ALGEBRAIC PROPERTIES OF QUASI-FINITE COMPLEXES

M. CENCELJ, J. DYDAK, J. SMREKAR, A. VAVPETIČ, AND Ž. VIRK

Abstract. A countable CW complex K is quasi-finite (as defined by A. Karasev [21]) if for every finite subcomplex M of K there is a finite subcomplex $e(M)$ such that any map $f : A \to M$, where A is closed in a separable metric space X satisfying $X \tau K$, has an extension $g : X \to e(M)$. Levin’s [26] results imply that none of the Eilenberg-MacLane spaces $K(G, 2)$ is quasi-finite if $G \neq 0$. In this paper we discuss quasi-finiteness of all Eilenberg-MacLane spaces. More generally, we deal with CW complexes with finitely many nonzero Postnikov invariants.

Here are the main results of the paper:

Theorem 0.1. Suppose K is a countable CW complex with finitely many nonzero Postnikov invariants. If $\pi_1(K)$ is a locally finite group and K is quasi-finite, then K is acyclic.

Theorem 0.2. Suppose K is a countable non-contractible CW complex with finitely many nonzero Postnikov invariants. If $\pi_1(K)$ is nilpotent and K is quasi-finite, then K is extensionally equivalent to S^1.

1
1. Introduction

The notation $K \in AE(X)$ or $X \tau K$ means that any map $f : A \to K$, A closed in X, extends over X.

Theorem 1.1 (Chigogidze). For each countable simplicial complex P the following conditions are equivalent:

1. $P \in AE(X)$ implies $P \in AE(\beta(X))$ for any normal space X.
2. There exists a P-invertible map $p : X \to I^\omega$ of a metrizable compactum X with $P \in AE(X)$ onto the Hilbert cube.

Karasev [21] gave an intrinsic characterization of countable complexes P satisfying 1.1 and called them **quasi-finite complexes**.

Definition 1.2. A CW complex K is called **quasi-finite** if there is a function e from the family of all finite subcomplexes of K to itself satisfying the following property: For every separable metric space X such that K is an absolute extensor of X and for every map $f : A \to M$, A closed in X, f extends to $g : X \to e(M)$.

For subsequent generalizations of quasi-finiteness see [22] and [2]. In particular, it is shown in [2] that a countable CW complex K is quasi-finite if and only if $X \tau K$ implies $\beta(X) \tau K$ for all separable metric spaces X. That is an improvement of 1.1.

The first example of a non-quasi-finite CW complex was given by Dranishnikov [9] who showed that $K(Z,4)$ admits a separable metric space X satisfying $X \tau K(Z,4)$ but not $\beta(X) \tau K(Z,4)$ (see [10] for other examples of such X). In [11] it was shown that all $K(G,n)$, $n \geq 3$ and $G \neq 0$, admit a separable metric space X so that $\dim_G(X) = n$ but $\dim_G(\beta(X)) > n$ (see also [23] for related results). Finally, Levin [26] established a result implying the same fact for all $K(G,n)$ so that $G \neq 0$ and $n \geq 2$. The only remaining case among Eilenberg-Maclane spaces are complexes $K(G,1)$.

Problem 1.3. Characterize groups G such that $K(G,1)$ is quasi-finite. What are the properties of the class of groups G such that $K(G,1)$ is quasi-finite?

Problem 1.3 was the main motivation of this paper. More generally, we discuss quasi-finiteness of complexes with finitely many non-trivial Postnikov invariants.
2. Truncated cohomology

One of the main tools of this paper is truncated cohomology used for the first time by Dydak and Walsh [17] in their construction of an infinite-dimensional compactum X of integral dimension 2.

Given a pointed CW complex L and a pointed space X we define $h_k^L(X)$ as the $(-k)$-th homotopy group of the function space $\text{Map}_*(X, L)$, the space of base-point preserving maps whose base-point is the constant map. Since we are interested in Abelian groups, k ranges from minus infinity to -2. Also, spaces X of interest in this paper are countable CW complexes.

CW complexes L for which truncated cohomology $h^*_* L$ is of most use are those with finite homotopy groups. In that case $h^*_* L$ is continuous in the sense that any map $f : K \to \Omega^k L$ that is phantom (that means all restrictions $f|M$ are homotopically trivial for finite subcomplexes M of K) must be homotopically trivial if K is a countable CW complex. In case of L having finite homotopy groups, Levin [25] (see Proposition 2.1) proved that $h^*_* L$ is strongly continuous: any map $f : N \to \Omega^k L$, N being a subcomplex of K, that cannot be extended over a countable CW complex K, admits a finite subcomplex M of K such that $f|_{M \cap N}$ cannot be extended over M.

Since we are interested in vanishing of truncated cohomology $h^*_* L$, the remainder of this section is devoted to weak contractibility of mapping spaces.

We first recall a result that in the literature is known as the Zabrodsky Lemma (see Miller [29], Proposition 9.5, and Bousfield [1], Theorem 4.6 as well as Corollary 4.8).

Lemma 2.1. Let $F \to E \to B$ be a fibration where B has the homotopy type of a connected CW complex. Let X be a space. If $\text{Map}_*(F, X)$ is weakly contractible, the induced map $\text{Map}_*(B, X) \to \text{Map}_*(E, X)$ is a weak homotopy equivalence. ■

Definition 2.2. Let \mathcal{P} be a set of primes. By a \mathcal{P}-complex we mean a finite CW complex K that is simply connected and all its homotopy groups are \mathcal{P}-groups. That is, homotopy groups of K are finite and the order of each element is a product of primes belonging to \mathcal{P}.

