Length-Weight Relationships of Brown-Marbled Grouper Epinephelus fuscoguttatus Forsskål, 1775 in Bobong Taliabu Waters of North Maluku, Indonesia

Umar Tangke¹,*, Frentje Dusyan Silooy², Rochmady³, Fikri Rizky Malik⁴, Susiana⁵

¹Department of Fisheries Processing Technology, Faculty of Agricultural, Universitas Muhammadiyah Maluku Utara, Ternate, North Maluku, Indonesia
²Department of Fisheries Resources Utilization Faculty of Marine Science and Fisheries, University of Pattimura, Ambon, Indonesia
³Department of Aquaculture, Wuna Agricultural Science University, Raha, Southeast Sulawesi, Indonesia
⁴Department of Fisheries Resources Utilization, Faculty of Agriculture, University of Khairun, Ternate, Indonesia
⁵Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Raja Ali Haji Maritime University, Tanjungpinang, Indonesia

*Corresponding author. Email: umbakhaka@gmail.com

ABSTRACT

Length-weight relationship (LWR) species Epinephelus fuscoguttatus Forsskål, 1775 by gender (male and female) were collected from September 2016 to June 2017 in Bobong Taliabu waters, North Maluku, Indonesia. Fish captured using bottom trap, size 80 x 60 x 35 cm with mesh size 5 cm. LWRs of significant male and female E. fuscoguttatus (P<0.05) were calculated as W = 0.0098 L².1475 (r² = 0.9252), W = 0.0752 L².5030 (r² = 0.9029), and W = 0.9987 L¹.6789 (r² = 0.9093) for both. This study recorded the new maximum length by sex of E. fuscoguttatus.

Keywords: grouper, length-weight, Epinephelus fuscoguttatus

1. INTRODUCTION

Length-weight relationship (LWR) is the basis of the biological parameter to be an important source of information in the assessment of fishery resources (Froese, Tsikliras, & Stergiou [1], Tangke et al [2], Tangke et al. [3]. LWR obtained information about fish growth conditions so as to determine the growth pattern (i.e., allometric vs. isometric growth) Richter et al. [4], Vega-Cendejas et al. [5]. In turn, LWR is used for comparative growth studies by Tangke et al. [6], Froese & Pauly,[7], Ricker [8]. In addition, LWR can convert length to weight and vice versa, providing insight into fish ecology by Froese [9], as well as having many important applications in fisheries management by Pauly [10], Rochmady & Susiana [11].

Besides, LWR is used for many studies of fisheries biology, i.e., total biomass, fish conditions (overweight, food and reproduction), age structure, inter-regional growth rate, regional comparison of fish life history and specific species, Farooq et al. [12], Hashim et al. [13], Özdemir et al. [14]. Environmental suitability, Froese et al. [1], Jellyman et al. [15], Le Cran et al. [16], Reñones et al. [17], significant to develop conservation strategies fish and ensure sustainable development, Castilla [18], Patanda et al. [19]. However, LWR analysis is important to pay attention in fish gender. Nevertheless, despite having different applications, LWR data for many species of fish worldwide is still insufficient, Froese & Pauly [20].

The north coast sea of North Maluku are considered as one of the diversity hotspots of fish in the Banda Sea. Dalzell & Pauly, [21], Hariey & Baskoro, [22]. The waters of Bobong Taliabu North Maluku are similar to the Bengal Sea, Bangladesh have the resources of fish with high levels of diversity, Hanif et al. [23]. The waters of Bobong Taliabu North Maluku and its surroundings are abundant with ichthyofaunal diversity, one of which is Perciformes species (E. fuscoguttatus). This study aims to analyse LWR species E. fuscoguttatus by gender (male and female).

