Supporting Information

The approach to 4d/4f-Polyphosphides

Nicholas Arleth, a Michael T. Gamer, a Ralf Köppe, a Nikolay A. Pushkarevsky, b,c Sergey N. Konchenko, a,b Martin Fleischmann, c Michael Bodensteiner, c Manfred Scheer, c and Peter W. Roesky a

a Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe (Germany), E-mail: roesky@kit.edu
b Nikolay Institute of Inorganic Chemistry SB RAS, Prosp. Lavrentieva 3, 630090 Novosibirsk (Russia, and Novosibirsk State University Pirogova str. 2, 630090 Novosibirsk (Russia), E-mail: konch@niic.nsc.ru
c Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany, E-mail: Manfred.Scheer@chemie.uni-regensburg.de

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
Experimental

General Considerations
All manipulations of air-sensitive materials were performed with the rigorous exclusion of oxygen and moisture in flame-dried Schlenk-type glassware either on a dual manifold Schlenk line, interfaced to a high vacuum (10⁻³ torr) line, or in an argon-filled MBraun glove box. Elemental analyses were carried out with an Elementar vario Micro Cube. Hydrocarbon solvents were predried by using an MBraun solvent purification system (SPS-800) and degassed, dried and stored in vacuo over LiAlH₄. Tetrahydrofuran was distilled under nitrogen from potassium benzophenone ketyl before storage over LiAlH₄. IR spectra were obtained on a Bruker Tensor 37 FTIR spectrometer equipped with a room temperature DLaTGS detector and a diamond ATR (attenuated total reflection) unit; for the mid infrared region a KBr beamsplitter was used. [Cp*₂Ln(thf)₂] (Ln = Sm, Yb),¹⁻³ [{CpMo(CO)₂}₂(µ,η²⁻²⁻₂-P₂)]₄ and [Cp*Mo(CO)₂(η³⁻₃⁻₃)]⁵ were prepared according to literature procedures.

Near infrared absorbance (NIR) measurements of 1a and 4
NIR measurements of 1a and 4 were performed with the help of an ATR diamond at room temperature using the FTIR spectrometer Bruker Tensor 37 by means of an NIR lamp, a CaF₂ beamsplitter and a room temperature InGaAs detector (Figure S3 and S11).

Magnetic Measurements
The magnetic measurements were carried out with the use of a Quantum Design SQUID magnetometer MPMS-XL in the temperature range 1.8 - 300 K and with dc applied fields ranging from 7 to -5 T. Measurements were performed on the polycrystalline samples with extreme caution. The sample bag was prepared in glove box, sealed under argon and transferred into the magnetometer immediately. The magnetic data were corrected for the sample holder.

General procedure for ampoule reactions
For the synthesis and recrystallization, two-section and three-section ampoules were used (see . The starting compounds were loaded into one section of the ampoule in an argon-filled glove box. The section with the starting materials was cooled by immersion in a liquid nitrogen bath, and the required solvent (typically 10 mL of solvent) was condensed in vacuo onto the starting materials. The ampoule was then flame-sealed. The reaction mixture was slowly warmed up to room temperature and then heated to 60 °C until the color had definitely changed from purple to red-brown. If a precipitate formed, the product was separated by decantation of the solution to another section of the ampoule. A concentrated solution was obtained by slow evaporation of
the solvent to the empty section of the ampoule. Crystals were obtained at room temperature and isolated by decantation of the solution to the other section of ampoule followed by drying by means of cooling the section with the mother liquor. The section with crystals was flame-sealed and opened in a glovebox.

Figure S1: (a) Two section and (b) three section ampoule.

\[(\text{Cp}^*_{2}\text{Sm})_2\text{P}_2(\text{CpMo(CO)}_2)_4\] (1a)

In a three-section-ampoule, toluene (15 mL) was condensed at -78 °C onto a mixture of [Cp*2Sm(thf)_2] (80 mg, 0.14 mmol) and \([\text{CpMo(CO)}_2]_2(\mu,\eta^{2,2}\text{-P}_2)] (70 mg, 0.141 mmol). The resulting dark red reaction solution was heated for one week at 60° C. After two weeks at room temperature red crystals of \([(\text{Cp}^*_2\text{Sm})_2\text{P}_2(\text{CpMo(CO)}_2)_4]\) were obtained. The supernatant solution was decanted and the section with \([(\text{Cp}^*_2\text{Sm})_2\text{P}_2(\text{CpMo(CO)}_2)_4]\) was flame-sealed. Yield: 10 mg, 7 % (single crystals).

IR (ATR, \(\tilde{\nu}/\text{cm}^{-1}\)): 2906 (vw), 2855 (w), 1945 (s), 1905 (vs), 1871 (vs), 1683 (vs), 1636 (s), 1423 (w), 1382 (w), 1058 (w), 1007 (w), 811 (vs), 789 (vs), 727 (vw), 693 (vw), 661 (vw), 557 (s), 531 (m).NIR (ATR, \(\tilde{\nu}/\text{cm}^{-1}\)): 9319 (m), 9217 (vw), 9151 (m), 9058 (w), 8968 (w), 8217 (s), 8158 (vw), 8048 (vs), 7960 (w), 7791 (w), 7338 (m), 7236 (vw), 7171 (vw), 6388 (w), 6126 (vw). Anal. Calc. for C_{68}H_{80}Mo_{4}O_{8}P_{2}Sm_{2} (1771.89 g·mol⁻¹) (1 – 1 Tol): C, 46.09; H, 4.55. Found: C, 46.01; H, 4.32.

\([(\text{Cp}^*_2\text{Sm})_2\text{P}_4(\text{CpMo(CO)}_2)_2]\) (2) and \([(\text{Cp}^*_2\text{Sm})_3\text{P}_5(\text{CpMo(CO)}_2)_3]\) (3)

From the remaining reaction mixture from 1a, small amounts of two different kinds of orange crystals were obtained by slow evaporation. Due to the similar solubility and the low yields of the two products, no further analytical data could be collected.
[(Cp*₂Yb)₂P₂(CpMo(CO)₂)₄] (1b)

In a two-section ampoule, toluene (15 mL) was condensed at -78 °C onto a mixture of [Cp*₂Yb(thf)₂] (82 mg, 0.14 mmol) and [{CpMo(CO)₂}₂(μ,η²⁻²-P₂)] (70 mg, 0.141 mmol). The resulting dark red reaction solution was heated for one week at 60° C. After two weeks at room temperature, crystals of [(Cp*₂Yb)₂(CpMo(CO)₂)₄P₂] were obtained. Yield: 8 mg, 6 % (single crystals).

