Optimization of follow-up in patients with papillary thyroid cancer who show no evidence of disease 9–12 months after treatment

Fabian Nordell1, Ghadir Hallal2, Pernilla Asp3,4 and Martin Almquist 4

1Medical Programme, Lund University, Sweden
2Medical Programme, Linköping University, Sweden
3Department of Oncology, Lund University Hospital, Lund, Sweden
4Department of Surgery, Lund University Hospital, Lund, Sweden

*Correspondence to: Department of Surgery, Skåne University Hospital, 221 85 Lund, Sweden (e-mail: martin.almquist@med.lu.se)

Abstract

Background: Papillary thyroid cancer (PTC) has an excellent prognosis, and recurrence is rare in patients with no evidence of disease (NED) after initial treatment. Despite this, several guidelines recommend long and costly follow-up, with limited evidence of improved patient outcomes. This study aims to examine the value of follow-up in patients with NED after treatment for PTC, by determining the rate of recurrence, recurrence-associated morbidity, and death, and whether any recurrence was diagnosed through the follow-up programme.

Methods: Patients operated for PTC at Lund University Hospital between January 2004 and December 2016 were eligible. Patients with T1a N0/NX were excluded as well as patients with any other thyroid malignancy. Data were collected retrospectively by searching the patients' medical records. NED was defined as thyroglobulin less than 1 ng/ml, thyroglobulin antibodies less than 20 kIU/l, and negative imaging. Biochemical recurrence was defined as thyroglobulin greater than 1 ng/ml, and/or thyroglobulin antibodies greater than 20 kIU/l. Structural recurrence was defined as a strong suspicion of recurrence on imaging and/or histological proof of recurrence.

Results: Out of a cohort of 187 patients, there were 90 patients with NED who were followed for a median of 6.3 years. Three patients had biochemical recurrence; none of them had symptoms, nor were they treated for their recurrence. Three had structural recurrence; all were above 75 years old and only one was diagnosed through the follow-up programme. No patient died of PTC; five patients died during the follow-up.

Conclusion: Follow-up as it is designed today cannot identify recurrences accurately and seems to be of questionable benefit in younger patients with NED after treatment for PTC.

Introduction

Papillary thyroid cancer (PTC) is the most common malignancy of the thyroid, and its incidence is rising. Despite this, the mortality rate has remained low, and the prognosis is excellent. PTC is treated by surgery with or without postoperative radioactive iodine treatment. After treatment, PTC can recur, most often in locoregional lymph nodes, but there is also a risk of distant metastasis after treatment. Previous studies have indicated that the recurrence rate for PTC is high and that it can occur a long time after initial treatment. Recurrence rates were also shown to be higher in patients with more advanced disease at diagnosis, that is higher-stage disease. However, more recent studies have shown that when stratifying patients according to their treatment response, the recurrence rate in patients with no evidence of disease (NED) after treatment is very low, including patients with advanced disease at diagnosis. Despite this, most guidelines still recommend long follow-up. Furthermore, guidelines also recommend suppression treatment with levothyroxine, resulting in iatrogenic hyperthyroidism. Suppression treatment results in low levels of thyroid-stimulating hormone, which has been shown to reduce recurrence risk, but it has also been associated with long-term adverse effects, such as an increased risk of atrial fibrillation and osteoporosis. Thus, the present guidelines may lead to overtreatment and unnecessary follow-up of patients with NED after treatment for PTC. It also seems that previous results have not been fully implemented in clinical guidelines. Therefore, this study aimed to determine if follow-up is necessary for patients with NED after initial treatment by investigating the risk of recurrence and death. The study also aimed to identify risk factors for recurrence and to examine whether the recurrences were found inside or outside the follow-up programme.
Methods

Study design and included patients

A single-centre retrospective observational study was performed at Skåne University Hospital Lund, Sweden. This unit is a tertiary referral centre for patients with malignancy in the thyroid. Patients who had primary surgery for PTC between 1 January 2004 and 31 December 2016 were included. Patients with a post-operative histopathological diagnosis of any other malignancy in the thyroid, such as follicular, medullary, anaplastic, poorly differentiated, or other cancers, were excluded. Patients who were lost to follow-up, that is patients who moved to another healthcare region, were excluded, as were patients with stage T1a N0/X, since the current Swedish guidelines indicate that the latter group should not be followed up due to a very low risk of recurrence.

