BACKGROUND: Central nervous system germ cell tumor (CNSGCT) is a rare pediatric brain tumor. However, they are found at a relatively high incidence in East Asia. Germ celloma is sensitive toward radiotherapy and chemotherapy; however, non-germ cellomas (NGGCC) often show poor response. Some cases are a mixture of germ celloma and NGGCC (mixed GCT), and they sometimes change histological subtypes at recurrence. Previous report demonstrated that a germinoma and NGGCC component within the same mixed GCT tissue shared the same gene mutation, whereas the genome-wide methylation profiles of germinomas was similar to the primordial germ cells (PGC) at the migration phase, supporting a model that PGC is the cell of origin for CNSGCT. However, tumor heterogeneity hinderst information of possible targets. RNA-seq analysis can help in elucidating the mechanism of tumor development. The purpose of this study was to investigate the tumor cells subpopulations at the resolution of individual cells by single-cell RNA-seq.

RESULTS: Fresh surgical tumor tissue was immediately dissected mechanically and enzymatically. Tumor cells are separated from CD45-labelled lymphocytes by FACS, and libraries were generated by Chromium Single cell 3' Reagent Kit. Total of 11 tumor samples were collected and sequenced. Unsupervised Clustering showed individual clusters. One of the clusters had high expression of Oct-4, which is a marker of germinoma. The other clusters showed different subtypes of cells representing the heterogeneity of CNSGCT. Further analysis including a pseudo-time course analysis is underway to identify the lineage of tumor cell development.

GCT-63. STEREOTACTIC RADIOTHERAPY FOR RESIDUAL LESIONS OF CONVENTIONAL GERM CELL TUMORS AFTER CONVENTIONAL RADIOTHERAPY: A RETROSPECTIVE STUDY
Minpuo Lai, Juan Li, Qinxing Hu, Zhaoming Zhou, Lei Wen, Cheng Zhou, Changguo Shan, and Linbo Cai; Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, China

OBJECTIVE: To explore the efficacy and safety of SRS for residual lesions of NGGCTs after conventional RT. METHODS: The clinical data of patients with iGCT who were admitted to Department of Oncology, Guangzhou Children’s Hospital between January 2008 and January 2019 were gathered. Those who were pathologically or clinically diagnosed with NGGCTs, with lesions located at pineal region, limited stage and residual lesions (with a maximum diameter>10mm) of pineal NGGCTs after RT were included. The median follow-up time was 34 months (range 8–142 months). After a month of treatment with SRS, the ORR and DCR were 71.4% and 95.2%, respectively. During follow-up, 5 cases had radiographic progressions, including 3 cases combined with increased AFP which were diagnosed with local recurrence and 2 cases diagnosed with GTS; The 3-year PFS and OS were 85.2% and 88.0%; no acute radiation response was found after treatment with SRS, and only one patient had brain necrosis. CONCLUSION: SRS for residual lesions of NGGCTs after RT is proved to be safe and feasible, with well tolerance, which is beneficial for the improvement of local control and the prolongation of survival.

GCT-64. TREATMENT RESULTS IN CHILDREN WITH LOCALIZED CNS NGGCC
Irina Vilesova1, Ekaterina Tarasova1, Andiia Volakhrimova1, Ekaterina Salnikova1, Alexey Pshonkin1, Galina Novishkova1, Alexander Karachinksky1, and Ludmila Papusha1; Dmitry Rogachev National Medical Research Center Of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation, 2Russian Children’s Clinical Hospital, Moscow, Russian Federation, 3National Medical Research Center of Neurosurgery, Moscow, Russian Federation

