Stable divisorial gonality is in NP

Hans L. Bodlaender*1, 2, Marieke van der Wegen1, and Tom C. van der Zanden1

1Department of Information and Computing Sciences, Universiteit Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands
2Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

\textbf{Abstract}

Divisorial gonality and stable divisorial gonality are graph parameters, which have an origin in algebraic geometry. Divisorial gonality of a connected graph \(G \) can be defined with help of a chip firing game on \(G \). The stable divisorial gonality of \(G \) is the minimum divisorial gonality over all subdivisions of edges of \(G \).

In this paper we prove that deciding whether a given connected graph has stable divisorial gonality at most a given integer \(k \) belongs to the class \(\text{NP} \). Combined with the result that (stable) divisorial gonality is \(\text{NP-hard} \) by Gijswijt, we obtain that stable divisorial gonality is \(\text{NP-complete} \). The proof consists of a partial certificate that can be verified by solving an Integer Linear Programming instance. As a corollary, we have that the number of subdivisions needed for minimum stable divisorial gonality of a graph with \(n \) vertices is bounded by \(2^{p(n)} \) for a polynomial \(p \).

1 Introduction

The notions of the divisorial gonality and stable divisorial gonality of a graph find their origin in algebraic geometry and are related to the abelian sandpile model (cf. \cite{7}). The notion of divisorial gonality was introduced by Baker and Norine \cite{1, 2}, under the name gonality. As there are several different notions of gonality in use (cf. \cite{1, 5, 6}), we add the term \textit{divisorial}, following \cite{5}. See \cite[Appendix A]{6} for an overview of the different notions.

Divisorial gonality and stable divisorial gonality have definitions in terms of a chip firing game. In this chip firing game, played on a connected multigraph \(G = (V, E) \), each vertex has a non-negative number of chips. When we \textit{fire} a set of vertices \(S \subseteq V \), we move from each vertex \(v \in S \) one chip over each edge with \(v \) as endpoint. Each vertex \(v \) in \(S \) has its number of chips decreased by the number of edges from \(v \) to a neighbour not in \(S \), and each vertex \(v \) not in \(S \) has its number of chips increased by the number of edges from \(v \) to a neighbour in \(S \). Such a firing move is only allowed when after the move, each vertex still has a nonnegative number of chips. The \textit{divisorial gonality}
of a connected graph G can be defined as the minimum number of chips in an initial assignment of chips (called divisor) such that for each vertex $v \in V$, there is a sequence of allowed firing moves resulting in at least one chip on v. Interestingly, this number equals the number for a monotone variant, where we require that each set that is fired has the previously fired set as a subset. See Section 2 for precise definitions.

A variant of divisorial gonality is stable divisorial gonality. The stable divisorial gonality of a graph is the minimum of the divisorial gonality over all subdivisions of a graph: we can subdivide the edges of the graph any nonnegative number of times. (In the application in algebraic geometry, the notion of refinement is used. Here, we can subdivide edges but also add new degree one vertices to the graph in a refinement, but as this never decreases the number of chips needed, we can ignore the possibility of adding leaves. Thus, we use subdivisions instead of refinements.)

In this paper, we study the complexity of computing the stable divisorial gonality of graphs: i.e., we look at the complexity of the Stable Divisorial Gonality problem: given an undirected graph $G = (V, E)$ and an integer K, decide whether the stable divisorial gonality of G is at most K. It was shown by Gijswijt [10] that divisorial gonality is NP-complete. The same reduction gives that stable divisorial gonality is NP-hard. However, membership of stable divisorial gonality in NP is not trivial: it is unknown how many subdivisions are needed to obtain a subdivision with minimum divisorial gonality. In particular, it is open whether a polynomial number of edge subdivisions are sufficient.

In this paper, we show that stable divisorial gonality belongs to the class NP. We use the following proof technique, which we think is interesting in its own right: we give partial certificates that describe only some aspects of a firing sequence. Checking if a partial certificate indeed corresponds to a solution is non-trivial, but can done by solving an integer linear program. Membership in NP follows by adding to the partial certificate, that describes aspects of the firing sequence, a certificate for the derived ILP instance. As a corollary, we have that the number of subdivisions needed for minimum stable divisorial gonality of a graph with n vertices is bounded by $2^{p(n)}$ for a polynomial p.

It is known that treewidth is a lower bound for stable divisorial gonality [8]. The stable divisorial gonality of a graph is at most the divisorial gonality, but this inequality can be strict, see for example [4, Figure 1].

We finish this introduction by giving an overview of the few previously known results on the algorithmic complexity of (stable) divisorial gonality. Bodewes et al. [4] showed that deciding whether a graph has stable divisorial gonality at most 2, and whether it has divisorial gonality at most 2 can be done in $O(n \log n + m)$ time. From [9] and [3], it follows that divisorial gonality belongs to the class XP. It is open whether stable divisorial gonality is in XP. NP-hardness of the notions was shown by Gijswijt [10].
2 Preliminaries

In this paper, we assume that each graph is a connected undirected multigraph, i.e., we allow parallel edges. In the algebraic number theoretic application of (stable) divisorial gonality, graphs can also have selfloops (edges with both endpoints at the same vertex), but as the (stable) divisorial gonality of graph does not change when we remove selfloops, we assume that there are no selfloops.

A divisor D is a function $D : V(G) \to \mathbb{Z}$. The degree of a divisor is $\deg(G) = \sum_{v \in V} D(v)$. We call a divisor effective if $D(v) \geq 0$ for all vertices v. Let D be an effective divisor and A a set of vertices. We call A valid, if for all vertices $v \in A$ it holds that $D(v)$ is at least the number of edges from v to a vertex outside A. When we fire a set A, we obtain a new divisor: for every vertex $v \in A$, the value of $D(v)$ is decreased by the number of edges from v to vertices outside A and for every vertex $v \notin A$, the value $D(v)$ is increased by the number of edges from v to A. We are only allowed to fire valid sets, so that the divisor obtained is again effective.