Data collection

Patients were identified by cross-linking data from two clinical registers: the Scandinavian Quality Register for Thyroid, Parathyroid, and Adrenal Surgery (SQRTPA) and INCA, the Swedish national register for thyroid cancer. SQRTPA has registered patients since 2004 and INCA since 2015 in Skåne. Registration in SQRTPA is carried out after written informed consent is given by patients. After identification of patients, data for the present study was further added by searching patients’ electronic hospital records and entered into a specific database for the study. This study was approved by the local ethics committee (DNR 2019–02060) as well as the committee for matters regarding quality registers, medical databases and preparation in Skåne Region (case number 130–139), both of which waived the need for further patient consent.

The variables collected from hospital records, SQRTPA and INCA were: age at diagnosis, sex, date of surgery, TNM stage, multifocal-ity, the extent of primary treatment, disease status including unstimulated thyroglobulin (Tg) levels, thyroglobulin antibodies (TgAb) levels, imaging at the follow-up visit 9–12 months after treatment and at all other follow-up visits afterwards, type and treatment of, status after, recurrence if any, disease status after treatment of, whether the recurrence was found through the follow-up programme or not, and cause of death in patients who died during follow-up.

Swedish national guidelines for papillary thyroid cancer

The patients included in this study were treated and followed up according to the Swedish national guidelines for PTC. The first national guidelines for PTC in Sweden were published in 2012. They were based on the guidelines published by ETA in 2006. According to the Swedish guidelines from 2012, all tumours except T1a were recommended for total thyroidectomy followed by radioiodine suppression therapy. The patients were then recommended a 1-year follow-up visit with neck ultrasonography and Tg and TgAb tests. Low-risk patients (pT1b, T2, pNO-X, M0-X) were recommended annual follow-up with Tg and TgAb tests, and if these showed undetectable levels after 2 years they could be referred for continued follow-up by their family doctor. High-risk patients (pT3, T4, pN1a, pN1b, M0-X) were recommended every other year follow-up visits with Tg and TgAb tests at a specialist centre for a minimum of 10 years before referral to their family doctor.

Classification of no evidence of disease, endpoints and risk groups

Response to treatment was classified at the scheduled follow-up visit 9–12 months after treatment, that is thyroid surgery with or without postoperative radioiodine remnant ablation (RRA). Patients were classified as having NED if they had unstimulated Tg levels less than 1 ng/ml, and TgAb levels less than 20 kIE/l, as well as no signs of disease on imaging. Imaging was performed according to hospital protocols and included cervical ultrasonography.

Recurrence was classified as: biochemical recurrence only with Tg greater than 1 ng/ml and/or TgAb greater than 20 kIE/l without imaging or clinical suspicion of recurrence; or structural recurrence with imaging strongly suspected for and/or biopsy-verified recurrence or metastasis with or without biochemical evidence of recurrence.

Patients were followed from the date of their primary surgery until the last scheduled follow-up visit in the follow-up programme. Every patient’s medical record was searched for signs of recurrence at any visit to Skåne University Hospital until and including the end date of 1 December 2020. Time to recurrence was calculated by using the date of primary surgery as the starting date, and the first record of the recurrence as the end date. Death was ascertained either through patients’ medical records or through INCA. Death was defined as overall or disease-specific, using information available either from death certificates or patients’ hospital records.

Patients were stratified into groups of a low, intermediate or high risk of recurrence by American Thyroid Association (ATA) 2015 based on the patients’ pathological TNM (pTNM) stage at diagnosis, using the TNM 7th edition.

Statistical analysis

Statistical analysis was performed using STATA/MP, version 16.1 for Mac (StataCorp, College Station, Texas, USA). Medians and interquartile ranges were reported for continuous variables; numbers and percentages for discrete variables. Characteristics among patients with and without recurrence were compared using Pearson’s chi-squared or Fisher’s exact test, where appropriate. All tests were two-sided, and a difference with a P < 0.050 was considered significant.

Results

Characteristics of patients and clinical outcomes

The inclusions and exclusions of patients in this study are illustrated in Fig. 1. There were 295 patients treated with thyroid surgery and with PTC as the only malignant thyroid diagnosis during the study period; nine were lost to follow-up, and a further 108 had T1aN0/X. Of the remaining 178 patients, 88 had either biochemical or structural persistent disease. Thus, 90 patients remained who had NED after treatment, and who constituted the study cohort of the present report.

