A Novel Mortality Risk Prediction Score Based on Nonlinear Feature Transformations

Natalia M. Arzeno (1), Karla A. Lawson (2), Sarah V. Duzinski (2),
Haris Vikalo (1)

(1) Department of Electrical and Computer Engineering, The University of Texas at Austin, (2) Trauma Services, Dell Children’s Medical Center of Central Texas

Email: narzeno@utexas.edu, kalawson@seton.org, svduzinski@seton.org,
 hvikalo@ece.utexas.edu

Abstract

Many in-hospital mortality risk prediction scores dichotomize predictive variables to simplify the score calculation. However, hard thresholding in these additive stepwise scores of the form “add x points if variable v is above/below threshold t” may lead to critical failures. In this paper, we seek to develop a risk prediction score that preserves clinical knowledge embedded in features and structure of existing additive stepwise scores while addressing limitations caused by variable dichotomization. The novel method transforms predictive variables using nonlinear logistic functions that allow for a smooth differentiation between critical and normal values of the variables. Optimal parameters of the logistic functions are inferred for a given patient population via cyclic block coordinate descent, and may be readily re-learned as patient population and standards of care evolve. We tested the proposed technique on brain trauma patients admitted to the intensive care unit of the Dell Children’s Medical Center of Central Texas between 2007 and 2012 and compared the results to the widely used PRISM III score. The prediction power of the score is evaluated using area under ROC curve, Youden’s index, and precision-recall balance in a leave-one-out cross-validation study. The results demonstrate that the new score significantly outperforms PRISM III in terms of all three criteria.

I. INTRODUCTION

Technological advancements in medical instrumentation and a growing use of electronic medical records have created an abundance of clinical patient data. Extracting and analyzing
useful information from such large and diverse data sets will enable tremendous advancements in clinical decision-making, ultimately leading towards improvements in health and quality of life as well as to reduction of overall healthcare costs. Availability of data has enabled development of accurate mortality and morbidity risk prediction scores for specific patient populations. Rapid prediction of potentially poor outcomes may provide timely intervention to reduce morbidity and mortality among the patients in the considered group.

Additive stepwise scores of the form “add x points if variable v is above/ below threshold t” are popular tools for mortality risk prediction in both pediatric and adult intensive care unit (ICU) populations, typically using data acquired at the beginning of an ICU stay. Such scores comprise the Acute Physiology and Chronic Health Evaluation (APACHE) [1], [2], the Simplified Acute Physiology Score (SAPS) [3], [4], and the Pediatric Risk of Mortality [5], [6]. However, while simple enough to allow for fast manual evaluation, these scores dichotomize predictive variables to form prediction scores. Dichotomization of continuous variables results in a loss of information, increased probability of false negatives, and high dependence on cut-off points [7], [8]. This, in turn, may lead to critical failures of the prediction process. To remain relevant, risk scores need to be updated periodically so that they reflect innovations and the evolution of the standards of healthcare [9], [3]. Moreover, risk scores might have higher accuracy for certain diseases [11] or might need customization for global vs local populations [3].

In this paper, we seek to develop a risk prediction score that preserves clinical knowledge embedded in features and structure of the aforementioned additive stepwise risk scores while allowing for soft thresholds in the score calculation. We use the PRISM III score [5] and a pediatric brain trauma population as a motivation and to test the performance of the novel algorithm. The paper is organized as follows. Some of the most common risk scores used in the pediatric ICU (PICU) are reviewed in Section III. In Section III, we describe an algorithm for finding the optimal values of the logistic functions used to transform the data and discuss data imputation strategies. Section IV presents results obtained after applying the proposed methodology to predicting mortality of pediatric trauma patients admitted to the PICU of the Dell Children’s Medical Center of Central Texas between 2007 and 2012. Section V concludes the paper.
II. RELATED WORK

An example of the pediatric risk prediction scores, the Pediatric Risk of Mortality (PRISM III) [5], is a widely used scoring mechanism in PICU [9] that has been validated in various settings as both an individual predictor and a significant predictor in a multivariate model in the United States and internationally [10], [11], [12], [13], [14], [15], [16], [17], [18]. A state-of-the-art scheme, PRISM III has an additive stepwise structure that relies on 17 physiological variables and 26 ranges. The physiological variables it considers are characterized by their maximum or minimum values recorded during the first 12 or 24 hours after a patient’s admission to the PICU. These variables include the minimum systolic blood pressure, maximum heart rate, the presence of fixed pupils, maximum and minimum body temperature, and a variety of laboratory measures including minimum and maximum CO$_2$ and pH, white blood cell count, glucose and platelet count. Contribution of some variables to the score is determined after evaluating a judiciously chosen logical OR statement, such as in the case of maximum prothrombin time (PT) and partial thromboplastin time (PTT), which can both detect abnormalities in clotting time. Other variables, such as systolic blood pressure and heart rate, have age-dependent ranges.

In PRISM III, the score is incremented when the maximum (minimum) value of a variable in the score is above (below) a predetermined threshold. For example, if a child has a minimum Glasgow Coma Scale (GCS) [19], [20] score less than 8, then 5 points are added to her/his PRISM III score. Clearly, calculation of the score is highly dependent on the established cutoff points and thus the prediction may change abruptly due to very small changes in the underlying variables. For instance, interpretation of the variables such as heart rate or blood pressure, which are altered by the simple act of breathing, may widely change due to the strict threshold structure – an adolescent with a maximum heart rate of 144 beats per minute is considered healthy, while another one with a single measure of 145 beats per minute has 3 extra points added in the PRISM III score calculation. Although the PRISM scores have been validated in numerous settings, they have also been shown to overpredict [21], [22] and underpredict [23], [24] PICU deaths. Poor patient discrimination by PRISM scores, especially in neonates and infants [25], [26], and the fact that only a small subset of PRISM variables are significant predictors of the outcome [27], render the PRISM scores sensitive to population characteristics and standards of care and suggest that they may not necessarily be institution independent. In this paper we
develop a novel score that can be optimized for a specific patient population. Moreover, we go beyond simply finding new coefficients for the features in the existing scoring mechanisms and instead develop a novel methodology that identifies a range of values for which the risk changes continuously and monotonically (i.e., increases or decreases with the feature values). This is accomplished by characterizing the effect of a feature onto the risk by a non-linear logistic curve whose inflection point and slope we find via an optimization, as opposed to using hard thresholding to describe the effect of the physiological variables on the risk of mortality which is the procedure employed by state-of-the-art prediction schemes (such as PRISM III).

