Establishment and Application of Air Quality Statistical Forecasting Model-- Taking Air Quality Data from City A as an Example

Xinzhi Rao
University of Colorado Boulder, United States

Abstract. By using the atmosphere automatic monitoring data and meteorological data of January and February 2017 in city A, 19 forecasting factors are selected and the statistical prediction model of winter air quality in city A is established by using the stepwise regression method. Forecast items include fine particulate matter (PM$_{2.5}$), inhalable particle (PM$_{10}$), sulfur dioxide (SO$_2$), nitrogen dioxide (NO$_2$), carbon monoxide (CO) average daily concentration and ozone (O$_3$) maximum 8h average concentration daily. From November 2017 to January 2018, the model was applied and revised in combination with human experience to carry out the environmental air quality forecast in city A. The comparison between the forecast results and the measured results showed that the level accuracy rate of the environmental air forecast results was 79.1%, and the accuracy rate of the primary pollutant was 73.6%.

Key words: Air quality, Statistical forecasting model, Mathematical modeling, Stepwise regression.

1. Introduction
Urban environmental air quality forecast is an effective measure to protect people's health and mobilize the public to participate in environmental protection. It is a public welfare work to improve people's quality of life and reflect the image of the people's government [1]. The release of environmental air quality forecast can provide scientific basis for environmental management and decision-making departments to timely, accurately and comprehensively grasp the future change trend of urban environmental air quality [2-3]. It can be targeted to increase pollution source control before the arrival of serious pollution day, timely warning and taking restrictive measures to mitigate the health hazards to the public. Therefore, urban environmental air quality forecast, as an important link of air pollution prevention and control, has been highly valued by governments at all levels. Urban air quality forecasting methods mainly include numerical forecasting, statistics, neural network and weather science [4-6], among which statistical forecasting method is the most widely used method. On the basis of previous studies, the environmental monitoring center of city A has carried out research on sulfur dioxide (SO$_2$) forecast and air pollution composite index forecast in winter mornings since 1996. Since 2001, the air pollution index (API) forecasting work including (PM$_{10}$), sulfur dioxide (SO$_2$) and nitrogen dioxide (NO$_2$) has been officially carried out [7-10]. From 2017, city A began to implement the
“environmental air quality standards” (GB 3095-2016), and the environmental air quality monitoring indicators increased to 6 items. Therefore, the original forecasting model system cannot be continued to be used, and in the winter heating period, the pollution is not only aggravated, but also the variation range of pollution is also increased [11]. Therefore, this study is based on the new environmental air quality standards, using atmosphere automatic monitoring data and meteorological data of the same period from January to February 2017 in city A. The stepwise regression method is used to establish the statistical forecasting model of environmental air quality at all points during the winter heating period in city A, and it was applied in the forecasting work from November 2017 to January 2018 combined with the human experience revision, so as to provide reference for urban air quality forecast.

2. Forecasting methods and information

2.1. Introduction to forecasting methods
Environmental air quality is closely related to meteorological factors and depends to some extent on atmospheric diffusion conditions. When a certain pollutant is discharged into the air, the pollutant concentration in the air is determined by the emission of the pollutant source and the atmospheric dilution and diffusion conditions. For a period of time, the total amount of pollutant discharge in the whole city is relatively stable, and the pollutant source is regarded as "quasi-steady". Then, the level of pollutant concentration mainly depends on the meteorological conditions at that time. When meteorological conditions are conducive to the pollutant diffusion, the pollutant concentration is low, and vice versa. According to relevant data, the dilution and diffusion capacity of the atmosphere can be changed more than 10 times in a few hours due to changes in meteorological conditions [12]. Statistical forecasting is a method that regards pollutant emissions as relatively constant, and predicts future air quality based on the forecast results of weather forecasting and air quality status quo. Through accumulation of long-term monitoring values of air pollutant concentration and synchronizing meteorological observation data, the correlation between them is established. Through these qualitative and quantitative relationships, air quality forecast is made [13].

