1. Introduction and Results

Let G be any group and n a non-negative integer. For any two elements a and b of G, we define inductively $[a, b^n]$ the n-Engel commutator of the pair (a, b), as follows:

$$[a, 0] := a, \quad [a, b] := [a, 1] := a^{-1}b^{-1}ab \text{ and } [a, b^n] := [[a, b^{n-1}], b^n]$$

for all $n > 0$.

An element x of G is called right (left, resp.) n-Engel if $[x, g^n] = 1$ ($[g, x^n] = 1$, resp.) for all $g \in G$. We denote by $R_n(G)$ ($L_n(G)$, resp.) the set of all right (left, resp.) n-Engel elements of G. A group G is called n-Engel if $G = R_n(G)$ or equivalently $G = R_n(G)$. It is clear that $R_0(G) = 1$, $R_1(G) = Z(G)$ the center of G, and W.P. Kappe [2] (implicitly) proved $R_2(G)$ is a characteristic subgroup of G. L.C. Kappe and Ratchford [8] have shown that $R_3(G)$ is a subgroup of G whenever G is a metabelian group, or G is a center-by-metabelian group such that $[\gamma_k(G), \gamma_j(G)] = 1$ for some $k, j \geq 2$ with $k + j - 2 \leq n$ and $n \geq 3$. Macdonald [9] has shown that the inverse or square of a right 3-Engel element need not be right 3-Engel. Nickel [15] generalized Macdonald’s result to all $n \geq 3$. In fact he constructed a group with a right n-Engel element a neither a^{-1} nor a^2 is a right n-Engel element. The construction of Nickel’s example was guided by computer experiments and arguments based on commutator calculus. Although Macdonald’s example shows that $R_3(G)$ is not in general a subgroup of G, Heineken [12] has already shown that if A is the subset of a group G consisting of all elements a such that $a^{\pm 1} \in R_3(G)$, then A is a subgroup if either G has no element of order 2 or A consists only of elements having finite odd order. Newell [13] proved that the
normal closure of every right 3-Engel element is nilpotent of class at most 3. In Section 2 we prove that if G is a 2'-group, then $R_3(G)$ is a subgroup of G. Nickel’s example shows that the set of right 4-Engel elements is not a subgroup in general (see also first Example in Section 4 of [1]). In Section 3, we prove that if G is a locally nilpotent $\{2,3,5\}'$-group, then $R_4(G)$ is a subgroup of G.

Traustason [17] proved that any locally nilpotent 4-Engel group H is Fitting of degree at most 4. This means that the normal closure of every element of H is nilpotent of class at most 4. More precisely he proved that if H has no element of order 2 or 5, then H has Fitting degree at most 3. Now by a result of Havas and Vaughan-Lee [4], one knows any 4-Engel group is locally nilpotent and so Traustason’s result is true for all 4-Engel groups. In Section 3, by another result of Traustason [18] we show that the normal closure of every right 4-Engel element in a locally nilpotent $\{2,3,5\}'$-group, is nilpotent of class at most 7.

Newman and Nickel [12] have shown that for every $n \geq 5$ there exists a nilpotent group G of class $n + 2$ containing a right n-Engel element a and an element b such that $[b, n, a]$ has infinite order. As we mentioned above, Nickel [15] has shown that for every $n \geq 3$ there exists a nilpotent group of class $n + 2$ having a right n-Engel element a and an element b such that $[a^{-1}, n, b] = [a^2, n, b] \neq 1$. We have checked that the latter element in Nickel’s example is of finite order whenever $n \in \{5, 6, 7, 8\}$. In Section 4 using the group constructed by Newman and Nickel we show that there exists a nilpotent group G of class $n + 2$ such that $x \in R_n(G)$ and both $[x^{-1}, n, a]$ and $[x^k, n, a]$ have infinite order for every integer $k \geq 2$.

In [1] the following question has been proposed:

Question 1.1. Let n be a positive integer. Is there a set of prime numbers π_n depending only on n such that the set of right n-Engel elements in any nilpotent or finite π_n'-group forms a subgroup?

