NF90 Regulates Cell Cycle Exit and Terminal Myogenic Differentiation by Direct Binding to the 3'-Untranslated Region of MyoD and p21WAF1/CIP1 mRNAs*

Lingfang Shi†, Guohua Zhao‡, Daoming Qiu‡, Wayne R. Godfrey§, Hannes Vogel¶, Thomas A. Rando‡, Hong Hu‡ and Peter N. Kao‡‡

From the †Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California 94303-5236, §Cellular Immunology, Dendreon Corp., Seattle, Washington 98121, the Departments of ¶Pathology and |Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, and the Neurology Service, Veterans Affairs Palo Alto Health Care Systems, Palo Alto, California 94304

Received for publication, September 24, 2004, and in revised form, March 2, 2005
Published, JBC Papers in Press, March 3, 2005, DOI 10.1074/jbc.M411034200

NF90 and splice variant NF110/ILF3/NFAR are double-stranded RNA-binding proteins that regulate gene expression. Mice with targeted disruption of NF90 were engineered. NF90(−/−) mice were born small and weak and succumbed to perinatal death within 12 h because of neuromuscular respiratory failure. Lung inflation and morphology were normal in NF90(−/−) mice. The diaphragm and other skeletal muscles in NF90(−/−) mice demonstrated disorganized arrangement and paucity of myofibers, evidence of myocyte degeneration and increased apoptosis. The expression of myogenic regulators, MyoD, myogenin, and p21WAF1/CIP1, was severely decreased in NF90(−/−) mice. These myogenic transcription factors and cell cycle inhibitors are regulated in part through post-transcriptional mRNA stabilization. Northwestern blotting revealed that NF90 is the principal and specific p21WAF1/CIP1, and MyoD 3'-untranslated region RNA-binding protein in developing skeletal muscles. NF90 regulates transcription factors and a cell cycle inhibitor essential for skeletal muscle differentiation and for survival.

Proteins that contain double-stranded RNA binding motifs (dsRBMs) contribute to gene regulation at multiple levels. The dsRBMs consists of 65–75 amino acids that adopt an α-β-β-α conformation that confers the ability to bind structured RNAs. The dsRBMs is evolutionarily conserved from Escherichia coli (RNase III) through Drosophila (Staufen), to humans (NF90, PKR, ADAR). Proteins with dsRBMs contribute to RNA metabolism at multiple levels including transcription (NF90 and RNA helicase A), RNA splicing (NF90), RNA editing (ADAR), RNA export (NF90), subcellular RNA localization (NF90, Staufen), and translation initiation (NF90, PKR) (reviewed in Refs. 1–3). Post-transcriptional gene silencing through RNA interference involves enzymatic cleavage of RNA by the dsRBM protein, DICER (4).

NF90 and its splice variant, NF110, are proteins with 2 dsRBMs, which are localized predominantly in the nucleus of diverse cells and tissues (5). Alternative names conferred on the NF90 family include human mitotic phase phosphoprotein 4 (MPP4) (6), Xenopus 4F1 and 4F2 (7), murine interleukin enhancer binding factor (ILF)-3 (8), translation control protein (TCP)-80 (9), double-stranded RNA-binding protein (DRBP)-76 (10), and nuclear factor associated with RNA (NFAR)-1 and 2 (11). We originally purified NF90 and NF45 in a complex with lupus autoantigens Ku70 and Ku80 from the nucleus of activated Jurkat T-cells (12). The NF90/NF45/Ku complex bound specifically to the antigen receptor response element/nuclear factor of activated T-cells (NF-AT) binding site in the human IL-2 promoter (5, 12, 13). NF90 and NF45 stabilize the association between the catalytic subunit of DNA-dependent protein kinase, DNA-PKcs and DNA-targeting subunits, Ku70 and Ku80 (14). NF90 and NF110 activate or repress transcription depending on the promoter context (11, 15). NF90 and NF45 specifically transactivate the IL-2 promoter in activated T-cells (16).

The arginine-glycine-rich C-terminal domain of NF110/ILF3 is methylated in vitro by protein-arginine methyltransferase 1 (17), and in vivo methylation may modulate transcriptional regulation and chromatin reorganization (18).

The Xenopus homolog of NF90 and NF110 is termed CCAAT-box transcription factor (CBTF) and regulates the transcriptional activation of the hematopoietic regulatory factor, GATA-2 (19). In early development, CBTF is retained in the cytoplasm through interactions with maternal RNA. At the midblastula transition, degradation of maternal RNA releases CBTF for translocation into the nucleus, followed 4 h later by development of CCATT DNA binding activity and transcriptional activation of GATA-2 (20). The dsRBMs of CBTF are capable of binding both DNA and RNA (21), and intact dsRBMs are required for transcriptional control (15).

In addition to roles in transcriptional regulation, NF90 contributes to RNA splicing as a component of the spliceosome (11, 22). NF90 specifically binds to AU-rich elements in the 3'-UTR of IL-2 mRNA, stabilizing IL-2 mRNA against rapid degradation, and contributing to the up-regulation of IL-2 gene expression in activated T-cells (23). NF90 mediates nuclear export of IL-2 mRNA to the cytoplasm through the interaction of the

* This work was supported by National Institutes of Health Grants R01-AI39624 and R01-HL62588 and the Donald E. and Delia B. Baxter TM Veterans Affairs Palo Alto Health Care Systems, Palo Alto, California 94304. ** To whom correspondence should be addressed: Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, California 94303-5236, Tel.: 650-725-0570; Fax: 650-725-5489; E-mail: peterkao@stanford.edu.