2. METHOD

Specimens are collected by monthly from September 2016 to June 2017 in the waters of Bobong Taliabu (02°02'09.568" S - 124°23'11.473" E) North Maluku, one of the largest waters in North Maluku, Indonesia. The sampled fish is taken by using a “bottom trap” size specification (80 x 60 x 35 cm) the slit size is 5 cm with the help of local fisherman. The fish samples are identified against the species level, and the scientific name for each species was checked against FishBase, Froese & Pauly, [20]. Specimens were identified on the spot and sorted by gender. The total length (TL) and body weight (BW) specimens were measured with a precision of 0.1 cm and 0.01 g, respectively. Length-weight relationship (W = a L¹) is estimated using a linear regression equation of log transformation. Le Cren, [16]: log (W) = log (a) + b log (L), where W is the total wet weight (g), L is the total length (cm), a is the intercept, and b is the slope. The
regression parameters (a and b) at 95% confidence intervals (CI) and correlation coefficient values \(r^2 \) (Froese, [9]). Prior to regression, was performed a log-log plot of length and weight relationships to eliminate extreme imaging (Froese et al., [1]). All calculations and statistical analysis using Excel 2013.

III. RESULTS AND DISCUSSION

The statistical summary of sex, sample size (N), size range: length (cm) and weight (g) minimum and maximum, LWR parameters (a and b) at 95% confidence intervals (CI) and correlation coefficients \(r^2 \) in Table 1. The regression parameters (b) and the correlation coefficient \(r^2 \) are respectively in the range of 3.1299-3.1651 and 0.9155-0.9572 for males, ranging from 2.4782-2.5272 and 0.8688-0.9691 for females, and ranged from 1.6579-1.7000 and 0.9093 for the whole.

![Figure 1. LWR of Brown-Marbled Grouper in Bobong](image)

Table 1. Descriptive statistics and LWRs parameters for *Epinephelus fuscoguttatus* captured by monthly from Bobong Taliaibu waters of North Maluku, Ternate, Indonesia.

Month	Sex	N	Min	Max	Min	Max	a	b	\(r^2 \)	95% CI a	95% CI b
Sep-16	Male	20	10.40	36.70	18.73	624.97	0.0502	2.6244	0.9155	0.0363-0.0491	2.6012-2.6475
Female	22	9.30	44.60	33.40	1.045.08	0.0875	2.4475	0.8688	0.0265-0.0383	2.4062-2.4889	
Okt-16	Male	24	28.56	36.00	28.56	608.76	0.1084	2.3900	0.9142	0.0378-0.0509	2.3709-2.4091
Female	21	18.50	29.60	18.67	363.27	0.1037	2.4018	0.9432	0.0489-0.0641	2.2357-2.5680	
Nov-16	Male	17	18.67	41.30	18.67	861.93	0.0661	2.5426	0.9390	0.0308-0.0425	2.5336-2.5515
Female	14	39.90	33.97	33.97	736.63	1.0749	1.6367	0.9385	0.0311-0.0448	1.5805-1.6930	
Dec-16	Male	12	10.40	38.50	39.30	721.14	0.0576	2.5847	0.9538	0.0325-0.0419	2.5781-2.5913
Female	16	10.40	38.50	39.30	721.14	0.0576	2.5847	0.9538	0.0325-0.0419	2.5781-2.5913	
Jan-17	Male	16	39.20	43.20	39.30	492.18	0.0791	2.4898	0.9340	0.0376-0.0505	2.4645-2.5151
Female	17	33.20	39.30	39.30	448.79	0.0717	2.5149	0.9691	0.0399-0.0490	2.5037-2.5260	
Feb-17	Male	19	12.90	35.60	49.44	587.77	0.0715	2.5281	0.9424	0.0342-0.0441	2.5046-2.5516
Female	16	10.70	40.70	21.10	912.89	0.0555	2.5967	0.8991	0.0280-0.0414	2.5720-2.6213	
Mar-17	Male	16	16.50	42.10	78.90	894.29	0.0591	2.5765	0.9499	0.0273-0.0356	2.5677-2.5835
Female	16	12.20	42.50	62.17	924.89	1.0441	2.3158	0.9267	0.0267-0.0369	2.2886-2.3430	
Apr-17	Male	17	12.40	33.20	39.30	492.18	0.0791	2.4898	0.9340	0.0376-0.0505	2.4645-2.5151
Female	16	30.00	50.14	50.14	448.79	0.0717	2.5149	0.9691	0.0399-0.0490	2.5037-2.5260	
Mei-17	Male	21	12.00	36.80	39.97	639.92	0.0620	1.8438	0.9464	0.0362-0.0455	1.8229-1.8646
Female	17	12.70	33.40	45.55	497.89	0.0872	2.4502	0.9306	0.0352-0.0476	2.4124-2.4880	
Jun-17	Male	18	12.60	39.20	42.03	752.54	0.0643	2.5549	0.9572	0.0308-0.0386	2.5454-2.5643
Female	14	16.40	36.70	52.20	665.45	0.0710	2.5243	0.9456	0.0325-0.0441	2.4991-2.5494	
Overall	Male	181	8.50	42.10	18.67	894.29	0.0098	3.1475	0.9252	0.0381-0.0414	3.1299-3.1651
Female	171	9.00	47.30	17.94	1.215.83	0.0752	2.5030	0.9029	0.0329-0.0364	2.4788-2.5272	
Both	352	8.5	47.3	17.94	1.215.83	0.0987	1.6789	0.9093	0.0355-0.0380	1.6579-1.7000	
LWRs for the species *E. fuscoguttatus* are reported for the umpteenth time in FishBase. This study recorded the total length (TL) and the maximum weight of *E. fuscoguttatus* each of 17.94 cm and 1,215.83 g. All parameter estimation during the study period was in the range of 1.6367–2.6244 for males, the range of 2.3158–2.5967 for females as expected. Besides that, it was found the estimated species values were within in approximate Bayesian length-weight ranges in FishBase, Froese & Pauly, [20].

