APPROXIMATE REPRESENTATIONS
AND VIRASORO ALGEBRA

D.V. Juriev

Research Center for Mathematical Physics and Informatics “Thalassa Aitheria”,
ul. Miklukho-Maklaya 20-180, Moscow 117437 Russia.
E-mail: denis@juriev.msk.ru

February, 1997

This article being addressed, in general, to the specialists in the theory of representations of finite dimensional reductive and infinite dimensional \(\mathbb{Z} \)-graded Lie algebras, the theory of approximations in functional analysis and asymptotical methods in the operator calculus and, partially, in the mathematical physics (algebraic quantum field theory), is devoted to an investigation of algebraic and analytic structure of infinite dimensional hidden symmetries in the theory of representation of finite dimensional reductive Lie algebras. More precisely, the subject of the paper is a realization of the infinite dimensional \(\mathbb{Z} \)-graded Witt algebra of all Laurent polynomial vector fields on a circle and its one-dimensional nontrivial central extension (the Virasoro algebra) by hidden symmetries in the Verma modules over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) (the so-called \(q_R \)-conformal symmetries). These infinite dimensional Lie algebras are realized by the \(q_R \)-conformal symmetries approximately.

In the article there are considered two kinds of approximate representations: the representations up to a class \(S \) of operators (Hilbert-Schmidt operators, compact operators or finite-rank operators) and asymptotic representations “mod \(O(\hbar) \)”, where \(\hbar \) is a parameter (in this case several definitions of an operator “\(O \)-large” by the parameter \(\hbar \) are possible). The approximate representations of the first kind may be naturally considered in the context of the pseudo-differential calculus \([1,2]\), whereas ones of the second kind – in the context of the asymptotic methods \([3-5]\). Note that the asymptotic representations “mod \(O(\hbar) \)” were explored in the formalism of the Karasev-Maslov asymptotic quantisation \([6]\), and representations up to \(S \) are certain generalisations of the projective representations \([7,8]\).

Results of the article, some of which were announced in the electronic preprints of the electronic archive on functional analysis (the Los Alamos National Laboratories, USA), should be considered more as observations than as theorems with laborious proofs, which are not clear from their formulations. Proofs of all facts are performed really in one step and are bulky computational exercises (omitted where it is possible)

1 This is an English translation of the original Russian version, which is located at the end of the article as an appendix. In the case of any differences between English and Russian versions caused by a translation the least has the priority as the original one.
based on the formulas derived by the author earlier; thus, the attention should be devoted, in general, to the formulations of results themselves.

§1. Preliminary definitions

1.1. The Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) and Verma modules over it. Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) is a three-dimensional space of \(2 \times 2 \) complex matrices with zero trace supplied by the standard commutator \([X, Y] = XY - YX\), where the right hand side multiplication is the standard matrix multiplication. In the basis

\[
 l_{-1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad l_0 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}, \quad l_1 = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}
\]

the commutation relations are of the form: \([l_i, l_j] = (i - j)l_{i+j}\) \((i, j = -1, 0, 1)\). Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) is \(\mathbb{Z} \)-graded: \(\deg(l_i) = -\text{ad}(l_0)l_i = i\), where \(\text{ad}(X)\) is the adjoint action operator in the Lie algebra: \(\text{ad}(X)Y = [X, Y]\). Therefore, \(\mathbb{Z} \)-graded modules over \(\mathfrak{sl}(2, \mathbb{C}) \) are \(l_0 \)-diagonal. A vector \(v \) in a \(\mathbb{Z} \)-graded module over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) is called extremal iff \(l_1v = 0 \) and the linear span of vectors \(l^n_{-1}v \) \((n \in \mathbb{Z}_+)\) coincides with the module itself (i.e. \(v \) is a cyclic vector). A \(\mathbb{Z} \)-graded module with an extremal vector (in this case it is defined up to a multiplier) is called extremal [11]. An extremal module is called the Verma module [12] iff the action of \(l_{-1} \) is free in it, i.e. the vectors \(l^n_{-1}v \) are linearly independent. In the case of the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) the Verma modules are just the same as infinite dimensional extremal modules. An extremal weight of the Verma module is the number defined by the equality \(l_0v = hv \), where \(v \) is the extremal vector. The Verma modules are defined for all complex numbers \(h \) and are pairwise nonisomorphic. Below we shall consider the Verma modules with real extremal weights only.

The Verma module \(V_h \) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) with the extremal weight \(h \) may be realized in the space \(\mathbb{C}[z] \) of polynomials of a complex variable \(z \). The formulas for the generators of the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) are of the form:

\[
 l_{-1} = z, \quad l_0 = z\partial_z + h, \quad l_1 = z\partial_z^2 + 2hz\partial_z,
\]

here \(\partial_z = \frac{d}{dz} \).

The Verma module is nondegenerate (i.e. does not contain any proper submodule) iff \(h \neq -\frac{n}{2} \) \((n \in \mathbb{Z}_+)\). The Verma module \(V_h \) is called unitarizable (or hermitean) iff it admits a structure of the pre-Hilbert space such that \(l_i^*l_j = l_j^*l_i \). The completion of the unitarizable Verma module will be denoted by \(V_h^{\text{Hilb}} \). The Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) acts in \(V_h^{\text{Hilb}} \) by the unbounded operators. Also it is rather useful to consider the formal Verma modules \(V_h^{\text{form}} \), which are realized in the space \(\mathbb{C}[[z]] \) of formal power series of a complex variable \(z \), whereas the formulas for generators of the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) coincide with ones above. Note that \(V_h \subseteq V_h^{\text{Hilb}} \subseteq V_h^{\text{form}} \) and modules \(V_h, V_h^{\text{Hilb}}, V_h^{\text{form}} \) form the Gelfand triple or the Dirac equipment of the Hilbert space \(V_h^{\text{Hilb}} \). An action of the real form of the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) generated by the anti-Hermitian operators \(il_0, l_1 - l_{-1} \) and \(i(l_1 + l_{-1}) \) in the Hilbert space \(V_h^{\text{Hilb}} \) by the unbounded operators is exponentiated to a unitary representation of the corresponding simply connected Lie group.

In the nonunitarizable Verma module over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) there exists the unique (up to a scalar multiple) indefinite sesquilinear form \((\cdot, \cdot)\) such that \((l_i v_1, v_2) = (v_1, l_{-i}v_2)\) for any two vectors \(v_1 \) and \(v_2 \) from the Verma module. If this
sesquilinear form is nondegenerate (in this case the Verma module is nondegenerate) then it has a signature \((n, \infty)\), where \(n\) is finite, and therefore, there is defined a Pontryagin completion \([10]\) of the Verma module. The corresponding module in which the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\) acts by the unbounded operators will be denoted by \(V_h^{\text{Pontr}}\). The following chain of inclusions holds: \(V_h \subseteq V_h^{\text{Pontr}} \subseteq V_h^{\text{form}}\). An action of the real form of the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\) generated by the anti-Hermitian (with respect to the nondegenerate indefinite sesquilinear form \((\cdot, \cdot)\)) operators \(i\ell_0, \ell_1 - \ell_{-1}\) and \(i(\ell_1 + \ell_{-1})\) in the Pontryagin space \(V_h^{\text{Pontr}}\) by the unbounded operators is exponentiated to a pseudounitary representation of the corresponding simply connected Lie group.

1.2. Hidden symmetries in Verma modules over the lie algebra \(\mathfrak{sl}(2, \mathbb{C})\): Lobachevskii-Berezin \(C^*\)-algebra and \(q_R\)-conformal symmetries.

Proposition 1 [13]. In the nondegenerate Verma module \(V_h\) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\) there are uniquely defined the operators \(D\) and \(F\) such that

\[
[D, l_{-1}] = 1, \quad [D, l_0] = D, \quad [D, l_1] = D^2, \\
[l_{-1}, F] = 1, \quad [l_0, F] = F, \quad [l_1, F] = F^2.
\]

If the Verma modules are realized in the space \(\mathbb{C}[z]\) of polynomials of a complex variable \(z\) then

\[
D = \partial_z, \quad F = z\frac{\xi}{\xi + 2h},
\]

where \(\xi = z\partial_z\). The operators \(F\) and \(D\) obey the following relations:

\[
[FD, DF] = 0, \quad [D, F] = q_R(1 - DF)(1 - FD),
\]

where \(q_R = \frac{1}{2h - 1}\). In the unitarizable Verma module \((q_R \neq 0)\) the operators \(F\) and \(D\) are bounded and \(F^* = D, D^* = F\).

The algebra generated by the variables \(t\) and \(t^*\) with the relations \([tt^*, t^*t] = 0\) and \([t, t^*] = q_R(1 - tt^*)(1 - t^*t)\) being the Berezin quantization of the Lobachevskii plane realized in the unit complex disc (the Poincaré realization) \([14]\) is called the Lobachevskii-Berezin algebra. Proposition 1 allows to consider the Lobachevskii-Berezin algebra as a \(C^*\)-algebra. The Lobachevskii-Berezin \(C^*\)-algebra war rediscovered recently by S.Klimek and A.Lesnievsky \([15]\).

Proposition 2 [13]. In the nongenerate Verma module \(V_h\) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C})\) there are uniquely defined the operators \(L_n\) \((n \in \mathbb{Z})\) such that

\[
[l_i, L_n] = (i - n)L_{i+n} \quad (i = 1, 2, 1; \ n \in \mathbb{Z}),
\]

moreover, \(L_i = l_i\ \(i = -1, 0, 1)\). If the Verma modules are realized in the space \(\mathbb{C}[z]\) of polynomials of a complex variable \(z\) then

\[
L_k = (xi + (k + 1)h){\partial_z^k} \quad (k \geq 0), \quad L_{-k} = z^k \frac{\xi + (k + 1)h}{(\xi + 2h)\ldots(\xi + 2h + k - 1)} \quad (k \geq 1),
\]

where \(\xi = z\partial_z\). The operators \(L_n\) obey the following relations:

\[
[L_n, L_m] = (n - m)L_{n+m}, \text{ if } n, m \geq -1 \text{ or } n, m \leq 1.
\]
In the unitarizable Verma module the operators L_n are unbounded and $L_i^* = L_{-1}$.

The operators L_n are called the q_R–conformal symmetries. They may be symbolically represented in the form:

$$L_n = D^{nh}L_0D^{n(1-h)}, \quad L_{-n} = F^{n(1-h)}L_0F^{nh}.$$

To supply the symbolical recording by a sense one should use the general commutation relations

$$[L_n, f(D)] = (-D)^{n+1}f'(D) \ (n \geq -1), \quad [L_{-n}, f(F)] = F^{n+1}f'(D) \ (n \geq -1)$$

for $n = 0$.

The commutation relations for the operators D, F and the generators of q_R–conformal symmetries with the generators of the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ mean that the families J_k and L_k ($k \in \mathbb{Z}$), where $J_i = D^i$, $J_{-i} = F^i$ ($i \in \mathbb{Z}_+$), are families of tensor operators [8,16] for the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$.

