HELICHRYSUM LONGIFOLIUM AND HELICHRYSUM PEDUNCULATUM: A COMPARATIVE ANALYSIS OF THEIR MEDICINAL USES, CHEMISTRY AND BIOLOGICAL ACTIVITIES

**ALFRED MAROYI*
Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa. Email: amaroyi@ufh.ac.za

Received: 21 April 2019, Revised and Accepted: 28 May 2019

ABSTRACT

Helichrysum longifolium and Helichrysum pedunculatum have a long history of medicinal use, particularly managing wounds acquired during male circumcision rites in South Africa. There is a need to evaluate the existence of any correlation between the ethnomedical applications, the phytochemistry and pharmacological properties of the species. Therefore, in this review, analyses of the botanical, medicinal, and chemical and biological activities of *H. longifolium* and *H. pedunculatum* are presented as well as exploring the potential of the two species as important sources of health and pharmaceutical products. Information on the botany, medicinal uses, and phytochemistry and biological activities of *H. longifolium* and *H. pedunculatum* was assembled from several internet sources which included Scopus, Google Scholar, Elsevier, Science Direct, Web of Science, PubMed, SciFinder, and BMC. Additional information was sourced from journal articles, scientific reports, theses, books, and book chapters obtained from the University library. This study showed that alkaloids, flavonoids, linoleic acid, oleic acid, phenol, proanthocyanidin, saponins, and tannins have been identified from the leaves of *H. longifolium* and *H. pedunculatum*. The pharmacological research showed that *H. longifolium* and *H. pedunculatum* extracts and compounds isolated from the species have antibacterial, antifungal, anti-inflammatory, antioxidant, antiproliferative, antipyretic, anti-allergic, antibacterial, antidiabetic, antifungal, antiviral, anti-inflammatory, antimitotic, antifertility, antiparasitic, antirheumatic, antiseptic and anti-inflammatory activities. For local communities to use *H. longifolium* and *H. pedunculatum* extracts with confidence as herbal medicines, there is a need for extensive phytochemical and pharmacological studies. Further research is required to establish the safety profiles of different *H. longifolium* and *H. pedunculatum* preparations.

Keywords: Asteraceae, Ethnopharmacology, Helichrysum longifolium, Helichrysum pedunculatum, Herbal medicine, South Africa.

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i7.33684

INTRODUCTION

The Asteraceae family continues to play an important role in the development of drugs used in modern medicine. For example, the discovery of artesiminin, an antimalarial drug from the leaves of *Artemisia annua* L., a member of the Asteraceae family [1-8] illustrated the importance of the family toward a role in the production of plant-derived medicines. The Asteraceae is one of the largest families of flowering plants in the world, with about 1600 genera and 23,000 species, found almost everywhere in the world except in Antarctica [9-14]. Several members of this family are characterized by phytochemical compounds such as acetogenins, caffeoylquinic acids, phllochinol, polyphenols, pyrrolizidine alkaloids, polyacetelynes, chalcone, flavonoids, and diterpenoids [15-19]. Several species of the family Asteraceae are characterized by analgesic, anti-allergic, antibacterial, antidiabetic, antifungal, antiviral, anti-inflammatory, antimigraine, antioxidiant, antiproliferative, antipterytic, antitumor, antiabetic, cardiotoxic, and neuroprotective and neurotoxicity activities [16,17,19-35]. The genus Helichrysum Mill. is one of the most important sources of herbal medicines among the Asteraceae genera [17,27,29-44]. Helichrysum longifolium DC. and Helichrysum pedunculatum H. & B. are among the species widely used as herbal medicines in South Africa [17]. Apart from used as herbal medicines for similar medicinal conditions, these two species have been recorded in overlapping geographical areas [17,31,45-60]. Therefore, in this review, analytical analyses of the botanical, medicinal, and chemical and biological activities of *H. longifolium* and *H. pedunculatum* are presented as well as exploring the potential of the two species as important sources of health and pharmaceutical products.

