Perceived weight status may contribute to education inequalities in five-year weight change among mid-aged women

Abstract

Objectives: To examine education differences in five-year weight change among mid-aged adults, and to ascertain if this may be due to socioeconomic differences in perceived weight status or weight control behaviours (WCBs).

Methods: Data were used from the Australian Diabetes, Obesity and Lifestyle Study. Mid-aged men and women with measured weights at both baseline (1999-2000) and follow-up (2004-2005) were included. Percent weight change over the five-year interval was calculated and perceived weight status, WCBs and highest attained education were collected at baseline.

Results: Low-educated men and women were more likely to be obese at baseline compared to their high-educated counterparts. Women with a certificate-level education had a greater five-year weight gain than those with a bachelor degree or higher. Perceived weight status or WCBs did not differ by education among men and women, however participants that perceived themselves as very overweight had less weight gain than those perceiving themselves as underweight or normal weight. WCBs were not associated with five-year weight change.

Conclusions and Implications: The higher prevalence of overweight/obesity among low-educated women may be a consequence of greater weight gain in mid-adulthood. Education inequalities in overweight/obesity among men and women made be due (in part) to overweight or obese individuals in low-educated groups not perceiving themselves as having a weight problem.

Key words: weight control, weight change, body mass index, education

Jessica Siu, Katrina Giskes
School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology

Jonathan Shaw
Baker IDI Heart and Diabetes Institute, Victoria

Gavin Turrell
School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology

Socioeconomically disadvantaged groups have a higher prevalence of overweight and obesity compared to their more-advantaged counterparts, and this association has been documented more consistently among women. \(^{1,2}\) Overweight and obesity are most prevalent among mid-aged adults\(^ {3}\) and are thought to be major contributing factors to the higher morbidity and mortality from chronic conditions seen among socioeconomically disadvantaged groups, such as cardiovascular diseases, type 2 diabetes, and some cancers. \(^ {4,5}\) While there is extensive literature documenting socioeconomic inequalities in overweight and obesity, less is known about the factors contributing to this relationship\(^ {6}\), and the existing literature is limited by cross-sectional study designs.

Perceptions of weight status may be an important determinant of dietary and physical activity behaviours. \(^ {7,9}\) Some evidence suggests that socioeconomic groups differ in their perceived weight status and higher socioeconomic groups are more likely to perceive themselves as overweight or obese compared to their less-advantaged counterparts. \(^ {10,11}\) Misperceptions of weight status among overweight or obese individuals may be potentially problematic, as they may fail to act on health messages related to weight maintenance/loss, or diet and lifestyle changes promoting a healthy weight. \(^ {12}\) Given the rising prevalence of overweight and obesity and the consequent norm that a higher weight status is acceptable, \(^ {13,14}\) perceptions of weight status may be an increasingly important point of focus for the design and implementation of clinical and public health initiatives to decrease socioeconomic inequalities in overweight/obesity. Additionally, research has shown a strong association between self-perceived weight status and weight control behaviours (WCBs). \(^ {3,6}\) However, no known Australian study has examined socioeconomic differences in engaging in WCBs among mid-aged adults, and whether WCBs may contribute to inequalities in overweight/obesity among this age group.

The conceptual framework of this study is outlined in Figure 1. Associations between SEP, weight status, weight change and health have been well established, previous research
has also examined associations between perceived weight status and WCBs. Using data from mid-aged adults participating in the five-year prospective Australian Diabetes, Obesity and Lifestyle (AusDiab) Study, the focus of the current study was to examine associations between education, weight change, perceived weight status and WCBs. This is the first known Australian and international study among mid-aged men and women that has looked at the role of perceptions of weight status and WCBs to socioeconomic differences in overweight/obesity using data on weight change.

