The Roles of Tenascins in Cardiovascular, Inflammatory, and Heritable Connective Tissue Diseases

Ken-ichi Matsumoto1* and Hiroki Aoki2*

1 Department of Biosignaling and Radionuclide Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan, 2 Cardiovascular Research Institute, Kurume University, Kurume, Japan

Tenascins are a family of multifunctional extracellular matrix (ECM) glycoproteins with time- and tissue-specific expression patterns during development, tissue homeostasis, and diseases. There are four family members (tenasin-C, -R, -X, -W) in vertebrates. Among them, tenasin-X (TNX) and tenasin-C (TNC) play important roles in human pathologies. TNX is expressed widely in loose connective tissues. TNX contributes to the stability and maintenance of the collagen network, and its absence causes classical-like Ehlers-Danlos syndrome (clEDS), a heritable connective tissue disorder. In contrast, TNC is specifically and transiently expressed upon pathological conditions such as inflammation, fibrosis, and cancer. There is growing evidence that TNC is involved in inflammatory processes with proinflammatory or anti-inflammatory activity in a context-dependent manner. In this review, we summarize the roles of these two tenascins, TNX and TNC, in cardiovascular and inflammatory diseases and in clEDS, and we discuss the functional consequences of the expression of these tenascins for tissue homeostasis.

Keywords: tenasin-C, tenasin-X, cardiovascular disease, fibrosis, inflammation, Ehlers-Danlos syndrome

INTRODUCTION

An important component of the extracellular environment is the extracellular matrix (ECM), which is comprised of glycoproteins, proteoglycans, and fibrillar proteins. The ECM offers not only structural support for cells but also influences cell adhesion, proliferation, differentiation, and survival through specific receptor-mediated interactions (1). Within the ECM, the tenascins comprise an attractive glycoprotein family with distinct features for each member.

Abbreviations: BDNF, brain-derived neurotrophic factor; BNP, B-type natriuretic peptide; circRNA, circular RNA; clEDS, classical-like Ehlers-Danlos syndrome; CNS, central nervous system; DRG, dorsal root ganglion; ECM, extracellular matrix; EDS, Ehlers-Danlos syndrome; EGF, epidermal growth factor; EMT, epithelial-mesenchymal transition; FBG, fibrinogen; FGFs, fibroblast growth factors; FNIII, fibronectin type III; HFCD, high levels of phosphorus and calcium; HFpEF, heart failure with preserved ejection fraction; IncRNA, long non-coding RNA; MMPs, matrix metalloproteinases; PDGFs, platelet-derived growth factors; PNS, peripheral nervous system; SLE, systemic lupus erythematosus; SNPs, single nucleotide polymorphisms; sTNX, serum form of TNX; TGF-β, transforming growth factor-β; TLR4, Toll-like receptor 4; TNC, tenasin-C; TNR, tenasin-R; TNW, tenasin-W; TNX, tenasin-X; Tnxb, mouse tenasin-X gene; TNXB, human tenasin-X gene; TNY, tenasin-Y; VEGF-B, vascular endothelial growth factor, B; VEGFR-1, vascular endothelial growth factor receptor 1; VUR, vesicoureteral reflux.
Tenascins comprise four members in vertebrates: tenascin-C (TNC), tenascin-R (TNR), tenascin-X (TNX) [referred to as tenascin-Y (TNY) in chickens], and tenascin-W (TNW) (originally named tenascin-N in mice) (2, 3). The tenasin family members have a common structure with heptad repeats, epidermal growth factor (EGF)-like repeats, fibronectin type III (FNIII)-like repeats, and a fibrinogen (FBG)-related domain. This modular structure allows tenascins to interact with multiple binding partners, including cell surface receptors, cytokines, and extracellular matrix molecules. Each of tenascins shows a unique time- and tissue specific expression pattern both during development and in adulthood (4–8). On the other hand, tenascins are also subjected to dynamic remodeling during a number of pathological conditions such as inflammation, fibrotic disorders, cardiovascular diseases, and cancer progression (9). Transcriptional control of tenasin family members for their specific expression patterns has recently been reviewed (10). Such an expression pattern of tenascins is one of the features of all matricellular proteins including tenascins (11, 12).

TNX

Expression of TNX in Physiological and Pathological Conditions

Regulation of TNX Expression

TNX expression is undetectable during early embryonic stages, but its expression increases ubiquitously in various tissues, especially in heart, skeletal muscle, and skin, during the middle embryonic stage and after birth (13–15). TNX is associated with blood vessels in most tissues and its distribution is often reciprocal to that of TNC, particularly in the skin and tissues of the digestive tract (13). Interestingly, by the analyses of TNC-deficient mice it was found that TNX does not compensate for the loss of TNC, at least in the brain (16) and during early heart development (17).

As for the regulation of TNX expression by the cellular microenvironment, brain-derived neurotrophic factor (BDNF) stimulates its mRNA expression in endothelial cells (18), whereas TNX is subjected to downregulation by glucocorticoids in fibroblasts (19). Sp1, which is a widely distributed transcription factor, is essential for expression of the mouse TNX gene (Tnxb) (20). Recently, microRNA miR-30b (21), long non-coding RNA (lncRNA) LINC01305 (22, 23), and circular RNA (circRNA) circRNA_14940 (24) have also been revealed to be key regulators of TNX expression.

TNX Expression in the Nervous System

Recently, the expression pattern and significance of TNX in the nervous system have become apparent. In the nervous system, TNX is localized in the perineurium and endoneurium of the peripheral nervous system (PNS) such as sciatic nerves (15, 25). Indeed, patients with TNX-deficient type EDS (classical-like EDS: cEDS) show abnormal peripheral nerves (26). TNX has been expressed in Schwann cells but not in axons (27). TNX has been mainly detected in the leptomeninges in the spinal cord and in the pia matter of the dorsal root ganglion (DRG). In the DRG, TNX is localized in satellite cells surrounding primary sensory neurons (27). In the central nervous system (CNS), TNX has been detected in the leptomeninges and choroid plexus of the adult cerebral cortex (28). Avian TNX (TNY) has been shown to inhibit neurite outgrowth and reduce the spread of growth cones (29).

