Preprint: Please note that this article has not completed peer review.

The effect of conservative oxygen therapy in reducing mortality in critical care patients: A systematic review and meta analysis

CURRENT STATUS: POSTED

Yue-Nan Ni
Sichuan University West China Hospital

Yan-mei Wang
Sichuan University West China Hospital

Binmiao Liang
Sichuan University West China Hospital

liangbinmiao@163.com Corresponding Author

Zong-An Liang
Sichuan University West China Hospital

DOI: 10.21203/rs.3.rs-17576/v1

SUBJECT AREAS
Critical Care & Emergency Medicine

KEYWORDS
conservative oxygen therapy; mortality; meta-analysis
Abstract
Background Conservative oxygen therapy can avoid both the hypoxemia and hyperoxemia, but the effect of it on the prognosis of patients admitted to intensive care unit (ICU) remains controversial.

Methods The Pubmed, Embase, Medline, Cochrane Central Register of Controlled Trials (CENTRAL) as well as the Information Sciences Institute (ISI) Web of Science were searched for all the controlled studies comparing conservative oxygen therapy and conventional oxygen therapy in adult patients admitted to ICU. The primary outcome was the mortality and the secondary outcomes were length of ICU stay (ICU LOS), length of hospital stay (hospital LOS), length of mechanical ventilation (MV) hours, new organ failure during ICU stay, new infection during ICU stay.

Results Six trials with a total of 2250 patients were pooled in our final studies. No statistical heterogeneity was found in all the analysis. Compared with conventional oxygen therapy, conservative oxygen therapy could not reduce overall mortality (Z=0.96, P=0.34), ICU LOS (Z=0.29, P=0.77), hospital LOS (Z=1.98, P=0.05) and new infection during ICU stay (Z=0.94, P=0.35). However conservative oxygen therapy was associated with lower MV time (Z=5.03, P<0.001) and new organ failure during ICU stay (Z=2.05, P=0.04).

Conclusions Conservative oxygen therapy could not reduce the mortality but did lower the MV time and new organ failure in critically ill patients.

Background
Hypoxemia is life threatening and related to increasing intensive care units (ICU) mortality. Oxygen administration is a life saving treatment commonly used in the patients admitted to the ICU. Unfortunately, although oxygen administration in ICUs was recommended by a lot of guidelines, the most suitable oxygenation target remains unknown.

Studies presented that excess oxygen delivery was very common and about 50% of the patients showing hyperoxemia, among which 4% with severe hyperoxemia. As we all know, hyperoxia was related to adverse events such as histopathological injury, interstitial fibrosis, atelectasis, tracheobronchitis, alveolar protein leakage and infiltration by neutrophils. Moreover, it could also lead to decline of cardiac output, generate free radical-mediated in various organs and a marked
reduction in coronary blood flow and myocardial oxygen consumption. Studies showed that the ICU mortality of patients was independently associated with hyperoxia in mechanical ventilation patients (odds ratio[OR]1.22, 95% confidence interval[CI] 1.12 – 1.33).15

Thus, in order to prevent patients from hypoxemia and avoid the adverse events led by hyperoxemia, some researchers studied on the conservative oxygen therapy, which means adhering to a goal that pulse oxygen saturation(SpO\(_2\))is between 88–92% with lowest fraction of inspired oxygen (FiO\(_2\)). But the results remained controversial. In the study of Girardis, which included in 434 patients, conservative oxygen therapy can reduce about 19% of the ICU mortality (p=0.01).16

However, in the study of Mackle et al., conservative oxygenation targets did not show any advantages in ICU mortality over the conventional oxygenation target (35.7%% vs. 34.5%).17

Therefore, based on the controversial findings of the effect of conservative oxygen therapy, we conducted a systematic review and meta-analysis of all published trials aiming for identifying the roles of conservative oxygen therapy in improving the outcomes of patients admitted into ICU.

Methods

Search strategies

From 1946 to February 2020, a comprehensive computer search was conducted in Pubmed, Embase, Medline, Cochrane Central Register of Controlled Trails (CENTRAL) and Information Sciences Institute (ISI) Web of Science using the keywords of “conservative oxygen therapy” or “conservative oxygenation target” or “oxygenation target” and “critically ill” or “ICU” or “intensive care unit” without limitation in the publication type or language. We also reviewed the references listed in each identified article and manually searched the related articles to identify all eligible studies and minimize the potential publication bias.

