Software Application and Algorithm Designed for Power Systems Equipment and Network Construction Optimization

M Frigura-Iliasa¹, F M Frigura-Iliasa², M Mirica², S Novaconi², L Dolga¹, H. Filipescu¹

(¹) POLITEHNICA University Timisoara/Faculty of Electrical and Power Engineering, 300223, Timisoara, Romania
(²) National Institute for Research and Development in Electrochemistry and Condensed Matter/LERF, Timisoara, Romania

flaviu.frigura@upt.ro

Abstract. The main goal of this article is to conceive an algorithm for a software application designed to solve many power engineering optimization problems applying the critical path method (CPM). The classical solution for these problems is found via the schedule graph (the Gantt method), which presents a series of shortcomings: it does not highlight clearly the interdependencies between operations, it does not explain the temporal coincidences, it does not indicate the alternatives of declaring the various operations, it does not have a rigorous mathematical foundation, it does not allow any studies of optimization. All the shortcomings are cleared when using the representation of the program via a graph, where the values of the arcs are the durations of the component operations, and applying the critical path method (CPM), which mainly consists in determining a path of a maximum value between two peaks of that graph. Using CPM offers a great number of advantages: it offers a clear image of the evolution in time of the program, it allows the decreasing of the total duration of implementation for the program without condensing the component operation, it highlights the operations that directly determine the duration of implementation of the program, as well as those that allow the redistribution of the resources and the reduction of cost; it offers the alternative of rapid evaluation of the consequences of certain delays in realizing certain operations (without totally rebuilding the graph and the calculations); it can be easily implemented on a computer, having a solid mathematical base. Applying CPM and optimizing the program is achieved via the following steps: a) setting the list of the component operations, of their characteristics and representing the program via graphs; b) setting the graphs in order; c) determining the critical path (CP) and its value; d) calculating the time stocks related to the realization of the component operation (using the Ford and the Bellman-Kalaba algorithms); e) optimizing the program as from the length, the cost and the necessary resources points of view. For illustrating the algorithm and the computing program we propose an application from power engineering: a 400 kV electrical overhead line section construction. In the first part of the paper we present the application as a critical path problem. In the second part, we determine the critic path in a program graph and time reserves. In the third part, we present a representative numerical application. In the fourth part, it is described the computing program.

1. Introduction

The main purpose of this paper is to elaborate the algorithm for a software application, designed to solve power engineering optimization problems by applying the critical path method.
The Critical Path Method (CPM) is, today, one of the most frequently used mathematical method for planning all type of scheduled events.

We consider that a plant specialized in constructing and assembling of power equipment has to realize a 400 kV electrical overhead line section. We know the component operations that need to be executed in order to realize the final objective, their succession and conditioning, the duration and cost of each operation, the necessary workforce and the equipment. We are required to determine the total duration of executing the line, as well as the optimization from the cost, duration, necessary workforce and equipment point of view [1].

The problem may be generalized for any "activity program", by program we understand the set of operations that lead to the accomplishing of an objective.

The example stated makes reference to a production program; the methods presented being also valid for all the development, respectively research programs.

The classical solution for these problems is found via the schedule graph (the Gantt method), which presents a series of shortcomings: it does not highlight clearly the interdependencies between operations, it does not explain the temporal coincidences, it does not indicate the alternatives of declaring the various operations, it does not have a rigorous mathematical foundation, it does not allow any studies of optimization [2].

All the shortcomings are cleared when using the representation of the program via a graph, where the values of the arcs are the durations of the component operations, and applying the critical path method (CPM), which mainly consists in determining a path of a maximum value between two peaks of that graph [3].

Using CPM offers a great number of advantages:
- it offers a clear image of time evolution of the program;
- it allows the decreasing of the total duration of implementation for that program without condensing the component operation;
- it highlights the operations that directly determine the duration of implementation of the program, as well as those that allow the redistribution of the resources and the reduction of cost;
- it offers the alternative for a rapid evaluation of the consequences of certain delays in realizing certain operations (without totally rebuilding the graph and the calculations);
- it can be easily implemented on a computer, having a solid mathematical base [4].

