EXPLICIT EVALUATION OF CERTAIN SUMS OF MULTIPLE ZETA-STAR VALUES

SHUJI YAMAMOTO

Abstract. Bowman and Bradley proved an explicit formula for the sum of multiple zeta values whose indices are the sequence \((3, 1, 3, 1, \ldots, 3, 1)\) with a number of 2’s inserted. Kondo, Saito and Tanaka considered the similar sum of multiple zeta-star values and showed that this value is a rational multiple of a power of \(\pi\). In this paper, we give an explicit formula for the rational part. In addition, we interpret the result as an identity in the harmonic algebra.

1. Introduction

Let us consider the multiple zeta values (MZV, for short)

\[
\zeta(k_1, \ldots, k_n) = \sum_{m_1 > \cdots > m_n > 0} \frac{1}{m_1^{k_1} \cdots m_n^{k_n}}.
\]

In some cases, explicit evaluations are known for these values or sums of them. For example, there are the formulas

\[
\zeta(\{2\}^q) = \frac{\pi^{2q}}{(2q + 1)!},
\]

\[
\zeta(\{3, 1\}^p) = \frac{\pi^{4p}}{(2p + 1)(4p + 1)!}
\]

(the notation \(\{ \}^p\) means that the sequence in the bracket is repeated \(p\)-times). In fact, these values are the special cases \(s(0, q)\) and \(s(p, 0)\) of the following sums of MZVs

\[
s(p, q) = \sum_{j_0, j_1, \ldots, j_{2p} \ge 0 \atop j_0 + j_1 + \cdots + j_{2p} = q} \zeta(\{2\}^{j_0}, 3, \{2\}^{j_1}, 1, \{2\}^{j_2}, 3, \ldots, 3, \{2\}^{j_{2p-1}}, 1, \{2\}^{j_{2p}}),
\]

for which an explicit formula was given by Bowman-Bradley [BB]:

\[
s(p, q) = \binom{2p + q}{q} \frac{\pi^{4p+2q}}{(2p + 1)(4p + 2q + 1)!}.
\]

On the other hand, we may also consider the multiple zeta-star values (MZSV for short)

\[
\zeta^*(k_1, \ldots, k_n) = \sum_{m_1 \ge \cdots \ge m_n \ge 1} \frac{1}{m_1^{k_1} \cdots m_n^{k_n}}.
\]

2010 Mathematics Subject Classification. Primary 11M32, Secondary 05A15.
Key words and phrases. multiple zeta values, multiple zeta-star values, harmonic algebra, Bowman-Bradley theorem, Kondo-Saito-Tanaka theorem.

This work was supported by Grant-in-Aid for JSPS Fellows 21·5093.
As an analogue of \(s(p, q) \), we put
\[
s^*(p, q) = \sum_{j_0, j_1, \ldots, j_{2p} \geq 0} \zeta^*\left(\{2\}^{j_0}, 3, \{2\}^{j_1}, 1, \{2\}^{j_2}, 3, \ldots, 3, \{2\}^{j_{2p} - 1}, 1, \{2\}^{j_{2p}}\right).
\]

Then the theorem of Kondo-Saito-Tanaka [KST] states that \(s^*(p, q) \in \mathbb{Q}[\pi^{4p+2q}] \) (see also [T]). The rational part, however, has not been given explicitly except for the cases \(p = 0 \) (Zlobin [Z]) and \(q = 0, 1 \) (Muneta [M]). The formula for \(p = 0 \) is
\[
(1.4) \quad s^*(0, q) = \zeta^*\left(\{2\}^q\right) = (2^{2q} - 2) \frac{(-1)^{q-1} B_{2q}}{(2q)!} 2^{2q}
\]
\((B_{2q} \text{ is the } 2q\text{-th Bernoulli number}).

