BLACK HOLE SPIN IN Sw J1644+57 and Sw J2058+05

WEI-HUA LEI1,2 AND BING ZHANG1

1 Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154-4002, USA; leiw@physics.unlv.edu, zhang@physics.unlv.edu
2 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

Received 2011 August 15; accepted 2011 September 8; published 2011 September 21

1. INTRODUCTION

A hard X-ray transient event, Sw J1644+57, was discovered by the Swift satellite. It likely marks the onset of a relativistic jet from a supermassive black hole (BH), possibly triggered by a tidal disruption event (TDE). Another candidate in the same category, Sw J2058+05, was also reported. The low event rate suggests that only a small fraction of TDEs launch relativistic jets. A common speculation is that these rare events are related to rapidly spinning BHs. We attribute jet launching to the Blandford–Znajek mechanism and use the available data to constrain the BH spin parameter for the two events. It is found that the two BHs indeed carry a moderate to high spin, suggesting that BH spin is likely the crucial factor behind the Sw J1644+57-like events.

Key words: accretion, accretion disks – black hole physics – magnetic fields

2. METHOD

The bipolar BZ jet power from a BH with mass M_* and angular momentum J is (Lee et al. 2000; Li 2000; Wang et al. 2002; McKinney 2005)

$$L_{BZ} = 1.7 \times 10^{44} a_*^2 M_*^2 b_6^2 F(a_*) \text{ erg s}^{-1},$$

where $a_* = Jc/(GM_*^2)$ is the BH spin parameter, $M_*=M/10^6 M_\odot$, $b_6=10^6 G$, and

$$F(a_*) = [(1+q^2)/q^2][q+1/q] \arctan q-1;$$

where $q = a_*/(1+\sqrt{1-a_*^2})$ and $2/3 \leq F(a_*) \leq 2-\pi$ for $0 \leq a_* \leq 1$. It apparently depends on M_*, b_6, and a_*. However, since an isolated BH does not carry a magnetic field, B_0 is closely related to the accretion rate M and the radius of the BH, which depends on M_*. Combining these dependences, one finds that L_{BZ} is essentially independent of M_*, but is rather a function of M and a_*. This may be proven with the following rough scalings. For a Newtonian disk, angular momentum equation states $M r^2 (G M_*/r^3)^{1/2} \propto -4\pi r^2 \tau_{\phi} h$, where τ_{ϕ} is the viscous shear and $h \propto r$ is the half disk thickness, with $h/r \ll 1$ for a thin disk and $h/r \sim 1$ for a thick disk. Adopting the α-prescription for viscosity, the viscous shear can be expressed as $\tau_{\phi} = -\alpha \rho$, where P is the total pressure in the disk. One therefore derives $P \propto M r^2 (G M_*/r^3)^{1/2}/(4\pi r^2 a h) \propto (M_*/r^3)^{1/2}$ M_*^{-2}, where we have applied the scaling $r \propto r_s \propto M_* (r_s = 2GM_*^2/c^2)$, which is the Schwarzschild radius. To make an efficient BZ jet, the accretion inflow should carry a large magnetic flux (e.g., Tchekhovskoy et al. 2011). It is reasonable to assume that magnetic fields in the disk are in close equilibrium with the total pressure, so that $B_0^2 \propto P \propto M_*^{-2}$. Inserting this dependence to Equation (1), one finds that L_{BZ} is essentially independent of M_*. A natural inference is that the outflow is Poynting-dominated (Burrows et al. 2011).

If one identifies the BZ mechanism as the jet launching mechanism, the BH spin parameter (a dimensionless angular momentum of the BH, which ranges from 0 for no spin to 1 for the maximum spin) can be constrained from the data. This is the subject in this Letter.
More precisely, we adopt the following prescription to treat the problem. The total pressure in the disk can be expressed as

\[P = P_{\text{rad}} + P_{\text{gas}} + P_B, \]