Applying CPM and optimizing the program is achieved via the following steps:
- setting the list of the component operations, of their characteristics and representing the program via graphs;
- setting the graphs in order;
- determining the critical path (CP) and its value;
- calculating the time stocks related to the implementation of the component operations;
- optimizing the program as from the length, the cost and the necessary resources points of view.

2. Defining the critical path

After representing the program of activities in a program graph and allocating values to the arcs (the durations of implementation of the elementary operations involved), we raise the problem of determining the total duration of implementation of the program. Obviously, this duration cannot be lower than the sum of the total duration of implementation of the operations that compose the most unfavorable path from the initial event \(E_1 \) to the final event \(E_n \). This path (or these paths) is (are) called the critical path (CP).

The CP in a program graph is path of maximum value between the peak corresponding to the initial event and the one corresponding to the final event. The events and the operations corresponding to the peaks, respectively the arcs, that compose the CP are called critical event and critical operations, and the other events and operations are called non-critical.

The CP and its value are determined using algorithms of obtaining the paths with maximum value between two peaks of a graph: the Ford algorithm and the Bellman-Kalaba algorithm. Both algorithms are based on the optimality principle of Bellman, which is the foundation of the dynamic programming, the CP being undoubtedly composed of elementary paths (of smaller length) of maximum value [5].
2.1. The Ford algorithm

We consider the program graph, connected and without circuits, \(G = G(X,F) \), with \(n \) peaks, \(x_i \) and \(x_n \) being the initial, respectively the final peak. To each arc \((x_i, x_j) \in A\) we assign a value \(v_{ij} = t_{ij} \) (the duration of implementation for the involved operation). We assume that the graph \(G \) is in order, presenting alternatives according to the Ford algorithm.

In order to determine the critical path, we have to go through the following steps [3]:

a) to each peak \(x_i \) we assign a value \(\lambda_i = t_i \), initialized on 0 (because we are looking for a positive maximum);

b) on step \(k \), \(k = 2...n \), we determine \(\lambda_k \) via the relation:

\[
\lambda_k = \max_i (\lambda_i + t_{ik})
\]

(1)

\(\lambda_i \) being certainly non-zero, because \(i < k \);

c) step b) is repeated \(n-1 \) times, until we determine \(\lambda_n \), the value of the critical path;

d) we determine the peak \(x_{di} \) for which the following relation is observed:

\[
\lambda_n - \lambda_{di} = t_{d_i,n}
\]

(2)

storing the peak \(x_{di} \) as the critical path - CP;

e) on step I of the search in reversed order we determine a new peak on the CP, \(x_{di} \), as being the one that complies with the following relation:

\[
\lambda_{di-1} - \lambda_{di} = t_{d_i,d_i-1}
\]

(3)

f) step e) is repeated until \(x_{di} = x_1 \), the CP being

\[
DC = \{ x_1, x_{d_1-1}, \ldots, x_{d_2}, x_{d_1}, x_n \}
\]

(4)

In a program graph, there can be one or more CP. If there are more than one CP, the condition of maximum from the relation:

\[
\lambda_i = \max_i (\lambda_i + t_{ik})
\]

(5)

for a certain peak \(f \), \(x_k \) is complied with by more peaks \(x_i \), respectively on one or more steps more peaks \(x_{dk} \) comply with the relation:

\[
\lambda_{d_{k-1}} - \lambda_{dk} = t_{d_k,d_{k-1}}
\]

(6)

Then we separately analyze each solution, resulting more CP.

If we apply the Ford algorithm to a program graph \(t_i = \lambda_i \), represents the natural time (expected) of realization for the event \(E_i \): the minimum time that has to run from the beginning of the program until the moment when the \(E_i \) event takes place, in order that all the previous operations can be realized in the programmed durations.

