SHORT COMMUNICATION in FLORISTICS AND PLANT CONSERVATION

Polystichum setiferum at the Northeastern Limit of Its Distribution Range

Dariusz Tlalka¹*, Elwira Sliwinska ², Jerzy Kruk ³*

¹Independent/nonaffiliated researcher
²Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
³Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland

* To whom correspondence should be addressed. Emails: tllalkadariusz@gmail.com, jerzy.kruk@uj.edu.pl

Abstract

During field studies in 2019 in the Beskid Śląski mountain range in southern Poland, one individual morphologically resembling *Polystichum setiferum* was found. Nuclear DNA content analysis confirmed the species identity. The new stand of *P. setiferum* corresponds to historical literature reports and herbarium specimens from the Czech Republic and Poland, and extends the northeastern limit of the distribution of this species. As the historical stands in both countries have not been confirmed, the newly discovered stand is at present strongly isolated, as the nearest extant locations of *P. setiferum* in Austria, southern Hungary, and western Romania are nearly 500 km away. Therefore, this unique stand deserves special attention and protection.

Keywords

distribution; Europe; native species; Poland; *Polystichum setiferum*

1. Introduction

Polystichum setiferum (Forssk.) Moore ex Woynar. is a fern species with an Atlantic and sub-Mediterranean distribution, from Canary Islands, northern Africa to Ireland in the west, to the Balkans and the Caucasus Mountains in the east (Dostál & Reichstein, 1984). Its northeastern limit of distribution in central Europe has been supposed until recently to lie in Hungary and Romania (Dostál & Reichstein, 1984). Although this species was reported from regions close to the Polish-Czech border as early as in the nineteenth century (Milde, 1855, 1865) under different names (e.g., *Aspidium aculeatum* (L.) Roth), it was regarded not to occur in the Czech Republic and Poland by contemporary floras (Dostál & Reichstein, 1984; Šourková, 1997; Szafer et al., 1988). This was due to the lack of herbarium documentation and similarity of some forms of *Polystichum aculeatum* (L.) Roth to *P. setiferum*, leading to frequent misidentification (Dostál & Reichstein, 1984). Nevertheless, a recent detailed morphological study of herbarium materials allowed the identification of *P. setiferum* in herbarium collections dated 1881–1935 from the territory of the Czech Republic (Ekrt, 2016). These individuals came from Moravskoslezské Beskydy Mountains (Mt Kněhyně and Mt Smrk), Moravský kras (Olomučany), Jeseníky Mountains (Rýmařov, Mt Praděd, Velká kotlina), and Rychlebské hory (Lázně Jeseník) (Figure 1). Currently, *P. setiferum* has not been confirmed at these locations, and it is regarded as an extinct species in the Czech flora (Kaplan et al., 2017). The species occurs on moderately acidic, humid soil in beech and mixed forests in moderately high mountains with mild winters (Dostál & Reichstein, 1984). *Polystichum setiferum* is a diploid species (*2n* = 82), which is one of the parental species of the allotetraploid *P. aculeatum* (*2n* = 164) (Dostál & Reichstein, 1984). Therefore, these morphologically similar species can be unequivocally distinguished by chromosome count or nuclear DNA content analysis.
Based on past and recent data, we undertook field surveys for *P. setiferum* in the Opawskie Mountains and in the western part of the Beskid Śląski mountain range (Silesian Beskid), areas close to the historical locations of the species in the Eastern Sudetes and the Western Carpathians, respectively. The aim of our study was to verify the presence of *P. setiferum* in Poland in light of the historical data.

2. Material and Methods

Field studies aimed at finding *P. setiferum* in the Opawskie Mountains and Beskid Śląski were conducted between 2018 and 2020. According to our observations, the best season for the search of *P. setiferum* is winter when all other species besides those of *Polystichum* are gone.

Analysis of the morphological characteristics, listed in Table 1, was based on data from literature (Dostál & Reichstein, 1984; Rich & Jermy, 1998).

Table 1 Morphological and cytogenetic comparison of *Polystichum setiferum* and *P. aculeatum*.

Character	*Polystichum setiferum*	*Polystichum aculeatum*
Leaves	Bright green, mat, feels soft	Deep green, glossy, feels stiff
	Truncate at base	Tapering to base
	Petiole usually more than 1/6 leaf length	Petiole usually less than 1/6 leaf length
Pinnae	Apex with distinct, protruding teeth	Apex with indistinct, adherent teeth
Pinnules	Obtuse to acute angled base, stalked, hair-tipped	Acute angled base, usually sessile, spiny-tipped
	The upper pinnula, nearest rachis, hardly longer or equal to the following on the lowest pinnae	Considerably longer than the following
Scales	Bright brown on young plants, bright brown with dark brown interior on adult plants	Brown
Ploidy	Diploid; $2n = 82$	Tetraploid; $2n = 164$

See Material and Methods for details.
Herbarium studies were performed at the herbaria of the Jagiellonian University (KRA) and the Institute of Botany, Polish Academy of Sciences (KRAM).