In this paper, we prove the following relation between \(s(p, q) \) and \(s^*(p, q) \):

Theorem 1.1. For any \(p, q \geq 0 \), we have
\[
(1.5) \quad s^*(p, q) = \sum_{2i+k+u=2p} (-1)^{j+k} \binom{k+l}{k} \binom{u+v}{u} s(i, j) \zeta^*\left(\{2\}^{k+l}\right) \zeta^*\left(\{2\}^{u+v}\right).
\]

By substituting \((1.3)\) and \((1.4)\) into \((1.5)\), we obtain an explicit formula for the value of \(s^*(p, q) \):
\[
\frac{s^*(p, q)}{\pi^{4p+2q}} = \sum_{2i+k+u=2p} (-1)^{j+k} \binom{k+l}{k} \binom{u+v}{u} \frac{\beta_{k+l} \beta_{u+v}}{(2i+1)(4i+2j+1)!},
\]
where
\[
\beta_r = (2^{2r} - 2) \frac{(-1)^{r-1} B_{2r}}{(2r)!}.
\]

In particular, when \(q = 0 \), we can reproduce Muneta’s expression for \(s^*(p, 0) \) [M Theorem B]. When \(q = 1 \), however, our result appears different from his formula for \(s^*(p, 1) \) [M Theorem C].

In fact, our result is slightly more general than Theorem 1.1 namely, the numbers 3, 1, 2 are replaced by arbitrary positive integers \(a, b, c \) such that \(a + b = 2c \) and \(a \geq 2 \). Moreover, it is shown as a corollary of the corresponding identity between finite partial sums of multiple zeta series (see Theorem 2.1). In §3, we also give an interpretation as an identity in the harmonic algebra.

2. Generating series of truncated sums

For an integer \(m \geq 0 \) and an index \(\mathbf{k} = (k_1, \ldots, k_n) \) \((k_1, \ldots, k_n \geq 1)\), we define finite sums \(\zeta_m(\mathbf{k}) \) and \(\zeta^*_m(\mathbf{k}) \) by truncating the series for \(\zeta(\mathbf{k}) \) and \(\zeta^*(\mathbf{k}) \), respectively:
\[
\zeta_m(\mathbf{k}) = \sum_{m \geq m_1 \geq \cdots \geq m_n \geq 0} \frac{1}{m_{k_1} \cdots m_{k_n}}, \quad \zeta^*_m(\mathbf{k}) = \sum_{m \geq m_1 \geq \cdots \geq m_n \geq 1} \frac{1}{m_{k_1} \cdots m_{k_n}}.
\]
Here an empty sum is read as 0. When \(n = 0 \), we denote by \(\emptyset \) the unique index of length zero, and put \(\zeta_m(\emptyset) = \zeta^*_m(\emptyset) = 1 \) for all \(m \geq 0 \).
Remark 2.3. Prof. Kaneko pointed out that, since

Then it is not difficult to see that Theorem 2.1 is equivalent to the following generating series identity:

Theorem 2.1. For any $p, q \geq 0$ and $m \geq 0$, we have

\[
 s_m^*(p, q) = \sum_{2i+k+u=2p \atop j+l+v=q} (-1)^k \binom{k+l}{k} \binom{u+v}{u} s_m(i, j) \zeta_m^*(\{c\}^{k+l}) \zeta_m(\{c\}^{u+v}).
\]

If we put

\[
 F_m(x, y) = \sum_{p, q \geq 0} s_m(p, q) x^p y^q, \quad H_m(z) = \sum_{r \geq 0} \zeta_m(\{c\}^r) z^r,
\]

then it is not difficult to see that Theorem 2.1 is equivalent to the following generating series identity:

Theorem 2.2.

\[
 F_m^*(x, y) = F_m(x, -y) H_m^*(y - x) H_m^*(y + x).
\]

Remark 2.3. Prof. Kaneko pointed out that, since

\[
 H_m^*(z) = \prod_{i=1}^{m} \left(1 - \frac{z}{p_i}\right)^{-1} = H_m(-z)^{-1},
\]

can be written more symmetrically as

\[
 \frac{F_m^*(x, y)}{H_m(x + y)} = \frac{F_m(x, -y)}{H_m(x - y)}.
\]