The nucleotide sequence(s) reported in this paper has been submitted to the GenBank™/EBI Data Bank with accession number(s) AF506968.† The abbreviations used are: dsRBM, double-stranded RNA binding motifs; IL, interleukin; UTR, untranslated; TUNEL, terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling; ILF, interleukin enhancer binding factor; CBTF, CCAAT-box transcription factor; ES, embryonic stem cells; nt, nucleotides.

† G. Zhao and P. N. Kao, unpublished observations.
NF90 nuclear export signal with the nuclear export karyopherin, exportin-5 (24). Redistribution of NF90/MPP4 from the nucleus to the cytoplasm during mitosis is associated with increased phosphorylation (6, 13).

In the cytoplasm, NF90 is associated both with translationally quiescent ribonucleoprotein (RNP) complexes and with ribosomes (25). Like many other mRNP components, NF90 is an autoantigen in human and experimental systemic lupus erythematosus (26). dsRBM proteins such as NF90/ILF3 are highly expressed in the testis, where they contribute to gene regulation by repressing the translation of nascent mRNAs (8). The mRNA encoding β-glucosidase is specifically translationally repressed by NF90/TCP80 (9). A search for other liver mRNAs specifically bound and translationally repressed by NF90/TCP80 identified aldolase B, complement protein 8 and fibronectin receptor β1 (9). The prototypic dsRBM protein, staufen, contributes to localized translation of specific mRNAs in mammalian neurons (27). Tau is a microtubule-associated protein that is preferentially localized in axons, and abnormal accumulations of tau form neurofibrillary tangles that contribute to the pathology of Alzheimer dementia (28). The 3′-UTR of tau mRNA contains AU-rich elements that contribute to axonal targeting; the axonal targeting element is specifically bound by NF90 and NF110/ILF3 (29). The interactions between cytoplasmic NF90/TCP80, translation elongation initiation factors α, β, and γ (14) and PKR (10, 11, 25, 30) are likely to regulate translation of specifically bound mRNAs.

NF90 has been implicated in host antiviral responses (25, 30) (31, 32). Virally encoded structured RNAs interact specifically with NF90 dsRBMs, including the HIV TAR loop, the adenovirus VA2 RNA (30), hepatitis B RNA (33), and the 5′- and 3′-UTRs of the bovine virus diarrhea virus (32). Specific binding of NF90 and NF45 to both the 5′- and 3′-UTRs of BVDV RNA virus was proposed to regulate the balance between viral replication and translation (32).

To further characterize the role of NF90 in regulation of gene expression and development, we have generated mice with targeted disruption of NF90. Our observation of periarticular lethality associated with muscle weakness and respiratory failure in NF90(−/−) mice revealed an unexpected contribution of NF90 to myogenic differentiation. Muscle development is regulated through the coordinated expression of myogenic regulatory factors that include MyoD, Myf5, myogenin, and Mrf4, and cyclin-dependent kinase inhibitors of the p21WAF1/CIP1 family (34, 35). MyoD and Myf5 direct primary myocyte differentiation, myogenin directs secondary differentiation, and p21WAF1/CIP1 expression promotes cell cycle exit and terminal differentiation. In differentiating myoblasts and regenerating adult muscle, up-regulation of MyoD, myogenin, and p21WAF1/CIP1 expression occurs concurrently through transcriptional mechanisms and post-transcriptional mRNA stabilization by specific RNA-binding proteins (35, 36). Here, we demonstrate that MyoD, myogenin, and p21WAF1/CIP1 are novel target genes essentially regulated by NF90. Our results led us to propose that the phenotype of muscle weakness and increased apoptosis in NF90(−/−) mice is explained by defects in skeletal myocyte differentiation arising from insufficient expression of myogenic regulatory factors.

**Experimental Procedures**

**Genomic Cloning and Targeting Vector Generation**—The murine genomic NF90/ILF3 was isolated from a 129SvJ library using the human NF90 cDNA probe (performed at Incyte Genomics). The nucleotide sequence and intron-exon structure of the 29,085-bp gene was determined and deposited in GenBank™ (AF506968).

A targeting vector was designed for constitutive disruption of NF90 exons 2–4 (Fig. 1A). The 5′ targeting arm was a 6.75-kb BamH1 restriction fragment digested from a genomic NF90 subclone, and the 3′ targeting arm was 2.8 kb generated with PCR primers that introduced flanking EcoR1 restriction sites (sense primer b3: 5′-GGCTGTTGGCT- TCTGCGCCATGTCG-3′ and antisense primer c3: 5′-GGCGATTTCCCTGCGCCATGTCG-3′). These targeting arms were cloned into pKO Scrambler NKT-V-1903 targeting vector, which contains a positive selection neomycin resistance gene and a herpes thymidine kinase negative selection gene (Stratagene). Embryonic stem cells (R1) were transfected by electroporation and selected for resistance to G418 and ganciclovir.

