Biomarkers for sepsis: more than just fever and leukocytosis—a narrative review

Tatiana Barichello1,2*, Jaqueline S. Generoso1, Mervyn Singer3 and Felipe Dal-Pizzol1

Abstract
A biomarker describes a measurable indicator of a patient’s clinical condition that can be measured accurately and reproducibly. Biomarkers offer utility for diagnosis, prognosis, early disease recognition, risk stratification, appropriate treatment (theranostics), and trial enrichment for patients with sepsis or suspected sepsis. In this narrative review, we aim to answer the question, “Do biomarkers in patients with sepsis or septic shock predict mortality, multiple organ dysfunction syndrome (MODS), or organ dysfunction?” We also discuss the role of pro- and anti-inflammatory biomarkers and biomarkers associated with intestinal permeability, endothelial injury, organ dysfunction, blood–brain barrier (BBB) breakdown, brain injury, and short and long-term mortality. For sepsis, a range of biomarkers is identified, including fluid phase pattern recognition molecules (PRMs), complement system, cytokines, chemokines, damage-associated molecular patterns (DAMPs), non-coding RNAs, miRNAs, cell membrane receptors, cell proteins, metabolites, and soluble receptors. We also provide an overview of immune response biomarkers that can help identify or differentiate between systemic inflammatory response syndrome (SIRS), sepsis, septic shock, and sepsis-associated encephalopathy. However, significant work is needed to identify the optimal combinations of biomarkers that can augment diagnosis, treatment, and good patient outcomes.

Keywords: Biomarker, Systemic inflammatory response, Sepsis, Septic shock, Sepsis-associated encephalopathy

Introduction
A biomarker describes a measurable indicator of biological status in normal and pathogenic processes. It may be helpful as a theranostic for identifying suitable patients for therapeutic intervention and titrating the degree and/or duration of intervention. A biomarker should be accurate and reproducible. In the ideal scenario, the biomarker (or combination of biomarkers) should offer both high specificity and sensitivity for diagnosing a condition, but either alone may be adequate as a ‘rule-in’ or ‘rule-out’ test.

Sepsis represents a dysregulated immune response to infection that leads to organ dysfunction [1]. Host response biomarkers play a critical role in diagnosis, early recognition of organ dysfunction, risk stratification, prognostication, and patient management, including antibiotic stewardship. Biomarkers may also be helpful for trial enrichment to identify suitable patients and/or risk categorization for an intervention. A wide range of biomarkers, measured by a host of different technologies, are being investigated to discriminate a systemic inflammatory response syndrome (SIRS) rapidly, which is an excessive defensive body’s response to a harmful stressor (for example, infection, trauma, surgery, acute inflammation, ischemia or reperfusion, or cancer) [2] or early identification of infection-triggered organ dysfunction (sepsis). Also, the quick sepsis related organ failure assessment (qSOFA) is intended to raise suspicion of sepsis and encourage additional action; although, qSOFA is not a substitute for SIRS [3]. These biomarkers include measurement of acute-phase proteins,
cytokines, chemokines, damage-associated molecular patterns (DAMPs), endothelial cell markers, leukocyte surface markers, non-coding RNAs, miRNA, and soluble receptors, as well as metabolites and alterations in gene expression (transcriptomics). Biomarkers may help stratify septic patients into biological phenotypes, for example, hyperinflammatory versus immunosuppressive. Biomarkers can also be used to identify gut permeability, blood–brain barrier (BBB) permeability, probability of hospital readmission, and longer-term outcomes [4, 5].

The causative pathogen replicates and releases its constituents such as endo- and exotoxins, and DNA. These constituents are designated pathogen-associated molecular patterns (PAMPs) [6, 7]. PAMPs are recognized by both pattern-recognition receptors (PRRs) and non-PRRs, which are essential components of the immune system [8, 9]. PRRs include several families, including Toll-like receptors (TLRs), nucleotide-binding oligomerization domain-like receptors (NOD)-like receptors (NLRs), a retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), C-type lectin receptors (CLRs), and intracellular DNA-sensing molecules. Non-PRRs include receptors for advanced glycation end products (RAGE), triggering receptors expressed on myeloid cells (TREM), and G-protein-coupled receptors (GPCRs) [10]. The sensing of PAMPs by immune cell receptors triggers a cascade of signaling pathways that activate multiple transcription factors to promote the production and release of pro- and anti-inflammatory mediators such as acute-phase proteins, cytokines, chemokines, as well as antimicrobial peptides, which are needed to eliminate the invading pathogen [11].

The host immune response and pathogen virulence factors will both trigger cell injury and/or induce cell stress. These results in the release of endogenous molecules (DAMPs), exacerbating the inflammatory response. DAMPs are recognized by the same immune receptors that recognize PAMPs [12, 13]. Many DAMPs have been identified, with some currently used as inflammatory biomarkers. Examples include proteins and cellular molecules related to nucleic acids, such as heat shock proteins (HSPs), the high mobility group box 1 (HMGB-1), and members of the S100 family [12, 14, 15]. The immune response may induce vascular endothelial damage disrupting tight junctions (T.J.), increasing gut permeability, and potentially facilitating translocation of pathogens and/or their DAMPs from the gut to the bloodstream and lymphatics, thereby amplifying the systemic inflammatory response [16]. In addition, an increase of BBB permeability allows circulating immune cells to enter the brain, triggering or exacerbating glial cell activation [17]. These events could trigger an intense and excessive host response activating coagulation and fibrinolytic systems, activating or suppressing hormonal, bioenergetic, and metabolic pathways, and inducing macro- and micro-circulatory changes with a net result of multiple organ dysfunction. In the past few decades, researchers have studied each inflammatory response stage during SIRS, sepsis, and septic shock, metabolites associated with inflammatory cascades, and cellular components that could be used as biomarkers. These biomarkers could help identify endothelial damage, intestinal permeability, organ failure, BBB breakdown and predict rehospitalization, short- and long-term mortality, and cognitive consequences in survivors [18].

For this narrative review, we addressed the question, "Do biomarkers in patients with sepsis or septic shock predict mortality, MODS, or organ dysfunction?" Studies were identified by searching PubMed/MEDLINE (National Library of Medicine) databases for peer-reviewed journal articles published until October 2021. The abovementioned databases were searched with the following combinations of keywords: ("inflammatory response syndrome" OR "SIRS" OR "sepsis" OR "septic shock") AND ("markers" OR "biomarkers" OR "biological markers" OR "biological measures" OR "molecular predictor"). We omitted review articles, in vitro studies, and animal studies.

The humoral innate immune response, cytokines, and chemokines

The humoral innate immune response consists of multiple components, including fluid phase pattern recognition molecules (PRMs) and the complement system. PRMs include C-reactive protein (CRP), serum amyloid P component (SAP), and pentraxin 3 (PTX-3) [19]. The rise in CRP level is primarily induced by interleukin (IL)-6 and IL-1β acting on the gene responsible for CRP transcription during the acute phase of an inflammatory process. CRP is a pentameric acute-phase reactant protein whose conformation facilitates the ability to trigger complement activation and activate platelets, monocytes, and endothelial cells [20]. Furthermore, CRP is one of the most widely used and investigated biomarkers [21]. A prospective multicenter cohort study followed 483 adult patients who survived hospitalization for sepsis for up to one year. IL-6, high-sensitivity C reactive protein (hs-CRP), soluble programmed death-ligand 1 (sPD-L1), E-selectin, and intercellular adhesion molecule 1 (ICAM-1) were evaluated at five-time points during and after hospitalization. A comparison was made between a phenotype with hyperinflammation (high levels of IL-6 and hs-CRP) and a phenotype of immunosuppression (high sPD-L1 levels). Compared with a normal phenotype,
both hyperinflammation and immunosuppression phenotypes had higher 6-month hospital readmission rates and 1-year mortality rates, both all-cause and attributable to cardiovascular or cancer [22].

Pentraxin (PTX-3) is secreted by macrophages, dendritic cells, macrophages, fibroblasts, mesangial cells, and glial cells under pathogen or inflammatory stimuli [19]. Plasma PTX-3 was assessed on days 1, 2, and 7 in 958 patients with sepsis or septic shock included in the Albumin Italian Outcome Sepsis (ALBIOS) study. The researchers assessed a possible association between PTX-3 levels and clinical severity, organ dysfunction, treatment, and mortality within 90 days. PTX-3 levels were elevated at the onset of sepsis and increased with illness severity and the number of organ dysfunctions. PTX-3 levels decreased between days 1 to 7, but this was less prominent in patients with septic shock [23]. In a prospective observational analysis, PTX-3, IL-6, procalcitonin (PCT), and lactate combined showed excellent performance in predicting 28-day all-cause mortality among patients diagnosed with sepsis or septic shock and superior to the Sequential Organ Failure Assessment (SOFA) score [24].

In a prospective pilot study of markers of complement activation in sepsis, higher C4d (3.5-fold), factor Bb (6.1-fold), C3 (0.8-fold), C3a (11.6-fold), and C5a (1.8-fold) levels were seen compared with healthy volunteer controls [25]. In another study of 49 sepsis patients, 34 developed disseminated intravascular coagulation (DIC), and eight died. Patients with DIC had lower C3 levels and higher SC5b-9 levels. On stratifying by SC5b-9 quartile (ng/mL: low: < 260, moderate: 260–342, high: 343–501, highest: > 501), coagulation parameters were most deranged in the highest quartile with prolonged thrombocytopenia and higher mortality (33%) [26].

The activation of PRRs culminates in the stimulation of transcription factors resulting in the expression and secretion of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), IL-1-β, IL-6, and interferons (IFNs). These inflammatory mediators are required for host defense against pathogens and activation of the adaptive immune response. A retrospective study evaluated a broad panel of cytokines and found IL-1β, IL-6, IL-8, MCP-1, IL-10, and plasminogen activator inhibitor 1 (PAI-1) levels were increased in the acute phase of sepsis in both critically and non-critically ill patients. In addition, levels of IL-10 (days 1, 2, and 4), IL-6 and PAI-1 (days 2 and 4), and IL-8 (day 4) increased in critically ill patients compared to non-critically ill [27]. In summary, hs-CRP, IL-6, and PAI-1 circulatory levels may have utility in stratifying a hyperinflammatory patient phenotype.

DAMPs

DAMPs are endogenous danger molecules released from damaged or stressed cells. These molecules activate the innate immune system through interaction with PRRs. DAMPs contribute to the host defense but can also promote pathological inflammatory responses. Calprotectin, a protein found in the cytosol of neutrophils and macrophages, is released under cell stress or damage. In a mixed population study, plasma calprotectin levels were higher in sepsis than in trauma patients and other medical conditions. Calprotectin levels were higher in patients who did not survive for 30 days. Plasma PCT did not differ between the groups or as a prognosticator of the outcome. Receiver operating characteristic (ROC) analysis, used as a sepsis biomarker, had a higher area under the curve (AUC) value for calprotectin (AUC: 0.79) compared to PCT (AUC: 0.49) [28].

A prospective study evaluated IL-6, HMGB-1, and neutrophil gelatinase-associated lipocalin (NGAL) in 14 septic patients and 16 patients without sepsis admitted to the ICU. In patients with sepsis, IL-6 decreased levels were associated with ICU survival; NGAL levels rose in non-survivors, while HMGB-1 levels were unchanged in both survivors and non-survivors regardless of complications [29].

Endothelial cells and BBB markers

The first step in endothelial and BBB injury is the breakdown and destruction of proteins followed by release into the bloodstream. These proteins or peptides can be evaluated as a marker of endothelial cells and BBB integrity [30]. Plasma levels of occludin (OCLN), claudin-5 (CLDN-5), zonula-occludens 1 (ZO-1), PCT, and lactate were assessed in 51 septic patients. OCLN and ZO-1 were elevated with disease severity and positively correlated with the Acute Physiology and Chronic Health Evaluation II (APACHE-II) and SOFA scores and lactate levels. The predictive value for in-hospital mortality of ZO-1 was comparable to that of lactate levels, APACHE-II, and SOFA scores but superior to OCLN and PCT [31]. In a case series of brain autopsies from adults who died from sepsis, 38% had no OCLN expression in the endothelium of cerebral microvessels. BBB damage was associated with higher maximum SOFA scores and PCT levels > 10 μg/L. BBB damage in the cerebellum was more common with CRP values > 100 mg/L [32]. Soluble fms-like tyrosine kinase 1 (sFlt-1), soluble E-selectin (sE-selectin), soluble intercellular adhesion molecule 1 (sICAM-1), soluble vascular cell adhesion molecule 1 (sVCAM-1), and PAI-1 were evaluated in another studies. All these evaluated endothelial biomarkers were associated with sepsis severity. sFlt-1 had the strongest association with the SOFA score, while sFlt-1 and PAI-1
had the highest area under the operating receiver characteristic curve for mortality [33].

