Nodal Solutions for Neumann Problems with a Nonhomogeneous Differential Operator

By

Michael E. Filippakis and Nikolaos S. Papageorgiou

(University of Piraeus and National Technical University, Greece)

Abstract. We consider a nonlinear elliptic Neumann problem driven by a nonhomogeneous differential operator, which is strictly monotone and incorporates as special cases the \(p \)-Laplacian, the \((p,q) \)-differential operator and the generalized \(p \)-mean curvature differential operator. Using variational methods coupled with suitable truncation and comparison techniques and Morse theory (critical groups), we show that the problem has at least three nontrivial smooth solutions, one positive, the second negative and the third nodal. Also we show that the problem has extremal nontrivial constant sign solutions.

Key Words and Phrases. Nonhomogeneous differential operator, Nonlinear regularity, Nonlinear strong maximum principle, Extremal constant sign solutions, Nodal solution, Local minimizer.

2010 Mathematics Subject Classification Numbers. 35J20, 35J60.

1. Introduction

Let \(\Omega \subseteq \mathbb{R}^N \) be a bounded domain with a \(C^2 \)-boundary \(\partial \Omega \). In this paper we study the following nonlinear Neumann problem:

\[
-\text{div} \ a(Du(z)) = f(z, u(z)) \quad \text{in} \quad \Omega, \quad \frac{\partial u}{\partial n} = 0 \quad \text{on} \quad \partial \Omega.
\]

Here \(a : \mathbb{R}^N \to \mathbb{R}^N \) is a continuous map which is \(C^1 \) on \(\mathbb{R}^N \setminus \{0\} \) and also it is strictly monotone. The precise hypotheses on \(a(\cdot) \) are formulated in hypotheses \(H(a) \). These hypotheses incorporate as special cases the \(p \)-Laplacian \((1 < p < \infty)\), the \((p,q) \)-differential operator \((2 \leq q < p)\) and the generalized \(p \)-mean curvature operator \((2 \leq p < \infty)\). The reaction \(f(z, x) \) is a Caratheodory function (i.e., for all \(x \in \mathbb{R}, \ z \to f(z, x) \) is measurable and for a.a. \(z \in \Omega, \ x \to f(z, x) \) is continuous) and exhibits \(p \)-linear growth near \(\pm \infty \). In fact the precise hypotheses on the term \(f(z, x) \) make the energy functional of the problem coercive. Our aim is to prove a multiplicity theorem (“three solutions theorem”) for problem (1.1), providing precise sign information for all the solutions. Multiplicity theorems for coercive Dirichlet problems driven by the \(p \)-Laplacian were proved by Liu-Liu [15] and Papageorgiou-Papageorgiou...
For the Neumann problem, we have the works of Kyritsi-Papageorgiou [13] and Motreanu-Papageorgiou [19]. In [13], the left hand side of the equation has the form
\[-\Delta_p u + \beta \|u\|^{p-2} u\]
with \(\beta > 0\) (here \(\Delta_p u = \text{div}(\|Du\|^{p-2}Du)\) for all \(u \in W^{1,p}(\Omega)\) \(1 < p < \infty\)), while [19] has a nonhomogeneous differential operator that satisfies more restrictive conditions, which exclude, for example, the \((p,q)\)-differential operator and the generalized \(p\)-mean curvature operator. None of the aforementioned works (Dirichlet and Neumann alike) provides sign information for all the solutions. To the best of our knowledge, our multiplicity theorem here is the first result in the literature, establishing the existence of nodal solutions for Neumann problems driven by a nonhomogeneous differential operator. Note that the nonhomogeneity of the differential operator is the source of serious technical difficulties and the previous methods used to produce a nodal solution fail in this context (see, for example, the work of Aizicovici-Papageorgiou-Staicu [2]). So, we need new conditions and techniques in order to guarantee the existence of a nodal solution. Even in the case \(p = 2\) (Laplace differential operator) our result is stronger than Theorems 1 and 2 of Tang [23], where the author establishes the existence of only two nontrivial solutions without providing sign information for them under stronger hypotheses on the reaction \(f(z,x)\). Moreover, our method of proof is different.

The main result of this work (see Theorem 4.2) reads as follows (for the detailed formulation of hypotheses \(H(a)\) and \(H(f)\) and for the definition of the cone \(C_+\), we refer to Section 2).

Theorem 1.1. If hypotheses \(H(a)\) and \(H(f)\) hold, then problem (1.1) has at least three nontrivial smooth solutions
\[u_0 \in \text{int} C_+, \quad v_0 \in -\text{int} C_+ \quad \text{and} \quad y_0 \in C^1_1(\Omega) \text{ nodal};\]
in addition problem (1.1) has a smallest positive solution and a biggest negative solution (extremal constant sign solutions).

Our approach is variational based on the critical point theory, coupled with suitable truncation techniques and use of critical groups (Morse theory). In the next section, for easy reference, we recall the main mathematical tools that we will use in this work.

2. Mathematical background

Let \(X\) be a Banach space and \(X^*\) its dual. By \(\langle \cdot, \cdot \rangle\) we denote the duality brackets for the pair \((X^*, X)\). Let \(\varphi \in C^1(X)\). We say the \(\varphi\) satisfies the Cerami condition (the \(C\)-condition for short), if every sequence \(\{x_n\}_{n \geq 1} \subseteq X\) such that \(\{\varphi(x_n)\}_{n \geq 1}\) is bounded in \(X\) and \((1 + \|x_n\|)\varphi'(x_n) \to 0\) in \(X^*\) as \(n \to \infty\), admits a strongly convergent subsequence.
This condition is more general than the usual in critical point theory “Palais-Smale condition”. It can be shown (see for example, Gasinski-Papageorgiou [10]), that the C-condition suffices to prove a deformation theorem and from it derive the minimax theory of the critical values of φ. In particular, we can state the following slightly more general version of the well-known “mountain pass theorem”.

Theorem 2.1. If $\varphi \in C^1(X)$ satisfies the C-condition, $x_0, x_1 \in X$ and $r > 0$ satisfy

$$
\|x_1 - x_0\| > r, \max \{\varphi(x_1), \varphi(x_0)\} < \inf \{\varphi(x) : \|x - x_0\| = r\} = \eta_r,
$$

$$
c = \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} \varphi(\gamma(t)) \quad \text{where} \quad \Gamma = \{\gamma \in C([0, 1], X) : \gamma(0) = x_0, \gamma(1) = x_1\},
$$

then $c \geq \eta_r$ and c is a critical value of φ.

