Impaired Regulatory Volume Decrease in Freshly Isolated Cholangiocytes from Cystic Fibrosis Mice

IMPLICATIONS FOR CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR EFFECT ON POTASSIUM CONDUCTANCE*

Received for publication, October 20, 2003, and in revised form, December 26, 2003
Published, JBC Papers in Press, January 13, 2004, DOI 10.1074/jbc.M310855200

Won Kyoo Cho‡§, Vicki J. Siegrist‡, and Wendy Zinzow¶

From the ‡Department of Medicine, Division of Gastroenterology/Hepatology, Indiana University School of Medicine and The Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202, §Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, and ¶Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599

Various K⁺ and Cl⁻ channels are important in cell volume regulation and biliary secretion, but the specific role of cystic fibrosis transmembrane conductance regulator in cholangiocyte cell volume regulation is not known. The goal of this research was to study regulatory volume decrease (RVD) in bile duct cell clusters (BDCCs) from normal and cystic fibrosis (CF) mouse livers. Mouse BDCCs without an enclosed lumen were prepared as described (Cho, W. K. (2002) Am. J. Physiol. 283, G1320–G1327). The isotonic solution consisted of HEPES buffer with 40% of the NaCl replaced with isomolar amounts of sucrose, whereas hypotonic solution was the same as isotonic solution without sucrose. The cell volume changes were indirectly assessed by measuring cross-sectional area (CSA) changes of the BDCCs using quantitative videomicroscopy. Exposure to hypotonic solutions increased relative CSAs of normal BDCCs to 1.20 ± 0.01 (mean ± S.E., n = 50) in 10 min, followed by RVD to 1.07 ± 0.01 by 40 min. Hypotonic challenge in CF mouse BDCCs also increased relative CSA to 1.20 ± 0.01 (n = 53) in 10 min but without significant recovery. Coadministration of the K⁺-selective ionophore valinomycin restored RVD in CF mouse BDCCs, suggesting that the impaired RVD was likely from a defect in K⁺ conductance. Moreover, this valinomycin-induced RVD in CF mice was inhibited by 5-nitro-2’-(3-phenylpropylamino)-benzoate, indicating that it is not from nonspecific effects. Neither cAMP nor calcium agonists could reverse the impaired RVD seen in CF cholangiocytes. Our conclusion is that CF mouse cholangiocytes have defective RVD from an impaired K⁺ efflux pathway, which could not be reversed by cAMP nor calcium agonists.

Under physiological conditions, osmoregulation plays a crucial role in cholangiocytes, which are exposed to various osmotic stresses from the uptake of solutes and electrolytes and bile secretion (1, 2). A recent study on a human cholangiocarcinoma cell line (3), as well as our results in a study on primary bile duct cell clusters (BDCCs) from normal mouse livers (4), indicates that cholangiocytes can regulate their cell volumes back to base line from hypertonicity-induced swelling. As in other cell types, these adaptive mechanisms of regulatory volume decrease (RVD) in cholangiocytes are mediated by certain K⁺ and Cl⁻ conductances (3, 4).

Cystic fibrosis (CF) is the most common inherited multisystem disease in the Caucasian population and is caused by a defect in the cystic fibrosis transmembrane conductance regulator (CFTR). Many CF patients develop a spectrum of hepato-biliary diseases that are thought to be due to secretory dysfunctions from the CFTR Cl⁻ channel defects. In recent years, CF liver diseases have become the second most common cause of mortality in CF patients as they live longer, but the underlying pathophysiologic mechanisms are not well understood. Recent immunocytochemical studies of the liver have shown that CFTR is expressed only on the bile duct epithelium but not on hepatocytes (5). The CFTR is one of the major Cl⁻ channels mediating ion transport in the bile duct epithelium, but the direct role of CFTR in osmoregulation in cholangiocytes is not well known, although such defects in CFTR are likely to cause defects in osmoregulation. Thus, the purpose of the present study is to examine RVD in the cholangiocytes isolated from Cfr−/− or CF mouse livers and compare it with RVD in normal cholangiocytes. To accomplish this purpose, we have used BDCCs, which are prepared by the same isolation method as mouse isolated bile duct units (IBDUs) reported recently by our laboratory (6) but lack the enclosed lumen of IBDUs. These mouse cell preparations are primary cholangiocytes, and thus are considered to be closer to the physiologic state than other cholangiocyte cell lines and have proven to be quite powerful tools for studying cholangiocyte biology and physiology. The use of BDCCs can avoid likely problems with changes in luminal volumes with changes in osmotic solutions, and we have successfully used these BDCCs to study RVD in normal cholangiocytes (4).

