ON CONTINUATION PROPERTIES AFTER BLOW-UP TIME FOR \(L^2 \)-CRITICAL GKD V EQUATIONS

YANG LAN

Abstract. In this paper, we consider a blow-up solution \(u(t) \) (close to the soliton manifold) to the \(L^2 \)-critical gKdV equation \(\partial_t u + (u_{xx} + u^5)_x = 0 \), with finite blow-up time \(T < +\infty \). We expect to construct a natural extension of \(u(t) \) after the blow-up time. To do this, we consider the solution \(u_\gamma(t) \) to the saturated \(L^2 \)-critical gKdV equation

\[
\partial_t u_\gamma + (u_{xx} + u^5 - \gamma u |u|^{q-1})_x = 0
\]

with the same initial data, where \(\gamma > 0 \) and \(q > 5 \). A standard argument shows that \(u_\gamma(t) \) is always global in time. Moreover, for all \(t < T \), \(u_\gamma(t) \to u(t) \) in \(H^1 \) as \(\gamma \to 0 \). We prove in this paper that for all \(t \geq T \), \(u_\gamma(t) \to v(t) \) as \(\gamma \to 0 \), in a certain sense. This limiting function \(v(t) \) is a weak solution to the unperturbed \(L^2 \)-critical gKdV equations, hence can be viewed as a natural extension of \(u(t) \) after the blow-up time.

1. INTRODUCTION

1.1. Setting of the problem. In this paper, we consider the \(L^2 \) critical gKdV equation:

\[
\begin{cases}
\partial_t u + u_{xxx} + (u^5)_x = 0, \quad (t, x) \in \mathbb{R} \times \mathbb{R}, \\
u(0) = u_0 \in H^1(\mathbb{R}).
\end{cases}
\]

(gKdV)

From Kato [6] and Kenig-Ponce-Vega [7], the Cauchy problem (gKdV) is locally well-posed in \(H^1 \): for all \(u_0 \in H^1 \), there is a unique strong solution \(u(t, x) \in C([0, T], H^1) \) to (gKdV), where \(T \) is the maximal lifespan of the solution. Moreover, we have the following blow-up criterion: either \(T = +\infty \) or \(T < +\infty \) and

\[
\lim_{t \to T} \|u(t)\|_{H^1} = +\infty.
\]

As a universal Hamiltonian model, the gKdV equation has two conservation laws, the mass and the energy:

\[
M(u(t)) = \int |u(t)|^2 = M_0,
\]

\[
E(u(t)) = \frac{1}{2} \int |u_x(t)|^2 - \frac{1}{6} \int |u(t)|^6 = E_0.
\]

There is a scaling symmetry for (gKdV): for all \(\lambda > 0 \), if \(u(t, x) \) is a solution to (gKdV), then so is

\[
u_\lambda(t, x) = \frac{1}{\lambda^{1/2}} u \left(\frac{t}{\lambda^{3}}, \frac{x}{\lambda} \right).
\]
The Cauchy problem \((gKdV)\) is called \(L^2\) critical, since the scaling symmetry \((1.4)\) leaves the \(L^2\) norm of the initial data invariant, i.e. \(\|u_\lambda(0)\|_{L^2} = \|u(0)\|_{L^2}\) for all \(\lambda > 0\).

There is a special class of solutions, called the soliton solutions (or solitary waves, traveling waves, etc.). They are given by

\[
u(t, x) = Q(x - t),
\]

with

\[
Q(x) = \left(\frac{3}{\cosh^2(2x)}\right)^{\frac{1}{4}}.
\]

Here the function \(Q\) is also called the ground state. It is the unique nonnegative, radial solution with exponential decay to the following ODE:

\[
Q'' - Q + Q^5 = 0.
\]

From Weinstein \([25]\), the ground state \(Q\) satisfies the sharp Gagliardo-Nirenberg’s inequality:

\[
\forall v \in H^1, \quad \int v^6 \leq 3 \int \left(\int v^2 \right)^{\frac{1}{2}}.
\]

Hence, for all \(u_0 \in H^1\) with \(\|u_0\|_{L^2} < \|Q\|_{L^2}\), the corresponding solution is always global in time and bounded in the energy space \(H^1\).

1.2. Overview of the blow-up dynamics for \(L^2\) critical \(gKdV\) equations.

1.2.1. Blow-up dynamics for solutions with slightly supercritical mass. For \(u_0 \in H^1\) with \(\|u_0\|_{L^2} \geq \|Q\|_{L^2}\), blow-up may occur. In a series of work \([11, 12, 13, 14, 15, 23]\), Martel and Merle obtained the first qualitative results for solution with slightly supercritical mass: \(\|Q\|_{L^2} < \|u_0\|_{L^2} < \|Q\|_{L^2} + \alpha^*\), \(0 < \alpha^* \ll 1\). In particular, they proved the existence of solutions blowing up in finite time with negative energy, and the ground state \(Q\) is the universal blow-up profile for all \(H^1\) blow-up solutions in this regime.

1.2.2. Classification of the flow near the ground state. In recent works \([17, 18]\), Martel, Merle and Raphaël gave a specific description of the flow near the ground state.

More precisely, for all \(0 < \alpha_0 \ll \alpha^* \ll 1\), we let

\[
A_{\alpha_0} = \left\{ u_0 = Q + \varepsilon_0 \left\|\varepsilon_0\right\|_{L^2} < \alpha_0, \quad \int_{y>0} y^{10} \varepsilon_0^2(y) \, dy < 1 \right\},
\]

\[
T_{\alpha^*} = \left\{ u_0 \in L^2 \left| \inf_{\lambda_0 > 0, x_0 \in \mathbb{R}} \left\| u_0(\cdot) - \frac{1}{\lambda_0^{1/2}} Q\left(\frac{\cdot - x_0}{\lambda_0} \right) \right\|_{L^2} < \alpha^* \right\}.
\]

Then we have

Theorem 1.1 (Rigidity of the dynamics in \(A_{\alpha_0}\); Theorem 1.1 \& 1.2 in \([17]\)). For all \(0 < \alpha_0 \ll \alpha^* \ll 1\), and \(u_0 \in A_{\alpha_0}\), let \(u(t)\) be the corresponding solution to \((gKdV)\), and \(0 < T \leq +\infty\) be the maximal lifespan. Then one and only one of the following scenarios occurs:
• (Blow up): The solution \(u(t) \) blows up in finite time \(0 < T < +\infty \) with

\[
\|u(t)\|_{H^1} = \frac{\ell_0 + o(1)}{T-t}, \quad \ell_0 > 0,
\]

and for all \(0 \leq t < T \), \(u(t) \in \mathcal{T}_a^* \).

In addition, there exist \(\lambda(t) > 0 \), \(x(t) \in \mathbb{R} \) and \(u^* \in H^1 \), \(u^* \neq 0 \), such that

\[
u(t,\cdot) - \frac{1}{\lambda(t)^{1/2}} Q\left(\frac{\cdot - x(t)}{\lambda(t)}\right) \to u^* \text{ in } L^2, \quad \text{as } t \to T, \tag{1.11}\]

with

\[
\lim_{t \to T} \frac{\lambda(t)}{T-t} = \ell_0 > 0, \quad \lim_{t \to T} (T-t)x(t) = \ell_0^{-2}. \tag{1.12}
\]

• (Soliton): The solution is global, and for all \(0 \leq t < T = +\infty \), \(u(t) \in \mathcal{T}_a^* \).

In addition, there exist a constant \(\lambda_0 > 0 \) and a \(C^1 \) function \(x(t) \) such that

\[
\lambda_0^{1/2} u(t,\lambda_0 \cdot + x(t)) \to Q \text{ in } H^1_{\text{loc}}, \quad \text{as } t \to +\infty,
\]

\[
|\lambda_0 - 1| \lesssim \delta(\alpha_0), \quad x(t) \sim \frac{t}{\lambda_0^2}, \quad \text{as } t \to +\infty.
\]

• (Exit): For some finite time \(0 < t^* < T \), \(u(t^*) \notin \mathcal{T}_a^* \).

Moreover, all of the three scenarios are possible to occur and the scenarios (Blow up) and (Exit) are stable by small perturbation in \(A_{\alpha_0} \).

Remark 1.2. The decay assumption on the right of the initial data in the definition of \(A_{\alpha_0} \) is important. Indeed, in [19], Martel, Merle and Raphaël constructed \(H^1 \) blow-up solutions with exotic blow-up rate, where the initial data has a slowly decaying tail on the right.

Remark 1.3. In [18], Martel, Merle and Raphaël proved the existence and uniqueness of the minimal mass blow-up solution \(S(t) \) with \(||S(t)||_{L^2} = ||Q||_{L^2} \). They also proved that solutions in the (Exit) case have a universal behavior at the exit time, related to the minimal mass blow-up solution \(S(t) \). Solutions in this regime are also expected to scatter at \(+\infty\). However, it still remains open.

Remark 1.4. Recall that in [16], Martel, Merle, Nakanishi and Raphaël proved that the initial data set corresponding to the (Soliton) regime is a codimension one threshold manifold in a small neighborhood of the ground state between the two stable regimes.

1.3. The \(L^2 \)-critical \(gKdV \) with a saturated perturbation.

Let us recall some results about the saturated problem of \(L^2 \)-critical \(gKdV \):

\[
\begin{cases}
\partial_t u + \left(u_{xx} + u^5 - \gamma u|u|^{q-1}\right)_x = 0, \quad (t, x) \in [0, T) \times \mathbb{R}, \\
u(0, x) = u_0(x) \in H^1(\mathbb{R}),
\end{cases} \tag{gKdV}_\gamma
\]

with \(q > 5 \) and \(0 < \gamma \ll 1 \).

This equation also has two conservation laws, the mass and the energy:

\[
M(u(t)) = \int u(t)^2 = M_0,
\]

\[
E^\gamma(u(t)) = \frac{1}{2} \int u_x(t)^2 - \frac{1}{6} \int u(t)^6 + \frac{\gamma}{q+1} \int |u(t)|^{q+1} = E_0^\gamma.
\]
From the local wellposedness result obtained in [7] and the two conservation laws above, we know that the solution of (gKdV$_{\gamma}$) is always global in time and bounded in H^1, and for all $t \in (0, +\infty)$, we have

$$\|u_x(t)\|_{L^2_x} \lesssim |E_0^\gamma| + \gamma^{-\frac{1}{2-q}} M_0 < +\infty.$$

This equation does not have a standard scaling rule, but has the following pseudo-scaling rule: for all $\lambda_0 > 0$, if $u(t, x)$ is a solution to (gKdV$_{\gamma}$), then

$$u_{\lambda_0}(t, x) = \lambda_0^{-\frac{4}{q}} u(\lambda_0^{-3} t, \lambda_0^{-1} x),$$

is a solution to

$$\begin{align*}
\partial_t v + (v v_x + v^5 - \lambda_0^{-m} \gamma v|v|^{q-1})_x &= 0, \quad (t, x) \in (0, \lambda_0^{-3} T) \times \mathbb{R}, \\
v(0, x) &= \lambda_0^{-\frac{4}{q}} u_0(\lambda_0^{-1} x) \in H^1(\mathbb{R}),
\end{align*}$$

with

$$m = \frac{q - 5}{2}. \quad (1.14)$$

The pseudo-scaling rule leaves the L^2 norm of the initial data invariant.

There also exist soliton solutions to (gKdV$_{\gamma}$), given by

$$u(t, x) = \lambda_0^{-\frac{4}{q}} Q_{\lambda_0^{-m} \gamma} (\lambda_0^{-1} (x - x_0) - \lambda_0^{-3} (t - t_0)).$$

for all $\lambda_0 > 0$, $t_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}$ with $\lambda_0^{-m} \gamma < 1$. Here for $0 \leq \omega < \omega^* \leq 1$, Q_{ω} is the unique radial nonnegative solution with exponential decay to the following ODE1:

$$Q_{\omega}' - Q_{\omega} + Q_{\omega}^5 - \omega Q_{\omega} |Q_{\omega}|^{q-1} = 0.$$

In [10], Lan obtained a similar classification result for the asymptotic dynamics of (gKdV$_{\gamma}$) near the ground state Q_{γ}.

