Drug resistance phenotypes and genotypes in Mexico in representative gram-negative species: Results from the invar network

Elvira Garza-Gonzále1, Paola Bocanegra-Ibarias1, Miriam Bobadilla-del-Valle2, Luis Alfredo Ponce-de-León-Garduño3, Verónica Esteban-Kenel4, Jesús Silva-Sánchez5, Ulises Garza-Ramos3, Humberto Barrios-Camacho3, Luis Esau López-Jácome3, Claudia A. Colin-Castro4, Rafael Franco-Cendejas4, Samantha Flores-Treviño1, Rayo Morfin-Otero6, Fabian Rojas-Larios8, Juan Pablo Mena-Ramírez7, María Guadalupe Fong-Camargo7, Cecilia Teresita Morales-De-la-Peña9, Lourdes García-Mendoza10, Elena Victoria Choy-Chang11, Laura Karina Aviles-Benitez12, José Manuel Feliciano-Guzmán13, Eduardo López-Gutiérrez14, Mariana Gil-Veloz15, Juan Manuel Barajas-Magallón16, Efren Aguirre-Burciaga17, Laura Isabel López-Moreno18, Rebeca Thelma Martínez-Villarreal19, Jorge Luis Canizales-Oviedo20, Carlos Miguel Cetina-Uña21, Daniel Romero-Romero22, Fidencio David Bello-Pazos23, Nicolás Rogelio Eric Barlandas-Rendón24, Joyarib Yanelli Maldonado-Anicacio25, Enrique Bolado-Martínez26, Mario Galindo-Méndez27, Talia Perez-Vicelis28, Norma Alavez-Ramírez29, Braulio J. Méndez-Sotelo30, Juan Francisco Cabriales-Zavala31, Yrla Cittiali Nava-Pacheco32, Martha Irene Moreno-Méndez33, Ricardo García-Romo33, Aldo Rafael Silva-Gamín34, Ana Maria Avalos-Aguilera35, María Asunción Santiago-Calderón36, Maribel López-García37, María del Consuelo Velázquez-Acosta38, Dulce Isabel Cobos-Canul39, María del Rosario Vázquez-Larios40, Ana Elizabeth Ortiz-Porcayo41, Arel Elizabeth Guerrero-Núñez42, Jazmín Valero-Guzmán43, Alina Aracely Rosales-García44, Heidy Leticia Osto-Cantu45, Adrián Camacho-Ortí46

1 Hospital Universitario Dr. José E. González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico, 2 Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico, 3 Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico, 4 Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico, 5 Hospital Civil de Guadalajara E Instituto de Patología Infecciosa, Guadalajara, Jalisco, Mexico, 6 Hospital Regional Universitario de Colima, Colima, Colima, Mexico, 7 Hospital General de Zona 21 Tepatitlán De Morelos, Centro Universitario de los Altos (CUALTSO), Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico, 8 Hospital General Regional No. 1, Chihuahua, Chihuahua, Mexico, 9 Hospital General con Especialidades Juan María de Saldivar, La Paz, Baja California Sur, Mexico, 10 Hospital Angeles Valle Oriente, Monterrey Nuevo León, Mexico, 11 Hospital General de Zona No. 1, Tapachula, Chiapas, Mexico, 12 Hospital Infantil de Morelia, Morelia, Michoacán, Mexico, 13 Hospital de Especialidades Pediatrías de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico, 14 Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec, Oaxaca, Mexico, 15 Hospital Regional de Alta Especialidad del Bajío, Guanajuato, Guanajuato, Mexico, 16 Laboratorio Dipromi, Michoacán, Morelia, Mexico, 17 Hospital Regional Delicias, Delicias, Chihuahua, Mexico, 18 Galería Hospital, Cancún, Quintana Roo, Mexico, 19 Centro Universitario de Salud, Universidad Autónoma de Nuevo León. Laboratorio Victorice Guerrero, Monterrey Nuevo León, Mexico, 20 Centro Universitario de Salud, Universidad Autónoma de Nuevo León. Laboratorio Pueblo Nuevo, Monterrey Nuevo León, Mexico, 21 Hospital Materno Infantil Morelos, Chetumal Quintana Roo, Mexico, 22 Laboratorio de Análisis Bioquímico Clínicos “Louis Pasteur” Toluca, Estado de México, Mexico, 23 Hospital H+ Querétaro, Querétaro, Mexico, 24 Laboratorio Bioclin, Chilpancingo, Guerrero, Mexico, 25 Hospital general de Chilpancingo, Chilpancingo, Guerrero, Mexico, 26 Universidad de Sonora, Hermosillo, Sonora, Mexico, 27 Laboratorios Galindo SC, Oaxaca, Oaxaca, Mexico, 28 Hospital Regional “Bicentenario de la Independencia” ISSSTE, Tultitlán, Estado de México, Mexico, 29 Hospital General “Dr. Manuel Gea González”, Ciudad de México, Mexico, 30 Swiss Hospital, Monterrey Nuevo león, Mexico, 31 Hospital para el Niño Poblano, San Andrés Cholula, Puebla, Mexico, 32 Laboratorios del Centro, Zamora, Michoacán, Mexico, 33 Centenario Hospital Miguel Hidalgo, Aguascalientes, Aguascalientes, Mexico, 34 Hospital Ángeles Morelia, Morelia, Michoacán, Mexico, 35 Hospital General “Dr. Miguel Silva”, Morelia, Michoacán, Mexico, 36 Hospital General de Zona No 1 Dr. Demetrio Mayoral Pardo, Oaxaca, Oaxaca, Mexico, 37 Hospital de la Madre y Niño Guerrerense, Chilpancingo, Guerrero, Mexico, 38 Instituto Nacional de
Abstract

Aim

This report presents phenotypic and genetic data on the prevalence and characteristics of extended-spectrum β-lactamases (ESBLs) and representative carbapenemases-producing Gram-negative species in Mexico.

Material and methods

A total of 52 centers participated, 43 hospital-based laboratories and 9 external laboratories. The distribution of antimicrobial resistance data for *Escherichia coli*, *Klebsiella pneumoniae*, *Enterobacter cloacae* complex, *Acinetobacter baumannii* complex, and *Pseudomonas aeruginosa* in selected clinical specimens from January 1 to March 31, 2020 was analyzed using the WHONET 5.6 platform. The following clinical isolates recovered from selected specimens were included: carbapenem-resistant *Enterobacteriaceae*, ESBL or carbapenem-resistant *E. coli*, and *K. pneumoniae*, carbapenem-resistant *A. baumannii* complex, and *P. aeruginosa*. Strains were genotyped to detect ESBL and/or carbapenemase-encoding genes.

Results

Among blood isolates, *A. baumannii* complex showed more than 68% resistance for all antibiotics tested, and among Enterobacteria, *E. cloacae* complex showed higher resistance to carbapenems. *A. baumannii* complex showed a higher resistance pattern for respiratory specimens, with only amikacin having a resistance lower than 70%. Among *K. pneumoniae* isolates, *bla*TEM, *bla*SHV, and *bla*CTX were detected in 68.79%, 72.3%, and 91.9% of isolates, respectively. Among *E. coli* isolates, *bla*TEM, *bla*SHV, and *bla*CTX were detected in 20.8%, 4.53%, and 85.7% isolates, respectively. For both species, the most frequent genotype was *bla*CTX-M-15. Among *Enterobacteriaceae*, the most frequently detected carbapenemase-encoding gene was *bla*NDM-1 (81.5%), followed by *bla*OXA-232 (14.8%) and *bla*OXA-181 (7.4%), in *A. baumannii* was *bla*OXA-24 (76%) and in *P. aeruginosa*, was *bla*IMP (25.3%), followed by *bla*GES and *bla*VIM (13.1% each).

Conclusion

Our study reports that NDM-1 is the most frequent carbapenemase-encoding gene in Mexico in Enterobacteriaceae with the circulation of the oxacillinase genes 181 and 232. KPC, in contrast to other countries in Latin America and the USA, is a rare occurrence. Additionally, a high circulation of ESBL *bla*CTX-M-15 exists in both *E. coli* and *K. pneumoniae*.
Introduction

National and local surveillance of drug resistance and the involved genotypes is fundamental to implementing adequate infection control measures [1, 2].

