Data Article

LA-ICP-MS U-Pb zircon geochronology data of the Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe)

Réka Lukácsa,*, Marcel Guillongb, Jakub Sliwinskib, István Dunklc, Olivier Bachmannb, Szabolcs Harangia,d

a MTA-ELTE Volcanology Research Group, 1117, Pázmány Péter sétány 1/C, Budapest, Hungary
b Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, 8092 Zürich, Switzerland
c Sedimentology & Environmental Geology, Geoscience Center, University of Göttingen, Goldschmidtstrasse 3, D-37077 Göttingen, Germany
d Department of Petrology and Geochemistry, Eötvös Loránd University, 1117, Budapest Pázmány Péter sétány 1/C, Budapest, Hungary

\textbf{Article info}

\textbf{Article history:} Received 29 March 2018
Received in revised form 2 May 2018
Accepted 4 May 2018
Available online 16 May 2018

\textbf{Abstract}

This article provides LA-ICP-MS in-situ U-Pb zircon dates performed on single crystals from dacitic to rhyolitic ignimbrites of the Bükkalja Volcanic Field (Hungary, East-Central Europe) temporally covering the main period of the Neogene silicic volcanic activity in the Pannonian Basin. The data include drift-corrected, alpha dose-corrected, Th-disequilibrium-corrected, and filtered data for geochronological use. The data presented in this article are interpreted and discussed in the research article entitled "Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): eruption chronology, correlation potential and geodynamic implications" by Lukács et al. (2018) [1].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Earth Sciences
More specific subject area	Geochronology, Geochemistry
Type of data	Tables
How data was acquired	Laser-ablation inductively coupled mass spectrometry (LA-ICP-MS); Thermo Element XR Sector Field (SF)-ICP-MS with Resonetics Resolution 155 laser ablation system (ETH Zürich) and Thermo Element 2 SF-ICP-MS with Resonetics Resolution 155 laser ablation system (Göttingen University)
Data format	drift-corrected, filtered, alpha-dose and Th-disequilibrium corrected data in .xlsx format
Experimental factors	Zircon grains were extracted from bulk volcanic rocks (pumices, fiamme and bulk pyroclastic rocks)
Experimental features	Separated zircon grains were mounted in epoxy resin, polished and mapped by cathodoluminescence technique. Two samples were pre-treated by chemical abrasion before mounting [2]
Data source location	Bükkalja Volcanic Field, northern Hungary as reported in Table 1.
Data accessibility	Supplementary materials

Value of the data

- These data provide high-spatial resolution U-Pb dates of zircon grains based on $^{206}\text{Pb}/^{238}\text{U}$ isotope ratios of the silicic volcanic rocks from Bükkalja Volcanic Field (Hungary), allowing better constraints on eruption chronology.
- These new data can be compared to other in-situ zircon U-Pb dates in central Europe in order to correlate Miocene silicic pyroclastic horizons and ash-bearing sedimentary deposits in regional scale.
- These data are also valuable for detrital zircon geochronology in the Pannonian Basin system and other peri-Alpine basins to reveal redeposition of the pyroclastic material and help provenance determination.

1. Data

In this article, we report in-situ U-Pb zircon geochronological data from dacitic to rhyolitic pyroclastic rocks of the Bükkalja Volcanic Field, northern Hungary [1]. More than 1400 individual zircon in-situ analyses of single zircon grains (from 24 different samples) are listed. Data were obtained during 19 sessions along with common zircon reference materials (e.g. GJ-1, [3] 91500 [4]). The dataset contains the LA-ICP-MS raw and processed data.

2. Experimental design, materials and methods

2.1. Sample collection

Localities with GPS coordinates and lithology of the samples are shown in Table 1.
Table 1
Details of sample localities.

