Abstract — Operating system is a bridge between system and user. An operating system (OS) is a software program that manages the hardware and software resources of a computer. The OS performs basic tasks, such as controlling and allocating memory, prioritizing the processing of instructions, controlling input and output devices, facilitating networking, and managing files. It is difficult to present a complete as well as deep account of operating systems developed till date. So, this paper tries to overview only a subset of the available operating systems and its different categories. Operating systems are being developed by a large number of academic and commercial organizations for the last several decades. This paper, therefore, concentrates on the different categories of operating systems with special emphasis to those that had deep impact on the evolution process. The aim of this paper is to provide a brief timely commentary on the different categories important operating systems available today.

Keywords: Operating System, Internal Architecture, GUI, CUI.

I. INTRODUCTION

An operating system is a software that manages all the resources of a computer, both hardware and software, and provides an environment in which a user can execute programs in a convenient and efficient manner [1]. However, the principles and concepts used in the operating systems were not standardized in a day. In fact, operating systems have been evolving through the years [2]. There were no operating systems in the early computers. In those systems, every program required full hardware specification to execute correctly and perform each trivial task, and its own drivers for peripheral devices like card readers and line printers. The growing complexity of the computer hardware and the application programs eventually made operating systems a necessity. Initially, operating systems were not fully automatic as Hansen [3] defined an operating system as a set of manual and automatic procedures that enable a group of people to share a computer installation efficiently. It is fortunate enough for today’s computer users that modern operating systems are fully automatic. Over the years, sustained research in operating systems gave rise to many novel concepts and ideas. Operating systems exist even today because they offer a reasonable way to solve the problem of creating a usable computing system [1]. Moreover, sophisticated operating systems increase the efficiency and consequently decrease the cost of using a computer [5]. A large number of operating systems of various types are available for both research and commercial purposes, and these operating systems vary greatly in their structures and functionalities [1].

Computers have progressed and developed so have the operating systems. Below is a basic list of the different operating systems and a few examples of operating systems that fall into each of the categories. Many computer operating systems will fall into more than one of the below categories. With the integration of computers and telecommunications, the mode of information access becomes an important issue. The designs of the prevalent human machine interfaces are more suitable for easier interpretation of information by computers than by human beings. The concept of machine being able to interact with people in a mode that is natural as well as convenient for human beings is very appealing.

II. TYPES OF OPERATING SYSTEMS

Operating systems can be differentiated based on different parameters used by the existing operating systems of computers.

• Interface: CUI, GUI, TUI, VUI, HSUI
• Internal Architecture: By kernel type
• Mode: Batch Processing Operating System, Real Time Operating System, Single User, Single Tasking Operating System, Single User, Multi-Tasking Operating System, Multi-User Operating System, Distributed Operating System

III. CLASSIFICATION BASED ON INTERFACE

The manner in which users interact with a program is known as its user interface. The user interface controls how data is entered and how information is displayed. There are mainly five types of user interfaces:
A. CUI (Command user Interface) or CLI (Command Line Interface)

The command line interface requires the use of the keyboard to enter commands to the computer. All commands are entered at the prompt and require exact spelling otherwise an error message will be displayed. This method of instructing a computer to perform a given task is referred to as "entering" a command: the system waits for the user to conclude the submitting of the text command by pressing the "Enter" key (a descendant of the "carriage return" key of a typewriter keyboard). A command-line interpreter then receives, parses, and executes the requested user command.

Table 1. List of Command Line user interface

S. No	Name	Developed by	Year
1	MS-Dos	Microsoft Corporation	1981
2	IBM PC Dos	IBM and Microsoft	1980
3	CP/M CCP	Digital Research, Inc. / Gary Kildall	1983
4	DR-DOS	Digital Research	1976
5	Novell DOS	Digital Research	1976
6	OS/2	IBM and Microsoft	1987
7	DEC’s RSX	Digital Equipment Corporation	1972
8	RSTS	Digital Equipment Corporation	1970
9	4DOS for DOS	JP Software	2004

B. GUI (Graphical User Interface)

Graphical User Interface allow users to enter commands by pointing and clicking on icons, buttons, menu items and other objects with a mouse or other pointing devices. Programs running within a graphical environment are executed in a rectangular box called a window. GUIs can be used in computers, hand-held devices such as MP3 players, portable media players or gaming devices, household appliances and office equipment. A GUI represents the information and actions available to a user through graphical icons and visual indicators such as secondary notation, as opposed to text-based interfaces, typed command labels or text navigation. The actions are usually performed through direct manipulation of the graphical elements. Unlike a command line operating system like UNIX or MS-DOS, GUI Operating Systems are much easier for end-users to learn and use because commands do not need to be known or memorized. Because of their ease of use, GUI Operating Systems have become the dominant operating system used by end-users today.

