Curvature spectra of simple Lie groups

Andrzej Derdzinski and Światosław R. Gal

Abstract. The Killing form β of a simple Lie group G is a left-invariant pseudo-Riemannian Einstein metric. Let Ω denote the multiple of its curvature operator, acting on symmetric 2-tensors, with the factor chosen so that $\Omega \beta = 2 \beta$. We prove diagonalizability of Ω and describe its spectrum in each G. It turns out that 1 is not an eigenvalue of Ω unless G is locally isomorphic to $SU(p,q)$, or $SL(n,\mathbb{R})$, or $SL(n,\mathbb{C})$ or, for even n only, $SL(n/2,\mathbb{H})$, where $p \geq q \geq 0$ and $p + q = n > 2$. Due to this last conclusion, on simple Lie groups G other the ones just listed, nonzero multiples of the Killing form β are isolated among left-invariant pseudo-Riemannian Einstein metrics. Using the spectrum of Ω we also provide a proof of the known fact that a semisimple real or complex Lie algebra with no simple ideals of dimension 3 is essentially determined by its Cartan three-form.

Mathematics Subject Classification (2010). 53C30, 53C50, 22E99.

Keywords. Indefinite Einstein metrics, left-invariant Einstein metrics.

0. Introduction

Every Lie group G carries a distinguished left-invariant torsionfree connection D, defined by requiring that $D_x y = [x,y]/2$ for all left-invariant vector fields x and y. As a consequence of the Jacobi identity, the curvature tensor of D is D-parallel. So is, consequently, the Ricci tensor of D, equal to a nonzero multiple of the Killing form β. Our convention about β reads:

$$\beta(x,x) = \text{tr} [(\text{Ad} x)^2] \quad \text{for any } x \text{ in the Lie algebra } \mathfrak{g} \text{ of } G. \quad (0.1)$$

Thus, if G is semisimple, β constitutes a bi-invariant, locally symmetric, non-Ricci-flat pseudo-Riemannian Einstein metric on G, with the Levi-Civita connection D. We denote by $\Omega : [\mathfrak{g}^*]^{\otimes 2} \to [\mathfrak{g}^*]^{\otimes 2}$ a specific multiple of the curvature operator of the metric β, acting on symmetric 2-tensors:

$$[\Omega \sigma](x,y) = 2 \text{tr} [(\text{Ad} x)(\text{Ad} y)\Sigma] \quad \text{for } x,y \in \mathfrak{g}, \quad (0.2)$$

where σ is any symmetric bilinear form on \mathfrak{g}, with $\Sigma : \mathfrak{g} \to \mathfrak{g}$ such that

$$\sigma(x,y) = \beta(\Sigma x,y) \quad \text{whenever } x,y \in \mathfrak{g}. \quad (0.3)$$

See Remark 1.4. The same formula (0.2) defines the operator Ω in a complex semisimple Lie group G. We then identify Ω with the analogous curvature operator for the (\mathbb{C}-bilinear) Killing form β, treating the latter as a holomorphic Einstein metric on the underlying complex manifold of G.

The second author was partially supported by Polish MNiSW grant N N201 541738.
Our first result, about the structure of Ω in complex simple Lie groups, refers to their Lie algebras rather than the groups themselves.

Theorem A. For any complex simple Lie algebra \mathfrak{g}, the endomorphism Ω of $[\mathfrak{g}^*]^{\otimes 2}$ is diagonalizable and has the following systems $\text{Spec}[\mathfrak{g}]$ of eigenvalues and $\text{Mult}[\mathfrak{g}]$ of the corresponding multiplicities. In (c), n is even and $n \geq 4$ while, in (d), $n = 7$ or $n \geq 9$.

(a) $\text{Spec}[\mathfrak{sl}_2] = (2, -1)$, $\text{Mult}[\mathfrak{sl}_2] = (1, 5)$. Also, $\text{Spec}[\mathfrak{so}_3] = (2, 1, -2/3)$, $\text{Mult}[\mathfrak{so}_3] = (1, 8, 27)$. (b) $\text{Spec}[\mathfrak{su}_n] = (2, 1, 2/n, -2/n)$, and $\text{Mult}[\mathfrak{su}_n]$ is the quadruple $(1, n^2 - 1, n^2(n - 3)(n + 1)/4, n^2(n + 3)(n - 1)/4)$.

(c) $\text{Spec}[\mathfrak{sp}_n] = (2, (n + 4)/(n + 2), -4/(n + 2), 2/(n + 2))$, while $\text{Mult}[\mathfrak{sp}_n] = (1, (n - 2)(n + 1)/2, n(n + 1)(n + 2)(n + 3)/24, n(n - 1)(n - 2)(n + 3)/12)$.

(d) $\text{Spec}[\mathfrak{so}_n] = (2, (n - 4)/(n - 2), 4/(n - 2), -2/(n - 2))$, and $\text{Mult}[\mathfrak{so}_n]$ equals $(1, (n + 2)/2, n(n - 1)(n - 2)(n - 3)/24, n(n + 1)(n + 2)(n + 3)/12)$.

(e) $\text{Spec}[\mathfrak{e}_6] = (2, 1/2, -1/6)$ and $\text{Mult}[\mathfrak{e}_6] = (1, 650, 2430)$.

(f) $\text{Spec}[\mathfrak{e}_7] = (2, 4/9, -1/9)$ and $\text{Mult}[\mathfrak{e}_7] = (1, 1539, 7371)$.

(g) $\text{Spec}[\mathfrak{e}_8] = (2, 2/5, -1/15)$ and $\text{Mult}[\mathfrak{e}_8] = (1, 3875, 27000)$.

(h) $\text{Spec}[\mathfrak{f}_4] = (2, 5/9, -2/9)$ and $\text{Mult}[\mathfrak{f}_4] = (1, 324, 1053)$.

(i) $\text{Spec}[\mathfrak{g}_2] = (2, 5/6, -1/2)$ and $\text{Mult}[\mathfrak{g}_2] = (1, 27, 77)$.

Note that all isomorphism types of complex simple Lie algebras are listed above.

We prove Theorem A in Sections 3–4. Its analog for real simple Lie algebras \mathfrak{g} is Theorem 5.1, derived in Section 5 from the fact that, given any such \mathfrak{g},

a) either \mathfrak{g} is a real form of a complex simple Lie algebra \mathfrak{h}, or

b) \mathfrak{g} arises by treating a complex simple Lie algebra \mathfrak{h} as real. (0.4)

See [7, Lemma 4 on p. 173]. The Lie-algebra isomorphism types of real simple Lie algebras \mathfrak{g} thus form two disjoint classes, characterized by (0.4.a) and (0.4.b).

