Configurations related to combinatorial Veronesians representing a skew perspective

Agata Bazylewska-Zejer, Małgorzata Prażmowska, Krzysztof Prażmowski

August 22, 2019

Abstract

A combinatorial object representing schemas of, possibly skew, perspectives, called a configuration of skew perspective has been defined in [12], [4]. Here we develop the theory of configurations generalizing perspectives defined in combinatorial Veronesians. The complete classification of thus obtained \((15 \times 20)_3\)-configurations is presented.

key words: Veblen (Pasch) configuration, combinatorial Veronesian, binomial configuration, complete (free sub)subgraph, perspective.

MSC(2000): 05B30, 51E30.

Introduction

A project to characterize and classify so called binomial partial Steiner triple systems via the arrangement of their free complete subgraphs was started in [12]. In particular, we know that if a configuration \(K\) contains the maximal number (with respect to its parameters, i.e. \(= m + 2\), where \(m\) is the rank of a point in \(K\)) of free \(K_{m+1}\)-subgraphs then \(K\) is a so called combinatorial Grassmannian (cf. [7]) and if \(K\) contains \(m\) free complete subgraphs then it is a multi veblen configuration (cf. [9]). One of the most fruitful observation used to obtain a required classification is quoted in 1.2 after [12]:

\[
\text{a configuration } K \text{ with two free subgraphs } K_{m+1} \text{ can be considered as a schema of an abstract perspective between these graphs.}
\]

Let us stress on the words schema and abstract: ‘ordinary’ projections, as used and investigated e.g. in [1], [2], or [3] can be considered as examples (realizations) of our perspectives, but configurations considered in this paper do not necessarily have any realization in a desarguesian projective space.

The above observation enables us to reduce the problem to a classification of line perspectives (maps between edges of graphs, we call them also ‘skews’) and a classification of axial configurations (defined on intersection points of lines containing perspective edges); these axial configurations have vertices with on 2 smaller point rank. If \(K\) has three free \(K_{m+1}\), a similar technique involving a triple perspective can be used; for \(m = 4\) the complete classification was given in [6]. If the line perspective preserves intersection of edges a simple theory presenting the case can
be developed (see [1]). In result, the complete classification of such ‘cousins’ of the Desargues configuration for \(m = 4 \) could be obtained – and presented in [13]. Even in this small case \(m = 4 \) there are, generally, \(10! \geq 3 \cdot 10^6 \) admissible perspectives. One has to look for some ways to distinguish among them some more regular and interesting.

On a second side, there is a family of known and investigated configurations other than combinatorial Grassmannians: combinatorial Veronesians. This family contains binomial partial Steiner triple systems with exactly three maximal free subgraphs. Computing formulas which define in this case the line perspectives we obtain a class of functions that can determine an (interesting) family of configurations: keeping invariant skew taken from the theory of combinatorial Veronesians we vary axial configurations.

Rudiments of the theory of so obtained Veronese-like perspectivities are presented in this note. We close the paper with the complete classification of \((15_4 \cdot 20_3) \)-configurations which can be presented as a such Veronese-like perspective: there are 18 such configurations, and 14 of them have not been found before.

Contents

1 Underlying ideas and basic definitions 2

2 Vergras-like skew 5

3 \(n = 4 \): the axis is the Veblen Configuration 9

1 Underlying ideas and basic definitions

Let us begin with introducing some, standard, notation. Let \(X \) be an arbitrary set. The symbol \(S_X \) stands for the family of permutations of \(X \). Let \(k \) be a positive integer; we write \(\wp_k(X) \) for the family of \(k \)-element subsets of \(X \). Then \(K_X = \langle X, \wp_2(X) \rangle \) is the complete graph on \(X \); \(K_n \) is \(K_X \) for any \(X \) with \(|X| = n \). Analogously, \(S_n = S_X \).

A \((\nu, b, \kappa)\)-configuration is a configuration (a partial linear space i.e. an incidence structure with blocks (lines) pair wise intersecting in at most a point) with \(\nu \) points, each of rank \(r \), and \(b \) lines, each of rank (size) \(\kappa \). A partial Steiner triple system (in short: a PSTS) is a partial linear space with all the lines of size 3. A \(\left(\binom{n}{2} \cdot n-2 \binom{n}{3} \cdot 3 \right) \)-configuration is a partial Steiner triple system, it is called a binomial partial Steiner triple system.

We say that a graph \(G \) is freely contained in a configuration \(\mathcal{B} \) iff the vertices of \(G \) are points of \(\mathcal{B} \), each edge \(e \) of \(G \) is contained in a line \(\tau \) of \(\mathcal{B} \), the above map \(e \mapsto \tau \) is an injection, and lines of \(\mathcal{B} \) which contain disjoint edges of \(G \) do not intersect in \(\mathcal{B} \). If \(\mathcal{B} \) is a \(\left(\binom{n}{2} \cdot n-2 \binom{n}{3} \cdot 3 \right) \)-configuration and \(G = K_X \) then \(|X| + 1 \leq n \). Consequently, \(K_{n-1} \) is a maximal complete graph freely contained in a binomial \(\left(\binom{n}{2} \cdot n-2 \binom{n}{3} \cdot 3 \right) \)-configuration. Further details of this theory are presented in [12], relevant results will be quoted in the text, when needed.
Underlying ideas and basic definitions

Construction 1.1. ([4] Constr. 1.1)] Let I be a nonempty finite set, $n := |I| \geq 2$. In most parts, without loss of generality, we assume that $I = I_n = \{1, \ldots, n\}$. Let $A = \{a_i: i \in I\}$ and $B = \{b_i: i \in I\}$ be two disjoint n-element sets, let $p \not\in A \cup B$. Then we take a $\binom{n}{3}$-element set $C = \{c_u: u \in \wp_2(I)\}$ disjoint with $A \cup B \cup \{p\}$. Set
\[\mathcal{P} = A \cup B \cup \{p\} \cup C. \]

Let us fix a permutation σ of $\wp_2(I)$ and write
\[
\begin{align*}
\mathcal{L}_p & := \{\{p, a_i, b_i\}: i \in I\}, \\
\mathcal{L}_A & := \{\{a_i, a_j, c_{i,j}\}: \{i, j\} \in \wp_2(I)\}, \\
\mathcal{L}_B & := \{\{b_i, b_j, c_{\sigma^{-1}(i,j)}\}: \{i, j\} \in \wp_2(I)\}.
\end{align*}
\]

Finally, let \mathcal{L}_C be a family of 3-subsets of C such that $\mathfrak{N} = \langle C, \mathcal{L}_C \rangle$ is a $\binom{n}{3}$-configuration. Set
\[\mathcal{L} = \mathcal{L}_p \cup \mathcal{L}_A \cup \mathcal{L}_B \cup \mathcal{L}_C \]
and $\Pi(n, \sigma, \mathfrak{N}) := \langle \mathcal{P}, \mathcal{L} \rangle$.