To the families of tensor operators J_k and L_k one may correspond the generating functions – the operator fields, i.e. the formal Laurent series of a complex variable u with operator coefficients:

$$J(u) = \sum_{i \in \mathbb{Z}} J_i(u)^{-1-i}, \quad T(u) = \sum_{i \in \mathbb{Z}} L_i(u)^{-2-i}.$$

For any value of u an operator field realizes a mapping from V_h into V_h^{form}. The fact that J_k and T_k ($k \in \mathbb{Z}$) form families of tensor operators on the language of operator fields s means that

$$[l_i, J(u)] = (-u)^iJ(u) - (-u)^{i+1}J'(u), \quad [l_i, T(u)] = 2(-u)^iT(u) - (-u)^{i+1}T'(u).$$

The operator fields $V(u)$, which transform as s–differentials under the action of the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ (i.e. which obey the identity $[l_i, V(u)] = s(-u)^iV(u) - (-u)^{i+1}V'(u)$), are called the $\mathfrak{sl}(2, \mathbb{C})$–primary fields of spin s; so the operator fields $J(u)$ and $T(u)$ are $\mathfrak{sl}(2, \mathbb{C})$–primary ones of spin 1 and 2. The operator fields $J(u)$ and $T(u)$ as well as their properties are explored in detail in [13].

1.3. Infinite dimensional \mathbb{Z}–graded Lie algebras: the Witt algebra $\mathfrak{w}^\mathbb{C}$ of all Laurent polynomial vector fields on a circle and the Virasoro algebra $\mathfrak{vir}^\mathbb{C}$, its one-dimensional nontrivial central extension. The Lie algebra $\text{Vect}(S^1)$ is realized in the space of C^∞–smooth vector fields $v(t)\partial_t$ on a circle $S^1 \simeq \mathbb{R}/2\pi\mathbb{Z}$ with the commutator

$$[v_1(t)\partial_t, v_2(t)\partial_t] = (v_1(t)v'_2(t) - v'_1(t)v_2(t))\partial_t.$$

In the basis $s_n = \sin(nt)\partial_t$, $c_n = \cos(nt)\partial_t$, $h = \partial_t$ the commutation relations have the form:

$$[s_n, s_m] = \frac{1}{2}((m - n)s_{n+m} + \text{sgn}(n-m)(n+m)s_{|n-m|}),$$

$$[c_n, c_m] = \frac{1}{2}((n - m)c_{n+m} + \text{sgn}(n-m)(n+m)c_{|n-m|}),$$

$$[s_n, c_m] = \frac{1}{2}((m - n)c_{n+m} - (m+n)c_{|n-m|}) - n\delta_{nm}h,$$

$$[h, s_n] = nc_n, \quad [h, c_n] = -ns_n.$$
Let us denote by \(\text{Vect}^C(S^1) \) the complexification of the Lie algebra \(\text{Vect}(S^1) \). In the basis \(e_n = i e^{ikt} \partial_t \) the commutation relations in the Lie algebra \(\text{Li Vect}^C(S^1) \) have the form:

\[
[e_j, e_k] = (j - k)e_{j+k}.
\]

It is rather convenient to consider an imbedding of the circle \(S^1 \) into the complex plane \(\mathbb{C} \) with the coordinate \(z \), so that \(z = e^{it} \) on the circle and the elements of the basis \(e_k \) \((k \in \mathbb{Z})\) are represented by the Laurent polynomial vector fields: \(e_k = z^{k+1} \partial_z \). The \(\mathbb{Z} \)-graded Lie algebra generated by the Laurent polynomial vector fields (i.e. by the finite linear combinations of elements of the basis \(e_k \)) is called the Witt algebra and is denoted by \(\mathfrak{w}^C \). The Witt algebra \(\mathfrak{w}^C \) is the complexification of the subalgebra \(\mathfrak{w} \) of the algebra \(\text{Vect}(S^1) \) generated by the trigonometric polynomial vector fields on a circle \(S^1 \), i.e. by the finite linear combinations of elements of the basis \(s_n, c_n \) and \(h \).

The Lie algebra \(\text{Vect}(S^1) \) admits a nontrivial one-dimensional central extension defined by the Gelfand-Fuchs 2-cocycle [17]:

\[
c(v_1(t) \partial_t, v_2(t) \partial_t) = \int_0^{2\pi} (v'_1(t)v''_2(t) - v'_2(t)v''_1(t)) \, dt.
\]

This extension being continued to the complexification \(\text{Vect}^C(S^1) \) of the Lie algebra \(\text{Vect}(S^1) \) and reduced to the subalgebra \(\mathfrak{w}^C \) defines a central one-dimensional extension of the Witt algebra, which is called the Virasoro algebra and is denoted by \(\text{vir}^C \). The Virasoro algebra is generated by the elements \(e_k \) \((k \in \mathbb{Z})\) and the central element \(c \) with the commutation relations:

\[
[e_j, e_k] = (j - k)e_{j+k} + \frac{j^3 - j}{12} c
\]

and is the complexification of a central extension \(\text{vir} \) of the Lie algebra \(\mathfrak{w} \). In the irreducible representation the central element \(c \) of the Virasoro algebra is mapped to a scalar operator, which is proportional to the identity operator with a coefficient called the central charge.

\[\text{§2. } \mathcal{H}\mathcal{S}-\text{projective representation of the Witt algebra in Verma modules over the Lie algebra } \mathfrak{sl}(2, \mathbb{C})\]

2.1. \(\mathfrak{A} \)-projective representations [9].

Definition 1A. Let \(\mathfrak{A} \) be an associative algebra represented by linear operators in the linear space \(H \) and \(\mathfrak{g} \) be the Lie algebra. The linear mapping \(T : \mathfrak{g} \rightarrow \text{End}(H) \) is called a \(\mathfrak{A} \)-projective representation iff for any \(X \) and \(Y \) from \(\mathfrak{g} \) there exists an element of the algebra \(\mathfrak{A} \) represented by the operator \(A_{XY} \) such that

\[
[T(X), T(Y)] - T([X, Y]) = A_{XY}.
\]

If \(H \) is infinite dimensional then the representation may be realized by the unbounded operators with suitable domains of definition.

Remark 1. Definition 1A may be generalized for arbitrary anticommutative algebras. In this situation it is deeply related to the constructions of representations of
the anti-commutative algebras $\mathfrak{gl}(2, \mathbb{C})$ and $\mathfrak{sl}^*(2, \mathbb{C})$ from [18,19;20;22]. In general, it should be considered in the context of old ideas of A.I.Maltsev on representations of arbitrary nonassociative algebras [21]. General anti-commutative algebras and constructions of their \mathfrak{A}–projective representations are interesting for the theory of quasi-Hopf algebras, which are nonassociative as coalgebras, jacobian and c-jacobian quasi-bialgebras and related structures (see refs in [9]).

Example. If $(\mathfrak{g}, \mathfrak{h})$ is a reductive pair then any representation of the Lie algebra \mathfrak{g} is a $\mathcal{U}(\mathfrak{h})$–projective representation of the binary anticommutative algebra \mathfrak{p} ($\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}$, the binary operation in \mathfrak{p} has the standard form: $[X, Y]_\mathfrak{p} = \pi([X, Y])$, where $[\cdot, \cdot]$ is the commutator in \mathfrak{g} and π is the projector of \mathfrak{g} onto \mathfrak{p} along \mathfrak{h} [22]).

Remark 2. The standard projective representation is a particular case of Def.1A if the algebra \mathfrak{A} is one-dimensional and acts in H by scalar operators.

Remark 3. If H is a Hilbert (or pre-Hilbert) space then one may consider the algebra \mathcal{HS} of all Hilbert-Schmidt operators as \mathfrak{A}. It is possible to consider the algebras \mathcal{B}, \mathcal{K}, \mathcal{TC} and \mathcal{FR} of all bounded, compact, trace class and finite-rank operators, too.

Definition 1B. Let \mathfrak{A} be an associative algebra with an involution $*$ symmetrically represented in the Hilbert space H. If \mathfrak{g} is a Lie algebra with an involution $*$ then its \mathfrak{A}–projective representation T in the space H is called symmetric iff for all elements a from \mathfrak{g} $T(a^*) = T^*(a)$. Let \mathfrak{g} be \mathbb{Z}–graded Lie algebra ($\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n$) with an involution $*$ such that $\mathfrak{g}_n^* = \mathfrak{g}_{-n}$ and involution is identical on the subalgebra \mathfrak{g}_0. Let us extend the \mathbb{Z}–grading and the involution $*$ from the Lie algebra \mathfrak{g} to the tensor algebra $T(\mathfrak{g})$. A symmetric \mathfrak{A}–projective representation of \mathfrak{g} is called absolutely symmetric iff for any element a of the algebra $T(\mathfrak{g})$ such that $\deg(a) = 0$ the identity $T(a) = T^*(a)$ holds (here the representation T of the Lie algebra \mathfrak{g} in H is extended to the mapping of $T(\mathfrak{g})$ into $\text{End}(H)$.

Definition 1C. A \mathfrak{A}–projective representation T of the Lie algebra \mathfrak{g} in the linear space H is called almost absolutely closed iff for any natural n and arbitrary elements $X_0, X_1, X_2, \ldots X_{n+1}$ of the Lie algebra \mathfrak{g} there exists an element $\varphi(X_0, X_1, X_2, \ldots X_{n+1})$ of the algebra \mathfrak{g} such that

$$[\ldots [T(X_0), T(X_1)], T(X_2)], \ldots , T(X_{n+1})] \equiv T(\varphi(X_0, X_1, X_2, \ldots X_{n+1})) \pmod{\mathfrak{A}},$$

here \mathfrak{A} is considered as represented in $\text{End}(H)$. An almost absolutely closed \mathfrak{A}–projective representation T of the Lie algebra \mathfrak{g} in the linear space H is called absolutely closed iff $\varphi(\cdot, \ldots , \cdot) \equiv 0$.

The mappings $(X_0, X_1, X_2, \ldots X_{n+1}) \mapsto \varphi(X_0, X_1, X_2, \ldots X_{n+1})$ associated with an almost absolutely closed \mathfrak{A}–projective representation of the Lie algebra \mathfrak{g} define the higher brackets in the Lie algebra \mathfrak{g}. Objects with higher brackets systematically appear in many branches of mathematics and mathematical physics (see e.g. the book [6] or the article [23] among others and numerous references wherein).

2.2. \mathcal{HS}–projective representation of the Witt algebra by q_R–conformal symmetries in the unitarizable Verma modules V_h over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ [9]. Note that the Witt algebra \mathfrak{w}^C admits a natural involution $*$.

Theorem 1A. The generators L_k ($k \in \mathbb{Z}$) of q_R–conformal symmetries in the unitarizable Verma module V_h over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ realize an absolutely
symmetric \mathcal{HS}–projective representation of the Witt algebra $\mathfrak{w}^\mathbb{C}$. Adding the tensor operators J_k ($k \in \mathbb{Z}$) to the tensor operators L_k one receives an absolutely symmetric \mathcal{HS}–projective representation of a semi-direct sum of the Witt algebra and the infinite-dimensional \mathbb{Z}–graded Heisenberg algebra (the one-dimensional central extension of the infinite-dimensional \mathbb{Z}–graded abelian Lie algebra $\mathbb{C}[z, z^{-1}]$ of Laurent polynomials).