IR (ATR, ν/cm⁻¹): 2900 (w), 2856 (w), 1906 (vs), 1874 (vs), 1687 (vs), 1638 (s), 1486 (vw), 1432 (m), 1382 (w), 1107 (vw), 1059 (w), 1007 (m), 790 (s), 727 (w), 696 (vw), 585 (m), 553 (s), 504 (m). Anal. Calc. for C₆₈H₈₆O₅₆P₂Yb₂ (1817.10 g·mol⁻¹): C, 44.49; H, 4.44. Found: C, 44.76; H, 4.27.

[(Cp*₂Sm)₂P₆(Cp*Mo(CO)₂)₄] (4)

Toluene (15 mL) was condensed at -78 °C onto a mixture of [Cp*₂Sm(thf)₂] (178 mg, 0.316 mmol) and [Cp*Mo(CO)₂(η²⁻³-P₃)] (120 mg, 0.316 mmol). The resulting reaction mixture was heated for one week at 60 °C. After two weeks at room temperature, crystals of [(Cp*₂Sm)₂P₆(Cp*Mo(CO)₂)₄] were obtained. Yield: 20 mg, 14 % (single crystals).

IR (ATR, ν/cm⁻¹): 2958 (m), 2901 (s), 2853 (s), 2722 (vw), 1983 (m), 1917 (vs), 1701 (vs), 1646 (m), 1477 (w), 1442 (m), 1377 (m), 1150 (vw), 1104 (w), 1067 (w), 1026 (m), 799 (vw), 728 (m), 693 (w), 607 (vw), 555 (m), 515 (w). NIR (ATR, ν/cm⁻¹): 9489 (vs), 9224 (vw), 9109 (vs), 8719 (w), 8107 (s), 7967 (vs), 7781 (w), 7338 (w), 7236 (w), 7152 (w), 6702 (m), 6566 (w), 6395 (w), 6325 (w). Anal. Calc. for C₇₁H₉₈O₂₄P₆Sm₂ (1694.04 g·mol⁻¹) (4 – 1Tol): C, 50.34; H, 5.83. Found: C, 50.46; H, 6.02.

[(Cp*₂Yb)₂P₆(Cp*Mo(CO)₂)₄] (5)

Toluene (15 mL) was condensed at -78 °C onto a mixture of [Cp*₂Yb(thf)₂] (157 mg, 0.273 mmol) and [Cp*Mo(CO)₂(η³⁻³-P₃)] (102 mg, 0.273 mmol). The resulting reaction mixture was heated for one week at 60 °C. After two weeks at room temperature, black needles of [(Cp*₂Yb)₂P₆(Cp*Mo(CO)₂)₄] were obtained. Yield: 14 mg, 18 % (single crystals). IR (ATR, ν/cm⁻¹): 3023 (vw), 2899 (s), 2854 (s), 2721 (vw), 1985 (w), 1916 (vs), 1737 (w), 1696 (vs), 1669 (s), 1493 (w), 1477 (w), 1445 (m), 1376 (m), 1310 (vw), 1240 (w), 1155 (vw), 1066 (m), 1025 (m), 798 (w), 728 (m), 693 (w), 609 (w), 555 (m). Anal. Calc. for C₆₇H₉₄O₂₄P₆Yb₂ (1687.36 g·mol⁻¹) (5 – 0.5 Tol): C, 47.69; H, 5.62. Found: C, 48.14; H, 5.03.
X-ray Crystallographic Studies of 1-5

A suitable crystal was covered in mineral oil (Aldrich) and mounted on a glass fiber. The crystal was transferred directly to a cold stream of a STOE IPDS 2, STOE StadiVari or Xcalibur diffractometer.

All structures were solved using SHELXS-2013. The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix least-squares techniques on \(F \), minimizing the function \((F_o-F_c)^2 \), where the weight is defined as \(4F_o^2/2(F_o)^2 \) and \(F_o \) and \(F_c \) are the observed and calculated structure factor amplitudes using the program SHELXL-2013. Hydrogen atom positions were calculated. The locations of the largest peaks in the final difference Fourier map calculation as well as the magnitude of the residual electron densities in each case were of no chemical significance. Positional parameters, hydrogen atom parameters, thermal parameters, bond distances and angles have been deposited as supporting information.

Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as a supplementary publication no. CCDC 1402049-1402054. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; email: deposit@ccdc.cam.ac.uk).

Crystal data for 1a: \(\text{C}_{68}\text{H}_{80}\text{Mo}_4\text{O}_8\text{P}_2\text{Sm}_2\text{C}_7\text{H}_8, \, M = 1863.85, \, a = 9.5023(3) \, \text{Å}, \, b = 12.6103(4) \, \text{Å}, \, c = 15.1418(5) \, \text{Å}, \, \alpha = 97.784(3)^\circ, \, \beta = 90.790(3)^\circ, \, \gamma = 100.069(3)^\circ, \, V = 1768.68(10) \, \text{Å}^3, \, T = 100 \, \text{K}, \, Z = 1, \, 17149 \, \text{reflections measured, 6969 independent reflections} \, (R_{int} = 0.0684). \) The final \(R_f \) values were 0.0516 \((I > 2\sigma(I))\). The final \(wR(F^2) \) values were 0.1266 \((I > 2\sigma(I))\). The final \(R_f \) values were 0.0715 (all data). The final \(wR(F^2) \) values were 0.1389 (all data). The goodness of fit on \(F^2 \) was 0.997.

