Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize

Vitória Palhares Ribeiro1 · Eliane Aparecida Gomes2 · Sylvia Morais de Sousa1,2,3 · Ubiraci Gomes de Paula Lana2,3 · Antonio Marcos Coelho2 · Ivanildo Evódio Marriel1,2,3 · Christiane Abreu de Oliveira-Paiva2,3

Received: 30 June 2021 / Revised: 5 January 2022 / Accepted: 6 January 2022 / Published online: 19 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Usage of Bacillus and Azospirillum as new eco-friendly microbial consortium inoculants is a promising strategy to increase plant growth and crop yield by improving nutrient availability in agricultural sustainable systems. In this study, we designed a multispecies inoculum containing B. thuringiensis (strain B116), B. subtilis (strain B2084) and Azospirillum sp. (strains A1626 and A2142) to investigate their individual or co-inoculated ability to solubilize and mineralize phosphate, produce indole acetic acid (IAA) and their effect on maize growth promotion in hydroponics and in a non-sterile soil. All strains showed significant IAA production, P mineralization (sodium phytate) and Ca–P, Fe–P (tricalcium phosphate and iron phosphate, respectively) solubilization. In hydroponics, co-inoculation with A1626 x A2142, B2084 x A2142, B2084 x A1626 resulted in higher root total length, total surface area, and surface area of roots with diameter between 0 and 1 mm than other treatments with single inoculant, except B2084. In a greenhouse experiment, maize inoculated with the two Azospirillum strains exhibited enhanced shoot dry weight, shoot P and K content, root dry weight, root N and K content and acid and alkaline phosphatase activities than the other treatments. There was a significant correlation between soil P and P shoot, alkaline phosphatase and P shoot and between acid phosphatase and root dry weight. It may be concluded that co-inoculations are most effective than single inoculants strains, mainly between two selected Azospirillum strains. Thus, they could have synergistic interactions during maize growth, and be useful in the formulation of new inoculants to improve the tropical cropping systems sustainability.

Keywords Zea mays L · Plant growth-promoting bacteria (PGPB) · Combined microbial inoculants · Dual inoculation

Introduction
Synthetic fertilizers are among the basic principles of plant nutrition management and have been used for decades worldwide to increase the crop production. However, their systematic and uncontrolled use has undesirable effects on soil and water besides promoting CO2 emissions. Intensive investigations on microorganisms for better adaptation under biotic and abiotic stresses and their plant growth characteristics with fertilizer effects have been undertaken to reduce the use of synthetic nutrients. In this context, microbial inoculant or biofertilizers have received increasing attention, gaining prominence and market scale in agriculture. The development of new microbial inoculants for improve crop production represents a promising environmentally safe and low-cost alternative products for human health and
land-saving actions: increasing grain production with less pressure on vegetation native (Parnell et al. 2016).

Advances in the knowledge of the complex relationship between microorganisms that interact in the rhizosphere of the host plant have stimulated studies on inoculants composed of more than one microorganism (co-inoculation) and their positive impacts on the production of different crops. The co-inoculation technique, or also called mixed inoculation, consists of using different microorganisms, which work synergistically, and produce a multiple effect, with competitive advantages and outweigh the productive results when used separately (Santos et al. 2019). However, some inconsistency has been observed in plant growth promotion (PGP) by bacteria consortia under different field conditions. For example, tropical PGP rhizobacterium colonizing maize endophytically showed non-differences comparing Bacillus alone and when co-inoculated with Azospirillum (de Almeida et al. 2021). Therefore, research is needed to generate knowledge aiming the production of new formulations for commercial inoculants with combined bacteria.

Direct interactions of microbial inoculants with host plants include (i) provision of nutrients and minerals, (ii) balancing the hormonal status of plants, and (iii) priming and induction of resistance (Pieterse et al. 2014). Once established within the plant, the ability of the PGPBs to promote plant growth occurs due to several mechanisms, including the acquisition of essential nutrients and modulation of phytohormones (Gordillo-Delgado et al. 2016). Although various PGPBs are individually inoculated in plants, more positive and stronger results are obtained inoculating plants with microbial consortia, which contains two or more beneficial microorganisms (Santoyo et al. 2021). Numerous reports in the literature show that these consortia are a feasible strategy for ameliorating drought (Joshi et al. 2020), salinity (Nawaz et al. 2020) and nutrient uptake (Silva et al. 2019), enhancing plant growth under different N levels (Calzavara et al. 2018), and reducing phosphate fertilization (Rosa et al. 2020) of agricultural crops.

Bacillus and Azospirillum are among the most predominant bacteria genera in the maize microbiome and present several plant growth-promoting (PGP) traits. The Bacillus genus comprises a heterogeneous group of Gram-positive, rod-shaped, aerobic and endospore forming bacteria widely distributed in agricultural systems. The main advantage of using inoculants containing endospore-forming bacteria is that strains are considered more stable in the environment, allowing adaptation to conditions abiotic extremes such as temperatures, pH or exposure to pesticides (Bahadir et al. 2018). Bacillus species prolonged shelf-life when in formulation kept in storage makes these species frequently commercialized (Bahadir et al. 2018).

Azospirillum species are widely used as plant inoculants due to their positive effects on plant growth (Okon et al. 2015). Their main mechanisms include nitrogen fixation (Hungria et al. 2006; Fukami et al. 2018), phosphate solubilization and phytohormone synthesis, especially IAA, which is suggested to be a major actor in promoting plant growth (Calzavara et al. 2018; Cassán et al. 2020). Azospirillum alters root architecture, increasing root branching and volume, which leads to greater soil exploration, nutrient absorption, and abiotic stress resilience (Cassán et al. 2020). Beneficial results are consistently observed with the inoculation of Azospirillum strains in different crops and hence the use of commercial inoculants is spread worldwide (Okon et al. 2015; Santos et al. 2021).

Bacillus and Azospirillum strains have been described as efficient PGPBs in different crops, soil, and climatic conditions. For example, the use of a combination of six Bacillus strains, either individually or in consortia, enhanced growth in rice and improved plant resilience to abiotic environmental stresses (Joshi et al. 2020). Genes involved in the production of low molecular weight organic acids, P and N metabolism were identified in the genome of Bacillus strains (Velloso et al. 2020) and they have also been described as beneficial to plant growth for their efficiency in phosphate solubilization and organic acid production (Gomes et al. 2014; Abreu et al. 2017; Ribeiro et al. 2018). In addition, relevant results regarding Azospirillum co-inoculated with different bacterial species have been described in the literature (Gómez-Godínez et al. 2019). There is an increasing adoption of the co-inoculation of Azospirillum and Bradyrhizobium by soybean farmers in Brazil over the last years. Results of this co-inoculation include higher soybean nodulation, yield, N content in grains, and moderate water restriction tolerance (Silva et al. 2019). Another successful example of co-inoculation in Brazil is the use of commercial inoculants with two A. brasilense strains, Ab-V5 and Ab-V6, which is applied on economically important grasses such as maize, wheat, rice and pastures of brachiaria and co-inoculation of legumes, such as soybean and common bean (Heinrichs et al. 2020). Despite Brazilian long-term tradition on biological nitrogen fixation inoculants, only in 2019 was launched the first commercial inoculant carrying a co-inoculation of two P-solubilizing bacteria (B. subtilis and B. megaterium) with great acceptance by the farmers (Sousa et al. 2021). However, there is limited information about the co-inoculation of others Bacillus and Azospirillum strains and their effect on economically important crops.

