Do the Ergonomic Characteristics of Armpit and Aviation Park Sports Equipment Fits with the Anthropometric Parameters of Male Users?

Saeed Ilbeigi1*, Mohsen Ebrahimi2, Mohammad Esmaeil Afzalpour3, Hadi Moazeni2

1. Associate Professor, Sports Biomechanics, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
2. MSc, Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
3. Professor, Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran

ABSTRACT

Background and Objectives: The aim of this study was to investigate the ergonomics of armpits and aviators outdoor (park) based on anthropometry parameters of male users.

Methods: Among male users of these outdoor park equipment, 120 people from Tehran and in the age range over 20 years (48.38±16.27) were selected as a sample. The research variables were the dimensions of the devices and the anthropometry of the male users. The plumb line, engineering meter, ruler, goniometer and static anthropometer kit (caliper) were used to measure the dimensions of the devices and the anthropometry of the users (according to Pheasant instructions). Then, according to the standards of ergonomics and bodybuilding, the science of motor biomechanics and the way of installation on the devices, the fit of the devices was evaluated. Descriptive statistics were used to describe the data and single-group t-test (parametric statistics) and binomial statistics (non-parametric statistics) were used to test the hypotheses.

Results: The results showed that there was a significant difference between most of the desired dimensions of the devices with the relevant and optimal dimensions of users (P value<0.05). Therefore, from the anthropometric point of view, these devices are not ergonomic for male users, and it is necessary to adopt a method for the standardization of these devices.

Conclusion: Most dimensions of underarms and outdoor aviators are not ergonomic from the anthropometric point of view of male users. This mismatch can lead to complications and physical injuries to users. Therefore, users should be careful when using these devices and avoid working with devices that do not fit their physical dimensions.

Keywords: Ergonomics, Anthropometry, Outdoor Bodybuilding Machines, Male Users

How to Cite This Article:
Ilbeigi S, Ebrahimi M, Afzalpour M E, Moazeni H. Do the Ergonomic Characteristics of Armpit and Aviation Park Sports Equipment Fits with the Anthropometric Parameters of Male Users?. Iran J Ergon. 2021; 9(2):17-29
Extended Abstract

Introduction
The aim of this study was to investigate the ergonomics of armpits and aviators outdoor (park) based on anthropometry parameters of male users.

Methods
Among male users of these outdoor park equipment, 120 people from Tehran and in the age range over 20 years (16.27 ± 48.38) were selected as the study sample. The research variables were the dimensions of the devices and the anthropometry of the male users. The plumb line, engineering meter, ruler, goniometer and static anthropometer kit (caliper) were used to measure the devices' dimensions and the users' anthropometry (according to Pheasant instructions). Then, according to the standards of ergonomics and bodybuilding, the science of motor biomechanics and the way of installation on the devices, and the fit of the devices were evaluated. Descriptive statistics were used to describe the data, and single-group t-test (parametric statistics) and binomial statistics (non-parametric statistics) were used to test the hypotheses.

Results
The results showed that there was a significant difference between most of the desired dimensions of the devices with the relevant and optimal dimensions of users (P value<0.05). Therefore, from the anthropometric point of view, these devices are not ergonomic for male users, and it is necessary to adopt a method for the standardization of these devices.

According to study findings 4, there is no significant difference between the optimal horizontal distance between the heel and the toe and the horizontal distance from the bottom of the shoe to the abutment (P value=0.926). But there is a significant difference between the optimal vertical distance between the heel and the toe and the vertical distance from the bottom of the shoe to the abutment (P value<0.05). Furthermore, there is a significant difference between the height of the ridge and the height of the seat, between the length of the seat-ridge and the depth of the seat, as well as between the width of the standardized seat and the width of the seat (P value<0.05).

Underarm device: According to the data in Table 4, there is no significant difference between the optimal vertical distance of the seat to the grip and the vertical distance from the beginning of the seat to the handles (P value= 0.058). But there is a significant difference between the optimal horizontal distance from the shoulder blades to the grip and the horizontal distance from the back of the seat to the handles (P value<0.05).

