Squaring the fermion: The threefold way and the fate of zero modes

Qiao-Ru Xu,1 Vincent P. Flynn,2 Abhijeet Alase,3 Emilio Cobanera,4,2 Lorenza Viola,2 and Gerardo Ortiz1,5

1Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
2Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA
3Institute for Quantum Science and Technology, and Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada
4Department of Mathematics and Physics, SUNY Polytechnic Institute, 100 Seymour Rd, Utica, NY 13502, USA
5Indiana University Quantum Science and Engineering Center, Bloomington, IN 47408, USA

(Dated: May 6, 2021)

We investigate topological properties and classification of mean-field theories of stable bosonic systems. Of the three standard classifying symmetries, only time-reversal represents a real symmetry of the many-boson system, while the other two, particle-hole and chiral, are simply constraints that manifest as symmetries of the effective single-particle problem. For gapped systems in arbitrary space dimension we establish three fundamental no-go theorems that prove the absence of: parity switches, symmetry-protected-topological quantum phases, and localized bosonic zero modes under open boundary conditions. We then introduce a squaring, kernel-preserving map connecting non-interacting Hermitian theories of fermions and stable boson systems, which serves as a playground to reveal the role of topology in bosonic phases and their localized midgap boundary modes. Finally, we determine the symmetry classes inherited from the fermionic tenfold-way classification, unveiling an elegant threefold-way topological classification of non-interacting bosons. We illustrate our main findings in one- and two-dimensional bosonic lattice and field-theory models.

I. INTRODUCTION

Weakly interacting many-body systems of fermions or bosons can be described approximately by an effectively non-interacting (mean-field) theory as long as their equilibrium states are adiabatically connected, and no phase transition separates them. This is the essence of Landau’s quasiparticle framework, where the symmetries of the system define the principles behind matter organization and its elementary excitations. Recently, another organizing principle, linked to topology, was recognized as fundamental to characterize hidden non-local order and the resilience of localized excitations against local perturbations. The “tenfold way” or “topological classification” of mean-field (free-)fermion Hamiltonians asserts that one cannot adiabatically connect, while preserving certain classifying symmetries, topologically inequivalent gapped systems. For stable free-boson Hamiltonians, which (like their fermionic counterparts) are bounded from below, what is the equivalent result? We address this and related questions in full generality.

One of the most remarkable consequences of the topological classification of free-fermion systems is the bulk-boundary correspondence. When a gapped free-fermion system is not adiabatically connected to a topologically trivial free-fermion system, the obstruction to the deformation is diagnosed by a bulk topological invariant assuming different values for the two phases. The bulk-boundary correspondence relates the value of this invariant to the number and properties of midgap states (in one dimension) or surface bands of the systems subject to open boundary conditions (BCs). In every space dimension d, there are precisely five classes of systems for which the bulk-boundary correspondence specifically predicts zero modes (ZMs). Those ZMs often show remarkable localization properties. The topologically mandated Majorana ZMs of superconductors, in particular, are a source of endless fascination. Are there topologically mandated bosonic ZMs? What are the algebraic, localization, and stability properties of bosonic ZMs? In this paper we investigate these issues in detail. Since much of what is known about fermionic ZMs was learned from the topological classification by way of the bulk-boundary correspondence, we systematically follow an analogous line of reasoning for bosons. The outcome of this analysis will be a series of no-go theorems.

Similar to the fermionic case, our starting point is the identification of the classifying internal symmetries of free-boson systems. Of the three classifying conditions of the tenfold way (time reversal, particle-hole, and chiral), we show that only time reversal can be related to a (many-body) symmetry of the free-boson system. In contrast to fermions, for bosons the particle-hole and chiral classifying conditions cannot be associated to many-body symmetries. Particle-conserving systems are effectively well-described by Hermitian single-particle matrices or operators that may belong to any of the ten symmetry classes of the tenfold way. However, these free-boson systems Bose-condense and are generically gapless in the thermodynamic limit. Particle non-conserving free-boson systems, on the other hand, may display gapped phases. These systems are analyzed in terms of non-Hermitian effective Bogoliubov-de Gennes (BdG) matrices or operators that satisfy a particle-hole constraint. A symmetry of an ensemble of effective BdG matrices is a “pseudo-unitary” matrix (in a sense that will be made precise later) which commutes with every member of the ensemble. There is a special class of many-body linear symmetries that is in direct correspondence with pseudo-unitary symmetries. Many-body time-reversal symmetry
descends into the product of a pseudo-unitary matrix and complex conjugation, and this product commutes with the effective BdG Hamiltonian.

Knowing the gapped stable free-boson ensembles and the symmetries at play, we proceed to investigate symmetry-preserving adiabatic deformations. Our first result is a no-go theorem for boson parity switches. Fermionic parity can be odd or even depending on the topological nature of the state and BCs. In contrast, it is typically even for topologically trivial superfluid phases, regardless of BCs. Indeed, fermion parity switches can be used as indicators for topological transitions also in interacting particle-conserving fermionic systems\cite{14,15}. Similar to fermions, bosonic pairing terms break the symmetry of particle-conservation down to the symmetry of boson parity. However, unlike fermions, we will show that the boson parity can only be even in the ground manifold of a gapped free-boson system. Our second no-go theorem shows explicitly that any two gapped free-boson systems are adiabatically connected, regardless of symmetry constraints. It is a “no-go” result in the sense that it forbids non-trivial symmetry-protected topological (SPT) phases of free-boson systems. And finally, our third no-go theorem states roughly that, for open BCs, a gapped free-boson system cannot possibly host surface bands inside the gap around zero energy or midgap ZMs. For fermions, the most localized ZMs are Majorana (self-adjoint) operators each localized on opposite boundaries.

Does our third no-go theorem mean that localized bosonic analogues of Majorana ZMs are forbidden altogether? Certainly, this complicates matters considerably because one naturally looks for examples in systems subject to open BCs and that approach is doomed to failure. Fortunately, the precept that the “square of a fermion is a boson” comes to our rescue. We present a kernel-preserving map between fermions and bosons that provides a systematic way to generate bosonic Majorana (self-adjoint) ZMs. The square of a fermionic BdG Hamiltonian can be naturally reinterpreted as a bosonic Majorana (self-adjoint) Hamiltonian. This mapping does not preserve any spectral properties other than its kernel. Moreover, it allows a topological classification of “squared ensembles”, leading to the threefold way of stable free boson systems away from zero energy.

Following our squaring-the-fermion map, we can construct a wealth of examples of bosonic Majorana ZMs by taking the square of a fermionic topological superconductor hosting Majorana ZMs. For example, we find that the square of the Kitaev chain hosts two exponentially localized (self-adjoint) ZMs and these modes can be normalized so that their commutator is equal to $i\hbar$. In this sense, one can indeed “split a single boson” into two widely-separated halves. The consequences for the ground manifold of the system are, however, more dramatic for bosons than for fermions, because an exact fermionic ZM implies two-fold degeneracy only, whereas an exact bosonic ZM implies macroscopic degeneracy if the number of particles is unconstrained. How does the squaring map bypass our no-go result on ZMs? The answer is that to obtain ZMs in gapped free-boson systems, one must enforce BCs that are not open. The squaring procedure is a way to find both the required bulk and BCs. How robust are those ZMs? Krein stability theory\cite{20,21} helps us to rigorously address this question and conclude that bosonic Majorana ZMs are as exotic as they are fragile, something in complete agreement with our previous no-go theorems. Perhaps one could have intuited this since particle-hole and chiral symmetries are not many-body features of free-boson systems.

The paper is organized as follows. Section\textbf{II} covers the background, including a little-known necessary and sufficient condition for a free-boson system with pairing to be stable and a theorem\cite{22} that completely characterizes general bosonic ZMs, both canonical and free-particle-like. Since bosonic ZMs are central to this paper, we provide a self-contained proof of this theorem in Appendix\textit{A} by using modern tools from indefinite linear algebra\cite{23}. In Sec. \textbf{III} we discuss the many-boson underpinnings of the Altland-Zirnbauer (AZ) classifying conditions (time-reversal, particle-hole, and chiral)\cite{24} and conclude that only time reversal is associated to a many-body symmetry. In addition, from a many-body perspective, non-Hermitian ensembles of effective BdG Hamiltonians should be symmetry-reduced with respect to groups of pseudo-unitary matrices (details of the symmetry-reduction analysis can be found in Appendix\textit{B}). Section \textbf{IV} is devoted to our three no-go theorems for gapped free-boson systems: no parity switches, no SPT phases, and no localized ZMs. In Sec. \textbf{V} we introduce the squaring map from fermionic BdG Hamiltonians to bosonic effective BdG Hamiltonians and investigate it from the point of view of ensembles, symmetry and topological classifications, and bosonic topological invariants. Appendix\textit{C} presents a simple proof of the validity of our threefold way classification to general stable bosonic ensembles. Finally, in Sec.\textbf{VI} we address the fate of bosonic Majorana ZMs in terms of examples obtained by the squaring map and discuss their stability. We close in Sec.\textbf{VII} with a summary and comments on the problem of characterizing SPT phases of interacting bosonic systems.

\section{II. BACKGROUND}

\subsection{A. Free particles in second quantization}

Consider first a general quadratic fermionic Hamiltonian

$$\hat{H}_f = \sum_{i=1}^{N} \sum_{j=1}^{N} \left(K_{ij} c_i^\dagger c_j + \frac{1}{2} \Delta_{ij} c_i^\dagger c_j^\dagger + \frac{1}{2} \Delta_{ij}^\ast c_j c_i \right),$$

(1)

for a system with N single-particle states. The creation and annihilation operators c_i^\dagger and c_i satisfy canonical anticommutation relations. Since, in addition, $\hat{H}_f = \hat{H}_f^\dagger$, it follows that $K = K^\dagger$ and $\Delta = -\Delta^\ast$. In terms of the
Nambu array $\hat{\Psi} = c_i \hat{c}_i$ (or $c_i \hat{c}_i^\dagger$), with $\hat{\Psi}_i = c_i$ and $\hat{\Psi}_{N+i} = c_i^\dagger$, $i = 1, \ldots, N$, one can rewrite \hat{H}_f as

$$\hat{H}_f = \frac{1}{2} \hat{\Psi}^\dagger H_f \hat{\Psi} + \frac{1}{2} \text{tr}(K),$$

where $H_f = \begin{bmatrix} K & \Delta \\ -\Delta^* & -K^* \end{bmatrix}$ is the (Hermitian) BdG Hamiltonian. Let $\tau_1 \equiv \sigma_1 \otimes 1_N$, with $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Because the Nambu array satisfies the particle-hole constraint $\hat{\Psi} = \tau_1 \hat{\Psi}^\dagger T$, one finds that the BdG Hamiltonian satisfies the particle-hole constraint $\tau_1 H_f^\dagger \tau_1 = -H_f$.

The diagonalization of H_f implies that of \hat{H}_f. If the pairing contributions vanish, $\Delta = 0$, one can rewrite

$$\hat{H}_f = \hat{K}_f = \hat{\psi}^\dagger K \hat{\psi},$$

in terms of $\hat{\psi}^\dagger = [c_1^\dagger \cdots c_N^\dagger]$ and the associated column array $\hat{\psi}$ of annihilation operators. Because these arrays are independent, the single-particle Hamiltonian K, as opposed to the BdG Hamiltonian H_f, does not satisfy any constraints other than Hermiticity. Again, the diagonalization of K implies that of \hat{K}_f.

Next, consider a general quadratic bosonic Hamiltonian

$$\hat{H}_b = \sum_{i=1}^N \sum_{j=1}^N \left(K_{ij} a_i^\dagger a_j + \frac{1}{2} \Delta_{ij} a_i^\dagger a_j + \frac{1}{2} \Delta_{ij}^* a_j^\dagger a_i \right),$$

where the bosonic operators a_i^\dagger and a_i satisfy canonical commutation relations $[a_i, a_j^\dagger] = \delta_{ij}, [a_i, a_j] = 0$. In addition, since \hat{H}_b is Hermitian, it follows that $K = K^\dagger$ and $\Delta = \Delta^T$. Rewriting \hat{H}_b in terms of the Nambu array $\hat{\Phi} = \begin{bmatrix} a \\ a^\dagger \end{bmatrix}$, with $\hat{\Phi}_i = a_i$ and $\hat{\Phi}_{N+i} = a_i^\dagger$, $i = 1, \ldots, N$, we have

$$\hat{H}_b = \frac{1}{2} \hat{\Phi}^\dagger K_b \hat{\Phi} - \frac{1}{2} \text{tr}(K),$$

with $K_b = \begin{bmatrix} K & \Delta \\ -\Delta^* & -K^* \end{bmatrix}$ a Hermitian matrix, and $\{ \hat{\Phi}, \hat{\Phi}^\dagger \} = (\tau_3)_{ij}$, where $\tau_3 \equiv \sigma_3 \otimes 1_N$, with $\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Unlike the fermionic case, the diagonalization of H_b does not imply that of \hat{H}_b in general. To diagonalize the bosonic many-body Hamiltonian, one must instead diagonalize, or at least put in Jordan normal form, the following non-Hermitian effective BdG Hamiltonian:

$$H_{\tau} \equiv \tau_3 H_b,$$

which controls the dynamics of $\hat{\Phi}$. The effective BdG Hamiltonian satisfies the particle-hole constraint $\tau_1 H_{\tau}^\dagger \tau_1 = -H_{\tau}$ because of the constraint $\hat{\Phi} = \tau_1 \hat{\Phi}^\dagger T$.

Suppose that H_{τ} is positive-definite, which we indicate from now on as $H_{\tau} > 0$, so that H_{τ} is both invertible and diagonalizable, let $|\psi_n^\tau\rangle$ be an eigenvector of H_{τ} corresponding to a positive eigenvalue ϵ_n, with $0 < \epsilon_1 < \epsilon_2 < \cdots < \epsilon_N$. Then, $\tau_3 K \langle \psi_n^\tau | \psi_n^\tau \rangle \equiv \langle \psi_n^\tau | \psi_n^\tau \rangle$, with K denoting complex conjugation, is an eigenvector corresponding to the negative eigenvalue $-\epsilon_n$ because of the particle-hole constraint. As shown in Ref. [13], these eigenvectors can be normalized to satisfy the following orthonormality relations:

$$\langle \psi_m^\tau | \tau_3 | \psi_n^\tau \rangle = \pm \delta_{mn}, \quad \langle \psi_m^\tau | \tau_3 | \psi_n^\tau \rangle = 0,$$

and to construct the completeness relation

$$1_{2N} = \sum_{n=1}^N (| \psi_n^+ \rangle \langle \psi_n^- | - | \psi_n^- \rangle \langle \psi_n^+ |) \tau_3,$$

where only $\epsilon_n > 0$ correspond to the bosonic particle number operator and we need to rewrite $b_{-n}^\dagger b_n^\dagger$ in terms of the bosonic one using the relation $b_{-n} = -b_n^\dagger$. Finally, we arrive at the bosonic quasiparticle Hamiltonian

$$\hat{H}_{\tau} = \sum_{n=1}^N \epsilon_n b_n^\dagger b_n - \sum_{n=1}^N \epsilon_n \langle \psi_n^\phi | \psi_n^\phi \rangle,$$

where $|\psi_n^\phi\rangle \equiv \frac{1}{2} (1_{2N} - \tau_3) | \psi_n^\tau \rangle$. Accordingly, we see that excitation energies are always positive and the vacuum (ground state) of this bosonic Hamiltonian is a state with no quasiparticles.

The problem simplifies considerably if $\Delta = 0$. Then one can rewrite

$$\hat{H}_b = \hat{K}_b = \hat{\phi}^\dagger K \hat{\phi},$$

in terms of $\hat{\phi}^\dagger = [a_1^\dagger \cdots a_N^\dagger]$ and the associated column array $\hat{\phi}$ of annihilation operators. As before, since these arrays are independent, the single-particle Hamiltonian K, as opposed to the effective BdG Hamiltonian H_{τ}, does not satisfy any constraints other than Hermiticity. Again, the diagonalization of K implies that of \hat{K}_b.
the diagonalization of $\pi^\dagger H_\pi \pi$ with respect to the metric $\pi^\dagger \tau_3 \pi = \mathbb{I}_N \otimes \sigma_3$ implies that of \hat{H}_b. For systems in which translation symmetry may be broken only by BCs, this reordering makes it possible to leverage a block-Toeplitz formalism[23–25] which we will take advantage of in Sec.[IVC] and Sec.[VI A] in order to analytically determine closed-form solutions in limiting cases. Hereinafter, we will use τ_3 to denote either the metric $\sigma_3 \otimes \mathbb{I}_N$ or $\mathbb{I}_N \otimes \sigma_3$ depending on the formalism in use (see Table I).

A fully translation invariant system on a d-dimensional Bravais lattice can be described in terms of an effective Bloch-BdG Hamiltonian satisfying the particle-hole constraint $\tau_1 H_{\tau,-k}^\dagger \tau_1 = -H_{\tau,k}$, where $k = (k_1, \ldots, k_d)$ denotes a d-dimensional crystal momentum vector in the Brillouin zone. We will also consider systems on d-dimensional lattices that suddenly stop at a flat $(d-1)$-dimensional hypersurface. Such terminations are called ideal surfaces.[23–25]. In this setup, the system is half-infinite in one of the d directions, and retains translation symmetry in the remaining $d-1$ directions. The associated effective BdG Hamiltonians will be denoted as H_σ^o, where the superscript "o" stands for open BCs for the termination (see Sec.IIA of Ref.[28] for a detailed discussion). It is advantageous to introduce the quantum number k_0, the crystal momentum in the surface Brillouin zone (SBZ).[22]. Then, the system is described by an effective Bloch-BdG Hamiltonian of the form $H^o_{\tau,k_0} = \tau_3 H^o_{\tau,b,k_0}$. For a fixed k_0, the matrix H^o_{τ,k_0} can be visualized as describing a half-infinite “virtual chain” system; notice, however, that such a system satisfies $\tau_1 (H^o_{\tau,k_0})^\dagger \tau_1 = -H^o_{\tau,-k_0} \neq -H^o_{\tau,k_0}$ in general, which is different from the usual particle-hole constraint for a one-dimensional system. If we change the BCs of these virtual chains back to periodic BCs, then we can describe the chains in terms of the one-dimensional crystal momentum $k \in [-\pi, \pi)$ in units of the reciprocal stacking period and matrices $H_{\tau,k_0}(k)$. Naturally, we have $H_{\tau,k_0}(k) = H_{\tau}(k)$.

B. Single-particle characterization of stability

The condition of Hamiltonian stability plays essentially no role for free-fermion lattice systems because of the Pauli exclusion principle. By contrast, quadratic bosonic Hamiltonians may fail to be “stable” in different ways, even for a finite number of modes N. We recall here a single-particle characterization of stability for free-boson systems[29] upon which we will rely heavily in Sec.[IV].

For free-boson systems there are in fact different notions of stability of practical importance[19,29]. One notion, which is the usual notion of stability in quantum mechanics, is the condition that \hat{H}_b should be bounded below, and applies to particle-conserving and non-conserving systems alike. The following theorem identifies the necessary and sufficient condition for this form of stability:

Theorem (29). The quadratic bosonic Hamiltonian \hat{H}_b is stable if and only if the Hermitian matrix H_b is positive semi-definite.

A weaker notion of stability is meaningful only for particle-conserving systems: in such a case, it may happen that $\hat{H}_b = \tilde{K}_b$ is bounded from below in any subspace with a fixed number of particles but not over the full Fock space. Stability in the usual sense is then achieved if and only if K is positive semi-definite. This condition will be indicated as $K \geq 0$ from now on.

It is interesting to note the following related result:

If K is not positive semi-definite, then neither is H_b, regardless of the properties of the pairing matrix Δ.

This has implications for interacting particle-conserving systems. For suppose that one is interested in a weakly-interacting, particle-conserving boson system. Then, one may try a mean-field approximation that breaks particle conservation. But, if K is not positive semi-definite, this mean-field approximation will necessarily yield an unstable quadratic bosonic Hamiltonian. (See also Ref. [13] for a more general discussion, partly motivated by topology, of unstable free-boson systems.)

One can also approach the notion of stability from the point of view of the response of the system to a classical forcing term. For free boson systems, but not for free fermions, the simplest model one may consider is described by the linear-quadratic Hamiltonian

$$\hat{H}_{b,F} = \hat{H}_b + \Phi^\dagger F,$$

where $F = \begin{bmatrix} f_1 & \cdots & f_N \end{bmatrix}^\dagger$ is a vector of complex parameters. If there is a solution $Z = \begin{bmatrix} z_1 & \cdots & z_N \end{bmatrix}^\dagger$ of the equation $F = H_b Z$, then the Hamiltonian of Eq.(13) satisfies the relationship

$$\hat{H}_b + \Phi^\dagger F = U_Z \hat{H}_b U^\dagger_Z - \frac{1}{2} Z^\dagger H_b Z,$$

in terms of the unitary map $U_Z = e^{\sum_{i=1}^N(z_i \hat{a}_i - z_\dagger_i \hat{a}_\dagger_i)}$. For stable systems without ZMs ($H_b > 0$), $Z = H_b^{-1} F$. For stable systems with ZMs ($H_b \geq 0$), Z may fail to exist.

C. (Not so well) Known results on general bosonic zero modes

To the best of our knowledge, the first complete characterization of ZMs of quadratic bosonic Hamiltonians with $H_b \geq 0$ appeared in Ref.[19]. We recall this somewhat hidden result here for later use in the form of a Theorem.
and, as mentioned, include a new proof in Appendix A. The problem is difficult for particle non-conserving systems because the normal modes and frequencies of the system are calculated from the effective BdG Hamiltonian $H_\tau = \tau_3 H_0$ defined in Eq. (6) and this matrix is not Hermitian in general.

