COMPLEX Mg II ABSORPTION IN THE OUTER DISK OF M61

DAVID V. BOWEN, J. CHRIS BLADES, AND MAX PETTINI

Received 1996 July 17; accepted 1996 September 17

ABSTRACT

The increasing availability of high-quality spectra of QSO absorption-line systems at resolutions of only a few kilometers per second is expected to facilitate the translation of the kinematics of components comprising the lines into the spatial distribution of gas around an absorbing galaxy. In this Letter we present Hubble Space Telescope (HST) spectra of Q1219+047, a QSO whose line of sight passes 21 h^{-1} kpc from the center of M61, through the outer regions of an extended H I disk. We detect complex Mg II absorption, spanning a velocity range of \(\approx 300 \text{ km s}^{-1} \), and strong C IV absorption; these are the first UV observations of a QSO absorption-line system arising in the outskirts of a disk of a nearby galaxy at low inclination. Our observations are at odds with models of galaxies in which absorbing clouds corotate with a galaxy’s disk, because M61’s low inclination should give rise to only a few Mg II components spread over a small velocity range in such a model. Hence our results throw doubt on whether absorption-line profiles can be used to infer the spatial distribution of gas around absorbing galaxies.

Subject headings: galaxies: individual (M61) — galaxies: structure — quasars: absorption lines

1. INTRODUCTION

It has long been hoped that the distribution of subcomponents in QSO absorption-line complexes would prove instrumental in understanding how gas is distributed around galaxies. For example, the asymmetric profiles of low-ionization species observed with the Keck Telescope in high-redshift damped Ly\(\alpha \) systems are interpreted as being due to the line of sight to the background QSO passing through a rotating disk (Wolfe 1995; Prochaska & Wolfe 1996), in keeping with the hypothesis that such systems are the early progenitors of late-type galaxies. The direct detection of galaxies responsible for Mg II absorption systems at redshifts 0.2 < z < 1 has provided an opportunity to examine whether the profiles of the absorption lines are related to the properties of the galaxies, particularly their distance from the QSO line of sight (“impact parameter”), their luminosity, or their inclination.

From the small sample of absorbing galaxies surveyed by Bergeron & Boisè (1991), Lanzetta & Bowen (1992) used high-resolution (FWHM of 7–22 km s\(^{-1}\)) data on the Mg II lines to propose that the variation in strength of the subcomponents with velocity was consistent with that expected for absorption by a rotating ensemble of clouds, and that the complexity should decrease with impact parameter. In their model, the important parameter determining the variation in the substructure along many different lines of sight is the inclination of the absorbing disk.

Unfortunately, the identification of a larger sample of absorbing galaxies (Steidel 1995; Steidel, Dickinson, & Persson 1994) and high-resolution spectra (Churchill, Steidel, & Vogt 1996) has failed to confirm that the distribution of subcomponents within a line depends on impact parameter.

Observations of nearby galaxies also show that the characteristics of Mg II absorption lines depend on a wide variety of physical mechanisms (particularly whether the galaxy is interacting with neighboring galaxies), and not simply on impact parameter or galaxy inclination (Bowen, Blades, & Pettini 1995a, hereafter BBP). Moreover, in our own Galaxy, Ca II and Na I absorption lines observed toward distant stars or extragalactic sources (which arise in high H I column densities and which should therefore trace the bulk of the disk gas) are more often found at velocities which are inconsistent with gas corotating with the disk when observed at high resolution (Morton & Blades 1986; Sembach, Danks, & Savage 1993).

In this Letter we present observations of Q1219+047, a QSO whose line of sight passes 4.67 from the center of M61 (=NGC 4303; see Fig. 1), which corresponds to 21.1 h^{-1} kpc at the galaxy’s velocity of 1569 km s\(^{-1}\). M61 is a grand-design spiral of type SAB(rs)bc located near the outer edge of the Virgo Cluster at a projected distance of 8.2 Mpc. It shows little H I deficiency (Giovanelli & Haynes 1985) but may have a high star formation rate (Kennicutt 1983). M61 is a galaxy at low inclination (i = 25°), and the QSO line of sight intercepts the disk at a distance of 1.5 times the optical radius (measured to a surface brightness of 25 mag arcsec\(^{-2}\)). With the spectra presented in this Letter, we test explicitly whether the absorbing gas in the outer regions of a normal spiral galaxy follows the velocity field of the bulk of the disk gas. If it does, we would expect absorption lines to have a simple structure because of the galaxy’s low inclination, causing the line-of-sight velocity component to be small. In fact, we find that the Mg II absorption along the line of sight is clearly complex and contains components spanning a total velocity range of nearly 300 km s\(^{-1}\).

