Neuronal ClC-3 Splice Variants Differ in Subcellular Localizations, but Mediate Identical Transport Functions*

Raul E. Guzman1, Erick Miranda-Laferte2, Arne Franzen, and Christoph Fahlke3
From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany

Background: Alternative splicing can result in proteins with distinct subcellular distributions and functions.

Results: Three ClC-3 splice variants are expressed in the mammalian brain with different subcellular localizations, but identical transport properties.

Conclusion: Differences in the subcellular localization of ClC-3 splice variants suggest diverse cellular functions.

Significance: The existence of multiple splice variants needs to be considered when studying cellular functions of ClC-3.

ClC-3 is a member of the CLC family of anion channels and transporters, for which multiple functional properties and subcellular localizations have been reported. Since alternative splicing often results in proteins with diverse properties, we investigated to what extent alternative splicing might influence subcellular targeting and function of ClC-3. We identified three alternatively spliced ClC-3 isoforms, ClC-3a, ClC-3b, and ClC-3c, in mouse brain, with ClC-3c being the predominant splice variant. Whereas ClC-3a and ClC-3b are present in late endosomes/lysosomes, ClC-3c is targeted to recycling endosomes via a novel N-terminal isoleucine-proline (IP) motif. Surface membrane insertion of a fraction of ClC-3c transporters permitted electrophysiological characterization of this splice variant through whole-cell patch clamping on transfected mammalian cells. In contrast, neutralization of the N-terminal dileucine-like motifs was required for functional analysis of ClC-3a and ClC-3b. Heterologous expression of ClC-3a or ClC-3b carrying mutations in N-terminal dileucine motifs as well as WTCIC-3c in HEK293T cells resulted in outwardly rectifying Cl− currents with significant capacitive current components. We conclude that alternative splicing of Clcn3 results in proteins with different subcellular localizations, but leaves the transport function of the proteins unaffected.

However, besides experimental data that supports localization of ClC-3 in synaptic vesicles or lysosomes (2–8), there are also results that argue in favor of surface membrane localization of this protein (9, 10). Moreover, multiple functional properties have been reported for ClC-3. Our group expressed mutant ClC-3 after removal of an N-terminal dileucine motif and observed outwardly rectifying anion-proton exchange current that resemble currents mediated by ClC-4 and ClC-5 (11–15). A characteristic property of ClC-3 was the occurrence of prominent capacitive currents, which indicate a large percentage of transporters mediating incomplete transport cycles (12, 16). Other groups assigned a postsynaptic Ca/CaMK-regulated anion channel in hippocampal neurons to ClC-3 and hypothesized that ClC-3 might regulate neuronal excitability as anion channels by modifying the postsynaptic membrane potential and/or length constant (9, 10, 17).

A potential reason for such functional differences between native and heterologously expressed proteins might be the existence of alternatively spliced ClC-3 variants with distinct subcellular localizations and transport functions. So far, five splice variants of Clcn-3 have been identified; ClC-3a, ClC-3b, ClC-3c, ClC-3d, and ClC-3e, and partially characterized (18–20). We decided to clone all ClC-3 splice variants from mouse brain and to compare their functions and subcellular distributions. We found three splice variants that differ in the N-terminal domain and exhibit identical transport function, but different subcellular distributions.

Experimental Procedures

Cloning and Expression Profile of ClC-3a, ClC-3b, and ClC-3c—To clone the complete coding regions of ClC-3a, ClC-3b, and ClC-3c, cDNAs were amplified from mouse brain using the SuperScriptTM one step RT-PCR system with platinum Taq (Invitrogen, Carlsbad, CA). We used primers that were specific to the different 5′ coding region together with a common reverse primer hybridizing to the 3′-end. After assembly of amplified bands into the pRSETB vector (Invitrogen) variants were identified by sequencing.

The tissue distribution of the different ClC-3 mRNAs was determined by RT-PCR. After isolation of total RNA from brain, heart, pancreas, kidney, liver, lung, retina, olfactory bulb, and spinal cord from 2-month-old mice and from hippocampi...
from 2, 13, 30, 60, or 120 days old mice RT-PCR was performed with the following primers: for ClC-3a and ClC-3b 5′-CGGCC-CAGCTTGCTATGCTCTGAG-3′ (forward), ClC-3c 5′-ATGGATGCTTCTTGACTGTC-3′ (forward) and a common antisense primer 5′-AGCTAGTGCCTCCCTGATGC-3′ (reverse). Three PCR products with the predicted size of 324 bp/CIC-3a, 500 bp/CIC-3b, and 379 bp/CIC-3c were obtained. To identify CIC-3e (CIC-3d or CIC-3f), 5′-TGCCCTCAGAGAGACCTGACTATTGC-3′ (forward) and 5′-AACGAACCTCTCTCTCTCCTGG-3′ (reverse) primers were applied. These primers recognize sequences in the 3′-coding region of Clic3 and generates RT-PCR products with an expected size of 423 bp.

PCR products were separated by gel electrophoresis and quantified using ImageJ 1.44p software (National Institutes of Health, Bethesda, MD) (21). To account for age-dependent changes in cell number or size these values were normalized to mRNA levels of glyceraldehyde-3-phosphate dehydrogenase overlapping with eGFP fluorescence. For all mutants we used similar microscope settings in these experiments. Images were analyzed and assembled for publications in ImageJ 1.44p software (National Institutes of Health) (21).