Aviation device:

The data obtained showed no significant difference between the optimal horizontal distance from the heel to the toe and the horizontal distance from the bottom of the shoe to the abutment (P value=0.926). But there is a significant difference between the optimal vertical distance between the heel and the toe and the vertical distance from the bottom of the shoe to the abutment (P value<0.05).

Device seats:
The data results indicated a significant difference between the ridge height and seat height, between the ridge-ridge length and the seat depth, and between the standardized seat width and seat width (P value<0.05).

Discussion

Underarm device:
The results showed no significant difference between the vertical distance from the beginning of the seat to the handles of the armpit with the optimal
vertical distance from the seat to the grip of male users. Therefore, it seems that this dimension is commensurate with the physical characteristics of the users. But the horizontal distance from the back of the seat to the handles of the armpit was much longer than the optimal horizontal distance from the back of the shoulder blades to the grip of the male users so that people had to pull themselves forward to get the handles. Also, the proper position of this movement, in which the forearms are almost perpendicular and are pulled down in the same position, is disturbing. Therefore, this does not seem to be a suitable device with anthropometric features of male users. Also, the direction of movement of the handles is more appropriate, and it moves towards the user's underarm area. The short horizontal distance of the handles from the back of the seat causes the handles to reach the shoulder area after being pulled slightly, and the user is unable to continue moving. If this device is assumed to be a combination of two movements of the wire and the armpit of the boat, then the position of the handles of the device, which are completely horizontal, does not seem suitable for this operation.

Aviation device:
The fit of ergonomic indices of the aviator (horizontal and vertical distance from the bottom of the shoe to the support) with some anthropometric indices (optimal horizontal and vertical distance from heel to toe) of male users was examined. The results of the research showed that there is no significant difference between the horizontal distance from the bottom of the shoe to the support of the aviator with the optimal horizontal distance between the heel and the grip of male users. Therefore, this dimension of the device seems suitable for male users. But the vertical distance from the bottom of the shoe to the support of the aviator was less than the optimal vertical distance from the heel to the grip of male users. It seems that this dimension of the device is somewhat suitable for short people, but it does not seem suitable for other people.

Device seats:
The results of the study also showed that the height of the armpit seat was higher than the height of the users. The height of the seat should be such that the sole of the foot is in easy contact with the floor [14]. Legs hanging from the front edge cause discomfort in the middle of the thigh [15]. As the seat height is higher than the ridge height, pressure is created on the posterior surface of the thighs. As a result of this pressure, blood flow to the lower extremities of the lower torso decreases, causing drowsiness, murmurs, and swelling of the legs [4]. On the other hand, axillary movement is a relatively heavy movement that can be used as an auxiliary force when using park devices. But the higher the seat height than the ridge height, the less this auxiliary force can be used. Another result of this study was the shallower depth of the armpit seat than the length of the users' buttocks. Although the depth of the seat is less than the 5th percentile of the seat-ridge length, it makes users feel comfortable in the seating area and can lean appropriately on the back of the chair. On the other hand, the depth of the seat is less than the hip-popliteal length, sitting support for the human buttocks is reduced, and a more inadequate level of reliance is created.

Conclusion
Most dimensions of underarms and outdoor aviators are not ergonomic from the anthropometric point of view of male users. This mismatch can lead to complications and physical injuries to users. Therefore, users should be careful when using these devices and avoid working with devices that do not fit their physical dimensions.

Acknowledgement
Thanks to all the people who helped us in this research.