In addition to PRISM III, widely-used scores in the PICU include the injury severity score (ISS) [28] and the pediatric index of mortality (PIM2) [29], where the former is specific to trauma patients. The ISS is an anatomic score based on the location and severity of the injuries. Limitations of the ISS have led to various modifications as well as risk scores that incorporate the ISS in the calculation [30]. In a pediatric trauma population, PRISM has outperformed the ISS and its variants in identifying in-hospital mortality [14]. Logistic regression has often been employed to learn the weighting coefficients for physiologic variables or binary indicators in mortality prediction models [30]. PIM2 is a second generation score, based on recalibrating coefficients of PIM [31] and adding variables for diagnostic groups with poor performance or calibration. PIM2 models risk using logistic regression with 10 variables acquired upon hospital admission or in the first hour after PICU admission, 7 of which are binary indicators. Specifically, the continuous PIM2 variables include first systolic blood pressure, ratio of FiO$_2$ to PaO$_2$, and absolute arterial or capillary base excess. Fixed pupils, mechanical ventilation, elective admission, PICU admission for procedure recovery, and cardiac bypass are included in the model as binary variables. Finally, a selection of high risk or low risk diagnoses, where the model was found to over- or under-estimate mortality, complete the list of logistic regression variables [29].

Methods recently used for the development of risk prediction scores include decision tree techniques [32], autoregressive implementation of PRISM [33], and techniques that incorporate injury coding schemes in the models [34]. Most pediatric mortality risk prediction scores assume that risk depends linearly on the variables and do not consider nonlinear variable transformations. PRISM III is an exception since it uses thresholding to prevent uninformative increase in risk at very high or very low variable values. In neonate morbidity prediction, the PhysiScore [35] achieves greater predictive power than previously established neonatal morbidity scoring systems.
by relying on a nonlinear transformation of the raw variables in the feature set. In particular, that work employs nonlinear Bayesian models based on log odds ratios of the risk derived from the probability distribution that provides the best fit to the data for each of two patient classes.

Models that integrate domain expert knowledge with a data driven approach have been reported to result in greater predictive accuracy. In [36], combining knowledge based and data driven risk factors in a prediction model for heart failure greatly improved on the performance of a solely knowledge based classifier while still resulting in a clinically meaningful model. In the task of identifying similar concept pairs in clinical notes, combining context-based similarity and knowledge-based similarity in an algorithm has likewise resulted in a more accurate similarity score [37].

III. METHODS

In this section we propose a novel outcome prediction score, present an algorithm for optimizing parameters of the function that transforms predictive features, and discuss optimality of the aforementioned algorithm.

A. The new score and an algorithm for optimizing parameters of the logistic transformation of predictive features

We describe the risk of mortality using a logistic regression model, where the conditional probability that patient \(i\) dies during the hospital stay is given by

\[
P(y_i = 1|w, z_i) = \frac{1}{1 + \exp(-w^T z_i)},
\]

(1)

and the conditional probability of survival is

\[
P(y_i = -1|w, z_i) = \frac{1}{1 + \exp(w^T z_i)},
\]

(2)

where \(y_i \in \{-1, 1\}\) is an indicator of the in-hospital mortality, the vector \(w = [w_1 \ w_2 \ \ldots \ \w_{M_w}]'\) collects weights for the features \(z_i = [z_{i1} \ z_{i2} \ \ldots \ z_{iM_w}]'\), and \(M_w\) denotes the total number of features.

In a departure from the commonly used hard thresholding of predictive features and discrete scoring, we introduce a logistic transformation of the predictive features. The resulting new score is continuous and differentiable which enables computationally efficient search for the optimal
parameters of the logistic transformation. In particular, for patient i and feature j, the nonlinear transformation z_{ij} of the raw variable x_{ij} is

$$z_{ij} = \begin{cases}
\frac{1}{1+\exp(-a_j(x_{ij}-t_{ij}))} & \text{if } x_{ij} \text{ is a maximum} \\
1 - \frac{1}{1+\exp(-a_j(x_{ij}-t_{ij}))} & \text{if } x_{ij} \text{ is a minimum} \\
0 & \text{if } x_{ij} \text{ is missing}
\end{cases}$$

(3)

where $a_j \geq 0$ is the slope of the nonlinear transformation and t_{ij} is the inflection point of the logistic function (i.e., a “soft threshold” counterpart to the hard thresholds used by the existing stepwise scoring schemes). It should be noted that t_{ij}’s are not different for every subject i but rather have the same value for all patients within a specific age group and a given feature j if such age group dependence is suggested by the existing clinical knowledge.