More precisely, we fix a small universal constant $\omega^* > 0$ (to ensure the existence of the ground state Q_{ω}), and then introduce the following L^2 tube around Q_{γ}:

$$T_{\omega^*, \gamma} = \left\{ u_0 \in H^1 \left|_{\lambda_0 > 0, \lambda_0^{-m} \gamma < \omega^*, x_0 \in \mathbb{R}} \right. \left\| u_0 - \frac{1}{\lambda_0^{\frac{4}{q}}} Q_{\lambda_0^{-m} \gamma} \left(\frac{x - x_0}{\lambda_0} \right) \right\|_{L^2} < \alpha^* \right\}.$$

Then we have:

Theorem 1.5 (Dynamics in A_{α_0}). For all $q > 5$, there exists a constant $0 < \alpha^*(q) < 1$, such that if $0 < \gamma < \alpha_0 \ll \alpha^* < \alpha^*(q)$, then for all $u_0 \in A_{\alpha_0}$, the corresponding solution $u(t)$ to (gKdV$_{\gamma}$) has one and only one of the following behaviors:

(Soliton): For all $t \in [0, +\infty)$, $u(t) \in T_{\omega^*, \gamma}$. Moreover, there exist a constant $\lambda_\infty \in (0, +\infty)$ and a C^1 function $x(t)$ such that

$$\begin{align*}
\lambda_\infty^\frac{4}{q} u(t, \lambda_\infty \cdot + x(t)) &\rightarrow Q_{\lambda_\infty^{-m} \gamma} \text{ in } H^1_{loc}, \text{ as } t \rightarrow +\infty; \quad (1.15) \\
x(t) &\sim \frac{t}{\lambda_\infty^2}, \quad \text{as } t \rightarrow +\infty. \quad (1.16)
\end{align*}$$

1The existence of such Q_{ω} was first proved in Section 6 of [2]. An alternative proof was given in Section 2.1 of [10].
(Blow down): For all $t \in [0, +\infty)$, $u(t) \in T_{\alpha, \gamma}$. Moreover, there exist two C^1 functions $\lambda(t)$ and $x(t)$, such that

$$
\lambda^2(t)u(t, \lambda(t) \cdot x(t)) \to Q \text{ in } H^1_{\text{loc}}, \text{ as } t \to +\infty;
$$

$$
\lambda(t) \sim t^{\frac{q-3}{q-1}}, \quad x(t) \sim t^{\frac{q-3}{q-1}}, \text{ as } t \to +\infty,
$$

(1.17)

(1.18)

(Exit): There exists a $0 < t^*_\gamma < +\infty$ such that $u(t^*_\gamma) \notin T_{\alpha, \gamma}$.

There exist solutions associated to each regime. Moreover, the regime (Soliton) and (Exit) are stable under small perturbation in A_{α_0}.

Theorem 1.6 (Limiting case as $\gamma \to 0$). Let us fix a nonlinearity $q > 5$, and choose $0 < \alpha_0 < \alpha^* < \alpha^*(q)$ as in Theorem 1.5. For all $u_0 \in A_{\alpha_0}$, let $u(t)$ be the corresponding solution of (gKdV), and $u_\gamma(t)$ be the corresponding solution of (gKdV). Then we have:

1. If $u(t)$ is in the (Blow up) regime defined in Theorem 1.1, then there exists $0 < \gamma(u_0, \alpha_0, \alpha^*, q) \ll \alpha_0$ such that if $0 < \gamma < \gamma(u_0, \alpha_0, \alpha^*, q)$, then $u_\gamma(t)$ is in the (Soliton) regime defined in Theorem 1.5. Moreover, there exist constants $d_i = d_i(u_0, q) > 0$, $i = 1, 2$, such that

$$
d_1 \gamma^{\frac{3}{q-1}} \leq \lambda_\infty \leq d_2 \gamma^{\frac{3}{q-1}},
$$

where λ_∞ is the constant defined in (1.15).

2. If $u(t)$ is in the (Exit) regime defined in Theorem 1.1, then there exists $0 < \gamma(u_0, \alpha_0, \alpha^*, q) \ll \alpha_0$ such that if $0 < \gamma < \gamma(u_0, \alpha_0, \alpha^*, q)$, then $u_\gamma(t)$ is in the (Exit) regime defined in Theorem 1.5.

Remark 1.7. Theorem 1.5 shows that in the saturated setting there may be some different behavior (the blow down behavior), which does not seem to happen in the unperturbed cases for solution with initial data in A_{α_0}. Examples for solution with a blow down behavior was also found by Donninger, Krieger [4] for energy critical wave equations. There are also examples of blow down behavior for L^2 critical NLS, where the blow down behavior can be obtained as the pseudo-conformal transformation of the log-log blow-up solutions.

1.4. Main result. The main purpose of this paper is to construct a natural continuation after the blow-up time for the H^1 blow-up solutions of (gKdV). This type of problems arising in physics has attracted a considerable attention in past few years but it is still poorly understood even at a formal level.

One approach is to consider a sequence of globally defined approximate solutions $\{u_\delta(t)\}_{\delta > 0}$ such that $u_\delta(t)$ converges (as $\delta \to 0$) to the blow up solution $u(t)$ for all $t < T$, where $T < +\infty$ is the blow-up time. Then we expect that for $t > T$, the limit also exists and satisfies the original equation in some sense. And if this holds, the limiting function can be viewed as a natural extension of the blow-up solution $u(t)$ after the blow-up time T.

Examples of this approach were achieved in [21, 22, 24] for the focusing L^2-critical nonlinear Schrödinger equation:

$$
\begin{cases}
 i \partial_t u + \Delta u + |u|^2 u = 0, & (t, x) \in \mathbb{R} \times \mathbb{R}^d, \\
 u(0) = u_0 \in H^1(\mathbb{R}^d),
\end{cases}
$$

(NLS)
where different ways to construct the approximation sequence \(\{u_\delta(t)\} \) are introduced. In [22], Merle constructed \(\{u_\delta(t)\} \) as solutions to
\[
\begin{align*}
 i\partial_t u + \Delta u + |u|^{4-\delta} u &= 0, \quad (t,x) \in \mathbb{R} \times \mathbb{R}^d, \\
 u(0) &= u_0 \in H^1(\mathbb{R}^d).
\end{align*}
\]

In [24], Merle-Raphaël-Szeftel constructed \(\{u_\delta(t)\} \) as global solutions to \((\text{NLS})\) with initial \(u_{0,\delta} \in H^1 \) such that \(\lim_{\delta \to 0} u_{0,\delta} = u_0 \) in \(H^1 \). While in [21], Merle constructed \(\{u_\delta(t)\} \) as solutions to the \(L^2 \)-critical NLS with a saturated perturbation, i.e.,
\[
\begin{align*}
 i\partial_t u + \Delta u + |u|^{4} u - \delta|u|^{q-1} u &= 0, \quad (t,x) \in \mathbb{R} \times \mathbb{R}^d, \\
 u(0) &= u_0 \in H^1(\mathbb{R}^d),
\end{align*}
\]
with \(1 + d/4 < q < 1 + 4/(d - 2) \). On the other hand, the saturated perturbation like \((1.20)\) is also considered as a correction to the NLS equations with pure power nonlinearities. See detailed discussion in [1, 10, 20] and the references therein.

In this paper, we follow similar arguments as in [21], i.e. consider the approximate sequence \(\{u_\gamma(t)\} \) as solutions to the saturated problem \((\text{gKdV}_\gamma)\) with \(\gamma > 0 \).

For this approximate sequence, we may ask the following questions:

- **(Compactness)** Is there a compact behavior for \(u_\gamma(t) \) as \(\gamma \to 0 \), or equivalently are there a subsequence \(\gamma_n \to 0 \), and a function \(u^\infty(t) \) such that \(u_{\gamma_n}(t) \to u^\infty(t) \), as \(n \to +\infty \)? And in which sense does this limiting function \(u^\infty(t) \) satisfy the unperturbed gKdV equation \((\text{gKdV})\)?

- **(Uniqueness)** Is the limiting function \(u^\infty(t) \) unique or equivalently does \(u^\infty(t) = \lim_{\gamma \to 0} u_\gamma(t) \) hold for all \(t > T \)? And if this does not hold, what information is lost?

- **(Stability)** Is the blow-up phenomenon stable or equivalently do we have
\[
\limsup_{\gamma \to 0} \|u_\gamma(t)\|_{H^1} = +\infty
\]
for all \(t \geq T \)?

- **(Continuity)** Does the limiting function (if it exists) depend continuously on the initial data?

Thanks to the work of [10], we may give a precise answer to the above questions. Indeed, we have:

Theorem 1.8. Let \(0 < a_0 \ll 1 \) be the universal constant introduced in Theorem 1.1 and 1.5, and \(u_0 \in A_{a_0} \) such that the corresponding solution \(u(t) \) to \((\text{gKdV})\) belongs to the \((\text{Blow up})\) regime introduced in Theorem 1.1. Let \(T < +\infty \) be the corresponding blow-up time. Now, for \(q > 5 \) and \(\gamma > 0 \) small enough, we denote by \(u_\gamma(t) \), the solution to \((\text{gKdV}_\gamma)\) with initial data \(u_\gamma(0) = u_0 \). We also denote by
\[
 u_{\text{ext}}(t) = \begin{cases} u(t), & \text{if } t \in [0,T), \\ v(t), & \text{if } t \in [T, +\infty), \end{cases}
\]
where \(v(t) \) is the unique global solution to \((\text{gKdV})\) with \(v(T) = u^* \in H^1 \).

Then, we have:

\[v(T) = u^* \in H^1. \]
\[(1.21) \]

\(^2\)Recall that \(u^* \in H^1 \) is the limiting profile introduced in Theorem 1.1.
1. For all \(T_0 > T, R > 0 \), we have \(u_{\text{ext}}(t) \in C([0, T_0], L^2(|x| < R)) \), and
\[u_\gamma(t) \to u_{\text{ext}}(t) \text{ in } C([0, T_0], L^2(|x| < R)), \text{ as } \gamma \to 0, \tag{1.22} \]

2. The limiting function \(u_{\text{ext}}(t) \) is a weak solution to (gKdV) in the following sense: for all \(z(t, x) \in C^\infty_0(\mathbb{R} \times \mathbb{R}) \), we have for all \(t \in [0, +\infty) \):
\[
\int_{\mathbb{R}} u_{\text{ext}}(t, x) z(t, x) \, dx - \int_{\mathbb{R}} u_0(x) z(0, x) \, dx = \int_{0}^{t} \left\{ \int_{\mathbb{R}} u_{\text{ext}}(s, x) \partial_t z(s, x) \, dx + \int_{\mathbb{R}} u_{\text{ext}}(s, x) \partial_x^2 z(s, x) \, dx \right\} ds. \tag{1.23}
\]

Comments on Theorem 1.8:

1. Global existence for \(v(t) \). From the arguments in [17], we have \(\|u^*\|_{H^1} \ll 1 \), which together with Theorem 2.8 in [7] implies the global existence of \(v(t) \) immediately.

2. Continuation after blow-up time for \(L^2 \)-critical gKdV. Theorem 1.8 shows that \(\lim_{\gamma \to 0} u_\gamma(t) \) exists in \(C([0, T_0], L^2(|x| < R)) \), and the limiting function \(u_{\text{ext}}(t) \) satisfies (gKdV) in the weak sense, hence can be viewed as a natural extension of the blow-up solution \(u(t) \). Moreover, one may easily check that the limiting function \(u_{\text{ext}}(t) \) depends continuously on the initial data in the stable blow-up regime.

