H₂S in acute lung injury: a therapeutic dead end(?)

Tamara Merz1*, Nicole Denoix1,2, Martin Wepler3, Holger Gäßler3, David A. C. Messerer1,3, Clair Hartmann3, Thomas Datzmann3, Peter Radermacher1 and Oscar McCook1

From 4th International Symposium on Acute Pulmonary Injury and Translational Research - INSPIRES 2019
Dresden, Germany. 25-26 November 2019

Abstract
This review addresses the plausibility of hydrogen sulfide (H₂S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H₂S concentrations, and the pharmacokinetics and pharmacodynamics of H₂S-releasing compounds is a necessity to facilitate the safety of H₂S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H₂S donors, as a surrogate strategy.

Keywords: Suspended animation, Gaseous mediator, Hypometabolism, Inflammation, Oxidative stress, Translational medicine

Background
This review explores the plausibility of hydrogen sulfide (H₂S) therapy for acute lung injury (ALI) and circulatory shock. H₂S is a toxic gas with a characteristic smell of rotten eggs, and is also produced endogenously by three different enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate-sulfurtransferase (MST) [1]. In 1996 and 1997, physiological roles of H₂S in the brain and vascular smooth muscle, respectively [2, 3], were discovered, which led to its classification as the third “endogenous gaso-transmitter” [4], besides nitric oxide and carbon monoxide.

In 2005, in a hallmark study, Blackstone et al. demonstrated that inhaled H₂S (80 ppm, ambient temperature 13 °C) can induce a “suspended-animation” like state by reduction of the metabolic rate in spontaneously breathing mice. This was accompanied by a fall in body temperature down to 15 °C [5]. The metabolic rate dropped by 90% after 6 h of H₂S exposure. The effect was fully reversible upon transferring the mice into room air and room temperature [5]. These findings led to high hopes and a
frenzy of speculation regarding the ability of H₂S to induce a hypometabolic state which could be exploited in patient care [6]. However, the fact that this effect was first shown in experimental conditions (low ambient temperature, no maintenance of body temperature, and no anesthesia) that are contrary to the current clinical practice, some drawbacks have to be anticipated in translating this effect to critical care medicine. Interestingly, H₂S-induced hypometabolism and hypothermia could be reproduced in mice at room temperature, but could not be confirmed in anesthetized sheep [7]. In anesthetized pigs, Simon et al. did report a sulfide-induced drop in metabolism in a model of aortic occlusion with intravenous sulfide administration [8]. However, in large animals, the effect seems to take longer to manifest and is not as pronounced as in rodents. Thus, the concept of H₂S-induced “suspended animation” or hypometabolism should remain in the realm of science fiction (as suggested by Drabek et al. [9]), but it is also true that potentially therapeutic effects of H₂S independent of hypometabolism [10–12]: anti-inflammatory, antioxidant, organ-specific benefits, regulation of blood pressure, and glucose metabolism [13–17], are encouraging for the clinical development of H₂S donors and have not yet been fully explored [18]. After a brief introduction into the role of H₂S in the lung, its role in chronic lung diseases and modes of exogenous H₂S administration, we will review the current literature of exogenous H₂S administration in preclinical models of acute lung injury (ALI, mostly rodents), translationally more relevant models of lung injury and circulatory shock (resuscitated large animal models), and finally conclude with the current status of clinical trials of H₂S therapies and an outlook on future clinical development.

The role of H₂S in the lung

High levels of H₂S gas have been shown to be an environmental hazard, entering the body through the lung and being further distributed via the bloodstream [17]. H₂S as a byproduct of various industries and pollutant arising from sewers can cause a “knockdown” effect upon inhalation of > 500 ppm: pulmonary injury, loss of consciousness, cardiopulmonary arrest, and death [19]. Generally, 10–20 ppm of H₂S are considered to be safe to inhale acutely [17]. The effects of a chronic low-level exposure to H₂S on lung toxicity have not been well characterized, and epidemiological studies are controversial, either reporting no relevant effect [20], or reduced lung function [21]. Bates et al. investigated the effects of naturally occurring H₂S in geothermal areas on pulmonary health and found no detrimental effect and surprisingly even suggest a potential benefit on lung function [22].

H₂S reportedly plays a role in lung development [23], and a deficiency in the endogenous H₂S enzymes impairs alveolarization [24]. In the adult lung, the expression of the endogenous enzymes has been identified in a variety of pulmonary compartments in different species: rodents [25–27], bovine [28], and humans [29–32]. An upregulation of the endogenous H₂S enzymes has been reported to play a role in the adaptive response to injury [27, 33]. However, the role of endogenous H₂S in the adult lung is not well established.

H₂S in chronic lung diseases

Chronic pulmonary diseases have been found to be associated with reduced H₂S serum levels in patients [34] and suppressed pulmonary CSE expression [31]. Even though a
few preclinical studies report pro-inflammatory effects of H2S in general (e.g., [35, 36]), it seems well established that the predominant H2S effect in the pathophysiology of chronic pulmonary diseases is anti-inflammatory [25, 31, 32, 37, 38]. Interestingly, low expression of the H2S-producing enzymes was shown to compromise the anti-inflammatory effects of glucocorticoid therapy in asthma [31, 39]. Low levels of CSE expression and H2S production in early development have been correlated to a higher susceptibility to allergic asthma in young mice [40]. The protective role of H2S in chronic inflammatory lung diseases has been thoroughly reviewed by Chen and Wang ([41]: animal models [25, 37, 39, 42] and human studies [34, 43]) and reported more recently (animal models: [38, 44] human: [31], human in vitro: [32]). There are numerous studies reporting a potential benefit of exogenous H2S administration in chronic lung diseases [25, 32, 38, 44, 45].

Possible strategies for exogenous administration of H2S
The possible strategies for exogenous administration of H2S have been reviewed recently by Szabo and Papapetropoulos [17] and comprise the following: inhalation of gaseous H2S and intraperitoneal (i.p.) or intravenous (i.v.) administration of various H2S-releasing compounds: H2S-releasing salts (e.g., Na2S, NaHS) and slow H2S-releasing donors (GYY4137, AP39, diallyl-trisulfide (DATS)). Regarding the effects of exogenous H2S on inflammation reveals that short-term free sulfide levels as a consequence of the administration of H2S-releasing salts can have detrimental effects, whereas a slow continuous H2S release from slow-releasing donors attenuated inflammation (demonstrated in vitro by [46] and thoroughly reviewed by [13]). An overview of currently available H2S-releasing compounds is given in Table 1.

Therapeutic potential of H2S during acute lung injury
In the following subsections, 70 articles investigating the effects of exogenous H2S administration in various models of acute lung injury are reviewed. These articles were identified in a literature search on PubMed in August 2019 with the search term “hydrogen sulfide” in combination with either “acute lung injury” or “ventilator-induced lung injury” or “shock” and “lung.” Articles that were not available in English or did not deal with exogenous H2S administration were excluded.

Ventilator-induced lung injury (VILI)
The effects of exogenous H2S in murine models of VILI are mostly reported to be anti-inflammatory. Only one study reports an acceleration of VILI with 60 ppm of H2S gas.
administration as an inhaled gas [47]. However, in the same study, pre-treatment with an intra-arterial bolus of Na$_2$S (0.55 mg/kg) before starting harmful ventilation could attenuate lung inflammation and oxidative stress [47]. The latter is well in accordance with the protective effects of H$_2$S in VILI reported by Aslami et al. and Wang et al., who observed reduced inflammation and improved lung function in animals with VILI, treated with a continuous infusion of 2 mg/kg/h NaHS or DATS, respectively [48, 49]. In contrast to the harmful effects of gaseous H$_2$S administration (60 ppm) [47], four separate reports from a different group all indicate a beneficial effect of 80 ppm of H$_2$S: anti-inflammatory and anti-apoptotic effects [11], attenuated lung damage [50], antioxidant effects [51], and prevention of edema formation, even with a reduced H$_2$S administration time [52]. These contrasting results might be due to the fact that the latter group used a milder VILI protocol with a tidal volume of 12 ml/kg over a longer time (6 h) [11, 50–52] rather than 40 ml/kg for 4 h as [47]. In conclusion, these results suggest an overall beneficial effect of H$_2$S in VILI.

Pancreatitis-induced acute lung injury (ALI)

Up to 1/3 of all pancreatitis patients develop ALI or acute respiratory distress syndrome (ARDS), which accounts for 60% of pancreatitis-related deaths [53]. Inhibition of cystathionine-γ-lyase (CSE) had anti-inflammatory effects in a murine model of pancreatitis-induced lung injury [54]. In a follow-up experiment, Bhatia et al. 2006 reported an induction of lung inflammation and histological damage in response to i.p. injection of 10 mg/kg NaHS in mice [55]. The effects were only present 1 h post-injection and by 3 and 6 h, the inflammatory state had returned to baseline [55], suggesting that the toxic effects were a transitory consequence of NaHS-induced high peak sulfide concentrations, which were quickly cleared. Besides Bhatia et al. 2005 [54], three more studies report a benefit of the inhibition of endogenous H$_2$S production by CSE (either chemically or genetic deletion) on pancreatitis-induced ALI in murine models [56–58]. However, as mentioned previously, the effects of H$_2$S on inflammation are controversial: in other studies, both the administration of ACS15 (H$_2$S-releasing diclofenac) and NaHS pre-treatment (10–15 mg/kg) led to an attenuation of inflammation in pancreatitis-induced ALI [59, 60]. The context of H$_2$S administration seems to be crucial: in a healthy animal, 10 mg/kg NaHS induces transient lung inflammation, whereas this kind of pre-treatment is anti-inflammatory in subsequent pancreatitis-induced ALI. Furthermore, the role of CBS in the CSE inhibition experiments is not clear—it could potentially be upregulated in response to CSE inhibition. Neither of the CSE inhibition experiments report pulmonary H$_2$S levels; thus, no causal conclusions about the role of H$_2$S itself in inflammation can be drawn from these studies.

Burn and/or smoke-induced lung injury

Acute lung injury is common in burn injury patients and can also be aggravated by the inhalation of smoke. In a murine model of hot water-induced skin burn, Zhang et al. observed aggravated lung inflammation and histological damage in animals treated with NaHS (10 mg/kg) [61], which could be mediated by transient toxic peak sulfide release, which has to be anticipated with this dose of NaHS. In contrast, in a similar model, Ahmad et al. report attenuated pulmonary cell infiltration and oxidative stress with the
administration of AP39 [62]. However, confoundingly, another arm in this study was treated with AOAA, an inhibitor of endogenous H2S enzymes [63], which had the same effects as AP39, prompting their conclusion of a “complex pathogenic role of H2S in burns” [62]. However, the authors neither report H2S levels nor the expression levels of the endogenous enzymes, which makes it difficult to interpret their data. In the lung, the upregulation of the endogenous H2S enzymes can represent an adaptive response to stress [27]. Thus, it is tempting to speculate that their apparently ambivalent results may be attributed to AOAA and AP39 having a similar regulatory effect on the endogenous H2S enzymes, which has not been investigated or reported yet. In fact, Han et al. report attenuated lung injury and antioxidant effects of spontaneous breathing of 80 ppm H2S in a rat model of cotton smoke-induced ALI [64]. In a combined model of smoke- and flame burn-induced lung injury, Esechie et al. were able to demonstrate attenuated inflammation and improved 5 days survival due to subcutaneous Na2S treatment [65]. They were also able to confirm this protective effect of Na2S in a large animal (ovine) model of smoke and burn injury, where a 24-h primed continuous i.v. infusion of Na2S after injury ameliorated pulmonary pathophysiological changes [66]. Overall, H2S seems to mediate protective effects in burn- and/or smoke-induced ALI.

Endotoxin-induced ALI

All studies investigating the effects of exogenous H2S in LPS-induced lung inflammation were performed in rodents and reported beneficial effects, regardless of the mode of LPS (locally or systemically) and H2S (salt, slow-releasing donor, inhalation) administration. Inhalation of 80 ppm H2S after intranasal LPS attenuated lung histological damage and had anti-inflammatory and antioxidative effects [67, 68]. Pretreatment with GYY4137 also attenuated lung injury and cell infiltration after LPS inhalation [69]. Both GYY4137 and NaHS pre-treatment also attenuated lung injury and inflammation after intratracheal LPS exposure [70, 71]. A therapeutic administration of H2S, either sodium thiosulfate (STS) or GYY4137, after intratracheal LPS ameliorated pulmonary inflammation as well [72, 73]. GYY4137 also attenuated cell infiltration in the lung after i.v. injection with LPS. Pre-treatment with GYY4137 had antioxidant and anti-inflammatory effects in i.p. injection of LPS. NaHS administration 3 h after i.v. LPS attenuated inflammation and oxidative stress and protected the mitochondria in the lung [74].

Polymicrobial sepsis-induced ALI

In contrast to studies investigating endotoxin administration, the role of exogenous H2S in murine models of cecal ligation and puncture (CLP, abdominal sepsis) is controversial: both beneficial and detrimental effects have been reported. In a resuscitated murine model, 100 ppm of inhaled H2S had minor anti-inflammatory effects, though not mediating protective effects in CLP [75]. A variety of studies report aggravation of sepsis-induced lung injury by NaHS [76–82]. However, in all these models, NaHS was administered as an i.p. bolus and did not comprise any additional resuscitative measures. The route of administration might also be a confounding factor combined with the CLP. Furthermore, the dose of H2S that was used in these studies was much higher than the dose of the previously mentioned LPS experiments (i.e., 10 mg/kg during CLP...
versus 0.78–3.12 mg/kg i.p. NaHS during LPS). In fact, 1 h i.v. administration of NaHS at a rate of 1 and 3 mg/(kg × h) after CLP attenuated oxidative stress and cell infiltration in the lung [83]. High peak sulfide levels achieved by the bolus administration of a high dose of H₂S can exert toxic detrimental effects, whereas achieving a less pronounced elevation of sulfide levels over a longer period of time could exert a benefit [13]. In a model of enterocolitis, the slow-releasing H₂S donor GYY4137 attenuated lung inflammation and edema, whereas Na₂S (20 mg/kg 3 times daily) had no effect [84].

Oleic acid-induced ALI
ALI is most commonly modeled in mice by an intravenous injection of oleic acid (OA) [85]. Studies investigating exogenous H₂S administration in this model consistently report beneficial effects: attenuated edema formation, reduced cell infiltration, and anti-inflammatory and antioxidant effects of NaHS pre-treatment [86–89].

Oxidative lung injury
In models of hyperoxia- or ozone-induced ALI, NaHS administration exerted anti-inflammatory and antioxidative effects [90–92]. However, hyperoxia cannot only induce lung damage, depending on the experimental protocol: hyperoxia, as an experimental therapy in combined fracture healing and blunt chest trauma, exerted lung-protective effects. Interestingly, these protective effects were associated with an amelioration of the stress-induced upregulation of endogenous H₂S enzymes and thus restoring the naive state of protein expression [27].

Trauma-induced ALI
Blunt chest trauma induces mechanical and inflammatory injury to the lung [93]. In a resuscitated, murine model of thoracic trauma, a continuous i.v. infusion of Na₂S (0.2 mg/(kg × h)) had no effect on lung mechanics and gas exchange, but reduced apoptosis and cytokine production [33]. These effects were even more pronounced in combination with hypothermia [33]. Inhaled H₂S (100 ppm) attenuated inflammation and cell infiltration in the lung in a non-resuscitated rat model of thoracic trauma [94]. However, in both these studies, the effects of H₂S were rather weak and a clear benefit could not have been determined [33, 94], in contrast to models of other types of injury. Interestingly, an upregulation of pulmonary CSE expression in response to combined acute on chronic lung disease, i.e., thoracic trauma after cigarette smoke exposure, was suggested to be an adaptive response to injury [27, 95], in that a genetic deletion of CSE in the same kind of acute on chronic trauma was associated with aggravated ALI [96].

