FOREGROUND CONTAMINATION IN Lyα INTENSITY MAPPING DURING THE EPOCH OF REIONIZATION

YAN GONG1, MARTA SILVA2,3, ASANTHA COORAY4, AND MARIO G. SANTOS2,3,4
1 Department of Physics & Astronomy, University of California, Irvine, CA 92697, USA
2 CENTRA, Instituto Superior Tecnico, Technical University of Lisbon, Lisboa 1049-001, Portugal
3 Department of Physics, University of Western Cape, Cape Town 7535, South Africa
4 SKA SA, 3rd Floor, The Park, Park Road, Pinelands 7405, South Africa
Received 2013 December 6; accepted 2014 February 28; published 2014 March 27

ABSTRACT

The intensity mapping of Lyα emission during the epoch of reionization will be contaminated by foreground emission lines from lower redshifts. We calculate the mean intensity and the power spectrum of Lyα emission at \(z \sim 7 \) and estimate the uncertainties according to the relevant astrophysical processes. We find that the low-redshift emission lines from 6563 Å Hα, 5007 Å [O iii], and 3727 Å [O ii] will be strong contaminants on the observed Lyα power spectrum. We make use of both the star formation rate and luminosity functions to estimate the mean intensity and power spectra of the three foreground lines at \(z \sim 0.5 \) for Hα, \(z \sim 0.9 \) for [O iii], and \(z \sim 1.6 \) for [O ii], as they will contaminate the Lyα emission at \(z \sim 7 \). The [O ii] line is found to be the strongest. We analyze the masking of the bright survey pixels with a foreground line above some line intensity threshold as a way to reduce the contamination in an intensity mapping survey. We find that the foreground contamination can be neglected if we remove pixels with fluxes above \(1.4 \times 10^{-20} \) W m\(^{-2}\).

Key words: cosmology: theory – diffuse radiation – intergalactic medium – large-scale structure of universe

Online-only material: color figures

1. INTRODUCTION

The epoch of reionization (EoR) is an important and largely unconstrained stage in the evolution of our universe (Barkana & Loeb 2001). The first stars and galaxies can start ionization of the neutral intergalactic medium (IGM) as early as \(z \sim 20 \) or even before while completion of the ionization process should end much later, at a redshift as low as \(z \sim 6 \). This is suggested by the observations of the absorption of the Lyα emission from quasars by the neutral hydrogen in the IGM (Fan et al. 2006), i.e., the Gunn-Peterson effect (Gunn & Peterson 1965). Most of the fundamental stones of this era are still poorly known, such as the history, the formation, and the evolution of the stars and galaxies and the formation of large-scale structure (LSS).

One method to study the EoR is through the 21 cm emission of neutral hydrogen in the IGM (Furlanetto et al. 2006), which provides a direct method to study the ionization history of the IGM. However, the 21 cm measurement cannot directly trace the galaxy distribution or reflect the star formation. It also suffers from foreground contamination at several orders of magnitude higher than the cosmological 21 cm signal. These disadvantages restrict the 21 cm measurements to explore the LSS and the processes of the formation and evolution for stars and galaxies during the EoR.

A complementary measurement to the 21 cm observations is the intensity mapping of the emission lines. This approach is more closely connected to the galaxy properties. The emission lines generated from the stars and molecular or atomic gas in galaxies are more sensible probes of the metallicity and star formation of galaxies. They trace the galaxy distribution at large scales, providing information about the LSS. Several emission lines from galaxies have been proposed to study the EoR (Visbal & Loeb 2010), e.g., CO rotational lines (Righi et al. 2008; Gong et al. 2011; Carilli 2011; Lidz et al. 2011), [C ii] fine structure line (Gong et al. 2012), and the Lyα line (Silva et al. 2013; Pullen et al. 2013). Even molecular hydrogen H\(_2\) in the pre-reionization era can be used to study the formation of the first stars and galaxies (Gong et al. 2013).

The intensity mapping technique is a powerful tool for exploring large areas at poor spatial or angular resolution. It does not attempt to resolve individual sources, but it measures the cumulative emission from all sources. Thus, intensity mapping of emission lines from galaxies provides a suitable way to study the statistical properties of galaxies during the EoR in an acceptable survey timescale. However, intensity maps are easily contaminated by other emission lines from lower redshifts in the only observed frequency range. Since intensity mapping cannot resolve individual sources, it is important to independently identify and eliminate the contamination from the foreground lines.

In this work, we study the foreground contamination on Lyα intensity maps of the EoR. We first compute the Lyα emission from both galaxies and the IGM due to recombination and collision processes. We calculate the Lyα mean intensity and power spectrum at \(z \sim 7 \). We find the 6563 Å Hα, 5007 Å [O iii], and 3727 Å [O ii] are the strongest contamination on the Lyα observations. We estimate the mean intensities of these three lines using the star formation rate (SFR) derived from observations and simulations. Also, for comparison, we make use of luminosity functions (LFs) from different observations to calculate the mean intensities and derive their anisotropy power spectra. We then discuss ways to remove contamination by masking the bright pixels of the intensity maps.

The paper is organized as follows: in the next section, we estimate the Lyα emission from both galaxies and the IGM and calculate the mean intensity and power spectrum during the EoR. In Section 3, we explore the intensity and power spectra of the foreground emission lines of the Hα, [O ii], and [O iii] around \(z = 0.5, 0.9, \) and 1.6 that can contaminate the Lyα emission at \(z \sim 7 \), and we derive their mean intensity and power spectra.
In Section 4, we discuss the projection effect of the foreground power spectra and investigate the methods of removing the foreground contamination from low-redshift emission lines. We summarize our results in Section 5. We assume the flat ΛCDM with Ωm = 0.27, Ωb = 0.046, and h = 0.71 for the calculation throughout the paper (Komatsu et al. 2011).

2. THE Lyα INTENSITY AND ANISOTROPY POWER SPECTRUM DURING THE EoR

In this section, we estimate the mean intensity and power spectrum of the Lyα emission during the EoR. The processes that originate Lyα in galaxies and in the IGM are mainly recombinations and collisions. The other processes, e.g., gas cooling by the falling of the IGM gas into the potential wells of the dark matter, and continuum emission by stellar, free–free, free–bound, and two-photon emission, can be safely neglected according to previous studies (Cooray et al. 2012; Silva et al. 2013).

