Abstract. Immunogene therapy can enhance the antitumor immune effect by introducing genes encoding co-stimulation molecules, cytokines, chemokines and tumor-associated antigens into treatment cells or human cells through genetic engineering techniques. Oncolytic viruses can specifically target tumor cells and replicate indefinitely until they kill tumor cells. If combined with immunogene therapy, oncolytic viruses can play a more powerful antitumor role. The high pressure, hypoxia and acidity in the tumor microenvironment (TME) provide suitable conditions for tumor cells to survive. To maximize the potency of oncolytic viruses, various methods are being developed to promote the reversal of the TME, thereby maximizing transmission of replication and immunogenicity. The aim of the present review was to discuss the basic mechanisms underlying the effects of oncolytic adenoviruses on the TME, and suggest how to combine the modification of the adenovirus with the TME to further combat malignant tumors.

Contents
1. Introduction
2. Oncolytic adenovirus
3. TME of solid tumors
4. Adenovirus modification combined with immune cells in the TME
5. Adenovirus modification combined with stromal cells in the TME
6. Adenovirus modification combined with immune checkpoints in the TME
7. Outlooks

1. Introduction

Solid tumors are a major cause of mortality in humans (1). Due to the advanced proliferative, invasive and migratory abilities of tumor cells, the prognosis for patients with cancer is extremely poor (2). Effective tumor therapy is disrupted immunosuppression of immune cells in the tumor microenvironment (TME) and tumor specificity of stromal cells (3). For example, chemotherapy, while killing tumor cells, stimulates other cells in the TME to release signals that promote tumor growth, ultimately resulting in treatment tolerance (4). Drug development with specific targeting of tumor cells and the TME will be a promising approach to tumor therapy. Thus, several studies have focused on the transformation of oncolytic adenoviruses (5,6), which can specifically target tumor cells and retain the efficacy of the drug at the tumor site. Gene therapy is a novel approach to cancer treatment (7), aimed to target any aspect of tumor occurrence (8). Thus, in terms of genetic modification, several strategies have been adopted to overcome obstacles and reverse the TME.

2. Oncolytic adenovirus

An adenovirus is a non-enveloped double-stranded DNA virus with a symmetrical icosahedral structure (9). The genome is ~36 kb in length and can encode >40 gene products (10). These gene products are divided into three subtypes based on their transcription start time, including early, middle and late stages (11). Early gene products are predominantly responsible for coding gene regulation, including the E region, while late gene products are predominantly responsible for coding structural proteins, including the L region (12,13). Among adenovirus subtypes, adenovirus serotype 3 (Ad.3) and adenovirus serotype 5 (Ad.5) are the most commonly studied subtypes, and Ad.5 is the most commonly used subtype (14). Following infection, the oncolytic adenovirus initially recognizes specific receptors on the
surface of tumor cells and triggers their internalization (15). Subsequently, it enters tumor cells, viral genomes migrate to the nucleus through microtubules, and early viral proteins in the E1 region immediately begin to be transcribed (16). The protein binds to Rb to release the transcription factor, E2F, which also activates the cell cycle, allowing oncolytic adenovirus-infected cells to enter the S phase (6,17). Concurrently, the E1A protein maintains p53 stability and inhibits tumor growth by relying on the p53 pathway (18). The release of E2F also triggers the coordinated activation of viral genes, which results in the production of new virions, the lysis of infected cells and the spread of viral offspring (19). The oncolytic adenovirus continuously replicates in tumor cells, eventually lysing tumor cells and infecting other tumor cells via the same mechanism of action (20-23). Due to the large loading capacity of the oncolytic adenovirus vector, therapeutic genes are commonly inserted into the adenovirus vector (24,25). Due to the continuous replication and accumulation of adenoviruses in tumor cells, therapeutic genes are expressed and thus spread, playing a synergistic antitumor role (26).

