1, green curve, 2). Application of LA greatly enhanced both inward and outward currents (Fig. 1, purple curve, 4), resulting in a virtually linear I-V curve (Fig. 1, black curve, 5). Our previous study on the TRPL and NMDA channels revealed that lipids have a faster effect at positive than at negative membrane potentials. In a similar manner, Figure 1 shows that application of LA to S2 cell expressing TRPV3 enhanced the outward currents, faster than the inward currents. In the previous study we further showed that an increased concentration of the blocking cation (Ca2+ for the TRPL and Mg2+ for the NMDA channels) in the presence of LA restored the outwardly rectifying I-V curve. Similarly, application of Ca2+ (not shown) or La3+ (Fig. 1, violet curve, 6) restored the outwardly rectifying I-V curve of the TRPV3 channel in the presence of LA.

Figure 2. LA inhibits the voltage sensitive TRPM8 and TRPV1 channels. (A) LA inhibited rather than activated the mammalian TRPM8, which is considered to be an intrinsic voltage sensitive channel. The paradigm of Figure 1 was repeated. Application of 40 μM LA to S2 cells expressing the TRPM8 channel, which were initially activated by menthol (100 μM) decreased current at both negative and positive membrane potentials (n = 4). In control experiments when no LA was applied, no decline of the current was observed, as there was no desensitization due to Ca2+ cations. (B) The mammalian TRPV1 channel is also considered to be an intrinsic voltage sensitive channel. The paradigm of Figure 1 was repeated. Application of 40 μM LA to S2 cells expressing the TRPV1 channel, which were initially activated by capsaicin (1 μM), decreased channel activity, at both negative and positive membrane potentials (n = 4). In control experiments when no LA was applied, no decline of the current was observed, as there was no desensitization due to Ca2+ cations (see above).

TRPV3 shares little amino acid sequence homology with the TRPL channel, and this is obviously true for the NMDA channel. It is therefore unlikely that LA acts as a second messenger and affects these channels by a direct binding to a specific site, in all of these channel proteins. Rather, it is more likely that alteration of the channel-membrane lipid interface underlies the effect of LA. The common denominator of all these channels, with regard to the rather exhibit intrinsic voltage sensitivity. Application of menthol and capsaicin, (under low Ca2+ conditions to prevent Ca2+ dependent inactivation of the channels) activated continuously, without desensitization, the TRPM8 and TRPV1 channels, respectively, during ~1 min of whole cell recordings (Fig. 2A and B, respectively). Indeed, in contrast to channels that exhibit OCB, the menthol and capsaicin-induced currents were inhibited rather than enhanced by LA (Fig. 2). Similar inhibition by PUFAs of capsaicin activated TRPV1 channels expressed in HEK 293 cells was previously reported.
effect of LA is OCB alleviation and hence current enhancement. In contrast, the intrinsically voltage sensitive, TRPV1 and TRPM8 do not exhibit OCB and are inhibited by LA. These channels also share little amino acid sequence homology with the channels that exhibit OCB or with each other, further supporting an indirect effect of LA. The fact that LA inhibits rather than enhances the activity of TRPV1 and TRPM8 further supports the notion that the enhanced TRPL, NMDA and TRPV3 currents due to LA is not a general effect on all channels, but is related to the removal of the OCB. Together, the present findings further support our notion that lipids do not act as second messengers, but rather act indirectly by affecting the channel-plasma membrane interface.

Acknowledgements

We thank Shaya Lev for very useful comments and critical reading of the manuscript. This research was supported by grants from the National Institute of Health (EY 03529), the Israel Science Foundation (ISF), the German Israeli Foundation (GIF) and the Moscona Foundation and the Minerva Foundation.

References

1. Kandel ER. Synaptic integration. In: Kandel ER, Schwartz JH, Jessell TM, eds. Principles of Neural Science, 4th Ed. New York: McGraw-Hill 2000; 212-4.
2. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984; 307:662-5.
3. Clapham DE. TRP channels as cellular sensors. Nature 2003; 426:517-24.
4. Dhaka A, Viswanath V, Patapoutian A. TRP ion channels and temperature sensation. Annu Rev Neurosci 2006; 29:135-61.
5. Hardie RC. TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 2007; 578:9-24.
6. Jordt SE, McKemy DD, Julius D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Opin Neurobiol 2003; 13:487-92.
7. Minke B, Cook B. TRP channel proteins and signal transduction. Physiol Rev 2002; 82:429-72.
8. Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem 2007; 76:387-417.
9. Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 2002; 418:181-6.
10. Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shaag A, et al. Membrane lipid modulations remove divalent open channel block from TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 2003; 40:551-61.
11. Spassova MA, Heriwatirthana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 2006; 103:16886-91.
12. Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, Zhu MX. Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 2006; 208:201-12.
13. Topala CN, Groenestege WT, Thebault S, van den BD, Nilius B, Hoenderop JG, Bindels RJ. Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 2007; 41:513-23.
14. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, et al. LTRPC7 is a Mg,ATP-regulated divalent cation channel required for cell viability. Nature 2001; 411:590-5.
15. Parnas M, Katz B, Lev S, Tzarfaty V, Dadon D, Gordon-Shaag A, et al. Membrane lipid modulations remove divalent open channel block from TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 2003; 40:551-61.
16. Spassova MA, Heriwatirthana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 2006; 103:16886-91.
17. Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, Zhu MX. Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 2006; 208:201-12.
18. Topala CN, Groenestege WT, Thebault S, van den BD, Nilius B, Hoenderop JG, Bindels RJ. Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 2007; 41:513-23.