Two divisors D and D' are called equivalent, if there is an increasing sequence of sets $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_k \subseteq V$ such that for every i the set A_i is valid after we fired $A_1, A_2, \ldots, A_{i-1}$ starting from D, and firing A_1, A_2, \ldots, A_k yields D'. We write $D \sim D'$ to denote that two divisors are equivalent. For two equivalent divisors D and D', the difference $D' - D$ is called transformation and the sequence A_1, A_2, \ldots, A_k is called a level set decomposition of this transformation. A divisor D reaches a vertex v if it is equivalent to a divisor D' with $D'(v) \geq 1$.

A subdivision of a graph G is a graph H obtained from G by applying a nonnegative number of times the following operation: take an edge between two vertices v and w and replace this edge by two edges to a new vertex x.

The stable divisorial gonality of a graph G is the minimum number k such that there exists a subdivision H of G and a divisor on H with degree k that reaches all vertices.

There are several equivalent definitions, which we omit here. If we do not require that the sequence of firing sets is increasing, i.e., we omit the requirements $A_i \subseteq A_{i+1}$, then we still have the same graph parameter (see [9]). The notion of a firing set can be replaced by an algebraic operation (see [2]); instead of subdivisions, we can use refinements where we allow that we add subdivisions and trees, i.e., we can repeatedly add new vertices of degree one. The definition we use here is most intuitive and useful for our proofs.

3 A (partial) certificate

For a yes-instance (G, k) of the problem, there is a subdivision G' and a divisor D with k chips that reaches all vertices. We do not know whether the number of subdivisions in G' is polynomial in the size of the graph, i.e. in the number of vertices and edges of the graph, so we cannot include G' in a polynomial certificate for this instance. But the chips in D can be placed on added vertices of G', so we cannot include D in our certificate either. We will prove that when
we subdivide every edge once, we can assume that there is a divisor \(D' \) that reaches all vertices and has all chips on vertices of this new graph, and hence we can include \(D' \) in a polynomial certificate.

Definition 3.1. Let \(G \) be a graph. Let \(G_1 \) denote the graph obtained by subdividing every edge of \(G \) once.

Lemma 3.2. Let \(G \) be a graph. The stable divisorial gonality of \(G \) is at most \(k \) if and only if there is a subdivision \(H \) of \(G_1 \) and a divisor \(D \) on \(H \) such that

- \(D \) has degree at most \(k \),
- \(D \) reaches all vertices of \(H \),
- \(D \) has only chips on vertices of \(G_1 \).

Proof. Suppose that there exists a subdivision \(H \) of \(G_1 \) and a divisor with the desired properties. Then it is clear that the stable divisorial gonality of \(G \) is at most \(k \), since \(H \) is a subdivision of \(G \) as well.

Suppose that \(G \) has stable divisorial gonality at most \(k \). Then there is a subdivision \(H \) of \(G \) and a divisor \(D \) on \(H \) with degree at most \(k \) that reaches all vertices. If not every edge of \(G \) is subdivided in \(H \), then subdivide every edge of \(H \) to obtain \(H_1 \). Consider the divisor \(D \) on \(H_1 \). By [11, Corollary 3.4] \(D \) reaches all vertices of \(H_1 \).

Let \(e = uv \) be an edge of \(G \), and let \(a_1, a_2, \ldots, a_r \) be the vertices that are added to \(e \) in \(H_1 \). Suppose that \(D \) assigns more than one chip to those added vertices, say it assigns one chip to \(a_i \) and one to \(a_j \) with \(i \leq j \). Then we can fire sets \(\{a_h | i \leq h \leq j\} \), \(\{a_h | i - 1 \leq h \leq j + 1\} \), \ldots until at least one of the chips lies on \(u \) or \(v \). Repeat this procedure until there is at most one chip assigned to every edge of \(G \). The divisor obtained in this way is equivalent to \(D \), so it reaches all vertices of \(H_1 \) and has degree at most \(k \). Thus we have obtained a divisor with the desired properties.

Now a certificate can contain the graph \(G_1 \) and the divisor \(D \) as in Lemma 3.2. From now on we assume \(D \) to have chips on vertices of \(G_1 \) only. A divisor \(D \) as in Lemma 3.2 reaches all vertices, so for every vertex \(w \in V(G_1) \) there is a divisor \(D_w \sim D \) with a chip on \(w \) and a level set decomposition \(A_1, A_2, \ldots, A_r \) of the transformation \(D_w - D \). Again we do not know whether \(r \) is polynomial in the size of \(G \), so we cannot include this level set decomposition in the certificate. However, we can define some of the sets to be ‘relevant’, and include all relevant sets in the certificate.

Definition 3.3. Let \(G \) be a graph and \(G' \) a subdivision of \(G \). Let \(D \) be a divisor on \(G' \) and \(A_1, A_2, \ldots, A_r \) a level set decomposition of a transformation \(D' - D \). Let \(D_0, D_1, \ldots, D_r \) be the associated sequence of divisors. We call \(A_i \) relevant if any of the following holds:

- \(A_i \) moves a chip from a vertex of \(G \), i.e. there is a vertex \(v \) of \(G \) such that \(D_i(v) - D_{i-1}(v) < 0 \), or
- \(A_i \) moves a chip to a vertex of \(G \), i.e. there is a vertex \(v \) of \(G \) such that \(D_i(v) - D_{i-1}(v) > 0 \), or
there is a vertex of G such that A_i is the first level set that contains this element, i.e. $(A_i \setminus A_{i-1}) \cap V(G)$ is not empty.

Lemma 3.4. Let G be a graph and G' a subdivision of G. Let D be a divisor of degree k on G' and A_1, A_2, \ldots, A_r a level set decomposition of a transformation $D' - D$. Let D_0, D_1, \ldots, D_r be the associated sequence of divisors. Then there are at most $2kn + n$ relevant level sets.

Proof. Each chip can reach each vertex at most once and can depart at most once from each vertex. So, there are at most kn sets A_i that fulfill the first condition of Definition 3.3 and at most kn sets that fulfill the second condition. Clearly, the number of sets A_i that fulfill the third condition is upper bounded by the number of vertices of G.

