Abstract

Introduction

Digital tools like 3D laser-based photonic scanners, which can assess external anthropometric measurements for population based studies, and predict body composition, are gaining in importance. Here we focus on a) systematic deviation between manually determined and scanned standard measurements, b) differences regarding the strength of association between these standard measurements and body composition, and c) improving these predictions of body composition by considering additional scan measurements.

Methods

We analysed 104 men aged 19–23. Bioelectrical Impedance Analysis was used to estimate whole body fat mass, visceral fat mass and skeletal muscle mass (SMM). For the 3D body scans, an Anthroscan VITUSbody scan was used to automatically obtain 90 body shape measurements. Manual anthropometric measurements (height, weight, waist circumference) were also taken.

Results

Scanned and manually measured height, waist circumference, waist-to-height-ratio, and BMI were strongly correlated (Spearman Rho>0.96), however we also found systematic differences. When these variables were used to predict body fat or muscle mass, explained variation and prediction standard errors were similar between scanned and manual measurements. The univariable predictions performed well for both visceral fat (r^2 up to 0.92) and absolute fat mass (AFM, r^2 up to 0.87) but not for SMM (r^2 up to 0.54). Of the 90 body scanner measures used in the multivariable prediction models, belly circumference and middle hip circumference were the most important predictors of body fat content. Stepwise forward model selection using the AIC criterion showed that the best predictive power (r^2 up to 0.99) was achieved with models including 49 scanner measurements.
Conclusion
The use of a 3D full body scanner produced results that strongly correlate to manually measured anthropometric measures. Predictions were improved substantially by including multiple measurements, which can only be obtained with a 3D body scanner, in the models.

1. Introduction
Over the last four decades obesity has nearly tripled worldwide and has reached the level of a global pandemic [1–4]. High fat mass, especially in the abdomen (visceral fat), and in connection with obesity, is associated with several diseases, such as coronary heart disease, diabetes mellitus type II and some types of cancer, as well as with all-cause mortality [5–12]. High muscle mass, on the other hand, appears to be beneficial for health and is associated with a reduced risk of functional impairment, disability and mortality, particularly later in life [13–15]. Since fat and muscle mass have such contrasting health implications, measurements of body composition are increasingly important in clinical practice as well as in medical research.

However, there is currently no universally suitable method to measure body composition. Each technique has advantages and disadvantages and its use is therefore highly situational. Standard imaging methods (DXA, CT and MRI) allow body composition to be assessed with high precision by distinguishing between fat and fat-free mass [16–19]. However, these techniques are time-consuming, expensive and/or invasive, and therefore inadequate for study settings in which many probands have to be examined with minimal health risks and in a short period of time [16,17,20]. Bioelectrical Impedance Analysis (BIA) is often used in such settings [16,21,22] because of the easy handling, high measuring speed and transportability of the measuring device. Nevertheless, BIA has some limitations. It is less precise than standard imaging methods [16,21,22], and provides numbers but no visualisation of fat tissue or any record of visible body characteristics. Thus, the results of BIA may seem abstract to lay people.

Despite their inaccuracy, classical manual anthropometric measurements are still most widely used both to estimate a person’s fat mass and the associated health risk in epidemiological studies, and in clinical practice [23]. The most common anthropometric measurements associated with fat mass are Body Mass Index (BMI), Waist Circumference (WC) and Waist to Height Ratio (WHtR) [21]. All these measurements have been shown to be associated with body composition and are therefore able to predict fat mass [22,24,25]. These measurements only require minimal equipment and are based on visible body characteristics with intuitive meaning. They do, however, vary in their significance and precision in different population groups [26], and each of the measures has limitations. The BMI, for example, does not distinguish between fat mass and muscle mass/fat free mass and does not take account of fat distribution [22]. Measurements based on waist girth (WC or WHtR) have therefore gained popularity and seem to be better predictors for fat mass (particularly visceral fat) than the BMI [21,22,24,25,27]. However, these measurements and proportions provide no information on the composition of extremities, where the relative amounts of fat and muscle mass may vary greatly depending on a person’s physical activity, or due to muscle loss in elderly people. Thus, changes in body composition cannot be assessed. Also, interobserver variability in anthropometric measurements may be an issue [23].

Variation in whole-body composition is probably too multidimensional to be properly measured by single distance measurements. As a new procedure to capture this multidimensionality, 3D photonic full body scans can be used [28–36]. Measurements are non-invasive,
safe, rapid and simple, and devices are transportable, although less easily than BIA devices. The 3D body scanner functions via photonic scanners surrounding the body. Within 12–15 seconds, millions of data points are gathered, creating a precise 3-dimensional body shape map with detailed body surface topography, from which about 150 standard measures can be derived automatically. These include circumferences of specific body parts, linear dimensions, cross-sectional areas, surfaces, segmental volumes, and proportions, all of which can be used, individually or in combination, to predict health-relevant parameters such as body composition [30,36–40]. Even the established simple predictors of body fat mentioned above (WC, WHR and WHtR) may be measured more rapidly and reliably using the body scanner than manual methods because the improved standardization reduces inter-observer variability [28,30,33,34,37–42].

However, some methodological questions still need to be addressed before 3D body scans can be implemented as a standard method for assessment of body composition. First, it is necessary to check whether manual and scanner-derived anthropometric measures are exactly comparable or whether they differ systematically, so that standard definitions of health risk classes (e.g. increased health risk with a WC greater than 94 cm [26]) must be adapted for scanner-derived measures. As regards the potential use of multiple measures for a more precise prediction of body composition, previous studies only considered a limited number of predefined measures [42], and only few of them used automatic variable selection procedures to identify the best predictors [43–45]. Because some of the 150 standard measurements are strongly correlated among each other, model selection procedures and other techniques such as 3D surface geometry may have to account for these correlations [46–51]. Still, further research is needed to identify which of the 150 standard measurements are most relevant for the prediction of body composition, or whether multiple (and partly strongly correlated) measurements are relevant, and how they should be selected or combined to obtain the most reliable predictions.

In this study we analysed a cross-sectional sample of 104 young men and asked the following research questions: Are standard anthropometric measurements assessed manually and by the scanner differently associated with body composition (fat and muscle mass) as estimated by BIA? Are these predictions of body composition (as estimated by BIA) improved by considering additional measurements provided by the scanner? How many measurements should be included in a multivariable model to obtain the most precise predictions of body composition?

2. Material and methods

This study was part of a larger project in which we examined 104 recruits at the beginning of their Armed Forces basic training [52]. The cross-sectional baseline examinations involved young males (age range 18.8–24.4 years, mean 20.5 years, SD = 1.1 years) recruited by the Swiss Armed Forces and were conducted in Kloten (Canton of Zurich) from 21 March to 24 March 2017. Participation was voluntary and regarding socioeconomic status, origin or other demographic factors, and participation was voluntary. All young men were Swiss nationals (a precondition to be conscripted for mandatory Service for the Armed Forces), but information about migration background or ethnicity was not systematically collected in the questionnaire. Before beginning the study the participants were informed twice about its content and procedure, first in writing and then orally. In addition, informed consent was confirmed in the form of a signature. The ethics committee of the Canton of Zürich formally approved this study (No. 2016–01625).

Because in the setting of the presented study (limited time available for measurements within normal army operations) it was not feasible to perform invasive and more time-
consuming examinations, bioimpedance analysis was used to estimate whole body fat mass, visceral fat mass and skeletal muscle mass. The device used was a medical 8-point body composition analyzer (Seca mBCA 515, Seca AG, Reinach, Switzerland), which was validated in several studies and has often been used to compare body composition measures obtained through different measurement methods including 3D body scanners [53–61]. The participants stood barefoot on the four foot-electrodes and grasped the four hand-electrodes with their hands. Alongside the analysis of the body composition, selected anthropometric measurements which are relevant in a medical and epidemiological context were taken manually according to WHO guidelines [26]. Waist circumference (WC) was measured with a hand held-tape measure with stretch resistant quality and automatic retraction (Seca 201, Seca AG, Reinach, Switzerland). Participants were measured at the midpoint between the lowest point of the ribcage and the highest point of the pelvis bone, always by the same trained and experienced researcher. Height and weight were measured with a standard stadiometer (Seca 274, Seca AG, Reinach, Switzerland). The participants wore underwear and stood straight with their feet together.

For the 3D body scan a semi-mobile Anthroscan VITUSbodyscan body scanner was used. Four lasers and eight cameras create a point cloud via optical triangulation containing 300 data points per cm³. The software (Anthroscan 2016, Version 3.5.3) then calculates 150 standard measurements (ISO 7250 / ISO 8559 and DIN EN ISO 20685) including various girths and body part volumes. These volume estimations (also for body regions) have been shown to be important for relative body fat mass [62] and of good validity and reliability in other studies [63,64]. For this study we included 90 standard measurements as delivered by the software (a complete list with measurement ID numbers is provided in S1 Table). The non-selected measurements were excluded before the start of data analysis based on two criteria: a) Specific measures intended for the textile sector (e.g. for shirts). b) Clearly redundant measurements (e.g. several nearly identical measures for leg length). The scanner was calibrated daily before use according to the manufacturer’s instructions. The participants were scanned wearing tight-fitting underwear in standard position defined by the manufacturer of the 3D body scanner (standing up straight, feet positioned ca. 30 cm apart, arms slightly bent at the elbow and held slightly away from the body, head in accordance with the Frankfurt Horizontal Plane) and held breath after exhalation. To ensure the right positioning, we briefed every participant in advance. Participants wore form-fitting underpants and a tight-fitting bathing cap. Regarding postprocessing of the scans: We worked with the raw point clouds for the extraction of all standard measurements except for the volumes. All 104 scans were checked for their quality (absence of artifacts). For the calculation of the partial volumes, we automatically calculated closed surfaces using the standard procedure in the Anthroscan software (good quality level, medium mesh size), the cutting off of the partial volumes was performed fully automatically via the Anthroscan software, but supervised for quality.

Statistical methods

The agreement between manual and scanned anthropometric standard measurements was assessed through Bland-Altman plots, i.e. by plotting the difference between the two measurements against their mean value for each participant [65,66]. Smoothing lines in these plots showed whether one method yielded systematically higher values than the other, and whether this discrepancy affected the entire range of measured values or only part of the range.

The association between scanned anthropometric standard measurements (BMI, WC, WHR and body composition (absolute and relative fat mass, visceral fat mass, and skeletal muscle mass (AFM, RFM, Visc, SMM)) was assessed by Spearman rank correlations and
scatter plots with smoothing lines. These plots showed approximately linear relationships between absolute or relative fat mass and each of the predictors, and clearly segmented relationships for visceral fat mass, which was only linearly related to the measurements above a certain threshold. Accordingly, either linear regression or segmented regression was used to compare body fat predictions obtained with manual and scanned standard measurements by computing both the fraction of variation explained (r^2), and the prediction standard error, i.e. the square root of the mean squared prediction error obtained by leave-one-out cross-validation. We chose the cross-validation method over method of the splitting the data set into training and validation data sets because of rather small overall sample size.

The possible gain in predictive value obtained by considering scanned anthropometric measurements other than the standard ones (BMI, WC, WHtR) was assessed by stepwise forward model selection using the AIC criterion. Of the three standard anthropometric measurements, only WC was considered here because it proved to be the best predictor for the three measures of body fat content. The first step of model selection showed whether any of the other 89 scanner measurements would predict body fat content better than WC. Further steps showed how much the prediction could be improved by adding a second, third or more predictors. For easy interpretation, the gain in predictive value was described as the fraction of variation in additional body fat content that was explained when a predictor entered the model. Because some of the 90 scanner measurements were strongly correlated with each other, we expected model selection to be partly arbitrary and determined by random structures in the data. To assess the resulting uncertainty in the choice of the best predictors, we repeated model selection for 2000 bootstrap samples of the data and recorded the first six predictors selected with each sample. We then determined how often individual measurements were selected in the first step, and how often each of the measurements initially selected among the six top predictors were also among these in the bootstrap samples.

Because stepwise model selection tends to overfit the data and produce unreliable solutions when predictors are strongly correlated, we also performed model selection with the lasso procedure. This involves fitting a multiple regression model with a penalized least squares criterion so that most of the unimportant and/or correlated predictors have a coefficient of zero and are dropped from the model. The optimal penalty term was selected by cross-validation using the “minimum + 1se” rule. We compared the predictions obtained with both model types in terms of explained variation (r^2), and prediction standard error from leave-one-out cross-validation.

Finally, we fitted a single multivariate lasso model to the four measures of body composition to obtain a single set of scanner measurements that would jointly provide the best predictions for the four body composition measures. We standardized both the scanner measurements and the four composition measures to a mean of 0 and standard deviation of 1 so that we could directly compare the regression coefficients and thus, the relative contribution of each of the selected scanner measurements to the prediction of each measure of body composition.

All analyses were performed using R version 3.5.2 (2018, The R Foundation for Statistical Computing, Vienna). To obtain the Bland-Altman plots we used blandr, the segmented regression was determined using the segmented package, and Lasso models we obtained using glmnet.

3. Results

The descriptive statistics for all manual and scanner measurements are reported in S1 Table. According to standard definitions of BMI categories, 20.2% of the participants were
overweight (BMI 25.0–29.9kg/m²) and 5.8% obese (BMI > 30.0kg/m²). According to the WC, only 4.8% of the participants showed increased disease risk (WC 94-102cm) and 3.8% very high disease risk (WC >102cm), whereas the WHtR suggested that 17.3% had an increased disease risk (WHtR 0.5–0.6) and 1.0% a very high disease risk (WHtR >0.6). The three scanned anthropometric measurements (BMI, WC, WHtR) strongly and positively correlated to each other (Spearman Rho > 0.89) (S1 Fig). Visceral fat mass, AFM and RFM were also strongly and positively correlated to each other (Spearman Rho > 0.79), whereas the correlations with SMM were weaker (Rho 0.31–0.58) (S2 Fig).

In terms of agreement between methods, scanned and manually measured height, WC, WHtR, and BMI were strongly correlated (Spearman Rho >0.96) (Fig 1). However, the Bland-Altman plots for height showed a constant bias of -1cm towards scanned height being shorter, which resulted in slightly higher BMI values from the scanner. For WC and WHtR there was a trend towards values in the upper part of the range in the scanner than when manually measured.

The associations between the scanned anthropometric measurements for excess weight (BMI, WC, and WHtR) and visceral fat mass, AFM, RFM, and SMM are reported in Fig 2 and Table 1. In general, explained variation and prediction standard errors were similar between scanned and manual standard measurements. The highest explained variation (r^2) was observed for AFM and the lowest for SMM. Visceral fat mass showed segmented associations with all anthropometric standard measurements (breakpoint for WC = 78.4 cm). Overall, WC explained more variation than the two other anthropometric standard measurements.

Among the scan parameters, circumferential measurements in the abdominal and hip area were highly correlated with relative fat mass (Spearman Rank correlation Rho >0.8). Partial volumes had the highest correlations with skeletal muscle mass (Rho >0.8) (S1 Table). Vertical length and distance measurements showed generally showed weaker correlations with relative fat mass and skeletal muscle mass (Rho <0.4). As expected, predictors belonging to the same measurement type were positively correlated with each other: The average Spearman rank correlations (Rho) of predictors within groups were 0.71 for vertical distances, 0.73 for girths, and 0.79 for partial volumes. Associations among individual scan features are further illustrated by a tree from cluster analysis in S1 Fig.

Stepwise forward model selection confirmed that either WC or a closely related measurement (e.g. belly circumference or maximum belly circumference, high hip girth) was the single best predictor of body fat content (Table 2). In the bootstrap samples, WC was selected most often as a predictor of visceral fat mass, while belly circumference was selected most often as a predictor of AFM and RFM. The inclusion of a second predictor into the model increased the explained variation by 1.2% to 3.2%, and a third predictor explained a further 1.1% to 1.6%. Another 2.0% to 2.5% of variation was jointly explained by predictors 4 to 6. However, most of these predictors were selected among the top six predictors with fewer than 50% of the bootstrap samples, meaning that other measurements could be selected as well. Forearm volume (left or right) was most often selected as the best predictor of SMM, with various measures of leg size an alternative or second predictor, indicating that SMM was mainly related to total limb volume.

The total number of predictors selected by stepwise forward model selection ranged from 19 (AFM) to 49 (visceral fat mass). Both model fit (r-squared) and predictive value (cross-validated r-squared) increased or remained stable up to this large number of predictors (Fig 3). Model fit reached values close to 100%, and predictive value reached more than 90% for the four body composition measures. For the three measures, the mean prediction error of the stepwise selected model, as determined by cross-validation, was small and only slightly larger than the model’s residual standard error despite the large number of predictors included.
Fig 1. Agreement between methods: Scan vs. manual by scatterplots (left) and Bland Altman plots (right) for height (A,B), WC (C,D), WHtR (E,F) and BMI (G,H). Generally, scanned and manually measured values are strongly correlated (Spearman Rho > 0.96). For height there is a constant bias of -1cm towards scanned height being shorter. For WC and WHtR there is a trend towards higher values being larger in the scanner than when manually measured.

https://doi.org/10.1371/journal.pone.0234552.g001
Table 1). The lasso procedure selected models with less predictors, ranging from 6 (Visc) to 19 (SMM), and with slightly lower predictive value (Table 1). Overall, we only found a moderate degree of overfitting (i.e., only small differences between r^2 and cross-validated r^2) even with multiple predictors.

4. Discussion

In this study we compared estimated body composition (fat and muscle mass) with external body measurements obtained either manually or with a 3D body scanner in a cross-sectional sample of young Swiss men. We found that standard body measurements obtained with both methods were strongly correlated, yet some systematic differences existed. In general, standard measurements obtained with both methods performed equally well in predicting variation in
estimated body composition. Of the 90 measurements obtained from the 3D body scans, the single best predictor of body fat was waist or belly circumference, while skeletal muscle mass was best predicted by limb size (length, girth or volume). The inclusion of additional measurements into multiple regression models increased the predictive value of each of the four body composition measures by more than 90%. Stepwise forward variable selection returned models with substantially more predictors than the lasso procedure, yet no overfitting was apparent, and a similar predictive value was achieved with both model selection procedures. However, due to strong correlations between some of the measurements, the exact choice of predictors in the best predictive model was largely arbitrary. Moreover, the optimal prediction function (possibly considering further derived features) still has to be determined in future studies.

