Turn-key module for neutron scattering with sub-micro-eV resolution

R. Georgii,¹,²,a) G. Brandl,¹,² N. Arend,²,³ W. Häußler,¹,² A. Tischendorf,² C. Pfleiderer,² P. Böni,² and J. Lal⁴

¹Forschungsneutronenquelle Heinz-Maier Leibnitz, Technische Universität München, 85748 Garching, Germany
²Physik-Department E21, Technische Universität München, 85748 Garching, Germany
³Forschungszentrum Jülich GmbH, JCSN-I & ICS-1, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁴Materials Science Division, Argonne National Lab, Argonne, Illinois 60439, USA

(Received 3 December 2010; accepted 27 January 2011; published online 18 February 2011)

We report the development of a compact turn-key module that boosts the resolution in quasielastic neutron scattering by several orders of magnitude down to the low sub-micro-eV range. It is based on a pair of neutron resonance spin flippers that generate a well defined temporal intensity modulation, also known as Modulation of IntEnsity by Zero Effort (MIEZE). The module can be used under versatile conditions, in particular, in applied magnetic fields and for depolarizing and incoherently scattering samples. We demonstrate the power of MIEZE in studies of the helimagnetic order in MnSi under applied magnetic fields. © 2011 American Institute of Physics.

[doi:10.1063/1.3556558]

Neutron scattering is an extremely powerful technique for studies of the dynamical properties of condensed matter systems. Prominent examples of great current interest concern the spin dynamics in transition metal and rare earth compounds and diffusive processes in soft matter systems such as proteins, liquid crystals, and emulsions. A precondition to unravel some of the most important scientific challenges is the need for high energy and momentum resolution.

Conventional neutron scattering techniques such as triple-axis and time-of-flight spectroscopy provide momentum resolved energy resolutions of the order of ≃10 μeV. Backscattering reaches the sub-micro-eV regime, however, sacrificing momentum resolution. This is contrasted by neutron spin-echo (NSE) methods,¹,² which offer high energy and momentum resolutions in the low sub-micro-eV range—several orders of magnitude below the typical resolutions of conventional techniques. However, because NSE scattering uses polarized neutrons it is inherently sensitive to the depolarization of the neutron beam. Therefore, it is technically very demanding to perform NSE measurements under applied magnetic fields or in depolarizing samples,³,⁴ such as superconductors, ferromagnets,⁵ or protonated soft matter systems.

In this letter, we report the development of a turn-key module, the MIEZE (Modulation of IntEnsity by Zero Effort) box shown in Fig. 1. In combination with a polarizer, a polarizing analyzer, and a fast detector this box allows to improve the energy resolution in all types of neutron scattering instruments capable of studying quasielastic scattering, notably diffractometers, small-angle neutron scattering cameras, and reflectometers (especially instruments for small q and cold neutrons), down to the sub-micro-eV range. The module is based on the so-called MIEZE-I technique (Modulation of IntEnsity by Zero Effort, type I),⁶–¹¹ where the modulation of the beam is performed before the sample. Therefore, in contrast to NSE, the MIEZE module we describe may even be used under depolarizing conditions in or around the sample. This routinely allows neutron scattering studies with the highest possible energy resolution in a wide range of materials.

Qualitatively, the MIEZE-I technique is based on a harmonic intensity modulation of the neutron beam, where the contrast C is given by the ratio of the amplitude A to the average signal B as shown in Fig. 2(a). Using a phase-locked pair of two resonance spin flippers,⁹,¹³ which operate at slightly different frequencies, ω₁ and ω₂, induces a slow rotation of the polarization direction of the neutrons, which is subsequently converted into an intensity beating by means of a polarizing analyzer.

While former experiments with the MIEZE-I technique have been successful, we managed to implement MIEZE-I as a routine technique through a redesign of the neutron resonance spin flippers. Instead of wire-wound B₀ coils we use electroerosion machined coil windings where a better definition of the magnetic field boundaries is obtained. They consist of a specially selected Al alloy with much less small angle scattering and a higher transmission.¹³ Together with a more reproducible mounting of the rf coils this results in

¹Electronic mail: robert.georgii@frm2.tum.de.
stable π-flips over a wide range of rf frequencies with low small angle scattering background.

A description of the MIEZE-I principle alluding to similarities with time-of-flight methods is illustrated in Fig. 2; for a proper quantum mechanical description we refer to the literature (cf. Ref. 14). When a neutron arrives at the first spin flipper with its polarization perpendicular to the static field in the flipper, the correlation volumes (or wave-packages) corresponding to the spin-up and spin-down spin states are prepared [cf. Fig. 2(c)]. While the kinetic energy of the spin-down state increases, the kinetic energy of the spin-up state decreases. Therefore, the correlation volumes for the spin-down and spin-up states arrive at different times at the second resonance spin flipper placed at a distance L_1 behind the first spin flipper. This second spin flipper inverts the energy splitting of the spin states, reducing the kinetic energy of the spin-down state and increasing the kinetic energy of the spin-up state. Therefore the correlation volumes overlap again at a distance L_2 behind the second spin flipper, given by $L_2 = L_1 (\nu_2 - \nu_1)^{-1}$ where $\nu_2 > \nu_1$.

