Proactive effective of exogenous adenosine triphosphate on hypothermically preserved rat liver

Xiao-Dong Tan, Hiroshi Egami, Feng-Shan Wang, Michio Ogawa

INTRODUCTION

Improving the quality of cold stored organs and prolonging the effective preservation time are the pivotal contents in the investigation of hypothermic preservation of transplant grafts. Several investigators have reported that the intracellular level of adenosine triphosphate (ATP) in cold stored organs was closely correlated with the viability of transplant grafts[1-3]. Bowers reported that ATP level in cold stored pretransplant organs was a sensitive parameter for examining the activities of cold stored organs[4]. Therefore, providing direct energy substrate ATP to cold stored organs[5] should be a simple and effective method to sustain the high level of intracellular ATP.

However, thus far, whether exogenous ATP could enter cells or not is controversial[6-9]. Furthermore, there were few reports which elucidated the protective effect of ATP on cold stored transplant grafts. In this study, a continuously hypothermic machine perfusion model of rat liver was applied to reveal the protective effect of ATP on cold stored rat livers and its mechanism.

MATERIALS AND METHODS

Experimental Animals

Wistar rats weighing 180-220 g, both male and female, were randomly used.

Experiment groups and protocol

Cold storage study on rat livers The rats mentioned above were divided into 3 groups at random, group A (containing neither ATP nor MgCl₂ in the perfusate), group B (containing 5 mmol/L ATP but no MgCl₂ in the perfusate), group C (containing either ATP or MgCl₂ in the perfusate), respectively. There were 6 rats in each group. The rat liver was weighed immediately after resection by the method described previously[10-12], then these grafts were put into the modified Hoffmann perfusate[13] (0-4 °C) for 30 min (Table 1). Finally, the livers were preserved in a hypothermic preservation incubator by continuously hypothermic preservation perfusion model (Figure 1). The perfusate temperature was 6-8 °C[14], perfusion speed was 0.1 mL/min/g[15], the total volume of perfusate was 120 mL.

 Autoradiography study Six rats were chosen randomly, the livers were resected with the same method. One mCi [α-³²P] ATP, 5 mmol/L MgCl₂, 200 µL and 40 U phenol kinase were added into 1 L perfusate, and the same liver preservation mechanism was applied.

Table 1 Components of perfusate

Component	Concentration
Hydroxyethyl starch	50 g/L
Calcium gluconate	80 mmol/L
Raffinose	10 mmol/L
K₂HPO₄	25 mmol/L
Hydroxyethyl piperazine	10 mmol/L
Dexamethasone	12 mg/L
Penicillin	2×10⁵ units/ L
Insulin	100 units/ L
MgCl₂	5 mmol/L
ATP	5 mmol/L

The pH value was modulated to 7.35 with NaOH, and the osmotic pressure was 300-320 mOsm/L; addition of MgCl₂ and ATP was dependent on the different groups.

Biochemical detection

Detection of energy status in cold stored rat livers The rat liver samples were used to detect the intracellular ATP, ADP, AMP, TAN and EC at 0, 1, 2, 6, 12, 24 and 36 h after resection.
preservation by HPLC method\(^{[15]}\) (TAN=ATP+ADP+AMP, EC=[ATP+0.5ADP]/TAN\(^{[16]}\)). One milliliter of perfusate was taken to detect the LDH and AST activities\(^{[17,18]}\) at 6, 12, 24 and 36 h respectively after preservation.

Histological and morphological findings Paraffin sections of HE staining were made after 24 h preservation of the rat livers\(^{[19]}\), and observed by a light microscope.

Autoradiography of [\(\alpha\)-\(32\)P] ATP The rat liver samples were made into paraffin sections of HE staining after 4-h preservation. Moreover, whether ATP entered the cells of cold stored rat livers or not was examined by autoradiography of [\(\alpha\)-\(32\)P] ATP\(^{[20]}\).

Statistical analysis
The average values were presented as mean±SD, \(t\)-test was applied and \(P<0.05\) was considered to be statistically significant.

RESULTS

Energy status in cold stored rat livers (\(\mu\)mol/g wet liver)
In group A, following the prolongation of preservation time, the ATP and EC levels in rat liver cells were significantly decreased. The ATP and EC levels were also rapidly decreased in group B, there was no statistical difference between these two groups \((P>0.05)\). However, the ATP and EC levels were slowly decreased in group C \((P<0.01, \text{Table 2})\).

