Effect of Obstructive Sleep Apnea on the Risk of Injuries—A Nationwide Population-Based Cohort Study

An-Che Cheng 1, Gwo-Jang Wu 2,3, Chi-Hsiang Chung 4,5,6, Kuo-Hsiang Wu 7, Chien-An Sun 8,9*, I-Duo Wang 10,* and Wu-Chien Chien 4,5,6,11,*

Abstract: Obstructive sleep apnoea (OSA) has been reported to increase the risk of motor vehicle accidents. However, only few studies have investigated the effects of OSA on overall risk injury. The aim of study is to investigate whether OSA increases the risk of overall injury. The data were collected during 2000–2015 from Taiwan’s National Health Insurance Research Database. A total of 8901 individuals diagnosed with OSA were inpatients, or outpatients at least three times were enrolled. Finally, 6915 participants with OSA were included as the study cohort. We matched the study cohort with a comparison cohort, at a ratio of 1:4. Cox proportional hazards regression was used to analyse the association between OSA and overall injury. Patients with OSA had 83.1% increased risk of overall injury, compared to non-OSA individuals [adjusted hazards ratio (HR) = 1.831, confidence interval (CI) = 1.674–2.020, p < 0.001]. In the stratified age group, patients aged 65 years had the highest risk of injury (adjusted HR= 2.014; CI = 1.842–2.222, p < 0.001). Patients with OSA were at a higher risk of falls, traffic injury, poisoning, suffocation, suicide, and abuse or homicide than non-OSA individuals, with falls and traffic injury as the leading causes of injuries. The data demonstrated that patients with OSA have a higher risk of overall injury. The study results can be a reference for developing injury prevention strategies in the future. The general population and clinicians should have more awareness regarding OSA and its negative effects on injury development.

Keywords: obstructive sleep apnoea; injuries; Taiwan national healths insurance research database; longitudinal health insurance database

1. Introduction

Obstructive sleep apnoea (OSA) is a prevalent, yet under-diagnosed respiratory disorder, characterised by frequent episodes of upper airway collapse during sleep. Approximately 1 billion adult population have sleep apnoea [1]. OSA causes sleep fragmentation...
and repetitive hypoxemia and is associated with various adverse outcomes, including daytime sleepiness, decreased learning skills, and impaired neurocognitive function [2]. OSA has been strongly associated with long-term health consequences, including hypertension, cardiovascular events, cerebrovascular disease, diabetes, and depression [3–6].

The relationship between OSA and motor vehicle accidents (MVAs) has been well-established [7,8] and become one of the top priorities of the Federal Motor Carrier Safety Administration in the United States. However, only few studies have investigated the relationship between OSA and its effect on injury development in the general adult population. In the present study, we used data from Taiwan’s National Health Insurance Research Database (NHIRD), a longitudinal nationwide population-based cohort study, with data of follow-up for more than 16 years, with an aim to determine whether OSA is associated with the risk of overall injury.

2. Material and Methods

2.1. Data Sources

We used data from the National Health Insurance Research Database (NHIRD) in Taiwan. Taiwan has started the National Health Insurance (NHI) program, since 1995. It includes the data of approximately 99% of the people in Taiwan (a total of 23.74 million people) and 97% of the clinics are covered under the NHI system [9]. The NHIRD contains several health registration records of the Taiwanese general population, including outpatient, inpatient, and emergency department data. Physicians coded the diagnosis according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The NHIRD has high accuracy and validity, in terms of diagnoses [10]. Therefore, the NHIRD offers representative data for medical- and health-related research. Moreover, the NHIRD encrypts and converts all the identification numbers in all NHIRD records to protect the privacy of all people registered in the program. Our study protocol was approved by the Institutional Review Board of Tri-Service General Hospital (TSGHIRB No. B-110-55).

2.2. Study Design and Participants

This population-based cohort study enrolled 1,936,512 outpatients and inpatients from the Longitudinal Health Insurance Database, between 1 January 2000 and 31 December 2015, in Taiwan. We included patients aged above 20 years who were diagnosed with OSA (ICD-9-CM code: 780.51, 780.53, 780.57) and had at least three outpatient visits or one hospitalization among the 8901 individuals. OSA is diagnosed by otorhinolaryngologists and pulmonologists, using overnight polysomnography (PSG) to detect the frequency of apnoeic and hypopnoeic events. The apnoea–hypopnoea index (AHI) is the average number of disordered breathing events per hour. OSA syndrome is defined as an AHI of ≥5 associated symptoms (e.g., excessive daytime sleepiness, fatigue, or impaired cognition) or an AHI of ≥15, regardless of associated symptoms [11]. Patients diagnosed with OSA and those who had injuries before 1 January 2000 were excluded. The index date was defined as the date of a new diagnosis of OSA. In total, 6915 participants who matched our inclusion criteria were assigned to the study cohort. Individuals without OSA diagnosis were randomly selected for the control group and matched with the OSA group by age, sex, index date, and comorbidities, using a four-fold propensity score matching. Among the control patients, we excluded those with a history of sleep disorders in the study period and with a medical history, following the exclusion criteria. The flowchart of the study design is shown in Figure 1.
Figure 1. Flowchart of study group selection from the National Health Insurance Research Database in Taiwan.

2.3. Outcome and Comorbidity

All the participants were followed from the index date until the onset of injury or the end of 31 December 2015. Different categories of injury according to the ICD-9 diagnosis, such as fracture, dislocation, sprain and strains, intracranial/internal injury, open wound, injury to blood vessels, superficial injury, contusion, crushing, foreign body entering through orifice, burn, injury to nerves and spinal cord, poisoning and others, were included. We categorised the mechanisms of injuries according to the ICD-9 diagnosis, including traffic injury, falls, suffocation, other unintentional injuries, and suicide. Common comorbidities such as diabetes mellitus (DM), hypertension (HTN), hyperlipidaemia, cerebrovascular disease (CVD), stroke, obesity, anxiety, and depression were listed and compared the baseline characteristics between the two groups. The ICD-9-CM codes used in the present study are shown in Supplementary Table S1.

