Diagnostics of erythrocytes’ early microrheological abnormalities in rats with experimentally developed obesity

Zavalishina S.Yu.,1,2 Vatnikov Yu.A.,3 Kubatbekov T.S.,3 Kulikov E.V.,3 Nikishov A.A.,3 Drukovsky S.G.,3 Khomenets N.G.,3 Zaykova E.Yu.,3 Aleshin M.V.,3 Dinchenko O.I.,3 Glagoleva T.I.2

ABSTRACT

Background: Difficulties of the earliest stages’ detection of erythrocytes’ microrheological abnormalities’ development at obesity are connected with falling out of clinicians’ field of view of persons with first signs of this pathology. It dictates the necessity of experimental investigations’ fulfillment on laboratory animals with just developed obesity in them.

Methods: 91 of healthy male-rats of Vistar line at the age of 2.5-3 months were taken into an investigation. 29 animals of them had experienced no impacts and composed the control group. In 62 rats after their putting into small cages (one specimen - in a cage) during 30 days there was developed OB as the result of giving them of high-caloric diet from combined feed (47%), sweet condensed milk (44%), vegetable oil (8%) and vegetable starch (1%). There were used biochemical, hematological and statistical methods of investigation. During obesity development lipids’ peroxidation activated in rats’ erythrocytes because of activity weakening of their antioxidant protection.

Results: At obesity development in rats, there was found reliable decrease of erythrocytes-discocytes quantity in blood. It was accompanied by the increase of reversibly and irreversibly changed erythrocytes’ quantity in examined animals’ blood. At obesity development in rats, there was found the quick rise of erythrocytes’ sum in aggregate and these aggregates’ quantity at lowering of free erythrocytes’ number.

Conclusion: During experimental obesity modeling we noticed very early in rats’ blood decrease of erythrocytes-discocytes’ quantity, the level rise of their reversibly and irreversibly varieties with the strengthening of their aggregate ability. It takes place in the background of a weakening of erythrocytes’ antioxidant protection and activation of lipids’ peroxidation in them.

INTRODUCTION

Further deepening of medical knowledge about mechanisms of the earliest pathology development stages is impossible without the active usage of numerous experimental models on animals1,2,3,4 with obligatory consideration of main social5 consequences of examined pathology. Taking into consideration fundamental significance for a body’s vital activity provision of functional and rheological features of basic regular blood elements6,7,8 and especially their most numerous population - erythrocytes9,10 at different diseases10,11 including very widespread in developed countries cardio-vascular pathology, researchers pay great attention to them.12,13,14 As a serious basis for this pathology, we consider now obesity (OB) which having genetic15,16 and behavioral component17 causes metabolic abnormalities in the whole body18,19 sometimes promoting firm invalidation of a person in the nearest future.20 It is caused by the fact that developing in a patient’s body dysfunctions lead to activation of neutrophils,22 platelets22 and change microrheological peculiarities of erythrocytes23 worsening metabolism in all the tissues.24,25,26 However, the state of erythrocytes’ microrheological characteristics at early stages of OB development is not yet studied well enough. Complexity in the finding of the earliest stages of erythrocytes’ microrheological abnormalities in a human being with initial signs of obesity is connected with these persons’ fall out of clinicians’ field of view.27,28 It dictates the need of conducting of experimental investigations on laboratory animals with modeling of this pathology development in them.29,30 Conducting of such experiments will allow to trace the dynamics of the body’s common state31 in tight connection with early hemostatic and hemorheological32 and also early vascular dysfunctions.33,34 Besides, conducting of experimental investigations
on obesity models can help in working out of rational and effective approaches for early removal of initial rheological abnormalities and activation of hemostasis system.35,36

In this connection we put the following aim for our work: to estimate appearing at experimental obesity development early changes in erythrocytes’ microrheological features.

METHODS

All the investigations in the present work were conducted in full correspondence with ethical norms and recommendations on humanization of work with laboratory animals containing “The European Convent on the protection of vertebrate animals used for experiments or in other scientific purposes” (Strasbourg, 1986).

