A review of the immunomodulatory activities of polysaccharides isolated from Panax species

Yeye Hu a, Yang He a, Zhiqiang Niu a, Ting Shen a, Ji Zhang a, Xinfeng Wang a, Weicheng Hu b,*, Jae Youl Cho b,**

a Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental protection/Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaiian, China

b Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea

Abstract

Panax polysaccharides are biopolymers that are isolated and purified from the roots, stems, leaves, flowers, and fruits of Panax L. plants, which have attracted considerable attention because of their immunomodulatory activities. In this paper, the composition and structural characteristics of purified polysaccharides are reviewed. Moreover, the immunomodulatory activities of polysaccharides are described both in vivo and in vitro. In vitro, Panax polysaccharides exert immunomodulatory functions mainly by activating macrophages, dendritic cells, and the complement system. In vivo, Panax polysaccharides can increase the immune organ indices and stimulate lymphocytes. In addition, this paper also discusses the membrane receptors and various signalling pathways of immune cells. Panax polysaccharides have many beneficial therapeutic effects, including enhancing or activating the immune response, and may be helpful in treating cancer, sepsis, osteoporosis, and other conditions. Panax polysaccharides have the potential for use in the development of novel therapeutic agents or adjuvants with beneficial immunomodulatory properties.

© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The ginsengs have been a crucial source of natural medicines throughout human history. The common ginsengs are Panax ginseng (PG, also known as ginseng or Korean ginseng), Panax quinquefolium (PQ, North American ginseng), Panax notoginseng (PN, Sanchi ginseng or Chinese ginseng), and Panax japonicus (PJ, Japanese ginseng or Bamboo ginseng).

The chemical components of Panax species include ginsenosides, polysaccharides, polyacetylenes, proteins, peptides, amino acids, organic acids, vitamins, fat-soluble molecules, and other components [1]. Panax polysaccharides exhibit multiple biological activities including antioxidant activity [2], anti-fatigue activity [3], anticaneractivity [4], anti-hyperglycemic activity [5], cytotoxicity inhibition [6], immunomodulation activity [7], gut microbiota regulation [8], and anti-septicaemic activity [9]. Among which, immunomodulation activity in Panax species has gained more attention due to the activity was closely related with extraction and isolation way, monosaccharide constituents, molecular weight, and linking mode of monosaccharide.

In recent years, multiple authors have reviewed the therapeutic activities of ginseng polysaccharides from Panax species, many of which are related to the regulation of the immune response. For example, Ghosh et al [10] summarised the structural characteristics and immunoregulatory properties of polysaccharides from PQ, including related binding receptors and signal transduction pathways. Many studies have been carried out on PG. For example, Sun [11] investigated the chemical components and biological effects of polysaccharides from the roots, leaves, and fruits of PG; Zhao et al [12] reviewed its polysaccharide structure, biological activity, and purification methods; and Ji et al [13] discussed the relationship between polysaccharide structure and bioactivity. Guo et al [14] conducted a detailed review of natural components with specific biological activities.
In this article, we review the immunomodulatory activities of polysaccharides from Panax species, including their chemical compositions, functions, and the mechanisms for their immunomodulatory effects. We aim to provide a scientific basis for further studies regarding structure-activity relationships of Panax polysaccharides.

2. Composition and structural characterisation

Panax polysaccharide is a biopolymer composed of complex monosaccharide chains rich in L-arabinose (Ara), L-rhamnose (Rha), D-galactose (Gal), D-mannose (Man), D-galacturonic acid (GalA), D-glucuronic acid (GlcA), D-xylene (Xyl), and D-galactose (Gal) residues, which are linked by glycosidic bonds and form complex macromolecular structures [15]. The molecular weights range from 3.1 kDa to 9,700 kDa; distinct physicochemical properties and bioactivities have been observed [11]. Many types of Panax polysaccharides have been isolated from ginseng fruits, leaves, stems, flowers, and roots. While Panax polysaccharides are found mainly in roots, Cui et al [16] extracted a neutral polysaccharide known as WGPFPN from flowers, and Zhang et al [17] and Hwang et al [18], isolated the polysaccharides PG-P and GS-I from stems and leaves, respectively. Wang et al [19] obtained GFP polysaccharide from fruits. Polysaccharides from Panax species differ in their molecular weights, properties, monosaccharide compositions, and structures (see Table 1). Thus far, studies of polysaccharides have focused mainly on PG, PQ, and PN; few studies have investigated PJ, Panax vietnamensis, or Panax pseudoginseng.

Panax polysaccharides are divided into neutral and acid polysaccharides. Neutral polysaccharides comprise dextran and arabinogalactan; acid polysaccharides comprise pectin-containing rhamnose and homogalacturonan [14]. The starch-like polysaccharides consist of 6-branched α-D-(1,4)-glucans, as well as 3-branched α-D-(1,6)-glucans and α-D-(1,3)-glucans [16,20]. Cui et al [16] reported that the backbone of the WGPFPN polysaccharide consisted of small (1→4)-β-D-galactan branches and large (1→6)-β-D-galactan branches decorated with α-L-1,5-Ara and α-D-L-Ara residues at O-3; moreover, trace amounts of 1,4-linked GcLp, -Galp, -GlcLp and -Manp residues might be attached in the form of side chains to (1→4)-β-D-galactan at O-6 or (1→6)-β-D-galactan at O-3. Using 1D and 2D nuclear magnetic resonance analyses, Li et al [20] demonstrated that the GPNE-I polysaccharide backbone contained a glucon with (1→4)-α-D-Glcp-(1→ and (1→4,6)-α-D-Galp-(1→ residues and an arabinogalactans (AG) domain, and that GPNE-II contained a glucon with t-, 3-, 4-, 6- and 4, 6-Glcp. The pectin mainly consists of GalA, Gal, Ara, and Rha [21], with trace amounts of GcL, Xyl, Man, and GcLa [22,23]. These monosaccharides are organised into distinct structural domains, including the homogalacturonan (HG), rhamnogalacturonan (RG-I) and RG-II; and AG-I and AG-II domains [10,18,24–26]. HG is a linear chain composed of 1,4-linked α-D-GalpA residues, some of which undergo methylation at C-6 and partial O-acetylation at C-3 or C-2 [27]. The RG-I backbone consists of [1→2]-α-L-Rhap(1→4)-α-D-GalpA(1→) repeat units, and the side chains contain AG-I and AG-II. WGPFPN-2RG fractionated from PG is a typical RG-I pectin [25]. RG-II structurally differs from the repeating units of RG-I and is composed mainly of 1,4-linked α-D-GalpA residues containing unusual sugars such as Api, Dha, KDO, AcAce, MeXyl, and AcMeFuc [28]. Shin et al [24] demonstrated that GS-P is an RG-II polysaccharide, because KDO and Dha were found only in RG-II in plant-originated polysaccharides. In addition, arabinogalactan-type polysaccharides can be divided into types I and II. The protein-bound arabinogalactan RG-CW-EZ-CP-8 contains Ara (64.3 mol%) and comparatively low amounts of Gal and GaLA (10.3 mol% and 12.3 mol%) [29]. AG-I consists of (β1→4)-D-Galp linear units as the backbone, and α-L-Araf and β-D-Galp units branch along the backbone at C-3. AG-II is composed mainly of (1→3)-linked β-D-Galp and (1→6)-linked β-D-Galp residues, with 3-Galp, 6-Galp, or Ara as the side chain (connected at position 6). Polysaccharides isolated from PQ (e.g., AGC1) contain AG-II because of the presence of 3-Galp, 6-Galp, and 3,6-Galp residues [26].

