Product of Local Points of Subvarieties of Almost Isotrivial Semi-Abelian Varieties Over a Global Function Field

Chia-Liang Sun
Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

Correspondence to be sent to: e-mail: csun@math.sinica.edu.tw

For a semi-abelian variety over a global function field which is isogenous to an isotrivial one, we show that on the product of local points of a subvariety satisfying a minor condition, the topological closure of a finitely generated subgroup of global points cuts out exactly the global points of the subvariety lying in this subgroup. As a corollary, on every non-isotrivial super-singular curve of genus two over a global function field, we conclude that the Brauer–Manin condition cuts out exactly the set of its rational points.

1 Introduction

Let K be a global function field of characteristic p, that is, a finitely generated field extension over the prime field \mathbb{F}_p with the transcendence degree 1. We fix an algebraic closure \overline{K} and let K^s denote the separable closure of K. Let Ω_K denote the set of all places of K and let Ω denote a co-finite subset of Ω_K. For each $v \in \Omega_K$, let K_v denote the completion of K at v. For an algebraic variety X defined over K, we endow $X(K_v)$ with the natural v-adic topology, and then endow $\prod_{v \in \Omega} X(K_v)$ with the product topology. In this paper, we assume that X is a closed subvariety of a given semi-abelian variety A, both are defined over K. We identify every subset $H \subset A(K)$ as a topological subspace of $\prod_{v \in \Omega} A(K_v)$ by the diagonal embedding, and denote by \bar{H} its topological
closure; moreover, for each \(v \in \Omega_K \), the inclusion \(H \to A(K_v) \) is continuous and therefore induces a subtopology of \(H \), which will be referred to as \(v \)-adic subtopology.

Suppose \(H \) is a subgroup of \(A(K) \). The main aim of this paper is to investigate the circumstances where the equality

\[
\prod_{v \in \Omega} X(K_v) \cap H = X(K) \cap H
\]

holds. To do so, we shall assume that \(H \) is finitely generated, as Example 1 in Section 3.3 shows that the equality would not hold even in the simplest case where \(A = \mathbb{G}_m \), otherwise. On the other hand, the case where \(A \) is an abelian variety and \(H = A(K) \), has been studied by Poonen and Voloch [9]. Indeed, they propose that, in general, the equality

\[
\prod_{v \in \Omega} X(K_v) \cap \overline{A(K)} = \overline{X(K)}
\]

should hold, and they prove (1) under the hypothesis that \(A_K \) has no isotrivial quotient, \(A(K^s)[\mathbb{F}_p] \) is finite and \(X \) is coset-free [9, Conjecture C and Theorem B]. In this paper, we consider the case where \(A \) is isogenous to an isotrivial semi-abelian variety. Recall that in the category of varieties (resp. of semi-abelian varieties), an object defined over \(K \) is isotrivial if it is isomorphic over \(\overline{K} \) to the one defined over \(\mathbb{F}_p \). Our main result is the following:

Theorem 1. Let \(X \) be a closed subvariety of a semi-abelian variety \(A \), both are defined over \(K \). Assume that there is an isogeny \(f \) defined over \(\overline{K} \) from \(A \) to a semi-abelian variety \(A_0 \) defined over \(\mathbb{F}_p \) so that each translate \(P + f(X), P \in A_0(\overline{K}) \) of \(f(X) \) contains no positive-dimensional closed subvariety which is \(\mathbb{F}_p \)-rational in \((A_0)_{\overline{F}_p} \). Then for every finitely generated subgroup \(H \) of \(A(K) \), the set \(X(K) \cap H \) is finite and the equality (1) holds.

Example 2 at the end of Section 4 explains why we cannot expect the conclusion of our main result to hold without any assumption on \(X \). The proof of the theorem consists of two parts which are carried out, respectively, in Sections 3 and 4, with the key ingredients, Proposition 2, Lemmas 9 and 10, proved in Section 5. The first part treats the case where \(X \) is zero-dimensional by adapting the proof of [9, Proposition 3.7] to our situation, whereas the second reduces the general case to the zero-dimensional case by the induction on the dimension of \(X \) using a different Mordell–Lang-type argument. The approach for the second part is originated from the proof of Theorem A. Part 1 in [1].
Suppose A is the Jacobian of X which is embedded into A under an Albanese map induced from a divisor on A defined over K of degree 1. It is proved in [9], Section 4, that if the Tate–Shafarevich group $\text{III}(A)$ of A is finite, then the set $\prod_{v \in \Omega_K} X(K_v) \cap A(K)$ is in bijection with the Brauer set of X over K. Therefore, if Theorem 1 holds, then the Brauer–Manin condition cuts exactly the set of its K-rational points on X. A nonisotrivial projective curve can have its Jacobian isogenous to an isotrivial abelian variety; for example, super-singular curves of genus 2 have this property [7]. The following corollary is proved in Section 4.

Corollary 1. On any nonisotrivial projective K-curve with its Jacobian isogenous to an isotrivial abelian variety, the Brauer–Manin condition cuts exactly the set of its K-rational points.

2 Preliminaries

2.1

A *variety* over a field F is a geometrically reduced and geometrically irreducible separated F-scheme of finite type. For a tower $E \supset L \supset F$ of field extensions and a variety X over F, a closed subscheme Y in X_E is *L-rational* if it is the base change of a (necessarily unique) closed subscheme Y' of X_L. Suppose that X is quasi-projective, and fix an immersion of X into a projective space \mathbb{P}^N_F over F. Then there is a radical homogenous ideal I and a homogeneous ideal J in $F[\! [t_0,\ldots,t_N] \!]$ such that X is the intersection of the zero scheme of I and the complement of the zero scheme of J. (The choice of I can be made canonical by using the schematic closure of X in \mathbb{P}^N_F, but J is not at all canonical.) In such a situation, a closed subscheme Y in X_E is L-rational precisely when there exists a homogeneous ideal $I' \supseteq I$ in $L[\! [t_0,\ldots,t_N] \!]$ such that Y is the intersection of the zero scheme of I' and the complement of the zero scheme of J.

Now let C be the regular projective curve over k with function field K. Given a fixed immersion of X into \mathbb{P}^N_K and a choice of its description using I and J as above, or more geometrically, a reduced closed subscheme V in \mathbb{P}^N_K and another closed subscheme V' such that $X = V \cap (\mathbb{P}^N_K - V')$, we take $\mathcal{X} = V \cap (\mathbb{P}^N_C - V')$, where \mathcal{V} and \mathcal{V}' are the schematic closures of V and V' in \mathbb{P}^N_C, respectively. Since C is Dedekind, both \mathcal{V} and \mathcal{V}' are C-flat, hence \mathcal{X} is a C-flat model for X as a locally closed subscheme of \mathbb{P}^N_C. In more algebraic terms, since the formation of these closures commutes with localization on C, we can describe the pullback of \mathcal{X} over O_v as follows: if \mathcal{V} and \mathcal{V}' are, respectively, defined by the vanishing of the homogeneous ideals I and J then the pullbacks \mathcal{V}_v and \mathcal{V}'_v
over O_v are, respectively, defined by the vanishing in $\mathbb{P}^N_{O_v}$ of the saturations $I^{(v)}$ and $J^{(v)}$ of I and J in $O_v[t_0, \ldots, t_N]$, where $I^{(v)}$ (resp. $J^{(v)}$) is just the subset of $I \cap O_v[X_0, \ldots, X_N]$ (resp. $J \cap O_v[X_0, \ldots, X_N]$) consisting of polynomials with some coefficients not in m_v. In particular, we see that $X(O_v)$ is given by the following explicit formula:

$$X(O_v) = \left\{ P \in \mathbb{P}^N(K_v) : \begin{array}{l} P = [x_0 : \ldots : x_N] \\
x_i \in O_v \text{ for all } i \\
x_{i_0} \notin m_v \text{ for some } i_0 \\
f(x_0, \ldots, x_N) = 0 \text{ for all } f \in I \\
g(x_0, \ldots, x_N) \notin m_v \text{ for some } g \in J^{(v)} \end{array} \right\}. \quad (2)$$

Likewise, for any finite subset $S \subset \Omega_K$, the set $X(O_S)$ of O_S-points of X is given by the explicit formula:

$$X(O_S) = \bigcap_{v \in \Omega_K \setminus S} (X(K) \cap X(O_v)). \quad (3)$$

For ease of notation, we will write $X(O_v)$ and $X(O_S)$ for $X(O_v)$ and $X(O_S)$ when the projective embedding is fixed (as will generally be the case). The following result is easily proved by “denominator-chasing.”

