Using Bayesian time-stratified case-crossover models to examine associations between air pollution and “asthma seasons” in a low air pollution environment

Matthew Bozigar, Andrew B. Lawson, John L. Pearce, Erik R. Svendsen, John E. Vena

Abstract

Many areas of the United States have air pollution levels typically below Environmental Protection Agency (EPA) regulatory limits. Most health effects studies of air pollution use meteorological (e.g., warm/cool) or astronomical (e.g., solstice/equinox) definitions of seasons despite evidence suggesting temporally-misaligned intra-annual periods of relative asthma burden (i.e., “asthma seasons”). We introduce asthma seasons to elucidate whether air pollutants are associated with seasonal differences in asthma emergency department (ED) visits in a low air pollution environment. Within a Bayesian time-stratified case-crossover framework, we quantify seasonal associations between highly resolved estimates of six criteria air pollutants, two weather variables, and asthma ED visits among 66,092 children ages 5–19 living in South Carolina (SC) census tracts from 2005 to 2014. Results show that coarse particulates (particulate matter <10 μm and >2.5 μm: PM$_{10-2.5}$) and nitrogen oxides (NO$_x$) may contribute to asthma ED visits across years, but are particularly implicated in the highest-burden fall asthma season. Fine particulate matter (<2.5 μm: PM$_{2.5}$) is only associated in the lowest-burden summer asthma season. Relatively cool and dry conditions in the summer asthma season and increased temperatures in the spring and fall asthma seasons are associated with increased ED visit odds. Few significant associations in the medium-burden winter and medium-high-burden spring asthma seasons suggest other ED visit drivers (e.g., viral infections) for each, respectively. Across rural and urban areas characterized by generally low air pollution levels, there are acute health effects associated with particulate matter, but only in the summer and fall asthma seasons differing by PM size.

1.0 Introduction

Emergency department (ED) visits for asthma have complex drivers influenced by disease severity, access to and utilization of various preventive care services [1], and numerous
environmental factors [2]. Asthma exacerbations and ED visits have been associated with multiple ambient air pollutants, complex mixtures, and temporal lags [3–6]. While there is evidence of seasonality, previous studies have used several common season definitions, such as astronomical seasons defined by equinoxes and solstices (i.e., winter, spring, summer, fall), meteorological seasons (e.g., cool, warm), and 3-month simplifications (e.g., winter: December, January, and February) to name a few. When exacerbations were linked with non-environmental factors, such as body mass index (BMI), researchers employed traditional astronomical seasons [7]. In studies focused on ambient air pollution exposures, scholars tend to define time periods by warm and cold seasons, reflective of temporal patterns in the exposures [8–10]. In addition, some acute health effects of air pollution studies used simplified 3-month seasonal blocks [11, 12]. Air pollution, pollen, and viruses are several examples of seasonally-varying environmental exposures exacerbating asthma symptoms [13–17]. Some of these exposures may co-occur over time, while others may only partially overlap, if at all. Viral infections tend to increase in cooler periods such as the fall and winter [18]. Seasonal associations between rain events or thunderstorms and asthma exacerbations have been found in warmer months, such as the spring and summer in the US, with a likely mechanism being the release of grass pollen [19–21].

Air pollution and other place-based ambient environmental factors can interact in complex ways among people with asthma [2]. Most short-term analyses of air pollution and asthma ED visits focus on highly urbanized areas [8, 10, 22, 23] that tend to have higher air pollution levels than suburban or rural areas and are monitored more thoroughly [24]. Acute health effects studies of air pollution have been predominantly designed to estimate associations and dose-response relationships in such urban environments. They assume that temporal variation in asthma ED visits are driven by seasonal patterns among ambient pollutants, themselves, despite evidence of temporally-misaligned patterns in the asthma ED visits. At the national level, aggregated asthma ED visits peak in the fall, but there are differing regional and local seasonal burdens [25–27]. Thus, study type, objectives, location, exposures, exposure levels, and exposure timing are elements that should be considered when defining seasons for an asthma outcome, such as emergency department visits, that can exhibit large temporal differences within a given year.

Though controlled exposure studies of air pollutants are important for understanding disease pathways [28, 29], they are ethically untenable for a relatively severe outcome such as ED visits. As such, epidemiologists must contend with various observational designs that attempt to infer disease patterns in study populations. Case-crossover studies inherently control for time-invariant characteristics and are therefore useful for studying short-term, time-varying exposures affecting health [30]. They are additionally useful when only case data are known, such as in administrative health datasets (e.g., ED visits), in which there are no contrasting non-case events to provide outcome variability to develop a data model. With care, case-crossover models can be developed for individuals in case-only datasets because non-case events (i.e., referents) can be strategically selected and temporally matched to the case events for each person. Case-crossover designs do not need to be aggregated over space and therefore permit spatially explicit exposure estimates, unlike time-series designs [31]. While time series designs serve as a primary option for case-only data in environmental epidemiology, they apply only one exposure estimate to all study participants in each time period. Bayesian case-crossover models have been equally or more accurate than frequentist versions [32], and are attractive for their robustness to model misspecification, efficiency, flexibility, and the ability to include informative prior information. Despite their potential, at the time of writing we found only two studies led by Li et al. (2013) and Guo et al. (2014) that had developed Bayesian case-crossover models for studies of acute health effects of air pollution [32, 33].
According to the US Environmental Protection Agency (EPA), annual average particulate matter <2.5 μm (PM$_{2.5}$) levels are deemed “safe” when they are below 12 μg/m3 [34]. For particulate matter <10 μm (PM$_{10}$), the average annual safety standard is 50 μg/m3 [34]. Many rural areas with low air pollution levels (below these EPA regulatory limits) can have a relatively high burden of asthma ED visits [35–37], but the environmental drivers of asthma ED visits across urban-rural areas are understudied. In addition, few researchers have reconsidered seasonal definitions to focus on the intra-annual periods of relative burden, “asthma seasons”, and the unique ambient environmental drivers of those burdens across urban-rural subpopulations.

Our specific objectives are to 1) detail trends in pediatric asthma ED visits in a large and diverse study population and geography, and subsequently to 2) define asthma seasons to identify ambient air pollutants associated with seasonal burdens. We hypothesize that associations between ambient air pollution and asthma ED visits vary by specific asthma seasons in a low air pollution environment. To address our hypothesis, we estimate associations in South Carolina’s (SC) asthma seasons between EPA criteria air pollutants, weather, and asthma ED visits for children living in South Carolina from 2005 to 2014 using a Bayesian time-stratified case-crossover design.

2.0 Methods

2.1 Health outcome

This research was approved (Pro00068172) by the Medical University of South Carolina institutional review board as a part of the SocioEnvironmental Associations with Asthma Increased Risk (SEA-AIR) study. Consent for study participation was not required as the health outcomes used in this study were obtained as secondary, anonymized administrative health data. The health outcome data consisted of 66,092 ED visits with a primary diagnosis of asthma (International Classification of Disease 9, ICD9, codes 493.XX) among children ages 5–19 years residing in South Carolina from 2005 to 2014. The South Carolina Revenue and Fiscal Affairs (SCRFA) office linked records from multiple payor sources. To the best of our knowledge, the data have population wide coverage, capturing all pediatric ED visits for asthma in SC during the 10-year study period. Basic demographic information, diagnostic codes, dates of admittance and discharge, and geographic identifiers were included. Records included geographic identifiers of both ZIP codes and census tracts. Records with missing census tract identifiers (>20%) were assigned to a census tract using a novel geographic identifier assignment algorithm [38]. ED records were assigned exposure and weather estimates of their billing code census tract, respectively.