Based on the scientific literature and data from FishBase, no information was found on LWR for male and female *E. fuscoguttatus*. The study found a maximum total length of *E. fuscoguttatus* of 42.10 cm for males, and of 47.30 cm for females thus giving new total length information based on gender in FishBase. Although the sample size is large enough it covers 80% of the total known maximum length, but for this species is generally smaller than the total size of a reported total of 120 cm. The difference in total length size may be due to the dominance of small size fish in this geographic area or environmental constraints, Rochmady & Susiana [24], Susiana et al. [25]. The values of 'b' for this fish species have not been reported. In this study, the parameter value 'b' is within the normal range of 2.5–3.5.

The values of 'a' and 'b' for each species compared to the 95% confidence limit of the Bayesian value estimate is expected. Besides that, it was found the estimated parameter 'b' is within the normal range of 2.5–3.5., this fish species have not been reported. In this study, the estimated parameter 'b' is within the normal range of 2.5–3.5.

Financial aid was provided by the Ministry of Marine Affairs and Fisheries, Indonesia, through the Research and Development of Technology Development, Ministry of Marine Affairs and Fisheries, Indonesia. The study was carried out with the aim of providing new information on LWR of *E. fuscoguttatus* in the coastal waters of South Ternate Island, Indonesia. The study found a maximum total length of 2.6244 for males, the range of 2.3158–2.5967 for females during the study period was in the range of 1.6367–2.6244 or 2.3158–2.5967 for males as expected. Besides that, it was found the estimated species values were within approximate Bayesian length-weight ranges in FishBase, Froese & Pauly, [20].

IV. CONCLUSION

In conclusion, the findings of this study offer new information about the biological aspects of *E. fuscoguttatus* species that are part of Perciformes based on their gender from the waters of Bobong Taliabu North Maluku, Indonesia that will be useful for sustainable fisheries development.

