Impairment of Inhibitory Synaptic Transmission in Mice Lacking Synapsin I

Sumio Terada,* ‡ Tetsuhiro Tsujimoto,‡ Yosuke Takei,‡ Tomoyuki Takahashi,‡ and Nobutaka Hirokawa*‡

* Department of Cellular Neurobiology, ‡ Department of Cell Biology and Anatomy, and § Department of Neurophysiology, University of Tokyo, Graduate School of Medicine, Tokyo 113-0033, Japan

Abstract. Deletion of the synapsin I genes, encoding one of the major groups of proteins on synaptic vesicles, in mice causes late onset epileptic seizures and enhanced experimental temporal lobe epilepsy. However, mice lacking synapsin I maintain normal excitatory synaptic transmission and modulation but for an enhancement of paired-pulse facilitation. To elucidate the cellular basis for epilepsy in mutants, we examined whether the inhibitory synapses in the hippocampus from mutant mice are intact by electrophysiological and morphological means. In the cultured hippocampal synapses from mutant mice, repeated application of a hypertonic solution significantly suppressed the subsequent transmitter release, associated with an accelerated vesicle replenishing time at the inhibitory synapses, compared with the excitatory synapses. In the mutants, morphologically identifiable synaptic vesicles failed to accumulate after application of a hypertonic solution at the inhibitory preterminals but not at the excitatory preterminals. In the CA3 pyramidal cells in hippocampal slices from mutant mice, inhibitory postsynaptic currents evoked by direct electrical stimulation of the interneuron in the striatum oriens were characterized by reduced quantal content compared with those in wild type. We conclude that synapsin I contributes to the anchoring of synaptic vesicles, thereby minimizing transmitter depletion at the inhibitory synapses. This may explain, at least in part, the epileptic seizures occurring in the synapsin I mutant mice.

Key words: inhibitory • synapse • transmission • synapsin I • epilepsy

SYNAPSINS are the alternatively spliced products of three genes (synapsin I, II, and III), and comprise >10% of synaptic vesicle proteins in mammals (Südhof et al., 1989; Osaka and Südhof, 1998; Kao et al., 1998). They have been identified in both vertebrates (Südhof et al., 1989; Kao et al., 1998) and invertebrates (Klages et al., 1996; Hilfiker et al., 1998), and are regarded as the anchor proteins that cross-link synaptic vesicles to each other and to the cytoskeletal meshwork at the presynaptic nerve terminals (Linas et al., 1985, 1991; Hirokawa et al., 1989; Harada et al., 1990; Benfenati et al., 1992; Torri Tarelli et al., 1992; Hayashi et al., 1994; Cecchaldi et al., 1995; Pieribone et al., 1995). A s these interactions are known to be regulated by calcium-calmodulin kinase II in the case of synapsin I, this protein has been believed to play an important role in presynaptic vesicle turnover during synaptic transmission (Linas et al., 1985, 1991; Hirokawa et al., 1989; Harada et al., 1990; Benfenati et al., 1992; Torri Tarelli et al., 1992; Hayashi et al., 1994; Cecchaldi et al., 1995; Pieribone et al., 1995).

Contrary to our expectations, several previous studies showed that synapsin mutant mice survive without any appreciable defect in the macroscopic morphology of the brain or general behavior (Rosahl et al., 1993, 1995; Li et al., 1995; Takei et al., 1995). Although several perturbations in electrophysiological responses that are difficult to interpret occur (e.g., synapsin II mutant homozygotes and mice lacking both synapsin I and II show normal paired-pulse facilitation but lower posttetanic potentiation; in contrast, synapsin I mutant hemizygotes show an enhancement of paired-pulse facilitation but normal posttetanic potentiation), all these mutant mice show apparently normal long term potentiation (Rosahl et al., 1993, 1995; Li et al., 1995; Spillane et al., 1995; Takei et al., 1995). In the case of synapsin I mutant mice, behavioral analyses did not reveal any learning deficits (Silva et al., 1996). The only apparent abnormality was late onset epileptic seizures and enhanced stimulation-evoked epileptic seizures (experimental temporal lobe epilepsy) that were noted as the mice grew (Rosahl et al., 1993, 1995; Li et al., 1995;
Materials and Methods