2.1. The Lyα Mean Intensity

Following Silva et al. (2013), we estimate the luminosity of the Lyα emission from galaxies by the recombination and collision processes as

\[L_{\text{rec}}^\text{gal}(M, z) = 1.55 \times 10^{32} f_{\text{Lyα}}(z) \left[1 - f_{\text{esc}}(M, z) \right] \times \frac{\text{SFR}(M, z)}{M_\odot \text{yr}^{-1}} \left(\text{erg s}^{-1} \right), \]

(1)

\[L_{\text{coll}}^\text{gal}(M, z) = 4.03 \times 10^{41} f_{\text{Lyα}}(z) \left[1 - f_{\text{esc}}(M, z) \right] \times \frac{\text{SFR}(M, z)}{M_\odot \text{yr}^{-1}} \left(\text{erg s}^{-1} \right), \]

(2)

respectively.5 Here the \(f_{\text{Lyα}} = 10^{-3} \times C_{\text{dust}}(1+z)^{3} \) is the fraction of the Lyα photons, which are not absorbed by the dust in the galaxy, where \(C_{\text{dust}} = 3.34 \) and \(\xi = 2.57 \) (Hayes et al. 2011). Note that this fitting formula is mainly derived from low-redshift sources and extrapolated to high redshifts (\(z > 6 \)). The \(f_{\text{Lyα}} \) can be much lower at \(z \sim 7 \) (e.g., Stark et al. 2010, 2011). The \(f_{\text{esc}} = \exp[-\alpha(z)M^{\beta c}] \) is the escape fraction of the ionizing photons, where \(M \) is the halo mass, and \(\alpha = 5.18 \times 10^{-3} \) and \(\beta = 0.244 \) (Razoumov & Sommer-Larsen 2010; Silva et al. 2013). The SFR\((M, z) \) is the star formation rate, which is parameterized as

\[\text{SFR}(M, z = 7) = 1.6 \times 10^{-26} M^a \left(1 + \frac{M}{c_1} \right)^b \times \left(1 + \frac{M}{c_2} \right)^d \left(1 + \frac{M}{c_3} \right)^e, \]

(3)

where \(a = 2.59, b = -0.62, c_1 = 8 \times 10^8 M_\odot, c_2 = 7 \times 10^9 M_\odot, c_3 = 10^{11} M_\odot, d = 0.4, \) and \(e = -2.25 \). This SFR parameterization was derived to fit the properties of the simulated galaxies catalogs from De Lucia & Blaizot (2007) and Guo et al. (2011), and it is available at \(z = 7 \) in Silva et al. (2013). Then the integrated Lyα mean intensity from the individual galaxies is given by

\[\bar{I}_{\text{gal}}(z) = \int_{M_{\text{min}}}^{M_{\text{max}}} \frac{dn}{dM} \frac{L_{\text{gal}}(M, z)}{4\pi D_{\text{l}}^2} \rho(z) D^2_{\lambda}, \]

(4)

where \(L_{\text{gal}} = L_{\text{rec}}^\text{gal} + L_{\text{coll}}^\text{gal} \) is the total luminosity of Lyα emission from galaxies, \(dn/dM \) is the halo mass function (Sheth & Tormen 1999), and \(D_{\text{l}} \) and \(D_{\lambda} \) are the luminosity and comoving angular diameter distance, respectively. The factor \(\rho(z) = dr/dv = \lambda_\text{Lyα}(1+z)^2/H(z) \), where \(r(z) \) is the comoving distance at \(z, \lambda_\text{Lyα} = 1216 \text{ Å} \) is the Lyα wavelength in the rest frame, and \(H(z) \) is the Hubble parameter. We take \(M_{\text{min}} = 10^8 h^{-1} M_\odot \) and \(M_{\text{max}} = 10^{13} h^{-1} M_\odot \), which denote the mass range of the halos that host the galaxies with the Lyα emission in this work.

For the Lyα emission from the IGM, we use the luminosity density to estimate the mean intensity,

\[\bar{I}_{\text{IGM}} = \frac{\rho_{\text{Lyα}}(z)}{4\pi D_{\text{l}}^2} \rho(z) D^2_{\lambda}, \]

(5)

where \(\rho_{\text{Lyα}} = \rho_{\text{rec}} + \rho_{\text{coll}} \) is the Lyα luminosity density for the IGM in erg s\(^{-1}\) cm\(^{-3}\). The \(\rho_{\text{rec}} \) and \(\rho_{\text{coll}} \) are the luminosity densities from recombination and collision processes, respectively. The \(\rho_{\text{rec}} \) can be estimated by \(\rho_{\text{rec}} = \epsilon_{\text{Lyα}} \lambda_{\text{Lyα}} \rho_{\text{rec}} \), where \(\epsilon_{\text{Lyα}} \) is the Lyα recombination emission rate per cm\(^3\), which is given by

\[\epsilon_{\text{Lyα}} = f_{\text{Lyα}}^\text{rec} \rho_{\text{hII}} \alpha_{\text{HII}}^\text{rec}. \]

(6)

The \(n_e \) and \(n_{\text{HII}} \) are the number density of the electron and H\(\text{II} \). Here we have \(n_e n_{\text{HII}} = C_{\text{IGM}}(z) n_{\text{HII}} n_{\text{HII}}(z) \), where \(n_{\text{HII}}(z) \) and \(n_{\text{HII}}(z) \) are the mean number density of the electron and H\(\text{II} \) at \(z \), which are dependent on the reionization fraction \(x \), during the EoR. The \(C_{\text{IGM}}(z) = (n^2)/(n)^2 \) is the clumping factor of the IGM at \(z \), which can be set by \(C_{\text{IGM}} = 6 at z = 7 \) (Pawlik et al. 2009; Silva et al. 2013). The \(\alpha_{\text{HII}}^\text{rec} \) is the hydrogen case B recombination coefficient which can be fitted by (Hummer 1994; Seager et al. 1999)

\[\alpha_{\text{HII}}^\text{rec}(T) = 10^{-13} \frac{a T_b}{1 + c T_b} \left(\text{cm}^3 \text{s}^{-1} \right), \]

(7)

where \(a = 4.309, b = -0.6166, c = 0.6703, d = 0.5300, \) and \(T_b = T/10^4 \text{ K} \). The \(f_{\text{Lyα}}^\text{rec} \) is the fraction of the Lyα photons produced in the case B recombination, and we use the fitting formula from Cantalupo et al. (2008) to evaluate it as

\[f_{\text{Lyα}}^\text{rec}(T) = 0.686 - 0.106 \log_{10}(T_b) - 0.009 T_b^{-0.44}. \]

(8)

This formula is accurate to 0.1% for 100 K < T < 10^5 K. We assume the mean gas temperature of the IGM to be 1.5 × 10^4 K in this work, which is in a good agreement with the results from simulations and the current measurements from quasars (Theuns et al. 2002; Tittley et al. 2007; Trac et al. 2008; Bolton et al. 2010, 2012).

