Title
Trace gas trends and their potential role in climate change

Permalink
https://escholarship.org/uc/item/9jh429w9

Journal
Journal of Geophysical Research, 90(D3)

ISSN
0148-0227

Authors
Ramanathan, V
Cicerone, RJ
Singh, HB
et al.

Publication Date
1985-06-20

DOI
10.1029/jd090id03p05547

Supplemental Material
https://escholarship.org/uc/item/9jh429w9#supplemental

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Trace Gas Trends and Their Potential Role in Climate Change

V. RAMANATHAN, R. J. CICERONE, H. B. SINGH, and J. T. KIEHL

National Center for Atmospheric Research, Boulder, Colorado

This study examines the potential climatic effects of the radiatively active trace gases that have been detected in the atmosphere including chlorofluorocarbons, chlorocarbons, hydrocarbons, fluorinated and brominated species, and other compounds of nitrogen and sulfur, in addition to CO₂ and O₃. A one-dimensional radiative-convective model is used to estimate trace gas effects on atmospheric and surface temperatures for three cases: (1) modern day (1980) observed concentrations are adopted and their present trends are extrapolated 50 years into the future. These projections are based on analyses of observed trends and atmospheric residence times; (2) the preindustrial to present increase in CO₂ and other trace gases is inferred from available observations; (3) a hypothetical increase of 0-1 ppbv is considered to provide insights into the radiative processes. Trace gases other than CO₂ are shown to be potentially as important as CO₂ for long-term climate trends. The relative importance of the 30 or so trace gases included in this study depends on the problem under consideration. The inferred CO₂ increase from preindustrial to the present causes an equilibrium warming of the model surface by 0.5 K, which is amplified by 50% by CH₄, CFC₁₁ (F₁₁), CFC₁₂ (F₁₂), and tropospheric ozone. For the projected increase from year 1980 to 2030, the other trace gases amplify the estimated CO₂ warming of 0.7 K by about 10%. CFC₁₁, CFC₁₂, ozones, and CH₄ each contribute in the 0.1-0.2 K range followed by N₂O, CH₄ClF₁₂ (F₂₂), CH₃CCl₃, and CCl₄ in the 0.03-0.1 K range. Finally, on a per ppb basis, about 12 trace gases are identified to be important: CBrF₃, CF₃Br (F₁₆), CHF₃, and CF₃C₁ (F₁₃) have greenhouse effects comparable to those of CFC₁₁ (F₁₁) and CFC₁₂ (F₁₂). The narrow-band overlap treatment and the accurate spectral and angular integration techniques employed in the present radiation model enable quantitative interpretation of the differences between various published estimates for the greenhouse effect of CFC₁₁ and CFC₁₂. For the projected trace gas increase, we compute the stratospheric O₃ change by employing a photochemical model coupled to the radiative-convective model. The O₃ change cools the stratosphere and the magnitude of the cooling is as large as that due to the projected CO₂ increase. Because of the O₃-induced stratospheric cooling and the surface warming due to the greenhouse effect, the trace gas effects on climate are virtually indistinguishable from those of CO₂.

1. INTRODUCTION

The release of chemicals into the atmosphere has grown greatly over the last 50 years. Increased reliance on synthetic chemicals, deforestation, biomass burning, and fossil fuel combustion have all contributed to the observed perturbations of trace chemicals in the atmosphere. One of the important potential consequences of this chemical change is an alteration of the earth’s climate because trace chemicals modify the radiation energy balance of the earth-atmosphere system. To date, the climatic effects of future levels of CO₂ have received the most attention [e.g., see National Research Council, 1982, 1983; World Meteorological Organization, 1983]. However, from the studies summarized by the World Meteorological Organization [1982a] as well as subsequent publications [Chamberlain et al., 1982; Alexandrov et al., 1981; Ramanathan, 1982; Hansen et al., 1982; Wuubbles, 1983a], it can be inferred that the combined effects of the other trace gases is to warm the surface-troposphere system and the magnitude of this warming in the future can potentially be as large as the warming due to projected increases in CO₂.

The study of climatic effects of other trace gases poses certain special problems. The difficulty encountered in examining the effects of trace gases other than CO₂ arises because they perturb the radiation energy balance of the earth/troposphere/stratosphere system in a number of ways: (1) some of the trace gases (e.g., CFC₁₁, CFC₁₂, and CH₄) have strong infrared bands in the 5-20 μm wavelength region, which enhance the atmospheric opacity and contribute to the greenhouse effect [e.g., Ramanathan, 1975; Wang et al., 1976]; (2) addition of chemicals, such as CO and NO, even if by themselves they are not radiatively important, can alter the chemistry of the background troposphere, which in turn can perturb the radiatively important gases, such as O₃ and CH₄ [Hameed et al., 1980]; (3) the IR cooling due to the increase in several of the gases perturbs the stratospheric temperature, so that the middle stratospheric chemistry is altered appreciably through temperature-dependent reaction rates [Boughner and Ramanathan, 1975]. The net effect of these chemical-radiative interactions is a substantial perturbation of the stratospheric ozone concentrations, which in turn modulates the solar and IR fluxes to the troposphere. A summary of our current understanding of the above issues can be found by the World Meteorological Organization [1982a], which also gives a lengthy compilation of published studies on the problem; hence these earlier studies will not be reviewed here.

The potential importance of the other trace gases provides the primary motivation for the present study, which attempts to examine the climatic effects of most (if not all) of the anthropogenic trace gases. The major objectives of the present study are given below in the order in which they are discussed.

1. Characterize the trace gases, their observed abundances, known sources, and sinks in the present-day atmosphere.

2. Based on current understanding of the observed trends, estimate the future concentrations of trace gases, including stratospheric ozone. This step, while it has numerous pitfalls,
| Chemical Group | Chemical Formula | Dominant Source* | Dominant Sink* | Year 1980 Estimated Average Residence Time (t), years | Year 1980 Global Average Mixing Ratio, pptb | Year 2030 Probable Global Average Concentration, ppb | Best Estimate | Possible Range | Remarks (also see text for details) |
|----------------|-----------------|------------------|----------------|---|---|---|---------------|----------------|----------------------------------|
| Carbon dioxide | CO₂ | N.A. | O | 2 | 339 × 10³ | 450 × 10³ | Based on a 2.4% increase over the next 50 years |
| Nitrogen | N₂O | N.A. | S(UV) | 120 | 300 | 375 | 350-450 | | Combustion and fertilizer sources |
| | NH₃ | N.A. | T | 0.01 | < 1 | < 1 | Concentration variable and poorly characterized |
| | (NO + NO₂) | N.A. | T(OH) | 0.001 | 0.05 | 0.05 | Concentration variable and poorly characterized |
| Sulfur | CS₂O | N.A. | T(OH)? | 1(?) | 0.52 | 0.52 | Sources and sinks largely unknown |
| | SO₂ | N.A. | T | 0.001 | < 0.005 | < 0.005 | Sources uncharacterized |
| | H₂S | N | T(OH) | 0.001 | 0.1 | 0.1 | Given the short lifetime the global presence of SO₂ is unexplained |
| Fully fluorinated | CF₃ (F14) | A | I | > 500 | 0.07 | 0.24 | Aluminum industry a major source |
| species | C₂F₆ (F116) | A | I | > 500 | 0.004 | 0.02 | Aluminum industry a major source |
| Chlorofluorocarbons | CClF₃ (F13) | A | S(UV), I | 400 | 0.007 | 0.06 | All chlorofluorocarbons are of exclusive man-made origin. A number of regulatory actions are pending. The nature of regulations and their effectiveness would greatly affect the growth of these chemicals over the next 50 years. |
| | CCl₂F₂ (F12) | A | S(UV) | 110 | 0.28 | 1.8 | |
| | CClF₂ (F22) | A | T(OH) | 20 | 0.06 | 0.9 | |
| | CCl₃F (F11) | A | S(UV) | 65 | 0.18 | 1.1 | |
| | CF₂CF₂ (F115) | A | S(UV) | 380 | 0.005 | 0.04 | |
| | CClF₂CClF₂ (F114)| A | S(UV) | 180 | 0.015 | 0.14 | |
| | CCl₃FCClF₂ (F113)| A | S(UV) | 90 | 0.025 | 0.17 | |
| Chlorocarbons | CH₂Cl | N(O) | T(OH) | 1.5 | 0.6 | 0.6 | Dominant natural chloride carrier of oceanic origin |
| | CHCl₂ | A | T(OH) | 0.6 | 0.03 | 0.02 | A popular reactive but nontoxic solvent |
| | CHCl₃ | A | T(OH) | 0.7 | 0.01 | 0.03 | Used for manufacture of F22; many secondary sources also exist |
| | CCl₄ | A | S(UV) | 25-50 | 0.13 | 0.3 | Used in manufacture of fluorocarbons; many other applications as well |
| | CH₂CICH₂Cl | A | T(OH) | 0.4 | 0.03 | 0.1 | A major chemical intermediate (global production = 10 tg/yr); possibly toxic |
| | CH₂CCl₂ | A | T(OH) | 8.0 | 0.14 | 1.5 | Nontoxic, largely uncontrolled degreasing solvent |
| | CH₂Cl₃ | A | T(OH) | 0.02 | 0.05 | 0.01 | Possibly toxic, declining markets because of substitution to CH₂CICH₂Cl |
| | CCl₄ | A | T(OH) | 0.5 | 0.03 | 0.07 | Possibly toxic, moderate growth due to substitution to CH₂CCl₂ |
| Brominated and isolated species | CH₃Br | N | T(OH) | 1.7 | 0.01 | 0.01 | Major natural bromine carrier |
| | CBrF₃ (F13B1) | A | S(UV) | 110 | 0.001 | 0.005 | Fire extinguisher |
| | CH₃BrCH₂Br | A | T(OH) | 0.4 | 0.002 | 0.002 | Major gasoline additive for lead scavenging; also a fumigant |
| Hydrocarbons, CO, H₂ | CH₄ | N | T(OH) | 5-10 | 1650 | 2340 | 1850-3300 |
| | C₂H₆ | N | T(OH) | 0.3 | 0.8 | 0.8 | Predominately of auto exhaust origin |
| | C₂H₆ | N | T(OH) | 0.3 | 0.6 | 0.1 | No trend has been identified |
| | C₂H₈ | N | T(OH) | 0.03 | 0.05 | 0.05 | No trend has been identified |
| | CO | N | T(OH) | 0.3 | 90 | 115 | No trend has been identified |
| | H₂ | N | T(SLO, OH) | 2 | 560 | 760 | No trend has been identified |
| Ozone | O₃ | N | T(UV) | 0.1-0.3 | 0.1 | 12.5% | A small trend appears to exist but data are insufficient |
| (Tropospheric) | | | | | | | |
| Aldehydes | HCHO | N | T(OH, UV) | 0.001 | 0.2 | 0.2 | Secondary products of hydrocarbon oxidation |
| | CH₃CHO | N | T(OH) | 0.001 | 0.02 | 0.02 | 1980 concentration estimated from theory |

* N, natural; A, anthropogenic; O, oceanic; S, stratosphere; UV, ultraviolet photolysis; T, troposphere; OH, hydroxyl radical removal; I, ionospheric and extreme UV and electron capture removal; SL, soil sink.

†These concentrations are integrated averages; for chemicals with lifetimes of 10 years or less, significant latitudinal gradients can be expected in the troposphere; for chemicals with extremely short lifetimes (0.001-0.3 years) vertical gradients may also be encountered.

‡Varies from 25 ppbv at the surface to about 70 ppbv at 9 km. The concentration was increased uniformly by the same percentage from the surface to 9 km.
is necessary for the discussions concerning the relative importance of the various trace gases.

3. From observational records and other considerations, infer the preindustrial concentrations of trace gases.

4. Estimate the radiative effects of the trace gases and their potentials for climate changes.

5. Clarify the sources for differences and discrepancies between published estimates for the trace gas radiative effects.

First, some comments are in order on the scientific necessity of this study because several papers have been published on the trace gas effects. None of the previous studies have included all of the trace gases included in this study. The present study uses new laboratory spectroscopic data made available subsequent to the earlier studies; the present study relies heavily on observed concentrations and trends for the trace gases as opposed to the hypothetical concentrations and increases assumed in most of the earlier studies. The Lacs et al. [1981] study did use observed trends but was restricted to only the effects of chlorofluorocarbons (CFC's), CH₄, and N₂O. Chamberlain et al. [1982] included the direct effects of most of the trace gases considered in this study, but inferred the temperature changes from the radiative flux change at the surface instead of the changes to the surface-troposphere system. It is the radiative flux change to the surface-troposphere system that governs the surface temperature change [Manabe and Wetherald, 1967; Ramanathan, 1981, 1982; Hansen et al., 1982]. Furthermore, all of the above studies ignore stratospheric ozone changes due to CFC's.

For estimating their present-day radiative effects, we adopt the observed concentrations as of 1980. With respect to projected increases, we extrapolate the present-day trends to 50 years into the future. This procedure enables us to determine the relative importance of the various trace gases. Furthermore, we examine quantitatively the validity of the optically thin approximation, an important issue because this approximation is employed by all studies to treat the radiative effects of trace gases other than CO₂, O₃, N₂O, and CH₄.

For the purposes of this study, the word "climate" refers to surface/troposphere/stratospheric temperatures. The temperature changes are computed from a one-dimensional radiative-convective model described by Ramanathan [1981]. The radiative-convective model provides a convenient framework for examining the other trace gas effects, even though it ignores several important feedback processes arising from atmospheric circulation, oceans, and the cryosphere (e.g., ice-albedo feedback). Numerous one-, two-, and three-dimensional climate model calculations have estimated the surface warming due to doubled CO₂ (see summaries by the National Research Council [1982, 1983], among several others). Furthermore, the radiative effects of the other trace gases (with the exception of stratospheric ozone changes) are very similar to that of CO₂. Hence one-dimensional model estimates for the surface warming effects of the other trace gases and that of CO₂ (provided both are performed with the same model) can be used to scale the effects for the more realistic general circulation models (GCM), since numerous GCM estimates for the CO₂ effects are currently available.

TABLE 1b. Assumed Preindustrial (Year 1880) Concentrations of the Trace Gases

Trace Gas	Concentration
CO₂	270 ppm
CH₄	1.15 ppm
N₂O	0.285 ppm
Tropospheric O₃	-12.5%*
Stratospheric O₃	Same as present-day values
CFC₁₁ and 12	0.
CCl₄	0.
All others	0.

*O₃ concentration is altitude dependent. Uniformly smaller at all altitudes from 0 to 12 km by 12.5%.

growth in sources. From a viewpoint of global climate effects, species with extremely short lifetimes are unlikely to play an important direct role. To project the concentration of each species to year 2030, we have used a knowledge of the following: (1) recent (1980) atmospheric concentration and recent trend data if any; (2) nature of sources (man-made, natural, etc.), relative strengths or budget for each gas; (3) growth in natural as well as man-made sources due to projected human activities over the next 50 years; and (4) atmospheric lifetimes of each species.

In what follows, we emphasize radiatively important gases. Table 1a briefly describes the lifetimes, dominant sources, and sinks of trace chemicals that have been identified in the global atmosphere. Many of these properties were listed earlier in an extensive review of scientific literature [World Meteorological Organization, 1982b]. For a large number of species where reaction with hydroxyl radical (OH) is the principal removal mechanism, lifetimes are estimated using an average OH concentration of 7×10^5 molecules/cm3 and an average global atmospheric temperature of 265 K. While uncertain, this OH average is consistent with the budgets of CH$_3$CCl$_3$, CO, and 14CO [Volz et al., 1981]. For species with lifetimes greater than 20 years in Table 1a, removal is largely due to photolytic decomposition in the stratosphere. For all of the chlorofluorocarbons in Table 1a, lifetimes are determined based only on stratospheric photolysis from the computations of Wuebbles [1981] and those summarized by the World Meteorological Organization [1982b]. Only oxygenated species (O₃, aldehydes) and CH$_4$ absorb UV light in the troposphere ($\lambda > 290$ nm). The fully fluorinated species are not decomposed by UV light even in the stratosphere. Their destruction by and large would occur in the mesosphere and ionosphere from absorption of Lyman alpha and Lyman beta radiation at altitudes above 70 km [Cicerone, 1979]. The lifetime of fully fluorinated organics (Table 1a) can be in the 500- to 1000-year range. Hydrogen is the only species in Table 1a where microbial action at soil surfaces provides the major removal process. Ozone destruction also occurs on all surfaces (e.g., soil, water, and snow), but the mechanism of this destruction process is not known.

In addition to providing source, sink, and lifetime information, Table 1a also presents global average concentrations of species for the atmosphere of year 1980. These data are based on actual measurements that have already been summarized in some detail [World Meteorological Organization, 1982b].

It must be remembered that for species with lifetimes of less than 10 years, significant horizontal (latitudinal) gradients can exist. As an example, the ratio of northern to southern hemis-
pheric average concentration is about 1.4 for CH$_2$Cl$_3$ ($t_f = 8$ years) and >2 for C$_2$Cl$_4$ ($t_f = 0.5$ year). For short-lived species ($t_f < 0.3$ year), vertical gradients can also be expected. These gradients have been taken into consideration, based on available information, in developing the global averages shown in Table 1a.

The year 2030 concentrations are projected to develop a standard set of conditions, but a probable range is also included. The year 2030 "best estimates" in Table 1a thus constitute the "standard set." The range of likely variability associated with this standard set is also presented in Table 1a.

In the following sections we discuss the information that was utilized in developing the year 2030 projections. The year 1980 characterization is based exclusively on atmospheric measurements.

2.1. Carbon Dioxide

The CO$_2$ concentrations in the atmosphere have been measured to be increasing at a rate of approximately 1.5 ppm/yr (see Figure 1.2 of the National Research Council [1983]). Fossil fuel combustion is believed to be a major contributor to this increase. Over the past decades, CO$_2$ release rates due to combustion have increased at a rate of about 4.3%/yr. A recent analysis [Rotty and Marland, 1980] supports a 2.4%/yr increase in CO$_2$ emissions over the next 50 years. Only a fraction (~50%) of this input is expected to remain airborne. Based on this analysis, Wuebbles [1981] described the CO$_2$ concentration in ppm empirically.

$$\left[CO_2\right] = 330.0e^{0.00656(t - 1975)} \quad 1975 \leq t \leq 2100$$

The CO$_2$ concentration of year 2030 is computed to be 450 ppm. This projected concentration is consistent with available scenarios based on more detailed considerations of energy policies and the sources and sinks for CO$_2$ [e.g., Smagorinsky, 1983, p. 278].

2.2. Chlorofluorocarbons (CFC's)

These chemicals came into major use in the 1960's and initially exhibited a rapid growth (10-15%/yr). The most important CFC's to date have been CF$_2$Cl$_3$ (F12 or CFC12) and CFC$_3$ (F11 or CFC11). The global emissions of the major CFC's (F12 and F11) actually declined somewhat from the mid-1970's through 1982 [Chemical Manufacturer's Association, 1983]. Part of this decline may be attributed to a ban on some nonessential usages (e.g., spray cans) of CFC's and due to adverse economic conditions that have prevailed in several industrial nations during this time. CFC emissions increased sharply in 1983. Data for CFC$_3$ and CF$_2$Cl$_2$ have been presented by Logan et al. [1981] and Cunnold et al. [1983a, b]. The use of CFC's in other more essential industries and in previously less industrialized nations (e.g., refrigeration) is expected to grow. We estimate that a 3%/yr growth rate for all of the relatively inert CFC's, i.e., F11, F12, and C$_2$Cl$_3$F$_3$ (F113), C$_2$Cl$_2$F$_4$ (F114), C$_2$ClF$_3$ (F115), and C$_2$F$_6$ (F116) is a reasonable scenario. The range of concentrations shown in Table 1a is established based on a 0-5%/yr growth rate for CHClF$_2$ (F22), less severe controls are anticipated, since 60% of the emitted amount could be removed in the troposphere. A 5% growth rate with a 3-7%/yr range is used for computations presented in Table 1a.

2.3. Chlorocarbons

All chemicals (except carbon tetrachloride) in this category have atmospheric residence times of less than 10 years. Because of the toxic nature of many of these chemicals [Surgeon General, 1980], a rapid growth of emissions cannot be expected. Also, because of relatively fast removal rates, a dramatic buildup of these in the global atmosphere is not likely.

Methyl chloride (CH$_3$Cl) is the most abundant natural chlorine carrier; it appears to arise mostly from the world's oceans [Lovelock, 1975; Rasmussen et al., 1980; Singh et al., 1983b], although relatively small man-made sources are known to exist [National Academy of Sciences/National Research Council, 1976] and inadvertent release is possible due to biomass burning and/or reactions between organic matter and chlorinated water, as in rivers. Thus it is unlikely that the sources of atmospheric CH$_3$Cl will increase substantially, and we indicate in Table 1a little or no growth in its atmospheric concentration by the year 2030. It is worth noting, however, that if tropospheric OH (dominant sink for CH$_3$Cl) levels decrease, CH$_3$Cl concentrations could increase; see methane discussion below.

Methylene chloride (CH$_2$Cl$_2$), a relatively short-lived chemical, is a popular solvent which is expected to undergo rapid growth unless found to be toxic in the future. Its virtual non-involvement in the stratosphere and its lack of toxicity assures it an excellent growth potential. On the average, a 5%/yr (range of 3-7%/yr) growth rate appears a reasonable projection. This growth rate is also consistent with the growth in the last decade [Bauer, 1979].

Over the last decade, the methyl chloroform (CH$_3$CCl$_3$) market has grown at a rate of about 15%/yr. Although it may make an increasing contribution to stratospheric ozone depletion, its market is expected to grow rapidly and a growth rate similar to that of CH$_2$Cl$_2$ is projected. Methylene chloride along with CH$_3$CCl$_3$ are the most likely chemicals to be used for substitution as other more toxic chemicals (e.g., C$_2$HCl$_3$, C$_2$Cl$_4$) are more severely controlled.

Carbon tetrachloride (CCl$_4$) is the longest lived atmospheric chlorocarbon, and its historical emission pattern is more complicated [Singh et al., 1976]. Since the early 1960's, when the toxic effects of CCl$_4$ became evident, direct emissions virtually ceased. The present atmospheric CCl$_4$ concentration growth rate is between 2%/yr [Simmonds et al., 1983] and 5%/yr [Singh et al., 1983a]. Current emission levels of CCl$_4$ could grow at a rate of about 2% (0-3%/yr) over the next 50 years, in a manner similar to those of fluorocarbons because a large fraction of CCl$_4$ emitted is during its use in fluorocarbon production.

2.4. Fully Fluorinated Species

Three chemicals in this category have been measured at enough locations to characterize global concentrations: CF$_4$ (F14), C$_2$F$_6$ (F116), and sulfur hexafluoride (SF$_6$). These three man-made species are relatively stable chemicals with atmospheric residence times over 500 years. These species are not chemically involved in atmospheric processes below about 50 km. The sources of CF$_4$ and C$_2$F$_6$ are not at all clear. Inadvertent emissions from carbon-electrode processing of minerals [Cicerone, 1979] are likely, specifically from aluminum processing [Penkett et al., 1981]. Assuming a 2-3% steady growth rate of the aluminum industry over the next 50 years, the year 2030 concentrations of CF$_4$ and C$_2$F$_6$ are shown in Table 1a. Indeed, a temporal increase of about 2%/yr in CF$_4$ concentrations has been measured recently (R. J. Cicerone et al., unpublished manuscript, 1985). This rate of increase is less than that deduced by Cicerone [1979]. SF$_6$ is a dielectric
trend, but an upward trend in tropospheric ozone (2–8 km) seems to have occurred [Angell and Korshover, 1983].

