The burden of liver disease has increased in the United States in parallel with the obesity epidemic, and some cases are believed to be due to nonalcoholic fatty liver disease (NAFLD) or its more advanced form, nonalcoholic steatohepatitis (NASH) (Cave et al. 2007). Serum alanine aminotransferase (ALT) is the most specific of the routinely used biomarkers for hepatocellular liver injury and disease in clinical medicine (Green and Flamm 2002). Currently, there is no serologic biomarker to confirm the diagnosis of NAFLD, but ALT elevation (above normal laboratory reference ranges) is the most common laboratory manifestation of NAFLD, and ALT elevation unexplained by viral hepatitis, ethanol, or iron overload has been used as a surrogate biomarker for NAFLD in the United States in parallel with the obesity epidemic. We present a cross-sectional cohort study of adults (including both obese and nonobese) without viral hepatitis, hemochromatosis, or alcoholic liver disease from the National Health and Nutrition Examination Survey (NHANES) for 2003–2004. ALT elevation was defined in men as ≥ 37 IU/L (age 18–20 years) and ≥ 48 IU/L (age ≥ 21 years) and in women as ≥ 30 IU/L (age 18–20 years) and ≥ 31 IU/L (age ≥ 21 years). Adjusted odds ratios (ORs) for ALT elevation were determined across exposure quartiles for 17 pollutant subclasses comprising 111 individual pollutants present with at least a 60% detection rate. Adjustments were made for age, race/ethnicity, sex, body mass index, poverty income ratio, and insulin resistance. Individual pollutants from subclasses associated with ALT elevation were subsequently analyzed.

RESULTS: The overall prevalence of ALT elevation was 10.6%. High levels of polychlorinated biphenyls (PCBs) were associated with dose-dependent increased adjusted ORs for ALT elevation. Within these subclasses, increasing whole-blood levels of lead and mercury and increasing lipid-adjusted serum levels of 20 PCBs were individually associated with ALT elevation.

CONCLUSIONS: PCB, lead, and mercury exposures were associated with unexplained ALT elevation, a proxy marker of NAFLD, in NHANES 2003–2004 adult participants.

KEY WORDS: environmental liver disease, hepatotoxicity, lead, mercury, NAFLD, NASH, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, PCBs, polychlorinated biphenyls, TASH. Environ Health Perspect 118:1735–1742 (2010). doi:10.1289/ehp.1002720 [Online 3 September 2010]
NCHS: serum perfluorinated compounds; urinary heavy metals; urinary total arsenic and speciated arsenics; urinary total (elemental plus inorganic) mercury; serum organochlorine pesticides; serum polybrominated diphenyl ethers (PBDEs); urinary polyaromatic hydrocarbons; urinary phthalates; serum polychlorinated dibenzo-\(p\)-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and coplanar polychlorinated biphenyls (PCBs); serum non−dioxin-like PCBs; urinary organophosphate insecticides; urinary perchlorate; urinary environmental phenols; urinary iodine; blood lead, mercury (total and inorganic), and cadmium; serum cotinine; and blood volatile organic compounds [for the full list of chemicals in each subclass, see Supplemental Material, Table 1 (doi:10.1289/ehp.1002720)]. An additional subclass, coplanar PCBs, was constructed by selecting only these chemicals from the broader “PCDDs, PCDFs, and coplanar PCBs” subclass. A second subclass for total PCBs was then created by combining the non−dioxin-like PCBs and coplanar PCBs subclasses.

All ALT and pollutant levels were measured in biologic samples collected on the same day from each individual participant. We evaluated only pollutants with a ≥ 60% detection rate [111 of 196 pollutants; see Supplemental Material, Table 1 (doi:10.1289/ehp.1002720)] to avoid bias in estimation for those pollutants with levels < the lower limit of detection (Lee et al. 2007a, 2007b). Concentrations of organic pollutants measured in serum (non−dioxin-like PCBs; dioxins, furans, coplanar PCBs; PBDEs; organochlorine pesticides) were lipoid adjusted, and concentrations of pollutants measured in urine were adjusted for creatinine [Supplemental Material, Table 1 (doi:10.1289/ehp.1002720)] (Schwartz et al. 2003).

