Characterizing classes of regular languages using prefix codes of bounded synchronization delay

Volker Diekert and Tobias Walter

University of Stuttgart, FMI
Universitätsstraße 38, 70569 Stuttgart, Germany
{diekert,walter}@fmi.uni-stuttgart.de

In this paper we continue a classical work of Schützenberger on codes with bounded synchronization delay. He was interested to characterize those regular languages where the groups in the syntactic monoid belong to a variety \(H \). He allowed operations on the language side which are union, intersection, concatenation and modified Kleene-star involving a mapping of a prefix code of bounded synchronization delay to a group \(G \in H \), but no complementation. In our notation this leads to the language classes \(SD_G(A^\infty) \) and \(SD_H(A^\infty) \). Our main result shows that \(SD_H(A^\infty) \) always corresponds to the languages having syntactic monoids where all subgroups are in \(H \). Schützenberger showed this for a variety \(H \) if \(H \) contains Abelian groups, only. Our method shows the general result for all \(H \) directly on finite and infinite words. Furthermore, we introduce the notion of local Rees products which refers to a simple type of classical Rees extensions. We give a decomposition of a monoid in terms of its groups and local Rees products. This gives a somewhat similar, but simpler decomposition than in Rhodes’ synthesis theorem. Moreover, we need a singly exponential number of operations, only. Finally, our decomposition yields an answer to a question in a recent paper of Almeida and Klíma about varieties that are closed under Rees products.

1. Introduction

A fundamental result of Schützenberger characterizes the class of star-free languages SF as exactly those languages which are group-free, that is, aperiodic \([13]\). One usually

*Supported by the German Research Foundation (DFG) under grant DI 435/6-1.
abbreviates this result by $\text{SF} = \text{Ap}$. Schützenberger also found another, but less prominent characterization of SF: the star-free languages are exactly the class of languages which can be defined inductively by finite languages and closure under union, concatenation, and the Kleene-star restricted to prefix codes of bounded synchronization delay SD. This result is abbreviated by $\text{Ap} = \text{SD}$. It is actually stronger than the famous $\text{SF} = \text{Ap}$ because $\text{SD} \subseteq \text{SF} \subseteq \text{Ap}$ is easy, so $\text{SF} = \text{Ap}$ follows directly from $\text{Ap} \subseteq \text{SD}$. The extension to infinite words became possible thanks to a “local divisor approach”, which also is a main tool in this paper.

Schützenberger did not stop by showing $\text{Ap} = \text{SD}$. In retrospective he started a program: in [14] he was able to prove an analogue of $\text{Ap} = \text{SD}$ for languages where syntactic monoids have Abelian subgroups, only. In our notation $\text{Ap} = \text{SD}$ means $T(A^\infty) = \text{SD}_1(A^\infty)$; and the main result in [14] is “essentially” equivalent to $\text{Ab}(A^*) = \text{SD}_{\text{Ab}}(A^*)$. (We write “essentially” because using the structure theory of Abelian groups, a sharper version than $\text{Ab}(A^*) = \text{SD}_{\text{Ab}}(A^*)$ is possible.) The proofs [14] use deep results in semigroup theory; and no such result beyond Abelian groups was known so far. Our result generalizes $\text{Ab}(A^\infty) = \text{SD}_{\text{Ab}}(A^\infty)$ to every variety H of finite groups: we show $\text{Ab}(A^\infty) = \text{SD}_{\text{H}}(A^\infty)$. We were able to prove it with much less technical machinery compared to [14]. For example, no knowledge in Krohn-Rhodes theory is required.

Actually, our result is a generalization of $\text{Ab}(A^*) = \text{SD}_{\text{Ab}}(A^*)$ [14] and also of $\text{Ap}(A^\infty) = \text{SD}(A^\infty)$ [4]. More precisely, we give a characterization of languages which are recognized by monoids where all subgroups belong to H. The characterization uses an inductive scheme starting with all finite subsets of finite words, allows concatenation, union, no(!) complementation, but a restricted use of a generalized Kleene-star (and ω-power in the case of infinite words). Let us explain the generalized Kleene-star in our context. Instead of putting the star above a single language, consider first a disjoint union $K = \bigcup \{K_g \mid g \in G\}$ where G is a finite group and each K_g is regular in A^*. The “generalized star” associates with such a disjoint union the following language:

$$\{u_{g_1} \cdots u_{g_k} \in K^* \mid u_{g_i} \in K_{g_i} \land g_1 \cdots g_k = 1 \in G\}.$$

Clearly, we obtain a regular language, but without any restriction, allowing such a “general star” yields all regular languages, even in the case of the trivial group. So, the construction is of no interest without a simultaneous restriction. The restriction considered in [14] yields an inductive scheme to define a class \mathcal{C}. The restriction says that such a generalized Kleene-star is allowed only over a disjoint union $K = \bigcup \{K_g \mid g \in G\}$ where each K_g already belongs to \mathcal{C} and where K is, in addition, a prefix code of bounded synchronization delay. The initials in “synchronization delay” led to the notation SD; and an indexed version SD_{G} (resp. SD_{H}) refers to “synchronization delay over G” (resp. over a finite group in H). Since we also deal with infinite words we apply the same restriction to ω-powers.

Our results give also a new characterization for various other classes. For example, by a result of Straubing, Thérien and Thomas [18], the class of languages, having syntactic monoids where all subgroups are solvable, coincides with $(\text{FO} + \text{MOD})[<]$. Here, $(\text{FO} +
MOD] \leq \] means the class of languages defined by the logic \((\mathit{FO} + \mathit{MOD})] \leq \]. Thus, we are able to give a new language characterization: \((\mathit{FO} + \mathit{MOD})] \leq (A^\omega) = \mathit{SD}_{\mathit{Sol}}(A^\omega)\).

Moreover, as a sort of byproduct of \(\Pi = \mathit{SD}_H\), we obtain a simple and purely algebraic characterization of the monoids in \(\Pi\). Every monoid in \(\Pi\) can be decomposed in at most exponentially many iterated Rees products of groups in \(H\). The iteration uses only a very restricted version of Rees extensions: \(\text{local Rees products}\). This means we obtain every finite monoid which is not a group as a divisor of a Rees extension between two proper divisors of \(M\), one of them a proper submonoid, the other one a “local divisor”.

Our decomposition result is similar to the synthesis theory of Rhodes and Allen \([11]\). Moreover, our technique gives a singly exponential bound on the number of operations whereas no such bound was known by \([11]\). Finally, using this decomposition, we answer a recent question of Almeida and Klíma \([1]\) concerning varieties which are closed under Rees products.

2. Preliminaries

Throughout, \(A\) denotes a finite alphabet and \(A^*\) is the free monoid over \(A\). It consists of all finite words. The empty word is denoted by \(1\) as the neutral elements in other monoids or groups. The set of non-empty finite words is \(A^+\); it is the free semigroup over \(A\). By \(A^\omega\) we denote the set of all infinite words with letters in \(A\). For a set \(K \subseteq A^*\), we let \(K^\omega = \{u_1u_2\cdots \mid u_i \in K \text{ non-empty}, i \in \mathbb{N}\} \subseteq A^\omega\). Since our results concern finite and infinite words, it is convenient to treat finite and infinite words simultaneously. We define \(A^\infty = A^* \cup A^\omega\) to be the set of finite or infinite words. Accordingly, a language \(L\) is a subset of \(A^\infty\). We say that \(L\) is regular, if first, \(L \cap A^*\) is regular and second, \(L \cap A^\omega\) is \(\omega\)-regular in the standard meaning of formal language theory. In order to study regular languages algebraically, one considers finite monoids. A divisor of a monoid \(M\) is a monoid \(N\) which is a homomorphic image of a subsemigroup of \(M\). In this case we write \(N \preceq M\). A subsemigroup \(S\) of \(M\) is in our setting a divisor if and only if \(S\) is a monoid (but not necessarily a submonoid of \(M\)).

A variety of finite monoids – hence, in Birkhoff’s setting: a pseudovariety – is a class of finite monoids \(V\) which is closed under finite direct products and under division:

- If \(I\) is a finite index set and \(M_i \in V\) for each \(i \in I\), then \(\prod_{i \in I} M_i \in V\). In particular, the trivial group \(\{1\}\) belongs to \(V\).
- If \(M \in V\) and \(N \preceq M\), then \(N \in V\).

