Structural and functional diversity calls for a new classification of ABC transporters

Christoph Thomas1, Stephen G. Aller2, Konstantinos Beis3,4, Elisabeth P. Carpenter5, Geoffrey Chang6, Lei Chen7,8, Elie Dassa9, Michael Dean10, Franck Duong Van Hoa11, Damian Ekiert12, Robert Ford13, Rachelle Gaudet14, Xin Gong15, I. Barry Holland16, Yihua Huang17, Daniel K. Kahne18, Hiroaki Kato19, Vassilis Koronakis20, Christopher M. Koth21, Youngsook Lee22, Oded Lewinson23, Roland Lill24, Enrico Martinoia25,26, Satoshi Murakami27, Heather W. Pinkett28, Bert Poolman29, Daniel Rosenbaum30, Balazs Sarkadi31, Lutz Schmitt32, Erwin Schneider33, Yi-Gong Shi34, Show-Ling Shyng35, Dirk J. Slotboom29, Emad Tajkhorshid36, D. Peter Tieleman37, Kazumitsu Ueda38, András Váradi39, Po-Chao Wen40, Nieng Yan39, Peng Zhang40, Hongjin Zheng41, Jochen Zimmer42 and Robert Tamp1

1 Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Germany
2 Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL, USA
3 Department of Life Sciences, Imperial College London, London South Kensington, UK
4 Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
5 Structural Genomics Consortium, University of Oxford, UK
6 Skaggs School of Pharmacy and Pharmaceutical Sciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
7 State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
8 Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
9 Institut Pasteur, Paris Cedex 15, France
10 Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
11 Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
12 Department of Cell Biology and Department of Microbiology, New York University School of Medicine, NY, USA
13 Faculty of Biology, Medicine and Health, The University of Manchester, UK
14 Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
15 Department of Biology, Southern University of Science and Technology, Shenzhen, China
16 Institute for Integrative Biology of the Cell (I2BC), Université Paris-Sud, Orsay, France
17 National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
18 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
19 Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Japan
20 Department of Pathology, University of Cambridge, UK
21 Structural Biology, Génentech Inc., South San Francisco, CA, USA
22 Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Korea
23 Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
24 Institut für Zytobiologie, Philipps-Universität Marburg, Germany
25 Department of Plant and Microbial Biology, University Zurich, Switzerland
26 International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
27 Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
28 Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
29 Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
30 Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
31 Institute of Enzymology, Research Center for Natural Sciences (RCNS), Budapest, Hungary
32 Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
33 Department of Biology/Microbial Physiology, Humboldt-University of Berlin, Germany
34 Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, China
35 Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA

Abbreviations

ABC, ATP-binding cassette; cryo-EM, cryogenic electron microscopy; NBD, nucleotide-binding domain; TMD, transmembrane domain.
Members of the ATP-binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP-binding cassette in the nucleotide-binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs.

Keywords: ABC transporters; ATPases; cryo-EM; membrane proteins; molecular machines; phylogeny; primary active transporters; sequence alignment; structural biology; X-ray crystallography

We suggest a new classification of the ABC transporter superfamily that is based on the TMD fold. Historically, first hints of the ABC protein superfamily came from sequence alignments of bacterial proteins that revealed highly conserved motifs in their ATPase domains [1]. The superfamily of ABC proteins was subsequently divided into three main classes [2–4]: exporters, nontransporter ABC proteins, and a third class consisting primarily of importers. The mammalian ABC systems, in particular, were grouped into seven subfamilies (ABCA to ABCG), based on NBD and TMD sequence homology, gene structure, and domain order [5–7]. It should be noted that ABCE and ABCF are not transporters, but exist as twin-NBDs without TMDs and are involved in mRNA translation control [8]. Detailed membrane topology and sequence analyses of exporters uncovered that, in contrast to the NBDs, the TMDs are polyphyletic and can serve as references to categorize ABC transporters into three distinct types (ABC1-3) [9,10]. According to this classification, the cystic fibrosis transmembrane conductance regulator (CFTR), the transporter associated with antigen processing (TAP), and the drug efflux pump P-glycoprotein (P-gp) belong to the ABC1 transporters; ABCG2 and ABCG5/G8 are members of the ABC2 group, which also comprises importers; and the macrolide translocator MacB is categorized as an ABC3 system. Yet, another classification scheme currently in use differentiates between the three types of importers predominantly found in prokaryotes [11–14] and two types of exporters, exemplified by Sav1866 [15] and ABCG5/8 [16], in addition to the LptB2FG-type [17,18] and MacB-type [19–22] transporters.

Our motivation for proposing a revised nomenclature stems from the recent wealth of ABC transporter structures determined by X-ray crystallography and single-particle cryo-electron microscopy, which has unveiled a remarkable diversity of TMD folds and evolutionary relationships between bacterial and eukaryotic/mammalian transporters [16–21,23–26]. This affluence of structural information provides the opportunity to introduce a universal nomenclature that
combines previous phylogenetic analyses with the new findings coming from high-resolution structures. The nomenclature groups ABC transporters into distinct types, I–VII, based on their TMD fold (Fig. 1, Tables 1 and 2). This classification is supported by quantitative analyses using TM-scores based on pairwise structural alignment of TMDs (Tables S1–S6, Fig. S1). The classification focuses on the transporter-forming TMDs and does not consider additional membrane-integrated domains, as for example observed in TAP1/TAP2 [27,28].

As before, types I–III of the new nomenclature cover the three different importer architectures (Fig. 1, Table 1, Tables S2 and S3; TM-score for pairwise structural alignment between the type III systems CbiQ (PDB code 5X3X) and EcT from Lactobacillus brevis (PDB code 4HUQ): 0.736). It is noteworthy that prokaryotic importers typically operate with periplasmic, extracellular, or membrane-embedded substrate-binding proteins whose structural features correlate with the type of TMD fold [29].

Based on the characteristic structure of the founding member Sav1866, which includes a domain-swapped TMD arrangement, type IV members of the new nomenclature have previously been classified as type I ABC exporters [15]. However, a significant and growing number of these ABC proteins have nonexporter functions, i.e., the gated chloride channel CFTR, the regulatory KATP channel modules SUR1/2, the lysosomal cobalamin (vitamin B12) transporter ABCD4 [30], the bacterial siderophile importers YbtPQ and IrtAB, and the cobalamin/antimicrobial peptide importer Rv1819c [31–33], as well as several type IV systems with importer functions in plants [34–39]. This striking functional diversity mediated by the same structural framework (Fig. 1, Tables 1 and 2, Tables S4 and S5) makes the type IV ABC transporters stand out and is also the main reason why we suggest the more universal architecture can be universally applied to ABC transporters beyond their particular physiological functions and across the three domains of life. Hence, it allows any newly discovered transporter fold to be compared with the existing types and seamlessly incorporated into the classification scheme, possibly as a new type. Since the new nomenclature depends on TMD architecture, it requires structural information in order to classify new transporter systems. At the same time, we regard the nomenclature as a dynamic platform that can be upgraded, adjusted, or refined whenever necessary due to novel insights that add extra dimensions to our understanding of ABC systems.

The recent advances in structural mapping of the diverse superfamily of ABC transporters have revealed a vast area of mechanistically uncharted territory. One key objective of future research should be to fully comprehend how type IV systems perform so many different functions, i.e., as importer, exporter, lipid floppase, ion channel, and regulator, by employing a single structural scaffold. However, we do not exclude that other types might turn out to be as functionally diverse as type IV systems. Exploring the different modes of operation and accompanying conformational landscapes [49] and the dynamics of the multifarious ABC systems will require integrative experimental methods.
Table 1. Prokaryotic ABC transporters classified according to their TMD folds.

TMD fold	TM helix organization	Experimentally determined structures	PDB codes*	Function
Type I	(5-6) + (5-6)/8^b	MalFGK₂-MalE: 2R6G, 3FH6, 3PUV, 3PUX, 3RLF, 4JBW; Mod_BC₂-ModB2C₂-A: 2ONK, 3D31; MetNi-Q: 3DHW, 3TUJ; Art(QN): 4YMS, 4YMU, 4YMV, 4YMW	2R6G, 3FH6, 3PUV, 3PUX, 3RLF, 4JBW	Maltose import
		Art(QN)2: 4YMS, 4YMU, 4YMV, 4YMW	2ONK, 3D31	Molybdate import
		AlgM1M2SS-Q2: 4TQU	3DHW, 3TUJ	Methionine import
		BtuC_D-BtuC: 4FI3, 4R9U	4YMS, 4YMU, 4YMV	Amino acid import
Type II	10 + 10	MoIBC: 1L7V, 2Q19, 4DBL, 4FI3, 4R9U	5B57, 5B58	Cobalamin import
		HmuUV: 4G1U	2Q19, 4DBL, 4FI3	Import of molybdate and tungstate
		BhuUvi(T): 5B57, 5B58	4G1U	Heme import
Type III	4-8 (T) + 6-7 (S)	EcfTAA'-FolT: 4HUQ, 5D3M, 5JSZ	4H2U	Folate import
		EcTAA'-PdxU2: 4H2U	4H2U	Pyridoxine import
		LeECF-PanT: 4RF5	4HUQ	Pantothenate import
		CbiMQO: 5X3X, 5X41	4H2U	Co²⁺ import
		ECF-CbrT: 6FNS	4H2U	Cobalamin import
Type IV	6 + 6	Sav1866: 2HYD, 2ONJ	4MRM, 4MRV, 4MRN, 4MRP	Multidrug export
	Homodimer	MsbA: 3B60, 3BSY, 3BSZ, 5TV4, 6BPL, 6BPP, 6BL6, 6O3O, 6UZZ, 6U2L	4MRM, 4MRV, 4MRN, 4MRP	Lipid A/LPS flopping
	Heterodimer	NaAtm1: 4Q4A, 4Q4H, 4Q4J, 6QU0, 6O0V, 6O0V, 6QV1, 6QQ2	4MRM, 4MRV, 4MRN, 4MRP	Export of GSH, GSH-related compounds, and metal-GSH complexes
	Single chain	TM287/288: 4Q4A, 4Q4H, 4Q4J, 6QU0, 6O0V, 6O0V, 6QV1, 6QQ2	Daunorubicin export	
		MocD: 4PL0, 5EG1, 5OFR	4PL0, 5EG1, 5OFR	Antimicrobial peptide export
		PCAT1: 4RY2, 6V9Z	4PL0, 5EG1, 5OFR	Peptide export
		PgiK: 5C76, 5C78, 5NBD, 6HRC	4PL0, 5EG1, 5OFR	Polypeptide export
		TmrAB: 5MKK, 6RAF, 6RAJ, 6RAI, 6RAJ, 6RAI, 6RAJ, 6RAI, 6RAJ, 6RAI, 6RAI, 6RAI, 6RAI	5MKK, 6RAF, 6RAJ, 6RAI, 6RAJ, 6RAI, 6RAI, 6RAI, 6RAI, 6RAI, 6RAI, 6RAI, 6RAI, 6RAI	Peptide export
		PrtD: 5L22	5L22	Metal–siderophore export
		YtbPQ: 6P6I, 6P6J	5L22	Import of cobalamin and bleomycin
		Rv1819c: 6TQE, 6TQF	6TQE, 6TQF	Iron–siderophore import
		IrAB: 6TEJ	6TQE, 6TQF	Iron–siderophore import

*PDB codes: MalFGK₂-MalE: 2R6G [12]; BtuC_D-BtuF: 4FI3 [50]; EcTAA'-FolT: 4HUQ [14]; Sav1866: 2HYD [15]; TmrAB: 5MKK [51]; TM287/288: 4Q4H [52]; MocD: 4PL0 [53]; PCAT1: 6V9Z [54]; Atm1: 4MYH [55]; MRP1: 5UJA [56]; PrtD: 5L22 [57]; P-gp: 4M1M [58]; TAP1/2: 5U1D [59]; ABCB4: 6S7P [60]; ABCB8: 5OCH; ABCB10: 3ZDO [61]; ABCB11: 6LR0 [62]; MsbA: 5TV4 [63]; PgiK: 6HRC [64]; YtbPQ: 6P6J [31]; IrAB: 6TEJ [32]; Rv1819c: 6TQE [33]; ABCG5/8: 5DO7 [16]; ABCBC1: 5XJY [23]; LptB-FG: 5X5Y [17]; MacB: 5LJ7 [21].
approaches that include electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), single-molecule techniques, and single-turnover experiments. We are confident that future studies of such kind will provide major new insights into the mechanisms of these fascinating molecular machines.
Acknowledgements

K.B. acknowledges support by a grant of the Medical Research Council (MR/N020103/1). M.D. is supported in part by the Intramural Program of the NIH. V.K. acknowledges support by the Medical Research Council (MR/N000994/1) and Wellcome Trust (101828/Z/13/Z). R.L. acknowledges generous financial support from German Research Foundation (LI 415/5). D.P.T. is supported in part by the Canada Research Chairs program. This work was supported by the German Research Foundation (SFB 807 and TA157/12-1 (Reinhart Koselleck Award Program) to R.T.).