The prevalence of carbapenemases from Ambler class A, B, and D, cephalosporinas (AmpCs), is rapidly increasing among Gram-negative bacteria and is rapidly increasing among Gram-negative bacteria and is now widely distributed [3, 4].

Among class A, the most reported β-lactamases are the extended-spectrum β-lactamases (ESBLs) cefotaximase (CTX-M), temoneira (TEM), and sulfhydryl variable (SHV), along with the Klebsiella pneumoniae carbapenemase (KPC) [3, 4].

Class B metallo-β-lactamases include those enzymes that confer resistance to carbapenem antibiotics as the carbapenemases the imipenem (IMP), New Delhi metallo-β-lactamase (NDM), and those encoded by vimentin (VIM) [5]. Among class D β-lactamases, the most frequently reported oxacillinases (OXA) are those encoded by blaOXA-23-like, blaOXA-24-like, and blaOXA-58-like genes in Acinetobacter baumannii and by blaOXA-48-like especially in Enterobacteriaceae.

Some research groups from Mexico have published the drug resistance rates and involved genes for some Gram-negative bacteria, including A. baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, K. pneumoniae, and Escherichia coli [6–9]. However, information available is limited, and nationwide studies are needed.

To contribute to the study of drug resistance in Mexico, the Network for the Research and Surveillance of Drug Resistance (Red Temática de Investigación y Vigilancia de la Farmacorre-sistencia INVIFAR, in Spanish) was created in 2018 and has reported an increase in drug resistance for several bacterial species, underlying the increase in carbapenem resistance for Enterobacter spp. and Klebsiella spp. [10, 11].

This report presents phenotypic and genetic data on the prevalence and characteristics of ESBL and carbapenemase-producing representative Gram-negative species in Mexico during the first trimester of 2020.

Materials and methods

Participating centers, data collection, and analysis

A total of 52 centers participated: 43 hospital-based laboratories and 9 external laboratories.

Identification and susceptibility test results from January 1 to March 31, 2020, from participating laboratories were deposited into the WHONET 5.6 platform and converted to the WHONET using the BacLink 2 tool. WHONET files were analyzed using macros to facilitate the revision, and only one strain per patient was included. The distribution of antimicrobial resistance for E. coli, K. pneumoniae, E. cloacae complex, A. baumannii complex, and P. aerugi-nosa was analyzed in clinical specimens such as urine, blood, and respiratory specimens. The results were scored according to the Clinical and Laboratory Standards Institute (CLSI) criteria in all laboratories [12].

Included isolates

Participating laboratories sent to the coordinating laboratory all recovered isolates with the following characteristics: carbapenem-resistant Enterobacteriaceae (any species); ESBL or carbapenem-resistant E. coli collected from urine or blood; ESBL or carbapenem-resistant K. pneumoniae recovered from urine, respiratory specimens (endotracheal and bronchoalveolar lavage), or blood; carbapenem-resistant A. baumannii complex and P. aeruginosa recovered.
from urine, respiratory specimens, or blood. Clinical isolates collected from January 1 to March 31, 2020, were included.

All identifications were confirmed at the coordinating laboratory using MALDI-TOF. After confirmation, phenotypic tests and genotyping tests were performed for each strain.

Beta-lactamase identification and characterization in Enterobacteriaceae

The ESBL phenotypic detection test was performed using the double disk method recommended by the CLSI for *E. coli* and *K. pneumonia* [12]. The molecular detection and characterization of ESBLs were performed for *bla*TEM, *bla*SHV, and *bla*CTX-M genes in selected isolates by PCR using previously described and newly designed primers (S1 Table) [13]. A selection of amplified products was sequenced.

Carbapenemase production in *Enterobacteriaceae* was detected using the CarbaNP test and modified carbapenem inactivation according to the CLSI [12].

For carbapenemase-encoding genes detection, *Enterobacteriaceae* were tested by PCR for *bla*KPC, *bla*GES, *bla*VIM, *bla*IMP, *bla*NDM-1, *bla*OXA-48-like, and chromosomal *ampC* genes as described [14–17].

All PCR products were sequenced using a Hitachi analyzer (Applied Biosystems, Hitachi High-Technologies Corporation, Tokyo, Japan). DNA sequences were aligned and edited using BioEdit software (Ibis Bioscience, Carlsbad, CA) and matched in a gene bank (www.ncbi.nlm.nih.gov/genbank).

Carbapenemase assays in A. baumannii and P. aeruginosa

For carbapenem-resistant *A. baumannii*, the *bla*OXA-23, *bla*OXA-24, *bla*OXA-51, *bla*OXA-58, *bla*VIM, *bla*IMP, *bla*NDM-type β-lactamase genes were screened using PCR as described elsewhere [18, 19]. For *P. aeruginosa*, the detection of carbapenemase-encoding genes *bla*KPC, *bla*GES, *bla*IMP, *bla*NDM, and *bla*VIM was performed by PCR as described previously [20–24].

Ethics statement

The local ethics committee of Hospital Civil de Guadalajara “Fray Antonio Alcalde,” Jalisco, Mexico) approved this study with reference number 129/17. Informed consent was waived by the ethics committee because no intervention was involved. All participating institutions agreed with the present study.

Results

Participating centers, data, and collected strains

In this study, 52 centers collected strains and sent them to the coordinating laboratory: 43 hospital-based laboratories and 9 external laboratories. The three-month identification and susceptibility data were obtained from 46 centers (37 hospital-based laboratories and 9 external laboratories). The centers were distributed across 19 Mexican states. The characteristics of hospital-based centers are shown in Table 1.

The results of drug susceptibility for 8,245 strains were included for analysis, and 2,243 clinical isolates were collected at the reference laboratory. A selection of 813 isolates (including isolates from each center and state) was included for phenotypic and genotypic analysis.

Drug resistance

Regarding urine isolates, resistance was higher than 55% for all antibiotics in *A. baumannii* complex. In *P. aeruginosa*, the lowest percentage of resistance was for piperacillin/tazobactam...
Center	Type	Hosp beds	ICU Beds
Hospital General con Especialidades Juan María de Salvatierra	Pu Spe	120	18
Bioclinisa, Hospital Ginequito	Pu M&Ch	93	26
Centenario Hospital Miguel Hidalgo	Pu Pu	103	21
Galenia Hospital	Pr Spe	54	4
Hospital Ángeles Morelia	Pr Spe	50	11
Hospital Clínica Nova	Pr Spe	44	4
Hospital de Alta Especialidad de Veracruz	Pu Spe	235	10
Hospital de Especialidades Pediatrías de Chiapas	Pu Ped	90	19
Hospital General Ciudad Obregón	Pu Univ	156	5
Hospital H+ Querétaro	Pr Spe	33	5
Hospital Infantil de Morelia “Eva Sámano de López Mateos”	Pu Ped	80	6
Hospital Regional de Alta Especialidad del Bajío	Pu Spe	184	29
Hospital Regional Delicias	Pu Spe	67	8
Hospital Regional Universitario de Colima	Pu Univ	108	8
Hospital Ángeles Valle Oriente	Pr Spe	71	21
Hospital Civil de Guadalajara “Fray Antonio Alcalde”	Pu Univ	1000	85
Hospital de Especialidad Materno Infantil de León	Pu M&Ch	16	70
Hospital de Especialidades Pediatrías León	Pu Ped	38	17
Hospital de la Madre y Niño Guerrerense	Pu M&Ch	30	10
Hospital General “Dr. Manuel Gea González”	Pu Gen	107	5
Hospital General “Dr. Miguel Silva”	Pu Gen	300	14
Hospital General “Dr. Raymundo Abarca Alarcón”	Pu Gen	108	8
Hospital General de Chetumal	Pu Gen	88	10
Hospital General de Chilpancingo	Pu Gen	114	8
Hospital General de Zona No 21	Pu Gen	73	9
Hospital General del Estado “Dr. Ernesto Ramos Bours”	Pu Univ	200	20
Hospital General Regional No.1	Pu Gen	233	10
Hospital General de Zona No 1	Pu Gen	180	22
Hospital General de Zona No 1 “Dr. Demetrio Mayoral Pardo”	Pu Gen	168	8
Hospital Materno Infantil “Morelos”	Pu M&Ch	30	0
Hospital Militar Regional de Especialidades de Mazatlán	Pu Spe	126	6
Hospital para el Niño Poblano	Pu Ped	90	17
Hospital Regional Bicentenario de la Independencia, ISSSTE	Pu Spe	206	8
Hospital Regional de Alta Especialidad de Oaxaca	Pu Spe	60	6
Hospital Regional Monterrey ISSSTE Monterrey	Pu Spe	141	25
Hospital Universitario “Dr. José Eleuterio González”	Pu Univ	670	46
Instituto Materno infantil del Estado de México	Pu M&Ch	115	30
Instituto Nacional de Cancerología	Pu Spe	135	6
Instituto Nacional de Cardiología “Ignacio Chávez”	Pu Spe	249	28
Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”	Pu Spe	170	14
Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”	Pu Spe	228	20
Sanatorio La Luz	Pr Gen	30	3
Swiss Hospital	Pr Spe	55	