A CW complex K is a co-\mathcal{P}-complex if for some k the mapping space $\text{Map}_* (\Sigma^k K, L)$ is weakly contractible for all \mathcal{P}-complexes L.

Lemma 2.3. If K is one of the following

1. The classifying space BG of a Lie group G with a finite number of path components,
2. A connected infinite loop space whose fundamental group is a torsion group,
3. A simply connected CW complex with finitely many homotopy groups,
then $\text{Map}_*(K, L)$ is weakly contractible for all nilpotent finite complexes L with finite homotopy groups.

Proof. Let L be a finite nilpotent complex with finite homotopy groups. The hypotheses render L complete with respect to Sullivan’s finite completion (see [31]). Thus case (1) follows from Friedlander and Mislin [15], Theorem 3.1, while case (2) follows from McGibbon [28], Theorem 3. Case (3) follows from [24] and (2) by induction over the number of non-trivial homotopy groups of K. See more details in the proof of \mathcal{P}- [25]. ■
Proposition 2.4. A finite product (or a finite wedge) of co-\mathcal{P}-complexes is a co-\mathcal{P}-complex.

Proof. In case of a finite wedge the proof is quite simple as $\text{Map}_s(K \vee P, L)$ is the product of $\text{Map}_s(K, L)$ and $\text{Map}_s(P, L)$. For the finite product one can use induction plus an observation that 2.1 can be applied to a fibration $F \to K \to P$ and yield that K is a co-\mathcal{P}-complex if both F and P are co-\mathcal{P}-complexes.

Proposition 2.5. Let \mathcal{P} be a set of primes. Suppose K_s, $s \in S$, is a a family of CW complexes. If there is a natural number k so that all function spaces $\text{Map}_s(\Sigma^k K_s, L)$ are weakly contractible for all \mathcal{P}-complexes L, then the wedge $K = \bigvee_{s \in S} K_s$ is a co-\mathcal{P}-complex. Moreover, if S is countable and each K_s is countable, then the weak product $\prod_{s \in S} K_s$ is a co-\mathcal{P}-complex.

Proof. The case of the wedge is left to the reader. If S is countable, then each finite product $K_T = \prod_{s \in T} K_s$ has the property that $\text{Map}_s(K_T, \Omega^k L)$ is weakly contractible for any \mathcal{P}-complex L as in the proof of 2.4. Using the fact that truncated cohomology with respect to $\Omega^k L$ is continuous, one gets that $K' = \prod_{s \in S} K_s$, being the direct limit of K_T, also has the property that $\text{Map}_s(K', \Omega^k L)$ is weakly contractible.

Definition 2.6. Let \mathcal{P} be a set of primes and let G be a group. G is called a co-\mathcal{P}-group if $K(G, 1)$ is a co-\mathcal{P}-complex.

By Miller’s theorem, all locally finite groups are co-\mathcal{P}-groups, where \mathcal{P} is the set of all primes. Another example would consist of all acyclic groups. Divisible groups would serve as well. Note that by the Zabrodsky Lemma 2.1, a group extension $N \to G \to Q$ implies that under the assumption that N is a co-\mathcal{P}-group, G is a co-\mathcal{P}-group if and only if Q is.

Definition 2.7. Let K be a connected CW complex. We say that K has finitely many unstable Postnikov invariants if for some $k \geq 0$, the k-connected cover $K<k>$ of K is an infinite loop space. As usual, $K<k>$ is the (homotopy) fibre of the k-th Postnikov approximation $K \to P_k(K)$.

Note that infinite loop spaces (in particular infinite symmetric products) and Postnikov pieces are special cases.

Lemma 2.8. Suppose \mathcal{P} is a set of primes. Let K be a connected CW complex with finitely many unstable Postnikov invariants. K is a co-\mathcal{P}-complex if and only if $G = \pi_1(K)$ is a co-\mathcal{P}-group.

Proof. Let L be a \mathcal{P}-complex. Let \tilde{K} be the universal cover of K. If K is itself an infinite loop space, so is \tilde{K}, and therefore the space $\text{Map}_s(\tilde{K}, L)$ is weakly contractible by Theorem 3 of McGibbon 28. Otherwise for some $i \geq 1$ the i-connected cover $\tilde{K}<i>$ of \tilde{K} is an infinite loop space. Consider the fibration sequence $\tilde{K}<i> \to \tilde{K} \to P_i\tilde{K}$ where $P_i\tilde{K}$ is the i-th Postnikov approximation of \tilde{K}. The space $\text{Map}_s(\tilde{K}<i>, L)$ is weakly contractible by Theorem 3 of McGibbon 28. It follows essentially from Zabrodsky 32, Theorem D, and the fact that L is Sullivan-complete, that the mapping space $\text{Map}_s(P_i\tilde{K}, L)$ is weakly contractible (see also McGibbon 28, Theorem 2). Thus by Lemma 241 also the space $\text{Map}_s(\tilde{K}, L)$ is
weakly contractible. The space \bar{K} sits in the fibration sequence $\bar{K} \to K \to K(G, 1)$ and another application of Lemma 2.4 renders the spaces $\text{Map}_*(K(G, 1), L)$ and $\text{Map}_*(K, L)$ weakly equivalent.

Lemma 2.9. Let \mathcal{P} be a nonempty set of primes. If G is a nilpotent group that is local away from \mathcal{P}, then it is a co-\mathcal{P}-group.

Proof. Let \mathcal{P}' denote the set of primes not in \mathcal{P}. The hypotheses on G render $K(G, 1)$ a \mathcal{P}'-local space. By the fundamental theorem of localization of nilpotent spaces it follows that the homology of $K(G, 1)$ is also \mathcal{P}'-local. Let $\cdots \to L_3 \to L_2 \to L_1 \to L_0$ denote the refined Postnikov tower for L. That is, L_0 is a point and for each i, the fibration $L_i \to L_{i-1}$ is principal with fibre $K(G_i, k_i)$ where G_i is p-torsion abelian. Note that L is weakly equivalent to the inverse limit $\lim_{\leftarrow} L_i$, and since $K(G, 1)$ is a CW complex it suffices to show that $\text{Map}_* (K(G, 1), \lim_{\leftarrow} L_i)$ is weakly contractible. This latter space is homeomorphic with the inverse limit $\lim_{\leftarrow} \text{Map}_*(K(G, 1), L_i)$. Since the fibrations are principal, the Puppe sequence shows that we only need to consider reduced cohomology $\tilde{H}^*(K(G, 1); G_i)$ with coefficients in G_i. Since $H_*(G)$ is local away from \mathcal{P} it follows by the universal coefficient theorem that $\tilde{H}^*(K(G, 1); G_i)$ is trivial.

Corollary 2.10. Suppose \mathcal{P} is a set of primes and G is a nilpotent group with Abelianization $\text{Ab}(G)$. If $\text{Ab}(G)/\text{Tor}(\text{Ab}(G))$ is \mathcal{P}-divisible, then G is a co-\mathcal{P}-group.

Proof. By Lemma 2.4 $\text{Ab}(G)/\text{Tor}(\text{Ab}(G))$ is \mathcal{P}-divisible if and only if G is local away from \mathcal{P}.

3. Homology and cohomology of quasi-finite CW complexes

In this section we deal with (co)homological properties of quasi-finite complexes. First, we need a generalization of Theorem II of [13].

Theorem 3.1. Suppose K is a countable CW complex and h_\ast is a generalized reduced homology theory such that $h_\ast(K) = 0$. For any CW complex P and any $\alpha \in h_\ast(P) \setminus \{0\}$ there is a compactum X and a map $f : A \to P$ from a closed subset A of X such that $X \tau K, \alpha = f_\ast(\gamma)$ for some $\gamma \in h_\ast(A)$ and $\gamma = 0$ in $h_\ast(X)$.

Proof. Replacing P by the carrier of α we may assume P is finite. Compactum X is built as in Theorem II of [13]. We start with $X_1 = \text{Cone}(P)$, $A_1 = P$ and build an inverse sequence (X_n, A_n) of compact polyhedra so that for every extension problem $g : B \to K$, B closed in X_n, there is $m > n$ and a map $G : X_m \to K$ extending $g \circ p_m^n : B' \to K$, where $p_m^n : X_m \to X_n$ is the bonding map and $B' = (p_m^n)^{-1}(B)$. For each n we have $\gamma_n \in h_\ast(A_n)$ which vanishes in $h_\ast(X_n)$. In the inductive step we pick an extension problem $g : B \to K$, B closed in X_n, create an extension $G : X_n \to \text{Cone}(K)$, and consider the pull-back E of the projection $K \times I \to \text{Cone}(K)$ under G. The projection $p : E \to X_n$ has fibers being either homeomorphic to K or single points. Therefore $h_\ast(p)$ is an isomorphism and one can pick a finite subpolyhedron A_{n+1} of E carrying $\gamma_{n+1} \in h_\ast(A_{n+1})$ which gets mapped to γ_n under $h_\ast(p)$. Since γ_{n+1} vanishes in $h_\ast(E)$, it vanishes in a finite subpolyhedron X_{n+1} of E containing A_{n+1}. Since there are only countably many extension problems to be solved (see [5] or [10]) that process produces an inverse sequence whose inverse limit (X, A) satisfies $X \tau K$ and one has $\gamma \in h_\ast(A)$ so that γ vanishes in $h_\ast(X)$ and $f_\ast(\gamma) = \alpha$, where $f : A \to P = A_1$ is the projection. ■
Theorem 3.2. Suppose K is a countable CW complex and h^\ast is a strongly continuous truncated cohomology theory such that $h^\ast(K) = 0$. For any countable CW complex P and any $\alpha \in h^\ast(P) \setminus \{0\}$ there is a compactum X and a map $f : A \to P$ from a closed subset A of X such that $X\tau K$ and there is no $\gamma \in h^\ast(X)$ satisfying $\gamma|_A = f^\ast(\alpha)$.

Proof. We can reduce the proof to the case of P being a finite polyhedron as there is a finite subcomplex M of P so that $\alpha|_M \neq 0$ and that M can be used instead of P. Compactum X is built as in [51]. We start with $X_1 = Cone(P)$, $A_1 = P$ and built an inverse sequence (X_n, A_n) of compact polyhedra so that for every extension problem $g : B \to K$, B closed in X_n, there is $m > n$ and a map $G : X_m \to K$ extending $g \circ p^n_m : B' \to K$, where $p^n_m : X_m \to X_n$ is the bonding map and $B' = (p^n_m)^{-1}(B)$. Also, for each n the pullback α_n of α under $A_n \to A_1$ does not extend over X_n. In the inductive step we pick an extension problem $g : B \to K$, B closed in X_n, create an extension $G : X_n \to Cone(K)$, and consider the pull-back of the projection $K \times I \to Cone(K)$ under G. The projection $p : E \to X_n$ has fibers being either homeomorphic to K or single points. Therefore $p^\ast = h^\ast(p)$ is an isomorphism. Since $p^\ast(\alpha_n)$ does not extend over E, there is a finite subpolyhedron X_{n+1} of E such that $p^\ast(\alpha_n)$ restricted to $A_{n+1} = X_{n+1} \cap p^{-1}(A_n)$ does not extend over X_{n+1}. Since there are only countably many extension problems to be solved (see [8] or [10]) that process produces an inverse sequence whose inverse limit (X, A) satisfies $X\tau K$ and the projection $f : A \to P = A_1$ has the property that there is no $\gamma \in h^\ast(X)$ satisfying $\gamma|_A = f^\ast(\alpha)$. \hfill \Box

Recall that, given a map $i : M \to N$, $X\tau i$ means that for any map $f : A \to M$, A closed in X, there is a map $g : X \to N$ extending $i \circ f$.