**Genotype Analysis by Southern Hybridization and PCR**—Genomic DNA was isolated from ES cells or tail biopsy specimens, digested with HindIII (3′ analysis) or EcoRI (5′ analysis), separated on a 0.7% agarose gel, followed by transfer to nitrocellulose membrane. Southern hybridization of the specific wild-type and targeted genomic fragments was performed using randomly primed 32P-labeled probes outside the targeting arms (Fig. 1A), or an internal probe that hybridized to the neomycin gene, according to standard methods.

Genotyping was also performed by PCR across the 3′ targeting arm, using LA Taq™ (Takara Bio) with locus primers, b3, 5′-GGCTGTTGGCT-TCTGCGCCATGTCG-3′ & C4-⁎, 5′-GGTCCAGCGTC- CCTGACTGATAAGCTAAGAGGG-3′ and C4-⁎. PCR amplification was conducted according to the manufacturer’s directions consisting of an initial incubation at 94 °C for 2 min, followed by 35 cycles at 98 °C for 20 s, 68 °C for 2 min, followed by 35 cycles at 98 °C for 20 s, 68 °C for 3 min.

**Expression Analysis by Northern and Western Hybridizations**—Total RNA was extracted from newborn mice using TRizol reagent (Invitrogen), and 20 μg was fractionated in a 1% denaturing agarose gel, then transferred to nitrocellulose. Northern hybridization was performed using a randomly primed 32P-labeled probe for NF90.

Extracted total proteins (20 μg) from newborn mice were fractionated by SDS-PAGE (8% separating gel) and transferred to nitrocellulose membranes. Western immunoblotting was performed using rabbit polyclonal antisera (1:1000 dilution) generated against recombinant NF90 protein (5), followed by secondary goat anti-rabbit antibody (1:3000 dilution), and detection using enhanced chemiluminescence (Amer sham Biosciences). Immunoblotting analysis of wild-type murine tissue extracts was performed using a monoclonal antibody that recognizes NF90 (anti-DRBP76, Transduction Laboratories 612154), followed by a goat anti-mouse secondary antibody (Santa Cruz Biotechnology SC-2031). Histology, Immunohistochemistry, and in Situ TUNEL Analysis—Whole embryos or newborn mice with skin removed were fixed in 10% neutral buffered formalin followed by paraffin-embedding and tissue sections. Staining at 4-μm thickness with hematoxylin and eosin was performed according to standard procedures.

For immunodetection of NF90, sections were deparaffinized and rehydrated, then boiled for 20 min in 10 mM citric acid in a microwave oven. Blocking of nonspecific mouse antibodies was performed by incubation with 3% H2O2 for 5 min followed by incubation with the Vector M.O.M. immunodetection kit (Vectorlabs) for 1 h. Anti-DRBP76 monoclonal antibody specific for NF90/ILF3/DRBP76 (Transduction Laboratories) was incubated at 1:100 dilution for 35 min at room temperature. The signal was amplified by using VECTASTAIN Elite ABC Reagent (Vector Laboratories) and visualized by a horseradish peroxidase reaction using stable diaminobenzidine (Invitrogen). In situ apoptosis was analyzed by TUNEL (TACS 2 TdT, Trevigen). Reverse Transcription Polymerase Chain Reactions—RT-PCR analysis was performed to detect mRNA expression of myogenic regulatory factors and cell cycle control protein p21WAF1/CIP1. Total RNA from skeletal muscles of newborn mice (2–5 μg) was used as template for first strand cDNA synthesis using Superscript reverse transcriptase (Invitrogen), according to the manufacturer’s directions. PCR amplifications were subsequently performed using 20% of the first strand cDNA mixture, and specific primers for p21WAF1/CIP1 (NM_007669 5′-GGCGACAGCAATGCAGATTTTC (with one mismatched base from human p21WAF1/CIP1, underlined) and 883–5′-CCCTCCCAACCAAGCTTCTG (372 bp), myogenin (BC048683) 5′-GAGGCGAGTCTCCGCTGATCAGGG and 5′-CTGGCTCTGGTCCCCGAGCG (389 bp), control amplification of murine β-actin mRNA was performed using primers 5′-AGACGCGGGAATTCACCACTGTGTCG (489 bp). Control amplification of murine β-actin mRNA was performed using primers 5′-AGACGCGGGAATTCACCACTGTGTCG (489 bp). Control amplification of murine β-actin mRNA was performed using primers 5′-AGACGCGGGAATTCACCACTGTGTCG (489 bp). Control amplification of murine β-actin mRNA was performed using primers 5′-AGACGCGGGAATTCACCACTGTGTCG (489 bp). Control amplification of murine β-actin mRNA was performed using primers 5′-AGACGCGGGAATTCACCACTGTGTCG (489 bp). Control amplification of murine β-actin mRNA was performed using primers 5′-AGACGCGGGAATTCACCACTGTGTCG (489 bp).
Nested amplifications were performed with a forward primer containing a T7 RNA polymerase recognition sequence, T7, CCAAGCTTCTAAATAGGAGA. Primers to generate DNA templates for T7-directed \textit{in vitro} transcription of the 3'-UTRs were: MyoD forward (T7–1241/11001), 5'-T7-GACACTCTTCCACACTGCTC and MyoD reverse (1762-), 5'-GCACTACACAGCATGCCT (36), p21 WAF1/CIP1 forward, T7–511/H11001 and 883- (above). Radiolabeled RNA probes were generated by \textit{in vitro} transcription using T7 RNA polymerase, in the presence of 32P-labeled UTP (36), according to the manufacturer’s directions (Promega).