ALI in various types of ischemia/reperfusion injury (I/R)
In a rat model of lung transplantation, NaHS (0.7 mg/kg i.p.) improved lung function and reduced cell infiltration and oxidative stress [97]. NaHS pre-treatment was beneficial in limb I/R-induced lung injury, due to anti-inflammatory effects and attenuated edema formation [98]. GYY4137 pre-treatment has been tested in infrarenal aortic cross clamping, as well as lung I/R, and beneficial effects have been reported in both
types of lung injury: anti-inflammatory and antioxidant activity, respectively [99, 100]. Results in models of hemorrhagic shock are controversial. One study found a beneficial effect of an i.p. bolus of NaHS in a rat model: attenuated edema formation, cell infiltration, and necrosis [101]. Another study of HS in mice determined pulmonary anti-inflammatory effects of AP39; however, the mortality rate in the treated arm of this study was very high due to profound vasodilation [102]. Using a lower dose of AP39 yielded no effects at all [102]. These opposite effects of exogenous H2S administration in these two experiments might be due to the different H2S-releasing compounds used or resuscitative measures. Chai et al. [101] performed the re-transfusion/resuscitation only with fluid administration, whereas Wepler et al. [102] used re-transfusion of shed blood and a full-scale small animal intensive care unit (ICU) setup (see below), which certainly changes the pathophysiology. In general, the role of H2S in hemorrhagic shock is controversial, with either a beneficial [103–108], harmful [109, 110], or no impact [111, 112].

Translational medicine—H2S in large animal models of shock

Animal models with the purpose to identify relevant novel therapeutic strategies for patient care should reflect the clinical situation as closely as possible. In the context of ALI and shock research, the clinical practice for patient care in the ICU has to be reflected in experimental models to facilitate the translation from preclinical research to the clinical reality, i.e., temperature management, frequent blood gas analysis, lung-protective mechanical ventilation, hemodynamic monitoring, fluid administration, and catecholamine support titrated to the mean arterial pressure (MAP) [113]. Metabolic and organ-specific differences between small and large animals need to be taken into account [114, 115], as well as the challenge of reproducing the patient’s pathophysiology (e.g., comorbidities and premedication).

In particular for H2S, in a translational scenario, the implementation of intensive care measures (e.g., maintenance of body temperature, anesthesia, fluid resuscitation) might interfere with its effects, thus contributing to the lack of a hypometabolic effect in resuscitated rodent intensive care models [10, 33, 75, 102]. In large animals, the effects of H2S administration, in general, have been less robust, not only due to the intensive care measures, but also due to their large body size and different metabolic and thermoregulatory phenotype [114]. Large resuscitated animal studies reflect (i) no or very limited effects [8, 103, 112, 116–118], (ii) organ-specific effects [66], or (iii) beneficial effects restricted to a narrow timing and dosing window [119, 120].

As aforementioned, the induction of suspended animation by H2S inhalation was successful in small animals [5]; however, the translation to larger animals and eventually humans has proven to be challenging. Small animals have a much higher metabolic rate in relation to their body weight than large animals [121]; thus, the induction of a hypometabolic state is much easier to perform in small animals [114]. To induce that same state in a larger animal, a much higher dose of H2S would be needed, harboring the risk of toxicity [114]. However, the challenges of measuring H2S/sulfide in biological samples make it difficult to perform dose-finding studies.

Nonetheless, several studies in large animal models explored the therapeutic potential in various types of ALI. Na2S in an ovine model of burn reduced mortality and
improved gas exchange [66]. In porcine models, Na₂S was further studied in hemorrhagic shock, where it attenuated lung damage when administered at the time of reperfusion, however largely unrelated to hypothermia [120]. Administration of STS in the acute phase of resuscitation (24 h) after hemorrhagic shock in a porcine comorbid atherosclerotic model showed only a limited effect by improved gas exchange and lung mechanics in comparison to vehicle-treated animals (Table 2, [122]). Nüßbaum et al. investigated the effects of GYY4137 during long-term resuscitated septic shock in pigs with atherosclerosis: GYY4137 treatment led to a preferential utilization of carbohydrates; however, they did not observe any major benefit of the treatment, gas exchange was not affected, and they did not further investigate lung tissue [117]. Unfortunately, none of the other large animal studies report lung function or lung histopathology. Still, it seems that exogenous H₂S can mediate lung-protective effects in translationally relevant large animal models, when carefully timed and titrated.

Clinical trials of exogenous H₂S administration in ALI

To be able to answer the question posted in the title of this review, the clinical development of H₂S-releasing compounds has to be taken into consideration as well. As we shift from large animal preclinical studies to clinical trials, a search on clinicaltrials.gov (August 2019) for the term “sulfide” revealed a total of 64 clinical trials (see Fig. 1). Only two trials were found, which focused on a lung pathology (i.e., asthma), falling into the category “observational” in Fig. 1, investigating the potential use of H₂S as a biomarker. There are no interventional clinical trials addressing the therapeutic potential of exogenous H₂S in lung injury or lung disease. Of the 50 interventional trials identified, only 20 were evaluating H₂S donors, 8 evaluated their intervention based on H₂S as a biomarker, and 5 suggested H₂S as a part of the mechanism of their intervention (see Fig. 1). The category “other” in Fig. 1 includes contrast agents, chemotherapeutics, and dietary supplements with a sulfide moiety. Only 6 of the 20 interventional

Table 2 Lung function in a resuscitated comorbid porcine model of hemorrhagic shock [122]

Timepoint	Group assignment	Horowitz index (mmHg)	PEEP (cmH₂O)
Baseline	Control	400 (338, 448)	0
	Thiosulfate	351 (328, 427)	0
After shock (start of STS infusion)	Control	376 (322, 431)	0
	Thiosulfate	352 (283, 405)	0
24 h after shock (end of STS infusion)	Control	387 (326, 418)	10 (10, 10)
	Thiosulfate	385 (355, 417)	10 (10, 10)
48 h after shock	Control	230 (195, 270)#	12.5 (12.5, 15)
	Thiosulfate	299 (263, 339)*	11.3 (10, 12.5)
72 h after shock	Control	289 (106, 323)#	15 (12.5, 15)
	Thiosulfate	337 (300, 387)	10 (10, 12.5)*

Atherosclerotic pigs were surgically instrumented and, after a short recovery period, underwent 3 h of hemorrhagic shock (target mean arterial pressure 40 ± 5 mmHg). Seventy-two hours of resuscitation comprised re-transfusion of the shed blood and fluid and catecholamine administration targeted to the pre-shock mean arterial pressure. Further details about the experimental protocol can be found in [122]. STS was administered during the first 24 h of resuscitation after hemorrhagic shock. Effects on lung function were most pronounced at 48 h after hemorrhagic shock. Data shown are median (lower quartile, upper quartile)

*Significant to control group
#Significant to baseline (p < 0.05 in two-way ANOVA)
trials with H₂S donors are relevant to intensive care (see Fig. 2), excluding skin diseases, colonoscopy, and arthritis.