TNX Expression in Cancers

Although there have been fewer reports on TNX expression in cancer compared with reports on the expression of TNC and TNW in cancer, reports on TNX expression have been increasing. TNX has been shown to be highly expressed in malignant mesothelioma (30, 31) and ovarian cancer (32), indicating the possibility of TNX being a novel diagnostic maker of these cancers. On the other hand, there have been several reports of TNX expression being downregulated during tumor progression in astrocytomas (33), cutaneous melanoma (34), and neurofibromatosis type 1 (35), findings that are mostly opposite to those for TNC. Intriguingly, it has also been reported that TNX has a tumor suppressor role in cervical cancer via LINC01305 expression which modulates TNX expression (22), esophageal squamous-cell carcinoma (36), and lung cancer via LINC01305 expression (23) and that TNX is downregulated in these tumors. In agreement with the tumor suppressor role of TNX in cancer progression, TNX-deficient mice with grafted melanoma cells exhibited promotion of tumor invasion and metastasis because of increased activities of matrix metalloproteinases (MMPs) (37, 38). Interestingly, by the analyses of TNX and TNC single and/or double deficient mice, we found out that TNX deficiency-induced tumor cell proliferation in the primary tumor site is repressed by the lack of TNC, while TNX deficiency-induced invasion to neighboring tissues is not promoted by the lack of TNC (39).

Physiological Functions of TNX

The results of a number of studies on abnormalities in mice with targeted deletion in Tnxb (40) and in cEDS patients (26, 41) have suggested structural roles of TNX in tissue integrity (7, 42). TNX possesses elastic properties in the FNIII-like domain (43) and increases the stiffness of collagen gels (44). TNX is associated with collagen fibrils within tissues and regulates collagen fibril spacing (42) via direct interaction with types I, III and V fibrillar collagens (45), types XII (46) and XIV fibril-associated collagens (45), and decorin (47). It has also been shown that TNX increases both the rate and extent of fibril formation in vivo, indicating a crucial role of TNX in collagen fibrillogenesis (48, 49). Taken together, the findings suggest that TNX regulates collagen deposition, collagen fiber stability and collagen mechanical properties. In addition, it has been shown that TNX binds to tropoelastin (49). Coarse and fragmented immature elastin fibers have been detected in cEDS patients, suggesting that TNX is also involved in the stability and maintenance of elastin fibers (50).

Other Functions of TNX

Fragments of TNX, especially its EGF-like repeats and FNIII-like repeats, have profound proangiogenic properties (51). Furthermore, we have shown that TNX interacts with vascular endothelial growth factor B (VEGF-B) and stimulates endothelial
cell proliferation via simultaneous binding to VEGF receptor 1 (VEGFR-1) and VEGF-B (52). Indeed, results of in vivo studies using TNX-deficient mice have shown that TNX plays a crucial role in blood vessel formation in sciatic nerves (53) and in injury-induced stromal angiogenesis in the cornea (54). Recently, we have reported that TNX-deficient mice display upregulation of osteoclast marker gene expression and promoted bone resorption activities due to increased multinucleated osteoclasts (55). These results provide the first evidence for the essential functions of TNX in bone metabolism such as osteoclast differentiation. These non-structural functions of TNX may be related to the structural roles of this ECM glycoprotein. The modification of the composition and organization of extracellular environment due to TNX deficiency might cause the alteration of mechanical stress to the surrounding cells, leading to the non-structural aberrations.

Alcàzar et al. (56), demonstrated that the C-terminal FBG-related domain of TNX activates the latent transforming growth factor-β (TGF-β) into the active molecule and that integrin α11β1 is required as a cell surface receptor for TNX for this activation. They also showed that the FBG-related domain-mediated TGF-β activation elicits the TGF-β/Smad signaling pathway and causes epithelial-mesenchymal transition (EMT) in epithelial cells (56).

So far, a number of important phenotypes have been observed by studying TNX-deficient mice (Table 1).

Table 1 | Tenascin-X-deficient mouse phenotypes.

Phenotypes	References
cEDS-related phenotypes	Hyperextensible skin, reduced tensile strength,
	reduced collagen deposition and stability,
	reduced fibrillar collagen, increased elastic
	fibers
	Muscle weakness, myopathic changes
	Reduced diameter of multinucleated fibers in
	sciatic nerves
	Abnormal wound healing
	Gastrointestinal pain and dysfunction,
	increased colonic afferent sensitivity and
	increased sensory neuronal sprouting
	Mechanical alldynia and hypersensitivity to
	chemical stimuli
	Abnormal location of vaginal plug, rectal
	prolapse
Behavior	Increased anxiety, superior memory retention,
	increased sensorimotor coordination
Blood vessel formation and	Abnormal blood vessel formation and less
neovascularization	neovascularization
Triglyceride synthesis	Accumulation of triglycerides and altered
	composition of triglyceride-associated fatty
	acids
Bone	Bone loss due to increased
homeostasis	osteoclastogenesis
Tumor	Promotion of invasion and metastasis of
progression	melanoma cells, increased activities of MMPs
Liver fibrosis	Suppression of hepatic dysfunction by
	administration of a high-fat diet

Table 1 | Tenascin-X-deficient mouse phenotypes.

“TNX and Fibrosis”

In a previous study, we showed that TNX contributes to liver fibrosis in TNX-deficient mice administered a high-fat and high-cholesterol diet with high levels of phosphorus and calcium (HFCD) (67). Inflammation assessed by inflammatory cell infiltrates and levels of type I collagen was suppressed in TNX-deficient mice compared with that in wild-type mice. On the other hand, the TGF-β pathway is a well-known key signaling pathway associated with hepatic stellate cell activation and fibrosis progression (76). As mentioned above, TNX affects latent TGF-β activation and signaling (56). Thus, it is reasonable to assume that TNX, especially its FBG-related domain, contributes to liver fibrosis and inflammatory responses via the TGF-β pathway in combination with integrin α11β1.

