ON THE RANK OF THE 2-CLASS
GROUP OF \(\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{-1})\)

ABDELMALLEK AZIZI, MOHAMMED TAOUS, AND ABDELKADER ZEKHNINI

Abstract. Let \(d\) be a square-free integer, \(k = \mathbb{Q}(\sqrt{d}, i)\) and \(i = \sqrt{-1}\). Let \(k_1^{(2)}\) be the Hilbert 2-class field of \(k\), \(k_2^{(2)}\) be the Hilbert 2-class field of \(k_1^{(2)}\) and \(G = \text{Gal}(k_2^{(2)}/k)\) be the Galois group of \(k_2^{(2)}/k\). Our goal is to give necessary and sufficient conditions to have \(G\) metacyclic in the case where \(d = pq\), with \(p\) and \(q\) are primes such that \(p \equiv 1 \pmod{8}\) and \(q \equiv 5 \pmod{8}\) or \(p \equiv 1 \pmod{8}\) and \(q \equiv 3 \pmod{4}\).

1. Introduction

Let \(k\) be an algebraic number field and let \(Cl_2(k)\) denote its 2-class group. Denote by \(k_2^{(1)}\) the Hilbert 2-class field of \(k\) and by \(k_2^{(2)}\) its second Hilbert 2-class field. Put \(G = \text{Gal}(k_2^{(2)}/k)\) and \(G'\) its derived group, then it's well known that \(C/G' \cong Cl_2(k)\). An important problem in Number Theory is to determine the structure of \(G\), since the knowledge of \(G\), its structure and its generators solve a lot of problems in number theory as capitulation problems, the finiteness or not of the towers of number fields and the structures of the 2-class groups of the unramified extensions of \(k\) within \(k_2^{(i)}\). In several times, the knowledge of the rank of \(G\) allows to know the structure of \(G\). In this paper, we give an example of this situation.

Let \(k = \mathbb{Q}(\sqrt{pq}, i)\), where \(p\) and \(q\) are two different primes, then the genus field of \(k\) is \(k^* = \mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{-1})\). According to [7] \(r_0\), the rank of the 2-class group of \(k\), is at most equal to 3. Moreover \(r_0 = 3\) if and only if \(p \equiv q \equiv 1 \pmod{8}\). Let \(G = \text{Gal}(k_2^{(2)}/k)\) be the Galois group of \(k_2^{(2)}/k\), where \(k_2^{(i+1)}\) is the Hilbert 2-class field of \(k_2^{(i)}\), with \(i = 0\) or 1 and \(k_2^{(0)} = k\). The Artin Reciprocity implies that \(r_0 = d(G)\), where \(d(G)\) is the rank of \(G\).

2010 Mathematics Subject Classification. 11R11, 11R29, 11R32, 11R37.

Key words and phrases. 2-class groups, Hilbert class fields, 2-metacyclic groups.
In [7], the first and the second authors have shown that if \(q = 2 \), then \(G \) is metacyclic non abelian if and only if \(p = x^2 + 32y^2 \) and \(x \neq \pm 1 \) (mod 8). In this paper, we prove that if \(p \) and \(q \) are odd different primes, then \(r \), the rank of 2-class group of \(k^* \), helps to know in which case \(G \) is metacyclic.

2. The rank of the 2-class group of \(k^* \)

In what follows, we adopt the following notations: If \(p \equiv 1 \) (mod 8) is a prime, then \(\left(\frac{2}{p} \right)_4 \) will denote the rational biquadratic symbol which is equal to 1 or -1, according as \(2^{\frac{p-1}{4}} \equiv \pm 1 \) (mod \(p \)). Moreover the symbol \(\left(\frac{p}{x} \right)_4 \) is equal to \((-1)^{\frac{p-1}{8}}\).

