Association Between Ureteral Double J Stent Colonization and Lower Urinary Tract Symptom Severity: A Cross-Sectional Study

Malik Hatim Hussain 1, Daniyal Jilanee 2, Mustafa Naeem 3, Syed Usama Ashraf 3, Camilo A. Avendaño-Capriles 4, 5, Shivani Mehta 6, Syed Ali H. Zaidi 7, Syed Rumail H. Zaidi 8, Sohaib Tousif 9, Rahil Barkat 10

1. Orthopaedics and Trauma, East Lancashire NHS Hospitals, Blackburn, GBR 2. Medicine, Liaquat National Hospital and Medical College, Karachi, PAK 3. Medicine, Dow University of Health Sciences, Karachi, PAK 4. Foundations of Clinical Research (FCR) Program Scholar, Harvard Medical School, Boston, USA 5. Medicine, Universidad del Norte, Barranquilla, COL 6. Medicine, Xavier University School of Medicine, Oranjestad, ABW 7. Medicine, Jinnah Medical and Dental College, Karachi, PAK 8. Medicine, Dow International Medical College, Karachi, PAK 9. Medicine, Ziauddin Medical University, Karachi, PAK 10. Indus Hospital Research Center, The Indus Hospital, Karachi, PAK

Corresponding author: Rahil Barkat, sayanirahil@gmail.com

Abstract

Introduction

Double J stents (DJS) are commonly used in urological practice, but they do have a risk of complications, such as infection and hematuria. This study explored the association between ureteral double J stent colonization and lower urinary tract symptom (LUTS) severity.

Methodology

This cross-sectional study was conducted from January 2021 to June 2021 in patients admitted to a tertiary care hospital in Karachi, Pakistan, who required double J stent (DJS) insertion. Patients who came to the site for stent removal were invited to participate in the study and enrolled using a consecutive sampling technique between January 15, 2021, and March 15, 2021.

Results

The study enrolled 176 patients, of whom 73.33% had colonization and the remaining had no colonization. The factors significantly associated with symptom severity included colonization of the DJS (P-value = 0.001) and the patients’ ages (P-value = 0.046). The two groups have significantly different symptoms, which included incontinence (P-value = 0.001), polyuria (P-value = 0.001), and nocturia (P-value = 0.001).

Conclusion

Our study found more severe symptoms in DJS patients with colonization than in those without colonization. Irritative voiding symptoms, including nocturia and dysuria, are more common in DJS patients with colonization.

Categories: Urology, Public Health, Other
Keywords: infection, colonization, severity scoring, lower urinary tract symptoms, double j stent

Introduction

Urethral stents have an essential function in managing upper urinary tract obstruction and preventing postoperative complications after endoscopic or open urologic procedures. Because of its various applications, stent insertion has become common in most urology-related practices [1].

Double J stents (DJS), most commonly used in urological practice, are made from synthetic biomaterials. Their surfaces are appropriate for developing biofilm polysaccharides and colonization [2]. Although the advent of softer materials has increased patient endurance, DJS is still associated with an increased risk of infection and other complications. Although colonized devices are usually clinically silent, they can cause local infection, sepsis, and bacteremia, especially in immunocompromised patients [3].

One of the most dangerous problems linked with ureteral stents is encrustation and flank discomfort [4]. The cause of flank discomfort is probably urine reflux from the bladder to the kidneys [5]. Bladder symptoms such as frequency, urgency, and dysuria are some of the common symptoms that occur due to ureteral DJS stent colonization that is conjectured to result from nerve irritation in a submucosal area in a bladder trigone [5].