Other Diseases Associated With Mutations or SNPs in TNXB

It has been reported that another disease associated with heterozygous mutations in TNXB is primary vesicoureteral reflux (VUR) (77). There is also some evidence that single
nucleotide polymorphisms (SNPs) in TNXB are associated with other diseases. For example, genomic studies with SNPs in genome-wide association studies revealed that two closely linked SNPs in the coding region of TNXB are associated with schizophrenia risk in a Japanese population by a case-control study (78). On the other hand, an SNP in the 5′ flanking region of TNXB has been reported to be associated with systemic lupus erythematosus (SLE) (79). However, the functional implications of SNPs in TNXB relevant to these diseases remain uncertain and warrant further investigation.

TNC

Context-Dependent Function of TNC

TNC is a prototypical and most well-characterized member of the tenasin family. TNC has a variety of biological functions including regulation of cell adhesion, migration, growth and differentiation by binding through its modular structure to multiple cell surface receptors including integrins, Toll-like receptor 4 (TLR4) and syndecan-4 (80, 81). TNC also binds to cytokines such as fibroblast growth factors (FGFs), platelet-derived growth factors (PDGFs) and TGF-β family members among others, thus regulating the cellular behavior and organization of the extracellular matrix.

The expression of TNC is regulated during embryonic development with a specific time and spatial pattern, and its expression is greatly diminished in adult tissue. Although the specific expression pattern of TNC was suggestive of its role in embryogenesis, mice with genetic deletion of TNC were born and grew without any gross abnormality and were fertile (16). Later, it was demonstrated that TNC-deficient mice exhibit abnormalities in their behavior and in the cyt架构itecture of the brain (82). Considering the extensive expression of TNC during embryogenesis, TNC may have more roles in fine tuning animal development that are yet to be clarified.

TNC is transiently and specifically re-expressed upon acute inflammation and is persistently expressed upon chronic inflammation (83–85). Growing evidence has suggested that TNC is a proinflammatory factor and plays a deleterious role in fibrotic diseases (86–88). Interestingly, several lines of evidence have suggested that TNC also acts as an anti-inflammatory factor. For example, it was shown that the first two alternative spliced FNIII-like repeats suppress in vivo T cell activation (89). The results of in vitro studies showed that chemically induced inflammatory dermatitis (90) and Habu-snake venom-induced glomerulonephritis (91) develop more severely in TNC-deficient mice than in wild-type mice. Such bimodal activities, namely proinflammatory or anti-inflammatory activities, of TNC can have paradoxical effects and may influence many aspects of the immune response in a context-dependent manner.

The context-dependent function of TNC seems to be derived from its multidomain structure, which allows TNC to interact with multiple extracellular matrix and cytokines (81). In addition, TNC gene can generate multiple variants of TNC protein by alternative splicing of mRNA in tissue- and disease-specific manners (92), and proteolytic processing by various proteases, of which significance has been demonstrated by experiments with domain-specific antibodies and recombinant proteins.

Pathophysiological Role of TNC in Cardiac Diseases

TNC is reported to be involved in a variety of cardiovascular diseases (83, 93, 94). In the pathogenesis of myocardial damage and cardiac dysfunction, animal experiments have demonstrated that TNC is involved in adverse remodeling of myocardium due to myocardial infraction (95, 96) and myocarditis (97). TNC has been reported to promote myocardial hypertrophy, fibrosis (98, 99) and cardiac dysfunction (100) in animal models of cardiac hypertrophy and myocardial infraction. Being consistent with those findings, TNC has been shown to promote cardiac fibrosis in an angiotensin II-induced hypertrophy model (101). However, another study showed that TNC attenuated cardiac fibrosis due to pressure overload or angiotensin II infusion (102). These contradictory findings may be due to the fact that the adverse effect of TNC was demonstrated in a BALB/c background of the mouse strain, while its beneficial effect was shown in the background of C57BL/6. It was further speculated that the difference may reflect the predominant immune responses of Th2 in BALB/c and Th1 in C57BL/6, although this hypothesis awaits formal proof (103).

Pathophysiological Role of TNC in Vascular Diseases

With regard to vascular diseases, TNC has been reported to be atherogenic by stimulating TLR4-dependent foam cell formation (104). However, TNC has also been reported to be anti-atherogenic since TNC-deficient mice showed mast cell accumulation and intraplaque hemorrhage (105, 106). Similarly, expression of TNC may prevent the rupture of cerebral aneurysm by promoting fibrosis of the aneurysmal wall (107, 108), while it may be deleterious by exacerbating acute vasospastic response and exacerbate cerebral injury after subarachnoidal hemorrhage (109, 110). Expression of TNC by neurohumoral stress protects the aorta from acute aortic dissection (111) (Figure 1), while it seems to have no impact on the development of abdominal aortic aneurysm, although it was highly expressed in the aneurysmal tissue (112). Therefore, TNC can be either disease-promotive, disease-preventive or neutral in cardiovascular diseases (94), underscoring the context-dependent function of TNC, as demonstrated also in various animal models of non-cardiovascular diseases.