Baseline clinicopathological characteristics of the included patients are shown in Table 1. The median age was 48 (i.q.r. 40–64) years. There were 74 women and 16 men, who were followed for a median of 6.3 years; a median period of 4.7 years was in the scheduled follow-up programme. Their clinical outcomes are presented in Table 2. Eighty-four patients (93.3 per cent) remained free of tumour during follow-up, while three (3.3 per cent) patients developed exclusively biochemical signs of recurrence, and additionally three (3.3 per cent) developed a confirmed...
structural recurrence. Five patients (5.6 per cent) died during follow-up. They were all above 75 years of age at the time of death. According to medical records and death certificates, all died of causes other than PTC.

Risk factors for recurrence
Due to the low number of included patients and the low number of events, no multivariable analysis to identify risk factors for recurrence was possible. Patients with structural recurrence were more often aged 75 years or older at treatment ($P = 0.004$), they had a higher risk group (stage) at diagnosis ($P = 0.04$), and more often had a multifocal primary tumour ($P = 0.04$), Table 2.

Recurrences
The details of the patients who had recurrence are summarized in Table 3. The biochemical recurrences were detected 3.1, 5.1 and 15.0 years after initial diagnosis. These patients were 32, 39 and 72 years old at diagnosis of the primary disease. The structural recurrences were detected 2.3, 2.7 and 6.9 years after the initial diagnosis. Patients with structural recurrence were 76, 85 and 86 years old at diagnosis of their primary disease.

Biochemical recurrences
Out of the three patients with biochemical recurrence, two presented exclusively with elevated concentrations of TgAb; the third had elevated levels of Tg. None of them presented with any symptoms of recurrence during their follow-up and none of them were treated further. All of them were recommended to have continued follow-up, and during this study none of them had any structural evidence of disease and none of them died.

Structural recurrences
All patients with structural recurrence of disease were female and 75 years or older at the time of diagnosis and all of them were 80 years or older at the time of recurrence. One structural recurrence was detected at a scheduled follow-up visit; the other two were detected due to symptoms leading the patient to seek care outside the follow-up programme. All three patients with structural recurrence were scheduled for or had undergone treatment for their recurrence. None of these patients remained disease-free at the end of follow-up, and two of the patients with structural recurrence died. One died from a heart attack while the other had several potential causes of death stated in the medical records (renal failure, infection and possibly stroke), none related to PTC.

Fig. 1 Flow chart of included and excluded patients
PTC, papillary thyroid cancer; SQRTPA, Scandinavian Quality Register for Thyroid, Parathyroid, and Adrenal Surgery; INCA, Swedish national quality register for thyroid cancer.
Discussion

The present study found that of 90 patients with NED after treatment for PTC, only three developed a structural recurrence. Out of these three patients with structural recurrence, the follow-up programme detected only one; the other two patients had symptomatic recurrences and sought medical care between follow-up visits. A further three patients had elevated levels of Tg or TgAb, which were classified as biochemical recurrences.

The rate of structural recurrence of 3.3 per cent in the present study is in line with rates reported in previous studies. The finding that only one out of three recurrences was detected through the follow-up programme has not been published previously.

The definition of biochemical recurrence varies. Some authors have suggested a suppressed Tg greater than 1.0 ng/ml; others also include raised TgAb, above 60 kIU/l. Two out of three patients with biochemical recurrence in this study had levels of TgAb between 20 and 60 kIU/l, which would not have been classified as recurrences in previous studies. None of the patients with biochemical recurrence in this study had symptoms or received treatment but continue to be followed up. Their risk of any future structural recurrence is unclear. In the study by Han and colleagues, out of ten patients converting from TgAb levels less than 100 kIU/l after treatment to levels above 100 kIU/l during follow-up, none developed structural recurrence. Rising Tg seems to impart a higher risk of later structural recurrence. Thus, in the same study, five out of 37 (13.5 per cent) patients with rising Tg later developed structural recurrence. Scheffel and co-workers found six structural recurrences in 90 patients with NED and rising levels of Tg, resulting in a rate of 6.7 per cent. These results suggest that the risk of structural recurrence after biochemical signs of recurrence may not be very high.

The third patient in this study with biochemical recurrence demonstrated an elevated Tg to 4.6 ng/ml. This patient did not undergo RRA at baseline, indicating that the rising levels of Tg might have been due to regrowth of benign thyroid remnants, and not recurrence of malignant disease.

