End of a Dark Age?

W.M. Stuckey1, Timothy McDevitt2, A.K. Sten3 and Michael Silberstein4

1 Department of Physics
Elizabethtown College
Elizabethtown, PA 17022
stuckeym@etown.edu

2 Department of Mathematical Sciences
Elizabethtown College
Elizabethtown, PA 17022
mcdevittt@etown.edu

3 Department of Physics
Elizabethtown College
Elizabethtown, PA 17022
stena@etown.edu

4 Department of Philosophy and Foundations of Physics
Committee for Philosophy and the Sciences
University of Maryland
College Park, MD 20742
msilbers@umd.edu

\textbf{Abstract.} We argue that dark matter and dark energy phenomena associated with galactic rotation curves, X-ray cluster mass profiles, and type Ia supernova data can be accounted for via small corrections to idealized general relativistic spacetime geometries due to disordered locality. Accordingly, we fit THINGS rotation curve data rivaling modified Newtonian dynamics, ROSAT/ASCA X-ray cluster mass profile data rivaling metric-skew-tensor gravity, and SCP Union2.1 SN Ia data rivaling ΛCDM without non-baryonic dark matter or a cosmological constant. In the case of dark matter, we geometrically modify proper mass interior to the Schwarzschild solution. In the case of dark energy, we modify proper distance in Einstein-deSitter cosmology. Therefore, the phenomena of dark matter and dark energy may be chimeras created by an errant belief that spacetime is a differentiable manifold rather than a disordered graph.
1. Introduction

Gravitational theory entered its current “dark age” in the early 1930s when galactic rotation curves (RC’s) and galactic cluster masses were observed to deviate from Newtonian expectations based on luminous matter and mass-to-luminosity ratios [1–4]. These are two aspects of the dark matter phenomenon [5], a phenomenon that was followed much more recently by “the discovery of the accelerating expansion of the Universe through observations of distant supernovae [6],” ushering in the phenomenon of dark energy. Both non-baryonic dark matter (DM) and a cosmological constant \(\Lambda \) (dark energy) play important roles in the concordance model \(\Lambda \text{CDM} \) [7] where baryonic matter comprises \(\sim 4\% \) of all the energy density in the universe, DM comprises \(\sim 23\% \), and dark energy comprises \(\sim 73\% \). The sum of these contributions results in a spatially flat, radiation-dominated universe transitioning to a spatially flat, matter-dominated universe which does a good job accounting for cosmological observations, e.g., anisotropies in the power spectrum of the CMB [8] and galactic distributions attributed to baryon acoustic oscillations [9]. However, 80 years after first being posited, there is still no independent verification of DM and galactic RC’s do not conform to the theoretical predictions of \(\Lambda \text{CDM} \) for the distribution of DM on galactic scales [10].

After listing DM’s attributes, i.e., dark, cold, abundant, stable, and dissipationless, Sean Carroll concludes [11], “So should we be surprised that we live in a universe full of dark matter? I’m going to say: yes.” Likewise, we have no consensus explanation for \(\Lambda \) of the size needed in \(\Lambda \text{CDM} \) [12–14]. In other words, while DM and \(\Lambda \) serve us well in \(\Lambda \text{CDM} \), they are also problematic. “As Tom Shanks once said, there are only two things wrong with \(\Lambda \text{CDM}: \Lambda \) and CDM” [15]. For these reasons and others, there are efforts to explain gravitational phenomena on astrophysical scales without DM or \(\Lambda \) [16–29]. However, as far as we know, there is no attempt to get rid of both DM and \(\Lambda \), which is what we propose.