Table 2. List of Graphical user interface

S. No	Name	Developed by	Year
1	Xerox Alto	Xerox	1973
2	Xerox Star	Xerox	1977
3	Xerox Global View 2.1	Xerox	1996
4	Xerox GlobalView for X	Xerox	1992
5	Xerox Rooms for X Windows	Xerox	1992
6	Three Rivers / ICL Perq	Three River Computer	1979
7	VisiCorp Visi On	IBM Inc.	1982
8	GEM 1.1	Digital Research	1984
9	GEM 2.0	Apple Computer	1985
10	GEM 3.11		1988
11	Atari TOS 1.0	Atari ST and TT series	1985
S. No	Name Developed by	Year	
------	-------------------	------	
12	Tandy Deskmate 3.69	Tandy Radio	1984
13	DESQview For the Commodore 64	Berkley Softworks	1985
14	DESQview/X	Quarterdeck	1985
15	AmigaOS 3.5	Amiga International Inc.	1985
16	RISC OS 3	RISCOS Ltd.	1992
17	RISC OS 4	RISCOS Ltd.	1999
18	BeOS	BE Inc.	1991
19	QNX Demo Disk	QNX Software Systems	1982
20	Microsoft OS/2 V1.3	Microsoft and IBM	1987
21	IBM OS/2 2.0	IBM	1992
22	OS/2 Warp 3	Microsoft	1994
23	IBM OS/2 Warp 4	Microsoft and IBM	1996
24	eComStation Demo CD	Serenity Systems	2001
25	Apple Lisa	Apple Computer Inc.	1986
26	Apple Desktop	Apple Computer	1996
27	OS/2 Warp 3	Apple Computer	1983
28	Quark Catalyst 3.0	Quark Incorporation	1982
29	Apple Macintosh	Apple Inc.	1984
30	Mac OS 7.5/7.6	Apple computer	1997
31	Mac OS 8.1	Apple computer	1997
32	Mac OS 9.2.2	Apple Computer Inc.	1999
33	A1 Ease	Apple Computer	1998
34	A1 Ease for Workgroups	Apple Computer	1988
35	OPENSTEP 4.2	Sun Microsoft	1993
36	Rhapsody Developer Release 2	Apple computer	1998
37	Mac OS X 10.1	Apple Inc.	2001
39	Mac OS X 10.4.6 (Tiger)	Apple Inc.	2005
40	Mac OS X 10.5 (Leopard)	Apple Inc.	2007
41	Linspire Five-O	Linspire Inc.	2007
42	Mandrake Linux 9.0		
43	Red Hat Linux 8.0 With GNOME/Nautilus 2.06	Red Hat	2004
44	IRIX 6.5	Silicon Graphics, Inc.	1998
45	Wine		
46	Fedora 7 Gnome		
47	Ubuntu Linux 11.10	Canonical Ltd.	
48	gOS 2.0.0-beta1	Good OS LLC.	
49	NetBSD 5.0	Berkeley Software Distribution	
50	SunOS	Sun Microsystems	1999
51	Sants Tools / SunView / SunOS 3.5		
52	Solaris	Sun Microsystems	1993
53	GlobalView	Xerox	1992
54	X Windows System		
55	ReactOS	Shane Brooks	1998
56	Windows 1.0	Microsoft	1985
57	Windows 2.0	Microsoft	1987
58	Windows 3.0	Microsoft Windows	1990
59	Windows 3.1x	Microsoft	1992
60	Windows 95	Microsoft	1995
61	Windows 98	Microsoft	1998
62	Windows ME	Microsoft	2000
63	Windows NT	Microsoft	1993
64	Windows 2000	Microsoft	2000
65	Windows XP	Microsoft	2001
66	Windows Server 2003	Microsoft	2003

C. **TUI (Touch screen User Interface)**

A touchscreen is an electronic visual display that can detect the presence and location of a touch within the display area. The term generally refers to touching the display of the device with a finger or hand. Touchscreens can also sense other passive objects, such as a stylus. Touchscreens are common in devices such as all-in-one computers, tablet computers, and smartphones.