For both real and complex semisimple Lie groups G, studying Ω can be further motivated as follows. Let ‘metrics’ on G be, by definition, pseudo-Riemannian or, respectively, holomorphic, and E denote the set of Levi-Civita connections of left-invariant Einstein metrics on G. Then, as shown in [6, Remark 12.3], whenever a semisimple Lie group G has the property that 1 is not an eigenvalue of Ω, the Levi-Civita connection D of its Killing form β is an isolated point of E. The converse implication holds except when G is locally isomorphic to $SU(n)$, with $n \geq 3$. See [6, Theorems 22.2 and 22.3].

In a real/complex Lie algebra \mathfrak{g}, we define $\Lambda : [\mathfrak{g}^*]^{\otimes 2} \to [\mathfrak{g}^*]^{\wedge 4}$ by

$$(\Lambda \sigma)(x, y, z, z') = \sigma([x, y], [z, z']) + \sigma([y, z], [x, z']) + \sigma([z, x], [y, z']).$$

(0.5)

Thus, Λ is a real/complex-linear operator, sending symmetric bilinear forms σ on \mathfrak{g} to exterior 4-forms on \mathfrak{g}. For the Killing form β one has $\beta([x, y], [z, z']) = \beta([x, y], z, z')$, ad z is β-skew-adjoint. By the Jacobi identity and (0.1) – (0.2),

i) $\Lambda \beta = 0$, ii) $\Omega \beta = 2\beta$. (0.6)
If, in addition, \(g \) is semisimple, there is also the operator \(\Pi : [g^*]^\otimes 4 \to [g^*]^\otimes 2 \) with
\[
\Pi(\xi \otimes \xi' \otimes \eta \otimes \eta') = \beta([x, x'], \cdot) \otimes \beta([y, y'], \cdot),
\]
for \(\xi, \xi', \eta, \eta' \in g^* \), where \(x, x', y, y' \in g \) are characterized by \(\xi = \beta(x, \cdot), \xi' = \beta(x', \cdot), \eta = \beta(y, \cdot), \eta' = \beta(y', \cdot) \). We have \(\Pi([g^*]^\otimes 4) \subset [g^*]^\otimes 2 \), cf. formula (2.1).

The next result, established in Section 2, relates \(\Omega \) to \(\Pi \Lambda : [g^*]^\otimes 2 \to [g^*]^\otimes 2 \), the composite of \(\Lambda \) and the restriction of \(\Pi \) to the subspace \([g^*]^\otimes 4 \subset [g^*]^\otimes 4\).

Theorem B. Let \(\Omega, \Lambda \) and \(\Pi \) be the operators defined by (0.2), (0.5) and (0.7) for a given semisimple real/complex Lie algebra \(g \). Then \(2\Pi \Lambda = - (\Omega + \text{Id})(\Omega - 2 \text{Id}) \).

Our final application of Theorem A, using Theorem B as well, is the following description of \(\text{Ker} \Lambda \) for semisimple Lie algebras \(g \), obtained in Section 6. It provides a crucial step in our proof of Theorem D (see below).

Theorem C. Given a real/complex semisimple Lie algebra \(g \) with a decomposition \(g = g_1 \oplus \ldots \oplus g_s \) into simple ideals, \(s \geq 1 \), let \(\Lambda \) and \(\Lambda_i \) denote the operator defined by (0.5) for \(g \) and, respectively, its analog for the \(i \)th summand \(g_i \).

(a) \(\text{Ker} \Lambda = \text{Ker} \Lambda_1 \oplus \ldots \oplus \text{Ker} \Lambda_s \), with \([g_i^*]^\otimes 2 \subset [g^*]^\otimes 2 \) by trivial extensions.
(b) \(\Lambda = 0 \) if \(\dim g = 3 \).
(c) \(\dim \text{Ker} \Lambda = 12 \) if \(g \) is simple and \(\dim g = 6 \).
(d) \(\dim \text{Ker} \Lambda \in \{1, 2\} \) whenever \(g \) is simple and \(\dim g \notin \{3, 6\} \).

In (c), \(g \) is necessarily real and isomorphic to the underlying real Lie algebra of \(\mathfrak{sl}(2, \mathbb{C}) \), while \(\text{Ker} \Lambda \) consists of the real parts of all symmetric \(\mathbb{C} \)-bilinear functions \(g \times g \to \mathbb{C} \). In (d), the Killing form \(\beta \) spans \(\text{Ker} \Lambda \) if \(g \) is either complex or real of type (0.4.a), while otherwise \(\text{Ker} \Lambda \) is spanned by \(\text{Re} \beta^h \) and \(\text{Im} \beta^h \) for the Killing form \(\beta^h \) of a complex simple Lie algebra \(h \) with (0.4.b).

One defines the **Cartan three-form** \(C \in [g^*]^\wedge 3 \) of a Lie algebra \(g \) by
\[
C = \beta([\cdot, \cdot], \cdot), \quad \text{where } \beta \text{ denotes the Killing form. (0.8)}
\]

The last result has been known for decades, although no published proof of it seems to exist [3]. By an **isomorphism of the Cartan three-forms** we mean a vector-space isomorphism of the Lie algebras, sending one three-form onto the other.

Theorem D. Let \(g \) be a real/complex semisimple Lie algebra with a fixed direct-sum decomposition into simple ideals.

(i) **If** \(h \) is a real/complex Lie algebra such that \(g \) and \(h \) have isomorphic Cartan three-forms and, in the real case, \(g \) has no simple direct summands of dimension 3, **then** \(h \) is isomorphic to \(g \).

(ii) **If** \(g \) contains no simple ideals of dimension 3 or 6, **then** every automorphism of the Cartan three-form of \(g \) is a Lie-algebra automorphism of \(g \) followed by a linear automorphism that acts on each simple direct summand as a multiplication by a cubic root of 1.
Conversely, if a decomposition of \(g \) into simple ideals has \(k \) summands of dimension 3 and \(l \) summands of dimension 6, then the Lie-algebra automorphisms of \(g \) form a subgroup of codimension \(5k + 12l \) in the automorphism group of the Cartan three-form.

We derive Theorem D from Theorem C, in Section 7.

1. Preliminaries

Consider the underlying real Lie algebra \(g \) of a complex Lie algebra \(h \). We denote by \(\beta \) the Killing form of \(g \), by \(\Lambda \) the operator in (0.5) associated with \(g \), and use the symbols \(\beta^h, \Lambda^h \) for their counterparts corresponding to \(h \). Obviously, whenever \(\sigma : g \times g \to \mathbb{C} \) is a symmetric \(\mathbb{C} \)-bilinear form,

\[
\begin{align*}
\text{i)} \quad & \beta = 2 \Re \beta^h, \\
\text{ii)} \quad & \Lambda(\Re \sigma) = \Re (\Lambda^h \sigma).
\end{align*}
\]

For (1.1.i), see also [6, formula (13.1)].

Remark 1.1. With \(g \) and \(h \) as above, it is clear from (1.1.i) that \(\Re \beta^h \) and \(\Im \beta^h \) span the real space of symmetric bilinear forms \(\sigma \) on \(g \) arising via (0.3) from linear endomorphisms \(\Sigma \) which are complex multiples of \(\text{Id} \).