The Lyα collisional emission in the IGM involves free electrons that collide with the neutral hydrogen atoms (H\(\text{I} \)) and transfer their kinetic energy by exciting the H\(\text{I} \) to high energy levels. The hydrogen atoms then decay by emitting photons, including Lyα photons. During the EoR, this process mainly occurs in the ionizing fronts of the reionization bubbles,
since this emission will be the strongest when \(n_e \sim n_{H1} \).
Similar to the recombination emission, the luminosity density of the collisional emission in the IGM can be calculated by
\[
\dot{I}_{\text{coll}} = \epsilon_{\text{Ly}a} n_e n_{H1}.
\]
where \(n_{H1} \) is the number density of the neutral hydrogen atoms. We assume \(n_e n_{H1} = f_{\text{ion}}(z) C_{\text{Ly}a}(z) n_0(z) n_{H1}(z) \), where \(n_0(z) \) is the mean number density of neutral hydrogen at \(z \).

The effective collision strength calculated by the fitting formulae (Razoumov & Sommer-Larsen 2010; Hayes et al. 2011; Blanc et al. 2011), we find the \(f_{\text{ion}}^{\text{eff}} \) and \(f_{\text{esc}}^{\text{Ly}a} \) in Equations (1) and (2) have an uncertainty of a factor of two each. Besides, we take into account of the uncertainties in the SFR and the clumping factor, which can be factors of three and five at \(z = 7 \), respectively (Silva et al. 2013). Eventually, we find \(\delta I_{\text{L}a} = 10.44^{+0.09}_{-0.07} \) Jy sr\(^{-1} \) around \(z = 7 \). Our results are well consistent with other works when allowing for uncertainty (e.g., Silva et al. 2013; Pullen et al. 2013). Besides, we note that the estimated Ly\(\alpha \) emission of high-z metal-poor galaxies with standard case-B assumption can be underestimated by a factor of \(\sim \)two to three compared to accurate prediction (Raiter et al. 2010). This possible departure can be covered by the intensity uncertainty we consider.

2.2. The Ly\(\alpha \) Power Spectrum

According to the calculations above, the absolute value of the Ly\(\alpha \) intensity background during the EoR is small and hard to measure directly in an absolute intensity experiment. Instead, we can try to measure the fluctuations of the Ly\(\alpha \) intensity and estimate the anisotropy power spectrum. Since the Ly\(\alpha \) emission from galaxies and IGM in the ionization bubbles surrounding the galaxies trace the underlying matter density field, we can calculate the Ly\(\alpha \) intensity fluctuations by
\[
\delta I_{\text{L}a} = \bar{b}_{\text{L}a} \bar{I}_{\text{L}a} \delta(x).
\]
Here we set \(\bar{I}_{\text{L}a} \sim I_{\text{gal}} \), since the main Ly\(\alpha \) emission at \(z \sim 7 \) comes from galaxies. The \(\delta(x) \) is the matter over-density at the position \(x \), and \(P_{\text{gal}}(z) \) is the average galaxy bias weighted by the Ly\(\alpha \) luminosity,
\[
\bar{b}_{\text{L}a} = \frac{\int M_{\text{min}} dM_{\text{gal}} L_{\text{Ly}a}}{\int M_{\text{min}} dM_{\text{gal}} b(M, z)}.
\]
where \(L_{\text{gal}}(M, z) \) is the Ly\(\alpha \) luminosity of the galaxy, and \(b(M, z) \) is the halo bias (Sheth & Tormen 1999). Then, we can calculate the Ly\(\alpha \) clustering power spectrum due to galaxy clustering as
\[
P_{\text{Ly}a}^{\text{clus}}(k, z) = \bar{b}_{\text{L}a}^{2} \bar{I}_{\text{L}a}^{2} P_{\delta \delta}(k, z),
\]
where \(P_{\delta \delta}(k, z) \) is the matter power spectrum which can be estimated from the halo model (Cooray & Sheth 2002). The clustering power spectrum dominates the fluctuations at large scales. At small scales, the Poisson noise caused by the discrete distribution of galaxies becomes important. This Poisson or shot-noise power spectrum takes the form (e.g., Visbal & Loeb 2010; Gong et al. 2011)
\[
P_{\text{Ly}a}^{\text{shot}}(z) = \int_{M_{\text{min}}}^{M_{\text{max}}} \frac{dn}{dM} \left(\frac{L_{\text{gal}}}{4 \pi D_{L}^{2}}(y(z)) D_{L}^{2} \right)^{2}.
\]
Therefore, the total power spectrum can be written by
\[
P_{\text{Ly}a}^{\text{tot}}(k, z) = P_{\text{Ly}a}^{\text{clus}}(k, z) + P_{\text{Ly}a}^{\text{shot}}(z).
\]
power spectrum at \(z = 7 \). We show the total, clustering and shot-noise power spectrum in solid, dash-dotted, and dotted lines, respectively. The dashed lines denote the one-halo and two-halo terms of the clustering power spectrum. The uncertainty of the total power spectrum is shown in shaded region which is estimated by the uncertainties of the \(f_{\text{esc}}^{\text{ion}}, f_{\text{esc}}^{\text{ion}} \), SFR and IGM clumping factor. The contributions of different halo mass scales to the total power spectrum are also shown. We find \(10^{10}-10^{11} \ h^{-1} M_\odot \) dominates the clustering power spectrum.

(A color version of this figure is available in the online journal.)

3. THE ESTIMATION OF THE FOREGROUND EMISSION LINES

Since we cannot resolve individual sources with intensity mapping, the measurements of the Ly\(\alpha \) emission during the EoR can be contaminated by emission lines from lower redshifts. Here we consider three low-redshift emission lines, H\(\alpha \) at 6563 Å, [O\(iii \)] at 5007 Å and [O\(ii \)] at 3727 Å. At \(z \sim 7 \), the frequency of the Ly\(\alpha \) line is about 300 THz, which can be then contaminated by H\(\alpha \) at \(z \sim 0.5 \), [O\(iii \)] at \(z \sim 0.9 \) and [O\(ii \)] at \(z \sim 1.6 \), respectively. We will estimate the mean intensity and power spectra of these lines in this section.

3.1. The Mean Intensity from the SFR

The H\(\alpha \) line at 6563 Å, [O\(iii \)] line at 5007 Å and [O\(ii \)] line at 3727 Å are good tracers of the SFR of galaxies. The luminosity of these lines is related to the SFR as

\[
\text{SFR} (M_\odot \ yr^{-1}) = (7.9 \pm 2.4) \times 10^{-42} L_{\text{H\alpha}},
\]

\[
\text{SFR} (M_\odot \ yr^{-1}) = (1.4 \pm 0.4) \times 10^{-41} L_{\text{[O\(ii \)]}},
\]

\[
\text{SFR} (M_\odot \ yr^{-1}) = (7.6 \pm 3.7) \times 10^{-42} L_{\text{[O\(iii \)]}}.
\]

The luminosity here is in erg s\(^{-1}\), and the relations for H\(\alpha \) and [O\(ii \)] are from Kennicutt (1998), and the [O\(iii \)] relation is given in Ly et al. (2007). The SFR–L\(\text{H\alpha} \) relation assumes the initial mass function from Salpeter (1955), and we add 30% uncertainty to it. These conversions are also in good agreement with other works\(^7\) (e.g., Hopkins et al. 2003; Wijesinghe et al. 2011; Drake et al. 2013).