Classical formal language theory states “regular” is the same as “recognizable”. This means: \(L \subseteq A^*\) is regular if and only if its syntactic monoid is finite; \(L \subseteq A^\omega\) is regular if and only if its syntactic monoid (in the sense of Arnold) is finite and, in addition, \(L\) is saturated by the syntactic congruence, see eg. \([9, 19]\). Here we use a notion of recognizability which applies to languages \(L \subseteq A^\infty\). Let \(\varphi : A^* \to M\) be a homomorphism to a finite monoid \(M\). First, we define a relation \(\sim_\varphi\) as follows. If \(u \in A^*\) is a finite word, then we write \(u \sim_\varphi v\) if \(v\) is finite and \(\varphi(u) = \varphi(v)\). If \(u \in A^\omega\) is an infinite word, then we write \(u \sim_\varphi v\) if \(v\) is infinite and if there are factorizations
\begin{itemize}
\item $u = u_1 v_2 \cdots$ and $v = v_1 v_2 \cdots$ into finite nonempty words such that $\varphi(u_i) = \varphi(v_i)$ for all $i \geq 1$. It is easy to see that \sim_φ is not transitive on infinite words, in general. Therefore, we consider its transitive closure \equiv_φ. If $u, v \in A^*$, then we have

$$u \sim_\varphi v \iff u \equiv_\varphi v \iff \varphi(u) = \varphi(v).$$

If $\alpha, \beta \in A^\omega$, then we have $\alpha \equiv_\varphi \beta$ if and only if there is sequence of infinite words $\alpha_0, \ldots, \alpha_k$ such that

$$\alpha = \alpha_0 \sim_\varphi \cdots \sim_\varphi \alpha_k = \beta.$$

We say that $L \subseteq A^\infty$ is recognizable by M if there exists a homomorphism $\varphi : A^* \to M$ such that $u \in L$ and $u \sim_\varphi v$ implies $v \in L$. We also say that M or φ recognizes L in this case.

The connection to the classical notation is as follows. A regular language $L \subseteq A^\infty$ is recognizable (in our sense) by φ if and only if the syntactic monoids of $L \cap A^*$ and $L \cap A^\omega$ are divisors of M (in the classical sense).

Every variety \mathbf{V} defines a family of regular languages $\mathbf{V}(A^\infty)$ as follows: we let $L \in \mathbf{V}(A^\infty)$ if there exists a monoid $M \in \mathbf{V}$ which recognizes L. Further, we define $\mathbf{V}(A^*) = \{L \subseteq A^* \mid L \in \mathbf{V}(A^\infty)\}$ and $\mathbf{V}(A^\omega) = \{L \subseteq A^\omega \mid L \in \mathbf{V}(A^\infty)\}$. A variety of finite groups is a variety of finite monoids which contains only groups. Throughout \mathbf{H} denotes a variety of finite groups. Special cases are the varieties

- $\mathbf{1}$: the trivial group $\{1\}$, only.
- \mathbf{Ab}: all finite Abelian groups.
- \mathbf{Sol}: all finite solvable groups.
- \mathbf{Sol}_q: all finite solvable groups where the order is divisible by some power of q.
- \mathbf{G}: all finite groups.

According to standard notation $\overline{\mathbf{H}}$ denotes the variety of finite monoids where all subgroups belong to \mathbf{H}. It is not completely obvious, but a classical fact [8], that $\overline{\mathbf{H}}$ is indeed a variety. In fact, it is the maximal variety \mathbf{V} such that $\mathbf{V} \cap \mathbf{G} = \mathbf{H}$.

Clearly, \mathbf{G} is the class of all finite monoids. The most prominent subclass is \mathbf{T}: it is the variety of aperiodic monoids \mathbf{Ap}. The class $\mathbf{Ap}(A^\infty) = \overline{\mathbf{T}}(A^\infty)$ admits various other characterizations as subsets of A^∞. For example, it is the class of star-free languages $\mathbf{SF}(A^\infty)$, it is the class of first-order definable languages, and it is the class of definable languages in linear temporal logic over finite or infinite words: $\mathbf{LTL}(A^\infty)$.

Local divisors. Let M be a finite monoid and $c \in M$. Consider the set $cM \cap Mc$ with a new multiplication \circ which is defined as follows:

$$mc \circ cn = mcn.$$

A straightforward calculation shows that $cM \cap Mc$ becomes a monoid with this operation where the neutral element of Mc is c. Thus, the structure $M_c = (cM \cap Mc, \circ, c)$ defines
a monoid. We say that M_c is the local divisor of M at c. If c is a unit, then M_c is isomorphic to M. If $c = c^2$, then M_c is the standard “local monoid” at the idempotent c.

The important fact is that M_c is always a divisor of M and that $|M_c| < |M|$ as soon as c is not a unit of M. Indeed, the mapping $\lambda_c : \{x \in M \mid cx \in M_c\} \to M_c$ given by $\lambda_c(x) = cx$ is a surjective homomorphism. Moreover, if c is not a unit, then $1 \notin cM \cap M_c$, hence $|M_c| < |M|$. Thus, if M belongs to some variety V, then M_c belongs to the same variety. If M is not a group, then we find some nonunit $c \in M$ and the local divisor M_c is smaller than M. This makes the construction useful for induction. For a survey on the local divisor technique we refer to [5].

Rees extensions. Let N, L be monoids and $\rho : N \to L$ be any mapping. The Rees extension $\text{Rees}(N, L, \rho)$ is a classical construction for monoids [10] [12], frequently described in terms of matrices. Here, we use an equivalent definition as in [6]. As a set we define

$$\text{Rees}(N, L, \rho) = N \cup N \times L \times N.$$

The multiplication \cdot on $\text{Rees}(N, L, \rho)$ is given by

$$n \cdot n' = nn' \quad \text{for } n, n' \in N,$$

$$(n_1, m, n_2) \cdot n' = (nn_1, m, n_2n') \quad \text{for } n, n', n_1, n_2 \in N, m \in L,$$

$$(n_1, m, n_2) \cdot (n'_1, m', n'_2) = (n_1, m\rho(n_2n'_1)m', n'_2) \quad \text{for } n_1, n'_1, n_2, n'_2 \in N, m, m' \in L.$$

The neutral element of $\text{Rees}(N, L, \rho)$ is $1 \in N$ and $N \subseteq \text{Rees}(N, L, \rho)$ is an embedding of monoids. In general, L is not a divisor of $\text{Rees}(N, L, \rho)$. The following property holds.

Lemma 1. Let $N \preceq N'$ and $L \preceq L'$. Given $\rho : N \to L$, there exists a mapping $\rho' : N' \to L'$ such that $\text{Rees}(N, L, \rho)$ is a divisor of $\text{Rees}(N', L', \rho')$.

Proof. First, assume that N (resp. L) is submonoid in N' (resp. L'). Let $\rho' : N' \to L'$ be any function such that $\rho'|_N = \rho$. The mapping $\pi : \text{Rees}(N, L, \rho) \to \text{Rees}(N', L', \rho')$ given by $\pi(n) = n$ and $\pi(n_1, \ell, n_2) = (n_1, \ell, n_2)$ is an injective homomorphism.

Second, let $\varphi : N' \to N$ and $\psi : L' \to L$ be surjective homomorphisms. Let $\rho' : N' \to L'$ be a function such that $\rho'(n) \in \psi^{-1}(\rho(\varphi(n)))$. Let $\pi : \text{Rees}(N', L', \rho') \to \text{Rees}(N, L, \rho)$ be the mapping defined by $\pi(n) = \varphi(n)$ and $\pi(n_1, \ell, n_2) = (\varphi(n_1), \psi(\ell), \varphi(n_2))$. It is clear that π is surjective. It is a homomorphism since

$$\pi((n_1, \ell, n_2) \cdot (n'_1, \ell', n'_2)) = \pi((n_1, \ell, n_2n'_1)\ell, n'_2) = (\varphi(n_1), \psi(\ell)\psi(\rho'(n_2n'_1))\psi(\ell')\varphi(n'_2))$$

$$= (\varphi(n_1), \psi(\ell), \varphi(n_2)) \cdot (\varphi(n'_1), \psi(\ell'), \varphi(n'_2)) = \pi(n_1, \ell, n_2) \cdot \pi(n'_1, \ell', n'_2).$$

The result follows because \preceq is transitive. \square

We are mainly interested in the case where N and L are proper divisors of a given finite monoid M. This leads to the notion of local Rees monoids. More precisely, let M be a finite monoid, N by a proper submonoid of M and M_c be a local divisor of M at
chronization delay and second, all finite subsets of A.

Note that for every homomorphism γ inductively defined as follows.

L is inductively defined as follows. By induction: for $L \subseteq A^+$ can write $L = L_1 \cup L_2$ with $L_1 \in SD_G(A^*)$ and $L_2 \in SD_G(A^\omega)$. In the special case where c where c is not a unit. The local Rees product $\text{LocRees}(N,M_c)$ is defined as the Rees extension $\text{Rees}(N,M_c,\rho_c)$ where ρ_c denotes the mapping $\rho_c : N \to M_c : x \mapsto cxc$.

For a variety V we define $\text{Rees}(V)$ to be the least variety which contains V and is closed under taking Rees products and $\text{LocRees}(V)$ to be the least variety which contains V and is closed under local Rees products.

2.1. Schützenberger’s SD classes

Schützenberger gave a language theoretical characterization of the class of star-free languages $\text{SF}(A^*)$ avoiding complementation, but allowing the star-operation to prefix codes of bounded synchronization delay [15].