BOTANICAL DESCRIPTION OF H. LONGIFOLIUM AND H. PEDUNCULATUM

Both *H. longifolium* and *H. pedunculatum* are perennial herbs growing up to 60 cm from a woody rootstock [46,50]. The leaves of *H. longifolium* are linear-lanceolate to oblanceolate in shape, 100 mm to 250 mm in length and 7 mm to 20 mm in width [60]. The leaves are rossetted, apex more or less acute, base broad, clasping and biocolored with white hairs below. The leaves of *H. pedunculatum* are broader but shorter in length than those of *H. longifolium*, 80 mm–130 mm in length and 20 mm–40 mm in width [51]. The leaves of *H. pedunculatum* are elliptic in shape, apex acute, tapering to a broad, clasping petiole-like base, and upper surface glabrous, while the lower surface has a white silky-woolly-felted skin-like indumentum. Flowers of *H. longifolium* are yellow in color while those of *H. pedunculatum* are reddish-brown in color [52]. *H. longifolium* has been recorded in sandy grassland biome at an altitude ranging from 10 m to 915 m above sea level in the Eastern Cape and KwaZulu Natal Provinces in South Africa [40] and Mozambique [52,53] (Fig. 1). *H. pedunculatum* has also been recorded in a grassland biome at an altitude ranging from 30 m to 1525 m above sea level in the Eastern Cape, Free State and the Western Cape Provinces in South Africa and Lesotho [46] (Fig. 1).

MEDICINAL USES OF H. LONGIFOLIUM AND H. PEDUNCULATUM

In South Africa, *H. longifolium* and *H. pedunculatum* have a long history of medicinal use, particularly managing wounds acquired during male circumcision rites in South Africa [45,47-49,55-75] (Table 1). Conventionally, the wound caused by circumcision is bandaged by crushed leaves of *H. longifolium* and *H. pedunculatum*, and hence these two species have been described by Watt and Breyer-Brandwijk [76] as “anti-septic” and “anti-inflammatory” agents. This argument was based on the usage of the two species as herbal medicines against microbial infections and infestations, thus directly or indirectly providing protection or inhibiting the growth of undesirable microbes. Leaf for root decoction or infusion of *H. pedunculatum* is also used as herbal medicine for colds [36,60,61,63,76-78], cough [36,60,61,63,76-78], respiratory problems [65], postpartum problems [64], skin infections [74], and stomach ailments [49,61,64].
PHARMACOLOGY OF H. LONGIFOLIUM AND H. PEDUNCULATUM

Some phytochemical constituents including alkaloids, flavonoids, linoleic acid, oleic acid, phenol, proanthocyanidin, saponins, and tannins (Table 2) which are considered important for some of the biological activities have been isolated from the leaves of H. longifolium and H. pedunculatum. There appear to be similarities in terms of the content of total flavonoids, phenol, and proanthocyanidin of H. longifolium and H. pedunculatum (Table 2). Research by Kumar and Pandey [79] and Marín and Máñez [80] showed that flavonoids and other phenolic compounds, in general, have antibacterial, antiprotozoal, anti-inflammatory, antifungal, anti-inflammatory, antiviral, antioxidant activities, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, estrogenic, anti-diabetic, or antithrombotic agents, and anticancer activities. Marín and Máñez [80] argued that flavonoids and other phenolic compounds in herbal medicines correlate with their activities as an antioxidant or anti-infectious agents. The observed flavonoids and phenolic compounds in leaf extracts of H. longifolium and H. pedunculatum are of importance since the current interest in the medicinal uses of these two species is focusing on their antimicrobial, anti-inflammatory, and antioxidant effects, particularly in the management and treatment of circumcision wounds, colds, coughs, skin infections, respiratory, and stomach problems (Table 1).

BIOLICAL ACTIVITIES OF H. LONGIFOLIUM AND H. PEDUNCULATUM

There is vast scientific literature on the biological activities of H. longifolium and H. pedunculatum based on in vitro studies. Current research has focused on antibacterial [44,47,48,56,57,67-70,78,81-85], antifungal [60], anti-inflammatory [61], antioxidant [49,81], antiplasmodial [86], antiprotozoal [86], and cytotoxicity [86] activities of the species.

Antibacterial activities

Dilika et al. [56] evaluated antibacterial activities of the methanol leaf extracts of H. pedunculatum against Streptococcus pyogenes, Streptococcus viridans, and Escherichia coli using the agar diffusion method. The extracts exhibited activities against all tested pathogens [56]. Meyer and Dilika [83] evaluated antibacterial activities of aqueous, dichloromethane, and methanol leaf extracts of

Table 1: Medicinal uses of Helichrysum longifolium and Helichrysum pedunculatum

Disease	Parts used	References
Helichrysum longifolium	Wounds	[45,47-49,60,61,65]
Helichrysum pedunculatum		
Colds	Roots	[36,60,61,63,76-78]
Coughs	Roots	[36,60,61,63,76-78]
Respiratory problems	Leaves	[64]
Postpartum problems	Leaves	[74]
Skin infections	Leaves	[49,61,64,65]
Stomach ailments	Leaves	[49,61,64,65]
Wounds	Leaves	[45,55-75]

Table 2: Phytochemical composition of Helichrysum longifolium and Helichrysum pedunculatum leaf extracts