The starting point of the analysis are several spectral properties of the non-Hermitian matrix H_τ. First, because $\tau_3 H_0^+ \tau_3 = H_\tau$ (pseudo-Hermiticity) and $\tau_3 H_0^\dagger \tau_3 = -H_\tau$ (particle-hole constraint), it follows that the eigenvalues of H_τ come in quartets $\{\epsilon, \epsilon^*, -\epsilon, -\epsilon^*\}$. Since in this paper we always assume that $H_0 \geq 0$, it also follows that the eigenvalues of H_τ are purely real. Finally, since H_τ is not a Hermitian matrix in general, it could fail to be diagonalizable. Again, this possibility is highly constrained by the condition $H_0 \geq 0$. Theorem 5.7.2 in Ref. [20] tells us that H_τ is diagonalizable except possibly on the subspace of ZMs. The Jordan normal form of H_τ restricted to this subspace can contain Jordan blocks that are at most of size two $(2 \times 2$ blocks). Since there is an even number of eigenvectors associated to non-zero eigenvalues, due to the particle-hole constraint, it follows that the algebraic multiplicity of the zero eigenvalue must be even. And, since the Jordan blocks are at most of size two, the Jordan chains of length one come in pairs.

Theorem (ZMs, [19]). For the effective BdG Hamiltonian $H_\tau = \tau_3 H_0$, let $2n$ and m be the number of linearly independent zero eigenvalues of H_τ (zero eigenvalues with respect to the indefinite inner product (e.g., H_τ)). If all eigenvectors associated with λ have either a $+1$ or -1 Krein signature, then we say that λ is \pm-definite. Otherwise we say λ is indefinite. Note that λ being \pm-definite requires that $\lambda \in \mathbb{R}$. A key result in the theory of Krein stability is the Krein-Gel'fand-Lidskii theorem.

If λ is a \pm-definite eigenvalue of a τ_3-pseudo-Hermitian matrix M, then there exists an open neighborhood of M, such that all matrices in this neighborhood have eigenvalues close to λ that remain on the real axis and have diagonal Jordan blocks.

Physically, this means that the corresponding modes remain **dynamically stable** (that is, they result in bounded evolution in time) under all sufficiently small perturbations. Furthermore, in any open neighborhood of a matrix M with an eigenvalue that is either indefinite or has a non-diagonal Jordan block, there are matrices with eigenvalues off the real axis.

Returning to the bosonic problem, recall that the kernel vectors of H_τ are either associated with canonical bosonic ZMs or free-particle-like ZMs (Hermitian quadratures). The canonical bosonic ZMs arise from pairs of eigenvectors with different Krein signatures, while the free-particle-like ZMs arise from eigenvectors with vanishing Krein signature. Hence, according to Krein stability theory, there exist arbitrarily small perturbations that will cause these ZMs to become dynamically unstable. The stability properties of bosonic ZMs we have summarized here will illuminate some features of our prototype squared Kitaev chain model in Sec. VI A.

D. The tenfold way

In this section, we summarize the basics of the classification of Hermitian ensembles (or equivalently, the classification of free-fermion SPT phases) and the bulk-boundary correspondence because these subjects will guide and inspire our investigation of free-boson systems. For this summary we especially benefited from the review articles in Ref. [31] and Ref. [3]. The classification of non-Hermitian ensembles [32] will also play a role in Sec. V.

Since this subject is still evolving fast, we refer the interested reader to Ref. [31], [3] and references therein.

A Bloch Hamiltonian is a Hermitian-matrix-valued function $H(k)$. For fixed but arbitrary k, $H(k)$ is an operator acting on the Hilbert space \mathcal{H}_{int} of internal degrees of freedom (the same for all k). The symmetry classification of Bloch Hamiltonians is a classification scheme for sets ("ensembles") of $H(k)$'s acting on a common Hilbert space \mathcal{H}_{int} and with a common argument k. The dimensionality d of the ensemble is that of k. The group of symmetries of an ensemble is the group of isometries of \mathcal{H}_{int} that commute with every $H(k)$ in the ensemble. An ensemble is called **irreducible** if its group of symmetries consists only of the identity up to a phase.

The simultaneous block-diagonalization of an ensemble and its unitary symmetries decomposes the ensemble into...
a sum of irreducible ensembles. An irreducible element $H(k)$ satisfies some subset of the following conditions,

$$TH(k)T^{-1} = H(-k) \quad (T = U_k^1 K, U_T U_T^* = \pm 1),$$

$$CH(k)C^{-1} = -H(-k) \quad (C = U_k^1 K, U_C U_C^* = \pm 1),$$

$$SH(k)S^{-1} = -H(k) \quad (S = U_{k_1}^1, U_{k_2}^1 = 1).$$

Here, K denotes complex conjugation in some preferred basis of H_{tot} and the linear isometries U_T, U_C, U_S of H_{tot} do not depend on $H(k)$ but only on the specific irreducible ensemble. For $d = 0$ ensembles, that is, dropping the k-dependence, these conditions become the usual conditions of the AZ classification.21,34,35 There are precisely ten distinct combinations of these conditions, which motivates the name “tenfold way”.11 The standard names of the ten classes of irreducible Hermitian ensembles are shown in Table II with \{A, AIII\} being the complex classes while the other eight the real classes.

The condition associated to T can be understood physically in terms of the time-reversal symmetry. Ignoring the other two conditions that do not have in general an obvious physical interpretation, one arrives at the “threefold way” of Dyson.23 The other two conditions, dubbed particle-hole (or charge conjugation) and chiral “symmetries” arise naturally for free fermions as “descendants” of special many-body symmetries.21,34,35 We will come back to this point in more detail for bosons. The reminder of this subsection is focused on (single-particle or BdG) Bloch Hamiltonians associated to free-fermion systems.

Consider the following question: Given a choice of Fermi energy (zero energy for superconductors) and two members, $H_1(k)$ and $H_2(k)$, of an irreducible ensemble of Bloch Hamiltonians fully gapped at that Fermi energy, is it possible to find a continuous deformation $H_3(k)$ of $H_1(k)$ into $H_2(k)$ such that (1) $H_3(k)$ is fully gapped at the Fermi energy for all s, and (2) $H_3(s)$ is a member of the same irreducible ensemble of Bloch Hamiltonians for all s? The answer can be “Yes” or “No” depending on the classifying parameters: the dimension d and the symmetry class. If the answer is “No”, the obstruction to the deformation is characterized by a topological invariant that can be calculated directly for individual Hamiltonians. Bloch Hamiltonians that cannot be deformed into one another are distinguished by the value of some topological invariant. The pattern of “Yes/No” and the topological invariants at play, both as a function of the symmetry class, are periodic in d, with period two for complex classes and period eight for real classes. This remarkable result goes by a catchy name, the “periodic table” (of the tenfold way), which was established through Clifford algebras and K-theory in Ref. [3]. For example, when $d = 0$, the two complex classes \{A, AIII\} are associated with two types of complex Clifford algebras and classifying spaces $C_q, q = 0, 1$, as shown in Table II, while the other eight real classes are associated with eight types of real Clifford algebras and classifying spaces $R_q, q = 0, 1, \cdots, 7$. Then, the number of disconnected components of C_q and R_q can be used as topological invariants to classify topological phases. Hereinafter, we will always refer to the classifying space of a symmetry class as the one associated with $d = 0$.

As it turns out, it is possible in general to continuously deform two Bloch Hamiltonians into each other without closing the gap at the Fermi energy, provided that one is allowed to break the classifying symmetries at intermediate steps. In this sense, the topological distinction between Bloch Hamiltonians is “symmetry-protected”. As hinted by the role of the Fermi energy in this discussion, fermionic statistics lead to a strong connection between low-energy many-body physics and the predictions of the topological classification.

First, for bulk systems, the topological classification of gapped Bloch Hamiltonians translates into a classification of SPT phases of free-fermion systems. Recall that two many-body ground states are regarded as describing distinct SPT phases if it is not possible to deform one into the other adiabatically (as in the Gell-Mann-Low theorem$^{[14]}$) without closing the many-body gap – while maintaining a preferred, “protecting” set of symmetries at all steps of the deformation. For fermions, topologically distinct ensembles of gapped Bloch Hamiltonians are in one-to-one correspondence with distinct SPT phases. This result is consistent with the fact that the classifying conditions of Eq. (15) are in correspondence with many-body symmetries for fermions. For superconductors, SPT order is often signaled by the fermion parity observable.

Second, the celebrated bulk-boundary correspondence relates non-zero values of the bulk topological invariants to the presence of boundary states of individual Hamiltonians subject to open BCs. For $d > 1$, these boundary or edge states cross the Fermi energy (zero energy for superconductors) and establish another link between low-energy many-body physics and the topological classification, i.e., the topologically dictated boundary metals/gapless superconductors that emerge at the termination of a fully gapped topologically non-trivial bulk. The Bloch Hamiltonians for the integer quantum Hall effect are important examples; they form a $d = 2$, class A ensemble. For $d = 1$, \{AIII, BDI, D, DIII, CII, C\} are the five

Class	T	C	R_0	R_1	R_2	R_3	R_4	R_5	R_6	R_7
A	0	0	1	1	0	-1	-1	0	1	
AIII	0	1	0	1	0	0	-1	-1	-1	0
AI	0	0	0	0	1	1	0	-1	-1	-1
BDI	0	1	0	0	1	0	0	-1	-1	-1
D	0	1	0	0	1	0	0	-1	-1	-1
DIII	0	1	0	0	1	0	0	-1	-1	-1
AII	0	0	0	1	1	0	-1	-1	-1	0
CII	0	0	0	1	1	0	-1	-1	-1	0
CI	0	0	0	1	1	0	-1	-1	-1	0
classes where the bulk-boundary correspondence dictates midgap ZMs for topologically non-trivial bulks. From a many-body perspective, the most remarkable example is the Kitaev chain because, loosely speaking, it features a single fermion split into halves in terms of a pair of Majorana ZMs localized on opposite ends of the chain.

III. INTERNAL SYMMETRIES OF MANY-BOSON SYSTEMS

In this section we investigate a special class of symmetries of free-boson systems that we call Gaussian[28]. These symmetry transformations on Fock space are special because they map (by similarity) creation and annihilation operators to linear combinations of themselves. For fermions, the classifying conditions of the symmetry classification known as the tenfold way are in correspondence with many-body Gaussian symmetries. As we will see, this is only partially true for bosons. The symmetry analysis of this section will be important in Sec.[14] when we consider non-Hermitian classification schemes as they apply to certain effective BdG Hamiltonians.

A. Particle-conserving systems

An ensemble of particle-conserving quadratic bosonic Hamiltonians is in one-to-one correspondence with an auxiliary ensemble of single-particle Hamiltonians by Eq.[12], regarded as a mapping. We will focus on symmetry transformations on Fock space that map particle-conserving quadratic bosonic Hamiltonians to Hamiltonians of the same type. There are two possibilities in principle: canonical mappings of the form

\[
V^{\dagger} \hat{\phi} V = \begin{bmatrix}
V a_1 V^{-1} \\
\vdots \\
V a_N V^{-1}
\end{bmatrix} = U_V \hat{\phi},
\]

and of the form

\[
C^{\dagger} \hat{\phi} C^{-1} = U_C \hat{\phi}^{\dagger T},
\]

where, because the commutation relations are necessarily preserved, U_V and U_C are $N \times N$ unitary matrices. The same is true for fermions with $\hat{\phi}$ replaced by $\hat{\psi}$. Notice that if O denotes an operator in Fock space, the equation $(V O V^{-1})^{\dagger} = V O^{\dagger} V^{-1}$ also holds for V antilinear provided it is antunitary.

The two distinct possibilities above arise because of the requirement of particle conservation. For particle non-conserving systems, there is no obstruction to mix creation and annihilation operators and so there is only one kind of Gaussian map (see Eq.[20] below). This fact is closely related to the particle-hole constraint satisfied by Nambu arrays. For particle-conserving free fermions, both possibilities are realized and transformations of the second kind, conventionally assumed linear without loss of generality, so that $C^{-1} = C^1$, are called particle-hole (or charge conjugation) symmetries because the symmetry condition $C K f C^{-1} = K f$ translates into a particle-hole-like condition $U_C \dagger K^* U_C = -K$ for the single-particle Hamiltonian K. As we will see, particle-hole and so-called chiral symmetries are forbidden for bosons by the canonical commutation relations.

Going back to ensembles of particle-conserving free-boson systems, the unitary symmetries of the auxiliary ensemble of single-particle Hamiltonians are in one-to-one correspondence with the Gaussian symmetries of the ensemble of many-body Hamiltonians. Suppose

\[
V^{\dagger} \hat{\phi} V = U_V \hat{\phi}
\]

is a unitary Gaussian symmetry transformation. Then, the condition $V K^{\dagger} = K$ for all K implies that $U_V \dagger K U_V = K$ for all K. That is, a Gaussian symmetry of the many-body ensemble descends into a symmetry of the auxiliary ensemble of single-particle Hamiltonians. For the reverse process of lifting a single-particle symmetry to a Gaussian many-body symmetry, one needs to invoke the Stone-von Neuman-Mackey theorem,[27, 35] which guarantees that the unitary transformation V in Eq.[18] exists given U_V as the input, provided that the number of modes $N < \infty$.

As a result of this analysis, one concludes that the decomposition of the auxiliary ensemble of single-particle Hamiltonians into irreducible AZ ensembles is equivalent to the decomposition of the ensemble of bosonic many-body Hamiltonians as a sum of commuting bosonic many-body Hamiltonians labeled by Gaussian-symmetry quantum numbers. It is important to appreciate how particle conservation fits in this discussion. Let $N = \sum_{j=1}^{N} a_j^{\dagger} a_j$ denote the number operator. Then, $e^{i\theta} \hat{\phi} e^{-i\theta N} = e^{-i\theta} \hat{\phi}$ and thus particle conservation induces a trivial symmetry of the auxiliary ensemble of single-particle Hamiltonians.

This aspect of the problem is identical for bosons and fermions with the complication, in the case of bosons, that one must rely on the highly-non-trivial Stone-von Neuman-Mackey theorem to establish it (see also Theorem 11 in Ref.[63] for fermions, with $N < \infty$). The key difference between particle-conserving fermions and bosons is that for bosons not all of the classifying AZ conditions are associated to Gaussian many-body symmetries. Time reversal works fine. Suppose T is an antilinear isometry of the Fock space such that

\[
T \hat{\phi} T^{-1} = U_T \hat{\phi}, \quad T_i = -i T.
\]

Because commutation relations are preserved and by that U_T is a unitary matrix, $T K^{\dagger} T^{-1} = K$ in terms of $T = U_T^{\dagger} K$. Conversely, given a unitary transformation that intertwines K and K^*, one can lift it into an antilinear Gaussian symmetry by a variation of the argument of the previous paragraph.
How about particle-hole symmetries, Eq. (17)? If such a \(C \) were to exist, it would have to preserve the commutation relations, which would imply that \(U_C U_C^\dagger = 1_N \). There is no solution of this equation. Finally, a chiral symmetry is a Gaussian symmetry of the form \(S = TC \), which is of interest for fermions in situations where \(T \) and \(C \) are not separately symmetries of the many-body ensemble but \(S \) is. Since particle-hole symmetries do not exist for bosons, neither do chiral symmetries. The interested reader can play around with the idea of defining a chiral symmetry for bosons, say, as a sub-lattice symmetry, to gain physical insight into this no-go result.

In summary, for particle-conserving free-boson systems, the time-reversal classifying condition \(T \) is in correspondence with an antilinear Gaussian symmetry \(T \). By contrast, and contrary to fermions, the particle-hole and chiral classifying conditions can well emerge at the single-particle level but have no many-body counterpart. But then, what exactly is accomplished by feeding a topologically non-trivial single-particle Hamiltonian into Eq. (12)?

B. Particle non-conserving systems

For particle non-conserving free-boson systems, Eq. (5), regarded as a map, puts ensembles of quadratic bosonic Hamiltonians in correspondence with ensembles of Hermitian matrices \(H_b \) that satisfy the constraint \(\tau_1 H_b^\dagger \tau_1 = H_b \). However, the many-body system is governed by the spectral properties of the effective BdG Hamiltonian \(H_\tau = \tau_3 H_b \). Moreover, as we will see next, Gaussian symmetries are in correspondence with symmetries of \(H_\tau \), not \(H_b \). Hence, one is drawn to the conclusion that ensembles of particle non-conserving free-boson systems should be regarded as being in correspondence with those of pseudo-Hermitian effective BdG Hamiltonians.

The focus is again on symmetry transformations on Fock space that generically map particle non-conserving quadratic bosonic Hamiltonians to Hamiltonians of the same type. Since there is no need to preserve particle conservation, nothing prevents mixing creation and annihilation operators and, thus, the notion of particle-hole symmetry becomes redundant. Gaussian symmetry transformations are of the form

\[
\hat{V} \hat{\Phi} \hat{V}^{-1} = U_V \hat{\Phi} = U_V' \hat{\Phi}'^{\dagger T},
\]

with \(V \) linear or antilinear. Because canonical commutation relations are necessarily preserved, the above implies

\[
U_V \tau_3 U_V^\dagger = \tau_3, \quad U_V' \tau_3 U_V'^\dagger = -\tau_3,
\]

with \(U_V \) a pseudo-unitary matrix, and \(U_V' (= U_V \tau_1) \) a skew-pseudo-unitary matrix. Hence, one can focus on the pseudo-unitary matrices \(U_V \) without loss of generality. In addition, the Nambu constraint \(\hat{\Phi} = \tau_1 \hat{\Phi}'^{\dagger T} \) is also preserved by a Gaussian isometry. As a result, the pseudo-unitary transformation \(U_T \) is real symplectic, satisfying conditions \(\tau_1 U_T^\dagger \tau_1 = U_T \) and \(U_T^\dagger \tau_1 U_T = \tau_2 \).

Consider first linear Gaussian symmetries. One finds that \(V \hat{H}_b \hat{V}^\dagger = \hat{H}_b \) if and only if \(U_V^\dagger H_b U_V = H_\tau \). Hence, linear Gaussian symmetries of the many-body ensemble descend into symmetries of the auxiliary pseudo-Hermitian ensemble of \(H_\tau \). Conversely, one can again invoke the Stone-von Neumann-Mackey theorem to lift a symmetry of the auxiliary ensemble into a linear Gaussian symmetry of the many-body ensemble. If those symmetries are continuous, then \(V = e^{iQ_b} \) for some Hermitian quadratic bosonic generator \(Q_b \). An infinitesimal symmetry transformation leads to a pseudo-unitary matrix \(U_V = e^{uv} \approx 1 + u V \), such that \(u_V \tau_3 + \tau_3 u_V^\dagger = 0 \) and \(\tau_1 u_V^\dagger \tau_1 = u_V \). Combining these observations with the identity \(i[\hat{Q}_b, \hat{\Phi}] = -i\tau_3 Q_b \hat{\Phi} = -iQ_\tau \hat{\Phi} \) and Eq. (21), one concludes that \(u_V = -iQ_\tau \) and \(U_V^\dagger H_b U_V = H_\tau \) if and only if \([Q_\tau, H_\tau] = 0 \). Physically, the matrix \(Q_\tau = \tau_3 Q_b \) may represent a conserved charge. One can reach the same conclusion directly by calculating

\[
[\hat{Q}_b, \hat{H}_b] = \frac{i}{2} \hat{\Phi}^{\dagger} \tau_3 [Q_\tau, H_\tau] \hat{\Phi}.
\]

It is reasonable to have an ensemble of \(H_\tau \) reducible, under the same conditions as before, and assume that any such ensemble can be decomposed into a sum of irreducible ensembles by, roughly speaking, block-diagonalizing the ensemble together with its Gaussian symmetries. This decomposition of the auxiliary ensemble corresponds to decomposing Hamiltonians of the many-body ensemble as sums of commuting many-body Hamiltonians labelled by the quantum numbers of the Gaussian symmetries.

Next, consider antilinear Gaussian symmetries, that is, time-reversal-like symmetries of the form

\[
T \hat{\Phi} T^{-1} = U_T \hat{\Phi}, \quad T i = -i T,
\]

where \(U_T \) is a pseudo-unitary matrix. From the symmetry condition \(T \hat{H}_b T^{-1} = \hat{H}_b \) we get a constraint on the effective BdG hamiltonians \(H_\tau \) of the form

\[
U_T^{-1} H_b^* U_T = \tau H_\tau T^{-1} = H_\tau
\]

in terms of \(T = U_T^{-1} K \). Applying Eq. (24) to \(H_\tau \) twice and assuming that the ensemble is irreducible one finds that \(U_T U_T^{-1} = \pm I_{2N} \). If we consider the simplest case where there are no internal degrees of freedom, \(U_T \) could be \(I_{2N} \), which is typical for phonons. Then one obtains the reality condition \(H_\tau^* = H_\tau \).

IV. TOPOLOGY OF GAPPED FREE BOSONS: NO-GO THEOREMS

Particle-conserving free-boson systems in equilibrium are generically gapless (in the thermodynamic limit) regardless of the spectral gaps of the auxiliary
single-particle Hamiltonian. By contrast, particle-non-conserving systems can be fully gapped at the many-body level. This observation opens up the possibility for SPT conserving systems can be fully gapped at the many-body single-particle Hamiltonian. By contrast, particle-non-conserving systems cannot possibly show these signatures. Moreover, we show that any pair of fully gapped free-boson Hamiltonians can always be connected adiabatically without closing the many-body gap or breaking any protecting symmetries. Hence, non-trivial SPT phases do not exist for free-boson systems. For the special case \(d = 2 \), periodic BCs, and no additional symmetries, a related result was derived based on the triviality of the Chern number in Ref. \[39\].

In this section we prove that fully gapped free-boson systems cannot possibly show these signatures. Moreover, we show that any pair of fully gapped free-boson Hamiltonians can always be connected adiabatically without closing the many-body gap or breaking any protecting symmetries. Hence, non-trivial SPT phases do not exist for free-boson systems. For the special case \(d = 2 \), periodic BCs, and no additional symmetries, a related result was derived based on the triviality of the Chern number in Ref. \[39\].

We organize these results as three no-go theorems for fully gapped free-boson systems. Our proofs are independent of each other and, in all cases, the central obstruction is the stability constraint discussed in Sec. \[11B\] rather than profound differences of internal symmetries between fermions and bosons. The theorems are:

- **Theorem 1** (no parity switches): The boson parity of the ground state is even.
- **Theorem 2** (no non-trivial SPT phases): All Hamiltonians are adiabatically connected regardless of the choice of protecting symmetries.
- **Theorem 3** (no localized ZMs): The system subject to open BCs cannot develop localized ZMs.