2.2. The Bellman-Kalaba algorithm

It is a variant of the previous algorithm, using the techniques of dynamic programming. It is based on the following property, which is the particularization of the Bellman principle: any path of maximum value of \(r \) length is composed of elementary paths of \(k \) (\(k \leq r \)) length and maximum value [3].

The matrix \([T]\) of the values (operating times) is defined in the following way: \(t_{ij} \) represents the duration of realization of the operation between \(E_i \) and \(E_j \), if \((E_iE_j) \in A, i \neq j\), respectively \(-\infty\), if \((E_iE_j) \notin A, i \neq j\), whereas for \(i = j \) it is null. If the graph is in a certain order then all the elements in the lower triangle of \([T]\) are \(-\infty\).

\[
[T] = \begin{cases}
 t_{ij}; & (E_iE_j) \in A, i \neq j; \\
 -\infty; & (E_iE_j) \notin A, i \neq j; \\
 0; & i = j
\end{cases}
\]

(7)

Based on the statements above, the steps of the Bellman-Kalaba algorithm are as follows, the algorithm consisting mainly of determining the maximal elementary paths of length 1, 2, 3, at most, between a certain peak of the graph and the final peak.
Parts of the algorithm are similar to the Ford’s Algorithm.
From our point of view, their application can converge to closed results.
Main steps are:
 a) on the first step, we determine the elements of the auxiliary vector \(v^l \), representing the value of the paths of 1 length from \(E_i \) to \(E_n \):
 \[
 v^l_i = t_{in}, \quad i = \overline{1,n} \tag{8}
 \]
 b) on a certain step \(k \), we determine the elements of the auxiliary vector \(v^k \), representing the value of the paths of \(l \) length from \(E_i \) to \(E_n \):
 \[
 v^k_i = \text{MAX} (t_{ij} + v^k_j), \quad i = \overline{1,n} \tag{9}
 \]
 c) the calculation is through when the following relation is complied with:
 \[
 v^k_i = v^{k-1}_i, \quad i = \overline{1,n} \tag{10}
 \]
 d) CP has the value \(v^k_i \), in the hypothesis that the condition on step c) is complied with;
 e) we determine the peak \(x_{di} \) for which the following relation is observed:
 \[
 v^k_i = v^k_{di}, \quad i = \overline{1,n} \tag{11}
 \]
 storing the peak \(x_{di} \) as the critical path - CP;
 f) on step I of the search in reversed order we determine a new peak on the CP, \(x_{di} \), as being the one that complies with the following relation:
 \[
 v_{d_{1i}} - v_{d_i} = t_{d_{1i}} \tag{12}
 \]
 g) step e) is repeated until \(x_{di} = x_t \), the CP being
 \[
 DC = \{ x_1, x_{d_1}, x_{d_2}, \ldots, x_{d_{1i}}, x_n \} \tag{13}
 \]