Thus, this study aimed to determine the in vitro potential of the two tropical Azospirillum and two Bacillus strains to solubilize/mineralize P, produce IAA and evaluate the ability of these strains, individually or co-inoculated, to promote nutrient acquisition and maize growth in hydroponics and in soil conditions.
Materials and methods

Bacterial strains

Four bacterial strains were selected from the Multifunctional Microorganisms Collection from Embrapa Milho e Sorgo. The strains B116 and B2084 can solubilize P and were identified as *B. thuringiensis* and *B. subtillis*, respectively (Oliveira et al. 2009; Abreu et al. 2017; Velloso et al. 2020). The strains A1626 and A2142, two nitrogen-fixing bacteria from the genus *Azospirillum*, were isolated from sorghum stalk and maize rhizosphere soil, respectively. All strains promoted maize growth in hydroponic or field conditions (Sousa et al., 2021; Velloso et al. 2020).

Identification of *Azospirillum*

Bacterial genomic DNA was extracted with the Wizard Genomic DNA Purification Kit (Promega, USA) and amplified with the 16S rDNA primers 8F and 1492R (Turner et al. 1999). PCR reactions were performed with 30 ng of bacterial genomic DNA, 2.5 µL 10X PCR buffer (20 mM Tris–HCl pH 8.4, 50 mM KCl), 0.4 µM of each primer, 100 µM dNTP, 2.5 mM MgCl2, and 1 U Taq DNA polymerase (Invitrogen, USA) in a total volume of 25 µL. PCR was performed with the following conditions: 95 °C for 2 min, 30 cycles of 30 s at 94 °C, 30 s at 55 °C and 2 min at 72 °C. Finally, reactions were incubated for 10 min at 72 °C. The amplification products were purified with the ExoSAP-IT Kit (USB, USA), and sequenced with the primers 8F, 1492R, 515F (Turner et al. 1999) and 902R (Hodkinson and Lutzoni 2009) using Big Dye Terminator v3.1 kit, as recommended by the manufacturer (Applied Biosystems, USA). The samples were analyzed in the automated sequencer ABI PRISM 3500 XL Genetic Analyzer (Applied Biosystems, USA) and DNA sequences were compared using the BlastN program (Altschul et al. 1997). The 16S rRNA gene sequences were deposited in GenBank under accession numbers MW646094 (A1626) and MW646095 (A2142).

Compatibility test

The bacterial strains were confronted on the same Petri dish to evaluate their compatibility. Individual strains were grown in TSB (Trypticase Soy Broth) medium at 28° C overnight. Then, 100 µL of the liquid culture of one strain was spread with a Drigalski loop on the surface of Petri dish containing PDA medium (200 g L⁻¹ potato, 20 g L⁻¹ dextrose and 15 g L⁻¹ agar). After drying, 25 µL of the culture of another strain were inoculated adding four drops at equidistant points on the PDA surface. The plates were incubated at 28 °C ± 2 for 5 days in triplicate and the strain’s compatibility was determined by the absence of an inhibition zone.

P solubilization and mineralization

One isolated colony of each strain grown on PDA plates was transferred to TSB medium (Trypticase Soy Broth) and incubated overnight at 28° C. After this period, a bacterial suspension in the concentration of 5 x 10⁷ CFU (colony-forming unit) mL⁻¹ was transferred, in triplicate, to 100 mL of the NBRIP culture medium (Nautiyal 1999), either individually or co-inoculated with another strain at the same final concentration (5 x 10⁷ CFU) mL⁻¹. The NBRIP medium was supplemented separately with 25 g L⁻¹ Ca₃(PO₄)₂ (Ca-P), 5 g L⁻¹ FePO₄ (Fe-P) and sodium phytate at 1 g L⁻¹. The samples were incubated at 28 °C for nine days at 120 rpm and centrifuged at 5000 × g for 10 min. The supernatant was filtered on Whatman filter paper No. 42 and the concentration of soluble P was determined by the colorimetric method (Murphy and Riley 1962). Additionally, the pH of the filtrate from all samples, including the controls, was determined.

In vitro indole acetic acid (IAA) production

The production of tryptophan-dependent IAA molecules was measured by the colorimetric method. Each strain was grown in 50 mL of liquid TSB culture medium supplemented with 1.0 mg mL⁻¹ of DL-tryptophan and incubated at 30 °C for five days at 100 rpm in the dark. After centrifugation for 10 min at 5,500 rpm, 0.1 mL of the supernatant was mixed with 0.1 mL of the Salkowski reagent (Loper and Schroth 1986) and incubated for 20 min in the dark. The concentration of IAA molecules in the supernatant was determined by the colorimetric measurement at 540 nm (Labsystems Multiskan, USA) in triplicate and compared to a standard curve.

Maize plant growth under hydroponic conditions

The hydroponic experiment was conducted with 11 treatments (4 individual strains, 6 co-inoculations and 1 negative control (non-inoculated) (Table 1), arranged in a completely randomized design with 3 replicates with 5 maize seedlings each.

For the preparation of microbial inoculants, the strains were grown individually in liquid TSB culture medium at 28 °C and 150 rpm for 3 days. After the incubation period, cultures were centrifuged at 6,000 rpm for 10 min. Bacterial suspensions were adjusted to absorbances equal 1 (10⁸ CFU mL⁻¹), at wavelength of 540 nm, to obtain a
final concentration of 10^7 CFU mL$^{-1}$ after dilution in 2.0 L of 0.85% (w/v) NaCl.