Methods

Data source

Data were collected as part of the Australian Diabetes, Obesity and Lifestyle (AusDiab) Study conducted in 1999-2000 (baseline) and 2004-2005 (follow-up). Detailed information on the methods of the AusDiab Study have been published elsewhere.15

Study scope

Men and women aged 45 to 60 years at baseline (n = 2,787) who completed both baseline and follow-up were included in the current study. This age group was selected as the prevalence of overweight and obesity in Australia is greatest among mid-aged adults; and neither weight status nor socioeconomic position (SEP) are influenced by growth, development or ageing at this life stage.16,17

Sampling and data collection

Stratified cluster sampling of areas was used to select participants at baseline. A total of 42 census collectors districts (CCDs) were selected, i.e. six CCDs randomly selected within every State and the Northern Territory. CCDs are the smallest area-level unit used for the collection of census data by the Australian Bureau of Statistics.15 The probability of selection of each CCD was proportional to its population size.15

Data were collected by household interviews conducted at baseline, and from physical examinations undertaken at both baseline and follow-up. The baseline household interview ascertained sociodemographic characteristics of participants (i.e. age, gender, country of birth). Physical examinations were conducted at a local testing site; at this appointment weight was measured, and a questionnaire was interviewer-administered to collect data on education, perceptions of weight status, WCBs and chronic medical conditions.

A total of 20,347 participants from 11,479 households completed the household interview; 5,650 households refused participation. Therefore, household response in the AusDiab Study was 67.0%. Of those that completed the household survey, 11,247 attended the physical examination at baseline (response rate 55.3%; 11,247/20,347). At follow-up study, 6,400 participants attended the physical examination (response rate 59.3%, 6,400 of 10,788 eligible participants).18

Measures

Measured weight status and five-year weight change

At baseline and follow-up, weight was measured using a beam balance scale, and was recorded to the nearest 0.1 kg. Participant’s height was measured (without shoes) using stadiometers mounted onto a stable board on a flat surface. Measured weight status was categorised into the National Health and Medical Research Council Body Mass Index (BMI) categories of underweight (< 18.5 kg/m²), healthy weight (18.5 to 24.9 kg/m²), overweight (25 to 29.9 kg/m²) and obese (≥30.0 kg/m²).20 Consistent with previous research,21 percentage weight change was calculated by subtracting baseline weight from weight at follow-up, then dividing by baseline weight and multiplying by 100.

Perceived weight status

Perceived weight status was ascertained at baseline by asking participants, “With regard to your weight, do you consider yourself to be: underweight, the right weight, slightly overweight or very overweight?”

Figure 1: Conceptual framework for this study.
Weight-control behaviours

At baseline, participants were asked about their current WCBs by the following question: “Which of the following best describes you at the moment?” Response options were: ‘I am actively doing things to try to ‘gain weight’, ‘avoid gaining weight’, ‘try to lose weight’, and ‘not doing anything in particular’.

Education

Participants’ education was ascertained by the following question: “Which of these describes the highest qualification you have received?” Response options were: 1) secondary school qualification or lower, 2) nursing qualification, 3) teaching qualification, 4) trade certificate/apprenticeship, 5) technician’s certificate/advanced, 6) certificate, 7) certificate other than above, 8) associate diploma, 9) undergraduate diploma, 10) bachelor degree, 11) post-graduate diploma, and 12) masters degree/doctorate. These were re-categorised into four education levels: 1) secondary school qualification or lower (response option 1), certificate (options 2-7), diploma (options 8-9), and bachelor or higher (options 10-12).

Table 1: Sociodemographic, weight status and weight-control characteristics of respondents at baseline compared with non-respondents to follow-up.

	Respondents	Non-Respondents	p value*		
	Men (n = 1278, 46.4%)	Women (n = 1475, 53.6%)	Men (n = 642, 46.0%)	Women (n = 754, 54.0%)	0.05
Age – Mean (sd)	52.0 (4.4)	52.0 (4.4)	51.8 (4.5)	51.7 (4.5)	0.05
Country of birth					0.03
Australia	73.8	75.2	71.3	71.4	0.03
United Kingdom & Northern Ireland	13.0	12.0	13.7	11.8	0.03
Other	13.2	12.8	15.0	16.8	0.03
Education					<0.01
Secondary school or lower	27.7	44.7	31.4	51.2	<0.01
Certificate	40.9	33.4	41.9	31.5	0.03
Diploma	8.4	5.3	8.3	4.6	0.03
Bachelor or higher	23.0	16.6	18.4	12.7	0.03
Measured weight status					<0.01
Underweight	0.3	0.9	0.3	1.6	<0.01
Healthy weight	26.7	38.8	23.0	35.0	0.03
Overweight	50.3	34.8	50.0	34.2	0.03
Obese	22.7	25.4	26.7	29.1	0.03
Perceived weight status					0.53
Underweight	3.1	1.8	3.4	2.4	0.53
Right Weight	23.3	20.7	25.9	19.5	0.03
Slightly Overweight	53.4	46.2	49.2	45.9	0.03
Very Overweight	12.1	22.4	11.4	19.5	0.03
Missing	8.0	8.9	10.1	12.7	0.03
Weight-control behaviour					0.19
Actively gaining weight	0.7	0.7	1.2	0.9	0.19
Trying to avoid gaining weight	21.8	26.9	19.6	22.0	0.19
Trying to lose weight	18.1	26.4	17.1	27.2	0.19
Not doing anything	51.4	37.1	51.9	37.1	0.19
Missing	8.0	8.8	10.1	12.7	0.19