To prove the identity (2.2), we introduce another kind of sums and their generating series. We define $J_{p,q} = J_{p,q}^{a,b,c}$ as the set of all shuffles of $(b, \{a, b\}^q)$ and $(\{c\}^p)$, e.g.

\[
 J_{0,0} = \{(b)\}, \quad J_{1,1} = \{(b, a, b, c), (b, a, c, b), (b, c, a, b), (c, b, a, b)\},
\]

and put

\[
 t_m(p, q) = \sum_{k \in J_{p,q}} \zeta_m(k), \quad G_m(x, y) = \sum_{p, q \geq 0} t_m(p, q) x^{2p+1} y^q,
\]

\[
 t_m^*(p, q) = \sum_{k \in J_{p,q}} \zeta_m^*(k), \quad G_m^*(x, y) = \sum_{p, q \geq 0} t_m^*(p, q) x^{2p+1} y^q.
\]
Lemma 2.4. For \(m \geq 0 \), we have
\[
\begin{align*}
\left(\frac{F_m(x, y)}{G_m(x, y)} \right) &= U_m U_{m-1} \cdots U_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \\
\left(\frac{F^*_m(x, y)}{G^*_m(x, y)} \right) &= V_m V_{m-1} \cdots V_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix},
\end{align*}
\]
where
\[
U_1 = \begin{pmatrix} 1 + \frac{x}{m} & \frac{x}{m} \\ \frac{x}{m} & 1 + \frac{x}{m} \end{pmatrix},
\]
\[
V_1 = \frac{1}{(1 - \frac{y - x}{m})(1 - \frac{y + x}{m})} \begin{pmatrix} 1 - \frac{y}{m} & \frac{x}{m} \\ \frac{x}{m} & 1 - \frac{y}{m} \end{pmatrix}.
\]

Proof. For \(m = 0 \), both (2.3) and (2.4) are obvious. For \(m \geq 1 \), we write
\[
F_m(x, y) = \sum_{p,q \geq 0} \sum_{k \in I_{p,q}} \zeta_m(k) x^{2p} y^q,
\]
\[
= \sum_{p,q \geq 0} \sum_{(k_1, \ldots, k_{2p+q}) \in I_{p,q}} \sum_{m \geq m_1 > \ldots > m_{2p+q} \geq 1} m_1 \ldots m_{2p+q} x^{2p} y^q.
\]

We decompose this series into three partial sums, each consisting of the terms such that (i) \(m_1 < m \), (ii) \(m_1 = m \) and \(k_1 = a \), or (iii) \(m_1 = m \) and \(k_1 = c \), respectively. Then we obtain the equality
\[
F_m(x, y) = F_{m-1}(x, y) + \frac{x}{m} G_{m-1}(x, y) + \frac{y}{m^c} F_{m-1}(x, y).
\]

Similarly, we also have
\[
G_m(x, y) = G_{m-1}(x, y) + \frac{x}{m} F_{m-1}(x, y) + \frac{y}{m^c} G_{m-1}(x, y).
\]

Combining them together, we get
\[
\left(\frac{F_m(x, y)}{G_m(x, y)} \right) = U_m \left(\frac{F_{m-1}(x, y)}{G_{m-1}(x, y)} \right),
\]
and hence (2.3) by induction.