Crystal data for 1b: \(\text{C}_{68}\text{H}_{80}\text{Mo}_4\text{O}_8\text{P}_2\text{Yb}_2, \, M = 1817.10, \, a = 9.4563(7) \, \text{Å}, \, b = 12.5189(13) \, \text{Å}, \, c = 14.9787(13) \, \text{Å}, \, \alpha = 84.903(8)^\circ, \, \beta = 71.669(7)^\circ, \, \gamma = 76.285(7)^\circ, \, V = 1635.0(3) \, \text{Å}^3, \, T = 150 \, \text{K}, \, Z = 1, \, 14805 \, \text{reflections measured, 5918 independent reflections} \, (R_{int} = 0.0698). \) The final \(R_f \) values were 0.0392 \((I > 2\sigma(I))\). The final \(wR(F^2) \) values were 0.0708 \((I > 2\sigma(I))\). The final \(R_f \) values were 0.0654 (all data). The final \(wR(F^2) \) values were 0.0772 (all data). The goodness of fit on \(F^2 \) was 0.945.

Crystal data for 2: \(\text{C}_{54}\text{H}_{70}\text{Mo}_2\text{O}_4\text{P}_4\text{Sm}_2\text{2(C}_7\text{H}_8), \, M = 1583.82, \, a = 9.6185(7) \, \text{Å}, \, b = 10.2667(7) \, \text{Å}, \, c = 17.5096(13) \, \text{Å}, \, \alpha = 83.519(6)^\circ, \, \beta = 77.307(6)^\circ, \, \gamma = 78.461(6)^\circ, \, V = 1648.44(21) \, \text{Å}^3, \, T = 100 \, \text{K}, \, Z = 1, \, 12256 \, \text{reflections measured, 5964 independent reflections} \, (R_{int} = 0.1155). \) The final \(R_f \) values were 0.0708 \((I > 2\sigma(I))\). The final \(wR(F^2) \) values were 0.1908 \((I > 2\sigma(I))\).
$2\sigma(I)$. The final R_I values were 0.0860 (all data). The final $wR(F^2)$ values were 0.2034 (all data). The goodness of fit on F^2 was 1.062.

Crystal data for 3: $\text{C}_81\text{H}_{105}\text{Mo}_3\text{O}_6\text{P}_5\text{Sm}_3$, $M = 2068.36$, $a = 10.130(2) \text{ Å}$, $b = 25.686(5) \text{ Å}$, $c = 15.724(3) \text{ Å}$, $\alpha = 90^\circ$, $\beta = 96.36(3)^\circ$, $\gamma = 90^\circ$, $V = 4066.3(14) \text{ Å}^3$, $T = 100 \text{ K}$, space group $P121/m1$, $Z = 2$, 33852 reflections measured, 7394 independent reflections ($R_{int} = 0.2911$). The final R_I values were 0.1092 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.2500 ($I > 2\sigma(I)$). The final R_I values were 0.1889 (all data). The final $wR(F^2)$ values were 0.2946 (all data). The goodness of fit on F^2 was 0.980.

Crystal data for 4: $\text{C}_{64}\text{H}_{90}\text{Mo}_2\text{O}_4\text{P}_6\text{Sm}_2\cdot 2(\text{C}_7\text{H}_8)$, $M = 1786.02$, $a = 11.1671(8) \text{ Å}$, $b = 12.7931(10) \text{ Å}$, $c = 14.7276(9) \text{ Å}$, $\alpha = 98.952(6)^\circ$, $\beta = 110.227(6)^\circ$, $\gamma = 95.319(6)^\circ$, $V = 1925.7(2) \text{ Å}^3$, $T = 123 \text{ K}$, space group $P-1$, $Z = 1$, 15246 reflections measured, 6698 independent reflections ($R_{int} = 0.0368$). The final R_I values were 0.0343 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0799 ($I > 2\sigma(I)$). The final R_I values were 0.0368 (all data). The final $wR(F^2)$ values were 0.0815 (all data). The goodness of fit on F^2 was 0.980.

Crystal data for 5: $\text{C}_{64}\text{H}_{90}\text{Mo}_2\text{O}_4\text{P}_6\text{Yb}_2\cdot 2(\text{C}_7\text{H}_8)$, $M = 1831.40$, $a = 11.1924(3) \text{ Å}$, $b = 12.6285(3) \text{ Å}$, $c = 14.6371(4) \text{ Å}$, $\alpha = 99.581(2)^\circ$, $\beta = 110.455(2)^\circ$, $\gamma = 94.847(2)^\circ$, $V = 1888.44(9) \text{ Å}^3$, $T = 100 \text{ K}$, space group $P-1$, $Z = 1$, 17122 reflections measured, 7340 independent reflections ($R_{int} = 0.0260$). The final R_I values were 0.0410 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.1014 ($I > 2\sigma(I)$). The final R_I values were 0.0447 (all data). The final $wR(F^2)$ values were 0.1033 (all data). The goodness of fit on F^2 was 1.084.
Figure S2. IR-spectrum of 1a.

Figure S3. NIR-spectrum of 1a.
Figure S4. IR-spectrum of 1b.
Figure S5. Solid-state structure of 3 showing the full disordered of the central P₅-core. Hydrogen atoms are omitted for clarity.

Figure S6. Solid-state structure of 3 showing each part of the disordered structure separated.
Figure S7. Solid-state structure of 4 showing the full disordered of the central P₆-core. Hydrogen atoms are omitted for clarity.

Figure S8. Solid-state structure of 4 showing the four-fold disordering of the central P₆-core only.
Figure S9. Temperature-dependent SQUID magnetization data for 4. χM versus T plot at 1000 Oe and M versus T plot.
Figure S10. IR-spectrum of 4.

