Researches on energy conversion of municipal waste by plasma decomposition for energy-efficiency in civil engineering

M L Lupu1* D N Isopescu1 I Cucoș1 I Antonescu1 S G Maxineasa1 and I-R Baciu1

1 “Gheorghe Asachi” Technical University of Iasi, Faculty of Civil Engineering and Building Services, Iasi, Romania

* mariuslucianlupu@gmail.com

Abstract. This paper presents the research, technologies and testing equipment developed for the energy plasma conversion of municipal waste in order to enhance energy-efficiency in the civil engineering domain. The purpose of this work is the environmentally friendly improving the efficiency of waste conversion processes by using controlled plasma decomposition reactors developed by the authors, which generate syngas, electrical and thermal energy which can be used in civil engineering.

1. Introduction and study objectives

In 1960 the world population was 3 billion, in 2019 is over 7.7 billion and it is expected to be 8.1 billion in 2025 [1]. The growth of the global population mixed with economic evolution led to rapid urbanization and industrialization, which automatically changed the consumption pattern of the population that finally head up to the rapid increase of Municipal Solid Waste (MSW) at alarming rates [5, 16, 24]. A lot of countries adopted Waste To Energy (WTE) technologies for efficient management of large quantities of waste to produce energy [5, 6]. A foresight made by the International Renewable Energy Agency revealed that the world has the potential of generating approximately 13 GigaWatt of energy from the WTE sector alone [2, 3, 7]. WTE technologies have been considerably modernized in the last years, in 2012, the USA alone generated 14.5 million MWh of electricity from 84 WTE facilities [4].

The general principles of waste management are: the waste prevention to reduce emissions, the reduction of hazardous substances in material streams and the increase resource efficiency, the preparation for reuse that involves checking, cleaning, or recovery by which products or components of products, which have became waste could be prepared for reuse, and, also, the energy recovery from waste and other recovery activities. The energy production from waste (WTE) involves burning waste and using energy content of the waste to produce electricity or to obtain heat and power, heat is used for various services. The disposal of waste in landfills in ecological storage is the least desirable option in waste management hierarchy having the most negative effects on environment and human health [8, 9, 10, 21, 25, 26].

Classic technologies for the energetic processing and recovery of recyclable materials from municipal waste are [11, 23]:

* Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd.
a) Selective collection/sorting and recycling followed by controlled storage of waste in green
landfills, which means a sum of technologies for the reuse of materials obtained from waste, to become
the raw material for various economic processes. This is characterized by [27]:
- solid wastes are obtained without the energetic contribution and with negative influence on the
 environment;
- a mixture of combustible gases (CH₄, CO, H₂, C) is obtained with low purity, low calorific value
 and a high percentage of dangerous accompanying gases [5, 12];
- the technological installations are voluminous, and they require large areas for installation, they
 are high energy consumption, the duration of the technological process is very high and the
 volume of fuel gas obtained is small.

b) Thermochemical processes which are characterized by:
- direct combustion - it produces thermal energy, a large volume of ash and inert materials, a high
 percentage of dangerous gases with a negative impact on the environment;
- gasification - obtaining a gas mixture of H₂, CO, CH₄ with reduced calorific value, a high
 volume of inert materials;
- pyrolysis/incineration - the thermal process that takes place in the absence of oxygen, produces
 combustible gases and thermal energy (CH₄, CO, H₂, C obtained from the decomposition of
 biological material at 700 °C according to the chemical reaction C₆H₁₀O₂ → CH₄ + 2CO + 3H₂O
 + 3C [5].

2. Material and methods
Modern technologies for energy recovery of municipal waste as a renewable energy source are
represented by Plasma gasification, which is a V - generation technology through [13]:
- a mixture of combustible gases H₂, CO, CH₃, CH₄ (syngas) is produced with high purity
 and calorific value [14];
- a vitrified mineral waste with a volume between 5-10% with minimal impact on the
 environment, hardness and properties similar to ceramic materials (use in construction)
 [15][28];
- the resulted syngas can be used to obtain raw materials in the field of the chemical industry,
 fuels or directly converted into electricity and heat [16];
- the technological installations are compact, and the technological processes are carried out in
 short periods of time, while the volume of fuel gas obtained is high [16].

