UNIQUENESS OF RANKIN-SELBERG PRODUCTS

GUY HENNIART AND LUIS LOMELÍ

Abstract. In the present paper, we show the equality of the \(\gamma \)-factors defined by Jacquet, Piatetski-Shapiro and Shalika with those obtained via the Langlands-Shahidi method. Contrary to the local proof given by Shahidi, our proof uses a refined version of the local-global principle for \(GL_n \) in positive characteristic, which has independent interest. The comparison of \(\gamma \)-factors is made via a uniqueness result for Rankin-Selberg \(\gamma \)-factors over a non-Archimedean local field of positive characteristic.

1. INTRODUCTION

Let \(F \) be a non-Archimedean locally compact field. The local Langlands conjecture for \(GL_n \) \([5, 8, 16] \) is known to preserve \(L \)-functions and \(\varepsilon \)-factors for pairs. Indeed, the family of correspondences when \(n \) varies is characterized by such a preservation \([7]\). In two previous papers the authors showed that the higher \(L \)-functions and \(\varepsilon \)-factors corresponding to the symmetric square, exterior square and Asai representations are preserved for \(F \) of positive characteristic \([9, 10]\). Those factors are defined via the Langlands-Shahidi method in \([17, 21]\).

Our proofs in \([9, 10]\) are local-global and use the global Langlands correspondence proved by L. Lafforgue \([15]\). In fact, we give a characterization of \(\gamma \)-factors by a series of local properties, combined with their occurrence in the global functional equation. The higher \(\gamma \)-factors in \([9, 10]\) and the ones arising through the local Langlands correspondence \([16]\) both satisfy these properties, hence are equal.

One of the local properties is the important multiplicativity property, which expresses the behavior of \(\gamma \)-factors under parabolic induction. It is in this property that in \([9, 10]\) the local factors for pairs mentioned above make an appearance, but as defined by the Langlands-Shahidi method. On the other hand, Lafforgue uses the Rankin-Selberg factors defined by Jacquet, Piatetski-Shapiro and Shalika \([11]\). In \([19]\), Shahidi gave a proof that the two definitions give the same result; his proof is local in nature. In the present paper, we prove that our local-global approach gives a rather easy proof of Shahidi’s result when \(F \) has positive characteristic. Moreover, here we do not use Lafforgue’s results—which would be unnatural as both types of factors are defined using only representations of linear groups \(GL_n(F) \) and not the Galois side of the Langlands correspondence. Instead, using only methods of Representation Theory of \(p \)-adic Reductive Groups and Automorphic Forms, we globalize a given local cuspidal representation of \(GL_n \) in an automorphic representation with controlled ramification at other places (Theorem \(8.63 \)). A variant
of our result includes an automorphic analogue of the result of Katz and Gabber [1] that we use in [9].

The authors would like to thank C. J. Bushnell, J. Cogdell, B. Gross, P. Kutzko, A. Roche and F. Shahidi for helpful mathematical communications. The second author would like to thank the Automorphic Forms and Representation Theory group at the University of Oklahoma for providing an interesting working environment while this article was written.

2. A uniqueness theorem

2.1. Notation. Let us adapt the notation of [9] and § 6.1 of [17] in order to better deal with γ-factors of pairs of representations of GL_m and GL_n. Let \mathcal{L} be the class of quadruples (F, π_1, π_2, ψ) consisting of: a non-Archimedean local field F; smooth irreducible representations π_1 of $\text{GL}_m(F)$ and π_2 of $\text{GL}_n(F)$ (call (m, n) the degree of the quadruple); and, a non-trivial character ψ of F. We call a quadruple $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}$ generic (resp. tempered, cuspidal) if the representations π_1 and π_2 are generic (resp. tempered, cuspidal). We fix a prime number p and let $\mathcal{L}(p)$ be the class consisting of all $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}$, with F of characteristic p. Note that our proof is for $\mathcal{L}(p)$; the case of characteristic zero is mentioned in the remark following the proof of the theorem in § 3.

Given a local non-Archimedean field F, we let \mathcal{O}_F denote its ring of integers, q_F its maximal ideal, q_F^v the cardinality of its residue field, and $|\cdot|_v$ its absolute value. Given a global field K and a non-Archimedean valuation v of K, we write \mathcal{O}_v for the ring of integers of K_v, and similarly for p_v, q_v, and $|\cdot|_v$. The cardinality of the field of constants of a global function field K is denoted by q. Given $\mathbf{G} = \text{GL}_4$, we write $\mathbf{P} = \mathbf{M} \mathbf{N}$ for a parabolic subgroup consisting of upper triangular block matrices with Levi subgroup \mathbf{M}. We let $\mathbf{B} = \mathbf{TU}$ be the Borel subgroup of upper triangular matrices with maximal torus \mathbf{T} and unipotent radical \mathbf{U}. Given a representation ρ, we let $\tilde{\rho}$ denote its contragredient representation.

