Magic labelings of distance at most 2

Rinovia Simanjuntak∗, Mona Elviyenti, Mohammad Nafie Jauhari,
Alfan Sukmana Praja, and Ira Apni Purwasih
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung, Bandung 40132, Indonesia

e-mail: rino@math.itb.ac.id

Abstract

For an arbitrary set of distances \(D \subseteq \{0, 1, \ldots, d\} \), a graph \(G \) is said to be \(D \)-distance magic if there exists a bijection \(f : V \to \{1, 2, \ldots, v\} \) and a constant \(k \) such that for any vertex \(x \), \(\sum_{y \in N_D(x)} f(y) = k \), where \(N_D(x) = \{y \in V | d(x, y) \in D\} \).

In this paper we study some necessary or sufficient conditions for the existence of \(D \)-distance magic graphs, some of which are generalization of conditions for the existence of \(\{1\} \)-distance magic graphs. More specifically, we study \(D \)-distance magic labelings for cycles and \(D \)-distance magic graphs for \(D \subseteq \{0, 1, 2\} \).

1 Introduction

As standard notation, assume that \(G=G(V, E) \) is a finite, simple, and undirected graph with \(v \) vertices, \(e \) edges, and diameter \(d \). By a labeling we mean a one-to-one mapping that carries a set of graph elements onto a set of numbers, called labels.

The notion of distance magic labeling was introduced separately in the PhD thesis of Vilfred [28] in 1994 and an article by Miller et. al [18] in 2003. A distance magic labeling, or \(\Sigma \) labeling, is a bijection \(f : V \to \{1, 2, \ldots, v\} \) with the property that there is a constant \(k \) such that at any vertex \(x \), \(\sum_{y \in N(x)} f(y) = k \), where \(N(x) \) is the open neighborhood of \(x \), i.e., the set of vertices adjacent to \(x \). This labeling was introduced due to two different motivations; as a tool in utilizing magic squares into graphs and as a natural extension of previously known graph labelings: magic labeling [24, 15] and radio labeling (which is distance-based) [13].

In the last decade, many results on distance magic labeling have been published. Several families of graphs have been showed to admit the labeling, for instance circulant graphs [7], bipartite graphs [18, 16], tripartite graphs [18], regular multipartite graphs [28, 18]. Cartesian product graphs [14, 23], lexicographic product graphs [18, 26, 2, 3], and joint product graphs [25]. Constructions of distance magic graphs have also been studied: construction producing regular graphs was studied in [9, 10, 11, 16] and non-regular graphs in [27, 17]; the constructions utilize Kotzig array and magic rectangle.

∗This article is written as a class project of MA6151 Topics in Discrete Mathematics: Introduction to Graph Labeling, 2011/2012, Mathematics Master Program, Institut Teknologi Bandung
It was proved in [28] that every graph is a subgraph of a distance magic graph. A stronger result that every graph is an induced subgraph of a regular distance magic graph was then proved in [1]. A yet stronger result can also be found in [22] where it is stated that every graph is an induced subgraph of a regular distance magic graph. Additionally, an application of the labeling in designing incomplete tournament is introduced in [10]. For more results, please refer to a recent survey article in [4].

Jinah [14] introduced a variation of distance magic labeling. A Σ’ labeling, is a bijection $f : V \rightarrow \{1, 2, \ldots, v\}$ with the property that there is a constant k such that at any vertex x, $\sum_{y \in N[x]} f(y) = k$, where $N[x]$ is the closed neighborhood of x, i.e., the set containing x and all vertices adjacent to x. It was stated in [20] that there does not exist a graph of even order that admits both distance magic and Σ’ labelings. As for graphs of odd order, the path P_3 is one example of a graph admitting both labelings. In the same article, it was also showed that a graph is distance magic if and only if its complement is Σ’-labeled.

Recently O’Neal and Slater [20] generalized the notion of distance magic labeling to an arbitrary set of distances $D \subseteq \{0, 1, \ldots, d\}$. As in distance magic labeling, the domain of the new labeling is the set of all vertices and the codomain is $\{1, 2, \ldots, v\}$. We define the D-weight of each vertex x in G, denoted by $w(x)$, to be the sum of labels of the vertices at distance k to x, where $k \in D$. If all vertices in G have the same weight, we call the labeling a D-distance magic labeling. More formally, we have the following definition.