Lemma 1. Let $\phi : X \to X$ be a K-morphism. Then ϕ extends to an O_S-endomorphism of $X(O_S)$ for sufficiently large S; in particular, ϕ preserves $X(O_v)$ for all but finitely many v. \hfill \square

2.2

The group operations on A, given by regular maps defined over K, are continuous with respect to the topology on $A(K_v)$, for each $v \in \Omega_K$. This implies that $A(K_v)$ is a Hausdorff topological abelian group. It is totally disconnected since v is nonarchimedean. Also, formula (2) shows that $A(K_v)$ contains $A(O_v)$ as a compact open subset. Consequently, it is locally compact, and hence complete. By Hewitt and Ross [4, Theorem (7.7)], it follows that the topology of $A(K_v)$ is generated by open subgroups, and therefore so are $\prod_{v \in \Omega} A(K_v)$ and its subgroups.

Lemma 2. Every finitely generated subgroup H of $A(K)$ admits a Hausdorff subtopology generated by subgroups with finite index. \hfill \square
Proof. Because H is finitely generated and $\Omega_K \setminus \Omega$ is finite, there exists a place $v_0 \in \Omega$ such that $A(O_{v_0})$ is a group containing H. Since $A(O_{v_0})$ is a compact subgroup of $A(K_{v_0})$ whose topology is Hausdorff and generated by subgroups, the topology of $A(O_{v_0})$ is Hausdorff and generated by subgroups with finite index, and so is the v_0-adic subtopology of H. ■

Let $\mathfrak{P}(A, X, f; K)$ stand for the statement of Theorem 1.

Lemma 3. Let $A, X, f,$ and K be as in Theorem 1 and let L/K be a finite extension. Then $\mathfrak{P}(A, X, f; L) \Rightarrow \mathfrak{P}(A, X, f; K)$.

Proof. Note that the definition of \bar{H} depends on the choice of K. Let Ω_L^0 denote the set of places of L lying above Ω. Consider the natural embeddings

$$H \hookrightarrow \prod_{v \in \Omega} A(K_v) \hookrightarrow \prod_{u \in \Omega_L^0} A(L_u).$$

Since i actually identifies $\prod_{v \in \Omega} A(K_v)$ as a closed subgroup of $\prod_{u \in \Omega_L^0} A(L_u)$, \bar{H} will be remained the same, if K is replaced by L. If $\mathfrak{P}(A, X, f; L)$ holds, then $\prod_{w \in \Omega_L^0} X(L_w) \cap \bar{H} = X(L) \cap \bar{H}$ is a finite set. This implies

$$\prod_{v \in \Omega} X(K_v) \cap \bar{H} = \left(\prod_{w \in \Omega_L^0} X(L_w) \cap \prod_{v \in \Omega} A(K_v) \right) \cap \bar{H}$$

$$= \prod_{w \in \Omega_L^0} X(L_w) \cap \bar{H}$$

$$= X(L) \cap H$$

$$= (X(L) \cap A(K)) \cap H$$

$$= X(K) \cap H,$$

which is also a finite set. ■

2.3

In view of Lemma 3, by replacing K by certain finite extension L if necessary, we can assume that A is an extension of an abelian variety B by a split torus G^n_m, for some $n \geq 0$. This is actually the definition taken by Serre [12]. Lemma 1 implies that $A(O_v)$ is
a group for all but finitely many \(v \in \Omega_K \). Therefore, if \(S \) is sufficiently large, then \(A(O_S) \) is a subgroup of \(A(K) \). In this case, it is finitely generated. To see this, we may extend \(S \) and assume that the subgroup \(\mathbb{G}_m^n(O_S) \subset A(O_S) \) coincides with \((O_S^*)^n \). Since \(A(O_S) \) is mapped into \(B(K) \) with \(\mathbb{G}_m^n(O_S) \) as the kernel, the assertion follows from the Mordell–Weil theorem and Dirichlet’s unit theorem. Also, if \(S \) is large enough, then the finitely generated subgroup \(H \) is contained in \(A(O_S) \).

Lemma 4. Every isotrivial semi-abelian variety \(A_0 \) is isogenous (over \(\bar{K} \)) to the product \(\mathbb{G}_m^{n_0} \times B_0 \), for some nonnegative integer \(n_0 \), where \(B_0 \) is an abelian variety defined over \(\mathbb{F}_p \). \(\square \)

Proof. We may assume that \(A_0 \) is actually defined over \(\mathbb{F}_p \). Then there is a strictly exact sequence (see [12]) \(1 \rightarrow \mathbb{G}_m^n \rightarrow A_0 \rightarrow B_0 \rightarrow 0 \), in which \(B_0 \) is an abelian variety defined over \(\mathbb{F}_p \). It remains to show that \(A_0 \) is isogenous to \(\mathbb{G}_m^{n_0} \times B_0 \).

Recall that, for any pair \((G, T)\) of commutative algebraic groups, the set of isomorphism classes of commutative algebraic groups \(E \) along with the strictly exact sequence \(0 \rightarrow T \rightarrow E \rightarrow G \rightarrow 0 \) forms an abelian group \(\text{Ext}(G, T) \) under the Baer sum. In fact, \(\text{Ext} \) is a bifunctor from the category of pairs of commutative algebraic groups to the category of abelian groups [12]. It is routine to check that, for any commutative algebraic group \(E \) representing its class \([E] \in \text{Ext}(G, T) \), and any positive integer \(m \), there is a natural exact sequence

\[
0 \rightarrow T[m] \rightarrow E \rightarrow E^{(m)} \rightarrow 0
\]

(4)

defined over an algebraic closure of a field of definition of \(E \), where \(T[m] \) is the algebraic subgroup of \(m \)-torsion points in \(T \), and \(E^{(m)} \) is a commutative algebraic group representing the class \(m[E] \in \text{Ext}(G, T) \). In our case, the isomorphism class \([A_0] \) of \(A_0 \) lies in \(\text{Ext}(B_0, \mathbb{G}_m^{n_0}) = \text{Ext}(B_0, \mathbb{G}_m)^{n_0} \), where the equality holds because \(\text{Ext} \) is a bifunctor. One knows (e.g., the comments following Theorem 6 of Chapter VII in [12]) that \(\text{Ext}(B_0, \mathbb{G}_m) \) is isomorphic to the dual abelian variety \(B_0' \) of \(B_0 \). In particular, \([A_0] \) lies in \((B_0'(\mathbb{F}_p))^{n_0} \) which is a torsion group. Therefore, \(m[A_0] = 0 \), for some \(m \), and hence \(\mathbb{G}_m^{n_0} \times B_0 = A_0^{(m)} \) and the isogeny is provided by (4).

3 **The Zero-Dimensional Case**

In this section, we prove Theorem 1 in the case where \(\text{dim } X = 0 \).
3.1 A uniform filtration over all v-adic subtopologies

Suppose A_0 is a semi-abelian variety defined over a finite field \mathbb{F}_q containing \mathbb{F}_p. Then the Frobenius morphism $\text{Frob} : A_0 \to A_0$ is well defined, and if A_0 is embedded as a subvariety of \mathbb{P}^N, then Frob is simply the restriction of the Frobenius map on \mathbb{P}^N, sending $[x_0 : \ldots : x_N]$ to $[x_0^q : \ldots : x_N^q]$. Thus, Frob preserves the group structure on A_0 and it induces an injective map $A_0(\mathcal{O}_S) \to A_0(\mathcal{O}_S)$, which we also denote by Frob which is a group homomorphism, if $A_0(\mathcal{O}_S)$ is a group.