Immunomodulatory polysaccharides are compounds that interact with the immune system and strengthen host reaction-specific processes [30]. Studies regarding immunomodulatory polysaccharides have focused mainly on glucans, pectic polysaccharides, and arabinogalactans. The immunostimulatory activities of these polysaccharides are influenced by their source, molecular weight, properties, monosaccharides, glycosidic linkages, functional groups, and branching characteristics. Zheng et al [23] reported that RG-I pectin exhibited more potent induction of lymphocyte proliferation, compared with HG-rich pectin. AG is an effective immunomodulator, and the AG chain plays an important role in promoting nitric oxide (NO) production and lymphocyte proliferation. Li et al [20] reported that GPNE-I (containing a glucan domain and AG-I/II) stimulated lymphocyte proliferation more effectively, compared with GPNE-II (containing only a glucan domain); this suggested that the existence of AG domains is required to stimulate lymphocyte proliferation. Zhang et al [25] confirmed these results using bioactivity assays. Based on these reports, we conclude that Panax polysaccharides have regulatory effects on the immune system.

3. Immunomodulatory activity of Panax polysaccharides in vitro

In recent years, many polysaccharides isolated from Panax species have been reported to exhibit immunomodulatory activity in different models [31]. In vitro studies showed that Panax polysaccharides activated macrophages and promoted DC maturation, while stimulating the complement system (Table 2).

3.1. Activation of macrophages by Panax polysaccharides

Macrophages are produced by monocyte differentiation and play a unique role in the immune system where they activate the innate immune response [16]. Macrophages activated by Panax polysaccharides can neutralise foreign matter, infected microorganisms, and tumour cells by increasing the production of NO and cytokines, cell proliferation, and phagocytosis. WGPFPN polysaccharide from PG flowers promotes the release of NO in RAW264.7 macrophages at a dose of 200 μg/mL [16]. WPGA-UH-N1 polysaccharide substantially enhances NO production in peritoneal macrophages at a dose range of 0.1–1.0 mg/mL [32]. Similarly, the polysaccharides RGP1/2, GS-P, WPGA-2-RG, RG-CW-EZ-CP-8/4, RGAP, GMP, AGC1, PPQN, WPS-1/2, AGC3, PQPA2/4/5, and AEP-2 can stimulate NO release in mouse peritoneal macrophages or RAW264.7 cells. Cytokines are low-molecular-weight peptides that include IlS, tumour necrosis factor (TNF), IFN, and granulocyte-macrophage colony-stimulating factor (GM-CSF). RG-CW-EZ-CP-8/4 and AGC3 polysaccharides increase the production of the anti-inflammatory cytokines IL-12 and IL-10, respectively, as well as the proinflammatory cytokines IL-6, TNF-α, and GM-CSF [10,29], suggesting that the body has a self-regulating mechanism to maintain homeostasis. In RAW264 macrophages, the AGC1 polysaccharide induces the secretion of IL-6, TNF-α, monocyte chemoattractant protein-1, and GM-CSF; the PPQN polysaccharide induces cytokines such as IL-6, IL-1β, and TNF-α [26,33]. Similarly, WGPFPN, RGP1/2, PQPA2/4/5, and AEP-2 induce the secretion of proinflammatory cytokines in macrophages. Choi et al [34]
Table 1
Source and Structure of Polysaccharides From Panax Species