Syndecan-1 is a structural component of the endothelium. Antithrombin, PAI-1, syndecan-1, VCAM-1, E-selectin, IL-1β, IL-6, IL-8, HMGB-1, and histone-H3 were increased in septic patients compared with healthy controls. Non-survivors had a higher syndecan-1 level compared with survivors. On day one, an association was seen between syndecan-1 levels and APACHE-II, SOFA, DIC scores, hemostatic markers, IL-1β, IL-8, and PAI-1. Day 1 syndecan-1 levels were also significantly higher in patients with DIC and had reliable discriminative power to predict both DIC development and subsequent mortality [34].

The serum biomarker, calcium-binding protein B (S100B), reflects BBB disruption, glial cell injury, and activation. S100B is used to evaluate brain injury severity and predict outcomes from stroke, traumatic brain injury, encephalopathy, and delirium [35]. A prospective cohort study demonstrated that day three values for predicting 180-day mortality were superior to day one (0.731 vs. 0.611) [36]. Patients with sepsis-associated encephalopathy also had elevated levels. In another observational study of 22 patients with septic shock, delirium was present in ten. The odds ratio for the risk of developing delirium with an S100B > 0.15 μg/L was 18.0. Patients with delirium had higher plasma levels of IL-6. S100B and IL-6 levels were positively correlated [37]. S100B, PAI-1, angiopoietin (Ang)-2, ZO-1, and OCLN are the main biomarkers currently used to evaluate the vascular injury and BBB permeability.

Gut permeability markers
Critically ill patients show an increase in gut permeability, which may trigger a systemic inflammatory response syndrome and multiple organ dysfunction syndromes (MODS) [38]. Plasma zonulin levels were higher in sepsis patients compared to a post-surgical control group or healthy volunteers [39]. In another study, serum levels of intestinal fatty acid-binding protein (I-FABP) were higher in patients with sepsis and higher still in those with septic shock. Serum D-lactic acid levels were also elevated with sepsis but did not differentiate severity. Neither I-FABP nor D-lactic acid could prognosticate [40].

Non-coding RNAs and miRNA
A non-coding RNA (ncRNA) is an RNA molecule transcribed from DNA but not translated into proteins. A microRNA is a small non-coding RNA molecule that functions in RNA silencing and post-transcriptional gene expression regulation. ncRNAs and mRNAs are being studied as sepsis biomarkers. For example, long non-coding metastasis-associated lung adenocarcinoma transcript 1 (Inc-MALAT1) and micro RNA (miR)-125a were increased in sepsis patients compared with healthy controls and positively correlated with APACHE-II score, SOFA score, serum creatinine, CRP, TNF-α, IL-1β, IL-6, and IL-8. The Inc-MALAT1/miR-125a axis was also a predictor of increased 28-day mortality risk [41]. In another study Inc-MALAT1 expression was increased in acute respiratory distress syndrome (ARDS) patients compared to non-ARDS patients (AUROC: 0.674). Non-survivors compared to survivors (AUROC: 0.651) and positively correlated with APACHE-II and SOFA scores, CRP, PCT, TNF-α, IL-1β, IL-6, and IL-17 [42]. Long non-coding RNA maternally expressed gene 3 (Inc-MEG3), and the Inc-MEG3/miR-21 axis were increased, while miR-21 expression was decreased in sepsis patients compared with healthy controls. Inc-MEG3 (AUROC: 0.887) and the Inc-MEG3/miR-21 ratio (AUROC: 0.934) had high values for predicting elevated sepsis risk, while miR-21 (AUROC: 0.801) gave excellent predictive value for a reduced sepsis risk [43]. A further study showed miR-125a and miR-125b expressions were elevated in sepsis patients compared with healthy controls and were predictive of sepsis risk—miR-125a (AUROC: 0.749) and miR-125b (AUROC: 0.839). No correlation was seen between miR-125a and CRP, TNF-α, IL-6, IL-17, and IL-23 in however, miR-125b was positively associated with these cytokines. miR-125a failed to predict 28-day mortality risk (AUROC: 0.588) in sepsis patients, whereas miR-125b was superior (AUROC: 0.699) [44].

Membrane receptors, cell proteins, and metabolites
Cell surface receptors are receptors incorporated into the plasma membrane of cells and act on cell signaling by receiving or binding to extracellular molecules. After detecting such molecules, the production of metabolites occurs. In one study, the cluster of differentiation (CD)-13, CD14, CD25, CD64, and human leukocyte antigen (HLA-DR) showed acceptable sensitivity and specificity for mortality prediction (CD13 AUROC:0.824; CD64 0.843; and HLA-DR 0.804) while CD14 and CD25 did not predict mortality [45]. nCD64 expression, in a further study, nCD64, PCT, CRP, and SOFA scores were higher in septic patients, with nCD64 having the highest AUC (0.879) for differentiating a positive microbial culture. This was superior to PCT (0.868), SOFA score (0.701), CRP (0.609), and white blood cell (WBC) count. In predicting 28-day mortality, the combination of nCD64 and SOFA score had an AUROC of 0.91 versus 0.882 for the combination of PCT and SOFA [46].

A meta-analysis of 19 studies enrolling 3012 patients evaluated the value of PCT (AUROC 0.84) and presepsin (0.87 AUROC) for diagnosing sepsis. The pooled
sensitivities and specificities were 0.80 and 0.75 for PCT and 0.84 and 0.73 for presepsin [47]. In one study, levels of presepsin, PCT, CRP, and WBC were higher in sepsis patients than in a SIRS group with AUROC values of 0.954 (presepsin), 0.874 (PCT), 0.859 (CRP), and 0.723 (WBC). The cut-off of presepsin for discriminating between sepsis and SIRS was 407 pg/mL, with sensitivity and specificity values of 98.6% and 82.6%, respectively [48]. In a study of septic children, TREM-1 levels were higher in septic shock patients [49].

Hormones and peptide precursors

Adrenomedullin (ADM) is synthesized in different tissues, including the adrenal cortex, kidney, lung, blood vessels, and heart. It has biological properties, including vasodilating, inotropic, diuretic, natriuretic, and bronchodilating. In one study, mid-regional pro adrenomedullin (MR-proADM) was an independent predictor of five different organ failures (respiratory, coagulation, cardiovascular, neurological, and renal), compared to lactate which predicted three (coagulation, cardiovascular and neurological), PCT two (cardiovascular and renal) and CRP (none) [50]. MR-proADM most accurately identified patients with a high likelihood of further disease progression compared to other biomarkers and clinical scores [51]. A total of 1089 individuals with either sepsis (142) or septic shock (977) were included in a randomized controlled study. The MR-proADM level within the first 24 h after sepsis diagnosis was associated with 7-day mortality (AUROC 0.72 and p < 0.001) and 90-day mortality (AUROC 0.71 and p < 0.001). Patients with declining PCT levels but persistently high MR-proADM levels on day-1 or day-4 had a substantially higher mortality risk of 19.1 (8.0–45.9) and 43.1 (10.1–184.0), respectively [52]. Adult patients hospitalized to ICU had their bioactive-ADM levels measured in this retrospective observational study. This study comprised a total of 1867 patients, 632 septic patients, and 267 septic shock patients. The median bioactive-ADM was 74 pg/mL in sepsis patients, 107 pg/mL in septic shock, and 29 pg/mL in non-septic patients. The association of elevated bioactive-ADM and mortality in sepsis patients and the ICU population resulted in O.R.s of 1.23 and 1.22, respectively [53]. In addition, the MR-proADM is potentially removal by continuous renal replacement therapy (CRRT) [54].

Neutrophil-related biomarkers

High levels of resistin collected on day 1 of ICU admission were associated with an increased likelihood of developing new organ failure, whereas high myeloperoxidase (MPO) levels on day one were associated with an increased risk of developing incident organ failure for clotting and kidney systems [62].

Soluble receptors

Soluble trigger receptor expressed in the myeloid cell-1 (sTREM-1) is a TREM family member. This receptor offers excellent potential as a biomarker for infectious diseases as it can be measured in different biological fluids, including serum, pleural fluid, sputum, and urine [63]. However, a meta-analysis of 2418 patients enrolled in 19 studies showed serum sTREM-1 had only moderate accuracy in diagnosing patients with suspected sepsis [63]. Combining sTREM-1 with clinical variables offered more significant
Table 1 Different roles of the biomarkers in sepsis

Biomarker	Function	References
Acute-phase proteins		
CRP, hsCRP	Response to infection and other inflammatory stimuli	[4, 69, 70]
	Predictive for increased 28-day mortality in patients with sepsis	
	Hyperinflammatory phenotype	
Complement Proteins	Prognosis of disease severity	[25, 71]
PTX-3	Discrimination of sepsis and septic shock	[72, 73]
	Diagnosis of sepsis and septic shock during the first week in the ICU	
	Prediction of septic shock	
Cytokines and chemokines		
IL-10	Hypoinflammatory phenotype	[22, 71]
MCP-1	It differentiates patients with septic shock from patients with sepsis	[73, 74]
	Mortality prognosis at 30 days and six months	
TNF-α, IL-1β, IL-6	IL-6 all-cause mortality prognosis at 30 days and six months	[27, 74]
	IL-1β and IL-6 acute phase of sepsis	
	It was increased in the hyperinflammatory phenotype	
	Organ dysfunction prognosis	
DAMPs		
Calprotectin	PCT to distinguish between patients with sepsis and patients without sepsis	[28]
	Predictive for 30-day mortality	
HMGB-1	Worst prognosis and higher 28-day mortality	[75, 76]
Endothelial cells and BBB markers		
Syndecan-1	Increase related to sepsis severity	[34]
	Discriminative power for DIC and subsequent mortality	
VLA-3 (α3β1)	Indicative of sepsis	[77, 78]
	Discrimination of sepsis and SIRS	
Ang-1	It stabilizes the endothelium and inhibits vascular leakage by constitutively activating the Tie-2 receptor	[79]
	Ang-2/Ang-1, Ang-1/Tie-2 ratio has a prognosis for 90-day mortality in sepsis and septic shock in the ICU higher than the PCT and SOFA score	
	Independent and effective predictors of SOFA score changes	
Ang-2	It can disrupt microvascular integrity by blocking the Tie-2 receptor, which results in vascular leakage	[73, 79]
	Individuals with septic shock had higher levels of Ang-2 than those with sepsis	
CLDN-5	The absence of CLDN-5 may indicate damage to endothelial cells during sepsis	[31]
OCLN	Increase related to sepsis severity and positive correlation with SOFA scores	[31, 32]
	Predictive of mortality	
	The absence of OCLN in the cerebral microvascular endothelium was related to more severe disease and intense inflammatory response	
PAI-1	Sepsis severity prognosis	[33, 34]
	Predictor of mortality	
	An increase may indicate DIC	
sICAM-1	Sepsis severity prognosis	[33, 79]
	Prognosis of 90-day mortality in patients with sepsis and septic shock in the ICU	
S100B	It is associated with delirium in septic shock	[36, 37, 80]
	Prognosis of severe organ dysfunction	
	Shortest survival in 180 days	
	Diagnosis of sepsis-associated encephalopathy	
E-selectin	Sepsis severity prognosis	[33]
	Predicts mortality	
Biomarker	Function	References
-----------------	---	---------------------------------
sFlt-1	Increase related to SOFA and APACHE-II	[33]
sVCAM-1	Prognosis of sepsis severity and 28-day mortality	[33, 79, 81]
	Prognosis of 90-day mortality in patients with severe sepsis and septic shock	
ZO-1	Prognosis of sepsis severity and correlation with APACHE-II and SOFA scores	[31, 32]
	Predictor of mortality	
	Diagnostic capability for MODS	
Gut permeability markers		
Citrulline	The decrease may indicate early acute bowel dysfunction	[82, 83]
I-FABP	Risk of septic shock	[40]
Zonulin	Indicates intestinal permeability during sepsis and SIRS	[39]
D-lactic acid	Indicates early intestinal damage in patients with sepsis and septic shock	[40]
Non-coding RNAs		
Lnc-MALAT1	The distinction between septic and non-sepsis patients	[41, 42]
	Positive correlation with APACHE-II	
	Sepsis severity prognosis	
	High risk of ARDS	
	Predictive for high mortality	
	The increase can distinguish ARDS from non-ARDS	
Lnc-MEG3	The increase is predictive of sepsis	[43]
miRNA		
miR-125a, miR-125b	Prognosis of more significant disease severity	[44, 84, 85]
	Distinguishes patients with sepsis from patients without sepsis	
	miR-125b: increased risk of mortality in patients with sepsis	
	miR-125a: risk of sepsis and increased mortality	
Membrane receptors, cell proteins, and metabolites		
CD64	Prognosis of disease severity	[46]
	28-day mortality predictor	
	Early diagnosis of infection	
CD68	Prognosis of disease severity	[86]
	Microglial activation	
NFL	Indicates risk and severity of sepsis-associated encephalopathy	[87]
NFH	Indicates risk and severity of sepsis-associated encephalopathy	[87]
NSE	Diagnosis of sepsis-associated encephalopathy	[80, 88]
	30-day mortality risk	
	Risk of delirium	
	Neuronal injury marker in sepsis	
Presepsin	Initial diagnosis and sepsis risk stratification	[48]
TREM-1	Sepsis indicator	[89–91]
	An early distinction between sepsis and SIRS	
	Predictive of septic shock	
Peptide precursor of the hormone and hormone		
MR-proADM	Discrimination of survivors and non-survivors	[92]
	Organ dysfunction marker	
mortality discrimination compared to clinical variables alone [64]. In a multicenter prospective cohort study, soluble tumor necrosis factor receptor type 1 (sTNFR1) levels > 8861 pg/ml predicted 30-day mortality [65].

