Free Fourier Multipliers associated with the first Segment

Tao Mei and Quanhua Xu
September 17, 2019

Abstract

We study Fourier multipliers on free group \(F_\infty \) associated with the first segment of the reduced words, and prove that they are completely bounded on the noncommutative \(L^p \) spaces \(L^p(\hat{F}_\infty) \) iff their restriction on \(L^p(\hat{F}_1) = L^p(T) \) are completely bounded. As a consequence, we get an analogue of the classical Mikhlin multiplier theorem for this class of Fourier multipliers on free groups.

Notation

\(F_n \) : free group of rank \(n \in \mathbb{N} \cup \{ \infty \} \) with given generators \(g_k \)’s.
\(\lambda_g \) : the left translation operator on \(\ell_2(F_n) \) sending \(\delta_h \) to \(\delta_{gh} \).
\(\mathcal{L}(F_n) \) : the group von Neumann algebra is the weak *-closure of the space of linear combinations of \(\lambda_g \) in \(B(\ell_2(F_n)) \).
\(\tau \) : the canonical trace on \(\mathcal{L}(F_n) \) is the linear functional such that \(\tau(\lambda_e) = 1 \) and \(\tau(\lambda_h) = 0 \) if \(h \neq e \).

Set \(L^\infty(\hat{F}_n) = \mathcal{L}(F_n) \) by convention.
\(L^p(\hat{F}_n), 1 \leq p < \infty \) : the noncommutative \(L^p \) space is the completion of \(\mathcal{L}(F_n) \) with respect to the norm \(\| x \|_{L^p(\hat{F}_n)} = (\tau|x|^p)^{\frac{1}{p}}. \)

For a reduced word \(h = g_{i_1}^{k_1}g_{i_2}^{k_2} \cdots g_{i_m}^{k_m} \), we denote by \(\| h \| \) the block length \(m \). Let \(L_0 = \{ e \} \). Denote by \(L_{k\pm} \) the set of all reduced words \(h \) that starts with a power of \(g_k \), i.e. \(h = g_{i_1}^{k_1}g_{i_2}^{k_2} \cdots g_{i_m}^{k_m} \) with \(i_1 = k \).

Let \(L_{k\pm} \) be the projection on to \(\lambda(L_k) \) in \(L_2(\hat{F}_2) \). Let \(e_{kj} \) be the canonical basis of \(B(\ell_2) \). Let \(L^p(\ell_2^\infty), 2 \leq p \leq \infty \) be the space of operator valued sequences \(x = (x_k)_k \) such that

\[\| x \|_{L^p(\ell_2^\infty)} = \max\{ \| (\sum_k |x_k|^2)^{\frac{1}{2}} \|_p, \| (\sum_k |x_k|^2)^{\frac{3}{2}} \|_p \} < \infty. \]
1 Introduction

The Fourier multiplier operators have been a central object in analysis. Their boundedness on L^p-spaces of \mathbb{R}^n has been extensively studied. The so-called Mikhlin multiplier theorem says that, if m is a smooth function on \mathbb{R}^n such that

$$\sup_{0 \leq |j| \leq \frac{n}{2} + 1} |\xi^j \nabla^j m(\xi)| < C$$

for all $\xi \neq 0$, then the multiplier operator

$$T_m : e^{i\xi x} \mapsto m(\xi)e^{i\xi x}$$

extends to a bounded operator on $L^p(\mathbb{R}^n)$ (resp. $L^p(T^n)$) for all $1 < p < \infty$. This result was originally proved by S. Mikhlin ([M56], [M65]) and is now a fundamental theorem in the Calderón-Zygmund-Stein Singular integral theory.

Murray and von Neumann's work ([MvN36]) demonstrates von Neumann algebras as a natural framework to do noncommutative analysis. The elements in a von Neumann algebra \mathcal{M} can be "integrated over" the equipped trace τ and "measured" by the associated L^p-norms. For a (nonabelian) discrete group Γ, the von Neumann algebra is the closure of the linear span of left regular representation λ_g's w.r.t. a weak operator topology. The trace τ is simply defined as

$$\tau x = c_x,$$

for $x = \sum_g c_g \lambda_g$. The associated L^p norm is defined as

$$\|x\|_p = (\tau|x|^p)^{\frac{1}{p}}$$

for $1 \leq p < \infty$. When $p = \infty$, the L^p space is set to be the von Neumann algebra itself. When $\Gamma = \mathbb{Z}$, the obtained L^p space is the L^p space on the unit circle $\mathbb{T} = \hat{\mathbb{Z}}$.