* p value for differences between respondents and non-respondents to follow-up. Those with missing data on perceived weight status, accuracy of perceived weight status and weight-control behaviour were excluded from analyses examining differences between respondents and non-respondents. Differences were considered statistically significant if p ≤ 0.05 (two-tailed).
Table 2: Bivariate associations between education, measured weight status, perceived weight status and weight-control behaviour among men and women.

	Education			
	Secondary school or lower	Certificate	Diploma	Bachelor or higher
Men n = 1,278				
Measured weight status				
Underweight/ Healthy weight	24.9	27.0	25.2	32.5
Overweight	47.2	48.7	60.7	52.5
Obese	28.0	24.3	14.0	14.9
p-value	<0.01			
Perceived weight statusa				
Underweight/ Right weight	25.4	26.4	22.4	28.8
Slightly overweight	48.9	56.1	60.7	51.5
Very overweight	13.8	11.9	8.4	11.9
Missing	11.9	5.6	8.4	7.8
p-value	0.04			
Weight-control behaviourb				
Trying to avoid gaining weight	20.1	23.2	19.6	22.4
Trying to lose weight	19.8	14.4	19.6	22.4
Not doing anything	48.0	55.7	52.3	47.1
Missing	11.6	5.6	8.4	7.8
p-value	0.01			
Women n = 1475				
Measured weight status				
Underweight/ Healthy weight	36.4	39.2	48.7	48.6
Overweight	36.1	35.0	25.6	33.9
Obese	27.6	25.8	25.6	17.6
p-value	<0.01			
Perceived weight statusa				
Underweight/ Right weight	20.6	23.2	20.5	26.5
Slightly overweight	48.0	45.1	44.9	44.1
Very overweight	22.1	24.4	20.5	20.0
Missing	9.2	7.3	14.1	9.4
p-value	0.39			
Weight-control behaviourb				
Trying to avoid gaining weight	26.8	26.6	30.8	26.5
Trying to lose weight	27.0	27.4	26.9	22.9
Not doing anything	35.9	38.0	29.5	40.8
Missing	9.2	7.3	12.8	9.4
p-value	0.68			

* Category for perceived ‘Underweight’ is collapsed with perceived ‘Right weight’ due to small number of participants in this group (men n = 40; women n = 26).
* Analyses have included participants who responded ‘Actively doing things to gain weight’, however are not included in this table due to small number of participants in this group (men n = 9, women n = 11).
Other covariates

Age

‘Age’ in years at baseline was measured as a continuous variable.

Country of birth

Country of birth was included as a covariate as it may be related to both SEP and perceptions of weight status. Participants were asked “In which country were you born?” Responses were categorised as ‘Australia/New Zealand’, ‘United Kingdom and Northern Ireland’, and ‘other’.

Chronic health conditions

Chronic health conditions was also adjusted for as it may be related to SEPs, weight status and weight change. Participants responded in a yes/no format to a list of medical conditions, including gout, angina, heart attack, stroke, hypertension and diabetes. The total number of chronic health conditions was calculated for each participant, and summarised as a continuous variable.

Analyses

There were 2,787 participants in the selected age range. Those with missing data on their country of birth, education level, height and weight were excluded from the analyses (1.2%, n=34), resulting in an analytical sample of 2,753 participants.