With the help of the relation of the SFR and the halo mass as a function of redshift SFR\((M, z)\), we can use these conversions to derive \(L(M, z) \) and compute the mean intensities for these lines using Equation (4).

To estimate the SFR\((M, z)\), we can make use of the SFRD\((z)\) from the observations and assume the SFR is proportional to the halo mass \(M \). We take the SFRD\((z)\) given by Hopkins & Beacom (2006) with the fitting formula from Cole et al. (2001),

\[
\text{SFRD}(z) = \frac{a + b z}{1 + (z/c)^d} \ (h M_\odot \ yr^{-1} \ Mpc^{-3}),
\]

where \(a = 0.0118, b = 0.08, c = 3.3, \) and \(d = 5.2 \). This fitting formula is consistent with the observational data very well, especially at \(z \lesssim 2 \), which is good enough for our estimations here. Then assuming

\[
\text{SFR}(M, z) = f_s(z) \frac{\Omega_b}{\Omega_m} \frac{1}{t_s} M,
\]

where \(t_s = 10^8 \ yr \) is the typical star formation timescale, and \(f_s(z) \) is the normalization factor, which can be determined by SFRD\((z) = \int dM dn/dM SFR(M, z) \). After obtaining SFR\((M, z)\), we can derive \(L(M, z) \) for the H\(\alpha \), [O\(ii \)] and [O\(iii \)] lines using Equations (17), (18), and (19), respectively, and then calculate their mean intensities with Equation (4). We find \(L_{\text{H\alpha}} = 31.2 \pm 9.4 \text{Jy sr}^{-1}, L_{\text{[O\(ii \)]}} = 17.5 \pm 5.0 \text{Jy sr}^{-1} \) and \(L_{\text{[O\(iii \)]}} = 35.0 \pm 17.0 \text{Jy sr}^{-1} \). The errors are derived from the uncertainties in the conversions of the SFR and luminosity given by Equations (17), (18), and (19).

Another way to obtain the SFR\((M, z)\) is with simulations. Here we use the galaxy catalog from Guo et al. (2011), which is obtained by Millennium II simulation with a volume of \(100 (\text{Mpc} \ h^{-1})^3 \) and particle mass resolution \(\sim 6.9 \times 10^6 h^{-1} M_\odot \) (Boylan-Kolchin et al. 2009). We fit the SFR\((M, z)\) derived from this catalog for \(z \lesssim 2 \) with

\[
\text{SFR}(M, z) = 10^{a+bc} \left(\frac{M}{M_1} \right)^c \left(1 + \frac{M}{M_2} \right)^d,
\]

where \(a = -9.097, b = 0.484, c = 2.7, d = -4.0, M_1 = 10^8 M_\odot, \) and \(M_2 = 8 \times 10^{11} M_\odot \). The simulation results and the best fits of the SFR\((M, z)\) at \(z = 0.5, z = 1, \) and \(z = 1.5 \) are shown in Figure 2.

We find that the SFR increases quickly with halo mass but becomes flatter for the large halos with \(M \gtrsim 10^{12} M_\odot \).

\(^7\) The SFR–L\([\text{O\(ii \)]}\) relation has a larger uncertainty, and we will discuss it in Section 3.2.
from the observational SFRD(z), but they are still consistent within 1σ error.

3.2. The Mean Intensity from the Luminosity Functions

A direct way to estimate the mean intensities of the Hα, [O II], and [O III] lines is to make use of observed LFs. In Figure 3, we show the observed LFs of Hα, [O II], and [O III] lines around \(z = 0.5, z = 0.9, \) and \(z = 1.6 \) that can contaminate the Lyα emission from \(z \sim 7 \). The squares, pentagons, circles, and triangles are LFs from Ly et al. (2007),\(^6\) Drake et al. (2013), and Gunawardhana et al. (2013), respectively. The LFs data points shown here are dust extinction-corrected, except for the LFs from Drake et al. (2013), which are lower than the results of the other two works.

The LF is usually fitted by the Schechter function (Schechter 1976)

\[
\Phi(L)dL = \phi_\ast \left(\frac{L}{L_\ast} \right)^\alpha \exp\left(-\frac{L}{L_\ast} \right) \frac{dL}{L_\ast},
\]

where \(\phi_\ast, L_\ast, \) and \(\alpha \) are free parameters that are obtained by fitting the Schechter function with the data. The LFs from Ly et al. (2007) and Drake et al. (2013) are fitted by this function.\(^7\) Then the mean intensity can be estimated by

\[
I_\ast(z) = \int_{L_{\min}}^{L_{\max}} dL \frac{dn}{dL} \frac{L}{4\pi D_L^2} y(z) D_L^2,
\]

where \(dn/dL = \Phi(L) \) is the LF, and \(L_{\min} = 10^5 L_\odot \) and \(L_{\max} = 10^{12} L_\odot \) are the lower and upper luminosity limits. We find the result is not changed if choosing smaller \(L_{\min} \) and larger \(L_{\max} \) in our calculation. We use the extinction-corrected LFs to calculate the mean intensity for the Hα, [O II], and [O III] lines. Note that in Drake et al. (2013), they just correct the L_{\ast} for the dust extinction to get the extinction-corrected LFs, and the other two parameters \(\phi_\ast \) and \(\alpha \) are still fixed to the values fitted by the observed LFs.

\(^6\) We note that the Hα and [O II] LFs from Ly et al. (2007) are well consistent with recent observations with larger survey volumes (e.g. Sobral et al. 2012, 2013). So we just show the LF data from Ly et al. (2007) here.

\(^7\) The Hα LF at 0.24 < z < 0.35 from Gunawardhana et al. (2013) agrees well with the LF at \(z = 0.4 \) from Ly et al. (2007) at the faint end but has flatter slope at the bright end. So it is fitted by an alternative/different function with different form given by Saunders et al. (2004).
Using Equation (24) and the extinction-corrected LFs, we calculate the mean intensities of the Hα, [O\textsc{iii}], and [O\textsc{ii}] around $z = 0.5$, $z = 0.9$, and $z = 1.6$. We list and plot the mean intensities from both of the LF and SFR methods in Table 1 and Figure 4 for comparison. We also estimate the errors of the LFs from Ly et al. (2007) based on the errors of in Table 1 and Figure 4 for comparison. We also estimate the mean intensities from both of the LF and SFR methods to calculate the mean intensities of the Hα emission at $z \sim 7$ (blue dashed line) with uncertainties (shaded region) derived in the last section.

