Bridging the Gap Between Theory and Practice on Insertion-Intensive Database

Sepanta Zeighami
USC
zeighami@usc.edu

Raymond Chi-Wing Wong
HKUST
raywong@cse.ust.hk

ABSTRACT
With the prevalence of online platforms, today, data is being generated and accessed by users at a very high rate. Besides, applications such as stock trading or high frequency trading require guaranteed low delays for performing an operation on a database. It is consequential to design databases that guarantee data insertion and query at a consistently high rate without introducing any long delay during insertion. In this paper, we propose Nested B-trees (NB-trees), an index that can achieve a consistently high insertion rate on large volumes of data, while providing asymptotically optimal query performance that is very efficient in practice. Nested B-trees support insertions at rates higher than LSM-trees, the state-of-the-art index for insertion-intensive workloads, while avoiding their long insertion delays and improving on their query performance. They approach the query performance of B-trees when complemented with Bloom filters. In our experiments, NB-trees had worst-case delays up to 1000 smaller than LevelDB, RocksDB and bLSM, commonly used LSM-tree data-stores, could perform queries more than 4 times faster than LevelDB and 1.5 times faster than bLSM and RocksDB, while also outperforming them in terms of average insertion rate.

PVLDB Reference Format:
Sepanta Zeighami, Raymond Chi-Wing Wong. Bridging the Gap Between Theory and Practice on Insertion-Intensive Database. PVLDB, XX(xxx): xxxx-yyyy, 2020. DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Due to the rapid growth of the data in a variety of applications such as banking/trading systems [31], social media [24] and user logs [45], massive data comes in at a rapid rate and it is very important for a database system to handle both fast insertion and fast query. Consider Facebook with more than 41,000 posts [20] and YouTube with more than 60,000 videos watched per second on average [19]. The data is generated in a rapid rate and is accessed by other users at the same time. Consider Nasdaq Exchange where an average of about 70,000 shares are traded per second [31]. This stock exchange platform requires a database system to guarantee insertion performance at rates higher than 70,000 insertions per second. Meanwhile, an insertion delay in an order of milliseconds is unacceptable in many trading scenarios such as in high-frequency trading, a large component of the market [26] where stocks are traded by milliseconds [18]. Besides, the current stock price has to be accessed in a short time for the next sell/buy of this stock.

1.1 Requirement
In this paper, we study to design an index which achieves the following 5 requirements.

1. Short Average Insertion Time Requirement: The index could handle a lot of insertions within a short period of time.
2. Short Maximum Insertion Time Requirement: The index could handle each individual insertion within a short time.
3. Short Average Query Time Requirement: The index could return the answers of a lot of queries within a short period of time.
4. Short Maximum Query Time Requirement: The index could return the answer of each individual query within a very short time.
5. Theoretical Performance Guarantee Requirement: The index could have theoretical performance guarantee on both the insertion performance and the query performance.

(1) Short Average Insertion Time Requirement is needed due to the rapid data growth nowadays. (2) Short Maximum Insertion Time Requirement is a stricter requirement. It requires that each individual insertion has to be completed within a short period of time but the former requirement requires that the index could handle a collective set of insertions within a period of time, allowing some individual insertions to be completed with a longer delay. (3) Short Average Query Time Requirement is needed due to the rapid data access in some applications. (4) Short Maximum Query Time Requirement is needed since it requires that each individual query could be answered in a short time. (5) Theoretical Performance Guarantee Requirement is needed so that we know how good/bad an index is. Based on the first 4 requirements, we are interested in the time complexities of the following

Proceedings of the VLDB Endowment, Vol. XX, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxx
(a) Amortized insertion time (Requirement 1)
(b) Worst-case insertion time (Requirement 2)
(c) Average query time (Requirement 3)
(d) Worst-case query time (Requirement 4)

(a) The amortized insertion time of an insertion is the total time the index needs to handle a batch of insertions divided by the total number of insertions handled by the index. (b) The worst-case insertion time of an insertion is the greatest insertion time of an insertion. (c) The average query time is the query time of a query on expectation. (d) The worst-case query time is the greatest query time of a query.

Similar to many recent studies [18, 17, 15, 11, 8, 46], we focus on when the data is stored in external memory (e.g., HDD or SSD). Data storage in main memory is more expensive than HDDs or SSDs. As pointed out in [16] and discussed in [34], main memory costs 2 orders of magnitude more than disk in terms of price per bit. Moreover, main memory consumes about 4 times more power per bit than disk [29]. Thus, designing high performance external memory indices that provide guarantees for real world applications can significantly reduce the cost of operations for many systems. On Amazon Web Services, any machine with more than 100GB of main memory costs at least US$1 per hour but a machine with 15.25GB of main memory and 475GB SSD costs US$80.156 [8] (Linux machines, US East (Ohio) region). An SSD with 480GB capacity costs US$55 [5] while a 128GB DDR3L RAM module costs about US$393 [4].

1.2 Insufficiency of Existing Indices

Existing indices do not satisfy the above requirements simultaneously. There are two major branches of indices related to our goal: (1) LSM-tree-like indices [37, 42, 32] and (2) B-tree-like indices [7, 10, 24].

Consider the first branch. In recent years, LSM-trees [37, 42, 52, 15, 33, 17, 18] have attracted a lot of attention and are used as the standard index for insertion-intensive workloads in systems such as LevelDB [23], BigTable [72], HBase [11], RocksDB [21] (by Google and Facebook [12, 21]), Cassandra [30] and Walnut [14]. LSM-trees buffer insertions in memory and merge them with on-disk components in bulk, creating sorted-runs on disk. Although LSM-trees satisfy the Short Average Insertion Time requirement, they do not satisfy Short Maximum Insertion Time requirement, Short Average/Maximum Query Time Requirement and Theoretical Performance Guarantee Requirement. This is because LSM-tree’s worst-case insertion time is linear in data size [46, 32] and their worst-case query time is suboptimal [32]. In fact, in our experiments, although RocksDB [21], the industry standard and common research baseline [18, 17, 16], took an order of microseconds per insertion on average, it had worst-case insertion time of 453 seconds. Such a worst-case insertion time is utterly unacceptable for any application that requires reliability.

There are two major techniques to improve the performance of LSM-trees in the literature. The first technique is Bloom filters. They can improve average query time of LSM-trees [42], but their worst-case query time remains suboptimal. Thus, the LSM-trees with Bloom filters still do not satisfy Short Maximum Query Time Requirement. One representative is bLSM [22], a variant of LSM-tree that uses Bloom filters at each level. It also limits the number of LSM-tree levels. Setting the number of LSM-tree levels to a maximum allows for asymptotically optimal query time, but violates Short Average Insertion Time Requirement since the amortized insertion time becomes asymptotically larger than LSM-trees with an unrestricted number of levels. This is because the ratio of the size between LSM-tree components becomes unbounded, causing merge operations to read and rewrite a larger portion of the data. Furthermore, [42] provides methods to improve the worst-case query time of LSM-tree by a constant factor, but the worst-case insertion time remains linear to data size. Thus, they still do not satisfy Short Maximum Insertion Time Requirement. The second technique is fractional cascading. It improves the worst-case query time of LSM-trees [32], but their average query time remains high. Thus, LSM-trees with fractional cascading still do not satisfy Short Average Query Time Requirement. One representative is [32] that adds an extra pointer to each component of the LSM-tree, pointing to its next component. This pointer allows for reading one disk page per LSM-tree level. This was not compared in the experimental studies of LSM-trees [32, 13, 17, 18] due to its high average query time. Fractional Cascading and Bloom filters are incompatible [22] and cannot be used together.

Consider the second branch. Traditional B-trees [7] and B⁺-trees [44] are among the most commonly used indices for good query performance. They provide optimal query performance and thus satisfy the Short Average/Maximum Query Time Requirement. They do not satisfy Short Average and Maximum Insertion Time Requirements, because they perform no buffering and perform at least one disk access for every insertion, which is very time-consuming.

Later, a write optimized variant of B-trees called B⁺-trees (also known as B-trees with Buffer) [10] were proposed, that reserves a portion of each node for a buffer. New data is inserted into the buffer of the root and moved down the levels of the tree whenever the buffer becomes full. However, this method, although faster than B-trees, does not satisfy Short Average/Maximum Insertion Time Requirement. This is because B⁺-tree nodes get scattered across the storage devices and moving this small buffer frequently down from a node requires accessing its children which is time consuming.