There are 1,103 census tracts in SC (2010 US Census geography), and 1,085 of them are not water-only (i.e., off the coast) or institutional-only (e.g., correctional facility) [39]. The children in this study lived in 1,079 of these 1,085 regular census tracts. Census tracts in SC average 70.6 sq km, or approximately half of a 12 by 12 km (144 sq km) grid cell utilized by the EPA Community Multiscale Air Quality (CMAQ) model [40]. However, census tracts vary widely in size because they are proportional to population density, as evidenced by their range in SC from 0.42 to 819 sq km with a standard deviation of 106.8 among the 1,085 regular census tracts.

2.2 Air pollutant estimates

Estimates of air pollutant exposure were “fused” from a chemical transport model, the CMAQ model, and monitored values at a 12 km resolution for the US by other researchers [40, 41]. Daily estimates were available for six EPA criteria pollutants: carbon monoxide (CO), nitrogen oxides (NO$_x$), ozone (O$_3$), and sulfur dioxide (SO$_2$), PM$_{2.5}$, and PM$_{10}$. We included NO$_x$ over
nitrogen dioxide (NO₂) because it incorporated both nitrogen oxides (NO and NO₂) that have been previously linked with asthma [42]. Furthermore, we calculated the fraction of coarse particulate matter (PM_{10-2.5}) by subtracting the PM_{2.5} estimates from the PM_{10} estimates, which we included in statistical modeling instead of PM_{10} that incorporates fine particulates as well.

Using ArcGIS (Environmental Systems Research Institute, Redlands, CA), the national daily gridded air pollutant estimates were first clipped to a grid encompassing SC and a surrounding 12 km buffer extending into neighboring North Carolina (NC) and Georgia (GA) to leverage nearby grid points across state lines. The daily gridded estimates were then spatially interpolated to population weighted census tracts in SC using inverse distance weighting (IDW). While estimates interpolated from a 12 km grid were likely spatially smoothed by this procedure, IDW estimates have previously been employed for the purpose of capturing temporal (i.e., daily) variation [43], which is consistent with the objectives of our acute health effects study design.

2.3 Weather estimates

Air temperature and dewpoint temperature data were obtained from the PRISM Climate Group in the form of daily national smooth surfaces [44]. The daily national surfaces were first clipped to the spatial extent or SC, and we then calculated the daily spatial average for each census tract by block kriging. Temporal trends in census tract air pollution and weather estimates were assessed using box and whisker plots by season over time. Seasonal correlation patterns among air pollutants were assessed by collapsing air pollution and weather estimates over the entire study period by day of the year, sub-setting by season, calculating Spearman correlations for estimate rankings, and visualizing in the form of heat maps.

2.4 Case and referent window selection

We used a time-stratified case-crossover design. Time-stratification of case events by year, month, and day of the week helps control for short-term, seasonal, and long-term temporal trends [32, 45]. Relative to other strategies, time-stratification has been shown to be the least biased referent selection strategy in case-crossover models because of lower time trend and “overlap” biases, respectively [46, 47]. We calculated a 3-day moving average (3DMA) over lag days 0 (day of), 1 (1 day prior), and 2 (2 days prior) for each of the pollutant exposures and the weather variables for every ED visit (i.e., case), respectively [8, 48, 49]. These 3DMAs represented the case windows. 3DMA referent windows were created by matching to each 3DMA case window on year, month, and day of the week, per the time-stratified design. If a 3DMA case window had more than three separate 3DMA referent window matches available (depending on the count of a particular day of week within a given month), we randomly sampled three 3DMA referent windows from those available. For example, the 3DMAs for respective pollutants and weather factors at the respective patient’s billing address for a hypothetical pediatric asthma ED visit on the second Tuesday of February in 2010 (case window) would be matched to three of the 3DMAs for the remaining Tuesdays in February of 2010 (referent windows). The 3DMA referent windows provided contrasts to the 3DMA case windows for times when each child was not admitted to the ED for asthma, respectively.

2.5 Asthma seasons

To differentiate local asthma seasons from each other and from other commonly-used definitions (e.g., astronomical seasons), we graphed individual ED visits over time. To further elucidate intra-annual patterns indicative of relative ED visit burdens, we collapsed all ED visits
over 2005–2014 ED by day of the year into a single graph. Visual patterns in the graphs were used to identify short-term and long-term trends, and seasonal means were also calculated.

2.6 Statistical analysis

Our Bayesian hierarchical model (BHM) framework was constructed as follows:

\[
y_{ij} \sim \text{Bernoulli}(\pi_{ij})
\]

\[
\logit(\pi_{ij}) = \alpha + d_c + \beta_p X_{ij} + \beta_w W_{ij}
\]

\[
(\beta_p | \tau_p) \sim \text{Normal}(0, \tau_p^{-1})
\]

\[
\tau_p \sim \text{Gamma}(2, 1)
\]

\[
(\alpha | \tau_\alpha) \sim \text{Normal}(0, \tau_\alpha^{-1})
\]

\[
\tau_\alpha = \frac{1}{\text{sd}^2}
\]

\[
\text{sd} = \text{uniform}(0, 4)
\]

\[
(d_c | \tau_d) \sim \text{Normal}(0, \tau_d^{-1})
\]

\[
\tau_d \sim \text{Gamma}(2, 0.5)
\]

in which the log of the probability \((\pi_{ij})\) of an ED visit \((y_{ij})\) was modeled for \(i = 1, 2, \ldots, 66,092\) ED visit records and \(j = 1, 2, 3, 4\) case/referent windows for each record. The conditional logistic regression model (Eq 1) at the second level of the hierarchy, included an intercept \((\alpha)\), and a set of beta coefficients \((\beta_p)\) for each criteria pollutant \((X_{ij})\), respectively. A set of respective beta coefficients \((\beta_w)\) for air temperature, dewpoint temperature, and their interaction \((W_{ij})\) were also included. In statistical modeling, including an interaction between temperature and dewpoint temperature generally improved model fit. We helped control for temporal clustering by including a random effect for each unique year-month-day combination \((d_c)\) of our study period, which was indexed by \(c = 1, 2, \ldots, 840\) combinations. The combination random effect accounted for temporal patterns such as those induced by holidays or days of the week. Coefficients and random effects were assumed to follow normal distributions, each having \(\tau\) precision parameters that followed gamma distributions at the next level of the hierarchy, which were weakly informative [50, 51]. We sought to make few prior assumptions because the effects of low-level exposures to air pollution are lesser known. But, one of the benefits of conducting Bayesian analysis is the ability to incorporate prior information that can be leveraged in future research. To improve convergence of the \(\alpha\) intercept term, another level was added to the hierarchy, allowing the precision term \(\tau_\alpha\) to be determined from a uniformly distributed \(sda\) term. Air pollutant and weather estimates were mean-centered to improve computational efficiency.

2.7 Model fitting and building

We fit models in the NIMBLE package in R [52–54]. NIMBLE conducts Markov chain Monte Carlo (MCMC) sampling by recompiling models written in Bayesian Using Gibbs Sampling.
(BUGS) language (e.g., WinBUGS) into C++ language, which greatly increases computational efficiency and stability. We fit models on all the data and season subsets, using the timing of the case day to determine the season. We removed variables that induced variable inflation due to high collinearity during model fitting. For instance, in all models CO was removed because it was highly collinear with NOx, likely because their main respective sources are both fuel combustion emissions [55]. In addition, CO estimates were calibrated using only one monitor in all of SC and was prone to temporal gaps [56], which may have introduced more error in its estimates relative to those of other pollutants that were monitored more comprehensively. In the overall, summer, and fall models, dewpoint temperature was removed due to its high collinearity with temperature, respectively. In the summer model, SO2 was additionally removed because it was highly collinear with NOx. We reported exponentiated β coefficients [57] in interquartile ranges (IQR) overall and by season, and interpreted them as the odds of an IQR increase/decrease either overall or by season (ORIQR), respectively. Analytic data and code to reproduce the analyses using non-identifiable data are available at https://github.com/mbozigar/asthma-seasons.