The statement of the theorem follows from the explicit formulas for generators of q_R–conformal symmetries and tensor operators J_k. A verification on the belonging to the class \mathcal{HS} of Hilbert-Schmidt operators for operators of the fixed degree with respect to the grading in the \mathbb{Z}–graded space of polynomials $\mathbb{C}[z]$ supplied by the certain scalar product with orthogonal weight spaces (such as any unitarizable Verma module over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$) does not produce any problems.

Remark 4. The \mathcal{HS}–projective representations of the Witt algebra in the unitarizable Verma modules over $\mathfrak{sl}(2, \mathbb{C})$ are absolutely closed.

Remark 5. Theorem 1A is generalized for the pseudo-unitary case with the substitution of the class \mathcal{HS} of Hilbert-Schmidt operators to the class \mathcal{K} of compact operators.

The results on the “exponentiated” version of Theorem 1A are announced in the e-prints [24,25].

2.3. \mathcal{FR}–projective representations of the Witt algebra in Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ with the extremal weight 1 and $\frac{1}{2}$.

The statement of Theorem 1A may be strengthened in some particular cases.

Theorem 1B. For $h = 1$ or $h = \frac{1}{2}$ the \mathcal{HS}–projective representation of the Witt algebra by q_R–conformal symmetries in the unitarizable Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ is \mathcal{FR}–projective. For $h = \frac{1}{2}$ the \mathcal{HS}–projective representation of a semi-direct sum of the Witt algebra and the infinite-dimensional Heisenberg algebra is also \mathcal{FR}–projective.

The statement follows from the explicit formulas for tensor operators L_k and J_k.

Remark 6. For $h = 0$ the \mathcal{K}–projective representation of the Witt algebra in the Verma module over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ is \mathcal{FR}–projective.

2.4. \mathcal{B}–projective representations of the Witt algebra.

Note that one of disadvantages of many \mathcal{A}–projective representations, in particular, if \mathcal{A} is a certain operator class \mathcal{K}, \mathcal{HS}, $\mathcal{T}\mathcal{C}$ or \mathcal{FR}, is that their set is not closed under tensor products, in general. For the class \mathcal{B} of bounded operators the tensor products of \mathcal{B}–projective representations are defined. However, any \mathcal{S}–projective representation, where \mathcal{S} is one of classes above, is \mathcal{B}–projective and as such is sometimes nontrivial (when the initial representation is realized by unbounded operators), that allows to construct their tensor products, which will be nontrivial \mathcal{B}–projective representations in this case.

Let us call a \mathcal{S}–projective representation of the Lie algebra \mathfrak{g} (\mathcal{S} is a certain operator class) \mathcal{S}–irreducible iff the representation operators can not be simultaneously transform by an addition of elements of \mathcal{S} to the form, in which they have a common proper invariant subspace.
Theorem 2. Let \(T_h \) be the \(\mathcal{B} \)-projective representation of the Witt algebra \(\mathfrak{w}^C \) by the \(q_R \)-conformal symmetries in the Verma module \(V_h \) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) then the \(\mathcal{B} \)-projective representations \(S^n(T_h) \) (here \(S^n \) denotes the functor of the \(n \)-th symmetric degree, cf.\cite{26}) are \(\mathcal{B} \)-irreducible.

The statement of the theorem follows from the explicit formulas for generators of \(q_R \)-conformal symmetries.

Remark 7. Decompositions of the tensor products \(T_{h_1} \otimes \ldots \otimes T_{h_n} \) of \(\mathcal{B} \)-projective representations \(T_{h_i} \) on \(\mathcal{B} \)-irreducible components are not known in general case.

§3. Asymptotic representations of the Witt algebra and the Virasoro algebra in Verma modules over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \)

3.1. The asymptotics of \(q_R \)-conformal symmetries in Verma modules \(V_h \) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) at \(q_R \to 0 \) (\(h \to \frac{1}{2} \)) and at \(q_R \to 1 \) (\(h \to 1 \)) and the Witt algebra \(\mathfrak{w}^C \). Let \(\mathfrak{A} \) be the algebra of all finite linear combinations of expressions of the form \(f(qp)p^n \) (\(n \in \mathbb{Z}_+ \)) or \(q^n f(qp) \) (\(n \in \mathbb{Z}_+ \)), where \([p,q]=1\) and \(f \) are rational functions, whose denominators have no zeroes in integer points. Let us call the algebra \(\mathfrak{A} \) the extended Weyl algebra. The extended Weyl algebra is a topological algebra with respect to natural convergence.

Lemma. The extended Weyl algebra \(\mathfrak{A} \) admits a strict representation in the Verma module \(V_h \) (\(h \notin \mathbb{Z}/2 \)):
\[
p \to \partial_z, \quad q \to z.
\]

Generators of \(q_R \)-conformal symmetries \(L_k \) (\(k \in \mathbb{Z} \)) as well as generators \(D, F \) of the Lobachevskii-Berezin algebra belong to the image of the extended Weyl algebra \(\mathfrak{A} \).

Below we shall interpret the “\(O \)-large” for the asymptotics of operators in the Verma modules over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) with non-half-integer extremal weights, which belong to the extended Weyl algebra (because its representations in the Verma modules are strict one can identify the algebra itself with its image) in the sense of topology in the extended Weyl algebra.

Theorem 3A. Generators of \(q_R \)-conformal symmetries in the Verma modules \(V_{\frac{1}{2}+h} \) (\(0 < h < \frac{1}{2} \)) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) form an asymptotic “mod \(O(h) \)” representation of the Witt algebra \(\mathfrak{w}^C \).

Generators of \(q_R \)-conformal symmetries in the Verma modules \(V_{1+h} \) (\(0 < h < \frac{1}{2} \)) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) form an asymptotic “mod \(O(h) \)” representation of the Witt algebra \(\mathfrak{w}^C \), too.

The first statement of the theorem, which immediately follows from the explicit form of generators of \(q_R \)-conformal symmetries, was in fact proved in \cite{10}, where the corresponding “exponentiated” version was considered. The second is similar to the first.

Remark 8. The statement of the theorem is not true if the “\(O \)-large” is considered in sense of (weak) operator convergence in the space of operators in the Verma modules \(V_h \) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) identified with the space \(\mathbb{C}[z] \) of polynomials.

An answer on the question on a “divergence” between theorem 3A and the remark 8 is in the following: the strict representations of the extended Weyl algebra...
do not even exist for the limit value \(h=0 \), but being continuous (in a weak operator topology in the space \(V_h \)) for all values of the parameter \(h \) from an interval \(0 < h < \frac{1}{2} \), are not uniformly continuous on this interval. Note that the continuous representations of the extended Weyl algebra in the verma modules \(V_h \) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) can be extended to representations by unbounded operators in the spaces \(V^\text{Hilb}_h \) (or \(V^\text{Pontr}_h \)), and, therefore, uncontinuous, that, however, is typical for the representation theory of Lie algebras.

3.2. The estimation “mod \(\mathcal{HS} \)” of the second term of the asymptotics of \(q_R \)-conformal symmetries in Verma modules \(V_h \) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) at \(q_R \to 0 \) (\(h \to \frac{1}{2} \)) and at \(q_R \to 1 \) (\(h \to 1 \)) and the Virasoro algebra \(\mathfrak{vir}^C \). Under the “hybridization” of the approximations “mod \(O(h^n) \)” and “mod \(\mathcal{S} \)”, an interesting phenomenon of “noncommutativity” of estimations is observed, the asymptotics of \(q_R \)-conformal symmetries supply us by an example.

Theorem 3B. For generators of \(q_R \)-conformal symmetries in the Verma modules \(V_{\frac{1}{2}+h} \) (\(0 < h < \frac{1}{2} \)) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) the following asymptotics “mod \(O(h^2) \)” exists:

\[
[L_i, L_j] = (i - j)L_{i+j} + hA + O(h^2),
\]

where

\[
A \equiv \frac{2}{3}(i^3 - i)\delta_{ij} \mod \mathcal{HS}.
\]

So generators of \(q_R \)-conformal symmetries form an approximate representation of the Virasoro algebra \(\mathfrak{vir}^C \) for \(h \to \frac{1}{2} \) in the specified sense.

For generators of \(q_R \)-conformal symmetries in the Verma modules \(V_{1+h} \) (\(0 < h < \frac{1}{2} \)) over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) the following asymptotics “mod \(O(h^2) \)” exists, too:

\[
[L_i, L_j] = (i - j)L_{i+j} + hA + O(h^2),
\]

where

\[
A \equiv \frac{2}{3}(i^3 - i)\delta_{ij} \mod \mathcal{HS}.
\]

So generators of \(q_R \)-conformal symmetries form an approximate representation of the Virasoro algebra \(\mathfrak{vir}^C \) for \(h \to 1 \) in the specified sense.

In the statement of the theorem the estimations “mod \(O(h^2) \)” are interpreted in the sense of a convergence in the extended Weyl algebra \(\mathfrak{A} \), and \(\mathcal{HS} \) denotes the set of all elements of this algebra, which are realized by Hilbert-Schmidt operators under the strict representation in the Verma modules over the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) for all sufficiently small values of \(h \) (otherwords, if \(\pi_h \) is the representation of \(\mathfrak{A} \) in \(V_h \) and \(\mathcal{HS}_h \) is the space of Hilbert-Schmidt operators in \(V_h \) then in the theorem \(\mathcal{HS} \) is interpreted as

\[
\lim_{h \to 0} \bigcap_{h_0 < h < h_0 + h} \pi_h^{-1}(\mathcal{HS}_h \cap \pi_h(\mathfrak{A})),
\]

where \(h_0 = \frac{1}{2} \) or \(h_0 = 1 \).

The result of Theorem 3B follows from explicit computations. Let us compute the commutator \([L_2, L_{-2}]\) and estimate it that is enough for the determination of the
central charge of the Virasoro algebra. The Verma module V_h is realized in the space $\mathbb{C}[z]$ of polynomials, $\xi = z\partial_z$, and generators of q_R-conformal symmetries are defined by expressions written above. Then for $h \to \frac{1}{\xi}$

$$[L_2, L_{-2}] = \frac{(\xi + 3h)^2(\xi + 1)(\xi + 2)}{(\xi + 2h)(\xi + 2h + 1)} - \frac{(\xi + 3h - 2)^2(\xi(\xi - 1))}{(\xi + 2h - 1)(\xi + 2h - 2)} = \frac{(\xi + 3h - 2)^2(\xi(\xi - 1))}{(\xi + 2h - 1)(\xi + 2h - 2)}.$$

The following estimation “mod $O(h^2)$” holds (h in denominators is not excluded because for the zero value of h a representation of the extended Weyl algebra in the corresponding Verma module is not defined):

$$[L_2, L_{-2}] \equiv \frac{(\xi + 3h)^2(\xi + 1)(\xi + 2)}{(\xi + 2h)(\xi + 2h + 1)} - \frac{(\xi + 3h - 2)^2(\xi(\xi - 1))}{(\xi + 2h - 1)(\xi + 2h - 2)} = \frac{(\xi + 3h - 2)^2(\xi(\xi - 1))}{(\xi + 2h - 1)(\xi + 2h - 2)}.$$

Extracting the terms of order h (because the first term of the order 1 is known) one receives:

$$2h(\xi - \frac{1}{2})^2\left(\frac{1}{\xi - 1 + h} + \frac{1}{\xi + h}\right) - 2h(\xi + \frac{3}{2})^2\left(\frac{1}{\xi + 1 + h} + \frac{1}{\xi + 2 + h}\right) + 12h.$$

Perform the estimation “mod HS” and obtain:

$$2h\xi^2\left(\frac{1}{\xi - 1 + h} + \frac{1}{\xi + h} - \frac{1}{\xi + 1 + h} - \frac{1}{\xi + 2 + h}\right) - 12h - 2h\xi^2\left(\frac{1}{\xi - 1 - h} + \frac{1}{\xi - h}\right) - 6h(\frac{1}{\xi + 1 + h} + \frac{1}{\xi + 2 + h}) \sim 2h\xi^2\left(\frac{1}{\xi - 1 + h} + \frac{1}{\xi - h}\right) + 12h - 16h \sim 8h + 12h - 16h = 4h.$$

So the “asymptotic” central charge is equal to $8h$.