1.3 Our Index: NB-Tree

Motivated by the above, in this paper, we propose an index called the Nested B-tree (NB-tree) which satisfies the 5 requirements simultaneously. That is, NB-trees give short average/maximum insertion time which is multiple factors smaller than B-trees and is similar to LSM-trees. They provide worst-case insertion time logarithmic to data size (unlike LSM-tree’s linear worst-case insertion time) and multiple factors smaller than B-trees which satisfies the Short Maximum Insertion Time Requirement. They use Bloom filters to provide low average query time, while their structure allows for asymptotically optimal worst-case query time, satisfying Short Maximum Query Time Requirement. This, together with their logarithmic, yet better-than-B-trees, worst-case insertion time shows that NB-trees satisfy the Theoretical Performance Guarantee Requirement.

Fig. 1 shows the structure of an NB-tree compared with an LSM-tree. Intuitively, a Nested B-tree is a B-tree in which each node contains a B⁺-tree. NB-trees can be seen as imposing a B-tree structure across the levels of an LSM-tree and breaking down each level into constant-sized B⁺-
1.4 Contributions and Roadmap

- We propose Nested B-Tree (NB-Tree), a novel data structure that satisfies all the 5 requirements mentioned for indices on large volumes of data. This is the first indexing structure satisfying all these 5 requirements in the literature.
- NB-Tree is the first fast-insertion index with asymptotically-optimal query time. To the best of our knowledge, there is no existing index which could achieve this result.
- In our experiments, NB-Tree’s worst-case insertion time was more than 1000 times smaller than LevelDB, RocksDB and bLSM, the three popular LSM-tree databases. They achieved average query time almost the same as B∗-trees, while performing insertions at least 10 times faster than them on average.

Summary of Results. The performance improvement of NB-trees compared with LSM-tree variants and B-tree is summarized in Table 1. NB-trees outmatch LSM-trees on worst-case insertion and query time as well as average query time, and perform insertions faster than B-trees while providing similar average query performance. A more in-depth analysis of the related work is provided in Sec. 7.

Organization. The rest of this paper is organized as follows. Section 2 discusses the terminology used and the problem addressed in this paper. Section 3 provides the design of the Nested B-tree data structure and Section 4 discusses more details on the implementation and analysis of the data structure. Section 5 discusses a more advanced version of NB-tree that achieves a logarithmic worst-case insertion time and uses Bloom filters. Section 6 provides our experimental results. Section 7 discusses the relevant literature and Section 8 provides the conclusion of the paper.

2. TERMINOLOGY AND SETTING

Problem Setting. Key-value pairs are to be stored in an index that supports insertions, queries, deletions and updates. The index is to be stored on an HDD or SSD and the term disk is used to broadly refer to the secondary storage device. The data is written or read from disk in pages of size B bytes. The index can use up to M pages of main memory. Transferring a page from disk to main memory (or vice versa) incurs two costs, a seek time, T_{seek}, and a sequential read, T_{seq,R} or write, T_{seq,W}, time. Seek time is the difference between the starting time of the read/write request and the starting time of the data transfer. Sequential read/write time is the time taken to transfer the data from the disk to the main memory.

Sequential access time is determined by a device’s bandwidth while seek time depends on its internal mechanisms: on HDDs the movement of the disk arm and platter, on SSDs the limitation of its electrical circuits. Sequential time is proportional to size of the data transferred but seek time depends on how the data is stored, i.e., whether it is stored on contiguous blocks. It is important to account for seek time in our analysis as, per page, it can take much longer than sequential access time. For instance, an HDD (7200rpm and 300MB/s bandwidth) based on the measurements in [41] has a seek time of 8.5 milliseconds and transfer rate of 125 MB/s. Reading a 4KB disk page incurs seek time of 8.5 × 10^{-3} seconds, but reading it sequentially takes 4KB/125MB/s ≈ 3 × 10^{-5} seconds (283 times smaller than the seek time).

For the ease of discussion and as is the industry standard for common key-values stores such as RocksDB [22] and LevelDB [23], we consider the keys to be unique. Duplicate keys can be handled similar to B-trees [14] by using an extra bucket or a uniquifier attribute as discussed in [14].

Performance Metrics. When analyzing an index we assume its performance is dominated by disk I/O operations. For an operation on an index (e.g., an insertion or query on the index) we use the term cost only when referring to the number of pages accessed during the operation. We use the term time when referring to the actual time taken, measured in seconds, during the operation. The time is dominated by disk I/O operations, and is composed of the sequential and seek time for all disk accesses performed during the operation. Because a time measure takes into account seek operations, it is a more realistic measure of the real-life performance of an index compared with the cost measures.

We use the following metrics for evaluation of indices. Worst-case insertion time is the time, measured in seconds, it takes to insert an item into the index in the worst case. Moreover, given a set X of n keys to be inserted to an in-

Figure 1: Nested B-trees break down each level into constant sized B∗trees and establish a connection between the keys in different components and provide an asymptotically optimal query cost, which nears the query performance of B-trees when complemented with Bloom filters. This design is based on the observation that different levels need to be connected to avoid suboptimal worst-case query time, which is lacking in the structure of LSM-trees. Although this is also the intuition behind the design of LSM-tree with fractional cascading [32]. [32] fails to design an index compatible with Bloom filters or with logarithmic worst-case insertion time.

Furthermore, the B-tree structure ensures that keys in each node only overlap with the keys in its children. This limits the impact of merge operations across levels, causing the merge operations to have the same cost on all the levels, and is used to provide a logarithmic worst-case insertion cost. In essence, the connection created between different levels allows us to bound the cost during the merge operation and provide a per-insertion account of the total insertion cost. Such a worst-case analysis is missing in most of the LSM-tree literature [37], [18], [17], [16] where the focus has been on amortized analysis and the few papers that have focused on worst-case performance provide an algorithm with worst-case that is linear to data size [46], [32].

LSM-tree literature and Section 8 provides the conclusion of the paper.
Table 1: Comparing NB-trees, LSM-trees and B-tree variants (BF: with Bloom filters, FC: with fractional cascading)

Data Structure	Amortized Insertion Time	Worst-Case Insertion Time	Average Query Time	Worst-Case Query Time	Asymptotically Optimal Query Time
B-Tree [7] and B+Tree	Bad	Medium	Good	Good	Yes
B-Tree with Buffer [10]	Medium	Medium	Medium	Medium	Medium
LSM-Tree (no BF, no FC) [37]	Good	Bad	Medium	Bad	No
LSM-Tree (BF, no FC) LevelDB [22, RocksDB [22, Monkey [16]	Good	Bad	Medium	bad	No
LSM-Tree (no BF, FC) [32]	Good	Bad	Bad	Medium	Yes
NB-Tree (BF) [this paper]	Good	Good	Good	Medium	Yes

An s-tree differs from a B-tree in the following ways. (1) An s-tree does not store any key-value pairs. It only contains keys and pointers. Keys in an s-tree are not associated with a value. For this reason we call it a structural tree (it only specifies structure). (2) Each s-node, N, contains an extra pointer to the root d-node of a d-tree (which is a B+tree). We call this d-tree, N’s d-tree (each d-tree is pointed to by exactly one s-node). The pointer in an s-node pointing to the root of its d-tree will be referred to as its d-tree pointer. In Fig. 2(e), pointers P₁, P₂, P₃ and P₄ are d-tree pointers for s-nodes N₁, N₂, N₃ and N₄. (3) Leaf s-nodes only contain a d-tree pointer, and no keys or values. This is because an s-tree does not contain any data in its s-nodes. Since leaf s-nodes don’t have any children, they do not contain any pointers or keys. In Fig. 2(e), leaf s-nodes N₂, N₃ and N₄ do not contain any keys and only contain a d-tree pointer.

Specifically, non-leaf s-nodes in an s-tree are of the format \(P_{d-tree}, P₁, K₁, P₂, K₂, ..., P_{r+1}, P_{r+1}\) for an s-node with \(r + 1\) children. \(P_i\) for all \(i\) are pointers to the s-nodes in the next level of the s-tree, \(K_i\) are the corresponding s-keys and \(P_{d-tree}\) is a pointer to the d-tree of the s-node. s-keys are sorted in an s-node. For an s-key, K, in the s-node pointed to by \(P_i\), \(1 < i < r + 1\), it is true that \(K_{i−1} \leq K < K_i\), for \(i = 1, K < K_i\) and for \(i = r + 1, K_{i−1} \leq K\). The only differences between a non-leaf s-node and a non-leaf B-tree node is that (1) an s-node has an extra pointer \(P_{d-tree}\) to the d-tree of the s-node and (2) s-keys are not associated with any value in the s-node. Moreover, a leaf s-node is of the format \(P_{d-tree}\), i.e., it only contains a d-tree pointer.