Patients with sepsis or septic shock displayed higher levels of the soluble form of the urokinase plasminogen activator receptor (suPAR), PCT, and lactate on days 1, 2, 4, and 7 of admission, with lactate and suPAR being the best risk stratifies for suspected infection [66]. Levels of suPAR and PCT levels were higher in sepsis patients than in a SIRS group with AUROC values of 0.89 and 0.82, respectively [67]. Serum sPD-L1 levels were increased in non-survivors compared with survivors with similar prognostic accuracy for 28-day mortality as APACHE-II and SOFA scores [68]. See Tables 1 and 2 for further information, as well as Fig. 1.
Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References	
Acute-phase proteins										
CRP, hsCRP	Plasma and serum	Sepsis $= 483$	–	–	15–20 mg/dl	–	–	→ hsCRP hyperinflammatory phenotype	[22]	
		Mean age mean $= 60.5$	–	–	–	–	–	→ hsCRP day 1 to 2, 95.8%		
		$♂$ 54.9%	–	–	–	–	–	→ hsCRP, 23 patients (25.8%) at 3, 26 patients (30.2%) at 6, and 23 patients (25.6%) at 12 months		
		Sepsis $= 43$	–	–	–	0.51, 0.56, and 0.48 R^2	0.56, and 0.48 AUC	CRP day 1, 3, and 8 to predict 30-day mortality $p = 0.836$, $p = 0.059$, and $p = 0.819$, respectively	[74]	
		Septic shock $n = 93$	–	61.54%	9 mg/dl	–	0.684	→ hsCRP sepsis versus control group, $p = 0.008$		
		Age $= 26$ to 88	61.54%	52.17%	9 mg/dl	–	0.684	→ hsCRP sepsis versus control group, $p = 0.008$		
		Sepsis $= 17$	–	100%	8.02 mg/l	–	0.98	→ CRP in septic patients compared to control group, $p = 0.001$	[104]	
		Control $= 19$	75.00%	78.00%	7.4 mg/dl	–	0.825	→ hsCRP sepsis versus control group, $p = 0.001$	[105]	
		Age $= 52.18$	75.00%	78.00%	7.4 mg/dl	–	0.825	→ hsCRP sepsis versus control group, $p = 0.001$		
		Sepsis $= 38$	75.00%	78.00%	7.4 mg/dl	–	0.825	→ hsCRP sepsis versus control group, $p = 0.001$		
		Septic shock $= 31$	75.00%	78.00%	7.4 mg/dl	–	0.825	→ hsCRP sepsis versus control group, $p = 0.001$		
		Control $= 40$	75.00%	78.00%	7.4 mg/dl	–	0.825	→ hsCRP sepsis versus control group, $p = 0.001$		
		Age $= 37$ to 95	75.00%	78.00%	7.4 mg/dl	–	0.825	→ hsCRP sepsis versus control group, $p = 0.001$		
Blood		Sepsis $= 33$	90.70%	98.60%	407 pg/ml	–	0.859	→ CRP in septic patients compared to SIRS group, $p < 0.05$	[48]	
		Septic shock $= 24$	–	–	–	–	–	→ CRP in septic patients compared to SIRS group, $p < 0.05$		
		Septic shock $= 15$	–	–	–	–	–	→ CRP in septic patients compared to SIRS group, $p < 0.05$		
		SIRS $= 23$	–	–	–	–	–	→ CRP in septic patients compared to SIRS group, $p < 0.05$		
		Normal $= 20$	–	–	–	–	–	→ CRP in septic patients compared to SIRS group, $p < 0.05$		
		Mean age $= 62.1$	–	–	–	–	–	→ CRP in septic patients compared to SIRS group, $p < 0.05$		
		Sepsis $= 119$	–	–	–	–	–	→ CRP and SOFA score in the sepsis group compared to the control group, $p < 0.05$	[46]	
		Septic shock $= 32$	–	–	–	–	–	→ CRP and SOFA score in the sepsis group compared to the control group, $p < 0.05$		
		Control $= 20$	–	–	–	–	–	→ CRP and SOFA score in the sepsis group compared to the control group, $p < 0.05$		
		Severe sepsis $= 34$	–	–	–	–	0.609	→ CRP did not differentiate septic shock and severe sepsis	[89]	
		Septic shock $= 53$	–	–	–	–	0.609	→ CRP did not differentiate septic shock and severe sepsis		
		Age $= 2$ mo to 16 years	–	–	–	–	0.609	→ CRP did not differentiate septic shock and severe sepsis		
Biomarker	Sample	Demographic	Specitivity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References	
-----------	-------------	--	-----------------	-----------------	---------	------	-----	---	------------	
Complement	Plasma	Sepsis = 20	–	–	–	–	–	† Sepsis (C4d 3.5-fold; Factor Bb 6.1-fold; C3 0.8-fold; C3a 11.6-fold; and C5a 1.8-fold) versus control	[25]	
Proteins	Control = 10	Age = 85	–	–	–	0.18	–	† CSa ↓ SOFA		
PTX-3	Plasma	Sepsis = 73	–	–	–	0.36	–	† PTX-3 versus APACHE-II, and SOFA, $p = 0.0001$	[72]	
		Control = 77	–	–	31.4 ng/ml	–	–	Sepsis versus SIRS, $p > 0.05		
		Septic Shock = 140	–	–	–	–	–	Sepsis versus septic shock, $p = 0.0001		
		Age = 26 to 88	–	–	–	–	–	† Sepsis/septic shock versus control, $p < 0.001	[72]	
Plasma	Sepsis = 17	–	–	–	–	0.82	0.73	Sepsis and septic shock discrimination on day 1	[73]	
		Septic shock = 26	–	–	–	–	–	† PTX-3 sepsis, septic shock, and post-surgery infection versus control group, $p < 0.05		
Cytokines and chemokines										
IL-10	Plasma	Sepsis = 208 Control = 210	–	–	–	–	0.161	† mir-126 correlated negatively with IL-10, $p = 0.020$	[106]	
	Plasma	Sepsis = 309	–	–	–	–	0.166	† lncRNA ITSN1-2 correlated negatively with IL-10, $p = 0.003$	[107]	
MCP-1	Plasma	Sepsis = 43	–	–	–	0.64	0.51	MCP-1, day 1, 3, and 8 to predict 30-day mortality, $p = 0.004, p = 0.948, and $p = 0.948$, respectively	[74]	
		Septic shock n = 93	–	–	–	–	–	† MCP-1 sepsis, septic shock and post-surgery infection versus control group, $p < 0.05	[73]	
		Age = 26 to 88	–	–	–	–	–	† MCP-1 sepsis shock versus sepsis, $p = 0.0059		
	Plasma	Sepsis = 17	–	–	–	–	0.71	–		
		Septic shock = 26	–	–	–	–	–			
TNF-α, IL-1β, IL-6	Serum	Sepsis = 288	–	–	–	–	–	† Sepsis TNF-α, IL-1β, IL-6, and IL-8 compared to the control group, $p < 0.001	[78]	
		Mean age = 58.2 ± 11.2	–	–	–	–	–	† TNF-α, IL-1β, IL-6, and IL-8 were negatively correlated with surviving sepsis patients, $p < 0.001		
		Control = 290	–	–	–	–	–	“	[78]	
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R²	AUC	Clinical relevance	References
Plasma	Sepsis = 483	Age mean = 60.5	–	–	10⁴ pg/dl	–	–	↑ IL-6, 72 patients (74.2%) at 3 months, 62 (70.5%) at 6 months, and 59 (66.3%) at 12 months	[22]
		♂ 54.9%							
Serum	Sepsis = 43	Septic shock n = 93	–	–	–	0.69, 0.70, and 0.68	↑ IL-6, day 1, 3, and 8 to predict 30-day mortality, \(p = 0.0001, p = 0.0001, \) and \(p = 0.012, \) respectively	[74]	
		Age = 26 to 88							
Serum	Sepsis = 39	Control = 15	–	–	12,704—111,372 pg/ml	–	–	↑ IL-6 septic patients with DIC, \(p = 0.01 \)	[34]
		Age ≥ 18 years							
DAMPs	Calprotectin	Plasma	Sepsis = 77	56%	1.3 mg/l	–	–	↑ Calprotectin, sepsis versus trauma patients, \(p < 0.001 \)	[28]
		Trauma = 32	–	–	–	–	–	↑ Calprotectin at admission was ↑ in non-survivors than in survivors at day 30, \(p < 0.01 \)	
HMGB-1	Serum	Sepsis = 247	–	–	3.6 ng/ml	–	–	↑ HMGB-1 sepsis versus control, \(p < 0.001 \)	[75]
		Age ≥ 18 years	–	–	–	0.51 and 0.53	↑ HMGB-1, day 0 and 3, survivor ≠ non-survivor		
			–	–	–	–		HMGB-1 does not have predictive value for organ failure and outcome	
Endothelial cells and BBB markers			–	–	–	–	–		
Syndecan-1	Serum	Sepsis = 39	–	–	–	–	–	↑ Syndecan-1 in sepsis versus control, \(p < 0.0001 \)	[34]
		Control = 15	–	–	–	–	–	↑ Syndecan-1 non-survivors on days 1, 2, and 4	
		Age ≥ 18 years	–	–	189–1301 ng/ml	–	–	↑ Syndecan-1 versus DIC on day 1 and 2, \(p = 0.0004 \) and \(p = 0.0002, \) subsequently	
			–	–	–	0.54 and 0.59	↑ Syndecan-1 in septic patient with DIC, \(p < 0.01 \)		
VLA-3 (a3β1)	Neutrophil	SIRS = 9	–	–	–	–	–	↑ a3β1 (VLA-3, CD49c/CD29) on neutrophils of septic patients, \(p < 0.05 \)	[77]
		Sepsis = 15	–	–	–	–	–	↑ β1 (CD29), on neutrophils of septic patients, \(p < 0.05 \)	[78]
		Control = 7	–	–	–	–	–		
		Sepsis = 6	–	–	–	–	–		
		Control = 5	–	–	–	–	–		
Ang-1	Serum	Severe sepsis = 48	–	–	–	–	–	↑ Ang-1 severe sepsis compared with shock septic, \(p < 0.01 \)	[79]
		Septic shock = 54	–	–	3.81–16.1 ng/ml	–	–	↓ Ang-1/Tie-2 in non-survivors, \(p < 0.001 \)	
Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R²	AUC	Clinical relevance	References
-----------	-----------------	------------------------------	-----------------	-----------------	---------	------	-----	---	------------
Plasma	SIRS = 943	−	−	−	−	−	−	↑ Ang-1 was associated with a reduced risk of shock. OR: 0.77	[81]
Sepsis = 330		−	−	−	−	−	−	↑ Ang-1 was higher in survivor versus non-survivor, p < 0.001	
Shock = 216		−	−	−	5719 pg/ml	−	−		
Pneumonia = 169		Age = 55.1 ± 16.1	63.9%	−	−	−	−		
Others = 152		Age ≥ 18 years	−	−	−	−	−		
Plasma	SIRS = 943	−	−	−	−	−	−	↑ Ang-2 was associated with an increased risk of shock, OR: 1.63	[81]
Sepsis = 330		−	−	−	42,063 pg/ml	−	−	↑ Ang-2 non-survivor, p < 0.001	
Shock = 216		Pneumonia = 169							
Others = 152		Age = 55.1 ± 16.1	63.9%	−	−	−	−		
Ang-2 Serum	Severe sepsis = 48	−	−	−	−	−	−	↑ Ang-2 severe sepsis compared with shock, p < 0.02	[79]
Septic shock = 54		Age ≥ 18 years	−	−	−	−	−	↓ Ang-2/Ang-1 in non-survivors, p < 0.001	
Plasma	SIRS = 943	−	−	−	−	−	−		
Sepsis = 330		−	−	−	42,063 pg/ml	−	−		
Shock = 216		Pneumonia = 169							
Others = 152		Age = 55.1 ± 16.1	63.9%	−	−	−	−		
CLDN-5 Serum	Sepsis = 11	−	−	−	−	−	−	↑ CLDN-5 was not associated with MODS and the non-MODS group	[31]
Severe sepsis = 18		−	−	−	−	−	−	↑ CLDN-5 was not correlated with SOFA or APACHE score, p = 0.270, p = 0.542	
Septic shock = 22		Age ≥ 18 years	−	−	−	−	−	Did not predict mortality	[32]
Serum	Septic shock = 22	−	−	−	−	−	−		
Sepsis = 11		−	−	−	−	−	−		
Severe sepsis = 18		−	−	−	−	−	−		
OCLN Serum	Sepsis = 11	−	−	−	−	−	−	↑ OCLN in severe sepsis and septic shock than in sepsis, p < 0.05	[31]
Severe sepsis = 18		−	−	−	−	−	−	↑ OCLN in non-survivors compared with survivors, p < 0.01	
Septic shock = 22		−	−	−	−	−	−	↑ OCLN positively correlated with SOFA, p < 0.016	
Age ≥ 18 years		−	−	−	−	−	0.337	OCLN levels were not correlated with the APACHE-II, p < 0.085	
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R²	AUC	Clinical relevance	References
Brain tissue autopsies	Sepsis = 47	–	–	–	–	–	–	↓ OCLN, cerebellar endothelium damage; ↑ CRP ≥ 100 mg/l	[32]
	–	–	–	–	–	–	–	38% of patients (18/47) had no expression of OCLN in the BMVECs	
	–	–	–	–	–	–	–	34% of patients (16/47) had MOFs	
	–	–	–	–	–	–	–	74.5% of patients (35/47) had septic shock	
	–	–	–	–	–	–	–	The deceased with BBB damage had SOFA scores six versus 14, p = 0.04	
	–	–	–	–	–	–	–	–	
PAI-1 Plasma	Sepsis = 63	–	–	–	–	0.85	–	↑ PAI-1 to predict mortality, p < 0.05	[33]
	–	–	–	–	0.45	–	–	↑ PAI-1 correlated with the SOFA score at 24 h, p < 0.0001	
	–	–	–	–	0.58	–	–	↑ PAI-1 correlation with APACHE-II score, p < 0.0001	
	–	–	–	–	–	–	–	↑ Severe sepsis ↑ sFlt-1, p < 0.0001	
	–	–	–	–	–	–	–	↑ sICAM-1 correlated with SOFA score at 24 h, p < 0.03	
	–	–	–	–	0.15	–	–	↑ sICAM-1 correlated with APACHE-II score, p < 0.05	[79]
Serum Sepsis	–	–	15.5–49.9 ng/ml	–	–	–	–	↑ PAI-1 in patients with DIC, p = 0.016	[34]
Age ≥ 18 years	–	–	–	–	–	–	–	↑ sICAM-1, septic shock compared to severe sepsis, p < 0.01	
sICAM-1 Plasma	Sepsis = 63	–	–	–	–	–	–	↑ Severe sepsis ↑ sICAM-1, p < 0.001	[33]
	–	–	–	–	0.15	–	–	↑ sICAM-1 correlated with SOFA score at 24 h, p < 0.03	
	–	–	–	–	0.17	–	–	↑ sICAM-1 correlate with APACHE-II score, p < 0.05	
Serum sICAM-1	–	–	1.297–1787 ng/ml	–	–	–	–	↑ sICAM-1 in non-survivors, p < 0.001	[79]
Septic shock	Age = 60±17	–	–	–	–	–	–	↑ sICAM-1, predictor of 90 day-mortality, p < 0.001	
Serum sICAM-1	–	–	–	–	–	–	–	↑ sICAM-1, septic shock compared to severe sepsis, p < 0.01	
S100B Serum	Septic shock = 22	> 0.15 μg/l	–	–	–	–	–	↑ Delirium was present in 10/22 of the patients (45.5%)	[37]
	–	–	–	–	–	–	–	OR: 18.0, for risk of developing delirium S-100β > 0.15 μg/l	
	–	–	–	–	–	–	0.489	↑ S100 β correlate positively with and IL-6 p = 0.021	
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R²	AUC	Clinical relevance	References
Serum	Sepsis = 104	80.0% and 66.1 and	0.226 and	–	–			† 5100B cut-off of value for day 1 and 3	[36]
	Sepsis-associated encephalopathy = 59	84.44% and 69.49%	0.144 μg/l	–	–			† 5100B in sepsis-associated encephalopathy day 1 to day 3 compared with non-sepsis-associated encephalopathy, p < 0.001	[36]
	non-sepsis-associated encephalopathy = 45	–	–	–	0.728 and 0.819			† 5100B on days 1 and 3 to predict sepsis-associated encephalopathy	[36]
		84.44% and 69.49%	0.529 μg/l	–	0.731			† 5100B on day 3 to predict 180 day-mortality	[36]
Serum	Sepsis = 21	93.33% and 50.00%	0.266 μg/l	–	–			† 5100B did not correlate with GCS, EEG pattern, or SOFA scores	[108]
Age	= 68.7								
E-selectin	Plasma	Sepsis = 63	–	–	–	0.77		† Predict mortality	[33]
	Severe sepsis = 61	–	–	–	–			† Severe sepsis † sE-selectin, p < 0.001	
	Septic shock = 42	–	–	–	0.27			† sE-selectin correlated with SOFA score at 24 h, p < 0.001	
	Age = 60 ± 17	–	–	–	0.31			† sE-selectin correlated with APACHE-II score, p < 0.0001	
sFlt-1	Plasma	Sepsis = 63	–	–	–	0.85		† sFlt-1 to predict mortality, p < 0.05	[33]
	Severe sepsis = 61	–	–	–	0.36			† sFlt-1 associated with organ dysfunction	
	Septic shock = 42	–	–	–	0.63			† sFlt-1 correlation with † IL-6, p < 0.0001	
	Age = 60 ± 17	–	–	–	0.64			† sFlt-1 correlated with SOFA score at 24 h, p < 0.001	
		–	–	–	0.64			† sFlt-1 correlated with APACHE-II score, p < 0.001	
sVCAM-1	Plasma	Sepsis = 63	–	–	–	0.78		† Predict mortality	[33]
	Severe sepsis = 61	–	–	–	–			† Severe sepsis † sVCAM-1, p < 0.002	
	Septic shock = 42	–	–	–	0.45			† sE-selectin correlated with SOFA score at 24 h, p < 0.0001	
	Age = 60 ± 17	–	–	–	0.38			† sVCAM-1 correlated with APACHE-II score, p < 0.001	
Serum	Severe sepsis = 48	–	369–467 μg/l	–	–			† sVCAM in non-survivors, p < 0.001	[79]
	Septic shock = 54	–	–	–	–			† sVCAM, predictor of 90 day-mortality, p < 0.001	
	Age ≥ 18 years	–	–	–	–			† sVCAM, septic shock compared to severe sepsis, p < 0.01	
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References
Plasma	SIRS = 943	–	–	–	–	–	–	\uparrow s-VCAM was associated with an increased risk of shock. OR: 1.63	[81]
	Sepsis = 330	–	–	–	819 pg/ml	–	–	\uparrow sVCAM-1 non-survivor, $p < 0.001$	
	Shock = 216	–	–	–	–	–	–		
	Pneumonia = 169	–	–	–	–	–	–		
	Others = 152	–	–	–	–	–	–		
	Age = 55.1 ± 16.1	–	–	–	–	–	–		
ZO-1 Serum	Sepsis = 11	–	–	–	–	–	–	\uparrow ZO-1 in severe sepsis and septic shock compared to sepsis, $p < 0.05$	[31]
	Severe sepsis = 18	–	–	–	–	–	–	\uparrow ZO-1 in non-survivors compared with survivors, $p < 0.01$	
	Septic shock = 22	–	–	–	–	–	–	\uparrow ZO-1 in MODs group	
		–	–	–	–	0.502	0.380	\uparrow ZO-1 was positively correlated with SOFA and APACHE-II scores, $p < 0.001$ and $p < 0.006$	
ZO-1 Brain tissue	autopsies	Sepsis = 47	–	–	–	–	–	ZO-1 is absent from the endothelial cells in the cerebrum and endothelium	[32]
Citrulline	Plasma	Septic shock = 16	–	–	–	–	–	Citrulline was positively correlated with plasma arginine ($r^2 = 0.85$) and glutamine ($r^2 = 0.90$) concentrations in both groups, and significantly inversely correlated with CRP ($r^2 = 0.10$)	[109]
	(Survivors = 8)	–	–	–	–	–	–	\downarrow Citrulline in patients with digestive bacterial translocation	
	Age = 60 ± 16.5	–	–	–	–	–	–		
	Non-survivor = 8	–	–	–	–	–	–		
	Age = 62.9 ± 18.5	–	–	–	–	–	–		
Citrulline	Plasma	Sepsis/ARDS = 44	–	–	–	–	–	\downarrow ARDS compared to the no ARDS group, $p = 0.002$	[83]
	Sepsis/NO ARDS = 91	–	–	–	6 and 10.1 uM	–	–		
	Age = 55 ± 16	–	–	–	–	–	–	Citrulline levels were associated with ARDS	
I-FABP Serum	Sepsis = 30	–	–	–	27.46 and 36.95 μg/l	–	–	\uparrow I-FABP sepsis and septic shock group, $p < 0.01$	[40]
	Septic shock = 30	–	–	–	–	–	–		
	Control = 20	–	–	–	–	–	–		
Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References
-----------	--------	-------------	----------------	----------------	---------	-------	-----	-------------------	------------
Zonulin	Plasma	Sepsis = 25	–	–	6.61 ng/ml	–	–	▲ Zonulin sepsis compared to post-surgical and control groups, $p = 0.008$	[39]
		Post-surgical = 18	–	–	–	–	–		
		Control = 20	–	–	–	0.01, 0.46, 0.19, 0.10	–	▲ Zonulin, no correlation with CRP, APACHE-II, SAPSII, SOFA, $p = 0.997$, $p = 0.077$, $p = 0.491$, and $p = 0.671$, subsequently	
D-lactic acid	Serum	Sepsis = 30	–	–	15.32 and 27.95 mg/l	–	–	▲ D-lactic acid sepsis and septic shock groups, $p < 0.01$	[40]
Lnc-MALAT1	Plasma	Sepsis = 196	–	–	–	–	0.866	▲ Lnc-MALAT1/miR-125a axis in sepsis patients	[41]
		Age = 58.2 ± 11.2	–	–	–	–	–	▲ Lnc-MALAT1 relative expression in sepsis patients	
		Control = 196	–	–	–	–	–	Lnc-MALAT1/miRNA-125a axis discriminates sepsis patients from healthy controls and exhibits a positive association with general disease severity, organ injury, inflammation level, and mortality in sepsis patients	
		Age = 57.1 ± 12.1	–	–	–	0.674 (ARDS)	–	▲ Lnc-MALAT1 correlates with raised ARDS risk, disease severity, and increased mortality in septic patients	[42]
		Sepsis = 152	68.50%	65.90%	–	–	0.651	High mortality in sepsis patients	
		Age = 59.7 ± 11.2	38.30%	88.60%	–	–	–	Lnc-MALAT1 expression was positively correlated with inflammatory factor levels (CRP, PCT, TNF-α, IL-1β, IL-6, and IL-17) in septic patients	
		Plasm	Sepsis = 120	–	–	–	0.91	▲ Lnc-MALAT1 in septic patients, distinguishing patients with sepsis from control	[110]
		Control = 60	–	–	–	0.836	Septic shock patients compared to patients without septic shock		
		–	–	–	0.866	Non-survivors compared to surviving patients			
		–	–	–	–	▲ Lnc-MALAT1 expression was an independent risk factor for sepsis, septic shock, and poor prognosis			
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References
lnc-MEG3	Plasma	Sepsis = 219	–	–	–	0.887		↑ lnc-MEG3 expression predicting elevated sepsis risk	[43]
Control	= 219	–	–	–	–	0.934		Inc-MEG3/miR-21 axis predicting elevated sepsis risk	
Age	= 56.5 ± 10.3	–	–	–	–	0.801		miR-21 was predicting reduced sepsis risk	
			–	–	–	0.704		Inc-MEG3 predicting 28-day mortality risk	
			–	–	–	0.669		Inc-MEG3/miR-21 axis predicting 28-day mortality risk	
miRNA								↑ lnc-MEG3/miR-21 axis, while ↓ miR-21 expression was decreased in sepsis patients	
miR-125a,	Plasma	Sepsis = 120	–	–	–	0.557		Inc-MEG3 expression and Inc-MEG3/miR-21 axis positively correlated, whereas miR-21 expression negatively correlated with APACHE-II, SOFA, and inflammatory molecules in sepsis patients	[84]
miR-125b		Control = 120	–	–	–	0.658		↑ miR-125b in sepsis patients and can distinguish sepsis patients from controls	
59.1 ± 12.1		59.1 ± 12.1	–	–	–	–		Positive correlation between miR-125a and miR-125b in sepsis patients and controls	
			–	–	–	–		miR-125a was not correlated with APACHE-II or SOFA score, while miR-125b was positively associated with both scores	
			–	–	–	–		↓ miR-125b in survivors compared with non-survivors	
								↑ miR-125b, but not miR-125a, is correlated with ↑ disease severity, inflammation, and ↑ mortality in sepsis patients	
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References
Plasma	Sepsis = 126	– – – – – – – –	–	–	–	0.817	↓	miR-125a good predictive values for sepsis risk	[83]
Control	125	– – – – – –	–	–	–	0.843	↑	Inc-ANRIL/miR-125a axis for sepsis risk	
Age = 56.6 ± 13	– – – – – –	–	–	–	0.745	↓	miR-125a expression in deaths than those in survivors		
	– – – – – –	–	–	–	0.785	↑	Inc-ANRIL/miR-125a differentiating deaths from survivors		
	– – – – – –	–	–	–	–	–	Inc-ANRIL/miR-125a axis positively correlated, and miR-125a was negatively associated with disease severity and inflammation in sepsis patients		
Plasma	Sepsis = 150	– – – – – –	–	–	–	0.749 and 0.839	↑	miR-125a and miR-125b distinguish sepsis patients from controls	[111]
Age = 56.9 ± 10.3	– – – – – –	–	–	–	0.588	→	miR-125a to predict 28-day mortality risk		
Control	150	– – – – – –	–	–	–	0.699	→	miR-125b had a potential value in predicting elevated 28-day mortality risk	
Age = 55.1 ± 11.4	– – – – – –	–	–	–	–	→	miR-125b failed to predict the 28-day mortality risk in sepsis patients		
	– – – – – –	–	–	–	–	–	1. The predictive value of miR-125b for sepsis risk		
	– – – – – –	–	–	–	–	–	miR-125a and miR-125b relative expressions were positively associated with disease severity in sepsis patients		
Plasma	Sepsis = 196	– – – – – –	–	–	–	–	↑	Inc-MALAT1/miR-125a axis in sepsis patients, $p < 0.001$	[41]
Age = 58.2 ± 11.2	– – – – – –	–	–	–	0.931	↑	Inc-MALAT1/miRNA-125a axis discriminates sepsis patients from control		
Control	196	– – – – – –	–	–	–	0.866	↑	Inc-MALAT1 discriminates sepsis patients from control	
Age = 57.1 ± 12.1	– – – – – –	–	–	–	–	–			

Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	\(R^2 \)	AUC	Clinical relevance	References
Membrane receptors, cell proteins, and metabolites	CD64	Blood	Sepsis = 119	–	–	–	–	† nCD64 and SOFA score in the sepsis compared to control \(p < 0.05 \)	[46]
			Septic shock = 32	–	–	4.1, 9, and 2.2 MFI	–	† Sepsis and septic shock compared to control \(p < 0.002 \)	
			Control = 20	–	–	–	0.879	nCD64 in bacterial infection	
			–	–	–	–	0.888	† AUC of nCD64 combined with SOFA than that of any other parameter alone or in combination	
			–	–	–	0.85		CD64 for predicting death	
			–	–	–	0.916		Combination of nCD64 and SOFA score	
			–	–	4.1 versus 8.9 MFI	–		† nCD64 survivors versus non-survivors \(p < 0.001 \)	
Blood	CD68	Brain	Sepsis = 20	0.82, 0.67	0.67, 0.76, and 0.76	< 90; 40, < 3.01, and < 0.825	0.843, 0.824, and 0.804	† CD68 in the hippocampus (1.5 fold), putamen (2.2 fold), and cerebellum (2.5 fold) in patients with sepsis than control patients	[86]
			Age = 54.35 ± 17.97	± 17.97					
			Control = 20	–	–	–			
			Age = 51.55 ± 13.37	± 13.37					
			Septic shock = 16	–	–	–			
			Age = 8.9–71.7	–	–	–			
			Control = 15	–	–	–			
			Age = 65.2–87.4	–	–	–			
NFL	CSF and plasma	Sepsis = 20	1723.4, 1905.2	–	–			Day 1 – sepsis versus control \(p > 0.05 \)	[87]
			1275.1, 2208.0	–	–			Day 3 – sepsis versus control \(p > 0.05 \)	
			5309.6, 3701.3 pg/ml	–			Day 7 – sepsis versus control \(p > 0.05 \)		
			Age = 61.2 ± 24.7	–	–	–		† NFL in patient septic compared to control from day 1 \(p = 0.0063 \)	
			–	–	–	–		† NFL patients with sepsis-associated encephalopathy \(p = 0.011 \)	
			–	–	–	–		† NFL correlated with the severity of sepsis-associated encephalopathy \(p = 0.022 \)	
			–	–	–	–		† NFL at CSF in non-survivors compared to survivors \(p = 0.012 \)	
NFH	CSF and plasma	Sepsis = 20	17.6, 100.3	–	–			Day 1 – sepsis versus control \(p > 0.05 \)	[87]
			18.9, 163.1	–	–			Day 3 – sepsis versus control \(p > 0.05 \)	
			164.3, 519.9	–	–			Day 7 – sepsis versus control \(p = 0.016 \)	
			Age = 61.2 ± 24.7	–	–	ng/ml	–	† NFH from day 1 in septic patients \(p = 0.043 \)	
Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References
-----------	--------	-------------	----------------	----------------	---------	-------	------	-------------------	------------
NSE	Serum	Sepsis/ sepsis-associated encephalopathy = 48	–	–	24.87 and 15.49 ng/ml	–	–	† NSE in sepsis-associated encephalopathy group versus no-sepsis-associated encephalopathy group $p = 0.003$	[80]
		Age = 56 ± 16 Sepsis/ non-sepsis-associated encephalopathy = 64	–	–	24.15 ng/ml			Diagnostic of sepsis-associated encephalopathy	
		Age = 52 ± 17	82.80%	54.20%	–	–	0.664	† NSE, sepsis-survivors versus sepsis-non-survivors $p = 0.108$	
Plasma	Sepsis = 124	–	–	> 12.5 ug/l	–	–	23.3%, increased risk of 30-day mortality, $p = 0.006$, and a 29.3% increased risk of delirium in critically ill septic patients $p < 0.001$	[88]	
		Mean age = 52–71	–	–	–	–	† NSE is associated with mortality $p = 0.003$, and delirium in critically ill septic patients $p < 0.001$		
CSF and plasma	Sepsis/ sepsis-associated encephalopathy = 12	–	–	Eight versus 3.8 ng/ml	–	–	† CSF NSE in sepsis group compared to controls $p < 0.05$	[112]	
		Control = 21	–	–	–	–	‡ Plasma NSE sepsis group versus control group		
Presepsin	Blood	Sepsis = 33	90.70%	98.60%	407 pg/ml	–	0.954	† Presepsin in sepsis patients compared to SIRS group $p < 0.05$	[48]
		Severe sepsis = 24	–	–	–	–	† Presepsin and APACHE-II score in severe sepsis group than sepsis group $p < 0.05$		
		Septic shock = 15	–	–	–	–	† Presepsin and APACHE-II score in septic shock group compared to severe sepsis group $p < 0.05$		
		SIRS = 23	–	–	–	–	† Presepsin and APACHE-II score in septic shock group compared to severe sepsis group $p < 0.05$		
		Normal = 20	–	–	–	–	† Presepsin and APACHE-II score in septic shock group compared to severe sepsis group $p < 0.05$		
TREM-1	Serum	Severe sepsis = 34	–	–	129 pg/ml versus 105 pg/ml	–	–	† TREM-1 levels in septic shock compared to severe sepsis	[89]
		Septic shock = 53	–	–	–	–	† TREM-1 did not differentiate between septic shock and severe sepsis		
		Age = 2 mo to 16 years	56%	60%	116.47 pg/ml	–	0.62	Predict septic shock	
		52%	71%	116.47 pg/ml	–	0.63	Predict mortality		
		–	–	–	–	–	‡ TREM-1 did not differentiate between septic shock and severe sepsis		
Serum	SIRS = 38	73.30%	71.10%	≥ 133 pg/ml	–	–	sTREM-1 cut-off for sepsis	[113]	
		Sepsis = 52	–	–	–	–	† sTREM-1 in sepsis group $p = 0.001$		
		Age = 20 to 92	–	–	–	–	† sTREM-1 in the patients with positive blood culture $p = 0.002$		
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References
Plasma and leukocytes	Septic shock = 60 Post-operative = 30	100%	98.30%	30.0 pg/ml	–	–	–	↑ sTREM-1 plasma in septic shock compared to control and postoperative groups p < 0.05	[91]
Control = 30	–	–	–	–	–	–	–	↑ sTREM-1 compared with postoperative group p < 0.05	–
	–	–	–	–	–	–	0.955	↑ TREM-1 expression on human monocytes of a septic shock compared to control and postoperative groups p < 0.05	–
Peptide precursor of the hormone and hormone	MR-proADM Plasma	Sepsis/bacterial isolate = 39	78%	74.20%	≥ 1.5	–	0.82	↑ MR-proADM sepsis versus control p < 0.0001	[92]
	Sepsis w/bacterial isolate = 23	80%	89.36%	≥ 1.70	–	–	0.92	↑ MR-proADM septic shock versus control p < 0.0001	–
	Septic shock = 47	77.40%	59.60%	> 3.00	–	–	0.7	↑ MR-proADM septic shock versus sepsis p < 0.0001	–
Control = 50	–	–	–	–	–	–	–	↑ MR-proADM; non-survivor versus survivor p < 0.0001	–
Bio-ADM	Sepsis = 632	–	–	–	–	–	–	Median sepsis patients = 74 pg/mL; septic shock = 107 pg/mL, and 29 pg/mL in non-septic patients	[53]
	Septic shock = 267	–	–	–	–	–	–	Mortality in sepsis patients OR of 1.23	–
	Non-septic = 1235	–	–	–	–	–	–	↑ Dialysis; OR 1.97 in sepsis patients	–
	–	–	70 pg/mL	–	–	–	–	↑ bio-ADM ↑ Use of vasopressor, OR 1.33	–
	–	–	108 pg/mL	–	–	–	–	Survivors and non-survivors in sepsis	–
	–	–	–	–	–	–	–	Youden’s index derived threshold of performed better	–
	–	–	–	–	–	–	–	↑ bio-ADM non-survivors	–
PCT	Serum	Sepsis = 59	–	–	–	–	–	↑ PCT p < 0.0005	[66]
	Severe sepsis/septic shock = 71	–	–	0.67 versus 3.81	–	–	–	Survivor versus non-survivor at seven days	–
	Mean age = 80	–	–	0.48 versus 1.82 ng/mL	–	–	–	Survivor versus non-survivor at 30 days	–
	Serum	SIRS = 38	65.79%	67.33%	1.57 ng/ml	–	–	PCT cut-off for sepsis	[113]
	Sepsis = 52	–	–	–	–	–	–	↑ PCT in sepsis group, p = 0.01	–

