A 28-year prospective analysis of serum vitamin E, vitamin E-related genetic variation and risk of prostate cancer

Wayne R. Lawrence1,2, Jung-Eun Lim1, Jiaqi Huang1,2, Stephanie J. Weinstein1, Satu Männisto3 and Demetrius Albanes1

OBJECTIVE: Investigate the relationship between serum α-tocopherol concentration and long-term risk of prostate cancer, and evaluate the interaction with vitamin E-related genetic variants and their polygenic risk score (PRS).

METHODS: We conducted a biochemical analysis of 29,102 male Finnish smokers in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Serum α-tocopherol was measured at baseline using high-performance liquid chromatography, and 2724 prostate cancer cases were identified during 28 years of follow-up. Cox proportional hazards models examined whether serum α-tocopherol concentrations were associated with prostate cancer risk. Among 8383 participants, three SNPs related to vitamin E status (rs964184, rs2108622, and rs11057830) were examined to determine whether they modified the relationship between serum α-tocopherol concentrations and prostate cancer risk, both individually and as a PRS using logistic regression models.

RESULTS: No association was observed between serum α-tocopherol and prostate cancer risk (fifth quintile (Q5) vs. Q1 hazard ratio (HR) = 0.87, 95% confidence interval (95% CI) 0.75, 1.02; P-trend = 0.57). Though no interactions were seen by population characteristics, high α-tocopherol concentration was associated with reduced prostate cancer risk among the trial α-tocopherol supplementation group (Q5 quintile vs. Q1 HR = 0.79, 95% CI 0.64, 0.99). Finally, no associated interaction between the three SNPs or their PRS and prostate cancer risk was observed.

CONCLUSION: Although there was a weak inverse association between α-tocopherol concentration and prostate cancer risk over nearly three decades, our findings suggest that men receiving the trial α-tocopherol supplementation who had higher baseline serum α-tocopherol concentration experienced reduced prostate cancer risk. Vitamin E-related genotypes did not modify the serum α-tocopherol-prostate cancer risk association.

Prostate Cancer and Prostatic Diseases (2022) 25:553–560; https://doi.org/10.1038/s41391-022-00511-y

INTRODUCTION
Prostate cancer is one of the most frequently diagnosed malignancies among men globally [1]. Though prostate cancer does not account for a large proportion of cancer mortality, treatment-related morbidities (e.g., sexual dysfunction, urinary incontinence, and depression) are common and adversely affect quality of life [2, 3]. Common risk factors for prostate cancer include family history, age, diet, and genetic susceptibility [4, 5]. Due to the high prevalence of prostate cancer and relatively few known risk factors, identifying preventable lifestyle and related factors to reduce risk is an important public health priority.

The role of vitamin E in health and disease prevention has been examined in laboratory experiments, observational studies, and controlled trials [6, 7]. Vitamin E is a lipid-soluble antioxidant suggested to protect against membrane and tissue oxidative injury, thereby reducing risk of chronic diseases, including cancer and cardiovascular disease [6, 8, 9]. Studies have also suggested that vitamin E can affect carcinogenesis through interaction with other nutrients (e.g., carotenoids) [10]. The predominant form of vitamin E in humans is α-tocopherol, which previous studies have suggested inhibits cancer development [8, 11]. Epidemiological studies have investigated serum α-tocopherol in relation to prostate cancer risk, where several documented an inverse association [12–14]. Most studies examining the relationship between α-tocopherol on prostate cancer risk were over a short period, whereas whether the relationship changes over a long follow-up period remains understudied [13].

Genome-wide association studies (GWAS) have identified genetic determinants of circulating nutrient concentrations (e.g., vitamins A, D, and E) [15, 16]. For example, a large GWAS meta-analysis of circulating α-tocopherol concentration identified three associated vitamin E single-nucleotide polymorphisms (SNPs), (rs964184, rs2108622, and rs11057830) [17]. The impact of these vitamin E-related genetic variants on cancer risk remains not well understood, particularly alleles associated with higher serum α-tocopherol concentration. Therefore, examining the joint effects of vitamin E-related variants and serum α-tocopherol on prostate cancer risk is of importance to develop a greater understanding on the disease mechanism.

1Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. 2National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011 Hunan, China. 3Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland.

Email: wayne.lawrence@nih.gov; daa@nih.gov

Received: 16 December 2021 Revised: 25 January 2022 Accepted: 3 February 2022
Published online: 23 February 2022
In the present study, we investigated whether serum α-tocopherol is prospectively associated with long-term prostate cancer risk (over a 28-year period), and whether three genetic variants involved in vitamin E transport or metabolism have any beneficial risk association on vitamin E status. We also examined whether the serum α-tocopherol-prostate cancer risk association was modified by polygenic risk score (PRS) using the three identified genetic variants.