Figure S11. NIR-spectrum of 4.
Figure S12. IR-spectrum of 5.
Supplemental contribution/quantum chemical calculations

Table S1: Results of the quantum chemical calculations (distances given in Å; shared electron numbers SEN and partial charges Q determined by Ahlrichs-Heinzmann population analysis, each 10 MAOs chosen for Sm and Mo) on 1a, 2, 3, and [\{CpMo(CO)\}_2(\mu,\eta^{2-2}:2_2-P_2)]

	1a	2	3	4
r(P-P)	2.078	2.181	2.205	2.121
	(P1-P2, P1′-P2’), (P1-P2’, P1′-P2)	(P1-P5, P4-P5), (P3-P4), (P1-P2), (P2-P3)	(Mo2′-P5), (Mo2-P4), (Mo1-P1), (Mo2-P3), (Mo1-P2)	
r(Mo-P)	2.406	2.568	2.394	2.505
	(Mo’-P1’, Mo-P1)	(Mo2′-P5)	(Mo2-P4), (Mo1-P1), (Mo2-P3), (Mo1-P2)	
r(Mo-Mo)	3.247	3.087		
SEN(P-P)	1.38	1.24	1.12	1.41
	(P1-P2, P1′-P2’), (P1-P2’, P1′-P2)	(P1-P5, P4-P5), (P3-P4), (P1-P2), (P2-P3)		
SEN(Mo-P)	0.77	0.59	0.66	0.55
			(Mo2′-P5), (Mo2-P4), (Mo1-P1), (Mo2-P3), (Mo1-P2)	
SEN(Mo-Mo)	0.23			0.30
SEN(Sm-P)				
Q(Sm)	1.04	0.38		
	Sm1: 0.35	Sm1′: 1.21		
Q(Mo)	-0.52	-0.52		-0.54
	Mo1: -0.45	Mo2: -0.45		
Q(P)	0.02	0.03		0.07
	P1: -0.20	P2: -0.08		
	P3: 0.00	P4: -0.01		
	P5: -0.08			
Table S2: Results of the quantum chemical calculations (distances given in Å; shared electron numbers SEN and partial charges Q determined by Ahlrichs-Heinzmann population analysis) on the model compounds Na₄P₂⁺, Na₂P₄, NaP₅ and Na₃P₅²⁺ as well as Tₐ and D₂h-P₄.

	Na₄P₂⁺	Na₂P₄	NaP₅	Na₃P₅²⁺	P₄	P₄
symmetry	D₂h	D₄h	C₅v	Cₛ	Tₐ	D₂h
r(P-P)	2.063	2.168	2.147	2.112/2.122/213.0	2.233	207.9/235.2
SEN(P-P)	1.74	1.44	1.38	1.43/1.38/1.33	1.08	1.66/0.96
Q(Na)	0.56	0.40	0.54	0.69	0.00	0.00
Q(P)	-0.12	-0.20	-0.11	-0.01	0.00	0.00
Figure S13: Comparison of the MO diagrams of $\text{Na}_4\text{P}_2^{2+}$ and $[(\text{Cp}_2^*\text{Ln})_2\text{P}_2(\text{CpMo(CO)}_2)_4]$. Only the MOs with strong phosphorus contribution are shown.
Cartesian Coordinates of the calculated Molecules (given in a.u.)

\[
[(\text{Cp}_2^*\text{Ln})_2\text{P}_2\text{(CpMo(CO)}_2)_4] (1a)
\]

X	Y	Z	
1.90296250200252	-13.82810402990115	8.09534720152958	h
0.08122360005252	-14.84040850928407	10.74781306916709	h
1.37981219598989	-13.32230364685989	10.06893260714207	c
0.14023700628127	-10.76210982108238	10.25462714082543	c
3.1204111688955	-13.44572239584814	11.22950563951258	h
2.10081351152728	-6.38499874179512	8.10304734795473	sm
0.36366432516577	-9.00335622785759	12.3214915344817	c
-1.7962348133009	-9.84804709039902	8.58549018910282	c
0.74308860372980	-6.52505761835600	3.74200396442685	o
0.55006996143110	-10.76210982108238	10.25462714082543	c
-2.76637565189906	-7.53050742569598	9.60853311748393	c
-1.42366475650434	-9.99774888538406	11.9095396437644	c
6.59214457568642	-4.82088920278127	6.0503453375946	c
6.84055093745446	-7.51591578600646	6.30229819199671	c
7.00357581750721	-8.09883668028852	8.95233193438237	c
6.82253254791578	-5.76266175750081	10.33650701072655	c
6.58097647407015	-3.74159490644463	8.5383257999748	c
1.83565304463779	-9.4245544331244	14.72342686216367	c
-2.81897132871851	-11.23170169726158	6.3146826412209	c
-0.2573280101706	-6.08509094503992	1.71864829632883	c
-0.29226672059125	-2.51953974476834	6.75040026413424	c
-4.96436167458927	-6.05287487093342	8.56357474596062	c
-1.95925550299904	-4.84723930856814	13.70685594311421	c
6.53843689964543	-3.36492024515305	3.60630507641387	c
7.12839272145268	-9.37755587432994	4.16086286352399	c