Other considerations suggest that tropospheric ozone is increasing in the northern hemispheric troposphere. First, Fishman et al. [1979b] presented evidence that there is appreciable in situ photochemical production of ozone. This evidence includes the fact that ozone is more concentrated in the NH even though there should be faster uptake at the earth’s surface in the NH. Also, Fishman et al. noted that there are much stronger seasonal variations in the NH production of ozone. Recent models of tropospheric chemistry that embody this theory predict that tropospheric ozone has already increased and will continue to do so, especially in the NH. Due to increases in combustion releases of NOx, CO, H2, and increased CH4, Logan et al. [1978] calculated that tropospheric O3 can increase greatly, even 100% in the next century, especially in the middle and upper troposphere. Liu et al. [1980] focused on the consequences of NOx injections from high flying aircraft. In their view, most photochemical production of ozone occurs above the boundary layer, so direct injections by aircraft are especially effective and ground-level NOx sources may not lead to much photochemical ozone in the free troposphere. Liu et al. calculated that a 14–30% ozone increase should have occurred in the NH middle and upper troposphere between 1970 and 1980. A more recent analysis of tropospheric ozone production by human activities is given by Crutzen and Gidel [1983].

To summarize the two paragraphs above, there is some observational evidence that NH tropospheric ozone has increased by 0.8–1.5%/yr since about 1967; this evidence is compelling but not conclusive. Photochemical theory applied to emission histories and projections of combustion NOx suggests that a 1%/yr increase in NH tropospheric ozone is possible. In the SH, given the smaller anthropogenic influences, O3 might not change at all (NH anthropogenic NOx, a key ingredient for photochemical production of O3, should not influence the SH). For our globally averaged radiative calculations, we will adopt an annual growth rate for tropospheric ozone of 0.25%/yr, although values from zero to 1.5%/yr appear possible, at least for the NH. A nominal 40 ppb of tropospheric ozone, for example, becomes 45 ppb in the year 2030 with a 0.25%/yr growth rate; a 1%/yr growth rate would result in 64 ppb in 2030. Note that we do not assume a constant mixing ratio with altitude in our calculations. Table 1a provides the adopted altitude variation in the model calculations which are based on the hemispherical, annual mean ozone data described by Ramanathan and Dickinson [1979].

Stratospheric ozone is also thought to be susceptible to perturbing influences, including man-made chloro- and chlorofluorocarbons, increasing CH4 and N2O concentrations (see below) and decreases in stratospheric temperature due to increasing CO2. For our stratospheric ozone profile for the year 2030, we have taken the computed ozone perturbations listed in Table 2. These ozone changes were calculated with the basic chemistry model of Cicerone et al. [1983] with fixed-flux lower boundary conditions for N2O, CH4, Cl, and CCl3 but a fixed mixing ratio (1.6 ppm) for CH4. As discussed later, the present computations account for the feedback between temperature and chemistry. A refined diurnal averaging scheme was employed; it led to less nonlinearity in the ozone-chlorine response curve than reported by Cicerone et al. The ozone change shown in Table 2 was obtained by increasing the flux of CFC3 (F11) and CF2Cl (F12) till the stratospheric mixing ratio of inorganic chlorine (CIX) reached a value of 9.4 ppb for the year 2030. A CIX value of 9.4 ppb for year 2030 results from a 3%/yr increase (1980-2030) in emissions of CF3Cl2, CFCl3, CH3CCl3, C2Cl3F3, C3Cl2F2, CCl4, and CHCl3F (I. D. J. Wuebbles, private communication, 1984; also see Wuebbles [1983]). This uniform 3% growth rate is consistent with those adopted in Table 1a, except that Table 1a shows a 2% growth rate for CCl3 and a 5% rate for C2H5Cl. In order to place this slight inconsistency in proper perspective, we note that the calculated future stratospheric CIX mixing ratios depend, not only on future emissions, but also on the vertical eddy-mixing coefficient in the (one-dimensional) model. For the 1980 reference atmosphere, we took CIX = 2.5 ppb.

The ozone changes shown in Table 2 account for the feedback between temperature and chemistry. For this purpose, we iterated the temperature changes computed by the climate model (described later) with the ozone change resulting from the chemistry model. The temperature change calculations include not only the ozone changes but also the increase in all other trace gases shown in Table 1a (see the “Best Estimate” column). This temperature feedback reduced the computed ozone changes by a nonnegligible amount. For example, without the temperature feedback, the computed ozone change at a few of the levels are +4.2% (10 km), +5.1% (20 km), −7.3% (30 km), −45% (40 km), and −36% (44 km); these changes can be compared with those in Table 2.

Our usage of a fixed mixing-ratio lower boundary condition for CH4 actually assumes an increasing flux of CH4 to maintain the fixed mixing ratio as CIX increases. A fixed-flux boundary condition for CH4 would have led to larger ozone changes than those shown in Table 2. Beyond the year 2030, even larger ozone changes are possible [Prather et al., 1984]. In the present paper, we have neglected stratospheric ozone changes due to the projected CH4 and N2O increases shown in Table 1a. It should also be stated that model calculations of ozone changes below 30 km are plagued with uncertainties. Accordingly, model results have fluctuated over the past 10 years or so [see, e.g., National Academy of Sciences/National Research Council, 1982].

2.7. Methane (CH4) and Carbon Monoxide (CO)

The most abundant atmospheric hydrocarbon, methane, was present at about 1.65 ppm in the NH in 1980; a concentration about 6% lower characterized the SH. More relevant for our present purposes, atmospheric CH4 concentrations are known to be increasing globally. Between early 1978 and early 1981, concentrations increased by (2 ± 0.5)%/yr as measured by Rasmussen and Khalil [1981] and by 1–1.5%/yr as measured by Blake et al. [1982]. Ehhalt et al. [1983] have reviewed these and other data on atmospheric methane and conclude that its concentration increased by about 0.5%/yr between 1965 and 1975 and by 1–2%/yr between 1978 and late 1980. Further, from trapped air in dated ice cores, Craig and Chou [1982] have deduced that CH4 concentrations have approximately doubled in the last 350 years with a greater rate of increase in the last century. It is not clear why these increases have occurred, i.e., which of the methane sources have increased or even if the atmospheric sink of methane (oxidation by OH reaction) has decreased. Arguments for increasing sources of methane are favored by 13C data [Craig and Chou, 1982]. Principal sources of atmospheric methane appear to be enteric fermentation in ruminant animals, release from organic-rich sediments below shallow water bodies and rice paddies, and quite possibly, production by termites and biomass burning. Also, methane re-
agent used in electrical equipment. Its concentrations are also estimated based on a 2–3%/yr growth rate.

2.5. Nitrogen Compounds

The most important nitrogen-containing chemical from a climatic viewpoint is N₂O. The 1980 atmospheric concentration is 301 ppb (0.8 ppb less in the southern hemisphere) as measured by Weiss [1981]. Contrary to many previous estimates, it is now accepted that N₂O has a very long atmospheric lifetime (>100 years) with stratospheric photolysis the only known removal process. Microbial production in soils and oceans has been found to be a source as well as a sink of N₂O. The net contribution of soils and oceanic microbes to the atmospheric budget of N₂O is not yet clear; Weiss [1981] calculated that the total annual source of atmospheric N₂O is about 3×10^{15} g. Over a 4-year period (1976–1980), Weiss measured a rate of increase of 0.2%/yr for N₂O concentrations. Further, he constructed a mathematical model which used an exponentially increasing N₂O source function to fit his measurement data. More recent data (R. F. Weiss, private communication, 1984) continue to fit Weiss’s mathematical model. The recent record shows more uniformity among data from measurement locations than was apparent in the 1976–1980 record. From the Weiss [1981] mathematical model, we estimate the year 2030 concentration to be 375 ppb and a likely range of 350–450 ppb. This range reflects the considerable existing uncertainty as to the identity of the N₂O sources most responsible for the observed N₂O concentration trend, e.g., coal combustion and microbial production of N₂O through nitrification and denitrification of inorganic nitrogen fertilizers applied to soils. Even with the recent expansion of Weiss’s data base, the record is still not adequate to distinguish between these two sources (R. F. Weiss, private communication, 1984). In the future, the atmospheric residence time of N₂O could decrease if ozone concentrations decrease above 30-km altitude (Table 2); increased UV light levels just below 30 km would increase the rate of N₂O photolysis. Also, while we have adopted Weiss’s [1981] semiempirical method for projecting future N₂O concentrations, we note that there remain many questions about sources of atmospheric N₂O. For example, if we employ a slower rate of increase of fossil fuel combustion than did Weiss, we arrive at a reduced lower limit for N₂O in that year, i.e., 350 ppb. Further, while many studies suggest that only 1–2% of all fertilizer N is released as N₂O in the year following fertilization, much higher release rates are possible especially from fertilized organic-rich soils [Duxbury et al., 1982].

Two other nitrogen-containing gases, hydrogen cyanide (HCN) and peroxyacetyl nitrate (PAN), have now been observed in the nonurban troposphere. Infrared absorption measurements with the sun as the source have shown that HCN is present in the northern hemisphere (NH), midlatitude troposphere, and the entire NH stratosphere at about 160 ppt, with little, if any, altitude gradient up to the midstratosphere. These measurements, the atmospheric chemistry and possible sources of HCN, have been discussed by Cicerone and Zellner [1983]. In Table 1a we show no increase in HCN concentration by 2030, but only because there are no data on its temporal trends and because the identities of its sources are uncertain. Similarly for PAN, we can do little more than note that it has been detected recently in the nonurban troposphere, occasionally at concentrations of 400 ppt. While there is reason to believe that its global concentrations are nonnegligible [Singh and Salas, 1983] and that its precursors (NO, ethane, and propane) might increase in the future, there is too little information to permit an estimate of PAN’s future concentrations.

The other nitrogen species (NH₃ and NOₓ) have extremely short lifetimes (0.5–5 days). The global distribution of these species, even for the 1980 atmosphere, is poorly characterized [Kley et al., 1981]. As expected with species of such short lifetime, a great deal of variability in atmospheric levels is evident. Although anthropogenic sources of NOₓ in the troposphere (auto and aircraft exhaust, high-temperature combustion, soil emissions) may double over the next 50 years, it is unclear if this change would increase the atmospheric abundance of NOₓ outside the range of present uncertainty.

2.6. Ozone

The climatic effects of ozone change depend very strongly on whether tropospheric or stratospheric ozone is being altered [Ramanathan and Dickinson, 1979; Wang, 1982]. Hence we discuss separately the tropospheric and stratospheric O₃ trends.

Focusing first on ozone in the free troposphere (above the planetary boundary layer), there are data and theories that suggest that ozone concentrations are increasing with time. A number of investigators [Logan, 1982; Angell and Korshover, 1983; Bojkov, 1983] have reviewed and analyzed data from many ozone-measuring stations supported by Umkehr data. Logan finds that at Uccle (Belgium) at 500- and 700-mbar levels, ozone increased by about 1%/yr between 1969 and 1980. Similarly, at Hohenpeissenberg (Germany) at the 500- and 700-mbar levels, ozone increased by 15% from 1969 to 1981. However, at Payerne (only 50 km away) at these same altitudes, no such trend was observed. A preliminary analysis of data from nine NH ozonesonde stations has been performed by Liu et al. [1980]. Eight of nine stations show ozone increases (8 ± 4%) from 1969 to 1977 in the middle troposphere, a result consistent with that reported by the National Aeronautics and Space Administration [1979] for the 2- to 8-km region. These ozone increases are not mirrored in surface measurements where no trends have been observed or in the southern hemisphere (SH), where one station, Aspendale, shows a decrease in tropospheric ozone 1965–1978 [Liu et al., 1980]. Based on available data, one cannot distinguish a clear

Altitude	Percent Ozone Change
10	3.8
16	4.3
22	4.5
26	2.0
28	-1.2
30	-6.1
32	-13.4
34	-22.6
36	-31.1
38	-36.7
40	-37.9
44	-27.4
50	-5.4

The calculations account for the feedback between temperature and chemistry within the model stratosphere (above 10 km) and employ the chemistry model of Cicerone et al. [1982] and the radiative-convective model used in this study.
lease in mineral, oil, and gas exploration and gas transmission is growing. Clearly, to be able to predict future levels of atmospheric methane, it is necessary to know the relative importance of the various methane sources and their trends. If, for example, rice agriculture is a dominant source, then trends in cultivated area, plant-strain proportions, irrigation, and multiple cropping and fertilization practices must be discerned as they affect methane release.