REFERENCES

[1] Froese, R., Tsiklaras, A. C., & Stereiou, K. I. (2011). Editorial note on weight-length relationships of fishes. Acta Ichthyologica et Piscatoria, 41(4), 261–263. https://doi.org/10.3750/AIP2011.41.4.01

[2] Taneku U., 2014. Parameter nonulasi dan tinekat eksloitasai ikan tonelon (Euthynnus affinis) di nerairan Pulau Morotai. Agrikun: Jurnal Ilmu Agraris dan Perikanan, 7(1):74–81. DOI: 10.29239/j.agrikun.7.1.74–81.

[3] Taneku U., Deni S., & Aunaka A., 2018a. The Influence of Using Bait Traps to the Number and Composition of Fishing Traps Catch in South Ternate Waters. IOP Conference Series: Earth and Environmental Science 175(1):12231. DOI: 10.1088/1755-1315/175/1/012231.

[4] Richter, H., Lückstädt, C., Focken, U. L., & Becker, K. (2000). An improved procedure to assess fish condition on the basis of length-weight relationships. Archive of Fisherv and Marine Research, 48(3), 226–235. https://doi.org/0944-1921/2000/48/3-226/15.005/0

[5] Vega-Cendejas, M. E., de Santillana, M. H., & Arceo, D. (2012). Length-weight relationships for selected fish species from a coastal lagoon influenced by freshwater seeps: Yucatan peninsula. Mexico. Journal of Applied Ichthyology, 28(1), 140–142. https://doi.org/10.1111/j.1439-0426.2011.01875.x

[6] Taneku U., Sangadji I., Rochmady R., & Susiana S., 2018b. A nonulasi dimate aspect of Selaroides lentolensis in the coastal waters of South Ternate Island, Indonesia. AACL Bioflux, 11(4):1334–1342.

[7] Froese, R., & Pauly, D. (2000). FishBase 2000: concepts, design, and data sources. Manila: ICLARM.

[8] Ricker, W. E. (1975). Computation and interpretation of biological statistics for fish population. Bulletin Journal of Fish Research Board Canada. 191, 1–382. Retrieved from https://ci.nii.ac.jp/naid/10018066635/

[9] Froese, R. (2006). Cube law, condition factor and weight-length relationships: Historv. meta-analysis and recommendations. Journal of Applied Ichthyology, 22(4), 226 –235. https://doi.org/10.1007/s00343-017-6117-2

[10] Paulv. D. (1984). Length-converted catch curve. A powerful tool for fisheries research in the tropics (part III: conclusion). Fishbyte, 2(3), 9–10. Retrieved from https://ideas.repec.org/a/wfi/wfbyte/38112.html

[11] Rochmady, R. (2012). Hubuanan naniane bobot dan faktor kondisi kerang lumpur Anodontia edentula. Linnaeus 1758 di pulau Tobea Kecamatan Nanabalo. Kabupaten Muna. Agrikun: Jurnal Agraris dan Perikanan, 5(1), 1–8. https://doi.org/10.29239/j.agrikun.5.1.1-8

[12] Farooq, N., Oamar, N., Rashid, S., & Panhwaw, S. K. (2017). Length-weight relationship of eleven species of marine catfishes from the northern Arabian Sea coast of Pakistan. Chinese Journal of Oceanology and Limnology, 35(5), 1218–1220. https://doi.org/10.1007/s00343-017-6117-2

[13] Hashim, M., Abidin, D. A. Z., Das, S. K., & Mazlan, A. G. (2017). Length-weight relationship, condition factor and TROPH of Scatophagus argus in Malaysian coastal waters. AACL Bioflux, 10(2), 297–307. https://doi.org/10.3750/AIP2011.41.4.01

[14] Özdemir, S., Süvelevici, H., Özdemir, Z. B., Özsandikçı, U., & Büyükdeveci, F. (2018). Determination of monthly length-weight relationships and length composition of whiting (Merlanus merlanus eurinus) captured from The Black Sea Coast. (SНОP-SAMSUN). Aquatic Research, 1(1), 26–37. https://doi.org/10.3153/AR18004