Proposition 1. Suppose that $f : A \to A_0$ is an isogenous defined over \bar{K} and A_0 is an isotrival semi-abelian variety. Then for any finitely generated subgroup H of $A(K)$, there exists a collection $\{U_n : n \geq 1\}$ of subgroups of H with the following two properties:

1. For each $v \in \Omega_K$ and each $n \geq 1$, U_n is open in every v-adic subtopology of H.
2. $\bigcap_{n \geq 1} U_n$ is contained in the torsion subgroup of H.

Proof. Without loss of generality, we may replace K by one of its finite extensions and assume that f is defined over K and A_0 is defined over $\mathbb{F}_q \subset K$. Since $H \xrightarrow{f} f(H)$ is continuous with finite kernel, it is sufficient to show that $f(H)$ precesses a family of open sets satisfying the properties correspondingly. Thus, we only need to consider the case where $A = A_0$ and f is the identity map.

We claim that for each $v \in \Omega_K$ and each $n \geq 1$, the subgroup $U_n := \text{Frob}^n(A(K)) \cap H \subset H$ is open in the v-adic subtopology. Then, (2) holds, as

$$\bigcap_{n \geq 1} U_n \subset \bigcap_{n \geq 1} \text{Frob}^n(A(K)) \subset A \left(\bigcap_{n \geq 1} K^{p^n} \right)$$

and $\bigcap_{n \geq 1} K^{p^n}$ is the maximal finite subfield of K.

To prove the claim, we first note that since there is no nontrivial purely inseparable finite extension of K inside K_v, $\text{Frob}^n(A(K_v)) \cap A(K) \subset \text{Frob}^n(A(K))$, and hence $\text{Frob}^n(A(K_v)) \cap H \leq U_n$. Then it remains to show that $\text{Frob}^n(A(K_v)) \cap H$ is open in the v-adic subtopology of H. It is clear that that $\text{Frob}^n(A(K_v))$ is closed in $A(K_v)$, and consequently the quotient space $A(K_v)/\text{Frob}^n(A(K_v))$ is Hausdorff. Consider the map $H \to A(K_v)/\text{Frob}^n(A(K_v))$ induced from the inclusion $H \subset A(K_v)$. It is continuous with respect to v-adic subtopology of H. Also, as it factors through $A(\mathcal{O}_S)/\text{Frob}^n(A(\mathcal{O}_S))$, for some finite $S \subset \Omega_K$ such that $H \leq A(\mathcal{O}_S)$, the image of the map is finite, whence discrete. This completes our proof. ■
3.2 Congruence subgroup property

For an additive topological abelian group G, we say that G has the **congruence subgroup property** if the subgroup $nG = \{nP : P \in G\}$ is open for every positive integer n; if G is finitely generated, then the following conditions are equivalent:

1. G has the congruence subgroup property.
2. Every subgroup of G of finite index is open.
3. Every subgroup of G is closed.

Lemma 5. Let G be a finitely generated abelian topological groups. Let Σ be a set consisting of natural numbers, which is closed under multiplication, satisfying the condition that every subgroup of G of index in Σ is open. Then Σ also satisfying the corresponding condition for each subgroup H of G, namely, every subgroup of H of index in Σ is open in H. In particular, if G has the congruence subgroup property, then so has H. □

Proof. We may assume that each positive divisor of any element in Σ also lies in Σ. Let $m \in \Sigma$ be the product of those natural numbers in Σ, each of which is the order of some elements in the finitely generated abelian group G/H. Then, for every $n \in \Sigma$, we have $H \cap mnG \leq nH$. Since $mn \in \Sigma$, it follows that mnG is open in G. This shows that nH is open in H and so is every subgroup of H with index n. ■

Lemma 6. Suppose that every finitely generated subgroup of $A(K)$ has the congruence subgroup property. Then for any finitely generated subgroup H of $A(K)$ and any subset J of $A(K)$, we have $J \cap \bar{H} = J \cap H$. □

Proof. Choose a finite subset S of Ω_K such that $H \leq A(O_S)$ and $S \cup \Omega = \Omega_K$. Since $A(O_S)$ has the congruence subgroup property, H is closed in $A(O_S)$. Consequently, $A(O_S) \cap \bar{H} = H$. Now, since $A(O_S) = A(K) \cap \bigcap_{v \in \Omega} A(O_v)$, while $A(O_v)$ is closed in $A(K_v)$, $A(O_S)$ is closed in $A(K)$, and hence $A(K) \cap \overline{A(O_S)} = A(O_S)$. This implies $J \cap \bar{H} = J \cap A(K) \cap \overline{A(O_S)} \cap \bar{H} = J \cap A(O_S) \cap \bar{H} = J \cap H$. ■

For any subgroup J of $G := \prod_{v \in \Omega} A(K_v)$, its topological closure \bar{J} is also a subgroup. In fact, since the map $q : G \times G \to G$ defined by $(P, Q) \mapsto P - Q$ is continuous, the preimage $q^{-1}(\bar{J})$ is a closed subset of $G \times G$ containing $J \times J$, and thus contains $\overline{J \times J} = \bar{J} \times \bar{J}$; then $q(\bar{J}, \bar{J}) = \bar{J}$ as desired. The following result generalizes [9, Lemma 3.6].
Lemma 7. If a finitely generated subgroup H of $A(K)$ has the congruence subgroup property, then every torsion element of \bar{H} lies in H. \hfill \Box

Proof. Write $H = T + F$, where T is a finite subgroup and F is torsion-free. Suppose $a \in \bar{H} \setminus T$ with $ma = 0$ for some nonzero integer m. Since T is finite, there exists an open subgroup U of $\prod_{v \in \Omega} A(K_v)$ such that $(T + U) \cap (a + U) = \emptyset$. Since F is of finite index in H, by the congruence subgroup property of H, we may assume that $U \cap H \subset F$. Lemma 5 says that at least H also has the congruence subgroup property, thus there exists an open subgroup V of $\prod_{v \in \Omega} A(K_v)$ such that $V \cap U \cap H = m(U \cap H)$. Because $ma = 0$, the continuity of the multiplication-by-m map ensures the existence of an open subgroup W of U such that $m(a + W) \subset U \cap V$. Now since $a \in \bar{H}$, there exist $t \in T$ and $f \in F$ such that $t + f \in H \cap (a + W)$. Consequently, $m(t + f) \in m(a + W) \cap H \subset U \cap V \cap H = m(U \cap H)$, whence $m(t + f) = mf'$ for some $f' \in U \cap H \subset F$. Then $mt \in T \cap F = \{0\}$ and $m(f - f') = 0$, which implies $f - f' \in T \cap F = \{0\}$ and $f = f' \in U$. This says $t + f \in (T + U) \cap (a + W) \subset (T + U) \cap (a + U)$, which is impossible. \hfill \blacksquare

Suppose $J \subset A(K)$ is a subgroup containing H. Then the inclusion $J \to \bar{J}$ canonically induces a group homomorphism

$$J/H \to \bar{J}/\bar{H}. \quad (5)$$

Lemma 8. Suppose every finitely generated subgroup of $A(K)$ has the congruence subgroup property. Let $H \leq J$ be subgroups of $A(K)$. If H is finitely generated, then (5) is injective. If furthermore the index $[J : H]$ is finite, then (5) is actually an isomorphism. \hfill \Box

Proof. The first assertion follows from Lemma 6. The congruence subgroup property of J implies that if $[J : H]$ is finite, then H is open in J. Thus, $H = U \cap J$, for some open subgroup U of $\prod_{v \in \Omega} A(K_v)$. Let y be an arbitrary point of \bar{J}. Then $y \in z + U$ for some $z \in J$, and for any open subgroup V of U, $(y - z + V) \cap J \neq \emptyset$. On the other hand, we have

$$(y - z + V) \cap J \subset (y - z + V) \cap (U \cap J) = (y - z + V) \cap H.$$

As the topology of $\prod_{v \in \Omega} A(K_v)$ is generated by subgroups, it follows that $y - z \in \bar{H}$. This shows the surjectivity of (5). \hfill \blacksquare

The proof of the following proposition is postponed to Section 5.1.
Proposition 2. If A is isogenous to $\mathbb{G}_m^N \times B$ for some nonnegative integer N and some abelian variety B defined over K, then every finitely generated subgroup of $A(K)$ has the congruence subgroup property. In particular, the same conclusion holds if A is isogenous to an isotrivial semi-abelian variety defined over K. □

3.3 The proof

Proof of Theorem 1 in the case where dim $X = 0$: We write $X = Z$ to reflect this zero-dimensional situation. As Z is zero-dimensional, by Lemma 3, we may replace K by a finite extension if necessary and assume that every point of Z actually belongs to $Z(K)$. In particular, the restriction $i_v|_{Z(K)}$ of the natural map $A(K) \longrightarrow A(K_v)$ is a bijection.

