Infection (CDI) has been associated with antibiotic exposure, providing further evidence for Antibiotic Stewardship Committees to put in place local guidelines to prevent its recurrence.

Disclosures. All authors: No reported disclosures.

2381. Epidemiology of Clostridium difficile Infection in Patients Receiving Interleukin-2 Therapy

Aldon Li, MD; Nga Nguyen, PharmD; University California Riverside School of Medicine, Rowland Heights, California; Kaiser Permanente, Riverside, California

Session: 251. HA1: C. difficile - Epidemiology
Saturday, October 5, 2019: 12:15 PM

Background. Clostridium difficile infection (CDI) has been associated with interleukin-2 (IL2) therapy, possibly leading to unnecessary testing and treatment of colonized patients receiving IL2 therapy. Since the debut of IL2 therapy for renal cell carcinoma (RCC) and metastatic melanoma (MM), only one study with 6 patients has shown a relationship between CDI and IL2 treatment, and no mortality data were reported. Because of the rising concern for appropriate testing and treatment of CDI, further studies looking at the correlation between IL2 therapy and CDI are needed. This study aims to describe CDI rates among a larger cohort of IL2 treated patients and to include mortality data.

Methods. Retrospective case series. A case of CDI was defined as (1) Bowel movements >3 or stool output >600 mL WITH, (2) positive laboratory test, either through toxin detection via ELISA prior to 2010 or molecular testing via PCR after 2010.

Results. During the study period from 2008 to 2015, 359 patients with RCC or MM receiving IL2 treatment were evaluated with a total of 294 patients undergoing Clostridium difficile testing (CDT). Median age was 52 (range 24–69), 33% female. An average IL2 dose of 27 million international units (MIU) was given in this population. Risk factors for CDI recurrence were assessed by logistic regression.

Conclusion. The results of this study show a lower CDI rate (7%, 21/294) than previously reported in IL2-treated patients (66%, 4/6), but this difference is likely due to the difference in population size. In addition to CDI rate, this study adds information about mortality in IL2-treated patients with CDI, which was not previously described in the literature. Applying a clinical criterion to laboratory testing results revealed a difference in laboratory testing positivity and actual infection rates, suggesting 8% of this population maybe colonized with Clostridium difficile, providing further evidence for Antibiotic Stewardship Committees to put in place local guidelines to avoid indiscriminate CDT in this population.

Disclosures. All authors: No reported disclosures.

2382. Recurrent Clostridioides difficile Infection (CDI) Worsens Anxiety-Related Patient-Reported Quality of Life

Kevin W. Garey, PharmD, MS, FASHIP; Claudia P. Schroeder, PharmD, PhD; Thomas C. Hardin, PharmD; Richard L. Hengel, MD; Timothy E. Ritter, MD; Ramesh V. Nathan, MD; Ryan J. Dillon, MSc; Lucinda J. Van Anglen, PharmD; University of Houston College of Pharmacy, Houston, Texas; Texas A&M University, College Station, Texas; Texas A&M Health Science Center, College Station, Texas

Session: 251. HA1: C. difficile - Epidemiology
Saturday, October 5, 2019: 12:15 PM

Background. The Health-Related Quality of life (HR-QOL) instrument, the Cdiff32, allows studies on QOL changes associated with recurrent CDI. An ongoing real-world study of bezlotoxumab (BEZ) provided a unique opportunity to study anxiety-related HR-QOL in patients at high risk for recurrent CDI using the anxiety sub-domain of Cdiff32. The aims of this study were to assess baseline anxiety-related HR-QOL, based on the number of prior episodes of CDI and to evaluate changes in patients with or without recurrence.

Methods. Patients at high risk for recurrent CDI given BEZ were administered the anxiety sub-domain questions of the Cdiff32 prior to infusion and at approximately 90 days after administration (0 = worst anxiety; 100 = no anxiety). The number of prior episodes of CDI were collected, along with demographics and co-morbidity conditions. Patients were followed for 90 days for CDI recurrence, which was defined as a new onset of diarrhea requiring CDI-active antibiotics.