The optimal weights and parameters for the nonlinear transformations are determined by minimizing the negative log-likelihood of the logistic regression model,

$$\min \sum_{i=1}^{n} \log(1 + \exp(-y_i(w^Tz_i))).$$

(4)

To preserve and exploit clinical knowledge previously used in the creation of other scores, a lognormal prior is imposed in the optimization for w; this also ensures all features will be associated with a positive weight. In particular, for $w \in \mathbb{R}^d$ we set

$$P(w) = \frac{\exp\left(-\frac{1}{2}(\log w - \mu)^T \Sigma^{-1}(\log w - \mu)\right)}{(2\pi)^{d/2}|\Sigma|^{0.5} \prod_{j=1}^{d} w_j}.$$

For a lognormal prior with mean μ and covariance $\Sigma = \frac{1}{2\lambda}I$, the optimization over w then becomes

$$\arg\min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i(w^Tz_i))) + \sum_{j=1}^{d} \log w_j + \lambda \|\log w - \mu\|_2^2.$$

(5)

The joint optimization (5) over w, $a = [a_1 a_2 \ldots a_{M_a}]$, and/or $t = [t_1 t_2 \ldots t_{M_t}]$ is carried out by cyclic block coordinate descent with backtracking line search [39]. Optimization over a and t includes an additional step of projections onto the constraint set. The blocks for the coordinate descent consist of features derived from the same raw variable. For example, one

\[1\text{In machine learning parlance, the new score can broadly be categorized as a generalized additive model [38].} \]
block contains two features derived from the maximum heart rate, which correspond to two steps with different weights in a simple thresholding-based additive score. The algorithm is formalized as Algorithm 1 given below. Note that the objective function of the optimization is not convex. Nevertheless, even if we use an iterative optimization method that merely ensures the objective function is decreased at each step in our empirical study, the resulting local minimum leads to an improvement over PRISM III. In fact, our computational studies show that the proposed scheme is robust with respect to the initial point of the search – starting the iterative optimization procedure with a vector \(w \) comprising PRISM III weights and starting with a vector of uniform weights \(w = ([1, \ldots, 1]) \) results in almost identical prediction accuracy on the dataset of interest.

Algorithm 1 Optimization over the slopes \(a \)

\[
a_{j}^{(0)} \leftarrow 0.01, \; j = 1, 2, \ldots, M_{a}
\]

\[
w \leftarrow w_{\text{PRISM}}
\]

\[
t \leftarrow t_{\text{PRISM}}
\]

\[
k \leftarrow 1
\]

repeat

\[
a \leftarrow a^{(k-1)}
\]

for all \(g \in G \) do

\[
\Delta a_{j} \leftarrow - (\nabla_{a} f(a, t, w))_{j} \text{ if } j \in g \\
\Delta a_{j} \leftarrow 0 \text{ if } j \notin g
\]

\[
h \leftarrow 1
\]

while \(f(a + h \Delta a, t, w) > f(a, t, w) - \alpha h ||\Delta a||^2 \) do

\[
h \leftarrow \beta h
\]

end while

\[
a \leftarrow \text{Proj}_{A}(a + h \Delta a)
\]

end for

\[
a^{(k)} \leftarrow a
\]

until stopping criterion is met

In Algorithm 1 \(G \) is the set of feature groups, \(A \) denotes the projection set for \(a \), and \(\alpha \) and \(\beta \)
are the backtracking line search parameters. The feature groups \(g \in G \) are defined as the groups of nonlinear features related to the same raw variables (e.g., the feature group for maximum pH has two elements corresponding to PRISM III thresholds of 7.55 and 7.48), and make up the blocks for the coordinate descent.

The projection sets are defined so that the clinical knowledge used for the existing score is preserved. In Algorithm 1, \(A \) ensures the nonlinear transformations follow the same direction as the steps in the existing score (\(A = \{ a : a_j \geq 0 \text{ for } j = 1, \ldots, M_a \} \)). The projection set \(T \) for optimization over the soft thresholds of the nonlinear transformations in \(\{3\} \), \(t \), preserves the order of soft thresholds for a raw variable with multiple nonlinear transformations. For example, if feature \(i \) in PRISM III corresponds to the maximum heart rate between 215 and 225 beats per minute \((t_i^{(0)} = 215) \) and feature \(j \) corresponds to the maximum heart rate above 225 beats per minute \((t_j^{(0)} = 225) \), then the projection ensures that \(t_i \leq t_j \) at all steps of the optimization procedure.

The dimensions of the three optimization parameters are not equal due to the existence of binary features (associated with pupillary reaction in PRISM III) that do not have nonlinear transformations \((M_a < M_w) \) and the age-dependence of some of the thresholds \((M_w < M_t) \). Optimization over the slopes \(a \) and soft thresholds \(t \) are implemented without inclusion of a prior in the objective.

B. Quasiconvexity of the logistic transformation

As stated earlier in this section, the objective function in \(\{5\} \) is not convex. However, we will here show that each block in the block-coordinate descent procedure is both quasiconvex and quasiconcave in the slope parameter \(a \), and is thus quasilinear. Since the logistic function is asymptotically flat, the objective in \(\{5\} \) is not strictly quasiconvex. However, since the objectives in the steps of block-coordinate descent procedure are quasilinear, if the initial values of \(a \) are such that the gradient is nonzero in every coordinate, the block coordinate descent will reach a global optimum.

For differentiable \(f \) and domain \(\mathcal{D} \), \(f \) is quasiconvex if and only if \(\mathcal{D} \) is convex and for all \(x, y \in \mathcal{D} \) holds that \(f(y) \leq f(x) \Rightarrow \nabla f(x)^T (y - x) \leq 0 \) \[39\]. Similarly, \(f \) is quasiconcave if and only if \(\mathcal{D} \) is convex and for all \(x, y \in \mathcal{D} \) it holds that \(f(y) \geq f(x) \Rightarrow \nabla f(x)^T (y - x) \geq 0 \).
The objective of the optimization is
\[
\min f = \sum_{i=1}^{n} \log(1 + \exp(-y_i(w^T z_i))),
\] (6)
where
\[
w^T z_i = \sum_{j \in U} \frac{w_j}{1 + \exp(-a_j(x_{ij} - t_{ij}))} + \sum_{k \in D} w_k \left(1 - \frac{1}{1 + \exp(-a_k(x_{ik} - t_{ik}))}\right) + \sum_{p \in P} w_p \delta(p_i = 1),
\] (7)
where \(U\) denotes the set of indices of features with maximum values whose contribution to the score is in the form of an up-step (i.e., the risk is higher when their values are above a threshold), \(D\) is the set of indices of features with minimum values (down-steps), \(P\) is the set of indices of the pupillary reflex features taking binary values \(\{0, 1\}\), and \(\delta(p_i = 1)\) is an indicator function for the pupillary reflex features. The pupillary reflex features indicate whether one or both pupils are >3mm and fixed.

