Eukaryotic translation initiation factor 2B (eIF2B), a heterodecameric complex of two sets of the α, β, γ, δ, and ε subunits, is the guanine nucleotide exchange factor (GEF) specific for eIF2, a heterotrimeric G protein consisting of the α, β, and γ subunits. The eIF2 protein binds GTP on the γ subunits and delivers an initiator methionyl-tRNA (Met-tRNA\textsubscript{Met}) to the ribosome. The GEF activity of eIF2B is inhibited by stress-induced phosphorylation of Ser51 in the α subunit of eIF2, which leads to lower amounts of active eIF2 and a limited quantity of Met-tRNA\textsubscript{Met} for the ribosome, resulting in global repression of translation. However, the structural mechanism of the GEF activity inhibition remained enigmatic, and therefore the three-dimensional structure of the entire eIF2B molecule had been awaited. Recently, we determined the crystal structure of Schizosaccharomyces pombe eIF2B. In this Structural Snapshot, we present the structural features of eIF2B and the mechanism underlying the GEF activity inhibition by the phosphorylation of eIF2α, elucidated from structure-based \textit{in vitro} analyses.

Introduction

Eukaryotic translation initiation factor 2 (eIF2), a heterotrimeric G protein consisting of the α, β, and γ subunits, primarily functions to deliver Met-tRNA\textsubscript{Met} to the small ribosomal subunit in a GTP-dependent manner. During the translation initiation process, the ribosome releases eIF2 in an inactive GDP-bound form. For the next round of translation initiation, the GDP on eIF2γ must be replaced by GTP with the help of the eIF2-specific guanine nucleotide exchange factor, eIF2B, a heterodecameric complex consisting of two copies each of the α, β, γ, δ, and ε subunits [1,2]. The nucleotide exchange activity of eIF2B requires the formation of the catalytic γε subcomplex [3]. Especially, the consecutive Asn-Phe residues called the NF motif and the HEAT domain, which are both in the ε subunit, are critical for the activity. Although the HEAT

Abbreviations

AGP, ADP-glucose pyrophosphorylase; CACH, childhood ataxia with central nervous system hypomyelination; eIF, eukaryotic translation initiation factor; Gcn\textsubscript{-}, general control nondepressible; GEF, guanine nucleotide exchange factor; ISRIB, integrated stress response inhibitor; Met-tRNA\textsubscript{Met}, initiator methionyl-tRNA; P-eIF2α, eIF2α phosphorylated at Ser51; pBpa, p-benzoyl-L-phenylalanine; R15P, ribose-1,5-bisphosphate isomerase; R15P, ribose-1,5-bisphosphate; VWM, leukoencephalopathy with vanishing white matter.
domain alone possesses weak nucleotide exchange activity, it is greatly accelerated by the NF motif in the catalytic subcomplex [4,5]. The other three subunits of eIF2B form the regulatory αβδ subcomplex, which binds tightly to eIF2α phosphorylated at Ser51 (P-eIF2α) [3,6]. In mammals, four eIF2α kinases responding to various stress stimuli have been identified: mGCN2, PKR, PERK, and HRI [7]. The strong interaction between eIF2B and phosphorylated eIF2 inhibits the nucleotide exchange on eIF2γ [6,8], and thus limits the amount of Met-tRNA^{Met} available to the ribosome, which consequently represses translation globally. Importantly, many mutations in the human eIF2B subunits have been identified as causing the neurodegenerative disease called leukoencephalopathy with vanishing white matter (VWM) or childhood ataxia with central nervous system hypomyelination (CACH) [9,10]. In VWM/CACH patients, white matter lesions severely deteriorate and neurological disorders are exacerbated after stresses, and their eIF2B guanine nucleotide exchange activities are generally lower than normal [11], even though the severity of the disease does not correlate with the deficits in the activity [11,12]. To date, some partial structures of eIF2B have been solved: the HEAT domain [13,14], the α₃ homodimer [15], and the (βδ)₂ heterotetramer [16]. However, the overall structure of eIF2B had remained unknown, and the structural bases of the eIF2B-mediated translational control and the pathogenesis of VWM/CACH disease are poorly understood.

The overall structure of Schizosaccharomyces pombe eIF2B

We successfully established a system to produce a large amount of *S. pombe* eIF2B by coexpressing all subunits in *Escherichia coli*, and the purified eIF2B displayed the characteristic biochemical properties of natural eIF2B [17,18]. Using this recombinant protein, we produced high quality crystals of eIF2B, and determined its three-dimensional structure at 3.0-Å resolution. We assigned almost all regions except the HEAT domain of the ε subunit, and revealed the arrangement of the eIF2B subunits: the α₃β₂δ₃ hexameric regulatory subcomplex is sandwiched between the two γε heterodimeric catalytic subcomplexes (Fig. 1A). Mapping of the residues corresponding to the missense mutations causing VWM disease [9] revealed that many mutations are located within or around the subunit interface [18], indicating that the correct assembly into the decameric structure of eIF2B is important for its activity. The arrangement of the regulatory subunits is similar to that in the homohexameric structure of ribose-1,5-bisphosphate isomerase (R15Pi) [19], which shares sequence homology with the eIF2B regulatory subunits (Fig. 1B). The catalytic γ and ε subunits also share structural homology, and their structures resemble the subunit structure of the homotetrameric ADP-glucose pyrophosphorylase (AGP) [20] (Fig. 1C). The HEAT domain at the very C terminus of the ε subunit was disordered in the crystal, probably because of its high mobility. The visible C terminus of the ε subunit extends out from the main body of eIF2B, and therefore the subsequent HEAT domain can move around the 'distal' region of eIF2B (Fig. 1A,C). The NF motif, the other motif important for nucleotide exchange, also resides on this distal face of eIF2B (Fig. 1C), suggesting that nucleotide exchange on eIF2γ occurs on the distal face of eIF2B.

Identification of interfaces for eIF2 by surface-scanning photo-cross-linking

In order to examine the interaction between eIF2B and eIF2γ on the distal face experimentally, we performed surface-scanning photo-cross-linking experiments. The photo-reactive unnatural amino acid, p-benzoyl-L-phenylalanine (pBpa), was incorporated at various desired positions in eIF2B, using the *E. coli* RFzero strain [21,22]. When the incorporated pBpas in eIF2B and eIF2γ are located in close proximity, the ultraviolet irradiation produces the cross-linked molecule, which is detected by western blotting. The eIF2γ cross-linked positions detected in eIF2B were distributed over a large area on the distal face, confirming that eIF2γ binds on this face (Fig. 2A). In addition, several VWM mutations are mapped around these cross-linked residues, supporting the idea that nucleotide exchange is performed on the distal face (Fig. 2A). We revealed that the phosphorylation of eIF2 retarded the cross-linking to the pBpa sites near the NF motif [18], indicating that the phosphorylation restricts the access of eIF2γ around the NF motif. We also showed that the retardation of cross-linking was not observed at the sites distant from the NF-motif [18]. These phosphorylation-insensitive cross-links presumably reflect the recently reported eIF2B activity to displace eIF5 from the eIF2–eIF5 complex, in which eIF5 inhibits GDP dissociation from eIF2 [23,24].

In the same manner, we next searched for the P-eIF2α-binding site of the eIF2B regulatory subcomplex. The experiments revealed that the 'central cavity', formed around the center of one set of the three regulatory subunits, is the P-eIF2α-binding site (Fig. 2A). This central cavity includes some residues with mutations that have been isolated as Gcn[−] (general control
(25,26), which prevent cells from inducing translational control upon eIF2 phosphorylation. We also found that the central cavity binds to unphosphorylated eIF2α in a similar manner to P-eIF2α, but with a lower affinity [18]. Since fewer missense VWM mutations were identified in the central cavity [18], the VWM disease does not seem to correlate strongly with the recognition of the phosphorylation of eIF2.

