THE TeV BINARY HESS J0632+057 IN THE LOW AND HIGH X-RAY STATE

NANDA REA1 AND DIEGO F. TORRES1,2
1 Institut de Ciències de l’Espai (IEEC-CSIC), Campus UAB, Torre C5, 2a planta, 08193 Barcelona, Spain
2 Institut Català de Recerca i Estudis Avançats (ICREA)

Received 2011 May 3; accepted 2011 June 24; published 2011 July 20

ABSTRACT

We report on a 40 ks Chandra observation of the TeV emitting high-mass X-ray binary HESS J0632+057 performed in 2011 February during a high state of X-ray and TeV activity. We have used the ACIS-S camera in continuous clocking mode to search for a possible X-ray pulsar in this system. Furthermore, we compare the emission of the source during this high state, with its X-ray properties during a low state of emission, caught by a 47 ks XMM-Newton observation on 2007 September. We did not find any periodic or quasi-periodic signal in any of the two observations. We derived an average pulsed fraction 3σ upper limit for the presence of a periodic signal of $\lesssim 35\%$ and 25% during the low and high emission states, respectively (although this limit is strongly dependent on the frequency and the energy band). Using the best X-ray spectra derived to date for HESS J0632+057, we found evidence for a significant spectral change between the low and high X-ray emission states, with the absorption value $N_H \simeq (2.1-4.3) \times 10^{21} \text{ cm}^{-2}$ and $\Gamma \simeq 1.18-1.61$. In contrast to what has been observed in other TeV binaries, it seems that in this source the higher the flux, the softer the X-ray spectrum.

Key words: stars: individual (HESS J0632+057) – X-rays: binaries

Online-only material: color figures

1. INTRODUCTION

X-ray binary systems are one of the few astronomical objects that, under some conditions, are expected to appear as point-like TeV emitting sources when observed by instruments having the current sensitivity. That is the case for the three well-established members of the class, PSR B1259–63 (Aharonian et al. 2005a), LS 1+61°303 (Albert et al. 2006), and LS 5039 (Aharonian et al. 2005b, 2006). Among these three systems, PSR B1259–63 is composed of a 48 ms pulsar in a 3.4 yr orbit with a Be companion, and LS 1+61°303 and LS 5039 have ~ 26 and 4 day orbital periods, and host a Be and an O star, respectively. Unfortunately the nature of the compact objects in these two binary systems is still unknown.

Of the many tens of unidentified sources discovered in the Galactic Plane HESS survey (the survey done with the High Energy Stereoscopic System), HESS J0632+057 is one of only two unidentified very high energy gamma-ray sources which appear to be point-like within the experimental resolution (the other one is coincident with the gravitational center of the Milky Way; Aharonian et al. 2007). Follow-up observations of HESS J0632+057 with XMM-Newton have revealed an X-ray source (XMMU J063259.3+054801) coincident with the TeV detection as well as with the massive star MWC 148 (spectral type B0pe), at a distance of ~ 1.5 kpc (Hinton et al. 2009). The chance coincidence of a massive star within the 1 arcsec error box of the brightest X-ray source in the XMM-Newton observation has been quantified by the latter authors to be of the order of 10^{-6}. XMMU J063259.3+054801 has in addition been found to have a hard non-thermal X-ray spectrum and significant variability on hour timescales. These features are similar to those found in the many X-ray observations of LS I+61°303 and LS 5039 (Sidoli et al. 2006; Esposito et al. 2007; Kishishita et al. 2009; Rea et al. 2010, 2011; and references therein), strengthening the association between the TeV source and XMMU J063259.3+054801/MCW 148, and hence establishing the possibility for HESS J0632+057 to be the fourth TeV binary.

Observations conducted with the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA) revealed the radio counterpart of HESS J0632+057: a point-like, low-flux, variable radio source at the position of MCW 148 was detected in both 1280 MHz with GMRT and 5 GHz with VLA (non-simultaneously), with an average spectral index of -0.6 which can be generated by synchrotron-emitting electrons (Skilton et al. 2009).