Sample name	Locality, layer	GPS coordinates	Lithological name of analysed sample
Harsány ignimbrite unit	Harsány ignimbrite unit		
Td-A: Td-A_CA	Tibolddaróc, layer A	47°55'31.59"N, 20°37'49.77"E	large pumice of rhyolite block-bearing lapilli tuff
Td-A_DX-46	Tibolddaróc, layer A	47°55'31.59"N, 20°37'49.77"E	large pumice of rhyolite block-bearing lapilli tuff
Tibolddaróc unit	Tibolddaróc unit		
Td-E	Tibolddaróc, layer E	47°55'36.64"N, 20°37'55.19"E	rhyolite lapilli tuff
Demjén ignimbrite unit	Demjén ignimbrite unit		
Td-H: Td-H_CA	Tibolddaróc, layer H	47°55'33.45"N, 20°37'55.55"E	rhyolite lapilli-bearing tuff
Td-H_DX-47	Tibolddaróc, layer H	47°55'33.45"N, 20°37'55.55"E	rhyolite lapilli-bearing tuff
FN-1	Felnémet, old quarry	47°56'0.09"N, 20°22'58.88"E	rhyolite lapilli tuff
DEMNE-1	Demjén, Nagyeresztvény quarry	47°50'1.51"N, 20°20'37.19"E	rhyolite lapilli tuff
DEMNE-1_DX-48	Demjén, Nagyeresztvény quarry	47°50'1.51"N, 20°20'37.19"E	rhyolite lapilli tuff
DEMSPA	Demjén, Spa side	47°50'16.54"N, 20°20'20.78"E	rhyolite lapilli tuff
DEMSPA_DX-7	Demjén, Spa side	47°50'16.54"N, 20°20'20.78"E	rhyolite lapilli tuff
TAR-3	Tar, Fehérkö quarry	47°57'9.88"N, 19°45'46.45"E	pumice of lapillituff
Td-L	Tibolddaróc, layer L	47°55'39.01"N, 20°37'59.68"E	rhyolite accretionary lapilli-bearing tuff
Bogács unit	Bogács unit		
Td-S	Tibolddaróc, layer M (UMPU)	47°55'41.49"N, 20°37'58.37"E	"black scoria clasts of dacite scoria-bearing lapilli tuff
Td-Hk1_CA	Tibolddaróc, layer M (UMPU)	47°55'41.49"N, 20°37'58.37"E	"grey scoria clasts of dacite scoria-bearing lapillit tuff
Td-H2N: Td-H2N_CA	Tibolddaróc, layer M (UMPU)	47°55'41.49"N, 20°37'58.37"E	"grey scoria clasts of dacite scoria-bearing lapillit tuff
Td-Fi; Td-Fi_CA	Tibolddaróc, old quarry, layer M (LWPU)	47°55'48.14"N, 20°37'56.92"E	rhyolite lapilli tuff
CSF-KEV	Cserépfalu, Geosite	47°56'34.42"N, 20°32'25.98"E	dacite scoria-bearing lapilli tuff
CSF-KEV_DX-05	Cserépfalu, Geosite	47°56'34.42"N, 20°32'25.98"E	dacite scoria-bearing lapilli tuff
Mangó ignimbrite unit	Mangó ignimbrite unit		
EG-2	Eger, Tihamér-quarry (upper, active)	47°53'8.04"N, 20°24'14.38"E	rhyolite lapilli tuff
EG-2_DX-56	Eger, Tihamér-quarry (upper, active)	47°53'8.04"N, 20°24'14.38"E	rhyolite lapilli tuff
SZOM	Szomolya, fairy chimneys	47°53'29.74"N, 20°28'40.71"E	rhyolite lapilli tuff
SZOM_DX-49	Szomolya, fairy chimneys	47°53'29.74"N, 20°28'40.71"E	rhyolite lapilli tuff
Mt-1	Cserépváralja, Mangó-tető	47°55'36.15"N, 20°34'17.11"E	large pumice of rhyolite block-bearing lapilli tuff
DEMHAN1	Demjén, Hangács, old quarry	47°50'32.89"N, 20°20'21.98"E	rhyolite lapilli tuff
CSkly1	Cserépfalu, Köporlyuk	47°56'40.26"N, 20°32'30.01"E	rhyolite accretionary lapilli bearing tuff
CsO1	Cserépfalu, Ördögcsúszda	47°57'34.69"N, 20°32'47.72"E	large pumice of rhyolite block-bearing lapilli tuff
2.2. Sample preparation

Zircon crystals were separated from the 63 to 125 μm size fraction of rock samples by standard gravity and magnetic separation methods. The amount of xenocrystic zircons was minimized by separating zircon grains solely from pumice clasts of the pyroclastic rock (when available), while in case of lapilli tuff samples we attempted to remove all lithic fragments before zircon separation.

In order to minimize the effects of lead loss, chemical abrasion (CA; [2]) was employed on two aliquots of zircons analysed by LA ICP-MS (TD-A_CA; TD-H_CA). Zircon grains of each sample were loaded into quartz crucibles and annealed in a high temperature furnace (900 °C) for 48 h. The zircons were transferred from the quartz crucibles into 3 ml Savillex PFA Hex beakers and concentrated HF + trace HNO₃ was added. The beakers were placed in a high pressure Parr bomb and the zircons were etched at 180 °C for 12–15 h. The zircons were rinsed with H₂O and acetone before being fluxed for 12 h in 6 N HCl at ~ 85 °C. The zircons were rinsed in H₂O and washed with acetone.