The maize seedlings were evaluated as described by Sousa et al. (2021). Maize seeds were surface disinfested with 0.5% (v/v) sodium hypochlorite for 5 minutes, washed and soaked for 4 hours in deionized water and transferred to germination paper rolls. After seed germination for 3 days, uniform seedlings were transferred to trays containing 8 liters of half strength Hoagland’s nutrient solution pH 5.65 (Liu et al. 1998) and acclimatized for 7 days. After acclimatization, the roots were incubated for six hours at room temperature with the bacterial suspension, prepared as described previously. In the control, the plants were incubated in 0.85% (w/v) saline solution. The trays with maize seedlings were manually agitated at frequent intervals to facilitate contact of the bacteria with the roots. After the incubation period, the inoculum excess was removed by gentle shaking and the seedlings were incubated in nutrient solution. The obtained images were analyzed with the softwares RootReader2D and WinRhizo v. 4.0 (Regent Systems, Canada) to measure traits related to root morphology, such as total root length (L), total root surface area (SA), and surface area of roots with diameters between 0–1 mm (SA1), 1–2 mm (SA2) and larger than 2 mm (SA3) (cm2) (Sousa et al. 2012). Dry weight measurements were carried out for roots and shoots, which were placed separately in paper bags, dried in a forced circulation oven at 65 °C and weighed on a precision scale until constant weight.

Table 1

Strains Identification	Identification
Non-inoculated	NaCl 0.85% (w/v)
B116	Bacillus thuringiensis
B2084	B. subtilis
A1626	Azospirillum sp.
A2142	Azospirillum sp.
B116 x B2084	B. thuringiensis + B. subtilis
B116 x A1626	B. thuringiensis + Azospirillum sp.
B116 x A2142	B. thuringiensis + Azospirillum sp.
B2084 x A1626	B. subtilis + Azospirillum sp.
B2084 x A2142	B. subtilis + Azospirillum sp.
A1626 x A2142	Azospirillum sp. + Azospirillum sp.

Greenhouse experiment

For the greenhouse experiment, 11 treatments described for hydroponics (Table 1) were arranged in a completely randomized design, with 4 replicates (Table 1). Pots containing 5 kg of a Latossolo Vermelho, very clayey texture (Typic Haplustox, Brazilian savanna) were used, with the following chemical and physical characteristics in the top soil (0–20 cm): pH-water = 5.24; Al = 0.4; Ca = 2.5; Mg = 0.2 (cmolc dm$^{-3}$); CEC (cation exchange capacity) = 11.8 cmolc dm$^{-3}$; P = 2.2; K = 30.3 (mg dm$^{-3}$); V (base saturation) = 23.2% and clay content = 740 g kg$^{-1}$.

Twenty days before sowing, soil acidity correction was carried out based on chemical analysis. The liming requirement was calculated to reach a base saturation of 70% with the application of 6.0 Mg ha$^{-1}$ of dolomitic limestone (43% CaO, 14% MgO, 80% PRNT) and 1.0 Mg ha$^{-1}$ of phosphogypsum (17% Ca, 14% S). Irrigation was performed to maintain soil humidity at 80% of the field capacity. For soil fertilization, urea (90 kg ha$^{-1}$ of N), triple superphosphate (TSP) (450 kg ha$^{-1}$ of P$_2$O$_5$), 500 kg ha$^{-1}$ of KCl and 50 kg ha$^{-1}$ of commercial formulation of micronutrient FTE – fritted trace elements (9.0% Zn, 1.6% B, 0.8% Cu, 3.0% Fe, 2.6% Mn and 0.1% Mo) were applied.

The bacterial inoculation was prepared as follows: cells from 50-mL cultures incubated for 72 h in LB medium were harvested by centrifugation at 10,000×g for 10 min, resuspended in a 0.85% (w/v) NaCl solution and the optical densities were adjusted to 1.0 absorbance at 540 nm, corresponding to 10^8 cells mL$^{-1}$. Subsequently, the bacterial suspension was added in a sterilized mineral coal in the proportion of 30% (w/v) of liquid inoculant (10 mL pot$^{-1}$ for individual strain or 5 mL pot$^{-1}$ of each strain for co-inoculation). The inoculant (bacteria + mineral coal) was pelleted as a seed coat onto maize seeds, using 4% (w/w) cassava starch gum as adhesive. Strains were inoculated on five maize seeds (cultivar AG 7098), leaving three plants per pot 8 days after sowing. The side-dress fertilization was performed with urea (90 kg N ha$^{-1}$) at 20 days after sowing.

The plants were harvested at 45 days after sowing, and roots and shoots were separated and dried in a forced air circulation oven at the temperature of 65°C until constant weight to obtain dry matter. Then, the plant material was ground in a Wiley mill, and chemical analyses were conducted for determining the N, P and K concentration in roots and shoots by ICP-OES in the Laboratory of Plant Chemical Analysis at Embrapa Milho e Sorgo. N, P and K content were calculated by multiplying the N, P and K concentration in shoots and roots by ICP-OES in the Laboratory of Plant Chemical Analysis at Embrapa Milho e Sorgo. N, P and K content were calculated by multiplying the N, P and K concentration in roots and shoots. The rhizosphere soil was collected for determination of available phosphorus content, extractor Melich-1 (Silva 2009) and acid and alkaline phosphatase activity.
Phosphatase activity in soil

The determination of phosphatase activity was performed according to the methodology described by Tabatabai and Bremner (1970). For acid phosphatase analysis, the sample’s pH was adjusted to 6.5 with 1 M HCl, and for alkaline phosphatase activity, the pH was corrected to 11 with 1 M NaOH. The p-nitrophenol (PNP) concentration was determined in triplicate by a colorimetric measurement at 540 nm (Lab-systems Multiskan, USA) and compared to a standard curve.

Statistical analysis

The data were submitted to variance analysis using the software SISVAR 5.6 (Ferreira 2011) and the means were compared by the LSD test at 5% level of probability.

Results

Bacillus and Azospirillum identification and strains compatibility

The strains A1626 and A2142 were molecularly identified as Azospirillum sp. Both Bacillus and Azospirillum strains were able to coexist, since no inhibition zone was observed at the intersection between strains, indicating the possibility of using these strains together in an inoculant.

Bacillus and Azospirillum strains were capable to solubilize Ca-P, Fe–P and mineralize sodium phytate

We observed a significant decrease ($p < 0.05$) in the pH of the medium after 9 days of growth for all strains and P sources (Table 2). A significant difference in solubilized Ca-P values was observed for all treatments except A2142, ranging from 2.98 (A2142) to 46.19 mgP L$^{-1}$ (A1626) (Table 2). In general, the co-inoculation of B116 x A2142 and B2084 x A2142 presented higher Ca-P solubilization values than when these strains were evaluated separately. Similarly, the different strains showed significant solubilization of Fe–P. Moreover, B116, B2084, B116 x A1626 and A1626 x A2142 significantly solubilized more Fe–P than the other strains. On the other hand, the B116 and B2084 strains were more efficient in Fe–P solubilization when cultivated separately than together. Bacillus strains B2084 and B116 x B2084 mineralized more P after growing in medium containing sodium phytate (Table 2). A negative correlation of -0.76 ($p < 0.05$); – 0.55 and – 0.16 was observed for Ca–P, Fe–P and sodium phytate solubilization/mineralization and pH, respectively.