Concerning our motivation for explaining dark matter and dark energy phenomena, we point out that we came to these problems from the foundations of physics. Our proposed fundamental ontology, Relational Blockworld (RBW), was originally conceived as an interpretation of quantum mechanics [30–32], but it quickly became apparent that it has implications for quantum gravity, unification and astrophysics [33,34]. According to RBW, reality is fundamentally discrete, so although the lattice geometry of Regge calculus [35–38] is typically viewed as an approximation to the continuous spacetime manifold of general relativity (GR), it could be that discrete spacetime is fundamental while “the usual continuum theory is very likely only an approximation” [39] and that is what we assume. Further, the links of a Regge calculus graph can connect non-neighboring points of the corresponding GR spacetime manifold leading to small corrections to the corresponding GR spacetime geometry. The direct connection between non-neighboring points on the spacetime manifold is referred to as “disordered locality” [40] and has been used on astrophysical scales to explain dark energy [41]. Our views deviate from the standard use of Regge calculus, so we refer to our approach as modified
Regge calculus (MORC). Thus, ours is a foundationally motivated approach to the problems of dark matter and dark energy.

2. The Model

RBW’s disordered locality is a variation on the old idea of direct particle interaction [42–47] whereby the naïve notion of a mediating quantum field between sources is eliminated. A discrete graphical spacetime is obviously going to create conflict with the differentiable spacetime manifold of GR, but particularly so when quantum matter-energy exchange occurs between sources at distances exceeding the validity of a flat spacetime approximation. Thus, we propose that Regge calculus be modified by adding links between non-neighboring points in the context of the corresponding continuous spacetime manifold. One would then solve Regge’s equations for the lattice modified per disordered locality. Of course, without some highly symmetric form of disordered locality, we expect the modified Regge’s equations would have to be solved numerically. Thus, we assume that the existence of modest disordered locality in the exact Regge calculus graph justifies small corrections to the corresponding approximate GR solution. In practice we imagine modified Regge calculus graphs with greatly simplifying assumptions would be used as approximations of the exact Regge calculus graph (also true of standard Regge calculus, obviously). When all link lengths are small, i.e., in the absence of disordered locality, these approximate Regge calculus solutions would then correspond to GR solutions and we have standard Regge calculus [48–50]. As with GR solutions, Regge calculus solutions are nontrivial and there is no reason to believe that finding extrema of a Regge graphical action modified per disordered locality would be any easier. Rather, at this point, we are simply operating on the assumption that a modified Regge graphical action and its extrema will make correspondence with Regge calculus and GR in the proper limits. Motivated by RBW’s prediction of disordered locality, we are systematically exploring possible geometric corrections to astrophysical phenomena that may be examples of disordered locality. It seems to us that dark energy and dark matter are two such examples. If we can find simple geometric corrections that resolve the problems of dark energy and dark matter, then we will use these as guides to produce a simplified cosmological Regge graphical action modified per disordered locality.

Accordingly, we introduced simple geometric corrections to idealized GR spacetime structure on large scales to account for observational data associated with dark matter, i.e., galactic RC’s and galactic cluster mass profiles, and dark energy, i.e., type Ia supernova data. First, we fit the SCP Union2.1 supernova data matching that of ΛCDM via a simple correction of proper distance in Einstein-deSitter (EdS) cosmology [51,52]. Specifically,

\[
D_L = (1 + z)D_p \rightarrow (1 + z)D_p \sqrt{1 + \frac{D_p}{A}}
\]

(1)
where D_L is the luminosity distance, z is the redshift, D_p is the proper distance obtained using the Regge calculus EdS solution, and A is a fitting parameter. From our Regge calculus EdS solution we have

$$D_p = \int \left(\frac{F'(b)}{bF(b)} \sqrt{1 + \frac{b^2}{4}} \right) \, db$$

(2)

where

$$F(b) = \frac{\sqrt{4 + b^2}}{2\pi \cos^{-1}(\frac{b^2}{4 + 2b^2}) - 2\cos^{-1}(\frac{\sqrt{4 + 3b^2}}{2\sqrt{2+b^2}})}$$