We took into investigation of 91 healthy male-rats Vistar line at the age of 2.5–3 months received from healthy females by the first-second farrow. Animals’ body mass at the moment of taking them into investigation composed 209.7±0.49 gr, their abdominal circumference – 13.5±0.24 sm. Before the investigation, all the rats hadn’t participated in any experiments and had suffered no diseases. 29 animals of them experienced no impacts and formed the control group of rats.

In 62 rats after putting them into small cages (one specimen - in a cage) for 30 days, there was developed OB as the result of giving them of high-caloric diet from combined feed (47%), sweet condensed milk (44%), vegetable oil (8%) and vegetable starch (1%).38 Given model allows modeling in maximal degree all the obesity peculiarities relevant to a human being.39

Measuring of animals’ arterial pressure (AP) was fulfilled noninvasively with the help of the device MLU/4c501 by the method of tail cuff application (MedLab, China).

The level of lipids’ peroxidation (LPO) in animals’ plasma was found according to the quantity of thiobarbituric-acid (TBA)-active products in it with the help of a set “Agat-Med” and according to the content of acylhydroperoxides (AHP)40 taking into consideration the level of antioxidant activity (AOA) of blood liquid part.41 LPO in erythrocytes was defined with the help of concentrations in them of malonic dialdehyde (MDA) and AHP.40 We estimated in them enzymatically the level of common cholesterol (CCS) by a set “Vitaldiagnostikum” (Russia) and found the concentrations of common phospholipids (CPL) according to phosphorus content with the calculation of the ratio CCS/CPL. In erythrocytes, we defined the activity of catalase and superoxide dismutase (SOD).40

Cytoarchitectonics of red corpuscles was defined with the help of light phase-contrast microscopy. All the erythrocytes were subdivided into discocytes, reversibly deformed and irreversibly changed forms.42 Erythrocytes’ aggregative activity was found out with the help of light microscope in Goriajev’s box by their aggregates’ quantity, the quantity of aggregated and not having entered the aggregation red corpuscles in the meal of washed erythrocytes.43

The results were processed by Student’s criterion (t).

RESULTS

In the result of OB model’s reproduction, the rats have developed a stable increase of body mass and the bulk of abdominal cavity (table 1).

At experimental OB development in rats, we noticed the increase of AHP and TBA-active products’ quantity in plasma. The quantities of plasma TBA-products in experimental animals underwent the analogical dynamics. Found LPO increase at OB modeling in rats turned out to be possible because of plasma AOA weakening on 18,1% (table 1).

At OB development in experimental rats cholesterol quantity in erythrocytes rose a bit (to 1.06±0.027 mkmol/1012 ar.), while the content of CPL in their membranes tended to decrease (to 0.61±0.034 mkmol/1012 ar.), what led to a reliable increase of the gradient CS/CPL.

During OB development LPO activated in rats’ erythrocytes owing to activity weakening of their antioxidant protection (table 1).

At OB development in rats, we found a reliable decrease of erythrocytes-discocytes quantity in blood which. It was accompanied in blood of experimental animals by corresponding quantity dynamics of changed reversely and irreversibly erythrocytes, increasing at OB development. At OB development in rats we found sum increase of red corpuscles in aggregate and quantity of these aggregates at simultaneous number lowering of free red corpuscles (table 1).

DISCUSSION

Despite the fact that in the basis of OB development in human population lie not only environmental impacts but also presence of different genetic abnormalities,44,45 the applied model can be considered as quite adequate for the achievement of putting in the work purpose.