In view of Lemma 6, we only have to show $\prod_{v \in \Omega} Z(K_v) \cap \tilde{H} \subset Z(K)$. Let J be the subgroup of $A(K)$ generated by H and $Z(K)$. By Proposition 1, there exists a collection $\{U_n: n \geq 1\}$ of subgroups of J, which are open in every v-adic subtopology, such that $\bigcap_{n \geq 1} U_n$ is contained in the torsion subgroup of J. Let $Q = (Q_v)_{v \in \Omega}$, with each $Q_v \in Z(K_v)$, denote an element of $\prod_{v \in \Omega} Z(K_v)$. Suppose Q is also contained in \tilde{H}. Then there is a sequence $(P_n)_{n \geq 1} \in H$ such that at each v, the sequence $(i_v(P_n))_{n \geq 1}$ has Q_v as its limit point in $A(K_v)$. Write $Q_v = i_v^{-1}(Q_v) \in Z(K)$. Since each U_n is open in the v-adic subtopology, for each $r \geq 1$, there exists an N such that $P_n - Q_v \in U_r$, for $n \geq N$. It follows that for every pair $v, w \in \Omega$, the difference $Q_v - Q_w$ belongs to $\bigcap_{r \geq 1} U_r$, whence a torsion point. Since the set $(Q_v)_{v \in \Omega}$ is finite, there exists a nonzero integer m such that $m(Q_v - Q_w) = 0$, for each pair v and w. Fix a $w \in \Omega$. Then the difference $Q - Q_w = (Q_v - Q_w)_{v \in \Omega} \in \tilde{H}$ is torsion, and hence, by Proposition 2 and Lemma 7, it is actually contained in J. In particular, $Q \in J$ is a global point.

Example 1. The conclusion in Theorem 1 would fail, even in the case where dim $X = 0$, if the hypothesis that H is finitely generated were removed. To see this, let K be the field $\mathbb{F}_p(t)$ of rational functions over \mathbb{F}_p. Fix a place v_0 of K such that $t \notin O_{v_0}$. Let $\alpha, \beta \in K^*$ with $\beta - \alpha = \frac{a}{b}$, where $a, b \in \mathbb{F}_p[t]$. Denote by Z the K-subvariety $\{\alpha, \beta\}$ of \mathbb{G}_m, and by

$$K^* \longrightarrow K_v^* \quad \text{the natural inclusion. Consider the sequence}$$

$$x_n = \frac{\left(\prod_{i=1}^{n} \pi_i\right)^n + a}{\left(\prod_{i=1}^{n} \pi_i\right)^{2n} + b} + \alpha, \quad (6)$$
where \(\pi_1, \pi_2, \pi_3, \ldots \) are all irreducibles in \(\mathbb{F}_p[t] \). Then the sequence \((x_n) \) has a limit \(Q = (Q_v)_{v \in \Omega_K} \) in \(\prod_{v \in \Omega_K} K_v^* \), where \(Q_v = i_v(\alpha) \) and \(Q_v = i_v(\beta) \) for every \(v \in \Omega_K \setminus \{v_0\} \), because

\[
x_n - \beta = \frac{(\prod_{i=1}^{n} \pi_i^n)(b - a \prod_{i=1}^{n} \pi_i^n)}{b(\prod_{i=1}^{n} \pi_i^{2n} + b)}.
\]

(i) If \(\alpha \neq \beta \), then \(Q \in \prod_{v \in \Omega_K} Z(K_v) \cap G_\mathbb{F}_m(K) \setminus Z(K) \).
(ii) Suppose \(\alpha = \beta \neq 1 \) and set \(b = 1 \) in (6). Then \(\{x_n : n \geq 1\} \not\subset O_S^* \) for any finite \(S \subset \Omega_K \); hence, by taking a subsequence, we may assume that every nonzero power of \(x_n \) does not belong to the subgroup of \(G_\mathbb{F}_m(K) \) generated by \(\{\alpha, x_1, \ldots, x_{n-1}\} \). Letting \(H \) be the subgroup of \(G_\mathbb{F}_m(K) \) generated by \(\{x_n : n \geq 1\} \), we have \(Q \in \prod_{v \in \Omega_K} Z(K_v) \cap \tilde{H} = Z(K) \cap \tilde{H} \setminus H \). □

4 The Inductive Step

In this section, we complete the proof of Theorem 1 by reducing the general case to the zero-dimensional case which is established in Section 3.3. Focusing on the case where the isogeny \(f \) is the identity map until the very end of the reduction, the following Lemmas 9 and 10 are crucial to our inductive procedure. Their proofs, being long and independent of the rest of the materials in this section, will be postponed until Section 5.2.

Lemma 9. Let \(N \) be a nonnegative integer and \(m \) a natural number. For each \(v \in \Omega \), let \(I_v \) be an ideal of \(K_v[X_0, \ldots, X_N] \), generated by elements of \(K_v^{pm}[X_0, \ldots, X_N] \). Then \(\bigcap_{v \in \Omega} (I_v \cap K[X_0, \ldots, X_N]) \) is generated by elements of \(K^{pm}[X_0, \ldots, X_N] \). □

Lemma 10. Let \(N \) and \(m \) be nonnegative integers. For each \(v \in \Omega_K \), the ideal generated by those homogeneous polynomials in \(K_v[X_0, \ldots, X_N] \) vanishing on a subset of \(\mathbb{P}^N(K_v^{pm}) \) is actually generated by elements in \(K_v^{pm}[X_0, \ldots, X_N] \). □

Then applications of the above are in order.

Proposition 3. Let \(m \) be a natural number. Let \(A_0 \) be a semi-abelian variety defined over the largest finite subfield \(\mathbb{F}_q \subset K \), and \(X \) a closed \(K \)-subvariety which is not \(K^{pm} \)-rational in \((A_0)_{\mathbb{F}_q} \). Then there is a proper closed \(K \)-subvariety \(Y \) of \(X \) such that \(X(K_v) \cap A_0(K_v^{pm}) \subset Y(K_v) \) for all \(v \in \Omega \). □
Proof. Since X is not K^{p^n}-rational in $(A_0)_{\mathbb{F}_q}$, we have an embedding of A_0 into some \mathbb{P}^N so that its underlying variety is

$$\left\{ P \in \mathbb{P}^N(\overline{K}) : \begin{array}{l} f(P) = 0 \text{ for all } f \in I \\ g(P) \neq 0 \text{ for some } g \in J \end{array} \right\}$$

for some homogeneous ideals I and J in $\mathbb{F}_q[X_0, \ldots, X_N]$, and that X is defined by (7) except I is replaced by a homogeneous radical ideal I_X in $\overline{K}[X_0, \ldots, X_N]$ generated by elements of $K[X_0, \ldots, X_N]$, but not by those of $K^{p^n}[X_0, \ldots, X_N]$. For each $v \in \Omega$, consider the ideal \tilde{I}_v in $K_v[X_0, \ldots, X_N]$ generated by homogeneous polynomials vanishing on the subset $X(K_v) \cap A_0(K^{p^n})$ of $\mathbb{P}^N(K_v)$. Let Y be the closed subvariety of A_0 given by (7) except I is replaced by the homogeneous ideal

$$I_Y := \left(\bigcap_{v \in \Omega} (\tilde{I}_v \cap K[X_0, \ldots, X_N]) \right) \cap K^{p^n}[X_0, \ldots, X_N].$$

