More ties than we thought

DAN HIRSCH
Upstanding Hackers LLC
thequux@upstandinghackers.com

MEREDITH L. PATTERSON
Upstanding Hackers LLC
mlp@upstandinghackers.com

ANDERS SANDBERG
Oxford University
anders.sandberg@philosophy.ox.ac.uk

MIKAEL VEJDEMO-JOHANSSON
KTH Royal Institute of Technology, Stockholm
Jožef Štefan Institute, Ljubljana
Institute for Mathematics and its Applications, Minneapolis
mvj@kth.se

Abstract

We extend the existing enumeration of neck tie knots to include tie knots with a textured front, tied with the narrow end of a tie. These tie knots have gained popularity in recent years, based on reconstructions of a costume detail from The Matrix Reloaded, and are explicitly ruled out in the enumeration by Fink and Mao (2000).

We show that the relaxed tie knot description language that comprehensively describes these extended tie knot classes is either context sensitive or context free. It has a sub-language that covers all the knots that inspired the work, and that is regular. From this regular sub-language we enumerate 177,147 distinct tie knots that seem tieable with a normal necktie. These are found through an enumeration of 2,046 winding patterns that can be varied by tucking the tie under itself at various points along the winding.
I. INTRODUCTION

There are several different ways to tie a necktie. Classically, knots such as the four-in-hand, the half windsor and the full windsor have been commonly taught to new tie-wearers. In a sequence of papers and a book, Fink and Mao [1–3] defined a formal language for describing tie knots, encoding the topology and geometry of the knot tying process into the formal language, and then used this language to enumerate all tie knots that could reasonably be tied with a normal-sized necktie.

The enumeration of Fink and Mao crucially depends on dictating a particular finishing sequence for tie knots: a finishing sequence that forces the front of the knot – the façade – to be a flat stretch of fabric. With this assumption in place, Fink and Mao produce a list of 85 distinct tie knots, and determine several novel knots that extend the previously commonly known list of tie knots.

In recent years, however, interest has been growing for a new approach to tie knots. In The Matrix Reloaded [12], the character of “The Merovingian” has a sequence of particularly fancy tie knots. Attempts by fans of the movie to recreate the tie knots from the Merovingian have led to a collection of new tie knot inventions, all of which rely on tying the tie with the thin end of the tie – the thin blade. Doing this allows for a knot with textures or stylings of the front of the knot, producing symmetric and pleasing patterns.

Knorr [4] tells the story of the main participants and their additions to the conversation:

On 21 June 2003 Luke edeity Housego invents the inverse tie-knots. The day before he had seen ‘Matrix Reloaded’ at the cinema and wanted to have a tie-knot as cool as the one the character ‘Merovingian’ sports in the movie.

On 28 September 2003 Luke publishes a .pdf-tutorial for his knot on the Internet. He calls his invention ‘edeity’s knot.’

On 03 February 2006 Victor Allen Lord Whimsy Crawford III publishes a .pdf-tutorial for a tie-knot he calls ‘The Merovingian.’ In fact it is edeity’s sequence, but rendered much more clearly than in edeity’s original .pdf. Whimsy had the idea from said .pdf, but was not sure, if he had matched the sequence.

On 16 February 2007 Henry SimplyJustHen Hu publishes a video on YouTube wherein he shows how to tie a knot he calls the ‘Hen Tie.’ In the video Henry makes clear that he has the idea from edeity’s .pdf-tutorial, but that he was not sure if he had matched the sequence. In fact Henry’s sequence slightly differs from edeity’s.

On 18 February 2007 the knot called ‘Merovingian’ appears in the German version of the Wikipedia, linking to Lord Whimsy’s tutorial.

On 04 May 2008 Jeffrey cwtrain Eldredge publishes a video on YouTube, demonstrating how to tie an even larger inverse tie-knot he calls the ‘Eldredge.’ Luke edeity Housego gave the world the inverse tie-knots, and Jeffrey Eldredge invented a subterfuge in tie-knotting not to be found in the literature so far: He simply tucks away the rest of the tie’s narrow end under the collar, thereby making possible the largest tie-knot known. This move rightfully can be called ‘the Eldredge tuckaway.’ But there is a problem with Jeffrey’s knot: It’s not a knot, but more a ‘wrapping.’

On 19 October 2008 Alexander zephyrin_xirdal Knorr publishes the description and sequence of the ‘Eldredge Variant’ in his weblog, making the ‘Eldredge’ into a true knot.

On 19 June 2010 Jeffrey Eldredge publishes the video ‘The Eldredge Knot: Revisited’ on YouTube, demonstrating how to tie the sequence of the ‘Eldredge Variant.’

In this paper, we present a radical simplification of the formal language proposed by Fink and Mao, together with an analysis of the asymptotic complexity class of the tie knots language. We produce a novel enumeration of necktie knots tied with the thin blade, and compare it to the results of Fink and Mao.
Fig. 1. The parts of a necktie, and the division of the wearer’s torso with the regions (Left, Center Right) and the winding directions (Turnwise, Widdershins) marked out for reference.

A. Formal languages

The work in this paper relies heavily on the language of formal languages, as used in theoretical computer science and in mathematical linguistics. For a comprehensive reference, we recommend the textbook by Sipser [11].

Recall that given a finite set \(L \) called an alphabet, the set of all sequences of any length of items drawn (with replacement) from \(L \) is denoted by \(L^* \). A formal language on the alphabet \(L \) is some subset \(A \) of \(L^* \). Depending on how difficult it is to accurately determine membership in a formal language \(A \), it places in one of several complexity classes. Languages that are described by finite state automata are regular; languages that require a pushdown automaton are context free; languages that require a linear bounded automaton are context sensitive and languages that require a full Turing machine to determine are called recursively enumerable. This sequence builds an increasing hierarchy of expressibility and computational complexity for syntactic rules for strings of some arbitrary sort of tokens.

One way to describe a language is to give a grammar – a set of production rules that decompose some form of abstract tokens into sequences of abstract or concrete tokens, ending with a sequence of elements in some alphabet. The standard notation for such grammars is the Backus-Naur form, which uses ::= to denote the production rules and (some name) to denote the abstract tokens. Further common symbols are * – the Kleene star, that denotes an arbitrary number of repetitions of the previous token (or group in brackets), and | denoting a choice of one of the adjoining options.

II. THE ANATOMY OF A NECKTIE

In the following, we will be referring quite a lot to various parts and constructions with a necktie. We call the ends of a necktie blades, and distinguish between the broad blade and the thin blade – see Figure 1 for these names. The tie knot can be divided up into a body, consisting of all the twists and turns that are not directly visible in the final knot, and a façade, consisting of the parts of the tie actually visible in the end. In Figure 2 we demonstrate this distinction. The body builds up the overall shape of the tie knot, while the façade gives texture to the front of the knot. The enumeration of Fink and Mao only considers knots with trivial façades, while these later inventions all consider more interesting façades. As a knot is in place around a wearer, the Y-shape of the tie divides the torso into 3 regions: Left, Center and Right – as shown to the right in Figure 1.

A tie knot has to be tied by winding and tucking one of the two blades around the other: if both blades are active, then the tie can no longer be adjusted in place for a comfortable fit. We shall refer to the blade used in tying the knot as the leading blade or the active blade. Each time the active blade is moved across the tie knot – in front or in back – we call the part of the tie laid on top of the knot a bow.

1There are neckties without a width difference between the ends. We ignore this distinction for this paper.
III. A LANGUAGE FOR TIE KNOTS

Fink and Mao [2] observe that once the first crossing has been made, the wrapping sequence of a classical tie knot is completely decided by the sequence of regions into which the broad blade is moved. Adorning the region specifications with a direction — is the tie moving away from the wearer or towards the wearer — they establish a formal alphabet for describing tie knots with 7 symbols. We reproduce their construction here, using \(U \) for the move to tuck the blade under the tie itself\(^2\). The notation proposed by Fink and Mao [2] interprets repetitions \(U^k \) of \(U \) as tucking the blade \(k \) bows under the top. It turns out that the complexity analysis is far simpler if we instead write \(U^k \) for tucking the blade under the bow that was produced \(2k \) windings ago. This produces a language on the alphabet:

\[
\{L_\odot, L_\kappa, C_\odot, C_\kappa, R_\odot, R_\kappa, U\}
\]

They then introduce relations and restrictions on these symbols:

- **\(T\text{ie}_1 \)**: No region \((L, C, R)\) shall repeat. \(U \) moves do not influence this.
- **\(T\text{ie}_2 \)**: No direction \((\kappa, \odot)\) shall repeat. \(U \) moves do not influence this.
- **\(T\text{ie}_3 \)**: Tucks \((U)\) are valid after an outward move.
- **\(T\text{ie}_4 \)**: A tie knot can end only on one of \(C_\odot, C_\kappa \) or \(U \). In fact, almost all classical knots end on \(U \).
- **\(T\text{ie}_5 \)**: A \(k \)-fold tuck \(U^k \) is only valid after at least \(2k \) preceding moves. Fink and Mao [2] do not pay much attention to the conditions on \(k \)-fold tucks, since these show up in their enumeration as stylistic variations, exclusively at the end of a knot.

This collection of rules allow us to drastically shrink the tie language, both in alphabet and axioms. Fink and Mao are careful to annotate whether tie knot moves go outwards or inwards at any given point. We note that the inwards/outwards distinction follows as a direct consequence of axioms **\(T\text{ie}_2, T\text{ie}_3 \) and **\(T\text{ie}_4 \). Since non-tuck moves must alternate between inwards and outwards, and the last non-tuck move must be outwards, the orientation of any sequence of moves follows by backtracking from the end of the string.

Hence, when faced with a non-annotated string like

\[
RCLCRCLCRCLRURCLU
\]

we can immediately trace from the tail of the knot string: the last move before the final tuck must be outwards, so that \(L \) must be a \(L_\odot \). So it must be preceded by \(R_\odot C_\odot \). Tracing backwards, we can specify

\(^2\)Fink and Mao used \(T \) for Tuck

\(^3\)The exemption here being the Onassis style knot, favored by the eponymous shipping magnate, where after a classical knot the broad blade is brought up with a \(C_\odot \) move to fall in front of the knot, hiding the knot completely.
the entire string above to
\[R ⊗ C ⊗ L ⊗ C ⊗ R ⊗ C ⊗ L ⊗ C ⊗ R ⊗ C ⊗ L ⊗ C ⊗ R ⊗ C \]

Next, the axiom \(\text{Tie}_1 \) means that a sequence will not contain either of \(LU^*L, CU^*C, RU^*R \) as subsequences.\(^4\) Hence, the listing of regions is less important than the direction of transition: any valid transition is going to go either clockwise or counterclockwise. Writing \(T \) for clockwise\(^5\) and \(W \) for counterclockwise,\(^6\) we can give a strongly reduced tie language on the alphabet \(T, W, U \). To completely determine a tie knot, the sequence needs a starting state: an annotation on whether the first crossing of a tie knot goes across to the right or to the left. In such a sequence, a \(U \) instruction must be followed by either \(T \) or \(W \) dictating which direction the winding continues after the tuck, unless it is the last move of the tie: in this case, the blade is assumed to continue straight ahead – down in front for most broad-blade tie knots, tucked in under the collar for most thin-blade knots.

Position of the leading blade after a sequence of \(W/T \) windings is a direct result of \(\#W - \#T \equiv 2 \pmod{3} \). This observation allows us to gain control over several conditions determining whether a distribution of \(U \) symbols over a sequence of \(W/T \) produces a physically viable tie knot.

Theorem 1: A position in a winding sequence is valid for a \(k \)-fold tuck if the position is preceded by \(2k \) winding symbols (\(W \) or \(T \)) that either

1) starts with \(W \) and satisfies \(\#W - \#T = 2 \pmod{3} \)
2) starts with \(T \) and satisfies \(\#T - \#W = 2 \pmod{3} \)

Proof: The initial symbol produces the bow under which the tuck will go. If the initial symbol goes, say, from \(R \) to \(L \), then the tuck move needs to come from \(C \) in order to go under the bow. In general, a tuck needs to come from the one region not involved in the covering bow. Every other bow goes in front of the knot, and the others go behind the knot. Hence, there are \(2k - 1 \) additional winding symbols until the active blade returns to the right side of the knot. During these \(2k - 1 \) symbols, we need to transition one more step around the sequence of regions. The transitions \(W \) and \(T \) are generator and inverse for the cyclic group of order 3, concluding the proof.

We may notice that with the usual physical constraints on a tie – where we have experimentally established that broad blade ties tend to be bounded by 9 moves, and thin blade ties by 15 moves, we can expect that no meaningful tuck deeper than 7 will ever be relevant; 4 for the broad blade ties. The bound of 4 is achieved in the enumeration by Fink and Mao\(^3\).

IV. LANGUAGE COMPLEXITY

In this section, we examine the complexity features of the tie knot language. Due to the constraints we have already observed on the cardinality of \(W \) and \(T \), we will define a grammar for this language using the attribute grammar formalism of Knuth\(^5\). We will write this grammar with an annotated Backus-Naur form – symbols may have a finite number of numeric or boolean attributes that can be used to validate a potentially correct string in the grammar. Although in practice it is only possible to realise finite strings in the tie knot language due to the physical properties of fabric, we assume an arbitrarily long (but finite), infinitely thin tie.

A. Single-depth tucks

The following regular grammar describes all valid winding sequences for knots in which tucks only pass the active blade under the most recent bow made over the knot (which we will call **depth-1-tuckable**).

\(^4\)Recall that the Kleene star \(F^* \) is used to denote sequences of 0 or more repetitions of the string \(F \).

\(^5\)\(T \) for Turnwise

\(^6\)\(W \) for Widdershins
This subclass can be described by a simple grammar; if we want to allow deeper tucks – going under earlier bows – then an attribute grammar as in Section IV-B is called for.

\[
\begin{align*}
 \langle \text{prefix} \rangle & ::= \text{T} | \text{W} | \epsilon \\
 \langle \text{tuck} \rangle & ::= \text{TTU} | \text{WWU} \\
 \langle \text{pair} \rangle & ::= \text{WT} | \text{WW} | \text{TT} | \text{TW} \\
 \langle \text{tie} \rangle & ::= \langle \text{prefix} \rangle \langle \text{pair} \rangle \langle \text{tuck} \rangle^* \langle \text{tuck} \rangle \\
\end{align*}
\]

As section V elaborates, the distribution of T and W varies by type of knot: for classical knots, \(\#W - \#T = 2 \pmod{3} \); for modern knots that tuck to the right, \(\#W - \#T = 1 \pmod{3} \); and for modern knots that tuck to the left, \(\#W - \#T = 0 \pmod{3} \). This grammar does not discriminate between these three subclasses.

B. Recursive tucks

We allow for greater tuck depth by making the \(\langle \text{tuck} \rangle \) rule recursive:

\[
\langle \text{tuck} \rangle ::= \langle \text{pair} \rangle \langle \text{tuck} \rangle' \cup' \epsilon
\]

We then add attributes to the \(\langle \text{pair} \rangle \) and \(\langle \text{tuck} \rangle \) rules as follows:

\[
\begin{align*}
 \langle \text{pair} \rangle & ::= \text{TT}' | \text{TW}' | \text{WT}' | \text{WW}' \\
 \text{pair}.t & = 2, \text{pair}.w = 0 \\
\langle \text{tuck} \rangle & ::= \langle \text{pair} \rangle \langle \text{tuckable} \rangle' \cup' \\
 \text{tuck}.t & = \text{pair}.t + \text{tuckable}.t \\
 \text{tuck}.w & = \text{pair}.w + \text{tuckable}.w \\
 \text{tuck}.valid & = \text{tuck}.t - \text{tuck}.w \pmod{3} \text{ if } \text{tuck}[0] = \text{T'} \\
\langle \text{tuckable} \rangle & ::= \epsilon \\
 \text{tuckable}.t & = 0, \text{tuckable}.w = 0 \\
\langle \text{tuck} \rangle & ::= \langle \text{tuck} \rangle' \text{tuck}\text{valid} = \text{True if all } \text{tuck}.valid = 1 \\
\end{align*}
\]

Note that the validity of a tuck depends only on the count of T and W in the entire sequence comprising the tuck, and not the validity of any tucks recursively embedded into it. For instance, TWTTUU is a valid depth-2-tuckable sequence, as is its embedded depth-1-tuckable sequence TTU. However, TTWTUU is also a valid depth-2-tuckable sequence, even though WTTU is not a valid depth-1-tuckable sequence.