A language $K \subseteq A^*$ is called prefix code if it is prefix-free. That is: $u, uv \in K$ implies $u = uv$. A prefix-free language K is a code since every word $u \in K^*$ admits a unique factorization $u = u_1 \cdots u_k$ with $k \geq 0$ and $u_i \in K$. Note that the empty set \emptyset is considered to be a prefix code. More generally, if $L \subseteq A^+$ is any subset, then $K = L \setminus LA^+$ is a prefix code. A prefix code K has bounded synchronization delay if for some $d \in \mathbb{N}$ and for all $u,v,w \in A^*$ we have: if $uvw \in K^*$ and $v \in K^d$, then $uv \in K^*$. Note that the condition implies that for all $uvw \in K^*$ with $v \in K^d$, we have $w \in K^*$, too. If d is given explicitly, K has said to have synchronization delay d. Every subset $B \subseteq A$ (including the empty set) yields a prefix code with synchronization delay 0. If we have $c \in A \setminus B$, then B^*c is a prefix code with synchronization delay 1. If K is any prefix code with (or without) bounded synchronization delay, then K^m is a prefix code for all $m \in \mathbb{N}$, but for $m \geq 2$ it is never of bounded synchronization delay.

Let G be a finite group. By $SD_G(A^\omega)$ we denote the set of regular languages which is inductively defined as follows.

1. We let $\emptyset \in SD_G(A^\omega)$ and $\{a\} \in SD_G(A^\omega)$ for all letters $a \in A$.
2. If $L, K \in SD_G(A^\omega)$, then $L \cup K$ and $(L \cap A^*) \cdot K$ are both in $SD_G(A^\omega)$.
3. Let $K \subseteq A^+$ be a prefix code of bounded synchronization delay and $\gamma_K : K \to G$ be any mapping of K to the group G such that $\gamma_K^{-1}(g) \in SD_G(A^\omega)$ for all $g \in G$. We let $\gamma^{-1}(1) \in SD_G(A^\omega)$ and $\gamma^{-1}(1)\omega \in SD_G(A^\omega)$, where $\gamma : K^* \to G$ denotes the canonical extension of γ_K to a homomorphism from the free submonoid $K^* \subseteq A^*$ to G.

We also define

$$SD_G(A^*) = \{ L \subseteq A^* \mid L \in SD_G(A^\omega) \} \quad \text{and} \quad SD_G(A^\omega) = \{ L \subseteq A^\omega \mid L \in SD_G(A^\omega) \}.$$

Note that for every homomorphism $\gamma : A^* \to G$ we have $\gamma^{-1}(1) \in SD_G(A^*)$ and $\gamma^{-1}(1)\omega \in SD_G(A^\omega)$. This follows because first, A is a prefix code of bounded synchronization delay and second, all finite subsets of A are in $SD_G(A^*)$.

Unlike the case of star-free sets, the inductive definition of $SD_G(A^\omega)$ does not use any complementation. By induction: for $L \subseteq A^\omega$ we have $L \in SD_G(A^\omega)$ if and only if we can write $L = L_1 \cup L_2$ with $L_1 \in SD_G(A^*)$ and $L_2 \in SD_G(A^\omega)$.
$G = \{1\}$ is the trivial group, we also simply write SD instead of $SD_{\{1\}}$. In this case the third condition can be rephrased in simpler terms as follows.

- If $K \in SD(A^*)$ is a prefix code of bounded synchronization delay, then $K^* \in SD(A^*)$ and $K^\omega \in SD(A^\omega)$.

In [13] Schützenberger showed (using a different notation) $SD_H(A^*) \subseteq \overline{H}(A^*)$, but the converse only for $H \subseteq Ab$, see Proposition [6] for the first inclusion. Our aim is to show $\overline{H}(A^\infty) \subseteq SD_H(A^*)$ for all H, cf. Theorem [3]. We begin with a technical lemma.

Lemma 2. Let $K \subseteq A^+$ be a prefix code of bounded synchronization delay and let $\gamma : K^* \rightarrow G$ be a homomorphism such that $\gamma^{-1}(g) \cap K \in SD_G(A^*)$ for all $g \in G$, then we have $\gamma^{-1}(g) \in SD_G(A^*)$ for all $g \in G$.

Proof. For each $w \in K^*$ we construct a language $L(w) \in SD_G(A^*)$ such that

- $w \in L(w) \subseteq \gamma^{-1}(\gamma(w))$,
- $|\{L(w) \mid w \in K^*\}| < \infty$.

Consider $w = u_1 \cdots u_k \in \gamma^{-1}(g)$ with $u_i \in K$. Define $P(w) = \{\gamma(u_1 \cdots u_i) \mid 1 \leq i \leq k\} \subseteq G$ to be the set of prefixes of w in G. We perform an induction on $|P(w)|$. The case $|P(w)| = 0$ implies $g = 1$. Hence, we let $L(w) = \gamma^{-1}(1)$; and we have $\gamma^{-1}(1) \in SD_G(A^*)$ by definition. Hence, we may assume $|P(w)| \geq 1$. Let $g_1 = \gamma(u_1)$ and choose i maximal such that $g_1 = \gamma(u_1 \cdots u_i)$. Then we have $u_1 \cdots u_i \in (K \cap \gamma^{-1}(g_1)) \cdot \gamma^{-1}(1)$. Define $w' = u_{i+1} \cdots u_k$. By maximality of i we have $|\{\gamma(u_1 \cdots u_j) \mid i < j \leq k\}| < |P(w)|$ because $P(w') = g_1^{-1} \cdot \{\gamma(u_1 \cdots u_j) \mid i < j \leq k\}$. By induction there exists $L(w')$ (and only a finite number of them); and we let $L(w) = (K \cap \gamma^{-1}(g_1)) \cdot \gamma^{-1}(1) \cdot L(w')$. The result follows because we can write $\gamma^{-1}(g) = \bigcup \{L(w) \mid w \in \gamma^{-1}(g)\}$ and this is a finite union. \hfill \Box

Clearly, we have for all G: if $K \in SD_G(A^*)$ is a prefix code of bounded synchronization delay, then K^* and K^ω are both in $SD_G(A^\infty)$. As a special case, using the prefix code $K = \emptyset$, it holds $K^* = \{1\} \in SD_G(A^\infty)$. More generally, every finite language is in $SD_G(A^\infty)$. Note also that for $G' \subseteq G$ we have $SD_G(A^\infty) \subseteq SD_{G'}(A^\infty)$. In particular, $\bigcup \{SD_G(A^\infty) \mid i \in I\} \subseteq SD_{\bigcup \{G_i \mid i \in I\}}(A^\infty)$ for every finite index set I. This inclusion holds for every divisor of G as observed by the next lemma.

Lemma 3. $SD_H(A^\infty) \subseteq SD_G(A^\infty)$ holds for $H \subseteq G$.

Proof. Inductively, it suffices to prove that $\gamma^{-1}(1), \gamma^{-1}(1)^\omega \in SD_G(A^\infty)$ for a prefix code $K \subseteq A^+$ of bounded synchronization delay and $\gamma : K^* \rightarrow H$ a homomorphism of the free monoid K^* to the group H such that $K \cap \gamma^{-1}(h) \in SD_G(A^\infty)$ for all $h \in H$. Without loss of generality we may assume that there exists a surjective homomorphism $\pi : G \rightarrow H$. Let $g_h \in G$ be elements such that $\pi(g_h) = h$. Let $\psi : K^* \rightarrow G$ be the homomorphism such that $\psi(u) = g_{\pi(u)}$ for $u \in K$. By definition it holds $\gamma = \pi \circ \psi$. Now $K \cap \psi^{-1}(g_h) = K \cap \gamma^{-1}(h) \in SD_G(A^\infty)$ and $K \cap \psi^{-1}(g) = \emptyset$ if $g \neq g_h$ for all $h \in H$. \hfill \Box
Thus, \(\psi^{-1}(1), \psi^{-1}(1)^\omega \in \SD_G(A^\infty) \) and by Lemma 2 we also have \(\psi^{-1}(g) \in \SD_G(A^\infty) \) for all \(g \in G \). Note that

\[
\gamma^{-1}(1) = \bigcup_{\pi(g)=1} \psi^{-1}(g) \quad \text{and} \quad \gamma^{-1}(1)^\omega = \bigcup_{\pi(g)=1} \psi^{-1}(g)\psi^{-1}(1)^\omega
\]

which proves that \(\gamma^{-1}(1), \gamma^{-1}(1)^\omega \in \SD_G(A^\infty) \). \(\square \)

We will formulate our results on the language classes \(\SD_G(A^\infty) \) to obtain finer results, however our main result then is formulated with the language class

\[
\SD_H(A^\infty) = \bigcup \{ \SD_G(A^\infty) \mid G \in H \}.
\]

The main result is the following equality between \(\SD_H, \overline{H} \) and \(\LocRees(H) \).

Theorem 4. Let \(L \subseteq A^\infty \) be a regular language and \(H \) a variety of finite groups. Then the following properties are equivalent:

1. \(L \in \SD_H(A^\infty) \).
2. \(L \in \overline{H}(A^\infty) \).
3. \(L \in \LocRees(H)(A^\infty) \).

Corollary 5. \(\SD_H(A^\infty) \) is closed under complementation and intersection for every variety \(H \) of finite groups.