In Section 4 we negatively answers Question 1.1.

As far as we know there is no published example of a group whose set of (bounded) right Engel elements do not form a subgroup. But for the set of bounded left Engel elements there are some evidences supporting this idea that the subgroup-ness of bounded left Engel elements of an arbitrary group should be false. We finish the paper by proving that at least one of the following happens:

1. There is an infinite finitely generated k-Engel group of exponent n for some positive integer k and some 2-power number n.
2. There is a group generated by finitely many bounded left Engel elements which is not an Engel group, where by an Engel group we mean a group in which for every two elements x and y, there exists an integer $k = k(x, y) \geq 0$ such that $[x, k, y] = 1$.

Throughout the paper we have frequently use GAP nq package of Werner Nickel. All given timings were obtained on an Intel Pentium 4-1.70GHz processor with 512 MB running Red Hat Enterprise Linux 5.
2. Right 3-Engel elements

Throughout for any positive integer k and any group H, $\gamma_k(H)$ denotes the kth term of the lower central series of H. The main result of this section implies that $R_3(G)$ is a subgroup of G whenever G is a 2′-group. Newell [13] proved that

Theorem 2.1. Let $G = \langle a, b, c \rangle$ be a group such that $a, b \in R_3(G)$. Then

1. $\langle a, c \rangle$ is nilpotent of class at most 5 and $\gamma_5(\langle a, c \rangle)$ has exponent 2.
2. G is nilpotent of class at most 6.
3. $\gamma_5(G)$ has exponent 10. Furthermore $[a, c, b, c, c]^2 \in \gamma_6(G)$.
4. $\gamma_6(G)$ has exponent 2.

Theorem 2.2. Let G be a group such that $\gamma_5(G)$ has no element of order 2. Then $R_3(G)$ is a subgroup of G.

Proof. Let $a, b \in R_3(G)$ and $c \in G$. We first show that $a^{-1} \in R_3(G)$. We have

\[
[a^{-1}, c, c, c] = [[a, c, a^{-1}][a, c, c, c]] = [a, c, a^{-1}, c][a, c, c, c][a, c, c, c]
\]

Therefore by Theorem 2.1 (2), $a^{-1} \in R_3(G)$. On the other hand

\[
[ab, c, c, c] = [[a, c][a, b, c]][c, c, c]
\]

Now by Theorem 2.1 $[a, c, b, c, c]^2 \in \gamma_6(G)$ and thus $ab \in R_3(G)$. □

By Theorem 2.2, we know that (x, y, z) is nilpotent if $x, y \in R_3(G)$ and $z \in G$. We now construct the largest nilpotent group $H = \langle a, b, c \rangle$ such that $a, b \in R_3(H)$ and $c \in H$, by nq package.

Second Proof of Theorem 2.2 By Theorem 2.1 we know that (x, y, z) is nilpotent if $x, y \in R_3(G)$ and $z \in G$. We now construct the largest nilpotent group $H = \langle a, b, c \rangle$ such that $a, b \in R_3(H)$ and $c \in H$, by nq package.

LoadPackage("nq"); # nq package of Werner Nickel
F:=FreeGroup(4); a1:=F.1; b1:=F.2; c1:=F.3; x:=F.4;
L:=F/[LeftNormedComm([a1,x,x,x]),LeftNormedComm([b1,x,x,x])];
H:=NilpotentQuotient(L,[x]);
a:=H.1; b:=H.2; c:=H.3; d:=LeftNormedComm([a^{-1},c,c,c]);
e:=LeftNormedComm([a*b,c,c,c]); Order(d); Order(e);
C:=LowerCentralSeries(H); d in C[5]; e in C[5];

Then if we consider the elements $d = [a^{-1}, c, c, c]$ and $e = [ab, c, c, c]$ of H, we can see by above command in GAP that d and e are elements of $\gamma_5(H)$ and have orders 2 and 4, respectively. So, in the group G, we have $d = e = 1$. This completes the proof. □

Note that, the second proof of Theorem 2.2 also shows the necessity of assuming that $\gamma_5(G)$ has no element of order 2.

