Mitochondria and chronic kidney disease: a molecular update

Skelly, R., Maxwell, A., & McKnight, A. (2019). Mitochondria and chronic kidney disease: a molecular update. SPG Biomed. https://doi.org/10.32392/biomed.36

Published in:
SPG Biomed

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2019 the authors. This is an open access Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback
Mitochondria and Chronic Kidney Disease: A Molecular Update

Authors:
Ryan Skelly, A. Peter Maxwell, Amy Jayne McKnight

Authors’ affiliation:
Centre for Public Health, Queen’s University of Belfast

Abstract

Chronic kidney disease (CKD) has become a worldwide public health priority and is estimated to affect approximately 12% of the global population. CKD is associated with an increased cardiovascular morbidity, premature mortality, and a substantial economic burden.

Increased generation of reactive oxygen species has been observed throughout CKD progression, suggesting that mitochondrial dysfunction may be important in the pathogenesis of kidney disease. The mitochondrial genome is a circular double stranded DNA molecule composed of 16,569 base pairs harbouring 37 genes, which encode 13 key proteins of the electron transport chain along with two rRNAs and 22 tRNAs. At least 2,309 nuclear genes are also necessary for efficient mitochondrial function. Mitochondrial dysfunction leads to a reduction in ATP production, cellular damage and loss of renal function. Damage or mutations in mtDNA will lead to defects in mitochondrial oxidative phosphorylation (OXPHOS), which can result in a range of clinical symptoms involving several different organs broadly termed as ‘mitochondrial diseases’. Defects in nuclear encoded genes may also lead to OXPHOS defects, abnormal protein translation and loss of mtDNA copy number.

This review provides an update on molecular features influencing mitochondrial homeostasis and function, highlighting how these are compromised during CKD.

Funding: RS is the recipient of a PhD studentship from the Department for the Economy Northern Ireland. This work is supported by Science Foundation Ireland, the Northern Ireland Health and Social Care Research and Development Office, and the Medical Research Council as part of the USA-Ireland-Northern Ireland partnership and the SFI-DfE Investigator Program 15/IA/3152.
Introduction

Chronic kidney disease (CKD) is a worldwide public health priority and is estimated to currently affect between 11–13% of the global population.\(^1\) CKD is associated with increased cardiovascular morbidity, premature mortality and a substantial healthcare cost.\(^2,3\) Gradual decline in kidney function in individuals with CKD involves dysfunction of several biological pathways, including altered cellular metabolism, nitrogen balance and protein metabolism changes, insulin resistance and increased production of mediators of inflammation and oxidative stress.\(^4-7\) Increased generation of reactive oxygen species (ROS) has been observed at throughout progressive stages of CKD and it has been suggested that this may be the result of mitochondrial dysfunction.\(^8\)

Mitochondria are responsible for generation of adenosine triphosphate (ATP) to provide energy to eukaryotic cells via a series of oxidative phosphorylation (OXPHOS) reactions known as the electron transport chain (ETC). Mitochondria also regulate cellular metabolism via heme and steroid synthesis, generating ROS, establishing the membrane potential and controlling calcium and apoptotic signalling.\(^9,10\) It is thought that these cellular powerhouses (Fig. 1) originated through an endosymbiotic relationship with an α-proteobacterium.\(^11\) Although many mitochondrial genes are now located on nuclear chromosomes these organelles contain their own circular genome reminiscent of their bacterial ancestors.\(^12,13\) By transferring a substantial amount of genetic material to the nuclear genome the size of the mitochondrial genome is greatly reduced, which may impart a replicative advantage and reduce the likelihood of incurring disadvantageous mutations, thus reinforcing the idea of a synergistic relationship between these two genomes.\(^14\)

Among human body organs, the kidneys are second to the heart in terms of energy demands, mitochondrial content and oxygen consumption.\(^15,16\) This is necessary to produce the energy required for removal of waste from blood, reabsorption of nutrients, regulation of electrolyte and fluid balance, maintenance of acid–base homeostasis, and regulation of blood pressure.\(^17\) Mitochondria also provide the energy required by Na\(^+\)–K\(^+\)-ATPase to create ion gradients across the cellular membrane and to facilitate active transport in the proximal tubule, the loop of Henle, the distal tubule and the collecting duct to allow ion reabsorption and excretion.\(^18\) Energy demands, and in turn mitochondrial content are much higher in the proximal tubules compared with the glomerulus as glomerular filtration is a passive process whereas the proximal tubules require a large variety of active transport mechanisms in order to reabsorb 80% of the filtrate that passes through the glomerulus.\(^19\) Because of these high energy requirements, mitochondrial dysfunction in the kidneys may severely impact renal health and has previously been implicated in CKD development.

CKD is typically defined as kidney structure or function abnormalities persisting for more than three months and impacting on the health of the individual.\(^20\) As the body ages the kidneys undergo age-related structural changes along with a reduction in functional capacity. In adults over 35 years, kidneys gradually lose functional nephrons and decrease in size so that by 80 to 85 years old many individuals will have lost up to 30% of total kidney mass.\(^21\) Although many older people with reduced kidney mass will continue to have normal kidney function there is a reduction in the “margin of safety” which in turn will impact on the kidneys’ ability to respond to stress placed upon remaining nephrons such as infection or reduced blood flow.\(^21\) Many elderly people will exhibit a low
glomerular filtration rate (GFR) but without any specific kidney disease. It is therefore important to understand the underlying genetic causes of kidney disease and decreasing renal function in order to design more effective therapies and reduce the associated healthcare burden.²²,²³ Persistent reduced kidney function, with or without proteinuria measured by albumin creatinine ratio (ACR), is indicative of CKD and is associated with damage to kidney tubules and glomeruli. Although the underlying cause of reduced renal function in CKD may vary between individuals, there are several pathways involved with CKD development including accumulation of extracellular matrix (ECM) proteins in the glomerulus, interstitial fibrosis, tubular atrophy and inflammation. Over the last decade, several genetic risk factors have been identified and robustly associated with CKD.²⁴–²⁷

Mitochondrial Genetics

Genes required for normal mitochondrial function are found on both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). The mitochondrial genome is a circular double stranded DNA molecule composed of 16,569 base pairs harbouring 37 genes encoding 13 key proteins of the ETC along with two rRNAs and 22 tRNAs (Fig. 1).¹² In contrast to nDNA, mtDNA lacks introns and non-coding intergenic regions, apart from a small regulatory region between the mitochondrial genes for phenylalanine and proline tRNAs known as the non-coding region (NCR). This 1.1 kb stretch of DNA frequently contains a third single strand of DNA 650 nucleotides long (7S DNA) which forms a displacement-loop, or D-loop, postulated to be an mtDNA replication intermediate, facilitating more open conformation of the mtDNA molecule, allowing proteins involved in replication or transcription to bind and regulate these activities.³²,³³ Although the exact mechanism of replication in mtDNA is not yet fully understood, a number of nuclear encoded enzymes are essential to this process.³⁴–³⁹

In humans, mtDNA passes to offspring through maternal gametes. As each mitochondrion contains multiple copies of maternally inherited mtDNA, and each cell contains many mitochondria, it is possible for mutations to occur during replication which will affect some mtDNA molecules but not others; this phenomenon is known as heteroplasmy and contributes to disease development.⁴⁰ During an individual’s lifetime the actions of ROS and the resulting mtDNA mutations are thought to be directly involved in various disease mechanisms and the process of aging.⁴¹

There are at least 2,526 autosomal genes involved with mitochondrial function. Many nuclear encoded mitochondrial genes (NEMGs) code for proteins which are synthesised on ribosomes in the cytosol, migrate to the mitochondria, and are transported across the mitochondrial membrane based on the presence of a specific N-terminal presequence.⁴² Other NEMGs do not code directly for mitochondrial components but regulate the expression of a range of genes which are essential for normal mitochondrial biogenesis and function.
Mitochondria and nuclear gene interactions

Mitochondrial dysfunction may be due to inherited germline or acquired somatic mutations. For example, acquired damage to tubular mitochondria alters mitochondrial dynamics, mitophagy and biogenesis in acute kidney injury which is risk factor subsequently for CKD.

RecQ-like helicase 4 (RECQL4) is a dynamic protein important for protein-protein interactions in nDNA replication but also localises to the mitochondrion where it interacts with POLγ in order to maintain mtDNA integrity.

RECQL4 mutations result in increased mtDNA copy number and mitochondrial dysfunction. This protein may also act to regulate p53 tumour mitochondrial transport while RECQL4 dysfunction may decrease p53 activity. Data from immunofluorescence microscopy suggest that DNA2 molecules are mainly found in mitochondria where they have been shown to interact with Poly and Twinkle. These interactions may be important in repairing oxidative lesions in mtDNA, mtDNA maintenance and protection against mtDNA related diseases.

Petite integration frequency 1 (PIF1) is a member of the superfamily 1 helicase family that acts in both nuclei and mitochondria.

A DExH-box helicase known as suppressor of Var1 3-Like Protein 1 (SUV3) is thought to be indirectly involved in mtDNA stability and copy number regulation.

These interactions between mtDNA and nDNA highlight the symbiotic relationship between mitochondrial organelle and the nucleus. Due to this relationship, dysfunction of genes in mtDNA or nDNA can have devastating consequences and mitochondrial dysfunction is strongly implicated in kidney disease.

Mitochondria and CKD

More than 250 genes involved with mitochondrial energy metabolism have been associated with human disease and this mitochondrial damage may occur due to direct mtDNA insult or NEMG defects. Damage or mutations in mtDNA may lead to primary defects in mitochondrial OXPHOS due to dysfunction of the ETC components, which can result in a range of clinical symptoms involving several different organs broadly termed as, ‘mitochondrial diseases’. Mutations in mtDNA often have a greater functional impact than variants in nuclear-encoded mitochondrial genes; several mtDNA genes are known to affect kidney function (Table 1).

For example, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome are mitochondrial cytopathies resulting from defects in MT-ND1 and MT-ND5 which encode for complex I proteins, as well as MT-TH, MT-TL1, and MT-TV which code for mitochondrial tRNAs. NEMG insults may also lead to OXPHOS defects, abnormal protein translation, and lower mtDNA copy number. Traditional mitochondrial diseases often include renal complications, due to an mitochondrial abundance as well as kidney high energy demands e.g. defects in CoQ₁₀ synthesis and the mtDNA 3243 A>G mutation are known to cause renal complications including focal segmental glomerulosclerosis. Tubular defects are the most common renal manifestation of
mitochondrial disorders from mutations in mtDNA or NEMGs. Mitochondrial isoleucine tRNA gene (tRNAIle) mutations have been associated with familial hypercholesterolemia and hypomagnesaemia.73 Fanconi syndrome which is secondary to kidney tubular dysfunction has been linked with mutations in the gene \textit{EHHADH}.74 Five nuclear genes (\textit{COQ5}, \textit{COX6A1}, \textit{GATC}, \textit{TOP1MT} and \textit{PARCRG}) have been linked to kidney disease in people with type 1 diabetes, across multiple cohorts.75 Thirty-eight NEMGs are reported to be involved with CKD development (Table 2; Supplementary Table 1), with many having important roles in maintaining mitochondrial function and renal health. NEMGs dysregulation because of acquired or inherited mutations can affect several pathways which may initiate a vicious cycle aggravating renal damage and leading to CKD (Fig. 2). Many NEMGs are essential for mitochondrial biogenesis and normal mitochondrial function, particularly \textit{PPARGC1A} which regulates \textit{TFAM}, \textit{COX6C}, \textit{COX7C}, \textit{UQCRH}, \textit{MCAD}, \textit{SIRT3}, and \textit{NRF1}.76 \textit{PPARGC1A} and its downstream targets are reported to be downregulated in peripheral blood mononuclear cells of CKD patients. \textit{PPARGC1A} induction by ROS may act as a protective adaption to reduce further ROS generation.77 Other genes involved with mitochondrial biogenesis are upregulated in CKD in response to increased ROS production, these include \textit{NFE2L2} (regulated by \textit{PPARGC1A}), \textit{SOD2}, Complex 1 components (\textit{NDUFS5}, \textit{NDUFA6}, \textit{NDUFA1} and \textit{NDUFB1}), \textit{UQCRH}, \textit{UQCRB}, \textit{ATPS1}, \textit{ATPSJ}, and \textit{ATPSO}.77–79 Upregulation of these genes may be an attempt to compensate for increased ROS generation resulting from OXPHOS dysfunction. Genes coding for complex IV 6C and 7C subunits (\textit{COX6C} and \textit{COX7C}) were also seen to be upregulated in CKD, however, complex IV activity was reduced due to chronic oxidative stress and oxidant injury resulting from OXPHOS system inhibition.11 Damage to nDNA and mtDNA genes may have an impact on mitochondrial function due to ineffectual clearance of ROS which may further exacerbate mitochondrial damage and lead to increased ROS production due to \textit{AIFM1}80 downregulation and \textit{NOX4} upregulation.81,82 This vicious cycle of ROS production results in oxidative stress within the mitochondria leading to \textit{ATG5} and \textit{BECN1} downregulation,83 which may lead to abnormal or impaired autophagy which in turn leads to further ROS generation, dysregulated mitochondrial fission and reduced mitochondrial function.83–85 \textit{BNIP3} is an important mediator of mitophagy and upregulation of this gene has been associated with sarcopenia in CKD along with decreased mtDNA copy number and reduced mitochondrial function.86 The intrinsic pathway of apoptosis has also been implicated in CKD. Downregulation of the anti-apoptotic protein BCL-xL coded for by \textit{BCL2L1} combined with upregulation of pro-apoptotic \textit{BAX} and \textit{BAK1} leads to increased apoptosis and depolarisation of the outer mitochondrial membrane in proximal tubular cells. \textit{BAX} upregulation and \textit{BCL2L1} downregulation activates the intrinsic apoptotic pathway, permeabilising the inner mitochondrial membrane leading to cytochrome C release.87–89
Uncontrolled apoptosis may eventually lead to inflammation and fibrosis commonly observed in CKD. Experimental CKD models have shown increased expression of several genes involved with inflammation and fibrosis. TGFβ expression increases in response to apoptosis in primary tubular cells exposed to albumin stimulating ECM formation and the extrinsic apoptotic pathway. PPARγ upregulation is common in several forms of renal disease and affects renal parenchymal cells stimulating various pathways important in CKD development including fibrotic, inflammatory, immune, proliferative, reactive oxygen and mitochondrial injury pathways. NLRP3 upregulation and downstream targets CASP1, IL-18, and IL-1β are upregulated in CKD in response to mitochondrial ROS generation. Activation of the NLRP3 inflammasome leads to increased ECM deposition, apoptosis and fibrosis of renal cells. NLRP3 knockout or ROS inhibition reduce mitochondrial dysfunction, reduce apoptosis, decrease ECM deposition and protect against renal fibrosis.