Proof. By Theorem 4 we have \(\SD_H(A^\infty) = \overline{H}(A^\infty) \) and \(\overline{H}(A^\infty) \) is closed under complementation and intersection. \(\square \)

The proof of Theorem 4 covers the next three sections.

3. Closure properties of \(\SD_H \)

In this section we prove the direction \(1 \implies 2 \) of Theorem 4. Therefore one has to study the closure properties under the operations given in the definition of \(\SD_H(A^\infty) \), that is, one has to show that those operations do not introduce new groups.

The following proposition of Schützenberger shows that the operation \(\gamma^{-1}(1) \) does not introduce new groups.

Proposition 6 ([14]). Let \(K \subseteq A^+ \) be a prefix code of bounded synchronization delay and \(\gamma_K : K \to G \) be a mapping such that \(K_g = \gamma_K^{-1}(g) \) are regular languages for \(g \in G \). Let \(\gamma : K^* \to G \) be the homomorphism from the free submonoid \(K^* \) of \(A^* \) to the group \(G \) such that \(\gamma|_K = \gamma_K \). View \(\gamma^{-1}(1) \) as a subset of \(A^* \). Then, subgroups in the syntactic monoid of the language \(\gamma^{-1}(1) \) are either divisors of \(G \) or of the direct product \(\prod_{g \in G} \Synt(K_g) \).
We will prove the same for \(\gamma^{-1}(1)^{\omega} \), relying on Proposition \(\text{[4]} \) as a blackbox result. The concept used for transferring the properties to infinite words are Birget-Rhodes expansions \(\text{[2, 3]} \). The Birget-Rhodes expansion of a monoid \(M \) is the monoid \(\text{Exp}(M) = \{(X, m) \mid 1, m \in X \subseteq M\} \). The multiplication on \(\text{Exp}(M) \) is given as a “semi-direct product”: \((X, m) \cdot (Y, n) = (X \cup m \cdot Y, m \cdot n)\). Note that \(M \) is isomorphic to the submonoid \(\{(M, m) \mid m \in M\} \) of \(\text{Exp}(M) \), that is, \(M \) is a divisor of \(\text{Exp}(M) \). Moreover, the following lemma shows that the Birget-Rhodes expansion has the same groups as \(M \).

Lemma 7. Every group contained in \(\text{Exp}(M) \) is isomorphic to some group in \(M \).

Proof. Let \(G \subseteq \text{Exp}(M) \) be a group contained in \(\text{Exp}(M) \) and let \((X, e) \in G\) be the unit in \(G \). For every element \((Y, m) \in G\) we have \((X, e)(Y, m) = (X \cup eY, em) = (Y, m)\) and thus \(X \subseteq Y \). Furthermore, \((Y, m)^{|G|} = (Y \cup \ldots, e) = (X, e)\) and we conclude \(X = Y \). Thus, \((X, m) \mapsto m\) is an injective embedding of \(G \) in \(M \).

The idea behind the Birget-Rhodes expansion is that it stores the seen prefixes in a set. More formally, the following lemma holds.

Lemma 8. Let \(\varphi : A^{\star} \rightarrow M \) be a homomorphism and \(\psi : A^{\star} \rightarrow \text{Exp}(M) \) be the homomorphism given by \(\psi(a) = (\{1, \varphi(a)\}, \varphi(a)) \). Let \(u \in A^{\star} \) and \(\psi(u) = (X, \varphi(u)) \). For every \(m \in X \) there exists a prefix \(v \) of \(u \) such that \(\varphi(v) = m \).

Proof. We will prove this inductively. The statement is true if \(u \) is the empty word. Thus, consider \(u = va \) for some letter \(a \in A \). Let \(\psi(v) = (Y, \varphi(v)) \), then

\[
\psi(u) = \psi(v) \cdot (\{1, \varphi(a)\}, \varphi(a)) = (Y \cup \varphi(v), \varphi(v)\varphi(a), \varphi(u)).
\]

Inductively, we obtain prefixes of \(v \), and therefore also prefixes of \(u \), for all elements of \(Y \). The only (potentially) new element in \(X \) is \(\varphi(u) \). This proves the claim.

A special kind of \(\omega \)-regular languages are arrow languages. Let \(L \subseteq A^{\star} \) be a language. We define \(\overrightarrow{L} = \{ \alpha \in A^{\omega} \mid \text{infinitely many prefixes of } \alpha \text{ are in } L \} \) to be the arrow language of \(L \). The set of arrow languages is exactly the set of deterministic languages \(\text{[19]} \). The Birget-Rhodes expansion can be used to obtain a recognizing monoid for \(\overrightarrow{L} \), given a monoid for \(L \).

Proposition 9. Let \(L \subseteq A^{\star} \) be some regular language and \(\varphi : A^{\star} \rightarrow M \) be a homomorphism which recognizes \(L \), then \(\overrightarrow{L} \) is recognized by \(\text{Exp}(M) \).

Proof. Let \(\psi : A^{\star} \rightarrow \text{Exp}(M) \) be the homomorphism given by \(\psi(a) = (\{1, \varphi(a)\}, \varphi(a)) \). Let \(\alpha \in \overrightarrow{L} \) and \(\alpha \sim_{\psi} \beta \). We show that \(\beta \in \overrightarrow{L} \). Let \(\alpha = u_{1}u_{2} \ldots \) and \(\beta = v_{1}v_{2} \ldots \) be factorizations such that \(\psi(u_{i}) = \psi(v_{i}) \). Since \(\alpha \in \overrightarrow{L} \), we may assume that for every \(i \) there exists a decomposition \(u_{i} = u'_{i}u''_{i} \) such that \(u_{1} \cdots u_{i-1}u'_{i} \in L \). By \(\psi(u_{i}) = \psi(v_{i}) \) and Lemma \(\text{[3]} \) there exists a decomposition \(u_{i} = v'_{i}v''_{i} \) such that \(\varphi(u'_{i}) = \varphi(v'_{i}) \). Thus, \(u_{1} \cdots u_{i-1}u'_{i} \sim_{\varphi} v_{1} \cdots v_{i-1}v'_{i} \) and therefore \(v_{1} \cdots v_{i-1}v'_{i} \in L \). This implies \(\beta \in \overrightarrow{L} \).
We are now ready to show the main result of this section, that is, every language in \(SD_G(A^\infty)\) has only groups which are divisors of direct products of \(G\). In particular, this implies \(SD_H(A^\infty) \subseteq \overline{H}(A^\infty)\).

Proposition 10. If \(L \in SD_G(A^\infty)\), then all subgroups in \(\text{Synt}(L)\) are a divisor of a direct product of copies of \(G\).

Proof. We will prove this inductively on the definition of \(SD_G(A^\infty)\). The cases \(\emptyset \in SD_G(A^\infty)\) and \(\{a\} \in SD_G(A^\infty)\) for all letters \(a \in A\) are straightforward, as they are recognized by aperiodic monoids. Let \(L, K\) be languages, such that their syntactic monoids contain only groups which are divisors of a direct product of \(G\). The language \(L \cup K\) is recognized by the direct product of their syntactic monoids which implies the statement. \((L \cap A^*) \cdot K\) is recognized by the Schützenberger product of their syntactic homomorphisms \([7, Proposition 11.7.10]\). The Schützenberger product does not introduce new groups \(^1\).

Let \(K \subseteq A^+\) be a prefix code of bounded synchronization delay and \(\gamma : K^* \rightarrow G\) be a homomorphism of the free monoid \(K^*\) to the group \(G\) such that for all \(g \in G\) every subgroup of \(\text{Synt}(K \cap \gamma^{-1}(g))\) is a divisor of a direct product of copies of \(G\). Proposition \(\overline{\text{6}}\) implies that every subgroup of \(\text{Synt}(\gamma^{-1}(1))\) is a divisor of a direct product of copies of \(G\). Note that \(\gamma^{-1}(1)^w = \gamma^{-1}(1)\) and therefore Proposition \(\overline{\text{6}}\) and Lemma \(\overline{\text{7}}\) imply that every subgroup of \(\text{Synt}(\gamma^{-1}(1)^w)\) is a divisor of a direct product of copies of \(G\). \(\square\)

4. The inclusion \(\overline{H}(A^\infty) \subseteq SD_H(A^\infty)\)

In this section we prove the direction \(\overline{2} \implies \overline{1}\). We prove that if every subgroup of \(M\) is a divisor of \(G\), then every language recognized by \(M\) is contained in \(SD_G(A^\infty)\). This result is again finer than just the inequality \(\overline{H}(A^\infty) \subseteq SD_H(A^\infty)\). The proof works by induction on \(|M|\) and on the alphabet and decomposes every \(\approx_{\varphi}\)-class into several sets in \(SD_G(A^\infty)\).

Proposition 11. Let \(L \subseteq A^\infty\) be recognized by \(\varphi : A^* \rightarrow M\) and let \(G\) be a group such that every subgroup of \(M\) is a divisor of \(G\), then \(L \in SD_G(A^\infty)\). Moreover, \(L\) can be written as finite union

\[
L = L_0 \cup \bigcup_{i=1}^{m} L_i \cdot \gamma^{-1}_i(1)^w
\]

for \(L_i \in SD_G(A^*)\) and \(\gamma_i : K^*_i \rightarrow G\) for prefix codes \(K_i \in SD_G(A^*)\) of bounded synchronization delay with \(\gamma_i^{-1}(g) \cap K_i \in SD_G(A^*)\) for all \(g \in G\). All products in the expressions of \(L_i\) are unambiguous.