2.4. Statistical Analysis

The demographic features and common comorbidities between patients with OSA and non-OSA individuals were compared using the chi-square test. Mean patient age in both cohorts was calculated using Student’s t-test. The incidence rate (per 10^5 person-years) of injury was calculated according to sex, age, and comorbidities for each cohort. Age, sex, and concomitant comorbidities were included in the multivariable model for adjustment. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using multivariable
Cox proportional hazards models. We evaluated the cumulative incidence of OSA-related injury using the Kaplan–Meier analysis and log-rank test. All statistical analyses were conducted using SPSS 22.0 software for Windows, version 22.0 (IBM Corp., Armonk, NY, USA), with a two-tailed test p value of <0.05 for statistical significance.

3. Results
3.1. Baseline Characteristics of the Patients in the Study

The study included 6915 patients (mean [SD] age, 56.11 [17.94] years) in the OSA cohort and 12,100 patients (mean [SD] age, 56.14 [18.04] years) in the control cohort, 2000–2015 (Figure 1). Data of baseline demographic characteristics and common comorbidities of patients are shown in Supplementary Table S2. Most patients in our study population were male (67.10%). Among the study population, 39.81% of patients were aged more than 65 years, 35.23% of patients were aged 45–64 years, and 24.96% of patients were aged 20–44 years. The distribution of age, sex, and common comorbidities was similar between the study and control cohorts.

3.2. Endpoint Characteristics of the Study

Information of the endpoint characteristics is presented in Table 1. At the end of the follow-up, injury events developed in 1770 patients in the OSA cohort and 6675 patients in the control cohort (Figure 1). The mean follow-up time was 10.29 ± 10.76 years in the OSA cohort and 10.94 ± 11.29 in the control cohort (Supplementary Table S3). The mean number of years to injury was 5.54 ± 4.22 in OSA cohort and 5.63 ± 4.33 in the control cohort (Supplementary Table S4). The prevalence of DM, HTN, stroke, and obesity in OSA cohort were higher than control cohort (all p < 0.001).

Table 1. Endpoint characteristics of the study.

Variables	Total	With	Without	p	
	n	%	n	%	p
Total	34,575	6915 (20.00%)	27,660 (80.00%)	0.011	
Injury					
Without	26,130 (75.57%)	5145 (74.40%)	20,985 (75.87%)		
With	8445 (24.43%)	1770 (25.6%)	6675 (24.13%)		
Gender				0.999	
Male	23,200 (67.10%)	4640 (67.10%)	18,560 (75.10%)		
Female	11,375 (32.90%)	2275 (32.90%)	9100 (32.90%)		
Age (y)	66.87 ± 19.48	66.04 ± 18.26	67.08 ± 19.77	<0.001	
≥65	15,958 (46.15%)	2944 (42.57%)	13,014 (47.05%)		
DM				<0.001	
Without	28,993 (83.86%)	5573 (80.59%)	23,420 (84.67%)		
With	5582 (16.14%)	1342 (19.41%)	4240 (15.33%)		
HTN				<0.001	
Without	28,247 (81.70%)	5442 (78.70%)	22,805 (82.45%)		
With	6328 (18.30%)	1473 (21.30%)	4855 (17.55%)		
Hyperlipidemia				0.208	
Without	33,895 (98.03%)	6766 (97.85%)	27,129 (98.08%)		
With	680 (1.97%)	149 (2.15%)	531 (1.92%)		
CVD				0.399	
Without	31,677 (91.62%)	6318 (91.37%)	25,359 (91.68%)		
With	2898 (8.38%)	97 (8.63%)	2301 (8.32%)		

Table 1. Endpoint characteristics of the study.
Table 1. Cont.

Variables	Total									
	n	%	n	%	n	%	P			
Stroke										
Without	31,761	91.86	6231	90.11	25,530	92.30	<0.001			
With	2814	8.14	684	9.89	2130	7.70				
Obesity										
Without	34,550	99.93	6900	99.78	27,650	99.96	<0.001			
With	25	0.07	15	0.22	10	0.04				
Anxiety										
Without	34,455	99.65	6876	99.44	27,579	99.71				
With	120	0.35	39	0.56	81	0.29				
Depression										
Without	34,336	99.31	6849	99.05	27,487	99.37				
With	239	0.69	66	0.95	173	0.63				

P: Chi-square/Fisher exact test on category variables and t-test on continuous variables. Abbreviations: OSA = obstructive sleep apnea; y = years; DM = diabetes mellitus; HTN = hypertension; CVD = cardiovascular disease.

3.3. Comparison between the Incidence and Risk of Injury of the OSA and Control Cohorts

We stratified and analysed sex, age, and concomitant comorbidities for the risk of injury using Cox regression model as presented in Table 2. After adjusting for age, sex, and other concomitant comorbidities, patients with OSA had an 83.1% higher risk of injury (adjusted HR = 1.831 [95% CI, 1.674–2.202]; p < 0.001) than non-OSA individuals. Patients with OSA had a higher incidence of injury than the non-OSA individuals (2590 vs. 2278 per 10^5 person-years, p < 0.05). The Kaplan–Meier curve showed that the incidence of injury started to branch off in the first year in the OSA group and persisted until the end of the follow-up (log-rank; p < 0.001; Figure 2).

Table 2. Injury factors stratified by variables by using Cox regression.

Stratified	Events	PYs	Rate (per 10^5 PYs)	Events	PYs	Rate (per 10^5 PYs)	Ratio	Adjusted HR	95% CI	95% CI	P
Total	1770	68,331.70	2590.31	6775	297,346.61	2278.49	1.137	1.831	1.674	2.020	<0.001
Gender											
Male	1162	43,533.39	2669.22	4077	173,185.76	2354.12	1.134	1.826	1.670	2.015	<0.001
Female	608	24,798.31	2451.78	2698	124,160.85	2172.99	1.128	1.817	1.661	2.005	<0.001
Age group (y)											
20–44	298	14,504.71	2054.51	797	41,937.46	1900.45	1.081	1.741	1.592	1.921	<0.001
45–64	730	28,126.24	2595.44	2284	95,380.39	2394.62	1.084	1.746	1.596	1.926	<0.001
≥65	742	25,700.75	2887.07	3694	160,028.75	2308.34	1.251	2.014	1.842	2.222	<0.001
DM											
Without	1491	57,447.27	2595.42	5533	240,331.50	2302.24	1.127	1.816	1.660	2.003	<0.001
With	279	10,884.43	2563.29	1242	57,015.11	2178.37	1.177	1.895	1.733	2.091	<0.001
HTN											
Without	1435	52,024.02	2758.34	5430	221,961.83	2446.37	1.128	1.816	1.660	2.003	<0.001
With	335	16,307.68	1540.25	1345	75,384.78	1784.18	1.151	1.854	1.695	2.046	<0.001
Hyperlipidemia											
Without	1711	65,627.41	2607.14	6714	288,258.77	2329.16	1.119	1.803	1.648	1.989	<0.001
With	59	2704.30	2181.71	61	9087.84	671.23	3.250	5.235	4.786	5.775	<0.001
CVD											
Without	1642	61,274.03	2679.76	6321	266,420.25	2372.57	1.129	1.819	1.663	2.007	<0.001
With	128	7057.67	1813.63	454	30,926.35	1468.00	1.235	1.990	1.819	2.195	<0.001
Stroke											
Without	1659	62,945.26	2635.62	6393	273,043.04	2341.39	1.126	1.813	1.658	2.000	<0.001
With	111	5386.45	2060.73	382	24,303.57	1571.79	1.311	2.112	1.931	2.330	<0.001
Table 2. Cont.

OSA	With	Without	With vs. Without								
	Events PYs	Rate (per 10^5 PYs)	Events PYs	Rate (per 10^5 PYs)	Ratio	Adjusted HR	95% CI	95% CI	P		
Obesity	1767	68,113.39	2594.20	6772	297,084.57	2279.49	1.138	1.833	1.676	2.022	<0.001
With Anxiety	3	218.31	1374.20	3	262.03	1144.89	1.200	1.933	1.767	2.133	<0.001
Depression	1763	68,218.88	2584.33	6764	296,229.62	2283.36	1.132	1.823	1.667	2.011	<0.001
With	7	112.82	6204.42	11	1116.98	984.80	6.300	10.147	9.277	11.194	<0.001
Abbreviations: OSA = obstructive sleep apnea; y = years; PYs = person-years; Adjusted HR = adjusted hazard ratio: adjusted for the variables listed in Table 2; CI = confidence interval.											

Figure 2. Kaplan-Meier for cumulative survive of injury among aged 20 and over stratified by OSAs with log-rank test.

In the analysis of stratified age groups, OSA had the greatest impact on the age group of more than 65 years (adjusted HR = 2.014 [95% CI, 1.842–2.222]; p < 0.001), followed by the age group of 45–64 (adjusted HR = 1.746 [95% CI, 1.596–1.926]; p < 0.001) and the age group of 20–44 years (adjusted HR = 1.741 [95% CI, 1.592–1.921]; p < 0.001) (Table 2). The risk of injury in patients with OSA increased with concomitant comorbidities, including DM, HTN, hyperlipidaemia, CVD, stroke, obesity, anxiety, and depression (all p < 0.001).

3.4. Diagnosis and Causes of Injury

The subgroup analysis of injury, including its diagnosis and causes, through Cox regression, are presented in Table 3. For the diagnosis, patients with OSA had a higher risk of fracture, dislocation, intracranial injury, open wound, blood vessel injury, contusion...
and crushing injury, foreign body entering through an orifice, nerve and spinal cord injury, poisoning, and other injuries than non-OSA individuals.

Table 3. Factors of injury subgroup by using Cox regression.

Injury Subgroup	OSA	With/Without	Rate (per 10^5 PYs)	Ratio	Adjusted HR	95% CI	95% CI	p	
Injury diagnosis									
Fracture	513	68,331.70	750.75	2321	297,346.61	0.962	1.549	1.709	<0.001
Dislocation	25	68,331.70	36.59	120	297,346.61	0.907	1.460	1.611	<0.001
Sprains and strains	18	68,331.70	26.34	153	297,346.61	0.512	0.825	0.754	<0.001
Intracranial/internal injury	273	68,331.70	399.52	1,017	297,346.61	1.168	1.881	1.720	<0.001
Open wound	134	68,331.70	196.10	510	297,346.61	1.143	1.841	1.684	<0.001
Injury to blood vessels	16	68,331.70	23.42	9	297,346.61	7.736	12.460	11.391	<0.001
Superficial injury/contusion	55	68,331.70	80.49	276	297,346.61	0.867	1.397	1.277	<0.001
Crushing Foreign body	18	68,331.70	26.34	32	297,346.61	2.448	3.942	3.604	<0.001
Injury to nerves and spinal cord	9	68,331.70	13.17	35	297,346.61	1.119	1.802	1.648	<0.001
Poisoning	130	68,331.70	190.25	347	297,346.61	1.630	2.626	2.401	<0.001
Others	567	68,331.70	829.78	1819	297,346.61	1.356	2.185	1.997	<0.001
Cause of injury									
Traffic	301	68,331.70	440.50	1167	297,346.61	1.122	1.808	1.653	<0.001
Poisoning (solid and liquid	7	68,331.70	10.24	10	297,346.61	1.088	1.752	1.602	<0.001
substances)									
Falls	335	68,331.70	490.26	1501	297,346.61	0.971	1.564	1.430	<0.001
Suffocation	5	68,331.70	7.32	30	297,346.61	0.725	1.168	1.088	<0.001
Suicide	82	68,331.70	120.00	86	297,346.61	4.149	6.683	6.110	<0.001
Homicide/Abuse	87	68,331.70	127.32	56	297,346.61	8.760	10.888	9.955	<0.001
Intentionality of injury									
Unintentional	1124	68,331.70	1644.92	4285	297,346.61	1.141	1.838	1.681	<0.001
Intentional	169	68,331.70	247.52	142	297,346.61	5.179	8.341	7.626	<0.001