Outcome variables and statistical methods. Serum ALT activity was measured by Collaborative Laboratory Services, LLC (Ottumwa, IA) for NHANES using the Beckman Synchrone LX20 (Beckman Coulter, Brea, CA). Elevated ALT was defined as any ALT above the reference range classified as elevated (men 18–20 years of age, ALT ≥ 37 IU/L; men ≥ 21 years old, ALT ≥ 48 IU/L; women 18–20 years of age, ALT ≥ 30 IU/L; women ≥ 21 years of age, ALT ≥ 31 IU/L). We determined the prevalence of ALT elevation in 4,582 subjects, and we used the chi-square test to determine statistically significant differences (\(p < 0.05 \)) in ALT elevation and pollutant exposures according to sex, age, race/ethnicity, and body mass index (BMI).

Pollutant concentrations were classified according to a common scale that could be aggregated to assess cumulative exposures to multiple pollutants within a subclass. Specifically, we ranked each participant according to their measured concentration of each pollutant and summed the ranks of each one within a given subclass to determine their combined exposure (Lee et al. 2007a, 2007b). Ties were handled by assigning the minimum of the corresponding ranks to each participant, and participants with levels < the lower limit of detection (LLOD) for a pollutant were assigned the LLOD and ranked accordingly. For each pollutant subclass, subjects were stratified into quartiles by their cumulative exposure rank, with the first quartile representing subjects with the lowest levels. We estimated multivariate-adjusted odds ratios (ORs) for unexplained ALT elevation using logistic regression models with the first quartile as the reference group. Models were adjusted for age, race/ethnicity, and poverty income ratio (PIR). We also adjusted for both BMI and homeostasis model assessment of insulin resistance (HOMA-IR), because multiple pollutants have previously been associated with obesity and insulin resistance in NHANES (Lee et al. 2007a, 2007b).

However, fasting glucose and insulin were measured in only a subset of NHANES participants, so only 2,211 subjects could be evaluated in this fashion. Further, although lead, cadmium, and mercury measurements were available for all 2,211 of these observations, other pollutant subclasses were measured only in subsets of this sample (perfluorinated chemicals, 785 subjects; organochlorine pesticides and polybrominated diethyl ethers, 724 subjects; dioxins, furans, coplanar PCBs, and non−dioxin-like PCBs, 702 subjects; see Figure 1).

Associations with individual chemicals were estimated if trend tests for the association between the entire subclass and elevated ALT were statistically significant. Subjects with detectable levels of individual pollutants were ranked, placed into quartiles, and compared with a reference group consisting of individuals with levels < LLOD or individuals in the first quartile of exposure (if none of the subjects had levels < LLOD, or if none of
Older age and non-Hispanic black race, but not BMI or sex, were significantly associated with total PCB levels in the highest quartile (Table 1). Age had the most pronounced association: 71.7% of participants age ≥ 70 years had PCB levels in the highest quartile, compared with only 2.2% of subjects < 30 years of age (p < 0.001). Non-Hispanic blacks (29.2%) were more likely to be in the highest quartile of total cumulative PCB exposure than were non-Hispanic whites (21.7%) and Hispanics (8.2%; p = 0.002).

Pollutant subclass results. We estimated significant positive trends for adjusted ORs for 3 of the 17 NHANES pollutant subclasses investigated (Table 2). Specifically, the adjusted ORs and 95% confidence intervals (CIs) for the highest versus lowest quartiles of exposure were for serum dioxins, furans, and coplanar PCBs. 5.8 (95% CI, 1.1–30.2; p < 0.024); for serum non–dioxin-like PCBs, 4.5 (95% CI, 2.0–10.0; p < 0.001); and for blood lead, mercury, and cadmium, 1.6 (95% CI, 1.1–2.3; p = 0.015). After adjusting for multiple comparisons, the trend test for non–dioxin-like PCBs remained statistically significant (p_trend-adj < 0.001). In general, results were comparable when estimated without adjustment for BMI or HOMA-IR [see Supplemental Material, Tables 3 and 4, respectively (doi:10.1289/ehp.1002720)], although trend tests for associations with creatinine-adjusted urine polyaromatic hydrocarbons and serum lipid-adjusted PBDEs indicated significant positive and negative trends in associations with ALT based on models without adjustment for HOMA-IR.

Results

Demographic information. The full study sample included slightly more women than men (Table 1). The mean age (and corresponding SD) was 47.2 ± 21.2 years (range, 18–85 years). Non-Hispanic whites accounted for 72.3% of the population. Body weights, as defined by National Institutes of Health (1998) guidelines, were fairly evenly distributed between normal weight, overweight, and obese, with very few subjects being underweight (1.7%).