Theorem 3.3. Suppose K is a countable CW complex and $i : M \to N$ is a map of CW complexes such that $X\tau K$ implies $X\tau i$ for all compacta X.

1. If h_\ast is a generalized reduced homology theory such that the inclusion induced homomorphism $h_\ast(M) \to h_\ast(N)$ is not trivial, then $h_\ast(K) \neq 0$.
2. If h^\ast is a truncated strongly continuous cohomology theory such that the inclusion induced homomorphism $h^\ast(N) \to h^\ast(M)$ is not trivial and M is countable, then $h^\ast(K) \neq 0$.

Proof. We may assume i is an inclusion.

1. Suppose $\alpha \in h_\ast(M)$ does not become 0 in $h_\ast(N)$. As in [51] pick a map $f : A \to M$ of a closed subset of a compactum X so that $X\tau K$ and γ equals 0 in $h_\ast(c(M))$ for some $\gamma \in h_\ast(A)$ satisfying $f_\ast(\gamma) = \alpha$. If f extends to $g : X \to N$, then $\alpha = f_\ast(\gamma)$ becomes 0 in $h_\ast(N)$, a contradiction.

2. Suppose $\alpha \in h^\ast(N)$ and $\alpha|_M \neq 0$. We may reduce this case to M finite by switching to a finite subcomplex L of M with the property $\alpha|_L \neq 0$. As in [52] pick a map $f : A \to M$ of a closed subset of a compactum X so that $X\tau K$ and $f^\ast(\alpha|_M)$ does not extend over X. If $f : A \to M$ extends to $g : X \to N$, then $g^\ast(\alpha) \in h^\ast(X))$ extends $f^\ast(\alpha|_M)$, a contradiction. \hfill \Box

Theorem 3.4. Suppose \mathcal{P} is a set of primes. Let K be a connected countable co-\mathcal{P}-complex. If K is quasi-finite, then it is $Z_{(\mathcal{P})}$-acyclic.

Proof. Assume K is quasi-finite and not $Z_{(\mathcal{P})}$-acyclic. Replace K with ΣK (using [2]) if necessary to ensure $H_k(K; Z_{(\mathcal{P})}) \neq 0$ for some $k \geq 2$. Let $\alpha_K \in H_k(K; Z_{(\mathcal{P})})$ be nonzero. Since K is the colimit of its finite subcomplexes, α_K is
the image of $\alpha_M \in H_k(M; \mathbb{Z}(p))$ for some finite subcomplex M of K. Certainly the image of α_M under $H_k(M; \mathbb{Z}(p)) \to H_k(e(M); \mathbb{Z}(p))$ is nontrivial. Thus Lemma 4.2 yields a \mathcal{P}-complex L with the restriction morphism $[e(M), \Omega^2 L] \to [M, \Omega^2 L]$ nontrivial. This is to say that $h^*(e(M)) \to h^*(M)$ is nontrivial where h^* is the truncated cohomology theory defined by virtue of $\Omega^2 L$. The hypotheses on L ensure strong continuity of h^*. Thus the nontriviality of $h^*(e(M)) \to h^*(M)$ contradicts (2) of Theorem 5.3.

Corollary 3.5. Let K be a countable CW complex with finitely many nonzero homotopy groups and $G = \pi_1(K)$ nilpotent. Suppose that G is not torsion. If K is quasi-finite, the group $FG = G/\text{Tor}(G)$ (and thus also $\text{Ab}(G)/\text{Tor}(\text{Ab}(G))$) is not divisible by any prime p.

Proof. Suppose that, on the contrary, FG is divisible by a prime p, hence local away from p. Since G is not torsion and is nilpotent, also $\text{Ab}(G)$ is not torsion, hence certainly $H_1(K) \otimes \mathbb{Z}(p)$ is nontrivial. Thus Theorem 5.3 yields a contradiction.

Corollary 3.6. Let K be a simply connected countable CW complex with at least one and at most finitely many nontrivial homotopy groups. Then K is not quasi-finite.

Corollary 3.7. Suppose G is a locally finite countable group. If $K(G, 1)$ is quasi-finite, then G is acyclic.

However, there are some countable acyclic groups G for which $K(G, 1)$ are also not quasi-finite. Cencelj and Repovš [13], using results of Dranishnikov and Repovš [13] showed in §5 that the minimal grope M^* which is $K(\pi_1(M^*), 1)$ is not quasi-finite. This holds also for the fundamental group of any grope: For a grope M let $\gamma(m)$ denote the maximal number of handles on the discs with handles used in the construction of the m-stage of M. Modify the inverse limit construction of the example of [8] replacing every simplex in the triangulation of the k-th element of the inverse system by the n-th stage of the grope which has every generator replaced by a disc with $\gamma((kn))$ handles.

4. Ljubljana complexes

Definition 4.1. A connected CW complex L is called a Ljubljana complex if there is a co-AP-complex K, AP being the set of all primes, such that, for any compactum X, the conditions $X\tau L$ and $X\tau K(H_1(K), 1)$ imply $X\tau K$.