Mitochondrial dysfunction resulting from inherited or acquired genetic defects may lead to development of various forms of kidney disease such as acute kidney injury, diabetic nephropathy, glomerular diseases, tubular diseases and CKD. In summary, mitochondrial dysfunction and OXPHOS defects may increase ROS generation and reduce ATP production which leads to increased oxidative stress which may lead to uncontrolled autophagy, mitophagy and further ROS production. Mitochondrial dysfunction, ROS generation and the resulting dysregulation of autophagic mechanisms may also lead to an upregulation of the intrinsic pathway of apoptosis which in turn leads to inflammation and fibrosis in the renal tubules, glomerulus and podocytes. This damage may then generate further autophagy leading to apoptosis, fibrosis and inflammation with further podocyte function reduction eventually leading to irreversible podocyte injury and progression to CKD.

NEMGs involved with podocyte function may play a key role in the progression of CKD. Cathepsin D, coded for by CTSD, is a lysosomal proteinase involved with lysosomal degradation, autophagic degradation and contributes to maintaining podocyte homeostasis. CTSD may be downregulated or inactivated in CKD and loss of this protein leads to impaired autophagy, resulting in the accumulation of toxic subunit c–positive lipofuscins and slit diaphragm proteins followed by apoptotic cell death. ITCH expression is increased in mouse models of kidney disease. This gene is regulated by the Src kinase Fyn and modulates various signalling pathways including TGFβ and EGF through ubiquitin and non-ubiquitin mediated mechanisms. Interactions with Fyn, TGFβ and related signalling molecules may suggest a role of ITCH in regulating glomerular sclerosis and podocyte function. Downregulation of NRP2 was observed in animal models of kidney disease and NRP2 knockout mice displayed progressive glomerular damage when exposed to a podocyte toxin.

Epigenetic features affecting mitochondrial in CKD

Epigenetic modifications affect gene expression without directly altering the DNA sequence. These changes can be inherited between generations or may result from environmental exposures acquired during a lifetime. Known epigenetic mechanisms include DNA methylation, histone modifications, regulation by non-coding RNA, and chromatin remodelling. Epigenetic
modifications resulting from an adverse in utero environment have been implicated in increased risk of several diseases such as cardiovascular disease, hypertension, type 2 diabetes mellitus, obesity and renal disease.115–120 A systematic review by White and colleagues121 reported that low birth weight individuals (<2.5 Kg at birth) have an increased CKD risk of in adulthood. Epigenetic changes are also acquired throughout life often in response to adverse conditions such as the high-glucose environment experienced in diabetes mellitus.122 The role of epigenetic modifications in kidney disease have previously been discussed in detail elsewhere123–126 and methylation of nuclear DNA and histone modifications are known to influence CKD development, particularly in patients with diabetes.127,128 Genes involved with renal development and renal fibrosis have also been found to be differentially methylated in persons with CKD.129–135 Amongst these differentially methylated genes the top canonical pathways included oxidative phosphorylation and mitochondrial dysfunction.135 DNA hypermethylation was also observed on the \textit{PGC-1α} promotor region in diabetic patients and was inversely correlated with mitochondrial content.136,137 Recent studies using cell lines devoid of mitochondria demonstrated that depletion of mitochondrial DNA can lead to abnormal CpG methylation patterns and restoration of mtDNA in these cells partially reverse these changes.138 This highlights the ability of mitochondria and nDNA to interact through both genetic and epigenetic mechanisms. Due to this complex interaction, mitochondrial dysfunction will affect both the nuclear and the epi-genome. Resulting bioenergetics failure is implicated in a number of energy deficiency diseases particularly in tissues which rely on high energy flux including brain, heart, muscle, renal, and endocrine systems.139,140 Within the context of renal disease, mitochondrial proteins ability to cause epigenetic modifications has been demonstrated through the ability of mitofusion 2 to abate histone acetylation in the promoter region of collagen IV through a reduction in ROS generation, in turn reducing collagen IV expression in streptozotocin-induced diabetic rats.141–144 Historically, there was much debate surrounding the mtDNA ability to undergo epigenetic changes.145–151 However, in 2011 advances in methodology and sensitivity demonstrated the presence of methylated bases in human mtDNA.152 Shock and colleagues showed that a DNMT1 transcript variant was present inside mitochondria where it is capable of modifying transcription of the mitochondrial genome.153 Also around this time, Chestnut and colleagues observed DNMT3a in mitochondria of mouse and human tissue, providing evidence that DNA methylation may act on mtDNA by similar mechanisms as in nDNA.154 In mtDNA methylated cytosines are mainly located in non-CpG moieties within the mitochondrial D-Loop, particularly in the promotor region of the heavy strand and in conserved sequence blocks of the which may indicate a role in regulating mtDNA replication or transcription.155 In addition to cytosine methylation mtDNA also contains hydroxymethylated cytosine at a higher density than in autosomes in both the D-Loop region and along the entire mitochondrial genome.155,156 MtDNA is protein coated and contained within nucleoids.157–159 Histone family members, particularly H2A and H2B, have also been observed in mitochondria although rather than directly binding DNA these were found to localise to the mitochondrial membrane.160 In 2008 Bogenhagen and colleagues161 found 57 proteins associated with human mtDNA. Amongst these, there are several proteins essential for mitochondrial biogenesis as well as for mtDNA transcription and replication including Mitochondrial transcription factor A, mitochondrial transcription factor B, DNA polymerase gamma, prohibitin, Twinkle helicase and mitochondrial single-stranded DNA binding protein.159,162–165 Whole genome and transcriptome sequencing has also revealed the presence of numerous ncRNAs including siRNAs, miRNAs and IncRNAs which are involved with regulating essential signalling pathways in mitochondria by altering expression of nuclear-encoded mitochondrial proteins.166–172 In addition to ncRNAs encoded by
nDNA, Rackham and colleagues173 identified three lncRNAs transcribed by the mitochondrial genome from regions complementary to ND5, ND6 and Cytb genes. These mitochondrial lncRNAs are regulated by the mitochondrial RNase P complex and their abundance varies significantly across different tissue types with a high abundance observed in cardiac tissue.173,174 There are also thousands of non-coding small RNAs transcribed by mtDNA the majority of which are derived from sense transcripts of mitochondrial genes, but these have also been mapped to the mitochondrial D-loop region.175,176

In addition to external environmental stress, altered metabolic states such as hyperglycaemia in diabetes or uraemia in CKD can also lead to epigenetic changes known as hyperglycaemic or uremic “memory”, respectively.177–179 Epigenetic features are potential therapeutic targets as they may be reversible and tissue specific, therefore they may be attractive potential foci for drugs targeting specific epigenetic changes. For example, epigenetic changes associated with diabetic nephropathy can be reversed by losartan treatment in diabetes mouse models.123,180–182

Conclusions

Persistent mitochondrial dysfunction is known to be involved in the initiation and progression of renal diseases, such as acute kidney injury and diabetic nephropathy, resulting from disruption to mitochondrial homeostasis and normal kidney function.19 Oxidative stress is a common CKD feature and increased production of reactive oxygen species due to mitochondrial dysfunction has been observed in diabetes, inflammation and aging.183 Increased ROS production due to mitochondrial dysfunction may also contribute to CVD and other co-morbidities associated with CKD.96,183,184 Further investigation into mitochondria roles in maintaining renal health and their contribution to various forms of CKD may unveil new disease mechanisms as well as novel treatments. Significant genetic damage or mutations in NEMGs may also disrupt mitochondrial homeostasis. The cellular machinery and related genes involved in mitophagy, mitochondrial fission, fusion and biogenesis are essential in maintaining mitochondrial homeostasis and dysfunction of these processes may lead to irreversible kidney damage. There is evidence to suggest that mitochondrial dysfunction precedes CKD development, occurring in the early stages of acute kidney injury and diabetic nephropathy, failure to restore mitochondrial function may then initiate the vicious cycles outlined earlier resulting in CKD.185 The use of multi-omic approaches to investigate CKD are providing valuable insights; the integrated use of these techniques will allow a better understanding of mitochondria influencing in renal disease.

Acknowledgements

We thank the Northern Ireland Kidney Research Fund for supporting our research. RS is funded by a PhD studentship from the Northern Ireland Department for the Economy. This research is supported by a US-Ireland Partnership award (HSC RDO STL/4760/13; MRC MC_PC_15025) and an SFI-DfE Investigator Award (15/1A/3152).
Mitochondria and Chronic Kidney Disease

Main Text References

1. Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease – A systematic review and meta-analysis. Remuzzi G, ed. *PLoS One*. 2016;11(7):e0158765.

2. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: Global dimension and perspectives. *Lancet (London, England)*. 2013;382(9888):260-272.

3. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. *Lancet*. 2012;380(9859):2095-2128.

4. Slee AD. Exploring metabolic dysfunction in chronic kidney disease. *Nutr Metab*. 2012;9.

5. Siew ED, Ikizler TA. Insulin resistance and protein energy metabolism in patients with advanced chronic kidney disease. *Semin Dial*. 2010;23.

6. Dounousi E, Papavasiliou E, Makedou A, Ioannou K, Katopodis KP, Tselepis A. Oxidative stress is progressively enhanced with advancing stages of CKD. *Am J Kidney Dis*. 2006;48.

7. Cachofeiro V, Goicochea M, Vinuesa SG, Oubiña P, Lahera V, Luño J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. *Kidney Int Suppl*. 2008;111.

8. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. *Nature*. 2001;414(6865):813-820.

9. Cooper G. *The Cell: A Molecular Approach*. 2nd ed. Sunderland (MA): Sinauer Associates; 2000.

10. Nunnari J, Suomalainen A. Mitochondria: In sickness and in health. *Cell*. 2012;148(6):1145-1159.

11. Gray MW, Burger G, Lang BF. Mitochondrial evolution. *Science (80-.).* 1999;283:1476 LP-1481.

12. Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. *Nature*. 1981;290(5806):457-465.

13. Taanman J-W. The mitochondrial genome: Structure, transcription, translation and replication. *Biochim Biophys Acta - Bioenerg*. 1999;1410(2):103-123.

14. Selosse M-A, Albert B, Godelle B. Reducing the genome size of organelles favours gene transfer to the nucleus. *Trends Ecol Evol*. 2001;16(3):135-141.

15. Wang Z, Ying Z, Bosy-Westphal A, et al. Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure. *Am J Clin Nutr*. 2010;92(6):1369-1377.

16. O’Connor PM. Renal oxygen delivery: Matching delivery to metabolic demand. *Clin Exp Pharmacol Physiol*. 2006;33(10):961-967.

17. O’Callaghan C. The kidney: Functional overview. In: *The Renal System at a Glance*. 4th ed. Oxford: John Wiley & Sons, Ltd.; 2017:4-6.

18. Soltoff SP. ATP and the regulation of renal cell function. *Annu Rev Physiol*. 1986;48:9-31.
19. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. *Nat Rev Nephrol.* 2017;13:629.

20. The Official Journal of the International Society of Nephrology. KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. 2013;3(1).

21. Andrade M, Knight J. Exploring the anatomy and physiology of ageing: Part 4—the renal system. *Nurs Times.* 2008;104(34):22-23.

22. Poggio ED, Rule AD, Tanchanco R, et al. Demographic and clinical characteristics associated with glomerular filtration rates in living kidney donors. *Kidney Int.* 2009;75(10):1079-1087.

23. Denic A, Glassock RJ, Rule AD. Structural and functional changes with the aging kidney. *Adv Chronic Kidney Dis.* 2016;23(1):19-28.

24. Sandholm N, Salem RM, McKnight AJ, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. Böger CA, ed. *PLoS Genet.* 2012;8(9):e1002921.

25. Olden M, Teumer A, Bochud M, et al. Overlap between common genetic polymorphisms underpinning kidney traits and cardiovascular disease phenotypes: The CKDGen consortium. *Am J Kidney Dis.* 2013;61(6):889-898.

26. Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. *Nat Genet.* 2014;46(11):1187-1196.

27. Sekula P, Li Y, Stanescu HC, et al. Genetic risk variants for membranous nephropathy: Extension of and association with other chronic kidney disease aetiologies. *Nephrol Dial Transplant.* 2016:gfw001.

28. Nicholls TJ, Minczuk M. In D-loop: 40 years of mitochondrial 7S DNA. *Exp Gerontol.* 2014;56(April):175-181.

29. Clayton DA. Replication of animal mitochondrial DNA. *Cell.* 1982;28(4):693-705.

30. Brown TA, Cecconi C, Tkachuk AN, Bustamante C, Clayton DA. Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. *Genes Dev.* 2005;19(20):2466-2476.