The dominant sink of atmospheric methane, tropospheric gaseous OH, may not be unchanging. Increased levels of tropospheric CO or of CH₄ itself can suppress OH concentrations, as has been noted by several authors. CO exhibits large hemispheric differences; these patterns and our knowledge of CO sources are reviewed by Logan et al. [1981]. Recently, Khalil and Rasmussen have reported evidence from measurement (in Oregon) of dramatic (6%/yr) increases of atmospheric CO between 1979 and 1983. On the other hand, W. Seiler (private communication, 1984) has measured little or no change (±1%/yr) in CO at several stations in both hemispheres. For a clean, background troposphere CO increase of x%/yr leads to a depletion of tropospheric OH of x(4±1)%% depending on altitude and various model assumptions, according to A. M. Thompson and R. J. Cicerone (unpublished manuscript, 1984). Combining the (1) source analysis by Logan et al. [1981], (2) information on trends of these sources (e.g., fossil fuel usage, oxidation of anthropogenic hydrocarbons), and (3) the CO data mentioned above, it is clearly possible that CO will increase by 1–2%/yr through 2030 A.D. Such an increase could cause CH₄ concentrations to increase faster (through OH suppression) than if only CH₄ source increases were considered. Because of the spectral locations of the absorption of CO, the CO increase itself is not of interest here. Its effects on the atmospheric levels of OH, CH₄, and O₃ could be very important.

Lacking all the detailed information necessary to understand the presently documented rate of increase of atmospheric CH₄ concentrations and to predict the future, we estimate that CH₄ will increase by 0.75%/yr between now and 2030; this would lead to a globally averaged CH₄ concentration of 2.34 ppm in 2030. Rates of increase of 1.5% and 2.5%/yr would lead to 3.30 and 1.85 ppm in 2030, respectively, as listed in Table 1a. Beyond the year 2030, when the release of continental-slope sediment methane clathrates might occur due to oceanic warming [Revelle, 1983], faster methane increases are possible.

2.8. Nonmethane Hydrocarbons

In this category we include alkanes, alkenes, alkynes, aldehydes, ketones, and H₂. We pay little attention to simple aromatic compounds. By contrast with the situation for methane, there is too little information available on the concentrations, distributions, and sources of these compounds (except for C₂H₆ and H₂) to justify projections of future concentrations. For acetylene (C₂H₂), fossil fuel burning (e.g., internal combustion engines, oil-fired heaters) is a known source; its atmospheric residence time is about 4 months, and no significant biological sources are known yet [Rudolph and Ehnhalt, 1981]. If its sources are wholly anthropogenic, an annual increase of 1–2% would be a reasonable guess. For ethane (C₂H₆), ethylene (C₂H₄), propane (C₃H₈), and propene (C₃H₆) the existing atmospheric and oceanic surface water data suggest that there are natural as well as anthropogenic sources [see, e.g., Rudolph and Ehnhalt, 1981, and references therein]. Fugitive emissions from oil and gas wells and transmission lines are likely, of course. The state of our measurement data base for higher hydrocarbons, aldehydes (present as oxidation products of hydrocarbons), and acetone is discussed by Penkett [1982].

2.9. Sulfur Compounds

Carbonyl sulfide (OCS) is the most abundant gaseous sulfur carrier in the atmosphere. It is nearly uniformly distributed with a measured average concentration of 0.52 ppb. Turco et al. [1980] have examined the sources and sinks of OCS. While there are many remaining questions, they propose that up to 50% of the total source is anthropogenic. If so, OCS concentration could increase in the future, but our present understanding of OCS sinks and its atmospheric residence time is not very complete. No measured trend in OCS concentration is available at this time. Considering the lack of such data and the uncertainties about OCS sources and sinks, we cannot project other than a constant OCS abundance in Table 1a.

Sulfur dioxide (SO₂) is a notorious atmospheric constituent because of its role in acid deposition. In continental boundary layers where its principal source is combustion of S-containing fuels, its concentrations are often 10 ppb. Above the boundary layer its concentration is of order 100 ppt [Maroulis et al., 1980]; its presence there is probably due to escape from the boundary layer below, and to oxidation of other species, e.g., OCS, CS₂, and CH₂SCH₂. Similar concentrations have been measured in the marine boundary layer [Herrmann and Jaeschke, 1984]. Near major anthropogenic SO₂ sources its atmospheric residence time is about 1 day (due largely to gas-to-particle conversion); in the higher troposphere in clear air its residence time is up to 1 week. Because of its very short lifetime and the uncertain future of SO₂ emission, it is not at all clear that SO₂ concentration will increase in the future. Dimethyl sulfide (DMS) is now known to exist in the oceanic boundary layer; it appears to have microbial sources in oceans that provide a significant DMS flux to the marine atmosphere [Andreae and Raemdonck, 1983]. Because this natural source appears to be the major DMS source and because of the short (~2 days) atmospheric residence time of DMS, we project no growth in its atmospheric concentrations.

Carbon disulfide (CS₂) is known to be present in background surface air at concentrations that vary from 0.03 to 0.08 ppb. However, it is virtually undetectable in the free troposphere. Excited-state oxidation [Wine et al., 1981] can be an important removal process. Oceans may be a major source. No growth projection in CS₂ concentrations can be proposed reliably at this time.

2.10. Brominated and Iodated Species

Only a handful of species in this class have been measured in the nonurban atmosphere. The species of interest are brominated and iodated methane- and ethane-series molecules: methyl bromide (CH₃Br), methylene bromide (CH₂Br₂), bromofrom (CHBr₃), bromotrifluoromethane or (F₁₃B₁, CBrF₃), methyl iodide (CH₃I), and dibromoethane (CH₂H₂Br₂), or ethylenedibromide, EDB). CH₃Br is apparently a natural species [Lovelock, 1975; Singh et al., 1983b]. Man-made emissions have the potential to perturb its global background, but only slightly. Methyl iodide is essentially all natural and, given its concentration, is predicted to remain unchanged. CHBr₃ and CH₂Br₂ have been measured only recently [Berg et al., 1984], and too little is known about their sources to permit reasonable future projections. CBrF₃ (F₁₃B₁) and ethylene dibromide are exclusively anthropogenic. A continued shift toward nonleaded gasoline could offset growth that may occur in fu-
migration applications of ethylene dibromide. Because of its high carcinogenic potential, a rapid growth is not likely to be permitted in any case. CBrF3 (used as a fire extinguisher) is the only brominated organic whose sink is primarily in the stratosphere (where bromine atoms can be efficient ozone destroyers). Despite its very low present abundance it can become an important carrier of organic bromine within the next 50 years. Inorganic species such as HBr, HI, BrO, IO, and NOBr are not discussed here because they are as yet undetected in the atmosphere. Their residence times are probably 5 days or less, and future trends are difficult to predict.

3. PREINDUSTRIAL ERA CONCENTRATIONS OF GREENHOUSE GASES

It is important to ask if CO2 and the other trace gases should already have caused a global warming. It is very difficult, if not impossible, to answer this question for at least two reasons: (1) there are no direct data on the trace gases of interest from, say, the 1850–1940 time period, and (2) there should be a significant time lag between any increased atmospheric radiative forcing and increased global temperatures, due to oceanic heat capacity. To allow at least a rough estimate of the size of the effect due to increased trace gas concentrations from about 1880 until 1980, we will attempt to estimate the 1880 concentrations of methane, nitrous oxide, chlorofluorocarbons, CCl4, and tropospheric ozone. The proposed preindustrial concentrations of the trace gases are shown in Table 1.

For CO2, the National Research Council [1983] study suggests that the most likely preindustrial value is between 260 and 290 ppm. For this study, the preindustrial concentration of CO2 is assumed to be 275 ppm.

For CH4, the data of Craig and Chou [1982] show that CH4 has increased monotonically for the past 400 years; these data are CH4 concentrations in air trapped in dated Greenland ice cores. Craig and Chou noted that there is as much as a 90-year uncertainty in the age of this air, depending on whether air moved freely through the firn phase of the snow above the firn-closure depth. If the air at the 90-year firn level was zero years old, then the CH4 concentration in the year 1880 was about 1.05 ppm. If the air was not so young, the Craig and Chou data show that the CH4 concentration in 1880 had to be over 1.05 ppm. If, for example, the air in 90-year old ice at this site was 50 years old instead of zero years old, the implied 1880 CH4 concentration would be 1.10–1.15 ppm in 1880. We assume that the 1880 CH4 level was 1.15 ppm.

For nitrous oxide, there are no direct data from pre-1900; indeed, N2O was discovered in the atmosphere only in 1938. Modern data from 1976–1980 and from 1961–1974 have been used by Weiss [1981] to estimate a preindustrial atmosphere N2O concentration of 281–291 ppb. Accordingly, we assign a value of 285 ppb to N2O for the year 1880.

The chlorofluorocarbons and fluorocarbons (CCl3F, CCl2F2, CClF3, and the other compounds listed in Table 1) are almost certainly of exclusive and post-1940 anthropogenic origin [National Academy of Sciences/National Research Council, 1979]. Therefore we estimate that each of them was absent from the 1880 atmosphere.

Carbontetrachloride is more interesting. It is known to be produced by marine organisms [see, e.g., Fenical, 1982], yet its mid-1970's (and present) concentration can be explained by anthropogenic emissions [Singh et al., 1976]. Because of the apparent unimportance of current natural sources, we will assume that it was essentially absent from the 1880 atmosphere.

Of the important greenhouse gases, tropospheric ozone is most difficult for which to estimate differences between present-day concentrations and those of one century ago. The surplus of NH over SH ozone, the more pronounced seasonal cycle in the NH ozone data, the strong theoretical case for excess ozone production in the industrialized NH and the hints of a positive trend since 1967, all imply that there was less O3 in the 1880 NH troposphere. Detailed examination of these and other factors [see Letey et al., 1985] does not allow one to state with confidence that the hemispheric or global background tropospheric ozone is strongly controlled by photochemical reactions (such as those between hydrocarbons and nitrogen oxides to produce ozone). For example, there is evidence that the NH troposphere receives perhaps 3 times as much ozone from the stratosphere as does the SH troposphere. One would predict higher NH concentrations from this meteorological input of ozone, although the higher surface-destruction rates in the NH would offset some of the additional input. Perhaps 50% more ozone is observed in the NH tropics than in the SH tropics (0–12-km altitude; Fishman et al. [1979b]) and 25–50% more in the midlatitudes of the NH at 800-mbar pressure levels than at corresponding SH locations. Another feature of ozone in the NH mid troposphere, the east-west gradient over North America [Chatfield and Harrison, 1977], appears to be evidence for photochemical production over continents. We assume that half of the difference between NH and SH is due to anthropogenic emissions (and that 1880 emission of NO2 and hydrocarbons was negligible compared with those in 1980). Even with these assumptions, one is left with uncertainty about vertical profiles. In the upper troposphere, there is more influence from the stratosphere, but there is also significant existing potential for human impact by direct injections from aircraft [Liu et al., 1980]. As a very rough estimate, we will guess that there was 25% less ozone in the 1880 NH troposphere than in 1980 NH troposphere and that SH tropospheric ozone did not change during that century.

4. DESCRIPTION OF THE CLIMATE MODEL

The direct radiative effects of trace gases are included in this study. The effects due to altered chemistry are included explicitly as far as stratospheric O3 perturbation is considered and implicitly with respect to tropospheric O3, i.e., projected O3 increases can be considered to arise from the projected increases in hydrocarbons, CO, and NO. With respect to the feedback effects, this study accounts for troposphere/stratosphere radiative interactions and the feedback between temperature and chemistry within the stratosphere. The climate-chemistry interactions in the troposphere and the possible effects of temperature changes on stratospheric H2O are ignored. Both of these feedback effects, while they may be relatively smaller than the direct radiative effects would require coupled photochemical climate models [Callis et al., 1983].

A brief description follows of the radiative-convective model and the source for the spectroscopic data used for the computations.

