A remark on Rickard complexes

Yuanyang Zhou

Department of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, P.R. China
Email: zhouyuanyang@mail.ccnu.edu.cn

Abstract In this paper, we characterize a Rickard complex, which induces a Rickard equivalence between the block algebras of a block \(b \) and its Brauer correspondent and whose vertices have the same order as defect groups of the block \(b \). The homology of such a Rickard complex vanishes at all degree but degree \(q \), and the homology at degree \(q \) induces a basic Morita equivalence between the block algebras in the sense of Puig.

Keywords: Finite group; Block; Rickard complex; Vertex

1. In [5], J. Rickard exhibits a splendid Rickard complex, which induces a splendid Rickard equivalence between the block algebra of a \(p \)-block of a finite \(p \)-nilpotent group and the group algebra of its defect group, which is isomorphic to a Morita equivalence not induced by a \(p \)-permutation module. Then in [1], Harris and Linckelmann extend Rickard’s technique and show a splendid Rickard complex, which induces a splendid Rickard equivalence between the block algebras of a block for finite \(p \)-solvable groups with abelian defect groups and its Brauer correspondent, which is also isomorphic to a Morita equivalence not induced by a \(p \)-permutation module. The two splendid Rickard complexes have vertex \(\Delta(Q) \) in terms of Puig (see Paragraph 7 below), where \(Q \) is a defect group of the blocks and \(\Delta(Q) \) is the diagonal subgroup of \(Q \times Q \). In this paper, we characterize a Rickard complex, which induces a Rickard equivalence between the block algebras of a block \(b \) and its Brauer correspondent and whose vertices have the same order as defect groups of the block \(b \).

2. We recollect some notation in [4]. Let \(p \) be a prime number and let \(k \) be an algebraically closed residue field \(k \) of characteristic \(p \). From the point of view of [4], complexes are considered as \(D \)-modules where, denoting by \(\mathfrak{F} \) the commutative \(k \)-algebra of all the \(k \)-valued functions on the set \(\mathbb{Z} \) of all rational integers, \(D \) is the \(k \)-algebra containing \(\mathfrak{F} \) as a unitary \(k \)-subalgebra and an element \(d \) such that \(D = \mathfrak{F} \oplus \mathfrak{F}d, \ d^2 = 0 \) and \(df = \text{sh}(f)d \neq 0 \) for any \(f \in \mathfrak{F} \) \(\setminus \{0\} \)

where sh denotes the automorphism on the \(k \)-algebra \(\mathfrak{F} \) mapping \(f \in \mathfrak{F} \) onto the \(k \)-valued function sending \(z \in \mathbb{Z} \) to \(f(z + 1) \); moreover, we denote by \(s \) and \(i_z \), for any \(z \in \mathbb{Z} \), the \(k \)-valued functions mapping \(z' \in \mathbb{Z} \) on \((-1)^{z'}\) and \(\delta_z^{z'} \) respectively. Except for all the group algebras over \(D \), we assume that all the modules and the algebras over \(k \) are finitely generated. If \(A \) is a \(k \)-algebra we denote by \(A^* \) the group of invertible elements of \(A \), and by \(A^0 \) the opposite \(k \)-algebra. Note that we have an isomorphism \(t: D \cong D^0 \) mapping \(f \in \mathfrak{F} \) on the \(k \)-valued function sending \(z \in \mathbb{Z} \) to \(f(-z) \), and \(d \) on \(sd \).

3. A \(D \)-interior algebra is a \(k \)-algebra \(A \) endowed with a unitary \(k \)-algebra homomorphism \(g: D \rightarrow A \); for any \(x, y \in D \) and any \(a \in A \), we write \(x \cdot a \cdot y \) instead of \(g(x)a\phi(y) \). Note that the isomorphism \(t: D \cong D^0 \) then determines a \(D \)-interior algebra structure for \(A^0 \). Moreover, we have a \(k \)-algebra homomorphism \(D \rightarrow k \) mapping \(f + f'd \) on \(f(0) \) for any \(f, f' \in \mathfrak{F} \), so that any \(k \)-algebra
admits a trivial structure of \(\mathcal{D} \)-interior algebra. The \(\mathcal{D} \)-interior algebra structure on \(A \) induces a \(\mathcal{D} \)-module structure on \(A \) by the equalities
\[
f(a) = \sum_{z,z' \in \mathbb{Z}} f(z) i_{z'} \cdot a \cdot i_{z'-z} \quad \text{and} \quad d(a) = (d \cdot a - a \cdot d) \cdot s
\]
for any \(a \in A \) and any \(f \in \mathcal{F} \). The \(k \)-algebra \(A \) endowed with this \(\mathcal{D} \)-module is a \(\mathcal{D} \)-algebra in the sense of Puig (see [4, 11.2.4]).

4. Let \(G \) be a finite group; recall that a \(kG \)-interior algebra is a \(k \)-algebra endowed with a unitary \(k \)-algebra homomorphism from \(kG \). Similarly, a \(\mathcal{D}G \)-interior algebra is a \(k \)-algebra \(A \) endowed with a unitary \(k \)-algebra homomorphism \(\rho : \mathcal{D}G \to A \) (but \(A \) is always finitely generated); for any \(x \in \mathcal{D}G \) and \(a \in A \), we write \(x \cdot a \) and \(a \cdot x \) instead of \(\rho(x)a \) and \(ap(x) \) respectively. If \(A \) and \(A' \) are \(\mathcal{D}G \)-interior algebras, the tensor product \(A \otimes_k A' \) admits a \(\mathcal{D}G \)-interior algebra structure given by
\[
f \cdot (a \otimes a') = \sum_{z,z' \in \mathbb{Z}} f(z + z') i_z \cdot a \otimes i_{z'} \cdot a', \quad d \cdot (a \otimes a') = d \cdot a \otimes s \cdot a' + a \otimes d \cdot a'
\]
and \(g \cdot (a \otimes a') = g \cdot a \otimes g \cdot a' \) for any \(f \in \mathcal{F} \), any \(g \in G \) and any \(a, a' \in A \). Here the first equality makes sense since in the sum above all but a finite number of terms vanish and since we have \(\text{sh}(s) = -s \).