Abbreviations: Ad, adults; Gen, general; M&Ch, mother and child; Pr, Private; Pu, Public; Ped, pediatrics; Spe, specialties; Univ.

https://doi.org/10.1371/journal.pone.0248614.t001
Meanwhile, carbapenem resistance was low in *E. coli* (<1%) but high in *E. cloacae* complex (10.9%) (Table 2). Also, 44.9% and 39.3% of *E. coli* and *K. pneumoniae*, respectively, were reported to be ESBLs producers.

Among blood isolates, *A. baumannii* showed more than 68% resistance for all antibiotics tested, and *P. aeruginosa* had 37.1% resistance to meropenem. Among *Enterobacteriaceae*, *E. cloacae* showed higher resistance to carbapenems (4.4% for meropenem), whereas *K. pneumoniae* and *E. coli* had more than 59% resistance for cefepime (Table 3).

Also, 60% and 49.3% of *E. coli* and *K. pneumoniae*, respectively, were reported to be ESBLs producers.

A. baumannii showed a higher resistance pattern in respiratory specimens, with only amikacin exhibiting a resistance less than 70%. In general, *K. pneumoniae* had higher resistance to antibiotics than *E. cloacae* (Table 4). Also, 47% of *K. pneumoniae* isolates were reported to be ESBLs producers.

ESBL phenotype and genotype

A total of 1059 *E. coli* and 370 *K. pneumoniae* from selected specimens were received. A selection of isolates was evaluated for further analysis (including representative isolates from each center).

Among isolates selected for analysis, 173/215 *K. pneumoniae* and 419/425 *E. coli* were confirmed to be ESBLs using the double disk method. All were screened using PCR to detect ESBL-encoding genes *bla*_{TEM}, *bla*_{SHV}, and *bla*_{CTX}.

Table 2. Percentage of resistant, intermediate, and susceptible gram-negative isolates collected from urine.

Antibiotic	A. baumannii complex	P. aeruginosa	K. pneumoniae	E. coli	E. cloacae complex			
AMK	n 151	%R 31.8	%I 4.0	%S 64.2	n 306	%R 2.0	%I 0.0	%S 98.0
AMC	ND	ND	ND	ND	ND	ND	ND	ND
AMP	ND	ND	ND	ND	ND	43	44.2%	0.0%
AZT	ND	ND	ND	ND	ND	ND	ND	ND
CAZ	41	87.8%	0.0%	12.2%	148	33.8%	6.1%	60.1%
FEP	47	85.1%	0.0%	14.9%	207	31.9%	1.9%	66.2%
FOX	ND	ND	ND	ND	85	45.9%	1.2%	52.9%
CIP	63	82.5%	0.0%	17.5%	230	46.5%	1.3%	52.2%
CTX	36	58.3%	8.3%	33.4%	ND	ND	ND	ND
GEN	65	63.1%	4.6%	32.3%	234	30.8%	10.3%	58.9%
IMP	ND	ND	ND	ND	50	44.0%	2.0%	54.0%
LVX	ND	ND	ND	ND	ND	ND	ND	ND
MEM	41	82.9%	0.0%	17.1%	205	38.5%	5.9%	55.6%
NIT	ND	ND	ND	ND	242	2.1%	0.5%	97.4%
NOR	ND	ND	ND	ND	389	32.6%	30.6%	36.8%
SAM	ND	ND	ND	ND	111	39.6%	4.5%	55.9%
TZP	28	92.9%	0.0%	7.1%	73	20.5%	20.5%	59.0%
SXT	39	69.2%	0.0%	30.8%	384	53.6%	0.0%	46.4%

Abbreviations: AMC, amoxicillin-clavulanic acid; AMK, amikacin; AMP, ampicillin; AZT, aztreonam; CAZ, ceftazidime; CIP, ciprofloxacin; CTX, cefotaxime; FEP, cefepime; FOX, cefoxitin; GEN, gentamicin; IMP, imipenem; LVX, levofloxacin; MEM, meropenem; NIT, nitrofurantoin; NOR, norfloxacin; SAM, ampicillin-sulbactam; SXT, trimethoprim-sulfamethoxazole; TZP, piperacillin-tazobactam. R, resistant; I, intermediate; S, susceptible. ND, Not determined.

https://doi.org/10.1371/journal.pone.0248614.t002

(29.5%). Meanwhile, carbapenem resistance was low in *E. coli* (<1%) but high in *E. cloacae* complex (10.9%) (Table 2). Also, 44.9% and 39.3% of *E. coli* and *K. pneumoniae*, respectively, were reported to be ESBLs producers.

Among blood isolates, *A. baumannii* showed more than 68% resistance for all antibiotics tested, and *P. aeruginosa* had 37.1% resistance to meropenem. Among *Enterobacteriaceae*, *E. cloacae* showed higher resistance to carbapenems (4.4% for meropenem), whereas *K. pneumoniae* and *E. coli* had more than 59% resistance for cefepime (Table 3).

Also, 60% and 49.3% of *E. coli* and *K. pneumoniae*, respectively, were reported to be ESBLs producers.

A. baumannii showed a higher resistance pattern in respiratory specimens, with only amikacin exhibiting a resistance less than 70%. In general, *K. pneumoniae* had higher resistance to antibiotics than *E. cloacae* (Table 4). Also, 47% of *K. pneumoniae* isolates were reported to be ESBLs producers.
Among *K. pneumoniae* isolates, *bla*_{TEM}, *bla*_{SHV}, and *bla*_{CTX} were detected in 119/173, 68.8%, 125/173, 72.3%, and 159/173, 91.9% of isolates, respectively, with 124/173 (71.7%) isolates carrying both *bla*_{SHV} and *bla*_{CTX}. A selection of ESBL PCR products were sequenced and most of the *bla*_{CTX-M} genes were detected to be *bla*_{CTX-M-15} (15/17, 88.23%) followed by

Table 3. Percentage of resistant, intermediate, and susceptible gram-negative isolates collected from blood.

Antibiotic	A. baumannii complex	P. aeruginosa	K. pneumoniae	E. coli	E. cloacae											
	n	%R	%I	%S												
AMK	20	70.0	5.0	25.0	54	16.7	3.7	79.6	79	2.5	1.3	96.2	136	2.9	0.7	96.4
AMP	ND	83	86.7	0.0	13.3	ND	ND	ND	ND							
CAZ	73	85.0	1.4	13.6	55	16.4	0.0	80.6	78	64.1	1.3	34.6	135	66.7	0.0	33.3
FEP	76	83.0	0.0	17.0	71	15.5	11.3	73.2	102	59.8	0.0	40.2	197	61.9	0.5	37.6
FOX	ND	ND	ND	ND	48	62.5	0.0	37.5	83	71.1	1.2	27.7	ND	ND	ND	ND
CIP	90	83.0	0.0	17.0	68	14.7	5.9	79.4	106	32.1	13.2	54.7	180	67.8	0.6	32.2
CTX	41	78.0	9.8	12.2	40	65.0	0.0	35.0	55	60.0	1.8	38.2	ND	ND	ND	ND
MEM	75	81.0	1.3	17.7	70	12.9	8.6	78.5	113	38.1	0.9	61.0	201	44.3	2.0	53.7
SAM	73	75.0	8.2	16.8	70	37.1	15.7	47.2	104	2.9	0.0	97.1	197	1.5	0.0	98.5
SXT	47	75.0	0.0	25.0	50	56.0	0.0	44.0	81	63.0	0.0	37.0	23	30.4	0.0	69.6
TZP	48	90.0	0.0	10.0	45	15.6	13.3	71.1	79	10.1	3.3	86.6	30	16.7	10.0	73.3

Abbreviations: AMK, amikacin; AMP, ampicillin; CAZ, ceftazidime; CIP, ciprofloxacin; CTX, cefotaxime; FEP, cefepime; FOX, cefoxitin; GEN, gentamicin; IMP, imipenem; LVX, levofloxacin; MEM, meropenem; NIT, nitrofurantoin; SAM, ampicillin/sulbactam; SXT, trimethoprim-sulfamethoxazole; TZP, piperacillin-tazobactam. R, resistant; I, intermediate; S, susceptible. ND, Not determined

https://doi.org/10.1371/journal.pone.0248614.t003

Table 4. Percentage of resistant, intermediate, and susceptible gram-negative isolates collected from respiratory specimens.