In contrast to Tuttle and colleagues who found that structural recurrences occur 4 to 11 years after primary treatment,
two of the three structural recurrences in the present study were
detected after 2.3 and 2.7 years. Due to this relatively short recur-
rence time, it is possible these were not true recurrences but in-
stead persistent disease. Both recurrences were metastatic
lymph nodes in the neck. Both of the patients with these recurrences
were initially diagnosed with lymph node involvement at
primary diagnosis, one in the central neck (N1a) and the other in
the lateral neck (N1b). A study by Llamas-Olier and colleagues in
2018 showed that N1b at diagnosis is a risk factor for early re-
currence or persistent disease.

Another study, from Memorial Sloan Kettering Center in 2015,
of 3664 patients with differentiated thyroid cancer illustrated
that the risk of recurrence increases with age, regardless of
stage. Thus, they found a 37-fold increase in the risk of recur-
rence in patients above 70 years of age compared with patients
below the age of 40. This aligns with the results in the current
study, where patients with structural recurrences were 76, 85
and 86 years old at the time of diagnosis, compared with the
median age of 48 years in the cohort.

Some studies have investigated whether molecular markers
can be used to determine prognosis in thyroid cancer. The most
studied marker is mutation of the BRAF gene. A study from 2013
published by Xing and co-workers showed that the risk of me-
tastasis, death and old age at diagnosis are all higher in PTC con-
taining a specific BRAF mutation. Thus, it is plausible that PTC is
not a single disease but consists of several different molecular
types of cancer, and that prognosis is determined by early genetic
events. Unfortunately, data on BRAF mutations were not avail-
able in the present study.

The results of the present study contrast with earlier studies
which found high rates of recurrence after treatment for PTC. For
instance, Mazzaferr and Kloos in 2001 found a FTC-recurrence
rate of 23.5 per cent, and a study from the Mayo Clinic of 800
patients who had FTC surgery between 1946 and 1970 found a re-
currence rate of 18 per cent. Early studies such as these are often
cited to support the value of extensive follow-up of FTC. However,
their results are in stark contrast to the 1 to 4 per cent recur-
rence rate presented in more recent studies of patients with
NED after treatment. Reasons for the lower contemporary recur-
rence rate might be improved surgical treatment. Today, sur-
guons perform more compartment-oriented lymph node
dissection instead of so-called ‘berry picking’, where only
suspicious-looking lymph nodes are excised. Other reasons in-
clude improved RRA. Most importantly, the evaluation of dis-
ease status after surgical treatment with Tg, TgAb and imaging,
makes prediction of recurrence much more precise than previ-
ously. In this regard, it is important to note that out of 295
patients with FTC in this study, 88 did not have NED after pri-
mary treatment, but showed signs of persistent disease. Thus,
the very low risk of recurrence only relates to patients with NED
after treatment.

A strength of the present study is its single-centre design,
which minimizes confounding factors regarding differences in
treatment and follow-up between different clinics. This study is
the first northern European study on how to follow patients with
PTC and NED optimally after treatment.

Some limitations of the present study need to be mentioned.
First, the Tg assay has changed over time. Before 2016, Skåne
University Hospital Lund used an assay with a sensitivity of
0.1 ng/ml. From 2016, a more sensitive assay of 0.1 ng/ml was in-
roduced. Thus, patients who were considered biochemically free
of disease before 2016 could theoretically still have had levels of

Table 3 Details of patients with recurrence

Number	1	2	3	4	5	6
Age at initial surgery (years), sex	39, male	72, female	32, female	86, female	85, female	76, female
Type of recurrence	Biochemical	Biochemical	Biochemical	Structural	Structural	Structural
Stage	T3N0 Intermediate Laboratory	T3N1a Intermediate Laboratory	T3N0 Intermediate Laboratory	T3N1a Intermediate Lymph gland neck	T3N1b Intermediate Lymph gland neck	T4N0 High Metastasis os ilium dx
Risk group	Intermediate	Intermediate	Intermediate	Intermediate	Intermediate	Intermediate
Site of recurrence						
Time to recurrence (years)	5.1	3.1	15.0	2.7	2.3	6.9
Positive findings for detection	44 TgAb	34 TgAb	4.6 Tg	7.7 Tg, positive	Positive FNA and US	18 120 Tg and positive PET
Place for detection of recurrence	Scheduled visit	Scheduled visit	Scheduled visit	Scheduled visit	Medical care for other reasons	Patient sought care due to pain in the groin
Treatment of recurrence	None	None	None	Recommended for radiation therapy	Surgery	Radioiodine treatment
Final outcome	44 TgAb, negative US	50 TgAb, negative US	4.0 Tg, negative US	532 Tg, positive US	1.6 Tg, negative US	1895 Tg, positive PET
Final follow-up time (years)	5.1	3.7	15.6	5.8	5.8	8.5
RRA at primary treatment	Yes	Yes	No	Yes	Yes	Yes
Deceased	No	No	No	Yes, of other cause (before treatment of recurrence)	Yes, of other cause	No

