Bacteremia Secondary to Uncommon Gram-Negative Bacilli Transmitted From the Canine in a Patient With Multiple Myeloma

Venu Madhav Konala, MD, Srikanth Naramala, MD, Subhashish Bose, MD, Vijay Gayam, MD, Bhaskar Reddy Madhira, MD, and Sreedhar Adapa, MD

Abstract
Sphingobacterium multivorum is a gram-negative rod found in the environment and rarely associated with human infections. Sphingobacterium is the causative agent of infections in an immunocompromised host in most cases. We report a rare case of cellulitis in an immunocompromised host by Sphingobacterium multivorum.

Keywords
Sphingobacterium, Sphingobacterium multivorum, immunocompromised, multiple myeloma

Introduction
Sphingobacterium as a genus consists of many different subspecies, which are Sphingobacterium multivorum, Sphingobacterium mizutae, Sphingobacterium spiritorum, and Sphingobacterium thalphphilum. S multivorum is usually found in nature, specifically in soil, plants, water, and food. However, Sphingobacterium also makes up the gut microbiota in domestic canines as they produce sphingospholipids, regulating homeostasis in their digestive system. Sphingobacterium is detected in both hospitals and natural environments, and approximately up to 50 species have been identified in this genus. A search of the literature reveals only a handful of cases of Sphingobacterium causing infection in an immunocompetent host; most of the cases are seen in individuals who are immunocompromised. Improved microbiological techniques are being frequently used to identify the uncommon organisms causing infections. The cases usually reported with cellulitis progress to bacteremia and, eventually, sepsis. Our patient presented similarly and was treated promptly, which prevented severe complications.

Case Report
A 70-year-old female presented from her primary care’s office with pain in her legs along with redness and edema. She stated that she had mild bilateral leg swelling for the past 2 weeks. She started having left leg pain and erythema, which was worse on the day of her presentation. The patient admitted that the rash started after her dog played with her legs, playfully scratching, biting, and licking her leg intermittently. She denied any fever, chest pain, abdominal pain, or confusion. Her past medical history was significant for multiple myeloma, which was in remission at the time of presentation on maintenance therapy with lenalidomide and dexamethasone. Other past medical history was significant for chronic back pain secondary to spinal stenosis, and osteolytic lesions from multiple myeloma, chronic obstructive pulmonary disease, hypertension, hypothyroidism, and hyperlipidemia. Medications on admission include oxycodone extended-release 40 mg twice daily, oxycodone immediate-release 10 mg every 4 hours as

Received August 5, 2020. Revised September 15, 2020. Accepted September 19, 2020.

Corresponding Author:
Srikanth Naramala, MD, Department of Rheumatology, Adventist Medical Center, 470 North Greenfield Avenue, Suite 305, Hanford, CA 93230-5786, USA.
Email: dr.srikanth83@gmail.com
needed, lisinopril 10 mg daily, amlodipine 10 mg daily, levo-
thyroxine 75 µg daily, dexamethasone 12 mg once weekly,
lenalidomide 10 mg daily for 3 weeks on and 1 week off, aspi-
rin 81 mg daily, and atorvastatin 10 mg at night time.

Laboratory analysis on admission is summarized in Table 1. A bedside ultrasound was negative for deep venous thrombo-
sis. The patient was admitted with an initial diagnosis of
cellulitis and pneumonia and seen by infectious disease. Procalcitonin on admission was 3.2 ng/mL (0.5-2.0 ng/mL—
low risk for sepsis; suggest repeat in 6-24 hours; ≥ 0.5 ng/mL—
determinate risk for sepsis; ≥ 2.0 ng/mL—high risk for sepsis)

Laboratory value	Normal values
Hemoglobin	12-16 g/dL
White cell count	4.5-10.8 K/µL
Platelet count	130-400 K/µL
Blood urea nitrogen	7-8 mg/dL
Serum creatinine	0.61-1.3 mg/dL
Serum sodium	136-145 mmol/L
Serum potassium	3.5-5.3 mmol/L
Procalcitonin	<0.5 ng/mL—low risk for sepsis
	0.5-2.0 ng/mL—indeterminate risk for sepsis; suggest repeat in 6-24 hours
	>2.0 ng/mL—high risk for sepsis
Albumin	3.4-5 g/dL
Globulin	2.4-3.5 g/dL

The patient’s cellulitis improved with the antimicrobial
regimen, and she was discharged with 7 days of levoflaxa-
cin. Repeat blood cultures were negative. During the patient’s
admission, oncology was consulted for managing her multi-
ple myeloma, both lenalidomide and dexamethasone were
stopped temporarily and resumed after she completed the
course of antimicrobials. The remainder of her hospital stay
was otherwise uneventful.