2. OBSERVATIONS AND RESULTS

Q1219+047 was observed with the Faint Object Spectrograph (FOS) and 1.70 circular aperture (B-3) using the G130H and G270H gratings. The QSO (z = 0.094) has a V-band magnitude of 16.8, and was observed for 34.0 minutes with the G270H and 38.3 minutes with the G130H. The spectra were calibrated using standard pipeline software. To obtain a more exact zero point for the wavelength calibration of the G270H
data, we compared the velocity of five strong Fe II absorption lines from Milky Way gas in the QSO spectrum with H I emission along the QSO line of sight taken from the Leiden/Dwingeloo 21 cm H I survey (Hartmann 1994). A shift of $\approx +1.5 \, \text{Å}$ ($= 160 \, \text{km s}^{-1}$) was required to match the velocities. The G130H spectrum had too low a signal-to-noise ratio to measure the wavelengths of Milky Way absorption lines accurately and improve its calibration.

Both G130H and G270H spectra are presented in full, along with complete line identifications, in a forthcoming paper. Plots of the normalized spectra around the position of Mg II and C IV are shown in Figure 2. The signal-to-noise ratios of these data are 4 and 13 per pixel for the G130H and G270H gratings, respectively. The figure marks the rest wavelengths of absorption expected from our own Galaxy, as well as the wavelengths of absorption expected at the systemic velocity of M61. Strong Mg II is detected from both the Milky Way and M61: the equivalent widths, W, of the lines observed from M61 are W(Mg II λ2796) = $1.96 \pm 0.16 \, \text{Å}$, W(Mg II λ2803) = $2.00 \pm 0.18 \, \text{Å}$, W(C IV λ1548) = $1.28 \pm 0.25 \, \text{Å}$, and W(C IV λ1550) = $0.63 \pm 0.25 \, \text{Å}$. From our own Galaxy, we find local absorption at strengths of W(Mg II λ2796) = $0.87 \pm 0.13 \, \text{Å}$ and W(Mg II λ2803) = $1.02 \pm 0.13 \, \text{Å}$. In the lower signal-to-noise G130H spectrum, C IV is absent from Milky Way gas.

A 21 cm H I map of M61 has been constructed by Cayatte et al. (1990). The sight line to Q1219+047 passes just beyond the last H I contour plotted by Cayatte et al. (1990), and represented here by a dashed ellipse.

FIG. 1.—Image of M61 (NGC 4303) reproduced from the STScI Digitized Sky Survey. The position of the QSO is marked. The sight line passes just beyond the last H I contour plotted by Cayatte et al. (1990), and represented here by a dashed ellipse.

FIG. 2.—Portions of the normalized FOS spectra of Q1219+047 around the wavelength region expected for Mg II (upper panel) and C IV (lower panel) absorption from M61. Unresolved Mg II absorption lines are seen from our own Milky Way, but the Mg II detected from M61 is clearly resolved and contains an asymmetric blue wing. Theoretical line profiles are shown to illustrate the LSF of the FOS (dotted line) and the extra component 290 km s$^{-1}$ to the blue. Strong C IV absorption is also detected in M61, whereas C IV absorption from our own Galaxy is absent.

Unfortunately, the G130H spectra is of too low a signal-to-noise ratio to reveal any excess absorption in the C IV absorption lines from M61. Nevertheless, it is clearly strong
compared to Milky Way absorption, which is not detected. Unlike Mg II, C IV absorption lines in our own halo are not saturated, and the strong lines seen in M61 probably reflect a significantly larger column density than that detected locally. Considering that the HI column density is lower along the line of sight, this suggests that some portion of the gas in the disk and/or halo of M61 is more highly ionized than it is in the Milky Way. Discerning whether this highly ionized gas is found over the same velocity range as the Mg II lines, or whether it arises exclusively in the same components marked by the excess Mg II absorption at $v < -290$ km s$^{-1}$ blueward of the bulk of the absorption, will require higher signal-to-noise data.

3. DISCUSSION

Since M61 is at low inclination, we would expect any velocity component from absorbing gas along our line of sight originating from the disk of the galaxy to be small. However, the Mg II absorption is clearly complex and spans a velocity range $\Delta v \approx 300$ km s$^{-1}$. This is larger than the range of velocities seen from the HI gas observed across the entire galaxy ($\Delta v \approx 200$ km s$^{-1}$); hence the complexity of the absorption cannot be related to the inclination of M61’s disk to the line of sight.