BACKGROUND/OBJECTIVES: Treatment of children with CNS NGGCC remains challenge: 5y OS is 60 – 80%; relapses are very aggressive. METHODS: Between 2003 and 2019, 14 children (median age 10.5, range 4 – 16 years) with localized intracranial NGGCC were treated with RT after induction chemotherapy (focal – 4, WVI+boost – 6, WBI+boost – 3, CSI+boost – 1). Tumor markers were elevated in 13 patients: 6 – AFP, 5 – HCG, 2 – both. One patient with level of HCG 7294 IU/ml in serum and 121451 IU/ml in CSF received 4 cycles of PEI + CSI 30 Gy with boost 54Gy. RESULTS: At a median follow-up of 4,7 years (range 1 – 16,25 years), 12 patients are alive. 3-year PFS and OS are 77,1% and 85,5%. The 2 patients died. One patient with high level of HCG recurred after therapy (WVI+boost – 1, focal – 1), both are alive. The first of them at recurrence (mts of lateral ventricle) received 4 cycles of PEI and WBI+boost. The second patient with high level of HCG recurred after therapy (WVI+boost – 1, focal – 1), both are alive. The first of them at recurrence (mts of lateral ventricle) received 4 cycles of PEI and WBI+boost. CONCLUSIONS: Good results of treatment of localized CNS NGGCC with CSI, WBI or WVI in compare with focal RT show advantages of extended irradiation field. CSI should be considered for patients with extremely high levels of tumor markers and respectively poor prognostic histology.

GCT-65. INCIDENCE AND OUTCOME OF INTRACRANIAL MALIGNANT GERM CELL TUMOURS DIAGNOSED IN WESTERN DENMARK IN THE LAST DECADE
Jannine Lassen-Ramshad1, Ines Ackerl2, Louise Tram Henriksen2, Ruta Tuckviciene1, Ines Ackerl Kristensen2, Gorm von Oettingen1, Soren Cortum3, Anne-Birgite Als4, Akmal Sofwat1,5, and Mads Agerbak2; 1Danish Centre For Particle Immunology, Moscow, Russian Federation, 2Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark, 3Pediatric Department, Aalborg University Hospital, Aalborg, Denmark, 4Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark, 5Department of Oncology, Aarhus University Hospital, Aarhus, Denmark

INTRODUCTION: Intracranial malignant germ cell tumours (iGCT) are rare brain tumours mainly diagnosed in children and younger adults. MATERIAL AND METHODS: A retrospective analysis was performed by chart review of patients treated for iGCT in the northern and central region of Denmark. Teratoma only patients were not included in the study. RESULTS: 20 patients with iGCT were diagnosed from 2001-2019. The cumulative incidence was 1.05 per 100,000. The yearly incidence was 0.1 per 100,000. Mean age at diagnosis was 18 years (range 8–36 years), 17 were males and 3 were females. 13 patients presented with germinoma and 7 patients with non germimomatous germ cell tumours (NGGCC). Three patients had disseminated disease, two with germinoma and one with NGGCC. All patients had received radiotherapy and 18 patients were treated with multidrug chemotherapy including platinum and etoposide before irradiation. Two patients experienced recurrent disease, both non disseminated at diagnosis, one patient with germ cell tumour and one patient with NGGCC. One patient received salvage treatment including high dose chemotherapy with stem cell transplantation and reirradiation. Two NGGCC patients died, one patient after development of an anaplastic astrocytoma in the radiation field five years after radiotherapy and one patient after intracranial recurrence 18 months after salvage treatment for recurrent disease. Overall survival was 90%, 100% for GCT and 71% for NGGCC. CONCLUSION: The outcome of patients with iGCT in Western Denmark was comparable to the literature. A nationwide study of epidemiology and outcome of iGCT in Denmark is planned.