METHODS

Study population

The Alpha-Tocopherol, Beta-Carotene (ATBC) Cancer Prevention study enrolled 29,133 Finnish male smokers, ages 50–59 years. Details of the ATBC Study design have been previously published [18]. Briefly, the ATBC study was a double-blind, placebo-controlled primary cancer prevention trial conducted in Finland to investigate whether β-carotene or α-tocopherol supplementation were associated with reduced cancer risk. In this 2 × 2 factorial randomized controlled trial, each participant was assigned to one of four intervention groups: β-carotene (50 mg/day), α-tocopherol (50 mg/day), both (β-carotene and α-tocopherol), or placebo. Participants were given capsules for 5–8 years (median of 6.1) until conclusion of the study on April 30, 1993. At baseline (e.g., pre-supplementation) and at 3 years (follow-up), overnight fasting blood samples were collected from all participants and blood samples were stored at −70°C and protected from light until assayed. Anthropometric measurements were obtained at enrollment, and demographic information and medical history were captured through a detailed questionnaire. A validated food-frequency questionnaire was administered during this period as well. Participants were evaluated at each visit for medical signs and symptoms, all hospital visits were documented, and diagnosis at hospitals were monitored through the National Hospital Discharge Register. Finally, comparisons between treatment groups on cause-specific dropout rates and capsule compliance were performed. Greater detail on the study protocol are described elsewhere [18]. All participants provided written informed consent. The ATBC study was approved by the Institutional Review Boards at Finnish National Public Health Institute and U.S. National Cancer Institute. This study was conducted in accordance with relevant guidelines and regulations.

Using high-performance liquid chromatography, serum α-tocopherol and β-carotene concentrations were assayed for the entire cohort in the same laboratory [19]. Enzymatic assay was used to measure total and high-density lipoprotein cholesterol concentrations [20]. The inter-batch coefficient of variation for serum α-tocopherol was 2.2%. We excluded participants that had missing baseline serum α-tocopherol measurement (n = 31). Supplementary Fig. 1 presents the inclusion criteria for the overall study cohort.

Vitamin E genotypes

Genotyping was previously conducted among 8383 participants by genome-wide scans as previously described [17, 21]. We selected three SNPs identified in previous GWAS analyses to be associated with higher circulating serum α-tocopherol concentration: rs964184 (located on 11q23.3 near BUD13, ZNF239 and APOA1/C3/A4/A5), rs2108622 (19pter-p13.11 near CYFIP2), and rs11657830 (12q24.31 near SCARB1) [17].

Identification of prostate cancer cases

The Finnish Cancer Registry representing ~100% case coverage nationwide was used to ascertain prostate cancer cases (n = 2724) [22]. All cancer diagnoses prior to April 1994 were also confirmed through oncology and pathology review of medical records collected from pathology laboratories and hospitals. We further examined whether the participant had aggressive prostate cancer at diagnosis. Aggressive prostate cancer was defined as TNM stage III or IV, American Joint Committee on Cancer, stage ≥3, or Gleason sum ≥8. Cases diagnosed after that date were reviewed by at least one study physician. Cases were diagnosed through December 31, 2012.

Statistical analysis

Continuous variables were reported as the mean ± standard deviation, and categorical variables as percent to describe the study population characteristics. Cox proportional hazard regression models were fit to assess the association between serum α-tocopherol at baseline by quintile and on prostate cancer risk, while adjusting for confounders. Person-years was used as the underlying time metric and calculated from the beginning of each time-period to date of prostate cancer diagnosis or censor date (December 31, 2012). Potential confounders were selected a priori including baseline age (continuous), body mass index (continuous), years of cigarette smoking (continuous), number of cigarettes smoked daily (continuous), serum total cholesterol concentration (continuous), family history of prostate cancer (categorical), and trial intervention group (categorical). We further examined education, physical exercise, dietary γ-tocopherol, height, and history of diabetes which were not ultimately included as confounders as they did not change the risk estimate by at least 10%. We performed tests for linear trend across quintiles by assigning participants the median value of serum α-tocopherol for each quintile. For prostate cancer risk, unadjusted cumulative incidence functions were represented by Kaplan–Meier plots, and the differences in cumulative prostate cancer incidence across baseline serum α-tocopherol quintiles were tested using the log-rank test.

Multivariable Cox proportional hazards models were repeated with stratification by age at enrollment (<55, 55–59, or ≥60), years of smoking (<32, 32–39, or ≥40), number of cigarettes smoked daily (<20 or ≥20), BMI (<24.5, 24.5–27.6, or ≥27.6), intervention group (yes or no), and history of diabetes (yes or no). p values for interaction were evaluated through likelihood ratio tests by taking the difference between −2 log likelihood for models with and without the interaction terms between baseline serum α-tocopherol (quintiles) and the covariate of interest, with degrees of freedom equal to differences between the number of parameters in the two models. We tested proportional hazards assumptions for all models, with no evidence of violation.

