Physics’ identification of formation process of wood polymer heat insulation material

V A Saldaev¹, V G Gusev², A R Koryakin³

¹Institute of electric power and electronics, Kazan State Power Engineering University, 51, Krasnoselskaya Street, Kazan 420066, Russia
²Institute of Engineering and Automobile Transport, Vladimir State University, 87, Gorky Street, Vladimir 600000, Russia
³Faculty of engineering business and management, Moscow State Technical University named after N.E. Bauman, 5/1, Baumanskaia 2-ya Street, Moscow 105005, Russia

E-mail: c-vova@mail.ru

Abstract. The article presents and describes in detail the physical picture of the process of forming the created wood-polymer insulation material in vacuum. It is proved that the developed material is a multicomponent system in which wood particles form a strong adhesive bond with a polyurethane foam matrix, characterized by complex physical and chemical reactions that occur in the process of interaction of all components of the system. Since the process of forming polyurethane foam occurs in the presence of wood filler, its influence on the process of gas phase formation during polymer foaming was studied. The main technological parameters affecting the formation of strong intermolecular bonds and the interaction of the components of wood-polymer insulating material with each other are revealed. In particular, it was found that the process of polymerization of polyurethane foam in the presence of wood filler under vacuum allows one not to deform or destroy the gas-structural elements during their formation. Also, basing upon the results of experimental studies, the dependence of the influence of wood filler moisture on the process of structure formation of the created material was established.

1. Introduction

There are certain difficulties in the utilization of wood waste in Russia. Basically, wood waste is not even tried to be used in production, usually it's simply destroyed. This is due to the loss of the scientific base for the development of wood waste processing technologies, since the practice of using this raw material was not popular, and there was no need for such developments [1-4].

In connection with the increase in the volume of construction work on the construction of buildings and structures, the demand for new building materials, in particular heat-insulating materials, with improved operational properties and low cost price [5-8] is rapidly growing. Therefore, the most promising direction in the field of wood waste processing is the development of new and improvement of existing technologies for the production of thermal insulation materials based on wood waste. Creating a modern thermal insulation material based on wood waste will solve two main problems: first, to reduce the environmental impact by means of the processing of wood waste, and second, to
obtain a new thermal insulation material with high performance properties at a comparably low market value [9-13].

As a result of research and development work, wood-polymer insulating material was created, consisting of wood filler and polymer binder, namely polyurethane foam.

2. Study of problem
The studying of the physical model and structure of the created insulating material, created on the basis of wood filler and polymer binder, is necessary to fully understand the process of forming bonds and the interaction of the components of the wood-polymer system.

Polyurethane foam materials are inherently complex physical systems that are difficult to quantify. The spatial structure, shape and size of the gas-structural elements of the matrix [14-20] are the most important in these systems. With the introduction of wood filler, the macrostructure of polyurethane foam changes, as its properties respectively, since wood particles affect the processes occurring at all stages of the formation of polyurethane foam.

The created wood-polymer insulating material is a multicomponent system, characterized by physical chemical bonds between the components that make up the material. In the created system a wood particle is a polymeric binder, there are adhesive bonds formed by the interaction of materials of various natures [21-25]. The created wood-polymer system differs in physical mechanical and thermal physical indicators from the indicators of each component presented in this system, when considered separately.

In view of the fact that the process of forming polyurethane foam occurs in the presence of wood filler, it is necessary to study its influence on the process of nucleation of the gas phase during the foaming of the polymer. A diagram of the process of nucleation of gas-structural elements in the presence of wood filler is shown in figure 1.

![Diagram](image)

Figure 1. The process of nucleation of gas-structural elements in the presence of wood filler: 1 - liquid phase; 2 - wood particle; 3 - gas bubble; 4 - a bursting bubble of gas; a) the formation of bubbles with a gas in the presence of a filler; b) deformation of gas structural elements; c) polymer shrinkage.