Thus, $X(K_v) \cap A_0(K^{p^n}) \subset Y(K_v)$ for all $v \in \Omega$. We shall show $Y \subset X$ by showing

$$I_X \subset \overline{K}[X_0, \ldots, X_N] \cdot I_Y.$$ \hspace{1cm} (8)

To do so, we first apply Lemma 10 to deduce that \tilde{I}_v is generated by elements in $K_v^{p^n}[X_0, \ldots, X_N]$. Then, by Lemma 9, we conclude that $\bigcap_{v \in \Omega} (\tilde{I}_v \cap K[X_0, \ldots, X_N])$ is generated by elements in $K^{p^n}[X_0, \ldots, X_N]$, and that the right-hand side of (8) equals to $\overline{K}[X_0, \ldots, X_N] \cdot \bigcap_{v \in \Omega} (\tilde{I}_v \cap K[X_0, \ldots, X_N])$. Since I_X is not generated by elements of $K^{p^n}[X_0, \ldots, X_N]$, it proves (8). \hfill \blacksquare

Proposition 4. Let A_0 be a semi-abelian variety defined over the largest finite subfield $\mathbb{F}_q \subset K$, and X be a positive-dimensional closed K-subvariety of A_0 such that all the largest dimensional irreducible components of the translates $X + P$, $P \in A_0(\overline{K})$, are not \overline{F}_p-rational in $(A_0)_{\mathbb{F}_q}$. Let H be a finitely generated subgroup of $A_0(K)$, then there exists a closed K-subvariety Y of X with a smaller dimension, satisfying $\prod_{v \in \Omega} X(K_v) \cap \tilde{H} \subset \prod_{v \in \Omega} Y(K_v)$. \hspace{1cm} \Box

Proof. Let $\text{Frob} : A_0 \to A_0$ be the Frobenius endomorphism. By taking $H_0 = A_0(O_S)$ for some large enough finite $S \subset \Omega_K$, we assert that that there is a finitely generated subgroup H_0 of $A_0(K)$ such that $H \leq H_0$ and $\text{Frob}(H_0) \leq H_0$. Since $\prod_{v \in \Omega} X(K_v) \cap \tilde{H} \subset$
Theorem A. Part 1 in [1] using the Hilbert scheme associated to equivalent compactification of A_0, and conclude that there is a positive integer N such that for every $\gamma \in H$ the translate $X_\gamma = X - \gamma$ is not K^{p^N}-rational in $(A_0)_{F_q}$. Therefore, Proposition 3 implies that there is a proper closed K-subvariety Y_γ of X_γ such that $X_\gamma(K_v) \cap A(K_v^{p^N}) \subset Y_\gamma(K_v)$ for all $v \in \Omega$.

Since the Frobenius endomorphism gives rise to an injection $H \xrightarrow{\text{Frob}^N} H$, the index $[H : \text{Frob}^N(H)]$ is finite, and hence Lemma 8 implies that there are finitely many α_i's in H such that $H = \bigcup_i (\alpha_i + \overline{\text{Frob}^N(H)})$. Now, $Y_{\alpha_i} + \alpha_i$ is a proper closed K-subvariety of X such that $X(K_v) \cap (\alpha_i + A_0(K_v^{p^N})) \subset (Y_{\alpha_i} + \alpha_i)(K_v)$ for all $v \in \Omega$. Then, we prove the proposition by taking $Y = \bigcup_i (Y_{\alpha_i} + \alpha_i)$.

In general, write $X = X_1 \cup \cdots \cup X_m \cup \cdots \cup X_{m+n}$ where each X_i is irreducible and $\dim X_j = \dim X$, for $j = 1, \ldots, m$; $\dim X_i < \dim X$, for $i = m+1, \ldots, m+n$. Then, for $j = 1, \ldots, m$, choose a closed proper K-subvariety Y_j of X_j satisfying $X_j(K_v) \cap H \subset Y_j(K_v)$ for all $v \in \Omega$. For $i = m+1, \ldots, m+n$, simply put $Y_i = X_i$. Then, we complete the proof by taking $Y = \bigcup_i^{m+n} Y_i$.

Proof of Theorem 1. In view of Lemma 3, we may assume that the isogeny $f: A \to A_0$ is defined over K, that A_0 is defined over some finite subfield of K, and that every point in the kernel of f lies in $A(K)$. If $\dim X = 0$, then the theorem is proved in Section 3.3. In general, we prove by the induction on $\dim X$.

Write $X_0 = f(X)$. Proposition 4 applied to A_0 ensures the existence of a closed K-subvariety Y_0 of X_0 of smaller dimension such that

$$\prod_{v \in \Omega} X_0(K_v) \cap \overline{f(H)} \subset \prod_{v \in \Omega} Y_0(K_v).$$

Write $Y = f^{-1}(Y_0) \cap X$. Then the above implies

$$\prod_{v \in \Omega} X(K_v) \cap \overline{H} \subset \prod_{v \in \Omega} X(K_v) \cap \prod_{v \in \Omega} f^{-1}(Y_0)(K_v) = \prod_{v \in \Omega} Y(K_v).$$

The assumption in Theorem 1 is preserved when X is replaced by Y, hence the induction hypothesis implies that $Y(K) \cap H$ is finite and

$$\prod_{v \in \Omega} Y(K_v) \cap \overline{H} = Y(K) \cap H.$$
Therefore,
\[
\prod_{v \in \Omega} X(K_v) \cap \tilde{H} \subset Y(K) \cap H \subset X(K) \cap H \subset \prod_{v \in \Omega} X(K_v) \cap \tilde{H}.
\]

This completes the proof. ■

In order to deduce Corollary 1 from Theorem 1, we need the following result.

Lemma 11. Let \(C_1 \to C \to C_0 \) be a chain of nonconstant maps between projective curves defined over \(\overline{K} \) with \(C \) smooth. Suppose that both \(C_0 \) and \(C_1 \) as well as the composition \(C_1 \to C_0 \) are defined over \(\mathbb{F}_p \). Then \(C \) is also defined over \(\mathbb{F}_p \). □

Proof. The given chain of maps induces the following diagram of their function fields:

\[
\begin{array}{ccc}
\mathbb{F}_p(C_1) & \longrightarrow & \tilde{K}(C_1) \\
\downarrow & & \downarrow \\
\mathbb{F}_p(C_0) & \longrightarrow & \tilde{K}(C_0)
\end{array}
\]

where both columns are finite extensions, and the maps in both rows are \(\otimes_{\mathbb{F}_p} \tilde{K} \). To prove this lemma, since \(C \) is smooth, it suffices to find a field \(F \) with transcendence degree 1 over \(\mathbb{F}_p \) such that \(F \otimes_{\mathbb{F}_p} \tilde{K} \) is \(\tilde{K} \)-isomorphic to \(\tilde{K}(C) \). First, we assume that \(\mathbb{F}_p(C_1) \) is separable over \(\mathbb{F}_p(C_0) \). Let \(N \) be the normal closure of \(\mathbb{F}_p(C_1) \) over \(\mathbb{F}_p(C_0) \). Identifying all fields involved as subfields of \(N \otimes_{\mathbb{F}_p} \tilde{K} \), we take \(F = N \cap \tilde{K}(C) \). Galois theory shows that \([N \otimes_{\mathbb{F}_p} \tilde{K} : \tilde{K}(C)] = [N : F] \). Since \(F \otimes_{\mathbb{F}_p} \tilde{K} \subset \tilde{K}(C) \) and \([N \otimes_{\mathbb{F}_p} \tilde{K} : F \otimes_{\mathbb{F}_p} \tilde{K}] \leq [N : F] \), we conclude that \(F \otimes_{\mathbb{F}_p} \tilde{K} = \tilde{K}(C) \) as desired.