2.3. Problems related to the use of the method of critical path

- Intervals of fluctuation
 We have determined for each event \(E_i \) the natural duration (expected) of realization, noting it with \(t_e \), as the value of the maximal path from the initial event \(E_i \) to the event \(E_i \).
 We now raise the problem is the duration of realization of a \(E_k \) event cannot be increased, without altering the duration \(t_e \) of realization of the entire program (the CP value), therefore without disrupting the subsequent operations [3].
 Thus we define \(t^* \) the limit duration of realization of the \(E_i \) event as the latest moment on which the event \(E_i \) may take place without disrupting the completion of the program (without altering). Considering that the program graph is in a certain order, obviously \(t^*_{ni} = t_e \), the other limit duration being determined via the relation:
 \[
 t^*_{ij} = \text{MIN} (t^*_{ji} - t_{ij}), (E_iE_j) \in A, i = \overline{1,n} \tag{14}
 \]
 The fluctuation interval \(\Delta t_i \) is defined as the delay allowed in the realization of the event \(t_e \), without affecting the value of the CP, and it may be calculated via the relation:
 \[
 \Delta t_i = t^*_{ij} - t_i \tag{15}
 \]
 For the critical events \(\Delta t_i = 0 \), and for those that are not critical \(\Delta t_i > 0 \).
- Operation margins
 Considering \(t_i = 0 \), the operation represented by the \(E_iE_j \) arc cannot begin before the time \(t_i \) from the beginning of the program, respectively it cannot be completed before the time \(t^*_{ij} \), if we want to avoid the perturbation of the program [3].
 The operation \(E_iE_j \) disposes of the time \(t^*_{ij} - t_{ij} \), from which it is programmed to use \(t_{ij} \). In case when \(t_{ij} < t^*_{ij} - t_{ij} \), then there is a time stock, which is called the total margin of the operation \(E_iE_j \), and it is noted with \(m_{t_{ij}} \), defined by the relation:
 \[
 mt_{ij} = t^*_{ij} - t_{ij} \tag{16}
 \]
 Determining the operational margins will be performed as follows.
The total margin of an operation may be used as follows:
- the duration of the operation may be augmented, allowing it to partially or totally consume its margin;
- we preserve the duration of the operation, but we delay its beginning, partially or totally using the margin;
- we fractionate the operation, interposing breaks, which, added, may not exceed the margin.

By using integrally the total margin of an operation, we decrease the margins of the previous operations, as well as those subsequent. Consequently, in practice there are used other two types of margins: the free margin and the safe margin.

The free margin ml_{ij} is defined via the following relation:

$$ml_{ij} = t_j - t_i - t_{ij}$$ \hspace{1cm} (17)

representing the maximum duration with which it can be delayed, from the natural duration of realization of the event t_i, the beginning of the operation E_iE_j, without disrupting the natural duration of realization of the event E_i, therefore without altering the margins of the subsequent operations.

The free margin may be interpreted as that part of the total margin which can be used to augment or delay the operation E_iE_j without altering the fluctuation interval of the terminal event E_j:

$$mt_{ij} - m_{ij} = t'_i - t_i = \Delta t_j \geq 0$$ \hspace{1cm} (18)

From the previous relations, it results:

$$mt_{ij} \geq ml_{ij} \geq ms_{ij}$$ \hspace{1cm} (19)

ml and mt being unquestionably non-zero.

Obviously, all the operations that are part of the CP have non-zero margins, because they do not allow any delay without altering the program total duration of realization.

The relation between all these parameters is presented in Figure 1:

![Figure 1. Relations between main parameters](image-url)

With all these mathematical aspects clearly defined, we will present a standard application for this algorithm in the field of Power Engineering.

3. Numerical Application
We will consider the construction of an overhead line (LEA), with all the phases of the project.

For the example stated at the beginning of this paper, the list of the main operations is given in the following Table 1, where we have also filled in the duration of each operation (in days) and the order relations between operation has been highlighted. We have considered only on expansion panel (the entire LEA will be handled analogously).
Table 1. Main construction operations

No.	Operation	Symbol	Duration	Directly conditioned operations
1	Transporting precast foundations	TF	4	SG
2	Transporting ballast for the concrete	TB	6	SG
3	Digging the holes for the foundation	SG	12	BF, MF
4	Transporting the concrete and concreting the foundations	BF	8	RS, MP
5	Mounting the precast foundation	MF	16	RS, MP
6	Transporting the poles	TS	8	AS
7	Assembling the poles	AS	17	RS
8	Raising the poles	RS	14	BC, MC
9	Transporting the conductors	TC	2	MC
10	Mounting the conductors	MC	15	VS
11	Mounting the ground socket	MP	5	-
12	Concreting the caps	BC	8	-
13	Fixing the poles	VS	7	-

3.1. The Ford Algorithm

The results obtained with the Ford algorithm are shown in the Figure 2, using the following conventions of noting and representation:
- the peaks of the graph are put in a certain order;
- next to each arc is the value $v_{ij} = t_{ij}$ (the duration for the corresponding event);
- next to each arc there are three digits, the first one stands for the natural duration of the event involved;
- on each step x_{ij} arc (for which the condition of maximum is observed) has been marked with a dotted line.