Antibiotic	A. baumannii complex	P. aeruginosa	K. pneumoniae	E. coli	E. cloacae											
	n	%R	%I	%S												
AMK	39	69.0	15.0	16.0	105	15.2	4.8	80.0	62	0.0	0.0	100.0	33	0.0	0.0	100.0
AMC	ND	16	18.8	18.8	62.5	ND	ND	ND	ND							
AMP	ND	40	65.0	0.0	35.0	55	60.0	1.8	38.2							
CTX	68	79.0	7.4	13.6	113	38.1	0.9	61.0	201	44.3	2.0	53.7	47	21.3	0.0	78.7
CAZ	130	89.0	1.5	9.5	105	23.8	12.4	63.8	62	48.4	1.6	50.0	33	27.3	0.0	72.7
FEP	174	89.0	1.1	9.9	141	15.6	5.0	79.4	96	46.9	0.0	53.1	58	5.2	3.4	91.4
FOX	ND	31	45.2	0.0	54.8	ND	ND	ND	ND							
CIP	160	86.0	0.0	14.0	139	27.3	2.9	69.8	87	31.0	4.6	64.4	42	4.8	2.4	92.8
GEN	163	73.0	7.4	20.0	146	16.4	8.2	75.4	104	34.6	1.0	64.4	57	5.3	0.0	94.7
IPM	62	90.0	0.0	10.0	64	50.0	0.0	50.0	51	0.0	0.0	100.0	38	0.0	7.9	92.1
LVX	65	92.0	0.0	8.0	31	3.2	6.5	90.3	43	20.9	2.3	76.8	25	4.0	0.0	96.0
MEM	163	87.0	0.6	12.4	137	33.6	16.1	50.4	97	2.1	0.0	97.9	59	1.7	0.0	98.3
SAM	131	81.0	5.3	14.0	ND	ND	ND	ND	68	48.5	2.9	48.6	ND	ND	ND	ND
TZP	113	93.0	1.8	5.3	92	21.7	10.9	67.4	80	16.2	7.5	76.3	44	13.6	2.3	84.1
SXT	82	79.0	0.0	21.0	ND	ND	ND	ND	71	50.7	0.0	49.3	40	17.5	0.0	82.5

Abbreviations: AMC, amoxicillin-clavulanic acid; AMK, amikacin; AMP, ampicillin; CAZ, ceftazidime; CIP, ciprofloxacin; CTX, cefotaxime; FEP, cefepime; FOX, cefoxitin; GEN, gentamicin; IMP, imipenem; LVX, levofloxacin; MEM, meropenem; NIT, nitrofurantoin; SAM, ampicillin-sulbactam; SXT, trimethoprim-sulfamethoxazole; TZP, piperacillin-tazobactam; TGC, tigecycline; TOB, tobramycin. R, resistant; I, intermediate; S, susceptible.

https://doi.org/10.1371/journal.pone.0248614.t004
Among the blaSHV gene, a great diversity was detected, including blaSHV-11, blaSHV-28, blaSHV-158, blaSHV-171, blaSHV-176, blaSHV-196, blaSHV-205, blaSHV-213, and blaSHV-228. Some of them with no evidence of ESBL activity (Table 5).

Among E. coli isolates, blaTEM, blaSHV, and blaCTX were detected in 87/419, 20.76%, 19/419, 4.53%, and 359/419, 85.68% of isolates, respectively, with 18 (4.29%) isolates carrying both blaSHV and blaCTX.

A selection of ESBL PCR products were sequenced and most of the blaCTX-M encoding genes were detected to be blaCTX-M-15 (32/34, 94.1%), followed by blaCTX-M-55 (17/34, 50.0%). Among the blaSHV gene, blaSHV-5 and blaSHV-11 (with reported ESBL activity), blaSHV-38 (with reported carbapenemase activity), and blaSHV-171 (with no report of ESBL activity) were detected (Table 5).

Carbapenemase-encoding genes

A total of 26 carbapenem-resistant Enterobacteriaceae isolates were received for genotyping (one of them with a subpopulation). Carbapenem-encoding genes were detected primarily in
E. coli, followed by *K. pneumoniae*. The most frequently detected carbapenemase-encoding gene was *blaNDM-1* (81.5%), followed by *blaOXA-232* (14.8%) and *blaOXA-181* (7.4%). One *K. pneumoniae* isolate was detected to harbor both *blaKPC* and *blaNDM-1* (Table 6).

A total of 102 carbapenem-resistant *A. baumannii* isolates were received, and the most frequent carbapenemase-encoding gene was *blaOXA-24* (76%), followed by *blaOXA-23* (18.5%). Other genes detected were *blaVIM* and *blaNDM* (Table 7). All the isolates were negative to *blaKPC*, *blaGES*, and *blaOXA-58*.

Regarding carbapenem-resistant *P. aeruginosa*, 93 isolates were received, and the carbapenemase-encoding genes most frequently detected were *blaIMP* (25.3%), *blaGES*, and *blaVIM* (13.1% each), with 44 (47.31%) isolates containing none of the screened carbapenemase-encoding genes (Table 8).

Discussion

This report presents phenotypic and genetic data on the frequency and characteristics of ESBL and representative carbapenemase-producing Gram-negative species in Mexico using strains collected from 52 centers in 19 Mexican states.

Table 6. Distribution of carbapenemase-encoding genes among selected carbapenem-resistant Enterobacteriaceae.

Isolate	Specimen	Species	*blaKPC*-like	*blaOXA-48*-like	*blaNDM-1*	*blaIMP-2*	*blaCTXM-15*	ampC
53	Blood	Enterobacter cloacae	-	-	+	-	+	-
223	Blood	Enterobacter cloacae	-	-	+	-	+	-
255	Blood	Klebsiella pneumoniae	-	-	+	-	+	-
303	Blood	Serratia marcescens	-	-	+	-	-	-
463	Blood	Escherichia coli	-	-	+	+	-	-
489	Catheter	Klebsiella pneumoniae	-	-	+	+	-	-
562	Urine	Providencia rettgeri	-	-	+	-	-	-
591	Urine	Klebsiella variicola	-	-	+	-	+	-
849	Abscess	Escherichia coli	-	*blaOXA-181*	-	-	-	-
850	BAL	Escherichia coli	-	-	+	-	+	-
851	BAL	Escherichia coli	-	*blaOXA-181*	-	-	+	-
853	Blood	Escherichia coli	-	-	+	-	+	-
854	Urine	Escherichia coli	-	-	+	-	+	-
861	Wound	Klebsiella oxytoca	-	-	+	-	+	-
882	Urine	Escherichia coli	-	-	+	-	+	-
891	Urine	Klebsiella pneumoniae	*blaKPC-2*	-	+	-	-	-
1202	Blood	Escherichia coli	-	*blaOXA-232*	-	-	-	-
1203	Blood	Klebsiella pneumoniae	*blaKPC-2*	-	+	-	+	-
1457	BAL	Escherichia coli	-	-	+	-	+	-
1627	Urine	Klebsiella variicola	-	-	+	+	-	-
2063	No data	Enterobacter xiangfangensis	-	-	+	-	+	+
2177	Blood	Escherichia coli	-	*blaOXA-232*	-	-	+	-
2178	Urine	Escherichia coli	-	*blaOXA-232*	-	-	+	-
2175–1	Abscess	Escherichia coli	-	*blaOXA-232*	-	-	-	-
2175–2	Abscess	Escherichia coli	-	*blaOXA-232*	-	-	+	-
1562–1	Blood	Escherichia coli	-	-	+	-	+	-
1562–2	Blood	Escherichia coli	-	-	+	-	+	-

Abbreviation: BAL, bronchoalveolar lavage.

