Aspectos respiratórios da COVID-19 na infância: o que o pediatra precisa saber?

Respiratory aspects of COVID-19 in childhood: what pediatricians need to know?

Regina Terse Ramos¹, Debora Carla Chong Silva¹, Gilvan da Cruz Barbosa Araújo¹, Carlos Antonio Riedi¹, Cassio Cunha Ibiapina¹, Patricia Gomes de Matos Bezerra¹, Jose Dirceu Ribeiro¹, Maria de Fatima Pombo Sant’Anna¹

Trata-se de artigo elaborado coletivamente pelos membros do Departamento Científico de Pneumologia da Sociedade Brasileira de Pediatria (SBP) sobre os aspectos respiratórios da COVID-19 na infância, considerando as peculiaridades clínicas e diagnósticas desta faixa etária e discutindo os métodos de imagem que podem auxiliar neste processo. O envolvimento pulmonar na doença é notório e ocorre em vários graus de gravidade. Embora menos frequentemente que nos adultos, crianças e adolescentes também podem desenvolver quadros graves. Os exames de imagem fazem parte da investigação do paciente com COVID-19, uma vez que podem auxiliar no diagnóstico inicial, na avaliação da evolução e do prognóstico da enfermidade. São colocadas as indicações de radiografias de tórax e tomografia computadorizada (TC) e suas características mais relevantes. Ressalta-se na maioria dos estudos, que os achados radiológicos em crianças são semelhantes aos encontrados em adultos, porém em menor frequência, intensidade e extensão. Recentemente, todavia, autores que estudaram 34 crianças com COVID-19 na China, relataram que opacidades irregulares, de alta densidade, foram comuns, enquanto o padrão de vidro fosco, típico nos adultos, foi raramente observado nas TCs. A radiografia é menos sensível para identificar alterações, sendo a TC o melhor exame de imagem para visualizar lesões do SARS-CoV-2, mas deve ser solicitada com indicações precisas, pois isoladamente não é suficiente para o diagnóstico. O monitoramento dos casos através de oximetria também foi discutido. Conclui-se após vasta revisão de literatura que a gravidade dos casos deve observada por sinais clínicos, exames de imagem e oximetria, dentre outros, sempre em conjunto.

Abstract

This is an article prepared collectively by members of the Scientific Department of Pulmonology of Brazilian Society of Pediatrics (SBP) on the respiratory aspects of COVID-19 in childhood, considering the clinical and diagnostic peculiarities of this age group and discussing the imaging methods that can assist in this process. Pulmonary involvement in the disease is notorious and occurs in varying degrees of severity. Although less frequently than in adults, children and adolescents can also develop severe conditions. Imaging exams are part of the investigation of the patient with COVID-19, since they can assist in the initial diagnosis, in the assessment of the evolution and prognosis of the disease. The indications of chest X-rays and computed tomography (CT) and their most relevant characteristics are placed. In most studies, it is emphasized that the radiological findings in children are similar to those found in adults, but with less frequency, intensity and extension. Recently, however, authors who studied 34 children with COVID-19 in China reported that irregular, high-density opacities were common, while the ground-glass pattern, typical in adults, was rarely seen on CT’s scans. Chest X-rays is less sensitive to identify alterations, with CT being the best imaging test to visualize SARS-CoV-2 lesions, but it must be ordered with precise indications, as alone is not sufficient for diagnosis. Monitoring of cases through oximetry was also discussed. It is concluded after a vast literature review that the severity of the cases must be observed by clinical signs, imaging exams and oximetry, among others, always together.

Palavras-chave:
Coronavírus, Criança, Adolescente, Doenças Respiratórias.

Keywords:
Coronavirus, Child, Adolescent, Respiratory Tract Diseases.

1 SBP, DC Pneumologia - Rio de Janeiro - Rio de Janeiro - Brasil.

Endereço para correspondência:
Maria de Fatima Pombo Sant’Anna.
Sociedade Brasileira de Pediatria. Rua Santa Clara, nº 292, Copacabana. Rio de Janeiro - RJ. Brasil. CEP: 26380-065. E-mail: fatimapombo09@gmail.com
INTRODUÇÃO

Em dezembro de 2019 a China informou a Organização Mundial da Saúde (OMS) que um surto de pneumonia de origem desconhecida ocorria na cidade de Wuhan, província de Hubei. Em 7 de Janeiro de 2020 um novo tipo de Coronavirus foi identificado como o agente etiológico dessas pneumonias. Em 11/02/2020 tal enfermidade foi denominada COVID-19 (coronavirus disease - 2019) e no mesmo dia a OMS nomeou o vírus de SARS-CoV-2. Em 20/01/2020 foi relatado o primeiro caso de acometimento em crianças, na cidade de Shenzen, também na China. Desde então a doença vem se espalhando pelo mundo, e foi classificada como pandemia pela OMS em 11/03/2020.

O SARS-CoV-2 é o sétimo vírus identificado da família Coronavírus, com RNA de fita simples, sendo comum a diferentes espécies, incluindo os humanos. Teve provável origem em morcegos pela semelhança com o vírus que acomete essa espécie.

Transmissão

A forma mais importante de transmissão do vírus é através de secreções respiratórias (goticulas e aerossóis contendo vírus no seu interior), liberadas através da fala, respiração, tosse e espirros. Essas secreções contaminam outras pessoas com até 2 metros de distância e são a principal rota de propagação da doença. Os indivíduos doentes são os principais contaminantes, porém pessoas assintomáticas ou que ainda estão dentro do período de incubação são também potenciais contaminantes. Dentro desse contexto, apesar de as crianças apresentarem quadro mais brando que em adultos, são também possíveis contaminantes e fontes de propagação da doença, por sua natureza de contaminação e por pouco aderirem à etiqueta respiratória.

Os casos mais graves apresentam carga viral maior e são fontes de infecção significativas, daí a causa do elevado número de doentes em profissionais de saúde, tornando a transmissão nosocomial um importante ponto de preocupação na epidemiologia da doença.

Outra forma de contaminação é o contato direto com as secreções levadas a boca, nariz ou olhos por mãos contaminadas que tiveram contato com superfícies contendo vírus. O SARS-CoV-2 pode sobreviver por períodos diferentes em diferentes superfícies, sendo comum a contaminação de algumas delas como maçanetas, pias, equipamentos de proteção, toalhas de banheiro, entre outros. O vírus sobrevive mais tempo em superfícies em temperaturas mais baixas. Há descrito também a possibilidade de contaminação por saídas de ar como aparelhos de ar condicionado.

A transmissão vertical já foi relatada em literatura, porém em pequeno número, como relato de casos, em especial durante as últimas semanas de gestação, o que promove virulência no RN e possíveis manifestações neurológicas. Yagnin et al. relataram uma série de 10 casos de mães com RT-PCR positivos para COVID-19, mas em nenhum dos recém-nascidos houve positivação do exame logo após o nascimento. Até o momento não há evidências da presença do SARS-CoV-2 no leite materno.

O SARS-CoV-2 já foi identificado em urina e em fezes de crianças contaminadas, sendo essa mais uma preocupação epidemiológica. Foi isolado nas fezes semanas após o diagnóstico, sugerindo contaminação por essa via por prazo prolongado.

Patogenia

Após a transmissão o vírus se deposita ao longo do trato respiratório. Utiliza a enzima conversora de angiotensina-2 (ECA-2) para penetrar na célula onde tem a capacidade de replicação.