4.1. Radiative-Convective Model

The one-dimensional radiative-convective model described by Ramanathan [1981] is adopted. This model, hereafter referred to as model R, has a surface boundary layer which
explicitly allows for the surface-atmosphere exchange of latent and sensible heat and also solves for the boundary layer moisture [Ramanathan, 1981, equations 17–20, Figure 7]. The standard radiative-convective models [e.g., Manabe and Wetherald, 1967; Ramanathan and Coakley, 1978] ignore these processes and do not treat explicitly the exchange of latent heat flux between the surface and the free atmosphere.

The boundary layer moisture and hence the relative humidity are explicitly computed in the model, but the tropospheric relative humidity is prescribed as discussed by Ramanathan [1981]. The mass mixing ratio of H2O above 12 km is prescribed to be 2.5 ppm. Because of the explicit treatment of the boundary layer, the model R computes the surface temperature and the surface air temperature. Standard radiative-convective models compute only one temperature for the lower boundary which can be interpreted as an average of the surface and surface air temperature. In model R the surface air temperature change is larger than that of the surface temperature change by about 10–13%. This point should be noted when comparing the present calculations with the published results.

4.2. Radiation Model and Spectroscopic Data

The trace gases, their longwave band centers, and the adopted band strengths are shown in Table 4. The treatment of H2O, O3, CO2, and CH4 are as described in model R. For CO2, one of us (J.T.K.) incorporated the more detailed band model of Kiehl and Ramanathan [1983] in model R. The surface warming due to doubled CO2 estimated with the detailed CO2 scheme was in excellent agreement (within 5%) with that estimated from the somewhat simpler scheme in model R. For CH4, model R employs the Donner and Ramanathan [1980] band model. Although the band strength adopted in model R is stronger than the current accepted value by about 35%, the band model parameters were fit to give agreement with laboratory absorptances. Hence the CH4 radiative forcing estimated by this band model agrees within 5–10% of that estimated from a 5 cm$^{-1}$ spectral resolution narrow band model which employs recent [Rothman et al., 1983] line data. Numerous modifications were incorporated in model R to treat the effects of the minor trace gases included in this study and these modifications are described below.

N2O. The R scheme used the Donner and Ramanathan [1980] band model scheme. We have retained this scheme, but included the following N2O bands that were ignored by Donner and Ramanathan [1980]: the two-band systems centered at 1168 cm$^{-1}$, one of which is the 2v4 band of the four isotopes with band strength 8.5 cm$^{-1}$ (cm atm)$^{-1}$ STP and the hot bands of the four isotopes with band strength 1.5 cm$^{-1}$ (cm atm)$^{-1}$ STP. Although these bands are considerably weaker than the fundamental v_1 band system centered at 1285 cm$^{-1}$, they contribute as much as 20% of the v_1 band system to the surface warming due to N2O. This disproportionately large contribution by the weak bands arises because N2O is almost in the strong line limit, and hence the opacity scales as the square root of the band strength. Hence for gases whose concentration are large and their band strengths are sufficiently strong that they are in the strong line limit, great care must be exercised in including all the bands whose strengths are smaller by as much as 2 orders of magnitude than the strong fundamental band. This is the reason why the present model incorporates many isotopic and hot bands of trace gases such as CO2, N2O, and CH4.

Other trace gases. The band absorption A is expressed as

$$A = \Delta \omega \left[1 - \sum_{i=1}^{N} f_i e^{-\tau_i/\bar{\mu}} \right]$$ \hspace{1cm} (1)

$$\tau_i = \frac{f_i}{\bar{\mu}} \left(\frac{S \omega}{\Delta \omega} \right)$$ \hspace{1cm} (2)

$$\sum_{i=1}^{N} f_i = 1$$ \hspace{1cm} (3)

$$\sum_{i=1}^{N} k_i = 1$$ \hspace{1cm} (4)

where $\Delta \omega$ is the band width in cm$^{-1}$, S is the band strength in cm$^{-1}$ (cm atm)$^{-1}$, $\bar{\mu}$ is the absorber amount in cm atm. The above procedure of expressing the band transmission as a sum of transmission functions averaged over pseudo-spectral intervals i with weighting functions f_i and k_i is essentially the exponential-sum fitting method described by Wiscombe and Evans [1977]. The procedure of employing $\bar{\mu}$ to approximate the solid angle integration of the transmission is referred to as the exponential kernel approximation [Sparrow and Cess, 1970, p. 226]. However, instead of adopting the standard procedure of employing one value for $\bar{\mu}$, we obtain exact values of $\bar{\mu}$ as a function of the optical depth from tabulated values of the E_3 exponential kernel function [see Sparrow and Cess, 1970, pp. 200, 312]. The values of $\bar{\mu}$ as a function of τ is fit by the following smooth expression:

$$(\bar{\mu})^{-1} = 1.5 + \frac{0.5}{1 + 4 \tau + 10 \tau^2}$$ \hspace{1cm} (5)

In (5), the optical depth τ is the total optical depth, i.e., the sum of the optical depths of all gases in the interval. The above set of equations is mathematically and conceptually rigorous if one of the two following asymptotic limits are satisfied.

1. The optically thin limit, i.e., $\tau_i \ll 1$. In this limit, (1)–(5) reduce to

$$A = 2S \bar{\mu}$$ \hspace{1cm} (6)

It can be easily shown that (6) is the exact expression for the band absorption in the optically thin limit. Ramanathan [1975] used this expression to treat the CFCl3 and CF2Cl2 bands.

2. The smeared out line structure limit. In this limit, the line spacing between neighboring lines is much smaller when compared with the line half-width. Consequently, the lines are smeared out and the absorption coefficient follows a smooth variation with wavelength. This limit is adequately satisfied for the CFCl3 and CF2Cl2 bands, as can be inferred from the

Species	$\Delta \omega$, cm$^{-1}$	N	i	f_i	k_i
CFCl3 (CFCl11)	60	3	1	0.25	0.72
CFCl3 (CFCl12)	60	2	1	0.25	0.52
CF2Cl2	20	1	1	1	1
All others	60	1	1	1	1
Table 4. Band Locations and Strengths

Trace Gas	Band Center, cm⁻¹	Range of Measurements	Value Adopted²	Reference¹
CO₂	667	3	44 bands incl.	M
N₂O	589	20.7–40.3	27(F, 1H, 4I)	M
	1168	8.5–12	10(F, 1H, 4I)	M
	1285	242–384	234.5(F, 1H, 4I)	M
CF₄ (F₁₄)	632	42–62	54.7	P
	1261(v₁₄)	4175–5934	4175	P
	1285(v₃)			
C₂F₆ (F₁₁₆)	714	146	P	
	1116	1057	P	
	1250	3658	P	
CF₃Cl (F₁₃)	783	157	P	
	1102	2505	P	
	1210	3000	P	
CF₂Cl₂ (F₁₂)	915	1370–1568	1567.5	K
	1095	1237–1330	1236.8	P
	1152	789–893	835.8	P
CHClF₂ (F₂₂)	810	237	N	
	1110	691	N	
	1310	109	N	
CFC₃ (F₁₁)	846	1670–1965	1965	K
	1085	576–781	736	P
CH₂Cl₂	717	35	P	
	758	424–548	424	P
	898	4.3–5.4	P	
CHCl₃	774	119–147	118.7	P
	1220	864–1201	1000	P
	140–206		140	P
CCI₄	776	1317–2026	1437	P
CH₃CCl₃	725	299.8	N	
	1080	167	N	
	1385	14.2	N	
CH₄	1306	148–185	185	P
	1534	2–3	P	
C₂H₂	730	724–804	801	P
	1328	95.6–101.1	95.6	P
SO₂	518	116–125	118.7	P
	1151	96–106.8	106.8	P
Ozone	1041	356–382	376	M
	1103	10–11	11	
	590	78	321	N
	790	326	N	
PAN	1160	326	N	
	1300	272	N	
	1730	576	N	
CHF₃	1117–1152	3838.5	P	
CH₂F₂	1090	1314	P	
CBrF₃	1085	2069.3	P	
	1209	2074.7	P	

¹The reference is for the value adopted in this study: M, McClatchey et al. [1973]; N, H. Niki (personal communication, 1983); P, Pugh and Rao [1976]; and K, Kagann et al. [1983].
²F, fundamental band; 1H, first hot band; I, isotopic band. 4I denotes four isotopic bands.
³Minimum of 44 isotopic, fundamental, and hot bands are required.
⁴Treated as two band systems: one for the 2v₄ band and one for the hot band, and each system has four isotopic bands.

The values of the band parameters and band strengths are given in Tables 3 and 4, respectively. In order to examine the validity of the present approach (i.e., (1)), we computed the surface-troposphere heating due to the strongest band of CFC₃ (F₁₁) with a fine spectral resolution model which computes transmittances at 1 cm⁻¹ intervals employing line parameters given by Goldman et al. [1976a]. Inspection of published spectra reveals that this limit is more than adequately satisfied for most other polyatomic trace gases considered here.

The values of the band parameters and band strengths are given in Tables 3 and 4, respectively. In order to examine the validity of the present approach (i.e., (1)), we computed the surface-troposphere heating due to the strongest band of CFC₃ (F₁₁) with a fine spectral resolution model which computes transmittances at 1 cm⁻¹ intervals employing line parameters given by Goldman et al. [1976a] and performs angular integration with a 12-point Gaussian quadrature scheme. As shown in the next section, the surface-troposphere heating estimated by employing (1) agrees within 4% with that obtained from the detailed computations. The procedure adopted in the present study for the various trace gases is summarized below.

1. For all trace gases except H₂O, CO₂, CH₄, N₂O, and O₃, (1)–(5) are adopted.
2. The parameter, Δα₀, is assumed to be 60 cm⁻¹ for all of
TABLE 5. Surface-Troposphere Heating due to CFC11 846-cm⁻¹

Model*	F \(_\text{S}\)	W m⁻²	Comment
Reference	0.51	Narrow-band model with 1-cm⁻¹ resolution; 12-point Gaussian quadrature for angular integration.	
Present scheme	0.525	Equations (1)-(5). Parameters from Table 3.	
Optically thin approximation	0.59	Equation (6).	

Atmosphere: midlatitude clear-sky conditions. F\(\text{S}\) surface-troposphere heating due to increase of CFC11 from 0 to 2 ppb.

*For comparison purposes, all the three models adopt the spectroscopic parameters from Goldman et al. [1976a].
5.1. Uniform Increase in Certain Trace Gases

Before presenting the results for the trace gas scenario shown in Table 1a, we will discuss results for a hypothetical case of 0–1 ppb increase for several of the trace gases. The purpose of this exercise is twofold: to elucidate the processes that determine the magnitude of the trace gas effects and to identify the most important trace gases from a climate viewpoint. For these two objectives, we avoid specific scenarios to assure that conclusions are not scenario dependent.

The computed surface warming due to a 0–1 ppb increase in 15 different trace gases is shown in Figure 1. The tropospheric O₃, CH₄, and N₂O effects are relatively better known and are shown merely for comparison purposes. Several interesting and rather surprising features of the results shown in Figure 1 are noted below.

Table 6. Examples of the Effect of Overlapping of Absorption Bands on the Computed Surface Warming

Constituent	Change	With Overlap*	Without Overlap	
CH₄	1.25X	0.09	0.08	0.19
N₂O	1.25X	0.12	0.1	0.2
CF₂Cl₂ (F12)‡	0-1 ppb	0.16	0.15	0.19
CFC₁₁ (F11)	0-1 ppb	0.14	0.13	0.16
CFC₁₄ (F14)	0-1 ppb	0.06	0.05	0.12
CFC₁₃ (F13)	0-1 ppb	0.22	0.2	0.25
CH₂Cl₂	0-1 ppb	0.03	0.02	0.04
CHCl₃	0-1 ppb	0.06	0.06	0.09
CCl₄	0-1 ppb	0.08	0.07	0.11
C₂H₂	0-1 ppb	0.02	0.02	0.07
C₂F₆ (F116)	0-1 ppb	0.13	0.12	0.2
CH₃CCl₃	0-1 ppb	0.02	0.01	0.04
PAN	0-1 ppb	0.04	0.03	0.06

*ΔTₛ is surface-air temperature change, and ΔTₑ is surface (or ground) temperature change.

