Cohort Profile

Cohort Profile: The Ageing Trajectories of Health – Longitudinal Opportunities and Synergies (ATHLOS) project

Albert Sanchez-Niubo,¹,²*, Laia Egea-Cortés,¹ Beatriz Olaya,¹,² Francisco Félix Caballero,³,⁴ Jose L Ayuso-Mateos,²,⁵,⁶ Matthew Prina,⁷,⁸ Martin Bobak,⁹ Holger Arndt,¹⁰ Beata Tobiasz-Adamczyk,¹¹ Andrzej Pająk,¹² Matilde Leonardi,¹³ Ilona Koupil,¹⁴,¹⁵ Demosthenes Panagiotakos,¹⁶ Abdonas Tamosiunas,¹⁷ Sergei Scherbov,¹⁸,¹⁹,²⁰ Warren Sanderson,¹⁸,²¹ Seppo Koskinen,²² Somnath Chatterji²³ and Josep Maria Haro¹,² the ATHLOS Consortium

¹Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain, ²Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain, ³Department Preventive Medicine and Public Health, Universidad Autónoma de Madrid/Idipaz, Madrid, Spain, ⁴Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, CIBERESP, Madrid, Spain, ⁵Department of Psychiatry, Universidad Autónoma de Madrid, Madrid, Spain, ⁶Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS Princesa), Madrid, Spain, ⁷Social Epidemiology Research Group. Health Service and Population Research Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK, ⁸Global Health Institute, King's College London, London, UK, ⁹Department of Epidemiology and Public Health, University College London, London, UK, ¹⁰SPRING TECHNO GMBH & Co. KG, Bremen, Germany, ¹¹Department of Medical Sociology, Department of Epidemiology, Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Krakow, Poland, ¹²Department of Epidemiology and Population Studies, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland, ¹³Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy, ¹⁴Department of Public Health Sciences, Centre for Health Equity Studies, Stockholm University, Stockholm, Sweden, ¹⁵Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden, ¹⁶Harokopio University, Kalithea, Athens, Greece, ¹⁷Lithuanian University of Health Sciences, Kaunas, Lithuania, ¹⁸International Institute for Applied Systems Analysis, World Population Program, Wittgenstein Centre for Demography and Global Human Capital, Laxenburg, Austria, ¹⁹Austrian Academy of Science, Vienna Institute of Demography, Vienna, Austria, ²⁰Russian Presidential Academy of National Economy and Public Administration (RANEPA), Moscow, Russian Federation, ²¹Department of Economics, Stony Brook University, Stony Brook, NY, USA, ²²National Institute for Health and Welfare (THL), Helsinki, Finland and ²³Information, Evidence and Research, World Health Organization, Geneva, