Case Report

De novo large-cell neuroendocrine carcinoma of the prostate: A case report and literature review

Eri Fukagawa,1,2 Takeshi Yuasa,1 Kentaro Inamura,3 Kosuke Hamada,1 Motohiro Fujiwara,1 Yoshinobu Komai1 and Junji Yonese1

Departments of 1Urology and 3Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, and 2Department of Urology, St. Luke’s International Hospital, Tokyo, Japan

Abbreviations & Acronyms
AC = adenocarcinoma
ADT = androgen deprivation therapy
AR = androgen receptor
CT = computed tomography
LCNEC = large-cell neuroendocrine cell carcinoma
LH-RH = luteinizing hormone-releasing hormone
LUTS = lower urinary tract symptoms
MRI = magnetic resonance imaging
N/R = not reported
PBx = prostate biopsy
PSA = prostate-specific antigen
SCLC = small cell lung cancer
SCNEC = small cell neuroendocrine carcinoma
TURBT = transurethral resection of the bladder tumor
TURP = transurethral resection of the prostate
ULN = upper limit of normal range
WHO = World Health Organization

Introduction: Prostatic large-cell neuroendocrine carcinoma is poorly studied. Although several case reports are available, information on the clinicopathological characteristics of this disease is limited, particularly for the de novo (hormone-naive) type. Herein, we report an extremely rare de novo case of this disease with a good prognosis despite a multi-metastatic status.

Case presentation: An 83-year-old male patient presented with a high serum prostate-specific antigen level and was found to have de novo prostatic large-cell neuroendocrine carcinoma with an adenocarcinoma component upon pathological examination. Diagnosed with stage pT4cN1cM1c, he underwent chemo-hormonal therapy using a luteinizing hormone-releasing hormone antagonist and combined etoposide and cisplatin, which achieved a partial response. The patient has survived for 20 months without progression.

Conclusion: Although prostatic large-cell neuroendocrine carcinoma is known for its aggressive clinical behavior, the de novo type with an adenocarcinoma component may be sensitive to hormonal therapy and achieve a good prognosis.

Key words: adenocarcinoma, cell differentiation, large cell carcinoma, neuroendocrine carcinoma, prostate cancer.

Keynote message

De novo large-cell neuroendocrine carcinoma (LCNEC) of the prostate has been known to exhibit aggressive clinical features; however, information on its clinicopathological characteristics is limited. De novo LCNEC with an adenocarcinoma component may be sensitive to androgen deprivation therapy, which may result in a relatively good prognosis.

Introduction

Prostate cancer is one of the most common cancers in men. Pathologically, >95% of prostate cancer cases are acinar AC. LCNEC was described as a rare histological variant since the 2004 WHO classification.1 Although several case reports are available, information on its clinicopathological characteristics is limited, particularly for the de novo (hormone-naive) type. Herein, we reported an extremely rare case of de novo prostatic LCNEC with a good prognosis, despite a multi-metastatic status.

Case presentation

An 83-year-old male patient presented to our hospital due to an elevated serum PSA level detected during a routine health checkup. His initial PSA level was 22.47 ng/mL (Fig. 1), and his prostate was irregularly enlarged, stony, and hard upon palpation during the digital rectal examination. Imaging studies, including multi-parametric MRI, whole trunk CT scan, and bone scintigraphy, revealed a prostatic tumor with seminal vesicle invasion and multiple metastases to the para-aortic lymph nodes, bones, and bilateral lungs (Fig. 2a,b). The imaging
studies also showed a tiny mass in the bladder, and cystoscopy revealed a non-papillary tumor on the bladder neck (Fig. 2c). Figure 2d,e show the results of the imaging studies before and after treatment. Prostatic biopsy and TURBT were performed. Histologically, the tumor specimens from both procedures showed similar neuroendocrine morphology, including peripheral palisading and rosettes (Fig. 3a). Immunohistochemical examinations revealed positive staining for NKX3.1, synaptophysin, and chromogranin A, with a Ki-67 labeling index of 70% (Fig. 3b,d). Although the LCNEC component of the tumor was not immunostained for PSA, immunoreactivity was observed for prostate-specific acid phosphatase, prostate-specific membrane antigens, and ARs (Fig. 3c). The tumor also contained an AC component with a Gleason score of 4 + 5 (Fig. 3e), with positive staining for AR and negative for synaptophysin (Fig. 3f,g). The other serum tumor markers were pro-gastrin-releasing peptide 56.8 pg/mL (ULN: 50 pg/mL), neuron-specific enolase 5 ng/mL (ULN: 16.6 ng/mL), and carcinoembryonic antigen 8.9 ng/mL (ULN: 2.5 ng/mL).