How to cite this article
Hussain M, Jilanee D, Naeem M, et al. (November 08, 2021) Association Between Ureteral Double J Stent Colonization and Lower Urinary Tract Symptom Severity: A Cross-Sectional Study. Cureus 13(11): e19354. DOI 10.7759/cureus.19354
Research conducted in Barcelona, Spain, in the year 2014 found that 58.9% of stents showed bacterial colonization in urine cultures [6]. A Turkish study found that the incidence of colonization and bacteriuria is 36% and 7.4%, respectively [7]. Past studies showed that stent-associated infection occurs more often with the increased use of DJS. However, there are insufficient local studies to support this finding. Bacterial colonization in the stent is critical in the pathophysiology of stent-associated infections; therefore, understanding the microorganisms engaged in stent colonization, along with their sensitivity profile, can aid in the better management of lower urinary tract symptoms (LUTS) and urological disease. Therefore, the current study has been conducted with the aim to explore the association between ureteral double J stent colonization and lower urinary tract symptom severity.

Materials And Methods

This cross-sectional study was conducted from January 2021 to June 2021 in patients admitted to a tertiary care hospital in Karachi, Pakistan, requiring DJS insertion. Patients who came to the site for stent removal were invited to participate in the study and enrolled using consecutive sampling techniques from January 15, 2021, to March 15, 2021. All participants undergoing stent removal after eight weeks of stent insertion provided informed consent. The study excluded patients with pre-procedural urological diseases causing bladder pain or LUTS, including prostate diseases (such as prostate cancer, prostatitis, and benign prostate enlargement), overactive bladder, interstitial cystitis, and painful bladder syndrome. Patients were also excluded if they were on medications such as diuretics, antidepressants, analgesics, anticholinergics, or alpha-blockers. Patients with proven urinary tract infections at the time of the insertion of the DJS were also excluded from the study. Stent removal was done in the operating theater using sterile techniques. The study was approved by the institutional review board of the organization.

Before the removal of the stent, urine was collected from the bladder in a sterile container. The removed stent was divided into two parts, the proximal and distal end of the stent, which is 2–3 cm pieces from each part for bacteriological investigation. The processed parts of the catheter were placed in sterile test tubes. Sterile Tryptic Soy Broth solution (1 mL) was injected into the inner surface of the catheter segments with a syringe to wash away the intraluminal component of the catheter and isolate only microorganisms adhered to the catheter’s inner surface. A liquid culture medium was then swirled for one minute to detect the microorganisms that are adhered to the outer surface of the catheter segment. Following that, 100 mL of the broth solution was extracted from tubes containing undiluted and diluted (1/100) samples and placed into agar medium and eosin blue agar. The plates were incubated at 37°C for 48 hours. Quantitative analysis of the microorganisms growing on the agar was performed (growth of >1000 colony-forming units/mL was considered significant). The traditional approach was used to identify bacteria.

Patient data, including age, gender, comorbidity, duration of DJS, the reason for the insertion of polyethylene DJS, and baseline urine culture, were obtained from the patients’ files. Lower urinary tract symptom prevalence and severity were collected as defined by the International Prostate Symptoms Score (IPSS) and the International Continence Society male questionnaire prior to the removal of DJS [8]. The IPSS is based on the answers to seven questions related to urinary symptoms. Each question related to urinary symptoms permits the patient to choose one of six answers (score ranging from 0 to 5) to indicate symptom severity. The overall score ranges from 0 to 35 (mild, moderate, and severe symptoms).

Data analysis

Data analysis was done using the STATA Windows version 16.0. To present the descriptive characteristics of all variables, mean and standard deviation were used for continuous variables, while frequencies and percentages were given for categorical variables. The chi-square test was used for statistical analysis to determine the relationship between DJS insertion and symptom severity. The cutoff of P-value was kept at 0.05.