Abbreviations: OSA = obstructive sleep apnea; y = years; PYs = person-years; Adjusted HR = adjusted hazard ratio; adjusted for sex, age, co-morbidities (diabetes mellitus, hypertension, hyperlipidemia, cerebrovascular disease, stroke, obesity, anxiety, depression); CI = confidence interval. Unintentional: traffic; poisoning (solid and liquid substances); falls; suffocation. Intentional: suicide; homicide/abuse.

For the causes of injury, falls had the highest incidence (490.26 injuries per 10^5 person-years), followed by traffic injury (440.50 injuries per 10^5 person-years). In unintentional injury, patients with OSA had higher risk for falls [adjusted HR = 1.564 (95% CI, 1.430–1.726); p < 0.001], traffic injury [adjusted HR = 1.808 (95% CI, 1.653–1.994); p < 0.001], poisoning (solid and liquid substances) [adjusted HR = 1.752 (95% CI, 1.068–1.933); p < 0.001], and
suffocation [adjusted HR = 1.168 (95% CI, 1.602–1.289); \(p < 0.001 \)] than the non-OSA individuals. In intentional injury, patients with OSA had a higher risk of suicide by 6.683-fold [adjusted HR = 6.683 (95% CI, 6.110–7.372); \(p < 0.001 \)] and homicide or abuse by 10.888-fold [adjusted HR = 10.888 (95% CI, 9.955–12.012); \(p < 0.001 \)] than the non-OSA individuals.

4. Discussion

This population-based cohort study demonstrated that patients with OSA had a higher incidence rate and 83.1% higher risk of overall injury than those without OSA. In the stratified age group, the older patients (\(\geq 65 \) years old) with OSA had a 2.01-fold greater risk of injury than those without OSA. Patients with OSA were at a higher risk of unintentional injuries, including falls and substance poisoning, traffic injury, and suffocation, than non-OSA individuals. In intentional injury, patients with OSA had a 6.68- and 10.88-fold greater risk of suicide and abuse or homicide-related injury, respectively, than non-OSA individuals.

Past studies [7,8] have reported that patients with OSA had a higher risk of developing MVA and crash-related injury than non-OSA individuals. Moreover, a strong relationship has been reported between OSA and the risk of occupational injury [2,12,13]. However, investigations on the relationship between OSA and its effect on injury development in the general population are limited. To the best of our knowledge, our study is the largest and longest nationwide cohort study that investigated the association between OSA and the risk of overall injury.

For the unintentional injuries, falls had the highest incidence, followed by traffic injury. The results were similar to previous observations [14,15], showing traffic injury and falls as the prevalent leading causes of unintentional injury in Taiwan, especially in the older population. For the risk of unintentional injury subtypes, patients with OSA had higher risks of falls, traffic injury, poisoning (solid and liquid substances), suffocation, and other unintentional injuries than non-OSA individuals. Our study provided information on the risk of different unintentional injury types in patients with OSA, which could be used as a reference for establishing injury prevention strategies in future studies.

The mechanism of OSA, and its association with different types of unintentional injuries, are not completely clear. There are several possible explanations for these findings. First, previous studies suggest neurocognitive defects in patients with OSA, including decline in cognition, attention, memory, vigilance, executive functioning, and even visuospatial/constructional abilities [16–19]. These may cause overestimation of their ability, misjudged environmental hazards, mistaken identification of inedible substances, such as disinfectants as medications, and ingestion of foreign bodies. Second, patients with OSA commonly present with poor sleep quality, nocturnal hypoxemia, and excessive daytime sleepiness [20]. Furdato et al. [21] demonstrated that healthy individuals with long-term poor sleep quality have worsened static and dynamic postural stability, compared to those with good sleep quality. Degache et al. [22] examined that the nocturnal oxygen saturation level has the strongest independent association with impaired daytime postural control. Sleep loss status has a negative effect on the driver’s maintenance of lane positions, steering in simulation, and reaction time [23]. Excessive daytime sleepiness also contributes to MVAs [7,24] and an increase in the risk of falls, especially in females [25,26]. Third, a previous study demonstrated that patients with OSA were likely to present with impaired swallowing reflex [27]. Another study [28] examined that symptomatic patients with OSA had an increased risk of pharyngeal aspiration than the normal control group. This mechanism is still unclear, but it may be due to the perturbed neural and muscular function of the upper airways [27]; thus, it may be associated with an increased risk of suffocation. Further investigations are needed for understanding OSA and its effect on different types of injuries.

The relationship between sleep apnoea and psychiatric disorders, including mood, anxiety, depression, and schizophrenia, is well-established [29–31]. For example, a previous
study also demonstrated a positive association between OSA and suicidal thinking [32]. However, there are limited data comparing the risk of suicide-related injury between patients with and without OSA. Our study reported that OSA was significantly associated with suicide-related injury. Nevertheless, a recent large national sample study [33] found that sleep apnoea was not significantly associated with past-year suicide attempts, which was not consistent with the findings of our study. This inconsistency, assessed using single self-report items, may be due to many variables, including suicidal ideation, planning, and attempt. Thus, the methodology may have led to the underestimation of suicide prevalence. The present study demonstrated that OSA should be considered a risk factor for suicide-related injury. Moreover, the early diagnosis of OSA may provide clinicians the opportunity to discuss mental health with their patients, resulting in early prevention of suicide-related injury.