3. Right 4-Engel elements

Our main result in this section is to prove the following.
Theorem 3.1. Let G be a $\{2,3,5,°\}$-group such that $\langle a, b, x \rangle$ is nilpotent for all $a, b \in R_4(G)$ and any $x \in G$. Then $R_4(G)$ is a subgroup of G.

Proof. Consider the ‘freest’ group, denoted by U, generated by two elements u,v with u a right 4-Engel element. We mean this by the group U given by the presentation

$$\langle u, v | [u, x]^4 = 1 \text{ for all words } x \in F_2 \rangle,$$

where F_2 is the free group generated by u and v. We do not know whether U is nilpotent or not. Using the nq package shows that the group U has a largest nilpotent quotient M with class 8. By the following code, the group M generated by a right 4-Engel element a and an arbitrary element c is constructed. We then see that the element $[a^{-1}, c, c, c, c]$ of M is of order 375 = $3^2 \times 5^3$. Therefore the inverse of a right 4-Engel element of G is again a right 4-Engel element. The following code in GAP gives a proof of the latter claim. The computation was completed in about 24 seconds.

```gap
F:=FreeGroup(3); a1:=F.1; b1:=F.2; x:=F.3;
U:=F/[LeftNormedComm([a1,x,x,x,x])];
M:=NilpotentQuotient(U,[x]);
a:=M.1; c:=M.2;
h:=LeftNormedComm([a^{-1},c,c,c,c]);
Order(h);
```

We now show that the product of every two right 4-Engel elements in G is a right 4-Engel element. Let $a, b \in R_4(G)$ and $c \in G$. Then we claim that $H = \langle a, b, c \rangle$ is nilpotent of class at most 7. ($*$)

By induction on the nilpotency class of H, we may assume that H is nilpotent of class at most 8. Now we construct the largest nilpotent group $K = \langle a_1, b_1, c_1 \rangle$ of class 8 such that $a_1, b_1 \in R_4(K)$.

```gap
F:=FreeGroup(4);A:=F.1; B:=F.2; C:=F.3; x:=F.4;
W:=F/[LeftNormedComm([A,x,x,x,x]),LeftNormedComm([B,x,x,x,x])];
K:=NilpotentQuotient(W,[x],8);
LowerCentralSeries(K);
```

The computation took about 22.7 hours. We see that $\gamma_8(K)$ has exponent 60. Therefore, as H is a $\{2,3,5,°\}$-group, we have $\gamma_8(H) = 1$ and this completes the proof of our claim ($*$).

Therefore we have proved that any nilpotent group without elements of orders 2, 3 or 5 which is generated by three elements two of which are right 4-Engel, is nilpotent of class at most 7.

Now we construct, by the nq package, the largest nilpotent group S of class 7 generated by two right 4-Engel elements s,t and an arbitrary element g. Then one can find by GAP that the order of $[st, g, g, g, g]$ in S is 300. Since H is a quotient of S, we have that $[ab, c, c, c, c]$ is of order dividing 300 and so it is trivial, since H is a $\{2,3,5,°\}$-group. This completes the proof. \square

Corollary 3.2. Let G be a $\{2,3,5,°\}$-group such that $\langle a, b, x \rangle$ is nilpotent for all $a, b \in R_4(G)$ and for any $x \in G$. Then $R_4(G)$ is a nilpotent group of class at most 7. In particular, the normal closure of every right 4-Engel element of group G is nilpotent of class at most 7.
Proof. By Theorem 3.1, $R_4(G)$ is a subgroup of G and so it is a 4-Engel group. In [18] it is shown that every locally nilpotent 4-Engel $\{2, 3, 5\}'$-group is nilpotent of class at most 7. Therefore $R_4(G)$ is nilpotent of class at most 7. Since $R_4(G)$ is a normal set, the second part follows easily. □

Therefore, to prove that the normal closure of any right 4-Engel element of a $\{2, 3, 5\}'$-group G is nilpotent, it is enough to show that $\langle a, b, x \rangle$ is nilpotent for all $a, b \in R_4(G)$ and for any $x \in G$. It may be surprising that Newell [13] has had a similar obstacle to prove that the normal closure of a right 3-Engel element is nilpotent in any group.