Inclusion and exclusion criteria

Eligible clinical trials were identified based on the following criteria: 1) the subjects enrolled in each study included patients admitted into ICU; 2) patients were divided into experimental group, in which conservative oxygen therapy was applied; and control group; 3) outcomes contained but not limited to mortality, length of ICU stay (ICU LOS), length of hospital stay (hospital LOS), length of mechanical
ventilation (MV) hours, new infection and new organ failure during ICU. We excluded studies if they were performed in animals or in patients less than 18 years old, or published as reviews or case reports.

Study selection
Two independent investigators performed the study selection in two phases. (Y-NN and Y-MW) Firstly, they discarded duplicated and non-controlled studies by screening titles and abstracts. Secondly, eligible studies were extracted by reviewing full texts in accordance with the previously designed study inclusion criteria. Any disagreement was solved by mutual consensus in the presence of a third investigator. (B-ML)

Data extraction
Independently, two data collectors extracted and recorded desirable information of each enrolled study in a standard form recommended by Cochrane18 which consisted of authors, publication year, study design, country, NCT No., population, demographic characteristics (age, gender, etc.), disease conditions (The Acute Physiologic and Chronic Health Evaluation III (APACHE III) and Simplified Acute Physiologic Score II (SAPS II)), outcome measures, and study results. For any missing data information, corresponding authors were contacted by email to request the full original data. Different opinions between the two collectors were determined by reaching a consensus or consulting a third investigator.

Quality assessment
For the assessment of risk of bias in estimating the study outcomes, we used the Cochrane risk of bias tool.18 Each study was assessed for: 1) random sequence generation (selection bias); 2) allocation concealment (selection bias); 3) blinding of participants and personnel (performance bias); 4) blinding of related outcomes assessment (detection bias); 5) incomplete outcome data (attrition bias); 6) selective reporting (reporting bias); and 7) other biases. Two investigators conducted the quality assessment for the study methodology, independently and separately. Any divergence was resolved by mutual consensus in the presence of a third investigator.

Statistical analysis
Statistical analysis of our study was accomplished by an independent statistician using Cochrane
systematic review software Review Manager (RevMan; Version 5.3.5; The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, 2014). We used Mann-Whitney U-test to verify hypothesis and rendered statistical significance as a Z-value and P-value < 0.05, and the results were displayed in Forest plots. Continuous variables were reported as mean and standard derivation (SD), while dichotomous variables were shown as frequency and proportion. An initial test for clinical, methodological and statistical heterogeneities was conducted, and we used the χ² test with P < 0.1 and I² > 50% to indicate significance. We also performed the sensitivity analysis to substitute alternative decisions or ranges of values for decisions that were arbitrary or unclear. Random-effects model was applied in the presence of statistical heterogeneity; for continuous data we calculated mean difference (MD) and 95% CI, while for dichotomous data we calculated OR and 95% CI.

Results
Initially 1154 records were identified, of which 1151 were extracted from electronic databases and 3 were extracted from reference lists review. (Fig. 1) By screening the titles and abstracts, 1146 studies were discarded for duplication (n = 973), animal experiments (n = 124) and non-adult patients (n = 49). We researched the full-text articles for the remaining 8 studies, and eventually 6 trials were enrolled in our final analysis due to 1 studies did not reporting related outcomes, and 1 did not designed as expected. (Supplemental Fig. 2s)

Study description
All 6 studies compared the outcomes of conservative oxygen therapy alone with those of conventional oxygen therapy.16,17,19–22 Three studies were randomized controlled trials (RCTs),16,17,21 1 studies was retrospective nest cohort analysis,19 and the other 2 studies was prospective before-after study.20,22 Mortality was reported in 6 studies, among which hospital mortality and ICU mortality was reported in 3 studies,16,19,20 28 day mortality was reported in 2 studies,19,22, 30 day mortality was reported in 1 study,20 90 day mortality was reported in 2 studies,17,21 180 day mortality was reported in 1 study.17 ICU LOS was presented in 5 studies,16,17,19–21 Hospital LOS was reported in 5 studies.16,17,19–21 MV hours was reported in 3 studies,17,19,20 The rate of new organ failure was
recorded in 2 studies, \(^{16,22}\) the rate of new infection was recorded in 2 studies. \(^{16,22}\) Details of each study were summarized in Table 1.