In the general case, let \(L \) be the separable closure of \(\mathbb{F}_p(C_0) \) in \(\mathbb{F}_p(C_1) \). The preceding argument yields a field \(F' \) with transcendence degree 1 over \(\mathbb{F}_p \) such that \(F' \otimes_{\mathbb{F}_p} \tilde{K} \) is \(\tilde{K} \)-isomorphic to \(\tilde{K}(C) \cap (L \otimes_{\mathbb{F}_p} \tilde{K}) \). Since \(\tilde{K}(C) \) is purely inseparable over \(\tilde{K}(C) \cap (L \otimes_{\mathbb{F}_p} \tilde{K}) \), the property of the Frobenius map shows that \(\tilde{K}(C) \cap (L \otimes_{\mathbb{F}_p} \tilde{K}) = \tilde{K}(C)^q \) for some power \(q \) of \(p \), and since \(\mathbb{F}_p \) is perfect, the field \(F = F'^{1/4} \) is the one we look for. ■

Proof of Corollary 1. Let \(X \) be a nonisotrivial smooth projective \(K \)-curve with its Jacobian \(J \) isogenous to an isotrivial abelian variety \(A_0 \). Without loss of generality, we...
can assume that A_0 is defined over $\overline{\mathbb{F}}_p$. Denote by $f: J \to A_0$ the isogeny and by $\tilde{f}: A_0 \to J$ its dual. Let m be the positive integer such that $f \circ \tilde{f}$ is the multiplication-by-m map on A_0, and $\tilde{f} \circ f$ is the multiplication-by-m map on J. In view of the discussion given in Section 1, we need to show that $\text{III}(J)$ is finite and each translate $f(X) + P$, $P \in A_0(\overline{\mathbb{K}})$ is not \mathbb{F}_p-rational.

Now, since A_0 is isotrivial, $\text{III}(A_0)$ is finite, by Tate [13]. Choose a prime l not dividing pm. The isogenies f and \tilde{f} induce a chain

$$\text{III}(J)[l^\infty] \to \text{III}(A_0)[l^\infty] \to \text{III}(J)[l^\infty]$$

of maps between the l-primary part of $\text{III}(J)$ and of $\text{III}(A_0)$ such that the composition is an isomorphism. In particular, $\text{III}(A_0)[l^\infty] \to \text{III}(J)[l^\infty]$ is surjective, hence $\text{III}(J)[l^\infty]$ is finite as $\text{III}(A_0)[l^\infty]$ is. By another result of Tate [13], it follows that $\text{III}(J)$ is finite as desired.

Suppose $C_0 := f(X) + P$ is $\overline{\mathbb{F}}_p$-rational in A_0. Write $C = X + Q$, for some $Q \in f^{-1}(P)$ and let C_1 be an irreducible component of the pre-image of C_0 under $A_0 \xrightarrow{m} A_0$. Then Lemma 11 is applicable to the chain $C_1 \xrightarrow{\tilde{f}} C \xrightarrow{f} C_0$. Consequently, C is defined over $\overline{\mathbb{F}}_p$, and hence X, being isomorphic to C, is isotrivial. This is a contradiction.

Example 2. The conclusion in Theorem 1 would fail if no hypothesis were put on X. To see this, let K be the field $\mathbb{F}_p(t)$ of rational functions over \mathbb{F}_p, and $H = \langle t \rangle$ be the cyclic subgroup of $\mathbb{G}_m(K)$ generated by t. Take a cofinite subset Ω of Ω_K such that $t \in O_v^*$ for every $v \in \Omega$. For any $m \geq n$, we have

$$t^{p^n} - t^{p^m} = (t^{p^n p^{m-1}} - t)^{p^m}.$$

Thus, the sequence $(t^{p^m})_{m \geq 1}$ in H is Cauchy, and admits a limit $Q = (Q_v)_{v \in \Omega} \in \tilde{H}$ by compactness. Note that $Q_{v_{t-1}} = 1$, where $v_{t-1} \in \Omega$ is the unique one satisfying $t - 1 \in m_{v_{t-1}}$; while $Q_v \neq 1$ for each $v \in \Omega \setminus \{v_{t-1}\}$. Hence $Q \in \prod_{v \in \Omega} \mathbb{G}_m(K_v) \cap \tilde{H} \setminus \mathbb{G}_m(K)$.

5 The proofs of key intermediate results

5.1 The proof of Proposition 2

In this section, we fix a finitely generated subgroup $H \subset A(K)$. The number field counter part of the following lemma (for Ω consisting of only non-Archimedean places) is just a
reinterpretation of Chevalley [2, Theorem 1], and it can actually be carried over to the function field case. I thank the referee for pointing out the present much shorter proof using Galois cohomology.

Lemma 12. If \(A = \mathbb{G}_m \), then every subgroup of \(H \) of index prime to \(p \) is open. \(\square \)

Proof. In view of Lemma 5, we only need to consider the case where \(H = \mathbb{G}_m(O_T) = O_T^* \) for a finite \(T \subset \Omega_K \). For any finite subset \(S \subset \Omega \), consider the open subgroup \(U_S = \prod_{v \in S} 1 + m_v \) of \(\prod_{v \in S} K_v^* \). We shall prove the lemma by showing that for any natural number \(m \) prime to \(p \), there is some \(U_S \) such that \(O_T^* \cap U_S \subset (O_T^*)^m \).

Now, Kummer theory gives rise to the following commutative diagram:

\[
\begin{array}{ccc}
O_T^*/(O_T^*)^m & \rightarrow & K^*/(K^*)^m \\
\downarrow & & \downarrow \\
\prod_{v \in \Omega} O_v^*/(O_v^*)^m & \rightarrow & \prod_{v \in \Omega} K_v^*/(K_v^*)^m \\
\downarrow & & \downarrow \\
\prod_{v \in \Omega} H^1(K_v, \mu_m) & \rightarrow & \prod_{v \in \Omega} H^1(K_v, \mu_m)
\end{array}
\]

where the two injections are clear. As the Galois group of \(K(\mu_m)/K \) is cyclic, by Milne [6, Lemma I.9.3], the right vertical arrow is an injection, and hence so is the left one. Since \(O_T^*/(O_T^*)^m \) is finite, there exists a finite subset \(S \subset \Omega \) such that the left vertical arrow induces an injection \(O_T^*/(O_T^*)^m \hookrightarrow \prod_{v \in S} O_v^*/(O_v^*)^m \). Hensel’s lemma shows \(U_S \subset \prod_{v \in S} (O_v^*)^m \), whence \(O_T^* \cap U_S \subset (O_T^*)^m \) as desired. \(\square \)

Lemma 13. If \(A = \mathbb{G}_m \), then every subgroup of \(H \) of \(p \)-power index is open in the \(v \)-adic subtopology, for every \(v \in \Omega_K \). \(\square \)

Proof. Again, by Lemma 5, we only need to consider the case where \(H = O_T^* \). Now, we have \((O_T^*)^{m} = O_T^* \cap (K^*)^{m} \), which is shown in the proof of Proposition 1 to be an open subgroup in \(O_T^* \) in the \(v \)-adic subtopology, for every \(v \in \Omega_K \). \(\square \)

Corollary 2. If \(A = \mathbb{G}_m^N \), then every finitely generated subgroup of \(A(K) \) has the congruence subgroup property. \(\square \)

In the case where \(A \) is an abelian variety, the first assertion of Proposition 2 is essentially proved by Milne, who generalizes a result of Serre [11] in the case where \(K \) was a number field.
Proposition 5. Suppose that \(A \) is an abelian variety defined over \(K \). Then every subgroup \(H \) of \(A(K) \) has the congruence subgroup property. □

Proof. The case where \(H = A(K) \) is exactly [5, Corollary 1]. Then other cases follow from Lemma 5. ■

Proof of Proposition 2. Let \(H \) be a finitely generated subgroup of \(A(K) \). We need to show that \(nH \subset H \) is open for every \(n \). Suppose we are given the isogeny \(\phi: A \to \mathbb{G}_m^N \times B \).