Results

The study enrolled 176 patients (102 males and 74 females), with a mean age of 37.11 ± 11.22. As shown in Table 1, 35% of the patients had at least one comorbidity; the most common was hypertension (52.38%). In the current study, of the 176 participants, 129 (73.53%) had colonization at the distal end, proximal end, or both ends of the ureteral DJS. In relation to symptom severity, most participants (46.67%) had moderate symptoms, and 35% of the participants had severe symptoms. Table 2 shows the responses of the participants to the questions that were asked to assess symptom severity using the IPSS questionnaire.
Variable	n (%)
Age	37.83 (11.22)
Gender	
Male	102 (57.95)
Female	74 (42.05)
Presence of Comorbidity	
No	117 (65)
Yes	63 (35)
Comorbidity	
HTN	33 (52.38)
Diabetes	24 (38.09)
Others	16 (25.39)
Total Duration of DJS	45.32 (12.87)
Pre DJS Insertion Urine Sample	
Positive	18 (10)
Negative	162 (90)
DJS Culture – Proximal End	
Positive	114 (64.04)
Negative	64 (35.96)
DJS Culture – Distal End	
Positive	126 (70)
Negative	54 (30)
IPSS	
Mild	33 (18.33)
Moderate	84 (46.67)
Severe	63 (35)

TABLE 1: Characteristics of the Participants

*Mean (Standard Deviation)
Table 2: Questions Used to Assess Symptom Severity

*Number of Participants (%)

Question	Not At All	Less Than One in Five Times	Less Than Half the Time	About Half the Time	More Than Half the Time	Almost Always
Incomplete Emptying*	49 (27.22)	21 (11.67)	33 (18.33)	29 (16.11)	24 (13.33)	24 (13.33)
Frequency*	6 (3.33)	24 (13.33)	36 (20)	60 (33.33)	30 (16.67)	24 (13.33)
Intermittency*	62 (34.44)	15 (8.33)	51 (28.33)	24 (13.33)	15 (8.33)	13 (7.22)
Urgency*	21 (11.67)	15 (8.33)	24 (13.33)	27 (15)	54 (30)	39 (21.67)
Weak Stream*	83 (46.11)	18 (10)	18 (10)	25 (13.89)	21 (11.67)	15 (8.33)
Straining*	73 (40.56)	15 (8.33)	24 (13.33)	22 (12.22)	19 (10.56)	27 (15)
Nocturia*	49 (27.22)	45 (25)	45 (25)	34 (18.89)	26 (14.44)	9 (5)

Table 2 shows the participants’ characteristics based on symptom severity. It has been shown that the severity of symptoms is associated with ureteral DJS colonization (P-value = 0.025). Another factor significantly associated with the severity of symptoms was age (P-value = 0.046). No significant differences were observed between severity of symptoms and gender, pre-ureteral DJS insertion urine sample, number of days of catheterization, previous history of urinary tract infection, and presence of any comorbidity as the P-value was greater than 0.05.
Variable	Mild	Moderate	Severe	P-Value
Ureteral Double J Stent Colonization				
Positive	15 (45.55)	18 (21.43)	15 (23.81)	0.025*
Negative	18 (54.55)	66 (78.57)	48 (76.19)	
Gender				0.721
Male	18 (54.55)	45 (56.25)	39 (61.90)	
Female	15 (45.55)	35 (43.75)	24 (38.10)	
Age				
Less Than 35 Years	15 (45.45)	31 (36.90)	26 (41.27)	
Between 35 and 45 Years	3 (9.09)	30 (35.71)	21 (33.33)	0.046*
More Than 45 Years	15 (45.45)	23 (27.38)	16 (25.40)	
Presence of Comorbidity				0.982
No	21 (63.64)	55 (65.48)	41 (65.08)	
Yes	12 (36.36)	29 (34.52)	22 (34.92)	
Pre DJS Insertion Urine Sample				
Positive	0 (0)	9 (10.71)	9 (14.29)	0.082*
Negative	33 (100)	75 (89.29)	54 (85.71)	
Duration of DJS in Days				0.883
Less than or equal to 45 days	15 (45.45)	34 (40.48)	26 (41.27)	
More Than 45 Days	18 (54.55)	50 (59.52)	37 (58.73)	
History of Urinary Tract Infection				0.166
Yes	12 (36.36)	40 (47.62)	30 (47.62)	
No	21 (63.64)	44 (52.38)	33 (52.38)	