2.8 Sensitivity analyses
We assessed numerous ways to control for potentially unmeasured confounding factors via random effects. The inclusion of spatial (structured and unstructured) and individual (i.e., linking records over time) factors did not improve model fit by deviance information criterion (DIC). Defining seasons and strategies to control for seasonal trends in the overall model was challenging. We assessed multiple temporal cut points, indicators, non-linear effects, prior distributions, and random effects. Many referent day strategies, including unidirectional asymmetric, bidirectional symmetric, and time-stratified designs were assessed. There were minor differences across the strategies, but main findings were consistent. Results were similar for PM10 and PM10−2.5. We opted for the latter in statistical modeling to better differentiate it from PM2.5 and to capture changes in the PM10−2.5 fraction over time and space from differential local sources and contexts that have previously been found to occur in a similar geographic area [58].

3.0 Results
3.1 Descriptive results
Fig 1 shows the study area of SC, its regions, main urban areas, 12 km CMAQ grid point locations, and population weighted census tract centroids. Regions in SC generally delineate unique geologic and geographic features. The Lowcountry encompasses the low, coastal plain, while the Midlands region is characterized by a somewhat sandy, hilly landscape conducive to agriculture, and the Upstate consists of foothills of the Blue Ridge Mountains.

Table 1 shows the asthma ED visit and SC populations for children ages 5–19 years. Contrasted with the SC pediatric population of the same age range, the asthma ED visit population was more male (58.5 to 51.0%), younger (46.9 to 32.1%), African American (68.0 to 28.4%), and lived more in the Midlands region (52.4 to 49.9%) than other regions. The ED visit population was also predominantly on public insurance such as Medicaid (58.3%) and visited an ED in the fall (47.5%). For age-sex subgroups in the ED visit population, there were 20,034 males and 10,989 females ages 5–9 years, 11,494 males and 7,547 females ages 10–14 years, and 7,133 males and 8,895 females ages 15–19 (tabular/graphical results not shown).

Fig 2 showed that ED visits may not mirror commonly used seasonal definitions, such as astronomical seasons. SC’s asthma seasons tended to start and end earlier, with the exception of winter, and were thus misaligned with astronomical seasons. We defined a medium burden
(16.5 visits/day/year) winter asthma season from January 1st to the end of February that paralleled the much cooler mid-winter months when children were in school. The relative increase in ED visits indicative of medium-high burden (18.9 visits/day/year) from March 1st through May 31st, mirroring rising, albeit fluctuating, temperatures and highly variable conditions typical of the spring allergy season when children were still in school, helped us define the SC spring asthma season. The summer asthma season was characterized by low burden (9.4 visits/day/year) and an earlier June 1st start and August 19th end when children were generally not in school. Exhibiting the largest seasonal disparity (23.5 visits/day/year), the fall asthma season was defined as starting on August 20th, the approximate beginning of the school year in SC. This period begins with warm temperatures and then cools during a secondary allergy season ending December 31st.

The top center panel of Fig 3 shows the repeating seasonal pattern and a slowly increasing annual average of daily ED visits for asthma. In the remaining panels, large disparities in ED
visits were observed for males, the youngest children (ages 5–9 years), African Americans, children on public insurance, children living in the Midlands, and seasonally in the fall asthma season. The fall asthma season had the greatest comparative burden, including a spike effect during the “back-to-school” period at the end of August and beginning of September. For most groups, disparities appeared to be increasing over the study period.

Except for O$_3$ and potentially PM$_{10-2.5}$, air pollutant levels seemed to decrease over the study period as shown in Fig 4. Each pollutant exhibited variation across seasons, with NO$_x$, O$_3$ and, to a lesser extent the PM measures, having the greatest between asthma season variation. Many correlations between the pollutants differed by asthma season for all years aggregated (Fig 5). For example, O$_3$ was positively correlated with the NO$_x$ in the spring and summer asthma seasons, but they were negatively correlated in fall and winter asthma seasons.

3.2 Statistical results

Results from the overall model of all SC ED visits for asthma among children showed increased odds of an ED visit from elevated levels of NO$_x$ (OR$_{IQR}$: 1.018, 95% CI: 1.002, 1.032) and PM$_{10-2.5}$ (OR$_{IQR}$: 1.054, 95% CI: 1.026, 1.063), controlling for other time-varying and invariant factors (Table 2). Results changed by asthma season, as air pollutants were not significantly

| Table 1. Population characteristics of the age 5–19 year populations that used the emergency department (ED) for asthma from 2005 to 2014 and for the state of South Carolina. |
|--------------------|---------------------------|--------------------------|-----------------------|
| **Age 5–19 Asthma Emergency Department Visit Population** | **Age 5–19 South Carolina Population (2010 US Census Estimates)** | **p-Value** |
| **Stratum** | **n (frequency %)** | **n (frequency %)** | |
| Total | 66,092 | 921,428 | N/A |
| Sex | | | |
| Male | 38,661 (58.5) | 470,072 (51.0) | <0.0001 |
| Female | 27,431 (41.5) | 451,356 (49.0) | |
| Age Group | | | |
| 5–9 | 31,023 (46.9) | 295,850 (32.1) | <0.0001 |
| 10–14 | 19,041 (28.8) | 297,263 (32.3) | |
| 15–19 | 16,028 (24.3) | 328,315 (35.6) | |
| Race | | | |
| White | 17,672 (26.7) | 604,871 (65.6) | <0.0001 |
| African American | 44,921 (68.0) | 261,315 (28.4) | |
| Other | 3,499 (5.3) | 55,242 (6.0) | |
| Payor Status | | | |
| Public Insurance | 38,516 (58.3) | DataUnavailable | N/A |
| Private Insurance | 16,835 (25.5) | DataUnavailable | |
| Other | 10,723 (16.2) | DataUnavailable | |
| Asthma Season | | | |
| Winter (Jan 1–Feb 28) | 9,763 (14.7) | N/A | N/A |
| Spring (Mar 1–May 31) | 17,414 (26.3) | N/A | |
| Summer (Jun 1–Aug 19) | 7,616 (11.5) | N/A | |
| Fall (Aug 20–Dec 31) | 31,299 (47.5) | N/A | |
| Region | | | |
| Upstate | 13,720 (20.7) | 238,341 (25.9) | <0.0001 |
| Midlands | 34,616 (52.4) | 459,390 (49.9) | |
| Lowcountry | 17,756 (26.9) | 223,697 (24.2) | |

https://doi.org/10.1371/journal.pone.0260264.t001
associated with increased ED visit odds within the medium-burden winter and medium-high-burden spring asthma seasons. However, recognizing a small magnitude (often an order of magnitude lower than either’s independent association, respectively; results not shown) but statistically significant interaction between temperature and dewpoint temperature in each model, increased temperature was associated with asthma ED visits overall and in the spring and fall asthma seasons, respectively. Lower temperatures were significantly associated with increased ED visits in the low-burden summer asthma season. In the summer asthma season, there were statistically significant associations with two air pollutants: a negative association for NO\textsubscript{x} (OR\textsubscript{IQR} = 0.954, 95% CI: 0.915, 0.991) and a positive association for PM\textsubscript{2.5} (OR\textsubscript{IQR} = 1.162, 95% CI: 1.105, 1.222). In the high-burden fall, we found statistically significant associations with asthma ED visits that were positive for NO\textsubscript{x} (OR\textsubscript{IQR} = 1.034, 95% CI: 1.009, 1.060), negative for PM\textsubscript{2.5} (OR\textsubscript{IQR} = 0.970, 95% CI: 0.942, 0.998), and positive for PM\textsubscript{10-2.5} (OR\textsubscript{IQR} = 1.144, 95% CI: 1.114, 1.177). Thus, the magnitude of the association between asthma ED visits and PM\textsubscript{10-2.5} was thus nearly three times greater in fall relative to an entire year.