Lemma 1.2. Given a linear endomorphism \(\Omega \) of a real/complex vector space \(T \), subspaces \(W_i \subset T \), and mutually distinct scalars \(a_i \), \(i = 1, \ldots, m \), such that \(\dim T < \infty \) and \(W_i \subset \ker (\Omega - a_i \text{Id}) \) for all \(i \), let \(W_1, \ldots, W_m \) span \(T \).

Then \(\Omega \) is diagonalizable, has the eigenvalues \(a_i \), and the corresponding eigenspaces \(W_i \), with \(i \) ranging over the set \(\{ i : W_i \neq \{ 0 \} \} \).

Proof. This is clear from linear independence of a union of linearly independent subsets of eigenspaces of \(\Omega \) corresponding to distinct eigenvalues: the subsets in question are bases of the subspaces \(W_i \). \(\square \)

Let \(g \) now be a Lie algebra over the scalar field \(\mathbb{F} = \mathbb{R} \) or \(\mathbb{F} = \mathbb{C} \). A fixed basis of \(g \) allows us to represent elements \(x, y \) of \(g \), symmetric bilinear forms \(\sigma \) on \(g \), and the Lie-algebra bracket operation \([\, , \] \) by their components \(x^i, y^i, \sigma_{ij} \) and \(C_{ijk} \) (the structure constants of \(g \)), so that \(\sigma(x, y) = \sigma_{ij} x^i y^j \) and \([x, y]^k = C_{ijk} x^j y^j \). Repeated indices are summed over. The Cartan three-form \(C \) with (0.8) has the components \(C_{ijk} = C_{ij}^r \beta_{kr} \), where \(\beta \) is the Killing form. The definition (0.1) of \(\beta \), its bi-invariance, and the Jacobi identity now read

\[
\begin{align*}
\text{i)} \quad & \beta_{ij} = C_{ip}^q C_{jq}^p, \\
\text{ii)} \quad & C_{ijk} \text{ is skew-symmetric in } i, j, k, \\
\text{iii)} \quad & C_{ij}^q C_{qk}^l + C_{jk}^q C_{qi}^l + C_{ki}^q C_{qj}^l = 0.
\end{align*}
\]

In the remainder of this section \(g \) is also assumed to be semisimple. We can thus lower and raise indices using the components \(\beta_{ij} \) of the Killing form \(\beta \) and \(\beta^{ij} \) of its reciprocal: \(C^{ijk} = \beta^{ir} \beta^{js} C_{rs}^{k} \), and \(C_{ij}^{sp} = \beta^{sk} C_{kp}^{i} \). For any \(x, y, z \in g \), one has \(2 \operatorname{tr} [(\text{Ad} x)(\text{Ad} y)(\text{Ad} z)] = C(x, y, z) \), that is,

\[
2 C_{ir}^{p} C_{jq}^{q} C_{kp}^{i} = C_{ijk}.
\]
In fact, by successively using the equalities \(C^k_p = q = C^p_qk \) and \(C^p_rT = -C^r_pT \) (both due to (1.2.ii)), then again (1.2.iii), and (1.2.i–ii), we see that

\[
2C^p_rT^rC^k_q = 2C^r_pT^rC^q_p = C^r_pT^r(C^q_prC^k_q + C^p_qrC^q_k) = C^r_pT^rC^q_pC^s_rC^k_s = \delta^s_pC^s_rC^k_s = C^s_r.
\]

Lowering the index \(k \), we obtain (1.3). Next, we introduce the linear operator

\[
T : [g^*]^{\otimes 2} \to [g^*]^{\otimes 2} \quad \text{with} \quad (T\sigma)_{ij} = T^{kl}_{ij}\sigma_{kl}, \quad \text{where} \quad T^{kl}_{ij} = 2C^p_{ip}C^r_{jpr}.
\]

Lemma 1.3. For \(T \) and the operator \(\Omega : [g^*]^{\otimes 2} \to [g^*]^{\otimes 2} \) given by (0.2),

(a) \(T \) leaves the subspaces \([g^*]^{\otimes 2}\) and \([g^*]\) invariant,

(b) \(\Omega \) coincides with the restriction of \(T \) to \([g^*]^{\otimes 2}\).

Proof. This is clear from (1.4) and the fact that, by (1.4), \(T\sigma \) is the same as \(\Omega\sigma \) in (0.2) – (0.3), except that now \(\sigma : g \times g \to \mathbb{F} \) need not be symmetric. \(\square \)

Remark 1.4. The curvature operator of a (pseudo)Riemannian metric \(\gamma \) on a manifold, acting on symmetric 2-tensors, has been studied by various authors [4], [2], [1, pp. 51–52]. It is given by \(4R(x,y)z = [[x,y],z] \) for left-invariant vector fields \(x,y,z \), that is, \(4R_{ij} = C_{ij}^pC^p_{kl} \). Lemma 1.3(b) now implies our claim, as \(T^{kl}_{ij} = -8\beta^{kp}R_{jps} \) due to (1.2.ii) and (1.4).

2. Proof of Theorem B

We use the component notation of Section 1. According to (0.5) and (0.7),

\[
\begin{align*}
(L\sigma)_{ijkl} &= \Lambda_{ijkl} \equiv r^s\sigma_{rs} \quad \text{with} \quad \Lambda_{ijkl} = C^r_{ij}C^s_{kl} + C^r_{jk}C^s_{il} + C^r_{ki}C^s_{jl}, \\
(P\gamma)_{pq} &= C^s_{ij}C^q_{kl}\zeta_{ijkl}, \quad \text{whenever} \quad \sigma \in [g^*]^{\otimes 2} \quad \text{and} \quad \zeta \in [g^*]^{\otimes 4}.
\end{align*}
\]

(2.1)

In any real/complex semisimple Lie algebra \(g \), for \(C^r_{ij}, T^{kl}_{ij} \) as in Section 1,

\[
2C^p_{ik}C^q_{jl}(C^r_{ij}C^s_{kl} + C^r_{jk}C^s_{li} + C^r_{ki}C^s_{jl}) = 2\delta^r_p\delta^q_s + T^{rs}_{ij} - T^{ik}_{ip}T^{js}_{js}.
\]

(2.2)

In fact, the first of the three terms naturally arising on the left-hand side of (2.2) equals \(2\delta^r_p\delta^q_s \) since, by (1.2.i–ii), \(C^{ij}_{ip}C^{kl}_{ij} = -\delta^r_p \) and \(C^{kl}_{ij}C^{rs}_{kl} = -\delta^s_q \). The other two terms coincide (as skew-symmetry of \(C^{ij}_{ip} \) in \(i,j \) gives \(C^{ij}_{ip}C^{kl}_{ij} = -C^{ij}_{ip}C^{kl}_{ji} = C^{ij}_{pq}C^{qk}_{ji} \)), and so they add up to \(4C^{kl}_{ij}C^{r}_{ip}C^{s}_{js} \), that is, \(4C^{kl}_{ij}C^{r}_{ip}C^{s}_{js} = 4C^{kl}_{ij}C^{r}_{ip} + 4C^{kl}_{ij}C^{s}_{ip}\).
3. Theorem A for exceptional Lie algebras