7.73553347801920	-10.629391980644	10.0357038178459	c
7.25195465521446	-5.41403176764349	13.1335852581672	c
6.58115131985332	-0.96191815085404	9.15814758903328	c
3.55942517508755	-10.58232404058777	14.41696181079272	h
0.66564457039766	-10.4496706428769	16.15027788527431	c
2.44074033724475	-7.62597064815908	15.62334787555756	h
-3.63462123703807	-9.91962524821820	4.89291852001703	h
-4.34919120763490	-12.57477720958195	6.86671597940872	h
-1.34427200254111	-12.36323561746168	5.33458984730631	h
-1.91568940289937	-5.60200474798470	-1.42106077117737	mo
-1.86859755728729	2.54827595541933	5.1618297209614	mo
-5.08695350119064	-4.14163997599047	9.41961247870102	h
-6.79600878437607	-7.02234635720474	8.95559475085843	h
-4.84043706181788	-5.80220804368047	6.4787080457220	h
-0.27114389931516	-4.32849299549892	14.84531943591733	h
-3.48030741705067	-5.34959258230432	15.07890028353203	h
-2.58659666915900	-3.10994889237606	12.70622496804775	h
5.87668763886548	-4.55495296959470	2.01208459085636	h
8.45888575115996	-2.65290928393182	3.0977551751398	c
5.25629218508848	-1.70101338418695	3.69318293384980	h
6.55298694373891	-11.32028788671585	4.71748877880993	h
9.13242693655519	-9.5038404912191	3.51487395309791	h
5.98101926733474	-8.85021014010406	2.4815435279007	h
7.07321359758569	-10.87852270491502	12.01370648789211	h
x	y	z	
------------	------------	------------	
6.177937	38316183	-5.960337	
0.226776	14573054	-1.405143	
5.659157	12963444	-2.246826	
5.166154	3259538	-7.292658	
5.531935	40433425	-9.625494	
-0.742579	97887000	6.524069	
-2.031182	70230548	3.269253	
5.233600	02250497	5.920619	
4.542406	98753134	5.164946	
5.026386	66691597	1.030050	
6.459061	14705086	5.932772	
6.893418	86067227	2.270700	
-1.009890	42455774	6.385453	
2.766141	44127141	7.530983	
1.423209	03211511	6.998511	
-0.364158	50451087	9.004759	
-0.140567	77863877	10.762660	
1.796071	93973035	9.848416	
-6.591171	45668873	4.820331	
-6.840944	41819079	7.515319	
-7.004088	85915948	8.098527	
-6.822555	1239731	5.762548	
-6.580516	66684793	3.741329	
4.964237	76096487	6.053205	
1.985725	932965891	4.848191	
-1.836324	33239785	9.425620	
-1.380323	0596018	13.322954	
2.818951	81925620	11.231779	
-6.537811	76308071	3.364075	
-7.129028	8179112	9.376633	
-7.736297	76005705	10.629158	
-7.251838	87663626	5.414180	
-6.580057	7094202	0.961744	
5.086844	97075626	4.142007	
6.795932	26234667	7.022805	
4.840220	20214490	5.802100	
0.270611	64764488	4.329693	
3.479943	66237748	5.350598	
2.585873	67304038	3.110691	
-3.560017	76453966	10.583464	
-0.666381	19309839	10.450761	
-2.441582	29073152	7.627111	
-1.903575	47890872	13.828063	
-0.081878	863753905	14.841139	
-3.120861	91084599	13.446178	
3.634022	95700814	9.919401	
4.349401	3982467	12.574759	
1.344956	2017933	12.363401	
-5.876139	94499074	4.554021	
-8.458003	3091292	2.651625	
-5.255320	44133424	1.700462	
-6.554013	24132169	11.319555	
\[
\begin{array}{ccc}
-9.1330251918207 & 9.5024586215460 & -3.51422366590463 \\
-5.98139669633593 & 8.84930784219754 & -2.48120739149490 \\
-7.07401260858620 & 10.87361704232697 & -12.01307262599672 \\
-9.83489137131778 & 10.84642139808900 & -10.07147179913171 \\
-6.02732439039822 & 3.9162634489148 & -13.95905188231414 \\
-9.24315266968684 & 4.83749700284766 & -13.52623217032422 \\
-8.54787551148369 & 21.14401058843515 & -9.2955843037465 \\
-5.64211267290813 & 0.5476525760901 & -10.99200879312267 \\