3.1.1 Properties

Structural Properties. The following properties are the structural properties of NB-trees.

3-tree Fanout. Each non-leaf s-node has at most \(f\) children and each non-leaf and non-root s-node has at least \(\lfloor f/4 \rfloor\) children. We call the parameter \(f\) the 3-tree fanout. In Fig. 2, \(f\) is set to 3. Each s-node has at most 3 children, and non-leaf and non-root s-nodes must have at least 2 children.

D-tree Fanout. Each non-leaf d-node has at most \(B\) children and each non-leaf and non-root d-node has at least \(\lceil 3/4 \rfloor\) children. We call the parameter \(B\) the d-tree fanout. In Fig. 2, \(B\) is set to be 4. Each d-node has at most 4 children, and non-leaf and non-root s-nodes must have at least 2 children.

D-tree Size. For a parameter \(σ\), each d-tree is at most of size \(σ\). D-trees of leaf but not root s-nodes are at least of size \(\lceil 3/4 \rfloor\). \(σ\) can be specified by the number of bytes used

D-tree Size. For a parameter \(σ\), each d-tree is at most of size \(σ\). D-trees of leaf but not root s-nodes are at least of size \(\lceil 3/4 \rfloor\). \(σ\) can be specified by the number of bytes used
by the d-tree or the number of key-value pairs in the d-tree. The analysis in the paper uses the latter for ease of notation, while the former is used in experiments as its easier to specify in practice. Unless stated otherwise, σ refers to the number of key-value pairs in a d-tree (i.e., number of d-keys in the leaf level). In Fig. 2, σ is set to 6. Each d-tree contains up to 6 keys in their leaves, and d-tree of leaf but not root s-nodes contain at least 3 d-keys in their leaves.

Cross-s-node Linkage Property. This property of NB-trees establishes the relationship between the s-keys in an s-node and the d-keys and s-keys of the s-node’s children. Consider an s-node, N with r s-keys. The s-node is of the form \(P_{d-tree}, P_1, K_1, P_2, K_2, \ldots, P_r, K_r, P_{r+1} \), where the s-keys are in a sorted order (i.e., for each \(i \in [1, r] \), \(K_i < K_{i+1} \)). For each \(i, 1 < i < r + 1 \), consider the child s-node, \(C_i \) pointed to by \(P_i \). For an s-key in \(C_i \) or a d-key in \(C_i \)’s d-tree, \(K_{C_i} \), it holds that \(K_{i-1} \leq K_{C_i} < K_i \). For \(i = 1 \), it holds that \(K_{C_1} < K_1 \) and for \(i = r + 1 \), \(K_{C_r} \geq K_{i-1} \). In Fig. 2 (e), the d-keys in \(D_2 \) are less than 15, the d-keys in \(D_3 \) are at least 15 but less than 20 and the d-keys in \(D_4 \) are at least 20. In Fig. 2 d-trees are labelled with a possible range that is derived based on this property. The possible range of d-keys for s-nodes in the same level is non-overlapping and covers the entire key space.

![Figure 2: Insertions in an NB-Tree with parameters \(\sigma = 6 \) key-value pairs, \(f = 3 \), \(B = 4 \).](image)

3.2 Operations

3.2.1 Insertions

The insertion of a key-value pair \((K, V)\) in an NB-tree starts by inserting the pair in the d-tree of the root s-node and recursively moving the pair down the tree to ensure that the properties mentioned in Section 3.1 are satisfied. We refer to a d-tree as full if it has more than \(\sigma \) key-value pairs. In this section, we provide a conceptual discussion on how insertions are performed, and how they are implemented in practice is discussed in Section 4.1.

Intuitively, the d-tree of each s-node can be seen as a storage space for the s-node. The key-value pairs are stored in the d-tree of each s-node. When d-tree of an s-node \(N \) becomes full, the pairs are distributed down to the d-tree of the children of \(N \) based on the \(N \)'s s-keys such that the Cross-s-node Linkage Property is satisfied. This continues until the d-tree, \(D \) of a leaf s-node, \(N \) becomes full, in which case \(D \) and \(N \) are split into two and the median of d-keys in \(D \) (i.e., the d-key, \(K \) in \(D \) such that half of the d-keys in \(D \) are less than \(K \)) is inserted into the parent, \(P \), of \(N \). If \(P \) now has more than \(f \) children, \(P \) and its d-tree are similarly split into two. The splitting may continue until the root of the s-tree, which may result in an increase in the height of the tree. More specifically, insertion works as follows.
Insertion Operation. A new key-value pair \((K, V)\) is always inserted into the d-tree, \(D\), of the root s-node, \(N\). We insert \((K, V)\) in \(D\) using a B*-tree insertion mechanism. If \(D\) has up to \(\sigma\) d-keys, the insertion is finished. Otherwise, we need to ensure d-tree size requirement is satisfied. For this, we call \(\text{HandleFullSNode}(N)\) (described later).

Example. In Fig. 2(a), insertion of key-value pairs is done in the d-tree of the root s-node. Fig. 2(a) shows the result of inserting keys 1, 2, 8, 15, 21 and 32. They are all inserted into the d-tree of the root s-node. Now, inserting a new key (e.g., 33) in the d-tree of the root s-node causes the d-tree to become full and \(\text{HandleFullSNode}\) is called on the root s-node to restore compliance to the d-tree size requirement. Fig. 2(b) shows the result after calling \(\text{HandleFullSNode}\) and all the properties discussed in Section 3.1 are satisfied.

HandleFullSNode Operation. \(\text{HandleFullSNode}(N)\) is called to restore compliance to d-tree size requirement when the size of a d-tree, \(D\), of an s-node \(N\) surpasses \(\sigma\). It acts differently when \(N\) is a leaf s-node and when it is not.

\(N\) is a leaf s-node. \(\text{HandleFullSNode}(N)\), if \(N\) is a leaf s-node, calls \(\text{SNodeSplit}(N)\). \(\text{SNodeSplit}(N)\) (detailed later) splits \(N\) into two s-nodes \(N_{\text{small}}\) and \(N_{\text{large}}\) and returns the median d-key, \(M\), of the d-keys in \(D\) together with pointers \(P_{\text{small}}\) and \(P_{\text{large}}\) to \(N_{\text{small}}\) and \(N_{\text{large}}\). Then \(\text{HandleFullSNode}(N)\) inserts \(M\), \(P_{\text{small}}\) and \(P_{\text{large}}\) into the parent s-node of \(N\) and returns (similar to the insertion of the median into a parent node of a B-tree after the node splits). If \(N\) is a root s-node, i.e., has no parent, \(\text{HandleFullSNode}(N)\) creates a new root s-node and then inserts \(M\), \(P_{\text{small}}\) and \(P_{\text{large}}\) into this new root (s-tree’s height increases by one).

Example. Consider Fig. 2(a). \(\text{HandleFullSNode}\) splits the d-tree and the s-node into two, one d-tree containing the smaller half and another the larger half of d-keys (seen at the leaf level of Fig. 2(b)). \(\text{HandleFullSNode}\) also creates a new root s-node and inserts the median of d-keys into it.

\(N\) is not a leaf s-node. If \(N\) is not a leaf s-node, \(\text{HandleFullSNode}(N)\) first calls \(\text{flush}(N)\) operation. \(\text{flush}(N)\) (detailed later) removes the keys-value pairs from \(D\) and inserts them into the d-trees of \(N\)’s children. After that, for any child s-node \(C\) of \(N\), if \(C\)’s d-tree is now full, \(\text{HandleFullSNode}(N)\) calls \(\text{HandleFullSNode}(C)\) recursively. If d-tree of none of the children is full, \(\text{HandleFullSNode}(N)\) returns.

If \(N\) has \(k\) children, there can be up to \(k\) recursive calls. A recursive call \(\text{HandleFullSNode}(C)\) may result in \(C\) being split into two s-nodes, which increases the total number of children of \(N\). Therefore, if the number of children of \(N\) becomes larger than \(f\), \(\text{HandleFullSNode}(N)\) calls \(\text{SNodeSplit}(N)\) which splits \(N\) into s-nodes \(N_{\text{small}}\) and \(N_{\text{large}}\) and returns the median s-key \(M\) of \(N\) together with pointers \(P_{\text{small}}\) and \(P_{\text{large}}\) to \(N_{\text{small}}\) and \(N_{\text{large}}\). Then \(\text{HandleFullSNode}(N)\) inserts \(M\), \(P_{\text{small}}\) and \(P_{\text{large}}\) into the parent s-node of \(N\) and returns (similar to the insertion of the median into a parent node of a B-tree after the node splits). If \(N\) is a root s-node, i.e., has no parent, \(\text{HandleFullSNode}(N)\) creates a new root s-node and then inserts \(M\), \(P_{\text{small}}\) and \(P_{\text{large}}\) into the new root (s-tree’s height increases by one).