Table 1
Characteristics of included studies

Author(Year)	Study design	NCT No.	Country	Population	Diagnosis	Conservative group	Conditional group	Target conservative	Target conventional
Eastwood 2015	Retrospective nested cohort study	NCT 01684124	Australia	100	Cardiac arrest	SpO\(_2\) 88%-92%	Oxygenation target was prescribed by their doctors	Hyperoxemia time (>120 mmHg): 28%	
Esatwood 2019	Uncontrolled before-and-after study	ACTRN12 61300132 2729	Australia	543	Cardiac surgery	SpO\(_2\) 88%-92%	Oxygenation target was prescribed by their doctors	Mean PaO\(_2\): 88 mmHg (81–96)	
Girardis 2015	Randomized controlled trial	NCT0131 9643	Italy	434	Cardiovascular, gastrointestinal, neurological, respiratory, sepsis, others	SpO\(_2\) 94%-98%	SpO\(_2\) 97%-100%	Mean PaO\(_2\): 87 mmHg (79–97)	
Mackle 2019	Randomized controlled trial	ACTRN12 61500095 7594	Australia and New Zealand	965	Mixed	Least FiO\(_2\) to guarantee SpO\(_2\) > 90%	FiO\(_2\) > 0.3, no upper limit	Median number of hours per patient SpO\(_2\) ≥ 97%: 27 [11–63.5]	
Panwar 2015	Multicenter randomized controlled trial	ACTRN12 61300050 5707	Australia, New Zealand, and France	103	Trauma, medical, surgical	SpO\(_2\) 88%-92%	SpO\(_2\) ≥ 96%	Mean PaO\(_2\): 72 mmHg (10)	
Suzuki 2014	Pilot prospective before-and-after study	NCT 01684124	Australia	105	Medical, surgical	SpO\(_2\) 90%-92%	Oxygenation target was prescribed by their doctors	Mean PaO\(_2\): 83 mmHg (71–94)	

FiO\(_2\), fraction of inspired oxygen; NR, not reported; SpO\(_2\), pulse oxygen saturation

A total of 2250 patients were pooled from all the included trials in our final systematic review and meta-analysis, among which 1154 patients were treated with conservative oxygen therapy, 1096 patients received conventional oxygen therapy. Details of baseline characteristics of patients in each enrolled study were shown in Table 2.
Table 2
Baseline characteristics of patients

Author(Year)	Conservative oxygen therapy	Conventional oxygen therapy						
	Age, Years Mean (SD)	Male n, (%)	SAPS II Mean (SD)	APACHE III Mean (SD)	Age, Years Mean (SD)	Male n, (%)	SAPS II Mean (SD)	APACHE III Mean (SD)
Eastwood 2015	65(55–71)b	34(68%)c	NR	125(107–141)b	67(59–77)b	29(58%)c	NR	121(105–142)b
Eastwood 2019	65(56–73)b	209(70.1%)c	NR	NR	67(59–74)b	179(73.1%)c	NR	NR
Girardis 2016	63(51–74)b	121(56%)c	37(26–49)b	NR	65(52–76)b	93(57.3%)c	39(28–55)b	NR
Mackle 2019	58.1(16.2)a	306(63.2%)c	NR	23.6(9.3)(APACHEII)	57.5(16.1)a	302(62.8%)c	NR	23.3(9.4)(APACHEII)
Panwar 2015	62.4(14.9)a	32(62%)c	NR	79.5(61-92.5)b	62.4(17.4)a	33(65%)c	NR	70(50–84)
Suzuki 2014	56(16)a	32(59%)c	NR	62(49-92)b	59(17)a	38(75%)c	NR	68(42–94)

APACHE The Acute Physiologic and Chronic Health Evaluation; IQR, interquartile range; NR, not report; SAPS Simplified Acute Physiologic Score; SD, standard derivation; a mean(SD) b median(IQR) c n(%)