Subsequent observations of HESS J0632+057 with the VERITAS array detected no significant signal from it, excluding that the source is a steady gamma-ray emitter (Acciari et al. 2009; Maier et al. 2009). Simultaneous with these TeV observations, an X-ray campaign conducted with the Swift-X Telescope (XRT) revealed a significant variability in the X-ray emission (Falcone et al. 2010). From this early X-ray monitoring there was no signature of an orbital periodicity for HESS J0632+057, however, assuming that the spectral variability is due to an orbital modulation, the orbital period was estimated to be larger than ~ 54 days. A similar conclusion was reached by Aragona et al. (2010) through optical spectroscopy of the massive star. Confirming the previous constraints, Bongiorno et al. (2011) recently reported an orbital period of 320 ± 5 days, using data from the continuing long-term Swift-XRT monitoring campaign. Analogous to LS I+61°303 and LS 5039, the compact object hosted in HESS J0632+057 might then be a young non-accreting pulsar, or an accreting compact object (black hole or neutron star) driving a jet.

On 2011 January 23, the Swift-XRT detected a rise in the X-ray flux of HESS J0632+057 (Falcone et al. 2011). The flux increase was a factor of ~ 3, which appeared similar to the rises that occurred ~ 320 and ~ 640 days before. We now know that this is the orbital period of the binary (Bongiorno et al. 2011). Motivated by this increase in X-ray activity, TeV observations were conducted by VERITAS on 2011 February 7–8, which detected the source at higher TeV flux than during the previous VERITAS campaigns (Ong 2011). These results were soon confirmed by the MAGIC collaboration (Mariotti 2011). Contemporary with the X-ray increase, further radio observations

© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.
were also conducted, which suggested the presence of slightly extended radio emission at milliarcsec scales coincident with the position of the Be companion (Moldon et al. 2011). However, simultaneous optical observations conducted from 2011 January 5 to February 24 revealed no significant change in the radial velocities of the Be companion star (Casares et al. 2011).

During this high TeV/X-ray emission period we have conducted a 40 ks observation with the Chandra X-Ray Observatory, kindly granted to us using the Discretionary Director Time (DDT). Here we report on the spectral and timing characteristics of HESS J0632+057 during this high X-ray emission state, and we compare them with an archival XMM-Newton observation (Hinton et al. 2009) performed during a low X-ray emission state.

2. OBSERVATIONS AND DATA ANALYSIS

The Advanced CCD Imaging Spectrometer (ACIS) camera on board the Chandra observatory (Weisskopf et al. 2000) observed HESS J0632+057 on 2011 February 13 (start time 21:15:13 (UT); ObsID 13237) for an exposure time of 40 ks in continuous clocking (CC) mode (FAINT). We have chosen this mode since it provides a time resolution of 2.85 ms, suitable for searching for fast pulsations. The CC mode also provides imaging along a single direction. The data analysis mimics that performed in Rea et al. (2010, 2011). Data were reprocessed using the CIAO software (ver. 4.3) and the Chandra calibration files (CALDB ver. 4.4.3). The source was positioned in the background-illuminated ACIS-S3 CCD at the nominal target position (R.A. 06:32:59.30, decl. +05:48:01.00; Hinton et al. 2009). Standard processing of the data was performed by the Chandra X-ray Center to level 1 and level 2.

We corrected the times for the variable delay due to the spacecraft dithering and telescope flexure, starting from level 1 data and assuming that all photons were originally detected at the target position. We excluded hot pixels, bad columns, and possible afterglow events. Finally, photon arrival times are in Barycentric Dynamical Time (TDB) and were referred to the barycenter of the solar system using the JPL-DE405 ephemeris.

Events in the 0.3–10 keV energy range were extracted from a small region of 5 × 5 pixels around the source position for timing analysis, so as to reduce the background contamination in the timing analysis. The source spectrum was instead extracted from a rectangular region of 5 × 25 pixels around the source position, with the background being taken independently from a source-free region in the same chip.