The theory of noncommutative L^p-spaces was laid out in the work of Segal ([Seg53]) and Dixmier ([Dix53]). Fourier multipliers on noncommutative L^p-spaces have been used as fundamental tools in operator algebras theory, noncommutative geometry, and mathematical physics, and have grown up to a new studying-object in functional analysis with its own interest. Fourier multipliers on nonabelian groups Γ are linear maps M on the left regular representation of Γ such that

$$M : \lambda_g \mapsto m(g)\lambda_g$$

with m a scalar-valued bounded function on Γ. The boundedness of M is tested on the associated noncommutative L^p spaces.

The study of Fourier multipliers on free groups has a long history. Please refer to the works of Bözejko, Figá-Talamanca/Picardello, Haagerup, Pytlik-Szwarc, Junge/Le Merdy/Xu etc. These works usually rely on the theory of positive definite functions and restrict the study on the radial multipliers. In
[MR17], Mei and Ricard studied an important non-radial multiplier, the so-called free Hilbert transform, and answered a question of P. Biane and G. Pisier about its \(L^p\) boundedness on free groups.

The key of Mei-Ricard’s argument is a free analogue of the classical Cotlar’s formula. This type of formula fits Hilbert transform type multipliers but does not work for general Fourier multipliers. This raises the question whether Mei-Ricard’s result is a lucky case or there is a more general rule on the \(L^p\)-boundedness of Fourier multipliers. In this note, we study the class of Fourier multipliers on the free group associated with the first segment of reduced words, and give a general rule for their complete-\(L^p\)-boundedness.

2 A Translation Group

Given \(z = (z_1, \ldots, z_n)\), a sequence of complex numbers with modular 1, we use \(T_z, T_z^0\) to denote the linear maps on \(L^2(\hat{\mathbb{F}}_n)\) such that

\[
T_z(\lambda e) = \lambda e = T_{z^0}(\lambda e)
\]

and

\[
T_z(\lambda h) = z^{k_1} \lambda h, \quad T_z^0(\lambda h) = z^{k_m} \lambda h
\]

for

\[
h = g^{k_1}_{i_1} g^{k_2}_{i_2} \cdots g^{k_m}_{i_m}.
\]

Note we have that

\[
[T_z(\lambda h)]^* = T_z^0 \lambda_h^{-1}.
\]

We will prove that \(T_z\) is a uniformly bounded group of operators on \(L^p(\hat{\mathbb{F}}_n)\) for all \(1 < p < \infty\). Therefore, an analogue of the classical Mikhlin’s multiplier theorem follows by Coifman/Weiss/Zygmund’s transference principle.

Denote by \(\pi_z\) the \(*\)-homeomorphism on \(L(\mathbb{F}_n)\) that sends \(\lambda g_i\) to \(z_i \lambda g_i\). Let \(P_1\) be the projection onto the subspace of \(L^2(\hat{\mathbb{F}}_n)\) spanned by reduced words with block length \(\leq 1\). We see that

\[
P_1 \pi_z = P_1 T_z = P_1 T_z^0 = P_1 T_z T_z^0,
\]

so

\[
\|P_1 T_z\| = \|P_1 T_z^0 T_z\| = \|P_1\| \leq 3.
\]

(1)

The following Lemma is from [MR17], Corollary 3.10. One can check the proofs there and find the upper bound \(p^2\) for \(p > 2\).