Bacillus and Azospirillum produced in vitro IAA-like molecules

Tryptophan-dependent IAA molecule production was observed in all the strains and ranged between 30.16 μg.mL$^{-1}$ (B2084) and 65.78 μg.mL$^{-1}$ (A1626) (Table 2).

Treatments	Ca-P P (mgP L$^{-1}$)	pH	Fe-P P (mgP L$^{-1}$)	pH	Sodium phytate P (mgP L$^{-1}$)	pH	IAA (μg.mL$^{-1}$)
Non-inoculated	0.09 g*	6.36 a	0.11 e	6.47 a	0.15 g	6.58 a	0.00 e
B116**	25.52 de	4.04 b	42.95 ab	4.80 cde	12.48 d	4.72 b	49.54 c
B2084	29.05 cd	4.07 b	45.38 ab	4.82 bcd	25.00 b	4.80 b	30.16 d
A1626	46.19 a	4.09 b	23.64 d	4.66 ef	3.97 f	3.75 g	65.78 a
A2142	2.98 g	4.00 b	31.89 c	4.87 bc	5.60 ef	4.57 bc	52.10 b
B116 x B2084	13.82 f	3.98 b	33.66 c	4.73 cde	29.00 a	4.41 cd	–
B116 x A1626	31.29 c	4.06 b	46.23 a	4.47 g	6.52 ef	4.04 ef	–
B116 x A2142	33.27 bc	4.03 b	43.88 ab	4.48 g	6.77 e	4.35 cd	–
B2084 x A1626	24.28 e	3.97 b	33.78 c	4.52 fg	5.70 ef	4.26 de	–
B2084 x A2142	37.41 b	3.99 b	40.28 b	4.96 b	16.49 c	4.31 d	–
A1626 x A2142	29.64 cd	3.96 b	41.44 ab	4.69 de	6.26 ef	3.95 fg	–
CV (%)	10.90	2.40	9.01	1.88	15.16	3.14	

CV: coefficient of variation
*Means followed by the same letter did not differ significantly by LSD test ($p < 0.05$)
** Sample identification are according to Table 1
Bacterial inoculation enhanced root growth, nutrient content, and dry weight under hydroponic condition

Maize seedlings were grown in nutrient solution to verify the effect of the inoculation of the isolated and co-inoculated strains on plant growth, root morphology and nutrient content. Overall, treatments showed a significant \((p < 0.05)\) increase compared to the non-inoculated control regarding all evaluated traits, except for surface area of roots with diameter between 1 and 2 mm (Tables 3 and 4). Co-inoculation with A1626 x A2142, B2084 x A2142, B2084 x A1626 presented higher root total length, total surface area and surface area of fine roots than single inoculated treatments, except the single inoculation with B2084, which presented similar performance (Table 3). In addition, co-inoculation with A1626 x A2142 significantly outperformed all other treatments for shoot dry weight (SDW) and shoot N content (Table 4) and it was superior to single inoculation of these strains for SDW, shoot N, P and K content. Bacillus strain B2084 inoculated separately or co-inoculated with B116, A1626 and A2142 showed superior performance.

Table 3: Means for root morphology traits of maize seedlings 10 days after inoculation with Azospirillum sp. e Bacillus spp. strains grown under hydroponic conditions

Treatments	L (cm)	SA (cm²)	SA1 mm (cm²)	SA2 1–2 mm (cm²)	SA3 > 2 mm (cm²)
Non-inoculated	403.46 de*	133.67 d	35.40 d	68.49 abcd	16.84 c
B116**	399.51 de	140.83 cd	33.44 d	71.07 abcd	22.38 bc
B2084	617.81 a	195.11 a	70.10 a	79.05 ab	25.98 ab
A1626	405.08 de	140.88 ed	44.67 ed	57.44 de	24.93 ab
A2142	427.15 cd	147.33 cd	46.97 cd	57.91 de	27.70 ab
B116 x B2084	491.21 bc	164.47 bc	55.92 bc	65.42 bcde	26.84 ab
B116 x A1626	364.87 de	138.56 d	36.35 d	60.66 cde	28.23 ab
B116 x A2142	350.21 e	131.19 d	34.94 c	51.82 e	32.17 a
B2084 x A1626	559.15 ab	181.42 ab	61.77 ab	76.25 abc	25.25 ab
B2084 x A2142	576.10 a	188.45 a	63.18 ab	76.14 abc	29.20 ab
A1626 x A2142	631.67 a	202.42 a	71.98 a	82.00 a	28.56 ab
CV (%)	9.47	8.83	16.38	13.65	17.46

L: total root length (cm), SA: total surface area (cm²), SA1: surface area of roots with diameter between 0 and 1 mm (cm²), SA2: surface area of roots with diameter between 1 and 2 mm (cm²), SA3: surface area of roots with diameter > 2 mm (cm²), CV: coefficient of variation

*Means followed by the same letter did not differ significantly by LSD test \((p < 0.05)\)

**Sample identification are according to Table 1

Table 4: Means for shoot and root dry weight and N, P, K content of maize 10 days after inoculation with Azospirillum sp. and Bacillus spp. strains grown under hydroponic conditions

Treatments	SDW Shoot	N Shoot	P Shoot	K Shoot	RDW Shoot	N Root	P Root	K Root
Non-inoculated	0.160 f’	2.89 e	5.12 de	31.32 de	0.060 c	0.83 c	0.64 b	3.99 d
B116**	0.177 def	3.16 de	4.64 cde	34.07 bcd	0.067 bc	0.86 c	0.82 ab	5.42 cd
B2084	0.203 bcd	3.76 bc	5.49 cd	39.79 bc	0.087 a	1.00 ab	0.93 a	6.41 abc
A1626	0.167 ef	3.03 de	3.63 f	26.61 e	0.070 bc	0.90 bc	0.85 ab	5.96 bc
A2142	0.180 def	3.20 de	4.34 ef	33.51 cd	0.077 ab	0.90 bc	0.85 ab	6.20 bc
B116 x B2084	0.220 b	4.05 b	5.72 cd	36.67 bcd	0.067 bc	0.91 abc	0.98 a	7.91 a
B116 x A1626	0.190 cde	3.29 de	4.36 ef	34.10 bcd	0.087 a	0.94 abc	0.92 a	7.21 ab
B116 x A2142	0.197 bcd	3.39 cd	4.21 ef	31.09 de	0.080 ab	0.96 abc	0.90 a	6.87 abc
B2084 x A1626	0.210 bc	3.82 b	6.23 bc	36.31 bcd	0.080 ab	0.91 ab	0.85 ab	7.01 ab
B2084 x A2142	0.217 bc	3.97 b	6.89 ab	40.73 ab	0.080 ab	1.04 a	1.00 a	7.10 ab
A1626 x A2142	0.253 a	4.67 a	7.55 a	46.83 a	0.080 ab	0.91 abc	0.94 a	6.94 abc
CV (%)	8.08	7.03	12.28	11.09	11.02	8.67	15.79	13.97

SDW: shoot dry weight, RDW: root dry weight, CV: coefficient of variation

*Means followed by the same letter did not differ significantly by LSD test \((p < 0.05)\)

**Sample identification are according to Table 1
when compared to the non-inoculated control for shoot dry weight and shoot N content (Tables 3 and 4).

