A CRITICAL REGULARITY CONDITION ON THE ANGULAR VELOCITY OF AXIALLY SYMMETRIC NAVIER-STOKES EQUATIONS

QI S. ZHANG

Abstract. Let v be the velocity of Leray-Hopf solutions to the axially symmetric three-dimensional Navier-Stokes equations. It is shown that v is regular if the angular velocity v_θ satisfies an integral condition which is critical under the standard scaling. This condition allows functions satisfying

$$|v_\theta(x,t)| \leq \frac{C}{r \ln r^2}, \quad r < 1/2,$$

where r is the distance from x to the axis, C and ϵ are any positive constants.

Comparing with the critical a priori bound

$$|v_\theta(x,t)| \leq \frac{C}{r}, \quad 0 < r \leq 1/2,$$

our condition is off by the log factor $\ln r^{2+\epsilon}$ at worst. This is inspired by the recent interesting paper [2] where H. Chen, D. Y. Fang and T. Zhang establish, among other things, an almost critical regularity condition on the angular velocity. Previous regularity conditions are off by a factor r^{-1}.

The proof is based on the new observation that, when viewed differently, all the vortex stretching terms in the 3 dimensional axially symmetric Navier-Stokes equations are critical instead of supercritical as commonly believed.

Contents

1. Introduction 1
2. Proof of the theorem 5
References 15

1. INTRODUCTION

In rectangular coordinates, the incompressible Navier-Stokes equations are

$$\Delta v - (v \cdot \nabla)v - \nabla p - \partial_t v = 0, \quad \text{div} \ v = 0,$$

where $v = (v_1(x,t), v_2(x,t), v_3(x,t)) : \mathbb{R}^3 \times [0, T] \to \mathbb{R}^3$ is the velocity field and $p = p(x, t) : \mathbb{R}^3 \times [0, T] \to \mathbb{R}$ is the pressure. In cylindrical coordinates r, θ, x_3 with $(x_1, x_2, x_3) = \ldots$
\((r \cos \theta, r \sin \theta, x_3)\), axially symmetric solutions are of the form
\[
v(x, t) = v_r(r, x_3, t) \hat{e}_r + v_\theta(r, x_3, t) \hat{e}_\theta + v_3(r, x_3, t) \hat{e}_3.
\]
The components \(v_r, v_\theta, v_3\) are all independent of the angle of rotation \(\theta\). Here \(\hat{e}_r, \hat{e}_\theta, \hat{e}_3\) are the basis vectors for \(\mathbb{R}^3\) given by
\[
\hat{e}_r = \left(\frac{x_1}{r}, \frac{x_2}{r}, 0\right), \quad \hat{e}_\theta = \left(-\frac{x_2}{r}, \frac{x_1}{r}, 0\right), \quad \hat{e}_3 = (0, 0, 1).
\]
It is known (see [5] for example) that \(v_r, v_3\) and \(v_\theta\) satisfy the equations
\[
\begin{aligned}
(\Delta - \frac{1}{r^2}) v_r - (b \cdot \nabla) v_r + \frac{v_3^2}{r^2} - \partial_r p - \partial_t v_r &= 0, \\
(\Delta - \frac{1}{r^2}) v_\theta - (b \cdot \nabla) v_\theta - \frac{v_3 v_\theta}{r} - \partial_t v_\theta &= 0, \\
\Delta v_3 - (b \cdot \nabla) v_3 - \partial_3 p - \partial_t v_3 &= 0, \\
\frac{1}{r} \partial_r (rv_r) + \partial_3 v_3 &= 0,
\end{aligned}
\] (1.2)
where \(b(x, t) = (v_r, 0, v_3)\) and the last equation is the divergence-free condition. Here, \(\Delta\) is the cylindrical, scalar Laplacian and \(\nabla\) is the cylindrical gradient field:
\[
\Delta = \partial_r^2 + \frac{1}{r} \partial_r + \frac{1}{r^2} \partial_\theta^2 + \partial_3^2, \quad \nabla = \left(\partial_r, \frac{1}{r} \partial_\theta, \partial_3\right).
\]
Observe that the equation for \(v_\theta\) does not depend on the pressure. Let \(\Gamma = rv_\theta\), then
\[
\Delta \Gamma - (b \cdot \nabla) \Gamma - \frac{2}{r} \partial_r \Gamma - \partial_t \Gamma = 0, \quad \text{div } b = 0.
\] (1.3)
The vorticity \(\omega = \text{curl } v\) for axially symmetric solutions
\[
\omega(x, t) = \omega_r \hat{e}_r + \omega_\theta \hat{e}_\theta + \omega_3 \hat{e}_3
\]
is given by
\[
\omega_r = -\partial_3 v_\theta, \quad \omega_\theta = \partial_3 v_r - \partial_r v_3, \quad \omega_3 = \partial_r v_\theta + \frac{v_3}{r}.
\] (1.4)
The equations of vorticity \(\omega = \text{curl } v\) in cylindrical form are (again, see [5] for example):
\[
\begin{aligned}
(\Delta - \frac{1}{r^2}) \omega_r - (b \cdot \nabla) \omega_r + \omega_r \partial_r v_r + \omega_3 \partial_3 v_r - \partial_t \omega_r &= 0, \\
(\Delta - \frac{1}{r^2}) \omega_\theta - (b \cdot \nabla) \omega_\theta + \frac{2}{r} \partial_3 \omega_\theta + \omega_\theta \frac{v_3}{r} - \partial_t \omega_\theta &= 0, \\
\Delta \omega_3 - (b \cdot \nabla) \omega_3 + \omega_3 \partial_3 v_3 + \omega_\theta \partial_r v_3 - \partial_t \omega_3 &= 0.
\end{aligned}
\] (1.5)
Although the axially symmetric Navier-Stokes equations is a special case of the full 3 dimensional one, our level of understanding had been roughly the same, with essential difficulty unresolved. One quick explanation of the difficulty goes as follows. Viewing (1.1) as a reaction diffusion equation. The standard theory for regularity requires the velocity to be bounded in suitable function space whose norm is invariant under standard scaling, such as \(L^{p,q}\) with \(\frac{2}{p} + \frac{3}{q} = 1\). However the only general a priori bound available is the energy estimate, which scales as \(-1/2\). So there is a positive gap between the two which makes the equations supercritical.

Equation (1.2) has been studied by many authors in recent years. The following is a list which is far from complete. If the swirl \(v_\theta = 0\), then long time ago, O. A. Ladyzhenskaya [11], M. R. Uchoviskii and B. I. Yudovich [20], proved that finite energy solutions to (1.2)
are smooth for all time. See also the paper by S. Leonardi, J. Malek, J. Necas, and M. Pokorný [14].