Phytochemical composition	Helichrysum longifolium	Helichrysum pedunculatum	References
Alkaloids	+	-	[49]
Flavonoids	+	+	[49,81]
Linoleic acid (%)	-	<0.01	[82]
Oleic acid (%)	-	<0.01	[82]
Saponins	+	+	[49,81]
Steroids	+	+	[49,81]
Tannins	+	+	[49,81]
Total flavonoids (mg/g dry extract as Gallic acid)	0.7	0.6	[49,81]
Total phenol (mg/g dry extract as Gallic acid)	0.5	0.5	[49,81]
Total proanthocyanidin (mg/g dry extract as Gallic acid)	0.005	0.004	[49,81]

+ : Present, - : Absent

H. pedunculatum against Bacillus cereus, Bacillus pumilus, Bacillus subtilis, Micrococcus kistinae, Staphylococcus aureus, Enterobacter cloacae, E. coli, Klebsiella pneumoniae, and Serratia marcescens using
agar diffusion method. The dichloromethane extract was active against all tested pathogens with the exception of E. coli and K. pneumoniae with minimum inhibitory concentration (MIC) values ranging from 10.0 mg/ml to 50.0 mg/ml. The aqueous extract was only active against B. cereus, M. kristinae, and S. aureus with MIC value of 10.0 mg/ml [83]. Dilika et al. [45] evaluated the antibacterial activities of acetone leaf extracts of H. pedunculatum against S. aureus by direct bioautography on thin-layer chromatography (TLC). The extract inhibited the growth of S. aureus [45]. Dilika and Meyer [57] evaluated the antibacterial activities of homogenized dichloromethane extract of the callus of H. pedunculatum against B. cereus, B. pumilus, B. subtilis, M. kristinae, S. aureus, E. cloacae, E. coli, K. pneumoniae, Pseudomonas aeruginosa, and S. marcescens by direct bioautography on TLC. The extract inhibited the growth of S. aureus [45]. Dilika and Meyer [57] evaluated the antibacterial activities of methanol leaf extracts of H. pedunculatum against S. aureus by direct bioautography on TLC. The MIC values were determined using two-fold serial dilution method against S. aureus with gentamycin as a positive control. The MIC values of acetone leaf extracts of the specimens ranged from 0.5 mg/ml to 8 mg/ml while gentamycin, the positive control exhibiting MIC value of 0.1 µg/ml [84]. Dilika et al. [82] evaluated the antibacterial activities of linoleic and oleic acids isolated from the leaves of H. pedunculatum against B. cereus, B. pumilus, B. subtilis, M. kristinae, S. aureus, E. cloacae, E. coli, K. pneumoniae, P. aeruginosa, and S. marcescens by direct bioautography on TLC. Linoleic acid was active against B. cereus, B. pumilus, B. subtilis, M. kristinae, and S. aureus with MIC values ranging from 0.1 mg/ml to 1.0 mg/ml. Oleic acid was active against B. subtilis, M. kristinae, and S. aureus with MIC value of 1.0 mg/ml [82]. Dilika et al. [82] also evaluated the antibacterial activities of isolated linoleic and oleic acids in combination against M. kristinae and S. aureus aimed at assessing the possibility of synergistic effects. When administered in combination, linoleic and oleic acids exhibited MIC value of 0.05 mg/ml, indicating strong synergistic effects [82]. Aiyegoro et al. [67] evaluated antibacterial activities of acetone and aqueous leaf extracts of H. pedunculatum against B. cereus, Proteus vulgaris, M. kristinae, Enterococcus faecalis, Staphylococcus epidermidis, and S. aureus using agar dilution method. The acetone extract exhibited activities against B. cereus and M. kristinae with MIC values of 5.0 mg/ml and 0.5 mg/ml, respectively. The aqueous extracts exhibited activities against S. epidermidis, E. faecalis, P. vulgaris, and S. aureus with MIC values of 20.0 mg/ml, 2.50 mg/ml, 30.0 mg/ml, and 35.0 mg/ml, respectively [67]. Aiyegoro et al. [67] evaluated the rate of kill of H. pedunculatum by determining the bacterial cell-death time against B. cereus, P. vulgaris, M. kristinae, E. faecalis, S. epidermidis, and S. aureus. The effect of acetone and aqueous extracts on tested pathogens was time and concentration dependent [67]. Aiyegoro et al. [68] evaluated antibacterial activities of methanol leaf extracts of H. pedunculatum against Acinetobacter calcoaceticus, Serratia marcescens, P. vulgaris, K. pneumoniae, P aeruginosa, B. pumilus, S. aureus, P. aeruginosa, E. coli, S. aureus, Micrococcus luteus, M. kristinae, E. coli, E. faecalis, Salmonella spp., Shigella flexneri, B. subtilis, and K. pneumonia using agar dilution method. The extract exhibited activities against P. aeruginosa, S. aureus, B. pumilus, P. vulgaris, K. pneumoniae, B. subtilis, M. kristinae, and M. luteus with MIC values ranging from 0.1 mg/ml to 5.0 mg/ml [68]. Aiyegoro et al. [68] evaluated the rate of kill of H. pedunculatum by determining the bacterial cell-death time against P. aeruginosa, S. aureus, B. pumilus, P. vulgaris, K. pneumoniae, B. subtilis, M. luteus, and M. kristinae. The effect of the extract on the tested pathogens was found to be time-kill dependent [68]. Aiyegoro et al. [78] evaluated the effect of temperature on TLC. The extract inhibited the growth of S. aureus, B. pumilus, P. vulgaris, K. pneumoniae, P. aeruginosa, M. kristinae, M. luteus, P. vulgaris, B. subtilis, and S. epidermidis using the agar-well diffusion method with trimethoprim (0.1 mg/ml) and ampicillin (10 µg/ml) as positive controls. The