This lemma shows that the number of relevant set in a level set decomposition is polynomial. However, the number of elements of each of these sets can still be exponential, so we cannot include those sets in a polynomial certificate. Instead, for a relevant set A_i, we will include $A_i \cap V(G_1)$ in our certificate. Moreover, for each relevant set, we will describe which chips move from/to a vertex of G_1 by firing A_i. When chip j is moved from a vertex v along edge e, we include a tuple $(v, j, -1, e)$, and when a chip j is moved to a vertex v along edge e, we include a tuple $(v, j, +1, e)$.

Now, a partial certificate \mathcal{C} consists of

- a divisor D of degree k on G_1, where the chips are labelled $1, 2, \ldots, k$,
- for every vertex w, a series of pairs $(A_{w,1}, M_{w,1}), (A_{w,2}, M_{w,2}), \ldots, (A_{w,a_w}, M_{w,a_w})$, such that
 - $A_{w,1} \subseteq A_{w,2} \subseteq \cdots \subseteq A_{w,a_w} \subseteq V(G_1)$,
 - $M_{w,i} = \{(v, j, \sigma, e) \mid v \in V(G_1), 1 \leq j \leq k, \sigma \in \{-1, +1\}, e \in E(G_1)\}$.

This partial certificate should satisfy a lot of conditions, which are implicit in the intuitive explanation of this partial certificate. We list the intuition of these conditions below and give the formal definition between brackets.

Incidence requirement The edge along which a chip is fired is incident to the vertex from/to which it is fired, (i.e. for every tuple (v, j, σ, e) it holds that e is incident to v).

Departure requirement If a chip leaves a vertex, then this vertex is fired and its neighbour is not (i.e. if $(v, j, -1, uv) \in M_{w,i}$, then $v \in A_{w,i}$ and $u \notin A_{w,i}$).

Arrival requirement If a chip arrives at a vertex, then this vertex is not fired and its neighbour is (i.e. if $(v, j, +1, uv) \in M_{w,i}$, then $v \notin A_{w,i}$ and $u \in A_{w,i}$).

Unique departure per edge requirement For every vertex at most one chip leaves along each edge (i.e. for every $M_{w,i}, (v, j_1, -1, e), (v, j_2, -1, e) \in M_{w,i}$ it holds that $j_1 = j_2$).
Unique arrival per edge requirement For every vertex at most one chip arrives along each edge (i.e. for every $M_{w,i}$, $(v,j_1,+1,e),(v,j_2,+1,e) \in M_{w,i}$ it holds that $j_1 = j_2$).

Unique departure per chip requirement A chip can leave a vertex along at most one edge (i.e. for every $M_{w,i}$, $(v_1,j,,-1,e_1),(v_2,j,,-1,e_2) \in M_{w,i}$ it holds that $v_1 = v_2$ and $e_1 = e_2$).

Unique arrival per chip requirement A chip can arrive at a vertex along at most one edge (i.e. for every $M_{w,i}$, $(v_1,j_1,+1,e_1),(v_2,j_2,+1,e_2) \in M_{w,i}$ it holds that $v_1 = v_2$ and $e_1 = e_2$).

Immediate arrival requirement If a chip leaves a vertex v and arrives at another vertex u at the same time, then the chip is fired along the edge uv (i.e. for every $M_{w,i}$, if $(v_1,j,,-1,e_1),(v_2,j,,-1,e_2) \in M_{w,i}$, then $e_1 = e_2 = v_1v_2$).

Departure location requirement If a chip leaves a vertex, then this chip was on this vertex (i.e. if $(v,j,-1,e) \in M_{w,i}$, then let $i' < i$ be the greatest index such that there is a tuple $(u,j,\sigma,e') \in M_{w,i'}$, then there is a tuple $(v,j,+1,e') \in M_{w,i'}$ for some e'. If no such index i' exists, then D assigns j to v).

Arrival location requirement If a chip arrives at a vertex, then this chip was moving along an edge to this vertex (i.e. if $(v,j,+1,e) \in M_{w,i}$, then either $(u,j,-1,e) \in M_{w,i}$ where $u \neq v$, or let $i' < i$ be the greatest index such that there is a tuple $(u,j,\sigma,e') \in M_{w,i'}$, then there is a tuple $(u,j,-1,e) \in M_{w,i'}$ with $u \neq v$ and $(v,j,+1,e) \notin M_{w,i'}$).

Outgoing edges requirement A chip is fired along each outgoing edge (i.e. for every $A_{w,i}$, for every edge uv such that $u \in A_{w,i}$, $v \notin A_{w,i}$, if $(u,j,-1,uv) \notin M_{w,i}$ for all j, then there is a $1 \leq j \leq k$ and an $i' < i$ such that $(u,j,-1,uv) \in M_{w,i'}$ and $(v,j,+1,uv) \notin M_{w,i'}$ for all $i' \leq i'' < i$).

Previous departure requirement If a chip leaves a vertex v along some edge e, and v was in the previous firing set as well, then a chip left v along e when the previous set was fired (i.e. if $v \in A_{w,i}$, $v \in A_{w,i+1}$ and $(v,j,-1,e) \in M_{w,i+1}$ for some j and e, then $(v,j',-1,e) \in M_{w,i}$ for some $j' \neq j$).

Next arrival requirement If a chip arrives at a vertex v along some edge e, and v is not in the next firing set as well, then a chip will arrive at v along e when the next set is fired (i.e. if $v \notin A_{w,i}$, $v \notin A_{w,i+1}$ and $(v,j,+1,e) \in M_{w,i}$ for some j and e, then $(v,j',+1,e) \in M_{w,i+1}$ for some $j' \neq j$).