Proof. Let \([w]_{\varphi} = \{v \in A^\infty \mid v \approx_{\varphi} w\}\) be the equivalence class of \(w\). Since \(L\) is recognized by \(\varphi\), it holds \(L = \bigcup_{w \in L} [w]_{\varphi}\). Our goal is to construct languages \(L(w) \in SD_G(A^\infty)\) such that

\(^1\)A proof of these two citations also can be found in the appendix.
\begin{itemize}
 \item $w \in L(w) \subseteq [w]_\varphi$.
 \item the number of such languages is bounded by some function in $|A|$ and $|M|$.
 \item every word in $L(w)$ starts with the same letter.
\end{itemize}

In particular, we want to saturate $[w]_\varphi$ by sets in $SD_G(A^\infty)$. The construction of the set $L(w)$ is by induction on $(|M|, |A|)$ with lexicographic order.

If $w = 1$, then we set $L(w) = \{1\}$. This concludes the induction base $|A| = 0$. Let us consider the case that $\varphi(A^*)$ is a group, that is, a divisor of G. Consider the prefix code $K = A$ of synchronization delay 1 and the homomorphism $\gamma = \varphi$. Note that since $\{a\} \in SD_G(A^\infty)$ and $SD_G(A^\infty)$ is closed under union, every subset of K is in $SD_G(A^\infty)$. In particular, $K \cap \gamma^{-1}(g) \in SD_G(A^\infty)$ for all $g \in \varphi(A^*)$. This shows $\gamma^{-1}(g) = \varphi^{-1}(g) \in SD_G(A^*)$ for all $g \in \varphi(A^*)$ by Lemma 2 and Lemma 3. If $w = aw \in AA^*$ for some $a \in A$, then set $L(w) = a\varphi^{-1}(\varphi(v))$. It is clear that $w \in L(w) \subseteq [w]_\varphi$ and $L(w) \in SD_G(A^\infty)$ by the above. If $w \in AA^\omega$, then we obtain $w \in a\varphi^{-1}(m)\varphi^{-1}(1)^\omega$ for some $m \in M$ by Ramsey’s theorem. The idempotent in this decomposition must be 1 since $\varphi(A^*)$ is a group. Thus, we may set $L(w) = a\varphi^{-1}(m)\varphi^{-1}(1)^\omega$. Note that by the definition of \sim_φ, the inclusion $L(w) \subseteq [w]_\varphi$ holds. In particular, these cases include the induction base $|M| = 1$.

In the following we assume that $\varphi(A^*)$ is not a group and therefore there exists a letter $c \in A$ such that $\varphi(c)$ is not a unit. Fix this letter $c \in A$ and set $B = A \setminus \{c\}$. If $w \in B^\infty$, the set $L(w)$ exists by induction. Let $w = uv$ with $u \in B^*$ and $v \in cA^\infty$. By induction we obtain $L(u) \in SD_G(B^\infty) \subseteq SD_G(A^\infty)$ and it remains to show $L(v) \in SD_G(A^\infty)$. Note that the product $L(w) = L(u) \cdot L(v)$ is unambiguous. From now on we may assume $w \in cA^\infty$. Let us first consider the case $w = uv$ with $u \in c(B^*)^*$ and $v \in B^\infty$, i.e., there are only finitely many occurrences of the letter c in w. By induction, there exists $L(v) \in SD_G(B^\infty) \subseteq SD_G(A^\infty)$ and by setting $L(u) = L(u) \cdot L(v)$ it remains to construct $L(u)$.

Consider the alphabet $T = \varphi(B^*) = \{\varphi(u) \mid u \in B^*\}$. Let M_c be the local divisor of M at $\varphi(c)$. Since M_c is a divisor of M, every subgroup of M_c is a divisor of G. Consider the homomorphism $\psi : T^* \to M_c$ given by $\psi(\varphi(u)) = \varphi(\text{c}u\text{c})$ and the substitution $\sigma : (B^*)^\infty \to T^\infty$ with $\sigma(u_1c_2u_3\ldots) = \varphi(u_1)\varphi(u_2)\cdots$. Note that
\[
\psi(\sigma(u_1c_2u_3\ldots u_n)c) = \psi(\varphi(u_1)\varphi(u_2)\cdots\varphi(u_n)) = \varphi(\text{c}u_1\text{c}) \circ \varphi(\text{c}u_2\text{c}) \circ \cdots \circ \varphi(\text{c}u_n\text{c})
\]
and thus $\varphi^{-1}(m) \cap c(B^*)^* = \sigma^{-1}(\psi^{-1}(m))$. By induction on the monoid size, since $|M_c| < |M|$, there exists a language $L(\sigma(u')) \in SD_G(T^\infty)$ for all $u' \in (B^*)^*$. We show $\sigma^{-1}(K) \in SD_G(A^\infty)$ for all $K \in SD_G(T^\infty)$ inductively on the definition of SD_G. Then we can set $L(u) = c\sigma^{-1}(L(\sigma(u'))) \subseteq L(u)$ and have completed the case of finitely many c’s.

For $K = \emptyset$, we obtain $\sigma^{-1}(K) = \emptyset \in SD_G(A^\infty)$. Furthermore,
\[
\sigma^{-1}(t) = \bigcup_{v \in B^*, t = \varphi(v)} L(v)c \in SD_G(A^\infty).
\]
Let \(L, K \in \text{SD}_G(T^\infty) \). A basic result from set theory yields \(\sigma^{-1}(L \cup K) = \sigma^{-1}(L) \cup \sigma^{-1}(K) \). Let \(\sigma(v) = w_1w_2 \) for some \(v \in (B^*c)^* \). Since \(B^*c \) is a prefix code, there exists a unique factorization \(v = v_1v_2 \) with \(v_1, v_2 \in (B^*c)^* \) such that \(\sigma(v_1) = w_1 \) and \(\sigma(v_2) = w_2 \). Thus, we conclude \(\sigma^{-1}(K \cdot L) = \sigma^{-1}(K) \cdot \sigma^{-1}(L) \). Let now \(K \in \text{SD}_G(T^\infty) \) be a prefix code of bounded synchronization delay \(d \). We first show that \(\sigma^{-1}(K) \) is a prefix code of bounded synchronization delay. Let \(u, uv \in \sigma^{-1}(K) \), then \(\sigma(u), \sigma(uv) = \sigma(u)\sigma(v) \in K \) and therefore \(\sigma(v) = 1 \). This implies \(v = 1 \) and \(\sigma^{-1}(K) \) is a prefix code. We prove that \(\sigma^{-1}(K) \) has synchronization delay \(d + 1 \). The incrementation of the synchronization delay by one comes from the fact that \(B^*c \) is not a suffix code, and thus we need another word in \(B^*c \) to pose as a left marker. Consider \(uvw \in \sigma^{-1}(K)^* \) with \(v \in \sigma^{-1}(K)^{d+1} \) and \(w \in (B^*c)^\omega \). Factorize \(v = v_1cv_2 \) with \(v_2 \in \sigma^{-1}(K)^d = \sigma^{-1}(K^d) \). Then \(\sigma(uvw) = \sigma(uv_1c)\sigma(v_2)\sigma(w) \), and by \(\sigma(v_2) \in K^d \) this implies \(\sigma(uvw) = \sigma(uv_1c)\sigma(v_2) \in K^* \). Thus, \(uv \in \sigma^{-1}(K)^* \). Let \(\gamma : K^* \to G \) be some homomorphism and \(K_g = K \cap \gamma^{-1}(g) \in \text{SD}_G(T^\infty) \) for all \(g \in G \). Inductively, \(\sigma^{-1}(K_g) \in \text{SD}_G(A^\infty) \) and \(\sigma^{-1}(K) = \bigcup \sigma^{-1}(K_g) \). Let \(\gamma' : \sigma^{-1}(K)^* \to G \) be induced by \(\gamma'(u) = \gamma(\sigma(u)) \). By definition of \(\text{SD}_G(A^\infty) \) we obtain \(\gamma'^{-1}(1) \in \text{SD}_G(A^\infty) \). However, \(u_1 \cdots u_n \in \sigma^{-1}(\gamma^{-1}(1)) \) if and only if \(\gamma(\sigma(u_1 \cdots u_n)) = 1 \). Furthermore, note that \(\gamma(\sigma(u_1 \cdots u_n)) = \gamma(\sigma(u_1)) \cdots \gamma(\sigma(u_n)) = \gamma'(u_1) \cdots \gamma'(u_n) = \gamma'(u_1 \cdots u_n) \). Thus, we obtain \(\sigma^{-1}(\gamma^{-1}(1)) = \gamma'^{-1}(1) \in \text{SD}_G(A^\infty) \) and \(\sigma^{-1}(\gamma^{-1}(1)^\omega) = \gamma'^{-1}(1)^\omega \in \text{SD}_G(A^\infty) \).

