Effects of salinity and temperature on tuber sprouting and growth of *Schoenoplectus nipponicus*

HAORAN TANG,1,2 JIANGSHAN BAI,1,2 FANGYUAN CHEN,1,2 YING LIU,3 AND YANJING LOU1,†

1Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 China
2University of Chinese Academy of Sciences, Beijing 100049 China
3Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 China

Citation: Tang, H., J. Bai, F. Chen, Y. Liu, and Y. Lou. 2021. Effects of salinity and temperature on tuber sprouting and growth of *Schoenoplectus nipponicus*. Ecosphere 12(3):e03448. 10.1002/ecs2.3448

Abstract. In a scenario of climate change and intensive land-use change, the issue of salt marsh degradation caused by global warming and soil salinization is becoming more serious. A climate chamber experiment was conducted to examine the responses of tuber sprouting and seedling growth of *Schoenoplectus nipponicus* to variations in the temperature regimes (20/10, 25/15, 30/20 and 35/25°C; 12-h light/dark 12-h photoperiod) and different salt concentrations (0, 50, 75, and 100 mmol/L salinity). Results showed that the final sprouting percentage decreased with the increase in salinity and increased with the rising temperature. Salinity lower than 50 mmol/L was the most favorable for tuber sprouting. Under high salinity (75 and 100 mmol/L salinity), the inhibition of tuber sprouting at 20/10°C was greater than other temperature regimes. Along the temperature gradients, both plant height and leaf N content increased, and root length decreased under non-saline-alkali conditions, while plant height, leaf N content, and root length declined significantly under salt stress (50, 75, and 100 mmol/L salinity). With the increase in temperature, the production of tubers under the control treatments was enhanced significantly, but that under salt stress declined significantly. Under 0 mmol/L salinity, the accumulation of biomass in various organs increased with rising temperature. Biomass accumulation increased first and then declined for plants grown under salt stress, with a peak value of 25/15°C. Root: shoot ratio was reduced significantly under the combination of high salt stress (75 and 100 mmol/L salinity) and high temperatures (30/20°C and 35/25°C). Our study will contribute to a better understanding of the influence of climate warming and increasing serious human disturbances on this important wetland species.

Key words: biomass; bulbous sedge; climate warming; clonal reproduction; functional traits; propagation; salt marsh; soil salinization.

Received 2 September 2020; revised 1 December 2020; accepted 10 December 2020; final version received 22 January 2021. Corresponding Editor: Julie C. Zinnert.

Copyright: © 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
† E-mail: louyj@iga.ac.cn

INTRODUCTION

Climate change models indicate that extreme climatic events, such as salinization and temperature extremes, are likely to increase, not only in intensity but also in frequency (IPCC 2014). Salt marshes are among the most valuable ecosystems in the world, yet vulnerable to climate change and direct anthropogenic disturbance (Gedan et al. 2009, Kirwan and Mudd 2012). Salinity and temperature are two major abiotic stress factors affecting plant growth in inland salt marshes distributed in arid and semiarid regions (Stenstrom et al. 2002, Munns and
Tester 2008). So a better understanding of the effect of temperature and salinity on the growth of salt marsh plants is of great significance in predicting the distribution pattern of salt marsh vegetation and is beneficial to the protection and management of degraded salt marsh.

Clonal reproduction is the main propagation mode of wetland plants (Sosnova et al. 2010). Tuber propagation is one of the modes of clonal reproduction, and tuber sprouting is a critical stage in life history for the growth and distribution of tuber plants (Luo et al. 2018). Many studies have shown that tuber sprouting is markedly influenced by salinity and temperature (Seneca 1969, Luque et al. 2013, Gu et al. 2018, Fos et al. 2020). For instance, higher salinity can suppress the tuber sprouting, affect sprouting kinetics, delay, and slow down the sprouting process (Munoz-Rodriguez et al. 2017, Santo et al. 2017). Meanwhile, the temperature can influence factors such as membrane permeability and enzyme activity, thus affecting the sprouting process (Gul and Weber 1999, Lin et al. 2011). And tuber sprouting is more rapid and complete with alternating temperatures than with constant temperatures (Miles et al. 2017). More importantly, the synergy of the two factors may aggravate or mitigate the influence of a single factor on tuber sprouting, because many physiological processes that are essential for tuber sprouting are subject to complex interactions of salinity and temperature (Gulzar et al. 2001, Al-Khateeb 2006). Unfortunately, little research has been done in this field.

Following the sprouting process, seedling growth is the most significant phenological event that affects the distribution area (Forcella et al. 2000). More researches have focused on seedling growth compared with the sprouting stage. The influence of salinity on plant growth generally showed that seedling growth is inhibited with the increase in salinity, which is mainly manifested by the reduction in growth traits and biomass accumulation (Pompeiano et al. 2016, MacTavish and Cohen 2017). Meanwhile, the biomass accumulation and clonal reproductive capacity of salt marsh plants would increase with the rising temperature (Johnson and Thornley 1985, Cao and Ruan, 2015, Zhang et al. 2018). Higher temperature may also enlarge or reduce the influence of salinity on plant growth, but the relevant evidence is still insufficient. More importantly, the joint research on sprouting and growth will provide clearer evidence for our prediction of plant distribution, and the related researches need to be strengthened urgently.

Schoenoplectus nipponicus is a perennial helophyte with tuber propagation (Eunsang et al. 2000). It is mainly distributed in North Korea, Russian Far East, and Northeast China. Its tubers are the major food source for a critically endangered bird species—the Siberian white crane (Grus leucogeranus; Cui et al. 2018). The distribution area of _S. nipponicus_ in the Momoge National Nature Reserve has been gradually decreasing due to the impact of global climate change and human activities (Cui et al. 2018). However, the current research on _S. nipponicus_ focuses on the effects of water depth, salt-alkaline stress, and nitrogen addition on its growth (Gu et al. 2019, 2020, Tang et al. 2020). It is therefore still unclear how _S. nipponicus_ marshes respond to the interacting effects of temperature and salinity.