An analyzer at an arbitrary position between the second spin flipper and the detector (the latter is located where the correlation volumes meet) projects out the intensity of the interference pattern of the spin-up and spin-down states. As the correlation volumes of the spin-up and spin-down states have different energies, the interference pattern exhibits the intensity modulation of contrast C referred to above.

To explain how this intensity modulation may be exploited in experimental studies using two single neutron resonance spin flippers, we show in Fig. 2(d) the delay between the two correlation volumes, Δt. The correlation volumes probe the sample at different times with the delay given by $\tau_{\text{MIEZE}} = 2 \hbar (2\pi \Delta \nu) L_2 / (\hbar \nu \nu)$, where $2\Delta \nu = 2 (\nu_2 - \nu_1)$ is the frequency of the resulting MIEZE signal, L_2 is the distance between sample and detector, and ν and ν are the mass and average velocity of the neutrons. By overlapping these volumes at the detector, one obtains a signal contrast C which is directly proportional to the intermediate scattering function $S(q, \tau_{\text{MIEZE}})$, i.e., the information on the dynamics on this time scale. Further, for quasielastic scattering with an assumed Lorentzian line shape with half-width Γ, the normalized intermediate scattering function is given by $S(q, \tau) / S(q, 0) = \exp[-\Gamma(q) \tau]$, where $S(q, 0)$ corresponds to the intermediate scattering function of a purely elastically scattering sample.

The MIEZE-I technique is similar to conventional neutron resonance spin echo (NRSE) methods, where the two spin flippers before the sample correspond to the first arm of an NRSE instrument. Moreover, the MIEZE time τ_{MIEZE} is equivalent to the spin echo time in NSE and NRSE instruments. However, there is a distinct difference between MIEZE-I and NSE/NRSE. Placing the polarizing analyzer behind the second spin flipper and before the sample, the MIEZE-I technique becomes insensitive to effects of the sample or sample environment on the polarization of the neutron beam, i.e., for example, depolarization or applied magnetic fields. This is demonstrated in Fig. 3, where the contrast of the direct beam is plotted versus a magnetic field up to 0.2 T and no effect on the signal contrast can be observed.

The MIEZE experiments reported here were carried out at the diffractometer MIRA at FRM II using neutrons with a wavelength $\lambda = 10.4$ Å $\pm 5\%$, i.e., a mean velocity $v = 380$ m/s. The first and second spin flipper being 0.9 m apart were operating at frequencies in the range 46 kHz $< \nu_1 < 200$ kHz and 69 kHz $< \nu_2 < 300$ kHz, respectively, providing a beating frequency in the range 46 kHz $< 2\Delta \nu < 200$ kHz. The distance between the sample and detector was 860 mm. Taken together MIEZE times could be accessed in a range 280 ps $< \tau_{\text{MIEZE}} < 1230$ ps. A 0.3 mm thick 6Li doped glass scintillator with a photomultiplier was used as a fast detector.

We note that the temporal and thus spatial separation of the spin-up and spin-down states makes MIEZE-I sensitive to path length differences between the first rf-flipper and the detector, e.g., due to the large divergence of the beam, the finite size of the sample, or the finite thickness of the neutron detector. However, for the wavelength of 10.4 Å, frequencies in the range 46–200 kHz for the MIEZE signal, typical sample sizes of 10 mm, and scattering angles of the order of...
and will be published elsewhere. The resulting line widths converge to 1 for exponential functions. The presence of a second process on a cal state at low temperatures, where the magnetic structure is malized with respect to resolution measurements in the heli-

For T < 0.2 T, the A-phase is observed. Here a special form of the magnetic order in MnSi at Tc = 29 K can be accessed in a forward scattering configuration. Just below Tc, the A-phase is observed. Here a special form of magnetic order, a skyrmion lattice, is observed. Shown in Fig. 4(a) are typical data in the helimagnetic state (B = 0) of the normalized intermediate scattering function S(q, τ)/S(q, 0) for various temperatures. Data were normalized with respect to resolution measurements in the heli-

The measured Γ in the A-Phase of MnSi at B = 0.18 T [shown in Fig. 4(b)] is similar to the one in the helical phase. This demonstrates that even under applied magnetic fields the MIEZE-I technique may be readily used.