Definition 1. [20] A bijection $f : V \rightarrow \{1, 2, \ldots, v\}$ is said to be a D-distance magic labeling if there exists a D-distance magic constant k such that for any vertex x, $w(x) = \sum_{y \in N_D(x)} f(y) = k$, where $N_D(x) = \{y \in V | d(x, y) \in D\}$. A graph admitting a D-distance magic labeling is called D-distance magic.

Clearly, a distance-magic labeling is a $\{1\}$-distance magic labeling and a Σ’ labeling is a $\{0, 1\}$-distance magic labeling. Rewriting the results in [20], we have the following relations between $\{1\}$-distance magic and $\{0, 1\}$-distance magic labelings.

Lemma 1. [20] There does not exist a graph of even order that admits both $\{1\}$-distance magic and $\{0, 1\}$-distance magic labelings.

Lemma 2. [20] A graph is $\{1\}$-distance magic if and only if its complement is $\{0, 1\}$-distance magic.

In this paper we study properties of D-distance magic labelings for a distance set D, where $D \subseteq \{0, 1, \ldots, d\}$. Obviously, the only $\{0\}$-distance magic graph is the trivial graph, and so we exclude $D = \{0\}$ from our consideration. Additionally, we also study D-distance magic labelings for $D \subseteq \{0, 1, 2\}$.

2 Some general results

In this section, we study some necessary and sufficient conditions for the existence of D-distance magic graphs for particular distance sets $D, D \subseteq \{0, 1, \ldots, d\}$ and $D \neq \{0\}$. Unless stated, we shall exclude the trivial graph from consideration. We start by generalizing some properties of $\{1\}$-distance magic graphs presented in [18].
In [18] it was proved that there does not exist a \(\{1\} \)-distance magic labeling for \(r \)-regular graph with odd \(r \). The next result generalize this idea to arbitrary neighborhood sets. Graph \(G \) is defined to be \((D, r)\)-regular if for all \(v \in V(G) \), \(|N_D(v)| = r\), that is, all \(D \)-neighborhoods have the same cardinality.

Lemma 3. [20] Let \(G \) be a graph of even order. If \(G \) is \((D, r)\)-regular with odd \(r \), then \(G \) is not \(D \)-distance magic.

Another result can be found in [18] is that if a graph \(G \) contains two vertices \(x \) and \(y \) such that \(|N(x) \cap N(y)| = d(x) - 1 = d(y) - 1\) then \(G \) is not \(\{1\} \)-distance magic. We shall generalize the idea to \(D \)-distance magic graphs.

Lemma 4. If a graph \(G \) contains two distinct vertices \(x \) and \(y \) such that \(|N_D(x) \cap N_D(y)| = |N_D(x)| - 1 = |N_D(y)| - 1\) then \(G \) is not \(D \)-distance magic.

Proof. Suppose \(G \) is \(D \)-distance magic and let \(x' \) (\(y' \), respectively) be the one vertex in \(N_D(x) - N_D(y) \) (\(N_D(y) - N_D(x) \), respectively). Then \(\sum_{u \in N_D(x)} f(u) = w(x) = w(y) = \sum_{u \in N_D(y)} f(u) \), and so \(f(x') = f(y') \), a contradiction. \(\Box \)

The following two lemmas also give necessary conditions connected to the \(D \)-neighborhood of vertices in the graph.

Lemma 5. If \(G \) contains a vertex \(x \) with \(N_D(x) = \emptyset \) then \(G \) is not \(D \)-distance magic.

Proof. Suppose \(G \) is \(D \)-distance magic. Since \(D \subseteq \{0, 1, \ldots, d\} \) then there is a vertex \(y \) where \(N_D(y) \neq \emptyset \) and so \(w(y) \neq 0 \). However \(w(x) = 0 \), a contradiction. \(\Box \)

Lemma 6. If \(G \) contains two distinct vertices \(x \) and \(y \) such that \(N_D(x) \subseteq N_D(y) \) then \(G \) is not \(D \)-distance magic.

Proof. Suppose \(G \) is \(D \)-distance magic. Since \(w(x) = w(y) \), then \(\sum_{u \in N_D(y) - N_D(x)} f(u) = 0 \), a contradiction. \(\Box \)

Properties of \(D \)-distance magic graphs can also be found in [21], the most important is the uniqueness of the \(D \)-distance magic constant.