In the presence of swirl, it is not known in general if finite energy solutions blow up in finite time. However a lower bound for the possible blow up rate is known by the recent results of C.-C. Chen, R. M. Strain, T.-P. Tsai, and H.-T. Yau in [5], [6], G. Koch, N. Nadirashvili, G. Seregin, and V. Sverak in [10]. See also the work by G. Seregin and V. Sverak [18] for a localized version. These authors prove that if \(|v(x,t)| \leq C_r \), then solutions are smooth for all time. Here \(C \) is any positive constant. Their result can be rephrased as: type I solutions are regular. See also the papers [12], [13] on further results in this direction. J. Neustupa and M. Pokorny [16] proved that the regularity of one component (either \(v_r \) or \(v_\theta \)) implies regularity of the other components of the solution. See more refined results in [17] and the work of Ping Zhang and Ting Zhang [22]. Also proving regularity is the work of Q. Jiu and Z. Xin [9] under an assumption of sufficiently small zero-dimension scaled norms. D. Chae and J. Lee [4] also proved regularity results assuming finiteness of another certain zero-dimensional integral. G. Tian and Z. Xin [19] constructed a family of singular axially symmetric solutions with singular initial data. T. Hou and C. Li [7] found a special class of global smooth solutions. See also a recent extension: T. Hou, Z. Lei and C. Li [8].

Define

\[
J = \frac{\omega_r}{r}, \quad \Omega = \frac{\omega_\theta}{r}.
\]

Then the triple \(J, \Omega, \omega_3 \) satisfy the system

(1.6)

\[
\begin{align*}
\Delta J - (b \cdot \nabla) J + \frac{2}{r} \partial_r J + (\omega_r \partial_r + \omega_3 \partial_3) \frac{2}{r} - \partial_t J &= 0, \\
\Delta \Omega - (b \cdot \nabla) \Omega + \frac{2}{r} \partial_r \Omega - \frac{2}{r} \partial_\theta J - \partial_t \Omega &= 0, \\
\Delta \omega_3 - (b \cdot \nabla) \omega_3 + w_r \partial_r v_3 + w_3 \partial_3 v_3 - \partial_t \omega_3 &= 0.
\end{align*}
\]

Here, in the second equation, we used the identity \(rJ = w_r = -\partial_3 v_\theta \).

A great observation by Hui Chen, Daoyuan Fang and Ting Zhang in [2] is that the first two equations in (1.6) form a critical system under the standard scaling. Using this and a "magic formula" relating \(\nabla (v_r/r) \) with \(w_\theta/r \) by Changxing Miao and Xiaoxin Zheng [15], they obtained, among other things, an almost critical regularity condition on \(v_\theta \). For example it is proven that if \(|v_\theta(x,t)| \leq C/r^{2-\epsilon} \) with \(\epsilon > 0 \), then solutions are regular.

In this paper we observe further that, all three equations are critical when viewed in a suitable way. Therefore the vorticity equation of 3 dimensional axially symmetric Navier-Stokes equations are critical instead of supercritical as commonly believed. This, together with a localization method in [21], allow us to prove Theorem 1.1 below, which provides a localized critical regularity condition on \(v_\theta \). It is tantalizing that our condition differs with the critical a priori bound ([4] or [16])

\[
|v_\theta(x,t)| \leq \frac{C}{r}, \quad 0 < r \leq 1/2,
\]

by the log factor \(|\ln r|^{2+\epsilon} \) at worst. See the remarks below.
Now we introduce the function class where \(v_0 \) lives. It is defined in an integral way which is usually called the form boundedness condition, which is more general than the corresponding \(L^{p,q} \) condition.

Definition 1.1. We say the angular velocity \(v_\theta \) is in the \(\lambda_1 \) critical class if there is a positive number \(a < 1 \) and another positive number \(\lambda_2 \) such that the inequality

\[
\int_0^t \int \left(\frac{|v_\theta|}{r} + v_\theta^2 \right) \psi^2 dyds \leq \lambda_1 \int_0^t \int |\nabla \psi|^2 dyds + \frac{\lambda_2}{a^2} \int_0^t \int \psi^2 dyds
\]

holds for all \(t \geq 0 \) and for all smooth \(\psi = \psi(y,s) \), \(s \in [0,t] \), satisfying the conditions (1) \(\psi \) is axially symmetric in \(y \); (2) \(\psi(\cdot, s) \) is supported in the cylinder \(D_{a,l} = \{(r,\theta,x_3) | 0 \leq r < a, -l < x_3 < l, 0 \leq \theta < 2\pi \} \) for some \(l \geq a \).

Remark 1.1. Clearly the class is scaling invariant. A function \(v_\theta \) is the \(\lambda_1 \) critical class for all \(\lambda_1 > 0 \) if it satisfies \(|v_\theta(x,t)| \leq \frac{C}{r} \ln\frac{1}{r} \), \(r < 1/2 \). Here \(C > 0, \epsilon > 0 \) are arbitrary positive constant. This claim will be proven at the end of the paper. One may also take \(\epsilon = 0 \) but replace \(r \) by \(r/a \) and \(C \) by a small constant in the bound, by virtue of the 2 dimensional Hardy’s inequality.

Here is the main result of the paper.

Theorem 1.1. Let \(v \) be a Leray-Hopf axially symmetric solution of the three-dimensional Navier-Stokes equations in \(\mathbb{R}^3 \times (0,\infty) \) with initial data \(v_0 = v(\cdot,0) \in L^2(\mathbb{R}^3) \). Assume further \(rv_0,\theta \in L^\infty(\mathbb{R}^3) \).

There exists a positive number \(\lambda_1 \). Suppose \(v_\theta \) is in the \(\lambda_1 \) critical class. Then \(v \) is smooth for all time.

Remark 1.2. The size of \(\lambda_1 \) is estimated in (2.36). It is an absolute constant depending on the \(L^2 \) norm of the Riesz operators. There is no size restriction on \(\lambda_2 \). Also the \(a^2 \) in the definition can be replaced by any positive continuous function of \(a \). But this may break the scaling invariance.

The theorem will be proven in the next section. The following are some notations to be frequently used. We use \(x = (x_1,x_2,x_3) \) to denote a point in \(\mathbb{R}^3 \) for rectangular coordinates, and in the cylindrical system we use \(r = \sqrt{x_1^2 + x_2^2} \), \(\theta = \tan^{-1} \frac{x_2}{x_1} \). We will use \(S(v_0,...),C(v_0,...) \) to denote positive constants which depend on the initial velocity \(v_0 \) etc. Also \(C \) denotes absolute constant which may change value.

Let us explain why the vortex stretching terms in (1.6) are critical. For example the term \(\partial_3 w_3 \) where \(\partial_3 v_3 \) being viewed as a potential of the unknown function \(w_3 \) is certainly supercritical. However, we view \(w_3 = \partial_r v_\theta + \frac{\nu}{r} \) as the potential and \(\partial_3 v_3 \) as the unknown. Since it is known that \(|v_\theta| \leq C/r \), we see that \(w_3 \) now scales as \(-2\) power of the distance. This scaling shows \(w_3 \) is a critical potential function. The unknown function \(\partial_3 v_3 \) scales the same way as the vorticity \(w \). By exploiting the integral relations between \(v \) and \(w \), we can convert \(\partial_3 v_3 \) into \(w_r, w_3, w_\theta \). This, combined with the observation [2] about the first two equations in (1.6), imply that all the vortex stretching terms are critical. Next we carry a local energy estimate for \((J, \Omega, w_\phi) \) via equations (1.6). Once we know the potential terms are critical, the drift terms can be treated by an old small trick in [21], the proof thus goes through.
2. Proof of the theorem

The proof is divided into several steps. We may assume that \(v \) is smooth up to a given time \(t \).