Linear regression was used to ascertain differences in five-year weight change by education. Multinominal logistic regression was used to examine education differences in perceived weight status and WCBs. To take account of the clustered sampling design and minimise the likelihood of correlation between individuals inducing type I error, all analyses were conducted using a multilevel analytical package (MLwiN version 2.01). In these analyses, individuals were level-1 observations and CCDs were level-2 units. All multivariable analyses were adjusted for age, country of birth, and number of chronic health conditions, and stratified by gender. Analyses examining weight change were additionally adjusted for baseline BMI.

Results

Table 1 shows the sociodemographic characteristics (at baseline) of the respondents and non-respondents to follow-up. The respondents had a greater mean age, a higher proportion were born in Australia, a greater percentage had a bachelor degree or higher and a lower proportion had a measured BMI in the obese range compared with non-respondents. There was no difference between respondents and non-respondents in perceived weight status or WCBs.

Tables 2 and 3 shows the bivariate and multivariate associations between education, measured weight status, five-year weight change, perceived weight status and WCB. Lower-educated men and women were more likely to be obese than their higher-educated counterparts. Almost all education groups had significant weight gains over the follow-up period. There was no association between education and weight change among men, however women with certificate-level education had a greater weight gain than their counterparts with a bachelor degree or higher. There were no education differences in perceived weight status or WCBs among men or women.

Table 4 summarises the associations between perceived weight status, WCBs and five-year weight change. Perceived weight status was associated with weight change; men and women perceiving themselves as very overweight had smaller weight change than those perceiving themselves as underweight/the right weight. WCBs were not associated with five-year weight change among men or women.

Discussion

This study showed that among this sample of mid-aged Australian adults, lower-educated men and women were more likely to be obese compared to their more advantaged counterparts, and low-educated women had greater five-year weight gains compared to those with a bachelor degree or higher. Despite this, there were no education differences in perceived weight status and WCBs among men and women. Perceiving oneself as very overweight was associated with a lower five-year weight gain, however engaging in WCBs was not associated with five-year weight gain.

Table 4: Five-year weight change (%) by perceived weight status and weight-control behaviour among men and women.a

Perceived weight status	Five-Year Weight Change Percentage (95% CI)
	Men
	(n = 1278)
	Women
	(n = 1475)
Underweight/right weight	2.2 (1.6-2.9)
Slightly overweight	1.5 (0.8-2.2)
Very overweight	0.6 (-0.5-1.7)
Missing	1.4 (0.2-2.6)
p value	0.03
	0.01
Weight-control behaviourb	
Avoid gaining weight	1.9 (-2.1-5.3)
Trying to lose weight	1.6 (-2.1-5.3)
Not doing anything	1.4 (-2.3-5.1)
Missing	1.4 (0.3-2.6)
p value	0.67
	0.55

a) Analyses adjusted for BMI at baseline, age, number of chronic health conditions and country of birth. Differences were considered statistically significant if p ≤ 0.05 (two-tailed).

b) Analyses have included participants who responded ‘Active doing things to gain weight’, however are not included in this table due to small number of participants in this group (men n = 9, women n = 11).

c) Category for perceived ‘Underweight’ is collapsed with perceived ‘Right weight’ due to small number of participants in this group (men n = 40; women n = 26).
Table 3: Multivariable associations between education, five-year weight change, measured weight status, perceived weight status and weight-control behaviour among men and women.

Education	OR (95% CI)	OR (95% CI)	OR (95% CI)	OR (95% CI)
Secondary school or lower	1.5 (0.7 to 2.4)	1.6 (0.8-2.4)	1.8 (0.5-3.0)	1.4 (0.7-2.10)
Certificate	0.79 (0.55-1.12)	0.82 (0.60-1.12)	0.73 (0.44-1.21)	1.00 (reference)
Diploma	0.79 (0.58-1.09)	0.85 (0.64-1.14)	1.40 (0.90-2.21)	1.00 (reference)
Bachelor or higher	1.97 (1.30-2.98)	1.93 (1.17-2.54)	0.89 (0.45-1.63)	1.00 (reference)

Men n = 1278

Five-year weight changea (%, 95% CI) 1.5 (0.7 to 2.4) 1.6 (0.8-2.4) 1.8 (0.5-3.0) 1.4 (0.7-2.10)

p-value 0.90

Measured weight statusb

Underweight/ Healthy weight 0.79 (0.55-1.12) 0.82 (0.60-1.12) 0.73 (0.44-1.21) 1.00 (reference)