Lemma 3.1. For the operators $\Omega : [\mathfrak{g}^*]^{\otimes 2} \to [\mathfrak{g}^*]^{\otimes 2}$ and $T : [\mathfrak{g}^*]^{\otimes 2} \to [\mathfrak{g}^*]^{\otimes 2}$ with (0.2) and (1.4), in a real/complex semisimple Lie algebra \mathfrak{g} of dimension d,

(i) the restriction of T to $[\mathfrak{g}^*]^{\otimes 2}$ is diagonalizable, cf. Lemma 1.3(a), with the eigenvalues 0 and 1 of multiplicities $d(d-3)/2$ and d,

(ii) $\text{tr } T = 0$, $\text{tr } T^2 = 4d$, $\text{tr } T^3 = 2d$,

(iii) $\text{tr } \Omega^0 = \dim([\mathfrak{g}^*]^{\otimes 2}) = d(d+1)/2$, and $\text{tr } \Omega = -d$, $\text{tr } \Omega^2 = 3d$, $\text{tr } \Omega^3 = d$.

Proof.

Next, the scalars T_{kl}^{ij} representing T as in (1.4) give rise to analogous components $(T^2)^{ij}_{kl} = T^p_q T^k_l = (T^3)^{ij}_{kl} = T^r_p T^r_{pq}$ for T^2 and T^3. Using (1.2) and (1.4), we now obtain (ii).

Specifically, $T_{kl}^{ij} = 2C_{kp}^l C_{ip}^j = 0$ as well as $(T^2)^{kl}_{ij} = T_{kl}^p T^p_{pq} = 4 C^k_{rs} C^l_{pq} C^j_{rs} C^s_{lj} = 4 C^k_{rs} C^l_{pq} (C^j_{rs} C^s_{lj}) = 4 \beta_{rs} \beta_{lj} = 2d$ by (1.2),

while (1.3) and (1.2) yield $(T^3)^{kl}_{ij} = T_{kl}^p T^p_{pq} T^q_{rs} T^q_{pq} = 8 C^k_{ij} C^l_{ij} C^m_{io} C^m_{jo} = -8(C_{ij} C^m_{ij} C^m_{ij} C^m_{ij}) = -2 C_{ij} C^m_{ij} = 2 \beta_{ij} = 2d$.

Finally, as a consequence of (i), the trace of the restriction to $[\mathfrak{g}^*]^{\otimes 2}$ of every positive power of T equals d. Thus, by Lemma 1.3, $\text{tr } T^m = d + \text{tr } \Omega^m$ for every integer $m > 0$, and (iii) follows from (ii).

According to [5, p. ...], for the exceptional complex simple Lie algebras \mathfrak{g} appearing in the lines $(e_8) - (g_2)$ of Theorem A, the triples $\text{Mult} [\mathfrak{g}] = (1, l, m)$ of multiplicities listed in each line consists precisely of the dimensions of the three irreducible direct summands $\mathcal{V}_1, \mathcal{V}_l, \mathcal{V}_m$ of $[\mathfrak{g}^*]^{\otimes 2}$ for the adjoint representation of \mathfrak{g}. Every ad-invariant subspace of $[\mathfrak{g}^*]^{\otimes 2}$ must therefore be the direct sum of some subset of $\{\mathcal{V}_1, \mathcal{V}_l, \mathcal{V}_m\}$. This applies, in particular, to the subspace spanned by the Killing form β (which, consequently, coincides with \mathcal{V}_1), and to any eigenspace of Ω. Furthermore, Ω is β-self-adjoint [6, Lemma 11.2(ii)], and so, as each of the exceptional Lie algebras in question has a compact real form [7, Lemma .. on p. ...], Ω must be diagonalizable. As a result, $\mathcal{V}_1 \subset \ker (\Omega - 2 \text{Id})$, cf. (0.6.ii), while $\mathcal{V}_l \subset \ker (\Omega - \lambda \text{Id})$ and $\mathcal{V}_m \subset \ker (\Omega - \mu \text{Id})$ for some $\lambda, \mu \in \mathbb{C}$.

Setting $N = l + m - (d - 1)(d + 2)/2$, $P = l \lambda + m \mu + (2 + d)$, $Q = l \lambda^2 + m \mu^2 + (4 - 3d)$, $R = l \lambda^3 + m \mu^3 + (8 - d)$, where $d = \dim \mathfrak{g}$, and then $K = (\lambda + \mu)P - Q - \lambda \mu N$, $L = \lambda \mu P - (\lambda + \mu)Q + R$, $M = (d - 1)L + 2K$, we easily obtain $M = d(d - 3)(3(\lambda + \mu) - 1)$. However, Lemma 3.1(iii) states that
$N = P = Q = R = 0$. Thus, $K = L = M = 0$. As $d(d-3)\lfloor (3\lambda+\mu-1) \rfloor = M = 0$, we have $\lambda + \mu = 1/3$. Equating $P - l(\lambda + \mu - 1/3)$ and $P - m(\lambda + \mu - 1/3)$ with 0, we now see that $\lambda = (d+2-m/3)/(m-1)$ and $\mu = (d+2-l/3)/(l-m)$, as claimed in Theorem A; d in the lines $(e_6) - (g_2)$ equals 78, 133, 248, 52 and 14, which is clear since $N = 0$.

4. The remaining part of Theorem A

Throughout this section \mathcal{V} is a vector space of dimension $n \geq 3$ over the scalar field $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and h denotes a nondegenerate \mathbb{F}-bilinear form $\mathcal{V} \times \mathcal{V} \to \mathbb{F}$, assumed in addition to be symmetric or skew-symmetric:

$$h(w, v) = \pm h(v, w) \quad \text{for all } v, w \in \mathcal{V}, \quad (4.1)$$

with a fixed sign \pm. The Lie algebra $\mathfrak{gl}(\mathcal{V})$ of all linear endomorphisms $\mathcal{V} \to \mathcal{V}$ contains the Lie subalgebra \mathfrak{g} associated with the group of h-preserving linear automorphisms of \mathcal{V}. Explicitly,

$$\mathfrak{g} = \{ x \in \mathfrak{gl}(\mathcal{V}) : x^\ast = -x \}, \quad (4.2)$$

where $x^\ast \in \mathfrak{gl}(\mathcal{V})$ is the h-adjoint of x, characterized by $h(xv, w) = h(v, x^\ast w)$. Note that $x^{\ast\ast} = x$ and $(xy)^\ast = y^\ast x^\ast$ whenever $x, y \in \mathfrak{gl}(\mathcal{V})$.