Lemma 4.2. Suppose $F \to E \to B$ is a fibration of connected CW complexes. If F is a co-AP-complex, AP being the set of all primes, and B is a Ljubljana complex, then E is a Ljubljana complex.

Proof. Notice $\pi_1(E) \to \pi_1(B)$ is an epimorphism (use the long exact sequence of a fibration) which implies $H_1(E) \to H_1(B)$ is an epimorphism.

Pick a co-AP-complex K such that $X\tau K$ and $X\tau K(H_1(B), 1)$ imply $X\tau B$ for all compacta X. Let M be the wedge of F, K, $K(Q, 1)$, and $X\tau K(Z/p^\infty, 1)$ for all primes p. By [8] and the Miller Theorem, M is a co-AP-complex. Suppose X is a compactum such that $X\tau M$ and $X\tau K(H_1(E), 1)$. By [8] one gets $X\tau K(H_1(B), 1)$ which, together with $X\tau K$, implies $X\tau B$. Since $X\tau F$ and $X\tau B$, we infer $X\tau E$. ■
Corollary 4.3. Let L be a connected CW complex with nilpotent fundamental group. If L has finitely many unstable Postnikov invariants, then L is a Ljubljana complex.

Proof. Notice that the universal cover \tilde{L} of L is a co-AP-complex by \ref{AP}. We get $K(\pi_1(L), 1)$ is a Ljubljana complex by \ref{Ljubljana}. The fibration $\tilde{L} \to L \to K(\pi_1(L), 1)$ implies L is a Ljubljana complex.

Definition 4.4. A connected CW complex L is called extensionally Abelian if $X\tau K(H_n(L), n)$ for all $n \geq 1$ imply $X\tau K$ for all compacta X.

Proposition 4.5. Each extensionally Abelian complex L is a Ljubljana complex.

Proof. Let K be the weak product of $K(H_n(L), n)$, $n \geq 2$. By (2) of \ref{AP}, K is a co-AP-complex. Clearly, $X\tau K$ and $X\tau K(H_1(L), 1)$ imply $X\tau K(H_n(L), n)$ for all $n \geq 1$. Thus $X\tau L$.

Proposition 4.6. A finite wedge (or finite product) of Ljubljana complexes is a Ljubljana complex.

Proof. Let L be the wedge (or the product) of Ljubljana complexes L_s, $s \in S$, where S is finite. For each $s \in S$ choose a co-AP-complex K_s such that for any compactum X the conditions $X\tau K_s$ and $X\tau K(H_1(L_s), 1)$ imply $X\tau L_s$. Let K be the wedge of all K_s. By \ref{AP}, it is a co-AP-complex. Notice that $H_1(L_s)$ is a retract of $H_1(L)$ for each $s \in S$. Therefore any compactum X satisfying

- a. $X\tau K(H_1(L), 1)$,
- b. $X\tau K$,

also satisfies $X\tau K(H_1(L_s), 1)$ for each $s \in S$. Hence $X\tau L_s$ for each $s \in S$ which implies $X\tau L$.

There is a connection between Ljubljana complexes and co-\mathcal{P}-complexes.

Proposition 4.7. Suppose K is a countable Ljubljana complex. If \mathcal{P} is a set of primes such that $H_1(K)/\text{Tor}(H_1(K))$ is \mathcal{P}-divisible, then K is a co-\mathcal{P}-complex.

Proof. Choose a co-AP-complex L such that, for any compactum X, the conditions $X\tau L$ and $X\tau K(H_1(K), 1)$ imply $X\tau K$. Let \mathcal{P}' be the complement of \mathcal{P} in the set of all primes. Consider K', the wedge of L, $K(Z(\mathcal{P}', 1))$, $K(Q, 1)$, and all $K(\mathbb{Z}/p, 1)$ (p ranging through all primes). By \ref{AP} and \ref{AP}, K' is a co-\mathcal{P}-complex. Since $X\tau K'$ implies $X\tau K$ for all compacta, \ref{AP} implies that there is $k \geq 0$ such that the truncated cohomology of K with respect to $\Omega^k L$, L any \mathcal{P}-complex, is trivial. Thus K is a co-\mathcal{P}-complex.

Theorem 4.8. Suppose K is a countable Ljubljana complex such that $\Sigma^m K$ is equivalent (over the class of compacta) to a quasi-finite countable complex L for some $m \geq 0$. If K is not acyclic, then it is equivalent to S^1.

Proof. We may assume L is simply connected as $\Sigma^{m+1} K$ is equivalent to ΣL (see \ref{AP}) and ΣL is quasi-finite by \ref{AP}.

Suppose K is not equivalent to S^1. Choose a co-AP-complex P such that conditions $X\tau P$ and $X\tau K(H_1(K), 1)$ imply $X\tau K$. Let $k \geq 2$ be a number such that all maps $\Sigma^k P \to R$ are null-homotopic if R is an AP-complex and $n \geq k$.

Step 1. L is not contractible as otherwise $\Sigma^m K$ would have to be contractible implying K being acyclic.
Step 2. L is not acyclic as it is not contractible by Step 1.

Step 3. Since $X\tau K$ implies $X\tau K(H_1(K), 1)$, the group $H_1(K)$ has the property of $H_1(K)/\text{Tor}(H_1(K))$ being divisible by some prime p. Indeed, if $H_1(K)/\text{Tor}(H_1(K))$ is not divisible by any prime, then the Bockstein basis of $H_1(K)$ consists of all Bockstein groups and $X\tau K(H_1(K), 1)$ implies $X\tau S^1$ by Bockstein First Theorem. Since $X\tau K$ implies $X\tau K(H_1(K), 1)$ and $X\tau S^1$ implies $X\tau K$ for any compactum X, K is equivalent to S^1 over compacta.