*All strains were negative for *blaGES*, *blaIMP-1*, and *blaVIM*.*

https://doi.org/10.1371/journal.pone.0248614.t006
OXA-48-like carbapenemases are important causes of carbapenem resistance and are now the most common carbapenemase in some populations [25]. In Enterobacteriaceae, several variants of blaOXA-48 have been identified, with blaOXA-181 and blaOXA-232 being the two most common [26, 27]. Kinetic properties of these two enzymes had been measured, and both appear broadly similar to blaOXA-48 in their activity, with blaOXA-232 demonstrating better hydrolysis of penicillin [28]. In this study, blaOXA-181 and blaOXA-232 were detected in E. coli. At present, blaOXA-232 has been reported in Mexico in two single-center reports: in E. coli, carrying blaOXA-232 plus blaCTXM-15 [8] and in a case-control-control study in which the infection by blaOXA-232 strains was associated with the previous use of β-lactam/β-lactamase antibiotics (OR, 6.2) [29]. The OXA-181 variant has been associated with other carbapenemase genes, including blaNDM-1 and blaVIM-5 [30]. No previous reports of blaOXA-181 circulation in Mexico were identified in the literature.

Enterobacteriaceae-producing OXA-48-like enzymes are rapidly spreading, and thus, laboratory detection should be optimized. This enzyme has low-level hydrolytic activity against carbapenems and, thus, may not be detected [27]. As detected in this study, blaOXA-48-like genes can co-harbor genes encoding ESBL or AmpC enzymes, or both, which confers nonsusceptibility to aztreonam, extended-spectrum cephalosporins, and carbapenem agents and renders these genes a serious menace [31].

Table 7. Distribution of carbapenemase-encoding genes among A. baumannii complex

n	blaOXA23	blaOXA24	blaVIM	blaNDM
66	-	+	-	-
15	+	-	-	-
9	-	+	-	-
4	-	-	+	-
3	+	+	-	-
3	-	-	-	-
1	-	-	+	+
1	+	-	+	-

All strains were negative for blaKPC and blaGES and positive for blaOXA31

https://doi.org/10.1371/journal.pone.0248614.t007

Table 8. Distribution of carbapenemase-encoding genes among P. aeruginosa carbapenem-resistant clinical isolates

n	Specimen	blaGES	blaVIM	blaIMP
24	Respiratory	-	-	-
10	Blood	-	-	-
10	Urine	-	-	-
23	Urine	-	-	+
5	Urine	+	-	-
5	Respiratory	+	-	-
4	Blood	-	+	-
4	Urine	-	+	-
3	Respiratory	-	+	-
2	Blood	+	-	-
1	Urine	-	+	+
1	Blood	-	-	+
1	Urine	+	+	-

All strains were negative for blaKPC and blaNDM

https://doi.org/10.1371/journal.pone.0248614.t008

Drug resistance phenotypes and genotypes in Mexico in representative gram-negative species
NDM has a worldwide distribution, with multiple reports in Asia and Europe since this enzyme was first described in 2007 [32–37]. However, it has remained uncommon in Enterobacteriaceae in America, with some reports in Canada, the United States, and Latin American countries [38–41]. In this study, the most frequently detected carbapenemase-encoding gene was bla_{NDM-1}. The NDM carbapenemase was first described in Mexico in 2013 [6], and since then, several reports have been published about it in the county [8, 41]. According to our report, NDM is now the most prevalent carbapenemase in Mexico. This study reports by Mexico the first NDM-1-positive Klebsiella variicola isolates considered an emerging pathogen in humans [42].

Within a few years, KPC producers became global as they were reported in America, Europe, and Asia [32, 43]. Interestingly, this enzyme has a lower frequency in Mexico when compared to other Latin American countries, as confirmed by our report [43]. KPC and NDM have received special attention due to limited therapeutic options and high mortality associated with infections caused by strains carrying genes that encode these enzymes [44].

A. baumannii isolates have resistance rates greater than 50.0% to carbapenems worldwide, and our results confirmed this resistance [45, 46]. In this study, we detected that the most frequent carbapenemase-encoding gene was bla_{OXA-24}, followed by bla_{OXA-23}. OXA-23 isolates have been primarily detected in Asia, Europe, the United States, Brazil, and South America, whereas OXA-24 has been reported in Europe, Asia, and North America [5, 47–51].

Among P. aeruginosa isolates, 44 out of 93 isolates did not contain any of the screened carbapenemase-encoding genes. The most frequent carbapenem resistance mechanism described in P. aeruginosa is the overexpression of efflux pumps and the loss of the Opr porin [52]. Less frequently, genes encoding carbapenemases have been described as an alternative mechanism, with GES variants and IMP, VIM, and NDM reported. In this study, we did not analyze the overexpression of efflux pumps and porins, but bla_{GES}, bla_{VIM}, and bla_{IMP} genes were detected in approximately half of the strains (49/93) (Table 8). Similar results were reported in Mexico with a prevalence of 36.2% of carbapenemases (IMP, VIM, and GES types) on P. aeruginosa clinical isolates. These genes have been reported to be chromosomally encoded on embedded class 1 integron arrays [53].

Besides carbapenemase-encoding genes, other important mechanisms conferring carbapenem resistance have been observed, including carbapenem hydrolysis by AmpCs in combination with ESBL enzymes, rendering carbapenem resistance to Gram-negative bacteria [54]. In our study, a high frequency of ESBL-producing Enterobacteriaceae was identified, with the AMPc-encoding gene detected in two strains (Enterobacter xiangfangensis (a member of the E. cloacae complex) and E. coli harboring both bla_{NDM-1}, bla_{CTX-M-15}, and ampC). The presence of AmpC/ESBL and the exact changes of the porins may significantly affect carbapenem resistance. Thus, these mechanisms need to be considered in future research.

The prevalence of bacterial isolates expressing the ESBL phenotype varies across different geographical regions, with rates from 10% to 58% [55]. ESBLs arise primarily due to mutations in the bla_{TEM}, bla_{SHV}, or bla_{CTX} genes, and at present, the CTX-M type is known to be the most frequent non-TEM, non-SHV ESBL [55]. In our study, 72.25% of ESBL-producing K. pneumoniae isolates and 85.7% of E coli isolates harbored bla_{CTX-M}, confirming the spread of this enzyme.

The presence of CTX-M-type enzymes is relevant because they are readily inhibited by all commercially available β-lactamase inhibitors, including avibactam, vaborbactam, and relebactam [56]; a valuable alternative therapy to the recommended ertapenem regimen.

In this study, the non-ESBL TEM-1 was frequently detected, and SHV was detected with no predominance of any subtype. Worldwide, the prevalence of TEM and SHV has diminished, mirroring the worldwide dissemination of isolates producing CTX-M-type -lactamases [57].
Some of the limitations of this study are that not all states in Mexico participated, and the analysis of porins was not included. Furthermore, we only included some bacterial species involved in ESBL production. Our network will continue to actively survey drug resistance and molecular mechanisms involved.

In conclusion, our report identifies NDM as the most frequent carbapenemase-encoding gene in *Enterobacteriaceae* Mexico with circulation of the oxacillinase genes 181 and 232. KPC, in contrast to other countries in Latin America and the USA, is a rare occurrence. Additionally, a high circulation of ESBL *bla* _CTX-M-15_ existed in *E. coli* and *K. pneumoniae*.

Supporting information

S1 Table. Primers used for genotyping of ESBs genes.

(DOCX)

Acknowledgments

We acknowledge the enthusiastic work of the Network for the Research and Surveillance of Drug Resistance (Invifar), which at present includes 86 centers from 27 out of 32 states of Mexico.

We acknowledge the technical support from Maria de la Luz Acevedo-Duarte and form Myriam Aseret Zamora-Márquez.

Author Contributions

Conceptualization: Luis Alfredo Ponce-de-León-Garduño, Luis Esau López-Jácome, Rafael Franco-Cendejas, Rayo Morfín-Otero, Adrián Camacho-Ortiz.