The separated zircon grains were mounted in 1 in. epoxy resin mount and polished to a 1 μm finish. Before dating, zircons were checked by optical microscopic and cathodoluminescence (CL) imaging. CL imaging was produced using an AMRAY 1830 SEM equipped with GATAN MiniCL and 3 nA, 10 kV setup at the Department of Petrology and Geochemistry, Eötvös University, Hungary and a JEOL JXA 8900 electron microprobe with 10 kV setup at the University of Göttingen.

2.3. LA-ICP-MS analyses

Analyses were performed in two laboratories: Department of Earth Sciences, ETH Zürich and Gōochron Laboratories, University of Göttingen. Analytical setups of the laboratories are presented in Tables 2 and 3.

2.4. Data handling

We filtered out the data that was > 10% discordant determined by the following equation:

\[
\text{Discordance} = 100 \times \frac{1 - \frac{\text{\(^{206}\text{Pb}}}{\text{\(^{238}\text{U}\)}}}{\text{\(^{207}\text{Pb}}}{\text{\(^{235}\text{U}\)}} \times \text{Age}}
\]
Validation reference materials were used to correct for alpha dose-dependent age offsets in non-CA treated zircons [18,19]. In short, accumulation of radiation damage in a zircon weakens the matrix, increasing the ablation rate and the effects of laser-induced elemental fractionation. This in turn imparts a differential downhole fractionation curve between calibration and validation reference materials, making low-dose (i.e. young and low-U) zircons appear anomalously young following downhole fractionation correction. This effect can be mitigated by modelling the dependence of age offset on total radiation dose, calculated from sample age and concentrations of U and Th [20]. Because thermal annealing repairs some matrix radiation damage [18,19], it is important that samples

Laboratory name	Department of Earth Sciences, ETH Zürich
Laser ablation system	launder technics 155, constant geometry, aerosol dispersion volume < 1 cm³
Make, Model & type	ASI Resolution 155
Ablation cell & volume	禽禽
Laser wavelength	193 nm
Pulse width	25 ns
Fluence	〜 2 J cm⁻²
Repetition rate	5 Hz
Spot size	30 μm
Ablation rate	〜 75 nm pulse⁻¹
Sampling mode/pattern	Single hole drilling, 5 cleaning pulses
Carrier gas	100% He
Ablation duration	40 s
Cell carrier gas flow	0.7 l/min
ICP-MS Instrument	Thermo Element XR SF-ICP-MS
Make, Model & type	禽禽
Sample introduction	禽禽
RF power	1500 W
Make-up gas flow	〜 0.95 l/min Ar (gas mixed to He carrier inside ablation cell funnel)
Detection system	禽禽
Masses measured	禽禽
Total integration time per reading	0.202 s
Dead time	8 ns
Typical oxide rate (ThO/Th)	0.18%
Typical doubly charged rate (Ba⁺⁺ /Ba⁺)	3.5%
Data blank	禽禽
Calibration strategy	禽禽
Gas blank	禽禽
Calibration strategy	禽禽
Reference material info	BAJ-1 used as primary calibration material in all sessions except for the two sessions with chemically abraded samples where chemically abraded BAJ-1 (BAJ-1_CA) was used as calibration reference material along with chemically abraded validation reference materials (Temora2, 91500, OD-3)
Data processing package used	禽禽
Mass discrimination	禽禽
Common Pb correction	禽禽
Uncertainty level & propagation	禽禽
References:	禽禽
Plešovice [7,8], 91500 [4,8], Temora2 [9], OD-3 [10], AUSZ7-1 [11] and AUSZ7-5 [12], LG_0302 (pers. comm. von Quadt, 2017)	
IOLITE v2.5, v3.4 [13,14] with VisualAge [15]	
Mass bias correction for all ratios normalized to calibration reference material	
No common-Pb correction applied	
Ages are quoted at 2 SE absolute, propagation is by quadratic addition. Reproducibility of reference material uncertainty (i.e. external uncertainty) is propagated.	
and reference materials are either all thermally annealed, or all not thermally annealed. The age offset vs. alpha dose model also become inaccurate if some zircons have experienced natural thermal annealing through contact metamorphism or burial. However, given that the samples in question are young and show no signs of contact metamorphism, we can exclude this possibility. Possible natural annealing of zircons was also excluded based on Raman spectroscopy (i.e. alpha dose concentrations and Raman band parameters of zircon crystals are in agreement; [21]). At ETH Zürich, the relationship between age offsets and alpha dose concentrations were modelled in each session and this model was used to calculate the alpha-dose corrected ages. At Göttingen University, measurements were alpha dose corrected based on a global model of validation reference material measurements of all sessions between 2014 and 2017. In both cases, Th disequilibrium correction was performed after alpha dose-correction using the algorithm of [22], assuming a constant Th/U partition coefficient ratio of 0.33 ± 0.063 (1σ) [23].
Acknowledgements

The study of the Miocene silicic volcanic rocks in the Pannonian basin belongs to the research project supported financially by the Hungarian National Research, Development and Innovation Fund (NKFIH) within two postdoctoral projects for Réka Lukács (PD112584 and PD 121048). Réka Lukács was supported also by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The GATAN MiniCL facility belongs to the KMP project nr. 4.2.1/B-10-2011-0002 supported by the European Union.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.013.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.05.013.