Azospirillum co-inoculation improves shoot and root traits in greenhouse

A pot experiment was conducted in a greenhouse to determine the performance of maize inoculated with the strains in soil fertilized with triple superphosphate. After 45 days, the co-inoculation treatments significantly \((p < 0.05)\) improved shoot and root traits (Table 5). Maize inoculated with the A1626 x A2142 strains exhibited enhanced shoot dry weight up to 21.3%, shoot P and K content up to 30.8% and 13.8%, respectively, root dry weight up to 44.7%, and root N and K content up to 32.2% and 23.9%, respectively. The B116 and the consortium B116 x A1626 presented higher shoot P content and B116 x A2142 presented higher P root content. P shoot and acid and alkaline phosphatase activities were also higher in the A1626 x A2142 inoculum than single inoculations and of these strains beyond non-inoculated control (Table 5). Treatments B116 and B2084 x A2142 also presented higher alkaline phosphatase activity.

The highest concentration of available P in the soil after 45 days of maize inoculation was observed in the treatments B116, B116 x A1626, B2084 x A1626 and A1626 x A2142 (Table 5) compared to the non-inoculated control. The combinations of A1626 x A2142 and B2084 x A1626 provide more soil P release than inoculant carrying these isolated strains. There was a significant correlation between available P in the soil and shoot P \((r = 0.69, p = 0.02)\). In addition, there were positive correlations between acid phosphatase (ACP) activity and root dry weight \((r = 0.64, p = 0.03)\), and shoot K \((r = 0.61, p = 0.04)\). Alkaline phosphatase (ALP) activity also correlated with shoot P \((r = 0.67, p = 0.04)\).

Azospirillum co-inoculation outperformed in the principal component analysis

Considering hydroponic and greenhouse experiments, a principal component analysis (PCA) was performed with the root morphology, dry weight, and nutrient content traits (Fig. 1). The first principal component (PC1) explained 43.3% and the second principal component (PC2) explained 22.2% of the phenotypic variation observed for the analyzed traits (Fig. 1). The non-inoculated treatment, B116, A1626, A2142, B116 x A1626 and B116 x A2142 were in the left quadrant, showing smaller root systems, dry weight, and nutrient content. Treatments in the right quadrants, highlighting B2084, B2084 x A1626, B116 x B2084 and B2084 x A2142, showed higher root surface area, dry weight, and nutrient content. Moreover, the co-inoculation of A1626 x A2142 outperformed all other treatments in the right quadrant presenting not only higher growth in nutrient solution, but also higher biomass and nutrient content in greenhouse conditions.

Discussion

In the present investigation, two *Azospirillum* (A1626 and A2142) and two *Bacillus* strains (B116 and B2084) isolated from tropical maize and sorghum were selected based on plant growth promoting traits for a co-inoculation assay. The choice of the strains was based in our research group’s previous studies, considering that the individual inoculation of *Bacillus* strains B116 and B2084 significantly increased the dry weight of maize seedlings in hydroponics and maize yield in the field (36 and 12%, respectively) (Sousa et al. 2021). The individual inoculation of *Bacillus* strains B116 significantly increased the sorghum yield and phosphorus grain uptake in the field (19% and 36%, respectively) (Mattos et al. 2020) and individual inoculation of B2084, increase the millet biomass and P content (Ribeiro et al., 2018). Strain B116, identified as *B. thuringiensis* (Lana et al., 2020), was isolated from the maize rhizosphere, being efficient in biofilm and exopolysaccharide production, and phosphate solubilization (Oliveira et al. 2009; Velloso et al. 2020). Strain B2084 is an endophytic bacterium isolated from maize leaves and identified as *B. subtilis* by 16S rDNA sequencing (Sousa et al. 2021) and by protein profile using MALDI-TOF mass spectrometry (Lana et al. 2020). In addition, the *Azospirillum* strains (A1626 and A2142) increased maize root surface area in hydroponics (Sousa et al. 2018) and show promising results in maize inoculation under field experiments (unpublished results).

In this study, all the *Bacillus* and *Azospirillum* strains significantly solubilized Ca–P and Fe–P, and mineralized sodium phytate. The co-inoculation of *Bacillus* and *Azospirillum* presented higher Ca-P solubilization values than when these strains were evaluated separately. Probably, the organic acids produced together by these strains made this effect possible. In our studies, the strain B2084 was the largest producer of gluconic acid in a ranking of 55 strains (Abreu et al. 2017) which has been associated as the main mechanism of solubilization of Ca-P. Soil bacteria increase P solubility because the majority of these microorganisms can secrete organic acids (gluconic acid), which help decrease rhizosphere pH by decoupling the connection between calcium and phosphate. They can compete or even replace phosphate sorbed on the surfaces of soil clays and chelate Ca, Al and Fe, thus avoiding the precipitation of phosphate (Sharma et al. 2013).

The hydroponics results demonstrated that *Bacillus* and *Azospirillum* co-inoculation influenced root morphology, shoot and root dry weight, N, P and K content. (Table 3). The co-inoculation of A1626 x A2142 was responsible for
Table 5 Dry matter, plant content of N, P, K and soil characteristics after inoculation with the *Azospirillum* sp. *Bacillus* spp. strains in maize grown under greenhouse with triple superphosphate (TSP) fertilization