Panax L.	Name	Source	Molecular weight/Da	Property	Monosaccharide composition	Structure	Ref.
PG	WCFPN	flower	1.1 x 10⁴	neutral	Gal; Ara; Glc; Man = 78:14:3.5:2.25	(1→4)-β-D-galactan and (1→6)-β-D-galactan.	[16]
WCWP	root	6.4 x 10⁵	Starch-like glucans	significantly higher protein content	[53]		
FGWP	root	6.4 x 10⁵	Gal; Ara; Glc; Rha: GalA = 9.2:10.1:60.6:1.8:17.8	relatively high amounts of glucose	[54]		
FCEF-C	root	6.4 x 10⁵	Gal; Ara; Glc; Rha: GalA = 10.4:10.5:62.2:2.1:14.3	no data	[55]		
FCEF-A	root	2.16 x 10⁴	Gal; Ara; Glc; Rha: GalA = 12.6:10.9:50.9:1.8:23.1	no data	[56]		
FCEF-CA	root	6.4 x 10⁵	Gal; Ara; Glc; Rha: GalA = 16.5:11.4:45.8:3.2:22.3	galacturonic acid, with low amounts of glucose	[57]		
RGP1	root	8.03 x 10⁵	Ara:Gal:Glc = 0.02:0.88:0.1	no data	[58]		
RGP2-1	root	2.16 x 10⁴	Rha:Ara;Glc:Gal = 0.02:0.01:0.77:0.11	no data	[59]		
NGP	root	5.04 x 10⁵	neutral	0-α-(1→6)-D-Glucan	[60]		
GPNE-I	root	8.03 x 10⁵	neutral	0-α-(1→6)-D-Glucan	[61]		
GPNE-II	root	3.15 x 10⁶	neutral	Gal;Gal;Ara = 7.0:19:10	a heteropolysaccharide consisting mainly of a glucan domain and type I and II arabinogalactan (AG-I and AG-II)	[62]	
GS-P	leave	1.02 x 10⁴	acidic	Gal;Xyl = 1.23:3.54	no data	[63]	
GFI1	fruit	1.4 x 10⁵	acidic	Gal;Xyl = 1.11:3.2:6:1.2:1.0	no data	[64]	
WCPCA-2-RG	root	1.1 x 10⁵	neutral	Ara; Gal; Glc; Rha; GalA; Ara; Glc = 40:9.4:4.4:2.9:4.1:15:3:2:0	no data	[65]	
WCPCA-UH-N1	root	1.7 x 10⁴	Glc = 97.5	no data	[66]		
RG-CW-EZ-CP-8	root	1.47 x 10⁴	Ara; Fuc; Rha; Man; Glc; Gal; Glc = 64.3; 0.1:1.6:13.9:10.3:2.3:0.4	no data	[67]		
RG-CW-EZ-CP-4	root	1.41 x 10⁴	Ara; Fuc; Rha; Man; Glc; Gal; Glc = 19.8:0.3:4:3:6:4:10:9:3:86:1:6	no data	[68]		
RGAP	root	1.5 x 10⁵	acidic	Glc; Gal; Ara; Glc; Rha; GalA; Ara; Xyl = 15:26:9:2:3:8:32:8:23	no data	[69]	
Gimsan	root	1.38 x 10⁴	acidic	Glc; Gal; Ara; Glc; Rha; GalA; Ara; Xyl = 22.6:21.9:14:8:5:8	no data	[70]	
APG	root	1.28 x 10⁴	neutral	Ara; Gal; Glc; Rha; GalA; Ara; Xyl; Man; Glc; Gal; GalA; Ara; Xyl = 18.2:20:49:13:6:2:0	no data	[71]	
PQ	PPQ	seed	5.4 x 10⁴	neutral	Gal; Glc = 2:1.1	homogeneous glucogalactan	[64]
AGC1	seed	5.2 x 10⁴	Gal; Ara; Xyl; Glc; Rha; GalA; Ara; Man = 60:0.95:19:16:15:14:3:6:3:6:29:1:15:8:6:2:0:79	no data	[65]		
PPQn	root	3.1 x 10⁴	neutral	Gal; Glc = 1:1.1	no data	[66]	
WPS-1	root	1.54 x 10⁴	Ara; Rha; Man; Gal; Glc = 21:1.2:3.2:6:18:7:5:5	no data	[67]		
WPS-2	root	1.41 x 10⁴	Ara; Rha; Man; Gal; Glc = 27:9.1:7:2:9:2:9:2:46	no data	[68]		
SPS-1	root	3.62 x 10⁴	Ara; Xyl; Man; Glc; GalA; Glc = 22.3:6:9:9:2:2:8:6:15:9:13:6:3:5	no data	[69]		
SPS-2	root	9.7 x 10⁴	Ara; Xyl; Man; Glc; GalA; Glc = 14:2:5:7:9:2:25:2:3:16:7:9	no data	[70]		
SPS-3	root	5.12 x 10⁴	Ara; Rha; Xyl; Man; Gal; Glc; Gal; Glc = 19.2:2:9:3.6:12:15.2:11:26:3:4:1	no data	[71]		
AGC3	seed	4.81 x 10⁴	3.24 x 10⁴	acidic	Ara; Rha; Glc; Gal; GalA; GluA = 7.8:8.1:2:74:3:6:8:1	no data	[72]
PPQ2A	root	2.3 x 10⁴	acidic	Ara; Rha; Gal; Glc; GalA; Glc = 8:10:4:2:9:7:2:15:2:6:3:8	no data	[73]	
PPQ4A	root	1.0 x 10⁴	acidic	Ara; Rha; Man; Glc; Glc = 19.7:5:1:8:1:2:3:9:41:3:2:0	no data	[74]	
PPQ5	root	5.3 x 10⁴	acidic	Ara; Rha; Man; Glc; GalA; Glc = 8:5:3:2:5:3:10:8:36:2:5:4:24	homogeneous polysaccharides contained O-acetyl groups	[75]	
AEP-2	root	8.0 x 10⁴	acidic	Ara; Man; Gal; Glc; GalA = 103:0.76:16:8:3:2:3:65	contain in excess of 80% (by weight) poly-furanosyl-pyranosyl-saccharides	[76]	
PN	PP1	root	6.85 x 10⁵	Gal; Glc; Man; Ara; Xyl = 3.5:10:8:3.5:10:2.3	no data	[77]	
PF112	root	3.7 x 10⁴	Gal; Glc; Man; Ara; Xyl = 2.9:5:3:2:8:10:2.1	no data	[78]		
PBGAI1	root	4.5 x 10⁴	Gal; Glc; Man; Ara; Xyl = 3.1:4:2:5:3:10:3.2	no data	[79]		

(continued on next page)
reported that the synergistic effects of RGAP polysaccharide and IFN-γ induced IL-1, IL-6, and TNF-α production, enhancing macrophage function. Phagocytosis is a basic function of macrophages. Enhancing phagocytic activity is a notable characteristic of polysaccharides. Polysaccharides such as WGFPN, RGP1/2, WGPA-2-RG, GMP, WPS-1/2, and SPS-1/2/3 can enhance the phagocytic activity of macrophages. Polysaccharides such as WGFPN, RGP1/2, WGPA-2-RG, GMP, WPS-1/2, and SPS-1/2/3 can enhance the phagocytic activity of macrophages.