Na fase inicial o vírus promove sintomas locais de vias aéreas superiores e sintomas gerais como adinamia, mialgias e febre. Esta fase é contaminante e pode se encerrara nesse estágio, levando ao término da doença, o que ocorre em torno de 80% dos infectados. Sete dias após esse período pode ocorrer a fase pulmonar com infiltração e proliferação do vírus nos pulmões determinando pneumonia com vasodilatação, aumento da permeabilidade do endotélio, recrutamento de leucócitos e lesão pulmonar com hipóxia. Pode haver estresse cardipulmonar associado. Na terceira etapa (fase inflamatória) ocorre inflamação sistêmica, denominada tempestade de citocinas, tendo como protagonista a interleucina-6 (IL-6), ativada por leucócitos e que age em grande número de células desencadeando essa resposta. Há elevação dos níveis séricos de ferritina, interleucinas e proteína-C-reactiva. Esse processo inflamatório pode afetar outros órgãos. É descrito mais frequentemente a lesão cardíaca com miocardite e déficit de contração muscular cardíaca e lesão hepática com elevação de transaminases. Outro acometimento é a coagulação vascular disseminada, com elevação do risco de tromboembolismo pulmonar ou em outras regiões.

As crianças têm apresentando quadro mais brando em comparação aos adultos, em especial aos idosos e adultos com comorbidades, com hipertensão arterial, cardiopatias e diabetes. As causas para esse quadro mais brando são ainda desconhecidas, algumas hipóteses seriam: as crianças tendem a não apresentar desregulação do sistema imune como ocorre em adultos, uma vez que mantém contagem normal de linfócitos (reduzidos em 3,5% contra 70% de adultos), bem como dosagem de proteína-C-reactiva, D-dímero e funções hepáticas normais. Outra hipótese é que crianças apresentam menor expressão da ECA-2, o que dificulta a entrada do vírus no cito-plasma celular. E, por fim, apresentam produção significativa de anticorpos contra outros vírus, que de algum modo teriam ação contra o SARS-CoV-2.

Quadro clínico: como avaliar a doença respiratória?

Com base em dados atuais, as crianças apresentam-se com menor gravidade clínica em cerca de 80% dos casos...
relatados. Na aquelas com comorbidades, entretanto, a doença poderá ter um curso grave, evoluindo para síndrome respiratória aguda grave (SRAG) e disfunção de múltiplos órgãos. Os principais sintomas se assemelham a doenças virais comuns comumente encontradas entre crianças que frequentam escolas ou creches.

O espetro clínico do COVID-19 em crianças varia de assintomático à grave descontro respiratório agudo (Tabela 1).5,6 Dong et al.11 publicaram uma série pediátrica que envolveu 2.143 pacientes pediátricos registrados no banco de dados do China Center for Disease Control and Prevention: os casos confirmados laboratorialmente corresponderam a 34% e 66% foram caracterizados como suspeitos. A mediana da idade (IQR) foi de 7 (2-13) anos e 1.213 casos (57%) eram meninos. Entre os casos confirmados em laboratório, a proporção de infecções assintomáticas, leves, moderadas, graves e criticamente doentes foi de 12,9%, 43,1%, 41%, 2,5% e 0,4%, respectivamente. As crianças com diagnóstico confirmado tiveram curso clínico mais leve do que os casos suspeitos (que podem incluir outros vírus prevalentes, como vírus sínfis respiratório, influenza e parainfluenza, etc., nessa faixa etária), indicando que a gravidade da doença por SARS-CoV-2 pode ser mais brando do que outras infeções respiratórias agudas associadas.

Tabela 1. Apresentação clínica da COVID-19 conforme padrão de gravidade clínica.

Gravidade	Descrição
Infecção assintomática	Ausência de sinais clínicos e de sintomas de doença, raio-X de tórax ou tomografia de tórax normais, associada a um teste positivo para SARS-CoV-2.
Infecção leve	Sintomas de acometimento das vias aéreas superiores, como febre, tosse, dor de garganta, rinorreia e espirros, além de mialgia e fadiga. Exame normal do aparelho respiratório. Algumas crianças podem cursar sem febre e outros sintomas gastrintestinais como vômitos, náuseas, dor abdominal e diarreia.
Infecção moderada	Sinais clínicos de pneumonia. Febre persistente, tosse seca inicial e depois produtiva; poderá haver crepitação e sibilos à ausculta respiratória, mas, nesta fase, sem estresse respiratório. Alguns pacientes poderão não apresentar sinais clínicos ou sintomas, mas a TC de tórax poderá revelar lesões pulmonares típicas.
Infecção grave	Os sintomas respiratórios iniciais poderão estar associados a sintomas gastrintestinais como diarreia. A deterioração clínica geralmente ocorre em uma semana, com o desenvolvimento de dispneia e hipoxemia (SPO2 <94%).
Infecção crítica	Os pacientes poderão rapidamente deteriorar para síndrome do estresse respiratório agudo ou insuficiência respiratória e poderão apresentar choque, encefalopatia, dano miocárdico ou insuficiência cardíaca, coagulopatia, dano renal agudo e disfunção de múltiplos órgãos.

Adaptado de: Carlotti et al.18

nessa faixa etária. O tempo médio desde o início da doença até o diagnóstico foi de 2 dias (intervalo: 0 a 42 dias). A proporção de casos “graves e críticos” foi de 10,6%, 7,3%, 4,2%, 4,1% e 3,0% para a faixa etária de “1, 1 a 5, 6 a 10, 11 a 15 e >15 anos, respectivamente, indicando que crianças pequenas, especialmente bebês, eram mais vulneráveis à infecção grave por SARS-CoV-2; uma criança (de 14 anos) morreu. Este estudo não descreveu a frequência de sintomas individuais em sua população.13

De acordo com outra série de casos pediátricos, com 171 pacientes com mediana de idade de 6,7 anos (intervalo de 1 dia a 15 anos), internados em um hospital em Wuhan, China, todos os pacientes apresentaram resultado positivo para COVID-19; observou-se 27 (15,8%) pacientes assintomáticos, 33 (19,3%) com sintomas das vias aéreas superiores e 111 (64,9%) com pneumonia. Setenta e um pacientes apresentaram febre (41,5%), com duração de 1 a 16 dias (mediana, 3 dias). Três pacientes foram admitidos na unidade de terapia intensiva: todos com comorbidades (hidronefrose, leucemia - durante quimioterapia e intussuscepção). O paciente com intussuscepção tinha 10 meses de idade e evoluiu para óbito.13 Várias erupções cutâneas foram observadas recentemente em alguns casos pediátricos com apresentações clínicas variáveis.10

Padrões de apresentação clínica da COVID-19, de acordo com a gravidade, estão contidos na Tabela 1.

Em uma revisão sistemática que envolveu 38 estudos (1.124 casos), foram descritas as principais características clínicas, laboratoriais e radiológicas de crianças infectadas com SARS-CoV-2. De todos os casos, 1.117 tiveram sua gravidade classificada: 14,2% eram assintomáticos, 36,3% eram leves, 46% eram moderados, 2,1% eram graves e 1,2% eram críticos. O sintoma mais prevalente foi febre (47,5%), seguido de tosse (41,5%), sintomas nasais (11,2%), diarreia (8,1%) e náusea/vômito (7,1%). Cento e quarenta e cinco (36,9%) crianças foram diagnosticadas com pneumonia e 43 (10,9%) infecções das vias aéreas superiores; os autores concluíram que as manifestações clínicas de crianças com COVID-19 diferem amplamente dos casos registrados em adultos. Febre e sintomas respiratórios não devem ser considerados uma marca registrada do COVID-19 em crianças. A distribuição das manifestações clínicas das crianças com COVID-19 nos estudos selecionados é demonstrada na Tabela 2.