The finding of a systematic bias between scanned and manually assessed data is supported by several other validation studies with similar results [42]. In the scanner participants stand with their legs hip-width apart (to enable the scanner/software to correctly identify the crotch), while they stand with their legs closer together when being manually measured [26]. In an earlier study with a different study population [40] as well as in the 54 follow-up assessments of the present study population [46] we found that height was systematically shorter in the scans. The positioning of the legs (hip-wide apart in the standard scan position vs. legs together and straight posture as being manually measured by an anthropometer) was found to be only partially responsible for the systematic height difference. The remaining difference could be related to the fact that we ran the automatic measurements with the software on the raw scans and point cloud might be slightly fragmented on the top of the head and the bottom of the feet. In other studies, height was systematically greater in the scans and that was mainly explained by issues related to the worn bathing cap (air beneath, or lots of hair up-biasing height) [34,42]. Future studies should therefore examine the partly conflicting results regarding the systematic height bias more closely, especially since the calculation of the BMI depends on it. Like in the 54 follow-up assessments of the present study population [46], WC was larger.

Table 1. Comparison of univariable and multivariable regression models for the prediction of body composition (fat or muscle mass as determined through BIA) from anthropometric measurements.

	Univariable models (standard measurements)	Multivariable models			
	BMI	WC	WHtR	Stepwise selected	Lasso
Visceral fat (kg)	scanner 0.76 Manual 0.76	scanner 0.87 Manual 0.92	scanner 0.83 Manual 0.88	p = 49	p = 6
Explained variation (r²)	0.76	0.87	0.27	0.35	0.250 0.429
Prediction standard error (kg)	0.48	0.47	0.36	0.27	0.43 0.35
Absolute fat mass (kg)					0.987 0.834
Explained variation (r²)	0.84	0.85	0.87	0.86	0.78 0.77
Prediction standard error (kg)	3.38	3.36	3.01	3.19	4.03 4.13
Relative fat mass (%)					1.638 2.435
Explained variation (r²)	0.77	0.77	0.79	0.78	0.74 0.74
Prediction standard error (%)	3.71	3.65	3.54	3.63	3.89 3.90
Skeletal muscle mass (kg)					2.183 2.798
Explained variation (r²)	0.54	0.53	0.49	0.50	0.28 0.28
Prediction standard error (kg)	2.63	2.65	2.77	2.74	3.28 3.30

p = number of predictors selected.

https://doi.org/10.1371/journal.pone.0234552.t001
in the scans, which is likely due to the tendency for hand-held tape measurements to compress the waist circumference, caused by too much tension, and thus reduce the values [64]. Moreover, the non-automatic positioning of the tape in manual measurements is challenging, even when conducted by trained personnel experienced in measuring overweight and obese people [67]. This might apply to an even greater degree for larger waist circumferences among obese people, based also on the findings of other studies which report low reliability of manual WC measurements in obese subjects [34,68].

In our study (regarding model fit) WC performed better than BMI and WHtR in the prediction of the three different body fat measures (visceral, absolute, relative). Moreover, the

Variables	% expl.	Among first six (%)	Alternatives for the first (main) predictor (% of bootstrap samples where the variable was selected in the first step)
Visceral fat (kg)	81.8	60.0	WC (52.3), Belly circumference (18.3), High hip girth (13.1), Middle Hip (10.3), Maximum belly circumference (5.2), High waist girth (0.85), Waist band (0.05)
Volume Forearm Right	3.2	26.7	Maximum belly circumference (5.2), High waist girth (0.85), Waist band (0.05)
Middle Hip	1.6	32.0	
Distance waistband knee	0.8	17.8	
Upper arm girth right	0.7	20.4	
Upper torso torsion	0.5	11.3	
Absolute fat mass (kg)	90.9	31.6	Belly circumference (46.5), Maximum belly circumference (31.3), High hip girth (17.0), Maximum belly circumference (5.2), High waist girth (0.85), Waist band (0.05)
Maximum belly circumference	90.9	31.6	Bell circumference (46.5), Maximum belly circumference (31.3), High hip girth (17.0), Maximum belly circumference (5.2), High waist girth (0.85), Waist band (0.05)
Distance waistband knee	1.2	12.7	Middle hip (4.6), WC (0.25), X_overview Volume (0.25), Buttock girth (0.05), Hip girth (0.05), Thigh girth right horizontal (0.05), Waist band (0.05)
X_Overview Volume	1.1	56.0	
Knee girth left	1.1	32.9	
Volume Forearm Left	1	45.6	
Forearm girth right	0.5	8.8	
Relative fat mass (%)	83.3	88.5	Bell circumference (88.5), Maximum belly circumference (9.5), High hip girth (1.75), Thigh girth right horizontal (0.25), WC (0.2), Buttock girth (0.15), Hip girth (0.15), Thigh girth left horizontal (0.10)
Belly circumference	83.3	88.5	Bell circumference (88.5), Maximum belly circumference (9.5), High hip girth (1.75), Thigh girth right horizontal (0.25), WC (0.2), Buttock girth (0.15), Hip girth (0.15), Thigh girth left horizontal (0.10)
Thigh girth right horizontal	3.1	35.5	Thigh girth right horizontal (0.25), WC (0.2), Buttock girth (0.15), Hip girth (0.15), Thigh girth left horizontal (0.10)
Volume Forearm Left	2.3	60.1	
Dev. waist band from waist back	1	11.3	
min leg girth left	0.8	24.3	
Elbow girth right	0.5	11.6	
Skeletal muscle mass (kg)	78.5	63.2	Volume forearm right (49.5), Volume forearm left (20.5), Volume lower Leg Right (8.6), X_Overview Volume (8.5), Volume Thigh Left (5.0), Forearm girth left (4.0), Hip thigh girth (1.4), Volume Lower Leg Left (1.1), Total torso girth (0.85), Buttock
Volume Forearm Right	78.5	63.2	Volume forearm right (49.5), Volume forearm left (20.5), Volume lower Leg Right (8.6), X_Overview Volume (8.5), Volume Thigh Left (5.0), Forearm girth left (4.0), Hip thigh girth (1.4), Volume Lower Leg Left (1.1), Total torso girth (0.85), Buttock
Volume Thigh Left	6.9	23.1	Hip thigh girth (1.4), Volume Lower Leg Left (1.1), Total torso girth (0.85), Buttock
Waist to buttock height left	2.7	9.9	girth (0.15), Elbow girth right (0.15), min. leg girth left (0.15), calf girth right (0.10), Elbow girth left (0.05), Forearm girth right (0.05), min. leg girth right (0.05)
Neck height	2.2	2.4	
Forearm girth left	1.8	42.6	
Upper arm diameter left	0.9	21.0	