References

[1] R. Lukács, S. Harangi, M. Guillong, O. Bachmann, L. Fodor, Y. Buret, I. Dunkl, J. Sláma, I. Soós, J. Szepesi, Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe, Contr. Miner. Petrol. 170 (2015) 52.

[2] J.M. Mattinson, Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol. 220 (2005) 47–66.

[3] S.E. Jackson, N.J. Pearson, W.L. Grifflin, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology, Chem. Geol. 211 (2004) 47–69.

[4] M. Wiedenbeck, P. Allé, F. Corfu, W.L. Grifflin, M. Meier, F. Oberli, A. von Quadt, J.C. Roddick, W. Spiegel, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newslett. 19 (1995) 1–23.

[5] R. Lukács, S. Harangi, O. Bachmann, M. Guillong, M. Danišišk, Y. Buret, A. von Quadt, I. Dunkl, L. Fodor, J. Hasciánsk, I. Soós, J. Szepesi, Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Early to Mid-Miocene syn-extensional massive silicic volcanism in the Pannonian Basin (East-Central Europe): eruption chronology, correlation potential and geodynamic implications, Earth Sci. Rev. 179 (2018) 1–19.

[6] J.M. Mattinson, Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol. 220 (2005) 47–66.

[7] S.E. Jackson, N.J. Pearson, W.L. Grifflin, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology, Chem. Geol. 211 (2004) 47–69.

[8] M. Wiedenbeck, P. Allé, F. Corfu, W.L. Grifflin, M. Meier, F. Oberli, A. von Quadt, J.C. Roddick, W. Spiegel, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newslett. 19 (1995) 1–23.

[9] R. Lukács, S. Harangi, O. Bachmann, M. Guillong, M. Danišišk, Y. Buret, A. von Quadt, I. Dunkl, L. Fodor, J. Hasciánsk, I. Soós, J. Szepesi, Zircon geochronology and geochemistry to constrain the youngest eruption events and magma evolution of the Mid-Miocene ignimbrite flare-up in the Pannonian Basin, eastern central Europe, Contr. Miner. Petrol. 170 (2015) 52.
[15] J.A. Petrus, B.S. Kamber, VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction, Geostand. Geoanal. Res. 36 (2012) 247–270.

[16] J.B. Paces, J.D. Miller, Precise U-Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System, J. Geophys. Res. Solid Earth 98 (1993) 13997–14013.

[17] I. Dunkl, T. Mikes, K. Simon, H. von Eynatten, Brief introduction to the Windows program Pepita: data visualization, and reduction, outlier rejection, calculation of trace element ratios and concentrations from LA-ICP-MS data, in: P. Sylvester (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues, Miner. Assoc., Canada, 2008, pp. 334–340.

[18] E. Marillo-Sialer, J. Woodhead, J. Hergt, A. Greig, M. Guillong, A. Gleadow, N. Evans, C. Paton, The zircon ‘matrix effect’: evidence for an ablation rate control on the accuracy of U-Pb age determinations by LA-ICP-MS, J. Anal. At. Spectrom. 29 (2014) 981–989.

[19] E. Marillo-Sialer, J. Woodhead, J.M. Hanchar, S.M. Reddy, A. Greig, J. Hergt, B. Kohn, An investigation of the laser-induced zircon ‘matrix effect’, Chem. Geol. 438 (2016) 11–24.

[20] J. Sliwinski, M. Guillong, C. Liebske, I. Dunkl, A. von Quadt, O. Bachmann, Improved accuracy of LA-ICP-MS U-Pb ages in Cenozoic zircons by alpha dose correction, Chem. Geol. 472 (2017) 8–21.

[21] L. Nasdala, G. Irmer, D. Wolf, The degree of metamictization in zircons: a Raman spectroscopic study, Eur. J. Miner. 7 (1995) 471–478.

[22] U. Schärer, The effect of initial 230Th disequilibrium on young U-Pb ages: the Makalu case, Himalaya, Earth Planet. Sci. Lett. 67 (1984) 191–204.

[23] D. Rubatto, J. Hermann, Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks, Chem. Geol. 241 (2007) 38–61.