Response matrix files (RMFs) and ancillary response files (ARFs) were produced first, creating a weighted image, rebinning by a factor of eight. We used this re-binned image to build the RMF file using the mkasimr command, with an energy grid ranging from 0.3 to 10 keV in 5 eV increments. Using this RMF and the aspect histogram created with the aspect tool for this observation (asphist), we generated the appropriate ARF file for the source position. The source ACIS-S count rate in the 0.3–10 keV energy band was 0.265 ± 0.004 counts s\(^{-1}\) (all errors in the text are reported at 90% confidence level, unless otherwise specified).

We have also re-analyzed the XMM-Newton observation reported in Hinton et al. (2009), in search for X-ray pulsations, and with the aim of comparing the low and high X-ray state of HESS J0632+057 using the two best available spectra. The XMM-Newton Observatory (Jansen et al. 2001) observed HESS J0632+057 on 2007 September 17 (start time 01:22:50 (UT); ObsID 0505200101) for an exposure time of 47 ks with the EPIC-pn in Prime Full Extended Windowed mode. The addition of the two EPIC-MOS cameras gave consistent results; we then decided to use only the pn camera. This observing mode results in a timing resolution of 199.2 ms, a 27.2 × 26.2 arcmin\(^2\) field of view, and only 2.3% of out-of-time events. Data have been processed using SAS version 11.0.0 with the most updated calibration files (CCF) available at the time the reduction was performed (2011 April). Standard data screening criteria were applied in the extraction of scientific products.

The last part of the observation was affected by proton flares which we have removed in our final products, except for the event file used for the pulsation search (which is not affected by such kind of flares), in order to use as much source photons as possible. Cleaning the events from the proton flare results in a good exposure time for spectral analysis of 27 ks.

We have extracted the source photons from a circular region of 15″ (such as to avoid any chip gaps), centered on the source point-spread function, and the background from a larger region far from the source but in the same CCD (we have re-scaled the background spectrum to take into account a different extraction region with respect to the source one). For the spectral analysis we used only photons with PATTERN ≤ 4, and FLAG = 0. The source EPIC-pn count rate in the 0.3–10 keV energy band was 0.064 ± 0.002 counts s\(^{-1}\).

In Figure 1 we report on the light curves of the two observations we study here, which clearly show also the short-term X-ray variability of HESS J0632+057 (see also Hinton et al. 2009; Acciari et al. 2009; Falcone et al. 2010; Bongiorno et al. 2011).

3. RESULTS

3.1. Timing Analysis: Search for Pulsations

We searched for periodic and quasi-periodic signals in the Chandra and XMM-Newton observations performing a series of fast Fourier transforms (FFTs; van der Klis 1989). Given the length of our two observations (~40 ks each), the timing resolution of the Chandra (2.85 ms) and XMM-Newton (199.2 ms) observations, and the number of counts of our observations, we could search for periodic signals in the 0.005–175 Hz and 0.005–8 Hz frequency range, respectively. Furthermore, for both data sets we performed the search in the 0.3–10 keV energy band, and also divided the entire data set into two energy bands (0.3–2 and 2–10 keV).

For the Chandra data we performed an average over seven FFTs with a bin time of 2.85 ms (see Figure 2 right column), resulting in about 2,097,152 frequency bins for each of the seven averaged power spectrum. The resulting power spectrum had a \(\chi^2\) distribution with 14 degrees of freedom (dof).

For the XMM-Newton data we could perform a single FFT with a bin time of 60 ms (oversampling the timing resolution of the instrument by a factor of three), resulting in 716,732 frequency bins in the power spectrum. The resulting power spectrum had a \(\chi^2\) distribution with 2 dof (see Figure 2, left column).

Note that given the long orbital period of HESS J0632+057 (Bongiorno et al. 2011) with respect to the exposure time of the observations we report here, we do not need to de-modulate

5 Note that in the search we have oversampled the XMM-Newton timing resolution by a factor of three to reach the 8 Hz upper bound (see Israel & Stella 1996).

4 We could not use less FFTs because of computing limitations.
Figure 1. XMM-Newton (left panel) and Chandra (right panel) background-subtracted light curves in the 0.3–10, 0.3–2, and 2–10 keV band, binned at 1400 s and 700 s, respectively.

(A color version of this figure is available in the online journal.)