Age = 20 to 92
Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References			
Serum	Sepsis = 79	Age = newborn to 12	–	–	–	–	↑	PCT concentrations in patients with sepsis and infection	[114]			
	Control = 21	Age = newborn to 10	–	–	–	–	–	↓ PCT concentrations with antibiotic treatment				
Blood	Sepsis = 119	Age = newborn to 10	–	–	17.1, 1.8, and 0.04 ng/ml	–	–	↑	PCT septic shock and sepsis compared to the control group $p < 0.001$	[46]		
	Septic shock = 32	Age = newborn to 10	–	–	1.8 and 9.2 ng/ml	–	–	↑	PCT levels in survivors versus non-survivors $p > 0.001$			
	Control = 20	Age = newborn to 10	–	–	–	–	–	–	–	–		
Blood	Sepsis = 33	Septic shock = 15	90.70%	98.60%	407 pg/ml	–	0.874	↑	PCT sepsis patients compared to SIRS group $p < 0.05$	[48]		
	Severe sepsis = 24	SIRS = 23	–	–	–	–	–	↑	PCT and APACHEII score in severe sepsis group compared to seps group $p < 0.05$			
	Septic shock = 15	Normal = 20	–	–	–	–	–	–	–	–		
Plasma	Sepsis and shock septic = 1089	Mean age = 62.1	–	–	–	–	–	–	–	–		
PCT-guidance n = 279	–	–	–	–	–	–	–	–	–	–		
Serum	No PCT-guidance n = 267	Age = 2 mo to 16 years	–	–	129 pg/ml versus 105 pg/ml	–	–	–	–	–	–	
NT-proBNP	Serum	Sepsis = 60	–	–	1.209 ng/l	–	–	↑	NT-proBNP level at 24 h after sepsis diagnosis	[55]		
	Severe sepsis = 89	Age = 59 ± 14.1	–	–	–	–	–	↑	NT-proBNP levels at 24 h after sepsis onset were associated with ↓ SPPB scores at 12 months $p < 0.05$, and ↓ handgrip strength at six and 12-month follow-up $p < 0.001$			
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R²	AUC	Clinical relevance	References
Plasma	Sepsis = 142				4 (2.6–8.8) versus 8.2 mmol/L (5.2–12.6)	-		↑ NT-proBNP levels in non-survivors compared with survivors p < 0.01. ↔ CRP did not change in survivors and non-survivors	[52]
	Septic shock = 947				-				
Neutrophil, cells, and related biomarkers									
Lactate	Plasma	Sepsis = 59			–	–		↑ Lactate p < 0.0005	[66]
	Severe sepsis/septic shock = 71				1.7 versus 3.4	–		Survivor versus non-survivor at seven days	
	Mean age = 80				1.6 versus 2.2	–		Survivor versus non-survivor at 30 days	
				–	mmol/L	0.79 and 0.77		Predictors of mortality at 7 and 30 days p = 0.001	
Serum	Non-sepsis-associated encephalopathy = 2513			–	–	–		↑ Lactate predicted 30-day mortality of patients with sepsis-associated encephalopathy, OR: 1.19 p < 0.0005	[93]
	Sepsis-associated encephalopathy = 2474			–	–	–			
Blood	Sepsis = 33		90.70%	98.60%	407 pg/ml	–	0.859 and 0.723	↑ Lactate and APACHE-II score in severe sepsis group compared to sepsis group p < 0.05	[48]
	Severe sepsis = 24				–	–		↑ APACHE-II score and lactate in septic shock group when compared with severe sepsis group p < 0.05	
				–	–	–			
Serum	Sepsis = 34				–	–		↑ Lactate did not differentiate septic shock from severe sepsis	[89]
	Septic shock = 53				–	–			
	Age = 2 mo to 16 years				–	–			
MPO	Plasma	Sepsis = 957			128.1 ng/ml	–	–	↑ MPO day 1 and progressively decreased until day 7	[94]
					–	–		↑ MPO increase on days on days 1, 2, and 7 in 90-day non-survivors p < 0.003, p = 0.03, and p = 0.001	
Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References
-----------	--------	-------------	----------------	----------------	---------	-------	-----	-------------------	------------
Septic shock $= 55$	–	–	–	–	–	–	–	↑ MPO-DNA and cf-DNA in patients with septic shock on day 1 $p < 0.01$	[95]
Control $= 13$	–	–	–	–	–	–	–	↑ MPO-DNA on days 3 and 7 of sepsis was associated with 28-day mortality $p < 0.01$	
Mean age $= 68$	–	–	–	0.303	–	0.434	–	↑ MPO-DNA on day 3 and 7 positive correlation with SOFA score $p = 0.04$ and $p = 0.03$, subsequently	
Resistin	Plasma	$d = 71\%$	–	–	–	192.9 ng/ml	–	↑ Resistin on day one and progressively decreased until day 7	[94]
Mean age $= 70$	–	–	–	–	–	–	–	↑ Resistin increase on days 1, 2, and 7 in 90-day non-survivors $p < 0.001$	
Serum	$d = 60\%$	Sepsis $= 50$	72%, 80%, and 100%	82%, 95%, and 100%	5.2, 6.1, and 7.5 ng/ml	–	–	↑ Resistin levels on day 1, 4, and 7	[115]
Patient without sepsis $= 22$	–	–	–	–	–	0.864 and 0.987, and 0.987	–	↑ Resistin levels on days 1, 4, and 7 were associated with sepsis	
Control $= 25$	Age ≤ 12	Serum	Sepsis $= 60$	–	–	36.45	–	↑ Resistin in sepsis/septic shock groups $p = 0.001$	[96]
Septic shock $= 42$	–	–	48.13 versus 31.58	–	–	–	↑ Resistin levels in non-survivors versus Survivors on day 1 and 7 $p < 0.001$ and $p < 0.001$		
Control $= 102$	–	–	46.20 versus 25.22	–	–	–	↑ Resistin septic shock versus sepsis on day 1 and 3 $p < 0.001$ and $p < 0.001$		
			40.8 versus 33.4	37.1 versus 27.4 µg/l					
Soluble receptors	sPD-L1	Serum	Sepsis $= 483$	–	–	0.16 ng/ml	–	↑ sPD-L1 immunosuppression phenotype, ↑ risk of hospital readmission and mortality, OR $= 8.26$	[22]
Mean age $= 60.5$	–	–	–	–	–	–	–	↑ sPD-L1, 45 (46.4%) at 3 months, 40 (44.9%) at 6 months, and 44 (49.4%) at 12 months	
$d = 54.9\%$	–	–	–	–	–	–	–	↑ sPD-L1 to predict 28-day mortality \geq APACHE-II and SOFA scores	