It follows from Corollary 2 and Proposition 5 that \(\phi(H) \) has the congruence subgroup property. In particular, \(mn\phi(H) \subset \phi(H) \) is an open subgroup, for every \(m \). Denote

\[
T = \ker \left[A(K) \xrightarrow{\phi} \mathbb{G}_m^N(K) \times B(K) \right].
\]

Since \(T \) is finite, Lemma 2 implies the existence of an open subgroup \(U \) of \(H \) of a finite index \(m \) such that \(U \cap T \) is trivial.

Now, since \(nmH + T = \phi^{-1}(nm\phi(H)) \) is open in \(H + T = \phi^{-1}(\phi(H)) \), the subgroup \(H \cap (nmH + T) \) is open in \(H \). Also, since \(nmH \subset mH \subset U \) and \(U \cap T \) is trivial, we see that \(U \cap (nmH + T) = nmH \). Therefore, \(nmH \) is open in \(H \), and thus so is \(nH \). ■

5.2 The proofs of Lemmas 9 and 10

Our tool for proving Lemmas 9 and 10 is the iterative derivation. An iterative derivation on a field \(L \) is a sequence \(\{D^{(i)}\}_{i \geq 0} \) of elements in the \(L \)-algebra of additive endomorphisms on \(L \) such that

(i) \(D^{(0)} \) is the identity operator.

(ii) \(D^{(i)}(xy) = \sum_{j=0}^{i} D^{(j)}(x)D^{(i-j)}(y) \), for \(i \geq 0 \) and \(x, y \in L \).

(iii) \(D^{(i)}D^{(j)} = \binom{i+j}{i} D^{(i+j)} \) for \(i, j \geq 0 \), where \(D^{(i)}D^{(j)} \) denotes the composition of \(D^{(i)} \) and \(D^{(j)} \), and the rational integer \(\binom{i+j}{i} \) is the binomial coefficient.

Assume that \(L \) is of characteristic \(p \). Then the following Lucas’s lemma (see, e.g., [10]), is useful for telling if \(\binom{i+j}{i} \neq 0 \) in \(L \). For each nonnegative integer \(i \), let \(i = \sum_{n=0}^{d} i_np^n \), \(0 \leq i_n < p \), denote its base \(p \) expansion.

Lemma 14. The binomial coefficient \(\binom{i}{j} \) is not divisible by \(p \) if and only if \(i_n \geq j_n \) for all \(n \). □
The defining property (iii) implies \(D^{(i)} \circ D^{(j)} = D^{(j)} \circ D^{(i)} \). Also, repeated applications of the property (iii) gives

\[
\prod_{n=0}^{d} (D^{(p^n)})^{i_n} = c_i D^{(i)},
\]

where

\[
c_i = \prod_{n=0}^{d} \left[\left(\sum_{s=0}^{n} i_s p^s \right) \prod_{a=1}^{i_n} \left(a p^n \right) \right].
\]

Now, Lemma 14 implies \(c_i \in L^* \), and hence

\[
D^{(i)} = c_i^{-1} \cdot \prod_{n=0}^{d} (D^{(p^n)})^{i_n}.
\]

(9)

Inspired by the proof of Ogus [8, Claim 2.2.3], we consider the operator

\[
\Delta_m := \sum_{i=0}^{p^m-1} (-t)^i D^{(i)}
\]
on \(L \) for some \(t \in L \) satisfying

\[
D^{(i)}((-t)^j) = (-1)^i \binom{j}{i} t^{j-i} \quad \text{for each } i, j \geq 0.
\]

(10)

For each \(m \geq 0 \), let \(L_m = \{ x \in L : D^{(l)}(x) = 0, \text{ if } 1 \leq l < p^m \} \), which is a subfield of \(L \).

Lemma 15. For every \(c \in L \) and every \(m \geq 0 \), the element \(\Delta_m(c) \in L_m \).

Proof. In view of (9), we only need to show that for every natural number \(s < m \),

\[
D^{(p^s)}(\Delta_m(c)) = 0.
\]

For simplicity, set \(j = p^s \). It follows from property (iii) and assumption (10) that

\[
D^{(j)}(\Delta_m(c)) = \sum_{i=0}^{p^m-1} \sum_{l=0}^{j} (-1)^i \binom{i}{l} \binom{i+j-l}{i} (-t)^{i-l} D^{(i+j-l)}(c).
\]
Lemma 14 implies that \(\binom{i+j-l}{i}\) is a multiple of \(p\) unless both \(i_n \geq l_n\) and \(j_n \geq l_n\) hold for all \(n\), which occurs only when \(l \in \{0, j\}\), since \(j_s = 1\) and \(j_n = 0\) for all \(n \neq s\). We also note that in case where \(l = j\), those terms with \(i < j\) vanish as \(\binom{i}{j} = 0\). Putting these together, we obtain

\[
D^{(j)}(\Delta_m(c)) = \sum_{i=0}^{p^m-1} \binom{i+j}{i} (-t)^i D^{(i+j)}(c) + \sum_{i=0}^{p^m-1} (-1)^j \binom{i}{j} (-t)^{i-j} D^{(i)}(c)
\]

\[
= \sum_{i=j}^{j+p^m-1} \binom{i}{j} (-t)^{i-j} D^{(i)}(c) + \sum_{i=j}^{p^m-1} (-1)^j \binom{i}{j} (-t)^{i-j} D^{(i)}(c)
\]

\[
= \sum_{i=p^m}^{p^m+p^s-1} \binom{i}{p^s} (-t)^{i-p^s} D^{(i)}(c),
\]

where the last equality holds because \(1 + (-1)^j = 1 + (-1)^p = 0\) in \(K\). Finally, since \(s < m\), for every \(i\) satisfying \(p^m \leq i \leq p^m + p^s - 1\), we have \(i_s = 0\), and hence \(\binom{i}{p^s}\) is a multiple of \(p\), by Lemma 14. Thus, each term in the last sum vanishes. This finishes the proof. ■

For each \(i \geq 0\), we extend \(D^{(i)}\) to an additive endomorphism on the polynomial ring \(L[X_0, \ldots, X_N]\) by sending \(X_i\) to 0 for every \(i \in \{0, 1, \ldots, N\}\). It is easy to verify that for all \(i \geq 0\), \(f, g \in L[X_0, \ldots, X_N],\)

\[
D^{(i)}(fg) = \sum_{j=0}^{i} D^{(j)}(f) D^{(i-j)}(g),
\]

and, for all \(m \geq 0\),

\[
L_m[X_0, \ldots, X_N] = \{g \in L[X_0, \ldots, X_N]: D^{(i)}(g) = 0, \text{ if } 1 \leq i < p^m\}.
\]

Lemma 15. For any positive integer \(m\), an ideal \(I\) of \(L[X_0, \ldots, X_N]\) is generated by elements of \(L_m[X_0, \ldots, X_N]\) if and only if the condition \(D^{(i)}(I) \subseteq I\) holds for all \(1 \leq i < p^m\).