In a similar way, we can show that
\[
F^*_m(x, y) = F^*_{m-1}(x, y) + \frac{x}{m^a} G^*_m(x, y) + \frac{y}{m^c} F^*_{m-1}(x, y),
\]
\[
G^*_m(x, y) = G^*_{m-1}(x, y) + \frac{x}{m^a} F^*_m(x, y) + \frac{y}{m^c} G^*_{m-1}(x, y),
\]
that is,
\[
\begin{pmatrix} 1 - \frac{y}{m} & -\frac{x}{m^a} \\ -\frac{x}{m^a} & 1 - \frac{y}{m^c} \end{pmatrix} \left(\begin{pmatrix} F_m(x, y) \\ G_m(x, y) \end{pmatrix} \right) = \left(\begin{pmatrix} F_{m-1}(x, y) \\ G_{m-1}(x, y) \end{pmatrix} \right).
\]

Since
\[
\begin{pmatrix} 1 - \frac{y}{m} & -\frac{x}{m^a} \\ -\frac{x}{m^a} & 1 - \frac{y}{m^c} \end{pmatrix}^{-1} = V_m
\]
under the assumption \(a + b = 2c \), we obtain (2.4) by induction. \(\square \)
Now it is easy to prove Theorem 2.2. Indeed, the identities (2.3) and (2.4) imply that
\[
\left\{ F_m^*(x, y) \right\} = \prod_{l=1}^{m} \left(1 - \frac{y - x}{lc} \right)^{-1} \left(F_m(x, y) \right)
\]
and
\[
= H_m^*(y - x) H_m^*(y + x) \left(F_m(x, y) \right).
\]

Remark 2.5. In the above proof, it is also shown that
(2.5)
\[
t^*_m(p, q) = \sum_{2i+k+u=2p} (-1)^{i+k} \frac{c}{k} \binom{k + l}{u} \binom{u + v}{u} t_m(i, j) \zeta^*_m(c) \zeta^*_m(c u + v).
\]

3. IDENTITIES IN THE HARMONIC ALGEBRA

In this section, we give algebraic interpretations of identities (2.1) and (2.5). First we recall the setup of harmonic algebra (see [IKOO] for a more general discussion).

Let \(\mathcal{H} \) be the free \(\mathbb{Q} \)-algebra generated by countable number of variables \(z_k \) (\(k = 1, 2, 3, \ldots \)). The harmonic product \(* \) is the \(\mathbb{Q} \)-bilinear product on \(\mathcal{H} \) defined by
\[
w * 1 = 1 * w = w,
\]
\[
z_{k+l} = z_k + z_l + z_{k+l} + z_{k+l} w * w',
\]
for \(k, l \geq 1 \) and \(w, w' \in \mathcal{H} \). It is known that \(\mathcal{H} \) equipped with the product \(* \) becomes a unitary commutative \(\mathbb{Q} \)-algebra, denoted by \(\mathcal{H}^1 \).

For an integer \(m \geq 0 \), we define a \(\mathbb{Q} \)-linear map \(Z_m : \mathcal{H}^1 \to \mathbb{Q} \) by
\[
Z_m(1) = 1, \quad Z_m(z_kz_lz_n) = \zeta_m(k, l, n).
\]
In fact, \(Z_m \) is a \(\mathbb{Q} \)-algebra homomorphism from \(\mathcal{H}^1 \) to \(\mathbb{Q} \). Moreover, we define a \(\mathbb{Q} \)-linear transformation on \(\mathcal{H}^1 \) by
\[
S(1) = 1, \quad S(z_k) = z_k, \quad S(z_kz_lz_n) = z_kS(z_lz_n) + z_{k+l}S(z_n)
\]
and put \(Z_m^* = Z_m \circ S \), so that
\[
Z_m^*(z_kz_lz_n) = \zeta_m^*(k, l, n)
\]
holds for any \(k, l, n \geq 1 \).