In the present study, we present compelling evidence that, unlike normal mouse BDCCs, those from Cfr−/− mouse livers

* Part of this work was presented at the American Association for the Study of Liver Diseases meetings in Dallas, November 1999 and 2001, and published in abstract form (1999 Hepatology 30, 461A, and (2001) Hepatology 34, 479A). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Supported by an Indiana University biomedical research grant, National Institutes of Health Grants RO8 DK02813 and RO3 DK51409, and a cystic fibrosis research grant. The cystic fibrosis mouse colony at the University of North Carolina was supported by National Institutes of Health Grant RO26-CR02. To whom correspondence should be addressed: Indiana University School of Medicine, Roudebush VA Medical Center, Division of GI/Hepatology (113G), 1481 W. 10th St., Indianapolis, IN 46202. Tel.: 317-554-0000 (ext. 4553); Fax: 317-554-0116; E-mail: wkcho@iupui.edu.

The abbreviations used are: BDCCs, bile duct cell clusters; CF, cystic fibrosis; RVD, regulatory volume decrease; CFTR, cystic fibrosis transmembrane conductance regulator; IBDUs, intrahepatic bile duct units; NPPB, 5-nitro-2’-(3-phenylpropylamino)-benzoate; CSA, cross-sectional area; IBMX, isobutylmethylxanthine; BCECF, 2’,7’-bis(2-carboxyethyl)-5-(and -6)-carboxyfluorescein; SKCa, small conductance Ca²⁺-sensitive K⁺ channel; VACC, volume-activated chloride channel.
have an impaired RVD as suspected from the defect in CFTR. Surprisingly, however, the impaired RVD in these CF BDCCs is mainly caused by defects in K+ conductances, rather than Cl− conductances, and is thus restored when K+ conductances are provided by valinomycin, a K+ ionophore. In addition, the observed RVD of CF BDCCs during administration of valinomycin is inhibited by NPPB, a general chloride channel blocker, indicating that the effects of valinomycin are not from nonspecific effects of valinomycin. In addition, these findings also indicate that there is a functioning non-CFTR chloride conductance pathway(s) present in CF cholangiocytes, which can mediate RVD in these cells.

EXPERIMENTAL PROCEDURES

Materials—Bovine serum albumin, penicillin/streptomycin, EDTA, heparin, HEPES, d(+)-glucose, insulin, dimethyl sulfoxide (Me2SO), hyaluronidase, and deoxyribonuclease (DNase) were purchased from Sigma. Matrigel was from Collaborative Biomedical (Bedford, MA), collagenase D was from Roche Applied Science, and Pronase was from Calbiochem. Liebowitz-15 (L-15), minimum essential medium, α-minimum essential medium (Collaborative Research) in 12-mm-diameter culture dish, and fetal calf serum were from Invitrogen. Monoclonal anti-cytokeratin 19 antibodies were from Amersham Biosciences. The CFTR antibody was a generous gift from Dr. Christopher Marino. All other chemicals were of the highest purity commercially available.

Solutions—The compositions of the Krebs-Ringer bicarbonate and HEPES buffer solutions (containing (in mM) 135 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.25 CaCl2, 10 HEPES, 1 MgSO4, 5 glucose, pH 7.4, 37 °C) have been described previously (7, 8). Isotonic and hypotonic solution compositions are as described previously (4). The isotonic solution was made by replacing 40% of the NaCl in the HEPES solution (pH 7.4 at 37 °C) with an equimolar amount of sucrose. The hypotonic solution was made the same as the isotonic solution but without sucrose. The actual osmolarties of the solutions used were determined by a vapor pressure osmometer 5500 (Wescor, Inc., Logan, UT).