extract was active against all tested pathogens with a zone of inhibition ranging from 18 mm to 27 mm, which was comparable to 10 mm to 30 mm exhibited by the positive controls. The MIC values exhibited by the extracts against all the tested pathogens ranged from 0.1 mg/ml to 5.0 mg/ml which was higher than 0.001 mg/ml to 0.4 mg/ml exhibited by the positive controls [69]. Aiyegoro et al. [69] evaluated the effect of combining methanolic leaf extract of H. pedunculatum and first-line antibiotics which included penicillin G sodium, amoxicillin, chloramphenicol, oxteracycline, ampicillin sodium salt, tetracycline hydrochloride, erythromycin, and ciprofloxacin using time-kill assays against S. faecalis, S. aureus, B. pumilus, K. pneumoniae, P. vulgaris, M. kristinae, L. tylae, P. vulgaris, K. pneumonia, B. subtilis, and S. epidermidis. The time-kill assay revealed synergy against tested pathogens [69]. Aiyegoro et al. [70] evaluated the effect of combining acetone, methanol and waterleaf extracts of H. pedunculatum and first-line antibiotics which included penicillin G sodium, amoxicillin, chloramphenicol, oxteracycline, ampicillin sodium salt, tetracycline hydrochloride, erythromycin, and ciprofloxacin against S. faecalis, S. aureus, B. pumilus, K. pneumoniae, P. vulgaris, M. kristinae, L. tylae, P. vulgaris, K. pneumonia, B. subtilis, and S. epidermidis by means of fractional inhibitory concentration (FIC) indices as well as by the use of time-kill assays. The FIC indices and time-kill assay revealed synergy against tested pathogens [70]. Aiyegoro et al. [85] evaluated the antibacterial activities of acetone and waterleaf extracts of H. pedunculatum against B. cereus, P. vulgaris, M. kristinae, S. aureus, P. aeruginosa, and Salmonella spp. using agar dilution method with penicillin G sodium salt, amoxicillin, chloramphenicol, oxteracycline, tetracycline hydrochloride, erythromycin, ampicillin sodium salt, and ciprofloxacin as positive controls. The extracts exhibited MIC values ranging from 500 mg/L to 35,000 mg/L which were higher than MIC value of 1 mg/L to 412 mg/L exhibited by the antibiotics. Aiyegoro et al. [85] also evaluated the effect of combining acetone and waterleaf extracts of H. pedunculatum and first-line antibiotics which included penicillin G sodium salt, amoxicillin, chloramphenicol, oxteracycline, tetracycline hydrochloride, erythromycin, ampicillin sodium salt, and ciprofloxacin against B. cereus, P. vulgaris, M. kristinae, S. aureus, P. aeruginosa, and Salmonella spp. by means of checkerboard and time-kill methods. In the checkerboard method, the synergy of 45.8% was observed while time-kill assay resulted in the synergy of 45.8% [85]. Dilika et al. [56] evaluated antibacterial activities of methanol leaf extracts of H. longifolium against S. pyogenes, S. viridans, and E. coli using the agar diffusion method. The extracts exhibited activities against all tested pathogens [56]. Dilika et al. [45] evaluated the antibacterial activities of acetone leaf extracts of H. longifolium against S. aureus by direct bioautography on TLC. The extract inhibited the growth of S. aureus and activities decreased with an increase in temperature [45]. Aiyegoro et al. [47] evaluated the antibacterial activities of aqueous, acetone, chloroform, ethyl acetate, and methanol leaf extracts of H. longifolium against P. aeruginosa, S. aureus, S. faecalis, B. cereus, P. vulgaris, P. vulgaris, K. pneumoniae, A. calcaoceticus, A. calcaoceticus antratus, K. pneumoniae, S. flexneri, Salmonella spp., E. coli, M. luteus, and M. kristinae using the agar-well diffusion method. All the extracts with the exception of aqueous extract were active against all tested pathogens with MIC and minimum bactericidal concentration values ranging from 0.1 mg/ml to >5.0 mg/ml [47]. Aiyegoro et al. [47] also evaluated the rate of kill of acetone, chloroform, ethyl acetate, and methanol leaf extracts of H. longifolium by determining the bacterial cell-death time against P. aeruginosa, S. aureus, S. faecalis, B. cereus, P. vulgaris, S. marcescens, A. calcaoceticus, A. calcaoceticus antratus, K. pneumoniae, S. flexneri, Salmonella spp., E. coli, M. luteus, and
M. kristinae. The effect of the extracts on tested pathogens was time- and concentration-dependent, eliminating most of the test organisms within 12 h of exposure time [47]. Aiyeogoro et al. [48] evaluated the effect of combining acetone, chloroform, ethyl acetate, and methanol leaf extracts of H. longifolium against first-line antibiotics which included penicillin G sodium, amoxicillin, chloramphenicol, oxytetracycline, erythromycin, and ciprofloxacin using the time-kill and the Chequerboard methods against P. aeruginosa, S. aureus, B. cereus, P. putida, P. vulgaris, A. calcoaceticus anitratus, S. flexneri, Salmonella spp., and M. kristinae. In the time-kill assay, a synergistic response constituted about 65.0%, while indifference and antagonism constituted about 28.3% and 6.7%, respectively. In the Chequerboard method, the synergistic response was 61.7%, indifference and antagonistic interactions were 26.7% and 11.76%, respectively [48].