Lemma 1. For \(x \in L^p(\hat{\mathbb{F}}_n)\), we have

\[
(\sqrt{2}p^2)^{-1} \|x\|_p \leq \max\{\sum_k e_{k1} \otimes L_k x\|_p, \sum_k e_{lk1} \otimes L_k x\|_p\} \leq p^2 \|x\|_p,
\]

for all \(2 < p < \infty\).
Lemma 2. For $g, h \in \mathbb{F}_\infty, g \in \mathcal{L}_{kz}, h^{-1} \in \mathcal{L}_{jz}, k, j \geq 0$ we have that

(i) if the block length $\|gh\| \leq 1$ and $k = j$

$$T_z(\lambda_g)T_z^\circ(\lambda_h) = T_z(\lambda_g\lambda_h) = T_z^\circ(\lambda_g\lambda_h);$$

(ii) otherwise,

$$T_z(\lambda_g)T_z^\circ(\lambda_h) = T_z(\lambda_g^T_z\lambda_h^T_z) + T_z^\circ(T_z(\lambda_g)\lambda_h) - T_z^\circ(T_z(\lambda_gh)).$$

Proof. In case (i), suppose $T_z(\lambda_g) = z_k^i\lambda_g$ and $T_z^\circ(\lambda_h) = z_k^i\lambda_h$, we have $T_z(\lambda_g\lambda_h) = T_z^\circ(\lambda_gh) = z_k^{i+j}\lambda_gh = T_z(\lambda_g)T_z^\circ(\lambda_h)$ since gh has block length 1. We get (3).

In case (ii), we have either the identity

$$T_z(\lambda_g\lambda_h) = T_z(\lambda_g)\lambda_h$$

or

$$T_z^\circ(\lambda_g\lambda_h) = \lambda_gT_z^\circ(\lambda_h).$$

Assuming (5), we must have

$$T_z(\lambda_gT_z^\circ(\lambda_h)) = T_z(\lambda_g)T_z^\circ(\lambda_h),$$

because $T_z^\circ(\lambda_h)$ is merely a multiplication of λ_h by a constant. We then get (4). Assuming (6), we have

$$T_z^\circ(T_z(\lambda_g)\lambda_h) = T_z(\lambda_g)T_z^\circ(\lambda_h),$$

because $T_z(\lambda_g)$ is merely a multiplication of λ_g by a constant. We get (4) again.

Theorem 3. For $1 < p < \infty$, we have

$$\|T_zx\|_{L^p} \simeq^p \|x\|_{L^p},$$

for any $x \in L^p(\hat{\mathbb{F}}_\infty)$.

Proof. Assume $\|T_z\|_{L^p(\hat{\mathbb{F}}_\infty) \rightarrow L^p(\hat{\mathbb{F}}_\infty)} \leq c_p$ for some $p = 2j, j \geq 1$. For $x = \sum_g c_g\lambda_g$, denote by $x_k = L_{kz}x$. Let P_k be the projection onto the linear space corresponding to reduced words with block length smaller or equals to 1 in $L^2(\hat{\mathbb{F}}_n)$. Lemma 2 implies that

$$P_k^\perp[T_z(x)T_z^\circ(x^*)] = P_k^\perp[T_z(xT_z^\circ(x^*)) + T_z^\circ(T_z(x)x^*) - T_z^\circ T_z(xx^*)]$$

for $k \neq j$, and

$$P_k^\perp[T_z(x_k)T_z^\circ(x_k^*)] = P_k^\perp[T_z(x_kx_k^*)] = P_k^\perp[T_z^\circ(x_kx_k^*)]$$

(8)
Therefore,
\[
T_z(x)T_z^o(x^*) = [T_z(xT_z^o(x^*)) + T_z^o(T_z(x)x^*) - T_z^oT_z(x)T_z(x^*)] - P_1 \sum_k [T_z(x_kT_z^o(x_k^*)) + T_z^o(T_z(x_k)x_k^*) - T_z^oT_z(x_k)x_k^*) - T_z(x_k)x_k^*)].
\]

Denote by \(y = \sum_k e_k \otimes x_k^* \). Note \(P_1 T_z = P_1 T_z^o \) and
\[
P_1 T_z(x_k x_k^*) = P_1 |T_z^o(x_k^*)|^2
\]
because of (8), we have
\[
P_1 T_z(|y - T_z^o y|^2) = P_1 \sum_k [T_z^oT_z(x_k x_k^*) + T_z(x_k x_k^*) - T_z(x_k T_z^o(x_k^*)) - T_z^o(T_z(x_k) x_k^*)].
\]

Therefore,
\[
T_z(x)T_z^o(x^*) = \left[T_z(xT_z^o(x^*)) + T_z^o(T_z(x)x^*) - T_z^oT_z(x)T_z(x^*) \right] + P_1 T_z(|y - T_z^o y|^2).
\]