Author contributions

CT and RT wrote the manuscript with contributions from all coauthors. This review is the quintessence of a resumed discussion that started at the FEBS Advanced Lecture Course on the Biochemistry of Membrane Proteins in Budapest (2019) and continued at the FEBS Conference on ATP-Binding Cassette (ABC) Proteins in Innsbruck (2020). The discussion included a vivid exchange of thoughts via hundreds of emails and remote video sessions during the global COVID-19 pandemic. In addition to the authors listed, we received positive feedbacks on our proposed classification from several further leading scientists in the ABC transporter field. Yet, as they felt that their contribution was too small, they decided not to accept authorship.

References

1 Higgins CF, Hiles ID, Salmond GPC, Gill DR, Downie JA, Evans JJ, Holland IB, Gray L, Buckel SD, Bell AW et al. (1986) A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323, 448–450.

2 Dassa E and Bougie P (2001) The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152, 211–229.

3 Bougie P, Laurent D, Piloyan L and Dassa E (2002) Phylogenetic and functional classification of ATP-binding cassette (ABC) systems. Curr Protein Pept Sci 3, 541–559.

4 Saurin W, Hofnung M and Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48, 22–41.

5 Dean M, Rzhetsky A and Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11, 1156–1166.

6 Klein I, Sarkadi B and Varadi A (1999) An inventory of the human ABC proteins. Biochim Biophys Acta 1461, 237–262.

7 Tusnády GE, Sarkadi B, Simon I and Varadi A (2006) Membrane topology of human ABC proteins. FEBS Lett 580, 1017–1022.

8 Gerovac M and Tampé R (2019) Control of mRNA translation by versatile ATP-driven machines. Trends Biochem Sci 44, 167–180.

9 Khwaaja M, Ma Q and Saier MH Jr (2005) Topological analysis of integral membrane constituents of prokaryotic ABC efflux systems. Res Microbiol 156, 270–277.

10 Wang B, Dukarevich M, Sun EI, Yen MR and Saier MH Jr (2009) Membrane porters of ATP-binding cassette transport systems are polyphyletic. J Membr Biol 231, 1–10.

11 Locher KP, Lee AT and Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.

12 Oldham ML, Khare D, Quiocio FA, Davidson AL and Chen J (2007) Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521.

13 Wang T, Fu G, Pan X, Wu J, Gong X, Wang J and Shi Y (2013) Structure of a bacterial energy-coupling factor transporter. Nature 497, 272–276.

14 Xu K, Zhang M, Zhao Q, Yu F, Guo H, Wang C, He F, Ding J and Zhang P (2013) Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature 497, 268–271.

15 Dawson RJ and Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.

16 Lee J-Y, Kinch LN, Borek DM, Wang J, Wang J, Urbatsch IL, Xie X-S, Grishin NV, Cohen JC, Otwinowski Z et al. (2016) Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533, 561–564.

17 Luo Q, Yang X, Yu S, Shi H, Wang K, Xiao L, Zhu G, Sun C, Li T, Li D et al. (2017) Structural basis for lipopolysaccharide extraction by ABC transporter LptB2FG. Nat Struct Mol Biol 24, 469–474.

18 Dong H, Zhang Z, Tang X, Paterson NG and Dong C (2017) Structural and functional insights into the lipopolysaccharide ABC transporter LptB2FG. Nat Commun 8, 222.

19 Fitzpatrick AWP, Llabrés S, Neuberger A, Blaza JN, Bui X-C, Okada U, Murakami S, van Veen HW, Zachariae U, Scheres SHW et al. (2017) Structure of the MacAB-ToIC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2, 17070.

20 Okada U, Yamashita E, Neuberger A, Morimoto M, van Veen HW and Murakami S (2017) Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Nat Commun 8, 1336.
21 Crow A, Greene NP, Kaplan E and Koronakis V (2017) Structure and mechanotransmission mechanism of the Macb ABC transporter superfamily. *Proc Natl Acad Sci USA* **114**, 12572–12577.

22 Yang HB, Hou WT, Cheng MT, Jiang YL, Chen Y and Zhou CZ (2018) Structure of a MacAB-like efflux pump from *Streptococcus pneumoniae*. *Nat Commun* **9**, 196.

23 Qian H, Zhao X, Cao P, Lei J, Yan N and Gong X (2017) Structure of the human lipid exporter ABCA1. *Cell* **169**, 1228–1239.e10.