Os pacientes com manifestação clínica de maior gravidade desenvolvem hipoxemia e má perfusão, geralmente até o final da primeira semana. As complicações comumente descritas são síndrome respiratória aguda grave (SRAG), miocardite, choque séptico, coagulação intravascular disseminada, lesão renal aguda e disfunção hepática. Concentrações aumentadas de procalcitonina (PCT), PCR e IL-10 e diminuição do nível de IgA e da porcentagem de linfócitos T CD4+ CD25+ foram associadas à pneumonia em crianças com COVID-1913.

As principais manifestações clínicas de crianças com COVID-19 descritas em estudos selecionados estão contidas na Tabela 2.
Tabela 2. Distribuição das manifestações clínicas de crianças com COVID-19 descritas em estudos selecionados.

Manifestação clínica	Frequência
Febre	187 (47,5%)
Tosse	163 (41,5%)
Pneumonia	145 (36,9%)
Eritema de faringe	81 (20,6%)
Taquipneia na admissão	53 (13,4%)
Obstrução nasal	44 (11,2%)
Infecção de via aérea superior	43 (10,9%)
Diarreia	32 (8,1%)
Náusea/vômitos	28 (7,1%)
Fadiga	20 (5%)
Desconforto respiratório	14 (3,5%)
Dor de garganta	10 (2,5%)
Insuficiência respiratória	7 (1,8%)
Crepitações	6 (1,5%)
Esputo	6 (1,5%)
Hipoxemia	5 (1,3%)
Dor abdominal	2 (0,5%)
Espiros	2 (0,5%)
Cianose	2 (0,5%)
Linfadenopatia	1 (0,2%)

Adaptado de: Souza et al.13

Como manejar a criança com doença respiratória

Recomenda-se que todas as crianças que apresentam doença respiratória aguda grave (SRAG) devam ser submetidas a RT-PCR para SARS-CoV-2. Entretanto, em muitos serviços, crianças com doença leve, sem histórico de contato não são submetidas ao teste para SARS-CoV-2. Devido ao elevado percentual de infecções agudas do trato respiratório, devido a outras etiologias como bronquiolite aguda viral ou asma aguda grave, muitos casos podem atender à definição de caso de síndrome respiratória aguda grave (SRAG) sendo admitidos em hospital. Em vista da probabilidade atual de crianças serem expostas ao novo vírus, embora com menor chance de infecção que adultos, torna-se apropriado examiná-la em locais separados de outras crianças com suspeita de COVID-19. Assim, aquelas com suspeita de infecção por SARS-CoV-2 que aguardam resultados laboratoriais, deverão ser admitidas separadamente de adultos e demais crianças. Os pais deverão ficar com as crianças isoladas e deverão receber EPI’s apropriados. Um tempo de resposta rápido para os resultados dos testes diagnósticos também reduzirá o risco de exposição.

As diretrizes oficiais atualmente recomendam a admissão hospitalar para os casos confirmados, particularmente, aqueles pacientes classificados como “pneumonia grave” e “em estado crítico” para maiores cuidados (Figura 1). Os seguintes critérios podem ser particularmente considerados para admissão: (qualquer um dos seguintes critérios):

1. Desconforto respiratório (taquipneia, correlacionado com a faixa etária);
2. \(\text{SpO}_2 < 92\% \) em ar ambiente;
3. Choque/má perfusão periférica;
4. Má ingesta oral, especialmente em bebês e crianças pequenas;
5. Letargia, especialmente em bebês e crianças pequenas;
6. Convulsões/encefalopatia.

Até o momento não dispomos de diretrizes específicas para crianças com doenças subjacentes, como doenças respiratórias crônicas, imunossupressão, doenças cardíacas não corrigidas, doença renal crônica, etc. Esse grupo precisa de monitoramento mais intenso e terapia precoce.

Diagnóstico diferencial

O diagnóstico diferencial da COVID-19 na infância é complexo, uma vez que muitas doenças pediátricas apresentam sinais e sintomas semelhantes. Tosse e febre de intensidade leve à moderada foram os sintomas mais frequentemente relatados em uma metanálise em 551 crianças com testes positivos para o SARS-CoV-2. Assim, de maneira geral, considera-se diagnóstico diferencial da COVID-19 todos os quadros respiratórios infecciosos agudos, desde aquele com acometimento isolado das vias aéreas superiores (diferencial com os casos leves da COVID-19), até quadros de pneumonia (diferencial com os casos moderados da COVID-19), de síndrome respiratória aguda grave (SRAG) (diferencial com os casos graves da COVID-19) e de sepse grave de outras etiologias como, sepse bacteriana, síndrome do choque tóxico estafilocócico ou estreptocócico, assim como infecções graves que cursam com miocardite, como as causadas por outros enterovírus (diferencial com os casos críticos da COVID-19)11,16.

Vários vírus respiratórios, bactérias comuns e bactérias atípicas, cursam com síndromes clínicas semelhantes às causadas pelo SARS-CoV-2, de acordo com o Quadro 117,18. Outras doenças infecciosas também podem cursar com sintomas semelhantes, especialmente na presença de febre e sintomas sistêmicos como vemos no Quadro 219.

Mais recentemente, foi observado que crianças de diversas nacionalidades apresentaram um síndrome inflamatória multisistêmica com manifestações clínicas e alterações dos exames complementares semelhantes às observadas em crianças e adolescentes com síndrome de Kawasaki, Kawasaki...
Figura 1. Abordagem à criança com sintomas respiratórios agudos durante a pandemia da COVID-19.
Quadro 1. Etiologia das síndromes clínicas respiratórias mais comuns na pediatria.

SÍNDROMES CLÍNICAS	AGENTES MAIS COMUNS	QUADRO CLÍNICO
Infecções das vias aéreas superiores	Rinovírus; vírus sincial respiratório (VSR); Influenza A e B (Síndrome gripal); Bocavírus; Metapneumovírus; Adenovírus; Coronavírus (NL63, 229E, OC43, HKU1); Parainfluenza; Enterovírus.	Febre, tosse de intensidades variáveis, coriza, dor de garganta, mialgia ou artralgia a depender do vírus. Algumas crianças podem apresentar prostração e inapetência.
Crup (laringotraqueobronquite)	VSR; Influenza A e B; Parainfluenza 1 e 3.	Febre, tosse rouca, afonia, choro rouco e estridor. Dificuldade respiratória de intensidade variável.
Coqueluche e síndrome coqueluchóide	Bordetella pertussis; Bordetella parapertussis; VSR; Adenovírus; Parainfluenza; Chlamydia trachomatis;	Febre baixa, tosse paroxística em surtos seguida de vômitos e cianose perioral. Filiação salivar.
Bronquiolite aguda	Rinovírus. VSR; Parainfluenza 1 e 3.	Febre, tosse, taquipneia, dispneia, retrações torácicas. Pode ocorrer cianose e apneia.
Pneumonia/SRAG	VSR; Influenza A e B; Parainfluenza 1 e 3; Coronavírus (SARS-CoV-1, SARS-CoV-2, MERS-CoV); Bactérias comuns e atípicas.	Febre, tosse, taquipneia, dor torácica, insaturação. Pode haver comprometimento sistêmico com prostração e sinais de toxemia.