In the analysis of problem (1.1) we will use the spaces $W^{1,p}(\Omega)$ and

$$
C^1_n(\Omega) = \left\{ u \in C^1(\Omega) : \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega \right\}.
$$

One can show that $W^{1,p}(\Omega) = \overline{C^1_n(\Omega)}^\| \|\|$, where $\| \cdot \|$ denotes the usual norm of the Sobolev space $W^{1,p}(\Omega)$ (see for example Attouch-Buttazzo-Michaille [4], p.228). We note that $C^1_n(\Omega)$ is an ordered Banach space with positive cone

$$
C_+ = \{ u \in C^1_n(\Omega) : u(z) \geq 0 \text{ for all } z \in \Omega \}.
$$

This cone has a nonempty interior given by

$$
\text{int} C_+ = \{ u \in C_+ : u(z) > 0 \text{ for all } z \in \Omega \}.
$$

The hypotheses on the map $\alpha(\cdot)$ defining the differential operator, are the following:

1. $H(a)$: $a(y) = a_0(\|y\|)y$ for all $y \in \mathbb{R}^N$, with $a_0(t) > 0$ for all $t > 0$ and
2. $a \in C(\mathbb{R}^N, \mathbb{R}^N) \cap C(\mathbb{R}^N \setminus \{0\}, \mathbb{R}^N)$;
3. there exist $c_0 > 0$, $\eta \geq 0$ and $1 < p < \infty$ such that
4. $c_0(\eta + \|y\|)^{p-2}\|\xi\|^2 \leq (\nabla a(y)\xi, \xi)_{\mathbb{R}^N}$ for all $y \in \mathbb{R}^N \setminus \{0\}$, all $\xi \in \mathbb{R}^N$;
5. there exists $c_1 > 0$ such that
6. $\|\nabla a(y)\| \leq c_1(\eta + \|y\|)^{p-2}$ for all $y \in \mathbb{R}^N \setminus \{0\}$

with $\eta \geq 0$ and $1 < p < \infty$ as in (ii).

Remark 2.2. In what follows $G(\cdot)$ denotes the primitive of $a(\cdot)$, i.e.,

$$
G'(y) = a(y) \quad \text{for all } y \in \mathbb{R}^N \text{ and } G(0) = 0.
$$
The above hypotheses imply that \(a(\cdot) \) is strongly monotone. Indeed, if \(y, y' \in \mathbb{R}^N \), then

\[
a(y) - a(y') = \int_0^1 \frac{d}{dt} (a(y' + t(y - y')) dt \\
= \int_0^1 (\nabla a(y' + t(y - y'))(y - y))_{\mathbb{R}^N} dt,
\]

\(\Rightarrow (a(y) - a(y'), y - y')_{\mathbb{R}^N} = \int_0^1 (\nabla a(y' + t(y - y'))(y - y'), y - y')_{\mathbb{R}^N} dt \\
\geq \int_0^1 c_0 (\eta + \|ty + (1 - t)y'\|)^{p-2} \|y - y'\|^2 dt \\
\quad \text{(see H(a)(ii))} \\
\geq c_0 \eta \|y - y'\|^2,
\]

\(\Rightarrow a(\cdot) \) is strongly monotone.

Hence the primitive function \(G(\cdot) \) is strictly convex. Also, we have

\[
a(y) = \int_0^1 \frac{d}{dt} a(ty) dt = \int_0^1 \nabla a(ty) y dt,
\]

hence \(\|a(y)\| \leq \int_0^1 \|\nabla a(ty)\| \|y\| dt \\
\leq c_1 (\eta + \|y\|)^{p-2} \|y\| \quad \text{(see H(a)(iii))} \\
\leq c_2 (1 + \|y\|^{p-1}) \quad \text{for some } c_2 > 0, \text{ all } y \in \mathbb{R}^N.
\]

Also, we have

\[
(a(y), y)_{\mathbb{R}^N} = \int_0^1 \left(\frac{d}{dt} a(ty), y \right)_{\mathbb{R}^N} dt = \int_0^1 (\nabla a(ty), y)_{\mathbb{R}^N} dt \\
\geq \int_0^1 c_0 (\eta + \|y\|)^{p-2} \|y\|^2 dt \quad \text{(see H(a)(ii))} \\
\geq \frac{c_0}{p-1} \|y\|^p \quad \text{for all } y \in \mathbb{R}^N.
\]

Since \(G(0) = 0 \) and \(G'(y) = a(y) \), we have

\[
G(y) = \int_0^1 \frac{d}{dt} G(ty) dt = \int_0^1 (a(ty), y)_{\mathbb{R}^N} dt.
\]
Using (2.1) and (2.2), we conclude that
\[\frac{c_0}{p(p-1)}\|y\|^p \leq G(y) \leq c_3(1 + \|y\|^p)\] for some $c_3 > 0$, all $y \in \mathbb{R}^N$.

Example 2.3. The following maps satisfy hypotheses $H(a)$:

1. $a_1(y) = \|y\|^{p-2}y$ with $1 < p < \infty$.

 Map $a_1(\cdot)$ corresponds to the p-Laplace differential operator.

2. $a_2(y) = \|y\|^{p-2}y + \mu\|y\|^{q-2}y$ with $2 \leq q < p < \infty$, $\mu > 0$.

 Map $a_2(\cdot)$ corresponds to the (p,q)-differential operator.

3. $a_3(y) = (1 + \|y\|^{2(p-2)/2}y$ with $2 < p < \infty$.

 Map $a_3(\cdot)$ corresponds to the generalized p-mean curvature differential operator.

4. $a_4(y) = \|y\|^{p-2}y \left(1 + \frac{1}{1+\|y\|^p}\right)$ with $1 < p < \infty$.

Let $V : W^{1,p}(\Omega) \rightarrow W^{1,p}(\Omega)^*$ be the nonlinear map defined by
\[
\langle V(u), y \rangle = \int_\Omega (a(Du), Dy)_{\mathbb{R}^N} dz \quad \text{for all } u, y \in W^{1,p}(\Omega).
\]

From Gasinski-Papageorgiou [9] (p.652) we have:

Proposition 2.4. If hypotheses $H(a)$ hold, then $V : W^{1,p}(\Omega) \rightarrow W^{1,p}(\Omega)^*$ defined by (2.4) is continuous, strictly monotone (hence maximal monotone) and of type $(S)_+$ (i.e., if $u_n \overset{w}{\rightarrow} u$ in $W^{1,p}(\Omega)$ and $\limsup_{n \rightarrow \infty} \langle V(u_n), u_n - u \rangle \leq 0$, then $u_n \rightarrow u$ in $W^{1,p}(\Omega)$).