![Figure 1. Comparative analysis between plasma gasification and pyrolysis/incineration.](image)

These modern technologies are defined as:
a) Westinghouse plasma technology - plants use plasma torches on gas, equipment is high working temperatures which are about 4,000 °C, electricity consumption is high, processed waste requires humidity reduction, syngas obtained has a high percentage (5-10%) of gases dangerous for the environment with low calorific power, the volume of inert material obtained is high [17, 18].

b) Plasma hydrogen technology obtained by dissociation of water in plasma jet - the installations are compact of small size, with working temperatures between 10,000-20,000 °C, do not require drying of waste, the syngas obtained has a high percentage of combustible gases $\text{H}_2 \approx 50-55\%$, $\text{CO} \approx 20-25\%$, $\text{CO}_2 \approx 15\%$, and accompanying gases are around 1-5% with minimal environmental impact [17, 18, 19].

The following layout (figure 2) describes the overall configuration and the main components of a new technological developed installation, and the prototype is a result of a scientific research project. The necessary utilities are:

- power grid with an installed power of 210 kW at 380 V, 50 Hz,
- running water with a flow of at least 2 mc/h.

![Figure 2](image_url)

Figure 2. The schematic diagram of equipment for hydrogen plasma conversion of municipal waste.

The main objective of the research was the design of an eco-innovative plasma-based technology for the recovery of waste as a renewable energy source, improvement of the technical and economic performance of the plasma installation for the waste processing by upgrading some components of the system (plasmas, adaptive thermal conduction processes from the plasma reactor enclosure, plasma gas purification system), and optimization of the syngas production technology by controlling the plasma conversion of waste depending on the results obtained from the modeling and simulation of thermo-chemical processes with the help of Chemcad specialized software [20].

The new technological system converts into synthetic gas any solid municipal waste using high-temperature plasma technology and hydrogen technology. Synthesis gas can be used to generate energy, liquid fuels or other sustainable energy sources. It operates in a continuous mode using as a source of energy only to initiate the process of the electricity network, minimizing the energy consumption by means of its own cogeneration system. The heat produced in the process is recovered at various points.
in the plant and is used to obtain the heating agent needed to supply an external district heating system [20].

Electricity produced through another cogeneration module may be supplied to a local power grid or national system [22].

The designed installation has the following technical features, presented in table 1:

Entry	Exit
raw material (organic substance)	slag (vitrified) = 8.2 kg/h
= 410 kg/h humidity = 35%	inert material = 141.8 kg/h
- caloric power = 13.9 Mj/kg	residual heat of 0.007 MWt
- water as vapor = 65 kg/h	singas = 325 kg/h,
slag (vitrified) = 8.2 kg/h	which represents 1,533 MWt chemical energy with 10.87 Mj/m³ calorific value
inert material = 141.8 kg/h	residual heat of 0.007 MWt
water as vapor = 65 kg/h	residual heat of 0.007 MWt

Electricity produced through another cogeneration module may be supplied to a local power grid or national system [22].

The designed installation has the following technical features, presented in table 1:

Table 1. Raw - energy balance

Entry	Exit
Entry	Exit
raw material (organic substance)	slag (vitrified) = 8.2 kg/h
= 410 kg/h humidity = 35%	inert material = 141.8 kg/h
- caloric power = 13.9 Mj/kg	residual heat of 0.007 MWt
- water as vapor = 65 kg/h	singas = 325 kg/h,
slag (vitrified) = 8.2 kg/h	which represents 1,533 MWt chemical energy with 10.87 Mj/m³ calorific value
inert material = 141.8 kg/h	residual heat of 0.007 MWt
water as vapor = 65 kg/h	residual heat of 0.007 MWt
slag (vitrified) = 8.2 kg/h	residual heat of 0.007 MWt
inert material = 141.8 kg/h	residual heat of 0.007 MWt
water as vapor = 65 kg/h	residual heat of 0.007 MWt