2.2. Theorem. A rule γ which assigns a rational function $\gamma(s, \pi_1 \times \pi_2, \psi) \in \mathbb{C}(q_F^{-s})$ to every $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$, is uniquely determined by the following properties:

(i) (Naturality) Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$, and let $\gamma : F' \to F$ be an isomorphism of local fields. Let $(F', \pi'_1, \pi'_2, \psi') \in \mathcal{L}(p)$ be the quadruple obtained from (F, π_1, π_2, ψ) via γ. Then

$$\gamma(s, \pi_1 \times \pi_2, \psi) = \gamma(s, \pi'_1 \times \pi'_2, \psi').$$

(ii) (Isomorphism). Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$. If $(F, \pi'_1, \pi'_2, \psi) \in \mathcal{L}(p)$ is such that $\pi'_i \simeq \pi_i$, for $i = 1, 2$, then

$$\gamma(s, \pi'_1 \times \pi'_2, \psi) = \gamma(s, \pi_1 \times \pi_2, \psi).$$

(iii) (Compatibility with Tate’s thesis). Let $(F, \chi_1, \chi_2, \psi) \in \mathcal{L}(p)$ be of degree $(1, 1)$. Then

$$\gamma(s, \chi_1 \times \chi_2, \psi) = \gamma(s, \chi_1 \chi_2, \psi),$$

where the right hand side is defined in Tate’s thesis [23].

(iv) (Dependence on ψ). Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$ be of degree (m, n). Given $a \in F^\times$, let ψ^a be the character of F defined by $\psi^a(x) = \psi(ax)$. Then

$$\gamma(s, \pi_1 \times \pi_2, \psi^a) = \omega_{\pi_1}(a)^m \omega_{\pi_2}(a)^n |a|_{F}^{\min(s-\frac{1}{2})} \gamma(s, \pi_1 \times \pi_2, \psi).$$
(v) (Multiplicativity). For $1 \leq i \leq d_1$ and $1 \leq j \leq d_2$, let $(F, \tau_1, \tau_2, \psi) \in \mathcal{Z}(p)$. For $h = 1, 2$, let π_h be an irreducible subquotient of the representation of $\text{GL}_{n_h}(F)$ parabolically induced from $\tau_{h1} \otimes \cdots \otimes \tau_{hd_h}$. Assume that for each $h = 1, 2$, either:

(a) π_h is generic or

(b) all of the τ_{hi}’s are quasi-tempered and π_h is the Langlands quotient of the parabolically induced representation.

Then

$$
\gamma(s, \pi_1 \times \pi_2, \psi) = \prod_{i,j} \gamma(s, \tau_{i1} \times \tau_{2j}, \psi).
$$

(vi) (Twists by unramified characters). Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{Z}(p)$, then

$$
\gamma(s + s_0, \pi_1 \times \pi_2, \psi) = \gamma(s, |\text{det}(\cdot)|_{F}^{s_0} \pi_1 \times \pi_2, \psi).
$$

(vii) (Global functional equation). Let K be a global function field of characteristic p. Let $\Psi = \otimes_v \Psi_v$ be a non-trivial character of $K\backslash A_K$. Given cuspidal automorphic representations $\Pi_1 = \otimes_v \Pi_{1,v}$ of $\text{GL}_{n_1}(A_K)$ and $\Pi_2 = \otimes_v \Pi_{2,v}$ of $\text{GL}_{n_2}(A_K)$, let S be a finite set of places of K such that $\Pi_{1,v}, \Pi_{2,v}$ and Ψ_v are unramified for $v \notin S$. Then

$$
L^S(s, \Pi_1 \times \Pi_2) = \prod_{v \in S} \gamma(s, \Pi_{1,v} \times \Pi_{2,v}, \Psi_v) L^S(1 - s, \Pi_1 \times \Pi_2).
$$

We provide the proof in § 3. Before that, let us make a few remarks and derive a couple of consequences.