![Figure 2. The operational graph](image)

On the first step we initialize for all events $t_i = 0$. On steps 2 and 3, we obtain $t_2 = t_1 + t_{12} = 0 + 4 = 4$; $t_3 = t_1 + t_{13} = 0 + 8 = 8$

the arcs $E_1 - E_2$, respectively $E_1 - E_3$, being marked in a dotted line on the graph.

On step 4 we determine t_4:
$t_4 = \text{Max}(t_{14}, t_{24} + t_{24}) = 6$

the maximum condition being observed for the arc $E_1 - E_4$, which is therefore marked with a dotted line. Proceeding analogously, we determine the natural duration for each event, in the end, resulting a value of $t_{12} = 70$ days, which is the value of CP.

In order to determine the CP, we look for a path from E_{12} to E_1, which must contain only marked arcs, resulting:
$E_1 - E_4 - E_5 - E_7 - E_8 - E_9 - E_{10} - E_{11} - E_{12}$
as the one and only solution for the problem.
3.2. The Bellman-Kalaba algorithm

The matrix $[T]$ is shown in Figure 3, being written according to the operating times. According to the presented relations, the row-vector V^k is identical to the last row of the $[T]$ matrix, its elements are standing for the value of the roads which have the I length from the x_i peak to the x_n peak (from the E_i event to the E_n event).

![Figure 3. The $[T]$ – matrix and the $[V]$ – vector](image)

The elements of the row-vector V^2 are determined for $k = 2$, being the value of the roads which have a maximum length 2 from the x_i peak to the x_n peak. Analogously we determine V^3, V^4, V^5, ..., V^9.

The condition for the ending is observed by the elements of the vectors V^9 and V^8, the value of the CP being 70.

Next we will look for the peaks CP: considering that E_i is part of the CP, we highlight the next peak, obtaining:

$$v^9_i - v^9_j = t_{14}; \quad 70 - 64 = 6$$

Therefore the E_i event, respectively the 1-4 arc, is part of the CP:

$$v^9_j - v^9_i = t_{14}; \quad 64 - 52 = 6$$

Proceeding analogously, in the end we will find the requested CP, the result being the same as that obtained via the Ford algorithm. All details are provided in Table 2:

Table 2. Numerical results for the Bellman-Kalaba algorithm

No.	Operation	t_i	t'_i	t_j	t'_j	t_{ij}	m_{ij}	m_{ij}	m_{ij}
1	$E_1 - E_2$	0	0	4	6	4	2	0	0
2	$E_1 - E_3$	0	0	8	17	8	9	0	0
3	$E_2 - E_4$	4	6	6	6	0	2	2	0
4	$E_1 - E_{10}$	0	0	48	48	2	46	46	46
5	$E_3 - E_8$	8	17	34	34	17	9	9	0
6	$E_5 - E_6$	18	18	26	34	8	8	0	0
7	$E_7 - E_{12}$	34	34	70	70	5	31	31	31
8	$E_9 - E_{12}$	48	48	70	70	8	14	14	14
4. Software description

Based on the mathematical models described before, we developed a small software application suitable for didactic and industrial use. This software called CRITIC and it was elaborated in Delphi® environment, being a classical application for Window, offering a facile interface for the students, during the practical works for the Techniques of optimization in the power industry course, as well as for all those interested in such applications [8].

When it is launched, the program window will have the following aspect like in Fig.4:

A new file (empty) is loaded, and it contains a matrix which represents a graph with \(n \) nodes and which is to be filled in by the user with all the necessary data. This is the matrix of the operating times. The program also allows in this window the option to see the matrix of the existing arcs between the events involved.

Before initialising the process of filling-in the elements of this matrix, the user must access the menu "Vedere – Optiuni", or click on the according button on the toolbar. This command will lead to another window, in which the user may specify the number of peaks of the graph, as well as other figures (the number of exact digits, the initial value of the data etc.).
After introducing the information necessary in order to fill in the matrix, the user has the option to save that file under a certain name, for a subsequent use.