Table 2 (continued)
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R^2	AUC	Clinical relevance	References
Serum	Sepsis = 91	–	–	–	2.09 ng/ml	–	–	↑ sPD-L1 and sPD-1 in septic patients $p = 0.0001$	[68]
Control = 29	–	–	–	–	–	–	–	↑ sPD-L1 increased in non-survivors $p < 0.05$	
suPAR Serum	Sepsis = 59	–	–	–	–	0.71	–	↑ sPD-L1 level to predict 28-day mortality	
	Severe sepsis/septic shock = 71	–	–	–	6.9 versus 9.8	–	–	Survivor versus non-survivor at seven days	
	Mean age = 80	–	–	–	6.4 versus 9.3	–	–	Survivor versus non-survivor at 30 days	
	–	–	ng/ml	–	0.72 and 0.77	–	–	Predictors of mortality at 7 and 30 days $p = 0.006$	
Serum	Sepsis = 60	–	–	–	13	–	–	↑ suPAR in sepsis and septic shock	[96]
	Septic shock = 42	–	–	10.5 versus 14.1	–	–	–	↑ suPAR in septic shock compared with sepsis on day one but not on day 7 $p < 0.04$ and $p = 0.068$, subsequently	
Control = 102	–	–	11.3 versus 12.9 μg/l	–	–	–	–	–	
sTNFR-1 Plasma	SIRS = 943	–	–	–	7719 versus 18,197	–	–	↑ sTNFR-1 in non-survivor versus survivor $p < 0.001$	[81]
	Sepsis = 330	–	–	–	pg/ml	–	–	↑ sTNFR-1 sepsis compared to SIRS $p < 0.001	
Shock = 216	–	–	–	–	–	–	–	–	
Pneumonia = 169	–	–	–	–	–	–	–	–	
Others = 152	–	–	–	–	–	–	–	–	
Age = 55.1 ± 16.1	–	–	–	–	–	–	–	–	
♂ 63.9%	–	–	–	–	–	–	–	–	
Plasma	No delirium = 47	–	–	–	3.843 and 10,250 pg/ml	–	–	↑ sTNFR1 and sTNFR2 delirium cutoff $p = 0.005	[98]
Delirium = 31	–	–	–	–	–	–	–	↑ sTNFR1 and sTNFR2 in delirium group compared with non-delirium $p = 0.005$, and $p = 0.003$, subsequently	
	–	–	–	–	–	–	–	OR: 18 to sTNFR1, $p = 0.004$ and OR: 51 to STNFR2, $p = 0.006$	
Table 2 (continued)

Biomarker	Sample	Demographic	Specificity (%)	Sensitivity (%)	Cut-off	R²	AUC	Clinical relevance	References	
Lipoproteins										
LDL	Serum	Sepsis = 594	–	–	–	–	–			[99]
HDL	Serum	Sepsis = 63	–	–	–	–	–	↓	LDL in non-survivors on days 1 to 4	[100]
Plasma	Suspected sepsis = 200	0.690	0.716	30.9 mg/dl	–	0.749	MODS predictor			[101]
T-chol	Serum	Sepsis = 136	–	–	–	–	–	↓	T-chol associated with risk of death in septic patients p < 0.05	[102]