In the result of experimental OB development in rats, we created pathological state very near to such one as genetically determined OB.46,47 At the same
time, AOA of blood weakens very fast promoting quantity increase in it of AHP and TBA-products and negatively influencing metabolism in tissues. Besides, activation of LPO processes in the liquid part of blood causes alteration of vascular endothelium48,49 of regular blood elements’ outer structures50,51 including the most numerous their population - erythrocytes, thereby negatively influencing their different functions.10,11 It is burdened by hypoxia inevitably developing in rats with OB52 and forming in erythrocytes membranopathy having in its basis increase of CS in them with the tendency to CPL lowering at simultaneous activation in erythrocytes of lipids’ peroxidation in the result of their antioxidant protection lowering. Forming situation mostly promotes the loss by a part of erythrocytes of normal biconcave form what makes the process of their moving along capillaries difficult.19 Forming changes in erythrocytes lead to quantity increase in the blood of their reversibly and irreversibly changed forms.22

Table 1: Dynamics of Body Mass, Biochemical and Hematological Indices of Experimental Rats (Conditional signs: p - found reliability of indices’ dynamics on the background of experimental pathology development)

Indicators	Experimental group, M±m	Control group, M±m	
	initial state, n=62	end of pathology modeling, n=62	healthy, n=29
Value of body mass, kg	224.1±0.48	281.3±0.34	215.1±0.43
Abdominal cavity, cm	13.9±0.24	16.9±0.27	215.1±0.43
Acyldihydroperoxides of plasma, D\textsubscript{233}/ml	1.60±0.012	1.92±0.032	1.63±0.019
Thiobarbituric acid-products of plasma, mkmol/l	3.68±0.031	4.29±0.044	3.69±0.32
Antioxidant activity of plasma, %	28.9±0.29	24.4±0.44	28.8±0.29
Cholesterol of erythrocytes, mkmol/1012 erythrocytes	0.91±0.019	1.06±0.027	0.92±0.023
Common phospholipids of erythrocytes, mkmol/1012 erythrocytes	0.67±0.022	0.61±0.034	0.68±0.022
Cholesterol/common phospholipids of erythrocytes	1.36±0.032	1.74±0.037	1.35±0.019
Acyldihydroperoxides of erythrocytes, D\textsubscript{233}/1012 erythrocytes	2.75±0.016	3.51±0.025	2.74±0.017
Malonic dialdehyde of erythrocytes, nmol/1012 erythrocytes	0.92±0.015	1.16±0.027	0.91±0.018
Catalase of erythrocytes, ME/1012 erythrocytes	9920.0±14.9	8750.0±17.3	9880.0±11.9
Superoxidismutase of erythrocytes, ME/1012 erythrocytes	1835.0±2.90	1600.0±4.65	1830.0±4.05
Erythrocytes-discocytes, %	84.4±0.35	71.8±0.49	84.0±0.34
Reversibly modified erythrocytes, %	9.5±0.34	17.0±0.48	9.5±0.29
Irreversibly modified erythrocytes, %	6.1±0.24	11.2±0.31	6.5±0.25
Sum of all the erythrocytes in an aggregate	37.2±0.08	46.2±0.11	37.3±0.07
Quantity of aggregates	8.6±0.07	12.0±0.10	8.8±0.04
Quantity of free erythrocytes	247.5±0.52	226.1±0.64	249.2±0.52
acanthas on their surface and stomatocytosis to unilaterally arched disk, significantly exceeds the same at the beginning. Further transformation inevitably goes in the direction of spheroechinocyt, spherostomatocyt and, finally, spherocyte which soon must be destroyed.50

Found in rats with formed OB strengthening of erythrocytes’ aggregation has mostly in its basis appearing changes of their membrane’s charge because of glycoproteins’ degradation on it. They have the negative charge on the background of active LPO.51 Intensification of oxygen active forms’ generation in these conditions provides the rats with OB by oxidative alteration of membrane’s structures at the simultaneous damage of plasma globular proteins able to be connected in the kind of “bridges” between separate erythrocytes and realize the process of their aggregation. Besides, LPO products gradually increase the threshold of erythrocytes’ deaggregation on behalf of erythrocytes’ adhesion strengthening in aggregates, speed rise of aggregation process between itself and platelets on the background of oxidative damages of their membrane’s lipids.54,55

It becomes clear that found the very early rise of erythrocytes’ aggregation in rats with developing OB is mostly connected with the impact of catecholamines, the concentration of which, as it is known, from the first development stages of cardiovascular pathology and especially OB significantly increases.56 As the result of α1-receptors’ activation in these conditions as mediator functions the system Ca2+-calmodulin with involvement in the cascade of phosphatidylinositol’s intracellular reactions. Activation of α1-adrenoreceptors takes place by adenylate cyclase suppression owing to the impact of a receptor-agonist on Gi-proteins leading to lowering of cAMP quantity in a cell and stimulating Ca2+ inflow into a cell17,58 what additionally rises erythrocytes’ aggregation.

