Chemolithotrophy on the Noachian Martian breccia NWA 7034 via experimental microbial biotransformation

Tetyana Milojevic, Mihaela Albu, Denise Köbl, Gerald Kothleitner, Robert Bruner & Matthew L. Morgan

Multiple lines of evidence indicate an active hydrogeological history of Mars and chemolithoautotrophy-suited environments within its Noachian terrains. As a result, one of the primary aims of upcoming missions to Mars is to search for signs of ancient life. Here we report on laboratory-scaled microbially assisted chemolithoautotrophic biotransformation of the Noachian Martian breccia Northwest Africa (NWA) 7034 composed of ancient (~4.5 Gyr) crustal materials from Mars. Nanoanalytical hyperspectral analysis provides clues for the trafficking and distribution of meteorite inorganic constituents in the microbial cell. We decipher biomineralization patterns associated with the biotransformation and reveal microbial nanometer-sized lithologies located inside the cell and on its outer surface layer. These investigations provide an opportunity to trace the putative bioalteration processes of the Martian crust and to assess the potential biogenicity of Martian materials.
Recent works heightened interest in the search for biologically driven alterations on Mars and its potential as a habitat for past or present life1\texttextendash4. Along with an active hydrogeological history of Mars, past chemolithoautotrophy-based habitability was suggested for lacustrine sediments at Gale crater1,2, many instances of phyllosilicate-containing mineral deposits have been reported5\textendash10, and eventually, a thermal habitability window of the early Mars crust was also featured11. A primary aim of the upcoming Mars exploration missions (Mars 2020 and ExoMars) is to search for signs of ancient life. Rovers specifically equipped and well suited to search for signs of life will traverse and explore the surface of Mars, focusing on the Noachian terrains with moisture-rich ancient geological history and mineral springs that could have been colonized by microorganisms. While a range of environments that would have been well suited to support a potential Martian chemolithoautotrophy have been proposed12,13,14, our understanding of putative biosignatures to be targeted in Martian materials is still poor. In this connection, a valuable source of information can be extracted from microbial fingerprints of chemolithotrophic life on Martian materials. Chemolithoautotrophy, as the ancient metabolic form of life15,16 is thought to have enabled the transition of geochemistry into geobiochemistry and served as a biochemical link between the mineral world and the last universal common ancestor15,17\textendash19. Chemolithoautotrophic microorganisms employ an astonishing number of metabolic pathways to extract energy from diverse inorganic electron donors and acceptors20, shaping global biogeochemical cycles. Chemolithoautotrophs that thrive in geothermal springs metabolize inorganic chemicals, a source of energy that provided the most likely habitable niches for life on early Mars. Hydrothermal settings were widespread during the early geologic history of Mars21,22 and continued into the late Amazonian period23\textendash25. The tectono-magmatic complexes Tharsis and Elysium have long been known as late Noachian\textendash}early Hesperian hydrothermal environments on Mars21,22. Recently, a deep-water hydrothermal environment on ancient Mars (>3.8 Ga (billion years ago)) has been interpreted for Eridania basin based on massive clay-, carbonate-, and sulfide-bearing deposits26. Hydrothermal spring deposits of opaline silica sinter and the case for ancient hot springs in Gusev crater have also recently been reported27,28. Additionally, evidences of past hydrothermal activity in the Martian crust have been derived from the analysis of Martian meteorites29,30. As environmental conditions with hot spring settings were similar on early Earth and early Mars31, thermophilic chemolithoautotrophs are under the scope of particular interest32. Moreover, a number of studies have suggested thermophilicity of the last universal common ancestor, implying that life on Earth may have evolved from heat-loving organisms33,34.