For the mean intensity of the Hα, we find the results from the different LF observations are consistent with each other, and they are safely in the 1σ error of the result from LF\textsubscript{L07}. Comparing the results from the SFR and LF methods, the mean intensity from SFR\textsubscript{sim} is in a good agreement with that from LF\textsubscript{L07}, LF\textsubscript{D13}, and LF\textsubscript{G13}, which give an average Hα intensity around 15 Jy sr-1. The SFR\textsubscript{obs} and LF\textsubscript{D13} here give a bit higher and lower results, respectively.

For the [O\textsc{iii}] line, the result of LF\textsubscript{L07} agrees with the LF\textsubscript{D13} result, and they are also consistent with the result from SFR\textsubscript{sim} in 1σ error. This gives an average intensity around 13 Jy sr-1. The SFR\textsubscript{obs} gives a higher intensity considering its error. The LF\textsubscript{D13} provides a low [O\textsc{iii}] intensity about 6 Jy sr-1, and this can be caused by the poor model fitting of the LF data in Drake et al. (2013; circles in the middle panel of Figure 3).

For the [O\textsc{ii}] emission at $z \sim 1.6$, the results have a larger discrepancy compared to the Hα and [O\textsc{iii}] cases. The LF\textsubscript{L07} and LF\textsubscript{D13} still give the same intensity which is around 24 Jy sr-1, and their results agree with SFR\textsubscript{obs} in 1σ. But the SFR\textsubscript{sim} suggests a low intensity around 9 Jy sr-1, while the LF\textsubscript{G13} gives a much higher value of ~ 50 Jy sr-1. It can be the same reason for the LF\textsubscript{D13} which gives a different result from the others as in the [O\textsc{ii}] case, that there are not enough LF data for the fitting of the LF. In the right panel of Figure 3, we find there are just three data points around 2×10^{42} erg s-1 and no data is observed in the faint end (see red circles). For SFR\textsubscript{sim}, it actually has a large discrepancy between different observations for the SFR–$L_{[\text{O\textsc{ii}}]}$ relation. For example, Kewley et al. (2004) proposes another relation SFR (M_{\odot} yr-1) = $(6.58 \pm 1.65) \times 10^{-42} L_{[\text{O\textsc{ii}}]}$, which gives a higher [O\textsc{ii}] intensity ~ 17.4 Jy sr-1 using the SFR\textsubscript{sim} method. This substantially reduces the tension between the SFR\textsubscript{sim} and the other methods.

Generally, we find that the intensities of the Hα, [O\textsc{ii}], and [O\textsc{iii}] around $z = 0.5$, $z = 0.9$, and $z = 1.6$ are larger than that of the Lyα at $z \sim 7$, which provide considerable contamination on the Lyα emission from the EoR. Also, the result derived by the LFs from Ly et al. (2007) is well consistent with the other results from both of the LF and SFR method; hence, we would adopt it as the foreground line contamination in our following estimation and discussion.

Next, we calculate the anisotropy power spectra of the Hα, [O\textsc{ii}], and [O\textsc{iii}] emissions using their mean intensities. Using Equations (15) and (16) and replacing the $b_{\text{Ly}\alpha}$, $I_{\text{Ly}\alpha}$, and $L_{\text{Ly}\alpha}$ to be the bias, mean intensity, and line luminosity of the Hα, [O\textsc{ii}], and [O\textsc{iii}], we obtain their clustering and shot-noise power spectra. Note that we assume that the line luminosity is proportional to the halo mass to get the mean bias of these three lines, i.e., replacing $L_{\text{Ly}\alpha}$ to be M in Equation (14). This approximation is good enough to estimate the mean bias given the uncertainty in the mean intensity. In Figure 5, we show the power spectrum of the Hα, [O\textsc{ii}], and [O\textsc{iii}] lines at $z = 0.5$, $z = 0.9$, and $z = 1.6$, which contaminate the Lyα emission at $z \sim 7$. The total, clustering, and shot-noise power spectra are in solid, dash-dotted, and dotted lines, respectively. The one-halo and two-halo terms from the halo model are also shown in short dashed lines (Cooray & Sheth 2002). The uncertainty of the total power spectrum in the shaded region is estimated by the uncertainty of the mean intensity. As mentioned, we use the LFs and errors from Ly et al. (2007) to compute the power spectrum and the uncertainty for the three emission lines.

Table 1

$h_{\alpha}(z \sim 0.5)$	$h_{\text{O}\text{iii}}(z \sim 0.9)$	$h_{\text{O}\text{ii}}(z \sim 1.6)$	
SFR\textsubscript{obs}	31.2 ± 9.4	35.0 ± 17.0	17.5 ± 5.0
SFR\textsubscript{sim}	16.8 ± 5.0	16.6 ± 8.1	9.0 ± 2.6
LF\textsubscript{L07}	12.2±17.4	11.8±11.3	23.5±8.9
LF\textsubscript{D13}	8.4	12.7	24.2
LF\textsubscript{G13}	23.0	6.0	50.6
LF\textsubscript{D13}	17.6		

Note. L07, D13, and G13 denote Ly et al. (2007), Drake et al. (2013), and Gunawardhana et al. (2013).
4. THE REMOVAL OF THE FOREGROUND EMISSION LINE CONTAMINATION

4.1. The Observed Power Spectrum

So far we have analyzed the expected intensity from contaminating lines. In practice, experiments (at least first generation ones) will try to make a statistical measurement of the three-dimensional (3D) power spectrum. Therefore, this is the quantity that we should compare to in order to access the level of foreground contamination. Because the signal and foregrounds will be emitted at different redshifts, there will be an extra factor multiplying the foreground power spectrum. In order to calculate this, we need to take into account the effect of the observed light cone in the 3D power spectrum.

The intensity that we measure, \(I(\Omega, v) \), will correspond to a sum of the signal we are interested in, \(I_s \) (the Ly\(\alpha \) emission from redshift \(z_s \)), and the foreground emission, \(I_f \), from lower redshifts \(z_f \), which is contributing to the same frequency:

\[
I(\Omega, v) = I_s(\Omega, v) + I_f(\Omega, v).
\]

In the flat sky approximation, displacements in angle \(\Delta \theta \) and frequency \(\Delta \nu \) about a central reference point, can be transformed into a position in 3D comoving space,

\[
x_1, x_2 = r(z) \Delta \theta,
\]

\[
x_3 = -y(z) \Delta \nu,
\]

where we are already making a translation along the \(x_3 \) direction and \(x_1, x_2 \) are assumed perpendicular to the line of sight, while \(x_3 \) is taken to be parallel to it. Note that, besides the flat sky, we are also neglecting cosmic evolution, e.g., assuming that points along the line of sight are all emitted at the same redshift \(z \).