Let \(k \) be a number field and \(l \) be a prime; then \(\mathfrak{l}_k \) will denote a prime ideal of \(k \) above \(l \). We denote, also, by \(\left(\frac{x, y}{\mathfrak{l}_k} \right) \) (resp. \(\left(\frac{x}{\mathfrak{l}_k} \right) \)) the Hilbert symbol (resp. the quadratic residue symbol) for the prime \(\mathfrak{l}_k \) applied to \((x, y) \) (resp. \(x \)). A 2-group \(H \) is said of type \((2^{n_1}, 2^{n_2}, \ldots, 2^{n_s}) \) if it is isomorphic to \(\mathbb{Z}/2^{n_1} \times \mathbb{Z}/2^{n_2} \times \ldots \mathbb{Z}/2^{n_s} \), where \(n_i \in \mathbb{N} \). For all number field \(k \), \(h(k) \) will denote the 2-class number of \(k \). Finally, \(r_0 \) (resp. \(r \)) denotes the rank of the 2-class group of \(k \) (resp. \(k^* \)).

Lemma 1. If \(p \equiv 5 \) (mod 8) and \(q \equiv 3 \) (mod 4), then \(G \) is cyclic and \(r = 1 \).

Proof. If \(p \equiv 5 \) (mod 8) and \(q \equiv 3 \) (mod 4), then, according to [16], the 2-class group of \(k \) is cyclic, so \(G \) is an abelian group of rank 1. As \(k^* \) is an unramified extension of \(k \), then the 2-class group of \(k^* \) is also cyclic and \(r = 1 \). \(\square \)

Lemma 2. If \(p \equiv 1 \) (mod 8) and \(q \equiv 1 \) (mod 8), then \(G \) is a non-metacyclic group.

Proof. If \(p \equiv 1 \) (mod 8) and \(q \equiv 1 \) (mod 8), then, according to [16], the 2-class group of \(k \) is of rank 3, which is the rank of \(G \). This yields that \(G \) is not metacyclic, since the metacyclic groups are of ranks \(\leq 2 \). \(\square \)

According to the two Lemmas 1 and 2 it is interesting to assume, in what follows, that \(p \equiv 1 \) (mod 8) and \(q \equiv 5 \) (mod 8) or \(p \equiv 1 \) (mod 8) and \(q \equiv 3 \) (mod 4). So \(r_0 = 2 \) (see [16]). We continue with the following lemmas.

Lemma 3 ([11]). Let \(p \equiv 1 \) (mod 8) be a prime, then

\[
\left(\frac{i}{\mathbb{Q}((i))} \right) = 1 \quad \text{and} \quad \left(\frac{1+i}{\mathbb{Q}((i))} \right) = \left(\frac{2}{p} \right)_4 \left(\frac{p}{2} \right)_4.
\]
Lemma 4. Let $F = \mathbb{Q}(\sqrt{q}, i)$ where $q \equiv 5 \pmod{8}$ and ε_q be the fundamental unite of $\mathbb{Q}(\sqrt{q})$, then

(i) \(\left(\frac{p, i}{l_F} \right) = 1 \) for all prime ideal l_F of F.

(ii) \(\left(\frac{p, \varepsilon_q}{l_F} \right) = 1 \) for all odd prime ideal $l_F \neq p_F$ of F.

(iii) \(\left(\frac{p, \varepsilon_q}{p_F} \right) = \left(\frac{p, \varepsilon_q}{2_F} \right) = \begin{cases} 1, & \text{if } \left(\frac{p}{q} \right) = -1; \\ \left(\frac{p}{q} \right)_4 \left(\frac{q}{p} \right)_4, & \text{if } \left(\frac{p}{q} \right) = 1. \end{cases} \)

Proof. (i) Let l_F be an odd prime ideal of F.

