A Hybrid Active Neutral Point Clamped Inverter Utilizing Si and Ga₂O₃ Semiconductors: Modelling and Performance Analysis

Sheikh Tanzim Meraj 1, Nor Zaihar Yahaya 1, Molla Shahadat Hossain Lipu 2,3,*, Kamrul Hasan 6, Md. Sazal Miah 7, Shaheer Ansari 2, and Aini Hussain 2

Abstract: In this paper, the performance of an active neutral point clamped (ANPC) inverter is evaluated, which is developed utilizing both silicon (Si) and gallium trioxide (Ga₂O₃) devices. The hybridization of semiconductor devices is performed since the production volume and fabrication of ultra-wide bandgap (UWBG) semiconductors are still in the early-stage, and they are highly expensive. In the proposed ANPC topology, the Si devices are operated at a low switching frequency, while the Ga₂O₃ switches are operated at a high switching frequency. The proposed ANPC mitigates the fault current in the switching devices which are prevalent in conventional ANPCs. The proposed ANPC is developed by applying a specified modulation technique and an intelligent switching arrangement, which has further improved its performance by optimizing the loss distribution among the Si/Ga₂O₃ devices and thus effectively increases the overall efficiency of the inverter. It profoundly reduces the common mode current stress on the switches and thus generates a lower common-mode voltage on the output. It can also operate at a broad range of power factors. The paper extensively analyzed the switching performance of UWBG semiconductor (Ga₂O₃) devices using double pulse testing (DPT) and proper simulation results. The proposed inverter reduced the fault current to 52 A and achieved a maximum efficiency of 99.1%.

Keywords: power electronics; ultrawide bandgap; semiconductors; neutral point clamped; inverter; silicon; gallium trioxide; fabrication; hybridization

1. Introduction

Silicon-based devices have primarily been used and are still dominant in developing power inverters [1,2]. However, ultra-wide bandgap (UWBG) semiconductors have gained a significant amount of attention in recent years [3]. As a result, Ga₂O₃ being a strong candidate for UWBG devices have the potential to be profoundly applied in the various applications in the field of power electronics ranging from Photovoltaic (PV) inverters and UPS systems to inverters for traction and space applications, among others [4–6]. In these power inverters, UWBG semiconductors can contribute to high efficiency, inverter size
reduction, and high-temperature environment operation, which are unlikely to be achieved otherwise [7]. These features of Ga$_2$O$_3$ devices are due to the specific properties of the UWBG material. Gallium trioxide (Ga$_2$O$_3$) devices are capable of achieving these because unlike their conventional counterpart, the blocking voltage that is rated for these devices is nearly a hundred times higher for the same width of the drift region [8]. In addition, the high thermal conductivity, along with the fast-switching speed are two main factors that are offered by Ga$_2$O$_3$ devices to gain this advantage [3]. Though the UWBG devices can be applied in medium power applications, the ongoing research has suggested that these devices have great potential to be applied in high power applications with modular multilevel inverters (MLIs) [9].

For medium-voltage-range Photovoltaics (PV), several DC-link voltages are proposed in recent years [10,11] considering different interests. However, when efficiency and reliability are the main concern, the 1.5kV DC-link-based PV generation system has gained significant attention along with systems [12,13]. In addition to that, for higher efficiency in PV systems, transformer-less configurations have shown better performance compared to other transformer-based configurations [6]. Though many inverter topologies had been proposed previously considering high voltage applications, a three-level neutral point clamped (NPC) inverter is one of the most optimal inverter choices for high voltage applications [14]. Since the clamped common-mode voltage (CMV) is enabled in this type of topology, it minimizes leakage-current-related issues [15]. That is why, for a transformer-less system, it is a better choice than other systems which are incorporated by leakage current. Despite this, due to the unequal loss distribution among the switches, the NPC inverter has issues related to neutral-point voltage imbalance, as well as a shoot-through fault in the switching devices [16].

Various types of control strategies along with modified inverter topologies have recently been proposed to overcome the inconveniences in the NPC inverter. Since NPC inverters are prone to the shoot-through problem, a split inductor configuration can be used to solve this issue [17]. It should also be noted that in addition to successfully protecting the shoot-through fault, reduced leakage current and the eradication of CMV transitions that are high frequency in nature, can be achieved through this inverter. However, even though this configuration removes most of the inconveniences, it operates in a unity power factor region. Therefore, this configuration is hardly suitable for high voltage applications that are designed specifically for supplying reactive power to the grid. In addition to that, the previously mentioned non-uniform loss distribution problem in the switches of the NPC inverters still exists in these topologies.

In [18], the non-uniform current distribution was addressed, and it proposed an active neutral point clamped (ANPC) inverter. As per the switching states of ANPC inverters, additional redundant zero states can be gained in the ANPC inverter topology. Therefore, unequal switching loss distribution can be mitigated if different zero states can be appropriately exploited in the switching states of the ANPC inverter. Considering these additional states, some notable PWM-based control techniques are employed previously in the ANPC inverter topology [19,20]. The use of current and voltage sensors for the selection of the redundant zero states that are available in the ANPC topology focused on power factors. So, how the states of the inverters will be chosen is largely related to the feedback signals of those current and voltage sensors. This solution is optimized to achieve high efficiency in ANPC, which provides the states for the hybrid Si/Ga$_2$O$_3$-devices-based ANPC topology. The high efficiency and the low cost relative to all Ga$_2$O$_3$ inverters can be obtained according to researchers [21]. Recent literature has also shown promising results using the aforementioned approach where the switching devices of the ANPC were mostly built using wide bandgap (WBG) materials or silicon carbide (SiC) [22]. However, one fact about their research is that they only considered low voltage applications, and the entire ANPC inverter was built using devices from the same bandgap materials. Furthermore, one fact about their research is that they considered the converters suitable for only low-power applications having low voltages. Because in the case of MV applications, unlike silicon
devices, the body diodes of Ga$_2$O$_3$ MOSFETs are the cause of further switching losses along with overshoots that are significant in switching transient, the design criteria would be different [23]. In addition to that, as the dead-band time is declined in high-frequency devices, the severity of the shoot-through fault rises remarkably. It should also be noted that as high-frequency switching devices are employed at the output side, an increase has been seen in the voltage amplitude in the electromagnetic interference (EMI) frequency range, which ultimately contributes to the increased size and complexity in EMI filters [24].