Step 1. Choose suitable test functions for equations (1.6).

It is well known that singularity can possibly appear only on a finite segment of the \(x_3 \) axis (\(\mathbb{R}^3 \) for suitable solutions and \(\mathbb{R} \) for general ones). So by picking any positive number \(a \leq 1 \) and another positive number \(l > a \), which may depend on the initial velocity \(v_0 \), we can ensure that \(v \) is regular outside of the domain \(D_1 = \{(r, \theta, x_3) | 0 \leq r < a/2, -l/2 < x_3 < l/2, 0 \leq \theta < 2\pi\} \) for all time. Let \(\phi = \phi(r, x_3) \) be a axially symmetric cut off function in \(D_2 = \{(r, \theta, x_3) | 0 \leq r < a, -l < x_3 < l, 0 \leq \theta < 2\pi\} \) such that \(\phi = 1 \) on \(D_3 = \{(r, \theta, x_3) | 0 \leq r < 2a/3, -2l/3 < x_3 < 2l/3, 0 \leq \theta < 2\pi\} \) and \(\phi = 0 \) on \(D_2^c \) and also \(\frac{\nabla \phi}{\phi} \leq C/a, |\nabla^2 \phi| \leq C/a^2 \).

Use \(J\phi^2, \Omega \phi^2 \) and \(w_3 \phi^2 \) as test functions in equations 1, 2 and 3 in (1.6) respectively.

After integration on the region \(D_2 \times [0, t] \) for \(t > 0 \) we find that

\[
L_1 \equiv -\int_0^t \int \Delta J J\phi^2 dyds - \int_0^t \int \frac{2}{r} \partial_r J J\phi^2 dyds + \int_0^t \int \partial_t J J\phi^2 dyds
\]

(2.1)

\[
= -\int_0^t \int b \nabla J J\phi^2 dyds + \int_0^t \int (w_r \partial_r \frac{v_r}{r} + w_3 \partial_3 \frac{v_r}{r}) J\phi^2 dyds
\]

\[
\equiv R_1 + T_1.
\]

\[
L_2 \equiv -\int_0^t \int \Delta \Omega \Omega \phi^2 dyds - \int_0^t \int \frac{2}{r} \partial_r \Omega \Omega \phi^2 dyds + \int_0^t \int \partial_t \Omega \Omega \phi^2 dyds
\]

(2.2)

\[
= -\int_0^t \int b \nabla \Omega \Omega \phi^2 dyds - \int_0^t \int \frac{2v_\theta}{r} \Omega \phi^2 dyds
\]

\[
\equiv R_2 + T_2
\]

\[
L_3 \equiv -\int_0^t \int \Delta w_3 w_3 \phi^2 dyds + \int_0^t \int \partial_t w_3 w_3 \phi^2 dyds
\]

(2.3)

\[
= -\int_0^t \int b \nabla w_3 w_3 \phi^2 dyds + \int_0^t \int (w_3 \partial_3 v_3 + w_r \partial_r v_3) w_3 \phi^2 dyds
\]

\[
\equiv R_3 + T_3
\]

The left hand side of the three equalities \(L_1, L_2 \) and \(L_3 \) can be treated by routine integration by parts which shows:

\[
L_1 = \int_0^t \int |\nabla J|^2 \phi^2 dyds + \int_0^t \int J^2(0, y_3, t) \phi^2 dyds + \int_0^t \int J^2 \phi^2 dy dt + \frac{1}{2} \int \int J^2 \phi^2 dy dt
\]

\[
- \int_0^t \int \nabla J J \nabla \phi^2 dyds + \int_0^t \int J^2 \partial_r \phi^2 r dyds.
\]
Therefore
\[
L_1 \geq \frac{1}{2} \int_0^t \int |\nabla J|^2 \phi^2 dy ds + \frac{1}{2} \int J^2 \phi^2 dy \bigg|_0^t - 2 \int_0^t \int J^2 |\nabla \phi|^2 dy ds + \int_0^t \int \frac{J^2 \partial_r \phi^2}{r} dy ds.
\]

By our choice of the cut off function ϕ, we know v is regular in the supports of $\nabla \phi$ and $\partial_r \phi$, which is bounded away from the singular set by a distance $a/6$. So there is a positive constant $S = S(v_0, a, l)$ such that

\begin{align}
L_1 &\geq \frac{1}{2} \int_0^t \int |\nabla J|^2 \phi^2 dy ds + \frac{1}{2} \int J^2 \phi^2 dy \bigg|_0^t - CtS(v_0, a, l). \\
L_2 &\geq \frac{1}{2} \int_0^t \int |\Omega|^2 \phi^2 dy ds + \frac{1}{2} \int \Omega^2 \phi^2 dy \bigg|_0^t - CtS(v_0, a, l), \\
L_3 &\geq \frac{1}{2} \int_0^t \int |\nabla w_3|^2 \phi^2 dy ds + \frac{1}{2} \int w_3^2 \phi^2 dy \bigg|_0^t - CtS(v_0, a, l).
\end{align}

We remark that $S(v_0, a, l)$ may blow up when $a \to 0$. But we will make a small and fixed.

Substituting (2.4), (2.5) and (2.6) into (2.1), (2.2) and (2.3) respectively, we deduce

\begin{align}
\int (J^2 + \Omega^2 + w_3^2) \phi^2 dy \bigg|_0^t + \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2 + |\nabla w_3|^2) \phi^2 dy ds \\
\leq 2(R_1 + R_2 + R_3) + 2(T_1 + T_2 + T_3) + CS(v_0, a, l).
\end{align}

We are going to bound the right hand side in the next few steps.

Step 2. bounds on $R_1 + R_2 + R_3$, the drift terms.

These terms are generated by $b = v_r \vec{e}_r + v_3 \vec{e}_3$ which is supercritical. However since these are given by divergence free drift terms, they can be bounded as done in [21]. We present a proof for completeness.