Prevalence of unexplained ALT elevation and PCB exposure. Of the 4,582 adult subjects remaining after applying the exclusion criteria, 436 had unexplained ALT elevation (i.e., suspected NAFLD), which corresponds to 10.6% of the U.S. adult population or 19.4 million people (after accounting for NHANES sampling weights). ALT elevation was more common in women than in men (11.9% vs. 9.2%; p = 0.020 (Table 1). ALT elevation was more common in Hispanics than in non-Hispanic whites (18.6% vs. 10.0%), whereas non-Hispanic blacks had a lower prevalence of ALT elevation (5.6%; p = 0.001). ALT elevation was most prevalent during the fifth and sixth decades and was more prevalent in overweight and obese participants than in normal-weight participants (10.7%, 15.7%, and 5.1%, respectively; p = 0.001).

The full study sample included slightly more women than men (Table 1). The mean age (and corresponding SD) was 47.2 ± 21.2 years (range, 18–85 years). Non-Hispanic whites accounted for 72.3% of the population. Body weights, as defined by National Institutes of Health (1998) guidelines, were fairly evenly distributed between normal weight, overweight, and obese, with very few subjects being underweight (1.7%).

Prevalence of unexplained ALT elevation and PCB exposure. Of the 4,582 adult subjects remaining after applying the exclusion criteria, 436 had unexplained ALT elevation (i.e., suspected NAFLD), which corresponds to 10.6% of the U.S. adult population or 19.4 million people (after accounting for NHANES sampling weights). ALT elevation was more common in women than in men (11.9% vs. 9.2%; p = 0.020 (Table 1). ALT elevation was more common in Hispanics than in non-Hispanic whites (18.6% vs. 10.0%), whereas non-Hispanic blacks had a lower prevalence of ALT elevation (5.6%; p = 0.001). ALT elevation was most prevalent during the fifth and sixth decades and was more prevalent in overweight and obese participants than in normal-weight participants (10.7%, 15.7%, and 5.1%, respectively; p = 0.001).

Prevalence of unexplained ALT elevation and PCB exposure. Of the 4,582 adult subjects remaining after applying the exclusion criteria, 436 had unexplained ALT elevation (i.e., suspected NAFLD), which corresponds to 10.6% of the U.S. adult population or 19.4 million people (after accounting for NHANES sampling weights). ALT elevation was more common in women than in men (11.9% vs. 9.2%; p = 0.020 (Table 1). ALT elevation was more common in Hispanics than in non-Hispanic whites (18.6% vs. 10.0%), whereas non-Hispanic blacks had a lower prevalence of ALT elevation (5.6%; p = 0.001). ALT elevation was most prevalent during the fifth and sixth decades and was more prevalent in overweight and obese participants than in normal-weight participants (10.7%, 15.7%, and 5.1%, respectively; p = 0.001).

Prevalence of unexplained ALT elevation and PCB exposure. Of the 4,582 adult subjects remaining after applying the exclusion criteria, 436 had unexplained ALT elevation (i.e., suspected NAFLD), which corresponds to 10.6% of the U.S. adult population or 19.4 million people (after accounting for NHANES sampling weights). ALT elevation was more common in women than in men (11.9% vs. 9.2%; p = 0.020 (Table 1). ALT elevation was more common in Hispanics than in non-Hispanic whites (18.6% vs. 10.0%), whereas non-Hispanic blacks had a lower prevalence of ALT elevation (5.6%; p = 0.001). ALT elevation was most prevalent during the fifth and sixth decades and was more prevalent in overweight and obese participants than in normal-weight participants (10.7%, 15.7%, and 5.1%, respectively; p = 0.001).
double the prevalence (5.4%) reported by a study of NHANES 1988–1994 adult participants that used similar exclusion criteria and a similar ALT reference range (Clark et al. 2003). As in our study, Clark et al. (2003) also noted that ALT elevation was associated with BMI, Hispanic ethnicity, and middle age. The observed increase in the prevalence of ALT elevation from NHANES 1988–1994 to NHANES 2003–2004 is consistent with the growing burden of obesity and NAFLD.

Because liver biopsy was not performed in NHANES, we used unexplained ALT elevation as a proxy measure of liver disease and NAFLD and identified several ubiquitous environmental pollutants that were dose-dependently associated with suspected NAFLD, including lead, mercury, and PCBs. Although levels of many pollutants are decreasing in the environment, PCB, lead, and mercury exposures remain problematic. For example, even though PCBs were banned in 1977, 100% of subjects in this study had detectable PCB levels.