Table 2. Energy balance

Step 1 - energy conversion	Step 2 - energy conversion
The cogeneration system with a single-turbine and a 34% efficiency generator produces 0.521 MWe/h of which: 0.200 MWe/h is for the operation of plasma torches, separator, and control system.	The steam turbine receives 0.74 MWt at 90% efficiency, operates an electric generator with a 30% efficiency that produces 0.222 MWe/h.
- plasma torque = 0.142 MWe/h	Thermal energy recovered:
- water / solid separator = 0.050 MWe/h	- in the single wash and neutralization module = 0.231 MWt
- organic substance carrier in the reactor = 0.005 MWe/h	- boiler 1 (steam turbine) = 0.273 MWt of which 0.143 MWt for torches and plasma reactor
- measurement and control systems = 0.003 MWe/h	- boiler 2 (heat / steam exchanger recovered from the steam turbine) = 0.443 MWt

Electricity available to internal consumers or the public grid:

0.521 MWe + 0.222 MWe = 0.743 MWe;

of which 0.200 MWe consumed for the operation of the plasma installation and 0.543 MWe for sending in the network.

Total thermal energy recovered:

0.231 MWt + 0.273 MWt + 0.443 MWt = 0.947 MWt

of which are available for external heating to consumers = 0.804 MWt

These technical parameters were compared with the parameters resulting from the modeling and simulation of thermo-chemical processes of plasma waste processing with Chemcad resulting in a small variation between them. Figure 3 presents the modeling and simulation of the main reactor with plasma on hydrogen.

The sludge from in the designed installation is largely eliminated, the resulting vitrified material is inert and in minimal quantity, easy to recycle with the possibility of recovering heavy metals.

The installation allows the reduction of greenhouse gas emissions:

- reduction up to 40% CO₂ and 100% CH₄, efficient filtration without toxic gas emissions;
- reduction of the quantity of SO₂, SO₃ and NOₓ (acid rain factors);
- reduction of dioxins and furans.
The average operating time of the plasmas is approx. 3,000 h (24 h/day) maintenance requires the replacement of anodes and cathodes from the plasma construction (replacement is a simple assumption to replace compact equipment without removing the reactor). The installation works completely automated, online, from a distance without the intervention of an operator.

![Simulation of the hot gas flow in the plasma reactor.](image)

Figure 3. Modeling and simulation of the main reactor with plasma on hydrogen

3. **Conclusions**

The goal of the paper was to describe the efficiency of waste conversion processes by using controlled plasma decomposition reactors developed in the research, which generate syngas, electrical and thermal energy that can be used in civil engineering as treatment of a large variety of wastes (municipal solid wastes, construction wastes, heavy oil, used car tires, medical wastes etc).

By using the plasma technologies different environmental problems can be resolved:

- reducing substantially the waste going to landfill sites;
- reducing CO₂ emissions;
- reducing the usage of fossil fuels;
- safe destruction of medical and numerous hazardous waste.
Beside syngas and heat, another important product of the plasma decomposition process is vitrified slag, which potentially can be used in the construction sector.

Acknowledgments
This paper was realized with the support of project EFECOn – Eco-innovative products and technologies for energy efficiency in construction, POC/71/1/4 - Knowledge Transfer Partnership, Cod MySMIS: 105524, ID: P_40_295, Project co-financed by the European Regional Development Fund.