All these results are pleasingly consistent. Of course, our no-go Theorem 3 does not forbid localized ZMs for gapped systems subject to BCs other than open. The squaring-the-fermion map can precisely generate such ZMs, and we will see concrete examples in Sec. \[VI\] With minimal modifications, our Theorems 2 and 3 hold also for linear-quadratic Hamiltonians of Eq. \[13\] in Sec. \[11B\].

A. Theorem 1: No parity switches

Theorem 1. Let \(\tilde{H}_b \) be a quadratic bosonic Hamiltonian with finitely many modes \(N \) and \(H_b > 0 \). Then, its ground state is non-degenerate with even boson parity.

Proof. Since \(H_b > 0 \), it follows that there are no ZMs and \(\tilde{H}_b \) can be written in the form of Eq. \[11\]. The ground state is the unique vacuum for the quasi-particles. Let the Bogoliubov transformation from the \(a \) to the \(b \) bosonic modes be furnished by a \(2N \times 2N \) matrix of the following block structure:

\[
\begin{bmatrix}
 b \\
 b^\dagger
\end{bmatrix} = \begin{bmatrix}
 X & -Y^* \\
 -Y & X^*
\end{bmatrix} \begin{bmatrix}
 a \\
 a^\dagger
\end{bmatrix},
\]

then, the quasi-particle vacuum state is

\[
|\Omega\rangle = \text{det}(X^\dagger X)^{-1/4} \exp \left[i \frac{1}{2} \hat{\phi} (X^\dagger Y^{\dagger} \phi)^\dagger \right] |0\rangle.
\]

Since the exponent is quadratic, the even parity of the ground state \(|\Omega\rangle \) follows. We still need to show that the formula always holds, that is, we need to show that \(X \) is invertible. Because the matrix in Eq. \[25\] is a canonical transformation, it follows that \(XX^\dagger - YY^\dagger = 1_N \), another form of the orthonormality relations of Eq. \[7\]. Thus, \(\text{det}(X^\dagger X) = \text{det}(1_N + YY^\dagger) \geq 1 \), whereby \(X \) is necessarily invertible. \(\square \)

On the one hand, odd fermion parity in the ground state and fermion parity switches are usual (albeit not mandatory) \[23\] signatures of non-trivial SPT phases in fermionic systems, even interacting ones. \[11B\] On the other hand, for free fermions a ground-state expression equivalent to Eq. \[26\] exist, seemingly implying that fermions always have even parity ground states. Crucially, the fermionic analogue of the matrix \(X \) in Eq. \[25\] can fail to be invertible, leading in those cases to an odd-parity ground state. For bosons, this possibility is excluded because \(H_b > 0 \) implies a many-body gap (as we discussed in Sec. \[11B\]), a condition that has no analogue for fermions. We conclude that parity switches are non-existent for stable free bosons.

B. Theorem 2: No SPT phases

Theorem 2. Let \(\tilde{H}_{b,1} \) and \(\tilde{H}_{b,2} \) denote gapped, particle-non-conserving quadratic bosonic Hamiltonians sharing a group of symmetries. Then \(\tilde{H}_{b,1} \) can be adiabatically deformed into \(\tilde{H}_{b,2} \) without breaking any of the symmetries, or closing the many-body gap.

Proof. Consider the continuous path

\[
\tilde{H}_b(s) = (1 - s) \tilde{H}_{b,1} + s \tilde{H}_{b,2}, \quad s \in [0, 1],
\]

which implies the Hermitian matrix \(H_b(s) = (1 - s)H_{b,1} + sH_{b,2} \) satisfies the constraint \(\tau_1 H_b(s) \tau_1 = H_b(s) \) for all \(s \). Moreover, if \(V \) is a linear or antilinear symmetry shared by the initial and final free-boson systems, then \(VH_b(s)V^{-1} = \tilde{H}_b(s) \) for all \(s \). Finally, since \(\tilde{H}_{b,1} \) and \(\tilde{H}_{b,2} \) are particle non-conserving and gapped, it follows that \(H_{b,1}, H_{b,2} > 0 \), hence \(H_b(s) = (1 - s)H_{b,1} + sH_{b,2} \) > 0. In other words, \(\tilde{H}_b(s) \) is fully gapped for all \(s \). \(\square \)

Notice that the map in Eq. \[27\] preserves the locality properties of \(H_{b,1} \) and \(H_{b,2} \). A corollary of this theorem is
that there are no non-trivial SPT phases of particle non-conserving free-boson systems. Any such system can be adiabatically deformed into a topologically trivial system without closing the many-body gap or breaking any symmetry. Hence, one expects that stable, gapped systems of free bosons will not display any signatures of non-trivial topology.

How do free-fermion systems escape this triviality result? Again, the answer is that there is no counterpart to the symbol, because $i,j=1$ implies that there is no non-trivial counterpart. Again, the answer is that there is no counterpart for fermions of the bosonic gap condition $H_b > 0$. Referring back to the proof of Theorem 2, there is nothing that can prevent, in general, the closing of the gap along the path $H_f(s) = (1-s)H_{f,1} + sH_{f,2}$ of free-fermion Hamiltonians. In fact, a key insight of the tenfold way is that the gap must close when $H_f(s)$ interpolates between two topologically distinct Hamiltonians in the same symmetry class. By contrast, it is easy to find examples of paths of gapped Hamiltonians that connect different symmetry classes, regardless of topological invariants.

C. Theorem 3: No localized ZMs

Theorem 3. Consider a d-dimensional, translation-invariant free-boson system $H_b(k) > 0$, and the same system subject to open BCs and described by H_{b,k_1}°. Then, zero is not an eigenvalue of H_{r,k_1}°.

Remark. This theorem is true even if the pairing contributions vanish, $\Delta = 0$, in which case the condition $H_b(k) > 0$ is equivalent to $K(k) > 0$ and does not imply a many-body gap in general.

Proof. The proof requires results from the theory of matrix Wiener-Hopf factorization[23,24]. While the following argument is not self-contained, we provide references for all the necessary auxiliary theorems. With reference to Sec. II A for our notation, let $k_|| \in \text{SBZ}$ and

$$G(e^{ik}) = H_{b,k_1}(k), \quad \forall k \in [-\pi, \pi),$$

(28)

that is, G is explicitly defined as a function on the unit circle in \mathbb{C}. Since $H_b(k) > 0$, it follows that $G(e^{ik}) = H_{b,k_1}(k) > 0$ for all k. The matrix-valued function G is the symbol of the block-Toeplitz operator $G^o = H_{b,k_1}^o$.

Regarding G^o as an infinite matrix, one can state the block-Toeplitz property as $[G^o]_{i,j} = [G^o]_{i+1,j+1}$, with $i,j = 1,2,\ldots, \infty$ being the coordinate of a lattice point in the direction perpendicular to the termination of the lattice. The blocks $[G^o]_{i,j}$ act on internal, not lattice degrees of freedom. Back to the symbol, because $G(e^{ik}) > 0$ for all $k \in [-\pi, \pi)$, it admits a canonical Wiener-Hopf factorization, that is, a factorization of the form

$$G(e^{ik}) = G_+(e^{ik})G_-(e^{ik}),$$

(29)

where the entries of $G_+(e^{ik})$ and $G_-(e^{ik})$ are analytic inside (outside) the unit circle, see Theorem 1.13 in Ref. [40] (and Ref. [41] for a system-theoretic perspective). Further, according to Theorem 2.13 in Ref. [40], a block-Toeplitz operator is invertible if and only if its symbol admits a canonical Wiener-Hopf factorization. In our case, this implies that the block-Toeplitz operator G^o is invertible. Consequently, $H_{r,k_1}^o = \tau_3 H_{b,k_1}^o = \tau_3 G^o$ is also invertible. In conclusion, zero does not belong to the spectrum of H_{r,k_1}^o for any value of $k_|| \in \text{SBZ}$, and therefore it does not belong to the spectrum of H_r^o.

Corollary 1. Localized midgap states cannot exist in the spectral gap separating positive from negative eigenvalues of H_{r,k_1}^o.

Proof. Suppose that a state with eigenvalue ϵ lies in that spectral gap. Then, similarly to the proof in Theorem 3, $G(e^{ik}) - \epsilon \tau_3$ and $H_{b,k_1}^o - \epsilon \tau_3$ are invertible, whereby it follows that ϵ does not belong to the spectrum of H_{r,k_1}^o. \hfill \square

Physically, Theorem 3 excludes the possibility of having a ZM. Corollary 1 excludes surface bands altogether in the spectral gap around zero energy, regardless of whether they cross zero energy.

Since our no-go Theorem 3 and its Corollary 1 address a spectral connection between periodic and open BCs, they may be taken to provide a no-go result for a bulk-boundary correspondence, at least of a standard form. Their reach can be further extended by considering generic single-particle perturbations bounded in the operator norm. Suppose that a perturbation W_b that satisfies the constraint $\tau_1 W_b^* \tau_1 = W_b$ is added to H_r^o. Then the effective bosonic BdG Hamiltonian is

$$H_r^o + W_{\tau} = H_r^o [I + (H_r^o)^{-1}W_{\tau}],$$

(30)

with $W_{\tau} = \tau_3 W_b$. As long as $||W_{\tau}|| < 1/||H_r^o||$, the above Hamiltonian is invertible and therefore does not have a zero eigenvalue. Notice that $1/||H_r^o||$ equals the smallest energy eigenvalue of H_r^o, which is the first excitation energy above the bosonic vacuum. These perturbations do not include bulk disorder but can model a variety of BCs and boundary disorder that decays sufficiently fast into the bulk.

V. SQUARING THE FERMION

A. The square of a fermion is a boson

An even-dimensional Hermitian matrix H can arise as the BdG Hamiltonian of a free-fermion system if and only if it satisfies the particle-hole constraint $\tau_1 H^\dagger \tau_1 = -H$ of Sec. II A. One can recast this constraint in terms of a projector superoperator,

$$F(H) \equiv 1/2 (H - \tau_1 H^\dagger \tau_1), \quad H = H^\dagger.$$

(31)
That is, an even-dimensional Hermitian matrix H_f can be associated to a fermionic BdG Hamiltonian if and only if $F(H_f) = H_f$. Similarly, an even-dimensional Hermitian matrix H can be associated to a free-boson system if and only if it satisfies the constraint $\tau_1 H^* \tau_1 = H$, which again can be recast in terms of a projector superoperator,

$$B(H) = \frac{1}{2} (H + \tau_1 H^* \tau_1).$$

We call a Hermitian matrix H_b with $B(H_b) = H_b$ bosonic.

Now we are in a position to state two interesting relationships between fermionic BdG Hamiltonians and bosonic matrices:

1. Every even-dimensional Hermitian matrix is the sum of a unique fermionic BdG Hamiltonian and a unique bosonic matrix; and

2. The square of a fermionic BdG Hamiltonian is a bosonic matrix.

The first result follows because the projectors F and B are complementary, $H = F(H) + B(H)$, and have disjoint ranges, $F \circ B = B \circ F = \emptyset$. The second result follows because $B(H_f^2) = H_f^2$. More generally, bosonic matrices can be obtained from fermionic ones via application of a broader class of even functions, e.g., if P is an even polynomial, then $P(H_f)$ is a bosonic matrix. However, not only does the square function provide the simplest mathematical option but, as we discuss next, the resulting fermion-to-boson mapping has a number of remarkable properties from a physical standpoint.

By construction, the bosonic matrix H_f^2 is positive semi-definite, $H_f^2 \geq 0$. Hence, the free-boson system described by the quadratic bosonic Hamiltonian

$$\epsilon_0 \hat{H}_b = \frac{1}{2} \hat{\Phi}^\dagger H_f^2 \hat{\Phi} - \frac{1}{2} \text{tr}(K'), \quad \epsilon_0 > 0,$$

is stable. Here ϵ_0 is some suitable constant with units of energy and $K' \equiv K^2 - \Delta \Delta^*$ in terms of the single-particle Hamiltonian and pairing for the free-fermion system. Accordingly, we have identified a squaring map,

$$\mathcal{S}(H_f) \equiv \tau_3 H_f^2 \equiv H_{r,b},$$

from BdG Hamiltonians of free-fermion systems to effective BdG Hamiltonians of stable free-boson systems.

The above squaring map is interesting because the kernel, that is, the ZMs, of H_f and $\tau_3 H_f^2$ coincide, even though $\tau_3 H_f^2$ may also display additional zero-energy generalized eigenvectors (see Sec. VI for explicit examples). Importantly, not all effective BdG Hamiltonians are in the range of the squaring map. For example, for periodic BCs, the effective BdG Hamiltonian of the gapless harmonic chain, $\hat{H}_{hc} = \sum_k \sqrt{2(1 - \cos k)}(a_k^\dagger a_k + 1/2) + P^2/2$, displays a single zero-energy eigenvector associated to the conserved total momentum operator P_b. Since zero eigenvectors of H_f come in pairs, the same is true of $\tau_3 H_f^2$ and so the harmonic chain cannot possibly be the square of a fermion.

Besides lattice models as in Sec. I, the squaring map we have introduced extends naturally to continuum models. We consider the simplest case of the Dirac Hamiltonian in three spatial dimensions for illustration. In the absence of gauge fields, the latter reads

$$H_D = c(\gamma_1 p_1 + \gamma_2 p_2 + \gamma_3 p_3) + mc^2 \gamma_4,$$

where $p_\nu = -i\hbar \partial/\partial x^\nu$, $\gamma_\nu \nu = 1, 2, 3, 4$, are Hermitian matrices satisfying the Clifford algebra $\{\gamma_\nu, \gamma_\nu\} = 2\delta_{\nu\nu'}$, which force them to be (at least) 4 × 4 matrices. The choice $\gamma_1 = 1_2 \otimes 1_2$, $\gamma_2 = 1_2 \otimes \sigma_3$, $\gamma_3 = 1_2 \otimes \sigma_3$ and $\gamma_4 = \sigma_3 \otimes \sigma_3$ highlights the fact that the Dirac Hamiltonian can be regarded as a (continuous-coordinate) fermionic BdG Hamiltonian of the form $H_D = \begin{bmatrix} K & \Delta \\ -\Delta^* & -K^* \end{bmatrix}$, with $K \equiv \gamma_1 c_1 p_1 + \gamma_3 mc^2$ and $\Delta \equiv \gamma_3 c(p_2 - ip_3)$. Thus, one can second-quantize H_D as

$$\hat{H}_D = \frac{1}{2} \int \hat{\Psi}^\dagger(\vec{x}) H_D \hat{\Psi}(\vec{x}) \, d^3 x,$$

a field theory in terms of the Nambu array

$$\hat{\Psi}^\dagger(\vec{x}) = \begin{bmatrix} c_1^\dagger(\vec{x}) & c_2^\dagger(\vec{x}) & c_1(\vec{x}) & c_2(\vec{x}) \end{bmatrix},$$

with $\{c_i(\vec{x}), c_j(\vec{y})\} = 0$, $\{c_i(\vec{x}), c_j^\dagger(\vec{y})\} = \delta_{ij} \delta(\vec{x} - \vec{y})$. Applying the map \mathcal{S} yields the associated free-boson system with the bosonic matrix

$$H_b^2 = (p^2 c^2 + m^2 c^4) \otimes 1_4.$$

Choosing $\epsilon_0 = 2mc^2$, the gap of H_D, we obtain the free-boson second-quantized form

$$\hat{H}_b = \frac{1}{2} \int \hat{\Phi}^\dagger(\vec{x}) \left(\frac{p^2}{2m} \otimes 1_4 + \frac{mc^2}{2} \otimes 1_4 \right) \hat{\Phi}(\vec{x}) \, d^3 x,$$

in terms of the Nambu array of canonical bosons $\hat{\Phi}^\dagger(\vec{x}) = \begin{bmatrix} a_1^\dagger(\vec{x}) & a_2^\dagger(\vec{x}) & a_1(\vec{x}) & a_2(\vec{x}) \end{bmatrix}$. From now on we will drop any explicit reference to ϵ_0.

B. Symmetry analysis of the squaring map

While the squaring map can break some fermionic symmetries, it certainly preserves many as well. Here, we investigate those fermionic continuous symmetries that are inherited by the squaring map. In preparation for the classification of squared ensembles we will consider
in Sec. \[\text{V}\] we will also need a detailed understanding of how the resulting symmetry reduction intertwines with the squaring map and the indefinite metric \(\tau_3\).

Consider the generators of symmetries of \(H_f\)

\[
g_f = \{ Q_f = Q_f^\dagger | \tau_1 Q_f^\dagger \tau_1 = -Q_f, [Q_f, H_f] = 0 \}. \tag{40}
\]

\(Q_f \in g_f\) if and only if the conserved charge \(\hat{Q}_f\) obeys \([\hat{Q}_f, \hat{H}_f] = 0\). The fermion number and the total spin are good examples. The Lie group \(e^{i\theta}\) of unitary matrices \(U_f\) that commute with \(H_f\) and satisfy \(\tau_1 U_f^\dagger \tau_1 = U_f\) is precisely the group associated to fermionic Gaussian symmetries of particle-non-conserving systems. The block structure of these matrices is

\[
U_f = \begin{bmatrix} A & B \\ B^* & A^* \end{bmatrix}, \quad AA^\dagger + BB^\dagger = I_N, \quad AB^T + BA^T = 0,
\]

with \(A\) and \(B\) \(N \times N\) matrices. Similarly, let

\[
g_f = \{ Q_f = Q_f^\dagger | \tau_1 Q_f^\dagger \tau_1 = Q_f, [Q_f, H_f] = 0 \} \tag{41}
\]

be the generators of symmetries of \(H_f = \tau_3 H_f^T\), with \(Q_f = \tau_3 Q_f\) (see Sec. \[\text{III}\]). Again, \(Q_f \in g_f\) if and only if \([\hat{Q}_f, \hat{H}_f] = 0\). Since the squaring map involves the \(\tau_3\) matrix (Nambu formalism in Table I), one needs to analyze fermionic symmetries that either commute or anticommute with \(\tau_3\).

First, let us focus on \(U_f\) that commutes with \(H_f\) and \(\tau_3\). Then, \(U_f\) is also a pseudo-unitary matrix (with \(U_f \tau_3 U_f^\dagger = \tau_3\)), that commutes with \(\tau_3 H_f^T\). Consider the class of symmetry generators of the form

\[
Q_f = Q_f^\dagger = Q = \begin{bmatrix} q & 0 \\ 0 & -q^\dagger \end{bmatrix}, \quad q = q^\dagger, \tag{42}
\]

resulting in

\[
[Q, H_f] = \begin{bmatrix} [q, K] & q \Delta + \Delta q^\dagger \\ (q \Delta + \Delta q^\dagger)^* & [q, K]^* \end{bmatrix}. \tag{43}
\]

Then, symmetries of the particle-conserving part \(K\), which are preserved by pairing \(\Delta\), will always be symmetries of the free-boson system \(\tau_3 H_f^T\).

The symmetry reduction of the squared ensemble can be achieved by first reducing the fermionic symmetries and then applying the squaring map \(\tilde{S}\) to each block, but with respect to a suitably defined indefinite metric. A key aspect of the problem is precisely the determination of the appropriate reduced metric. Technical details of this symmetry-reduction analysis can be found in Appendix \[\text{B}\] whereas a summary is shown in Table \[\text{I}\]. This table describes the key structural feature of the subensembles of \(\{\tau_3 H_f^T\}\) as determined by the shared conserved quantum number labelling the blocks and the associated subensembles of \(\{H_f\}\).

Example. For illustration, we square the BdG Hamiltonian of a conventional BCS superconductor. We start with the CWS mean-field Hamiltonian

\[
\tilde{H}_f = \sum_{k, \sigma \in \{\uparrow, \downarrow\}} (\epsilon_k - \mu) c_{k\sigma}^\dagger c_{k\sigma} + \sum_k (\Delta c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger + \text{h.c.}),
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Eig} & \text{Deg} & \text{Block (f)} & \text{Block (b)} & \text{Metric} \\
\hline
\kappa & m & K_\kappa \text{ (SPH)} & K_\kappa^2 & I_m \\
0 & m & H_f,0 \text{ (BdG)} & \tau_3 H_{f,0}^T & \tau_3 = \sigma_3 \otimes I_m \\
\kappa, -\kappa & m, n & H_{\pm\kappa} \text{ (U(1))} & \tau_{m,n} H_{\pm\kappa}^T & \tau_{m,n} = \begin{bmatrix} I_m & 0 \\ 0 & -I_n \end{bmatrix} \\
\hline
\end{array}
\]

In the BdG formalism, the above equation becomes

\[
\tilde{H}_f = \sum_k \tilde{\Psi}_k^\dagger H_f(k) \tilde{\Psi}_k / 2 + \sum_k (\epsilon_k - \mu), \quad \text{where} \quad \tilde{\Psi}_k = \begin{bmatrix} c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger & 0 \\ 0 & c_{-k\downarrow}^\dagger c_{k\uparrow} \end{bmatrix}
\]

and \(H_f(k) = \begin{bmatrix} K(k) & \Delta(k) \\ -\Delta^*(k) & -K^*(k) \end{bmatrix}\), with \(K(k) = \begin{bmatrix} \epsilon_k - \mu & 0 \\ 0 & \epsilon_k - \mu \end{bmatrix}\) and \(\Delta(k) = \begin{bmatrix} 0 & \Delta \\ -\Delta & 0 \end{bmatrix}\).

Then, besides the built-in particle-hole constraint \(\tau_1 K = (\sigma_1 \otimes I_2) K, H_f(k)\) has another particle-hole symmetry \((\sigma_2 \otimes \sigma_3) K\) and, therefore, a unitary commuting symmetry \(U = \sigma_3 \otimes \sigma_3\), with \(\{\tau_3, U\} = 0\). Furthermore, \(U\) is also a unitary commuting symmetry of \(H_f(k) = \tau_3 H_f^T(k)\), that can be block-diagonalized. After defining a \(4 \times 4\) permutation matrix \(P\) with non-vanishing elements \(P_{11} = P_{23} = P_{34} = P_{42} = 1\), we have

\[
P^\dagger H_f(k) P = P^\dagger \tau_3 H_f^T(k) P = (P^\dagger \tau_3 P)(P^\dagger H_f(k) P)^2,
\]

where \(P^\dagger \tau_3 P = \begin{bmatrix} 0 & 0 \\ 0 & \sigma_3 \end{bmatrix}\) and

\[
P^\dagger H_f(k) P = \begin{bmatrix} \bar{H}_f(k, \mu, \Delta) & 0 \\ 0 & -\bar{H}_f(k, \mu, -\Delta) \end{bmatrix}, \tag{44}
\]

with \(\bar{H}_f(k, \mu, \Delta) = \begin{bmatrix} \epsilon_k - \mu & \Delta \\ -\Delta^*(\epsilon_k - \mu) \end{bmatrix}\), that is, the irreducible block of \(H_f(k)\). Now we have

\[
P^\dagger H_f(k) P = \begin{bmatrix} \sigma_3 \bar{H}_f^T(k, \mu, \Delta) & 0 \\ 0 & \sigma_3 \bar{H}_f(k, \mu, -\Delta) \end{bmatrix}, \tag{45}
\]

and we only need to focus on the irreducible block \(\sigma_3 \bar{H}_f^T(k, \mu, \Delta) \equiv \sigma_3 \bar{H}_f^T(k) = \bar{H}_f(k)\) of \(H_f(k)\) and the
irreducible block $\tilde{H}_f(k, \mu, \Delta) \equiv H_f(k)$ of $H_f(k)$. As we can see, $\tilde{H}_f(k) = \sigma_3 \tilde{H}_f^2(k)$ resembles $H_r(k) = \tau_3 H_r^2(k)$ a lot. However, $\tilde{H}_f(k)$ no longer has the built-in particle-hole constraint. Instead, $\tilde{H}_f(k)$ has another particle-hole symmetry $\sigma_3 \mathcal{K} \equiv \mathcal{U}_f^\dagger \mathcal{K}$, and usually a time-reversal symmetry \mathcal{T} as well (with $U_T = \mathbb{1}_2$), if $\epsilon_k = -\epsilon_k$ and $\Delta = \Delta^*$ – which means that the BdG Hamiltonian of conventional BCS superconductors usually belongs to class CI. Nonetheless, we will work with the case $\epsilon_k \neq -\epsilon_k$, so that the pairing potential will not vanish in $H_f^2(k)$ with

$$\tilde{H}_f^2(k) = \begin{pmatrix} (\epsilon_k - \mu)^2 + |\Delta|^2 & \Delta(\epsilon_k - \epsilon_{-k}) \cr \Delta^*(\epsilon_k - \epsilon_{-k}) & (\epsilon_k - \mu)^2 + |\Delta|^2 \end{pmatrix}, \quad (46)$$

and with the quadratic bosonic Hamiltonian associated to $H_r(k)$ being given by

$$\tilde{H}_b = \sum_{k \sigma} \left[(\epsilon_k - \mu)^2 + |\Delta|^2 \right] a_{k \sigma}^\dagger a_{k \sigma} + \sum_k \left[\Delta(\epsilon_k - \epsilon_{-k}) a_{k1}^\dagger a_{-k1}^\dagger + \text{h.c.} \right]. \quad (47)$$

Back to the general discussion, consider next a unitary symmetry U_f that anti-commutes with τ_3. It follows that $U_f^\dagger \tau_1$ is a pseudo-unitary matrix and $U_f^\dagger \tau_1 \mathcal{K} = \mathcal{T}$ commutes with $\tau_3 H_f^2$. An interesting physical observation emerges in this case. If $\{U_f, \tau_3\} = 0$, one can write

$$U_f = \begin{pmatrix} 0 & U_C^\dagger \cr U_C & 0 \end{pmatrix}, \quad U_C U_C^\dagger = \mathbb{1}_N. \quad (48)$$

Then, the symmetry condition $[U_f, H_f] = 0$ reads

$$\begin{pmatrix} -U_f^\dagger K U_C & -U_f^\dagger \Delta^* U_C^\dagger \\ U_C^\dagger \Delta U_C & U_C^\dagger K U_C^\dagger \end{pmatrix} = \begin{pmatrix} K & \Delta \\ -\Delta^* & -K^* \end{pmatrix}. \quad (49)$$

Hence, these symmetries of the fermionic BdG Hamiltonian are inherited from a particle-hole condition satisfied by the single-particle Hamiltonian. The associated bosonic system after squaring inherits instead a time-reversal symmetry $\mathcal{T} = U_f^\dagger \tau_1 \mathcal{K}$. This phenomenon is akin to the notion of symmetry transmutation first discussed in the context of dualities.

Finally, fermionic symmetries U_f that neither commute nor anticommute with τ_3 are broken by the squaring procedure. These symmetries mix K and Δ, and emerge because of the specific interplay between K and Δ. An ensemble of BdG Hamiltonians necessarily satisfies a particle-hole constraint and could satisfy other classifying conditions either before or after the symmetry reduction. We will address the interplay of these classifying conditions with the squaring map next.

C. Topological classification

Let $\{H_f(k)\}$ denote an ensemble of Bloch-BdG Hamiltonians. We briefly reviewed the topological classification of these ensembles in Sec. 1.11. Ensembles of systems without translation symmetry are included as the special case $k = 0$. The squaring map yields an associated ensemble of effective Bloch-BdG Hamiltonians $\mathcal{B}(\{H_f(k)\}) = \{\tau_3 H_f^2(k)\}$, with the notation $H_f^2(k) \equiv |H_f(k)|^2$. We call these bosonic – in general pseudo-Hermitian – ensembles the squared ensembles.

In this subsection, we will perform a symmetry-class analysis and establish a topological classification of these squared ensembles. As we saw in Sec. 1.11B, topological classifications (as opposed to pseudo-unitary ones) do not have, in general, a many-body interpretation for particle-non-conserving free-boson systems. However, since symmetries of our squared ensembles are inherited from those of free fermions, although they could be pseudo-unitarily implemented, there exists necessarily a unitary interpretation. As shown in Ref. 33, a pseudo-Hermitian matrix implemented with unitary symmetries (see also Refs. 32 and 33), together with a real energy gap (i.e., L_\ast of Ref. 33), can be continuously deformed into a Hermitian matrix while keeping its symmetries and gap. Therefore, some of the classification spaces of Hermitian matrices (see Table IV) can be used to label our squared ensembles once their symmetry analysis is realized.

For stable particle-non-conserving free-boson systems, we have excluded the existence of SPT phases in Sec. 1.11. Therefore, a topological classification of free bosons is only meaningful when we talk about single-particle states (rather than many-body ground states), i.e., SPT boundary states at finite energy, which is the main topic of this section. An earlier suggestion of classifying general effective BdG Hamiltonians using non-Hermitian symmetry classes can be found in Ref. 44.

1. Squared ensembles with vanishing pairing

When the pairing potential in $H_f(k)$ vanishes, $H_r(k)$ becomes block-diagonal and we only need to focus on one block of it, e.g. $K_f^2(k)$, which corresponds to squaring a particle-conserving free fermion. The irreducible blocks of Hermitian ensembles of the form $\{K_f^2(k)\}$ cannot possibly satisfy a particle-hole or chiral classifying symmetry and so they must belong to one of the three classes $\{A, A_I, A_{II}\}$. It is instructive to track in more detail the fate of the classifying conditions. For $H_f(k)$ with chiral symmetry $U_f^\dagger H_f(k) U_s = -H_f(k)$, after squaring we get

$$U_s^\dagger H_f^2(k) U_s = H_f^2(k), \quad (50)$$

which means that U_s is a unitary commuting symmetry of $H_f^2(k)$. For $H_f(k)$ with a time-reversal or particle-hole symmetry $U_{T/C}^\dagger H_f^2(-k) U_{T/C} = \pm H_f(k)$, we have

$$U_{T/C}^\dagger H_f^2(-k) U_{T/C} = H_f^2(k), \quad (51)$$

which means that $U_{T/C}^\dagger \mathcal{K}$ is a time-reversal symmetry of $H_f^2(k)$. These results are listed in Table IV.
TABLE IV. Particle-conserving free fermions $H_f(k)$ under the squaring map. The left major column corresponds to free fermions, whereas the right major column corresponds to free bosons, obtained by squaring. The three symmetries T, C and S are denoted by 1 (-1) if they square to I ($-I$), and by 0 if they are absent. For $H_f(k)$ with chiral symmetry, a unitary commuting symmetry of $H_f^2(k)$ exists and, after block-diagonalization, $H_f^2(k)$ will fall into classes $\{A, AI, AII\}$.

$H_f(k)$	T	C	S	Classifying space	$H_f^2(k)$	T	C	S	Classifying space
A	0	0	0	\mathcal{C}_0	A	0	0	0	\mathcal{C}_0
AII	0	0	1	\mathcal{C}_1	AI	1	0	0	\mathcal{R}_0
AI	1	0	0	\mathcal{R}_0	AI	1	0	0	\mathcal{R}_0
BDI	1	1	1	\mathcal{R}_1	D	1	0	0	\mathcal{R}_0
D	0	1	0	\mathcal{R}_2	DIII	-1	1	0	\mathcal{R}_3
DIII	-1	1	1	\mathcal{R}_3	AI	-1	0	0	\mathcal{R}_4
AI	-1	0	0	\mathcal{R}_4	CI	-1	-1	1	\mathcal{R}_5
CI	0	-1	0	\mathcal{R}_6	CI	1	-1	1	\mathcal{R}_7
C	0	-1	0	\mathcal{R}_6	CI	1	-1	1	\mathcal{R}_7

Even when the pairing potential in $H_f(k)$ does not vanish, it is still possible that, upon squaring, the pairing potential in $\tau_3 H^2_f(k)$ vanishes, i.e., $K^\tau_3_f(k) - \Delta_f(k) K^\tau_3_f(-k) = 0$. This outcome is expected, for example, for Dirac BdG Hamiltonians because of the defining relations of the Clifford algebra. More concrete examples are spinless 2×2 BdG Hamiltonians $H_f(k)$ of class BDI and spinless 2×2 BdG Hamiltonians $H_f(k)$ of class D subject to the time-reversal symmetry of $K_f(k) = K_f^\tau_3(-k)$. Because of $K_f(k) = K_f^\tau_3(-k)$ in these two examples, $K_f(k) \Delta_f(k) - \Delta_f(k) K_f^\tau_3(-k) = 0$ is obviously satisfied because $K_f(k)$ and $\Delta_f(k)$ are scalars and so they commute with each other. In any case, if pairing vanishes in the squared ensemble because of the squaring map, we need to focus on one block of $H_f(k)$, e.g., $K_f^\tau_3(k) - \Delta_f(k) \Delta_f^\tau_3(-k)$. The analysis of these blocks is included in Table IV as well.

2. Squared ensembles with non-vanishing pairing

Now we focus on the other cases where the pairing potential does not vanish in the squared ensemble. Because of the pseudo-Hermiticity of $H_f(k) \equiv \tau_3 H^2_f(k)$ mentioned in Sec.IA, i.e., $\tau_3 H^2_f(k) \tau_3 = H_f(k)$, the (anti)commutation relations between the metric τ_3 and the three internal classifying symmetries are crucial to the classification of free bosons.

Case 1: Irreducible ensemble $\{H_f(k)\}$

Let us first focus on irreducible ensembles $\{H_f(k)\}$. Because of the built-in particle-hole constraint with $U_C = \tau_1$ and $U_C U_C = 1$, the symmetry class of $\{H_f(k)\}$ can only be $\{BDI, D, DIII\}$.

Class D: For irreducible $H_f(k)$ in class D, the only classifying condition is the build-in particle-hole constraint $U_C^T H_f^2(-k) U_C = -H_f(k)$, with $U_C U_C = 1$ and $\{\tau_3, U_C\} = 0$. After squaring, we have

$$U_C^T H_f^2(-k) U_C = U_C^T \tau_3 H^2_f(-k) U_C = -H_f(k),$$

with $U_C^T K$ the usual build-in particle-hole constraint of $H_f(k)$, satisfying the skew-pseudo-unitary condition $U^T \tau_3 U U^T = -\tau_3$. If the squared ensemble has no emergent symmetries, we can conclude that $H_f(k)$ also belongs to class D. Here, we have adopted the same nomenclature for pseudo-Hermitian symmetry classes as that for Hermitian ones [see Table II and Eq. (15)[23]. However, we should always keep in mind that $H_f(k)$ is subject to the pseudo-Hermitian condition. After continuously deforming $H_f(k)$ to a Hermitian matrix[23] the classifying space of $H_f(k)$ is revealed as \mathcal{C}_0.

Class BDI: In addition to the particle-hole constraint, we have $U_C^T H_f^2(-k) U_T = H_f(k)$ and $U_T U_T = 1$. Following the discussion of Sec.VB, we need to consider two cases, either $\{\tau_3, U_T\} = 0$ or $[\tau_3, U_T] = 0$.

(i) $\{\tau_3, U_T\} = 0$ — In this case, $U_C^T U_T$ is both unitary and pseudo-unitary. After squaring, we have

$$U_C^T H_f^2(-k) U_T = U_T^T \tau_3 H^2_f(-k) U_T = -H_f(k),$$

which means $U_C^T K$ is a particle-hole symmetry of $H_f(k)$.

Together with Eq. (52), we have $U_C^T U_C H_f(k) U_C U_C = H_f(k)$, which means $U_C^T U_T = U_S$ is a unitary transformation that commutes with $H_f(k)$,

$$U_C^T H_f(k) U_S = U_S^T \tau_3 H^2_f(k) U_S = H_f(k).$$

One cannot draw further conclusions about this squared ensemble without reducing away this symmetry first.

(ii) $[\tau_3, U_T] = 0$ — In this case, U_T is both unitary and pseudo-unitary. After squaring, we have

$$U_T^T H_f^2(-k) U_T = U_T^T \tau_3 H^2_f(-k) U_T = H_f(k),$$

which means $U_C^T K$ is a time-reversal symmetry of $H_f(k)$. If we start from the the chiral symmetry of $H_f(k)$, i.e., $U_C^T H_f(k) U_S = -H_f(k)$, because $\{\tau_3, U_S\} = 0$ we find

$$U_C^T H_f(k) U_S = U_S^T \tau_3 H^2_f(k) U_S = -H_f(k),$$

namely $U_C^T K$ is a time-reversal symmetry of $H_f(k)$. If we start from the the chiral symmetry of $H_f(k)$, i.e., $U_C^T H_f(k) U_S = -H_f(k)$, because $\{\tau_3, U_S\} = 0$ we find
TABLE V. Particle non-conserving free fermions \(H_f(k) \) under the squaring map, where \(H_f(k) \) is irreducible. The left major column corresponds to free fermions \(H_f(k) \), whereas the right major column corresponds to free bosons \(H_r(k) \equiv \tau_3 H_f^2(k) \), obtained by squaring. The three minor columns of fermionic symmetries \(T \equiv U_f^1 K, C \equiv U_f^2 K = \tau_1 K \) and \(S = U_f^3 U_f \equiv \tau_1 U_f \) specify their (anti)commutation relations to the metric \(\tau_3 \), while the three minor columns of bosonic symmetries \(T, C \) and \(S \) are inherited from free fermions, specifying their (anti)commutation relations to the metric \(\tau_3 \) as well. For \(H_f(k) \) with chiral symmetry \(\mathcal{S} \) and \([\tau_3, \mathcal{S}] = 0 \), a unitary commuting symmetry of \(H_r(k) \) exists.

\(H_f(k) \)	\(T \)	\(C \)	\(S \)	\(H_r(k) \)	\(T \)	\(C \)	\(S \)
BDI \(\{ \tau_3, U_f \} = 0 \)	\(\tau_3, U_f \) & 0	\(R_1 \)	A unitary commuting symmetry of \(H_r(k) \) exists.				
D \(\{ \tau_3, U_f \} = 0 \)	\(\tau_3, U_f \) & 0	\(R_2 \)	D	A unitary commuting symmetry of \(H_r(k) \) exists.			
DIII \(\{ \tau_3, U_f \} = 0 \)	\(\tau_3, U_f \) & 0	\(R_3 \)	DIII	A unitary commuting symmetry of \(H_r(k) \) exists.			

which means \(U_S \) is also a chiral symmetry of \(H_r(k) \). Taking together Eq. (52) and (55), we have \(H_r(k) \) belonging to class BDI, with the classifying space being \(R_0 \).

Class DIII: The only difference between this class and BDI is that \(U_f U_f^T = -1 \). Hence, the analysis of how the classifying conditions descend to the squared ensemble is the same as above. If \(\{ \tau_3, U_f \} = 0 \), we again obtain Eq. (53) and Eq. (54) and one must block-diagonalize away the unitary symmetry \(U_S \) before one can proceed. If \(\{ \tau_3, U_f \} = 0 \), we again obtain Eq. (55) and Eq. (56) and, because of \(U_f U_f^T = -1 \), we now have \(H_r(k) \) belonging to class DIII, with the classifying space being \(R_4 \).

These analyses of squared ensembles associated to irreducible ensembles of BdG Hamiltonians are summarized in Table V with the right major column associated to symmetry classes (BDI, D, DIII) of \(H_r(k) \). Notice that the topological classification of classes (BDI, D, DIII) of \(H_r(k) \) is known in the literature (see for example Sec. VIII A of Ref. 33). However, as it turns out, Table V is just a sub-table of a more general Table VI and more symmetry classes, besides (BDI, D, DIII) of \(H_r(k) \) could emerge when we analyze reducible ensembles \(\{ H_f(k) \} \), as we do next.

Case 2: Reducible ensemble \(\{ H_f(k) \} \)

Next we tackle the reducible ensembles \(\{ H_f(k) \} \). That is, \(H_f(k) \) with unitary commuting symmetry \(U^\dagger H_f(k) U = H_f(k) \). From the discussion of Sec. VII B we have either \(\{ \tau_3, \mathcal{U}_3 \} = 0 \) or \(\{ \tau_3, \mathcal{U}_3 \} = 0 \).

(i) \(\{ \tau_3, \mathcal{U}_3 \} = 0 \) — In this case, \(\mathcal{U}_3 \) is both unitary and skew-pseudo-unitary. After squaring, we have

\[
U^\dagger H_r(k) U = U^\dagger \tau_3 H_f^2(k) U = -H_r(k),
\]

which means \(U \) is a chiral symmetry of \(H_r(k) \). Together with Eq. (52), we have \(U^\dagger \tau_3 H_f^2(-k) \tau_3 U = H_r(k) \) or, equivalently, we have \(U^\dagger \tau_3 H_f^2(-k) \mathcal{U}_3 = H_r(k) \) with \(\mathcal{U}_3 \equiv \tau_1 \mathcal{U}_3 \). As a self-consistency check, we can start from the non-built-in particle-hole symmetry of \(H_f(k) \), i.e., \(U^\dagger \tau_3 H_f^2(-k) \mathcal{U}_3 = -H_f(k) \), with \(\{ \tau_3, \mathcal{U}_3 \} = 0 \); we have

\[
U^\dagger \tau_3 H_f^2(-k) \mathcal{U}_3 = \tau_3 \mathcal{U}_3 H_f^2(-k) \mathcal{U}_3 = H_r(k),
\]

which means \(U^\dagger \tau_3 K \) is a time-reversal symmetry of \(H_r(k) \), satisfying the pseudo-unitary condition \(\mathcal{U}_3 \tau_3 U^\dagger \tau_3 = \tau_3 \).

Together with Eq. (52), we have \(H_r(k) \) belonging to either class BDI (if \(U^\dagger \mathcal{U}_3 \tau_3 = \tau_3 \)), as obtained during the analysis of Class BDI in Case 1, or DIII (if \(U^\dagger \mathcal{U}_3 \tau_3 = -\tau_3 \)), as obtained during the analysis of Class DIII in Case 1.

(ii) \(\{ \tau_3, \mathcal{U}_3 \} = 0 \) — In this case, \(\mathcal{U}_3 \) is both unitary and pseudo-unitary. After squaring, we have

\[
U^\dagger H_r(k) U = U^\dagger \tau_3 H_f^2(k) U = H_r(k),
\]

with \(U \) a unitary commuting symmetry of \(H_r(k) \). Then, the block-diagonalization of \(H_f(k) \) implies that of \(H_r(k) \), and we only need to focus on irreducible blocks. When dealing with such irreducible blocks, there will also be a set of symmetry constraints like Eqs. (52)- (56) and Eq. (58) imposed on them. In the analysis of irreducible blocks below, we refer to such equations as symmetry constraints imposed directly on the blocks. Furthermore, since the topological classification of non-Hermitian Bloch Hamiltonians includes pseudo-Hermiticity with respect to an indefinite metric as a classifying condition, as we saw in Sec. VII B, the metric appropriate for defining the block effective BdG Hamiltonian need not be \(\tau_3 = \sigma_3 \otimes 1_m \), but can instead have the more complicated structure \(\tau_{m,n} \) in Table III. In addition, blocks could emerge with vanishing pairing. Whether any of these possibilities actually occur is controlled by spectral features of the symmetry that is being block-diagonalized together with the ensemble. The symmetries of spin rotations and lattice translations, in particular, do not induce these exotic blocks: all blocks consist of effective BdG Hamiltonians that are pseudo-Hermitian with respect to a “balanced” metric \(\tau_3 = \sigma_3 \otimes 1_m \). While in the following we assume that the metric is always of this “balanced” form, it is interesting to notice that more exotic scenarios can also be realized in free-boson systems.
TABLE VI. Particle non-conserving free fermions \(H_f(k) \) under the squaring map, where \(H_f(k) \) is reducible but with irreducible blocks \(\tilde{H}_f(k) \). The left major column corresponds to free fermions \(\tilde{H}_f(k) \), whereas the right major column corresponds to free bosons \(\tau \tilde{H}_f(k) \equiv H_r(k) \), obtained by squaring, with the balanced metric \(\tau_3 \) considered. The three minor columns of fermionic symmetries \(T = U_{2K}^3 \), \(C = U_{2K}^3 \) and \(S = U_{2K}^3 \) specify their (anti)commutation relations to the metric \(\tau_3 \), while the three minor columns of bosonic symmetries \(T, C \) and \(S \) are inherited from free fermions, specifying their (anti)commutation relations to the metric \(\tau_3 \) as well. For example, for class AI of \(\tilde{H}_f(k) \) with \(T = U_{2K}^3 \) and \(\{ \tau_3, U_T \} = 0 \), after squaring \(U_{2K}^3 \) is a particle-hole symmetry of \(\tilde{H}_f(k) \) rather than a time-reversal symmetry of \(H_r(k) \), so \(\{ \tau_3, U_T \} = 0 \) is specified under the minor column \(C \) of the right major column. For \(H_f(k) \) with chiral symmetry \(S(= U_{2K}^3 \text{ or } U_{2K}^3 U_{2K}^3) \) and \(\{ \tau_3, S \} = 0 \), a unitary commuting symmetry of \(\tilde{H}_r(k) \) exists. Note that the special case corresponding to Eq. (57) and Eq. (58) is not listed in this table.

\(\tilde{H}_r(k) \)	\(T \)	\(C \)	\(S \)	Classifying space
AI lam. \(\bullet \)	\(\{ \tau_3, U_T \} = 0 \)	\(\tau_3, U_C = 0 \)	\(\tau_3, U_S = 0 \)	\(C_0 \)
AII	\(\tau_3, U_T \) = 0	\(\tau_3, U_C \) = 0	\(\tau_3, U_S \) = 0	\(C_1 \)
BDI	\(\tau_3, U_T \) = 0	\(\tau_3, U_C \) = 0	\(\tau_3, U_S \) = 0	\(C_0 \)
D	\(\tau_3, U_C \) = 0	\(\tau_3, U_S \) = 0	\(\tau_3, U_T \) = 0	\(C_0 \)
DIII	\(\tau_3, U_T \) = 0	\(\tau_3, U_C \) = 0	\(\tau_3, U_S \) = 0	\(C_0 \)
CII	\(\tau_3, U_T \) = 0	\(\tau_3, U_C \) = 0	\(\tau_3, U_S \) = 0	\(C_0 \)
CI	\(\tau_3, U_T \) = 0	\(\tau_3, U_C \) = 0	\(\tau_3, U_S \) = 0	\(C_0 \)
Class A: For an irreducible block of $H_f(k)$ in class A, there are no symmetry constraints and therefore, except for pseudo-Hermiticity, no symmetry constraints imposed on the corresponding block of $H_r(k)$ either. Hence, this block of $H_r(k)$ belongs to class A, with the classifying space mathematically being $C_0 \times C_0$, where each C_0 independently describes either the positive or the negative energy bands. However, since as seen in Sec. II A, the negative energy bands cannot be occupied by bosons, one only needs to consider the positive-energy bands. Thus, physically, the classifying space for this block of $H_r(k)$ in class A should be C_0. Here we adopt this physical point of view. Accordingly, hereinafter, the classifying space for class AI is R_0 (rather than $R_0 \times R_0$), and that for class AII is R_4 (rather than $R_4 \times R_4$).

Class AIII: Now there is only a chiral symmetry imposed on the block of $H_f(k)$. Therefore, besides pseudo-Hermiticity, analysis like Eq. (54) will lead to a unitary commuting symmetry imposed on the block of $H_r(k)$, and, similarly, analysis like Eq. (59) will lead to a chiral symmetry imposed on the block of $H_r(k)$, with the block belonging to class AIII and the classifying space being C_0.

Class AI: There is only a time-reversal symmetry imposed on the block of $H_f(k)$. So, apart from pseudo-Hermiticity, analysis like Eq. (53) will lead to a particle-hole symmetry imposed on the block of $H_r(k)$, and the block belongs to class D, with the classifying space being C_0. Similarly, besides pseudo-Hermiticity, analysis like Eq. (55) will lead to a time-reversal symmetry imposed on the block of $H_r(k)$, and the block belongs to class AI, with the classifying space being R_0.

Class BDI: Now in addition to the two possibilities with $\{\tau_3, U_C\} = 0$ analyzed in Case 1 of Class BDI, two more possibilities with $[\tau_3, U_C] = 0$ and $[\tau_3, U_T] = 0$, analysis based on Eq. (58) and Eq. (59) will lead to a time-reversal symmetry and a particle-hole symmetry imposed on the block of $H_r(k)$, and the block belongs to class BDI, with the classifying space being R_0. If $[\tau_3, U_C] = 0$ and $[\tau_3, U_T] = 0$, analysis based on Eq. (58) and Eq. (59) will lead to a unitary commuting symmetry imposed on the block of $H_r(k)$, and therefore a unitary commuting symmetry of the block.

Class D: Besides the possibility with $\{\tau_3, U_C\} = 0$ analyzed in Case 1 of Class D, one more possibility with $[\tau_3, U_C] = 0$ also arises. If $[\tau_3, U_C] = 0$, analysis like Eq. (58) will lead to a time-reversal symmetry imposed on the block of $H_r(k)$, and the block belongs to class AI, with the classifying space being R_0.

Class DIII: Besides the two possibilities with $\{\tau_3, U_C\} = 0$ analyzed in Case 1 of Class DIII, two more possibilities with $[\tau_3, U_C] = 0$ also arise. If $[\tau_3, U_C] = 0$ and $[\tau_3, U_T] = 0$, analysis like Eq. (58) and Eq. (59) will lead to a time-reversal symmetry and a particle-hole symmetry imposed on the block of $H_r(k)$, and the block belongs to class CI, with the classifying space being R_0. If $[\tau_3, U_C] = 0$ and $[\tau_3, U_T] = 0$, analysis like Eq. (58) and Eq. (59) will lead to two time-reversal symmetries imposed on the block of $H_r(k)$, and therefore a unitary commuting symmetry of the block.

Class AI: The only difference between this class and AI is that $U_T U_T^* = -1$. If $\{\tau_3, U_T\} = 0$, we again obtain Eq. (53) and, since $U_T U_T^* = -1$, we now have the block of $H_r(k)$ belonging to class C, with the classifying space being C_0. If $[\tau_3, U_T] = 0$, we again obtain Eq. (55) and, since $U_T U_T^* = -1$, we now have the block belonging to class AI, with the classifying space being R_4.

Class C: There are two possibilities. If $\{\tau_3, U_C\} = 0$ and $[\tau_3, U_T] = 0$, because of Eqs. (52)-(53), the block of $H_r(k)$ has a unitary commuting symmetry. If $[\tau_3, U_C] = 0$ and $[\tau_3, U_T] = 0$, because of Eq. (52) and Eq. (55), the block of $H_r(k)$ belongs to CII, with the classifying space being R_4. If $[\tau_3, U_C] = 0$ and $[\tau_3, U_T] = 0$, Eq. (58) and Eq. (55) lead to a unitary commuting symmetry of the block.

Theorem: The threefold way

Although for particle-non-conserving free bosons under squaring we obtained all ten AZ symmetry classes, due to the pseudo-Hermiticity of the irreducible blocks
TABLE VII. Periodic table for stable free-boson systems. For $d = 0$ and $d = 4$ all the classes are topologically non-trivial, while for $d = 1$ and $d = 5$ all of them are topologically trivial.

	T	C	S	Classifying space	$d = 0$	$d = 1$	$d = 2$	$d = 3$	$d = 4$	$d = 5$	$d = 6$	$d = 7$
A11	0	0	0	C_0	Z							
D	0	0	1	R_0	Z	Z	$2Z$	Z_2	Z_2	Z_2	Z_2	Z_2
C	-1	0	0	R_4	$2Z$	Z_2	Z_2	Z	Z	Z	Z	Z
AI	0	0	0									
BDI	1	1	1									
CI	-1	1	1									
AII	-1	1	1									
DIII	-1	1	1									

of) $H_r(\gamma)$, only three classifying spaces $\{C_0, R_0, R_4\}$ appear. More specifically, we find that AZ symmetry classes with no time-reversal symmetry correspond to the classifying space C_0, classes with $T^2 = 1$ correspond to R_0, and classes with $T^2 = -1$ correspond to R_4. Therefore, based on Table IV and Table VII what emerges is a unified periodic table, Table VII for either particle-conserving or non-conserving free-boson systems obtained by application of the squaring map \mathcal{S}. Furthermore, with simple modifications, Table VII holds for the case of “unbalanced” metric $\tau_{m,n}$ (see Table III) as well, with the associated symmetry classes being $\{A, AI, AII\}$. Thus, we conclude that the topological classification of free bosons under squaring depends only on the existence of time-reversal symmetry and reduces to the “threefold way” of Dyson. As a byproduct, we claim that Table VII also holds for stable free-boson systems not arising from the squaring procedure (see Appendix C for a simple proof).

A careful examination of Table VII suggests that the main difference between free fermions before squaring and free bosons after squaring is that all the symmetry classes of free bosons are topologically non-trivial for $d = 0$ and $d = 4$, while all of them are topologically trivial for $d = 1$ and $d = 5$. However, just like the fermionic tenfold classification, our threefold classification may fail when additional symmetries (other than T, C or S) are present. For example, the spinless Su-Schrieffer-Heeger model of a dimerized chain with non-zero chemical potential or with next-nearest-neighbor hopping has only time-reversal symmetry with $T^2 = 1$, which is topologically trivial in one dimension according to the fermionic tenfold classification table. However, this is not correct because the Berry phase of the lowest band is precisely quantized to $0/\pi$ (mod 2π). The same is true if we square this model. The reason for the non-triviality of this model either before squaring or after squaring is the presence of an additional (inversion) symmetry.

D. Bosonic topological bulk invariants

We have established in Sec. IV the absence of SPT phases in gapped free-boson systems. However, this does not imply that these systems cannot display topologically non-trivial excitations in their spectrum. Indeed, Table VII predicts that topologically non-trivial bosonic excitations always exist. For example, the spinless Su-Schrieffer-Heeger model (with $H_0 > 0$), we have effective Schrödinger equations (either time-dependent or time-independent) written as

$$
\begin{align*}
H_r(\gamma) \langle \Psi_n^+(\gamma) | \Psi_n^+(\gamma) \rangle &= \hbar \dot{\gamma}_n^+(\gamma), \\
H_r(\gamma) | \Psi_n^+(\gamma) \rangle &= \pm E_n(\gamma) | \Psi_n^+(\gamma) \rangle,
\end{align*}
$$

(60)

where $E_n(\gamma) > 0$ and $\langle \psi_n^+(\gamma) | \tau_3 | \psi_n^+(\gamma) \rangle = \pm 1$. Suppose

$$
\langle \Psi_n^+(\gamma) \rangle = e^{\pm \frac{\pi}{2} \int_0^{\gamma} dt E_n(\gamma(t^\prime))} e^{\gamma_n^+(\gamma)} | \psi_n^+(\gamma) \rangle,
$$

(61)

after plugging into Eq. (60), one obtains

$$
\dot{\gamma}_n^+(\gamma) = \pm i \langle \psi_n^+(\gamma) | \tau_3 \nabla_\gamma | \psi_n^+(\gamma) \rangle \cdot \dot{\gamma}(\gamma).
$$

(62)

Defining $\gamma_n^\pm = \gamma_n^+(\gamma) - \gamma_n^-(\gamma)$, with $\gamma(\gamma) = 0(0)$, we arrive at the bosonic Berry phase

$$
\gamma_n^\pm = \oint d\gamma \cdot A_n^\pm(\gamma),
$$

(63)

where $A_n^\pm(\gamma) = \pm i \langle \psi_n^+(\gamma) | \tau_3 \nabla_\gamma | \psi_n^+(\gamma) \rangle$ is the bosonic Berry connection, which is purely real.

As explained in Sec. II A while γ_n^+ is associated with bosonic states with positive energies, γ_n^- is associated with non-bosonic states with negative energies. Furthermore, since $| \psi_n^+(\gamma) \rangle = \tau_1 K | \psi_n^-(\gamma) \rangle$, it leads to $\gamma_n^- = -\gamma_n^+$. Therefore, γ_n^+ and γ_n^- are not independent. Following a procedure similar to that in Ref. [18], Appendix D, for a one-dimensional lattice system, the
bosonic Berry phase γ_n^+ can be evaluated in a numerically gauge-invariant way as

$$\gamma_n^+ = \lim_{N \to \infty} \frac{\text{Im} \ln \prod_{j=1}^N \langle \psi_n^+ (k_{j+1}) | \tau_3 | \psi_n^+ (k_j) \rangle}{N},$$

(64)

where $|\psi_n^+ (k_{N+1}) \rangle \equiv |\psi_n^+ (k_1) \rangle$ and $k_{j+1} \equiv 2\pi j/N - \pi$.

Another topological invariant associated specifically to

$$C_n^+ = \lim_{N_x \to \infty} \frac{\text{Im} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \ln \langle \psi_n^+ (k_{i}^x, k_{j}^y) | \tau_3 | \psi_n^+ (k_{i}^x, k_{j}^y) \rangle \langle \psi_n^+ (k_{i+1}^x, k_{j+1}^y) | \tau_3 | \psi_n^+ (k_{i+1}^x, k_{j+1}^y) \rangle}{\pi},$$

(65)

where $k_{i+1}^x = 2\pi i/N_x - \pi$ and $k_{j+1}^y = 2\pi j/N_y - \pi$.

VI. THE FATE OF ZERO MODES

We are finally in a position to investigate localized ZMs of stable, gapped free-boson systems. As we already noted, this does not contradict our no-go Theorem 3 and its Corollary, since these conclusions pertain to free-boson systems subject to open BCs. We will illustrate the main ideas with several examples of our (kernel-free-boson) approach to localize ZMs, which we can derive analytically using the method of diagonalizing corner-modified banded block-Toeplitz matrices developed in Refs. [24]-[25].

(i) The squared Kitaev chain. This example exemplifies how bosonic Majorana ZMs do exist, by virtue of the fact that the squaring map introduces special BCs. These ZMs mimic fermionic Majorana ZMs in localization and Hermiticity but, naturally, the canonical anti-commutation relation is replaced by the Heisenberg commutation relation. Since free-boson systems do not host SPT phases (no-go Theorem 2), one does not expect them being protected. We provide numerical results to quantify this expectation and frame our results within the Krein stability theory summarized in Sec. [ITC].

(ii) The square of the Jackiw-Rebbi model, adapted for charge-neutral fermions (essentially, the field-theory version of the Kitaev chain). We find that half of a bosonic degree of freedom (one “quadrature”), is trapped at the location of the soliton, while the conjugate quadrature is pushed to infinity and out of the physical spectrum.

(iii) The square of the Harper-Hofstadter model with flux $\phi = 1/3$ per plaquette and nearest-neighbor non-chiral pairing. Here, we see our no-go Theorem 3 (no surface bands around zero energy for open BCs), at work in full force. In addition, we calculate and compare the Chern numbers of the fermionic model and the bosonic Chern numbers of its square.

boZ	fermionic Chern number, C_n^-	
Hf	$C_n^- = \frac{1}{2\pi} \int dk	\Omega_n^-(k) \rangle$

Free bosons (when $d = 2$) is the bosonic Chern number C_n^+

$$C_n^+ = \lim_{N \to \infty} \frac{\text{Im} \ln \prod_{j=1}^N \langle \psi_n^+ (k_{j+1}) | \tau_3 | \psi_n^+ (k_j) \rangle}{N},$$

(66)

with $\Omega_n^+(k) \equiv \nabla_k \times A_n^+(k)$ the bosonic Berry curvature. Using an argument similar to the one used above for relating γ_n^+, γ_n^-, one finds $C_n^- = -C_n^+$. So, C_n^+ and C_n^- are also not independent. The bosonic Chern number C_n^+ can be evaluated in a numerically gauge-invariant way as

A. The squared Kitaev chain

We consider the following dimensionless Kitaev Hamiltonian at zero chemical potential and with an odd number of lattice sites:

$$\hat{H}_f = -\sum_{j=1}^{2(N-1)} (c_j^\dagger c_{j+1} + \Delta/\xi_j c_j^\dagger c_{j+1}^\dagger + \text{h.c.}),$$

(67)

where c_j^\dagger (c_j) is the fermionic creation (annihilation) operator, $2N - 1$ is the number of lattice sites, $t \in \mathbb{R}$ is the hopping amplitude, and $\Delta \in \mathbb{R}$ is the pairing potential. This system is known to host two exact ZMs exponentially localized at the two ends, namely, two unpaired Majorana fermions. Thus, after squaring the fermionic model subject to open BCs, the bosonic model will also host two exact ZMs. However, unexpectedly, besides these two exact ZMs, we find also two asymptotic ZMs, which can be derived analytically using the method for diagonalizing corner-modified banded block-Toeplitz operators developed in Refs. [24]-[25].

Let us first square \hat{H}_f under periodic BCs. As mentioned in Sec. [IVC], for a spinless 2×2 BdG Hamiltonian $H_f(k)$ of class BDI, the pairing potential vanishes in $\tau_3 H_f^2 (k)$. Therefore, self-adjoint ZMs of $\tau_3 H_f^2$ must arise from special BCs that result from the squaring of H_f subject to open BCs. After some calculations, we find that $\tau_3 H_f^2$ is a Hamiltonian with next-nearest-neighbor hopping and, indeed, with an impurity potential at each end (by removing these impurities, i.e., imposing open BCs on $\tau_3 H_f^2$), one can check that ZMs no longer exist, consistently with no-go Theorem 3 in Sec. [IVC]. Furthermore, due to the absence of nearest-neighbor hopping, lattice sites labeled by odd numbers decouple from those labeled by even numbers. Because we are focused on ZMs, we only need to consider the bosonic many-body Hamiltonian associated with odd lattice sites, which is a two-impurity Hamiltonian of the form $\hat{H}_b + \hat{W}$, with \hat{H}_b being the translation-invariant bulk and \hat{W} the boundary
impurities. In units of \((\Delta^2 + t^2)/t^2\), we have
\[
\begin{align*}
\hat{H}_b &= 2N \sum_{j=1}^{N} a_j^+ a_j - \cos \theta \sum_{j=1}^{N-1} (a_{j+1}^+ a_j + \text{h.c.}), \\
\hat{W} &= -a_1^+ a_1 - a_N^+ a_N - \sin \theta \left(\frac{1}{2}(a_1^+ a_1 - a_N^+ a_N) + \text{h.c.}\right),
\end{align*}
\]
where \(a_j^+ (a_j)\) is the bosonic creation (annihilation) operator, \(\sin \theta = 2\Delta t/(\Delta^2 + t^2)\) and \(\cos \theta = (\Delta^2 - t^2)/(\Delta^2 + t^2)\). Without loss of generality, we take \(\theta \in (0, \pi)\). In the rest of this subsection, we will work within the representation \(\pi^* H_b \pi\) we mentioned in Sec. II A (recall Table I).

1. Bosonic Majorana ZMs

As mentioned, the effective BdG Hamiltonian \(H_\tau = \tau_3 (H_b + \hat{W})\) has two exact ZMs. From Ref. \[23\] and assuming \(\theta \neq \pi/2\), we write these two exact ZMs as quadratures, in the form
\[
\begin{align*}
|\tilde{x}_1\rangle &= \frac{1}{\sqrt{N}} \sum_{j=1}^{N} (\sec \theta - \tan \theta)^{N+1-j} |j\rangle \otimes \left[\begin{array}{c} 1 \\ -1 \end{array}\right], \\
|\tilde{p}_1\rangle &= \frac{i}{\sqrt{N}} \sum_{j=1}^{N} (\sec \theta - \tan \theta)^j |j\rangle \otimes \left[\begin{array}{c} 1 \\ 1 \end{array}\right],
\end{align*}
\]
where the normalization constant \(N\) is chosen so that \(\langle \tilde{x}_1 | \tau_3 | \tilde{p}_1 \rangle = i\) and, therefore, \([\tilde{x}_1, \tilde{p}_1] = i\), with \(\tilde{x}_1 = \langle \tilde{x}_1 | \tau_3 \Phi\) and \(\tilde{p}_1 = \langle \tilde{p}_1 | \tau_3 \Phi\) being self-adjoint ("Majorana bosons"). That is, we have
\[
\begin{align*}
\tilde{x}_1 &= \frac{1}{\sqrt{N}} \sum_{j=1}^{N} (\sec \theta - \tan \theta)^{N+1-j} (a_j + a_j^+), \\
\tilde{p}_1 &= \frac{i}{\sqrt{N}} \sum_{j=1}^{N} (\sec \theta - \tan \theta)^j (a_j - a_j^+).
\end{align*}
\]
Obviously, \(\tilde{x}_1\) and \(\tilde{p}_1\) are exponentially localized at sites \(j = N\) and \(j = 1\), respectively, which means that any bosonic ZM constructed by their linear combination has weights at both ends and therefore is non-local.