Analogously, for $h \to 1$

$$[L_2, L_{-2}] = \frac{(\xi + 3h)^2(\xi + 1)(\xi + 2)}{(\xi + 2h)(\xi + 2h + 1)} - \frac{(\xi + 3h - 2)^2(\xi(\xi - 1))}{(\xi + 2h - 1)(\xi + 2h - 2)} = \frac{(\xi + 3h - 2)^2(\xi(\xi - 1))}{(\xi + 2h - 1)(\xi + 2h - 2)}.$$

The following estimation “mod $O(h^2)$” holds (h in denominators is not excluded because for the zero value of h a representation of the extended Weyl algebra in the corresponding Verma module is not defined):

$$[L_2, L_{-2}] \equiv (\xi + 1)(\xi + 3 + 3h)(1 - \frac{2h}{\xi + 1 + h})(1 - \frac{2h}{\xi + 3 + h})(1 + \frac{3h}{\xi + 3 + h}) - (\xi - 1)(\xi + 1 + 3h)(1 - \frac{2h}{\xi + 1 + h})(1 - \frac{2h}{\xi + 3 + h})(1 + \frac{3h}{\xi + 3 + h}) \mod O(h^2).$$

Extracting the terms of order h (because the first term of the order 1 is known) one receives:

$$h(\xi + 1)(\xi + 3)(\frac{1}{\xi + 3 + h} - \frac{2}{\xi + 2 + h}) - h(\xi + 1)(\xi - 1)(\frac{1}{\xi + 1 + h} - \frac{2}{\xi + h}) + 6h.$$

Perform the estimation “mod HS” and obtain:

$$8h + 2(\xi + 1)(\frac{\xi - 1}{\xi + h} - \frac{\xi + 3}{\xi + 2 + h}) \sim 8h - 4h = 4h.$$
So the “asymptotic” central charge is equal to $8\hbar$.

Remark 9. The estimation “mod $O(\hbar^2)$” may be strengthened to “mod $O(\hbar^n)$” for any finite n (but not to “mod $O(\hbar^\infty)$” in view of the further estimation “mod \mathcal{HS}”).

Remark 10. As follows from the results of the second paragraph the change of an order of estimations gives the zero central charge of the Virasoro algebra.

Perhaps, the noncommutativity of an order of the estimations “mod $O(\hbar^n)$” and “mod \mathcal{HS}” in the case of q_R–conformal symmetries is a partial case of a more general and fundamental fact of deviations between asymptotical theory of pseudodifferential operators and pseudodifferential calculus on asymptotic manifolds in sense of [27].

Note that the result of Theorem 3B contains a strange coincidence of “asymptotic” central charges of the Virasoro algebra for $h \to \frac{1}{2}$ and $h \to 1$ (namely, $c = 8\hbar$, $\hbar \to 0$). Perhaps, this coincidence may be explained by the hypothetical suggestion that for all values of the extremal weight h the Virasoro algebra is presented on a certain more hidden and unexplicated level universally (i.e. its characteristics do not depend on h).

Conclusion

In the paper there are investigated various approximate representations of the infinite dimensional \mathbb{Z}–graded Lie algebras: the Witt algebra of all Laurent polynomial vector fields on a circle and its one-dimensional nontrivial central extension, the Virasoro algebra, by the infinite dimensional hidden symmetries in the Verma modules over the Lie algebra $\mathfrak{sl}(2, \mathbb{C})$. There are considered as asymptotic representations “mod $O(\hbar^n)$” and representations up to a class \mathcal{S} of operators (compact operators, Hilbert-Schmidt operators and finite-rank operators) as cases, which combine both types of approximations (and in these cases an effect of noncommutativity of the order of their realizations is explicated, that perhaps is underlied by a more general fundamental fact of deviations between the asymptotical theory of pseudodifferential operators and the pseudodifferential calculus on the asymptotic manifolds in sense of [27]). Some applications of the discussed problems to the applied problems of information technologies (an organization of the information transmission in integrated videocognitive interactive systems for accelerated non-verbal computer and telecommunications) were investigated in the report [28].

References

[1] Taylor M., Pseudo-differential operators. B., 1974.
[2] Treves F., Introduction to pseudo-differential and Fourier integral operators. New York, 1980.
[3] Bogolyubov N.N., Mitropol’skii Yu.A., Asymptotical methods in the theory of nonlinear oscillations [in Russian]. Moscow, Fizmatlit, 1958.
[4] Maslov V.P., Theory of perturbations and asymptotical methods [in Russian]. Moscow, Izd-vo MGU, 1965.
[5] Maslov V.P., Fedoryuk M.V., Quasiclassical approximation for equations of quantum mechanics [in Russian]. Moscow, Nauka, 1976.
[6] Karasev M.V., Maslov V.P., Nonlinear Poisson brackets. Geometry and quantization. AMS, Providence, 1993.
[7] Kirillov A.A., Elements of representation theory. Springer, 1976.
[8] Barut A., Raczka R., Theory of group representations and applications. PWN – Polish Sci. Publ. Warszawa, 1977.

[9] Juriev D., Topics in hidden symmetries. V. E-print: \texttt{funct-an/9611003} (1996).

[10] Juriev D., On the infinite dimensional hidden symmetries. III. q_R–conformal symmetries at $q_R \to \infty$ and Berezin-Karasev-Maslov asymptotic quantization of $C^\infty(S^1)$. E-print: \texttt{funct-an/9702002} (1997).

[11] Zhelobenko D.P., Representations of the reductive Lie algebras [in Russian]. Moscow, Nauka, 1993.

[12] Dixmier J., Algèbres enveloppantes. Gauthier-Villars, Paris, 1974.

[13] Juriev D.V., Complex projective geometry and quantum projective field theory. Theor. Math.Phys. 101(3) (1994) 1387-1403.

[14] Berezin F.A., Quantization in complex symmetric spaces [in Russian]. Izvestiya AN SSSR. Ser.matem. 39(2) (1975) 363-402.

[15] Klimek S., Lesniewski A., Quantum Riemann surfaces. I. Commun.Math.Phys. 146 (1992) 103-122.

[16] Biedenharn L., Louck J., Angular momentum in quantum mechanics. Theory and applications. Encycl.Math.Appl. V.8. Addison Wesley Publ. Comp. 1981.

[17] Fuchs D.B., Cohomology of infinite-dimensional Lie algebras [in Russian]. Moscow, Nauka, 1984.

[18] Juriev D., Noncommutative geometry, chiral anomaly in the quantum projective ($\mathfrak{sl}(2,\mathbb{C})$–invariant) field theory and $j\mathfrak{l}(2,\mathbb{C})$–invariance. J.Math.Phys. 33 (1992) 2819-2822, (E): 34 (1993) 1615.

[19] Juriev D., Remarks on nonassociative structures in quantum projective field theory: the central extension $j\mathfrak{l}(2,\mathbb{C})$ of the double $\mathfrak{sl}(2,\mathbb{C}) + \mathfrak{sl}(2,\mathbb{C})$ of the simple Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ and related topics. Acta Appl.Math. 50 (1998) 191-196.

[20] Juriev D.V., Quantum projective field theory: quantum-field analogs of the Euler-Arnol’d equations in projective G-hypermultiplets. Theor.Math.Phys. 98(2) (1994) 147-161.

[21] Maltsev A.I., On a representation of nonassociative rings [in Russian]. Uspekhi Matem. Nauk 7(1) (1952) 181-185 [reprinted in “Selected papers. I. Classical algebra”, Moscow, Nauka, 1976, pp.328-331].

[22] Kobayashi Sh, Nomizu K., Foundations of differential geometry. Interscience Publ., New York, 1963/69.

[23] Juriev D., Infinite dimensional geometry and quantum field theory of strings. II. Infinite-dimensional noncommutative geometry of a self-interacting string field. Russian J.Math. Phys. 4 (1996) 287-314.

[24] Juriev D., On the infinite dimensional hidden symmetries. I. Infinite dimensional geometry of q_R–conformal symmetries. E-print: \texttt{funct-an/9612004} (1996).

[25] Juriev D., On the infinite dimensional hidden symmetries. II. q_R–conformal modular functor. E-print: \texttt{funct-an/9701009} (1997).

[26] Kirillov A.A., Introduction into the representation theory and noncommutative harmonic analysis [in Russian]. Current Math. Problems. Basic Directions. V.22, Moscow, VINITI, 1987, pp.5-162.

[27] Dubnov V.L., Maslov V.P., Nazaikinskii V.E., The complex Lagrangian germ and the canonical operator. Russian J.Math.Phys. 3 (1995) 141-180.

[28] Juriev D.V., Droems: experimental mathematics, informatics and infinite-dimensional geometry [in Russian]. Report RCMPI-96/05* (1996).
Данная работа, адресованная, в основном, специалистам в теории представлений конечномерных редуктивных и бесконечномерных Z–градуированных алгебр Ли, теории приближения в функциональном анализе и асимптотическим методам в исчислении операторов, а также, отчасти, в математической физике (алгебраической квантовой теории поля), посвящена изучению алгебраической и аналитической структуры бесконечномерных скрытых симметрий в теории представлений конечномерных редуктивных алгебр Ли. Более точно, предметом работы является реализация бесконечномерной Z–градуированной алгебры Витта лорановских полиномиальных векторных полей на окружности и ее одномерного нетривиального центрального расширения (алгебры Вирасоро) скрытыми симметриями в модулях Верма над алгеброй Ли $s\ell(2,\mathbb{C})$ (т.н. q_R–конформными симметриями). При этом, указанные бесконечномерные алгебры Ли реализуются q_R–конформными симметриями не точно, а приближенно. В статье рассматриваются два типа приближенных представлений: представления по модулю некоторого класса \mathcal{S} операторов (операторов Гильберта-Шмидта, компактных операторов или операторов конечного ранга) и асимптотические представления “mod $O(h)$”, где h – некоторый параметр (в данном случае возможны различные определения операторного “O–большого” по параметру h). Приближенные представления первого типа естественно трактовать в контексте псевдодифференциального исчисления [1,2], в то время как вторые – асимптотические методов [3-5]. Отметим, что асимптотические представления “mod $O(h)$” исследовались в рамках формализма асимптотического квантирования Карасева-Маслова [6], а представления по модулю \mathcal{S} являются в определенном смысле обобщениями проективных представлений [7,8].