In order to determine how eIF2α fits within the central cavity, we introduced ρBpa in the N-terminal domain (NTD) of eIF2α, and detected the photo-cross-links with the regulatory subunits of eIF2B [18]. The results provided information about the orientation of eIF2α in the central cavity, and we successfully constructed the docking model of eIF2 and eIF2B, using the crystal structure of aIF2, the archaeal homolog of eIF2 [27] (Fig. 2B). This docking model indicated that it is difficult for the eIF2 to be captured by the central cavity and to interact with the NF motif simultaneously. Therefore, the eIF2-eIF2B complex state in which the eIF2α is captured in the central cavity is the ‘nonproductive’ state, which is distinct from the ‘productive’ state for efficient nucleotide exchange mediated by the NF motif (Fig. 2C) [3,28]. When eIF2α is not phosphorylated, the nonproductive state is not stable, because the eIF2α is captured only weakly by the central cavity. Consequently, the interaction mode between eIF2 and eIF2B easily moves to the productive state (Fig. 2C). However, once eIF2α is phosphorylated, the eIF2-eIF2B complex can hardly escape from the nonproductive state, as it is stabilized by the strong binding between the eIF2B central cavity and the P-eIF2α, which results in the robust inhibition of the nucleotide exchange and the global translation repression (Fig. 2C).

Possible regulation of eIF2B by small molecule ligands

The GTP binding to eIF2B [29] has attracted keen interest, because its binding site may provide clues to a
mechanism of nucleotide exchange. So far, two competing hypotheses have been proposed: a familiar substitution mechanism and a sequential mechanism involving the eIF2-GDP-eIF2B-GTP quaternary complex [30]. A recent mass spectrometric analysis [31] showed that GTP specifically binds to eIF2B, favoring the latter mechanism. The structural conservation between AGP [20] and the catalytic subunits prompted us to examine whether GTP binds to a corresponding site in eIF2B. However, our structure revealed that the pocket structure is not conserved between eIF2B and AGP, and it does not seem to have nucleotide-binding capacity (Fig. 3A). Consistent with a previous mutational analysis [32], the corresponding region in eIF2Be is also distorted and seemingly devoid of this capacity (Fig. 3A). Therefore, the GTP-binding site on eIF2B and the mechanism of nucleotide exchange remain elusive.

Other small molecules also reportedly bind to eIF2B. eIF2Be was shown to bind GMP or AMP within its interdomain pocket [16], and this event was speculated to regulate the activity of eIF2B independently of eIF2 phosphorylation by inducing the movement of the NTDs of the regulatory subunits, as observed in R15Pi [19]. Our structure revealed that this movement is applicable only to eIF2Be, because the association with the catalytic subcomplex restricts the movements of eIF2Bβ and eIF2Bδ (Fig. 1A). In our structure, the NTD of eIF2Be is in an intermediate position between the apo and ligand-bound conformations of R15Pi (Fig. 3B). The domain movement by GMP/AMP binding opens the central cavity more widely and may affect the recognition of (P-)eIF2α.

Recently, a small molecule called ISRIB (integrated stress response inhibitor) was found to render cells insensitive to the effects of eIF2 phosphorylation, by increasing the nucleotide exchange activity of eIF2B [33–35]. This molecule was shown to prevent neurodegeneration in prion disease [36] and to mitigate the chemoresistance of pancreatic ductal adenocarcinoma [37]. Our structure revealed that the residues whose corresponding mutations in human eIF2B interfere with the response to ISRIB [34] are located near the pseudo twofold rotational axis of eIF2B (Fig. 3C). Therefore, the symmetric ISRIB molecule probably bridges between the two δ subunits and prevents the eIF2B decamer from splitting into βγδε tetramers; this role has also been proposed for mammalian eIF2Be [38].
Concluding remarks

The crystallographic and biochemical studies of eIF2B provided not only the structural framework for the stress-induced eIF2B-mediated translational control but also the probable mechanism of the VWM disease. In order to elucidate the molecular mechanism of eIF2B completely, atomic-level structural studies of the eIF2–eIF2B complex in the productive and non-productive states will be required. Especially, the manner in which eIF2B recognizes the phosphorylation of eIF2 is of great interest, since the identified eIF2B central cavity is highly negatively charged, and thus may not bind tightly to the phosphate group. In addition, the molecular mechanism by which eIF2B displaces eIF5 from eIF2 is still poorly understood. We earnestly hope that this study provides some clues to unveil these mechanisms.

Acknowledgements

This work was supported by JSPS KAKENHI Grants 23687013 and 25121737 to TI, the Targeted Proteins Research Program (TPRP) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to SY, the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from MEXT and Japan Agency for Medical Research and development (AMED) to SY, and a research program of the UT-RIKEN Cooperation Laboratory of Structural Biology to SY.