Murine tissue extracts (testis, brain, skeletal muscle, 80 μg each) or recombinant NF90 and NF45 proteins (5 μg) were fractionated by 10% SDS-PAGE, and transferred electrophoretically (25 mM Tris-HCl pH 8.3, 192 mM glycine, 20% methanol) to nitrocellulose membranes. The proteins were renatured by incubating the membranes overnight at room temperature in Northwestern buffer (10 mM Tris-HCl pH 7.5, 150 mM KCl, 5 mM MgCl2, 0.1% gelatin, 0.1% Tween 20, containing salmon sperm DNA (50 μg/ml). The membranes were hybridized with the radiolabeled RNA probes (2–4 × 10^7 cpm) for 2 h at room temperature in the presence of yeast tRNA (50 μg/ml) (29, 37), washed twice for 5 min at room temperature and once at 45 °C for 2 h, followed by autoradiography.

Fig. 1. Targeted disruption of the NF90 gene results in growth retardation and perinatal lethality. A, genomic organization of the NF90 locus, and targeting strategy to delete exons 2–4 by homologous recombination. Restriction sites are shown for BamHI (B1), EcoRI (E1), HindIII (H1), NotI (N1). B, Southern blot analysis of HindIII-restricted R1 ES cell DNA. The 7.44-kb fragment represents the wild-type allele, and the 9.05-kb fragment represents the targeted allele (because of elimination of the Hind III site downstream of exon 4). C, photograph of newborn mice from F1 intercross of NF90-targeted heterozygotes. D, genotype analysis of NF90-targeted E19 embryos by Southern hybridization.

RESULTS

Generation of Mice with Targeted Disruption of NF90 Gene—

The targeting strategy for NF90 was to disrupt exons 2–4, eliminating the ATG translation initiation codon and introducing a translational frameshift that disrupts the open reading frame (Fig. 1A). The targeting vector was introduced into R1 embryonic stem cells by electroporation and transfected ES cells were subjected to positive and negative selection. 12 of 110 G418/gancyclovir-resistant ES cell clones showed appropriate gene targeting. The targeted allele shows a Southern hybridization signal at 9 kb, in addition to the wild-type allele with a hybridization signal of 7.4 kb (Fig. 1A, lane 4). Targeted ES cell clones were further analyzed for correct integration using an internal probe for the neomycin resistance gene (data not shown). Three independently derived ES cell lines were injected into blastocysts (C57BL/6), and chimeric mice were derived. Two separate NF90-targeted ES cell lines transmitted through the germline. In mice ex-
Diaphragmatic Respiratory Failure in NF90(−/−) Mice

TABLE I
Genotype analysis of progeny from NF90+/− heterozygous intercrosses

| Age | NF90(+/+) | NF90(+/-) | NF90(-/-) |
|-----|-----------|-----------|-----------|
| %  | %         | %         | %         |
| <2 h | 32 (25) | 65 (50.8) | 31 (24.2) |
| 1.42 ± 0.24 | 1.39 ± 0.25 | 0.94 ± 0.11 |

amined through 18 months of age, NF90(+/−) heterozygote mice demonstrate no abnormal phenotypes.

Gross Phenotype of NF90(−/−) Mice—Following heterozygous intercrossing, homozygote NF90(−/−) mice were present in utero at the Mendelian frequency (Table I and Fig. 1C, lanes 4 and 8). At the time of delivery, all NF90(−/−) mice were smaller and weighed 35% less than their littermates (Table I and Fig. 1D). Approximately half of the NF90(−/−) mice died immediately after birth. The surviving NF90(−/−) mice appeared weak and showed almost no spontaneous movements. When lifted by their tails, they emitted a very weak cry compared with their littermates. Over the course of several hours, the NF90(−/−) mice became increasingly cyanotic compared with their littermates, and oxygen saturation was noted to be 65% in a cyanotic NF90(−/−) mouse, compared with 85–98% in littermates (Fig. 1D). Video analysis of breathing revealed that NF90(−/−) mice displayed more rapid and shallow tidal breathing, with no sighs, compared with their heterozygote and wild-type littermates. The NF90(−/−) mice never suckled for milk, and were ignored by their mothers. In over 400 live births, no homozygote NF90(−/−) mice animals survived beyond 12 h after delivery. Thus, the NF90 gene is essential for perinatal survival.