2.3. Remark. In the global functional equation, partial L-functions are a product of local factors

$$
L^S(s, \Pi_1 \times \Pi_2) = \prod_{v \notin S} L(s, \Pi_{1,v} \times \Pi_{2,v}).
$$

More precisely, this product converges for $\Re(s)$ large enough. The resulting L-function has a meromorphic continuation to the complex s-plane and is a rational function on q^{-s}. The functions $L^S(s, \Pi_1 \times \Pi_2)$ and $L^S(s, \Pi_1 \times \Pi_2)$ verify property (vii).

2.4. Remark. Property (v) readily implies a stronger multiplicativity property: using the Langlands-Zelevinsky classification [25] we deduce the fact that if all the τ_{hi}’s are cuspidal, then multiplicativity holds for all choices of subquotients π_1, π_2. In other words, the γ-factor $\gamma(s, \pi_1 \times \pi_2, \psi)$ depends only on the cuspidal supports of π_1, π_2, and the multiplicative property expresses $\gamma(s, \pi_1 \times \pi_2, \psi)$ as a product of γ-factors corresponding to those cuspidal supports. We then conclude that, with no special condition on the τ_{hi}’s, multiplicativity holds for any choice of subquotients π_1, π_2. If we think about the Langlands correspondence, this corresponds to the fact that γ-factors for representations of the Weil-Deligne group of F only depend on the underlying Weil group representation and are multiplicative with respect to direct sums.

2.5. A first consequence is that γ-factors satisfy a local functional equation.

Corollary. A rule γ as in Theorem 2.2 also satisfies the following property:

(viii) (Local functional equation). Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{Z}(p)$, then

$$
\gamma(s, \pi_1 \times \pi_2, \psi) \gamma(s, \pi_1 \times \pi_2, \overline{\psi}) = 1.
$$
Proof. It is immediate that the rule γ' on $\mathcal{L}(p)$ defined by $\gamma'(s, \pi_1 \times \pi_2, \psi) = \gamma(1-s, \widetilde{\pi}_1 \times \widetilde{\pi}_2, \overline{\psi})^{-1}$ satisfies properties (i) through (vii).

2.6. Generic γ-factors via different methods. To derive our second consequence—the main reason for our investigation—we consider two different rules on $\mathcal{L}(p)$. We begin by assuming that the underlying representations are generic, the general case is dealt with in §2.7.

First is the rule

$$(F, \pi_1, \pi_2, \psi) \mapsto \gamma(s, \pi_1 \times \pi_2, \psi)$$

defined by Jacquet, Piatetski-Shapiro and Shalika in [11]. Properties (i), (ii) and (vi) are easy consequences of the definitions. A direct proof of the dependance on ψ, Property (iv), for Rankin-Selberg local factors is contained in the proof of Lemma 2.1 of [3]. Multiplicativity for generic representations, Property (v.a), is given by Theorem 3.1 of [op. cit.]. The global functional equation—which we remark, involves only generic representations—can be found as Theorem 2.3 of [3].

The second rule on $\mathcal{L}(p)$

$$(F, \pi_1, \pi_2, \psi) \mapsto \gamma(s, \pi_1 \otimes \pi_2, \psi)$$
is obtained via the Langlands-Shahidi method [17]. Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$ be generic. Properties (i), (ii), (vi) are immediate. Property (iii) is given in Proposition 3.2 of [op. cit.]. Whereas multiplicativity, Property (v.a), can be found in equation (6.5) of [op. cit.]. We prove property (iv) in the following lemma.

Lemma. Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$ be generic of degree (m, n). Given $a \in F^\times$, let ψ^a be the character of F defined by $\psi^a(x) = \psi(ax)$. Then

$$\gamma(s, \pi_1 \otimes \pi_2, \psi^a) = \omega_{\pi_1}(a)^m \omega_{\pi_2}(a)^n \left| a \right|_F^{mn(s-n\ell)} \gamma(s, \pi_1 \otimes \pi_2, \psi).$$

Proof. The γ-factors are obtained via the Langlands-Shahidi method by considering $M = GL_m \times GL_n$ as a maximal Levi subgroup of $G = GL_{m+n}$. Let \mathfrak{r} denote the adjoint representation of $^L M$ on $^L \mathfrak{n}$. The character ψ is used in §2.1 of [17] to define a non-degenerate character of $U(F)$, again denoted by ψ. We write ψ_M for the restriction of ψ to $U_M = M(F) \cap U(F)$. The characters ψ and ψ_M are then w_0-compatible in the notation of §6.2 of [op. cit.]. We consider the ψ_M-generic representation $\pi = \pi_1 \otimes \pi_2$ of $M(F)$.