https://doi.org/10.1371/journal.pone.0234552.t002
The association between the three manual anthropometric measurements with visceral fat mass was not linear, so we suggest not modeling this association with simple linear regression equations. In general, the univariable prediction of SMM performed lowest in our study. This is an indication that other body dimensions are more important in predicting muscle mass and that this prediction should be focused on the upper and lower extremities. Our findings support other studies which found only little differences between manually and scanned measures of waist circumference and their association with relative fat mass (as assessed by the same BIA device as in this study) [42]. While some studies have already shown a good validation of linear and circumferential measurements between 3D scans and manual anthropometry, there is not yet so much information on volume reconstructions. We provide here indications that these volumes have an added value, in our case especially in the estimation of skeletal muscle mass.

We furthermore support other studies that information gained from the scans results in high predictive values for body composition measures [41]. In our study we show that the multivariable prediction of body composition explains significantly more variability than the univariate prediction given by WC, BMI and WHtR. Thus, scanning the participants brings with it an additional benefit because within a short time a large number of additional body measurements are available, which markedly improves the prediction of body composition. Concerning the method of selecting individual variables from the whole catalogue of scanned measurements, there are not many other studies we can use for comparison. Previous studies have aggregated meta-measures to cluster body types [44,45] or have used deep learning [43]. Moreover, recent research has also focused on developing methods using the 3D geometry of the surface topography in order to predict body shape [51,69,70].

Strengths and limitations: One limitation of the present study is that body composition was estimated using BIA, which is not the gold standard. In a recent validation study [55], the Seca mBCA 515 BIA-device have been shown to be less reliable for visceral fat than other measures. However, in the setting of the presented study it was not feasible to perform invasive and more time-consuming examinations. We have only examined young Swiss men. However, the homogeneous sample also has advantages in that the precision of our results within the examination group is higher than that of a stratified sample. Also, our study was based on a relatively
small number or subjects. However, since the subjects of the present study regarding BMI and WC are closely comparable to the total population of all conscripts in Switzerland (which covers >90% of a given male birth cohort) [71,72], we believe that our results are generalizable, at least for young men in Switzerland. A larger and more diverse group of subjects will be needed to produce results which are generalizable for a broader population. Also, information about migration background and ethnicity (which influences body shape) should be collected in similar studies, and statistical methods validated in this study have to be tested in other data sets. Last but not least, the geometry accuracy of the mesh surface reconstruction performed by the Anthroscan VITUSbodyscan software has not yet been validated [51,69,70], which might be relevant to the volume estimations in our study.

5. Conclusion

Digital anthropometry is currently transforming areas of clinical nutrition assessment and provides new research opportunities [73]. We provide evidence, that even in smaller and homogenous samples prediction of body composition can be improved by making use of a broad range of standard scan measurements via various regression techniques. However, in order to make the best possible use of this technology, further studies that continue to lay important ground work must follow. The use of a 3D full body scan proved to be feasible for population based studies, and to produce results that strongly correlate to manually measured anthropometric measures. Some systematic differences remain and need further investigation. However, the use of a 3D scan might help in solving difficult situations like manual WC measurements in very obese individuals. As WC showed to be the best indicator for body fat in our study, this fact is of relevance for epidemiological applications. The 3D body scanner also allowed the prediction of skeletal muscle mass in our study. If this result is confirmed in other studies, and especially in a more varied population, this might reduce the use of multiple devices in population studies in the future.

Supporting information

S1 Table. The 90 selected measurements, including names, system-ID, mean and Standard Deviation (SD). Rho RFM indicates Spearman rank correlations with RFM, and Rho SSM correlations with SMM (only Rho >0.5 are reported to provide an overview, and Rho >0.8 are reported in bold numbers).

S1 Fig. Correlation (Spearman) matrix for the three anthropometric measurements (BMI, WC, WHtR).

S2 Fig. Correlation (Spearman) matrix for the four body composition measurements (visceral fat mass, AFM, RFM, SMM).

S1 Data.

Acknowledgments

This paper was part of Roman Sager’s medical Master thesis. The authors are especially thankful to Andreas Stettbacher (Chief Medical Surgeon), Franz Frey, Alexander Faas, Martino Ghilardi, Marco Müller, and Yvanka Jerkovic from the Swiss Armed Forces for their tremendous support.
logistical support. We also thank the IEM collaborators Nikola Koepke, Joël Floris, Lena Öhrström, Gülfirde Akgül, Anne Lehner, Lafi Aldakak, Michael Strässle, Patrick Eppeberger, Claudia Beckmann, and Nakita Frater for helping to collect the data. Furthermore, the authors thank Marcel Zwahlen, Ben Spycher and Jonathan Wells for helpful comments and discussions.

Author Contributions
Conceptualization: Frank Rühl, Nicole Bender, Kaspar Staub.
Data curation: Roman Sager, Nicole Bender, Kaspar Staub.
Formal analysis: Sabine Güsewell, Kaspar Staub.
Funding acquisition: Frank Rühl.
Investigation: Roman Sager, Sabine Güsewell, Nicole Bender, Kaspar Staub.
Methodology: Sabine Güsewell, Kaspar Staub.
Project administration: Roman Sager, Frank Rühl, Nicole Bender, Kaspar Staub.
Resources: Frank Rühl, Kaspar Staub.
Software: Sabine Güsewell.
Supervision: Frank Rühl, Nicole Bender, Kaspar Staub.
Visualization: Sabine Güsewell, Kaspar Staub.
Writing – original draft: Roman Sager, Sabine Güsewell, Kaspar Staub.
Writing – review & editing: Sabine Güsewell, Frank Rühl, Nicole Bender.