Overweight 0.79 (0.58-1.09) 0.85 (0.64-1.14) 1.40 (0.90-2.21) 1.00 (reference)

Obese 1.97 (1.30-2.98) 1.93 (1.17-2.54) 0.89 (0.45-1.63) 1.00 (reference)

Men n = 1278

Five-year weight changea (%, 95% CI) 2.5 (1.5-3.6) 3.1 (2.0-4.1) 1.5 (-0.3-3.3) 1.1 (0.2 to 2.1)

p-value <0.01

Measured weight statusb

Underweight/ Healthy weight 0.70 (0.51-0.96) 0.73 (0.54-1.00) 1.07 (0.63-1.82) 1.00 (reference)

Overweight 1.13 (0.82-1.54) 1.06 (0.76-1.48) 0.68 (0.39-1.21) 1.00 (reference)

Obese 1.52 (1.03-2.25) 1.52 (1.01-2.30) 1.55 (0.83-2.91) 1.00 (reference)

Women n = 1475

Five-year weight changea (%, 95% CI) 2.5 (1.5-3.6) 3.1 (2.0-4.1) 1.5 (-0.3-3.3) 1.1 (0.2 to 2.1)

P-value <0.01

Measured weight statusb

Underweight/ Healthy weight 0.70 (0.51-0.96) 0.73 (0.54-1.00) 1.07 (0.63-1.82) 1.00 (reference)

Overweight 1.13 (0.82-1.54) 1.06 (0.76-1.48) 0.68 (0.39-1.21) 1.00 (reference)

Obese 1.52 (1.03-2.25) 1.52 (1.01-2.30) 1.55 (0.83-2.91) 1.00 (reference)

Perceived weight statusb,c,d

Underweight/ Right weight 0.91 (0.64-1.29) 0.91 (0.67-1.25) 0.73 (0.43-1.25) 1.00 (reference)

Slightly overweight 0.87 (0.63-1.18) 1.17 (0.88-1.56) 1.43 (0.91-2.24) 1.00 (reference)

Very overweight 1.09 (0.67-1.77) 0.97 (0.62-1.52) 0.63 (0.29-1.38) 1.00 (reference)

Missing 2.01 (1.19-3.42) 0.79 (0.45-1.36) 1.17 (0.55-2.52) 1.00 (reference)

Perceived weight statusb,d

Underweight/ Right weight 0.91 (0.64-1.29) 0.91 (0.67-1.25) 0.73 (0.43-1.25) 1.00 (reference)

Slightly overweight 0.87 (0.63-1.18) 1.17 (0.88-1.56) 1.43 (0.91-2.24) 1.00 (reference)

Very overweight 1.09 (0.67-1.77) 0.97 (0.62-1.52) 0.63 (0.29-1.38) 1.00 (reference)

Missing 2.01 (1.19-3.42) 0.79 (0.45-1.36) 1.17 (0.55-2.52) 1.00 (reference)

Weight-control behaviourb,c

Trying to avoid gaining weight 0.84 (0.58-1.24) 1.04 (0.74-1.47) 0.84 (0.48-1.46) 1.00 (reference)

Trying to lose weight 0.78 (0.53-1.15) 0.54 (0.37-0.78) 0.80 (0.46-1.40) 1.00 (reference)

Not doing anything 1.10 (0.81-1.51) 1.46 (1.09-1.95) 1.26 (0.81-1.97) 1.00 (reference)

Missing 1.75 (0.99-3.09) 0.77 (0.43-1.39) 1.15 (0.50-2.62) 1.00 (reference)

Weight-control behaviourb,c

Trying to avoid gaining weight 0.84 (0.58-1.24) 1.04 (0.74-1.47) 0.84 (0.48-1.46) 1.00 (reference)

Trying to lose weight 0.78 (0.53-1.15) 0.54 (0.37-0.78) 0.80 (0.46-1.40) 1.00 (reference)

Not doing anything 1.10 (0.81-1.51) 1.46 (1.09-1.95) 1.26 (0.81-1.97) 1.00 (reference)