Example. Consider Fig. 2(e). \(\text{HandleFullSNode}(N_1)\) first calls \(\text{flush}(N_1)\) which moves d-keys from d-tree of the root s-node \(N_1\) to its children. Fig. 2(f.1) shows the result. Consequently \(N_1\)’s d-tree becomes full (has more than 6 keys). Thus, \(\text{HandleFullSNode}(N_1)\) calls itself recursively, i.e., \(\text{HandleFullSNode}(N_2)\). In the recursive call, since \(N_2\) is a leaf s-node, \(\text{HandleFullSNode}(N_2)\) calls \(\text{SNodeSplit}(N_2)\) which splits \(N_2\) into two. It inserts the median d-key into \(N_1\). Now \(N_1\) has more than two s-keys (Fig. 2(f.2)).

Then \(\text{HandleFullSNode}(N_1)\), calls \(\text{SNodeSplit}(N_1)\) which splits \(N_1\) into two. It creates a parent for \(N_1\) and inserts \(N_1\)’s median, 15, into \(N_1\)’s parent. Fig. 2(f.3) shows the result.

SNodeSplit. \(\text{SNodeSplit}(N)\) splits an s-node \(N\) and its corresponding d-tree \(D\) into two. If \(N\) is a leaf s-node, let \(K_M\) be the median d-key of \(D\). If \(N\) is not a leaf s-node, let \(K_M\) be the median s-key of \(N\). \(\text{SNodeSplit}(N)\) creates two s-nodes \(N_{\text{small}}\) and \(N_{\text{large}}\) with corresponding d-trees \(D_{\text{small}}\) and \(D_{\text{large}}\). It inserts all the d-keys in \(D\) less than \(K_M\) in \(D_{\text{small}}\) and the d-keys at least \(K_M\) in \(D_{\text{large}}\). It also inserts all s-keys in \(N\) less than \(K_M\) in \(N_{\text{small}}\) and the s-keys at least \(K_M\) in \(N_{\text{large}}\). Let \(P_{\text{small}}\) be a pointer to \(N_{\text{small}}\) and \(P_{\text{large}}\) a pointer to \(N_{\text{large}}\). The operation returns \((K_M, P_{\text{small}}, P_{\text{large}})\).

Example. See Fig. 2(f.1) to (f.2) and Fig. 2(f.2) to (f.3).

Flush. \(\text{flush}(N)\) is called on a non-leaf s-node, \(N\). Intuitively, \(\text{flush}(N)\) distributes the d-keys in the d-tree of \(N\) to the d-tree of its children based on the s-keys of \(N\). Let \(N\) contain \(r\) s-keys and be of the format \((P_{d\text{--tree}}, P_1, K_1, P - 2, K_2, ..., P_r, K_r, P_{r+1})\). Let \(D\) denote the d-tree of \(N\), pointed to by \(P_{d\text{--tree}}\). Furthermore, let \(C\) be the s-node pointed to by \(P_{r}\) and let \(D_{r}\) be the d-tree of \(C\). For every key \(K\) in \(D\), we remove it from \(D\) and insert it into \(D_{r}\) if \(K_{r-1} < K < K_{r}\). We insert \(K\) into \(D_{r}\) if \(K < K_{r}\) and in \(D_{r+1}\) if \(K \geq K_{r}\).

Example. See Fig. 2(e) to Fig. 2(f.1).

3.2.2 Updates and Deletions

Similar to LSM-trees \(37\), we perform deletion and updates by inserting delta records that indicate the modification into the index. Thus, deletions and updates are treated the same way as insertions and the same analysis applies to them. Note that delta records will be resolved before they reach the leaf level or they can be discarded (if they reach the leaf level, the key they are meant to modify does not exist in the tree). Therefore, delta records do not affect the height of the s-tree and do not affect our analysis of query and insertion performance. The cases when s-nodes become underfull as a result of a deletion, can also be handled using a mechanism similar to deletions in B-trees \(44\). We will not provide the details for such scenarios since our focus is on write-intensive workloads, and we assume that deletions are infrequent and such cases can be ignored.

3.2.3 Queries

NB-trees perform queries similar to B-trees. However, in a B-tree, a query traverses the B-tree based on the keys in the nodes. In an NB-tree, a query traverses the s-tree based on the s-keys in the s-nodes. Furthermore, in a B-tree, a query only searches the keys in the nodes visited. However, an NB-tree searches the s-keys in the s-nodes visited and also searches the corresponding d-tree of each s-node visited. Searching a d-tree is exactly a B*-tree search. Fig. 3 shows the query of key 11 on an NB-tree.

4. IMPLEMENTATION AND ANALYSIS
To allow for fast performance, similar to LSM-trees, the d-tree corresponding to the root s-node is kept in memory. The rest of the d-trees are stored on disk.

4.1 Insertion Implementation

Manipulations of the s-tree is straightforward. Here we focus on operations impacting on-disk d-trees. Insert and HandleFullSNode do not make any modifications to the on-disk d-tree themselves. Modifications are done through flush and SNodeSplit operations, so we focus on them.

To minimize the insertion time, we aim at minimizing the number of seek operations by performing our disk accesses sequentially. To this end, we maintain the following invariants. Firstly, all the d-nodes in a d-tree are written sequentially and can be retrieved by a sequential scan from the first node written. Secondly, the leaf d-nodes are written on disk in a sorted order. Thus, a sequential scan of a d-tree from the first leaf d-node until the last d-node reads all the key-value pair written in the d-tree in an ascending order.

Flush(N). Assume that N contains r + 1 children, Ci with respective d-trees Di, 1 ≤ i ≤ r + 1 and r keys (K1, K2, ..., Kr). flush starts by sequentially scanning D and D1, merge-sorting them together (sequential scan of D and D1 retrieves their keys in a sorted order) and writing the output, D′ 1 in a new disk location. Note that the two invariants mentioned above now hold for D′ 1. From D′ 1, we only merge-sort the d-keys that are less than K1 with D1. We follow the same procedure and in general merge-sort the d-keys, K such that K_{i-1} ≤ K < K1 from D with D1, for 1 < i < r. For i = r + 1, we merge-sort the d-keys, K such that K1 ≤ K, from D with D_{r+1} and for i = 1 d-keys, K, such that K_i > K. Finally, we move down only the first σ d-keys from D if it has more. This is to avoid the size of the full d-trees in deeper levels of the tree getting progressively larger as a result of recursive flush calls. Because some of the d-keys may remain in a d-tree, we re-write D starting from the (σ + 1)-th d-key and thus removing the d-keys that were flushed down from D.

The cost of flush is O(σf). Assuming the main memory has enough space to buffer Ω(σ) key-value pairs (to buffer a constant fraction of the parent’s d-tree and the d-tree of one child at a time) which is typically in the order of 100MB, the flush operation performs a constant number of seek operations for merge-sorting N with each child and thus O(f) seek operations in total. The number of seek operations increases proportionately if there is less space available in memory.

SNodeSplit(N) The SNodeSplit(N) operation only performs disk accesses when dividing a d-tree into two. For this, we sequentially scan a d-tree and sequentially write it as two d-trees. It costs O(σf) page accesses and O(1) number of seek operations under the same conditions as above. This operation preserves the two invariants mentioned above.

4.2 Analysis

Correctness. Induction on the number of insertion operations shows that the cross-s-node linkage and structural properties are preserved using the insertion algorithm. The correctness of the query operation follows from the cross-s-node linkage property, and the correctness of updates and deletions follow from the correctness of insertions.

Insertion Time Complexity. There are at most O(σf) HandleFullSNode function calls on any level because in the worst case all the keys are moved down to the leaf level and each flush moves σ keys. HandleFullSNode, excluding the recursive call, requires O(σf) page accesses for flush and SNodeSplit. Each operation can be handled with O(f) seek operations. Since the height of the s-tree is O(log f σ), the amortized insertion time is O(log f σ)×(T seq,W + T seek)). Note that we only modify an s-node if its corresponding d-tree is modified. Thus, assuming each s-node fits in a disk page (f is typically much smaller than B) s-tree manipulations add at most one page write after writing each d-tree, which does not impact the complexity of the operations.