Since $\text{div} \ b = 0$, we have
\[
R_1 = - \int_0^t \int b \cdot (\nabla J)(J\phi^2) dy ds
\]
\[
= \int_0^t \int b \cdot (\nabla \phi) \phi J^2 dy ds
\]
\[
\leq \left| \int \left(b \phi^{3/2} |J|^{3/2} \right) \left(\frac{\nabla \phi}{\phi^{1/2}} |J|^{1/2} \right) dy ds \right|.
\]

By Hölder’s inequality with exponents $\frac{4}{3}$ and 4,
\[
R_1 \leq \left(\int_0^t \int |b|^{\frac{4}{3}} \left(\phi^{3/2} |J|^{3/2} \right)^{\frac{4}{3}} dy ds \right)^{\frac{3}{4}} \left(\int_0^t \int \left(\frac{\nabla \phi}{\phi^{1/2}} |J|^{1/2} \right)^{\frac{4}{3}} dy ds \right)^{\frac{1}{4}}.
\]
Using properties of the cutoff function we find:

\[R_1 \leq \left(\int_0^t \int |b|^{4/3}(J\phi)^2 \, dy \, ds \right)^{2/3} \frac{4}{3} C \left(\int_0^t \int_{\text{supp} |\nabla \phi|} J^2 \, dy \, ds \right)^{1/3} a. \]

Next we fix \(\epsilon_1 > 0 \) and we apply Young’s inequality, with exponents \(\frac{4}{3} \) and 4:

\[R_1 \leq \frac{4}{3} \epsilon_1 \left(\int_0^t \int |b|^{4/3}(J\phi)^2 \, dy \, ds \right)^{2/3} \frac{4}{3} C \left(\int_0^t \int_{\text{supp} |\nabla \phi|} J^2 \, dy \, ds \right)^{1/3} \]

\[\leq \epsilon_1 \int_0^t \int |b|^{4/3}(J\phi)^2 \, dy \, ds + \frac{C \epsilon_1^{-3}}{a^4} \int_0^t \int_{\text{supp} |\nabla \phi|} J^2 \, dy \, ds. \]

Thus,

(2.8) \[|R_1| \leq \epsilon_1 c_0 \| b \|_{2,\infty}^{4/3} \int_0^t \int |\nabla (J\phi)|^2 \, dy \, ds + \frac{C \epsilon_1^{-3}}{a^4} \int_0^t \int_{\text{supp} |\nabla \phi|} J^2 \, dy \, ds. \]

This last inequality holds as a result of the standard energy estimate, Hölder’s inequality with exponents \(\frac{3}{2} \) and 3, and the 3 dimensional Sobolev Inequality,

\[\int_0^t \int |b|^{4/3}(J\phi)^2 \, dy \, ds \leq \int_0^t \left(\int |b|^2 \, dy \right)^{2/3} \left(\int (J\phi)^6 \, dy \right)^{1/3} ds \]

\[\leq c_0 \| b \|_{2,\infty}^{4/3} \int_0^t \int |\nabla (J\phi)|^2 \, dy \, ds. \]

By choosing \(\epsilon_1 \) suitably, we deduce

(2.9) \[|R_1| \leq \frac{1}{8} \int_0^t \int |\nabla J|^2 \phi^2 \, dy \, ds + CS(v_0, a, l), \]

where we have used the fact that \(v \) is regular in the support of \(\nabla \phi \) for all time. In exactly the same manner, we find that

(2.10) \[|R_1| + |R_2| + |R_3| \leq \frac{1}{8} \int_0^t \int \left(|\nabla J|^2 + |\nabla \Omega|^2 + |\nabla w_3|^2 \right) \phi^2 \, dy \, ds + CS(v_0, a, l), \]

Step 3. bounds on \(T_1 \) and \(T_2 \).

In this step we follow the idea in [CFZ] with one modification, namely a localized version of a formula of Miao and Zheng which relates \(\frac{w}{r} \) with \(\frac{w_3}{r} \). The rest of the step is divided into a few sub steps.

step 3.1

First we work on the easy one \(T_2 \) defined in (2.2).

\[T_2 = - \int_0^t \int \frac{2v_0}{r} J\Omega \phi^2 \, dy \, ds \]

\[\leq \int_0^t \int \frac{|v_0|}{r} (J\phi)^2 \, dy \, ds + \int_0^t \int \frac{|v_0|}{r} (\Omega_\theta)^2 \, dy \, ds. \]
By our assumption on $v_θ$, this implies
\[T_2 ≤ \lambda_1 \int_0^t \int (|\nabla(Jφ)|^2 + |∇(Ωφ)|^2)dyds + \lambda_2 \int_0^t \int [(Jφ)^2 + (Ωφ)^2]dyds. \]

Let us write $∇(Jφ) = ∇Jφ + J∇φ$. As mentioned earlier, J is regular in the support of $∇φ$. Hence

(2.11) \[T_2 ≤ 2\lambda_1 \int_0^t \int (|∇J|^2 + |∇Ω|^2)φ^2dyds + \lambda_2 \int_0^t \int [(Jφ)^2 + (Ωφ)^2]dyds + CtS(v_0, a, l). \]

Here we also did the same argument for $∇(Ωφ)$.

step 3.2

Next we turn to T_1. From (2.1),
\[
\frac{dT_1}{dt} = \int (w_r \partial_r \frac{v_r}{r} + w_3 \partial_3 \frac{v_r}{r})Jφ^2dy
\]

Using the relation $w_r = -\partial_3 v_θ$, $w_3 = \frac{1}{r} \partial_r (rv_θ)$ and integration by parts, we see that
\[
\frac{dT_1}{dt} = -\int \partial_3 v_θ \partial_r \frac{v_r}{r} Jφ^2 dy + \int \frac{1}{r} \partial_r (rv_θ) \partial_3 \frac{v_r}{r} Jφ^2 dy
\]
\[
= \int v_θ \partial_3 \partial_r \frac{v_r}{r} Jφ^2 dy + \int v_θ \partial_r \frac{v_r}{r} \partial_3 (Jφ^2) dy
\]
\[
- \int v_θ \partial_3 \partial_r \frac{v_r}{r} Jφ^2 dy - \int v_θ \partial_3 \frac{v_r}{r} \partial_r (Jφ^2) dy.
\]

Notice that the first and third term on the right hand side of the last equality cancel. Therefore, we deduce
\[
\frac{dT_1}{dt} = \int v_θ \partial_r \frac{v_r}{r} (\partial_3 J)φ^2 dy - \int v_θ \partial_3 \frac{v_r}{r} (\partial_r J)φ^2 dy
\]
\[
+ \int v_θ \partial_r \frac{v_r}{r} J∂_r φ^2 dy - \int v_θ \partial_3 \frac{v_r}{r} J∂_r φ^2 dy.
\]

This implies, since the last two terms in the above identity are bounded, that
\[
T_1 ≤ \frac{1}{8} \int_0^t \int |∂_3 J|^2 φ^2 dy + 2 \int_0^t \int v_θ^2 |∂_r \frac{v_r}{r}|^2 φ^2 dy
\]
\[
+ \frac{1}{8} \int_0^t \int |∂_r J|^2 φ^2 dy + 2 \int_0^t \int v_θ^2 |∂_3 \frac{v_r}{r}|^2 φ^2 dy + CtS(v_0, a, l).
\]

By our condition on $v_θ$ again, we find that
\[
T_1 ≤ \frac{1}{8} \int_0^t \int |∇J|^2 φ^2 dy + CtS(v_0, a, l) + 2\lambda_1 \int_0^t \int |∇(φ∂_r \frac{v_r}{r})|^2 dy + 2\lambda_2 \int_0^t \int (φ∂_r \frac{v_r}{r})^2 dy
\]
\[
+ 2\lambda_1 \int_0^t \int |∇(φ∂_3 \frac{v_r}{r})|^2 dy + 2\lambda_2 \int_0^t \int (φ∂_3 \frac{v_r}{r})^2 dy.
\]
This implies, after using again the fact that v is smooth in the support of $\nabla \phi$, that

\[
T_1 \leq \frac{1}{8} \int_0^t \int |\nabla J|^2 \phi^2 \, dy + CtS(v_0, a, l) + 4\lambda_1 \int_0^t \int |\nabla(\partial_r(v_r \frac{\phi}{r}))|^2 \, dy + 4\lambda_2 \int_0^t \int (\partial_r(v_r \frac{\phi}{r}))^2 \, dy
+ 4\lambda_1 \int_0^t \int |\nabla(\partial_3(v_r \frac{\phi}{r}))|^2 \, dy + 4\lambda_2 \int_0^t \int (\partial_3(v_r \frac{\phi}{r}))^2 \, dy.
\]

Here the constant C may have changed. We need to bound the last 4 terms on the preceding inequality. For this purpose, we first need to prove the following localized version of a nice identity by Miao and Zheng. For any $q \in (1, \infty)$, there is a positive constant c_q such that

\[
\|\nabla(\phi \partial_r(v_r \frac{\phi}{r}))\|_q \leq c_q \|\Omega \phi\|_q + S(v_0, a, l),
\]

\[
\|\nabla^2(\phi \partial_r(v_r \frac{\phi}{r}))\|_q \leq c_q \|\nabla(\Omega \phi)\|_q + S(v_0, a, l).
\]

Here, as always $\Omega = w_{\theta}/r$. The proof of these inequalities is given in step 3.3. From the identity

\[
\Delta b = -\nabla \times (w_{\theta} \nabla \phi) = \left(\partial_3(w_{\theta} \frac{x_1}{r}), \partial_3(w_{\theta} \frac{x_2}{r}), \partial_1(w_{\theta} \frac{x_1}{r}) - \partial_2(w_{\theta} \frac{x_2}{r}) \right),
\]

and $b = v_r(\frac{x_1}{r}, \frac{x_2}{r}, 0) + v_3(0,0,1)$, we see that

\[
\Delta(v_r \frac{x_1}{r}) = \partial_3(x_1 \Omega), \quad \Delta(v_r \frac{x_2}{r}) = \partial_3(x_2 \Omega).
\]

Therefore

\[
\Delta(v_r \frac{x_1}{r} \phi) = \partial_3(x_1 \Omega \phi) - x_1 \Omega \partial_3 \phi + 2\nabla(v_r \frac{x_1}{r}) \nabla \phi + v_r \frac{x_1}{r} \Delta \phi.
\]

Likewise

\[
\Delta(v_r \frac{x_2}{r} \phi) = \partial_3(x_2 \Omega \phi) - x_2 \Omega \partial_3 \phi + 2\nabla(v_r \frac{x_2}{r}) \nabla \phi + v_r \frac{x_2}{r} \Delta \phi.
\]

Inverting the Laplace operator, we infer

\[
v_r \frac{x_1}{r} \phi = \Delta^{-1} \partial_3(x_1 \Omega \phi) - \Delta^{-1} [x_1 \Omega \partial_3 \phi - 2\nabla(v_r \frac{x_1}{r}) \nabla \phi + v_r \frac{x_1}{r} \Delta \phi],
\]

\[
v_r \frac{x_2}{r} \phi = \Delta^{-1} \partial_3(x_2 \Omega \phi) - \Delta^{-1} [x_2 \Omega \partial_3 \phi - 2\nabla(v_r \frac{x_2}{r}) \nabla \phi + v_r \frac{x_2}{r} \Delta \phi].
\]

Multiplying \((2.17)\) by x_1, \((2.18)\) by x_2 and taking the sum, we arrive at

\[
v_r \phi = \sum_{i=1}^2 \frac{x_i}{r} \Delta^{-1} \partial_3(x_i \Omega \phi) - \sum_{i=1}^2 \Delta^{-1} [x_i \Omega \partial_3 \phi - 2\nabla(v_r \frac{x_i}{r}) \nabla \phi + v_r \frac{x_i}{r} \Delta \phi].
\]

Since ϕ is axially symmetric and $x_1/r = \cos \theta$, $x_2/r = \sin \theta$, we can write, for $i = 1, 2$, that

\[
\nabla(v_r \frac{x_i}{r}) \nabla \phi = \frac{x_i}{r} (\partial_r v_r \phi + \partial_3 v_r \partial_3 \phi).
\]
This turns (2.19) into

\[v_r \phi = \sum_{i=1}^{2} \frac{x_i}{r} \Delta^{-1} \partial_3 (x_i \Omega \phi) - \sum_{i=1}^{2} \frac{x_i}{r} \Delta^{-1} (x_i f), \]

(2.20)

\[f \equiv \Omega \partial_3 \phi - 2 \frac{\partial_r v_r}{r} \partial_r \phi - 2 \frac{\partial_3 v_r}{r} \partial_3 \phi - \frac{v_r}{r} \Delta \phi. \]

Note the function \(f \) is compactly supported, axially symmetric and point-wise bounded, due to the choice of the cut off function \(\phi \).

According to [15], the following operator identity holds, at least when acting on compactly supported functions,

\[\sum_{i=1}^{2} \frac{x_i}{r} \Delta^{-1} x_i = r \Delta^{-1} - 2 \partial_r \Delta^{-2}. \]

(2.21)

Since their proof is very sharp and cute, we repeat it here for completeness. Notice that

\[\sum_{i=1}^{2} x_i [x_i, \Delta^{-1}] = \sum_{i=1}^{2} x_i^2 \Delta^{-1} - \sum_{i=1}^{2} x_i \Delta^{-1} x_i = r^2 \Delta^{-1} - \sum_{i=1}^{2} x_i \Delta^{-1} x_i. \]

Hence

\[\sum_{i=1}^{2} \frac{x_i}{r} \Delta^{-1} x_i = r \Delta^{-1} - \sum_{i=1}^{2} \frac{x_i}{r} [x_i, \Delta^{-1}]. \]

(2.22)

On the other hand

\[\Delta [x_i, \Delta^{-1}] = \Delta (x_i \Delta^{-1}) - \Delta \Delta^{-1} x_i = 2 \partial_i \Delta^{-1}, \]

which implies

\[[x_i, \Delta^{-1}] = 2 \partial_i \Delta^{-2}. \]

Substituting this to the last term in (2.22), one obtains (2.21). Plugging (2.21) into the first identity in (2.20), we find that

\[\frac{v_r}{r} \phi = (\Delta^{-1} \partial_3 - 2 \frac{\partial_r}{r} \Delta^{-2} \partial_3) (\Omega \phi) - (\Delta^{-1} - 2 \frac{\partial_r}{r} \Delta^{-2}) f. \]