If $l_F \neq q_F$, then l_F is a prime ideal of F unramified in $F(\sqrt{q})$ (see the proof of the following theorem), hence

\[
\left(\frac{p, i}{l_F} \right) = \left(\frac{p}{l_F} \right)^{v(i)} = 1, \quad [12, \text{p. 205}].
\]

If $l_F = p_F$, the prime ideal of F above p, then

\[
\left(\frac{p, i}{p_F} \right) = \left(\frac{i, p}{p_F} \right) = \left(\frac{i}{p_F} \right) \quad [12, \text{p. 205}]
\]
\[
= \left(\frac{i}{p_{Q(i)}} \right) \quad [12, \text{p. 205}]
\]
\[
= 1. \quad \text{(Lemma 3)}
\]

(ii) Same proof as in (i).

(iii) the inertia degree of p_F is equal to 1 in $F/Q(\sqrt{p})$, which implies that

\[
\left(\frac{p, \varepsilon_q}{p_F} \right) = \left(\frac{\varepsilon_q, p}{p_F} \right) = \left(\frac{\varepsilon_q}{p_F} \right) \quad [12, \text{p. 205}]
\]
\[
= \left(\frac{\varepsilon_q}{p_{Q(\sqrt{q})}} \right) \quad [12, \text{p. 205}]
\]
Suppose that \((p, q) = 1\), then
\[
(p, q)_4 (p, q)_4. \quad \text{[8, p. 101]}
\]

Suppose that \((p, q) = -1\). With a same argument as above, we get:
\[
(p, ε_q l_F) = \left(\frac{N_{\mathbb{Q}(\sqrt{q}/\mathbb{Q})}(ε_q)}{p}\right) = \left(\frac{-1}{p}\right) = 1, \quad \text{[12, p. 205].}
\]

The product formula for the Hilbert symbol implies that \((\frac{p, ε_p}{p_F}) = (\frac{p, ε_p}{2_F})\). □

Lemma 5. Let \(F = \mathbb{Q}(\sqrt{q}, i)\) where \(q \equiv 3 \pmod{4}\) and \(ε_q\) be the fundamental unite of \(\mathbb{Q}(\sqrt{q})\). Then

(i) \(\left(\frac{p, i l_F}{l_F}\right) = 1\) for all prime ideal \(l_F\) of \(F\).

(ii) \(\left(\frac{p, \sqrt{iε_q}}{l_F}\right) = 1\) for all odd prime ideal \(l_F \neq p_F\) of \(F\).

(iii) \(\left(\frac{p, \sqrt{iε_q}}{p_F}\right) = \left(\frac{p, \sqrt{iε_q}}{2_F}\right) = \begin{cases} 1, & \text{if } \left(\frac{p}{q}\right) = -1; \\ \left(\frac{2}{p}\right)_4 \left(\frac{p}{2}\right)_4 \left(\frac{\sqrt{2ε_q}}{p_{\mathbb{Q}(\sqrt{q})}}\right), & \text{if } \left(\frac{p}{q}\right) = 1. \end{cases}\)

Proof. By a similar approach of previous lemma, we get (i) and (ii). For (iii), remark that \(2ε_q\) is a square in \(\mathbb{Q}(\sqrt{q})\) (see [4]), then \(iε_q\) is a square in \(F\), since \(2\sqrt{iε_q} = (1 + i)\sqrt{2ε_q}\). As the Hilbert symbol is a bilinear map with values in
$\{+1, -1\}$ and $2i = (1 + i)^2$, so

$$\left(\frac{p, \sqrt{\varepsilon q}}{\mathbb{Q}(\sqrt{q}, i)}\right) = \left(\frac{p, 2}{\mathbb{Q}(\sqrt{q}, i)}\right) \left(\frac{p, \sqrt{2\varepsilon q}}{\mathbb{Q}(\sqrt{q}, i)}\right) = \left(\frac{p, i}{\mathbb{Q}(\sqrt{q}, i)}\right) \left(\frac{p, \sqrt{2\varepsilon q}}{\mathbb{Q}(\sqrt{q}, i)}\right) = \left(\frac{1 + i}{\mathbb{Q}(\sqrt{q}, i)}\right) \left(\frac{\sqrt{2\varepsilon q}}{\mathbb{Q}(\sqrt{q}, i)}\right)$$

$$= \left(\frac{1 + i}{\mathbb{Q}(\sqrt{q}, i)}\right) \left(\frac{\sqrt{2\varepsilon q}}{\mathbb{Q}(\sqrt{q}, i)}\right) \left[12, p. 205\right]$$

Theorem 1. Let p and q be primes as above and r be the rank of the 2-class group of $\mathbb{Q}(\sqrt{q}, \sqrt{p}, i)$.

