Observation of Efimov resonances in a mixture with extreme mass imbalance

Eva Kuhnle, Rico Pires, Juris Ulmanis, Stephan Häfner, Marc Repp, Alda Arias, Carmen Renner, and Matthias Weidemüller

Physikalisches Institut, Ruprecht-Karls Universität Heidelberg

Seattle, May 13, 2014, „Few-body Universality in Atomic and Nuclear Physics: Recent Experimental and Theoretical Advances“
Universal few-body systems

- Scenario for >3
- Halo nuclei
- Analytical and numerical models
- Few fermion systems
- Lower and mixed dimensions
- Observables of universal features
- 3 particles with unequal masses

Innsbruck
LENS
ENS
Barllan
JILA
Rice
Heidelberg
Tokyo
...
Efimov physics with mass imbalance

\[\text{Li} \quad \sim 22,2 \]

\[\text{Cs} \quad \text{Cs} \]

| \(B-F \) | \(e^{\pi i s_0} \) | \(|a_{\text{min}}| \) | \(E_{\text{max}} \) (nK) | \(|a_{\text{min}}| \) | \(E_{\text{max}} \) (nK) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| \(^{133}\text{Cs} - ^{6}\text{Li}\) | 4.877 | \(3 \times 10^3\) | 1500 | \(2 \times 10^4\) | 60.0 |
| \(^{87}\text{Rb} - ^{6}\text{Li}\) | 6.856 | \(8 \times 10^3\) | 230 | \(6 \times 10^4\) | 5.00 |
| \(^{23}\text{Na} - ^{6}\text{Li}\) | 36.28 | \(9 \times 10^5\) | \(\ll 0.1\) | \(3 \times 10^7\) | \(\ll 0.1\) |
| \(^{7}\text{Li} - ^{6}\text{Li}\) | \(> 10^2\) | \(> 10^8\) | \(\ll 0.1\) | \(> 10^8\) | \(\ll 0.1\) |
| \(^{133}\text{Cs} - ^{40}\text{K}\) | 47.02 | \(2 \times 10^6\) | \(\ll 0.1\) | \(9 \times 10^7\) | \(\ll 0.1\) |
| \(^{87}\text{Rb} - ^{40}\text{K}\) | \(> 10^2\) | \(> 10^8\) | \(\ll 0.1\) | \(> 10^8\) | \(\ll 0.1\) |

Barontini et al., *Phys. Rev. Lett.* 103, 043201 (2009); Bloom et al., *Phys. Rev. Lett.* 111, 105301 (2013)

D’Incao et al., Phys. Rev. A 73, 030703(R) (2006)
1) Atom loss
2) Three-body loss rate
Feshbach resonances in Li-Cs

Repp et al., Phys. Rev. A 87, 010701(R) (2013)
Tung et al., Phys. Rev. A 87, 010702(R) (2013)

\[a(B) = a_{bg} \left(\frac{\Delta}{B - B_{FR}} + 1 \right) \]

\[B_{FR} = 842.99(4) \text{ G} \]
\[\Delta = 60.4 \text{ G} \]

coupled-channels calculations by Eberhard Tiemann
Rf spectroscopy of dimers at 843 G

$B_{FR} = 842.90(20) \text{ G}$

$\Delta = 61.4(7) \text{ G}$

with rf spectroscopy of dimers
Experimental conditions

frequencies	atom numbers	density	temperature	
Cs	$2 \pi 54 \text{ Hz}$	1.6×10^4	$4 \times 10^{11} \text{ cm}^{-3}$	0.4 μK
Li	$2 \pi 141 \text{ Hz}$	4×10^4	$0.8 \times 10^{11} \text{ cm}^{-3}$	0.4 μK

→ at these temperatures: overlap $\approx 80 \%$ and gravitational sag $\approx 10 \mu$m
Feshbach resonances in Li-Cs

Repp et al., Phys. Rev. A 87, 010701(R) (2013)
Tung et al., Phys. Rev. A 87, 010702(R) (2013)

coupled-channels calculations by Eberhard Tiemann
Interaction around 843 G

Van der Waals

\[r_{0}^{\text{LiCs}} = 45 \, a_0 \]
\[r_{0}^{\text{Cs}} = 101 \, a_0 \]
Atom loss

Observation for $a < 0$:
Enhanced loss

$B_0 = 849.12(6)_{\text{stat}}(3)_{\text{sys}}$ G
$B_1 = 843.89(1)_{\text{stat}}(3)_{\text{sys}}$ G
$B_2 = 843.03(5)_{\text{stat}}(3)_{\text{sys}}$ G

Chin group, Tung et al., arXiv:1402.5943v1 (2014)

Grimm group, Phys. Rev. Lett. 112, 190401 (2014)
Three-body loss rate

\[
\dot{n}_{\text{Cs}} = -L_1^{\text{Cs}} n_{\text{Cs}} - 2L_3^{\text{LiCsCs}} n_{\text{Li}} n_{\text{Cs}}^2 - L_3^{\text{Cs}} n_{\text{Cs}}^3
\]
\[
\dot{n}_{\text{Li}} = -L_1^{\text{Li}} n_{\text{Li}} - L_3^{\text{LiCsCs}} n_{\text{Li}} n_{\text{Cs}}^2
\]