Antifungal activities
Mathelga [60] evaluated the antifungal activities of acetone extracts of aerial parts of H. longifolium against Aspergillus niger, Aspergillus flavus, Cladosporium sphaerospermum, Cladosporium cladosporioides, Microsorum canis, and Cladosporium cucumerinum using agar dilution method. The extract showed activities against all tested pathogens with MIC values ranging from 0.1 mg/mL to 1.0 mg/mL [60].

Anti-inflammatory activities
Bilka [61] evaluated the anti-inflammatory activities of aqueous leaf extracts of H. pedunculatum using adenosine and opiate receptor binding assays. The extract was found to be active on both adenosine and opiate receptors with >70.0% inhibition [61].

Antioxidant activities
Aiyeogoro and Okoh [81] evaluated the antioxidant activities of aqueous leaf extracts of H. pedunculatum using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, 2,2’-azo-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS) scavenging, scavenging activity of nitric oxide (NO), scavenging activity of superoxide anion and hydrogen peroxide (H₂O₂) scavenging activity assays. The superoxide anion, NO, DPPH, H₂O₂ and ABTS radical scavenging activities of the extract at 0.8 mg/mL (the highest concentration of the extract tested) were 79.0%, 68.0%, 69.3%, 71.1%, and 77.3%, respectively [81]. Similarly, Aiyeogoro and Okoh [49] evaluated the antioxidant activities of aqueous leaf extracts of H. longifolium using DPPH free radical scavenging, ABTS scavenging, scavenging activity of NO, scavenging activity of superoxide anion and scavenging activities of H₂O₂. The superoxide anion, NO, DPPH, H₂O₂ and ABTS radical scavenging activities of the extract at 0.8 mg/mL were 75.0%, 65.0%, 76.0%, 72.4%, and 75.1%, respectively [49].

Antiplasmodial activities
Mokoka et al. [86] evaluated antimalarial activities of dichloromethane:methanol (1:1) whole plant extracts of H. pedunculatum using the (G-H) hypoxanthine incorporation assay using Plasmodium falciparum as the test organism with chloroquine (IC₅₀=0.05 µM) as the positive control. The extract exhibited weak antimalarial activities with half maximal inhibitory concentration (IC₅₀) value of 6.5 µg/mL which was higher than 0.003 µg/mL exhibited by the positive control [86].

Antiprotozoal activities
Mokoka et al. [86] evaluated antiprotozoal activities of dichloromethane: methanol (1:1) whole plant extracts of H. pedunculatum using the resazurin assay against axenically grown Leishmania donovani with miltefosine (IC₅₀=0.24 µg/mL) as the positive control. The extract exhibited weak antiprotozoal activities with IC₅₀ value of 13.5 µg/mL which was higher than 0.18 µg/mL exhibited by the positive control [86].