Isolation of Bile Duct Cell Cluster—The male Cfr+/− mice at age 4–14 weeks were obtained from Dr. Bev Koller at the University of North Carolina. Control normal male C57BL6 mice at the same ages were obtained from the Harlan Laboratory (Indianapolis, IN). These mice were housed and allowed free access to Coley-supplemented water and Purina rodent chow (St. Louis, MO) to minimize complications of intestinal obstruction described previously (9, 10). Animal care and studies were performed in compliance with institutional animal care and use committee guidelines. Mouse BDCCs were prepared as previously described (4, 6). Briefly, mice were prepped and anesthetized, and their portal veins were perfused with Hanks’ buffers with collagenase B; then the liver was harvested as described (4, 6). The non-parenchymal tissue was obtained by removing the hepatic capsule and then mechanically dissociating hepatocytes. The non-parenchymal tissue was finely minced with scissors and then further digested serially by various enzymes including collagenase, DNase, and Pronase or hyaluronidase in modified minimum essential medium solution as described previously (4, 6). After each serial enzymatic digestion step, fragments were filtered through 100- and 30-µm meshes (Tetko, Lancaster, NY), and those remaining on the 30-µm mesh were collected in 3–6 ml of modified α-minimum essential medium plating medium as described (4, 6). Fragments were then plated on small coverslips (2–4 mm), coated with Matrigel (Collaborative Research) in 12-mm-diameter tissue culture wells (Corning), and incubated at 37 °C in an air/5% CO2-equilibrated incubator. Experiments were carried out 36–56 h after plating. Cell viability was assessed by trypan blue exclusion in plated BDCCs at the end of the functional studies.

Characterization of Mouse BDCC—Immunocytochemistry using cytokeratin-19 or CFTR antibody (6, 8, 11) was performed in BDCCs 48–72 h after plating. Immunofluorescent images of the mouse BDCCs, immunostained with cytokeratin-19 or CFTR antibody, were obtained using an Olympus IX-70 inverted fluorescence microscope (Olympus America, Inc., Melville, NY) with a cooled charge-coupled device video camera (Hamamatsu Photonics Systems, Bridgewater, NJ) connected to a Power Mac computer with image analysis software (Improvision, Inc., Boston, MA).

Quantitation of Regulatory Volume Response with Videomicroscopy—The methods used for measuring a cross-sectional area (CSA) of hepatocytes and cholangiocytes (12) as well as other cell types (13), we recently have shown and validated that the CSA measurements of mouse BDCCs obtained by quantitative videomicroscopy were highly correlated (linear correlation coefficient, r2 > 0.94) with the cell volume measurements by 3 independent methods: 1) sequential Nomarski light, 2) fluorescence microscopy of BDCCs loaded with BCECF and computer-assisted measurements of the corresponding CSA and volumes, and 3) laser-scanning confocal microscopy of intracellular fluorescent dye. BCECF-loaded BDCCs, and computer-assisted three-dimensional reconstruction and volume calculation (4). Thus, in the present study, the CSA measurements of BDCCs by quantitative videomicroscopy were used as indirect indices of cell volume measurements.

BDCCs cultured overnight on Matrigel-coated glass coverslips were preincubated in isotonic solution for 10–20 min after being placed in a thermostated specimen chamber on a microscope stage. Coverslips were scanned for 5–10 min to select relatively spheroid BDCCs with sharp borders and without connections to other contiguous BDCCs and without any enclosed lumen. Videomages of these BDCCs were obtained at 1–5 min intervals while maintaining the same focal plane at the maximum cross-sectional area. Osmoregulatory responses of BDCCs were determined by assessing the changes in CSA of BDCCs using an Olympus IX-70 (Olympus America) or a Leica DMR (Leica Microsystems, Inc., Bannockburn, IL) inverted microscope with Nomarski optics equipped with a CCD video camera (Hamamatsu Photonics Systems) connected to a computer with OpenLab image analysis software (Improvision). Following a 10–20 min prestimulation period with isotonic HEPES buffer alone, BDCCs were exposed to a hypotonic HEPES buffer for 40 min with or without various inhibitors or chemicals dissolved in the solution. Each BDCC served as its own internal control, and changes in the cross-sectional area were expressed as a percentage of base-line values at time 0. The viability of each BDCC was assessed by the addition of trypan blue to the specimen chamber after each experiment. The BDCCs with positive trypan blue staining were excluded from data analysis. However, there was no significant change in viability, assessed by trypan blue staining, in experimental groups exposed to various inhibitors or chemicals compared with controls.

Statistical Analysis—All data from videomicroscopic measurements are presented as the arithmetic mean ± S.E., and cell purity and viability are presented as the arithmetic mean ± S.D. Statistical differences were assessed by the unpaired or paired Student’s t-tests using the INSTAT statistical computer program (GraphPad Software, San Diego, CA).