Corollary 3.3. In any $\{2, 3, 5\}'$-group, the normal closure of any right 4-Engel element is nilpotent if and only if every 3-generator subgroup in which two of the generators can be chosen to be right 4-Engel, is nilpotent.

Proof. By Corollary 3.2, it is enough to show that a $\{2, 3, 5\}'$-group H is nilpotent whenever $a, b \in R_4(H)$, $x \in H$ and both $\langle a \rangle^H$ and $\langle b \rangle^H$ are nilpotent. Consider the subgroup $K = \langle a \rangle^H \langle b \rangle^H$ which is nilpotent by Fitting’s theorem. Now we prove that K is finitely generated. We have $K = \langle a, b \rangle$ and since a and b are both right 4-Engel, it is well-known that

$$\langle a \rangle^x = \langle a, a^x, a^{x^2}, a^{x^3} \rangle \quad \text{and} \quad \langle b \rangle^x = \langle b, b^x, b^{x^2}, b^{x^3} \rangle,$$

and so

$$K = \langle a, a^x, a^{x^2}, a^{x^3}, b, b^x, b^{x^2}, b^{x^3} \rangle.$$

It follows that H satisfies maximal condition on its subgroups as it is (finitely generated nilpotent)-by-cyclic. Now by a famous result of Baer [2] we have that a and b lie in the $(m + 1)$th term $\zeta_m(H)$ of the upper central series of H for some positive integer m. Hence $H/\zeta_m(H)$ is cyclic and so H is nilpotent. This completes the proof. □

We conclude this section with the following interesting information on the group M in the proof of Theorem 3.1. In fact, for the largest nilpotent group $M = \langle a, b \rangle$ relative to $a \in R_4(M)$, we have that M/T is isomorphic to the largest (nilpotent) 2-generated 4-Engel group $E(2, 4)$, where T is the torsion subgroup of M which is a $\{2, 3, 5\}$-group. Therefore, in a nilpotent $\{2, 3, 5\}'$-group, a right 4-Engel element with an arbitrary element generate a 4-Engel group. This can be seen by comparing the presentations of M/T and $E(2, 4)$ as follows. One can obtain two finitely presented groups G_1 and G_2 isomorphic to M/T and $E(2, 4)$, respectively by GAP:

```gap
MoverT := FactorGroup(M, TorsionSubgroup(M));
E24 := NilpotentEngelQuotient(FreeGroup(2), 4);
iso1 := IsomorphismFpGroup(MoverT); iso2 := IsomorphismFpGroup(E24);
G1 := Image(iso1); G2 := Image(iso2);
```

Next, we find the relators of the groups G_1 and G_2 which are two sets of relators on 13 generators by the following command in GAP:

```gap
r1 := RelatorsOfFpGroup(G1); r2 := RelatorsOfFpGroup(G2);
```

Now, save these two sets of relators by the LogTo command of GAP in a file and go to the file to delete the terms as

<identity ...>
in the sets \(R_1 \) and \(R_2 \). Now call these two modified sets \(R_1 \) and \(R_2 \). We show that \(R_1 = R_2 \) as two sets of elements of the free group \(f \) on 13 generators \(f_1, f_2, \ldots, f_{13} \).

\[
f := \text{FreeGroup}(13);
\]

\[
f_1 := f.1; f_2 := f.2; f_3 := f.3; f_4 := f.4; f_5 := f.5; f_6 := f.6;
\]

\[
f_7 := f.7; f_8 := f.8; f_9 := f.9; f_{10} := f.11; f_{12} := f.12; f_{13} := f.13;
\]

Now by \texttt{Read} function, load the file in \texttt{GAP} and type the simple command \(R_1 = R_2 \). This gives us \texttt{true} which shows \(G_1 \) and \(G_2 \) are two finitely presented groups with the same relators and generators and so they are isomorphic. We do not know if there is a guarantee that if someone else does as we did, then he/she finds the same relators for \(F_p \) groups \(G_1 \) and \(G_2 \), as we have found. Also we remark that using function \texttt{IsomorphismGroups} to test if \(G_1 \cong G_2 \), did not give us a result in less than 10 hours and we do not know whether this function can give us a result or not.