31. Clayton DA, Larsson N-G. Mitochondrial DNA replication and human disease. In: DePamphilis ML, ed. *DNA Replication and Human Disease.* Vol 47. 1st ed. Cold Spring Harbor Laboratory Press; 2006:547-560.

32. Bogenhagen D, Clayton DA. Mechanism of mitochondrial DNA replication in mouse L-cells: Kinetics of synthesis and turnover of the initiation sequence. *J Mol Biol.* 1978;119(1):49-68.

33. Zhang H, Pommier Y. Mitochondrial topoisomerase I sites in the regulatory D-Loop region of mitochondrial DNA. *Biochemistry.* 2008;47(43):11196-11203.

34. Di Re M, Sembongi H, He J, et al. The accessory subunit of mitochondrial DNA polymerase γ determines the DNA content of mitochondrial nucleoids in human cultured cells. *Nucleic Acids Res.* 2009;37(17):5701-5713.

35. Tynynismaa H, Sembongi H, Bokori-Brown M, et al. Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. *Hum Mol Genet.* 2004;13(24):3219-3227.
36. Fuste JM, Wanrooij S, Jemt E, et al. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. *Mol Cell*. 2010;37(1):67-78.

37. Yang C, Curth U, Urbanke C, Kang C. Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 A resolution. *Nat Struct Mol Biol*. 1997;4(2):153-157.

38. Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ. Failure to produce mitochondrial DNA results in embryonic lethality in RNaseH1 null mice. *Mol Cell*. 2003;11(3):807-815.

39. Simsek D, Furda A, Gao Y, et al. Crucial roles for DNA ligase III in mitochondria but not in XRCC1-dependent repair. *Nature*. 2011;471(7337):245-248.

40. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. *Nat Rev Genet*. 2015;16(9):530-542.

41. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: Implications for cell death. *Annu Rev Pharmacol Toxicol*. 2007;47:143-183.

42. Ryan KR, Jensen RE. Protein translocation across mitochondrial membranes: What a long, strange trip it is. *Cell*. 1995;83(4):517-519.

43. Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. *Nat Rev Nephrol*. 2016;12(5):267-280.

44. Gupta S, De S, Srivastava V, et al. RECQL4 and p53 potentiate the activity of polymerase gamma and maintain the integrity of the human mitochondrial genome. *Carcinogenesis*. 2014;35(1):34-45.

45. Wang J-T, Xu X, Alontaga AY, Chen Y, Liu Y. Impaired p32 regulation caused by the lymphoma-prone RECQ4 mutation drives mitochondrial dysfunction. *Cell Rep*. 2014;7(3):848-858.

46. De S, Kumari J, Mudgal R, et al. RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. *J Cell Sci*. 2012;125(Pt 10):2509-2522.

47. Duxin JP, Dao B, Martinsson P, et al. Human DNA2 Is a Nuclear and Mitochondrial DNA Maintenance Protein. *Mol Cell Biol*. 2009;29(15):4274-4282.

48. Zheng L, Zhou M, Guo Z, et al. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. *Mol Cell*. 2008;32(3):325-336.

49. Ronchi D, Di Fonzo A, Lin W, et al. Mutations in DNA2 Link Progressive Myopathy to Mitochondrial DNA Instability. *Am J Hum Genet*. 2013;92(2):293-300.

50. George T, Wen Q, Griffiths R, Ganesh A, Meuth M, Sanders CM. Human PIF1 helicase unwinds synthetic DNA structures resembling stalled DNA replication forks. *Nucleic Acids Res*. 2009;37(19):6491-6502.

51. Futami K, Shimamoto A, Furuichi Y. Mitochondrial and nuclear localization of human PIF1 helicase. *Biol Pharm Bull*. 2007;30(9):1685-1692.

52. Gagou ME, Ganesh A, Phear G, et al. Human PIF1 helicase supports DNA replication and cell growth under oncogenic-stress. *Oncotarget*. 2014;5(22):11381-11398.
53. Cheng X, Ivessa AS. Association of the yeast DNA helicase Pif1p with mitochondrial membranes and mitochondrial DNA. *Eur J Cell Biol*. 2010;89(10):742-747.

54. Cheng X, Dunaway S, Ivessa AS. The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. *Mitochondrion*. 2007;7(3):211-222.

55. Foury F, Kolodnyk J. pif mutation blocks recombination between mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. *Proc Natl Acad Sci U S A*. 1983;80(17):5345-5349.

56. Bharti SK, Sommers JA, Zhou J, et al. DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase. *J Biol Chem*. 2014;289(43):29975-29993.

57. Wang DD-H, Shu Z, Lieser SA, Chen P-L, Lee W-H. Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3’-to-5’ directionality. *J Biol Chem*. 2009;284(31):20812-20821.

58. Wang DD-H, Guo XE, Modrek AS, Chen C-F, Chen P-L, Lee W-H. Helicase SUV3, polynucleotide phosphorylase, and mitochondrial polyadenylation polymerase form a transient complex to modulate mitochondrial mRNA polyadenylated tail lengths in response to energetic changes. *J Biol Chem*. 2014;289(24):16727-16735.

59. Szczesny RJ, Borowski LS, Brzezniak LK, et al. Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. *Nucleic Acids Res*. 2010;38(1):279-298.

60. Veno ST, Kulikowicz T, Pestana C, Stepien PP, Stevnsner T, Bohr VA. The human Suv3 helicase interacts with replication protein A and flap endonuclease 1 in the nucleus. *Biochem J*. 2011;440(2):293-300.

61. Mayr JA, Haack TB, Freisinger P, et al. Spectrum of combined respiratory chain defects. *J Inherit Metab Dis*. 2015;38(4):629-640.

62. DiMauro S, Schon EA, Carelli V, Hirano M. The clinical maze of mitochondrial neurology. *Nat Rev Neurol*. 2013;9(8):429-444.

63. Kirby DM, McFarland R, Ohtake A, et al. Mutations of the mitochondrial ND1 gene as a cause of MELAS. *J Med Genet*. 2004;41(10):784-789.

64. Lightowlers RN, Taylor RW, Turnbull DM. Mutations causing mitochondrial disease: What is new and what challenges remain? *Science*. 2015;349(6255):1494-1499.

65. Yanagihara C, Oyama A, Tanaka M, Nakaji K, Nishimura Y. An autopsy case of mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes syndrome with chronic renal failure. *Intern Med*. 2001;40(7):662-665.

66. Iwasaki N, Babazono T, Tsuchiya K, et al. Prevalence of A-to-G mutation at nucleotide 3243 of the mitochondrial tRNA(Leu(UUR)) gene in Japanese patients with diabetes mellitus and end stage renal disease. *J Hum Genet*. 2001;46(6):330-334.
68. Manouvrier S, Rotig A, Hannebique G, et al. Point mutation of the mitochondrial tRNA(Leu) gene (A 3243 G) in maternally inherited hypertrophic cardiomyopathy, diabetes mellitus, renal failure, and sensorineural deafness. *J Med Genet*. 1995;32(8):654-656.

69. Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. *J Inherit Metab Dis*. 2015;38(1):145-156.

70. Saiki R, Lunceford AL, Shi Y, et al. Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. *Am J Physiol Renal Physiol*. 2008;295(5):F1535-44.

71. Quinzii CM, Garone C, Emmanuele V, et al. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient PDSS2 mutant mice. *FASEB J*. 2013;27(2):612-621.

72. Peng M, Falk MJ, Haase VH, et al. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. *PLoS Genet*. 2008;4(4):e1000061.

73. Wilson FH, Hariri A, Farhi A, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. *Science*. 2004;306(5699):1190-1194.

74. Klootwijk ED, Reichold M, Helip-Wooley A, et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi’s syndrome. *N Engl J Med*. 2014;370(2):129-138.

75. Swan EJ, Salem RM, Sandholm N, et al. Genetic risk factors affecting mitochondrial function are associated with kidney disease in people with type 1 diabetes. *Diabet Med*. 2015;32(8):1104-1109.

76. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. *Am J Clin Nutr*. 2011;93(4):884S-890S.

77. Zaza G, Granata S, Masola V, et al. Downregulation of nuclear-encoded genes of oxidative metabolism in dialyzed chronic kidney disease patients. *PLoS One*. 2013;8(10):e77847.

78. Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. *BMC Genomics*. 2009;10:388.

79. Choi B, Kang K-S, Kwak M-K. Effect of redox modulating NRF2 activators on chronic kidney disease. *Molecules*. 2014;19(8):12727-12759.

80. Coughlan MT, Higgins GC, Nguyen T-V, et al. Deficiency in apoptosis-inducing factor recapitulates chronic kidney disease via aberrant mitochondrial homeostasis. *Diabetes*. 2016;65(4):1085 LP-1098.

81. Sedeek M, Nasrallah R, Touyz RM, Hebert RL. NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe. *J Am Soc Nephrol*. 2013;24(10):1512-1518.

82. Nlandu Khodo S, Dizin E, Sossauer G, et al. NADPH-oxidase 4 protects against kidney fibrosis during chronic renal injury. *J Am Soc Nephrol*. 2012;23(12):1967-1976.

83. Chen W-T, Hung K-C, Wen M-S, et al. Impaired leukocytes autophagy in chronic kidney disease patients. *CardioRenal Med*. 2013;3(4):254-264.

84. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. *Biochem J*. 2012;441(2):523-540.
85. Kimura T, Takabatake Y, Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. *J Am Soc Nephrol*. 2011;22(5):902-913.

86. Gamboa JL, Billings FT, Bojanowski MT, et al. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. *Physiol Rep*. 2016;4(9):e12780.

87. Edlich F, Banerjee S, Suzuki M, et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. *Cell*. 2011;145(1):104-116.

88. Chen H-C, Kanai M, Inoue-Yamauchi A, et al. An interconnected hierarchical model of cell death regulation by the BCL-2 family. *Nat Cell Biol*. 2015;17(10):1270-1281.

89. Burlaka I, Nilsson LM, Scott L, et al. Prevention of apoptosis averts glomerular tubular disconnection and podocyte loss in proteinuric kidney disease. *Kidney Int*. 2017;90(1):135-148.

90. Massague J. TGFβ signalling in context. *Nat Rev Mol Cell Biol*. 2012;13(10):616-630.

91. Gentle ME, Shi S, Daehn I, et al. Epithelial cell TGFβ signaling induces acute tubular injury and interstitial inflammation. *J Am Soc Nephrol*. 2013;24(5):787-799.

92. Fogo AB. PPARγ and chronic kidney disease. *Pediatr Nephrol*. 2011;26(3):347-351.

93. Granata S, Masola V, Zoratti E, Scupoli MT, Baruzzi A, Messa M. NLRP3 inflammasome activation in dialyzed chronic kidney disease patients. *PLoS One*. 2015;10.

94. Ding W, Guo H, Xu C, Wang B, Zhang M, Ding F. Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. *Oncotarget*. 2016;7(14):17479-17491.

95. Gong W, Mao S, Yu J, et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. *Am J Physiol Renal Physiol*. 2016;310(10):F1081-8.

96. Guo H, Bi X, Zhou P, Zhu S, Ding W. NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. *Mediators Inflamm*. 2017;2017.

97. Qi H, Casalena G, Shi S, et al. Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. *Diabetes*. 2017;66(3):763-778.

98. Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. *Am J Physiol Ren Physiol*. 2014;306.

99. Yamamoto-Nonaka K, Koike M, Asanuma K, et al. Cathepsin D in podocytes is important in the pathogenesis of proteinuria and CKD. *J Am Soc Nephrol*. 2016;1:16.

100. El-Meanawy A, Schelling JR, Iyengar SK, et al. Identification of nephropathy candidate genes by comparing sclerosis-prone and sclerosis-resistant mouse strain kidney transcriptomes. *BMC Nephrol*. 2012;13:61.

101. Yang C, Zhou W, Jeon M-S, et al. Negative regulation of the E3 ubiquitin ligase Itch via Fyn-mediated tyrosine phosphorylation. *Mol Cell*. 2006;21(1):135-141.

102. Azakir BA, Angers A. Reciprocal regulation of the ubiquitin ligase Itch and the epidermal
growth factor receptor signaling. *Cell Signal.* 2009;21(8):1326-1336.

103. Magnifico A, Ettenberg S, Yang C, et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. *J Biol Chem.* 2003;278(44):43169-43177.

104. Bai Y, Yang C, Hu K, Elly C, Liu Y-C. Itch E3 ligase-mediated regulation of TGFβ signaling by modulating SMAD2 phosphorylation. *Mol Cell.* 2004;15(5):825-831.

105. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. *J Biol Chem.* 2000;275(24):18040-18045.

106. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. *Proc Natl Acad Sci U S A.* 2008;105(44):17046-17049.

107. Lumey LH, Stein AD, Kahn HS, et al. Cohort profile: The dutch hunger winter families study. *Int J Epidemiol.* 2007;36(6):1196-1204.

108. Moore LD, Le T, Fan G. DNA methylation and its basic function. *Neuropsychopharmacology.* 2013;38(1):23-38.

109. Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. *Science (80-).* 2003;300(5618):455.

110. Esteller M. CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. *Oncogene.* 2002;21:5427.

111. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. *Cell Res.* 2011;21(3):381-395.

112. Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation—how does it all fit together? *J Cell Biochem.* 2002;87(2):117-125.

113. Ho L, Crabtree GR. Chromatin remodelling during development. *Nature.* 2010;463(7280):474-484.

114. Park K-Y, Pfeifer K. Epigenetic interplay. *Nat Genet.* 2003;34:126.

115. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. *Diabetologia.* 1993;36(1):62-67.

116. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. *BMJ.* 1989;298(6673):564-567.