Many studies have suggested that *Panax* polysaccharides activate macrophages by recognising macrophage surface receptors known as pattern recognition receptors (PRRs). Similar to proteins and enzymes, polysaccharides have “active sites” for one or more oligosaccharide fragments [35]. Macrophage PRRs have been widely reported by Jiang et al [35], Li et al [31], Schepetkin et al [36], and Ghosh et al [37]. They include TLRs, complement receptor 3, scavenger receptor, NOD2, MR, and dectin-1. Activation of macrophage receptors by *Panax* polysaccharides initiates a cascade of intracellular signals. The mitogen-activated protein kinase signalling pathway is required for macrophage activation. Kim et al [29] reported that RG-CW-EZ-CP-8 polysaccharide bound to macrophage PRRs and substantially induced the phosphorylation of three major mitogen-activated protein kinases (JNK, ERK, and p38 kinase), stimulating the production of NO and cytokines. NF-kB is a transcriptional nucleoprotein factor that plays an important role in macrophage activation and regulates the expression of inflammatory genes. Treatment of macrophages with RGAP polysaccharide and recombinant IFN-γ induces the activation of NF-kB and iNOS-NO and increases p65 NF-kB protein synthesis [34]. However, Ghosh et al [26] observed a slight increase in phosphorylated p65 (Ser536) after 4 h of AGC1 treatment, indicating a partial role for the NF-kB pathway in the immune stimulation response. NOD2 is a member of the NOD-like receptor family and a critical regulator of immunity; it can be activated by muramyl dipeptide to mediate protective immunity [38]. The acidic polysaccharide AGC3, containing RGI-type pectin, activates the NF-kB (p65/RelA) and mitogen-activated protein kinase (p38) signalling pathways in RAW264.7 cells. AGC3 binds NOD2 and possibly TLR4, resulting in crosstalk between these signalling pathways [10]. RGAP polysaccharide, isolated from Korean Red Ginseng, induces nuclear transcription factors such as NF-kB, AP-1, STAT-1, ATF-2, and CREB, thereby increasing NO production [39]. ERK and JNK are the most important signalling enzymes for RGAP. Therefore, RGAP can activate macrophages by activating the transcription factors NF-kB and AP-1, as well as their upstream signalling enzymes ERK and JNK.

Macrophage enzyme activity can also reflect the functional status of the analysed macrophages. Stimulation of peritoneal macrophages using the polysaccharide GMP significantly enhances lysosomal phosphatase activity. Lim et al [7] suggested that GMP could activate macrophages by modulating lysosomal enzyme activity, thereby affecting the ability of lysosomal enzyme to respond appropriately to foreign agents and increasing the proportion of phagocytic macrophages (Fig. 1).

3.2. Induction of DC maturation by *Panax* polysaccharides

DCs are powerful antigen-presenting cells that stimulate naïve T cells and initiate immune responses [40]; they were first discovered by Steinman in 1972 [41]. Mature DCs are capable of recognizing, processing, and presenting antigens to T lymphocytes, thus activating the adaptive immune response [42]. After maturation induced by *Panax* polysaccharides, DCs express the specific co-stimulatory molecules cluster of differentiation (CD)40, CD80, CD86, and major histocompatibility complex (MHC) II. MHCII plays an important role in antigen presentation, while CD80 and CD86 are required for T cell activation [43]. CD40 can trigger extremely high levels of IL-12 expression, which is required to activate CD4+ T cells. Furthermore, increased IL-12 production enhances the CD4+ T cell population, as well as the communication between DCs and CD4+ T cells [44].

Panax polysaccharides modulate the immune function of DCs through direct recognition and binding of DC receptors, and through indirect pathways. For example, by regulating other immune cells (e.g., macrophages), *Panax* polysaccharides exert synergistic effects that regulate the entire immune system. BMDM pattern recognition molecules include TLRs, scavenger receptor, MR, and dectin-1 [35]. Liu et al [43] reported that PNPS-0.3 polysaccharide binds to BMDMCs through multiple PRRs; TLR4 acts as the main receptor, while TLR2 and MR act as secondary receptors. This upregulates the expression levels of MyD88, IKKβ, p-p65, total p65, and NF-kB, thereby activating the NF-kB pathway to participate in the immune regulation of BMDMCs. *Panax* polysaccharides also regulate immune function via the DC–CD4+ T cell pathway. Meng et al [44] showed that the NGP polysaccharide markedly enhances BMDM maturation and function, as well as the expression of MHCII, CD80, CD86, CD83, CD40, and IL-12. This upregulates antigen presentation, induces active CD4+ T cells, and strengthens the DC–CD4+ T cell pathway. In addition, IFN-γ secreted by CD4+ T cells activates macrophages, intensifying the immune response. Kim et al [45] demonstrated that ginsan, a PG polysaccharide,