We summarize the above discussion as following.

Theorem 3.4. Let \(G \) be a nilpotent group generated by two elements, one of which is a right 4-Engel element. If \(G \) has no element of order 2, 3 or 5, then \(G \) is a 4-Engel group of class at most 6.

4. Right \(n \)-Engel elements for \(n \geq 5 \)

In this section we show that for every \(n \geq 5 \) there is a nilpotent group \(G \) of class \(n + 2 \) containing elements \(a \) and \(x \in R_n(G) \) such that both \([x^k, a] \) and \([x^{-1}, a] \) have infinite order for all integers \(k \geq 2 \).

Note that by Nickel’s example \[15\], for every \(n \geq 3 \) we have already had a nilpotent group \(K \) of class \(n + 2 \) containing a right \(n \)-Engel element \(x \) such that \([x^{-1}, y] = [x^2, y] \neq 1 \) for some \(y \in K \) i.e., neither \(x^2 \) nor \(x^{-1} \) are right \(n \)-Engel.

We have checked by \texttt{nq} package of Nickel in \texttt{GAP} that \([x^{-1}, y] = [x^2, y] \) is of finite order whenever \(n \in \{5, 6, 7, 8\} \). In fact,

\[
\begin{align*}
(1) \quad & a([x^{-1}, y]) = 3, \text{ NqRuntime=}1.7 \text{ Sec} \\
(2) \quad & a([x^{-1}, y]) = 7, \text{ NqRuntime=}54.8 \text{ Sec} \\
(3) \quad & a([x^{-1}, y]) = 4, \text{ NqRuntime=}1702 \text{ Sec} \\
(4) \quad & a([x^{-1}, y]) = 9, \text{ NqRuntime=}56406 \text{ Sec}
\end{align*}
\]

Newman and Nickel \[12\] constructed a group \(H \) as follows. Let \(F \) be the relatively free group, generated by \(\{a, b\} \) with nilpotency class \(n + 2 \) and \(\gamma_4(F) \) abelian. Let \(M \) be the (normal) subgroup of \(F \) generated by all commutators in \(a, b \) with at least 3 entries \(b \) and the commutators \([b, n+1 \ a] \) and \([b, n \ a, b] \). Then \(H = \frac{F}{M} \). Note that the normal closure of \(b \) in \(H \) is nilpotent of class 2.

We denote the generators of \(H \) by \(a, b \) again. Put

\[
t = [b, n \ a], \quad u_j = [b, n-1-j \ a, b_j a], \quad 0 \leq j \leq n-2,
\]

\[
u = \prod_{j=0}^{n-2} u_j, \quad v = [u_{n-2}, a], \quad w = \prod_{j=0}^{n-3} [u_j, a]
\]

and let \(N \) be the subgroup \(\langle tuw, t^2 w, uw \rangle \). Then \(aN \) is a right \(n \)-Engel element in \(\frac{H}{N} \) and \([b, n \ a]N \) has infinite order in \(\frac{H}{N} \).

Now let \(H \) be the above group and \(N_0 := \langle u, uv, vt^{-1} \rangle \). First, note that \(N_0 \) is a normal subgroup of \(H \). For, clearly \(t, v, w \in Z(H) \) and \(u^b = u \). Also it is not hard
we have $u^b_i = u_j[u_j, a]$ and thus $u^a = uvw$. This means that $N_0^a = N_0$ and so N_0 is a normal subgroup of H. Now we can state our main result of this section:

Theorem 4.1. $[b, n, a] N_0 = [b^{-2}, m, a] N_0$ and it has infinite order in $\frac{H}{N_0}$ and $[b^{-1}, m, h] \in N_0$ for all $h \in H$. Furthermore $[b^{-k}, m, a] = v^{(k)} N_0$ for all $k \geq 2$.