For $a \in F^\times$, let $t = \text{diag}(a^{-(m+n-1)}, a^{-(m+n-2)}, \ldots, a, 1)$. Let π_t be the representation of M given by $\pi_t(x) = \pi(t^{-1}xt)$. The character ψ_t given by $\psi_t(u) = \psi(t^{-1}ut)$ is then obtained from ψ^a and π_t is ψ_M-generic. We can now explicitly apply (6.1) of [loc. cit.] to the local coefficient in this setting:

$$\gamma(s, \pi_1 \otimes \pi_2, r, \psi^a) = C'_{\psi_t}(s, \pi_t, w_0)$$

$$= \omega_{\pi_1}(a)^m \omega_{\pi_2}(a)^n \left| a \right|_F^{mn(s-n\ell)} C_{\psi}(s, \pi, w_0)$$

$$= \omega_{\pi_1}(a)^m \omega_{\pi_2}(a)^n \left| a \right|_F^{mn(s-n\ell)} \gamma(s, \pi_1 \otimes \pi_2, r, \psi).$$

Finally, we have a global functional equation: Let K be a global function field of characteristic p, let $\Psi = \otimes_v \Psi_v$ be a non-trivial character of $K^\times \setminus K$, and let Π_1 and Π_2 be cuspidal automorphic representations of $GL_{n_1}(A_K)$ and $GL_{n_2}(A_K)$, respectively. Let S be a finite set of places of K such that Ψ and Π_i, for $i = 1, 2,$
are unramified outside of \(S \). The global functional equation, Theorem 5.1 of [loc. cit.] in its form of Property 6.5(vi) for \(\gamma \)-factors, gives
\[
L^S(s, \Pi_1 \times \Pi_2) = \prod_{v \in S} \gamma(s, \Pi_{1,v} \otimes \Pi_{2,v}, \Psi_v) L^S(1-s, \bar{\Pi}_1 \times \bar{\Pi}_2).
\]
Thus, Properties (i) through (vii) hold for \(\gamma(s, \pi_1 \otimes \pi_2, \psi) \) and \(\gamma(s, \pi_1 \times \pi_2, \psi) \), when \(\pi_1 \) and \(\pi_2 \) are generic.

2.7. General case. When \(\pi_1 \) and \(\pi_2 \) are not necessarily generic, they can be written as Langlands’ quotients. More specifically, \(\pi_1 \) and \(\pi_2 \) are quotients of the representations \(\xi \) and \(\tau \), respectively, given as follows:
\[
\xi = \text{ind}_{\text{Pr}^n(F)}^{\GL_n(F)}(\xi_1 \otimes \cdots \otimes \xi_d), \quad \tau = \text{ind}_{\text{Pr}^n(F)}^{\GL_n(F)}(\tau_1 \otimes \cdots \otimes \tau_e);
\]
each \(\xi_i = |\text{det}(\cdot)|_F^{u_i} \xi_{i,0} \) and \(\tau_j = |\text{det}(\cdot)|_F^{v_j} \tau_{j,0} \) has \(\xi_{i,0} \) and \(\tau_{j,0} \) tempered. Then, the factors \(\gamma(s, \pi_1 \otimes \pi_2, \psi) \) are defined by equation (7.5) of [17]. That is, \(\gamma \)-factors are defined for all \((F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p) \) by means of multiplicativity, Property (v.b), and Property (vi). They satisfy the equation
\[
\gamma(s, \pi_1 \times \pi_2, \psi) = \prod_{i,j} \gamma(s + u_i + v_j, \xi_{i,0} \times \tau_{j,0}, \psi).
\]
Rankin-Selberg \(\gamma \)-factors for non-generic representations are defined in [14] via the exact same procedure.

It is easy to verify that properties (i) through (vii) of the theorem hold for both \(\gamma(s, \pi_1 \otimes \pi_2, r, \psi) \) and \(\gamma(s, \pi_1 \times \pi_2, \psi) \). We have proved the following:

Corollary. Let \((F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p) \), then
\[
\gamma(s, \pi_1 \times \pi_2, \psi) = \gamma(s, \pi_1 \otimes \pi_2, \psi).
\]

2.8. Remark. As mentioned in the introduction, this gives a local-global proof of a result due to Shahidi [19]; his proof is purely local. The idea of the local-global approach has a long history: one could trace it to the classical derivation of local class field theory from global class field theory. Already Deligne treats Artin \(L \)-functions and root numbers for Galois representations by incorporating twists by highly ramified characters. The corresponding stability property of the \(\gamma \)-factors \(\gamma(s, (\pi_1 \otimes \eta) \times \pi_2, \psi) \), \(\eta \) sufficiently ramified, can be found in [12]. This property plays a dominant role in the proof of the local Langlands conjecture [16] and is also used in [15]. In the Langlands-Shahidi method, it is a conjecture that the local coefficient is stable under highly ramified twists which has already been proved in several cases involving \(\GL_n \) (further references may be found in [22]). Note, however, that in our proof in positive characteristic we do not use the stability property.