Panax L.	Name	Source	Molecular weight/Da	Property	Monosaccharide composition	Structure	Ref.	
PBGA12	root	Gal: Glc: Man: Ara: Xyl = 2.5:7.2:4.3:10:8.1	mainly consisted of a backbone of →4):α-D-Galp-(1 →4)[β-L-阿拉伯糖单糖-1]; α-L-Araf-1; α-L-Araf-1; α-L-Araf-1;				[43]	
PNP5- 0.3	residue	Rha: Ara: Gal: Glc: N-Acetyl-D-Glc: GalA = 15.5:25.2:33.3:4.5:4.4:17.1	with a slightly higher content of 4-galactan and HGA, and a lower content of arabian.				[49]	
1MD3- G2	root	1.14 x 10^6	Rha: Ara: Xyl: GalA = 2: 14: 29: 45: 10	4-O-linked α-d-galacturonic acid, (1 →4)-linked-α-D-galacturonic acid, 1, 3-linked β-D-galactose			[59]	
1MD3- G3	root	2.8 x 10^6	Rha: Ara: Xyl: GalA: GlcA = 2: 12: 41: 26: 16: 3	4-O-linked α-D-galacturonic acid, (1 →4)-linked-α-D-galacturonic acid, 1, 3-linked β-D-galactose				[59]
PJP	rhizome	3.98 x 10^6	Glc: Gal: Rha: Ara: Xyl: GalA: GlcA = 53.41: 13.62: 1: 1: 0.99: 0.82: 0.25: 0.03	4-O-linked α-D-galacturonic acid, (1 →4)-linked-α-D-galacturonic acid, 1, 3-linked β-D-galactose				[59]
PJPS	rhizome	neutral	Ara: Glc: Gal	heteropolysaccharide containing pyranose ring				[52]
Name	Methods	Models	Effects	Pathways	Endotoxin test	Ref.		
------------	-----------------	---------------------------------	---	---	----------------	-------		
WGFN	in vitro	RAW264.7 macrophage cells	NO (+), TNF-α (+), IL-6(+), IL-1(+) (+), IFN-γ (+), phagocytic index (+)	phagocytosis	Yes	[16]		
	in vivo	cyclophosphamide (CTX)-induced	body weight (-), spleen indices (+), thymus indices (+), abolish the inhibition effect of CTX on the phagocytic uptake capacity of macrophage					
WGPN	in vivo	Sarcoma-180 (S180) tumor-	spleen weights (+), lymphocyte proliferation (+), NK cell activity (+), NO (+), TNF-α (+), phagocytic index (+)	phagocytosis	Yes	[53]		
FGWP	in vitro	RAW264.7 macrophage cells	IL-6 (+), IL-12 (+), TNF-α (+), FGEF-CA > FGEF-A > FGEF-C > FGWP					
FGEF-A	in vivo	cyclophosphamide (Cy)-induced	spleen indices (+), thymus indices (+)					
BBL/c mice	RAW264.7 macrophage cells	NO (+), TNF-α (+), neutral red phagocytosis (+)	phagocytosis	Yes	[61]			
GFF1	in vivo	spleen cells	NO (+), TNF-α (+), IFN-γ (+)					
GFF1-I	in vitro	RAW 264.7 macrophage cells	IL-12 (+), TNF-α (-), MHC II (+), CD80 (+), CD86 (+), CD83 (+), CD40 (+), IL-12p70 (+), TNF-α (+), T cell proliferation (+)	FGF-E- > GF-E-	Yes	[44]		
GPNE-I	in vitro	RAW 264.7 macrophage cells	NO (+), TNF-α (+), IFN-γ (+)					
GPNE-II	in vitro	RAW 264.7 macrophage cells	IL-12 (+), TNF-α (+), splenocytes proliferation					
NSP	in vivo	SPF BBL/c mice (immunized with	IL-12 (+), TNF-α (+), IgG1 (+), IgG2b (+), Th1-type (IL-2, IFN-γ, GM-CSF) (+), Th2-type (IL-10) (+), T cell proliferation (+), IgE (-)		Yes	[18,24]		
	in vitro	Spleenic lymphocytes and	IL-12 (+), TNF-α (+), spleen indices (+), thymus indices (+)					
	in vitro	macrophages from BBL/c mice	lymphocytes proliferation (+), WBC count (+), NK cell activity (+), IL-2 (+), IL-6 (+), IFN-γ (+)					
GFFP1	in vitro	LLC-bearing mouse model	NO (+), spleen and thymus weight (+), lymphocytes proliferation (+), NK cell activity (+), IL-2 (+), IFN-γ (+), the ratio of CD4/CD8 (+)	phagocytosis	Yes	[19]		
WGP-A-2	in vitro	normal mice spleens, macrophages	lymphocytes proliferation (+), NO (+), phagocytosis (+)		Yes	[25]		
WGP-A-3	in vitro	male ICR mice spleens,	B cell proliferation (+), NO (+)			[32]		
WGP-A-4	in vitro	macrophages	B cell proliferation (+), NO (+)					
WGP-A-5	in vivo	BALB/c mice macrophages,	BM cell proliferation (+), IL-6 (+), GM-CSF (+), NO (+), TNF-α PRRs (+)	MAPK		[29]		
WGP-B-1	in vitro	Peyer's patches	BM cell proliferation (+), IL-6 (+), GM-CSF (+), NO (+), TNF-α PRRs (+)	MAPK				
WGP-B-2	in vitro	ovaryiemctized rats	NO (+), IL-6(+), IL-1(+) (+), TNF-α (+), NK cells activity (+), iNOS (+)	MAPK		[34]		
GSP-N-1	in vitro	RAW264.7 cells	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
GSP-N-2	in vitro	female BBL/c mice macrophage,	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
	in vivo	spleen cell	NO (+),iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
GSP-N-3	in vitro	RAW264.7 cells	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
	in vitro/	male BALB/c mice model,	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
GSP-N-4	in vivo	Sepsis model,	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
GSP-N-5	in vitro	peritoneal macrophages	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
GSP-N-6	in vitro/	BBL/c mice bone marrow-	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
	in vivo	derived DCs	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
GSP-N-7	in vitro/	SJL/J Mice EAE	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
GSP-N-8	in vitro	BBL/c mice peritoneal macrophages	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
GSP-N-9	in vitro	murine spleen lymphocytes	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
	in vitro	Lewis lung carcinoma model in	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
AGC1-1	in vitro/	RAW 264.7 murine macrophages	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
AGC1-2	in vivo	RAW 264.7 murine macrophages	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		
AGC1-3	in vitro	RAW 264.7 murine macrophages	NO (+), iNOS mRNA (+), NF-κB, AP-1, STAT-1, ATF-2, and CREB	TLR2, TLR4, Dectin-1, NF-κB, AP-1, EPK, JNK,	Yes	[58]		

(continued on next page)
regulated the immune response through the DC–CD4+ T cell signalling pathway, where CD86 acted as a costimulatory molecule. Treatment with PNPS-0.3 polysaccharide significantly increased the proportion of CD4+ and CD8+ T cells in BMDC/T cell co-culture, indicating that PNPS-0.3 polysaccharide can influence immune regulation by means of the DC–CD4+ T cell pathway [43]. Therefore, BMDC maturation upregulates antigen presentation and effectively initiates the CD4+ T cell response, while IFN-γ secretion activates macrophages, enhancing the overall immune response (Fig. 2).

Table 2 (continued)

Panax L.	Name	Methods	Models	Effects	Endotoxin test	Ref.
PPQA2 in vitro	RAW264.7 murine macrophages	IL-6 (+), TNF-α (+), NO (+)	RelA, MAPK (p38) pathways	[66]		
PPQA4 in vitro	RAW264.7 cells	IL-6 (+), TNF-α (+), NO (+)	DC-CD4+ T cell pathway Yes	[67]		
PPQA5 in vitro	H22 tumor-bearing mice	CD4+ T-cells (+), IL-2 (+), anticomplementary activity: PBGA12> PF3112, IFN-γ (+), TNF-α (+)	classical and alternative pathway	[68]		
AEP-2 in vitro	mouse peritoneal macrophages	CD40 (+), CD80 (+), CD86 (+), MHC II (+), TNF-α (+), IL-12 (+), CD4 (+), CD8 (+), CD69 (+), INF-β (+)	TLR 4, TLR 2, and MR TLR4/TLR2-NF-κB pathway	[51]		
PN in vitro	BALB/c mice BMDCs and T cells	CD40 (+), CD80 (+), CD86 (+), MHC II (+), TNF-α (+), IL-12 (+), CD4 (+), CD8 (+), CD69 (+), INF-β (+)	DC–T cell pathway	[43]		
PF311 in vitro	Human PMNs/PBMC	complement-fixing activity	Yes	[49]		
PF3112 in vitro	Human PMNs/PBMC	complement-fixing activity	Yes	[49]		
PF3112 in vitro	Human PMNs/PBMC	complement-fixing activity	Yes	[49]		
PF3112 in vitro	Human PMNs/PBMC	complement-fixing activity	Yes	[49]		
PNPS-0.3 in vitro	Human PMNs/PBMC	complement-fixing activity	Yes	[49]		
PNPS-0.3 in vitro	Human PMNs/PBMC	complement-fixing activity	Yes	[49]		
1MD3-G2 in vitro	Human PMNs/PBMC	complement-fixing activity	Yes	[49]		
1MD3-G3 in vitro	Human PMNs/PBMC	complement-fixing activity	Yes	[49]		
PJ in vitro	mice bearing H22 hepatoma cells	thymus/spleen indexes (+), splenocyte proliferation (+), NK and CD8+ T cells cytotoxic activities (+), TGF-β (-), IL-10 (-), pathway	Yes	[59]		
PJPS in vitro	Kunming mice	phagocytosis (+), IgM (+), auricle swelling degree (+), thymus index (+), spleen index (+)	Yes	[52]		