3. Regular behavior for the approximate sequence. There is no singular behavior for \(u_\gamma(t) \) as \(\gamma \to 0 \). More precisely, the limiting function \(u_{\text{ext}}(t) \) is unique and the blow-up phenomenon is stable i.e. for all \(t \geq T \), we have
\[\|u_\gamma(t)\|_{H^1} \to +\infty, \text{ as } \gamma \to 0. \]

We mention here that these properties do not always hold true. For example, from [22, 24], in the Schrödinger case, the limiting function for a special choice of approximate sequence \(\{u_\varepsilon(t)\}_{\varepsilon > 0} \) may not be unique. We have a loss of information on the phase in this case, see also in [3, 5] for more detailed discussion. On the other hand, the blow-up phenomenon is unstable for \(t > T \). More precisely, for all \(t > T \),
\[\lim_{\varepsilon \to 0} \sup \|u_\varepsilon(t)\|_{H^1} < +\infty. \]

4. On the exotic blow-up regime. We expect to construct a similar extension for blow-up solutions to (gKdV) in the unstable regime (for example the solutions constructed in [18, 19].) And due to the instability, we may expect some chaotic behavior for the approximate sequence \(\{u_\gamma(t)\}_{\gamma > 0} \) as \(\gamma \to 0 \) (nonuniqueness of the limiting function, instability of the blow-up phenomenon etc.).

5. The supercritical case. In [9], Lan proved the existence and stability of self-similar blow-up solutions for slightly \(L^2 \)-critical gKdV equations. Similar results can also be expected. But due to the supercritical structure, we know little about the asymptotic dynamics for the saturated problem in this case. Hence it is hard to apply the argument in this paper to the supercritical case. On the other hand, for the self-similar blow-up solutions constructed in [9], the singularity concentrates on a finite point. This is different from the critical case, where the singularity goes to \(+\infty \), as \(t \) converges to the blow-up time. This fact may result in some irregular behavior for the continuation solution (for example, loss of some information or instability of blow-up phenomenon). But it is completely open.
1.5. **Notation.** For \(0 \leq \omega < \omega^* \ll 1\), we let \(Q_\omega\) be the unique nonnegative radial solution with exponential decay to the following ODE:

\[
Q''_\omega - Q_\omega + Q^5_\omega - \omega Q_\omega |Q_\omega|^{q-1} = 0.
\]

(1.24)

For simplicity, we denote by \(Q = Q_0\). Recall that we have:

\[
Q(x) = \left(\frac{3}{\cosh^2(2x)} \right)^\frac{1}{4}.
\]

We also introduce the linearized operator at \(Q_\omega\):

\[
L_\omega f = -f'' + f - 5Q^4_\omega f + q\omega |Q_\omega|^{q-1} f.
\]

Similarly, we denote by \(L = L_0\).

Next, we introduce the scaling operator:

\[
\Lambda f = \frac{1}{2} f + yf'.
\]

Then, for a given small constant \(\alpha > 0\), we denote by \(\delta(\alpha)\) a generic small constant with

\[
\lim_{\alpha \to 0} \delta(\alpha) = 0.
\]

Finally, we denote the \(L^2\) scalar product by

\[
(f, g) = \int f(x)g(x) \, dx.
\]

Acknowledgment. The author would like to thank his Ph.D. supervisors F. Merle and T. Duyckaerts for introducing this problem to him and providing a lot of guidance.

2. **Overview on the asymptotic dynamics for perturbed and unperturbed gKdV equations**

In this section we collect a number of results which can be explicitly found in [10, 17] and which we will use in the proof of Theorem 1.8.

2.1. **The nonlinear profile.** Denote by \(\mathcal{Y}\) the set of smooth function \(f\) such that for all \(k \in \mathbb{N}\), there exist \(r_k > 0, C_k > 0\), with

\[
|\partial_y^k f(y)| \leq C_k (1 + |y|)^{r_k} e^{-|y|}.
\]

We recall the construction of the nonlinear profiles\(^3\) \(V_\delta\) for (gKdV) and \(Q_{b,\omega}\) for (gKdV_\gamma).

Lemma 2.1 (Nonlocalized profile, Proposition 2.4 in [10], Proposition 2.2 in [17]). For all \(0 \leq \omega \ll 1\), there exist a smooth function \(P_\omega\) with \(\partial_y P_\omega \in \mathcal{Y}\), such that:

\[
(L_\omega P_\omega)' = \Lambda Q_\omega, \quad \lim_{y \to -\infty} P_\omega(y) = \frac{1}{2} \int Q_\omega,
\]

(2.1)

\[
(P_\omega, Q'_\omega) = 0, \quad (P_\omega, Q_\omega) = \frac{1}{16} \left(\int Q \right)^2 + O(\omega).
\]

(2.2)

\(^3\)We mention here that we use a notation different from [17] to avoid misunderstanding.
Moreover there exist constants C_0, C_1, \ldots, independent of ω, such that
\[
|P_\omega(y)| + \left| \frac{\partial P_\omega}{\partial \omega}(y) \right| \leq C_0 e^{-\frac{y}{10}}, \quad \text{for all } y > 0, \tag{2.3}
\]
\[
|P_\omega(y)| + \left| \frac{\partial P_\omega}{\partial \omega}(y) \right| \leq C_0, \quad \text{for all } y \in \mathbb{R}, \tag{2.4}
\]
\[
|\partial_y^k P_\omega(y)| \leq C_k e^{-\frac{y}{10}} \quad \text{for all } k \in \mathbb{N}_+, \ y \in \mathbb{R}. \tag{2.5}
\]

Now for $|b| \ll 1$, $0 \leq \omega \ll 1$, we let
\[
Q_{b,\omega}(y) = Q_\omega + b\chi(|b|^\beta y)P_\omega(y), \tag{2.6}
\]
\[
V_b(y) = Q_{b,0}(y), \tag{2.7}
\]
where $\beta = \frac{3}{4}$.

Then we have the following properties of these two localized profiles:

Lemma 2.2 (Lemma 2.5 in [10], Lemma 2.4 in [17]). For $|b| \ll 1$, $0 \leq \omega \ll 1$, there holds:

1. **Estimates on $Q_{b,\omega}$:** For all $y \in \mathbb{R}$, $k \in \mathbb{N}$,
 \[
 |Q_{b,\omega}(y)| \lesssim e^{-|y|} + |b| \left(1_{[-2,0]}(|b|^\beta y) + e^{-\frac{|y|}{10}} \right), \tag{2.8}
 \]
 \[
 |\partial_y^k Q_{b,\omega}(y)| \lesssim e^{-|y|} + |b| e^{-\frac{|y|}{10}} + |b|^{1+k\beta} 1_{[-2,-1]}(|b|^\beta y), \tag{2.9}
 \]
 where 1_I denotes the characteristic function of the interval I.

2. **Equation of $Q_{b,\omega}$:** Let
 \[
 -\Psi_{b,\omega} = b\Lambda Q_{b,\omega} + (Q''_{b,\omega} - Q_{b,\omega} + Q_\omega) - \omega Q_{b,\omega}|Q_{b,\omega}|^{q-1}'. \tag{2.10}
 \]
 Then, for all $y \in \mathbb{R}$,
 \[
 -\Psi_{b,\omega} = b^2 \left((10Q_\omega^2 P_\omega)_y + \Lambda P_\omega \right) - \frac{1}{2} b^2 (1 - \chi_b) P_\omega
 + O \left(|b|^{1+\beta} 1_{[-2,-1]}(|b|^\beta y) + b^2 (\omega + |b|) e^{-\frac{|y|}{10}} \right). \tag{2.11}
 \]
 Moreover, we have
 \[
 |\partial_y \Psi_{b,\omega}(y)| \lesssim |b|^{1+2\beta} 1_{[-2,-1]}(|b|^\beta y) + b^2 e^{-\frac{|y|}{10}}. \tag{2.12}
 \]

3. **Mass and energy properties of $Q_{b,\omega}$:**
 \[
 \left| \int Q_{b,\omega}^2 - \left(\int Q_\omega^2 + 2b \int P_\omega Q_\omega \right) \right| \lesssim |b|^{2-\beta}, \tag{2.13}
 \]
 \[
 |E(Q_{b,\omega})| \lesssim |b| + \omega. \tag{2.14}
 \]

Proof. See Lemma 2.4 in [17] and Lemma 2.5 in [10].

\[\square \]

2.2. **Geometrical decomposition of the flow and modulation estimates.**

For simplicity, from this subsection, we fix a $u_0 \in A_{\alpha_0}$ such that the corresponding solution $u(t)$ to (gKdV) belongs to the (Blow-up) regime as in Theorem 1.1. We denote by $T < +\infty$ its blow-up time. We also let $u_\gamma(t)$ be the corresponding solution to (gKdV), which belongs to the (Soliton) regime as indicated in Theorem 1.5 for $\gamma > 0$ small enough.
Lemma 2.3 (Geometrical decomposition for $u(t)$, Lemma 2.5 in [17]). There exist three C^1 functions $(\lambda, x, b) : [0, T) \to (0, +\infty) \times \mathbb{R}^2$, such that for all $t \in [0, T)$, there holds
\[u(t, x) = \frac{1}{\lambda^2(t)} [V_{\mu(t)} + \varepsilon(t)] \left(\frac{x - x(t)}{\lambda(t)} \right), \tag{2.15} \]
with $\varepsilon(t)$ satisfying the following orthogonality conditions
\[(\varepsilon(t), Q) = (\varepsilon(t), \Lambda Q) = (\varepsilon(t), y\Lambda Q) = 0, \tag{2.16} \]
for all $t \in [0, T)$.

Lemma 2.4 (Geometrical decomposition for $u_\gamma(t)$, Lemma 2.6 in [10]). For $q > 5$ and $\gamma > 0$ small enough, there exist C^1 functions $(\gamma, x_\gamma, b_\gamma) : [0, +\infty) \to (0, +\infty) \times \mathbb{R}^2$, such that for all $t \in [0, +\infty)$, there holds
\[u_\gamma(t, x) = \frac{1}{\lambda_\gamma^2(t)} [Q_{b_\gamma(t), \omega_\gamma(t)} + \varepsilon_\gamma(t)] \left(\frac{x - x_\gamma(t)}{\lambda_\gamma(t)} \right), \tag{2.17} \]
where
\[\omega_\gamma(t) = \frac{\gamma}{\lambda_\gamma^m(t)}. \]
And $\varepsilon_\gamma(t)$ satisfies the following orthogonality conditions
\[(\varepsilon_\gamma(t), Q_{\omega(t)}) = (\varepsilon_\gamma(t), \Lambda Q_{\omega(t)}) = (\varepsilon_\gamma(t), y\Lambda Q_{\omega(t)}) = 0, \tag{2.18} \]
for all $t \in [0, +\infty)$.
Moreover, for all $t \in [0, T)$, we have
\[(\lambda_\gamma(t), b_\gamma(t), x_\gamma(t), \varepsilon_\gamma(t)) \xrightarrow{\mathcal{R}^3 \times \mathcal{H}^1} (\lambda(t), b(t), x(t), \varepsilon(t)), \tag{2.19} \]
as $\gamma \to 0$.

Remark 2.5. Generally, for $u_0 \in \mathcal{A}_{0\gamma}$, the geometrical decomposition (2.15) and (2.17) may not hold true for all $t \in [0, T_{u_0})$, where T_{u_0} is the maximal lifespan. But for $u_0 \in \mathcal{A}_{0\gamma}$, such that $u(t)$ is in the (Blow-up) regime and $u_\gamma(t)$ is in the (Soliton) regime, this fact holds true. This follows from a bootstrap argument, which is the heart of the proof of Theorem 1.1 and Theorem 1.5. For simplicity, we ignore the bootstrap argument and focus on such u_0 only.