By Lemma 1, we have
\[
||y||_{L^{2p}} = ||T_z y||_{L^{2p}} \leq (2p)^2 ||x||_{L^{2p}}
\]
for \(p > 1 \). Taking \(L^p \) norms on both sides of (9) and applying (11) and Hölder’s inequality, we get that
\[
||T_z x||_{L^{2p}}^2 \leq 2c_p||x||_{L^{2p}}||T_z(x)||_{L^{2p}} + (c_p^2 + 192p^4)||x||_{L^{2p}}^2.
\]
Therefore,
\[
||T_z(x)||_{L^{2p}} \leq (c_p + \sqrt{2c_p^2 + 192p^4})||x||_{L^{2p}}.
\]
By induction, we have
\[
||T_z x||_{L^p} \leq 8p^2||x||_{L^p}
\]
for \(p = 2^n \). Applying the fact that \(T_z T_z = id, ||T_z x||_{L^2} \leq ||x||_{L^2} \), by interpolation and passing to the dual, we then get the desired result for all \(1 < p < \infty \). \(\square \)

Remark. Theorem 3 fails for \(p = 1, \infty \), see the remark after Theorem 4.

3 Transference via the Translation Group

Given a bounded map \(m \) from \(\mathbb{Z} \) to \(\mathbb{C} \). Let \(M_m \) be the linear multiplier on \(L^2(\mathbb{R}_n) \) such that
\[
M_m(\lambda_h) = m(k_1)\lambda_h
\]
for \(h = g_{i_1}^{k_1} g_{i_2}^{k_2} \cdots g_{i_n}^{k_n} \).
Theorem 4. For any $1 < p < \infty$, M_m extends to a completely bounded linear operator on $L^p(\mathbb{F}_n)$ iff the restriction of M_m on \mathbb{F}_1, denoted by \hat{M}_m, is completely bounded Fourier multiplier on $L^p(\mathbb{T})$. Moreover,

$$\|M_m\| \leq c_p \|\hat{M}_m\|$$

with c_p the equivalence constant in Theorem 3.

Proof. By Theorem 3 we have

$$T_1: \lambda_h \mapsto e^{ikt_1}$$

for $h = \hat{G}_1 \hat{G}_2 \cdots \hat{G}_r$ is a uniformly bounded c_0-group of operators on L^p. The desired result follows by Coifman/Weiss/Zygmund’s transference principle. Assume \hat{M}_m extends to a completely bounded Fourier multiplier on $L^p(\mathbb{T})$. By approximation, we may assume that m has a finite support $[-N, N]$. Define the scalar valued function ϕ_N on the unit circle as $\phi_N = \sum_k m(k)e^{ik\theta}$. Then we have, for any $L^p(\mathbb{F}_n)$-valued function F,

$$\|F \ast \phi_N\|_{L^p(\mathbb{T}, L^p(\mathbb{F}_n))} = \|M_m(F)\|_{L^p(\mathbb{T}, L^p(\mathbb{F}_n))} \leq \|\hat{M}_m\| \|F\|_{L^p(\mathbb{T}, L^p(\mathbb{F}_n))}.$$

For any $x \in L^p(\mathbb{F}_n)$ with norm 1, we have

$$M_m(x) = \frac{1}{2\pi} \int_0^{2\pi} T_{-t} x \phi_N(t) dt = \frac{1}{2\pi} \int_0^{2\pi} T_s T_{-t} x \phi_N(t) dt.$$

Let $F(t) = T_t x$. Then $\|F\|_{L^p([0, 2\pi], L^p(\mathbb{F}_n))} \leq c_p$ and

$$\|M_m(x)\|_{L^p(\mathbb{F}_n)} \leq c_p \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{1}{2\pi} \int_0^{2\pi} T_s T_{-t} x \phi_N(t) dt \right| ds$$

$$= c_p \|F \ast \phi_N\|_{L^p(\mathbb{F}_n)}^p \leq c_p \|\hat{M}_m\| \|F\|_{L^p(\mathbb{T}, L^p(\mathbb{F}_n))} \leq c_p \|\hat{M}_m\|.$$

Remark. Theorem 4 fails for $p = 1, \infty$. Take $m(k) = \chi_{[-2, 2]}(k)$, which is the symbol of a c.b multiplier on $L^\infty(\mathbb{F}_1)$. Then the multiplier M_m is the projection onto the set $\{s; |\lambda_k(s)| \leq 2\}$ of $L^\infty(\mathbb{F}_\infty)$, which is certainly unbounded. To see this, let

$$x = \sum_{-N < k < N} c_k (\lambda g_1 g_2)^k g_1$$

and note

$$M_m(x) = \sum_{0 \leq k < N} c_k (\lambda g_1 g_2)^k g_1.$$

Theorem 3 fails for $p = 1, \infty$ too, since Theorem 4 would follow from it.