Reach all vertices requirement For all vertices w, at the end of the sequence $A_{w,1}, \ldots, A_{w,a_w}$, there is a chip on w (i.e. for every vertex w, either there is a $1 \leq j \leq k$ and an i such that $(w,j,+1,e) \in M_{w,i}$ for some e and $(w,j,-1,e') \notin M_{w,i'}$ for all $i' \geq i$, or there is a $1 \leq j \leq k$ that D assigns to w and $(w,j,-1,e) \notin M_{w,i}$ for all i).
Now for a given graph G, and such a partial certificate C, we want to decide whether there is a subdivision of G_1 such that for every vertex w there is a divisor $D_w \sim D$ with a chip on w such that the sets $A_{w,1}, \ldots, A_{w,a_w}$ are the relevant sets of the level set decomposition of the transformation $D_w - D$. To decide this, we will construct an integer linear program I_C, such that this program has a solution if and only if there is such a subdivision of G_1. Since integer linear programming is in NP, we know that if there is a solution to I_C, then there is a polynomial certificate D for the ILP instance. In order to obtain a certificate for the Stable Divisorial Gonality problem, we add the certificate for the ILP instance to the partial certificate, as defined above. Thus, a certificate for the Stable Divisorial Gonality problem is then of the form (C, D).

For the integer linear program I_C, we introduce some variables. For every vertex $w \in V(G_1)$ and every $1 \leq i < a_w$, we define a variable $t_{w,i}$. This variable represents the number of sets that is fired between $A_{w,i}$ and $A_{w,i} + 1$, including $A_{w,i}$ and excluding $A_{w,i} + 1$. For every edge $e \in E(G_1)$, we define a variable l_e, which represents the length of e, i.e. the number of edges that e is subdivided into. Now we construct I_C:

- For every edge e, include the inequality $l_e \geq 1$. (Every edge has length at least one.)
- For every vertex w and $1 \leq i < a_w$, include the inequality $t_{w,i} \geq 1$. (The set $A_{w,i}$ is fired, so $t_{w,i} \geq 1$.)
- For every edge $e = uv$ such that there is a set $M_{w,i}$ with $(v, j, -1, e), (u, j, +1, e) \in M_{w,i}$ for some j, include $l_e = 1$ in I_C. (If a chip arrives immediately after it is fired, then the edge has length one.)
- For every vertex w and $1 \leq i < a_w$ such that there are v, j_1, j_2, e such that $(v, j_1, -1, e) \in M_{w,i}$ and $(v, j_2, -1, e) \in M_{w,i+1}$, include $t_{w,i} = 1$ in I_C. (If there is a set A that is fired between $A_{w,i}$ and $A_{w,i+1}$, then $A_{w,i} \subseteq A \subseteq A_{w,i+1}$. It follows that A fires a chip from v along e as well. But then A is a relevant set. We conclude that $t_{w,i} = 1$.)
- For every vertex w and $1 \leq i \leq a_w$ such that there are v, j, e such that $(v, j, +1, e) \in M_{w,i}$, include $t_{w,i} = 1$ in I_C. (Notice that the set fired after $A_{w,i}$ either contains v or causes a chip to arrive at v, so this set is relevant.)
- For every vertex w and every edge $e = uv$, let i_0 be the smallest index such that $(v, j, -1, e) \in M_{w,i_0}$ for some j, i_1 the greatest index such that $(v, j, -1, e) \in M_{w,i_1}$ for some j, i_2 the smallest index such that $(u, j, +1, e) \in M_{w,i_2}$ for some j and i_3 the greatest index such that
For every vertex $w \in V(G_1)$, there is a divisor $D_w \sim D$ with a chip on w and a level set decomposition $A_{w,1}, \ldots, A_{w,a_w}$. Let $A_{w,i_1}, \ldots, A_{w,i_{b_w}}$ be the subsequence consisting of all relevant sets. Let $B_{w,1} = A_{w,1} \cap G_1$, \ldots, $B_{w,b_w} = A_{w,b_w} \cap G_1$.

Fire the sets $A_{w,1}, \ldots, A_{w,a_w}$ in order. For every i_j, set $M_{w,j} = \emptyset$. When firing the set A_{w,i_j}, check for every chip h whether it arrives at a vertex v of G_1 or leaves a vertex v of G_1. If so, add the tuple (v, h, σ, e) to $M_{w,j}$, where $\sigma = +1$ if h arrives at v and $\sigma = -1$ is h leaves v and e is the edge of G_1 along which h moves.

The divisor D together with the sequences $(B_{w,i}, M_{w,i})$, for every vertex $w \in V(G_1)$, is the partial certificate C. Notice that by definition C satisfies all conditions: Incidence requirement, Departure requirement, Arrival requirement, Unique departure per edge, Unique arrival per edge, Unique departure per chip, Unique arrival per chip, Immediate arrival, Departure location, Arrival location, Outgoing edges requirement, Previous departure, Next arrival and Reach all vertices.

4 Correctness

It remains to prove that there exists a certificate (C, D) if and only if $\text{sdgon}(G) \leq k$.

Lemma 4.1. Let G be a graph with $\text{sdgon}(G) \leq k$. There exists a certificate (C, D).

Proof. By Lemma 3.2 we know that there is a subdivision H of G_1 and a divisor D with k chips, all on vertices of G_1, that reaches all vertices. Choose a labeling of the chips and let D be the divisor in C.

For every vertex $w \in V(G_1)$, there is a divisor $D_w \sim D$ with a chip on w and a level set decomposition $A_{w,1}, \ldots, A_{w,a_w}$. Let $A_{w,i_1}, \ldots, A_{w,i_{b_w}}$ be the subsequence consisting of all relevant sets. Let $B_{w,1} = A_{w,1} \cap G_1$, \ldots, $B_{w,b_w} = A_{w,b_w} \cap G_1$.

Fire the sets $A_{w,1}, \ldots, A_{w,a_w}$ in order. For every i_j, set $M_{w,j} = \emptyset$. When firing the set A_{w,i_j}, check for every chip h whether it arrives at a vertex v of G_1 or leaves a vertex v of G_1. If so, add the tuple (v, h, σ, e) to $M_{w,j}$, where $\sigma = +1$ if h arrives at v and $\sigma = -1$ is h leaves v and e is the edge of G_1 along which h moves.