TNC as a Biomarker of Tissue Damage

While the role of TNC is context-dependent and can be detrimental or beneficial, it has been established that TNC is expressed in various cardiovascular diseases in clinical settings (93). TNC is elevated after myocardial injury due to myocardial infraction (113) or due to acute (114) or chronic myocarditis (115). TNC is also elevated in hypertrophic (116) and dilated cardiomyopathies (117). In addition, TNC is elevated in heart failure with preserved ejection fraction (HFpEF) (118) and in right ventricular failure (119). TNC is not only deposited in the
damaged tissue but also liberated in circulating blood flow. It has been proposed that TNC can serve as a prognostic marker for heart failure due to these diseases. While B-type natriuretic peptide (BNP) is an established prognostic marker for heart failure, the combination of BNP and TNC may be more precise than BNP or TNC alone for patients with dilated cardiomyopathy (120). Furthermore, reverse remodeling of the ventricle in heart failure patients due to cardiac resynchronization therapy was shown to be associated with reduction in serum TNC level, suggesting that TNC may reflect ongoing myocardial damage (121).

FIGURE 1 | Expression and function of TNC in mouse model of aortic diseases. Upper panel: Application of CaCl₂ solution to the lower abdominal aorta caused local inflammation and formation of aortic aneurysm. Continuous infusion of angiotensin II after the CaCl₂ application resulted in higher wall stress and formation of larger aortic aneurysm. TNC was induced in the lower abdominal aorta by CaCl₂-induced local inflammation, and in the thoracic and upper abdominal aorta due to the angiotensin II-induced higher wall stress, as illustrated by the blue color. Lower panel: TNC-deficient mice developed aortic aneurysm comparable to wild-type mice by CaCl₂ application in the presence or absence of angiotensin II. On the other hand, TNC-deficient mice developed aortic dissection in the thoracic and upper abdominal aorta that was characterized by the disruption of the aortic wall (arrowheads) and the formation of false lumen (red color). These findings indicate that TNC does not play a major role in the destructive inflammation in the aortic aneurysm, while it is critical for protecting the aortic wall from dissection, exemplifying the context-dependent function of TNC (111).
Since TNC is induced by various inflammatory mediators, it may also reflect the disease activities of inflammatory cardiovascular diseases including Kawasaki disease (122, 123) and cardiac sarcoidosis (124). TNC is expressed locally in the tissue of coronary atherosclerosis (125) and abdominal aortic aneurysm (112, 126), and its expression is elevated in serum of patients with these diseases (127). The serum level of TNC is elevated in patients with acute aortic dissection and its elevated level is associated with acute mortality (128), as well as chronic prognosis (129, 130). TNC is also elevated in cerebrospinal fluid after subarachnoidal hemorrhage and may predict the development of cerebral vasospasm (131). Elevated serum TNC is not only associated with specific diseases but also with the mortality and the development of cardiovascular diseases in patients with chronic kidney disease (132) and it is also associated with major adverse cardiovascular events and death in individuals with type 2 diabetes mellitus (133). In addition to the serum level, local deposition of TNC may serve as a marker of tissue damage, as demonstrated in animal models of myocarditis (134) and myocardial infarction (135). Therefore, quantitative detection of systemic and local levels of TNC may have a clinical value for monitoring inflammation and tissue damage both in acute and chronic diseases in order to realize precision medicine for better outcomes by optimizing the clinical practice for individual requirement.

Considering the fact that the structure of TNC can be altered in a disease-specific manner, domain-specific detection of TNC may also have a clinical value (92). For example, isoform-specific expression of TNC was demonstrated in the lung tissue of experimental pulmonary hypertension (136) and in the serum of the patients (137). This means that care should be taken which isoform of TNC is being measured to evaluate its significance as a biomarker in a particular clinical setting, as well as the normal range of TNC concentration. Because of the significance of the different TNC isoforms, domain-specific monoclonal antibodies for TNC would have potential clinical values both as diagnostic tools to evaluate the disease conditions, and as therapeutic tools to target a particular function of TNC or a particular tissue that expresses the corresponding TNC isoform (92).

CONCLUSIONS

TNX and TNC have distinct roles in physiological and pathological conditions. In a physiological condition, TNX is involved in the structural integrity of collagen fibrils. TNX also has a tumor suppressor role, a proangiogenic property, a role in osteoclast differentiation, and a role in TGF-β activation. On the other hand, in a pathological condition such as TNX deficiency, its absence causes cLEDs with major clinical features such as hyperextensible skin without atrophic scarring, generalized joint hypermobility and easy bruising. Interestingly, TNX deficiency is involved in pain and fibrosis. The underlying molecular mechanisms for pain and suppression of fibrosis caused by TNX deficiency need to be elucidated in more detail.

The physiological role of TNC is yet to be clarified. Although genetic deletion of TNC in mice resulted in no gross abnormality of the animals, the possibility remains that TNC plays a role in cell differentiation and tissue organization during embryogenesis. On the other hand, accumulating evidence indicates that TNC is re-expressed and actively participates in the pathogenesis of various diseases with tissue damage. The context-dependent function of TNC, possibly due to its modular structure and multiple binding partners, makes it difficult to interpret the experimental results as to whether expression of TNC is detrimental or beneficial. Nonetheless, expression of TNC seems to be a sensitive marker for tissue damage both in cardiovascular and non-cardiovascular diseases including cancer. Considering the wide range of physiological and pathophysiological functions of tenascins and their specific expression patterns, basic and clinical studies of tenasin family would be fruitful for delineating their precise roles and their clinical implications both in normal and abnormal conditions.