Ang-1 angiopoietin-1, Ang-2 angiopoietin-2, APACHE-II acute physiology and chronic health evaluation II, ARDS acute respiratory distress syndrome, AUC area under the curve, BBB blood–brain barrier, BMVEC brain microvascular endothelial cells, CD cluster of differentiation, CLDN-5 claudin-5, CRP C reactive protein, CSF cerebrospinal fluid, DAMPs damage-associated molecular patterns, Dic disseminated intravascular coagulation, EEG electroencephalography, GCS Glasgow coma scale, HDL high-density lipoprotein, HLA-DR human leukocyte antigen, HMGB1 high mobility group box 1, hsCRP high-sensitivity C reactive protein, I-FABP intestinal fatty acid binding protein, IL interleukin, LDL low-density lipoprotein, Inc-ANRIL long non-coding antisense non-coding RNA in the INK4 locus, Inc-MALAT1 long non-coding metastasis-associated lung adenocarcinoma transcript 1, Inc-MEG3 long non-coding RNA maternally expressed gene 3, IncRNA long non-coding RNA, MCP-1 monocyte chemoattractant protein-1, miR-125a micro RNA-125a, miR-125b micro RNA-125b, MODS multiple organ dysfunction syndrome, MPO myeloperoxidase, MR-proADM mid-regional pro adrenomedullin, NFL neurofilament light, NT proBNP N-terminal pro-brain natriuretic peptide, NfH neurofilament heavy, NT proBNP N-terminal pro-brain natriuretic peptide, OCLN occludin, OR odds ratio, PAI-1 plasminogen activator inhibitor 1, PCT procalcitonin, PTX-3 pentraxin-3, RNA ribonucleic acid, SuPAR soluble form of the urokinase plasminogen activator receptor, sICAM-1 soluble intercellular adhesion molecule 1, sTNFR1 soluble tumor necrosis factor receptor type 1, sTNFR2 soluble tumor necrosis factor receptor type 2, sTREM-1 soluble triggering receptor expressed on myeloid cells 1, suPAR soluble form of the urokinase plasminogen activator receptor, sVCAM-1 soluble vascular cell adhesion molecule 1, T-Chol total cholesterol, Tnf-α tumour necrosis factor alpha, TREM-1 triggering receptor expressed on myeloid cells-1, VLA-3/αβ1 integrin alpha 3 beta 1, ZO-1 zona-occluden 1 |
Conclusion

Despite significant advances in treating septic patients, this disease continues to be associated with high mortality rates and high long-term cognitive dysfunction. Extensive research in the area is being performed to validate biomarkers, facilitate sepsis diagnosis, and allow an early intervention that, although primarily supportive, can reduce the risk of death. Sepsis sometimes shows a hyperinflammatory response pattern and may be followed by an immunosuppressive phase, during which multiple organ dysfunction is present. A biomarker or a panel of biomarkers could be a new avenue to predict, identify, or provide new approaches to treat sepsis.

Acknowledgements

This work was supported by the Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), USA (T.B.), the Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC) (T.B., JSG, and FDP), Brazil; the Alzheimer’s Association and U.S. National Institute of Health/National Institute on Aging (NIH/NIA (T.B.).

Fig. 1 Sepsis, septic shock, and sepsis-associated encephalopathy biomarkers. The infection triggers a cascade of signaling pathways that activate several transcription factors and promote proinflammatory mediators such as acute-phase proteins, cytokines, chemokines, and antimicrobial peptides necessary to eliminate the invading pathogens. The unbalanced host immune response triggers vascular endothelial damage, increasing gut and BBB permeability, culminating in organ dysfunction. Ang-2 (angiopoietin-2), APP (acute phase proteins), aPPT (activated partial thromboplastin), AST (astocytes), AT (antithrombin), BBB (blood–brain barrier), C5aR (complement component 5a receptor), CD (cluster of differentiation), CD14-ST (soluble subtype of CD14), CRP (C reactive protein), DAMPs (damage-associated molecular patterns), GFAP (glial fibrillary acidic protein), HMGB-1 (high mobility group box 1), ICAM-1 (intercellular adhesion molecule 1), I-FABP (intestinal fatty acid binding protein), LBP (lipopolysaccharide binding protein), mHLA-DR (monocytic human leukocyte antigen DR), Mo (macrophage), NFL (neurofilament light), NSE (neuron specific enolase), NT-proBNP (N-terminal pro-brain natriuretic peptide), OCLN (occludin), OLG (oligodendrocyte), PAMPs (pathogen-associated molecular patterns), PCT (procalcitonin), PMNL (polymorphonuclear leukocytes), PT (prothrombin), PTX-3 (pentraxin-3), S100B (calcium-binding protein B), sFlt-1 (soluble fms-like tyrosine kinase 1), suPAR (soluble form of the urokinase plasminogen activator receptor), TNFR (tumor necrosis factor receptor type), TREM-1 (triggering receptor expressed on myeloid cells 1), VCAM-1 (vascular cell adhesion molecule 1), ZO-1 (zonula-occluden 1).

Authors’ contributions

Conceptualization: TB, MS, and FD-P; Writing—original draft: TB and JSG. Writing (review and editing): TB, JSG, MS, and FD-P. All authors read and approved the final manuscript.

Funding

The Alzheimer’s Association Grant number AARGDNTF-19-619645 and U.S. National Institute of Health/National Institute on Aging (NIH/NIA Grant (1RF1AG072491-01) (TB); MCTIC/CNPq/FNDCT/MS/SCTIE/Decit Nº 401263/2020-7 (FD-P)).

Availability of data and material

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.
References

1. Anna P, Singer M. Pathophysiology of sepsis. Curr Opin Anaesthesiol. 2021;34(2):77–84.
2. Chakraborty RK, Burns B. Systemic inflammatory response syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC., 2021.
3. Vincent JL, Martin GS, Levy MM. qSOFA does not replace SIRS in the definition of sepsis. Crit Care (Lond). 2016;20(1):210.
4. Yende S, Kellum JA, Talisva VB, Peck Palmer OM, Chang CH, Filbin MR, Shapiro NI, Hsu PC, Venkat A, LoVecchio F, et al. Long-term host immune response trajectories among hospitalized patients with sepsis. JAMA Netw Open. 2019;2(8):e198686.
5. Barichello T, Generoso JS, Dominguini D, Córneo E, Giridharan VV, Sattar M, Heckenberg SG, Brouwer MC, van de Beek D. Bacterial meningitis. Nat Rev Microbiol. 2013;39(3):229–46.
6. Kumar S, Ingle H, Prasad DV, Kumar H. Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol. 2013,39(3):229–46.
7. Heckenberg SG, Brouwer MC, van de Beek D. Pathogenesis of meningitis and immune response trajectories among hospitalized patients with sepsis. Crit Care Med. 2021. https://doi.org/10.1097/CCM.0000000000050307.
8. Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D. The blood-brain barrier dysfunction in sepsis. Tissue Barriers. 2021;9(1):1840912.
9. Zhao GJ, Li D, Zhao Q, Lian J, Hu TT, Hong GL, Yao YM, Lu ZQ. Prognostic value of plasma tight-junction proteins for sepsis in emergency department: an observational study. Shock. 2016;45(3):326–32.
10. Erikson K, Tuominen H, Vakkala M, Liisanantti J, Sarks T, Syrjälä H, Ala-Kokko T. Brain tight junction protein expression in sepsis in an autopsy series. Crit Care. 2020;24(1):385.
11. Assimakopoulos SF, Triantos C, Thomopoulos K, Fligou F, Maroulis I, Assimakopoulos SF, Triantos C, Thomopoulos K, Fligou F, Maroulis I. The role of innate immunity in sepsis. JAMA Netw Open. 2019;2(8):e198686.
12. Marangos M, Gogos CA. Gut-origin sepsis in the critically ill patient: a systematic review. Crit Care Med. 2021. https://doi.org/10.1097/CCM.0000000000050307.
13. Barichello T, Generoso JS, Collodel A, Petronilho F, Dal-Pizzol F. The blood-brain barrier dysfunction in sepsis. Tissue Barriers. 2021;9(1):1840912.
14. McFadyen JD, Zeller J, Pietersz GA, Eisenhardt SU, Peter K. C-Reactive protein and its structural isoforms: an evolutionary conserved marker and central player in inflammatory diseases and beyond. Subcell Biochem. 2020;94:499–520.
15. Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: time for reappraisal. Crit Care (Lond). 2020;24(1):287.
16. Yende S, Kellum JA, Talisva VB, Peck Palmer OM, Chang CH, Filbin MR, Shapiro NI, Hsu PC, Venkat A, LoVecchio F, et al. Long-term host immune response trajectories among hospitalized patients with sepsis. JAMA Netw Open. 2019;2(8):e198686.
17. Caioni P, Masson S, Mauri T, Botta Z, Leone R, Magnoli M, Barlera S, Mamprin F, Fedele A, Mantovani A, et al. Pentaxin 3 in patients with severe sepsis or shock: the ALBIOS trial. Eur J Clin Invest. 2017;47(1):73–83.
18. Song J, Moon S, Park DW, Cho HJ, Kim JY, Park J, Cha JH. Biomarker combination and SOFA score for the prediction of mortality in sepsis and septic shock: a prospective observational study according to the Sepsis-3 definitions. Medicine. 2020;99(22):e20495.
19. Younger JG, Bracho DQ, Chung-Esaki HM, Lee M, Rana GK, Sen A, Jones AE. Complement activation in emergency department patients with severe sepsis. Acad Emerg Med Off J Soc Acad Emerg Med. 2010;17(4):353–9.
20. Abe T, Kubo K, Izumo S, Shimaizu S, Goan A, Tanaka T, Koroki T, Saito K, Kawana R, Ochiai H. Complement activation in human sepsis is related to sepsis-induced disseminated intravascular coagulation. Shock (Augusta, Ga). 2020;54(3):198–204.
21. Matsumoto H, Ogura H, Shimaizu K, Ikeda M, Hirose T, Matsuura H, Sang S, Takahashi K, Tanaka T, Shimaizu T. The clinical importance of a cytokine network in the acute phase of sepsis. Sci Rep. 2018;8(1):13995.
22. Larsson A, Tydén J, Johansson L, Lipshey CE, Bergquist M, Kutima K, Madric-Havelka A. Calprotectin is superior to procalcin as a sepsis marker and predictor of 30-day mortality in intensive care patients. Scand J Clin Lab Invest. 2020;80(2):156–61.
23. Matsuura S, Komaru Y, Miyamoto Y, Yoshida T, Yoshimoto K, Hamasaki Y, Nangaku M, Doi K. Different biomarker kinetics in critically ill patients with high lactate levels. Diagnostics (Basel, Switzerland). 2020;10(7):454.
24. Barichello T, Generoso JS, Collodel A, Petronilho F, Dal-Pizzol F. The blood-brain barrier dysfunction in sepsis. Tissue Barriers. 2021;9(1):1840912.
25. Zhao GJ, Li D, Zhao Q, Lian J, Hu TT, Hong GL, Yao YM, Lu ZQ. Prognostic value of plasma tight-junction proteins for sepsis in emergency department: an observational study. Shock. 2016;45(3):326–32.
26. Erikson K, Tuominen H, Vakkala M, Liisanantti J, Sarks T, Syrjälä H, Ala-Kokko T. Brain tight junction protein expression in sepsis in an autopsy series. Crit Care. 2020;24(1):385.
27. Skibsted S, Jones AE, Puskarich MA, Arnold R, Sherwin R, Trzcinski S, Schuetz P, Aird WC, Shapiro NI. Biomarkers of endothelial cell activation in early sepsis. Shock. 2013;39(5):427–32.
28. Ikeda M, Matsumoto H, Ogura H, Hirose T, Shimaizu K, Yamamoto K, Maruyama I, Shimaizu T. Circulating syndecan-1 predicts the development of disseminated intravascular coagulation in patients with sepsis. J Crit Care. 2018;43:48–53.
29. Bloomfield SM, McKinney J, Smith L, Brisman J. Reliability of S100B in predicting severity of central nervous system injury. Neurocrit Care. 2007;6(2):121–38.
30. Wu L, Feng Q, Ai ML, Deng SY, Liu ZY, Huang L, Ai YH, Zhang L. The dynamic change of serum S100B levels from day 1 to day 3 is more associated with sepsis-associated encephalopathy. Sci Rep. 2020;10(1):7718.
31. Erikson K, Ala-Kokko TI, Koskenkari J, Liisanantti J, Sarks T, Syrjälä H, Ala-Kokko T. Brain tight junction protein expression in sepsis in an autopsy series. Crit Care. 2020;24(1):385.
32. Assimakopoulos SF, Triantos C, Thomopoulos K, Kflpou F, Maroulis I, Marangos M, Gogos CA. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018;46(6):751–60.
33. Klaus DA, Motal MC, Burger-Klepp U, Marschalek C, Schmidt EM, Lehberz-Elchinger D, Krenn CG, Roth GA. Increased plasma zonulin in patients with sepsis. Biochem Med (Zagreb). 2013;23(1):107–11.
34. Zhang K, Liu D, Wang Y, Yan J, Yang X. Clinical significance on serum intestinal fatty acid binding protein and D-lactic acid levels in early intestinal injury of patients with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Xue. 2019;31(5):545–50.
41. Liu W, Geng F, Yu L. Long non-coding RNA MALAT1/microRNA 125a axis presents excellent value in discriminating sepsis patients and exhibits positive association with general disease severity, organ injury, inflammation level, and mortality in sepsis patients. J Clin Lab Anal. 2020;34(6):e23222.