IK-1001, a solution generated by bubbling H₂S gas into an aqueous solution, was the first compound, designated to administer H₂S, under investigation in clinical trials in 2009. The first trial of IK-1001 targeted “renal impairment” (NCT00879645) and was terminated prematurely (actual recruitment of 28 participants) because investigators were unable to determine sulfide levels. The issue of not being able to reliably measure sulfide is of course critical for clinical approval of a compound: how would one ever be able to determine the safety of a compound that cannot be measured? One complexity is the fact that exogenous sulfide is highly volatile and rapidly bound and/or metabolized in vivo [27]. Various sulfide pools are available in biological systems and sulfide engages in many different chemical reactions [123], suggesting that these endogenous pools are highly dynamic. Exogenous administration of H₂S might change the balance
of this whole system in ways that we do not fully understand yet. The second trial with IK-1001 in coronary artery bypass (NCT00858936) was terminated after recruiting 6 participants with reasons not reported. The third trial in ST-elevation myocardial infarct (STEMI, NCT01007461) was withdrawn by company decision—non-safety related.

As mentioned above, IK-1001 is an aqueous solution of physically dissolved H$_2$S, thus resembling the characteristics of the administration of H$_2$S-releasing salts or inhaled H$_2$S (see also Table 1). Neither administration of H$_2$S via inhalation nor injection of H$_2$S-releasing salts will likely be ever used in clinical practice, due to airway mucosal damage and the potential of toxic peak sulfide concentrations, respectively [27]. In fact, inhalation of 300 ppm H$_2$S, though sub-lethal, is used as a model to study lung injury [124, 125]. Efforts to avoid the airway irritation of gaseous H$_2$S using extracorporeal membrane lung ventilation in a preclinical study were successful, but there was no improvement on the outcome from cardiopulmonary bypass [126].

SG-1002, a mixture of organic sulfide-releasing compounds and salts, has been under investigation in heart failure. A phase I trial revealed the compound to be safe and well tolerated (NCT01989208); a follow-up phase II trial is still in progress with no results posted yet (NCT02278276).

An interesting perspective for H$_2$S-based therapeutics is the reconsideration of compounds that are already clinically approved and have only recently been identified to be able to release H$_2$S: (i) sodium thiosulfate (STS) [17, 127], approved for cyanide detoxification and cisplatin overdosage; (ii) ammonium tetrathiomolybdate (ATTM) [128, 129], approved for Wilson’s disease, a copper metabolism disorder; and (iii) zofenopril [130], an inhibitor of angiotensin converting enzyme approved for hypertension. These compounds all have been tested extensively and are known to have good safety profiles (see also Table 1).

For example, Dyson et al. showed ATTM led to a 50% reduction of infarct size in rat models of myocardial and cerebral I/R as well as improved survival after hemorrhagic shock [129]. The good safety profile of STS [131] in particular might be related to the fact that thiosulfate itself is an endogenous intermediate of oxidative H$_2$S metabolism [127] and is suggested to be “a circulating ‘carrier’ molecule of beneficial effects of H$_2$S” [132], in particular under hypoxic conditions [127]. The clinical trial of IK-1001 in renal impairment even used thiosulfate as an indirect measure of H$_2$S release from their compound (NCT00879645), although ultimately not successful. STS is currently under investigation in a phase 2 clinical trial to preserve cardiac function in STEMI (NCT02899364). With regard to the lung, as mentioned previously, STS was beneficial in murine models of intratracheal LPS and CLP [72]. Our own group’s findings support these results from Sakaguchi et al.: we determined a beneficial effect of STS to the lung, i.e., improved gas exchange and lung mechanics in a translationally relevant large animal model of hemorrhagic shock (Table 2). Thus, STS is a very promising compound for the development of therapeutic H$_2$S administration in ALI in a clinical setting.

Conclusions

Exogenous H$_2$S administration has been demonstrated to be beneficial in various preclinical models of lung injury. However, due to the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of methods to determine H$_2$S
levels and/or the pharmacokinetics and pharmacodynamics of H$_2$S-releasing compounds is absolutely necessary to facilitate the safety of H$_2$S-based therapies. Awaiting the results of currently ongoing clinical trials and the re-evaluation of already approved H$_2$S-releasing compounds for novel indications could likely help to prove that H$_2$S is in fact not a therapeutic dead end [6].

Abbreviations

ALI: Acute lung injury; ARDS: Acute respiratory distress syndrome; ATTM: Ammonium tetrathiomolybdate; CBS: Cystathionine-β-synthase; CLP: Cecal ligation and puncture; CSE: Cystathionine-γ-lyase; DATS: Diallyl-trisulfide; H$_2$S: Hydrogen sulfide; ICU: Intensive care unit; I/R: Ischemia reperfusion; i.p.: Intraperitoneal; i.v.: Intravenous; LPS: Lipopolysaccharide; MAP: Mean arterial pressure; MST: 3-mercaptopyruvate-sulfurtransferase; OA: Oleic acid; ppm: parts per million; STS: Sodium thiosulfate; VILI: Ventilator-induced lung injury

Acknowledgements

Not applicable

About this supplement

This article has been published as part of Intensive Care Medicine Experimental Volume 8 Supplement 1, 2020: Proceedings from the Fourth International Symposium on Acute Pulmonary Injury and Translation Research (INSPIRES IV). The full contents of the supplement are available at https://icm-experimental.springeropen.com/articles/supplements/volume-8-supplement-1.

Authors’ contributions

TM drafted the manuscript. OM and PR critically reviewed and edited the manuscript. TM, ND, MW, HG, DACM, CH, TD, and OM were involved in the acquisition and interpretation of data. All authors read and approved the final version.

Funding

PR received funding from the DFG CRC 1149, the DFG GRK 2203, and the German Ministry of Defense. The work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 251293561 - SFB 1149. Publication costs are covered from the budget of the Institute for Anesthesiological Pathophysiology and Process Engineering (DFG CRC 1149 and DFG GRK 2203).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Helmholtzstraße 8/1, 89081 Ulm, Germany. 2Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany. 3Clinic for Anesthesia, Ulm University Medical Center, Ulm, Germany. 4Clinic for Anesthesia and Intensive Care, Bundeswehrkrankenhaus, Ulm, Germany.

Received: 14 July 2020 Accepted: 16 July 2020

References

1. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–816. https://doi.org/10.1152/physrev.00017.2011
2. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neuroscience 16:1066–1071
3. Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531. https://doi.org/10.1016/bbrc.1997.08.1687
4. Wang R (2002) Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798. https://doi.org/10.1096/fj.02-0211hyp
5. Blackstone E, Morrison M, Roth MB (2005) H$_2$S induces a suspended animation-like state in mice. Science 308:518. https://doi.org/10.1126/science.1108581
6. Leslie M (2008) Medicine. Nothing rotten about hydrogen sulfide’s medical promise. Science 320:1155–1157. https://doi.org/10.1126/science.320.5880.1155
7. Hacuzi P, Notet V, Chenuel B, Chalon B, Sponne I, Ogier V, Bihain B (2008) H$_2$S induced hypometabolism in mice is missing in sedated sheep. Respir Physiol Neurobiol 160:109–115. https://doi.org/10.1016/j.resp.2007.09.001
8. Simon F, Giudici R, Duy CN, Schelzing H, Oter S, Gröger M, Wachter U, Vogt J, Spirt G, Szabó C, Rademacher P, Cabza E (2008) Hemodynamic and metabolic effects of hydrogen sulfide during porcine ischemia/reperfusion injury. Shock 30: 359–364. https://doi.org/10.1097/SHK0b013e3181674185

9. Drabek T (2012) Hydrogen sulfide-curiouser and curiouser Crit Care Med 40:2255–2256. https://doi.org/10.1097/CCM. 0b013e318251507a

10. Baumgart K, Wagner F, Gröger M, Weber S, Barth E, Vogt JA, Wachter U, Huber-Lang M, Kranker MW, Albuszies G, Georgieff M, Asfar P, Szabó C, Cabza E, Rademacher P, Simkova V (2010) Cardiac and metabolic effects of hypothermia and inhaled hydrogen sulfide in anesthetized and ventilated mice. Crit Care Med 38:588–595. https://doi.org/10.1097/ CCM0b013e31819ed2e