\end{array}
\]

\[[(\text{Cp}_2\text{Sm})_2\text{P}_4(\text{CpMo(CO)}_2)_2]\] (2)

\begin{array}{ccc}
8.72787639556319 & 18.22119582848562 & 0.69659456858620 \\
9.81668776807678 & 19.77199636408579 & 1.54388457822821 \\
8.90823216450519 & 23.88351186865954 & 2.13875419911116 \\
9.87633921287200 & 20.41903412356979 & 4.18100157361666 \\
11.46419413739650 & 21.45831249219117 & 0.22342883433466 \\
8.73346967779394 & 28.56559555552543 & 0.91914096257979 \\
6.64047391697562 & 26.31768012858825 & -1.83028146273638 \\
12.5414891386481 & 23.16580299137826 & 2.02865863471603 \\
11.57062558791290 & 22.5249859228827 & 4.47390202461685 \\
4.64066896627686 & 22.40228518809662 & 1.61978178874903 \\
6.5298710989899 & 25.5331961493463 & 4.94649212754636 \\
8.84080772707888 & 19.42342972102186 & 5.70601574068083 \\
11.84619226578944 & 21.43465045712348 & -1.81553096280882 \\
5.00216077994619 & 30.71008440202762 & 1.83069428221617 \\
2.9094236642540 & 28.46333591501570 & -0.9189855518862 \\
13.90030661154894 & 24.6777684771742 & 1.61801582121453 \\
12.08623310770926 & 23.43561499488256 & 6.26588965250488 \\
2.69407272318160 & 21.36572801637471 & 1.39370616314467 \\
5.68430000544999 & 26.55537032577432 & 6.82027993667209 \\
3.63469336194828 & 33.14379610582645 & -2.1386268960521 \\
3.71053307478081 & 30.68204083518789 & 7.47783473408090 \\
1.82610224029104 & 37.25546204118324 & -1.54324981367439 \\
1.76565715114638 & 36.60922022652844 & -4.18046879785862 \\
-0.89383921158888 & 33.86174474509598 & -2.02810451649195 \\
0.07132021464554 & 34.50339813905457 & -4.47332110014742 \\
7.00253943473107 & 34.62465786036091 & -1.62029813733573 \\
0.17933517170039 & 35.56859117666363 & -0.2225908458733 \\
5.11283491527884 & 31.4936705589496 & -4.94765151874159 \\
-1.37021403315424 & 31.6530137391701 & 8.4180539829015 \\
-0.50290529496025 & 30.32203697255070 & 10.62681897132904 \\
-0.460478425891138 & 27.51197920919536 & 7.24656862710402 \\
-1.3675640399119 & 29.90613941251886 & 6.33664146549575 \\
0.09967110742449 & 27.77718347827180 & 9.88794098987887 \\
8.14240458450512 & 33.5827268670669 & 7.39591456433979 \\
6.89758279764969 & 32.0808222941581 & 11.3367367131459 \\
8.5643358878847 & 31.63707419674607 & 9.23622089721912 \\
6.19048413358778 & 35.226046791827 & 8.34403426882082 \\
5.45914462900263 & 34.33150406138315 & 10.80189157148066 \\
2.91500910110592 & 38.80663464488327 & -0.69545446150131 \\
\end{array}
\]
x	y	z	label
2.75845896847627	37.6049706420030	-5.70501542104746	h
-2.25751395459107	32.3501915163637	-1.6170442708292	h
-0.44373258404788	33.59265307874583	-6.2649237798292	c
8.95006264001388	35.66079370381851	-1.3943644871729	h
-0.20296041430407	35.9293207708095	1.81664044781729	o
1.95719725725040	30.47216912638217	-6.8200678828531	o
-2.46590259546941	34.2874436363222	8.3725346383923	c
-0.73196661440610	31.2813695447926	13.3205100943073	c
-0.39294732734577	32.1027761649005	5.7360856408058	c
-2.50890102072492	30.326532302446	3.7633445610545	c
0.90166795088517	25.68157745109736	11.6473839870256	c
9.76414965025097	34.0883429121748	5.1119215924331	c
6.93443408839721	30.63643162173187	13.7964408363478	c
-2.46590259546941	34.2874436363222	8.3725346383923	c
-0.73196661440610	31.2813695447926	13.3205100943073	c
-0.39294732734577	32.1027761649005	5.7360856408058	c
-2.50890102072492	30.326532302446	3.7633445610545	c
0.90166795088517	25.68157745109736	11.6473839870256	c
9.76414965025097	34.0883429121748	5.1119215924331	c
6.93443408839721	30.63643162173187	13.7964408363478	c
-2.46590259546941	34.2874436363222	8.3725346383923	c
-0.73196661440610	31.2813695447926	13.3205100943073	c
-0.39294732734577	32.1027761649005	5.7360856408058	c
-2.50890102072492	30.326532302446	3.7633445610545	c
0.90166795088517	25.68157745109736	11.6473839870256	c
9.76414965025097	34.0883429121748	5.1119215924331	c
6.93443408839721	30.63643162173187	13.7964408363478	c
-2.46590259546941	34.2874436363222	8.3725346383923	c
-0.73196661440610	31.2813695447926	13.3205100943073	c
-0.39294732734577	32.1027761649005	5.7360856408058	c
-2.50890102072492	30.326532302446	3.7633445610545	c
0.90166795088517	25.68157745109736	11.6473839870256	c
9.76414965025097	34.0883429121748	5.1119215924331	c
6.93443408839721	30.63643162173187	13.7964408363478	c
-2.46590259546941	34.2874436363222	8.3725346383923	c
-0.73196661440610	31.2813695447926	13.3205100943073	c
-0.39294732734577	32.1027761649005	5.7360856408058	c
-2.50890102072492	30.326532302446	3.7633445610545	c
0.90166795088517	25.68157745109736	11.6473839870256	c
9.76414965025097	34.0883429121748	5.1119215924331	c
6.93443408839721	30.63643162173187	13.7964408363478	c

S21
X	Y	Z	Label
3.49981177495306	23.44445634133997	-7.39509515441543	c
4.74492558205794	24.9468907721670	-11.336783662373	c
3.07784909115711	25.3902487510548	-9.23616940396200	c
5.42267026357777	21.80690440452086	-8.34361716135960	c
6.18388146899894	22.6959947182385	-10.8018726297332	c
14.1068464385533	22.73963304303554	-8.37254972897102	c
12.37485268940373	26.39125021253378	-13.79624083770708	c
12.03468499440309	27.37229250224246	-9.1136781251168	c
14.15149377433863	19.38856417155867	-7.1185129306388	c
7.74509799995011	21.21299571390001	-12.6668087957638	c
13.30662849302046	21.52189049098325	-9.8834973198750	h
16.19960211913733	22.76467998626000	-8.65707448656180	h
13.77104619076743	21.75776447822636	-6.54328804881610	h
10.7828915209898	26.44541936055016	-14.53618118725797	h
13.14594210904959	26.5723001372892	-14.19772011505705	h
12.48542481068224	23.72093791559618	-13.46153831178392	h
11.48172274763860	31.59800666806969	-3.73751551560475	h
13.93362860979722	32.84548783909764	-5.70372698676995	h
10.69389994526273	33.32622027600343	-6.5340508383150	h
14.40826806019041	24.66107008336164	-3.34499658989639	h
16.06330195808659	27.58686778257594	-3.64208733996583	h
12.995666906036122	27.54150689806309	-2.2177969343173	h
9.54054592689281	32.77280945386260	-10.6793832688609	h
12.40823756840517	32.3785601344655	-12.42612289307014	h
9.65529423412737	30.62600776464196	-13.29730877836431	h
1.21249119090819	24.69659971937627	-4.17236553362502	h
0.15201570906195	21.85437319569697	-5.65818985762620	h
2.87015749322719	21.80229078371068	-3.65701348144949	h
6.50762671525161	26.19629832230803	-14.8607788690513	h
3.17152460059521	25.70517604730137	-15.06980653591218	h
4.37261174706075	28.4458595419916	-13.50829403851535	h
1.52402248988915	29.08043770124173	-10.23563314271564	h
-0.78472290328724	26.634086092879	-9.87760448082913	h
0.66592423412737	28.00027790394495	-7.14404503208112	h
6.29684955618637	19.50752651925423	-5.02082011256975	h
5.11299780278201	17.75609839116275	-7.65532292571380	h
8.29665034277833	18.8821587938180	-7.6826336293018	h
9.46460732088625	20.36522111568170	-11.80864551074342	h
6.61804609992929	19.61155131963791	-13.45254043153205	h
8.35860540566101	22.3789433475786	-14.29590840873640	h

$$[ext{Cp}_2\text{Sm}]_3\text{P}_3(\text{CpMo(CO)}_2)_3]$$ (3)