Heterologous Expression—cDNAs encoding full-length mouse CIC-3a, CIC-3b, or CIC-3c (GenBank™ Accession Number NM_007711.3, NM_173873.1, NM_173876.3) were fused in-frame to the 5′-end of the coding sequences of enhanced green or monomeric red fluorescence protein (eGFP) as surface membrane marker together with CIC-3bS3/S2 ClC-3bS3/S1 or CIC-3bS3/S2/S1 as mRF fusion proteins. Surface membrane insertion was then quantified in confocal images as mRF fluorescence intensity overlapping with eGFP fluorescence. For all mutants we used similar microscope settings in these experiments. Images were analyzed and assembled for publications in ImageJ 1.44p software (National Institutes of Health) (21).

Protein Purification and Pull-down Experiments—Glutathione S-transferase (GST)-fusion constructs (GST-NТ CIC-3b and GST-NТ CIC-3bS3/S2/S1) were generated by amplifying DNA fragments encoding amino acids 1–125aa of CIC-3b and CIC-3bS3/S2/S1 using PCR. These fragments were then cloned into the PGEX-6P1 (GE Healthcare, Freiburg, Germany) vector and verified by sequencing. GST-fusion proteins (GST-NТ CIC-3b, GST-NТ CIC-3bS3/S2/S1, and GST alone) were expressed in Escherichia coli (BL21) for 4–5 h at 30 °C after induction with isopropyl β-D-1-thiogalactopyranoside (IPTG) and purified using affinity and size-exclusion chromatography as described previously (27, 28). For pull-down experiments brain lysates were produced by homogenization of brain tissue from C57Bl/6 mice and two consecutive rounds of centrifugation. 1 ml of the resulting mouse brain lysate were incubated with 5 μg of GST-fusion protein (GST-NТ CIC-3b, GST-NТ CIC-3bS3/S2/S1, or GST alone) bound to glutathione-Sepharose (GE Healthcare, Freiburg, Germany) for 4 h at 4 °C under constant agitation. After 5–6 times washing with HBS containing 0.1% (w/v) Triton X-100 proteins were eluted with SDS loading buffer, separated by SDS-PAGE and analyzed by immunoblotting with antibodies against clathrin (BD Biosciences, Heidelberg, Germany).

Data Analysis—Data analysis was performed using a combination of FitMaster (HEKA), Origin (OriginLab), SigmaPlot (Systat Software), and Excel (Microsoft) software. All data are presented as mean ± S.E.

Results

Cloning and Expression Profiles of Mouse CIC-3 Splice Variants—Four alternatively spliced CIC-3 isoforms, CIC-3a, CIC-3b, CIC-3c, and CIC-3e (GenBank™ Accession Number NM_007711.3, NM_173873.1, NM_173876.3, NM_173874.1), can be found in protein sequence databases. CIC-3a is the shortest CIC-3 splice variant with 760 amino acids. Its expression results from a start codon downstream of the first AUG of other variants (Fig. 1A) (Clcn3 chloride channel 3 (Mus muscu-
lus (house mouse)), NCBI accession number 12725). ClC-3b, sometimes also denoted as ClC-3A (18, 19), and ClC-3c possess an alternative in-frame exon in the 5’/H11032 coding region, resulting in N-terminal domains of different lengths (Fig. 1A) (Clcn3 chloride channel 3 (Mus musculus (house mouse)), NCBI accession number 12725) and with 58 (ClC-3b) or 31 (ClC-3c) additional amino acid residues as compared with ClC-3a (Fig. 1A). For ClC-3e, also denoted as ClC-3B (18, 19), insertion of an alternative exon (76 bp) in the 3’/H11032 coding region generates a frameshift that results in a ClC-3 splice variant that differs from ClC-3b by additional amino acids in the C-terminal region (Fig. 1B). Further splice variants harboring the N-terminal domains of ClC-3a or ClC-3c combined with the C terminus of ClC-3e were denoted as ClC-3d (20) and ClC-3f. We used RT-PCR to determine the tissue distribution of ClC-3 splice variants taking advantage of the distinct 5’ and 3’ coding region of Clcn3. Splice variant-specific PCR products (Fig. 1C, ClC-3a; 324 bp, ClC-3b; 500 bp, ClC-3c; 379 bp) demonstrate ubiquitous expression of ClC-3a, ClC-3b and ClC-3c mRNA. Although this approach does not allow distinction between ClC-3d, ClC-3e, and ClC-3f (485bp), it permits demonstration that ClC-3 splice variants with long C terminus are only expressed in pancreas, kidney, liver, lung, and retina, but not in any other region of the central nervous system (CNS). Clcn3−/− animals exhibit a severe neurological phenotype (1–3), and we therefore decided to focus on alternative splice variants that are expressed in the central nervous system, ClC-3a, ClC-3b, and ClC-3c.