where \(P_{\text{rad}} = aT^4/3, \) \(P_{\text{gas}} = nkT, \) and \(P_B = B_{\text{disk}}^2/8\pi \) are radiation, gas, and magnetic pressure, respectively. Here \(T \) is the temperature of the disk, \(n \) is the gas particle number density, \(a \) is the radiation density constant, and \(k \) is the Boltzmann constant. We denote \(P_B = \beta P \) and take \(\beta \sim 0.5 \) in this work. This corresponds to a maximized magnetic flux. A smaller \(\beta \) would demand an even larger \(a_* \) to reach the same BZ power. So taking \(\beta \sim 0.5 \) gives an estimate of a conservative lower limit of \(a_* \). For the two sources (Sw J1644+57 and Sw J2058+05) we are interested in, the accretion rate is estimated close to or even larger than the Eddington accretion rate (Burrows et al. 2011; Cenko et al. 2011). In this regime, a thin disk model may be adequate to describe the disk, and we apply it to estimate disk pressure for simplicity. The disk pressure peaks in the inner region where radiation pressure may dominate. As a result, for \(\beta \sim 0.5 \), one has

\[\frac{B_{\text{disk}}^2}{8\pi} \sim \frac{1}{3}aT^4, \tag{3} \]

where the temperature of the disk \((a_* \text{-} r\text{-dependent}) \) can be written as

\[T(a_*,r) = \left(\frac{3GM\dot{M}}{8\pi r^3\sigma} f \right)^{1/4}, \tag{4} \]

where \(\sigma \) is the Stephan–Boltzmann constant and the general relativistic correction factor (Page & Thorne 1974)

\[
\begin{align*}
 f(a_*,r) = & \frac{X^2}{(X^3 - 3X + 2a_*)} \left[X - X_{\text{in}} - \frac{3}{2}a_* \ln \left(\frac{X}{X_{\text{in}}} \right) \right] \\
 & - \frac{3(X_1 - a_*)^2}{X_1(X_1 - X_2)(X_1 - X_3)} \ln \left(\frac{X - X_1}{X_{\text{in}} - X_1} \right) \\
 & - \frac{3(X_2 - a_*)^2}{X_2(X_2 - X_1)(X_2 - X_3)} \ln \left(\frac{X - X_2}{X_{\text{in}} - X_2} \right) \\
 & - \frac{3(X_3 - a_*)^2}{X_3(X_3 - X_1)(X_3 - X_2)} \ln \left(\frac{X - X_3}{X_{\text{in}} - X_3} \right), \tag{5}
\end{align*}
\]

where \(X = (r/r_g)^{1/2}, X_{\text{in}} = (r_{in}/r_g)^{1/2}, \) and \(r_g = GM_*/c^2. \) For a Kerr BH, the inner edge \(r_{in} \) is expressed as (Bardeen et al. 1972)

\[r_{in}/r_g = 3 + Z_2 - [(3 - Z_1)(3 + Z_1 + 2Z_2)]^{1/2}, \tag{6} \]

for \(0 \leq a_* \leq 1, \) where \(Z_1 \equiv 1 + (1 - a_*^2)^{1/3}(1 + a_*^2)^{1/3} + (1 - a_*^3/3) \) and \(Z_2 \equiv (3a_*^2 + Z_2^2)^{1/2}. \) In Equation (5), \(X_1, X_2, \) and \(X_3 \) are the three roots of \(X^3 - 3X + 2a_* = 0, \) i.e., \(X_1 = 2\cos(\frac{\pi}{3} \cos^{-1} a_*) - \pi/3), \(X_2 = 2\cos(\frac{\pi}{3} \cos^{-1} a_*) + \pi/3), \) and \(X_3 = -2\cos(\frac{\pi}{3} \cos^{-1} a_*) \). It is easy to check that \(f(r = r_{in}) = 0 \) and \(f(r \gg r_{in}) \approx 1. \) For a Newtonian disk, \(f \) can be simply written as \(f = 1 - \sqrt{r_{in}/T}. \)

We assume that the strength of the magnetic field threading the BH is comparable to the largest field strength in the disk, i.e., \(B_{\star} \sim B_{\text{disk}}^{\text{max}}. \) For given \(M \) and \(a_* \), we solve numerically the temperature profile of the thin disk and identify the radius \(r_{\text{peak}} \) where \(T \) reaches the maximum. It is found that \(r_{\text{peak}} \) is very close to \(r_{in} \), the innermost radius of the accretion disk. We then calculate \(B_{\text{disk}}^{\text{max}} \) from Equation (3), which is assigned to \(B_{\star}. \)

Applying Equations (1) and (2), one then obtains \(L_{\text{BZ}} \) once \(M \) and \(a_* \) are specified.