Only a few works have been carried out for probing microbial interactions with astromaterials in relation to the study of Martian soil as a possible habitat for microorganisms. Single laboratory investigations on meteorites and Mars regolith analogs have been performed, demonstrating that some iron-oxidizing chemolithotrophs (e.g., \textit{Leptospirillum ferrooxidans}, \textit{Acidithiobacillus ferrooxidans}) could colonize metal-bearing astromaterials and use them as energy sources35\textendash37. The microbial communities, which in situ colonize stony meteorites upon their fall to Earth, have been recently accessed38. Micrometer/nanometer-scale patterns and morphologies at the meteorite surfaces have also been previously investigated in connection with biogenicity criteria for the identification of fossil extraterrestrial life39,40. Using a chondrite meteorite with relatively high iron abundance, we have recently reported chemical analysis of the meteorite\textendash}microbial interface at nanometer-scale spatial resolution41. In order to properly assess Martian relevant biosignatures, it is crucially important to consider chemolithotrophs in Martian relevant geological and mineralogical settings. Given that returned Martian mineralogical samples are to date inaccessible, Martian meteorites are currently the only samples from Mars available on Earth. We cultivated the extreme thermoacidophile \textit{Metallosphaera sedula}, an ancient inhabitant of terrestrial thermal springs42, capable of chemolithoautotrophic growth on terrestrial mineral ores43,44 and astromaterials37,41, on the genuine Noachian Martian breccia Northwest Africa (NWA) 703445,46 (Supplementary Fig. 1 and Fig. 1) and investigated microbial\textendash}meteorite interactions at nanometer scale. The compositional variety of the polymictic regolith breccia NWA 7034 closely corresponds to the estimated bulk-crust composition of Mars45,47,48 and to visible-infrared reflectance spectra of the Martian surface measured from orbit49,49. This breciated regolith sample represents the
oldest known Martian crust of the ancient crystallization ages (~4.5 Ga)28,45,46, with predominant plagioclase feldspars (38.0 ± 1.2\%), low-Ca pyroxene (25.4 ± 8.1\%), clinopyroxenes (18.2 ± 4.0\%), iron-oxides (9.7 ± 1.3\%), alkali feldspars (4.9 ± 1.3\%),apatite (3.7 ± 2.6\%), and to a lesser amount, chromite and iron-sulfides27.

Results and discussion

Growth, elemental ultrastructural, and nanoanalytical spectroscopy analyses. M. sedula was cultivated on the Noahian Martian regolith breccia NWA 7034 (Supplementary Fig. 1). The major lithologies of NWA 7034 used in the study were examined by nanometer-scale point analysis of the NWA 7034 thin section using energy-dispersive X-ray spectroscopy (EDS) in scanning transmission electron microscopy (STEM) mode and high-resolution scanning transmission electron microscopy (HR-STEM) techniques. Representative images and corresponding EDS elemental maps (Fig. 1 and Supplementary Fig. 2) indicate the presence of various lithologic components (Supplementary Table 1). The plagioclase-rich areas along with the edges of pyroxene29 were identified on the NWA 7034 thin section (Supplementary Table 1). Some regions were locally enriched with pyrite29 (Supplementary Table 1). Characteristic titanium-bearing ilmenite veins29 were embedded in magnetite clasts (Fig. 1, Supplementary Table 1, and Supplementary Fig. 2). Cl-, P-, and Ca-richapatite grains26 that exhibit amorphous textures and rounded morphologies were also present (Fig. 1, Supplementary Fig. 2, and Supplementary Table 1). M. sedula was capable of chemolithoautotrophic growth on NWA 7034, breaking down its mineral material and solubilizing metals into the leachate solution (Supplementary Fig. 3). Examination of the metal-mobilizing capacities of M. sedula by means of inductively coupled plasma mass spectrometry (ICP-MS) analysis showed a release of sulfur (S), along with a leaching of Na, Mg, P, K, and Ca as major elements released from NWA 7034 (Supplementary Fig. 3a). The mobilization of other minor and trace elements (B, Ni, Mo, Li, Rb, Sr, Sb, Cs, and W) was also detected (Supplementary Fig. 3b, c). Viewed from the bioenergetic perspective, pyrite(FeS\textsubscript{2})-rich domains within the proto-breccia clast of NWA 703429 can provide reduced sulfur and iron species as an energy source for M. sedula. Other Fe2+-bearing minerals (e.g., ilmenite FeTiO\textsubscript{3}; magnetite Fe2+Fe3+O\textsubscript{4}–2; pyroxene and plagioclase with Fe2+ contributing to the total iron budget) can potentially satisfy the energy demand for M. sedula respiration needs, offering the metal ions of a suitable redox potential (Fe2+/3 for its biooxidative metabolic activity. Resulting microbially produced Fe3+ species promote further meteorite oxidation and enable the mobilization of metals (including abundant meteoritic Fe3+ species) from the solid meteorite matrix into the solution. Such a joint microbially produced and abiotic Fe3+ pull acts effectively as an oxidizing agent and facilitate the further process of metal mobilization, thus destroying the meteorite structure. Moreover, manganese biooxidation could also implement in NWA 7034 elemental dissolution mediated by M. sedula57,43 (e.g., see Mn elemental map in Supplementary Fig. 2 for the Mn content in NWA 7034).