Let $A_0 = \{0\}$, $A_k = [2^{k-1}, 2^k)$ for $k \in \mathbb{N}$ and $A_k = -A_{-k}$ for $k \in -\mathbb{N}$.
Corollary 5. Let χ_k be the characteristic function on A_k for $k \in \mathbb{Z}$. Then
\[
\|x\|_{L^p} \simeq \|(M_{\chi_k}(x))_k\|_{L^p(\ell^2_{cr})}.
\] (10)

Proof. Let $m = \sum_{k \in \mathbb{Z}} \varepsilon_k \chi_k$ with $\varepsilon_k = \pm$. Then M_m is a completely bounded multiplier on $L^p(\mathbb{T})$. The Khitchine inequality and Theorem above imply that
\[
\|(M_{\psi_k}(x))_k\|_{L^p(\ell^2_{cr})} \lesssim \|x\|_{L^p}.
\] (11)
The other direction of the inequality follows from the duality between L^p spaces and the identity
\[
\langle x, y \rangle = \sum_k \langle M_{\chi_k}(x), M_{\chi_k}(y) \rangle.
\] (12)

Corollary 6. Suppose M is a Mikhlin multiplier in the sense that
\[
\sup_{k \in \mathbb{Z}} \{|m(k)|, |m(k) - m(k-1)|\} < C.
\]
Then M extends to a completely bounded linear operator on $L^p(\mathbb{T}^n)$ for all $1 < p < \infty$.

Proof. This follows from Theorem 4 and the classical Mikhlin multiplier theorem.

Corollary 7. Let ψ be a C^2 function supported on $[\frac{1}{2}, \frac{3}{2}]$ and $\psi(t) = 1$ for $t \in [\frac{2}{3}, \frac{4}{3}]$. Let $\psi_k(t) = \psi(\frac{t}{2^k})$. Then
\[
\|x\|_{L^p} \simeq \|(M_{\psi_k}(x))_k\|_{L^p(\ell^2_{cr})}.
\] (13)

Proof. Let $m_1 = \sum_{k \text{ odd}} \varepsilon_k \psi_k$ and $m_2 = \sum_{k \text{ even}} \varepsilon_k \psi_k$ with $\varepsilon_k = \pm$. The Khitchine inequality and Corollary 6 imply that
\[
\|(M_{\psi_k}(x))_k\|_{L^p(\ell^2_{cr})} \lesssim \|x\|_{L^p}.
\] (14)
The other direction of the inequality follows from the duality between L^p spaces and the identity
\[
\langle x, y \rangle = \sum_k \langle M_{\psi_k}(x), M_{\psi_k}(y) \rangle.
\] (15)

Corollary 8. Let $1 < p < \infty$. Then the unbounded linear operator $L : \lambda_h \mapsto k_1(h)\lambda_h$ has a bounded H^∞-functional calculus on $L^p(\mathbb{G})$ of any positive angle μ. Moreover, we have that
\[
\|\Phi(L)\| \lesssim (\sin \mu)^{-1}\|\Phi\|_{H^\infty},
\] (16)
for all $\Phi \in H^\infty(\Sigma_\mu)$.