The number rise of freely moving in the blood of rats with OB aggregates leads to damage of endothelial bed of their vessels promoting exposure of subendothelial structures what “start” hemostasis processes, disrupts metabolism and significantly worsens the processes of blood rheology.54,59 Rising number of freely circulating aggregates can block the part vasa vasorum, thereby significantly weakening vascular metabolism, promoting depression of deaggregates output in endothelial cells.50,61

In this connection even recently developed obesity should be considered as very dangerous state connected with the development of metabolic abnormalities complex52,62 able to worsen headlong erythrocytes’ microhemoreological features and so weaken hemodynamics in capillaries. As it was shown earlier, such abnormalities can cause evident activation of hemostasis system’s components54,65 significantly increases the risk of thrombosis coming.66 All these demands from clinicians to pay more attention to initial forms of obesity.

CONCLUSION

During experimental OB modeling in rats’ blood, we noticed very early lowering of erythrocytes-discocytes content, raise the level of their reversibly and irreversibly changed variants with the strengthening of their aggregative ability. It happens in the background of increase in erythrocytes of cholesterol/common phosphalipids’ gradient, weakening of their antioxidant protection and activation of lipids’ peroxidation in them. For this reason, brief existence of obesity in a body can lead to the development of metabolic abnormalities’ complex able to worsen headlong erythrocytes’ microhemoreological features and, so, break hemodynamics in capillaries.

CONFLICT OF INTEREST

All authors declare there is no conflict of interest regarding publication of this manuscript.

REFERENCES

1. Mitrokhina NV, Vatnikov YA, Sotnikova ED, Kulikov EV. Assessment of the risk of osteosarcoma recurrence in canine long bone replants. European Journal of Physical and Health Education. 2014;6:BM-006-14.
2. Vatnikov YA, Sakhno NV, Sotnikova ED, Kulikov EV, Parshina VI, Troshina NI. Clinical control of packed RBC transfusion in acute surgical pathology such as gastric dilation and volvulus in dogs. Biomedical and Pharmacology Journal. 2015; 8(2):711–717.
3. Medvedev I.N. Activity of Platelets’ Aggregation in Patients of The Second Mature Age with Arterial Hypertension of The 3rd degree. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):651–656.
4. Kulikov E.V., Vatnikov E.A., Sotnikova E.D., Seleznev S.B., Troshina N.I., Rystsova E.O. Morphometric characteristics of the bone tissue structure in white volga guineaflaws. Biology and Medicine. 2015;7(3):BM-111–15.
5. Medvedev I.N. Disaggregating Vascular Impacts on Platelets in Patients with Arterial Hypertension Of The 3rd Degree. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):663–669.
6. Medvedev I.N. Physiological Peculiarities of Erythrocytes’ Aggregation in Rats Of Elder Ages. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):716–721.
7. Medvedev IN, Grometskii NI, Golikov BM, Al-Zuraiki EM, Li VI. Effects of lisinopril on platelet aggregation in patients with arterial hypertension with metabolic syndrome. Kardiologia. 2004;44(10):57–59.
8. Medvedev IN, Grometskii NI, Mokhamed A.-ZE. Comparative Assessment of Effects of Qadropril and Enalapril on Thrombus Activity of Platelets in Hypertensive Patients With Metabolic Syndrome. Kardiologia. 2004;44(12):44–46.
9. Wanderssee NJ, Punzalan RC. Rettig MP. Erythrocyte adhesion is modified by alterations in cellular toxicity and volume. Brit. J. Haematol. 2005;3:366–377.
10. Medvedev IN, Skoriatina IA. Dynamics of microcirculatory properties of erythrocytes in patients with arterial hypertension and dyslipidemia treated with atorvastatin. Klinicheskaia meditsina. 2012;90(6):42–45.