Author contributions

All authors wrote the manuscript and KK prepared the figures.
References

1. Dever TE, Kinzy TG & Pavitt GD (2016) Mechanism and regulation of protein synthesis in *Saccharomyces cerevisiae*. *Genetics* 203, 65–107.

2. Wortham NC & Proud CG (2015) eIF2B: recent structural and functional insights into a key regulator of translation. *Biochem Soc Trans* 43, 1234–1240.

3. Pavitt GD, Ramaiah KVA, Kimball SR & Hinnebusch AG (1998) eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange. *Genes Dev* 12, 514–526.

4. Gomez E & Pavitt GD (2000) Identification of domains and residues within the α subunit of eukaryotic translation initiation factor 2B (eIF2Bα) required for guanine nucleotide exchange reveals a novel activation function promoted by eIF2B complex formation. *Mol Cell Biol* 20, 3965–3976.

5. Gomez E, Mohammad SS & Pavitt GD (2002) Characterization of the minimal catalytic domain within eIF2B: the guanine-nucleotide exchange factor for translation initiation. *EMBO J* 21, 5292–5301.

6. Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE & Hinnebusch AG (2001) Tight binding of the phosphorylated α subunit of initiation factor 2 (eIF2α) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. *Mol Cell Biol* 21, 5015–5030.

7. Donnelly N, Gorman AM, Gupta S & Samali A (2013) The eIF2α kinases: their structures and functions. *Cell Mol Life Sci* 70, 3493–3511.

8. Rowlands AG, Panniers R & Henshaw EC (1988) The catalytic mechanism of guanine nucleotide exchange factor action and competitive inhibition by phosphorylated eukaryotic initiation factor 2. *J Biol Chem* 263, 5526–5533.

9. Pavitt GD & Proud CG (2009) Protein synthesis and its translation. *FEBS J* 276, 757–761.

10. Bugiani M, Boor I, Powers JM, Scheper GC & van der Knaap MS (2010) Leukoencephalopathy with vanishing white matter: a review. *J Neuropathol Exp Neurol* 69, 987–996.

11. Horzinski L, Huynh A, Cardoso MC, Gonthier C, Ouchchane L, Schifflmann R, Blanc P, Boesplug-Tanguy O & Fogli A (2009) Eukaryotic initiation factor 2B (eIF2B) GEF activity as a diagnostic tool for eIF2B-related disorders. *PLoS One* 4, e8318.

12. Liu R, van der Lei HD, Wang X, Wortham NC, Tang H, van Berkel CG, Mufunde TA, Huang W, van der Knaap MS, Scheper GC et al. (2011) Severity of vanishing white matter disease does not correlate with deficits in eIF2B activity or the integrity of eIF2B complexes. *Hum Mutat* 32, 1036–1045.

13. Boesen T, Mohammad SS, Pavitt GD & Andersen GR (2004) Structure of the catalytic fragment of translation initiation factor 2B and identification of a critically important catalytic residue. *J Biol Chem* 279, 10584–10592.

14. Wei J, Xu H, Zhang C, Wang M, Gao F & Gong W (2010) Crystal structure of the C-terminal domain of the e subunit of human translation initiation factor eIF2B. *Protein Cell* 1, 595–603.

15. Hiyama TB, Ito T, Imataka H & Yokoyama S (2009) Crystal structure of the alpha subunit of human translation initiation factor 2B. *J Mol Biol* 392, 937–951.

16. Kuhle B, Eulig NK & Ficner R (2015) Architecture of the eIF2B regulatory subcomplex and its implications for the regulation of guanine nucleotide exchange on eIF2. *Nucleic Acids Res* 43, 10014–10014.

17. Kashiwagi K, Shigeta T, Imataka H, Ito T & Yokoyama S (2016) Expression, purification, and crystallization of *Schizosaccharomyces pombe* eIF2B. *J Struct Funct Genomics* 17, 33–38.

18. Kashiwagi K, Takahashi M, Nishimoto M, Hiyama TB, Higo T, Umehara T, Sakamoto K, Ito T & Yokoyama S (2016) Crystal structure of eukaryotic translation initiation factor 2B. *Nature* 531, 122–125.