7
Proof. Applying Cauchy’s integral formula, it is easy to check that
\[
\sup_{t \in \mathbb{R}} \{|\Phi(t)|, |t|\Phi'(t)|\} < C(\sin \mu)^{-1} \|\Phi\|_{\infty}
\]
for \(\Phi \in H^\infty(\Sigma_\mu) \). The desired result follows from Corollary \(\Box \)

Recall that we say a subset \(\Lambda \) of \(\mathbb{Z} \) is a c. b. \(\Lambda_p \) set with constant \(C_\Lambda \) if, for any operator valued sequence \(x_k, k \in \Lambda \), we have the equivalence
\[
\| \sum_{k \in \Lambda} x_k e^{ik\theta} \| \simeq C_\Lambda \| (x_k)_{k \in \Lambda} \|_{L^p(\mathbb{Z}_n)}.
\]
This is equivalent to that, for any subset \(A \subset \Lambda \), the Fourier multiplier
\[
\tilde{M}_{\chi A} : e^{ik\theta} \mapsto \chi_A(k) e^{ik\theta}
\]
extends to a completely bounded map on \(L^p(\mathbb{Z}) = L^p(\mathbb{T}) \) with a bound \(\leq C_\Lambda \).

Corollary 9. Suppose \(\Lambda \subset \mathbb{Z} \) is a c. b. \(\Lambda_p \) set. Then, for any \(A \subset \Lambda \), \(M_{\chi A} \) extends to a completely bounded map on \(L^p(\mathbb{F}_n) \) with a bound \(\leq c_p^2 C_\Lambda \).

Proof. This follows from Theorem \(\Box \)

References

[BF06] M. Bożeiko, G. Fendler, A note on certain partial sum operators. (English summary) Quantum probability, 117-125, Banach Center Publ., 73, Polish Acad. Sci. Inst. Math., Warsaw, 2006.

[Bu99] A. Buchholu, Norm of convolution by operator-valued functions on free groups, Proc. Amer. Math. Soc. 127 (1999), 1671-1682.

[CW76] R. Coifman, G. Weiss, Transference methods in analysis. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31. American Mathematical Society, Providence, R.I., 1976. ii+59 pp.

[Dix53] J. Dixmier, Formes linéaires sur un anneau d’opérateurs. (French) Bull. Soc. Math. France 81, (1953). 9-39.

[HP98] M. Hieber, J. Prüss, Functional calculi for linear operators in vector valued \(L^p \)-spaces via the transference principle, Adv. Differential Equations, 3 (1998), 847-872.

[HSS10] U. Haagerup, T. Steenstrup, R. Szwarc, Schur multipliers and spherical functions on homogeneous trees. Internat. J. Math. 21 (2010), no. 10, 1337-1382.

8
[JMP18] M. Junge, T. Mei and J. Parcet, Noncommutative Riesz transforms—a dimension free estimate, Journal of European Math. Soc. (JEMS) 20 (2018), no. 3, 529-595.

[MvN36] F. J. Murray, J. von Neumann, On rings of operators, Annals of Mathematics, Second Series, 37 (1936), 116-229.

[M56] S. Mikhlin, On the multipliers of Fourier integrals”, Doklady Akademii Nauk SSSR, 109: 701-703.

[M65] S. Mikhlin, Multidimensional singular integrals and integral equations, International Series of Monographs in Pure and Applied Mathematics, 83, Pergamon Press, Zbl 0129.07701.

[MR17] T. Mei, E. Ricard, Free Hilbert Transforms, Duke Journal of Math., 166, 2232-2250.

[MS17] T. Mei, M. de la Salle, Mikael, Complete boundedness of heat semigroups on the von Neumann algebra of hyperbolic groups. Trans. Amer. Math. Soc. 369 (2017), no. 8, 5601-5622.

[O10] N. Ozawa, A comment on free group factors. (English summary) Noncommutative harmonic analysis with applications to probability II, 241-245, Banach Center Publ., 89, Polish Acad. Sci. Inst. Math., Warsaw, 2010.

[RX06] E. Ricard, Q. Xu, Khintchine type inequalities for reduced free products and applications. J. Reine. Angew. Math. 599 (2006), 27-59.

[Seg53] I. Segal, A non-commutative extension of abstract integration. Ann. of Math. (2) 57, (1953). 401-457.

Tao Mei
Department of Mathematics
Baylor University
One bear place, Waco, TX USA
tao.mei@baylor.edu

Quanhua Xu
Institute for Advanced Study in Mathematics
Harbin Institute of Technology
Harbin 150001 HEILO
PEOPLES REPUBLIC OF CHINA

Laboratoire de Mathématiques
Univ. de Franch Comté
25030, Besançon, France
quanhua.xu@univ-fcomte.fr