Note that if we want to find when is \(f(a'_j) \leq f(a''_j)\) for a given \(a'_j\) and \(a''_j\), it is sufficient to find the conditions on \(a'_j, a''_j, y_i, x_{ij}, t_{ij}\) such that it holds that \(f_i(a'_j) \leq f_i(a''_j)\) for all \(i \in 1, \ldots, n\), where \(f = \sum_{i=1}^{n} f_i\). For any \(j \in U\), condition \(f_i(a'_j) \leq f_i(a''_j)\) is satisfied on the domain where
\[
\frac{-y_i w_j}{1 + \exp(-a'_j(x_{ij} - t_{ij}))} \leq \frac{-y_i w_j}{1 + \exp(-a''_j(x_{ij} - t_{ij}))}.
\]
This inequality will hold for any of the parameter combinations marked by an X in Table I. The blank spaces in Table II satisfy \(f_i(a'_j) \geq f_i(a''_j)\) for \(j \in U\), the fact which we next use to show quasiconcavity. To show quasilinearity, we also need to examine the gradient of \(f\) at \(a''_j\) which, for \(j \in U\), is given by
\[
\nabla_{a_j} f_i(a'_j) = -\frac{\exp(-y_i(w^T z_i))}{1 + \exp(-y_i(w^T z_i))} \times \frac{y_i w_j (x_{ij} - t_{ij}) \exp(-a''_j(x_{ij} - t_{ij}))}{\left(1 + \exp(-a''_j(x_{ij} - t_{ij}))\right)^2},
\] (8)
The sign of the gradient in (8) is determined by $-y_iw_j(x_{ij} - t_{ij})$. Simple arithmetic shows that when $f_i(a'_j) \leq f_i(a''_j)$ (corresponding to the entries marked by X in Table I), $\nabla_{a_j} f_i(a''_j)(a'_j - a''_j) \leq 0$, and hence the condition for quasiconvexity is satisfied. Similarly, when $f_i(a'_j) \geq f_i(a''_j)$ (corresponding to blanks in Table I), $\nabla_{a_j} f_i(a'_j)(a'_j - a''_j) \geq 0$, which implies quasiconcavity.

The same procedure can be followed to show quasilinearity when $j \in D$, with appropriate sign changes. Note that the blocks of features where all of the features in the block belong to U or all of the features in the block belong to D will also satisfy the quasilinearity condition. Since the coordinate blocks in Algorithm 1 correspond to nonlinear transformations of the same physiologic variable, quasilinearity holds. The initial value of a_j in Algorithm 1 is set to 0.01 for all j. This corresponds to a small slope in the nonlinear transformations of the variables, and will only result in $\nabla_{a_j} f_i(a_j) = 0$ for subjects i with $x_{ij} = t_{ij}$. Therefore, the initial slope of the cumulative function in 6 will be nonzero and the coordinate descent algorithm will not begin at a stationary point.

Since we constrain the slopes a and weights w to be nonnegative, quasilinearity of the objective function in soft thresholds t can be shown in fewer steps than that for a. We will only show quasiconvexity in t_{ij} when $j \in U$, but quasiconvexity when $j \in D$ and quasiconcavity can be easily shown in a similar manner. To demonstrate quasiconvexity, it is sufficient to show that

$$f_i(t'_{ij}) \leq f_i(t''_{ij}) \Rightarrow \nabla_{t_{ij}} f_i(t''_{ij})(t'_{ij} - t''_{ij}) \leq 0.$$

Note that for $j \in U$, $f_i(t'_{ij}) \leq f_i(t''_{ij})$ if $y_i = -1$ and $t'_{ij} \geq t''_{ij}$, or if $y_i = 1$ and $t'_{ij} \leq t''_{ij}$. By examining the gradient of f_i, it is clear that since $w_j, a_j \geq 0$, $\nabla_{t_{ij}} f_i(t''_{ij}) \leq 0$ only when $y_i = -1$,

$$\nabla_{t_{ij}} f_i(t''_{ij}) = \frac{\exp(-y_i(w^T z_i))}{1 + \exp(-y_i(w^T z_i))} \times \frac{y_i w_j a_j \exp(-a'_j(x_{ij} - t''_{ij}))}{(1 + \exp(-a_j(x_{ij} - t''_{ij})))^2}.$$

(9)

Note that the required conditions for $f_i(t'_{ij}) \leq f_i(t''_{ij})$ also guarantee that $\nabla_{t_{ij}} f_i(t'_{ij})(t'_{ij} - t''_{ij}) \leq 0$. However, unlike with the optimization over slopes a, we cannot guarantee that the initial t will be at a point with nonzero slope. Nevertheless, we have empirically observed that although $\nabla_{t_{ij}} f_i = 0$ for some (i, j), $\sum_i \nabla_{t_{ij}} f_i \neq 0$ in the first iteration of the alternating optimization of a and t, indicating the optimization does not start at a stationary point for any of the nonlinear features. As with the weights w, we initialize $t^{(0)}$ using the hard thresholds of the existing score.

Despite the approximations made in order to simplify calculation of the PRISM III score, one
expects its thresholds to be close to the optimal values due to the reliance on domain expert knowledge and extensive testing. Therefore, the proposed initialization will likely avoid start of the optimization procedure in the flat part of the quasi convex curve, implying the global optimality of the block coordinate descent.