S. No	Name Developed by	Year	
1	Linpus Linux OS		
2	Windows 7	Microsoft	2009
3	Capacitive touch screen	E.A. Johnson	1972
4	Kiosk systems	University of Illinois at Urbana-Champaign	1977
5	Point of sale systems	McDonald’s	1974
6	ATM	John Shepherd-Barron	1967
7	PDA	Psion	1986
8	Fairlight CMI	Peter Vogel and Kim Ryrie	1979
9	HP-150	Hewlett-Packard	1983
10	PLATO IV	University of Illinois	1970
11	iPad	Apple Inc.	2010
12	Smartphone	IBM, Nokia, Microsoft	1992-2000

D. **VUI (Voice User Interface)**

A Voice-user interface (VUI) makes human interaction with computers possible through a voice/speech platform in order to initiate an automated service or process. A VUI is the interface to any speech application. Controlling a machine by simply talking to system. VUIs have become more commonplace, and people are taking advantage of the value that these hands-free, eyes-free interfaces provide in many situations.

E. **BSUI (Brain Signal User Interface)**

IV. **CLASSIFICATION BASED ON INTERNAL ARCHITECTURE**

The internal architecture of Operating Systems are.

- Monolithic Kernel
- Microkernel Kernel
- Hybrid System
- Nanokernel
- Exokernel
A. Monolithic Kernel

A monolithic kernel is an operating system architecture where the entire operating system is working in the kernel space and alone as supervisor mode. The OS is written as a collection of Procedures, each of which can call any of the objects whenever it is needed. Each Procedure in the system has a well-defined interface in terms of parameters and results, is free to call any other one. The instruction switch machine from user mode to kernel mode and transfer control to the operating system. [13][14]

B. Microkernel Architecture

Microkernel architecture includes only a very small number of services within the kernel in an attempt to keep it small and scalable. The services typically include low-level memory management, inter-process communication and basic process synchronization to enable processes to cooperate. [14] Its designs, most operating system components, such as process management and device management, execute outside the kernel with a lower level of system access. Kernels larger than 20,000 lines are generally not considered microkernel. [16][17]

C. Hybrid Kernel(Macrokernel) Architecture

A hybrid kernel is a kernel architecture based on combining aspects of microkernel and monolithic kernel architectures used in computer operating systems. The idea behind this category is to have a kernel structure similar to a microkernel, but implemented in terms of a monolithic kernel. In contrast to a microkernel, all operating system services are in kernel space. While there is no performance overhead for message passing and context switching between kernel and user mode, as in monolithic kernels, there are no performance benefits of having services in user space, as in microkernel.

D. Nanokernel Architecture

A kernel is a very small kernel where the total amount of kernel code, executing in the privileged mode of the hardware. [3] The term picokernel was sometimes used to further emphasize small size. It was a sardonic response to Mach, which claimed to be a microkernel while being monolithic, essentially unstructured, and slower than the systems it sought to replace. Subsequent reuse of and response to the term, including the picokernel coinage, suggest that the point was largely missed. Both Nanokernel and picokernel have subsequently come to have the same meaning expressed by the term microkernel. A virtualization layer underneath an operating system, this is more correctly referred to as a hypervisor. A hardware
abstraction layer that forms the lowest-level part of a
kernel, sometimes used to provide real-time functionality to
normal OS's, likes Adeos. [6]

Figure 5. Hybrid Kernel Architecture [23]

E. Exokernel Architecture

Exokernel is tiny, since functionality is limited to
ensuring protection and multiplexing of resources, which are
vastly simpler than conventional microkernel’s
implementation of message passing and monolithic kernels'
implementation of abstractions. The idea behind Exokernel
is to force as few abstractions as possible on developers,
ensuring them to make as many decisions as possible about
hardware abstractions. Exokernel can be seen as an
application of the end-to-end principle to operating
systems, in that they do not force an application program to
layer its abstractions on top of other abstractions that were
designed with different requirements in mind. For example,in
the MIT Exokernel project, the Cheetah web server
stores preformatted Internet Protocol packets on the disk,
the kernel provides safe access to the disk by preventing
unauthorized reading and writing, but how the disk is
abstracted is up to the application or the libraries the
application uses.