Finally, we add one last attribute to the top-level \(\langle \text{tie} \rangle \) rule:

\[
\langle \text{tie} \rangle ::= \langle \text{prefix} \rangle \langle \text{pair} \rangle \langle \text{tuck} \rangle^* \langle \text{tuck} \rangle \quad \text{[tie.valid} = \text{True if all } \text{tuck}.valid = 1\text{]}
\]

Since all the semantic information passes up the parse tree, the grammar uses only synthesized attributes and is therefore an S-attributed grammar, amenable to both top-down and bottom-up parsing approaches.
C. Classification of the tie-knot language

If we limit our attention to only the single depth tie knots described in Section IV-A, then the grammar is regular, proving that this tie language is a regular language and can be described by a finite automaton. In fact, an automaton accepting these tie knots is given by:

![Automaton Diagram]

Execution starts at the middle node, but has to go outside and return before the machine will accept input.

As for the deeper tucked language in Section IV-B, classification is significantly harder: the presence of recursion means it is at least context-free, whereas the expressibility with an attribute grammar implies at most context-sensitive. The language does not seem immediately amenable to pumping lemma arguments, nor to treatment with Ogden’s lemma or Parikh’s theorem or interchange lemmas[8–10, 13].

V. Enumeration

We can cut down the enumeration work by using some apparent symmetries. Without loss of generality we can assume that a tie knot starts by putting the active blade in region R: any knot starting in the region L is the mirror image of a knot that starts in R and swaps all W to T and vice versa.

A. The classical case

Knots finishing in region C include all classical knots as classified by Fink and Mao [2]: these are all tied with the broad blade and finish with C. Hence, they are classified completely by W/T sequences with \(\#W - \#T = 1 \pmod{3} \), by not counting the initial crossing as one of the moves –

For a tie knot with \(k \) moves, the W and T moves need to divide so that \(\#W - \#T = 1 \pmod{3} \). This is possible in \(\lceil k/3 \rceil \) ways. For each allotment of W and T moves, then, a classical tie knot must end with at least a single order tuck. If it weren’t for this condition, we could count the number of ties for each allotment as \((\#T)_k \), by choosing the positions that receive a T symbol. However, we need to disqualify the choices that place different symbols at the two last positions of the string.

These disqualified versions end with either WT or TW and are preceded by an arbitrary sequence of \(k-2 \) W and T symbols. They are only possible if there are at least 1 of each symbol available to begin with.

Theorem 2: The number of classical ties with exactly \(k \) winding steps is

\[
\sum_{t-w=k \atop t-w=1 \pmod{3}} \binom{k}{t} - 2\binom{k-2}{t-1}
\]

Proof: Out of the \(k \) winding steps, we need 1 more T than W to reach the C position for the finishing move. For any choice of \(\#T, \#W \), there are \(\binom{k}{\#T} \) of these. Out of all ways to place the requisite number of T in the winding sequence, we remove those that use up one each of T and W for the last two moves.
Such windings are counted by \((k-2)_{#T-1} \), and for each such sequence, both TW and WT are forbidden finishing sequences.

Hence, for each candidate sequence of \(k-2 \) moves we need to exclude two sequences.

In particular, the cases enumerated by Fink and Mao \([2]\) are

\[
\begin{array}{ccccccccc}
\text{Winding length} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \text{total} \\
\# tie knots & 1 & 1 & 3 & 5 & 11 & 21 & 43 & 85 \\
\end{array}
\]

B. The modern case

A knot with the thick blade active will cover up the entire knot with each new bow. As such, all thick blade active tie knots will fall within the classification by Fink and Mao \([2]\).

The modern case, thus, deals with thin blade active knots. As evidenced by the Trinity and the Eldredge knots, thin blade knots have a wider range of interesting façades and of interesting tuck patterns. Where for thick blade knots, it was enough to assume that the tuck happens last, and from the C region, the thin blade knots have a far wider variety.

The case remains that unless the last move is a tuck – or possibly finishes in the C region – the knot will unravel from gravity. We can thus expect this to be a valid requirement for the enumeration. There are often more valid tuck sites than the final position in a knot, and the tuck need no longer come from the C region: R and L are at least as valid.

To enumerate windings that end with a single depth tuck move, the formula from Theorem 2 will serve our needs, with some slight modification. More interesting, however, is to enumerate all tie knots with all their choices of possible tuck sites.

Winding sequences can be generated with the same building blocks we used for the classical case above.

Theorem 3: The number of tie winding sequences ending with a single depth tuck from the left after \(k \) winding steps is

\[
\sum_{t+w=k \pmod{3}} \binom{k}{t} - 2 \binom{k-2}{t-1}
\]

The number of winding sequences ending with a single depth tuck from the right after \(k \) winding steps is

\[
\sum_{t+w=k \pmod{3}} \binom{k}{t} - 2 \binom{k-2}{t-1}
\]

Proof: The proof closely follows that of Theorem 2. In each case, we need to enforce repetition of the last winding symbol to allow for a single depth tuck at the end. In each case, we also need to end our winding sequence in the correct region for the tuck to take place. The region placement is handled by the \(\pmod{3} \) residue.

While a good closed form expression for the total number of tie knots, especially including all the tuck combinations of different depths, seems out of reach at the current time, the descriptions we have given so far provide accessible routes to algorithmically enumerating possible tie knots. In the appendix, we include a listing of single depth tuck knots, as well as python code that will list and print knots and potential tuck sites for any depth and winding length.

To extend the table above, we can use the formulae in Theorems 2 and 3 to establish the following:

\[
\begin{array}{ccccccccc}
\text{Winding length} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \text{total} \\
\# left single tuck windings & 0 & 2 & 2 & 6 & 10 & 22 & 42 & 86 & 170 & 324 & 682 \\
\# right single tuck windings & 1 & 1 & 3 & 5 & 11 & 21 & 43 & 85 & 171 & 341 & 682 \\
\# center single tuck windings & 1 & 1 & 3 & 5 & 11 & 21 & 43 & 85 & 171 & 341 & 682 \\
\end{array}
\]
The reason for the similarity between the right and the center counts is that if \(t - w = 1 \) (mod 3), then \(w - t = 2 \) (mod 3). Hence, a winding sequence for a center tuck can be mirrored to a winding sequence for a right tuck.

By counting the number of detected tuck sites, we have calculated the total number of tie knots using only single depth tucks to be 177,147. Of these, 59,016 each end with a right or a center tuck, and 59,115 end with a left tuck.

VI. AESTHETICS

Fink and Mao [2] propose several measures to quantify the aesthetic qualities of a necktie knot; notably symmetry and balance, corresponding to the quantities \(#R - #L\) and the number of transitions from a streak of W to a streak of T or vice versa.

By considering the popular thin-blade neck tie knots: the Eldredge and the Trinity, as described in [6, 7], we can immediately note that balance no longer seems to be as important for the look of a tie knot as is the shape of its façade. Symmetry still plays an important role in knots, and is easy to calculate using the CLR notation for tie knots.

Knot	TW-string	CLR-string	Balance	Symmetry
Eldredge	TTTWWTTUTTWU	LCRLRCRLUCRCLU	3	0
Trinity	TWWWTTTTUTTU	LCLRCRLCURLU	2	1

We do not in this paper attempt to optimize any numeric measures of aesthetics, as this would require us to have a formal and quantifiable measure of the knot façades. This seems difficult with our currently available tools.

VII. CONCLUSION

In this paper, we have extended the enumeration methods originally used by Fink and Mao [2] to provide a larger enumeration of necktie knots, including those knots tied with the thin blade of a necktie to produce ornate patterns in the knot façade.

We have found 2,046 winding patterns that take up to 11 moves to tie and are anchored by a final single depth tuck, and thus are reasonable candidates for use with a normal necktie. We chose the number of moves by examining popular thin-blade tie knots – the Eldredge tie knot uses 11 moves. Most of these winding patterns allow several possible tuck patterns, and thus the 2,046 winding sequences generate 177,147 tie knots with single depth tucks.

We have further shown that in the limit, the language describing neck tie knots is either context sensitive or context free, with a regular sub-language describing the 177,147 knots above.

Questions that remain open to our mind include:
- Settle the language complexity class of the full tie knot language.
- Find a way to algorithmically divide a knot description string into a body/façade distinction.
- Using such a distinction, classify all possible knot façades with reasonably short necktie lengths.
REFERENCES

[1] T. Fink and Y. Mao. *The 85 ways to tie a tie*. Fourth Estate, 2001.

[2] T. Fink and Y. Mao. “Tie knots, random walks and topology”. In: *Physica A: Statistical Mechanics and its Applications* 276.1 (2000), pp. 109–121.

[3] T.M. Fink and Y. Mao. “Designing tie knots by random walks”. In: *Nature* 398.6722 (1999), pp. 31–32.

[4] A. Knorr. *eldredge reloaded*. Blog post on http://xirdalium.net. Accessed on 26 December 2012. June 2010. URL: http://xirdalium.net/2010/06/20/eldredge-reloaded/.

[5] D. Knuth. “Semantics of context-free languages”. In: *Mathematical Systems Theory* 2.2 (1967), pp. 127–145.

[6] A. Krasny. *Eldredge Tie Knot - How to Tie a Eldredge Necktie Knot*. Blog post on http://agreeordie.com. Accessed on 26 December 2012. Nov. 2012. URL: http://agreeordie.com/blog/musings/545-how-to-tie-a-necktie-eldredge-knot.

[7] A. Krasny. *Trinity Tie Knot - How to Tie a Trinity Necktie Knot*. Blog post on http://agreeordie.com. Accessed on 26 December 2012. Dec. 2012. URL: http://agreeordie.com/blog/musings/553-how-to-tie-a-necktie-trinity-knot.

[8] William Ogden. “A helpful result for proving inherent ambiguity”. In: *Theory of Computing Systems* 2.3 (1968), pp. 191–194.

[9] William Ogden, Rockford J Ross, and Karl Winklmann. “An “interchange lemma” for context-free languages”. In: *SIAM Journal on Computing* 14.2 (1985), pp. 410–415.

[10] Rohit J Parikh. “On context-free languages”. In: *Journal of the ACM (JACM)* 13.4 (1966), pp. 570–581.

[11] Michael Sipser. *Introduction to the Theory of Computation*. Vol. 2. Thomson Course Technology Boston, 2006.

[12] A. Wachowski et al. *The matrix reloaded*. Warner Bros. Pictures, 2003.

[13] David S Wise. “A strong pumping lemma for context-free languages”. In: *Theoretical Computer Science* 3.3 (1976), pp. 359–369.
Classical ties in WTU notation

The 85 ties enumerated by Fink and Mao [2] are given by the following winding strings in our WTU notation for tie knots:

Index	Tie string	Index	Tie string
1	WWU	43	WWTWTTWWU
2	WTTU	44	WTWNWWTTU
3	WTWWU	45	WTTTTWTTU
4	TTTTU	46	WTTTTTTU
5	TWWU	47	WWWNTWTTU
6	WTWWWU	48	WTWNTWTTU
7	WWWWWU	49	WTTWWTTU
8	WWTTTU	50	WWTNTWNU
9	TTTWU	51	WTTTTWWU
10	TWTTU	52	TTNTWTTU
11	WTWTWWU	53	TWNTWTTU
12	WTTTTU	54	WWWWWWWU
13	WWWTTU	55	WTTTTTTU
14	WTWWWWU	56	WWWNTWTTU
15	WTTWWU	57	TTTWWWWU
16	TTTWTTU	58	TTTTTTTU
17	TWTWWU	59	WTTTTWWU
18	TTWWWU	60	TTTWTWTTU
19	TTWWTU	61	TTTWWWWU
20	TWTTTU	62	WWTNTWNU
21	TWTWWU	63	WTTTTTTU
22	WTWTWWWU	64	WTTWWTTU
23	WTTTTWU	65	TWNTWTTU
24	WTWWWWU	66	TWWWWTWWU
25	WWWWTWU	67	TTWTWTTU
26	WTWWWTTU	68	TWWNTTWTU
27	WTTWWTTU	69	TWWNTWTTU
28	TTTWTWU	70	TTTWTWTTU
29	WTTWTTU	71	TWWNTWWU
30	TWTTWWWU	72	TTTWTWTTU
31	TTTTTTU	73	WWNTWTTU
32	TWWWWWU	74	WWTWTWWU
33	TTTWWWWU	75	WWTWTWTTU
34	WWWTTTTU	76	TTWTWTUU
35	TWWTTTU	77	TWTWTWWU
36	WWWTTWWU	78	TWTWTWTTU
37	WWWTTWWWU	79	TWTWTWTTU
38	TWTTWWWU	80	TTWTWTWWU
39	WTWTWWWU	81	TTWTWTWWU
40	TWTWTTU	82	TTWTWTU
41	TTWTWWWU	83	TTWTWTU
42	TWTWWTTU	84	TTWTWTU
85	TWTWTWWU	85	TTWTWTU
Thin blade active tie knots

The knots that started this project were the Eldredge and the Trinity. Our transcriptions of these ties as demonstrated by Krasny [6, 7] are:

Knot	Knot Transcription
Eldredge	TTTWWTUUTTWWU
Trinity	TWWWTUUTTU

Note that these show up in the enumerations below as L-373 (uuUu) and L-110 (uU).

In the next several pages of this appendix, we shall list enumerations for up to 12 winding moves – including the Eldredge and the Trinity in our enumeration. Throughout, we write u for a potential tuck site, where a single depth tuck is allowed, and U for the final tuck that keeps the tie knot in place. We split the enumeration based on where the final tuck takes place: from L, from R or from C.
We write the TWU strings with a lowercase u for any additionally feasible front tuck site. First ties knots that tuck from the left.

Index	Tie string
L-1	TTTU
L-2	WWWW
L-3	TTuWWU
L-4	WWuTTU
L-5	TWTTTU
L-6	TTWTUU
L-7	WTWT TU
L-8	TWWuWWU
L-9	WWTWU
L-10	WTWWU
L-11	TTuTTuTU
L-12	TTuWTWU
L-13	TTuTWUwWU
L-14	WTTuWWU
L-15	WTTWTU
L-16	TWTTuWWU
L-17	TWWuTTU
L-18	WUuWTUU
L-19	WUuWTTU
L-20	WUuWTWU
L-21	TTuTTuWWU
L-22	TTuTTuWUwWU
L-23	TTuTTuWTU
L-24	TTuTTuWUWU
L-25	TTuTTuWTTU
L-26	TTuTTuWTWU
L-27	TWWuTTuTU
L-28	WTTuWTUU
L-29	WTTuWTTU
L-30	WTTuWTWU
L-31	WTTuWTWU
L-32	WTTuWTWU
L-33	TWWuWTWU
L-34	TWWuWTWU
L-35	TWWuWTWU
L-36	TWWuWTWU
L-37	WTTuWTWU
L-38	WTTuWTWU
L-39	WTTuWTWU
L-40	WTTuWTWU
L-41	WTTuWTWU
L-42	WTTuWTWU
L-43	WTTuWTWU
L-44	WTTuWTWU
L-45	WTTuWTWU
L-46	WTTuWTWU
L-47	WTTuWTWU
L-48	WTTuWTWU
L-49	WTTuWTWU
L-50	WTTuWTWU

Index
Tie string
L-41 | WTTuWTWU |
L-42 | WTTuWTWU |
L-43 | WTTuWTWU |
L-44 | WTTuWTWU |
L-45 | WTTuWTWU |
L-46 | WTTuWTWU |
L-47 | WTTuWTWU |
L-48 | WTTuWTWU |
L-49 | WTTuWTWU |
L-50 | WTTuWTWU |
L-51 | WTTuWTWU |
L-52 | WTTuWTWU |
L-53 | WTTuWTWU |
L-54 | WTTuWTWU |
L-55 | WTTuWTWU |
L-56 | WTTuWTWU |
L-57 | WTTuWTWU |
L-58 | WTTuWTWU |
L-59 | WTTuWTWU |
L-60 | WTTuWTWU |
L-61 | WTTuWTWU |
L-62 | WTTuWTWU |
L-63 | WTTuWTWU |
L-64 | WTTuWTWU |
L-65 | WTTuWTWU |
L-66 | WTTuWTWU |
L-67 | WTTuWTWU |
L-68 | WTTuWTWU |
L-69 | WTTuWTWU |
L-70 | WTTuWTWU |
L-71 | WTTuWTWU |
L-72 | WTTuWTWU |
L-73 | WTTuWTWU |
L-74 | WTTuWTWU |
L-75 | WTTuWTWU |
L-76 | WTTuWTWU |
L-77 | WTTuWTWU |
L-78 | WTTuWTWU |
L-79 | WTTuWTWU |
L-80 | WTTuWTWU |
L-81 | WTTuWTWU |
L-82 | WTTuWTWU |
L-83 | WTTuWTWU |
L-84 | WTTuWTWU |
L-85 | TTTuTTuTTuTTU |
L-86 | TTTuTTuTTuTTU |
L-87 | TTTuTTuTTuTTU |
L-88 | TTTuTTuTTuTTU |
L-89 | TTTuTTuTTuTTU |
L-90 | TTTuTTuTTuTTU |
L-91 | TTTuTTuTTuTTU |
L-92 | TTTuTTuTTuTTU |
L-93 | TTTuTTuTTuTTU |
L-94 | TTTuTTuTTuTTU |
L-95 | TTTuTTuTTuTTU |
L-96 | TTTuTTuTTuTTU |
L-97 | TTTuTTuTTuTTU |
L-98 | TTTuTTuTTuTTU |
L-99 | TTTuTTuTTuTTU |
L-100 | TTTuTTuTTuTTU |
L-101 | TTTuTTuTTuTTU |
L-102 | TTTuTTuTTuTTU |
L-103 | TTTuTTuTTuTTU |
L-104 | TTTuTTuTTuTTU |
L-105 | TTTuTTuTTuTTU |
L-106 | TTTuTTuTTuTTU |
L-107 | TTTuTTuTTuTTU |
L-108 | TTTuTTuTTuTTU |
L-109 | TTTuTTuTTuTTU |
L-110 | TTTuTTuTTuTTU |
L-111 | TTTuTTuTTuTTU |
L-112 | TTTuTTuTTuTTU |
L-113 | TTTuTTuTTuTTU |
L-114 | TTTuTTuTTuTTU |
L-115 | TTTuTTuTTuTTU |
L-116 | TTTuTTuTTuTTU |
L-117 | TTTuTTuTTuTTU |
L-118 | TTTuTTuTTuTTU |
L-119 | TTTuTTuTTuTTU |
L-120 | TTTuTTuTTuTTU |
Index	Tie string	Index	Tie string	Index	Tie string
L-121	WWTWWTTuTU	L-171	TTuTTuTTuTTuWWu	L-221	TTuWWuWTWWuTTu
L-122	WWTWWTTuTU	L-172	TTuTTuTTuWWuTTu	L-222	TTuWWuWTWWuTTu
L-123	WWTWWTTuTU	L-173	TTuTTuWTWWuTTu	L-223	TTuWWuWTWWuTTu
L-124	WWTWWTTuTU	L-174	TTuTTuWTWWuTTu	L-224	TTuWWuWTWWuTTu
L-125	WWTWWTTuTU	L-175	TTuTTuTWTTuTTu	L-225	TTuWWuWTWWuTTu
L-126	WWTWWTTuTU	L-176	TTuTTuTWTTuTTu	L-226	TTuWWuWTWWuTTu
L-127	WWTWWTTuTU	L-177	TTuTTuWTWWuTTu	L-227	TTuWTWWuWTWWu
L-128	TTuWuWuWWuWWu	L-178	TTuWTWWuWTWWu	L-228	TTuWTWWuWTWWu
L-129	TWWTWuWuWWu	L-179	TTuWTWWuWTWWu	L-229	TTuWTWWuWTWWu
L-130	TWWTWuWuWWu	L-180	TTuWTWWuWTWWu	L-230	TTuWTWWuWTWWu
L-131	TWWTWuWuWWu	L-181	TTuWTWWuWTWWu	L-231	TTuWTWWuWTWWu
L-132	TWWTWuWuWWu	L-182	TTuWTWWuWTWWu	L-232	TTuWTWWuWTWWu
L-133	TWWTWuWuWWu	L-183	TTuWTWWuWTWWu	L-233	TTuWTWWuWTWWu
L-134	TWWTWuWuWWu	L-184	TTuWTWWuWTWWu	L-234	TTuWTWWuWTWWu
L-135	TWWTWuWuWWu	L-185	TTuWTWWuWTWWu	L-235	TTuWTWWuWTWWu
L-136	TWWTWuWuWWu	L-186	TTuWTWWuWTWWu	L-236	TTuWTWWuWTWWu
L-137	TWWTWuWuWWu	L-187	TTuWTWWuWTWWu	L-237	TTuWTWWuWTWWu
L-138	TWWTWuWuWWu	L-188	TTuWTWWuWTWWu	L-238	TTuWTWWuWTWWu
L-139	TWWTWuWuWWu	L-189	TTuWTWWuWTWWu	L-239	TTuWTWWuWTWWu
L-140	TWWTWuWuWWu	L-190	TTuWTWWuWTWWu	L-240	TTuWTWWuWTWWu
L-141	TWWTWuWuWWu	L-191	TTuWTWWuWTWWu	L-241	TTuWTWWuWTWWu
L-142	TWWTWuWuWWu	L-192	TTuWTWWuWTWWu	L-242	TTuWTWWuWTWWu
L-143	TWWTWuWuWWu	L-193	TTuWTWWuWTWWu	L-243	TTuWTWWuWTWWu
L-144	TWWTWuWuWWu	L-194	TTuWTWWuWTWWu	L-244	TTuWTWWuWTWWu
L-145	TWWTWuWuWWu	L-195	TTuWTWWuWTWWu	L-245	TTuWTWWuWTWWu
L-146	TWWTWuWuWWu	L-196	TTuWTWWuWTWWu	L-246	TTuWTWWuWTWWu
L-147	TWWTWuWuWWu	L-197	TTuWTWWuWTWWu	L-247	TTuWTWWuWTWWu
L-148	TWWTWuWuWWu	L-198	TTuWTWWuWTWWu	L-248	TTuWTWWuWTWWu
L-149	TWWTWuWuWWu	L-199	TTuWTWWuWTWWu	L-249	TTuWTWWuWTWWu
L-150	TWWTWuWuWWu	L-200	TTuWTWWuWTWWu	L-250	TTuWTWWuWTWWu
L-151	TWWTWuWuWWu	L-201	TTuWTWWuWTWWu	L-251	TTuWTWWuWTWWu
L-152	TWWTWuWuWWu	L-202	TTuWTWWuWTWWu	L-252	TTuWTWWuWTWWu
L-153	TWWTWuWuWWu	L-203	TTuWTWWuWTWWu	L-253	TTuWTWWuWTWWu
L-154	TWWTWuWuWWu	L-204	TTuWTWWuWTWWu	L-254	TTuWTWWuWTWWu
L-155	TWWTWuWuWWu	L-205	TTuWTWWuWTWWu	L-255	TTuWTWWuWTWWu
L-156	TWWTWuWuWWu	L-206	TTuWTWWuWTWWu	L-256	TTuWTWWuWTWWu
L-157	TWWTWuWuWWu	L-207	TTuWTWWuWTWWu	L-257	TTuWTWWuWTWWu
L-158	TWWTWuWuWWu	L-208	TTuWTWWuWTWWu	L-258	TTuWTWWuWTWWu
L-159	TWWTWuWuWWu	L-209	TTuWTWWuWTWWu	L-259	TTuWTWWuWTWWu
L-160	TWWTWuWuWWu	L-210	TTuWTWWuWTWWu	L-260	TTuWTWWuWTWWu
L-161	TWWTWuWuWWu	L-211	TTuWTWWuWTWWu	L-261	TTuWTWWuWTWWu
L-162	TWWTWuWuWWu	L-212	TTuWTWWuWTWWu	L-262	TTuWTWWuWTWWu
L-163	TWWTWuWuWWu	L-213	TTuWTWWuWTWWu	L-263	TTuWTWWuWTWWu
L-164	TWWTWuWuWWu	L-214	TTuWTWWuWTWWu	L-264	TTuWTWWuWTWWu
L-165	TWWTWuWuWWu	L-215	TTuWTWWuWTWWu	L-265	TTuWTWWuWTWWu
L-166	TWWTWuWuWWu	L-216	TTuWTWWuWTWWu	L-266	TTuWTWWuWTWWu
L-167	TWWTWuWuWWu	L-217	TTuWTWWuWTWWu	L-267	TTuWTWWuWTWWu
L-168	TWWTWuWuWWu	L-218	TTuWTWWuWTWWu	L-268	TTuWTWWuWTWWu
L-169	TWWTWuWuWWu	L-219	TTuWTWWuWTWWu	L-269	TTuWTWWuWTWWu
L-170	TWWTWuWuWWu	L-220	TTuWTWWuWTWWu	L-270	TTuWTWWuWTWWu
Index	Tie string	Index	Tie string		
-------	--------------------------	-------	--------------------------		
L-271	TWTWTTuWTWWU	L-321	TWWWuWTWWuWWU		
L-272	TWTWTTuWTWWU	L-322	TWWWuWTWWuWWU		
L-273	TWTWTTTTuWTWWU	L-323	TWWWuWTWWuWTWWU		
L-274	TWTWWTWWuTTU	L-324	TWWWuWuWTWWu		
L-275	TWTWTTTTuWTWWU	L-325	WWWWuWTWWuWWuWWW		
L-276	TWTWTTWuTTuTTU	L-326	WWWWuWTWWuWWW		
L-277	TWTWuWuWTTTTU	L-327	WWWWuWTWWuWW		
L-278	TWTWuWWuWTTTTU	L-328	WWWWuWTWWuW		
L-279	TWWuWTuTTuTTuWWU	L-329	WWWWuWTWWuWWW		
L-280	TWWuWTuWTuWTuTTU	L-330	WWWWuWTWWuWW		
L-281	TWWuWTuWTUWTTU	L-331	WWWWuWTWWuW		
L-282	TWWuWTuWTUWTTU	L-332	WWWWuWTWWu		
L-283	TWWuWTuWTTTTU	L-333	WWWWuWTWWu		
L-284	TWWuWTuWTTTTU	L-334	WPPPuWTWWuWWW		
L-285	TWWuWTuWdTuTTuTTU	L-335	WWWWuWTWWuWWW		
L-286	WWWWuWTuTuTTuWTWu	L-336	WWWWuWTWuWTT		
L-287	WWWWuWTuTTuTTuWu	L-337	WWWWuWTWuWW		
L-288	WWWWuWTuTTuTTuWu	L-338	WWWWuWTWuWW		
L-289	WWWWuWTuTTuWTWu	L-339	WWWWuWTWuWu		
L-290	WWWWuWTuWTuW	L-340	WWWWuWTWuWu		
L-291	WWWWuWTuWTuWu	L-341	WWWWuWTWuWu		
L-292	WWWWuWTuWTuWu	L-342	WWWWuWTWuWu		
L-293	WWWWuWTuWTuWu	L-343	WWWWuWTWuWu		
L-294	WWWWuWTuWTuWu	L-344	WWWWuWTWuWu		
L-295	WWWWuWTuWTuWu	L-345	WWWWuWTWuWu		
L-296	WWWWuWTuWTuWu	L-346	WWWWuWTWuWu		
L-297	WWWWuWTuWTuWu	L-347	WWWWuWTWuWu		
L-298	WWWWuWTuWTuWu	L-348	WWWWuWTWuWu		
L-299	WWWWuWTuWTuWu	L-349	WWWWuWTWuWu		
L-300	WWWWuWTuTTuTTuWu	L-350	WWWWuWTuTTuTTuWu		
L-301	WWWWuWTuTTuWTWu	L-351	WWWWuWTuTTuWTWu		
L-302	WWWWuWTWuTTuWTWu	L-352	WWWWuWTuTTuWTWu		
L-303	WWWWuWTWuTTuWTWu	L-353	WWWWuWTuTTuWTWu		
L-304	WWWWuWTWuTTuWTWu	L-354	WWWWuWTuTTuWTWu		
L-305	WWWWuWTWuTTuWTWu	L-355	WWWWuWTuTTuWTWu		
L-306	WWWWuWTWuTTuWTWu	L-356	WWWWuWTuTTuWTWu		
L-307	WWWWuWTWuTTuWTWu	L-357	WWWWuWTuTTuWTWu		
L-308	WWWWuWTuTTuWTWu	L-358	WWWWuWTuTTuWTWu		
L-309	WWWWuWTuTTuWTWu	L-359	WWWWuWTuTTuWTWu		
L-310	WWWWuWTuTTuWTWu	L-360	WWWWuWTuTTuWTWu		
L-311	WWWWuWTuTTuWTWu	L-361	WWWWuWTuTTuWTWu		
L-312	WWWWuWTuTTuWTWu	L-362	WWWWuWTuTTuWTWu		
L-313	WWWWuWTuTTuWTWu	L-363	WWWWuWTuTTuWTWu		
L-314	WWWWuWTuTTuWTWu	L-364	WWWWuWTuTTuWTWu		
L-315	WWWWuWTuTTuWTWu	L-365	WWWWuWTuTTuWTWu		
L-316	WWWWuWTuTTuWTWu	L-366	WWWWuWTuTTuWTWu		
L-317	WWWWuWTuTTuWTWu	L-367	WWWWuWTuTTuWTWu		
L-318	WWWWuWTuTTuWTWu	L-368	WWWWuWTuTTuWTWu		
L-319	WWWWuWTuTTuWTWu	L-369	WWWWuWTuTTuWTWu		
L-320	WWWWuWTuTTuWTWu	L-370	WWWWuWTuTTuWTWu		
Index	Tie string	Index	Tie string		
-------	-----------------------------	-------	-----------------------------		
L-371	TTuTWWuWuWTTTU	L-421	TTTWTTuTTuWWU		
L-372	TTuTWWuWTWTTU	L-422	TTTWTTuWWuTTU		
L-373	TTuWuTTuTTuWWuWuWuTTU	L-423	TTTWWTWTTTU		
L-374	TTuWuTTuTuuWuWuTTU	L-424	TTTWWTWTTTU		
L-375	TTuWuWTWTTTU	L-425	TTTWWTWTTTU		
L-376	TTuWuWTWTTTU	L-426	TTTWWTWTTTU		
L-377	TTuWuTTuWTTTU	L-427	TTTWWTWuTTuTTU		
L-378	TTuWuWTTuWTTTU	L-428	TTTWWTuTTuWuTTU		
L-379	TTuWuWuWuuTuTTuTTuTTU	L-429	TTTWWTuTTuWuWuTTU		
L-380	TTuTTuTTuWTWuWuWu	L-430	TTTWWTuTTuWuuTTuWuWu		
L-381	TTuTTuTTuWWuWTWu	L-431	TTTWWTuTTuWuuTTuWuuTTu		
L-382	TTuTTuTTuWTWTTuWuWuWu	L-432	TTTWWTuTTuWuuTTuWuuTTu		
L-383	TTuTTuWTWuWTTuWuWu	L-433	TTTWWTuTTuWuuTTuWuuTTu		
L-384	TTuTTuWTWuWTTuWuWu	L-434	TTTWWTuTTuWuuTTuWuuTTu		