11. Faller S, Ryter SW, Choi AM, Loop T, Schmidt R, Hoezel A (2010) Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology 113:104–115. https://doi.org/10.1097/ALN.0b013e3181371707

12. Tokuda K, Kida K, Marutani E, Crimi E, Bougaki M, Khatri A, Kimura H, Ichinohe F (2012) Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxid Redox Signal 17:11–21. https://doi.org/10.1089/ars.2011.4363

13. Whiteman M, Wingard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32. https://doi.org/10.1586/ecp.10.134

14. Kimura Y, Goto Y, Kimura H (2011) Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal 12:1–13. https://doi.org/10.1089/ars.2008.2282

15. van Goor H, van den Born JC, Hillebrands JL, Joles JA (2016) Hydrogen sulfide in hypertension. Curr Opin Nephrol Hypertens 25:107–113. https://doi.org/10.1097/MNH.0000000000000206

16. Unthener AA, Wang R, Ju Y, Wu L (2016) Decreased gluconeogenesis in the absence of cytochrome gamma-lyase and the underlying mechanisms. Antioxid Redox Signal 24:129–140. https://doi.org/10.1089/ars.2015.6369

17. Szabo C, Papapetropoulos A (2017) International Union of Basic and Clinical Pharmacology. CIII: pharmacological modulation of H2S levels: H2S donors and H2S biosynthesis inhibitors. Pharmacol Rev 69:497–564. https://doi.org/10. 1124/pr.117.014050

18. Leslie M (2016) Whatever happened to. Science 353:1198. https://doi.org/10.1126/science.353.6305.1198

19. Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–112. https://doi.org/10.1146/annurev.pa.32.040192.000545

20. Jäppinen P, Vilkka V, Marttila O, Haahtela T (1990) Exposure to hydrogen sulphide and respiratory function. Br J Ind Med 47:824–828. https://doi.org/10.1136/oem.47.12.824

21. Richardson DB (1995) Respiratory effects of chronic hydrogen sulfide in mice. Am J Ind Med 28:109–108

22. Bates MN, Crane J, Balmes JR, Garrett N (2015) Investigation of hydrogen sulfide exposure and lung function, asthma and chronic obstructive pulmonary disease in a geothermal area of New Zealand. PLoS One 10:e0122062. https://doi. org/10.1371/journal.pone.0122062

23. Madurga A, Miljković I, Ruiz-Camp J, Vadász I, Herold S, Mayer K, Fehrenbach H, Seeger W, Morty RE (2014) Systemic hydrogen sulfide administration partially restores normal alveolarization in an experimental animal model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 306:L684–L697. https://doi.org/10.1152/ajlun.00361.2013

24. Madurga A, Golec A, Pozanka A, Ischi I, Miljković I, Nardelli B, Vadász I, Herold S, Mayer K, Reichenberger F, Fehrenbach H, Seeger W, Morty RE (2015) The H2S-generating enzymes cystathionine β-synthase and cystathionine γ-lyase play a role in vascular development during normal lung alveolarization. Am J Physiol Lung Cell Mol Physiol 309:L710–L724. https://doi.org/10.1152/ajplung.0034.2015

25. Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, Tang CS (2009) Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine 45(2):117–123. https://doi.org/10.1016/j.cyto.2008.11.009

26. Wang P, Zhang G, Wondimu T, Ross B, Wang R (2011) Hydrogen sulfide and asthma. Exp Physiol 96:847–852. https://doi.org/10.1113/expphysiol.2011.07448

27. McCook O, Rademacher P, Volani C, Asfar P, Ignatius A, Möller P, Szabó C, Whitehan M, Wood ME, Wang R, Georgieff M, Wachter U (2014) H2S during circulatory shock: some unresolved questions. Nitric Oxide 41:48–51. https://doi.org/10.1016/j.niox.2014.03.163

28. Olson KR, Whitlefield NL, Bearden SE, St Leger J, Nilson E, Gao Y, Madden JA (2010) Hypoxic pulmonary vasoconstriction: a paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol 298:R51–R60. https://doi. org/10.1152/ajpregu.00576.2009

29. Perry MM, Hui CK, Whitehan M, Wood ME, Adcock I, Kirkham P, Mcdonalds C, Chung KF (2011) Hydrogen sulfide inhibits proliferation and release of IL-8 from human airway smooth muscle cells. Am J Respir Cell Mol Biol 45:746–752. https://doi.org/10.1165/rcmb.2010-0304OC

30. Baskar R, Li L, Moore PK (2007) Hydrogen sulfide-induces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells. FASEB J 21:247–255. https://doi.org/10.1096/fj.06-6255com

31. Sun Y, Wang K, Li MX, He W, Chang JR, Liao CC, Lin F, Qi YF, Wang R, Chen YH (2015) Metabolic changes of H2S in smokers and patients of COPD which might involve in inflammation, oxidative stress and steroid sensitivity. Sci Rep 5: 14971. https://doi.org/10.1038/srep14971

32. Perry MM, Tildy B, Papi A, Casolari P, Caramori G, Rempel KL, Halyko AJ, Adcock I, Chung KF (2018) The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide. Respir Res 19:85. https://doi.org/10.1186/s12931-018-0788-x

33. Wagner F, Scheurer A, Weber S, Stahl B, McCook O, Knofler MW, Huber-Lang M, Seitz DH, Thomas J, Asfar P, Szabó C, Möller P, Gebhard F, Georgieff M, Cabza E, Rademacher P, Wagner K (2011) Cardiopulmonary, histologic, and inflammatory effects of intravenous Na2S after blunt chest trauma-induced lung contusion in mice. J Trauma 71:1659–1667. https://doi.org/10.1097/TA.0b013e318228842e

34. Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW, Tang CS (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128:305–311. https://doi.org/10.1378/chest.128.3.305

35. Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M (2007) Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kappaB pathway. J Leukoc Biol 81:1322–1332. https://doi.org/10.1189/jlb.1006599
36. Bhatia M, Sidhapuriwala JN, Ng SW, Tamizhselvi R, Mochochala SM (2008) Pro-inflammatory effects of hydrogen sulfide on substance P in caerulein-induced acute pancreatitis. J Cell Mol Med 12:580–590. https://doi.org/10.1111/j.1582-4934.2007.00131.x

37. Chen YH, Wang PP, Wang XM, He YJ, Yao WZ, Qi YF, Tang CS (2011) Involvement of endogenous hydrogen sulfide in cigarette smoke-induced changes in airway responsiveness and inflammation of rat lung. Cytokine 53:334–341. https://doi.org/10.1016/j.cyto.2010.12.006

38. Zhang G, Wang P, Yang G, Cao Q, Wang R (2013) The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am J Pathol 182:1188–1195. https://doi.org/10.1016/j.ajpath.2012.10.008

39. Li SB, Tong XS, Wang XX, Jin XH, Ye H (2010) Regulative mechanism of budesonide on endogenous hydrogen sulfide, cystathionine-gamma-lyase and cystathionine-beta-synthase system in asthmatic rats. Zhongguo Dang Dai Er Ke Za Zhi 12:654–657

40. Wang P, Wu L, Ju Y, Fu M, Shuang T, Qian Z, Wang R (2017) Age-dependent allergic asthma development and cystathionine gamma-lyase deficiency. Antioxid Redox Signal 27:931–944. https://doi.org/10.1089/ars.2016.6875

41. Chen Y, Wang R (2013) The message in the air: hydrogen sulfide metabolism in chronic respiratory diseases. Respir Physiol Neurobiol 184:130–138. https://doi.org/10.1016/j.resp.2012.03.009

42. Han W, Dong Z, Dimitropoulos C, Su Y (2011) Hydrogen sulfide ameliorates tobacco smoke-induced oxidative stress and emphysema in mice. Antioxid Redox Signal 15:2121–2134. https://doi.org/10.1089/ars.2010.3821