References
1. James PT, Leach R, Kalamara E, Shayeghi M. The Worldwide Obesity Epidemic. Obes Res. 2001; 9: 228S–233S. https://doi.org/10.1038/oby.2001.123 PMID: 11707546
2. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet (London, England). 2016; 387: 1377–1396. https://doi.org/10.1016/S0140-6736(16)30054-X
3. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011; 377: 557–567.
4. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000; 894: I–xii, 1–253. http://www.ncbi.nlm.nih.gov/pubmed/11234459 PMID: 11234459
5. Lee CG, Boyko EJ, Nelson CM, Stefanick ML, Bauer DC, Hoffman AR, et al. Mortality Risk in Older Men Associated with Changes in Weight, Lean Mass, and Fat Mass. J Am Geriatr Soc. 2011; 59: 233–240. https://doi.org/10.1111/j.1532-5415.2010.03245.x PMID: 21288234
6. Atish S, Enchaiah K, Ane J, Vans CE, Evy AL, Ilson EWFW, et al. The New England Journal of Medicine OBESITY AND THE RISK OF HEART FAILURE A BSTRACT [Internet]. N Engl J Med. 2002. Available: www.nejm.org
7. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the Risk of Heart Failure. N Engl J Med. 2002; 347: 305–313. https://doi.org/10.1056/NEJMoa020245 PMID: 12151467
8. Kopelman PG. Obesity as a medical problem. Nature. 2000; 404: 635–643. https://doi.org/10.1038/35007506 PMID: 10766250
9. Eckel RH, Krauss RM. American Heart Association Call to Action: Obesity as a Major Risk Factor for Coronary Heart Disease [Internet]. 1998. http://ahajournals.org
10. Després JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arterioscler Thromb. 1990; 10: 497–511. https://doi.org/10.1161/01.ATV.10.4.497 PMID: 2196040

11. Heitmann B, Erikson H, Elsinger B-M, Mikkelsen K, Larsson B. Mortality associated with body fat, fat-free mass and body mass index among 60-year-old Swedish men—a 22-year follow-up. The study of men born in 1913. Int J Obes. 2000; 24: 33–37. https://doi.org/10.1038/sj.ijo.0801082 PMID: 10702748

12. Kit BK, Ogden CL, Flegal KM. Updated obesity definitions from the CDC. Clin J Am Soc Nephrol. 2008; 3: 373–380. https://doi.org/10.2215/CJN.03080808 PMID: 18335578

13. Janssen I, Heymsfield SB, Ross R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J Am Geriatr Soc. 2002; 50: 889–896. https://doi.org/10.1046/j.1532-5415.2002.50216.x PMID: 12028177

14. Wannamethee SG, Shaper AG, Lennon L, Whincup PH. Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr. 2007; 86: 1339–1346. https://doi.org/10.1093/ajcn/86.5.1339 PMID: 17991644

15. Burini RC, Maestá N. The Meaning of Muscle Mass for Health, Disease, and Strength Exercises. Handb Anthr Phys Meas Hum Form Heal Dis. 2012; 1–3107. https://doi.org/10.1007/978-1-4419-1788-1_107

16. Dura DL, Sherwood RJ, Czerwinski SA, Lee M, Choh AC, Siervogel RM, et al. Body composition methods: comparisons and interpretation. J Diabetes Sci Technol. 2008; 2: 1139–46. https://doi.org/10.1177/19322968080200623 PMID: 19885303

17. Wells JCK, Fewtrell MS. Measuring body composition. Arch Dis Child. 2006; 91: 612–7. https://doi.org/10.1136/adc.2005.085522 PMID: 16790722

18. Schweitzer L, Geisler C, Pourhassan M, Braun W, Glüer CC, Bosy-Westphal A, et al. What is the best reference site for a single MRI slice to assess whole body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr. 2015; 102: 58–65. https://doi.org/10.3945/ajcn.115.111203 PMID: 26016860

19. Haarbo J, Heymsfield SB, Ross R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J Am Geriatr Soc. 2002; 50: 889–896. https://doi.org/10.1046/j.1532-5415.2002.50216.x PMID: 12028177

20. Lee SY, Gallagher AG, Lennon L, Whincup PH. Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr. 2007; 86: 1339–1346. https://doi.org/10.1093/ajcn/86.5.1339 PMID: 17991644

21. Preedy VR. Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease. Handb Anthr Phys Meas Hum Form Heal Dis. 2012; 1–3107. https://doi.org/10.1136/adc.2005.085522 PMID: 16790722

22. Nuttall FQ. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr Today. 2015; 50: 117–128. https://doi.org/10.1177/193229680700200623 PMID: 19885451

23. Uljaszek SJ, Kerr DA. Anthropometric measurement error and the assessment of nutritional status. Br J Nutr. 1999;82. https://doi.org/10.1079/BJN.1999.82.0b013e32830 b5f23 PMID: 10655963

24. Bigaard J, Frederiksen K, Tjønneland A, Thomsen BL, Overvad K, Heitmann BL, et al. Waist circumference and body composition in relation to all-cause mortality in middle-aged men and women. Int J Obes. 2005; 29: 778–784. https://doi.org/10.1038/sj.ijo.0802976 PMID: 15917857

25. Dhana K, Kavousi M, Ikram MA, Tiemeier HW, Hofman A, Franco OH. Body shape index in comparison with other anthropometric measures in prediction of total and cause-specific mortality. J Epidemiol Community Health. 2015; 70: 90–96. https://doi.org/10.1136/jech-2014-205257 PMID: 26160362

26. World Health Organization (WHO). Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Geneva: WHO Document Production Services; 2008.