For $(\lambda_\gamma, x_\gamma, b_\gamma)$, we have:

Proposition 2.6 (Modulation estimates for $u_\gamma(t)$, Proposition 2.9 in [10]). We let
\[s(t) = \int_0^t \frac{1}{\lambda_\gamma^2(\tau)} d\tau, \quad y = \frac{x - x_\gamma(t)}{\lambda_\gamma(t)}. \]
Then we have:

(1) (Equation of ε_γ): For all $s \in [0, +\infty)$,
\[\partial_s \varepsilon_\gamma = (L_{\omega_\gamma}, \varepsilon_\gamma)_y - b_\gamma \Delta \varepsilon_\gamma + \left(\frac{\partial_s x_\gamma}{\lambda_\gamma} + b_\gamma \right) (\Lambda Q_{b_\gamma, \omega_\gamma} + \Lambda \varepsilon_\gamma) \]
\[+ \left(\frac{\partial_s x_\gamma}{\lambda_\gamma} - 1 \right) (Q_{b_\gamma, \omega_\gamma} + \varepsilon_\gamma)_y - \partial_s b_\gamma \frac{\partial Q_{b_\gamma, \omega_\gamma}}{\partial b_\gamma} - \partial_s \omega_\gamma \frac{\partial Q_{b_\gamma, \omega_\gamma}}{\partial \omega_\gamma} + \Psi_{b_\gamma, \omega_\gamma} - (R_{b_\gamma}(\varepsilon_\gamma))_y - (R_{NL}^3(\varepsilon_\gamma))_y, \tag{2.20} \]

4Recall $m = (q - 5)/2$ is defined in (1.14).
5See Lemma 2.6 and (5.17) in [10].
where
\[\Psi_{b_\gamma, \omega_\gamma} = -b_\gamma \Lambda Q_{b_\gamma, \omega_\gamma} - (Q_{b_\gamma, \omega_\gamma}^3 - Q_{b_\gamma, \omega_\gamma}^3 + Q_{b_\gamma, \omega_\gamma}^3 - \omega_\gamma Q_{b_\gamma, \omega_\gamma} |Q_{b_\gamma, \omega_\gamma}|^{q-1})', \]
(2.21)
\[R_{b_\gamma}^\gamma (\varepsilon_\gamma) = 5(Q_{b_\gamma, \omega_\gamma}^3 - Q_{b_\gamma, \omega_\gamma}^3)\varepsilon_\gamma - q\omega_\gamma (|Q_{b_\gamma, \omega_\gamma}|^{q-1} - |Q_{b_\gamma, \omega_\gamma}|^{q-1})\varepsilon_\gamma, \]
(2.22)
\[R_{NL}^\gamma (\varepsilon_\gamma) = (\varepsilon_\gamma + Q_{b_\gamma, \omega_\gamma})^3 - 5Q_{b_\gamma, \omega_\gamma}^3 \varepsilon_\gamma - Q_{b_\gamma, \omega_\gamma}^3 - \omega_\gamma (|\varepsilon_\gamma + Q_{b_\gamma, \omega_\gamma}|^{q-1} - Q_{b_\gamma, \omega_\gamma}^{q-1} - q\varepsilon_\gamma |Q_{b_\gamma, \omega_\gamma}|^{q-1}). \]
(2.23)

(2) (Estimates induced by the conservation laws). For \(s \in [0, +\infty) \), there holds:
\[\|\varepsilon_\gamma\|_{L^2} \lesssim \|b_\gamma\|^2 + \omega_\gamma^\frac{4}{3} + \left| \int \omega_0^2 - \int Q^2 \right|^{\frac{1}{2}}, \]
(2.24)
\[\frac{\|\partial_y \varepsilon_\gamma\|^2_{L^2}}{\lambda_\gamma^2} \lesssim \frac{1}{\lambda_\gamma^2} (\omega_\gamma + |b_\gamma| + \int \varepsilon_\gamma^2 e^{-\frac{|y|}{10}}) + \gamma\frac{\|\partial_y \varepsilon_\gamma\|^4_{L^2}}{\lambda_\gamma^{m+2}} + |E_0^\gamma|. \]
(2.25)

(3) \((H^1)\) modulation equation. For all \(s \in [0, +\infty) \),
\[\left| \frac{\partial \lambda_\gamma}{\lambda_\gamma} + b_\gamma \right| + \left| \frac{\partial_x \lambda_\gamma}{\lambda_\gamma} - 1 \right| \lesssim \left(\int \varepsilon_\gamma^2 e^{-\frac{|y|}{10}} \right)^\frac{1}{2} + |b_\gamma| (\omega_\gamma + |b_\gamma|), \]
(2.26)
\[\left| \partial_y b_\gamma \right| + \left| \partial_y \omega_\gamma \right| \lesssim (\omega_\gamma + |b_\gamma|) \left[\left(\int \varepsilon_\gamma^2 e^{-\frac{|y|}{10}} \right)^\frac{1}{2} + |b_\gamma| \right] + \int \varepsilon_\gamma^2 e^{-\frac{|y|}{10}}. \]
(2.27)

(4) \((L^1)\) control on the right. Let
\[\rho_1(y) = \frac{4}{(\int Q)^2} \int_{-\infty}^{y} \Lambda Q, \]
(2.28)
\[\rho_2 = \frac{16}{(\int Q)^2} \left(\frac{\|\Lambda Q\|^4_{L^2}}{\Lambda Q} + P - \frac{1}{2} \int Q \right) - 8 \rho_1, \]
(2.29)
\[\rho = 4\rho_1 + \rho_2, \]
(2.30)
and
\[J_1^\gamma (s) = (\varepsilon_\gamma(s), \rho_1), \quad J_2^\gamma (s) = (\varepsilon_\gamma(s), \rho_2), \quad J^\gamma (s) = (\varepsilon_\gamma(s), \rho), \]
(2.31)
where \(\rho_1, \rho_2, \rho \) were defined in \((2.28)-(2.30)\). Then we have:
(a) (Law of \(\lambda_\gamma \)): for all \(s \in [0, +\infty) \),
\[\left| \frac{\partial \lambda_\gamma}{\lambda_\gamma} + b_\gamma - 2 \left((J_1^\gamma)_s + \frac{1}{2} \frac{\partial \lambda_\gamma}{\lambda_\gamma} J_2^\gamma \right) \right| \]
\[\lesssim (\omega_\gamma + |b_\gamma|) \left[\left(\int \varepsilon_\gamma^2 e^{-\frac{|y|}{10}} \right)^\frac{1}{2} + |b_\gamma| \right] + \int \varepsilon_\gamma^2 e^{-\frac{|y|}{10}}. \]
(2.32)
(b) (Law of \(b_\gamma \)): for all \(s \in [0, +\infty) \),
\[\left| \partial_y b_\gamma + 2b_\gamma^2 + \partial_y \omega_\gamma G'(\omega_\gamma) + b_\gamma \left((J_2^\gamma)_s + \frac{1}{2} \frac{\partial \lambda_\gamma}{\lambda_\gamma} J_2^\gamma \right) \right| \]
\[\lesssim \int \varepsilon_\gamma^2 e^{-\frac{|y|}{10}} + (\omega_\gamma + |b_\gamma|) b_\gamma^2, \]
(2.33)
where \(G \in C^2 \) with \(G(0) = 0, G'(0) = c_0 > 0 \), for some universal constant \(c_0 \).
2.3. Monotonicity formula and estimate on the error term. We now recall the monotonicity formula introduced in [17], which is the heart of the analysis in [17]. We mention here again, for simplicity, we ignore the bootstrap argument and focus only on the initial data whose corresponding solution \(u(t) \) to (gKdV) belongs to the (Blow-up) regime as in Theorem 1.1.

More precisely, we let \((\varphi_i)_{i=1,2}, \psi \in C^\infty(\mathbb{R}) \) be such that:

\[
\varphi_i(y) = \begin{cases}
 e^y, & \text{for } y < -1, \\
 1 + y, & \text{for } -\frac{1}{2} < y < \frac{1}{2}, \\
 y^i, & \text{for } y > 2,
\end{cases} \quad \varphi'(y) > 0, \quad \text{for all } y \in \mathbb{R}, \quad (2.35)
\]

\[
\psi(y) = \begin{cases}
 e^{2y}, & \text{for } y < -1, \\
 1, & \text{for } y > -\frac{1}{2},
\end{cases} \quad \psi'(y) \geq 0, \quad \text{for all } y \in \mathbb{R}. \quad (2.36)
\]

Let \(B > 100 \) be a large universal constant. We then define the following weight functions:

\[
\psi_B(y) = \psi\left(\frac{y}{B}\right), \quad \varphi_B(y) = \varphi_i\left(\frac{y}{B}\right), \quad (2.37)
\]

and the following weighted \(H^1 \) norm of \(\varepsilon \): for all \(s \in [0, +\infty) \),

\[
\mathcal{N}_i(s) = \int \left(\varepsilon_i^2(s,y)\psi_B(y) + \varepsilon_i^2(s,y)\varphi_B(y) \right) dy, \quad i = 1, 2, \quad (2.38)
\]

\[
\mathcal{N}_{i,loc}(s) = \int \varepsilon_i^2(s,y)\varphi_B(y) dy, \quad i = 1, 2. \quad (2.39)
\]

Similarly, for \(u_\gamma(t) \), we define:

\[
\mathcal{N}_i^\gamma(s) = \int \left(\left[\partial_y \varepsilon_\gamma(s,y) \right]^2 \psi_B(y) + \varepsilon_\gamma^2(s,y)\varphi_{1,B}(y) \right) dy, \quad i = 1, 2, \quad (2.40)
\]

\[
\mathcal{N}_{i,loc}^\gamma(s) = \int \varepsilon_\gamma^2(s,y)\varphi_{1,B}(y) dy, \quad i = 1, 2. \quad (2.41)
\]

Then we have the following monotonicity formula for \(u_\gamma(t) \):

Proposition 2.7 (Monotonicity formula for \(u_\gamma(t) \), Proposition 3.1 in [10]). For \(\gamma > 0 \) small enough, we define the Lyapounov functional for \((i,j) \in \{1,2\}^2\) as following:

\[
\mathcal{F}_{i,j}^\gamma(s) = \int \left(\left(\partial_y \varepsilon_\gamma \right)^2 \psi_B + (1 + \mathcal{J}_{i,j}^\gamma) \varepsilon_\gamma^2 \varphi_{1,B} - \frac{1}{3} \psi_B \left[(Q_{b_{\gamma},\omega_{\gamma}} + \varepsilon_\gamma)^6 - Q_{b_{\gamma},\omega_{\gamma}}^6 - 6\varepsilon_\gamma Q_{b_{\gamma},\omega_{\gamma}}^5 \right] \right. \\
+ \frac{2\omega_{\gamma}}{q+1} \left[Q_{b_{\gamma},\omega_{\gamma}} + \varepsilon_\gamma |q+1| - \left| Q_{b_{\gamma},\omega_{\gamma}} \right|^q + (q+1)\varepsilon_\gamma Q_{b_{\gamma},\omega_{\gamma}} |q| \right] \psi_B \right), \quad (2.42)
\]
with
\[J^\gamma_{i,j} = (1 - J^\gamma_1)^{-4(j-1)-2i} - 1. \] (2.43)

Then the following estimates hold for all \(s \in [0, +\infty) \):

1. Scaling invariant Lyapunov control: for \(i = 1, 2 \),
\[
\frac{dJ^\gamma_{i,1}}{ds} + \mu \int (\partial_y \varepsilon_\gamma)^2 + \varepsilon_\gamma^2 \varepsilon_\gamma' \psi_{i,B}^1 \lesssim b^2_\gamma (\omega_\gamma^2 + b^2_\gamma),
\] (2.44)
where \(\mu > 0 \) is a universal constant.

2. \(H^1 \) scaling Lyapunov control: for \(i = 1, 2 \),
\[
\frac{dJ^\gamma_{i,2}}{ds} \left(\frac{\mathcal{F}_{i,2}}{\lambda^2_\gamma} \right) + \frac{\mu}{\lambda^2_\gamma} \int (\partial_y \varepsilon_\gamma)^2 + \varepsilon_\gamma^2 \varepsilon_\gamma' \psi_{i,B}^2 \lesssim b^2_\gamma (\omega_\gamma^2 + b^2_\gamma). \] (2.45)

3. Coercivity and pointwise bounds: there holds for all \((i, j) \in \{1, 2\}^2 \), and all \(s \in [0, +\infty) \),
\[
\mathcal{N}^\gamma_i \lesssim \mathcal{F}^\gamma_{i,j} \lesssim \mathcal{N}^\gamma_i, \quad |J^\gamma_i| + |J^\gamma_{i,j}| \lesssim (\mathcal{N}^\gamma_i)^{\frac{1}{2}}. \] (2.46) (2.47)

As a consequence of the modulation estimates introduced in Section 2.2 and the monotonicity formulas introduced above, we have the following control on the error term \(\varepsilon_\gamma(t) \):

Lemma 2.8 (Control of the error term for \(u_\gamma(t) \), Lemma 4.1 in [10]). We have the following:

1. (Almost monotonicity of the localized \(H^1 \) norm: there exists a universal constant \(K_0 > 1 \), such that for \(i = 1, 2 \) and \(0 \leq s_1 < s_2 < +\infty \), there holds):
\[
\mathcal{N}^\gamma_i(s_2) + \int_{s_1}^{s_2} \left(\int [(\partial_y \varepsilon_\gamma)^2(s) + \varepsilon_\gamma^2(s)] \varepsilon_\gamma' \psi_{i,B} \right) ds \\
\leq K_0 \left[\mathcal{N}^\gamma_i(s_1) + \sup_{s \in [s_1, s_2]} |b_\gamma(s)|^3 + \sup_{s \in [s_1, s_2]} \omega_\gamma^3(s) \right].
\] (2.48)

and
\[
\frac{\mathcal{N}^\gamma_i(s_2)}{\lambda^2_\gamma(s_2)} + \int_{s_1}^{s_2} \frac{1}{\lambda^2_\gamma(s)} \left[\left(\int [(\partial_y \varepsilon_\gamma)^2(s) + \varepsilon_\gamma^2(s)] \varepsilon_\gamma' \psi_{i,B} \right) + b^2_\gamma(s)(|b_\gamma(s)| + \omega_\gamma(s)) \right] ds \\
\leq K_0 \left(\frac{\mathcal{N}^\gamma_i(s_1)}{\lambda^2_\gamma(s_1)} + \frac{b^2_\gamma(s_1) + \omega^2_\gamma(s_1)}{\lambda^2_\gamma(s_1)} + \frac{b^2_\gamma(s_2) + \omega^2_\gamma(s_2)}{\lambda^2_\gamma(s_2)} \right). \] (2.49)

2. (Control of \(b_\gamma \) and \(\omega_\gamma \)): for all \(0 \leq s_1 < s_2 < +\infty \), there holds:
\[
\omega_\gamma(s_2) + \int_{s_1}^{s_2} b^2_\gamma(s) ds \lesssim \mathcal{N}^\gamma_i(s_1) + \omega_\gamma(s_1) + \sup_{s \in [s_1, s_2]} |b_\gamma(s)|,
\] (2.50)

3. (Control of \(\frac{b_\gamma}{\lambda_\gamma} \)): let \(c_1 = \frac{1}{m^2} G'(0) > 0 \), where \(G \) is the \(C^2 \) function introduced in (2.33). Then there exists a universal constant \(K_1 > 1 \) such
that for all \(0 \leq s_1 < s_2 < +\infty\), there holds:

\[
\frac{b_\gamma(s_2) + c_1 \omega_\gamma(s_2)}{\lambda_\gamma^2(s_2)} - \frac{b_\gamma(s_1) + c_1 \omega_\gamma(s_1)}{\lambda_\gamma^2(s_1)} \leq K_1 \left(\frac{\mathcal{N}_1^\gamma(s_1)}{\lambda_\gamma^2(s_1)} + \frac{b_\gamma^2(s_1) + \omega_\gamma^2(s_1)}{\lambda_\gamma^2(s_1)} + \frac{b_\gamma^2(s_2) + \omega_\gamma^2(s_2)}{\lambda_\gamma^2(s_2)} \right),
\]

(2.51)

(4) (Refined control of \(\lambda_\gamma\)): let \(\lambda_0^\gamma(s) = \lambda_\gamma(s)(1 - J_1^\gamma(s))^2\). Then there exists a universal constant \(K_2 > 1\) such that for all \(s \in [0, +\infty)\),

\[
\left| \frac{(\lambda_0^\gamma)_s}{\lambda_0^\gamma} + b_\gamma \right| \leq K_2 \left(\mathcal{N}_1^\gamma + (|b_\gamma| + \omega_\gamma)[(\mathcal{N}_2^\gamma)^2 + |b_\gamma|] \right).
\]

(2.52)

2.4. Asymptotic dynamics in the (Soliton) region for \((gKdV_\gamma)\). This subsection is devoted to introduce some basic properties for the solution \(u(t)\) to \((gKdV)\) in the (Blow up) region and the solution \(u_\gamma(t)\) to \((gKdV_\gamma)\) in the (Soliton) region.

We fix a \(u_0 \in \mathcal{A}_{\alpha_0}\) such that the corresponding solution \(u(t)\) to \((gKdV)\) belongs to the (Blow-up) regime. We denote by \(T < +\infty\), the blow-up time. We also let \(\gamma < \gamma(u_0, \alpha_0, q)\) small enough, such that the corresponding solution \(u_\gamma(t)\) to \((gKdV_\gamma)\) belongs to the (Soliton) regime\(^6\).

Now, from Proposition 6.1 in \([17]\), we have:

\[
\tilde{u}(t) \to u^* \text{ in } L^2, \text{ as } t \to T,
\]

(2.53)

where

\[
\tilde{u}(t, x) = \frac{1}{\lambda^{1/2}(t)} \varepsilon \left(t, \frac{x - x(t)}{\lambda(t)} \right).
\]

Moreover, there exist a constant \(\ell_0 = \ell_0(u_0) > 0\), such that\(^7\)

\[
\lim_{t \to T} \frac{\lambda(t)}{T - t} = \ell_0 > 0, \quad \lim_{t \to T} \frac{b(t)}{(T - t)^2} = \ell_0^3, \quad \lim_{t \to T} (T - t)^2 x(t) = \ell_0^{-2}.
\]

(2.54)

From (2.27)–(2.28) and (4.54) in \([17]\), we also have \(u^* \in H^1\), satisfying

\[
\|u^*\|_{H^1} \lesssim \delta(\alpha_0) \ll 1.
\]

(2.55)

Next, we let \(v(t)\) be the solution to \((gKdV)\) with

\[
v(T) = u^*.
\]

It is easy to see from Theorem 2.8 in \([7]\) and (3.2) that \(v(t)\) exists globally in time and scatters at both time directions, i.e.

\[
\exists v^{\pm \infty} \in L^2, \text{ such that } \lim_{t \to \pm \infty} \|v(t) - e^{-it\partial_x^2} v^{\pm \infty}\|_{L^2} = 0,
\]

or equivalently

\[
\|v\|_{L^2_t L^\infty_x(\mathbb{R})} \lesssim 1.
\]

(2.56)

\(^6\)This is ensured by Theorem 1.6.

\(^7\)See (4.7) in \([17]\).
From (4.43)–(4.45) in [17], we know that there exists a $t^*_1 < T$ such that for all $t \in [0, t^*_1]$ we have
\begin{align}
N^2_2(t) + \| \varepsilon(t) \|_{H^1} + |b(t)| + |1 - \lambda(t)| & \lesssim \delta(\alpha_0), \quad (2.57) \\
\int_{y > 0} y^{10} \varepsilon^2(t, y) \, dy & \leq 5, \quad (2.58) \\
b(t^*_1) & \geq 2C^* N_1(t^*_1), \quad (2.59)
\end{align}
where C^* is defined as following\(^8\):
\begin{align}
C^* = 100(K_0 K_2 + K_1).
\end{align}
Then for $0 < \gamma < \gamma(u_0, \alpha_0)$ small enough, we have for all $t \in [0, t^*_1]$ the solution $u_{\gamma}(t)$ satisfies\(^9\):
\begin{align}
N^2_2(t) + \| \varepsilon(t) \|_{H^1} + |b_{\gamma}(t)| + |1 - \lambda_{\gamma}(t)| & \lesssim \delta(\alpha_0), \quad (2.60) \\
\int_{y > 0} y^{10} \varepsilon^2_{\gamma}(t, y) \, dy & \leq 5, \quad (2.61) \\
b_{\gamma}(t^*_1) & \geq C^* N^2_1(t^*_1), \quad (2.62)
\end{align}
Then from Section 4 of [10], we know that there exists a $t^*_2, \gamma \in (t^*_1, +\infty)$ such that $b_{\gamma}(t^*_2, \gamma) = \frac{1}{100} \omega_{\gamma}(t^*_2, \gamma)$ and for all $t \in [t^*_1, t^*_2, \gamma]$, there holds
\begin{align}
b_{\gamma}(t) & \geq \frac{1}{100} \omega_{\gamma}(t). \quad (2.63)
\end{align}
We also have for all $t^*_1 \leq t_1 < t_2 \leq t^*_2, \gamma$, there holds\(^10\)
\begin{align}
\lambda_{\gamma}(t_2) & \leq 2\lambda_{\gamma}(t_1). \quad (2.64)
\end{align}
And for all\(^11\) $t \in [t^*_1, t^*_2, \gamma]$,\(^12\)
\begin{align}
0 & < \frac{N^2_2(t)}{\lambda^2_\gamma(t)} + \frac{\omega_{\gamma}(t)}{\lambda^2_\gamma(t)} \lesssim \frac{b_{\gamma}(t)}{\lambda^2_\gamma(t)} \sim \ell^*, \quad (2.65)
\end{align}
where
\begin{align}
\ell^* = \frac{b(t^*_1)}{\lambda^2(t^*_1)} > 0,
\end{align}
and independent of γ.
While for $t \in [t^*_2, \gamma, +\infty)$, we have\(^12\)
\begin{align}
\lambda_{\gamma}(t) & \sim \left(\frac{\gamma}{\ell^*} \right)^{\frac{1}{m+4}}, \quad \omega_{\gamma}(t) \sim \gamma^{\frac{2}{m+4}} (\ell^*)^{\frac{m}{m+4}}, \quad (2.66) \\
\frac{N^2_2(t)}{\lambda^2_\gamma(t)} + \frac{b_{\gamma}(t)}{\lambda^2_\gamma(t)} & \lesssim \frac{\omega_{\gamma}(t)}{\lambda^2_\gamma(t)} \sim \ell^*. \quad (2.67)
\end{align}
Finally, for all $t \in [t^*_1, +\infty)$, we have\(^13\):
\begin{align}
N^2_2(t) + |b_{\gamma}(t)| + \omega_{\gamma}(t) & \lesssim \delta(\alpha_0) \ll 1. \quad (2.68)
\end{align}
\(^8\) Recall that K_0, K_1 and K_2 are defined in Lemma 2.8.
\(^9\) See (4.52)–(4.55) and (5.18) in [10].
\(^10\) See (4.69) in [10].
\(^11\) See (4.71) in [10].
\(^12\) See (4.92)–(4.94) in [10].
\(^13\) See (4.82), (4.93)–(4.95) in [10].
3. Continuation after blow-up time

In this section, we will give the proof of Theorem 1.8, using the analysis tools introduced in Section 2.

First, we denote by

$$\tilde{u}_\gamma(t, x) = \frac{1}{\lambda^{1/2}(t)} \varepsilon \gamma \left(t, \frac{x - x_\gamma(t)}{\lambda_\gamma(t)} \right),$$

$$Q_S^\gamma(t, x) = \frac{1}{\lambda^{1/2}(t)} Q_{b_\gamma(t), \omega_\gamma(t)} \left(\frac{x - x_\gamma(t)}{\lambda_\gamma(t)} \right).$$

We claim that

Lemma 3.1. The following properties hold true.

(1) For all $t \geq T$, we have:

$$N_1^\gamma(t) + \lambda_\gamma(t) + \omega_\gamma(t) \rightarrow 0, \text{ as } \gamma \rightarrow 0,$$

$$x_\gamma(t) \rightarrow +\infty, \text{ as } \gamma \rightarrow 0.$$

(2) We have:

$$\lim_{\gamma \rightarrow 0} t^*_{2, \gamma} = T.$$

(3) For all $T_0 > T$, we have:

$$\tilde{u}_\gamma(t, x) \rightarrow v(t, x) \text{ in } C([T, T_0], L^2), \text{ as } \gamma \rightarrow 0,$$

Remark 3.2. From the definition of $Q_{b, \omega}$, it is easy to see that for all $t \geq T$ and $R > 0$,

$$\|Q_S^\gamma(t, \cdot)\|_{L^2(|x| < R)} \rightarrow 0, \text{ as } \gamma \rightarrow 0,$$

which together with Lemma 3.1 implies (1.22) immediately.