Diet-induced obesity probably plays the primary role in the pathogenesis of most cases of NAFLD (Cave et al. 2007), but nutrient–toxicant interactions and genetic susceptibility to environmental pollution may be important cofactors, which we did not address in this study. Data from our group and others suggest that diet-induced obesity and fatty liver decrease antioxidant defenses and impair xenobiotic metabolism and disposition, which could sensitize the liver to chemical injury (Fisher et al. 2009a, 2009b; Kirpich et al. in press). Further complicating this issue, lead, mercury, and coplanar PCBs concentrate within the liver, whereas non–dioxin-like PCBs concentrate in adipose tissue and possibly in stecatotic (fatty) livers [Klein et al. 1972; Mudipalli 2007; National Toxicology Program (NTP) 2006a]. Therefore, tissue levels may not always correlate with serum levels. However, it is important to recognize that multiple animal studies demonstrate that PCBs and methylmercury (MeHg) exposures induce fatty liver, even in the absence of diet-induced obesity (Chang and Yamaguchi 1974; Desnoyers and Chang 1975b; Lin et al. 1996; NTP 2006a, 2006b, 2006c). Although lead has been associated with hepatic hyperplasia and not NAFLD, to our knowledge lead and diet-induced obesity coexposure has not been performed in animal models (Mudipalli 2007). The results of these aforementioned studies lend biologic plausibility to the hypothesis that lead, mercury, and PCBs may play a previously unsuspected role in the pathogenesis of some cases of suspected NAFLD.

PCBs are polyhalogenated aromatic hydrocarbons that consist of up to 10 chlorine atoms attached to a biphenyl group. About 130 of the 209 theoretical PCB congeners were manufactured between 1929 and 1977 as mixtures and were sold as a function of chlorine content. For example, Monsanto marketed Aroclors 1221, 1231, and 1242 up to 1268, which contained, respectively, 21%, 31%, and 42% to 68% chlorine by weight. Aroclors were used in multiple industrial applications and were components in dielectric insulating fluids for transformers.
AhR agonists, and PCB-126 accounts for 52% of the toxic equivalency of dioxin-like PCBs in human tissues (NTP 2006b; Safe 1993). In comparison, some non–dioxin-like PCBs such as PCB-153 do not activate AhR but may be constitutive androstane receptor agonists (Dean et al. 2002). Animal studies demonstrate that non–dioxin-like PCBs such as PCB-153 are concentrated most heavily within the adipose tissue because of their high lipid solubility (NTP 2006b). Coplanar PCBs, such as PCB 126, despite high lipid solubility, paradoxically concentrate primarily within the liver (NTP 2006b). In our study, both types of PCBs, including PCB-126 and PCB-153, were dose-dependently associated with ALT elevation.

Extensive animal studies conducted by the NTP and others have defined a role for PCBs in liver disease. The NTP has performed 2-year toxicity studies on PCB-126 and PCB-153 in female Harlan Sprague-Dawley rats (NTP 2006a, 2006b, 2006c). These studies demonstrated that the liver was the principal target organ for these compounds. Both benign (toxic hepatopathy, including steatosis) and malignant (hepatocellular carcinoma and cholangiocarcinoma) liver lesions were observed at high frequencies in a dose-dependent fashion, particularly in animals treated with PCB-126 alone or combined with PCB-153. Importantly, both of these PCBs were associated with human ALT elevation in our study. Hennig et al. (2005) demonstrated that PCB-77 exacerbated high-fat-diet (corn oil)–induced hepatic steatosis in mice and increased hepatic gene expression of genes involved in apoptosis.

Table 3. Adjusted ORs* (95% CIs) for ALT elevation by exposure quartile for lead, cadmium, and mercury in adults, NHANES 2003–2004.

Pollutant	Detection rate (%)	Not detectable (cases/total)	Detectable [median concentration, cases/total, OR (95% CI)]	p-Value	Trend	Adjusted trendb
Lead (µg/dL)	99.6	0/6	0.80, 1.30, 1.90, 3.30	0.006, 0.014	0.740, 0.839	
Mercury, total (µg/L)	92.5	12/158	0.40, 0.80, 1.40, 3.10	0.010, 0.014	0.503, 0.503	
Cadmium (µg/L)	82.8	38/345	0.30, 0.60, 1.10, 1.60	0.003, 0.011	0.006, 0.016	

*ORs were adjusted for age, sex, race, PIR, HOMA-IR, and BMI. bAdditionally adjusted for multiple comparisons.

Table 4. Adjusted ORs* (95% CIs) for ALT elevation by exposure quartile for coplanar PCBs in adults, NHANES 2003–2004.