Quality assessment

Quality assessment of the 6 enrolled studies showed that there was no bias in attrition or reporting in 6 studies, but high bias existed in performance in 6 studies and in selection and detection in 3 studies. No studies were excluded for low quality or dubious decisions in the sensitivity analysis. (Supplemental Fig. 2s and Fig. 3s)

Heterogeneity

No significant statistical heterogeneity was found in overall mortality between conservative and conventional group ($I^2 = 39\%, \chi^2 = 8.23, P = 0.14$), ICU LOS ($I^2 = 28\%, \chi^2 = 5.55, P = 0.24$), hospital LOS ($I^2 = 0\%, \chi^2 = 3.39, P = 0.49$), length of MV hours($I^2 = 55\%, \chi^2 = 4.46, P = 0.11$), new organ failure during ICU stay ($I^2 = 0\%, \chi^2 = 0.00, P = 0.96$) nor new infection during ICU stay ($I^2 = 25\%, \chi^2 = 1.33, P = 0.25$).

Mortality

No significant difference in the overall mortality was found in conservative oxygen therapy compared with conventional oxygen therapy (RR 0.94, 95% CI 0.82 – 1.07; $Z = 0.96, P = 0.34$), (Fig. 1) nor in ICU mortality (RR 0.78, 95% CI 0.57 – 1.06; $Z = 1.60, P = 0.11$), (Supplemental Fig. 4s) hospital mortality(RR 0.90, 95% CI 0.59 – 1.39; $Z = 0.46, P = 0.65$), (Supplemental Fig. 5s) 28 day mortality(RR 0.80, 95% CI 0.41 – 1.55; $Z = 0.67, P = 0.50$) (Supplemental Fig. 6s) and 90 day mortality(RR 1.07,
95% CI 0.90 ~ 1.26; Z = 0.77, P = 0.44. (Supplemental Fig. 7s)

Icu Los
Figure 2 showed that differences of ICU LOS were not significant between conservative oxygen therapy and conventional oxygen therapy (MD -0.07, 95%CI -0.52 ~ 0.38, Z = 0.29, P = 0.77).

Hospital LOS
No significant role of conservative oxygen therapy in hospital LOS was found (MD -0.77, 95%CI -1.52 ~ -0.01, Z = 1.98, P = 0.05). (Fig. 3)

MV hours
Conservative oxygen therapy could reduce the MV hours when compared with conventional oxygen therapy (MD -2.38, 95%CI -3.31 ~ -1.45, Z = 5.03, P < 0.001). (Fig. 4)

New organ failure during ICU stay
Figure 5 showed that differences of ICU LOS existed in comparison between conservative oxygen therapy and conventional oxygen therapy (RR 0.74, 95%CI 0.55 ~ 0.99; Z = 2.05, P = 0.04).

New infection during ICU stay
No significant differences of new infection during ICU stay existed between conservative oxygen therapy and conventional oxygen therapy (OR 0.88, 95%CI 0.68 ~ 1.15; Z = 0.94, P = 0.35). (Fig. 6)