Um olhar atento ao momento que estamos vivenciando, o inquérito dos dados epidemiológicos, exames laboratoriais e de imagem e, especialmente, a busca na identificação do vírus, são imprescindíveis para a confirmação da doença. Diante de uma criança com sintomas inespecíficos a abordagem crítica e sistematizada é prudente, categorizando os casos inicialmente como suspeitos (critérios clínico e/ou epidemiológico e/ou radiológico). Durante o acompanhamento e investigação, os casos serão classificados como confirmados, de alta probabilidade ou de baixa probabilidade, conforme sugestão apresentada no Quadro 3.

Fatores de risco para COVID-19 grave em crianças

Estudo descritivos, observacionais, relataram presença de determinadas condições pré-existentes em crianças que desenvolveram quadros graves e desfecho fatal na infecção pelo SARS-CoV-2, apontando uma tendência para determinadas doenças de base atuarem como fatores de risco. Dong et al. verificaram que crianças mais jovens, particularmente menores de um ano, foram mais vulneráveis aos quadros graves. Lu et al., durante um período de observação, relataram três crianças que necessitaram de suporte ventilatório e todos apresentavam condições pré-existentes (hidronefrose, leucemia em tratamento quimioterápico e intussuscepção).

Note: modificado de “Guia rápido de manejo epidemiológico das doenças imunopreviníveis”.

Um olhar atento ao momento que estamos vivenciando, o inquérito dos dados epidemiológicos, exames laboratoriais e de imagem e, especialmente, a busca na identificação do vírus, são imprescindíveis para a confirmação da doença. Diante de uma criança com sintomas inespecíficos a abordagem crítica e sistematizada é prudente, categorizando os casos inicialmente como suspeitos (critérios clínico e/ou epidemiológico e/ou radiológico). Durante o acompanhamento e investigação, os casos serão classificados como confirmados, de alta probabilidade ou de baixa probabilidade, conforme sugestão apresentada no Quadro 3.

Quadro 2. Outras doenças no diagnóstico diferencial da COVID-19.

DOENA	QUADRO CLÍNICO
Hantavirose	Febre alta, mialgia, cefaleia, na primeira semana da doença cursa com insuficiência respiratória aguda.
Dengue	Febre alta, mialgia, cefaleia, artralgia, dor retro-óbitária e exantema.

Nota: modificado de “Guia rápido de manejo epidemiológico das doenças imunopreviníveis”. incompleto e/ou síndrome do choque tóxico, abrindo uma nova frente no diagnóstico diferencial. Estas crianças apresentavam febre alta e persistente (38-40°C), exantema de apresentações variadas, conjuntivite não purulenta, edema de mãos e pés, dor abdominal vômitos e diarreia. A grande maioria evoluiu para choque (com hipotensão arterial e taquicardia), principalmente cardiogênico, com elevação de enzimas miocárdicas, necessitando de drogas vasoativas para o sucesso na estabilização hemodinâmica. Muitas tiveram inflamação de serosas com derrame pleural, pericárdico e ascite. Quase todos necessitaram de suporte ventilatório, mesmo com manifestações respiratórias não sendo relevantes. Alguns casos são tão graves que se tornam diagnóstico diferencial da síndrome de linfohistiocitose hemofagocítica familiar ou da síndrome de ativação macrofágica vista em crianças com doenças reumatológicas.
Quadro 3. Sugestão de categorização dos casos suspeitos da COVID-19 na admissão e evolução.
Da mesma forma She et al., descreveram os dois únicos casos de pacientes críticos e que apresentavam histórico de doença subjacente (cardiopatia congênita com desnutrição e hidronefrase bilateral com litíase).

Outro estudo descreveu dois casos de pneumonia grave por SARS-CoV-2 ocorrido em um escolar em remissão de leucemia linfoblática aguda e outro em um adolescente com obesidade. O mesmo estudo chama a atenção para a avaliação com cautela dos fatores de risco, uma vez que crianças com COVID-19 sem gravidade, por vezes, apresentavam os mesmos status de comorbidades (grupo grave e o grupo não grave ($p=1,00$)).

Igualmente aos estudos citados, condições subjacentes como: doença cardíaca congênita, hipoplasia pulmonar brônquica, anomalias do trato respiratório, nível anormal de hemoglobina, desnutrição grave, deficiência imunológica primária ou pelo uso prolongado de imunossupressores, parecem ser critérios para doença mais grave em crianças.

Do ponto de vista de avaliação complementar, o comprometimento de mais de três segmentos pulmonares foi associado ao maior risco de gravidade (odds ratio=25,0, $p=0,006$). Elevações dos níveis de IL-6, bilirrubina total alta e D-dímero também podem identificar precocemente pacientes com potencial gravidade.

Ainda não estão claramente definidas as características dos grupos de risco para COVID-19 grave em crianças. Até o momento, a literatura sugere determinadas doenças de base e alguns achados laboratoriais e de imagem, mas uma observação mais prolongada e de um grupo maior de crianças poderá em um futuro breve definir com precisão este grupo de especial interesse.

Achados radiológicos

Os exames de imagem fazem parte da investigação do paciente com COVID-19, uma vez que podem auxiliar no diagnóstico inicial, além de contribuir na avaliação da evolução e do prognóstico da enfermidade.

O exame considerado padrão ouro para o diagnóstico, a identificação do RNA viral pela reação em cadeia de polimerase por transcriptase reversa (RT-PCR), pode apresentar resultado falso-negativo em torno de 30% dos casos, dependendo da qualidade da coleta da amostra e da logística do laboratório.

A literatura é pobre em relação à avaliação de quadro radiológico em crianças. Entre 1 a 2% das notificações da doença ocorrem abaixo de 18 anos. A maioria desses pacientes não necessita da realização dos exames de imagem, pois apenas 1 a 4% desenvolvem quadros mais graves.

A radiografia de tórax (RTX) é de fácil execução, de baixo custo e promove pouca radiação, porém tem menor acurácia do que a tomografia de tórax (TC) para mostrar alterações decorrentes da COVID-19, tanto em crianças como em adultos.

Os achados mais frequentemente encontrados na RTX são: padrão em vidro fosco periférico em regiões inferiores e consolidações bilaterais irregulares (Figura 2).

A TC permite melhor visualização das alterações não observáveis na RTX. Seu uso deve ser criterioso, em especial em crianças, pela maior dose de radiação, além do maior custo e de não ser tão acessível em centros menores. As principais alterações encontradas são:
- Padrão em vidro fosco periférico e irregular;
- Consolidações periféricas;
- Sinal do halo invertido;
- Perfusão em mosaico;
- Opacidade irregular e discreta.

Estas localizam-se preferencialmente em região subpleural, em lobos inferiores e bilateralmente, acometendo mais de um lobo (Figuras 3, 4, 5 e 6).

Xia et al., em estudo com 20 crianças com RT-PCR positivos para SARS-CoV-2 e média de idade de 2 anos e 1 mês referem que o RXT não detectou lesões pulmonares e que tais lesões foram mais visíveis na TC. Destas últimas, 20% foram normais; dentre as TC alteradas, 60% tinham opacidade em vidro fosco, 50% consolidações com sinal do halo invertido, opacidade irregular em 20% e pequenos nódulos em 3%. Não houve derrame pleural ou linfadenomegalia.