3. TME of solid tumors

The TME is the internal environment for the growth of tumors, which includes tumor cells (27,28), stromal cells (tumor-associated vascular endothelial cells and tumor-associated fibroblasts), immune cells [T lymphocytes and B lymphocytes, tumor-associated macrophages (TAMs), dendritic cells (DCs) and natural killer (NK) cells], the extracellular matrix (ECM) and signaling molecules such as IL-4 and IL-10 (29-31). The ECM includes various proteins, glycoproteins, proteoglycans and other biochemical substances, which regulate vascular endothelial cells and fibroblasts, and promote tumor growth and cell migration (32) (Fig. 1). In the TME, tumor blood vessels are constantly supplying oxygen and nutrients to support tumor growth (28,32-34). When the tumor is exposed to hypoxic conditions locally, tumor blood vessels receive signal stimulation and generate branches from existing blood vessels (35,36). However, the structure of these tumor vessels differs from that of normal vessels, with absence of basement membranes, uneven diameter and size of the tubes, and short circuit of arteries and veins, resulting in tumor interstitial hypertension (37,38). Under hypoxic conditions, tumor cells undergo glycolysis and produce more lactic acid, which lowers the pH of the TME (39). Proton transport channels exist in all parts of tumor tissues, which transfer the metabolized H+ out of tumor tissues and maintain the pH in the TME (40-42). However, pH reduction in normal tissues results in necrosis, which is more conducive to tumor metastasis and growth (43). Among the myeloid progenitors cells located in the TME, myeloid-derived suppressor cells (MDSCs), mast cells and most TAMs play key roles in promoting tumor development (44). MDSCs are immunosuppressive precursors of DCs, macrophages and granulocytes (35,45). MDSCs maintain a normal tissue dynamic balance in response to a variety of systemic infections and injuries (33). Several animal models have demonstrated that MDSCs can promote tumor angiogenesis and disrupt the main mechanisms of immune surveillance by interfering with antigen presentation, T-cell activation and NK cell killing of DCs (46,47). It has also been reported that mast cells are recruited into the tumor, where they release factors that promote endothelial cell proliferation to promote tumor angiogenesis (48-50). Increasing evidence suggests that microenvironment-mediated external stimulation plays a key role in tumor cell survival and drug resistance (28,51). The complexity of the TME makes it difficult for the traditional oncolytic virus to reverse the conditions set by the TME while targeting tumor cells (27,52). The traditional oncolytic virus can only inhibit the growth of tumor cells to a certain extent.

Owing to the constant improvement of genetic engineering techniques, it is getting easier to develop oncolytic adenovirus constructs with required properties. Preclinical trials involve wild-type and recombinant oncolytic adenovirus (Table I), aimed to reverse the TME while suppressing tumor cells (6,53) (Fig. 2). Several oncolytic adenoviruses are currently undergoing clinical trials as antitumor agents, and notably some progress has been made in reversing the TME (Table II). An ongoing clinical trial is testing RGD (Delta-24-rgd), a genetically modified oncolytic adenovirus, as an agent against glioma. The first results obtained in the phase I trials indicate that 20% of patients showed durable responses and CD8+ T cells infiltrated the tumor in large quantities (54). TILT-123 in preclinical studies altered the cytokine balance in the TME towards Th1 and resulted in a significant increase of the survival rate in severe combined immunodeficiency (SCID) mice with human tumors (55,56). The currently ongoing phase I trial is recruiting patients with solid tumors to evaluate the safety.