For CH₄ and N₂O, however, a weak temperature dependence of the excited vibrational states is ignored, in the vicinity of the strong CFC₁₃ and CF₂C₁₂ bands, by Varanasi and Ko [1977] and Nanes et al. [1980]. While the effects of the hot bands are included in this study, the temperature dependence of their band strengths arising from the temperature dependence of the excited vibrational states is ignored. Nanes et al. [1980], however, suggest only a weak temperature dependence. As a note of caution, we add that the temperature dependence mentioned above should not be confused with the temperature correction that is needed to convert band strengths, S, measured at temperature T to STP conditions. Recall that in (1), the path length w is in cm atm, STP, and hence S measured at a temperature T in the units of cm⁻¹ (cm atm)⁻¹ should be multiplied by (T/273) to convert to the units of cm⁻¹ (cm atm)⁻¹, STP. In some instances in the literature, this correction factor has been confused for the temperature dependence of S. The procedure of employing the correction factor (T/273) is rigorous for the fundamental CFC bands. For the hot bands, however, we need an additional term to account for the temperature dependence of the excited vibrational state [e.g., see Kiehl and Ramanathan, 1983, equation 12].

Table 7. Computed Surface Temperature Change Resulting From Increasing CFC’s From 0 to 2 ppbv

Item	Model	FCA	FCT	Empirical
1 Ramanathan [1975]	0.56	0.9	0.9	
2 Reck and Fry [1978]	0.76			
3 Chamberlain et al. [1982]		1.42		
4 Wang et al. [1976]	0.38	0.56		
5 Wang et al. [1980]	0.69			
6 Hansen et al. [1982]	0.50			
7 Lacis et al. [1981]	0.65			
8 Karol et al. [1981]	0.8			
9 Hummel and Reck [1981]	0.76			
10 This study⁷	0.55-0.68			
11 This study (uniformly mixed)⁸	0.63-0.7⁸			
12 This study: CFC band strengths from Ramanathan [1975]	0.51-0.56⁴			
13 This study: CFC band strengths from Varanasi and Ko [1977]	0.50-0.55⁴			

Comparison of various model results. CFC₁₃ and CF₂C₁₂ are each increased from 0 to 2 ppbv.

⁴Ramanathan [1975], this study, and the GISS models (items 4–6) assume a constant CFC mixing ratio from the ground to 12 km, and above 12 km the mixing ratio decreases exponentially with a scale height of 3 km. Reck and Fry [1978], Karol et al. [1981], and Hummel and Reck [1981] assume a constant CFC mixing ratio from the ground to the top of the atmosphere.

⁵One-dimensional radiative-convective model with fixed relative humidity and with fixed-cloud altitude (FCA).

⁶Same as footnote 2, but with fixed-cloud temperature (FCT) instead of fixed-cloud altitude.

⁷Estimated from an empirical expression for the surface temperature sensitivity parameter.

⁸The FCA model results were not mentioned by Ramanathan [1975] but were obtained for the purposes of the present comparison.

⁹Reck and Fry gave ΔT results for 1-ppbv increase, which was linearly scaled for the 2-ppbv increase.

⁴CF mixing ratio as described by Ramanathan [1975]. See footnote 1 above.

The lower value is surface temperature change, and upper value is surface air temperature change.

⁴CF mixing ratio is constant from surface to top of the atmosphere.
Among the other trace gases, CFC13, CF2C12, CF3C1, C2F6, CHF3, and CBrF 3 exert the largest surface warming effect. The contribution by CF3C1, C2F6, CHF3, and CBrF 3 has not been discussed before and is a surprising and new aspect of the present results. The primary reason is the strength of their bands, and as shown in Table 4, the strongest bands of these gases are stronger than the strongest bands of CFC13 and CF2Cl2 by more than a factor of 2. The location of the band center, however, plays a crucial role because of the overlap effect. For example, in the 1295-cm⁻¹ region, the absorption by N2O, CH4, and H2O bands saturates this region, and hence trace gases in this spectral region have relatively lesser impact on climate. This is the primary reason why CF3, although possessing a band in the 1285-cm⁻¹ region which is stronger than any other bands in the 8- to 20-µm region, produces a surface warming of only 0.06 K.

2. The sensitivity of surface temperature to tropospheric ozone has been anticipated earlier [Ramanathan and Dickinson, 1979] but has not received much consideration elsewhere in the literature.

3. Although PAN has several moderately strong bands, its strongest band is in the middle of the strong 6.3-µm H2O bands. Similarly, although CCl4 and CHCl3 have moderately strong bands, their strongest bands are located in the 774-cm⁻¹ region, where they are overlapped by CO2, H2O rotation bands, and the H2O continuum.

4. To illustrate the importance of the overlap problem, we show in Table 6 the surface temperature increase with and without the overlap effects. Such results, besides illustrating the contribution from various radiative processes, also facilitate model intercomparison study by enabling the identification of the sources for model differences. We also show in this table, the surface and surface air temperature change for one of the two cases. In general, surface air temperature is larger than the surface temperature change by about 10%. It is clear from Table 6 that for several trace gases, e.g., CF₄, CHCl₃, CH₃CCl₃, C₂F₆, the overlap effect ameliorates δTₑ by factors of 1.5–2.

We will now compare the present estimates of δTₑ with other published estimates for a few of the trace gases. Consider first CFC13 and CF₂Cl₂ for which the differences between the various model estimates of the global surface temperature change are disturbingly large as illustrated in Table 7. The differences shown in Table 7 can arise from differences in the radiative treatment and/or from differences in the model sensitivity. In order to isolate these two sources, the climate sensitivity parameter, λ, as estimated from various models is shown in Table 8. As explained by Dickinson [1982] and Ramanathan [1982], λ and δTₑ are approximately related by

\[δTₑ ≈ λΔF \]

where ΔF is the radiative forcing of the surface-troposphere system due solely to trace gas increase, i.e., CFC increase in the present example. As described below, Tables 7 and 8 provide the answers for all of the differences in the computed δTₑ.

1. There is a wide spread in the measured band strengths. For example, Figure 2 shows the measured band strengths by various investigators for the strongest CFC bands. The present study uses the recent measurements of Kagann et al. [1983], whereas all of the other studies employ the earlier measurements. The values used by Ramanathan [1975] underestimate (compare item 12 with item 10) δTₑ by 8% while Varanasi and Ko’s values employed in the Goddard Institute for Space Studies (GISS) models underestimate (compare item 13 with item 10) δTₑ by 10%.

2. With respect to the radiative treatment, Ramanathan [1975] and Chamberlain et al. [1982] employ (6), which is one form of the optically thin approximation. By comparing item 12 with 1, both of which use the same band strengths, it is seen that (6) overestimates δTₑ by about 5%. However, the present study which uses an accurate procedure is in excellent agreement with Ramanathan [1975] because of the compensating effects of the smaller band strengths used in that study. The other models cited in Table 7, unfortunately, do not give the equation or the details of their radiative treatment. However, all of these models rely primarily on integrated band strengths and hence must employ the optically thin approximation but not necessarily (6).

3. The unrealistically large value obtained by Chamberlain et al. [1982] results primarily from their approach of esti-
mating the CFC heating from the change in the net flux at the surface rather than at the tropopause (see Ramanathan [1982] for more details on this topic).

4. Hummel and Reck [1981], Karol et al. [1981], and Reck and Fry [1978] assume the CFC mixing ratio to be uniform from the surface to the model top, whereas Ramanathan [1975], the present study, and the GISS models assume an exponentially decaying mixing ratio (see footnote 1 in Table 7) in the stratosphere. Our model calculations, when repeated with a constant mixing ratio, show that the constant mixing ratio overestimates (compare items 10 and 11) \(\Delta T_s \) by about 15%. Reducing these constant mixing-ratio model estimates by 15% would bring them closer to the present values.

5. This brings us to the GISS models. First note from Table 7, the estimates from the various versions of these models have undergone substantial change. We will adopt the latest result of Lacs et al. [1981] as their best estimate and compare this with that of the present study. Lacs et al. have not given the result for the fixed-cloud altitude (FCA) model, but using the factor \(f^*(1.4) \) in Table 8, we infer from Table 7 that the Lacs et al. result for the FCA version is 0.46 K (=0.65/1.4). The sensitivity of their model is smaller than that of the present model by 11% (=0.52/0.47). Furthermore, Varanasi and Ko’s band strengths used in their study underestimate \(\Delta T_s \) by 10% (compare items 10 and 13 in Table 7). Their model result of 0.46 K when corrected for the above differences increases to 0.56 (0.46 \times 1.11 \times 1.1), which is in close agreement with the present estimate of 0.55\textasciitilde0.6 K.

In summary, we can account for almost all of the differences between the various model estimates. The analyses lead to the conclusion that, in view of the accurate treatment of the CFC radiative effects and in view of the detailed and up-to-date spectroscopic information incorporated in this study, the present estimates of 0.55\textasciitilde0.6 K for CFC increase from 0 to 2 ppb should be considered as the state-of-the-art estimates for a radiative-convective model with fixed cloud top altitude.

For CF\textsubscript{4}, the only available calculation is that of Wang et al. [1980], who compute a surface temperature change, for 0\textasciitilde1 ppbv change in CF\textsubscript{4}, of 0.07 K to be compared with the present value of 0.06 K. Although the close agreement is reassuring, there are substantial differences in the CF\textsubscript{4} treatment between the two models. Wang et al.’s band strength is larger than the present study value by 40% and also they assume a 5-cm-1 bandwidth. Decreasing the bandwidth from 20 to 5 cm-1 in the present model leads to about 20% reduction in \(\Delta T_s \). While increasing the band strength to Wang et al.’s value of 5934 cm-2 atm-1 leads to about 25% increase in \(\Delta T_s \). It is not clear how the overlap of CF\textsubscript{4} with H\textsubscript{2}O, N\textsubscript{2}O, and CH\textsubscript{4} is treated in Wang et al.’s model calculations.

Hummel and Reck [1981] have computed the effects of CHClF\textsubscript{2} (CFC22), CH\textsubscript{3}CCl\textsubscript{3}, and CH\textsubscript{2}Cl\textsubscript{2}. Their surface warming for CHClF\textsubscript{2}, CH\textsubscript{3}CCl\textsubscript{3}, and CH\textsubscript{2}Cl\textsubscript{2} are, respectively, for 0\textasciitilde1 ppbv increase 0.04, 0.02, and 0.01, and the respective results of the present study are 0.05, 0.02, and 0.01 K. The two models seem to be in good agreement. Since Hummel and Reck [1981] have given neither the quantitative details of their radiation model nor the band strengths, it is difficult to rule out the possibility of a fortuitous agreement.

Sensitivity to vertical distribution. The sensitivity of the computed surface temperature change to vertical O\textsubscript{3} distribution is discussed in the next section. The discussion here is restricted to those gases that are uniformly mixed in the troposphere, i.e., all of the gases, other than O\textsubscript{3}, shown in Figure 1.

Observed profiles of CH\textsubscript{4} and N\textsubscript{2}O reveal a decrease in the mixing ratio above about 12 km as opposed to the constant mixing-ratio profile assumed in this study. The scale height for the mixing ratio depends strongly on latitude [World Meteorological Organization, 1982b]. Midlatitude profiles show a sharper decrease (scale height \(\approx 8 \) km) with altitude than tropical profiles (scale height \(\approx 15 \) km). We repeated the surface temperature calculations with the observed midlatitude profiles [World Meteorological Organization, 1982b, Figures 1-43 and 1-44]. For a doubling of CH\textsubscript{4}, both the uniform mixing-ratio profile and the midlatitude profile yielded a \(\Delta T_s \) of 0.31 K. Similarly, for a doubling of N\textsubscript{2}O, both mixing ratio profiles yielded a \(\Delta T_s \) of 0.4 K. The scale height of the mixing ratio for CH\textsubscript{4} and N\textsubscript{2}O is sufficiently large (\(\approx 8 \) km) that the stratospheric column abundance (of CH\textsubscript{4} and N\textsubscript{2}O) for the uniform mixing-ratio profile and the observed profile is nearly the same, and hence both profiles yield the same surface warming.