(1) If $q \equiv 5 \pmod{8}$, then

$$r = \begin{cases}
1, & \text{if } \left\langle \frac{p}{q} \right\rangle = -1; \\
2, & \text{if } \left\langle \frac{p}{q} \right\rangle = 1 \text{ and } \left(\frac{p}{q}\right)_4 = -\left(\frac{q}{p}\right)_4; \\
3, & \text{if } \left\langle \frac{p}{q} \right\rangle = 1 \text{ and } \left(\frac{p}{q}\right)_4 = \left(\frac{q}{p}\right)_4.
\end{cases}$$

(2) If $q \equiv 3 \pmod{4}$, then, by putting $\eta = \left(\frac{\sqrt{2\varepsilon q}}{\mathbb{Q}(\sqrt{q}, i)}\right)$ if $\left(\frac{p}{q}\right) = 1$, we obtain

$$r = \begin{cases}
1, & \text{if } \left\langle \frac{p}{q} \right\rangle = -1; \\
2, & \text{if } \left\langle \frac{p}{q} \right\rangle = 1 \text{ and } \left(\frac{2}{p}\right)_4 = -\left(\frac{p}{2}\right)_4 \eta; \\
3, & \text{if } \left\langle \frac{p}{q} \right\rangle = 1 \text{ and } \left(\frac{2}{p}\right)_4 = \left(\frac{p}{2}\right)_4 \eta.
\end{cases}$$

Proof. Let F denote the field $\mathbb{Q}(\sqrt{q}, i)$ defined above and ε_q be the fundamental unit of the $\mathbb{Q}(\sqrt{q})$. According to [1], the unit group of F is equal to

$$\left\langle i, \varepsilon_q \right\rangle, \quad \text{if } q \equiv 5 \pmod{8};$$

$$\left\langle i, \sqrt{i\varepsilon_q} \right\rangle, \quad \text{if } q \equiv 3 \pmod{4}.$$
As the class number of the F is odd, then by the ambiguous class number formula (see [9]), we have:

$$r = t - e - 1,$$

where t is the number of primes of F that ramify in k^*/F ($k^* = \mathbb{Q}(\sqrt{q}, \sqrt{p}, i)$ is the genus field of $k = \mathbb{Q}(\sqrt{pq}, i)$) and e is determined by $2^e = [E_F : E_F \cap N_{k^*/F}(k^*)]$. The following diagram helps us to calculate the number t.

![Diagram](image)

Figure 1.

Let l be a prime. Since the extension k/k^* is unramified, then

$$e(l_F/l).e(l_{k^*}/l_F) = e(l_k/l).$$

As

$$e(l_F/l) = \begin{cases} 2 & \text{if } l = q \text{ or } 2, \\ 1 & \text{otherwise}, \end{cases}$$

and

$$e(l_k/l) = \begin{cases} 2 & \text{if } l = p, q \text{ or } 2, \\ 1 & \text{otherwise}, \end{cases}$$

so it is easy to see that

$$e(l_{k^*}/l_F) = \begin{cases} 2 & \text{if } l = p, \\ 1 & \text{otherwise}. \end{cases}$$

Similarly, we find that

$$f(l_{k^*}/l_F) = \begin{cases} 1 & \text{if } \left(\frac{p}{q}\right) = 1, \\ 2 & \text{if } \left(\frac{p}{q}\right) = -1. \end{cases}$$
Therefore
\[t = \begin{cases}
4 & \text{if } \left(\frac{p}{q} \right) = 1, \\
2 & \text{if } \left(\frac{p}{q} \right) = -1.
\end{cases} \]