4. Adenovirus modification combined with immune cells in the TME

DCs. DCs are derived from the bone marrow and play a key role in inducing and maintaining antitumor immunity (57,58). Infiltration of mature DCs into the tumor can enhance immune activation and increase the recruitment of antitumor immune effector cells and pathways (58,59). However, in the TME, the antigen-presenting function of DCs may be lost or inefficient (60). Tumor cells can inhibit the function of DCs or change the TME by recruiting immunosuppressive DCs (61). CD40 is a member of the tumor necrosis factor receptor family and is expressed in DCs, which is a target for infiltrating T cells (62). CD40L is instantaneously expressed in T cells, which activates the maturation of DCs and triggers the immune response. Adenovirus delivery of CD40L induces DC activation, thereby inducing a Th1 immune response (63). The oncolytic virus restricts CD40L expression in cancer cells, thus decreasing systemic exposure and weakening the systemic immune response (64,65). Currently, there are already two phase I/II clinical trials involving LOAd703 that are recruiting patients. One of the studies is recruiting patients with pancreatic cancer to evaluate whether it supports the current treatment standards for pancreatic cancer and whether it can improve the survival rate of patients. Another study recruited patients with malignant melanoma and monitored their tumor response, immune response, virus shedding and survival rate. One of the major virulence factors of bacteria was *Helicobacter pylori* neutrophil-activating protein (HP-NAP), which is a TLR-2 agonist capable of chemotaxis of neutrophils, and monocytes and stimulates them to produce reactive oxygen species (66,67). HP-NAP also induced...
Th1-polarized immune responses by stimulating the secretion of interleukin (IL)-12 and IL-23 and other pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α and IL-8 (68). Ag-presenting-HP-NAP-activated DCs effectively amplified Ag specific T cells, an important characteristic of mature DCs (69). HP-NAP-activated DCs resulted in Th1 cytokine secretion, with high IL-12 expression, relatively low IL-10 secretion and migrated to CCL19 (69).

Macrophages. TAMs are divided into specific M1-like macrophage subsets and specific M2-like macrophage subsets, and M1-like macrophage subsets are activated by the classical pathway and exert notable antitumor effects (70,71). In the TME, specific M2-like macrophage subsets are the most common, and their cytokines IL-6, TNF, IL-1 and IL-23 promote tumor growth and metastasis and silence T-cell function (72,73). Selective removal of specific M2-like macrophage subsets has become a research hotspot. Granulocyte-macrophage colony-stimulating factor (GM-CSF) can affect macrophages, promote their rapid differentiation to mature macrophages, prolong the life of mature macrophages, and enhance their cellular immune function (74). By inserting GM-CSF into the Ad5 vector, ONCS-102 induced notable antitumor immunity (75). ONCOS-102 is currently being assessed in two phase I clinical trials in advanced peritoneal malignancies and malignant pleural mesothelioma. Ad-CD-GMCSF is an adenovirus carrying cytomegalovirus promoter cytosine deaminase (CD) and GM-CSF (75). Adenovirus vectors expressing CD and GM-CSF are well tolerated in refractory tumors (5). CD47 is a cell surface transmembrane protein present in normal tissues (76). It is highly expressed in malignant tumor cells and binds to signaling regulatory protein-α (SIRPα) expressed on macrophages to inhibit macrophage phagocytosis, resulting in immune escape. SIRPα-FC fusion protein inserted into the oncolytic adenovirus vector blocks the binding of CD47 to macrophages, leading to a large increase in macrophage infiltration in tumor tissues, thus enhancing the antitumor effect (77). MMAD-IL13 loaded with IL13 demonstrated enhanced antitumor effects by inducing apoptosis in the TME in vivo, and decreased the percentage of specific M2-like macrophages (78).

Scott et al (79) constructed a set of bivalent and trivalent T-cell adapters (BiTEs/TriTEs), which can specifically recognize CD3ε on T cells and the folate receptor or CD206 on specific M2-like macrophages. T-cell adapters were used to specifically direct the cytotoxicity of endogenous T cells to M2-like macrophages and deplete M2-like macrophages in tumor tissues. There was a significant increase in specific M1-like macrophage fraction among surviving macrophages, indicating a reversal of macrophage type in the TME (79).

NKs. NK cells have a notable antitumor effect in the initial stages of tumors, which can eliminate tumor cells (30). However, at the
advanced tumor stage, NK cells gradually lose their antitumor ability and become dysfunctional (80). IL‑21 is involved in NK cell differentiation (81), and the oncolytic adenovirus equipped with IL‑21 exerts an obvious inhibitory effect on the proliferation of tumor cells (82). Similarly, NK cells can be activated by IL‑15 (83), and oncolytic adenovirus (Ad‑E2F/IL15), which expresses IL‑15, can lyse tumor cells and coordinate with immune cells to enhance the antitumor response (84).