TgAb, thyroglobulin antibodies (kIU/l); Tg, thyroglobulin (ng/ml); US, ultrasonography; FNA, fine needle aspiration; RRA, radioiodine remnant ablation; PET, positron emission tomography.
Tg between 0.1 and 1.0 ng/ml. ATA 2015 recommend a suppressed Tg level of less than 0.2 ng/ml as the definition of NED, the sensitivity of the Tg assay used in the period 2004–2016 of 1.0 ng/ml at Skåne University hospital Lund, which was also used in the present study, made the inclusion criteria of less than 0.2 ng/ml impossible; therefore Tg less than 1.0 ng/ml was used to define NED.

In 2009, all thyroid cancer treatment was centralized to Lund. Due to this centralization of healthcare, the number of patients included in this study who had surgery after 2009 is much greater than before 2009. The detection of more indolent FTC in later years could also have affected the results.

Other limitations of this study include its retrospective design and the low number of recurrences, which decrease the statistical power and make it impossible to perform multiple regression analysis to identify risk factors. However, age above 75 years was clearly a significant risk factor for recurrence, since no patient below 75 years of age with NED had a structural recurrence.

A further limitation is the lack of molecular analysis in the present paper. It can only be speculated that old age of patients with structural recurrence is a confounder for a specific molecular type of cancer associated with higher recurrence risk. Further studies are needed to explore this.

Only three out of 90 patients who had NED after primary treatment experienced structural recurrence, none of them was below 75 years of age and the follow-up programme accurately identified only one of them. Thus, follow-up, as it is designed today, seems to be of questionable benefit in younger patients with FTC and NED 9 to 12 months after treatment.

Funding
The Anna-Lisa and Sven Eric Lundgren Foundation for Medical Research.

Acknowledgements
F.N. acquired the data with assistance from G.H.; M.A. and F.N. were responsible for the study conception and design; F.N. drafted the manuscript and wrote the article with feedback from M.A.; P.A. acted as an oncology consultant throughout the project.

References
1. Wiltshire J, Drake TM, Uttley L, Balasubramanian SP. Systematic review of trends in the incidence rates of thyroid cancer. Thyroid 2016;26:1541–1552.
2. Ito Y, Miyachi A, Kihara M, Fukushima M, Higashiyama T, Miya A. Overall survival of papillary thyroid carcinoma patients: a single-institution long-term follow-up of 5897 patients. World J Surg 2018;42:615–622.
3. McConahey WM, Hay ID, Woolner LB, van Heerden JA, Taylor WF. Papillary thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc 1986;61:978–996.
4. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97:418–428.
5. Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:1447–1463.
6. Tuttle RM, Tala H, Shah J, Leboeuf R, Chossein R, Gonen M et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010;20:1341–1349.
7. Jeon MJ, Kim WG, Park WR, Han JM, Kim TY, Song DE et al. Modified dynamic risk stratification for predicting recurrence using the response to initial therapy in patients with differentiated thyroid carcinoma. Eur J Endocrinol 2014;170:23–30.
8. Han JM, Kim WB, Yim JH, Kim WG, Kim TY, Ryu JS et al. Long-term clinical outcome of differentiated thyroid cancer patients with undetectable stimulated thyroglobulin level one year after initial treatment. Thyroid 2012;22:784–790.
9. Castagna MG, Maino F, Cipri C, Belardini V, Theodoropoulou A, Cevenini G et al. Delayed risk stratification, to include the response to initial treatment (surgery and radioiodine ablation), has better outcome predictivity in differentiated thyroid cancer patients. Eur J Endocrinol 2011;165:441–446.
10. Verburg FA, Stokkel MPM, Duren C, Verkooijen RBT, Mäder U, van Isselt JW et al. No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010;37:276–283.
11. Kowalska A, Walczyk A, Pabjga J, Gaśior-Perczak D, GadawskaJuszczyk K, Szymonek M et al. The delayed risk stratification system in the risk of differentiated thyroid cancer recurrence. PLoS One 2016;11.e0153242.
12. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1–133.
13. Yi KH. The Revised 2016 Korean Thyroid Association Guidelines for Thyroid Nodules and Cancers: Differences from the 2015 American Thyroid Association Guidelines. Endocrinol Metab (Seoul) 2016;31:373–378.
14. Porros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard Ba G et al. Guidelines for the management of thyroid cancer. Clin Endocrinol 2014;81:1–122.
15. Zerdoud S, Giraudet A-L, Lebouilleux S, Leenhartd L, Bardet S, Clerc J et al. Radioactive iodine therapy, molecular imaging and serum biomarkers for differentiated thyroid cancer: 2017 guidelines of the French Societies of Nuclear Medicine, Endocrinology, Pathology, Biology, Endocrine Surgery and Head and Neck Surgery. Ann Endocrinol 2017;78:162–175.
16. Dralle H, Musholt TJ, Schabram J, Steinmüller T, Frilling A, Simon D et al.; German Societies of General and Visceral Surgery; Endocrinology; Nuclear Medicine; Pathology; Radiooncology; Oncological Hematology; and the German Thyroid Cancer Patient Support Organization Ohne Schüderrübe leben e.V. German Association of Endocrine Surgeons practice guideline for the surgical management of malignant thyroid tumors. Langenbecks Arch Surg 2013;398:347–375.
17. McGriff NJ, Csako G, Gourgiotis L, Lori CG, Pucino F, Sarlis NJ. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med 2002;34:554–564.
18. Hovens GC, Stokkel MP, Kievit J, Corsmit EP, Pereira AM, Romijn JA et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab 2007;92:2610–2615.
19. Diessl S, Holzberger B, Mäder U, Grellle I, Smit JW, Buck AK et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 2012;76:586–592.