C. Algorithm Testing

Data were retrospectively abstracted for 217 children (11.06% mortality rate) admitted to the Dell Children’s Medical Center PICU. We included admissions to the PICU between August 2007 and April 2012, age range of 0-14 years, with an ICD-9 code reflecting brain injury, and a PICU stay of at least 24 hours. The ICD-9 codes indicate patients with brain trauma (excluding simple concussion) as well as other brain malady or injury such as cerebral palsy, drowning, epilepsy and asphyxiation. This group of patients was selected in order to emphasize the ease of optimizing the novel score for a specific high mortality population. This particular high-mortality population is of interest since trauma is the leading cause of death in children in the United States [40], with traumatic brain injury being a major contributor [41]. Minimum and maximum variable values from the first 12 hours of the PICU stay are used in the calculation of PRISM III and our new score. The use of the data has been approved by the University of Texas at Austin Institutional Review Board and the Seton Clinical Research Steering Committee.

The proposed prediction scheme is tested using leave-one-out cross-validation and compared with existing methods in terms of three criteria: (i) area under the receiver operating characteristic (ROC) curve (AUC), (ii) the Youden index (J), which aims to maximize the overall correct classification rate [42], [43]: $J = \text{Sensitivity}(Se) + \text{Specificity}(Sp) - 1$, and (iii) the point on the ROC curve that maximizes the minimum of the positive predictivity ($+P$, precision) and sensitivity (recall). The last criterion takes into account class imbalance by balancing the percentage of true positives that are correctly predicted with the percentage of predicted positives that are correct. Thus, correctly predicted true negatives, the majority class, does not affect the performance metric. It should be noted that in evaluating algorithms by the third criterion (PrecRec), a false positive has the same effect as a false negative.
TABLE II: Mortality and Missing Data by Age Group

Age Group	No. Subjects	No. Deaths	Missing Variables (mean ± SD)
Neonate (0 mo., 1 mo.)	2	0	9 ± 11.31
Infant [1 mo., 12 mo.)	39	5	6.95 ± 7.13
Child [12 mo., 144 mo.]	143	15	7.02 ± 7.22
Adolescent (144 mo., 180 mo.)	33	4	6.03 ± 7.14

IV. RESULTS AND DISCUSSION

A. Implementation of the novel prediction scheme

Our novel score incorporates all of the variables and ranges previously used by PRISM III. The features transformed using OR statements in PRISM III (e.g., by adding 6 points to the score if pH < 7.0 OR total CO₂ < 5) were treated as additive features in order to seamlessly include them in the optimization procedure. The backtracking line search parameters were chosen empirically based on the accuracy and speed of convergence. The results shown are for \(\alpha = 0.2 \) and \(\beta = 0.5 \). In the case of optimization over \(w \), the imposed prior has \(\mu = 0, \lambda = 0.25 \).

B. Performance comparison

Figure illustrates the difference in computing the contribution of a feature to the prediction score between the 12-hour PRISM III and the novel scheme. Plots on the left show the logistic transformations of the features after performing optimization over the nonlinear transformation slopes \(a \), while the plots on the right show the logistic transformations after performing optimization over both the slopes \(a \) and weights \(w \). From the plots, we see that the optimization over \(a \) results in mortality risk increasing over a range of 3 to 4 beats per minute for each step in the maximum heart rate and the risk from minimum systolic blood pressure increasing over a range of 7 mmHg around the 75 mmHg threshold and increasing over a range of 4 mmHg around the 55 mmHg threshold. The risk from the minimum platelet count loses much of the stepwise scoring structure used by PRISM III, and instead increases monotonically for minimum platelet counts between 250,000 and 50,000. This illustrates how our novel score can capture risk
Fig. 1: Contribution of systolic blood pressure (SBP), heart rate (HR), and platelet count to risk score for PRISM III (black, left) and novel score optimizing a (blue, left) and optimizing a, w (blue, right). The black lines on the right panel serve as indicators of a sharp transition between steps.

that increases continuously throughout a certain range while maintaining sharp thresholds when those are optimal. Optimizing over both a and w provides further insight into the contribution of variables to the risk of mortality for a given population. For example, the novel score shows that, for this dataset, the second step in the nonlinear transformation of the systolic blood pressure and heart rate should be weighted similarly, if not more heavily, than the lower step. The lower panels of Figure 1 also indicate that while PRISM III has the mortality risk increasing slightly more
when the minimum platelet count falls below 50,000, our inferred scoring function indicates the risk contribution from this variable doubles at approximately 50,000.

The results of the ROC analysis on the cross-validated scores are shown in Table III. Our novel score optimized over the slopes a of the nonlinear transformations results in a more accurate classifier than PRISM III, in terms of the AUC and J, but not in terms of the precision-recall balance (PrecRec). Optimization of the feature weights w results in a score that performs better than PRISM III in all three evaluation criteria. Alternating optimization over the slopes a and weights w results in a further improvement of AUC, J and precision-recall balance over individual parameter optimization, and thus provides a significant advancement over PRISM III.

The inclusion of soft thresholds t along with slopes a in the alternating optimization results in some of the soft thresholds falling outside the physiological range of the raw variables – in particular, logistic transformations of these variables result in zero contribution to the risk score for all patients. This optimization results in higher accuracy than PRISM III in the upper range of scores (higher J and precision-recall balance) and poorer classification than PRISM in the lower score range (lower AUC). However, we expect that these results would improve with a larger patient population given the age-dependency of some of thresholds and the mortality distribution across age groups (Table III). The ROC results for PIM2 are also included in Table III to compare the novel score to another widely used pediatric risk score. The novel score optimized over any of the parameters outperforms PIM2 in terms of AUC, and optimization over 2 parameters also

TABLE III: Risk Score Accuracy

Score	AUC	J	PrecRec
PRISM III	0.8735	0.5840	0.5172
Novel Score optimized over a	0.8897	0.6215	0.5000
Novel Score optimized over w	0.8841	0.6369	0.5600
Novel Score optimized over a and t	0.8358	0.6153	0.5833
Novel Score optimized over a and w	0.8927	0.6682	0.5833
PIM 2	0.8331	0.6729	0.5417
yields a higher precision-recall balance than PIM2. Though PIM2 results in a slightly higher J than the novel score optimized over a, w, the large gain in AUC and higher precision-recall balance make the novel score the preferred choice for predicting risk of in-hospital mortality in the studied population.