11. Medvedev IN, Skoriatina IA. Fluvastatin effects on blood cell aggregation in patients with arterial hypertension and dyslipidemia. Cardiovascular Therapy and Prevention. 2013; 12(2) :18-24.

12. Medvedev IN, Skoriatina IA. Effect of lovastatin on adhesive and aggregation function of platelets in patients with arterial hypertension and dyslipidemia. Klinicheskaia meditsina. 2010;88(2):38–40.

13. Medvedev IN, Skoriatina IA. Platelet hemostasis dynamics in simvastatin-treated patients with arterial hypertension and dyslipidemia. Russian Journal of Cardiology. 2010;81(1):54–58.

14. Medvedev IN, Skoriatina IA. Aggregation properties of blood cells and vascular control over them in patients with arterial hypertension and dyslipidemia. Russian Journal of Cardiology. 2015; 4(120) :18-22.

15. Amelina IV, Medvedev IN. Transcriptional activity of chromosome nuclear organizing regions in population of Kursk region. Bulletin of Experimental Biology and Medicine. 2009;84(6):730–732.

16. Medvedev IN, Amelina IV. An association between human morphological phenotypical characteristics and the activity of chromosomal nuclear organizer regions in the interphase cell nucleus in the population of indigenous people of Kursk region. Morphology. 2012;142(4):87–91.

17. Simonenko V., Medvedev I. N, Nosova T. Yu. Aggregation function of platelets in persons with arterial hypertension and abdominal obesity. Klinicheskaia meditsina. 2008; 86(5):22–24.

18. Simonenko VB, Medvedev IN, Tolmachev VV. Pathogenetic aspects of arterial hypertension in metabolic syndrome Klinicheskaia meditsina. 2011; 89(1):49–51.

19. Medvedev IN, Gromnatskii NI. Correction of thrombocyte hemostasis and biological age reduction in metabolic syndrome. Klinicheskaia meditsina. 2005;83(8):54–57.

20. Medvedev IN, Gromnatskii NI, Volobuev IV, Dementiev VI, Storozhenko MV. Thrombocytic hemostasis in hypertensive patients with metabolic syndrome and its correction with lovastatin. Klinicheskaia meditsina. 2004;82(10):37–41.

21. Medvedev IN, Skoriatina IA. The aggregation capacity of neutrophils in patients with arterial hypertension and dyslipidemia treated with fluvastatin. Klinicheskaia meditsina. 2015; 93(1):66–70.

22. Medvedev IN, Skoriatina IA. Erythrocyte aggregation in patients with arterial hypertension and dyslipidemia treated with pravastatin. Klinicheskaia meditsina. 2014; 92(11):34–38.

23. Medvedev IN, Skoriatina IA. Pravastatin in correction of vessel wall antiplatelet control over the blood cells in patients with arterial hypertension and dyslipidemia. Cardiovascular therapy and prevention. 2014; 13(6): 18-22.

24. Medvedev IN, Gromnatskii NI, Volobuev IV, Osipova VM, Storozhenko MV. Correction of thrombocyte-vascular hemostasis in metabolic syndrome. Klinicheskaia meditsina. 2006;84(1):46–49.

25. Medvedev IN, Skoriatina IA. Fluvastatin effects on blood cell aggregation in patients with arterial hypertension and dyslipidemia. Cardiovascular Therapy and Prevention. 2013; 12(2):18–24.

26. Kutafina NV, Medvedev IN. Platelet aggregation clinically healthy persons of the second coming of age living in the Kursk region. Advances in genone medicine. Uspekhi genetologii / Rossisskia akademia nauk, Gerontologicheskie obschhestvo. 2015;28(2):321–325.

27. Medvedev IN. Dynamics of violations of intravascular platelet activity in rats during the formation of metabolic syndrome using fructose models. Problems of nutrition. 2016; 85(1):42–46.

28. Medvedev I.N. Aggregation of Thrombocytes in People of Second Adulthood with Arterial Hypertension of the 2 Rd Degree. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):870-875.