GCT-66. FINAL REPORT OF THE PROSPECTIVE NEXT/CNS-GCT-4 CONSORTIUM TRIAL (GEMPOX FOLLOWED BY MARGO-ABLATIVE CHEMOTHERAPY) IN PATIENTS WITH REFRACTORY/RECURRENT CNS GERM CELL TUMORS
Margaret Shatara1, Megan Blue2, Joseph R. Stanek1, Brian S. Hitt3, Allison Y. Liu1, Diana S. Osorio1, Mohamed S. AbdelBaki1, Daniel Prevedello1, Vinay Pudavalli1, Pierre Gligo2, Sharon Gardner3, Jeffrey Allen4, Kenneth E. Wong3, Girish Dhalp6,10, and Jonathan L. Finlay; 1Department of Hematology/Oncology, Saitama Children’s Medical Center, Saitama, Japan, 2Department of Oncology, Aarhus University Hospital, Aarhus, Denmark, 3Department of Medicine, Mitaka, Tokyo, Japan, 4Children’s Hospital of Los Angeles, Los Angeles, CA, USA, 5The Ohio State University, Columbus, OH, USA, 6New York University School of Medicine, New York, New York, USA, 7Children’s Hospital of Los Angeles, Sacramento, CA, USA, 8The University of Alabama at Birmingham, Birmingham, AL, USA, 9Children’s Hospital of Alabama, Birmingham, AL, USA

BACKGROUND: We report the responses, toxicities and long-term outcomes of gemcitabine, paclitaxel and oxaliplatin (GemPox) regimen administered, in responsive patients, prior to single cycle marrow-ablative chemotherapy (thiotepa, etoposide and carboplatin) with autologous hematopoietic progenitor cell rescue (HDCT+ASHP/CR). METHODS: Since De-
cember 2009, 11 recurrent/refractory patients (10 MMGCT, 1 germinoma; 10 males; mean age 16.5 years, range 7–46 years) have been treated with up to four cycles of gemcitabine (800mg/M2), paclitaxel (170mg/M2) and ifosfamide (3.65g/M2) administered with G-CSF. RESULTS: All 11 patients were enrolled on a prospective multi-center trial, which was closed in October 2019. Three patients achieved complete remissions (tumor marker and/or imaging studies), five achieved partial remission, two developed disease progression (PD), and one was withdrawn after one cycle for severe paclitaxel neurotoxicity followed by rapid tumor progression and death. One patient with PD after one cycle had pathologically-confirmed metastatic transformation to pure embryonal rhabdomyosarcoma, and rapidly expired. A second patient, with pure pineal germinoma, progressed after the second GemPix cycle, ultimately died of tumor progression. Eight of the 11 responsive patients subsequently underwent HD-Cx+AuHPCR: five of these received some form of radiotherapy; seven patients (six MMGCT, one germinoma) are alive and disease-free without recurrence for a mean of 9.2 months (range 74–118 months) since completion of therapy. CONCLUSION: GemPix is an effective re-induction regimen for patient with recurrent CNS germ cell tumors, with acceptable toxicities; when followed by narrow-attenuation chemotheraphy and subsequent irradiation/re-irradiation, the regimen produces encouraging long-term disease-free survival.

GCT-66. CENTRAL NERVOUS SYSTEM GERMINOMA IN TWO CAUCASIAN AMERICAN SIBLINGS WITH AUTISM SPECTRUM DISORDER
Stephanie Toll1,2, and Hamza Gorsi1,4; Children’s Hospital of Michigan, Detroit, MI, USA, 1Central Michigan University, Mount Pleasant, MI, USA

BACKGROUND: Central nervous system germ cell tumors (CNS-GCT) account for approximately 5% of all pediatric brain tumors. These tumors are diagnosed in young and middle-aged patients, but have been observed in KIT and rare germ line variants in a Japanese cohort. Chromosomal abnormalities, specifically Klinefelter Syndrome, are associated with increased tumor development and familial cases have been reported, but no germ line variant has been known. We describe a pair of siblings, both with autism spectrum disorder (ASD) that developed CNS-GCT, which previously has not been described outside of Japan. CASES: We report two siblings with ASD who developed CNS germinomas within two months of each other. The basal ganglia and hypothalamic tumors, underwent surgical resection followed by treatment per ACNS0232 with chemotherapy and whole-ventricular irradiation (WVI). The younger sibling, with a mid-brain tumor, also received ACNS0232, but due to poor response required additional chemotherapy and WVI. Both siblings are without evidence of disease 7 years after end of therapy. Genetic testing, including chromosomal microarray, karyotyping, and whole genomic sequencing did not elucidate any variant identified as causative at that time. CONCLUSIONS: CNS-GCT are rare tumors, diverse in both histopathologic diagnosis and clinical presentation. Despite there are known constitutional alterations and ongoing chromosomal disorders associated with increased tumor development, but no known inheritable causes. Despite this, familial CNS-GCT have been reported in patients of Japanese descent. The description of two Caucasian American siblings with ASD and CNS-GCT is novel, refuting that familial CNS-GCT are limited to the Japanese population.