Remark 4.2. As in [12], the proof of Theorem 4.1 involves a series of commutator calculations based, as usual, on the basic identities as following, which are mentioned in [12]. We bring them here for reader’s convenience.

1. $[g, cd] = [g, d][g, c][g, c, d]$.
2. $[cd, g] = [c, g][c, d][d, g]$.
3. $[c^{-1}, d] = [c, d, c^{-1}][c, d]^{-1}$.
4. $[c, d^{-1}] = [c, d, d^{-1}][c, d]^{-1}$.
5. $[hk, h_1, \ldots, h_s] = [h, h_1, \ldots, h_s]$ for every k in $\gamma_{n+3-s}(H)$ and arbitrary $h_1, \ldots, h_s \in H$.
6. $[g, d, c] = [g, d, c][g, c, d][g, d, c]$, where k is a product of commutators of weight at least 4 with entries g, c and d.
7. $[a, n, hk] = [a, n, h]$ for all $h \in H$ and $k \in \gamma_3(H)$.
8. $[g, d^k] = [g, d^k][g, d][g, d^k]$.

Proof of Theorem 4.1. By Remark 4.2(7), we may assume that h is of the form $a^\alpha b^\beta [b, a]^\gamma$. The following calculations may depend to the signs of α and β; we here outline only the case in which α and β are positive.

$$[b^{-1}, m, h] = [b^{-1}, n, a^\alpha b^\beta [b, a]^\gamma]$$
$$= [b^{-1}, n, a^\alpha b^\beta] \prod_{j=0}^{n-1} [b^{-1}, n, a^\alpha b^\beta, [b, a]^\gamma, j, a^\alpha b^\beta]$$
$$= [b^{-1}, n, a^\alpha b^\beta]\left(b[[b, a], n, a^{-1} a]\prod_{j=0}^{n-2} [b_{n-1-j}, a, [b, a], j, a]\right)^{-a^n-1}.$$

Since
$$[b, [b, a], n, a^{-1} a] = [[b, a], b^{-1}, a^{-1} a]$$
$$= [b, a, b, n, a^{-1} a]^{-1}$$
$$= v^{-1}$$
and by Remark 4.2(5) and (6)

$$[b, n, a, j, a] = [b, n, a, b, j, a]^{-1} [b, n, a, b, j, a]$$
we have

$$\prod_{j=0}^{n-2} [b_{n-1-j}, a, [b, a], j, a] = \prod_{j=0}^{n-2} [b_{n-1-j}, a, b, j, a]^{-1} [b_{n-1-j}, a, b, j, a]$$
$$= \prod_{j=0}^{n-3} [b_{n-1-j}, a, b, j, a]^{-1} \prod_{j=0}^{n-2} [b_{n-1-j}, a, b, j, a]$$
$$= v.$$
Therefore

\[[b^{-1}_m a^n b^\beta [b, a]^{-\gamma}] = [b^{-1}_m a^n b^\beta] (v^{-1}v)^{-\alpha^{-1} \gamma} = [b^{-1}_m a^n b^\beta]. \]

On the other hand by Remark 3.2 (8) we have

\[[b^{-1}_m a^n b^\beta] = [b^{-1}_m a^n] \prod_{j=0}^{n-2} [b^{-1}_m a_{n-1-j}^n b^\beta a^\alpha] \]

\[= [b^{-1}_m a^n] \left[b^{-1}_m a_{n+1} \right] \left(\prod_{j=0}^{n-2} (b_{n-1-j} a, b_{j+1} a) \right)^{-\alpha^{-1} \beta} \]

\[\times \left[b, a, b_{n-2} a \right]^{-\alpha^{-2} \beta} \left[b_{n-1} a, b \right]^{-\alpha^{-2} \beta} \]

\[= (v^{-1})^\alpha v^{-\alpha^{-1} \beta} (v) \left(v^{-1} \right)^\alpha \left(v^{-1} \right)^\beta. \]

Therefore \(b^{-1}_n N_0 \) is a right \(n \)-Engel element in \(\frac{H}{N_0} \). This completes the second part of the theorem.