A basis e_i of \mathfrak{g}, with $i = 1, \ldots, n$, allows us to represent vectors $v, w \in \mathcal{V}$, bilinear forms m on \mathcal{V}, and linear endomorphisms $x \in \mathfrak{gl}(\mathcal{V})$, including elements of \mathfrak{g}, by their components v^i, w^i, m_{ij} and x^i_j, so that $v = v^i e_i$, $m(v, w) = m_{ij} v^i w^j$ and $(xy)^i_j = x^i_k v^k_j$. Repeated indices are summed over. The reciprocal tensor of h has the components h^{ij} forming the inverse matrix of $[h_{ij}]$. Thus, $h^{ik} h_{kj} = \delta^i_j$, where δ^i_j (the Kronecker delta) equals x^i_j for $x = \text{Id}$. We use h^{ij} and h_{ij} to raise and lower indices:

\begin{align*}
\text{Lemma 4.1.} \quad \text{For } & \mathfrak{V}, n, \mathbb{F}, h, \pm, \mathfrak{g} \text{ as above, any } x, y \in \mathfrak{gl}(\mathcal{V}), \text{ and the linear endomorphisms } z \mapsto xzy \text{ and } z \mapsto xz^\ast y \text{ of } \mathfrak{gl}(\mathcal{V}). \\
&(i) \quad \text{tr } \{ z \mapsto xzy \} = (\text{tr } x) \text{ tr } y \text{ and } \text{tr } \{ z \mapsto xz^\ast y \} = \pm \text{ tr } x y^\ast, \\
&\text{(ii) } \beta(x, y) = (n + 2) \text{ tr } xy \text{ if } x, y \in \mathfrak{g} \text{ and } \beta \text{ is the Killing form of } \mathfrak{g}, \text{ with } (0.1).
\end{align*}

Proof. Let $a,b \in \mathfrak{gl}(n, \mathbb{F})$. As $(\text{Ad } a)\text{Ad } b$ sends $v \in \mathfrak{gl}(n, \mathbb{F})$ to $v \mapsto abv - ava + bva$, its $\mathfrak{gl}(n, \mathbb{F})$-trace is $2n(a, b) - 2(\text{tr } a) \text{ tr } b$, cf. (4.3). By Remark 4.2(i), if $a, b \in \mathfrak{sl}(n, \mathbb{F})$, this equals the $\mathfrak{sl}(n, \mathbb{F})$-trace of $(\text{Ad } a)\text{Ad } b$, which proves our claim in the case where $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{F})$.

Our assertion for $\mathfrak{g} = \mathfrak{su}(l,j)$ now follows from (??) applied to $\mathfrak{g} = \mathfrak{su}(l,j)$ and $\mathfrak{g}^\mathbb{F} = \mathfrak{sl}(n, \mathbb{F})$, cf. (??). \qed
\[g \text{ as above, any } v, w \in g, \text{ let } I F = \mathbb{R} \text{ or } I F = \mathbb{C}. \] For the linear endomorphism \[v \mapsto uvw \] of \(gl(n, I R) \),

the \(gl(n, I F) \)-trace of

\[(uvw)_q^s = u_p^s v_p^r w_q^r. \]

Remark 4.2. Let \(V \) be a vector space with \(\dim I F V < \infty \).

(i) If \(A(\tilde{V}) \subset \tilde{V} \) for a linear endomorphism \(A \) of \(V \) and a subspace \(\tilde{V} \subset V \),

then the trace of \(A : V \to V \) equals the trace of its restriction to \(\tilde{V} \).

(ii) Given a linear functional \(\alpha \in V^* \), and a vector \(w \in V \), one clearly has

\[\text{tr} (\alpha \otimes w) = \alpha(w), \]

where \(\alpha \otimes w \) acts on \(v \in V \) by \(v \mapsto \alpha(v)w \).

Remark 4.3. In the next two sections traces of linear endomorphisms \(A \) of \(sl(n, I F) \) will be evaluated as follows:

(a) write \(A \) as an endomorphism \(gl(n, I F) \), valued in \(sl(n, I F) \),

(b) find the \(gl(n, I F) \)-trace of the latter, from either (4.3) or Remark 4.2(ii),

(c) note that, by Remark 4.2(i), this is also the \(sl(n, I F) \)-trace of \(A \).

All vector spaces discussed here are assumed real or complex and finite-dimensional. An inner product in a vector space over \(I F = \mathbb{R} \text{ or } I F = \mathbb{C} \) is an \(I F \)-valued nondegenerate symmetric \(I F \)-bilinear form. Real inner-product spaces are often referred to as *pseudo-Euclidean*.

By an algebraic curvature tensor [1, p. 46] in an inner-product space \(V \) over \(I F = \mathbb{R} \text{ or } I F = \mathbb{C} \) we mean any \(I F \)-valued quadrilinear form \(\sigma : V \times V \times V \times V \to I F \), skew-symmetric both in the first and last pair of arguments, and satisfying the Bianchi identity (in the sense that it yields 0 when summed cyclically over the first three arguments). These properties are well-known [8, p. 54] to imply symmetry with respect to the switch of the first and last pair of arguments: \(\sigma(v, v', w, w') = \sigma(w, w', v, v') \).

Parts (a) and (b) were proved in [6, Lemma 17.1]. For the final clause of Theorem A, see [9, pp. 8 and 77].

Let \(\mathfrak{g} = sl(V) \). The \(S^2 \mathfrak{g} \) consists of tensors \(F_{ij}^{kl} \) such that \(F_{ij}^{li} = 0 \) and \(F_{ij}^{lj} = F_{ji}^{lk} \).

Given \(\phi, \Phi_i^j, S_{ij}^{kl}, \) and \(A_{ij}^{kl} \) such that \(\phi \) is a number, \(\Phi_i^j = 0, S_{ij}^{kl} = S_{ji}^{lk}, \)

\(S_{ij}^{kl} = 0, \) and \(A_{ij}^{kl} = -A_{ji}^{lk}, A_{kj}^{lj} = 0 \) we can construct

\[F_{ij}^{kl} = \phi \delta_i^k \delta_j^l + \Phi_i^j \delta_j^l + \Phi_j^i \delta_i^k + S_{ij}^{kl} + A_{ij}^{kl} \in S^2 \mathfrak{g} \]

and such a decomposition is unique.

In other words \(S^2 \mathfrak{g} = 1 \oplus \mathfrak{g} \oplus A \oplus S \), where \(A \) and \(S \) are spaces of tensors of the above symmetry. Note that for \(n = 3 \) the space \(A \) is empty.

\[\mathfrak{g} = so_n, \quad n \geq 5 \]
Let $\mathfrak{g} = \mathfrak{so}(V, g)$. The $S^2\mathfrak{g}$ consists of tensors F_{ijkl} such that $F_{ijkl} = -F_{jikl} = F_{klij}$.