Figure 2. Left column: timing analysis of the XMM-Newton data taken during a low-intensity state. Right column: same as the left column but for the new Chandra data taken during a high-intensity state of the source. Top panels: power spectra of the two observations with the relative 3σ coherent signal detection limit. Bottom panels: 3σ limits on the pulsed fraction of a detectable signal in different energy bands.

(A color version of this figure is available in the online journal.)

the photon arrival times for the orbital motion as we did for the 4 day TeV binary LS 5039 (Rea et al. 2011).

For calculating the 3σ detection upper limits reported in Figure 2 we took into account the number of bins searched, the different dof of the noise power distribution, and the red noise (Vaughan et al. 1994; Israel & Stella 1996; Rea et al. 2010). We did not find any periodic or quasi-periodic signal in any of the two observations. As a final try, we attempted a joint
search using both observations in a single power spectrum, with again no detection of any signal. However, note that the ~3 yr time span between the two observations would likely hamper the detection of a periodic signal without the knowledge of its first derivative, and of the system’s precise orbital parameters.

We computed the 3σ upper limits on the amplitude of a sinusoidal signal (which we define as pulsed fraction (PF)), according to Vaughan et al. (1994) and Israel & Stella (1996). These limits range in the 0.3–10 keV energy band between PF < 22%–34% (0.005–175 Hz) and 32%–48% (0.005–8 Hz), in the high and low X-ray states, respectively (see Figure 2, bottom panels). We also infer the same limits as a function of the energy band, which given the lower number of counts, causes the energy-dependent PF limits to be slightly larger than those derived using the whole energy range in the two data sets.

3.2. Spectral Analysis

For the spectral analysis we binned both the Chandra and XMM-Newton spectra such as to have at least 50 counts per spectral bin (see Figure 3). We first fitted both spectra together with an absorbed power law (phabs and powerlaw models under the XSPEC version 12.5.0 spectral modeling program). All the absorption values we report here refer to abundances from Anders & Grevesse (1989) and photoelectric scattering cross section from Balucinska-Church & McCammon (1998). Fitting the two spectra with the same model, with all parameters except the normalization value equal among the two spectra, results in a $\chi^2_{\nu} = 1.07$ (190 dof); with $N_H = (4.0 \pm 0.2) \times 10^{21}$ cm$^{-2}$, $\Gamma = 1.56 \pm 0.03$. Although the χ^2_{ν} value is acceptable, the residuals of the XMM-Newton observation are clearly not satisfactory (see Figure 3). This mirrors the fact that the large difference in counts among the two spectra make such a joint spectral fitting (and consequently the χ^2_{ν} value) dominated by the Chandra data.

To solve the problem of having such bad residuals, we analyze possible spectral variabilities between the two spectra. In particular, we re-fit the spectra keeping the absorption value (N_H) equal among the two spectra, and the power-law photon index (Γ) and normalization free to vary. Although resulting in an acceptable $\chi^2_{\nu} = 1.07$ (189 dof); with $N_H = (4.0 \pm 0.2) \times 10^{21}$ cm$^{-2}$, $\Gamma_{\text{cxo}} = 1.57 \pm 0.03$ and $\Gamma_{\text{xmm}} = 1.46 \pm 0.05$, the residuals of the XMM-Newton observation were again not good (see Figure 3). We then did a further trial keeping the Γ equal while leaving the N_H and normalization free. Again, we get an acceptable $\chi^2_{\nu} = 1.08$ (189 dof); with $N_{H,\text{cxo}} = (4.0 \pm 0.2) \times 10^{21}$ cm$^{-2}$, $N_{H,\text{xmm}} = (3.4 \pm 0.3) \times 10^{21}$ cm$^{-2}$, and $\Gamma = 1.56 \pm 0.03$, but bad residuals.