The boxplots in Figure 2 illustrate how the proposed prediction scheme compares with PRISM III. Despite additional features used by our scheme (due to splitting of the OR statements into components), the novel scores have similar average values to those of PRISM III. Given the class imbalance, this is likely the result of lower slopes in the nonlinear transformations which decrease the feature contributions of survivors having measurements near the soft thresholds.

Fig. 2: Risk scores for survivors (blue) and nonsurvivors (red). The center mark on the box indicates the median while the edges of the box mark the 25th and 75th percentile. Individual scores are plotted as +. In the bottom panel, the red circles indicate subjects with scores higher than 2.
Fig. 3: ROC curve for PRISM III (red) and novel scores optimized over the nonlinear transformation slopes a (black) and alternating minimization over the slopes a and weights w of the nonlinear transformations (blue). The circled points correspond to those that maximize Youden’s index for each curve.

The movement of soft thresholds outside the physiological range following inclusion of t as an optimization parameter results in lower average score values compared to PRISM III. Finally, reduction in mean scores when the weights are included as optimization variables is expected due to the prior on the weight distribution.

The difference in AUC between PRISM III and the novel scores (Figure 3) is primarily caused by low PRISM III scores for some nonsurvivors. Due to the finite set of PRISM III values, patients are more likely to share the same score which causes decrease in both the true positive rate and the false positive rate as the cutoff value is lowered in the ROC analysis. The largest differences in the curves can be traced to patients with PRISM III scores between 7 and 13. While 45 out of 193 survivors have PRISM III scores in this range, so do 7 out of 24 nonsurvivors.

To test the advantage of the nonlinear transformations of the features, we performed a logistic regression with ridge, lasso [44], and elastic net [45] penalties on the age and raw variables of the datasets. Since missing data is prevalent and complete data sets are required for logistic regression, missing values of the variables are imputed by k nearest-neighbors (kNN) [46], the
TABLE IV: ROC: Logistic with raw variables vs. PRISM with imputed data

	PPCA	mean	normal		
AUC	PRISM III	0.8790	0.8741	0.8709	0.8735
	Raw	0.8437	0.8683	0.8400	0.8141
J	PRISM III	0.6047	0.6153	0.5788	0.5840
	Raw	0.5479	0.5889	0.5637	0.5682
PrecRec	PRISM III	0.5000	0.5000	0.5172	0.5172
	Raw	0.5000	0.5542	0.5833	0.5833

Probabilistic principal components analysis (PPCA) method [47], mean values and normal values [48]. In kNN imputation, Euclidean distances normalized by the number of common features between patients are calculated and missing values are imputed as the average value of the k-nearest neighbors that observe the variable. PPCA aims to reduce the dimensionality of the data by associating a Gaussian latent variable model with the observed data and imputing missing values by an iterative expectation-maximization procedure. Data were imputed with $k = 5$ and 4 principal components. The best values for AUC were achieved with the elastic net and are compared to the PRISM III values calculated with the imputed dataset in Table IV.

Though logistic regression with variables imputed with PPCA results in a slight improvement over the PRISM III scores without imputation in terms of J and the precision-recall balance, the PRISM III scores calculated with the imputed data outperforms the logistic scores in terms of AUC and J. Logistic regression with variables imputed with mean or normal values results in the same PrecRec value as the novel score. However, the novel score greatly outperforms both of these raw variable models in terms of AUC and J. This suggests the variables in the scores should be nonlinearly transformed for optimal mortality prediction. Note that the novel score without imputation performs better than the scores presented in Table IV in terms of all of the evaluation criteria.
V. Conclusions

We have developed a novel outcome prediction score that exploits advantages of additive stepwise risk scores and addresses the key limitation of hard thresholds typically used by state-of-the-art prediction methods. In particular, by transforming predictive variables using a combination of logistic functions, the developed method allows for a fine differentiation between critical and normal values of the predictive variables. Optimization of the continuous score allows for not only specifying different weights for the variables but, by optimizing over the slope and/or inflection point of the logistic curve in the feature transformation, we can also identify the range of values of each variable where the risk increases. This optimization need only be performed once to determine the optimal parameters and the score is thereafter quickly calculated for each patient. Optimal values of the parameters of logistic functions may be readily re-learned as the patient population and standards of care evolve. In a study of brain trauma pediatric patients, the new score demonstrated significantly higher predictive power than the widely used PRISM III.

The presented method that can be broadly applied to devise and optimize risk scores with predictive power superior to schemes that use hard-thresholding of physiological variables. For instance, a potential future application of the developed scheme is optimization of in-hospital mortality risk scores designed for adult ICU population, such as the Acute Physiology and Chronic Health Evaluation (APACHE) [1], [2] and the Simplified Acute Physiology Score (SAPS) [3].

Acknowledgments

The authors would like to thank Karen Piper for the identification of patients that met the inclusion criteria for the study. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1110007.

References

[1] J. E. Zimmerman, A. A. Kramer, D. S. McNair, and F. M. Malila, “Acute physiology and chronic health evaluation (APACHE) IV: Hospital mortality assessment for today’s critically ill patients*,” Critical Care Medicine, vol. 34, no. 5, pp. 1297–1310, May 2006.
[2] W. Knaus, D. Wagner, E. Draper, J. Zimmerman, M. Bergner, P. Bastos, C. Sirio, D. Murphy, T. Lotring, and A. Damiano, “The APACHE III prognostic system: risk prediction of hospital mortality for critically ill hospitalized adults,” *Chest*, vol. 100, no. 6, pp. 1619–1636, Dec. 1991.