The divisor D together with the sequences $(B_{w,i}, M_{w,i})$, for every vertex $w \in V(G_1)$, is the partial certificate C. Notice that by definition C satisfies all conditions: Incidence requirement, Departure requirement, Arrival requirement, Unique departure per edge, Unique arrival per edge, Unique departure per chip, Unique arrival per chip, Immediate arrival, Departure location, Arrival location, Outgoing edges requirement, Previous departure, Next arrival and Reach all vertices.
For every edge e of G_1, define l_e as the number of edges that e is subdivided into in H. For every vertex w of G_1 and $1 \leq j \leq b_w - 1$, define $t_{w,i}$ as the number of sets between $A_{w,i+1}$ and $A_{w,i}$, including $A_{w,i}$ and excluding $A_{w,i+1}$. Notice that this is a solution to the integer linear program I_C. So this is a certificate for this program, write D for this certificate. Now (C,D) is a certificate for (G,k).

We illustrate our proof with an example.

Example 4.2. Consider the graph in Figure 1. Consider the subdivision in Figure 1 and the divisor D with 7 chips on u. This divisor reaches v, for example by firing the following sets:

- $\{u\}$
- $\{u, y_1\}$
- $\{u, x_1, y_1\}$
- $\{u, x_1, y_2\}$
- $\{u, x_2, y_1, y_2\}$
- $\{u, x_1, x_2, y_1, y_2, y_3\}$

We describe the corresponding partial certificate (C,D). The divisor D will be included in C. Notice that there are 8 relevant sets. We obtain the following series of pairs, after labelling the chips $1, 2, \ldots, 7$:

- $A_{v,1} = \{u\}$, $M_{v,1} = \{(u, 1,-1, e_1), (u, 2,-1, e_2)\}$
- $A_{v,2} = \{u\}$, $M_{v,2} = \{(u, 3,-1, e_1), (u, 4,-1, e_2)\}$
- $A_{v,3} = \{u\}$, $M_{v,3} = \{(u, 5,-1, e_1), (u, 6,-1, e_2)\}$
- $A_{v,4} = \{u\}$, $M_{v,4} = \{(u, 7,-1, e_1)\}$
- $A_{v,5} = \{u\}$, $M_{v,5} = \{(v, 1, 1, e_1)\}$
- $A_{v,6} = \{u\}$, $M_{v,6} = \{(v, 3, 1, e_1), (v, 2, 1, e_2)\}$
- $A_{v,7} = \{u\}$, $M_{v,7} = \{(v, 5, 1, e_1), (v, 4, 1, e_2)\}$
- $A_{v,8} = \{u\}$, $M_{v,8} = \{(v, 7, 1, e_1), (v, 6, 1, e_2)\}$

This gives the partial certificate C. The partial certificate D consists of a solution to the integer linear program I_C. Here, the corresponding program is:

\[
\begin{align*}
 l_{e_1} &\geq 1 \\
l_{e_2} &\geq 1 \\
t_{v,i} &\geq 1 \quad \text{for } i \in \{1,2,\ldots,8\} \\
t_{v,i} &= 1 \quad \text{for } i \in \{1,2,3\} \\
t_{v,i} &= 1 \quad \text{for } i \in \{5,6,7,8\} \\
4l_{e_1} &\leq \sum_{i=0}^{8} t_{v,i} \\
3l_{e_2} - 1 &\geq \sum_{i=0}^{8} t_{v,i} \\
3l_{e_2} + 1 &\leq \sum_{i=0}^{8} t_{v,i}
\end{align*}
\]
We can simplify this to:

\[
\begin{align*}
 l_{e_1} & \geq 1 & 4l_{e_1} & \geq t_{v,4} + 7 \\
 l_{e_2} & \geq 1 & 4l_{e_1} & \leq t_{v,4} + 7 \\
 t_{v,i} & = 1 & 3l_{e_2} & \geq t_{v,4} + 7 \\
 t_{v,4} & \geq 1 & 3l_{e_2} & \leq t_{v,4} + 7
\end{align*}
\]

We see that \(l_{e_1} = 3, l_{e_2} = 4, t_{v,4} = 5 \) and \(t_{v,i} = 1 \) for \(i \neq 4 \) is a solution to this program, let this solution be the certificate \(D \).

Lemma 4.3. Let \(G \) be a graph and \(k \) a natural number. Suppose that there exists a certificate \((C, D)\), then \(sdgon(G) \leq k \).

Proof. Since \(D \) is a certificate for the integer linear program \(I_G \), we know that there is a solution \(t_e, t_{w,i} \) for this program. For every edge \(e \) of \(G_1 \), subdivide this edge \(l_e - 1 \) times. Write \(H \) for the resulting graph. Now consider the divisor \(D \) on \(H \). We will prove that \(D \) reaches all vertices.

Let \(w \) be a vertex of \(G_1 \). Consider the set \(A_{w,1}, \ldots, A_{w,a_w} \). For every \(1 \leq i < a_w \), copy \(A_{w,i} t_{w,i} \) times, we obtain a sequence

\[
A_{w,1,1}, \ldots, A_{w,1,t_{w,1}}, A_{w,2,1}, \ldots, A_{w,a_w-1,t_{w,a_w-1}}, A_{w,a_w,1}.
\]

For every edge \(e = uv \) and every set \(A_{w,i,j} \) such that \(u, v \in A_{w,i,j} \), add all vertices that are added to \(e \) to \(A_{w,i,j} \).

For every edge \(e = uv \), let \(i_0 \) be the smallest index such that \((v, j, -1, e) \in M_{w,i_0} \) for some \(j \), \(i_1 \) the greatest index such that \((v, j, -1, e) \in M_{w,i_1} \) for some \(j \), \(i_2 \) the smallest index such that \((u, j, +1, e) \in M_{w,i_2} \) for some \(j \) and \(i_3 \) the greatest index such that \((u, j, +1, e) \in M_{w,i_3} \) for some \(j \). Notice that, by the Previous departure requirement, for all \(i_0 \leq i < i_1 \) there is a chip \(j \) such that \((v, j, -1, e) \in M_{w,i,j} \). It follows that \(t_{w,i} = 1 \) for all \(i_0 \leq i < i_1 \), since we have the equalities \(t_{w,i} = 1 \) in \(I_G \) whenever \((v, j, -1, e) \in M_{w,i,j} \) and \((v, j, -1, e) \in M_{w,i+1} \). Analogously, for all \(i_2 \leq i \leq i_3 \) it holds that there is a \(j \) such that \((u, j, +1, e) \in M_{w,i,j} \) and \(t_{w,i} = 1 \).