Logistic regression was performed to estimate risk of prostate cancer by individual SNP alleles. Unweighted PRS was sum of the number of high α-tocopherol risk alleles, and for a weighted-PRS (weighted sum of alleles across the three SNPs) [23] where the weight for each individual SNP was the log-odds ratio of its association with prostate cancer risk. The PRS variable was then categorized as tertiles (1st tertile [low risk], 3rd tertile [high risk]) based on the distribution among non-cases.

We also examined whether the association between baseline serum α-tocopherol and prostate cancer risk was modified by the change in α-tocopherol concentration from baseline to 3 years of follow-up (low: <105 mg/l and high: ≥105 mg/l) and by the trial α-tocopherol supplementation. All statistical tests were two-sided and p-value less than 0.05 was considered statistically significant. Analyses were conducted using R version 4.0.2 and SAS version 9.4.

RESULTS

The analytical cohort included 29,102 men, of whom 2724 were diagnosed with prostate cancer over a 28-year period. Table 1 presents the baseline cohort risk factor, dietary, and demographic characteristics by quintile of serum α-tocopherol concentration. The cohort median concentration was 11.5 mg/l and median of the fifth quintile was 15.9 mg/l. Compared to men in the lowest quintile, those in the highest quintile had slightly greater weight, fewer years of smoking, greater fruit and vegetable consumption, and higher education.

Serum α-tocopherol appeared inversely associated with prostate cancer risk comparing the highest vs. lowest quintile (HR = 0.87; 95% CI 0.75, 1.02), although none of the HRs or trend test were statistically significant (Table 2). This finding is substantiated by the Kaplan–Meier plot demonstrating lower cumulative incidence for Q5, albeit with a log-rank test that was not statistically significant (Supplementary Fig. 2). Similarly, for aggressive prostate cancer a reduced risk was observed comparing the highest vs. lowest quintile of serum α-tocopherol, though findings were not statistically significant (HR = 0.87; 95% CI 0.70, 1.09). We further assessed effect modification of the serum α-tocopherol (quintile)-prostate cancer association by risk factors and trial intervention subgroups and observed no striking patterns, although the inverse vitamin E association appeared stronger for men receiving the trial α-tocopherol supplement, suggesting synergism (HR = 0.79; 95% CI 0.64, 0.99) (Table 3). None of the interaction terms were significant. Additionally, we
examined whether the association between serum α-tocopherol and prostate cancer risk was modified by the change in serum α-tocopherol concentration from baseline to 3 years of follow-up or by α-tocopherol supplementation (Supplementary Table 1). Our findings showed an elevated prostate cancer risk among supplemented men who had a low baseline serum α-tocopherol (<10.5 mg/l) and the highest concentrations at follow-up (median change of ≥3 mg/l, HR = 1.56; 95% 1.07, 2.27).

Table 1. Population baseline characteristics by quintile of serum α-tocopherol concentration.