For any subgroup \(H \) of \(G \), we denote by \(A^H \) the centralizer of \(\rho(H) \) in \(A \); obviously \(\rho(x) \in A^H \) for any \(x \in \mathcal{D}C_G(H) \) and thus the restriction of \(\rho \) to \(\mathcal{D}C_G(H) \) induces a \(\mathcal{D}C_G(H) \)-interior algebra structure on \(A^H \). Let \(B \) and \(C \) be two \(kG \)-interior algebras. A \(k \)-algebra homomorphism \(f : B \to C \) is a \(kG \)-interior algebra homomorphism if \(f \) preserves the \(kG \)-interior algebra structures on \(B \) and \(C \); furthermore, if \(f \) is injective and \(f(B) = f(1)Cf(1) \), then \(f \) is a \(kG \)-interior algebra embedding. Similarly \(\mathcal{D}G \)-interior algebra homomorphisms and \(\mathcal{D}G \)-interior algebra embeddings are defined.

5. Let us denote by \(\mathcal{C}_0(A) \) the centralizer of the image of \(\mathcal{D} \) in \(A \); since the images of \(\mathcal{D} \) and \(G \) centralize each other, \(\mathcal{C}_0(A) \) inherits a \(kG \)-interior algebra structure and, according to the terminology in [4], the pointed groups, their inclusions, the local pointed groups, etc. over the \(\mathcal{D}G \)-interior algebra \(A \) are nothing but the pointed groups, their inclusions, the local pointed groups, etc. over the \(kG \)-interior algebra \(\mathcal{C}_0(A) \). However, if \(H_{\beta} \) is a pointed group over \(A \), so that \(\beta \) is a conjugacy class of primitive idempotents in \(\mathcal{C}_0(A)^H \), the \(k \)-algebra \(A_{\beta} = iA_{i} \) for any \(i \in \beta \) inherits a \(\mathcal{D}H \)-interior algebra structure mapping \(y \in \mathcal{D}H \) on \(y \cdot i = i \cdot y \); and the \(k \)-algebra \(A_{\beta} \) is called an embedded algebra associated with \(H_{\beta} \). For any subgroup \(H \) of \(G \), we call contractible any point contained in the two-sided ideal
\[
\mathcal{E}_0(A^H) = \mathcal{C}_0(A)^H \cap \{ d \cdot a + a \cdot d \mid a \in A^H \}
\]
and we set \(\mathcal{H}_0(A^H) = \mathcal{C}_0(A)^H / \mathcal{E}_0(A^H) \), which still inherits a \(kC_G(H) \)-interior algebra structure; whenever \(\mathcal{H}_0(A^G) = \{ 0 \} \) we say that \(A \) is contractible. It is clear that if \(M \) is a \(\mathcal{D}G \)-module then \(\text{End}_k(M) \) is a \(\mathcal{D}G \)-interior algebra and we say that \(M \) is contractible whenever \(\text{End}_k(M) \) is so [4, Corollary 10.9]; moreover, we say that \(M \) is 0-split if it is \(\mathcal{D}G \)-isomorphic to the direct sum of a contractible \(\mathcal{D}G \)-module and a \(kG \)-module endowed with the trivial \(\mathcal{D} \)-structure defined above.

6. Let \(G \) and \(G' \) be two finite groups and let \(b \) and \(b' \) be respective blocks of \(G \) and \(G' \). Clearly the \(k \)-linear map \(kG' \to kG' \) sending \(x \) onto \(x^{-1} \) for any \(x \in G' \) is an opposite ring isomorphism. We denote by \(b'^{o} \) the image of \(b' \) through this opposite ring isomorphism. The \(k \)-linear map \(k(G \times G') \to kG \otimes kG' \) sending \((x, y) \) onto \(x \otimes y \) is a \(k \)-algebra isomorphism, through which we identify both sides so that \(b \otimes b'^{o} \) is a block of \(G \times G' \). Let \(\tilde{M} \) be an indecomposable \(\mathcal{D}(G \times G') \)-module associated with \(b \otimes b'^{o} \) such that the restrictions of \(\tilde{M} \) to \(G \times \{ 1 \} \) and to \(\{ 1 \} \times G' \) are
both projective. We denote by \tilde{M}^* the k-dual of \tilde{M} which, via the isomorphism t (see [4, 10.1.3]), still has a $D(G \times G')$-module structure. Following [4, 18.3.2], we say that \tilde{M} defines a Rickard equivalence between kGb and $kG'b'$ if, for suitable contractible $D(G \times G')$- and $D(G' \times G)$-modules C and C', we have respective $D(G \times G)$- and $D(G' \times G)$-module isomorphisms

$$\tilde{M} \otimes_{kG'} \tilde{M}^* \cong kGb \oplus C \quad \text{and} \quad \tilde{M}^* \otimes_{kG} \tilde{M} \cong kG'b' \oplus C'$$

where kGb and $kG'b'$ have the trivial D-interior structure defined above.

7. Let \tilde{P}_j be a maximal local pointed group over the $D(G \times G')$-interior algebra $\text{End}_k(\tilde{M})$ or, equivalently, over the $k(G \times G')$-interior algebra $C_0(\text{End}_k(\tilde{M}))$. Then \tilde{P} is a vertex of the $D(G \times G')$-module \tilde{M} and a $D:\tilde{P}$-module $\tilde{N} = j \cdot \tilde{M}$ for some $j \in \tilde{\gamma}$ is a source of the $D(G \times G')$-module \tilde{M}.

According to Theorem 18.8 in [4], the images $P \subset G$ and $P' \subset G'$ of \tilde{P} through the canonical projections $\pi: G \times G' \to G$ and $\pi': G \times G' \to G'$ are defect groups of b and b' respectively.