The patient was diagnosed with combined LCNEC with AC of the prostate, which was staged as pT4cN1cM1c. He started chemo-hormonal therapy with a LH-RH antagonist and combined etoposide and cisplatin, resulting in a partial response to both primary and metastatic lesions (Fig. 2d,e). After 10 courses, chemotherapy was terminated due to myelosuppression. Subsequently, abiraterone therapy was initiated because of high metastatic risk. Since then, the patient has been followed up by monthly PSA exams and CT scans every 3 months. PSA has remained at a low level, and the patient has survived without disease progression, 20 months after the diagnosis.
Discussion

LCNEC is a tumor entity first observed in lung cancer by Travis et al. in 1991.\(^2\) It was added as a histological subtype of large-cell carcinoma in the 1999 WHO classification of lung tumors.\(^3\) LCNEC is a large-cell carcinoma with neuroendocrine morphology. The confirmation of neuroendocrine differentiation by immunohistochemistry or electron microscopy is mandatory for its definitive diagnosis.

In 2006, Evans et al. reported the first and largest case series for prostatic LCNEC.\(^4\) To date, only 23 of these cases have been reported, including ours (Table 1).\(^4\)–\(^18\) Of these cases, half had a history of long-standing ADT for conventional-type prostate AC, suggesting acquired neuroendocrine differentiation. The rest is considered as de novo LCNEC, which can be classified into two types: pure and combined with AC.

In all reported cases, serum PSA levels varied but showed type-dependent trends. For cases of de novo LCNEC with available data, five with PSA immunoreactivity showed a high serum PSA level (3.3–170 ng/mL, mean: 58.3 ng/mL) regardless of the presence of the AC component. In contrast, there are four without PSA immunostaining, three of which were pure LCNEC with a normal serum PSA level (0.09–3.9 ng/mL, mean: 2.1 ng/mL) and the remaining one (our case), which has AR-positive LCNEC admixed with hormone-naive AC, showed a high serum PSA level (22.47 ng/mL).

Many patients with prostatic LCNEC reportedly presented with LUTS, hematuria, or hydronephrosis, which were possibly associated with direct tumor invasion beyond the prostate (10/11 cases were T4). In addition, almost all cases showed metastasis upon diagnosis (12/14 cases were N1, and 10/16 cases were M1). These data indicate that LCNEC has a highly aggressive clinical behavior, with rapid progression at both local and distant sites.

LCNEC is known to have a dismal prognosis. In the study by Evans et al., six cases with available follow-up data had rapid disease progression and died at a mean of 7 months after platinum-based chemotherapy.\(^4\) In all previously reported cases, five patients were alive at the time of reporting; four of which, including our case, had de novo LCNEC admixed with typical AC and underwent ADT. In addition, all these cases had similar pathology with positive immunostaining for either PSA or AR in the LCNEC component. Patients with pure LCNEC (one PSA/AR positive case was reported; however, the outcome was unknown) and those with mixed hormone-naive AC and PSA/AR negative LCNEC have not been reported to survive. Although LCNEC with acquired differentiation from AC through exposure to long-term ADT generally lacks AR expression resulting in an ADT-refractory tumor, combined LCNEC with hormone-naive AC, especially with AR expression in the LCNEC, may have a good prognosis with ADT.

A treatment strategy for LCNEC has not been established due to the small number of reported cases. Existing case reports of LCNEC rarely mention treatment options, but the reports that discuss treatment strategies pertain to the treatment for SCNEC, which is more prevalent and more widely reported than LCNEC.\(^10,12\) SCNEC has no standard treatment; however, due to its similarity with SCLC, platinum-based chemotherapy is administered as first-line chemotherapy, and sometimes platinum is combined with taxanes, etoposide, and irinotecan.\(^19\) An initial response is observed in some cases, but it is short-lived. Combining chemotherapy and immunotherapy to treat SCLC has improved survival compared to chemotherapy alone. However, no benefit has
Table 1 Characteristics of reported cases of prostatic large-cell neuroendocrine carcinoma