19. Nakamura A, Fujiyama M, Nishida Y, Yoshida S, Yano S, Aomi H, Imanaka T & Miki K (2012) Dynamic, ligand-dependent conformational change triggers reaction of ribose-1,5-bisphosphate isomerase from *Thermococcus kodakarenensis* KOD1. *J Biol Chem* 287, 20784–20796.

20. Jin X, Ballicora MA, Preiss J & Geiger JH (2005) Crystal structure of potato tuber ADP-glucose pyrophosphorylase. *EMBO J* 24, 694–704.

21. Chin JW, Martin AB, King DS, Wang L & Schultz PG (2002) Addition of a photocrosslinking amino acid to the genetic code of *Escherichia coli*. *Proc Natl Acad Sci U S A* 99, 11020–11024.

22. Mukai T, Yanagisawa T, Ohtake K, Wakamori M, Adachi J, Hino N, Sato A, Kobayashi T, Hayashi A, Shirouzu M et al. (2011) Genetic-code evolution for protein synthesis with non-natural amino acids. *Biochem Biophys Res Commun* 411, 757–761.

23. Jennings MD & Pavitt GD (2010) eIF5 has GDI activity necessary for translational control by eIF2 phosphorylation. *Nature* 465, 378–381.

24. Jennings MD, Zhou Y, Mohammad-Qureshi SS, Bennett D & Pavitt GD (2013) eIF2B promotes eIF5 dissociation from eIF2*GDP to facilitate guanine nucleotide exchange for translation initiation. *Genes Dev* 27, 2696–2707.

25. Vazquez de Aldana CR & Hinnebusch AG (1994) Mutations in the GCD7 subunit of yeast guanine nucleotide exchange factor eIF2-2 overcome the inhibitory effects of phosphorylated eIF-2 on translation initiation. *Mol Cell Biol* 14, 3208–3222.
26 Pavitt GD, Yang W & Hinnenbusch AG (1997) Homologous segments in three subunits of the guanine nucleotide exchange factor eIF2B mediate translational regulation by phosphorylation of eIF2. Mol Cell Biol 17, 1298–1313.

27 Yatime L, Mechulam Y, Blanquet S & Schmitt E (2007) Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states. Proc Natl Acad Sci U S A 104, 18445–18450.

28 Nika J, Rippel S & Hannig EM (2001) Biochemical analysis of the eIF2βγ complex reveals a structural function for eIF2α in catalyzed nucleotide exchange. J Biol Chem 276, 1051–1056.

29 Nika J, Yang W, Pavitt GD, Hinnenbusch AG & Hannig EM (2000) Purification and kinetic analysis of eIF2B from Saccharomyces cerevisiae. J Biol Chem 275, 26011–26017.

30 Manchester KL (2001) Catalysis of guanine nucleotide exchange on eIF2 by eIF2B: can it be both a substituted enzyme and a sequential mechanism? Biochem Biophys Res Commun 289, 643–646.

31 Gordiyenko Y, Schmidt C, Jennings MD, Matak-Vinkovic D, Pavitt GD & Robinson CV (2014) eIF2β is a decameric guanine nucleotide exchange factor with a γ2δ2ε2 tetrameric core. Nat Commun 5, 3902.

32 Reid PJ, Mohammad-Qureshi SS & Pavitt GD (2012) Identification of intersubunit domain interactions within eukaryotic initiation factor (eIF) 2B, the nucleotide exchange factor for translation initiation. J Biol Chem 287, 8275–8285.

33 Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KK, Wilson C et al. (2013) Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2, e00498.

34 Sekine Y, Zyraynova A, Crespiillo-Casado A, Fischer PM, Harding HP & Ron D (2015) Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science 348, 1027–1030.

35 Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, Sokabe M, Mendez AS, Newton BW, Tang EL et al. (2015) Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. Elife 4, e07314.

36 Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, Ortori CA, Barrett DA, Fromont C, Fischer PM et al. (2015) Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis 6, e1672.

37 Palam LR, Gore J, Craven KE, Wilson JL & Korc M (2015) Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma. Cell Death Dis 6, e1913.

38 Wortham NC, Martinez M, Gordiyenko Y, Robinson CV & Proud CG (2014) Analysis of the subunit organization of the eIF2B complex reveals new insights into its structure and regulation. FASEB J 28, 2225–2237.