Now let $f_0 : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Carathéodory function such that
\[|f_0(z,x)| \leq a(z) + c|x|^{r-1}\] for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $a \in L^\infty(\Omega)_+$, $c > 0$,

\[
1 < r < p^* = \begin{cases} \frac{Np}{N-p} & \text{if } p < N, \\ +\infty & \text{if } p \geq N. \end{cases}
\]

We set $F_0(z,x) = \int_0^x f_0(z,s)ds$ and consider the C^1-functional $\varphi_0 : W^{1,p}(\Omega) \rightarrow \mathbb{R}$ defined by
\[
\varphi_0(u) = \int_\Omega G(Du(z))dz - \int_\Omega F_0(z,u(z))dz \quad \text{for all } u \in W^{1,p}(\Omega).
\]
From Motreanu-Papageorgiou [19], we have:

Proposition 2.5. If \(u_0 \in W^{1,p}(\Omega) \) is a local \(C^1_n(\overline{\Omega}) \) minimizer of \(\varphi_0 \), i.e., there exists \(r_0 > 0 \) such that

\[
\varphi_0(u_0) \leq \varphi_0(u_0 + h) \quad \text{for all } h \in C_n^1(\overline{\Omega}), \|h\|_{C_n^1(\overline{\Omega})} \leq r_0,
\]

then \(u_0 \in C_n^{1,\beta}(\overline{\Omega}) \) for some \(\beta \in (0,1) \) and it is a local \(W^{1,p}(\Omega) \)-minimizer of \(\varphi_0 \), i.e., there exists \(r_1 > 0 \) such that

\[
\varphi_0(u_0) \leq \varphi_0(u_0 + h) \quad \text{for all } h \in W^{1,p}(\Omega), \|h\| \leq r_1.
\]

Remark 2.6. In [19] \(\eta = 0 \) (see \(H(a)(ii), (iii) \)). However, a careful reading of their proof, reveals that it is not affected by assuming the more general hypotheses with \(\eta \geq 0 \). Moreover, in [19] \(a \) is \(z \)-dependent. We could have done the same thing here assuming that \(a \in C(\overline{\Omega} \times \mathbb{R}^N, \mathbb{R}^N) \cap C^1(\overline{\Omega} \times (\mathbb{R}^N \setminus \{0\}), \mathbb{R}^N) \) and that the other hypotheses hold uniformly for all \(z \in \overline{\Omega} \).

For simplicity in the presentation, we have decided to work with an autonomous \(a(\cdot) \).

The following simple lemma, we can be found in Aizicovici-Papageorgiou-Staicu [3] (see Lemma 2).

Lemma 2.7. If \(\eta \in L^\infty(\Omega) \), \(\eta(z) \leq 0 \) a.e. on \(\Omega \), \(\eta \neq 0 \), then there exists \(\xi_0 > 0 \) such that

\[
\frac{c_0}{p(p-1)} \|Du\|_p^p - \int_\Omega \eta |u|^p dz \geq \xi_0 \|u\|_p^p \quad \text{for all } u \in W^{1,p}(\Omega).
\]

The hypotheses on the reaction \(f(z,x) \), are the following:

H(f): \(f : \Omega \times \mathbb{R} \rightarrow \mathbb{R} \) is a Caratheodory function such that \(f(z,0) = 0 \) for a.a. \(z \in \overline{\Omega} \) and

(i) \(|f(z,x)| \leq a(z) + c|x|^{p-1} \) for a.a. \(z \in \Omega \), all \(x \in \mathbb{R} \), with \(a \in L^\infty(\Omega)_+ \), \(c > 0 \);

(ii) there exists a function \(\eta \in L^\infty(\Omega) \), \(\eta(z) \leq 0 \) a.e. in \(\Omega \), \(\eta \neq 0 \) such that

\[
\limsup_{x \rightarrow \pm \infty} \frac{pF(z,x)}{|x|^p} \leq \eta(z)
\]

uniformly for a.a. \(z \in \Omega \),

where \(F(z,x) = \int_0^x f(z,s)ds \);

(iii) there exist \(q \in (1,p) \) and \(\delta_0 > 0 \) such that

\[
qF(z,x) \geq f(z,x)x > 0 \quad \text{for a.a. } z \in \Omega, \text{ all } 0 < |x| \leq \delta_0,
\]

\[
\text{essinf}_{\Omega} F(\cdot, \pm \delta_0) > 0
\]
and
\[f(z, x)x \geq c_4|x|^p - c_5|x|^p \] for a.a. \(z \in \Omega \), all \(x \in \mathbb{R} \) with \(c_4, c_5 > 0 \);

(iv) for every \(\rho > 0 \) there exists \(\xi_{\rho} > 0 \) such that
\[f(z, x)x + \xi_{\rho}|x|^p \geq 0 \] for a.a. \(z \in \Omega \), all \(|x| \leq \rho\).

Example 2.8. The following functions satisfy hypotheses \(H(f) \):
\[f_1(x) = |x|^{q-2}x - |x|^{p-2}x \quad \text{with} \quad 1 < q < p < \infty, \]
\[f_2(x) = \begin{cases} x - 2|x|^{r-2}x & \text{if} \quad |x| \leq 1 \\ -|x|^{p-2}x & \text{if} \quad |x| > 1 \end{cases} \quad \text{with} \quad 1 < r < \infty, 2 < p. \]

As before, let \(X \) be a Banach space and \(\phi \in C^1(X), C \in \mathbb{R} \). We introduce the following sets:
\[\phi^c = \{ x \in X : \phi(x) \leq c \}, \quad K_\phi = \{ x \in X : \phi'(x) = 0 \}, \]
\[K_\phi^c = \{ x \in K_\phi : \phi(x) = c \}. \]

Let \((Y_1, Y_2)\) be a topological pair such that \(Y_2 \subseteq Y_1 \subseteq X \). For every integer \(k \geq 0 \), by \(H_k(Y_1, Y_2) \) we denote the \(k \)th relative singular homology group for the pair \((Y_1, Y_2)\) with integer coefficients. The critical groups of \(\phi \) at an isolated critical point \(x_0 \in X \) of \(\phi \) with \(\phi(x_0) = c \) (i.e., \(x_0 \in K_\phi^c \)) are defined by
\[C_k(\phi, x_0) = H_k(\phi^c \cap U, \phi^c \cap U \setminus \{x_0\}) \quad \text{for all} \quad k \geq 0, \]
where \(U \) is a neighborhood of \(x_0 \) such that \(K_\phi \cap \phi^c \cap U = \{x_0\} \). The excision property of singular homology implies that this definition is independent of the particular choice of the neighborhood \(U \).

Suppose that \(\phi \in C^1(X) \) satisfies the \(C \)-condition and that \(\inf \phi(K_\phi) > -\infty \). Let \(c < \inf \phi(K_\phi) \). The critical groups of \(\phi \) at infinity are defined by
\[C_k(\phi, \infty) = H_k(X, \phi^c) \quad \text{for all} \quad k \geq 0. \]

The second deformation theorem (see Gasinski-Papageorgiou [10] (p.628)) implies that this definition is independent of the particular choice of the level \(c < \inf \phi(K_\phi) \).