Results. There were 107 patients evaluated, aged 68 ± 14 years (mean ± SD) with multiple co-morbid conditions (mean Charlson: 4 ± 3) and multiple previous CDI episodes (3 ± 1 episodes). Seventeen percent (17%) experienced a further CDI recurrence within 90 days following BEZ. Overall, baseline anxiety HR-QOL was 29 ± 22. Risk factors included a history of recurrent CDI (HR: 2.19, 95% CI: 1.07–4.48), underlying diagnosis including immunocompromised conditions (P < 0.046) and receipt of a proton pump inhibitor (P = 0.018). Compared with patients with primary CDI disease (Score: 35 ± 20), baseline anxiety HR-QOL was worse with subsequent prior recurrences (Score: 26 ± 23) for CDI episodes 2–4, and then improved for subsequent episodes (Score: 38 ± 22), Anxiety-related HR-QOL improved by a mean of 32 ± 25 points compared with patients that experienced a further recurrence where HR-QOL declined (P < 0.0001). Results were confirmed in a multivariate model controlling for Charlson score and chronic renal failure.

Conclusion. Poor anxiety-related HR-QOL was observed at baseline in all patients regardless of number of prior episodes. QOL improved 90 days after BEZ infusion in patients without further recurrences of CDI and worsened in patients with a subsequent recurrence.

Disclosures. All authors: No reported disclosures.

2383. Epidemiological and Clinical Features of Clostridioides difficile Infections in Pediatric Oncology and Transplant Patients

Ruba Barber, MD; Hans Hakim, MD, MS, CIC; Randall Hayden, MD; Randall Hayden, MD; St. Jude Children’s Research Hospital, Memphis, Tennessee; St Jude Children’s Research Hospital, Memphis, Tennessee

Session: 251. HA1: C. difficile - Epidemiology
Saturday, October 5, 2019: 12:15 PM

Background. Clostridioides difficile infection (CDI) is the most common cause of healthcare-associated diarrhea causing significant morbidity and mortality in adults. The epidemiology and clinical course of CDI in children, especially with cancer are poorly defined. We aim to describe the clinical, epidemiological features and outcomes of CDI, and identify risk factors for recurrence in a pediatric oncology center.

Methods. This is a retrospective cohort study of CDI in pediatric oncology and hematopoietic stem cell transplant (HSCT) patients in 2016 and 2017. CDI cases were identified by electronic medical record search for positive C. difficile PCR tests. CDI episodes were classified as incident, duplicate or recurrent and community-onset (CO), hospital-onset (HO), or community-onset healthcare facility associated (COHCFA) using National Healthcare Safety Network surveillance definitions. Demographics, underlying diagnosis, CDI characteristics, drug exposure, and outcomes were analyzed.

Results. One hundred eighty-nine patients developed 305 CDI episodes; 233 (78%) were incident, 65 (22%) recurrent, and 7 duplicate and removed from the analysis. Recurrence occurred after 51 incident episodes (Table 1). Median age (range) was 5.7 (0.5–25.5) years. Underlying diagnoses were leukemia/lymphoma (56%) and solid/brain tumors (42%). 87 (29%) received HSCT. Almost all patients received antibiotics 4 weeks prior to CDI. 14% received laxatives 72 hours prior to CDI. 50% of patients were neutropenic. The median (range) duration of diarrhea was 10.0 (1–77) days. Thirty patients (15%) were hospitalized due to CDI, for a median (range) of 3 (1–49) days. 16% had a delay in chemotherapy due to CDI. There was no ICU admissions nor death due to CDI. None of the evaluated variables was identified as a significant risk factor for CDI recurrence by logistic regression (Table 3).

Conclusion. CDI in pediatric oncology and transplant patients ran a generally mild course, associated with chemotherapy delay and hospitalization in a small fraction, and no attributable ICU admission nor death. CDI recurred in less than a quarter of patients. Risk factors for CDI recurrence were not identified.