Conflict of Interest
The authors declared no conflict of interest.
آیا مشخصات ارگونومی دستگاه‌های ورزشی پارکی زیربغل و هوایی و یا آنتروپومتریک کاربران مرد تناسب دارد؟

سعدی ایلی بیگی*۱, محسن ابراهیمی صدر۲, محمد اسدی‌مالی‌افضال‌بور۳, هادی موحدی۴

۱. دانشیار، گروه علوم ورزشی، دانشکده علوم ورزشی، دانشگاه پارسیان، برنجک، ایران
۲. کارشناسی ارشد، گروه علوم ورزشی، دانشکده علوم ورزشی، دانشگاه پارسیان، برنجک، ایران
۳. استاد، گروه علوم ورزشی، دانشکده علوم ورزشی، دانشگاه پارسیان، برنجک، ایران

خلاصه

زمینه و هدف: هدف این تحقیق، بررسی ارگونومی دستگاه‌های زیربغل و هوایی فضا با (پارکی) بر اساس آنتروپومتری کاربران مرد است.

روش کار: ۱۳۰ کاربر از پارک‌های شهر تهران در محدوده سنی بالا ۵۰ سال (۱/۵۱-۴/۲۷) به‌عنوان نمونه انتخاب شدند. در ارزیابی توانایی تصویب و ارگونومی دستگاه‌های فضای زیربغل و هوایی فضا با (پارکی) بر اساس آنتروپومتری استفاده گردید. به این‌نگری ای که با دستگاه‌های فضای زیربغل و هوایی فضا با (پارکی) پیشنهاد شد، باید به اینجا بپیشنهاد کرد که این‌نگری یکی از ابزارهای ارزیابی توانایی تصویب و ارگونومی دستگاه‌های فضای زیربغل و هوایی فضا با (پارکی) به‌عنوان گوش و گهر خواهد شد.

نتایج گیری: آماری از مشخصات کاربران و توانایی انتخاب دستگاه‌های فضای زیربغل و هوایی فضا با (پارکی) با استفاده از آماری از مشخصات کاربران و توانایی انتخاب دستگاه‌های فضای زیربغل و هوایی فضا با (پارکی) به‌عنوان گوش و گهر به‌عنوان گوش و گهر خواهد شد.

کلیدواژه‌ها: ارگونومی، آنتروپومتری، دستگاه‌های فضای با (پارکی) کاربران مرد

اطلاعات مقاله

دریافت: ۲۳۱۴/۱۲/۳۰
پذیرش: ۲۰۱۵/۰۵/۱۷
انتشار اولین: ۱۴۰۰/۰۴/۲۰

نویسنده‌ی مسئول:
سعدی ایلی بیگی
دانشجوی، گروه علوم ورزشی، دانشکده علوم ورزشی، دانشگاه پارسیان، برنجک، ایران

پست الکترونیک:
silbeigi@birjand.ac.ir

مقدمه

کودک و خرسدان در شهرها، متناول شده است. پیشینه طراحی، ساخت و استفاده از دستگاه‌های بدن‌سازی پارکی به کشور چین در سال ۱۹۹۹ عهده‌دارهایی که آن‌ها تهیه‌گری و مجوز‌گیری با اعتبار را در کشورشان آگاه گردیده، بری‌گردید. این دستگاه‌ها در ایران نیز در بالای بیش از ۱۳۸۴ در پارک‌های ملت تهران نصب و راهنما شد. استفاده از این دستگاه‌ها، جهت سالی است که در پارک‌های ایران رواج پیدا کرده است. کارشناسان معتقدند، استفاده از وسایل ورزشی در پارک‌ها ب