The structure $\Pi(n, \sigma, \mathfrak{N})$ will be referred to as a *skew perspective* with the skew σ.

We frequently shorten $c_{i,j}$ to $c_{i,j}$. Sometimes the parameter \mathfrak{N} will not be essential and then it will be omitted, we shall write simply $\Pi(n, \sigma)$. In essence, the names “a_i”, “$c_{i,j}$” are – from the point of view of mathematics – arbitrary, and could be replaced by any other labelling (cf. analogous problem of labelling in [10], Constr. 3, Repr. 3] or in [6] Rem 2.11, Rem 2.13, [10] Exmpl. 2]). Formally, one can define $J = I \cup \{a, b\}$, $x_i = \{x, i\}$ for $x \in \{a, b\} =: p$ and $i \in I$, and $c_u = u$ for $u \in \wp_2(I)$. After this identification $\Pi(n, \sigma)$ becomes a structure defined on $\wp_2(J)$.

Then, it is easily seen that
\[\Pi(n, \sigma, \mathfrak{N}) \text{ is a } \binom{n+2}{2} \binom{n+2}{3} - \text{configuration. } \quad (1) \]

In particular, it is a partial Steiner triple system, so we can use standard notation: x, y stands for the line which joins two collinear points $x, y \in \mathcal{P}$, and then we define on \mathcal{P} the partial operation \oplus with the following requirements: $x \oplus x = x$, $\{x, y, x \oplus y\} \in \mathcal{L}$ whenever x, y exists. Observe that (cf. [7] Eq. (1), the definition of combinatorial Grassmannian $G_2(n)$)
\[G_2(n+2) = G_2(J) = (\wp_2(J), \wp_3(J), C) \cong B(n, \text{id}_{I_n}, G_2(I_n)). \quad (2) \]

It is clear that $A^* = A \cup \{p\}$ and $B^* = B \cup \{p\}$ are two K_{n+1}-graphs freely contained in $\Pi(n, \sigma, \mathfrak{N})$. Applying the results [12] Prop. 2.6 and Thm. 2.12 we immediately obtain the following fact.

Fact 1.2. Let $N = n + 2$. The following conditions are equivalent.

(i) \mathfrak{N} is a binomial $\binom{N}{2} - \binom{N}{3}$-configuration which freely contains two K_{N-1}-graphs.
(ii) $\mathcal{M} \cong \Pi(n, \sigma, \mathcal{N})$ for a $\sigma \in S_{\mathcal{P}_2(I_n)}$ and a $\begin{pmatrix} n \\ 0 \end{pmatrix} \begin{pmatrix} n-2 \ \ 0 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$-configuration \mathcal{R} defined on $\mathcal{P}_2(I_n)$.

The map
$$\pi = (a_i \mapsto b_i, \ i \in I)$$

is a point-perspective of K_A onto K_B with centre p. Moreover, the map
$$\xi = (a_i, a_j \mapsto b_i', b_j', \ \sigma(\{i, j\}) = \{i', j'\} \in \mathcal{P}_2(I))$$

is a line-perspective, where \mathcal{R} is the axial configuration of our perspective. With each permutation $\sigma_0 \in S_I$ we associate the permutation σ_0 defined by
$$\sigma_0(\{i, j\}) = \{\sigma_0(i), \sigma_0(j)\} \quad (3)$$

for every $\{i, j\} \in \mathcal{P}_2(I)$.

Note 1.3. If $\sigma_0 \in S_I$ we frequently identify σ_0, σ_0, and the corresponding map ξ. Consequently, if $\sigma \in S_I$ we write $\Pi(n, \sigma, \mathcal{N})$ in place of $\Pi(n, \sigma, \mathcal{N})$.

Proposition 1.4 (comp. [4 Prop. 2.2]). Let $f \in S_p$, $f(p) = p$, $\sigma_1, \sigma_2 \in S_{\mathcal{P}_2(I)}$, and $\mathcal{N}_1, \mathcal{N}_2$ be two $\begin{pmatrix} n \ \ 0 \end{pmatrix} \begin{pmatrix} n-2 \ \ 0 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$-configurations defined on $\mathcal{P}_2(I)$. The following conditions are equivalent.

(i) f is an isomorphism of $\Pi(n, \sigma_1, \mathcal{N}_1)$ onto $\Pi(n, \sigma_2, \mathcal{N}_2)$.

(ii) There is $\phi \in S_I$ such that one of the following holds
$$\phi \ (\text{comp. } (3)) \ \text{is an isomorphism of } \mathcal{N}_1 \text{ onto } \mathcal{N}_2, \quad (4)$$
$$f(x_i) = x_{\phi(i)}, \ x = a, b, \quad f(c_{\{i,j\}}) = c_{\{\phi(i),\phi(j)\}}, \ i, j \in I, i \neq j, \quad (5)$$

or
$$\sigma_2^{-1} \phi \ \text{is an isomorphism of } \mathcal{N}_1 \text{ onto } \mathcal{N}_2, \quad (7)$$
$$f(a_i) = b_{\phi(i)}, \ f(b_i) = a_{\phi(i)}, \quad f(c_{\{i,j\}}) = c_{\sigma_2^{-1}\{\phi(i),\phi(j)\}}, \ i, j \in I, i \neq j, \quad (8)$$

$$\phi \circ \sigma_1 \ \text{=} \ \sigma_2^{-1} \circ \phi. \quad (9)$$

Lemma 1.5 (Comp. [4 Lem. 2.1]). Assume that $\Pi(n, \sigma, \mathcal{N})$ freely contains a complete K_{n+1}-graph $G \neq K_{A^*}, K_{B^*}$, $\sigma \in S_{\mathcal{P}_2(I)}$. Then there is $i_0 \in I$ such that $S(i_0) = \{c_a \colon i_0 \in u \in \mathcal{P}_2(I)\}$ is a collinearity clique in \mathcal{R} freely contained in it and σ satisfies
$$i_0 \in u \implies i_0 \in \sigma(u) \ \text{for every } u \in \mathcal{P}_2(I). \quad (10)$$

Moreover,
$$G = G(i_0) := \{a_{i_0}, b_{i_0}\} \cup S(i_0). \quad (11)$$
2 Vergras-like skew

We start this Section with a presentation of the combinatorial Veronesian $V_k(X)$ of \[1\], as, in essence, it will be generalized in the paper. Besides, this example shows that not every "sensibly roughly presented" perspective $\Pi(n, \sigma, \mathcal{M})$ between complete graphs has necessarily a 'Desarguesian axis' nor its skew preserves the adjacency of edges of the graphs in question.