24 Taylor NMI, Marolinidas I, Jackson SM, Kowal J, Stahlberg H and Locher KP (2017) Structure of the human multidrug transporter ABCG2. *Nature* **546**, 504–509.

25 Bi Y, Mann E, Whitfield C and Zimmer J (2018) Architecture of a channel-forming O-antigen polysaccharide ABC transporter. *Nature* **553**, 361–365.

26 Chen L, Hou W-T, Fan T, Liu B, Pan T, Li Y-H, Jiang Y-L, Wen W, Chen Z-P, Sun L et al. (2020) Cryo-electron microscopy structure and transport mechanism of a wall teichoic acid ABC transporter. *MBio* **11**, e02749–19.

27 Koch J, Guntrum R, Heinlze S, Kyritsis C and Tampé R (2004) Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). *J Biol Chem* **279**, 10142–10147.

28 Thomas C and Tampé R (2020) Structural and mechanistic principles of ABC transporters. *Annu Rev Biochem* **89**, 605–636.

29 Scheepers GH, Lycklama ANJA and Poolman B (2016) An updated structural classification of substrate-binding proteins. *FEBS Lett* **590**, 4393–4401.

30 Xu D, Feng Z, Hou WT, Jiang YL, Wang L, Sun L, Zhou CZ and Chen Y (2019) Cryo-EM structure of human lysosomal cobalamin exporter ABCD4. *Cell Res* **29**, 1039–1041.

31 Wang Z, Hu W and Zheng H (2020) Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter. *Sci Adv* 6, eay9979.

32 Arnold FM, Weber MS, Gonda I, Gallenito MJ, Adenau S, Egloff P, Zimmermann I, Hutter CAJ, Hürllmann LM, Peters EE et al. (2020) The ABC exporter IrtAB imports and reduces mycobacterial siderophores. *Nature* **580**, 413–417.

33 Rempel S, Gati C, Nijland M, Thangaratnarajah C, Karyolaimos A, de Gier JW, Gusakov A and Slotboom DJ (2020) A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. *Nature* **580**, 409–412.

34 Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C and Yazaki K (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. *Proc Natl Acad Sci USA* **100**, 751–756.

35 Terasaka K, Blakeslee JJ, Titipiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F et al. (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. *Plant Cell* **17**, 2922–2939.

36 Lee M, Choi Y, Burla B, Kim Y-Y, Jeon B, Maushima M, Yoo J-Y, Martinoia E and Lee Y (2008) The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. *Nat Cell Biol* **10**, 1217–1223.

37 Yang H and Murphy AS (2009) Functional expression and characterization of Arabidopsis ABCB, AUX1 and PIN auxin transporters in *Schizosaccharomyces pombe*. *Plant J* **59**, 179–191.

38 Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang B et al. (2012) Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. *Plant Cell Physiol* **53**, 2090–2100.

39 Shitan N, Dalmas F, Dan K, Kato N, Ueda K, Sato F, Forestier C and Yazaki K (2013) Characterization of *Coptis japonica* CjABC2, an ATP-binding cassette protein involved in alkaloid transport. *Phytochemistry* **91**, 109–116.

40 Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, Bernstein P, Peiffer A, Zabriskie NA, Li Y, Hutchinson A et al. (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. *Science* **277**, 1805–1807.

41 Quazi F, Lenevich S and Molday RS (2012) ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. *Nat Commun* **3**, 925.

42 Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E and Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. *Proc Natl Acad Sci USA* **107**, 2355–2360.

43 Xi J, Xu P and Xiang CB (2012) Loss of AtPDR11, a plasma membrane-localized ABC transporter, confers paraquat tolerance in Arabidopsis thaliana. *Plant J* **69**, 782–791.

44 Kang J, Yim S, Choi H, Kim A, Lee KP, Lopez-Molina L, Martinoia E and Lee Y (2015) Abosecic acid transporters cooperate to control seed germination. *Nat Commun* **6**, 8113.

45 Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G and Ekiert DC (2020) Structure of MlaFEDB lipid transporter reveals an ABC exporter fold and two bound phospholipids. *bioRxiv* https://doi.org/10.1101/2020.06.02.129247.

46 Mann D, Fan J, Farrell DP, Somboon K, Andrew Muenks S, Tzokov S, Khalid F, Dimaio SM and Bergeron JRC (2020) Structural basis for lipid transport by the MLA complex. *bioRxiv* https://doi.org/10.1101/2020.05.30.125013
ABC transporter classification

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. Phylogenetic tree based on TM-scores of structural TMD alignments.