Animals

Male hemizygotes and wild-type littermates derived from the crossing (>3 generations) of heterozygous synapsin I and Tsjumoto, 1995). Data analysis and analyses were performed without knowledge of the genotype of the mouse under study. In brief, low density primary cultures of hippocampal neurons were prepared from 16.5-d-old embryonic mice and used for the electrophysiological experiments at 8 d in vitro (Goslin and Banker, 1991). All the electrophysiological experiments were performed at room temperature (24–28°C). Whole-cell currents were recorded from pyramidal cells at the holding potential of 0 mV for IPSCs, or −70 mV for excitatory postsynaptic currents (EPSCs). The bathing solution contained 137 mM NaCl, 3.5 mM KCl, 10 mM Hepes, 10 mM glucose, 0.7 mM CaCl2, 2 mM MgCl2, 10−4 mM tetrodotoxin (TTX), and 0.5 × 10−3 mM strychnine, pH 7.2. M kynurenic acid was added for recording IPSCs and 0.1 mM picrotoxin for EPSCs. A small region of the dendritic tree was superfused with a hypertonic solution (800 mosM with sucrose) of the same aforementioned ionic composition except for the presence of TTX at the concentration of 10−4 M. The pipette solution contained the following: 122.5 cesium gluconate, 17.5 mM CsCl, 1.0 mM NaH2PO4, 26.2 mM NaHCO3, 11 mM glucose, 2.0 mM CaCl2, 1.0 mM MgCl2, 0.5 × 10−3 mM strychnine, 2 mM kynurenic acid, pH 7.2, equilibrated with 95% O2: 5% CO2. A stimulating electrode filled with the external solution was placed close to an interneuron in the stratum oriens of CA3. IPSCs evoked by short (100 µs) current pulses (3–10 V) at 0.05 Hz were recorded from a CA3 pyramidal neuron by whole-cell recording at a holding potential of 0 mV. The IPSCs were blocked reversibly by bicuculline (10 µM), indicating that they were mediated by γ-aminobutyric acid (GABA)-gated Cl− channels. Whole-cell currents were recorded by a patch-clamp amplifier (EPC-7; List), filtered at 5 kHz, and digitized at 10 kHz for further analysis.

Electrophysiological Procedures

The electrophysiological and culture techniques used have been described earlier (Edwards et al., 1989; Goslin and Banker, 1991; Stevens and Tsjumoto, 1995). Data acquisition and analyses were performed without knowledge of the genotype of the mouse under study. In brief, low density primary cultures of hippocampal neurons were prepared from 16.5-d-old embryonic mice and used for the electrophysiological experiments at 8 d in vitro (Goslin and Banker, 1991). All the electrophysiological experiments were performed at room temperature (24–28°C). Whole-cell currents were recorded from pyramidal cells at the holding potential of 0 mV for IPSCs, or −70 mV for excitatory postsynaptic currents (EPSCs). The bathing solution contained 137 mM NaCl, 3.5 mM KCl, 10 mM Hepes, 10 mM glucose, 0.7 mM CaCl2, 2 mM MgCl2, 10−4 mM tetrodotoxin (TTX), and 0.5 × 10−3 mM strychnine, pH 7.2. M kynurenic acid was added for recording IPSCs and 0.1 mM picrotoxin for EPSCs. A small region of the dendritic tree was superfused with a hypertonic solution (800 mosM with sucrose) of the same aforementioned ionic composition except for the presence of TTX at the concentration of 10−4 M. The pipette solution contained the following: 122.5 cesium gluconate, 17.5 mM CsCl, 1.0 mM NaH2PO4, 26.2 mM NaHCO3, 11 mM glucose, 2.0 mM CaCl2, 1.0 mM MgCl2, 0.5 × 10−3 mM strychnine, 2 mM kynurenic acid, pH 7.2, equilibrated with 95% O2: 5% CO2. A stimulating electrode filled with the external solution was placed close to an interneuron in the stratum oriens of CA3. IPSCs evoked by short (100 µs) current pulses (3–10 V) at 0.05 Hz were recorded from a CA3 pyramidal neuron by whole-cell recording at a holding potential of 0 mV. The IPSCs were blocked reversibly by bicuculline (10 µM), indicating that they were mediated by γ-aminobutyric acid (GABA)-gated Cl− channels. Whole-cell currents were recorded by a patch-clamp amplifier (EPC-7; List), filtered at 5 kHz, and digitized at 10 kHz for further analysis.