RESULTS

Characterizations of BDCCs—As with the BDCCs from normal mouse livers, BDCCs from Cfr+/− mouse livers formed spheroid clusters of cells with 24–48 h in culture (Fig. 1). Viability of the BDCCs was over 95% as assessed by trypan
blue exclusion 24–72 h after culture. As with normal mouse BDCCs characterized previously (6), these BDCCs from normal and CF mouse livers were identified as bile duct epithelial cells by positive immunocytochemistry using a cytokeratin-19 antibody, whereas negative controls with a secondary antibody alone were consistently negative for immunostaining. As expected, the BDCCs isolated from Cftr−/− mouse livers had no significant immunostaining with the CFTR antibody, compared with the negative controls, whereas BDCCs from normal mouse livers had a bright CFTR immunostaining (Fig. 2).

Study of Regulatory Volume Decrease in Normal Mouse Cholangiocytes—The osmolarity of the isotonic solutions, measured by an osmometer, was 300.9 ± 4.5 mosM (n = 12, mean ± S.D.), and that of the hyposomolar solutions was 181.9 ± 3.6 mosM (n = 13). As shown in Fig. 1, BDCCs rapidly and significantly increased in size within the first 10 min of exposure to hypotonic solution. Exposing normal BDCCs to hypotonic HEPES solution from isotonic HEPES solution caused rapid increases in CSA as shown in Fig. 1, indicating swelling of the cholangiocytes. Measurements of cross-sectional areas using quantitative videomicroscopy showed that the relative CSA of normal BDCCs rapidly increased to 1.20 ± 0.01 (mean ± S.E.; n = 50) in 10 min after exposure to hypotonic HEPES solution (Fig. 3) and then gradually returned toward 1.07 ± 0.01 of initial CSA over the next 30 min. Previous work from our laboratory has confirmed that CSA measurements of BDCCs accurately (correlation coefficient $r^2 > 0.94$) reflect their corresponding cell volume measurements using sequential phase-contrast and fluorescence microscopy of BCECF-loaded BDCCs as well as by laser-scanning confocal microscopy followed by three-dimensional volume measurement analysis (4). These results are consistent with the previous studies on Mz-ChA-1 cells from human cholangiocarcinoma cell lines (3) and normal BDCCs (4) that showed cholangiocytes exhibit intact regulatory volume decrease after exposure to a hypotonic solution.

Study of Regulatory Volume Decrease in Cystic Fibrosis Mouse Cholangiocytes—To study the RVD of cholangiocytes in the absence of Cftr, BDCCs isolated from Cftr−/− mouse livers were subjected to the same hypotonic challenges. As shown in Fig. 1, exposure of the BDCCs from Cftr−/− mouse livers caused rapid swelling of cholangiocytes, indicated by a rapid increase in the relative CSA to 1.20 ± 0.01 of initial CSA (n = 53) in 10 min (Fig. 3). Compared with normal BDCCs, this swelling of cholangiocytes from Cftr−/− livers had a similar time course and magnitude of increase in CSA in the swelling phase. However, unlike in normal BDCCs, the relative CSA did not return to the initial CSA and remained at 1.16 ± 0.01 of initial CSA after 40 min in the hypotonic solution, indicating an impaired RVD in CF mouse cholangiocytes (Fig. 3).

Effect of Potassium Ionophore on RVD—Given the fact that RVD in normal cholangiocytes is dependent on both Cl− and
K⁺ conductances, as shown by our study using normal freshly isolated mouse cholangiocytes (4) and others in the cholangiocarcinoma cell line (3), this impaired RVD seen in CF mouse cholangiocytes can be from defects either in Cl⁻ or K⁺ conductances. Although Cfr Cl⁻ channels provide major Cl⁻ conductances in cholangiocytes, previous electrophysiological studies have characterized a number of other non-Cfr Cl⁻ channels present and functioning in cholangiocytes (14, 15). Therefore, we then studied the effect of valinomycin, a K⁺ ionophore, on RVD in Cfr⁻/⁻ mouse cholangiocytes to examine whether providing K⁺ conductance can rectify the impaired RVD in these cells. Surprisingly, as shown in Fig. 4, an administration of 1 μM valinomycin completely restored the RVD in Cfr⁻/⁻ mouse BDCCs, and relative CSA returned to 1.05 ± 0.01 (n = 35) (p < 0.01 compared with negative control) of initial CSA in 40 min, whereas the CSA of untreated BDCCs did not show a significant decrease. There was no significant change in cell viability with valinomycin administration. Furthermore, co-administration of valinomycin in normal mouse BDCCs during hypotonic challenge had no significant effect on RVD compared with controls (Fig. 5).