AUTHOR CONTRIBUTIONS

KM and HA designed and wrote this manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Japan Society for the Promotion of Science KAKENHI grant number 19K08470 to KM and 19H03743 to HA from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

1. Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development (1993) 117:1183–98.
2. Chiquet-Ehrismann R, Tucker RP. Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol (2011) 3:a004960. doi: 10.1101/cshperspect.a004960
3. Adams JC, Chiquet-Ehrismann R, Tucker RP. The evolution of tenascins and fibronectin. Cell Adh Migr (2015) 9:22–33. doi: 10.4161/crm.2015.9.1.22283
4. Tucker RP, Chiquet-Ehrismann R. The regulation of tenasin expression by tissue microenvironments. Biochim Biophys Acta (2009) 1793:888–92. doi: 10.1016/j.bbamcr.2008.12.012
5. Chiquet-Ehrismann R, Orend G, Chiquet M, Tucker RP, Midwood KS. Tenascins in stem cell niches. Matrix Biol (2014) 37:112–23. doi: 10.1016/j.matbio.2014.01.007
6. Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids (2013) 44:1115–27. doi: 10.1007/s00726-012-1446-0
7. Valcourt U, Alcaraz LB, Exposito JY, Lethias C, Bartholin L. Tenasin-X: beyond the architectural function. Cell Adh Migr (2015) 9:154–65. doi: 10.4161/19336918.2014.994893
8. Tucker RP, Degen M. The expression and possible functions of tenasin-W during development and disease. Front Cell Dev Biol (2019) 7:53. doi: 10.3389/fcell.2019.00053
9. Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. *J Pathol* (2003) 200:488–99. doi: 10.1002/path.1415

10. Chiavarro F, Chiquet-Ehrismann R, Chiquet M. Transcriptional regulation of tenasin genes. *Cell Adh Migr* (2015) 9:34–47. doi: 10.1080/19369180.2015.1008333

11. Bornstein P. Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. *J Cell Biol* (1995) 130:503–6. doi: 10.1083/jcb.130.3.503

12. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. *Curr Opin Cell Biol* (2002) 14:608–16. doi: 10.1010/0955-0674(02)00361-7

13. Matsumoto K, Saga Y, Ikemura T, Sakakura T, Chiquet-Ehrismann R. The distribution of tenasin-C is distinct and often reciprocal to that of tenasin-C. *J Cell Biol* (1994) 125:483–93. doi: 10.1083/jcb.125.2.483

14. Burch GH, Bedolli MA, McDonough S, Rosenthal SM, Bristow J. Embryonic expression of tenasin-X suggests a role in limb, muscle, and heart development. *Dev Dyn* (1995) 203:491–504. doi: 10.1002/aja.1002030411

15. Geffrovin C, Garrido JJ, Tremet L, Vaiman M. Distinct tissue distribution in pigs of tenasin-C and tenasin-C transcripts. *Eur J Biochem* (1995) 231:83–92. doi: 10.1111/j.1432-1033.1995.tb20673.x

16. Saga Y, Yagi T, Ikawa Y, Sakakura T, Aizawa S. Mice develop normally without tenasin. *Genes Dev* (1999) 13:681–31. doi: 10.1101/gad.6.10.681

17. Imanaka-Yoshida K, Matsumoto K, Hara M, Sakakura T, Yoshida T. The dynamic expression of tenasin-C and tenasin-X during early heart development in the mouse. *Differentiation* (2003) 71:291–8. doi: 10.1046/j.1432-0436.2003.7104506.x

18. Takeda K, Shibahara S, Mizuno N, Hasegawa N, Mouri Y, Hirachi A, et al. Brain-derived neurotrophic factor enhances periodontal tissue regeneration. *Tissue Eng* (2005) 11:1618–29. doi: 10.1089/ten.2005.11.1618

19. Sakai T, Furukawa Y, Chiquet-Ehrismann R, Nakamura M, Kitagawa S, Ikemura T, et al. Tenasin-X expression in tumor cells and fibroblasts: glucocorticoids as negative regulators in breast cancer cells. *J Cell Sci* (1996) 109 (Pt 8):2069–77.

20. Minamitani T, Ariga H, Matsumoto K. Transcription factor Sp1 activates the expression of the mouse tenasin-X gene. *Biochem Biophys Res Commun* (2000) 267:626–31. doi: 10.1006/bbrc.1999.2006

21. Tafaizzoli A, Forster AJ, Broadley D, Hofmann A, Redler S, Petukhova L, et al. Genome-wide microRNA analysis implicates miR-30b/d in the etiology of alopecia areata. *J Invest Dermatol* (2018) 138:549–56. doi: 10.1016/j.jid.2017.09.046

22. Yan SP, Chu DX, Qiu HF, Xie Y, Wang CF, Zhang YJ, et al. LncRNA LINC01305 inhibits epithelial-mesenchymal transition in lung cancer cells by regulating TNXB-mediated PI3K/Akt signaling pathway. *J Cell Mol Med* (2019) 23:2656–66. doi: 10.1111/jcmm.14161

23. Yang F, Liu SW, Li XY, Li CC, Wu Y. Silencing LncRNA LINC01305 inhibits epithelial mesenchymal transition in lung cancer cells by regulating TNXB-mediated PI3K/Akt signaling pathway. *J Biol Regul Homeost Agents* (2020) 34:499–508. doi: 10.23821/jbrh.20-73-a-33

24. Wu L, Zhou R, Diao J, Chen X, Huang J, Xu K, et al. Differentially expressed circular RNAs in orbital adipose/connective tissue from patients with thyroid-associated ophthalmopathy. *Exp Eye Res* (2020) 196:108036. doi: 10.1016/j.exer.2020.108036

25. Matsumoto K, Sawa H, Sato M, Orba Y, Nagashima K, Ariga H. Distribution of extracellular matrix tenasin-X in sciatic nerves. *Acta Neuropathol* (2002) 104:448–54. doi: 10.1007/s00401-002-0577-x

26. Burch GH, Gong Y, Liu W, Dettman RW, Curry CJ, Smith L, et al. Tenasin-X deficiency is associated with Ehlers-Danlos syndrome. *Nat Genet* (1997) 17:104–8. doi: 10.1038/ng0997-104

27. Okuda-Ashitaka E, Kakuchi Y, Kakumoto H, Yamanishi S, Kamada H, Yoshidu T, et al. Mechanical allodynia in mice with tenasin-X deficiency associated with Ehlers-Danlos syndrome. *Sci Rep* (2020) 10:6569. doi: 10.1038/s41598-020-63499-2

28. Imura K, Sato I. Novel localization of tenasin-X in adult mouse leptomeninges and choroid plexus. *Ann Anat* (2008) 190:324–8. doi: 10.1016/j.aanat.2008.04.003

29. Tucker RP, Hagios C, Santiago A, Chiquet-Ehrismann R. Tenasin-Y is concentrated in adult nerve roots and has barrier properties in vitro. *J Biomol Struct Dyn* (2001) 19:401–15.
matrix molecules. Arch Dermatol Res (2007) 298:389–96. doi: 10.1007/s00403-006-0706-6.