We next consider computation of the two asymptotic ZMs mentioned previously. The strategy is to split the eigenvalue equation \(H_\tau |\epsilon\rangle = \epsilon |\epsilon\rangle\) into two equations, the bulk equation and the boundary equation,
\[
P_B H_\tau |\epsilon\rangle = \epsilon P_B |\epsilon\rangle, \quad P_B H_\tau |\epsilon\rangle = \epsilon P_B |\epsilon\rangle,
\]
with \(P_B \equiv \sum_{j=1}^{N-1} |j\rangle \otimes I_2\) the bulk projector and \(P_B \equiv I_{2N} - P_B\) the boundary projector. After that, we need to solve the bulk equation, whose solutions will then be used to parameterize the solutions of the boundary equation (see Ref. \[24\] for details). From Eq. (68), we have
\[
\begin{align*}
H_b &= [2 \mathbb{I}_N - \cos \theta (T + T^\dagger)] \otimes \mathbb{I}_2, \\
W &= |1\rangle \langle 1| \otimes w_1 + |N\rangle \langle N| \otimes w_2,
\end{align*}
\]
where \(T \equiv \sum_{j=1}^{N-1} (|j\rangle + |j+1\rangle)\) is the left-shift operator acting on the lattice space, \(w_1 \equiv -I_2 - \sin \theta \sigma_1\), and \(w_2 \equiv -I_2 + \sin \theta \sigma_1\), respectively. The reduced bulk Hamiltonian \(H(z)\) of \(\tau_3 H_b\) and the associated polynomial \(P(\epsilon, z)\) then read
\[
\begin{align*}
H(z) &= [2 - (z + z^{-1}) \cos \theta] \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right], \\
P(\epsilon, z) &= z^2 \det (H(z) - \epsilon I_2).\n\end{align*}
\]
For asymptotic ZMs, we have four distinct roots \(z_\ell (\ell = 1, \ldots, 4)\) of the polynomial equation \(P(\epsilon, z) = 0\), associated with four independent solutions of the bulk equation in Eq. (71). Thus, a linear combination of these four solutions can parameterize the asymptotic ZMs as
\[
|\epsilon \pm\rangle = \sum_{\ell=1}^{4} \alpha_\ell |z_\ell\rangle \otimes \left[\begin{array}{c} 1 \\ 0 \end{array}\right] + \sum_{\ell=3}^{4} \alpha_\ell |z_\ell\rangle \otimes \left[\begin{array}{c} 0 \\ 1 \end{array}\right],
\]
with \(|z_\ell\rangle = \sum_{j=1}^{N} z_\ell^j |j\rangle\). This finally leads to a system of linear equations, \(B(\epsilon) |\alpha_1, \alpha_2, \alpha_3, \alpha_4\rangle^T = 0\), with \(B(\epsilon)\) being the boundary matrix given explicitly by
\[
B(\epsilon) = \left[\begin{array}{cccc}
\cos \theta - z_1 & \cos \theta - z_2 & -z_3 \sin \theta & -z_4 \sin \theta \\
z_1^N \sin \theta & z_2^N \sin \theta & z_3^N \sin \theta & z_4^N \sin \theta \\
z_1^N (z_1 \cos \theta - 1) & z_2^N (z_2 \cos \theta - 1) & z_3^N (1 - z_3 \cos \theta) & z_4^N (1 - z_4 \cos \theta)
\end{array}\right].
\]
The eigenvalues of \(H_\tau\) are precisely those that ensure \(\det B(\epsilon) = 0\). After some calculations, we obtain
\[
\det B = \frac{\sin^2(2\theta)}{8} (z_1 - z_2)(z_3 - z_4)[(z_1^N + z_2^N)(z_3^N + z_4^N) - 4] - (z_1^N - z_2^N)(z_3^N - z_4^N)\left(2 \sin^4 \theta - \frac{1 + \cos^2 \theta}{2} \epsilon^2\right),
\]
which is an even function of \(\epsilon\), with the zero-th order term absent.

In the large-\(N\) limit, we expand Eq. (76) to order \(O(\epsilon^0)\)
\[
\det B(\epsilon) = 4N^2 \sin^2 \theta \left[\epsilon^2 - \frac{(\sec \theta + \tan \theta)^{2N}}{16 N^2 \sin^3 \theta \tan^2 \theta} \epsilon^4\right].
\]
Indeed, we see two asymptotic ZMs with eigenvalues
\[
\epsilon_\pm = \pm \frac{4N \sin^2 \theta \tan \theta}{(\sec \theta + \tan \theta)^N},
\]
TABLE VIII. ZMs counting for the Kitaev chain with odd number of lattice sites and the squared Kitaev chain with odd number of lattice sites. The number of ZMs refers to the number of linearly independent quasiparticle creation operators that commute with the many-body Hamiltonian. The number of mid-gap modes refers to the sum of the number of exact ZMs and the number of asymptotic ZMs.

System Size	Diagonalizable	ZMs	Mid-gap modes			
H_f	Finite	Yes	2	2		
	Semi-infinite	Yes	1	1		
$\tau_3 H_f^2$	Finite	Yes, if $	\Delta/t	\neq 1$	2	4
	Semi-infinite	No	$	\Delta/t	= 1$	1

which can be plugged into $P(\epsilon, z) = 0$ to solve for z_{ℓ}, $\ell = 1, \ldots, 4$. In the large-N limit, a nontrivial kernel vector of $B(\epsilon_{\pm})$ is $[\alpha_1, \alpha_2, -\alpha_1, \alpha_2]^T$, which leads to $|\epsilon_{\pm}\rangle$ being written as the linear combination of $|\hat{x}_1\rangle$ and $|\hat{p}_1\rangle$ of Eq. (69), indicating the loss of diagonalizability of H_f.

The effective BdG Hamiltonian H_f also fails to be diagonalizable when $\theta = \pi/2$, the so-called “sweet-spot” ($t = \Delta$) of the Kitaev chain, leading to

$$\hat{H}_f + \hat{W} = \sum_{j=2}^{N-1} 2a_j^\dagger a_j + (p_1^2 + x_N^2),$$

(79)

where $\hat{p}_1 = i(a_i^\dagger - a_i)/\sqrt{2}$ and $\hat{x}_N = (a_N^\dagger + a_N)/\sqrt{2}$ are two independent self-adjoint ZMs, each associated with a Jordan block of size 2. According to Theorem (ZMs, [19]) of Sec. IV C, it is clear that no canonical bosonic ZMs can be built from \hat{p}_1 and \hat{x}_N.

The above discussion on exact and asymptotic ZMs, together with the diagonalizability of the systems, is summarized in Table VIII.

2. Sensitivity of ZMs to perturbations

In this section we investigate the sensitivity of ZMs to perturbations that preserve the stability of the free-boson system and contrast to perturbations that do not.

a. Stability-preserving perturbations. We first consider a boundary perturbation of the form

$$\hat{W}_s = (s - 1)\hat{W}, \quad s \in [0, 1].$$

(80)

By adding \hat{W}_s to Eq. (68), since $H_b + sW \geq 0$ for all s, one obtains a stable family of free-boson systems that interpolate between open BCs ($s = 0$), which forbid ZMs, and impurity BCs ($s = 1$), which elicit exact bosonic Majorana ZMs. It is instructive to investigate how bosonic Majorana ZMs split as a function of the system size N for different s’s. Analytically, at the sweet spot $\Delta/t = 1$, ZMs split into $\pm 2\sqrt{1-s}$, with no N-dependence because of the decoupling between the boundary and the bulk.

We plot the numerically determined minimal-modulus eigenvalue of $\tau_3(H_b + sW)$ for $\Delta/t = 0.5$ in Fig. 1(a) and find opposite behaviors for small and large s’s. For small s’s, we see that the splitting of bosonic Majorana ZMs away from zero energy anomalously increases (rather than decreasing) as N grows, which is not the case for protected fermionic Majorana ZMs.

As a second example, we keep the impurity BCs intact and perturb instead the bulk with the on-site disorder

$$\hat{D}_b = \sum_{j=1}^{N} \mu_j a_j^\dagger a_j,$$

(81)

where μ_j’s are uniformly sampled in the interval $[0, \mu_{\max}]$. We plot the numerically obtained minimal-modulus eigenvalue of $\tau_3(H_b + W + D_b)$ as a function of μ_{\max} and N in Fig. 1(b). We see that the splitting of ZMs increases monotonically as a function of μ_{\max} and is independent of the system size. For comparison, we also plot in Fig. 1(c) the minimal-modulus eigenvalue of $H_f + D_f$, i.e., the fermionic Kitaev chain subject to the on-site disorder

$$\hat{D}_f = \sum_{j=1}^{2N-1} \mu_j c_j^\dagger c_j,$$

(82)

with μ_j’s also uniformly sampled in the interval $[0, \mu_{\max}]$. Unlike the bosonic case, the splitting of the Majorana
ZMs is not monotonic as a function of \(\mu_{\text{max}} \) and is sensitive to the system size. Moreover, the splitting is a couple of orders of magnitude smaller than the bosonic one.

6. Stability-non-preserving perturbations. We again consider the bulk disorder in Eq. (81) with the ideal impurity BCs intact, but now with \(\mu_j \)’s uniformly sampled in the interval \([-\mu_{\text{max}}, \mu_{\text{max}}]\). As a consequence, the disorder may render the system unstable because of the violation of positive semi-definiteness of \(H_b + W + D_b \). Furthermore, ZMs of the unperturbed effective BdG Hamiltonian have different Krein signatures, as explained in Sec. [15] there exists arbitrarily small perturbations that split ZMs into the complex plane. This is numerically confirmed in Fig. 2(a). We further plot the maximal imaginary part of eigenvalues of the perturbed effective BdG Hamiltonian as a function of \(\Delta/t \) for various system sizes \(N \)’s in Fig. 2(b). Both Fig. 2(a) and (b) suggest that ZMs are especially fragile around the sweet spot \(\Delta/t = 1 \).

B. Localized ZM in a bosonic field theory

We consider next a field-theoretic example of the squaring procedure closely related to the Kitaev chain: we square the celebrated Jackiw-Rebbi model of charge fractionalization on the infinite real line. The model can be succinctly described in terms of the Dirac equation in one spatial dimension \(x \),

\[
i\gamma^\nu \partial_\nu \psi - gV(\phi_c)\psi = 0, \tag{83}\]

where \(V(\phi_c) = \phi_c, \nu = 0, 1, \partial_0 \equiv \partial_t, g, \lambda > 0, \) and

\[
\phi_c(x) = \tanh(\lambda x). \tag{84}\]

The stationary solutions are of the form \(\psi(x, t) = e^{-i\epsilon t}\psi_c(x) \), with \(-i\gamma^\nu \partial_\nu \psi_c(x) + \gamma^0 gV(\phi_c)\psi_c(x) = \epsilon\psi_c(x) \). Hence, the Dirac Hamiltonian is

\[
H_D \equiv \gamma^0 \gamma^1 p + \gamma^0 gV(\phi_c) \tag{85}\]

with \(p = -i\partial_x \). The choice of gamma matrices \(\gamma^0 = \sigma_3 \) and \(\gamma^1 = i\sigma_2 \) puts this Dirac Hamiltonian in Nambu form,

\[
H_D = \begin{bmatrix} gV(\phi_c) & p \\ p & -gV(\phi_c) \end{bmatrix}, \tag{86}\]

satisfying \(CH_D C = -H_D \) in terms of \(C \equiv \sigma_1 K \).

There are two ZMs, \(\psi_0^+(x) \) and \(\psi_0^-(x) \). They are related by charge conjugation, \(\psi_0^-(x) = C\psi_0^+(x) \), with

\[
\psi_0^+(x) = \cosh \left(\frac{g}{\lambda} \ln \left(\cosh(\lambda x) \right) \right) \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad -i \sinh \left(\frac{g}{\lambda} \ln \left(\cosh(\lambda x) \right) \right) \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \tag{87}\]

They can be combined into a spatially-localized ZM

\[
\psi(x) = \psi_0^+(x) + i\psi_0^-(x) = \left[\cosh(\lambda x) \right]^{-g/\lambda} \begin{bmatrix} 1 \\ i \end{bmatrix}, \tag{88}\]

whereas the linearly independent combination \(\psi_0^+ - i\psi_0^- \) diverges as \(x \to \pm\infty \).

At this point our work separates from Ref. [49]. Let us second-quantize the model as

\[
\hat{H}_f \equiv \frac{1}{2} \int \hat{\Psi}(x) \Gamma H_D(x) \hat{\Psi}(x), \tag{89}\]

in terms of the Nambu array \(\hat{\Psi}(x) = [c(x) c^\dagger(x)]^T \), with \(\{ c(x), c^\dagger(y) \} = \delta(x - y) \) and \(\{ c(x), c(y) \} = 0 \). This Hamiltonian describes spinless, electrically neutral fermions in a static background potential, the soliton of Eq. (84). The charge fractionalization of the original model [25] is replaced by fermion-number fractionalization in our model. One can think of this model as a field-theory version of the Kitaev chain.

A normal mode of \(\hat{H}_f \) is an operator of the form

\[
\hat{\psi}(x) \equiv \int \left[u^*(x, t) c(x) + v^*(x, t) c^\dagger(x) \right] dx, \tag{90}\]

with \(\psi(x, t) \equiv [u(x, t) v(x, t)]^T \) a stationary solution of Eq. (83). It is immediate to check that

\[
\{ \hat{\psi}(t), \hat{\psi}^\dagger(t) \} = \int \left[|u(x, t)|^2 + |v(x, t)|^2 \right] dx. \tag{91}\]

Therefore, if one takes

\[
\psi_0(x, t) = e^{-i\pi/4} \frac{\psi_0^+(x) + i\psi_0^-(x)}{2N^{1/2}} = \frac{[\cosh(\lambda x)]^{-g/\lambda}}{2N^{1/2}} e^{-i\pi/4} \begin{bmatrix} 1 \\ i \end{bmatrix}, \tag{92}\]

FIG. 2. (a) The maximal imaginary part of eigenvalues of \(\tau_3(H_b + W + D_b) \) as a function of \(\Delta/t \) for various disorder strength \(\mu_{\text{max}} \)’s but with fixed system size \(N = 5 \). (b) The maximal imaginary part of eigenvalues of \(\tau_3(H_b + W + D_b) \) as a function of \(\Delta/t \) for various \(N \)’s, but with fixed \(\mu_{\text{max}} = 10^{-3} \). Both (a) and (b) are with randomly distributed disorder \(\mu_j \in [-\mu_{\text{max}}, \mu_{\text{max}}] \) averaged over 1,000 samples. When \(\Delta/t = 1 \), we find analytically that \(\text{Max}(\text{Im } \epsilon) = (8\sqrt{2}/15) \mu_{\text{max}}^{1/2} + O(\mu_{\text{max}}^{3/2}) \).
with $N^{-1} = \frac{2\pi^{1/2} \Gamma(g/2\lambda)}{M^{(g-1)/2} \Gamma(3/2M)}$ and Γ being the Euler’s Gamma function, one finds that $\hat{\psi}_0(t) = \hat{\psi}_0$, independent of time because $\epsilon = 0$ and $\{\hat{\psi}_0, \hat{\psi}_0^\dagger\} = 1$, $\hat{\psi}_0 = \hat{\psi}_0$. Since this is the only ZM and $\hat{\psi}_0$ and $\hat{\psi}_0$ are linearly dependent, there is only half of a fermionic degree of freedom trapped at $x = 0$: a single Majorana fermion in the sense of Kitaev\[5\]. The other half is carried by the unnormalizable ZM $\hat{\psi}_0^x - i\hat{\psi}_0^y$ and so it has been pushed to infinity. This point of view is nicely bolstered by solving the model subject to open BCS\[20\].

We now proceed to investigate the associated free-boson theory. The square of H_D is

$$H_D^2 = 12 \left[p^2 + (g \tanh(\lambda x))^2\right] - \sigma_2 g \lambda \text{sech}^2(\lambda x), \quad (93)$$

with H_D^2 satisfying $CH_D^2C = H_D$. Unlike the Dirac Hamiltonian of Sec. VII A, H_b describes an explicitly particle non-conserving free-boson system. The second-quantized Hamiltonian is $H_b = \int \hat{\Phi}(x) H_D^2 \hat{\Phi}(x) \, dx$, in terms of the bosonic Nambu array $\hat{\Phi}(x) = [a(x), a(x)^\dagger]^T$, with $[a(x), a^\dagger(y)] = \delta(x - y)$ and $[a(x), a(y)] = 0$. The Hamiltonian density $\frac{1}{2} \hat{\Phi}(x) H_D^2 \hat{\Phi}(x)$ is the sum of three contributions, namely,

$$\tilde{T}(x) = \frac{1}{2} \left[a(x)p^2 a(x) + a(x)p^2 a(x)^\dagger\right],$$

$$\tilde{U}(x) = \frac{1}{2} \left[2 g \tanh(\lambda x)^2 [a^\dagger(x) a(x) + a(x) a(x)^\dagger]\right],$$

$$\tilde{\Delta}(x) = \left[\frac{i g \lambda}{2} \text{sech}^2(\lambda x) \right] [a^\dagger(x) a^\dagger(x) - a(x) a(x)].$$

Notice that both the potential energy and the pairing potential are exponentially localized around $x = 0$.

A normal mode of \tilde{H}_b is an operator

$$\phi(t) \equiv \int \left[u^*(x, t) a(x) - v^*(x, t) a^\dagger(x)\right] \, dx,$$

that satisfies certain conditions. In terms of $\phi(x, t) = [u(x, t) v(x, t)]^T$, one can then check that

$$[\hat{\phi}(t), \hat{\phi}^\dagger(t)] = \int \phi(t, x) \sigma_3 \phi(x, t) \, dx. \quad (94)$$

Moreover, the following properties hold:

(i) If $\partial_t \phi(x, t) = i \sigma_3 H_D^2(x) \phi(x, t)$, then $\phi_\epsilon(t)$ satisfies Heisenberg’s equation of motion.

(ii) If $\phi(x)$ is an eigenfunction of $\sigma_3 H_D^2(x)$ with eigenvalue ϵ, then $\phi(t) = e^{-i\epsilon t} \phi(0)$.

By construction, both ϕ_0^x and ϕ_0^y are formal eigenfunctions of $\sigma_3 H_D^2(x)$ with eigenvalue $\epsilon = 0$. However, the combination $\phi_0^x - i\phi_0^y$ that diverges as $x \rightarrow \pm \infty$ is badly behaved to be considered an eigenvector even in a generalized sense. Hence, one can take the view that there is only one eigenvector with zero eigenvalue, the localized one. The associated self-adjoint bosonic Hamiltonian is

$$\hat{\phi}_0 = \frac{e^{-i\pi/4}}{2N^{1/2}} \int \left[2 \cosh(\lambda x)\right]^{-g/\lambda} [a(x) + ia^\dagger(x)] \, dx. \quad (95)$$

Since $\hat{\phi}_0^\dagger = \hat{\phi}_0$, it follows that $[\hat{\phi}_0, \hat{\phi}_0^\dagger] = 0$ and one can again take the view that the bosonic theory traps half of a bosonic degree of freedom (a “quadrature”) at the origin, while the other quadrature is pushed to infinity. Our analysis of the squared Kitaev chain suggests that a soliton-antisoliton pair will split a single bosonic degree of freedom into two quadratures, one localized at the center of the soliton and the other localized at the center of the antisoliton.

We are not aware of a previous description in the literature of this phenomenon for bosons.

C. The squared Harper-Hofstadter-pairing model

As a final example, we now apply our squaring map to the spinless $d = 2$ Harper-Hofstadter Hamiltonian with additional pairing terms. Time-reversal symmetry is broken in the Harper-Hofstadter model. After introducing pairing terms, the model belongs to class D of the Hermitian classification. Upon squaring, the effective BdG Hamiltonian belongs to class D of pseudo-Hermitian symmetry classes (see Table VII), and, according to Table VII, is classified by an integer \mathbb{Z}, the bosonic Chern number (see Eq. (65) in Sec. V D).

We start with the following fermionic tight-binding Hamiltonian subject to open BCS

$$\hat{H}_f = -\sum_{m=1}^{L_x} \sum_{n=1}^{L_y} \mu c_{m,n}^\dagger c_{m,n} + \sum_{m=1}^{L_x-1} \sum_{n=1}^{L_y} (t_x c_{m+1,n}^\dagger c_{m,n} + \Delta_x c_{m+1,n}^\dagger c_{m,n} + \text{h.c.}) + \sum_{m=1}^{L_y-1} \sum_{n=1}^{L_x} (t_y c_{m,n+1}^\dagger c_{m,n} + \Delta_y c_{m,n+1}^\dagger c_{m,n} + \text{h.c.}), \quad (96)$$

where $L_x (L_y)$ is the number of lattice sites along the $x (y)$ direction, μ is the on-site energy, $c_{m,n}^\dagger (c_{m,n})$ is the fermionic creation (annihilation) operator at site (m, n), $t_x (t_y)$ is the nearest-neighbor hopping amplitude along the $x (y)$ direction, $\Delta_x (\Delta_y)$ is the pairing potential along the $x (y)$ direction, and ϕ is the magnetic flux per plaquette in units of flux quanta h/e. Imposing periodic BCS in the y direction and assuming $t_x = t_y = -t$, $\Delta_x = \Delta_y = \Delta$,
\(\phi = 1/3 \), we have \(\hat{H}_f = \sum_{k_y} \hat{H}_f(k_y) \), with \(\hat{H}_f(k_y) \) in units of \(t \) as

\[
\hat{H}_f(k_y) = -\sum_{m=1}^{L_x} \left[2 \cos \left(k_y - \frac{2\pi m}{3} \right) + \frac{\mu}{t} c_{m,k_y}^\dagger c_{m,k_y} + i \frac{\Delta}{t} \sin k_y c_{m,k_y}^\dagger c_{m,-k_y} + \text{h.c.} \right] - \sum_{m=1}^{L_x-1} \left[c_{m+1,k_y}^\dagger c_{m,k_y} - \frac{\Delta}{t} \sin k_y c_{m,k_y}^\dagger c_{m,-k_y} + \text{h.c.} \right].
\]

(97)

Thus, we have an effective one-dimensional fermionic many-body BdG Hamiltonian \(\hat{H}_f(k_y) \). By numerical diagonalization of the BdG Hamiltonian \(H_f(k_y) \), we obtain the single-particle energy spectra plotted in Fig. 3(a). Apart from mid-gap edge states at finite energies, there are localized Majorana ZMs as well. Specifically, there are two chiral propagating ZMs at each edge of the cylinder, of opposite directions. This is consistent with numerical evaluations of the fermionic Chern numbers of the lowest three negative energy bands under periodic BCs: that is, we find \((C_3^-, C_2^-, C_1^-) = (-1, 2, 1)\), where \(C_3^- \) is the Chern number of the lowest negative energy band. Due to the bulk-boundary correspondence, a non-vanishing sum of these three Chern numbers \(C_3^- + C_2^- + C_1^- = 2 \) corresponds to topologically nontrivial ZMs, namely, topologically protected Majorana fermions localized at the boundaries. However, for free-boson systems, the sum of the bosonic Chern numbers of negative energy bands must vanish\(\text{[3]} \) and ZMs cannot exist subject to open BCs according to no-go Theorem\(\text{[3]} \) in Sec. IV C.