Elemental ultrastructural analysis of M. sedula grown on NWA 7034 by using EDS in STEM mode showed that the cells are encased in an Fe-, Mn-, Al-, and Pbearing layer of 50–100 nm thickness that separates intracellular content from its surroundings (Figs. 2, 3 and Supplementary Figs. 4, 5). Fe has a pronounced stronger intracellular signal; however, a substantial portion of Fe is also localized in the cell surface crust (Fig. 2 and Supplementary Fig. 5). STEM inspection of the raw (Fig. 1 and Supplementary Fig. 2) and abiotically treated NWA 7034 material (Supplementary Figs. 6, 7 and Supplementary Table 2) did not reveal the presence of similar cellular assemblages.

Further HR-STEM analysis of M. sedula grown on NWA 7034 revealed that encrusted outer layer has a crystalline microstructure with lattice parameters close to different phosphate assemblages: Fe phosphates, Mn phosphates, and Al phosphates (Fig. 3a, b and Supplementary Table 3; see Supplementary Table 4 for the inter-atomic spacing d-values). Closely related to M. sedula species Sulfolobus acidocaldarius also forms Fe phosphates on the cell surface, followed by complete encrustation with Fe phosphates upon incubation in the Fe-rich medium30. Mn, Si, and Zn primarily localize intracellularly in M. sedula (Supplementary Fig. 4), while N, O, Fe, Na, Mg, S, Cr, and As are evenly dispersed through the cell (Fig. 2, Supplementary Figs. 5, 8, and Supplementary Table 5). The As content has been reported in the meteorite NWA 7533 (paired with NWA 7034)51. Cells of M. sedula were capable of forming budding vesicles (Fig. 4 and Supplementary Fig. 5), similar to the vesicular blebs which we previously observed during the growth of this archaeon on terrestrial minerals43,52. We have also previously observed the formation of M. sedula vesicles during growth of the ordinary chondrite NWA 117241. Just like the cells, the vesicles are also encased in a Fe-, Mn-, Al-, and Pbearing layer (Fig. 4 and Supplementary Figs. 5, 8). M. sedula vesicles have been known to catalyze iron oxidation and promote mineral solubilization under the energy-limited lithoautotrophic conditions53. Such vesicles are biogeochemically active and contain a functional protein machinery involved in iron oxidation, metal release, DNA compaction, and attachment to mineral surface53. Our STEM-EDS analysis detected Fe, Mn, S, Zn, Cr, Na, and As inside the vesicles (Supplementary Fig. 5), indicating vesicular ability to immobilize metals from NWA 7034. Additionally, intensive vesiculation of M. sedula cells can function as an efficient mechanism of extracellular metal sequestration by binding with chelating agents (non-specific vesicular proteinaceous material and specific enzymatic detoxification of the metal to a less toxic form)53.