Gene Expression Analysis in NF90(−/−) Mice—We analyzed the expression of NF90 mRNA and protein in Day 1 NF90 homozygote, heterozygote, and wild-type littermates. The Northern blot analysis shows that wild-type mice express a single NF90 mRNA migrating at 3.4 kb (Fig. 2A, lanes 2, 4, and 5), and heterozygote mice express two isoforms of NF90 mRNA, migrating at 3.4 and 3.1 kb (Fig. 2A, lanes 1 and 3). These mRNA sizes are consistent with transcription of both wild-type and targeted NF90 alleles. The NF90(−/−) mice demonstrate expression of a single isoform of NF90 mRNA migrating at 3.1 kb (Fig. 2A, lanes 6 and 7), and this size is consistent with transcription just of targeted alleles, which lack exons 2–4. The prominent intensity of the truncated 3.1-kb targeted NF90 mRNA in NF90(−/−) mice indicates that the endogenous NF90 promoter is functional following deletion of exons 2–4. Furthermore, the increase in intensity of the 3.1-kb truncated form of NF90 mRNA compared with the 3.4-kb wild-type form (Fig. 2A, lanes 6 and 7 versus 2, 4, and 5) suggests that the null phenotype (absent NF90 protein, Fig. 2B) is associated with increased transcription of the NF90 gene. Because the targeting strategy introduced a translational frameshift downstream of exon 4, there was no NF90 protein synthesized in NF90(−/−) mice (see below and Fig. 2B). Our prior studies demonstrated that transgenic expression of histidine-tagged NF90 protein potently suppressed the expression of endogenous NF90 protein (5). Here, the absence of NF90 protein in NF90(−/−) mice is associated with increased mRNA expression of the 3.1-kb targeted NF90 allele, through transcriptional or post-transcriptional up-regulation.

We analyzed protein expression of NF90 in extracts prepared from newborn wild-type, heterozygote, and homozygote NF90 mice by Western immunoblotting (Fig. 2B). In NF90 wild-type and heterozygote mice we observed a prominent immunoreactive band at 90 kDa, and a fainter band at 110 kDa, similar to the principal size observed in human Jurkat T-cell nuclear extracts (5) (Fig. 2B, lanes 1–5). The level of NF90 protein expression in heterozygote NF90 mice was slightly decreased from that in wild-type mice (Fig. 2B, lanes 1 and 3 versus 2, 4, and 6). The NF90(−/−) mice showed complete absence of the 90- and 110-kDa bands (Fig. 2B, lanes 6, 7 versus 1–5), demonstrating that the translational frameshift in the knock-out phenotype was associated with complete absence of NF90 and NF110 protein expression. Examination of the tissue-specific expression of NF90 and NF110 proteins in adult wild-type mice showed the greatest expression in testis, brain, and skeletal muscles (Fig. 2C, lanes 8, 2, 6), and moderate expression in heart, spleen, lung, liver, and kidney (Fig. 2C, lanes 1, 3, 4, 5, and 7).

Histological Analysis of NF90(−/−) Mice—We performed careful histology on hematoxylin and eosin-stained sections of developing and newborn wild-type, heterozygote, and homozygote NF90 mice and did not discern any dramatic organ-specific developmental abnormalities. Consistent with the overall size reduction of the homozygote NF90-deficient mice, we observed a proportionate reduction in the size of all the internal organs, compared with wild-type and heterozygote littermates.

We characterized the tissue-specific expression and subcellular localization of NF90 protein by immunohistochemistry with a monoclonal antibody that specifically recognizes NF90 (Fig. 3). Wild-type mice show widespread expression of NF90 protein, predominantly in the nucleus of cells, including cardiomyocytes (Fig. 3A), lung epithelial and endothelial cells (Fig. 3B), certain hepatocytes (Fig. 3C), and most epithelial cells lining the stomach (Fig. 3D). We observed the strongest expression of NF90 in cerebral (Fig. 3E) and cerebellar (Fig. 3F) neurons, and in skeletal muscles of the back (Fig. 3G) and diaphragm (Fig. 3H) in wild-type mice. Skeletal muscles (Fig. 3H)
Diaphragmatic Respiratory Failure in NF90(−/−) Mice

3G), certain neurons (Fig. 3F) and epithelial cells (Fig. 3, B and D) of NF90(+/+) mice revealed moderate NF90 immunostaining in the cytoplasm. For comparison, NF90 immunostaining was completely absent in NF90(−/−) mice in cerebral (Fig. 3I) and cerebellar (Fig. 3J) neurons, and in skeletal muscles of the back (Fig. 3K) and diaphragm (Fig. 3L). These results support the specificity of the monoclonal antibody in recognizing NF90, and confirm that NF90(−/−) mice express no detectable NF90 protein.

As the cause of death of the homozygote NF90-deficient mice appeared to be respiratory failure, we examined the lung histology in detail. We found no evidence of lung developmental abnormalities, insufficient lung inflation, pulmonary edema, or hyaline membrane formation in the NF90(−/−) mice that might explain perinatal death because of respiratory failure. We detected no differences in the expression of lung surfactant genes SP-A, -B, and -C, and a 50% decrease in SP-D expression by RT-PCR in NF90(−/−) mice compared with wild-type littermates (data not shown). Surfactant protein D functions principally in lung host defense, and mice lacking SP-D are viable after birth (38).

**Blood, Serum, and Lymphocytes Subset Analyses of NF90(−/−) Mice**—Complete blood count analyses of the neonatal mice were difficult to perform because of the low amount of blood recoverable at sacrifice. However, there was a consistent suggestion of anemia in the NF90(−/−) mice (data not shown). White blood cell counts and differentials were similar between NF90(−/−) mice and wild-type littermates. There were no significant differences in the clinical chemistry measurements of hepatic or renal function between homozygote, heterozygote, and wild-type mice NF90(−/−) mice (data not shown).

Flow cytometry analyses of thymic and splenic lymphocyte subsets from neonatal NF90(−/−) and heterozygous littermates revealed no differences in the expression of CD4 and CD8 double positive and single positive thymocytes between NF90(+/+) and NF90(−/−) mice (data not shown).