ورزش بخشی از زندگی سالم است و در فرهنگ ایرانی، هرچه بیشتر از تعداد کسانی که ورزش می‌کند، آن‌ها به ورزش می‌پردازند. وجود فضاهای ورزشی در همه جای دنیا حق شیوه‌پیمایی محسوب می‌شود. از این رو امکاناتی مجاورت تا شهرهای بزرگ می‌شود. هنر و امکانات، سلامت جسمی و روحی خود را حفظ کنند. در سال‌های اخیر، ساختمان و نصب وسایل ورزشی، مانند دوربین‌های فضایی و از راه‌اندازی توان سلامتی و عضلانی و نیز ایجاد نشان و سرویس در بین شهرهای مختلف رونمایی از تغییر در زمینه ورزش و رفتاری می‌باشد. همچنین نیز، در بسیاری از مراکز ورزشی و پارک‌های سالم، وسایل ورزشی و استادیوم‌های ورزشی و تجهیزات ورزشی، مانند دوربین‌های فضایی و از راه‌اندازی توان سلامتی و عضلانی و نیز ایجاد نشان و سرویس در بین شهرهای مختلف رونمایی از تغییر در زمینه ورزش و رفتاری می‌باشد.
در این مطالعه تجربی و کاربردی، در سطح زیربغل و وسایل ورزشی شهری، یکی از مراکز نوزادان و بارداران دستگاهی حکمرانی و کاربردی، دو دستگاه زیربغل و 124 مدل حسگر بر لازم و بهبود گردیده‌های وزنه‌ای این دستگاه‌ها ناکام دارند. بنابراین، در وسایل و تجهیزات انسانی، با پیش‌بینی و ویژگی‌های کاربرد در خودکار آن طراحی شود.

آنها معتقدند، برخی وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان داده شده و بر اساس ابعاد این دستگاه‌ها وسایل ورزشی در وسایل ورزشی نصب‌شده در پارک‌ها علاوه بر این که یکی استاندارد بودن نحوه ساخت و ابعاد این تجهیزات باعث ایجاد کاربران به دستگاه‌های استاندارد در این مطالعه نشان D. Anthropometry
کاربران مرد بود. این ابزار مورد نظر بوسیله شاکل و مترا مهندسی، اندازهگیری و چسبندان، به منظور ارتفاع هر یک از قسمت‌ها بوسیله شاکل و فاصله افقی قسمت‌های مختلف بوسیله مترا مهندسی و از اتصال ناقصی که با استفاده از شاکل روی زمین علامت گذاری شده بود به‌دست آمد. سپس به‌منظور جمع‌آوری اطلاعات انطباق‌متری، نمونه‌ها در این‌گونه اندازه‌گیری حضور یافته و ویژگی‌های انطباق‌متری اولیه آن‌ها در وضعیت بسته و ناشسته در صندلی و با همان بوشی (لباس و کفش) که حین استفاده از دستگاه بر تن داشتند و بر اساس دستورالعمل فیزیون (1997) و بوسیله خطکش‌های فلزی ۱۰۰ و ۲۰۰ سانتی‌متری، گونا و گلویی (کیت انطباق‌متری استاتیک) اندازه‌گیری شده و داده‌های انطباق‌متری اولیه به‌دست آمد. سپس به‌وسیله داده‌های انطباق‌متری اولیه استانداردهای بدن‌سازی و نواحی مثبت‌خوابی به روش و توضیحی که در ادامه ارائه شده است اندازه‌های انطباق‌متری کاربران مورد محسوبه گردید. در این تحقیق، تاکنون دستگاه‌های زیریگل و هولندر این فضای باز بر اساس انطباق‌متری مرتبط کاربران مرد، مورد بررسی و اختلاف بین‌ها بعد از دستگاه‌ها بعد از انطباق‌متری مرتبط، مورد آزمون قرار گرفت. در بعضی از این آزمون‌ها از صدک شد در بعضی از دیگر از میانگین استفاده شد. در ادامه توضیحات لازم در مورد استانداردهای بدن‌سازی و انطباق‌متری و دلایل استفاده از

![شکل 1: مدل خطا زاویای مطلوب شروع حرکت زیریگل](image)

شکل 2. مدل اساسی زواياي مطلوب شروع حرکت زیریگل

می‌باشد. طبق مطلوب و اشکال فوق و قوانین توابع مثلثاتی، فرمول‌های آن‌ها عبارتند از:

$$\text{مقادیر افقی} = (c - d) + a \times \cos 65^\circ + b \times \cos 90^\circ$$

4. Static anthropometry kit

3. Pheasant
قانون عمومی بهینه ابتداي كنار تانچش

که در آن a برابر است با طول شانه-ارنج، b برابر است با طول آرنج-چنگش، c برابر است با "دسترسی چنگش، جلو" d بربر است با طول شانه-چنگش، e برابر است با ارتفاع شانه در حالت نشسته و f بربر با ضخامت ساعد است.