Hippocampal degeneration in Clcn3−/− mice starts about 2 weeks after birth (1–3). We reasoned that developmental changes in splice variant expression might contribute to this age dependence. Since there are no splice variant-specific antibodies available that distinguish between ClC-3a, ClC-3b, and ClC-3c, quantification of protein expression levels by Western blot analysis is not possible. We therefore examined mRNA profiles in hippocampal tissue from 2, 13, 30, 60, or 120 days old
The differences in functional expression are due to separate subcellular targeting of the distinct splice variants (Fig. 3B). Upon expression of CIC-3a or of CIC-3b transfected cells exhibit large vesicular structures that co-localize with the lysosomal marker LAMP1 and therefore likely originate from lysosomal compartments. CIC-3c exhibited a different intracellular localization, which results in staining of the surface membrane and of intracellular vesicular compartments that do not contain LAMP1 (Fig. 3B). Complementary experiments revealed identical subcellular distribution of CIC-3 splice variants in MDCK cells as in HEK293T cells (data not shown).

The N Terminus of CIC-3b Contains Three Potential Dileucine Motifs—Alternative splicing in the N-terminal region might not only modify the subcellular distribution, but also the function of CIC-3, as reported for many other proteins (30–33). We therefore searched for the signals that are responsible for the intracellular localization of CIC-3b and whose deletion might allow membrane surface insertion and electrophysiological characterization. For CIC-3a removal of a dileucine motif sequence (LLDLLE (S1) Fig. 4A) allows surface membrane insertion and functional analysis of the protein (8, 16, 34). CIC-3b contains the same sequence motif, however, its removal did not result in surface membrane insertion (data not shown). We therefore screened the N-terminal region of CIC-3b for additional dileucine motifs (Fig. 4A). We found two such sequences, 2EDDNLL\textsubscript{47} (S2) and 2EDELL\textsubscript{29} (S3), and generated mutant constructs in which either two of the three motifs (CIC-3b\textsubscript{S3/S2} and CIC-3\textsubscript{S3/S1}) or all dileucine motifs (CIC-3b\textsubscript{S3/S2/S1}) were substituted by alanine. Removal of only two dileucine motifs (CIC-3b\textsubscript{S3/S2} and CIC-3\textsubscript{S3/S1}) resulted in surface membrane localization of a fraction of the expressed proteins. However, there was still some fluorescence staining of intracellular compartments and large LAMP1-positive vesicular structures. CIC-3b\textsubscript{S3/S2/S1}, in which all three dileucine motifs were removed, inserted predominantly into the surface membrane so that the large vesicular structures induced by CIC-3b\textsubscript{S3/S2} and CIC-3\textsubscript{S3/S1} were absent in cell expressing this mutant protein (Fig. 4B).

To investigate interactions of the dileucine motifs with components of the endocytotic machinery using a pull-down strategy, we generated recombinant GST fusion proteins of N-terminal regions of CIC-3b wild type and CIC-3b\textsubscript{S3/S2/S1}. After purification N-terminal fusion proteins were incubated with equal amount of mouse brain lysate, and potential binding partners were analyzed by immunoblotting with antibodies to clathrin. Whereas GST-NT CIC-3b exhibits strong binding to clathrin (Fig. 4C), this interaction was markedly reduced for mutant GST-NT CIC-3b\textsubscript{S3/S2/S1} (Fig. 4C). These results suggest that the removal of CIC-3b dileucine motifs results in reduced internalization of the mutant protein (8). Alternatively, these mutations might enhance CIC-3b insertion into the plasma membrane via impaired recognition of mutant sorting motifs by adaptor proteins in the trans-Golgi network or in endosomal compartments (35).

The altered localization of mutant CIC-3b permits the electrophysiological characterization of this splice variant. The existence of various CIC-3b mutants with different dileucine motifs also provides the possibility to test whether mutations...
within the internalization motifs change functional properties. Mutant ClC-3b proteins with or without one dileucine motif expressed at sufficient amounts in the surface membrane to account for measurable outwardly rectifying Cl⁻ currents (Fig. 4, D and E). In all cases, we observed time and voltage-dependent currents that resemble ClC-3aS1 (16). Expression of ClC-3bS3/S2, ClC-3bS3/S1, or ClC-3bS3/S2/S1 resulted in voltage-dependent outwardly rectifying currents at potentials positive to +35 mV, without inward currents at negative voltages (Fig. 4, D and E). Depolarizing voltage steps elicited a capacitive current followed by ionic current that slightly increased with time. Stepping back to the holding potential resulted in a capacitive current with identical amplitude as upon membrane depolarization. For CLC exchangers, a plot of the time integral of these capacitive currents, the “gating charge movement,” versus the preceding voltage step provides the voltage dependence of activation (12, 16, 29, 36). Such analysis did not reveal any marked differences between the three mutants (Fig. 4F). For ClC-3, ClC-4, and ClC-5, such capacitive currents have been shown to originate from transporters that only perform incomplete transport cycles (12, 16), and the charge movement upon voltage steps thus provides a measure of transport-incompetent transporters. On the other hand, ionic currents are proportional to Cl⁻-H⁺ exchange rates. Plotting gating charges versus ionic currents at the same voltage provides a value proportional to the transport competence of the different constructs (Fig. 4G). We observed identical slopes for ClC-3bS3/S2, ClC-3bS3/S1, and ClC-3bS3/S2/S1.