Table S1. TM-scores based on pairwise structural alignment of representatives of the different TMD types.

Table S2. TM-scores based on pairwise structural alignment of type I TMDs.

Table S3. TM-scores based on pairwise structural alignment of type II TMDs.

Table S4. TM-scores based on pairwise structural alignment of type IV TMDs in inward-facing conformations.

Table S5. TM-scores based on pairwise structural alignment of type IV TMDs in (semi-) occluded/ outward-facing conformations.

Table S6. TM-scores based on pairwise structural alignment of type V, VI, and VII TMDs.

47 Tang X, Chang S, Qiao W, Luo Q, Chen Y, Jia Z, Coleman J, Zhang K, Wang T, Zhang Z et al. (2020) Structural insight into outer membrane asymmetry maintenance of Gram-negative bacteria by the phospholipid transporter MlaFEDB. bioRxiv https://doi.org/10.1101/2020.06.04.133611
48 Chi X, Fan Q, Zhang Y, Liang K, Wan L, Zhou Q and Li Y (2020) Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Res. https://doi.org/10.1038/s41422-020-00404-6
49 Hofmann S, Januiliene D, Mehdipour AR, Thomas C, Stefan E, Brücher S, Kuhn BT, Geertmsa ER, Hummer G, Tampé R et al. (2019) Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature 571, 580–583.
50 Korkhov VM, Mireku SA and Locher KP (2012) Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490, 367–372.
51 Nöll A, Thomas C, Herbring V, Zollmann T, Barth K, Mehdipour AR, Tomasiak TM, Brücher S, Joseph B, Abele R et al. (2017) Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proc Natl Acad Sci USA 114, E438–E447.
52 Hohi M, Hurlimann LM, Bohm S, Schoppe J, Grutter MG, Bordignon E and Seeger MA (2014) Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter. Proc Natl Acad Sci USA 111, 11025–11030.
53 Choudhury HG, Tong Z, Mathavan I, Li Y, Iwata S, Zirah S, Rebuffat S, van Veen HW and Beis K (2014) Structure of an antibacterial peptide ATP-binding cassette transporter in a novel outward occluded state. Proc Natl Acad Sci USA 111, 9145–9150.
54 Kieuvoongam V, Olinares PDB, Palillo A, Oldham ML, Chait BT and Chen J (2020) Structural basis of substrate recognition by a polypeptide processing and secretion transporter. Elife 9, e51492.
55 Srinivasan V, Pierik AJ and Lill R (2014) Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 343, 1137–1140.
56 Johnson ZL and Chen J (2017) Structural basis of substrate recognition by the multidrug resistance protein MRPl. Cell 168, 1075–1085.e9.
57 Morgan JLW, Acheson JF and Zimmer J (2017) Structure of a type-1 secretion system ABC transporter. Structure 25, 522–529.
58 Li J, Jaimes KF and Aller SG (2014) Refined structures of mouse P-glycoprotein. Protein Sci 23, 34–46.
59 Oldham ML, Grigorieff N and Chen J (2016) Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife 5, e21829.
60 Olsen JA, Alam A, Kowal J, Steiger B and Locher KP (2020) Structure of the human lipid exporter ABCB4 in a lipid environment. Nat Struct Mol Biol 27, 62–70.
61 Shintre CA, Pike ACW, Li Q, Kim J-I, Barr AJ, Goubin S, Shrestha L, Yang J, Berridge G, Ross J et al. (2013) Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proc Natl Acad Sci USA 110, 9710–9715.
62 Wang L, Hou WT, Chen L, Jiang YL, Xu D, Sun L, Zhou CZ and Chen Y (2020) Cryo-EM structure of human bile salts exporter ABCB11. Cell Res 30, 623–625.
63 Mi W, Li Y, Yoon SH, Ernst RK, Walz T and Liao M (2017) Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 549, 233–237.
64 Perez C, Mehdipour AR, Hummer G and Locher KP (2019) Structure of outward-facing PglK and molecular dynamics of lipid-linked oligosaccharide recognition and translocation. Structure 27, 669–678.e5.
65 Liu F, Zhang Z, Csanyd L, Gadsby DC and Chen J (2017) Molecular structure of the human CFTR ion channel. Cell 169, 85–95.e8.
66 Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ and Shyng SL (2017) Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife 6, e24149.
67 Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H and Locher KP (2018) Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563, 426–430.