For this version of NB-tree, the worst-case insertion time is linear in n because all the s-nodes may be full at the same time. In Section 4 we introduce some modifications that reduces the worst-case insertion time to logarithmic in n.

Query Time Complexity. In the worst case, the query will search one s-node in each level of the s-tree. The height of each d-tree is O(log_B σ) and height of the s-tree is O(log f σ), thus, the query takes time O(log_B σ log f σ)×(T seq, W + T seq, B). Observe that the maximum cost of NB-trees is asymptotically optimal. That is, it is within the constant factor log_B σ of minimum number of pages accesses required to answer a query. Note that in-memory caching, to cache a number of levels of each d-tree can be used to reduce query time by a constant factor, similar to B-trees.

4.3 Parameter Setting

NB-trees have three parameters, f, σ and B. B is set similar to B-trees so we focus on the other two. f provides a trade-off between insertion cost and query cost while σ provides a trade-off between the number of seek operations per insertion and query cost. σ depends on how expensive seek operations are, but typically, for fast insertions, it is set to the order of tens or hundreds of megabytes. Typically, f is set to a number in the order of 10 for write intensive workloads, and its increase affects insertions much more than queries, as the insertion time linearly depends on.
5. ADVANCED NB-TREE

We discuss modifications to the NB-tree design to reduce the worst-case insertion time from linear in n to logarithmic in n and how to add Bloom filters to NB-trees to enhance their query performance. The version provided here is to be considered as the final NB-tree index.

5.1 Modification

We make the following changes to the structural properties of NB-tree. For non-leaf s-nodes, we remove the requirement on the maximum size of its d-tree being σ, and instead put a requirement on the total number of key-value pairs in the d-trees of all sibling s-nodes to be $f(\sigma + 1)$ (each s-node can still have at most $f - 1$ keys). We also restrict f to be at most a constant fraction of σ which is typically true in practice.

Single Recursive Call. All the operations work the same as before, but with one difference. In $HandleFullSNode(N)$, after calling $flush(N)$, if any s-node is oversized, $HandleFullSNode$ will be called recursively on exactly one s-node that has the largest size (i.e. $\arg\max |C|$), instead of performing a recursive call for every full s-node. The rest of the operations work as before, but now there is at most one recursive call during $HandleFullSNode$ operation.

The above insertion procedure remains correct and satisfies the new requirement on the maximum number of key-value pairs in d-trees of non-leaf sibling s-nodes. This is because each level receives σ keys and flushes down σ keys (see Section 4.1) if any of the d-trees of sibling s-nodes have more than σ keys, and the requirement is already satisfied if none of the siblings has more than σ keys. For leaf s-nodes we still perform splits if their size surpasses σ keys. Thus, we can observe that the total size of siblings is at most $f \times \sigma$.

Lazy Removal. Recall that during the flush operation, we need to remove the d-keys that were moved from the parent s-node to its children. In Section 4.1 we discussed a method that required rewriting of the parent s-node. Here, we discuss a lazy removal approach that removes this overhead. Consider the scenario when $flush(N)$ is called, assume that N's parent is P and N's d-tree is D. Some of the d-keys of D are flushed to the d-tree of children of N. At this stage, we create a pointer to the location of the smallest d-key K in D that is not flushed to N's children, that is, all the d-keys in D smaller than K are now present in the d-tree of N's children and need to be removed from D. Now instead of removing these d-keys from D at this point, we postpone this removal to when $flush(P)$ is called (i.e., when N is a child s-node during the flush operation). When $flush(P)$ is called, we need to flush the d-keys from P's d-tree to N's d-tree. In doing so, we only merge d-keys in D that are at least equal to K (using the pointer to K we remembered). Because of the sequentiality property, these keys can be retrieved by a sequential scan, and the existence of the keys smaller than K in N does not incur any extra cost for flush(P). After flush(P) is called, an entirely new d-tree is created for N and we discard the previous d-tree now, removing the keys smaller than K. This lazy removal does not incur any extra cost for insertions as the d-keys whose removal where postponed will not be read by the insertion algorithm. Moreover, the total size of siblings will be $f(\sigma + 1)$ because one s-node can now have at most σ more s-keys than was discussed in the above paragraph.

Deamortization. Although the worst-case insertion time of NB-tree with the changes discussed above is already logarithmic in data size (shown below), we deamortize the insertion procedure by performing $\frac{1}{\sigma}$ fraction of the operations for every new key inserted into the NB-tree, similar to Section 5.2 to reduce the worst-case insertion time by the factor σ.

Insertion Time Complexity. An insertion operation performs at most one $HandleFullSNode$ function call at each level of the s-tree, resulting in at most $O(\log f \frac{1}{\sigma})$ number of $HandleFullSNode$ calls. Each $flush$ and $SNodeSplit$ step take $O(\frac{n}{\sigma})$ I/O operations. Thus, the total time take for one insertion call is $O(\log f \frac{1}{\sigma} (\frac{1}{\sigma} T_{seq,W} + fT_{seq}))$. Deamortization reduces the cost by a factor of σ and we can achieve the worst-case insertion time $O(\log f \frac{1}{\sigma} (\frac{1}{\sigma} T_{seq,W} + fT_{seq}))$. The amortized insertion time in this case is the same as the worst-case insertion time. This shows that NB-trees achieve a good amortized and worst-case insertion time compared with LSM-trees and B-trees, as shown in Table 1.

Query Time Complexity. Maximum size of an s-node is $f(\sigma + 1)$ since that is the maximum total size of sibling s-nodes together. Thus, the query cost is now at most $O(\log_B (f(\sigma)) \times (\log_B (\frac{1}{\sigma})))$ based on an analysis similar to Section 5.2 by but by changing the maximum size of an s-node. f is at most a fraction of σ and thus $\log_B (f(\sigma))$ is $O(\log_B (\sigma^2))$ which is $O(\log_B (\sigma))$. Hence, the query cost is $O(\log_B (\sigma) \times (\log_B (\frac{1}{\sigma})))$, which is asymptotically optimal as discussed in Table 1.

5.2 Bloom Filter

We use Bloom filters to enhance the average query cost. A Bloom filter uses k bits per key and h hash functions to decide whether a key exists in a data structure. When searching for a key, if the Bloom filter returns negative, the key definitely does not exist in the data structure. When it returns positive, the key may not exist in the data structure with a probability dependant on k and h (e.g., $k = 8$ and $h = 3$ results in a false positive probability of less than 5%).

We use a Bloom filter for d-tree of each s-node. We need to create/modify the Bloom filters during $flush$ or $SNodeSplit$ operations. For children s-nodes in $flush$ and all the s-nodes in $SNodeSplit$, as we create a new d-tree for the s-nodes, we create a new Bloom filter for this d-tree and delete the old Bloom filter if it exists. For the parent s-node in $flush$, as mentioned above we use lazy removal, that is, the d-tree is kept until the s-node is a child in a $flush$ operation, when a new d-tree is created and the old d-tree discarded. We similarly keep the Bloom filter and create a new one only when the s-node is a child in the $flush$ operation.

To search for a key q, we start our search from the root s-node. We check if the Bloom filter for the root indicates that the d-tree of the root can contain q or not. If yes, then we search the root. If it does not contain q, then we move down one level according to the pointers and perform the search recursively on the subtree rooted at the node. Overall, in the worst case, we go through all the levels of the s-tree and search the corresponding d-tree, which gives the worst-case query time as before. However, with high probability, we only search one s-node in total and the
cost will be $O(\log_2 \sigma)$ with high probability, which is a constant. Thus, NB-trees have a good average query time, as mentioned in Table 4.

6. EMPIRICAL STUDIES

6.1 Experimental Setup

We ran our experiment on a machine with Intel Core i5 3.20GHz CPUs and 8 GB RAM running CentOS 7. This machine has (1) a 250GB and 7200 rpm hard disk and (2) an SSD with the model “Crucial MX500” and the storage size of 1TB. Each disk page is 4KB. All algorithms were implemented in C/C++.

Dataset. Following [18, 17, 16], we conducted experiments on synthetic datasets. Specifically, we generated synthetic datasets with n key-value pairs where each key is 8 bytes and each value is 128 bytes. Following [18, 17, 16], we generated keys uniformly to focus on worst-case performance. The largest dataset generated is of size about 250 GB (2×10^9 keys).