Immunoelectron Microscopy and Morphometric Analysis

Cultured neurons were incubated in medium containing 10−3 mM TTX for 5 min, stimulated with the above mentioned 800-mosM hypertonic solution for 10 s, washed out with medium for 1 min, and fixed with 0.1 M cacodylate buffer, pH 7.2, containing freshly prepared 4% paraformaldehyde and 0.1% glutaraldehyde for 15 min. The samples were quenched with 100 mM glycine for 5 min, permeabilized, and blocked in 0.5% BSA, 0.1% gelatin, 0.05% Tween 20, 20 µM digitonin, 1% skim milk, and 500 mM NaCl for 30 min; both solutions were prepared in PBS, pH 7.2. Subsequently, they were incubated for 1 h with a polyclonal anti-GABA antibody (diluted 1:450 with the above mentioned blocking solution) and blocked again for 30 min. Up to here all procedures were carried out at 37°C, thereafter the samples were incubated at room temperature for 10 min with 10 µg ml−1 biotinylated goat anti–rabbit IgG antibody (Nichirei), treated with 100 µg ml−1 HRP-labeled streptavidin (Nichirei) for 5 min, and processed for DAB staining. Subsequently, they were postfixed by dipping in 1% osmium tetroxide in 0.1 M cacodylate buffer, pH 7.2, for 10 min on ice, stained with 1% uranyl acetate for 1 h at room temperature, dehydrated in a graded series of ethanol concentrations, and embedded in Quetol-812 (Nisshin EM). Ultrathin sections were cut on a conventional ultramicrotome (Ultratome Nova; LKB Bromma), stained with uranyl acetate and lead citrate, and examined and photographed under a transmission electron microscope (2000EX; JEOL) at an accelerating voltage of 80 kV. The number of synaptic vesicles in presynaptic nerve terminals was determined by direct counting from the micrographs. These numbers were con-

1. Abbreviations used in this paper: EPSC, excitatory postsynaptic current; GABA, γ-aminobutyric acid; IPSC, inhibitory postsynaptic current; mEPSC, miniature EPSC; mIPSC, miniature IPSC; TTX, tetrodotoxin.

The Journal of Cell Biology, Volume 145, 1999 1040
verted into the number of vesicles per unit area (μm2) by dividing the vesicle count by the presynaptic nerve terminal area as described before (Takei et al., 1995).

Results

Repeated Application of a Hypertonic Solution Suppressed the Subsequent Transmitter Release at the Cultured Inhibitory Synapses of Mutants

We tested the possibility of the inhibitory synapses becoming easily fatigued and recovering slowly in synapsin mutants. Spontaneous mIPSCs were recorded from cultured hippocampal neurons in the presence of 1 μM TTX, and a hypertonic sucrose solution (800 mosM) was applied locally to a neurite for 5 s, followed by application for 2 s every 5 min to monitor the size of the readily releasable pool of synaptic vesicles. Most of the readily releasable vesicles were released during the first 2 s of application, and the size of released quanta measured by second 2 s applications recovered in parallel with the amplitude of the evoked EPSCs (Rosenmund and Stevens, 1996). Assuming that the replenishing time constant of the readily releasable pool is \sim 10 s, the 5-min intervals would be expected to minimize the effect of replenishment. When the hypertonic solution was applied for 5 s, the frequency of mIPSCs declined exponentially (Figs. 1a and 2a), presumably because of a depletion of available transmitter quanta or synaptic vesicles (Stevens and Tsujimoto, 1995). After a 5-min interval, the second application of hypertonic solution (2 s) caused a similar magnitude of increase in the frequency of mIPSCs in cells from the wild-type mice, whereas a much smaller increase was noted in the cells from synapsin I mutant mice (Fig. 1a). The total amount of quanta released during the first 2 s of hypertonic application in the second sucrose application was $43 \pm 14\%$ ($n = 6$) in the case of mutant mice, whereas it remained at $97 \pm 5\%$ ($n = 5$) in the case of wild-type mice (Fig. 1b). Subsequent applications of the hypertonic solution at 5-min intervals did not further reduce the amount of quantal release, either in the mutant or in wild-type mice. In contrast to the result at inhibitory synapses, no such depression was observed at the excitatory synapses in the mutant mice ($95 \pm 8\%$ at the second application, $n = 6$) (Fig. 1c).

![Figure 1. Impaired recovery of mIPSCs in cultured inhibitory synapses lacking synapsin I. (a) Sample traces of mIPSCs (middle) and their frequency (bottom). Hypertonic solution was applied for 5 s and thereafter for 2 s at intervals of 5 min, as shown by boxes (top). The left frame shows wild-type mice and the right one shows mutants. (b) The number of mIPSCs during 2 s relative to the first 2 of 5 s application of hypertonic solution in wild-type mice (open circles, $n = 3$) and mutant (filled circles, $n = 6$) mice. Bars represent SEM in this and the following figures. (c) Sample traces of mEPSCs and their frequency in the case of mutants after repeated applications of hypertonic solution.](image-url)
Accelerated Vesicle Replenishing Time in Cultured Inhibitory Synapses from Mutants