2.9. \(L \)-functions and root numbers. We can define local \(L \)-functions and \(\varepsilon \)-factors via \(\gamma \)-factors via the relationship:
\[
\gamma(s, \pi_1 \times \pi_2, \psi) = \varepsilon(s, \pi_1 \times \pi_2, \psi) \frac{L(1-s, \pi_1 \times \pi_2)}{L(s, \pi_1 \times \pi_2)}.
\]
First for for tempered \((F, \pi_1, \pi_2, \psi) \in \mathcal{L} \) and then by means of Langlands classification and analytic continuation. Hence, we can use Corollary 2.7 to obtain the following equality of local factors.
Corollary. Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$. Then
\[L(s, \pi_1 \times \pi_2) = L(s, \pi_1 \otimes \pi_2) \quad \text{and} \quad \varepsilon(s, \pi_1 \times \pi_2, \psi) = \varepsilon(s, \pi_1 \otimes \pi_2, \psi). \]

3. Proof of Theorem 2.2

3.1. Assume that we have two rules γ and γ' on $\mathcal{L}(p)$ satisfying the conditions of Theorem 2.2. We want to prove that

\[\gamma(s, \pi_1 \times \pi_2, \psi) = \gamma'(s, \pi_1 \times \pi_2, \psi) \]

for all $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$. We prove it by induction on $m+n$, where (m, n) is the degree of (F, π_1, π_2, ψ). The case of $m + n = 2$ is given by property (iii). By Remark 2.4, we have equality by induction if π_1 or π_2 is not cuspidal. So, we assume that π_1 and π_2 are cuspidal. By property (vi), we may even assume that both are unitary. Note also that by property (iv), it is enough to prove the equality for a fixed ψ and equality follows for every ψ.

3.2. Let k be the residue field of F, and T be the usual choice of coordinate on the affine line \mathbb{A}_k over k, so that $K = k(T)$ is the function field of the projective line \mathbb{P}_k over k. By property (i) we may assume that F is the completion K_0 of K at the point 0, so that π_1 and π_2 are cuspidal unitary representations of $GL_m(K_0)$ and $GL_n(K_0)$, respectively. We choose a non-trivial additive character Ψ of Λ_K/K, and assume, as we may, that $\Psi_0 = \psi$.

Now we use the following local-global theorem, to be proved in § 4 together with the variant mentioned in the introduction.

3.3. Theorem. Let π be a cuspidal unitary representation of $GL_n(K_0)$. Then there exists a cuspidal unitary automorphic representation $\Pi = \otimes_v \Pi_v$ of $GL_n(\Lambda_K)$ whose local components Π_v satisfy:

(i) $\Pi_0 \simeq \pi$;
(ii) at places distinct from 0, 1 and ∞, Π_v is unramified;
(iii) Π_1 is a subquotient of an unramified principal series representation;
(iv) Π_{∞} is a subquotient of a tamely ramified principal series representation.

3.4. Let $(F, \pi_1, \pi_2, \psi) \in \mathcal{L}(p)$ be cuspidal unitary. Applying the theorem to the representations π_1 and π_2, we obtain cuspidal automorphic representations Π_1 of $GL_m(\Lambda_K)$ and Π_2 of $GL_n(\Lambda_K)$. Then, with the notation of Property (vii), there is a finite set of places S containing p such that the global functional equation is satisfied by both γ and γ'. Hence

\[\prod_{v \in S} \gamma(s, \Pi_{1,v} \times \Pi_{2,v}, \Psi_v) = \prod_{v \in S} \gamma'(s, \Pi_{1,v} \times \Pi_{2,v}, \Psi_v), \]

where $\Pi_{1,v}$ and $\Pi_{2,v}$ are principal series representations for $v \in S - \{0\}$. Applying the already established non-cuspidal case at these places yields

\[\prod_{v \in S - \{0\}} \gamma(s, \Pi_{1,v} \times \Pi_{2,v}, \Psi_v) = \prod_{v \in S - \{0\}} \gamma'(s, \Pi_{1,v} \times \Pi_{2,v}, \Psi_v). \]

The functions $L^S(s, \Pi_1 \times \Pi_2)$ and $L^S(s, \Pi_1 \times \Pi_2)$ appearing in the functional equation are uniquely determined. Hence, at the remaining place, we have

\[\gamma(s, \Pi_{1,0} \times \Pi_{2,0}, \Psi_0) = \gamma'(s, \Pi_{1,0} \times \Pi_{2,0}, \psi). \]
The desired equality then follows from property (ii).