The present study aimed to investigate how tuber sprouting and seedling growth of _S. nipponicus_ respond to salinity and temperature changes. We tested the tuber sprouting and seedling growth of _S. nipponicus_ to different temperature and salinity treatment combinations under artificial climate chamber conditions to answer the following questions: (1) Do temperature changes result in changes in the effect of salinity on tuber sprouting of _S. nipponicus_? (2) Does rising temperature alleviate salt stress to the growth performance of _S. nipponicus_? (3) Does rising temperature promote the clonal reproductive traits of _S. nipponicus_, independently of the saline level? (4) Do salt stress and rising temperature change the biomass allocation pattern of _S. nipponicus_? We hypothesized that (1) changes in temperature will influence the response of tuber sprouting to salinity; (2) rising temperature will reduce the damage of salt stress on growth performance; (3) the high temperature will promote the production of ramets and tubers, and salinity and temperature have interactive effects on the clonal traits; (4) the high temperature will aggravate the adverse effects of salt stress on the root system and reduce the allocation to belowground biomass.
MATERIALS AND METHODS

Study area
The Momoge National Nature Reserve (45°42′-46°18′ N, 123°27′-124°4′ E) is located in the northern part of the Songliao settlement zone and the western margin of the Songnen Plain (Xu et al. 2017, Ban et al. 2019). This area belongs to the semi-arid temperate continental monsoon climate, with an average annual temperature of 4.2°C and annual precipitation of 393.8 mm, which is mainly concentrated in the summer from July to August (Liu and Fan 2013). The elevation ranges from 128 to 167.7 m above sea level, and the relative height is 2–10 m between flat terrain and depressions. It covers an area of 1440 km², of which the wetland covers nearly 80% (Xu et al. 2017). Additionally, it is a wetland of international importance, mainly since this area provides stopover habitat for the Siberian crane (Grus leucogeranus) and plays an important role in preventing the saline-alkaline desertification of the Songnen Plains (Yu et al. 2014, Jiang et al. 2015).

Experimental design
Tubers of S. nipponicus were collected from the 30 cm deep silt in the study area in March 2019 and stored in a ziplock bag at 4°C. Tubers of similar size were selected and sterilized by NaClO solution for 5 min, and subsequently washed with distilled water and weighted before being used in the experiments. To evaluate the interactive effects of salinity and temperature on tuber sprouting and seedling growth, four salinities (0, 50, 75, and 100 mmol/L) were used, of which 0 mmol/L was used as a control. The salt solution was composed of NaHCO₃ and NaCl in a mass ratio of 2 to 1. Four diurnal temperature regimes (20/10, 25/15, 30/20, and 35/25°C) were used according to the preliminary test. The higher temperatures (20, 25, 30, and 35°C) coincided with the 12-h photoperiod, and the lower temperatures coincided with the 12-h dark period in the climate chamber.

The cleaned tubers were sown into pots (specification length × width × height: 10 × 10 × 10 cm) containing 8 cm of river sand (autoclave the river sand before use). Each pot was sown with a tuber at the same burial depth and added 200 mL test solution. The pots were then placed in four climate chambers. Three replicates of six tubers each were used for each treatment. An appropriate amount of water was added every morning and evening to maintain constant salinity in the river sand. Tubers were considered to have sprouted with the emergence of the radicle. No sprouting of new tubers for seven consecutive days was considered as the end of the sprouting experiment. The sprouting percentage was recorded every day until the end of the experiment.

After the tuber sprouting experiment was completed, seedlings with basically the same growth (plant heights were similar) were selected from the seedlings under the corresponding temperature and salinity treatment, and transplanted into large pots (specification length × width × height: 18 × 18 × 25 cm). One plant was planted in each pot filled with river sand. We had 48 observations of S. nipponicus (4 temperature regimes × 4 salinities, replicated 3 times). Watering was kept daily to keep the surface of the river sand moist, and the control experiment was officially started one week later. The pots were placed into solution tanks filled with 1/2 concentration of Hoagland solution with different salinities, and all treatments are maintained at a water level of 0. The solution tanks were then placed into the climate chamber. There were four salinity levels and four temperature treatments repeated three times. The relative humidity was set to 45%, and the Hoagland solution was replaced once every seven days. The seedling growth experiment lasted a total of 75 d.

Measurements
After the harvest, the plant height (cm height on the main plant) and root length (cm average root length pet pot) were determined. Following the completion of the growth traits measurements, mid-leaf sections of other young, fully expanded leaves of each individual were collected for the analysis of leaf N and P content. The leaves were oven-dried in an oven at 65°C for 48 h. The mass of the dried leaf samples was measured prior to grinding them to a powder using a Pica Blender Mill (Cianflone Scientific Instruments, Pittsburgh, Pennsylvania, USA). A 10.0 ± 0.5 mg portion of each sample was
packaged for the analysis of N and P content performed by the SmartChem300 Discrete Chemistry Analyzer (AMS Alliance, Graz, Italy). Leaf N and P contents were reported on a percentage basis (milligram per gram). Finally, all plant samples were oven-dried at 65°C to constant weight for at least 48 h and weighted. We recorded the tuber number (per pot) that had formed by the end of the experiment and the ramet number (per pot), and measured the root biomass (g dry weight per pot), tuber biomass (g dry weight per pot), and aboveground biomass (g dry weight per pot).

Statistical analysis

A two-way ANOVA was used for each of the treatment combinations to test the effects of factors and their interaction (salinity temperature) on the sprouting and growth. In order to meet the assumptions of homoscedasticity, part of the data has been transformed. Untransformed data are presented in figures. The mean values were further separated using Duncan’s multiple range test (DMRT) for statistical significance levels ($P < 0.05$). All data were expressed as mean ± standard error (SE), and each mean value was calculated from three replicates.

Simple linear regression was then applied to estimate the relationship of growth traits and clonal traits at univariable level. Multiple linear regression was then applied to estimate the relationship of total biomass with functional traits. Variable selection for exploratory analyses was done by automatic backward stepwise procedure. The model assessment was done by checking the linearity assumptions, equal variance assumption, normality assumption, and outliers by using standardized residual plots. Variables with $P < 0.05$ were considered as statistically significant. The data were analyzed using SPSS 22.0 (SPSS, Chicago, Illinois, USA).