Although the specific mechanism of OSA in suicidality remains unclear, several hypotheses have been proposed to explain this relationship. For example, sleep disruption affected mental health, including increased impulsivity and irritability, difficulty in maintaining motivation, and emotional dysregulation [34], all of which may impair the patient’s ability to avoid suicidal thought and behaviour. Furthermore, chronic disruption of the sleep cycle can decrease mental and physical energy, potentially affecting the ability to deal with stress and mental difficulties [35]. Recent literature [36–38] revealed that OSA is associated with the development of many comorbidities, such as cardiovascular, cerebrovascular, and metabolic diseases, all of which may lead to decreased quality of life, indirectly increasing suicide risk. Future research is needed to investigate the mechanisms, as well as the direct and indirect effects of OSA on mental health.

Another important finding in the present study was that patients with OSA were 10.88 times more likely to be injured due to homicide or abuse than those without OSA, especially women, who are associated with a higher risk than men with OSA. To the best of our knowledge, this is the first study to prove that OSA is a novel risk factor for adult abuse or homicide-related injury; however, the underlying reasons have yet to be elucidated. This result may be because patients with OSA had a higher prevalence of comorbidities [36–38], such as cardiovascular and neurocognitive dysfunction [18,19] and psychiatric disorders [30,31], than non-OSA individuals. As mentioned above, these were the risk factors for abuse or homicide victimization [39,40]. Therefore, they are more likely to become a victim of abuse or homicide than those without OSA. Moreover, snoring could impair the sleep and life quality of their bed partner or caregivers [41] and lead to frustration, irritation, exhaustion, depression, strained relationship, and marital dissatisfaction [42,43]. In some cases, this may result in domestic violence [44], which was accounts for approximately 40% of homicide cases in the U.S. [45]. Abuse may be emotional, physical, or sexual. However, we were unable to conduct a detailed analysis on abuse because the database contained no information on its various types. Further research should be conducted to better understand the relationship between OSA and the type of abuse and underlying mechanisms. Subsequently, this will facilitate the development of abuse prevention strategies, practices, and policies.

The present study showed that the increased incidence and risk in injury was most pronounced among elderly patients with OSA aged more than 65 years, followed by those aged 45–64 years and 20–44 years. These results suggest that the effects of OSA on injury development were greater in elderly patients than in younger patients. There are several possible explanations for this result. A recent study [46] compared clinical and polysomnographic characteristics of patients with OSA above and below 65 years of age. The results revealed that the apnoea–hypopnea index was higher, whereas mean oxygen saturation was lower in elderly patients than in younger patients. All of the above findings may be associated with poorer sleep quality, intermittent chronic hypoxia, and increased daytime sleepiness in older patients. Poor sleep quality may have impaired postural control and stability [21,22]. Chronic hypoxia may affect brain functions, such as attention, vigilance, and coordination [16,47,48]. Moreover, excessive daytime sleepiness
is associated with at least one event of fall in one year, especially in elderly female [26].

The result of the current study suggests that clinicians should pay more attention to the effect of OSA on injury development and implement injury preventive measures for older patients with OSA.

This study has some limitations. First, the polysomnographic data were not available. We could not associate the disease severity with injury risk. There was a lack of data on the degree of excessive daytime sleepiness, hypoxemia, sleep fragmentation, and sleep quality, which limited the generalisation of the results. Second, no comprehensive information on patient characteristics was recorded in the Taiwan’s NHIRD, such as on lifestyle, behaviour pattern, alcohol consumption, psychosocial and environmental factors, and medications. Patients with OSA had a higher prevalence of cardiovascular [36–38] and psychiatric disorders [30,31] than non-OSA individuals. They may be prescribed with anti-depressive and anti-hypertensive agents, which may have caused dizziness [49,50], hyper somnolence [50,51], or cognitive dysfunction [52]; however, we could not confirm the drug effect on the risk of injury. Third, only those who have symptoms and sought medical service at clinics or emergency rooms were included in the database because many patients with OSA are asymptomatic [53]. Thus, that may have caused us to underestimate the OSA prevalence or injury incidence, and we could not exclude the individuals without OSA diagnosis in the control group who were actually victims of OSA. Fourth, OSA and insomnia are two prevalent sleep disorders, and they often coexist interacting to amplify an overall more severe illness [54–56]. A recent study reported the prevalence of comorbid insomnia and OSA (COMISA); 35% of insomnia patients have an AHI of ≥5, and 29% have an AHI of ≥15, while 38% of patients with OSA meet insomnia criteria [57]. However, in our study, we could not exclude the patients with COMISA or those who are comorbid, with other sleep disorders. Fifth, previous studies demonstrated continuous positive airway pressure (CPAP) treatment and surgical intervention could reduce the risk of MVA [58], improve cognitive dysfunction [59], and reduce daytime sleepiness [60] in patients with OSA, which might have resulted in a decreased injury risk. However, we could not exclude the patients with OSA who accepted CPAP or surgery. This is a potential confounding factor, which may have affected the study results.

5. Conclusions

OSA was independently associated with an increased overall injury risk. The effect of OSA on the risk of injury increases with age. Patients with OSA aged ≥65 years old, 45–64 years old, and 45–64 years old were 2.014, 1.746, and 1.741, respectively, with -fold greater risk of injury than those without OSA. For the different causes of injury, patients with OSA were at a higher risk of falls and substances poisoning, traffic injury, suffocation, suicide-related injury, and abuse- or homicide-related injury. The results of this study may serve as a reference for the development of injury prevention strategies. Moreover, the general population and clinicians should have more awareness, regarding OSA and its negative effects on injury development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/ijerph182413416/s1. Table S1: the ICD-9-CM codes used in the study. Table S2: baseline characteristics of cohort and comparison cohort in the baseline. Table S3: years of follow-up. Table S4: years to injury.