5.86276396534874 | 20.50821928861572 | -8.70470976566935 | sm |
4.81108104488443 | 12.1371124590364 | 6.22101584230850 | sm |
1.00687351416065 | 12.39097293758883 | -11.5613925626440 | mo |
0.10637057678853 | 17.6083679695423 | -1.11243974352394 | mo |
-1.57307211884386 | 11.78084268367441 | -7.35845591873187 | p |
x	y	z	p	o
-0.7193947089930	15.6444951790062	-8.29238576536565	p	
2.19351620945109	17.16265604284390	-5.51117831735467	p	
3.2063367113074	14.09972574620192	-2.95721030888068	p	
0.758712041046711	10.90296060264007	-4.01620853404825	p	
3.403128123350477	15.5290612205573	3.3339493505492	o	
5.28401090373420	16.42894664787532	-11.09371561087676	o	
3.25571825909646	22.57886551395781	-0.64844824778809	o	
3.72765861737410	14.74956531379268	-11.18007185749183	c	
0.58337762997324	13.5682898234090	-15.96248402651640	c	
-1.68126288634990	14.28610016625258	-14.8062456248256	c	
3.2063367113074	14.09972574620192	-2.95721030888068	p	
0.758712041046711	10.90296060264007	-4.01620853404825	p	
3.403128123350477	15.5290612205573	3.3339493505492	o	
5.28401090373420	16.42894664787532	-11.09371561087676	o	
3.25571825909646	22.57886551395781	-0.64844824778809	o	
3.72765861737410	14.74956531379268	-11.18007185749183	c	
0.58337762997324	13.5682898234090	-15.96248402651640	c	
-1.68126288634990	14.28610016625258	-14.8062456248256	c	
3.2063367113074	14.09972574620192	-2.95721030888068	p	
0.758712041046711	10.90296060264007	-4.01620853404825	p	
3.403128123350477	15.5290612205573	3.3339493505492	o	
5.28401090373420	16.42894664787532	-11.09371561087676	o	
3.25571825909646	22.57886551395781	-0.64844824778809	o	
3.72765861737410	14.74956531379268	-11.18007185749183	c	
0.58337762997324	13.5682898234090	-15.96248402651640	c	
-1.68126288634990	14.28610016625258	-14.8062456248256	c	
x	y	z		
----------------	----------------	----------------		
-2.158543	11.029430	6.351194		
-0.536737	8.071667	5.274311		
3.314578	2.990087	7.858437		
9.413144	5.274311	10.052902		
9.615029	4.395930	7.159323		
2.044067	0.937318	5.373621		
9.526727	10.052902	5.346543		
10.247916	10.052902	5.373621		
-0.214326	10.052902	5.346543		
-3.302084	10.052902	5.373621		
3.314578	10.052902	5.346543		
9.526727	10.052902	5.373621		
10.247916	10.052902	5.346543		
4.57063836339430 -0.31492935260766 -16.56756558069831 h				
8.44936843312906 -2.8366075560224 -12.38834933978011 h				
6.03202694643538 -5.1060028037441 -11.75526069339052 h				
7.91211463925681 -3.91094246895998 -9.2229390227120 h				
2.0135278924822 -14.50087833944642 -16.93885103478649 h				
-2.2835301642015 16.26630080442016 -14.7125849718299 h				
-4.83482979125085 12.25240903683237 -12.77271951097641 h				
2.0806213845737 9.38896993146503 -16.43577120685265 h				
-2.19702500472704 7.99664258148307 -13.88098840918734 h				
-3.58138991267661 22.1634177231067 -1.52379837588259 h				
-4.25941155353529 18.54379346895998 -5.1274273872180 h				
-2.6344925074182 13.97217443699261 -2.82869795305392 h				
-3.66823621268756 14.72855751478762 3.3234068259790 h				
-2.8215572620229 4.9951145328016 14.9664827285874 h				
-2.46198009758161 1.99759619551036 -0.82819156531254 h				
-4.21443494788395 4.66862600172051 -4.8868094609385 h				
-5.55758678767956 9.32672621461028 -3.25315453837616 h				
-4.78951363890673 9.45011513561381 1.82897329034571 h				
3.4723887886657 9.92304870446174 14.9968428725874 h				
6.27408206977958 11.41359462047031 3.84389638410373 h				
5.4778293321902 8.82677801149004 12.8287841712478 h				
2.44993862447961 16.59700538741467 13.8263972539700 h				
4.03775692171138 17.81553119741853 11.10901546186286 h				
5.60331032640201 15.60201655570437 13.13070010661522 h				
0.77391257956731 18.20764731751627 8.10341901276195 h				
-2.13670172272779 17.03761572382374 9.36502856402014 h				
-1.32465242547905 16.44578216859751 6.130299659660 h				
-1.80928145967207 11.6830706309947 4.38187325030383 h				
-3.95994477898433 11.9160063923433 6.8981797155006 h				
-2.48718981952801 8.96122419522905 6.24870201535622 h				
2.9096156002025 6.05200162448075 10.19045283574373 h				
0.86395482831883 6.29520352498225 7.5104309777522 h				
-0.41866327866358 6.38810684692070 10.6418600066909 h				
9.72087893663448 14.16199147503944 11.9354250815594 h				
9.21814310636007 16.91359608200773 10.0323773935624 h				
12.28561645303285 15.51635123071425 10.2026307360392 h				
9.94365560180705 9.91932980908928 11.90261997366834 h				
9.12742369930024 7.20398840616811 10.0591882604274 h				
12.2776836528409 8.40984202284229 9.8399295817176 h				
8.60387702347643 17.28381196407483 2.63315801460206 h				
11.65863747605181 17.50913711369817 4.06612432447369 h				
8.90111877258408 18.31901769129565 5.84060004710399 h				
7.86259766504186 13.32969584712283 0.0191877678418 h				
11.20232040069276 12.79371541981222 0.10615835430114 h				
9.05595855723060 10.1795707149385 0.05961758025610 h				
8.31079039203708 6.80673882193915 2.72270693463742 h				
11.4902079612567 6.60947317427860 3.8574632108582 h				
8.91729510946413 5.82326578965436 5.89878240184001 h				
10.72461577491173 -2.27720957226667 -6.78276006281157 h				
12.73243926002425 -0.84053391847289 -4.47983905335027 h				
9.43491948263933 -1.19236554087817 -3.84778507348078 h				
X	Y	Z	h	
------	------	------	-------	
7.70514486912596	9.12498796332075	-4.72510417496743	h	
11.00952841229098	8.71949873214358	-11.77333620337412	h	
8.9002450398074	10.0651261373887	-7.73333620337412	h	
11.34402567338949	1.32046018359443	-12.99891808537271	h	
14.18420570364853	1.41224803074521	-11.17723667581553	h	
11.94043628468094	-1.05614006871620	10.66463761518487	h	
11.1158439597295	5.75006403898170	-13.28389608133489	h	
9.51503134716326	8.36110817871670	-11.83649266922350	h	
12.82721389235674	7.92811814957753	-13.3488939303041	h	
12.00515933363541	19.06302297882818	-13.25496770578281	h	
10.34299817700188	16.28096296773941	-12.26899552195993	h	
11.19509850136844	16.7538513599918	-11.32397506671932	h	
11.60588741886945	23.5006480739500	-12.6053498925958	h	
14.34384292251249	23.320300338117	-10.64012446328401	h	
11.97144514761948	25.63514508026147	-10.00609751468871	h	
10.23880477946575	26.40190585836734	-6.19504987763848	h	
12.11718115476384	24.89957974041155	-3.82166933747946	h	
8.75548645072475	24.96744270270965	-3.5147796131260	h	
8.48433752184170	14.59145923267303	-5.12500420399657	h	
11.76982220015823	13.4706334443227	-5.9622349982498	h	
9.38261694094001	14.1198280541177	-8.34804076136548	h	
7.86009878378583	21.05125292007549	-1.59641715318605	h	
10.74010563811519	19.31016426117795	-1.26724441475237	h	
7.82753299032957	17.71022858889054	-2.10376515856264	h	
1.48999991054600	19.51862073765509	-14.6611740019189	h	
-0.96687638559144	21.83962663519305	-14.4991154073712	h	
-0.76086554707417	19.40994653378473	-12.13477093885957	h	
5.26745405136165	21.3562190414908	-15.96493271236976	h	
4.52494926689040	24.5835598688053	-16.6209036200262	h	
7.50785163104983	23.7896243267625	-15.24798253604335	h	
-1.86189507769131	21.10437023715478	-8.34573695252407	h	
-2.30825979940261	24.46131187384374	-8.1561765019625	h	
-0.58070691801558	22.83537651757704	-5.73739462754812	h	
1.85013689983522	28.28671926834028	-6.45027458434072	h	
5.16614722496296	27.8021158525382	-6.00651408177853	h	
2.94176108293108	25.72689254950829	-4.5312782371668	h	
8.47080347751787	26.95865722397134	-12.49343112182945	h	
8.02624045367683	27.94306505597820	-9.28369220253196	h	
6.0568463630669	29.18709790913111	-11.72322801675759	h	
8.40854315501570	2.42222037712529	-1.52132168050472	h	
11.08139350831705	4.47952837430000	-1.25874480138556	h	
7.99097242782069	5.76586760750291	-1.76082823427631	h	