Definition 2. A function \(g : V(G) \to R^+ = [0, \infty) \) is said to be a \(D \)-neighborhood fractional dominating function if for every \(v \in V(G) \), \(\sum_{u \in N_D(v)} g(u) \geq 1 \). The \(D \)-neighborhood fractional domination number of \(G \), denoted by \(\gamma_f(G; D) \), is defined as \(\gamma_f(G; D) = \min \{ \sum_{v \in V(G)} g(v) | g \text{ is a } D\text{-neighborhood fractional dominating function} \} \).

Theorem 1. [21] If graph \(G \) is \(D \)-distance magic, then its \(D \)-distance magic constant \(k = \frac{n(D+1)}{2\gamma_f(G; D)} \).

The following two lemmas deal with existence of \(D \)-distance magic graphs for particular \(D \).

Lemma 7. If each vertex in \(G \) has a unique vertex at distance \(d \) then \(G \) is \(\{1, 2, \ldots, d-1\} \)-distance magic.
Proof. We define a labeling \(f \) such that if a vertex \(x \) is labeled with \(i \) then the unique vertex at distance \(d \) from \(x \) is labeled with \(v + 1 - i \). Thus, for every vertex \(x \) in \(G \), the weight of \(x \), \(w(x) = \sum_{x \in V(G)} f(x) - (i + (v + 1 - i)) = \sum_{x \in V(G)} f(x) - (v + 1) \), which is independent of the choice of \(x \). Therefore, \(G \) is \(\{1, 2, \ldots, d - 1\} \)-distance magic. \(\blacksquare \)

Lemma 8. Every connected graph is \(\{0, 1, \ldots, d\} \)-distance magic.

Proof. The proof is straightforward since under the \(\{0, 1, \ldots, d\} \)-distance magic labeling, we sum all labels in the graph in counting the weight of a vertex. \(\blacksquare \)

For obvious reason, we shall call the \(\{0, 1, \ldots, d\} \)-distance magic of \(G \) the *trivial D*-distance magic labeling of \(G \). The following lemma deals with similar result for non-connected graphs.

Lemma 9. Let \(G \) be a non-connected graph having connected components \(G_1, G_2, \ldots, G_p \), each of diameter \(d_1, d_2, \ldots, d_p \), respectively. Let \(d_{\text{max}} = \max d_i \) and \(|V(G_i)| = n \) for each \(i \). \(G \) is \(\{0, 1, \ldots, d_{\text{max}}\} \)-distance magic if and only if \(n \) is even or both \(n \) and \(p \) are odd.

Proof. Suppose \(G \) is \(\{0, 1, \ldots, d_{\text{max}}\} \)-distance magic. Since the weight of a vertex \(x \) is the sum of all labels in the component containing \(x \), then such a sum must equal to the magic constant \(k \). Now we count the sum of all labels by two different ways of counting:

\[
kp = 1 + \ldots + np \\
kp = \frac{(np + 1)(np)}{2} \\
k = \frac{(np + 1)n}{2}.
\]

To guarantee that both sides are integers then \(n \) has to be even or both \(n \) and \(p \) must be odd.

To prove the sufficiency, let \(x_{ij}, 1 \leq j \leq n \), be the vertices in the component \(G_i \). If \(n \) is even, label the vertices in the following way

\[
f(x_{ij}) = \begin{cases}
 i + (j - 1)p, & i \text{ odd}, \\
 p - i + 1 + (j - 1)p, & i \text{ even}.
\end{cases}
\]

With this labeling, the sum of all labels in the component \(G_i \) is \(\frac{n}{2}(np + 1) \), which is equal to \(w(x) \), for \(x \) a vertex in \(G_i \).

If \(n \) is odd, consider \(n = 2k + 1, p = 2m + 1 \), and the labeling \(f \) as defined below.

\[
f(x_{ij}) = \begin{cases}
 2i - 1, & 1 \leq i \leq m + 1 \text{ and } j = 1, \\
 2(i - m - 1), & m + 2 \leq i \leq 2m + 1 \text{ and } j = 1, \\
 4m + 3 - i, & 1 \leq i \leq 2m + 1 \text{ and } j = 2, \\
 5m + 4 - i, & 1 \leq i \leq m + 1 \text{ and } j = 3, \\
 7m + 5 - i, & m + 2 \leq i \leq 2m + 1 \text{ and } j = 3, \\
 i + (j - 1)(2m + 1), & 1 \leq i \leq 2m + 1 \text{ and } j > 3, \text{ } j \text{ even,} \\
 2m + 2 - i + (j - 1)(2m + 1), & 1 \leq i \leq 2m + 1 \text{ and } j > 3, \text{ } j \text{ odd.}
\end{cases}
\]