We analyzed the changes in the kinetics of synaptic vesicle turnover. Paired-pulse application of the hypertonic solution at various intervals commonly is used to assess the recovery time following depletion. But in our case, repeated stimulation with the hypertonic solution suppressed the subsequent mIPSCs in mutants (Fig. 1) that suggested the possibility that either the replenishing time might be altered on the order of tens of minutes or that the vesicular recycling process, including endocytosis, might be severely retarded. If the latter were the case, it would not be appropriate to apply the paired superfusion method to inhibitory synapses in mutants. We applied the model described by Stevens and Tsujimoto (1995) to estimate the replenishing time constant after a single 5-s hypertonic application. Assuming an infinite reservoir pool and a readily releasable pool of synaptic vesicles, the vesicle turnover rate in the readily releasable pool can be described by a simple model equation (Stevens and Tsujimoto, 1995) (see Materials and Methods). As shown in Fig. 2 a, because the mIPSCs in a mutant fail to respond to hypertonic stimulation after 3 s from the beginning of superfusion, we calculated the parameters for the synaptic vesicle turnover by equation 3 to the cumulative events of mIPSCs during 0–2.5 s of hypertonic application. (For these examples, the calculated replenishing time \(1/K_{doc}, \text{s}^{-1}\) was 10.1 s [wild type], 5.7 s [mutant]. The rate of releasing one vesicle from a docking site \(K_{exo}, \text{s}^{-1}\) at both inhibitory and excitatory presynaptic terminals were unaltered.)
inhibitory synapses from 3 wild-type mice, the mean time to replenish vacant release sites (1/K_doc) was 5.5 ± 3.7 s
and 10.7 ± 3.7 s, respectively (Fig. 2 b). Thus, the replenishing time of synaptic vesicles from a reservoir pool to a readily releasable site was reduced in synapsin I mutants (*P < 0.05, t test; the asterisk indicates that the related probability demonstrates statistical significance). In contrast, at the excitatory synapses, no significant difference was observed in the replenishing time between synapsin I−deficient mice (8.3 ± 2.3 s, n = 12) and wild-type mice (10.4 ± 2.6 s, n = 12, P > 0.5) (Fig. 2 b). The releasing rate from a readily releasable pool (K_r) of mIPSCs was higher by a mean of 36% for the mutants (1.5 ± 0.8 s⁻¹, n = 11) compared with the wild-type mice (1.1 ± 0.5 s⁻¹, n = 5). However, because of a large variance, the difference was not statistically significant (P = 0.18). The releasing rate from a readily releasable pool of mEPSCs was unaltered between mutants (1.2 ± 0.4 s⁻¹, n = 12) and wild-type mice (0.9 ± 0.2 s⁻¹, n = 12, P > 0.5) (Fig. 2 c). It is suggested that the accelerated replenishment from the reservoir pool to the readily releasable pool in mutant inhibitory presynaptic terminals accelerates the vesicular depletion of the reservoir pool, especially after rigorous hypertonic stimulation, at mutant inhibitory synapses.

Synaptic Vesicles Failed to Accumulate after Hypertonic Application at Inhibitory Preterminals in Mutants

To obtain morphological correlates, we performed electron microscopic analysis of the presynaptic terminals of hippocampal neurons in culture. From a morphological perspective, at the 8-d stage in vitro, the synapses of cultured hippocampal neurons were still not fully mature, although functionally, their mIPSCs or mEPSCs corresponded to that of fully mature synapses. The presynaptic terminals were smaller, the synapses often lacked postsynaptic densities, and synaptic vesicles seemed less apparent. However, on immunoelectron microscopy using the anti-GABA antibody, we could visualize inhibitory presynaptic terminals because they were filled with fuzzy DAB staining, especially intense just around the synaptic vesicles (Fig. 3, a–d). Without hypertonic stimulation, there was no difference between the two genotypes with respect to synaptic vesicle densities at the inhibitory presynaptic terminals as identified by positive staining with anti-GABA antibody (Fig. 3, a and b). However, after rigorous hypertonic stimulation, a clear loss of synaptic vesicles was observed at the inhibitory presynaptic terminals in synapsin I mutant mice (Fig. 3 d) but not in the wild-type mice (Fig. 3 c). No such morphological difference was observed between the mutant and wild-type mice at the excitatory presynaptic terminals as identified by the absence of anti-GABA staining (Fig. 3, e and f).