Proof. Suppose \(D^{(i)}(I) \subseteq I\) for all \(1 \leq i < p^m\). Let \(J\) be the ideal of \(L[X_0, \ldots, X_N]\) generated by \(I \cap L_m[X_0, \ldots, X_N]\). To complete the proof, we only need to show \(I = J\), as the implication in the opposite direction is clear. Choose a lexicographic order on the set of monomials in \(X_0, \ldots, X_N\). With respect to this order, for each nonzero polynomial \(f \in K[X_0, \ldots, X_N]\), the degree of \(f\) is defined to be the largest monomial appearing in the expression of \(f\) with a nonzero coefficient, and \(f\) is monic if this coefficient is 1.
Suppose that $I \setminus J$ is a nonempty set and let $f \in I \setminus J$ be an element of the smallest degree. We also choose f to be monic. Since $D^{(i)}(1) = 0$, for all positive integer i, the degree of $D^{(i)}(f)$ is smaller than that of f. Consequently, $D^{(i)}(f) \not\in I \setminus J$, by the choice of f. On the other hand, since for every $1 \leq i < p^m$, $D^{(i)}(f) \in D^{(i)}(I) \subset I$, we must have $D^{(i)}(f) \in J$. Now, consider the element

$$g = f + \sum_{i=1}^{p^m-1} (-t)^i D^{(i)}(f) \in L[X_0, \ldots, X_N].$$

By the above argument, $g \in I$, and by Lemma 15, $g \in L_m[X_0, \ldots, X_N]$. Hence, $g \in J$ and $f = g - \sum_{i=1}^{p^m-1} (-t)^i D^{(i)}(f) \in J$, a contradiction. ■

Now we construct a desired iterative derivation on K. Choose an element $t \in K$ such that K is a finite separable extension of the function field $\mathbb{F}_p(t)$ of one variable over \mathbb{F}_p. Choose a place $v_0 \in \Omega_K$ which restricts to a place $w \in \Omega_{\mathbb{F}_p(t)}$ corresponding to a separable irreducible polynomial in $\mathbb{F}_p[t]$ such that $\mathbb{F}_p(t)_w = K_{v_0}$. Let α be a root of this polynomial. Then $\mathbb{F}_p(t)_w$ is a natural subfield of $\mathbb{F}_p((t - \alpha))$ and we have a tower $\mathbb{F}_p((t - \alpha)) \subset K(\alpha) \subset \mathbb{F}_p((t - \alpha))$ of fields. By Remark 1 in [3], there exists an iterative derivation $\{D^{(i)}_{K(\alpha)}\}_{i \geq 0}$ on $K(\alpha)$ such that $D^{(j)}_{K(\alpha)}(t - \alpha)^i = (i/j)(t - \alpha)^{i-j}$ and $(K(\alpha))^{p^m} = \{x \in K(\alpha) : D^{(l)}_{K(\alpha)}(x) = 0, \text{ for } 1 \leq l < p^m\}$, for $i, j, m \geq 0$. Denoting by $D^{(i)}_K$ the restriction of $D^{(i)}_{K(\alpha)}$ on K, we obtain an iterative derivation $\{D^{(i)}_K\}_{i \geq 0}$ on K. It is not hard to check that $D^{(j)}_K(t^i) = (i/j)(t)^{i-j}$, whence (10) holds for $D = D_K$. Also, from the separability assumption, we have $K^{p^m} = \{x \in K : D^{(l)}_K(x) = 0, \text{ for } 1 \leq l < p^m\}$, for $m \geq 0$. Moreover, using the fact $[K : K^p] = p$, one can show that for each i, the endomorphism $D^{(i)}_K$ is continuous with respect to every place of K. Therefore, for each place $v \in \Omega$, we extend $\{D^{(i)}_K\}_{i \geq 0}$ and obtain an iterative derivation $\{D^{(i)}_K\}_{i \geq 0}$ on K_v.

Proof of Lemma 9. Since I_v is generated by elements of $K_v^{p^m}[X_0, \ldots, X_N]$, which lie in the kernel of those $D^{(i)}_K$ with $1 \leq i < p^m$, it follows that for these i we have $D^{(i)}_K(I_v) \subset I_v$ for each $v \in \Omega$. But then

$$D^{(i)}_K \left(\bigcap_{v \in \Omega} (I_v \cap K[X_0, \ldots, X_N]) \right) \subset \bigcap_{v \in \Omega} (D^{(i)}_K(I_v) \cap K[X_0, \ldots, X_N])$$

$$\subset \bigcap_{v \in \Omega} (D^{(i)}_K(I_v) \cap K[X_0, \ldots, X_N])$$

$$\subset \bigcap_{v \in \Omega} (I_v \cap K[X_0, \ldots, X_N])$$

for all $1 \leq i < p^m$. Then we complete the proof by applying Lemma 16. ■
Proof of Lemma 10. Fix a subset \(\Sigma \) of \(\mathbb{P}^N(K_v^{\mathbb{P}^m}) \) for some place \(v \in \Omega_K \) and some positive integer \(m \), and denote by \(I_v \) the ideal in \(K_v[X_0, \ldots, X_N] \) generated by homogeneous polynomials which vanish on \(\Sigma \). Let \(f \in I_v \) be a homogeneous polynomial and \(P \in \Sigma \). By the definition of \(D^{(i)}_K(f) \) and the assumption \(P \in \mathbb{P}^N(K_v^{\mathbb{P}^m}) \), we have \(0 = D^{(i)}_K(f(P)) = D^{(i)}_K(f)(P) \) for each \(1 \leq i < p^m \). This shows \(D^{(i)}_K(I_v) \subset I_v \) for all \(1 \leq i < p^m \). Again, we complete the proof by using Lemma 16.

Acknowledgement

I thank the referee for his/her careful comments on an earlier version of this paper, which generalizes a part of my dissertation completed under the advise of José Felipe Voloch; I am also thankful that Brian Conrad helped me rewrite Section 2.1 in terms of modern algebro-geometric terminology. Also, I appreciate the conversations with Ming-Lun Hsieh, Andreas Schweizer, Ki-Seng Tan, and Julie Wang during my revision. My special thanks to Tan for showing me examples of succinct writing.

Funding

While completing this work, C.-L.S. was supported by (i) the doctoral program in Department of Mathematics in the University of Texas, (ii) Government scholarship for studying abroad from the Ministry of Education of Taiwan, (iii) a special scholarship from Ms K in Taiwan, and (iv) Postdoctoral fellowship from Institute of Mathematics, Academia Sinica, Taiwan.

References

[1] Abramovich, D. and J. F. Voloch. “Toward a proof of the Mordell–Lang conjecture in characteristic \(p \).” International Mathematics Research Notices, no. 5 (1992): 103–15.
[2] Chevalley, C. “Deux théorèmes d’arithmétique.” Journal of the Mathematical Society of Japan 3 (1951): 36–44.
[3] García, A. and J. F. Voloch. “Wronskians and linear independence in fields of prime characteristic.” Manuscripta Mathematica 59, no. 4 (1987): 457–69.
[4] Hewitt, E. and K. A. Ross. Abstract Harmonic Analysis, vol. 1. New York: Springer, 1979.
[5] Milne, J. S. “Congruence subgroups of abelian varieties.” Bulletin des Sciences Mathématiques. Second Series 96 (1972): 333–8.
[6] Milne, J. S. Arithmetic Duality Theorems, 2nd ed. Charleston, SC: BookSurge, LLC, 2006.
[7] Moret-Bailly, L. “Familles de courbes et de variétés abéliennes sur \(\mathbb{P}^1 \).” Séminaire sur les pinceaux de courbes de genre au moins deux, Astérisque 86 (1981): 109–40.
[8] Ogus, A. “\(F \)-crystals and Griffiths Transversality.” In Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977), 15–44. Tokyo: Kinokuniya Book Store, 1978.
[9] Poonen, B. and J. F. Voloch. “The Brauer–Manin obstruction for subvarieties of abelian varieties over function fields.” *Annals of Mathematics. Second Series* 171, no. 1 (2010): 511–32.

[10] Schmidt, F. K. “Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern.” *Mathematische Zeitschrift* 45, no. 1 (1939): 62–74.

[11] Serre, J.-P. “Sur les groupes de congruence des variétés abéliennes. II.” *Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya* 35 (1971): 731–7.

[12] Serre, J.-P. *Algebraic Groups and Class Fields*. Graduate Texts in Mathematics 117. New York: Springer, 1988. Translated from the French.

[13] Tate, J. “On the conjectures of Birch and Swinnerton–Dyer and a geometric analog.” In *Séminaire Bourbaki*, vol. 9, pages Exp. No. 306, 415–40. Paris: Society of Mathematicians France, 1995.