The different macroscopic current amplitudes of cells expressing ClC-3bS3/S2, ClC-3bS3/S1, and ClC-3bS3/S2/S1 are likely due to separate protein densities in the surface membrane (Fig. 4, A and B), but could be also affected by variation in individual transport rates. To distinguish between these two explanations we co-expressed mutant ClC-3b fusion proteins with farnesylated eGFP as surface membrane marker and calculated surface insertion probabilities as ratio of the mRFP fluorescence intensity in regions overlapping with farnesylated eGFP by whole-cell fluorescence in confocal images. A plot of mean macroscopic current amplitudes from cells expressing ClC-3bS3/S2, ClC-3bS3/S1, or ClC-3bS3/S2/S1 against these values revealed a linear relationship (Fig. 4H), as expected for sole differences in trafficking and identical transport rates of the mutant transporters. We conclude that dileucine motifs in the N terminus exclusively affect trafficking, but not the transport activity of ClC-3b.
Neuronal ClC-3 Splice Variants

| Biophysical Properties of ClC-3 Splice Variants—**Fig. 5** summarizes the electrophysiological analysis of the three variants, ClC-3a, ClC-3b,S3,S2, and ClC-3c. Each of the three ClC-3 proteins mediates outwardly rectifying currents (Fig. 5, A and B) with identical properties. In all cases, we observed large capacitive currents upon depolarization and subsequent repolarization to the holding potential. We quantified the voltage dependence of ClC-3a,S3, ClC-3b,S3,S2,S1, and ClC-3c by measuring the area under the off-gating (Qoff) currents and plotting these "gating" charges versus the preceding voltage steps (12, 16, 37). This analysis revealed identical voltage dependences with a half-maximal activation voltage of ~165mV for all ClC-3s proteins (Fig. 5C). A plot of gating charge versus ionic current at the same voltage revealed identical transport competences for all ClC-3 splice variants expressed in the central nervous system (Fig. 5D). We conclude that alternative splicing leaves functional properties of ClC-3 unaffected.

ClC-3c Localizes to Recycling Endosomes—Upon heterologous expression in cultured cells, ClC-3c was targeted to different subcellular organelles than ClC-3a or ClC-3b. ClC-3a and 3b show extensive co-localization with the late endosomal/lysosomal markers RAB7/LAMP1, but not with the recycling endosomal marker RAB11 (38, 39) (Figs. 3B and 6, A and B). In contrast, ClC-3c displays a perinuclear distribution with a significant fraction of the protein being located at the plasma membrane. Co-localization with RAB11 (Fig. 6C), together

FIGURE 4. ClC-3b contains multiple dileucine motifs in its N-terminal region. A, sequence alignment of N-terminal regions of ClC-3a and ClC-3b. Sequences highlighted in red represent potential dileucine motifs, LLDDLLE(1) (S1), EDDNNLL(2) (S2), and EELL(3) (S3). B, confocal images of cells co-transfected with mutant ClC-3b and either the lysosomal marker protein LAMP1 or the membrane marker eGFP-mem. The scale bar represents 10 μm. C, Western blot analyses from GST pull-down assay from mouse brain lysates with GST-NT ClC-3b or GST-NT ClC-3bS3/S2/S1 or GST alone. D, representative whole-cell recording from cell expressing mutant ClC-3b, E, voltage dependence of mean current amplitudes for cells expressing WT or mutant ClC-3b obtained from recordings as shown in (A). Values are given as means ± S.E., WT ClC-3b (n = 4), ClC-3b,S3,S2 (n = 8), ClC-3b,S3,S1 (n = 8), ClC-3b,S3,S2,S1 (n = 8–16). Lines represent linear fits with zero origin to the data. F, voltage dependence of the apparent gating charge movements for mutant ClC-3b constructs obtained from integrating the area under the nonlinear capacitive currents at the end of the voltage steps. Lines represent nonlinear fits to the data with standard Boltzmann function G, plot of current amplitudes of individual cells against the corresponding off-gating charge Qoff for ClC-3b,S3,S2, ClC-3a,S1, ClC-3b,S3,S1 (n = 8–16). Lines represent linear fits with zero origin to the data. H, plot of the mean current amplitudes at +175 mV versus the relative surface membrane insertion probability for WT ClC-3b (n = 4 whole-cell recordings/25 confocal images), ClC-3b,S3,S2 (n = 16/55), ClC-3b,S3,S1 (n = 8/52) and ClC-3b,S3,S2,S1 (n = 5/64). Pearson correlation analyses reveal linear correlation between these two parameters (Pearson coefficient = 0.979; p = 0.02), and the straight line depicts a linear fit to these data.
with the limited overlap with LAMP1 or RAB7 (Figs. 3B and 6C), indicates localization of ClC-3c in the recycling endosome.

Among recycling endosomes two functionally distinct populations can be distinguished: endosomes that express RAB11 (38) and endosomes that contain the transferrin receptor TfR (40). To further study the localization of ClC-3c we co-expressed ClC-3c-eGFP with the transferrin receptor TfR. We observed substantial co-localization of ClC-3c with TfR (Fig. 6C) indicating that ClC-3c localizes to both, RAB11- and TfR-positive compartments.