Case	Author	Age	PSA (ng/mL)	Prior ADT	Pathology	PSA	PAP/PSAP	AR	Chief compliant	Diagnosis	Tumor stage	Treatment after LCNEC diagnosis	Outcome	
1	Evans et al.	71	3.66	Yes	–	+	+	–	N/R	TURP	NR	Chemotherapy: palliative mitoxantrone	Died of disease; bone, lymph nodes, mets	
2		81	<0.05	Yes	–	–	–	–	N/R	TURP	NR	Chemotherapy: carboplatin, VA-16	Died of disease; lung, liver, brain, mets	
3		75	N/R	Yes	–	–	–	N/R	N/R	Biopsy of pelvic mass	NR	Radiation	Lost to follow-up	
4		64	<0.2	Yes	–	+	–	N/R	TURP	NR	Chemotherapy: carboplatin and etoposide	Died of disease; bone mets		
5		65	<0.2	Yes	–	–	+	–	N/R	TURP	NR	Chemotherapy: carboplatin and etoposide	Died of disease; bone mets	
6		69	<0.1	No	Pure	NR	NR	N/R	N/R	Prostatectomy	N/R	Chemotherapy: carboplatin and etoposide	Died of disease; pelvic mass post-prostatectomy and brain mets	
7		43	9.9	Yes	–	–	+	–	N/R	TURP	NR	Chemotherapy: carboplatin, etoposide and palliative mitoxantrone	Died of disease; bone mets	
8	Moratalla et al.	81	0	Yes	–	NR	NR	NR	N/R	hematuria	PBx	T4N0M1b	Chemotherapy: docetaxel and carboplatin	Died of disease 10 days after starting chemotherapy
9	Azad et al.	70	9.6	No	Mixed	+	NR	N/R	LUTS	PBx	T3N1M0	ADT	Survival	
10		71	170	No	Mixed	+	NR	N/R	LUTS, swollen left leg	PBx	T4N1M1b	ADT	Survival	
11	Lin et al.	84	N/R	No	Palliative care	Pure	Died of disease 1 year after	N/R	N/R	hematuria	PBx	T4N1M0	Chemotherapy: docetaxel, etoposide and cisplatin with ADT	Died of disease 13 months after prostatectomy
12		Okoye et al.	48	N/R	No	Mixed	–	–	N/R	LUTS	TURP	TxN1M0	Chemotherapy: paclitaxel, etoposide and cisplatin with ADT	Died of disease 13 months after prostatectomy
13	Acosta-Gonzalez et al.	66	97	No	Pure	+	++	++	bilateral	TURP	T4N1M0	Chemotherapy: Platinum and etoposide	Survival	
14	Patel et al.	75	<0.01	Yes	–	NR	N/R	N/R	LUTS, hematuria	TURP	T4NxM1c (lung)	Chemotherapy: Platinum and etoposide	Survival	
15	Zafarghandi et al.	71	0.09	No	Pure	–	NR	N/R	LUTS	TURP	T4N1M0	Radiation	N/R	
16	Tzou et al.	66	2.44	No	Pure	–	NR	–	LUTS	TURP	T4N1M1	Chemotherapy: cisplatin and etoposide	N/R	
17	Miyakawa et al.	87	3.3	No	Mixed	+	NR	+	LUTS, hematuria facial swelling and	TURBt	T4N0M0	ADT	Survival	
18	Papagoras et al.	69	11.49	No	N/R	+	+	N/R	PBx	T4N1M1b	N/R	Died of disease 4 months after the diagnosis		
been reported for prostate SCNEC. More clinical information is necessary to establish the prostate LCNEC and SCNEC treatment strategy.

Conclusions
The early introduction of combined androgen deprivation and platinum-based chemotherapy may have beneficial effects in patients with de novo LCNEC of the prostate, especially with AR expression. AR immunoreactivity should be confirmed to ensure an appropriate treatment strategy when de novo LCNEC of the prostate is observed.

Acknowledgments
The authors thank Editage (www.editage.com) for English language editing.

Author contributions
Eri Fukagawa: Conceptualization; data curation; investigation; project administration; visualization; writing – original draft; writing – review and editing. Takeshi Yuasa: Conceptualization; data curation; project administration; supervision. Kentaro Inamura: Data curation; writing – review and editing. Kosuke Hamada: Data curation. Motohiro Fujiwara: Data curation. Yoshinobu Komai: Data curation. Junji Yonese: Data curation; supervision.

Conflict of interest
The authors declare no conflict of interest.

Approval of the research protocol by an Institutional Reviewer Board
The protocol for this research project has been approved by a suitably constituted Ethics Committee of Cancer Institute Hospital of Japanese Foundation for Cancer Research (Approval No. 2012–1008). The protocol also conforms to the provisions of Declaration of Helsinki.

Informed consent
Informed consent was obtained from the subject.

Registry and the Registration No. of the study/trial
Not applicable.