Finally we mention that throughout this work, by \(\| \cdot \| \) we will denote the norm of the Sobolev space. Already by \(\| \cdot \| \) we have denoted also the norm of \(\mathbb{R}^N \). However, no confusion is possible, since it always be clear from the context which norm is used. For every \(x \in \mathbb{R} \), \(x^+ = \max\{x, 0\}, x^- = \max\{-x, 0\} \). If \(u \in W^{1,p}(\Omega) \), then \(u^\pm(z) = u(z)^\pm \) for all \(z \in \Omega \). We know that \(u^\pm \in W^{1,p}(\Omega) \) and \(u = u^+ - u^- \), \(|u| = u^+ + u^- \). By \(| \cdot |_N \) we denote the Lebesgue measure on \(\mathbb{R}^N \). Also, if \(h : \Omega \times \mathbb{R} \to \mathbb{R} \) is measurable, then \(N_h(u)(\cdot) = h(\cdot, u(\cdot)) \) for all \(u \in W^{1,p}(\Omega) \).
3. Constant sign solutions

In this section, first we establish the existence of at least two nontrivial constant sign smooth solutions (one positive and the other negative). Then we show that in fact we have “extremal” constant sign solutions, i.e., there exists a smallest nontrivial positive solution and a biggest nontrivial negative solution.

Proposition 3.1. If hypotheses \(H(a) \) and \(H(f) \) hold, then problem (1.1) has at least two nontrivial constant sign smooth solutions

\[
\begin{align*}
u_0 &\in \text{int} C_+ \quad \text{and} \quad v_0 \in -\text{int} C_+.
\end{align*}
\]

Proof. We introduce the following truncations-perturbations of \(f(z, \cdot) \):

\[
(3.1) \quad \hat{f}_+(z, x) = \begin{cases}
0 & \text{if } x \leq 0
\end{cases} f(z, x) + x^{p-1} & \text{if } x > 0
\]

and

\[
(3.1) \quad \hat{f}_-(z, x) = \begin{cases}
f(z, x) + |x|^{p-2}x & \text{if } x < 0
0 & \text{if } x \geq 0.
\end{cases}
\]

Both are Caratheodory functions. We set \(\hat{F}_\pm(z, x) = \int_0^x \hat{f}_\pm(z, s)ds \) and introduce the \(C^1 \)-functionals \(\phi_\pm : W^{1,p}(\Omega) \rightarrow \mathbb{R} \) defined by

\[
\phi_\pm(u) = \int_\Omega G(Du(z))dz + \frac{1}{p} \| u \|_p^p - \int_\Omega F_\pm(z, u(z))dz \quad \text{for all } u \in W^{1,p}(\Omega).
\]

By virtue of hypotheses \(H(f)(i), (ii) \), given \(\epsilon > 0 \), we can find \(c_\epsilon > 0 \) such that

\[
(3.2) \quad F(z, x) \leq \frac{1}{p} (\eta(z) + \epsilon)x^p + c_\epsilon \quad \text{for a.a. } z \in \Omega, \text{ all } x \geq 0.
\]

Then for all \(u \in W^{1,p}(\Omega) \), we have

\[
(3.3) \quad \phi_\pm(u) = \int_\Omega G(Du(z))dz + \frac{1}{p} \| u \|_p^p - \int_\Omega F_\pm(z, u(z))dz \\
\geq \frac{c_0}{p(p-1)} \| Du \|_p^p + \frac{1}{p} \| u \|_p^p - \frac{1}{p} \int_\Omega \eta(u^+)^p dz - \frac{\epsilon}{p} \| u^+ \|_p^p - c_\epsilon |\Omega|_N \\
\text{(see (2.3) and (3.2))} \\
\geq \frac{\xi_0 - \epsilon}{p} \| u^+ \|_p^p + c_6 \| u^- \|_p^p - c_\epsilon |\Omega|_N \\
\text{for some } c_6 > 0 \text{ (see Lemma 2.7)}.
\]

Choosing \(\epsilon \in (0, \xi_0) \), from (3.3) we infer that \(\phi_\pm \) is coercive. Also, exploiting the compact embedding of \(W^{1,p}(\Omega) \) into \(L^p(\Omega) \), we can easily check that \(\phi_\pm \) is sequentially weakly lower semicontinuous. Hence, by the Weierstrass theorem.
we can find \(u_0 \in W^{1,p}(\Omega) \) such that
\[
\hat{\phi}_+(u_0) = \inf \{ \hat{\phi}_+(u) : u \in W^{1,p}(\Omega) \} = \hat{m}_+.
\]
By virtue of hypotheses \(H(f) \)(iii), \(F(z,x) > 0 \) for a.a. \(z \in \Omega \), all \(0 < |x| \leq \delta_0 \). So, let \(\xi \in (0,\delta_0] \). Then
\[
\hat{\phi}_+(\xi) = -\int_{\Omega} F(z,\xi) dz < 0 \quad \text{(see (3.1))},
\]
hence \(\hat{\phi}_+(u_0) = \hat{m}_+ < 0 = \hat{\phi}_+(0) \), i.e., \(u_0 \neq 0 \) (see (3.4)).

From (3.4), we have
\[
(3.5) \quad \hat{\phi}_+'(u_0) = 0 \Rightarrow V(u_0) + |u_0|^{p-2}u_0 = N_f(u_0).
\]
On (3.5) we act with \(-u_0^- \in W^{1,p}(\Omega) \). Then
\[
\frac{c_0}{p(p-1)}\|Du_0^-\|^p_p + \|u_0^-\|^p_p \leq 0 \quad \text{(see (2.3) and (3.1))},
\]
hence \(u_0 \geq 0 \), \(u_0 \neq 0 \). So, (3.5) becomes \(V(u_0) = N_f(u_0) \), hence
\[
(3.6) \quad -\text{div} \ a(Du(z)) = f(z,u(z)) \quad \text{a.e. in } \Omega, \quad \frac{\partial u_0}{\partial n} = 0 \quad \text{on } \partial \Omega
\]
(see Motreanu-Papageorgiou [18]).
\[
-\text{div} \ a(Du_0(z)) + \zeta f(u_0(z))^{p-1} = f(z,u(z)) + \zeta f(u_0(z))^{p-1} \geq 0 \quad \text{a.e. in } \Omega,
\]
hence \(\text{div} \ a(Du_0(z)) \leq \zeta f(u_0(z))^{p-1} \) a.e. in \(\Omega \), and so \(u_0 \in \text{int} C_+ \) (see Montenegro [17] (Theorem 6) and Pucci-Serrin [22], (p.120)).