Missing 1.75 (0.99-3.09) 0.77 (0.43-1.39) 1.15 (0.50-2.62) 1.00 (reference)

a) Analyses adjusted for BMI at baseline, age, number of chronic health conditions and country of birth. Differences were considered statistically significant if confidence interval of the odds ratio was exclusive of 1.

b) Analyses adjusted for age, number of chronic health conditions and country of birth. Differences were considered statistically significant if confidence interval of the odds ratio was exclusive of 1.

c) Analyses have included participants who responded ‘actively doing things to gain weight’, however are not included in this table due to small number of participants in this group (men n = 9, women n = 11).

d) Category for perceived ‘Underweight’ is collapsed with perceived ‘Right weight’ due to small number of participants in this group (men n = 40; women n = 26).
Similar education inequalities in weight status as seen in the current study have been reported in other Australian and international research.1 Few studies, particularly among mid-aged Australian adults, have examined prospective weight changes using measured weight. However, international research has shown greater weight gains among lower-educated women.21,22 We did not find education differences in weight change among men; this gender difference may be due to reproductive history and menopause among mid-aged women, with these two factors being significant determinants of weight gain, and reproductive histories differing markedly among women from different socioeconomic backgrounds.23

Despite pronounced inverse inequalities in measured weight status, an interesting finding of the current study was that no education differences were seen in perceived weight status among men or women. Higher socioeconomic groups may be more aware of healthy weight recommendations than their socioeconomically disadvantaged counterparts,24,25 or may be more sensitive to body weight ideals1,10 and have higher levels of body dissatisfaction.26,27 Some Australian research has supported this assertion, showing that higher-educated groups have a tendency to overestimate their weight status, and lower-educated groups are more likely to underestimate their weight status.28

The above-mentioned factors may also explain why no association was found between education and WCBs among men and women in the current study, as research has shown that people are unlikely to engage in WCBs unless they perceive they have a weight problem.7,9 Previous Australian and international research has found mixed associations between WCBs and adults’ socioeconomic characteristics.29-31 These mixed findings may be due to the wide variation in the scope of WCBs considered in different studies. The fact that we found greater weight gains among low-educated women, but no difference in their self-reported WCBs, may suggest that the WCBs adopted by low-educated women may be less effective or sustained for a shorter period of time compared to those used by their higher-educated counterparts.

Other factors not measured in the current study may have also contributed to the differential weight gains by education seen among women. Some research suggests that socioeconomically disadvantaged women may have less access to healthy foods,32,33 opportunities and infrastructure for physical activity,32,33 or may experience more barriers to adhering to WCBs, such as cost,34 compared to their more advantaged counterparts. This may place advantaged women in a better position to adopt a lifestyle that prevents weight gain.

Study strengths and limitations

The strengths of the study include the prospective study design, large sample of mid-aged adults, use of measured weights to obtain weight change and the relatively long follow up period. A limitation of the current study was that lower-educated groups were more likely to be lost to follow up and were consequently under-represented in the current study relative to the Australian population.15,35 Therefore, the associations with education reported in the current study are likely to have under-estimated the magnitude of the ‘true’ inequalities among the population. Furthermore, only baseline measures of perceived weight status and WCB were examined in the current study, hence we did not assess how these factors may have differed across the two time points and how their change may have contributed to weight change. Moreover, data were also not collected on the types and duration of WCBs that participants engaged in. Additionally, social-desirability bias in perceptions of weight status and WCBs may have influenced the direction and magnitude of the associations reported.

Conclusions/implications

The higher prevalence of overweight/obesity among low-educated women may be a consequence of greater weight gain in mid-adulthood, therefore interventions targeting reductions in inequalities in weight-related chronic diseases in older age should address this differential weight gain at this life stage among women. Education inequalities in overweight/obesity among men and women are due (in part) to overweight or obese individuals in low-educated groups not perceiving themselves as having a weight problem. Further research needs to understand how different socioeconomic groups evaluate their weight status, and if they differ in the types and duration of WCBs they engage in.