Let e be the function of L.

Case 1: $H_*(K)$ is a torsion group. There is M such that $H_*(M) \to H_*(e(M))$ is not trivial. By 7.1 there is a map $f : \Sigma^k(e(M)) \to J$ such that $f|_{\Sigma^k(M)}$ is not trivial, J is simply connected, and all homotopy groups of J are finite. Consider the wedge N of P and $K(\bigoplus \mathbb{Z}/q, 1)$. Notice $X\tau N$ implies $X\tau K(H_1(K), 1)$. Therefore $X\tau N$ implies $X\tau K$ which, in turn, implies $X\tau L$ and $X\tau i_M$, where $i_M : M \to e(M)$. Since $\text{Map}_*(N, \Omega^k(J))$ is weakly contractible, Σ^k implies homotopy triviality of $f|_{\Sigma^k(M)}$, a contradiction.

Case 2: $H_*(K)$ is not a torsion group. Notice $H_*(L)$ is not torsion as well. Indeed if $H_*(L)$ is torsion, we could find a finite dimensional compactum Y of high rational dimension but all torsion dimensions equal 1. Such compactum satisfies $Y\tau L$ but $Y\tau \Sigma^n K$ fails as it implies rational dimension of Y to be at most $m + n$, where $H_*(K)$ is not torsion. There is M such that the image of $H_*(M) \to H_*(e(M))$ is not torsion. Therefore there is $n > 0$ such that $H_n(M; \mathbb{Z}/(p)) = H_n(e(M); \mathbb{Z}/(p))$ is not trivial. By 7.2 there is a map $f : \Sigma^k(e(M)) \to J$ such that $f|_{\Sigma^k(M)}$ is not trivial, J is simply connected, and all homotopy groups of J are finite p-groups. Consider the wedge N of P and $K(\mathbb{Z}[1/p] \oplus \mathbb{Z}/p, 1)$. Using 7.3 and 7.4 one gets $X\tau N$ implies $X\tau K$ which, in turn, implies $X\tau L$ and $X\tau i_M$, where $i_M : M \to e(M)$. Since $\text{Map}_*(N, \Omega^k(J))$ is weakly contractible, Σ^k implies homotopy triviality of $f|_{\Sigma^k(M)}$, a contradiction.

Corollary 4.9. Suppose G is a nontrivial nilpotent group. If $K(G, 1)$ is quasi-finite, then it is equivalent, over the class of paracompact spaces, to S^1.

5. Application to cohomological dimension theory

Theorem 5.1. Suppose $G \neq 1$ is a countable group such that $\text{dim}_G(\beta(X)) = 1$ for every separable metric space X satisfying $\text{dim}_G(X) = 1$. If G is nilpotent, then $\text{dim}_G(X) \leq 1$ implies $\text{dim}(X) \leq 1$ for all paracompact spaces X.

Proof. By an improvement of Chigogidze’s Theorem 1.1 contained in [2], $K(G, 1)$ is quasi-finite. Therefore 1.1 says $K(G, 1)$ is equivalent to S^1 over compacta. A result in [2] says that $K(G, 1)$ is equivalent to S^1 over paracompact spaces which completes the proof.

6. Appendix A

Lemma 6.1. Let p be a natural number and let D_p be the class of groups G such that $\text{Ab}(G)/\text{Tor}(\text{Ab}(G))$ is p-divisible, where $\text{Ab}(G)$ is the Abelianization of G. If $f : G \to H$ is an epimorphism and $G \in D_p$, then $H \in D_p$.

Lemma 6.2. Let p be a natural number and let \mathcal{D}_p be the class of groups G such that $H/Tor(H)$ is p-divisible, where H is the Abelianization of G. If G, H are Abelian and $G \in \mathcal{D}_p$, then $G \otimes H \in \mathcal{D}_p$.

Proof. It suffices to show that for each element a of $G \otimes H$ there is $b \in G \otimes H$ and an integer $k \neq 0$ such that $k \cdot a + kp \cdot b = 0$. That in turn can be reduced to generators of $G \otimes H$ of the form $g \otimes h$. Pick $u \in G$ and an integer $k \neq 0$ such that $k \cdot g + kp \cdot u = 0$. Now $k \cdot (g \otimes h) + kp \cdot (u \otimes h) = 0$.

We recall a result of Robinson (see [20], 5.2.6) on the relation between a nilpotent group and its abelianization.

Proposition 6.3 (Robinson). Let \mathcal{N} denote the category of nilpotent groups. Let \mathcal{P} be a class of groups in \mathcal{N} with the following properties.

1. For A and B abelian, $B \in \mathcal{P}$, any quotient of $A \otimes B$ belongs to \mathcal{P}.
2. For $K, Q \in \mathcal{P}$, an extension $1 \to K \to G \to Q \to 1$ in \mathcal{N} implies $G \in \mathcal{P}$.

Suppose that $G \in \mathcal{N}$. If $Ab(G)$ belongs to \mathcal{P}, so does G.

We note the following corollary.

Corollary 6.4. Let G be a nilpotent group and set $H = Ab(G)$. If $H/Tor(H)$ is p-divisible, so is $G/Tor(G)$.

Proof. Define the class \mathcal{D}_p by letting a nilpotent group G belong to \mathcal{D}_p if and only if $F_{p}(G) = G/Tor_{p}(G)$ is p-divisible where $Tor_{p}(G)$ denotes the p-torsion subgroup of G. Note that $F_{p}(G)$ is p-divisible if and only if $G/Tor(G)$ is, hence it suffices to check properties (1) and (2) of Proposition 6.3.

As for (1) it follows from 6.1 and 6.2.