RESULTS

Tuber sprouting

Significant effects of salinity ($F = 11.119$, $P < 0.001$) and temperature ($F = 13.976$, $P < 0.001$) were found on the tuber sprouting of *S. nipponicus*, whereas the effect of their interaction on the sprouting percentage has not been observed ($F = 0.452$, $P = 0.895$). For any of the temperature regimes, the final sprouting percentage declined as the salinity concentration increased. There is no significant difference in the final sprouting percentage between 0 and 50 mmol/L salinity at high temperatures (30/20°C and 35/25°C; Fig. 1). For any of the salinity levels, the final sprouting percentage increased as the temperature rose. The highest final sprouting percentage (94.4 ± 9.6%) was found in the treatments with 0 and 50 mmol/L salinity at 35/25°C (Fig. 1). The time to sprouting started and reach the maximum sprouting at 35/25°C was earlier than other temperature regimes. At high salt concentrations (75 and 100 mmol/L salinity), the initial sprouting time was delayed, and the sprouting period was also prolonged (Fig. 2).

Growth traits

A two-way ANOVA indicated that growth traits were significantly affected by salinity, temperature, and their interaction (Table 1). Plant height and root length significantly decreased with increasing salinity from 0 to 100 mmol/L.
under all temperature treatments (Fig. 3a, b). Under 0 mmol/L salinity, plant height was enhanced and root length was reduced at 30/20°C and 35/25°C compared with temperatures of 20/10°C and 25/15°C. With the increase in temperature, the plant height and root length increased slightly and then decreased under the salt stress treatments (50, 75, 100 mmol/L salinity; Fig. 3a, b). Leaf N content significantly declined with the increase in salinity at moderate and high temperatures (25/15°C, 30/20°C, and 35/25°C; Fig. 3c). Similar to plant height, leaf N content was significantly enhanced as temperature increased under 0 mmol/L salinity. Leaf N content significantly declined with higher temperatures from 20/10°C to 35/25°C, with a peak value of 25/15°C (Fig. 3c).

Clonal traits

Clonal traits of *S. nipponicus* were significantly affected by salinity, temperature, and their interaction (Table 1). Ramet number diminished as the salinity increased at the same temperature (Fig. 4a). Under low salinity (0 and 50 mmol/L salinity), ramet number increased first and then declined with the increase in temperature, with a peak value of 25/15°C (Fig. 4a). At moderate and low temperature (20/10°C, 25/15°C and 30/20°C), the production of tubers was promoted in the lower saline treatment (50 mmol/L salinity) than in the control treatment (Fig. 4b, c). Tuber number and tuber biomass showed a significant enhancement with rising temperature under 0 mmol/L salinity. However, as the increased temperature, the tuber number and tuber biomass increased first and then decreased under the salt stress treatments (50, 75, 100 mmol/L salinity; Fig. 4b, c). Tuber average mass declined as the salinity increased at 20/10°C and 35/25°C, whereas there was no significant difference in that at 25/15°C and 30/20°C in the four salinity treatments (Fig. 4d). At the salinity of 0 mmol/L,
there was no significant difference in the tuber average mass at different temperatures. However, under high salt treatments (75 and 100 mmol/L salinity), tuber average mass at 20/10°C and 35/25°C was significantly lower than that at 25/15°C and 30/20°C (Fig. 4d).

Biomass accumulation and allocation

Significant effects of salinity, temperature, and their interactions were found on biomass accumulation and allocation of *S. nipponicus* (Table 1). Aboveground biomass, belowground biomass, and total biomass were significantly reduced as the increase in salt concentration at the same temperature (Fig. 5a, b, c). The accumulation of biomass in various organs was significantly enhanced with rising temperature under 0 mmol/L salinity. For plants grown under salt stress (50, 75 and 100 mmol/L salinity), biomass accumulation showed that increased first and then decreased, with a peak value of 25/15°C (Fig. 5a, b, c). The root: shoot ratio was significantly increased with increasing salinity from 50 to 100 mmol/L at 25/15°C and 30/20°C, whereas it declined with increasing salt stress at extreme temperatures (20/10°C and 35/25°C; Fig. 5d). Root: shoot ratio first increased and then declined with the increase in temperature under the salt stress treatments (50, 75, 100 mmol/L salinity; Fig. 5d).

Relationship among growth traits, clonal traits, and biomass

Five traits were chosen for simple linear regression analysis based on their statistical. Tuber number ($R^2 = 0.5209$, $P < 0.001$) and ramet number ($R^2 = 0.1616$, $P = 0.005$) were both significantly correlated with plant height, increasing with increasing plant height (Fig. 6a, b). Root length ($R^2 = 0.5182$, $P < 0.001$) and ramet number ($R^2 = 0.4621$, $P < 0.001$) were both significantly correlated with leaf N content, increasing with increasing leaf N content (Fig. 6c, d). Multiple linear regression analysis showed that for total biomass, only plant height and ramet number were included in the final model, with these variables explaining 70.6% and 17.8% of the variation in total biomass, respectively (Table 2).

DISCUSSION

Responses of tuber sprouting to salinity and temperature

Our experiments indicated that increasing salinity significantly reduced the tuber sprouting percentage and prolonged the sprouting period. Similar results have been reported by others (Levy et al. 1993, Sánchez-Bernal and Ortega-Escobar, 2011). That may be related to the result of the combined action of osmotic stress and ion

Table 1. Analysis of variance (ANOVA) indicating effects of temperature, salinity, and their interactions on functional traits of *S. nipponicus*.