**NF90(−/−) Mice Show Pathological Maturation of Skeletal Muscles**—Searching for a potential cause of perinatal respiratory failure that would be independent of the lung parenchyma, we carefully examined the skeletal muscle fibers of the diaphragm and discovered that NF90(−/−) mice exhibited a relative paucity of muscle fibers and generally thinner diaphragm muscles than heterozygote or wild-type littermates (Fig. 4, B versus A, and Fig. 3, L versus H). The abnormal features present in the diaphragm were also present in intercostal and back muscles of homozygote NF90(−/−) mice, including overall paucity of muscle fibers, wider variation of muscle fiber sizes, and some evidence of myofibers with strongly eosinophilic and homogeneous cytoplasm (Fig. 4, B versus A). These abnormal fibers were likely hypercontracted, possibly as a consequence of disrupted integrity of the sarclemma inducing unstable ion fluxes. Nuclei within skeletal myofibers of NF90(−/−) mice appeared larger with more granular chromatin visible compared with nuclei from myofibers of heterozygote and wild-type littermates. We observed greater numbers of multinucleated giant fusing myocytes in the NF90(−/−) mice (Fig. 4, D versus C), suggesting that skeletal muscles in the NF90(−/−) mice are developmentally delayed, or that ongoing muscle degeneration may be triggering efforts at regeneration.

**TUNEL Analysis of NF90-deficient Mice**—The small size of the NF90(−/−) mice and their internal organs may be a consequence of a combination of generalized growth retardation, developmental delay, and/or increased apoptosis during development. To further understand the causes of small size and perinatal death in NF90-deficient mice, we performed *in situ* TUNEL staining. TUNEL-positive cells were more prominent in E19 and newborn NF90(−/−) mice compared with wild-type or heterozygote littermates, throughout multiple organs. The greatest numbers of TUNEL-positive cells were present in cortical neurons and skeletal muscles of the diaphragm in NF90(−/−) animals (Fig. 5, B and D versus 5, A and C). The increased presence of TUNEL-positive cells in NF90(−/−) animals correlated with the observed reduction in size and weight.

**Reduced Expression of Myogenic Regulatory Factors, MyoD, Myogenin, and p21waf1/cip in NF90(−/−) Mice**—We analyzed neonatal skeletal muscle expression of MyoD, myogenin, and p21waf1/cip by semi-quantitative RT-PCR (Fig. 6A). Expression of MyoD mRNA expression was greatly inhibited, and myogenin and p21waf1/cip expression was reduced ~50% in NF90(−/−) compared with wild-type and heterozygote littermates (Fig. 6A, lanes 4–6 versus 2, 3, and 1). We discerned slight decreases in the myogenin and p21waf1/cip RT-PCR products in the heterozygote compared with the wild-type
p21WAF1/CIP1 mRNA sequences show significant conservation. TUNEL-positive nuclear staining predominated in cerebral and muscle tissues of NF90(−/−) mice compared with wild-type mice. Sections for TUNEL analysis were prepared from E18 specimens.

Our study is the first to establish that NF90, a dsRNA-binding protein, is essential for perinatal survival in mice. The gross phenotype of NF90(−/−) mice is small size, weak cry, lack of spontaneous movements and death because of rapidly progressive respiratory failure. The relative contributions of diaphragmatic weakness, neurologic abnormalities or metabolic derangements to perinatal death are difficult to distinguish. Nevertheless, the immediate cause of death less than 12 h after delivery appears to be diaphragm muscle weakness and respiratory failure. We observed morphological correlations with respiratory failure of disorganized diaphragm architecture and muscle fibers with inclusions suggestive of apoptosis in the NF90(−/−) mice. A similar phenotype of perinatal death because of respiratory failure and decreased mass of diaphragm and intercostals muscles was observed in mice deficient in the activin- and transforming growth factor β-modulating protein, follistatin (41).

Targeted disruptions of other dsRBMs-binding proteins in mice have been associated with varying phenotypes. RNA helicase is a nuclear transcriptional regulator that is the mammalian homolog of the Drosophila X-chromosome dosage-compensating factor, maleless. Targeted disruption of RNA helicase resulted in embryonic lethality before gastrulation, and was associated with enhanced TUNEL-positive staining (42). Zfr is a nuclear zinc finger RNA-binding protein with homology to NF90, expressed at highest levels in testis, ovary, and brain (43). Targeted disruption of Zfr resulted in early embryonic lethality at day 8–9 as a conse-

**FIG. 4.** Skeletal muscle histopathology. Comparative histology by hematoxylin and eosin staining of diaphragm muscle (A and B) and skeletal muscle (latissimus) (C and D) between NF90(+/+) mice (A and C) and NF90(−/−) mice (B and D).

**FIG. 5.** TUNEL analysis of apoptosis in NF90(−/−) mice. TUNEL-positive nuclear staining predominated in cerebral and muscle tissues of NF90(−/−) mice compared with wild-type mice. Sections for TUNEL analysis were prepared from E18 specimens.