Acknowledgements

The AusDiab Study co-coordinated by the Baker IDI Heart and Diabetes Institute, gratefully acknowledges the support given by: National Health and Medical Research Council (NHMRC grant 233200), Australian Government Department of Health and Ageing, Abbott Australasia Pty Ltd, Alphapharm Pty Ltd, AstraZeneca, Bristol-Myers Squibb, City Health Centre-Diabetes Service-Canberra, Department of Health and Community Services – Northern Territory, Department of Health and Human Services – Tasmania, Department of Health – New South Wales, Department of Health – Western Australia, Department of Health – South Australia, Department of Human Services – Victoria, Diabetes Australia, Diabetes Australia Northern Territory, Eli Lilly Australia, Estate of the Late Edward Wilson, GlaxoSmithKline, Jack Brockhoff Foundation, Janssen-Cilag., Kidney Health Australia, Marian & FH Flack Trust, Menzies Research Institute, Merck Sharp & Dohme, Novartis Pharmaceuticals, Novo Nordisk Pharmaceuticals, Pfizer Pty Ltd, Pratt Foundation, Queensland Health, Roche Diagnostics Australia, Royal Prince Alfred Hospital, Sydney, Sanofi Aventis, Sanofi Synthelabo. Also, for their invaluable contribution to the set-up and field activities of AusDiab, we are grateful to A Allman, B Atkins, S Bennett, A Bonney, S Chadban, M de Courten, M Dalton, D Dunstan, T...
Dwyer, H Jahangir, D Jolley, D McCarty, A Meenan, N Meining, S Murray, K O’Dea, K Polkinghorne, P Phillips, C Reid, A Stewart, R Tapp, H Taylor, T Whalen, F Wilson and P Zimmet.