Source of variance	Salinity F	Salinity P	Temperature F	Temperature P	Salinity × temperature F	Salinity × temperature P
Growth traits						
Plant height (cm)	567.298	<0.001***	125.197	<0.001***	62.074	<0.001***
Root length (cm)	120.747	<0.001***	186.089	<0.001***	5.299	<0.001***
Leaf N (mg/g)	351.370	<0.001***	252.798	<0.001***	83.626	<0.001***
Leaf P (mg/g)	77.967	<0.001***	40.840	<0.001***	42.951	<0.001***
Clonal traits						
Ramet number	150.750	<0.001***	150.750	<0.001***	11.583	<0.001***
Tuber number	19.447	<0.001***	64.730	<0.001***	25.535	<0.001***
Tuber biomass (g)	22.334	<0.001***	43.811	<0.001***	21.047	<0.001***
Average tuber mass (g)	4.344	0.011*	4.758	0.007**	3.006	0.010*
Biomass						
Aboveground biomass (g)	255.238	<0.001***	20.385	<0.001***	17.052	<0.001***
Belowground biomass (g)	379.382	<0.001***	145.792	<0.001***	33.758	<0.001***
Total biomass (g)	570.447	<0.001***	97.301	<0.001***	40.158	<0.001***
Root: shoot ratio	4.669	0.008**	38.371	<0.001***	11.357	<0.001***

Notes: The numbers in the table are F and P values. Data represent F values at 0.05 level. ***P < 0.001, **P < 0.01, *P < 0.05.
toxicity (Song et al. 2005), such as the penetration effect of Na$^+$ (Bajji et al. 2002). This behavior could also be because salinity lowers the osmotic potential of the soil and slows down the hydration of the propagules (Melendo and Giménez 2018). Compared with the non-saline treatments, the sprouting percentage decreased by 28.6% at 100 mmol/L salinity at 20/10°C, whereas this value dropped to 17.6% at 35/25°C. This shows that the elevation in temperature in the sprouting stage has a certain compensation effect on the negative effect of salt (Yue et al. 2019).

We also observed that elevated temperature promoted tuber sprouting. The highest sprouting percentage values for any of the salinity concentrations tested also occurred when the temperature regime was 35/25°C, and the greater the difference with respect to this temperature, the greater the decline in the sprouting percentage. Therefore, this is the optimal temperature for the tuber sprouting. Our results are in accordance with previous studies of tuber sprouting response to elevated temperature (Huang et al. 2019). This may be because the temperature can change the content of plant hormones and regulate the dormancy and sprouting of tubers (Liu et al. 2015). Simultaneously, the temperature can affect either the initial processes of water uptake

Fig. 3. The effect of salinity and temperature on plant height (a), root length (b), leaf N content (c), and leaf P content (d) of S. nipponicus. Different lowercase letters indicate significant differences between saline concentrations within each temperature ($P < 0.05$). Different capital letters indicate significant differences between temperature regimes within each saline concentration ($P < 0.05$). Error bars represent SE ($n = 3$).
or the following physiological–biochemical processes that induce cell division within the propagules (Kermode 1990).

Counter to predictions, the interaction between salinity and temperature on the tuber sprouting was not significant, but we think temperature still affects the response of tuber sprouting to salinity gradients to a certain extent. The unremarkable effects of interaction in our experiment may be related to the salt concentration gradients. In general, sprouting in halophytes occurs with a certain combination of light (photoperiod), salinity, and temperature (Gul et al. 2013). But different plants have different responses to the combination of temperature and salt stress.

Responses of growth performance to salinity and temperature

In the present study, *S. nipponicus* showed substantially lower plant height with increasing salinity. Similar results have also been demonstrated by other studies (Abdel Latef et al. 2016, Rodrigues et al. 2019). Moreover, the leaves of the plant began to turn yellow, wilt, and shedding at 100 mmol/L salinity, which maybe since that the plants shed old leaves to avoid salt toxicity, and cannot effectively accumulate nutrients (Mishra and Tanna 2017). Rising temperature increased plant height in our experiment in the absence of salt, which has been previously observed in other wetland pants (Anastácio et al.

Fig. 4. The effect of salinity and temperature on ramet number (a), tuber number (b), tuber biomass (c), and average tuber mass (d) of *S. nipponicus*. Different lowercase letters indicate significant differences between saline concentrations within each temperature (*P* < 0.05). Different capital letters indicate significant differences between temperature regimes within each saline concentration (*P* < 0.05). Error bars represent SE (*n* = 3).
Higher temperature causes increased photosynthesis in plant leaves, which in turn led to increased plant height (Yamori et al. 2005). Plant height of this species generally decreased in a concentration-dependent manner with increasing salinity at 25/15°C and above; however, when the temperature was below 25/15°C, this decrease was concentration-independent, with all the salt-treated seedlings exhibiting decreases in a similar magnitude, regardless of salt concentration. It seems that the positive effects of temperature are able to partially compensate for the negative effects of salinity.

Results obtained from statistical analyses in this study demonstrated that higher salinity led to lower leaf N and P content at higher temperatures. Similar results have been reported by others (Garcia-Caparros et al. 2017). This may be related to the higher salinity resulted in a negative value for net uptake and translocation rates from roots to shoots of N and P. For P, the reduction may be the result of the activity of antagonism between ions, such as Cl-, which can reduce the activity of phosphate transporters (of both high and low affinity), which are necessary for the uptake of P (Kochian 2000). As the temperature increases, increasing the salinity significantly reduced the...
nitrilotriacetic acid, but also potentially complex or novel interactions. The role of salinity on the chemical composition of S. nipponicus seedlings is not well understood. Previous studies have indicated that high salinity levels decrease root length, rhizosphere bacterial communities, and activity of plant peroxidase (Marius Assaha et al. 2015). When the temperature is lower than 25/15°C, the salinity has a significant effect on the root length, which is consistent with the findings of related researchers using Lupinus termis (Abdel Latef et al. 2016). The plant root systems can respond to sodium chloride toxicity by changing structure, such as reducing root length (Mahajan and Tuteja 2005). Previous studies have shown that cell-wall peroxidase activity and H2O2 levels increased by sodium salt stress, while exogenous H2O2 and peroxidase inhibited plant root growth (Marius Assaha et al. 2015).

Fig. 6. Relationships between aboveground traits and belowground traits of S. nipponicus seedling. (a) tuber number vs. plant height; (b) ramet number vs. plant height; (c) root length vs. leaf N content; (d) ramet number vs. leaf N content. Solid lines are fit by an equation with \(P < 0.05 \).

Table 2. Summary of multiple linear regression model of total biomass with functional traits.