**FIG. 6.** Myogenic regulatory factor expression is reduced in NF90(−/−) mice. A, MyoD, myogenin, and p21WAF1/CIP1 and β-actin mRNA were detected in neonatal skeletal muscle by reverse-transcription PCR. B, Western immunoblot of p21WAF1/CIP1 expression; actin expression is shown as a loading control.
FIG. 7. Northwestern analysis reveals that p21\textsuperscript{WAF1/CIP1} and MyoD 3'-UTR RNAs interact specifically with NF90. RNA secondary structure predictions were performed using Zucker's mfold program (40) for p21\textsuperscript{WAF1/CIP1} 3'-UTR (511–883 nt; A), and MyoD (1241–1762 nt; B). Northwestern blots were performed using in vitro transcribed, radiolabeled 3'-UTR RNA probes for murine p21\textsuperscript{WAF1/CIP1} (C) or MyoD (D). Murine tissue extracts (80 μg each) (lanes 1–3, adult NF90(+/+); lanes 5 and 6, neonatal NF90(−/−)) and recombinant histidine-tagged NF90 and NF45 proteins (lanes 7 and 8, 10 μg each) (5) were fractionated by SDS-PAGE, transferred to nitrocellulose, and hybridized with probed \textsuperscript{32}P-labeled 3'-UTR probes.
Diaphragmatic Respiratory Failure in NF90(−/−) Mice

Essential and redundant contributions of myogenic regulatory factors (MRFs), MyoD, Myf5, and myogenin, and p21/\(^{WAF1/CIP1}\) family members to embryonic muscle development have been elucidated through gene targeting studies. Either MyoD or Myf5 can direct myogenic specification (50), whereas myogenin (51), and either p21/\(^{WAF1/CIP1}\) or p57/\(^{KIP2}\) are essential for normal myogenic differentiation (52). An essential role for MyoD in the development of the skeletal muscle of the diaphragm was revealed by the failure to obtain viable mice during backcrossing with mdx mice (lacking dystrophin) (53). Reductions in myogenin gene expression in mice resulted in embryonic or neonatal lethality characterized by severe reductions in skeletal muscles (51, 54, 55). Recent evidence suggests that Mrf4, an MRF previously considered to be involved in myogenic differentiation, may in fact be an early myogenic specification factor, serving a redundant function to that of MyoD and Myf5 (56). Up-regulation of p21/\(^{WAF1/CIP1}\) promotes cell cycle exit and terminal differentiation in skeletal muscles, characterized by the fusion of myoblasts into myotubes, and increased synthesis of muscle contractile proteins (57). p21/\(^{WAF1/CIP1}\)(−/−) mice develop normally however (58), and this was proposed to be because of redundant cell cycle regulation by p57/\(^{KIP2}\) (52). Mice that lacked both p21/\(^{WAF1/CIP1}\) and p57/\(^{KIP2}\) were not viable because of severely compromised muscle development as manifested by diminished diaphragm muscles. The absence of both cell cycle inhibitors resulted in over-proliferation and increased programmed cell death. This is consistent with our observations of increased apoptosis in NF90(−/−) mice, especially prominent in skeletal muscles and brain. The overall growth stunting of NF90(−/−) mice (40% lower weight than littermates) is likely a consequence of abnormal myogenesis and organogenesis related to defects in exiting the cell cycle. Future studies will be directed at identifying other structured RNA targets involved in differentiation that are critically regulated through specific binding to NF90.

Acknowledgments—We thank Tushar Desai and Mark Krasnow for helpful discussions.

REFERENCES

1. Ferro-Monti, I., and Mathews, M. B. (2000) Trends Biochem. Sci. 25, 241–246
2. Saunders, L. R., and Barber, G. N. (2003) FASEB J. 17, 961–983
3. Tian, B., Bevilacqua, P. C., Diegelman-Parente, A., and Mathews, M. B. (2004) Nat. Rev. Mol. Cell Biol. 5, 1013–1023
4. Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. (2000) Cell 101, 25–33
5. Kao, P. N., Chen, L., Brock, G., Ng, J., Kenny, J., Smith, A. J., and Corteshey, B. (1994) J. Biol. Chem. 269, 20691–20699
6. Malartre, M., Kneale, G., Wormington, M., and Guille, M. J. (2004) J. Biol. Chem. 279, 20432–20437
7. Saunders, L. R., Perkins, D. J., Balachandran, S., Michaels, R., Ford, R., Ayeda, M., and Barber, G. N. (2003) J. Biol. Chem. 278, 32300–32312
8. Corteshey, B., and Kao, P. N. (1994) J. Biol. Chem. 269, 20682–20690
9. Aoki, Y., Zhao, G., Qiu, D., Shi, L., and Kao, P. N. (1998) Am. J. Physiol. 275, L1164–L1172
10. Ting, N. S. Y., Kao, P. N., Chen, D. W., Lintott, L. G., and Lees-Miller, S. P. (1998) J. Biol. Chem. 273, 2136–2145
11. Reichman, T. W., Muniz, L. C., and Mathews, B. M. (2002) Mol. Cell. Biol. 22, 343–356
12. Zhao, G., Shi, L., Qiu, D., Hu, H., and Kao, P. N. (2005) Exp. Cell Res. 305, 322–323
13. Tang, J., Kao, P. N., and Hershman, H. R. (2000) J. Biol. Chem. 275, 19866–19876
14. Fischle, W., Wang, Y., and Allis, C. D. (2003) J. Biol. Chem. 278, 53447–53455
15. Zhou, Z., Ecklinder, L. J., Gygi, S. P., and Reed, R. (2002) Nature 419, 182–185
16. Shim, J., Lim, H., J. R. Y., and Karin, M. (2002) Mol. Cell 10, 1531–1544
17. Brownawell, A. M., and Macara, I. G. (2000) J. Cell Biol. 156, 53–61
18. Landgl, J. O., Kao, P. N., and Jacobs, B. L. (1999) Biochemistry 38, 6361–6368
19. Satoh, M., Shaeven, V. M., Kao, P. N., Okano, T., Shaw, M., Yoshida, H., Richards, B. H., and Reeves, W. H. (1999) J. Biol. Chem. 274, 34459–34464
20. St Johnston, D. (2001) EMBO J. 20, 6169–6179
21. Avila, J., Lucas, J. J., Perez, M., and Hernandez, F. (2004) Physiol. Rev. 84, 361–384
Diaphragmatic Respiratory Failure in NF90(−/−) Mice