[15] Jelveryman, P. G., Booker, D. J., Crow, S. K., Bonnett, M. L., & Jelveryman, D. J. (2013). Does one size fit all? An evaluation of length-weight relationships for New Zealand’s freshwater fish species. New Zealand Journal of Marine and Freshwater Research, 47(4), 450–468. https://doi.org/10.1080/00288330.2013.781510

[16] Le Cren. E. D. (1951). The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and
Condition in the Perch (Perca fluviatilis). The Journal of Animal Ecology, 20(2), 201–219. https://doi.org/10.2307/1540

[17] Reñones, O., Grau, A., Mas, X., Riera, F., & Saborido-Rey, F. (2010). Reproductive pattern of an exploited dusky grouper Eninihelus marginatus (Lowe 1834) (Pisces: Serranidae) population in the western Mediterranean. Scientia Marina, 74(3), 523–537. https://doi.org/10.3989/scimar.2010.74n3523

[18] Castilla, J. C. (2000). Roles of experimental marine ecology in coastal management and conservation. Journal of Experimental Marine Biology and Ecology, 250(1–2), 3–21. https://doi.org/10.1016/S0022-0981(00)00177-5

[19] Patanda, M., Wisudo, S. H., Monintja, D. R., & Wirvawan, B. (2017). Sustainability for reef fish resource based on productivity and susceptibility in Wangi-Wangi Island. Southeast Sulawesi, Indonesia. AACL Bioflux, 10(4), 861–874.

[20] Froese, R., & Pauly, D. (2015). World Wide Web electronic publication. Retrieved April 8, 2018, from http://www.fishbase.org.

[21] Dalzell, P., & Paulv, D. (1990). Assessment of the fish resources of southeast Asia, with emphasis on the Banda and Arafura seas. Netherlands Journal of Sea Research, 25(4), 641–650. https://doi.org/10.1016/0077-7579(90)90086-V

[22] Hariev, J., & Baskoro, M. S. (2011). Fishing capacity of the small-nellariic fishery at Banda Sea. Moluccas. Journal of Coastal Development, 14(2), 115–124.

[23] Hanif, M. A., Islam, M. A., Siddik, M. A. B., & Chaklader, M. R. (2018). Length-weight relationships of three estuarine fish species from Bangladesh. Journal of Applied Ichthyology, 34, 1–3. https://doi.org/10.1111/jai.13707

[24] Rochmady, R., & Susiana, S. (2014). Pendueaan stok ikan kerapu (groumer) di nerteran Selat Makassar Sulawesi Selatan periode tahun 1999-2007. Aairkan: Jurnal Aeribisnis dan Perikanan, 7(2), 60–67. https://doi.org/10.29239/j.agrikiran.7.2.60-67

[25] Susiana, S., Niartiningsih, A., Amran, M. A., & Rochmady, R. (2017). Suitability of location for restocking clams Tridacnidae in the Spermonde Archipelago. Jurnal Ilmu dan Teknologi Kelautan Tronis, 9(2), 475–490. https://doi.org/10.29244/jitkt.v9i2.19284

[26] Sane, H. M., & Fotedar, R. (2004). Growth, survival, haemolymph osmolality and organosomatic indices of the western king prawn (Penaeus latisulcatus Kishinouye, 1896) reared at different salinities. Aquaculture, 234(1–4), 601–614. https://doi.org/10.1016/j.aquaculture.2004.01.008

[27] Wang, C., Xie, S., Chang, X.-L., & Huang, D.-M. (2015). Length-weight relationships of five fish species from the Hongshui River, China. Journal of Applied Ichthyology, 31(6), 1180–1181. https://doi.org/10.1111/jai.12896.

[28] Siddik, M. A. B., Chaklader, M. R., Hanif, M. A., Nahar, A., Ilham, I., Cole, A., & Fotedar, R. (2017). Variation in the life-history traits of a Schilbid catfish, Clunisoa garua (Hamilton, 1822) in the coastal waters of southern Bangladesh. Chinese Journal of Oceanology and Limnology, 35(5), 1189–1196. https://doi.org/10.1007/s00343-017-6008-6