Thus, the sum of all labels in the component \(G_i \) is \((9m + 6) + (k - 1)(2m + 2) + (k - 1)(2k + 3)(2m + 1) \). \(\blacksquare \)
In the previous lemma, we only consider graphs having all connected components of the same order. As to graphs having connected components with different order, we have $K_2 \cup K_1$ as an example of $\{0,1\}$-distance magic graph. Whether there are other graphs remains a question.

Open problem 1. Let G be a non-connected graph having connected components G_1, G_2, \ldots, G_p, each of diameter d_1, d_2, \ldots, d_p, respectively. Let $d_{\text{max}} = \max_i d_i$ and there exist i, j such that $|V(G_i)| \neq |V(G_j)|$. Does there exist G admitting $\{0,1,\ldots,d_{\text{max}}\}$-distance magic labeling other than $K_2 \cup K_1$?

The last result in this section provides connection between D-distance magic labelings with different Ds.

Lemma 10. [21] Let $D \subseteq \{0,1,\ldots,d\}$ and $D^* = \{0,1,\ldots,d\} - D$. Then G is D-distance magic if and only if G is D^*-distance magic.

As a consequence of Lemma 10, we have the following.

Lemma 11. A graph of diameter d is not $\{1,2,\ldots,d\}$-distance magic.

We shall call the D^*-distance magic labeling in Lemma 10 the complement labeling of D-distance magic labeling. In the following we extend the result to non-connected graphs.

Lemma 12. Let G be a graph having connected components G_1, G_2, \ldots, G_p of diameters d_1, d_2, \ldots, d_p, respectively. Let $D \subseteq \{0,1,\ldots,d_{\text{max}}\}$ and $D^* = \{0,1,\ldots,d_{\text{max}}\} - D$, where $d_{\text{max}} = \max_i d_i$. If G admits a D-distance magic labeling f such that $\sum_{x \in G_i} f(x)$ is constant for each i then G is D^*-distance magic. Conversely, if G admits a D^*-distance magic labeling f^* such that $\sum_{x \in G_i} f^*(x)$ is constant for each i then G is D-distance magic.

Proof. For each $x \in V(G)$, we define $w(x) = \sum_{u \in N_D(x)} f(u)$ and $w^*(x) = \sum_{u \in N_{D^*}(x)} f(u)$. Clearly $w^*(x) = \sum_{u \in G_x} f(u) - w(x)$, where G_x is the component containing x. If $w(x)$ is constant for each vertex x, then so is $w^*(x)$. The converse can be proved similarly.

In the next section, we study the existence of D-distance magic labelings with various D for cycles.

3 D-distance magic labelings for cycles

We shall start with cycles of even order.

Theorem 2. Every even cycle C_{2k} is $\{1,2,\ldots,k-1\}$-distance magic.

Proof. Each vertex in C_{2k} is at distance k from exactly one other vertex and so C_{2k} is $\{1,2,\ldots,k-1\}$-distance magic by Lemma 7.

As a direct consequence of Lemma 10, we obtain

Corollary 1. Every even cycle C_{2k} is $\{0,k\}$-distance magic.
The next result is a characterization of cycles admitting \(D \)-distance magic labelings where \(D \) is a singleton.

Theorem 3. For \(k \) a positive integer, a cycle \(C_n \) is \(\{ k \} \)-distance magic if and only if \(n = 4k \).

Proof. Suppose that \(f \) is a \(\{ k \} \)-distance magic labeling of \(C_n \). Let \(x \) be an arbitrary vertex in \(C_n \), then there exist exactly two vertices of distance \(k \) from \(x \), say \(x_1 \) and \(x_2 \). There also exists another vertex of distance \(k \) from \(x_1 \) beside \(x \), say \(y \), and similarly there exists another vertex of distance \(k \) from \(y \) beside \(x_1 \), say \(y_2 \). If \(n \neq 4k \) then \(x, x_1, x_2, y, y_2 \) are all distinct. Thus we obtain a contradiction by Lemma 4.