Stomatal cell length \((n = 100)\) was determined using leaf fragments placed between glass slides in a water drop, and was measured using a Delta Optical microscope, model Genetic Pro, with an ocular micrometer and a calibration glass slide (Opta-Tech, Poland).

For nuclear DNA content estimation, five leaf samples from one individual of putative \(P.\) setiferum and three samples from different \(P.\) aculeatum individuals, growing in the neighborhood of \(P.\) setiferum, were analyzed on three different days. Nuclei were released simultaneously from fresh leaves a sample species and an internal standard (\(Allium cepa\) ‘Alice,’ 34.89 pg/2C; Doležel et al., 1998) by placing...
chopped leaves in a Petri dish with 1 mL of Galbraith’s buffer (Galbraith et al., 1983) supplemented with propidium iodide (PI; 50 μg cm$^{-3}$), ribonuclease A (50 μg cm$^{-3}$), and 1% (v/v) polyvinylpyrrolidone (PVP). The suspension was passed through a 50-μm mesh nylon filter and analyzed using a CyFlow SL Green (Partec GmbH, Germany) flow cytometer equipped with a high-grade solid-state laser with green light emission at 532 nm, long-pass filter RG 590 E, DM 560 A, as well as side (SSC) and forward (FSC) scatters. Analyses were performed on three–four samples of each taxon. For each sample, the DNA content was established in 3,000–5,000 nuclei. Histograms were analyzed using the software FloMax (Partec GmbH). The coefficient of variation (CV) of the G_0/G_1 peak of Polystichum sp. ranged between 3.8% and 5.2%. Nuclear DNA content was calculated using the linear relationship between the ratio of the 2C peak positions Polystichum/Allium on a histogram of fluorescence intensities.

3. Results and Discussion

Field studies performed during 2018–2020 in Poland, in regions of historical occurrence of Polystichum setiferum, led to the identification of one individual in the western part of the Beskid Śląski mountain range (Figure 1), morphologically corresponding well to this species (Figure 2 and Figure 3). It was found by the first author on
December 21, 2019, on the southwestern slopes of Mt Czupel near Brenna, in the western part of the Beskid Śląski mountain range, in one of the abandoned sandstone quarries at ca. 480 m a.s.l. (ATPOL DG0201 square), covered with a 100-year-old beech forest with an admixture of artificially planted larch trees in a half-shaded habitat (Figure 4). This plant was accompanied by several individuals of *P. aculeatum* located further apart.

The identification was based on the investigation of the morphological characteristics distinguishing *P. setiferum* and *P. aculeatum* (Table 1). The most pronounced morphological characteristics of *P. setiferum* differentiating it from *P. aculeatum* are the relatively long petiole, leaf blade truncated at the base, and stalked, hair-tipped pinnules. Stomata length or stomatal cell (guard cell) length could also be useful in differentiating the two species (Ekrt, 2016). The results of the stomatal cell measurements of *P. setiferum* and *P. aculeatum* from the stand (Figure 5) show that the length of stomatal cells of the putative *P. setiferum* individual was evidently lower than that of *P. aculeatum* plants. The length ratio of *P. setiferum* to *P. aculeatum* stomatal cells was 0.8, which corresponds well with the stomata length ratio of specimens from the Czech Republic (0.8) (Ekrt, 2016) and those originating from southern Europe (0.76) (Ekrt, 2016).

In addition to morphological characteristics, the most unequivocal evidence discriminating the two species is the chromosome number count or the corresponding nuclear DNA content measurements. Nuclear DNA content (2C values) of the putative *P. setiferum* and *P. aculeatum* growing in the neighborhood, collected from the new stand, were 15.46 and 28.77 pg, respectively (Table 2). To the best of our knowledge, this is the first study to estimate the genome size of these species (Leitch et al., 2019). The results revealed that 2C values of the investigated species differed nearly twofold, corresponding well with their ploidy level (Dostál & Reichstein, 1984) (Table 1). Moreover, the 2C value of *P. setiferum* found in our
Figure 5 Length of stomata cells (guard cells) of *Polystichum setiferum* (P.s.) and *P. aculeatum* (P.ac.) from the stand in the Beskid Śląski. The means ± SD and ± SE (n = 100) are shown.

Table 2 DNA content (pg/2C) of the investigated *Polystichum* species from Mt Czupel in the Beskid Śląski.

Species	DNA content (pg/2C)
Polystichum setiferum	15.456 ± 0.070
Polystichum aculeatum	28.773 ± 0.199

The data are means ± SD (n = 5 and 3 for *P. setiferum* and *P. aculeatum*, respectively). See Material and Methods for details.

studies is the same as that of the diploid American species, *P. acrostichoides* (Michx.) Schott (15.5 pg/2C) (Bainard et al., 2011). These data indicate that the analyzed *P. setiferum* individual indeed represents this diploid species and not tetraploid *P. aculeatum* or its triploid hybrid with *P. setiferum*, that is, *P. ×bicknellii* (Christ) Hahne, which should have a 2C value intermediate between those of the parental species.