Let us square the BdG Hamiltonian \(\hat{H}_f(k_y) \), which leads to a quadratic bosonic Hamiltonian of the form \(\hat{H}_b(k_y) + \hat{W} \), with

\[
\hat{H}_b(k_y) = \sum_{m=1}^{L_x} \sum_{k_y} \mu(k_y) a_{m,k_y}^\dagger a_{m,k_y} + \sum_{m=1}^{L_x-1} \left[t_1(k_y) a_{m+1,k_y}^\dagger a_{m,k_y} + \text{h.c.} \right] + \sum_{m=1}^{L_x-2} \left[t_2 a_{m+2,k_y}^\dagger a_{m,k_y} + \text{h.c.} \right] + \sum_{m=1}^{L_x-1} \left[\Delta_0(k_y) a_{m,k_y}^\dagger a_{m,-k_y} + \text{h.c.} \right] + \sum_{m=1}^{L_x-1} \left[\Delta_1(k_y) a_{m+1,k_y}^\dagger a_{m,-k_y} + \text{h.c.} \right].
\]

(98)

where

\[
\begin{align*}
\mu(k_y) &\equiv \left[2 \cos \left(k_y - \frac{2\pi m}{3} \right) + \frac{\mu}{t} \right]^2 + 4 \frac{\Delta^2}{t^2} \sin^2 k_y + 2(1 + \frac{\Delta^2}{t^2}), \\
t_1(k_y) &\equiv -2 \left[\cos \left(k_y - \frac{2\pi (m+2)}{3} \right) - 2i \frac{\Delta^2}{t^2} \sin k_y - \frac{\mu}{t} \right], \quad t_2 \equiv 1 - \frac{\Delta^2}{t^2}, \\
\Delta_0(k_y) &\equiv 4i \frac{\Delta}{t} \sin \frac{2\pi m}{3} \sin^2 k_y, \quad \Delta_1(k_y) \equiv 4 \frac{\Delta}{t} \sin \frac{2\pi (m+2)}{3} \sin \left(k_y - \frac{\pi}{3} \right).
\end{align*}
\]

Thus, the effective BdG Hamiltonian is \(H_z(k_y) = \tau_3(\hat{H}_b(k_y) + \hat{W}) \), with the single-particle spectra around zero energy plotted in Fig. 3(b). Unlike in Fig. 3(a) for fermions, the bosonic positive bands are disconnected from the negative bands. This feature is a peculiarity of this model. For example, if one consider the free-boson model associated to the square of the chiral \(p + ip \) superconductor\(\text{[2]} \), one would find bosonic surface bands that cross zero energy for appropriate BCs. What these two free-boson models have in common is that the total Chern number of the negative bands vanishes, as must be the case in general for the bosonic Chern number\(\text{[2]} \). In Table IX we compare the Chern numbers of the fermionic and its associated bosonic models. For the bosonic descendant of the Harper-Hofstadter-pairing model, the bosonic Chern numbers of the lowest three negative bands are \((C_3^- , C_2^- , C_1^-) = (-1, 2, -1)\), with the original fermionic Chern number \(C_1^- = 1 \) changed to \(C_1^- = -1 \) for the bosonic model. This dramatically alters the topological properties of ZMs as the sum of the three bosonic Chern numbers vanishes, meaning that ZMs in the band gap are not topologically mandated.

The reason why ZMs and edge states around the zero energy appear in our model is due to special BCs caused by the squaring procedure, i.e., the boundary impurity
FIG. 3. Single-particle energy spectra of (a) the fermionic Harper-Hofstadter-pairing model subject to open BCs along the \(x \) direction; (b) the squared Harper-Hofstadter-pairing model subject to impurity BCs along the \(x \) direction; (c) the squared Harper-Hofstadter-pairing model subject to open BCs along the \(x \) direction. The parameters are \(\mu/t = -1.7, \Delta/t = -0.1, \phi = 1/3 \) and \(L_x = L_y = 120 \). Note that for visual clarity only spectra around zero energy are plotted in figures (b) and (c).

TABLE IX. Chern numbers of the Harper-Hofstadter-pairing model \(H_f(k) \) and the squared free-boson model \(\tau_3 H^2_f(k) \). The bosonic Chern number is numerically evaluated based on Eq. 66. The parameters are \(\mu/t = -1.7, \Delta/t = -0.1, \phi = 1/3 \).

	\(C^-_0 \)	\(C^-_2 \)	\(C^-_1 \)	\(C^+_0 + C^+_2 + C^+_1 \)
\(H_f(k) \)	-1	2	1	2
\(\tau_3 H^2_f(k) \)	-1	2	-1	0

To see that this is the case, we remove \(\hat{W} \) and diagonalize \(H_f(k_y) = \tau_3 H_2(k_y) \) subject to open BCs. The single-particle energy spectra around zero energy is plotted in Fig. 3(c): this shows no ZMs, while surface bands in other gaps survive. Thus, topologically non-trivial stable free-boson systems are systems with topologically trivial many-body ground states, in agreement with the general no-go theorems we discussed in Sec. IV.

VII. CONCLUSIONS AND OUTLOOK

Many-boson systems display amazing coherent behavior and correlations, such as Bose-Einstein condensation and fragmentation. At the mean-field level description, however, topology seems to provide a limited-scope principle for the organization of low-energy, stable bosonic matter. In this paper, following steps analogous to those in the fermionic tenfold way, with identical classifying symmetry constraints together with the pseudo-Hermiticity, we have presented a topological classification of stable free-boson systems by means of a kernel-preserving squaring map, leading to an elegant threefold way. This topological classification bears great resemblance with standard Dyson symmetry classes because, as shown, out of three classifying symmetries only time-reversal symmetry is of fundamental importance for canonical bosons.

Moreover, we proved three no-go theorems applicable to arbitrary stable gapped free-boson systems, even those that are not derived from our squaring map. Our first theorem establishes the even parity of bosonic ground states, with the immediate consequence of lack of parity switches. Consistently, our second theorem dictates the absence of non-trivial SPT phases of stable free-boson systems. By the Gell-Mann-Low theorem and our no-go Theorem 2, one can conclude that there also exist no non-trivial SPT phases of weakly-interacting bosons. Therefore, SPT phases of bosons can only be strongly-correlated phases of matter, beyond the reach of perturbative approaches. Our third theorem puts the last nail in the coffin, by asserting that not only bosonic ZMs, but also midgap states around zero energy are forbidden when the system is subject to open BCs. These results can be traced back to a condition that bosonic Hamiltonians need to satisfy in order to be stable (positive semidefiniteness). There is no counterpart of this condition for fermions.

In spite of these no-go results, we utilized our squaring-the-fermion map for generating a wealth of examples of
localized bosonic ZMs and surface bands in the zero gap coexisting with a fully-gapped bulk. The key is to notice that the square of a fermionic BdG Hamiltonian satisfies the particle-hole constraint associated to bosonic effective BdG Hamiltonians. The localized ZMs and surface bands obtained by this method share, with due allowance for the change in statistics, every exotic property of their fermionic counterpart with two exceptions: the resulting BCs cannot be open, and, consistently with our no-go results, there generically is no protection mechanism at play. We investigated this last point numerically in considerable detail for the squared Kitaev chain. Besides two exact bosonic Majorana ZMs inherited from Majorana fermions, we found a pair of unexpected asymptotic ZMs localized at the two ends, which coalesce with those two exact bosonic Majorana ZMs in the thermodynamic limit. We have also shown how to generate new bosonic field theories out of our squaring map, in particular, we derived a squared Jackiw-Rebbi field theory with bosonic solitons. Finally, we presented the squared Harper-Hofstadter model with pairing to illustrate the interplay between bosonic topological invariants and midgap states.

Our no-go Theorem 1, which establishes that gapped stable free bosonic ground states always display even parity, is at odds with the fermionic SDP in particle-conserving interacting fermionic systems. In hindsight, what a topologically non-trivial interacting bosonic vacuum represents, constitutes a fundamental question. But it is perhaps equally fundamental to establish whether interactions may induce a ground-state topological transition between parity-distinct gapped bosonic phases. In Ref. [53], an exactly solvable p-wave pairing model for two bosonic species was introduced, that shares some commonalities with the p + ip fermionic model. Contrary to the latter, in the bosonic case the transition separates a gapless, fragmented singlet pair Bose-Einstein condensate from a pair Bose gapped superfluid. This raises the concern that boson parity switches may be fundamentally non-existent in interacting bosonic systems, since a gapless Bose-Einstein condensate may intervene. One would like to find interacting bosonic models with topologically inequivalent gapped phases. This is an open question for future studies.

ACKNOWLEDGMENTS

We gratefully acknowledge correspondence with H. Schultz-Baldes and P. T. Nam on the problem of many-body stability. A. A. acknowledges insightful discussions with Barry C. Sanders and David Feder on zero modes in topological bosons. Work at Dartmouth was partially supported by the NSF through Grants No. PHY-1620541 and OIA-1921199, and the Constance and Walter Burke Special Projects Fund in Quantum Information Science. A. A. acknowledges support from the Quantum Alberta Initiative by the Government of Alberta. E. C. gratefully acknowledges support from the Office of Research Advancement, SUNY Polytechnic Institute, in the form of a Seed Grant for the year 2019. G. O. acknowledges partial support by the DOE grant DE-SC0020343. The IU Quantum Science and Engineering Center is supported by the Office of the Vice Provost for Research through its Emerging Areas of Research program.

Appendix A: Proof of the theorem in Sec. II C

As in the main text, $H_\tau = \tau_s H_0$ denotes the effective BdG Hamiltonian of a many-body free-boson system with N single-particle states and $H_0 \geq 0$. We write $N_0 \equiv \dim \ker H_\tau$ and let $m \leq N_0$ be the number of size-two Jordan blocks (necessarily at zero frequency as a consequence of positive semi-definiteness in the Jordan normal form of H_τ. Similarly, we write $2n \equiv N_0 - m$ for the (necessarily even) number of size-one Jordan blocks. Note that there are then $2N' \equiv 2N - 2m$ non-zero eigenvalues ϵ_ν of H_τ. We first establish the following:

Lemma 1. The $2n$ kernel vectors of H_τ corresponding to Jordan blocks of size one denoted by $|\phi_{0,j}^{\pm}\rangle$ with $j = 1, \ldots, n$, can be taken to satisfy $\langle \phi_{0,j}^{\pm}| \tau_3 |\phi_{0,\ell}^{\pm}\rangle = \pm \delta_{j\ell}$ and $\langle \phi_{0,j}^{\pm}| \tau_3 |\phi_{0,\ell}\rangle = 0$. The remaining m kernel vectors, which we will denote by $|\rho_{0,j}\rangle$, can be chosen to be τ_3-orthogonal to the vectors $|\phi_{0,j}^{\pm}\rangle$ and satisfy $\langle \rho_{0,j}| \tau_3 |\rho_{0,\ell}\rangle = 0$ for all $j, \ell \in \{1, \ldots, m\}$. Furthermore, we can find m generalized eigenvectors $|\chi_{0,j}\rangle$ satisfying $H_\tau |\chi_{0,j}\rangle = |\rho_{0,j}\rangle$ and $\langle \chi_{0,j}| \tau_3 |\chi_{0,\ell}\rangle = 0$ and $\langle \chi_{0,j}| \tau_3 |\rho_{0,\ell}\rangle = t_j \delta_{j\ell}$, with t_j either 1 or -1, for all $j, \ell \in \{1, \ldots, m\}$ that are τ_3-orthogonal to the vectors $|\phi_{0,j}^{\pm}\rangle$.

Proof. Theorem 5.1.1 in Ref. [20] says there exists a matrix S that induces the transformation $H_\tau = S^{-1}JS$ with

$$J = \text{diag}(\mathcal{E}, -\mathcal{E}, 0, \ldots, 0, J_0, \ldots, J_0),$$

where $\mathcal{E} \equiv \text{diag}(\epsilon_1, \ldots, \epsilon_{N'})$, 0 appears $2n$ times and $J_0 \equiv \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ appears m times, and $\tau_3 = S^1PS$ with

$$P = \text{diag}(\mathbb{1}_{N'}, -\mathbb{1}_{N'}, P_0),$$

$$P_0 = \text{diag}(s_1, \ldots, s_2n, t_1\sigma_1, \ldots, t_m\sigma_1),$$

where the s_i’s and t_j’s are either 1 or -1. Furthermore, Theorem A.1.1 in Ref. [20] tells us that P and τ_3 have the same number of positive and negative eigenvalues. Clearly the eigenvalues of P are ± 1 and so they must each have multiplicity N. We see that N' of the $+1$ (-1) eigenvalues are accounted for in the first (second) N' diagonal elements of P. We also have m of them originating from the $t_\ell \sigma_1$ factors in P_0. The remaining
number of +1 (−1) eigenvalues is \(N - N' - m \). Recalling that \(N = N' + m + n \), we conclude that \(n \) of the \(s_i \)'s are +1 and the remaining are −1. Without loss of generality, (by rearranging the Jordan normal form as necessary) we can take \(s_j = 1 \) for \(j = 1, \ldots, n \) and \(s_j = -1 \) for \(j = n + 1, \ldots, 2n \). Now define

\[
|\phi_0^{+j}\rangle \equiv S^{-1} |2N' + j\rangle, \quad |\phi_0^{-j}\rangle \equiv S^{-1} |2N' + n + j\rangle,
\]

for \(j = 1, \ldots, n \). Clearly \(H_r |\phi_0^{+j}\rangle = 0 \) and by virtue of the relation \(r_j = \delta^l P S \) we have \(\langle \phi_0^{+j} | r_j | \phi_0^{+j} \rangle = \pm \delta_{jl} \) and

\[
\langle \phi_0^{+j} | r_j | \phi_0^{-j} \rangle = 0.
\]

In the same vein, we can take

\[
|\rho_{0,j}\rangle \equiv S^{-1} |2N' + 2n + 2j - 1\rangle, \quad |\chi_{0,j}\rangle \equiv S^{-1} |2N' + 2n + 2j\rangle,
\]

which can be checked to satisfy claimed properties. \(\blacksquare\)

Now we restate Theorem of Sec.\[15\] and give a proof.

Theorem (ZMs, \[19\]). For the effective BdG Hamiltonian \(H_r = \tau_j H_0 \), let \(2n \) and \(m \) be the number of linearly independent zero eigenvectors associated to Jordan chains of length one and two, respectively. Then there are \(n \) pairs of canonical boson \(b_{0,j'}^{\dagger}, b_{0,j}^{\dagger} \) that commute with the many-body Hamiltonian \(H_0 \) and all other normal modes of the system. In addition, there exist \(m \) pairs of Hermitian operators \(P_{0,j}, Q_{0,j} \) that also commute with all other normal modes of the system and obey \(\{Q_{0,j}, P_{0,\ell}\} = i\delta_{j\ell}, \quad [H_0, P_{0,j}] = 0, \) and \([H_0, Q_{0,j}] = (i/\mu_j)P_{0,j} \), with \(\mu_j > 0 \).

Proof. Let \(D_0 \) be the span of the eigenvectors \(|\phi_0^{\pm j}\rangle \) specified in Lemma \[11\]. In order to construct these bosonic ZMs, we need a basis \(\{|\psi_0^{\pm j}\rangle\}_{j=1}^n \) for \(D_0 \) satisfying

\[
\langle \psi_0^{+j} | r_j | \psi_0^{+\ell} \rangle = \pm \delta_{j\ell}, \quad \langle \psi_0^{+j} | r_j | \psi_0^{-\ell} \rangle = 0, \quad \langle \psi_0^{-j} | r_j | \psi_0^{-\ell} \rangle = 0, \quad |\psi_0^{+j}\rangle = C |\psi_0^{-j}\rangle,
\]

where \(C \equiv \tau_j K \). With such a basis, we can construct the \(n \) pairs \(\{b_{0,j'}^{\dagger}, b_{0,j}^{\dagger}\} \) in a way identical to Eq. \[9\].

It is *not a priori* true that the basis \(\{|\psi_0^{\pm j}\rangle\}_{j=1}^n \) in Lemma \[11\] satisfies the third condition. Thus, we define

\[
|\psi_{0,j}\rangle = \sum_{\ell=1}^n \alpha_{j\ell} |\phi_{0,0,\ell}^{+}\rangle.
\]

where \(\alpha_{j\ell} \in C \). In order to ensure that \(\langle \psi_{0,j}^{+j} | r_j | \psi_{0,j}^{+\ell} \rangle = \delta_{j\ell} \) the matrix \(\alpha \) with elements given by \(\alpha_{j\ell} \) must be unitary. Thus, out of the original \(2n^2 \) real parameters (two for each \(\alpha_{j\ell} \)), we are left with \(n^2 \) free. Now, we wish to impose the condition

\[
O_{j\ell} \equiv \langle \psi_{0,j}^{+j} | r_j | C |\psi_{0,j}^{+\ell}\rangle = 0,
\]

for all \(j \) and \(\ell \). Because of \(O_{j\ell} = -O_{\ell j} \), Eq. \[A2\] imposes \(n(n-1)/2 \) independent conditions. Taking the real and imaginary parts of \(O_{j\ell} = 0 \) yields \(n(n-1) \) equations that must be satisfied. Given we have \(n^2 \) free parameters, we have enough freedom to ensure \(O_{j\ell} = 0 \) for all \(j \) and \(\ell \).

The remaining \(n \) free real parameters can be associated with the arbitrary phases of each \(|\psi_{0,j}^{\pm}\rangle \). After choosing \(\alpha_{j\ell} \) appropriately, we define \(|\psi_{0,j}^{\pm}\rangle \equiv C |\psi_{0,j}^{\mp}\rangle \). Then, the three conditions in Eq. \[A1\] are satisfied.

Moving to the higher order Jordan blocks, we wish to construct a set of \(m \) eigenvectors \(|P_0,j\rangle \) and \(m \) generalized eigenvectors \(|Q_0,j\rangle \) of \(H_r \) satisfying

\[
H_r |P_{0,j}\rangle = 0, \quad H_r |Q_{0,j}\rangle = -\frac{i}{\mu_j} |P_{0,j}\rangle,
\]

\[
|Q_{0,j} | r_j | \psi_{0,\ell}^{+}\rangle = \langle P_{0,j} | r_j | \psi_{0,\ell}^{-}\rangle = 0, \quad |Q_{0,j} | r_j | Q_{0,\ell} \rangle = 0, \quad |Q_{0,j} | r_j | P_{0,\ell} \rangle = i\delta_{j\ell},
\]

\[
C |P_{0,j} \rangle = - |P_{0,j} \rangle, \quad C |Q_{0,j} \rangle = - |Q_{0,j} \rangle.
\]

We claim that \(P_{0,j} = |P_{0,j} \rangle \tau_j \Phi \) and \(Q_{0,j} = |Q_{0,j} \rangle \tau_j \Phi \) provide the desired Hermitian operators.

We begin by letting \(|\rho_{0,j}\rangle \) and \(|\chi_{0,j}\rangle \) denote the vectors defined in Lemma \[11\] and define

\[
|P_{0,j}\rangle = \sum_{\ell=1}^m \beta_{j\ell} |\rho_{0,\ell}\rangle, \quad |Q_{0,j}\rangle = \sum_{\ell=1}^m \gamma_{j\ell} |\rho_{0,\ell}\rangle,
\]

with \(\mu_j^{-1} \equiv \langle Q_{0,j} | H_r | P_{0,j} \rangle > 0, \beta_{j\ell}, \gamma_{j\ell} \in C \). By construction, conditions \[A3\], \[A4\], and \[A6\] are satisfied. Furthermore, condition \[A5\] is satisfied when the plus sign is chosen. This fact paired with conditions \[A9\] and \[A10\] will ensure that the minus sign portion of condition \[A5\] will be satisfied. Thus, we will show that conditions \[A9\] and \[A10\] can be satisfied first. Moving forward, condition \[A9\] imposes \(m(m+1)/2 \) constraints on the \(2m^2 \) free parameters \(\beta_{j\ell}, \gamma_{j\ell} \). Condition \[A9\] imposes \(m \) more constraints. This leaves us with \(3m(m-1)/2 > 0 \) free parameters. Now, if the vectors \(|Q_{0,j}\rangle \) satisfy \[A10\] then they will satisfy condition \[A8\] for \(j = \ell \). Noting that, by virtue of the charge conjugation properties of the vector \(|\psi_{0,j}\rangle \), the span of the vectors \(\{|Q_{0,j}\rangle, |P_{0,j}\rangle\}_{j=1}^m \) is invariant under the action of \(C \). Thus, we can write

\[
C |Q_{0,j}\rangle = \sum_{\ell=1}^m (z_{j\ell} |Q_{0,\ell}\rangle + w_{j\ell} |P_{0,\ell}\rangle),
\]

with \(z_{j\ell}, w_{j\ell} \in C \). Projecting with \(\langle P_{0,k} | r_j \rangle \), and noting that for any vectors \(|v\rangle \) and \(|w\rangle \) we have \(\langle v | C |w\rangle = \langle w | C |v\rangle \) and \(r_j C = -C r_j \), we obtain \(i\delta_{jk} = -iz_{jk} \). Thus

\[
C |Q_{0,j}\rangle = - |Q_{0,j}\rangle + \sum_{\ell=1}^m w_{j\ell} |P_{0,\ell}\rangle.
\]
To ensure $C |Q_{0,j}⟩ = - |Q_{0,j}⟩$ we can shift $|Q_{0,j}⟩$ by the appropriate linear combination of the vectors $|P_{0,ℓ}⟩$ to make the second term vanish. This imposes no more constraints and preserves the already satisfied conditions. By imposing condition (A7) for $j ≠ ℓ$ we obtain $m(m - 1)/2$ more constraints. Altogether we still retain $3m(m - 1)/2 - m(m - 1)/2 = m(m - 1) ≥ 0$ free parameters. Thus, all 8 conditions can be satisfied by the appropriate choice of constants $β_{jℓ}$ and $γ_{jℓ}$.

Appendix B: Symmetry reduction

Let $\{H_f\}$ denote an ensemble of BdG Hamiltonians that commute with Q_f, where

$$H_f = |↑⟩⟨↑| ⊗ K + |↑⟩⟨↓| ⊗ Δ − |↓⟩⟨↑| ⊗ Δ^* − |↓⟩⟨↓| ⊗ K^*$$

is written in terms of eigenvectors $|↑⟩ ≡ [0 \; 1]^T$, $|↓⟩ ≡ [1 \; 0]^T$ of $σ_3$. We are interested in the symmetry reduction of the squared ensemble $\{τ_3H_f^2\}$, induced by a symmetry Q_f that commutes with $τ_3$. The eigenvalues of Q_f are determined by the eigenvalues of the Hermitian operator q defined in Eq. (42), the spectrum of which we denote as $σ(q)$. The blocks of the squared ensemble consists of reduced effective BdG Hamiltonians with respect to a reduced metric. It is important for classification purposes to understand the general structure of both the reduced metric and the reduced effective BdG Hamiltonian. There are three distinct cases to analyze.