To prove the sufficiency, suppose that \(n = 4k \). Notice that each vertex \(x \) in \(C_{4k} \) has a distinct pair of vertices of distance \(k \), say \(x_1 \) and \(x_2 \). We label such a pair with a labeling \(f \) such that \(f(x_1) = 4k + 1 - f(x_2) \). Thus the weight of \(x \), \(w(x) = f(x_1) + f(x_2) = 4k \) (independent of the choice of \(x \)) and so \(C_{4k} \) is \(\{ k \} \)-distance magic.

As a direct consequence of Lemma 10, we obtain

Corollary 2. For \(k \) a positive integer, a cycle \(C_n \) is \(\{ 0, 1, \ldots, k-1, k+1, \ldots, \lfloor \frac{n}{2} \rfloor \} \)-distance magic if and only if \(n = 4k \).

We could generalize the result in Theorem 3 to 2-regular graphs which is a generalization of a result in [19].

Theorem 4. [19] A 2-regular graph is \(\{ 1 \} \)-distance magic if and only if it is the union of 4-cycles.

Theorem 5. For \(k \) a positive integer, a 2-regular graph is \(\{ k \} \)-distance magic if and only if it is a disjoint union of \(C_{4k} \)s.

Proof. The proof is similar to that of Theorem 3 except for proving the sufficiency, where we use the labeling \(f \) such that \(f(x_1) = m4k + 1 - f(x_2) \), where \(m \) is the number of copies of \(C_{4k} \).

Some additional negative results for cycles are presented in the following theorem and corollary. The next result is proved by using Lemma 4.

Theorem 6. For \(n \geq 2k + 2 \), a cycle \(C_n \) is not \(\{ 0, 1, \ldots, k \} \)-distance magic.

By Lemma 10 we obtain

Corollary 3. For \(n \geq 2k + 2 \), a cycle \(C_n \) is not \(\{ k + 1, k + 2, \ldots, \lfloor \frac{n}{2} \rfloor \} \)-distance magic.

We then have the problem of characterizing \(D \)-distance magic cycles, or more generally, \(D \)-distance magic 2-regular graphs.

Open problem 2. Given a particular distance set \(D \), what are the necessary and sufficient conditions for 2-regular graphs to have \(D \)-distance magic labeling?
4 D-distance magic labelings with \(D \subseteq \{0, 1, 2\} \)

A well-known result of Blass and Harary [6] stated that almost all graphs have diameter 2. Therefore in this section we dedicate our study to \(D \)-distance magic labelings where \(D \subseteq \{0, 1, 2\} \). Since \{1\}-distance magic and \{0,1\}-distance magic labelings have been studied extensively, we only consider \(D \in \{\{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\} \).

In the next lemma, we shall present necessary conditions of the existence of \(D \)-distance magic graphs with \(D \) containing 2 but not 0.

Lemma 13. Let \(D \) be a distance set containing 2 but not 0. If \(G \) is a graph of diameter at least 2 containing either

1. two adjacent pendants, or
2. two vertices of distance 2 having the same neighborhood,

then \(G \) is not \(D \)-distance magic.

Proof. Suppose \(G \) is \(D \)-distance magic and let \(x, y \) be the two adjacent pendants (in case 1) or the two vertices of distance 2 having the same neighborhood (in case 2). In both cases, since \(D \) containing 2 but not 0, \(N_D(x) \) and \(N_D(y) \) containing exactly the same vertices except \(x \) for \(N_D(x) \) and \(y \) for \(N_D(y) \). Thus since \(w(x) = w(y) \), we have \(f(x) = f(y) \), a contradiction.

By the aforementioned lemma, many trees do not have \(D \)-labelings, where \(D \) containing 2 but not 0. However, to characterize trees admitting such a labeling needs further study. More specifically, it is interesting to determine which trees have \(D \)-distance magic labelings where \(D \subseteq \{0, 1, 2\} \).

Open problem 3. What are the necessary and sufficient conditions for trees to have \(D \)-distance magic labelings where \(D \subseteq \{0, 1, 2\} \)?

4.1 \{2\}-distance magic labelings

Theorem 7. A complete multipartite graph is not \{2\}-distance magic.

Proof. Let \(x \) and \(y \) be two vertices in the same partite set of a multipartite graph \(G \). If we name the partite set \(V_0 \) then \(N_{\{2\}}(x) = V_0 - \{x\} \) and \(N_{\{2\}}(y) = V_0 - \{y\} \). By Lemma 4, \(G \) is not \{2\}-distance magic.