3.5. Remark. Our proof of Corollary 2.7 can be adapted to also work in characteristic 0; we now provide a sketch. We use Proposition 5.1 of [21] as the link between the local and the global theory, and reduce the proof of Corollary 2.7 to the case where F is Archimedean. The theory for Archimedean local fields is studied in [13], [20]. The complex case is easily reduced to GL_1 by multiplicativity, and we use compatibility with Tate’s thesis for GL_1. When F is real, we are reduced to GL_1 or to the case where π_1 or π_2 are discrete series for $GL_2(\mathbb{R})$. Even in the latter case, discrete series are components of principal series. We thus reduce $\gamma(s, \pi_1 \times \pi_2, \psi)$ as before to a product of Γ-factors for $GL_1(\mathbb{R})$.

4. Proof of Theorem 3.3

We refine the argument of Appendix 1 of [6], which uses Poincaré series to construct the global cuspidal automorphic representation, now with controlled ramification in positive characteristic. It is interesting to note that the main idea was extended by Vignéras [24] to include generic representations of quasi-split classical groups; and, also for generic representations, Shahidi obtained a further refinement in the case of number fields [21].

4.1. Given a place v of the global field K, let O_v denote the ring of integers of K_v and p_v the maximal ideal. Set $G = GL_n$ and let Z denote its center. We set $K_v = G(O_v)$. We also write G_v instead of $GL_n(K_v)$.

We first construct a function $f = \otimes_v f_v$ on $G(\mathbb{A}_K)$. For $v \notin \{0, 1, \infty\}$, let f_v be the characteristic function of K_v. Let f_1 be the characteristic function of the Iwahori subgroup I_1 of G_1 made out of matrices in K_1 which are upper triangular modulo p_1. Similarly, we let f_∞ be the characteristic function of the pro-p-Iwahori subgroup $I_{1\infty}$ of G_∞ made out of matrices in K_∞ which are lower triangular unipotent modulo p_∞.

The choice of f_0 is more involved. By chapter 6 of [1], there is a pair (J, λ), where J is a subgroup of G_0 which is open, contains the center $Z_0 = Z(K_0)$ of G_0, and is compact modulo Z_0; and, λ is an irreducible smooth representation of J such that π is isomorphic to the representation obtained from λ by compact induction from J to G_0. By conjugation, we can assume that the maximal compact subgroup J^0 of G_0, made out of the elements whose determinant has absolute value 1, is included in K_0. As the central character ω_π of π is assumed to be unitary, λ is a unitarizable representation, and we can choose a non-zero coefficient f_0 of λ verifying $f_0(g^{-1}) = f_0(g)$ for $g \in J$. We extend f_0 by 0 outside J, to get a function on G_0, still denoted f_0, and which is a coefficient of π.

4.2. The Poincaré series Pf attached to f is defined by

$$Pf(g) = \sum_{\gamma \in G(K)} f(\gamma g),$$

for $g \in G(\mathbb{A}_K)$. When g lies in a compact subset of $G(\mathbb{A}_K)$ the sum is finite, hence Pf is a continuous function on $G(\mathbb{A}_K)$. We can be more precise, let γ belong to $G(K) \cap \left(J \times \prod_{v \neq 0} K_v\right)$. Then, by the product formula, γ at the place $v = 0$ belongs to J^0, hence to K_0. It follows that γ belongs to $G(k)$. Furthermore, we
see that if γ at the place $v = 1$ belongs to \mathcal{I}_1 and at the place $v = \infty$ to \mathcal{I}_∞^1, then $\gamma = I_0$ is the identity matrix. Let
\[
\mathfrak{a} = J \times \mathcal{I}_1 \times \mathcal{I}_\infty^1 \times \prod_{v \notin \{0, 1, \infty\}} K_v.
\]
It follows that Pf is the function on $G(K) \cdot \mathfrak{a}$, trivial on $G(K)$, and coinciding with f on \mathfrak{a}.