Example 2.1. Let $|X| = 3$, $X = \{a, b, c\}$. Then the combinatorial Veronesian $V_k(X) =: \mathcal{M}$ is a $\binom{k+2}{2} \binom{k+2}{3}$-configuration; its point set is the set $\mathbf{\eta}_k(X)$ of the k-element multisets with elements in X and the lines have form eX^s, $e \in \mathbf{\eta}_{k-s}(X)$. $V_1(X)$ is a single line, $V_2(X)$ is the Veblen configuration, and $V_3(X)$ is the known Kantor configuration (comp. [11, Prop's. 2.2, 2.3], [5, Repr. 2.7]). Consequently, we assume $k > 3$. The following was noted in [12, Fct. 4.1]:

The K_{k+1} graphs freely contained in $V_k(X)$ are the sets $X_{a,b} := \mathbf{\eta}_b(\{a, b\})$, $X_{b,c} := \mathbf{\eta}_c(\{b, c\})$, and $X_{c,a} := \mathbf{\eta}_a(\{c, a\})$.

In particular, \mathcal{M} freely contains two complete subgraphs $X_{a,b}$, $X_{b,c}$, which cross each other in $p = a^k$. We shall present \mathcal{M} as a perspective between these two graphs.

Let us re-label the points of $V_k(X)$:

$$c_i = b^i a^{k-i}, \ b_i = c^i a^{k-i}, \ i \in \{1, \ldots, k\} =: I, \ e_{i,j} = c_i \oplus c_j, \ \{i, j\} \in \varphi_2(I).$$

Assume that $i < j$, then $c_i, c_j = b^{k-j}a^i X^{j-i}$, so $e_{i,j} = a^{k-j}b^i c^{j-i}$. Clearly, $p \oplus c_i = b_i$ so, the map $(c_i \mapsto b_i, \ i \in I)$ is a point-perspective. Let us define the permutation ζ of $\varphi_2(I)$ by the formula

$$\zeta((i, j)) = \{j - i, j\} \text{ when } 1 \leq i < j \leq k.$$

It is seen that $\zeta = \zeta^{-1}$. After routine computation we obtain $b_i \oplus b_j = e_{\zeta((i,j))}$ whenever $i < j$; moreover, in this representation the axial configuration consists of the points in $b \varphi_{k-2}(X)$ so, it is isomorphic to $V_{k-2}(X)$. Consequently,

Fact 2.2. $V_k(X) \cong \Pi(k, \zeta, V_{k-2}(X)).$

Recall (cf. [11] Thm. 5.9) that for $k > 3$ the structure $V_k(X)$ cannot be embedded into any desarguesian projective space.

Let us fix an integer n and define the map $\zeta = \zeta_n : \varphi_2(I_n) \rightarrow \varphi_2(I_n)$ by the formula

$$\zeta((i, j)) := \{j - i, j\} \text{ for } 1 \leq i < j \leq n. \tag{12}$$

Note: $i < j, \ u = \{i, j\} \in \varphi_2(I_n)$, and $\zeta(u) = \{i', j'\}$, $i' < j'$ yields $j = j'$.

Clearly, $\zeta = \zeta^{-1}$.

Lemma 2.3. $\zeta_n = \sigma$ for $a \sigma \in S_{I_n}$ iff $n \leq 3$.

Proof. It is seen that $\zeta_2 = \mathrm{id}_{\varphi_2(I_2)} = \overline{\mathrm{id}_{I_2}}$. Let $n = 3$; define $\sigma = (1, 2)(3)$; it is evident that $\zeta_3 = \overline{\tau}$. Now assume that $n > 3$ and $\zeta = \zeta_n = \overline{\tau}$ for $a \sigma \in S_{I_n}$. Take $u_i = \{i, n\}$ for $i = 1, 2, 3$, so $\zeta(u_i) = \{n - i, n\} = \{\sigma(i), \sigma(n)\}$. This yields, in particular, $n = \sigma(n)$ and, next, $\sigma(i) = n - i$ for all $i < n$. Since $i < j < n$ gives $n - j < n - i < n$ and $\zeta((i, j)) = \{j - i, j\} = \{n - j, n - i\}$ we infer: $i < j < n$ yields $n - i = j$, which is impossible.

\[\square\]
Let \(G \) be a complete \(K_{n+1} \)-graph freely contained in \(\mathcal{M} \). From \(\mathcal{M} = \Pi(n, \zeta, \mathcal{M}) \), \(G \) is a complete clique freely contained in \(\mathcal{M} \). If \(S(n) \) is not a clique in \(\mathcal{M} \) then \(\mathcal{M} \) does not contain any third complete free \(K_{n+1} \)-graph.

Proof. Let \(G \) be a complete \(K_{n+1} \)-graph freely contained in \(\mathcal{M} \). From \(\mathcal{M} = \Pi(n, \zeta, \mathcal{M}) \), \(G \) is a suitable clique. Moreover, \(b_{j0} \) is collinear with all the elements of \(S(j0) \), which means that for every \(i \in I_n \), \(i \neq j0 \) there is \(i' \) such that \(c_{j0,i} = b_{j0} \oplus b_{i'} = c_{i'j0} \), which gives

\[
\text{for every } i \in I_n, i \neq j0 \text{ there exist } i' \neq j0 \text{ s.t. } \zeta(\{j0, i\}) = \{j0, i'\}. \tag{13}
\]

It is seen that \(\zeta(\{i, n\}) = \{n - i, n\} \) whenever \(i < n \).

Now suppose \(j0 < n \). Let \(j0 < i \); then \(\zeta(\{j0, i\}) = \{i - j0, i\} = \{j0, i'\} \) for some \(i' \). Since \(i = j0 \), \(i' = i - j0 \) is impossible, we conclude with \(i = i' \), \(i = 2j0 \) for all \(i > j0 \). In particular, \(j0 + 1 = 2j0 \) gives, inconsistently, \(j0 = 1, n = 2 \).