Proof. Step 1. Proof of (3.3) and (3.4).

First, we claim that

$$t^*_2 := \lim_{\gamma \rightarrow 0} t^*_{2, \gamma} \geq T.$$

Suppose (3.7) does not hold. Then there exists a $t_0 < T$ and a sequence $\{\gamma_n\}$ such that $\lim_{n \rightarrow +\infty} \gamma_n = 0$ and for all n large enough, we have $t^*_{2, \gamma_n} < t_0 < T$. From (2.66), we know that

$$\lambda_{\gamma_n}(t_0) \sim \left(\frac{\gamma_n}{t^*_0} \right)^{\frac{1}{\gamma + 2}},$$

which implies that $\lim_{n \rightarrow +\infty} \lambda_{\gamma_n}(t_0) = 0$. But from (2.19), we have

$$\lim_{n \rightarrow +\infty} \lambda_{\gamma_n}(t_0) = \lambda(t_0) > 0,$$

which leads to a contradiction.

Now we turn to the proof of

$$\lim_{\gamma \rightarrow 0} \lambda_\gamma(t) = 0,$$

for all $t \geq T$. From (2.66), we have for all $t > t^*_2$, and $\gamma > 0$ small enough,

$$\lambda_\gamma(t) \sim \left(\frac{\gamma}{t^*_0} \right)^{\frac{1}{\gamma + 2}}.$$
hence, \(\lim_{\gamma \to 0} \lambda_\gamma(t) = 0 \) for all \(t > t^*_1 \).

While for \(t \in [T, t^*_2] \), thanks to (2.64), we only need to show that \(\lim_{\gamma \to 0} \lambda_\gamma(T) = 0 \). Indeed, from (2.52) and (2.65) we have: for all \(t \in [t^*_1, t^*_2] \),

\[
\frac{\ell^*}{3} - C \frac{N_1(t)}{|\lambda_\gamma|^2} \leq -(\lambda_\gamma^2) t \leq 3\ell^* + C \frac{N_1(t)}{|\lambda_\gamma|^2}. \tag{3.9}
\]

For all \(t_0 < T \) close enough to \(T \), we integrate (3.9) from \(t_0 \) to \(T \) using (2.48) and (2.49) to obtain

\[
|\lambda_0^2(T) - \lambda_0^2(t_0)| \lesssim \ell^*(T - t_0) + \int_{t_0}^T \frac{N_1^2(s)}{|\lambda_\gamma|^2} ds \lesssim \ell^*(T - t_0) + \int_{s(t_0)}^{s(T)} \lambda_\gamma(s)N_1^2(s) ds.
\]

Since we have for all \(t \geq t^*_1 \),

\[
\left| \frac{\lambda_\gamma(t)}{\lambda_0^2(t)} - 1 \right| \ll 1,
\]

the above inequalities imply that

\[
\lambda_\gamma(T) \lesssim \ell^*(T - t_0) + \lambda_\gamma(t_0).
\]

Hence, from (2.54), we have

\[
\limsup_{\gamma \to 0} \lambda_\gamma(T) \lesssim \ell^*(T - t_0) + \lambda(t_0) \lesssim \ell^*(T - t_0).
\]

Let \(t_0 \to T \), we obtain \(\lim_{\gamma \to 0} \lambda_\gamma(T) = 0 \), which implies (3.8) immediately.

Next, from (2.65) and (2.67), we have

\[
|b_\gamma(t)| + \omega_\gamma(t) \lesssim \ell^* \lambda_\gamma^2(t) \to 0, \quad \text{as} \quad \gamma \to 0. \tag{3.10}
\]

From (2.26), we have \((x_\gamma)_t \sim \lambda_\gamma^{-2} > 0 \) for all \(t \geq 0 \). Then for all \(t_0 < T \leq t \), from (2.54) we have

\[
\liminf_{\gamma \to 0} x_\gamma(t) \geq \liminf_{\gamma \to 0} x_\gamma(t_0) = x(t_0) \sim \frac{1}{\ell_0^2(T - t_0)^2}.
\]

Let \(t_0 \to T \), we obtain (3.4) immediately.

Now it only remains to prove

\[
\lim_{\gamma \to 0} \frac{N_1^2(t)}{\lambda_\gamma^2(t)} = 0.
\]

For all \(t_0 < T \leq t \), from (2.49), we have

\[
\frac{N_1^2(t)}{\lambda_\gamma^2(t)} \leq \frac{N_1^2(t_0) + b_\gamma^2(t_0) + \omega_\gamma^2(t_0)}{\lambda_\gamma^2(t_0)} + \frac{b_\gamma^2(t) + \omega_\gamma^2(t)}{\lambda_\gamma^2(t)}.
\]

From (2.65), (2.67) and (3.10), we have

\[
\frac{b_\gamma^2(t) + \omega_\gamma^2(t)}{\lambda_\gamma^2(t)} \to 0, \quad \text{as} \quad \gamma \to 0.
\]

While from (4.7), (4.12) and (4.54) in [17], we have:

\[
\lim_{\gamma \to 0} \left(\frac{N_1^2(t_0) + b_\gamma^2(t_0) + \omega_\gamma^2(t_0)}{\lambda_\gamma^2(t_0)} \right) = \frac{N_1(t_0) + b^2(t_0)}{\lambda_\gamma^2(t_0)} = o_{t_0 \to T}(1).
\]
Therefore, we obtain
\[
\lim_{\gamma \to 0} \frac{N_1^\gamma(t)}{N_2^\gamma(t)} = 0,
\]
which concludes the proof of (3.3) and (3.4).

Step 2. Proof of (3.5)
Due to (3.7), we only need to prove that
\[
t_{2,*} := \limsup_{\gamma \to 0} t_{2,\gamma}^* \leq T. \tag{3.11}
\]
Suppose (3.11) does not hold. Then there exists a \(t_0 > T\) and a sequence \(\{\gamma_n\}\) such that \(\lim_{n \to +\infty} \gamma_n = 0\) and for all \(n\) large enough, we have \(t_{2,\gamma_n}^* > t_0 > T\).

For all \(\eta > 0\), we integrate (3.9) from \(T - \eta\) to \(t_0\) to obtain
\[
\lambda_{\gamma_n}(T - \eta) - \lambda_{\gamma_n}(t_0) \geq \frac{1}{3} \ell'(t_0 - T + \eta) - \frac{1}{100} \lambda_{\gamma_n}(T - \eta).
\]
Let \(n \to +\infty\), using (2.19) and (3.3), we have
\[
\lambda(T - \eta) \geq \frac{1}{10} (t_0 - T + \eta),
\]
for all \(\eta > 0\). This is a contradiction, since we have \(\lim_{t \to T} \lambda(t) = 0\). This concludes the proof of (3.5).

Step 3. Proof of (3.6).
We first introduce the following \(L^2\)-perturbation theory for \(L^2\)-critical gKdV obtained in [8]:

Lemma 3.3 (\(L^2\)-perturbation theory, Theorem 3.1 in [8]). Let \(I\) be an interval containing 0 and \(w \in C(I, L^2)\) is a solution to (gKdV) on \(I\) with
\[
\|w\|_{L^\infty(I \times \mathbb{R})} \leq M.
\]
Suppose \(\tilde{w} \in C(I, L^2)\) is a solution to the following equation:
\[
\partial_t \tilde{w} + \tilde{w}_{xxx} + (\tilde{w}^5)_x = e,
\]
with
\[
\|w(0) - \tilde{w}(0)\|_{L^2} \leq M',
\]
and
\[
\left\| e^{-i \theta^2} (w(0) - \tilde{w}(0)) \right\|_{L_x^5 L_t^{10}(\mathbb{R} \times I)} + \|e\|_{L_x^{5/4} L_t^{10/9}(\mathbb{R} \times I)} < \epsilon,
\]
for some \(M' > 0\), some \(0 < \epsilon < \epsilon_0(M, M')\). Then we have:
\[
\|w - \tilde{w}\|_{L^\infty(I \times \mathbb{R})} + \|w - \tilde{w}\|_{L_x^5 L_t^{10}(\mathbb{R} \times I)} < C_0(M, M') \epsilon. \tag{3.12}
\]

Remark 3.4. The statement of Lemma 3.3 is slightly different from Theorem 3.1 in [8], but the proof is exactly the same. We omit the proof here.

Now we turn to the proof of (3.6). For the remainder term \(\bar{u}_\gamma(t)\) with \(t \geq T\), direct computation leads to
\[
\partial_t \bar{u}_\gamma + \left[(\bar{u}_\gamma)_{xx} + \bar{u}_\gamma^5 \right]_x = -\mathcal{E} - [F_1(\bar{u}_\gamma)]_x - [F_2(\bar{u}_\gamma)]_x,
\]
where
\[
\mathcal{E} = \frac{1}{\lambda_\gamma^{3/2}(t)} \left[-\Psi_{b_\gamma, \omega_\gamma} - (b_\gamma)_s \frac{\partial Q_{b_\gamma, \omega_\gamma}}{\partial \omega_\gamma} - (\omega_\gamma)_s \frac{\partial Q_{b_\gamma, \omega_\gamma}}{\partial \omega_\gamma} + \left(\frac{\partial_x x_\gamma}{\lambda_\gamma} + b_\gamma \right) \Lambda Q_{b_\gamma, \omega_\gamma} - \left(\frac{\partial_x x_\gamma}{\lambda_\gamma} - 1 \right) Q'_{b_\gamma, \omega_\gamma} \right] \left(x - x_\gamma(t) \right),
\]
and
\[
F_1(\tilde{u}_\gamma) = (Q_S^\gamma + \tilde{u}_\gamma)^5 - |Q_S^\gamma|^5 - \tilde{u}_\gamma^5,
\]
\[
F_2(\tilde{u}_\gamma) = -\gamma (|Q_S^\gamma + \tilde{u}_\gamma| |Q_S^\gamma + \tilde{u}_\gamma|^{q-1} - |Q_S^\gamma|^{q-1}).
\]
For all \(\eta > 0\) small enough, if \(0 < \gamma < \gamma(\eta)\) is small enough, we have
\[
\| \tilde{u}_\gamma(T - \eta) - v(T - \eta) \|_{L^2} \leq \| \tilde{u}_\gamma(T - \eta) - \tilde{u}(T - \eta) \|_{L^2} + \| \tilde{u}(T - \eta) - u^* \|_{L^2} + \| v(T - \eta) - u^* \|_{L^2} \lesssim \delta(\eta),
\]
(3.13)
where we use (2.53) and the fact that \(v(T) = u^*\).

We claim that for all \(T_0 > T\) and \(0 < \eta < \eta(T_0)\) small enough, there exists \(\gamma(\eta) > 0\) such that if \(0 < \gamma < \gamma(\eta)\), then we have
\[
\| F_1(\tilde{u}_\gamma) \|_{L_t^{5/4}L_y^{10/9}(\mathbb{R} \times [T - \eta, T_0])} + 2 \sum_{i=1}^{2} \| \partial_x F_i(\tilde{u}_\gamma) \|_{L_t^{5/4}L_y^{10/9}(\mathbb{R} \times [T - \eta, T_0])} \lesssim T_0 \delta(\eta),
\]
(3.14)
Then, we can apply Lemma 3.3 to \(\tilde{u}_\gamma\) and \(v\) on the interval \([T - \eta, T_0]\), using (2.56), (3.13) and (3.14) to obtain
\[
\sup_{t \in [T - \eta, T_0]} \| \tilde{u}_\gamma(t) - v(t) \|_{L^2} \lesssim T_0 \delta(\eta),
\]
(3.15)
provided that \(0 < \gamma < \gamma(\eta)\). It is easy to see that (3.15) implies (3.6) immediately.