Steinberger et al., avaliaram 30 crianças com RT-PCR positivos para SARS-CoV-2 e média de idade de 10 anos em 6 centros diferentes. Nove pacientes eram assintomáticos, todos com TC normal. Do total, 23/30 (77%) tinham TC normal e apenas 7 (23%) tinham alterações: 86% com padrão em vidro fosco, 14% com vidro fosco + consolidações, 29% com perfusão em mosaico e 29% com sinal do halo invertido. As alterações foram mais frequentes em pacientes acima de 14 anos, sendo 71% em mais de um lobo, 71% bilateral e 86% na periferia. Não se verificou derrame pleural ou linfadenomegalia.

Residência Pediátrica 2020;10(2):154-167.
Lu et al.12 em estudo com 171 crianças com SARS-CoV-2 confirmada encontraram 32,7\% de padrão de vidro fosco na TC; 18,7\% com opacidade local e 12,3\% com opacidade bilateral; 15,8\% não tiveram alterações radiológicas. Doze pacientes (9,8\%) tinham alterações radiológicas, porém eram assintomáticos.

Wang et al.30 relatam anormalidades em 66\% das TC\’s de crianças com COVID-19, sendo o padrão em vidro fosco em mais de um lobo a alteração mais frequente, em 35\% dos casos. Carlotti et al.10 evidenciaram que os casos mais graves cursaram com condensações bilaterais em regiões basais posteriores.

Zhang et al.31 estudaram 34 crianças com COVID-19 em 4 hospitais na China e relataram que opacidades irregulares, de alta densidade, foram comuns enquanto o padrão de vidro fosco foi raramente observado nas TC.

As alterações de imagem na COVID-19 descritas nos artigos que envolvem pacientes pediátricos seriam mais evidentes a partir do quarto dia da doença, tanto na RTX quanto na TC. A evolução das imagens está descrita na Figura 732.

Resumindo, os achados radiológicos em crianças são semelhantes aos encontrados em adultos, porém em menor frequência, intensidade e extensão. O RX é menos sensível para identificar alterações, sendo a TC o melhor exame de imagem para visualizar lesões do SARS-CoV-2, mas que deve ser solicitada com indicações precisas, pois isoladamente não é suficiente para diagnóstico.

Outras infecções virais podem mostrar imagens semelhantes e pode haver coinfecções. Há preocupação internacional com o uso exagerado da TC em crianças, pois pode trazer danos futuros pela radiação ionizante (faltam aparelhos com baixa radiação). Além disso, pode levar à contaminação de profissionais de saúde e de outros pacientes devido ao uso do equipamento.
 Quando solicitar a TC?

A discussão acerca do papel dos exames radiológicos nos pacientes com a COVID-19 no populações pediátricas tem grande interesse e repercussão na prática clínica. Algumas questões instigam os médicos que atuam na abordagem de crianças com a COVID-19, a saber: i) quando devem ser realizados exames de imagem no diagnóstico inicial?; ii) como deve ser feita a avaliação da progressão da doença?; e, iii) existe algum padrão radiológico que tenha valor prognóstico?

Em adultos, a tomografia de tórax vem sendo realizada precocemente na abordagem inicial e como uma forma de triagem diagnóstica. Isto se deve a testes diagnósticos laboratoriais que demandam maior tempo para seu resultado e, além disso, alguns resultados do RT-PCR - padrão oro da doença - poderem ser falso-negativos, devido ao tempo de doença ou a técnica de coleta. É importante salientar que a Sociedade de Radiologia da América do Norte (SNRC) e o Colégio Brasileiro de Radiologia não corroboram com tal prática.

No início da pandemia, com o temor generalizado da comunidade médica sobre como seria a evolução da doença na população pediátrica tinha-se a impressão que a tomografia computadorizada (TC) de tórax deveria ser realizada precocemente para o diagnóstico inicial nas crianças. No entanto, com a publicação de uma série de artigos mostrando a evolução mais favorável das crianças chegou-se a um senso comum de que a TC de tórax pode ser realizada somente em casos selecionados. Além do mais, as alterações iniciais podem ser semelhantes às outras viroses respiratórias, portanto incaracterísticas. Na prática pediátrica está indicada a realização de TC para os pacientes que evoluírem para quadros de maior gravidade e de internação.

Assim como na população adulta, a radiografia de tórax tem especificidade menor que a TC. A TC deve ser indicada naqueles pacientes com evolução clínica não satisfatória ou em grupos de risco. No entanto, é importante salientar, que sempre que possível deve ser realizada com protocolos de baixa radiação.

Em geral, a TC em adultos evidencia opacidades periféricas multifocais, opacidades em vidro fosco e distribuição predominante em lobos inferiores e posteriores, com apresentação bilateral. Na literatura pesquisada os achados tomográficos na fase etária pediátrica são mais discretos, com menor número de lobos pulmonares envolvidos e ainda com apresentações unilaterais. Os principais achados tomográficos observados em crianças infectadas com SARS-CoV-2 vão desde a presença de múltiplas opacidades bilaterais irregulares em “vidro fosco”, opacidades em “vidro fosco” esparsas e irregulares, e/ou infiltrados no terço médio ou periferia do pulmão ou subpleurais. São descritas imagens de infiltrados subpleurais, condensações em halo uni ou bilaterais. Ao exame tomográfico a progressão da doença determina o aumento e bilateralização das imagens, com condensações de alta densidade e espessamento peribrônquico, comprometendo ambas os pulmões. Não é descrito o derrame pleural. Na fase de remissão da doença, isto é, a partir do 14º dia, há ainda persistência das imagens em halo e presença de bandas parenquimatosas que podem persistir por meses.

É importante salientar que 30% dos pacientes podem ter TC negativa e a TC normalmente não exclui o diagnóstico. Além disso, a TC não está indicada em pacientes assintomáticos.

Em adultos a TC deve ser então realizada em pacientes sintomáticos leves, moderados e graves com fatores de risco para progressão da doença como idosos, diabéticos, hipertensos, na pesquisa de complicações e para afastar diagnósticos alternativos. Do mesmo modo, em pacientes que apresentem piora do quadro respiratório. É importante salientar que em geral não está indicada em sintomáticos leves sem fator de risco. Na população pediátrica esse critério de maior atenção no grupo de risco pode ser seguido e, evidentemente, em pacientes com deterioração clínica.

Outras situações que a TC vem sendo realizada no Brasil são: pacientes que residam em cidades sem acesso a exames laboratoriais, ou em aguardo do exame, ou com exame de swab nasal com RT-PCR negativo, porém com forte suspeita clínica, se sintomáticos moderados e graves.

Uma das classificações que vem sendo utilizadas na quantificação da extensão da doença baseia-se na percentagem do pulmão acometida: i) acometimento leve: <25%; ii) acometimento moderado: 25 a 50%; iii) acometimento acentuado: >50%.