The last case of the proof is that \(w \) contains infinitely many \(c \)'s, that is, \(w = cv \) with \(v \in (B^*c)^\omega \). By induction, we know that \(\sigma(v) \in L_T \cdot \gamma^{-1}_T(1)^\omega \subseteq [\sigma(v)]_\psi \), for some \(L_T \in \text{SD}_G(T^\infty) \) and \(\gamma_T : K_T \to G \) for some prefix code \(K_T \in \text{SD}_G(T^*) \) of bounded synchronization delay with \(\gamma^{-1}_T(g) \cap K_T \in \text{SD}_G(T^*) \). By the calculation above, there exists a \(\gamma : K^* \to G \) with the usual properties such that \(\gamma^{-1}(1) = \sigma^{-1}(\gamma^{-1}_T(1)) \). Let \(L = \sigma^{-1}(L_T) \) and set \(L(w) = cL\gamma^{-1}(1)^\omega \). It remains to show that \(cL\gamma^{-1}(1)^\omega \subseteq [w]_\psi \). Let \(cu \in cL\gamma^{-1}(1)^\omega \), then \(\sigma(u) \in [\sigma(v)]_\psi \), that is \(\sigma(u) \approx \psi(\sigma(v)) \). Since \(\approx \psi \) is the transitive closure of \(\approx \), we show that \(\sigma(u) \approx \psi(\sigma(v)) \) implies \(cu \approx \psi(cv) \) for all \(u, v \in (B^*c)^\omega \), which concludes the proof. Now, let \(\sigma(u) = \sigma(u_1c)\sigma(u_2c) \cdots \) and \(\sigma(v) = \sigma(v_1c)\sigma(v_2c) \cdots \) such that \(\psi(\sigma(u_1c)) = \psi(\sigma(v_1c)) \). As observed above, this implies \(\varphi(cu_1c) = \varphi(cv_1c) \). Thus,

\[
\begin{align*}
cu &= (cu_1c)u_2(cu_2c)u_3(cu_3c) \cdots \\
&= cu_1(cu_2c)v_3(cu_4c) \cdots
\end{align*}
\]

This implies the existence of sets \(L(w) \in \text{SD}_G(A^\infty) \) with \(w \in L(w) \subseteq [w]_\psi \) in the case of infinitely many \(c \)'s. \(\square \)

5. Rees extension monoids

In this section we prove the direction \(\Box \iff \Box \). We need the fact that every group contained in \(\text{Rees}(N,M,\rho) \) is contained in \(N \) or in \(M \).

Lemma 12 \(\text{[H]} \). Let \(G \) be a group in \(\text{Rees}(N,M,\rho) \), then there exists an embedding of \(G \) into \(N \) or into \(M \).
Thus, Lemma 12 implies $\text{LocRees}(H) \subseteq \text{Rees}(H) \subseteq \text{Rees}(\overline{H}) \subseteq \overline{H}$ for any group variety H, which is $\exists \implies \exists\overline{H}$. We want to prove equality, that is, every monoid which contains only groups in H is a divisor of an iterated Rees extension of groups in H. However, we are able to prove a stronger statement using only local Rees extensions.

Proposition 13. Given M, we can construct a sequence of monoids $M_1, \ldots, M_k = M$ with $k \leq 2^{|M|} - 1$ such that for each $1 \leq j \leq k$ we have for M_j one of the following:

- M_j is a group which is a divisor of M.
- M_j is a divisor of a local Rees product of some M_i and a local divisor M_ℓ of M_j with $i, \ell < j$.

Proof. We prove the statement with induction on $|M|$. If M is a group, we set $M_1 = M$. This includes the base case $|M| = 1$. If M is not a group, we may choose a minimal generating set of M. Let c be a nonunit of this generating set, then there exists a proper submonoid N of M such that N and c generate M. Since c is not a unit, the local divisor M_c is smaller than M, that is, $|M_c| < |M|$. By induction, there exist sequences $M_1', \ldots, M_{k'}' = N$ and $M_1'', \ldots, M_{k''}'' = M_c$ with $k', k'' \leq 2^{|M|} - 1 - 1$. We show that M is a homomorphic image of the local Rees product $\text{LocRees}(N, M_c)$. Let $\varphi : \text{LocRees}(N, M_c) \to M$ be the mapping given by $\varphi(n) = n$ for $n \in N$ and $\varphi(u, x, v) = u x v$ for $(u, x, v) \in N \times M_c \times N$. Since

$$\varphi((u, x, v)(s, y, t)) = \varphi((u, x \circ c s c o y, t)) = \varphi(u, x sy s, t)$$

$$= (u x v)(syt) = \varphi(u, x, v) \varphi(s, y, t),$$

φ is a homomorphism. Obviously, $M = N \cup N M_c N$ and thus φ is surjective.

Setting $M_i = M'_{i,k'}$ for $1 \leq i \leq k'$, $M_{i+k'} = M''_i$ for $1 \leq i \leq k''$ and $M_{k'+k''+1} = M$ leads to such a sequence for M as M is a divisor of the local Rees product of $M_{k'} = N$ and $M_{k'+k''} = M_c$. Since $k' + k'' + 1 \leq 2 \cdot (2^{|M|} - 1) + 1 = 2^{|M|} - 1$, the bound on k holds. \square

The inclusion $\overline{H} \subseteq \text{LocRees}(H)$ is immediate from Proposition 12 which is $\exists \iff \exists\overline{H}$. In particular, every monoid in \overline{H} is a divisor of an iterated Rees product of groups in H by Lemma 11. We can draw the decomposition as a tree based on the decomposition of M in submonoids and local divisors. We do not describe this formally but content ourselves to give an example.

Example 14. Let M be the monoid generated by $\{a, b, \delta, \sigma\}$ with the relations $a^2 = b^2 = a b = b a = 0$, $a \delta = a$, $\delta \sigma = \sigma \delta^2$, $\delta^3 = 1$, $\sigma^2 = 1$ and $d \delta = d \delta$, $d \sigma = d \sigma$ with $d \in \{a, b\}$. The subgroup generated by δ and σ is the symmetric group S_3; it is solvable but not Abelian. The monoid M is syntactic for the language L which is a union of L_a and L_b. The language L_a is the set of all words $u a v$ with $u v \in \{\delta, \sigma\}^*$ and the sign of the permutation $u v$ evaluates to -1. The language L_b is the set of all words $u b v$ with $u v \in \{\delta, \sigma\}^*$ and $u v$ evaluates in S_3 to δ. The decomposition in Rees products from Proposition 13 is depicted in Figure 7. Here $M[a, \sigma, \delta]$ denotes the submonoid generated by $\{a, \sigma, \delta\}$. In particular, this yields $M \leq \text{Rees}(\text{Rees}(S_3, \mathbb{Z}/2\mathbb{Z}, \rho_1), \text{Rees}(S_3, \{1\}, \rho_2), \rho_3)$ for some ρ_1, ρ_2, ρ_3 by Lemma 7.
6. Applications

An application of Proposition \ref{prop:decomposition} is the solution to an open question of Almeida and Klíma. Let U and V be varieties. Let $\text{Rees}(U, V)$ be the variety generated by $\text{Rees}(N, M, \rho)$ for $N \in U$ and $M \in V$. Note that in general $\text{Rees}(V) \neq \text{Rees}(V, V)$. However $\text{Rees}(V)$ can be defined as the limit of this operation. Let $V_i = \text{Rees}(V_{i-1}, V_{i-1})$ and $V_0 = V$, then

$$\text{Rees}(V) = \bigcup_{i \in \mathbb{N}} V_i.$$

The variety $\text{Rees}(U, V)$ has recently been introduced by Almeida and Klíma under the name of \textit{bullet operation} \cite{1}. They defined a variety V to be \textit{bullet idempotent} if $V = \text{Rees}(V, V)$ and posed the open question whether there are varieties apart from \overline{H} which are bullet idempotent. Using our decomposition above, we prove that the answer to this question is no.

\textbf{Theorem 15.} Let V be a bullet idempotent variety and let $H = V \cap G$, then $V = \overline{H}$.

\textbf{Proof.} Since \overline{H} is the maximal variety with $\overline{H} \cap G = H$, we have $V \subseteq \overline{H}$. Let $M \in \overline{H}$. Inductively, we may assume that every proper divisor of M is in V. If M is a group, then $M \in H$ and thus $M \in V$. Thus, there exists an nonunit element $c \in M$ and a proper submonoid N of M such that N and c generate M. By the calculation in the proof of Proposition \ref{prop:decomposition}, M is a divisor of $\text{LocRees}(N, M_c)$, and since $N, M_c \in V$ and $V = \text{Rees}(V, V)$ we obtain $M \in V$. \hfill \square

Let $(\text{FO} + \text{MOD}_q)[<]$ be the fragment of first-order sentences which only use first-order quantifiers, modular quantifiers of modulus q and the predicate $<$. Then the following theorem holds.