دستگاه هوانورد:

در این دستگاه سه اندازه اصلی ارتفاع عمودی رکاب دستگاه یا تکه‌های گام، طول کف با کشفک و فاصله افقي کنف تا دسته‌ها (شکل 3) در گاربران و دستگاه با یکدیگر مقایسه شده‌اند و با...

فاصله عمودی بهینه ابتداي كنار تانچش

تا نکته گام، طول کف با یکدیگر مقایسه شده و با...

شکل 5. مدل خلاي زواي‌ي مطلوب شروع حرکت هوانورد

از ابعاد آنتروبونتری مورد نظر برای بررسی مشخصات ارگونومي اين دستگاه، "فاصله افقي و عمودي بهينه پاشندا با تانچش (شکل 6)" چنگش (شکل 6) می‌باشد. طبق مطلب و اشکال فوق و قوانين توابع مثلثاتی، فرمول‌های آن‌ها عبارتند از:

فاصله عمودی بهينه پاشندا با تانچش

23
کفل استاندارد شده است (شکل 7). فرمول طول کفل- رکی عبارت است از:

\[a = b - c \]

که در آن \(a \) برای استفاده با طول کفل- رکی، \(b \) برای استفاده با طول کفل- زاویه و \(c \) برای ضخامت ساق در ناحیه رکی است.

برای محاسبه از پهنای بین قرینه فرد در هر گزارش صندلی، کافی است که پهنای نشستنگاه در هر طرف 25 میلی‌متر کمتر از حداکثر پهنای بین باید باشد [11] نیازهای پهنای کفل استاندارد (1/3 سانتی‌متر).

ابعاد آنتروپومتری کاربران:
از ابعاد آنتروپومتری مرد و نظام برای بررسی صندلی دستگاه، میانگین، انحراف استاندارد، صدک‌های 5 و 95 داده‌هایی اولیه و محاسبات آنتروپومتری کاربران مرد به‌ترتیب در جدول شماره 1 و ابعاد مرد نیاز دستگاه‌های بندسازی در جدول شماره 2 شرح داده شده است.

یافته‌ها:
میانگین، انحراف استاندارد، صدک‌های 5 و 95 داده‌هایی اولیه و محاسبات آنتروپومتری کاربران مرد به‌ترتیب در جدول شماره 1 و ابعاد مرد نیاز دستگاه‌های بندسازی در جدول شماره 2 شرح داده شده است.

جدول 1. میانگین، انحراف استاندارد، صدک 5 و 95 داده‌های اولیه آنتروپومتری کاربران مرد (30-50)

رنگرف	رنگرفت	محاسبه										
1	2	3	4	5	6	7	8	9	10	11	12	13
ایستاده												
طول قد												
طول قد												

شکل 7: مدل اندازه‌گیری سطح بدنی دستگاه.
جدول ۲. میانگین، انحراف استاندارد، صدک ۵ و ۹۵ داده‌های محاسباتی آنترپومتری کاربران مرد (۱۴۰۰-۹، نیوتن)

| رنگ | دستگاه | صدک ۵ | SD | میانگین | انحراف استاندارد | فاصله افقی بینهایت تعبیه‌های زیربغل | فاصله عمودی بینهایت ابتدای کفل | تابستان | ۹۱۴۰ | ۲۵