Similarly, working with the \(C^1 \)-functional \(\hat{\phi}_- \), we produce another nontrivial constant sign smooth solution \(v_0 \in -\text{int} C_+ \). \(\square \)

Next, we will produce extremal nontrivial constant sign smooth solutions (i.e., the smallest nontrivial positive solution and the biggest nontrivial negative solution). To this end, we consider the following nonlinear Neumann problem:
\[
(3.7) \quad -\text{div} \ a(Du(z)) = f_0(z,u(z)) \quad \text{in } \Omega, \quad \frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega.
\]
We need to strengthen a little the hypotheses on \(a(\cdot) \):
\[
H(a)' : \quad a(y) = a_0(\|y\|)y \quad y \in \mathbb{R}^N \quad \text{satisfies hypotheses } H(a) \quad \text{and}
\]
\[
(iv) \quad \text{if } G_0(t) = \int_0^t a_0(s) s \, ds, \ t > 0, \ \text{then } t \to G_0(t^{1/q}) \text{ is convex with } q \in (1,p) \quad \text{as in } H(f)(iii).
\]
Example 3.2. The maps $a_1(y) = \|y\|^{p-2}y$, $1 < p < \infty$, $a_2(y) = \|y\|^{p-2}y + \mu \|y\|^{-\tau}y$, $2 \leq \tau < p < \infty$ and $a_3(y) = (1 + \|y\|^2)^{(p-2)/2}y$, $2 \leq p < \infty$ all satisfy hypotheses $H(a)'.$

The hypotheses on the reaction $f_0(z, x)$ are the following:

H_0: $f_0 : \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Caratheodory function such that $f(z, 0) = 0$ for a.a. $z \in \Omega$ and

(i) $|f_0(z, x)| \leq a(z) + c|x|^{r-1}$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $a \in L^\infty(\Omega)_+, c > 0$, $p \leq r < p^*$;

(ii) for a.a. $z \in \Omega$, $x \to f_0(z, x)/|x|^{q-1}$ is strictly decreasing on $(0, +\infty)$, $x \to f_0(z, x)/(|x|^{q-2}x)$ is strictly increasing on $(-\infty, 0)$ and $f_0(z, x)x \geq -\hat{c}|x|^p$ for all $x \in \mathbb{R}$, with $\hat{c} > 0$.

Proposition 3.3. If hypotheses $H(a)'$ and H_0 hold, then problem (3.7) has at most one nontrivial positive solution $u_* \in \text{int}C_+$ and at most one nontrivial negative solution $v_* \in -\text{int}C_+$.

Proof. Let $\sigma_+ : L^1(\Omega) \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ be the integral functional defined by

$$\sigma_+(u) = \int_\Omega G(Du^{1/q})dz \quad \text{if} \quad u \geq 0, u^{1/q} \in W^{1,p}(\Omega).$$

Then, σ_+ is convex (see Diaz-Saa [7]), lower semicontinuous and it is not identically $+\infty$.

Let u be a notrivial positive of (3.7). Then from hypothesis H_0(ii) and the nonlinear strong maximum principle (see Montenegro [17] (Theorem 6) and Pucci-Serrin [22] (p.120)), we have $u \in \text{int}C_+$. Note that $u^t \geq 0$ and $(u^q)^{1/q} = u^{1/p}(\Omega)$. So, u^q is in the effective domain of σ_+. Let $y \in C^1(\overline{\Omega})$ and $t > 0$ small. Then $u + ty \in C_+$ and it is follows that the Gateaux derivative of σ_+ at u^q in the direction y exists. Using the chain rule, we have

$$\sigma_+'(u^q)y = \left\{ \begin{array}{ll} \frac{1}{q} \int_\Omega \frac{-\text{div } a(Du)}{u^{q-1}} \cdot y \, dz, & \text{if } u \geq 0, u^{1/q} \in W^{1,p}(\Omega) \setminus \{0\} \\
+\infty & \text{otherwise} \end{array} \right.$$

Let v be another nontrivial positive solution of (3.7). Again we have $v \in \text{int}C_+$ and of course (3.8) holds with u replaced by v. Since $\sigma_+'(\cdot)$ is convex, its Gateaux derivative is monotone and so we have

$$\int_\Omega \left(\frac{-\text{div } a(Du)}{u^{q-1}} + \frac{\text{div } a(Dv)}{v^{q-1}} \right) (u^q - v^q)dz \geq 0.$$

$$\Rightarrow \int_\Omega \left(\frac{f_0(z, u)}{u^{q-1}} - \frac{f_0(z, v)}{v^{q-1}} \right) (u^q - v^q)dz \geq 0.$$
Hypothesis H_0 (ii) and (3.9) imply that $u = v$. This proves the uniqueness of the nontrivial positive solution (if it exists). Similarly, by considering

$$
\sigma_-(u) = \begin{cases}
\int_{\Omega} G(D|u|^{1/q}) \, dz & \text{if } u \leq 0, \ |u|^{1/q} \in W^{1,p}(\Omega) \\
+\infty & \text{otherwise}
\end{cases}
$$

and reasoning as above, we establish the uniqueness of the nontrivial negative solution (if it exists).

We consider the following auxiliary Neumann problem:

\begin{align*}
-\text{div} \ a(Du(z)) &= c_4 |u(z)|^{q-2} u(z) - c_5 |u(z)|^{p-2} u(z) \quad \text{in } \Omega \\
\frac{\partial u}{\partial n} &= 0 \quad \text{on } \partial \Omega.
\end{align*}

(3.10)

Proposition 3.4. If hypotheses $H(a)$ hold, then problem (3.10) has a unique nontrivial positive solution $\tilde{u} \in \text{int} C_+$ and by virtue of the oddness of (3.10) $-\tilde{u} \in -\text{int} C_+$ is the unique nontrivial negative solution of (3.10).

Proof. We consider the C^1-functional $\psi_+ : W^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\psi_+(u) = \int_{\Omega} G(Du(z)) \, dz + \frac{1}{p} \|u\|_p^p - \frac{c_4}{p} \|u^+\|_q^q + \frac{c_5}{p} \|u^+\|_p^p \quad \text{for all } u \in W^{1,p}(\Omega).$$

We have

$$\psi_+(u) \geq \frac{c_0}{p(p-1)} \|Du\|_p^p + \frac{1}{p} \|u^-\|_p^p - \frac{c_4}{q} \|u^-\|_q^q + \frac{c_5}{q} \|u^-\|_p^q \quad \text{for some } c_7 > 0.$$

Since $q < p$, it follows that ψ_+ is coercive. Also ψ_+ is sequentially weakly lower semicontinuous. So, we can find $\bar{u} \in W^{1,p}(\Omega)$ such that

$$\psi_+(\bar{u}) = \inf \{\psi_+(u) : u \in W^{1,p}(\Omega)\} = \bar{m}_+.$$

Since $q < p$, for $\xi \in (0, 1)$ small we have $\psi_+(\xi) < 0$ and so

$$\psi_+(\bar{u}) = \bar{m}_+ < 0 = \psi_+(0), \quad \text{i.e. } \bar{u} \neq 0.$$