117. Eriksson JG, Forsen T, Tuomilehto J, Jaddoe VW V, Osmond C, Barker DJP. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals. *Diabetologia.* 2002;45(3):342-348.

118. Hallan S, Euser AM, Irgens LM, Finken MJJ, Holmen J, Dekker FW. Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trondelag Health (HUNT 2) Study. *Am J Kidney Dis.* 2008;51(1):10-20.

119. Law CM, Barker DJ, Osmond C, Fall CH, Simmonds SJ. Early growth and abdominal fatness in
Mitochondria and Chronic Kidney Disease

adult life. *J Epidemiol Community Health*. 1992;46(3):184-186.

120. Li S, Chen S-C, Shlipak M, et al. Low birth weight is associated with chronic kidney disease only in men. *Kidney Int*. 2008;73(5):637-642.

121. White SL, Perkovic V, Cass A, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. *Am J Kidney Dis*. 2009;54(2):248-261.

122. Han Q, Zhu H, Chen X, Liu Z. Non-genetic mechanisms of diabetic nephropathy. *Front Med*. 2017;11(3):319-332.

123. Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. *Am J Physiol Renal Physiol*. 2014;307(7):F757-76.

124. Reddy MA, Natarajan R. Recent developments in epigenetics of acute and chronic kidney diseases. *Kidney Int*. 2015;88(2):250-261.

125. Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS. Epigenetics of progression of chronic kidney disease: Fact or fantasy? *Semin Nephrol*. 2013;33(4):10.1016/j.semnenphrol.2013.05.008.

126. Beckerman P, Ko Y-A, Susztak K. Epigenetics: A new way to look at kidney diseases. *Nephrol Dial Transplant*. 2014;29(10):1821-1827.

127. Reddy MA, Natarajan R. Epigenetics in diabetic kidney disease. *J Am Soc Nephrol*. 2011;22(12):2182-2185.

128. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. *Diabetologia*. 2015;58(3):443-455.

129. Ko Y-A, Mohtat D, Suzuki M, et al. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. *Genome Biol*. 2013;14(10):R108.

130. Bechtel W, McGoothan S, Zeisberg EM, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. *Nat Med*. 2010;16(5):544-550.

131. Breton C V, Byun H-M, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. *Am J Respir Crit Care Med*. 2009;180(5):462-467.

132. Breton C V, Siegmund KD, Joubert BR, et al. Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. *PLoS One*. 2014;9(6):e99716.

133. Joubert BR, Haberg SE, Bell DA, et al. Maternal smoking and DNA methylation in newborns: in utero effect or epigenetic inheritance? *Cancer Epidemiol Biomarkers Prev*. 2014;23(6):1007-1017.

134. Suter M, Abramovici A, Showalter L, et al. In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. *Metabolism*. 2010;59(10):1481-1490.

135. Suter M, Ma J, Harris A, et al. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. *Epigenetics*. 2011;6(11):1284-1294.

136. Barres R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. *Cell Metab*. 2009;10(3):189-198.
137. Ling C, Del Guerra S, Lupi R, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. *Diabetologia*. 2008;51(4):615-622.

138. Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. *Cancer Biol Ther*. 2008;7(8):1182-1190.

139. Wallace DC, Fan W. Energetics, Epigenetics, Mitochondrial Genetics. *Mitochondrion*. 2010;10(1):12-31.

140. Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. *Neuron*. 2008;60(6):961-974.

141. Mi X, Tang W, Chen X, Liu F, Tang X. Mitofusin 2 attenuates the histone acetylation at collagen IV promoter in diabetic nephropathy. *J Mol Endocrinol*. 2016;57(4):233-249.

142. Bartling TR, Drumm ML. Oxidative stress causes IL8 promoter hyperacetylation in cystic fibrosis airway cell models. *Am J Respir Cell Mol Biol*. 2009;40:58-65.

143. Kabra DG, Gupta J, Tikoo K. Insulin induced alteration in post-translational modifications of histone H3 under a hyperglycemic condition in L6 skeletal muscle myoblasts. *Biochim Biophys Acta*. 2009;1792:574-583.

144. Minocherhomji S, Tollefsbol TO, Singh KK. Mitochondrial regulation of epigenetics and its role in human diseases. *Epigenetics*. 2012;7(4):326-334.

145. Iacobazzi V, Castegna A, Infantino V, Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. *Mol Genet Metab*. 2013;110(1):25-34.

146. Dawid IB. 5-Methylcytidylic acid: Absence from mitochondrial DNA of frogs and HeLa cells. *Science (80-)*. 1974;184(4132):80-81.

147. Cummings DJ, Tait A, Goddard JM. Methylated bases in DNA from Paramecium aurelia. *Biochim Biophys Acta - Nucleic Acids Protein Synth*. 1974;374(1):1-11.

148. Nass MMK. Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells In vivo and in vitro methylation. *J Mol Biol*. 1973;80(1):155-175.

149. Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M. Methylation pattern of mouse mitochondrial DNA. *Nucleic Acids Res*. 1984;12(12):4811-4824.

150. Shmookler Reis RJ, Goldstein S. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. *J Biol Chem*. 1983;258(15):9078-9085.

151. Groot GSP, Kroon AM. Mitochondrial DNA from various organisms does not contain internally methylated cytosine in -CCGG- sequences. *Biochim Biophys Acta - Nucleic Acids Protein Synth*. 1979;564(2):355-357.

152. Infantino V, Castegna A, Iacobazzi F, et al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. *Mol Genet Metab*. 2011;102(3):378-382.

153. Shock LS, Thakkar P V, Peterson EJ, Moran RG, Taylor SM. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. *Proc Natl Acad Sci*. 2011;108(9):3630 LP-3635.
154. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci. 2011;31(46):16619 LP-16636.

155. Bellizzi D, D’Aquila P, Scafone T, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. 2013;20(6):537-547.

156. Sun C, Reimers LL, Burk RD. Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol. 2011;121(1):59-63.

157. Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet. 2005;6(11):815-825.

158. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson N-G, Jakobs S. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A. 2011;108(33):13534-13539.

159. Kukat C, Larsson N-G. mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol. 2013;23(9):457-463.

160. Choi Y-S, Hoon Jeong J, Min H-K, et al. Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: Identification of mitochondrial histones. Mol Biosyst. 2011;7(5):1523-1536.

161. Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem. 2008;283(6):3665-3675.

162. Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem. 2006;281(35):25791-25802.

163. Kasashima K, Sumitani M, Satoh M, Endo H. Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res. 2008;314(5):988-996.

164. Schon EA, Gilkerson RW. Functional complementation of mitochondrial DNAs: Mobilizing mitochondrial genetics against dysfunction. Biochim Biophys Acta. 2010;1800(3):245-249.

165. Gilkerson R, Bravo L, Garcia I, et al. The mitochondrial nucleoid: Integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol. 2013;5(5):a011080.

166. Kren BT, Wong PY-P, Sarver A, Zhang X, Zeng Y, Steer CJ. MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis. RNA Biol. 2009;6(1):65-72.

167. Bian Z, Li L-M, Tang R, et al. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 2010;20(9):1076-1078.

168. Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One. 2011;6(5):e20220.

169. Carrer M, Liu N, Grueter CE, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci U S A. 2012;109(38):15330-15335.

170. Li P, Jiao J, Gao G, Prabhakar BS. Control of mitochondrial activity by miRNAs. J Cell Biochem. 2012;113(4):1104-1110.
171. Sripada L, Tomar D, Prajapati P, Singh R, Singh AK, Singh R. Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: Detailed analysis of mitochondrial associated miRNA. PLoS One. 2012;7(9):e44873.

172. Tomasetti M, Neuzil J, Dong L. MicroRNAs as regulators of mitochondrial function: Role in cancer suppression. Biochim Biophys Acta - Gen Subj. 2014;1840(4):1441-1453.

173. Rackham O, Shearwood A-MJ, Mercer TR, Davies SMK, Mattick JS, Filipovska A. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA. 2011;17(12):2085-2093.

174. Yang K-C, Yamada KA, Patel AY, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129(9):1009-1021.

175. Lung B, Zemann A, Madej MJ, et al. Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucleic Acids Res. 2006;34(14):3842-3852.

176. Ro S, Ma H-Y, Park C, et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 2013;23(6):759-774.

177. Golestaneh L, Melamed ML, Hostetter TH. Uremic memory: The role of acute kidney injury in long-term outcomes. Kidney Int. 2009;76(8):813-814.

178. Keating ST, El-Osta A. Glycemic memories and the epigenetic component of diabetic nephropathy. Curr Diab Rep. 2013;13(4):574-581.

179. McCaughan JA, Mc Knight AJ, Courtney AE, Maxwell AP. Epigenetics: Time to translate into transplantation. Transplantation. 2012;94(1):1-7.

180. Reddy MA, Sumanth P, Lanting L, et al. Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int. 2014;85(2):362-373.

181. Peng R, Liu H, Peng H, et al. Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1. Gene. 2015;570(1):57-63.

182. DiMauro S, Davidzon G. Mitochondrial DNA and disease. Ann Med. 2005;37(3):222-232.

183. Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton). 2012;17(4):311-321.

184. Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: A new therapeutic target in chronic kidney disease. Nutr Metab (Lond). 2015;12(1):49.

185. Hsu C-Y, Liu KD. Cardiovascular events after AKI: A new dimension. J Am Soc Nephrol. 2014;25(3):425-427.

186. Mima A, Shio ta F, Matsubara T, et al. An autopsy case of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with intestinal bleeding in chronic renal failure. Ren Fail. 2011;33(6):622-625.

187. Emma F, Bertini E, Salviati L, Montini G. Renal involvement in mitochondrial cytopathies. Pediatr Nephrol. 2012;27(4):539-550.

188. Hall AM, Vilasi A, Garcia-Perez I, et al. The urinary proteome and metabonome differ from
normal in adults with mitochondrial disease. *Kidney Int.* 2015;87(3):610-622.

189. Menezes MJ, Guo Y, Zhang J, et al. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia. *Hum Mol Genet.* 2015;24(8):2297-2307.

190. Alston CL, Morak M, Reid C, et al. A novel mitochondrial MTND5 frameshift mutation causing isolated complex I deficiency, renal failure and myopathy. *Neuromuscul Disord.* 2010;20(2):131-135.

191. D’Aco KE, Manno M, Clarke C, Ganesh J, Meyers KEC, Sondheimer N. Mitochondrial tRNA(Phe) mutation as a cause of end-stage renal disease in childhood. *Pediatr Nephrol.* 2013;28(3):515-519.

192. Tzen CY, Tsai JD, Wu TY, et al. Tubulointerstitial nephritis associated with a novel mitochondrial point mutation. *Kidney Int.* 2001;59(3):846-854.

193. Hirano M, Konishi K, Arata N, et al. Renal complications in a patient with A-to-G mutation of mitochondrial DNA at the 3243 position of leucine tRNA. *Intern Med.* 2002;41(2):113-118.

194. Guery B, Choukroun G, Noel L-H, et al. The spectrum of systemic involvement in adults presenting with renal lesion and mitochondrial tRNA(Leu) gene mutation. *J Am Soc Nephrol.* 2003;14(8):2099-2108.

195. Zsurka G, Ormos J, Ivanyi B, et al. Mitochondrial mutation as a probable causative factor in familial progressive tubulointerstitial nephritis. *Hum Genet.* 1997;99(4):484-487.

196. Mimaki M, Hatakeyama H, Ichiyama T, et al. Different effects of novel mtDNA G3242A and G3244A base changes adjacent to a common A3243G mutation in patients with mitochondrial disorders. *Mitochondrion.* 2009;9(2):115-122.

197. Lederer SR, Klopstock T, Schiff H. MELAS: A mitochondrial disorder in an adult patient with a renal transplant. *Wien Klin Wochenschr.* 2010;122(11-12):363-365.

198. Jansen JJ, Maassen JA, van der Woude FJ, et al. Mutation in mitochondrial tRNA(Leu(UUR)) gene associated with progressive kidney disease. *J Am Soc Nephrol.* 1997;8(7):1118-1124.

199. Nakamura S, Yoshinari M, Doi Y, et al. Renal complications in patients with diabetes mellitus associated with an A to G mutation of mitochondrial DNA at the 3243 position of leucine tRNA. *Diabetes Res Clin Pract.* 1999;44(3):183-189.

200. Mochizuki H, Joh K, Kawame H, et al. Mitochondrial encephalomyopathies preceded by de-Toni-Debre-Fanconi syndrome or focal segmental glomerulosclerosis. *Clin Nephrol.* 1996;46(5):347-352.

201. Piccoli GB, Bonino LD, Campisi P, et al. Chronic kidney disease, severe arterial and arteriolar sclerosis and kidney neoplasia: On the spectrum of kidney involvement in MELAS syndrome. *BMC Nephrol.* 2012;13:9.

202. Hotta O, Inoue CN, Miyabayashi S, Furuta T, Takeuchi A, Taguma Y. Clinical and pathologic features of focal segmental glomerulosclerosis with mitochondrial tRNALeu(UUR) gene mutation. *Kidney Int.* 2001;59(4):1236-1243.

203. Taniike M, Fukushima H, Yanagihara I, et al. Mitochondrial tRNA(Ile) mutation in fatal
cardiomyopathy. *Biochem Biophys Res Commun.* 1992;186(1):47-53.

204. Meulemans A, Seneca S, Lagae L, et al. A novel mitochondrial transfer RNA(Asn) mutation causing multiorgan failure. *Arch Neurol.* 2006;63(8):1194-1198.

205. Scaglia F, Vogel H, Hawkins EP, Vladutiu GD, Liu L-L, Wong L-JC. Novel homoplasmic mutation in the mitochondrial tRNATyr gene associated with atypical mitochondrial cytopathy presenting with focal segmental glomerulosclerosis. *Am J Med Genet A.* 2003;123A(2):172-178.