Data curation: Elvira Garza-González.

Formal analysis: Elvira Garza-González, Ulises Garza-Ramos, Fabian Rojas-Larios, Juan Pablo Mena-Ramírez, María Guadalupe Fong-Camargo, Cecilia Teresita Morales-De-la-Peña, Lourdes García-Mendoza, Elena Victoria Choy-Chang, Laura Karina Aviles-Benzite, José Manuel Feliciano-Guzmán, Eduardo López-Gutiérrez, Mariana Gil-Veloz, Juan Manuel Barajas-Magalhães, Efren Aguierre-Burciaga, Laura Isabel López-Moreno, Rebeca Thelma Martínez-Villarreal, Jorge Luis Canizales-Oviedo, Carlos Miguel Cetina-Umaña, Daniel Romero-Romero, Fidencio David Bello-Pazos, Nicolás Rogelio Eric Barlandas-Rendón, Joyarib Yanelli Maldonado-Anicacio, Enrique Bolado-Martínez, Mario Galindo-Méndez, Talía Pérez-Vicelis, Norma Alavez-Ramírez, Braulio J. Méndez-Sotelo, Juan Francisco Cabriales-Zavala, Yirla Citlali Nava-Pacheco, Martha Irene Moreno-Méndez, Ricardo García-Romó, Aldo Rafael Silva-Gamino, Ana María Avalos-Aguilera, Marí旭 Asunción Santiago-Calderón, Maribel López-García, María del Consuelo Velásquez-Acosta, Dulce Isabel Cobos-Canul, María del Rosario Vázquez-Larios, Ana Elizabeth Ortiz-Portocayo, Arely Elizabeth Guerrero-Núñez, Jazmín Valero-Guzmán, Alina Aracely Rosales-García, Heidy Leticia Ostos-Cantú.

Funding acquisition: Jesus Silva-Sánchez.

Investigation: Paola Bocanegra-Ibarias, Miriam Bobadilla-del-Valle, Luis Alfredo Ponce-de-León-Garduño, Verónica Esteban-Kenel, Jesus Silva-Sánchez, Ulises Garza-Ramos, Humberto Barrios-Camacho, Luis Esau López-Jácome, Claudia A. Colin-Castro, Rafael Franco-Cendejas, Samantha Flores-Treviño, Rayo Morfín-Otero, Fabian Rojas-Larios, Juan Pablo Mena-Ramírez, María Guadalupe Fong-Camargo, Cecilia Teresita Morales-De-la-Peña, Lourdes García-Mendoza, Elena Victoria Choy-Chang, Laura Karina Aviles-Benitez, José
Manuel Feliciano-Guzmán, Eduardo López-Gutiérrez, Mariana Gil-Veloz, Juan Manuel Barajas-Magallón, Efren Aguirre-Burciaga, Laura Isabel López-Moreno, Rebeca Thelma Martínez-Villarreal, Jorge Luis Canizales-Oviedo, Carlos Miguel Cetina-Umaña, Daniel Romero-Romero, Fidencio David Bello-Pazos, Nicolás Rogelio Eric Barlandas-Rendón, Joyarib Yanelli Maldonado-Anicacio, Enrique Bolado-Martínez, Mario Galindo-Méndez, Talaia Perez-Vicelis, Norma Alavez-Alvarez, Braulio J. Méndez-Soto, Juan Francisco Cabrera-Vázquez, Yirla Citlali Nava-Pacheco, Martha Irene Moreno-Méndez, Ricardo García-Romo, Aldo Rafael Silva-Gamiño, Ana María Avalos-Aguilera, María Asunción Santiago-Calderón, Maribel López-García, María del Consuelo Velázquez-Acosta, Dulce Isabel Cobos-Canul, María del Rosario Vázquez-Larios, Ana Elizabeth Ortiz-Porcayo, Arley Elizabeth Guerrero-Núñez, Jazmín Valero-Guzmán, Alina Aracely Rosales-García, Heidy Leticia Ostos-Cantú.

Methodology: Elvira Garza-González, Paola Bocanegra-Ilbarias, Miriam Bobadilla-del-Valle, Luis Alfredo Ponce-de-León-Garduño, Verónica Esteban-Kenel, Luis Esaú López-Jácome, Fabian Rojas-Larios, Juan Pablo Mena-Ramírez, María Guadalupe Fong-Camargo, Cecilia Teresita Morales-De-La-Peña, Lourdes García-Mendoza, Elena Victoria Choy-Chang, Laura Karina Aviles-Benitez, José Manuel Feliciano-Guzmán, Eduardo López-Gutiérrez, Mariana Gil-Veloz, Juan Manuel Barajas-Magallón, Efren Aguirre-Burciaga, Laura Isabel López-Moreno, Rebeca Thelma Martínez-Villarreal, Jorge Luis Canizales-Oviedo, Carlos Miguel Cetina-Umaña, Daniel Romero-Romero, Fidencio David Bello-Pazos, Nicolás Rogelio Eric Barlandas-Rendón, Joyarib Yanelli Maldonado-Anicacio, Enrique Bolado-Martínez, Mario Galindo-Méndez, Talaia Perez-Vicelis, Norma Alavez-Alvarez, Braulio J. Méndez-Soto, Juan Francisco Cabrera-Vázquez, Yirla Citlali Nava-Pacheco, Martha Irene Moreno-Méndez, Ricardo García-Romo, Aldo Rafael Silva-Gamiño, Ana María Avalos-Aguilera, María Asunción Santiago-Calderón, Maribel López-García, María del Consuelo Velázquez-Acosta, Dulce Isabel Cobos-Canul, María del Rosario Vázquez-Larios, Ana Elizabeth Ortiz-Porcayo, Arley Elizabeth Guerrero-Núñez, Jazmín Valero-Guzmán, Alina Aracely Rosales-García, Heidy Leticia Ostos-Cantú.

Project administration: Elvira Garza-González.

Software: Elvira Garza-González.

Validation: Elvira Garza-González.

Writing – original draft: Elvira Garza-González.

Writing – review & editing: Elvira Garza-González, Paola Bocanegra-Ilbarias, Miriam Bobadilla-del-Valle, Luis Alfredo Ponce-de-León-Garduño, Verónica Esteban-Kenel, Luis Esaú López-Jácome, Fabian Rojas-Larios, Juan Pablo Mena-Ramírez, María Guadalupe Fong-Camargo, Cecilia Teresita Morales-De-La-Peña, Lourdes García-Mendoza, Elena Victoria Choy-Chang, Laura Karina Aviles-Benitez, José Manuel Feliciano-Guzmán, Eduardo López-Gutiérrez, Mariana Gil-Veloz, Juan Manuel Barajas-Magallón, Efren Aguirre-Burciaga, Laura Isabel López-Moreno, Rebeca Thelma Martínez-Villarreal, Jorge Luis Canizales-Oviedo, Carlos Miguel Cetina-Umaña, Daniel Romero-Romero, Fidencio David Bello-Pazos, Nicolás Rogelio Eric Barlandas-Rendón, Joyarib Yanelli Maldonado-Anicacio, Enrique Bolado-Martínez, Mario Galindo-Méndez, Talaia Perez-Vicelis, Norma Alavez-Alvarez, Braulio J. Méndez-Soto, Juan Francisco Cabrera-Vázquez, Yirla Citlali Nava-Pacheco, Martha Irene Moreno-Méndez, Ricardo García-Romo, Aldo Rafael Silva-Gamiño, Ana María Avalos-Aguilera, María Asunción Santiago-Calderón, Maribel López-García, María del Consuelo Velázquez-Acosta, Dulce Isabel Cobos-Canul, María del Rosario Vázquez-Larios, Ana Elizabeth Ortiz-Porcayo, Arley Elizabeth Guerrero-Núñez, Jazmín Valero-Guzmán, Alina Aracely Rosales-García, Heidy Leticia Ostos-Cantú.