L-385	TTuTTuWTWuWTTuWuWu	L-435	TTTWWTuTTuWuuTTuWuuTTu		
L-386	TTuTTuWTWuWTTuWuWu	L-436	TTTWWTuTTuWuuTTuWuuTTu		
L-387	TTuTTuWTWuWTTuWuWu	L-437	TTTWWTuTTuWuuTTuWuuTTu		
L-388	TTuTTuWTWuWTTuWuWu	L-438	TTTWWTuTTuWuuTTuWuuTTu		
L-389	TTuTTuWTWuWTTuWuWu	L-439	TTTWWTuTTuWuuTTuWuuTTu		
L-390	TTuTTuWTWuWTTuWuWu	L-440	TTTWWTuTTuWuuTTuWuuTTu		
L-391	TTuTTuWTWuWTTuWuWu	L-441	TTTWWTuTTuWuuTTuWuuTTu		
L-392	TTuTTuWTWuWTTuWuWu	L-442	TTTWWTuTTuWuuTTuWuuTTu		
L-393	TTuTTuWTWuWTTuWuWu	L-443	TTTWWTuTTuWuuTTuWuuTTu		
L-394	TTuTTuWTWuWTTuWuWu	L-444	TTTWWTuTTuWuuTTuWuuTTu		
L-395	TTuTTuWTWuWTTuWuWu	L-445	TTTWWTuTTuWuuTTuWuuTTu		
L-396	TTuTTuWTWuWTTuWuWu	L-446	TTTWWTuTTuWuuTTuWuuTTu		
L-397	TTuTTuWTWuWTTuWuWu	L-447	TTTWWTuTTuWuuTTuWuuTTu		
L-398	TTuTTuWTWuWTTuWuWu	L-448	TTTWWTuTTuWuuTTuWuuTTu		
L-399	TTuTTuWTWuWTTuWuWu	L-449	TTTWWTuTTuWuuTTuWuuTTu		
L-400	TTuTTuWTWuWTTuWuWu	L-450	TTTWWTuTTuWuuTTuWuuTTu		
L-401	TTuTTuWTWuWuWTWuWuWu	L-451	TTTWWTuTTuWuuTTuWuuTTu		
L-402	TTuTTuWTWuWuWTWuWuWu	L-452	TTTWWTuTTuWuuTTuWuuTTu		
L-403	TTuTTuWTWuWuWTWuWuWu	L-453	TTTWWTuTTuWuuTTuWuuTTu		
L-404	TTuTTuWTWuWuWTWuWuWu	L-454	TTTWWTuTTuWuuTTuWuuTTu		
L-405	TTuTTuWTWuWuWTWuWuWu	L-455	TTTWWTuTTuWuuTTuWuuTTu		
L-406	TTuTTuWTWuWuWTWuWuWu	L-456	TTTWWTuTTuWuuTTuWuuTTu		
L-407	TTuTTuWTWuWuWTWuWuWu	L-457	TTTWWTuTTuWuuTTuWuuTTu		
L-408	TTuTTuWTWuWuWTWuWuWu	L-458	TTTWWTuTTuWuuTTuWuuTTu		
L-409	TTuTTuWTWuWuWTWuWuWu	L-459	TTTWWTuTTuWuuTTuWuuTTu		
L-410	TTuTTuWTWuWuWTWuWuWu	L-460	TTTWWTuTTuWuuTTuWuuTTu		
L-411	TTuTTuWTWuWuWTWuWuWu	L-461	TTTWWTuTTuWuuTTuWuuTTu		
L-412	TTuTTuWTWuWuWTWuWuWu	L-462	TTTWWTuTTuWuuTTuWuuTTu		
L-413	TTuTTuWTWuWuWTWuWuWu	L-463	TTTWWTuTTuWuuTTuWuuTTu		
L-414	TTuTTuWTWuWuWTWuWuWu	L-464	TTTWWTuTTuWuuTTuWuuTTu		
L-415	TTuTTuWTWuWuWTWuWuWu	L-465	TTTWWTuTTuWuuTTuWuuTTu		
L-416	TTuTTuWTWuWuWTWuWuWu	L-466	TTTWWTuTTuWuuTTuWuuTTu		
L-417	TTuTTuWTWuWuWTWuWuWu	L-467	TTTWWTuTTuWuuTTuWuuTTu		
L-418	TTuTTuWTWuWuWTWuWuWu	L-468	TTTWWTuTTuWuuTTuWuuTTu		
L-419	TTuTTuWTWuWuWTWuWuWu	L-469	TTTWWTuTTuWuuTTuWuuTTu		
L-420	TTuTTuWTWuWuWTWuWuWu	L-470	TTTWWTuTTuWuuTTuWuuTTu		
Index	Tie string	Index	Tie string		
-------	-------------------------	---------	-------------------------		
L-471	WTTuWuTTuTWuTTu	L-521	TWTuTWuWTuWTWu		
L-472	WTTuWuWTTuTWuTTu	L-522	TWTuTWuWTuWuW		
L-473	WTTuWuWTTuTWuTTu	L-523	TWTuTWuWTuWuW		
L-474	WTTuWTuTTuTuTTuWuWu	L-524	TWTuTWuWTuWTWu		
L-475	WTTuTuTuWuWuTTu	L-525	TWTuWTuTuWuWuW		
L-476	WTTuTWuWTWTTuTu	L-526	TWTuWTuTuWuWuW		
L-477	WTTuTWuWTWTTuTu	L-527	TWTuTuTuTuWTuWuWu		
L-478	WTTuWTuTWuTTuTu	L-528	TWTuWTuTuWuWuW		
L-479	WTTuTuWTWTTuTu	L-529	TWTuTuWuWuWuW		
L-480	WTTuWTuWTuTuTuTu	L-530	TWTuWTuWTuTuTuTuTu		
L-481	WTTuWTuWTuTuTuTuTu	L-531	TWTuWTuWTuTuTuTuTu		
L-482	WTTuWTuWTuTuTuTuTuTu	L-532	TWTuWTuWTuTuTuTuTuTu		
L-483	WTTuWTuWTuTuTuTuTuTu	L-533	TWTuWTuWTuTuTuTuTuTu		
L-484	WTTuWTuWTuTuTuTuTuTu	L-534	TWTuWTuWTuTuTuTuTuTu		
L-485	WTTuWTuWTuTuTuTuTuTu	L-535	TWTuWTuWTuTuTuTuTuTu		
L-486	WTTuWTuWTuTuTuTuTuTu	L-536	TWTuWTuWTuTuTuTuTuTu		
L-487	WTTuWTuWTuTuTuTuTuTu	L-537	TWTuWTuWTuTuTuTuTuTu		
L-488	WTTuWTuWTuTuTuTuTuTu	L-538	TWTuWTuWTuTuTuTuTuTu		
L-489	WTTuWTuWTuTuTuTuTuTu	L-539	TWTuWTuWTuTuTuTuTuTu		
L-490	WTTuWTuWTuTuTuTuTuTu	L-540	TWTuWTuWTuTuTuTuTuTu		
L-491	WTTuWTuWTuTuTuTuTuTu	L-541	TWTuWTuWTuTuTuTuTuTu		
L-492	WTTuWTuWTuTuTuTuTuTu	L-542	TWTuWTuWTuTuTuTuTuTu		
L-493	WTTuWTuWTuTuTuTuTuTu	L-543	TWTuWTuWTuTuTuTuTuTu		
L-494	WTTuWTuWTuTuTuTuTuTu	L-544	TWTuWTuWTuTuTuTuTuTu		
L-495	WTTuWTuWTuTuTuTuTuTu	L-545	TWTuWTuWTuTuTuTuTuTu		
L-496	WTTuWTuWTuTuTuTuTuTu	L-546	TWTuWTuWTuTuTuTuTuTu		
L-497	WTTuWTuWTuTuTuTuTuTu	L-547	TWTuWTuWTuTuTuTuTuTu		
L-498	WTTuWTuWTuTuTuTuTuTu	L-548	TWTuWTuWTuTuTuTuTuTu		
L-499	WTTuWTuWTuTuTuTuTuTu	L-549	TWTuWTuWTuTuTuTuTuTu		
L-500	WTTuWTuWTuTuTuTuTuTu	L-550	TWTuWTuWTuTuTuTuTuTu		
L-501	WTTuWTuWTuTuTuTuTuTu	L-551	TWTuWTuWTuTuTuTuTuTu		
L-502	WTTuWTuWTuTuTuTuTuTu	L-552	TWTuWTuWTuTuTuTuTuTu		
L-503	WTTuWTuWTuTuTuTuTuTu	L-553	TWTuWTuWTuTuTuTuTuTu		
L-504	WTTuWTuWTuTuTuTuTuTu	L-554	TWTuWTuWTuTuTuTuTuTu		
L-505	WTTuWTuWTuTuTuTuTuTu	L-555	TWTuWTuWTuTuTuTuTuTu		
L-506	WTTuWTuWTuTuTuTuTuTu	L-556	TWTuWTuWTuTuTuTuTuTu		
L-507	WTTuWTuWTuTuTuTuTuTu	L-557	TWTuWTuWTuTuTuTuTuTu		
L-508	WTTuWTuWTuTuTuTuTuTu	L-558	TWTuWTuWTuTuTuTuTuTu		
L-509	WTTuWTuWTuTuTuTuTuTu	L-559	TWTuWTuWTuTuTuTuTuTu		
L-510	WTTuWTuWTuTuTuTuTuTu	L-560	TWTuWTuWTuTuTuTuTuTu		
L-511	WTTuWTuWTuTuTuTuTuTu	L-561	TWTuWTuWTuTuTuTuTuTu		
L-512	WTTuWTuWTuTuTuTuTuTu	L-562	TWTuWTuWTuTuTuTuTuTu		
L-513	WTTuWTuWTuTuTuTuTuTu	L-563	TWTuWTuWTuTuTuTuTuTu		
L-514	WTTuWTuWTuTuTuTuTuTu	L-564	TWTuWTuWTuTuTuTuTuTu		
L-515	WTTuWTuWTuTuTuTuTuTu	L-565	TWTuWTuWTuTuTuTuTuTu		
L-516	WTTuWTuWTuTuTuTuTuTu	L-566	TWTuWTuWTuTuTuTuTuTu		
L-517	WTTuWTuWTuTuTuTuTuTu	L-567	TWTuWTuWTuTuTuTuTuTu		
L-518	WTTuWTuWTuTuTuTuTuTu	L-568	TWTuWTuTuTuTuTuTuTu		
L-519	WTTuWTuWTuTuTuTuTuTu	L-569	TWTuWTuTuTuTuTuTuTu		
L-520	WTTuWTuWTuTuTuTuTuTu	L-570	TWTuWTuTuTuTuTuTuTu		
Index	Tie string	Index	Tie string		
-------	------------------	-------	------------------		
L-571	TWWuWWuTWuWTuTTu	L-621	WTTTTuWuTWuTTu		
L-572	TWWuWWuTWTuWWu	L-622	WTTTTuWuWuWuWu		
L-573	TWWuWWuTWuWTuTTu	L-623	WTTWTuTWuTWuWu		
L-574	TWWuWWuWuWuWuWu	L-624	WTTWTuTWuTWuWu		
L-575	TWWuWWuWuWuTWWu	L-625	WTTWTuTWuTWuWu		
L-576	WTTuWTuWuWuWuWu	L-626	WTTWTuTWuTWuWu		
L-577	WTTuWTWTuWuWuWu	L-627	WTTWTuTWuWuTTu		
L-578	WTTuWTWWTuWuWuWu	L-628	WTTWTuTWuWuTTu		
L-579	WTTuWTWuWuWuWuWu	L-629	WTTWTuTWuWuTTu		
L-580	WTTuWTWTuWuWuWu	L-630	WTTWTuTWuWuTTu		
L-581	WTTuWTWTuWuWuWu	L-631	WTTWTuTWuWuTTu		
L-582	WTTuWTWTuWuWuWu	L-632	WTTWTuTWuWuTTu		
L-583	WTTuWTWTuWuWuWu	L-633	WTTWTuTWuWuTTu		
L-584	WTTuWTWTuWuWuWu	L-634	WTTWTuTWuWuTTu		
L-585	WTTuWTWTuWuWuWu	L-635	WTTWTuTWuWuTTu		
L-586	WTTuWTWTuWuWuWu	L-636	WTTWTuTWuWuTTu		
L-587	WTTuWTWTuWuWuWu	L-637	WTTWTuTWuWuTTu		
L-588	WTTuWTWTuWuWuWu	L-638	WTTWTuTWuWuTTu		
L-589	WTTuWTWTuWuWuWu	L-639	WTTWTuTWuWuTTu		
L-590	WTTuWTWTuWuWuWu	L-640	WTTWTuTWuWuTTu		
L-591	WTTuWTWTuWuWuWu	L-641	WTTWTuTWuWuTTu		
L-592	WTTuWTWTuWuWuWu	L-642	WTTWTuTWuWuTTu		
L-593	WTTuWTWTuWuWuWu	L-643	WTTWTuTWuWuTTu		
L-594	WTTuWTWTuWuWuWu	L-644	WTTWTuTWuWuTTu		
L-595	WTTuWTWTuWuWuWu	L-645	WTTWTuTWuWuTTu		
L-596	WTTuWTWTuWuWuWu	L-646	WTTWTuTWuWuTTu		
L-597	WTTuWTWTuWuWuWu	L-647	WTTWTuTWuWuTTu		
L-598	WTTuWTWTuWuWuWu	L-648	WTTWTuTWuWuTTu		
L-599	WTTuWTWTuWuWuWu	L-649	WTTWTuTWuWuTTu		
L-600	WTTuWTWTuWuWuWu	L-650	WTTWTuWuWuTTu		
L-601	WTTuWTWTuWuWuWu	L-651	WTTWTuWuWuTTu		
L-602	WTTuWTWTuWuWuWu	L-652	WTTWTuWuWuTTu		
L-603	WTTuWTWTuWuWuWu	L-653	WTTWTuWuWuTTu		
L-604	WTTuWTWTuWuWuWu	L-654	WTTWTuWuWuTTu		
L-605	WTTuWTWTuWuWuWu	L-655	WTTWTuWuWuTTu		
L-606	WTTuWTWTuWuWuWu	L-656	WTTWTuWuWuTTu		
L-607	WTTuWTWTuWuWuWu	L-657	WTTWTuWuWuTTu		
L-608	WTTuWTWTuWuWuWu	L-658	WTTWTuWuWuTTu		
L-609	WTTuWTWTuWuWuWu	L-659	WTTWTuWuWuTTu		
L-610	WTTuWTWTuWuWuWu	L-660	WTTWTuWuWuTTu		
L-611	WTTuWTWTuWuWuWu	L-661	WTTWTuWuWuTTu		
L-612	WTTuWTWTuWuWuWu	L-662	WTTWTuWuWuTTu		
L-613	WTTuWTWTuWuWuWu	L-663	WTTWTuWuWuTTu		
L-614	WTTuWTWTuWuWuWu	L-664	WTTWTuWuWuTTu		
L-615	WTTuWTWTuWuWuWu	L-665	WTTWTuWuWuTTu		
L-616	WTTuWTWTuWuWuWu	L-666	WTTWTuWuWuTTu		
L-617	WTTuWTWTuWuWuWu	L-667	WTTWTuWuWuTTu		
L-618	WTTuWTWTuWuWuWu	L-668	WTTWTuWuWuTTu		
L-619	WTTuWTWTuWuWuWu	L-669	WTTWTuWuWuTTu		
L-620	WTTuWTWTuWuWuWu	L-670	WTTWTuWuWuTTu		
Index	Tie string				
-------	------------				
L-671	WWWuWWuTWWTTTU				
L-672	WWWuWWuTWTWTTU				
L-673	WWWuWWuWWuTTuTTU				
L-674	TWWWuWWuWWuWWuWWU				
L-675	WWTWWWuWWuWWuWWU				
L-676	WTWuWWuWWuWWuWWU				
L-677	WWWuWTWWuWWuWWU				
L-678	WWWuTWWWuWWuWWU				
L-679	WWWuWWuWTTWWuWWU				
L-680	WWWuWuTTWWuWWU				
L-681	WWWuWWuWWuWTTWWU				
L-682	WWWuWWuWWuWTTWWU				
Next, we list the knots that tuck from the right. Again, with all optional single depth front tuck sites marked with a lowercase u.