The window of the application for the matrix that contains the user data and the table with the existing arcs will have the following aspect like in Fig. 6.

After having gone through the process of filling-in the data matrix, the user accesses the menu Calcul – Calculeaza. After selecting this option, the “Optiuni” window (seen earlier) will appear again and it will mainly allow to configure 3 parameters: the dimensions of the problem (tackled above); the display options: whether to print the initial data or not, the intermediary results, whether to clear or not the screen before displaying the results; the calculation options: stipulating the algorithm to be used to determine the critical path, whether to calculate or not the fluctuation intervals, or whether to calculate or not the margins.

By clicking the OK button, the calculation process is initiated. In the window which appears upon completion, the results of the calculation process are presented, according to the user’s wishes.

The application allows the export of the initial data, respectively of all the results as .txt or .rtf files (according to Fig. 7), files that may be later opened via programs in the Office® package.

5. Conclusions

In this paper, we presented an original method conceived in order to determine the critical path (CP) for some operations related to the construction of an overhead aerial line, minimizing also the impact on the environment by reducing times and eliminating dangerous operations.

It finds the CP via a programmed graph and it solves a series of related problems.

This algorithm could be easily implemented in a programming language and could be useful in other economy domains, too.

The following aspects related to the calculation program may be noted:

The program have to solve all aspects related to the creation and actualization of the data base related to a certain application, as well as the loading and saving of the files that contain the data bases;

It must provide a large number of check-ups for the compatibility and the accurateness of the elements in the data base, with warning or error messages if necessary;

The CP may be found via the Ford algorithm and the Bellman-Kalaba algorithm;

After finding the critical path the time stocks are calculated: those related to events (the fluctuation intervals) and those related to operations (operation margins);

This research is also having a didactic side, the visualization of the results may be done according to the user’s wish: from the sole display of the final results, up to the visualization in a work window of all the intermediate results for each iteration with the option of browsing them;

The option of saving or listing the result files must be available.
Human-machine interface applied for this program must be friendly with users which are not fully familiarized with all numerical and mathematical aspects of this method, but they are trying to optimize their industrial work. This method performs very well in all considered situations and could be easily applied for other large investments and complicated projects, too.

6. References

[1] Rahaman M., Hamilton S., *CAPRA: A contour-based accessible path routing algorithm*, Computer Science and Information Technology, School of Science, RMIT University, Melbourne, School of Engineering and Computer Science, Victoria University of Wellington, Australia, 2016
[2] Nafkha, R., Wilinski, A., *The critical path method in estimating project duration*, Information Systems in Management 2016, Vol. 5 (1) 78–87
[3] Momoh J.A., *Electric Power System Applications of Optimization*. Marcel Dekker Inc., New York, 2000.
[4] J. Wood and B. F. Wollenberg, *Power Generation Operation and Control*, 2nd edn. John Wiley & Sons, New York, 1996
[5] Roa-Sepulveda and M. Herrera, *A solution to the economic dispatch problem using decision trees*, Electr Power Syst Res, Vol. 56, 2000, pp.255–259
[6] T. Voicu, D. M. Dinca, *Applying critical path method (CPM) in planning of tractors engines repairing*, International Symposium of ISB-INMA TEH. Agricultural and Mechanical Engineering, Bucharest, Romania, 2015, pp.563-568 ref.15
[7] Nafkha, R., Wiliński, A. *The critical path method in estimating project duration*, Information Systems in Management, 2016, Vol. 5 (1) pp.78–87
[8] M. I. Iorga, M. C. Mirica, I. Balcu, N. Mirica, D. Roșu, *Influence of Relative Electrode-Electrolyte Movement over Productivity for Silver Recovery from Diluted Solutions*, Journal of Chemistry and Chemical Engineering - JCCE, USA, vol.5, no.4, p.296, ISSN 1934-7375, 2011