(3)

with $b = \frac{R a}{c}$. The type Ia supernova data to be fit is distance modulus (μ) versus redshift (z), i.e., $\mu = 5 \log (\frac{D_L}{10 \text{pc}})$. The MORC sum of squares error (SSE) for $\frac{\theta}{\delta} - 8$ is robust against variation in coordinate lattice spacing R and nodal mass m. We find the MORC best fit SSE = (1.630 ± 0.002) for $A = (7.48 \leftrightarrow 10.6)$ Gcy with a current Hubble constant of $H_o = (69.9 \leftrightarrow 75.1) \text{ km/s/Mpc}$ using the MORC values $R = (2.11 \leftrightarrow 8.39)$ Gcy and $m = (0.301 \leftrightarrow 17.5) \times 10^{51} \text{ kg}$. The best fit ΛCDM gave SSE = (1.639 ± 0.003) using $H_o = (68.9 \leftrightarrow 70.1) \text{ km/s/Mpc}$, $\Omega_M = (0.24 \leftrightarrow 0.28)$ and $\Omega_\Lambda = (0.72 \leftrightarrow 0.76)$. Both of these fits were superior to the EdS best fit with SSE = 2.67 and $H_o = 60.9 \text{ km/s/Mpc}$ (Figure 1). A recent study has found $H_o = 73.00 \pm 1.75 \text{ km/s/Mpc}$ [53]. [For details see references [51] and [52]. Note: Those fits were for the older SCP Union2 SN Ia data.]

In order to account for dark matter phenomena, we note that in addition to a graphical spacetime with disordered locality, RBW assumes relationalism/contextuality [54], i.e., mass is not an intrinsic property of matter, but is rather a characterization of spacetime geometry, itself a system of relations. As such, matter can simultaneously have different values of mass, each different value of mass associated with a different spacetime context. Like disordered locality, contextuality is not new to physics, e.g., it already exists in GR. Specifically, it is well known that the mass of the matter interior to the Schwarzschild solution (proper mass) can differ from the dynamic mass of that same matter per the exterior Schwarzschild metric [55,56]. While it may seem unnecessary to bring GR to bear on such rarified distributions of matter with non-relativistic rotation speeds ($v \ll c$), Cooperstock et al. used GR instead of Newtonian gravity in fitting galactic RC’s and found that the non-luminous matter in galaxies “is considerably more modest in extent than the DM extent claimed on the basis of Newtonian gravitational dynamics” [57–59]. Thus, we used contextuality and disordered locality to motivate a simple geometric modification to proper mass to obtain dynamic mass for MORC fits [60] of twelve high-resolution galactic RC’s from The HI Nearby Galaxy Survey [61] (THINGS) used by Gentile et al. to explore modified Newtonian dynamics (MOND) fits [62]. Specifically, we modified the proper mass ΔM_p of each (discrete) annulus of galactic matter to obtain its dynamic mass ΔM (i^{th} component, where bulge, disk, and gas are the possible components) per

$$\Delta M_i = \delta_i(\frac{r_2^2 + r_1^2}{2})^\xi \Delta M_p$$

(4)
with δ_i and ξ (same for all components) fitting parameters. The THINGS data to be fit is rotation velocity versus orbital radius. Gentile et al. describe these data as “the most reliable for mass modelling, and they are the highest quality RC’s currently available for a sample of galaxies spanning a wide range of luminosities.” MORC fits rival MOND fits which were deemed “very successful” for these data [62] (Figure 2).

Finally, we used this same technique to fit the mass profiles of the eleven X-ray clusters found in Brownstein [63] as obtained from Reiprich and Böhringer [64,65] using combined ROSAT (ROentgen SATellite) and ASCA (Advanced Satellite for Cosmology and Astrophysics) data. Specifically, we used the continuum version of Eq. (4)

$$M(r) = \int_0^r \delta r^2 dM = 4\pi \int_0^r \delta r^2 \rho(r') r'^2 dr'$$

(5)

to modify the proper mass of each annulus of intracluster medium gas to obtain its dynamic mass. The X-ray cluster mass profile data to be fit is mass versus radius. MORC fits rival metric-skew-tensor gravity (MSTG) fits which bested MOND and scalar-tensor-vector gravity fits of these same data [63] (Figure 3). [For details on dark matter fits see reference [60].]