The bulk of the Mg II absorption occurs at $v_{eq} \approx 1560$ km s$^{-1}$, close to the systemic velocity of the galaxy (1569 km s$^{-1}$). However, the velocity of the HI gas seen in 21 cm emission near the sight line is $v \approx 1640$ km s$^{-1}$, some 80 km s$^{-1}$ higher than the Mg II absorption. As noted in §2, we have attempted to zero-point the wavelength calibration of the spectrum as accurately as possible. Because 80 km s$^{-1}$ corresponds to a shift of only 1.5 pixels, we cannot be sure that the measurement of the bulk of the absorption is in error by a similar amount. HI gas is detected at 21 cm from column densities which can be several dex larger than those in which the Mg II occurs (Mg II absorption lines of the strength detected here arise in gas which is optically thick at the Lyman limit, i.e., N(HI) $\approx 2 \times 10^{17}$ cm$^{-2}$); hence Mg II absorption lines will arise from the same HI detected at 21 cm, but could, in addition, arise from gas which remains undetected at 21 cm. Thus the observed Mg II absorption does not have to be centered at the same velocity as the HI. Determining whether the difference in velocity is real or is due to wavelength calibration errors will require further observations, but the uncertainty in the absolute velocity of the absorption does not affect the relative velocity difference between the excess absorption and the main body of the Mg II line.

The large velocity range over which Mg II absorption is observed suggests that the distribution of subcomponents comprising the absorption complex cannot be related to the velocity field of the disk of M61. Asymmetric profiles similar in shape to that observed in M61 are predicted for highly inclined disks (Lanzetta & Bowen 1992), not for galaxies at low inclination. Our observations therefore show that the shape of absorption-line profiles seen in higher redshift absorption systems need not have anything to do with rotating ensembles of gas clouds in inclined galaxy disks.

The complicated absorption could be evidence of the two-component model for Mg II absorption, in which Mg II absorption arises in both high N(H I) disk gas and lower N(H I) halo gas (Briggs & Wolfe 1983). The bulk of the Mg II absorption would be expected to arise in the disk of the galaxy in this model, and the fact that it does not appear to be close to the velocity of the HI gas in the disk measured from 21 cm emission is hard to understand. Nevertheless, as we have noted, the absolute wavelength scale of the FOS spectrum may be in error. Even disregarding this observation, the relative velocity difference of ≈ 300 km s$^{-1}$ between disk and halo gas is just as hard to interpret. If the halo were completely at rest with respect to the disk of the galaxy, the difference in velocity between halo and disk gas along the line of sight should be no more than the maximum amplitude of the galaxy’s rotation curve. Again, the 21 cm maps of M61 show that this value should be ≈ 100 km s$^{-1}$. Hence we believe that a simple two-component disk-halo model of the absorbing gas may not be adequate to describe the observed absorption.

It is also possible that the complex absorption has nothing to do with gas intrinsic to M61, but is the superposition of absorption lines from the overlapping halos of nearby galaxies. There are two nearby galaxies, NGC 4292 and NGC 4303A, 7'58 and 12'66 away from the QSO sight line, respectively. The velocity of NGC 4292 is $v_{eq} = 2258$ km s$^{-1}$, 690 km s$^{-1}$ higher than M61, which puts it ≈ 1000 km s$^{-1}$ away from the velocity of the excess absorption seen in the QSO spectrum. For this reason alone, it seems unlikely that NGC 4292 contributes to the absorption complex, as there is no evidence for such large motions in the halos of normal galaxies. NGC 4303A is closer in velocity to M61, $v_{eq} = 1273$ km s$^{-1}$, a difference of ≈ 290 km s$^{-1}$ between the galaxy and M61, almost the same as that detected in the QSO spectrum. In the model where single galaxies are surrounded by spherical halos, the radius of the absorbing cross section, $R_{Mg II}$, is related to the galaxy’s luminosity, L, by $R_{Mg II} \approx 35 h^{-1} (L/L^*)^{0.2}$ (Steidel 1995), at least for galaxies at redshifts 0.2 $< z < 1.0$. In Table 1 we list the separation of the galaxies from the QSO sight line, ρ, and the value of $R_{Mg II}$ (for $M^* = -19.5$). For NGC 4292 and NGC 4303A, $\rho/R_{Mg II} > 1$, that is, the predicted radii of the spherical Mg II halos simply do not extend far enough to intercept the QSO line of sight. It therefore seems unlikely that the complex absorption arises from the overlapping halos of neighboring galaxies.

If the complex absorption seen toward M61 does not arise from systematic—as opposed to random—gas motions within a galaxy, what else might cause the complex absorption? The large velocity range that the absorption covers is most reminiscent of absorption from the high-velocity clouds (HVCs) seen in our Galaxy (Savage et al. 1993; Bowen, Blades, & Pettini 1995b; Sembach et al. 1995 and references therein). The problem in relating Galactic HVCs to the more general phenomenon of QSO absorption lines is that their origin is still unresolved. There is evidence of HVCs in some external galaxies, such as M101 and NGC 628 (van der Hulst & Sancisi 1988; Kamphuis 1993), which are both galaxies with small inclinations and which show HI complexes with sizes of several kiloparsecs. In both cases, the difference in velocity between the HVC complexes and the systemic velocity of the galaxy are only of order 100 km s$^{-1}$, less than the 300 km s$^{-1}$ found for the Mg II complex in M61. As noted above, however,
the HVCs and the Mg II lines arise in HI column densities which can differ by several dex, and they may therefore have different velocity structures.