GCT-69. VOLUMETRIC CHANGE BEFORE CHEMORADIOThERAPY AND INFLUENCE OF DIAGNOSTIC RADIATION EXPOSURE IN INTRACRANIAL GERMINOMAS
Yasushi Nagaoka1,2,3,4, Kiyoharu Hizawa1,2,3,4, Kazuhiko Yonemura2,3,4, Naoko Kiyomiya2,3,4, Ryo Yoshikawa2,3,4, and Hiroaki Tokyo2,3,4; Osaka University Graduate School of Medicine, Osaka, Japan, 1Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan, 2Department of Neurosurgery, Osaka Women’s and Children’s Hospital, Osaka, Japan, 3Department of Neurosurgery, Osaka Rosai Hospital, Osaka, Japan

BACKGROUND: Spontaneous regression in intracranial germ cell tumors has been reported in some literatures, but the mechanism has not been well known. We retrospectively measured the tumor volume before chemoradiotherapy and analyzed factors that influence reduction of tumor volume. PATIENTS AND METHODS: Plural MRI scans of 27 patients with primary intracranial germ cell tumors were analyzed. Tumor volume was measured using the computer-assisted volumetric method based on MRI. The volumetric change between the first MRI and the scan immediately before chemotherapy was defined as shrinking rate (%). Period between disease onset and the first chemotherapy was 20 to 47 days. Diagnostic radiation dose was calculated in each case. RESULTS: Intra- cranal tumor volume ranged from 0.962 to 72.356 cubic centimeters (mean: 8.27%). Diagnostic radiation dose: 40.5 to 910.1 mGy. Shrinking rate ranged from -57.8 to 85.4% (mean: 30.8%). In 10 regions, shrinking rate was within 30%. Shrinking rate was significantly positively influenced by diagnostic radiation dose (p<0.05) and negatively influenced by initial volume (p<0.05). But, other factors such as age, sex, histopathological parameters did not influence tumor shrinkage. CONCLUSION: This study shows that the role of radiation therapy has been underestimated historically before chemoradiotherapy in many cases. Diagnostic exposure to low-dose radiation influences tumor shrinkage of intracranial germinomas.

GCT-70. INTRACRANIAL GROWING TERATOMA SYNDROME IN CHILDREN
Maria Carter Febres1, Carol S. Bruggers1, Holly Zhou1, Arie Perry1, John Kestle1, and Nicholas Whipple1; University of Utah, Salt Lake City, Utah, USA, 1University of San Francisco, San Francisco, California, USA