Considering the issues stated above, this study proposes a hybrid ANPC inverter that utilizes both conventional Si and Ga$_2$O$_3$ devices. As a result of this hybridization, the switching losses of the inverter are reduced significantly. The hybridization also made the implementation of a split-output structure achievable. Thus, the proposed circuit can also handle the switching transient overshoots. In this structure, since the UWBG switch is decoupled externally by the parallel diode, both overshoot issues in the switching transient, as well as switching losses, are declined significantly. These reduced overshoots ultimately also lead to decreased voltage and current stresses on the UWBG devices. As this converter topology is capable of supplying reactive power to loads with a wide range of power factors, it can be used for grid-tied PV systems. The key contributions of the paper can be listed as follows:

- Incorporating UWBG semiconductors to utilize their various advantages such as reduced size, minimized switching transient overshoots, reduced current and voltage stress, high-frequency switching, and efficiency;
- Hybridization with conventional Si switches to prevent high leakage current and high-frequency switching losses;
- The split-output structure is adopted for the ANPC inverter to prevent shoot-through current fault, reduce electromagnetic interference (EMI) on the output, and enable it to operate under different ranges of power factors;
- Validating the performance enhancement by comparing with conventional ANPC in terms of power losses, efficiency, fault current, and EMI.

The rest of the paper is arranged as follows. The modeling of the proposed inverter topology is outlined in Section 2. Following this section, a characteristic and comparative analysis of the proposed inverter and conventional ANPC is presented in Section 3, including an analysis on fault currents, core losses, switching losses, efficiencies, EMI, and power factors. Section 4 discusses the summary and conclusion of the manuscript.

2. Modelling of Hybrid ANPC Inverter with Ga$_2$O$_3$ and Si Switches

2.1. Modelling of UWBG (Ga$_2$O$_3$) Semiconductors

In this article, the design of UWBG semiconductors is described briefly since the modeling and fabrication of the UWBG semiconductor is not the main objective of this study. The UWBG switches are modeled considering the drain current and source implementation [25], while the channel is isolated using the doping structure as shown in Figure 1. The Ga$_2$O$_3$ parameters that are used in this study to build the proposed inverter are demonstrated in Table 1. These parameters are only used in technology computer-aided design (TCAD) to evaluate the conduction behavior of the Ga$_2$O$_3$ devices. The I-V characteristics of these switches are shown in Figure 2.

Firstly, a Ga$_2$O$_3$ n-type epitaxial layer having 100 nm thickness is developed over a β-Ga$_2$O$_3$ (single crystal), which is semi-insulating in nature. Secondly, A dopant with a concentration of $2 \times 10^{17} \text{ cm}^{-3}$ is applied to dope the epitaxial layer. Tin (Si/Sn) implantation is used to form the 50 nm deep drain regions and the dopant concentration. Finally, a metal gate of 2 µm length and a work function of 5.93 eV is implanted on the top of a dielectric film gate with 20 nm length. The drain and gate are separated by a 4 µm gap [26].

To evaluate the performance of the Ga$_2$O$_3$ devices, accurate switching behavior is very crucial. However, since the switching behavior of the UWBG devices cannot be evaluated using TCAD, SPICE models of the Ga$_2$O$_3$ are required for further analysis [27]. In this regard, the level 1 Schichman–Hodges model parameters as shown in Table 2 are extracted.
from TCAD and were used to develop the SPICE model. The model parameters along with the switching, conduction, drain-source voltage, and drain current are implemented in LTSpice software to build a simulation model of the Ga$_2$O$_3$ switching device. The parameters that are used to build the LTSpice simulation model are shown in Table 2.

![Diagram of Ga$_2$O$_3$ semiconductor switch model](image)

Figure 1. Modelling UWBG semiconductor switches.

Table 1. Parameters used in TCAD for analyzing conduction behavior of Ga$_2$O$_3$ switches.

Parameters	Values
Bandgap energy	4.8 eV
Effective density of states at 300 K	4.45×10^{18} cm$^{-3}$
Electron affinity	4 eV
Electron mobility	118 cm2/Vs

![Graph of Ga$_2$O$_3$ I-V characteristics](image)

Figure 2. I-V characteristics of Ga$_2$O$_3$ semiconductor switches.
Figure 3. Schematic diagram of the hybrid ANPC inverter comprising UWBG switches.

In addition, there are three voltage levels, namely, 0.5

Figure 4. Switching pulses of the Ga$_2$O$_3$ devices of the hybrid ANPC using LSPWM.

Parameters	Values
Channel length	2 µm
Channel width	4.7×10^6 µm
Oxide thickness	20 nm
Electron mobility	$118 \text{ cm}^2/\text{Vs}$
Substrate doping	2×10^{17} cm$^{-3}$
Zero-bias threshold voltage	-2.25 V
Transconductance	2.79×10^{-6} A/V2
Gate-drain capacitance	4.3×10^{-11} F/m

2.2. Modelling of Hybrid ANPC Inverter

The schematic diagram of the proposed topology is depicted in Figure 3. The four switches, namely, S_1, S_4, S_5, and S_6, are constructed by using Si-based IGBTs, which are rated as 1.2 kV. On the other hand, the S_2 and S_3 switches are made by Ga$_2$O$_3$-based MOSFETs of 800 V rating. The utilization of both Si and Ga$_2$O$_3$ devices has ensured that the inductors can be split into L_1 and L_2 through these devices. In addition, it should be noted that the diodes D_2 and D_3 are both Ga$_2$O$_3$-based Schottky diodes [28]. As illustrated in Figure 3, the Ga$_2$O$_3$-based MOSFETs, i.e., S_2 and S_3 switches, are decoupled from D_2 and D_3, and this leads to the division of the inductors. Some capacitors are series-connected in the DC-link to make up neutral point ‘n’. There is a common portion of the two inductors between point ‘a’ and the terminal ‘n’, and the output is taken from this portion. As it is listed in Table 1, this inverter has six possible states. The states denoted by P and N represent positive and negative states, respectively, and null states are referred to as O_1 to O_4. S_2 and S_3 gallium trioxide (Ga$_2$O$_3$) switches are operated at a higher frequency, whereas Si IGBTs are operated in lower frequencies because it is required to maximize the output. To exploit this, only two null states, O_3 and O_2, as shown in Table 3, are utilized. More specifically, in case of the positive half cycle, the states P as well as O_3 are used, and the states N and O_2 are utilized for the operation of the negative half cycle. The UWBG is operated at a higher frequency of 100 kHz while the other four Si-based switches are operated at a lower fundamental frequency of 50 Hz. The gate pulses for switches are created using the level-shifted pulse width modulation (LSPWM) [29], which are depicted in Figure 4. The S_1 and S_6 switches will remain ON, while switches S_4 and S_5 will be turned OFF in case of positive cycle operation. On the contrary, the S_4 and S_5 switches will be ON and start conducting, while the S_1 and S_6 switches will be turned off for the negative half cycle.
Table 3. Switching states for the proposed HANPC inverter.