Write \(p = i_1 - i_0 + 1, \ q = i_3 - i_2 + 1 \) and \(r = \sum_{i=i_0}^{i_3} t_{w,i} - ql_e \). Let \(x_1, \ldots, x_{l_e-1} \) be the vertices that are added to \(e \), where \(x_1 \) is the neighbour of \(v \) and \(x_{l_e-1} \) the neighbour of \(u \). Consider the sets

\[
A_{w,i_0,1}, A_{w,i_0+1,1}, \ldots, A_{w,i_1,1}, \ldots, A_{w,i_1,t_{w,i_1}},
\]

\[
A_{w,i_1+1,1}, \ldots, A_{w,i_2-1,t_{w,i_2-1}}, A_{w,i_2,1}, A_{w,i_2+1,1}, \ldots, A_{w,i_3,1}.
\]

Notice that this are exactly \(\sum_{i=i_0}^{i_3} t_{w,i} \) sets. Because of the Departure requirement, we know that \(A_{w,i_0,1} \) does contain \(v \), so \(v \) is an element of all these sets. Analogously, because of the Arrival requirement, we know that \(u \) is not an element of \(A_{w,i_3,1} \), thus \(u \) is not in all those sets. Now we will add the vertices \(x_1, \ldots, x_{l_e-1} \) to these sets as follows:

Add none of the \(x_i \)’s to the first \(p \) sets,
add \(x_1 \) to the next \(p \) sets,
add \(x_1 \) and \(x_2 \) to the next \(p \) sets,
\ldots,
add \(x_1, x_2, \ldots, x_{\left\lfloor \frac{r}{p-q} \right\rfloor - 1}\) to the next \(p\) sets,
add \(x_1, x_2, \ldots, x_{\left\lfloor \frac{r}{p-q} \right\rfloor}\) to the next \(q + r - (p-q)\left\lfloor \frac{r}{p-q} \right\rfloor\) sets,
add \(x_1, x_2, \ldots, x_{\left\lfloor \frac{r}{p-q} \right\rfloor + 1}\) to the next \(q\) sets,
\ldots,
add \(x_1, x_2, \ldots, x_{l_e - 1}\) to the next \(q\) sets.

First we need to check whether this adding of vertices is well-defined, i.e. check whether \(1 \leq \left\lfloor \frac{r}{p-q} \right\rfloor \leq l_e - 1\) and whether the number of sets we add vertices to equals the number of sets we considered: \(\sum_{i=i_0}^{i_3} t_w, i\). Notice that by definition \(r \geq p - q\), since \(T_C\) contains the inequality \((i_3 - i_2 + 1)l_e + (i_1 - i_0) - (i_3 - i_2) \leq \sum_{i=i_0}^{i_3} t_w, i\), or equivalently \(q_e + p - q \leq \sum_{i=i_0}^{i_3} t_w, i\). So \(\left\lfloor \frac{r}{p-q} \right\rfloor \geq 1\).

Because of the inequality \((i_1 - i_0 + 1)l_e - (i_1 - i_0) + (i_3 - i_2) \geq \sum_{i=i_0}^{i_3} t_w, i\), or equivalently, \(pe - p + q \geq \sum_{i=i_0}^{i_3} t_w, i\), it holds that \(\left\lfloor \frac{r}{p-q} \right\rfloor \leq l_e - 1\). The total number of sets we have added vertices to is:

\[
p \left(\left\lfloor \frac{r}{p-q} \right\rfloor \right) + q + r - (p-q) \left\lfloor \frac{r}{p-q} \right\rfloor + q \left(l_e - 1 - \left\lfloor \frac{r}{p-q} \right\rfloor \right)
\]

\[
q + r + q_e - q
\]

\[
\sum_{i=i_0}^{i_3} t_w, i,
\]

which is exactly the amount of sets we considered. So adding these vertices to the sets is well-defined.

Adding these vertices yields an increasing sequence of sets. Notice that firing these sets causes \(p\) chips to leave \(v\): the first \(p\) sets \(A_w, i_0, 1, \ldots, A_w, i_1, 1\) all move a chip from \(v\) to \(x_1\). And for all \(i_0 \leq i \leq i_1\), there is a tuple \((v, j, -1, e)\) in \(M_w, i\) for some \(j\). So firing \(A_w, i, 1\) moves a chip as described by the tuple \((v, j, -1, e)\).

Notice that if it holds that \(\left\lfloor \frac{r}{p-q} \right\rfloor = l_e - 1\), then it holds that \(q + r - (p-q)\left\lfloor \frac{r}{p-q} \right\rfloor = q\), so \(x_{l_e - 1}\) is added to \(q\) sets. It follows that the last \(q\) sets \(A_w, i_2, 1, \ldots, A_w, i_3, 1\) cause a chip to arrive at \(u\). And for all \(i_2 \leq i \leq i_3\), there is a tuple \((u, j, 1, e)\) in \(M_w, j\) for some \(j\). So firing \(A_w, i, 1\) moves a chip as described by the tuple \((u, j, 1, e)\).

For all \(i_1 < i < i_2\) there is no tuple \((x, j, \sigma, e)\) in \(M_w, j\), and indeed, no chip moves from \(v\) along \(e\) or to \(u\) along \(e\) by firing \(A_w, i, k\).

Now consider the sets

\[
A_{w, 1, 1}, \ldots, A_{w, 1, l_w, 1}, A_{w, 2, 1}, \ldots, A_{w, a_w - 1, l_w, a_w - 1}, A_{w, a_w}.
\]

after adding the vertices for all edges. By induction we can prove that all chips are moved as described by the tuples in \(M_w, i\).

