Effect of *Pseudomonas spp* on infection of *Peronosporaparasitica* (Pers. Fr), the pathogen of downy mildew on Chinese cabbage

N Damiri, Mulawarman, A Umayah, S E Agustin and M Rahmiyah

Department of Plant Pest and Disease, Faculty of Agriculture, Sriwijaya University, Jalan Raya Palembang-Prabumulih, km 32, Ogan Ilir, Indralaya 30662, South Sumatra, Indonesia

Email: nurhayatidakiri@gmail.com

Abstract. This research was conducted to study the effect of the application of *Pseudomonas spp* on infection of *Peronosporaparasitica* (Pers.Fr), the pathogen of Downy mildew on Chinese cabbage. The research was conducted in the laboratory and greenhouse Department of Plant Pests and Diseases Faculty of Agriculture Sriwijaya University, Inderalaya, OganIlir South Sumatra Indonesia. The research was conducted in the laboratory and greenhouse Department of Plant Pests and Diseases Faculty of Agriculture Sriwijaya University, Inderalaya, OganIlir South Sumatra Indonesia. The research was conducted using Completely Randomized Design with ten treatments including control.ie: isolate A, Isolate B, isolate C, isolate D, isolate E, isolate F, isolate G, isolate H, isolate I and control. Each treatment consists of four replications. Results of the study showed that the application of *Pseudomonas spp*. can suppress the infection of *P. parasitica* on Chinese cabbage. The lowest disease intensity was shown by treatment C (isolate *Pseudomonas sp*.), which was significantly different from control. The best treatment in suppressing disease severity of downy mildew on Chinese cabbage was isolate H which had disease severity of 37.07 percent, which was significantly different from control and other treatment.

Keywords: *Pseudomonas sp*, infection, *Peronosporaparasitica*, Chinese cabbage.

1. Introduction
Chinese cabbage (*Brassica juncea* L.) better known as caisin in Indonesia is a vegetable crop that is widely known to the public. This plant includes the most popular vegetables because it tastes good and contains lots of vitamins and minerals [1,2]. In the cultivation of these vegetables there are often constraints that limit production, one of which is the attack of downy mildew disease. Downy mildew caused by *Peronosporaparasitica* (FersFr) can attack planted cabbage in any stage. Losses that can be caused by the attack of this disease can be 24 to 48% [2,3]. The disease can destroy the quality of the leaves, also the quantity of the harvest is reduced due to the downy mildew infection. Young seedlings can die as a result of the infection.

Downy mildew is an obstacle in the cultivation of vegetables such as Chinese cabbage. This disease that can be found throughout a horticultural cultivation area is a member of the genus Brassica. In the development of the cotyledon, which may turn yellow, shrivel and die [3]. Downy mildew of vegetable brassica crops is widespread and can cause extensive crop damage. The first symptoms of
foliar infection are dark specks that are often irregular in shape, may appear net-like, and are usually accompanied by leaf yellowing. These yellow areas enlarge and, on becoming limited by the leaf veins, take on an angular shape. If the disease is severe the yellow lesions coalesce, resulting in much of the leaf becoming brown[4]. Control of disease is generally done by spraying fungicides, but the facts show that the use of chemicals continuously will result in negative impacts on the environment, increase production costs and leave residues that are harmful to the health of. According to [5], Chemical control of disease disturbs environment, subverts ecology, degrades soil productivity, mismanage water resources. The use of chemicals for fertilizer and crop protection can disturb soil equilibrium, impoverishment of soil microbial communities decreases enzyme activity, impairs nutrient absorption by root, decreases plant resistance to pathogens and lowers soil quality [6,7].

The use of microbial antagonists has been reported to have the potential to be developed as a bio-pesticide to control plant pests and diseases. Bio-control provides an alternative means of reducing these pathogens, which are otherwise difficult to control due to their survival strategies. The renewed interest in bio-control is due to its environmental friendliness, along lasting effect and safety features. Biological control is controlled by reducing the population of pathogen activity or inoculum, both active and dormant by using one or more types of microorganisms, both external and environmental manipulated, host and antagonist. Biological control by antagonistic bacteria can occur through one or more of the following mechanism: competition, antibiosis, hyper-parasite, induction of plant resistance and spurring plant growth. Both external and environmental manipulated, host and antagonist. The mechanism of antibiosis is an inhibition of pathogens by metabolic substances produced by antagonist agents such as: enzymes, volatile compounds. Competition mechanism is a process of suppressing pathogen activity by antagonists against limited sources such as organic matter, inorganic substances, space and other growth factors. The mechanism of hyper-parasite is the destruction of pathogens by substances produced antagonists such as citinase, cellulose, glicanase and other lethal agents [8,9].