Observationally, a time-dependent isotropic X-ray luminosity \(L_{\text{X,iso}} \) was measured for the two sources. This luminosity can be connected to the BZ power through

\[\eta L_{\text{BZ}} = f_b L_{\text{X,iso}}, \tag{7} \]

where \(\eta \) is the efficiency of converting BZ power to X-ray radiation,

\[f_b = \frac{\Delta \Omega}{4\pi} = \max \left(1 - \frac{\theta_j^2}{2} \right) < 1 \tag{8} \]

is the beaming factor of the jet (Burrows et al. 2011), \(\Delta \Omega \) is the solid angle of the bipolar jet, and \(\Gamma \) and \(\theta_j \) are the Lorentz factor and opening angle of the jet.

In this work, we adopt \(\eta \sim 0.5 \), motivated by the potentially high radiation efficiency of a magnetically dominated jet (e.g., Drenkhahn & Spruit 2002; Zhang & Yan 2011). Again this gives a conservative lower limit of the inferred \(a_\star \), since a less efficient jet would demand an even higher spin rate in order to interpret the same observed luminosity.

The parameter \(f_b \) has a large uncertainty. Based on the current data, one cannot precisely measure \(\Gamma \) and \(\theta_j \). Here, we apply a statistical method to estimate the range of \(f_b \) within the TDE framework (see also Burrows et al. 2011). First, the facts that two such events (Sw J1644+57 and Sw J2058+05) were detected by Swift in ~7 yr and that the field view of the Swift Burst Alert Telescope (BAT; Barthelmy et al. 2005) is ~4\pi/7 sr suggest that the all-sky rate of such events is \(R_{\text{obs}} \sim 2\text{yr}^{-1} \), with a 90% confidence interval of (0.44–5.48) \text{yr}^{-1} (Kraft et al. 1991). Next, the TDE rate is estimated as \(\sim 10^{-5} \text{ to } 10^{-4} \text{yr}^{-1} \) galaxy^{-1} based on observational (Donley et al. 2002; Gezari et al. 2009) and theoretical (Wang & Merritt 2004) studies. The galaxy number density is \(n_{\text{gal}} \sim 10^{-3} \text{ to } 10^{-2} \text{Mpc}^{-3} \) (Tundo et al. 2007). Sw J2058+05 was marginally detected at \(z = 1.1853 \) (Cenko et al. 2011). We then obtain the total TDE event rate within the volume \((z \leq 1.1853) \) \(R_{\text{tot}} \sim 10^{4–10} \text{yr}^{-1}. \) Considering that only ~10% of the population can launch a jet (the “radio-loud” AGN fraction; Kellerman et al. 1989; Cirasuolo et al. 2003), the beaming factor can be estimated as

\[f_b \sim \frac{R_{\text{obs}}}{10\% R_{\text{tot}}} \approx (4.4 \times 10^{-5}, 5.5 \times 10^{-3}). \tag{9} \]

Finally, in order to infer \(a_\star \) from \(L_{\text{X,iso}}, f_b \) (given \(\beta = 0.5 \) and \(\eta = 0.5 \)), one needs to know the accretion rate \(M. \) This is an even more loosely constrained parameter. However, if one assumes that the luminosity history of the light curve delineates the accretion history of the BH (noticing \(L_{\text{BZ}} \propto M \)) well, one can normalize the accretion rate using the total accreted mass based on the observed flux and fluence of the event. For Sw J1644+57, since the source has entered a decaying phase, during which the residual fluence no longer contributes significantly to the total fluence, one can take the current total X-ray fluence as a good proxy of the total mass of the tidally disrupted star. Taking the peak flux as an example, the peak accretion rate can be estimated as

\[M_{\text{peak}} = \frac{I_{\text{X,peak}}(1+z)}{S_X} M_\star = \frac{I_{\text{X,iso}}}{E_{\text{X,iso}}} M_\star, \tag{10} \]

where \(I_{\text{X,peak}} \) is the peak X-ray flux, \(S_X \) is the total X-ray fluence, \(L_{\text{X,iso}} \) is the peak isotropic X-ray luminosity, \(E_{\text{X,iso}} \) is the isotropic X-ray energy, and \(M_\star \) is the total mass of the
star. The factor \((1 + z)\) was applied to convert the observed time to the time in the source rest frame. The accretion rate at other epochs can be estimated similarly. The range of \(\dot{M}_\text{a}\) may be between \(0.1 M_\odot\) and \(10 M_\odot\). One can then derive a mass-dependent constraint on \(a_\text{a}\).

3. Sw J1644+57 AND Sw J2058+05

Now we apply the above method to the two sources.