20. Klein Hesselink EN, Klein Hesselink MS, de Bock GH, Gansevoort RT, Bakker SJ, Vredeveld EJ et al. Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J Clin Oncol 2013;31:4046–4053.

21. Sugitani I, Fujimoto Y. Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: a prospective controlled study. Surgery 2011;150:1250–1257.

22. Regionala Cancercentrum. Nationellt Vårdprogram för Sköldkörtelcancer; Version 1.0. RCC; 2012. https://kunskapsbanken.cancercentrum.se/diagnoser/skoldkortelcancer/vardprogram/sammanfattning/.

23. Scandinavian Quality Register for Thyroid PaAS. SQRTPA. 2020. https://sqrtpa.se/.

24. Regionala Cancercentrum. Nationellt Kvalitetsregister Sköldkörtelcancer Regionalt Cancercentrum. 2020. https://www.cancercentrum.se/syd/cancerdiagnoser/skoldkortel/kvalitetsregister/.

25. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W; European Thyroid Cancer Taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006;154:787–803.

26. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010;17:1471–1474.

27. Scheffel RS, Zanella AB, Antunes D, Dora JM, Maia AL. Low recurrence rates in a cohort of differentiated thyroid carcinoma patients: a referral center experience. Thyroid 2015;25:883–889.

28. Llamas-Olier AE, Cuéllar DI, Buitrago G. Intermediate-risk papillary thyroid cancer: risk factors for early recurrence in patients with excellent response to initial therapy. Thyroid 2018;28:1311–1317.

29. Ganly I, Nixon JI, Wang LY, Palmer FL, Migliaccio JC, Aniss A et al. Survival from differentiated thyroid cancer: what has age got to do with it? Thyroid 2015;25:1106–1114.

30. Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore) 2012;91:274–286.

31. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013;309:1493–1501.

32. Musacchio MJ, Kim AW, Vijuunco JD, Prinz RA. Greater local recurrence occurs with “berry picking” than neck dissection in thyroid cancer. Am Surg 2003;69:191–196.

33. Goldsmith SJ. Radioactive iodine therapy of differentiated thyroid carcinoma: redesigning the paradigm. Mol Imaging Radionucl Ther 2017;26:74–79.

34. Schlumberger M, Hitzel A, Toubert ME, Corone C, Trolan F, Schlager MH et al. Comparison of seven serum thyroglobulin assays in the follow-up of papillary and follicular thyroid cancer patients. J Clin Endocrinol Metab 2007;92:2487–2495.

35. Pacini F, Molinaro E, Castagna MG, Agate L, Elisei R, Ceccarelli C et al. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab 2003;88:3668–3673.