From (3.11) we have

$$\psi'_+(\bar{u}) = 0,$$

$$\Rightarrow V(\bar{u}) = c_4 (\bar{u}^+)^{q-1} - c_5 (\bar{u}^+)^{p-1}.$$
On (3.12) we act with $-\bar{u}^- \in W^{1,p}(\Omega)$ and obtain $\bar{u} \geq 0$, $\bar{u} \neq 0$. Hence (3.12) becomes $V(\bar{u}) = c_4 \bar{u}^{q-1} - c_5 \bar{u}^{p-1}$, hence

$$-\text{div} a(D\bar{u}(z)) = c_4 \bar{u}(z)^{q-1} - c_5 \bar{u}(z)^{p-1} \quad \text{a.e. in } \Omega, \quad \frac{\partial \bar{u}}{\partial n} = 0 \quad \text{on } \partial \Omega,$$

(see Motreanu-Papageorgiou [18]), so

$$\text{div} a(D\bar{u}(z)) \leq c_5 \bar{u}(z)^{p-1} \quad \text{a.e. in } \Omega,$$

which implies $\bar{u} \in \text{int} C_+$ (see Montenegro [17] (Theorem 6) and Pucci-Serrin [22] (p.120)).

The uniqueness of the nontrivial positive solution $\bar{u} \in \text{int} C_+$ follows from Proposition 3.4.

The oddness of (3.10) implies that $-\bar{u} \in \text{int} C_-$ is the unique nontrivial negative solution of (3.7). \square

In what follows, by \mathcal{L}_+ (resp. \mathcal{L}_-) we denote the set of nontrivial positive (resp. negative) solutions of (1.1). From Proposition 3.1 and its proof, we have

$$\mathcal{L}_+, \mathcal{L}_- \neq \emptyset \quad \text{and} \quad \mathcal{L}_+ \subseteq \text{int} C_+, \quad \mathcal{L}_- \subseteq -\text{int} C_+.$$

Proposition 3.5. If hypotheses $H(a)'$ and $H(f)$ hold and $\bar{v} \in \mathcal{L}_+$ (resp. $\bar{v} \in \mathcal{L}_-$), then $\bar{u} \leq \bar{v}$ (resp. $\bar{v} \leq -\bar{u}$).

Proof. Let $\gamma_+ : \Omega \times \mathbb{R} \to \mathbb{R}$ be the Caratheodory function defined by

$$\gamma_+(z, x) = \begin{cases} 0 & \text{if } x < 0 \\ c_4 x^{q-1} - (c_5 - 1)x^{p-1} & \text{if } 0 \leq x \leq \bar{u}(z) \\ c_4 \bar{u}(z)^{q-1} - (c_5 - 1)\bar{u}(z)^{p-1} & \text{if } \bar{u}(z) < x. \end{cases}$$

Let $\Gamma_+(z, x) = \int_0^x \gamma_+(z, s)ds$ and consider the C^1-functional $\xi_+ : W^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\xi_+(u) = \int_{\Omega} G(Du(z))dz + \frac{1}{p} \|u\|^p_p - \int_{\Omega} \Gamma_+(z, u(z))dz \quad \text{for all } u \in W^{1,p}(\Omega).$$

From (3.13) it is clear that ξ is coercive. Also, it is sequentially weakly lower semicontinuous. Therefore by the Weierstrass theorem, we can find $\hat{y} \in W^{1,p}(\Omega)$ such that

$$\xi_+(\hat{y}) = \inf\{\xi_+(u) : u \in W^{1,p}(\Omega)\} = \hat{m}_+. \tag{3.14}$$

As before, exploiting the fact that $q < p$, we show that

$$\xi_+(\hat{y}) = \hat{m}_+ < 0 = \xi_+(0), \quad \text{i.e. } \hat{y} \neq 0.$$
From (3.14) we have \(\xi_+^{'}(\hat{y}) = 0 \), hence
\[
(3.15) \quad V(\hat{y}) + |\hat{y}|^{p-2}\hat{y} = N_{v+}(\hat{y}).
\]
On (3.15) we act with \(-\hat{y}^- \in W^{1,p}(\Omega)\). Using (2.3) and (3.13) we obtain \(\hat{y} \geq 0 \), \(\hat{y} \neq 0 \). Next, on (3.15) we act with \((\hat{y} - \tilde{u})^+ \in W^{1,p}(\Omega)\). Then
\[
\langle V(\hat{y}), (\hat{y} - \tilde{u})^+ \rangle + \int_\Omega \hat{y}^{p-1}(\hat{y} - \tilde{u})^+dz
\]
\[
= \int_\Omega \gamma_+(z, \hat{y})(\hat{y} - \tilde{u})^+dz
\]
\[
= \int_\Omega (c_4 \tilde{u}^{q-1} - c_5 \hat{y}^{p-1})(\hat{y} - \tilde{u})^+dz + \int_\Omega \tilde{u}^{p-1}(\hat{y} - \tilde{u})^+dz \tag{see (3.13)}
\]
\[
= \langle V(\tilde{u}), (\hat{y} - \tilde{u})^+ \rangle + \int_\Omega \tilde{u}^{p-1}(\hat{y} - \tilde{u})^+dz,
\]
hence
\[
\int_{\{\hat{y} > \tilde{u}\}} (a(D\hat{y}) - a(D\tilde{u})), D\hat{y} - D\tilde{u})_{R}dz
\]
\[
+ \int_{\{\hat{y} > \tilde{u}\}} (\hat{y}^{p-1} - \tilde{u}^{p-1})(\hat{y} - \tilde{u})dz = 0,
\]
and so \(|\{\hat{y} > \tilde{u}\}|_N = 0 \) i.e., \(\hat{y} \leq \tilde{u} \).

So, we have proved that
\[
\hat{y} \in [0, \tilde{u}] = \{u \in W^{1,p}(\Omega) : 0 \leq u(z) \leq \tilde{u}(z) \text{ a.e. in } \Omega\}.
\]
Hence, (3.15) becomes \(V(\hat{y}) = c_4 \hat{y}^{q-1} - c_5 \hat{y}^{p-1} \) (see (3.13)), hence \(\hat{y} = \tilde{u} \in intC_+ \) (see Proposition 3.4), and so \(\tilde{u} \leq \hat{u} \).

Similarly, if \(\tilde{v} \in \mathcal{L}_- \subseteq -intC_+ \), then as above we show that \(\tilde{v} \leq -\tilde{u} \). \(\square \)

Using Proposition 3.5, we show the existence of extremal nontrivial constant sign solutions of (1.1).