5. Adenovirus modification combined with stromal cells in the TME

Cancer-associated fibroblasts (CAFs). CAFs are a major component of the tumor stroma, which regulate the TME and influence the behavior of tumor cells, and play crucial roles in the occurrence, development, invasion and metastasis of tumors (85,86). Fibroblasts in the TME secrete growth factors such as hepatocyte growth factor, fibroblast growth factor and CXCL12 (87), which promote the growth and survival of malignant cells, and act as chemokines to induce the migration of other cells into the TME (88,89). Concurrently, CAFs form a barrier in tumors and prevent the effective penetration and transmission of oncolytic virus, thus limiting its efficacy (90,91). By modifying oncolytic adenovirus, the effects of tumor cells and CAFs will be inhibited at the same time (92). Fibroblast activation protein-α (FAP) is highly expressed in CAFs. The FAP single-chain antibody is linked to an anti-human CD3 single-chain variable region (scFv) and loaded into oncolytic adenovirus. FAP scFv, while specifically recognizing and targeting CAFs, activates T cells and enhances T‑cell‑mediated cytotoxic effects on tumor‑associated fibroblasts, thus weakening the cell barrier caused by CAFs and enhancing oncolytic activity (24,53).

Vascular endothelial cells. Blood vessels play a vital role in the development of tumors, providing nutrition and metastasis channels for tumor cells (93). The phenotype of vascular endothelial cells changes in the TME. Tumor cells secrete vascular endothelial growth factor (VEGF) and other endothelial growth factors to promote the generation of tumor neovascularization (94). Given that the downstream target gene of microRNA (miRNA/miR)‑126 is VEGF (95), miR‑126 is loaded into the oncolytic adenovirus, namely ADCEAP‑miR126/34a, which decreases the generation of tumor blood vessels (96). Concurrently, the VEGF promoter is inserted into the adenovirus vector, targeting the tumor vascular endothelial cells via the same mechanism of action enhancing the oncolysis of adenovirus (97). IL‑24 is a tumor suppressor molecule with broad-spectrum antitumor activity (98). It inhibits the growth of tumor cells by inhibiting tumor angiogenesis (99). A previous study has demonstrated that while expressing IL24, CRAd‑IL24 significantly increased the release of virus particles and enhanced their antitumor effect (6).

Table I. Partial oncolytic adenovirus trials to reverse the tumor microenvironment.

Oncolytic adenovirus	Gene modification	Target cells in TME	Target tumor cells	(Refs.)
Ad3-hTERT-CMV-hCD40L	CD40L	DCs	A549	(64)
LOAd703	CD40L	DCs	A549	(65)
Ad5 [i/ppt-sNAP]	HP‑NAP	DCs	LNCaP	(69)
ONCOS‑102	GM‑CSF	Macrophages, CD8+ T cells	AB12	(75)
Ad‑CD‑GMCSF	GM‑CSF	Macrophages, CD8+ T cells	Colon cancer cell line	(5)
SG635‑SF	A signal regulatory protein-α (SIRPα)-IgG1 Fc fusion gene	\		
MMAD‑IL‑13	IL‑13	Macrophages	Cal‑27, SCC‑4, Tca8113	(78)
EnAd	BiTEs/TriTEs	Macrophages	DLD‑1	(79)
Ad‑CCL21‑IL21	CCL21	DCs	PC‑3M, THP‑1, HeLa, Caco‑2	(82)
Ad‑CCL21‑IL21	IL‑21	NK cells	PC‑3M, THP‑1, HeLa, Caco‑2	(82)
Ad‑E2F/IL15	IL‑15	NK cells, CD8+ T cells	U87MG, BGC823, SW620, HCT116	(84)
ICO15K‑FBiTE	FBiTE	CAFs, T cells	HT1080, A549	(53)
AdCEAp‑miR126/34a	miR‑126, miR‑34a	Vascular endothelial cells	Pancreatic adenocarcinoma	(96)
VEGF‑CRAd	VEGF	Vascular endothelial cells	NCI‑H28, NCI‑H226, NCI‑H20, NCI‑H4252, MSTO‑211H	(97)
SKL002	CTLA4	T cells	HepG2, A549, Lovo, HeLa, HCT116, SW780	(106)
Ad5‑PC	PD‑1	CD8+ T cells	HCC‑LM3, H22, Hepa‑1‑6, A549, B16‑F10, LLC1	(105)