LDH and AST activities in hypothermic preservation perfusate
LDH and AST activities in the perfusate were increased in groups A and B, there was no significant difference between two groups \((P>0.05)\). On the other hand, compared with those in groups A and B, the relevant activities were slowly increased in group C \((P<0.05, \text{Table 3})\).

Histological and morphological findings after 24-h hypothermic perfusion preservation
In group A (Figure 2), the hepatocytes were obviously swollen, cytosol and part of nucleus were faintly stained. Part of the endothelial cells entered the hepatosinus.

In group B (Figure 3), the hepatocytes were also expanded, cytosol was faintly stained. Some nuclei were strongly stained. Some endothelial cells entering the hypatosinus were also found.

In group C (Figure 4), the hepatocytes were lightly expanded. There was no apparent bubble in cytosol, and the morphology of nucleus was normal. The endothelial cells of hepatosinus were continuous.

Figure 1 Preservation of continuously hypothermic machine perfusion. A: Organ hypothermic preservation box, B: Temperature displayer, C: Perfusion pump, D: Perfusion pump, (Displaying the perfusion pressure), E: Perfusate container, F: Organ preservation container, G: pH displayer, H: Entry of wire, (Being sealed while preservation).

Figure 2 Histological and morphological findings in hypothermically preserved hepatocytes. Group A: 24-h preservation, HE staining 100×.

Figure 3 Histological and morphological findings in hypothermically preserved hepatocytes. Group B: 24-h preservation, HE staining 100×.

Figure 4 Histological and morphological findings in hypothermically preserved hepatocytes. Group C: 24-h preservation, HE staining 100×.

Figure 5 Autoradiography of [\(\alpha\)-\(32\)P] ATP in hypothermically preserved hepatocytes. Black spots in hepatocytes are the autoradiographies of [\(\alpha\)-\(32\)P] ATP, 4-h preservation, HE staining 100×.
Autoradiography of [α-32P] ATP
Numerous silver spots of [α-32P] ATP were found to be limited within the rat hepatocytes, while no silver spots were found in the hepatosinus and central vein (Figure 5). This observation demonstrated that [α-32P] ATP entered the cold stored rat hepatocytes.

DISCUSSION

Protective effects of exogenous ATP on hypothermically preserved rat livers

Up to now, some reports have revealed that ATP-MgCl2 had a protective effect on the therapy of hemorrhagic shock27,28, but reports revealing the protective effect of ATP-MgCl2 on hypothermically preserved transplant organs were few29,30. The results of this study demonstrated that the intracellular level of ATP in the group containing no ATP-MgCl2 or the group containing ATP alone decreased rapidly after hypothermic preservation. Simultaneously, the release of intracellular enzymes was increased, indicating severe damages of the membrane functions. Moreover, significant swelling of the hepatocytes and obvious infiltration of neutrophils were found histologically. On the contrary, the intracellular ATP level in the group containing ATP-MgCl2 was almost maintained at the normal level for quite a long time, and decreased much slower after hypothermic preservation. Furthermore, because of the protective effect of ATP on cell membranes23,24, the metabolic function of hepatocytes was restored, and the release of intracellular enzymes (LDH and AST) was significantly inhibited. The histological observations also showed that the swelling of hepatocytes was milder than that in groups B and C. These results suggested that ATP-MgCl2 could directly provide the energy or energy substrates for intracellular Na+-K+ ATPase as well as Ca2+-ATPase to remain the extracellular and intracellular ion balance25-29, and lighten the intracellular acidosis and cell swelling21,22. In addition, ATP-MgCl2 also had effects on the amelioration of microcirculation, restoration of membrane voltage, restoration of normal membrane permeability and improvement of cellular functions30,31.

Together, ATP showed protective effects on cold stored rat livers, and it might be a synthetical effect of multiple actions.

Mechanism of protective effect of ATP on hypothermically preserved rat livers

ATP had a very strong effect on vascular expansion32, but our current study demonstrated that exogenous ATP protected cold stored rat livers not through vascular expansion.