States	S1	S2	S3	S4	S5	S6
P	1	1	0	0	0	1
O1	0	1	0	0	1	0
O2	0	1	0	1	1	0
O3	1	0	1	0	0	1
O4	0	0	1	0	0	1
N	0	0	1	1	1	0

Figure 3. Schematic diagram of the hybrid ANPC inverter comprising UWBG switches.

Figure 4. Switching pulses of the Ga2O3 devices of the hybrid ANPC using LSPWM.

As illustrated in Figure 4, the LSPWM is employed for the output voltage generation. In addition, there are three voltage levels, namely, 0.5 \(V_{dc} \), 0, and 0.5 \(V_{dc} \). It can be observed from Figure 4 that the proposed inverter has four modes of operation. Mode 1 and mode 2 are for the first half cycle whereas mode 3 and mode 4 are for the negative half cycle. As both cycles have a symmetrical operation, only mode 1 and mode 2 are discussed in this paper as depicted in Figure 5.

2.3. Modes of Operation

As the operation is dependent on the directions of the load current, each mode has two cases. The detailed circuit operation for mode 1 and mode 2 is shown in Figure 4.

Mode 1: In this mode, the output will be a positive voltage. A two-output load current is possible in this case, as shown in Figure 5a,b for for \(i_L > 0 \) and \(i_L < 0 \), respectively. During this mode, the gate pulse is received only by \(S_1, S_2, \) and \(S_6 \) switches while other switches remain OFF. In the case of \(i_L > 0 \), the current will flow through the split inductor \(L_1 \) because of the ON state of the switches \(S_1 \) and \(S_2 \). Similarly, when the load current direction is reversed, i.e., \(i_L < 0 \), the current flows through another split portion of the inductor in \(L_2 \). The inverter output voltage will be 0.5 \(V_{dc} \) in this mode irrespective of the load current direction, and it is depicted in Figure 4. Whether the load current is positive or negative, the current through the two split inductors, i.e., \(L_1 \) or \(L_2 \), will always be unidirectional. Therefore, unlike the split-NPC inverter that only can work for unity power factor because of one load direction current, the proposed hybrid ANPC inverter due to its two different load current direction can work on a wide range of power factors.
2.3. Modes of Operation

Mode 1: In this mode, the output will be a positive voltage. A two-output load current will be through switch S_6 and the split portion of the inductor L_2. Therefore, the output voltages of the proposed inverter can be derived by using (1) and (2) for the positive half cycle and negative half cycle, respectively:

$$ V_{an} = 0.5 \times S_2 V_{DC} - L_1 \frac{di}{dt} $$ \hspace{1cm} (1)

$$ V_{an} = L_1 \frac{di}{dt} - 0.5 \times S_3 V_{DC} $$ \hspace{1cm} (2)

It is noticeable that as the current passes through S_2 and S_3, the current stress ($\frac{di}{dt}$) is declined considerably because of using Ga$_2$O$_3$ based switches. If (1) is utilized, then

![Figure 5. Switching paths of the hybrid ANPC inverter during positive half cycle: (a) mode 1 with $i_L > 0$, (b) mode 1 with $i_L < 0$, (c) mode 2 with $i_L > 0$, and (d) mode 2 with $i_L < 0$.](image)
the rate of change of current through S_2 for state transition from O_3 state to P state can be calculated by:

$$di = 0.5 \times S_2V_{DC} \times \frac{dt}{L_1} \quad (3)$$

Here, dt is denoted for the time interval for the S_2 switch to transit from O_3 state to P state. Typically, the turn ON (t_{on}) time for each switch, including both Si and Ga$_2$O$_3$ switches will be comprised in this period. The nominal value of dt is acquired from the manufacturer’s datasheets for Si-based switches, whereas for Ga$_2$O$_3$, the information is obtained from [30]. The summary is demonstrated in Table 4. It is clear from expression (3) that the di/dt stress is inversely proportional to the value of the first split inductor (L_1). This also pointed out the fact that as Ga$_2$O$_3$ switches have little t_{on} time (approximately 28.6 ns), the split inductance (L_1) value would be proportionally small to constrain the current stress of the ANPC inverter. Therefore, the voltage drop across L_1 would also be comparatively smaller than the DC-link voltage under steady-state operation. In addition to the reduced di/dt stress and voltage drop, under steady-state operating conditions, the inverter will experience reduced power loss across the inductor. Furthermore, as illustrated in Figure 1, the split inductors (L_1 and L_2) are contributing to decoupling Ga$_2$O$_3$ switches S_2 from D_2 as well as S_3 from D_3. The overshoots are significantly damped out because of this decoupling.

Table 4. Switching parameters of Si and Ga$_2$O$_3$ switches.

Model	Switching Parameters			
	Rated Voltage (V_r)	**Rated Current** (I_r)	**Turn on Time** (t_{on})	**Turn off Time** (t_{off})
IGW15T120FKSA1 (Si IGBT)	1200 V	15 A	50 ns	502 ns
Ga$_2$O$_3$ switch	800 V	20 A	28.6 ns	94 ns
Ga$_2$O$_3$ Schottky diode	1700 V	25 A	-	-

The common-mode voltage (CMV) of the hybrid ANPC inverter with 100 V DC-link can be calculated as follows:

$$V_{an} = 0.5 \times 100 - \frac{1 \times 10^{-6}di}{28.6 \times 10^{-9}} = 50 - 34.96di. \quad (4)$$

The CMV of the conventional ANPC inverter with 100 V DC-link can be calculated as follows:

$$V_{an} = 100 - \frac{1 \times 10^{-6}di}{50 \times 10^{-9}} = 100 - 20di. \quad (5)$$

It can be observed that for a certain value of di, the CMV of hybrid ANPC is almost 64.96% less than the CMV of conventional ANPC.