The statistical forecasting model established in this study adopts stepwise regression algorithm. The stepwise regression algorithm introduces the regression equation one by one according to the significance of its effect on the dependent variable Y, considering all factors. The variables that have no significant effect on the dependent variable Y can never be introduced into the regression equation. The variables that have been introduced into the regression equation are likely to change from significant to insignificant after the introduction of new variables. They should be removed from the regression equation to ensure that the best combination factor can be selected from the numerous forecasting factors and the optimal forecast equation can be established.

The optimal regression equation established by the predictor Y and the forecasting factor X:

\[Y = B_0 + B_1 X_1 + B_2 X_2 + \ldots + B_n X_n \]

Where: \(Y \) is pollutant forecast concentration, \(B_0 \) is the constant term, \(B_1, B_2, \ldots, B_n \) are the selected factor coefficients, and \(X_1, X_2, \ldots, X_n \) are the selected forecasting factors.

2.2. Introduction to forecasting platform
The forecasting platform of daily environmental air quality in city A was developed in 2006, which is used in daily air quality forecast, greatly improving the work efficiency [14-15]. In 2016, in response to the change of environmental air quality standards, the platform was updated and upgraded according to the standards, technical specifications and business processes based on the original functions. The existing forecasting platform of daily environmental air quality in city A was officially put into use in 2017. The prediction system in the platform includes prediction modeling module, prediction making module and accuracy statistics module. The models used for forecasting are still mainly regression forecasting model and weather forecasting model, and then the forecast results are generated after the forecaster's discussion. The accuracy statistics module of the platform can automatically calculate the prediction accuracy of a certain period of time, and the accuracy indicators include the accuracy rate of
the primary pollutant, the level accuracy, and the span accuracy. The change is that the monitoring points have been increased from 8 to 11, the monitoring items have been increased from 3 to 6, and the evaluation indicators have been changed from API to AQI.

2.3. Sample data selection of the modeling environment
Based on the climatic characteristics of city A, the environmental air quality monitoring data and meteorological data from January to February 2017 are adopted to establish the forecasting model of the environmental air quality in winter in city A. According to technical requirements, the environmental monitoring data used include daily mean data (PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, CO 24h average concentration daily and O$_3$ maximum 8h average concentration daily) of 11 monitoring substations and 6 pollutants in this period, as well as corresponding environmental air quality index (AQI).

2.4. Selection of modelling weather forecasting factors
Forecasting factors mainly select meteorological factors which can be forecast by meteorological departments and have good forecast effect and high forecast accuracy. 19 conventional ground and near-ground forecasting factors are selected preliminarily, including: pollutant concentration previous day X_1(μg/m3), weather condition current day X_2, the dominant wind direction current day X_3, the average wind speed current day X_4(m/s), 24h wind speed variable X_5(m/s), the minimum temperature current day X_6(℃), 24h variable of the minimum temperature X_7(℃), the maximum temperature current day X_8(℃), 24h variable of the maximum temperature current day X_9(℃), the mean value of the maximum and minimum temperature current day X_{10}(℃), the average 24h variable of the maximum and minimum temperature X_{11}(℃), 850hPa8:00 temperature X_{12}(℃), 850hPa8:00 temperature 24h variable X_{13}(℃), 8:00 temperature inversion X_{14}(℃), the precipitation current day X_{15}(mm), 850hPa average wind speed X_{16}(m/s), humidity X_{17}(%), 8:00 humidity X_{18}(%), 8:00 transformation X_{19}(hPa).