4.0 Discussion

Our first objective was to detail trends in asthma ED visits in SC. The trends we found are indicative of disparities over time and for specific subpopulations. Disparities generally
increased for particular groups, including males, young children, African Americans, children on public insurance, and children living in the Midlands in SC from 2005 to 2014 (Fig 3). These results are partially consistent with national trends, as there are large disparities in asthma rates and outcomes across numerous factors including race, urban-rural status, socio-economic status (SES), and others [59–61]. But the increasing disparities in SC over time are inconsistent with recent evidence that disparities may be plateauing in the US [62]. Furthermore, asthma ED visit disparities existed for males in the youngest age group (5–9 years) and among females in the oldest age group (15–19 years), which reinforces evidence that puberty and sex hormones likely play a role in asthma differences as children age [63, 64].
the specific subpopulation that visited the ED for asthma was notably different than the SC population of the same age 5-19-year group (Table 1). Sociodemographic and geographic disparities in asthma ED visits mirror broader health disparities in SC [65–69]. Further attention to the drivers of health disparities, including for asthma, are needed in places such as SC that may not follow national patterns.

To address our second objective of detailing the seasonal ambient environmental drivers of asthma ED visits, we introduced the concept of asthma seasons, defined by intra-annual periods of asthma ED visit burden. Our study location spanned both rural and urban areas, and we sought to avoid assuming that ambient air pollutants and weather patterns were necessarily the key seasonal influences. Overall, ED visits seemed to be increasing over time (Fig 3). ED visit patterns in SC seem to have four discernable asthma seasons that are similar to but still distinct from astronomical seasons, with particularly high burdens in the fall and spring asthma seasons (Figs 2 and 3). We were especially interested in the environmental drivers of fall and spring ED visits, given the relative disparities.

Asthma seasons should hypothetically differ by location based on geography, atmospheric chemistry, weather, land use, ecology, viral oscillation, and other factors, but not all acute health effects studies of air pollution adequately detail intra-annual temporal patterns of asthma outcomes locally. Those studies that do, for example in Shanghai, found that the intra-annual asthma burden similarly peaks over October, November, and December [9], but

Fig 4. Estimated air pollution levels over time by pollutant and asthma season (winter: January 1 –February 28; spring: March 1 –May 31; summer: June 1 –August 19; fall: August 20 –December 31) in South Carolina from 2005 to 2014.

https://doi.org/10.1371/journal.pone.0260264.g004
asthma ED visits there exhibit differing patterns in the remaining months of the year when contrasted with SC. Though not a study of environmental drivers, researchers identified a back-to-school peak when detailing asthma-related primary care provider visits by week and by subpopulation groups in Israel [70]. Back-to-school and other intra-annual patterns in asthma hospitalizations, in addition to exacerbation triggers, were detailed in a study in Texas [71]. Furthermore, when using SC’s asthma seasons, pollutants similarly varied by season (Figs 4 and 5).

We observed statistically significant, positive overall associations between both NO\textsubscript{x} and PM\textsubscript{10} and asthma ED visits in our overall model (Table 2), even though SC is generally

Variable	Overall	Winter	Spring	Summer	Fall
Pollutants					
NO\textsubscript{x}	1.018	0.997	1.002	0.954	1.034
	(1.002,1.032)	(0.958,1.039)	(0.975,1.032)	(0.914,0.991)	(1.009,1.060)
	14.641 ppb	17.482 ppb	12.006 ppb	8.327 ppb	16.639 ppb
O\textsubscript{3}	1.001	1.000	0.997	1.010	0.999
	(0.987,1.018)	(0.988,1.012)	(0.976,1.012)	(0.988,1.043)	(0.983,1.016)
	0.017 ppm	0.008 ppm	0.012 ppm	0.015 ppm	0.014 ppm
PM\textsubscript{10-2.5}	1.054	1.015	0.983	1.012	1.144
	(1.026,1.063)	(0.975,1.057)	(0.951,1.015)	(0.975,1.052)	(1.114,1.177)
	4.479 µg/m3	3.813 µg/m3	4.617 µg/m3	3.343 µg/m3	4.329 µg/m3
PM\textsubscript{2.5}	1.014	1.007	0.999	1.162	0.970
	(0.997,1.031)	(0.966,1.050)	(0.963,1.034)	(1.105,1.222)	(0.942,0.998)
	4.599 µg/m3	4.052 µg/m3	4.124 µg/m3	5.441 µg/m3	4.734 µg/m3
SO\textsubscript{2}	0.998	1.025	1.012	N/A	0.994
	(0.984,1.012)	(0.985,1.071)	(0.981,1.044)	N/A	(0.976,1.013)
	3.727 ppb	4.881 ppb	3.723 ppb	N/A	3.618 ppb
Weather					
Temp.a	1.123	1.074	1.147	0.895	1.204
	(1.047,1.204)	(0.976,1.177)	(1.054,1.258)	(0.817,0.989)	(1.075,1.332)
	14.26˚C	7.30˚C	8.32˚C	2.88˚C	12.77˚C
Dewp.a	N/A	1.092	1.091	N/A	N/A
	(0.964,1.227)	(0.975,1.228)	(0.975,1.228)	N/A	N/A
	11.15˚C	10.60˚C	N/A	N/A	N/A

Note: Bold font indicates statistical significance at \(\alpha\) level 0.05. In each cell, the first line is the OR\textsubscript{IQR} estimate, the second line is the 95% credible interval of the OR\textsubscript{IQR}, and the third line is the overall or season-specific IQR (depending on either overall or seasonal models).

Note: Time-invariant factors, such as sociodemographic characteristics, are controlled by the case-crossover design that contrasts environmental measures for ED visit case windows with those from referent windows, within individuals.

aTemperature and dewpoint temperature were included in a statistically significant interaction across all five models. The magnitude of effect was small, usually an order of magnitude smaller relative to the independent associations with either temperature or dewpoint temperature and asthma ED visits.
considered a low air pollution state [72] and area, globally [73]. Previous studies have linked NO\textsubscript{x} with overall asthma incidence [74], ED visits in cool seasons [3], and repeated visits [42]. Though we removed CO from statistical models because of its high collinearity with NO\textsubscript{x}, the main sources of both NO\textsubscript{x} and CO are assumed to be emissions from fuel combustion [55]. As such, results suggest overall, season-invariant risks from fuel combustion in SC, even at relatively low overall pollutant levels.

That we found an overall, season-invariant association with PM\textsubscript{10-2.5} and not PM\textsubscript{2.5} in SC (Table 2) is somewhat surprising given the wide literature linking PM\textsubscript{2.5} with asthma [4]. Neither daily nor long-term exposure to coarse PM were statistically significantly associated with respiratory outcomes among elderly Medicare patients [75, 76]. However, long-term exposure to coarse PM was linked to asthma in a nationwide pediatric Medicaid cohort [77]. Research has found that the commonly used CMAQ model has limitations in predicting ground-level PM\textsubscript{10} from biogenic sources [78, 79]; consequently, studies that used CMAQ-only estimates for PM\textsubscript{10} may have mischaracterized relationships with health outcomes. This study addresses the limitations by using estimates from the fusion model that provide more accurate estimates of daily PM\textsubscript{10} [41], which may explain the improved ability for this analysis to detect health effects for this pollutant, particularly at lower levels.