50. Zweers MC, van Vliem-Willems IM, van Kuppevelt TH, Mecham RP, Steijlen PM, Bristow J, et al. Deficiency of tenasin-X causes abnormalities in dermal elastic fiber morphology. J Invest Dermatol (2004) 122:885–91. doi: 10.1111/j.0022-202X.2004.22401.x

51. Demidova-Rice TN, Geervarghese A, Herman IM. Bioactive peptides derived from vascular endothelial cell extracellular matrices promote microvascular morphogenesis and wound healing in vitro. Wound Repair Regen (2011) 19:59–70. doi: 10.1111/j.1524-475X.2010.00642.x

52. Iikuta T, Ariga H, Matsumoto K. Extracellular matrix tenasin-X in combination with vascular endothelial growth factor B enhances endothelial cell proliferation. Genes Cells (2000) 5:913–27. doi: 10.1046/j.1365-2443.2000.00376.x

53. Sakai H, Yotoka S, Kajitani N, Yoneyama T, Kawakami K, Yasiu Y, et al. A potential contribution of tenasin-X to blood vessel formation in peripheral nerves. Neurosci Res (2017) 124:1–7. doi: 10.1016/j.neures.2017.06.003

54. Sumioka T, Iwanishi H, Okada Y, Nidegawa Y, Miyajima M, Matsumoto KI, et al. Loss of tenasin X gene function impairs injury-induced stromal angiogenesis in mouse corneas. J Cell Mol Med (2018) 22:948–56. doi: 10.1111/jcmm.13397

55. Kawakami K, Matsumoto K, Sato T, Orba Y, Sawa H, Kabayama K, et al. Analysis of obstetric complications and uterine connective tissue in recurrent gastrointestinal perforation in a patient with Ehlers-Danlos syndrome due to tenasin-X deficiency. J Dermatol (2015) 42:511–4. doi: 10.1111/1346-8138.12829

56. Alcaraz LB, Exposito JY, Chuvin N, Pommier RM, Cluzel C, Martel S, et al. The Ehlers-Danlos syndrome, a disorder with many faces. J Cell Sci (2014) 102:2843–54. doi: 10.1248/jcb.201308031

57. Minamitani T, Ariga H, Matsumoto K. Deletion of tenasin X-dependent type III procollagen secretion in mouse embryo fibroblasts. J Physiol (2011) 585:2723–33. doi: 10.1113/jphysiol.2011.211248

58. Huijing PA, Voermans NC, Baan GC, Buse TE, van Engelen BG, de Haan A. Muscle characteristics and altered myofascial force transmission in tenasin-X-deficient mice. J Physiol Lung Cell Mol Physiol (2010) 585:1–12. doi: 10.1113/jphysiol.2009.186084

59. De Paeppe A, Malafit F. The Ehlers-Danlos syndrome, a disorder with many faces. Clin Genet (2012) 82:1–11. doi: 10.1111/j.1399-0004.2012.01858.x

60. Malafit F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet (2017) 175:8–26. doi: 10.1002/ajmg.c.31552

61. Malafit F, Castori M, Francomano CA, Giunta C, Kosho T, Byers PH. The Ehlers-Danlos syndromes. Nat Rev Dis Primers (2020) 6:64. doi: 10.1038/s41572-020-0194-9

62. Demirdas S, Dufier L, Robert L, Kempers M, van Beek D, Micha D, et al. Recogizing the tenasin-X deficient type of Ehlers-Danlos syndrome: a cross-sectional study in 17 patients. Clin Genet (2017) 91:411–25. doi: 10.1111/cge.12853

63. Sakiyama T, Kubo A, Sasaki T, Yamada T, Yabe N, Matsumoto K, et al. Recurrent gastrointestinal perforation in a patient with Ehlers-Danlos syndrome due to tenasin-X deficiency. J Dermatol (2015) 42:511–4. doi: 10.1111/1346-8138.12829

64. Green C, Ghali N, Akilapa R, Angwin C, Baker D, Bartlett M, et al. Classical-like Ehlers-Danlos syndrome: a clinical description of 20 newly identified individuals with evidence of tissue fragility. Genet Med (2020) 22:1576–82. doi: 10.1038/s41436-020-0850-1

65. Voermans NC, Knoop H, Bleijenberg G, van Engelen BG. Pain in Ehlers-Danlos syndrome is common, severe, and associated with functional impairment. J Pain Symptom Manage (2010) 40:370–8. doi: 10.1016/j.jpainsymman.2009.12.026

66. Xu F, Liu C, Zhou D, Zhang L. TGF-B/Smad pathway and its regulation in hepatic fibrosis. J Histochem Cytochem (2016) 64:157–67. doi: 10.1369/0022155145627681

67. Gbadegesin RA, Brophy PD, Adeyemo A, Hall G, Gupta IR, Hains D, et al. TNXB mutations can cause vesicoureteral reflux. J Am Soc Nephrol (2013) 24:1313–22. doi: 10.1681/asn.2012121148

68. Tochigi M, Zhang X, Ohashi J, Hibino H, Otowa T, Rogers M, et al. Association between the TNXB locus and schizophobia in a Japanese population. Am J Med Genet B Neuropsychiatr Genet (2007) 148:b:305–9. doi: 10.1002/ajmg.b.30441

69. Kamatani Y, Matsuda K, Ohishi T, Ohtsubo S, Yamazaki K, Iida A, et al. Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population. J Hum Genet (2008) 53:64–73. doi: 10.1007/s10038-007-0219-1