Based on this result and the results of O’Neal and Slater [20] on extremal graphs of diameter 2 and 3, we suspect that graphs with diameter 2 are not \{2\}-distance magic and more generally, graphs with diameter \(d \) are not \{\(d \)\}-distance magic.

Conjecture 1. Graphs with diameter 2 are not \{2\}-distance magic. More generally, graphs with diameter \(d \) are not \{\(d \)\}-distance magic.
4.2 \{0, 2\}-distance magic labelings

By Lemma\[10\] we have the following results as consequences of the existence of \{1\}-distance magic labelings for particular graphs of diameter 2.

Theorem 8. [10] Let $H_{n,p}, n > 1$ and $p > 1$, denote the complete symmetric multipartite graph with p parts, each of which contains n vertices. $H_{n,p}$ is \{0, 2\}-distance magic if and only if either n is even or both n and p are odd.

Theorem 9. [10] Let $1 \leq a_1 \leq a_2 \leq a_3$. Let $s_i = \sum_{j=1}^{i} a_j$, $p = 2$ for complete bipartite graph K_{a_1,a_2}, and $p = 3$ for complete tripartite graph K_{a_1,a_2,a_3}. There exist \{0, 2\}-distance magic labelings for K_{a_1,a_2} and K_{a_1,a_2,a_3} if and only if the following conditions hold.

(a) $a_2 \geq 2$,
(b) $v(v + 1) \equiv 0 \mod 2p$, and
(c) $\sum_{j=1}^{i}(n + 1 - j) \geq \frac{v(v+1)}{2p}$ for $1 \leq i \leq p$.

Theorem 10. [10] An odd order r-regular graph of diameter 2 is \{0, 2\}-distance magic if and only if r is even and $2 \leq r \leq n - 2$.

Theorem 11. [10] Let G be an odd order regular graph of diameter 2 and n be an odd positive integer. Then the graph $G[K_n]$ is \{0, 2\}-distance magic.

The aforementioned theorem deal with odd order G; however for even order G, we have an example in which the composition of G with K_n does have a \{0, 2\}-distance magic labeling.

Theorem 12. [26] For $n \geq 1, C_4[K_n]$ is \{0, 2\}-distance magic.

For graphs of diameter other than 2, we have the path of order 4, which is of diameter 3, admitting a \{0, 2\}-distance magic labeling. This leads to the following question.

Open problem 4. Does there exist a graph of diameter larger than 2, other than P_4, admitting \{0, 2\}-distance magic labeling?

4.3 \{1, 2\}-distance magic labelings

By Lemma\[11\] \{1, 2\}-distance magic labelings do not exist for graphs of diameter 2, and so in the following theorem we construct \{1, 2\}-distance magic labelings for infinite families of graphs with diameter larger than 2.

Theorem 13. There exists an infinite family of regular graphs with diameter 3 admitting \{1, 2\}-distance magic labeling.

Proof. We construct a graph G with $V(G) = \{x, x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n\}$ and $E(G) = \{xx_i, yy_j | 1 \leq i \leq n\} \cup \{x,y_j | 1 \leq i \leq n, 1 \leq j \leq n, i \neq j\}$. We can see that G is an n-regular graph of order $2n + 2$ and diameter 3. Moreover, each vertex has a unique vertex of distance 3: y for x and y_i for x_i, $1 \leq i \leq n$. By Lemma\[7\] G is \{1, 2\}-distance magic.

The existence of non-regular \{1, 2\}-distance magic graphs or \{1, 2\}-distance magic graphs of larger diameter remain open as stated in the following.
Open problem 5. Does there exists an infinite family of non-regular graphs admitting \(\{1,2\}\)-distance magic labeling?

Open problem 6. Does there exists an infinite family of graphs with diameter at least 4 admitting \(\{1,2\}\)-distance magic labeling?

4.4 \(\{0,1,2\}\)-distance magic labelings

By Theorem 8, every graph of diameter 2 admits the trivial \(D\)-distance magic labeling, i.e., an \(\{0,1,2\}\)-distance magic labeling. We could not find \(\{0,1,2\}\)-distance magic graphs of larger diameter, and so we ask the following question.

Open problem 7. Does there exist a graph of diameter at least 3 admitting an \(\{0,1,2\}\)-distance magic labeling?

References

[1] B.D. Acharya, S.B. Rao, T. Singh and V. Parameswaran, Neighborhood magic graphs, *Proc. Nat. Conf. Graph Theory Combin. Algorithm* (2004).