Intracellular nanocrystalline deposits. The NWA 7034–grown cells at the initial stages of biomineralization showed the accumulation of the blade-shaped structures protruding inwards from the cell wall to the cellular interior (Fig. 3c, d and Supplementary Fig. 4a–d). HR-STEM imaging revealed that these blades are associated with nanometer-sized near-spherical aggregates, mainly comprised of Fe, O, Si, and Mn as suggested by STEM-EDS analysis (Fig. 3c, f). These structural nanoassemblages were rather of amorphous nature at the early stages of biomineralization (Supplementary Fig. 4d), most likely representing an initial period of new mineral phase formation. At the late biomineralization stages of cell encrustation (Fig. 4), the cellular interior had heterogeneous, rugged, and coarse character (Fig. 4a and Supplementary Fig. 5), and these metal-bearing nanoassemblages were converted into intracellular crystalline deposits of FeO\textsubscript{5}2+, MnO\textsubscript{4}2–, and mixed Mn\textsubscript{3}O\textsubscript{4}–containing phases that could not be identified through the ICSD database (Fig. 4 and Supplementary Fig. 9, see Supplementary Table 4 for the inter-atomic spacing d-values). The electron energy loss spectroscopy (EELS) measurements, acquired locally (point analysis with a beam diameter of 1 Å) in STEM mode, demonstrated that the Fe\textsubscript{L2,3}-edges from the heavily encrusted M. sedula cells show a predominant presence of Fe3+ species (Fe\textsubscript{L2,3}-edge at ~710 eV, see Fig. 4e and Supplementary Fig. 10). Accomplished microbial Fe3+ oxidation56,37 leads to cell encrustation and entombment in the mineralized form of different crystalline deposits with the predominant form of Fe3+. At the same time, intracellular nanocrystalline deposits have a rather complex character: apart from the aforementioned Fe and Mn oxides, mixed Mn\textsubscript{3}O\textsubscript{4}–2
containing phases are also present (Supplementary Fig. 9a and Supplementary Table 4), which requires further thorough clarification by synchrotron-assisted crystallography investigations.

It is noteworthy that the patterns of metal acquisition of this archaeon grown on the genuine Martian mineral material differ substantially from our recently reported observations of its growth on the ordinary chondrite NWA 117241. Encrustation with the thick Fe(Mn, Al)/P-outer layer with P solely represented in this layer, intracellular formation of crystalline phases of Fe, Mn oxides, and mixed Mn silicates are distinguishable features of growth on the Noachian Martian breccia. In the case of NWA 1172, our TEM observations showed that the encrusted cell remnants and iron-bearing accumulations on the cell surface of M. sedula have an amorphous structure, with a mixture of different amorphous iron-oxides/hydroxides41. A similar encrustation of the cell surface, but of a simpler, homogenous and not complex nature, was observed earlier for M. sedula cultivated on metal-containing terrestrial materials43,52. When cells of M. sedula are grown on terrestrial minerals (e.g., tungsten mineral scheelite), then they are prone to encapsulation with homogenous crystalline tungsten-harboring nanolayers deposited over the microbial cell surface37. The observed multifaceted and complex biomineralization patterns of M. sedula grown on the Noachian breccia NWA 7034 can be well stated by rich, diverse mineralogy and multimeatallic nature of this ancient Martian meteorite. The drastic difference between the biomineralization patterns of NWA 7034- and NWA 1172-grown cells of M. sedula emphasizes the importance of experiments on genuine Martian materials for Mars-relevant astrobiological investigations.

Organometallic fingerprints. Further geochemical analysis of the biologically mediated alteration of the meteorite material was performed by investigating microbial fingerprints left on the Noachian breccia NWA 7034. Electron paramagnetic resonance (EPR) measurements were implemented to identify paramagnetic species of transition metal ions (e.g., Fe) in the NWA 7034 sample and to investigate the impact of M. sedula on their paramagnetic centers, as well as to identify possible newly formed paramagnetic complexes and reactive intermediates in the biologically