We have recently used our MIEZE box at the beam line CG-1D at HFIR at Oak Ridge National Laboratory. Here and on MIRA to set-up and adjust the MIEZE box requires less than a few hours making it indeed a turn-key measurement option.

In conclusion, we have developed a compact turn-key MIEZE module, that allows to improve the energy resolution of various neutron scattering instruments used for quasielas-

We gratefully acknowledge support by R. Schwikowski, A. Mantwill, M. Wipp, and the team of FRM II. We wish to thank R. Gähler, L. Robertson, I. Anderson, and W. Petry for helpful discussions and support. Financial support through the German Science Foundation (DFG) under TRR80, the Oak Ridge National Laboratory, and the European Commission under the 7th Framework Program, Contract no. CP-CSA INFRA-2008-1.1.1 Number 226507-NMI3 is acknowl-

1 C. Pappas, E. Lelievre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, and B. Farago, Phys. Rev. Lett. 102, 197202 (2009).
2 R. Gähler, R. Golub, and T. Keller, Physica B 180–181, 899 (1992).
3 R. Gähler, R. Golub, and T. Keller, Physica B 261, 261 (1996).
4 W. Besenböck, R. Gähler, P. Hank, R. Kahn, M. Köppe, H. Wuttke, W. Petry, R. Gähler, and R. Kahn, J. Neutron Res. 4, 261 (1996).
5 C. Pappas, E. Lelievre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, and B. Farago, Phys. Rev. Lett. 102, 197202 (2009).
6 B. Farago and F. Mezei, Physica B 136, 100 (1986).
7 T. Keller, R. Golub, and R. Gähler, Scattering and Inverse Scattering in Pure and Applied Science (Academic, London, 2002), pp. 1264–1286.
8 T. Keller, R. Golub, and R. Gähler, Physica B 385–386, 1122 (2006).
9 M. Bleuel, M. Bröll, E. Lang, K. Littrell, R. Gähler, and J. Lal, Physica B 371, 297 (2006).
10 M. Bleuel, M. Bröll, and T. Keller, J. Neutron Res. 7, 65 (1998).
11 Y. Kawabata, M. Hino, M. Kitaguchi, H. Hayashida, S. Tasaki, T. Ebisawa, D. Yamazaki, R. Maruyama, H. Seto, M. Nagao, and T. Kanaya, Physica B 1987, 1264–1286.
12 Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, Solid State Commun. 19, 525 (1976).
13 C. Pappas, E. Lelievre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, and B. Farago, Phys. Rev. Lett. 102, 197202 (2009).
14 C. Pappas, E. Lelievre-Berna, P. Falus, P. M. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet, and B. Farago, Phys. Rev. Lett. 102, 197202 (2009).
15 M. Bleuel, M. Bröll, E. Lang, K. Littrell, R. Gähler, and J. Lal, Physica B 371, 297 (2006).
16 F. Mezei, Z. Phys. A 255, 146 (1972).
17 R. Golub and R. Gähler, Phys. Lett. A 123, 43 (1987).
18 C. Pappas, E. Lelievre-Berna, P. Bentley, E. Bourgeat-Lami, E. Moskvin, M. Thomas, S. Grigoriev, and V. Dyadkin, Nucl. Instrum. Methods Phys. Res. A 592, 420 (2008).
19 T. Keller, R. Golub, and R. Gähler, Physica B 136, 100 (1986).
20 R. Gähler, R. Golub, and T. Keller, Physica B 180–181, 899 (1992).
21 M. Köppe, P. Hank, J. Wuttke, W. Petry, R. Gähler, and R. Kahn, J. Neutron Res. 4, 261 (1996).
22 W. Besenböck, R. Gähler, P. Hank, R. Kahn, M. Köppe, C. H. D. Novion, W. Petry, and J. Wuttke, J. Neutron Res. 7, 65 (1998).
23 R. Gähler, R. Golub, and T. Keller, Physica B 371, 297 (2006).
24 Y. Kawabata, M. Hino, M. Kitaguchi, H. Hayashida, S. Tasaki, T. Ebisawa, D. Yamazaki, R. Maruyama, H. Seto, M. Nagao, and T. Kanaya, Physica B 385–386, 1122 (2006).
25 G. Brandl, M. Bleuel, L. Robertson, L. Crow, J. Lal, and R. Georgii (unpublished).
26 N. Arend, Ph.D. thesis, Technical University of Munich, 2007.
27 N. Arend, R. Gähler, T. Keller, R. Georgii, T. Hils, and P. Böni, Phys. Lett. A 327, 21 (2004).
28 The prefactor 2 is inherent to the NRSE/MIEZE technique when using the resonance flippers in the nonbootstrap mode.
29 Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, Solid State Commun. 19, 525 (1976).
30 S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).