[2] Marcin Anholcer and Sylwia Cichacz, Note on distance magic products \(G \circ C_4\), preprint.

[3] Marcin Anholcer, Sylwia Cichacz, Iztok Peterin, and Aleksandra Tepeh, Distance magic labeling and two products of graphs, preprint.

[4] S. Arumugam, Dalibor Froncek, and N. Kamatchi, Distance Magic Graphs - A Survey, *J. Indones. Math. Soc. Special Edition* (2011) 11-26.

[5] S. Beena, On \(\Sigma\) and \(\Sigma'\) labelled graphs, *Disc. Math.*, 309 (2009) 1783-1787.

[6] A. Blass, F. Harary, Properties of almost all graphs and complexes, *J. Graph Theory* 3 (1979) 225240.

[7] Sylwia Cichacz and Dalibor Froncek, Distance magic circulant graphs, preprint.

[8] Sylwia Cichacz and Agnieszka Gorlich, Constant sum partition of sets of integers and distance magic graphs, preprint.

[9] D. Froncek, Fair incomplete tournaments with odd number of teams and large number of games, *Congressus Numerantium* 187 (2007) 8389.

[10] D. Froncek, P. Kovar and T. Kovarova, Fair incomplete tournaments, *Bull. Inst. Combin. App.* 48 (2006) 31-33.

[11] D. Froncek, P. Kovar and T. Kovarova, Constructing distance magic graphs from regular graphs, *J. Combin. Math. Combin. Comput.* 78 (2011) 349-354.

[12] J. Gallian, A Dynamic Survey of Graph Labeling, *Electronic J. Combin.* 19 (2012) #DS6.

[13] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance 2, *SIAM J. Disc. Math.* 4 (1992) 586-595.
[14] M.I. Jinnah, On Σ-labelled graphs, *Technical Proceedings of Group Discussion on Graph Labeling Problems*, (1999) 71-77.

[15] A. Kotzig and A. Rosa, Magic valuations of finite graphs, *Canad. Math. Bull.* 13 (1970) 451-461.

[16] P. Kovar, D. Froncek, and T. Kovarova, A note on 4-regular distance magic graphs, *Australasian J. Combin.* 54 (2012) 127-132.

[17] Petr Kovar and Adam Silber, Distance magic graphs of high regularity, *AKCE Int. J. Graphs Combin.* 9 (2012) 213-219.

[18] M. Miller, C. Rodger, and R. Simanjuntak, Distance magic labelings of graphs, *Australasian J. Combin.* 28 (2003) 305 - 315.

[19] A. O’Neal and P. Slater, The Minimax, Maximin, and Spread Values For Open Neighborhood Sums for 2-Regular Graphs, *Math. Comput. Sci.* 5 (2011) 6980.

[20] A. O’Neal and P. Slater, An introduction to distance D magic graphs, *J. Indonesian Math. Soc. Special Edition* (2011) 89-107.

[21] A. O’Neal and P. Slater, Uniqueness Of Vertex Magic Constants, *SIAM J. Disc. Math.* 27 (2013) 708716

[22] S.B. Rao, T. Singh and V. Parameswaran, Some sigma labelled graphs I, *Graphs, Combinatorics, Algorithms and Applications* (2004) 125-133.

[23] S.B. Rao, Sigma Graphs - A survey, *Labelings of Discrete Structures and Applications* (2008) 135-140.

[24] J. Sédláček, Problem 27 in Theory of Graphs and its Applications, *Proc. Symposium Smolenice 1963*, Prague (1964) 163-164.

[25] M. Seoud, A. E. I. Abdel Maqsoud and Y. I. Aldiban, New classes of graphs with and without 1-vertex magic vertex labeling, *Proc. Pakistan Acad. Sci.* 46 (2009) 159-174.

[26] M.K. Shafiq, G. Ali and R. Simanjuntak, Distance magic labelings of a union of graphs, *AKCE J. Graphs. Combin.* 6 (2009) 191-200.

[27] K.A. Sugeng, D. Froncek, M. Miller, J. Ryan and J. Walker, On distance magic labeling of graphs, *J. Combin. Math. Combin. Comput.* 71 (2009) 39-48.

[28] V. Vilfred, *Sigma labelled graphs and circulant graphs*, Ph.D. Thesis, University of Kerala, India (1994).