One of the explanations for the origins of some of the Milky Way HVCs is that they are the result of interactions between the Galaxy and neighboring satellites. Since M61 has the two close neighbors discussed above, it is possible that such interactions may have influenced the distribution of HI in the galaxy, both spatially and kinematically. There is no evidence for the more severe distributions that lead to large, extended tidal tails spread well away from the center of a galaxy, and which can certainly lead to the observations of complex metal line absorption (BBP; Bowen et al. 1994), although the high rate of supernovae and the high density of H II regions (Hodge & Kennicutt 1983) seen in M61 could have been triggered by such interactions.

The effects of galaxy-galaxy interactions on the properties of QSO absorption-line systems have been largely ignored, partly because there are too few of the “classic” interacting systems seen at the present epoch to account for the number of systems detected at higher redshift but also because it is difficult to generalize what the effects of interactions would be on the observed absorption systems. In the case of M61, the effect is even more subtle, if complex Mg II absorption has been induced from very mild galaxy-galaxy interactions that do not show up in any other obvious way. If the interaction rate between galaxies has been higher in the past, as is being inferred from HST images of the distant universe (Abraham et al. 1996; van den Bergh et al. 1996), then the effects of interactions on even apparently normal galaxies should be evident in the characteristics of the absorption lines that arise from gas associated with those galaxies.

Whether the complex absorption seen in the disk of M61 arises because of isolated HVCs in the galaxies, from weak galaxy-galaxy interactions, or simply from normal interstellar processes, the line profiles indicate that it may not be so easy to translate the kinematic structure of high-resolution absorption-line profiles to the spatial structure of interstellar gas in absorbing galaxies. Future observations with HST and STIS (particularly of the higher ionization lines) will enable us to confirm our result and probe the kinematics of M61’s disk in more detail.

We thank Dap Hartmann for providing H I spectra from the Dwingeloo/Leiden 21 cm survey to help calibrate the FOS data. D. V. B. and J. C. B. acknowledge financial support from HST grant GO-5451.

REFERENCES

Abraham, R. G., Tanvir, N. R., Santiago, B. X., Ellis, R. S., Glazebrook, K., & van den Bergh, S. 1996, MNRAS, 279, L47
Bergeron, J., & Boissé, P. 1991, A&A, 243, 344
Bowen, D. V., Blades, J. C., & Pettini, M. 1995a, ApJ, 448, 634 (BBP)
———. 1995b, ApJ, 448, 662
Bowen, D. V., Roth, K. C., Blades, J. C., & Meyer, D. M. 1994, ApJ, 420, L71
Briggs, F. H., & Wolfe, A. M. 1983, ApJ, 268, 76
Cayatte, V., van Gorkom, J. H., Balkowski, C., & Kotanyi, C. 1990, AJ, 100, 604
Churchill, C. W., Steidel, C. C., & Vogt, S. S. 1996, ApJ, 471, 164
Diplas, A., & Savage, B. D. 1994, ApJ, 427, 274
Elvis, M., Lockman, F. J., & Wilkes, B. J. 1989, AJ, 97, 777
Giovanelli, R., & Haynes, M. P. 1985, ApJ, 292, 404
Hartmann, D. 1994, Ph.D. thesis, Univ. Leiden
Hodge, P. W., & Kennicutt, R. C. 1983, AJ, 88, 296
Kamphuis, J. 1993, Ph.D. thesis, Univ. Groningen

Kamphuis, J. 1993, Ph.D. thesis, Univ. Groningen

L80 BOWEN, BLADES, & PETTINI

REFERENCES

Kennicutt, R. C. 1983, ApJ, 272, 54
Lanzetta, K. M., & Bowen, D. V. 1992, ApJ, 391, 48
Morton, D. C., & Blades, J. C. 1986, MNRAS, 220, 927
Prochaska, J. X., & Wolfe, A. M. 1996, preprint
Savage, B. D., et al. 1993, ApJ, 403, 116
Sembach, K. R., Danks, A. C., & Savage, B. D. 1993, A&AS, 100, 107
Sembach, K. R., Savage, B. D., Lu, L., & Murphy, E. M. 1995, ApJ, 451, 616
Steidel, C. C. 1995, in Quasar Absorption Lines, ed. G. Meylan (Berlin: Springer), 139
Steidel, C. C., Dickinson, M., & Persson, S. E. 1994, ApJ, 437, L75
van der Hulst, J. M., & Sancisi, R. 1988, 95, 1354
Wolfe, A. M. 1995, in Quasar Absorption Lines, ed. G. Meylan (Berlin: Springer), 13