If ATP-MgCl2 protected the cold stored rat livers through vascular expansion, then addition of ATP alone to the perfusate should also exhibit a protective effect. But no protective effect was observed by the addition of ATP alone in our study (Data not shown). Moreover, addition of MgCl2 alone to the perfusate also showed no protective effect33,34. Addition of ADP-MgCl2 complex, which has a more effective action of vascular expansion, showed no protective effect as ATP-MgCl2 (Data not shown). An even more important finding was that, ATP-MgCl2 could enter cold stored rat liver cells in our study. This also directly confirmed that exogenous ATP-MgCl2 could protect cold stored rat livers through the intracellular mechanism. By our knowledge, no report has revealed that exogenous ATP could enter hepatocytes through the membrane, and the mechanism is still unclear. We suspect that the possible pathway might be considered as followings. First, as ATP is a large biomolecule, the membrane is impermeable to it under normal status. But the permeability is increased to ATP due to the activation of some membrane carrier proteins by hypothermia and anoxia. Second, ATP enters hepatocytes through the disrupted hepatocyte membrane. In addition, how does ATP play the protective effect after entering the cells is still poorly understood.

Taken together, these results indicate that exogenous ATP-MgCl2 could protect cold stored rat livers through an intracellular rather than an extracellular mechanism.

Participation of Mg2+ in protection of cold stored rat livers by exogenous ATP

As we know, ATP could form chelate with other extracellular bivalent cations (Ca2+, Sr2+, Mg2+, etc.). However, addition of ATP-MgCl2 complex could inhibit the dephosphorylation and deamino action of ATP, suppress the extracellular hydrolysis of ATP, and prevent the different dynamic effects by interaction of ATP and other extracellular cations35. The other possible reason may be that participation of Mg2+ may be required while

Table 2 Energy status in hypothermically preserved rat livers (n=6, mean±SD)

Time	Group A	Group B	Group C
0 h	2.760±0.302	2.760±0.302	2.760±0.302
1 h	2.337±0.202	2.263±0.282	2.514±0.298
2 h	1.914±0.209	1.971±0.205	2.391±0.276a
6 h	1.509±0.211	1.506±0.180	2.523±0.269a
12 h	1.145±0.177	1.136±0.150	2.715±0.298a
24 h	0.755±0.082	0.842±0.088	2.547±0.279a
36 h	0.603±0.065	0.706±0.080	1.782±0.200a

EC

Time	Group A	Group B	Group C
0 h	0.871±0.093	0.871±0.093	0.871±0.093
1 h	0.803±0.090	0.789±0.083	0.791±0.083
2 h	0.741±0.082	0.736±0.082	0.743±0.079
6 h	0.653±0.071	0.645±0.068	0.695±0.071a
12 h	0.543±0.063	0.537±0.060	0.660±0.070a
24 h	0.380±0.045	0.406±0.045	0.601±0.068a
36 h	0.316±0.040	0.348±0.042	0.471±0.051b

Table 3 Activities of AST and LDH in perfusate (IU/L kg liver) (n=6, mean±SD)

Time	LDH	AST	LDH	AST	LDH	AST
6 h	80.2±3.8	4.6±0.6	112.7±4.1	8.9±0.9	188.4±5.1	15.6±1.4
12 h	76.4±2.2	4.8±0.5	123.8±3.6	8.2±0.8	170.1±6.2	14.1±1.7
24 h	9.3±1.8	1.2±0.4a	26.7±2.3	2.4±0.5a	42.6±3.5	4.4±0.6a
36 h	80.2±3.8	4.6±0.6	112.7±4.1	8.9±0.9	188.4±5.1	15.6±1.4

P <0.05, P <0.01 vs group A.

Participation of Mg2+ in protection of cold stored rat livers by exogenous ATP

As we know, ATP could form chelate with other extracellular bivalent cations (Ca2+, Sr2+, Mg2+, etc.). However, addition of ATP-MgCl2 complex could inhibit the dephosphorylation and deamino action of ATP, suppress the extracellular hydrolysis of ATP, and prevent the different dynamic effects by interaction of ATP and other extracellular cations35. The other possible reason may be that participation of Mg2+ may be required while
ATP goes through the cell membrane. The carrier protein has been found on the intima of mitochondria. The functional mechanism was found to be: ATP-Mg\(^{2+}\)+HPO\(_4^{2-}\)\(\rightarrow\)ATP-Mg\(^{2+}\)+HPO\(_4^{2-}\) [33]. Further investigation is needed to confirm whether there is such a carrier protein on the outside membrane of hepatocytes or not, and whether ATP enters hepatocytes by interaction with Mg\(^{2+}\) or not. In addition, there is also the possibility that, as a co-factor of many intracellular functions, Mg\(^{2+}\) could participate in a diverse of ATP dependent intracellular actions, such as Na\(^{+}-K\)^+ ATPase, Ca\(^{2+}\)-ATPase, and glycolysis [34].