29. Medvedev IN, Gromnatskii NI. The influence of hypocaloric diet on thromboocyte rheology in patients with metabolic syndrome. Klinicheskaia meditsina. 2006;84(3):49–52.

30. Gromnatskii NI, Medvedev IN. Non-pharmacological correction of impaired platelet hemostasis in hypertensive patients with metabolic syndrome. Klinicheskaia meditsina. 2003;81(4):31–34.

31. Shilenov VN. Comparative evaluation of the effectiveness of physical exercise and some medication in hypertensive patients. Kursk, 1997:139.

32. Medvedev IN, Danilenko OA. Comparative effects of therapeutics complexes on vascular wall activity in patients with arterial hypertension, hypercholesterolemia, and mesenchymal vessel occlusion. Cardiovascular therapy and prevention. 2010; 9(7):27–32.

33. Medvedev IN, Danilenko OA. Complex correction of vascular hemostasis in patients with arterial hypertension, metabolic syndrome, and recent ocular vessel occlusion. Russian Journal of Cardiology. 2010; 3(83):64–67.

34. Medvedev IN. Platelet functional activity in rats, prolonged experiencing regular exercise. Vestnik SPbSU. Series 3. Biology. 2016;4:99–107. DOI: 10.21638/11701/ spb03.2016.407.

35. Medvedev IN, Savchenko AP. Platelet activity correction by regular physical training in young people with high normal blood pressure. Russian Journal of Cardiology. 2010; 20(82):35–40.

36. Medvedev IN, Savchenko AP. Platelet activity correction by regular physical training in young people with high normal blood pressure. Russian Journal of Cardiology. 2010; 20(82):35–40.

37. Bikbulatova AA. The Impact of Daily Wearing of Medicinal-Prophylactic Clothes On The Evidence of Clinical Manifestations Of Osteochondrosis Of The 2nd Degree And Platelet Activity In Persons Of The Second Mature Age. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):677-683.

38. Zhakova OB, Zaitsev KV, Stepanenko N.P. Influence of experimental desynchronosis on lipid metabolism in rats with obesity. Bulletin of Tomsk State University. Biology. 2013;4(24):145–151.

39. Medvedev I.N. Vascular Disaggregative Control Over Neutrophils In Patients With Arterial Hypertension And Dyslipidemia. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):864-869.

40. Chevari S, Andyl T, Strenger I. Determination of antioxidant blood parameters and their diagnostic value in the elderly. Laboratory work. 1991;10:9–13.

41. Volkhegorskiy IA Dolgushin II, Kolesnikov OL, Tsiflikkan VE. Experimental modeling and laboratory evaluation of adaptive reactions of the organism. Chelyabinsk, 2000:167.

42. Medvedev I.N. Disaggregative Impacts of Vascular Wall on Platelets of Patients with Arterial Hypertension and Dyslipidemia. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):857-863.

43. Medvedev I.N. Dis Aggregative Capabilities of Vascular Wall in Respect of Erythrocytes in Patients with Arterial Hypertension and Dyslipidemia. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):811-816.

44. Medvedev IN, Amelina IV. Evaluation of the relationship between chromosomal aberrations and transcription activity of nucleolus organizer regions in indigenous Population of the Kursk Region. Bulletin of Experimental Biology and Medicine. 2010; 149(3):332–336.

45. Medvedev IN, Amelina IV. AG polymorphism as a cytogetic maker of arterial hypertension risk. Russian Journal of Cardiology. 2009;2(76):70–72.
46. Amelina IV, Medvedev IN. Evaluation of the dependence of mutagenesis intensity on activity of nucleolus organizer regions of chromosomes in aboriginal population of Kursk region. Bulletin of Experimental Biology and Medicine. 2008; 145(1):68–71.

47. Simonenko VB, Medvedev IN, Kumova TA. Pathogenetic aspects of hypertension in case of metabolic syndrome. Voenno-meditsinski zhurnal. 2010; 331(9):41–44.