We then write the observed signal as

\[
I(\Omega, v) = \hat{I}(\Omega, v) [1 + b_s(z_s) \delta(z_s, x_s)] + \hat{I}(\Omega, v) [1 + b_f(z_f) \delta(z_f, x_f)],
\]

where \(\delta() \) is the dark matter perturbation and \(x_s, x_f \) is the 3D position of the signal and foreground emission, respectively. If we Fourier transform the above signal with respect to \(x_s \), the corresponding foreground Fourier mode will be offset with respect to the true one. The observed power spectrum, \(P_{\text{obs}} \), then be

\[
P_{\text{obs}}(k_\perp, k_\parallel) = \hat{I}_s^2(z_s) b_s^2(z_s) P(z_s, k_s) + \hat{I}_f^2(z_f) b_f^2(z_f) \left(\frac{r_s}{r_f} \right)^2 \left(\frac{y_s}{y_f} \right)^2 P(z_f, k_f),
\]

where \(|k_\perp| = \sqrt{k_\perp^2 + k_\parallel^2} \) is the 3D \(k \) at the redshift of the signal, and \(|k_f| = \sqrt{(r_s/r_f)^2 k_\perp^2 + (y_s/y_f)^2 k_\parallel^2} \) is the 3D \(k \) at the redshift of the foreground line. The factor \((r_s/r_f)^2 (y_s/y_f)^2 \) comes from the distortion of the volume element when Fourier transforming the foreground correlation function to the power spectrum (Visbal & Loeb 2010). This process can be considered to project the foreground power spectrum to the high redshift, where the intensity signal comes from. We then see that, even when looking at the spherical averaged power spectrum, e.g., \(P_{\text{obs}}(k = \sqrt{k_\perp^2 + k_\parallel^2}) \), the foreground contribution to the power spectrum will be boosted by this projection. Moreover, there is an anisotropy in the \(k \) space which provides a potential method to distinguish the foregrounds from the signal. We discuss the details of this effect in the Appendix.

In Figure 6, we compare the 3D power spectrum of H\(\alpha \), [O \(\text{II} \)], and [O \(\text{III} \)] lines with and without the projection. In the left panel of Figure 6, we show the total power spectrum of the H\(\alpha \) at \(z = 0.5 \), [O \(\text{III} \)] at \(z = 0.9 \), and [O \(\text{II} \)] at \(z = 1.6 \) without projection. The \(P_{\text{tot}} \) and its uncertainty are also shown in blue line and shaded region for comparison. In the right panel of Figure 6, we show the 3D projected power spectra of the H\(\alpha \), [O \(\text{II} \)], and [O \(\text{III} \)] lines to the redshift of the Ly\(\alpha \) emission (\(z \sim 7 \)). To estimate the 3D projected power spectrum from Equation (28), we simply assume \(k_\perp = k_\parallel = k_l \), where \(k = k_l \hat{i} + k_j \hat{j} + k_k \hat{k} \) and \(k_\perp = \sqrt{k_\perp^2 + k_\parallel^2} \). We also ignore the redshift distortion here. We find the projected power spectra of the three lines become a bit higher than the case where we ignore the projection of the foregrounds to the background cosmological signal of intensity during the EoR.

4.2. Foregrounds Masking

To remove the contamination from these foreground emission lines, we need to mask the bright sources at low redshifts. However, we cannot identify the individual sources and their redshifts in the intensity mapping, and all the signals that lie...
in the same survey pixel, which is defined by the spectral and angular resolutions, will be mixed together and observed as only one signal.

During the EoR, the galaxies are averagely smaller and fainter than the present galaxies, so their LFs should be relatively higher at the faint end than the galaxies at the low redshifts. In Figure 7, we show the Lyα LF at $z \sim 7$ from the observations of the Lyα emitters (LAEs; Ouchi et al. 2010; Kashikawa et al. 2006; Hu et al. 2005). The best fit of the LF is shown in blue solid line using the Schechter function (see Equation (23)) with fitting values given by Ouchi et al. (2010). The LFs of the Hα, [O III], and [O II] lines are also shown for comparison. We can see that the LFs of the Lyα is higher than the others at the faint end, but it is basically lower than the [O II] LF at the bright end. Therefore, we can mask the whole bright pixels whose fluxes are above some threshold in the intensity mapping to reduce the contamination of low-redshift line emission, and then the remainder pixels should be dominated by the Lyα emission at high redshifts.

In Figure 8, the power spectra of the Hα, [O II], and [O III] lines with masking and projection are shown. Here we try to make the total power spectrum of Hα, [O III], and [O II] smaller by a factor of ~ 100 around $k = 0.1 \, h \, \text{Mpc}^{-1}$ where the shot-noise is small. We find we need to mask sources with fluxes greater than $1.4 \times 10^{-20} \, \text{W m}^{-2}$. The corresponding line luminosity are $L_{\text{H}\alpha} \simeq 3.5 \times 10^6 \, L_\odot$, $L_{\text{[O III]}} \simeq 6.3 \times 10^7 \, L_\odot$, and $L_{\text{[O II]}} \simeq 1.5 \times 10^7 \, L_\odot$, respectively. Note that these luminosity cuts are close to the lower luminosity limit ($L_{\text{min}} = 10^5 \, L_\odot$) we take in Equation (24), hence our masking results are dependent on the faint-end slopes of the LFs, which are not well constrained by observational data.

In Figure 9, we show the number of sources whose flux is greater than some value in a survey volume pixel. Here we assume a survey with $6'' \times 6''$ beam size and 190–330 THz frequency range with $R = 40$ frequency resolution. As can be
seen, the Hα sources are dominant at the bright end but are subdominant in the survey since all of these sources are from low redshifts (z ∼ 0.5), where the survey volume is small. On the other hand, [O III] sources are the main contamination and are brighter than 1.4 × 10^{-20} W m^{-2} in approximately 2% of the pixels. In total, we need to mask about 3% of the survey pixels. Here we should notice the large uncertainty of the Lyα emission. The number of the Lyα sources can be lower by a factor of ∼10 with the uncertainty, which would lead to a larger masking percentage.

There is a second method that can be used to eliminate the foreground line contamination, which is making use of the cross-correlation between different emission lines at the same redshift. This method is discussed in many previous works and can be used either for the signal (e.g., Visbal & Loeb 2010; Gong et al. 2012; Silva et al. 2013) or the foreground contamination (e.g., Pullen et al. 2013). The idea is that the lines emitted at the same redshift should trace the same underlying matter distribution and, hence, lead to large cross-correlation on the power spectrum. On the other hand, the emissions at different redshifts, which are far away from each other, would not provide considerable cross power spectrum. Therefore, we can derive the auto power spectrum of one line if we know both the cross power spectrum and the auto power spectrum of the other line. For instance, we can cross-correlate the Lyα line with 21 cm at z ∼ 7, and then, the foreground contamination would be reduced; and we can estimate the P_{Lyα} from the P_{21cm} and P_{Lyα} (Silva et al. 2013). Or, we can estimate the auto power spectra of the foreground emission lines by cross-correlating with the 21 cm intensity mapping surveys at z ∼ 1, e.g., the GBT,11 CHIME,12 and Tianlai projects (Chen 2012). However, although we can detect the cross power spectrum, it is still hard

to measure the auto power spectrum for the 21 cm or the other lines due to their own foregrounds removal. So this method is indirect and cannot substitute the masking method discussed above. Even if we can only obtain the cross power spectrum, it could still be a good guide and a secondary check for the intensity mapping experiments.