ClC-3c Targets to Recycling Endosomes via an Isoleucine-Proline (IP) Motif—ClC-3a, ClC-3b, and ClC-3c share dileucine motifs in the N terminus, and the distinct subcellular localization of ClC-3c must therefore be caused by additional targeting sequences. The ClC-3c N terminus contains a sequence motif ([YLKP] [41]), which is reminiscent of a consensus binding motif YXX[FYL] for AP1, AP2, AP3, and AP4 mu subunits (41, 42). This motif contains the PY residues that were suggested to be involved in the internalization of ClC-5 and barttin (43, 44) (Fig. 7A). To determine whether [YLKP] [41] is involved in ClC-3c targeting, we substituted all amino acids by alanine and evaluated whether removal of this motif redirects ClC-3c from recycling endosomes to late endosomes/lysosomes. Such a change in localization would be visible as co-localization of mutant ClC-3c with the late endosomal/lysosomal markers Rab11 and LAMP1 and characteristic enlargement of endosomal/lysosomal vesicles in cells expressing mutant ClC-3c. However, mutation of all amino acids in [YLKP] [41] to alanine neither resulted in obvious changes in the subcellular distribution nor in the morphology of intracellular compartments (data not shown).

We next progressively deleted the N-terminal region of ClC-3c by removing stretches of 5, 6, or 8 amino acids (Fig. 7A). Neither deletion of the first five amino acids (ClC-3cΔ[1–5] data not shown) nor of the following six amino acids (ClC-3cΔ[6–11] (Fig. 7B) changed the localization of the protein or the morphology of intra-vesicular compartments. In contrast, the subsequent deletion of the amino acids stretch [12]DGGGDSIP [19] caused insertion of ClC-3cΔ[12–19] into lysosomes and enlargement of endosomal vesicles (Fig. 7C). We observed substantial co-localization of ClC-3cΔ[12–19] with LAMP1, but not with Rab11. Further deletion ClC-3cΔ[20–25] did not alter the subcellular distribution (data not shown). Fusing DGGGDSIP directly to the N terminus of ClC-3a (Fig. 8A) resulted in localization of ClC-3aΔ[12–25] in the recycling endosomes (Fig. 8B). This result was confirmed by different co-localization pattern of RAB11/LAMP1 with ClC-3a or ClC-3aΔ[12–25] and by the absence of large vesicles formation in cells expressing ClC-3aΔ[12–25] (Fig. 8B). Taken together, our findings indicate that the amino acids stretch [12]DGGGDSIP [19] contains a potential sorting motif to the recycling endosome.

To delineate the minimum sequence necessary for the specific sorting of ClC-3c, we mutated groups of two amino acids within this stretch jointly to alanine. Substitution of Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C). In contrast, alanine insertion at Asp12 and Asp16 to alanine (ClC-3cΔ[12–16]/AA) left targeting of ClC-3c unaltered (Fig. 8, A and C).
inent vesicular enlargement of LAMP1 positive compartments in cells expressing mutant ClC-3c. We conclude that an N-terminal isoleucine-proline (IP) motif is responsible for targeting of ClC-3c to the recycling endosomes.

Discussion

Alternative splicing permits translation of diverse proteins from a single gene by including or excluding certain exons from the processed messenger RNA. We here studied alternative splicing of Clcn3 and the consequences of this process on protein function and subcellular distribution. The exon-intron arrangement of Clcn3 suggests translation of six alternatively spliced gene products, referred to as ClC-3a to ClC-3f. We amplified ClC-3 splice variant from different mouse tissues by RT-PCR (Fig. 1A) and demonstrated that only three splice variants are expressed in the brain, the olfactory bulb and the spinal cord, ClC-3a, ClC-3b, and ClC-3c, with ClC-3b and ClC-3c being the predominant ClC-3 splice variants (Fig. 1C and Fig. 2).

Upon heterologous expression in mammalian cells ClC-3a and ClC-3b exclusively localize to the late endosomal/lysosomal system, whereas ClC-3c can be found in recycling endosomes and also in the surface plasma membrane. ClC-3b is targeted to the late endosomal/lysosomal system via multiple dileucine retention signals (Fig. 4, A and B), similar to the signals that control localization of ClC-3a (8, 16). For ClC-3c we identified an isoleucine-proline (IP) signal that is responsible for recycling endosome localization. Removal of this signal hinders targeting to recycling endosomes and surface membrane expression of ClC-3c (Fig. 8). Moreover, insertion of the isoleucine-proline (IP) signals reroutes ClC-3a from the late endosomal/lysosomal system to the recycling endosomes (Fig. 8).

We studied localization of ClC-3 splice variants exclusively in cultured mammalian cells of epithelial origin and not in cultured neurons or even native neuronal tissue. Cultured cells are well established for studying trafficking and function of membrane transport proteins, and a large body of evidence supports the notion that similar motifs might direct targeting in epithelia.

FIGURE 6. Subcellular localization of ClC-3 splice variants. A, B, confocal images of cells co-transfected with ClC-3a (A) or ClC-3b (B) and the recycling endosomal marker RAB11 or the late endosomal marker RAB7. C, confocal images of cells co-expressing ClC-3c either with RAB11, TfR or RAB7. The scale bar represents 10 μm. Insets show the enlargement of vesicular structures upon expression of ClC-3a or ClC-3b, but not of ClC-3c.
Neuronal CIC-3 Splice Variants

and neurons (45). However, there are examples of different subcellular targeting of certain proteins in HEK293T cells and in neurons (46). Thus, although our work conclusively demonstrates separate subcellular localizations of CIC-3a, CIC-3b, and CIC-3c, it does not allow conclusions about which organelles CIC-3 splice variants insert into native neurons.