For all of the other trace gases shown in Figure 1, the computed \(\Delta T_s \) is about 15% larger for the uniform mixing-ratio profile than for the reference profile (assumed in this study) in which the mixing ratio decreases (above 12 km) with

Table 8. Comparison of Model Climate Sensitivity Parameter

Model	\(\lambda \)	\(f^* \)	\(f^* \) (empirical)
Monabe and Wetherald [1967]	0.53		
Ramanathan [1975]	0.52	1.6	1.6
Reck and Fry [1978]	0.53		
Wang et al. [1976]	0.47	1.5	
Wang et al. [1980]	0.47	1.23	
Hansen et al. [1982]	0.47	1.4	
Lacs et al. [1981]	0.47	1.4	
This study	0.52		

Here, \(f^* = f(FCT)/f(FCA) \); \(f(\text{empirical}) = f(\text{empirical})/f(FCA) \). See Table 7 (footnotes 2 and 3) for explanation of FCA and FCT.

FIG. 2. Band strengths for the \(\nu_4 \) CC\textsubscript{1}F\textsubscript{2} bands in units of cm-1 (see Table 8).

Fig. 2. Band strengths for the \(\nu_4 \) CC\textsubscript{1}F\textsubscript{2} bands in units of cm-1 at 296 K. Sources for band strengths are H(1959), Herranz et al. [1959]; G(1976), Goldman et al. [1976a, b]; V(1977), Varanasi and Ko [1977]; N(1980), Nanes et al. [1980]; and K(1983), Kagann et al. [1983].
a scale height of 3 km. This nonnegligible sensitivity in the computed surface warming for these trace gases is largely because of the substantial difference in the stratospheric abundance between the uniform mixing-ratio profile and the profile with a 3-km scale height.

5.2 Climatic Effects of the Projected Increases

Figure 3 shows the results of the radiative-convective model calculations employing the projected increases shown in Tables 1a and 2. Our results basically confirm the suggestions by earlier calculations (see World Meteorological Organization, [1982a] for a summary) that the other trace gases can amplify the CO₂ surface warming by factors ranging from 1.5 to 3. But our results reveal several new features. We will summarize these features by considering the “best estimate” curve in Figure 3.

1. The surface warming (ΔTₑ) due to all the trace gases (shown in Figure 3) is 1.54 K. The increase in CO₂ contributes about 0.71 K.

2. The CFCs, CFC₁₂ (F₁₁) and CF₂Cl₂ (F₁₂), have the largest warming effect of all the trace gases besides CO₂. The direct radiative effect of CFC₁₂ and CF₂Cl₂ (increase) contributes about 0.36 K to the surface warming. Furthermore, the stratospheric O₃ change, resulting largely from the projected increase in CFCs, leads to an additional warming of about 0.08 K. Hence the combined effect of 0.44 K due to CFCs is roughly 60% of the CO₂ effect.

3. Somewhat smaller, but nonnegligible, surface warming results from the increases in CH₄ (0.14 K), N₂O (0.1 K) and tropospheric O₃ (0.06 K).

4. Increases in CH₃CF₂ (F₂₂), CH₂CCl₃, and CF₃Cl contribute, respectively, about 0.04 K, 0.02 K, and 0.01 K. All others shown in Figure 3 have negligible (<0.005 K) impact.

The warming we compute due to stratospheric ozone is at variance with Wang et al. [1980] results, who compute a surface cooling due to CFM-induced ozone perturbations. The major source of discrepancy is in the adopted stratospheric O₃ perturbation profile. The present profile is based on the most recent chemistry and reaction rates, and it shows that large decreases in middle and upper stratospheric O₃ profile are accompanied by somewhat smaller percentage increases in the lower stratosphere. Additional calculations were performed to examine the sensitivity of the computed surface warming to vertical distribution of O₃ change, which lead to the following inferences. The profile shown in Table 2 leads to a surface warming of 0.08 K. Roughly, 0.06 K is due to the O₃ decrease above 30 km, and the remainder of 0.02 K is due to the O₃ increase below 30 km. Thus the O₃ decrease above 30 km as well as the O₃ increase below 30 km contribute to a warming. The perplexing nature of this result can be understood from the detail analyses given by Ramanathan et al. [1976] and Ramanathan and Dickinson [1979], and hence only a brief discussion is given below.

A decrease in stratospheric O₃, irrespective of the altitude of the decrease, would lead to an increase in the solar radiation reaching the troposphere, and this solar effect would tend to warm the surface. However, O₃ also alters the IR (longwave) emission from the stratosphere in two ways: first, the decreased solar absorption (due to O₃ decrease) cools the stratosphere; the cooler stratosphere emits less downward to the troposphere. Second, a decrease in O₃ reduces the absorption (by the O₃ 9.6-μm band) of the surface-troposphere emission. This reduction causes an additional cooling of the stratosphere, which in turn, causes an additional reduction in the downward IR emission by the stratosphere. Thus the IR effects of O₃ decrease tend to cool the surface. However, the IR opacity of stratospheric CO₂, H₂O, and O₃ is sufficiently strong that the impact of the reduction in IR emission (by the stratosphere) on the surface diminishes with an increase in the altitude of O₃ perturbation. On the other hand, the surface warming induced by the solar effect is independent of the altitude of O₃ perturbation. Consequently, for a decrease in O₃ in the upper stratosphere, the solar effect dominates (leading to a surface warming), while for a decrease in the lower
The CO2 increase causes a surface warming of 0.52 K, which is enhanced by a factor of about 2.1 by the other trace gases. CH₄, tropospheric O₃, and CFC’s are the largest contributors to this enhancement. The upper stratospheric cooling due to the CO2 increase is as large as about 3 K. The computed stratospheric cooling would be larger had we included the effects of stratospheric O₃ decrease due to increases in CFC’s. From Table 10b, which shows the contribution of the individual gases, it is seen that CH₄, tropospheric O₃, and CFC’s are the largest contributors, next to CO₂, to the surface warming computed for the period 1880–1980.

6. SUMMARY

The basic conclusion that can be derived from the present study is that the radiative effects of increases in trace gases (other than CO₂) are as important as that of CO₂ increase in determining the climate change of the future or the past 100 years. Several tens of man-made chemicals have been detected in the troposphere and about 20 of these have strong absorption features in the 7- to 13-μm regions of the longwave spectrum. The present-day, taken as the year 1980, concentrations are taken from in situ observations. A careful analysis of the measured trends from early 1970’s to 1980 form the basis for the concentrations projected 50 years into the future. Published ice-core CH₄ observations, surface-based O₃ observations, and other studies are used to infer the trace gas concentrations for the preindustrial era. The equilibrium surface and atmospheric temperature changes estimated with the aid of a radiative-convective model reveal the following features.

1. The preindustrial to present-day increase in CO₂ causes an equilibrium surface warming of 0.5 K in the model, which is enhanced by a factor of 1.5 by the increases in the other trace gases. CH₄, tropospheric O₃, and CFC’s are the largest contributors to this enhancement. The upper stratospheric cooling due to the CO₂ increase is as large as about 3 K.

2. The projected CO₂ increase from 339 ppm in the year 1980 to 450 ppm in 2030 warms the model surface by 0.7 K, which is enhanced by a factor of about 2.1 by the other trace gases.

stratospheric O₃, the IR effect dominates (leading to a surface cooling).

The uncertainty in our computed surface warming due to stratospheric O₃ change is best illustrated by the following examples. The profile of O₃ change in Table 2 for altitude above 30 km when combined with 10% uniform O₃ decrease between 12 and 30 km leads to a surface warming of 0.02 K; whereas the same profile (as in Table 2) above 30 km when combined with a 10% uniform O₃ increase between 12 and 30 km leads to a surface warming of 0.1 K. In view of the high sensitivity of the computed temperature change to the vertical O₃ profile, our computed estimates for stratospheric O₃ change should be viewed with caution because such distributions would be influenced by atmospheric dynamics (whose effects are ignored in this analysis) and of course by remaining uncertainties in model chemistry.

The vertical distribution of the computed atmospheric temperature change is shown in Figure 4. It is clear from this figure that other trace gas effects on temperatures are comparable to CO₂ effects, not only for surface warming, but also for stratospheric cooling. The stratospheric cooling, to a large extent, results from the stratospheric O₃ reduction. The potential climatic effect of gases that are not explicitly discussed in Figure 3 is summarized in Table 9.

5.3. Effects of the Inferred Trace Gas Increases From the Preindustrial to the Present Levels

For the sake of discussion, the concentrations for the year 1880 are associated with the preindustrial levels, and these concentrations have been shown in Table 1b, while the observed 1980 concentrations are shown in Table 1a. The computed equilibrium temperature changes are shown in Table 10. The CO₂ increase causes a surface warming of 0.52 K, which is enhanced by 50% due to the increase in the other trace gases. The computed stratospheric cooling due to CO₂ increase is substantial, but that due to other gases is negligible. The computed stratospheric cooling would be larger had we included the effects of stratospheric O₃ decrease due to increases in CFC’s. From Table 10b, which shows the contribution of the individual gases, it is seen that CH₄, tropospheric O₃, and CFC’s are the largest contributors, next to CO₂, to the surface warming computed for the period 1880–1980.

Table 9. Gases Not Shown in Figure 3

Gas	7- to 13-μm Absorption Feature	Predicted Concentration Increase	Potential Role
CHCl₂F	band intensities unavailable	yes	yes
C₂Cl₂F₃	band intensities unavailable	yes	yes
C₂Cl₂F₄	band intensities unavailable	yes	yes
C₂ClF₅	band intensities unavailable	yes	yes
SO₂; CS₂; H₂S	strong	uncertain	no
COS; CS₂; H₂S	weak	no	no
CH₃CICH₂Cl	strong	small	no
CH₂Cl	weak	no	no
C₂H₂; C₂H₄; C₃H₈	weak	uncertain	no
HCHO; CH₂CHO	weak	uncertain	no
CH₃F; CH₂Br; CH₃I	weak	uncertain	no
CHF₂	strong	uncertain	yes
CHF₃	very strong	uncertain	yes
CBrF₃	very strong	small	no
HNO₃	strong	small but uncertain	no
NO₂(NO, NO₂, NO₃, N₂O₅)	weak	uncertain	no
HCN	weak absorption	uncertain	no

The first four chlorofluorocarbon gases here could contribute significantly to future global warming because of the spectral positions of their absorption bands in the 7-13 μm atmospheric window region if their band-absorption intensities are large enough. For other gases, e.g., HCN and SO₂, their absorption bands are not strong enough to be significant at present or near-present atmospheric concentrations. For other gases such as C₂H₆ and CH₃F, we have too little information to be able to estimate future trends.
gases. The factor of trace gas enhancement varies from about 1.5 to 3 depending on the assumed scenario. The trace gases that contribute to this significant enhancement are CFC$_3$ (F11), CF$_3$Cl$_2$ (F12), CH$_4$, N$_2$O, stratospheric and tropospheric O$_3$. Somewhat smaller but nonnegligible contributions arise from CHClF$_2$ (F22), CH$_3$CCl$_3$, and CFC$_3$.

3. The stratospheric O$_3$ changes resulting from the assumed increase in CFC's and other chlorine compounds by year 2030 are a large decrease in middle stratospheric O$_3$ accompanied by a slight increase in lower stratospheric O$_3$. Hence although CFC's are estimated to cause only a slight reduction in the column ozone, the significant perturbation to the shape of the O$_3$ profile leads to a nonnegligible surface warming of 0.08 K. Thus the O$_3$ change due to CFC's adds to the surface warming of 0.36 K resulting from the CFC direct radiative effects. These two effects when considered together make CFC's the largest contributors (next to CO$_2$) to the overall surface warming computed in this study. However, because of the strong sensitivity of the computed surface warming to the vertical profile of O$_3$ change, the magnitude of the potential surface warming due to stratospheric O$_3$ change is highly uncertain.

4. All of the other trace gases perturb the vertical atmospheric profile in the same manner as CO$_2$ in the following sense: they warm the surface and the troposphere while cooling the stratosphere (above 20 km) significantly. However, there is one important difference between the radiative effects of CO$_2$ and the other trace gases: as pointed out by Dickinson et al. [1978], CFC's have a strong warming on the tropical tropopause. Also the studies by Ramanathan and Dickinson [1979] and Fels et al. [1980] reveal the significant sensitivity of tropical tropopause to O$_3$ perturbations. Warming of the tropical tropopause by 2–3 K could lead to large changes in stratospheric water vapor.