Результаты работы, некоторые из которых были анонсированы в электронных препринтах электронного архива по функциональному анализу Национальных лабораторий США в Лос Аламосе [9,10], носят скорее характер наблюдений, нежели теорем, требующих трудоемких и не ясных из их формулировок доказательств. Доказательства представленных в статье фактов по сути дела одноходовы и представляют собою громозд-
§1. Предварительные определения

1.1. Алгебра Ли $\mathfrak{sl}(2,\mathbb{C})$ и модули Верма над неё. Алгеброё Ли $\mathfrak{sl}(2,\mathbb{C})$ называется трёхмерное пространство комплексных матриц 2×2 со следом нуль, снабженное стандартным коммутатором $[X,Y] = XY - YX$, где умножение в правой части — стандартное умножение матриц. В базисе

$$l_{-1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad l_0 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}, \quad l_1 = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

коммутационные соотношения имеют вид: $[l_i, l_j] = (i-j)l_{i+j}$ $(i, j = -1, 0, 1)$. Алгебра Ли $\mathfrak{sl}(2,\mathbb{C})$ \mathbb{Z}–градуирована: $\deg(l_i) = -\text{ad}(l_0)l_i = i$, где $\text{ad}(X)$ — оператор присоединённого вещества в алгебре Ли: $\text{ad}(X)Y = [X, Y]$. Как следствие, \mathbb{Z}–градуированные модули над $\mathfrak{sl}(2,\mathbb{C})$ являются l_0–диагональными. Вектор v в \mathbb{Z}–градуированном модуле над алгеброё Ли $\mathfrak{sl}(2,\mathbb{C})$ называется экстремальным, если $l_1v = 0$ и линейная оболочка векторов $l_{-1}^n v$ $(n \in \mathbb{Z}_+)$ совпадает с самим модулем (т.е. v — циклический вектор). \mathbb{Z}–градуированный модуль в котором существует экстремальный вектор (в этом случае определён с точностью до умножения на константу) называется экстремальным [11]. Экстремальным модуль называется модулем Верма [12], если действие l_{-1} в нем свободно, т.е. вектора $l_{-1}^n v$ линейно независимы. В случае алгебры Ли $\mathfrak{sl}(2,\mathbb{C})$ модуль Верма суть в точности бесконечномерны экстремальные модули. Экстремальным весом модуля Верма называется число h, определяемое из равенства $l_0 v = hv$, где v — экстремальный вектор. Модули Верма определены для всех комплексных чисел h и парно неизоморфны. В дальнейшем мы будем рассматривать модули Верма только с вещественными экстремальными весами.

Модуль Верма V_h над алгебрё Ли $\mathfrak{sl}(2,\mathbb{C})$ с экстремальным весом h может быть реализован в пространстве $\mathbb{C}[z]$ многочленов одного комплексного переменного z. Формулы для генераторов алгебры Ли $\mathfrak{sl}(2,\mathbb{C})$ имеют вид:

$$l_{-1} = z, \quad l_0 = z\partial_z + h, \quad l_1 = z\partial_z^2 + 2h\partial_z,$$

здесь $\partial_z = \frac{d}{dz}$.

Модуль Верма невырожден (т.е. не содержит собственного подмодуля) при $h \neq -\frac{n}{2}$ $(n \in \mathbb{Z}_+)$. Модуль Верма V_h называется унитаризуемым (или эрмитовым), если в нем задана структура предгильбертов пространства такая, что $l_i^* = l_{-i}$. Пополнение унитаризуемого модуля Верма будет обозначаться V_h^{Hilb}. Алгебра Ли $\mathfrak{sl}(2,\mathbb{C})$ действует в V_h^{Hilb} неограниченными операторами. Полезно также рассматривать формальные модули Верма V_h^{form}, которые реализуются в пространстве $\mathbb{C}[[z]]$ формальных степенных рядов одного комплексного переменного z, а формулы для генераторов алгебры Ли $\mathfrak{sl}(2,\mathbb{C})$ совпадают с приведёнными выше. При этом, $V_h \subseteq V_h^{\text{Hilb}} \subseteq V_h^{\text{form}}$, и модули $V_h, V_h^{\text{Hilb}}, V_h^{\text{form}}$ образуют троёку Гельфанда.
или оснащение гильбертов пространства V_h^{Hilb} по Дираку. Действие вещественної формы алгебры Ли $\mathfrak{sl}(2, \mathbb{C})$, порождённой антиэрмитовыми операторами $i l_0, l_1 - l_{-1} \text{ и } i(l_1 + l_{-1})$ в гильбертовом пространстве V_h^{Hilb} неограниченными операторами, экспоненцируется до унитарного представления соответствующей односвязной группы Ли.

В неутиизируемом модуле Верма над алгеброє Ли $\mathfrak{sl}(2, \mathbb{C})$ имеется единственная (с точностью до множителя) индефинитная полутракториеная форма (\cdot, \cdot) такая, что $(l_1 v_1, v_2) = (v_1, l_{-1} v_2)$ для любых двух векторов v_1 и v_2 из модуля Верма. Если эта полутракториеная форма невырождена (и в этом случае и сам модуль невырожден), то она имеет сигнатуру вида (n, ∞), где n — конечно, а следовательно, определено пополнение такого модуля Верма по Понтрягину [10]. Соответствующий модуль, в котором алгебра Ли $\mathfrak{sl}(2, \mathbb{C})$ действует неограниченными операторами, будет обозначаться V_h^{Pontr}. Имеет место цепочка включения: $V_h \subseteq V_h^{\text{Pontr}} \subseteq V_h^{\text{form}}$. Действие вещественної формы алгебры Ли $\mathfrak{sl}(2, \mathbb{C})$, порождённой антиэрмитовыми (относительно невырожденной индефинитной полутракториенаей формы (\cdot, \cdot)) операторами $i l_0, l_1 - l_{-1} \text{ и } i(l_1 + l_{-1})$ в пространстве Понтрягина V_h^{Pontr} неограниченными операторами, экспоненцируется до псевдоунитарного представления соответствующей односвязной группы Ли.

1.2. Скрытые симметрии в модулях Верма над алгеброє Ли $\mathfrak{sl}(2, \mathbb{C})$: C^*-алгебра Лобачевского-Березина и q_R-конформные симметрии.

Предложение 1 [13]. В невырожденном модуле Верма V_h над алгеброє Ли $\mathfrak{sl}(2, \mathbb{C})$ однозначно определены операторы D и F такие, что

$$[D, l_{-1}] = 1, \quad [D, l_0] = D, \quad [D, l_1] = D^2,$$
$$[l_{-1}, F] = 1, \quad [l_0, F] = F, \quad [l_1, F] = F^2.$$

Если модули Верма реализованы в пространстве $\mathbb{C}[z]$ многочленов одноё комплексноё переменноё z, то

$$D = \partial_z, \quad F = z\frac{1}{z + 2\hbar},$$

где $\xi = z \partial_z$. Операторы F и D удовлетворяют соотношениям:

$$[FD, DF] = 0, \quad [D, F] = q_R(1 - DF)(1 - FD),$$

где $q_R = \frac{1}{2\hbar - 1}$. В унитаризируемом модуле Верма (при $q_R \neq 0$) операторы F и D ограничены и $F^* = D, \ D^* = F$.

Алгебра, порожденная переменными t и t^*, с соотношениями $[tt^*, t^*t] = 0$ и $[t, t^*] = q_R(1 - tt^*)(1 - t^*t)$, будучи квантованиям по Березину плоскости Лобачевского, реализованоё в единичном комплексном диске (реализация Пуанкаре) [14], называется алгеброє Лобачевского-Березина. Предложение 1 позволяет рассматривать алгебру Лобачевского-Березина как C^*-алгебру. C^*-алгебра Лобачевского-Березина была недавно переоткрыта С.Климеем и А.Лесниевским [15].
Предложение 2 [13]. В невырожденном модуле Верма V_h над алгеброй Ли $\mathfrak{sl}(2, \mathbb{C})$ однозначно определены операторы L_n ($n \in \mathbb{Z}$) такие, что

$$[l_i, L_n] = (i - n)L_{i+n} \quad (i = 1, 2, 1; n \in \mathbb{Z}),$$

при этом, $L_i = l_i$ ($i = -1, 0, 1$). Если модули Верма реализованы в пространстве $\mathbb{C}[z]$ многочленов одно комплексной переменной z, то

$$L_k = (xi + (k + 1)h)\partial_z^k \quad (k \geq 0), \quad L_{-k} = z^k \frac{\xi + (k + 1)h}{(\xi + 2h)\ldots (\xi + 2h + k - 1)} \quad (k \geq 1),$$

где $\xi = z\partial_z$. Операторы L_n удовлетворяют соотношениям:

$$[L_n, L_m] = (n - m)L_{n+m}, \text{ если } n, m \geq -1 \text{ или } n, m \leq 1.$$

В единичном модуле Верма операторы L_n неограничены и $L_i^* = L_{-i}$.

Операторы L_n называются q_R-конформными симметриями. Они символически могут быть представлены в виде:

$$L_n = D^{nh}L_0D^{n(1-h)}, \quad L_{-n} = F^{n(1-h)}L_0F^{nh}.$$

Для придания смысла символической записи следует воспользоваться общими перестановочными соотношениями

$$[L_n, f(D)] = (-D)^{n+1}f'(D) \quad (n \geq -1), \quad [L_{-n}, f(F)] = F^{n+1}f'(D) \quad (n \geq -1)$$

при $n = 0$.

Соотношение коммутации операторов D, F и генераторов q_R-конформных симметрий с генераторами алгебры Ли $\mathfrak{sl}(2, \mathbb{C})$ означают, что семейства J_k и L_k ($k \in \mathbb{Z}$), где $J_i = D^i$, $J_{-i} = F^i$ ($i \in \mathbb{Z}_+$), являются семействами тензорных операторов [8,16] для алгебры Ли $\mathfrak{sl}(2, \mathbb{C})$.