Biological control through the exploration and identification of antagonistic agents to find an alternative to controlling plant pests and diseases has long been realized but not yet adopted widely. Many types of microbial origin or rhizosphere soil either bacteria or fungi are known to be used as a biological control agents such as Bacillus spp, Penicillium spp, Trichoderma spp, Gliocladium, Verticillium, Pseudomonas spp has been shown to inhibit the development of several plant pathogens.

According to [15], Pseudomonasflourescens, P. aeroginosa, P. malthophilia and Klebsiellapnemoniae are able to protect plants against Fusarium disease and promote plant growth on agarwood plant. Pseudomonas spp are widely used as a biological agents to control airborne contagious pathogens. These bacteria can produce antibiotic compounds such as chitinase enzymes that can hydrolyze cell walls of pathogenic fungi, siderophores and other antibiotics. Pseudomonas flourescens is widely used in spurring growth, resistance induction and control of plant diseases because they have antagonistic properties and can suppress disease progression by competition of Fe (III) elements and carbon elements, producing HCN, stimulating accumulation phytoalexin so that plants are more resistant and colonize the roots and stimulate the growth of plants. This research was
conducted to study the effect of the application of Pseudomonas spp on infection of Peronosporaparasitica (Pers.Fr), the pathogen of Downy mildew on Chinese cabbage.

2. Material and methods
The research was conducted in the laboratory and greenhouse Department of Plant Pests and Diseases Faculty of Agriculture Sriwijaya University, Inderalaya, OganIlir South Sumatra Indonesia. The study was conducted using Completely Randomized Design with 9 treatment of Pseudomonas spp isolate (A, B, C, D, E, F, G, H and I)and control with 4 replications.

2.1 Isolation Pseudomonas spp
Isolation of antagonistic agents is done by taking the soil in the healthy caisinrhizosphereplant located in Palembang. Isolation is done by serial dilution method. Results of the isolation were a number of isolates that were given codes based on the locality names of their origin. The soil weighed as much as 10 g and then put into the Erlenmeyer tube which has contained 90 ml of sterile water. This mixture is homogenized by using a shaker at a rate of 150 rpm for 30 minutes. Suspension diluted up to 10^-7. Furthermore, as much as 0.1 ml of the suspension of 10^-5-10^-7 dilutions were each incorporated petridish which already contained a sterile king'B medium, flattened and then incubated for 3-4 days. The bacterial colonies that grew were subsequently purified, the characteristics of which were examined were physiological test and then ready to be used in the research.

2.2 Preparation of host plant
Chinese cabbages seeds used are local chinese cabbage. Before planting the seed sterilized surface by soaking the seeds in 1% NaOCl for 1 minute, then the seed is washed with sterile water and dried wind. Further seeds are sown on a sterile planting medium consisting of a mixture of sand, soil and manure (1: 1: 1). After one week of age, the seeds were treated with the application of isolate antagonism (A, B, C, D, E, F, G, H and I) by root immersion in antagonistic isolate suspension with spore density 10^7/ml for 4 hours. Furthermore the seedlings were transferred into polybag that has been filled with sterile media. Inoculation of P. parasitica was performed a week after application of Pseudomonas spp. isolate by spraying the suspension of P parasitica with spores density 10^7/ml to the chinese cabbage root evently.

The parameters observed in this research were disease intensity, disease severity and biomassweight of each plant. Disease intensity was calculated using leaf infected percentage, while disease severity using a formula by [18]. Biomass weight was measured using scales. The data were analyzed using the analysis of variance (ANOVA), with the Duncan`s Multiple Range Test (DMRT) comparison among means [19].