27. Lee CMY, Huxley RR, Wildman RP, Woodward M. Indices of abdominal obesity are better discriminators of cardiovascular risk factors than BMI: a meta-analysis. 2008/03/25. 2008; 61: 646–653. Available: https://www.sciencedirect.com/science/article/pii/S089543607003228

28. Olivares J, Wang J, Yu W, Perey V, Weil R, Kovacs B, et al. Comparisons of body volumes and dimensions using three-dimen-sional photonic scanning in adult Hispanic-Americans and Caucasian-Americans. J Diabetes Sci Technol. 2007; 1: 921–928. https://doi.org/10.1177/193229680700100619 PMID: 19885167

29. Wells JCK, Cole TJ, Bruner D, Treleaven P. Body shape in American and British adults: between-country and inter-ethnic comparisons. Int J Obes. 2008; 32: 152–159. https://doi.org/10.1038/sj.ijo.0803685 PMID: 17667912

30. Wells JCK, Stocks J, Bonner Raywood E, Legg S, Lee S, et al. Acceptability, Precision and Accuracy of 3D Photonic Scanning for Measurement of Body Shape in a Multi-Ethnic Sample of Children Aged
31. Wells JCK, Treleaven P, Charoensiriwath S. Body shape by 3-D photonic scanning in Thai and UK adults: comparison of national sizing surveys. Int J Obes. 2012; 36: 148–154. https://doi.org/10.1038/ijo.2011.51 PMID: 23356433

32. Olds T, Daniell N, Petkov J, David Stewart A. Somatotyping using 3D anthropometry: a cluster analysis. J Sports Sci. 2013; 31: 936–944. https://doi.org/10.1080/02640414.2012.759660 PMID: 23356433

33. Peyer KE, Morris M, Sellers WI. Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras. PeerJ. 2015; 3: e831. https://doi.org/10.7717/peerj.831 PMID: 25780778

34. Kuehnapfel A, Ahnert P, Loeffler M, Broda A, Scholz M. Reliability of 3D laser-based anthropometry and comparison with classical anthropometry. Sci Rep. 2016; 6: 26672. https://doi.org/10.1038/srep26672 PMID: 27225483

35. Treleaven P, Wells J. 3D Body Scanning and Healthcare Applications. Computer (Long Beach Calif). 2007; 40: 28–34. https://doi.org/10.1109/MC.2007.225

36. Lin JD, Chiou WK, Weng HF, Fang JT, Liu TH. Application of three-dimensional body scanner: observation of prevalence of metabolic syndrome. Clin Nutr. 2004; 23: 1313–1323. https://doi.org/10.1016/j.clnu.2004.04.005 PMID: 15556253

37. Lee JJ, Freeland-Graves JH, Pepper MR, Yu W, Xu B. Efficacy of thigh volume ratios assessed via stereovision body imaging as a predictor of visceral adipose tissue measured by magnetic resonance imaging. Am J Hum Biol. 2015; 27: 445–457. https://doi.org/10.1002/ajhb.22663 PMID: 25645428

38. Wang J, Gallagher D, Thornton JC, Yu W, Horlick M, Pi-Sunyer FX. Validation of a 3-dimensional photonic scanner for the measurement of body volumes, dimensions, and percentage body fat. Am J Clin Nutr. 2006; 83: 809–16. https://doi.org/10.1093/ajcn/83.4.809 PMID: 16600932

39. Wells JCK, Ruto A, Treleaven P. Whole-body three-dimensional photonic scanning: a new technique for obesity research and clinical practice. Int J Obes. 2008; 32: 232–238. https://doi.org/10.1038/sj.ijo.0803727 PMID: 17923860

40. Koepke N, Zwahlen M, Wells JC, Bender N, Henneberg M, Rühli FJ, et al. Comparison of 3D laser-based photonic scans and manual anthropometric measurements of body size and shape in a validation study of 123 young Swiss men. PeerJ. 2017; 5: e2980. https://doi.org/10.7717/peerj.2980 PMID: 28289559

41. Ng BK, Hinton BJ, Fan B, Kanaya AM, Shepherd JA. Clinical anthropometrics and body composition from 3D whole-body surface scans. Eur J Clin Nutr. 2016; 70: 1265–1270. https://doi.org/10.1038/ejcn.2016.109 PMID: 27329614

42. Jaeschke L, Steinbrecher A, Pischon T. Measurement of waist and hip circumference with a body surface scanner: feasibility, validity, reliability, and correlations with markers of the metabolic syndrome. Vinciguerra M, editor. PLoS One. 2015; 10: 1–16. https://doi.org/10.1371/journal.pone.0119430 PMID: 25749283

43. Pleuss JD, Talty K, Morse S, Kuiper P, Scioletti M, Heymsfield SB, et al. A machine learning approach relating 3D body scans to body composition in humans. Eur J Clin Nutr. 2019; 73: 200–208. https://doi.org/10.1038/s41430-018-0337-1 PMID: 30315314

44. Löffler-Wirth H, Willscber E, Ahnert P, Wirkner K, Engel C, Loeffler M, et al. Novel Anthropometry Based on 3D-Bodyscans Applied to a Large Population Based Cohort. Hoon Shin D, editor. PLoS One. 2016; 11: e0159887. https://doi.org/10.1371/journal.pone.0159887 PMID: 27467550

45. Löffler-Wirth H, Vogel M, Kirsten T, Glock F, Poulin T, Kömer A, et al. Body typing of children and adolescents using 3D-body scanning. Buchowski M, editor. PLoS One. 2017; 12: 1–11. https://doi.org/10.1371/journal.pone.0186881 PMID: 29053732

46. Wells JCK. Three-dimensional optical scanning for clinical body shape assessment comes of age. Am J Clin Nutr. 2019; 110: 1272–1274. https://doi.org/10.1093/ajcn/nqz258 PMID: 31622453

47. Ng BK, Sommer MJ, Wong MC, Pagano I, Nie Y, Fan B, et al. Detailed 3-dimensional body shape features predict body composition, blood metabolites, and functional strength: the Shape Up! studies. Am J Clin Nutr. 2019; 110: 1316–1326. https://doi.org/10.1093/ajcn/nqz218 PMID: 31553429

48. Wong MC, Ng BK, Kennedy SF, Hwaung P, Liu EY, Kelly NN, et al. Children and Adolescents’ Anthropometrics Body Composition from 3-D Optical Surface Scans. Obesity. 2019; 27: 1738–1749. https://doi.org/10.1002/oby.22637 PMID: 31689009

49. Navarro P, Ramallo V, Cintas C, Ruderman A, de Azevedo S, Paschetta C, et al. Body shape: Implications in the study of obesity and related traits. Am J Hum Biol. 2019; 32: e23323. https://doi.org/10.1002/ajhb.23323 PMID: 31506993
Multiple measures from 3D body scans improve predictions of fat and muscle mass in young Swiss men

50. Pleuss JD, Talty K, Morse S, Kuiper P, Scioletti M, Heymsfield SB, et al. A machine learning approach relating 3D body scans to body composition in humans. European Journal of Clinical Nutrition. Nature Publishing Group; 2019. pp. 200–208. https://doi.org/10.1038/s41430-018-0337-1 PMID: 30315314