206. Campos Y, Garcia-Silva T, Barrionuevo CR, Cabello A, Muley R, Arenas J. Mitochondrial DNA deletion in a patient with mitochondrial myopathy, lactic acidosis, and stroke-like episodes (MELAS) and Fanconi’s syndrome. *Pediatr Neurol.* 1995;13(1):69-72.

207. Eviatar L, Hanske S, Gauthier B, et al. Kearns-Sayre syndrome presenting as renal tubular acidosis. *Neurology.* 1990;40(11):1761-1763.

208. Goto Y, Itami N, Kajii N, Tochimaru H, Endo M, Horai S. Renal tubular involvement mimicking Bartter syndrome in a patient with Kearns-Sayre syndrome. *J Pediatr.* 1990;116(6):904-910.

209. Au KM, Lau SC, Mak YF, et al. Mitochondrial DNA deletion in a girl with Fanconi’s syndrome. *Pediatr Nephrol.* 2007;22(1):136-140.

210. Szabolcs MJ, Seigle R, Hanske S, Bonilla E, DiMauro S, D’Agati V. Mitochondrial DNA deletion: A cause of chronic tubulointerstitial nephropathy. *Kidney Int.* 1994;45(5):1388-1396.

211. Majander A, Suomalainen A, Vettenranta K, et al. Congenital hypoplastic anemia, diabetes, and severe renal tubular dysfunction associated with a mitochondrial DNA deletion. *Pediatr Res.* 1991;30(4):327-330.

212. Niaudet P, Heidet L, Munnich A, et al. Deletion of the mitochondrial DNA in a case of de Toni-Debre-Fanconi syndrome and Pearson syndrome. *Pediatr Nephrol.* 1994;8(2):164-168.

213. McShane MA, Hammans SR, Sweeney M, et al. Pearson syndrome and mitochondrial encephalomyopathy in a patient with a deletion of mtDNA. *Am J Hum Genet.* 1991;48(1):39-42.

214. Rotig A, Goutieres F, Niaudet P, et al. Deletion of mitochondrial DNA in patient with chronic tubulointerstitial nephritis. *J Pediatr.* 1995;126(4):597-601.

215. Xu J, Guo Z, Bai Y, et al. Single nucleotide polymorphisms in the D-loop region of mitochondrial DNA is associated with the kidney survival time in chronic kidney disease patients. *Ren Fail.* 2015;37(1):108-112.

216. Kottgen A, Pattaro C, Boger CA, et al. New loci associated with kidney function and chronic kidney disease. *Nat Genet.* 2010;42(5):376-384.

217. Gorski M, Van Der Most PJ, Teumer A, et al. 1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function. *Sci Rep.* 2017;7(April):1-11.

218. Pezzolesi MG, Poznik GD, Skupien J, et al. An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes. *Kidney Int.* 2011;80(1):105-111.

219. Vieira SM, Monteiro MB, Marques T, et al. Association of genetic variants in the promoter
region of genes encoding p22phox (CYBA) and glutamate cysteine ligase catalytic subunit (GCLC) and renal disease in patients with type 1 diabetes mellitus. *BMC Med Genet.* 2011;12:129.

220. Franko B, Benhamou P-Y, Genty C, et al. RAGE and CYBA polymorphisms are associated with microalbuminuria and end-stage renal disease onset in a cohort of type 1 diabetes mellitus patients over a 20-year follow-up. *Acta Diabetol.* 2016;53(3):469-475.

221. Maeda S, Koya D, Araki S-I, et al. Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes. *Clin Exp Nephrol.* 2011;15(3):381-390.

222. Mohammedi K, Bellili-Muñoz N, Driss F, et al. Manganese Superoxide Dismutase (SOD2) Polymorphisms, Plasma Advanced Oxidation Protein Products (AOPP) Concentration and Risk of Kidney Complications in Subjects with Type 1 Diabetes. *PLoS One.* 2014;9(5):1-11.

223. Tiwari AK, Prasad P, B.K. T, et al. Oxidative stress pathway genes and chronic renal insufficiency in Asian Indians with type 2 diabetes. *J Diabetes Complications.* 2009;23(2):102-111.

224. Lv J, Hou W, Zhou X, et al. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy. *J Am Soc Nephrol.* 2013;24(8):1323-1329.

225. Li M, Foo J-N, Wang J-Q, et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. *Nat Commun.* 2015;6:7270.

226. Chand S, McKnight AJ, Shabir S, et al. Analysis of single nucleotide polymorphisms implicate mTOR signalling in the development of new-onset diabetes after transplantation. *BBA Clin.* 2016;5:41-45.

227. Fougeray S, Loriot M-A, Nicaud V, Legendre C, Thervet E, Pallet N. Increased body mass index after kidney transplantation in activating transcription factor 6 single polymorphism gene carriers. *Transplant Proc.* 2011;43(9):3418-3422.

228. Gu N, Ma X, Zhang J, et al. Obesity has an interactive effect with genetic variation in the activating transcription factor 6 gene on the risk of pre-diabetes in individuals of Chinese Han descent. *PLoS One.* 2014;9(10):1-6.

229. Thameem F, Farook VS, Bogardus C, Prochazka M. Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians. *Diabetes.* 2006;55(3):839-842.

230. Moon MK, Cho YM, Jung HS, et al. Genetic polymorphisms in peroxisome proliferator-activated receptor gamma are associated with type 2 diabetes mellitus and obesity in the Korean population. *Diabet Med.* 2005;22(9):1161-1166.

231. Kim H, Kim HJ, Lee K, Kim JM, Kim HS, Kim JR. Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway. *J Cell Mol Med.* 2012;16.

232. Ma L, Chou JW, Snipes JA, et al. APOL1 renal-risk variants induce mitochondrial dysfunction. *J Am Soc Nephrol.* 2017;28(4):1093-1105.
233. Kasembeli AN, Duarte R, Ramsay M, et al. APOL1 risk variants are strongly associated with HIV-associated nephropathy in black South Africans. *J Am Soc Nephrol*. 2015;26(11):2882-2890.

234. Freedman BI, Hicks PJ, Bostrom MA, et al. Non-muscle myosin heavy chain 9 gene MYH9 associations in African Americans with clinically diagnosed type 2 diabetes mellitus-associated ESRD. *Nephrol Dial Transplant*. 2009;24(11):3366-3371.

235. Gasser DL, Winkler CA, Peng M, et al. Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. *Am J Physiol Renal Physiol*. 2013;305(8):F1228-38.

236. Reznichenko A, Sinkeler SJ, Snieder H, et al. SLC22A2 is associated with tubular creatinine secretion and bias of estimated GFR in renal transplantation. *Physiol Genomics*. 2013;45(6):201-209.
| Variation Type | Variation | Region | Phenotype | References |
|----------------|-----------|--------|-----------|------------|
| Point mutation | mtDNA 3243 A>G mutation | MT-TL1 | MELAS, MERRF syndrome and MIDD | 67, 188 |
| Point mutation | c.550A>G | MRPS7 | Substitution of valine for a highly conserved methionine (p.Met184Val) observed in case report of Congenital sensorineural deafness, progressive hepatic and renal failure and lactic academia | 189 |
| Point mutation | m.12425delA | MTND5 | Renal failure and myopathy resulting from Complex I deficiency | 190 |
| Point mutation | m.G586A | mt-tRNA^{Phe} | TIN | 191 |
| Point mutation | m.A608G | mt-tRNA^{Phe} | | 192 |
| Point mutation | m.3243 | mt-tRNA^{Leu} | | 193, 194 |
| Point mutation | m.A5656G | Noncoding | | 195 |
| Point mutation | m.G3242A | mt-tRNA^{Leu} | Renal failure, RTA type 4 | 196 |
| Point mutation | m.3243 | mt-tRNA^{Leu} | FSGS | 197, 198 |
| | m.A4269G | mt-tRNA^{Ile} | | 199 |
| | m.A5728G | mt-tRNA^{Asn} | | 200 |
| | m.A5843G | mt-tRNA^{Tyr} | | 201 |
| Point mutation | m.12425delA | ND5 | Glomerulocystic disease, renal failure | 190, 202 |
| Deletion | 6,000 bp | ~6,000–12,000 | Proximal tubulopathy | 206 |
| Deletion | 7,500 bp | ~6,100–13,600 | FSGS, RTA | 207 |
| Deletion | 8,800 bp | ~6,800–15,600 | Distal tubulopathy | 208 |
| Deletion | 7,315 bp | 7,325–14,639 | Proximal tubulopathy, TIN | 209 |
| | 2,800 bp | ~10,000–12,800 | Proximal tubulopathy, TIN | 210 |
| | 5,700 bp | ~8,400–14,100 | Proximal tubulopathy | 211 |
| | 4,977 bp | 8,469–13,447 | Proximal tubulopathy | 212, 215 |
| | 2,608 bp | 10,598–13,206 | TIN | 214 |
| SNPs | 73A>G, 1467C>150C>T, 194C>T, 195T>C | mtDNA D-loop 1122 bps from nucleotide 16,024–16,569 and 1–576 | These D-loop SNPs are associated with risk of CKD and kidney survival time in those with CKD. SNPs in this region may affect mtDNA replication and lead to electron transport chain alteration, therefore increasing ROS generation and may contribute to nuclear genome damage. | 215 |

MELAS - Mitochondrial Encephalopathy, Lactic acidosis, and Stroke-like episodes; MERRF syndrome - Myoclonic epilepsy with ragged-red fibers; MIDD - Maternally-inherited diabetes and deafness; TIN – Tubulointerstitial nephritis; RTA – Renal Tubular Acidosis; FSGS - Focal segmental glomerulosclerosis; SNP – Single Nucleotide Polymorphism; CKD – Chronic Kidney Disease; ROS – Reactive Oxygen Species
Table 2 Nuclear encoded mitochondrial genes involved with development of chronic kidney disease (more details in supplementary table 1)

Biological Process	Genes and expression in CKD	Pathological Effect of gene expression
Mitochondrial Biogenesis and Function	Downregulated: PPARGC1A, NRF1; TFAM; UQCRH; COX6C and COX7C in PBMC of CKD patients undergoing PD; MCAD; AIFM1; COX6C and COX7C in PBMC of CKD (stage IV – V) patients in conservative treatment and HD; NFE2L2; SOD2; NDUFS5; NDUFA6; NDUFA1; NDUFB1; UQCRH; ATP5I; ATP5J; ATP5O; APOL1; NOX4	PPARGC1A downregulation may be protective adaption to limit ROS production. Will also reduce expression of downstream targets of NRF-1 and PGC1α and reduce mitochondrial biogenesis and OXPHOS activity. Downregulation of TFAM may lead to decreased mtDNA copy number. Expression of NFE2L2, SOD2 and UQCRH may also be associated with increased ROS generation. Increased expression of Complex I proteins. Complex V proteins and UQCRB may be an attempt to restore OXPHOS mechanisms. Reduced Complex IV activity may be associated with OXPHOS defects Increased expression of renal risk variants of APOL1 and NOX4 may increase mitochondrial damage by ROS.
Apoptosis (Intrinsic Pathway)	Downregulated: BCL2L1; AIFM1; BAX; BAK1; HIF1	Reduced expression of BCL-xL allows BAX expression and mitochondrial accumulation to increase which increases apoptosis and depolarises outer mitochondrial membrane in proximal tubular cells. Increased BAX expression also permeabilises the inner mitochondrial membrane leading to cytochrome C release AIFM1 inactivation results in OXPHOS defects Activation of HIF1 promotes renal cell growth, stimulates angiogenesis, and reduces inflammation
Autophagy and Mitophagy	Downregulated: ATG5; CTSD; BECN1	Downregulation of ATG5; CTSD; BECN1 may lead to impaired autophagy and increased ROS production, mitochondrial deformation and decreased mitochondrial function Increased expression of BNIP3 may indicate increased mitophagy and reduced mitochondrial function
Inflammation and fibrosis	Upregulated: BNIP3	NLRP3 inflammasome is activated by mitochondrial ROS which, increases ECM deposition, apoptosis, fibrosis of renal cells and CASP1 expression. Upregulation of PPARG effects renal parenchymal cells as well as fibrotic, inflammatory, immune, proliferative, reactive oxygen and mitochondrial injury pathways Apoptosis in Primary tubular cells exposed to albumin has been shown to increase TGFβ expression which stimulates ECM formation and the extrinsic apoptotic pathway
Podocyte Function	Downregulated: NRP2; KLF6; CTSD	Downregulation of NRP2 in CKD may contribute to podocyte damage Podocyte specific KLF6 loss increased susceptibility to FSGS in mice models Downregulation of CTSD in podocytes may lead to impaired autophagy and eventually apoptotic cell death ITCH expression may be important in regulating glomerular sclerosis and podocyte function

PBMC – Peripheral blood mononuclear cell; CKD – Chronic kidney disease; PD – peritoneal dialysis; HD - haemodialysis; ROS – Reactive oxygen species; OXPHOS – Oxidative phosphorylation; mtDNA – mitochondrial DNA; ECM – Extracellular matrix
Table 3 Examples of SNPs in nuclear encoded mitochondrial genes previously associated with chronic kidney disease