Quintile of baseline serum α-tocopherol	Q1 ≤9.3 mg/l	Q2 >9.3 and ≤10.8 mg/l	Q3 >10.8 and ≤12.2 mg/l	Q4 >12.2 and ≤14.2 mg/l	Q5 >14.2 mg/l
Characteristics	(n = 5806)	(n = 5882)	(n = 5653)	(n = 5938)	(n = 5823)
Age at randomization, years	57 (53–62)	57 (53–61)	56 (53–61)	56 (53–61)	56 (53–60)
Weight, kg	75.7 (67.3–84.8)	77.2 (69.2–85.7)	78.3 (70.9–86.9)	78.7 (71.4–87.3)	80.9 (73.7–89.4)
Height, cm	173 (169–177)	173 (169–178)	174 (170–178)	174 (169–178)	174 (170–178)
BMI, kg/m²	25.2 (22.7–28.0)	25.6 (23.3–28.2)	25.9 (23.7–28.4)	26.2 (24.0–28.6)	26.8 (24.7–29.3)
History of diabetes (%)					
Yes	4.1	3.4	3.7	3.6	6.4
No	95.9	96.6	96.3	96.4	93.6
Cigarettes per day	20 (15–25)	20 (15–25)	20 (15–25)	20 (15–25)	20 (15–25)
Years of cigarette smoking	38 (32–43)	37 (31–42)	36 (30–41)	36 (30–41)	36 (30–41)
Education (%)					
Less than high school	40.2	37.5	33.7	31.5	27.3
High school graduate and above	59.8	62.5	66.3	68.5	72.7
Physical exercise in leisure time (%)					
<1 per week	54.9	53.8	51.1	48.5	49.5
1–2 per week	25.4	26.8	29.1	30.9	30.3
≥3 or more per week	19.6	19.2	19.6	20.5	20.1
Family history of prostate cancer (%)					
Yes	1.8	2.2	2.4	2.3	2.0
No	56.2	62.2	63.4	65.3	65.2
Baseline serum β-carotene, µg/l	123 (77–189)	164 (110–242)	182 (122–270.5)	195 (130–293)	196 (127–309)
Baseline serum retinol, µg/l	538.3 (464–624)	560 (489–639)	575 (503–654)	590 (515–673)	619 (542–710)
Baseline serum total cholesterol, mmol/l	5.2 (4.7–5.8)	5.8 (5.3–6.3)	6.2 (5.6–6.8)	6.6 (6.0–7.2)	7.2 (6.5–7.9)
Dietary intake					
Total energy, kcal	2617 (2161–3159)	2629 (2165–3148)	2628 (2188–3131)	2588 (2153–3106)	2528 (2117–3060)
Fruits, g	61 (26–112)	68 (30–120)	77 (34–127)	80.5 (38.3–132.4)	84.2 (40–138)
Vegetables, g	57 (34–91)	65 (40–101)	71 (44–109)	76 (47–116)	82 (51–123)
Red meat, g	64 (47–85)	65 (48–88)	66 (50–88)	66 (48–88)	66 (49–88)
Coffee, g	550 (330–770)	560 (420–770)	600 (440–770)	560 (440–770)	550 (420–770)
Alcohol, g ethanol	12.9 (3.2–29.3)	10.9 (2.3–25.9)	10.7 (2.5–25.0)	10.3 (2.4–24.0)	10.7 (2.7–24.4)
Vitamin A, µg	1556.4 (1071–2251)	1619 (1116–2365)	1639 (1129–2413)	1641 (1110–2418)	1631 (1100–2354)
Vitamin C, mg	85 (60–114)	90 (65–119)	94 (70–125)	96 (70–128)	98 (73–131)
Vitamin E, µg	9.2 (7.1–12.0)	10.1 (7.8–13.3)	10.9 (8.3–14.3)	11.4 (8.6–15.7)	12.4 (9.3–17.0)
α-Tocopherol, mg	7.9 (6.2–10.3)	8.7 (6.7–11.5)	9.3 (7.2–12.2)	9.8 (7.4–13.4)	10.7 (8.0–14.7)
γ-Tocopherol, mg	3.9 (2.1–7.2)	5.0 (2.7–9.2)	5.9 (3.1–10.8)	6.8 (3.5–12.8)	8.3 (4.3–14.9)
Trial intervention group					
α-tocopherol only, n (%)	1501 (25.9)	1473 (25.0)	1369 (24.2)	1473 (24.8)	1463 (25.1)
β-carotene only, n (%)	1461 (25.2)	1485 (25.3)	1384 (24.5)	1459 (24.6)	1489 (25.6)
α-tocopherol and β-carotene, n (%)	1404 (24.2)	1438 (24.5)	1426 (25.2)	1530 (25.8)	1470 (25.2)
Placebo, n (%)	1440 (24.8)	1486 (25.3)	1474 (26.1)	1476 (24.9)	1401 (24.1)

Median (interquartile range) unless otherwise indicated. Q quintile, BMI body mass index.

*Family history of prostate cancer was not captured at baseline but on-study.
We further assessed the association between vitamin E-related genes and their PRS on prostate cancer risk. For each SNP, the mean α-tocopherol concentration increased with increasing number of minor alleles (i.e., 1 or 2 copies of the variant) (Table 4). However, no association was observed between any of the SNP and prostate cancer, and neither the unweighted PRS nor the weighted-PRS was associated with risk (Supplementary Fig. 3 and Table 5).

DISCUSSION

In this large cancer prevention trial-based cohort of male smokers, no clear long-term dose-dependent association was observed between prospectively measured serum α-tocopherol concentration and prostate cancer risk based on nearly 3000 cases. We did observe that men assigned to receive the trial α-tocopherol supplementation who were in the highest serum quintile had an associated 21% lower prostate cancer risk compared to their counterparts in the lowest quintile. Additionally, there were no significant interactions with risk factors for the serum α-tocopherol-prostate cancer association, and genetic variants associated with higher vitamin E concentrations did not modify the relationship.

Epidemiological studies examining the relationship between vitamin E or α-tocopherol and prostate cancer risk have reported a reduced risk, although not all risk estimates were statistically significant [13, 24, 25]. For example, an early finding from the ATBC Study demonstrated that low-dose, 50 IU α-tocopherol supplementation reduced the incidence of prostate cancer by 34% over a 5–8 year period [26], and an 18-year post-intervention follow-up showed that the effects on prostate cancer risk were attenuated within 2 years after the end of the trial supplementation [27]. Another study among the same cohort up to 19 years of follow-up reported a reduced risk for those with high baseline α-tocopherol but not dietary vitamin E intake [13]. In the present study, we observed no association over 28 years of follow-up, suggesting the relationship was further attenuated over time.

Findings from both the Physicians’ Health Study II and the Heart Outcomes Prevention Evaluation trial observed no effect of vitamin E supplementation (200 IU and 400 IU daily, respectively) on prostate cancer incidence [28, 29]. The Selenium and Vitamin E Cancer Prevention Trial (SELECT) reported that with up to 12 years of follow-up reported a reduced risk for those with high baseline α-tocopherol but not dietary vitamin E intake [13]. In the present study, we observed no association over 28 years of follow-up, suggesting the relationship was further attenuated over time.