(2.23)

Recall that both \(\Omega \phi \) and \(f \) are axially symmetric. When the operator \(\frac{\partial_r}{r} \) acts on these functions, it can be written as

\[\frac{\partial_r}{r} = \Delta - \partial_r^2 - \partial_3^2. \]

Plugging this into (2.23), we deduce

\[\nabla (\frac{v_r}{r} \phi) = \Pi_1 (\Omega \phi) + \Pi_0 f, \]

(2.24)

where \(\Pi_1 \) and \(\nabla \Pi_0 \) are Riesz type singular integral operators that map \(L^q \) to \(L^q \), \(q \in (1, \infty) \) and \(\Pi_0 \) is a smoothing integral operator. Since \(f \) is bounded and compactly supported, this proves (2.13). We have used the fact that the gradient \(\nabla \) does not involve the derivative in \(\vec{e}_\theta \) direction, when acting on axially symmetric functions.

step 3.4.
Now we can take \(q = 2 \) in (2.13) and substitute it to (2.12) to obtain (2.25)

\[
T_1 \leq \frac{1}{8} \int_0^t \int \left| \nabla J \right|^2 \phi^2 dy + C t S(v_0, a, l) + 4 \lambda_1 c_2 \int_0^t \int |\nabla (\Omega \phi)|^2 dy + 4 \lambda_2 c_2 \int_0^t \int (\Omega \phi)^2 dy + 4 \lambda_1 c_2 \int_0^t \int |\nabla (\Omega \phi)|^2 dy + 4 \lambda_2 c_2 \int_0^t \int (\Omega \phi)^2 dy.
\]

This, together with (2.11), yield

\[
T_1 + T_2 \leq \left(\frac{1}{8} + 2 \lambda_1 + 9 \lambda_1 c_2 \right) \int_0^t \int \left(|\nabla J|^2 + |\nabla \Omega|^2 \right) \phi^2 dy ds + (\lambda_2 + 8 \lambda_2 c_2) \int_0^t \int (J \phi)^2 + (\Omega \phi)^2 \phi^2 dy ds + C t S(v_0, a, l).
\]

In the above we have used the product formula \((\nabla \Omega) \phi = \nabla (\Omega \phi) - \Omega \nabla \phi\). This completes Step 3.

Step 4. bounds on \(T_3 \).

Using \(w_3 = \frac{1}{4} \partial_r (rv \theta) \), we compute

\[
\int w_3 \partial_r v_3 \phi^2 dy = \int \int_0^\infty \partial_r (rv \theta) \partial_r v_3 \phi^2 dr dy_3
\]

\[
= - \int \int_0^\infty rv \partial_r \partial_r v_3 \phi^2 dr dy_3 - \int \int_0^\infty rv \partial_r v_3 \partial_r w_3 \phi^2 dr dy_3 - \int \int_0^\infty rv \partial_r v_3 \partial_r \phi^2 dr dy_3
\]

\[
= - \int v_\theta \partial_r \partial_r v_3 \phi^2 dy - \int v_\theta \partial_r v_3 \partial_r v_3 \phi^2 dy - \int v_\theta v_3 \partial_r v_3 \partial_r \phi^2 dy.
\]

Next, using \(w_r = - \partial_r v_\theta \), we have

\[
\int w_r \partial_r v_3 \phi^2 dy = \int \partial_r v_\theta \partial_r v_3 \phi^2 dy
\]

\[
= \int v_\theta \partial_r v_3 \phi^2 dy + \int v_\theta v_3 \partial_r v_3 \phi^2 dy + \int v_\theta v_3 \partial_r v_3 \phi^2 dy.
\]

Adding the previous two equalities and noting that the first terms on the right hand sides cancel, we obtain

\[
T_3 = - \int_0^t \int v_\theta \partial_r v_3 \partial_r v_3 \phi^2 dy ds - \int_0^t \int v_\theta v_3 \partial_r v_3 \partial_r \phi^2 dy ds
\]

\[
+ \int_0^t \int v_\theta v_3 \partial_r v_3 \phi^2 dy ds + \int_0^t \int v_\theta v_3 \partial_r v_3 \phi^2 dy ds.
\]

As before, all terms involving derivatives of \(\phi \) are bounded by \(C t S(v_0, a, l) \). Thus

\[
T_3 \leq - \int_0^t \int v_\theta \partial_r v_3 \partial_r v_3 \phi^2 dy ds + \int_0^t \int v_\theta v_3 \partial_r v_3 \phi^2 dy ds + C t S(v_0, a, l)
\]

\[
\equiv I_1 + I_2 + C t S(v_0, a, l).
\]
We will bound I_1 first. By our condition on v_θ,

$$I_1 \leq \frac{1}{8} \int_0^t \int |\partial_r w_3|^2 \phi^2 \, dy \, ds + 2 \int_0^t \int v_\theta^2 |\partial_3 v_3|^2 \phi^2 \, dy \, ds$$

$$\leq \frac{1}{8} \int_0^t \int |\partial_r w_3|^2 \phi^2 \, dy \, ds + 2 \lambda_1 \int_0^t \int |\nabla (\phi \partial_3 v_3)|^2 \, dy \, ds + 2 \lambda_2 \int_0^t \int |\partial_3 v_3|^2 \phi^2 \, dy \, ds.$$

Consequently

$$I_1 \leq \frac{1}{8} \int_0^t \int |\partial_r w_3|^2 \phi^2 \, dy \, ds + \lambda_1 \int_0^t \int |\nabla v_3|^2 \phi^2 \, dy \, ds + \lambda_2 \int_0^t \int |\partial_3 v_3|^2 \phi^2 \, dy \, ds + C t S(v_0, a, l, \lambda_2).$$

We need to bound the second term on the right hand side. To this end we call the relation for the full three dimensional velocity and vorticity:

$$-\Delta \partial_i v = \nabla \times \partial_i w,$$

where $i = 1, 2, 3$. Using $\partial_i v \phi^2$ as a test function and integrate, we know that

$$\int |\nabla \partial_i v|^2 \phi^2 \, dy + \int \partial_j \partial_i v \partial_j v \phi^2 \, dy = \int (\nabla \times \partial_i w) \partial_i v \phi^2 \, dy$$

$$= - \int (\nabla \times w) \partial_i v \partial_i v \phi^2 \, dy - \int (\nabla \times w) \partial_i v \partial_i v \phi^2 \, dy$$

$$\leq \frac{1}{2} \int |\nabla \partial_i v|^2 \phi^2 \, dy + \frac{1}{2} \int |\nabla v|^2 \phi^2 \, dy - \int (\nabla \times w) \partial_i v \partial_i v \phi^2 \, dy.$$

Since the terms involving derivatives of ϕ are bounded, this shows

$$\int_0^t \int |\nabla \partial_3 v_3|^2 \phi^2 \, dy \, ds \leq \int_0^t \int |\nabla v|^2 \phi^2 \, dy \, ds + C t S(v_0, a, l),$$

(2.29)

and

$$\int_0^t \int |\nabla \partial_r v_3|^2 \phi^2 \, dy \, ds \leq \int_0^t \int |\nabla v|^2 \phi^2 \, dy \, ds + C t S(v_0, a, l),$$

(2.30)

Here the constant C may have changed when we drop the cross product, which can be done through integration by parts that produces extra bounded terms involving $\nabla \phi$.