3.1. Analysis of Shoot through Fault Protection

In the proposed inverter, the complimentary operation of S_2 and S_3 at high switching frequency may result in the false turn-on of the switches [30]. Since Miller capacitance is present in all switches, the stored charge in it can cause the false turn ON of S_3. If both switches are in the ON state at the same time, the positive DC link voltage may become shorted in a positive half cycle of operation. The same thing is true for negative voltage during the negative half cycle. MOSFETs, in contrast to bipolar devices such as IGBTs, cannot endure overcurrent. Although shoot-through fault can happen in any switching device, since UWBG devices such as Ga$_2$O$_3$ switches are operating in this inverter at a very high frequency, they are more prone to this fault [31]. The issue is overcome by restricting
the rate of the rising fault current using the split inductors. Hence, the proposed inverter configuration offers zero dead-band between S_2 and S_3.

To observe the impact, the shoot-through fault is allowed to happen on purpose when transitioning from the zero state O_3 to the state P. The fault current (I_f) is allowed to pass through S_2 and can be determined by:

$$I_f(t) = 0.5 \times \frac{V_{DC}}{R_{eq} + R_1 + R_2} \left(1 - e^{-\frac{t}{\tau_{eq} + R_1 + R_2}}\right)$$

(6)

Here, t is the time interval when shooting through the fault is allowed to happen, the resistances of L_1 and L_2 are denoted by R_1 and R_2, respectively, and, R_{eq} and L_{eq} are the equivalent resistance and inductance of the printed circuit board (PCB) path. R_{eq} and L_{eq} are required to calculate the maximum allowable time of shoot-through fault for a selected PCB.

The values of R_{eq} and L_{eq} are calculated to be 0.245 Ω and 187 nH, respectively, from the information given for PCB in [32,33]. Thus, the maximum allowable time is 21.06 ns for the selected design which is, in fact, lower than the turn OFF time of the Ga$_2$O$_3$ devices. In addition, the overcurrent limit for the design is 80 A. Therefore, before the switch S_2 is turned off (with $t_{off} = 94$ ns), the switch S_3 will be turned on falsely and can cause device failure. This issue is resolved by allowing a shoot-through time which is almost twice the turn OFF time of the Ga$_2$O$_3$ devices by using 1 uH split inductors. The numerical calculations can be realized by:

For conventional ANPC with split inductors,

$$I_f(t) = \frac{600}{0.245 \Omega} \left(1 - e^{-\frac{1014 \text{ ns} \times 0.245 \Omega}{218 \mu\text{H}}}\right) = 260.52 \text{ A}$$

(7)

For the proposed hybrid ANPC with split inductors,

$$I_f(t) = \frac{600}{0.245 \Omega} \left(1 - e^{-\frac{130 \text{ ns} \times 0.245 \Omega}{248 \mu\text{H}}}\right) = 51.04 \text{ A}$$

(8)

A simulation is conducted to determine the shoot through fault current of the proposed inverter by taking into consideration all the parasitic elements of the presented inverter circuit. Accordingly, the shoot-through fault's current paths are illustrated for both the positive and negative half cycle in Figure 6a,b, respectively. The simulation results are shown in Figure 7, and it can be observed that they are almost similar to the calculated values. It can be observed that in the case of the proposed inverter, the fault current is within the limit. This validates the predominance of the UWBG device as well as the hybridization that has been utilized in this article. It is worth noting that the fault current can be reduced for the conventional ANPC by increasing the value of the split inductors. However, it will incur more inductor core losses into the system and will eventually reduce the inverter’s efficiency, making it radically unsuitable for industrial applications.

3.2. Analysis of Core Losses

The core losses of the proposed inverter are calculated in this section by considering the split inductors. The parameters which are considered for the proposed inverter’s inductor design are listed in Table 5. The permissible losses in the copper winding are computed for the chosen core, with the required product area, which is the product of the window area (W_a) and the core area (A_c):

$$W_a \times A_c = \frac{L_{I_{max}I_{rms}}}{K_fB_{max}j_{max}}$$

(9)
Figure 6. Shoot through fault current paths of the hybrid ANPC inverter during (a) state O_3 to state P for positive half cycle, (b) state O_2 to state N for the negative half cycle.

Figure 7. Shoot through fault current analysis: (a) gate pulses of S_2 and S_3 overlapping and causing shoot through fault, (b) hybrid ANPC, (c) conventional ANPC.
Table 5. Parameters for designing the split inductors.

Parameters	Nomenclature	Values
Inductor	$L_1 = L_2$	1 μH
Maximum current	I_{max}	42 A
RMS current	I_{rms}	35 A
Topological constant	K_t	0.3
Maximum flux density	B_{max}	160 mT
Maximum current density	j_{max}	5 A/mm2
Product area	$W_a \times A_c$	0.002 cm3

Here, L is one of the split inductors, I_{max} is the maximum current flowing through the inductor, I_{rms} is the rated RMS current, K_t is the topological constant, B_{max} is the maximum flux density, and j_{max} is the maximum current density of the inductor. Although for complete accuracy the optimum loss for copper should be measured, the maximum permissible copper loss is calculated in this section because of the minimal difference between the accurate and approximate values, as well as for simplicity. Thus, the maximum allowable copper loss is used to measure the efficiency. The product area value obtained from (9) is used to determine the thermal resistance R_{th} by utilizing the data from [33], assuming that the core temperature is increasing by 50 °C:

$$R_{\text{th}} = 17.45(W_a \times A_c)^{-0.509} + 0.416 \degree\text{C}/\text{W}$$

(10)

After the thermal resistance is calculated, this can lead to the measurement of maximum possible core loss (P_{Cu}) for a particular temperature rise ΔT, and it can be determined by the following equation:

$$P_{\text{Cu}} = \frac{\Delta T}{R_{\text{th}}}$$

(11)

The measurement of the copper winding loss can be performed for the split inductors by utilizing (9) to (11). Because of the minimal values of the product area, a large core size is selected for the practical design. The core losses for the selected material from Magnetics [34] are plotted using the values given in [33] in Figure 8 for the selected core volume.
3.3. Analysis of Switching Losses

Although it is already clear that the use of split inductors in the hybrid ANPC module is a major source of loss in steady-state operation, the inherent nature of the hybrid ANPC inverter is also responsible for the additional losses. The use of Ga$_2$O$_3$ switches S_2 and S_3 is a viable solution for this topology because these UWBG switches help to reduce the switching losses. Therefore, to quantify the improvement, it is essential to know how much loss is reduced after the addition of the UWBG switches.