According to Burrows et al. (2011), during the first 50 days after the first BAT trigger the total X-ray energy corrected for live-time fraction for Sw J1644+57 is \(E_{\text{X,iso}}(J1644) \sim 2 \times 10^{53}\) erg in the 1.35–13.5 keV rest-frame energy band (corresponding the energy band of the Swift X-ray Telescope, Burrows et al. 2005). The peak luminosity in the same energy band is \(L_{\text{X,iso}}(J1644) \sim 2.9 \times 10^{48}\) erg s\(^{-1}\). The accretion rate (Equation (10)) can be estimated as:

\[
\dot{M}_{\text{peak}}(J1644) \simeq 1.45 \times 10^{-5} M_\odot \text{s}^{-1}.
\]

Equation (11) presents the constraint on \(a_\text{a}\) for Sw J1644+57 as a function of \(M_\text{a}\), with \(\beta = 0.5\) and \(\eta = 0.5\). The two boundary lines correspond to two ends of the range of \(f_{\beta}\), with the lower and upper boundaries corresponding to \(f_{\beta} = 4.4 \times 10^{-5}\) and \(f_{\beta} = 5.5 \times 10^{-3}\), respectively. The middle dashed line corresponds to the most probable value \(f_{\beta} \sim 10^{-3}\). One can see that the supermassive BH must have a moderate to high spin rate. Given the standard stellar initial mass function, the number of low-mass stars is much more abundant than the number of high-mass stars. If one takes \(M_\text{s} = 1 M_\odot\), the required range of \(a_\text{s}\) is \((0.23, 0.85)\), with the most probable value \(a_\text{s} = 0.63\). For \(M_\text{s} = 0.1 M_\odot\) (more probable), the range of \(a_\text{s}\) is \((0.51, 0.98)\) with the most probable value \(a_\text{s} = 0.90\).

Sw J2058+05 was discovered by Swift/BAT through a four-day (2011 May 17–20) integration. A subsequent target-of-opportunity (ToO) observation eight days after the end of the four-day integration (2011 May 28) revealed an X-ray source that behaves very similarly to Sw J1644+57 (Cenko et al. 2011), suggesting that it is very likely another Sw J1644+57-like event. The 0.3–10 keV peak flux is \(F_{\text{X,iso}} \simeq 7.9 \times 10^{-11}\) erg cm\(^{-2}\) s\(^{-1}\), corresponding to a peak luminosity of \(L_{\text{X,iso}} \simeq 3 \times 10^{47}\) erg s\(^{-1}\). The total X-ray fluence from the beginning of the ToO observation to 2011 July 20 is \(\Delta X \simeq 1.0 \times 10^{-4}\) erg cm\(^{-2}\) (Cenko et al. 2011). Since we did not catch the X-ray emission during the first 11 days (May 17–27) when it is supposed to be much brighter, the registered X-ray fluence only corresponds to a small fraction of the total mass of the star. One can still apply Equation (10) to estimate the accretion rate, except that one should replace \(M_\text{s}\) by \(\xi M_\odot\), where \(\xi < 1\) is the fraction of stellar mass that is accreted after May 28. Noticing \(z = 1.1853\) (Cenko et al. 2011), this gives a peak accretion rate

\[
\dot{M}_{\text{peak}}(J2058) \simeq 1.72 \times 10^{-7} \xi M_\odot \text{s}^{-1}. \tag{12}
\]

where \(\xi = 0.1 \xi_{-1}\) has been adopted.

The constraint on BH spin for Sw J2058+05 is shown in Figure 1(b). We find that the demand for BH spin is even more stringent for this source. For \(M_\text{s} = 1 M_\odot\), the required range of \(a_\text{s}\) is \((0.49, 0.98)\) with the most probable value \(a_\text{s} = 0.89\). For \(M_\text{s} = 0.1 M_\odot\) (more probable), the range of \(a_\text{s}\) is \((0.81, 0.998)\) with the most probable value \(a_\text{s} = 0.99\).