С семействами тензорных операторов J_k и L_k можно ассоциировать их производящие функции — операторные поля, т.е. формальные ряды Лорана от одного комплексно переменной u с операторными коэффициентами:

$$J(u) = \sum_{i \in \mathbb{Z}} J_i(-u)^{-1-i}, \quad T(u) = \sum_{i \in \mathbb{Z}} L_i(-u)^{-2-i}.$$

При каждом значении u операторное поле задает отображение V_h в V_h^{form}. Тот факт, что J_k и T_k ($k \in \mathbb{Z}$) образуют семейства тензорных операторов, на языке операторных полей означает, что

$$[l_i, J(u)] = (-u)^iJ(u) - (-u)^{i+1}J'(u), \quad [l_i, T(u)] = 2(-u)^iT(u) - (-u)^{i+1}T'(u).$$

Операторные поля $V(u)$, преобразующиеся как s–дифференциалы под действием алгебры Ли $\mathfrak{sl}(2, \mathbb{C})$ (т.е. удовлетворяющие тождеству $[l_i, V(u)] = s(-u)^iV(u) - (-u)^{i+1}V'(u)$), называются $\mathfrak{sl}(2, \mathbb{C})$–первоочными спина s; таким образом, операторные поля $J(u)$ и $T(u)$ являются $\mathfrak{sl}(2, \mathbb{C})$–первоочными спинами 1 и 2, соответственно. Операторные поля $J(u)$ и $T(u)$, а также их свойства подробно изучались в [13].
1.3. Бесконечномерные \mathbb{Z}-градуированные алгебры Ли: алгебра Витта \mathfrak{w}^C лорановских полиномиальных векторных полей на окружности и алгебра Вирасоро \mathfrak{vi}^C, ее одномерное нетривиальное центральное расширение. Алгебра Ли $\text{Vect}(S^1)$ реализуется в пространстве C^∞-гладких векторных полей $v(t)\partial_t$ на окружности $S^1 \simeq \mathbb{R}/2\pi\mathbb{Z}$ с коммутатором

$$[v_1(t)\partial_t, v_2(t)\partial_t] = (v_1(t)v_2'(t) - v_1'(t)v_2(t))\partial_t.$$

В базисе $s_n = \sin(nt)\partial_t$, $c_n = \cos(nt)\partial_t$, $h = \partial_t$ коммутационные соотношения имеют вид:

$$[s_n, s_m] = \frac{1}{2}((m-n)s_{n+m} + \text{sgn}(n-m)(n+m)s_{|n-m|}),$$
$$[c_n, c_m] = \frac{1}{2}((m-n)s_{n+m} + \text{sgn}(n-m)(n+m)s_{|n-m|}),$$
$$[s_n, c_m] = \frac{1}{2}((m-n)c_{n+m} - (m+n)c_{|n-m|}) - n\delta_{nm}h,$$
$$[h, s_n] = nc_n, \quad [h, c_n] = -n s_n.$$

Обозначим $\text{Vect}^C(S^1)$ комплексификацией алгебры Ли $\text{Vect}(S^1)$. В базисе $e_n = ie^{ikt}\partial_t$ коммутационные соотношения в алгебре Ли $\text{Vect}^C(S^1)$ имеют вид:

$$[e_j, e_k] = (j-k)e_{j+k}.$$

Удобно также рассматривать вложение окружности S^1 в комплексную плоскость \mathbb{C} с координатой z, при этом на окружности $z = e^{it}$, а элементы базиса e_k ($k \in \mathbb{Z}$) представляются лорановскими полиномиальными векторными полями: $e_k = z^k\partial_z$. \mathbb{Z}-градуированная алгебра Ли, порожденная лорановскими полиномиальными векторными полями (т.е. конечными линейными комбинациями элементов базиса e_k), называется алгеброй Витта и обозначается \mathfrak{w}^C. Алгебра Витта \mathfrak{w}^C является комплексификацией подалгебры \mathfrak{w} алгебры $\text{Vect}(S^1)$, порождённо трigonометрическими полиномиальными векторными полями на окружности S^1, т.е. конечными линейными комбинациями элементов базиса s_n, c_n и h.

Алгебра Ли $\text{Vect}(S^1)$ допускает нетривиальное одномерное центральное расширение, задаваемое 2-коциклом Гельфанд-Фукса [17]:

$$c(v_1(t)\partial_t, v_2(t)\partial_t) = \int_0^{2\pi} (v_1'(t)v_2''(t) - v_1''(t)v_2'(t)) dt.$$

Данное расширение, будучи продолжённым на комплексификацию $\text{Vect}^C(S^1)$ алгебры Ли $\text{Vect}(S^1)$ и ограниченным на подалгебру \mathfrak{w}^C, задает одномерное центральное расширение алгебры Витта, называемое алгеброй Вирасоро и обозначаемое \mathfrak{vi}^C. Алгебра Вирасоро порождается генераторами e_k ($k \in \mathbb{Z}$) и центральным элементом c с коммутационными соотношениями:

$$[e_j, e_k] = (j-k)e_{j+k} + \frac{j^3 - j}{12}c,$$

и является комплексификацией центрального расширения \mathfrak{vi} алгебры Ли \mathfrak{w}. В неприводимом представлении центральный элемент c алгебры Вирасоро переходит в скалярный оператор, коэффициент пропорциональности которого единичному оператору называется центральным зарядом.
§2. $\mathcal{H}S$–проективные представления алгебры
Витта в модулях Верма над алгеброё Ли $\mathfrak{sl}(2,\mathbb{C})$

2.1. \mathfrak{A}–проективные представления [9].

Определение 1А. Пусть \mathfrak{A} – произвольная ассоциативная алгебра, представленная линейными операторами в линейном пространстве H и \mathfrak{g} – алгебра Ли. Линейное отображение $T : \mathfrak{g} \rightarrow \text{End}(H)$ называется \mathfrak{A}–проективным представлением, если для произвольных X и Y из \mathfrak{g} существует элемент алгебры \mathfrak{A}, представленный оператором A_{XY}, так, что

$$[T(X), T(Y)] - T([X,Y]) = A_{XY}.$$

Если H бесконечномерно, то представление может осуществляться неограниченными операторами с подходящими областями определения.

Замечание 1. Определение 1А может быть обобщено на произвольные антикоммутативные алгебры. В этой ситуации оно тесно связано с конструциями представлений антикоммутативных алгебр $\mathfrak{gl}(2,\mathbb{C})$ и $\mathfrak{sl}^*(2,\mathbb{C})$ в [18,19,20;§2]. В целом, его следует рассматривать в контексте старых идей А.И.Мальцева о представлениях произвольных неассоциативных алгебр [21]. Общие антикоммутативные алгебры и конструкции их \mathfrak{A}–проективных представлений интересны с точки зрения квазихопфовых алгебр, неассоциативных как коалгебр, якобиевых и коякобиевых квазибигалгебр и связанных с ними структур (см. ссылки в [9]).

Пример. Если $(\mathfrak{g},\mathfrak{h})$ – редуктивная пара, то любое представление алгебры Ли \mathfrak{g} является $U(\mathfrak{h})$–проективным представлением бинарноё антикоммутативноё алгебры \mathfrak{p} ($\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{p}$), бинарная операция в \mathfrak{p} имеет стандартный вид: $[X, Y]_\mathfrak{p} = \pi([X,Y])$, где $[\cdot, \cdot]$ – коммутатор в \mathfrak{g}, а π – проектор \mathfrak{g} на \mathfrak{p} вдоль \mathfrak{h} [22]).

Замечание 2. Стандартное проективное представление является частным случаем определения, если алгебра \mathfrak{A} одномерна и деёвствует в H скалярными матрицами.

Замечание 3. Если H – гильбертово (или предгильбертово) пространство, то в качестве \mathfrak{A} можно рассматривать алгебру $\mathcal{H}S$ всех операторов Гильберта-Шмидта. Можно также рассматривать алгебры \mathcal{B}, \mathcal{K}, $\mathcal{T}C$ и \mathcal{FR} ограниченных, компактных, ядерных операторов и операторов конечного ранга.

Определение 1Б. Пусть \mathfrak{A} – ассоциативная алгебра с инволюцией *, симметрично представленная в гильбертовом пространстве H. Если $\mathfrak{g} = \mathfrak{alg}$ Ли с инволюцией *, то её \mathfrak{A}–проективное представление T в пространстве H называется $\text{симметричным, если для всех элементов } a \text{ алгебры } \mathfrak{g}

$$T(a^*) = T^*(a).$$

Пусть $\mathfrak{g} = \mathbb{Z}$–градуированная алгебра Ли $(\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n)$ с инволюцией * такой, что $\mathfrak{g}_n^* = \mathfrak{g}_{-n}$ и инволюция тождественна на подалгебре \mathfrak{g}_0. Продолжим \mathbb{Z}–градуировку и инволюцию * с алгебры Лі \mathfrak{g} на тензорную алгебру $T'(\mathfrak{g})$. Симметричное \mathfrak{A}–проективное представление \mathfrak{g} называется $\text{абсолютно симметричным, если для любого элемента } a \text{ алгебры } T'(\mathfrak{g}) \text{ такого, что } \text{deg}(a) = 0, \text{ выполнено равенство } T(a) = T^*(a)$ (вот представление T алгебры \mathfrak{g} в H продолжено до отображения $T'(\mathfrak{g})$ в $\text{End}(H)$).
Определение 1В. A-проективное представление T алгебры Ли g в линейном пространстве H называется почти абсолютно замкнутым, если для любого натурального n и произвольных элементов $X_0, X_1, X_2, \ldots X_{n+1}$ алгебры Ли g существует элемент $\varphi(X_0, X_1, X_2, \ldots X_{n+1})$ алгебры g таков, что

$$[\ldots[[T(X_0), T(X_1)], T(X_2)], \ldots, T(X_{n+1})] \equiv T(\varphi(X_0, X_1, X_2, \ldots X_{n+1})) \mod A,$$

где A рассматривается представлено в $\text{End}(H)$. Почти абсолютно замкнутое A–проективное представление T алгебры Ли g в линейном пространстве H называется абсолютно замкнутым, если $\varphi(\cdot, \ldots, \cdot) \equiv 0$.

Отображения $(X_0, X_1, X_2, \ldots X_{n+1}) \mapsto (X_0, X_1, X_2, \ldots X_{n+1})$, ассоциированные с произвольным почти абсолютно замкнутым A–проективным представлением алгебры Ли g, определяют высшие скобки в алгебре Ли g. Объекты с высшими скобками систематически появляются во многих областях математики и математической физики (см. напр. книгу [6] или статью [23] среди прочих и многочисленные ссылки в них).

2.2. HS–проективные представления алгебры Витта qr–конформными симметриями в унитаризуемых модулях Верма V_h над алгеброй Ли $\mathfrak{sl}(2, \mathbb{C})$ [9]. Отметим, что алгебра Витта \mathfrak{w}^C допускает естественную инволюцию \ast.

Теорема 1А. Генераторы L_k ($k \in \mathbb{Z}$) qr–конформных симметрий в унитаризуемом модуле Верма V_h над алгеброй Ли $\mathfrak{sl}(2, \mathbb{C})$ осуществляют абсолютно симметричное HS–проективное представление алгебры Витта \mathfrak{w}^C. Добавление к тензорным операторам L_k тензорных операторов J_k ($k \in \mathbb{Z}$) приводит к абсолютно симметричному HS–проективному представлению полупрямоугольных сумм алгебры Витта и бесконечномерной Z–градуированной алгебры Гёчингера (одномерного центрального расширения бесконечномерной Z–градуированной абелевой алгебры Ли $\mathbb{C}[z, z^{-1}]$ многочленов Лорана).

Утверждение теоремы следует из явных формул для генераторов qr–конформных симметрий и тензорных операторов J_k. Проверка на принадлежность классу HS операторов Гильберта-Шмидта для операторов фиксированной степени относительно градуировки в Z–градуированном пространстве многочленов $\mathbb{C}[z]$, снабженном некоторым скалярным произведением, относительно которого одномерные весовые пространства ортогональны, каковым и является унитаризуемый модуль Верма над алгеброй Ли $\mathfrak{sl}(2, \mathbb{C})$, не представляет никаких проблем.