51. Lu Y, Hahn JK, Zhang X. 3D Shape-Based Body Composition Inference Model Using a Bayesian Network. IEEE J Biomed Heal Informatics. 2020; 24: 205–213. https://doi.org/10.1109/JBHI.2019.2903190 PMID: 30843854

52. Beckmann C, Aldakak L, Eppenberg P, Rühli F, Staub K, Bender N. Body height and waist circumference of young Swiss men as assessed by 3D laser-based photonic scans and by manual anthropometric measurements. PeerJ. 2019; 2019: e8095. https://doi.org/10.7717/peerj.8095 PMID: 31886036

53. Dalgleish T, Williams JMG., Golden A-MJ, Perkins N, Barrett LF, Barnard PJ, et al. [No Title]. J Exp Psychol. 2007; 136: 23–42. https://doi.org/10.1037/0096-3445.136.1.23 PMID: 17324083

54. Zhaohui C, Truesdale KP, Jianwen C, Koontz MB, Stevens J. Generation of normal ranges for measurement. Lancet. 1986; 1: 307–310. PMID: 2868172

55. Adler C, Steinbrecher A, Jaeschke L, Mähler A, Boschmann M, Jeran S, et al. Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner. Aguilera AI, editor. PLoS One. 2017; 12: e0180201. https://doi.org/10.1371/journal.pone.0180201 PMID: 28672039

56. Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, et al. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6–18 years. Pediatr Int. 2009; 51: 263–268. https://doi.org/10.1111/j.1442-200X.2009.02698.x PMID: 19405930

57. Bosy-Westphal A, Jensen B, Braun W, Pourhassan M, Gallagher D, Müller MJ. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur J Clin Nutr. 2017; 71: 1061–1067. https://doi.org/10.1038/ejcn.2017.27 PMID: 28327564

58. Dalgleish T, Williams JMG., Golden A-MJ, Perkins N, Barrett LF, Barnard PJ, et al. [No Title]. J Exp Psychol. 2007; 136: 23–42. https://doi.org/10.1037/0096-3445.136.1.23 PMID: 17324083

59. Wang J, Gallagher D, Thornton JC, Yu W, Weil R, Kovac B, et al. Regional Body Volumes, BMI, Waist Circumference, and Percentage Fat in Severely Obese Adults**. Obesity. 2007; 15: 2688–2698. https://doi.org/10.1038/oby.2007.321 PMID: 18070760

60. Lim JS, Hwang JS, Lee JA, Kim DH, Park KD, Jeong JS, et al. Calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6–18 years. Pediatr Int. 2009; 51: 263–268. https://doi.org/10.1111/j.1442-200X.2009.02698.x PMID: 19405930

61. Adler C, Steinbrecher A, Jaeschke L, Mähler A, Boschmann M, Jeran S, et al. Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner. Aguilera AI, editor. PLoS One. 2017; 12: e0180201. https://doi.org/10.1371/journal.pone.0180201 PMID: 28672039

62. Wang J, Gallagher D, Thornton JC, Yu W, Weil R, Kovac B, et al. Regional Body Volumes, BMI, Waist Circumference, and Percentage Fat in Severely Obese Adults**. Obesity. 2007; 15: 2688–2698. https://doi.org/10.1038/oby.2007.321 PMID: 18070760

63. Adler C, Steinbrecher A, Jaeschke L, Mähler A, Boschmann M, Jeran S, et al. Validity and reliability of total body volume and relative body fat mass from a 3-dimensional photonic body surface scanner. Aguilera AI, editor. PLoS One. 2017; 12: e0180201. https://doi.org/10.1371/journal.pone.0180201 PMID: 28672039

64. Wang J, Gallagher D, Thornton JC, Yu W, Horlick M, Pi-Sunyer FX. Validation of a 3-dimensional photonic scanner for the measurement of body volumes, dimensions, and percentage body fat. Am J Clin Nutr. 2006; 83: 809–816. https://doi.org/10.1093/ajcn/83.4.809 PMID: 16600932

65. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1: 307–310. PMID: 2868172

66. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999; 8: 135–160. https://doi.org/10.1177/096228099080002002 PMID: 10501650

67. Haubisch MM, Kasak A, Ostrem JD, Dengel DR. Validation of a three-dimensional body scanner for body composition measuremen. Eur J Clin Nutr. 2018; 72: 1191–1194. https://doi.org/10.1038/s41430-017-0046-1 PMID: 29288245

68. Verweij LM, Terwee CB, Proper KI, Hulshof CT, van Mechelen W. Measurement error of waist circumference: gaps in knowledge. Public Health Nutr. 2013; 16: 281–288. https://doi.org/10.1017/S1368980012002741 PMID: 22626254
69. Lu Y, Hahn JK. Shape-based three-dimensional body composition extrapolation using multimodality registration. Proceedings of SPIE—the International Society for Optical Engineering. SPIE-Intl Soc Optical Eng; 2019. p. 64. 10.1117/12.2505896

70. Lu Y, McQuade S, Hahn JK. 3D Shape-based Body Composition Prediction Model Using Machine Learning. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. Institute of Electrical and Electronics Engineers Inc.; 2018. pp. 3999–4002. 10.1109/EMBC.2018.8513261

71. Staub K, Floris J, Koepke N, Trapp A, Nacht A, Schärli Maurer S, et al. Associations between anthropometric indices, blood pressure and physical fitness performance in young Swiss men: a cross-sectional study. BMJ Open. 2018; 8: e018664. https://doi.org/10.1136/bmjopen-2017-018664 PMID: 29886438

72. Staub K, Bender N, Floris J, Pfister C, Rühli FJ. From Undernutrition to Overnutrition: The Evolution of Overweight and Obesity among Young Men in Switzerland since the 19th Century. Obes Facts. 2016; 9: 259–272. https://doi.org/10.1159/000446966 PMID: 27544200

73. Heymsfield SB, Bourgeois B, Ng BK, Sommer MJ, Li X, Shepherd JA. Digital anthropometry: a critical review. Eur J Clin Nutr. 2018; 72: 680–687. https://doi.org/10.1038/s41430-018-0145-7 PMID: 29748657