Factor	df	MS	SS%	\(F \)	\(P \)
Plant height	1	64.900	70.6%	273.539	<0.001
Ramet number	1	16.368	17.8%	68.989	<0.001
Residuals	45	0.237	11.6%		

Note: df, degrees of freedom; MS, mean squares; SS, proportion of variances explained by the variable.

nitrogen and phosphorus content of the leaves. This may be due to the increased adverse effects of salinity on plants after rising temperature (Wittyngham et al. 2019). The belowground traits of the plant will be more sensitive to salt stress than the aboveground traits (Croser et al. 2001), and our results also confirm this view. With increasing salinity level, root length of S. nipponicus decreased significantly, which is consistent with the findings of related researchers using Lupinus termis (Abdel Latef et al. 2016). The plant root systems can respond to sodium chloride toxicity by changing structure, such as reducing root length (Mahajan and Tuteja 2005). Previous studies have shown that cell-wall peroxidase activity and H2O2 levels increased by sodium salt stress, while exogenous H2O2 and peroxidase inhibited plant root growth (Marius Assaha et al. 2015). When the temperature is lower than 25/15°C, the salinity has a significant effect on the root length,
and the temperature has little effect on it. However, root length generally decreased with increasing temperature at 25/15°C and above, and this decrease more significantly at high salt. Similar observations were made by Lopes et al. (2015) in Montrichardia arborescens. At the high saline treatments, the imbalance of ions around the plant roots reduces the effective absorption of external nutrients, inhibits the outward expansion of the root system, and higher temperature expands this adverse effect (Thompson et al. 2007).

Responses of clonal reproductive traits to salinity and temperature

It was found in this study that high saline treatments significantly reduced the ramet number, tuber number, tuber biomass, and tuber average mass of S. nipponicus. Similar to our results, Dias et al. (2016) observed that Helianthus tuberosus, L. grown in salt absence had better tuber yield, and Ding et al. (2011) also found that salt stress would significantly reduce ramet number of Aeluropus sinensis. Zhang et al. (2020) also found that high saline treatments inhibit the asexual reproduction of Scirpus mariqueter. Tillering capacity of S. nipponicus was significantly inhibited with the increase of salt concentration, which was beneficial to reducing the ion accumulation and alleviated saline injures in plants. Compared with 0 mmol/L saline treatment, the tuber number increased significantly under low salt condition (50 mmol/L salinity) except for 35/25°C. On the one hand, the tuber can store a large amount of salt ions to reduce the injures caused by salt stress to other organs of the plant (Mauchamp and Mésleard 2001). On the other hand, the transfer of plant matter is mainly from top to bottom under salt stress, and the aerial part is mainly a place to obtain resources.

In the present study, the ramet number was increased at 25/15°C and then diminished with the temperature rose in non-saline conditions. Similar to our results, an appropriate increase in temperature will increase the ramet number of submerged macrophyte Vallisneria natans (Cao and Ruan 2015). For one thing, temperature elevation can increase the activity of photosynthetic, enzymes, and carbonic anhydrase, which likely caused the increases in ramet number in our experiment (Olesen and Madsen 2000). For another thing, excessive elevated temperature caused a highly significant decrease in the abscisic content and an increase in the gibberellic acid hormones, which led to a decrease in tillering capacity (Morales-Coronado et al. 2019). Moreover, higher temperatures significantly reduced the clonal reproductive traits under salt stress. This may be caused by the combination of the negative effects of high temperature and salt stress.

Responses of biomass accumulation and allocation to salinity and temperature

Our statistical results displayed that total biomass and aboveground biomass were reduced with increasing salinity levels. A similar conclusion has been reached for the study of the wetland plants Beckmannia syzigachne, Comarum palustre L., Myosotis scorpioides L., and Polygonum maritimum L. (Stoffberg et al. 2015, Glaeser et al. 2016, Rodrigues et al. 2019). Excessive salinity may hinder the normal metabolism of plant leaves through osmotic stress and ion poisoning, or by affecting the synthesis of chlorophyll, gas exchange, and stomatal conductance, thereby inhibiting the synthesis and accumulation of plant organic matter (Li et al. 2010, Xue et al. 2017). The results of this experiment showed that belowground biomass decreased significantly with increasing salinity when compared with the salt-free treatments. Our results are consistent with previous studies of root response to salt stress in Spartina alterniflora and Paspalum paludosum (MacTavish and Cohen 2017, Xing et al. 2019). Our study also found that the biomass accumulation reached the maximum at 25/15°C under salt stress, and the greater the difference with respect to this temperature, the greater the decline in the biomass accumulation. That may be owing to the fact that low or high temperature will reduce stomatal conductance, enzyme activity, and electron transport under stress, which in turn cause lower photosynthetic rate, which will inhibit the growth of plants (Ge et al. 2014).

The plasticity response of the biomass allocation pattern is one of the important adaptation strategies of wetland plants in response to environmental changes (Wright and McConnaughay 2002). In this study, with the increased salinity, there was a trend toward lower root: shoot ratio at the highest temperature (35/25°C). Similar to
our result, salinity shifts from 5 to 20 parts per thousand considerably diminished root: shoot ratio of Myriophyllum spicatum L. and Ruppia maritima L. (Hillmann and La Peyre 2019). This may be related to the fact that individuals from high salinity treatments had less fine roots, and the remaining roots had a brown discoloration (Stoeborg et al. 2015). Moreover, high temperature aggravated the damage of salt stress to the root system. Therefore, roots system may be more seriously damaged by high salinities than aboveground tissue.

Association among growth traits, clonal traits, and biomass

Plant height and leaf N content were significantly positively correlated with the clonal reproductive traits in our study by *S. nipponicus*. These showed that there is a very strong synergy between growth traits and clonal reproduction traits. Gaudet and Keddy (1988) believe that dominance and competitive ability among plants can be enhanced by certain traits such as individual plant biomass and height. Our results showed that both plant height and ramet number had positive effects on the total biomass. Similar results have also been found for saltmarsh plants, where canopy height exerted a positive influence on aboveground production (Minden and Kleyer 2015). This is mainly because plant height has a strong influence on light capture ability, and taller plants have high nutrient acquisition potential (Gustafsson et al. 2018). For wetland plants, clonal reproduction ability is an essential manifestation of their dominance and competitive ability. Clonal traits are closely related to the resource utilization, survival, and reproduction of clonal plants, and ramet traits determine the capacity of the plant to utilize photosynthetic products (Li et al. 2020).