Germ cell tumors account for less than 5% of all intracranial tumors. Intracranial growing teratoma syndrome (GTS) is a rare pathophysio logic process characterized by growth of mature teratoma elements of a non-germinomatous germ cell tumor (NGGCT) during or following treatment with chemotherapy, in addition to normalization of or declining AFP/HCG of the cerebral spinal fluid (CSF)/serum. A 13-year-old male presented with headache, emesis, and diplopia. MRI of the brain revealed a localized 3.1 x 3.1 x 3.2 cm pineal tumor. Biopsy confirmed NGGCT (germinoma, immature and mature teratoma). Serum AFP (227ng/ml) and βHCG (12 IU/L) and CSF AFP (211ng/ml) and βHCG (31 IU/L) were elevated. Preoperatively, the two of chemotherapeutic agents of ACNS0232 were administered: the first course of chemotherapy was delayed due to hearing loss. Repeat MRI brain demonstrated tumor enlargement (4.4 x 5.2 x 5.1 cm) and obstructive hydrocephalus, although serum AFP/βHCG had normalized. Gross total resection of tumor confirmed GTS, without residual tumors. Following surgical resection, the patient was treated with carboplatin, etoposide, ifosfamide and proton beam craniospinal irradiation (36 Gy with 18 Gy boost), he remains free of disease at eleven months since diagnosis. The pathogenesis of GTS remains unclear. Care must be taken to avoid misdiagnosing GTS as progressive NGGCT, as treatment and prognosis differ significantly. Second-look surgery, with a goal of complete resection, should be considered in cases of NGGCT when residual tumor grows during or following therapy, as this may represent GTS. Although histologically benign, GTS can be fatal. In patients with GTS, complete resection is usually curative.

GCT-71. SIOP STRATEGY TREATMENT FOR CENTRAL NERVOUS SYSTEM GERM CELL TUMORS IN A MIDDLE INCOME COUNTRY
Agustina Oller1, Claudia Sampaio1, Lorena Baroni1, Candela Freytes1, Nicolas Fernandez Ponce1, Gabriela Villanueva1, and Daniel Alderete1; Garrran Hospital, Buenos Aires, Buenos Aires, Argentina

BACKGROUND/OBJECTIVES: Central nervous system (CNS) germ cell tumors (GCTs) represent 3% of primary paediatric brain tumors in occident. They can be divided into major groups including germinomas and non-germinomatous GCTs (NGGCTs). The aim is to describe demographic characteristics, Event Free Survival (EFS) and Overall Survival (OS) in patients with GCTs treated at Oncology Unit of Garrran Hospital (HG). DESIGN/METHODS: Retrospective analysis of patients with GCTs admitted between September 1st 2000 to September 1st 2018. Variables ana lyzed: age, localization, treatment, relapse and death. Patients were treated per SIOP-CNSGCTs protocol. For statically analysis SPSS (IBM), for EFS/ OS Kaplan-Meyer, Long-rank for significance. RESULTS: Fifty-seven patients included, comprising 38 Germinomas and 19 NGGCTs. Median age was 146 months (range 11–228). Primary site in localized Germinomas were pineal (16p), suprasellar (7p) and bifocal (7p). Five-year EFS and OS of 100% and 88.5%, respectively. Four patients presented metastatic disease, with an EFS and OS of 60.9% and 66.6%. Tumor site in localized NGGCTs were pineal (8p) and suprasellar (5p). Five-year EFS was 81.8% and OS was 80.2%. No patients presented metastatic disease. All patients with high-risk tumor markers at diagnosis relapsed. No significant differences were found in OS neither EFS between groups (Germinomas OS5y 90% vs NGGCTs 74.6% p=0.19) [CI95%:0.786-1.689], (Germinomas EFS 78.9% vs NGGCTs 81.8% p=0.85) [CI95%:0.304-4.233, Global OS and EFS5y was 83% and 72.9%. CONCLUSION: OS of our cohort is lower than what has been shown in current literature. This result may be related to the lack of resources and lower social economic status in our population.

GCT-72. ANALYSIS OF MICRONA EXPRESSION PROFILE OF INTRACRANIAL GERM CELL TUMORS: A PROMISING TOOL FOR DIFFERENTIAL DIAGNOSIS
Yoshiko Nakano1, Kaishi Satomi1, Hirokazu Takami1, Ryo Nishikawa1, Fumiyuki Tamasaki1, Maehara Takeo1, Nobuhito Sato1, Yonetsu Kase1, Hiroaki Sakamoto1, Takahiro Ochi1, and Koichi Ichimura1; 1Division of Brain Tumor Translational Research,