Findings from both the Physicians’ Health Study II and the Heart Outcomes Prevention Evaluation trial observed no effect of vitamin E supplementation (200 IU and 400 IU daily, respectively) on prostate cancer incidence [28]. The Selenium and Vitamin E Cancer Prevention Trial (SELECT) reported that with up to 12 years of follow-up reported a reduced risk for those with high baseline α-tocopherol but not dietary vitamin E intake [13]. In the present study, we observed no association over 28 years of follow-up, suggesting the relationship was further attenuated over time.
elucidated [17, 33, 34]. Although we observed no formal interaction between the SNPs and PRS and prostate cancer risk, we did find a reduced prostate cancer risk for rs2108622 near the CYP4F2 region with increasing number of higher vitamin E alleles (T). Additionally, a study from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial reported an association between vitamin E [6]. Previous studies have reported that α-tocopherol was associated with lower cancer risk by reducing oxidative injury [6]. Since humans are unable to synthesize vitamin E, α-tocopherol is primarily acquired through dietary sources (vegetable oils, seeds, fruits, whole grains, nuts, and some animal products) and supplementation [35, 36]. To explore some of the differences in findings, we investigated prostate cancer risk by quintile of α-tocopherol concentration, and changes in α-tocopherol concentration from baseline to follow-up. Additionally, prior studies documented that cigarette smokers require higher α-tocopherol intake to maintain similar plasma α-tocopherol concentrations compared to their nonsmoking counterparts [31, 32]. Greater plasma α-tocopherol depletion is largely contributed to elevated oxidative stress and its associated inflammatory response [31, 32, 37]. Previous studies also support the influence of genetic variants involved in vitamin E transport and metabolism on the association between α-tocopherol and prostate cancer risk, but these genetic associations for higher vitamin E status requires further study in more racially and ethnically diverse populations [14, 38].

Table 3. Multivariable-adjusted hazard ratios and 95% confidence intervals of prostate cancer risk by quintile of baseline serum α-tocopherol concentration, stratified by study population characteristics, among 29,102 Finnish male smokers in the ATBC Study.

Stratified characteristics	Events	Q1 ≤9.3 mg/l	Q2 >9.3 and ≤10.8 mg/l	Q3 >10.8 and ≤12.2 mg/l	Q4 >12.2 and ≤14.2 mg/l	Q5 >14.2 mg/l	P_{trend}	P_{interaction}
Age at randomization, years							0.28	
<55	972	1.00 (Ref)	0.89 (0.72, 1.11)	1.01 (0.81, 1.25)	0.97 (0.77, 1.22)	0.91 (0.70, 1.17)	0.99	
55–59	877	1.00 (Ref)	1.17 (0.93, 1.47)	1.17 (0.93, 1.47)	1.09 (0.86, 1.39)	0.96 (0.73, 1.26)	0.17	
≥60	875	1.00 (Ref)	0.80 (0.65, 0.98)	0.83 (0.66, 1.03)	0.86 (0.68, 1.07)	0.78 (0.61, 1.01)	0.71	
Years of smoking							0.67	
<32	831	1.00 (Ref)	0.96 (0.76, 1.22)	1.15 (0.91, 1.46)	1.05 (0.82, 1.35)	1.01 (0.76, 1.34)	0.87	
32–39	910	1.00 (Ref)	1.05 (0.84, 1.31)	1.01 (0.81, 1.27)	1.02 (0.80, 1.29)	0.86 (0.66, 1.12)	0.31	
≥40	983	1.00 (Ref)	0.84 (0.70, 1.03)	0.87 (0.71, 1.07)	0.88 (0.71, 1.09)	0.81 (0.64, 1.04)	0.99	
Number of cigarettes smoked daily							0.69	
<20	1121	1.00 (Ref)	0.96 (0.79, 1.18)	0.94 (0.76, 1.15)	0.98 (0.80, 1.21)	0.84 (0.66, 1.06)	0.62	
≥20	1603	1.00 (Ref)	0.91 (0.78, 1.07)	1.02 (0.87, 1.20)	0.94 (0.79, 1.12)	0.90 (0.74, 1.10)	0.61	
BMI (range), kg/m²							0.83	
<24.5	857	1.00 (Ref)	0.92 (0.75, 1.13)	1.05 (0.85, 1.31)	0.94 (0.74, 1.19)	0.92 (0.69, 1.22)	0.88	
24.5–27.6	981	1.00 (Ref)	0.89 (0.72, 1.10)	0.87 (0.70, 1.08)	0.94 (0.75, 1.17)	0.75 (0.58, 0.97)	0.93	
≥27.6	884	1.00 (Ref)	1.00 (0.80, 1.26)	1.07 (0.85, 1.35)	1.00 (0.79, 1.26)	0.98 (0.76, 1.26)	0.36	
α-Tocopherol supplementation							0.40	
Yes	1317	1.00 (Ref)	0.95 (0.79, 1.13)	0.98 (0.81, 1.18)	1.00 (0.82, 1.21)	0.79 (0.64, 0.99)	0.69	
No	1407	1.00 (Ref)	0.93 (0.78, 1.10)	1.00 (0.84, 1.19)	0.93 (0.77, 1.12)	0.96 (0.78, 1.19)	0.71	
β-Carotene supplementation							0.49	
Yes	1379	1.00 (Ref)	0.95 (0.80, 1.13)	0.97 (0.81, 1.16)	0.97 (0.81, 1.17)	0.83 (0.67, 1.03)	0.37	
No	1345	1.00 (Ref)	0.92 (0.77, 1.10)	1.01 (0.85, 1.21)	0.95 (0.79, 1.15)	0.92 (0.74, 1.14)	0.92	
History of diabetes							0.10	
Yes	71	1.00 (Ref)	0.60 (0.27, 1.32)	0.38 (0.16, 0.90)	0.76 (0.35, 1.66)	0.61 (0.28, 1.34)	0.63	
No	2653	1.00 (Ref)	0.95 (0.83, 1.07)	1.01 (0.89, 1.15)	0.97 (0.85, 1.11)	0.89 (0.76, 1.03)	0.64	