Characterization of Valinomycin-induced RVD in CF Cholangiocytes—To further characterize the RVD seen in Cfr⁻/⁻ BDCCs with valinomycin, the effect of a chloride chan-
nel blocker, NPPB, on the valinomycin-induced RVD was studied to examine the specificity and dependence of Cl– conductances during the observed RVD. As shown in Fig. 6, co-administration of 10 μM NPPB, in addition to 1 μM valinomycin, during hypotonic challenge completely inhibited RVD. These results indicate that the RVD seen with valinomycin is dependent on non-CFTR Cl– conductance(s), which is most likely a volume-activated chloride channel as shown by our recent study in normal cholangiocytes (4). Again, there was no significant change in viabilities of BDCCs, assessed by trypan blue staining, in any of these groups. Taken together, these results indicate that the limiting factor in the impaired RVD seen in Cftr−/− cholangiocytes is a defect not in Cl– conductances but in K+ conductances. Moreover, there are other Cl– conductances, which are functioning in Cftr−/− cholangiocytes even with known CFTR defect and can mediate RVD when K+ conductances are provided.

Effect of cAMP Agonists on RVD in CF Cholangiocytes—Because stimulation of cAMP in certain cell types, such as non-pigmented ciliary epithelial cells (16), has been shown to enhance RVD, the effect of cAMP agonists on the impaired RVD in CF cholangiocytes was examined. As shown in Fig. 7, the administration of a cAMP agonist, isobutylmethylxanthine (IBMX) (1 mM), during the hypotonic challenge had no signifi-

![Fig. 6. Effect of NPPB on valinomycin-induced RVD in CF mouse BDCCs.](image-url)

![Fig. 7. Effect of IBMX on RVD of CF mouse BDCCs.](image-url)
cant effect on the impaired RVD of BDCCs compared with that of the untreated controls. In addition, the effect of a more potent cAMP agonist, forskolin, on RVD of BDCCs was also studied. As shown in Fig. 8, the RVD of BDCCs treated with forskolin (10 μM) (n = 10) appeared to be slower in the initial phase of RVD when compared with that of untreated controls (n = 18), but there was no statistically significant difference between them. These findings indicate that, as previously shown in normal cholangiocytes (4), the stimulation of CF cholangiocytes with cAMP has no significant effect on the impaired RVD in CF cholangiocytes.

Effect of Calcium Agonists on RVD in CF Cholangiocytes

The calcium pathway is known to be important for RVD in many cell types, and stimulation of the calcium pathway in certain cells has been shown to enhance RVD (16–22), although RVD in certain cell types is not dependent on calcium (23–26). To examine whether an increase in intracellular calcium can rectify the impaired RVD in CF cholangiocytes, the effect of calcium agonists on the RVD in CF BDCCs was studied. As shown in Figs. 9 and 10, the administration of calcium agonists, thapsigargin (2 μM) or ionomycin (1 μM), respectively, during the hypotonic challenge had no significant effect on the impaired RVD of BDCCs compared with that of the untreated controls.
RVD in CF BDCCs. These findings indicate that unlike some other cell types, the stimulation of CF cholangiocytes with calcium agonists had no significant effect on the impaired RVD observed in CF cholangiocytes.

DISCUSSION

In this manuscript, we report the first successful isolation and use of intact intrahepatic bile duct fragments from CF mouse liver using the mouse intrahepatic bile duct unit isolation method developed and reported recently (4, 6). Although previously we have extensively used IBDUs with enclosed lumen for biliary secretion studies, in this study we have excluded those IBDUs and used only those bile duct cell clusters without lumen to simplify cell volume measurements without interference from changes in lumen volume with hypotonic challenge. These BDCCs are determined to be of biliary origin by positive immunocytochemistry using a cholangiocyte specific cytokeratin-19 antibody. In addition, the mouse BDCCs from normal mouse livers had a bright CFTR immunostaining, whereas the CF BDCCs had no significant immunostaining compared with negative controls (Fig. 2). Previous electron microscopic studies demonstrated that these cell clusters consisted of typical cholangiocytes, resembling previous morphologic descriptions of isolated rat cholangiocytes (27, 28) or rat and mouse IBDUs (6, 11, 29) with large, lobulated, basally situated nuclei and sparse mitochondria. Unlike rat IBDUs but like mouse IBDUs, these BDCCs have less connective tissue around them, and the mouse cholangiocytes exhibit a more refractory pattern by light microscopy using Nomarski optics. Thus, it is easier to outline the borders of these mouse BDCCs to measure CSAs than those of rat IBDUs.

To assess cell volume changes with hypotonic challenges, we have used CSA as an indirect measure of cell volume as have other investigators for cholangiocytes (12) or for other cell types (13). In addition, we recently have shown and validated that the CSA measurements of mouse BDCCs obtained by quantitative videomicroscopy were highly correlated (linear correlation coefficient, \(r^2 > 0.94 \)) with the cell volume measurements by 3 independent methods: 1) sequential Nomarski light, 2) fluorescence microscopy of BDCCs loaded with BCECF and computer-assisted measurements of the corresponding CSA and volumes, and 3) laser-scanning confocal microscopy of intracellular fluorescent dye, BCECF-loaded BDCCs, and computer-assisted three-dimensional reconstruction and volume calculation (4).

As previously reported, in Mz-ChA-1 cells from human cholangiocarcinoma cell lines (3) and in freshly isolated BDCCs (4), cholangiocytes have intact RVD, which is important for this active epithelium to cope with changes in osmolarity from absorption and secretion of ions and substances. However, we now show that BDCCs from CF mouse livers have an impaired RVD, which has important implications for various vital cellular functions such as hepatobiliary metabolism, ion transport, bile secretion, and gene expression (30). Furthermore, RVD is shown to stimulate bile flow and bile salt secretion in isolated perfused rat livers (31), and cell volume regulation is thought to play a critical role in bile secretion, thus this impaired RVD in CF cholangiocytes may directly contribute to the pathophysiologic mechanisms underlying the biliary cholestatic liver diseases seen in CF patients. In fact, there is some literature indicating that coupled regulatory volume increase and RVD may provide underlying ion transport mechanisms in secretory epithelia (32–34).

Because the RVD seen in cholangiocytes is mediated by chloride and potassium conductances, as demonstrated in human cholangiocarcinoma cell lines (3) and in freshly isolated normal BDCCs (4), cholangiocytes have intact RVD, which is important for this active epithelium to cope with changes in osmolarity from absorption and secretion of ions and substances. Contrary to our initial reasoning that the deficient chloride conductance from the absence of CFTR chloride channel accounts for the observed impaired RVD, the results that valinomycin, a potassium ionophore, rectified the impaired RVD in CF cholangiocytes indicate that the rate-limiting defect is not chloride conductance but potassium conductance. These results provide the first compelling evidence that CFTR has regulatory interactions on potassium conductance(s) responsible for the RVD in cholangiocytes as shown in other cell types (35). In fact, CFTR is known to function as both a chloride channel and an epithelial transport regulator, inter-
activated ion transport pathway(s) in RVD in cholangiocytes is
used NPPB at a relatively low (10 μM) concentration to
completely inhibited by NPPB, a general chloride channel blocker,
as a potential potassium conductive pathway mediating
the RVD in cholangiocytes (42). However, the present study
indicates that calcium agonists could not overcome the
impaired RVD in CF cholangiocytes even though such an increase
in intracellular calcium was expected to stimulate the SKCa
channels, unless the activation of SKCa channels requires the
presence of functioning CFTR in the cholangiocytes. In addi-
tion, calcium agonists had no significant effect on RVD in
normal cholangiocytes. Therefore, the role of the calcium-
activated ion transport pathway(s) in RVD in cholangiocytes is
not entirely clear, and further study is needed.

The precise underlying mechanism(s) for the defect in RVD
in CF mouse cholangiocytes is not clearly characterized, but
some recent studies in various cell types propose an important
role of ATP in cell volume regulation (43–46). Although it is
somewhat controversial whether the CFTR can conduct ATP or
regulate ATP-conducting pathways, ATP transported out of the
cell during RVD is thought to interact with the purinergic
receptor pathway to bring about cell volume regulation (43–
46). Therefore, an administration of extracellular ATP to the
CF cells should restore RVD as shown in CF mouse renal cells
(47, 48). However, no clear cause-and-effect relationship was
observed with the ATP release and the VACC activation in the
human intestinal epithelial cell line lacking CFTR (49) or in the
murine mammary carcinoma cell line (50). Thus, further stud-
ies are needed to determine the precise underlying mechanisms
of RVD in CF cholangiocytes and the role of extracellular ATP
in RVD and its effect on VACC in CF cholangiocytes.

It is also notable that the valinomycin-induced RVD in CF
cholangiocytes is faster than RVD in normal cholangiocytes, which
may suggest that the rate-limiting step of the RVD in normal
cholangiocytes may also be potassium conductance. How-
ever, an alternative explanation is that the expression of
CFTR in normal cholangiocytes may have some inhibitory regu-
ulatory influence on VACCs, as it has been shown recently
that an ATP-hydrolyzable conformation of NBD2 is essential for the
regulation of the VACC by the CFTR (39, 51). This explanation is
also supported by the fact that the administration of valino-
mycin during the RVD in normal cholangiocytes does not in-
crease the rate of RVD in normal cholangiocytes (Fig. 5), argu-
ing against the explanation that the rate-limiting step in RVD in
normal cholangiocytes is potassium conductance. Thus, the
absence of functional CFTR in CF cholangiocytes may lead to
loss of its inhibitory influence on VACCs, which is reflected by
the faster RVD in CF cholangiocytes induced by valinomycin
than the RVD in normal cholangiocytes.

Moreover, the correction of the impaired RVD in CF chan-
olangiocytes with the administration of valinomycin was not due to
nonspecific effects of the potassium ionophore but was com-
pletely inhibited by NPPB, a general chloride channel blocker,
demonstrating an involvement of the NPPB-inhibitable clor-
ride conductive pathway(s) in this RVD. Although we cannot
definitively rule out the nonspecific effect of NPPB, we have
used NPPB at a relatively low (10 μM) concentration in an
attempt to minimize nonspecific effects of NPPB, and we have
not observed any changes in cell morphologies or viabilities by
trypan blue exclusion at the end of the experiments. Consid-
ering the fact that both chloride and potassium efflux are re-
quired for RVD in cholangiocytes (3, 4), the observed inhibition
of NPPB on the valinomycin-induced RVD in CF cholangiocytes
may be from its well known inhibitory effect on the chloride
channel or from its possible but less likely nonspecific inhibi-
tory effect on the potassium channel. However, any possible
nonspecific inhibitory effect of NPPB on the potassium channel
has no significant bearing here because valinomycin, a potas-
sium ionophore, should have provided an alternative potas-
sium conductive pathway to bypass such inhibition. Thus, even
if NPPB inhibited the potassium channel, it cannot account for
the observed inhibitory effect of NPPB on the valinomycin-
induced RVD in CF cholangiocytes. Therefore, the most logical
conclusion is that NPPB-inhibited chloride efflux is required
for the valinomycin-induced RVD in CF cholangiocytes. These
findings together, in turn, support our conclusion that the loss
of CFTR function in CF cholangiocytes resulted in the defective
potassium conductive pathway responsible for RVD.

Furthermore, these results provide evidence for the presence
of a non-CFTR chloride conductive pathway(s) functioning in
CF cholangiocytes. Previously, a number of non-CFTR chloride
channels have been characterized in cholangiocytes, such as
the calcium-activated chloride channel, volume-activated clor-
ride channel, and high conductance anion channel (3, 14, 52).
However, it was not known whether any of these non-CFTR
chloride channels were functioning in CF cholangiocytes. Thus,
the present finding provides the first evidence that an NPPB-
inhibitable non-CFTR chloride channel(s) is functioning to me-
diate RVD in CF cholangiocytes. Such a chloride conductive
pathway(s) can provide an alternative chloride conductive
pathway to compensate for the absence of a CFTR chloride
channel in the CF biliary epithelium, knowledge that is poten-
tially useful for developing therapies for CF cholestatic liver
diseases.

In the present study, cAMP agonists were employed in an
attempt to correct for the impaired RVD in CF cholangiocytes
because cAMP is shown to stimulate RVD in some cell types
(16, 53). However, neither IBMX nor forskolin had any signif-
ificant stimulatory effect on RVD in CF cholangiocytes, and they
could not reverse the impaired RVD in CF cholangiocytes. This
result is consistent with our findings in normal cholangiocytes
that cAMP agonists had no stimulatory effect on RVD (4).
Instead, forskolin had a mild inhibitory effect on RVD in nor-
mal cholangiocytes (4) as shown in myocytes (54), whereas
IBMX had no significant effect on RVD in normal cholangi-
ocyes (4). Although the mechanism underlying this inhibitory
effect of forskolin on RVD seen in normal cholangiocytes is not
clear, it is possibly from its inhibitory effect on VACCs as
shown in myocytes (54). Thus, the measures to stimulate the
cAMP pathway(s) by potent cAMP agonists to overcome the
defective CFTR chloride channels in CF cholangiocytes may be
counterproductive because of their possible inhibitory effect on
cell volume regulation in cholangiocytes, critical for biliary
secretion.