Since \((t, u, v, w) \) is a free abelian group of rank 4, it is clear that \([b, n a] N_0 \) has infinite order. On the other hand

\[[b^{-2}_m a] = [[b^{-1}_m a] [b^{-1}_m a, b^{-1}_m] [b^{-1}_m a, b^{-1}_m, a, b^{-1}_m, [b, a]_n, a] [b^{-1}_m, a]] \mod N_0 \]

\[\equiv [b, a, b_{n-1} a] \mod N_0 \]

\[\equiv v \mod N_0. \]

Since \(vt^{-1} \in N_0 \) we have \([b, n a] N_0 = t N_0 = v N_0 = [b^{-2}_m a] N_0 \). Now let \(k \geq 2 \), \(f(1) = 0 \) and \(f(k) = (k - 1) + f(k - 1) = \left(\frac{k}{2} \right) \). Then

\[[b^{-k}_m a] = [[b^{-1}_m a] [b^{-1}_m, a, b^{-1} - k - 1] [b^{-1}_m, a, b^{-(k-1)}_m, a]] \mod N_0 \]

\[\equiv [b, a, b^{(k-1)}_m, a, a] \mod N_0 \]

This completes the proof. \(\square \)

Now we answer negatively Question 1.4 which has been proposed in 11.

Let \(T \) be the torsion subgroup of \(H/N_0 \) and \(x = b N_0 T \) and \(y = a N_0 T \). Then the group \(M = H/N_0 T = (x, y) \) is a torsion free, nilpotent of class \(n + 2 \), \(x \in R_n(M) \) and both \([x^{-1}, y] \) and \([x^{k}, a] \) are of infinite order for all integers \(k \geq 2 \). Since, for any given prime number \(p \), a finitely generated torsion-free nilpotent group is residually finite \(p \)-group, it follows that for any prime number \(p \) and integer \(k \geq 2 \), there is a finite \(p \)-group \(G(p, k) \) of class \(n + 2 \) containing a right \(n \)-Engel element \(t \) such that both \(t^k \) and \(t^{-1} \) are not right \(n \)-Engel. This answers negatively Question 1.4.
5. Subgroupness of the set of (bounded) Left Engel elements of a group

Let \(n = 2^k \geq 2^{48} \) and \(B(X, n) \) be the free Burnside group on the set \(X = \{ x_i \mid i \in \mathbb{N} \} \) of the Burnside variety of exponent \(n \) defined by the law \(x^n = 1 \). Lemma 6 of [11] states that the subgroup \(\langle x_{2k-1}^{n/2}, x_{2k}^{n/2} \mid k = 1, 2, \ldots \rangle \) of \(B(X, n) \) is isomorphic to \(B(X, n) \) under the map \(x_{2k-1}^{n/2} x_{2k}^{n/2} \rightarrow x_k, \ k = 1, 2, \ldots \) Therefore the subgroup \(G := \langle x_1^{n/2}, x_2^{n/2}, x_3^{n/2}, x_4^{n/2} \rangle \) is generated by four elements of order 2, contains the subgroup \(H = \langle x_1^{n/2}, x_2^{n/2}, x_3^{n/2}, x_4^{n/2} \rangle \) isomorphic to the free 2-generator Burnside group \(B(2, n) \) of exponent \(n \). One knows the tricky formulae

\[
[x, k y] = [x, y]^{(-1)^{k-1}2^{k-1}}
\]

holding for all elements \(x \) and all elements \(y \) of order 2 in any group and all integers \(k \geq 1 \). It follows that the group \(G \) can be generated by four left 49-Engel elements of \(G \). Thus

\[
G = (L_{49}(G)) = (L(G)) = (\overline{L}(G)),
\]

where \(L(H) \) (resp.) denotes the set of (bounded, resp.) left Engel elements of a group \(H \).