3.3. Activation of complement system by Panax polysaccharides

The complement system consists of nine components, C1–C9, of which C1 has three subunits, C1q, C1r, and C1s. With the exception of C1q, most components are present in serum in the form of enzyme precursors, which can exert bioactivity only after activation by antigen-antibody complex or other factors [46]. Activation of the complement system (e.g., classical activation, alternative activation, and lectin activation) plays an important role in the body’s defence functions, as well as regulation of immune system function and immunopathological processes [47]. The classical pathway is
initiated through an immune complex formed by the binding of an antibody (IgG1, IgG2, IgG3, or IgM) to the corresponding antigen; it also requires the activation of C1, C4, and C2. The alternative pathway differs from classical activation in that it is directly activated by C3. The main activators of the mannose-binding lectin pathway are pathogenic microorganisms containing N-galactosamine or mannose. Lectins directly recognise N-galactosamine or mannose on the surface of various pathogenic microorganisms, which leads to the activation of MASP-1, MASP-2, C4, C2, and C3 [48]. *Panax* polysaccharides have immunomodulatory activities in the complement system, and can be used as potent regulators in the treatment of complement-related diseases. At low doses, all high-molecular-weight polysaccharide fractions of PN exhibit effective complement fixation activity in a dose-dependent manner. Zhu et al [49] showed that the complement-fixing activity of a water-soluble polysaccharide from PN was significantly greater than the activity of the polysaccharide isolated by Gao [50]. Compared with 1MD3-G1 and 1MD3-G3, 1MD3-G2 polysaccharide exhibits greater complement-fixing activity, suggesting that its fine structure is necessary for its complement-fixing activity [49]. A neutral polysaccharide, AGC1, predominantly composed of galactose, also exhibits complement fixation activity [26]. Therefore, the galactan cores of AG-II exhibit complement-fixing activity. Gao et al [51] reported that the anticomplement activity of PBGA12 polysaccharide is mediated through both the classical and alternative pathways.

4. Immunomodulatory activity of *Panax* polysaccharides

4.1. Effects of *Panax* polysaccharides on spleen and thymus indices

The spleen is the largest immune organ in the human body. It produces lymphocytes, especially B lymphocytes, which generate specific antibodies and participate in humoral immunity [35]. The thymus induces the differentiation and maturation of T cells and affects cellular immunity. The status of immune organs determines immune function. Spleen and thymus indices are expressed as their respective weights, relative to body weight. WGFPN polysaccharide treatment increases spleen and thymus indices in cyclophosphamide (CTX)-induced immunosuppression mice, enhances the immune function of immunosuppressed mice, and abolishes the inhibition effect of CTX [16]. Similarly, treatment with FGEF-CA, GFP1, PPQ, and PSPJ polysaccharides significantly elevate the weights of immune organs in a dose-dependent manner in mice. In addition to improving spleen and thymus indices, PJPS polysaccharide can enhance the carbon clearance index (K) in normal and immunosuppressed mice [52]. Overall, the results in mouse models indicate that *Panax* polysaccharides can restore damaged immune organs, increase the relative weights of immune organs, and enhance immune function in immunosuppressed mice.

4.2. Activation of T/B lymphocytes by *Panax* polysaccharides

Lymphocytes are key effector cells that comprise a critical part of the mammalian immune system. Lymphocyte proliferation is regarded as an indicator of the cellular and humoral immune response; T cells are involved in cellular immunity and B cells are involved in humoral immunity [19]. *Panax* polysaccharides significantly enhance concanavalin A- and lipopolysaccharide-induced T cell and B cell proliferation, respectively. Both with and without mitosis-promoting stimuli, WGPN polysaccharide stimulates lymphocyte proliferation following a bell-shaped dose-reaction curve; the maximum effect is reached at 50 mg/kg [53]. Wang et al [19] observed that GFP1 could promote concanavalin A- or
lipopolysaccharide-induced cell proliferation in CTX-positive tumour-bearing mice, thereby enhancing cellular and humoral immunity, as well as antitumour activity.

CD4+ and CD8+ T cells are known as T helper lymphocytes (Th) and T cytotoxic lymphocytes, respectively. CD4+ T cells activate the innate immune response and mediate non-adjuvant antiviral action, while CD8+ T cells are immune effector cells that directly target target cells. CD4+ T cells are classically divided into Th1 and Th2 cells, according to their cytokine secretion profiles. IFN-γ and IL-2 are produced by Th1 cells, while IL-4 and IL-10 are secreted by Th2 cells. IL-2 is required for T cells to grow, proliferate, and differentiate, while IFN-γ regulates the immune system (e.g. by linking innate and adaptive immune reactions) [54]. IL-4 plays important roles in humoral immunity, particularly by regulating various cellular functions, including T and B cell proliferation and differentiation. IL-10 is an anti-inflammatory cytokine that helps to prevent excessive inflammatory responses [48]. Wang et al [19] reported that GFP1 treatment induced secretion of the Th1 cytokines IFN-γ and IL-2 to participate in immune-modulating activities in C57BL/6 mice carrying Lewis lung carcinoma (LLC). Ginseng leaf polysaccharide (GS-P) combined with ovalbumin (OVA) and Freund’s incomplete adjuvant induced robust secretion of OVA-specific Th1 cytokines (i.e., IL-2, IFN-γ, and GM-CSF) and Th2 cytokines (i.e., IL-10) [18].