Pollutant (lipid adjusted)	Detection rate (%)	Not detectable (cases/total)	Detectable [median concentration, cases/total, OR (95% CI)]	p-Value	Trend	Adjusted trendb
PCB-28 (ng/g)	100.0	17/140	2.75, 4.29, 5.75, 8.77	0.740, 0.839		
PCB-66 (ng/g)	98.9	12/135	0.74, 1.18, 1.67, 3.00	0.003, 0.011		
PCB-74 (ng/g)	100.0	14/142	1.76, 3.32, 6.82, 17.88	0.006, 0.016		
PCB-105 (ng/g)	98.0	12/135	0.52, 0.93, 1.51, 4.46	0.015, 0.031		
PCB-118 (ng/g)	100.0	12/135	2.30, 4.26, 8.16, 22.80	0.006, 0.016		
PCB-126 (pg/g)	94.8	9/134	8.70, 13.80, 22.00, 50.50	<0.001, <0.001		
PCB-156 (ng/g)	91.7	15/130	0.90, 2.74, 6.11, 12.40	<0.001, 0.004		
PCB-157 (ng/g)	74.9	15/152	0.61, 1.00, 1.79, 3.39	0.006, 0.016		
PCB-167 (pg/g)	68.0	19/188	0.50, 1.10, 1.93, 3.81	0.003, 0.011		
PCB-169 (pg/g)	70.3	15/107	0.9 (0.4–2.2), 2.2 (1.0–4.8), 2.7 (1.0–7.0), 5.0 (1.9–13.3)	0.032, 0.061		

*ORs were adjusted for age, sex, race, PIR, HOMA-IR, and BMI. bAdditionally adjusted for multiple comparisons.

Coplanar PCBs were measured in serum and are reported as lipid-adjusted values.
inflammation, and oxidative stress. However, this particular coplanar PCB was not measured in NHANES 2003–2004. In contrast to animal studies, human data on PCBs in liver disease are lacking. However, in Taiwan, 13 years after the “Yucheng” incident where cooking oil was contaminated by PCBs, the mortality rate due to cirrhosis was 2.7 times higher than expected (Yu et al. 1997).

Whole-blood total mercury, present in 92.5% of subjects, but not urinary total (inorganic plus elemental) mercury, was dose-dependently associated with ALT elevation and suspected NAFLD. These results suggest that the organic form of mercury was associated with liver disease. MeHg is the principal form of organic mercury historically associated with organ toxicity. Since the 1950s outbreak of Minamata disease (MeHg intoxication) in a Japanese fishing village, MeHg has been recognized as one of the most hazardous environmental pollutants. Coal-fired power plants have been identified as the primary source of current mercury emissions, and atmospheric mercury may be converted into MeHg in water-body sediment and subsequently enter the aquatic food chain and bioaccumulate in fish (Charnley 2006). The primary route of human MeHg exposure is consumption of contaminated fish and shellfish, and PCB coexposure may occur (Charnley 2006). MeHg has well-characterized toxic effects on the human nervous system, developing fetus, and kidney (Charnley 2006).

Despite the fact that MeHg concentrates considerably within the liver because of enterohepatic recirculation, few animal studies have examined the potential role of MeHg exposure is consumption of contaminated fish and suspected NAFLD. These results suggest that the organic form of mercury was associated with liver disease. MeHg is the principal form of organic mercury historically associated with organ toxicity. Since the 1950s outbreak of Minamata disease (MeHg intoxication) in a Japanese fishing village, MeHg has been recognized as one of the most hazardous environmental pollutants. Coal-fired power plants have been identified as the primary source of current mercury emissions, and atmospheric mercury may be converted into MeHg in water-body sediment and subsequently enter the aquatic food chain and bioaccumulate in fish (Charnley 2006). The primary route of human MeHg exposure is consumption of contaminated fish and shellfish, and PCB coexposure may occur (Charnley 2006). MeHg has well-characterized toxic effects on the human nervous system, developing fetus, and kidney (Charnley 2006).

With a detection rate of 99.6%, lead exposure was nearly universal in adults. In contrast to PCBs and MeHg, lead hepatotoxicity is relatively well recognized and was recently reviewed (Mudipalli 2007). Lead exposure most commonly occurs through the respiratory or gastrointestinal system. Regardless of the route of exposure, the liver is the largest lead repository in the body (Mudipalli 2007). The pathologic liver lesion of lead exposure has been termed “lead-induced hepatic hyperplasia,” but hepatic steatosis has not been reported. Multiple molecular events have been described in association with lead-induced hepatic hyperplasia.

Table 5. Adjusted ORs (95% CIs) for ALT elevation by exposure quartile for non–dioxin-like PCBs in adults, NHANES 2003–2004.