Cytotoxicity activities
Mokoka et al. [86] evaluated cytotoxicity activities of dichloromethane:methanol (1:1) whole plant extracts of H. pedunculatum against rat myoblast (L6-cells) using the Alamar Blue assay with podophyllotoxin (IC₅₀=0.05 µM) as the positive control. The extract exhibited very weak cytotoxicity activities with IC₅₀ value of 57.9 µg/mL with selectivity index value of 9.0. The observed IC₅₀ value was higher than 0.008 µg/mL exhibited by the positive control [86].

CONCLUSION
The present review summarizes the botanical, medicinal, and chemical and biological activities of H. longifolium and H. pedunculatum. Based on the presented information, these two species are closely related and deemed as highly potent traditional medicines for treating wounds acquired during male circumcision rites in South Africa. H. longifolium and H. pedunculatum have an overlapping distributional range in the Eastern Cape Province in South Africa and morphologically, the two species are quite similar, therefore, often confused when growing together. There are similarities and overlaps in terms of phytochemistry and biological activities of the two species. Therefore, these preliminary findings call for advanced phytochemical and pharmacological studies aimed at evaluating the variation of these aspects in the two species. Further studies should establish whether there are phytochemical compounds and pharmacological properties that could be used to distinguish these two species, and also supplement the currently known ethnomedical uses and taxonomical characters used to distinguish H. longifolium and H. pedunculatum. There is a lack of in vivo and clinical research on H. longifolium and H. pedunculatum extracts and compounds isolated from the species. Further research is required to establish the safety profiles of different H. longifolium and H. pedunculatum preparations.

ACKNOWLEDGMENTS
The author would like to express his gratitude to the National Research Foundation, South Africa and Govan Mbeki Research and Development Centre, University of Fort Hare for financial support to conduct this study.

AUTHORS’ CONTRIBUTIONS
The author declares that this work was done by the author named in this article.

CONFLICTS OF INTEREST
No conflicts of interest are associated with this work.

REFERENCES
1. Liao F. Discovery of artemisinin (qinghaosu). Molecules 2009;14:5362-6.
2. Miller LH, Su X. Artemisinin: Discovery from the Chinese herbal garden. Cell 2011;46:855-8.
3. Udaykumar P. Discovery of artemisinin: The Chinese wonder drug. Muller J Med Sci Res 2014;5:191-2.
4. Weathers PJ, Towler M, Hassanali A, Lutgen P, Engue PO. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries? World J Pharmacol 2014;3:39-55.
5. Zouch Zhang. The discovery of qinghaosu (artemisinin) as an effective anti-malaria drug: A unique China story. Sci China Life Sci 2016;59:81-8.
6. Elfaal MA, Towler MJ, Reich NG, Weathers PJ, Rich SM. Dried whole-plant Artemisia annua slows evolution of malaria drug resistance and overcomes resistance to artemisinin. Proc Natl Acad Sci U S A 2015;112:821-6.
7. Pulice G, Pelaz S, Matias-Hernández L. Molecular farming in Artemisia annua, a promising approach to improve anti-malarial drug production. Front Plant Sci 2016;7:329.
8. Liu CX. Discovery and development of artemisinin and related compounds. Chin Herb Med 2017;9:101-14.
9. Abdolkarim C, Adi M, Yousefi S, Jalali F. Polyploidy variation in some species of the genus Artemisia L. (Asteraceae) in Iran. Caryologia 2010;63:168-75.
10. Gao T, Yao H, Song J, Zhu Y, Liu C, Shen S. et al. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of large Asteraceae family. BMC Evol Biol 2010;10:324.
11. Chrehregan-Rad A, Mohsenzadeh F, Mozaoz F. Variation of chromosome numbers in *Tanacetum parthenium* Schultz Bip. (*Asteraceae*) in Iran. Chromosome Bot 2012;7:97-100.

12. García Saavedra A, Jakovljević Ð, Siljak-Yakovlev S, Vigo J, Garnache T, et al. New data on genome size in 128 *Asteraceae* species and subspecies, with first assessments for 40 genera, 3 tribes and 2 subfamilies. Plant Biosyst 2013;147:1219-27.

13. Jana BK, Mukherjee SK. Exomorphic and histological characters of fruits in some taxa of the tribe Lactucae (*Asteraceae*). J Econ Taxon Bot 2013;37:32-7.

14. Bareda VR, Paalzies L, Telleria MC, Olivero EB, Raine JF, Forest F. Early evolution of the angiosperm clade *Asteraceae* in the cretaceous of Antarctica. Proc Natl Acad Sci U S A 2011;108:9989-94.