\[\text{[\{CpMo(CO)_2\}_2(\mu-\eta^2-P_2)\]}\]
5.79697181476800 2.43138898495034 -0.51452909616275 o
-5.79697181476800 -2.43138898495034 -0.51452909616275 o
-2.91221333430228 6.08997395260062 0.29402465023298 c
-4.07483525433803 3.78130365325948 -0.49707393823989 c
-2.63282310796967 2.78370115167377 -2.5680943316993 c
-0.5687739286940 4.46519268262623 -3.04344145108126 c
-0.72896813762676 6.52593385655267 -1.28266027556845 c
-3.59768525219779 7.34489165299907 1.79834979349223 h
-5.79798150371368 2.94190195625628 0.29319482156701 h
-3.08128229182976 1.06870125326766 -3.64033247559632 h
0.85614779244529 4.25692298137993 -4.53798658828945 h
0.52383396620456 8.17803109916201 -1.21547372344437 h
2.91221333430228 6.08997395260062 0.29402465023298 h
0.72896813762676 -6.52593385655267 -1.28266027556845 c
4.07483525433803 -3.78130365325948 -0.49707393823989 c
0.5687739286940 -4.46519268262623 -3.04344145108126 c
2.63282310796967 -2.78370115167377 -2.5680943316993 c
3.59768525219779 -7.34489165299907 1.79834979349223 h
-0.52383396620456 -8.17803109916201 -1.21547372344437 h
5.79798150371368 -2.94190195625628 0.29319482156701 h
-0.85614779244529 -4.25692298137993 -4.53798658828945 h
3.08128229182976 -1.06870125326766 -3.64033247559632 h
1.99022988687440 -0.23604424194771 4.39801069389469 p
-1.99022988687440 0.23604424194771 4.39801069389469 p

Na₄P₂²⁺
1.94929529295146 0.00000000000000 0.00000000000000 p
-1.94929529295146 0.00000000000000 0.00000000000000 p
4.63910311631087 4.57407968308229 0.00000000000000 na
-4.63910311631087 4.57407968308229 0.00000000000000 na
4.63910311631087 -4.57407968308229 0.00000000000000 na
-4.63910311631087 -4.57407968308229 0.00000000000000 na

References

1. W. J. Evans, I. Bloom, W. E. Hunter and J. L. Atwood, *J. Am. Chem. Soc.*, 1981, 103, 6507-6508.
2. W. J. Evans, T. A. Ulibarri, H. Schumann and S. Nickel, in *Inorg. Synth.*, John Wiley & Sons, 2007, pp. 155-157.
3. J. M. Boncella and R. A. Andersen, *Inorg. Chem.*, 1984, 23, 432-437.
4. O. J. Scherer, H. Sitzmann and G. Wolmershäuser, *J. Organomet. Chem.*, 1984, 268, C9-C12.
5. O. J. Scherer, H. Sitzmann and G. Wolmershäuser, *Angew. Chem.*, 1985, 97, 358-359.
6. G. M. Sheldrick, *Acta Crystallogr., Sect. A*, 2008, 64, 112-122.