Workload. We designed an insert workload and a query workload to study the query and insertion performance of different indices. Each insert workload is a workload which starts from an empty dataset and involves n_I insertion operations. Each query workload is a workload which involves n_Q query operations performed on an index built based on the dataset containing n keys. n_Q is set to 10^9 throughout the experiments. In the query workload, we select keys uniformly from existing keys as the query input.

Measurements. Based on the four performance metrics discussed in Section 1, we designed measurements on the indices for each of the two workloads. Consider an insert workload involving n_I insertion operations. We have 2 measurements, namely (1) average insertion time and (2) maximum insertion time. (1) Average insertion time is defined to be the average time taken per key to finish the entire insert workload, i.e., $\frac{I}{n_I}$, where I is the total time taken to complete n_I insertion operations. Average insertion time helps us verify our theoretical results on amortized insertion time. (2) Maximum insertion time is a measure on the entire workload. It is the maximum insertion time of a key over the entire workload. Maximum insertion time helps us verify our theoretical results on worst-case insertion time.

Consider a query workload involving n_Q query operations. We have 2 measurements, (1) the average query time and (2) the maximum query time. (1) The average query time is a measure on the entire workload. It is defined as the average time taken per key to finish the entire query workload, i.e., $\frac{Q}{n_Q}$, where Q is the total time taken to complete n_Q query operations in this workload. The average query time helps us verify our theoretical results on average query time. (2) The maximum query time is a measure on the entire workload. It is defined to be the maximum query time of a query in the entire workload. The maximum query time helps us verify our theoretical results on worst-case query time.

Algorithms. We compared our index, NB-trees, with 6 other indices: (1) LevelDB [23], (2) Rocksdb [21, 22], (3) bLSM [22], (4) B+ tree [10] and (5) B-tree [4] and (6) B+-tree [44]. The first three indices (i.e., LevelDB, Rocksdb and bLSM) are three different implementations of LSM-trees. Note that there exist many other variants of the LSM-trees which optimize the insertion/query performance which will be discussed in detail in Section 7. However, as to be discussed in Section 7, these performance optimization techniques originally designed for LSM-trees could also be applied to NB-trees. Thus, these techniques are orthogonal to our work. For fairness, we do not include the other variants of the LSM-trees for comparison.

Moreover, we ran a preliminary experiment in which we inserted about 6GB of raw data and measured average insertion time of all the algorithms. If average insertion time was larger than 100µs, we excluded the algorithm from the rest of the experiments. This is because based on this result, we can conclude that the algorithm is not suitable for insertion-intensive load and it will be infeasible to run such an algorithm on the large datasets in our experiment.

(1) LevelDB: LevelDB [23] is a widely used key-value store implementing an LSM-tree and has been used in the experiments of many existing studies [16, 42, 33, 52, 43]. In order to have a fair comparison, we adopt two different parameter settings for LevelDB, namely leveldb-default and leveldb-tuned. leveldb-default is LevelDB with the default setting similar to [16, 42] (i.e., multiplying factor = 10, in-memory write buffer size = 4 MB and no Bloom Filter feature enabled). In our preliminary experimental result, we found that the average insertion time of leveldb-default is larger than 100µs. In the later experiments, we exclude this algorithm from our experimental results since it could not handle insertions with average insertion time smaller than 100µs. leveldb-tuned is LevelDB with the “tuned” setting for the best-insertion performance. Specifically, in leveldb-tuned, following [17, 42], we enabled the Bloom Filter feature using 10 bits per key for short query time. Due to the large available memory, we varied the user parameter called “in-memory write buffer size” from 10 MB and 100 MB to determine the “best” buffer size which could give the smallest average insertion time. When the buffer size is larger, LevelDB has fewer merge operations resulting in a smaller insertion time but at the same time, each merge takes longer resulting in a larger insertion time. In our experiment, we found that 32 MB is the “best” buffer size. Thus, leveldb-tuned is LevelDB with the setting where multiplying factor = 10, in-memory write buffer size = 32 MB and Bloom Filter feature enabled.

(2) Rocksdb: Rocksdb [21] is fork of LevelDB with some new features that are not necessarily relevant to our work (e.g., parallelism, see [22] for details). However, we observed that they performed differently under our workloads, so we include both algorithms. Similar to LevelDB, we performed parameter tuning for Rocksdb and observed that setting the write buffer size to 2GB has the best average insertion time. We refer to this algorithm as rocksdb-tuned. Bloom Filters are enabled and set to 10 bits per key.

(3) bLSM: bLSM [22] is a variant of an LSM-tree proposed for high query performance and low insertion delay. For a fair comparison, we obtained a parameter setting of bLSM with the best performance. We varied the user parameter of the in-memory component size to determine the “best” in-memory component size with the “best” insertion and query performance (increasing memory size improves both insertion and query performance). We found that 6 GB is the “best” size. In our experiment, we adopted this setting.

(4) B+ -trees: We implemented two versions of the B+-trees, namely (a) Public-Version and (b) Own-Version. (a) Public-version is a publicly available version of the B+-trees used in system TokuDB [39]. We adopted the default set-
tings of TokuDB. However, TokuDB’s average insertion time in our preliminary experiments is more than 200µs. It was not feasible to run TokuDB in our experiments which requires the insertion time to be at most 100µs. (b) Own-Version is our own implementation of B-tree. Own-Version could not handle the insertions with average insertion time less than 100µs. Thus, since B+-tree (both Public-Version and Own-Version) is not suitable for high-insertion rate workloads, we exclude it from our experimental results.

(5) B-trees and B+-trees: Similar to B+-trees, we implemented two versions of B+-trees, namely Public-Version and Own-Version. Here, Public-Version denotes the B+-trees used in wiredtiger which is a storage engine in MongoDB [47]. Similarly, we exclude B-trees and B+-trees in our experimental results since they could not handle insertions with insertion time smaller than 100µs per insertion. However, since it is well-known that B+-trees are good for fast queries, we implemented a “bulk-load” version of a B+-tree called B+-tree(bulk) as a baseline to compare the query performance among all indices in the experiments. We implemented B+-tree(bulk) by pre-sorting the data and adopting a bottom-up bulk-loading approach [44]. We do not include any measurement about the insertion statistics for B+-tree(bulk) since it does not show the realistic insertion performance for B+-tree. The query performance of the bulk-load version of a B+-tree (i.e., B+-tree(bulk)) is better than the “normal insertion” version of a B+-tree because B+-tree(bulk) could be constructed such that all nodes in B+-tree(bulk) are full and thus, the data are not scattered across different disk pages, resulting in a lower seek time and a smaller query time. It is not easy to design a “bulk-load” version of B-trees (since some key-value pairs are stored in internal nodes and some are stored in leaf nodes) and thus, we do not include it.

NB-Trees. We implemented the final version of NB-tree discussed in Section 6.2 referred to as NB-Tree. We set f to 3 and σ to 2 GB after conducting experiments to find the “best” parameter for the NB-tree to be shown in Section 6.2.

6.2 Experiment for Parameter Setting

In this section, our experiment measures the average insertion time for 25GB of raw data ($n_1 = 2 \times 10^8$ keys), and the average query time on a database of size 25GB (2×10^8 keys). We ran each experiment on an HDD three times and averaged the results, shown in Figs. 4-5.

Fanout. We studied the effect of fanout f for a small σ value, 64MB, and a large σ value, 2048MB, on NB-trees. Fig. 4 (a) shows that when σ = 64, increasing f causes average query time to decrease. However, the trend is the opposite when σ = 2048. This is because query time depends on the number of page accesses and the seek time for the accesses. When σ is small, increasing f reduces the height by a lot (from 8 levels when f = 3 to 4 levels when f = 15). When the height is smaller, fewer Bloom filters are checked, decreasing the probability that at least one of the Bloom filters returns a false positive. Thus, increasing f reduces the number of page accesses and the query time. However, for large values of σ, increasing f does not change the height by much (from 4 levels when f = 3 to 3 levels when f = 15). In this case, most queries perform only one disk access. Note that, d-trees of sibling s-nodes are written sequentially to the disk. Thus, when f is large, keys that are close to each other in the key space are written close to each other on disk. However, the query distribution is uniform, and it is likely that consecutive query keys are not close to each other in the key space. Hence, when f is large, the seek time during the queries becomes larger. This is less of an issue when f is small. Therefore, increasing f increases the seek time for queries. As a result, for σ = 2048MB, query time worsens when f increases.

Fig. 4 (b) shows that the insertion time increases when f increases. This result generally follows the theoretical model where the factor f in amortized insertion time complexity causes the insertion time to increase when f gets larger.