5. SUMMARY

We estimate the Lyα mean intensity and power spectrum during the EoR and explore the foreground contamination from the low-redshift emission lines. We consider the Lyα emission from both galaxies and IGM for the recombination and collisional emission processes. We find the Lyα emission of galaxies is dominant over the IGM at z ∼ 7 with a total mean intensity ∫_{Lyα} I_{Lyα} ∼ 10 Jy sr^{-1} (about 9 Jy sr^{-1} from galaxies and 1 Jy sr^{-1} from the IGM). We also evaluate the uncertainty of the mean intensity according to the uncertainties of f_{esc}, f_{Lyα}, SFR, and the clumping factor. With the help of the halo model, we also calculate the Lyα clustering, shot-noise power spectrum with the uncertainty given by the mean intensity.

Next, we investigate the foreground contamination by low-redshift emission lines. We find Hα at 6563 Å, [O III] at 5007 Å, and [O II] at 3727 Å can be the strongest contamination on Lyα emission during the EoR. We estimate the mean intensity of the Hα, [O III], and [O II] lines at z ∼ 0.5, z ∼ 0.9, and z ∼ 1.6, respectively, which are the redshifts that can contaminate the Lyα emission at z ∼ 7. We use two methods to do the estimation, i.e., the SFR and LF methods. In the SFR method, both of the SFR(z) from the observations and the SFR(M, z) derived from the simulations are used to compute the intensity. In the LF method, we adopt the LFs of Hα, [O III], and [O II] around z = 0.5, z = 0.9, and z = 1.6, respectively, from different observations. We find the results from both methods

11 https://science.nrao.edu/facilities/gbt/
12 http://chime.phas.ubc.ca/
are basically consistent with each other, especially for the Hα and [O iii] lines. The mean intensity of the three lines are $I_{\text{H}\alpha} \sim 15 \, \text{Jy sr}^{-1}$, $I_{\text{[O} \text{iii}] } \sim 13 \, \text{Jy sr}^{-1}$, and $I_{\text{[O} \text{ii}] } \sim 24 \, \text{Jy sr}^{-1}$, which are larger than the $I_{\text{Ly} \alpha} \sim 10 \, \text{Jy sr}^{-1}$. The results from the LFs in Ly et al. (2007) is in good agreements with the others, and we adopt their LFs and the errors to calculate the power spectrum and uncertainty for the three foreground lines.

At last, we discussed the methods to remove the foreground contamination due to low-redshift emission lines. We first compared the power spectrum of the Lyα at $z \sim 7$ to the Hα, [O iii], and [O ii] power spectrum at low redshifts, and then we considered the projection effect in the real survey. The power spectrum of the foreground lines becomes larger after the projection. We then proposed to mask the whole bright pixels with foreground emission above some flux threshold to reduce the contamination of the foreground lines in the intensity mapping. We found that the contamination can be neglected when the flux cut is $1.4 \times 10^{-20} \, \text{W m}^{-2}$. The cross-correlation method is helpful to reduce or to estimate the contamination, but it is indirect and cannot substitute the masking method in the survey of the intensity mapping.

This work was supported by NSF CAREER AST-0645427 and AST-1313319. M.B.S. and M.G.S. acknowledge support by FCT-Portugal under grant PTDC/FIS/100170/2008. M.B.S. acknowledges support by FCT-Portugal under grant SFRH/BD/51373/2011.

APPENDIX

In Equation (28) of Section 4.1, we see that the observed foreground power spectrum is actually anisotropic, i.e., not simply a function of $k = \sqrt{k_{\parallel}^2 + k_{\perp}^2}$. This can in principle be used in the foreground cleaning process. In particular, after the intensity cut, we can check if there is still any strong contamination by looking at the anisotropy of the total power spectrum. In order to check the strength of these anisotropies caused by the projection effect, we calculate the two-dimensional (2D) anisotropic power spectra for the signal and foregrounds. Here we also take into account of the linear redshift-space distortions. In that case, the bias should be replaced by

$$b_s(z_s) \rightarrow b_s(z_s) + \left(\frac{k_{\parallel}}{k_{\perp}^2 + k_{\parallel}^2} \right)^2 \frac{1}{H(z_s)} \frac{D(z_s)}{D(z_s)} \times \frac{1}{H(z_f)} \frac{D(z_f)}{D(z_f)}$$

$$b_f(z_f) \rightarrow b_f(z_f) + \left(\frac{y_s/y_f}{k_{\parallel}} \right) \frac{1}{\sqrt{\left(r_s/r_f \right)^2 k_{\perp}^2 + \left(y_s/y_f \right)^2 k_{\parallel}^2}} \times \frac{1}{H(z_f)} \frac{D(z_f)}{D(z_f)}$$

Here, $D(z)$ is the growth factor. The normal expression of the second term of the bias is $f \mu^2$. Here $f = d \ln D/d \ln a$, where a is the scale factor, and $\mu = \cos \theta$, where θ is the angle between the line of sight and the wave-vector k. We also notice that the so-called non-gravitational effects can introduce strong redshift-space distortion effect (Zheng et al. 2011; Wyithe & Dijkstra 2011). According to full Lyα radiative transfer calculations, the Lyα emission is dependent on environment (gas density and velocity) around LAEs. The observed LAE clustering features can be changed by this effect especially at high redshifts. However, this effect relies on “missing” Lyα photons scattering in relatively close proximity to Lyα emission galaxies, which could be recovered by intensity mapping. Therefore, we ignore this effect in our discussion.

In Figure 10, we show the 2D anisotropic power spectrum decomposed into k_{\parallel} and k_{\perp} for the signal, foreground and the total observations. We just show the Hα foreground here, since it has the lowest redshift among the other two foreground lines and has the largest effect of the power spectrum projection. We find the shape of the signal power spectrum is quite symmetric and the redshift distortion effect is relatively small, since the signal comes from high redshifts. However, for the foreground, the shape of the spectrum is irregular due to the redshift distortion and the different factors on the k_{\parallel} and k_{\perp} (i.e., r_s/r_f on k_{\parallel} and y_s/y_f on k_{\parallel}) in the projection. This effect provides a potential method to distinguish the signal from the foreground and could be helpful to remove the foreground in future high sensitivity experiments.