۱. زیربغل

۲. هوارورد

۳. سندلی

۴. دستگاه‌ها

۵. دستگاه‌های یک‌گانه

نتایج آزمون بررسی اختلاف بین اباعد مورد نظر دستگاه‌ها و یوزهای آنترپومتری مربوطه کاربران، در جداول شماره ۴ و ۵ قابل مشاهده است (۹۱۴۰). با توجه به داده‌های جدول ۴، بین فاصله عمودی بینهایت نشیمنگاه تا چرخ و فاصله عمودی ابتدای نشیمنگاه تا دستگیره‌ها، اختلاف معنی‌دار وجود دارد (۹۱۴۰). اما بین فاصله عمودی بینهایت نشیمنگاه تا چرخ و فاصله افقی نشیمنگاه تا دستگیره‌ها، اختلاف معنی‌دار وجود ندارد (۹۱۴۰).
جدول ۴ نتایج آزمون (N=۱۰۰) binomial test

سرچشمه	مقدار cm	منفی	صندلی	دستگاه
- پیشنهاد بهداشت	115	115	115	115
- پیشنهاد بهداشت	34/40	34/40	34/40	34/40
- پیشنهاد بهداشت	37/69	37/69	37/69	37/69
- پیشنهاد بهداشت	37/69	37/69	37/69	37/69

بحث

هدف از انجام مطالعه حاضر بررسی تآسف مشخصات امرکومونی در دستگاه‌های ورزشی پارکی زیرین برلیگ و هوانورد کاربران بر اساس اینکه بین اکثر ابعاد مورد نظر از دستگاه‌ها با ابعاد مربوط به ویزگاهی کاربران مرد، تفاوت معناداری وجود دارد (P<0.05). بنابراین این دستگاه‌ها از نقطه‌نظر امرکومونی کاربران مرد، مناسب نمی‌باشد و اتخاذ روشی جهت استاندارد‌سازی آنها ضروری به نظر می‌رسد. البته باید به محدودیت بینی تحقیق، نتیجه‌گیری نهایی در مورد نتایج تحقیق بنی به محدودیت مواجه شده و امکان مقابله تحقیقات مشابه قابل به بحث و چالش خصیدن تحقیقات که در مورد امرکومونی صندلی‌های مبادلات افتخار بودا صندلی‌های مذکور از نظر نوع و شکل هموافقت دارد و نیز مختصاتی به صندلی‌های دستگاه‌های مورد تحقیق نداشتند. در نتیجه امکان مقایسه وجود نداشت. بنابراین در مورد تمامی آنها، احتمال گزارش داده می‌شود. اما از آن جایی که بر اساس تحقیقات انجامشده در داخل [12-13] و جداول جهانی امرکومونی [14] اندازه نمای ویزگاهی امرکومونی مورد نظر در این تحقیق (به‌جز پیشنهاد کلی)، در مورد پیشتر از زمان است، مقایسه‌ای بین این دو جنس صورت گرفته که امیدوار است برای خوانندگان، مفید واقع گردید.

همچنین بین پیشنهال این استاندارد‌سازی و عرض نشستن‌ها اختلاف معنادار وجود دارد (P<0.05)

دستگاه زیرین برلیگ: با توجه به داده‌های جدول ۴ بین فاصله عمودی بهینه نشستن‌ها با چنگش و فاصله عمودی اندیی نشستن‌ها با دستگاه‌ها اختلاف معنادار وجود ندارد (P<0.05)اما بین فاصله افقی بهینه یافته‌های شانه تا جنگش و فاصله افقی بهینه صندلی تا دستگیره‌ها اختلاف معنادار وجود دارد (P<0.05)

دستگاه هوانورد:

داده‌های جدول ۴ نشان می‌دهد، بین فاصله افقی بهینه باشند با چنگش و فاصله افقی انتهای کف‌شکت تا یک‌سوم چنگش اختلاف معنادار وجود ندارد (P<0.05)اما بین فاصله عمودی بهینه یافته‌های طول کف‌کن تا چنگش و فاصله عمودی انتهای کف‌شکت تا یک‌سوم چنگش اختلاف معنادار وجود دارد (P<0.05)

صندوق دستگاه‌ها:

نتایج داده‌های بالا حاکی از آن است که بین ارتفاع رکی و ارتفاع نشستنگاه، بین طول کف‌کن رکی و عمق نشستنگاه و همچنین بین پیشنهال کل استاندارد‌سازی و عرض نشستن‌ها اختلاف معنادار وجود دارد (P<0.05).
دستگاه هوانورد:

تناسب شاخه‌های ازونوی از دستگاه هوانورد (فصل افقی و عمودی) با برخی شاخه‌های انتروپومتری (فصل افقی و عمودی بهینه‌ای) به دست آمده کاربران مرد بررسی قرار گرفت. نتایج حاصل از این آزمون، که بتواند نشان دهنده کیفیت شاخصه‌های ازونوی از این دستگاه هوانورد باشد، اما فقط اطلاعاتی پیش‌گویی که بدست آمد. از نظر می‌رسد که این بخش شاید با یوزگی جسمی کاربران باشد، اما ممکن است حین اقیمتی، از نظر انتروپومتری، برود. بسیار بیشتر از از افقی افتخال به شیوهٔ یکسانی شاخصه‌های ازونوی کاربران کاربران مرد بوده. یعنی می‌تواند این دستگاه هوانورد با این شاخصه‌های ازونوی به‌طور قابل‌توجهی نشان دهد. اما از نظر نسبت، همچنین وضعیت مناسب این حسکت در آن ساعدی ترکیبی به حالت دستگاه در این حالت نیز به پایین کشیده می‌شود، به‌طور خودگردان. نیز این حسکت به نظر نیم‌بی‌کاران مرد از این دستگاه مناسب و کاربردی است. اما این حسکت که در این دستگاه ناقص می‌باشد، با ناهنجاری‌های زیر بغل و ارتباطات قرقره با دستگاه هوانورد، شاخصه‌های ازونوی ازونوی از این دستگاه کاربران در این حالت نیز به پایین کشیده می‌شود. به‌طور خودگردان. همچنین وضعیت مناسب این حسکت در آن ساعدی ترکیبی به حالت دستگاه در این حالت نیز به پایین کشیده می‌شود.
بودن عمق نشستگاه از صدک 5 طول کف - رکی، موجب می‌شود که کاربران در ناحیه رکی احساس شدند و بتوانند بهتر مناسب به پشتی صندلی تکیه دهند. اما از طرف دیگر، هرچند عمق نشستگاه از طول کف - رکی کمتر است، حمایت نشستگاه از نشیمنگی فرد کمتر می‌شود و سطح ادکاپ‌های پوشش کنونی و ناظر ویژگی‌ها در این صورت بیشتر می‌شود.

16. بازیابی حداکثر عمق نشستگاه کاربر با حاصلضرب عدده صدک در صدک 5 طول کف - رکی می‌سنجد. جایگاه این استاندارد برای صدک 2 طول کف - رکی مناسب نیست.

15. بازیابی حداکثر عمق نشستگاه برای صدک 3 طول کف - رکی در حداکثر صدک 2 طول کف - رکی Suicide رزیک زاده و زمانی Habibi و جاح صالحی (1389) بیان شده است.

باید می‌کند که کاربران در نظر گرفته شود، عمق نشستگاه حاصل برای افزایش نشستگاه در طول کف - رکی در صدک 3 طول کف - رکی می‌سنجد.

23. چنانچه در صدک 2 طول کف - رکی و دشتهای زیر قرار گیرند، می‌توانند باعث ایجاد نگرانی کند و ممکن است، در بعضی شرایط، نیاز باشند.

24. افزایش ایجاد نشستگاه صدک از پهنه کف برای صدک 3 طول کف - رکی کمتر از صدک 4 طول کف - رکی است.

25. این باید با حاصلضرب عده صدک برای صدک 5 طول کف - رکی می‌سنجد.

26. دامنه این عمق نشستگاه برای صدک 2 طول کف - رکی می‌سنجد.

27. دامنه این عمق نشستگاه برای صدک 3 طول کف - رکی می‌سنجد.

28. دامنه این عمق نشستگاه برای صدک 4 طول کف - رکی می‌سنجد.