Proposition 3.6. If hypotheses \(H(a)' \) and \(H(f) \) hold, then problem (1.1) has a smallest nontrivial positive solution \(u_+ \in intC_+ \) and a biggest nontrivial negative solution \(u_- \in -intC_+ \).

Proof. Let \(C \subseteq \mathcal{L}_+ \) be a chain (i.e., a totally ordered subset of \(\mathcal{L}_+ \)). From Dunford-Schwartz [8] (p.336), we know that we can find \(\{u_n\}_{n \geq 1} \subseteq C \) such that
\[
inf C = \inf_{n \geq 1} u_n.
\]
Since \(C \) is totally ordered, by virtue of Lemma 1.1.5 (p.15) of Heikkila-Lakshmikantham [11], we may assume that \(\{u_n\}_{n \geq 1} \) is decreasing. We have
\(V(u_n) = N_f(u_n), \ \bar{u} \leq u_n \leq u_1, \) for all \(n \geq 1 \) (see Proposition 3.5),
\[\Rightarrow \{u_n\}_{n \geq 1} \subseteq W^{1,p} (\Omega) \] is bounded.

We may assume that
\[\text{(3.17)} \quad u_n \rightharpoonup u \ \text{in} \ W^{1,p} (\Omega) \quad \text{and} \quad u_n \to u \ \text{in} \ L^p (\Omega) \ \text{as} \ n \to \infty. \]

On (3.16) we act with \(u_n - u \), pass to the limit as \(n \to \infty \) and use (3.17). Then
\[\lim_{n \to \infty} \langle V(u_n), u_n - u \rangle = 0, \] hence
\[\text{(3.18)} \quad u_n \to u \ \text{in} \ W^{1,p} (\Omega) \ \text{(see Proposition 2.4)}. \]

So, if in (3.16) we pass to the limit as \(n \to \infty \), then
\[V(u) = N_f(u), \ \bar{u} \leq u, \]
hence \(u \in \text{int} C_+ \) solves (1.1) (nonlinear regularity), i.e., \(u \in L_+ \).

Since \(u = \inf C \) and \(C \) was an arbitrary chain in \(L_+ \), from the Kuratowski-Zorn lemma, we infer that \(L_+ \) has a minimal element. Since \(a(\cdot) \) is monotone, as in Aizicovici-Papageorgiou-Staicu [2] (Lemma 1), we show that \(L_+ \) is downward directed, i.e., if \(u, u' \in L_+ \), then we can find \(y \in L_+ \) such that \(y \leq \min\{u, u'\} \). So, if \(u \in L_+ \), then we can find \(y \in L_+ \) such that \(y \leq \min\{u_+, u\} \) and so by the minimality of \(u_+ \), we infer that \(y = u_+ \leq u \), hence \(u_+ \) is the smallest nontrivial positive solution of (1.1).

Similarly, since \(L_- \) is upward directed, i.e., if \(v, v' \in L_- \), then we can find \(y \in L_- \) such that \(\max\{v, v'\} \leq y \) (see [2], Lemma 2), as above using the Kuratowski-Zorn lemma, we can find \(v_- \in \text{int} C_+ \) the biggest negative solution of (1.1).

4. Nodal solutions

In this section, using the extremal nontrivial constant sign solutions of (1.1) produced in Proposition 3.6, we will generate a nodal (sign changing) solution.

Proposition 4.1. If hypotheses \(H(a)' \) and \(H(f) \) hold, then problem (1.1) has a nodal solution \(y_0 \in C^1 (\mathbb{R}) \).

Proof. Let \(u_+ \in \text{int} C_+ \) and \(v_- \in \text{int} C_+ \) be the two extremal nontrivial constant sign solutions of (1.1) produced in Proposition 3.6. We introduce the following truncation-perturbation of the reaction term
\[h(z, x) = \begin{cases} f(z, v_-(z)) + |v_-(z)|^{p-2} v_-(z) & \text{if} \ x < v_-(z) \\ f(z, x) + x^{p-1} & \text{if} \ v_-(z) \leq x \leq u_+(z) \\ f(z, u_+(z)) + u_+(z)^{p-1} & \text{if} \ u_+(z) < x. \end{cases} \]
This is a Caratheodory function. We set \(H(z, x) = \int_0^x h(z, s) ds \) and consider the \(C^1 \)-functional \(\psi : W^{1,p}(\Omega) \to \mathbb{R} \) defined by

\[
\psi(u) = \int_{\Omega} G(Du(z)) dz + \frac{1}{p} \|u\|_p^p - \int_{\Omega} H(z, u(z)) dz \quad \text{for all } u \in W^{1,p}(\Omega).
\]

Also, let \(h_\pm(z, x) = h(z, \pm x^\pm), \ H_\pm(z, x) = \int_0^x h_\pm(z, s) ds \) and consider the \(C^1 \)-functionals \(\psi_\pm : W^{1,p}(\Omega) \to \mathbb{R} \) defined by

\[
\psi_\pm(u) = \int_{\Omega} G(Du(z)) dz + \frac{1}{p} \|u\|_p^p - \int_{\Omega} H_\pm(z, u(z)) dz \quad \text{for all } u \in W^{1,p}(\Omega).
\]

As before (see the proof of Proposition 3.5), we can show that

\[
K_\psi \subseteq [v_-, u_+], \quad K_{\psi_+} \subseteq [0, u_+], \quad K_{\psi_-} \subseteq [v_-, 0], \quad \text{(see (4.1)).}
\]

By virtue of the extremality of \(u_+ \) and \(v_- \) (see Proposition 3.6), we have

(4.2) \(K_\psi \subseteq [v_-, u_+], \quad K_{\psi_+} = [0, u_+], \quad K_{\psi_-} = [v_-, 0]. \)

Claim: \(u_+ \) and \(v_- \) are local minimizers of \(\psi \).

Clearly \(\psi_+ \) is coercive (see (4.1)). Also, it is sequentially weakly lower semicontinuous. So, we can find \(\tilde{u} \in W^{1,p}(\Omega) \) such that

\[
\psi_+(\tilde{u}) = \inf[\psi_+(u) : u \in W^{1,p}(\Omega)] < 0 = \psi_+(0) \quad \text{(see } H(f)(iii)),
\]

hence \(\tilde{u} = u_+ \) (see (4.2)).

Note that \(\psi|_{C_+} = \psi_+|_{C_+} \) and recall that \(u_+ \in \text{int} C_+ \). So, we infer that \(u_+ \) is a local \(C^1_0(\Omega) \)-minimizer of \(\psi \), hence by Proposition 2.5 \(u_+ \) is also a local \(W^{1,p}(\Omega) \)-minimizer of \(\psi \). Similarly for \(v_- \in -\text{int} C_+ \). This proves the Claim.