Index	Tie string	Index	Tie string	Index	Tie string
R-1	TTU	R-41	WWuWTWWu	R-81	WWuWTWWu
R-2	TWuWu	R-42	WWWuWTWWu	R-82	WWuWTWWu
R-3	WTTuTU	R-43	TTuTTuTTuTU	R-83	WWuWTWWu
R-4	WTTuTU	R-44	TTuTTuWTWWu	R-84	WWuWTWWu
R-5	WWTuWu	R-45	TTuTTuTWu	R-85	WWuWTWWu
R-6	TTTuTTu	R-46	TTuWTuTTu	R-86	TTuTTuTTu
R-7	TWTuWWu	R-47	TTuWTuWTu	R-87	TTuTTuWTu
R-8	TWuWu	R-48	TTuWTuWTu	R-88	TTuTTuWTu
R-9	WTTuWu	R-49	TTuTWuTWu	R-89	TTuTWuWTu
R-10	WWuTuTTu	R-50	TTuWuWTu	R-90	TTuWTuTTu
R-11	TTuTuWuTuWu	R-51	TTuWuWTuTu	R-91	TTuWTuWTu
R-12	TTuWuTuTu	R-52	WTTuTuWTu	R-92	TTuWTuWTu
R-13	WTTuTTu	R-53	WTTuWuWTu	R-93	TWTuWTuTTu
R-14	WTTuTTu	R-54	WTTuWTuTu	R-94	TWTuWTuTTu
R-15	WTTuTTu	R-55	WTTuWTuTu	R-95	TWTuWTuTTu
R-16	WTTuTTu	R-56	WTTuWTuTu	R-96	TWTuWTuTTu
R-17	WWuTuTTu	R-57	WTTuWTuTu	R-97	TWTuWTuTTu
R-18	WTTuWTuWu	R-58	WTTuWTuTu	R-98	TWTuWTuTTu
R-19	WTTuWTuWu	R-59	WTTuWTuTu	R-99	TWTuWTuTTu
R-20	WWuWTuWu	R-60	WTTuWTuTu	R-100	TWTuWTuTTu
R-21	WWuWWTWu	R-61	TWTuWTuTu	R-101	WWTuTTuTTu
R-22	WTTuWTWu	R-62	TWTuWTuTu	R-102	WWTuTTuTTu
R-23	WTTuWTuTTu	R-63	TWTuWTuTu	R-103	WWTuTTuTTu
R-24	WTTuWTuTTu	R-64	TWTuWTuTu	R-104	WWTuTTuTTu
R-25	WTTuWTuTTu	R-65	TWTuWTuTu	R-105	WWTuTTuTTu
R-26	WTTuWTuTTu	R-66	WWTuWTuTu	R-106	WWTuTTuTTu
R-27	WTTuWTuWu	R-67	WWTuWTuTu	R-107	WWTuTTuTTu
R-28	WTTuWTuWu	R-68	WWTuWTuTu	R-108	WWTuTTuTTu
R-29	WTTuWTuWu	R-69	WWTuWTuTu	R-109	WWTuTTuTTu
R-30	WTTuWTuWu	R-70	WWTuWTuTu	R-110	WWTuTTuTTu
R-31	WTTuWTuWu	R-71	WWTuWTuTu	R-111	WWTuTTuTTu
R-32	WTTuWTuWu	R-72	WWTuWTuTu	R-112	WWTuTTuTTu
R-33	WTTuWTuWu	R-73	WWTuWTuTu	R-113	WWTuTTuTTu
R-34	WTTuWTuWu	R-74	WWTuWTuTu	R-114	WWTuTTuTTu
R-35	WTTuWTuWu	R-75	WWTuWTuTu	R-115	WWTuTTuTTu
R-36	WTTuWTuWu	R-76	WWTuWTuTu	R-116	WWTuTTuTTu
R-37	WTTuWTuWu	R-77	WWTuWTuTu	R-117	WWTuTTuTTu
R-38	WTTuWTuWu	R-78	WWTuWTuTu	R-118	WWTuTTuTTu
R-39	WTTuWTuWu	R-79	WWTuWTuTu	R-119	WWTuTTuTTu
R-40	WTTuWTuWu	R-80	WWTuWTuTu	R-120	WWTuTTuTTu
Index	Tie string	Index	Tie string		
-------	----------------------------	-------	----------------------------		
R-271	WWuWTWTTuWTuWWU	R-321	WWuWTWTTWWuAAA		
R-272	WWuWTWTTuWTuWWU	R-322	WWuWTWTTWWuAAA		
R-273	WWuWTWTTuWTuWWU	R-323	WWuWTWTTWWuAAA		
R-274	WWuWTWTTuWTuWWU	R-324	WWuWTWTTWWuAAA		
R-275	WWuWTWTTuWTuWWU	R-325	WWuWTWTTWWuAAA		
R-276	WWuWTWTTuWTuWWU	R-326	WWuWTWTTWWuAAA		
R-277	WWuWTWTTuWTuWWU	R-327	WWuWTWTTWWuAAA		
R-278	WWuWTWTTuWTuWWU	R-328	WWuWTWTTWWuAAA		
R-279	WWuWTWTTuWTuWWU	R-329	WWuWTWTTWWuAAA		
R-280	WWuWTWTTuWTuWWU	R-330	WWuWTWTTWWuAAA		
R-281	WWuWTWTTuWTuWWU	R-331	WWuWTWTTWWuAAA		
R-282	WWuWTWTTuWTuWWU	R-332	WWuWTWTTWWuAAA		
R-283	WWuWTWTTuWTuWWU	R-333	WWuWTWTTWWuAAA		
R-284	WWuWTWTTuWTuWWU	R-334	WWuWTWTTWWuAAA		
R-285	WWuWTWTTuWTuWWU	R-335	WWuWTWTTWWuAAA		
R-286	WWuWTWTTuWTuWWU	R-336	WWuWTWTTWWuAAA		
R-287	WWuWTWTTuWTuWWU	R-337	WWuWTWTTWWuAAA		
R-288	WWuWTWTTuWTuWWU	R-338	WWuWTWTTWWuAAA		
R-289	WWuWTWTTuWTuWWU	R-339	WWuWTWTTWWuAAA		
R-290	WWuWTWTTuWTuWWU	R-340	WWuWTWTTWWuAAA		
R-291	WWuWTWTTuWTuWWU	R-341	WWuWTWTTWWuAAA		
R-292	WWuWTWTTuWTuWWU	R-342	WWuWTWTTWWuAAA		
R-293	WWuWTWTTuWTuWWU	R-343	WWuWTWTTWWuAAA		
R-294	WWuWTWTTuWTuWWU	R-344	WWuWTWTTWWuAAA		
R-295	WWuWTWTTuWTuWWU	R-345	WWuWTWTTWWuAAA		
R-296	WWuWTWTTuWTuWWU	R-346	WWuWTWTTWWuAAA		
R-297	WWuWTWTTuWTuWWU	R-347	WWuWTWTTWWuAAA		
R-298	WWuWTWTTuWTuWWU	R-348	WWuWTWTTWWuAAA		
R-299	WWuWTWTTuWTuWWU	R-349	WWuWTWTTWWuAAA		
R-300	WWuWTWTTuWTuWWU	R-350	WWuWTWTTWWuAAA		
R-301	WWuWTWTTuWTuWWU	R-351	WWuWTWTTWWuAAA		
R-302	WWuWTWTTuWTuWWU	R-352	WWuWTWTTWWuAAA		
R-303	WWuWTWTTuWTuWWU	R-353	WWuWTWTTWWuAAA		
R-304	WWuWTWTTuWTuWWU	R-354	WWuWTWTTWWuAAA		
R-305	WWuWTWTTuWTuWWU	R-355	WWuWTWTTWWuAAA		
R-306	WWuWTWTTuWTuWWU	R-356	WWuWTWTTWWuAAA		
R-307	WWuWTWTTuWTuWWU	R-357	WWuWTWTTWWuAAA		
R-308	WWuWTWTTuWTuWWU	R-358	WWuWTWTTWWuAAA		
R-309	WWuWTWTTuWTuWWU	R-359	WWuWTWTTWWuAAA		
R-310	WWuWTWTTuWTuWWU	R-360	WWuWTWTTWWuAAA		
R-311	WWuWTWTTuWTuWWU	R-361	WWuWTWTTWWuAAA		
R-312	WWuWTWTTuWTuWWU	R-362	WWuWTWTTWWuAAA		
R-313	WWuWTWTTuWTuWWU	R-363	WWuWTWTTWWuAAA		
R-314	WWuWTWTTuWTuWWU	R-364	WWuWTWTTWWuAAA		
R-315	WWuWTWTTuWTuWWU	R-365	WWuWTWTTWWuAAA		
R-316	WWuWTWTTuWTuWWU	R-366	WWuWTWTTWWuAAA		
R-317	WWuWTWTTuWTuWWU	R-367	WWuWTWTTWWuAAA		
R-318	WWuWTWTTuWTuWWU	R-368	WWuWTWTTWWuAAA		
R-319	WWuWTWTTuWTuWWU	R-369	WWuWTWTTWWuAAA		
R-320	WWuWTWTTuWTuWWU	R-370	WWuWTWTTWWuAAA		
Index	Tie string	Index	Tie string		
-------	--------------	---------	------------------		
R-371	TWTuTWuWTuTTu	R-414	TWTuWTWTuWTuTTu		
R-372	TWTuTWuWTuTTu	R-415	TWTuWTWTuWTuTTu		
R-373	TWTuTWuTWuTTu	R-416	TWTuWTWTuWTuTTu		
R-374	TWTuTWuTWuTTu	R-417	TWTuWTWTuWTuTTu		
R-375	TWTuTWuWuTTuTTu	R-418	TWTuWTWTuWTuTTu		
R-376	TWTuTWuWuTTuTTu	R-419	TWTuWTWTuWTuTTu		
R-377	TWTuTWuWTWuTTu	R-420	TWTuWTWTuWTuTTu		
R-378	TWTuTWuWTWuTTu	R-421	TWTuWTWTuWTuTTu		
R-379	TWTuTWuWTWuTTu	R-422	WTTuTWuTTuTTuTTu		
R-380	TWTuTWuWTWuTTu	R-423	TWTuTWuTTuTTuTTu		
R-381	TWTuTWuWTWuTTu	R-424	TWTuTWuTTuTTuTTu		
R-382	TWTuTWuWTWuTTu	R-425	TWTuTWuTTuTTuTTu		
R-383	TWTuTWuWTWuTTu	R-426	TWTuTWuTTuTTuTTu		
R-384	TWTuTWuWTWuTTu	R-427	TWTuTWuTTuTTuTTu		
R-385	TWTuTWuWTWuTTu	R-428	TWTuTWuTTuTTuTTu		
R-386	TWTuTWuWTWuTTu	R-429	TWTuTWuTTuTTuTTu		
R-387	TWTuTWuWTWuTTu	R-430	TWTuTWuTTuTTuTTu		
R-388	TWTuTWuWTWuTTu	R-431	TWTuTWuTTuTTuTTu		
R-389	TWTuTWuWTWuTTu	R-432	TWTuTWuTTuTTuTTu		
R-390	TWTuTWuWTWuTTu	R-433	TWTuTWuTTuTTuTTu		
R-391	TWTuTWuWTWuTTu	R-434	TWTuTWuTTuTTuTTu		
R-392	TWTuTWuWTWuTTu	R-435	TWTuTWuTTuTTuTTu		
R-393	TWTuTWuWTWuTTu	R-436	TWTuTWuTTuTTuTTu		
R-394	TWTuTWuWTWuTTu	R-437	TWTuTWuTTuTTuTTu		
R-395	TWTuTWuWTWuTTu	R-438	TWTuTWuTTuTTuTTu		
R-396	TWTuTWuWTWuTTu	R-439	TWTuTWuTTuTTuTTu		
R-397	TWTuTWuWTWuTTu	R-440	TWTuTWuTTuTTuTTu		
R-398	TWTuTWuWTWuTTu	R-441	TWTuTWuTTuTTuTTu		
R-399	TWTuTWuWTWuTTu	R-442	TWTuTWuTTuTTuTTu		
R-400	TWTuTWuWTWuTTu	R-443	TWTuTWuTTuTTuTTu		
R-401	TWTuTWuWTWuTTu	R-444	TWTuTWuTTuTTuTTu		
R-402	TWTuTWuWTWuTTu	R-445	TWTuTWuTTuTTuTTu		
R-403	TWTuTWuWTWuTTu	R-446	TWTuTWuTTuTTuTTu		
R-404	TWTuTWuWTWuTTu	R-447	TWTuTWuTTuTTuTTu		
R-405	TWTuTWuWTWuTTu	R-448	TWTuTWuTTuTTuTTu		
R-406	TWTuTWuWTWuTTu	R-449	TWTuTWuTTuTTuTTu		
R-407	TWTuTWuWTWuTTu	R-450	TWTuTWuTTuTTuTTu		
R-408	TWTuTWuWTWuTTu	R-451	TWTuTWuTTuTTuTTu		
R-409	TWTuTWuWTWuTTu	R-452	TWTuTWuTTuTTuTTu		
R-410	TWTuTWuWTWuTTu	R-453	TWTuTWuTTuTTuTTu		
R-411	TWTuTWuWTWuTTu	R-454	TWTuTWuTTuTTuTTu		
R-412	TWTuTWuWTWuTTu	R-455	TWTuTWuTTuTTuTTu		
R-413	TWTuTWuWTWuTTu	R-456	TWTuTWuTTuTTuTTu		
R-414	TWTuTWuWTWuTTu	R-457	TWTuTWuTTuTTuTTu		
R-415	TWTuTWuWTWuTTu	R-458	TWTuTWuTTuTTuTTu		
R-416	TWTuTWuWTWuTTu	R-459	TWTuTWuTTuTTuTTu		
R-417	TWTuTWuWTWuTTu	R-460	TWTuTWuTTuTTuTTu		
R-418	TWTuTWuWTWuTTu	R-461	TWTuTWuTTuTTuTTu		
R-419	TWTuTWuWTWuTTu	R-462	TWTuTWuTTuTTuTTu		
R-420	TWTuTWuWTWuTTu	R-463	TWTuTWuTTuTTuTTu		
		R-470	TWTuTWuTTuTTuTTu		
Index	Tie string	Index	Tie string		
-------	----------------------------	-------	----------------------------		
R-471	TWTTWuTTuTWuWuWu	R-521	TWuTWuTWuTTuWWu		
R-472	TWTTWuWTTuWuWuWu	R-522	TWuTWuTWuTTuWu		
R-473	TWTTWuWTuWuWuWuWuWu	R-523	TWuTWuWTuTTuWuWuWu		
R-474	TWTTWuWTuTTuWuWuWuWu	R-524	TWuTWuWTuTTuWuWuWu		
R-475	TWTTWuTWuWuWuWuWuWu	R-525	TWuTWuTWuWuTTuWuWu		
R-476	TWTTWuWuWuWuWuWuWuWu	R-526	TWuTWuWuWuWuWuWuWu		
R-477	TWTTWuWuWuWuWuWuWuWu	R-527	TWuWuWuWuWuWuWuWuWuWu		
R-478	TTWTuWTuWuWuWuWuWuWu	R-528	TWuWuWuWuWuWuWuWuWuWu		
R-479	TTWTuWuWuWuWuWuWuWuWu	R-529	TWuWuWuWuWuWuWuWuWuWu		
R-480	TTWTuTuWuWuWuWuWuWu	R-530	TWuWuWuWuWuWuWuWuWuWu		
R-481	TTWTuWuWuWuWuWuWuWuWu	R-531	TWuWuWuWuWuWuWuWuWuWu		
R-482	TTWTuWuWuWuWuWuWuWuWu	R-532	TWuWuWuWuWuWuWuWuWuWu		
R-483	TTWTWTTuTTuWWuWu	R-533	TWuWuWuWuWuWuWuWuWuWu		
R-484	TTWTWTTuWWuWWuWu	R-534	TTuTuTuTWuWuWuWuWu		
R-485	TTWTWTTuWWuWWuWu	R-535	TTuTuTuTWuWuWuWuWu		
R-486	TTWTWTTuTTuWWuWu	R-536	TTuTuTuTwuWuWuWuWuWu		
R-487	TTWTWuTuTWuWuWuWuWu	R-537	TTuTuTuWuWuWuWuWuWuWu		
R-488	TTWTWuTuWuWuWuWuWuWu	R-538	TTuTuTuWuWuWuWuWuWuWu		
R-489	TTWTWuTuWuWuWuWuWuWu	R-539	TTuTuTuTWuWuWuWuWuWu		
R-490	TTWTuWTuTTuWWuWu	R-540	TTuTuTuTWuWuWuWuWuWu		
R-491	TTWTuWTuTTuWWuWu	R-541	TTuTuTuTWuWuWuWuWuWu		
R-492	TTWTuWTuTTuWWuWu	R-542	TTuTuTuTWuWuWuWuWuWu		
R-493	TTWTuWTuTTuWWuWu	R-543	TTuTuTuTWuWuWuWuWuWu		
R-494	TTWTuWTuTTuWWuWu	R-544	TTuTuTuTWuWuWuWuWuWu		
R-495	TTWTuWTuTTuWWuWuWuWuWu	R-545	TTuTuTuTWuWuWuWuWuWuWu		
R-496	TTWTuWTuTTuWWuWuWuWuWu	R-546	TTuTuTuTWuWuWuWuWuWuWu		
R-497	TTWTuWTuTTuWWuWuWuWuWu	R-547	TTuTuTuTWuWuWuWuWuWuWu		
R-498	TTWTuWTuTTuWWuWuWuWuWuWu	R-548	TTuTuTuTWuWuWuWuWuWuWu		
R-499	TTWTuWTuTTuWWuWuWuWuWuWu	R-549	TTuTuTuTWuWuWuWuWuWuWu		
R-500	TTWTuWTuTTuWWuWuWuWuWuWu	R-550	TTuTuTuTWuWuWuWuWuWuWuWu		
R-501	TTWTuWTuTTuWWuWuWuWuWuWu	R-551	TTuTuTuTWuWuWuWuWuWuWuWu		
R-502	TTWTuWTuTTuWWuWuWuWuWuWu	R-552	TTuTuTuTWuWuWuWuWuWuWuWu		
R-503	TTWTuWTuTTuWWuWuWuWuWuWu	R-553	TTuTuTuTWuWuWuWuWuWuWuWu		
R-504	TTWTuTTuTuWuWuWuWuWuWuWu	R-554	TTuTuTuWTuWuWuWuWuWuWuWu		
R-505	TTuTuTuTuTWuWuWuWuWuWuWu	R-555	TTuTuTuWTuWuWuWuWuWuWuWu		
R-506	TTuTuTuTuTWuWuWuWuWuWuWu	R-556	TTuTuTuWTuWuWuWuWuWuWuWu		
R-507	TTuTuTuTuTWuWuWuWuWuWuWu	R-557	TTuTuTuWTuWuWuWuWuWuWuWu		
R-508	TTuTuTuTuTWuWuWuWuWuWuWu	R-558	TTuTuTuWTuWuWuWuWuWuWuWu		
R-509	TTuTuTuTuWuWuWuWuWuWuWuWu	R-559	TTuTuTuWTuWuWuWuWuWuWuWu		
R-510	TTuTuTuTuWuWuWuWuWuWuWuWu	R-560	TTuTuTuWTuWuWuWuWuWuWuWu		
R-511	TTuTuTuTWuWuWuWuWuWuWuWu	R-561	TTuTuTuWTuWuWuWuWuWuWuWu		
R-512	TTuTuTuWTuWuWuWuWuWuWuWu	R-562	TTuTuTuWTuWuWuWuWuWuWuWu		
R-513	TTuTuTuWTuWuWuWuWuWuWuWu	R-563	TTuTuTuWTuWuWuWuWuWuWuWu		
R-514	TTuTuTuWTuWuWuWuWuWuWuWu	R-564	TTuTuTuWTuWuWuWuWuWuWuWu		
R-515	TTuTuTuWTuWuWuWuWuWuWuWu	R-565	TTuTuTuWTuWuWuWuWuWuWuWu		
R-516	TTuTuTuWTuWuWuWuWuWuWuWu	R-566	TTuTuTuWTuWuWuWuWuWuWuWu		
R-517	TTuTuTuWTuWuWuWuWuWuWuWu	R-567	TTuTuTuWTuWuWuWuWuWuWuWu		
R-518	TTuTuTuWTuWuWuWuWuWuWuWu	R-568	TTuTuTuWTuWuWuWuWuWuWuWu		
R-519	TTuTuTuWTuWuWuWuWuWuWuWu	R-569	TTuTuTuWTuWuWuWuWuWuWuWu		
R-520	TTuTuTuWTuWuWuWuWuWuWuWu	R-570	TTuTuTuWTuWuWuWuWuWuWuWu		
Index	Tie string	Index	Tie string		
-------	-----------------------------	-------	-----------------------------		
R-571	WWTWTTWTuWWuWWu	R-621	WWuTuTuTuTWWuWWu		
R-572	WWTWTTWuTuWWuWWu	R-622	WWuTuTuTuTWWuWWu		
R-573	WWTWWTuWTuWTTuW	R-623	WWTuTuWWTWuWWu		
R-574	WWTWTWTuWTuWTTuW	R-624	WWTuTuWTWuWTWuWWu		
R-575	WWTWTuWTuWTWuWWu	R-625	WWTuTuWTWuWTWuWWu		
R-576	WWTWTuWTuWTWuWWu	R-626	WWTuTuWTWuWTWuWWu		
R-577	WWTWTuWTuWTWuWWu	R-627	WWTuTuWTWuWTWuWWu		
R-578	WWTWTuWTuWTWuWWu	R-628	WWTuTuWTWuWTWuWWu		
R-579	WWTWTuWTuWTWuWWu	R-629	WWTuTuWTWuWTWuWWu		
R-580	WWTWTuWTuWTWuWWu	R-630	WWTuTuWTWuWTWuWWu		
R-581	WWTWTuWTuWTWuWWu	R-631	WWTuTuWTWuWTWuWWu		
R-582	WWTWTuWTuWTWuWWu	R-632	WWTuTuWTWuWTWuWWu		
R-583	WWTWTuWTuWTWuWWu	R-633	WWTuTuWTWuWTWuWWu		
R-584	WWTWTuWTuWTWuWWu	R-634	WWTuTuWTWuWTWuWWu		
R-585	WWTWTuWTuWTWuWWu	R-635	WWTuTuWTWuWTWuWWu		
R-586	WWTWTuWTuWTWuWWu	R-636	WWTuTuWTWuWTWuWWu		
R-587	WWTWTuWTuWTWuWWu	R-637	WWTuTuWTWuWTWuWWu		
R-588	WWTWTuWTuWTWuWWu	R-638	WWTuTuWTWuWTWuWWu		
R-589	WWTWTuWTuWTWuWWu	R-639	WWTuTuWTWuWTWuWWu		
R-590	WWTWTuWTuWTWuWWu	R-640	WWTuTuWTWuWTWuWWu		
R-591	WWTWTuWTuWTWuWWu	R-641	WWTuTuWTWuWTWuWWu		
R-592	WWTWTuWTuWTWuWWu	R-642	WWTuTuWTWuWTWuWWu		
R-593	WWTWTuWTuWTWuWWu	R-643	WWTuTuWTWuWTWuWWu		
R-594	WWTWTuWTuWTWuWWu	R-644	WWTuTuWTWuWTWuWWu		
R-595	WWTWTuWTuWTWuWWu	R-645	WWTuTuWTWuWTWuWWu		
R-596	WWTWTuWTuWTWuWWu	R-646	WWTuTuWTWuWTWuWWu		
R-597	WWTWTuWTuWTWuWWu	R-647	WWTuTuWTWuWTWuWWu		
R-598	WWTWTuWTuWTWuWWu	R-648	WWTuTuWTWuWTWuWWu		
R-599	WWTWTuWTuWTWuWWu	R-649	WWTuTuWTWuWTWuWWu		
R-600	WWTWTuWTuWTWuWWu	R-650	WWTuTuWTWuWTWuWWu		
R-601	WWTWTuWTuWTWuWWu	R-651	WWTuTuWTWuWTWuWWu		
R-602	WWTWTuWTuWTWuWWu	R-652	WWTuTuWTWuWTWuWWu		
R-603	WWTWTuWTuWTWuWWu	R-653	WWTuTuWTWuWTWuWWu		
R-604	WWTWTuWTuWTWuWWu	R-654	WWTuTuWTWuWTWuWWu		
R-605	WWTWTuWTuWTWuWWu	R-655	WWTuTuWTWuWTWuWWu		
R-606	WWTWTuWTuWTWuWWu	R-656	WWTuTuWTWuWTWuWWu		
R-607	WWTWTuWTuWTWuWWu	R-657	WWTuTuWTWuWTWuWWu		
R-608	WWTWTuWTuWTWuWWu	R-658	WWTuTuWTWuWTWuWWu		
R-609	WWTWTuWTuWTWuWWu	R-659	WWTuTuWTWuWTWuWWu		
R-610	WWTWTuWTuWTWuWWu	R-660	WWTuTuWTWuWTWuWWu		
R-611	WWTWTuWTuWTWuWWu	R-661	WWTuTuWTWuWTWuWWu		
R-612	WWTWTuWTuWTWuWWu	R-662	WWTuTuWTWuWTWuWWu		
R-613	WWTWTuWTuWTWuWWu	R-663	WWTuTuWTWuWTWuWWu		
R-614	WWTWTuWTuWTWuWWu	R-664	WWTuTuWTWuWTWuWWu		
R-615	WWTWTuWTuWTWuWWu	R-665	WWTuTuWTWuWTWuWWu		
R-616	WWTWTuWTuWTWuWWu	R-666	WWTuTuWTWuWTWuWWu		
R-617	WWTWTuWTuWTWuWWu	R-667	WWTuTuWTWuWTWuWWu		
R-618	WWTWTuWTuWTWuWWu	R-668	WWTuTuWTWuWTWuWWu		
R-619	WWTWTuWTuWTWuWWu	R-669	WWTuTuWTWuWTWuWWu		
R-620	WWTWTuWTuWTWuWWu	R-670	WWTuWTWuWTWuWWu		
Index	Tie string				
-------	-----------------------				
R-671	WWWuTWuTWuTWuWu				
R-672	WWWuTWuTWuTWuWu				
R-673	WWWuTWuTWuTWuWu				
R-674	WWWuTWuTWuTWuWu				
R-675	WWWuTWuTWuTWuWu				
R-676	WWWuTWuTTuWuWuWu				
R-677	WWWuTWuTTuWuWuWu				
R-678	WWWuTWuTTuWuWuWu				
R-679	WWWuTWuTTuWuWuWu				
R-680	WWWuTWuTTuWuWuWu				
R-681	WWWuTWuTTuWuWuWu				
R-682	WWWuTWuTTuWuWuWu				
Next, we list the knots that tuck from the center. Again, with all optional single depth front tuck sites marked with a lowercase u. All these tie knots will have the thin blade sitting on top of the broad blade, which for most choices will be an unusual look, even for a modern tie knot. By comparing entries we may see that the 85 first knots in this enumeration are – with medial tucks ignored and with some permutation of assigned indices – the same as the 85 tie knots enumerated by Fink and Mao [2].