TME, tumor microenvironment; DCs, dendritic cells; NK, natural killer; CAFs, cancer-associated fibroblasts.
6. Adenovirus modification combined with immune checkpoints in the TME

Checkpoint molecules are regulatory molecules that play an inhibitory role in the immune system and are critical to maintain tolerance, prevent an autoimmune response and minimize tissue damage by controlling the timing and intensity of the immune response (100,101). The expression of immunological checkpoint molecules on immune cells suppresses the immune cell function as the host fails to produce an effective antitumor immune response. There are numerous receptors on tumorigenic immune escape T cells, including co-stimulatory signal receptors that can stimulate T-cell proliferation, and co-inhibitory signal receptors that can inhibit T-cell proliferation (102). Immune checkpoint molecules are predominantly inhibitory molecules, in which the immune checkpoint on T cells suppresses the immune function of T cells, causing tumor escape (103). However, the clinical benefits of monotherapy with immune checkpoint inhibitors, such as anti-programmed death-1 antibody, are limited to small populations (104). Zhang et al (105) designed an adenovirus (Ad5-PC) to express a soluble fusion protein (programmed cell death protein 1/CD137L), which significantly increased the number of T lymphocytes in the TME and effectively improved the survival rate of tumor-bearing mice (105). After loading anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) antibody into the adenovirus vector, tumor cells were infected. CTLA-4 antibody was significantly expressed in tumor cells and its antitumor activity was significantly enhanced (106). Ad5/3-Δ24aCTLA4 can express CTLA-4 human intact monoclonal antibody, and in the normal donors and patients with advanced solid tumors in the peripheral blood mononuclear cells that were tested (107). Ad5/3-Δ24aCTLA4 significantly enhanced the immune response and activated the pro-apoptotic effect of T cells (107).

7. Outlook

Recently, the transformation technology of oncolytic adenoviruses has significantly progressed. However, increasing evidence suggest concerns about the tumor-promoting effect of the TME. Thus, the transformation of oncolytic viruses into TME has become a research hot spot; however, the in vitro simulation of the TME does not accurately reflect the human microenvironment. Cytokines and growth factors were added to the cell culture, either co-cultured with tumor cells and other cells, or with three-dimensional scaffoldings to simulate the TME. However, due to the complexity of the TME, it remains difficult to completely simulate the human TME completely in vitro. Currently, xenotransplantation of immunodeficient mice is the most commonly used animal experimental method for studying human tumors. Briefly, human tumor cells are inserted into mice; however, this fails
to fully reflect the human TME. Several factors affect the oncolytic effect of an oncolytic virus. The strong immune response and severe cytokine storm when the virus first enters the host may be fatal. Subsequent challenges arise at later stages during elimination of oncolytic virus by the immune system of the host. It is hypothesized that the selection of oncolytic viruses will be the focus of future research, and it will be individualized, with the intent that the oncolytic virus most suitable for each patient can be selected, based on the characteristics of the tumor cells and the TME.

Acknowledgements

Not applicable.

Funding

This review was funded by Programs for the National Natural Scientific Foundation of China (grant no. 81430035), the Major National Science and Technology Projects-Major New Drug Creation (grant no. 2019ZX09301-132), the Changjiang Scholars and Innovative Research Team in University (grant no. IRT_15R13), and the Guangxi Science and Technology Base and Talent Special Project (grant no. AD17129003).

Availability of data and materials

Not applicable.