References
1 Eble JN, Sauter G, Epstein JI, Sesterhenn IA. Tumours of the prostate. In: Eble JN, Sauter G, Epstein JI, Sesterhenn IA (eds). Tumours of the Urinary System and Male Genital Organs. IARC Press, Lyon, 2004; 159–214.
2 Travis WD, Linnoila RI, Tsokos MG et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. Am. J. Surg. Pathol. 1991; 15: 529–53.
3 Travis WD, Colby IV, Corrin B et al. Histological typing of lung and pleural tumors. In: World Health Organization International Histological Classification of Tumours, 3rd edn. Springer, Berlin, 1999; 21–4.

4 Evans AJ, Humphrey PA, Belani J, Van Der Kwast TH, Srigley JR. Large cell neuroendocrine carcinoma of prostate: a clinicopathologic summary of 7 cases of a rare manifestation of advanced prostate cancer. Am. J. Surg. Pathol. 2006; 30: 684–93.

5 Moratalla Charcos LM, Pastor Navarro T, Cortes Vizcaino V, Osca Garcia JM, Gil Salom M. Large-cell neuroendocrine carcinoma of prostate. Case report. Arch. Esp. Urol. 2013; 66: 368–71.

6 Azad AA, Jones EC, Chi KN. Metastatic large-cell neuroendocrine prostate carcinoma: successful treatment with androgen deprivation therapy. Clin. Genitourin. Cancer 2014; 12: e151–3.

7 Lin D, Tan AH, De Sousa AF, Singh-Rai R. A rare case of large cell neuroendocrine carcinoma. BMJ Case Rep. 2014; 2014: bcr201420403.

8 Okoye E, Choi EK, Divatia M, Miles BJ, Ayala AG, Ro JY. De novo large cell neuroendocrine carcinoma of the prostate gland with pelvic lymph node metastasis: a case report with review of literature. Int. J. Clin. Exp. Pathol. 2014; 7: 9061–6.

9 Acosta-Gonzalez G, Qin J, Wieczorek R et al. De novo large cell neuroendocrine carcinoma of the prostate, case report and literature review. Am. J. Clin. Exp. Pathol. 2014; 2: 337–42.

10 Patel R, Faiena I, Geltzeiler J. Large cell differentiation of metastatic prostate cancer after androgen deprivation therapy. Can. J. Urol. 2015; 22: 7752–4.

11 Zafarghandi RM, Kalantari MR, Rezavyat AA, Azadpour AA. Large cell neuroendocrine carcinoma of prostate: a rare interesting case and literature review. Nephro-Urol. Mon. 2017; 9: e45086.

12 Tzou KY, Cheng WH, Lee WH, Ho CH. Primary large cell neuroendocrine carcinoma of the prostate in a hormone naive patient: a case report from Taiwan. J. Cancer Res. Ther. 2018; 14: S785–8.

13 Miyakawa J, Suzuki M, Endo K et al. A rare case of de novo large cell neuroendocrine carcinoma of the prostate with long-term survival after cystoprostatectomy and androgen deprivation. Urol. Case Rep. 2018; 21: 95–7.

14 Papagoras C, Arelaki S, Botis I, Chrysafis I, Giannopoulos S, Skendros P. Co-occurrence of dermatomyositis and polycythemia unveiling rare de novo neuroendocrine prostate tumor. Front. Oncol. 2018; 8: 534.

15 Acar E, Kaya GC. 18F-FDG, 68Ga-DOTATATE and 68Ga-PSMA positive metastatic large cell neuroendocrine prostate tumor. Clin. Nucl. Med. 2019; 44: 53–4.

16 Aljarba SI, Murad M, Bafaqeh M, Alshakweer W. Brain metastasis from large cell neuroendocrine carcinoma of the prostate: a case report and literature review. Int. J. Surg. Case Rep. 2020; 67: 245–9.

17 Basatac C, Sağlam S, Aktepe F, Akpinar H. Primary large cell prostate neuroendocrine carcinoma with central and nephrogenic diabetes insipidus. Int. Braz. J. Urol. 2020; 46: 859–63.

18 Schepers LM, Kisters JMH, Wetzels C, Creemers GJ. Hypokalaemia and peripheral oedema in a cushingoid patient with metastatic prostate cancer. Neth. J. Med. 2020; 78: 401–3.

19 Karim SM, Zekri J. Chemotherapy for small cell lung cancer: a comprehensive review. Oncol. Rev. 2012; 6: e4.

20 Lin D, Tan A, De Sousa AF, Singh-Rai R. Chemotherapy with atezolizumab for small cell or neuroendocrine carcinoma of the prostate: a single institution experience. Prostate 2021; 13: 938–43.