Fig. 2 Elemental ultrastructural analysis of M. sedula grown on NWA 7034. The HAADF-STEM image of M. sedula cells used for the EDS spectrum image acquisition and corresponding extracted nitrogen (N), phosphorus (P), oxygen (O), iron (Fe), arsenic (As), aluminum (Al), manganese (Mn), sulfur (S), silicon (Si), chromium (Cr), zinc (Zn), and calcium (Ca) elemental maps.
processed NWA 7034. The EPR spectra obtained from raw, abiotic, and biogenic NWA 7034 samples were characterized by a signal with a broad linewidth (Supplementary Fig. 11), which might refer to multiple ionic paramagnetic species. Bio- transformation of the Noachian breccia NWA 7034 after the exposure to *M. sedula* resulted in a shifted g-value 2.93 at 273 K, compared to the raw and abiotically treated NWA 7034 material (g-values = 3.58/3.24, Supplementary Fig. 11). Low-spin ferric heme EPR resonances with highly specific g-values ~ 2.9 are assigned to heme ligated axially by an imidazole ligand of the proximal histidine, bound to the iron with Fe–N distances in respiratory enzymes such as cytochromes. A group of microbial heme-containing enzymes are characterized by this distinctive spectral feature of g-values = 2.93. These enzymes have been indicated as playing a role in electron transfer linked to energy-yielding processes in various chemolithotrophs, including *M. sedula*, and most likely their heme prosthetic group contributes to a broad signal at $g = 2.93$ detectable solely after biotransformation of NWA 7034 (Supplementary Fig. 11). Heme-containing geoporphyrins can be resistant to degradation over long periods of time, for instance, in geological context of ~500 Ma-old oil shales. Abiotically formed ancestors of heme-

Fig. 3 High-resolution STEM (HR-STEM) analysis of *M. sedula* grown on NWA 7034. **a, b** Representative HR-STEM images of biogenic mineral deposits on the outer layer of *M. sedula* cell. Inset in panel (b) represents the fast fourier transform (FFT) pattern consistent with the phases of Fe, Mn, Al phosphates listed in Supplementary Tables 3 and 4. **c** The HAADF-STEM image of *M. sedula* cells. **d** Magnified HAADF-STEM image showing the amorphous blade-shaped structures protruding cellular environment. **e** The HR-STEM image of the intracellular amorphous nanoassemblages. **f** Energy-dispersive X-ray (EDS) spectra acquired from the nanometer-sized near-spherical aggregates in panel (e). Cu peaks in EDS spectra are due to the TEM grid and U peak is due to the staining solution.
containing porphyrins could have accumulated in primordial rock pools. The extreme stability of certain heme-containing fossils (e.g., geoporphyrins) makes them attractive targets for the search of extinct life on Mars. However, care must be taken in distinguishing their biogenicity from abiotically formed heme-containing compounds, e.g., abiotic porphyrins.

Fourier-transform infrared (FT-IR) spectroscopy data of the biotransformed NWA 7034 depicted several bands, which can be assigned to the vibration of functional S-containing aromatic organic groups and contribute toward thiophene-bearing respiratory quinones in plasma membranes of *M. sedula* (Fig. 5). The unique C₃₀ isoprenoid quinones of sulfur metabolizing acidophilic chemolithotrophs of the archaeal order *Sulfolobales* (including *M. sedula*) are S-bearing aromatic derivatives of benzo-[b]-thiophen-4,7-quinone (see chemical formulas in Fig. 5), which function as electron carriers in the respiratory chains of these microorganisms. These quinones comprise 0.28–0.38% of cell dry weight and represent ancestral biomarkers in terrestrial marine environments. Notably, recent Sample Analysis at Mars (SAM) measurements onboard the Curiosity rover detected thiophenic organic sulfur in ~3.5-Gyr (billion year)-old Murray formation, Gale crater. S-bearing thiophenes of *Sulfolobus* quinones might be targeted as specific refractory organic biomarkers with a promising preservation potential. To enable detection by spacecraft instrumentation in a natural Martian environment, a non-destructive biomarker analysis should be considered in order to yield the fine chemical and structural features of potential biomarkers (e.g., long aliphatic side chains of S-bearing thiophenes from *Sulfolobus* quinones). This is an important part for assessing the biogenicity of identified organic compounds (e.g., pyrolysis-GC-MS-based destructive analysis cannot yield intact molecules of thiophene-bearing quinones, but only residual thiophenes).