Замечание 4. HS–проективные представления алгебры Витта в унитаризуемых модулях Верма над $\mathfrak{sl}(2, \mathbb{C})$ абсолютно замкнуты.

Замечание 5. Теорема 1А переносится на псевдоунитарный случай с заменой класса HS операторов Гильберта-Шмидта на класс K компактных операторов.

Результаты, касающиеся “экспоненцированное” версии теоремы 1А, анонсированы в электронных препринтах [24,25].

2.3. FR–проективные представления алгебры Витта в модулях Верма над алгеброй Ли $\mathfrak{sl}(2, \mathbb{C})$ с экстремальным весом 1 и $\frac{1}{2}$. В некоторых частных случаях утверждение теоремы 1А может быть усилено.
Теорема 1Б. При \(h = 1 \) или \(h = \frac{1}{2} \), HS-проективное представление алгебры Vitta \(q_R \)-конформными симметриями в унитаризуемом модуле Верма над алгеброй Li \(sl(2, \mathbb{C}) \) является \(FR \)-проективным. При \(h = \frac{1}{2} \), FR-проективным является и HS-проективное представление полупрямоё суммы алгебры Vitta и бесконечноомерной алгебры Гёзенберга.

Утверждение следует из явных формул для тензорных операторов \(L_k \) и \(J_k \).

Замечание 6. При \(h = 0 \), \(K \)-проективное представление алгебры Vitta в модуле Верма над алгеброй \(sl(2, \mathbb{C}) \) является \(FR \)-проективным.

2.4. \(B \)-проективные представления алгебры Vitta. Отметим, что к числу “неудобств” многих \(A \)-проективных представлений, в том числе если \(A \) — некоторый класс операторов \(K \), HS, TC или \(FR \), относится, вообще говоря, незамкнутость их совокупности относительно взятия тензорных произведений. Для класса же \(B \) ограничений операторов тензорные произведения \(B \)-проективных представлений определены. Однако, всякое \(G \)-проективное представление, где \(G \) — один из упомянутых выше классов, является \(B \)-проективным и как таковое, иногда, нетривиальным (когда исходные представления осуществлялись неограниченными операторами), что позволяет конструировать их тензорные произведения, которые будут в этом случае нетривиальными \(B \)-проективными представлениями.

Назовем \(G \)-проективное представление алгебры Li \(g \) (\(G \) — некоторый операторный класс) \(G \)-неприводимым, если операторы представления одновременно не могут быть приведены путем добавления к ним элементов из \(G \) к виду, в котором они все обладали бы общим для них собственным инвариантным подпространством.

Теорема 2. Пусть \(T_h \) — \(B \)-проективное представление алгебры Vitta \(w^C \) \(q_R \)-конформными симметриями в модуле Верма \(V_h \) над алгеброй Li \(sl(2, \mathbb{C}) \), тогда \(B \)-проективные представления \(S^n(T_h) \) (здесь \(S^n \) обозначает функция взятия \(n \)-й симметрической степени, см.[26]) \(B \)-неприводимы.

Утверждение теоремы следует из явных формул для генераторов \(q_R \)-конформных симметрий.

Замечание 7. Разложения тензорных произведений \(T_{h1} \otimes \ldots \otimes T_{h_n} \) \(B \)-проективных представлений \(T_{h_i} \) на \(B \)-неприводимые компоненты в общем случае неизвестны.

§3. Асимптотические представления алгебр Витта и Вирасоро в модулях Верма над алгеброй Li \(sl(2, \mathbb{C}) \)

3.1. Асимптотика \(q_R \)-конформных симметрий в модулях Верма \(V_h \) над алгеброй Li \(sl(2, \mathbb{C}) \) при \(q_R \to 0 \) (\(h \to \frac{1}{2} \)) и \(q_R \to 1 \) (\(h \to 1 \)) и алгебра Витта \(w^C \). Пусть \(A \) — алгебра конечных линейных комбинаций выражений вида \(f(q)p^n \) (\(n \in \mathbb{Z}_+ \)) или \(q^n f(q) \) (\(n \in \mathbb{Z}_+ \)), \([p,q] = 1\), a \(f \) — рациональные функции, чи знаменатели не имеют нулёв в целых точках. Будем называть \(A \) расширенной алгеброй Вейля. Расширенная алгебра Вейля является топологически алгеброю относительно естественно сходимости.
Лемма. Расширенная алгебра Веёля \(A \) допускает точное представление в модуле Верма \(V_h \) (\(h \notin \mathbb{Z}/2 \)):

\[
p \to \partial_z, \quad q \to z.
\]

При этом, генераторы \(q_R \)-конформных симметрий \(L_k \) (\(k \in \mathbb{Z} \)), равно как и генераторы \(D, F \) алгебры Лобачевского-Березина, принадлежат образу расширенной алгебры Веёля \(A \).

Будем понимать в дальнейшем “\(O \)-большое” для асимптотик операторов в модулях Верма над алгеброй \(\text{Li} \, \mathfrak{sl}(2, \mathbb{C}) \) с неполуцелями экстремальными весами, принадлежащих расширенной алгебре Веёля (поскольку ее представления в модулях Верма точки можно отождествлять саму алгебру с ее образом), в смысле топологии в расширенной алгебре Веёля.

Теорема 3A. Генераторы \(q_R \)-конформных симметрий в модулях Верма \(V_{\frac{1}{2}+h} \) \((0 < h < \frac{1}{2})\) над алгеброй \(\text{Li} \, \mathfrak{sl}(2, \mathbb{C}) \) образуют асимптотическое “mod \(O(h) \)” представление алгебры Витта \(\mathfrak{w}^C \).

Генераторы \(q_R \)-конформных симметрий в модулях Верма \(V_{1+h} \) \((0 < h < \frac{1}{2})\) над алгеброй \(\text{Li} \, \mathfrak{sl}(2, \mathbb{C}) \) также образуют асимптотическое “mod \(O(h) \)” представление алгебры Витта \(\mathfrak{w}^C \).

Первое утверждение теоремы, немедленно следующее из явного вида генераторов \(q_R \)-конформных симметрий, было по сути дела доказано в [10], где рассматривалась соответствующая “экспоненцированная” версия. Второе ему полностью подобно.

Замечание 8. Утверждение теоремы перестает быть верным, если “\(O \)-большое” рассматривается в смысле (слабо) операторно-сходимости в пространстве операторов в модулях Верма \(V_h \) над алгеброй \(\text{Li} \, \mathfrak{sl}(2, \mathbb{C}) \), отождествленных с пространством \(\mathbb{C}[z] \) полиномов.

Ответ на вопрос о причинах “расхождения” между теоремоё 3A и замечанием 8 заключается в следующем: точное представления расширенной алгебры Веёля не только не существуют при предельном значении \(h = 0 \), но будучи непрерывными (в слабо операторной топологии в пространстве \(V_h \)) при всех значениях параметра \(h \) из интервала \(0 < h < \frac{1}{2} \), не являются равномерно непрерывными на этом интервале. Отметим также, что непрерывные представления расширенной алгебры Веёля в модулях Верма \(V_h \) над алгеброй \(\text{Li} \, \mathfrak{sl}(2, \mathbb{C}) \) продолжаются до представлений неограниченными операторами в пространствах \(V_h^{\text{Hilb}} \) (или \(V_h^{\text{Pontr}} \)), и, как следствие, не непрерывны, что, однако, типично для теории представлений алгебр Ли.

3.2. Оценка “mod \(\mathcal{H}_S \)” второго члена асимптотики \(q_R \)-конформных симметрий в модулях Верма \(V_h \) над алгеброй \(\text{Li} \, \mathfrak{sl}(2, \mathbb{C}) \) при \(q_R \to 0 \) \((h \to \frac{1}{2})\) и при \(q_R \to 1 \) \((h \to 1)\) и алгебра Вирасоро \(\mathfrak{vir}^C \). При “гибридизации” приближении “\(\text{mod} \, O(h^n) \)” и “mod \(\mathfrak{S}^n \)” наблюдается интересное явление “некоммутируемости” оценок, пример чему предоставляют асимптотики \(q_R \)-конформных симметрий.
Теорема 3Б. Для генераторов q_R-конформных симметрий в модулях Верма $V_{1 \pm h}$ $(0 < h < \frac{1}{2})$ над алгеброй $\mathfrak{sl}(2, \mathbb{C})$ имеется следующая асимптотика “mod $O(h^2)$”:

$$
[L_i, L_j] = (i - j)L_{i+j} + hA + O(h^2),
$$

где

$$
A \equiv \frac{2}{3} (i^3 - i) \delta_{ij} \mod \mathcal{HS}.
$$

Таким образом, генераторы q_R-конформных симметрий образуют приближенное представление алгебры Вирасоро \mathfrak{vir}^C при $h \to \frac{1}{2}$ в указанном смысле.

Для генераторов q_R-конформных симметрий в модулях Верма $V_{1 \pm h}$ $(0 < h < \frac{1}{2})$ над алгеброй $\mathfrak{sl}(2, \mathbb{C})$ также имеется асимптотика “mod $O(h^2)$”:

$$
[L_i, L_j] = (i - j)L_{i+j} + hA + O(h^2),
$$

где

$$
A \equiv \frac{2}{3} (i^3 - i) \delta_{ij} \mod \mathcal{HS}.
$$

Таким образом, генераторы q_R-конформных симметрий образуют приближенное представление алгебры Вирасоро \mathfrak{vir}^C при $h \to 1$ в указанном смысле.

В утверждении теоремы оценки “mod $O(h^2)$” понимаются в смысле сходимости в расширенной алгебре Вейля \mathfrak{A}, при этом \mathcal{HS} обозначает совокупность элементов этого алгебры, реализуемых операторами Гильберта-Шмидта при точном представлении в модулях Верма над алгеброй $\mathfrak{sl}(2, \mathbb{C})$ для всех достаточно малых значений h (инными словами, если π_h – представление \mathfrak{A} в V_h и \mathcal{HS}_h – пространство операторов Гильберта-Шмидта в V_h, то \mathcal{HS} понимается в теореме в смысле

$$
\lim_{h \to 0} \bigcap_{h_0 < h < h_0 + h} \pi_h^{-1}(\mathcal{HS}_h \cap \pi_h(\mathfrak{A})),
$$

где $h_0 = \frac{1}{2}$ или $h_0 = 1$).