It needs only a routine computation to justify that, conversely, when \(\zeta(\{i, n\}) = \{n - i, n\} \) is valid and \(S(n) \) is a free clique in \(\mathcal{M} \) then \(G(n) \) is a free \(K_{n+1} \)-graph in \(\mathcal{M} \).

As an immediate consequence we obtain

Corollary 2.5. The structure \(\Pi(n, \zeta, G_2(I_n)) \) freely contains exactly three \(K_{n+1} \)-graphs.

Let us make the following immediate observation

Lemma 2.6. Let \(\mathcal{M} \) be a \(\left(\begin{array}{c} n \\ 2 \end{array} \right) \)-configuration defined on \(\varphi_2(I_n) \). Clearly, the \(\zeta \)-image \(\zeta(\mathcal{M}) \) of \(\mathcal{M} \) is a \(\left(\begin{array}{c} n \\ 2 \end{array} \right) \)-configuration. Then the (involuntary) map

\[
\varphi: \quad \begin{array}{ccc}
 a:i & b:j & c:u \\
 ↓ & ↓ & ↓ \\
 b:i & a:j & c:u \\
\end{array}
\]

for all \(i, j \in I_n \), \(u \in \varphi_2(I_n) \) \(\tag{14} \)

is an isomorphism of \(\Pi(n, \zeta, \mathcal{M}) \) onto \(\Pi(n, \zeta, \zeta(\mathcal{M})) \). \(\varphi \) maps \(S(n) \) onto \(S(n) \).

Note 2.7. Using 2.6 we can reformulate condition \(7 \) in 1.4 characterizing isomorphisms between skew perspectives to the following, more similar to 4.7

\[
\varphi \quad \text{is an isomorphism of } \mathcal{M}_1 \text{ onto } \sigma_2(\mathcal{M}_2) \tag{7}
\]

In essence, in most parts, \(S \) is the unique automorphims of \(\Pi(n, \zeta, \mathcal{M}) \) (when \(\mathcal{M} = \zeta(\mathcal{M}) \). First, note a technical

Lemma 2.8. Let \(\mathcal{M} = \Pi(n, \zeta, \mathcal{M}) \) for a \(\left(\begin{array}{c} n \\ 2 \end{array} \right) \)-configuration \(\mathcal{M} \). Next, let \(n > 3 \) and \(k \in I_n, k > 3 \). The following conditions are equivalent:
Let us determine the skew of this perspective and its axis. A particular example let us say a few general words more on the case when our relatively small figures. Before we shall study in more detail these three free K_{n+1}-graphs. This rough classification can be made more exact when considering that γ holds in \mathfrak{M}; $n = k$.

Proof. It is evident that (ii) implies (i): we take $j = n - i$ in $\text{Cross}(n)$. Suppose that $\text{Cross}(k)$ holds for $3 < k < n$. Take $i = k + 1$ in $\text{Cross}(k)$; then we obtain $\zeta(\{k, k + 1\}) = \{k, j\}$ for some j. This gives $k = 1, j = 2$. If $i = n$ then $n = 2$ and if $i + 1 = n$ then $n = 3$: this contradicts assumptions. So, $k + 2 < n, k = 1$. Considering $\text{Cross}(k)$ again we obtain $\{1, \text{something}\} = \zeta(1, 3) = \{2, 3\}$ and we arrive to a contradiction.

As a corollary to 2.8 we obtain the following rigidity property:

Proposition 2.9. Let \mathfrak{M} be as in 2.8 with $n > 3$. Assume that $f \in \text{Aut}(\mathfrak{M})$ with $f(p) = p$. Then either $f = \text{id}$ or $f = \mathfrak{S}$ and $\mathfrak{M} = \zeta \mathfrak{M}$.

Proof. Evidently, either $f(A) = A$ or $f(A) = B$ (in the notation of 1.1). From 2.8 we obtain $f(a_n) = a_n$. Then, let us restrict \mathfrak{M} to points with indices in I_{n-1}; in this structure $\text{Cross}(n - 1)$ holds and therefore $f(a_{n-1}) = a_{n-1}$ as well. Step by step we get $f(a_i) = a_i$ for $3 < i \leq n$. Next, we look at $c_{4,2} = a_4 \oplus a_2$, it goes under f onto $a_4 \oplus a_{\alpha(2)} = c_{4, \alpha(2)}$ for a permutation $\alpha \in \mathcal{S}_4$. Simultaneously, $c_{4,2} = b_4 \oplus b_2$ and thus $c_{4, \alpha(2)} = c_{4, 4-\alpha(2)}$ which gives $\alpha(2) = 2$. Similarly we compute $\alpha(3) = 3$ and $\alpha(1) = 1$.

If $f(A) = B$ the reasoning is provided analogously; we obtain $f(a_i) = b_i$ for $3 < i \leq n$ and then $f(a_i) = b_i$ for all $i \in I_n$.

In view of 1.4 this yields, in particular,

Lemma 2.10. Let $\varphi \in \mathcal{S}_{I_n}, n > 3$. If $\zeta \varphi = \zeta$ then $\varphi = \text{id}_{I_n}$.

In view of 2.4 any structure $\Pi(n, \zeta, \mathfrak{M})$ contains either exactly two or exactly three free K_{n+1}-graphs. This rough classification can be made more exact when we consider relatively small figures. Before we shall study in more detail these particular examples let us say a few general words more on the case when our structures contain three K_{n+1}-graphs.

Now, let us suppose that $S(n)$ is a free clique in \mathfrak{M}. In this case \mathfrak{M} can be presented as a perspective between two other simplices contained in \mathfrak{M}: between $A^* \setminus \{a_n\} := A$ and $G(n) \setminus \{a_n\} := D$, with $q = a_n$ as the centre of the perspective. Let us determine the skew of this perspective and its axis.

First, we ‘renumber’ the points in $A = \{a_1', \ldots, a_n'\}$; next we number the points in $D = \{d_1, \ldots, d_n\}$ so as

$$d_i \in \overline{p, a_i'}, \quad i \in I_n.$$ (15)
This is done as follows:

\[
\begin{array}{cccccc}
 a_1 & \ldots & a_{n-1} & p \\
 \parallel & \ldots & \parallel & \parallel \\
 d_1' & \ldots & d_{n-1}' & d_n' \\
 \downarrow & \ldots & \downarrow & \downarrow \\
 c_1,n & \ldots & c_{n-1,n} & b_n \\
\end{array}
\]

(16)

Then we set

\[e_{i,j} := d_i' \oplus d_j'. \]

From the definitions we get

\[e_{i,j} = c_{i,j}, \quad e_{i,n} = b_i \text{ for all } i, j < n, \; i \neq j. \]

(17)

Finally, we compute for \(i, j < n \):

\[d_i' \oplus d_j' = c_{i,n} \oplus c_{j,n} = c_{\rho^{-1}(\langle i, j \rangle)} = e_{\rho^{-1}(\langle i, j \rangle)} \]

\text{for a map } \rho_0: \rho_2(I_{n-1}) \to \rho_2(I_{n-1}).