43. Ang AD, Rivers-Auty J, Hegde A, Ishii I, Bhatia M. The effect of CSE gene deletion in caerulein-induced acute pancreatitis. J Cell Mol Med 15:1387–1395. https://doi.org/10.1111/j.1582-4934.2010.00849.x

44. Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A, Podarok T, Papapetropoulos A, Papapetropoulos A (2020) Selectivity of commonly used pharmacological inhibitors for cystathionine γ-lyase and cystathionine β-synthase (CBS) and cystathionine y lyase (CSE). Br J Pharmacol 176:131–146. https://doi.org/10.1111/bph.14703
64. Han ZH, Jiang Y, Duan YY, Wang XY, Huang Y, Fang TZ (2015) Protective effects of hydrogen sulfide inhalation on oxidative stress in rats with cotton smoke inhalation-induced lung injury. Exp Ther Med 10:164–168. https://doi.org/10.3892/etm.2015.2482

65. Esechie A, Kiss L, Olah G, Horváth EM, Hawkins H, Szabo C, Traber DL (2008) Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin Sci (Lond) 115:91–97. https://doi.org/10.1042/CS20080023

66. Esechie A, Enkhbaatar P, Traber DL, Jonkam C, Lange M, Hamahata A, Djukom C, Whorton EB, Hawkins HK, Traber LD, Szabo C (2009) Beneficial effect of a hydrogen sulphide donor (sodium sulphide) in an ovine model of burn- and smoke-induced acute lung injury. Br J Pharmacol 158:1442–1453. https://doi.org/10.1111/j.1476-5381.2009.04111.x

67. Faller S, Zimmermann KK, Strosing KM, Engelstaedter H, Buerkle H, Schmidt R, Spassov SG, Hoetzl A (2012) Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice. Med Gas Res 2:26. https://doi.org/10.1080/20459912.2012.7

68. Zimmermann KK, Spassov SG, Strosing KM, Ihle PM, Engelstaedter H, Hoetzl A, Faller S (2018) Hydrogen sulfide exerts anti-inflammatory effects in acute lung injury. Inflammation 41:249–259. https://doi.org/10.1007/s10753-017-0684-4

69. Faller S, Hausler F, Goett A, von Iltzer MA, Gyllenram V, Hoetzl A, Spassov SG (2018) Hydrogen sulfide limits neutrophil transmigration, inflammation, and oxidative burst in lipopolysaccharide-induced acute lung injury. Sci Rep 8:14676. https://doi.org/10.1038/s41598-018-33101-x

70. Xu X, Li J, Gong Y, Zheng H, Zhao D (2018) Hydrogen sulfide ameliorates lipopolysaccharide-induced acute lung injury by inhibiting autophagy through P38/Akt/mTOR pathway in mice. Biochem Biophys Res Commun 507:514–518. https://doi.org/10.1016/j.bbrc.2018.11.081

71. Tian F, Ling Y, Chen Y, Wang Z (2017) Effects of CCK-8 and cystathionine γ-lyase/hydrogen sulfide system on acute lung injury in rats. Inflammation 40:74–183. https://doi.org/10.1007/s10753-016-0466-7

72. Sakaguchi M, Marutani E, Shin HS, Chen W, Hanaoka K, Xian M, Ichinose F (2014) Sodium thiosulfate attenuates acute lung injury. Anesthesiology 121:1248–1257. https://doi.org/10.1097/ALN.0000000000000456

73. Jiang L, Jiang Q, Yang S, Huang S, Han X, Duan J, Pan S, Zhao M, Guo S (2019) GYY4137 attenuates LPS-induced acute lung injury via heme oxygenase-1 modulation. Pulm Pharmacol Ther 54:77–86. https://doi.org/10.1016/j.pupt.2018.12.004

74. Du Q, Wang C, Zhang N, Li G, Zhang M, Li L, Zhang Q, Zhang J (2014) In vivo study of the effects of exogenous hydrogen sulfide on lung mitochondria in acute lung injury in rats. BMC Anesthesiol 14:117. https://doi.org/10.1186/1471-2253-14-117

75. Wagner F, Wagner K, Weber S, Stahl B, Knöferl MW, Huber-Lang M, Seitz DH, Asfar P, Chavannes N, Chavin J, Baudoin S, Gebski V, Georgieff M, Radermacher P, Hysa V (2011) Inflammatory effects of hypothermia and inhaled H2S during resuscitated, hyperdynamic murine septic shock. Shock 35:396–402. https://doi.org/10.1097/SHK.0b013e3181ff5ffx

76. Zhang H, Zhi L, Moore PK, Bhatia M (2006) Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am J Physiol Lung Cell Mol Physiol 290:L1193–L1201

77. Zhang H, Zhi L, Moore PK, Bhatia M (2007) Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. J Leukoc Biol 82:894–905

78. Zhang H, Zhi L, Mochchhala SM, Moore PK, Bhatia M (2007) Endogenous hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kappaB. Am J Physiol Lung Cell Mol Physiol 292:L960–L971

79. Zhang H, Mochchhala SM, Bhatia M (2007) Endogenous hydrogen sulfide regulates inflammatory response by activating the ERK pathway in polymicrobial sepsis. J Immunol 181:4320–4331

80. Zhang H, Hegde A, Ng SW, Aridor S, Mochchhala SM, Bhatia M (2007) Hydrogen sulfide up-regulates substance P in polymicrobial sepsis-associated lung injury. J Immunol 179:4153–4160

81. Ang SF, Mochchhala SM, Bhatia (2010) Hydrogen sulfide promotes transient receptor potential vanilloid 1-mediated neurogenic inflammation in polymicrobial sepsis. Crit Care Med 38:619–628. doi: https://doi.org/10.1097/CCM.0b013e3181cd600

82. Ang SF, Sin SW, Mochchhala SM, MacKay PA, Bhatia M (2011) Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation. J Immunol 187:4778–4787. https://doi.org/10.4049/jimmunol.1101559

83. Ahmad A, Druzhyna N, Szabo C (2016) Delayed treatment with sodium hydrosulfide improves regional blood flow and alleviates cecal ligation and puncture (CLP)-induced septic shock. Shock 46:183–193. https://doi.org/10.1097/SHK.0000000000002589

84. Drucker NA, Jensen AR, Ferkowicz M, Markel TA (2018) Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis. J Pediatr Surg 53:1692–1698. https://doi.org/10.1016/j.jpedsurg.2017.12.003

85. Schuster DP (1994) ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med 149:499–505. https://doi.org/10.1164/ajrccm.149.8.1453.0905

86. Li T, Zhao B, Wang C, Wang H, Liu Z, Liu W, Jia J, Tang C, Du J (2008) Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp Biol Med (Maywood) 233:1081–1087. https://doi.org/10.3818/etm.0122.2008.04.05-354

87. Wang C, Wang HY, Liu ZW, Fu Y, Zhao B (2011) Effect of endogenous hydrogen sulfide on oxidative stress in oleic acid-induced acute lung injury in rats. Chin Med J (Engl) 124:3476–3480

88. Liu W, Liu ZW, Li TS, Wang C, Zhao B (2011) Hydrogen sulfide donor regulates alveolar epithelial cell apoptosis in rats with acute lung injury. Chin Med J (Engl) 126:494–499

89. Liu ZW, Wang HY, Guan L, Zhao B (2015) Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury. World J Emerg Med 6:67–73. https://doi.org/10.5847/wjem.1920-8462.2015.01.012

90. Faller S, Spassov SG, Zimmermann KK, Ryter SW, Buerkle H, Loop T, Schmidt R, Strosing KM, Hoetzl A (2013) Hydrogen sulfide prevents hyperoxia-induced lung injury by downregulating reactive oxygen species formation and angiopoietin-2 release. Curr Pharm Des 19:2715–2721. https://doi.org/10.2174/1381612813191500006
91. Li HD, Zhang ZR, Zhang QX, Qin ZC, He DM, Chen JS (2013) Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice. Eur J Appl Physiol 113:1555–1563. https://doi.org/10.1007/s00421-012-2584-5