Discussion
In our meta-analysis, we found that conservative oxygen therapy could not decrease the rate of mortality, ICU LOS, and hospital LOS and new infection during ICU stay in critically ill patients. But conservative oxygen therapy could reduce the MV time and the new organ failure during ICU stay. The advantages of conservative oxygen therapy could not be denied. Conventional therapy would put 44.5% of the patients exposed to hyperoxemia, which is only about 11.4% in conservative oxygen group. The disadvantages of hyperoxemia have been well demonstrated by many researches. First of all, high inspired oxygen concentrations would inhibit immune system: compromising the ability of macrophages, suppressing the production of cytokine, causing structural changes within alveolar macrophages and leading to serious impairment of their antimicrobial activity. Secondly, pulmonary injury would be induced by hyperoxemia As mentioned above, hyperoxemia can result in decreased mucociliary clearance, atelectasis, inflammation, pulmonary edema, and eventually
interstitial fibrosis.27,28 The combination of the injury of immune system and pulmonary was related with higher risk of ventilator associated pneumonia (VAP). A retrospective observational study on 503 enrolled patients showed that both hyperoxemia at ICU admission (OR = 1.89, 95% CI 1.23 – 2.89, p = 0.004), and percentage of days with hyperoxemia (OR = 2.2, 95% CI 1.08 – 4.48, p = 0.029) were independently associated with VAP.29 As studies showed, the rate of VAP is associated with longer MV period.30 Moreover, two of enrolled studies showed a trend to lower use of mandatory MV mode in conservative oxygen group,19,21 which might indicate earlier attempts to wean patients in response to lower FiO\textsubscript{2} requirement. This explains the significant shorter MV hours in conservative oxygen therapy group. Third, every organ not just the lung would be damaged by production of reactive oxygen species (ROS) resulted from high concentration oxygen. ROS-mediated stress can lead to cellular necrosis and apoptosis.31 In addition, oxidative stress is responsible for direct damage to biological molecules and indirect injury through the release of cytotoxic products and mutagenic effects of lipid oxidation.32 ROS-mediated stress and oxidative stress caused by high inspired oxygen concentrations would promote the systemic organ failure; otherwise the decline of ROS in the conservative oxygen therapy group would lead to less new organ failure during the ICU stay. However, despite the advantages of conservative oxygen therapy, lower mortality, shorter ICU LOS and shorter hospital LOS were not been found in our study. We think the following reasons might explain. First of all, there were many factors contributes to the mortality of patients. Although conservative oxygen therapy could bring some benefit to patients, but other many factors such as the severity of baseline disease et al. also contributes significantly to mortality, ICU LOS and hospital LOS.33 Thus, the benefit of conservative oxygen therapy could be not strong enough to show a significant statistic significant when combined with so many factors. Secondly, conservative oxygen therapy actually puts patients in a higher risk of hypoxia at the same time when avoiding the hyperoxemia. Hypoxia was also related with higher mortality,34 which might offset the advantages of conservative oxygen therapy.
In addition, we did not found any advantages of conservative oxygen therapy in new infection during ICU stay compared with conventional oxygen therapy. As we all know, the incidence of new infection might have been underestimated because only those ascertained by microbiological samples were recorded. Moreover, only two of enrolled studies reported the data about new infection during ICU stay. Thus, the small sample might also be one of the reasons.

There are also several limitations in our study, which need to be addressed. First, high clinical heterogeneity existed in our analysis: 1) the primary disease of patients included in our enrolled studies was mixed, conservative oxygen therapy might have more benefit in hypoxic ischemic encephalopathy, but we could not do the subgroup analysis due to lack of data; 2) the severity of patients who admitted into ICU was also varies in included studies; 3) although all the studies divided participated into conservative and conventional groups, the actual oxygenation level in each group were varies in included studies. Second, because of the limit of FiO₂ titration, there were episodes when the oxygenation level of patients was out of the range of target oxygenation level, which might influence the application of our conclusions.

Conclusions
Compared with conventional oxygen therapy, conservative oxygen therapy has no effect on mortality, ICU LOS and hospital LOS in critically ill patients, but could reduce the length of MV hours and new organ failure.

Declarations

Abbreviations List

APACHE, The Acute Physiologic and Chronic Health Evaluation; CENTRAL, Cochrane Central Register of Controlled Trails; CI, confidence interval; FiO₂, fraction of inspired oxygen; ICU, intensive care unit; ISI, Information Sciences Institute; LOS, length of stay; MD, mean difference; MV, mechanical ventilation; PaO₂, partial pressure of arterial oxygen; RCT, randomized controlled trial; OR, odds ratio; ROS, reactive oxygen species; SpO₂, pulse oxygen saturation; SAPS, Simplified Acute Physiologic Score; SD, standard derivation.

Ethics approval and consent to participate
Each enrolled trial was approved by the corresponding institutional ethical committee, and all participants provided written informed consent.

Consent for publication

Not applicable

Availability of data and material

Not applicable

Competing interests

None of all authors have any financial or non-financial competing interests in this manuscript.

Guarantor

B-ML takes responsibility for the content of the manuscript, including the data and analysis.

Author contributions

YNN and BML designed the study, drafted the manuscript, conducted literature search and data analysis; YNN and Y-MW revised the manuscript critically for important intellectual content; B-ML and Z-AL made the decision to submit the report for publication. All authors read and approved the final manuscript.