Given $\phi, \Phi_{ij}, A_{ijkl},$ and S_{ijkl} such that ϕ is a number, $\Phi_{ij} = \Phi_{ji}, \Phi_{ij}g^{ij} = 0,$ $S_{ijkl} = -S_{jikl} = S_{klij}, S_{ijkl} + S_{kijl} + S_{ijkl} = 0, S_{ijkl}g^{jk} = 0,$ and $A_{ijkl} = -A_{jikl} = -A_{ikjl} = -A_{ijlk},$ we can construct

$$F = \phi g * g + \Phi * g + A + S \in S^2\mathfrak{g},$$

where $(X * Y)_{ijkl} = X_{ik}Y_{jl} + X_{jl}Y_{ik} - X_{il}Y_{jk} - X_{jk}Y_{il}$ and such a decomposition is unique.

In other words, $\mathfrak{g} = \Lambda^2 V$ and $S^2\mathfrak{g} = 1 \oplus S^2_0 V \oplus \Lambda^4 V \oplus W$ is the decomposition into irreducibles.

Let $\mathfrak{g} = \mathfrak{sp}(V, \omega)$. The $S^2\mathfrak{g}$ consists of tensors F_{ijkl} such that $F_{ijkl} = F_{jikl} = F_{klij}$.

Given $\phi, \Phi_{ij}, S_{ijkl},$ and A_{ijkl} such that ϕ is a number, $\Phi_{ij} = -\Phi_{ji}, \Phi_{ij}\omega^{ij} = 0, S_{ijkl} = S_{jikl} = S_{kijl} = S_{ijlk},$ and $A_{ijkl} = A_{jikl} = A_{klij}, A_{ijkl} + A_{ikjl} + A_{ijlk} = 0, A_{ijkl}\omega^{jk} = 0,$ we can construct

$$F = \phi \omega * \omega + \Phi * \omega + S + A \in S^2\mathfrak{g},$$

where $(X * Y)_{ijkl} = X_{ik}Y_{jl} + X_{jl}Y_{ik} + X_{il}Y_{jk} + X_{jk}Y_{il}$ and such a decomposition is unique.

In other words, $\mathfrak{sp}(V) = S^2V$ and $S^2\mathfrak{g} = 1 \oplus \Lambda^2_0 V \oplus S^4V \oplus W$ is the irreducible decomposition.

5. The spectrum of Ω in real simple Lie algebras

Theorem 5.1. Let Ω denote the operator with (0.2) corresponding to a fixed real simple Lie algebra \mathfrak{g}, and $\Omega^\mathfrak{h}$ its analog for \mathfrak{h} chosen so as to satisfy (0.4).

(i) Ω is always diagonalizable.

(ii) In case (0.4.a), Ω has the same spectrum as $\Omega^\mathfrak{h}$, including the multiplicities.

(iii) In case (0.4.b), the spectrum of Ω arises from that of $\Omega^\mathfrak{h}$ by first doubling the original multiplicities, and then including 0 as an additional eigenvalue with the required complementary multiplicity. Note that, according to Theorem A, 0 is not an eigenvalue of $\Omega^\mathfrak{h}$.

(iv) The eigenspace $\text{Ker} (\Omega - 2\text{Id})$ is spanned in case (0.4.a) by β, and in case (0.4.b) by $\text{Re} \beta^\mathfrak{h}$ and $\text{Im} \beta^\mathfrak{h}$, for the Killing forms β and $\beta^\mathfrak{h}$ of \mathfrak{g} and \mathfrak{h}.

Proof. By [6, Lemma 14.3(ii) and formulae (14.5) – (14.7)], if \mathfrak{g} is of type (0.4.a), the complexification of $[\mathfrak{g}^\mathfrak{c}]^\otimes 2$ may be naturally identified with its (complex) counterpart $[\mathfrak{h}^\mathfrak{c}]^\otimes 2$ for \mathfrak{h}, in such a way that $\Omega^\mathfrak{h}$ becomes the unique \mathfrak{c}-linear extension of Ω and the Killing form β and $\beta^\mathfrak{h}$ coincide. Now Theorem A, which clearly implies that
(v) **in complex simple Lie algebras** 2 is an eigenvalue of \(\Omega \) with multiplicity 1, combined with (0.6.ii) yields (i), (ii) and (iv) in case (0.4.a).

For \(g \) of type (0.4.a), Lemma 13.1 of [6] states the following. First, \([g^*]^2 \) is the direct sum of two \(\Omega \)-invariant subspaces: one formed by the real parts of \(C \)-bi-linear symmetric functions \(\sigma : h \times h \rightarrow \mathbb{C} \), the other by the real parts of functions \(\sigma : h \times h \rightarrow \mathbb{C} \) which are antilinear and Hermitian. Secondly, \(\Omega \) vanishes on the “Hermitian” summand, and its action on the “symmetric” summand is equivalent, via the isomorphism \(\sigma \mapsto \text{Re} \sigma \), to the action of \(\Omega^h \) on \(\mathbb{C} \)-bilinear symmetric functions \(\sigma \). With diagonalizability of \(\Omega^h \) again provided by Theorem A, this proves our remaining claims. (The multiplicities are doubled since the original complex eigenspaces are viewed as real, while the eigenspace \(\Omega^h \) for the eigenvalue 2 consists, by (v) and (0.6.ii), of complex multiples of \(\beta^h \), the real parts of which are precisely the real linear combinations of \(\text{Re} \beta^h \) and \(\text{Im} \beta^h \).)

Remark 5.2. We will need the well-known fact [9, p. 30] that, up to isomorphisms, \(\mathfrak{sl}(n, \mathbb{R}) \) as well as \(\mathfrak{su}(p,q) \) with \(p + q = n \) and, if \(n \) is even, \(\mathfrak{sl}(n/2, \mathbb{H}) \), are the only real forms of \(\mathfrak{sl}(n, \mathbb{C}) \).

Lemma 5.3. The only complex, or real, simple Lie algebras of dimensions less than 7 are, up to isomorphisms, \(\mathfrak{sl}(2, \mathbb{C}) \) or, respectively, \(\mathfrak{sl}(2, \mathbb{R}) \), \(\mathfrak{su}(2) \), \(\mathfrak{su}(1,1) \) and \(\mathfrak{sl}(2, \mathbb{C}) \), the last one being both complex three-dimensional and real six-dimensional. Consequently,

(i) a complex simple Lie algebra cannot be six-dimensional,

(ii) there is just one isomorphism type of a complex or, respectively, real simple Lie algebra of dimension 3 or, respectively, 6, both represented by \(\mathfrak{sl}(2, \mathbb{C}) \),

(iii) \(\dim g \notin \{1, 2, 4, 5 \} \) for every real or complex simple Lie algebra \(g \).