[3] R. Moreno, P. Metnitz, E. Almeida, B. Jordan, P. Bauer, R. Campos, G. Iapichino, D. Edbrooke, M. Capuzzo, and J.-R. Le Gall, “SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. part 2: Development of a prognostic model for hospital mortality at ICU admission,” *Intensive Care Medicine*, vol. 31, no. 10, pp. 1345–1355, 2005.

[4] J. Le Gall, S. Lemeshow, and F. Saulnier, “A new simplified acute physiology score (SAPS II) based on a european/north american multicenter study,” *JAMA: The Journal of the American Medical Association*, vol. 270, no. 24, pp. 2957–2963, 1993.

[5] M. M. Pollack, K. M. Patel, and U. E. Ruttimann, “PRISM III: an updated pediatric risk of mortality score,” *Critical Care Medicine*, vol. 24, no. 5, pp. 743–752, May 1996.

[6] M. M. Pollack, U. E. Ruttimann, and P. R. Getson, “Pediatric risk of mortality (PRISM) score,” *Critical Care Medicine*, vol. 16, no. 11, pp. 1110–1116, Nov. 1988.

[7] D. L. Streiner, “Breaking up is hard to do: The heartbreak of dichotomizing continuous data,” *Canadian Journal of Psychiatry*, vol. 47, no. 3, p. 262, Apr. 2002.

[8] P. Royston, D. G. Altman, and W. Sauerbrei, “Dichotomizing continuous predictors in multiple regression: a bad idea,” *Statistics in Medicine*, vol. 25, no. 1, pp. 127–141, 2006.

[9] J. P. Marcin and M. M. Pollack, “Review of the methodologies and applications of scoring systems in neonatal and pediatric intensive care,” *Pediatric Critical Care Medicine*, vol. 1, no. 1, pp. 20–27, 2000.

[10] D. Scavarda, C. Gabaudan, F. Ughetto, F. Lamy, V. Imada, G. Lena, and O. Paut, “Initial predictive factors of outcome in severe non-accidental head trauma in children,” *Child's Nervous System: ChNS*, vol. 26, no. 11, pp. 1555–1561, Nov. 2010.

[11] R. J. Gemke and J. van Vught, “Scoring systems in pediatric intensive care: PRISM III versus PIM,” *Intensive care medicine*, vol. 28, no. 2, pp. 204–207, Feb. 2002.

[12] A. R. Brady, D. Harrison, S. Black, S. Jones, K. Rowan, G. Pearson, J. Ratcliffe, and G. J. Parry, “Assessment and optimization of mortality prediction tools for admissions to pediatric intensive care in the united kingdom,” *Pediatrics*, vol. 117, no. 4, pp. e733–742, Apr. 2006.

[13] G. Karambelkar, S. Mane, S. Agarkhedkar, R. Karambelkar, S. Singhania, and S. Kadam, “The relevance of 24 hour prism iii score in predicting mortality in pediatric intensive care unit,” *Int J Pharm*, vol. 3, no. 4, pp. 214–219, 2012.

[14] E. Cantais, O. Paut, R. Giorgi, L. Viard, and J. Camboulives, “Evaluating the prognosis of multiple, severely traumatized children in the intensive care unit,” *Intensive Care Medicine*, vol. 27, no. 9, pp. 1511–1517, Sep. 2001.

[15] M. Bahloul, A. Chaari, I. Chabchoub, F. Medhyoub, H. Dammak, H. Kallel, H. Ksibi, S. Haddar, N. Rekik, H. Chelly, and M. Bouaziz, “Outcome analysis and outcome predictors of traumatic head injury in childhood: Analysis of 454 observations,” *Journal of emergencies, trauma, and shock*, vol. 4, no. 2, pp. 198–206, Apr. 2011.

[16] E. A. Volakli, M. Sdougka, V. Drossou-Agakidou, M. Emporiadou, M. Reizoglou, and M. Giala, “Short-term and long-term mortality following pediatric intensive care,” *Pediatrics international: official journal of the Japan Pediatric Society*, vol. 54, no. 2, pp. 248–255, Apr. 2012.

[17] V. F. Martha, P. C. R. Garcia, J. P. Piva, P. R. Einloft, F. Bruno, and V. Rampon, “Comparison of two prognostic scores (PRISM and PIM) at a pediatric intensive care unit,” *Jornal de pediatria*, vol. 81, no. 3, pp. 259–264, Jun. 2005.

[18] A. U. Qureshi, A. S. Ali, and T. M. Ahmad, “Comparison of three prognostic scores (PRISM, PELOD and PIM 2) at
pediatric intensive care unit under pakistani circumstances,” *Journal of Ayub Medical College, Abbottabad: JAMC*, vol. 19, no. 2, pp. 49–53, Jun. 2007.

[19] H. L. Laurer, D. F. Meaney, S. S. Margulies, and T. K. McIntosh, “Modeling brain Injury/Trauma,” in *Encyclopedia of the Human Brain*, V. Ramachandran, Ed. New York: Academic Press, 2002, pp. 93–102.

[20] A. I. R. Maas, C. L. Harrison-Felix, D. Menon, P. D. Adelson, T. Balkin, R. Bullock, D. C. Engel, W. Gordon, J. Langlois-Orman, H. L. Lew, C. Robertson, N. Temkin, A. Valadka, M. Verfaellie, M. Wainwright, D. W. Wright, and K. Schwab, “Standardizing data collection in traumatic brain injury,” *Journal of neurotrauma*, vol. 28, no. 2, pp. 177–187, Feb. 2011.

[21] A. Slater, F. Shann, and ANZICS Paediatric Study Group, “The suitability of the pediatric index of mortality (PIM), PIM2, the pediatric risk of mortality (PRISM), and PRISM III for monitoring the quality of pediatric intensive care in australia and new zealand,” *Pediatric Critical Care Medicine*, vol. 5, no. 5, pp. 447–454, Sep. 2004.