Finally
\[r = \begin{cases}
3 - e & \text{if } \left(\frac{p}{q} \right) = 1, \\
1 - e & \text{if } \left(\frac{p}{q} \right) = -1.
\end{cases} \]

The Hasse norm theorem (see e.g. [12, theorem 6.2, p. 179]) implies that a unit \(\varepsilon \) of \(F \) is a norm of an element of \(F(\sqrt{p}) = k^* \) if and only if \(\left(\frac{p, \varepsilon}{p_F} \right) = 1 \), for all \(p_F \neq 2_F \) prime ideal of \(F \).

If \(q \equiv 3 \pmod{4} \), we conclude thanks to the previous lemma that
\[e = \begin{cases}
0, & \text{if } \left(\frac{p}{q} \right) = -1; \\
1, & \text{if } \left(\frac{p}{q} \right) = 1 \text{ and } \left(\frac{2}{p} \right)_4 = - \left(\frac{p}{2} \right)_4 \eta; \\
0, & \text{if } \left(\frac{p}{q} \right) = 1 \text{ and } \left(\frac{2}{p} \right)_4 = \left(\frac{p}{2} \right)_4 \eta.
\end{cases} \]

This completes the proof of our theorem. \(\square \)

3. Application

Let \(G = \text{Gal}(k_2^{(2)}/k) \) be the Galois group of the extension \(k_2^{(2)}/k \), where \(k = \mathbb{Q}(\sqrt{pq}, i) \) and \(p, q \) are distinct primes such that \(p \equiv 1 \pmod{8} \) and \(q \equiv 5 \pmod{8} \) or \(p \equiv 1 \pmod{8} \) and \(q \equiv 3 \pmod{4} \). In this section, we give an application of the previous theorem and we characterize the group \(G \). In particular, we will find results about \(G \) given by Azizi in [3] and [5].

Theorem 2. Let \(p \) and \(q \) be different primes defined as above, \(k = \mathbb{Q}(\sqrt{pq}, i) \), \(r \) be the rank of the 2-class group of \(\mathbb{Q}(\sqrt{q}, \sqrt{p}, i) \) and \(G = \text{Gal}(k_2^{(2)}/k) \). Then \(G \) is nonmetacyclic if and only if \(r = 3 \).

Proof. Since \(p \equiv 1 \pmod{8} \), then there exist two integers \(x \) and \(y \) such that \(p = x^2 + 16y^2 \). Put \(\pi_1 = x + 4yi, \pi_2 = x - 4yi, k_1 = k(\sqrt{\pi_1}) \) and \(k_2 = k(\sqrt{\pi_2}) \).

As \(\pi_1 \) and \(\pi_2 \) are ramified in \(k/Q(i) \), then the ideals generated by \(\pi_1 \) and \(\pi_2 \) are squares of ideals of \(k \). Note that \(x \) is odd, thus \(x \equiv \pm 1 \equiv i^2 \pmod{4} \),
then the two equations $\pi_i \equiv \xi^2$ are solvable in k. We conclude that the two extensions $k(\sqrt{\pi_1})/k$ and $k(\sqrt{\pi_2})/k$ are unramified. It is clear that $k_i \neq k^*$. Since $r_0 = d(G) = 2$, then k_1, k_2 and k^* are precisely the three unramified quadratic extensions of k. Put $H_i = \text{Gal}(k_i(2)/k_i)$ where $i = 1, 2$ and $M = \text{Gal}(k^*_2/k^*)$. These three subgroups are the maximal subgroups of G. As $d(G) = 2$ and k_1 is isomorphic to k_2, then according to [17], G is nonmetacyclic if and only if $d(M) = r = 3$.