Recently, the CIC-3 splice variant CIC-3d was cloned from mouse liver and functionally analyzed by heterologous expression in HEK293T cells (20). The authors demonstrated that CIC-3d differed from CIC-3a and CIC-3b in surface membrane expression, but exhibit similar transport properties. These results demonstrate that alternative splicing within the C terminus also affects only trafficking and not function of CIC-3.

All three CIC-3 splice variants in the mammalian central nervous systems exhibit closely similar transport properties. We recently performed a detailed electrophysiological analysis of CIC-3a and demonstrated that this splice variant functions as Cl⁻-H⁺ exchanger with low transport efficiency (16). CIC-3a, CIC-3b, and CIC-3c exhibit identical ratios of the moved charges by the transport current (providing values proportional to the number of complete transport cycles (Fig. 5D)) and identical voltage dependences of these capacitive currents (Fig. 5C). The importance of these specific functional features of CIC-3 is not clear (16). The extreme outward rectification results in maximum transport rates at voltages far away from physiological values. The large percentage of incomplete transport cycles result in transport effectivities that are much lower than those of CIC-4 and CIC-5 (16). To account for the multiple pronounced effects of CIC-3 ablation we recently proposed that the main function of CIC-3 might be enlarging the capacitance of their resident compartments (16). Such a function nicely accounts for the effects of CIC-3 ablation for synaptic function, but makes it difficult to assign a cellular role for CIC-3 splice variants in early or late endosomes/lysosomes.

Because of its predominant intracellular localization, the functional characterization of CIC-3 has been difficult and multiple transport functions have been assigned to CIC-3 since its identification. Initially, a large conductance, slightly outwardly rectifying anion channel, which was blocked by intracellular calcium, was assigned to CIC-3 (47, 48). Later, CIC-3 was postulated to represent a volume-activated anion channel (49–52). Another CIC-3 candidate channel is a Ca²⁺/calmodulin-dependent chloride channel at postsynaptic localizations (10, 17). Work with Clcn3⁻/⁻ mice (2) and our functional data on all existing CIC-3 splice variants strongly suggests that these anion channels are not identical with CIC-3 and demonstrate that neuronal CIC-3 splice variants rather function as Cl⁻-H⁺ exchangers with strong voltage dependence and low transport efficiency.

CIC-3a and CIC-3b localize to the late endosomal/lysosomal system and thus partially overlap with the expression pattern of CIC-6 and CIC-7. CIC-6 localizes to the late endosome (53–55), and CIC-7 is a major anion transport protein in lysosomes (56). Since CIC-3 (16), CIC-6 (46), and CIC-7 (57) are all chloride-proton exchangers, one might expect that these overlapping localizations permit compensatory mechanisms upon genetic
removal of one of these isoforms. However, the severe phenotypes of animals, in which only one of these three transporters is genetically removed (1–3, 53, 54), demonstrates that this is not the case.

Whereas ClC-3a and ClC-3b can only be found in intracellular compartments, ClC-3c is part of the recycling endosome with a considerable percentage of transporters present in the surface membrane. ClC-3c co-localizes with endosomes that express RAB11 as well as with endosomes that contain the transferrin receptor Tfr (31). RAB11 is present in mature synaptic vesicles of the mammalian brain, and it has been speculated that it might contribute in determining the secretory fate of a transport vesicle (58). Upon expression in cultured neurons, RAB11 localizes to synaptic boutons and moderately copurifies with synaptic vesicle markers (59). So far, we have not determined the localization of the different splice variants in neurons, but these data suggest that ClC-3c might account for altered synaptic transmission in Clcn3−/− (2, 4, 5). Alternative

FIGURE 8. ClC-3c is targeted to recycling endosomes via an IP motif. A, schematic representation of the approach used to dissect the sorting signal of ClC-3c. Amino acid substitutions and insertions are highlighted in red. B, C, D, confocal images of HEK293T cells co-expressing ClC-3aDGGGDSIP (B), ClC-3cD12/A D16/A (C) or ClC-3cIP/AA (D) with RAB11 or LAMP1. The scale bar represents 10 μm. Insets show changes in cell morphology upon expression of ClC-3cIP/AA but neither with ClC-3aDGGGDSIP nor with ClC-3cD12/A D16/A.
splicing of ClC-3 permits targeting intracellular CLC transporters to multiple distinct cellular compartments. ClC-3 is known to hetero-multimerize with CIC-4 and CIC-5 (60), and alternative splicing of ClC-3 will thus also affect subcellular localization of CIC-3-CIC-4 oligomers in the central nervous system. Moreover, hetero-dimers between different splice variants are likely to assemble. At present, it is not clear into which compartment these different hetero-oligomers will insert.

In summary, we demonstrate that alternative splicing leads to the occurrence of three ClC-3 splice variant with differences in the N terminus in the mammalian system. All three variants exhibit identical transport properties, but distinct localization in late endosomes/lysosomes or recycling endosomes. Alternative splicing enables ClC-3 to fulfill diverse cellular functions, and our work provides an important step toward understanding the role of ClC-3 in diverse cellular compartments.