We performed morphometrical analyses on the synaptic vesicle densities at the presynaptic terminals of each genotype and, as shown in Table I, the density was significantly reduced only in the stimulated inhibitory synapses from mutants (*P < 0.05, t test). To determine whether this reduction affects the distribution of synaptic vesicles, we further counted the number of synaptic vesicles within a distance of 200 nm from the synaptic clefts. This revealed that the vesicle density near the synaptic clefts was not statistically different between wild-type and mutant mice. Thus, the physiological and morphological results consistently suggest that the reservoir pool of inhibitory presynaptic terminals could be depleted after hypertonic stimulation in synapsin I−deficient mice.

Table I. Morphometric Analysis of Presynaptic Terminals of Cultured Hippocampal Neurons before and after Hypertonic Stimulation

Numbers of Synaptic Vesicles per Unit Area in Presynaptic Terminals	Wild-type	Synapsin I−/−		
Excitatory	Inhibitory	Excitatory	Inhibitory	
Control	233 ± 15 (n = 10)	209 ± 60 (n = 14)	225 ± 31 (n = 12)	245 ± 47 (n = 10)
Stimulated	202 ± 29 (n = 12)	176 ± 27 (n = 12)	209 ± 20 (n = 8)	139 ± 25* (n = 10)

Numbers of Synaptic Vesicles per Unit Area within 200 nm from the Synaptic Cleft	Wild-type	Synapsin I−/−		
Excitatory	Inhibitory	Excitatory	Inhibitory	
Control	341 ± 66 (n = 10)	270 ± 76 (n = 14)	310 ± 46 (n = 12)	335 ± 28 (n = 10)
Stimulated	283 ± 45 (n = 12)	259 ± 30 (n = 12)	269 ± 50 (n = 8)	304 ± 72 (n = 10)

*Different from the value for wild-type at P < 0.05. The mean ± SD of the number of synaptic vesicles/μm² (n represents the number of synapses examined) is shown. t test was used to determine the significance of the changes.

Terada et al. Inhibitory Synaptic Transmission in Synapsin I KO
Figure 3. Immunoelectron microscopic analysis of presynaptic terminals of cultured hippocampal neurons. Frames a, c, and e are preparations from wild-type mice, whereas b, d, and f are from synapsin I-ablated mutants. Frames a and b show inhibitory presynaptic ter-
significant difference between mutant and wild-type mice with respect to the rise time (10–90%) (wild-type, n = 9, 2.6 ± 0.3 ms; mutant, n = 10, 2.8 ± 0.3 ms) and biexponential decay time constants (wild-type, n = 9, 21.1 ± 0.9 ms and 39.9 ± 6.3 ms; mutant, n = 10, 22.5 ± 1.6 ms and 31.6 ± 3.3 ms) of evoked IPSCs.

To examine whether the quantal size may be altered in synapsin I mutant mice, we recorded the spontaneous mIPSCs from hippocampal CA3 neurons in the presence of TTX (Fig. 4d). No significant difference was observed in the amplitude of mIPSCs between the case of mutant (18.6 ± 3.7, n = 6) and wild-type mice (17.6 ± 4.0, n = 4). The mIPSC amplitude distributions of the wild-type and mutant cells are not significantly different (Kolmogorov-Smirnov test; P > 0.1). These results suggest that synapsin I deficiency reduces the inhibitory synaptic efficacy by reducing the quantal content (i.e., the number of synaptic vesicles released by a single presynaptic action potential).

Discussion

Synaptic vesicles normally are anchored to actin filaments by synapsins (Llinas et al., 1985, 1991; Hirokawa et al., 1989; Harada et al., 1990; Benfenati et al., 1992; Torri Tarelli et al., 1992; Hayashi et al., 1994; Ceccaldi et al., 1995; Pieribone et al., 1995). As the association and dissociation of synapsins to synaptic vesicles are regulated by protein kinases, it is believed that synapsins may play an important role in the regulation of synaptic transmission by the following mechanisms. First, synapsins may modulate the vesicular traffic from the reservoir pool to the readily releasable pool (predocking mechanism) (Llinas et al., 1985, 1991; Hirokawa et al., 1989; Harada et al., 1990; Benfenati et al., 1992; Torri Tarelli et al., 1992; Hayashi et al., 1994; Ceccaldi et al., 1995; Li et al., 1995; Pieribone et al., 1995; Takei et al., 1995). The fluorescence resonance energy transfer experiment revealed that the association and dissociation kinetics of synapsin I and synaptic vesicles is the same order of magnitude as the kinetics of synaptic vesicle recycling (Stefani et al., 1997). It has been reported that domain E of synapsins is responsible for maintaining the reservoir pool of synaptic vesicles (Pieribone et al., 1995; Hilfiker et al., 1998). In cultured synapses, the number of vesicles exocytosed during action
potential trains and the total recycling vesicle pools are reduced in synapsin I knockout mice (Ryan et al., 1996). Also, synapsins have a binding activity to ATP and are predicted to transfer phosphate to an unidentified substrate that may suggest the possibility that synapsin I may be involved in the priming process (Esser et al., 1998; Hosaka and Südhof, 1998). Second, synapsins may inhibit synaptic vesicle fusion for exocytosis (Rosahl et al., 1995). Presynaptic injection of the synapsin domain E peptide reduced the size of EPSCs, accompanied by retarded kinetics of exocytosis (Hilfiker et al., 1998).