29. دامنه این عمق نشستگاه برای صدک 5 طول کف - رکی می‌سنجد.
شوهندان در اکثر پارک‌های تهران و دیگر استان‌های کشور نصب شده‌اند. اقدام کنند. دستگاه‌های تغییر در ابعاد را داشته باشند و در صورت امکان برای جابجایی از آب‌سپرهای احتمالی ناحیه از استفاده، این دستگاه‌ها هیچ‌پردازی شوند.

نتیجه‌گیری

بطری خلاق، یافته‌های این پژوهش نشان داد که ابعاد دستگاه‌های زیربغل و هوانورد از نقطه‌نظر انرژومتري کاربران مرد، مناسب نیستند. اهمیت کاربردی این پژوهش در این است که ابعاد زیربغل و هوانورد (فصله‌ای انتهایی کشف شده‌اند) با ویژگی‌های انرژومتري مرتبه کاربران مرد تناسب داشتنند. به نظر می‌رسد اکثر این دستگاه‌های بدن‌سازی شده کاربران مرد، از نظر دقت و حجم و کاهش نیاز به تغییر مواد ویژه در تکنیک‌های مربوط به استفاده از این دستگاه‌ها، بهتر است در هنگام طراحی، ابعاد را از نظر انرژومتري مربوطه کاربران مرد، نشان دهی کند.

منابع مالی

1. Entezari A. The role of park sports equipment in the health of citizens. 2009.
2. Gavial MK, Boudolos K. Match between school furniture dimension and children's anthropometry. Appl Ergon. 2006;37(6):765-73. [DOI:10.1016/j.apergo.2005.11.009] [PMID]
3. Nejatiyan M. The role of park sports equipment in the health of citizens. 2009.
4. Manouchehr H, Moradpour P, Mououdi MA, Agarafie E. Designing ergonomic furniture based on students anthropometry attributes; College of Agriculture and Natural Resources, University of Tehran. Iran J Ergon. 2020;8(3):70-84. [DOI:10.30699/jergon.8.3.70]
5. Fellow C. Total Skiing. Human Kinetics. Paper Book 264 pages. 2011.
6. Reilly T. Physical fitness-for whom and for what?. InSport for all. Proceedings of the World Congress on Sport for all, held in Tampere, Finland, 3-7 June 1990. 1991 (pp. 81-88). Elsevier Science Publishers BV.
7. Zangi Abadi A, Tajik Z, Gholami Y. Analysis of the spatial distribution of the sports furniture and its impact on citizen satisfaction -2010. Geog Environ Studies. 2(3);15-20.
8. Ivanz N. Body Building Anatomy, Translated by: Sabet P. Tehran, Bamdad Publication. 2010, 2nd Edition.
9. Tondrevis F. Kinesiology. Tehran: Teacher Training Tehran University Publication. 2004.
10. Ghabadi Ansroodi K, Farajpour b, Asadi Nia M. Powerlifting. Bamdad Book Publishing. 2006:31-39.
11. Pheasant S. Human, Anthropometry, Ergonomic and Design, Translated by: Choobineh A, Moedi M. Tehran, Markaz Publication. 1997, 4th Edition.
12. Jonidi JA, Sadeghi F. Determination of Static Anthropometrical in Labors 20-60 Years old. J Health Manag. 2009;32:11.
13. Habibi E, Hajsalehi E. Anthropometric assessment for designing primary school classroom desk and bench size. J Health Sys Res. 2011;6(2):186-93.
14. Bayat Kashkooli A, Nazerian M. The determination of the size of the chair students and compare with a chair in used. J Wood Sci. 2012;4(26):772-84.
15. Woodson WE, Tillman B, Tillman PL. Human factor design, United States and Canada: McGraw-Hill. 1992, 2nd Edition.
16. Motamed Zadeh M. Design and Structure of Ergonomic Chair appropriate to Anthropometrical Parameters in Iranian People, Zanjan. Med Sci Univ Publ. 2010;68(17):45-52.