Phenotype	Gene	Top Ranked SNPs	Statistics	Protein function in Mitochondria	Population	Notes	References
eGFR	NAT8	rs13538	$P = 4.5 \times 10^{-14}$	May be involved in regulation of apoptosis	Meta Analyses of GWAS from individuals of European ancestry	Common variants in NAT8 may influence acetylation pathways, disturbances of which are known to be involved with drug and toxin induced kidney injury.	216
						Mediates cation reabsorption in kidney	
	SLC22A2	rs2279463	$P = 5.5 \times 10^{-12}$	Evidences for mitochondrial localisation		Also involved with positive regulation of lipid metabolic process and abnormal glucose homeostasis	216,217
	WDR72	rs139926232	$P = 7.20 \times 10^{-11}$, Beta = 0.0083	May be involved in localization of the calcium transporter SLC24A4 to the ameloblast cell membrane. Expressed in cytosol and mitochondria			
		rs491567	$P = 2.7E-13$				
Diabetic Nephropathy	AFF3	rs7583877	$P = 1.2 \times 10^{-8}$, OR = 1.29 (95% CI: 1.18–1.40)	Encodes a transcriptional activator, with DNA-binding activity	3 discovery cohorts from GENIE consortium: UK-ROI, FinnDiane and GoKinD US	Influences renal tubule fibrosis	24
	MYO16-IRS2	rs9521445	$P = 4.4 \times 10^{-3}$, OR = 1.25 (95% CI: 1.07–1.46)	$IRS2$ has been seen to localise to mitochondria and is associated with DM	90% Caucasian from Joslin Clinic including patients from all social strata	These SNPs are found in an intergenic region telomeric to $MYO16$ and centromeric to $IRS2$. Associated with CKD in T2DM subjects. Not significant after Bonferroni correction	218
		rs1411766	$P = 0.03$, OR = 1.19 (95% CI: 1.01–1.40)				
	COQ5	rs1167726	$P = 2.00 \times 10^{-5}$	Encodes methyltransferase which is located in mitochondrial matrix	All people included in the analysis were of white European origin and were diagnosed	Associated with both DKD and ESRD in the discovery and in silico replication analyses subjects with T1DM	23
		rs614226	$P = 2.00 \times 10^{-5}$				
	COX6A1	rs12310837	$P = 3.00 \times 10^{-5}$	Subunit 6A1 of cytochrome c oxidase which is the terminal			25
Gene	SNP	P Value	Description	Age and gender matched Caucasian subjects with and without type 1 diabetes	Japanese cohort of T2DM		
------	-----	---------	-------------	---	------------------------		
GATC	rs2235222	$P = 4.00 \times 10^{-5}$	Glutamyl-TRNA Amidotransferase Subunit C is required by mitochondria for formation of correctly charged Gln-tRNA(Gln)	Age and gender matched Caucasian subjects with and without type 1 diabetes	Japanese cohort of T2DM		
TOP1MT	rs724037	$P = 2.00 \times 10^{-5}$	Encodes a mitochondrial DNA topoisomerase that plays a role in the modification of DNA topology				
PACRG	rs2147653	$P = 0.004$	Coregulated with PARK2 which plays a key role in regulation of mitochondria function via mitophagy				
CYBA	-675 T → A	$P = 0.0354$, OR = 0.38	CYBA encodes p22phox subunit which are essential for the function of NOX/NADPH oxidases	Age and gender matched Caucasian subjects with and without type 1 diabetes	CYBA -675 T → A modulate the risk for renal disease in the studied population of type 1 diabetes patients		
	C242T	$P = 0.015$, HR = 2.1		C242T correlates with microalbuminuria onset in the French T1DM cohort			
GCLC	rs17883901	$P = 0.0068$, OR = 2.40 CI 95% 1.27–4.56	Modulates the risk for renal disease in the studied population of T1DM patients		Associated with cellular redox imbalances		
SIRT1	rs4746720 T>C	$P = 0.041$, OR = 0.88 (CI 95%: 0.77–0.99)	Involved with regulation of aging, longevity, and pathogenesis of age-related metabolic diseases, such as T2DM		4 SNPs were nominally associated with diabetic nephropathy however the haplotype consisting of 11 SNPs within SIRT1 had a stronger association than individual SNPs		
	rs2236319 A>G	$P = 0.044$, OR = 1.12 (CI 95%: 1.00–1.24)					
	rs10823108 G>A	$P = 0.038$, OR = 1.12 (CI 95%: 1.01–					
Mitochondria and Chronic Kidney Disease

Haplotype	SNP	Description	P Value	OR (CI 95%)		
TATAGATAGTA	rs3818292 A>G	1.24) \(P = 0.042 \) OR = 1.12 \((CI 95\%: 1.01-1.24) \)	0.0091 OR = 1.34 \((CI 95\%: 1.07-1.66) \)			
SOD2	rs2758329 C>T	Catalyses the dismutation of superoxide into oxygen and hydrogen peroxide to maintain proper mitochondrial biogenesis and function	\(P = 0.005 \) OR = 2.08 \((CI 95\%: 1.26-3.53) \)	\(P = 0.009 \) OR = 1.99 \((CI 95\%: 1.20-3.36) \)	\(P = 0.005 \) OR = 2.16 \((CI 95\%: 1.28-3.72) \)	
	rs8031 A>T	Caucasian subjects with type 1 diabetes from the SURGENE prospective study			These SNPs were associated with incipient nephropathy and decline of eGFR in prospective study. Associated with established/advanced nephropathy in follow-up	
	rs4880 C>T					
	Ala9Val	Detoxify and reduce production of superoxide and other free radicals	\(P = 0.001 \) OR = 1.780		Subjects were South Indian primarily of Dravidian origin and North Indian of Indo-European origin with T2DM for more than 10 years	Wild-type alleles may confer greater survival ability to comorbid complications and may be nephroprotective
UCPI	−112 T>G		\(P = 0.012 \) OR = 2.076			

rs3818292 A>G: This SNP results in a TATAGATAGTA haplotype with a P value of 0.042 and an OR of 1.12, indicating a small but statistically significant association with chronic kidney disease.

rs2758329 C>T (SOD2): This SNP catalyzes the dismutation of superoxide into oxygen and hydrogen peroxide, maintaining proper mitochondrial biogenesis and function. It has a P value of 0.005, an OR of 2.08, and a 95% CI of 1.26-3.53, suggesting a stronger association with chronic kidney disease.

rs8031 A>T (SOD2): Similar to the previous SNP, this SNP also catalyzes the dismutation of superoxide, with a P value of 0.009, an OR of 1.99, and a 95% CI of 1.20-3.36.

rs4880 C>T (SOD2): This SNP has a P value of 0.005, an OR of 2.16, and a 95% CI of 1.28-3.72, further supporting its association with chronic kidney disease.

Ala9Val: This variant has a P value of 0.001 and an OR of 1.780, suggesting it may play a role in chronic kidney disease.

UCPI −112 T>G: This variant has a P value of 0.012 and an OR of 2.076, indicating a potential association with chronic kidney disease.
Gene	SNP	P-value	OR	Description	Population under investigation	Association
Ala64Thr	Ala64Thr	P = 0.015	OR = 2.099			
NOS3	Glu298Asp	P = 0.002	OR = 2.103			
GSTP1	Ile105Val, A>G	P = 0.003	OR = 1.888			
Membranous Nephropathy	PLA2R1	rs35771982	P = 1.90 x 10^{-29}	Induces cell death in a mitochondrial ROS-dependent manner which may play an important role in tumour suppression	The population under investigation consisted of Chinese subjects with and without idiopathic membranous nephropathy	Closely associated with circulating anti-PLA2R antibodies in serum as well as the expression of PLA2R in glomeruli.
		rs3749117	P = 2.23 x 10^{-29}			
		rs4664308	P = 4.17 x 10^{-30}			
HLA-DQA1	rs2187668	P = 1.11 x 10^{-14}	Evidence for localisation in mitochondria	Belongs to the HLA class II alpha chain paralogues and plays a central role in the immune system by presenting peptides derived from extracellular proteins.		
ITPAM	rs7190997	P = 2.26 x 10^{-19}	OR= 1.22	Mitochondria-associated ER Membrane protein	Subjects were of Chinese Han ethnicity with and without IgA nephropathy	Alpha M beta 2 integrin is important in the adherence of neutrophils and monocytes to stimulated endothelium, and also in the phagocytosis of complement coated particles. Downregulated in diabetes.
	rs11574637	P = 8.10 x 10^{-18}	OR= 1.32			
NODAT	ATF6	P = 0.05	Activator of mTOR which acts as a key sensor for	Subjects were of Caucasian	This SNP has been associated with an	
Gene	rs Variants	OR/CI	P	Association	Reference(s)	
----------	-------------	-----------	------	--	--------------	
PPARG	rs1801282	0.21 (0.04–1.0)		Origin tested for diabetes 7, 90 and 365 days after kidney transplant		
				Increased BMI in a renal transplant cohort, pre-diabetes in a Chinese cohort, and has been found in tight linkage disequilibrium (in Caucasians) with rs2070150 which is associated with T2DM in Pima Indians		
				Regulated by mTOR and promote cell growth, proliferation, metabolism and survival.	P286,287	
	rs8192678	0.02 (0.04–0.26)		Previously associated with T2DM		
				Regulated by mTOR and promote cell growth, proliferation, metabolism and survival.	P286,287	
FSGS	APOL1	G1 allele (rs73885319 and rs60910145)	1.07×10^{-23}	Encodes a secreted high-density lipoprotein which binds to apolipoprotein A-I. Apolipoprotein A-I is a relatively abundant plasma protein and is the major apoprotein of HDL. This essential in maintaining normal mitochondrial biogenesis and function.	P234–236	
		G2 allele (rs71785313)	4.38×10^{-7}	Self-identified African Americans with ESRD were recruited from Wake Forest–affiliated and Emory School of Medicine–affiliated outpatient hemodialysis facilities in northwestern North Carolina and Atlanta, Georgia	P234–236	
PDSS2	rs973457	0.001 OR = 2.6		Involved with coenzyme Q Synthesis which is essential for mitochondrial function	P235	
	rs2500574	0.008 OR = 2.2		Subjects were recruited from 21 US-based academic medical centers as part of the National Institutes of Health (NIH) FSGS Genetic	P235	
Genetic Marker	Reference SNP ID	Minor Allele	P Value	Study Details		
---------------	-----------------	--------------	---------	---------------		
ESRD	COQ5 rs1167726	rs614226	$P = 1.00 \times 10^{-6}$	Essential component of ETC. All people included in the analysis were of white European origin and were diagnosed with T1DM before the age of 31 years. Associated with both diabetic kidney disease and end-stage renal disease in the discovery and in silico replication analyses subjects with T1DM.		
	COX6A1 rs12310837	rs12310837	$P = 2.00 \times 10^{-6}$			
	GATC rs2235222	rs7137953	$P = 3.00 \times 10^{-6}$			
	TOP1MT rs724037	rs724037	$P = 2.00 \times 10^{-3}$			
	PACRG rs2147653	rs2147653	$P = 0.003$			
	APOL1 G1 allele (rs73885319 and rs60910145)	G1 allele (rs73885319 and rs60910145)	$P = 1.1 \times 10^{-29}$	Encodes a secreted high density lipoprotein which binds to apolipoprotein A-I. Apolipoprotein A-I is a relatively abundant plasma protein and is the major apoprotein of HDL. This essential in maintaining normal mitochondrial biogenesis and function. Self-identified African Americans with ESRD were recruited from Wake Forest–affiliated and Emory School of Medicine–affiliated outpatient hemodialysis facilities in northwestern North Carolina and Atlanta, Georgia. 2 vs 1 risk alleles OR = 5.8 2 vs 0 risk alleles OR = 7.3 1 vs 0 risk alleles OR = 1.26		
		G2 allele (rs71785313)	$P = 8.8 \times 10^{-18}$			
SLC22A2	rs316009	rs316009	$P = 0.042$ OR 1.23 (95% CI: 1.02–1.48)	Evidence for mitochondrial localisation. This study was conducted in the REGaTTA cohort and all cases of renal transplantatio n carried out in the University Medical Center Groningen in 1993–2008 were Polyspecific organic cation transporters in the liver, kidney, intestine, and other organs are critical for elimination of many endogenous small organic cations as well as a wide array of drugs and environmental toxins. Found primarily in the kidney, where it may mediate the first step in cation		

ESRD = End Stage Renal Disease; **COQ5** = Coenzyme Q5; **COX6A1** = Cytochrome c Oxidase Subunit 6A1; **GATC** = GDP-Mannose N-Acetylglucosaminyltransferase; **TOP1MT** = Topoisomerase I Tomilko-Ormond; **PACRG** = Polycistronic Secreted Protein (PACRG); **APOL1** = Apolipoprotein L1; **SLC22A2** = Solute Carrier Family 22 (Organic Cation Transporters), Member A2.
SNP	rs12437854	P value	SNP localises to mitochondria and may play a role as a tumor suppressor in some cancers	3 discovery cohorts from GENIE consortium: UK-ROI, FinnDiane and GoKinD US	Associated with time from T1DM diagnosis to development of macroalbuminuria.
RGMA - MCTP2	**rs12437854**	$P = 2.0 \times 10^{-9}$			
OR 1.80
(95% CI: 1.48–2.17) | **RGMA** localises to mitochondria and may play a role as a tumor suppressor in some cancers | 3 discovery cohorts from GENIE consortium: UK-ROI, FinnDiane and GoKinD US | Associated with time from T1DM diagnosis to development of macroalbuminuria. |

SNP - Single Nucleotide Polymorphism; eGFR - Estimated Glomerular filtration rate; RS - Reference SNP ID; P - P-value; OR - Odds Ratio; CI - Confidence Interval; GWAS - Genome Wide Association Study; GENIE - Genetics of Nephropathy an International Effort; UK-ROI - United Kingdom and Republic of Ireland cohort; FinnDiane - Finnish Diabetic Nephropathy Study; GoKinD - Genetics of Kidneys in Diabetes; DNA - Deoxyribonucleic Acid; DM - Diabetes Mellitus; CKD - Chronic Kidney Disease; T2DM - Type 2 Diabetes Mellitus; DKD - Diabetic Kidney Disease; ESRD - End Stage Renal Disease; T1DM - Type 1 Diabetes Mellitus; SURGENE - Survival Genetic Nephropathy; ROS - Reactive Oxygen Species; HLA - Human Leukocyte Antigen; ER - Endoplasmic Reticulum; IgA - Immunoglobulin A; Mtor - mechanistic target of rapamycin; HDL - high-density lipoproteins; FSGS - Focal segmental glomerulosclerosis; ETC - Electron Transport Chain; REGaTTA - Renal GeneTics TrAnspantation
Figure 1. Internal structure of a mitochondrion including mitochondrial DNA and encoded proteins of the ETC.