First consider \(A_{w, 1, 1}\). For every tuple \((v, j, -1, uv)\) in \(M_{w, 1}\), we know that \(v \in A_{w, 1, 1}\) and \(u \notin A_{w, 1, 1}\). The Outgoing edges requirement implies that along each outgoing edge a chip moves. All chips start on vertices of \(G_1\), so for every edges \(uv \in E(G_1)\) with \(v \in A_{w, 1, 1}\), \(u \notin A_{w, 1, 1}\) there is a tuple \((v, j, -1, uv)\) in \(M_{w, 1}\) for some \(j\). From the Unique departure per edge requirement it follows that for every edge \(uv\) with \(v \in A_{w, 1, 1}\), \(u \notin A_{w, 1, 1}\) there is exactly one tuple \((v, j, -1, uv)\) in \(M_{w, 1}\). The Departure location requirement gives that chip \(j\)
lies on vertex v, and the Unique departure per chip requirement tells us that for every chip j there is at most one edge e such that (u, j, −1, e) ∈ M_w,1. So by firing A_w,1,1 chips can leave vertices of G_1 as prescribed by the tuples in M_w,1. If for some edge uv there is a tuple (v, j, +1, uv) ∈ M_w,1, then the Arrival location requirement gives that (u, j, −1, uv) ∈ M_w,1. It follows that the equation l_{uv} = 1 is contained in I_C, so the edge uv is not subdivides in H, and indeed chip j will arrive at v by firing A_w,1,1. If for some edge uv with u ∈ A_w,1,1, v ∈ A_w,1,1 there is no tuple (v, j, +1, uv) ∈ M_w,1, then it follows from equation 1 that l_{uv} ≥ 2, so indeed, the chip that left u via uv by firing A_w,1,1 will not arrive at v immediately. We conclude that chips arrive at vertices of G_1 as prescribed by the tuples in M_w,1.

Now we consider two cases:

First, suppose that A_w,i,j is not a relevant set, i.e. j ≠ 1. We know that A_w,i,1 is the last relevant set before A_w,i,j. Because of the Outgoing edges requirement, we know that when we fired A_w,i,j a chip moved along each edge. If a chip arrived at a vertex of G_1, then we know that t_{w,i} = 1. This yields a contradiction with the fact that j ≠ 1. So we conclude that along each outgoing edge of A_w,i,j a chip moves. By the construction of A_w,i,j, we know that no chip will be moved from or to a vertex of G_1 by firing A_w,i,j.

Now suppose that A_w,i,j is a relevant set, i.e. j = 1. The Outgoing edges requirement implies that a chip is moved along each outgoing edge. Suppose that (u, j, −1, e) ∈ M_w,i. Because of the Unique departure per edge requirement, we know that there is no other tuple (u, j', −1, e) in M_w,i and because of the Unique departure per chip requirement there is no other tuple (u, j, −1, e'). Now the induction hypothesis and the Departure location requirement imply that chip j is on vertex u before firing A_w,i,j. We conclude that chip j can be moved as described by the tuple (u, j, −1, e). Analogously, chips can be moved as described by the tuples (u, j, +1, e) in M_w,i.

When we fired all sets A_w,i,j, all chips have moved as described by the tuples in the sets M_w,i. The Reach all vertices requirement tells us that there is a chip on w, so D reaches w.

So D reaches all vertices of G_1. Let x be a vertex which is added to an edge uv of G_1. Either a chip is fired along e to reach u or v, or there is a divisor D_{uv} ∼ D with a chip on u and a chip on v. In both cases we see that D reaches x. So D reaches all vertices. We conclude that sdgon(G) ≤ k.

Example 4.4. Again consider the graph in Figure 1 and the certificate in Example 4.2. We can use the construction in the proof of Lemma 4.3. Since l_{e_1} = 3, we subdivide e_1 with two vertices x_1 and x_2 and since l_{e_2} = 4, we subdivide e_2 with three vertices y_1, y_2 and y_3.

For e_1 we get i_0 = 1, i_1 = 4, i_2 = 5 and i_3 = 8. It follows that p = 4, q = 4
and $r = 12 - 4 \cdot 3 = 0$. Now adding the vertices x_1 and x_2 to the sets yields:

\[
A_{v,1,1} = \{u\}, A_{v,2,1} = \{u\}, A_{v,3,1} = \{u\}, A_{v,4,1} = \{u\}, A_{v,4,2} = \{u, x_1\},
\]
\[
A_{v,4,3} = \{u, x_1\}, A_{v,4,4} = \{u, x_1\}, A_{v,4,5} = \{u, x_1\}, A_{v,5,1} = \{u, x_1, x_2\},
\]
\[
A_{v,6,1} = \{u, x_1, x_2\}, A_{v,7,1} = \{u, x_1, x_2\}, A_{v,8,1} = \{u, x_1, x_2\}.
\]

Analogously for e_2, we add the vertices y_1, y_2 and y_3:

\[
\{u\}, \{u\}, \{u\}, \{u, y_1\}, \{u, x_1, y_1\}, \{u, x_1, y_1\},
\]
\[
\{u, x_1, y_1, y_2\}, \{u, x_1, y_1, y_2\}, \{u, x_1, x_2, y_1, y_2\},
\]
\[
\{u, x_1, x_2, y_1, y_2, y_3\}, \{u, x_1, x_2, x_1, y_1, y_2, y_3\}, \{u, x_1, x_2, y_1, y_2, y_3\}.
\]

We see that we obtained the same subdivision and firing sets as we started with in Example 4.2.

As ILP’s have certificates with polynomially many bits (see e.g., [12]), and the partial certificate is of polynomial size (see also Lemma 3.4), we have that, using Lemmas 4.1 and 4.3, the problem whether a given graph has divisorial gonality at most a given integer k has a polynomial certificate, which gives our main result.

Theorem 4.5. Stable Divisorial Gonality belongs to the class NP.

Combined with the NP-hardness by Gijswijt [10], this yields the following theorem.

Theorem 4.6. Stable Divisorial Gonality is NP-complete.

5 A bound on subdivisions

In this section, we give as corollary of our main result a bound on the number of subdivisions needed. We use the following result by Papadimitriou [12].

Theorem 5.1 (Papadimitriou [12]). Let A be an $m \times n$ matrix, and b be a vector of length m, such that each value in A and b is an integer in the interval $[-a, +a]$. If $Ax = b$ has a solution with all values positive integers, then $Ax = b$ has a solution with all values positive integers that are at most $n(ma)^{2m+1}$.