References
[1] United Nations 2019 World Population Prospects 2019 Department of Economic and Social Affairs
[2] Whitman A, Esparrago J, Rinke T and Arkhipova I 2016 Renewable Energy Statistics 2016 International Renewable Energy Agency
[3] Kumar A and Samadder S R 2007 A review on technological options of waste to energy for effective management of municipal solid waste, WASTE MANAGE., 69, 407–22
[4] Michaels T 2014 Directory of Waste-To-Energy Facilities Energy Recovery Council
[5] Gomez A, Rani E, Amutha D, Cheeseman C R, Deegan D, Wise M, and Boccaccini A R 2009 Thermal plasma technology for the treatment of wastes: A critical review J. Hazard. Mat. 161 (2–3) 614-26
[6] Commission Of The European Communities 2006 Action Plan for Energy Efficiency, EUR-Lex
[7] Commission Of The European Communities 2006 Sustainable energy Road Map, EUR-Lex
[8] Commission Of The European Communities 2006 Sustainable power generation from fossil fuels, EUR-Lex
[9] Commission Of The European Communities 2006 Towards a European Strategic Energy Technology Plan, EUR-Lex
[10] Commission Of The European Communities 2007 An energy policy for Europe, EUR-Lex.
[11] Demirbas A 2005 Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues PROG. ENERG. COMBUST. 31 171–92
[12] Van Loo S and Koppejan J 2008 Handbook of Biomass Combustion and Co-firing Earthscan.
[13] Sørensen B 2017 Renewable Energy. Its physics, engineering, use, environmental impacts, economy and planning aspects Elsevier Academic Press
[14] Ni M, Leung D Y C, Leung M K H, and Sumathy K 2006 An overview of hydrogen production from biomass FUEL PROCESS TECHNOL, 87 461 – 72
[15] Umberto A 2012 Process and technological aspects of municipal solid waste gasification. A review WASTE MANAGE. 32 (4) 625-39
[16] Dinu M, Socol C, and Marinas M 2005 Mechanisms of convergence and cohesion Economic Publishing House
[17] Akishev Y, Aponin G, Balakirev A, Grushin M, Karalnik V, Petryakov A, and Trushkin N 2013 Spatial-temporal development of a plasma sheet in a surface dielectric barrier discharge powered by a step voltage of moderate duration PLASMA SOURCES SCI. T., 22
[18] Fridman A, and Kennedy L 2004 Plasma Physics and Engineering Taylor & Francis
[19] Matveev I 2015 Plasma Assisted Combustion, Gasification, And Pollution Control Outskirts Press, 2
[20] Matveev I, and Rosocha L 2010 Guest Editorial: Classification of plasma systems for plasma-assisted combustion IEEE T. PLASMA SCI. 38 (12) 3257-264
[21] Matveev I, Matveeva S, and Kirchuk E 2009 Plasma assisted combustion technologies European Combustion Meeting 4
[22] Klimov A, Moralev I, Tolkunov I, and Matveev I 2008 Plasma assisted ignition and combustion of hydrocarbon fuel in high-speed airflow by HF streamer discharge, International Workshop and Exhibition on Plasma Assisted Combustion 4 32-3
[23] Kazemi S 2013 Use of recycled plastics in wood plastic composites – A review, WASTE MANAGE. 33 (9) 1898-905
[24] Patel M L, and C J 2012 Plasma Gasification: A Sustainable Solution for the Municipal Solid Waste Management in the State of Madhya Pradesh, India J ENVIRON SCI, 3
[25] Tendler M, Rutberg P, Van Oost G 2005 Plasma Based Waste Treatment and Energy Production PLASMA PHYS. CONTR. F., 47
[26] Springer M D, Burns W C, and Barkley T 1996 Apparatus and Method Fortreating Hazardous Waste United States Patent No 5.534.659
[27] Leal-Quirós E 2004 Plasma Processing of Municipal Solid Waste BRAZ. J. PHYS. 34 1587-593
[28] Mountouris A, Voutsas E, Tassios D 2008, Plasma Gasification of Sewage Sludge: Process Development and Energy Optimization ENERG. CONVERS. MANAGE., 49