Each mitochondrion (A) contains multiple copies of mitochondrial DNA (mtDNA) which encode. The mitochondrial genome (B) is a circular genome composed of 16,569 base pairs and encodes 37 genes. 14 of these genes code for proteins of the electron transport chain (c) as well as 2 ribosomal RNAs and 21 transfer RNAs required for translation of messenger RNA. The colour of the genes in (B) are matched to the colours of the ETC proteins in (C), from this it can be seen that complex 2 is encoded entirely by nuclear genes, highlighting the importance of nuclear genes to proper mitochondrial function. From the illustration in (A) it can be seen that mtDNA is often located close to stalked particles which contain the proteins of the ETC which may contribute to a higher mutation rate compared with nuclear DNA, due to ROS generated as a respiratory by-product.
Mitochondria and chronic kidney disease: a molecular update

Supplementary Table 1: Nuclear encoded genes influencing mitochondrial function and reported to be involved with chronic kidney disease

Supplementary Table 2: Examples of DNA damage and protective mechanisms
Table 1: Nuclear encoded genes influencing mitochondrial function and reported to be involved with chronic kidney disease

Biological Process	Gene	Physiological Role	Expression in Chronic Kidney Disease (CKD)	Pathological Effect
Mitochondrial Biogenesis and Function	PPARβ/δ, COX6c, COX7c	Regulates expression of: TFAM, COX6c, COX7c, UQCRH, MCAD, NFE2L2, SIRT3, NRF1	Downregulated in PBMC of CKD patients undergoing PD compared to healthy subjects (p < 0.0011)	Transcriptional coactivator. Interacts with several transcription factors to regulate mitochondrial biogenesis.\(^3\) Downregulation may be induced by ROS as a protective adaptation to reduce further ROS generation.\(^4\) Downregulation of PGCG1α will also effect expression of downstream genes
	NRF2	Transcription factor which acts with PPARβ/δ to stimulate expression of a range of nuclear genes involved with mitochondrial biogenesis and function.\(^1,2\) Main regulator of TFAM.	Downregulated in PBMC of CKD patients undergoing PD compared to healthy subjects (p < 0.0012)	Decreased expression of NRF-1 along with PGC-1α will reduce expression of downstream targets of these genes and reduced mitochondrial biogenesis and OXPHOS activity in mitochondria which may be an attempt to reduce ROS production and oxidative stress.\(^3,4\)
	TFAM	Expression regulated by NRF2; regulates mitochondrial transcription and replication	Downregulated in PBMC of CKD undergoing peritoneal dialysis (PD) compared to healthy subjects (p < 0.0012)	Reduced TFAM expression will alter mitochondrial transcription and replication machinery and reduce the mtDNA copy number.\(^1\)
	NFE2L2	Transcription factor which regulates the expression of numerous antioxidant/detoxifying enzymes including SOD2.	Upregulated in PD compared to controls.\(^5\) Reduced activity increases oxidative stress and inflammation whereas increased expression may protect against this damage in CKD.\(^6\)	Increased NFE2L2 expression may protect against oxidative damage and confer anti-inflammatory properties. Mice models have also demonstrated that deletion of this gene may lead to lupus-like autoimmune nephritis.\(^6,8\) Increased expression in CKD may be an attempt to neutralise ROS production.\(^6\)
	SOD2	Superoxide dismutase (SOD) catalyses the dismutation of superoxide anions to oxygen and hydrogen peroxide – an important antioxidant defence mechanism	Upregulated in PD compared to controls.\(^5\) Evidence to suggest gene expression is unaffected in CKD but protein content decreased from Stage 1 – 4 CKD and then increased again in Stage 5 CKD.\(^7\)	SOD inactivation may compromise mitochondrial function and reduce mitochondrial biogenesis and reduce antioxidant ability of mitochondria and increase ROS. Increased expression in CKD may be an attempt to neutralise ROS production.\(^4\)
	NDUFB1, NDUFA1, NDUFA6, NDUFS5			
	NQO1, NQO2, NQO3, NQO4, NQO5, NQO6, NQO7, NQO8, NQO9	MADH1 Ubiquinone Oxireductase Subunit S5; Subunit A6; Subunit A1; Subunit B1 – subunits of Complex I	Upregulated in PD patients in conservative treatment and HD compared to healthy subjects (p < 0.001, FDR = 1%).\(^9\)	Increased expression of components of Complex I may be a compensatory response to dysregulated OXPHOS in an attempt to restore the electrochemical gradient in the outer side of the inner mitochondrial membrane.\(^10\)
	UQCRNH	Ubiquinol-Cytochrome C Reductase Hinge Protein – Complex III Subunit VIII	Downregulated in PBMC of CKD compared to healthy subjects (p < 0.0011)\(^7\) Up-regulated in PBMC of CKD (stage 4–5) patients in conservative treatment and HD compared to CKD stage 2 – 3 and healthy subjects (p < 0.001, FDR = 1%).\(^7\)	Downregulation may be a protective response against increased ROS generation and chronic cellular perturbation associated with oxidative injury.\(^7\) Upregulation in PBMC may be an attempt to compensate for reduced OXPHOS activity or altered expression due to Haemodialysis treatment.\(^7\) Statistically significant difference in mtRNA levels of UQCRNH between CKD 2–3 and healthy subjects.\(^8\)
	UQCRB	Ubiquinol-Cytochrome C Reductase Binding Protein – Complex III Subunit VI	Up-regulated in PBMC of CKD (stage 4–5) patients in conservative treatment and HD compared to CKD stage 2 – 3 and healthy subjects (p < 0.001, FDR = 1%).\(^7\)	Upregulation in PBMC may be an attempt to compensate for reduced OXPHOS activity or altered expression due to haemodialysis treatment.\(^7\)
	COX6c, COX7c	Cytochrome c oxidase subunit 6c, subunit 7c – Subunits of complex IV	Downregulated in PBMC of CKD patients undergoing PD compared to healthy subjects (p < 0.0011)\(^7\) Up-regulated in PBMC of CKD (stage 4 – 5) patients in conservative treatment and haemodialysis (HD) compared to CKD stage 2 – 3 and healthy subjects (p < 0.001, FDR = 1%).\(^7\)	Complex IV activity was significantly reduced in conservative treatment/HD patients and in PD patients compared to healthy subjects which may indicate reduced OXPHOS activity in CKD.\(^10\) Higher levels of reactive oxygen species and 8-hydroxydeoxyguanosine in CKD stage 4 – 5 and HD patients compared to healthy controls which suggests increased oxidative stress in CKD.\(^7\)
	ATP7, ATP5	ATP Synthase, H+ Transporting, Mitochondrial Fo Complex Subunit E (ATP7S); Subunit F6 (ATP7S); O Subunit (ATP7S) – subunits of Complex V	Up-regulated in CKD patients in conservative treatment and HD compared to healthy subjects (p < 0.003, FDR = 1%).\(^7\)	Increased expression of Complex V components may be a compensatory response to defective OXPHOS. This increased expression may also lead to increased ROS generation and oxidative stress further damaging mitochondria through a vicious cycle
	MCAD	Medium Chain Acyl CoA Dehydrogenase	Downregulated in PBMC of CKD undergoing peritoneal dialysis PD compared to healthy subjects (p < 0.001)\(^7\)	MCAD catalyses the first step of mitochondrial fatty acid beta-oxidation and is an oxidoreductase enzyme regulated by PGC-1α. Downregulation of this will decrease the breakdown of fatty acid molecules in mitochondria
	ACPM1	Cofactor for Apoptosis inducing factor (AIF) which is a mitochondrial flavoprotein with dual roles in redox signalling and programmed cell death.\(^11,12\)	Downregulated in CKD.\(^7\)	Partial knockdown disrupts mitochondrial bioenergetics, induces mitochondrial fusion and increases mitochondrial ATP content and leads to excess production of ROS. Complete inactivation disrupts complex 1 formation resulting in OXPHOS defects. However, expression of PGC-1α Downregulation of TFAM was not changed, suggesting that mitochondrial biogenesis is not altered by AIF knockdown.\(^7\)
	APOC2	Reduces SOD2 and Catalase expression.\(^14\)	Increased expression of renal risk variants G1 and G2 in various renal complications including CKD.\(^7\)	Decreased SOD2 may exacerbate mitochondrial damage by ROS\(^11,14\) G1 and G2 risk variants associated with renal disease amongst the African Diaspora likely due to the protection against African sleeping sickness provided by these
Gene	Function and Contribution	Up-regulation in CKD associated with AIFM1 deletion13,20	Uncontrolled ROS generation may damage mitochondria therefore leading to further ROS production through a vicious cycle20,21	
------	---------------------------	---	--	
NOX4	Main isoform of NADPH oxidase expressed in kidneys	Genetic variants implicated in multisystem failure due to mitochondrial dysfunction – including renal complications PD compared to controls13,20,26	Mutations in this gene are associated with combined oxidative phosphorylation deficiency and mitochondrial dysfunction of varying severity – Of the reported cases, seven had renal involvement additional to mitochondrial dysfunction at or earlier than 18 months of age. 3 patients with renal dysfunction where found to be homozygous for a c.1349G>C, p.450Serext*32 stop-extension mutation in RMN01$^{22-28}$	
RMN01	Protein encoded by this gene is localized in the mitochondria and involved in mitochondrial translation			

PBMC – peripheral blood mononuclear cell; CKD – chronic kidney disease; PD – peritoneal dialysis; HD - haemodialysis; ROS – reactive oxygen species; OXPHOS – oxidative phosphorylation; mtDNA – mitochondrial DNA; ECM – extracellular matrix
Supplementary Table 2: Examples of DNA damage and protective mechanisms

Type of Genome alteration	Source of damage	Effect on DNA	Repair Mechanism
Oxidative/ nitrosative stress by free radical damage	ROS/RNS resulting in oxidative/nitrosative stress	Production of 8-oxoguanine resulting in G>T substitutions	Base excision repair, antioxidant defences and repair by HSPs
Hydrolytic Damage	Depurination/Depyrimidation	BP substitutions	Base excision repair
Deamination	Hydrolytic damage resulting in spontaneous removal of the entire amine group from a base.	Cytosine > Uracil Adenine > Hypoxanthine Guanine > Thymine 5-methylcytosine > thymine (concentrated in CpG islands and involved with DNA methylation.)	Base excision repair
Pyrimidine dimers	UV induced damage resulting in dimerization of	Introduce local conformational changes in DNA structure and interfere with base pairing during DNA replication.	Photolyase reactivation or nucleotide excision repair
Alkylation or Bulky Adducts	Resulting from exposure to polycyclic aromatic hydrocarbons from atmospheric pollutants such as those present in cigarette smoke	Bind covalently to proteins, lipids, and guanine residues of DNA to form DNA adducts	Nucleotide excision repair
Single-strand breaks, small base damage	Genotoxic agents such as ionizing radiation, oxidizing agents, and alkylating agents	May lead to substitutions and DSB in	Base excision repair
Interstrand crosslinks	Covalent linkage of two strands by bi-functional alkylating agents	Interfere with cellular metabolism, such as DNA replication and transcription, triggering cell death.	Homologous recombination
Double-strand breaks	Large DNA deletions due to damage by radiation such as UV or other genotoxic agents. May also occur when replication forks encounter SSBs.	Chromosome Rearrangements	Homologous recombination (in mid-S phase or mid G2 phase of mitosis) / Non-homologous end joining (In G0, G1 and G2 phases)
Mismatches	Base substitution mismatches and insertion-deletion mismatches which occur during DNA replication	Introduce major changes in the canonical recognition rules, and may alter structure and stability of the DNA helix	Mismatch Repair
Telomere attrition	Part of the aging process but may be expediated by smoking, obesity, stress and environmental pollutants	Replicative senescence, accelerated aging and reduction in tumour suppressor mechanisms.	Telomerase reverse transcriptase / RecQ

DNA; Deoxyribonucleic acid; ROS – Reactive Oxygen Species; RNS – Reactive Nitrogen Species; HSPs – Heat Shock Proteins; UV – Ultraviolet; DSB – Double strand break; SSB – Single strand break.
Mitochondria and Chronic Kidney Disease

Supplementary References

1. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. *Am J Clin Nutr.* 2011;93(4):884S-890S.

2. Zaza G, Granata S, Masola V, et al. Downregulation of nuclear-encoded genes of oxidative metabolism in dialyzed chronic kidney disease patients. *PLoS One.* 2013;8(10):e77847.

3. Kim K, Kim S-J, Cho N-C, et al. Reactive oxygen species-dependent transcriptional regulation of peroxisome proliferator-activated receptor γ coactivator 1α in a human hepatocarcinoma cell line. *Genes Genomics.* 2012;34(6):709-713.

4. Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: A new therapeutic target in chronic kidney disease. *Nutr Metab (Lond).* 2015;12(1):49.

5. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. *Genes Dev.* 2004;18(4):357-368.

6. Nguyen T, Nioi P, Pickett CB. The Nrf2-Antioxidant response element signaling pathway and its activation by oxidative stress. *J Biol Chem.* 2009;284(20):13291-13295.