Financial/nonfinancial disclosures

None of all authors have any financial or non-financial competing interests in this manuscript.

Funding

This study was partly supported by the National Key Research and Development Program of China (2016YFC1304303) and the Sichuan Science and Technology Agency Grant (2019YFS0033).

References

1. Eastwood GM, Reade MC, Peck L, Jones D, Bellomo R. Intensivists' opinion and self-reported practice of oxygen therapy. Anaesthesia and intensive care 2011;39:122-6.

2. O'Driscoll BR, Howard LS, Davison AG. BTS guideline for emergency oxygen use in adult patients. Thorax 2008;63 Suppl 6:vi1-68.

3. Pannu SR, Moreno Franco P, Li G, Malinchoc M, Wilson G, Gajic O. Development and validation of severe hypoxemia associated risk prediction model in 1,000
mechanically ventilated patients*. Critical care medicine 2015;43:308-17.

4. Esteban A, Anzueto A, Alia I, et al. How is mechanical ventilation employed in the intensive care unit? An international utilization review. American journal of respiratory and critical care medicine 2000;161:1450-8.

5. Rose L, Presneill JJ, Johnston L, Nelson S, Cade JF. Ventilation and weaning practices in Australia and New Zealand. Anaesthesia and intensive care 2009;37:99-107.

6. Damiani E, Adrario E, Girardis M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Critical care (London, England) 2014;18:711.

7. Suzuki S, Eastwood GM, Peck L, Glassford NJ, Bellomo R. Current oxygen management in mechanically ventilated patients: a prospective observational cohort study. Journal of critical care 2013;28:647-54.

8. Rachmale S, Li G, Wilson G, Malinchoc M, Gajic O. Practice of excessive F(IO(2)) and effect on pulmonary outcomes in mechanically ventilated patients with acute lung injury. Respiratory care 2012;57:1887-93.

9. Helmerhorst HJ, Schultz MJ, van der Voort PH, et al. Effectiveness and Clinical Outcomes of a Two-Step Implementation of Conservative Oxygenation Targets in Critically Ill Patients: A Before and After Trial. Critical care medicine 2016;44:554-63.

10. Crapo JD, Barry BE, Foscue HA, Shelburne J. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. The American review of respiratory disease 1980;122:123-43.

11. Fracica PJ, Knapp MJ, Piantadosi CA, et al. Responses of baboons to prolonged hyperoxia: physiology and qualitative pathology. Journal of applied physiology (Bethesda, Md : 1985) 1991;71:2352-62.

12. Altemeier WA, Sinclair SE. Hyperoxia in the intensive care unit: why more is not
always better. Current opinion in critical care 2007;13:73-8.

13. Lodato RF. Decreased O2 consumption and cardiac output during normobaric hyperoxia in conscious dogs. Journal of applied physiology (Bethesda, Md : 1985) 1989;67:1551-9.

14. Zwemer CF, Whitesall SE, D'Alecy LG. Hypoxic cardiopulmonary-cerebral resuscitation fails to improve neurological outcome following cardiac arrest in dogs. Resuscitation 1995;29:225-36.

15. Ni YN, Wang YM, Liang BM, Liang ZA. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC pulmonary medicine 2019;19:53.

16. Girardis M, Busani S, Damiani E, et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. Jama 2016;316:1583-9.

17. Mackle D, Bellomo R, Bailey M, Beasley R. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. 2019.

18. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane 2019.

19. Eastwood GM, Tanaka A, Espinoza ED, et al. Conservative oxygen therapy in mechanically ventilated patients following cardiac arrest: A retrospective nested cohort study. Resuscitation 2016;101:108-14.

20. Eastwood GM, Chan MJ, Peck L, et al. Conservative versus conventional oxygen therapy for cardiac surgical patients: A before-and-after study. Anaesthesia and intensive care 2019;47:175-82.

21. Panwar R, Hardie M, Bellomo R, et al. Conservative versus Liberal Oxygenation
Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial. American journal of respiratory and critical care medicine 2016;193:43-51.