Suppose, if possible, \(G \) is an Engel group. Then \(H \) is also an Engel group. Let \(Z \) and \(Y \) be two free generators of \(H \). Thus \([Z, k Y] = 1 \) for some integer \(k \geq 1 \). Since \(H \) is the free 2-generator Burnside group of exponent \(n \), we have that every group of exponent \(n \) is a \(k \)-Engel group. Therefore, \(G \) is an infinite finitely generated \(k \)-Engel group of exponent \(n \), as \(H \) is infinite by a celebrated result of Ivanov [10]. Hence, we have proved that

Proposition 5.1. At least one of the following happens.

1. There is an infinite finitely generated \(k \)-Engel group of exponent \(n \) for some positive integer \(k \) and 2-power number \(n \).
2. There is a group \(G \) such that \(L(G) = \overline{L}(G) \) and \(L(G) \) is not a subgroup of \(G \).

We believe that the subgroup \(H \) cannot be an Engel group, but we are unable to prove it.

References

[1] A. Abdollahi and H. Khosravi, *On the right and left 4-Engel elements*, to appear in Communications in Algebra.
[2] R. Baer, *Engelsche elemente Noetherscher Gruppen*, Math. Ann. 133 (1957) 256-270.
[3] N.D. Gupta and F. Levin, *On soluble Engel groups and Lie algebra*, Arch. Math. 34 (1980) 289-295.
[4] G. Havas and M. R. Vaughan-Lee, *4-Engel groups are locally nilpotent*, Internet. J. Algebra and Computation 15 (2005) 649-682.
[5] H. Heineken, *Engelsche Elemente der Länge drei*, Illinois J. Math. 5 (1961) 681-707.
[6] L. C. Kappe, *Right and left Engel elements in groups*, Comm. Algebra 9 (1981) 1295-1306.
[7] W. P. Kappe, *Die A-Norm einer Gruppe*, Illinois J. Math. 5 (1961), 187-197.
[8] L. C. Kappe and P. M. Ratchford, *On centralizer-like subgroups associated with the \(n \)-Engel word*, Algebra Colloq. 6 (1998) 1-8.
[9] I. D. Macdonald, *Some examples in the theory of groups*, in: H. Shanker (Ed.), *Mathematical Essays dedicated to A. J. Macintyre*, Ohio University Press, 263-269.
[10] S. V. Ivanov, *The free Burnside groups of sufficiently large exponents*, Internat. J. Algebra Comput. 4 (1994), no. 1-2, ii+308 pp.
[11] S. V. Ivanov and A. Yu. Ol’shanskii, On finite and locally finited subgroups of free Burnside groups of large even exponents, J. Algebra 195 (1997) 241-284.
[12] M. F. Newman and W. Nickel, Engel elements in groups, J. Pure Appl. Algebra 96 (1994) 39-45.
[13] M. L. Newell, On right-Engel elements of length three, Proc. Roy. Irish. Acad. Sect. A. 96 (1) (1996) 17-24.
[14] W. Nickel, Computation of nilpotent Engel groups, J. Austral. Math. Soc. Ser. A 67 (1999) 214-222.
[15] W. Nickel, Some groups with right Engel elements, Groups St. Andrews 1997 in Bath, II, 571-578, London Math. Soc. Lecture Note Ser., 261, Cambridge Univ. Press, Cambridge, 1999.
[16] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2008. (http://www.gap-system.org).
[17] G. Traustason, Locally nilpotent 4-Engel groups are Fitting groups, J. Algebra 270 (2003) 7-27
[18] G. Traustason, On 4-Engel groups, J. Algebra 178 (1995) 414-429.

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
E-mail address: alireza_abdollahi@yahoo.com
E-mail address: hassan_khosravy@yahoo.com