References

1. McLaren L. Socioeconomic status and obesity. *Epidemiol Rev*. 2007;29:29-48.
2. Sobel J, Stunkard AJ. Socioeconomic status and obesity: a review of the literature. *Psychol Bull*. 1989;105:545-575.
3. Dunstan D, Zimmet P, Welborn T, Sicaee R, Armstrong T, Atkins R, et al. Diabesity and Associated Disorders in Australians-2000. *The Accelerating Epidemic*. Melbourne (AUST): International Diabetes Institute;2001.
4. Brown A, Shahpash M. Risk factors for overweight and obesity: results from the 2001 National Health Survey. *Public Health*. 2007;121:603-13.
5. Turrell G, Stanley L, de Looper M, Oldenburg B. *Health Inequalities in Australia: Morbidity, Health Behaviours, Risk Factors and Health Service Use*. Canberra (AUST): Australian Institute of Health and Welfare; 2006.
6. Ball K, Mishra G, Crawford D. Which aspects of socioeconomic status are related to obesity among men and women? *Int J Obes*. 2002;26:559-65.
7. Nowak M. The weight-conscious adolescent: body image, food intake, and weight-related behavior. *J Adolesc Health*. 1998;23(6):389-98.
8. Brug J, Wamens S, Kremers S, Giskek K, Onenma A. Underestimation and overestimation of personal weight status: associations with socio-demographic characteristics and weight maintenance intentions. *J Hum Nutr Diet*. 2006;19:253-62.
9. Paxton S, Sculthorpe A, Gibbons K. Weight loss strategies and beliefs in high and low socioeconomic areas of Melbourne. *Aust N Z J Public Health*. 1994;18(4):412-7.
10. Chang VW, Christakis NA. Self-perception of weight appropriateness in the United States. *J Prev Med*. 2003;24(4):332-9.
11. Paeratakul S, White MA, Williamson DA, Ryan DH, Bray GA. Sex, race/ethnicity, socioeconomic status, and BMI in relation to self-perception of overweight. *Obes Res*. 2002;10(5):345-50.
12. Kuchler F, Variyam JN. Mistakes were made: misperception as a barrier to reducing overweight. *Int J Obes*. 2003;27:856-61.
13. Johnson F, Cooke L, Croker H, Wardle J. Changing perceptions of weight in Britain: comparison of two population surveys. *Br Med J*. 2008;337:a494.
14. Maximova K, McGraith JJ, Barnett T, O’Loughlin J, Paradis G, Lambert M. Do you see what I see? Weight status misperception and exposure to obesity among children and adolescents. *Int J Obes*. 2008;32:1008-15.
15. Dunstan DW, Zimmet PZ, Welborn TA, Cameron AJ, Shaw J, de Courten M, et al. The Australian Diabetes, Obesity and Lifestyle Study (AusDiab)- methods and response rates. *Diabetes Res Clin Pract*. 2002;57:119-29.
16. Ball K, Crawford D, Ireland P, Hodget A. Patterns and demographic predictors of 5-year weight change in a multi-ethnic cohort of men and women in Australia. *Public Health Nutr*. 2003;6(3):269-80.
17. Hadden WC. The use of educational attainment as an indicator of socioeconomic position. *Am J Public Health*. 1996;86:1525-6.
18. Magliano DJ, Barr ELM, Zimmet PZ, Cameron AJ, Dunstan DW, Colaguri S, et al. Glucose indices, health behaviours and incidence of diabetes in Australia: The Australian Diabetes, Obesity and Lifestyle Study. *Diabetes Care*. 2008;31(2):267-72.
19. National Health and Medical Research Council. *Clinical Practice Guidelines for the Management of Overweight and Obesity in Adults*. Canberra (AUST): Commonwealth of Australia; 2003.
20. Harris T, Savage P, Tell G, Haan M, Kumanyika S, Lynch J. Carrying the burden of cardiovascular risk of old age: associations of weight and weight change with prevalent cardiovascular disease, risk factors, and health status in the Cardiovascular Health Study. *Am J Clin Nutr*. 1997;66:837-44.
21. Ball K, Crawford D. Socioeconomic status and weight change in adults: a review. *Soc Sci Med*. 2008;67(3):487-2001.553(3):185-90.
22. Giskek K, van Lenthe F, Turrell G, Kamphuis C, Brug J, Mackenbach J. Socioeconomic position at different stages of the life course and its influence on body weight and weight gain in adulthood: a longitudinal study with 13-year follow-up. *Obesity* (Silver Spring). 2008;16(6):1377-81.
23. Wamala SP, Wolk A, Orth-Gomé K. Determinants of obesity in relation to socioeconomic status among middle-aged Swedish women. *Prev Med*. 1997;26:734-44.
24. McLaren L, Gauvin L. Neighbourhood level versus individual level correlates of women’s body dissatisfaction: toward a multilevel understanding of the role of affluence. *J Epidemiol Community Health*. 2002;56:193-9.
25. Gucciardi E, Wang SC, Badiani T, Stewart DE. Exploring Canadian women and men’s perception of overweight. *Womens Health Issues*. 2007;17:374-82.
26. McLaren L, Gauvin L. Does the ‘average size’ of women in the neighbourhood influence a woman’s likelihood of body dissatisfaction? *Health Place*. 2003;9:327-35.
27. McLaren L, Kuh D. Women’s body dissatisfaction, social class, and social mobility. *Soc Sci Med*. 2004;58:1575-84.
28. Giskek K, Sui J. Do Australians perceive their weight status differentially and accurately? Implications for health promotion. *Aus N Z J Public Health*. 2008;32(2):183-4.
29. Kruger J, Galuska DA, Serdula MK, Jones DA. Attempting to lose weight specific practices among U.S. adults. *Am J Prev Med*. 2004;26(5):402-6.
30. Wardle J, Griffith J. Socioeconomic status and weight control practices in British adults. *Int J Epidemiol*. 2007;36(1):161-8.
31. Temperio A, Cameron-Smith D, Burns C, Salmon J, Crawford D. Physical activity beliefs and behaviours among adults attempting weight control. *Int J Obes*. 2000;24:81-7.
32. van Lenthe FJ, Mackenbach JP. Neighbourhood deprivation and overweight: the GLOBE study. *Int J Obes*. 2002;26:234-40.
33. King T, Kavanagh AM, Jolley D, Turrell G, Crawford D. Weight and place: a multilevel cross-sectional survey of area-level social disadvantage and overweight obesity in Australia. *Int J Obes*. 2006;30:281-7.
34. Giskek K, van Lenthe FJ, Brug J, Mackenbach JP, Turrell G. Socioeconomic inequalities in food purchasing: The contribution of respondent-perceived and actual (objectively measured) price and availability of foods. *Prev Med*. 2007;45:41-8.
35. Barr ELM, Magliano DJ, Zimmet PZ, Polkinghorne KR, Atkins RC, Dunstan DW, et al. *The Australian Diabetes, Obesity and Lifestyle Study. Tracking the Accelerating Epidemic: Its Causes and Outcomes*. Melbourne (AUST): International Diabetes Institute; 2006.