References

1. Stamm W, M.L. Grayson, L. Nicolle, and M. Powell. WHO Global Strategy for Containment of Antimicrobial Resistance (Document no: WHO/CDS/CSR/DRS/2001.2). Geneva, World Health Organization; 2001.
2. Rios R, Reyes J, Carvajal LP, Rincon S, Panesso D, Echeverri AM, et al. Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium (VREFm) in Latin America: Revisiting The Global VRE Population Structure. Sci Rep. 2020; 10(1):5636. Epub 2020/03/27. https://doi.org/10.1038/s41598-020-62371-7 PMID: 32221315
3. Schaufliuer K, Nowak K, Düx A, Semmier T, Villa L, Kourouma L, et al. Clinically Relevant ESBL-Producing. Front Microbiol. 2018; 9:150. Epub 2018/02/09. https://doi.org/10.3389/fmib.2018.00150 PMID: 29479341
Drug resistance phenotypes and genotypes in Mexico in representative gram-negative species

4. Iovleva A, Doi Y. Carbapenem-Resistant Enterobacteriaceae. Clin Lab Med. 2017; 37(2):303–15. Epub 2017/03/11. https://doi.org/10.1016/j.cll.2017.01.005 PMID: 28457352

5. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clinical microbiology reviews. 2008; 21(3):538–82. Epub 2008/07/16. https://doi.org/10.1128/CMR.00058-07 PMID: 18625687

6. Barrios H, Garza-Ramos U, Reyna-Flores F, Sanchez-Perez A, Rojas-Moreno T, Garza-González E, et al. Isolation of carbapenem-resistant NDM-1-positive Providencia rettgeri in Mexico. J Antimicrob Chemother. 2013; 68(8):1934–6. Epub 2013/04/25. https://doi.org/10.1093/jac/dkt124 PMID: 23620464.

7. Barrios H, Silva-Sanchez J, Reyna-Flores F, Sanchez-Perez A, Sanchez-Francia D, Aguirre-Torres JA, et al. Detection of a NDM-1-producing Klebsiella pneumoniae (ST22) clinical isolate at a pediatric hospital in Mexico. Pediatr Infect Dis J. 2014; 33(3):335. https://doi.org/10.1097/INF.0000000000001735 PMID: 24569387.

8. Aquino-Andrade A, Merida-Veyrja J, Arias de la Garza E, Arzate-Barbosa P, De Colsa Ranero A. Carbapenemase-producing Enterobacteriaceae in Mexico: report of seven non-clonal cases in a pediatric hospital. BMC Microbiol. 2018; 18(1):38. Epub 2018/04/19. https://doi.org/10.1186/s12866-018-1166-z PMID: 29673319

9. Garza-Ramos U, Morfin-Otero R, Sader HS, Jones RN, Hernández E, Rodríguez-Noriega E, et al. Metallo-beta-lactamase gene bla(IPM-15) in a class 1 integron, In85, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob Agents Chemother. 2008; 52(8):2943–6. https://doi.org/10.1128/AAC.00079-07 PMID: 18490501

10. Garza-González E, Morfin-Otero R, Mendoza-Olazarán S, Bocanegra-Ibarías P, Flores-Treviño S, Rodríguez-Noriega E, et al. A snapshot of antimicrobial resistance in Mexico. Results from 47 centers from 20 states during a six-month period. PLoS One. 2019; 14(3):e0209865. Epub 2019/03/26. https://doi.org/10.1371/journal.pone.0209865 PMID: 30913243

11. Garza-González E, Franco-Cendejias R, Morfin-Otero R, Echaniz-Aviles G, Rojas-Larios F, Bocanegra-Ibarías P, et al. The Evolution of Antimicrobial Resistance in Mexico During the Last Decade: Results from the INVIVAR Group. Microb Drug Resist. 2020; 26(11):1372–82. Epub 2020/02/06. https://doi.org/10.1093/mdr/doi0065 PMID: 32027229.

12. CLSI. M100-S30. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Wayne, PA: Clinical and Laboratory Standards Institute. 2020.

13. Arlet G, Philippon A. Construction by polymerase chain reaction and use of intragenic DNA probes for three main types of transferable beta-lactamases (TEM, SHV, CARB) [corrected]. FEMS Microbiol Lett. 1991; 66(1):19–25. https://doi.org/10.1016/0378-1097(91)90414-6 PMID: 1936934.

14. Bogaerts P, Rezende de Castro R, de Mendonça R, Huang TD, Denis O, Glupczynski Y. Validation of carbapenemase and extended-spectrum ß-lactamase multiplex endpoint PCR assays according to ISO 15189. J Antimicrob Chemother. 2013; 68(7):1576–82. Epub 2013/03/18. https://doi.org/10.1093/jac/dkt065 PMID: 23508620.

15. Hong SS, Kim K, Huh JY, Jung B, Kang MS, Hong SG. Multiplex PCR for rapid detection of genes encoding class A carbapenemases. Ann Lab Med. 2012; 32(5):359–61. Epub 2012/08/13. https://doi.org/10.3343/alm.2012.32.5.359 PMID: 22950072

16. Queenan AM, Bush K. Carbapenemases: the versatile ß-lactamases. Clin Microbiol Rev. 2007; 21(3):440–58, table of contents. https://doi.org/10.1128/CMR.00001-07 PMID: 17630334

17. Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC ß-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002; 40(6):2153–62. https://doi.org/10.1128/JCM.40.6.2153-2162.2002 PMID: 12037080

18. Pérez F, Hujer A, Hujer K, Decker B, Rather P, Bonomo R. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007; 51(10):3471–84. https://doi.org/10.1128/AAC.01464-06 PMID: 17646423.

19. Mulvey MR, Grant JM, Plewes K, Roscoe D, Boyd DA. New Delhi metallo-ß-lactamase in Klebsiella pneumoniae and Escherichia coli, Canada. Emerg Infect Dis. 2011; 17(1):103–6. https://doi.org/10.3201/eid1701.1011358 PMID: 21192866

20. Wachino J, Doi Y, Yamane K, Shibata N, Yagi T, Kubota T, et al. Nosocomial spread of ceftazidime-resistant Klebsiella pneumoniae strains producing a novel class A ß-lactamase, GES-3, in a neonatal intensive care unit in Japan. Antimicrob Agents Chemother. 2004; 48(6):1960–7. https://doi.org/10.1128/AAC.48.6.1960-1967.2004 PMID: 15155185

21. Swayne RL, Ludlam HA, Shet VG, Woodford N, Curran MD. Real-time TaqMan PCR for rapid detection of genes encoding five types of non-metallo- (class A and D) carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents. 2011; 38(1):35–8. Epub 2011/05/05. https://doi.org/10.1016/j.ijantimicag.2011.03.010 PMID: 21549572.
22. Woodford N, Ellington MJ, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006; 27(4):351–3. https://doi.org/10.1016/j.ijantimicag.2006.01.004 PMID: 16564159.

23. Baroud M, Dandache I, Araj GF, Wakim R, Kanj S, Kanafani Z, et al. Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents. 2013; 41(1):75–9. Epub 2012/11/09. https://doi.org/10.1016/j.ijantimicag.2012.08.010 PMID: 23142087.

24. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002; 8(6):321–31. https://doi.org/10.1046/j.1469-0691.2002.00401.x PMID: 12084999.

25. Mairi A, Pantel A, Sotto A, Lavigne JP, Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis. 2018; 37(4):587–604. Epub 2017/10/08. https://doi.org/10.1007/s10096-017-3112-7 PMID: 28990132.

26. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012; 67(7):1597–606. Epub 2012/04/11. https://doi.org/10.1093/jac/dks121 PMID: 22499996.

27. Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin Microbiol Rev. 2019; 33(1). Epub 2019/11/13. https://doi.org/10.1128/CMR.00102-19 PMID: 31722889.

28. Evans BA, Amyes SG. OXA-β-lactamases. Clin Microbiol Rev. 2014; 27(2):241–63. https://doi.org/10.1128/CMR.00117-13 PMID: 24696435.

29. Torres-González P, Ortiz-Brizuela E, Cervera-Hernandez ME, Bobadilla-Del Valle M, Martínez-Gambboa A, Sifuentes-Osorio J, et al. Associated factors and outcomes for OXA-232 Carbapenem-resistant Enterobacteriaceae infections in a tertiary care centre in Mexico City: A case-control-control study. Diagn Microbiol Infect Dis. 2016; 86(2):243–8. Epub 2016/07/07. https://doi.org/10.1016/j.diagmicrobio.2016.07.002 PMID: 27519297.