For (2), note that F_{p} is a functor $\mathcal{N} \to \mathcal{N}$. Let $1 \to K \to G \to Q \to 1$ be an extension in \mathcal{N}. We apply F_{p}. Since $Tor_{p}(K) = K \cap Tor_{p}(G)$, the morphism $F_{p}(K) \to F_{p}(G)$ is injective. Evidently, $q: F_{p}(G) \to F_{p}(Q)$ is surjective. Moreover, $F_{p}(K)$ is a subset of the kernel of q. Assume that K belongs to \mathcal{D}_p. If $q(\xi) = 1$ for some $\xi \in F_{p}(G)$, then $\xi^{p^i} \in F_{p}(K)$ for large enough i. By assumption on K, the group $F_{p}(K)$ is p-divisible, hence $\xi^{p^i} = \eta^{p^i}$ for an element $\eta \in F_{p}(K)$. But $F_{p}(G)$ is free of p-torsion (and nilpotent), so the equality $\xi^{p^i} = \eta^{p^i}$ in $F_{p}(G)$ implies $\xi = \eta$ (see for example Hilton, Mislin, Roitberg [20], Corollary 2.3). Therefore in fact $\xi \in F_{p}(K)$, i.e. $ker q = F_{p}(K)$. This is to say that $1 \to F_{p}(K) \to F_{p}(G) \to F_{p}(Q) \to 1$ is an extension in \mathcal{N}. If, in addition, Q belongs to \mathcal{D}_p then $F_{p}(K)$ and $F_{p}(Q)$ are p-divisible and free of p-torsion, and as such local away from p. Therefore so is $F_{p}(G)$, by Corollary 2.5 of 20.

Lemma 6.5. Let $f: G \to H$ be an epimorphism of Abelian groups and let X be a compactum. If

a. $X \tau K(G, 1)$

b. $X \tau K(Q, 1)$

c. $X \tau K(Z/p^\infty, 1)$ for all primes p,

then $X \tau K(H, 1)$.
Proof. Suppose $X\tau K(H,1)$ fails. This can only happen if there is a Bockstein group F in the Bockstein basis $\sigma(H)$ such that $\text{dim}_F(X) > 1$. That group must be either $Z(p)$ or Z/p for some p. $Z(p)$ belongs to $\sigma(H)$ if and only if $H/\text{Tor}(H)$ is not divisible by p in which case $Z(p)$ belongs to $\sigma(G)$ by Corollary 6.6 and $\text{dim}_F(X) \leq 1$ by Bockstein First Theorem. Therefore $F = Z/p$ which means that $\text{Tor}(H)$ is not divisible by p. Now, either G is not divisible by p or its torsion group is not divisible by p implying $\text{dim}_F(X) \leq 1$, a contradiction. \blacksquare

Corollary 6.6. Let G be a nilpotent group with Abelianization $\text{Ab}(G)$ and let X be a compactum. If

- $X\tau K(\text{Ab}(G),1)$,
- $X\tau K(Q,1)$,
- $X\tau K(Z/p^\infty,1)$ for all primes p,

then $X\tau K(G,1)$.

Proof. Consider the lower central series of G: $G = \Gamma^1 G \supset \Gamma^2 G \supset \ldots \supset \Gamma^n G \supset \ldots$. Let $F_i = \Gamma^n G/\Gamma^{i+1} G$. Since there is an epimorphism from $F_i \otimes \text{Ab}(G)$ to F_{i+1}, where $\text{Ab}(G)$ is the Abelianization of G, $X\tau K(F_i,1)$ for all i by 6.5. We proceed by induction on $c - i$ (c being the nilpotency class of G) showing that $X\tau K(\Gamma^i G,1)$.

If $c - i = 0$, then $\Gamma^i G = F_i$ and we are done. Since the sequence $1 \to \Gamma^{i+1} G \to \Gamma^i G \to F_i \to 1$ is exact, one uses a fibration $\chi(\Gamma^{i+1} G,1) \to \chi(\Gamma^i G,1) \to K(F_i,1)$ to conclude $X\tau K(\Gamma^i G,1)$ given $X\tau K(\Gamma^{i+1} G,1)$. That constitutes the inductive step and, as $\Gamma^1 G = G$, we get $X\tau K(G,1)$. \blacksquare

Corollary 6.7. Let p be a natural number and let D_p be the class of groups G such that $H/\text{Tor}(H)$ is p-divisible, where H is the Abelianization of G. If $G \in D_p$ is nilpotent and $X\tau K\left(Z[\frac{1}{p}] \oplus Z/p,1\right)$, then $X\tau K(G,1)$ for any compactum X.

Corollary 6.8. Let G be a nilpotent group. If the Abelianization $\text{Ab}(G)$ of G is a torsion group and $X\tau K\left(\bigoplus_p Z/p,1\right)$, then $X\tau K(G,1)$ for any compactum X.

7. Appendix B

In this Appendix we prove results allowing us to detect homology via maps to finite complexes with finite homotopy groups.

Lemma 7.1. Let A be a finite CW complex and $\alpha \in H_k(A)$ a nontrivial element where $k \geq 2$. There exists a finite $(k-1)$-connected CW complex B with finite homotopy groups and a map $f: A \to B$ with $\beta = f_*(\alpha)$ nontrivial. Furthermore, if α is of infinite order in $H_k(A)$, then β may be assumed to be of order r for any given natural $r \geq 2$.