The synergistic effects of polysaccharides in combination with drugs are mediated by elevating the immune response to treatments. Zhang et al [52] found that PJPS polysaccharide from *P. japonicus* contributed to resistance against immunosuppression caused by cyclophosphamide by boosting the level of IgM in plasma. In specific immunity involving Th lymphocytes, Th1 and Th2 cells secrete IFN-γ and IL-4, respectively, to regulate the functions of B cells; they also convert responses from IgM to specific Ig classes. IL-4 stimulates B cells to induce IgG1 and IgE antibody production, while IFN-γ induces IgG2-type antibody production but inhibits IgE production [55]. One mouse study found that when the polysaccharide GS-P was admixed with OVA, antibody production was significantly greater than when OVA was administered alone. Using GS-P in combination with OVA and Freund’s incomplete adjuvant induced greater levels of antigen-specific IgG1 and IgG2b antibodies, but dramatically reduced the production of IgE antibody [18]. Thus, *Panax* polysaccharides can enhance antibody levels and immune function in mice. The molecular channels of polysaccharide-activated lymphocytes include B lymphocyte and T lymphocyte surface receptors. The B-cell receptor is a transmembrane receptor protein on the B cell membrane surface, which consists of IgM and CD79. The T-cell receptor (TCR) is expressed on T lymphocytes; it forms a complex with CD3 and binds MHC molecules to form the TCR co-receptor [56]. The TCR specifically recognises and binds to MHC/I/II molecules, thereby mediating the activation of T lymphocytes. APO polysaccharide can promote the expression of the T cell transmembrane protein CD25, activating transcription factor Foxp3 to promote the production of immunosuppressive regulatory T cells [57]; this helps to maintain peripheral tolerance and actively suppress autoimmunity in a TCR-dependent manner.

4.3. Activation of NK cells by Panax polysaccharides

NK cells are non-specific lymphocytes that, unlike T and B lymphocytes, participate in antiviral and antitumor defence without prior sensitisation [19]. The cytotoxicity of NK cells can effectively reflect the immune function of the body. The polysaccharide WGPN markedly enhances the cytotoxicity of NK cells in a dose-dependent manner and can partially restore the activity of NK cells inhibited by 5-fluorouracil [53]. Various cytokines produced by NK cells (e.g., NO, IFN-γ, and Th1) are capable of mediating cytotoxic function to modulate immune responses. IL-2 can stimulate NK cell proliferation and lead to the secretion of various cytokines. The combination of RGA polysaccharide and recombinant IFN-γ enhances NK cell cytotoxicity against tumour cells; however, RGA polysaccharide alone has no effect [34]. In ovariectomized rats, RGA polysaccharide affects the tumoricidal activity mediated by NK cells and is modulated by INOS, while synergistically inducing NK cell activity [58]. GFP1 polysaccharide significantly enhances the cytotoxicity mediated by NK cells from splenocytes in LLC-bearing mice [19]; this effect was also observed in mice at 100 or 200 mg/kg doses of FGEP-CA polysaccharide [54]. Compared with the non-tumour control, transplantation of H22 cells significantly reduces the cytotoxic activity of NK cells and CD8+ T cells, which was reduced by PSP1 polysaccharide in a dose-dependent manner [59]. Through their cytotoxic activity and cytokine production, NK cells are involved in defence against virus infection and tumour formation, as well as immune regulation [56].

5. Immunomodulatory in intestine of *Panax* polysaccharides

The gut-associated lymphoid tissue (GALT) is a major component of intestinal immunity, including Peyer’s patches located in the small intestinal wall. *Panax* polysaccharides can stimulate Peyer’s patches to promote intestinal immunity. Kim et al [29] used α-amylase and amylase to enzymolyze KRG, and isolated immunestimulating polysaccharides RG-CW-EZ-CP-4 and RG-CW-EZ-CP-8, which can regulate the intestinal immune system through Peyer’s patches. Compared with non-enzyme-digested polysaccharides, enzyme-digested polysaccharides significantly improved intestinal immunomodulatory activity, which seemed to be due to the removal of amyloid polysaccharides.

6. Therapeutic potential of *Panax* polysaccharides

Basic studies have shown that *Panax* polysaccharides exhibit many beneficial therapeutic properties, including anti-tumour and chemoprotective effects [53,59], as well as anti-multiple sclerosis activity [57], immunomodulatory activity [16,54], anti-inflammatory activity [33], and anti-sepsis activity [60]. *Panax* polysaccharides have also shown promise for osteoporosis treatment [58], for use as immunoadjuvants [18,43], and for the induction of haematopoiesis [52]. *Panax* polysaccharides may also be used to enhance the efficacy of chemotherapy drugs and reduce their side effects [36,52].

APG polysaccharide can significantly reduce the symptoms and recurrence rate of EAE. It has beneficial effects on various types of EAE, which may lead to further insights regarding the immunosuppressive effects of EAE and multiple sclerosis [57]. Treatment with WGPN polysaccharide alone significantly increases relative spleen weight in S180-bearing mice, suggesting that it acts as an immunopotentiator. WGPN in combination with 5-fluorouracil has synergistic anti-tumour activity and can restore immune function following 5-fluorouracil injury; this indicates that WGPN has potential as an adjuvant for chemotherapy [53]. Ginsan polysaccharide upregulates phagocytosis, enhances bacterial clearance, downregulates inflammatory cytokine synthesis, and reduces inflammatory responses, ultimately rescuing animals from lethal sepsis [60]. Kim et al [58] showed that RGAP polysaccharide has potential as an immunotherapeutic agent for patients with osteoporosis. GS-P polysaccharide is a potent adjuvant that enhances OVA-specific humoral and cellular immune reactions, and may be useful as an adjuvant ingredient because it substantially diminishes IgE production [18]. In mice carrying LLC, GFP1 polysaccharide effectively inhibits tumour growth and lung metastasis by...
activating immune function [19]. PPQN polysaccharide may induce the production of cytokines to inhibit inflammation, which has therapeutic significance for the treatment of inflammation and inflammation-related diseases (e.g., tumors and atherosclerosis) [33]. PJP5 polysaccharide and anticancer drugs are used in combination to inhibit the myelosuppressive and immunosuppressive effects of chemotherapy, which may decrease the risk of infection and the adverse effects of antibiotic use, thereby reducing psychological and economic stress and improving survival in patients with cancer [52].