Author Contributions: Conceptualization, A.-C.C.; Data curation, C.-A.S. and G.-J.W.; funding acquisition, G.-J.W. and W.-C.C.; methodology, A.-C.C., C.-A.S., and C.-H.C.; project administration, G.-J.W., K.-H.W., I.-D.W., and W.-C.C.; resources, C.-A.S. and W.-C.C.; software, C.-H.C. and W.-C.C.; supervision, K.-H.W., C.-A.S., I.-D.W., and W.-C.C.; writing—original draft preparation, A.-C.C. and I.-D.W.; writing—review and editing, A.-C.C., K.-H.W., C.-A.S., I.-D.W., and W.-C.C. All authors have read and agreed to the published version of the manuscript.
Funding: This research was funded by the Tri-Service General Hospital Research Foundation (TSGH-B-110012, TSGH-B-111018 and TSGH-B-110130), and the sponsor has no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of Tri-Service General Hospital (TSGHIBR No. B-110-55).

Informed Consent Statement: Not applicable.

Acknowledgments: We appreciate the Health and Welfare Data Science Center, Ministry of Health and Welfare (HWDC, MOHW), Taiwan, for providing the National Health Insurance Research Database (NHIRD).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Benjafield, A.V. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. *Lancet Respir. Med.* 2019, 7, 687–698. [CrossRef]

2. Hirsch Allen, A.J.M.; Bansback, N.; Ayas, N.T. The effect of OSA on work disability and work-related injuries. *Chest* 2015, 147, 1422–1428. [CrossRef]

3. Muraki, I.; Wada, H.; Tanigawa, T. Sleep apnea and type 2 diabetes. *J. Diabetes Investig.* 2018, 9, 991–997. [CrossRef]

4. Li, M.; Hou, W.S.; Zhang, X.W.; Tang, Z.Y. Obstructive sleep apnea and risk of stroke: A meta-analysis of prospective studies. *Int. J. Cardiol.* 2014, 172, 466–469. [CrossRef] [PubMed]

5. Yu, J.; Zhou, Z.; MxEvoy, R.D.; Anderson, C.S.; Rodgers, A.; Perkovic, V.; Neal, B. Association of Positive Airway Pressure With Cardiovascular Events and Death in Adults With Sleep Apnea: A Systematic Review and Meta-analysis. *JAMA* 2017, 318, 156–166. [CrossRef] [PubMed]

6. Jehan, S.; Auguste, S.R.E.; Pandi-Perumal, J.; Kalinowski, A.K.; Myers, F.; Zizi, M.G.; Rajanna, G.; McFarlane, S.I. Depression, Obstructive Sleep Apnea and Psychosocial Health. *Sleep Med. Disord.* 2020, 9, 573–581. [CrossRef] [PubMed]

7. Lin, Y.C.; Chen, T.Y.; Chien, W.C.; Chuan, C.H.; Chang, H.A.; Kao, Y.C.; Tsai, C.S.; Lin, C.S.; Tzeng, N.S. Stimulants associated with reduced risk of hospitalization for motor vehicle accident injury in patients with obstructive sleep apnea-a nationwide cohort study. *BMC Pulm. Med.* 2020, 20, 28. [CrossRef] [PubMed]

8. Quan, S.F.; Gillin, J.C.; Littner, M.R.; Shepard, J.W. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. *Sleep Med.* 1999, 22, 667–689.

9. Allen, A.J.H.; Peres, B.; Ayas, N.T. Obstructive Sleep Apnea Severity and the Risk of Occupational Injury: A Prospective Observational Cohort. *Lung* 2020, 198, 283–287. [CrossRef] [PubMed]

10. Garbarino, S.; Guglielmi, O.; Sanna, A.; Mancardi, G.L.; Magnavita, N. Risk of Occupational Accidents in Workers with Obstructive Sleep Apnea: Systematic Review and Meta-analysis. *Sleep* 2016, 39, 1211–1218. [CrossRef] [PubMed]

11. Chang, F.C.; Tsai, Y.J.; Wu, S.L. Nonfatal unintentional injuries in Taiwan. *Pharmacoepidemiol. Drug Saf.* 2011, 20, 236–242. [CrossRef] [PubMed]

12. Quan, S.F.; Gillin, J.C.; Littner, M.R.; Shepard, J.W. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. *Sleep Med.* 1999, 22, 667–689.

13. Allen, A.J.H.; Peres, B.; Ayas, N.T. Obstructive Sleep Apnea Severity and the Risk of Occupational Injury: A Prospective Observational Cohort. *Lung* 2020, 198, 283–287. [CrossRef] [PubMed]

14. Garbarino, S.; Guglielmi, O.; Sanna, A.; Mancardi, G.L.; Magnavita, N. Risk of Occupational Accidents in Workers with Obstructive Sleep Apnea: Systematic Review and Meta-analysis. *Sleep* 2016, 39, 1211–1218. [CrossRef] [PubMed]

15. Chang, F.C.; Tsai, Y.J.; Wu, S.L. Nonfatal unintentional injuries in Taiwan. *J. Public Health* 2003, 22, 492–500.

16. Chien, W.C.; Chung, C.H.; Lai, C.H.; Chou, C.H. A retrospective population-based study of injury types among elderly in Taiwan. *Int. J. Inj. Contr. Saf. Promot.* 2016, 23, 3–8. [CrossRef]

