Modules with minimax Cousin cohomologies*

A. Vahidi

Communicated by V. Lyubashenko

Abstract. Let R be a commutative Noetherian ring with non-zero identity and let X be an arbitrary R-module. In this paper, we show that if all the cohomology modules of the Cousin complex for X are minimax, then the following hold for any prime ideal p of R and for every integer n less than X—the height of p:

(i) the nth Bass number of X with respect to p is finite;
(ii) the nth local cohomology module of X_p with respect to pR_p is Artinian.

Introduction

Throughout R will denote a commutative Noetherian ring with non-zero identity, X an arbitrary R-module which is not necessarily finite (i.e., finitely generated), and M a non-zero finite R-module. For basic results, notations and terminology not given in this paper, the reader is referred to [2], [3], and [12].

The notion of the Cousin complex for an R-module X was introduced by Sharp [13] as an analogue of Hartshorne [8]. The Cousin cohomologies (i.e., the cohomology modules of the Cousin complex) have been studied by several authors. Sharp used the vanishing of Cousin cohomologies for investigating the Cohen-Macaulay property, Serre’s S_n-condition, and the vanishing of Bass numbers of X in [13], [14], and [15]. Dibaei, Tousi, Jafari, and Kawasaki, in [4], [5], [6], [7], and [10], worked on the finiteness of

*This research was in part supported by a grant from Payame Noor University.

2010 MSC: 13D02, 13D03, 13D45, 13E10.

Key words and phrases: Artinian modules, Bass numbers, Cousin complexes, local cohomology modules, minimax modules.
Cousin cohomologies and, in [11, Proposition 9.3.5], Lipman, Nayak, and Sastry generalized their results to complexes on formal schemes.

Sharp, in [14, Theorem 2.4], showed that M is Cohen-Macaulay if and only if the Cousin complex for M is exact. Thus we get the following theorem.

Theorem 1. Let M be a non-zero finite R-module such that all the cohomology modules of the Cousin complex for M are zero. Then the followings hold for any prime ideal p of R and for every integer n less than X—the height of p.

(i) The nth Bass number of M with respect to p is zero;
(ii) The nth local cohomology module of M_p with respect to pR_p is zero.

Now, it is natural to ask whether a similar statement is valid if ‘zero’ is replaced by ‘finite’.

Question 1. Let X be an arbitrary R-module such that all the cohomology modules of the Cousin complex for X are finite. Do the followings hold for any prime ideal p of R and for every integer n less than X–height of p?

(i) The nth Bass number of X with respect to p is finite;
(ii) The nth local cohomology module of X_p with respect to pR_p is finite.

In this paper, we answer the above question. We show that the first part of Question 1 is true. In fact, in Theorem 2, we prove that the nth Bass number of X with respect to p is finite for any prime ideal p of R and for every integer n less than X–height of p, when all the cohomology modules of the Cousin complex for X are minimax. Even though the second part of Question 1 is false in general, we show in Theorem 3 that if all the cohomology modules of the Cousin complex for X are minimax, then the nth local cohomology module of X_p with respect to pR_p is Artinian for any prime ideal p of R and for every integer n less than X–height of p.

1. **Main results**

Suppose that X is an arbitrary R-module. Recall that, for a prime ideal p of $\text{Supp}_R(X)$, the X–height of p is defined to be $\text{ht}_X(p) = \dim_R(X_p)$. Let i be a non-negative integer and set $U^i(X) = \{ p \in \text{Supp}_R(X) : \text{ht}_X(p) \geq i \}$. Then $\text{Supp}_R(X) = U^0(X)$, $U^i(X) \supseteq U^{i+1}(X)$, and $U^i(X) - U^{i+1}(X) (= \{ p \in \text{Supp}_R(X) : \text{ht}_X(p) = i \})$ is low with respect to $U^i(X)$ (i.e., each member of $U^i(X) - U^{i+1}(X)$ is a minimal member of $U^i(X)$ with respect to inclusion). The Cousin complex $C_R(X)$ for X is of the form

$$C_R(X) : 0 \xrightarrow{d^{-2}} X \xrightarrow{d^{-1}} X^0 \xrightarrow{d^0} X^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{i-2}} X^{i-1} \xrightarrow{d^{i-1}} X^i \xrightarrow{d^i} \cdots$$
where, for all $i \geq 0$,

- $X^i = \bigoplus_{p \in U^i(X)} (\text{Coker } d^{i-2})^i_p$ and
- $d^{i-1}(x) = \left\{ \frac{x + \text{Im} d^{i-2}}{1} \right\}_{p \in U^i(X) - U^{i+1}(X)}$ for every element x of X^{i-1}; and satisfies

- $\text{Supp}_R(X^i) \subseteq U^i(X)$,
- $\text{Supp}_R(\text{Coker } d^{i-2}) \subseteq U^i(X)$, and
- $\text{Supp}_R(\text{H}^{i-1}(C_R(X))) \subseteq U^{i+1}(X)$

(see [13] for details). Here, we use the notations $C^{i-2} := \text{Coker } d^{i-2}$ and $\text{H}^{i-1} := \text{H}^{i-1}(C_R(X))$ for all $i \geq 0$.