Conclusions

The present study indicated that *S. nipponicus* is quite sensitive to changes in salinity. Salinity lower than 50 mmol/L is the most favorable for tuber sprouting, and increasing temperature can reduce the inhibitory effect of salt stress on tuber sprouting. However, high temperatures (30/20°C and 35/25°C) aggravate the adverse effects of salt stress on growth, reproduction, and biomass accumulation. This study provides baseline information on salt tolerance of *S. nipponicus* at different temperatures. Future studies will be conducted to discuss the effects of fluctuations of salt concentration and varying diel temperature ranges on the sprouting and growth of *S. nipponicus*.

Acknowledgments

This study was supported by the National Key Research and Development Project of China (No. 2016YFC0500403), the National Natural Science Foundation of China (No. 41671109 and U19A2042), and the Natural Science Foundation of Jilin Province, China (No. 20190201281JC).

Literature Cited

Abdel Latef, A. A. H., M. F. Abu Alhmad, and K. E. Abdelfattah. 2016. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in Lupine (*Lupinus termis*) plants. Journal of Plant Growth Regulation 36:60–70.

Al-Khateeb, S. A. 2006. Effect of salinity and temperature on germination, growth and ion relations of *Panicum turgidum* Forssk. Bioresource Technology 97:292–298.

Anastácio, P. M., B. Marques, and A. I. Lillebø. 2013. Modeling the effect of temperature, solar radiation and salinity on *Bolboschoenus maritimus* sequestration of mercury. Ecological Modelling 256:31–42.

Bajji, M., J. M. Kinet, and S. Lutts. 2002. Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of *Atriplex halimus* (Chenopodiaceae). Canadian Journal of Botany-Revue Canadienne De Botanique 80:297–304.

Ban, K., J. Liu, B. Meng, and B. Sun. 2019. The effects of hydrological conditions on eco-exergy of food webs in Momoge National Nature Reserve, China. Wetlands 39:601–617.

Cao, J., and H. Ruan. 2015. Responses of the submerged macrophyte *Vallisneria natans* to elevated CO2 and temperature. Aquatic Biology 23:119–127.

Croser, C., S. Renault, J. Franklin, and J. Zwiazek. 2001. The effect of salinity on the emergence and seedling growth of *Picea mariana*, *Picea glauca*, and *Pinus banksiana*. Environmental Pollution 115:9–16.

Cui, Z., G. Zhang, L. Zhang, and Y. Wu. 2018. Eco-hydrological regulations based on requirement of *Gras leiwoogranus* habitat - a case of Baihe Lake in Momoge National Nature Reserve. Wetland Science 16:509–516 [in Chinese.]

Dias, N. S., J. F. S. Ferreira, X. Liu, and D. L. Suarez. 2016. Jerusalem artichoke (*Helianthus tuberosus*, L.)
maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters. Industrial Crops and Products 94:1009–1024.

Ding, W., J. Liu, D. Wu, Y. Wang, C. Chang, and R. Wang. 2011. Salinity stress modulates habitat selection in the clonal plant *Aeluropus sinensis* subjected to crude oil deposition. The Journal of the Torrey Botanical Society 138:262–271.

Eunsang, L., P. JaeEub, and Y. ChangYeon. 2000. Ecological characteristics of *Scirpus nipponicus* MAKINO. Korean Journal of Weed Science 14:103–107.

Forcella, F., R. L. B. Arnold, R. Sanchez, and C. M. Ghersa. 2000. Modeling seedling emergence. Field Crops Research 67:123–139.

Fos, M., L. Alfonso, P. P. Ferrer-Gallego, and E. Laguna. 2020. Effect of salinity, temperature and hypersaline conditions on the germination in *Limonium manzanetianum* an endemic and threatened Mediterranean species. Plant Biosystems 155:165–171.

Garcia-Caparros, P., A. Llanderal, M. Pestana, P. Jose Correia, and M. Teresa Lao. 2017. Nutritional and physiological responses of the dicotyledonous halophyte *Sarcocornia fruticosa* to salinity. Australian Journal of Botany 65:573–581.

Gaudet, C. L., and P. A. Keddy. 1988. A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243.

Ge, Z. M., L. Q. Zhang, L. Yuan, and C. Zhang. 2014. Effects of salinity on temperature-dependent photosynthetic parameters of a native C₃ and a non-native C₄ marsh grass in the Yangtze Estuary, China. Photosynthetica 52:484–492.

Gedan, K. B., B. R. Silliman, and M. D. Bertness. 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1:117–141.

Glaeser, L. C., D. H. Vitt, and S. Ebbs. 2016. Responses of the wetland grass, *Beckmannia syzigachne*, to salinity and soil wetness: consequences for wetland reclamation in the oil sands area of Alberta, Canada. Ecological Engineering 86:24–30.

Gu, R., Y. Zhou, X. Song, S. Xu, X. Zhang, H. Lin, S. Xu, and S. Zhu. 2018. Effects of temperature and salinity on *Ruppia sinensis* seed germination, seedling establishment, and seedling growth. Marine Pollution Bulletin 134:177–185.

Gu, Y., F. Chen, J. Bai, Y. Lou, and Z. Tang. 2020. Effects of salt-alkaline stress on functional traits of *Scirpus nipponicus* seedlings. Chinese Journal of Applied and Environmental Biology 26:10–16 [in Chinese.]

Gu, Y., Y. Pan, F. Chen, Y. Lou, and Z. Tang. 2019. Effects of water level and nitrogen concentration on growth and biomass allocation of *Scirpus nipponicus* seedlings. Chinese Journal of Ecology 38:2302–2309 [in Chinese.]

Gul, B., R. Ansari, T. J. Flowers, and M. A. Khan. 2013. Germination strategies of halophyte seeds under salinity. Environmental and Experimental Botany 92:4–18.

Gul, B., and D. J. Weber. 1999. Effect of salinity, light, and temperature on germination in *Allenrolfea occidentalis*. Canadian Journal of Botany-Revue Canadienne De Botanique 77:240–246.