Os principais achados tomográficos são: opacidade em vidro fosco, opacidades reticulares, consolidações e sinal do halo invertido. E os achados podem ser classificados em 4 categorias:

a. Achados compatíveis com processo infeccioso de etiologia viral (típico):
 - Distribuição periférica e multifocal;
 - Padrão em vidro fosco;

b. Achados compatíveis com processo inflamatório acinético:
 - Distribuição central;
 - Padrão em vidro fosco;

Figura 7. COVID-19: imagens torácicas em pediatria. Fonte: Autores e Hope et al.
- Opacidades reticulares;
- Consolidações;
- Sinal do halo invertido;
- Ausência de derrame pleural ou pneumotórax;
- Ausência de linfonodomegalia.

b. Achados indeterminados para processo infeccioso de etiologia viral (indeterminado):

- Vidro fosco;
- Consolidações multifocais;
- Distribuição não periférica.

c. Achados atípicos para processo infeccioso de etiologia viral (atípico):

- Consolidação lobar;
- Nódulos centrolobulares ramificados;
- Escavações;
- Espessamento septal central.

d. Achados negativos para processo infeccioso de etiologia viral (negativo).

Considerações sobre exames de imagem e oximetria: já existe um escore de gravidade para crianças?

Crianças geralmente apresentam casos leves da COVID-19 e a radiografia de tórax (RTX) não é capaz de identificar lesões ou detalhes. A tomografia computadorizada de tórax (TC) é mais sensível para identificar lesões, mas deve-se ter o cuidado de não expor sem necessidade crianças à radiação. Assim, fica o questionamento se a RTX ou a medida de saturação arterial na admissão foi 98%, mas 6 (17%) das crianças com doença moderada necessitaram de oxigênio. Todos evoluíram bem, a média de tempo de internação foi de 14 dias, embora destes n=10 (28%) eram assintomáticos, 7 (19%) apresentavam lesões pulmonares necessitaram de O₂ ou seja, não apresentavam insaturação.

Musolino et al.29 avaliaram consecutivamente 10 crianças (mediana de idade 11 anos) internadas com COVID-19. Foi realizado ultrassonografia em todos e 1 paciente realizou TC com achados semelhantes aos de Steinberger et al.29. Todos os pacientes eram sintomáticos na admissão: febre (80%); tosse (50%) e diarreia (20%) e tinham comprometimento pulmonar (áreas de pulmão com consolidação subpleural e irregularidades pleurais). Não houve relato de dispneia, insaturação e necessidade de oxigênio. Ou seja, o quadro clínico inicial (febre e tosse), os achados de lesões pulmonares (consolidação) na fase inicial em crianças não se correlacionam com insaturação e presença de dispneia.

Qiu et al.32 avaliaram crianças com COVID-19 (n=36), média de idade 8±3,5. A gravidade foi classificada em leve ou assintomáticos (n=17) e moderada (n=19) de acordo com os critérios de Chen et al.38. Os achados de opacidade em vidro fosco foram observados em 53% e 100% dos pacientes com doença leve e moderada, respectivamente. A medida de saturação arterial na admissão foi 98%, mas 6 (17%) das crianças com doença moderada necessitaram de oxigênio. Todos evoluíram bem, a média de tempo de internação foi de 14 dias, embora destes n=10 (28%) eram assintomáticos, 7 (19%) apresentavam manifestações de vias aéreas superiores e um paciente com relato de dispneia. Uma característica marcante da COVID-19, nesses pacientes, é o comprometimento de órgãos vitais como coração e pulmões.

Tabela 3. Características dos pacientes com COVID-19 e TC de tórax alterada.

Paciente	Idade anos	Sexo	História de exposição	Sintomas na admissão	Dias de sintomas antes da TC	Escore TC
1	3	M	sim	Febre, tosse	3	1
2	8	M	sim	Febre, odinofagia	7	2
3	14	M	sim	Febre, tosse	9	1
4	18	M	sim	Febre, tosse	13	4
5	15	M	sim	Febre, tosse	2	7
6	18	M	sim	Febre, dispneia	2	4
7	14	F	sim	Febre, tosse	6	2

Residência Pediátrica 2020;10(2):154-167.
pulmões e coração (alteração das enzimas miocárdicas) mesmo em pacientes com doença leve e moderada (31%). Embora o estudo não tenha avaliado critérios de gravidade da TC e a relação com a oximetria, é possível observar que pacientes com doença clínica leve à moderada apresentam alterações radiológicas, elevação de enzimas cardíacas, com saturação de oxigênio normal, mas que evolutivamente necessitaram de \(\text{O}_2 \). Isso nos permite afirmar, que em crianças com doença clínica leve à moderada não é possível estabelecer um escore de gravidade, ou mesmo associação entre imagem e medida transcutânea da saturação de hemoglobina, e apesar das alterações miocárdicas, todas apresentaram boa evolução.

Marcadores de gravidade de lesão pulmonar que utilizam saturação parcial de oxigênio (SpO\(_2\)) são substitutos adequados para os que utilizam pressão arterial (PaO\(_2\)) em crianças com insuficiência respiratória com SpO\(_2\), entre 80% e 97%. Ambos deveriam ser utilizados na prática clínica para caracterizar riscos, aumentar a participação em ensaios clínicos e verificar prevalência de doença\(^3\).

Oxímetro de pulso e ecografia pulmonar podem ser ferramentas úteis para rastrear ou excluir baixa oxigenação ou alterações pulmonares consistentes com syndrome respiratória aguda grave (SRAG), em locais com poucos recursos, onde gasometria arterial e RTX não são disponíveis\(^4\).

O estudo \(\text{CONFIDENCE - The Coronavirus Infection in Pediatric Emergency Departments Study} \) avaliou uma coorte de 100 crianças italianas abaixo de 18 anos com COVID-19 confirmado por PCR de swab de nasofaringe. A mediana de idade foi 3,3 anos e a origem da infecção fora do domicílio ocorreu em 55% dos casos. Os sinais mais frequentes foram: aspecto doentio (12%), febre \(\geq 37,6^\circ\text{C} \) (54%), tosse (44%) e dificuldade ou recusa alimentar em 23%. Um total de 4% das crianças apresentou SpO\(_2\)<95% avaliado por oximetria de pulso. Todas apresentaram imagem de comprometimento pulmonar (RTX ou ecografia pulmonar); 9 necessitaram de oxigênio durante a internação por insaturação ou esforço respiratório. Onze pacientes com comprometimento pulmonar (RTX ou ecografia) apresentavam oxigenação normal (oximetria de pulso), provavelmente por apresentarem lesões no estágio inicial. Nenhum paciente evoluiu com piora. Nove pacientes internaram em UTI, (4 neonatos, 3 lactentes <3 meses, outros por condição clínica ou comorbidades). Desses, um necessitou de ventilação mecânica (paciente com encefalopatia e epilepsia). Esse estudo demonstra em crianças que a indicação de admissão hospitalar foi dependente da condição clínica, outras morbididades e não por avaliação da imagem. Durante a admissão 4 crianças apresentaram SpO\(_2\)<95%, mas nove precisaram de suporte de oxigênio. A indicação de uso de oxigênio não foi baseada nos resultados de imagem, pois 11 pacientes apresentaram alterações na radiografia ou ecografia e não necessitaram de oxigênio. Não foi possível estabelecer associação entre gravidade clínica, níveis de saturação e alterações radiológicas nas fases iniciais de COVID-19 em crianças\(^5\).