D-tree size. Fig. 5 shows that, generally, larger σ improves insertion time but worsens the query time, as theory suggests. However, one interesting observation is a local minimum observed at σ = 16MB for average insertion time in Fig. 5 (b). This can be attributed to the HDD cache being 16MB, which improves the sequential I/O performance during HandleFullSNode. As σ gets beyond 4GB, the insertion time increases since NB-Tree does not fit in main memory. The improvement in query performance when σ is larger than 1GB is because the main memory component becomes large compared to data size and some of the queries
are answered by just checking the in-memory component.

Parameter Setting. In the rest of the experiments, we optimize NB-tree for an insertion-intensive workload. We select \(\sigma = 2GB \) which has the best insertion performance based on Fig. 5(b) and set \(f = 3 \) because for \(\sigma = 2GB \), in Fig. 5(b), \(f = 3 \) has the best insertion performance. Based on this parameter setting, we note that NB-Tree’s memory usage is as follows. For data size of 250GB (the maximum data size used in our experiments), about 2.3GB is allocated for caching Bloom filters and 1GB for caching non-leaf node of d-trees. Interestingly, even when optimizing NB-trees for insertions, they perform queries almost as fast as a B'-tree.

6.3 Experiment for Baseline Comparison

Average insertion time. Fig. 8 shows the average insertion time of the indices on HDD and SSD. NB-Tree achieves the lowest time on both HDD and SSD, while bLSM’s performance deteriorates when the data size gets larger because it keeps the number of components constant. rocksdb-tuned performs similar to NB-Tree on HDDs but its performance is worse on SSD. Note that the performance advantage of NB-tree compared with rocksdb-tuned and bLSM is more visible on SSDs. This shows that NB-trees perform better on larger data sizes when the ratio between data size and in-memory component is larger.

Maximum insertion time. Fig. 9 shows the maximum insertion time of the indices. rocksdb-tuned has the worst performance while B'-tree(bulk) is generally better. Note that all queries have to wait for at least one disk I/O operation, but an I/O operation can take long if the operating system is busy or if there are disk failures. Thus, maximum query time has a large variance and the comparison among the algorithms is less conclusive (note that insertions do not need to wait for disk I/O operations due to in-memory buffering).

Summary. The average query time of an NB-tree is 4 times smaller than LevelDB and 1.5 times than bLSM and Rocksdb. It is similar to the average query time of a nearly optimally constructed, bulk-loaded B'-tree, where building a B'-tree incrementally takes orders of magnitude longer than an NB-tree. Besides, the average and maximum insertion time of an NB-tree (which are at most 0.0001s) are multiple factors smaller than LevelDB, Rocksdb and bLSM (which could be greater than 0.2s). Overall, an NB-tree provides a more reliable insertion and query performance.

7. RELATED WORK

We discuss indices used for insertion intensive workloads. **LSM-trees.** LSM-tree is an index used for insertion-intensive workloads used in many systems such as BigTable [12], LevelDB[23], Cassandra [9], HBase [1], RocksDB [22], Walnut [14] and Astrix DB [2]. By using an in-memory component and several on-disk B-tree components, LSM-trees [37] perform very few seek operations during insertions. However, this design causes a sub-optimal number of I/O operations during queries, and linear worst-case insertion time that causes long insertions delay (see [46, 32] for a discussion of LSM-tree’s performance). Many improvements have been proposed to LSM-trees’ design as discussed below.

Query improvement. [32] uses Bloom filters to improve the query time and [16] tunes the Bloom filter parameters. Compared with LSM-trees, we showed that Bloom filters adopted by NB-trees provide better theoretical and empirical performance. Method of [16] can also be used by NB-trees to optimize the Bloom filter parameters. Moreover, [32] partition an LSM-tree into several smaller LSM-tree components which provides a constant factor improvement. [32] uses fractional cascading [13] to provide asymptotically optimal worst-case query time. Fractional cascading...
connects different LSM-tree components to each other. Consider the B^+-tree of the i-th level of the LSM-tree. In each leaf node, N, of the B^+-tree, some key-value pairs have extra pointers pointing to a node, N', of the $(i + 1)$-th level. The pointers from the i-th level to the $(i + 1)$-th level are called fence pointers. Fence pointers satisfy the properties that (1) the first key-value pair k of node N must have a fence pointer pointing to a next-level node N' and every node N' at level $i + 1$ must have a fence pointer pointing to it from level i. (2) Consider two keys, k_s and k_l in level i that have fence pointers to nodes N_s and N_l in level $i + 1$, such that there does not exist another key k in level i that has a fence pointer and that $k_s < k < k_l$. Let r_s be the smallest key in N_s, and r_l the smallest key in N_l. It holds that $r_s < k_s < k_l < r_l$. These properties help in performing a constant number of disk-page accesses at each level.

LSM-trees with fractional cascading suffer from large worst-case insertion time and are not compatible with Bloom filters [42]. Thus, they provide a worse query performance in practice. The reason for their incompatibility is that to search the $(i + 1)$-th level using the i-th level fence pointers, we need to have searched the i-th level. Based on this deduction, we need to have searched all the levels of the LSM-tree. However, using Bloom filter is only advantageous when we do not need to search all levels of the LSM-tree.

Insertion improvement. Most of the focus has been on optimizing the merge operation, divided into leveling and tiering categories. Leveling is the category discussed so far, which sorts each LSM-tree component during the merge. Tiering, during a merge operation, appends the data to the lower levels and only sorts a layer after it is full. This avoids rewriting the lower level component during the merge operation at the expense of the query time. [17] uses the leveling merge policy at some levels and tiering merge policy at other levels. In [18], unlike the original design, the ratio of the size across different adjacent levels of the LSM-tree is not constant. More variations of tiering are discussed in [33, 27, 32, 25, 34, 35]. [35] discusses in-memory optimization for faster writes. These improvements are orthogonal to our work and can be adopted by NB-trees in the future. [33] discusses a theoretical model to analyze insertion performance of LevelDB and provides methods for parameter optimization. Their methods require knowledge of probability distribution of the keys in advance and performs time-consuming optimizations not feasible in the real-world. Thus we did not include their method in our experiments. [46, 32, 42] discuss reducing the worst-case insertion time, but their methods take linear time to the data size compared with the logarithmic worst-case time of NB-trees.

B-tree and B-tree with Buffer. B-trees [7] are read-optimized indices, performing optimal number of I/O operations during queries [10]. But they perform a seek operation for every page access, sacrificing their insertion performance. B-trees with Buffer [10] (also known as B'-trees) are a write-optimized variant of B-trees where part of each disk page allocated to each node is reserved for a buffer. The buffer is flushed down the tree when it becomes full. B-trees with Buffer can be seen as a special case of NB-trees where s-node size is one disk page and their analysis of query and insertion performance follows from that of NB-trees. In such a case, all disk accesses involve a seek operation, worsening the insertion performance, as our experiments confirmed. They also have worse space utilization since they allow half full nodes and worse range query performance since their nodes are not written sequentially on the disk. NB-trees keep their d-nodes full and write them sequentially for each s-node.

Other data structures. Many write optimized data structures such as [8, 25, 30, 35] have been proposed for a variety of settings and we do not have space to cover them all. Among them, Y-tree [27] is similar to B-trees with Buffer but allows for larger unsorted buffers at each non-leaf level of the B-tree that reduces the number of seek operations performed during insertions (can also be seen as a form of tiering). For a buffer similar in size to that of B-tree with Buffer, their performance will be similar to B-trees with Buffer and with the same weaknesses. However, a larger buffer worsens the point query performance (although range queries will not be affected as adversely), since it requires searching multiple pages of the unsorted buffer at each level of the tree by long scans. Y-trees also suffer from the issues mentioned above regarding space utilization and seek operations during range queries of B-trees with Buffer. Finally, mass-tree [36] is an in-memory data structure that is similar to this paper using a nested index, but the structural tree for mass-tree is a trie which, although works well in memory, can be unbalanced and cause large insertion and query cost if adopted for secondary storage.

In-memory optimization is outside the scope of this paper, but in-memory optimizations for B-trees such as [31, 40] improve the in-memory performance. However, their on-disk insertion performance is the same as B-trees, which is worse than NB-trees in terms of amortized insertion time.

Summary. Table 4 shows the theoretical performance of the indices mentioned above (written as multiples of $\log_{\sigma} n$ for easier comparison). For amortized insertion time, NB-trees perform σ^2 times fewer seek operations than B'-trees, $\frac{1}{J^2}$ times fewer than B-trees, and similar to LSM-trees (σ is typically in the order of 10,000 times larger than B). NB-trees have worst-case insertion time logarithmic in data size while LSM-trees’ worst-case insertion time is linear in data size. NB-trees’ query time is a factor $\log_{\sigma} n$ smaller than LSM-trees and is asymptotically optimal. Overall, NB-trees have a better worst-case insertion and query time (considering the number of seek operations) than existing indices while maintaining practical properties, such as compatibility with Bloom filters and high space utilization.