Authors' contributions

XW and YZ conceived the subject of the review. LZ designed the review. XW wrote the manuscript, performed the literature research as well as interpreted the relevant literature, and prepared the figures. LZ analyzed the review critically for important intellectual content. XW and LZ edited and revised the manuscript. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.
Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, Validire P, Ingels A, Catelineau X, Fridman WH and Sautès-Fridman C: The clinical role of the TME in solid tumors. Br J Cancer 120: 45-53, 2019.
2. Chen Y, Liu J, Wang W, Xiang L, Wang J, Liu S, Zhou H and Guo Z: High expression of hnRNP A1 promotes cell invasion by inducing EMT in gastric cancer. Oncol Rep 39: 1693-1701, 2018.
3. Choi J, Gyarmathi J, Jang H and Koo JS: The role of tumor-associated macrophages in breast cancer biology. Histol Histopathol 33: 133-145, 2018.
4. Sun Y: Tumor microenvironment and cancer therapy resistance. Cancer Lett 380: 205-215, 2016.
5. Akbulut H, Coleri A, Sahin G, Tang Y and Icli F: A bicistronic adenoviral vector carrying cytosome deaminase and granulocyte-macrophage colony-stimulating factor increases the therapeutic efficacy of cancer gene therapy. Hum Gene Ther 30: 999-1007, 2019.
6. Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA and Zafar S: Nonintegrating gene therapy vectors. Hematol Oncol Clin North Am 31: 353-370, 2017.
7. Salzman R, Cook F, Hunt T, Malech HL, Reilly P, Foss-Campbell B and Barrett D: Addressing the value of gene therapy and enhancing patient access to transformative treatments. Mol Ther 26: 2717-2726, 2018.
8. Stasiak AC and Stehle T: Human adenovirus binding to host cell receptors: A structural view. Med Microbiol Immunol 209: 325-333, 2020.
9. Greber UF and Flatt JW: Adenovirus entry: From infection to immunity. Annu Rev Virol 6: 177-197, 2019.
10. Hoeben RC and Uil TG: Adenovirus DNA replication. Cold Spring Harb Perspect Biol 5: a013003, 2013.
11. Gao J, Zhang W and Ehrhardt A: Expanding the spectrum of adenovirus-associated adenoviruses powered by an exogenous regulatory region is not linearly correlated with the viral infection efficiency/gene expression or with the E1A-activating ability but is positively correlated with the E1A transcription to promote persistent viral infection. PLoS Pathog 12: e1005415, 2016.
12. Izumi T, Nakayama K, Yamaoka M, Ishii K, Fujii K, Kitagawa K, Ohno T, Osada Y and Inoue N: M2-like macrophages promote the progression of gastric cancer. Int J Mol Sci 20: 3212, 2019.
13. Machitani M, Kuhnel F: Oncolytic viruses: Adenoviruses. Virus Genes 53: 700-706, 2017.
14. Michalak M, Katayama K, Sakurai F, Matsui H, Yamaguchi T, Sekine I, Tada Y, Tatsumi K, Shimada H, Koivula T, et al: Comparison of clinically relevant oncolytic adenovirus strains for enhancing T cell therapy of solid tumors. Mol Ther Oncolytics 8: 47-60, 2020.
15. Huang H, Liu Y, Liao W, Cao Y, Liu Q, Guo Y, Lu X and Xie Z: Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat Commun 10: 4801, 2019.
46. Safarzadeh E, Orangi M, Mohammadi H, Babaie F and Baradaran B: Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J Cell Physiol 232: 3328-3340, 2017.

47. Dysthe M and Parihar R: Myeloid-Derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol 1224: 117-140, 2020.

48. Ribatti D, Tamma R and Crivellato E: Cross talk between natural killer cells and mast cells in tumor angiogenesis. Inflamm Res 68: 19-23, 2019.

49. Albusti A, Tran N, Cohen A, Noonan DM and Mortara L: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Front Immunol 9: 527, 2018.

50. Kabiraj A, Jaiswal R, Singh A, Gupta J, Singh A and Samadi FM: Immunohistochemical evaluation of tumor angiogenesis and the role of mast cells in oral squamous cell carcinoma. J Cancer Res Ther 14: 495-502, 2018.