Figure 6. Exokernel Architecture [24]

V. CLASSIFICATION BASED ON PROCESSING
CAPABILITY

Known modes of Operating Systems are
• Batch Processing Operating System
• Real Time Operating System
• Single User, Single Tasking Operating System
• Single User, Multi-Tasking Operating System
• Multi-User Operating System
• Distributed Operating System

A. Batch Processing Operating System

Interactions between the user and processor are limited in
batch processing OS or there is no interaction at all during
the execution of work. Data and programs that need to be
processed are bundled and collected as a ‘batch’ and
executed together. Batch processing OS are ideal in
situations where the large amounts of data to be processed
or similar data needs to be processed or similar processing
is involved when executing the data. The system is capable
of identifying times when the processor is idle at which
time ‘batches’ maybe processed. Processing is all
performed automatically without any user intervention.
e.g.: SCOPE, KRONOS, NOS and EXEC [18]

B. Real-time Operating System

Real-Time OS which responds to inputs, immediately
and generates results, instantly. This type of system is
usually used to control scientific devices or complex
systems that require a lot of processing like machinery
and industrial systems and similar small instruments where
memory and resources are crucial and constricted. [5] This
type of devices have very limited or zero-end user utilities,
so more effort goes into making the OS really memory
efficient and fast (less coding), so as to minimize the
execution time, in turn saving on power as well. e.g.:
VxWorks, PikeOS, eCos, QNX, MontaVista Linux and RTLinux. Windows CE, 8086 etc.

C. Single User, Single tasking Operating System

Single-user OS are usable by a single user at a time. Being able to have multiple accounts on a Windows operating system does not make it a multi-user system. This type of OS is better version of Real time OS, where one user can do effectively one thing at a time, which means that doing more than one thing at a time is difficult in this type of OS. For instance: The palm OS in palm hand held computer is an example of single-task OS.

D. Single user, Multi-Tasking Operating System

It allows more than one program to run concurrently like printing, scanning, word processing etc. e.g. MS Windows and Apple’s Mac OS. Several applications maybe simultaneously loaded and used in the memory, while the processor handles only one application at a particular time it is capable of switching between the applications effectively to apparently simultaneously execute each application. Lots of operating system is seen everywhere today and is the most common type of OS, the Windows operating system would be an example. [19]

E. Multi-User Operating System

It allows multiple users to simultaneously use the system, the processor splits its resources and handles one user at a time, the speed and efficiency at which it does this makes it apparent that users are simultaneously using the system, some network systems utilize this kind of operating system. Unix, VMS and mainframe operating systems, such as MVS, are examples of multi-user operating system.

F. Distributed Operating System

In a distributed system, software and data maybe distributed around the system, programs and files maybe stored on different storage devices which are located in different geographical locations and maybe accessed from different computer terminals. While we are mostly accustomed to seeing multi-tasking and multi-user operating systems, the other operating systems are usually used in companies and firms to power special systems. e.g.: DYSEAC, SEAC, Lincoln TX-2, AMOeba. [20][21]

VI. CONCLUSION

In this paper we have presented the Heterogeneous Operating Systems with examples. We describe the information regarding operating system and issues or benefits of operating system so, it’s a paper for awareness of operating system. Given the current state of the operating system market and the research field, GUI may be used to provide a bridge between both fields and promote the development of more flexible and cooperative operating systems. This would provide system administrators and programmers with the flexibility needed to develop user-friendly operating environments and applications that are not limited by the choice of a single OS.