Pollutant (lipid adjusted)	Detection rate (%)	Not detectable (cases/total)	Detectable [median concentration, cases/total, OR (95% CI)]	p-Value	Trend-Adjusted trendb
PCB-44 (ng/g)	99.9	1.00	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-49 (ng/g)	99.4	0.63	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-52 (ng/g)	100.0	1.27	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-87 (ng/g)	83.5	0.57	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-99 (ng/g)	100.0	1.73	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-101 (ng/g)	96.6	0.76	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-110 (ng/g)	98.4	0.51	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-138 and PCB-158 (ng/g)	100.0	4.68	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-146 (ng/g)	99.2	0.61	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-149 (ng/g)	95.8	0.31	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-151 (ng/g)	80.2	0.19	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-153 (ng/g)	100.0	5.59	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	
PCB-170 (ng/g)	99.2	1.40	1.00 (0.0–2.1) 2.39 (0.7–8.1) 4.00 (1.2–13.3) 6.70 (2.1–21.5) 0.587	0.734	

continued on next page
Oxidative stress, proinflammatory cytokine production and sensitivity, and liver and serum cholesterol levels were all increased by lead (Aykin-Burns et al. 2003; Honchel et al. 1991; Kojima et al. 2004; Milosevic and Maier 2000; Sandhir and Gill 1995).

Several potential problems are inherent to the design of this study. The exact specificity of ALT for liver disease in NHANES is unknown because liver biopsies were not performed. However, ALT should be relatively specific, because the incidence of myopathy, the most important extrahepatic source of ALT, is likely low in the general population (Green and Flamm 2002). In contrast, at the reference range used in this study, the sensitivity of ALT is likely lower than its specificity.

The pollutant subclassifications created by NHANES, although generally reasonable, may not always have the most biologic relevance. For example, heavy metals were grouped differently according to the method of measurement (blood or urine). Given the large number of measured pollutants, looking at all possible groupings of pollutants and mixtures of subgroups was not practical. However, we created new PCB subclasses for coplanar and total PCBs because these molecules were consistently associated with ALT elevation.

Regarding PCBs, NHANES reported levels for only a quarter of the 130 manufactured PCB congeners, so it must be acknowledged that this study did not actually model the effects of total lipid-adjusted serum PCB burden. However, because PCBs were sold in mixtures, it is likely that subjects high in the measured PCBs would also be high in the others. As with all other subclasses, members of the tetrachlorodibenzo-p-dioxin, PCDDs and coplanar PCB subclasses were ranked by serum concentration, which did not account for their toxic equivalency factors. This method allowed us to combine the coplanar PCB and non–dioxin-like PCB subclasses to form the total PCB subclass. However, AhR-dependent hepatotoxicities could be examined by alternate models. Also, although ranking individuals on the basis of exposure levels rather than modeling serum pollutant levels directly allowed us to compare results between individual pollutants and pollutant subclasses, this approach limits comparisons with other study populations.

Conclusion

PCBs, lead, and mercury are present in nearly all U.S. adults. These common pollutants are associated with significant dose-dependent increased ORs for ALT elevation in subjects whose ALT elevations were not explained by

Pollutant (lipid adjusted)	Detection rate (%)	Not detectable (cases/total)	Detecable [median concentration, cases/total, OR (95% CI)]	p-Value	Trend	Adjusted trend	p-Value
PCB-172 (ng/g)	77.1	13/131	![Table 5. continued](https://example.com/table5_continued.png)	0.007	0.23		
PCB-177 (ng/g)	89.3	7/60	![Table 5. continued](https://example.com/table5_continued.png)	<0.001	<0.001		
PCB-178 (ng/g)	85.9	7/70	![Table 5. continued](https://example.com/table5_continued.png)	0.014	0.042		
PCB-180 (ng/g)	99.8	16/145	![Table 5. continued](https://example.com/table5_continued.png)	0.206	0.338		
PCB-183 (ng/g)	93.6	16/141	![Table 5. continued](https://example.com/table5_continued.png)	0.017	0.042		
PCB-187 (ng/g)	99.2	13/136	![Table 5. continued](https://example.com/table5_continued.png)	<0.001	0.002		
PCB-194 (ng/g)	87.8	17/125	![Table 5. continued](https://example.com/table5_continued.png)	0.881	0.958		
PCB-195 (ng/g)	65.5	21/139	![Table 5. continued](https://example.com/table5_continued.png)	0.862	0.958		
PCB-196 and PCB-203 (ng/g)	93.6	18/133	![Table 5. continued](https://example.com/table5_continued.png)	<0.001	0.002		
PCB-199 (ng/g)	92.8	13/139	![Table 5. continued](https://example.com/table5_continued.png)	0.083	0.194		
PCB-206 (ng/g)	96.9	20/148	![Table 5. continued](https://example.com/table5_continued.png)	0.971	0.982		
PCB-209 (ng/g)	96.4	14/134	![Table 5. continued](https://example.com/table5_continued.png)	0.982	0.982		