3. Result and discussion

3.1 Result

3.1.1 Disease intensity. The analysis result of the effect of Pseudomonas spp. application on the disease intensity showed a significant effect. Application of Pseudomonas sp. Isolate A can reduce the intensity of downy mildew disease up to 59.49 percent, which is significantly different with the treatment of C, E, G, and control. Between the treatments of H, B, F, D and Awere not significantly different from each other, also between treatment C, E, G and I (Table 1).
Table 1. Effects of *Pseudomonas spp* on disease intensity of downy mildew on Chinese cabbage.

Treatment	Disease intensity (%)
Control	76.35 a
Isolate C	74.00 ab
Isolate E	72.72 b
Isolate G	73.00 b
Isolate I	70.46 b
Isolate H	69.23 bc
Isolate B	63.21 c
Isolate F	60.40 c
Isolate D	60.13 c
Isolate A	59.49 c

a,b,c The figures followed by the same letter in the same column mean there is no significant different at p ≤ 0.05 DMRT.

3.1.2 Disease severity. The application of bacteria *Psudomonasspp* as biological control of pathogen downy mildew on Chinese cabbage showed a significant effect on disease severity. All treatments of bacterial application of *P. Pseudomonasspp* showed an influence on disease severity suppression compared with control. Isolate H showed the highest suppression of *P. parasitica* infection by 37.07 percent followed by isolate C, E, G and A which was significantly different with control with 43.41%, 47.83%, 47.90% and 48.77% (Table 2).

Table 2. Effects of *Pseudomonas spp* on disease severity of downy mildew on Chinese cabbage

Treatment	Disease severity	Relative percentage to the control (%)
Control	71.36 a	-
Isolate D	55.51 b	22.21
Isolate I	53.52 c	25.00
Isolate F	51.62 d	27.80
IsolaetB	51.46 d	27.88
Isolate A	48.77 de	31.65
Isolate G	47.90 ef	32.87
Isolate E	47.83 ef	32.97
Isolate C	43.41 g	39.16
Isolate H	37.07 h	48.05

a,b,c,d,e,f,g,h The figures followed by the same letter in the same column mean there is no significant different at p ≤ 0.05 DMRT.

3.1.3 Plant Biomass. Application of *Pseudomonasspp* as biological control agents tended to increase the weight of plants biomass compared to the control. The highest biomass weight was showed by the Chinese cabbage given F isolate treatment 1 gram/plant followed by D, G, H and I treatment with a mean biomass weight of 0.83 gram/plant (Figure 1).
which can further influence long

growth, producing phytohormones and colonizing

PGPR.[22]r

The suppression of the pathogen by antagonism bacte ria occurred be

in biological

and as plant growth promoting rhizo-bacteria (PGPR).[22]reported that beneficial rhizo-bacteria are known to colonize rapidly and

The successful of biological control of plants diseases is due to some inhibitory feeding which is commonly found in biological agents such as siderophore, antibiotics, competition , enzyme, toxin and as plant growth promoting rhizo-bacteria (PGPR).[22]reported that beneficial rhizo-bacteria are known to colonize rapidly and aggressively the root system, suppresspathogenic microorganism, and enhance plant growth and

certain conditionantibiotics improve the ecological fitness of these rhizo-bacteria in rhizo-sphere, which can further influence long-term biological control efficac[23]. Some of Pseudomonas spp are capable to inhibiting the growth of soil borne pathogens. The inhibition mechanisms for the inhibition of pathogen proliferation are ability to colonize the root, production of antibiotics and enzymes that degrade pathogen cell wall, production of sidophores and hydrogen cyanide [24,11,25].