3. Conclusion

The fundamental ontological entity per RBW is the “spacetimesource element.” A spacetimesource element is of space and time, not in space and time, and its properties are determined relationally and contextually per its classical context. The distribution of spacetimesource elements in their classical context is given by an adynamical global constraint that underwrites quantum physics. This view leads to a modified Regge calculus (MORC). We have shown that dark matter and dark energy phenomena associated with galactic rotation curves, X-ray cluster mass profiles, and type Ia supernova data can be accounted for via small corrections to GR spacetime geometries motivated by RBWs disordered locality and relationalism/contextuality as implemented by MORC. Accordingly, the phenomena of dark matter and dark energy may be chimeras created by an errant belief that spacetime is a differentiable manifold instead of a disordered graph.

References

[1] Oort, J.H.: The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bulletin of the Astronomical Institutes of the Netherlands 6, 249-287 (1932).
[2] Zwicky, F.: Spectral displacement of extra galactic nebulae. Helvetica Physica Acta 6, 110-127 (1933).
[3] Zwicky, F.: On the masses of nebulae and clusters of nebulae. The Astrophysical Journal 86, 217-246 (1937).
[4] Rubin, V., and Ford, K.: Rotation of the Andromeda nebula from a spectroscopic survey of emission regions. The Astrophysical Journal 159, 379-403 (1970).
End of a Dark Age?