Theorem 8. Let G be a finite group, let b be a block of G with defect group P and let b' be the Brauer correspondent of b in the normalizer G' of P in G. Let \tilde{M} be a noncontractible indecomposable $D(G \times G')$-module inducing a Rickard equivalence between kGb and $kG'b'$. Let $D:\tilde{P}$-module \tilde{N} be a source of the $D(G \times G')$-module \tilde{M}. Then the following are equivalent:

8.1. The groups \tilde{P} and P have the same order.

8.2. The homology of the $D(G \times G')$-module \tilde{M} vanishes at all degree but some degree q, the homology $H_q(\tilde{M})$ at degree q, a $k(G \times G')$-module, induces a basic Morita equivalence between kGb and $kG'b'$ in the sense of Puig in [4], and the $D:\tilde{P}$-module $\text{End}_k(\tilde{N})$ determined by the \tilde{P}-conjugation and the D-algebra structure on $\text{End}_k(\tilde{N})$ is 0-split.

In this case, the homology of the $D:\tilde{P}$-module \tilde{N} vanishes at all degree but degree q, and the homology $H_q(\tilde{N})$ at degree q, a $k:\tilde{P}$-module, is a source of the $k(G \times G')$-module $H_q(\tilde{M})$.

9. We recall Brauer quotients and Brauer homomorphisms in [6] and then prepare several lemmas. Let G be a finite group and V be a kG-module. For any subgroup P of G, we denote by $V(P)$ the k-submodule of all P-fixed elements of V, by $V(P)$ the Brauer quotient

$$V(P) = V^P / \sum_R V^P_R,$$

where R runs over the set of all proper subgroups of P and V^P_R is the image of the usual relative trace map $\text{Tr}^P_R: V^R \to V^P$, and by Br^V_P the canonical surjective homomorphism $V^P \to V(P)$, which is the so-called Brauer homomorphism associated to P and V. Obviously, the kG-module structure on V induces $kN_G(P)$-module structures on both V^P and $V(P)$, and Br^V_P is a homomorphism of $kN_G(P)$-modules. Let A be a kG-interior algebra. We apply the Brauer quotient $V(P)$ to the kG-module A induced by the G-conjugation, and then get the Brauer quotient $A(P)$. It is easily checked that both A^P and $A(P)$ are k-algebras and that the Brauer homomorphism Br^V_P is a k-algebra homomorphism, whose kernel is the sum of all ideals A^P_R, where R runs over the set of all proper subgroups of P.

Let Q be a p-group. A kQ-interior algebra A is a primitive kQ-interior algebra if A^Q is a local algebra; furthermore, if $A(Q) \neq 0$, then A is a local primitive kQ-interior algebra.

Lemma 10. Let H be a finite group with a normal p-subgroup Q and T be a local primitive kQ-interior algebra. Then the kernel $\text{Ker}(\text{Br}^T_Q \otimes_{kH})$ is contained in the radical of $(T \otimes_k kH)^Q$.

Proof. Set \(\bar{H} = H/Q \). The canonical homomorphism \(H \to \bar{H} \) induces a \(k \)-algebra homomorphism \(\varpi : kH \to k\bar{H} \). By tensoring both sides of the homomorphism \(\varpi \) with \(T \), we get a new \(k \)-algebra homomorphism
\[
1 \otimes \varpi : T \otimes_k kH \to T \otimes_k k\bar{H}
\]
mapping \(t \otimes a \) onto \(t \otimes \varpi(a) \) for any \(t \in T \), \(a \in kH \). Clearly \(1 \otimes \varpi \) is a \(kQ \)-interior algebra homomorphism and it induces a \(k \)-algebra homomorphism
\[
(T \otimes_k kH)^Q \to (T \otimes_k k\bar{H})^Q = T^Q \otimes_k k\bar{H},
\]
which maps \((T \otimes_k kH)^Q \) into \(T^Q \otimes_k k\bar{H} \) for any proper subgroup \(R \) of \(Q \). Since \(T \) is a local primitive \(kQ \)-interior algebra, \(T^Q \) is contained in \(J(T^Q) \) and thus the image of \((T \otimes_k kH)^Q \) through Homomorphism 10.1 is contained in the radical of the image of Homomorphism 10.1. But obviously the kernel of Homomorphism 10.1 is contained in the radical of \((T \otimes_k kH)^Q \). Therefore \((T \otimes_k kH)^Q_R \) is contained in the radical of \((T \otimes_k kH)^Q \). The proof is done.

Lemma 11. Let \(H \) be a finite group with a normal \(p \)-subgroup \(Q \) and \(T \) be a local primitive \(Q \)-interior algebra. If \(i \) is a primitive idempotent in \((kH)^Q \) such that \(\text{Br}_{kH}^i(1) \neq 0 \), then \(1 \otimes i \) is also a primitive idempotent in \((T \otimes_k kH)^Q \) such that \(\text{Br}_{kH}^i(1 \otimes i) \neq 0 \).

Proof. Since \(\text{Br}_{kH}^i(1) \) is primitive in \((Q) \) and \(\text{Br}_{kH}^i(1) \) is primitive in \((kH)^Q \), \(\text{Br}_{kH}^i(1) \otimes \text{Br}_{kH}^j(i) \) is primitive in \((T \otimes_k kH)^Q \). On the other hand, by [3, Proposition 5.6], there is a \(k \)-algebra isomorphism
\[
(T \otimes_k kH)^Q \cong (T \otimes_k kH)^Q,
\]
mapping \(\text{Br}_{kH}^i(1) \otimes \text{Br}_{kH}^j(i) \) onto \(\text{Br}_{kH}^j(i \otimes j) \). In particular, this isomorphism maps \(\text{Br}_{kH}^i(1) \otimes \text{Br}_{kH}^j(i) \) onto \(\text{Br}_{kH}^j(i \otimes j) \). Therefore \(\text{Br}_{kH}^j(i \otimes j) \) is primitive in \((T \otimes_k kH)^Q \). Since it follows from Lemma 10 that the kernel \(\text{Ker}(\text{Br}_{kH}^j(i \otimes j)) \) is contained in the radical of \((T \otimes_k kH)^Q \), \(1 \otimes i \) is a primitive idempotent in \((T \otimes_k kH)^Q \).