HR hazard ratio, 95% CI 95% confidence interval, Ref Referent, Q quintile. ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention.

*Two-sided P_{trend} is based on the statistical significance of the coefficient of the quintile variable (median value within each quintile).

*Two-sided P_{interaction} is based on the statistical significance of the cross-product term added to multivariable models.

In humans, α-tocopherol is the most biologically active form of vitamin E [6].
Table 4. Association between vitamin E-related gene SNPs and prostate cancer risk among 8383 Finnish male smokers in the ATBC Study.

SNP	Gene	Chromosome	Minor allele	MAF	Number of participants	Prostate cancer diagnosis (%)	OR (95%CI)\(^a\)	Mean serum α-tocopherol (mg/l) by genotype	\(P_{trend}\)\(^b\)
rs964184	BUD13/ZNF259/ APOA5	11	G	0.15	6096	26.4	1.00 (Ref)	11.8	0.09
					2115	24.1	0.90 (0.80, 1.01)	12.6	
					172	26.7	1.02 (0.72, 1.44)	13.6	
rs2108622	CYP4F2	19	T	0.19	5505	26.0	1.00 (Ref)	11.9	0.50
					2590	25.8	1.00 (0.89, 1.11)	12.2	
					288	23.6	0.89 (0.67, 1.17)	12.9	
rs11057830	SCARB1	12	A	0.13	6314	25.5	1.00 (Ref)	11.9	0.08
					1919	26.8	1.08 (0.96, 1.21)	12.3	
					150	31.3	1.35 (0.95, 1.92)	12.7	

MAF minor allele frequency, OR odds ratio, 95% CI 95% confidence interval, Ref referent, BUD13 budding-site selection protein 13 (yeast), ZNF259 zinc finger protein 259, APOA5 apolipoprotein A5, CYP4F2 cytochrome p450, family 4, subfamily F, polypeptide 2, SCARB1 scavenger receptor class-B member 1, ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention, SNP single-nucleotide polymorphisms.

\(^a\)Models adjusted for age at randomization, body mass index, years of cigarette smoking, number of cigarettes smoked daily, serum total cholesterol concentration, and trial intervention group.

\(^b\)Two-sided \(P_{trend}\) is based on the statistical significance of the coefficient for the allele variable of each SNP.

Table 5. Association between weighted-polygenic risk score and prostate cancer risk by quintile of serum α-tocopherol, among 8383 Finnish male smokers in the ATBC study.

Baseline serum α-tocopherol quintiles, range	Mean serum α-tocopherol concentration (mg/l)	Events (%)	Q1 ≤9.3 mg/l	Q2 >9.3 and ≤10.8 mg/l	Q3 >10.8 and ≤12.2 mg/l	Q4 >12.2 and ≤14.2 mg/l	Q5 >14.2 mg/l	\(P_{interaction}\)\(^c\)	
OR (95%CI)\(^b\)	PRS-ordinal\(^a\)	12.7	24.4	1.00 (Ref)	1.02 (0.73, 1.43)	1.28 (0.91, 1.80)	1.14 (0.81, 1.61)	1.15 (0.79, 1.67)	0.89
Tertile 1 (lower risk)	11.9	24.6	1.00 (Ref)	1.17 (0.78, 1.75)	1.23 (0.81, 1.88)	0.99 (0.62, 1.56)	1.04 (0.62, 1.73)		
Tertile 2		27.0	1.00 (Ref)	0.95 (0.77, 1.18)	1.07 (0.86, 1.34)	1.09 (0.87, 1.38)	1.09 (0.83, 1.42)		

OR odds ratio, 95% CI 95% confidence interval, Ref referent, PRS polygenic risk score, ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention, SNP single-nucleotide polymorphisms, Q quintile.