\textbf{Corollary 16.} $(\text{FO} + \text{MOD}_q)[<](A^\infty) = \text{SD}_{\text{Sol}_q}(A^\infty)$

\textbf{Proof.} By \cite{18}, see also \cite{17} for a complete treatise, $(\text{FO} + \text{MOD}_q)[<]$ describes the family of all regular languages such that every group in the syntactic monoid is a solvable group of cardinality dividing a power of q, that is the languages in Sol_q. Theorem \ref{thm:decomposition} then implies the stated equality. \hfill \square
Table 1: Overview of existing and new language characterizations of H.

	I	Ab	Sol	Sol_q	H
finite words	16	14	16	new	new, unless $H \subseteq \text{Ab}$
ω-words	4	new	new	new	new, unless $H = 1$

The same language class has been described by Straubing with another operation, counting how many prefixes are in a given language, which resembles more closely the counting modulo q [16].

7. Summary

Our main theorem Theorem 4 states $H(A^\infty) = SD_H(A^\infty)$. An overview over the contributions for H is given in Figure 1. As a byproduct we were able to give a simple decomposition of the monoids in H as local Rees products and groups in H, using only exponentially many operations.

References

[1] J. Almeida and O. Klíma. On the irreducibility of pseudovarieties of semigroups. *Journal of Pure and Applied Algebra*, 220(4):1517 – 1524, 2016.

[2] Jean-Camille Birget and John L. Rhodes. Almost finite expansions of arbitrary semigroups. *Journal of Pure and Applied Algebra*, 32(3):239–287, 1984.

[3] Jean-Camille Birget and John L. Rhodes. Group theory via global semigroup theory. *Journal of Algebra*, 120(2):284 – 300, 1989.

[4] Volker Diekert and Manfred Kufleitner. Omega-rational expressions with bounded synchronization delay. *Theory Comput. Syst.*, 56:686–696, 2015.

[5] Volker Diekert and Manfred Kufleitner. A survey on the local divisor technique. *Theoretical Computer Science*, 610:13–23, 2015.

[6] Volker Diekert, Manfred Kufleitner, and Pascal Weil. Star-free languages are Church-Rosser congruential. *Theoretical Computer Science*, 454:129–135, 2012.

[7] Volker Diekert and Grzegorz Rozenberg, editors. *The Book of Traces*. World Scientific, Singapore, 1995.

[8] Samuel Eilenberg. *Automata, Languages, and Machines*, volume B. Academic Press, New York and London, 1976.

[9] Dominique Perrin and Jean-Éric Pin. *Infinite words*, volume 141 of *Pure and Applied Mathematics*. Elsevier, Amsterdam, 2004.
[10] Jean-Éric Pin. *Varieties of Formal Languages*. North Oxford Academic, London, 1986.

[11] John Rhodes and Dennis Allen. Synthesis of the classical and modern theory of finite semigroups. *Advances in Mathematics*, 11(2):238 – 266, 1973.

[12] John L. Rhodes and Benjamin Steinberg. *The q-theory of finite semigroups*. Springer Monographs in Mathematics. Springer, 2009.

[13] Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. *Information and Control*, 8:190–194, 1965.

[14] Marcel-Paul Schützenberger. Sur les monoïdes finis dont les groupes sont commutatifs. *Revue Française Automat. Informat. Recherche Opérationnelle Sér. Rouge*, 8(R-1):55–61, 1974.

[15] Marcel-Paul Schützenberger. Sur certaines opérations de fermeture dans les langages rationnels. In *Symposia Mathematica, Vol. XV (Convegno di Informatica Teorica, INDAM, Roma, 1973)*, pages 245–253. Academic Press, 1975.

[16] Howard Straubing. Families of recognizable sets corresponding to certain varieties of finite monoids. *Journal of Pure and Applied Algebra*, 15(3):305–318, 1979.

[17] Howard Straubing. *Finite Automata, Formal Logic, and Circuit Complexity*. Birkhäuser, Boston, Basel and Berlin, 1994.

[18] Howard Straubing, Denis Thérien, and Wolfgang Thomas. Regular languages defined with generalized quantifiers. *Inform. and Comput.*, 118(2):289–301, 1995.

[19] Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor, *Handbook of Theoretical Computer Science*, chapter 4, pages 133–191. Elsevier Science Publishers B. V., 1990.
A. Missing proofs

All missing proofs can easily be deduced from the existing literature; and pointers have been given in previous sections. However, in order to keep the paper self-contained we reproduce them in our notation. We first give a proof of Proposition 6. The statement has been proved by Schützenberger. We give a detailed proof following [14] loosely. We assume the reader to be familiar with basic concepts of formal language theory, such as deterministic finite automata and remind the classic theorem that the transformation monoid of a minimal deterministic finite automaton of a language is isomorphic to its syntactic monoid.

Proof of Proposition 6. Note that K^* is regular because $K = \bigcup \{K_g \mid g \in G\}$ is regular. Without restriction we may assume $K \neq \emptyset$ and we let d be the synchronization delay of K. If p denotes a state in some deterministic finite automaton (DFA) and if $u \in A^*$ is a word, then we write $p \mapsto p \cdot u$ to indicate that reading u transforms p into the state $p \cdot u$. For $g \in G$ let Q_g be the state set of the minimal automaton for K_g and q_g the corresponding initial state. Let Q be the direct product of sets Q_g with initial state $q_0 = \prod \{q_g \mid g \in G\}$. The product automaton allows to assign to each language K_g a subset $F_g \subseteq Q$ such that the DFA (Q, A^*, q_0, F_g) accepts K_g. Since $K_g \cap K_h = \emptyset$ for $g \neq h$ we have $F_g \cap F_h = \emptyset$ for $g \neq h$. It is also clear that $\prod_{g \in G} \text{Synt}(K_g)$ acts on Q.

By F we denote union $\bigcup \{F_g \mid g \in G\}$. We merge the subset $\{p \in Q \mid p \cdot A^* \cap F = \emptyset\}$ into a single sink state \perp. Since K is a prefix code, there is no word $u \in A^+$ such that $p \cdot u \in F$ for any $p \in F$. Thus, $p \cdot u = \perp$ for every $p \in F$ and $u \in A^+$. Moreover, without restriction we may assume that every state is reachable from the initial state q_0 and by slight abuse of language, the new state space is still called Q. The image of A^* in the transformation monoid Q^Q which is induced by $\sigma_u : Q \rightarrow Q, p \mapsto p \cdot u$ defines a monoid S, the transition monoid of Q, and S becomes a divisor of $\prod_{g \in G} \text{Synt}(K_g)$. It is therefore enough to show that every subgroup in the syntactic monoid $\text{Synt}(\gamma^{-1}(1))$ is either a divisor of G or a divisor of S. For later use we denote by $\sigma : A^* \rightarrow S$ the homomorphism which maps u to σ_u.

Next, consider the product set $\tilde{Q} = G \times (Q \setminus F)$. We view \tilde{Q} as a state space of an automaton accepting $\gamma^{-1}(1)$ as follows.

$$(g, q) \cdot a = \begin{cases} (g, q \cdot a) & \text{if } q \cdot a \in Q \setminus F \\ (gh, q_1) & \text{if } q \cdot a \in F_h \end{cases}$$

Note that the transition function is well-defined since, as mentioned above, $F_g \cap F_h = \emptyset$ for $g \neq h$. The construction defines a homomorphism $\mu : A^* \rightarrow \tilde{Q}$. We let $M = \mu(A^*)$. It is the corresponding transition monoid for \tilde{Q}. Moreover, letting $(1, q_1) \in \tilde{Q}$ be the only final state, the resulting DFA accepts $\gamma^{-1}(1)$ as a subset of A^*. To see this observe that every word $u \in \gamma^{-1}(1)^*$ belongs to $K^* \subseteq A^*$. Moreover, u admits a unique factorization $u = u_1 \cdots u_k$ such that for all i we have $q_0 \cdot u_i \in F_{g_i}$ for $g_i = \gamma(u_i)$ and $1 = g_1 \cdots g_k$. Since the DFA accepts $\gamma^{-1}(1)$, it is enough to show that every subgroup of M is either a subgroup of G or a divisor of S.
Let H be a subgroup of M. Then H contains a unique idempotent $e \in M$ which is the neutral element in H. In particular, $H = eHe$. Let $\mathcal{H} = \mu^{-1}(H)$. It is a nonempty subsemigroup of A^*. The group H does not act as a group on \tilde{Q}_e, because there might be states (g, p) such that $(g, p) \neq (g, p) \cdot e$. However, it acts faithfully on $\tilde{Q}_e = \tilde{Q} \cdot e$. Indeed, if $h \neq h'$ in H, then there are states $(g, p) \cdot h \neq (g, p) \cdot h'$. Since $h = ehe$ and $h' = ehe'$, we have $(g, p) \cdot e \in \tilde{Q}_e$, $(g, p) \cdot eh \neq (g, p) \cdot eh'$, and $(g, p) \cdot eh, (g, p) \cdot eh' \in \tilde{Q}_e$. We distinguish two cases.