Disclosures. All authors: No reported disclosures.
Table 1: The clinical course and treatment of C. difficile infections in pediatric oncology and HSCT patients

Clinical course and treatment of CDI episodes	Value
Abdominal ultrasound, (n%)	94 (43)
Presence of colitis, (n%)	48 (21)
Location of CDI, (n%)	[0.05]
Hospitalization	161 (74)
Outpatient	137 (62)
C. difficile NIS classification for incident or recurrent episodes, (n%)	233 (78)
Incident	2 (0)
Recurrent	231 (77)
C. difficile NIS classification for location of CDI onset, (n%)	97 (32)
Community onset	95 (32)
Community onset - healthcare facility associated	108 (40)
Assymptomatic symptoms and signs, (n%)	76 (30)
Fever	87 (37)
Chills	41 (18)
Diarrhea	278 (93)
Vomiting	73 (24)
Abdominal pain	78 (26)
Dehydration	15 (5)
Clinical appearance at presentation, (n%)	
Well	222 (75)
Sick	74 (25)
Median (range) duration of diarrhea in days	10 (3–77)

Table 2: The outcomes of C. difficile infections in pediatric oncology and HSCT patients

Clinical outcome	Value
Hospitalization due to CDI, (n%)	30 (15)
Median (range) length of hospitalization due to CDI in days	3 (1–49)
Complications within 30 days of CDI, (n%)	188 (63)
Hospitalization	4 (12%)
Sepsis	16 (5%)
Dehydration	8 (3%)
Hypotension	12 (4%)
Respiratory distress	23 (9%)
D/C	1 (3%)
Renal	8 (3%)
Chemotherapy due during CDI, (n%)	188 (63)
Chemotherapy modified due to CDI, (n%)	28 (81)
Chemotherapy delayed due to CDI, (n%)	13 (7%)
ICU admission due to CDI, (n%)	1 (0.5%)
All-cause mortality within 30 days, (n%)	4 (1.3%)
Attributable mortality to CDI within 30 days, (n%)	0 (0.0%)

Table 3: Univariate analysis to assess potential risk factors for CDI recurrence

Variable	Odds Ratio	95% CI	P-value
Age at diagnosis in years			
<1 year vs 1-10 years	0.64	[0.07-5.59]	0.68
[1-5yr] vs >10 yr	1.24	[0.28-5.33]	0.12
[5-10yr] vs >10 yr	1.00	[0.39-2.55]	1.00
Male sex	1.14	[0.61-2.15]	0.67
Race			
Black vs other	1.22	[0.30-5.02]	0.77
White vs other	1.29	[0.41-4.05]	0.65
Primary disease at diagnosis			
Leukemia / lymphoma vs. ID	0.22	[0.03-1.65]	0.14
[Solid / CNS / brain tumor] vs ID	0.54	[0.25-1.13]	0.10
Service at diagnosis			
HSCT vs. [Solid organ / brain tumor]	0.70	[0.32-1.52]	0.37
Leukemia / lymphoma [Solid organ / brain tumor] vs ID	0.54	[0.25-1.13]	0.10
Neutropenia	1.50	[0.80-2.85]	0.19
Inpatient location at time of diagnosis	0.93	[0.50-1.74]	0.82
Chemotherapy prior 4 weeks	0.81	[0.35-1.86]	0.62
Acid suppressors prior 4 weeks	1.23	[0.62-2.46]	0.54
Laxative or stool softeners prior 72 hours	0.87	[0.33-2.77]	0.78
Steroids prior 4 weeks	1.05	[0.56-1.93]	0.95
CDI classification per CDC			
HD vs. CO	1.61	[0.73-3.52]	0.23
CONC/CA vs CO	1.55	[0.70-3.45]	0.27
CDI treatment			
Combination vs. Metronidazole	0.85	[0.33-2.31]	0.59
Fidaxomicin vs. Metronidazole	0.46	[0.10-2.24]	0.32
Vancomycin vs. Metronidazole	0.75	[0.29-1.96]	0.56
HSCT recipient	1.39	[0.70-2.74]	0.34
Hospitalization due to CDI	0.77	[0.25-2.50]	0.65
Combination vs. Metronidazole	0.64	[0.26-1.55]	0.33

Disclosures: Randall Hayden, MD, Abbott Molecular: Advisory Board; Quidel: Advisory Board; Roche Diagnostics: Advisory Board