7. Conclusion

This review summarized current information about different polysaccharide isolated from Panax species. However, the structure-activity relationships are yet not entirely understood. There was no report regarding to how to control the polysaccharide during the process. Moreover, the research on gut mucosal immunomodulation of Jiangsu Province (BK20201480).

Acknowledgements

This study was financially supported by Natural Science Foundation of Jiangsu Province (BK20201480).

References

[1] Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685–93.
[2] Chen F, Huang G. Antioxidant activity of polysaccharides from different sources of ginseng. Int J Biol Macromol 2019;125:906–8.
[3] Wang J, Li F, Fan Y, Chen Y, Liu D, Cheng H, et al. Anti-fattage activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. J Ethnopharmacol 2010;1:421–3.
[4] Cheng H, Li S, Fan Y, Gao X, Hao M, Wang J, et al. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Med Oncol 2011;28:175–81.
[5] Sun C, Chen Y, Li X, Tai G, Fan Y, Zhou Y. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct 2015;4:845–8.
[6] Sun Y, Guo M, Feng Y, Zheng H, Lei P, Ma X, et al. Effect of ginseng polysaccharides on NK cell cytotoxicity in immunosuppressed mice. Exp Ther Med 2016;12:3773–7.
[7] Lim TS, Na K, Choi EM, Chung JY, Hwang JK. Immunomodulating activities of polysaccharides isolated from Panax ginseng. J Med Food 2004;7:1–6.
[8] Li S, Qi Y, Chen L, Qiu D, Li Z, Gao K, et al. Effects of Panax ginseng polysaccharides on the gut microbiota in mice with antibiotic-associated diarrhea. Int J Biol Macromol 2019;124:931–7.
[9] Lim DS, Bae KG, Jung IS, Kim JH, Yang WS, Kwak YS, et al. Molecular mechanism of murine bone marrow dendritic cells (BMDCs) activation of murine bone marrow dendritic cells (BMDCs) by plant polysaccharides. Front Immunol 2019;10:25.
[10] Choi HS, Kim KH, Sohn E, Park JD, Kim BO, Moon EY, et al. Red ginseng acidic polysaccharide (RGAP) in combination with IFN-γ results in enhanced macrophage function through activation of the NF-κB pathway. Biosci Biotechnol Biochem 2005;69:251–5.
[11] Jiang MH, Zhu L, Jiang GC. Immunoregulatory actions of polysaccharides from Chinese herbal medicine. Expert Opin Ther Targets 2010;14:1367–402.
[12] Schepetkin IA, Quinn MT. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2006;6:317–33.
[13] Ghosh R, Bryant DL, Farone AL. Panax quinquefolius (North American Ginseng) polysaccharides as immunomodulators: current research status and future directions. Molecules 2020;25:5854.
[14] Kobayashi KS, Chamaillard M, Ogura Y, Henegariu N, Nunez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307:731–4.
[15] Byeon SE, Lee J, Kim JL, Yang WS, Kwak YS, Kim SY, et al. Molecular mechanism of macrophage activation by red ginseng acidic polysaccharide from Korean red ginseng. Mediators Inflamm 2012;2012:7–9.
[16] Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106:255–6.
[17] Zhang SD, Yin YK, Wei Q. Immunopotentiating effect on murine spleen lymphocytes induced by ginseng polysaccharide fraction of Panax ginseng via upregulating calcineurin activity. Jpn J Pharmacol 2010;118:288–96.
[18] Hwang SH, Shon MS, Yoon TJ, Shin KS. Immunoadjuvant activity of extracts from Panax ginseng C. A. Meyer. Int J Biol Macromol 2010;167:295–96.
[19] Wang Y, Huang M, Sun R, L, Liu L, Zhang L, Wang M. Recent progress in polysaccharides from Panax ginseng C. A. Meyer. Food Funct 2021:12:494–518.
[20] Loh SH, Park JY, Cho EH, Nah SY, Kang Y, et al. Potential receptors for ginseng polysaccharides. J Ginseng Res 2017;41:1–9.
[21] Cui L, Chen I, Yang G, Li Y, Qiao Z, Liu Y, et al. Structural characterization and immunomodulatory activity of a heterogalactan from Panax ginseng flowers. Food Res Int 2020:109859.
Lambris JD, Reid KBM, Volanakis JE. The evolution, structure, biology and pathophysiology of complement. Immunol Today 1999;20:207–11.

Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010;11:785–97.

Fujita T. Evolution of the lectin - complement pathway and its role in innate immunity. Nat Rev Immunol 2002;2:346–53.

Zhu Y, Pettolino F, Mau SI, Shen YC, Chen CF, Kuo YC, et al. Immunoactive polysaccharide-rich fractions from Panax notoginseng. Planta Med 2006;72:1193–9.

Gao H. Immunostimulating polysaccharides from Chinese medicinal herbs: Panax notoginseng and Viola yedoensis. University of Southern California; 1995.

Gao H, Wang F, Lien EJ, Trousdale MD. Immunostimulating polysaccharides from Panax notoginseng. Pharm Res 1996;13:1196–200.

Zhang J, Li C, Li J, Guo R, Wang H, Pan J, et al. Immunoregulation on mice of low immunity and effects on five kinds of human cancer cells of Panax japonicus polysaccharide. Evid Based Complement Alternat Med 2015;2015:839697.

Ni W, Zhang X, Wang B, Chen Y, Han H, Fan Y, et al. Antitumor activities and immunomodulatory effects of ginseng neutral polysaccharides in combination with 5-Fluorouracil. J Med Food 2010;13:270–7.

Song YR, Sung SK, Jang M, Lim TG, Cho CW, Han CJ, et al. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int J Biol Macromol 2018;116:1089–97.

Taneichi M, Naito S, Kato H, Tanaka Y, Moro M, Nakano Y, et al. T cell-independent regulation of IgE antibody production induced by surface-linked liposomal antigen. J Immunol 2002;169:4246–52.

Huang L, Shen M, Morris GA, Xie J. Sulfated polysaccharides: immunomodulation and signaling mechanisms. Trends Food Sci Technol 2019;92:1–11.

Bing SJ, Ha D, Hwang I, Park E, Ahn G, et al. Protective effects on central nervous system by acidic polysaccharide of Panax ginseng in relapsing-remitting experimental autoimmune encephalomyelitis-induced SJL/J mice. Am J Chin Med 2016;44:1099–110.