[5] Garrett, K., and Duda, G.: Dark Matter: A Primer. Advances in Astronomy 2011, doi:10.1155/2011/968283 (2011).
[6] Nobel Prize in Physics citation 2011 http://www.nobelprize.org/
[7] Planck Collaboration: Planck 2013 results. XVI. Cosmological parameters. Astronomy & Astrophysics 571, DOI: 10.1051/0004-6361/201321591 (2014) http://arxiv.org/abs/1303.5076
[8] Hu, W.: Wandering in the Background: A Cosmic Microwave Background Explorer. PhD Thesis (1995) http://arxiv.org/http://arxiv.org/abs/astro-ph/9508126.
[9] Eisenstein, D., Seo, H., and White, M.: On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter. The Astrophysical Journal 664, 660-674 (2007) http://arxiv.org/abs/astro-ph/0604361
[10] Gentile, G., Burkert, A., Salucci, P., Klein, U., and Walter, F.: The Dwarf Galaxy DDO 47 as a Dark Matter Laboratory: Testing Cusps Hiding in Triaxial Halos. The Astrophysical Journal Letters 634. doi:10.1086/498939 (2005) http://arxiv.org/pdf/astro-ph/0506538.pdf
[11] Carroll, S.: Why Is There Dark Matter? (July 2015) http://www.preposterousuniverse.com/blog/2015/07/07/why-is-there-dark-matter/
[12] Carroll, S.: The Cosmological Constant. http://arxiv.org/abs/astro-ph/0005265 (section 4)
[13] Weinberg, S.: The Cosmological Constant Problems. http://arxiv.org/abs/astro-ph/0005265
[14] Bianchi, E., Rovelli, C., and Kolb, R.: Is dark energy really a mystery? Nature 466, 321-322 (July 2010).
[15] Bull, P., et al.: Beyond ΛCDM: Problems, solutions, and the road ahead. http://arxiv.org/abs/1512.05356, p 67
[16] Garfinkle, D.: Inhomogeneous spacetimes as a dark energy model. Classical and Quantum Gravity 23, 4811-4818 (2006). http://arxiv.org/abs/gr-qc/0605088
[17] Paranjape, A., and Singh, T.P.: The Possibility of Cosmic Acceleration via Spatial Averaging in Lemaitre-Tolman-Bondi Models. Classical and Quantum Gravity 23, 6955-6969 (2006). http://arxiv.org/abs/astro-ph/0605195
[18] Tanimoto, M., and Nambu, Y.: Luminosity distance-redshift relation for the LTB solution near the center. Classical and Quantum Gravity 24, 3843-3857 (2007). http://arxiv.org/abs/gr-qc/0703012
[19] Clarkson, C., and Maartens, R.: Inhomogeneity and the foundations of concordance cosmology. Classical and Quantum Gravity 27, 124008 (2010). http://arxiv.org/abs/1005.2165
[20] Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. The Astrophysical Journal 270, 365-370 (1983).
[21] Milgrom, M: MOND theory. Canadian Journal of Physics 93, 107-118 (2015) http://arxiv.org/abs/1404.7661
[22] Sanders, R.H., and McGaugh, S.: Modified Newtonian Dynamics as an Alternative to Dark Matter. Annual Reviews of Astronomy & Astrophysics 40, 263-317 (2002) http://arxiv.org/abs/astro-ph/0204521
[23] Bekenstein, J.D.: Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Physical Review D 70, 083509 (2004).
[24] Sanders, R.H.: A tensor-vector-scalar framework for modified dynamics and cosmic dark matter. Monthly Notices of the Royal Astronomical Society 363, 459-468 (2005).
[25] Zlosnik, T., Ferreira, P., and Starkman, G.: Modifying gravity with the aether: An alternative to dark matter. Physical Review D 75, 044017 (2007) http://arxiv.org/abs/astro-ph/0607411
[26] Zhao, H.S., and Li, B.: Dark Fluid: A Unified framework for Modified Newtonian Dynamics, Dark Matter, and Dark Engery. The Astrophysical Journal 712, doi:10.1088/0004-637X/712/1/130 (2010).
[27] Blanchet, L., and Le Tiec, A.: Model of dark matter and dark energy based on gravitational polarization. Physical Review D 78, 024031 (2008).
[28] Brownstein, J.R., and Moffat, J.W.: Galaxy Rotation Curves Without Non-Baryonic Dark Matter. The Astrophysical Journal 636, 721-741 (2006).
End of a Dark Age?

[29] Brownstein, J.R., and Moffat, J.W.: Galaxy Cluster Masses Without Non-Baryonic Dark Matter. Monthly Notices of the Royal Astronomical Society 367, 527-540 (2006) http://arxiv.org/abs/astro-ph/0507222

[30] Stuckey, W.M., Silberstein, M., and McDevitt, T.: Relational Blockworld: Providing a Realist, Psi-Epistemic Account of Quantum Mechanics. International Journal of Quantum Foundations 1, 123-170 (2015) http://www.ijqf.org/wps/wpcontent/uploads/2015/06/IJQF2015v1n3p2.pdf

[31] Stuckey, W.M., Silberstein, M., and Cifone, M.: Reconciling spacetime and the quantum: Relational Blockworld and the quantum liar paradox. Foundations of Physics 38, 348-383 (2008) http://arxiv.org/abs/quantph/051009

[32] Silberstein, M., Stuckey, W.M., and Cifone, M.: Why quantum mechanics favors adynamical and acausal interpretations such as Relational Blockworld over backwardly causal and time-symmetric rivals. Studies in History & Philosophy of Modern Physics 39(4), 736-751 (2008).