Author Contributions—R. E. G. planned, performed, and analyzed experiments and wrote the manuscript. E. M. L. planned, performed, and analyzed experiments. A. F. planned and performed experiments. Ch. F. planned experiments and wrote the manuscript.

Acknowledgments—We thank Drs. Arnd Baumann, Cora Hannack, Patricia Hidalgo, and Gabriel Stölting for helpful discussions, and Joachim Schmitz and Petra Thelen for excellent technical assistance.

References

1. Dickerson, L. W., Bonthius, D. J., Schutte, B. C., Yang, B., Barna, T. J., Bailey, M. C., Nehrke, K., Williamson, R. A., and Lamb, F. S. (2002) Altered GABAergic function accompanies hippocampal degeneration in mice lacking ClC-3 voltage-gated chloride channels. Brain Res. 958, 227–250
2. Stobrawa, S. M., Breiderhoff, T., Takamori, S., Engel, D., Schweizer, M., Zdebik, A. A., Bösl, M. R., Ruether, K., Jahn, H., Draguhn, A., Jahn, R., and Jentsch, T. J. (2001) Disruption of ClC-3, a chloride channel expressed on the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins. J. Biol. Chem. 276, 6440–6449
3. Gentzsch, M., Cui, L., Mengos, A., Chang, X. B., Chen, J. H., and Riordan, J. R. (2003) The PDZ-binding chloride channel CIC-3 localizes to the Golgi and associates with cystic fibrosis transmembrane conductance regulator-interacting PDZ proteins. J. Biol. Chem. 278, 6440–6449
4. Ogura, T., Furukawa, T., Toyozaki, T., Yamada, K., Zheng, Y. J., Katayama, Y., Nakaya, H., and Inagaki, N. (2002) CIC-3B, a novel CIC-3 splice variant that interacts with EB50 and facilitates expression of CFTR-regulator-interacting ORCC. FASEB J. 16, 863–865
5. Okada, T., Akita, T., Sato-Numata, K., Islam, M. R., and Okada, Y. (2014) A newly cloned CIC-3 isoform, CIC-3d, as well as CIC-3a mediates Ca2+-sensitive outwardly rectifying anion currents. Cell Physiol. Biochem. 33, 539–556
6. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012) NIH Image to Image: 25 years of image analysis. Nat. Methods 9, 671–675
7. Sherer, N. M., Lehmann, M. J., Jimenez-Soto, L. F., Ingmundson, A., Horner, S. M., Cicetti, G., Allen, P. G., Pypaert, M., Cunningham, J. M., and Mothes, W. (2003) Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. Traffic 4, 785–801
8. Choudhury, A., Dominguez, M., Puri, V., Sharma, D. K., Narita, K., Wheatley, C. L., Marks, D. L., and Paúano, R. E. (2002) Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J. Clin. Invest. 109, 1541–1550
9. Bezanilla, F., and Armstrong, C. M. (1977) Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70, 549–566
10. Hidalgo, P., Gonzalez-Gutierrez, G., Garcia-Olivares, J., and Neely, A. (2006) The alpha1-beta-subunit interaction that modulates calcium channel activity is reversible and requires a competent alpha-interaction domain. J. Biol. Chem. 281, 24104–24110
11. Smith, A. J., and Lippard, J. J. (2010) Voltage-dependent charge movement associated with activation of the CLC-5 2Cl−/H+ exchanger. FASEB J. 24, 3696–3705
12. Stocker, M., Stühmer, W., Wittka, R., Wang, X., Müller, R., Ferrus, A., and Pongs, O. (1990) Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels. Proc. Natl. Acad. Sci. U.S.A. 87,
Neuronal CIC-3 Splice Variants

8903–8907

32. Suzuki, T., Suzuki, J., and Nagata, S. (2014) Functional swapping between transmembrane proteins TMEM16A and TMEM16F. J. Biol. Chem. 289, 7438–7447

33. Timpe, L. C., Jan, Y. N., and Jan, L. Y. (1988) Four cDNA clones from the Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes. Neuron 1, 659–667

34. Stauber, T., and Jentsch, T. J. (2010) Sorting motifs of the endosomal/lysosomal CLC chloride transporters. J. Biol. Chem. 285, 34537–34548

35. Gough, N. R., Zweifel, M. E., Martinez-Augustin, O., Aguilar, R. C., Bonicafino, J. S., and Fambrough, D. M. (1999) Utilization of the indirect lysosome targeting pathway by lysosome-associated membrane proteins (LAMPS) is influenced largely by the C-terminus residue of their GYYXXΦ targeting signals. J. Cell Sci. 112, 4257–4269

36. Zifarelli, G., De Stefano, S., Zanardi, I., and Pusch, M. (2012) On the mechanism of gating charge movement of CIC-5, a human Cl⁻/H⁺ antiporter. Biophys. J. 102, 2060–2069

37. Grieschat, M., and Alekov, A. K. (2014) Multiple discrete transitions underlie voltage-dependent activation in CLC Cl⁻/H⁺ antiporters. Biophys. J. 107, L13–15

38. Kobayashi, H., and Fukuda, M. (2013) Arf6, Rab11 and transferrin receptor define distinct populations of recycling endosomes. Commun Integr Biol. 6, e25036

39. Ullrich, O., Reinsch, S., Urbé, S., Zerial, M., and Parton, R. G. (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924