Lemma 12. Let \(M \) be a \(\mathcal{D}P \)-module. Assume that the \(kP \)-interior algebra \(\mathbb{H}_0(\text{End}_k(M)) \) is a primitive \(kP \)-interior algebra. Then the homology of \(M \) vanishes at all degree but some degree \(q \) and there is a \(kP \)-interior algebra isomorphism \(\mathbb{H}_0(\text{End}_k(M)) \cong \text{End}_k(\mathbb{H}_q(M)) \).

Proof. By [2, Theorem 3.1], there is a short exact sequence of group homomorphisms
\[
0 \to \Pi_q \text{Ext}_k^1(\mathbb{H}_q(M), \mathbb{H}_{q+1}(M)) \to \mathbb{H}_0(\text{End}_k(M)) \to \Pi_q \text{End}_k(\mathbb{H}_q(M)) \to 0,
\]
where \(\xi \) is induced by the map \(\mathbb{C}_0(\text{End}_k(M)) \to \Pi_q \text{End}_k(\mathbb{H}_q(M)) \) sending a chain map \(f \) onto the induced family \((f_q) \in \Pi_q \text{End}_k(\mathbb{H}_q(M)) \). Since \(\text{Ext}_k^1(\mathbb{H}_q(M), \mathbb{H}_{q+1}(M)) = 0 \) for each \(q \), the homomorphism \(\xi \) is a group isomorphism. Clearly the isomorphism \(\xi \) preserves the composition of maps and the \(kP \)-interior algebra structures on \(\mathbb{H}_0(\text{End}_k(M)) \) and \(\Pi_q \text{End}_k(\mathbb{H}_q(M)) \); that is to say, \(\xi \) is a \(kP \)-interior algebra isomorphism. Since the \(kP \)-interior algebra \(\mathbb{H}_0(\text{End}_k(M)) \) is a primitive \(kP \)-interior algebra, the isomorphism \(\xi \) forces that the homology of \(M \) vanishes at all degree but some degree \(q \); in particular, we have a \(kP \)-algebra isomorphism \(\mathbb{H}_0(\text{End}_k(M)) \cong \text{End}_k(\mathbb{H}_q(M)) \). The proof is done.

Remark. The differential \(d \) on the \(\mathcal{D} \)-algebra \(\text{End}_k(M) \) (see Paragraph 3) is different from a differential on \(\text{End}_k(M) \) defined in [2, Chapter V, 1.6], but by replacing \(d \) by \(sd \), this difference
will disappear. Since \(s \) does not affect the homology of \(\text{End}_k(M) \), \cite[Theorem 3.1]{2} can be applied to the \(\mathcal{D} \)-algebra \(\text{End}_k(M) \).

13. We begin to prove Theorem 8. We keep the notation in Theorem 8 and assume that Statement 8.1 holds. By \cite[Theorem 18.8]{4}, the images \(R \) and \(R' \) of \(\hat{P} \) through the canonical projections \(\pi: G \times G' \to G \) and \(\pi': G \times G' \to G' \) are defect groups of \(b \) and \(b' \) respectively. Since the orders of \(P \) and \(\hat{P} \) are the same, the two projections \(\pi \) and \(\pi' \) induces group isomorphisms \(\hat{P} \cong R \) and \(\hat{P} \cong R' \), through which we identify \(R \), \(R' \) and \(\hat{P} \). Since \(P \) is normal in \(G' \), \(P \) is the unique defect group of \(b' \) and thus \(R' \) is equal to \(P \). In particular, we have \(R = \hat{R} = \hat{R}' = P \). By \cite[Theorem 18.8]{4}, there are maximal local pointed groups \(P_{\gamma} \) on \(kGb \), \(P_{\gamma'} \) on \(kG'\gamma' \) and \(P_{\gamma} \) on \(\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'} \) such that we have a \(kP \)-interior algebra isomorphism

\[
(\mathcal{D}P_{\gamma}) \cong \mathbb{H}_0((\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'}))
\]

and such that the \(\mathcal{D}(P \times P) \)-module \((\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'})_{\hat{\gamma}} \) determined by the \(\mathcal{D} \)-algebra structure on \(\text{End}_k(\bar{N}) \) and by the left and right multiplications of \(P \) on \(\text{End}_k(\bar{N}) \) is 0-split. In this case, the embedded algebras \((kG)_{\gamma} \) and \((kG')_{\gamma'} \) associated to \(P_{\gamma} \) and \(P_{\gamma'} \) are source algebras (see \cite{6}) of the block algebras \(kGb \) and \(kG'\gamma' \) respectively.

14. Clearly we have the equality \(\mathbb{C}_0(\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'}) = \mathbb{C}_0(\text{End}_k(\bar{N})) \otimes_k (kG')_{\gamma'} \) which induces a \(kP \)-interior algebra isomorphism

\[
\mathbb{H}_0(\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'}) \cong \mathbb{H}_0(\text{End}_k(\bar{N})) \otimes_k (kG')_{\gamma'}.
\]

Since \(P \) is normal in \(G' \) and the \(kP \)-interior algebra \(\mathbb{C}_0(\text{End}_k(\bar{N})) \) is a local primitive \(kP \)-interior algebra, by Lemma 11 the point \(\hat{\gamma} \) only contains the identity element of \(\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'} \). Then by Isomorphisms 13.1 and 14.1 we have a \(kP \)-interior algebra isomorphism

\[
(\mathcal{D}P_{\gamma}) \cong \mathbb{H}_0(\text{End}_k(\bar{N})) \otimes_k (kG')_{\gamma'}.
\]

We consider the \(\mathcal{D}P \)-modules \(\text{End}_k(\bar{N}) \) and \(\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'} \) determined respectively by their \(\mathcal{D} \)-algebra structures and the \(P \)-conjugations on them. Since \((kG')_{\gamma'} \) has a \(P \times P \)-stable basis containing its unity (see \cite[Proposition 38.7]{6}), the \(\mathcal{D}P \)-module \(\text{End}_k(\bar{N}) \) is a direct summand of the \(\mathcal{D}P \)-module \(\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'} \). Since the \(\mathcal{D}(P \times P) \)-module \(\text{End}_k(\bar{N}) \otimes_k (kG')_{\gamma'} \) is 0-split, so is the \(\mathcal{D}P \)-module \(\text{End}_k(\bar{N}) \).