Corollary 5.2. Let G be a graph with stable divisorial gonality k. There is a graph H, that is a subdivision of G, with the divisorial gonality of H equal to the stable divisorial gonality of G, and each edge in H is obtained by subdividing an edge from G at most $m^{O(km^2)}$ times.

Proof. By the results of the previous section, we know that there is a certificate whose corresponding ILP has a solution. The values l_e in this solution give the number of subdivisions of edges in G_1. If we have an upper bound on the number of subdivisions of edges in G', say α, then $2\alpha + 1$ is an upper bound on the number of edges in G. Applying Theorem 5.1 to the ILP gives such a bound, as described below.
The ILP has at most \(n' \cdot (2kn' + n') \) variables of the form \(t_{w,i} \), by Lemma 3.4, and \(m' \) variables of the form \(l_e \), with \(n' \) the number of vertices in \(G_1 \) and \(m' \) the number of edges in \(G_1 \). We have \(n' = n + m \), and \(m' = 2m \), with \(n' \) the number of vertices of \(G \) and \(m \) the number of edges of \(G \).

The number of equations and inequalities in the ILP is linear in the number of variables. An inequality can be replaced by an equation by adding one variable. This gives a total of \(O(kn'^2 + m') \) variables and \(O(kn'^2 + m') \) equations. Note that \(O(kn'^2 + m') = O(km^2) \); as \(G \) is connected, \(n \leq m - 1 \). Also, note all values in matrix \(A \) and vector \(b \) are \(-1, 0, \) or \(1 \), i.e., we can set \(a = 1 \) in the application of Theorem 5.1. So, by Theorem 5.1, we obtain that if there is a solution to the ILP, then there is one where all variables are set to values at most

\[
O(kn'^2 + m') \cdot O(kn'^2 + m') = O(km^2) \cdot O(km^2) = m^O(km^2)
\]

When taking \(k \) the stable divisorial gonality of \(G \), we know there is at least one certificate with a solution, so we can bound the number of subdivisions in \(G_1 \) by \(m^O(km^2) \), which gives our result.

6 Conclusion

In this paper, we showed that the problem to decide whether the stable divisorial gonality of a given graph is at most a given number \(K \) belongs to the class NP. Together with the NP-hardness result of Gijswijt [10], this shows that the problem is NP-complete. We think our proof technique is interesting: we give a certificate that describes some of the essential aspects of the firing sequences; whether there is a subdivision of the graph for which this certificate describes the firing sequences and thus gives the subdivision that reaches the optimal divisorial gonality can be expressed in an integer linear program. Membership in NP then follows by adding the certificate of the ILP to the certificate for the essential aspects.

As a byproduct of our work, we obtained an upper bound on the number of subdivisions needed to reach a subdivision of \(G \) whose divisorial gonality gives the stable divisorial gonality of \(G \). Our upper bound still is very high, namely exponential in a polynomial of the size of the graph. An interesting open problem is whether this bound on the number of needed subdivisions can be replaced by a polynomial in the size of the graph. Such a result would give an alternative (and probably easier) proof of membership in NP: first guess a subdivision, and then guess the firing sequences.

There are several open problems related to the complexity of computing the (stable) divisorial gonality of graphs. Are these problems fixed parameter tractable, i.e., can they be solved in \(O(f(K)n^c) \) time for some function \(k \) and constant \(c \)? Or can they be proven to be \(W[1] \)-hard, or even, is there a constant \(c \), such that deciding if (stable) divisorial gonality of a given graph \(G \) is at most \(c \) is already NP-complete? Also, how well can we approximate the divisorial gonality or stable divisorial gonality of a graph?
Acknowledgements

We thank Gunther Cornelissen and Nils Donselaar for helpful discussions.

References

[1] Matthew Baker. Specialization of linear systems from curves to graphs. *Algebra Number Theory*, 2(6):613–653, 2008. doi:10.2140/ant.2008.2.613.

[2] Matthew Baker and Serguei Norine. Riemann–Roch and Abel–Jacobi theory on a finite graph. *Advances in Mathematics*, 215(2):766–788, 2007. doi:10.1016/j.aim.2007.04.012.

[3] Matthew Baker and Farbod Shokrieh. Chip-firing games, potential theory on graphs, and spanning trees. *Journal of Combinatorial Theory, Series A*, 120(1):164 – 182, 2013. doi:10.1016/j.jcta.2012.07.011.

[4] Jelco M. Bodewes, Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Recognizing hyperelliptic graphs in polynomial time. 2017. Extended abstract to appear in the proceedings of WG 2018, 44th International Workshop on Graph-Theoretic Concepts in Computer Science. arXiv:1706.05670.

[5] Lucia Caporaso. Gonality of algebraic curves and graphs. In *Algebraic and Complex Geometry*, pages 77–108, Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-05404-9_4.

[6] Gunther Cornelissen, Fumiharu Kato, and Janne Kool. A combinatorial Li-Yau inequality and rational points on curves. *Mathematische Annalen*, 361(1-2):211–258, 2015. doi:10.1007/s00208-014-1067-x.

[7] Scott Corry and David Perkinson. *Divisors and Sandpiles: An Introduction to Chip-Firing*. American Mathematical Society, 2018.

[8] J. van Dobben de Bruyn and D. Gijswijt. Treewidth is a lower bound on graph gonality. 2014. arXiv:1407.7055v2.

[9] Josse van Dobben de Bruyn. Reduced divisors and gonality in finite graphs. Bachelor thesis, Leiden University, 2012. URL: https://www.universiteitleiden.nl/binaries/content/assets/science/scripties/bachvandobbendebruyn.pdf.

[10] Dion Gijswijt. Computing divisorial gonality is hard. 2015. arXiv:1504.06713.

[11] Jan Hladký, Daniel Král’, and Serguei Norine. Rank of divisors on tropical curves. *Journal of Combinatorial Theory, Series A*, 120(7):1521 – 1538, 2013. doi:10.1016/j.jcta.2013.05.002.

[12] Christos H. Papadimitriou. On the complexity of integer programming. *J. ACM*, 28(4):765–768, 1981. doi:10.1145/322276.322287.