As can be seen from fig. 1a, at the initial stage of gas bubble formation, a wood particle does not affect the process of formation of the gas phase. However, its immersion in a liquid medium is observed due to a larger specific gravity as compared with a polymer. This leads to the fact that with the further formation of new gas bubbles, their diffusion and an increase in size, the wood particle deforms and destroys the gas-structural elements due to its pressure on them (Figure 1b). As a result, when filled with wood particles, the density of the wood-polymer composition increases by reducing the formation of small pores in the presence of a filler, shrinkage of the polymer occurs during its formation (Figure 1c), and, as a result, the operational, in particular, thermal physical properties of the material deteriorate [26-31]. The use of wood particles as the main component during the filling of polyurethane foam makes it possible to preserve the strength properties that perform one of the main functions of the insulating material. Although the wood filler introduced into polyurethane foam
changes the parameters of the foaming process and, as a result, the macrostructure and properties of polyurethane foam. It is impossible to unambiguously assess the effect of wood filler as negative. It is assumed that the formation of wood-filled polyurethane foam under the vacuum condition will be accompanied by an improvement in the foaming process and an increase in the number of pores with a decrease in the density of the material. The process of initiation of gas-structural elements in the presence of wood filler under the vacuum condition is presented in the form of a diagram in figure 2.

The presence of rarefaction helps gas bubbles during their formation to keep the wood particle in an equilibrium state in the system (Figure 2a) due to the fact that the pressure in the bubble increases by the amount of vacuum created above the liquid polyurethane foam. Thus, the conditions, under which the wood particle is not able to deform and destroy the gas-structural elements during their formation, are created. The process of formation of the cellular structure takes place in conditions favorable to it, as can be seen from Figure 2b.

After the rise of foam ends and the formation of new gas bubbles ceases, the final stage of set up of polyurethane foam begins - the curing. At this stage, the final phase of cross-linking of the polymer cells occurs due to gas diffusion and curing of the material.

Since the process of formation of polyurethane foam is an exothermic reaction, the formation of a strong adhesive bond between the components will be prevented by the evaporation of moisture presented in the outer layer of wood particles, due to the increase in temperature as a result of the reaction. In order to study the effect of wood filler moisture on the process of structure formation of wood-polymer material, experimental studies were conducted on the basis of the laboratory of the Department of Processing Wood Materials FSBEI HE "KNITU".

The tensile strength of the samples was determined depending on the absolute moisture content of wood filler (Figure 3) at different concentrations of the components. It is revealed that the increase in the content of wood filler from 40 to 80% and humidity from 10 to 110% reduces the tensile strength.
of the obtained samples by an average of 40-50%. This confirms the assumption about the destruction of the boundary layer during the evaporation of free moisture in the outer layers of wood particles as a result of the exothermic reaction of the components of polyurethane foam.

It has been experimentally proved that in the process of evaporation of moisture presented in the outer layer of wood particles, gas formation is suppressed during the interaction of the components of the polyol and the polyisocyanate. This fact leads to the formation of fragile walls of polyurethane foam cells, which are destroyed during foaming. Therefore, the boundary layer between the polyurethane foam and the wet wood particle is destroyed even before the wood-filled polyurethane foam is cured.

3. Description of the object under development
Created plate insulation material consists of wood filler, treated with flame retardant impregnating composition, and a polymeric binder. Figure 4 shows the appearance of an experimental sample of wood-filled polyurethane foam insulation material.

Technological chips according to GOST 15815-83 were used as a filler in the created thermal insulation material [32-33]. As a binder we used a two-component polymer system used for the production of closed-cellular rigid polyurethane foam in accordance with TU 5762-001-35532087-95, consisting of components "A" and "B":

1. Component "A" includes the main component - polyol and additives included in its composition: blowing agent (freon, water), emulsifiers, activator, plasticizer, flame retardant and other additives [34]. Polyols are organic compounds of the class of alcohols, are sources of hydroxyl (-OH) groups, which, reacting with the polyisocyanate, form a polyurethane structure. In this work we used a polyol component (component A) - the "Khimtrast KAS-40/141(131)" trademark, a ready-to-use polyol component that contains stabilizers, catalysts, flame retardants, a mixture of allowed freon 365/227 and 245, and water.

2. Component B includes the main component - the polyisocyanate. Isocyanates are organic compounds that form a group of neutral derivatives of primary amines with the general formula R — N = C = O. Isocyanates spontaneously react with compounds containing active hydrogen atoms. Chemical compounds that include hydroxyl groups spontaneously form esters with a substituted carbon dioxide group or urethanes. In this work we used the isocyanate component (component B) - the “Millionat MR-200” trademark, manufactured by Nippon Polyurethane Industry (Japan), which is a polymethylene polyphenyl isocyanate, which contains 4,4-diphenylmethane disocyanate, its isomers and higher oligomers homologues. 4,4-diphenylmethane disocyanate.

In connection with the addition of wood particles to polyurethane foam, which are inherently combustible material, in order to improve the flame retardant properties of the final product, they were treated with flame retardant impregnating compound (fire retardant). The flame retardant slows down the burning and ignition of the material due to substances-retardants of combustion (chlorides, ammonium phosphates and borax). In our case, for the impregnation of wood particles, a flame
retardant of the Attic brand, which is a solution of non-toxic inorganic salts, was selected. Impregnating composition "Attik" corresponds to the I group of fireproof efficiency, according to the established fire safety requirements in accordance with GOST 16363-98.4.

4. Conclusion
Thus, the presented physical picture of the process of forming the created wood-polymer insulation material proves that the developed material is a multicomponent system in which the wood particles form a strong adhesive bond with polyurethane foam, characterized by complex physicochemical reactions that occur in the process of interaction of all system components. The main technological parameters affecting the process of formation of bonds and interaction of components of wood-polymer insulating material are identified.