17. Mazza, S.; Pepin, J.L.; Naëgélé, B.; Plante, J.; Deschaux, C.; Lévy, P. Most obstructive sleep apnoea patients exhibit vigilance and attention deficits on an extended battery of tests. *Eur. Respir. J.* 2005, 25, 75–80. [CrossRef]

18. Olatihe, M.; Bucks, R.S. Executive dysfunction in OSA before and after treatment: A meta-analysis. *Sleep* 2013, 36, 1297–1305. [CrossRef]

19. Vanek, J.; Prasko, J.; Genzor, S.; Ociskova, M.; Kantor, K.; Holubova, M.; Slepecky, M.; Nesnidal, V.; Kolek, A.; Sova, M. Obstructive sleep apnea, depression and cognitive impairment. *Sleep Med.* 2020, 72, 50–58. [CrossRef] [PubMed]

20. Bucks, R.S.; Olatihe, M.; Eastwood, P. Neurocognitive function in obstructive sleep apnoea: A meta-review. *Respirology* 2013, 18, 61–70. [CrossRef] [PubMed]

21. Ferrie, J.E.; Kumari, M.; Salo, P.; Singh-Manoux, A.; Kivimäki, M. Sleep epidemiology—A rapidly growing field. *Int. J. Epidemiol.* 2011, 40, 1431–1437. [CrossRef]