3. Establishment of forecasting model
By using 6 environmental air quality monitoring data of the previous day and 18 meteorological forecasting factors of the current day, the stepwise regression modeling program of the environmental air quality warning platform of city A is applied. In this paper, 66 winter forecast equations with 11-point locations are established, and F value at significance level α=0.01 is used to test the equation. The calculated F equation of all equations is much larger than $F_{0.01}$, indicating that the equation is significant at the level of 0.01, and the equation can be used. Through stepwise regression modeling, a total of 8 forecasting factors are selected in the winter forecasting model, in which each indicator equation is different. PM$_{2.5}$ forecast equation includes X_1, X_2, X_3, X_5 and X_{14}, five forecasting factors. PM$_{10}$ forecast equation includes X_1, X_2, X_3, X_5 and X_{14}, five forecasting factors. SO$_2$ equation selects 8 forecasting factors which are X_1, X_2, X_3, X_5, X_6, X_7, X_8 and X_{14}. NO$_2$ equation selects 6 forecasting factors which are X_1, X_2, X_3, X_5, X_6 and X_{14}. CO equation selects four forecasting factors, namely, X_1, X_2, X_3 and X_{14}. O$_3$(8h) equation selects 6 forecasting factors, which are X_1, X_2, X_3, X_5, X_6 and X_{14}. Each factor coefficient is shown in table 1 ~ table 6. In the table of pollutant coefficient of each item, only the point location of selecting different coefficients as the equation is listed, while the point location of selecting the same coefficient as the equation is not listed.

From the meteorological factors selected for each air pollutant equation, it can be seen that after the screening of each factor by the stepwise regression method, the pollutant concentration previous day, weather condition, wind direction and the 8:00 temperature inversion are selected for almost all the equations. It shows that these four factors have a good correlation with pollutant concentration and are of great importance in the prediction of pollutants. However, other factors selected by different equations are different. In most point locations of SO$_2$ equation, 24h variable of the minimum temperature and the minimum temperature are selected, indicating that SO$_2$ has a good correlation with 24h variable of the minimum temperature and the minimum temperature. 24h wind speed variable is selected for PM$_{2.5}$ and NO$_2$, indicating that PM$_{2.5}$ and NO$_2$ have a good correlation with 24h wind speed variable. PM$_{10}$ and
O₃(8h) select the maximum temperature at the same time, indicating that PM₁₀ and O₃(8h) have a good correlation with the maximum temperature.

Table 1. Coefficient of fine particulate matter PM2.5 forecast equation in winter of city A

Point location	X₁	X₂	X₃	X₄	X₁₄	B₀
a	0.38	0.58	0.27	-8.83	-4.60	-48.05
b	0.30	0.54	0.25	-6.41	-37.79	
k	0.36	0.56	0.26	-11.63	-8.24	-19.54
i	0.47	0.59	0.26	-4.57	-25.04	

Note: only the forecasting factors are used to select different typical equations as the example, other equation coefficients are ignored, and the blank indicates that there is no corresponding data, the same below.

Table 2. Coefficient of inhalable particle PM₁₀ forecast equation in winter of city A

Point location	X₁	X₂	X₃	X₈	X₁₄	B₀
a	0.36	0.54	0.34	-4.93	-63.21	
b	0.31	0.53	0.32	-1.87	-6.13	-61.40
i	0.46	0.57		-5.90	-26.12	

Table 3. Coefficient of sulfur dioxide SO₂ forecast equation in winter of city A

Point location	X₁	X₂	X₃	X₅	X₆	X₇	X₈	X₁₄	B₀
a	0.12	0.38	0.74	-6.77	3.36			-192.19	
b	0.42	0.44		-6.72	-12.12	-24.16			
c	0.51	0.37	-20.95		-4.01	6.48			
d	0.19	0.40	0.76	-4.56				-168.32	
e	0.35	0.29	-3.48	2.54		-3.86	-33.58		
f	0.25	0.37	0.68	-2.87	-2.31	-81.70			
g	0.54	0.35	0.54	-12.38	-1.27	2.47	-83.06		

Table 4. Coefficient of nitrogen dioxide NO₂ forecast equation in winter of city A

Point location	X₁	X₂	X₃	X₅	X₆	X₇	X₈	X₁₄	B₀
a	0.42	0.31	0.43	-3.39				-0.97	-10.36
b	0.40	0.37		-0.37	-0.89	-0.40			
i	0.21	0.36	0.25		-0.76	0.36			