51. Shee K, Yang W, Hinds JW, Hampsh RA, Varn FS, Traphagen NA, Patel K, Cheng C, Jenkins NP, Kettenbach AN, et al: Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer. J Exp Med 215: 895-910, 2015.

52. Binniews M, Roberts EW, Kersten K, Chan V, Fearon DF, Patel K, Cheng C, Jenkins NP, Kettenbach AN, et al: Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific antibody. J Immunother Cancer 7: 19, 2019.

53. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldehyde KD, et al: Phase I Study of DXN-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 36: 1499-1507, 2018.

54. Havunen R, Siurala M, Sorsa S,ashedkar A: CD47 role in the immune system and application to cancer therapy. Oncoimmunology 7: e1490856, 2018.

55. Myers KV, Amend SR and Pienta KJ: Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol Cancer 18: 94, 2019.

56. Myers KV, Amend SR and Pienta KJ: Targeting Tyr03, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol Cancer 18: 94, 2019.

57. Connell CM, Roberts EW, Zhao Q, Caballero OL, et al: Comparison of the superagonist of TERT-positive tumor cells. Virus Res 220: 172-178, 2016.

58. Codolo G, Fassan M, Munari F, Volpe A, Bassi P, Rugge M, Pagano F, D’Elia0s MM and de Bernard M: HP-NAP inhibits the growth of bladder cancer in mice by activating a cytotoxic Th1 immune response. Cancer Immunol Immunother 51: 31-40, 2012.

59. D’Elia0s MM, Amedei A, Cappon A, Del Prete G and de Bernard M: The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol Microbiol 50: 157-164, 2007.

60. Ramachandran M, Jin C, Yu D, Eriksson F and Essand E: Vector-encoded Helicobacter pylori-activating protein promotes maturation of dendritic cells with Th1 polarization and improved migration. J Immunol 193: 2235-2239, 2014.

61. Montavon A, Marchesi F, Malesci A, Laghi L and Allavova P: Tumour-associated macrophages as treatment targets in oncology. Cancer Immunol Immunother 66: 415-417, 2016.

62. Ubel E, Caskey L, Holtzhauzen A, Hunter D, Story C and Ehr AS: Tumor-secreted Prosl inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest 128: 2356-2369, 2018.

63. Myers KV, Amend SR and Pienta KJ: Targeting Tyr03, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol Cancer 18: 94, 2019.

64. Oh DS and Lee HK: Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Mol Ther Oncolytics 4: 77-86, 2019.

65. D'Elios MM, Amedei A, Cappon A, Del Prete G and de Bernard M: The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol Microbiol 50: 157-164, 2007.

66. Eriksson E, Milenova I, Wenthe J, Moreno R, Alemany R and Alemany R: Targeting the tumor stroma with an oncolytic adenovirus expressing IL-15-induced enhanced antitumor cytolytic activity against TERT-positive tumor cells. J Immunother Cancer 7: 19, 2019.

67. Eriksson E, Milenova I, Wenthe J, Moreno R, Alemany R and Loskog A: CD47 role in the immune system and application to cancer therapy. Oncoimmunology 7: e1490856, 2018.

68. Eriksson E, Milenova I, Wenthe J, Moreno R, Alemany R and Loskog A: IL-6 signaling blockade during CD40-mediated immune activation favors antitumor factors by reducing TGF-β, collagen type I, and PD-L1/PD-J. J Immunol 202: 787-798, 2019.

69. Gao X, Ding C, Lu J, Zhou T, Liang T, Ji Z, Xie P, Liu X and Karp CL: IL-21 in immunity and cancer. Trends Immunol 30: 763-769, 2009.

70. Connell CM, Roberts EW, Zhao Q, Caballero OL, et al: Targeting CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against oral carcinoma models. Onco Targets Ther 12: 6515-6529, 2019.

71. Scott EM, Jacobs EJ, Lyons B, Frost S, Freedman JD, Dyer A, Khaliq H, Taverner WK, Carr A, Champion BR, et al: Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J Immunother Cancer 7: 320, 2019.