Os oxímetros de pulso referem acurácia de ± 1-2% quando a SpO\(_2\) >75-80% e a acurácia não é referida para valores abaixo de 70%, pois eticamente não há como testar. Esse problema pode ser atenuado quando se monitora pacientes com COVID-19 ao se definir valores de saturação acima de 75-80%, embora deve ser reconhecido que informação de acurácia geralmente não é relatada, independentemente do grau de hipoxemia para os oxímetros de pulso que são baratos e fáceis de serem adquiridos. Embora haja conhecimento sobre a acurácia e as possíveis falhas que podem interferir nos valores obtidos, a facilidade de uso, baixo custo desse equipamento, associado ao ônus da COVID-19 e os riscos de hipoxemia silenciosa, o torna uma solução razoável para monitorar indivíduos de risco\(^6\).

Lipnick et al.\(^7\) compararam 6 oxímetros de baixo custo em 22 indivíduos saudáveis para avaliar medidas de saturação arterial com variação de saturação de 70 a 100%. Dos 6 dispositivos testados, apenas 2 obtiveram critérios de acurácia estabelecidos pela \textit{International Organization for Standardization} critério de acurácia \(\text{(Accuracy root mean square - Arms }<\text{3%)} \). Quatro dos oxímetros apresentaram valores de \textit{Arms} >3.0% e, em três deles, quando a saturação era de 80 a 90%. Esse valor foi >5% em quatro dispositivos, quando os valores de saturação eram 70-80%. Isso pode justificar em parte a dificuldade de se obter associação entre variáveis (por exemplo, TC versus oximetria de pulso), à falta de acurácia do dispositivo utilizado.

A decisão de instituir a ventilação mecânica é realizada de acordo com o julgamento clínico do médico, além da SpO\(_2\), dispneia, frequência respiratória, RTX e outros fatores. Muitos pacientes com COVID-19 são entubados devido à hipoxemia; ainda que com pouca dispneia ou distress\(^8\).

Com o objetivo de verificar se o escore do RTX apresenta correlação com hospitalização, entubação, tempo de internamento e óbito, foram avaliados adultos \(n=338 \) entre 21 e 50 anos com COVID-19. O escore do RTX foi obtido por meio da divisão da cada hemitórax em 3 partes e presença de opacidades (escore=1, se presente em uma área). Na avaliação inicial, radiografia com escore \(\geq 2 \) foi preditor independente para admissão hospitalar \(n=145 \) e escore \(\geq 3 \) \(n=28 \) para entubação. Os autores concluíram que para pacientes com COVID-19, entre 21 e 50 anos, o escore de RTX é um fator independente e preditivo de gravidade para admissão hospitalar e entubação. Esses achados ocorrem provavelmente porque apesar da baixa sensibilidade do RTX, este encontra-se alterado nos casos mais graves\(^9\).

Yang et al.\(^10\), avaliaram 102 pacientes com COVID-19, idade de 15-79 anos, 84 com doença leve. O escore de TC foi adaptado de Chang et al.\(^11\) e obtido pela divisão de 20 regiões; cada região recebeu 1 ou 2 pontos se o comprometimento era <50% ou ≥50%, respectivamente; pela divisão de 20 regiões; cada região recebeu 1 ou 2 pontos se o comprometimento era <50% ou ≥50%, respectivamente; ou seja, o escore poderia variar de \(0 \) a \(40 \). Os pacientes foram divididos para 4 grupos (levemente a grave); os resultados são apresentados na tabela abaixo. O escore de TC não apresentou relação com o tempo de internamento, oximetría de pulso, saturação de \(\text{O}_2 \) <93%; PaO\(_2\)/FIo\(_2\) <300mmHg e necessidade de ventilação mecânica, mesmo após ajustes. O melhor valor de escore de TC para discriminar pacientes leves de graves foi 19,5 com 83,3% de sensibilidade e 94% de especificidade. No entanto, pacientes com doença leve a saturação de \(\text{O}_2 \) foi 97% (96-98) e 92% (88 a 93) para os pacientes graves.
Foi possível afirmar que pacientes com doença mais grave apresentaram maior escore de TC e níveis menores de oximetria. No entanto, a variável SpO₂ tem viés de avaliação, uma vez que é critério de inclusão para doença grave.

Com a finalidade de verificar se os achados de TC podem estar relacionados com a evolução de pacientes com COVID-19, foram avaliados em estudo de corte transversal, 380 pacientes com média de idade 53,62± 16,66 anos, (66.1% masculino). Os achados mais frequentes da TC (dose baixa de radiação e cortes de 4mm) foram alterações periféricas (86.6%), de interstício peribroncovascular (34,6%) e vidro fosco (54,1%). O escore de TC foi avaliado de acordo com Pan et al.46.

Em outro estudo foram avaliados os 5 lobos pulmonares que receberam pontuação de 1 a 5 de acordo com o comprometimento; zero = sem comprometimento; 1 = <5%; 2 = de 5 a 25%; 3 = 26 a 49%; 4 = 50 a 75%; e, 5 = >75% de comprometimento. Houve correlação entre a média de escore de gravidade de TC e mortalidade (13,68 versus 8,72) (p<0,0001). Os níveis de SpO₂ foram maiores para os pacientes que sobreviveram 93,82± 5,88 versus 87,13± 6,72, dos que foram aplicados em pacientes com SRAG após a alta e não na admissão hospitalar.

O RXT apresenta limitações para uso em crianças pela sua baixa sensibilidade e pelo fato de crianças apresentarem doença mais leve. Se for necessário utilizar TC, fazer o exame com baixa dosagem de radiação. Em adultos mostrou ser marcador para internação e entubação.

Os oxímetros devem ser utilizados, pelo seu baixo custo, facilidade de uso, mas é importante saber das suas limitações, dificuldade de uso em crianças pequenas, falta de acurácia e a necessidade de uso correto.

A avaliação da gravidade deve ser baseada no conjunto de informações: clínica, oximetria e imagem; e não em variáveis isoladas, até mesmo porque é uma situação dinâmica.

CONCLUSÕES

Há poucos estudos da COVID-19 em crianças e com número pequeno de pacientes avaliados com TC; assim fica limitado estabelecer parâmetros de escore que possam apresentar associação com oximetria e TC ou RXT e gravidade clínica.

Não há escore de gravidade de TC padronizado em crianças para COVID-19. Os estudos utilizam escore de adulto, que por sua vez, também apresentam limitações, pois foram aplicados em pacientes com SRAG após a alta e não na admissão hospitalar.

Os oxímetros devem ser utilizados, pelo seu baixo custo, facilidade de uso, mas é importante saber das suas limitações, dificuldade de uso em crianças pequenas, falta de acurácia e a necessidade de uso correto.

A avaliação da gravidade deve ser baseada no conjunto de informações: clínica, oximetria e imagem; e não em variáveis isoladas, até mesmo porque é uma situação dinâmica.