The map \(\rho_0 \) is entirely determined by the configuration \(\mathfrak{R} \).

To complete determining \(\mathfrak{g} \) we must compute \(d_i' \oplus d_n \) and compare it with suitable \(e_{i',n} \): Recall: \(c_{n-i,n} = c_{\xi(i,n)} = b_i \oplus b_n \). Thus \(e_{i,n} = b_i = b_{n-(n-i)} = b_n \oplus e_{n-i,n} = d_n \oplus d_{n-i} \).

This can be noted as \(d_i' \oplus d_n = e_{n-i,n} = e_{\rho^{-1}(\langle i, n \rangle)} \). Summarizing, we see that the following defines \(\rho \):

\[
\rho^{-1}(\{i, j\}) = \begin{cases}
\{i', j'\} & \text{iff } c_{i,n} \oplus c_{j,n} = c_{i',j'} \text{ for } i, j < n \\
\{n-i, n\} & \text{for } i < n, \; j = n .
\end{cases}
\]

(18)

At the very end we characterize the axis \(\mathfrak{R} \) of our perspective: the subconfiguration of \(\mathfrak{M} \) with the points in \(E := \{e_{i,j} : 1 \leq i < j \leq n\} \). To do so it suffices to make use the following consequence of (17): \(E = (E \cap C) \cup (B \setminus \{b_n\}) = (C \setminus S(n)) \cup (B \setminus \{b_n\}) \). So, \(\mathfrak{R} \) contains all the lines of \(\mathfrak{R} \) which miss \(S(n) \):

\[\text{if } i, j, k, l < n \text{ then } e_{i,j} \oplus e_{k,l} = c_{i,j} \oplus c_{k,l}(= c_{s,t} = e_{s,t} \text{ for some } s, t < n) . \]

(19)

And for \(i < j < n \) we have

\[e_{i,n} \oplus e_{j,n} = b_i \oplus b_j = c_{j-i,j} = e_{j-i,j} . \]

(20)

Conditions (19) and (20) fully characterize the structure \(\mathfrak{R} \), so we obtain

Proposition 2.11. Let \(M = \Pi(n, \zeta, \mathfrak{R}) \) and \(S(n) \) be a free clique in \(\mathfrak{R} \). Then

\[\mathfrak{M} = \Pi(n, \varrho, \mathfrak{R}) , \]

where \(\mathfrak{R} \) is characterized by (19) and (20), while \(\varrho \) is defined by (18).

As a particular instance of the investigations above let us substitute \(\mathfrak{R} = \mathfrak{G}_2(I_n) \); then \(\rho_0 = \text{id}_{I_{n-1}} \). To make an impression how much “non-Veblenian” figures may \(\mathfrak{R} \) contain we present in Figure 1 the schema of a fragment of \(\mathfrak{R} \), when \(\mathfrak{M} = \mathfrak{G}_2(I_n) \).

Besides, with the help of [1.4] we get that there is no automorphism of \(\mathfrak{M} \) which maps \(p \) onto \(q \). Moreover, \(\mathfrak{G}_2(I_n) \) contains \(L := \varrho_2(\{1, 2, n\}) \) as a line, while for \(n > 3 \) the set \(\zeta(L) \) is not any line of \(\mathfrak{G}_2(I_n) \) so, \(\mathfrak{G}_2(I_n) \neq \zeta(\mathfrak{G}_2(I_n)) \). And therefore, from [2.10] we conclude with the following
3 n = 4: the axis is the Veblen Configuration

![Veblen Configuration Diagram]

Figure 1: Let $i < j < n$; then $n - j < n - i$. Moreover, let $i < n - j$ (then $j < n - i$) and $j < n - j$ (then $i < n - i$). Note that we need $n > 4$ to draw such a figure!

Corollary 2.12. Let $f \in \text{Aut}(\Pi(n, \zeta, G_2(I_n)))$ and $n > 3$. Then $f = \text{id}$.

At the end of this section let us try to show how to decide whether our ζ-perspective has three ‘geometrically equivalent’ perspective centres i.e. whether it has an automorphism which interchanges its three free complete subgraphs. In view of [1.4] and [2.11] we need to find a permutation $\alpha \in S_n$ such that (notation of the reasoning which leads to [2.11]) $f(p) = q$ i.e. $f(p) = a_n$ and

(a) $f(a_i) = a'_{\alpha(i)}$, $f(b_i) = d_{\alpha(i)}$, $f(c_{i,j}) = e_{\alpha(i),\alpha(j)}$, or

(b) $f(a_i) = a'_{\alpha(i)}$, $f(b_i) = d_{\alpha(i)}$, $f(c_{i,j}) = e_{\zeta(\alpha(i),\alpha(j))}$.

In particular, π must be an automorphism of \mathcal{R} and \mathcal{R} characterized in [2.11]. Substituting values of a'_j, d_j we obtain more explicit requirements.

3 n = 4: the axis is the Veblen Configuration

In this section we present a classification of configurations $\Pi(4, \zeta_4, \mathcal{R})$: then \mathcal{R} is a $((6_24_3))$-configuration i.e. \mathcal{R} is the Veblen (Pasch) configuration suitably labelled. Let us quote after [2] definitions of the labellings of the Veblen configuration defined on $\varphi_2(I_4)$ together with the star-triangles $S(i)$ contained in them: $(Y \in \varphi_2(I_4): T(Y) := \varphi_2(Y); i_0 \in I_4: T(i_0) := T(I_4 \setminus \{i_0\})$)

- **veblen type (i):** $G_2(I_4)$ – all four $S(i)$ with $i \in I_4$.

- **veblen type (ii):** $G_2^*(I_4)$: its lines are the γ-images of the lines of $G_2(I_4)$ and we briefly write $G_2^*(I_4) = \gamma(G_2(I_4))$ – no star-triangle.

- **veblen type (iii):** $\mathcal{B}(2) = \left< \varphi_2(I_4), \{T(3), T(4), \{1, 4\}, \{3, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 3\}\} \right> - S(4)$ and $S(3)$ are its unique star-triangles.