Substituting (2.29) into the second term on the right hand side of (2.28), we reach

$$I_1 \leq \frac{1}{8} \int_0^t \int |\partial_r w_3|^2 \phi^2 \, dy \, ds + 3 \lambda_1 \int_0^t \int |\nabla v|^2 \phi^2 \, dy \, ds + C t S(v_0, a, l, \lambda_1, \lambda_2).$$

(2.31)
Similarly, by our condition on \(v_\theta \),

\[
I_2 \leq \frac{1}{8} \int_0^t \int |\partial_3 w_3|^2 \phi^2 dyds + 2 \int_0^t \int v_\theta^2 |\partial_r v_3|^2 \phi^2 dyds
\]

\[
\leq \frac{1}{8} \int_0^t \int |\partial_3 w_3|^2 \phi^2 dyds + 2 \lambda_1 \int_0^t \int |\nabla \partial_r v_3|^2 \phi^2 dyds + 2 \lambda_2 \int_0^t \int |\partial_r v_3|^2 \phi^2 dyds.
\]

This with (2.30) imply that

\[
(2.32) \quad I_2 \leq \frac{1}{8} \int_0^t \int |\partial_3 w_3|^2 \phi^2 dyds + 3 \lambda_1 \int_0^t \int |\nabla w|^2 \phi^2 dyds + C(tS(v_0, a, l, \lambda_1, \lambda_2)).
\]

Substituting (2.31) and (2.32) into (2.27), we deduce the bound for \(T_3 \), i.e.

\[
T_3 \leq \frac{1}{8} \int_0^t \int |\nabla w_3|^2 \phi^2 dyds + 6 \lambda_1 \int_0^t \int |\nabla w|^2 \phi^2 dyds + C(tS(v_0, a, l, \lambda_1, \lambda_2)).
\]

Step 5. Conclusion of the proof.

Combining (2.26) with (2.33), we get

\[
(2.34) \quad T_1 + T_2 + T_3 \leq \left(\frac{1}{8} + 2 \lambda_1 + 9 \lambda_1 c_2 \right) \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2) \phi^2 dyds
\]

\[
+ (\lambda_2 + 8 \lambda_2 c_2) \int_0^t \int [(J \phi)^2 + (\Omega \phi)^2] dyds + \frac{1}{8} \int_0^t \int |\nabla w_3|^2 \phi^2 dyds
\]

\[
+ 6 \lambda_1 \int_0^t \int |\nabla w|^2 \phi^2 dyds + C(tS(v_0, a, l, \lambda_1, \lambda_2)).
\]

This, (2.10) and (2.7) together give

\[
\int (J^2 + \Omega^2 + w_3^2) \phi^2 dy \bigg|_0^t + \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2 + |\nabla w_3|^2) \phi^2 dyds
\]

\[
\leq \frac{1}{4} \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2 + |\nabla w_3|^2) \phi^2 dyds
\]

\[
+ \left(\frac{1}{4} + 4 \lambda_1 + 18 \lambda_1 c_2 \right) \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2) \phi^2 dyds
\]

\[
+ 2(\lambda_2 + 8 \lambda_2 c_2) \int_0^t \int [(J \phi)^2 + (\Omega \phi)^2] dyds + \frac{1}{4} \int_0^t \int |\nabla w_3|^2 \phi^2 dyds
\]

\[
+ 12 \lambda_1 \int_0^t \int |\nabla w|^2 \phi^2 dyds + C(tS(v_0, a, l, \lambda_1, \lambda_2)).
\]
Hence
\[
\int (J^2 + \Omega^2 + w_3^2) \phi^2 dy \bigg|_0^t + \frac{1}{4} \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2 + |\nabla w_3|^2) \phi^2 dy ds
\]
(2.35)
\[
\leq (4 + 18c_2)\lambda_1 \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2 + |\nabla w_3|^2) \phi^2 dy ds + 12\lambda_1 \int_0^t |\nabla w|^2 \phi^2 dy ds
+ 2\lambda_2(1 + 8c_2) \int_0^t \int [(J\phi)^2 + (\Omega\phi)^2] dy ds + Ct.S(v_0, a, l, \lambda_1, \lambda_2).
\]

There is still a little work to do, namely to bound the second term on the right hand side by the left hand side. Notice that \(w\) is axially symmetric. Hence
\[
|\nabla w|^2 = |\partial_r w_r|^2 + |\partial_r w_\theta|^2 + |\partial_3 w_r|^2 + |\partial_3 w_\theta|^2 + |\nabla w_3|^2
= |\partial_r (Jr)|^2 + |\partial_r (\Omega r)|^2 + r^2|\partial_3 J|^2 + r^2|\partial_3 \Omega|^2 + |\nabla w_3|^2
= |r \partial_r J + J| \phi^2 + |r \partial_r \Omega + \Omega| \phi^2 + r^2|\partial_3 J|^2 + r^2|\partial_3 \Omega|^2 + |\nabla w_3|^2
\leq 2r^2|\partial_r J|^2 + 2J^2 + 2r^2|\partial_r \Omega|^2 + 2\Omega^2 + r^2|\partial_3 J|^2 + r^2|\partial_3 \Omega|^2 + |\nabla w_3|^2.
\]

Hence
\[
|\nabla w|^2 \leq 2r^2(|\nabla J|^2 + |\nabla \Omega|^2) + 2J^2 + 2(\Omega^2).
\]

Plugging this to the second term on the right hand side of (2.35), we arrive at
\[
\int (J^2 + \Omega^2 + w_3^2) \phi^2 dy \bigg|_0^t + \frac{1}{4} \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2 + |\nabla w_3|^2) \phi^2 dy ds
\]
(2.36)
\[
\leq (28 + 18c_2)\lambda_1 \int_0^t \int (|\nabla J|^2 + |\nabla \Omega|^2 + |\nabla w_3|^2) \phi^2 dy ds
+ 2[\lambda_2(1 + 8c_2) + 24\lambda_1] \int_0^t \int [(J\phi)^2 + (\Omega\phi)^2] dy ds + Ct.S(v_0, a, l, \lambda_1, \lambda_2).
\]

Here we have used the assumption that \(r \leq a \leq 1\). Choosing
\[
\lambda_1 = \frac{1}{4(28 + 18c_2)}.
\]

Here \(c_2\) is given in (2.13) with \(q = 2\). We reduce the last inequality to
\[
\int (J^2 + \Omega^2 + w_3^2) \phi^2 dy \bigg|_0^t
\]
\[
\leq 2[\lambda_2(1 + 8c_2) + 24\lambda_1] \int_0^t \int [(J\phi)^2 + (\Omega\phi)^2] dy ds + Ct.S(v_0, a, l, \lambda_1, \lambda_2).
\]

By Gronwall’s inequality
\[
\int_{0 \leq r \leq a/2, -l/2 < y < l/2} \left(\frac{w_r}{r} \right)^2 + \left(\frac{w_\theta}{r} \right)^2 + w_3^2 \phi^2(y, t) dy \leq C(t, v_0, a, l, \lambda_1, \lambda_2).
\]

By standard theory this is more than enough to imply the regularity of \(v\) for all time. The reason is that it implies \(w\) is locally \(L^{2, \infty}\) in any finite time. □
Finally we verify the claim that v_θ is in the λ_1 critical class for any fixed $\lambda_1 > 0$, if it satisfies $|v_\theta(x,t)| \leq \frac{C}{r|\ln r|^{2+\epsilon}}$, $r < 1/2$.