The presented investigations on Martian meteorite biogeochemistry motivate further experimental and theoretical work to build a detailed understanding of the full functional setup of...
biosphere may be well accessible in subsurface sediments. This has important implications for the exploration of past Martian habitability and potential Martian returned samples. The heavily Fe₃O₄, Al₃O₄, Mn₃O₄-encrusted cells with intracrystalline deposits of cubic Fe₃O₄, tetragonal Mn₃O₄, and mixed Mn₃Si₂O₆ phases, described in the present study, may constitute relevant putative biosignatures to be explored in the Martian geological record, if they persist destructive environmental conditions in reference to geologic timescales. We propose further focus on microbial nano-litho- and metalloorganic signatures of the chemolithotrophs, including nanoscale metal/microbial interfaces and S-bearing specific organic biomarkers (thiophenes from Sulfolobales quinones). The present study considers thermoacidi
dophilic microbial fingerprints on Martian mineral material which are relevant for potential hydrothermal spring settings on Mars. Further work should be conducted with Martian relevant mineral materials (e.g., Martian meteorites and Mars regolith analogs) for a wide variety of other chemolithotrophs, as other niches for the origin of life on Mars (e.g., psychrophilic ancestral phenotype relevant through low-temperature lacustrine settings) may certainly not be excluded. The nanoscale interfaces of chemolithotrophs grown on Martian materials should be further comprehensively investigated with advanced synchrotron-assisted spectroscopic techniques. These investigations may provide a guiding point for in situ measurements to analyze collected Mars samples. Furthermore, the performed studies may pave the way to the efficient nanoanalytical spectroscopy of collected and returned Mars samples in order to assess their potential biogenicity.

Methods

Experimental design. *M. sedula* (DSMZ 5348) was cultivated in DSMZ88 Sulfo
dobolus-anthra
dium
diaharm
yith biog
decomposed in 1 L of water. With subsequent autoclaving, Allen’s trace elements solution was added to 1 L media resulting in 1.80 g MnCl₂·4 H₂O, 4.50 mg Na₂B₄O₇·10 H₂O, and 0.02 g (NH₄)₂SO₄·8 H₂O. The pH was adjusted to 2.0 with 10 N H₂SO₄. Chemolithotrophic cultivation of *M. sedula* was conducted as described before in 200 mL glassblower modified Schott-bottle bioreactors (Duran DWK Life Sciences GmbH, Wertheim/Main, Germany), equipped with a thermocouple connected to magnetic stirring and a heating plate (IKA C-MAG HS10, Lab Technologies Group GmbH, Meckenheim, Germany) in order to control agitation and temperature. The bioreactors were equipped with three 5 mL graduated glass pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The graduated pipettes used for gassing were attached by silicon tubing to sterile 0.2 µm filters (Millipore) attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The microfluidic system was attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The graduated pipettes used for gassing were attached by silicon tubing to sterile 0.2 µm filters (Millipore) attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively.

Chemical composition of bioreactor medium

Medium consisting of 1.3 g (NH₄)₂SO₄, 0.28 g KH₂PO₄, 0.25 g MgSO₄·7 H₂O, 0.07 g CaCl₂·2 H₂O, and 0.02 g (NH₄)₂SO₄·8 H₂O. The pH was adjusted to 2.0 with 10 N H₂SO₄. Chemolithotrophic cultivation of *M. sedula* was conducted as described before in 200 mL glassblower modified Schott-bottle bioreactors (Duran DWK Life Sciences GmbH, Wertheim/Main, Germany), equipped with a thermocouple connected to magnetic stirring and a heating plate (IKA C-MAG HS10, Lab Technologies Group GmbH, Meckenheim, Germany) in order to control agitation and temperature. The bioreactors were equipped with three 5 mL graduated glass pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The graduated pipettes used for gassing were attached by silicon tubing to sterile 0.2 µm filters (Millipore) attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The microfluidic system was attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The graduated pipettes used for gassing were attached by silicon tubing to sterile 0.2 µm filters (Millipore) attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively.