Case 1: $κ ∈ σ(q)$ and $−κ ≠ σ(q)$. Let $|κ, ν⟩$, $ν = 1, …, m$, denote a complete orthonormal set of eigenvectors of q for the eigenvalue $κ$, written in the mode basis of the original many-boson Hamiltonian. Since, by assumption, $−κ$ is not an eigenvalue of q, the eigenvectors of Q_f associated to $κ$ are $|↑⟩⟨κ, ν|$ and the eigenvectors associated to $−κ$ are $|↓⟩⟨κ, ν|^*$, with $|κ, ν|^* ≡ K|κ, ν⟩$. The associated canonical fermions, partially labeled by the conserved quantum number $κ$, are

$$c^\dagger_{κ, ν} ≡ Ψ^\dagger|↑⟩⟨κ, ν| ≡ ψ^\dagger|κ, ν⟩,$$

$$c_{κ, ν} ≡ Ψ^\dagger|↓⟩⟨κ, ν|^* = ψ^T|κ, ν|^* = ⟨κ, ν|ψ.$$

By construction, $H_{f,κ} = \begin{bmatrix} K_κ & Δ_κ \\ Δ_κ^* & −K_κ \end{bmatrix}$. However,

$$[Δ_κ]_{νν'} = ⟨κ, ν|Δ[κ, ν'^*] = 0$$

because $[H_f, Q_f] = 0$ and $κ ≠ −κ$ by assumption (notice that complex conjugation affects only the nearest vector to the left). Hence, the many-body block is

$$\hat{H}_{f,κ} = \hat{Ψ}_κ^\dagger K_κ \hat{Ψ}_κ, \quad \hat{Ψ}_κ^\dagger = \begin{bmatrix} c^\dagger_{κ,1} & ⋯ & c^\dagger_{κ,m} \end{bmatrix},$$

and we see that the number of $κ$ fermions is conserved. Finally, the squaring map S yields the free-boson system

$$\hat{H}_{b,κ} = \frac{1}{2} \hat{Ψ}_κ^\dagger H_f^2 \hat{Ψ}_κ = \frac{1}{2} \hat{Ψ}_κ^\dagger K_κ^2 \hat{Ψ}_κ,$$

in terms of canonical bosons $a^\dagger_{κ, ν} ≡ \hat{Ψ}_κ|κ, ν⟩$.

Case 2: $0 ∈ σ(q)$. Let $|0, ν⟩$, $ν = 1, …, m$, denote a complete orthonormal set of eigenvectors q belonging to zero eigenvalue. The associated fermionic degrees of freedom are just as in Eq. (B1), simply set $κ = 0$. Proceeding as before we obtain the many-body block $\hat{H}_{f,0} = \frac{1}{2} \hat{Ψ}_0^\dagger H_f\hat{Ψ}_0$, where the single-particle and pairing blocks of $H_{f,0}$ are

$$[K_0]_{νν'} = ⟨0, ν|K|0, ν'⟩ = [K_0]_{νν'},$$

$$[Δ_0]_{νν'} = ⟨0, ν|Δ[0, ν'^*] = −[Δ_0]_{νν'}.$$

Unlike the previous case, the pairing term need not vanish because $0 = −0$. By comparison with Case 3 below, zero eigenvalue is also special because no further reduction of the single-particle block $\hat{H}_{f,0}$ is possible. The squaring map induces the block transformation $τ_3H_f^2$ in terms of $τ_3 = σ_3 ⊗ 1_m$.

Case 3: $κ, −κ ∈ σ(q)$ and $κ ≠ 0$. This is the most elaborate case and, together with Case 2, it comprises familiar symmetries like spin rotations and lattice translations. Let $|κ, ν⟩$, $ν = 1, …, m$, and $|−κ, ν⟩$, $ν = 1, …, n$, denote complete orthonormal sets of eigenvectors of q associated to the indicated eigenvalues. Notice that we do not assume identical degeneracy for $κ$ and $−κ$. They do coincide for spin and crystal momenta but that need not be the case in general. As we will see, the case $m ≠ n$ introduces exotic features into the bosonic problem. Now, $κ, −κ$ are also eigenvalues of Q_f. The corresponding complete sets of orthonormal eigenvectors $|↑⟩⟨κ, ν|$, $|↓⟩⟨κ, ν|^*$, and $|↑⟩⟨κ, ν|$, $|↓⟩⟨κ, ν|^*$, respectively. The fermionic degrees of freedom are

$$c^\dagger_{κ, ν} ≡ \hat{Ψ}_κ^\dagger|κ, ν⟩,$$

$$c^\dagger_{κ, ν} ≡ \hat{Ψ}_κ^\dagger|κ, ν⟩,$$

$$c^\dagger_{κ, ν} ≡ \hat{Ψ}_κ^\dagger|κ, ν⟩.$$

The many-body block can be calculated as before in terms of a projector $P_{±κ}$ onto the subspace associated to the eigenvalues $±κ$ of Q_f. The resulting many-body block can be characterized as $\hat{H}_{f,±κ} = \frac{1}{2} \hat{Ψ}_{±κ}^\dagger H_{f,±κ} \hat{Ψ}_{±κ}$ in terms of the Nambu array

$$\hat{Ψ}_{±κ} ≡ \begin{bmatrix} c^\dagger_{κ,1} & ⋯ & c^\dagger_{κ,m} & c^\dagger_{κ,1} & ⋯ & c^\dagger_{κ,n} & c^\dagger_{κ,1} & ⋯ & c^\dagger_{κ,m} \end{bmatrix}.$$
and the BdG Hamiltonian

\[
H_{f,\pm \kappa} = \begin{bmatrix}
 K_1 & 0 & 0 & \Delta_1 \\
 0 & K_2 & \Delta_2 & 0 \\
 0 & -\Delta_1^* & -K_1^* & 0 \\
 -\Delta_2^* & 0 & 0 & -K_2^*
\end{bmatrix},
\]

with \(K_1\) and \(K_2\) Hermitian \(m \times m\) and \(n \times n\) matrices, respectively, and \(\Delta_1 = -\Delta_2\) an \(m \times n\) rectangular matrix. Explicit expressions are (the conjugation operation acts only on the bra or ket directly to the left of it)

\[
[K_1]_{\nu \nu'} = (\kappa, \nu|K|\kappa, \nu'), \quad [K_2]_{\nu \nu'} = (-\kappa, \nu|\nu')^*, \quad [\Delta_1]_{\nu \nu'} = (\kappa, \nu|\nu')^* = -[\Delta_2]_{\nu \nu'}.
\]

Note that the single-particle Hamiltonian \(H_{f,\pm \kappa}\) is “reducible” but the many-body block is not. So, we have

\[
\tilde{H}_{f,\pm \kappa} = \tilde{\Psi}_{\pm \kappa}^\dagger H_{\pm \kappa} \tilde{\Psi}_{\pm \kappa} - (\text{tr} K_1 - \text{tr} K_2),
\]
in terms of the generic Hermitian matrix

\[
H_{\pm \kappa} = \begin{bmatrix}
 K_1 & \Delta_1 \\
 -\Delta_2^* & -K_2^*
\end{bmatrix}
\]

(B3)

and the (not Nambu!) array

\[
\tilde{\Psi}_{\pm \kappa}^\dagger = [c_{\kappa,1}^\dagger \cdots c_{\kappa,m}^\dagger \ c_{-\kappa,1} \cdots c_{-\kappa,n}] .
\]

This form of the many-body block makes it clear that it commutes with the charge

\[
\tilde{N}_{\pm \kappa} = \sum_{\nu=1}^m c_{\kappa,\nu}^\dagger c_{\kappa,\nu} - \sum_{\nu=1}^n c_{-\kappa,\nu}^\dagger c_{-\kappa,\nu} .
\]

The free-boson system induced by the squaring map \(S\),

\[
\tilde{H}_{b,\pm \kappa} = \frac{1}{2} \tilde{\Phi}_{\pm \kappa}^\dagger H_{b,\pm \kappa} \tilde{\Phi}_{\pm \kappa}.
\]

is then written in terms of the (not Nambu!) array

\[
\tilde{\Phi}_{\pm \kappa} = \begin{bmatrix}
 a_{\kappa,1}^\dagger \cdots a_{\kappa,m}^\dagger \ a_{-\kappa,1} \cdots a_{-\kappa,n}
\end{bmatrix} ,
\]

of canonical bosons \(a_{\kappa,\nu}^\dagger = \hat{\phi}_1^\dagger|\kappa, \nu\rangle\), \(a_{-\kappa,\nu} = \langle -\kappa, \nu|\hat{\phi}_1\)

and the generic Hermitian \(H_{\pm \kappa}\) of Eq. (B3). Notice that

\[
[\tilde{\Phi}_{\pm \kappa}, \tilde{\Phi}_{\mp \kappa}^\dagger] = \tau_{m,n}, \quad \tau_{m,n} = \begin{bmatrix}
 I_m & 0 \\
 0 & -I_n
\end{bmatrix} .
\]

Hence, the irreducible effective BdG Hamiltonian is \(\tau_{m,n} H_{f,\pm \kappa}^2\), which is \(\tau_{m,n}\) pseudo-Hermitian. The pseudo-unitary transformations associated to Gaussian isometries of the array \(\tilde{\Phi}_{\pm \kappa}\) satisfy \(U \tau_{m,n} U^\dagger = \tau_{m,n}\).

The case \(m = n\) is certainly well understood, as we have seen. The geometric and algebraic features of the case \(m \neq n\) are treated in the mathematical literature under the heading of “indefinite linear algebra,” see Ref. [20].

Appendix C: On general stable bosonic ensembles

We begin with the observation (see Table [VI]) that the time-reversal symmetry of \(\tau_3 \tilde{H}_3^2(k)\) always commutes with \(\tau_3\), while both particle-hole and chiral symmetries of \(\tau_3 \tilde{H}_3^2(k)\) always anticommute with \(\tau_3\). To see that Table [VI] also holds for ensembles of stable free-boson systems not arising from the squaring procedure, we need to show that the time-reversal symmetry of \(\tilde{H}_\tau(k) = \tau_3 \tilde{H}_b(k)\) (with \(\tilde{H}_b^\dagger(k) = \tilde{H}_b(k), \tilde{H}_b^\dagger(k) > 0\)) cannot anticommute with \(\tau_3\), and particle-hole or chiral symmetries cannot commute with \(\tau_3\). We show that this is the case by contradiction.

(a) Suppose that the time-reversal symmetry \(U_3^\dagger k\), \(U_3^\dagger \tilde{H}_3^2(-k) U_T = \tilde{H}_\tau(k)\), anticommutes with \(\tau_3\), i.e., \(\{\tau_3, U_T\} = 0\). Then we have \(U_3^\dagger \tilde{H}_3^2(-k) U_T = -\tilde{H}_b(k)\), which translates into a particle-hole symmetry of \(\tilde{H}_b(k)\), thus violating the stability condition \(\bar{H}_b(k) > 0\).

(b) Suppose that the particle-hole symmetry \(U_C^\dagger k\), \(U_C^\dagger \tilde{H}_3^2(-k) U_C = -\tilde{H}_\tau(k)\), commutes with \(\tau_3\), i.e., \(\{\tau_3, U_C\} = 0\). Then we have \(U_C^\dagger \tilde{H}_3^2(-k) U_C = -\tilde{H}_b(k)\), which also translates into a particle-hole symmetry of \(\tilde{H}_b(k)\), thus violating the stability condition \(\bar{H}_b(k) > 0\).

(c) Suppose that the chiral symmetry \(U_S^\dagger\), \(U_S^\dagger \tilde{H}_\tau(k) U_S = -\tilde{H}_\tau(k)\), commutes with \(\tau_3\), i.e., \(\{\tau_3, U_S\} = 0\). Then we have \(U_S^\dagger \tilde{H}_b(k) U_S = -\tilde{H}_b(k)\), which translates into a chiral symmetry of \(\tilde{H}_b(k)\), thus violating the stability condition \(\tilde{H}_b(k) > 0\).

Thus, we expect that our Table [VII] also holds for generic stable free-boson systems with metric \(\tau_3\). For the “unbalanced” metric \(\tau_{m,n}\) (see Table [III]), only time-reversal symmetry is possible, and with simple modifications, the reasoning (a) above is still valid.

A simple argument points to the importance of the stability condition in establishing the threefold way classification. Let \(\{H_\tau(k) = \tau_3 H_0(k)\}\) denote an ensemble of effective Bloch BdG Hamiltonians with \(\tilde{H}_b(k) > 0\), but arbitrary otherwise. By block-diagonalizing the linear Gaussian many-body symmetries of the ensemble, one obtains a family of sub-ensembles \(\{H^{(i)}_\tau(k)\}\) and associated metrics \(\tau^{(i)}_{m,n}\). This characterization of the sub-ensembles relies heavily on the assumption \(H_0(k) > 0\) which guarantees that the quasiparticles of \(H_0(k)\) are canonical bosons. Moreover, because it is true of the parent ensemble, the Hermitian Bloch Hamiltonians \(\tau^{(i)}_{m,n} H^{(i)}_\tau(k)\) satisfy \(\tau^{(i)}_{m,n} H^{(i)}_\tau(k) > 0\) necessarily. Hence, if irreducible, the Hermitian ensembles \(\{\tau^{(i)}_{m,n} H^{(i)}_\tau(k)\}\) can only be of class A, AI, or AII according to the usual tenfold way.
1. M. Gell-Mann and F. Low, Bound States in Quantum Field Theory, Phys. Rev. 84, 350 (1951).

2. A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

3. A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009).

4. S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12, 065010 (2010).

5. C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88, 035005 (2016).

6. A. Alase, E. Cobanera, G. Ortiz, and L. Viola, Matrix factorization approach to the bulk-boundary correspondence and the stability of zero modes, in preparation (2020).

7. N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61, 10267 (2000).

8. A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001).

9. S. Deng, L. Viola, and G. Ortiz, Majorana modes in time-reversal invariant s-wave topological superconductors, Phys. Rev. Lett. 108, 036803 (2012).

10. S. Deng, G. Ortiz, A. Poudel, and L. Viola, Majorana flat bands in s-wave gapless topological superconductors, Phys. Rev. B 89, 140507(R) (2014).

11. J. Alicea, New directions in the pursuit of Majorana Fermions in solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

12. C. W. J. Beenakker, Search for Majorana Fermions in Superconductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).

13. J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (The MIT Press, Cambridge, 1986).

14. G. Ortiz, J. Dukelesky, E. Cobanera, C. Esebag, and C. Beenakker, Many-Body Characterization of Particle-Conserving Topological Superfluids, Phys. Rev. Lett. 113, 267002 (2014).

15. G. Ortiz and E. Cobanera, What is a particle-conserving Topological Superfluid? The fate of Majorana modes beyond mean-field theory, Ann. Phys. (NY) 372, 357 (2016).

16. H. Schulz-Baldes, Signature and Spectral Flow of J-Unitary S^1-Fredholm Operators, Integr. Equ. Oper. Theory 78, 323 (2014).

17. V. Peano and H. Schulz-Baldes, Topological edge states for disordered bosonic systems, J. Math. Phys. 59, 031901 (2018).

18. V. P. Flynn, E. Cobanera, and L. Viola, Deconstructing effective non-Hermitian dynamics in quadratic bosonic Hamiltonians, arXiv:2003.03405, New J. Phys. https://doi.org/10.1088/1367-2630/ab9e87.

19. J. H. P. Colpa, Diagonalization of the quadratic boson Hamiltonian with zero modes: Part I: Mathematical, Physica 134A, 377 (1986); Part II: Physical, 134A, 417 (1986).

20. I. Gohberg, P. Lancaster, and L. Rodman, Indefinite Linear Algebra and Applications (Birkhäuser, Basel, 2005).

21. A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).

22. J. H. P. Colpa, Diagonalization of the quadratic boson Hamiltonian, Physica A 93, 327 (1978).

23. A. Alase, E. Cobanera, G. Ortiz, and L. Viola, Exact Solution of Quadratic Fermionic Hamiltonians for Arbitrary Boundary Conditions, Phys. Rev. Lett. 117, 076804 (2016).

24. A. Alase, E. Cobanera, G. Ortiz, and L. Viola, Generalization of Bloch’s theorem for arbitrary boundary conditions: Theory, Phys. Rev. B 96, 195133 (2017).

25. E. Cobanera, A. Alase, G. Ortiz, and L. Viola, Exact solution of corner-modified banded block-Toeplitz eigensystems, J. Phys. A 50, 195204 (2017).

26. D. H. Lee and J. D. Joannopoulos, Simple scheme for surface-band calculations, I, Phys. Rev. B 23, 4988 (1981).

27. F. Bechstedt, Principles of Surface Physics (Springer-Verlag, Berlin, Heidelberg, 2003).

28. E. Cobanera, A. Alase, G. Ortiz, and L. Viola, Generalization of Bloch’s theorem for arbitrary boundary conditions: Interfaces and topological surface band structure, Phys. Rev. B 98, 245423 (2018).

29. J. Dereziński, Bosonic quadratic Hamiltonians, J. Math. Phys. 58, 121101 (2017).

30. V. Yakubovich and V. Starzhinskii, Linear Differential Equations with Periodic Coefficients, Vol. 1 (Wiley, New York, 1975).

31. M. R. Zirnbauer, Symmetry classes, in: The Oxford Handbook of Random Matrix Theory, edited by A. Akemann, J. Baik, and P. D. Francesco (Oxford University Press, 2011).

32. D. Bernard and A. LeClair, A classification of non-Hermitian random matrices, in: Statistical Field Theories, edited by A. Cappelli and G. Mussardo (Springer, Dordrecht, 2002).

33. K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9, 041015 (2019).

34. F. J. Dyson, The Threefold Way: Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics, J. Math. Phys. 3, 1199 (1962).

35. J. J. M. Verbaarschot and T. Wettig, Random Matrix Theory and Chiral Symmetry in QCD, Annu. Rev. Nucl. Part. Sci. 50, 343 (2000).

36. E. Cobanera and G. Ortiz, Equivalence of topological insulators and superconductors, Phys. Rev. B 92, 155125 (2015).

37. J. Rosenberg, A selective history of the Stone-von Neumann theorem, in: Operator Algebras, Quantization and Noncommutative Geometry, edited by R. S. Doran and R. V. Kadison (American Mathematical Society, 2004).

38. J. Dereziński, Introduction to Representations of the Canonical Commutation and Anticommutation Relations, in: Large Coulomb Systems, edited by J. Dereziński and H. Siedentop (Springer-Verlag, Berlin, Heidelberg, 2006).

39. R. Shindou, R. Matsumoto, S. Murakami, and J.-i. Ohe, Topological chiral magnonic edge mode in a magnonic crystal, Phys. Rev. B 87, 174427 (2013).

40. I. Gohberg, M. A. Kaashoek, and I. M. Spitkovsky, An overview of matrix factorization theory and operator applications, in: Factorization and Integrable Systems, edited by I. Gohberg, N. Manojlovic, and A. F. dos Santos
D. Youla and N. Kazanjian, *Bauer-type factorization of positive matrices and the theory of matrix polynomials orthogonal on the unit circle*, IEEE Trans. Circuits Systems **25**, 57 (1978).

A smooth fermion-to-boson map for Dirac Hamiltonians is also considered by P. S. Kumar, I. F. Herbut, and R. Ganesh, *Dirac Hamiltonians for bosonic spectra*, arXiv:2001.02694. Our squaring procedure has no relation at all to this map, however. In this work, the authors start from an effectively positive-definite real symmetric matrix and the bosonic map involves doubling of the dimension of that matrix, while preserving spectral properties. Our squaring procedure maps an arbitrary fermionic Hermitian matrix to a bosonic one, preserving both its dimensionality and (only) its kernel. By construction, our map generates a positive-semidefinite bosonic Hamiltonian.

H. Zhou and J. Y. Lee, *Periodic table for topological bands with non-Hermitian symmetries*, Phys. Rev. B **99**, 235112 (2019).

Notice that the particle-hole symmetry of Ref. [33], defined in their Eq. (13), is different from the definition in our Eq. (15), which leads to a different nomenclature for pseudo-Hermitian symmetry classes in their Table VIII and IX. However, there is a one-to-one correspondence between these two nomenclatures for pseudo-Hermitian symmetry classes, which will become clear at the end of our Sec. V C 2. Our class A corresponds to (↔) their class A with their metric η, our class AIII ↔ their class AIII with η−, our class AI ↔ their class AI with η+, our class BDI ↔ their class CI with η−, our class D ↔ their class C with η−, our class DIII ↔ their class CII with η+−, our class AII ↔ their class AII with η+, our class CII ↔ their class DIII with η−, our class C ↔ their class D with η−, and finally our class CI ↔ their class BDI with η+−. The subscripts of η± specify commutation (+) or anticommutation (−) relations to internal symmetries.

W. P. Su, J. R. Schrieffer, and A. J. Heeger, *Solitons in Polyacetylene*, Phys. Rev. Lett. **42**, 1698 (1979).

M. V. Berry, *Quantal phase factors accompanying adiabatic changes*, Proc. R. Soc. Lond. A **392**, 45 (1984).

S. Deng, G. Ortiz, and L. Viola, *Multiband s-wave topological superconductors: Role of dimensionality and magnetic field response*, Phys. Rev. B **87**, 205414 (2013).

R. Jackiw and C. Rebbi, *Solitons with fermion number 1/2*, Phys. Rev. D **13**, 3398 (1976).

S. M. Roy and V. Singh, *Fractional total-charge eigenvalues for a fermion in a finite one-dimensional box*, Phys. Lett. B **143**, 179 (1984).

P. G. Harper, *The General Motion of Conduction Electrons in a Uniform Magnetic Field, with Application to the Diamagnetism of Metals*, Proc. Phys. Soc. A **68**, 874 (1955).

D. R. Hofstadter, *Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields*, Phys. Rev. B **14**, 2239 (1976).

S. Lerma-Hernández, J. Dukelsky, and G. Ortiz, *Integrable model of a p-wave bosonic superfluid*, Phys. Rev. Res. **1**, 032021(R) (2019).