Let $\psi = \psi(y,s)$ be any test function in Definition 1.1 with $a > 0$ to be specified later. Fixing s, we compute

$$
\int \frac{\psi^2}{r^2|\ln r|^{2+\epsilon}} dy = 2\pi \int_0^\infty \frac{1}{r|\ln r|^{2+\epsilon}} \psi^2 dr dy
$$

$$
= \frac{2\pi}{1+\epsilon} \int_0^\infty (|\ln r|^{-1-\epsilon})' \psi^2 dr dy = -\frac{2\pi}{1+\epsilon} \int_0^\infty \frac{1}{|\ln r|^{1+(\epsilon/2)}} \frac{2\psi}{\sqrt{r}} \frac{1}{|\ln r|^{\epsilon/2}} \sqrt{r} dr dy
$$

$$
\leq \frac{2\pi}{1+\epsilon} \int_0^\infty \frac{\psi^2}{r|\ln r|^{2+\epsilon}} dr dy + \frac{2\pi}{1+\epsilon} \int_0^\infty \frac{1}{|\ln r|^{\epsilon}} \psi^2 dr dy
$$

$$
\leq \frac{1}{1+\epsilon} \int \frac{\psi^2}{r^2|\ln r|^{2+\epsilon}} dy + \frac{1}{1+\epsilon} \int \frac{1}{|\ln r|^{\epsilon}} \psi^2 dr dy.
$$

Therefore

$$
\int \frac{\psi^2}{r^2|\ln r|^{2+\epsilon}} dy \leq \frac{1}{\epsilon|\ln a|^{\epsilon}} \int |\partial_r \psi|^2 dy,
$$

which shows

$$
\int \left(\frac{|v_\theta|}{r} + v_\theta^2 \right) \psi^2 dy \leq \frac{C + C^2}{\epsilon|\ln a|^{\epsilon}} \int |\partial_r \psi|^2 dy.
$$

Since C, ϵ and λ_1 are fixed positive numbers, we can always choose $a > 0$ sufficiently small so that, for all $t \geq 0$,

$$
\int_0^t \int \left(\frac{|v_\theta|}{r} + v_\theta^2 \right) \psi^2 dy ds \leq \lambda_1 \int_0^t \int |\partial_r \psi|^2 dy ds.
$$

Therefore v_θ is in the λ_1 critical class.

Acknowledgment: The author gratefully acknowledges the supports by Siyuan Foundation through Nanjing University and by the Simons Foundation.

He also wish to thank Prof. Lei, Zhen and Mr. Pan, Xinghong for discussions on the problem.

References

[1] Burke Loftus, Jennifer and Zhang, Qi S. A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations. Adv. Differential Equations 15 (2010), no. 5-6, 531-560.

[2] Hui Chen, Daoyuan Fang and Ting Zhang, Regularity of 3D axisymmetric Navier-Stokes equations, preprint 2015, to appear.

[3] L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771–831.

[4] Dongho Chae and Jihoon Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645–671.

[5] Chiun-Chuan Chen, Robert M. Strain, Tai-Peng Tsai, and Horng-Tzer Yau, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations, Int. Math Res. Notices (2008), vol. 8, artical ID rnm016, 31 pp.

[6] Lower bound on th blow-up rate of the axisymmetric Navier-Stokes equations II, Comm. P.D.E., 34(2009), no. 1–3, 203–232.
[7] Thomas Y. Hou and Congming Li, Dynamic stability of the 3D axi-symmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math., 61 (2008) 661–697.
[8] Thomas Y. Hou, Zhen Lei, and Congming Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. P.D.E., 33 (2008), 1622–1637.
[9] Quansen Jiu and Zhouping Xin, Some regularity criteria on suitable weak solutions of the 3-D incompressible axisymmetric Navier-Stokes equations, Lectures on partial differential equations, New Stud. Adv. Math., vol. 2, Int. Press, Somerville, MA, 2003, pp. 119–139.
[10] G. Koch, N. Nadirashvili, G. Seregin, and V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math. 203(2009), no. 1, 83–105.
[11] O. A. Ladyzhenskaya, Unique global solvability of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry, Zap. Naucn. Sem. Leningrad. Otdel. Math. Inst. Steklov. (LOMI) 7 (1968), 155–177 (Russian).
[12] Z. Lei, and Q. S. Zhang, A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations. Journal of Functional Analysis, 261 (2011), 2323–2345.
[13] Structure of solutions of 3D Axi-symmetric Navier-Stokes Equations near Maximal Points. Pacific Journal of Mathematics, 254 (2011), no. 2, 335–344.
[14] S. Leonardi, J. Malek, J. Necas, and M. Pokorný, On axially symmetric flows in \(\mathbb{R}^3 \), Z. Anal. Anwendungen, 18 (1999), 639–649.
[15] Miao, Changxing; Zheng, Xiaolin, On the global well-posedness for the Boussinesq system with horizontal dissipation, Comm. Math. Phys. 321 (2013), no. 1, 33-67.
[16] Jiri Neustupa and Milan Pokorný, An interior regularity criterion for an axially symmetric suitable weak solution to the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 381–399.
[17] Neustupa, J.; Pokorný, M. Axisymmetric flow of Navier-Stokes fluid in the whole space with non-zero angular velocity component. Proceedings of Partial Differential Equations and Applications (Olomouc, 1999). Math. Bohem. 126 (2001), no. 2, 469481.
[18] G. Seregin and V. Sverak, On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations, Comm. P.D.E., 34(2009), no. 1–3, 171–201.
[19] Gang Tian and Zhouping Xin, One-point singular solutions to the Navier-Stokes equations, Topol. Methods Nonlinear Anal., 11 (1998), 135–145.
[20] M. R. Ukhovskii and V. I. Yudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52–61.
[21] Qi S. Zhang, A strong regularity result for parabolic equations, Comm. Math. Phys., 244 (2004), 245–260.
[22] Zhang, Ping; Zhang, Ting, Global axisymmetric solutions to three-dimensional Navier-Stokes system. Int. Math. Res. Not. IMRN 2014, no. 3, 610-642.

Department of Mathematics, University of California, Riverside, CA 92521