In summary, the results of the current study suggest that exogenous ATP could protect cold stored rat livers by entering hepatocytes. ATP-MgCl\(_2\) should be a pivotal component in the hypothermic preservation solution. Further study is required to clarify the protective mechanism of ATP on cold stored organs, which may contribute to the development of hypothermic preservation solution.

REFERENCES

1. Marubayashi S, Takenaka M, Dohi K, Ezaki H, Kawasasaki T. Adenosine nucleotide metabolism during hepatic ischemia and subsequent blood flow periods and its relation to organ viability. Transplantation 1980; 30: 294-296
2. Lanir A, Jenkins RL, Caldwell C, Lee RG, Khettry U. Hepatocyte function with UW solution and ascorbic acid-2 glucoside. World J Gastroenterol 2004; 10: 271-274
3. Takesue M, Maruyama M, Shibata N, Kunieda T, Okitsu T, Sakaguchi M, Totsugawa T, Kosaka Y, Arata A, Ikeda H, Matsuoka Y, Jiang Y, Xu FM, Li YS, Li JS, Zhao XF, Zhuang W, Feng XL. Modified techniques of warm ischemia. Transplantation 1992; 54: 541-546
4. Bowers JL, Belous AE, Pinson CW, Wise PE. Interspecies differences in hepatic Ca\(^{2+}\)-ATPase activity and the effect of cold preservation on porcine liver Ca\(^{2+}\)+ATPase function. Liver Transpl 2001; 7: 137-174
5. Southard JH, van Gulik TM, Ametani MS, Vreugdenhil PK, Lindell SL, Pienaar BL, Belzer FO. Important components of the UW solution. Transplantation 1990; 49: 251-257
6. Neveux N, De Bandt JP, Fatall E, Hannoun L, Poupon R, Chaumeil JC, Delattre J, Cynober LA. Cold preservation injury in rat liver: effect of liposomally-entrapped adenosine triphosphate-magnesium chloride in preservation of canine kidneys subjected to warm ischemia. Transplantation 1981; 31: 187-189
7. Hayashi H, Chaudry IH, Clemens MG, Mull MJ, Baue AE. Reoxygenation injury in isolated hepatocytes: effect of extracellular ATP on cation homeostasis. Am J Physiol 1986; 250: R573-R579
8. Stanca C, Jung D, Meier PJ, Kullak-Ublick GA. Hepatocellular transport proteins and their role in liver disease. World J Gastroenterol 2001; 7: 157-169
9. Tanioka Y, Kuroda Y, Kim Y, Matsumoto S, Suzuki Y, Kyu Y, Fujita H, Saitho Y. The effect of ouabain (inhibitor of adenosine-dependent Na\(^{+}\)-K\(^{-}\) pump) on the pancreas graft during preservation by the two-layer method. Transplantation 1996; 62: 1730-1734
10. Southard JH, van Gulik TM, Ametani MS, Vreugdenhil PK, Lindell SL, Pienaar BL, Belzer FO. Important components of the UW solution. Transplantation 1990; 49: 251-257
11. Kobayashi E, Kamada N, Goto S, Miyama Y. Protocol for the technique of orthotopic liver transplantation in the rat. Microsurgery 1983; 4: 541-546
12. Jiang Y, Gu XP, Qiu YD, Sun XM, Chen LL, Zhang LH, Ding YT. Ischemic preconditioning decreases C-X-C chemokine expression and neutrophil accumulation early after liver transplantation in rats. World J Gastroenterol 2003; 9: 2025-2039
13. Hoffmann RM, Southard JH, Lutz M, Mackey A, Belzer FO. Synthetic Perflutane for Kidney Preservation. Its use in 72-hour preservation of dog kidneys. Arch Surg 1983; 118:919-921
14. Tamaki T, Kamada N, Wight DG, Pegg DE. Successful 48-hour preservation of the rat liver by continuous hypothermic perfusion with haemaccel-isotonic citrate solution. Transplantation 1987; 43: 468-471
15. Li YS, Li JS, Li N, Jiang ZW, Zhao YZ, Li NY, Liu FN. Evaluation of various solutions for small bowel graft preservation. World J Gastroenterol 1998; 4: 140-143
16. Cheng XD, Jiang XC, Liu YB, Peng CH, Xu B, Peng SY. Effect of ischemic preconditioning on P-selectin expression in hepatocytes of rats with cirrhotic ischemia-reperfusion injury. World J Gastroenterol 2003; 9: 2289-2292