TABLE 3: Relationship of Independent Variables with Severity of Symptoms

* Significant at P-value ≤ 0.05

Table 3 shows symptoms experienced by the patients enrolled in the study. Symptoms that were significantly different in the two groups included incontinence (P-value = 0.001), polyuria (P-value = 0.001), and nocturia (P-value = 0.001). Incontinence was reported by 42.78% of the patients, and frequency was higher in patients with DJS colonization (52.52%) as compared with patients without DJS colonization (18.75%). Moreover, polyuria was also higher in patients with DJS colonization (74.24%) than in those without colonization (P-value = 37.50%).
Symptoms	DJS Culture-Negative Patients	DJS Culture-Positive Patients	P-Value
High Fever (>38°C) | 9 (18.75) | 43 (32.58) | 0.071 |
Dysuria | 15 (31.25) | 50 (37.87) | 0.155 |
Incontinence | 9 (18.75) | 68 (51.52) | 0.001* |
Significant Hematuria (>10/mm²) | 8 (16.67) | 35 (26.51) | 0.188 |
Polyuria (>10 – Day) | 18 (37.50) | 98 (74.24) | 0.001* |
Nocturia (>2 – Night) | 9 (18.75) | 60 (45.45) | 0.001* |
Significant Leukocyturia (>10/mm²) | 12 (25) | 47 (35.60) | 0.322 |
Continuous Urgency | 13 (27.08) | 51 (38.64) | 0.152 |

TABLE 4: Difference of Symptoms Between Patients With Colonized and Non-colonized DJS

* Significant at P-value ≤ 0.05

Discussion

The DJS has become an important part of the urological procedure. It is generally safe and well tolerated, and it allows effective drainage of urine from the kidney to the bladder. Both ureteral DJS insertion and associated complications have reportedly increased. Patients are more likely to experience symptoms such as hematuria, nocturia, fever, dysuria, urgency, and lower abdominal pain. Various complications can occur with short-term or long-term indwelling stent use, varying from minor complications such as dysuria, hematuria, and suprapubic pain to major complications such as urinary infection, stent fracture, and encrustation [9]. In the current study, the incidence of bacterial colonization in DJS patients was 73.3%, with a lower incidence of urinary tract infection.

Our study found that DJS colonization enhances symptom severity. The study conducted by Kehinde et al. also found that the risk of certain symptoms such as nocturia and polyuria can be enhanced significantly by the colonization of the DJS [10]. Besides this, this study has also found that the risk of colonization can be enhanced significantly by the female gender, predisposing conditions such as hypertension and diabetes, and longer duration of stent retention. Our study did not find any significant correlation between comorbidities, gender, duration of DJS, and history of UTI with symptom severity.

Our study has found a significant relationship between the severity of symptoms and the age of participants. In our study, young patients had more severe symptoms. Kehinde et al. reported similar findings [10]. Irritative symptoms are the major clinical issue for patients with DJS. The study conducted by Joshi et al. examined the prevalence of the symptoms associated with ureteral stents and their effects on health-related quality of life [11]. This study showed that 78% of patients with positive ureteral DJS reported urinary symptoms such as hematuria, incontinence, and storage symptoms. The study also found that more than 80% of patients experienced stent-related pain that affected their daily living activities, and 58% of the patients reported negative economy.

In the current study, 38% of the patients experienced nocturia, and 63.33% experienced dysuria. These symptoms occurred more often in this study than the past study conducted by Kati et al., who reported that dysuria (40%) and polyuria (51.8%) are among the major symptoms reported by patients with DJS [7]. However, our study found significant differences between polyuria, polydipsia, and continuous urgency between patients’ positive DJS culture and negative DJS culture. The study conducted by Kati et al. also compared the symptoms experienced by DJS patients with colonization and DJ patients without colonization. The study found that irritating voiding symptoms such as continuous urgency, pain, and polyuria were significantly higher in colonized DJS patients as compared with non-colonized DJS patients. Besides this, the frequency of leukocyturia was also higher in colonized DJS patients than in non-colonized DJS patients [7]. However, our study did not show any significant difference in the frequency of leukocyturia between the two groups.