Recall that an R-module X is said to be minimax, if there is a finite submodule X' of X such that $\frac{X}{X'}$ is Artinian [3]. Thus the class of minimax modules includes all finite and all Artinian modules. Note that, for any short exact sequence

$$0 \rightarrow X' \rightarrow X \rightarrow X'' \rightarrow 0$$

of R-modules, X is minimax if and only if X' and X'' are both minimax [1, Lemma 2.1].

In the following, we state our first main result. Note that, for an R-module X and a prime ideal p of R, the number

$$\mu^n(p, X) = \dim_{\frac{R_p}{pR_p}} (\text{Ext}^n_{\frac{R_p}{pR_p}} (\frac{R_p}{pR_p}, X_p))$$

is the nth Bass number of X with respect to p.

Theorem 2. Let X be an arbitrary R-module such that H^i is minimax for all i. Then $\mu^n(p, X)$ is finite for all prime ideals p of R and all $n < \text{ht}_X(p)$.

Proof. Let p be a prime ideal of R and let $n < \text{ht}_X(p)$. Let i be an integer such that $0 \leq i \leq n$. By considering the short exact sequences

$$0 \rightarrow \frac{C^{i-2}}{H^{i-1}} \rightarrow X^i \rightarrow C^{i-1} \rightarrow 0 \quad (1)$$

and

$$0 \rightarrow H^{i-1} \rightarrow C^{i-2} \rightarrow \frac{C^{i-2}}{H^{i-1}} \rightarrow 0, \quad (2)$$

we have the long exact sequences

$$0 \rightarrow \text{Hom}_R(\frac{R}{p}, \frac{C^{i-2}}{H^{i-1}}) \rightarrow \text{Hom}_R(\frac{R}{p}, X^i) \rightarrow \text{Hom}_R(\frac{R}{p}, C^{i-1})$$
\[\cdots \to \Ext^1_R\left(\frac{R}{p}, C^{i-2} \right) \to \Ext^1_R\left(\frac{R}{p}, X^i \right) \to \Ext^1_R\left(\frac{R}{p}, C^{i-1} \right) \]

\[\to \cdots \]

\[\cdots \to \Ext^n_{R}\left(\frac{R}{p}, H^{i-1} \right) \to \Ext^n_{R}\left(\frac{R}{p}, C^{i-2} \right) \to \Ext^n_{R}\left(\frac{R}{p}, C^{i-1} \right) \]

Since H^i is minimax for all i, $\Ext^n_{R}(\frac{R}{p}, H^{i-1})$ is minimax for all $0 \leq i \leq n$. On the other hand, by [13, Lemma 4.5], $\Ext^n_{R}(\frac{R}{p}, X^i) = 0$ for all $0 \leq i \leq n$. Thus, from the above long exact sequences, $\Ext^n_{R}(\frac{R}{p}, C^{i-2})$ is minimax whenever $\Ext^n_{R}(\frac{R}{p}, C^{i-1})$ is minimax. Hence $\Ext^n_{R}(\frac{R}{p}, C^{-2})$ is minimax. Therefore $\Ext^n_{R}(\frac{R}{p}, X)$ is minimax. Thus there is a finite submodule E' of $\Ext^n_{R}(\frac{R}{p}, X)$ such that $\frac{\Ext^n_{R}(\frac{R}{p}, X)}{E'}$ is Artinian. Since $\mu^n(p, X)$ is finite as desired.

For an R-module X and an ideal a of R, we write $H^n_a(X)$ as the nth local cohomology module of X with respect to a. An important problem in commutative algebra is to determine when $H^n_a(X)$ is Artinian. In the second main result of this paper, we show that for an arbitrary R-module X (not necessarily finite) with minimax Cousin cohomologies, $H^n_{pR_p}(X_p)$ is Artinian for all prime ideals p of R and all $n < \text{ht}_X(p)$, which is related to the third of Huneke’s four problems in local cohomology modules [9].
Theorem 3. Let X be an arbitrary R-module such that H^i is minimax for all i. Then $H^n_{pR_p}(X_p)$ is Artinian for all prime ideals p of R and all $n < \text{ht}_X(p)$.