Natural bioactive compounds produced by antagonistic bacteria can be beneficial to plant health or agriculture. Species of bacteria can resist the plants pathogen in various ways such as by producing antibiotic compounds[26,27] It has been reported that Pseudomonas spp are known to be agents capable of inducing plant resistance, as antagonists and as plant growth promoting[8,28]. According to[28,30] genus Pseudomonas can posses a high potential for fixing nitrogen, solubilizing phosphate, inhibiting the development of phytophagous, producing phytohormones and colonizing root systems. The suppression of the pathogen by antagonism bacteria occurred because the bacteria able to remove antibiotics such as pyoverdine, pyoluteorin, 2,4diacetylphloroglucinol and monoacetylphloroglucinol that could inhibitch the grow of pathogen. Some of Pseudomonasspp could also inhibit the development of the disease by colonized roots, nutrient competition of iron (III) and carbon element, HCN production, IAA, stimulate phytoalexin accumulation so that the plant became resistant and stimulated plant growth[30,31,32].This is in line with resultsof this study where the applied of Pseudomonas sps isolate are able to suppress the intensity and severity of downy mildew disease on chinese cabbage. Increased of wet weight is also occurring but not so significant.
4. Conclusion
From the study, it can be concluded that the application of *Pseudomonas spp.* can suppress the infection of *P. parasitica* on chinese cabbage. The lowest disease intensity was shown by treatment A (isolate *Pseudomonas sp.*) which was significantly different from control. The best treatment in suppressing disease severity of downy mildew on chinese cabbage was isolate H which had disease severity of 37.07 percent, which was significantly different from control and other treatment.

Acknowledgement
The authors would like to address their gratitude’s to Dr. Suparman SHK, head of Plant Pest and Disease Department whose help and support had made possible the execution of the research and the writing of this paper.

References
[1] Mandiriza-Mukwirimba G, Kritzinger Q, and Aveling T 2016 A survey of brassica vegetable smallholder farmersin the Gauteng and Limpopo provinces of South Africa. *J. Agriculture and Rural Development in the Tropics and Subtropics* 117 (1) 35–44
[2] Semangun H 2000 *Disease of crops in Indonesia* (in Bahasa Indonesia) (Yogyakarta: Gajah mada University Press)
[3] Amin N, Ali B, Muzaffar S, Majeed I and Sayeed N 2013. Symptoms, pathogen biology and control of downy mildew of brassica: a minireview. *J. of Biosphere* 2 (1) 6-9
[4] Walker G, Wright P, Cameron P, Fletcher J, Walker M, Bulman S and Berry N 2016 Pests, natural enemies, diseases and disorders of vegetable brassicas in New Zealand. Vegetables NZ Inc. and The New Zealand Institute for Plant and Food Research Limited.
[5] Benuduzi A, Ambrosini A and L M P Passaglia 2012 Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. *J. Genet. Mol. Biol* 34 1044-51
[6] Das S K and A Varma 2011 *Role of enzymes in maintaining soil healt in: Soil enzymology, soil biology* vol 22, ed G. Shukla and A. Varma (Springer-Verlag Berlin Heidelberg, USA) pp 25-42.
[7] Duke S O, Lydon J, Koskainen W C, Moorman T B, Chaney R L and R Hammerschmidt 2012 Glyphosate effects on plant mineral nutrition, crop rhizospheremicrobiota and plant disease in glyphosate-resistant crops. *J. of Agirc Food Chem.* 60 10375-97
[8] Kloepper J W, Rodriguez-Ubana, R., Zehnder G W, Murphy J F, Sikora E and Fernandez C 1999 Plant root-bacterial interaction in biological control of soilborne disease and potential extension to systemic and foliar disease. *J. Australas Plant Path* 28 (1) 21-26.
[9] Baker K F and Cook R J 1974 *Biological control of microbial plant pathogen* (San Fransisco: Freeman WH)
[10] Fairuzah Z., Dalimunte C I and Aidi-Daslin 2014 The effectiveness of antagonistic bacteria (*Pseudomonas sp.*) as biological control of pink disease (*Corticiumsalmonicolor*). *Indonesian J. Net.Rubb. Res.*,32(1) 37-44
[11] Ahemad M and M Kibret 2013 Mechanisms and application of plant growth rhizobacteria: Current perspective. *J. of King Saud University-Scince* 26 http://dx.doi.org/10.1016/j.jksus.2013.05.001.
[12] Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Seneider J M H, Piceno Y M, DeSantis T Z, Andersen G L, Bakker P A H M and J M Raaijmakers 2012 Deciphering the rhizosphere microbiome for disease-suppressive bacteria *J. Science* 332 1097-100
[13] Figueiredo M V, Seldin L, de AraujoF F and R L R Mariano 2010 Plant growth promoting rhizobacteria: fundamentals and applications *J. Microbiology monographs* 18 21-43.
[14] Chen Y P, Rekha P D, Arun A B, Shen F T, Lai W A and C C Young 2006 Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities *J. Appl. Soil Ecol* 34 33-41
[15] Wahyuni T, Mulawarman and Damiri N 2015 Population dynamics of rhizobacteria and its potency as a biological control agent to control Fusarium disease in the nursery of agrawood (Aquilaria melanodendron Lamrk.) J. Agrivita 37(3) 276- 83.