Index	Tie string	Index	Tie string	Index	Tie string
C-1	WWU	C-41	WWuWTWWU	C-81	WWuWTWWuWTW
C-2	WTTU	C-42	WWuWTWWu	C-82	WWuWTWWuWTW
C-3	TTuTTU	C-43	TTuTTuTTuWTW	C-83	WWuWTWWuWTW
C-4	WTWuU	C-44	TTuTTuWTWWu	C-84	WWuWTWWuWTW
C-5	TWWuU	C-45	TTuWTWTuuT	C-85	WWuWTWWuWTW
C-6	TTTuWWu	C-46	TTuWTWTuuT	C-86	WWuWTWWuWTW
C-7	TWWuTTu	C-47	TTuWTWTuuT	C-87	WWuWTWWuWTW
C-8	WWTU	C-48	TTuWTWTuuT	C-88	WWuWTWWuWTW
C-9	WWTUU	C-49	TTuWTWTuuT	C-89	WWuWTWWuWTW
C-10	WWuWTWWu	C-50	WTTuWTWTuuT	C-90	WWuWTWWuWTW
C-11	TTuWTWTuuT	C-51	WTTuWTWTuuT	C-91	WWuWTWWuWTW
C-12	TTuWTWTuuT	C-52	WTTuWTWTuuT	C-92	WWuWTWWuWTW
C-13	WTTuWTWTuuT	C-53	WTTuWTWTuuT	C-93	WWuWTWWuWTW
C-14	TWTTuWTWTuuT	C-54	WTTuWTWTuuT	C-94	WWuWTWWuWTW
C-15	TTTuWTWTuuT	C-55	WTTuWTWTuuT	C-95	WWuWTWWuWTW
C-16	WWTWTuuT	C-56	WTTuWTWTuuT	C-96	WWuWTWWuWTW
C-17	WWTWTuuT	C-57	WTTuWTWTuuT	C-97	WWuWTWWuWTW
C-18	WWTWTuuT	C-58	WTTwWTWTuuT	C-98	WWuWTWWuWTW
C-19	WWTWTuuT	C-59	WTTwWTWTuuT	C-99	WWuWTWWuWTW
C-20	WWTWTuuT	C-60	WTTwWTWTuuT	C-100	WWuWTWWuWTW
C-21	WWTWTuuT	C-61	WTTwWTWTuuT	C-101	WWuWTWWuWTW
C-22	WWTWTuuT	C-62	WTTwWTWTuuT	C-102	WWuWTWWuWTW
C-23	WWTWTuuT	C-63	WTTwWTWTuuT	C-103	WWuWTWWuWTW
C-24	WWTWTuuT	C-64	WTTwWTWTuuT	C-104	WWuWTWWuWTW
C-25	WWTWTuuT	C-65	WTTwWTWTuuT	C-105	WWuWTWWuWTW
C-26	WWTWTuuT	C-66	WTTwWTWTuuT	C-106	WWuWTWWuWTW
C-27	WWTWTuuT	C-67	WTTwWTWTuuT	C-107	WWuWTWWuWTW
C-28	WWTWTuuT	C-68	WTTwWTWTuuT	C-108	WWuWTWWuWTW
C-29	WWTWTuuT	C-69	WTTwWTWTuuT	C-109	WWuWTWWuWTW
C-30	WWTWTuuT	C-70	WTTwWTWTuuT	C-110	WWuWTWWuWTW
C-31	WWTWTuuT	C-71	WTTwWTWTuuT	C-111	WWuWTWWuWTW
C-32	WWTWTuuT	C-72	WTTwWTWTuuT	C-112	WWuWTWWuWTW
C-33	WWTWTuuT	C-73	WTTwWTWTuuT	C-113	WWuWTWWuWTW
C-34	WWTWTuuT	C-74	WTTwWTWTuuT	C-114	WWuWTWWuWTW
C-35	WWTWTuuT	C-75	WTTwWTWTuuT	C-115	WWuWTWWuWTW
C-36	WWTWTuuT	C-76	WTTwWTWTuuT	C-116	WWuWTWWuWTW
C-37	WWTWTuuT	C-77	WTTwWTWTuuT	C-117	WWuWTWWuWTW
C-38	WWTWTuuT	C-78	WTTwWTWTuuT	C-118	WWuWTWWuWTW
C-39	WWTWTuuT	C-79	WTTwWTWTuuT	C-119	WWuWTWWuWTW
C-40	WWTWTuuT	C-80	WTTwWTWTuuT	C-120	WWuWTWWuWTW
Index	Tie string	Index	Tie string	Index	Tie string
--------	--------------------	--------	--------------------	--------	--------------------
C-121	TWuTuTWuTuTuTu	C-171	TTuTTuTTuTTuTTu	C-221	TWuTuTWuTuTuTu
C-122	TWuTuTuTuTuTuTu	C-172	TTuTTuTuTuTWuTuTu	C-222	TWuTuTWuTuTuTu
C-123	WWuTuTuTuTuTuTu	C-173	TTuTTuTuTuTuTuTu	C-223	TWuTuTWuTuTuTuTu
C-124	WWuTuTuTuTuTuTu	C-174	TTuTTuTuTuTuTuTu	C-224	TWuTuTWuTuTuTuTu
C-125	WWuTuTuTuTuTuTu	C-175	TTuTTuTuTuTuTuTu	C-225	TWuTuTWuTuTuTuTu
C-126	WWuTuTuTuTuTuTu	C-176	TTuTTuTuTuTuTuTu	C-226	TWuTuTWuTuTuTuTu
C-127	WWuTuTuTuTuTuTu	C-177	TTuTTuTuTuTuTuTu	C-227	TWuTuTWuTuTuTuTu
C-128	WWuTuTuTuTuTuTu	C-178	TTuTTuTuTuTuTuTu	C-228	TWuTuTWuTuTuTuTu
C-129	WWuTuTuTuTuTuTu	C-179	TTuTTuTuTuTuTuTu	C-229	WWuTuTuTuTuTuTuTu
C-130	WWuTuTuTuTuTuTu	C-180	TTuTTuTuTuTuTuTu	C-230	WWuTuTuTuTuTuTuTu
C-131	WWuTuTuTuTuTuTu	C-181	TTuTTuTuTuTuTuTu	C-231	WWuTuTuTuTuTuTuTu
C-132	WWuTuTuTuTuTuTu	C-182	TTuTTuTuTuTuTuTu	C-232	WWuTuTuTuTuTuTuTu
C-133	WWuTuTuTuTuTuTu	C-183	TTuTTuTuTuTuTuTu	C-233	WWuTuTuTuTuTuTuTu
C-134	WWuTuTuTuTuTuTu	C-184	TTuTTuTuTuTuTuTu	C-234	WWuTuTuTuTuTuTuTu
C-135	WWuTuTuTuTuTuTu	C-185	TTuTTuTuTuTuTuTu	C-235	WWuTuTuTuTuTuTuTu
C-136	WWuTuTuTuTuTuTu	C-186	TTuTTuTuTuTuTuTu	C-236	TTuTTuTuTuTuTuTuT
C-137	WWuTuTuTuTuTuTu	C-187	TTuTTuTuTuTuTuTu	C-237	TTuTTuTuTuTuTuTuT
C-138	WWuTuTuTuTuTuTu	C-188	TTuTTuTuTuTuTuTu	C-238	TTuTTuTuTuTuTuTuT
C-139	WWuTuTuTuTuTuTu	C-189	TTuTTuTuTuTuTuTu	C-239	TTuTTuTuTuTuTuTuT
C-140	WWuTuTuTuTuTuTu	C-190	TTuTTuTuTuTuTuTu	C-240	TTuTTuTuTuTuTuTuT
C-141	WWuTuTuTuTuTuTu	C-191	TTuTTuTuTuTuTuTu	C-241	TTuTTuTuTuTuTuTuT
C-142	WWuTuTuTuTuTuTu	C-192	TTuTTuTuTuTuTuTu	C-242	TTuTTuTuTuTuTuTuT
C-143	WWuTuTuTuTuTuTu	C-193	TTuTTuTuTuTuTuTu	C-243	TTuTTuTuTuTuTuTuT
C-144	WWuTuTuTuTuTuTu	C-194	TTuTTuTuTuTuTuTu	C-244	TTuTTuTuTuTuTuTuT
C-145	WWuTuTuTuTuTuTu	C-195	TTuTTuTuTuTuTuTu	C-245	TTuTTuTuTuTuTuTuT
C-146	WWuTuTuTuTuTuTu	C-196	TTuTTuTuTuTuTuTu	C-246	TTuTTuTuTuTuTuTuT
C-147	WWuTuTuTuTuTuTu	C-197	TTuTTuTuTuTuTuTu	C-247	TTuTTuTuTuTuTuTuT
C-148	WWuTuTuTuTuTuTu	C-198	TTuTTuTuTuTuTuTu	C-248	TTuTTuTuTuTuTuTuT
C-149	WWuTuTuTuTuTuTu	C-199	TTuTTuTuTuTuTuTu	C-249	TTuTTuTuTuTuTuTuT
C-150	WWuTuTuTuTuTuTu	C-200	TTuTTuTuTuTuTuTu	C-250	TTuTTuTuTuTuTuTuT
C-151	WWuTuTuTuTuTuTu	C-201	TTuTTuTuTuTuTuTu	C-251	TTuTTuTuTuTuTuTuT
C-152	WWuTuTuTuTuTuTu	C-202	TTuTTuTuTuTuTuTu	C-252	TTuTTuTuTuTuTuTuT
C-153	WWuTuTuTuTuTuTu	C-203	TTuTTuTuTuTuTuTu	C-253	TTuTTuTuTuTuTuTuT
C-154	WWuTuTuTuTuTuTu	C-204	TTuTTuTuTuTuTuTu	C-254	TTuTTuTuTuTuTuTuT
C-155	WWuTuTuTuTuTuTu	C-205	TTuTTuTuTuTuTuTu	C-255	TTuTTuTuTuTuTuTuT
C-156	WWuTuTuTuTuTuTu	C-206	TTuTTuTuTuTuTuTu	C-256	TTuTTuTuTuTuTuTuT
C-157	WWuTuTuTuTuTuTu	C-207	TTuTTuTuTuTuTuTu	C-257	TTuTTuTuTuTuTuTuT
C-158	WWuTuTuTuTuTuTu	C-208	TTuTTuTuTuTuTuTu	C-258	TTuTTuTuTuTuTuTuT
C-159	WWuTuTuTuTuTuTu	C-209	TTuTTuTuTuTuTuTu	C-259	TTuTTuTuTuTuTuTuT
C-160	WWuTuTuTuTuTuTu	C-210	TTuTTuTuTuTuTuTu	C-260	TTuTTuTuTuTuTuTuT
C-161	WWuTuTuTuTuTuTu	C-211	TTuTTuTuTuTuTuTu	C-261	TTuTTuTuTuTuTuTuT
C-162	WWuTuTuTuTuTuTu	C-212	TTuTTuTuTuTuTuTu	C-262	TTuTTuTuTuTuTuTuT
C-163	WWuTuTuTuTuTuTu	C-213	TTuTTuTuTuTuTuTu	C-263	TTuTTuTuTuTuTuTuT
C-164	WWuTuTuTuTuTuTu	C-214	TTuTTuTuTuTuTuTu	C-264	TTuTTuTuTuTuTuTuT
C-165	WWuTuTuTuTuTuTu	C-215	TTuTTuTuTuTuTuTu	C-265	TTuTTuTuTuTuTuTuT
C-166	WWuTuTuTuTuTuTu	C-216	TTuTTuTuTuTuTuTu	C-266	TTuTTuTuTuTuTuTuT
C-167	WWuTuTuTuTuTuTu	C-217	TTuTTuTuTuTuTuTu	C-267	TTuTTuTuTuTuTuTuT
C-168	WWuTuTuTuTuTuTu	C-218	TTuTTuTuTuTuTuTu	C-268	TTuTTuTuTuTuTuTuT
C-169	WWuTuTuTuTuTuTu	C-219	TTuTTuTuTuTuTuTu	C-269	TTuTTuTuTuTuTuTuT
C-170	WWuTuTuTuTuTuTu	C-220	TTuTTuTuTuTuTuTu	C-270	TTuTTuTuTuTuTuTuT
Index	Tie string	Index	Tie string		
-------	----------------------	-------	----------------------		
C-271	WTWWuTTuTWuWWu	C-321	WWuTWTTuTTuWWu		
C-272	WTWWuWTTuWWuWu	C-322	WWuTWWTuTuWWuTTu		
C-273	WTWWuWTWWuTTu	C-323	WWuTWWTuTTuWWu		
C-274	WTWWuWTWTuWWuWu	C-324	WWuTWWTuWWuTTu		
C-275	WTWWuTWWWuTTu	C-325	WWuTWWTuWWuTTu		
C-276	WTWWuWWuWTWTu	C-326	WWuWTWWuTTuTWTTu		
C-277	WTWWuWuWWTuTTu	C-327	WWuWWuTWTuTuWWuTu		
C-278	TWTTuWTWWuWuWu	C-328	WWuWWuWTuTTuWWuTTu		
C-279	TWTTuTWuWWuWu	C-329	WWuWWuWTuTTuWWuTTu		
C-280	TWTTuWuWTWTu	C-330	WWuWWuWTuTTuWWuTTu		
C-281	TWTTuWuTWWWuWu	C-331	WWuWWuTWuWWuTTuTTu		
C-282	TWWTWTuWuWWuWu	C-332	WWuWWuTWuTTuWWuTTu		
C-283	TWWTWTWTuWWu	C-333	WWuWTuWWuWTuTTuTTu		
C-284	TWWTWTWTuWu	C-334	WTWWuWTuWWuWTuWWu		
C-285	TWWTWTWTuWWu	C-335	TWWTuWTuWWuWTuWWu		
C-286	TWWTWTWTuWWu	C-336	WTWTuWTuWWuWTuWWu		
C-287	TWWTWTuWTuWWu	C-337	WTWTuWTuWWuWTuWWu		
C-288	TWWTWTuWTuWWu	C-338	WTWTuWTuWWuWTuWWu		
C-289	TWWTWTuWTuWWu	C-339	WTWTuWTuWWuWTuWWu		
C-290	TWWTWTWTuWWu	C-340	WTWTuWTuWWuWTuWWu		
C-291	TWWTWTWTuWWu	C-341	WTWTuWTuWWuWTuWWu		
C-292	TWWTWTWTuWWu	C-342	WTWTuWTuWWuWTuWWu		
C-293	TWWTWTWTuWWu	C-343	WTWTuWTuWWuWTuWWu		
C-294	TWWTWTuWTuWWu	C-344	WTWTuWTuWWuWTuWWu		
C-295	TWWTWTuWTuWWu	C-345	WTWTuWTuWWuWTuWWu		
C-296	TWWTWTuWTuWWu	C-346	WTWTuWTuWWuWTuWWu		
C-297	TWWTWTuWTuWWu	C-347	WTWTuWTuWWuWTuWWu		
C-298	TWWTWTuWTuWWu	C-348	WTWTuWTuWWuWTuWWu		
C-299	TWWTWTWTuWWu	C-349	WTWTuWTuWWuWTuWWu		
C-300	TWWTWTWTuWWu	C-350	WTWTuWTuWWuWTuWWu		
C-301	TWWTWTWTuWWu	C-351	WTWTuWTuWWuWTuWWu		
C-302	TWWTWTWTuWWu	C-352	WTWTuWTuWWuWTuWWu		
C-303	TWWTWTWTuWWu	C-353	WTWTuWTuWWuWTuWWu		
C-304	WWuWTuTTuWWuWWu	C-354	WWuWTuWWuWTuTTuTTu		
C-305	WWuWTuWTWTuWWu	C-355	WWuWTuWWuWTuTTuTTu		
C-306	WWuWTuWTWTuWWu	C-356	WWuWTuWWuWTuTTuTTu		
C-307	WWuWTuWTWTuWWu	C-357	WWuWTuWWuWTuTTuTTu		
C-308	WWuWTuWTWTuWWu	C-358	WWuWTuWWuWTuTTuTTu		
C-309	WWuWTuWTWTuWWu	C-359	WWuWTuWWuWTuTTuTTu		
C-310	WWuWTuWTWTuWWu	C-360	WWuWTuWWuWTuTTuTTu		
C-311	WWuWTWTWTuWWu	C-361	WWuWTuWWuWTuTTuTTu		
C-312	WWuWTWTWTuWWu	C-362	WWuWTWTuWTuTTuTTu		
C-313	WWuWTWTWTuWWu	C-363	WWuWTWTuWTuTTuTTu		
C-314	WWuWTWTWTuWWu	C-364	WWuWTWTuWTuTTuTTu		
C-315	WWuWTWTWTuWWu	C-365	WWuWTWTuWTuTTuTTu		
C-316	WWuWTWTWTuWWu	C-366	WWuWTWTuWTuTTuTTu		
C-317	WWuWTWTWTuWWu	C-367	WWuWTWTuWTuTTuTTu		
C-318	WWuWTWTWTuWWu	C-368	WWuWTWTuWTuTTuTTu		
C-319	WWuWTWTWTuWWu	C-369	WWuWTWTuWTuTTuTTu		
C-320	WWuWTWTWTuWWu	C-370	WWuWTWTuWTuTTuTTu		
Index	Tie string	Index	Tie string		
--------	---------------------------------	--------	---------------------------------		
C-371	WTTuTuTTuWTWuW	C-421	TWTWTTuTuTWWuW		
C-372	WTTuTuTTuTTuTW	C-422	TWTWTTuTuTWWuW		
C-373	WTTuTuTTuWTTuTTu	C-423	TWTWTTuTuTWWuTTu		
C-374	WTTuTuTTuWTTuTTu	C-424	TWTWTTuTuTWWuTTu		
C-375	WTTuWTTuTTuTTu	C-425	TWTWTTuTuTWWuTTu		
C-376	WTTuWTTuTTuTTu	C-426	TWTWTTuTuTWWuTTu		
C-377	WTTuTTuTuTTuTTu	C-427	TWTWTTuTuTWWuTTu		
C-378	WTTuTTuTuTTuTTu	C-428	TWTWuTuTTuTTuW		
C-379	WTTuTuWTWuWuW	C-429	TWTWuTuTTuWuTTu		
C-380	WTTuTuTuWwwuWuW	C-430	TWTWuTuWWTWu		
C-381	WTTuTuTuWwwuWuW	C-431	TWTWuTuWWTWu		
C-382	WTTuTuWwwuWuWuW	C-432	TWTWuTuWWTWu		
C-383	WTTuWTTuWwwuWuW	C-433	TWTWuTuWWTWu		
C-384	WTTuWTTuWwwuWuW	C-434	TWTWuTuWWTWu		
C-385	WTTuWTTTWwwuWuW	C-435	WTTuTuTuWwwuWuW		
C-386	WTTuWTTTWwwuWuW	C-436	WTTuTuTuWwwuWuW		
C-387	WTTuWTTTWwwuWuW	C-437	WTTuTuTuWwwuWuW		
C-388	WTTuWTWwwuWuWuW	C-438	WTTuTuTuWwwuWuW		
C-389	WTTuWTWwwuWuWuW	C-439	WTTuTuTuWwwuWuW		
C-390	WTTuWTWwwuWuWuW	C-440	WTTuTuTuWwwuWuW		
C-391	WTTuWTWwwuWuWuW	C-441	WTTuTuTuWwwuWuW		
C-392	WTTuWTWwwuWuWuW	C-442	WTTuTuTuWwwuWuW		
C-393	WTTuWTWwwuWuWuW	C-443	WTTuTuTuWwwuWuW		
C-394	WTTuWTWwwuWuWuW	C-444	WTTuTuTuWwwuWuW		
C-395	WTTuWTWwwuWuWuW	C-445	WTTuTuTuWwwuWuW		
C-396	WTTuWTWwwuWuWuW	C-446	WTTuTuTuWwwuWuW		
C-397	WTTuWTWwwuWuWuW	C-447	WTTuTuTuWwwuWuW		
C-398	WTTuWTWwwuWuWuW	C-448	WTTuTuTuWwwuWuW		
C-399	WTTuWTWwwuWuWuW	C-449	WTTuTuTuWwwuWuW		
C-400	WTTuWTWwwuWuWuW	C-450	WTTuTuTuWwwuWuW		
C-401	WTTuWTWwwuWuWuW	C-451	WTTuTuTuWwwuWuW		
C-402	WTTuWTWwwuWuWuW	C-452	WTTuTuTuWwwuWuW		
C-403	WTTuWTWwwuWuWuW	C-453	WTTuTuTuWwwuWuW		
C-404	WTTuWTWwwuWuWuW	C-454	WTTuTuTuWwwuWuW		
C-405	WTTuWTWwwuWuWuW	C-455	WTTuTuTuWwwuWuW		
C-406	WTTuWTWwwuWuWuW	C-456	WTTuTuTuWwwuWuW		
C-407	WTTuWTWwwuWuWuW	C-457	WTTuTuTuWwwuWuW		
C-408	WTTuWTWwwuWuWuW	C-458	WTTuTuTuWwwuWuW		
C-409	WTTuWTWwwuWuWuW	C-459	WTTuTuTuWwwuWuW		
C-410	WTTuWTWwwuWuWuW	C-460	WTTuTuTuWwwuWuW		
C-411	WTTuWTWwwuWuWuW	C-461	WTTuTuTuWwwuWuW		
C-412	WTTuWTWwwuWuWuW	C-462	WTTuTuTuWwwuWuW		
C-413	WTTuWTWwwuWuWuW	C-463	WTTuTuTuWwwuWuW		
C-414	WTTuWTWwwuWuWuW	C-464	WTTuTuTuWwwuWuW		
C-415	WTTuWTWwwuWuWuW	C-465	WTTuTuTuWwwuWuW		
C-416	WTTuWTWwwuWuWuW	C-466	WTTuTuTuWwwuWuW		
C-417	WTTuWTWwwuWuWuW	C-467	WTTuTuTuWwwuWuW		
C-418	WTTuWTWwwuWuWuW	C-468	WTTuTuTuWwwuWuW		
C-419	WTTuWTWwwuWuWuW	C-469	WTTuTuTuWwwuWuW		
C-420	WTTuWTWwwuWuWuW	C-470	WTTuTuTuWwwuWuW		
Index	Tie string	Index	Tie string		
-------	---------------------	-------	---------------------		
C-471	TWuTTuWuWuWTuu	C-521	WTTuTTuTWuWTuu		
C-472	TWuTTuWuWuTWuu	C-522	WTTuTTuTWuTWuu		
C-473	TWuWTTuTTuTuWu	C-523	WTTuTTuWTTuTuWu		
C-474	TWuWTTuTTuTuWu	C-524	WTTuTTuWTuuWuTTu		
C-475	TWuWTuWTuWTuWu	C-525	WTTuTTuTWuTuWu		
C-476	TWuWTuWTuWTuWu	C-526	WTTuTTuTWuTuWu		
C-477	TWuWTTuWTuWTuWu	C-527	WTTuTTuWuWuWTuu		
C-478	TWuWTTuWTuWTuWu	C-528	WTTuTTuWuWuWTuu		
C-479	TWuWTuWTuWTuWu	C-529	WTTuTTuTuTuWu		
C-480	TWuWTuWTuWTuWu	C-530	WTTuTTuWuWTuu		
C-481	TWuWTuWTuWTuWu	C-531	WTTuTTuWTuu		
C-482	TWuWTuWTuWTuWu	C-532	WTTuTTuWTuu		
C-483	TWuWTuWTuWTuWu	C-533	WTTuTTWuWTuu		
C-484	TWuWTuWTuWTuWu	C-534	WTTuTTWTuu		
C-485	TWuWTuWTuWTuWu	C-535	WTTuTTWuWTuu		
C-486	TWuWTuWTuWTuWu	C-536	WTTuTTuWTuu		
C-487	TWuWTuWTuWTuWu	C-537	WTTuTTuWTuu		
C-488	TWuWTuWTuWTuWu	C-538	WTTuTTuWTuu		
C-489	TWuWTuWTuWTuWu	C-539	WTTuTTuWTuu		
C-490	TWuWTuWTuWTuWu	C-540	WTTuTTuWTuu		
C-491	WTTuTTuTuWuWuTu	C-541	WTTuTTuWTuu		
C-492	WTTuTTuTuWTuWu	C-542	WTTuTTuWTuu		
C-493	WTTuTTuTuWTuWu	C-543	WTTuTTuWTuu		
C-494	WTTuTTuTuWTuWu	C-544	WTTuTTuWTuu		
C-495	WTTuTTuTuWTuWu	C-545	WTTuTTuWTuu		
C-496	WTTuTTuTuWTuWu	C-546	WTTuTTuWTuu		
C-497	WTTuTTuTuWTuWu	C-547	WTTuTTuWTuu		
C-498	WTTuTTuTuWTuWu	C-548	WTTuTTuWTuu		
C-499	WTTuTTuTuWTuWu	C-549	WTTuTTuWTuu		
C-500	WTTuTTuTuWTuWu	C-550	WTTuTTuWTuu		
C-501	WTTuTTuTuWTuWu	C-551	WTTuTTuWTuu		
C-502	WTTuTTuTuWTuWu	C-552	WTTuTTuWTuu		
C-503	WTTuTTuTuWTuWu	C-553	WTTuTTuWTuu		
C-504	WTTuTTuTuWTuWu	C-554	WTTuTTuWTuu		
C-505	WTTuTTuTuWTuWu	C-555	WTTuTTuWTuu		
C-506	WTTuTTuTuWTuWu	C-556	WTTuTTuWTuu		
C-507	WTTuTTuTuWTuWu	C-557	WTTuTTuWTuu		
C-508	WTTuTTuTuWTuWu	C-558	WTTuTTuWTuu		
C-509	WTTuTTuTuWTuWu	C-559	WTTuTTuWTuu		
C-510	WTTuTTuTuWTuWu	C-560	WTTuTTuWTuu		
C-511	WTTuTTuTuWTuWu	C-561	WTTuTTuWTuu		
C-512	WTTuTTuTuWTuWu	C-562	WTTuTTuWTuu		
C-513	WTTuTTuTuWTuWu	C-563	WTTuTTuWTuu		
C-514	WTTuTTuTuWTuWu	C-564	WTTuTTuWTuu		
C-515	WTTuTTuTuWTuWu	C-565	WTTuTTuWTuu		
C-516	WTTuTTuTuWTuWu	C-566	WTTuTTuWTuu		
C-517	WTTuTTuTuWTuWu	C-567	WTTuTTuWTuu		
C-518	WTTuTTuTuWTuWu	C-568	WTTuTTuWTuu		
C-519	WTTuTTuTuWTuWu	C-569	WTTuTTuWTuu		
C-520	WTTuTTuTuWTuWu	C-570	WTTuTTuWTuu		
Index	Tie string	Index	Tie string		
-------	---------------------	-------	---------------------		
C-571	WWWWuTTTuTTuTU	C-572	WWWWuTTTuTTuTU		
C-573	WWWuTTuTTuTTuWWU	C-574	WWWuTTuTTuWWuTTU		
C-575	WWWuTTuWTWTTU	C-576	WWWuTTuWTWTTU		
C-577	WWWuTTuTWTTT	C-578	WWWuTTuTWTTTU		
C-579	WWWuTTuWuTTuTTu	C-580	WWWuWTTTuWTTU		
C-581	WWWuWTTTuTTuTU	C-582	WWWuWTTTuTTuTU		
C-583	WWWuWTWTuTTuTU	C-584	WWWuWTWTuTTuTU		
C-585	WWWuWTWTuTTuTTU	C-586	WWWuWTWTuTTuTTU		
C-587	WWWuWTTWTTuTTU	C-588	WWWuWuWWuTTuTTu		
C-589	TTTuWuWuWuWuWU	C-590	TWWWTuWuWuWU		
C-591	TWTWuWTWuWuWU	C-592	TWTWuWTWuWuWU		
C-593	TWTWuWTWuWuWU	C-594	TWTWuWTWuWuWU		
C-595	TWTWuWTWuWuWU	C-596	TWTWuWTWuWuWU		
C-597	TWTWuWTWuWuWU	C-598	TWTWuWTWuWuWU		
C-599	TWTWuWTWuWuWU	C-600	TWTWuWTWuWuWU		
C-601	TWTWuWTWuWuWU	C-602	TWTWuWTWuWuWU		
C-603	TWTWuWTWuWuWU	C-604	TWTWuWTWuWuWU		
C-605	TWTWuWTWuWuWU	C-606	TWTWuWTWuWuWU		
C-607	TWTWuWTWuWuWU	C-608	TWTWuWTWuWuWU		
C-609	TWTWuWTWuWuWU	C-610	TWTWuWTWuWuWU		
C-611	TWTWuWTWuWuWU	C-612	TWTWuWTWuWuWU		
C-613	TWTWuWTWuWuWU	C-614	TWTWuWTWuWuWU		
C-615	TWTWuWTWuWuWU	C-616	TWTWuWTWuWuWuWU		
C-617	TWTWuWTWuWuWuWU	C-618	TWTWuWTWuWuWuWU		
C-619	TWTWuWTWuWuWuWU	C-620	TWTWuWTWuWuWuWU		
Index	Tie string				
-------	--------------------------				
C-671	WWWuTWTTWWU				
C-672	WWWuTWWTuWWU				
C-673	WWWuTWWTuWWuTTU				
C-674	WWWuWTWTuWWTWU				
C-675	WWWuWTWTuTWWU				
C-676	WWWuWTWTuTTuWWU				
C-677	WWWuWTWTuTTuWWTWU				
C-678	WWWuWTWTuTTuTWTTU				
C-679	WWWuWTWTuTWWuTTU				
C-680	WWWuWTWTuTTuWWTWU				
C-681	WWWuWTWTuTTuWWTWTU				
C-682	WWWuWTWTuTTuWWTWTWU				
Next, we include the Python code listing that we used to generate these enumerations. With some utility functions, the core of this code is in the combinatorics generated from the `itertools` package and in the mod 3 tests on final segments of strings.

```python
# ties.py
# (c) 2013 Mikael Vejdemo-Johansson
# Released as CC-BY

import itertools
from scipy.special import binom

""
Reproducing Fink & Mao is done by the following:

finkmao = classical(prototies(wtpairs(9)))
""

def wtpairs(maxN, mod3 = 1):
    return [(i, n-i) for n in range(maxN)
            for i in range(n+1) if (n-2*i) % 3 == mod3]

def prototies(wtps):
    ret = []
    for (n, k) in wtps:
        if k==0:
            ret.append([ 'W' ]*(n+k))
            continue
        poss = itertools.combinations(range(n+k), k)
        for pos in poss:
            tie = [ 'W' ]*(n+k)
            for p in pos:
                tie[p] = 'T'
            ret.append(tie)
    return ret

def classical(protos):
    return [p for p in protos if len(p)>=2 and p[-2] == p[-1]]

def ktuckfinals(protos, k):
    def wort(t):
        if t == 'W':
            return 1
        elif t == 'T':
            return -1
        else:
            return 0
    def wmint(tt):
        return sum(map(wort, tt)) % 3
    return [p for p in protos
```
if len(p) >= 2*k and wmint(p[-2*k:]) == ((-wort(p[-2*k])) % 3)]