72. Myers KV, Amend SR and Pienta KJ: Targeting Tyr03, Axl and MerTK (TAM receptors): A SIRPα-Fusion protein enhances the antitumor effect of oncolytic adenosine against ovarian cancer. Mol Oncol 14: 657-668, 2020.

73. Zhang KL, Li RP, Zhang BP, Gao ST, Li B, Huang CJ, Cao R, Cheng JY, Xie XD, Yu ZH and Feng XY: Efficacy of a new oncolytic adenosine armed with IL-13 against oral carcinoma models. Onco Targets Ther 12: 6515-6529, 2019.

74. Scott EM, Jacobs EJ, Lyons B, Frost S, Freedman JD, Dyer A, Khaliq H, Taverner WK, Carr A, Champion BR, et al: Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J Immunother Cancer 7: 320, 2019.

75. Ye CJ, Przybylski D, Platt RJ, Przybylski D, et al: A Sirpa-Fusion protein enhances the antitumor effect of oncolytic adenosine against ovarian cancer. Mol Oncol 14: 657-668, 2020.

76. Davis MK, Zhu Z, Hansen DM, Bai Q and Fang Y: The role of IL-21 in immunity and cancer. Cancer Lett 358: 107-114, 2015.

77. Li Y, Li YF, Si CZ, Zhu YH, Jin Y, Zou TT, Liu MY and Liu YG: CCL2/IL-15/IL-21 armed oncolytic adenosine enhances antitumor activity against TERT-positive tumor cells. Virus Res 220: 172-178, 2016.

78. Rhodes PR, Espin JO, Xu W, Hong H, Webb GM, Chen X, Liu B, Zhu X, Wen J, You L, et al: Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol Res 4: 49-60, 2016.

79. Yan Y, Li S, Jia T, Du X, Yuan Y, Zhao L, Li L, Liang K, Liang W, Sun H and Li R: Combined therapy with CTL cells and onco- lytic adenosine expressing IL-15-induced enhanced antitumor activity. Tumour Biol 36: 4535-4543, 2015.

80. Kubo N, Araki K, Kuswana H and Shirabe K: Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol 22: 6841-6850, 2016.

81. Chen X and Song E: Turning folks to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18: 99-115, 2019.

82. Feig C, Jones KO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, et al: Targeting CCL21 from FAP-expressing cancer-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110: 20212-20217, 2013.
88. Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, et al: Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol 216: 3799-3816, 2017.

89. Erdogan B and Webb DJ: Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 45: 229-236, 2017.

90. Arwert EN, Milford EL, Rullan A, Derzsi S, Hooper S, Kato T, Mansfield D, Melcher A, Harrington KJ and Sahai E: STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy. Nat Cell Biol 22: 758-766, 2020.

91. Puig-Saus C, Gros A, Alemany R and Cascallo M: Adenovirus i-leader truncation bioselected against cancer-associated fibroblasts to overcome tumor stromal barriers. Mol Ther 20: 54-62, 2012.

92. Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X and Merchan JR: Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol Cancer Res 15: 1410-1420, 2017.

93. Czekierdowska S, Stachowicz N, Chrosciel M and Czekierdowski A: Proliferation and maturation of intratumoral blood vessels in women with malignant ovarian tumors assessed with cancer stem cells marker nestin and platelet derived growth factor PDGF-B. Ginekol Pol 88: 120-128, 2017.

94. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C and Tabar V: Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468: 829-833, 2010.

95. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R and Olson EN: The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15: 261-271, 2008.

96. Feng SD, Mao Z, Liu C, Nie YS, Sun B, Guo M and Su C: Simultaneous overexpression of miR-126 and miR-34a induces a superior antitumor efficacy in pancreatic adenocarcinoma. Onco Targets Ther 10: 5591-5604, 2017.

97. Harada A, Uchino J, Harada T, Nakagaki N, Hisasue J, Fujita M and Takayama K: Vascular endothelial growth factor promoter-based conditionally replicative oncoladenoviruses effectively suppress growth of malignant pleural mesothelioma. Cancer Sci 108: 116-123, 2017.