Результат теоремы 3Б следует из явных вычислений. Приведем вычисление коммутатора $[L_2, L_{-2}]$ и его оценки, которых достаточно для определения центрального заряда алгебры Вирасоро. Модуль Верма V_h реализован в пространстве многочленов $\mathbb{C}[z]$, $\xi = z \partial z$, а генераторы q_R-конформных симметрий задаются выражениями, выписанными ранее. Тогда при $h \to \frac{1}{2}$

$$
[L_2, L_{-2}] = \frac{(\xi + 3h)^2(\xi + 1)(\xi + 2)}{(\xi + 2h)(\xi + 2h + 1)} - \frac{(\xi + 3h - 2)^2\xi(\xi - 1)}{(\xi + 2h - 1)(\xi + 2h - 2)} = \frac{(\xi + \frac{3}{2} + 3h)^2(\xi + 1)(\xi + 2)}{(\xi + 1 + 2h)(\xi + 2h + 1)} - \frac{(\xi + \frac{1}{2} + 3h)^2\xi(\xi - 1)}{(\xi - 1 + 2h)(\xi + 2h)}.
$$

Имеется место следующая оценка “mod $O(h^2)$” (h в знаменателях оставлен, т.к. при нулевом h не определено представление расширенной алгебры Вейля в соответствующем модуле Верма):

$$
[L_2, L_{-2}] \equiv (\xi + \frac{3}{2} + 3h)^2(1 - \frac{2h}{\xi + 1 + h})(1 - \frac{2h}{\xi + 2 + h}) - (\xi - \frac{1}{2} + 3h)^2(1 - \frac{2h}{\xi - 1 + h})(1 - \frac{2h}{\xi + h}) \mod O(h^2).
$$
Выделяя члены порядка \(h \) (поскольку старший член порядка единицы уже известен), получим:

\[
2h(\xi - \frac{1}{2})^2\left(\frac{1}{\xi+1} + \frac{1}{\xi+h}\right) - 2h(\xi + \frac{3}{2})^2\left(\frac{1}{\xi+1} + \frac{1}{\xi+2+h}\right) + 12h.
\]

Проведем теперь оценку “mod \(\mathcal{HS} \)” и получим:

\[
2h\xi^2\left(\frac{1}{\xi-1} + \frac{1}{\xi+h} + \frac{1}{\xi+1-h} - \frac{1}{\xi+2+h}\right) - 12h \\
2h\xi\left(\frac{1}{\xi-1} + \frac{1}{\xi+h} - 6h\left(\frac{1}{\xi+1+h} + \frac{1}{\xi+2+h}\right)\right) \sim \\
2h\xi^2\left(\frac{2}{(\xi-1+h)(\xi+1+h)} + \frac{2}{(\xi+h)(\xi+2+h)}\right) + 12h - 16h \sim \\
8h + 12h - 16h = 4h.
\]

Таким образом, “асимптотически” центральный заряд равен 8h.

Аналогично, при \(h \to 1 \)

\[
[L_2, L_{-2}] = \frac{(\xi+3h)^2(\xi+1)(\xi+2)}{(\xi+2h)(\xi+2h+1)} - \frac{(\xi+3h-2)^2(\xi+1)}{(\xi+2h-1)(\xi+2h-2)} = \\
\frac{(\xi+3h)^2(\xi+1)(\xi+2)}{(\xi+2h+1)(\xi+3+2h)} - \frac{(\xi+1+3h)^2(\xi+1)}{(\xi+1+2h)(\xi+1+2h)}.
\]

Имеет место следующая оценка “mod \(O(h^2) \)” (h в знаменателях оставлен, т.к. при нулевом h не определено представление расширенной алгебры Вироса в соответствующем модуле Верма):

\[
[L_2, L_{-2}] \equiv (\xi + 1)(\xi + 3 + 3h)(1 - \frac{2h}{\xi+2+h})(1 - \frac{2h}{\xi+3+h})(1 + \frac{3h}{\xi+3+h}) - \\
(\xi - 1)(\xi + 1 + 3h)(1 - \frac{2h}{\xi+1+h})(1 - \frac{2h}{\xi+1+h})(1 + \frac{3h}{\xi+1+h}) \mod O(h^2).
\]

Выделяя члены порядка \(h \) (поскольку старший член порядка единицы уже известен), получим:

\[
h(\xi + 1)(\xi + 3)(\frac{1}{\xi+3+h} - \frac{2}{\xi+2+h}) - h(\xi + 1)(\xi - 1)(\frac{1}{\xi+1+h} - \frac{2}{\xi+h}) + 6h.
\]

Проведем теперь оценку “mod \(\mathcal{HS} \)” и получим:

\[
8h + 2(\xi + 1)(\frac{\xi-1}{\xi+h} - \frac{\xi+3}{\xi+2+h}) \sim 8h - 4h = 4h.
\]

Таким образом, “асимптотически” центральный заряд оценивается равным 8h.

\textbf{Замечание 9.} Оценка “mod \(O(h^2) \)” может быть улучшена до “mod \(O(h^n) \)” для любого конечного \(n \) (но не до “mod \(O(h^\infty) \)” из-за последующей оценки “mod \(\mathcal{HS} \)”).

\textbf{Замечание 10.} Как следует из результатов второго параграфа перестановка порядка оценок приводит к нулевому центральному заряду для алгебры Вироса.

По-видимому, неперестановочность порядка оценок “mod \(O(h^n) \)” и “mod \(\mathcal{HS} \)” в случае qR-конформных симметрий является отражением более общего и фундаментального факта различия между асимптотическими теорией псеводифференциальных операторов и псеводифференциальным исчислением на асимптотических многообразиях в смысле [27]. О том, что результат теоремы ЗВ содержит странное совпадение “асимптотических” центральных зарядов для алгебры Вироса при \(h \to \frac{1}{2} \) и \(h \to 1 \) (а именно, \(c = 8h \), \(h \to 0 \)), возможно, объясняет, почему при всех значениях экстремального веса \(h \) алгебра Вироса присутствует на некотором еще более скрытом и пока не выявленном уровне универсально (т.е. ее характеристики не зависят от \(h \)).
Заключение

В работе исследованы различные приближенные представления бесконечномерных \(Z \)-градуированных алгебр Ли: алгебры Витта лорановских полиномиальных векторных полей на окружности и ее одномерного нетрианного центрального расширения, алгебры Вирасоро, бесконечномерными скрытыми симметриями в модулях Верма над алгеброй Ли \(\mathfrak{sl}(2, \mathbb{C}) \). Рассмотрены как асимптотические представления “mod \(O(h^n) \)” и представления с точностью до операторов из некоторого класса \(\mathcal{S} \) (компактных операторов, операторов Гильберта-Шмидта или операторов конечного ранга), так и случаи, совмещающие оба типа приближений (и в данном случае выявлен эффект неперестановочности порядка их выполнения, что, по-видимому, свидетельствует о более общем и фундаментальном факте различий между асимптотической теорией псевдодифференциальных операторов и псевдодифференциальным исчислением на асимптотических многообразиях в смысле [27]). Некоторые приложения обсуждаемых вопросов к прикладным проблемам информационных технологий (организация передачи информации в интегрированных видеокогнитивных интерактивных системах для ускоренных невербальных компьютерных и телекоммуникаций) изучались в работе [28].

Список литературы

[1] Тэйлор М., Псевдодифференциальные операторы. М., Мир, 1985.
[2] Трев Ф., Введение в псевдодифференциальные операторы и интегральные операторы Фурье. М., Мир, 1984.
[3] Богословов Н.И., Митропольский Ю.А., Асимптотические методы в теории нелинейных колебаний. М., Физматлит, 1958.
[4] Маслов В.П., Теория возмущения и асимптотические методы. М., Изд-во МГУ, 1965.
[5] Маслов В.П., Федорюк М.В., Квазиклассическое приближение для уравнений квантовой механики. М., Наука, 1976.
[6] Карасев М.В., Маслов В.П., Нелинейные скобки Пуассона. Геометрия и квантование. М., Наука, 1991.
[7] Кириллов А.А., Элементы теории представлений. М., Наука, 1978.
[8] Барут А., Роянка Р., Теория представлений групп и её приложения. М., Мир, 1980.
[9] Juriev D., Topics in hidden symmetries. V. E-print: funct-an/9611003 (1996).
[10] Juriev D., On the infinite dimensional hidden symmetries. III. \(q_R \)-conformal symmetries at \(q_R \to \infty \) and Berezin-Karasev-Maslov asymptotic quantization of \(C^\infty(S^1) \). E-print: funct-an/9702002 (1997).
[11] Желобенко Д.П., Представления редуктивных алгебр Ли. М., Наука, 1993.
[12] Ликсель Ж., Универсальные обертывающие алгебры. М., Мир, 1976.
[13] Юрьев Д., Комплексная проективная геометрия и квантовая проективная теория поля // ТМФ. 1994. Т.101. вып.3. С.331-348.
[14] Березин Ф.А., Квантование в комплексных симметрических пространствах // Известия АН СССР. Сер.матем. 1975. Т.39, вып.2. С.363-402.
[15] Klimek S., Lesniewski A., Quantum Riemann surfaces. I // Commun.Math.Phys. 1992. V.146. P.103-122.
[16] Биценхар Л., Луак Дж., Угловое момент в квантовой физике. М., Мир, 1984.
[17] Фуке Ё.Б., Когомологии бесконечномерных алгебр Ли. М., Наука, 1984.
[18] Juriev D., Noncommutative geometry, chiral anomaly in the quantum projective (\(\mathfrak{sl}(2, \mathbb{C}) \)-invariant) field theory and \(j(2, \mathbb{C}) \)-invariance // J.Math.Phys. 1992. V.33. P.2819-2822, (E): 1993. V.34. P.1615.
[19] Juriev D., Remarks on nonassociative structures in quantum projective field theory: the
central extension \(\mathfrak{sl}(2, \mathbb{C}) \) of the double \(\mathfrak{sl}(2, \mathbb{C}) + \mathfrak{sl}(2, \mathbb{C}) \) of the simple Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \) and related topics. Acta Appl.Math. 1998. V.50. P.191-196.

[20] Юрьев Д.В., Квантовая проективная теория поля: квантово-полевые аналоги уравнения Эйлера-Арнольда в проективных \(G \)-гипермультитплетах // ТМФ. 1994. Т.98, вып.2. С.220-240.

[21] Мальцев А.И., О представлении неассоциативных колец // УМН. 1952. Т.7, вып.1. С.181-185 [переиздано в “Избранных трудах. 1. Классическая алгебра”, М., Наука, 1976, С.328-331].

[22] Кобаяси Ш., Номидзу К., Основы дифференциальной геометрии. М., Наука, 1981.

[23] Juriev D., Infinite dimensional geometry and quantum field theory of strings. II. Infinite-dimensional noncommutative geometry of a self-interacting string field // Russian J.Math. Phys. 1996. V.4, no.3. P.287-314.

[24] Juriev D., On the infinite dimensional hidden symmetries. I. Infinite dimensional geometry of \(q_R \)-conformal symmetries. E-print: funct-an/9612004 (1996).

[25] Juriev D., On the infinite dimensional hidden symmetries. II. \(q_R \)-conformal modular functor. E-print: funct-an/9701009 (1997).

[26] Кириллов А.А., Введение в теорию представлений и некоммутативный гармонический анализ / Совр.пробл.мат. Фунд.направления. Т.22. М., ВИНИТИ, 1987, С.5-162.

[27] Dubnov V.L., Maslov V.P., Nazaikinskii V.E., The complex Lagrangian germ and the canonical operator // Russian J.Math.Phys. 1995. V.3. P.141-180.

[28] Юрьев Д.В., Дроэмы: экспериментальная математика, информатика и бесконечномерная геометрия: Report RCMPI-96/05+ (1996).