15. Since \((kG)_{\gamma} \) is a \(kP \)-primitive interior algebra, the isomorphism 14.2 forces that the \(kP \)-interior algebra \(\mathbb{H}_0(\text{End}_k(\bar{N})) \) is also a primitive \(kP \)-interior algebra. Then by Lemma 12, the homology of the \(\mathcal{D} \)-module \(\bar{N} \) vanishes at all degree but degree \(q \) and the map \(\mathbb{C}_0(\text{End}_k(\bar{N})) \to \text{End}_k(\mathbb{H}_q(\bar{N})) \) sending a chain map \(f : \bar{N} \to \bar{N} \) onto the induced \(k \)-module homomorphism \(f_q : \mathbb{H}_q(\bar{N}) \to \mathbb{H}_q(\bar{N}) \) induces a \(k \)-algebra isomorphism

\[
\mathbb{H}_0(\text{End}_k(\bar{N})) \cong \text{End}_k(\mathbb{H}_q(\bar{N}));
\]

moreover this \(k \)-algebra isomorphism actually is a \(kP \)-interior algebra isomorphism. So we have a \(kP \)-interior algebra isomorphism \((kG)_{\gamma} \cong \text{End}_k(\mathbb{H}_q(\bar{N})) \otimes_k (kG')_{\gamma'} \). By \cite[Theorem 7.2]{4}, \(\mathbb{H}_q(\bar{N}) \) is an endo-permutation \(kP \)-module with vertex \(P \).

16. Clearly \(\{\text{id}_{\bar{M}}\} \) is a point of \(G \times G' \) on the \(\mathcal{D}(G \times G') \)-interior algebra \(\text{End}_k(\bar{M}) \), where \(\text{id}_{\bar{M}} \) is the identity map on \(\bar{M} \). Since the \(\mathcal{D}P \)-module \(\bar{N} \) is a source of the \(\mathcal{D}(G \times G') \)-module \(\bar{M} \), the \(\mathcal{D}P \)-module \(\bar{N} \) corresponds to a pointed group \(P_{\delta} \) on \(\text{End}_k(\bar{M}) \) so that \(P_{\delta} \) is a defect pointed group.
of the pointed group \((G \times G')_{(id,\tilde{M})}\); moreover the \(D\)-interior algebra \(\text{End}_k(\tilde{N})\) is an embedded algebra associated with \(P_\delta\). We denote by \(\text{Ind}_P^{G\times G'}(\text{End}_k(\tilde{N}))\) the injective induction of the \(D\)-interior algebra \(\text{End}_k(\tilde{N})\) from \(P\) to \(G \times G'\) (see [4, 12.2]), which is a \(\mathcal{D}(G \times G')\)-interior algebra. Then by [4, Corollary 14.11], there is a \(\mathcal{D}(G \times G')\)-interior algebra embedding

\[
\tilde{H} : \text{End}_k(\tilde{M}) \to \text{Ind}_P^{G\times G'}(\text{End}_k(\tilde{N})).
\]

On the other hand, by [4, 2.6.5], it is easily checked that there is a \(\mathcal{D}(G \times G')\)-interior algebra isomorphism \(\text{Ind}_P^{G\times G'}(\text{End}_k(\tilde{N})) \cong \text{End}_k(\text{Ind}_P^{G\times G'}(\tilde{N}))\). Therefore we get a \(\mathcal{D}(G \times G')\)-interior algebra embedding \(\text{End}_k(\tilde{M}) \to \text{End}_k(\text{Ind}_P^{G\times G'}(\tilde{N}))\). Then by [6, Example 13.4], it is easily checked that \(\tilde{M}\) is a direct summand of the \(\mathcal{D}(G \times G')\)-module \(\text{Ind}_P^{G\times G'}(\tilde{N})\).

17. Since the homology of the \(\mathcal{D}\)-module \(\tilde{N}\) vanishes at all degree but degree \(q\), so do the homology of the \(\mathcal{D}(G \times G')\)-module \(\text{Ind}_P^{G\times G'}(\tilde{N})\) and the homology of the \(\mathcal{D}(G \times G')\)-module \(\tilde{M}\); moreover we have \(H_q(\text{Ind}_P^{G\times G'}(\tilde{N})) = \text{Ind}_P^{G\times G'}(H_q(\tilde{N}))\). Then by [2, Theorem 3.1], the map

\[
H_0(\text{End}_k(\text{Ind}_P^{G\times G'}(\tilde{N}))) \to \text{End}_k(\text{Ind}_P^{G\times G'}(H_q(\tilde{N})))
\]

sending the image in \(H_0(\text{End}_k(\text{Ind}_P^{G\times G'}(\tilde{N})))\) of a chain map \(f : \text{Ind}_P^{G\times G'}(\tilde{N}) \to \text{Ind}_P^{G\times G'}(\til{N})\) onto the induced \(k\)-module homomorphism \(f_q : \text{Ind}_P^{G\times G'}(H_q(\til{N})) \to \text{Ind}_P^{G\times G'}(H_q(\til{N}))\) is a \(k\)-linear isomorphism, which actually is a \((G \times G')\)-interior algebra isomorphism. Since the \(\mathcal{D}(G \times G')\)-module \(\til{M}\) is a direct summand of \(\text{Ind}_P^{G\times G'}(\til{N})\), Isomorphism 17.1 induces a \((G \times G')\)-interior algebra isomorphism \(\Phi : H_0(\text{End}_k(\til{M})) \to \text{End}_k(H_q(\til{M}))\).