7. Choi B, Kang K-S, Kwak M-K. Effect of redox modulating NRF2 activators on chronic kidney disease. *Molecules.* 2014;19(8):12727-12759.

8. Yoh K, Itoh K, Enomoto A, et al. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. *Kidney Int.* 2001;60(4):1343-1353.

9. Krueger K, Shen J, Maier A, Tepel M, Scholze A. Lower Superoxide Dismutase 2 (SOD2) protein content in mononuclear cells is associated with better survival in patients with hemodialysis therapy. *Oxid Med Cell Longev.* 2016;2016:7423249.

10. Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. *BMC Genomics.* 2009;10:388.

11. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. *Nature.* 1999;397(6718):441-446.

12. Miramar MD, Costantini P, Ravagnan L, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. *J Biol Chem.* 2001;276(19):16391-16398.

13. Coughlan MT, Higgins GC, Nguyen T-V, et al. Deficiency in apoptosis-inducing factor recapitulates chronic kidney disease via aberrant mitochondrial homeostasis. *Diabetes.* 2016;65(4):1085 LP-1098.

14. Ma L, Chou JW, Snipes JA, et al. APOL1 renal-risk variants induce mitochondrial dysfunction. *J Am Soc Nephrol.* 2016;28:1-13.

15. Van Remmen H, Williams MD, Guo Z, et al. Knockout mice heterozygous for SOD2 show alterations in cardiac mitochondrial function and apoptosis. *Am J Physiol Heart Circ Physiol.* 2001;281(3):H1422-32.

16. Kokoszka JE, Coskun P, Esposito LA, Wallace DC. Increased mitochondrial oxidative stress in the SOD2 (+/-) mouse results in the age-related decline of mitochondrial function culminating in...
Mitochondria and Chronic Kidney Disease

increased apoptosis. *Proc Natl Acad Sci U S A.* 2001;98(5):2278-2283.

17. Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic APOL1 variants with kidney disease in African Americans. *Science.* 2010;329(5993):841-845.

18. Tzur S, Rosset S, Shemer R, et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. *Hum Genet.* 2010;128(3):345-350.

19. Freedman BI, Kopp JB, Langefeld CD, et al. The apolipoprotein L1 (APOL1) gene and non-diabetic nephropathy in African Americans. *J Am Soc Nephrol.* 2010;21(9):1422-1426.

20. Sedeek M, Nasrallah R, Touyz RM, Hebert RL. NADPH oxidases, reactive oxygen species, and the kidney: Friend and foe. *J Am Soc Nephrol.* 2013;24(10):1512-1518.

21. Nlandu Khodo S, Dizin E, Sossauer G, et al. NADPH-oxidase 4 protects against kidney fibrosis during chronic renal injury. *J Am Soc Nephrol.* 2012;23(12):1967-1976.

22. Gupta A, Colmenero I, Ragge NK, et al. Compound heterozygous RMND1 gene variants associated with chronic kidney disease, dilated cardiomyopathy and neurological involvement: A case report. *BMC Res Notes.* 2016;9:325.

23. Taylor RW, Pyle A, Griffin H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. *JAMA.* 2014;312(1):68-77.

24. Janer A, van Karnebeek CD, Sasarman F, et al. RMND1 deficiency associated with neonatal lactic acidosis, infantile onset renal failure, deafness, and multiorgan involvement. *Eur J Hum Genet.* 2015;23(10):1301-1307.

25. Ravn K, Neland M, Wibrand F, Duno M, Ostergaard E. Hearing impairment and renal failure associated with RMND1 mutations. *Am J Med Genet A.* 2016;170A(1):142-147.

26. Garcia-Diaz B, Barros MH, Sanna-Cherchi S, et al. Infantile encephaloneuromyopathy and defective mitochondrial translation are due to a homozygous RMND1 mutation. *Am J Hum Genet.* 2012;91(4):729-736.

27. Janer A, Antonicka H, Lalonde E, et al. An RMND1 Mutation causes encephalopathy associated with multiple oxidative phosphorylation complex deficiencies and a mitochondrial translation defect. *Am J Hum Genet.* 2012;91(4):737-743.

28. Casey JP, Crushell E, Thompson K, et al. Periventricular calcification, abnormal pterins and dry thickened skin: Expanding the clinical spectrum of RMND1? *JIMD Rep.* 2016;26:13-19.

29. Korsmeyer SJ. Regulators of cell death. *Trends Genet.* 1995;11(3):101-105.

30. Edlich F, Banerjee S, Suzuki M, et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. *Cell.* 2011;145(1):104-116.

31. Chen H-C, Kanai M, Inoue-Yamauchi A, et al. An interconnected hierarchical model of cell death regulation by the BCL-2 family. *Nat Cell Biol.* 2015;17(10):1270-1281.

32. Cybulsky A V, Quigg RJ, Salant DJ. Experimental membranous nephropathy redux. *Am J Physiol Renal Physiol.* 2005;289(4):F660-F671.
33. Jefferson JA, Pippin JW, Shankland SJ. Experimental models of membranous nephropathy. *Drug Discov Today Dis Models*. 2010;7(1-2):27-33.

34. Burlaka I, Nilsson LM, Scott L, et al. Prevention of apoptosis averts glomerular tubular disconnection and podocyte loss in proteinuric kidney disease. *Kidney Int*. 2017;90(1):135-148.

35. Dewson G, Kluck RM. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. *J Cell Sci*. 2009;122(16):2801-2808.

36. Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. *Biochim Biophys Acta - Mol Cell Res*. 2011;1813(4):521-531.

37. Antignani A, Youle RJ. How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? *Curr Opin Cell Biol*. 2006;18(6):685-689.

38. Mei S, Li L, Wei Q, et al. Double knockout of Bax and Bak from kidney proximal tubules reduces unilateral urethral obstruction associated apoptosis and renal interstitial fibrosis. *Sci Rep*. 2017;7:44892.

39. Wei Q, Dong G, Chen J-K, Ramesh G, Dong Z. Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models. *Kidney Int*. 2013;84(1):138-148.

40. Maxwell P. HIF-1: An oxygen response system with special relevance to the kidney. *J Am Soc Nephrol*. 2003;14(11):2712-2722.

41. Hartleben B, Wanner N, Huber TB. Autophagy in glomerular health and disease. *Semin Nephrol*. 2014;34(1):42-52.

42. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. *J Clin Pathol*. 2004;57(10):1009-1014.

43. Deshmukh AB, Patel JK, Prajapati AR, Shah S. Perspective in chronic kidney disease: Targeting Hypoxia-Inducible Factor (HIF) as potential therapeutic approach. *Ren Fail*. 2012;34(4):521-532.

44. Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts. *Kidney Int*. 2000;58(6):2351-2366.

45. Deng A, Arndt MAK, Satriano J, et al. Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. *Am J Physiol - Ren Physiol*. 2010;299(6):F1365-F1373.

46. Bernhardt WM, Gottmann U, Doyon F, et al. Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogenic kidney transplant model. *Proc Natl Acad Sci U S A*. 2009;106(50):21276-21281.

47. Tanaka T, Kojima I, Ohse T, et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. *Lab Invest*. 2005;85(10):1292-1307.

48. Song YR, You SJ, Lee Y-M, et al. Activation of hypoxia-inducible factor attenuates renal injury in rat remnant kidney. *Nephrol Dial Transplant*. 2010;25(1):77-85.

49. Pyo J-O, Jang M-H, Kwon Y-K, et al. Essential roles of Atg5 and FADD in autophagic cell death: Dissection of autophagic cell death into vacuole formation and cell death. *J Biol Chem*. 2005;280(21):20722-20729.
50. Chen W-T, Hung K-C, Wen M-S, et al. Impaired leukocytes autophagy in chronic kidney disease patients. *Cardiorenal Med*. 2013;3(4):254-264.

51. Kimura T, Takabatake Y, Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. *J Am Soc Nephrol*. 2011;22(5):902-913.

52. Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. *J Biol Chem*. 2008;283(16):10892-10903.

53. Gamboa JL, Billings FT, Bojanowski MT, et al. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. *Physiol Rep*. 2016;4(9):e12780.

54. Yamamoto-Nonaka K, Koike M, Asanuma K, et al. Cathepsin D in podocytes is important in the pathogenesis of proteinuria and CKD. *J Am Soc Nephrol*. 2016:1-16.

55. Liang XH, Kleeman LK, Jiang HH, et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. *J Virol*. 1998;72(11):8586-8596.

56. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. *Biochem J*. 2012;441(2):523-540.

57. Granata S, Masola V, Zoratti E, Scupoli MT, Baruzzi A, Messa M. NLRP3 inflammasome activation in dialyzed chronic kidney disease patients. *PloS One*. 2015;10.

58. Ding W, Guo H, Xu C, Wang B, Zhang M, Ding F. Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. *Oncotarget*. 2016;7(14):17479-17491.

59. Gong W, Mao S, Yu J, et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. *Am J Physiol Renal Physiol*. 2016;310(10):F1081-8.

60. Guo H, Bi X, Zhou P, Zhu S, Ding W. NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. *Mediators Inflamm*. 2017;2017.

61. Fogo AB. PPARγ and chronic kidney disease. *Pediatr Nephrol*. 2011;26(3):347-351.

62. Paueksakon P, Reveło MP, Ma LJ, Marcantoni C, Fogo AB. Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. *Kidney Int*. 2002;61(6):2142-2148.

63. Reveło MP, Federspiel C, Helderman H, Fogo AB. Chronic allograft nephropathy: Expression and localization of PAI-1 and PPAR-γ. *Nephrol Dial Transplant*. 2005;20(12):2812-2819.

64. Massague J. TGFβ signalling in context. *Nat Rev Mol Cell Biol*. 2012;13(10):616-630.

65. El-Meanawy A, Schelling JR, Iyengar SK, et al. Identification of nephropathy candidate genes by comparing sclerosis-prone and sclerosis-resistant mouse strain kidney transcriptomes. *BMC Nephrol*. 2012;13:61.

66. Gentle ME, Shi S, Daehn I, et al. Epithelial cell TGFβ signaling induces acute tubular injury and interstitial inflammation. *J Am Soc Nephrol*. 2013;24(5):787-799.

67. Tavira B, Coto E, Gomez J, et al. Association between a MYH9 polymorphism (rs3752462) and
renal function in the Spanish RENASTUR cohort. *Gene*. 2013;520(1):73-76.

68. Behar DM, Rosset S, Tzur S, et al. African ancestry allelic variation at the MYH9 gene contributes to increased susceptibility to non-diabetic end-stage kidney disease in Hispanic Americans. *Hum Mol Genet*. 2010;19(9):1816-1827.

69. Cooke JN, Bostrom MA, Hicks PJ, et al. Polymorphisms in MYH9 are associated with diabetic nephropathy in European Americans. *Nephrol Dial Transplant*. 2012;27(4):1505-1511.

70. Freedman BI, Hicks PJ, Bostrom MA, et al. Polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9) are strongly associated with end-stage renal disease historically attributed to hypertension in African Americans. *Kidney Int*. 2009;75(7):736-745.

71. Freedman BI, Hicks PJ, Bostrom MA, et al. Non-muscle myosin heavy chain 9 gene MYH9 associations in African Americans with clinically diagnosed type 2 diabetes mellitus-associated ESRD. *Nephrol Dial Transplant*. 2009;24(11):3366-3371.

72. Kopp JB, Smith MW, Nelson GW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. *Nat Genet*. 2008;40(10):1175-1184.

73. Kao WHL, Klag MJ, Meoni LA, et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. *Nat Genet*. 2008;40(10):1185-1192.

74. Lin CP, Adrianto I, Lessard CJ, et al. Role of MYH9 and APOL1 in African and non-African populations with Lupus Nephritis. *Genes Immun*. 2012;13(3):232-238.

75. O’Seaghdha CM, Parekh RS, Hwang SJ, et al. The MYH9/APOL1 region and chronic kidney disease in European-Americans. *Hum Mol Genet*. 2011;20(12):2450-2456.

76. Pattaro C, Aulchenko YS, Isaacs A, et al. Genome-wide linkage analysis of serum creatinine in three isolated European populations. *Kidney Int*. 2009;76(3):297-306.

77. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G. Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. *J Biol Chem*. 2000;275(24):18040-18045.

78. Bai Y, Yang C, Hu K, Elly C, Liu Y-C. Itch E3 ligase-mediated regulation of TGFβ signaling by modulating SMAD2 phosphorylation. *Mol Cell*. 2004;15(5):825-831.

79. Yang C, Zhou W, Jeon M-S, et al. Negative regulation of the E3 ubiquitin ligase itch via Fyn-mediated tyrosine phosphorylation. *Mol Cell*. 2006;21(1):135-141.

80. Lallemand F, Seo SR, Ferrand N, et al. AIP4 restricts transforming growth factor-beta signaling through a ubiquitination-independent mechanism. *J Biol Chem*. 2005;280(30):27645-27653.

81. Azakir BA, Angers A. Reciprocal regulation of the ubiquitin ligase Itch and the epidermal growth factor receptor signaling. *Cell Signal*. 2009;21(8):1326-1336.

82. Magnifico A, Ettenberg S, Yang C, et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. *J Biol Chem*. 2003;278(44):43169-43177.

83. McConnell BB, Yang VW. Mammalian Krüppel-Like Factors in Health and Diseases. *Physiol Rev*. 2010;90(4):1337-1381.
84. Mallipattu SK, Liu R, Zheng F, et al. Krüppel-like Factor 15 (KLF15) Is a Key Regulator of Podocyte Differentiation. *J Biol Chem.* 2012;287(23):19122-19135.

85. Mallipattu SK, He JC. KLF 6: A mitochondrial regulator in the kidney. *Oncotarget.* 2015;6(18):15720-15721.