15. Van Paysveld L, De Kimpe N, Costa J, Nuytinck V, Nyirankuliza S, Hakizamungu E, et al. Isolation of flavonoids and a chalcone from *Helichrysum odoratissimum* and synthesis of helichrysetin. J Nat Prod 1989;52:629-33.

16. Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E. Phytochemistry of *Mexican Asteraceae* (Compositae). Annu Rev Pharmacol Toxicol 1998;38:539-65.

17. Lourens AC, Viljoen AM, van Heerden FR. South African *Helichrysum* species: A review of the traditional uses, biological activity and phytotoxicology. J Ethnopharmacol 2008;119:56-52.

18. Lourens AC, Viljoen AM, van Heerden FR. Validation of a HPLC-DAD–ESI/MS method for caffeoylquinic acids separation, quantification and identification in medicinal *Helichrysum* species from Macaronesia. Food Res Int 2012;45:362-8.

19. Koe S, Jager BW, Mohamed, S, Moghadam NS, Yildirim O. The potential medicinal value of plants from *Asteraceae* family with antioxidant defense enzymes as biological targets. Pharm Biol 2015;53:746-51.

20. Meyer JJ, Afalayan AJ, Taylor MB, Erasmus D. Antiviral activity of *in vivo* extracts of *Helichrysum* species. Food Chem 2014;161:79-86.

21. Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E. The antimicrobial and toxicity profiles of the helichrysetin, leaf essential oil and extracts of *Helichrysum* species used in male circumcision in South Africa. Afr J Pharm Pharmacol 2009;3:293-300.

22. Ayegoro OA, Afalayan AJ, Okoh AL. In vitro antibacterial time kill studies of leaves extracts of *Helichrysum longifolium*. J Med Plant Res 2009;3:462-7.

23. Ayegoro OA, Afalayan AJ, Okoh AL. In vitro antibacterial activities of crude extracts of the leaves of *Helichrysum longifolium* in combination with selected antibiotics. Afr J Pharm Pharmacol 2009;3:293-300.

24. Ayegoro OA, Okoh AL. Preliminary phytochemical analysis and *in vitro* antioxidant activities of the aqueous extract of *Helichrysum longifolium* DC. BMC Complement Alternat Med 2010;10:21.

25. Hilliard OM. Compositae in Natal. Pietermaritzburg: University of Natal Press; 1977.

26. Hilliard OM. *Asteraceae*. In: Leistner OA, editor. Flora of Southern Africa. Part 7 (*Inuleae*). Vol. 33. Pretoria: Botanical Research Institute; 1983. p. 1-325.

27. Manning JC, Goldblatt P. Plants of the Greater Cape Floristic Region 1: *Asteraceae*. *Inove* 1. Pretoria: Briza Publications; 2013.

28. Ahlberg H, Nilsson A, Moller E. The antifungal activity of the essential oil and extracts of *Chromolaena odorata* and *Gynura procumbens*. J Ethnopharmacol 2002;81:129-32.

29. Lee S, Park JH, Kim SH, Park J, Kang HK, Kim YB, et al. The effects of *Helichrysum longifolium* on the growth and differentiation of rat primary osteoblasts. J Med Plantes 2013;2:181-90.

30. Smith T, Wolf G, Lück M, Flemming H, Gommers H, Pallud C, et al. Feasibility of *in vivo* melatonin determinations in *Helichrysum longifolium* (Asteraceae). J Chromatogr B Analyt Technol Biomed Life Sci 2012;906-907:155-9.

31. Schwabe M, Biedermann C, Schönhuber M, Leinweber P, Echeverría C, Schildhauer TA, et al. *Helichrysum longifolium* DC (Asteraceae) induces the PPARα pathway and increases the expression of NOX2. J Ethnopharmacol 2019;234:348-55.

32. Schwabe M, Biedermann C, Schönhuber M, Leinweber P, Echeverría C, Schildhauer TA, et al. *Helichrysum longifolium* DC (Asteraceae) induces the PPARα pathway and increases the expression of NOX2. J Ethnopharmacol 2019;234:348-55.

33. Schwabe M, Biedermann C, Schönhuber M, Leinweber P, Echeverría C, Schildhauer TA, et al. *Helichrysum longifolium* DC (Asteraceae) induces the PPARα pathway and increases the expression of NOX2. J Ethnopharmacol 2019;234:348-55.

34. Schwabe M, Biedermann C, Schönhuber M, Leinweber P, Echeverría C, Schildhauer TA, et al. *Helichrysum longifolium* DC (Asteraceae) induces the PPARα pathway and increases the expression of NOX2. J Ethnopharmacol 2019;234:348-55.