Gulzar, S., M. A. Khan, and I. A. Ungar. 2001. Effect of salinity and temperature on the germination of *Urochondra setulosa* (Trin.) CE Hubbard. Seed Science and Technology 29:21–29.

Gustafsson, C., A. Norkko, and A. Austin. 2018. Quantifying the importance of functional traits for primary production in aquatic plant communities. Journal of Ecology 107:154–166.

Hillmann, E. R., and M. K. La Peyre. 2019. Effects of salinity and light on growth and interspecific interactions between *Myriophyllum spicatum* L. and *Ruppia maritima* L. Aquatic Botany 155:25–31.

Huang, T., M. Mei, X. Shen, H. Qu, Y. Yang, Z. Yang, L. Yu, and X. Wang. 2019. Effects of germination temperature on sprouting of seed tuber, plant growing and tuber size distribution of purple potato. Southwest China Journal of Agricultural Sciences 32:2752–2757 [in Chinese.]

IPCC. 2014. Climate change 2014: synthesis report. In Core Writing Team, R. K. Pachauri, and L. A. Meyer, editors. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.

Jiang, H., C. Liu, X. Sun, J. Lu, C. Zou, Y. Hou, and X. Lu. 2015. Remote sensing reversion of water depths and water management for the stopover site of Siberian Cranes at Momoge, China. Wetlands 35:369–379.

Johnson, I. R., and J. H. M. Thornley. 1985. Temperature dependence of plant and crop processes. Annals of Botany 55:1–24.

Kermode, A. R. 1990. Regulatory mechanisms involved in the transition from seed development to germination. Critical Reviews in Plant Sciences 9:155–195.

Kirwan, M. L., and S. M. Mudd. 2012. Response of salt-marsh carbon accumulation to climate change. Nature 489:350–353.

Kochian, L. V. 2000. Molecular physiology of mineral nutrient acquisition, transport and utilization. Pages 1204–1249 in *Biochemistry and molecular biology of plants.* B. B. Buchan, W. Gruissen, and R. L. Jones, editors. American Society of Plant Physiology, Rockville, Maryland, USA.
Levy, D., E. Fogelman, and Y. Yitzhak. 1993. Influence of water and soil salinity on emergence and early development of potato (*Solanum tuberosum* L.) cultivars and effect of physiological age of seed tubers. Potato Research 36:335–340.

Li, R., F. Shi, K. Fukuda, and Y. Yang. 2010. Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (*Medicago sativa* L.). Soil Science and Plant Nutrition 56:725–733.

Li, X., C. Zhao, Y. Ren, J. Zhang, and L. Lei. 2020. The relationship between spacer characteristics and branching intensity of *Potentilla supina* during the restorative succession periods in a marsh wetland. Acta Ecologica Sinica 40:123–129 [in Chinese.]

Lin, J., J. Wang, X. Li, Y. Zhang, Q. Xu, and C. Mu. 2011. Effects of saline and alkaline stresses in varying temperature regimes on seed germination of *Leymus chinensis* from the Songnen Grassland of China. Grass and Forage Science 66:578–584.

Liu, Q., and Y. Fan. 2013. Preliminary report on the Phytoplankton of Momoge wetland in spring. Natural Sciences Journal of Harbin Normal University 31:128–131 [in Chinese.]

Liu, Y., C. Li, D. Wang, G. Xu, Y. Wang, L. Cheng, J. Zhang, D. Wang, and F. Zhang. 2015. Correlation among endogenous hormone content, threshold and dormancy periods in processing potato varieties minitubers during storage. Scientia Agricultura Sinica 48:262–269 [in Chinese.]

Lopes, A., A. B. Ferreira, P. O. Pantoja, P. Parolin, and M. T. F. Piedade. 2015. Combined effect of elevated CO₂ level and temperature on germination and initial growth of *Montrichardia arborescens* (L.) Schott (Araceae): a microcosm experiment. Hydrobiologia 814:19–30.

Luo, R., X. Y. Song, Z. W. Li, A. Q. Zhang, X. F. Yan, and Q. Y. Pang. 2018. Effect of soil salinity on fructan content and polymerization degree in the sprouting tubers of Jerusalem artichoke (*Helianthus tuberosus* L.). Plant Physiology and Biochemistry 125:27–34.

Luque, E. G., I. C. D. Fernandez, and F. G. Mercado. 2013. Effect of salinity and temperature on seed germination in *Limonium cossonianum*. Botany–Botanique 91:12–16.

MacTavish, R. M., and R. A. Cohen. 2017. Water column ammonium concentration and salinity influence nitrogen uptake and growth of *Spartina alterniflora*. Journal of Experimental Marine Biology and Ecology 488:52–59.

Mahajan, S., and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444:139–158.

Marius Assaha, D. V., L. Liu, A. M. M. Mekawy, A. Ueda, T. Nagao, and H. Saneoka. 2015. Effect of salt stress on Na accumulation, antioxidant enzyme activities and activity of cell wall peroxidase of huckleberry (*Solanum scabrum*) and eggplant (*Solanum melongena*). International Journal of Agriculture and Biology 17:1149–1156.

Mauchamp, A., and F. Mesleard. 2001. Salt tolerance in *Phragmites australis* populations from coastal Mediterranean marshes. Aquatic Botany 70:39–52.

Melendo, M., and E. Giménez. 2018. Seed germination responses to salinity and temperature in *Limonium supinum* (Plumbaginaceae), an endemic halophyte from Iberian Peninsula. Plant Biosystems 153:257–263.

Miles, J. E., R. K. Nishimoto, and O. Kawabata. 2017. Diurnally alternating temperatures stimulate sprouting of purple nutsedge (*Cyperus rotundus*) tubers. Weed Science 44:122–125.

Minden, V., and M. Kleyer. 2015. Ecosystem multifunctionality of coastal marshes is determined by key plant traits. Journal of Vegetation Science 26:651–662.

Mishra, A., and B. Tanna. 2017. Halophytes: potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science 8:829.