Recently, it has been postulated that the efficacy of neurotransmitter release may be regulated by the size of the readily releasable pool as supported by the results of the following experiments. The time courses of paired-pulse inhibition of action potentials and hypertonic solution-evoked release are correlated with each other at individual interpulse intervals when the exocytosis is evoked by action potentials followed by hypertonic solution application (Rosenmund and Stevens, 1996). The release probability as measured by the minimal stimulation technique is related directly to the size of the readily releasable pool as measured by repetitive nerve fiber stimulation (Dobrunz and Stevens, 1997). The replenishment of the readily releasable pool of giant presynaptic terminals in brainstem slices was accelerated by preceding high frequency action potentials in a calcium-dependent manner (Wang and Kaczmarek, 1998). The replenishing time of the readily releasable pool in our case was $10.4 \pm 2.6 \text{s}$ (wild-type EPSC) and $10.7 \pm 3.7 \text{s}$ (wild-type IPSC), comparable with

![Figure 4. Evoked IPSCs from pyramidal cells in the hippocampal CA3 region.](image)
values reported previously (12 s, Stevens and Tsujimoto, 1995; 8 s, von Gersdorff and Matthews, 1997). This variation may arise from variations in the intratraminal environment (e.g., the concentration of Ca²⁺ and protein kinases). Indeed, it is suggested that the replenishment process is accelerated by an elevation in the concentration of intracellular Ca²⁺ in hippocampal synapses in culture (Stevens and Wesseling, 1998), retinal bipolar cells (von Gersdorff and Matthews, 1997), and brainstem giant synapses (Wang and Kaczmarek, 1998). A cation of protein kinase C by phorbol ester also has been reported to reduce the replenishing time of the readily releasable pool (Stevens and Sullivan, 1998).

Our results in synapsin I mutants suggested a significant reduction in the replenishing time of inhibitory synaptic vesicles from the reservoir pool to a readily releasable site in synapsin I mutants. Synapsin I deficiency had no statistically significant (P = 0.18) effect on the rate of release from a readily releasable pool (Kexe). Presumably, this was due to a large variance between the two populations, although the mean value was 36% higher in the case of mutants compared with the wild-type mice. Thus, our results are consistent with the proposed predocking mechanism of synapsin I in the inhibitory presynaptic terminals. However, we cannot exclude the possibility that synapsin I gene knockout may accelerate the release rate of synaptic vesicles during hyperpolarized superfusion.

Both synapsin I and II are contained in the excitatory mossy fiber terminals in the hippocampus, whereas the inhibitory terminals of cerebellar Purkinje cells lack synapsin II A and express only a low level of synapsin II B (Sudhof et al., 1989). Also in the rat retina, glutamic acid decarboxylase-positive terminals lack synapsin II (Mandel et al., 1992). Although there is no direct evidence that hippocampal inhibitory synapses lack synapsin II, our results suggest at least that synapsin II plays a very specific role that cannot be compensated for by the presence of synapsin II. In addition, previous studies on synapsin mutants have shown that synapsin II knockouts, but not synapsin I knockouts, exhibit decreased posttetanic potentiation and severe synaptic depression on repetitive stimulation at the excitatory synapses (Rosahl et al., 1995). Considering together, we suppose that synapsin II may compensate for the absence of synapsin I (Ryan et al., 1996) at the excitatory synapses, whereas the deficiency of synapsin I exerted a more serious effect at the inhibitory synapses, presumably because of the poorer compensation.

