Refractory periungual stage II mycosis fungoides with novel LMNA-ROS1 fusion

Peter A. DeRosa, MD, a,b Sadiq Alqutub, MD, a,b Vassiliki Papastavros, MD, c Jack H. Lichy, MD, PhD, a,b Mary Maiberger, MD, c and Victor E. Nava, MD, PhD, a,b
Washington, DC

Key words: chemotherapy; cutaneous lymphoma; fusion; LMNA-ROS1; mycosis fungoides; novel mutation; T-cell lymphoma.

INTRODUCTION
Mycosis fungoides (MF) is the most common primary cutaneous lymphoma representing approximately 50% of skin lymphomas with a worldwide incidence of approximately 4 to 10 cases per million. Although the etiology is unknown, risk factors include African descent, obesity, smoking, and exposure to chemicals used in carpentry, painting, farming, and other industries (metal, petrochemical, and textile). This postthymic T-cell–derived malignancy is usually positive for CD4 and expresses cutaneous lymphoid antigen and chemokine receptor CCR4, cutaneous homing molecules. 1

MF is clinically indolent affecting sun-shielded areas and often mimicking inflammatory dermatitis, which may delay diagnosis. Nail and periungual presentations are rare, 2 and progressive systemic involvement or transformation to aggressive large cell lymphoma is infrequent.

Histologically, MF is an epidermotropic lymphoma of small-to-medium–sized T cells with characteristic cerebriform nuclei. Alignment of atypical lymphocytes on the basal epidermal layer is a common early feature. 3

Recent genetic profiling of MF has expanded treatment options. Negative prognostic mutations include TOX, GTSF1, NOTCH1, CCR4, ITK, FYB, SYT1, LCK or miR155, miR21, and let-7i differentially expressed genes. 4

Monoclonal antibodies against CCR4, CD52 and CD30 alone or in combination with traditional therapy offer a promising therapeutic option. We present a clinically unusual case of subungual tumoral MF with several novel mutations.

CASE REPORT

A 58-year-old Filipino woman with stage IIA MF presented with a 3-week history of friable ulcerations overlying several toes with resultant nail plate distortion (Fig 1) and painful, bleeding subungual lesions on several fingers. She denied fever, chills, malaise, weight loss, or similar acral lesions in the past. Previous treatment included ultraviolet B light, bexarotene, vorinostat, and pegylated interferon, all stopped because of various side effects. The patient was not on a treatment regimen at the time of her presentation. An ulcerated lesion on the left hallux was biopsied, and she was started empirically on a 10-day course of oral clindamycin. The wound culture grew Staphylococcus aureus. Resultant hematoxylin-eosin histology found epidermotropism and atypical lymphocytes positive for CD5, CD4, and CD8 and partially negative for CD7 (Figs 1 and 2). Scattered large cells stained positive for CD30 (up to 10%, ruling out large cell transformation of MF and cutaneous large cell anaplastic lymphoma) GMS and AFB stains were negative. Polymerase chain reaction showed a clonal T-cell
receptor γ gene rearrangement of identical size to prior specimens (Fig 2). Next-generation sequencing, performed at Foundation Medicine, found a novel single fusion product, lamin A/C (LMNA)-ROS1, in addition to 14 point mutations (AXL A181S, CARD11 D401N, CBFB R78Q, CCND3 I209K, JARID N405S, LRP1B R353S, LRP1B T1927S, MAP3K1 M312L, MYCN A184S, MYST3 A1255G, RICTOR L177F, STK11 F354L, TSHR F130V, and TUSC3 G172E) and 5 nonsense mutations (ASXL1 R693*, CHEK2 Y212fs*1, EPHAS S534fs*41, LRP1B E553* and NOTCH2 G2086fs*8), unpublished in association with MF. ROS1 immunohistochemistry was performed at ARUP laboratories and was equivocal (Fig 2). ROS1 inhibitors for treatment were recommended. However, prior to initiation of treatment, the patient moved out of state and was lost to the Veterans Affairs hospital system.

DISCUSSION

To our knowledge, this is the first report of LMNA-ROS1 fusion in MF. The ROS proto-oncogene 1, a transmembrane receptor protein kinase of unknown
function, is rearranged in many solid tumors including 1% to 2% of non—small cell lung carcinoma, cholangiocarcinoma, glioblastoma, ovarian carcinoma, gastric adenocarcinoma, colorectal carcinoma, Spitz tumors, and Spitzoid melanomas. Crizotinib, an ROS1 inhibitor, is an effective approved therapy for non—small cell lung carcinoma. Additionally, new-generation selective ROS1 inhibitors are being developed.

Lamin A/C (LMNA), the main structural nuclear envelope protein, has poorly understood oncogenic roles. LMNA requires cleavage by caspase 6 during apoptosis to allow nuclear condensation and may protect the cancer genome. The identification of this LMNA-ROS1 fusion suggests a potential therapeutic target. Next-generation sequencing for refractory disease, patients in high-risk categories, or patients with newly diagnosed disease could prove to be a useful tool in MF to personalize treatment options and promote exploration of new therapeutic targets.

REFERENCES

1. Swerdlow SH. World Health Organization, International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revis 4th ed. Lyon: International Agency for Research on Cancer; 2017.

2. Ehsani AH, Nasimi M, Azizpour A, et al. Nail changes in early mycosis fungoides. *Skin Appendage Disord*. 2018;4(1):55-59.

3. Shapiro PE, Pinto FJ. The histologic spectrum of mycosis fungoides/sezary syndrome (cutaneous T-cell lymphoma). A review of 222 biopsies, including newly described patterns and the earliest pathologic changes. *Am J Surg Pathol*. 1994;18(7):645-667.

4. Litvinov IV, Tetzlaff MT, Thibault P, et al. Gene expression analysis in cutaneous T-cell lymphomas (CTCL) highlights disease heterogeneity and potential diagnostic and prognostic indicators. *Oncoimmunology*. 2017;6(5):e1306618.

5. Ruchaud S, Korfali N, Villa P, et al. Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. *EMBO J*. 2002;21(8):1967-1977.