30. Potron A, Nordmann P, Lafeuillez E, Al Maskari Z, Al Rashdi F, Poirel L. Characterization of OXA-181, a carbapenem-hydrolyzing class D beta-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011; 55(10):4596–9. Epub 2011/07/18. https://doi.org/10.1128/AAC.00481-11 PMID: 21768505.

31. Jean SS, Lee WS, Lam C, Hsu CW, Chen RJ, Hsueh PR. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol. 2015; 10(3):407–25. https://doi.org/10.2217/fmb.14.135 PMID: 25812463.

32. Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011; 17(10):1791–8. https://doi.org/10.3201/eid1710.110655 PMID: 22000347.

33. Marra A. NDM-1: a local clone emerges with worldwide aspirations. Future Microbiol. 2011; 6(2):137–41. https://doi.org/10.2217/fmb.10.171 PMID: 21366414.

34. Wang S, Zhao SY, Xiao SZ, Gu FF, Liu QZ, Tang J, et al. Antimicrobial Resistance and Molecular Epidemiology of Escherichia coli Causing Bloodstream Infections in Three Hospitals in Shanghai, China. PLoS One. 2016; 11(1):e0147740. Epub 2016/01/29. https://doi.org/10.1371/journal.pone.0147740 PMID: 26824702.

35. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010; 10(9):597–602. Epub 2010/08/10. https://doi.org/10.1016/S1473-3099(10)70143-2 PMID: 20705517.

36. Albiguer B, Glasner C, Struelens MJ, Grundmann H, Monnet DL, group ESoC-PEEw. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill. 2015; 20(45). https://doi.org/10.2807/1560-7917.ES.2015.20.45.204999 PMID: 26675038.

37. Borah VV, Saikia KK, Chandra P, Hazarika NK, Chakravarty R. New Delhi metallo-β-lactamase and extended spectrum β-lactamases co-producing isolates are high in community-acquired urinary infections in Assam as detected by a novel multiplex polymerase chain reaction assay. Indian J Med Microbiol. 2016; 34(2):173–82. https://doi.org/10.4103/0255-0857.168653 PMID: 27080768.

38. Rasheed JK, Kitchel B, Zhu W, Anderson KF, Clark NC, Ferraro MJ, et al. New Delhi metallo-β-lactamase-producing Enterobacteriaceae, United States. Emerg Infect Dis. 2013; 19(6):870–8. https://doi.org/10.3201/eid1906.121515 PMID: 23731823.

39. (CDC) CDC/IDCp. Notes from the field: hospital outbreak of carbapenem-resistant Klebsiella pneumoniae producing New Delhi metallo-beta-lactamase—Denver, Colorado, 2012. MMWR Morb Mortal Wkly Rep. 2013; 62(6):108. PMID: 23407128.

40. Resurrección-Delgado C, Montenegro-Idrogo JJ, Chiappe-Gonzalez A, Vargas-Gonzales R, Cucho-Espinosa C, Mamoni-Condori DH, et al. [Klebsiella pneumoniae NEW DELHI METALO-LACTAMASE
Drug resistance phenotypes and genotypes in Mexico in representative gram-negative species

IN A PERUVIAN NATIONAL HOSPITAL]. Rev Peru Med Exp Salud Publica. 2017; 34(2):261–7. https://doi.org/10.17843/rgmesp.2017.342.2615 PMID: 29177386.

41. Bocanegra-Ibarias P, Garza-González E, Morfin-Otero R, Barrios H, Villarreal-Treviño L, Rodríguez-Noriega E, et al. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS One. 2017; 12(6):e0179651. Epub 2017/06/21. https://doi.org/10.1371/journal.pone.0179651 PMID: 28636666

42. Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, Garza-Ramos U.: an emerging pathogen in humans. Emerg Microbes Infect. 2019; 8(1):973–88. https://doi.org/10.1080/22221751.2019.1634981 PMID: 31259664

43. Villegas MV, Pallares CJ, Escandón-Vargas K, Hernández-Gómez C, Correa A, Álvarez C, et al. Characterization and Clinical Impact of Bloodstream Infection Caused by Carbapenemase-Producing Enterobacteriaceae in Seven Latin American Countries. PLoS One. 2016; 11(4):e0154092. Epub 2016/04/22. https://doi.org/10.1371/journal.pone.0154092 PMID: 27104910

44. Farhat N, Khan AU. Evolving trends of New Delhi Metallo-beta-lactamase (NDM) variants: A threat to antimicrobial resistance. Infect Genet Evol. 2020; 86:104588. Epub 2020/10/08. https://doi.org/10.1016/j.meegid.2020.104588 PMID: 33038522.

45. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2007; 51(10):3471–84. Epub 2007/07/25. https://doi.org/10.1128/AAC.01464-06 PMID: 17646423

46. Garza-Gonzalez E, Llaca-Diaz JM, Bosques-Padilla FJ, Gonzalez GM. Prevalence of multidrug-resistant bacteria at a tertiary-care teaching hospital in Mexico: special focus on Acinetobacter baumannii. Chemotherapy. 2010; 56(4):275–9. Epub 2010/08/10. https://doi.org/10.1159/000319903 PMID: 20693798.

47. Manchanda V, Sanchaita S, Singh N. Multidrug resistant acinetobacter. Journal of global infectious diseases. 2010; 2(3):291–304. Epub 2010/10/12. https://doi.org/10.4103/0974-777X.68538 PMID: 20927292

48. Zarrilli R, Giannouli M, Tomasoni F, Triassi M, Tsakiris A. Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. Journal of infection in developing countries. 2009; 3(5):335–41. Epub 2009/09/18. https://doi.org/10.3855/jidc.240 PMID: 19759502.

49. Sevillano E, Fernandez E, Bustamante Z, Zabalaga S, Rosales I, Umaran A, et al. Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing Acinetobacter baumannii isolates in Bolivia. Journal of medical microbiology. 2012; 61(1):80–4. Epub 2011/08/30. https://doi.org/10.1099/jmm.0.032722-0 PMID: 21873380.

50. Figueiredo DQ, Santos KR, Pereira EM, Schuenck RP, Mendonca-Souza CR, Teixeira LM, et al. First report of the bla(OXA-58) gene in a clinical isolate of Acinetobacter baumannii in Rio de Janeiro, Brazil. Memorias do Instituto Oswaldo Cruz. 2011; 106(3):368–70. Epub 2011/06/10. https://doi.org/10.1590/s0074-02762011000300019 PMID: 21655828.

51. Stietz MS, Ramirez MS, Vilacula E, Merkier AK, Limansky AS, Centron D, et al. Acinetobacter baumannii extensively drug resistant lineages in Buenos Aires hospitals differ from the international clones L-III. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2013; 14:294–301. Epub 2013/01/15. https://doi.org/10.1016/j.megid.2012.12.020 PMID: 23313831.

52. Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000; 406(6797):775–81. https://doi.org/10.1038/35021219 PMID: 10963607.

53. Garza-Ramos U, Barrios H, Reyna-Flores F, Tamayo-Legorreta E, Catalan-Najera JC, Morfin-Otero R, et al. Widespread of ESBL- and carbapenemase GES-type genes on carbapenem-resistant Pseudomonas aeruginosa clinical isolates: a multicenter study in Mexican hospitals. Diagn Microbiol Infect Dis. 2010; 68(4):275–9. Epub 2010/08/10. https://doi.org/10.1016/j.diagmicrobio.2010.09.029 PMID: 20693798.

54. Bedenić B, Plečko V, Sardelić S, Uzunović S, Godić Torkar K. Carbapenemases in gram-negative bacteria: laboratory detection and clinical significance. Biomed Res Int. 2014; 2014:841951. Epub 2014/06/15. https://doi.org/10.1155/2014/841951 PMID: 25025071

55. Paterson D, Bonomo R. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005; 18(4):657–66. https://doi.org/10.1128/CMR.18.4.657-666.2005 PMID: 16223952.

56. Drawz SM, Papp-Walace KM, Bonomo RA. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother. 2014; 58(4):1835–46. Epub 2013/12/30. https://doi.org/10.1128/AAC.00826-13 PMID: 24379206

57. Doi Y, Iovleva A, Bonomo RA. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J Travel Med. 2017; 24(suppl_1):S44–S51. https://doi.org/10.1093/jtm/taw102 PMID: 28521000