22. Suzuki S, Eastwood GM, Glassford NJ, et al. Conservative oxygen therapy in mechanically ventilated patients: a pilot before-and-after trial. Critical care medicine 2014;42:1414-22.

23. Entezari M, Weiss DJ, Sitapara R, et al. Inhibition of high-mobility group box 1 protein (HMGB1) enhances bacterial clearance and protects against Pseudomonas Aeruginosa pneumonia in cystic fibrosis. Molecular medicine (Cambridge, Mass) 2012;18:477-85.

24. Qadan M, Battista C, Gardner SA, Anderson G, Akca O, Polk HC, Jr. Oxygen and surgical site infection: a study of underlying immunologic mechanisms. Anesthesiology 2010;113:369-77.

25. Morrow DM, Entezari-Zaheer T, Romashko J, 3rd, et al. Antioxidants preserve macrophage phagocytosis of Pseudomonas aeruginosa during hyperoxia. Free radical biology & medicine 2007;42:1338-49.

26. O'Reilly PJ, Hickman-Davis JM, Davis IC, Matalon S. Hyperoxia impairs antibacterial function of macrophages through effects on actin. American journal of respiratory cell and molecular biology 2003;28:443-50.

27. Budinger GRS, Mutlu GM. Balancing the risks and benefits of oxygen therapy in critically ill adults. Chest 2013;143:1151-62.

28. Fox RB, Hoidal JR, Brown DM, Repine JE. Pulmonary inflammation due to oxygen toxicity: involvement of chemotactic factors and polymorphonuclear leukocytes. The American review of respiratory disease 1981;123:521-3.

29. Six S, Jaffal K, Ledoux G, Jaillette E, Wallet F, Nseir S. Hyperoxemia as a risk factor for ventilator-associated pneumonia. Critical care (London, England) 2016;20:195.
30. Craven DE, Lei Y, Ruthazer R, Sarwar A, Hudcova J. Incidence and outcomes of ventilator-associated tracheobronchitis and pneumonia. The American journal of medicine 2013;126:542-9.

31. Higuchi Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochemical pharmacology 2003;66:1527-35.

32. Motoyama T, Okamoto K, Kukita I, Hamaguchi M, Kinoshita Y, Ogawa H. Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Critical care medicine 2003;31:1048-52.

33. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today's critically ill patients. Critical care medicine 2006;34:1297-310.

34. Eastwood G, Bellomo R, Bailey M, et al. Arterial oxygen tension and mortality in mechanically ventilated patients. Intensive care medicine 2012;38:91-8.

Supplementary Files Legend

Supplemental material

Figure 1s Study flow.

Figure 2s Risk of bias graph

Figure 3s Risk of bias summary

Figure 4s ICU mortality

CI, confidence interval; SD, standard derivation

Figure 5s Hospital mortality

CI, confidence interval; SD, standard derivation

Figure 6s 28 day mortality

CI, confidence interval; SD, standard derivation

Figure 7s 90 day mortality

CI, confidence interval; SD, standard derivation
Figures

Study or Subgroup	conservative	conventional	Risk Ratio			
Events	Total	Events	Total	Weight	M-H. Fixed, 95% CI	
Eastwood 2015	28	50	27	50	8.3%	1.04 [0.75, 1.48]
Eastwood 2019	6	286	3	245	1.1%	1.64 [0.42, 6.51]
Girardis 2016	52	216	74	218	24.2%	0.71 [0.52, 0.98]
Mackie 2019	170	476	164	475	54.0%	1.03 [0.87, 1.23]
Panwar 2015	21	52	19	51	8.3%	1.08 [0.87, 1.36]
Suzuki 2014	9	54	16	51	5.4%	0.53 [0.26, 1.09]
Total (95% CI)	1146	1090	100.0%	0.94 [0.82, 1.07]		

Heterogeneity: Chi² = 8.23, df = 5 (P = 0.14), P = 39%
Test for overall effect: Z = 0.98 (P = 0.34)