Figure 10. 2D anisotropic power spectra shown by perpendicular and parallel Fourier modes for the signal (Lyα), foreground (only Hα here), and total observed signal+foreground. We find the 2D signal power spectrum is almost symmetric for k_{\perp} and k_{\parallel}, and the redshift distortion effect is relatively small. For the foreground power spectrum at low redshift, because the redshift distortion effect is strong and the shift factor on the foreground k_{\parallel} and k_{\perp} are different, the shape of the power spectrum is irregular. This effect provides a way to distinguish the signal and the foreground in principle. The total power spectrum is similar with the foreground power spectrum, since the amplitude of the signal power spectrum is much lower than the foreground.

(A color version of this figure is available in the online journal.)
REFERENCES

Barkana, R., & Loeb, A. 2001, PhR, 349, 125
Blanc, G. A., Adams, J. J., Gebhardt, K., et al. 2011, ApJ, 736, 31
Bolton, J. S., Becker, G. D., Raskutti, S., et al. 2012, MNRAS, 419, 2880
Bolton, J. S., Becker, G. D., Wyithe, J. S. B., Haehnelt, M. G., & Sargent, W. L. W. 2010, MNRAS, 406, 612
Boylan-Kolchin, M., Springel, V., White, S. D. M., et al. 2009, MNRAS, 398, 1150
Cantalupo, S., Porciani, C., & Lilly, S. J. 2008, ApJ, 672, 48
Carilli, C. L. 2011, ApJL, 730, L30
Chen, X. 2012, IJMPs, 12, 256
Cole, S., Norberg, P., Baugh, C. M., et al. 2001, MNRAS, 326, 255
Cooray, A., Gong, Y., Smidt, J., & Santos, M. 2012, ApJL, 756, 92
Cooray, A., & Sheth, R. 2002, PhR, 372, 1
De Lucia, G., & Blaizot, J. 2007, MNRAS, 375, 2
Dijkstra, M., & Jeeson-Daniel, A. 2013, MNRAS, 435, 3333
Drake, A. B., Simpson, C., Collins, C. A., et al. 2013, ApJ, 766, 2764
Fan, X., Carilli, C., & Keating, B. 2006, ARA&A, 44, 415
Furlanetto, S. R., Oh, S. P., & Briggs, F. H. 2006, PhR, 433, 181
Giovanardi, C., Natta, A., & Palla, F. 1987, A&AS, 70, 269
Gong, Y., Cooray, A., & Santos, M. 2012, ApJ, 768, 92
Gong, Y., Cooray, A., Santos, M., & Lubin, P. 2011, ApJL, 728, L46
Gould, A., & Weinberg, D. H. 1996, ApJ, 468, 462
Gunawardhana, M. L. P., Hopkins, A. M., Bland-Hawthorn, J., et al. 2013, MNRAS, 433, 2764
Gunn, J. E., & Peterson, B. A. 1965, ApJ, 142, 1633
Guo, Q., White, S., Boylan-Kolchin, M., et al. 2011, MNRAS, 413, 101
Hayes, M., Schaerer, D., Ostlin, G., et al. 2011, ApJ, 730, 8
Hopkins, A. M., & Beacom, J. F. 2006, ApJ, 651, 142
Hopkins, A. M., Miller, C. J., Nichol, R. C., et al. 2003, ApJ, 599, 971
Hu, E. M., Cowie, L. L., Capak, P., & Kakazu, Y. 2005, in IAU Colloq. 199, Probing Galaxies through Quasar Absorption Lines, ed. P. R. Williams, C.-G. Shu, & B. Menard (Cambridge: Cambridge Univ. Press), 363
Hummer, D. G. 1994, MNRAS, 268, 109
Kashikawa, N., Shimasaku, K., Malkan, M. A., et al. 2006, ApJ, 648, 7
Kennicutt, R. C. 1998, ARAA, 36, 189
Kewley, L. J., Geller, M., & Jansen, R. A. 2004, AJ, 127, 2002
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18
Laursen, P., Duval, E., & Ostlin, G. 2013, ApJ, 766, 124
Lidz, A., Furlanetto, S. R., Oh, S. P., et al. 2011, ApJ, 741, 70
Ly, C., Malkan, M. A., Kashikawa, N., et al. 2007, ApJ, 657, 738
Matsuda, Y., Yamada, T., Hayashino, T., et al. 2012, MNRAS, 425, 878
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebular and Active Galactic Nuclei (Mill Valley, CA: University Science Books)
Ouchi, M., Shimasaku, K., Furusawa, H., et al. 2010, ApJ, 723, 869
Pawlik, A. H., Schaye, J., & van Scherenpezel, E. 2009, MNRAS, 394, 1812
Pullen, A., Dore, O., & Bock, J. 2013, arXiv:1309.2295
Raiter, A., Schaerer, D., & Fosbury, R. A. E. 2010, A&A, 521, A64
Razoumov, A. O., & Sommer-Larsen, J. 2010, ApJ, 710, 139
Righi, M., Hernandez-Monteagudo, C., & Sunyaev, R. A. 2008, A&A, 489, 489
Salpeter, E. E. 1955, ApJ, 121, 161
Saunders, W., Cannon, R., & Sutherland, W. 2004, AAO, 106, 16
Schechter, P. 1976, ApJ, 203, 297
Seager, S., Sasselov, D. D., & Scott, D. 1999, ApJL, 523, L1
Sheth, R. K., & Tormen, G. 1999, MNRAS, 308, 119
Silva, M., Santos, M. G., Gong, Y., Cooray, A., & Bock, J. 2013, ApJ, 763, 132
Solbral, D., Best, P. N., Matsuda, Y., et al. 2012, MNRAS, 420, 1926
Sobral, D., Smail, I., Best, P. N., et al. 2013, MNRAS, 428, 1128
Stark, D. P., Ellis, R. S., Chiu, K., Ouchi, M., & Bunker, A. 2010, MNRAS, 408, 1628
Stark, D. P., Ellis, R. S., & Ouchi, M. 2011, ApJL, 728, L2
Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJL, 717, 289
Theuns, T., Schaye, J., Zaroubi, S., et al. 2002, ApJL, 567, L103
Tittley, E. R., Meiksin, A., et al. 2007, MNRAS, 380, 1369
Trac, J. S. B., & Dijkstra, M. 2011, MNRAS, 415, 3929
Zheng, Z., Cen, R., & Loeb, A. 2008, ApJL, 689, L81
Wisotz, E., & Loeb, A. 2010, JCAP, 11, 016
Wijesinghe, D. B., Hopkins, A. M., Sharp, R., et al. 2011, MNRAS, 410, 2291
Wyithe, J. S. B., & Dijkstra, M. 2011, MNRAS, 415, 3929
Zheng, Z., Cen, R., Trac, H., & Miralda-Escude, J. 2010, ApJ, 716, 574
Zheng, Z., Cen, R., Trac, H., & Miralda-Escude, J. 2011, ApJ, 726, 38