18. We consider the \(kP\)-interior algebra homomorphism \(C_0(\text{End}_k(\til{N})) \to \text{End}_k(H_q(\til{N}))\) obtained by composing the surjective homomorphism \(C_0(\text{End}_k(\til{N})) \to H_0(\text{End}_k(\til{N}))\) and Isomorphism 15.1. Since \(C_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N}))) = \text{Ind}_P^{G\times G'}(C_0(\text{End}_k(\til{N})))\), the homomorphism \(C_0(\text{End}_k(\til{N})) \to \text{End}_k(H_q(\til{N}))\) induces a surjective \((G \times G')\)-interior algebra homomorphism

\[
C_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N}))) \to \text{Ind}_P^{G\times G'}(\text{End}_k(H_q(\til{N})))
\]

with the kernel \(H_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N})))\), which induces a \((G \times G')\)-interior algebra isomorphism

\[
\Psi : H_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N}))) \cong \text{Ind}_P^{G\times G'}(\text{End}_k(H_q(\til{N}))).
\]

19. Clearly the embedding \(\tilde{H}\) induces a \((G \times G')\)-interior algebra embedding

\[
C_0(\text{End}_k(\til{M})) \to C_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N})))
\]

which maps \(C_0(\text{End}_k(\til{M}))\) into \(C_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N})))\). Thus the embedding \(\tilde{H}\) induces a \((G \times G')\)-interior algebra embedding \(H_0(\tilde{H}) : H_0(\text{End}_k(\til{M})) \to H_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N})))\). We set

\[
H = \Psi \circ H_0(\tilde{H}) \circ \Phi^{-1}.
\]

We denote by \(\phi\) the composition of the canonical surjective homomorphism \(C_0(\text{End}_k(\til{M})) \to H_0(\text{End}_k(\til{M}))\) with the isomorphism \(\Phi\) and by \(\psi\) the composition of the canonical surjective homomorphism \(C_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N}))) \to H_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N})))\) with the isomorphism \(\Psi\). Then we have the following commutative diagram

\[
\begin{array}{ccc}
C_0(\text{End}_k(\til{M})) & \longrightarrow & C_0(\text{Ind}_P^{G\times G'}(\text{End}_k(\til{N}))) \\
\phi \downarrow & & \downarrow \psi \\
\text{End}_k(H_q(\til{M})) & \xrightarrow{H} & \text{Ind}_P^{G\times G'}(\text{End}_k(H_q(\til{N}))).
\end{array}
\]
20. Now we claim that the homomorphism ϕ induces a surjective kG-interior algebra homomorphism $C_0(\text{End}_{k(1 \times G')}(\tilde{M})) \to \text{End}_{k(1 \times G')}((\mathbb{H}_q(\tilde{M})))$ with the kernel $\mathbb{B}_0(\text{End}_{k(1 \times G')}(\tilde{M}))$. Since we have the commutative diagram 19.1, it suffices to show that the homomorphism ψ induces a surjective kG-interior algebra homomorphism $C_0(\text{Ind}_{P}^{G \times G'}(\text{End}_k(\tilde{N})))^{1 \times G'} \to \text{Ind}_{P}^{G \times G'}(\text{End}_k((\mathbb{H}_q(\tilde{N})))^{1 \times G'}$ with the kernel $\mathbb{B}_0(\text{Ind}_{P}^{G \times G'}(\text{End}_k(\tilde{N})))^{1 \times G'}$. By [4, Theorem 15.4], there are a unique $\mathfrak{D}G$-interior algebra homomorphism

$$H_{G, G'}^\mathbb{N} : \text{Ind}_{P}^{G \times G'}(\text{End}_k(\tilde{N}))^{1 \times G'} \cong \text{Ind}_{P}^{G}(\text{End}_k(\tilde{N}) \otimes_k kG')$$

mapping $\text{Tr}_{1 \times 1}^G(x \otimes a \otimes 1)$ onto $1 \otimes (a \otimes x^{-1}) \otimes 1$ for any $a \in \text{End}_k(\tilde{N})$ and any $x \in G'$. This isomorphism $H_{G, G'}^\mathbb{N}$ induces a kG-interior algebra isomorphism

$$C_0(H_{G, G'}^\mathbb{N}) : \text{Ind}_{P}^{G \times G'}(C_0(\text{End}_k(\tilde{N})))^{1 \times G'} \cong \text{Ind}_{P}^{G}(C_0(\text{End}_k(\tilde{N})) \otimes_k kG').$$

21. By [4, Theorem 4.4], there is a unique kG-interior algebra isomorphism

$$H_{G, G'}^{\mathbb{H}_q(\tilde{N})} : \text{Ind}_{P}^{G \times G'}(\text{End}_k((\mathbb{H}_q(\tilde{N})))^{1 \times G'} \cong \text{Ind}_{P}^{G}(\text{End}_k((\mathbb{H}_q(\tilde{N}))) \otimes_k kG')$$

mapping $\text{Tr}_{1 \times 1}^G(x \otimes a \otimes 1)$ onto $1 \otimes (a \otimes x^{-1}) \otimes 1$ for any $a \in \text{End}_k((\mathbb{H}_q(\tilde{N})))$ and any $x \in G'$. Clearly the kP-interior algebra homomorphism $C_0(\text{End}_k(\tilde{N})) \to \text{End}_k((\mathbb{H}_q(\tilde{N})))$ (see Paragraph 17) induces a surjective kG-interior algebra homomorphism

$$\text{Ind}_{P}^{G}(C_0(\text{End}_k(\tilde{N})) \otimes_k kG') \to \text{Ind}_{P}^{G}(\text{End}_k((\mathbb{H}_q(\tilde{N}))) \otimes_k kG'),$$

with the kernel $\text{Ind}_{P}^{G}(\mathbb{B}_0(\text{End}_k(\tilde{N})) \otimes kG') = \mathbb{B}_0(\text{Ind}_{P}^{G}(\text{End}_k(\tilde{N}) \otimes kG'))$, and this induced kG-interior algebra homomorphism makes the following diagram commutative.