70. Imanaka-Yoshida K, Aoki H. Tenasin-C and mechanotransduction in the development and diseases of cardiovascular system. Front Physiol (2014) 5:283. doi: 10.3389/fphys.2014.00283

71. Midwood KS, Chiquet M, Tucker RP, Orend G. Tenasin-C at a glance. J Cell Sci (2016) 129:4321–7. doi: 10.1242/jcs.190546

72. Mackie EL, Tucker RP. The tenasin-C knockout revisited. J Cell Sci (1999) 112(Pt 22):3847–53.

73. Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenasin-C biology. Cell Mol Life Sci (2011) 68:3175–99. doi: 10.1007/s00018-011-0783-6

74. Midwood KS, Orend G. The role of tenasin-C in tissue injury and tumorigenesis. J Cell Commun Signal (2009) 3:287–310. doi: 10.1007/s12077-009-0075-3

75. Marzeda AM, Midwood KS. Internal affairs: tenasin-C as a clinically relevant, endogenous driver of innate immunity, J Histochem Cytochem (2018) 66:289–304. doi: 10.1369/002215518757443

76. Kasprzycka M, Hammarström C, Haraldsen G. Tenascins in fibrotic disorders—from bench to bedside. Cell Adh Migr (2015) 9:83–9. doi: 10.4161/19336918.2014.994901

77. El-Karef A, Yoshida T, Gabazza EC, Nishioka T, Inada H, Sakakura T, et al. Deficiency of tenasin-C attenuates liver fibrosis in immune-mediated chronic hepatitis in mice. J Pathol (2007) 211:86–94. doi: 10.1002/path.2099

78. Carey WA, Taylor GD, Dean WB, Bristow JD. Tenasin-C deficiency attenuates TGF-B-mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol (2010) 299:L785–93. doi: 10.1152/ajplung.00383.2009

79. Puente Navazo MD, Valdorni D, Rüegg C. The alternatively spliced domain of tenasin-C suppresses fibrosis in immune-mediated chronic hepatitis in mice. J Pathol (2007) 211:86–94. doi: 10.1002/path.2099

80. Carey WA, Taylor GD, Dean WB, Bristow JD. Tenasin-C deficiency attenuates TGF-B-mediated fibrosis following murine lung injury. Am J Physiol Lung Cell Mol Physiol (2010) 299:L785–93. doi: 10.1152/ajplung.00383.2009
activation-induced T lymphocyte proliferation and cytokine production. *J Immunol* (2001) 167:6431–40. doi: 10.4049/jimmunol.167.11.6431

90. Kayama Y, Kusuhata M, Yoshiki A, Hiraïwa N, Ohashi T, Irie S, et al. Effect of tenasin-C deficiency on chemically induced dermatitis in the mouse. *J Invest Dermatol* (1998) 111:930–5. doi: 10.1046/j.1523-1747.1998.00401.x

91. Nakao N, Hiraïwa N, Yoshiki A, Ike F, Kusakabe M. Tenasin-C promotes healing of Hsabane venom-induced glomerulonephritis: studies in knockout congenic mice and in culture. *Am J Pathol* (1998) 152:1237–45.

92. Giblin SP, Midwood KS. Tenasin-C: Form versus function. *Cell Adh Migr* (2015) 9:48–92. doi: 10.4161/camr.2015.98738

93. Golledge J, Clancy P, Maguire J, Linz E, Koblar S. The role of tenasin C in cardiovascular disease. *Cardiovasc Res* (2011) 92:19–28. doi: 10.1093/cvr/cvr183

94. Imanaka-Yoshida K. Tenasin-C in cardiovascular tissue remodeling; from development to inflammation and repair. *Circ J* (2012) 76:2513–20. doi: 10.1253/circjm.12-1033

95. Nishioka T, Onishi K, Shimojo N, Nagano Y, Matsuoka H, Ikeuchi M, et al. Tenasin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. *Am J Physiol Heart Circ Physiol* (2010) 298: H1072–8. doi: 10.1152/ajpheart.00255.2009

96. Santer D, Nagel F, Goncalves IF, Kaun C, Wojta J, Fagyas M, et al. Tenasin-C aggravates ventricular dilatation and angiotensin-converting enzyme activity after myocardial infarction in mice. *ESC Heart Fail* (2020) 7:2113–22. doi: 10.1002/ehj2.12794

97. Machino-Ohtsuka T, Tajiri K, Kimura T, Sakai S, Ito S, Sridhar S, Nishida N, et al. Tenasin-C promotes aortic aneurysm development. *Circulation* (2012) 125:1002–1008. doi: 10.1161/CIRCULATIONAHA.111.076489

98. Podesser BK, Kreibich M, Dzilic E, Santer D, Forster L, Trojanek S, et al. Serum tenasin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction. *J Am Coll Cardiol* (2006) 47:2319–25. doi: 10.1016/j.jacc.2006.03.033

99. Fujimoto M, Shiba S, Matsuoka Y, Suzuki Y, Nishioka T, et al. Imatinib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage in inhibiting tenasin-C expression in rats. *Neurobiol Dis* (2012) 46:172–9. doi: 10.1016/j.nbd.2012.01.005

100. Suzuki H, Kawakita F, Ito S, Hiraïwa N, Imanaka-Yoshida K, et al. Effects of tenasin-C knockout on cerebral vasospasm after experimental subarachnoid hemorrhage in mice. *Mol Neurobiol* (2018) 55:1951–8. doi: 10.1007/s12035-017-0646-x

101. Fujimoto M, Shiba S, Matsuoka Y, Imanaka-Yoshida K, Yoshida T, et al. Inumatib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage in inhibiting tenasin-C expression in rats. *Neurobiol Dis* (2012) 46:172–9. doi: 10.1016/j.nbd.2012.01.005

