A prime goal of ultrarelativistic heavy-ion collisions (URHICs) is the production and investigation of the quark-gluon plasma (QGP), a state of matter with quarks and gluons as the relevant degrees of freedom. The suppression of heavy-quarkonium production in URHICs, relative to proton-proton (p-p) reactions, has long been considered as a signature of QGP formation [1]. However, more recent observations at the Relativistic Heavy-Ion Collider (RHIC) suggest that the created matter is a strongly interacting QGP (sQGP), which allows for the existence of heavy-quark bound states as suggested by lattice QCD [2]. Thus, with copious production of charmquarks at RHIC, secondary formation of charmonia via c-\overline{c}-coalescence might dominate their yield in central Au-Au collisions [3,4], contrary to the situation in Pb-Pb collisions at the CERN Super Proton Synchrotron (SPS), where J/ψ suppression is the main effect.

In the present work [5], we study consequences of this picture for bottomonium (Y) production at RHIC and the Large Hadron Collider (LHC). We assess the time evolution of Y states in A-A collisions via a kinetic rate equation,

$$\frac{dN_Y}{dt} = -\Gamma_Y (N_Y - N_Y^{eq})$$

(N_Y: number of Y, Γ_Y: Y-dissociation rate, N_Y^{eq}: Y-equilibrium number), which is valid if b-quarks (open-bottom states) are in thermal equilibrium with the surrounding QGP [6].

The dissociation rates for the various Y states are evaluated using dissociation cross sections with thermal quarks and gluons. Since the commonly employed gluo-dissociation process [7], $g+Y\rightarrow b+b\overline{b}$, becomes inefficient for small Y binding energies, we use the quasi-free breakup mechanism, $g(q)+Y\rightarrow b+b\overline{b}+g(q)$, as suggested for charmonia [4]. The in-medium Y binding energies are taken from solutions of a Schrödinger equation with a color-screened Cornell potential [8]. We furthermore assume that the quarkonium masses are temperature independent, which implies that the b-quark mass also decreases with temperature (as indicated by lattice QCD as well).

Due to their large mass, b-quarks are not expected to kinetically equilibrate in A-A collisions. We account for this by multiplying the gain term of the rate equation with a schematic correction factor, $R = 1 - \exp(-\int_{0}^{\infty} d\tau / \tau_{eq})$, with τ_{eq} denoting the thermal relaxation time for b-quarks which we take from a recent resonance-scattering model [9].

The total number of b-\overline{b} pairs in the system (which determines the Y-equilibrium number) is obtained from binary collision scaling (secondary production is expected to be negligible [10]) according to

$$N_{b\overline{b}} = \frac{\sigma_{pp\rightarrow b\overline{b}}}{\sigma_{pp}^{inelastic}} N_{coll}(b) R_y,$$
with $\sigma_{pp}^{inelastic}=42(78)$ mb: total inelastic p-p cross section at RHIC (LHC) [11], $N_{coll}(b)$: number of primordial N-N collisions at impact parameter b, $\sigma_{pp\rightarrow b\bar{b}}=2(160)$μb at RHIC (LHC) [12]. $R_y=0.52(0.29)$ for RHIC (LHC) denotes the fraction of $b-b\bar{b}$ pairs in the considered rapidity range [13]. The primordial numbers of bottomonia are taken to be proportional to the $b-b\bar{b}$ number with a p-p production cross section of $3.5(152)$nb at RHIC (LHC, including shadowing corrections) [14]. The initial bottomonium number in the rate equation, $N_{y}(0)$, also incorporates (pre-equilibrium) nuclear absorption effects with a dissociation cross section of $3.1(4.6)$mb at RHIC (LHC).

With the above ingredients we solve the rate equation for different impact parameters for A-A collisions at RHIC and LHC energies; the pertinent centrality dependencies for $Y(1S)$ production are summarized in Fig. 1, including feeddown from excited bottomonia. A rather strong suppression turns out to be the main effect at both RHIC and LHC, mostly driven by the reduction in binding energies due to color-screening. This is in contrast with the findings of similar studies for charmonia [14], where J/ψ suppression is the prevalent effect at SPS, while regeneration takes over and becomes the dominant source at RHIC energies and above. Thus, the simultaneous observation of appreciable $Y(1S)$ suppression and the absence of J/ψ suppression emerges as a promising signature of the sQGP at collider energies.

![Figure 1](image-url)

Figure 1. Centrality dependence of N_{Y}/N_{coll} at RHIC (200 GeV Au-Au collisions, left panel) and LHC (5.5 TeV Pb-Pb collisions, right panel) using the quasi-free Y-dissociation cross sections with color Debye-screening.

[1] T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986).
[2] Y. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004); S. Datta et al., Phys. Rev. D 69, 094507 (2004).
[3] P. Braun-Munzinger and J. Stachel, Nucl. Phys. A690, 119 (2001); R. L. Thews, M. Schroedter and J. Rafelski, Phys. Rev. C 63, 054905 (2001).
[4] L. Grandchamp and R. Rapp, Phys. Lett. B 523, 60 (2001); Nucl. Phys. A709, 415 (2002).
[5] L. Grandchamp, S. Lumpkins, D. Sun, H. van Hees, R. Rapp, hep-ph/0507314.
[6] R. Rapp and L. Grandchamp, J. Phys. G 30, S305 (2004).
[7] M. E. Peskin, Nucl. Phys. B156, 365 (1979); G. Bhanot and M. E. Peskin, Nucl. Phys. B156, 391 (1979).
[8] F. Karsch, M. T. Mehr and H. Satz, Z. Phys. C 37, 617 (1988).
[9] H. van Hees and R. Rapp, Phys. Rev. C 71, 034907 (2005).
[10] P. Levai, B. Müller and X. N. Wang, Phys. Rev. C 51, 3326 (1995).
[11] S. Eidelmann et al. ([Particle Data Group), Phys. Lett. B 592, 1 (2004).
[12] M. Bedjidian et al., hep-ph/0311048; R. Vogt, Heavy Ion Phys. 18, 11 (2003).
[13] R. Vogt (Hard Probe Collaboration), Int. J. Mod. Phys. E 12, 211 (2003).
[14] L. Grandchamp, R. Rapp, and G. E. Brown, Phys. Rev. Lett. 92, 212301 (2004).