Now, it only remains to prove (3.14). First, from (2.11), (2.26) and (2.27) we have\(^{14}\):
\[
\| F_1(\tilde{u}_\gamma) \|_{L_t^{5/4}L_y^{10/9}(\mathbb{R} \times [T - \eta, T_0])} \lesssim \| \tilde{F}(T - \eta, T_0) \|_{L_t^{10/9}L_y^{5/4}(\mathbb{R} \times [T - \eta, T_0] \times \mathbb{R})}
\]
\[
\lesssim \int_{T - \eta}^{T_0} \frac{1}{\lambda_\gamma^{5/2}(t)} \left[\| \Psi_{b_\gamma, \omega_\gamma} \|_{L_x T} + \| (b_\gamma)_s \|_{L_x T} \| \frac{\partial Q_{b_\gamma, \omega_\gamma}}{\partial \omega_\gamma} \|_{L_x T} + \| (\omega_\gamma)_s \|_{L_x T} \| \frac{\partial Q_{b_\gamma, \omega_\gamma}}{\partial \omega_\gamma} \|_{L_x T}
\]
\[
+ \left(\frac{\partial_x x_\gamma}{\lambda_\gamma} + b_\gamma \right) \left(\Lambda Q_{b_\gamma, \omega_\gamma} \right) \left(\frac{\partial_x x_\gamma}{\lambda_\gamma} - 1 \right) \| Q'_{b_\gamma, \omega_\gamma} \|_{L_x T} \right] \frac{5}{4} dt
\]
\[
\lesssim \int_{T - \eta}^{T_0} \frac{1}{\lambda_\gamma^{5/2}(t)} \left[(N_{1,\text{loc}}^\gamma)^{1/2} + |b_\gamma| \frac{23}{55} + \omega_\gamma |b_\gamma| \right]^{10/9} dt
\]
\[
\lesssim T_0 \int_{T - \eta}^{T} \left(\frac{\omega_\gamma |b_\gamma|}{\lambda_\gamma^{5/2}(t)} \right)^{10/9} dt + \int_{T - \eta}^{T} \left(\frac{|b_\gamma|^{23/18}}{\lambda_\gamma^{5/2}(t)} \right)^{3/5} dt
\]
\[
+ \left(\int_{T - \eta}^{T} \frac{N_{1,\text{loc}}^\gamma}{\lambda_\gamma^{27/5}(t)} dt \right)^{5/9}.
\]
\(^{14}\)Recall that we take \(\beta = \frac{3}{4}\) in (2.6).
We estimate all these terms separately. First, from (2.65)–(2.67), we have
\[
\int_{T-\eta}^{T_0} \frac{(\omega_\gamma |b_\gamma|)^{10/9}}{\lambda_\gamma^3(t)} \, dt \lesssim \int_{T-\eta}^{T_0} (\ell^*)^{3/2} |\omega_\gamma(t)|^{13/18} \, dt \\
\lesssim (T_0 - T + \eta)(\ell^*)^{\frac{36+27}{108+27}} \gamma^{\frac{11}{18}} \lesssim T_0 \delta(\eta). \quad (3.17)
\]
Next, we integrate (3.9) from \(t \) to \(T \) to obtain
\[
\lambda_\gamma(t) \gtrsim \lambda_\gamma(T) + \ell^*(T - t) \gtrsim \ell^*(T - t),
\]
for all \(t \in [t^*_1, T] \). Together with (2.65) and (2.67), we have:
\[
\int_{T-\eta}^{T} \frac{|b_\gamma|^{\frac{145}{54}}(t)}{\lambda_\gamma^3(t)} \, dt \lesssim (\ell^*)^{\frac{23}{18}} \int_{T-\eta}^{T} \frac{dt}{\lambda_\gamma^4(t)} \lesssim \int_{T-\eta}^{T} \frac{dt}{[\ell^*(T - t)]^{\frac{9}{10}}} \lesssim \delta(\eta). \quad (3.18)
\]
Then from (2.50), (2.66), (3.3) and (3.5), we have:
\[
\int_{T}^{T_0} \frac{|b_\gamma|^{\frac{125}{54}}(t)}{\lambda_\gamma^3(t)} \, dt \lesssim \left(\sup_{t \in [T_0, T]_0} \frac{|b_\gamma(t)|^{7/54}}{\lambda_\gamma^3(t)} \right) \times \int_{s(T)}^{s(T_0)} \frac{b_\gamma^2(s) \, ds}{\lambda_\gamma^3(t)} \\
\lesssim \left(\sup_{t \in [T_0, T]_0} \frac{|b_\gamma(t)|^{7/54}}{\lambda_\gamma^3(t)} \right) \times \left(\frac{\mathcal{N}_1^\gamma(T) + \omega_\gamma(T)}{\lambda_\gamma^3(t)} + \sup_{t \in [T_0, T]_0} \frac{|b_\gamma(t)|}{\lambda_\gamma^3(t)} \right) \\
\lesssim \delta(\eta), \quad (3.19)
\]
provided that \(\gamma < \gamma(\eta) \) small enough.

Finally, for the term
\[
\int_{T-\eta}^{T_0} \frac{\mathcal{N}_1^{\gamma \text{loc}}(t)}{\lambda_\gamma^{27/5}(t)} \, dt,
\]
from (2.64), we have:
\[
\int_{T-\eta}^{T_0} \frac{\mathcal{N}_1^{\gamma \text{loc}}(t)}{\lambda_\gamma^{27/5}(t)} \, dt \lesssim \lambda_\gamma^{\frac{2}{5}}(T - \eta) \int_{s^*_1}^{+\infty} \frac{\mathcal{N}_1^{\gamma \text{loc}}(s)}{\lambda_\gamma^3(s)} \, ds. \quad (3.20)
\]
We claim that
\[
\int_{s^*_1}^{+\infty} \frac{\mathcal{N}_1^{\gamma \text{loc}}(s)}{\lambda_\gamma^3(s)} \, ds \lesssim 1. \quad (3.21)
\]
Indeed, from (2.44), we have for all \(s \in [s^*_1, +\infty) \):
\[
\mathcal{K}_1^\gamma \left(\frac{\varphi'_{2,1}}{\lambda_\gamma^3} \right)_s + \mu \int (\varphi_{2,1})^2 + C_{\gamma}^\gamma \left(\varphi_{2,1} \right)^2 \lesssim \lambda_\gamma^3 b_\gamma^2(\omega_\gamma^2 + b_\gamma^2) - \frac{3}{\lambda_\gamma^3} \mathcal{F}_{2,1}^\gamma. \quad (3.22)
\]
Recall from (3.21) in [10], we have for all \(s \in [s^*_1, +\infty) \):
\[
\int_{y>0} y^2 \varepsilon_\gamma^2(s) \lesssim \left(1 + \frac{1}{\lambda_\gamma^3(s)} \right) \left[\mathcal{N}_2^{\gamma \text{loc}}(s) \right]^\frac{3}{5}.
\]
Together with (2.26), we have for all $s \in [s^*_1, +\infty)$:

$$\left| \frac{(\lambda_7)_{\gamma}}{\lambda_7} F_{\gamma,1} \right| \lesssim \left(|b|_{\gamma} + [N_{1,\text{loc}}]^{\frac{1}{2}} \right) \left(\frac{1}{\lambda^2_{\gamma}(s)} [N_{2,\text{loc}}]^{\frac{s}{2}} + \int \langle \varepsilon \gamma \rangle^2 \psi_B \right)$$

$$\lesssim b^2 + \delta(\kappa) \int \langle \varepsilon_\gamma^2 + \langle \varepsilon_\gamma \rangle^2 \rangle \nu_{2,\ast}.$$

Injecting the above estimate into (3.22) and integrating from s^*_1 to $+\infty$, we obtain:

$$\int_{s^*_1}^{+\infty} \frac{1}{\lambda^2_{\gamma}(t)} \left(\int (\partial_t \varepsilon_\gamma)^2 + \varepsilon_\gamma^2 \right) \nu_{2,B} \lesssim \frac{N_{2}(s^*_1)}{\lambda^3_{\gamma}(s^*_1)} + \int_{s^*_1}^{+\infty} b^2 \left(\omega^2_{\gamma} + b^2_{\gamma} \right) \lambda^3_{\gamma}, \quad (3.23)$$

where we use (2.46) for the above inequality. From (2.50), (2.65), (2.67) and (2.68), we have:

$$\int_{s^*_1}^{+\infty} b^2 \left(\omega^2_{\gamma} + b^2_{\gamma} \right) \lambda^3_{\gamma} \lesssim \langle \varepsilon \rangle^2 \int_{s^*_1}^{+\infty} b^2 \ll 1.$$

From (2.60), we have

$$\frac{N_{2}(s^*_1)}{\lambda^3_{\gamma}(s^*_1)} \lesssim N_{2}(s^*_1) \ll 1.$$

Hence, (3.23) implies (3.21) immediately.

Combining (3.16)–(3.21), we have:

$$\| F \|_{L_{t}^{10/4} L_{x}^{10/9}([T-\eta,T_0])} \lesssim T_0 \delta(\eta), \quad (3.24)$$

provided that $0 < \gamma < \gamma(\eta)$ small enough.

Next, we estimate

$$\| \partial_x F_1(\tilde{u}) \|_{L_{t}^{10/4} L_{x}^{10/9}([T-\eta,T_0])}. \quad \text{(3.25)}$$

Direct computation leads to

$$\| \partial_x F_1(\tilde{u}) \|_{L_{t}^{10/4} L_{x}^{10/9}([T-\eta,T_0])} \lesssim \| \partial_x F_1(\tilde{u}) \|_{L_{t}^{10/4} L_{x}^{4/4}([T-\eta,T_0] \times \mathbb{R})}$$

$$\lesssim \int_{T-\eta}^{T_0} \frac{1}{\lambda^3_{\gamma}(t)} \left[\int (\varepsilon_\gamma y) \left(\langle \varepsilon_\gamma y + 2Qb_y,\varepsilon_\gamma \rangle^4 - \langle \varepsilon_\gamma \rangle^4 \right) \right]_{L_{x}\frac{4}{3}} \frac{d t}{t}$$

$$+ \| (Qb_y) (\varepsilon_\gamma^4 + Qb_y,\varepsilon_\gamma) - Q^4 \langle \varepsilon_\gamma,\varepsilon_\gamma \rangle \rangle_{L_{x}\frac{4}{3}} \frac{d t}{t}$$

Thus from (2.8) and (2.9), we have:

$$\| \partial_x F_1(\tilde{u}) \|_{L_{t}^{10/4} L_{x}^{4/4}([T-\eta,T_0])} \lesssim \int_{T-\eta}^{T_0} \frac{1}{\lambda^3_{\gamma}(t)} \left(\int (\varepsilon_\gamma^2 y + 2\varepsilon_\gamma^2 e^{-\frac{|y|}{4\eta}}) \right)_{L_{x}\frac{4}{3}} + |b|_{4-\frac{4\eta}{3}} \varepsilon_\gamma_{H^1} \frac{d t}{t}$$

$$+ |b|_{4-\frac{4\eta}{3}} \int (\varepsilon_\gamma^2 y + 2\varepsilon_\gamma^2 e^{-\frac{|y|}{4\eta}}) \right)_{L_{x}\frac{4}{3}} + |b|_{4-\frac{4\eta}{3}} \varepsilon_\gamma_{H^1} \frac{d t}{t}.$$