Discussion

Sphingobacterium multivorum is an omnipresent non-lactose-
fermentative gram-negative bacillus with cell membrane rich
in sphingophospholipids, rarely causes infection in humans,
and can be life-threatening with resistance to many commonly
administered antimicrobials.5 Initially, it was classified as
Flavibacterium but renamed as *Sphingobacterium* because
of sphingoglycolipid rich cell membrane.1 It was first
described in 1981 as *Flavibacterium*. Yabuuchi et al described
the genus *Sphingobacterium* in 1983.7 It survives in moist
environments and can contaminate laboratory culture and
blood culture systems; hence, potential contamination should
be considered when multiple cases are reported from the same
facility.5

Like other cases reported in the medical literature from
genus *Sphingobacterium*, *S multivorum* is known to cause cel-
ulitis and other pathologies in the immunocompromised host.
In the case report, our patient presented with telltale signs of
cellulitis, which was different from other cases described in the
literature as the source of infection. To date, 2 cases of *S multi-
vorum*, one causing cellulitis and other causing necrotizing fas-
citis, have been described in the literature, with both patients
being immunocompromised and on long-term steroids.3

Sphingobacterium multivorum, as discussed earlier, is usually
found in the environment, predominantly in the soil and
water. However, in our patient, she could have acquired the
infected from her pet canine. As this organism lives in the
canine’s gut, they can get easily transferred by saliva to a
host, and in the immunocompromised host, they can poten-
tially lead to fatal conditions. Several cases have been reported
where the immunocompromised host had eventual bactere-
emia secondary to their primary mode of infection.2

Other infections associated with *S multivorum* include necrotizing fasciitis, peritonitis, respiratory infection, cystitis, meningitis, bacteremia mostly in immunocompromised
patients such as patients with malignancy undergoing chemo-
therapy, patients with diabetes mellitus, chronic liver disease,
patients undergoing hemodialysis, cystic fibrosis patients,
patients with HIV (human immunodeficiency virus), and
patients with the chronic obstructive pulmonary disease.1,5
For bacterial identification, the 16S ribosomal RNA sequence is widely used primarily with unreliable results on conventional testing. The taxonomy of genus *Sphingobacterium* is still being determined since several organisms were identified from the soil, sludge, plants, and food in the past decade.\(^8\) *Sphingobacterium* is known to show a varying degree of pattern to antimicrobial resistance. In our case, the microbe was susceptible to trimethoprim-sulfamethoxazole and quinolones but resistant to cephalosporins. This was not surprising given that *Sphingobacterium* can produce an extended \(\beta\)-lactamase, making it resistant to cephalosporins.\(^9\) The patient, in our case, made an excellent recovery from the use of trimethoprim-sulfamethoxazole and levofloxacin. However, 2 recent cases discussed by Nemoto et al responded to cefazolin with complete resolution of the symptoms even though the minimum inhibitory concentration of cefazolin against the isolated organisms was \(>4\ \mu\)g/mL.\(^3\)

Conclusion

Infections with *Sphingobacterium* have been gaining more attention recently, but a literature review shows a limited amount of cases where this microbe is blamed for a series of infections. While a few cases of *Sphingobacterium*, causing infection in the immunocompetent host, have been documented, most cases show infections in an immunocompromised host. It is also worthwhile to note that sometimes the most innocuous sources of infections can be overlooked. Our case reiterates that in an immunocompromised host, even the most harmless microbe can become an opportunistic pathogen; hence, it is essential that along with a detailed history, appropriate workup can go a long way in the care of our patients.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics Approval

Our institution does not require ethical approval for reporting individual cases or case series.

Informed Consent

Verbal informed consent was obtained from the patient(s) for their anonymized information to be published in this article.

ORCID iDs

Venu Madhav Konala https://orcid.org/0000-0003-1953-8815

Srikanth Naramala https://orcid.org/0000-0003-1238-856X

Vijay Gayam https://orcid.org/0000-0001-5194-9134

Sreedhar Adapa https://orcid.org/0000-0001-5608-5654

References

1. Abro AH, Shahmirzadi MRR, Jasim LM, Badreddine S, Al Deesi Z. *Sphingobacterium multivor tus* bacteremia and acute meningitis in an immunocompetent adult patient: a case report. *Iran Red Crescent Med J*. 2016;18:e38750.

2. Stone NE, Nunally AE, Jimenez V Jr, et al. Domestic canines do not display evidence of gut microbial dysbiosis in the presence of *Clostridioides* (*Clostridium*) *difficile*, despite cellular susceptibility to its toxins. *Anaerobe*. 2019;58:53-72.

3. Nemoto D, Hitomi S, Moriyama Y, Iwamoto K, Saito K. Cellulitis complicated with bacteremia due to *Sphingobacterium* species: a report of two cases and a literature review. *Intern Med*. 2019;58:2573-2576.

4. Adapa S, Konala VM, Nawaz F, et al. Peritonitis from *Leclercia adecarboxylata*: an emerging pathogen. *Clin Case Rep*. 2019;7:829-831.

5. Barahona F, Slim J. *Sphingobacterium multivorum*: case report and literature review. *New Microbes New Infect*. 2015;7:33-36.

6. Holmes B, Owen RJ, Weaver RE. *Flavobacterium multivor tus*, a new species isolated from human clinical specimens and previously known as group IIk, biotype 2. *Int J Syst Evol Microbiol*. 1981;31:21-34.

7. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. *Sphingobacterium* gen nov, *Sphingobacterium spiritivor tus* comb nov, *Sphingobacterium multivor tus* comb nov, *Sphingobacterium mizutae* sp nov, and *Flavobacterium indologenes* sp nov: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. *Int J Syst Evol Microbiol*. 1983;33:580-598.

8. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. *J Clin Microbiol*. 2007;45:2761-2764.

9. Steinberg JP, Rio CD. Other gram-negative bacilli. In: Mandell GL, Bennett JE, Dolin R, eds. *Mandell, Douglas and Bennett’s Principal and Practice of Infectious Diseases*. 5th ed. Churchill Livingstone; 2000:2459-2474.