Leaving all parameters free to vary for both observations we get a good $\chi^2_{\nu} = 0.98$ (188 dof) and better, flat-looking residuals for both XMM-Newton and Chandra. We then consider this as the best spectral modeling for both observations. In particular, we find the following spectral parameters: for Chandra (during the high X-ray emission state), $N_{H,\text{cxo}} = (4.3 \pm 0.2) \times 10^{21}$ cm$^{-2}$, $\Gamma_{\text{cxo}} = 1.61 \pm 0.03$, and an absorbed (unabsorbed) 0.3–10 keV flux of $(3.2 \pm 0.2) \times 10^{-12}$ erg s$^{-1}$ cm$^{-2}$ (4.5 \times 10^{-13} erg s$^{-1}$ cm$^{-2}$). For XMM-Newton (during a low X-ray emission state), $N_{H,\text{xmm}} = (2.1 \pm 0.4) \times 10^{21}$ cm$^{-2}$, $\Gamma_{\text{xmm}} = 1.18 \pm 0.08$, and an absorbed (unabsorbed) 0.3–10 keV flux of $(5.1 \pm 0.9) \times 10^{-13}$ erg s$^{-1}$ cm$^{-2}$ (5.7 \times 10^{-13} erg s$^{-1}$ cm$^{-2}$).

To investigate further the spectral change between the two observations, we plot the statistical contours for the absorption value and the power-law photon index (see Figure 4), which clearly shows that the spectral variability among the two X-ray emission states is significant at >99% confidence level.

5 Note that the small difference in the derived spectral parameters we report in Section 3.2 with respect to Hinton et al. (2009) is most probably due to a different spectral re-binning used in the analysis. Anyway, all the results of our analysis of the XMM-Newton observation are consistent within a 99% confidence level with those reported in Hinton et al. (2009).
Figure 4. Contour plots of the absorption value (N_H) and photon index (Γ) derived from the fit of the XMM-Newton spectrum taken while HESS J0632+057 was in a low X-ray emitting state, and of the Chandra spectrum during a high X-ray state. Note that N_H refers to abundances from Anders & Grevesse (1989) and photoelectric scattering cross section from Balucinska-Church & McCammon (1998). (A color version of this figure is available in the online journal.)

Assuming a distance of 1.5 kpc (Hinton et al. 2009), the system had a luminosity change between the low and the high X-ray emission states of about an order of magnitude, with $L_{\text{low}} \sim 1.54 \times 10^{32}$ erg s$^{-1}$ and $L_{\text{high}} \sim 1.21 \times 10^{33}$ erg s$^{-1}$.

4. CONCLUDING REMARKS

We report on a Chandra observation during the 2011 February increase of X-ray/TeV emission of the new TeV binary HESS J0632+057, which allowed us to perform the first detailed X-ray timing and spectral analysis of this source during its high state. As a comparison, we also studied the best X-ray data available in the archive for HESS J0632+057, taken while the source was in its low X-ray emission state (previously published in Hinton et al. 2009). We do not find any periodic or quasi-periodic signal from this system in any of those emission states, deriving a 3σ upper limit on the X-ray pulsed fraction of HESS J0632+057 of \sim30% (highly dependent on the frequency, energy range, and emission state; see Section 3.1 and Figure 2 for details). The limits we derived for the X-ray pulsed fraction of HESS J0632+057 are similar to those derived for the archetypical TeV binaries: LS I+61°303 (Rea et al. 2010) and LS 5039 (Rea et al. 2010). Also, note that the only firmly established TeV binary containing a pulsar, PSR B1259–63, does not show X-ray pulsations (Chernyakova et al. 2009). This result shows that in the pulsar scenario, the pulsar emission itself cannot be the main factor responsible for the X-ray emission of these TeV binaries, which is instead likely dominated by the wind–wind or intra-wind shock (unless also in this case the putative pulsar is never pointing to us during its rotation).

Also for HESS J0632+057, we find here that there exists a significant spectral variability among the low and high X-ray emission states (the flux of the new Chandra observation is compatible with that observed by Swift in the same period; Bongiorno et al. 2011). In particular, comparing the two best available spectra, which were taken at different orbital phases, we can see $>\!3\sigma$ variability in the source spectral parameters. Furthermore, while Γ increases from the low to high state by \sim40% (hence the spectrum softens accordingly), N_H increases by more than a factor of two. Note also that for HESS J0632+057 we find that the higher the flux, the steeper the X-ray spectrum, which is in contrast to the cases of LS 5039 and LS I+61°303, where the opposite behavior is found (Kishishita et al. 2009; Rea et al. 2010). In comparison with the other TeV binaries, we are tempted to relate this spectral change with the orbital phase of HESS J0632+057. However, our current ignorance on the orbital parameters of this system (besides the 320 days period; Bongiorno et al. 2011) hampers, for the moment, any classification of the low and high states in terms of periastron, apastron, or any of the conjunctions.