17. Sun B, Jiang HC, Piao DX, Qian HQ, Zhang L. Effects of cold preservation and warm reperfusion on rat fatty liver. World J Gastroenterol 2000; 6: 271-274
18. Zhu XH, Qiu YD, Shen H, Shi MK, Ding YT. Effect of matrine on Kupffer cell activation in cold ischemia reperfusion injury of rat liver. World J Gastroenterol 2002; 8: 1112-1116
19. Yang YL, Du FK, Li KZ. Influence of intrauterine injection of rat fetal hepatocytes on rejection of rat liver transplantation. World J Gastroenterol 2003; 9: 137-140
20. Pilmott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, Perry RH, Perry EK, Wyper D. Nicotinic Acetylcholine Receptor Distribution in Alzheimers Disease, Dematia with Lewy Bodies, Parkinsons Disease, and Vascular Dementia: In Vitro Binding Study Using 5-(125)I-A-85380. Neuropsychopharmacology 2004; 29: 108-116
21. Ohkawa M, Clemens MG, Chaudry IH. Studies on the mechanism of beneficial effects of ATP-MgCl\(_2\), following hepatic ischemia. Am J Physiol 1983; 244: R665-R672
22. Lytton B, Vaisbort VB, Glazier WB, Chaudry IH, Baue AE. Improved renal function using adenosine triphosphate-magnesium chloride in preservation of canine kidneys subjected to warm ischemia. Transplantation 1981; 31: 187-189
23. Hayashi H, Chaudry IH, Clemens MG, Mull MJ, Baue AE. Reoxygenation injury in isolated hepatocytes: effect of extracellular ATP on cation homeostasis. Am J Physiol 1986; 250: R573-R579
24. Stanca C, Jung D, Meier PJ, Kullak-Ublick GA. Hepatocellular transport proteins and their role in liver disease. World J Gastroenterol 2001; 7: 157-169
25. Tanioka Y, Kuroda Y, Kim Y, Matsumoto S, Suzuki Y, Kyu Y, Fujita H, Saitho Y. The effect of ouabain (inhibitor of an ATP-dependent Na\(^{+}\)/K\(^{-}\) pump) on the pancreas graft during preservation by the two-layer method. Transplantation 1996; 62: 1730-1734
26. Southard JH, van Gulik TM, Ametani MS, Vreugdenhil PK, Lindell SL, Pienaar BL, Belzer FO. Important components of the UW solution. Transplantation 1990; 49: 251-257
27. Neveux N, De Bandt JP, Fatall E, Hannoun L, Poupon R, Chaumeil JC, Delattre J, Cynober LA. Cold preservation injury in rat liver: effect of liposomally-entrapped adenosine triphosphate. J Hepatol 2000; 33: 68-75
28. Janicki PK, Wise PE, Belous AE, Pinson CW. Interspecies differences in hepatic Ca\(^{2+}\)-ATPase activity and the effect of cold preservation on porcine liver Ca\(^{2+}\)-ATPase function. Liver Transpl 2001; 7: 132-139
29. Belous A, Knox C, Nicoud IB, Pierce J, Anderson C, Pinson CW, Chari RS. Reversed activity of mitochondrial adenosine nucleotide translocator in ischemia-reperfusion. Transplantation 2003; 27: 1717-1723
30. Chaudry IH. Cellular mechanisms in shock and ischemia and their correction. Am J Physiol 1983; 245: R117-R134
31. Mahmoud MS, Wang P, Chaudry IH. Salutary effects of ATP-MgCl\(_2\) on altered hepatocyte signal transduction after hemorrhagic shock. Am J Physiol 1997; 272(6 Pt 1): G1347-G1354
32. Hirasawa H, Chaudry IH, Baue AE. Improved hepatic function and survival with adenosine triphosphate-magnesium chloride after hepatic ischemia. Surgery 1978; 83: 655-662
33. Joyal J L, Aprille R. The ATP-Mg/ Pi carrier of rat liver mitochondria catalyzes a divalent electron exchange. J Biol Chem 1992, 267: 19198-19203
34. Zakaria M, Brown PR. High performance liquid column chromatography of nucleotides, nucleosides and bases. J Chromatogr 1981, 226: 267-290

Edited by Wang XL and Zhu LH Proofread by Xu FM