References
[1] Yang C et al 2015 Rigid polyurethane foams incorporated with phase change materials: A state-of-the-art review and future research pathways Energy and Buildings 87 25–36
[2] Biswas K et al 2016 Insulation materials for commercial buildings in North America: An assessment of lifetime energy and environmental Energy and Buildings 112 256–269
[3] Storodubtseva T N et al 2018 The Study of Soundproofing Properties of Wood Polymer-Sand Composite Solid State Phenomena 284 993–998 DOI: 10.4028/www.scientific.net/SSP.284.993
[4] Saldaev V A et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 142 012097 DOI: 10.1088/1757-899X/142/1/012097
[5] Moretti E, Belloni E, Agosti F 2016 Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization Applied Energy 169 421–432
[6] Stepanov V V and Timerbaev N F 2018 Composite Railroad Ties Obtained by the Energy Efficient Recycle of Wooden Railroad Ties Solid State Phenomena 284 981–985 DOI: 10.4028/www.scientific.net/SSP.284.981
[7] Sierra-Pérez J et al 2015 Environmental assessment of façade-building systems and thermal insulation materials for different climatic conditions J of Cleaner Production 113 102–113 DOI: 10.1016/j.jclepro.2015.11.090
[8] Storodubtseva T N, Aksomitny A A and Sadrtdinov A R 2018 Thermal Insulation Properties of Wood Polymeric Sand Composite Solid State Phenomena 284 986–992 DOI: 10.4028/www.scientific.net/SSP.284.986
[9] Prosvirnikov D B et al 2018 Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment Solid State Phenomena 284 773–778 DOI: 10.4028/www.scientific.net/SSP.284.773
[10] Rehman H U 2016 Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions Applied Energy 185 1585–1594 DOI: 10.1016/j.apenergy.2016.01.026
[11] Roberts B C et al 2015 Development of a multi-objective optimization tool for selecting thermal insulation materials in sustainable designs Energy and Buildings 5 358–367
[12] Timerbaev N F, Prosvirnikov D B and Sadrtdinov A R 2018 Application of the Method of Statistical Modeling and Parametric Identification for Automation of the Processes of Wood Treatment International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon 2018) DOI: 10.1109/FarEastCon.2018.8602879
[13] Sun Z, Shen Z, Ma S and Zhang X 2013 Novel application of glass fibers recovered from waste printed circuit boards as sound and thermal insulation material J of materials engineering and performance 22(10) 3140–3146 DOI: 10.1007/s11665-013-0587-y
[14] Matuana L M et al 2015 The use of wood fibers as reinforcements in composites Environmental Entomology 44(3) 890–897 DOI: 10.1533/9781782421276.5.648
[15] Binici H, Aksogan O 2016 Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips J of Building Engineering 5 260–266
[16] Fomin A A, Gusev V G and Sadrtdinov A R 2018 Assurance of Accuracy of Longitudinal Section of Profile Surfaces Milled at High Feeds International Conference on Industrial Engineering pp 527–536 DOI: 10.1007/978-3-319-95630-5_55
[17] Prosvirnikov D B et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 124 012087 DOI: 10.1088/1757-899X/124/1/012087
[18] Shaaban A, Se S M, Ibrahim I M, Ahsan Q 2015 Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption New Carbon Materials 30 167–175 DOI: 10.1016/S1872-5805(15)60182-2
[19] Binici H et al 2016 Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials Sustainable Cities and Society 20 17–26
[20] Mazarov I Yu, Timerbaev Nail F and Sadrtdinov A R (2018) Cogeneration power plant for processing biomass with the application of solid oxide fuel cells International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) DOI: 10.1109/FarEastCon.2018.8602699
[21] Merle J et al 2016 New biobased foams from wood byproducts Materials & Design 91 186–192 DOI: 10.1016/j.matdes.2015.11.076
[22] Antoniadou P et al 2015 Integrated evaluation of the performance of composite cool thermal insulation materials Energy Procedia 78 1581–1586 DOI: 10.1016/j.egypro.2015.11.214
[23] Matsagar V A 2016 Comparative performance of composite sandwich panels and non-composite panels under blast loading Materials and Structures 49(1-2) 611–629
[24] Gusev V G, Fomin A A and Sadrtdinov A R 2018 Adaptation of the Methodology of Designing Cylindrical Milling Processes to the Profile Milling Processes Solid State Phenomena 284 236–241 DOI: 10.4028/www.scientific.net/SSP.284.236
[25] Prosvirnikov D B et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 221 012009 DOI: 10.1088/1755-1315/221/1/012009
[26] Balo F 2015 Feasibility study of “green” insulation materials including tall oil: Environmental, economical and thermal properties Energy and Buildings 86 161–175
[27] Tuntsev D V et al 2018 Physical and Chemical Properties of Activated Lignocellulose and its Areas of Application Solid State Phenomena 284 779–784 DOI: 10.4028/www.scientific.net/SSP.284.779
[28] Hamilton A R et al 2013 Evaluation of the anisotropic mechanical properties of reinforced polyurethane foams Composites Science and Technology 87 210–217
[29] Diascorn N et al 2015 Polyurethane aerogels synthesis for thermal insulation-textural, thermal and mechanical properties J of Supercritical Fluids 106 76–84
[30] Zakharov O V and Kochetkov A V 2016 Minimization of the systematic error in centerless measurement of the roundness of parts Measurement Techniques 58 1317–1321
[31] Ovcharenko V E, Ivanov K V, Ivanov Y F et al 2017 Russ Phys J. 59 2114
[32] Bardovsky A, Gerasimova A, Aydunbekov A 2018 The principles of the milling equipment improvement MATEC Web of Conferences 224 224
[33] Dimov Yu V, Podashev D B 2017 Efficient Machining by Elastic Abrasive Wheels Russian Engineering Research 37(7) 655–659
[34] Sharkin O V et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 124 012165 DOI: 10.1088/1757-899X/124/1/012165

Acknowledgments
The work was carried out as part of the implementation of the “START-2” program of the Foundation for Assistance to the Development of Small Forms of Enterprises in the Scientific and Technical Sphere on the topic: “Development of technology and pilot plant for producing wood-filled thermal insulation materials” of state. contract No. 1492GS2 / 9650.