(3.25)
From (2.24) and (2.25), we have for all $s \in [0, +\infty)$
\[\|\varepsilon_\gamma(s)\|_{H^1} + \frac{\|(\varepsilon_\gamma)_y(s)\|_{L^2}}{\lambda_\gamma(s)} \lesssim \delta(a_0) \ll 1. \]
Together with (2.65), (2.67), (3.3), and the fact that $\beta = \frac{2}{3}$, we have:
\[
\int_{T-\eta}^{T_0} \frac{1}{\lambda_\gamma^2(t)} \left[|b_\gamma|^4 - \frac{4\lambda_\gamma}{9} \|\varepsilon_\gamma\|_{H^1}^2 + |b_\gamma|^4 - \frac{9 \eta}{90} \|\varepsilon_\gamma\|_{L^\infty}^3 \|\varepsilon_\gamma\|_{H^1} \right] \frac{dt}{\lambda_\gamma^2(t)} \\
\lesssim \int_{T-\eta}^{T_0} \frac{1}{\lambda_\gamma^2(t)} \left[|b_\gamma(t)|^{\frac{44}{9}} + |b_\gamma(t)|^{\frac{44}{9}} \|(\varepsilon_\gamma)_y\|_{L^2} \right] dt \\
\lesssim \int_{T-\eta}^{T_0} \left[(\varepsilon_\gamma(t))^{\frac{2}{3}} |b_\gamma(t)|^{\frac{44}{9}} + (\varepsilon_\gamma(t))^{\frac{2}{3}} |b_\gamma(t)|^{\frac{44}{9}} \right] dt \lesssim T_0 \delta(\eta),
\]
provided that $0 < \gamma < \gamma(\eta)$ small enough. Then, from (3.20) and (3.21), we have
\[
\int_{T-\eta}^{T_0} \frac{1}{\lambda_\gamma^2(t)} \left(\int \left[\varepsilon_\gamma(t)^2 + \varepsilon_\gamma(t)^2 e^{-\frac{44t}{90}} \right] \right) \frac{dt}{\lambda_\gamma^2(t)} \lesssim T_0 \delta(\eta).
\]
Combining (3.25)–(3.27), we obtain that
\[\|\partial_x F_1(\tilde{u}_\gamma)\|_{\tilde{L}^{5/4}_{\gamma} L^{10/9}_{\gamma}(\mathbb{R} \times [T-\eta, T_0])} \lesssim T_0 \delta(\eta). \] (3.28)
Finally, we estimate the term
\[\|\partial_x F_2(\tilde{u}_\gamma)\|_{\tilde{L}^{5/4}_{\gamma} L^{10/9}_{\gamma}(\mathbb{R} \times [T-\eta, T_0])}. \]
Following from similar arguments, we have
\[
\|\partial_x F_2(\tilde{u}_\gamma)\|_{\tilde{L}^{5/4}_{\gamma} L^{10/9}_{\gamma}(\mathbb{R} \times [T-\eta, T_0])} \leq \|\partial_x F_2(\bigtriangleup u_\gamma)\|_{\tilde{L}^{5/4}_{\gamma} L^{10/9}_{\gamma}(\mathbb{R} \times [T-\eta, T_0])} \times R
\]
\[
\lesssim \gamma^{10/9} \int_{T-\eta}^{T_0} \frac{1}{\lambda_\gamma(t)^{(5q+2)/9}} \left[\|\bigtriangleup Qb, \omega, |q-1| - |Qb, \omega, |q-1| \|_{L^2_x} \right] \frac{dt}{\lambda_\gamma^2(t)} \\
\lesssim \gamma^{10/9} \int_{T-\eta}^{T_0} \frac{1}{\lambda_\gamma(t)^{(5q+2)/9}} \left[|b_\gamma|^4 - \frac{4\lambda_\gamma}{9} \|\varepsilon_\gamma\|_{L^\infty}^3 \|\varepsilon_\gamma\|_{L^2}^2 \right] \frac{dt}{\lambda_\gamma^2(t)} \\
\lesssim \gamma^{10/9} \int_{T-\eta}^{T_0} \frac{1}{\lambda_\gamma(t)^{(5q+2)/9}} \left[|b_\gamma|^4 - \frac{4\lambda_\gamma}{9} \|\varepsilon_\gamma\|_{L^\infty}^3 \|\varepsilon_\gamma\|_{L^2}^2 \right] \frac{dt}{\lambda_\gamma^2(t)}.
\]
We use (2.24), (2.25) and the Sobolev embedding
\[\|\varepsilon_\gamma\|_{L^2} \lesssim \|\varepsilon_\gamma\|_{L^2} \|\varepsilon_\gamma\|_{L^2} \]
again to estimate:
\[
\int_{T-\eta}^{T_0} \frac{\gamma^{10/9}}{\lambda_\gamma(t)^{(5q+2)/9}} \left[|b_\gamma|^4 - \frac{4\lambda_\gamma}{9} \|\varepsilon_\gamma\|_{L^\infty}^3 \|\varepsilon_\gamma\|_{L^2}^2 \right] \frac{dt}{\lambda_\gamma(t)} \\
\lesssim \int_{T-\eta}^{T_0} \frac{\gamma^{10/9}}{\lambda_\gamma(t)^{(5q+2)/9}} \left[|\lambda_\gamma(t)|^{-\frac{5q+2}{10}} + |\lambda_\gamma(t)|^{-\frac{5q+2}{10}} + |\lambda_\gamma(t)|^{-\frac{9q+4}{10}} \right] \frac{dt}{\lambda_\gamma(t)} \\
\lesssim T_0 \delta(\eta),
\]
provided that $0 < \gamma < \gamma(\eta)$ is small enough.
Now it only remains to estimate
\[
\gamma^{10/9} \int_{T-\eta}^{T_0} \frac{[N_{1,\text{loc}}^\gamma(t)]^{\frac{9}{10}}}{[\lambda_\gamma(t)]^{(5q+2)/9}} \, dt.
\]
Recall that
\[
\omega_\gamma(t) = \frac{\gamma}{\lambda_\gamma(t)}.
\]
Together with (2.50) and (2.64)–(2.67), we have
\[
\gamma^{10/9} \int_{T-\eta}^{T_0} \frac{[N_{1,\text{loc}}^\gamma(t)]^{\frac{9}{10}}}{[\lambda_\gamma(t)]^{(5q+2)/9}} \, dt \lesssim \int_{T-\eta}^{T_0} [\omega_\gamma(t)]^{10/9} \frac{[N_{1,\text{loc}}^\gamma(t)]^{\frac{9}{10}}}{[\lambda_\gamma(t)]^{3}} \, dt
\]
\[
\lesssim \int_{T-\eta}^{T_0} \frac{[N_{1,\text{loc}}^\gamma(t)]^{\frac{9}{10}}}{[\lambda_\gamma(t)]^{7/9}} \, dt \lesssim_{T_0} \left[\int_{T-\eta}^{T_0} \frac{N_{1,\text{loc}}^\gamma(t)}{[\lambda_\gamma(t)]^{7/5}} \, dt \right]^{\frac{9}{10}} \lesssim_{T_0} \delta(\eta),
\]
provided that \(0 < \gamma < \gamma(\eta)\) is small enough.
Combining (3.29)–(3.31), we have
\[
\|\partial_z F_2(\tilde{u}_\gamma)\|_{L^{5/4}_{t,x}} \sim_{T_0} \delta(\eta),
\]
which together with (3.24) and (3.28) implies (3.14) immediately.
Therefore we conclude the proof of (3.6) hence, the proof of Lemma 3.1.

Recall from Remark 3.2, we complete the proof of (1.22).
Now it only remains to prove (1.23). From the definition of \(u_{\text{ext}}(t)\), it is easy to see that (1.23) holds true for all \(t < T\). If \(t \geq T\), from Lemma 3.1, we have:
\[
Q_S^\gamma(t, \cdot) \to 0 \text{ in } H^1_{\text{loc}}, \text{ as } \gamma \to 0^+.
\]
For all \(z(t, x) \in C_0^\infty(\mathbb{R} \times \mathbb{R})\), injecting (3.6), (3.33) into the following equation
\[
\int_{\mathbb{R}} u_\gamma(t, x) z(t, x) \, dx - \int_{\mathbb{R}} u_0(x) z(0, x) \, dx
\]
\[
= \int_0^t \left\{ \int_{\mathbb{R}} u_\gamma(s, x) \partial_z z(s, x) \, dx + \int_{\mathbb{R}} u_\gamma(s, x) \partial_x^2 z(s, x) \, dx + \int_{\mathbb{R}} \left[u_5^\gamma(s, x) - \gamma u_\gamma |u_\gamma|^{q-1}(s, x) \right] \partial_x z(s, x) \, dx \right\} ds,
\]
we obtain (1.23) immediately, which concludes the proof of Theorem 1.8.

REFERENCES
1. J. Allen-Flowers and K. Glasner, Nonlinearity saturation as a singular perturbation of the nonlinear Schrödinger equation, SIAM J. Appl. Math. 76 (2016), no. 2, 525–550.
2. H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), no. 4, 313–345.
3. A. Ditkowski, G. Fibich, and A. Sagiv, Loss of phase and universality of stochastic interactions between laser beams, Optics Express 25 (2017), no. 20, 24387–24399.
4. R. Donninger and J. Krieger, Nonscattering solutions and blowup at infinity for the critical wave equation, Math. Ann. 357 (2013), no. 1, 89–163.
5. G. Fibich and M. Klein, Continuations of the nonlinear Schrödinger equation beyond the singularity, Nonlinearity 24 (2011), no. 7, 2003.
6. T. Kato, *On the Cauchy problem for the (generalized) Korteweg-de Vries equation*, Stud. Appl. Math. 8 (1983), 93–128.

7. C. E. Kenig, G. Ponce, and L. Vega, *Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle*, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620.

8. R. Killip, S. Kwon, S. Shao, and M. Visan, *On the mass-critical generalized KdV equation*, Comm. Pure Appl. Math. 65 (2012), no. 1, 191–221.

9. Y. Lan, *Stable self-similar blow-up dynamics for slightly L^2-supercritical generalized KdV equations*, Comm. Math. Phys. 345 (2016), no. 1, 223–269.

10. Y. Lan, *On asymptotic dynamics for L^2 critical generalized KdV equations with a saturated perturbation*, Anal. PDE 12 (2019), no. 1, 43–112.

11. Y. Martel and F. Merle, *A Liouville theorem for the critical generalized Korteweg-de Vries equation*, J. Math. Pures Appl. 79 (2000), no. 4, 339–425.

12. Y. Martel and F. Merle, *Instability of solitons for the critical generalized Korteweg-de Vries equation*, Geom. Funct. Anal. 31 (2001), no. 1, 74–123.

13. Y. Martel and F. Merle, *Blow up in finite time and dynamics of blow up solutions for the L^2–critical generalized KdV equation*, J. Amer. Math. Soc. 15 (2002), no. 3, 617–664.

14. Y. Martel and F. Merle, *Nonexistence of blow-up solution with minimal L^2-mass for the critical gKdV equation*, Duke Math. J. 115 (2002), no. 2, 385–408.

15. Y. Martel and F. Merle, *Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation*, Ann. of Math. 155 (2002), no. 1, 235–280.

16. Y. Martel, F. Merle, K. Nakanishi, and P. Raphaël, *Codimension one threshold manifold for the critical gKdV equation*, Comm. Math. Phys. 342 (2016), no. 3, 1075–1106.

17. Y. Martel, F. Merle, and P. Raphaël, *Blow up for the critical generalized Korteweg-de Vries equation I: Dynamics near the soliton*, Acta Math. 212 (2014), no. 1, 59–140.

18. Y. Martel, F. Merle, and P. Raphaël, *Blow up for the critical gKdV equation II: minimal mass blow up*, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 8, 1855–1925.

19. Y. Martel, F. Merle, and P. Raphaël, *Blow up for the critical gKdV equation III: exotic regimes*, Ann. Sc. Norm. Super. Pisa Cl. Sci. XIV (2015), no. 2, 575–631.

20. J. L. Marzuola, S. Raynor, and G. Simpson, *A system of ODEs for a perturbation of a minimal mass soliton*, J. Nonlinear Sci. 20 (2010), no. 4, 425–461.

21. F. Merle, *Limit behavior of saturated approximations of nonlinear Schrödinger equation*, Comm. Math. Phys. 149 (1992), no. 2, 377–414.

22. F. Merle, *On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass*, Comm. Pure Appl. Math. 45 (1992), no. 2, 203–254.

23. F. Merle, *Existence of blow-up solutions in the energy space for the critical generalized KdV equation*, J. Amer. Math. Soc. 14 (2001), no. 3, 555–578.

24. F. Merle, P. Raphaël, and J. Szeftel, *The instability of Bourgain-Wang solutions for the L^2 critical NLS*, Amer. J. Math. 135 (2013), no. 4, 967–1017.

25. M. I. Weinstein, *Nonlinear Schrödinger equations and sharp interpolation estimates*, Comm. Math. Phys. 87 (1983), no. 4, 567–576.

Department of Mathematics and Computer Science, University of Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland

E-mail address: yang.lan@unibas.ch