Figure 1

Overall Mortality. CI, confidence interval; SD, standard derivation

Study or Subgroup	Conservative	Conventional	Mean Difference					
Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	
Eastwood 2015	4	3.7	50	5	3.7	50	8.4%	-1.00 [-2.45, 0.45]
Eastwood 2019	1.75	2	298	1.71	2	245	5.9%	0.04 [-0.30, 0.38]
Girardis 2016	6	4.44	216	6	5.99	210	10.1%	0.00 [-0.91, 0.91]
Mackie 2019	4.78	5.34	484	5.17	7.89	481	15.0%	-0.39 [-1.23, 0.47]
Panwar 2015	9	5.93	62	7	5.93	51	5.7%	2.09 [-0.39, 4.29]
Total (95% CI)	1100	1045	100.0%	-0.07 [-0.52, 0.38]				

Heterogeneity: Tau² = 0.08, Chi² = 5.55, df = 4 (P = 0.24), P = 28%
Test for overall effect: Z = 0.29 (P = 0.77)

Figure 2

ICU LOS CI, confidence interval; ICU, intensive care unit; LOS, length of stay; MD, mean difference; SD, standard derivation

Study or Subgroup	Conservative	Conventional	Mean Difference					
Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	
Eastwood 2015	9	10.37	50	9	14.81	50	2.3%	0.00 [-15.01, 15.01]
Eastwood 2019	8	4.44	216	9	5.99	245	71.4%	-1.00 [-1.60, -0.40]
Girardis 2016	21	18.62	216	21	18.63	216	53%	0.00 [-3.28, 3.28]
Mackie 2019	12.42	13.19	484	13.08	14.29	481	18.1%	-0.60 [-3.38, 1.17]
Panwar 2015	20	11.11	52	16	17.04	51	1.9%	4.00 [1.57, 6.47]
Total (95% CI)	1100	1045	100.0%	-0.77 [-1.52, 0.01]				

Heterogeneity: Chi² = 3.38, df = 4 (P = 0.49), P = 0%
Test for overall effect: Z = 1.93 (P = 0.05)

Figure 3

Hospital LOS CI, confidence interval; LOS, length of stay; MD, mean difference; SD, standard derivation
Figure 4

MV hours. CI, confidence interval; MD, mean difference; MV, mechanical ventilation; SD, standard derivation

Study or Subgroup	Conservative Mean	SD	Total	Conventional Mean	SD	Total	Weight	Mean Difference IV, Fixed, 95% CI
Eastwood 2015	64	74.81	50	68	69.87	50	0.1%	-6.08 [-32.76, 22.76]
Eastwood 2018	67	65.88	283	71	69.72	245	68.3%	-1.76 [-3.82, 0.30]
Mackie 2019	70.99	12.98	434	74.64	13.33	401	91.8%	-3.94 [-5.49, -2.39]
Total (95% CI)	776	100.0%	832	2.38 [-3.31, 1.45]				

Heterogeneity: Chi² = 4.46, df = 2 (P = 0.11); I² = 55%
Test for overall effect: Z = 5.03 (P < 0.00001)

Figure 5

New organ failure during ICU stay. CI, confidence interval; ICU, intensive care unit; SD, standard derivation

Study or Subgroup	conservative Events	conventional Events	Total Events	Weight	Risk Ratio M-H, Fixed, 95% CI
Grafatis 2016	41	216	257	71.7%	0.74 [0.52, 1.08]
Suzuka 2014	18	51	69	28.3%	0.73 [0.44, 1.12]
Total (95% CI)	267	269	536	100.0%	0.74 [0.55, 0.99]

Total events: 577
Heterogeneity: Chi² = 0.00, df = 1 (P = 0.96); I² = 0.0%
Test for overall effect: Z = 2.05 (P = 0.04)

Figure 6

New infection during ICU stay. CI, confidence interval; ICU, intensive care unit; SD, standard derivation

Study or Subgroup	conservative Events	conventional Events	Total Events	Weight	Risk Ratio M-H, Fixed, 95% CI
Grafatis 2016	39	216	255	63.3%	0.79 [0.54, 1.14]
Suzuka 2014	31	54	85	36.7%	1.05 [0.75, 1.47]
Total (95% CI)	270	269	539	100.0%	0.88 [0.68, 1.15]

Total events: 579
Heterogeneity: Chi² = 1.33, df = 1 (P = 0.25); I² = 25%
Test for overall effect: Z = 0.94 (P = 0.35)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

supplemental material.docx