8. CONCLUSION

We introduced Nested B-trees, an index that theoretically guarantees logarithmic worst-case insertion time and asymptotically optimal query time, and thus supports insertions at high rates with no delays while performing fast queries. This significantly improves on LSM-trees’ linear worst-case insertion time and suboptimal query time and avoids long delays that frequently occur in LSM-trees during insertions. We empirically showed that NB-trees outperform RocksDB [21], LevelDB [23] and bLSM [32], commonly used LSM-tree databases, performing insertions faster than them and with maximum insertion time of 1000 smaller and lower query time by a factor of at least 1.5. NB-trees perform queries as fast as B-trees on large datasets, while performing insertions at least 10 times faster. In the future, a more detailed study can be done on optimizing in-memory caching of the metadata, optimizing the parameter setting of Bloom filters, and using different flushing schemes such as tiering.
9. REFERENCES

[1] A. S. Aiyer, M. Bautin, G. J. Chen, P. Damania, P. Khemani, K. Muthukkaruppan, K. Ranganathan, N. Spiegelberg, L. Tang, and M. Vaidya. Storage infrastructure behind facebook messages: Using hbase at scale. In IEEE Data Eng. Bull., 2012.

[2] S. Alsubaiea, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey, M. Dreseler, and C. Li. Storage management in asterixdb. In VLDB’14, 2014.

[3] Amazon. Aws pricing. https://aws.amazon.com/ec2/pricing/on-demand/, 2019.

[4] Amazon. Ram cost. https://tinyurl.com/wpzhw4u, 2019.

[5] Amazon. Ssd cost. https://tinyurl.com/u7u3mna.

[6] O. M. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan, A. Arora, K. Gupta, and P. Konla. Triad: Creating synergies between memory, disk and log in log structured key-value stores. In USENIX ATC’ 17, 2017.

[7] R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. In Acta Informatica, 1972.

[8] M. A. Bender, M. Farach-Colton, R. Johnson, S. Mauras, T. Mayer, C. A. Phillips, and H. Xu. Write-optimized skip lists. In PODS’17, 2017.

[9] E. Bortnikov, A. Braginsky, E. Hillel, I. Keidar, and G. Sheffi. Accordion: Better memory organization for lsm key-value stores. Proc. VLDB Endow., 11(12):1863–1875, Aug. 2018.

[10] G. S. Brodal and R. Fagerberg. Lower bounds for external memory dictionaries. In ACM-SIAM’03, 2003.

[11] B. Chandramouli, G. Prasaad, D. Kossmann, J. Levandoski, J. Hunter, and M. Barnett. Faster: A concurrent key-value store with in-place updates. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD ’18, pages 275–290, New York, NY, USA, 2018. ACM.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data. In ACM Transactions on Computer Systems, 2008.

[13] B. Chazelle and L. J. Guibas. Fractional cascading: I. a data structuring technique. In Algorithmica, 1986.

[14] J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid, R. Ramakrishnan, S. Rao, and R. Sears. Walnut: a unified cloud object store. In SIGMOD’12, 2012.

[15] L. Dai, J. Fu, and C. Feng. An improved lsm-tree index for nosql data-store. In International Conference on Computer Science and Technology, 2017.

[16] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal navigable key-value store. In SIGMOD’17, 2017.

[17] N. Dayan and S. Idreos. Dostoevsky: Better space-time trade-offs for lsm-tree based key-value stores via adaptive removal of superfluous merging. In SIGMOD’18, 2018.

[18] N. Dayan and S. Idreos. The log-structured merge-bush &\#38; the wacky continuum. In SIGMOD, 2019.

[19] R. Diorio, V. Tim,Teo, and E. Ursini. Testing an ip-based multimedia gateway. INFOCOMP, 13(1):21–25, 2014.

[20] DMR. Dropbox statistics. https://expandedramblings.com/index.php/dropbox-statistics/, 2017.

[21] Facebook. Rocksdb documentation. https://github.com/facebook/rocksdb, 2018.

[22] Facebook. Rocksdb features not in leveldb. https://github.com/facebook/rocksdb/wiki/Features-Not-in-Leveldb, 2018.

[23] Google. Leveldb documentation. https://github.com/google/leveldb/blob/master/doc/impl.md, 2017.

[24] http://wersm.com/. Facebook statistics. http://wersm.com/how-much-data-is-generated-every-minute-on-social-media/, 2017.

[25] J. Iacono and M. Pătraşcu. Using hashing to solve the dictionary problem. In ACM-SIAM’12, 2012.

[26] B. Insider. Credit suisse: Here’s how high-frequency trading has changed the stock market. https://www.businessinsider.com/how-high-frequency-trading-has-changed-the-stock-market-2017-3#higher-trading-volumes-1, 2018.

[27] C. Jermaine, A. Datta, and E. Omiecinski. A novel index supporting high volume data warehouse insertion. In VLDB, 1999.

[28] C. Jermaine, E. Omiecinski, and W. G. Yee. The partitioned exponential file for database storage management. In VLDB’17, 2007.

[29] C. Kim and S.-U. Yang. Like, comment, and share on facebook: How each behavior differs from the other. Public Relations Review, 43(2):441–449, 2017.

[30] A. Lakshman and P. Malik. Cassandra: a distributed structured storage system. In ACM SIGOPS Operating Systems Review, 2010.

[31] J. L. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree: A b-tree for new hardware platforms. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, pages 1–13. ACM, 2011.

[32] Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi. Tree indexing on solid state drives. In VLDB’10, 2010.

[33] H. Lim, D. G. Andersen, and M. Kaminsky. Towards accurate and fast evaluation of multi-stage log-structured designs. In FAST, 2016.

[34] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. Silt: A memory-efficient, high-performance key-value store. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, pages 1–13. ACM, 2011.

[35] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Wisckey: Separating keys from values in ssd-conscious storage. In ACM Transactions on Storage, 2017.

[36] Y. Yao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore key-value storage. In Proceedings of the 7th ACM european conference on Computer
[37] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (lsm-tree). In Acta Informatica, 1996.

[38] F. Pan, Y. Yue, and J. Xiong. Decompaqion: Delayed compaction for the lsm-tree. In International Journal of Parallel Programming, 2017.

[39] Percona. Tokudb documentation. https://www.percona.com/doc/percona-tokudb/ft-index.html, 2017.

[40] J. Rao and K. A. Ross. Making b+-trees cache conscious in main memory. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, SIGMOD ’00, pages 475–486, New York, NY, USA, 2000. ACM.

[41] Seagate. Product manual. https://www.seagate.com/staticfiles/support/disc/manuals/desktop/Barracuda%207200.12/100529369h.pdf, 2018.

[42] R. Sears and R. Ramakrishnan. blsm: a general purpose log structured merge tree. In SIGMOD’12, 2012.

[43] P. Shetty, R. P. Spillane, R. Malpani, B. Andrews, J. Seyster, and E. Zadok. Building workload-independent storage with vt-trees. In FAST, 2013.

[44] A. Silberschatz, H. F. Korth, S. Sudarshan, et al. Database system concepts, volume 4. McGraw-Hill New York, 1997.

[45] I. L. Stats. Google search statistics. http://www.internetlivestats.com/google-search-statistics/, 2017.

[46] R. Thonangi and J. Yang. On log-structured merge for solid-state drives. In ICDE’17, 2017.

[47] W. Tiger. Wired tiger website. http://www.wiredtiger.com/, 2019.

[48] N. Y. Times. Stock traders find speed pays, in milliseconds. https://www.nytimes.com/2009/07/24/business/24trading.html, 2018.

[49] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy efficiency of a database server. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pages 231–242. ACM, 2010.

[50] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong. An efficient design and implementation of lsm-tree based key-value store on open-channel ssd. In European Conference on Computer Systems, 2014.

[51] M. Watch. Trading volume slows sharply even as stock market hits highs. https://www.marketwatch.com/story/trading-volume-slowsshraply-even-as-stock-market-hits-highs-2017-07-18, 2018.

[52] X. Wu, Y. Xu, Z. Shao, and S. Jiang. Lsm-trie: an lsm-tree-based ultra-large key-value store for small data. In USENIX ATC’ 15, 2015.