Treatments	Shoot	Root	Soil											
	SDW	N	P	K	SDW	N	P	K	Acid Phosphatase	Alkaline Phosphatase	P Mehlich^{1}			
	(g.pot^{−1})	(mg.pot^{−1})	(g.pot^{−1})	(mg.pot^{−1})	(g.pot^{−1})	(mg.pot^{−1})	µg p-nitrophenol h^{−1} g^{−1} soil	mg/dm^{3}	(g.pot^{−1})	(mg.pot^{−1})	(g.pot^{−1})	(mg.pot^{−1})	µg p-nitrophenol h^{−1} g^{−1} soil	mg/dm^{3}
Non-inoculated	18.10 b^{*}	635.08 a	37.76 cd	79.48 abc	6.65 bcd	90.51 b	9.23 cd	15.98 ab	500.90 bcde	220.74 bcde	29.20 c			
B116**	19.89 ab	677.37 a	45.44 ab	78.76 abc	9.37 ab	82.29 b	14.49 a	18.33 ab	552.98 abc	260.50 a	43.16 b			
B2084	18.62 b	622.30 a	37.50 bc	83.29 abc	5.63 c	88.65 b	8.08 d	13.37 b	435.27 def	236.20 abc	27.96 c			
A1626	19.70 ab	688.62 a	40.08 bcd	84.39 abc	8.26 abc	102.00 ab	8.45 d	16.56 ab	535.90 bcd	221.08 bcd	20.52 c			
A2142	19.58 ab	642.68 a	37.29 c	76.88 bc	7.66 abc	104.71 ab	9.90 bcd	17.28 ab	462.77 cdef	198.23 d	16.55 c			
B116 x B2084	20.67 ab	709.59 a	40.30 bcd	74.25 c	7.16 abc	104.01 ab	10.06 bcd	14.79 ab	573.81 ab	251.65 ab	19.86 c			
B116 x A1626	19.72 ab	669.92 a	44.78 ab	89.10 ab	6.34 cd	94.69 ab	9.13 cd	14.69 ab	374.96 f	235.41 abc	58.27 a			
B116 x A2142	19.87 ab	684.52 a	42.07 bc	89.10 ab	8.87 abc	102.65 ab	13.87 ab	17.08 ab	462.15 cdef	216.04 cd	19.05 c			
B2084 x A1626	19.64 ab	667.00 a	44.06 abc	81.82 abc	6.39 cd	86.46 b	8.68 d	13.38 b	532.56 bcd	230.49 abc	64.24 a			
B2084 x A2142	20.44 ab	683.65 a	44.03 abc	85.43 abc	6.29 cd	78.38 b	7.74 d	13.07 b	392.88 ef	255.01 a	23.06 c			
A1626 x A2142	21.96 a	714.87 a	49.40 a	90.41 a	9.62 a	119.63 a	13.01 abc	19.79 a	655.06 a	258.38 a	55.17 ab			
CV(%)	9.34	9.91	11.40	11.19	26.87	20.04	28.30	26.63	15.68	9.87	22.50			

SDW shoot dry weight, *RDW* root dry weight, *CV* coefficient of variation

^{*}Means followed by the same letter did not differ significantly by LSD test (*p* < 0.05)

^{**}Sample identification are according to Table 1
an increase of nutrient content and plant biomass (Table 4), showing that a larger root system leads to greater growth and improved nutrient uptake more than single strains. Our results showed a positive and significant high correlation between root surface area, root length, shoot/root dry weight, and root/shoot nutrients (N, P and K), indicating that a maize plant with a larger root system, can translocate more nutrients to the shoot and enhance its vegetative growth. Accelerated plant growth during the early stages of crop development leads to greater stress resistance and yield (Sousa et al.

Fig. 1 Principal component analysis (PCA) for traits measured in hydroponic and greenhouse conditions. Greenhouse: (g_SDW) shoot dry weight, (g_N_S) shoot N content, (g_P_S) Shoot P content, (g_K_S) shoot K content, (g_RDW) root dry weight, (g_N_R) root N content, (g_P_R) root P content, (g_K_R) root K content, (g_Acid_P) acid phosphatase, (g_Alk_P) alkaline phosphatase. Hydroponics: (SDW) shoot dry weight, (N_S) shoot N content, (P_S) shoot P content, (K_S) shoot K content, (RDW) root dry weight, (N_R) root N content, (P_R) root P content, (K_R) root K content, (RL) root length, (RSA) root surface area, (RSA1) surface area of root with diameter 0–1 mm, (RSA2) surface area of root with diameter 1–2 mm, (RSA3) surface area of root with diameter > 2 mm. The proportion of the total variance explained by each principal component (PC1 and PC2) is shown on their respective axis.
Synergy among *Azospirillum*, *Bacillus* and other bacterial species has been described in the literature (Wang et al. 2019). Gómez-Godínez et al. (2019) reported the effect of a multispecies inoculum of PGPBs containing *Rhizobium phaseoli*, *Sinorhizobium americanum* and *A. brasilense* nitrogen-fixing strains and other PGBP such as *B. amyloliquefaciens* and *Methyl bacterium extorquens* on the growth of 1-month-old maize plants. The multispecies inoculum exerted a greater beneficial effect on maize plants than the effect obtained with single bacteria. The authors observed that *Azospirillum* nitrogen fixation was lower than observed with the multispecies inoculum. Interestingly, they hypothesized that biofilm formation induced by root exudates in *Bacillus* and *Azospirillum* forming aggregates may provide favorable nitrogen-fixing conditions by protecting bacteria from oxygen, or the consortia may provide nutrients that stimulate *Azospirillum* nitrogen fixation.

In another study, inoculation with *A. brasilense* and *B. subtilis* increased the stem diameter and shoot N content of maize plants when N fertilization was not used at the sowing. The authors concluded that the observed increases indicate a synergy between the two microorganism species, demonstrating that, in this case, their combined inoculation in maize reduced the need for N fertilization at sowing (Moreno et al. 2021). Combined inoculation of *Azospirillum* and a P-solubilizer (*B. megaterium var. phosphaticum*) showed higher shoot length, root length, 1,000 grain weight, and grain yield in rice than in the individual inoculation of *Azospirillum* (Arangarasan et al. 1998).

Azospirillum and *Bacillus* strains are known to be efficient IAA producers. All strains produced high concentrations of this phytohormone, especially the *Azospirillum* strains, which resulted in positive effects on root growth. Various plant species inoculated with IAA producing bacteria reported increased root growth and/or enhanced formation of lateral roots and root hairs, which further increases the surface area and length of lateral and adventitious roots (Mohite 2013; Joshi et al. 2020). In general, plant-associated bacteria use the tryptophan present in plant exudates as a precursor for IAA biosynthesis. In addition, several *Bacillus* strains are IAA producers and can promote the growth of different crops (Bahadir et al. 2018). Recently our group sequenced the genome of the *Bacillus* B116 strain and genes related to IAA biosynthesis were described (Velloso et al. 2020).