During the baseline synaptic transmission, the apparent velocity to replenish the readily releasable pool is determined by the true replenishment velocity (the speed of transferring vesicles from the reservoir pool to the readily releasable pool), if the size of the reservoir pool is large enough. Alternatively, when the reservoir pool size reduces small enough because of the prolonged consumption of synaptic vesicles by repetitive stimulation, the apparent replenishing velocity will be limited by the velocity of refilling the reservoir pool. Indeed, our results indicated that the mutant inhibitory synapses in culture could not maintain the capability of subsequent transmitter release because of the exhaustion of reservoir pool after the first massive transmitter release. We consider that the size of reservoir vesicular pool is progressively reduced in the

References
Bekenstein, J.W., and E.W. Lothman. 1993. Dormancy of inhibitory interneu-
rons in a model of temporal lobe epilepsy. Science. 259:97-100.
Ben-Ari, Y., K. Krnjevic, and W. Reinhardt. 1979. Hippocampal seizures and
failure of inhibition. Can. J. Physiol. Pharmacol. 57:1462-1466.
Benfenati, F., F. Valtorta, J.L. Rubenstein, F.S. Gorelick, P. Greengard, and
A.J. Czernik. 1992. Synaptic vesicle-associated Ca\(^{2+}\)/calmodulin-dependent
protein kinase II is a binding protein for synapsin I. Nature. 359:417-420.
Cecaldi, P.E., F. Grohovaz, F. Benfenati, E. Chieregatti, P. Greengard, and F.
Valtorta. 1995. Dephosphorylated synapsin I anchors synaptic vesicles to ac-
tin cytoskeleton: an analysis by videomicroscopy. J. Cell Biol. 128:905-912.
Dobrunz, L.E., and C.F. Stevens. 1997. Heterogeneity of release probability, fa-
ciliation, and depletion at central synapses. Neuron. 18:995-1008.
Eddwards, F.A., A. Konnerth, B. Sakmann, and T. Takahashi. 1989. A thin slice
preparation for patch clamp recordings from neurons of the mammalian cen-
tral nervous system. Pflugers Arch. 414:600-612.
Esser, L., C.R. Wang, M. Hosaka, C.S. Smagula, T.C. Südhof, and J. Deisen-
hofer. 1989. Synapsin I is structurally similar to ATP-utilizing enzymes.
EMBO (Eur. Mol. Biol. Organ.) J. 17:977-984.
Goslin, K., and G. Banker. 1991. Rat hippocampal neurons in low-density cul-
ture. In Culturing Nerve Cells. G. Banker and K. Goslin, editors. MIT Press,
Cambridge, MA. 251-281.
Harada, A., K. Sobue, and N. Hirokawa. 1990. Developmental changes of syn-
apsin I subcellular localization in rat cerebellar neurons. Cell. Structure Funct.
15:329-342.
Hayashi, T., F. Soulie, T. Nakata, and N. Hirokawa. 1994. Redistribution of
neurohypophysial nerve endings. J. Cell Biol. 128:905-912.
Kandel, E., and W.A. Spencer. 1961. Electrophysiology of hippocampal neu-
rons. II. Afferent and efferent fibres. J. Neurophysiol. 24:243-259.
Kao, H.-T., B. Porton, A.J. Czernik, J. Feng, Y. Yu, M. Harin, F. Benfenati,
and P. Greengard. 1998. A third member of the synapsin gene family. Proc.
Natl. Acad. Sci. USA. 95:4667-4672.
Kagges, B.R., G. Heinbeck, T.A. Goederswege, A. Hofbauer, G.O. Pflug-
felder, R. Riefeggerst, D. Reisch, M. Schaup, S. Buchtner, and E. Buchtner.
1996. Invertebrate synapsins: a single gene codes for several isoforms in
Drosophila. J. Neurosci. 16:3145-3149.
Li, L., L.-S. Chin, O. Shupliakov, L. Brodin, T.S. Shiha, O. Halvaly, V. Jensen,
D. Zheng, J.O. McNamara, P. Greengard, and P. Andersen. 1995. Importance
of synaptic vesicle clustering and of synaptic transmission, and increased
seizure propensity, in synapsin I-deficient mice. Proc. Natl. Acad. Sci. USA.
92:9235-9239.
Linax, R., T.L. McGuiness, C.S. Leonard, M. Sugimori, and P. Greengard.
1985. Intratranal injection of synapsin I or calcium/calmodulin-dependent
protein kinase II alters neurotransmitter release at the squid giant synapse.
Proc. Natl. Acad. Sci. USA. 82:3035-3039.
Linax, R., J.A. Gruner, M. Sugimori, T.L. McGuiness, and P. Greengard.
1991. Regulation by synapsin I and Ca\(^{2+}\)/calmodulin-dependent protein ki-