Proof. With the exception of the statements about the connectedness and the order, this is precisely Lemma 2.1 of Levin. In the course of proving the cited lemma, Levin constructs a $(k-1)$-connected complex L, and he makes β of order 2 if α has infinite order. The generalization to arbitrary r is trivial. \blacksquare

Lemma 7.2. Let M be a finite CW complex, and let \mathcal{P} be a nonempty set of primes. Let $\alpha \in H_k(M; Z(p))$ be a nontrivial element for some $k \geq 2$. Then there exists a finite $(k-1)$-connected CW complex N with \mathcal{P}-torsion homotopy groups and a map $f: M \to N$ with $f_*(\alpha)$ nontrivial.
Proof. The assumption is that there exists an element $\alpha \in H_k(M)$ which is either P-torsion or it has infinite order. We can apply Lemma 7.1 to obtain a $(k-1)$-connected finite complex with finite homotopy groups N' and a map $f': M \to N'$ with $\beta' = f'_*(\alpha)$ nontrivial of order all of whose prime divisors belong to P. Let $N' \to N$ be localization at the set P. Then β' will map to nontrivial β under localization $\tilde{H}_*(N') \to \tilde{H}_*(N) = \tilde{H}_*(N') \otimes \mathbb{Z}(P)$ and N is (homotopy equivalent to) the finite complex as in the statement of the lemma. ■

References

[1] A.K.Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994), no. 4, 831–873.
[2] M. Cencelj, J. Dydak, J. Smrekar, A. Vavpeti, and Ž. Virk, Compact maps and quasi-finite complexes, preprint.
[3] M.Cencelj and D. Repovš, On compacta of cohomological dimension one over nonabelian groups, Houston J. Math. 26(2000), 527-530.
[4] A.Chigogidze, Compactifications and universal spaces in extension theory, arXiv:math.GN/9908073 v1 15 Aug 1999.
[5] A.Chigogidze, Cohomological dimension of Tychonov spaces, Topology Appl. 79 (1997), 197–228.
[6] A.Chigogidze, Infinite dimensional topology and Shape theory, in: Handbook of Geometric Topology, ed. by R. Davenman and R. Sher.
[7] A.Chigogidze, Inverse Spectra, North Holland, Amsterdam, 1996.
[8] A.Dranishnikov, On extension theory of compact spaces,
[9] A.N.Dranishnikov, Cohomological dimension is not preserved by Stone–Čech compactification, Comptes Rendus Bulgarian Acad. Sci. 41 (1988), 9–10.
[10] A.N.Dranishnikov, Cohomological Dimension Theory of Compact Metric Spaces, Topology Atlas (1999).
[11] A. N. Dranishnikov and J. Dydak, Extension dimension and extension types, Proc. Steklov Math. Inst. 212 (1996), 55–88.
[12] A.Dranishnikov and J.Dydak, Extension theory of separable metrizable spaces with applications to dimension theory, Transactions of the American Math.Soc. 353 (2000), 133–156.
[13] A.Dranishnikov and D.Repovš, Cohomological dimension with respect to perfect groups, Topology and its Applications 74 (1996), 123–140.
[14] J.Dydak, Compactifications and cohomological dimension, Topology and its Appl. 50 (1993), 1–10.
[15] J.Dydak, Realizing dimension functions via homology, Topology and its Appl. 64 (1995), 1–7.
[16] J.Dydak, J.J.Walsh, Spaces without cohomological dimension preserving compactifications, Proc. Amer. Math. Soc. 113 (1991), 1155–1162.
[17] J.Dydak, J.J.Walsh, Infinite dimensional compacta having cohomological dimension two: An application of the Sullivan Conjecture, Topology 32 (1993), 93–104.
[18] E. M. Friedlander, G. Mislin, Locally finite approximation of Lie groups. I, Invent. Math. 83 (1986), no. 3, 425–436.
[19] A.Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
[20] P. Hilton, G. Mislin, J. Roitberg, Localization of Nilpotent groups and spaces, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
[21] A.Karasev, On two problems in extension theory, arXiv:math.GT/0312269 v1 12 Dec 2003.
[22] A.Karasev and V.Valov, Extension dimension and quasi-finite CW complexes, preprint, 2004.
[23] A.I.Karinski, On cohomological dimension of the Stone–Čech compactification, Vestnik Moscow Univ. no. 4 (1991), 8–11 (in Russian).
[24] W.I.Kuzminov, Homological dimension theory, Russian Math. Surveys 23 (1968), 1–45.
[25] M. Levin, Constructing Compacta of Different Extensional Dimensions, Canad. Math. Bull. Vol. 44 (1) (2001), pp. 80–86.
[26] M. Levin, Some examples in cohomological dimension theory, Pacific Journal of Mathematics 202 (2002), 371–378.
[27] S.Mardešić and J.Segal, Shape theory, North-Holland Publ.Co. (1982).
[28] C.A. McGibbon, A note on Miller’s theorem about maps out of classifying spaces, Proc. Amer. Math. Soc. 124 (1996), no. 10, 3241–3245.
[29] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120(1) (1984), 39–87.
[30] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1993.
[31] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1–79.
[32] A. Zabrodsky, On phantom maps and a theorem of H. Miller, Israel J. Math 58 (1987), no. 2, 129–143.

Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska ulica 19, SI-1111 Ljubljana, Slovenija
E-mail address: matija.cencelj@guest.arnes.si

University of Tennessee, Knoxville, TN 37996, USA
E-mail address: dydak@math.utk.edu

Departament d’Algebra i Geometria, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, E-08007 Barcelona, España
E-mail address: smrekar@ub.edu

Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska ulica 19, SI-1111 Ljubljana, Slovenija
E-mail address: ales.vavpetic@fmf.uni-lj.si

Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani, Jadranska ulica 19, SI-1111 Ljubljana, Slovenija
E-mail address: ziga.virk@student.fmf.uni-lj.si