[33] Silberstein, M., Stuckey, W.M., and McDevitt, T.: Being, Becoming and the Undivided Universe: A Dialogue between Relational Blockworld and the Implicate Order Concerning the Unification of Relativity and Quantum Theory. Foundations of Physics 43, 502-532 (2013) http://arxiv.org/abs/1108.2261

[34] Stuckey, W.M., Silberstein, M., and McDevitt, T.: An Adynamical, Graphical Approach to Quantum Gravity and Unification: In: Licata, I. (ed.) The Algebraic Way: Space, Time and Quantum Beyond Peaceful Coexistence, pp 499-544, Imperial College Press, London (2016) http://arxiv.org/abs/0908.4348

[35] Regge, T.: General relativity without coordinates. Nuovo Cimento 19, 558571 (1961).

[36] Misner, C.W., Thorne, K.S., and Wheeler, J.A.: Gravitation. W.H. Freeman, San Francisco (1973), Chapter 42, p 1166.

[37] Barrett, J.W.: The geometry of classical Regge calculus. Classical and Quantum Gravity 4, 15651576 (1987).

[38] Williams, R.M., and Tuckey, P.A.: Regge calculus: a brief review and bibliography. Classical and Quantum Gravity 9, 14091422 (1992).

[39] Feinberg, G., Friedberg, R., Lee, T.D., and Ren, H.C.: Lattice Gravity Near the Continuum Limit. Nuclear Physics B245, 343-368 (1984).

[40] Caravelli, F., and Markopoulou, F.: Disordered Locality and Lorentz Dispersion Relations: An Explicit Model of Quantum Foam. Physical Review D 86, 024019 (2012) http://arxiv.org/pdf/1201.3206v1.pdf

[41] Prescod-Weinstein, C., and Smolin, L.: Disordered Locality as an Explanation for the Dark Energy. Physical Review D 80, 063505 (2009) http://arxiv.org/pdf/0903.5303.pdf

[42] Wheeler, J.A., and Feynman, R.P.: Classical Electrodynamics in Terms of Direct Interparticle Action. Reviews of Modern Physics 21, 425433 (1949).

[43] Hawking, S.W.: On the Hoyle-Narlikar theory of gravitation. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 286, 313-320 (1965).

[44] Davies, P.C.W.: Extension of Wheeler-Feynman quantum theory to the relativistic domain I. Scattering processes. Journal of Physics A: General Physics 4, 836-845 (1971).

[45] Davies, P.C.W.: Extension of Wheeler-Feynman quantum theory to the relativistic domain II. Emission processes. Journal of Physics A: General Physics 5, 1025-1036 (1972).

[46] Hoyle, F. and Narlikar, J.V.: Cosmology and action-at-a-distance electrodynamics. Reviews of Modern Physics 67, 113-155 (1995).

[47] Narlikar, J.V.: Action at a Distance and Cosmology: A Historical Perspective. Annual Review of Astronomy and Astrophysics 41, 169-189 (2003).

[48] Brewin, L: Is the Regge calculus a consistent approximation to general relativity? General Relativity & Gravitation 32, 897-918 (2000).

[49] Miller, M.A.: Regge calculus as a fourth-order method in numerical relativity. Classical and Quantum Gravity 12, 3037-3051 (1995).

[50] Brewin, L., and Gentle, A.P.: On the convergence of Regge calculus to general relativity. Classical
End of a Dark Age?

and Quantum Gravity 18, 517-526 (2001).

[51] Stuckey, W.M., McDevitt, T., and Silberstein, M.: Modified Regge Calculus as an Explanation of Dark Energy. Classical and Quantum Gravity 29, 055015 (2012) http://arxiv.org/abs/1110.3973

[52] Stuckey, W.M., McDevitt, T., and Silberstein, M.: Explaining the Supernova Data without Accelerating Expansion. International Journal of Modern Physics D 21(11), 1242021 (2012).