Case 1. There is a state $(g, p) \in \tilde{Q}_e$ such that there is a word $wv \in H$ where $p \cdot u \in F$. For $w = (uv)^{|H|}$ we have $\mu(w) = e$ and w factorizes as $w = uv'x$ such that $w' \in K^*$ and $q_0 \cdot x = p$. It follows $xu \in K$. Letting $y = wvu'$ we have $xy = w^2 \in H$ with $\mu(yx) = e$ and hence, $(g, q_0) \cdot x = (g, p)$ implies $(g, p) \cdot y = (g, q_0)$.

The element $\mu(xy)$ is idempotent in M. Indeed, calculating in M we have:

$$(xy)^2 = xwuw' \cdot xwuw' = xw^3uw' = xwuw' = xy.$$

The subsemigroup xHy contains the idempotent xy and $f \mapsto xfy$ defines a homomorphism of H onto the group H' and its inverse is given $xfy \mapsto yfxyx = f$. As H and H' are isomorphic, we start all over with the idempotent $e' = \mu(xy)$, the group H', and its inverse image H instead of e, H, H.

In order to simplify the notation we rename e', H', \mathcal{H}' as e, H, \mathcal{H}. The difference is that, now, we have $(g, q_0) \cdot e = (g, q_0)$ and $\mu(xy) = e$ with $xy \in K^+$. Consider $(g, q) \in \tilde{Q}_e$ such that $q \neq \perp$ and hence, q is not the sink state of Q. Then there exist words $u, v \in A^*$ such that $q_0 \cdot u = q$ and $q \cdot v \in F$. Since $(g, q) = (g, q_0) \cdot u \in \tilde{Q}_e$, we obtain $(g, q_0) \cdot u(xy)^d v = (g, q) \cdot v = (g', q_0)$ for some $g' \in G$. Consequently, $u(xy)^d v \in K^*$ and, by synchronization delay, we obtain $u(xy)^d \in K^*$. In particular, $(g, q_0) \cdot u(xy)^d = (g, q_0)$.

Thus, $(g, q) = (g, q_0) \cdot (xy)^d = (g, q_0) u(xy)^d = (g, q_0)$ and therefore, $q = q_0$. Thus, $\tilde{Q}_e \subseteq \{(g, q_0) \mid g \in G\} \cup \{(g, \perp) \mid g \in G\}$.

This implies $\mathcal{H} \subseteq K^*$ by the definition of the automaton. (The group H acts trivially on $\{(g, \perp) \mid g \in G\}$ and this part is irrelevant in the following.)

Consider the mapping $\pi : H \rightarrow G$ given by $\pi(\mu(u)) = \gamma(u)$ for $u \in \mathcal{H}$. This mapping is well-defined, since $(g, q_0) \cdot \mu(u) = (g \cdot \gamma(u), q_0)$ for some $(g, q_0) \in \tilde{Q}_e$. Thus, the homomorphism $\gamma : \mathcal{H} \rightarrow G$ factorizes as follows:

$$\gamma : \mathcal{H} \xrightarrow{\mu} H \xrightarrow{\pi} G.$$

Let us show that the homomorphism π is injective. We know that H acts faithfully on \tilde{Q}_e. Hence for $h \neq 1$ there is some $(g, q) \in \tilde{Q}_e$ such that $(g, q) \cdot h \neq (g, q)$. Thus, $(g, q) = (g, q_0)$ and therefore,

$$(g, q) \cdot h = (g\pi(h), q_0) \neq (g, q_0).$$

This shows, as desired, $\pi(h) \neq 1$ and H is a subgroup of G.

Case 2. For every state $(g, p) \in \tilde{Q}_e$ and every $uv \in H$ we have $p \cdot u \not\in F$. Thus, for all $(g, p) \in \tilde{Q}_e$ and all $u \in \mathcal{H}$ we have

$$(g, p) \cdot \mu(u) = (g, p \cdot u) = (g, p \cdot \sigma(u)).$$
This means that H acts faithfully on the following set

$$Q' = \left\{ p \in Q \mid (g,p) \in \tilde{Q}_e \right\}.$$

Let S' denote the submonoid $S' = \{ s \in S \mid Q' \cdot s \subseteq Q' \}$, then $\sigma(H) \subseteq S'$ and H becomes a quotient of S' and therefore, a divisor of S. This concludes the proof. \hfill \Box

Next, we introduce a variant of Schützenberger products to give a short proof that the concatenation product of two languages does not introduce new groups, \cite{13}. Let M be a finite monoid and $\varphi : A^* \rightarrow M$ be a homomorphism. We define the set

$$[w] = \{(\varphi(w_1), \varphi(w_2)) \in M \times M \mid w = w_1w_2\}.$$

Further, we define the operations

$$u \cdot [w] = \{(\varphi(u)m, n) \mid (m, n) \in [w]\}$$

$$[w] \cdot u = \{(m, n\varphi(u)) \mid (m, n) \in [w]\}.$$

One can check that $u \cdot [v] \cup [u] \cdot v = [uv]$. Our variant of the Schützenberger product is defined as the monoid

$$\tilde{M} = \{[w] \in M \times M \mid w \in A^*\}$$

equipped with the operation $[u][v] = [uv]$. This is well-defined since $[u] = [v]$ implies $\varphi(u) = \varphi(v)$. In fact, $\tilde{\varphi} : \tilde{M} \rightarrow M$ given by $\tilde{\varphi}([w]) = \varphi(w)$ is a homomorphism. It is fairly easy to see that \tilde{M} recognizes the concatenation product over A^∞ as well, see \cite{7} Proposition 11.7.10.

Proposition 17. Let $L \subseteq A^*$ and $K \subseteq A^\infty$ be languages recognized by $\varphi : A^* \rightarrow M$. Then $L \cdot K$ is recognized by the homomorphism $\psi : A^* \rightarrow \tilde{M}$ given by $\psi(w) = [w]$.

Proof. Let $u = u_1u_2 \in A^*$ such that $u_1 \in L$ and $u_2 \in K$ and consider some word $v \in A^*$ such that $\psi(u) = \psi(v)$. Since $(\varphi(u_1), \varphi(u_2)) \in [u] = [v]$, there exists a decomposition $v = v_1v_2$ such that $(\varphi(u_1), \varphi(u_2)) = (\varphi(v_1), \varphi(v_2))$. Consequently, $v_1 \in L$ and $v_2 \in K$, i.e., $v \in L \cdot K$.

In the case of infinite words let $u = u_1u_2 \ldots \in L \cdot K$ and $v = v_1v_2 \ldots$ such that $\psi(u_i) = \psi(v_i)$ for all $i \in \mathbb{N}$, i.e., $u \sim_{\psi} v$. We may assume that $u_1 = u'u''$ such that $u' \in L$ and $u''u_2 \ldots \in K$. Again, there must exist a factorization $v_1 = v'v''$ such that $\varphi(u'_1) = \varphi(v')$ and $\varphi(u''_1) = \varphi(v'')$. In particular, $v' \in L$. Since $\psi(u_1) = \psi(v_1)$ implies $\varphi(u_1) = \varphi(v_1)$, this yields $(u''u_2)u_3 \ldots \sim_{\varphi} (v''v_2)v_3 \ldots$ and therefore $v''v_2v_3 \ldots \in K$. Thus, $v \in L \cdot K$, which completes the proof. \hfill \Box

We show that every group contained in \tilde{M} is a group in M. The argument is a slight deviation of the original argument of Schützenberger and Petrone \cite{13} Remark 2, in order to adapt to our variant of the Schützenberger product.

Proposition 18. Let $\varphi : A^* \rightarrow M$ be a homomorphism and \tilde{M} be the corresponding Schützenberger product. Every group $G \subseteq \tilde{M}$ can be embedded into M.

19
Proof. Let \([e]\) be the unit in \(G\). Consider again the homomorphism \(\tilde{\varphi} : \tilde{M} \to M\). Since \(G\) is finite, the set \(N = \{ [w] \in G \mid \tilde{\varphi}([w]) = \varphi(w) = \varphi(e) = \tilde{\varphi}([e]) \}\) is a subgroup of \(N\). In fact, \(N\) is normal and \(G/N\) is isomorphic to \(\tilde{\varphi}(G)\), which is a group in \(M\). Thus, it remains to show \(N = \{ [e] \}\), i.e., \(\tilde{\varphi}\) is injective on \(G\).

Let \([s] \in N\) be an arbitrary element and \([t] \in N\) be its inverse. Then, the following equations holds:

\[
\begin{align*}
\bullet \quad [e]^2 &= [e] \\
\bullet \quad [e] &= [s][t] \\
\bullet \quad [s] &= [e][s][e]
\end{align*}
\]

By the first equation we have \([e] = e[e] \cup [e]e\).

By the second equation and \(\varphi(s) = \varphi(t) = \varphi(e)\), it holds \([e] = s[t] \cup [s]t = e[t] \cup [s]e\).

Since \(e[e] \subseteq [e]\), we conclude \(e[s]e \subseteq [e]\). Finally, using the third equation, we obtain

\([s] = e([s][e]) \cup [e]se = e(s[e] \cup [s]e) \cup [e]e = e[e] \cup e[s]e \cup [e]e = [e] \cup e[s]e = [e]\).

\(\square\)