Table 5. Coefficient of carbon monoxide CO forecast equation in winter of city A

Point location	X₁	X₂	X₃	X₅	X₆	X₁₄	B₀
a	0.35	0.26	0.25	-3.39		-0.09	0.02
h	0.5	0.39		-0.05	-0.09	-0.89	
g	0.6	0.26	-0.17		-0.06	0.00	
Table 6. Coefficient of ozone O₃ forecast equation in winter of city A

Point location	X₁	X₂	X₃	X₄	X₅	X₁₄	B₀
a	0.22	0.38	0.57	0.57	0.73	-1.15	
b	0.25	0.45	0.46	2.05	0.46	0.81	-0.96
i	0.43	0.45	0.52		0.11	-4.14	
f	0.25	0.46	0.69	0.55		-15.05	
j	0.5	0.48	3.99	0.93		4.89	

4. Forecasting model fitting, verification and application verification

4.1. Statistics of model fitting accuracy

The distribution of predicted value relative to measured value can indicate the close degree of predicted value and measured value in the fitting or verification of the model, which is a characterization form of concentration accuracy. The model was fitted by the data of January and February 2017 used in the modeling (the comparison of the fitting results is shown in figure 1, where the value range of the standard error line is ±10%). From the data, it can be seen that the predicted value of PM₁₀ and CO₂ indicator over 70% is within the range of 30% above and below the measured value. The predicted value of PM₂.₅, SO₂, NO₂ and O₃ indicator over 65% is within the range of 30% above and below the measured value. It shows that the fitting effect of PM₁₀ and CO is better than other four indicators. The distribution of the fitting results in different intervals on the two sides of the measured values is shown in table 7. The average relative error of predicted value in the application verification can indicate the overall deviation degree between predicted value and measured value in the application, which is a kind of characterization of systematic error. As can be seen from the accuracy of the fitting results, except the relative error of O₃ is -3.5%, the relative error of the other five indicators was within ±2.0%, and the overall fitting effect is good. The level accuracy of fitting reaches 62.9%, and the accuracy of the primary pollutant reaches 78.6%. The accuracy statistics of the fitting results is shown in table 7.

Fig.1 Comparison between the fitting results and measured values of PM₂.₅ forecast equation at point location A in 2017
Item	Pollutant	The distribution of predicted values in different intervals on both sides of measured values /%	Sample number/ unit
Fitting	PM$_{2.5}$	±10% ±20% ±30% ±40% ±50% ±60% ±70% ±80% ±90% ±100% > 100%	649
	PM$_{10}$	28.3 46.5 69.8 79 85.4 88.2 90.7 91.9 92.1 94.3 100	649
	SO$_{2}$	31.9 54.7 73.5 82.3 86.9 90.6 92.8 93.4 94.6 97.4 100	649
	NO$_{2}$	27.1 45.8 67.6 70.4 76.4 82.3 85.4 87.5 90.8 93.8 100	649
	CO	35.1 56.7 69.6 76.4 80.7 84.4 86.7 87.8 88.4 91.2 100	649
	O$_{3}$	28.7 51.6 71.7 79.7 84.7 88.8 92 93.1 94.3 96.3 100	649
Verification	PM$_{2.5}$	14.4 27.9 39.8 50 61.2 69 74.8 79.6 84.6 86.9 100	1012
	PM$_{10}$	18.6 36.3 50.1 61.3 70.6 77.2 83.9 88.9 91.9 93.7 100	1012
	SO$_{2}$	11.6 23.4 38.3 52.6 64.2 74.1 82 88.9 92.2 93.4 100	1012
	NO$_{2}$	16.7 32.8 48.6 62.4 76 87.2 94.3 97.9 99.1 99.3 100	1012
	CO	17.3 30.2 43.7 54.4 62 70 76 80.9 84.1 86.2 100	1012
	O$_{3}$	18.8 38.3 54.2 66.6 76.5 82.3 85.8 87.6 89.3 90.6 100	1012