- Non–dioxin-like PCBs were measured in serum and are reported as lipid-adjusted values.
- ORs were adjusted for age, sex, race/ethnicity, PIR, HOMA-IR, and BMI.
- *Additionally adjusted for multiple comparisons.
viral hepatitis, hemochromatosis, or alcohol abuse. These results suggest a possible association between low-level environmental pollution and the development of liver disease and suspected NAFLD. Future studies should be performed to confirm the potential role of these environmental pollutants in NAFLD.

REFERENCES

Aykin-Burns N, Laegeler A, Pacyna JM, Jones KC. 2002. Towards Cave M, Deaciuc I, Mendez C, Song Z, Joshi-Barve S, Barve S, Breivik K, Sweetman A, Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Stat Soc Series B Methodol 57(1):299–306. Braubner N, Williams J 2nd. 2002. Industrial solvents and liver toxicity: risk assessment, factors, and mechanisms. Int J Hyg Environ Health 205(6):479–491. Breivik K, Sweetman A, Pacyna JM, Jones KC. 2002. Towards a global historical emission inventory for selected PCB congeners—a mass balance approach. I. Global production and consumption. Sci Total Environ 290(1–3):181–198. Cave M, Deaciu I, Mendez C, Song Z, Joshi-Barve S, Barve S, et al. 2007. Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem 18(3):184–195. Cave M, Finkler KC, Ray M, Joshi-Barve S, Brock G, Khan R, et al. 2010. Tumor-associated steatohepatitis in vinyl chloride workers. Hepatology 51(2):474–481. Chang LW, Yamaguchi S. 1974. Ultrastructural changes of the liver after long-term diet of mercury-contaminated tuna. Environ Res 7(2):133–148. Charnley G. 2006. Assessing and managing mercury risks associated with power plant mercury emissions in the United States. MedGenMed 8(1):64. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1681852/?tool=pubmed [accessed 2 February 2010]. Clark JM. 2006. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 40(suppl 1):S5–S10. Clark JM, Brancati FL, Diehl AM. 2003. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol 98(5):960–967. Cotrim HP, Andrade ZA, Parana R, Portugal M, Lyra LG, Freitas LA. 1999. Nonalcoholic steatohepatitis: a toxic liver disease in industrial workers. Liver 19(4):299–304. Cotrim HP, De Freitas LA, Freitas C, Braga L, Sousa R, Carvalho F, et al. 2004. Clinical and histopathological features of NAFLD in workers exposed to chemicals with or without associated metabolic conditions. J Int Med 242(1):135–146. Dean CE Jr, Benjamin SA, Chubb LS, Tessler JD, Keefe TJ. 2002. Nonadditive hepatic tumor promoting effects by a mixture of two structurally different polychlorinated biphenyls in female rat livers. Toxicol Sci 61(1):54–61. Desnoyers PA, Chang LW. 1975a. Ultrastructural changes in rat hepatocytes following acute methyl mercury intoxication. Environ Res 13(3):224–230. Desnoyers PA, Chang LW. 1975b. Ultrastructural changes in the liver after chronic exposure to methyl mercury. Environ Res 10(1):59–75. Dunn W, Xu R, Wingard DL, Rogers C, Angulo P, Younossi ZM, et al. 2008. Suspected nonalcoholic fatty liver disease and mortality risk in a population-based cohort study. Am J Gastroenterol 103(9):2262–2271. Fisher CD, Lickteig AJ, Augustine LM, Oude Elferink RP, Besselsen DG, Erickson RP, et al. 2009a. Experimental non-alcoholic liver disease results in decreased hepatic uptake transporter expression and function in rats. Eur J Pharmacol 613(1–3):119–127. Fisher CD, Lickteig AJ, Augustine LM, Ranger-Moore J, Jackson JP, Ferguson SS, et al. 2009b. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 37(10):2087–2094. Fushaka M, Kito T, Shono M, Nagano M, Wakamaki Y, Miyamoto K, et al. 2005. Long-term follow-up study of health status in population living in methylmercury-polluted area. J Epidemiol Community Health 59(3):237–240. Futatsuka M, Kito T, Shono M, Nagano M, Wakamaki Y, Miyamoto K, et al. 2005. Long-term follow-up study of health status in population living in methylmercury-polluted area. J Epidemiol Community Health 59(3):237–240. Futatsuka M, Shibata Y, Kinji Y. 1987. Cause specific standard mortality ratio for Minamata disease patients. Kumanoto Med J 40:119–128. Graubard BI, Korn EL. 1999. Analyzing health surveys for cancer-related objectives. J Natl Cancer Inst 91(2):1005–1016. Green RM, Fimm S. 2002. AGA technical review on the evaluation of liver chemistry tests. Gastroenterology 123(4):1367–1376. Henrig R, Reiberger G, Toborek M, Bathve SV, Daugherty S, Smart E, et al. 2005. Dietary fats interact with PCBs to induce changes in lipid metabolism in mice deficient in low-density lipoprotein receptor. Environ Health Perspect 113:87–97. Honchel R, Marsano L, Cohen D, Shedlofsky S, McClain CJ. 1991. Lead enhances lipoperoxidative and tumor necrosis factor liver injury. J Lab Clin Med 117(3):202–208. Korn EL, Graubard BI. 1999. Analyzing health surveys for cancer-related objectives. J Natl Cancer Inst 91(2):1005–1016. Lin TH, Huang YL, Huang SF. 1996. Lipid peroxidation in liver of rats administrated with methyl mercuric chloride. Biol Trace Elem Res 54(1):33–41. Milosevic N, Maier P. 2000. Lead stimulates intercellular signalling between hepatocytes and Kupffer cells. Eur J Pharmacol 408(1–3):119–127. Munipalli A. 2007. Lead hepatotoxicity and potential health effects. Indian J Med Res 126(6):518–527. National Institutes of Health. 1998. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. Obes Res 6(suppl 2):S1–S205. NCHS (National Center for Health Statistics). 2005. NHANES 2003–2004 Public General Release File Documentation. Available: http://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/gsr_data_release_doc_03-04.pdf [accessed 2 November 2010]. NCHS (National Center for Health Statistics). 2003–2004. NHANES 2003–2004 Laboratory Procedure Manual: Alkaline Amino Transferase (ALT) in Refrigerated Serum. Available: http://origin.cdc.gov/nchs/data/nhanes/nhanes_03_04/alt_alanine_a_mimo_transf erase.pdf [accessed 17 February 2010]. NTP (National Toxicology Program). 2006a. NTP technical report on the toxicity and carcinogenesis studies of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) (CAS no. 35965-27-1) in female Harlan Sprague-Dawley rats (gavage studies). Natl Toxicol Program Tech Rep Ser (529):1–46. NTP (National Toxicology Program). 2006b. NTP toxicology and carcinogenesis studies of a binary mixture of 3,3',4,4'-pentachlorobiphenyl (PCB 126) (CAS no. 57465-28-8) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) (CAS no. 3596527-1) in female Harlan Sprague-Dawley rats (gavage studies). Natl Toxicol Program Tech Rep Ser (500):1–258. NTP (National Toxicology Program). 2006c. NTP toxicology and carcinogenesis studies of a binary mixture of 3,3',4,4'-pentachlorobiphenyl (PCB 126) (CAS no. 57465-28-8) and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) (CAS no. 3596527-1) in female Harlan Sprague-Dawley rats (gavage studies). Natl Toxicol Program Tech Rep Ser (500):1–258. Prati D, Taisi E, Zanella A, Del Vecchio E, et al. 2002. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med 137(1):1–10. Reed AH, Henry RJ, Mason WB. 1971. Influence of statistical method used in the resulting estimate of normal range. Clin Chem 17:275–284. Ruhl CE, Everhart JE. 2009. Elevated serum alanine aminotransferase and gamma-glutamyltranspeptidase and mortality in the United States population. Gastroenterology 136(2):477–485. Safe SH. 1992. Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Environ Health Perspect 100:259–268. Sandrin R, Gill KD. 1995. Effect of lead on lipid peroxidation in liver of rats. Biol Trace Elem Res 48(1):91–97. Schwartz GG, Il'yasova D, Ivanova A. 2003. Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care 26(2):468–470. Yu ML, Guo YL, Hsu CC, Rogan WJ. 1997. Increased mortality from chronic liver disease and cirrhosis 13 years after the Taiwan “yucheng” (“oil disease”) incident. Am J Ind Med 31(2):172–175.