For switching loss measurement, double pulse testing (DPT) [30] is conducted. The DPT circuit used for the switching measurement is illustrated in Figure 9. The parasitic inductors in the PCB path are denoted by L_{p1}, L_{p2}, and L_{p3}; the series inductor in the DC link is denoted by L_s; and the output inductor is denoted by L_o. Similarly, the drain to source capacitance of Ga$_2$O$_3$ switches and the anode–cathode capacitance of the Ga$_2$O$_3$ Schottky diode are indicated as C_{ds} and C_{ac}, respectively. The output inductance is measured following [30] while L_{p1}, L_{p2}, and L_{p3} are measured following [33]. All the calculated values are listed in Table 6.

![Figure 9. DPT circuit of the hybrid ANPC inverter with parasitic elements.](image)

Table 6. Parameters for DPT testing.

Equipment	Nomenclature	Value
Inductors	L_a	36.15 nH
	L_{p1}	11.6 nH
	L_{p2}	19.16 nH
	L_{p3}	11.6 nH
	L_s	1200 uH
Capacitors	C_{ds}	171 pF
	C_{ac}	80 pF

Table 6 after putting these values in LT Spice, the simulation is conducted and switching transients are calculated.

The DPT test is performed repeatedly for different load currents and switching voltages to emulate practical scenarios. The data obtained from DPT are used to measure the energies required for the turning ON and turning OFF of the switches by using simulation, and they are referred to as E_{on} and E_{off}, respectively. Figure 10 illustrates the measured switching energies for both the conventional and the proposed inverter topologies. Though
the energy consumption in the ideal switch should be zero, the semiconductor switches are hardly ideal, and thus, from these curves, it can be observed how switching energies rise when the load current increases. In addition, it is evident from these curves that the use of Ga$_2$O$_3$ switches has greatly contributed to reducing both the turn-on and turn-off switching energies. The simulated waveform shown in Figure 11 represents the minimization of switching losses with the utilization of Ga$_2$O$_3$ switches. It can be observed from Figure 11a that when S_2 is turned on, the switching current has increased as soon as the gate pulse is applied. In other words, since conventional Si switches have a slow turn-on time, an overshoot current of 43 A is caused by C_{ac} of D_3. On the contrary, the Ga$_2$O$_3$ switches have a very fast turn-on time, which is why the overshoot current in this case significantly declined as shown in Figure 11c. This phenomenon also implies that due to the decreased overshoot, a faster decrease in switching voltage across the switch S_2 in the case of the proposed inverter leads to decreased loss. In the case of turn-off, an almost similar event occurs in both case 1 and case 2, which are illustrated in Figure 11b,d, respectively. In this case, it can be observed that an overvoltage spike of almost 630 V is experienced by the conventional inverter compared to the 560 V spike of the hybrid.

![Figure 10](image_url)

Figure 10. Characteristics curves highlighting the energies required for switches to turn ON and turn OFF with respect to the switching current for conventional ANPC and hybrid ANPC inverters.

ANPC inverter. This has resulted in higher turn OFF losses incurred by the conventional inverter. Although the margin of differences between the conventional inverter and the hybrid ANPC for turn OFF losses is very close, the overall switching losses of hybrid ANPCs are significantly lower because the turn ON losses are more dominant.

3.4. Analysis of Efficiency

The efficiencies of switching losses, conduction losses, and split-inductors losses are considered. The switching energies obtained from the DPT test are used for switching loss calculation. In case of switching loss, turn ON loss P_{on} and turn OFF loss P_{off} are determined by:

$$P_{on} = f_s \times E_{on}$$ \hspace{0.5cm} (12)
$$P_{off} = f_s \times E_{off}$$ \hspace{0.5cm} (13)

where the switching energies E_{on} and E_{off} can be determined by:

$$E_{on} = I_s \times x_{on}$$ \hspace{0.5cm} (14)
$$E_{off} = I_s \times x_{off}$$ \hspace{0.5cm} (15)
The equations for \(x_{on} \) and \(x_{off} \) can be mathematically expressed by:

\[
x_{on} = x_{1on} \times I_s^2 + x_{2on} \times I_s + x_{3on}
\]
\[
x_{off} = x_{1off} \times I_s^2 + x_{2off} \times I_s + x_{3off}
\]

Here, the constants \(x_{1on}, x_{2on}, x_{3on}, \ldots \) are representative of the constants that are used for curve fitting shown in Figure 10. Additionally, the conduction losses are calculated using the manufacturer’s datasheet curves for different load currents in the case of conventional Si switches, whereas, for \(\text{Ga}_2\text{O}_3 \) switches, it has been obtained from the information provided in [35]. The expressions obtained from these curves are:

\[
P_c = x_4 \times I_s^2 + x_5 \times I_s
\]

where \(x_4 \) and \(x_5 \) are the constants for the curve fitting of Figure 10. Furthermore, the core losses from the split inductors are determined using the curves shown in Figure 8 and the information provided in [34].