We remark that
\[
\mathbb{A}_K^\times = K^\times \cdot \left(K_0^\times \times (1 + p_\infty) \times \prod_{v \notin \{0, \infty\}} \mathcal{O}_v^\times \right).
\]
So, there is a unique unitary character $\omega : K^\times \setminus \mathbb{A}_K^\times \to \mathbb{C}^\times$ which restricts to ω_v on K_0^\times; ω_∞ is trivial on $1 + p_\infty$; and, ω_v, is trivial on \mathcal{O}_v^\times for $v \notin \{0, \infty\}$. By construction, Pf transforms via ω under translation by $Z(K) = \mathbb{A}_K^\times$.

4.3. Reasoning as in the Appendix, p. 147, of [6], $|Pf| \in L^2(Z(K)G(K) \setminus G(K) \mathbb{A}_K)$; and, since f_0 is a coefficient of the cuspidal representation π, Pf is a cuspidal function: it belongs to the space $L^2_0(G, \omega)$ of cuspidal automorphic functions on $G(K) \setminus G(K)$ transforming via ω under the center.

The space $L^2_0(G, \omega)$ is an orthogonal sum of irreducible components, each occurring with multiplicity 1. The projection onto any of those subspaces is $G(K)$-equivariant. As Pf is not 0, we can choose such a component Π such that the projection of Pf on the space of Π is not 0 either.

Now f transforms under the action of $\mathfrak{a} \cap Z(K)$ via the restriction of ω. Also, we obtain a function φ of the Hecke algebra on $G(K)$ by restriction of Pf to $Z(K) \cdot \mathfrak{a}$; then φ transforms under $Z(K)$ via ω. It acts by convolution on $L^2_0(G, \omega)$. Then
\[
(\varphi * Pf)(1) = \int_{Z(K) \setminus G(K)} \varphi(g^{-1}) Pf(g) dg
\]
\[
= \int_{\mathfrak{a} \cap Z(K) \setminus \mathfrak{a}} Pf(g) dg \neq 0,
\]
where the last integral being non-zero because $Pf = f$ on \mathfrak{a}. Hence, φ does not annihilate Pf and it follows that φ does not annihilate f either. Taking into account the definition of f and φ, we see that: Π_∞ has non-zero fixed vectors under K_∞, for $v \notin \{0, 1, \infty\}$; Π_1 has a non-zero fixed vector under I_1; and Π_∞ has a non-zero fixed vector under \mathcal{I}_∞^1. Moreover, since f_0 is a coefficient of π, Π_0 is equivalent to π.

4.4. From § 9.2 of [2], the trivial character of the Iwahori subgroup I_1 of G_1 is a type (in the sense of §§ 3, 4 of [op. cit.]) for the Berstein component of the trivial character of G_1; this implies that any smooth irreducible representation of G_1 with a non-zero fixed vector under I_1 is a subquotient of an unramified principal series. This proves condition (iii) of the theorem.

We now turn to condition (iv) of the theorem. Let I_∞ denote the Iwahori subgroup consisting of matrices in K_∞, which are lower triangular mod p_∞. If a smooth irreducible representation ρ of G_∞ has a non-zero fixed vector under I_∞^1, the space V of such fixed vectors—which is finite-dimensional, ρ being admissible—is stable under I_∞. Consequently V contains an irreducible representation of I_∞, which
is trivial on I_∞^1. Since I_∞/I_∞^1 is abelian, such a representation has dimension 1. Hence, we conclude that ρ contains a character χ of I_∞, trivial on I_∞^1.

By the work of L. Morris [18], such a character χ of I_∞ is a type for G_∞—when χ is trivial, this gives the above mentioned result of § 9.2 of [2]. More precisely, the compact open subgroup I_∞ is contained in $B^-(K_\infty)$, where B^- is the Borel subgroup of lower triangular matrices with maximal torus T of diagonal matrices. The character χ of I_∞ restricts to a character χ_U of $I_\infty \cap T(K_\infty)$; and, [18] states that (I_∞, χ) is a cover for $(I_\infty \cap T(K_\infty), \chi_U)$—in the sense of § 8 of [2]. The character χ_U is a type for characters of $T(K_\infty)$ restricting to χ_U. It follows from § 8.3 of [op. cit.] that χ is a type for the corresponding Bernstein component, that of the subquotients of principal series induced from such characters. Hence, condition (iv) of the theorem is satisfied.

\[\square \]

4.5. Remark. A similar reasoning shows the existence of an automorphic cuspidal representation Π of $G(\mathbb{A}_K)$ such that Π_v is unramified for $v \notin \{0, \infty\}$, Π_0 is equivalent to π, and Π_∞ has non-zero fixed points under $K_\infty^1 = 1 + M_n(p_\infty)$. This provides the analogue of the result of Katz and Gabber used in [9] [10].