5. On a ppb basis, CF$_3$Cl has the strongest greenhouse effect (exceeding very slightly even that of CFC12) followed closely by CBrF$_3$, CF$_3$Cl$_2$ (F12), CHF$_3$, CFC$_3$ (F11), and C$_2$F$_2$ (F16), all of which have effects comparable to that of CFC$_3$ or CF$_2$Cl$_2$. Gases such as CF$_4$, CCl$_4$, and PAN have strong absorption features, but due to the overlap with CH$_4$, N$_2$O, CO$_2$, and H$_2$O bands, these gases are not very effective in enhancing the atmospheric greenhouse effect. However, our conclusion concerning the overlap effects should be considered as tentative. Measurements of narrowband spectroscopic parameters for these other trace gases are currently not available, and such measurements are needed for improving the accuracy of the estimates for the overlap effects. For important species such as C$_2$Cl$_2$F$_3$ (F113), C$_2$ClF$_2$ (F114), and C$_2$CF$_2$ (F115) even band strengths are not available.

6. The accurate radiation model developed here for CFC$_3$ (F11) and CF$_3$Cl$_2$ (F12) helped sort out the differences between the various published studies for the estimated surface warming.

The important implication of this study is that the preindustrially to the present increase in CO$_2$ and the other trace gases might, very likely, have caused a significant perturbation to the radiative heating of the climate system. This perturbation radiative heating induces a warming of about 0.8 K in the present model, whereas it might have induced a warming twice as large in recent GCM's [Washington and Meehl, 1984; Hansen et al., 1984]. These GCM's compute a 4 K global warming due to CO$_2$ doubling as opposed to the 2 K yielded by the radiative-convective model. The 0.8–1.6 K global warming, had it indeed occurred from the preindustrial to the present, should have been detectable above the statistical fluctuations of the climate. This is a controversial issue, and the published papers have contradictory results. Hansen et al. [1982] suggest that the CO$_2$ warming is discernible from observed records of global or hemispherical average temperatures. The statistical analysis of the 70-year homogeneous (in time and in longitude) temperatures for 50–70øN by Madden and Ramanathan [1980] has failed to reveal the CO$_2$ effect. Before we can attempt to verify the greenhouse theories of preindustrial to present warming by comparing model results with the observations, the following important issues must be dealt with.

1. The one-dimensional and GCM results pertain only to the equilibrium warming of the surface to a step-function increase in the trace gases. The quantity of interest, for the purpose of verification, is the transient climate response to a time-varying distribution of trace gases. Even assuming that time-dependent trace gas distribution is known (for the past 100 years), our understanding of the ocean mixed layer interactions with the atmosphere and the thermocline as well as the lateral ocean heat transport is too imprecise to estimate reliably the transient response of the climate system.

2. Other climate forcing terms, e.g., solar irradiance, volcanic aerosols, surface radiative properties, can also change on the time scales of interest to this study, and we do not have adequate data bases to estimate their contributions to past climates. Major volcanic events, such as El Chichon, can cause an equilibrium global cooling of 0.5–1 K, but the aerosol residence time is about 2 years or less, and as yet, we have not come to grips with the tough issue of estimating the transient response to an episodic forcing.

3. The last issue concerns the source of errors in observations of temperatures, humidities, and other trace gases arising from instrumental and sampling biases. There are no reliable global measurements for key components like lower stratospheric H$_2$O and tropospheric O$_3$.

It is hoped this study will provide more scientific justification for making some key measurements on a long-term

TABLE 10. Computed Temperature Changes due to Inferred Trace Gases for the Period 1880–1980

Constituent	Temperature Change, K	Stratosphere, km	
a. Surface and Stratospheric Temperature Change			
CO$_2$	0.52	–0.77	–2.78
CO$_2$ plus all other gases	0.79	–0.8	–2.85

Constituent	Concentration Change	Temperature Change
b. Itemized Contribution to Surface Warming		
CO$_2$	275–339 ppm	0.52
CH$_4$	1.15–1.65 ppm	0.12
N$_2$O	0.283–0.3 ppm	0.02
Troposphere O$_3$	12.3%	0.04
CFC$_11$	0–0.18 ppb	0.025
CFC$_12$	0–0.28 ppb	0.04
All others in Table 1a	0 to 1980 values	0.02

Possible changes in stratospheric O$_3$ are ignored.

*Surface air temperature change is larger than the surface temperature change by about 10–13%.
basis of trace gas trends (at least the top 12 gases identified here), stratospheric aerosols, stratospheric humidity, and tropical tropopause temperatures. Of equal importance, accurate measurements of narrow-band spectroscopic parameters and band strengths for the trace gases are urgently needed.

Acknowledgments. We are indebted to Dr. Niki for providing unpublished data. One of us (V.R.) thanks the Atmospheric Sciences Division, NASA Langley for the hospitality extended during the sabbatical visit. L. B. Callis of NASA Langley provided a careful review of an earlier version of this manuscript. We thank Gretch Enochs for typing several versions of this manuscript. We also thank M. Coffey of NCAR for providing the routines and data tapes for inferring narrow-band model parameters. NCAR is sponsored by the National Science Foundation.

REFERENCES

Alexandrov, E. L., J. L. Konol, A. Ch. Khrgian, L. R. Rakipova, and Yu. S. Sedonov, Contribution of ozone and other minor trace gases to atmospheric radiation regime and their possible effect on global climate change, WMO Global Ozone Res. and Monitoring Proj. Rep. 10, 79 pp., World Meteorol. Organ., Geneva, 1981.

Andreae, M. O., and H. Rasmussen, Dimethyl sulfide in the surface ocean and the marine atmosphere: A global view, Science, 221, 744-747, 1983.

Angel, J. K., and J. Korshover, Global variation in total ozone and layer-mean ozone: An update through 1981, J. Climate Appl. Meteorol., 22, 1611-1627, 1983.

Bauer, E., A catalog of perturbing influences on stratospheric ozone, 1955-1975, J. Geophys. Res., 84, 6929-6940, 1979.

Berg, W. W., L. E. Heidt, W. Pollock, P. D. Sperry, R. J. Cicerone, and E. S. Gladney, Brominated organic species in the Arctic atmosphere, Geophys. Res. Lett., 11, 429-432, 1984.

Blake, D. R., E. W. Mayer, S. C. Tyler, Y. Makide, D. C. Montague, and F. S. Rowland, Global increase in atmospheric methane concentrations between 1978 and 1980, Geophys. Res. Lett., 9, 477-480, 1982.

Bojnov, R. D., Tropospheric ozone, its changes and possible radiative effect, WMO Spec. Environ. Rep. 16, World Meteorol. Organ., Geneva, 1983.

Boughner, R. E., and V. Ramanathan, Climatic consequences of increasing CO2: A study of the feedback mechanisms between increased CO2 concentrations and the atmospheric ozone, water vapor, and thermal structure and balance, paper presented at the Second Conference on Atmospheric Radiation, Am. Meteorol. Soc., Arlington, Va., Oct. 29-31, 1975.

Callis, L. B., M. Natarajan, and R. E. Boughner, On the relationship between the greenhouse effect, atmospheric photochemistry, and species distributions, J. Geophys. Res., 88, 1401-1426, 1983.

Cess, R. D., The optically thin approximation, Meeting of Experts on the Optically Thin Approximation, 2, The tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone, J. Geophys. Res., 88, 6641-6661, 1983.

Cudnold, D., R. Prinn, R. Rasmussen, P. Simmonds, F. Alyea, C. Cardenino, A. Crawford, P. Fraser, and R. Rosen, The Atmospheric Lifetime Experiment, 3, Lifetime methodology and application to 3 years of CFC12 data, J. Geophys. Res., 88, 8379-8400, 1983a.

Cudnold, D., R. Prinn, R. Rasmussen, P. Simmonds, F. Alyea, C. Cardenino, and A. Crawford, The Atmospheric Lifetime Experiment, 4, Results for CFC11 based on 3 years of data, J. Geophys. Res., 88, 8401-8414, 1983b.

Dickinson, R. E., Modeling climatic changes due to carbon dioxide increases, in Carbon Dioxide Review, edited by W. C. Clark, pp. 101-133, Clarendon Press, New York, 1982.

Dickinson, R. E., S. C. Liu, and T. M. Donahue, Effect of chloroform-methylene infrared radiation on zonal atmospheric temperature, J. Atmos. Sci., 35, 2124-2125, 1978.

Donner, L., and V. Ramanathan, Methane and nitrous oxide: Their effect on the terrestrial climate, J. Atmos. Sci., 37, 119-124, 1980.

Duxbury, J. M., D. R. Baldwin, R. E. Terry, and R. L. Tate, Emissions of nitrous oxide from soils, Nature, 290, 462-464, 1982.

Ehnhlt, D. H., R. J. Zander, and R. A. Lamontagne, On the temporal increase of tropospheric CH4, J. Geophys. Res., 88, 8442-8446, 1983.

Fabian, P., R. Borchers, D. Gomer, and S. A. Penkett, The vertical distribution of halocarbons in the stratosphere, Quadrenniul Ozone Symposium,IAMAP Programs and Abstracts, pp. 3-6, Int. Assc. of Meteorol. and Atmos. Phys., 1984.

Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, Stratospheric sensitivity to perturbations in carbon and ozone: Radiative and dynamical response, J. Atmos. Sci., 37, 2265-2297, 1981.

Fenical, W., Natural products chemistry in the marine environment, Science, 215, 923-928, 1982.

Fishman, J., V. Ramanathan, J. S. Solomon, and J. R. Cameron, Observation and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone, Tellus, 31, 432-446, 1979b.

Goldman, A. F. S. Bonomo, and D. G. Murray, Statistical band model analysis and integrated intensity for the 11.8 μm band of CFC13, Appl. Opt., 15, 2307-2307, 1976a.

Goldman, A. F. S. Bonomo, and D. G. Murray, Statistical band model analysis and integrated intensity for the 10.8 μm band of C2F5Cl2, Geophys. Res. Lett., 3, 309-312, 1976b.

Hameed, S., A. Lasic, D. Rind, G. Russell, P. Stone, C. Fung, R. Ruedy, and J. Lerner, Climate sensitivity: Analysis of feedback mechanisms, in Climate Processes and Climate Sensitivity, Maurice Ewing Ser. 5, edited by J. E. Hansen and T. Takahashi, AGU, Washington, D. C., 1984.

Herrmann, J. T., and V. Ramanathan, CO in radiative-convective models of the stratosphere, 2, The tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone, J. Geophys. Res., 88, 6641-6661, 1983.

Herrmann, J. T., and V. Ramanathan, CO in radiative-convective models of the stratosphere, 2, The tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone, J. Geophys. Res., 88, 6641-6661, 1983.

Ramanathan et al.: Trace Gas Climate Effects
WMO Global Ozone Res. and Monitoring Prof. Rep. 14, 35 pp., Geneva, 1982a.
World Meteorological Organization, The stratosphere 1981—Theory and measurements, WMO Rep. 11, Geneva, 1982b.
World Meteorological Organization, The world climate research program report on the meeting of experts on detection of possible climate change, WCP 29, edited by W. W. Kellogg and R. D. Bojkov, p. 42, Geneva, 1983.
Wuebbles, D. J., Scenarios for future anthropogenic emissions of trace gases in the atmosphere, UCID-18997, Lawrence Livermore Lab., Berkeley, Calif., 1981.
Wuebbles, D. J., A theoretical analysis of the past variations in global atmospheric composition and temperature structure, Ph.D. thesis, UCRL-53423, Univ. of Calif., Davis, 1983a.
Wuebbles, D. J., Chlorocarbon emission scenarios: Potential impact on stratospheric ozone, J. Geophys. Res., 88, 1433–1440, 1983b.
R. J. Cicerone, J. T. Kiehl, and V. Ramanathan, National Center for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307.
H. B. Singh, SRI International, Menlo Park, CA 94025.

(Received August 15, 1984; revised January 14, 1985; accepted January 18, 1985.)