The calcium pathway plays an important role in cell volume
regulation in many cell types (17, 18, 20, 22) whereas in some
cell types, RVD is not dependent on calcium (23–26). In addi-
tion, in some cells such as cerebellar astrocytes (55), RVD and
changes in intracellular calcium are not related. Thus intracel-
lar calcium is thought to be irrelevant as a transduction signal
for RVD, whereas an increase in intracellular calcium in
certain cells such as human non-pigmented ciliary epithelial
cells (16) has been shown to enhance RVD. A recent patch-

2 W. K. Cho, V. J. Siegrist, and W. Zinzow, manuscript in preparation.
clamping study demonstrated the important role of SKCa channel-mediating RVD in cholangiocytes (42), thus an increase in intracellular calcium was expected to help reverse the impaired RVD in CF cholangiocytes. However, neither ionomycin nor thapsigargin had any significant effect on the impaired RVD in CF cholangiocytes, suggesting that the stimulation of a calcium-dependent pathway(s) cannot compensate for the impaired RVD in CF cholangiocytes. These results are consistent with the findings in normal cholangiocytes that calcium agonists had no significant effect on the RVD in normal BDCCs. Therefore, the role of calcium in RVD in cholangiocytes is not yet defined.

As a summary, the present study demonstrates for the first time that cholangiocytes from CF mouse liver have an impaired cell volume regulation and that this impaired RVD is most likely due to the defect in potassium conductance in the absence of CFTR, which may serve an important pathophysiological mechanism for CF cholestatic liver disease. Moreover, our direct evidence indicates that the volume-activated chloride conductance pathway(s) is functional in CF cholangiocytes, and that such a pathway(s) can potentially provide an alternative chloride conductance pathway necessary to compensate for the absence of functional CFTR chloride conductance in CF cholangiocytes to overcome biliary secretory defect in CF liver diseases.

Acknowledgments—We thank Bradley Poteat and Thomas Beyer for technical support in performing videomicroscopy and cell preparation. We also thank Dr. Bev Koller for support and help with cystic fibrosis mice.

REFERENCES

1. Graf, J., and Haussinger, D. (1996) J. Hepatol. 24, 53–77
2. Lira, M., Schteingart, C. D., Steinbach, J. H., Lambert, K., McRoberts, J. A., and Levinson, C. (1993) Prog. Liver Dis. 15, 121–135
3. Thompson, E., Sanwal, D., and Steinbach, J. H. (2000) J. Hepatol. 33, 126–135
4. Cho, W. K. (1999) J. Physiol. (Lond.) 515, 577–586
5. Cohn, J. A., Strong, T. V., Picciotto, M. R., Nairn, A. C., Collins, F. S., and Fitz, J. G. (1996) Am. J. Physiol. 271, G239–G248
6. Clarke, L. L., Grubb, B. R., Gabriel, S. E., Smithies, O., Koller, B. H., and Fitz, J. G. (1996) J. Clin. Investig. 97, 1503–1512
7. Neukirch, C., Vierhapper, S., Kapfer, M., and Oesch, F. (1995) Cell. Physiol. Biochem. 5, 337–346
8. Lira, M., Schteingart, C. D., Steinbach, J. H., Lambert, K., McRoberts, J. A., and Levinson, C. (1993) Prog. Liver Dis. 15, 121–135
9. Sacks, M., and Steinbach, J. H. (2000) J. Hepatol. 33, 126–135
Impaired Regulatory Volume Decrease in Freshly Isolated Cholangiocytes from Cystic Fibrosis Mice: IMPLICATIONS FOR CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR EFFECT ON POTASSIUM CONDUCTANCE
Won Kyoo Cho, Vicki J. Siegrist and Wendy Zinzow

J. Biol. Chem. 2004, 279:14610-14618.
doi: 10.1074/jbc.M310855200 originally published online January 13, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M310855200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 54 references, 15 of which can be accessed free at http://www.jbc.org/content/279/15/14610.full.html#ref-list-1