92. Zhang P, Li F, Wiegman CH, Zhang M, Hong Y, Gong J, Chang Y, Zhang JJ, Adcock I, Chung KF, Zhou X (2015) Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness. Am J Respir Cell Mol Biol 52:129–137. https://doi.org/10.1165/rcmb.2013-0415OC

93. Fleiss MA, Perl M, Rittirsch D, Barti C, Schreiber H, Fleig V, Schlaf G, Liener U, Brueckner UB, Gebhardt F, Huber-Lang MS (2008) The role of C5a in the innate immune response after experimental blunt chest trauma. Shock 29:25–31

94. Seitz DH, Fröba JS, Niesler U, Palmer A, Veltkamp HA, Braumüller ST, Wagner F, Wagner K, Bäder S, Wachter U, Calzia E, Rademacher P, Huber-Lang MS, Zhou S, Gebhardt F, Knörler MW (2012) Inhaled hydrogen sulfide induces suspended animation, but does not alter the inflammatory response after blunt chest trauma. Shock 37:197–204. https://doi.org/10.1097/SHK.0b013e3182f91b40

95. Hartmann C, Gröger M, Noirhomme JP, Scheuerle A, Möller P, Wachter U, Huber-Lang M, Nussbaum B, Jung B, Merz T, McCook O, Kress S, Stahl B, Calzia E, Georgiﬁe M, Rademacher P, Wepler M (2019) In-depth characterization of the effects of cigarette smoke exposure on the acute trauma response and hemorrhage in mice. Shock 51:68–77. https://doi.org/10.1097/SHK.0000000000001115

96. Hartmann C, Hafner S, Scheuerle A, Möller P, Huber-Lang M, Jung B, Nubaum B, McCook O, Gröger M, Wagner M, Weber S, Stahl B, Calzia E, Georgiﬁe M, Szabó C, Wang R, Rademacher P, Wagner K (2017) The role of cystathionine-y-lase in blunt chest trauma in cigarette smoke exposed mice. Shock 47:491–499. https://doi.org/10.1097/SHK.0000000000000746

97. Wu J, Wei J, You X, Chen X, Zhu H, Zhu X, Liu Y, Xu M (2013) Inhibition of hydrogen sulfide generation contributes to lung injury after experimental orthotopic lung transplantation. J Surg Res 182:e25–e33. https://doi.org/10.1016/j.jscr.2012.09.028

98. Qi QY, Chen W, Li XL, Wang YW, Xie XH (2014) H2S protecting against lung injury following limb ischemia-reperfusion by alleviating inﬂammatin and water transport abnormality in rats. Biomed Environ Sci 27:410–418. https://doi.org/10.3967/bes2014070

99. Tang B, Ma L, Yao X, Tan G, Han P, Yu T, Liu B, Sun X (2015) Hydrogen sulfide ameliorates acute lung injury induced by infrarenal aortic cross-clamping by inhibiting inﬂamation and angiopoietin 2 release. J Vasc Surg 65:501–508.e1. https://doi.org/10.1016/j.vasc.2015.10.010

100. Jiang T, Liu Y, Meng Q, Lv X, Yue Z, Ding W, Liu T, Cui X (2019) Hydrogen sulfide attenuates lung ischemia-reperfusion injury through SIRT3-dependent regulation of mitochondrial function in type 2 diabetic rats. Surgery 165:1014–1026. https://doi.org/10.1016/j.surg.2018.12.018 Epub 2019 Feb 26

101. Chai W, Wang Y, Lin JY, Sun XD, Yao LN, Yang YH, Zhao H, Jiang W, Gao CJ, Ding Q (2012) Exogenous hydrogen sulfide protects against traumatic hemorrhagic shock via attenuation of oxidative stress. J Surg Res 176:210–219. https://doi.org/10.1016/j.jss.2011.07.016

102. Wepler M, Merz T, Wachter U, Vogt J, Calzia E, Scheuerle A, Möller P, Gröger M, Kress S, Fink M, Lukaschewski B, Rumm G, Stahl B, Georgieff M, Huber-Lang M, Tomegrossa R, Whitman M, McCook O, Rademacher P, Hartmann C (2019) The mitochondria-targeted H2S-donor AP39 in a murine model of combined hemorrhagic shock and blunt chest trauma. Shock 52:220–239. https://doi.org/10.1097/SHK.0000000000001210

103. Satterly SA, Salgar S, Hofffer Z, Hempel J, DeHart MJ, Wingerd M, Raywin H, Stallings JD, Martin M (2015) Hydrogen sulfide improves resuscitation via non-hibernatory mechanisms in a porcine shock model. J Surg Res 199:197–210. https://doi.org/10.1016/j.jss.2015.04.001

104. Gao C, Xu DQ, Gao CJ, Ding Q, Yao LN, Li ZC (2012) Exogenous hydrogen sulfide donor, NaHS, inhibits the nuclear factor-kB inhibitor kinase/nuclear factor-kB signaling pathway and exerts cardioprotective effects in a rat hemorrhagic shock model. Biol Pharm Bull. 35(7):1029–1034. https://doi.org/10.1248/bpb.b110679

105. Ganster F, Burban M, de la Bourdonnaye M, Fizanne L, Douay O, Wientr G, Meziani F, Calès P, Radermacher P, Huber-Lang M, Ng, S., Calzia E, Georgieff M, Szabó C, Wang R, Rademacher P, Wagner K (2017) The role of cystathionine-β-lase in blunt chest trauma in cigarette smoke exposed mice. Shock 47:491–499. https://doi.org/10.1097/SHK.0000000000000746

106. Morrison ML, Blackwood JE, Lockett SL, Iwata A, Winn RK, Roth MB (2008) Surviving blood loss using hydrogen sulfide. J Vasc Surg 48:264–270. https://doi.org/10.1016/j.jvs.2008.06.021

107. Henrion D, Asfar P, Meziani F (2010) Effects of hydrogen sulfide on hemodynamics, inﬂammatin and bronchial hyperresponsivity. Respir Res 11:121. https://doi.org/10.1186/1465-9921-11-121

108. Nussbaum BL, Stenzel T, Merz T, McCook O, Wachter U, Vogt JA, Matallo J, Gässler H, Gröger M, Matejovic M, Calzia E, Lampi L, Georgieff M, Möller P, Asfar P, Rademacher P, Hafner S (2016) Effects of hyperoxia and mild therapeutic hypothermia during resuscitation from porcine hemorrhagic shock. J Surg Res 201.e36–e41. https://doi.org/10.1016/j.jss.2016.03.013

109. Qi QY, Chen W, Hempel J, DeHart MJ, Wang R, Radermacher P, Hafner S, Gröger M, Matejovic M, Calzia E, Georgieff M, Szabó C, Wang R, Rademacher P, Wagner K (2017) The mitochondria-targeted H2S-donor AP39 in a murine model of combined hemorrhagic shock and blunt chest trauma. Shock 52:220–239. https://doi.org/10.1097/SHK.0000000000001210

110. Wu J, Wei J, You X, Chen X, Zhu H, Zhu X, Liu Y, Xu M (2013) Inhibition of hydrogen sulfide generation contributes to lung injury after experimental orthotopic lung transplantation. J Surg Res 182:e25–e33. https://doi.org/10.1016/j.jscr.2012.09.028

111. Gröger M, Wepler M, Wachter U, Calzia E, Georgieff M, Szabó C, Wang R, Rademacher P, Wagner K (2017) The role of cystathionine-β-lase in blunt chest trauma in cigarette smoke exposed mice. Shock 47:491–499. https://doi.org/10.1097/SHK.0000000000000746