22. Degache, F.; Goy, Y.; Val, S.; Haba Rubio, J.; Contal, O.; Heinzer, R. Sleep-disordered breathing and daytime postural stability. *Thorax* 2016, 71, 543–548. [CrossRef]
23. Heaton, K.L.; Rayens, M.K. Feedback actigraphy and sleep among long-haul truck drivers. AAOHN J. 2010, 58, 137–145. [CrossRef] [PubMed]
24. Garbarino, S.; Nobili, L.; Beelke, M.; De Carli, F.; Ferrillo, F. The contributing role of sleepiness in highway vehicle accidents. Sleep 2001, 24, 203–206. [CrossRef] [PubMed]
25. Stevens, D.; Jackson, B.; Carberry, J.; McLoughlin, J.; Barr, C.; Mukherjee, S.; Oh, A.; McEvoy, R.D.; Crotty, M.; Vakulin, A. The Impact of Obstructive Sleep Apnea on Balance, Gait, and Falls Risk: A Narrative Review of the Literature. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 2450–2460. [CrossRef]
26. Hayley, A.C.; Williams, L.J.; Kennedy, G.A.; Holloway, K.L.; Berk, M.; Brennan-Olsen, S.L.; Pasco, J.A. Excessive daytime sleepiness and falls among older men and women: Cross-sectional examination of a population-based sample. BMC Geriatr. 2015, 15, 74. [CrossRef] [PubMed]
27. Teramoto, S.; Sudo, E.; Matsuse, T.; Ohga, E.; Ishii, T.; Ouchi, Y.; Fukuchi, Y. Impaired swallowing reflex in patients with obstructive sleep apnea syndrome. Chest 1999, 116, 17–21. [CrossRef] [PubMed]
28. Beal, M.; Chesson, A.; Garcia, T.; Caldito, G.; Stucker, F.; Nathan, C.O. A pilot study of quantitative aspiration in patients with symptoms of obstructive sleep apnea: Comparison to a historic control group. Laryngoscope 2004, 114, 965–968. [CrossRef]
29. Baran, A.S.; Richert, A.C. Obstructive sleep apnea and depression. CNS Spectr. 2003, 8, 128–134. [CrossRef]
30. Kaufmann, C.N.; Susukida, R.; Depp, C.A. Sleep apnea, psychopathology, and mental health care. Sleep Health 2017, 3, 244–249. [CrossRef]
31. Sharafkhaneh, A.; Giray, N.; Richardson, P.; Young, T.; Hirshkowitz, M. Association of psychiatric disorders and sleep apnea in a large cohort. Sleep 2005, 28, 1405–1411. [CrossRef] [PubMed]
32. Choi, S.J.; Joo, E.Y.; Lee, Y.J.; Hong, S.B. Suicidal ideation and insomnia symptoms in subjects with obstructive sleep apnea syndrome. Sleep Med. 2015, 16, 1146–1150. [CrossRef]
33. Bishop, T.M.; Ashrafoun, L.; Pigeon, W.R. The Association Between Sleep Apnea and Suicidal Thought and Behavior: An Analysis of National Survey Data. J. Clin. Psychiatry 2018, 79, 17m11480. [CrossRef] [PubMed]
34. Beebe, D.W.; Groesz, L.; Wells, C.; Nichols, A.; McGee, K. The neuropsychological effects of obstructive sleep apnea: A meta-analysis of norm-referenced and case-controlled data. Sleep 2003, 26, 298–307. [CrossRef] [PubMed]
35. Décary, A.; Rouleau, I.; Montplaisir, J. Cognitive deficits associated with sleep apnea syndrome: A proposed neuropsychological test battery. Sleep 2000, 23, 369–381. [CrossRef] [PubMed]
36. Li, M.; Hou, W.S.; Zhang, X.W.; Tang, Z.Y. Habitual snoring and risk of stroke: A meta-analysis of prospective studies. Int. J. Cardiol. 2015, 185, 46–49. [CrossRef]
37. Neutraulkul, S.; Mokhlesi, B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. Chest 2017, 152, 1070–1086. [CrossRef] [PubMed]
38. Mokhlesi, B.; Ham, S.A.; Gozal, D. The effect of sex and age on the morbidity burden of OSA: An observational analysis from a large nationwide US health claims database. Eur. Respir. J. 2016, 47, 1162–1169. [CrossRef]
39. Lifke, K.; Burnes, D.; Riffin, C.; Lachs, M.S. Elder Abuse: Global Situation, Risk Factors, and Prevention Strategies. Gerontologist 2016, 56, S194–S205. [CrossRef]
40. Rogers, M.M.; Storey, J.E. Elder homicide: A systematic literature review. Aggress. Violent Behav. 2019, 48, 141–151. [CrossRef]
41. Lyuster, F.S.; Dunbar-Jacob, J.; Aloia, M.S.; Martire, L.M.; Buyse, D.J.; Strollo, P.J. Patient and Partner Experiences With Obstructive Sleep Apnea and CPAP Treatment: A Qualitative Analysis. Behav. Sleep Med. 2016, 14, 67–84. [CrossRef] [PubMed]
42. Parish, J.M.; Lyng, P.J. Quality of life in bed partners of patients with obstructive sleep apnea or hypopnea after treatment with continuous positive airway pressure. Chest 2003, 124, 942–947. [CrossRef] [PubMed]
43. Doherty, L.S.; Kiely, J.L.; Lawless, G.; McNicholas, W.T. Impact of nasal continuous positive airway pressure therapy on the quality of life of bed partners of patients with obstructive sleep apnea syndrome. Chest 2003, 124, 2209–2214. [CrossRef] [PubMed]
44. Capaldi, D.M.; Knoble, N.B.; Shortt, J.W.; Kim, H.K. A Systematic Review of Risk Factors for Intimate Partner Violence. Partner Abuse 2012, 3, 231–280. [CrossRef]
45. Petersen, C.; Kearns, M.C.; McIntosh, W.L.; Estefan, L.F.; Nicolaidis, C.; McCollister, K.E.; Gordon, A.; Florence, C. Lifetime Economic Burden of Intimate Partner Violence Among U.S. Adults. Am. J. Prev. Med. 2018, 55, 433–444. [CrossRef] [PubMed]
46. Celikhisar, H.; Ilkan, G.D. Comparison of clinical and polysomnographic characteristics in young and old patients with obstructive sleep apnea syndrome. Aging Male 2020, 23, 1202–1209. [CrossRef] [PubMed]
47. Sforza, E.; Roche, F. Chronic intermittent hypoxia and obstructive sleep apnea: An experimental and clinical approach. Hypoxia 2016, 4, 99–108. [CrossRef]
48. Angelelli, P.; Macchietta, L.; Toraldo, D.M.; Abbate, E.; Marinelli, C.V.; Aribi, M.; De Benedetto, M. The Neuropsychological Profile of Attentional Deficits of Patients with Obstructive Sleep Apnea: An Update on the Daytime Attentional Impairment. Brain Sci. 2020, 10, 325. [CrossRef]
49. Tedla, Y.G.; Bautista, L.E. Drug Side Effect Symptoms and Adherence to Antihypertensive Medication. Am. J. Hypertens 2016, 29, 772–779. [CrossRef]
50. Jakobsen, J.C. Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis. BMC Psychiatry 2017, 17, 58. [CrossRef] [PubMed]
51. Wichniak, A.; Wierzbicka, A.; Walęcka, M.; Jernajczyk, W. Effects of Antidepressants on Sleep. Curr. Psychiatry Rep. 2017, 19, 63. [CrossRef] [PubMed]
52. Sayyah, M.; Eslami, K.; AlaiShehni, S.; Kouti, L. Cognitive Function before and during Treatment with Selective Serotonin Reuptake Inhibitors in Patients with Depression or Obsessive-Compulsive Disorder. *Psychiatry J.* 2016, 2016, 5480391. [CrossRef] [PubMed]
53. Arnardottir, E.S.; Bjornsdottir, E.; Olafsdottir, K.A.; Benediktsdottir, B.; Gislason, T. Obstructive sleep apnoea in the general population: Highly prevalent but minimal symptoms. *Eur. Respir. J.* 2016, 47, 194–202. [CrossRef]
54. De Gennaro, L. The State of Art on Co-Morbid Insomnia and Sleep Apnea (COMISA). *Brain Sci.* 2021, 11, 1079. [CrossRef] [PubMed]
55. Sweetman, A.; Lack, L.; Bastien, C. Co-Morbid Insomnia and Sleep Apnea (COMISA): Prevalence, Consequences, Methodological Considerations, and Recent Randomized Controlled Trials. *Brain Sci.* 2019, 9, 371. [CrossRef] [PubMed]
56. Ragnoli, B.; Pochetti, P.; Raie, A.; Malerba, M. Comorbid Insomnia and Obstructive Sleep Apnea (COMISA): Current Concepts of Patient Management. *Int. J. Environ. Res. Public Health* 2021, 18, 9248. [CrossRef]
57. Zhang, Y.; Ren, R.; Lei, F.; Zhou, J.; Zhang, J.; Wing, Y.K.; Sanford, L.D.; Tang, X. Worldwide and regional prevalence rates of co-occurrence of insomnia and insomnia symptoms with obstructive sleep apnea: A systematic review and meta-analysis. *Sleep Med. Rev.* 2019, 45, 1–17. [CrossRef] [PubMed]
58. Tregear, S.; Reston, J.; Schoelles, K.; Phillips, B. Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: Systematic review and meta-analysis. *Sleep 2010*, 33, 1373–1380. [CrossRef]
59. Dalmases, M.; Solé-Padullés, C.; Torres, M.; Embid, C.; Nuñez, M.D.; Martínez-Garcia, R.; Farré, N.; Bargalló, D.; Bartrés-Faz, D.; Montserrat, J.M. Effect of CPAP on Cognition, Brain Function, and Structure Among Elderly Patients With OSA: A Randomized Pilot Study. *Chest* 2015, 148, 1214–1223. [CrossRef]
60. MacKay, S. Effect of Multilevel Upper Airway Surgery vs Medical Management on the Apnea-Hypopnea Index and Patient-Reported Daytime Sleepiness Among Patients With Moderate or Severe Obstructive Sleep Apnea: The SAMS Randomized Clinical Trial. *JAMA* 2020, 324, 1168–1179. [CrossRef] [PubMed]