- **veblen type (iv):** $\mathcal{V}_5 = \left< \varphi_2(I_4), \{T(4), \{1, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2\}, \{1, 4\}, \{3, 4\}, \{1, 3\}, \{2, 4\}, \{3, 4\}\} \right> - S(4)$ is its unique star-triangle;

- **veblen type (v):** $\gamma(\mathcal{B}(2)) =: \mathcal{V}_4$ – no star-triangle.
veblen type (vi): \(\varphi(V_5) =: V_6 \) — no star-triangle.

For any Veblen configuration \(\mathfrak{V} \) defined on \(\varphi_2(I_4) \) there is an isomorphism \(\varpi \) with \(\alpha \in S_{I_4} \) of \(\mathfrak{V} \) and a one (exactly one!) of the above six. To avoid technical troubles we have slightly changed our labelling in comparison with the definitions of [5]; we have applied permutation \((1,3)(2,4)\) to the ‘original’ labeling in case \([iii]\), and \((1)(2)(3,4)\) in case \([iv]\).

Evidently, for every \(\varphi \in S_{I_4} \) the \(\varphi \)-image of any structure \(\mathfrak{V} \) of the above list is again a Veblen configuration isomorphic to \(\mathfrak{V} \); but \(\Pi(4, \zeta, \mathfrak{V}) \) and \(\Pi(4, \zeta, \varphi(\mathfrak{V})) \) may stay non-isomorphic.

Proposition 3.1. Let \(\varphi \in S_{I_4} \), \(\mathfrak{V} \) be a one among the above labellings of the Veblen configuration, and \(\mathfrak{M} = \Pi(4, \zeta, \varphi(\mathfrak{V})) \). Then one of the following holds.

\(\mathfrak{M} = G_2(I_4) \): \(\mathfrak{M} \) contains exactly three free \(K_5 \)-graphs.

\(\mathfrak{M} = G_2^*(I_4), \mathfrak{V}_4, \mathfrak{V}_6 \): \(\mathfrak{M} \) contains two free \(K_5 \).

\(\mathfrak{M} = \mathfrak{P}(2) \): \(4 \in \{ \varphi(4), \varphi(3) \} \): \(\mathfrak{M} \) contains three free \(K_5 \);

\(4 \not\in \{ \varphi(4), \varphi(3) \} \): \(\mathfrak{M} \) contains two free \(K_5 \);

\(\varphi(4) = 4 \): \(\mathfrak{M} \) contains three free \(K_5 \);

\(\varphi(4) \neq 4 \): \(\mathfrak{M} \) contains two free \(K_5 \).

In essence, in view of [2,6] the situation is more complex, as, formally, for every \(\varphi \) as above we need to determine \(\zeta(\varphi(\mathfrak{V})) \). Actually, we need to determine all labellings of the Veblen configuration by the elements of \(\varphi_2(I_4) \). By a way of an example on Figure 2 we show the drawing presenting the schema of \(\Pi(4, \zeta, G_2^*(I_4)) \); but remember that this is merely a one among 18 others (cf. [3,4]!)

Suppose that \(\mathfrak{V} \) contains \(S(i_0) \) as a triangle, and then it contains \(T(i_0) \) as a line. Let us introduce a numbering of the sides of \(S(i_0) \) and of points of \(T(i_0) \), invariant under permutations of \(S_{I_4\setminus\{i_0\}} \):

\[c_{i_4, j_4, k_4} \sim k \text{ and } c_{i, j} \sim k \iff \{i, j, k\} = I_4 \setminus \{i_0\}. \]

Then the definition of \(\mathfrak{V} \) corresponds to a \(\mu \in S_{I_4\setminus\{i_0\}} \) with the following rule

\[k \sim c_{i, j, k} \Rightarrow c_{i, i_0} \oplus c_{j, i_0} = c_{i', j', k} \sim \mu(k). \]

(21)

Next, suppose that \(\mathfrak{V} \) contains \(T(i_0) \) as a triangle, and then it contains \(S(i_0) \) as a line. Analogously to the above we introduce a numbering of the sides of \(T(i_0) \) and of points of \(S(i_0) \):

\[c_{i, k, j, k} \sim k \text{ and } c_{k, i_0} \sim k \iff \{i, j, k\} = I_4 \setminus \{i_0\}. \]

Then the definition of \(\mathfrak{V} \) corresponds to a \(\mu \in S_{I_4\setminus\{i_0\}} \) with the following rule

\[k \sim c_{i, k, j, k} \Rightarrow c_{i, k} \oplus c_{j, k} = c_{i', j', k} \sim \mu(k). \]

(22)

Let \(\mu \in S_{I_4\setminus\{i_0\}} \); we write \(V_5(\mu) \) for the Veblen configuration defined by (21): it has \(T(i_0) \) as a line, and \(V_6(\mu) \) for the Veblen configuration defined by (22): it has \(S(i_0) \) as a line.
3 \ n = 4: the axis is the Veblen Configuration

Next, note that in accordance with the rules above, $\mathcal{W} = V_s(\mu)$ ($\mu \in \mathcal{S}_{I_4 \setminus \{i_0\}}$) has another star-triangle $S(i_0')$ ($s = 5$) or another top-triangle $T(i_0')$ ($s = 6$) iff $\mu(i_0') = i_0'$. In other words, $\mu = (i_0')(j_1, j_2)$. It is easy to compute that then $\mathcal{W} = V_s((i_0)(j_1, j_2))$.

Since under every labelling by the elements of $\wp(\mathcal{I}_4)$ the Veblen configuration contains either at least one top-line or at least one star-line, each Veblen configuration has either the form $V_5(\mu)$ or $V_6(\mu)$ for some $\mu \in \mathcal{S}_{I_4 \setminus \{i_0\}}$ and $i_0 \in \mathcal{I}_4$. So, each Veblen configuration \mathcal{W} can be uniquely associated with a permutation $\mu \in \mathcal{S}_4$ with at least one fixed point (not a derangement of I_4) and a ‘switch’ $s \in \{5, 6\}$ so as $\mathcal{W} = V_s(\mu)$.

Let us note the following observation, justified on Figure 3, that will be used in the sequel

Fact 3.2. For every $s \in \{5, 6\}$ and $\mu \in \mathcal{S}_4$ with $\text{Fix}(\mu) \neq \emptyset$ the following holds

$\kappa(V_s(\mu)) = V_{11-s}(\mu)$.