In this paper, the losses of both conventional ANPCs as well as the proposed hybrid ANPC inverter are calculated considering different loads. In addition, three switching frequencies are considered to compare the loss behavior of the configurations, as shown in Figure 12. It can be validated from Figure 12 that because of using UWBG switches and due to reduced switching losses, the proposed inverter’s efficiency in all cases is much higher compared to the conventional Si-based ANPC inverter.
Conventional ANPC

The results for output voltage and current waveforms are obtained for the proposed topology using a simulation along with ideal MOSFETs and IGBTs are used to develop the proposed inverter. The associated with using UWBG switches. Thus, for operational simplicity, MATLAB Simulink simulation is not required in this case since this feature is embraced by the proposed inverter due to implementing the split-inductors-based design, and this feature is not asso-
ciated with using conventional Si-based ANPC inverter. The size of the EMI filter becomes halved compared to the conventional ANPC inverter due to the usage of split inductors, i.e., L_1 and L_2, in the proposed inverter topology makes it possible to decrease the high-frequency transients considerably because of the filter of the transients by the inductances. Thus, the size of the electromagnetic compatibility (EMC) filter becomes significantly smaller. This statement can be validated by using (1) and (2). If any sudden change has occurred in the output voltage of the presented inverter, that impact will be damped by the inductance’s inherent capability to oppose any sudden change in current. The blocking voltage is tuned according to the values of the split inductor. For the proposed design, as the inductance value was 1 μH for the split inductor, the output voltages’ harmonic spectra can be illustrated for both conventional ANPCs and the proposed hybrid ANPC inverter through LT Spice simulation, as is illustrated in Figure 13. It can be seen that the final range of the high-frequency transient will be 5 to 15 MHz. This is due to the damped high-frequency voltage in this frequency range by the split-inductors. Thus, the added split inductors for the shoot-through protection also help to reduce the EMI filter size.

3.5. Analysis of High-Frequency Transient in Output Voltage

Along with the advantages of the conventional ANPC inverter, the proposed inverter can reduce high-frequency switching noise in the output voltage. This high-frequency noise primarily contributes to electromagnetic interference (EMI) issues and also has some impacts on the operation of the gate driver [24]. In addition, the incorporation of the two split inductors, i.e., L_1 and L_2, in the proposed inverter topology makes it possible to decrease the high-frequency transients considerably because of the filter of the transients by the inductances. Thus, the size of the electromagnetic compatibility (EMC) filter becomes significantly smaller. This statement can be validated by using (1) and (2). If any sudden change has occurred in the output voltage of the presented inverter, that impact will be damped by the inductance’s inherent capability to oppose any sudden change in current. The blocking voltage is tuned according to the values of the split inductor. For the proposed design, as the inductance value was 1 μH for the split inductor, the output voltages’ harmonic spectra can be illustrated for both conventional ANPCs and the proposed hybrid ANPC inverter through LT Spice simulation, as is illustrated in Figure 13. It can be seen that the final range of the high-frequency transient will be 5 to 15 MHz. This is due to the damped high-frequency voltage in this frequency range by the split-inductors. Thus, the added split inductors for the shoot-through protection also help to reduce the EMI filter size.

![Figure 12. Efficiency comparison between conventional ANPC and hybrid ANPC under various switching frequencies.](image-url)

![Figure 13. High-frequency voltage spectrum of the conventional ANPC and hybrid ANPC.](image-url)
The cross-sectional area \((A)\) of an EMI Filter for the hybrid ANPC with 100 kHz switching frequency can be determined by:

\[
A = \frac{2\pi r L \mu_0 \mu_r N^2}{1} = \frac{2\pi \times 0.1 \times 0.5 \times 10^{-6}}{1.2566 \times 10^{-6} \times 6000 \times 400} = 1.04 \times 10^{-7} \text{m}^2 \quad (19)
\]

Here, \(r, \mu_0, \mu_r\), and \(N\) represent the toroid radius to centerline, the magnetic constant, the relative permeability of Mn–Zn ferrite, and the number of turns, respectively. Similarly, the cross-sectional area of the EMI filter for a conventional ANPC can be calculated as follows:

\[
A = \frac{2\pi r L \mu_0 \mu_r N^2}{1} = \frac{2\pi \times 0.1 \times 20 \times 50 \times 10^{-9}}{1.2566 \times 10^{-6} \times 6000 \times 400} = 2.08 \times 10^{-7} \text{m}^2 \quad (20)
\]

Thus, it can be observed that the size of the EMI filter for the proposed ANPC inverters becomes halved compared to the conventional ANPC inverter due to the usage of split inductors. Furthermore, the relative permeability versus the switching frequency curve for Mn–Zn ferrite is shown in Figure 14. It is noticeable that with higher switching frequency, the relative permeability tends to decrease logarithmically. Therefore, the cross-sectional area of the EMI filter will increase with a higher switching frequency.

Figure 14. Relative permeability of Mn Zn ferrite under different switching frequencies.

3.6. Analysis of Operation at Various Range of Power Factors

The MATLAB/Simulink version of the proposed hybrid ANPC inverter is developed in this section to validate that it can operate in various ranges of power factors. LTSpice simulation is not required in this case since this feature is embraced by the proposed inverter due to implementing the split-inductors-based design, and this feature is not associated with using UWBG switches. Thus, for operational simplicity, MATLAB Simulink along with ideal MOSFETs and IGBTs are used to develop the proposed inverter. The output voltage and current waveforms are obtained for the proposed topology using a 200 V DC link. Thus, a voltage of 100 V will come across each DC-link capacitor. The simulation tests are repeated with the loads with non-unity power factor. To show the applicability of the proposed converter compared to the existing topologies. The results show the non-distorted waveforms for voltage and currents. The results for output voltage \(V_{an}\) and load current \(I_{an}\) are shown in Figure 15. Furthermore, the voltage across one DC-link capacitor is also shown, which indicates the nature of the common-mode voltage (CMV). It can be observed that the CMV is always constant at 100 V and it does not contain any ripples of high frequency. Thus, the leakage-current-related issues can also be solved using this topology.
(CMV). It can be observed that the CMV is always constant at 100 V and it does not contain any ripples of high frequency. Thus, the leakage-current-related issues can also be solved using this topology.

Figure 14. Relative permeability of Mn Zn ferrite under different switching frequencies.

Figure 15. Simulation results for the hybrid ANPC inverter for the output voltage (V_{an}), current (I_{an}) and common-mode voltage (CMV) with (a) unity power factor, (b) non-unity power factor.