Proof. The proof is similar to that of Theorem 2. We bring it here for the sake of completeness. Let p be a prime ideal of R and let $n < \text{ht}_X(p)$. Let i be an integer such that $0 \leq i \leq n$. By considering the short exact sequences (1) and (2), we have the long exact sequences

\[0 \to \Gamma_{pR_p}(C^i_{p-2}) \to \Gamma_{pR_p}(X^i_p) \to \Gamma_{pR_p}(C^i_{p-1}) \to \cdots \]

\[0 \to \Gamma_{pR_p}(H^i_{p-1}) \to \Gamma_{pR_p}(X^i_p) \to \Gamma_{pR_p}(C^i_{p-1}) \to \cdots \]

and

\[0 \to \Gamma_{pR_p}(H^i_{p-1}) \to \Gamma_{pR_p}(C^i_{p-2}) \to \Gamma_{pR_p}(C^i_{p-1}) \to \cdots \]

\[0 \to \Gamma_{pR_p}(H^i_{p-1}) \to \Gamma_{pR_p}(C^i_{p-2}) \to \Gamma_{pR_p}(H^i_{p-1}) \to \cdots \]

Since H^i is minimax for all i, there is a finite submodule H''^i of H^i such that H''^i is Artinian. Therefore, from the exact sequence

\[H^n_{pR_p}(H^i_{p-1}) \to H^n_{pR_p}(H^i_{p-1}) \to H^n_{pR_p}(H^i_{p-1}) \to \cdots \]
$H_{pR_p}^{n-i}(H_{p}^{i-1})$ is Artinian for all $0 \leq i \leq n$. On the other hand, by [13, Lemma 4.5], for all $0 \leq i \leq n$ and all $j \geq 0$, $\text{Ext}_{R}^{n-i}(R_j, X^i) = 0$ and so $H_{pR_p}^{n-i}(X^i) \cong (H_{p}^{n-i}(X^i))_p = 0$ because

$$H_{p}^{n-i}(X^i) \cong \lim_{j \to 0} \text{Ext}_{R}^{n-i}(R_j, X^i).$$

Thus, from the above long exact sequences, $H_{pR_p}^{n-i}(C_{p}^{i-2})$ is Artinian whenever $H_{pR_p}^{n-i-1}(C_{p}^{i-1})$ is Artinian. Hence $H_{pR_p}^{n}(C_{p}^{2})$ is Artinian. Therefore $H_{pR_p}^{n}(X_p)$ is Artinian.

The following corollaries are immediate applications of the above theorems.

Corollary 1. Let X be an arbitrary R-module such that H^i is finite for all i. Then

(i) $\mu^n(p, X)$ is finite and

(ii) $H_{pR_p}^{n}(X_p)$ is Artinian

for all prime ideals p of R and all $n < \text{ht}_X(p)$.

Corollary 2. Let X be an arbitrary R-module such that H^i is Artinian for all i. Then

(i) $\mu^n(p, X)$ is finite and

(ii) $H_{pR_p}^{n}(X_p)$ is Artinian

for all prime ideals p of R and all $n < \text{ht}_X(p)$.

References

[1] K. Bahmanpour, R. Naghipour, On the cofiniteness of local cohomology modules, *Proc. Amer. Math. Soc.* 136 (2008), 2359–2363.

[2] M.P. Brodmann, R.Y. Sharp, *Local Cohomology: An Algebraic Introduction with Geometric Applications*, Cambridge, Cambridge University Press, 1998.

[3] W. Bruns, J. Herzog, *Cohen-Macaulay Rings*, Cambridge, Cambridge University Press, 1998.

[4] M.T. Dibaei, M. Tousi, The structure of dualizing complex for a ring which is (S_2), *J. Math. Kyoto Univ.* 38 (1998), 503–516.

[5] M.T. Dibaei, M. Tousi, A generalization of the dualizing complex structure and its applications, *J. Pure Appl. Algebra* 155 (2001), 17–28.

[6] M.T. Dibaei, A study of Cousin complexes through the dualizing complexes, *Comm. Algebra* 33 (2005), 119–132.

[7] M.T. Dibaei, R. Jafari, Modules with finite Cousin cohomologies have uniform local cohomological annihilators, *J. Algebra* 319 (2008), 3291–3300.
[8] R. Hartshorne, *Residues and Duality*, Springer, 1966.

[9] C. Huneke, *Problems on Local Cohomology: Free Resolutions in Commutative Algebra and Algebraic Geometry*, Jones and Bartlett, 1992.

[10] T. Kawasaki, Finiteness of Cousin cohomologies, *Trans. Amer. Math. Soc.* **360** (2008), 2709–2739.

[11] J. Lipman, S. Nayak, P. Sastry, Pseudofunctorial behavior of Cousin complexes on formal schemes, *Contemp. Math.* **375** (2005), 3–133.

[12] J. Rotman, *An Introduction to Homological Algebra*, Academic Press, 1979.

[13] R.Y. Sharp, The Cousin complex for a module over a commutative Noetherian ring, *Math. Z.* **112** (1969), 340–356.

[14] R.Y. Sharp, Gorenstein modules, *Math. Z.* **115** (1970), 117–139.

[15] R.Y. Sharp, Cousin complex characterizations of two classes of commutative Noetherian rings, *J. London Math. Soc.* **3** (1971), 621–624.

[16] H. Zöschinger, Minimax Moduln, *J. Algebra* **102** (1986), 1–32.

Contact Information

Alireza Vahidi
Department of Mathematics, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran
E-Mail(s): vahidi.ar@pnu.ac.ir

Received by the editors: 25.08.2017
and in final form 15.08.2018.