Now let us put
\[
\mathcal{A}_{p, q} = \sum_{(k_1, \ldots, k_{2p+q}) \in I_{p, q}} z_{k_1} \cdots z_{k_{2p+q}}, \quad \mathcal{B}_{p, q} = \sum_{(k_1, \ldots, k_{2p+q+1}) \in I_{p, q}} z_{k_1} \cdots z_{k_{2p+q+1}}.
\]
Then the fact that the identity (2.1) holds for all \(m \geq 0 \) suggests that the identities
(3.1)
\[
S(\mathcal{A}_{p, q}) = \sum_{2i+k+u=2p} (-1)^{i+k} \frac{c}{k} \binom{k + l}{u} \binom{u + v}{u} \mathcal{A}_{i, j} \zeta^*_m(c) S(z_{k+l}) \zeta^*_m(c u + v),
\]
(3.2)
\[
S(\mathcal{B}_{p, q}) = \sum_{2i+k+u=2p} (-1)^{i+k} \frac{c}{k} \binom{k + l}{u} \binom{u + v}{u} \mathcal{B}_{i, j} \zeta^*_m(c) S(z_{k+l}) \zeta^*_m(c u + v)
\]
hold in \(\mathcal{H} \). Indeed, this speculation is justified by the following theorem:
Theorem 3.1. For \(w \in \mathcal{S}^1 \), denote the rational sequence \(\{ Z_m(w) \}_{m \geq 0} \) by \(Z(w) \). Then the resulting \(\mathbb{Q} \)-algebra homomorphism \(Z : \mathcal{S}^1_* \rightarrow \mathbb{Q}^N \) is injective.

If we put \(\mathcal{S}^1_{>0} = \bigoplus_{k \geq 1} z^k \mathcal{S}^1 \), it is obvious from the definition of \(Z_m \) that \(\mathcal{S}^1_{>0} = \text{Ker} \ Z_0 \). Hence it suffices to consider the map
\[
\mathcal{S}^1_{>0} \rightarrow \mathbb{Q}^{\mathbb{Z}^n_+}; \ w \mapsto \{ Z_m(w) \}_{m > 0}.
\]
The injectivity of this map is an immediate consequence of the following theorem, which is obtained by specializing Corollary 5.6 in [Br]:

Theorem 3.2. The multiple polylogarithm functions
\[
\text{Li}_k(t) = \sum_{m_1 > \cdots > m_n > 0} \frac{t^{m_1}}{m_1 \cdots m_n} = \sum_{m > 0} (\zeta_m(k) - \zeta_{m-1}(k)) t^m,
\]
for \(k = (k_1, \ldots, k_n) \in (\mathbb{Z}_{>0})^n \) and \(n \geq 1 \), are linearly independent over the ring \(\mathbb{C}[t, 1/t, 1/(1-t)] \).

Remark 3.3. It is also possible to prove the identities (3.1) and (3.2) directly, by making computations similar to the proof of Proposition 4 in [IKOO], in the matrix algebra \(M_2(\mathcal{S}^1_*[[x, y]]) \).

References

[BB] D. Bowman and D. M. Bradley, *The algebra and combinatorics of shuffles and multiple zeta values*, J. Combin. Theory Ser. A 97 (2002), 43–61.

[Br] F. C. S. Brown, *Multiple zeta values and periods of moduli spaces \(\mathcal{M}_{0,n} \)*, Ann. Scient. Éc. Norm. Sup. 42 (2009), 371–489.

[KST] H. Kondo, S. Saito and T. Tanaka, *The Bowman-Bradley theorem for multiple zeta-star values*, preprint.

[IKOO] K. Ihara, J. Kajikawa, Y. Ohno, J. Okuda, *Multiple zeta values vs. multiple zeta-star values*, J. Alg., 332 (2011), 187–208.

[M] S. Muneta, *On some explicit evaluations of multiple zeta-star values*, J. Number Theory, 128 (2008), 2538–2548.

[T] T. Tanaka, *A simple proof of certain formula for multiple zeta-star values*, J. Alg., Number Theory: Adv. Appl. 3 (2010), 97–110.

[Z] S. A. Zlobin, *Generating functions for the values of a multiple zeta function*, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 73 (2005), 55–59.

JSPS RESEARCH FELLOW, GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, 3-8-1 KOMABA, MEGURO, TOKYO, 153-8914 JAPAN.

E-mail address: yamashu@ms.u-tokyo.ac.jp