Significant increases in maize shoot and root biomass and enhanced shoot nutrient content (N, P and K) were observed after co-inoculation with the two *Azospirillum* strains under the greenhouse treatment (Table 5). Interestingly, shoot N content was increased, probably due to the bacterium’s capacity to fix N₂. On the other side, the IAA mediated increase in the root system resulting in improved growth as well as P and K uptake. Even in soils fertilized with triple superphosphate, co-inoculation with *Azospirillum* strains increased shoot and root dry weight by around 20% and 44%, respectively, compared to the non-inoculated control.

The present study also revealed that the *Bacillus + Azospirillum* and *Azospirillum + Azospirillum* co-inoculations influenced the rhizosphere P availability, and alkaline (ALP) and acid (ACP) phosphatase activity under the greenhouse treatment. There were also positive correlations between increases in P shoot and P available in the soil, P shoot and ALP, and between root dry weight and ACP. Altogether, these factors lead to an increased early root growth and could enhance grain yield (Mahanta et al. 2018). Phosphatases are enzymes released by plants and microorganisms that contribute to the cleavage of organic P to supply P to the soil solution and to the plants. ALP is deemed to be principally derived from soil microbes. Considering that approximately 80% of P in Brazilian soils in agricultural areas is organic (Novais et al. 2007), constituting an important reservoir of this nutrient, the role of phosphatases is relevant, as the organic form of P is not available directly to the agricultural crops. In this sense, soil phosphatase activity can be a good indicator of the organic P mineralization potential and biological activity of soils. In addition, our results also showed an increase in the available rhizosphere P and a high correlation with P shoot in the inoculated treatments, mainly when the strains B116 x A1626, B2084 x A1626 and A1626 x A2142 were co-inoculated. It confirms that the advantage of the combined use of strains is to complement the action of each one with extra properties or to increase a type of function, increasing the effect in a synergistic way (Santoyo et al. 2021).

Interestingly, the *Azospirillum* A1626, shared by these inoculants, also showed higher Ca-P solubilization in relation to *Bacillus* strains, which can explain the P rhizosphere availability reflected in the high maize shoot biomass and P shoot accumulation, where this strain was co-inoculated with other *Azospirillum* or *Bacillus* strains. The inoculation of A1626 together with A2142 also increased the activity of soil ALP and ACP in relation to the single inoculation and non-inoculated control, demonstrating that these enzymes may also have influenced the higher P acquisition and biomass gain in the treatments where A1626 was present. While strain A1626 is endophytic, isolated from sorghum stalk, the A2142 was isolated from maize rhizosphere, which can represent an advantage on the combined use of these strains, as they can colonize different niches inside the plant and in the rhizosphere. Thus, the distinction between free-living soil bacteria, the rhizosphere population, and endosymbionts of a host plant may represent a true continuum, with
microbes able to move between the soil, the rhizosphere, and inside the root (Farrar et al. 2014).

Some works report that *Azospirillum* is a PGPB because of its hormonal effect (Fukami et al. 2017), but our results showed that A1626 also solubilized phosphate, increasing maize growth. Rosa et al. (2020) also observed that the inoculation of sugarcane with *B. subtilis* and *A. brasilense* showed that A1626 also solubilized phosphate, increasing available P soil content more than four times and the P total accumulation in the entire plant in comparison to non-inoculated treatments. Based on previous works which addressed P-solubilization potential by PGPR inoculation in plants, Granada et al. (2018) consider that an average reduction of 33% in P-fertilization could be achieved with the use of highly efficient P-solubilizing bacterial isolates as crop inoculants.

It may be concluded that the combination of two strains exerted a beneficial effect on maize plants that was greater than the effect obtained with single bacteria, because the co-inoculation of two *Azospirillum* strains and *B. subtilis* + *Azospirillum* strains showed a positive effect on maize shoot and root dry weight, shoot N, P and K content in hydroponics and greenhouse treatments. In addition, the combined inoculants reported in this work increased phosphatase activity and available rhizosphere P.

Further studies on the long-term survival of the inoculants are required to verify the beneficial effects of these bacterial strains on nitrogen fixing, soil phosphate mobilization and on maize yield under field conditions. These studies could be useful in the formulation of new inoculants, improving the cropping systems in which they can be most profitably and ecologically applied. These bio-based combined inoculants could be made easily available to farmers representing a promising environmentally safe and low-cost alternative to reducing synthetic fertilizers in agriculture.

Funding This work was supported by the Empresa Brasileira de Pesquisa Agropecuária-Embrapa (Grant No 20.19.02.001.00-00) and Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq/INCT-Plant-Growth Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (Grant No 465133/2014-2, Fundação Araucária-STI, Capes).

Declarations

Conflict of interest The authors declare that they have no conflicts of interest.

References

Abreu CS, Figueiredo JE, Oliveira CA, Santos VL, Gomes EA, Ribeiro VP, Barros BA, Lana UGP, Marriel IE (2017) Maize endophytic bacteria as mineral phosphate solubilizers. Genet Mol Res 16:1–13. https://doi.org/10.4238/gmr16019294

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

Arangaranas V, Palaniappan S, Chelliah S (1998) Inoculation effects of diazotrophs and phosphobacteria on rice. Lind J Microbiol 38:111–112

Bahadir PS, Liaqat F, Eltem R (2018) Plant growth promoting properties of solubilizing *Bacillus* species isolated from the Aegean region of Turkey. Turk J Bot 42:183–196. https://doi.org/10.3906/bot-1706-51

Calzavara AK, Paiva PHG, Gabriel LC, Oliveira ALM, Milani K, Oliveira HC, Bianchini E, Pimenta JA, Oliveira MCN, Dias-Pereira J, Stolf-Moreira R (2018) Associative bacteria influence maize (*Zea mays L.*) growth, physiology and root anatomy under different nitrogen levels. Plant Biol 20(5):870–878. https://doi.org/10.1111/plb.12841

Cassán F, Coniglio A, López G, Molina R, Nievias S, Carlan CLN, Mora V (2020) Everything you must know about *Azospirillum* and its impact on agriculture and beyond. Biol Fertil Soils 56:461–479. https://doi.org/10.1007/s00374-020-01463-y

de Almeida JR, Bonatelli ML, Batista BD, Teixeira-Silva NS, Mondin M, dos Santos RC, Bento JMS, de Almeida Hayashibara CA, Azevedo JL, Queene MC (2021) *Bacillus thuringiensis* RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant’s production of volatile organic compounds during co-inoculation with *Azospirillum brasilense* Ab-V5. Environ Microb Rep 13:812–821. https://doi.org/10.1111/1758-2229.13004

Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206. https://doi.org/10.1111/plb.12279

Ferreira DF (2011) SISVAR: a computer statistical analysis system. Ci Agrot 35(6):1039–1042

Fukami J, Ollero FJ, Megias M, Hungria M (2017) Phytohormones and induction of plant stress tolerance and defense genes by seed and foliar inoculation with *Azospirillum brasilense* cells and metabolites promote maize growth. AMB Express 7:153