"""
States & cyclic transitions:
W T
L (left) ^ v
C (center) ^ v
R (right) ^ v
"""

statevec = {'T': {'L': 'C', 'C': 'R', 'R': 'L'},
 'W': {'L': 'R', 'R': 'C', 'C': 'L'}}

def WTtoCLR(tie, startstate='L'):
 state = startstate
 ret = state
 for wt in tie:
 state = statevec[wt][state]
 ret += state
 return ret

def balance(tie):
 return len([i for i in range(1, len(tie)) if tie[i] != tie[i-1]])

def symmetry(tie, startstate='L'):
 clrtie = WTtoCLR(tie, startstate=startstate)
 return len([i for i in range(len(clrtie)) if clrtie[i]=='L']) - len([i for i in range(len(clrtie)) if clrtie[i]=='R'])

def CLRtoWT(tie):
 ret = []
 fr = tie[0]
 for st in tie[1:]:
 to = st
 if to == 'T':
 ret.append('U')
 elif statevec['W'][fr] == to:
 ret.append('W')
 elif statevec['T'][fr] == to:
 ret.append('T')
 fr = to
 return ret

def countWT(w, t):
 if w+t < 2:
 return 0
 return binom(w+t, t) - 2*binom(w+t-2, t-1)
def tucks(t):
 return ktucks(t)

def ktuck(t,k):
 """
 Tests whether the end of the winding string t is a valid site for
 a k-fold tuck
 """
 if len(t) < 2*k:
 return False
 ws = [c for c in t[-2*k:] if c == 'W']
 ts = [c for c in t[-2*k:] if c == 'T']
 diff = (len(ws)-len(ts)) % 3
 if t[-2*k] == 'W':
 return diff == 2
 elif t[-2*k] == 'T':
 return diff == 1
 return False

def ktucks(t,k=1):
 """
 Annotates all valid k-fold tuck sites in a winding string
 """
 revt = list(t)
 ret = []
 while len(revt) > 0:
 if ktuck(revt,k):
 ret.insert(0,'u')
 ret.insert(0,revt.pop())
 return ret

def printall(maxN,k=1,p=lambda t: True):
 """
 Prints out a TeX-able table of all tie knots with k-fold tuck
 sites marked. Defaults to k=1. Separated by final tuck direction.
 """
 for j,c in enumerate(['L','C','R']):
 ties = [ktucks(t,k) for t in prototypes(wtpairs(maxN,mod3=j)) if len(t) > 1 and p(t)]
 for i,t in enumerate(ties):
 print ('%s-%d' % (c,i+1)), '&', ''.join(t), '\\\

finkmao = ['LRCT',

```