We hypothesized that associations between asthma ED visits and air pollution varied by asthma season, and we generally found supporting evidence to corroborate the hypothesis. Relative to the overall model, the relationship between PM\textsubscript{10-2.5} and asthma ED visits was stronger in the fall. While SC’s fall asthma season is, on average, neither consistently cool nor warm (Fig 4), others have linked increased PM\textsubscript{10} to asthma ED visits in the cool season in nearby urban Atlanta, but not the warm season [8]. In urban Shanghai, associations between PM\textsubscript{10} and asthma ED visits were null overall and within both warm and cool seasons, respectively. Given the results from this study, future research identifying the seasonally varying sources and PM\textsubscript{10} components may help elucidate those that are key drivers of seasonal differences in asthma ED visits across urban-rural areas.

A potential seasonal allergenic component of PM\textsubscript{10} could be respirable antigenic particles smaller than 10μm in diameter from larger pollen grains [80, 81]. Allergenic plants, such as ragweed, release seasonal pollen during the fall season in SC and other eastern and midwestern states, particularly in more rural and agricultural regions like the SC midlands. Allergenic particle levels tend to increase after rain events [21]. Agriculture and biomass burning, also common in the Midlands, should also be further studied as potentially important seasonally varying sources of PM\textsubscript{10}, as seasonal variation in PM\textsubscript{10} fractions of elemental and organic carbon have been attributed to seasonal agricultural activity in other contexts [82]. However, allergens and other airborne irritants differ in mechanistic triggering of asthma exacerbations and may interact in complex ways to affect asthma pathogenesis across individuals [2], warranting additional research.

Summer had the lowest asthma burden in all of SC’s asthma seasons, yet two statistically significant air pollutant associations were found: a negative association with NO\textsubscript{x} and a positive association with PM\textsubscript{2.5}. The estimated positive association with PM\textsubscript{2.5}, is a relationship that others have found in warm seasons in different locations [3, 83]. NO\textsubscript{x}, reaches its lowest and least variable levels in SC’s summer asthma season, and it may further be involved in complex interactions beyond the scope of this study. The primary source of NO\textsubscript{x} is fuel combustion emissions [55] and NO\textsubscript{x} is subsequently monitored mainly in SC’s urban areas characterized by high vehicle traffic density [56]. As such, there is little non-urban monitored data for calibrating modeled NO\textsubscript{x} estimates in SC’s suburban and rural areas, which may be reflected by the fusion model’s somewhat mediocre NO\textsubscript{x} performance relative to other pollutants [41]. Furthermore, air temperature had a relatively strong negative association, which is highly
correlated with dewpoint temperature in summer in SC. The association with temperature, and by extension dewpoint temperature, indicates increased ED visit odds from cooler and drier conditions that are common in SC after weather fronts, as is similarly seen following thunderstorms [20].

By defining seasons relative to the outcome, we found that neither criteria pollutants nor weather were associated with asthma ED visits in a large portion of the year aligned with the winter and spring asthma seasons (January 1st–May 31st). Additional research is needed to tease apart drivers of ED visits in the medium-burden winter and medium-high-burden spring asthma seasons, respectively. However, it is important to contextualize the null associations with pollutants and weather covariates: outdoor ambient factors may simply play less of a role during these asthma seasons.

Common viruses, including influenza, usually peak in the coldest months, usually when people spend more time indoors [18]. Periods of high viral transmission encompass the winter and well into parts of the fall and spring in many places in the US [18]. In SC, temperatures are usually mild through fall, with appreciable cold temperatures often beginning only around early January each year, defined in this study as the winter asthma season. Others have found that daily viral transmission, annually peaking during the back-to-school portion of the fall and later in the winter, was the key predictor of asthma hospitalizations among children, and influenza prevalence was the key predictor of the annual winter surge in adult asthma hospitalizations [71]. We could not formally test the hypothesis that viruses are the main driver of the back-to-school surge in SC because we lacked viral transmission data. However, we saw a large spike each year around the time children went back to school in SC (Figs 2 and 3) that is suggestive of viral transmission as a potential contributor. Of additional interest, recent studies of the COVID-19 pandemic have found that asthma ED visit rates during this event were significantly reduced [84]. Researchers hypothesize that adoption of behaviors to reduce spread of the COVID-19 virus, such as wearing masks, are mechanisms that reduced transmission of many other types of viruses shown to exacerbate asthma [84, 85]. Given the mounting evidence of seasonal viral influences on asthma exacerbations, particularly during cold weather periods, future studies of the environmental drivers of seasonal differences in asthma should prioritize inclusion of such data.

Neither PM$_{2.5}$ nor PM$_{10}$ were significantly associated with ED visits in the spring asthma season. That no associations were found suggests that antigenic pollen particles from common spring-blooming plants such as grass and trees may have a minor or negligible role in asthma ED visits in a state like SC during its spring asthma season. This result contrasts with findings from many studies that have identified positive associations between asthma exacerbation events, such as ED visits, and both grass and tree pollen counts [12, 14, 16, 17, 19]. To more robustly assess hypotheses related to pollen in SC, inclusion of spatio-temporally varying pollen counts, species types, and particle size distributions need to be included.

4.1 Limitations

This research did not measure personal exposures, as it relied on interpolated census tract estimates of daily air pollutants and weather. Some air pollutants tend to vary greatly by location and across and within days (i.e., spatio-temporally). This research could not incorporate individual sensitivities to specific allergens, nor other individual asthma case-related information. We were unable to incorporate spatio-temporally resolved pollen counts or estimates, nor similar data for viruses. Time-varying indoor exposures such as environmental tobacco smoke (ETS) usage was not included. Similarly, children are not static in one location daily, but spend time indoors and outdoors at home, school, and many other locations. Consequently,
there was potential for exposure misclassification. In addition, we found a few implausible protective associations that were potentially indicative of bias introduced by other complex environmental factors and synergisms, inaccurate estimates, uncontrolled confounders, or other factors. It indicated that even with relatively precise spatio-temporal resolution exposure estimates, teasing out independent effects of single environmental factors among many in a low-ambient air pollution using administrative health data setting remains highly challenging. It makes a case for incorporating environmental mixtures as opposed to single pollutant study designs. Finally, though we relied on 3-day moving averages guided by previous research findings, other lag structures may indicate significant associations between the same pollutants we identified by season, or different combinations.

4.2 Conclusion

We identified increasing asthma disparities across several socio-demographic factors in SC from 2005–2014, a departure from the plateauing national trend. We uniquely outlined the concept of asthma seasons that were defined by local intra-annual periods of relative burden. From such a perspective, the fall asthma season was the most burdensome for ED visits among children, followed by the spring and winter asthma seasons. The summer asthma season was the least burdensome. Results from Bayesian case-crossover analyses supported our hypothesis that associations between air pollution, weather, and asthma ED visits varied by asthma season. Across urban-rural areas characterized by generally low air pollution levels, there were acute health effects associated with NO$_x$, particulate matter, and weather. But, associations differed by asthma season and PM size. With discretion, these results may be somewhat generalizable to geographically, demographically, and climatically-similar southern states. Our Bayesian methodology is reproducible for any location and can be tailored to any spatio-temporally-varying exposures for identifying and elucidating the acute health effects of local environmental exposures.

Acknowledgments

This research used air pollution estimates developed in a collaboration between Emory University and the Georgia Institute of Technology. Dr. Armistead (Ted) Russell and Nirupama Senthilkumar, were integral in facilitating our data access. We also acknowledge the South Carolina Revenue and Fiscal Affairs (SCRFA) office that provided high spatio-temporal resolution asthma ED visit outcome data.