102. Matsumoto A, Konno T, Hiraïwa N, Imanaka-Yoshida K, et al. Tenasin-C promotes aortic aneurysm development through Toll-like receptor-4. *Mol Cells* (2005) 20:460–7. doi: 10.1007/p102/path.1730

103. Terasaki F, Okamoto H, Onishi K, Sato A, Shimomura H, Tsukada B, et al. Higher serum tenasin-C levels reflect the severity of heart failure, left ventricular dysfunction and remodeling in patients with dilated cardiomyopathy. *Circ J* (2007) 71:327–30. doi: 10.1253/circj.cj-07-0172

104. Podesser BK, Kreibich M, Dzilic E, Santer D, Forster L, Trojanek S, et al. Local production of tenasin-C acts as a trigger for monocytic/macrophage recruitment that provokes cardiac dysfunction. *Cardiovasc Res* (2018) 114:123–37. doi: 10.1093/cvr/cvx221

105. Shiba M, Suzuki Y, Nishioka T, Imanaka-Yoshida K, Hiramitsu S, Kato S, Ohtsuki M, Uemura A, et al. Diagnostic utility of tenasin-C for evaluation of the activity of human acute myocarditis. *J Pathol* (2005) 207:460–7. doi: 10.1002/path.1730

106. Fujimoto M, Shiba S, Matsuoka Y, Imanaka-Yoshida K, et al. Imatinib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage in inhibiting tenasin-C expression in rats. *Neurobiol Dis* (2012) 46:172–9. doi: 10.1016/j.nbd.2012.01.005

107. Kawakita F, Ito S, Sridhar S, Nishida N, et al. Tenasin-C promotes aortic aneurysm development through Toll-like receptor-4. *Mol Cells* (2005) 20:460–7. doi: 10.1007/p102/path.1730

108. Suzuki H, Kawakita F. Tenasin-C in aneurysmal subarachnoid hemorrhage: deleterious or protective? *Neural Regener Res* (2016) 11:230–1. doi: 10.4103/1673-1772.177721
125. Wallner K, Li C, Shah PK, Fishbein MC, Forrester JS, Kaul S, et al. Tenascin-C is expressed in macrophage-rich human coronary atherosclerotic plaque. Circulation (1999) 99:1284–9. doi: 10.1161/01.cir.99.10.1284

126. Satta J, Soini Y, Pollanen R, Paakko P, Juvonen T. Tenascin expression is associated with a chronic inflammatory process in abdominal aortic aneurysms. J Vasc Surg (1997) 26:670–5. doi: 10.1016/s0741-5214(97)70068-5

127. Gao W, Li J, Ni H, Shi H, Qi Z, Zhu S, et al. Tenascin C: a potential biomarker for predicting the severity of coronary atherosclerosis. J Atheroscler Thromb (2019) 26:31–8. doi: 10.5551/jat.42887

128. Guo T, Zhou X, Zhu A, Peng W, Zhong Y, Chai X. The role of serum tenascin-C in predicting in-hospital death in acute aortic dissection. Int Heart J (2019) 60:919–23. doi: 10.1536/ihj.18-462

129. Trescher K, Thometich B, Demyanets S, Kassal H, Sedivy R, Bittner R, et al. Type A dissection and chronic dilatation: tenascin-C as a key factor in destabilization of the aortic wall. Interact Cardiovasc Thorac Surg (2013) 17:365–70. doi: 10.1093/icvts/ivt204

130. Nozato T, Sato A, Hikita H, Takahashi A, Imanaka-Yoshida K, Yoshida T, et al. Impact of serum tenascin-C on the aortic healing process during the chronic stage of type B acute aortic dissection. Int J Cardiol (2015) 191:97–9. doi: 10.1016/j.ijcard.2015.05.009

131. Suzuki H, Kanamaru K, Shiba M, Fujimoto M, Imanaka-Yoshida K, Yoshida T, et al. Cerebrospinal fluid tenascin-C in cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol (2011) 23:310–7. doi: 10.1097/AN A.0b013e31822aa1f2

132. Liabeuf S, Barreto DV, Kretschmer A, Barreto FC, Renard C, Andrejak M, et al. High circulating levels of large splice variants of tenascin-C is associated with mortality and cardiovascular disease in chronic kidney disease patients. Atherosclerosis (2011) 215:116–24. doi: 10.1016/j.atherosclerosis.2010.11.038

133. Gellen B, Thorin-Trescases N, Thorin E, Gand E, Sospen P, Brishoual S, et al. Serum tenascin-C is independently associated with increased major adverse cardiovascular events and death in individuals with type 2 diabetes: a French prospective cohort. Diabetologia (2020) 63:915–23. doi: 10.1007/s00125-020-05108-5

134. Sato M, Toyozaki T, Odaka K, Uehara T, Arano Y, Hasegawa H, et al. Detection of experimental autoimmune myocarditis in rats by 111In monoclonal antibody specific for tenascin-C. Circulation (2002) 106:1397–402. doi: 10.1161/01.cir.0000027823.07104.86

135. Ageyama N, Kurosawa H, Fujimoto O, Uehara T, Hiroe M, Arano Y, et al. Successful inflammation imaging of non-human primate hearts using an antibody specific for tenascin-C. Int Heart J (2019) 60:151–8. doi: 10.1536/ihj.17-734

136. Lipke DL, Aziz SM, Fagerland JA, Majesky M, Arcot SS. Tenascin synthesis, deposition, and isoforms in monocrotaline-induced pulmonary hypertensive rat lungs. Am J Physiol (1996) 271:L208–15. doi: 10.1152/ajplung.1996.271.2.L208

137. Rohm I, Grun K, Muller LM, Kretzschmar D, Fritzenerwanger M, Yilmaz A, et al. Increased serum levels of fetal tenascin-C variants in patients with pulmonary hypertension: novel biomarkers reflecting vascular remodeling and right ventricular dysfunction? Int J Mol Sci (2017) 18:2371–81. doi: 10.3390/ijms18112371

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Matsumoto and Aoki. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.