The current study has certain limitations. Firstly, the sample size was just 176 patients, and the sample was enrolled from a single site only. Thus, the findings need to be interpreted with caution. Future studies that
will enroll a large sample of patients from multiple sites need to be conducted to get more generalizable findings. Despite these shortcomings, our research depicts DJS colonization under actual medical conditions, allowing for greater informed decision-making when considering their use.

Conclusions

Our study found more severe symptoms among DJS patients with colonization than those without colonization. Irritative voiding symptoms, including nocturia and dysuria, are more common DJS patients with colonization. Our study has also found that young patients have more severe symptoms. Infections should be monitored in patients at risk of stent colonization, and prophylactic treatment with antimicrobial medicines should be given. In addition, to avoid colonization, indwelling time may be reduced.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Ziauddin University IRB issued approval IRB_2021_01_05. This study has been approved by the IRB of Ziauddin University and Hospital and determined that, as currently described, it was eligible for expedited review and approval. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

1. Stefaniuk E, Baraniak A, Gniadkowski M, Hryniewicz W: Evaluation of the BD Phoenix automated identification and susceptibility testing system in clinical microbiology laboratory practice. Eur J Clin Microbiol Infect Dis. 2005, 22:479-85. 10.1007/s10096-005-0962-y
2. Dunn MD, Portis AJ, Kahn SA, et al.: Clinical effectiveness of new stent design: randomized single-blind comparison of tail and double-pigtail stents. J Endourol. 2000, 14:195-202. 10.1089/end.2000.14.195
3. Bultitude MF, Tiptaft RC, Glass JM, Dasgupta P: Management of encrusted ureteral stents impacted in upper tract. Urology. 2003, 62:622-6. 10.1016/S0090-4295(03)00506-5
4. Mosli HA, Farsi HM, Al-Zimaitly MF, Saleh TR, Al-Zamzami MM: Vesicoureteral reflux in patients with double pigtail stents. J Urol. 1991, 146:966-9. 10.1016/S0022-5347(17)37976-4
5. Pidsudko Z: Distribution and chemical coding of neurons in intramural ganglia of the porcine urinary bladder trigone. Folia Histochem Cytobiol. 2004, 42:5-11.
6. Garcia-Aparicio L, Blazquez-Gomez E, Martin O, Krauel L, de Haro I, Rodo J: Bacterial characteristics and clinical significance of ureteral double-J stents in children. Actas Urol Exp. 2015, 39:53-6. 10.1016/j.susec.2014.11.002
7. Kati B, Yakupogullari Y, Polat EC, Pelit ES, Gunes A: Is there any relationship between ureteral DJ stent colonization and lower urinary tract symptom severity?. J Turgut Ozal Med Cent. 2018, 25:7-11.
8. Lee ES, Lee C, Kim Y, Shin Y: Estimation of benign prostatic hyperplasia prevalence in Korea: an epidemiological survey using International Prostatic Symptom Score(IPSS) in Yongchon County. Korean J Urol. 1995, 36:1345-52.
9. Vallejo Herrador J, Burgos Revilla FJ, Alvarez Alba J, Sáez Garrido JC, Téllez Martínez-Fornés M, Sánchez de la Muela P, Martin-Laborda y Bergasa F: [Double J ureteral catheter. clinical complications]. Arch Esp Urol. 1998, 51:561-75.
10. Kehinde EO, Rotimi VO, Al-Awadi KA, Abdul-Halim H, Boland F, Al-Hunayan A, Pazhoor A: Factors predisposing to urinary tract infection after J ureteral stent insertion. J Urol. 2002, 167:1334-7. 10.1016/S0022-5347(05)63294-9
11. Joshi HB, Stainthorpe A, MacDonagh RP, Keeley FX Jr, Timoney AG, Barry MJ: Indwelling ureteral stents: evaluation of symptoms, quality of life and utility. J Urol. 2005, 169:1065-9; discussion 1069. 10.1097/01.ju.0000048980.33855.90