This research has made use of data from the Chandra X-ray Observatory and software provided by the Chandra X-ray Center. N.R. is supported by a Ramon y Cajal Research Fellowship to CSIC. We acknowledge the Chandra Director, Dr. H. D. Tananbaum, for granting us Director’s Discretionary Time that allowed for this research to be done. We thank G. L. Israel for allowing the use of his DPS software and useful discussions, D. Hadasch and A. Caliandro for a quick visibility check when the source was discovered at a high flux, and the anonymous referee for useful suggestions. This work has been supported by grants AYA2009-07391 and SGR2009-811, as well as the Formosa Program TW2010005.

REFERENCES

Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2005a, A&A, 442, 1
Aharonian, F., Akhperjanian, A. G., Aye, K.-M., et al. 2005a, Science, 309, 746
Aharonian, F., Akhperjanian, A. G., Aye, K.-M., et al. 2005b, Science, 309, 746
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2006, A&A, 460, 743
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2007, A&A, 469, L1
Albert, J., Aliu, E., Anderhub, H., et al. 2006, Science, 312, 1771
Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Aragona, C., McSwain, M. V., & De Becker, M. 2010, ApJ, 724, 306
Balucinska-Church, M., & McCammon, D. 1998, ApJ, 496, 1044
Bongiorno, S., Falcone, A. D., Stroh, M., et al. 2011, ATel, 317, L11
Casares, J., Ribó, M., Paredes, J. M., et al. 2011, ATel, 3209
Chernyakova, M., Neronov, A., Aharonian, F., Uchiyama, Y., & Takahashi, T. 2009, MNRAS, 397, 2123
Esposito, P., Caraveo, P. A., Pellizzoni, A., et al. 2007, A&A, 474, 575
Falcone, A., Bongiorno, S., Stroh, M., & Holder, J. 2011, ATel, 3152
Falcone, A. D., Grube, J., Hinton, J., et al. 2010, ApJ, 708, L52
Hinton, J., Skilton, J. L., Funk, S., et al. 2009, ApJ, 690, L101
Israel, G. L., & Stella, L. 1996, ApJ, 468, 369
Jansen, F., Lamb, D., Altieri, B., et al. 2001, A&A, 365, L1
Kishishita, T., Tanaka, T., Uchiyama, Y., & Takahashi, T. 2009, ApJ, 697, L1
Maier, G., et al. 2009, Proc. 31st ICRC (Lodz) 2009, 0512
Mariotti, M. (on behalf of the MAGIC Collaboration) 2011, ATel, 3161
Moldon, J., Ribó, M., & Paredes, J. M. 2011, ATel, 3180
Ong, R. (on behalf of the VERITAS Collaboration) 2011, ATel, 3153
Rea, N., Torres, D. F., van der Klis, M., et al. 2010, MNRAS, 405, 2206
Rea, N., Torres, D. F., van der Klis, M., et al. 2011, MNRAS, in press
Sidoli, L., Pellizzoni, A., Vercellone, S., et al. 2006, MNRAS, 349, 901
Skilton, J. L., Pandey-Pommier, M., Hinton, J. A., et al. 2009, MNRAS, 399, 317
van der Klis, M. 1989, in Timing Neutron Stars, ed. H. Ogelman & E. P. J. van den Heuvel (Dordrecht: Kluwer), 27
Vaughan, B. A., van der Klis, M., Wood, K. S., et al. 1994, ApJ, 435, 362
Weisskopf, M. C., Tananbaum, H. D., Van Speybroeck, L. P., & O’Dell, S. L. 2000, Proc. SPIE, 4012, 2