29. Larcher, J. C., Gasmi, L., Viranaicken, W., Edeé, B., Bernard, R., Ginzburg, I., and Denoulet, P. (2004) FASEB J. 18, 1761–1763.
30. Liao, H. J., Kobayashi, R., and Mathews, M. B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8514–8519.
31. Krasnoselskaya-Riz, I., Spruill, A., Chen, Y. W., Schuster, D., Teslovich, T., Baker, C., Kumar, A., and Stephan, D. A. (2002) AIDS Res. Hum. Retroviruses 18, 591–604.
32. Isken, O., Grassmann, C. W., Sarisky, R. T., Kann, M., Zhang, S., Grosse, F., Kao, P. N., and Behrens, S. E. (2003) EMBO J. 22, 5655–5665.
33. Shin, H. J., Kim, S. S., Cho, Y. H., Lee, S. G., and Rho, H. M. (2002) Arch Virol. 147, 471–491.
34. Kablar, B., and Rudnicki, M. A. (2000) J. Cell. Physiol. 185, 155–173.
35. Puri, P. L., and Sartorelli, V. (2000) Proc. Natl. Acad. Sci. U. S. A. 95, 11869–11874.
36. Figueroa, A., Cuadrado, A., Fan, J., Atasoy, U., Muscat, G. E., Munoz-Canoves, P., Gorospe, M., and Munoz, A. (2003) Mol. Cell. Biol. 23, 4991–5004.
37. Chen, X., Sadlock, J., and Schon, E. A. (1993) Biochem. Biophys. Res. Commun. 191, 18–25.
38. Botas, C., Poullain, F., Akiyama, J., Brown, C., Allen, L., Zhang, S., Grosse, F., Kao, P. N., and Behrens, S. E. (2003) EMBO J. 22, 5655–5665.
39. Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N., and Klein, W. H. (1993) Nature 364, 501–506.
40. Zhang, P., Wong, C., Liu, D., Finegold, M., Harper, J. W., and Elledge, S. J. (1999) Genes Dev. 13, 213–224.
41. Meagher, M. J., Schumacher, J. M., Lee, K., Holdcraft, R. W., Edelhoff, S., Disteche, C., and Braun, R. E. (1999) Nature 406, 78–81.
42. Higuchi, M., Maas, S., Single, F. N., Hartner, J., Rozov, A., Burnashev, N., Feldmeyer, D., Sprengel, R., and Seeburg, P. H. (2000) Nature 406, 78–81.
43. Schumacher, J. M., Lee, K., Edelhoff, S., and Braun, R. E. (1995) J. Cell Biol. 129, 1023–1032.
44. Matzuk, M. M., Lu, N., Vogel, H., Sellheyer, K., Roop, D. R., and Bradley, A. (1995) Nature 374, 360–363.
45. Venuti, J. M., Morris, J. H., Vivian, J. L., Olson, E. N., and Klein, W. H. (1995) J. Cell Biol. 128, 563–576.
46. Zhang, P., Wong, C., Liu, D., Finegold, M., Harper, J. W., and Elledge, S. J. (1999) Science 287, 675–684.
47. Wang, J., and Walsh, K. (1996) Science 273, 359–361.
48. van der Giessen, K., Di-Marco, S., Clair, E., and Gallouzi, I. E. (2003) J. Biol. Chem. 278, 47119–47128.
49. Zuber, S. B., Eichele, G., Zhang, P., Rawls, A., Sands, A. T., Bradley, A., Olson, E. N., Harper, J. W., and Elledge, S. J. (1995) Science 267, 1024–1027.
50. Zhang, P., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P. (1995) Cell 82, 675–684.
51. Kassar-Duchossoy, L., Gayraud-Morel, B., Gomes, D., Rocancourt, D., Buckingham, M., Shinin, V., and Tajbakhsh, S. (2004) Nature 431, 466–471.
52. Parker, S. B., Eichele, G., Zhang, P., Rawls, A., Sands, A. T., Bradley, A., Olson, E. N., Harper, J. W., and Elledge, S. J. (1995) Science 267, 1024–1027.
53. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P. (1995) Cell 82, 675–684.
54. Meagher, M. J., Schumacher, J. M., Lee, K., Holdcraft, R. W., Edelhoff, S., Disteche, C., and Braun, R. E. (1999) Gene (Amst.) 239, 197–211.