48. Simonenko VB, Medvedev IN, Mezentseva NI, Tolmachev VV. The antiaggregation activity of the vascular wall in patients suffering from arterial hypertension with metabolic syndrome. Klinicheskaia meditsina. 2007;85(7):28–30.

49. Simonenko VB, Medvedev IN, Tolmachev VV. Dynamics of primary hemostasis activity in patients with arterial hypertension and metabolic syndrome treated with candesartan. Klinicheskaia meditsina. 2011;89(3):35–38.

50. Medvedev IN, Gromnatskii NI. The influence of nebivolol on thrombocyte aggregation in patients with arterial hypertension with metabolic syndrome. Klinicheskaia meditsina. 2005;83(3):31–33.

51. Simonenko VB, Medvedev IN, Gamolina OV. Primary hemostasis activity in patients with arterial hypertension and impaired glucose tolerance treated with trandolapril. Klinicheskaia meditsina. 2011;89(2):29–31.

52. Simonenko VB, Medvedev IN, Tolmachev VV. Comparative evaluation of the influence of sulphydryl and phosphate ACE inhibitors on thrombocyte aggregation in patients suffering from arterial hypertension with metabolic syndrome. Klinicheskaia meditsina. 2007;85(4):24–27.

53. Medvedev IN, Gromnatskii NI. Effect of amiodipine on intravascular thrombocyte activity in patients with arterial hypertension and metabolic syndrome Klinicheskaia meditsina. 2005;83(2):37–39.

54. Simonenko VB, Medvedev IN, Tolmachev VV. Effect of irbesartan on the function of hemocoagulative component of hemostasis in patients with arterial hypertension during metabolic syndrome. Klinicheskaia meditsina. 2010;88(6):27–30.

55. Medvedev I.N. Physiological Dynamics of Erythrocytes’ Cytoarchitecture In Aged Rats. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018; 9(1):736-740.

56. Medvedev IN, Kumova TA, Gamolina OV. Renin-angiotensin system role in arterial hypertension development. Russian Journal of Cardiology. 2009;4:82–84.

57. Medvedev IN, Kumova TA. Reduced platelet aggregation in losartan-treated patients with arterial hypertension and metabolic syndrome. Russian Journal of Cardiology. 2008;1:40–42.

58. Medvedev IN. A comparative analysis of normodipin and spirapril effects on intravascular activity of platelets in patients with metabolic syndrome. Terapevticheskii Arkhiv. 2007; 79(10):25–27.

59. Medvedev IN, Kumova TA. Reduced platelet aggregation in losartan-treated patients with arterial hypertension and metabolic syndrome. Russian Journal of Cardiology. 2008; 5: 53–55.

60. Medvedev IN, Skoryatina IA. Platelet hemostasis dynamics in simvastatin- treated patients with arterial hypertension and dyslipidemia. Russian Journal of Cardiology. 2010; 1(81): 54–58.

61. Medvedev IN, Mezentseva NI, Tolmachev VV. ACE inhibitors potential in correcting vessel wall anti-aggregation activity among patients with arterial hypertension and metabolic syndrome. Russian Journal of Cardiology. 2007;1:48–52.

62. Medvedev IN, Plotnikov AV, Kumova TA. Rapid normalization of platelet hemostasis in patients with arterial hypertension and metabolic syndrome. Russian Journal of Cardiology. 2008;2:43–46.

63. Medvedev IN. Correction of primary hemostasis in patients suffering from arterial hypertension with metabolic syndrome. Klinicheskaia meditsina. 2007;85(3):29–33.

64. Simonenko VB, Medvedev IN, Kumova TA. Losartan for correction of thrombocyte activity in patients suffering from arterial hypertension with metabolic syndrome. Klinicheskaia meditsina. 2008;86(1):38–41.

65. Medvedev IN, Kumova TA. Comparison of platelet hemostasis effects for angiotensin receptor blockers in patients with arterial hypertension and metabolic syndrome. Russian Journal of Cardiology. 2007;4:52–56.

66. Medvedev IN, Kumova TA. Valsartan effects on platelet activity in patients with arterial hypertension and metabolic syndrome. Russian Journal of Cardiology. 2007;3:66-69.