35. Radha A, Puri S, Kumar S. An ethnobotanical study of wild medicinal plants used by migrant shepherds: A tribal community of Western Himalayas. Asian J Pharm Clin Res 2019;12:137-44.

36. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

37. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

38. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

39. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

40. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

41. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

42. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

43. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

44. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

45. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.

46. Reddy D. The Phytochemistry and Antimicrobial Activity of Selected Indigenous *Helichrysum* species. MSc Dissertation. Cape Town: University of the Western Cape; 2006.
64. Bololo RN, Johnson CT. The identification of ‘isicakathi’ and its medicinal use in Transkei. Bothalia 1988;18:125-30.
65. Lourens AC. Structural and Synthetic Studies of Sesquiterpenoids and Flavonoids isolated from Helichrysum species. PhD Thesis. Pietermaritzburg: KwaZulu-Natal University; 2008.
66. Nqeketo A. Xhosa Male Circumcision at the Crossroads: Responses by Government, Traditional Authorities and Communities to Circumcision Related Injuries and Deaths in Eastern Cape Province. MSc Dissertation. Cape Town: University of the Western Cape; 2008.
67. Aiyegoro OA, Afodlayan AJ, Okoh AI. Studies on the in vitro time-kill assessment of crude aqueous and acetone extracts of Helichrysum pedunculatum leaves. Afr J Biotechnol 2008;7:3721-5.
68. Aiyegoro OA, Afodlayan AJ, Okoh AI. In vitro time-kill assessment of crude methanol extract of Helichrysum pedunculatum leaves. Afr J Biotechnol 2008;7:1684-8.
69. Aiyegoro OA, Afodlayan AJ, Okoh AI. Synergistic interaction of Helichrysum pedunculatum leaf extracts with antibiotics against wound infection associated bacteria. Biol Res 2009;42:327-38.
70. Aiyegoro OA, Afodlayan AJ, Okoh AI. In vitro evaluation of the interactions between crude leaf extracts of Helichrysum pedunculatum and some antibiotics. Afr J Tradit Complement Alternat Med 2009;6:408.
71. Fearon JJ. Population Assessments of Priority Plant Species used by Local Communities in and around Three Wild Coast Reserves, Eastern Cape, South Africa. MSc Dissertation. Grahamstown: Rhodes University; 2010.
72. Venter MA. Some views of Xhosa women regarding the initiation of their sons. Koers 2011;76:559-75.
73. Bhat RB. Medicinal plants and traditional practices of Xhosa people in the Transkei region of Eastern Cape, South Africa. Indian J Tradit Knowl 2014;13:292-8.
74. Sewani-Rusike CR, Mammen M. Medicinal plants used as home remedies: A family survey by first year medical students. Afr J Tradit Complement Althem Med 2014;11:67-72.
75. Suntar I. The medicinal value of Asteraceae family plants in terms of wound healing activity. FABAD J Pharm Sci 2014;39:21-31.
76. Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa. Edinburgh: E and S Livingstone; 1962.
77. Hutchings A. Zulu Medicinal Plants. Pietermaritzburg: University of Natal Press; 1996.
78. Ncube NS. Anti-bacterial Properties of the Methanol Extract of Helichrysum pedunculatum. MSc Dissertation. Alice: University of Fort Hare; 2008.
79. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013;2013:162750.
80. Marin M, Mähé S. Recent trends in the pharmacological activity of isoprenyl phenolics. Curr Med Chem 2013;20:272-9.
81. Aiyegoro OA, Okoh AI. Phytochemical screening and polyphenolic antioxidant activity of aqueous crude leaf extract of Helichrysum pedunculatum. Int J Mol Sci 2009;10:4990-5001.
82. Dikka F, Bremer PD, Meyer JJ. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 2000;71:450-2.
83. Meyer JJ, Dikka F. Antimicrobial activity of Helichrysum pedunculatum used in circumcision rites. J Ethnopharmacol 1996;53:51-4.
84. Eloff JN. It is possible to use herbarium specimen to screen for antibacterial components in some plants. J Ethnopharmacol 1999;67:355-60.
85. Aiyegoro OA, Afodlayan AJ, Okoh AI. Interactions of antibiotics and extracts of Helichrysum pedunculatum against bacteria implicated in wound infections. Fitoterapia (Praga) 2010;55:176-80.
86. Mokoka TA, Xolani PK, Zimmermann S, Hata Y, Adams M, Kaiser M, et al. Antiprotozoal screening of 60 South African plants, and the identification of the antitypanosomal germacranoilides schkuhrin I and II. Planta Med 2013;79:1380-4.