Lemma 6. Let k be an algebraic number field and $G = \text{Gal}(k(2)/k)$. Let L be an extension of k such that $M = \text{Gal}(k_2(2)/L)$ is a cyclic subgroup of G of index 2. If four ideal classes of k capitulate in L, then G is abelian or dihedral group.

Proof. we say that an ideal class of k capitulates in L if it is in the kernel of the homomorphism $j : Cl_2(k) \rightarrow Cl_2(L)$ induced by extension of ideals from k to L. Furthermore, the homomorphism j corresponds, by the Artin reciprocity law to the group theoretical transfer $V : G/G' \rightarrow M$ (For further information on V, see for example [15]). Since M is a cyclic subgroup of G of index 2, then, according to [14], G is isomorphic to one of the following groups:

1. Cyclic 2-group or 2-group of type $(2^n, 2^m)$.
2. The dihedral group.
3. The quaternion group.
4. The semidihedral group.
5. The modular 2-group.

If G is one of the first four groups and four ideal classes of k capitulate in L, then H. Kisilevsky has shown in [13] that G is abelian or dihedral group. Next if G is a modular 2-group, then $G = \langle x, y : x^{2^n-1} = y^2, y^{-1}xy = x^{1+2^{n-2}} \rangle$ and $M = \langle x \rangle$. An elementary calculation shows that $\ker(V) = \{G', yG'\}$, i.e. two ideal classes of k capitulate in L. □

Theorem 3. Let p and q be different primes and η be the number defined in Theorem [11] Put $k = \mathbb{Q}(\sqrt{pq}, i)$ and $G = \text{Gal}(k_2(2)/k)$.

1. If $q \equiv 5 \pmod{8}$ and $\left(\frac{p}{q}\right) = -1$, then G is dihedral.
2. If $q \equiv 5 \pmod{8}$ and $\left(\frac{p}{q}\right) = 1$ and $\left(\frac{p}{\eta}\right)_4 = -\left(\frac{q}{p}\right)_4$, then G is a non-abelian metacyclic group with G/G' is of type $(2, 4)$.
(3) If \(q \equiv 3 \pmod{8} \) and \(\left(\frac{p}{q} \right) = -1 \), then \(G \) is abelian or dihedral.

(4) If \(q \equiv 3 \pmod{4} \) and \(\left(\frac{p}{q} \right) = 1 \) and \(\left(\frac{2}{p} \right)_4 = -\left(\frac{p}{p} \right)_4 \eta \), then \(G \) is a metacyclic group.

Proof. Proceeding as in the proof of Theorem 7 of [2], we get that if \(q \equiv 5 \pmod{8} \), then \(h(\mathbf{k}^*) = \frac{h(-p)h(\mathbf{k})}{4} \), where \(h(-p) \) denotes the 2-class number of \(\mathbb{Q}(\sqrt{-p}) \). Since \(r_0 \), the rank of the 2-class group of \(k \), is equal to 2, then \(G \) is abelian if and only if \(h(\mathbf{k}^*) = \frac{h(\mathbf{k})}{2} \) (see [10]), this is equivalent to \(h(-p) = 2 \). Which is impossible since \(p \equiv 1 \pmod{8} \).

(1) If \(q \equiv 5 \pmod{8} \) and \(\left(\frac{p}{q} \right) = -1 \), then \(G \) is nonabelian. According to Theorem 1 the rank of the 2-class group of \(\mathbf{k}^* \) is \(r = 1 \), thus \(M = \text{Gal}(\mathbf{k}^{(2)}/\mathbf{k}^*) \) is cyclic. On the other hand, Azizi in [2] has shown, in this situation, that there are four ideal classes of \(\mathbf{k} \) capitulate in \(\mathbf{k}^* \), hence the Lemma 6 implies that \(G \) is a dihedral group.

(2) If \(q \equiv 5 \pmod{8} \), \(\left(\frac{p}{q} \right) = 1 \) and \(\left(\frac{2}{p} \right)_4 = -\left(\frac{p}{p} \right)_4 \), then \(G \) is nonabelian and the 2-class group of \(\mathbf{k} \) is of type \((2, 4)\) (see [4]). Moreover Theorem 1 yields that \(r = 2 \), then, according to the previous theorem, we have \(G \) is metacyclic.