40. Maxfield, F. R., and McGraw, T. E. (2004) Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5, 121–132

41. Bonifacino, J. S., and Traub, I. M. (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447

42. Collawn, J. F., Stangel, M., Kuhn, L. A., Esekogwu, V., Jing, S. Q., Trowbridge, I. S., and Tainer, J. A. (1990) Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63, 1061–1071

43. Estévez, R., Boettger, T., Stein, V., Birkenhärger, R., Otto, E., Hildebrandt, F., and Jentsch, T. J. (2001) Barttin is a Cl⁻ channel beta-subunit crucial for renal Cl⁻ reabsorption and inner ear K⁺ secretion. Nature 414, 558–561

44. Schwake, M., Friedrich, T., and Jentsch, T. T. (2001) An internalization signal in CIC-5, an endosomal Cl⁻ channel mutated in dent’s disease. J. Biol. Chem. 276, 12049–12054

45. Cheng, C., Glover, G., Banker, G., and Amara, S. G. (2002) A novel sorting motif in the glutamate transporter excitatory amino acid transporter 3 directs its targeting in Madin-Darby canine kidney cells and hippocampal neurons. J. Neurosci. 22, 10643–10652

46. Neagoe, I., Stauber, T., Fidzinski, P., Bergsdorf, E. Y., and Jentsch, T. J. (2010) The late endosomal CIC-6 mediates proton/chloride countertransport in heterologous plasma membrane expression. J. Biol. Chem. 285, 21689–21697

47. Kawasaki, M., Uchida, S., Monkawa, T., Miyawaki, A., Mikoshiba, K., Marumo, F., and Sasaki, S. (1994) Cloning and expression of a protein kinase C-regulated chloride channel abundantly expressed in rat brain neuronal cells. Neuron 12, 597–604

48. Kawasaki, M., Suzuki, M., Uchida, S., Sasaki, S., and Marumo, F. (1995) Stable and functional expression of the CIC-3 chloride channel in somatic cell lines. Neuron 14, 1285–1291

49. Duan, D., Winter, C., Cowley, S., Hume, J. R., and Horowitz, B. (1997) Molecular identification of a volume-regulated chloride channel. Nature 390, 417–421

50. Yamazaki, J., Duan, D., Janiak, R., Kuenzli, K., Horowitz, B., and Hume, J. R. (1998) Functional and molecular expression of volume-regulated chloride channels in canine vascular smooth muscle cells. J. Physiol. 507, 729–736

51. Mao, J., Chen, L., Xu, B., Wang, L., Wang, W., Li, M., Zheng, M., Li, H., Guo, J., Li, W., Jacob, T. J., and Wang, L. (2009) Volume-activated chloride channels contribute to cell-cycle-dependent regulation of HeLa cell migration. Biochem. Pharmacol. 77, 159–168

52. Zhang, H., Li, H., Liu, E., Guan, Y., Yang, L., Mao, J., Zhu, L., Chen, L., and Wang, L. (2014) The AQP-3 water channel and the CIC-3 chloride channel coordinate the hypotonicity-induced swelling volume in nasopharyngeal carcinoma cells. Int. J. Biochem. Cell Biol. 57, 96–107

53. Poët, M., Kornak, U., Schweizer, M., Zdebik, A. A., Scheel, O., Hoelter, S., Wurst, W., Schmitt, A., Fuhrmann, J. C., Planells-Cases, R., Mole, S. E., Hüblner, C. A., and Jentsch, T. J. (2006) Lysosomal storage disease upon disruption of the neuronal chloride transport protein CIC-6. Proc. Natl. Acad. Sci. U.S.A. 103, 13854–13859

54. Kornak, U., Kasper, D., Bösl, M. R., Kaiser, E., Schweizer, M., Schulz, A., Friedrich, W., Delling, G., and Jentsch, T. J. (2001) Loss of the CIC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215

55. Weinert, S., Jabs, S., Supanchart, C., Schweizer, M., Gimber, N., Richter, M., Rademann, J., Stauber, U., Kornak, U., and Jentsch, T. J. (2010) Lysosomal pathology and osteopetrosis upon loss of H⁺-driven lysosomal Cl⁻-antiporter CIC-7. Science 328, 1401–1403

56. Graves, A. R., Curran, P. K., Smith, C. L., and Mindell, J. A. (2008) The Cl⁻/H⁺ antiporter CIC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792

57. Leisle, L., Ludwig, C. F., Wagner, F. A., Jentsch, T. J., and Stauber, T. (2011) CIC-7 is a slowly voltage-gated 2Cl⁻/1H⁺-exchanger and requires Ostm1 for transport activity. EMBO J. 30, 2140–2152

58. Khvotchev, M. V., Ren, M., Takamori, S., Chua, J. J., Boyken, J., Kloepper, T. H., Urlaub, H., Rizzoli, S. O., and Jahn, R. (2010) Quantitative analysis of synaptic vesicle Rabs uncovers distinct yet overlapping roles for Rab3a and Rab27a in Ca²⁺-triggered exocytosis. J. Neurosci. 30, 13441–13453

59. Suzuki, T., Rai, T., Hayama, A., Sohara, E., Suda, I., Itoh, T., Sasaki, S., and Uchida, S. (2006) Intracellular localization of CIC chloride channels and their ability to form hetero-oligomers. J. Cell Physiol. 206, 792–798