REFERENCES

[1] Silberschatz, A., Galvin, P.B. and Gagne, G., Operating System Principles. 7th ed., John Wiley & Sons, 2006.
[2] Tanenbaum, A.S. and Woodhull, A.S., Operating Systems Design and Implementation. 3rd ed., Prentice-Hall, 2006.
[3] Alan C. Bomberger, A. Peri Frantz, William S. Frantz, Ann C. Hardy, Norman Hardy, Charles R. Landau, Jonathan S. Shapiro, The KeyKOS® Nanokernel Architecture in Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel Architectures, USENIX Association, April 1992, pp 95-112.
[4] http://www.computer-realm.net/types-of-operating-systems
[5] “RTOS Design & Implementation.” Swetanka Kumar Mishra & Kirti Chawla.
[6] http://www.opersys.com/docs/doc/adv/node40.html
[7] Djikstra, E.W., The structure of the “THE” – multiprogramming system. Communications of the ACM, 1968, 11(5): 341-346.
[8] Redell, D., et. al., Pilot: An operating system for a personal computer in Proc. of Comm. ACM 23, 2 Feb.1980.
[9] Diane J. Litman, Carolyn P. Rosé, Kurt VanLehn, Dumiszwe Bhembe, Scott Stillman, Spoken Versus Typed Human and Computer Dialogue Tutoring in Proc. of International Journal of Artificial Intelligence in Education 15 (2005), IOS Press.
[10] D. R. Engler, M. F. Kaashoek, J. W. O’Toole., An operating system architecture for application-level resource management in Proc. of the 15th ACM Symposium on Operating Systems Principles, pages 251–266, Copper Mountain, CO, December 1995.
[11] TatsuosNakajima, Hrouo Ishikawa, Yuki Kinebuchi, Midori Sugaya, Lei Sun, Alexandre Courbot, Andrej van der Zee, Aleksi Aalto, and Kwon Ki Dak, An Operating System Architecture for Future Information Appliances in Proc. of IFIP International Federation for Information, LNCS 5287, pp. 292–303, 2008.
[12] Pinaki Chakraborty, Research purpose operating systems a wide survey in GESJ. Computer Science and Telecommun-nications 2010, No.3 (26).
[13] Ivan Stankov, Grisha Spasov, Discussion of Microkernel and Monolithic Kernel Approches in Proc. of International Scientific Conference Computer Science’2006.
[14] Andrew S. Tanenbaum, A comparison of three microkernels in Journal of Supercomputing 9, 7-22, 2005.
[15] George Coulouris, Jean Dollimore & Tim Kindberg 1994, A comparison of Mach, Amoeba and Chorus published at pp. 594-97 of Coulouris, Dollimore and Kindberg, Distributed Systems, Edition 2, 1994.
[16] J. Liedtke et al. Two years of experience with a micro kernel based os. Operating Systems Review, 25(2):57–62, 1991.
[17] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak, S. Savage, and E. G"un Sirer. Spin — an extensible microkernel for application specific operating system services. University of WashingtonComputer Science and Engineering Technical Report 94-03-03, February 1994.
[18] Ravi S. Patel1, Savan K. Patel2, Ketul B. Patel3, Heterogeneous Android Operating System: Comparison of Different Mobile Operating System of Smart Phone in International Journal for Electro Computational World Knowledge Interface Vol. 1, Issue 4, Dec 2011, ISSN No. 2249-541X.
[19] http://computer.howstuffworks.com/operating-system-3.htm
[20] Andrew S. Tanenbaum & Gregory J Sharp, The Amoeba Distributed Operating System in http://www.ida.liu.se/~TDDD37/lecture-notes/ectl1fram.pdf
[21] http://www.technologyuk.net/computing/operating_systems/operating-system-architecture.shtml
[22] http://en.wikipedia.org/wiki/Hybrid_kernel
Appendix A

Table 4 Comparison of different features of Operating system

System	Connectivity	Stability	Scalability	Multiuser	Multiplatform	POSIX	Non-Proprietary
Legacy System	Poor	Good	Medium-Huge	Yes	No	No	No
MS-DOS	None	Poor	Small	No	No	No	No
Windows 3.x	Poor	Poor	Small	No	No	No	No
Windows95	SMB Only	Fair	Small-Medium	Yes, 2	Some	No	No
WindowsNT	SMB+	Fair	Small-Huge	Yes	Yes, Many	Yes	No
UNIX	Excellent	Excellent	Small-Huge	Yes, Many	Yes	Yes	No
Linux	Excellent	Excellent	Small-Huge	Yes, Many	Yes	Yes	No