42. Huang X, Zhao M. High expression of long non-coding RNA MALAT1 correlates with raised acute respiratory distress syndrome risk, disease severity, and increased mortality in septic patients. Int J Clin Exp Pathol. 2019;12(5):1877–87.

43. Na L, Ding H, Xing E, Gao J, Liu B, Wang H, Yu J, Yu C. Lnc-MEG3 acts as a potential biomarker for predicting increased disease risk, systemic inflammation, disease severity, and poor prognosis of sepsis via interacting with miR-21. J Clin Lab Anal. 2020;30(4):e23123.

44. Zhao D, Li S, Cui J, Wang L, Ma X, Li Y. Plasma miR-125a and miR-125b in sepsis: correlation with disease risk, inflammation, severity, and prognosis. J Clin Lab Anal. 2020;30(4):e23036.

45. Mahmoodpoor A, Movassaghpour A, Talebi M, Shadvar K, Soleimanpour H. Value of flow cytometry (HLA-DR, CD14, CD25, CD123, CD16) in prediction of prognosis in critically ill septic patients admitted to ICU: a pilot study. J Clin Anesth. 2020;61:109646.

46. Yin WP, Li JB, Zheng XF, An L, Shao H, Li CS. Effect of neutrophil CD64 expression for diagnosing sepsis in emergency department. World J Emerg Med. 2020;11(2):79–86.

47. Kondo Y, Umemura Y, Hayashida K, Hara Y, Aihara M, Yamakawa K. Diagnostic value of procalcitonin and presepsin for sepsis in critically ill adult patients: a systematic review and meta-analysis. J Intensive Care. 2019;7:22.

48. Lu B, Zhang Y, Li C, Liu C, Yao Y, Su M, Shou S. The utility of presepsin in diagnosis and risk stratification for the emergency patients with sepsis. Am J Emerg Med. 2018;36(8):1341–5.

49. Şen S, Kamil F, İsgüder R, Yazıcı P, Bal Z, Devrim İ, Bayram SN, Karapınar B, Andrés C, Andaluz-Ojeda D, Cicuendez R, Nogales L, Martín S, Martin-Martín MM, Kluge S, Nierhaus A, Jaschinski U, et al. The use of mid-regional pro-adrenomedullin to detect specific types of organ failure in critically ill patients. Eur J Clin Invest. 2018;48(6):715–23.

50. Schuetz P, Hausfater P, Amin D, Amin A, Haubitz S, Faessler L, Kutz A, Elke G, Bloos F, Wilson DC, Brunkhorst FM, Briegel J, Reinhart K, Loeffler O, Lundberg OHM, Lengquist M, Spångfors M, Annborn M, Bergmann M, Honore PM, Redant S, De Bels D. Reliability of biomarkers of sepsis diagnosis and risk stratification for the emergency patients with sepsis. Crit Care. 2018;22(1):79.

51. Borggrefe M, Bertsch T, et al. Diagnostic value of Pentraxin-3 in patients with severe sepsis and septic shock—a secondary analysis of a large randomised controlled trial. Crit Care (Lond, Engl). 2018;22(1):79.

52. Casagrandi J, Vendramin C, Callegari T, Vidali M, Calabresi A, Ferrandu G, Cervellin G, Cavazza M, Lippi G, Zanotti I, et al. Usefulness of suPAR in the risk stratification of patients with sepsis admitted to the emergency department. Intern Emerg Med. 2015;10(6):725–30.

53. Sharma A, Ray S, Mamidipalli R, Kakar A, Chugh P, Jain R, Ghulaut MS, Choudhury S. A comparative study of the diagnostic and prognostic utility of soluble urokinase-type plasminogen activator receptor and procalcitonin in patients with sepsis and systemic inflammation response syndrome. Indian J Crit Care Med. 2019;23(1):400.

54. Liu M, Zhang X, Chen H, Wang G, Zhang J, Dong P, Liu Y, An S, Wang L. Serum sPd-L1, upregulated in sepsis, may reflect disease severity and clinical outcomes in septic patients. Scand J Immunol. 2017;85(1):66–72.

55. Yeh CF, Wu CC, Liu SH, Chen KP. Comparison of the accuracy of neutrophil CD64, procalcitonin, and C-reactive protein for sepsis identification: a systematic review and meta-analysis. Ann Intensive Care. 2019;9(1):3.

56. Zhang Y, Feng Q, Zhou S, Chen H. Downregulation of serum survivin correlates with increased inflammation, enhanced disease severity and worse prognosis in sepsis patients. Medicine. 2020;99(28):200000000020722.

57. Hoppene steadt D, Tsunzuta K, Hirman J, Kaul I, Osawa Y, Fareed J. Dysregulation of inflammatory markers in severe sepsis and septic shock: evidence for synergy with chronic inflammatory disorders. Crit Care. 2019;23(1):207–07.

58. Barichello et al. Critical Care. 2022;26:14 Page 29 of 31

59. Liu M, Behnes M, Pauly D, Lepioz D, Barre M, Becker T, Lang S, Akin I, Borggreve M, Bertsch T, et al. Diagnostic value of pentraxin-3 in patients with sepsis and septic shock in accordance with latest sepsis-3 definitions. BMC Infect Dis. 2017;17(1):554.

60. Tian R, Wang X, Pan T, Li R, Wang J, Liu Z, Chen E, Mao E, Tan R, Chen Y, et al. Plasma PTX3, MCP1 and Ang2 are early biomarkers to evaluate the severity of sepsis and septic shock. Scand J Immunol. 2019;90(6):7.

61. Barre M, Behnes M, Hamed S, Pauly D, Lepioz D, Lang S, Akin I, Borggreve M, Bertsch T, Hoffmann U. Revisiting the prognostic value of monocyte chemotactic protein 1 and interleukin-6 in the sepsis-3 era. J Crit Care. 2018;43:21–8.

62. Karlsson S, Pettila V, Tenhunen J, Laru-Sompa R, Hyninen M, Ruokonen E. HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis. Intensive Care Med. 2008;34(6):1046–53.

63. Karakke E, Adami ME, Lada M, Gkavogianni T, Koutelidakis IM, Bauer M, Giamaellos-Bourboulis EJ, Tsangaris I. Late peaks of hmgbl and sepsis outcome: evidence for synergy with chronic inflammatory disorders. Shock. 2019;52(3):334–9.

64. Lerman YV, Lim K, Hyun YM, Falkner KL, Yang H, Pietropaoli AP, Sonnenberg A, Sarangi PP, Kim M. Sepsis lethality via exacerbated tissue...
infiltration and TLR-induced cytokine production by neutrophils is integrin αβ1-dependent. Blood. 2014;124(24):3515–23.

78. Sarangi PP, Hyun YM, Lerman YY, Pietropaoli AP, Kim M. Role of β1 integrin in tissue homing of neutrophils during sepsis. Shock (Augusta, Ga). 2012;38(3):281–91.

79. Fang Y, Li C, Shao R, Yu H, Zhang Q. The role of biomarkers of endothelial activation in predicting morbidity and mortality in patients with severe sepsis and septic shock in intensive care: a prospective observational study. Thromb Res. 2018;171:149–54.

80. Yao B, Zhang LN, Ai YH, Liu ZY, Huang L. Serum S100B is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study. NeuroRx. 2014;11(4):1263–9.

81. Mikacenic C, Hahn WO, Price BL, Harju-Baker S, Katz R, Kain KC, Himmelhart J, Liles WC, Wurfel MM. Biomarkers of endothelial activation are associated with poor outcome in critical illness. PLoS ONE. 2015;10(10):e0141251.

82. Crenn P, Neveux N, Chevret S, Jaffray P, Cynober L, Melchior JC, Ware LB, Magarik JA, Wickersham N, Cunningham G, Rice TW, Christman DJ, van de Beek D, van Gool WA. Systemic infection and microglia infiltration and TLR-induced cytokine production by neutrophils is integrin αβ1-dependent. Blood. 2014;124(24):3515–23.

83. Ware LB, Magarik JA, Wickersham N, Cunningham G, Rice TW, Christman BW, Wheeler AP, Bernard GR, Summar ML. Low plasma cytokine levels are associated with acute respiratory distress syndrome in patients with severe sepsis. Crit Care. 2013;17(1):1–8.

84. Zhu X. MiR-125b but not miR-125a is upregulated and exhibits a trend to correlate with enhanced disease severity, inflammation, and increased mortality in sepsis patients. J Clin Lab Anal. 2020;34(3):e23094.

85. Cretinise M, Valley KR, Russell JA, Brunhun LR, Gengra K, Boyd JH. Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis. J Crit Care. 2017;38:289–94.

86. Şen S, Kamit F, İşgüder R, Yazıcı P, Bal Z, Devrim İ, Bayram SN, Karapınar B, Aksaray S, Alagoz P, Inan A, Cevan S, Ozgultekin A. Diagnostic value of neurofilament levels in patients with sepsis-associated encephalopathy—a prospective, pilot observational study. Clin Istanb. 2016;3(3):175–82.

87. Bellino A, Crotti LA, Zanini GD, Armaganidis A, Dalamaga M. Circulating eNampt and Resistin as a proinflammatory duet predicting independently mortality in patients with severe sepsis: correlation with disease risk, inflammation, severity, and prognosis of patients with sepsis. Medicine. 2020;99(40):018–2109.

88. Lahmann A, Richter G, Reuter DA, Nöldge-Schomburg G, et al. Diagnostic value of neurofilament levels in patients with sepsis-associated encephalopathy—a prospective, pilot observational study. Clin Istanb. 2016;3(3):175–82.

89. Melfarb J, Liles WC, Wurfel MM. Biomarkers of endothelial activation in predicting morbidity and mortality in patients with severe sepsis and septic shock in intensive care: a prospective observational study. Thromb Res. 2018;171:149–54.

90. Şen S, Kamit F, İşgüder R, Yazıcı P, Bal Z, Devrim İ, Bayram SN, Karapınar B, Aksaray S, Alagoz P, Inan A, Cevan S, Ozgultekin A. Diagnostic value of neurofilament levels in patients with sepsis-associated encephalopathy—a prospective, pilot observational study. PLoS ONE. 2019;14(11):e0221184.

91. Anderson BJ, Reilly JP, Shashaty MGS, Palakshappa JA, Wysoczanski A, Dunn TG, Kazi A, Tommasini A, Mikkelsen ME, Schweickert WD, et al. Admission plasma levels of the neuronal injury marker neuron-specific enolase are associated with mortality and delirium in sepsis. J Crit Care. 2013;28(5):816–23.

92. Espin P, Gendrel D, Raymond J, Guilbaud J, Bohuon C. High serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Crit Care Med. 2005;33(8):1688–93.

93. Knaus WA, Zimmerman JE,といと a, Wagner DP, Draper EA, O’Grady GM. APACHE II: a severity of illness classification system. Crit Care Med. 1985;13(11):818–30.

94. Brenner T, Uhlle F, Fleming T, Wieland M, Schmoch T, Schmidt F, Schmidt K, Živkovic AR, Bruckner T, Weigand MA, et al. Soluble TREM-1 as a diagnostic and prognostic biomarker in patients with sepsis-associated encephalopathy—a retrospective cohort study. J Intensive Care. 2020;8(4):52.00–00459.

95. Bonaventura A, Carbone F, Vecchii A, Meessen J, Ferraris S, Beck E, Keim R, Rineliti S, Elia E, Ferrada D, et al. The role of resistin and myeloperoxidase in severe sepsis and septic shock: Results from the ALBOS trial. Eur J Clin Invest. 2020;50(10):13.
115. Saboktakin L, Bilan N, Ghalehgolab Behbahan A, Poorebrahim S. Relationship between resistin levels and sepsis among children under 12 years of age: a case control study. Front Pediatr. 2019;7:355.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.