4. CONCLUSION AND DISCUSSION

Sw J1644+57 and Sw J2058+05 are the first two prototypical objects in this newly identified astrophysical phenomenon, namely, a relativistic jet associated with a TDE from a supermassive BH. A straightforward question is why only some TDEs launch jets. Based on observational properties, it has been argued that the jets must be Poynting-flux-dominated (Burrows et al. 2011; Shao et al. 2011). Invoking the BZ mechanism as the power of the jet, we show here that both events need to invoke a BH with a moderate to rapid spin in order to interpret the observations: the most probable values are \(a_\text{s}(J1644) = 0.63, 0.90\) and \(a_\text{s}(J2058) = 0.89, 0.99\) for \(M_\text{s} = 1, 0.1 M_\odot\), respectively. We therefore suggest that BH spin is the key factor behind the Sw J1944+57-like events, although other factors may also play a role (e.g., Cannizzo et al. 2011).

An elegant feature of the method we employ is that the inferred BH spin parameter \(a_\text{s}\) essentially does not depend on

Figure 1. Parameter space of \(M_\text{s}, a_\text{s}\) for Sw J1644+57 (left panel) and Sw J2058+05 (right panel) with \(\beta = 0.5\) and \(\eta = 0.5\). The shaded region indicates the range for BH spin bracketed by \(f_{\beta} = 4.4 \times 10^{-5}\) (lower) and \(f_{\beta} = 5.5 \times 10^{-3}\) (upper). The dashed line corresponds to the most probable value \(f_{\beta} = 10^{-3}\). For Sw J2058+05, \(\xi = 0.1\) is adopted. It is shown that the most probable values are \(a_\text{s}(J1644) = 0.63, 0.90\) and \(a_\text{s}(J2058) = 0.89, 0.99\) for \(M_\text{s} = 1, 0.1 M_\odot\), respectively.
the BH mass. On the other hand, knowing a_* leads to a better constraint on BH mass based on the variability argument. For example, the observed minimum variability timescale of J1644+57 is $\delta t_{\text{obs},\text{min}} \sim 100$ s. If one relates $\delta t_{\text{min}} = \delta t_{\text{obs},\text{min}}/(1+z)$ to the timescale defined by the innermost radius of the accretion disk, r_{in}/c, one can derive the BH mass of Sw J1644+57:

$$M_\bullet \simeq 15 \left(\frac{r_{\text{in}}}{r_g} \right)^{-1} \left(\frac{\delta t_{\text{obs},\text{min}}}{100 \text{ s}} \right). \quad (13)$$

One has $2.5 < M_\bullet < 15$ for $0 \leq a_* \leq 1$, with the most probable value $M_\bullet = 6.5$ for $a_* = 0.9$. This is consistent with the constrained BH mass from the $M-\mathcal{L}_{\text{bulge}}$ relation, which gives an upper limit of $2 \times 10^7 M_\odot$ (Burrows et al. 2011).

From Equation (1), one can also infer the strength of the magnetic field at the BH horizon:

$$B_\bullet \simeq 131 f_b^{1/2} \eta^{-1/2} F(a_*)^{-1/2} a_*^{-1} M_\bullet^{-1}. \quad (14)$$

Taking BH mass $M_\bullet = 6.5 \times 10^6 M_\odot$ and the most probable value for BH spin $a_* = 0.9$, one finds that the magnetic field threading BH would be $B_\bullet \sim 1.1 \times 10^6$ G, which is much higher than the average field strength of a typical main-sequence star ($<10^5$ G). The accumulation of magnetic flux by accretion flow and instability in the disk may account for such high magnetic field strength (e.g., Tchekhovskoy et al. 2011).

For Sw J2058+05, due to the low X-ray flux at the late epochs a much looser constraint on variability, $\delta t_{\text{obs},\text{min}} < 10^3$ s, was obtained (Cenko et al. 2011), so that the precise values of M_\bullet and B_\bullet cannot be derived.

An alternative scenario to interpret the Sw J1644+57-like event may be the onset of an AGN (Burrows et al. 2011). This scenario, which predicts that the two sources will be active at least in the following millennium, may be less favorable in view of the rapid onset of emission in Sw J1644+57 and the gradual decay in both events, but is not ruled out. Our method can be applied to this scenario as well, except that f_b becomes much larger (due to the intrinsic rarity of AGN onset events), and M_\bullet is no longer limited to the range of $0.1-10 M_\odot$. Our analysis suggests that the BZ power is likely not adequate to interpret the data (because of the large emission power demanded by the small f_b factor) even for maximum spin ($a_* \sim 1$), unless the accretion rate is much higher, so that the total amount of fuel $M_\bullet \gg 1 M_\odot$. This is not impossible since the fuel in the AGN onset scenario is from a gas cloud near the BH, whose mass is not specified.