112. Qi QY, Chen W, Li XL, Wang YW, Xie XH (2014) H2S protecting against lung injury following limb ischemia-reperfusion by alleviating inflammation and water transport abnormality in rats. Biomed Environ Sci 27:410–418. https://doi.org/10.3967/bes2014070

113. Tang B, Ma L, Yao X, Tan G, Han P, Yu T, Liu B, Sun X (2015) Hydrogen sulfide ameliorates acute lung injury induced by infrarenal aortic cross-clamping by inhibiting inflammation and angiopoietin 2 release. J Vasc Surg 65:501–508.e1. https://doi.org/10.1016/j.vasc.2015.10.010
113. Guillón A, Paeau S, Aboab J, Azabou E, Jung B, Silva S, Texitoris J, Uhr F, Vodovar D, Zafirani L, de Prost N, Radermacher P (2019) Preclinical septic shock research why we need an animal ICU. Ann Intensive Care 9:66. https://doi.org/10.1186/s13613-019-0544-3

114. Aslami H, Schultz MJ, Juffermans NP (2009) Potential applications of hydrogen sulfide-induced suspended animation. Curr Med Chem 16:295–303

115. Asfär P, Calzia E, Radermacher P (2014) Is pharmacological H₂S-induced ‘suspended animation’ feasible in the ICU? Crit Care 18:215. https://doi.org/10.1186/critcare.13782

116. Derwall M, Westerkamp M, Löwer C, Deike-Glindemann J, Schnorrenberger NK, Coburn M, Noite KW, Gaisa N, Weis J, Siepma M, Hauser M, Rosent R, Fries M (2010) Hydrogen sulfide does not increase resuscitability in a porcine model of prolonged cardiac arrest. Shock 34:190–195. https://doi.org/10.1097/SHK0b013e3181d0ee3d

117. Nußbaum BL, Vogt J, Wachter U, McCook O, Wepler M, Heger M, van Gulik TM (2015) Absence of hydrogen sulfide-induced hypometabolism in pigs: a mechanistic explanation in relation to small nonhibernating mammals. Eur Surg Res 54:178–191. https://doi.org/10.1159/000369795. Epub 2015 Feb 12

118. Bredthauer A, Lehle C, Schelzig H, McCook O, Radermacher P, Szabo C, Wepler M, Simon F (2018) Intravenous hydrogen sulfide does not induce neuroprotection after aortic balloon occlusion-induced spinal cord ischemia/reperfusion injury in a human-like porcine model of ubiquitous arteriolesclerosis. Intensive Care Med Exp 6(1):44. https://doi.org/10.1186/s40635-018-0209-y

119. Simon F, Scheuerle A, Gröger M, Stahl B, Wachter U, Vogt J, Speit G, Hauser B, Möller P, Calzia E, Szabo C, Schelzig H, Georigeff M, Radermacher P, Wagner F (2011) Effects of intravenous sulfide during porcine aortic occlusion-induced kidney ischemia/reperfusion injury. Shock 35:156–163. https://doi.org/10.1097/SHK0b013e3181f0dc91

120. Bracht H, Scheuerle A, Gröger M, Hauser B, Matallo J, McCook O, Siefritz A, Wachter U, Vogt JA, Asfär P, Matejovic M, Möller P, Calzia E, Szabo C, Stahl W, Hoppe K, Stahl B, Lampel L, Georigeff M, Wagner F, Radermacher P, Simon F (2012) Effects of intravenous sulfide during resuscitated porcine hemorrhagic shock. Crit Care Med 40:2157–2167. https://doi.org/10.1097/CCM0b013e3182e6eb30

121. Dirkes MC, Miletstein DM, Heger M, van Gulik TM (2015) Absence of hydrogen sulfide-induced hypometabolism in pigs: a mechanistic explanation in relation to small nonhibernating mammals. Eur Surg Res 54:178–191. https://doi.org/10.1159/000369795. Epub 2015 Feb 12

122. Datzmann T, Hoffmann A, McCook O, Merz T, Wachter U, Preuss J, Vettorazzi S, Calzia E, Gröger M, Kohn F, Schmid A, Neuwelt EA, Gilmer-Knight K, Lacy C, Nicholson HS, Kraemer DF, Doolittle ND, Hornig GW, Muldoon LL (2006) Toxicity profile of delayed high dose sodium thiosulfate in children treated with carboplatin in conjunction with blood-brain-barrier disruption. Pediatr Blood Cancer 47:174–182

123. Nagy P, Pálinkás Z, Nagy A, Budai B, Tóth I, Vasas A (2014) Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 1840:876–891. https://doi.org/10.1016/j.bbabio.2013.05.037

124. Wu N, Du X, Wang D, Hao F (2011) Myocardial and lung injuries induced by hydrogen sulfide and the effectiveness of oxygen therapy in rats. Clin Toxicol (Philad) 49:161–166. https://doi.org/10.3109/15563650.2011.565419

125. Wang J, Zhang H, Su C, Chen J, Zhu B, Zhang H, Xiao H, Zhang J (2014) Dexamethasone ameliorates H₂S-induced acute lung injury by alleviating matrix metalloproteinase-2 and -9 expression. PLoS One 9:e94701. https://doi.org/10.1371/journal.pone.0094701

126. Derwall M, Deike-Glindemann J, Schnorrenberger NK, Coburn M, Noite KW, Gaisa N, Weis J, Siepma M, Hauser M, Rosent R, Fries M (2010) Hydrogen sulfide does not increase resuscitability in a porcine model of prolonged cardiac arrest. Shock 34:190–195. https://doi.org/10.1097/SHK0b013e3181d0ee3d

127. Olson KR, Deleon ER, Gao Y, Hurley K, Sadauskas V, Batz C, Stoy GF (2013) Thiosulfate: a readily accessible source of hydrogen sulfide for therapeutic use. Crit Care Med 41:2248–2254. doi:10.1097/CCM.0b013e3182a6c5e2

128. Xu S, Yang CT, Meng FH, Pacheco A, Chen L, Xian M (2016) Ammonium tetrathiomolybdate as a water-soluble and slow-release hydrogen sulfide donor. Bioorg Med Chem Lett 26:1585–1588. https://doi.org/10.1016/j.bmcl.2016.02.005

129. Dyson A, Dal-Pizzol F, Sabbatini G, Lach AB, Galfo F, Dos Santos Cardoso J, Pescador Mendonça B, Hargreaves I5, Bollen A (2016) Intravenous sodium thiosulfate improves hydrogen sulfide delivery to the lung by alleviating matrix metalloproteinase-2 and -9 expression. PLoS One 9:e94701. https://doi.org/10.1371/journal.pone.0094701

130. Bracht H, Scheuerle A, Gröger M, Hauser B, Matallo J, McCook O, Siefritz A, Wachter U, Vogt JA, Asfär P, Matejovic M, Möller P, Calzia E, Szabo C, Stahl W, Hoppe K, Stahl B, Lampel L, Georigeff M, Wagner F, Radermacher P, Simon F (2012) Effects of intravenous sulfide during resuscitated porcine hemorrhagic shock. Crit Care Med 40:2157–2167. https://doi.org/10.1097/CCM0b013e3182e6eb30

131. Neuwelt EA, Gilmer-Knight K, Lacy C, Nicholson HS, Kraemer DF, Doolittle ND, Hornig GW, Muldoon LL (2006) Toxicity profile of delayed high dose sodium thiosulfate in children treated with carboplatin in conjunction with blood-brain-barrier disruption. Pediatr Blood Cancer 47:174–182

132. Marutani E, Yamada M, Iida T, Tokuda K, Ikeda K, Kai S, Shirouzu K, Hayashida K, Kosugi S, Hanaoka K, Kaneki M, Akaike T, Ichinose F (2015) Thiosulfate mediates cytoprotective effects of hydrogen sulfide against neuronal ischemia. J Am Heart Assoc 5:e003531. https://doi.org/10.1161/JAHA.116.003531

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.