References

[1] C. J. Bushnell and P. C. Kutzko, The admissible dual of $GL(N)$ via compact open subgroups, Annals of Math. Studies, vol. 129, Princeton University Press, 1993.

[2] Cogdell and I. I. Piatetski-Shapiro, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc 77 (1998), 582-634.

[3] J. Cogdell and I. I. Piatetski-Shapiro, Converse theorems for GL_n, Publ. Math. IHÉS 79 (1994), p. 157-214.

[4] J. Cogdell and I. I. Piatetski-Shapiro, Remarks on Rankin-Selberg convolutions, in [H. Hida, D. Ramakrishnan and F. Shahidi, editors, Contributions to Automorphic Forms, Geometry and Number Theory, The John Hopkins University Press, 2004, 255-278].

[5] M. Harris and R. Taylor, On the geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies, vol. 151, Princeton University Press, 2001.

[6] G. Henniart, La conjecture de Langlands locale pour $GL(3)$, Mémoires de la SMF 11-12 (1983), 1-186.

[7] Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires, Invent. Math. 113 (1993), 339-350.

[8] Henniart, Une preuve simple des conjectures de Langlands pour $GL(n)$ sur un corps p-adique, Invent. Math. 139 (2000), 439-455.

[9] G. Henniart and L. Lomelí, Local-to-global extensions for GL_n in non-zero characteristic: a characterization of $\gamma(s, \pi, \text{Sym}^2, \psi)$ and $\gamma(s, \pi, \Lambda^2, \psi)$, Amer. J. Math. 133 (2011), 187-196.

[10] Characterization of γ-factors: the Asai case, Internat. Math. Res. Notices (2012), doi:10.1093/imrn/rns171.

[11] H. Jacquet, I. I. Piatetski-Shapiro and J.A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464.

[12] H. Jacquet and J. A. Shalika, A lemma on highly ramified ε-factors, Math. Ann. 271 (1985), 319-332.

[13] Rankin-Selberg convolutions: Archimedean theory, in Festschrift in Honor of I.I. Piatetski-Shapiro, Part I, Weizmann Science Press, 1990, 125-207.

[14] N. M. Katz, Local-to-global extensions of representations of fundamental groups, Ann. Inst. Fourier 36 (1986), 69-106.

[15] L. Lafforgue, Chitoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), 1-241.

[16] G. Laumon, M. Rapoport, and U. Stuhler, \mathcal{D}-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993), 217-338.

[17] L. A. Lomelí, On automorphic L-functions in positive characteristic, preprint.

[18] L. Morris, Level zero G-types, Comp. Math. 118 (1999), 135-157.
[19] F. Shahidi, *Fourier transforms of intertwining operators and Plancherel measures for GL(n)*, Amer. J. Math. 106 (1981), 297-355.

[20] , *Local coefficients as Artin factors for real groups*, Duke Math. J. 52 (1985), 973-1007.

[21] , *A proof of Langlands’ conjecture on Plancherel measures; complementary series of p-adic groups*, Ann. of Math. 132 (1990), 273-330.

[22] , *On equality of arithmetic and analytic factors through local Langlands correspondence*, preprint.

[23] J. T. Tate, *Fourier analysis in number fields and Hecke’s zeta-functions*, thesis, Princeton Univ., (1950) (published in [J. W. S. Cassels and A. Fröhlich, editors, *Algebraic number theory*, 2nd ed., London Mathematical Society, 2010, pp. 305-347]).

[24] M.-F. Vignéras, *Correspondance entre représentations automorphes de GL(2) sur une extension quadratique de GSp(4) sur Q, conjecture locale de Langlands pour GSp(4)*, Contemporary Math. 53 (1986), 463-527.

[25] A. V. Zelevinsky, *Induced representations of reductive p-adic groups II. On irreducible representations of GL(n)*, Ann. Sci. École Norm. Sup. 4e série 13 (1980), 165-210.

Guy Henniart, Institut Universitaire de France et Univ. Paris-Sud, Laboratoire de Mathématiques d’Orsay, CNRS, Orsay cedex F-91405, France

E-mail address: Guy.Henniart@math.u-psud.fr

Luis Lomelí, University of Oklahoma, Department of Mathematics, Norman, OK 73019-3103

E-mail address: lomeli@math.ou.edu