Table 6 Comparison of technical Parameters of Operating System

Name	Architecture	File System support	Kernel Type	Source code	Line of code	GUI	
FreeBSD	x86, x86-64, PC98, SPARC, others	UFS2, ext2, ext3, FAT, ISO 9660, UDF, NFS, ReiserFS (read only), XFS (experimental), ZFS and others	Monolithic with modules	No			
HP-UX	PA-RISC, IA-64	VxFS, HFS, ISO 9660, UDF, NFS, SMBFS	Monolithic with modules	No			
IBM i	IBM	1988	OS/400	No			
IRIX	SGI	1988	Unix system V	No			
Inferno	x86, PPC, SPARC, Alpha, MIPS, others	Styx/9P2000, kfs, FAT, ISO 9660	Monolithic with modules, user space file systems	Yes			
Linux	x86, x86-64, PPC, SPARC, Alpha, others	ext2, ext3, ext4, ReiserFS, FAT, ISO 9660, UDF, NFS, and others	Monolithic with modules	9 million lines of code	Yes		
Mac OS Classic	68K, PPC	HFS+, HFS, NFS (Mac OS 8.0 and before), AFP, ISO 9660, FAT/Sys 7 and later, UDF	Monolithic with modules	Yes			
Mac OS X	PPC, x86, x86-64, ARM	HFS+ (default), HFS, UFS, AFP, ISO 9660, FAT, UDF, NFS, SMBFS, NTFS (read only), FTP, WebDAV, ZFS (experimental)	Hybrid	86 millions	Yes		
Mac OS X Server	Apple Inc.	HFS+ (default), HFS, UFS, AFP, ISO 9660, FAT, UDF, NFS, SMBFS, NTFS, FTP	Nextstep/ OPENSTEP/ MAC OS, UNIX	Yes			
OS/2	x86	HPFS, JFS, FAT, ISO 9660, UDF, NFS	Monolithic with modules	No			
DOS	x86	FAT,	Monolithic with modules	45 million	Yes		
Windows Server (NT Family)	x86, x86-64, IA-64	NTFS, FAT, ISO 9660, UDF; 3rd-party drivers support ext2, ext3, reiserfs, and HFS	Hybrid	45 million	Yes		
Microsoft Window (Classic Family)	Microsoft	1985	Ms-Dos, Windows1 and later	Yes			
Microsoft Window (NT Family)	x86, x86-64	NTFS, FAT exFAT ISO 9660, UDF; 3rd-party drivers support ext2, ext3, reiserfs, HFS+, FATX, and HFS	Hybrid	40 million	Yes		
Windows 2000	IA-64, x86	NTFS, FAT	Hybrid	Yes			
Windows XP	IA-32, x86-64 and Itanium	NTFS, FAT	Hybrid	Yes			
Name	Creator	First Public release	Predecessor	Latest stable version	Latest release date	Cost/Availability	Target System Type
-----------------	--------------------------------	----------------------	-------------------	-----------------------	---------------------	-------------------	---
FreeBSD	The FreeBSD Project	1993	386BSD	8.1	2010	Free	Server, Workstation, NetApp, Embedded sys.
HP-UX	Hewlett-Packard	1983	Unix System V	11.31"11v3"	2007	Rs. 18272.56	Server, Workstation
IBM i	IBM	1988	OS/400	V6R1.1	2009	Bundled with Hardware	Server
IRIX	SGI	1988	Unix system V	6.5.30	2006	Bundled with Hardware	Server, Workstation
Inferno	Bell Labs	1997	Plan 9	Fourth Edition	2007	Free	Netapp, Server, Embedded System
Linux	Richard Stallman Linus Torvalds, Et.al	1992	Unix, Minux	Linux Kernel, GNU C library 2.11	2010	Free	Just like linux
Mac OS	Apple Inc.	1984	None	9.2.2	2002	Bundled with 68K and Power Macs	Workstation, Personal computer
Mac OS X	Apple Inc.	2001	Nextstep/ OPENSTEP/ MAC OS, UNIX	10.6.6	2011	Bundled with Hardware	Workstation, Personal comp., Embedded Sys.
Mac OS X Server	Apple Inc.	2001	Nextstep/ OPENSTEP/ MAC OS, UNIX	10.6.4	2010	Bundled with Hardware	Server
DOS	Microsoft	1981	86 DOS/QDOS	8.0	2000	Bundled with Hardware	Workstation
OS/2	IBM & Microsoft	1987	Unix, Windows 3.x	4.52	2001	Rs. 13704.42	Personal Computer, Server
Windows Server (NT Family)	Microsoft	1993	Ms-Dos, Os/2, Windows 3.x	Windows server R2(NT 6.1.7600)	2009	Rs 21424.58	Server, Netapp, Embedded system, HPC
Microsoft window (Classic Family)	Microsoft	1985	Ms-Dos, Windows1 and later	Windows ME	2000	Outdated Product no longer for sale	Personal computer, Embedded system, Media center, Tablet PC
Windows NT (NT Family)	Microsoft	1983	MS-DOS, OS/2, Windows 3.x	Windows 7(NT 6.1.7600)	2009	Rs.4565.85/ Home Basic	Workstation, Personal Computer, Media Center Tablet PC, Embedded
Microsoft Windows 2000	Microsoft	2000	Windows NT 4.0	5.0 (Build 2195: Service Pack 4)	2005	Rs. 14572.36	Workstation, Personal Computer, Embedded
Microsoft Window XP	Microsoft	2001	Windows 2000, Windows Me	5.1 (Build 2600: Service Pack 3)	2008	Rs.6500 /Home Basic	Workstation, Personal Computer, Media Center Tablet PC, Emb.