REFERÊNCIAS

1. Souza TH, Nadal JA, Nogueira RN, Pereira RM, Brandão MB. Clinical manifestations of children with COVID-19: a systematic review. Pediatr Pulmonol. 2020 Jun 15; [Epub ahead of print]. DOI: https://doi.org/10.1002/ppul.24885
2. Foust AM, Phillips GS, Chu WC, Daltro P, Das KM, Garcia-Peña P, et al. International expert consensus statement on chest imaging in pediatric COVID-19 patient management: imaging finds, imaging study reporting and imaging study recommendations. Radiol Cardiothoracic Imaging. 2020 Apr;2(2):1-34.
3. Yagin JJ, Umscheid K, Khan AW, Ali M, Bhatt P, Desai PH. Pediatric characteristics of 2019 novel coronavirus: review of available published literature. Clin Ped. 2020;59(9-10):849-52. DOI: https://doi.org/10.1177/0009922820920017
4. Joseph T, Moleshi MA. International Pneumologist’s Consensus on COVID-19. 2a ed. São Paulo (SP): Sociedade Brasileira de Nefrologia (SBN); 2020.
5. Zhang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airbone transmission at the dominant route for the spread of COVID-19. PNAS [Internet]. 2020 Jun; [2020 JUN 10]; 117(26):14857-63. Disponível em: https://www.pnas.org/doi/10.1073/pnas.2009671117
6. Vivant A, Vauloup-Fellous C, Prevot S, Zupan V, Suffee C, Cao J, et al. Transplacental transmission of SARS-CoV-2 infection. Res Square. 2020 Mai 15; [Epub preprint]. DOI: https://doi.org/10.21203/rs.3.rs.28884/v1
7. Rasmussen SA, Thompson LA. Coronavirus disease 2019 and children: what pediatric health care of clinicians need to know. JAMA Pediatr. 2020 Apr 03; [Epub ahead of print]. DOI: https://doi.org/10.1001/jamapediatrics.2020.1224
8. Ong JSM, Tosoii A, Kim Y, Kissoon N, Murthy S. Coronavirus disease 2019 in critically ill children: a narrative review of the literature. Pediatr Crit Care Med. 2020 Jul;21(7):662-6. DOI: https://doi.org/10.1097/PPC.0000000000002376
9. Chang TH, Wu JL, Chang YJ. Clinical characteristics and diagnostic challenges of pediatric COVID-19: a systematic review and meta-analysis. J Formos Med Assoc. 2020 Mai;119(5):982-9.
10. Carlotti APCP, Carvalho WB, Johnston C, Rodrigues IS, Delgado AF. COVID-19 diagnostic and management protocol for pediatric patients. Clinics. 2020 Abr;75:e1894.
11. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics. 2020 Jun;145(6):e20200702. DOI: https://doi.org/10.1542/peds.2020-0702

Residência Pediátrica 2020;10(2):154-167.
12. Lu X, Zhang L, Du H, Zhang J, Li YY, Gu Q, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020 Apr;382(17):1663-5.

13. Wu H, Zhu H, Yuan C, Yao C, Luo W, Shen X, et al. Clinical and immune characteristics of the COVID-19 in Wuhan, China. JAMA Netw Open. 2020 Jun;3(6):e2010895.

14. Sankar J, Dhochak N, Kabra SK, Lodha R. COVID-19 in children: clinical approach and management. Indian J Pediatr. 2020 Jun;87(6):433-42.

15. Zhang L, Perez T, Silva MVF, Camargos P. What we know so far about coronavirus disease 2019 in children: a meta-analysis of S51 laboratory-confirmed cases. Pediatr Pulmonol. 2020 Jun 10; [Epub ahead of print]. DOI: https://doi.org/10.1002/ppul.24869

16. Sociedade Brasileira de Pediatria (SBP). Departamento de Pneumologia. COVID-19 em crianças: envolvimento respiratório [Internet]. Rio de Janeiro (RJ): SBP; 2020; [2020 JUN 10]. Disponível em: https://www.sbp.com.br/impressa/detalle/nid/covid-19-em-criancas-envolvimento-respiratorio

17. Ribeiro RS, Dutra MVP, Higa LS, Oliveira UT, Stephens PRS, Portes SAR. Etiologia viral das infecções respiratórias agudas em população pediátrica no Instituto Fernandes Figueira/FIOCRUZ/RJ. J Bras Patol Med Lab. 2011 Out;47(5):519-27.

18. Duarte DMG, Botelho C. Perfil clínico de crianças menores de cinco anos com infecção respiratória aguda. J Pediatri (Rio). 2000;76(3):207-12.

19. Secretaria de Estado da Saúde do Paraná (SBP). Superintendência de Vigilância em Saúde. Guia rápido de manejo epidemiológico das doenças inmunopreveníveis. Curitiba (PR): Secretaria de Estado da Saúde do Paraná; 2015. p. 68-77.

20. Sociedade Brasileira de Pediatria (SBP). Síndrome inflamatória multisistêmica em crianças e adolescentes provavelmente associada à COVID-19: uma apresentação aguda, grave e potencialmente fatal [Internet]. Rio de Janeiro (RJ): SBP; 2020; [2020 JUN 10]. Disponível em: https://www.sbp.com.br/impressa/detalle/nid/sindrome-inflamatoria-multisistemica-em-criancas-e-adolescentes-provavelmente-associada-a-covid-19-uma-apresentacao-aguda-grave-e-potencialmente-fatal/

21. Riphagen S, Gonzalez X, Gonzalez-Martinez C, Wilkinson N, Theoharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020 Mai;395:1607-8. DOI: https://doi.org/10.1016/S0140-6736(20)31094-1

22. Universidade Federal do Paraná (UFPR). Superintendência de Comunicação Social. Protocolo Interno de Abordagem da COVID-19 na Pediatria. Escore de probabilidade para COVID-19. Complexo do Hospital de Clínicas da Universidade Federal do Paraná. [Internet]. Curitiba (PR): UFPR; 2020; [2020 JUN 10]. Disponível em: http://intranet.hc.ufpr.br

23. She J, Liu L, Liu W. COVID-19 epidemic: disease characteristics in children. J Med Virol. 2020 Jul;92(7):747-54.

24. Wang, Y, Zhu F, Wang C, Wu J, Li R, Che X, et al. Children hospitalized with severe COVID-19 in Wuhan. Pediatr Infect Dis J. 2020 Jul;39(7):e91-e94.

25. Shen K, Yang Y, Wang T, Zhao D, Jiang Y, Yin Y, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus in children: experts’ consensus statement. World J Pediatr. 2020 Jun;16(3):223-31.

26. Li W, Cui H, Li K, Fang Y, Li S. Chest computed tomography in children with COVID-19 respiratory infection. Pediatr Radiol. 2020 Mai;50(6):796-9.

27. Parri N, Lenge M. Children with COVID-19 in pediatric emergency departments in Italy. N Engl J Med. 2020 Mai;383:187-90. DOI https://doi.org/10.1056/NEJMci2007617

28. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020 Mai;55(5):1169-74. DOI: https://doi.org/10.1002/ppul.24718

29. Steinberger S, Lin B, Bernheim A, Chung M, Gao Y, Xie Z, et al. CT features of coronavirus disease (COVID-19) in 30 pediatric patients. Am J Roentgenol. 2020;215:1-9. DOI: https://doi.org/10.2214/AJR.20.23145

30. Wang Z, Zhou Q, Wang C, Shi Q, Lu S, Ma Y, et al. Clinical characteristics of COVID-19: a rapid review and meta-analysis. Ann Transl Med. 2020 Mai;8(10):620. DOI: https://doi.org/10.21037/atm-20-3302

31. Zhang C, Gu J, Chen Q, Deng N, Li J, Huang L, Zhou X. Clinical and epidemiological characteristics of pediatric SARS-CoV-2 infections in China: a multicenter case series. PLoS Med. 2020 Jun;17(6):e1003130. DOI: https://doi.org/10.1371/journal.pmed.1003130

Residência Pediátrica 2020;10(2):154-167.