Assumptions:

- Fermionic Li \rightarrow suppression of L_3^{LiLiCs} and L_3^{Li}
- Recompression of the trap stops residual evaporation \rightarrow constant temperature
Three-body loss coefficient L_{3}^{Cs}

L_{3}^{Cs} is roughly constant in the relevant field range 840 G to 852 G

Berninger et al., *Phys. Rev. Lett.* 107, 120401 (2011)
Three-body loss rate

\[\dot{n}_{CS} = -L_1^{Cs} n_{CS} - 2L_3^{LiCsCs} n_{Li} n_{CS}^2 - L_3^{Cs} n_{CS}^3 \]

\[\dot{n}_{Li} = -L_1^{Li} n_{Li} - L_3^{LiCsCs} n_{Li} n_{CS}^2 \]

Assumptions:

- Fermionic Li \(\rightarrow \) suppression of \(L_3^{LiLiCs} \) and \(L_3^{Li} \)
- Recompression of the trap stops residual evaporation \(\rightarrow \) constant temperature
- \(L_3^{Cs} \rightarrow \) constant
- More \(N_{Li} = 3 \times 10^4 \) than \(N_{Cs} = 2 \times 10^4 \), after wait time the loss of Li atoms \(\approx 30\% \) but all Cs atoms are lost \(\rightarrow \) constant \(n_{Li} \)

\[\dot{n}_{CS} = -L_1^{Cs} n_{CS} - L_3^{LiCsCs} n_{Li} n_{CS}^2 - L_3^{Cs} n_{CS}^3 \]
Three-body loss coefficient L_3^{LiCsCs}

Conversion $N_{Cs} \rightarrow n_{Cs}$ depends on trap frequencies and temperatures of Li and Cs as well as on overlap.

\[
\dot{n}_{Cs} = -L_1^{Cs} n_{Cs} - L_3^{LiCsCs} n_{Li} n_{Cs}^2 - L_3^{Cs} n_{Cs}^3
\]
Three-body loss coefficient L_3^{LiCsCs}

Observation:
$B_0 = 848.90(6)_{\text{stat}}(3)_{\text{sys}} \ G$
$B_1 = 843.85(1)_{\text{stat}}(3)_{\text{sys}} \ G$

Comparison with atom loss
$B_0 = 849.12(6)_{\text{stat}}(3)_{\text{sys}} \ G$
$B_1 = 843.89(1)_{\text{stat}}(3)_{\text{sys}} \ G$

included: reduction due to 80% overlap
Three-body loss coefficient L_3^{LiCsCs}

Observation:
$B_0 = 848.90(6)_{\text{stat}}(3)_{\text{sys}} G$
$B_1 = 843.85(1)_{\text{stat}}(3)_{\text{sys}} G$

$$a(B) = a_{bg} \left(\frac{\Delta}{B - B_{FR}} + 1 \right)$$

$$a_0^{(0)} = -320(3)_{\text{stat}}(2)_{\text{sys}}(10)_{\text{rf}} a_0$$
$$a_0^{(1)} = -1871(19)_{\text{stat}}(58)_{\text{sys}}(388)_{\text{rf}} a_0$$

$B_{FR} = 842.90(20) G$
$\Delta = 61.4(7) G$

with rf spectroscopy of dimers
Three-body loss coefficient L^LiCsCs_3

\[a^{(0)} = -320(3)_{\text{stat}}(2)_{\text{sys}}(10)_{\text{rf}} a_0 \]

\[a^{(1)} = -1871(19)_{\text{stat}}(58)_{\text{sys}}(388)_{\text{rf}} a_0 \]

\[\frac{a^{(1)}}{a^{(0)}} = 5.8(0.1)_{\text{stat}}(0.2)_{\text{sys}}(1.0)_{\text{rf}} \]
Summary

- Feshbach resonances in Li-Cs
- Atomic loss curves show loss features associated with Efimov states
- These features are measurable in both species
- Third resonance is in the deep universal regime
- Measurement of L_3^{LiCsCs}
- The first two resonances leads to a scaling $\frac{a_-^{(1)}}{a_-^{(0)}} = 5.8(0.1)_{stat}(0.2)_{sys}(1.0)_{rf}$
Outlook

- Binding energies of Feshbach dimers
- Mixture at lower temperatures: L_3 of the third resonance
- ... or need a finite-range correction?
- Binding energies of Efimov states
- ...
Li-Cs team

Prof. Matthias Weidemüller (PI)
Rico Pires (PhD student)
Juris Ulmanis (PhD student)
Stephan Häfner (PhD student)
Alda Arias (Master student)
Carmen Renner (Lehramt)
Arthur Schönhals (former master student)
Robert Heck (former master student)
Marc Repp (former postdoc)
Eva Kuhnle (postdoc)

Cooperations
Prof. Eberhard Tiemann (Hannover)
Dr. Tobias Tiecke (Harvard)
Prof. Chris Greene (Purdue)
Prof. John Bohn (JILA)
Dr. Jose d’Incao ()
Yujun Wang ()