4.2. Model verification accuracy statistics

The model is validated using the measured air quality and meteorological data in November, December, 2017 and January, 2018 (figure 2, the value range of the standard error line is ±10%). The distribution of verification results in different intervals on both sides of measured values is shown in table 7. It can be seen that the predicted value of PM$_{10}$ and O$_{3}$ indicator is within ±30% of the measured value, and that of other indicators around 40% is within ±30% of the measured value. The accuracy statistics of the verification results is shown in table 8. It can be seen that the relative errors of the 6 pollutants are all within the range of ±10.0%, PM$_{2.5}$, PM$_{10}$ and O$_{3}$ indicator are better than the other 3 indicators. The level accuracy of verification is 55.8%, and the accuracy of the primary pollutant is 68.5%. In the process of fitting and verification, the fitting and verification results of the winter model are all slightly different. The analysis reasons mainly include: the modeling data samples are too small to cover most meteorological conditions, which leads to the low accuracy of model verification. The January-February 2017 coincided with a special meteorological process of large-scale and long-term severe haze rarely seen in China. Therefore, the meteorological data and pollutant concentration data in this period are relatively special, and the applicability of the established model is bound to be affected, which is the main reason for the large systematic error (relative error) in the verification results. Although November is the same winter heating period, the meteorological conditions such as temperature and humidity differ greatly from the modeling data period, resulting in a certain deviation in the verification results of the month.
Fig. 2. Comparison of verification results and measured values of PM$_{2.5}$ forecast equation at point location A

Table 8. Statistical table of prediction accuracy in fitting and verification

Item	PM$_{2.5}$	PM$_{10}$	SO$_2$	NO$_2$	CO	O$_3$	Level accuracy	Primary pollutant accuracy
Sample number	649	1.4	649	649	649	649	649	640
Relative error	1.7	0.2	649	649	649	649	649	640
Sample number	1.7	0.2	649	649	649	649	649	640
Relative error	0.5	0.5	649	649	649	5.5	649	640
Sample number	640	6.2	1012	957	92	92	957	957
Relative error	3.2	3.2	957	957	92	79.1	957	957

Note: the number of samples is in "unit" and the relative error is in ".%".

4.3. Forecast practice accuracy statistics
Level accuracy and primary pollutant accuracy are the core indexes to examine and evaluate environmental air quality forecast. From November 2017 to January 2018, the environmental air quality forecast is carried out using the statistical forecasting model. The forecast results are the city’s AQI range, air quality level and primary pollutants, of which AQI range is 30, for example, AQI is 95-125 on a certain month or a certain day, which is good or light pollution, and the primary pollutant is PM$_{2.5}$. In this paper, 92d forecast results are compared with measured values. The results show that the accuracy of forecast level is 79.1% and the accuracy of primary pollutant is 73.6% in the practice of environmental air quality forecast during this period. The prediction accuracy is similar to the study of Xu yang et al. [16-17]. In the practice of forecast, the level accuracy is much higher than that of the model verification results because the prediction results can skip levels. In the actual forecast, human intervention is added when the primary pollutant is identified, and the primary pollutant of the model forecast result is revised. This is equivalent to increasing the accuracy on the basis of the model, so the accuracy of the primary pollutant is also improved.
5. Conclusion
By using the atmosphere automatic monitoring data and meteorological data of January and February 2017, and adopting the stepwise regression method, 19 forecasting factors are selected to establish the statistical forecasting model system of environmental air quality in winter of city A. The model system consists of 66 forecast equations for monitoring substations and various pollutants, all of which are significant at the level of 0.01. More than 65% predicted values in the model fitting are within ±30% of the measured values, and about 50% predicted values in the verification process are within ±30% of the measured values. The relative errors of the fitting results are all within the range of ±5.0% and those of the verification results were all within the range of ±10.0%.