Fukami J, Cerezini P, Hungria M (2018) *Azospirillum*: benefits that go far beyond biological nitrogen fixation. AMB Expr 8:73. https://doi.org/10.1186/s13568-018-0608-1

Gomes EA, Silva UDC, Marriel IE, Oliveira CA, Lana UGP (2014) Rock phosphate solubilizing microorganisms isolated from maize rhizosphere soil. Rev Bras Milho Sorgo 13(1):69–81. https://doi.org/10.18512/1980-6477/rbms.v13n1p69-81

Gómez-Godínez LJ, Fernandez-Valverde SL, Martinez Romero JC, Cerón-Máñez R, Martínez-Mancera J, Ordaz-Osorio F, de la Fuente-Moreira J, Zárate-Rios J, Sánchez-Castillo E, Rangel-López L, Hernández B, Flores-Cevallos CD, Saurin MC, Salazar-Lascurain B, García-Pacheco A, Gerke A, Bauernfeind M, Zenteno-Salazar S, Mora V (2020) Everything you must know about *Azospirillum* and its impact on agriculture and beyond. Biol Fertil Soils 56:461–479. https://doi.org/10.1111/plb.12841

Gordillo-Delgado F, Marín E, Calderón A (2016) Effect of *Azospirillum brasilense* and *Burkholderia unamae* bacteria on maize photosynthetic activity evaluated using the photoacoustic technique. Int J Therm 37:92. https://doi.org/10.1007/s10765-016-2101-x

Granada CA, Passaglia L, Souza EM, Sperotto RA (2018) Is phosphate solubilization the forgotten child of plant growth-promoting rhizobacteria? Front Microbiol 9:2054. https://doi.org/10.3389/fmicb.2018.02054

Heinrichs R, Meirelles GC, Santos LPM, Lira MCS, Lapaz AM, Nogueira MA, Bonini CSB, Soares Filho CV, Moreira A (2020) *Azospirillum* inoculation of ‘Marandu’ palisade grass seeds: effects on forage production and nutritional status. Semina Cienc Agrar 41:465–478. https://doi.org/10.5433/1679-0359.2020v41n2p465
Hodkinson BP, Lutzoni F (2009) A microbial survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Sym Biosis 49:163–180. https://doi.org/10.1007/s13199-009-0049-3

Hungria M, Campo RJ, Mendes IC, Graham PH (2006) Contribution of biological nitrogen fixation to the N nutrition of grain crops in the tropics: the success of soybean (Glycine max (L.) Merr. in South America. In: Singh RP, Shankar N, Jiwal PK (eds) Nitrogen nutrition and sustainable plant productivity. Studium Press, Houston, pp 43–93

Joshi B, Chaudhary A, Singh H, Kumar PA (2020) Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant Soil 457:225–240. https://doi.org/10.1007/s11104-020-04730-x

Lana UGP, Rodrigues MEGM, Oliveira-Paiva CA, Sousa SM, Tavares ANG, Marriel IE, Gomes EA (2020) Polyphasic characterization of Bacillus strains isolated from maize. Rev Bras Milho Sorgo 19:e1190. https://doi.org/10.18512/rbms2020v19e1190

Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama K (2018) Analysis of root properties associated with soybean yield augmentation of wheat (Triticum aestivum L.) under saline conditions. J Plant Growth Regul 47:327–338. https://doi.org/10.1007/s10990-018-9722-9

Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama K (2018) Analysis of root properties associated with soybean yield augmentation of wheat (Triticum aestivum L.) under saline conditions. J Plant Growth Regul 47:327–338. https://doi.org/10.1007/s10990-018-9722-9

Mohite B (2013) Isolation and characterization of indole-acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13:638–649. https://doi.org/10.4067/S0718-95622013000500051

Moreno AL, Kusdja FP, Picaveziz AC (2021) Rhizobacteria inoculation in maize associated with nitrogen and zinc fertilization at sowing. Rev Bras Eng Agríc Ambient 25(2):96–100. https://doi.org/10.1590/1807-1929/agriamb.v25n2p96-100

Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chem Acta 27:31–36. https://doi.org/10.1016/S0003-2670(68)88444-5

Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

Nawaz A, Shahbaz M, Asadullah IA, Marghoob MU, Imitaz M, Mubeen F (2020) Potential of salt tolerant PGPR in growth and yield augmentation of wheat (Triticum aestivum L.) under saline conditions. Front Microbiol 11:2019. https://doi.org/10.3389/fmicb.2020.02019

Novais RF, Alvarez VVH, Barros NF, Fontes RLF, Cantarutti RB, Parentoni SN, Magalhães JV (2012) A role for root morphology and related candidate genes in P acquisition efficiency in maize. Funct Plant Biol 39(11):925–935. https://doi.org/10.1071/FP12022

Santos MS, Oliveira CA, Andrade DL, Carvalho CG, Ribeiro VP, Pastina MM, Marriel IE, Lana UGP, Gomes (2018) Cepas de Bacillus e Azospirillum aumentam o crescimento e a absorção de nutrientes em milho em condições hidróricas. Embrapa Milho e Sorgo, Sete Lagoas. (Boletim de Pesquisa e Desenvolvimento, nº 184).

Sousa SM, Oliveira CA, Andrade DL, Carvalho CG, Ribeiro VP, Pastina MM, Gomes EA (2021) Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. J Plant Growth Regul 40:867–877. https://doi.org/10.1007/s00203-018-01617-5

Sousa SM, Oliveira CA, Andrade DL, Carvalho CG, Ribeiro VP, Pastina MM, Gomes EA (2021) Tropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yield. J Plant Growth Regul 40:867–877. https://doi.org/10.1007/s00203-018-01617-5

Tabatabai MA, Bremner JM (1970) Arylsulfatase activity of soils. Proc Soil Sci Soc Am 34(2):225–229. https://doi.org/10.2136/sssaj1970.0361599500340020012x

Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338. https://doi.org/10.1111/j.1550-7409.1999.tb04612.x

Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356
Velloso CC, Oliveira CA, Gomes EA, Lana UGP, Carvalho CG, Guimarães LJM, Pastina MM, Sousa SM (2020) Genome-guided insights of tropical Bacillus strains efficient in maize growth promotion. FEMS Microbiol Ecol 96(9):fiaa157. https://doi.org/10.1093/femsec/fiaa157

Wang Z, Chen Z, Fu X (2019) Integrated effects of co-inoculation with phosphate-solubilizing bacteria and N$_2$-fixing bacteria on microbial population and soil amendment under C deficiency. Int J Environ Res Public Health 16:2442. https://doi.org/10.3390/ijerph16132442

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.