Proof. By the final clause of Theorem A, in the complex case \(\mathfrak{sl}(2, \mathbb{C}) \) is the only possibility. For real Lie algebras, one can use Remark 5.2 and (0.4). \(\square \)

Remark 5.4. Using Theorem 5.1, we can now justify the claim, made in [6, Remark 12.3], that 1 is not an eigenvalue of \(\Omega \) in any real or complex simple Lie algebra except the ones isomorphic to

\[
\mathfrak{sl}(n, \mathbb{R}), \mathfrak{sl}(n, \mathbb{C}), \mathfrak{su}(p,q) \quad \text{or, for even \(n \) only,} \quad \mathfrak{sl}(n/2, \mathbb{H}),
\]

where \(n = p + q \geq 3 \). In fact, by Theorem A and parts (ii) – (iii) of Theorem 5.1, the only real or complex simple Lie algebras in which \(\Omega \) has the eigenvalue 1 are, up to isomorphisms, \(\mathfrak{sl}(n, \mathbb{C}) \) for \(n \geq 3 \) and their real forms. According to Remark 5.2, these are all included in the list (5.1).

6. **Proof of Theorem C**

Let \(\sigma \in [g^*]^2 \) and \(\Delta \sigma = 0 \). Hence, by (0.5), \(\sigma([u,v],[w,w']) + \sigma([v,w],[u,w']) + \sigma([w,u],[v,w']) = 0 \) for all \(u,v,w,w' \) in \(g \). Thus, \(\sigma([u,v],[w,w']) = 0 \) whenever \(u,v \in h_i \) and \(w,w' \in h_j \) with \(j \neq i \). The summands \(h_i \) and \(h_j \), being simple, are
spanned by such brackets \([u, v]\) and \([w, w']\), so that \(h_i\) is \(\sigma\)-orthogonal to \(h_j\). As this is the case for any two summands, we obtain (a), the right-to-left inclusion being obvious. Next,

\[
\text{Ker} (\Omega - 2 \text{Id}) \subset \text{Ker} \Lambda \subset \text{Ker} (\Omega - 2 \text{Id}) \oplus \text{Ker} (\Omega + \text{Id}). \tag{6.1}
\]

In fact, the second inclusion is obvious from Theorem B; the first, from Theorem 5.1(iv), (0.6.i) and (1.1.ii) applied to complex multiples \(\sigma\) of \(\beta h\).

Part (b) of Theorem C is immediate, as \([g^*]^\wedge 3 = \{0\}\) when \(\dim g = 3\). Also, if \(g\) is simple and \(\dim g = 6\), Lemma 5.3(iii) implies that \(g\) is real and isomorphic to \(sl(2, \mathbb{C})\). From (1.1.ii), with \(\Lambda h\sigma = 0\) due to (b), one in turn obtains \(F \subset \text{Ker} \Lambda\) for \(F = \{\text{Re } \sigma : \sigma \in [g^*]^{\odot 2}\}\), where \([g^*]^{\odot 2}\) denotes the space of all symmetric \(\mathbb{C}\)-bilinear forms \(\sigma : g \times g \rightarrow \mathbb{C}\). As \(\text{Re } \sigma\) uniquely determines such \(\sigma\), that is, the operator \(\sigma \mapsto \text{Re } \sigma\) is injective, we have \(\dim_{\mathbb{R}} F = 12\). The second inclusion in (6.1) is therefore an equality, and \(F = \text{Ker} \Lambda\), for dimensional reasons:

\[
\text{Ker} \Lambda \text{ contains the subspace } F \text{ of real dimension 12, equal, in view of part (a) of Theorem A and Theorem 5.1(iii), to } \dim_{\mathbb{R}} [\text{Ker} (\Omega - 2 \text{Id}) \oplus \text{Ker} (\Omega + \text{Id})].
\]

This yields assertion (c) in Theorem C and the final comment about (c).

Let \(g\) now be simple, with \(\dim g \not\in \{3, 6\}\). Due to Theorems A and 5.1(ii)-(iii), \(-1\) is not an eigenvalue of \(\Omega\). Thus, \(\text{Ker} (\Omega + \text{Id}) = \{0\}\), and the inclusions in (6.1) are equalities which, by Theorem 5.1(iv), completes the proof.

7. Proof of Theorem D

For a real/complex Lie algebra \(g\), let the mapping \(\Phi : [g^*]^\wedge 3 \times g^{\odot 2} \rightarrow [g^*]^\wedge 4\) be defined by declaring \([\Phi(C, \mu)]((u, v, w, w')) = \mu(C(u, v), C(w, w')) + \mu(C(v, w), C(u, w'))\) whenever \(\mu \in g^{\odot 2}\) is treated as a symmetric real/complex-bilinear form on \(g^*\), and \(C(u, v)\) stands for the element \(C(u, v, \cdot)\) of \(g^*\). If, in addition, \(g\) is semisimple, the isomorphic identification \(g \approx g^*\) provided by the Killing form \(\beta\) induces an isomorphism \([g^*]^{\odot 2} \rightarrow g^{\odot 2}\), which we write as \(\sigma \mapsto \sigma^\sharp\). The definition (0.5) of \(\Lambda\) then gives, for the Cartan three-form \(C\) with (0.8),

\[
\Phi(C, \sigma^\sharp) = \Lambda \sigma \quad \text{whenever } \sigma \in g^{\odot 2}. \tag{7.1}
\]

Theorem D is a trivial consequence of the following lemma combined with Lemma 5.3(ii) and the fact that, by multiplying a Lie-algebra bracket operation \([, ,]\) by a nonzero scalar, one obtains a Lie-algebra structure isomorphic to the original one.

Lemma 7.1. In a real or complex semisimple Lie algebra \(g\), the Cartan three-form and the vector-space structure of \(g\) uniquely determine each of the following:

(i) the vector subspaces constituting the simple direct summand ideals of \(g\),
(ii) up to multiplications by cubic roots of \(1\), the restrictions of the Lie-algebra bracket of \(g\) to all such summands of dimensions other than \(3\) or \(6\),
(iii) the Lie-algebra isomorphism types of all summand ideals as above except those of real dimension \(3\).
Proof. By (7.1), \(\ker \Delta = \{ \sigma^* : \sigma \in \ker \Lambda \} \) for the real/complex-linear operator \(\Delta : \mathfrak{g}^{\otimes 2} \to (\mathfrak{g}^*)^\wedge^4 \) with \(\Delta \mu = \Phi(C, \mu) \), where \(C \) is the Cartan three-form. Then, with “minimality” referring to inclusion between the images \(\mu(\mathfrak{g}^*) \subset \mathfrak{g} \) of \(\mu \in \ker \Delta \subset \mathfrak{g}^{\otimes 2} \) viewed as linear operators \(\mu : \mathfrak{g}^* \to \mathfrak{g} \),

(iv) the simple direct summands of \(\mathfrak{g} \) are precisely the minimal elements of the set

\[\mathbf{S} = \{ \mu(\mathfrak{g}^*) : \mu \in \ker \Delta, \ \text{and} \ \dim \mu(\mathfrak{g}^*) = 3 \ \text{or} \ \dim \mu(\mathfrak{g}^*) \geq 6 \}. \]