Author Contributions

Conceptualization: Matthew Bozigar, Andrew B. Lawson, John L. Pearce, Erik R. Svendsen.

Data curation: Matthew Bozigar.

Formal analysis: Matthew Bozigar.

Funding acquisition: Matthew Bozigar.

Investigation: Matthew Bozigar.

Methodology: Matthew Bozigar, Andrew B. Lawson, John L. Pearce, Erik R. Svendsen, John E. Vena.

Project administration: Matthew Bozigar.

Resources: Matthew Bozigar, John L. Pearce, John E. Vena.

Software: Matthew Bozigar.
Supervision: Andrew B. Lawson, Erik R. Svendsen, John E. Vena.

Visualization: Matthew Bozigar.

Writing – original draft: Matthew Bozigar.

Writing – review & editing: Andrew B. Lawson, John L. Pearce, Erik R. Svendsen, John E. Vena.

References

1. Kim H, Kieckhefer GM, Greek AA, Joesch JM, Baydar N. Health care utilization by children with asthma. Prev Chronic Dis. 2009;8. PMID: 19080018

2. Eggleston PA. Complex interactions of pollutant and allergen exposures and their impact on people with asthma. Pediatrics. 2009;123. https://doi.org/10.1542/peds.2008-2233F PMID: 19221159

3. Delfino RJ, Wu J, Tjoa T, Gullesserian SK, Nickerson B, Gillen DL. Asthma morbidity and ambient air pollution. Epidemiology. 2014; 25: 48–57. https://doi.org/10.1097/EDE.000000000000016 PMID: 24240657

4. Orellano P, Quaranta N, Reynoso J, Balbi B, Vasquez J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. Sun Q, editor. PLoS One. 2017; 12: e0174050. https://doi.org/10.1371/journal.pone.0174050 PMID: 28319180

5. Schatz M, Zeiger RS, Zhang F, Chen W, Yang SJ, Camargo CA. Overweight/obesity and risk of seasonal asthma exacerbations. J Allergy Clin Immunol Pract. 2013; 1: 618–622. https://doi.org/10.1016/j.jaip.2013.07.009 PMID: 24565709

6. Strickland MJ, Darrow LA, Klein M, Flanders WD, Sarnat JA, Waller LA, et al. Short-term associations between ambient air pollutants and asthma emergency room visits. Am J Respir Crit Care Med. 2010; 182: 307–316. https://doi.org/10.1164/rccm.200908-1201OC PMID: 20378732

7. Mohr LB, Luo S, Mathias E, Tobing R, Homan S, Sterling D. Influence of season and temperature on the relationship of elemental carbon air pollution to pediatric asthma emergency room visits. J Asthma. 2008; 45: 936–943. https://doi.org/10.1080/02770900802404082 PMID: 19085586

8. Jariwala SP, Kurada S, Moday H, Thanjan A, Bastone L, Khananashvili M, et al. Association between tree pollen counts and asthma ED visits in a high-density urban center. J Asthma. 2011; 48: 442–448. https://doi.org/10.3109/02770900802404082 PMID: 19085586

9. Johnston NW, Johnston SL, Duncan JM, Greene JM, Kebadze T, Keith PK, et al. The September epidemic of asthma exacerbations in children: A search for etiology. J Allergy Clin Immunol. 2005; 115: 132–138. https://doi.org/10.1016/j.jaci.2004.09.025 PMID: 15637559

10. Heguy L, Gameau M, Goldberg MS, Rapchoz M, Guay F, Valois MF. Associations between grass and weed pollen and emergency department visits for asthma among children in Montreal. Environ Res. 2008; 106: 203–211. https://doi.org/10.1016/j.envres.2007.10.005 PMID: 18093580

11. Gleason JA, Bielory L, Fagliano JA. Associations between ozone, PM2.5, and four pollen types on emergency department pediatric asthma events during the warm season in New Jersey: A case-cross-over study. Environ Res. 2014; 132: 421–429. https://doi.org/10.1016/j.envres.2014.03.035 PMID: 24858282

12. Darrow LA, Hess J, Rogers CA, Tolbert PE, Klein M, Sarnat SE. Ambient pollen concentrations and emergency department visits for asthma and wheeze. J Allergy Clin Immunol. 2012; 130: 630–638.e4. https://doi.org/10.1016/j.jaci.2012.06.020 PMID: 22840851
17. Sun X, Waller A, Yeatts KB, The L. Pollen concentration and asthma exacerbations in Wake County, North Carolina, 2006–2012. Sci Total Environ. 2016; 544: 185–191. https://doi.org/10.1016/j.scitotenv.2015.11.100 PMID: 26657364
18. Monto AS. Occurrence of respiratory virus: Time, place and person. Pediatr Infect Dis J. 2004; 23: 58–64. https://doi.org/10.1097/01.inf.0000108193.91607.34 PMID: 14730271
19. Erbas B, Akram M, Dharmage SC, Tham R, Dennekamp M, Newbigin E, et al. The role of seasonal grass pollen on childhood asthma emergency department presentations. Clin Exp Allergy. 2012; 42: 799–805. https://doi.org/10.1111/j.1365-2222.2012.03995.x PMID: 22515396
20. Marks GB, Colquhoun JR, Girgis ST, Hjelmroos Koski M, Treloar ABA, Hansen P, et al. Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax. 2001; 56: 468–471. https://doi.org/10.1136/thorax.56.6.468 PMID: 11359963
21. Schäppi GF, Taylor PE, Pain MCF, Cameron PA, Dent AW, Staff IA, et al. Concentrations of major grass group 5 allergens in pollen grains and atmospheric particles: Implications for hay fever and allergic asthma sufferers sensitized to grass pollen allergens. Clin Exp Allergy. 1999; 29: 633–641. https://doi.org/10.1046/j.1365-2222.1999.00567.x PMID: 10231323
22. Liu L, Liu C, Chen R, Zhou Y, Meng X, Hong J, et al. Associations of short-term exposure to air pollution and emergency department visits for pediatric asthma in Shanghai, China. Chemosphere. 2021; 263: 127856. https://doi.org/10.1016/j.chemosphere.2020.127856 PMID: 32822929
23. Bi J, D’Souza RR, Rich DQ, Hopke PK, Russell AG, Liu Y, et al. Temporal changes in short-term associations between cardiorespiratory emergency department visits and PM2.5 in Los Angeles, 2005 to 2016. Environ Res. 2020; 190: 109967. https://doi.org/10.1016/j.envres.2020.109967 PMID: 32810677
24. Miranda ML, Edwards SE, Keating MH, Paul CJ. Making the environmental justice grade: The relative burden of air pollution exposure in the United States. Int J Environ Res Public Health. 2011; 8: 1755–1771. https://doi.org/10.3390/ijerph8061755 PMID: 21776200
25. Castro CR, Tarabichi Y, Gunzler DD, Ayache M. Seasonal trends in asthma exacerbations: Are they the same in asthma subgroups? Ann Allergy, Asthma Immunol. 2019; 123: 220–222. https://doi.org/10.1016/j.anai.2019.05.001 PMID: 31082480
26. Wisniewski JA, McLaughlin AP, Stenger PJ, Patie J, Brown MA, El-Dahr JM, et al. A comparison of seasonal trends in asthma exacerbations among children from geographic regions with different climates. Allergy Asthma Proc. 2016; 37: 475–481. https://doi.org/10.2500/aap.2016.37.3994 PMID: 27931303
27. Fleming DM, Cross KW, Sunderland R, Ross AM. Comparison of the seasonal patterns of asthma identified in general practitioner episodes, hospital admissions, and deaths. Thorax. 2000; 55: 662–665. https://doi.org/10.1136/thorax.55.8.662 PMID: 10899242
28. Gong H, Linn WS, Sioutas C, Terrell SL, Clark KW, Anderson KR, et al. Controlled exposures of healthy and asthmatic volunteers to concentrated ambient fine particles in Los Angeles. Inhal Toxicol. 2003; 15: 305–325. https://doi.org/10.1080/08958370304455 PMID: 12635001
29. Fakhri AA, Ilic LM, Wellenius GA, Urch B, Silverman F, Gold DR, et al. Autonomic effects of fine particulate exposure in young healthy adults: Effect modification by ozone. Environ Health Perspect. 2009; 117: 1287–1292. https://doi.org/10.1289/ehp.0900541 PMID: 19672410
30. Maclure M. The case-crossover design: A method for studying transient effects on the risk of acute events. Am J Epidemiol. 1991; 133: 144–153. https://doi.org/10.1093/oxfordjournals.aje.a115853 PMID: 1985444
31. Kedem B, Konstantinos F. Regression Models for Time Series Analysis. Hoboken, NJ: John Wiley & Sons, Inc.; 2002.
32. Li S, Mukherjee B, Batterner S, Ghosh M. Bayesian Analysis of Time-Series Data under Case-Crossover Designs: Posterior Equivalence and Inference. Biometrics. 2013; 69: 925–936. https://doi.org/10.1111/biom.12102 PMID: 24289144
33. Guo Y, Li S, Tawatsupa B, Punnasiri K, Jaakkola JJK, Williams G. The association between air pollution and mortality in Thailand. Sci Rep. 2014; 4: 1–8. https://doi.org/10.1038/srep05509 PMID: 24981315
34. United States Environmental Protection Agency. 2012 national ambient air quality standards (NAAQS) for particulate matter (PM). 2020. Available: https://www.epa.gov/pm-pollution/2012-national-ambient-air-quality-standards-naaqs-particulate-matter-pm.
35. Valet RS, Gebretsadik T, Carroll KN, Wu P, Dupont WD, Mitchel EF, et al. High asthma prevalence and increased morbidity among rural children in a Medicaid cohort. Ann Allergy, Asthma Immunol. 2011; 106: 467–473. https://doi.org/10.1016/j.anai.2011.02.013 PMID: 21624745
36. Perry TT, Rettiganti M, Brown RH, Nick TG, Jones SM. Uncontrolled asthma and factors related to morbidity in an impoverished, rural environment. Ann Allergy, Asthma Immunol. 2012; 108: 254–259. https://doi.org/10.1016/j.anai.2012.01.017 PMID: 22469445
37. Bozigar M, Lawson AB, Pearce JL, King K, Svendsen ER. A Bayesian spatio-temporal analysis of neighborhood pediatric asthma emergency department visit disparities. Health Place. 2020; 66: 102426. https://doi.org/10.1016/j.healthplace.2020.102426 PMID: 33011491