Chemical composition of bioreactor medium

Medium consisting of 1.3 g (NH₄)₂SO₄, 0.28 g KH₂PO₄, 0.25 g MgSO₄·7 H₂O, 0.07 g CaCl₂·2 H₂O, and 0.02 g (NH₄)₂SO₄·8 H₂O. The pH was adjusted to 2.0 with 10 N H₂SO₄. Chemolithotrophic cultivation of *M. sedula* was conducted as described before in 200 mL glassblower modified Schott-bottle bioreactors (Duran DWK Life Sciences GmbH, Wertheim/Main, Germany), equipped with a thermocouple connected to magnetic stirring and a heating plate (IKA C-MAG HS10, Lab Technologies Group GmbH, Meckenheim, Germany) in order to control agitation and temperature. The bioreactors were equipped with three 5 mL graduated glass pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The graduated pipettes used for gassing were attached by silicon tubing to sterile 0.2 µm filters (Millipore) attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The microfluidic system was attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The graduated pipettes used for gassing were attached by silicon tubing to sterile 0.2 µm filters (Millipore) attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The microfluidic system was attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The graduated pipettes used for gassing were attached by silicon tubing to sterile 0.2 µm filters (Millipore) attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively. The microfluidic system was attached to the sampling graduated pipettes, permitting carbon dioxide and air gassing and sampling of culture, respectively.

Scanning transmission electron microscopy. Cells of *M. sedula* were collected at stationary phase and primary fixed as described earlier in 4°C in a 1 M Na
decacylate buffer supplemented with 2.5% glutaraldehyde. Followed by primary fixation, cells were post-fixed for 2 h in 1% OsO₄. After thorough washing (three times with 2 x 0.1 M Na-cacodylate, 1x 1HClO) and subsequent dehydra
tion by a gradual ethanol series (30%, 50%, 70%, 90%, abs., each step with an incubation time of 30 min), cells were centrifuged after each dehydration step for 30 min and
resuspended for the subsequent ethanol treatment. Resulting samples were embedded in Spurr Low Viscosity Resin (Electron Microscopy Sciences, USA) and polymerized at 70 °C for 48 h. Semi- and ultrathin sectioning was conducted by means of a Reichert-Jung Ultracut E ultramicrotome, with 50–70 nm ultrathin sections, followed by their staining using uranyl-acetate (15 min), and deposited on 200 nm copper grid mesh coated with formvar/carbon (Agar Scientific, UK). Sample preparation of NWA 7034 for transmission electron microscopy has been performed by focused ion beam (FIB) sputtering using a FEI Quanta 3D FEG instrument, equipped with an electron column hosting a field-emission electron source and an ion column hosting a Ga-liquid metal ion source (LMIS). Sputtering progress has been monitored by electron beam (EB) induced secondary electron (SE) imaging at EB settings of 5 kV accelerating voltage. Before sputtering, a Pt layer ($\text{length} \times \text{width} \times \text{height} = 8 \text{ nm} \times 3 \text{ nm} \times 3 \text{ nm}$) was deposited onto the NWA 7034 surface by applying FIB Pt deposition at 16 kV IB acceleration voltage. The deposited nanocrystallite Pt served as protection layer during subsequent preparation steps.

HR-STEM investigations were performed on a probe-corrected FEI Titan G2 60–300 (S/TEM) microscope with an X-FEG Schottky field-emission electron source operated at 60 and 300 kV (current of 150 pA, beam diameter below 1 Å in STEM mode). The microscope is equipped with a Super-X detector (Chemix-STEM technology, Thermo Fisher Scientific), comprised of a Dual EELS - Gatan Imaging Filter (GIF) Quantum and four separate silicon drift detectors. Two different high-angle annular dark-field detectors (HAADF) and one annular dark-field (ADF) detector were applied to acquire the scanning transmission micrographs. Analytical investigations were performed using EDS and EELS carried out with a 19.7 and 20.5 mrad convergence and collection semiances, respectively.79,81. Spectrum images were collected for different areas/locations of M. sedula cells. For each investigated spot, elemental maps were extracted from EELS and EDS spectrum images.41,43 Afterwards, EELS and EDS spectra from investigated areas on the cell surface and inside of the cells were acquired/extracted. The acquired images and EELS spectra were processed via Gatan’s Digital Micrograph being corrected for dark current and gas partitions. EDS spectrum images were acquired and processed by using the VELOX software (Thermo Fisher Scientific).