Finally, note that $\zeta(S(4)) = S(4)$ and, consequently, $\zeta(T(4)) = T(4)$ and therefore if \mathcal{W} contains $T(4)$ as a line (as a triangle) then $\zeta(\mathcal{W})$ contains $T(4)$ as a line (as a triangle, resp). The following is evident

$V_5(\text{id}) = G_2(I_4), \quad V_6(\text{id}) = G^*_2(I_4),$

$V_5((3)(4)(1, 2)) = \mathcal{B}(2), \quad V_6((3)(4)(1, 2)) = \mathcal{V}_4,$

$V_5((4)(1, 2, 3)) = \mathcal{V}_5$ and $V_6((4)(1, 2, 3)) = \mathcal{V}_6.$

Moreover, if $\mathcal{M} = \Pi(4, \zeta, \mathcal{W})$ freely contains three K_5 and we represent \mathcal{M} as a perspective as above, then \mathcal{M} defined in 2.11 is again the Veblen configuration

![Figure 2: The structure $\Pi(4, \zeta_4, G^*_2(I_4)) = \Pi(4, \zeta_4, V_6(\text{id}))$ (cf. definition of $V_s(\mu)$ below).](image)
suitably labelled, so it is in the list above. And \mathcal{M} must be a one among those defined in [6]! what are they?, are they all distinct?

Let us start with a slight reminder of the representation technique of [6]. We arrange the vertices of three triangles of \mathcal{M}: $\Delta_1 = \{a_1, a_2, a_3\}$, $\Delta_2 = \{b_1, b_2, b_3\}$, and $\Delta_3 = \{c_{i,4}, c_{j,4}, c_{k,4}\}$ in three rows of a 3×3-matrix so as when we join in pairs points in the same two columns, the obtained lines of \mathcal{M} have a common point. So obtained three common points form the line $T(4)$. After that we join points in distinct rows when there is a line in \mathcal{M} which joins them: these lines for every pair of rows should meet in a common point. On Figure 4 we visualize a schema of this procedure.

It is known that after such a representation the obtained structures are (with a few exceptions) isomorphic when the associated diagrams are isomorphic (can be mapped one onto the other by a permutation of rows and columns). From Figure 4 we read that the diagram is determined by the permutation $\{i, j\} \mapsto \{i', j'\}$: $c_{i',j'} = c_{i,4} \oplus c_{j,4}$ with $1 \leq i, j \leq 3$.

So, any structure $\Pi(4, \zeta, \mathcal{M})$ with three free K_3 inside is uniquely determined by a permutation $\mu \in S_{K_3}$ ($\mu \in S_{I_4}$, $\mu(4) = 4$) such that $\mathcal{M} = V_6(\mu)$. It remains to determine their isomorphism types. Analogous method is used to classify all the $\Pi(4, \zeta, V_s(\mu))$. In view of 2.6 and 1.4 the following fact is essential. Its proof is
quite elementary, but needs a quite pouring computation.

Fact 3.3. In the following table we enumerate all the pairs \((s|\mu) \leftrightarrow (s'|\mu')\) such that \(\zeta(V_s(\mu)) = V_{s'}(\mu')\) with \(\mu \in S_{I_4}\) and \(s \in \{5, 6\}\).

\(i\)	\((5;4)(3,2,1)(4)\)	\(5	(1,2)(3)(4) \leftrightarrow 5	(1,3)(2)(4)\)		
\(3\)	\(6	(1,2,3)(4)\)	\(6	(4)(1,3,2) \leftrightarrow 6	(4)(1,3,2)\)	
\(4\)	\(6	(4)(1,2,3)\)	\(6	(4)(1,2,3) \leftrightarrow 6	(4)(3)(1,2)\)	
\(5\)	\(6	(1,2,3)(4) \leftrightarrow 5	(2)(3)(1,4)\)	\(6	(1)(2,4,3) \leftrightarrow 6	(1)(2,4,3)\)
\(6\)	\(6	(1)(2,4,3) \leftrightarrow 5	(2)(1,3,4)\)	\(6	(1)(3)(2,4) \leftrightarrow 5	(3)(1,4,2)\)
\(7\)	\(6	(2)(1,3,4) \leftrightarrow 6	(3)(1,4,2)\)	\(6	(2)(1,4,3) \leftrightarrow 5	(1)(2)(3,4)\)
\(8\)	\(6	(2)(1,3,4) \leftrightarrow 5	(1)(2,4,3)\)	\(6	(3)(1,2,4) \leftrightarrow 5	(1)(3)(2,4)\)
\(9\)	\(5	(1)(2,3,4) \leftrightarrow 5	(1)(2,3,4)\)	\(5	(2)(1,4,3) \leftrightarrow 5	(3)(1,2,4)\)

This technique allows us to formulate a complete characterization of the structures \(\Pi(4, \zeta, \mathcal{V})\).

Theorem 3.4. Let \(\mathcal{M} = \Pi(4, \zeta, \mathcal{V})\), where \(\mathcal{V}\) is a Veblen configuration defined on \(\mathcal{V}_2(I_4)\). Then one of the following holds

\(\mathcal{V}\) contains \(S(4)\) as a triangle: Then \(\mathcal{V} = \mathcal{V}_5(\mu)\), \(\mu \in S_{I_4}\) is the following one, and \(\mathcal{M}\) can be found among those listed in [6]:

(i) \(\mu = \text{id}\) \(\mathcal{M}\) has the type (viii), \((\sigma_x, \rho, \text{id})\) in [6, Classification 2.8]

(ii) \(\mu = (1)(2,3)\) \(\mathcal{M}\) has the type (vi), \((\sigma_x, \sigma_y, \sigma_z)\) in [6, Classification 2.8]

(iii) \(\mu = (2)(1,3)\) \(\mathcal{M}\) has the type (xii), \((\sigma_x, \sigma_y, \sigma_z)\) in [6, Classification 2.8]

(iv) \(\mu = (1,2,3)\) \(\mathcal{M}\) has the type (xiii), \((\sigma_x, \rho^{-1}, \rho) \cong (\rho, \rho, \sigma_x)\) in [6, Classification 2.8]

\(S(4)\) is not a triangle in \(\mathcal{V}\): There are 14 such \(\mathcal{M}\) and they are of the form \(\mathcal{V}_s(\mu)\), where \(s|\mu\) are enumerated in lines 3–9 of the table in 3.3

The above structures are pair wise non isomorphic.