An additional search for *P. setiferum* specimens among those of *P. aculeatum* collected in Poland in the KRA and KRAM herbaria did not result in finding *P. setiferum* even though hundreds of *P. aculeatum* sheets were deposited in these herbaria. This indicates that *P. setiferum* must have already been a very rare species in the past.

The newly identified, isolated stand of *P. setiferum* is situated approximately 10 km from the nearest historical location at Wielka Czantoria near Ustroń (Milde, 1855) and nearly 500 km from other existing populations of this species in Austria (Steiermark) (Virtual Herbaria, 2020, search term: “Polystichum setiferum”), southern Hungary (Mecsek Mountains) (Bátori et al., 2009), and western Romania (near Arad) (Virtual Herbaria, 2020, search term: “Polystichum setiferum”).

The present finding of *P. setiferum* determines its northeastern limit of distribution in Europe, which is a remnant of the more widespread occurrence of this species in the past. However, it cannot be excluded that the discussed stand is a result of a relatively new colonization by spores originating from other presently unidentified or extinct sites located in Poland or the Czech Republic.

As it is the only extant stand of *P. setiferum* in the area of the Sudetes and the Carpathian Mountains, it deserves special attention and protection.

References

Bainard, J. D., Henry, T. A., Bainard, L. D., & Newmaster, S. G. (2011). DNA content variation in monilophytes and lycophytes: Large genomes that are not endopolyploid. *Chromosome Research*, 19(6), 763–775. https://doi.org/10.1007/s10577-011-9228-1
Bátori, Z., Csiky, J., Erdös, L., Morschhauser, T., Töörk, P., & Körömöcsi, L. (2009). Vegetation of the Dolines in Mesceik Mountains (south Hungary) in relation to the local plant communities. *Acta Carsologica*, 38(2–3), 237–252. https://doi.org/10.3986/ac.v38i2-3.125

Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysak, M. A., Nardi, L., & Obermayer, R. (1998). Plant genome size estimation by flow cytometry: Inter-laboratory comparison. *Annals of Botany*, 82(Suppl. A), 17–26. https://doi.org/10.1093/oxfordjournals.aob.a010312

Dostál, J., & Reichstein, T. (1984). *Polystichum*. In K. U. Kramer (Ed.), *Illustrierte Flora von Mitteleuropa* [Illustrated flora of Central Europe] (3rd ed., Vol. 1/1, pp. 169–187). Parey.

Ekrt, L. (2016). Znovuobjevená kapradina bodlinkatá (*Polystichum setiferum*) pro květenu České republiky [Polystichum setiferum rediscovered for the flora of the Czech Republic]. *Zprávy České Botanické Společnosti*, 51, 211–220.

Galbraith, D. W., Harkins, K. R., Maddox, J. M., Ayres, N. M., Sharma, D. P., & Firoozabady, E. (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. *Science*, 220(4601), 1049–1051. https://doi.org/10.1126/science.220.4601.1049

Kaplan, Z., Danihelka, J., Šumberová, K., Chrtěk, J., Jr., Rotreklová, O., Ekrt, L., Štěpánková, J., Tatraška, V., Trávníček, B., Prančl, J., Ducháček, M., Hroneš, M., Kobrlová, L., Horák, D., & Wild, J. (2017). Distributions of vascular plants in the Czech Republic. Part 5. *Preslia*, 89, 333–439. https://doi.org/10.23855/preslia.2017.333

Leitch, I. J., Johnston, E., Pellicer, J., Hidalgo, O., & Bennett, M. D. (2019). *Pteridophyte DNA C-values Database* (release 6.0, April 2019). https://c-values.science.kew.org/

Milde, J. (1855). Ueber schlesische Farrn [On Silesian ferns]. *Oesterreichisches Botanisches Wochenblatt*, 3(33), 257–259. https://doi.org/10.1007/BF02079599

Milde, J. (1865). *Die höheren Sporenpflanzen Deutschlands und der Schweiz* [The higher spore-bearing plants of Germany and Switzerland]. Arthur Felix.

Rich, T. C. G., & Jermy, A. C. (1998). *Plant Crib* 1998. Botanical Society of the British Isles.

Szafer, W., Kułczyński, S., & Pawłowski, B. (1988). *Rośliny polskie*, cz. I [The plants of Poland, Part 1] (6th ed.). Państwowe Wydawnictwo Naukowe.

Šourková, M. (1997). *Polystichum Roth – kapradina*. In S. Hejný, & B. Slavík (Eds.), *Květena České Republiky* [Flora of the Czech Republic] (2nd ed., Vol. 1, pp. 272–276). Academia.

Virtual Herbaria (2020). Retrieved April 14, 2021, from https://herbarium.univie.ac.at/database/search.php