In fact, \(\mathbf{S} \) is formed by the images of linear endomorphisms \(\Sigma : \mathfrak{g} \to \mathfrak{g} \) with rank \(\Sigma \notin \{ 0, 1, 2, 4, 5 \} \), corresponding via (0.3) to elements \(\sigma \in \ker \Lambda \) of the same ranks. To describe all such \(\Sigma \), we use (a) – (d) in Theorem C. Specifically, by (a), these \(\Sigma \) are direct sums of linear endomorphisms \(\Sigma_i \) of the simple direct summands \(\mathfrak{h}_i \) of \(\mathfrak{g} \), while \(\Sigma_i \) are themselves subject to just two restrictions: one due to the exclusion of ranks 0, 1, 2, 4 and 5, the other depending, in view of (b) – (d), on \(l_i = \dim \mathfrak{h}_i \), as follows. If \(l_i = 3 \), (b) states that \(\Sigma_i \) is only required to be \(\beta \)-self-adjoint (to account for symmetry of \(\sigma_i \) related to \(\Sigma_i \) as in (0.3), with \(\mathfrak{g} \) replaced by \(\mathfrak{h}_i \)). Similarly, from (d) and the final comment about (d) in Theorem C, combined with Remark 1.1,

\[\Sigma_i \] is a nonzero scalar multiple of \(\text{Id} \) when \(l_i \notin \{ 3, 6 \} \),

the scalar field being \(\mathbb{C} \) if \(\mathfrak{g} \) is either complex or real of type (0.4.a), and \(\mathbb{R} \) if \(\mathfrak{g} \) is real of type (0.4.a).

In the remaining case, \(l_i = 6 \) due to Lemma 5.3(iii); by (c) and the final clause of Theorem C, \(\Sigma_i \) is then complex-linear and \(\beta \)-self-adjoint, cf. Remark, but otherwise arbitrary.

The image \(\Sigma(\mathfrak{g}) \) of any \(\Sigma \) as above is the direct sum of the images of its summands \(\Sigma_i \), so it can be minimal only if there exists just one \(i \) with \(\Sigma_i \neq 0 \). For this \(i \), minimality of \(\Sigma(\mathfrak{g}) = \Sigma_i(\mathfrak{h}_i) \) further implies that \(\Sigma(\mathfrak{g}) = \mathfrak{h}_i \). In fact, as a consequence of the last paragraph, the cases \(l_i = 3 \) and \(l_i \notin \{ 3, 6 \} \) are obvious (the former since rank \(\Sigma_i \geq 3 \)) while, if \(l_i = 6 \), complex-linearity of \(\Sigma_i \) precludes, besides 0, 1, 2, 4 and 5, also 3 from being the value of its real rank.

We thus obtain one of the inclusions claimed in (iv): every minimal element of \(\mathbf{S} \) equals some summand \(\mathfrak{h}_i \). Conversely, let \(\mathfrak{h}_i \) be a fixed summand. First, \(\mathfrak{h}_i \) is an element of \(\mathbf{S} \), realized by \(\Sigma \) with \(\Sigma_i = \text{Id} \) and \(\Sigma_j = 0 \) for all \(j \neq i \). Secondly, minimality of \(\mathfrak{h}_i \) is clear from (7.2) if \(l_i \notin \{ 3, 6 \} \), while for \(l_i = 3 \) or \(l_i = 6 \) it follows from the restriction on rank \(\Sigma \) combined, in the latter case, with complex-linearity of \(\Sigma_i \). This proves (iv).

Assertion (i) is now obvious as \(\Delta \) and \(\mathbf{S} \) depend only on \(C \) and the vector-space structure of \(\mathfrak{g} \). Next, let us fix \(i \) with \(l_i \notin \{ 3, 6 \} \). Elements \(\mu \) of \(\ker \Delta \) having \(\mu(\mathfrak{g}^*) = \mathfrak{h}_i \) correspond, via (0.3) followed by the assignment \(\sigma \mapsto \mu = \sigma^i \), to endomorphisms \(\Sigma \) of \(\mathfrak{g} \) which satisfy (7.2) and are equal to 0 on \(\Sigma_j \) for \(j \neq i \). Any such \(\mu \), now treated as a symmetric bilinear form on \(\mathfrak{g}^* \), is therefore obtained from a symmetric bilinear form \(\mu_i \) on \(\mathfrak{h}_i^* \) by the trivial extension to \(\mathfrak{g}^* \), that is,
pullback under the obvious restriction operator $\mathfrak{g}^* \to \mathfrak{h}_i^*$. The forms μ_i in question are, according to (7.2), nonzero multiples of the reciprocal of the Killing form of \mathfrak{h}_i. Thus, the set of such multiples is uniquely determined by C and the vector-space structure of \mathfrak{g}, which yields (ii) since, in any semisimple Lie algebra, $[,]$ depends bilinearly on the Cartan three-form C and the reciprocal of the Killing form β. (A cubic root of 1 must be allowed as a factor: the multiplication of $[,]$ by a scalar r results in multiplying β and C by r^2 and r^3.)

Finally, (ii) and Lemma 5.3(ii) easily yield (iii).

Acknowledgements

The authors thank Robert Bryant and Nigel Hitchin for their helpful comments about Theorem D.

References

[1] A. L. Besse, *Einstein Manifolds*, Ergeb. Math. Grenzgeb. (3) 10, Springer-Verlag, Berlin 1987. Zbl 0613.53001 MR 0867684
[2] J. P. Bourguignon and H. Karcher, Curvature operators: pinching estimates and geometric examples. *Ann. Sci. École Norm. Sup.* (4) 11 (1978), 71–92. Zbl 0386.53031 MR 0493867
[3] R. Bryant, private communication, February 2009.
[4] E. Calabi and E. Vesentini, On compact, locally symmetric Kähler manifolds. *Ann. of Math.* (2) 71 (1960), 472–507. Zbl 0100.36002 MR 0111058
[5] P. Deligne, La série exceptionnelle de groupes de Lie. *C. R. Acad. Sci. Paris* (1) 322 (1996), 321–326.
[6] A. Derdzinski and Š. R. Gal, Indefinite Einstein metrics on simple Lie groups. To appear in *Indiana Univ. Math. J.* Available at arXiv 1209.6084.
[7] M. Hausner and J. T. Schwartz, *Lie Groups, Lie Algebras*, Gordon and Breach, New York, 1968. Zbl 0192.35902 MR 0235065
[8] J. Milnor, *Morse Theory*, Annals of Math. Stud. 51, Princeton University Press, Princeton, NJ, 1963. Zbl 0108.10401 MR 0163331
[9] A. L. Onishchik, *Lectures on Real Semisimple Lie Algebras and their Representations*, ESI Lectures in Mathematics and Physics, EMS, Zürich, 2004. Zbl 1080.17001 MR 2041548