Proof. If \(S(4)\) is not a triangle in \(\mathcal{M}\) then, in accordance with [6, Classification 2.8] \(\mathcal{M}\) has form \(\mathcal{V}_s(\mu)\), where \(\mu \in S_{I_4}\) and \(\text{Fix}(\mu) \neq \emptyset\), \(s = 3\) and \(4 \notin \text{Fix}(\mu)\), or \(s = 6\) and \(\mu \neq \text{id}\) is arbitrary. By [2.10] and [1.4] table in 3.3 enumerates all the possible types of perspectives \(\mathcal{M}\).

Now, suppose that \(s(4)\) is a triangle in \(\mathcal{V}\). Then the diagram-representation of \(\mathcal{M}\) depends on a permutation \(\mu \in S_{I_4}\) and \(\mathcal{V} = \mathcal{V}_5(\mu)\).

If \(\text{Fix}(\mu) \neq \emptyset\) and \(\mu \neq \text{id}\), \(\mathcal{V}\) contains exactly two top-lines: \(T(4)\) and \(T(\text{Fix}(\mu))\). In the corresponding cases it suffices to draw a respective diagram in accordance with the rules on Figure 3 and observe that it is isomorphic to the structure defined in [6, Classification 2.8] as claimed in the statement. An example is presented in Figure 5. The same technique works when \(\mu = (1,2,3)\).

To close the proof let us observe again the lines 1–2 of the Table in 3.3 and note that the perspectives associated with \(\mu = \text{id}\) and \(\mu = (3,2,1)\) are isomorphic under the map \(S\) defined in (14); analogously, the perspectives associated with \(\mu = (3)(1,2)\) and with \(\mu = (2)(1,3)\) are isomorphic under \(S\). \(\square\)
\[n = 4: \text{the axis is the Veblen Configuration} \]

\[\Delta_1 : a_3 \quad \Delta_2 : b_3 \quad \Delta_3 : c_{3,4} \]

Figure 5: The diagram of the line \(\{c_{1,2}, c_{2,3}, c_{1,3}\} = T(4) \) in \(\Pi(4, \zeta, \mathfrak{P}(2)) = \Pi(4, \zeta_4, \mathfrak{V}_5((3)(1,2))) \): comp. rules on Figure 4.

Lemma 3.5. In every case of 3.1 in which \(M \) freely contains three \(K_5 \) the axis \(\mathfrak{R} \) is isomorphic to \(\mathfrak{P}(2) \). Moreover, in all these cases the permutation \(\varrho \) coincides with \(\zeta \) on \(S(4) \).

Proof. It suffices to note that the formula (20), defining \(e_{n,i} \oplus e_{n,j} \), does not depend on \(\mathfrak{V} \), while in case \(n = 4 \) the formula (19) for every admissible \(\mathfrak{V} \) yields \(e_{1,2} \oplus e_{1,3} = e_{2,3} \).

The last statement of the Lemma is immediate.

The automorphisms of the structures \(\Pi(4, \zeta, \mathfrak{V}) \) which freely contain three \(K_5 \) are determined in [6] so, there is no need to write them down explicitly here.

Theorem 3.6. Let \(\mathfrak{V} = \mathfrak{V}_s(\mu) \) be a Veblen configuration defined on \(\mathfrak{V}_2(I_4) \) and \(\mathfrak{M} = \Pi(4, \zeta_4, \mathfrak{V}), s \in \{5, 6\}, \mu \in S_{I_4} \). Assume that \(\mathfrak{M} \) contains exactly two \(K_5 \).

Then \(\text{Aut}(\mathfrak{M}) \) is nontrivial only when

- \(s = 6, \mu = (4)(1, 2, 3) \)
- \(s = 6, \mu = (4)(1)(2, 3) \)
- \(s = 6, \mu = (1)(2, 4, 3) \)
- \(s = 5, \mu = (1)(2, 3, 4) \)

If \(\text{Aut}(\mathfrak{M}) \) is not trivial then

- \(\text{Aut}(\mathfrak{M}) = \{\text{id}, \mathfrak{S}\} \cong C_2 \).

Proof. The claim is an immediate consequence of [3.3] and [2.9].

References

[1] R. Hartshorne, Foundations of projective geometry, Lecture Notes, Harvard University, 1967.
[2] D. Hilbert, S. Cohn-Vossen, Geometry and the Imagination, AMS Chelsea Publishing, 1999.
[3] H. Karzel, H.-J. Kroll, Perspectivities in Circle Geometries, [in] Geometry – von Staudt’s point of view, P. Plaumann, K. Strambach (Eds), D. Reidel Publ. Co., 1981, pp. 51–100.
[4] K. Maszkowski, M. Prażmowska, K. Prażmowski, Configurations representing a skew perspective, arXiv:1806.04237
[5] K. Petelczyc, M. Prażmowska, 103-configurations and projective realizability of multiplied configurations, Des. Codes Cryptogr. 51, no. 1 (2009), 45–54.
3 $n = 4$: the axis is the Veblen Configuration

[6] K. Petelczyk, M. Prażmowska, A complete classification of the $(15; 20; 3)$-configurations with at least three K_5-graphs, Discrete Math. 338 (2016), no 7, 1243–1251.

[7] M. Prażmowska, Multiple perspectives and generalizations of the Desargues configuration, Demonstratio Math. 39 (2006), no. 4, 887–906.

[8] M. Prażmowska, On some regular multi-Veblen configurations, the geometry of combinatorial quasi Grassmannians, Demonstratio Math. 42(2009), no.1 2, 387–402.

[9] M. M. Prażmowska, On the existence of projective embeddings of multiveblen configurations, Bull. Belg. Math. Soc. Simon-Stevin, 17, (2010), no 2, 1–15.

[10] M. Prażmowska, K. Prażmowski, Some generalization of Desargues and Veronese configurations, Serdica Math. J. 32 (2006), no 2–3, 185–208.

[11] M. Prażmowska, K. Prażmowski, Combinatorial Veronese structures, their geometry, and problems of embeddability, Results Math. 51 (2008), 275–308.

[12] M. Prażmowska, K. Prażmowski, Binomial partial Steiner triple systems containing complete graphs, Graphs Combin. 32(2016), no. 5, 2079–2092.

[13] M. Prażmowska, K. Prażmowski On a class of $(15; 20; 3)$-configurations reflecting abstract properties of a perspective between tetrahedrons [arXiv:1806.04261]

Author’s address:
Agata Bazylewska-Zejer, Małgorzata Prażmowska, Krzysztof Prażmowski
Institute of Mathematics, University of Białystok
ul. Ciolkowskiego 1M
15-245 Białystok, Poland
e-mail: agatazejer@gmail.com, malgpraz@math.uwb.edu.pl,
krzypraz@math.uwb.edu.pl