38. Bozigar M, Lawson A, Pearce J, King K, Svendsen E. A geographic identifier assignment algorithm with Bayesian variable selection to identify neighborhood factors associated with emergency department visit disparities for asthma. Int J Health Geogr. 2020; 19: 1–16. https://doi.org/10.1186/s12942-020-0197-5 PMID: 32013994

39. US Census Bureau. South Carolina. 2010.

40. Appel KW, Foley KM, Bash JO, Pinder RW, Dennis RL, Allen DJ, et al. A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002–2006. Geosci Model Dev. 2011; 4: 357–371. https://doi.org/10.5194/gmd-4-357-2011

41. Friberg MD, Zhai X, Holmes HA, Chang HH, Strickland MJ, Samat SE, et al. Method for fusing observational data and chemical transport model simulations to estimate spatiotemporally resolved ambient air pollution. Environ Sci Technol. 2016; 50: 3695–3705. https://doi.org/10.1021/acs.est.5b05134 PMID: 26923334

42. Delfino RJ, Chang J, Wu J, Ren C, Tjoa T, Nickerson B, et al. Repeated hospital encounters for asthma in children and exposure to traffic-related air pollution near the home. Ann Allergy, Asthma Immunol. 2009; 102: 138–144. https://doi.org/10.1016/S1081-1206(10)60244-X PMID: 19230465

43. Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect. 2008; 116: 680–686. https://doi.org/10.1289/ehp.1081ehp.10952 PMID: 18470315

44. PRISM Climate Group. PRISM Climate Group. 2004 [cited 1 Jul 2017]. Available: http://www.prism.oregonstate.edu/.

45. Carracedo-Martínez E, Taracido M, Tobias A, Saez M, Figueiras A. Case-crossover analysis of air pollution health effects: A systematic review of methodology and application. Environ Health Perspect. 2010; 118: 1173–1182. https://doi.org/10.1289/ehp.0901485 PMID: 20356818

46. Janes H, Sheppard L, Lumley T. Overlap bias in the case-crossover design, with application to air pollution exposures. Stat Med. 2005; 24: 285–300. https://doi.org/10.1002/sim.1889 PMID: 15546133

47. Janes H, Sheppard L, Lumley T. Case crossover analyses of air pollution exposure data: Referent selection strategies and their implications for bias. Epidemiology. 2005; 16: 717–726. https://doi.org/10.1097/01.ede.0000181315.18836.9d PMID: 16222160

48. Chang HH, Pan A, Lary DJ, Waller LA, Zhang L, Brackin BT, et al. Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS. Environ Monit Assess. 2019;191. https://doi.org/10.1007/s10661-019-7311-9 PMID: 30810872

49. Gleason JA, Fagliano JA. Associations of daily pediatric asthma emergency department visits with air pollution in Newark, NJ: Utilizing time-series and case-crossover study designs. J Asthma. 2015; 52: 815–822. https://doi.org/10.3109/02770903.2015.1033726 PMID: 26221997

50. Lawson AB. Bayesian disease mapping: Hierarchical modeling in spatial epidemiology. 3rd ed. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. 2008.

51. Gelman A. Prior Choice Recommendations. 2018 [cited 2 Nov 2019]. Available: https://github.com/stan-dev/stan/wiki/prior-choice-recommendations.

52. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

53. NIMBLE Development Team. NIMBLE: MCMC, Particle Filtering, and Programmable Hierarchical Modeling. 2018. https://doi.org/10.5281/zenodo.1322114

54. de Valpine P, Turek D, Paciorek CJ, Anderson-Bergman C, Lang DT, Bodik R. Programming with models: Writing statistical algorithms for general model structures With NIMBLE. J Comput Graph Stat. 2017; 26: 403–413. https://doi.org/10.1080/10618600.2016.1172487

55. van der A, RJ, Eskes HJ, Boersma KF, van Noije TPC, Van Roozendael M, De Smedt I, et al. Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. J Geophys Res Atmos. 2008; 113: 1–12. https://doi.org/10.1029/2007JD009021

56. South Carolina Department of Environmental Health and Control. Ambient air monitoring network. 2021. Available: https://scdhec.gov/environment/your-air/ambient-air-monitoring-network.

57. Hosmer DW Jr., Lemeshow S, Sturdivant RX. Applied logistic regression. Third Edt. Hoboken, NJ: John Wiley & Sons, Inc.; 2013.