nase II of the transmitter release in squid giant synapse. J. Physiol. 436:257-282.
Mallart, A., and A.R. Maritn. 1967. Analysis of facilitation of transmitter re-
lease at the neuromuscular junction of the frog. J. Physiol. 193:679-694.
Mandelli, J.W., A.J. Czernik, P. De Camilli, P. Greengard, and E. Townes-
Anderon. 1992. Differential expression of synapsins I and II among rat reti-
nal synapses. J. Neurosci. 12:1736-1749.
McCarren, M., and E.A. Alger. 1985. An age-dependent depression of IPSPs in rat
hippocampal pyramidal cells in vitro. J. Neurophysiol. 53:557-571.
Murphy, C.C., E. Trevathan, and M. Y. earrin-A Ilsopp. 1995. Prevalence of epi-
leptic and epileptic seizures in 10-year-old children: results from the Metro-
politan Atlanta Developmental Disabilities Study. Epilepsia. 36:866-872.
Pieribone, V.A., O. Shupliakov, L. Brodin, S. Hilfiker-Rothenthal, A.J. Czer-
nik, and P. Greengard. 1995. Distinct pools of synaptic vesicles in neu-
rotransmitter release. Nature. 375:493-497.
Roshal, T.W., M. Geppert, D. Spillane, J. Herz, R.E. Hammer, R.C. Malenka,
and T.C. Südhof. 1993. Short-term synaptic plasticity is altered in mice lack-
ing synapsin I. Cell. 75:661-670.
Roshal, T.W., D. Spillane, M. Misler, J. Herz, D.K. Selig, J.R. Wolff, R.E.
Hammer, R.C. Malenka, and T.C. Südhof. 1995. Essential functions of syn-
apsins I and II in synaptic vesicle regulation. Nature. 375:488-493.
Rosenmund, C., and F. Stevens. 1996. Definition of the readily releasable
pool of vesicles at hippocampal synapses. Neuron. 16:1197-1207.
Ryan, T.A., L. Li, L.S. Chin, P. Greengard, and S.J. Smith. 1996. Synaptic vesi-
cle recycling in synapsin I knockout mice. J. Cell Biol. 134:1219-1227.
Silva, A.J., T.W. Roshal, P.F. Chapman, Z. Marowitz, E. Friedman, P.W.
Frankland, V. Cestari, D. Giffio, T.C. Südhof, and R. Bourtchouladze. 1996.
Impaired learning in mice with abnormal short-lived plasticity. Curr. Biol.
6:1509-1518.
Spillane, D.M., T.W. Roshal, T.C. Südhof, and R.C. Malenka. 1995. Long-term
potentiation in mice lacking synapsins. Neurouropharmacology. 34:1573-1579.
Stefani, G., F. Onofri, F. Valtorta, P. Vaccaro, P. Greengard, and F. Benfenati.
1997. Kinetic analysis of the phosphorylation-dependent interactions of syn-
apsin I with rat brain synaptic vesicles. J. Physiol. 504:501-515.
Stevens, C.F., and T. Tsujimoto. 1995. Estimates for the size of releasable
quanta at a single central synapse and for the time required to refill the pool.
Proc. Natl. Acad. Sci. USA. 92:846-849.
Stevens, C.F., and J.F. Wesseling. 1998. A cdivitely-dependent modulation of the
rate at which synaptic vesicles become available to undergo exocytosis. Neu-
ron. 21:415-424.
Stevens, C.F., and J.M. Sullivan. 1998. Regulation of the readily releasable vesi-
cle pool by protein kinase C. Neuron. 21:885-893.
Südhof, T.C., A.J. Czernik, H.-T. Kao, K. Takei, P.A. Johnston, A. Horiuchi,
S.D. Kanazir, M.A. Wagner, M.S. Perin, P. De Camilli, and P. Greengard.
1989. Synapsins: mosaics of shared and individual domains in a family of syn-
aptic vesicle phosphoproteins. Science. 245:1474-1480.
Takei, K., A. Harada, S. Takeda, K. Kobayashi, S. Terada, T. Noda, T. Taka-
hashi, and N. Hirokawa. 1995. Synapsin I deficiency results in the structural
change in the presynaptic terminals in the murine nervous system. J. Cell
Biol. 131:1789-1800.
Torri Tarelli, F., M. Bosi, R. Fesce, P. Greengard, and F. Valtorta. 1992. Syn-
apsin I partially dissociates from synaptic vesicles during exocytosis induced
by electrical stimulation. Neuron. 9:1143-1153.
von Gerstorff, H., and G. Matthews. 1997. D epletion and replenishment of rele-
sable pools at a ribbon-type synaptic terminal. J. Neurosci. 17:1919-1927.
Wang, L-Y., and L.K. Kaczmarek. 1998. High-frequency firing helps replenish
the readily releasable pool of synaptic vesicles. Nature. 394:384-388.
Wong, R.K., and D.A. Prince. 1981. A tterpotential generation in hippocampal
pyramidal cells. J. Neurophysiol. 45:86-97.