$$\begin{array}{ccc}
\text{Ind}_{P}^{G \times G'}(C_0(\text{End}_k(\tilde{N})))^{1 \times G'} & \xrightarrow{C_0(H_{G, G'}^{\mathbb{H}_q(\tilde{N})})} & \text{Ind}_{P}^{G}(C_0(\text{End}_k(\tilde{N})) \otimes_k kG') \\
\downarrow \psi & & \downarrow \\
\text{Ind}_{P}^{G \times G'}(\text{End}_k((\mathbb{H}_q(\tilde{N})))^{1 \times G'} & \xrightarrow{H_{G, G'}^{\mathbb{H}_q(\tilde{N})}} & \text{Ind}_{P}^{G}(\text{End}_k((\mathbb{H}_q(\tilde{N}))) \otimes_k kG').
\end{array}$$

Therefore the kG-interior algebra homomorphism

$$C_0(\text{Ind}_{P}^{G \times G'}(\text{End}_k(\tilde{N})))^{1 \times G'} \to \text{Ind}_{P}^{G \times G'}(\text{End}_k((\mathbb{H}_q(\tilde{N})))^{1 \times G'}$$

induced by ψ is surjective with the kernel $\mathbb{B}_0(\text{Ind}_{P}^{G \times G'}(\text{End}_k(\tilde{N})))^{1 \times G'}$. Then the claim is done.

22. In particular, we have a kG-interior algebra isomorphism

$$\mathbb{H}_0(\text{End}_{k(1 \times G')}(\tilde{M})) \cong \text{End}_{k(1 \times G')}((\mathbb{H}_q(\tilde{M}))).$$

On the other hand, since the $\mathfrak{D}(G \times G')$-module \tilde{M} induces a Rickard equivalence between kGb and $kG'b'$, by [4, Theorem 18.4] we have a kG-interior algebra isomorphism $kGb \cong \mathbb{H}_0(\text{End}_{k(1 \times G')}(\tilde{M}))$. Therefore we have a kG-interior algebra isomorphism

$$kGb \cong \text{End}_{k(1 \times G')}((\mathbb{H}_q(\tilde{M}))).$$
Then by [4, Proposition 6.5] the $k(G \times G')$-module $\mathbb{H}_q(\tilde{N})$ induces a Morita equivalence between kB and kG'. We claim that this Morita equivalence is basic in the sense of Puig in [4]. There is a $(k(G \times G'))$-interior algebra isomorphism

$$\text{Ind}_{P}^{G \times G'}(\text{End}_k(\mathbb{H}_q(\tilde{N}))) \cong \text{End}_k(\text{Ind}_{P}^{G \times G'}(\mathbb{H}_q(\tilde{N}))).$$

By composing H with this $(k(G \times G'))$-interior algebra isomorphism, we get a $(k(G \times G'))$-interior algebra embedding $\text{End}_k(\mathbb{H}_q(M)) \to \text{End}_k(\text{Ind}_{P}^{G \times G'}(\mathbb{H}_q(\tilde{N})))$. Then by [4, Example 13.4], M is a direct summand of the $(k(G \times G'))$-module $\text{Ind}_{P}^{G \times G'}(\mathbb{H}_q(\tilde{N}))$. Since the $\mathcal{D}P$-module $\mathbb{H}_q(\tilde{N})$ is a direct summand of the restriction $\text{Res}_{P}^{G \times G'}(M)$ and has vertex $\Delta(P)$, the $\mathcal{D}P$-module $\mathbb{H}_q(\tilde{N})$ is a source of the $\mathcal{D}(G \times G')$-module M. The claim is done.

Now it remains to prove Statement 8.1 from Statement 8.2. We continue to keep the notation in Theorem 8, and assume that Statement 8.2 holds.

23. Since the $\mathcal{D}\tilde{P}$-module $\text{End}_k(\tilde{N})$ is 0-split, the $\mathcal{D}\tilde{P}$-module $\text{End}_k(\tilde{N})$ is a direct sum of a contractible $\mathcal{D}\tilde{P}$-module and the \tilde{P}-module $\mathbb{H}_0(\text{End}_k(\tilde{N}))$ determined by the \tilde{P}-conjugation. That is to say, there is a contractible $\mathcal{D}\tilde{P}$-module C such that we have a direct sum decomposition $\text{End}_k(\tilde{N}) = \mathbb{H}_0(\text{End}_k(\tilde{N})) \oplus C$, from which, we easily conclude a direct sum decomposition

$$23.1 \quad (\text{End}_k(\tilde{N}))^\tilde{P} = \mathbb{H}_0(\text{End}_k(\tilde{N}))^\tilde{P} \oplus C^\tilde{P},$$

for any subgroup R of \tilde{P}. Since the $\mathcal{D}\tilde{P}$-module C is contractible, so is the \mathcal{D}-module $C^\tilde{P}$. Thus the \mathcal{D}-module $(\text{End}_k(\tilde{N}))^\tilde{P}_R$ is 0-split and we have $\mathbb{C}_0(C^\tilde{P}_R) = \mathbb{B}_0(C^\tilde{P}_R) = \mathbb{B}_0((\text{End}_k(\tilde{N}))^\tilde{P}_R)$. From the decomposition 23.1, we get a new direct sum decomposition

$$\mathbb{C}_0((\text{End}_k(\tilde{N}))^\tilde{P}_R) = \mathbb{H}_0(\text{End}_k(\tilde{N}))^\tilde{P}_R \oplus \mathbb{C}_0(C^\tilde{P}_R),$$