[16] Wang S L and Chang W T 1997 Purification and characterization of two bifungional chitinases or lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. J.Appl. And Enviro, Microbial 63(2) 380-6

[17] Habazar T and Yaherwandi 2006 Biological control of plants pest and diseases (Padang : Andalas University Press)

[18] Understenhofer G 1976 The basic principle of crop protection field trial J. Pflazenschutz- Nachriichten Bayer 29 (2) 161-8

[19] Gomez K A and Gomez A A 1984 Statistical procedure for agricultural research 2nd edition: An international rice research institute book (New York-Chichester-Brisbane-Toronto-Singapore: A Wiley-intersci. Publ., John Wiley and son)

[20] Javandira C 2013 Potency of Pseudomonas spp. And Bacillus sp. as biological control of corn leaf blight caused by Pantoceps. Thesis. Brawijaya University, Malang.

[21] Meyer K M and Leveau J H J 2012 Microbiology of the phyllosphere: a playground for testing ecological concepts J. Ecologia 168 621-9

[22] Weller D M 1988 Biological control of soil borne pathogen in the rhizosphere with bacteria J. Annu Rev Phypathol 26 379-407

[23] Shanahan P, O’ Sullivan D J, Simpson P, Glennon J D and O’Gara F 1992 Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonads and investigation of physiologicalparameters influencing its production J. Appl Environ Microbiol 58 353-358.

[24] Jan A T, Azam M, Ali A and Q Haq 2011 Novel approached of beneficial Pseudomonas in mitigation of plant diseases an appraisal J. Plant Interact 6 195-205.

[25] Shen X, Hu H, Peng H, Wang W and Zhang X 2013 Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas BMC Genomics 14 271.

[26] Joseph B and R M Priya 2011 Bioactive compound from endophytes and their potential in pharmaceutical effect: a review. Am. J. Biochem. Mol. Biol 1(3) 291-309

[27] Bacon C W and Hinton D M 2007 Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis J. Biocontrol Sci. Tech. 1 81-94 DOI:10.1080/09583150600937006.

[28] Prezermieniecki S W, Kurowski T P and Karwowska A 2015 Plant growth promoting potential of Pseudomonas sp. SP0113 isolated from totable water from a closed water well J. Arch. Biol. Sci., Belgrade 67(2) 663-673 DOI:10.2298/ABS14100.2029.

[29] Yu H, Yuan M, Lu W, Yang J, Dai S, Li Q, Yang Z, Dong J, Sun L, Deng Z, Zhang W, Chen M, Ping S, Han Y, Zhan Y, Yan Y, Jin Q and M Lin 2011 Complete genome sequence of the nitrogen-fixing and rhizosphere-associated bacterium Pseudomonas stutzeri strain DSM4166. J. Bacteriol. 193 3422-23

[30] Widodo, M S Sinaga, I Anas and M Mahfud 1993 The use of Pseudomonasspp (P. flourescens) to control the roots cudgel (PlasmodiophorabrassicaceWor.) on caisyin (Brassica campestris L. var. chinensis) on Brassica olson) Bull. Plant Pest-disease 6(2) 94-105 (in Bahasa Indonesia)

[31] Blanco J M and P A H M Bakker 2007 Interaction between plants and beneficial Pseudomonas spp: exploiting bacterial traits for crop protection. Springer. Netherlands. A. van Leeuw. J. Microb. 92 (4) 367-389. DOI:10.1007/s1048-007-9167-1.

[32] Nandhini S, V Sendhivel and S Babu 2012 Endophytic bacteria from tomato and their efficacy against Fusariumoxysporum Esp. lycopersici, the wilt pathogen J. Biopest 5 (2) 178-85