\(^a\)PRS was defined for participants with complete data for all three SNPs.

\(^b\)Models adjusted for age at randomization, body mass index, years of cigarette smoking, number of cigarettes smoked daily, serum total cholesterol concentration, and trial intervention group.

\(^c\)Likelihood ratio test was used to assess for interaction.
Although our study provides insights on the relationship between α-tocopherol concentration and reduced prostate cancer risk over a long follow-up period, several limitations must be noted. First, the present cohort was a relatively homogenous population of Finnish male smokers, potentially hindering the generalizability to non-smokers and those of non-majority European ancestry. Second, vitamin E was measured only at baseline and 3-years, allowing for subsequent changes in status to not be captured. Third, our definition of aggressive prostate cancer included only data for Gleason sum and not the specific grades which would have permitted ISUP grading and distinguishing Group 2 vs. Group 3 cases. As a result, our data may reflect an underreporting of aggressive cases. Finally, the possibility of unmeasured confounders affecting the observed association, though we did adjust for many relevant risk factors and genetic variation should not be susceptible to such biases.

Our study limitations are offset by notable strengths including being a large prospective cohort with prostate cancers ascertained through population-based registries. The fasting serum α-tocopherol exposure assessment utilized a state-of-the-science high-performance liquid chromatography platform and provided an integrated assessment of endogenous and exogenous vitamin E exposures and metabolism. Moreover, we were able to examine the interactions of variants in vitamin E-related genes on the relationship between α-tocopherol concentration and prostate cancer risk.

CONCLUSION
Although previous studies have documented that high serum α-tocopherol concentrations or vitamin E supplementation might be beneficial in reducing prostate cancer risk, our findings indicate that the serologic association may attenuate over time. Genetic variants reflecting higher vitamin E status also showed no clear association with risk and did not modify the serum α-tocopherol-prostate cancer risk association.

DISCLAIMER
The opinions expressed by the authors are their own and this material should not be interpreted as representing the official viewpoint of the U.S. Department of Health and Human Services, the National Institutes of Health or the National Cancer Institute.

CODE AVAILABILITY
The analytical methods for this study are available from the corresponding authors (WRL and DA) upon appropriate request.

REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
2. Skolaras TA, Wolf AMD, Erb NL, Brooks DD, rivers BM, Underwood W, et al. American Cancer Society prostate cancer survivorship care guidelines. CA Cancer J Clin. 2014;64:225–90.
3. Jayadevappa R, Malkowicz SB, Chhatre S, Johnson JC, Gallo JJ. The burden of depression in prostate cancer. Psychooncology. 2012;21:1338–45.
4. Layne TM, Graubard BI, Ma X, Mayne ST, Albances D. Prostate cancer risk factors in black and white men in the NIH-AARP Diet and Health Study. Prostate Cancer Prostatic Dis. 2019;22:91–100.
5. Brawley OW, Ankerst DP, Thompson IM. Screening for prostate cancer. CA Cancer J Clin. 2009;59:264–73.
6. Jiang Q, Christen S, Shigenaga MK, Ames BN. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 2001;74:714–22.
7. Huang J, Weinstein SJ, Yu K, Mannistö S, Albances D. A prospective study of serum vitamin E and 28-year risk of lung cancer. JNCI J Natl Cancer Inst. 2020;112:191–9.
8. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med. 2007;43:4–15.
9. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr. 2018;108:1069–91.
10. Böhm F, Edge R, Land EF, McGarvey DJ, Truscott TG. Carotenoids enhance vitamin E antioxidant efficiency. J Am Chem Soc. 1997;119:621–2.
11. Ju J, Piccinich SC, Yang Z, Zhao Y, Suh N, Kong A-N, et al. Cancer-preventive activities of tocopherols and tocotrienols. Carcinogenesis. 2010;31:533–42.
12. Key TJ, Appleby PN, Travis RC, Albances D, Alber AJ, Barriacite A, et al. Carotenoids, retinol, tocopherols, and prostate cancer risk: pooled analysis of 15 studies. J Clin Nutr. 2015;102:1142–57.
13. Weinstein SJ, Wright ME, Lawson KA, Snyder K, Mannistö S, Taylor PR, et al. Serum and dietary vitamin E in relation to prostate cancer risk. Cancer Epidemiol Biomark Prev. 2007;16:1253–9.
14. Cheng T-YD, Barrett MJ, Kristal AR, Ambrose CB, King IB, Thornquist MD, et al. Genetic variation in myeloperoxidase modifies the association of serum α-tocopherol with aggressive prostate cancer among current smokers. J Nutr. 2011;141:1731–7.
15. Ferrucci L, Perry JR, Mattei A, Pereda M, Tanaka T, Silander K, et al. Common variation in the β-carotene 15,15′-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. Am J Hum Genet. 2009;84:123–33.
16. Ahn J, Yu K, Stoelzengolomson R, Simon IC, McCullough ML, Gallisho C, et al. Genome-wide association study of circulating vitamin D levels. Hum Mol Genet. 2010;19:2379–45.
17. Major JM, Yu K, Wheeler W, Zhang H, Cornelis MC, Wright ME, et al. Genome-wide association study identifies common variants associated with circulating vitamin E levels. Hum Mol Genet. 2011;20:3876–83.
18. The ATBC Cancer Prevention Study Group. The alpha-tocopherol, beta-carotene lung cancer prevention study design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann Epidemiol. 1994;4:1–10.
19. Milne DB, Botnen J, Retinol, alpha-tocopherol, lycopene, and alpha- and beta-carotene simultaneously determined in plasma by isocratic liquid chromatography. Clin Chem. 1986;32:874–6.
20. Kattermann R, Javorek D, Müller G, Assmann G, Björkmian I, Svensson L, et al. Multicentre study of a new enzymatic method of cholesterol determination. J Clin Chem Clin Biochem. 1984;22:245–51.
21. Mondul AM, Shui IM, Yu K, Travis RC, Stevens VL, Campa D, et al. Genetic variation in the vitamin d pathway in relation to risk of prostate cancer—results from the breast and prostate cancer cohort consortium. Cancer Epidemiol Biomark Prev. 2013;22:688–96.
22. Korhonen P, Malila N, Pukkala E, Teppo L, Albances D, Virtamo J. The Finnish cancer registry as follow-up source of a large trial cohort—accuracy and delay. Acta Oncol. 2002;41:381–8.
23. Choi SW, Mak TS-H, O’Reilly PF. Tutorial: a guide to performing polygenic risk score analyses. Nat Protoc. 2020;15:7259–72.
24. Key TJ, Appleby PN, Allen NE, Travis RC, Roddam AW, Jenab M, et al. Plasma carotenoids, retinol, and tocopherols and the risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition study. Am J Clin Nutr. 2007;86:672–81.
25. Kirsh VA, Hayes RB, Mayne ST, Chatterjee N, Subar AF, Dixon LB, et al. Supplemental and dietary vitamin E, β-carotene, and vitamin C intakes and prostate cancer risk. JNCI J Natl Cancer Inst. 2006;98:245–54.
26. ATBC Cancer Prevention Study Group. Incidence of cancer and mortality following α-tocopherol and β-carotene supplementation. JAMA. 2003;290:476.
27. Virtamo J, Taylor PR, Kontto J, Mannistö S, Utirainen M, Weinstein SJ, et al. Effects of α-tocopherol and β-carotene supplementation on cancer incidence and mortality: 18-year postintervention follow-up of the Alpha-tocopherol, Beta-carotene Cancer Prevention Study. Int J Cancer. 2014;135:178–85.
28. Gaziano JM, Glynn RJ, Christen WG, Kurth T, Belanger C, MacFadyen J, et al. Vitamins E and C in the prevention of prostate and total cancer in men. JAMA. 2009;301:52.
29. Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JMO, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer. JAMA. 2005;293:1338.
30. Klein EA, Thompson IM, Tangen CM, Crowley JJ, Lucia MS, Goodman PJ, et al. Vitamin E and the risk of prostate cancer: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2011;306:1549–56.
31. Bruno RS, Ramakrishnan R, Montine TJ, Bray TM, Traber MG. α-Tocopherol disappearance is faster in cigarette smokers and is inversely related to their ascorbic acid status. Am J Clin Nutr. 2005;81:95–103.
32. Bruno RS, Traber MG. Cigarette smoke alters human vitamin E requirements. J Nutr. 2005;135:671–4.
33. Major JM, Yu K, Weinstein SJ, Berndt SL, Hyland PL, Yeager M, et al. Genetic variants reflecting higher vitamin E status in men are associated with reduced risk of prostate cancer. J Nutr. 2014;144:729–33.
34. Major JM, Yu K, Cheng CC, Weinstein SJ, Yeager M, Wheeler W, et al. Genome-wide association study identifies three common variants associated with soro logic response to vitamin E supplementation in men. J Nutr. 2012;142:866–71.
ACKNOWLEDGEMENTS

We appreciate the participants in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study for their contributions to this research.

AUTHOR CONTRIBUTIONS

Conception and design: WRL and DA. Development of methodology: WRL, JH, and DA. Acquisition of data: WRL, SJW, and DA. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): WRL, JL, JH, SJW, SM, and DA. Writing, review, and/or revision of the manuscript: WRL, JL, JH, SJW, SM, and DA.

FUNDING

The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study is supported by the Intramural Research Program of the United States National Cancer Institute, National Institutes of Health, and Department of Health and Human Services.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41391-022-00511-y.

Correspondence and requests for materials should be addressed to Wayne R. Lawrence or Demetrius Albanes.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.