The two indicators of level accuracy and primary pollutant accuracy in model fitting are 62.9% and 78.6% respectively, and the two indicators in the verification are 55.8% and 68.5% respectively. In forecast practice, the level accuracy reaches 79.1%, and the primary pollutant accuracy is 73.6%.

References
[1] ZHANG ZQ. Discussion on urban air quality forecast in Jilin province [J]. China environmental management, 2003, 22:86, 89.
[2] TONG YC. Forecast and progress of air pollution in key cities of China [J]. China environmental monitoring, 2006, 22(2):69-71.
[3] ZHANG SY. Urban environmental weather forecasting technology [M]. Beijing: meteorological publishing house, 2002:205-208.
[4] ZHANG YK, LUO J, GONG MY. Research and application of environmental air quality prediction model in small and medium-sized cities in coastal areas [J]. China environmental monitoring, 2005, 21(3):77-80.
[5] WANG QM. Air pollution prediction technology and related prevention and control strategies [J]. China environmental monitoring, 1999, 15(2):58-60.
[6] JIANG FQ. Improvement of air quality forecast [J]. Environmental monitoring management and technology, 2004, 16(2):5-6.
[7] LI YL. Forecast of air pollution [J]. China environmental monitoring, 1987, 3(4):9-12.
[8] LI YL. Forecast of atmospheric pollution composite index of Shenyang [J]. China environmental monitoring, 1997, 18(6):33-36.
[9] LIU CR, LIU ZS, HU HX. Research on the statistical forecast model of environmental air quality -- the seasonal forecast model of environmental air quality in city A[J]. Environmental protection science, 2006, 32(4):3-4, 9.
[10] LIU CH, REN WH, DU YM, WANG CH, LIU M. Weather forecasting methods of environmental air quality in city A [J]. Environmental protection science, 2006, 32(2):1-3, 7.
[11] WANG QM, ZHANG XM, HAN G. Study on air pollution characteristics and pollution prediction technology of Lanzhou city [J]. China environmental monitoring, 2008, 24(3):56-62.
[12] LI ZK, PAN YX, SUN RQ. Principles and application of air pollution meteorology [M]. Beijing: meteorological publishing house, 1985:557-558.
[13] YU GY, MA JJ, WANG HT. Study on the statistical methods of air quality forecast in Harbin [J]. Environmental bulletin of Heilongjiang, 2001, 25(3):110, 114-116.
[14] SU CC, REN WH. Design and establishment of integrated forecasting system for environmental air quality in Suzhou [J]. Environmental protection science, 2011, 37(1):7-9.
[15] SU CC. Design and application of environmental air quality data reception and monitoring system in Shenzhen city [J]. Environmental protection and circular economy, 2017, 5:36-37, 43.
[16] XU Y, WANG K, JIA QL, SUN J. Air quality forecast and test in Wuhan from 2007 to 2008 [J]. Journal of meteorology and environment, 2016, 28(2):81-84.
[17] LUI BH, CAO SZ, ZHANG Y. Study on the accuracy of environmental air quality forecast [J]. Journal of Xinyang normal university: natural science edition, 2006, 19(4):499-503.
[18] SONG RR, WANG J, ZHANG CT, HUANG Z. Xiamen ozone air quality forecast and evaluation
system [J]. China environmental monitoring, 2016, 28(1):27-32.

[19] WANG SY, JIE JT, XIONG XP, YAN CY. Relationship between urban air quality and meteorological conditions and air quality forecasting system [J]. Meteorological science and technology, 2006, 34(6):688-692.

[20] YU GY, JIN SZ, WANG HT. Significance and progress of urban air quality forecast [J]. Environmental bulletin of Heilongjiang, 2002, 26(3):80-81, 100.

[21] ZHANG JZ, HAO JX, SUN XZ, LI JM. Study on technical methods of air quality forecast in Dongying city [J]. Meteorology of Shandong, 2005, 25(4):23-25.