[53] Riess, A.G., Macri, L.M., Hoffmann, S.L., Scolnic, D., Casertano, S., Filippenko, A.V., Tucker, B.E., Reid, M.J., Jones, D.O., Silverman, J.M., Chornock, R., Challis, P., Yuan, W., Brown, P.J., and Foley, R.J.: A 2.4% Determination of the Local Value of the Hubble Constant. (2016) http://arxiv.org/abs/1604.01424

[54] Aufseves, A., and Grangier, P.: Contexts, Systems and Modalities: a new ontology for quantum mechanics. http://arxiv.org/abs/1409.2120

[55] Wald, R.: General Relativity. University of Chicago Press, Chicago (1984), p 126.

[56] Stuckey, W.M.: The observable universe inside a black hole. American Journal of Physics 62, 788-795 (1994).

[57] Magalhaes, N.S., and Cooperstock, F.I.: Galactic mapping with general relativity and the observed rotation curves. (2015) http://arxiv.org/abs/1508.07491

[58] Carrick, J.D., and Cooperstock, F.I.: General relativistic dynamics applied to the rotation curves of galaxies. Astrophysics and Space Science 337, 321-329 (2012).

[59] Cooperstock, F.I., and Tieu, S.: Galactic dynamics via general relativity – A compilation and new results. International Journal of Modern Physics A 13, 2293-2325 (2007).

[60] Stuckey, W.M., McDevitt, T., and Silberstein, M.: Modified Regge Calculus as an Explanation of Dark Matter. Under review at Physical Review D (2016) http://arxiv.org/abs/1509.09288

[61] Walter, F., Brinks, E., de Blok, W., Bigiel, F., Kennicutt, R., Thornley, M., and Leroy, A.: THINGS: The HI Nearby Galaxy Survey. The Astronomical Journal 136, doi:10.1088/0004-6256/136/6/2563 (2008).

[62] Gentile, G., Famaey, B., and de Blok, W.: THINGS about MOND. Astronomy and Astrophysics A 76, 527-538 (2011) http://arxiv.org/abs/0810.2125v1

[63] Brownstein, J.R.: Modified Gravity and the phantom of dark matter. PhD Thesis (2009) http://arxiv.org/abs/0908.0040

[64] Reiprich, T.H: Cosmological Implications and Physical Properties of an X-Ray Flux-Limited Sample of Galaxy Clusters, PhD Thesis (2001).

[65] Reiprich, T.H., and Böhringer, H.: The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters. The Astrophysical Journal 567, 716-740 (2002).
Figure 1. Type Ia Supernova Data: Plot of SCP Union2.1 SN Ia data (distance modulus versus redshift) along with the best fits for EdS (green), ΛCDM (blue), and MORC (red). The MORC curve is terminated at $z = 1.4$ in this figure so that the ΛCDM curve is visible underneath.

Figure 2. Galactic Rotation Curves: This and the following eleven graphs show MORC (solid blue) and MOND (dashed red) fits of THINGS galactic RC’s (with error bars). Disk, gas and bulge curves are labeled. Bulge curves are not always available. Vertical axis is rotation velocity in km/s and horizontal axis is orbital radius in kpc. The mean square error (MSE) for this fit is 12.1 (km/s)2 for MORC and 34.4 (km/s)2 for MOND.

Other eleven graphs at http://arxiv.org/abs/1509.09288
Figure 3. Mass Profiles of X-ray Clusters: This and the following ten log-log plots show MORC and MSTG fits of X-ray cluster mass profiles (compiled from ROSAT and ASCA data). Vertical scale is in solar masses and horizontal scale is in kpc. MORC is increasing the gas mass (triangles) to fit the dynamic mass (squares). MSTG is decreasing the dynamic mass to fit the gas mass. The sizes of the objects are approximately equal to their errors. MORC fit is the upper pair of lines (connecting fit points) over the squares where line separation corresponds to error. MSTG fit is the lower pair of lines (connecting fit points) over the triangles where line separation corresponds to error. MSE is $(\Delta \log (M))^2$ and for this fit $\text{MORC MSE} = 0.00369$ and $\text{MSTG MSE} = 0.0302$.

Other ten graphs at http://arxiv.org/abs/1509.09288