for any subgroup R of \tilde{P}. This new decomposition implies that the inclusion map $\text{End}_{k\tilde{P}}(\tilde{N}) \subset \text{End}_k(\tilde{N})$ induces a surjective k-algebra homomorphism

$$23.2 \quad \mathbb{C}_0(\text{End}_{k\tilde{P}}(\tilde{N})) \to \mathbb{H}_0(\text{End}_k(\tilde{N}))^\tilde{P}$$

with the kernel $\mathbb{B}_0(\text{End}_{k\tilde{P}}(\tilde{N}))$, which induces a surjective k-algebra homomorphism

$$\mathbb{C}_0(\text{End}_{k\tilde{P}}(\tilde{N})) \to \mathbb{H}_0(\text{End}_k(\tilde{N}))(\tilde{P})$$

with the kernel $\mathbb{B}_0(\text{End}_{k\tilde{P}}(\tilde{N})) + \sum_R(\mathbb{C}_0(\text{End}_k(\tilde{N})))^\tilde{P}_R$, where R runs over proper subgroups of \tilde{P}.

24. Since \tilde{N} is a noncontractible $\mathcal{D}(G \times G')$-module, so is the $\mathcal{D}\tilde{P}$-module \tilde{N}. So $\mathbb{C}_0(\text{End}_{k\tilde{P}}(\tilde{N}))$ is a primitive k-algebra with the identity map outside $\mathbb{B}_0(\text{End}_{k\tilde{P}}(\tilde{N}))$. Then it follows from Homomorphism 23.2 that $\mathbb{H}_0(\text{End}_k(\tilde{N}))$ is a primitive $k\tilde{P}$-interior algebra. Then by Lemma 12, there is a $k\tilde{P}$-interior algebra isomorphism $\mathbb{H}_0(\text{End}_k(\tilde{N})) \cong \text{End}_k(\mathbb{H}_q(\tilde{N}))$; moreover, the $k\tilde{P}$-module $\mathbb{H}_q(\tilde{N})$ is indecomposable. We claim that the $k\tilde{P}$-module $\mathbb{H}_q(\tilde{N})$ has vertex \tilde{P}. Otherwise, by [6, Proposition 18.11] we have $\text{End}_k(\mathbb{H}_q(\tilde{N}))(\tilde{P}) = 0$ and then $\mathbb{H}_0(\text{End}_k(\tilde{N}))(\tilde{P}) = 0$; thus by Rosenberg’s Lemma, $\text{id}_{\mathbb{H}_q(\tilde{N})}$ belongs to either $\mathbb{B}_0(\text{End}_{k\tilde{P}}(\tilde{N}))$ or $(\mathbb{C}_0(\text{End}_k(\tilde{N})))^\tilde{P}_R$ for some proper subgroup R of \tilde{P}; this contradicts with the $\mathcal{D}\tilde{P}$-module \tilde{N} being a source of the noncontractible $\mathcal{D}(G \times G')$-module \tilde{M}. The claim is done.
25. Next we claim that the $k\hat{P}$-module $\mathbb{H}_q(\hat{N})$ is a source of the $k(G \times G')$-module $\mathbb{H}_q(\hat{M})$. Since the $\mathfrak{D}\hat{P}$-module \hat{N} is a direct summand of the restricton $\text{Res}_{\hat{P}}^{G \times G'}(\hat{M})$, the kP-module $\mathbb{H}_q(\hat{N})$ is a direct summand of the restriction $\text{Res}_{\hat{P}}^{G \times G'}(\mathbb{H}_q(\hat{M}))$. Since the $\mathfrak{D}\hat{P}$-module \hat{N} is a source of the $\mathfrak{D}(G \times G')$-module \hat{M}, \hat{M} is a direct summand of the induced $\mathfrak{D}(G \times G')$-module $\text{Ind}_{\hat{P}}^{G \times G'}(\mathbb{H}_q(\hat{N}))$ (see Paragraph 16), thus $\mathbb{H}_q(\hat{M})$ is a direct summand of the $k(G \times G')$-module $\mathbb{H}_q(\text{Ind}_{\hat{P}}^{G \times G'}(\mathbb{H}_q(\hat{N})))$. Clearly there is an obvious $k(G \times G')$-module isomorphism $\mathbb{H}_q(\text{Ind}_{\hat{P}}^{G \times G'}(\mathbb{H}_q(\hat{N}))) \cong \text{Ind}_{\hat{P}}^{G \times G'}(\mathbb{H}_q(\hat{N}))$. So $\mathbb{H}_q(\hat{M})$ is a direct summand of the $k(G \times G')$-module $\text{Ind}_{\hat{P}}^{G \times G'}(\mathbb{H}_q(\hat{N}))$. Since the indecomposable $k\hat{P}$-module $\mathbb{H}_q(\hat{N})$ has vertex \hat{P}, the $k\hat{P}$-module $\mathbb{H}_q(\hat{N})$ is a source of the $k(G \times G')$-module $\mathbb{H}_q(\hat{M})$.

Finally, since the module $\mathbb{H}_q(\hat{M})$ induces a basic Morita equivalence between kGb and $kG'b'$, by [4, Corollary 7.4] the groups \hat{P} and P have the same order.

References

[1] M. E. Harris, M. Linckelmann, Splendid derived equivalences for blocks of finite p-solvable groups, J. London Math. Soc. (2) 62 (2000), 85-96.
[2] P. J. Hilton, U. Stammbach, A course in homological algebra, in: Graduate Texts in Mathematics, vol. 4. Springer-Verlag, New York, 1971.
[3] L. Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), 77–116.
[4] L. Puig, On the Morita and Rickard equivalences between Brauer blocks, Progress in Math., 178 (1999), Birkhäuser, Basel.
[5] J. Rickard, Splendid equivalences: derived categories and permutation modules. Proc. London Math. Soc. (3) (1996), no. 2, 331-358.
[6] J. Thévenaz, G-algebras and Modular Representation Theory, Oxford Math. Mon., Clarendon Press, Oxford, 1995.