4. Conclusions

To sum up, this paper presents a three-level hybrid ANPC topology that includes Ga$_2$O$_3$-based MOSFET as well as Si-based IGBTs. This inverter has split inductors at the output, which are not only capable of protecting against the shoot-through fault but can also contribute to the reduced EMI in the output voltage. To maximize the efficiency of our converter, as well as to maximize the benefit of the Ga$_2$O$_3$ switches, both the modulation technique as well as four modes of operation are discussed in this paper. The efficiency of both the conventional ANPC and the proposed hybrid ANPC inverter is measured and compared through LT Spice and MATLAB simulations. It was observed that under various switching frequencies and output power, the minimum efficiency was 96.8%, whereas a 99.1% maximum efficiency was obtained by the proposed inverter. The employability of the proposed module is analyzed by taking into consideration the reduced overshoots in switching waveforms, higher efficiency, lower current, voltage stress, minimized shoot-through current, and EMI. Eliminating the dominating switching losses, especially turn-on losses, as well as the addition of UWBG switches, contributes to an increase in efficiency. In addition, to validate the inverter’s capability to supply reactive power, the module was operated under both various load conditions by changing the power factors. The simulation result acquired from the proposed module coincides with the theoretical results. The following is a list of the manuscript’s concluding statements:

- The proposed inverter incorporated UWBG-based Ga$_2$O$_3$ switches, which contributed to its enhanced efficiency and reduced switching losses.
- The Ga$_2$O$_3$ switches of the inverter make it a suitable candidate for high voltage, high temperature, and high switching operation.
A maximum efficiency of 99.1% is obtained, making this inverter suitable for applications in grid-tied PV structures.

The minimized EMI and fault current, because of the split-inductors-based design, allowed this inverter to be utilized in sophisticated industrial applications.

This study applies UWBG switches for ANPC inverters considering the technical pros and cons. Since the fabrication and production of UWBG semiconductors are still in their early phase industrially, experimental verification of the proposed inverter will be considered in the future. In the future, UWBG devices have great potential in the field of power electronics because of their superior characteristics over wide bandgap (WBG) and conventional semiconductors. Thus, researchers can utilize this opportunity to incorporate UWBG devices in other inverters/converter topologies and power electronic applications.

Author Contributions: Conceptualization, S.T.M. and J.I.; methodology, S.T.M. and N.Z.Y.; formal analysis, S.T.M. and M.S.H.L.; investigation, S.T.M., N.Z.Y. and M.S.H.L.; resources, N.Z.Y., J.I. and L.K.H.; data curation, S.T.M., L.K.H. and K.H.; writing—original draft preparation, S.T.M.; writing—review and editing, M.S.H.L., K.H. and M.S.M.; S.A. and A.H.; supervision, N.Z.Y. and M.S.H.L.; project administration, M.S.H.L.; funding acquisition, M.S.H.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Universiti Kebangsaan Malaysia under Grant Code GP-2021-K023221.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. She, X.; Huang, A.Q.; Lucia, O.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. *IEEE Trans. Ind. Electron.* 2017, 64, 8193–8205. [CrossRef]
2. Wang, F.; Zhang, Z. Overview of Silicon Carbide Technology: Device, Converter, System, and Application. *CPSS Trans. Power Electron. Appl.* 2016, 1, 13–32. [CrossRef]
3. Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplan, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. *Adv. Electron. Mater.* 2018, 4, 1600501. [CrossRef]
4. Wang, Z.; Li, G.; Tseng, M.-L.; Wong, W.-P.; Liu, B. Distributed Systematic Grid-Connected Inverter Using IGBT Junction Temperature Predictive Control Method: An Optimization Approach. *Symmetry* 2020, 12, 825. [CrossRef]
5. Meraj, S.T.; Hasan, M.K.; Islam, J.; Baker El-Ebiary, Y.A.; Nebhen, J.; Hossain, M.M.; Alam, M.K.; Vo, N. A Diamond Shaped Multilevel Inverter with Dual Mode of Operation. *IEEE Access* 2021, 9, 59873–59887. [CrossRef]
6. Shayestegan, M.; Shakeri, M.; Abunima, H.; Reza, S.M.S.; Akhtaruzzaman, M.; Bais, B.; Mat, S.; Sopian, K.; Amin, N. An overview on prospects of new generation single-phase transformerless inverters for grid-connected photovoltaic (PV) systems. *Renew. Sustain. Energy Rev.* 2018, 82, 515–530. [CrossRef]
7. Xue, H.W.; He, Q.M.; Jian, G.Z.; Long, S.B.; Fang, T.; Liu, M. An Overview of the Ultrawide Bandgap Ga2O3 Semiconductor-Based Schottky Barrier Diode for Power Electronics Application. *Nanoscale Res. Lett.* 2018, 13, 290. [CrossRef] [PubMed]
8. Liao, M.; Shen, B.; Wang, Z. Progress in semiconductor β-Ga2O3. In *Ultra-Wide Bandgap Semiconductor Materials* Elsevier: Amsterdam, The Netherlands, 2019; pp. 263–345. ISBN 9780128172568.
9. He, J. Comparison between The ultra-wide band gap semiconductor AlGaN and GaN. In *IOP Conference Series: Materials Science and Engineering*; IOP Publishing: Kuala Lumpur, Malaysia, 2020; pp. 1–5.
10. Meraj, S.T.; Yahaya, N.Z.; Hasan, K.; Lipu, M.S.H.; Masaud, A.; Ali, S.H.M.; Hussain, A.; Othman, M.M.; Muntaz, F. Three-Phase Six-Level Multilevel Voltage Source Inverter: Modeling and Experimental Validation. *Micromachines* 2021, 12, 1133. [CrossRef]
11. Hamidi, M.N.; Ishak, D.; Zainuri, M.A.A.M.; Ooi, C.A. Multilevel inverter with improved basic unit structure for symmetric and asymmetric source configuration. *IET Power Electron.* 2020, 13, 1445–1455. [CrossRef]
12. Serban, E.; Ordonez, M.; Pondiche, C. DC-Bus Voltage Range Extension in 1500 v Photovoltaic Inverters. *IEEE J. Emerg. Sel. Top. Power Electron.* 2015, 3, 901–917. [CrossRef]
13. Gkoutioudi, E.; Bakas, P.; Marinopoulos, A. Comparison of PV systems with maximum DC voltage 1000V and 1500V. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 2873–2878.
14. Zhang, L.; Sun, K.; Feng, L.; Wu, H.; Xing, Y. A family of neutral point clamped full-bridge topologies for transformerless photovoltaic grid-tied inverters. *IEEE Trans. Power Electron.* 2013, 28, 730–739. [CrossRef]
15. Guo, X.; Wang, N.; Zhang, J.; Wang, B.; Nguyen, M.K. A Novel Transformerless Current Source Inverter for Leakage Current Reduction. *IEEE Access* 2019, 7, 50681–50690. [CrossRef]
16. López, I.; Ceballos, S.; Pou, J.; Zaragoza, J.; Andreu, J.; Ibarra, E.; Konstantinou, G. Generalized PWM-Based Method for Multiphase Neutral-Point-Clamped Converters with Capacitor Voltage Balance Capability. IEEE Trans. Power Electron. 2017, 32, 4878–4890. [CrossRef]