Krolik & Piran (2011) model for Sw J1644+57 invoking a white dwarf being tidally disrupted by a smaller BH ($M_\bullet \sim 10^5 M_\odot$). Regardless of how this model may interpret the δt_{min} and the apparent association of the source with the center of host galaxy, the derived a_* range also applies to their model for the M_\bullet range of a white dwarf since our constraint is M_\bullet-independent.

Finally, in our calculations we did not consider the evolution of a_* during the accretion phase. This is justified given the large M_\bullet/M_\odot ratio.

This work is supported by NSF under grant No. AST-0908362, by NASA under grant No. NNX10AD48G, by the National Natural Science Foundation of China under grants 11003004 and 10873005, and the National Basic Research Program (“973” Program) of China under grant No. 2009CB824800. W.-H.L. acknowledges a Fellowship from the China Scholarship Program for support.

REFERENCES

Bardeen, J. M., Press, W. H., & Teukolsky, S. A. 1972, ApJ, 178, 347
Barthelmy, S. D., Barbier, L. M., Cummings, J. R., et al. 2005, Space Sci. Rev., 120, 143
Blandford, R. D., & Znajek, R. L. 1977, MNRS, 179, 433
Bloom, J. S., Giannios, D., Metzger, B. D., et al. 2011, Science, 333, 203
Burrows, D. N., Hill, J. E., Nousek, J. A., et al. 2005, Space Sci. Rev., 120, 165
Burrows, D. N., Kennea, J. A., Ghisellini, G., et al. 2011, Nature, 476, 421
Cannizzo, J. K., Troja, E., & Lodato, G. 2011, ApJ, in press (arXiv:1105.2816)
Cenko, S. B., Krimm, H. A., Horesh, A., et al. 2011, ApJ, submitted (arXiv:1107.5307)
Cirasuolo, M., Celotti, A., Magliocchetti, M., & Danese, L. 2003, MNRS, 346, 447
Cummings, J. R., Barthelmy, S. D., Beardmore, A. P., et al. 2011, GCN Circ., 11823
Donley, J. L., Brandt, W. N., Eracleous, M., & Boller, T. 2002, AJ, 124, 1308
Drenkhahn, G., & Spruit, H. C. 2002, A&A, 391, 1141
Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005
Gezari, S., Heckman, T., Cenko, S. B., et al. 2009, ApJ, 698, 1367
Giannios, D., & Metzger, B. D. 2011, MNRS, in press (arXiv:1102.1429)
Kellerman, K. I., Stranek, R., Schmidt, M., Shaffer, D. B., & Green, R. 1989, AJ, 98, 1195
Kobayashi, S., Laguna, P., Phinney, E. S., & Mészáros, P. 2004, ApJ, 615, 855
Kraft, R. P., Burrows, D. N., & Nousek, J. A. 1991, ApJ, 374, 344
Krolik, J. H., & Piran, T. 2011, ApJ, in press (arXiv:1106.0923)
Lee, H. K., Wijers, R. A. M. J., & Brown, G. E. 2000, Phys. Rep., 325, 83
Levan, A., Tanvir, N. R., Cenko, S. B., et al. 2011, Science, 333, 199
Li, L.-X. 2000, Phys. Rev. D, 61, 084016
Lodato, G., & Rossi, E. M. 2011, MNRS, 410, 359
Lu, Y., Huang, Y. F., & Zhang, S. N. 2008, ApJ, 684, 1330
McKinney, J. C. 2005, ApJ, 630, L5
Page, D. N., & Thorn, K. S. 1974, ApJ, 191, 499
Shiao, L., Zhang, F. W., Fan, Y. Z., & Wei, D. M. 2011, ApJ, 734, L33
Strubbe, L. E., & Quataert, E. 2009, MNRS, 400, 2070
Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2011, MNRS, in press (arXiv:1108.0412)
Tundo, E., Bernardi, M., Hyde, J. B., Sheth, R. K., & Pizzella, A. 2007, ApJ, 663, 53
Vlahakis, N., & Konigl, A. 2004, ApJ, 605, 656
Wang, D. X., Xiao, K., & Lei, W. H. 2002, MNRS, 336, 655
Wang, J., & Merritt, D. 2004, ApJ, 600, 149
Zauderer, A., Berger, E., Soderberg, A. M., et al. 2011, Nature, 476, 425
Zhang, B., & Yan, H. 2011, ApJ, 726, 90