[22] S. Tibby, D. Taylor, M. Festa, S. Hanna, M. Hatherill, G. Jones, P. Habibi, A. Durward, and I. Murdoch, “A comparison of three scoring systems for mortality risk among retrieved intensive care patients,” *Archives of Disease in Childhood*, vol. 87, no. 5, pp. 421–425, 2002.

[23] P. Bhadoria and A. G. Bhagwat, “Severity scoring systems in paediatric intensive care units,” *Indian Journal of Anaesthesia*, vol. 52, no. Suppl (5), pp. 663–675, 2008.

[24] A. Thukral, R. Lodha, M. Irshad, and N. K. Arora, “Performance of pediatric risk of mortality (PRISM), pediatric index of mortality (PIM), and PIM2 in a pediatric intensive care unit in a developing country,” *Pediatric Critical Care Medicine*, vol. 7, no. 4, pp. 356–361, Jul. 2006.

[25] M. Wells, J. F. Riera-Fanego, D. K. Luyt, M. Dance, and J. Lipman, “Poor discriminatory performance of the pediatric risk of mortality (PRISM) score in a south african intensive care unit,” *Critical care medicine*, vol. 24, no. 9, pp. 1507–1513, Sep. 1996.

[26] J. M. Goddard, “Pediatric risk of mortality scoring overestimates severity of illness in infants,” *Critical care medicine*, vol. 20, no. 12, pp. 1662–1665, Dec. 1992.

[27] A. L. Ponce-Ponce De León, G. Romero-Gutiérrez, C. A. Valenzuela, and F. E. González-Bravo, “Simplified PRISM III score and outcome in the pediatric intensive care unit,” *Pediatrics international*, vol. 47, no. 1, pp. 80–83, Feb. 2005.

[28] S. P. Baker, B. O’Neill, J. Haddon, W. B. Long, “The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care,” *The Journal of Trauma*, vol. 14, no. 3, pp. 187–196, Mar. 1974.

[29] A. Slater, F. Shann, and G. Pearson, “PIM2: a revised version of the paediatric index of mortality,” *Intensive Care Medicine*, vol. 29, no. 2, pp. 278–285, 2003.

[30] J. P. Marcin and M. M. Pollack, “Triage scoring systems, severity of illness measures, and mortality prediction models in pediatric trauma,” *Critical Care Medicine*, vol. 30, no. 11 Suppl, pp. S457–467, 2002.

[31] F. Shann, G. Pearson, A. Slater, and K. Wilkinson, “Paediatric index of mortality (PIM): a mortality prediction model for children in intensive care,” *Intensive Care Medicine*, vol. 23, no. 2, pp. 201–207, Feb. 1997.

[32] X. F. Courville, K. J. Koval, B. T. Carney, and K. F. Spratt, “Early prediction of posttraumatic in-hospital mortality in pediatric patients,” *Journal of Pediatric Orthopedics*, vol. 29, no. 5, pp. 439–444, 2009.

[33] U. E. Ruttimann and M. M. Pollack, “A time-series approach to predict outcome from pediatric intensive care,” *Computers and Biomedical Research, an International Journal*, vol. 26, no. 4, pp. 353–372, 1993.

[34] R. S. Burd and D. Madigan, “The impact of injury coding schemes on predicting hospital mortality after pediatric injury,” *Academic Emergency Medicine*, vol. 16, no. 7, pp. 639–645, 2009.
[35] S. Saria, A. K. Rajani, J. Gould, D. Koller, and A. A. Penn, “Integration of early physiological responses predicts later illness severity in preterm infants,” *Science Translational Medicine*, vol. 2, no. 48, pp. 48ra65–48ra65, Sep. 2010.

[36] J. Sun and J. Hu, “Combining knowledge and data driven insights for identifying risk factors using electronic health records.” *AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium*, vol. 2012, pp. 901–10, 2012.

[37] R. Pivovarov and N. Elhadad, “A hybrid knowledge-based and data-driven approach to identifying semantically similar concepts,” *Journal of Biomedical Informatics*, vol. 45, no. 3, pp. 471–481, Jun. 2012.

[38] T. Hastie, R. Tibshirani, and J. Friedman, *The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition*, 2nd ed. New York, NY: Springer, Apr. 2009.

[39] S. Boyd and L. Vandenberghe, *Convex optimization*. Cambridge Univ Press, 2009.

[40] S. L. Murphy, J. Q. Xu, and K. D. Kochanek, “Deaths: Preliminary data for 2010,” *National Vital Statistics Reports*, vol. 60, no. 4, 2012, hyattsville, MD: National Center for Health Statistics.

[41] M. Faul, L. Xu, M. M. Wald, and V. G. Coronado, “Traumatic brain injury in the united states: Emergency department visits, hospitalizations and deaths 2002-2006.” 2010.

[42] J. Hilden and P. Glasziou, “Regret graphs, diagnostic uncertainty and youden’s index,” *Statistics in medicine*, vol. 15, no. 10, pp. 969–986, May 1996.

[43] N. J. Perkins and E. F. Schisterman, “The inconsistency of ”optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve,” *American journal of epidemiology*, vol. 163, no. 7, pp. 670–675, Apr. 2006.

[44] R. Tibshirani, “Regression shrinkage and selection via the lasso,” *Journal of the Royal Statistical Society, Series B*, vol. 58, pp. 267–288, 1994.

[45] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” *Journal of the Royal Statistical Society, Series B*, vol. 67, pp. 301–320, 2005.

[46] T. Hastie, R. Tibshirani, G. Sherlock, M. Eisen, P. Brown, and D. Botstein, “Imputing missing data for gene expression arrays,” Stanford University, Tech. Rep., 1999.

[47] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,” *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, vol. 61, no. 3, pp. 611–622, Jan. 2002.

[48] R. E. Behrman, R. M. Kigman, and H. B. Jenson, Eds., *Nelson Textbook of Pediatrics*, edition 17 ed. Elsevier, 2004.