Moura, D., L. Argentel-Martinez, L. Castro-Espinoza, M. Gutierrez-Coronado, J. Garibaldi-Chavez, and J. Ortiz-Enriquez. 2019. Global warming is reducing the tillering capacity and grain yield of wheat in Yaqui Valley, Mexico. Agronómica Colombiana 37:90–96.

Muens, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651–681.

Munoz-Rodriguez, A. F., I. Sanjose, B. Marquez-Garcia, M. D. Infante-Izquierdo, A. Polo-Avila, F. J. Nieva, and J. M. Castillo. 2017. Germination syndromes in response to salinity of Chenopodiaceae halophytes along the intertidal gradient. Aquatic Botany 139:48–56.

Olesen, B., and T. V. Madsen. 2000. Growth and physiological acclimation to temperature and inorganic carbon availability by two submerged aquatic macrophyte species, *Callitriche cophocarpa* and *Elodea canadensis*. Functional Ecology 14:252–260.

Pompeiano, A., E. Di Patrizio, M. Volterrani, A. Scarzazz, and L. Guglielminetti. 2016. Growth responses and physiological traits of seashore paspalum subjected to short-term salinity stress and recovery. Agricultural Water Management 163:57–65.

Rodrigues, M. J., I. Monteiro, C. Placines, V. Castaneda-Loaiza, S. Slusarczyk, A. Matkowski, C. Pereira, P. Pousão-Ferreira, and L. Custódio. 2019.
The irrigation salinity and harvesting affect the growth, chemical profile and biological activities of Polygonum maritimum L. Industrial Crops and Products 139:104357.

Sanchéz-Bernal, E., and M. Ortega-Escobar. 2011. Emergence of potato tuber sprouts in salinity conditions. Terra Latinoamericana 29:153–160.

Santo, A., E. Mattana, L. Frigau, A. M. Pastor, M. C. P. Seneca, E. D. 1969. Germination response to temperature, chemical pro...

Song, J., G. Feng, C. Tian, and F. Zhang. 2005. Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage. Annals of Botany 96:399–405.

Sosnova, M., R. van Diggelen, and J. Klimesova. 2010. Distribution of clonal growth forms in wetlands. Aquatic Botany 92:33–39.

Stenstrom, A., I. S. Jonsdottir, and M. Augner. 2002. Genetic and environmental effects on morphology in clonal sedges in the Eurasian Arctic. American Journal of Botany 89:1410–1421.

Stofberg, S. F., A. Klimkowska, M. P. C. P. Paulissen, J.-P.-M. Witte, and S. E. A. T. M. van der Zee. 2015. Effects of salinity on growth of plant species from terrestrializing fens. Aquatic Botany 121:83–90.

Tang, X., Y. Liu, and Z. Ding. 2020. Optimizing water depth of Scirpus nipponicus wetland under saline-alkali stress involves digging bulbs of Scirpus nipponicus and saving for protection from light and moisture, and complete bulbs are selected, and rinsed. Univ Southwest (Uysw-C), Chongqing, China.

Thompson, D. I., T. J. Edwards, and J. Van Staden. 2007. A novel dual-phase culture medium promotes germination and seedling establishment from immature embryos in South African Disa (Orchidaceae) species. Plant Growth Regulation 53:163–171.

Velthuis, M., E. van Deelen, E. van Donk, P. Zhang, and E. S. Bakker. 2017. Impact of temperature and nutrients on carbon: nutrient tissue stoichiometry of submerged aquatic plants: an experiment and meta-analysis. Frontiers in Plant Science 8:655.

Wittyngham, S. S., J. Moderan, and K. E. Boyer. 2019. Temperature and salinity effects on submerged aquatic vegetation traits and susceptibility to grazing. Aquatic Botany 158:103119.

Wright, S. D., and K. D. M. McConnaughay. 2002. Interpreting phenotypic plasticity: the importance of ontogeny. Plant Species Biology 17:119–131.

Xing, Y.-P., G.-W. Wei, F.-L. Luo, C.-Y. Li, B.-C. Dong, J.-S. Ji, and F.-H. Yu. 2019. Effects of salinity and clonal integration on the amphibious plant Paspalum paspaloide: growth, photosynthesis and tissue ion regulation. Journal of Plant Ecology 12:45–55.

Xu, J., H. Wang, L. Sheng, X. Liu, and X. Zheng. 2017. Distribution characteristics and risk assessment of polycyclic aromatic hydrocarbons in the Momoge Wetland, China. International Journal of Environmental Research and Public Health 14:85.

Xue, L., X. Li, Z. Yan, Q. Zhang, W. Ding, X. Huang, B. Tian, Z. Ge, and Q. Yin. 2017. Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion. Hydrobiologia 806:47–65.

Yamori, W., K. Noguchi, and I. Terashima. 2005. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment 28:536–547.

Yu, X., M. Grace, Y. Zou, X. Yu, X. Lu, and G. Wang. 2014. Surface sediments in the marsh-sandy land transitional area: sandification in the western Songnen Plain, China. PLOS ONE 9:e99715.

Yue, S., Y. Zhou, Y. Zhang, S. Xu, R. Gu, S. Xu, X. Zhang, and P. Zhao. 2019. Effects of salinity and temperature on seed germination and seedling establishment in the endangered seagrass Zostera japonica Asch. & Graebn. in northern China. Marine Pollution Bulletin 146:848–856.

Zhang, C., S. Kelломäki, J. Gong, K. Wang, Z. Ge, X. Zhou, and H. Strandman. 2013. Impacts of elevated temperature and CO2 with varying groundwater levels on seasonality of height and biomass growth of a boreal bioenergycrop (Phalaris arundinacea) - a modeling study. Botany-Botanique 91:260–272.

Zhang, P., B. M. C. Rutters, C. H. A. van Leeuwen, J. Xu, A. Petruzzella, R. F. van den Berg, and E. S. Bakker. 2018. Effects of rising temperature on the growth, stoichiometry, and palatability of aquatic plants. Frontiers in Plant Science 9:1947.

Zhang, Q., S. Y. Qiu, Y. Zhu, X. H. Cui, Q. He, and B. Li. 2020. Propagule types and environmental stresses matter in saltmarsh plant restoration. Ecological Engineering 143:105693.