We may assume that \(\psi(v_-) \leq \psi(u_+) \) and by virtue of the Claim, as in Aizicovici-Papageorgiou-Staicu [1] (see the proof of Proposition 29), we can find \(\rho \in (0, 1) \) small such that \(\|u_+ - v_-\| > \rho \) and

(4.3) \(\psi(v_-) \leq \psi(u_+) < \inf[\psi(u) : \|u - u_+\| = \rho] = \eta_\rho. \)

Evidently \(\psi \) is coercive (see (4.1)). So, it satisfies the C-condition. This fact and (4.3) permit the use of Theorem 2.1 (the mountain pass theorem). Hence we can find \(y_0 \in W^{1,p}(\Omega) \) such that

(4.4) \(y_0 \in K_\psi \subseteq [v_-, u_+] \) (see (4.2)) and \(\eta_\rho \leq \psi(y_0) \) (see (4.3)).

From (4.1), (4.3) and (4.4) we infer that \(y_0 \) solves (1.1), \(y_0 \notin \{u_+, v_-\} \) and \(y_0 \in C^1_0(\Omega) \) (nonlinear regularity, see [6], [14]). Since \(y_0 \) is a critical point of \(\psi \) of mountain pass type, we have

(4.5) \(C_1(\psi, y_0) \neq 0 \) \quad \text{(see Chang [5] (p. 89))}.

On the other hand, hypothesis $H(f)$(iii) implies that
\[(4.6) \quad C_k(\psi, 0) \neq 0 \quad \text{for all } k \geq 0\]
(see Jiu-Su [12] (Proposition 2.1) and Mugnai [20]). Comparing (4.5) and (4.6), we conclude that $y_0 \neq 0$. Since $y_0 \in K_{\psi} \setminus \{0, u_+, v_-\} \subseteq [u_-, u_+] \setminus \{0, u_+, v_-\}$ (see (4.2)) and by virtue of the extremality of u_+, v_- (see Proposition 3.6), we conclude that $y_0 \in C^1_{\alpha}(\Omega)$ (nonlinear regularity) is nodal.

Therefore, we can state the following multiplicity theorem for problem (1.1).

Theorem 4.2. If hypotheses $H(a)$ and $H(f)$ hold, then problem (1.1) has at least three nontrivial smooth solutions
\[u_0 \in \text{int}C_+, \quad v_0 \in -\text{int}C_+ \quad \text{and} \quad y_0 \in C^1_{\alpha}(\Omega) \text{ nodal};\]
moreover, problem (1.1) has extremal nontrivial constant sign solutions.

References

[1] Aizicovici, S., Papageorgiou, N. S. and Staicu, V., *Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints*, Mem. Amer. Math. Soc., 196, no. 915, 2008.

[2] Aizicovici, S., Papageorgiou, N. S. and Staicu, V., Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl., **188** (2009), 679–719.

[3] Aizicovici, S., Papageorgiou, N. S. and Staicu, V., The spectrum and an index formula for the Neumann p-Laplacian and multiple solutions problems with crossing nonlinearities, Discrete Contin. Dyn. Syst., **25** (2009), 431–456.

[4] Attouch, H., Buttazzo, G. and Michaille, G., *Variational Analysis in Sobolev and BV Spaces*, MPS/SIAM Series in Optimization, 6, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2006.

[5] Chang, K.-C., *Infinite Dimensional Morse Theory and Multiple Solution Problems*, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston, Inc., Boston, MA, 1993.

[6] DiBenedetto, E., $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., **7** (1983), 827–850.

[7] Diaz, J. I. and Saa, J. E., Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires., C.R. Acad. Sci. Paris Sér. I Math., **305** (1987), 521–524.

[8] Dunford, N. and Schwartz, J., *Linear Operators I*, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958.

[9] Gasinski, L. and Papageorgiou, N. S., *Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems*, Series in Mathematical Analysis and Applications, 8, Chapman & Hall/CRC, Boca Raton, FL, 2005.

[10] Gasinski, L. and Papageorgiou, N. S., *Nonlinear Analysis*, Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006.
[11] Heikkilä, S. and Lakshmikantham, V., *Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations*, Monographs and Textbooks in Pure and Applied Mathematics, 181, Marcel Dekker, Inc., New York, 1994.

[12] Jiu, Q. and Su, J., Existence and multiplicity results for Dirichlet problems with p-Laplacian, *J. Math. Anal. Appl.*, 281 (2003), 587–601.

[13] Kyritsi, S. and Papageorgiou, N. S., Multiple solutions for nonlinear coercive Neumann problems, *Commun. Pure Appl. Anal.*, 8 (2009), 1957–1974.

[14] Lieberman, G., Boundary regularity for solutions of degenerate elliptic equations, *Nonlinear Anal.*, 12 (1988), 1203–1219.

[15] Liu, J. and Liu, S., The existence of multiple solutions to quasilinear elliptic equations, *Bull. London Math. Soc.*, 37 (2005), 592–600.

[16] Liu, S., Multiple solutions for coercive p-Laplacian equations, *J. Math. Anal. Appl.*, 316 (2006), 229–236.

[17] Montenegro, M., Strong maximum principles for supersolutions of quasilinear elliptic equations, *Nonlinear Anal.*, 37 (1999), 431–448.

[18] Motreanu, D. and Papageorgiou, N. S., Existence and multiplicity of solutions for Neumann problems, *J. Differential Equations*, 232 (2007), 1–35.

[19] Motreanu, D. and Papageorgiou, N. S., Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator, *Proc. Amer. Math. Soc.*, 139 (2011), 3527–3535.

[20] Mugnai, D., Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, *NoDEA. Nonlinear Differential Equations Appl.*, 11 (2004), no. 3, 379–391, and a comment on the generalized Ambrosetti-Rabinowitz condition, *NoDEA Nonlinear Differential Equations Appl.*, 19 (2012), 299–301.

[21] Papageorgiou, E. and Papageorgiou, N. S., A multiplicity theorem for problems with the p-Laplacian, *J. Funct. Anal.*, 244 (2007), 63–77.

[22] Pucci, P. and Serrin, J., *The Maximum Principle*, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007.

[23] Tang, C.-L., Multiple solutions of Neumann problem for elliptic equations, *Nonlinear Anal.*, 54 (2003), 637–650.

nuna adreso:
Michael E. Filippakis
Department of Digital Systems
University of Piraeus
80, Karaoli and Dimitriou St.
185 34 Piraeus
Greece
E-mail: mfilip@unipi.gr

Nikolaos S. Papageorgiou
Department of Mathematics
National Technical University
Athens 15780
Greece
E-mail: npapg@math.ntua.gr

(Ricevita la 20-an de februaro, 2012)