The high-resolution STEM (HR-STEM) micrographs were processed by fast fourier transformation (FFT) in order to measure the hkl distances in a certain orientation of the polycrystalline structures. The transmitted and the diffracted electrons passing through a specimen and satisfying the Bragg condition, are focussed back to the back focal plane of the objective lens and form the electron diffraction pattern. In this plane, the space where the electron diffraction pattern is formed is called reciprocal space, which is mathematically given by the Fourier transform of the real space. The Fourier transform of an image is therefore its frequency-domain representation. The interplanar distances in a certain orientation of a crystal are specific for each crystal with given lattice parameters. The hkl -values are directly measured on the HR-STEM images or using the FFT images which display the frequencies spots corresponding to the inverse of the interplanar distance. The advantage of using this method is the identification of even nanocrystals of dimensions smaller than 2–3 nm (if ordered). The FFT measured d-values (hkl) have then been compared with the possible phases extracted from the ICSD database (https://icsd.fz-karlsruhe.de) and their calculated d-values (hkl)63–96.

Infrared (IR) spectroscopy. IR spectra were recorded on a freeze-dried mineral cell pellet, obtained from the liquid culture, using a FT-IR spectrometer (Bruker Optik GmbH) equipped with an MCT-detector (32 scans, resolution 4 cm$^{-1}$). Spectra analysis was performed using reference database.87,88

Electron paramagnetic resonance spectroscopy. The EPR spectra were measured as described earlier34 on an X-Band Bruker Elexys-H 500 CW-EPR spectrometer (Bruker biospin GmbH, Rheinstetten, Germany) at 90 ± 1 and 293 ± 1 K using a high-sensitivity cavity (SHQE1119). Solid-state EPR measurements were conducted using microwave frequency settled to 9 GHz, center field at 6000 G, modulation frequency to 100 kHz, sweep width to 1200 G, sweep time to 335.5 s, microwave power to 15 mW, modulation amplitude to 20.37 G, resolution to 4096 points, and conversion time to 81.92 ms. The samples were loaded in EPR quartz tubes (Wilmad-LabGlass, Vineland, NJ, USA) and scanning was performed three times, resulting to the average which was used for analysis. The spectrum of an empty control tube was subtracted from all sample spectra. The analysis of all spectra was performed using the Bruker Xepr software.

Metal analysis. To determine the extracellular concentrations of soluble metal ions mobilized from NWA 7034 meteoritic material, culture samples were pre-clarified by centrifugation. Resulting pre-clarified samples of the culture supernatants were filtered via 0.4 μm pore size filters and subsequently analyzed by ICP-MS, Perkin Elmer ELAN 6100.

Data availability
All data are available in the main text, the Supplementary Information, and data repository Figshare (https://doi.org/10.6084/m9.figshare.13574423).
Acknowledgements
The authors gratefully acknowledge Chakib Djediat (Muséum National d’Histoire Naturelle, Paris) for the valuable help during the TEM sample preparation. We wish to thank Marc Pignitter (University of Vienna) for fruitful discussions and help with EPR analysis and Martina Dienstleder (Graz Centre for Electron Microscopy) for help with FIB preparation and anonymous reviewers for their valuable suggestions. This work was funded by the Austrian Science Fund (FWF) through an Elise-Richter Research Program V333 “Iron and Sulfur-oxidizing Machinery of the bioleaching Archaeon Metallosphaera sedula” to T.M. The STEM measurements partially received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 823717 – ESTEEM3.

Author contributions
T.M., D.K., and M.A. performed experiments and analyzed the data. T.M., M.A., D.K., G.K., R.B., and M.M. provided editorial input, discussed the results, and contributed to the final manuscript. R.B. contributed to the literature search and critical revision of the article. T.M. led, conceived, and designed the project, interpreted experiments, and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s43247-021-00105-x.

Correspondence and requests for materials should be addressed to T.M.

Peer review information Primary handling editor: Joe Aslin.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021