(3) and (4) are proved similarly. \(\square \)

References

[1] A. Azizi, Unités de certains corps de nombres imaginaires et abéliens sur \(\mathbb{Q} \), Ann. Sci. Math. Québec 23 (1999), 87-93.

[2] A. Azizi, Capacitation of the 2-ideal Classes of \(\mathbb{Q}(\sqrt{p_1p_2}, i) \) Where \(p_1 \) and \(p_2 \) are primes such that \(p_1 \equiv 1 \pmod{8}, p_2 \equiv 5 \pmod{8} \) and \(\left(\frac{p_1}{p_2} \right) = -1 \), Lecture notes in pure and applied mathematics. vol. 208 (1999), 13-19.

[3] A. Azizi, Sur le 2-groupe de classe d'idéaux de \(\mathbb{Q}(\sqrt{d}, i) \), Rend. Circ. Mat. Palermo (2) 48 (1999), 71-92.

[4] A. Azizi, Sur la capitulation des 2-classes d'idéaux de \(k = \mathbb{Q}(\sqrt{2pq}, i) \), où \(p \equiv -q \equiv 1 \pmod{4} \), Acta. Arith. 94 (2000), 383-399.

[5] A. Azizi, Sur une question de Capacitation, Proc. Amer. Math. Soc. 130 (2002), 2197-2002.

[6] A. Azizi et M. Taous, Determination des corps \(\mathbf{k} = \mathbb{Q}(\sqrt{d}, i) \) dont le 2-groupes de classes est de type \((2, 4)\) ou \((2, 2, 2)\), Rend. Istit. Mat. Univ. Trieste. 40 (2008), 93-116.

[7] A. Azizi et M. Taous, Condition nécessaire et suffisante pour que certain groupe de Galois soit métacyclique, Ann. Math. Blaise Pascal. 16, No. 1 (2009), 83-92.
[8] A. Scholz, Über die Löbarkeit der Gleichung \(t^2 - Du^2 = -4 \), Math. Z. 39 (1934), 95-111.

[9] C. Chevalley, Sur la théorie du corps de classes dans les corps finis et les corps locaux, J. Fac. Sc. Tokyo, Sect. 1, t. 2, (1933), 365-476.

[10] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian 2-class field tower, J. Number Theory. 73 (1998), 182-194.

[11] F. Lemmermeyer, Reciprocity Laws, Springer Monographs in Mathematics, Springer-Verlag, Berlin 2000.

[12] G. Gras, Class field theory, from theory to practice, Springer Verlag 2003.

[13] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert’s theorem 94, J. Number Theory 8 (1976), 271-279.

[14] H. Kurzweil, B. Stellmacher, The Theory of Finite Groups: An Introduction, Springer-Verlag, New York 2004.

[15] K. Miyake, Algebraic Investigations oh Hilbert’s Theorem 94, the Principal Ideal theorem and Capitulation Problem, Expos. Math. 7 (1989), 289-346.

[16] T. M. McCall, C. J. Parry, R. R. Ranalli, On imaginary bicyclic biquadratic fields with cyclic 2-class group, J. Number Theory. 53 (1995), 88-99.

[17] Y. Berkovich and Z. Janko, On subgroups of finite p-groups, Israel J. Math. 171 (2009), 29-49.

Abdelmalek Azizi and Abdelkader Zekhnini: Département de Mathématiques, Faculté des Sciences, Université Mohammed 1, Oujda, Morocco

E-mail address: abdelmalekazizi@yahoo.fr
E-mail address: zekhal@yahoo.fr

Mohammed Taous: Département de Mathématiques, Faculté des Sciences et Techniques, Université Moulay Ismail, Errachidia, Morocco

E-mail address: taousm@hotmail.com