17. Ramasamy, P.; Krishnasamy, V.; Sathik, M.A.J.; Ali, Z.M.; Aleem, S.H.E.A. Three-Dimensional Space Vector Modulation Strategy for Capacitor Balancing in Split Inductor Neutral-Point Clamped Multilevel Inverters. J. Circuits Syst. Comput. 2018, 27, 1850232–1850248. [CrossRef]

18. Lee, S.S.; Lee, K.B. Dual-T-Type Seven-Level Boost Active-Neutral-Point-Clamped Inverter. IEEE Trans. Power Electron. 2019, 34, 6031–6035. [CrossRef]

19. Jiang, W.; Huang, X.; Wang, J.; Wang, J.; Li, J. A carrier-based PWM strategy providing neutral-point voltage oscillation elimination for multi-phase neutral point clamped 3-level inverter. IEEE Access 2019, 7, 124066–124076. [CrossRef]

20. Li, Y.; Tian, H.; Li, Y.W. Generalized Phase-Shift PWM for Active-Neutral-Point-Clamped Multilevel Converter. IEEE Trans. Ind. Electron. 2020, 67, 9048–9058. [CrossRef]

21. Feng, Z.; Cai, Y.; Li, Z.; Hu, Z.; Zhang, Y.; Lu, X.; Kang, X.; Ning, J.; Zhang, C.; Feng, Q.; et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application. Appl. Phys. Lett. 2020, 116, 243503–243516. [CrossRef]

22. He, J.; Zhang, D.; Pan, D. An Improved PWM Strategy for “SiC+Si” Three-Level Active Neutral Point Clamped Converter in High-Power High-Frequency Applications. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 5325–5324. [CrossRef]

23. Jahdi, S.; Alatise, O.; Bonyadi, R.; Alexakis, P.; Fisher, C.A.; Gonzalez, J.A.O.; Ran, L.; Mawby, P. An analysis of the switching performance and robustness of power MOSFETs body diodes: A technology evaluation. IEEE Trans. Power Electron. 2015, 30, 2383–2394. [CrossRef]

24. Fang, Z.; Jian, D.; Zhang, Y. Study of the Characteristics and Suppression of EMI of Inverter with SiC and Si Devices. Chinese J. Electr. Eng. 2018, 4, 37–46. [CrossRef]

25. Ping, L.K.; Mohamed, M.A.; Mondal, A.K.; Taib, M.F.M.; Samat, M.H.; Berhanuddin, D.D.; Susiththa Menon, P.; Bahr, R. First-principles studies for electronic structure and optical properties of strontium doped β-Ga2O3. Micromachines 2021, 12, 604. [CrossRef]

26. Barthel, A.; Roberts, J.; Napari, M.; Frentrup, M.; Huq, T.; Kovács, A.; Oliver, R.; Chalker, P.; Sajavaara, T.; Massabuau, F. Ti Aligned a-Ga2O3: Route towards Wide Band Gap Engineering. Micromachines 2020, 11, 1128. [CrossRef] [PubMed]

27. Hu, Z.; Nomoto, K.; Li, W.; Zhang, Z.; Tanen, N.; Thieu, Q.T.; Sasaki, K.; Kuramata, A.; Nakamura, T.; Jena, D.; et al. Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors. Appl. Phys. Lett. 2018, 113, 122103–122116. [CrossRef]

28. Hu, Z.; Zhou, H.; Dang, K.; Cai, Y.; Feng, Z.; Gao, Y.; Feng, Q.; Zhang, J.; Hao, Y. Lateral β-Ga2O3 Schottky Barrier Diode on Sapphire Substrate with Reverse Blocking Voltage of 1.7 kV. IEEE J. Electron Devices Soc. 2018, 6, 815–820. [CrossRef]

29. Meraj, S.T.; Kah Haw, L.; Masaoud, A. Simplified Sinusoidal Pulse Width Modulation of Cross-switched Multilevel Inverter. In Proceedings of the 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA), Batu Ferringhi, Malaysia, 8–9 March 2019; pp. 1–6.

30. Dong, H.; Long, S.; Sun, H.; Zhao, X.; He, Q.; Qin, Y.; Jian, G.; Zhou, X.; Yu, Y.; Guo, W.; et al. Fast Switching β-Ga2O3 Power MOSFET With a Trench-Gate Structure. IEEE Electron Device Lett. 2019, 40, 1385–1388. [CrossRef] [PubMed]

31. Sam, D. Power Management Chapter 11: Wide Bandgap Semiconductors | Power Electronics. Power Electronics (Endeavor Business Media). 31 May 2018. Available online: https://www.powerelectronics.com/technologies/power-management/article/21864166/power-management-chapter-11-wide-bandgap-semiconductors (accessed on 8 November 2021).

32. Terman, F.E. Radio Engineers’ Handbook, 1st ed.; McGraw-Hill Book: London, UK, 1943.

33. Abraham, I.P.; Billings, K.; Taylor, M. Transformers and Magnetic Design. In Switching Power Supply Design, 3rd ed.; McGraw-Hill Education: London, UK, 2009; pp. 285–421. ISBN 9780071482721.

34. FERRITE CORES Toroids | Shapes | Pot Cores. Magnetics 2017. Available online: www.mag-inc.com (accessed on 8 November 2021).

35. Lee, I.; Kumar, A.; Zeng, K.; Singisetti, U.; Yao, X. Modeling and power loss evaluation of ultra wide band gap Ga2O3 device for high power applications. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 4377–4382.