58. Pearce J, Commodore A, Neelon B, Boaz R, Bozigar M, Wilson S, et al. A novel approach for characterizing neighborhood-level trends in particulate matter using concentration and size fraction distributions: a case study in Charleston, SC. Air Qual Atmos Heal. 2017; 10: 1181–1192. https://doi.org/10.1007/s11869-017-0503-y
59. Bryant-Stephens T. Asthma disparities in urban environments. J Allergy Clin Immunol. 2009; 123: 1199–1206. https://doi.org/10.1067/j.jaci.2009.04.030 PMID: 19501229

60. Claudio L, Stingone JA, Godbold J. Prevalence of childhood asthma in urban communities: The impact of ethnicity and income. Ann Epidemiol. 2006; 16: 332–340. https://doi.org/10.1016/j.annepidem.2005.06.046 PMID: 16249620

61. Togias A, Fenton MJ, Gergen PJ, Rotrosen D, Fauci AS. Asthma in the inner city: The perspective of the National Institute of Allergy and Infectious Diseases. J Allergy Clin Immunol. 2010; 125: 540–544. https://doi.org/10.1016/j.jaci.2010.01.040 PMID: 20226290

62. Akinbami LJ, Simon AE, Rossen LM. Changing trends in asthma prevalence among children. Pediatrics. 2016; 137: e20152354. https://doi.org/10.1542/peds.2015-2354 PMID: 26712860

63. Bulkhi AA, Shepard K V., Casale TB, Cardet JC. Elevated testosterone is associated with decreased likelihood of current asthma regardless of sex. J Allergy Clin Immunol Pract. 2020; 8: 3029–3035.e4. https://doi.org/10.1016/j.jaip.2020.05.022 PMID: 32485237

64. Yung JA, Fuseini H, Newcomb DC. Hormones, sex, and asthma. Ann Allergy, Asthma Immunol. 2018; 120: 488–494. https://doi.org/10.1016/j.anai.2018.01.016 PMID: 29410216

65. Babatunde OA, Adams SA, Eberth JM, Wirth MD, Choi SK, Hebert JR. Racial disparities in endometrial cancer mortality-to-incidence ratios among Blacks and Whites in South Carolina. Cancer Causes Control. 2016; 27: 503–511. https://doi.org/10.1007/s10552-016-0724-7 PMID: 26830900

66. Wallace K, Hill EG, Lewin DN, Williamson G, Oppenheimer S, Ford ME, et al. Racial disparities in advanced-stage colorectal cancer survival. Cancer Causes Control. 2013; 24: 463–471. https://doi.org/10.1007/s10552-012-0133-5 PMID: 23296454

67. Mcelligott JT, Summer AP. Health care utilization patterns for young children in rural counties of the I-95 corridor of South Carolina. J Rural Heal. 2013; 29: 198–204. https://doi.org/10.1111/j.1748-0361.2012.00434.x PMID: 23551650

68. Goodwin AJ, Nadig NR, McElligott JT, Simpson KN, Ford DW. Where you live matters: The impact of place of residence on severe sepsis incidence and mortality. Chest. 2016; 150: 829–836. https://doi.org/10.1016/j.chest.2016.07.004 PMID: 27445093

69. Wilson S, Burwell-Naney K, Jiang C, Zhang H, Samapenthapudhi A, Murray R, et al. Assessment of sociodemographic and geographic disparities in cancer risk from air toxics in South Carolina. Environ Res. 2015; 140: 562–568. https://doi.org/10.1016/j.envres.2015.05.016 PMID: 26037107

70. Cohen HA, Blau H, Hosohen M, Batat E, Balicer RD. Seasonality of asthma: A retrospective population study. Pediatrics. 2014;133. https://doi.org/10.1542/peds.2013-2022 PMID: 24613565

71. Eggo RM, Scott JG, Galvani AP, Meyers LA. Respiratory virus transmission dynamics determine timing of asthma exacerbation peaks: Evidence from a population-level model. Proc Natl Acad Sci U S A. 2016; 113: 2194–2199. https://doi.org/10.1073/pnas.1518677113 PMID: 26858436

72. American Lung Association. Report card: South Carolina. [cited 11 Nov 2019]. Available: https://www.lung.org/our-initiatives/healthy-air/sota/city-rankings/states/south-carolina/.

73. World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease. Geneva, Switzerland; 2016.

74. Pennington AF, Strickland MJ, Klein M, Zhai X, Bates JT, Drews-Botsch C, et al. Exposure to mobile source air pollution in early-life and childhood asthma incidence: The Kaiser air pollution and pediatric asthma study. Epidemiology. 2018; 29: 22–30. https://doi.org/10.1097/EDE.0000000000000754 PMID: 28926373

75. Peng RD, Chang HH, Bell ML, McDermott A, Zeger SL, Samet JM, et al. Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among medicare patients. JAMA—J Am Med Assoc. 2008; 299: 2172–2179. https://doi.org/10.1001/jama.299.18.2172 PMID: 18477784

76. Powell H, Krall JR, Wang Y, Bell ML, Peng RD. Ambient coarse particulate matter and hospital admissions in the medicare cohort air pollution study, 1999–2010. Environ Health Perspect. 2015; 123: 1152–1158. https://doi.org/10.1289/ehp.1408720 PMID: 25872223

77. Keet CA, Keller JP, Peng RD. Long-term coarse particulate matter exposure is associated with asthma among children in medicaid. Am J Respir Crit Care Med. 2018; 197: 737–746. https://doi.org/10.1164/rccm.201706-1267OC PMID: 29243937

78. Foley KM, Roselle SJ, Appel KW, Bhave P V., Pleim JE, Otte TL, et al. Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geosci Model Dev. 2010; 3: 205–226. https://doi.org/10.5194/gmd-3-205-2010

79. Carlton AG, Bhave P V., Napelenok SL, Edney EO, Sarwar G, Pinder RW, et al. Model representation of secondary organic aerosol in CMAQv4.7. Environ Sci Technol. 2010; 44: 8553–8560. https://doi.org/10.1021/es100636q PMID: 20883028
80. Spieksma FTM, Kramps JA, Linden AC, Nikkels BH, Plomp A, Koerten HK, et al. Evidence of grass-pollen allergenic activity in the smaller micronic atmospheric aerosol fraction. Clin Exp Allergy. 1990; 20: 273–280. https://doi.org/10.1111/j.1365-2222.1990.tb02683.x PMID: 2364307

81. Busse WW, Reed CE, Hoehne JH. Where is the allergic reaction in ragweed asthma?. II. Demonstration of ragweed antigen in airborne particles smaller than pollen. J Allergy Clin Immunol. 1972; 50: 289–293. https://doi.org/10.1016/0091-6749(72)90027-9 PMID: 5076354

82. Witkowska A, Lewandowska AU, Saniewska D, Falkowska LM. Effect of agriculture and vegetation on carbonaceous aerosol concentrations (PM2.5 and PM10) in Puszcza Borecka National Nature Reserve (Poland). Air Qual Atmos Heal. 2016; 9: 761–773. https://doi.org/10.1007/s11869-015-0378-8 PMID: 27785158

83. Fan J, Li S, Fan C, Bai Z, Yang K. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci Pollut Res. 2016; 23: 843–850. https://doi.org/10.1007/s11356-015-5321-x PMID: 26347419

84. Taquechel K, Diwadkar AR, Sayed S, Dudley JW, Grundmeier RW, Kenyon CC, et al. Pediatric asthma health care utilization, viral testing, and air pollution changes during the COVID-19 pandemic. J Allergy Clin Immunol Pract. 2020; 8: 3378–3387.e11. https://doi.org/10.1016/j.jaip.2020.07.057 PMID: 32827728

85. Saliccioli JD, She L, Tulchinsky A, Rockhold F, Cardet JC, Israel E. Effect of COVID-19 on asthma exacerbation. J Allergy Clin Immunol Pract. 2021; 9: 2896–2899.e1. https://doi.org/10.1016/j.jaip.2021.04.038 PMID: 33940216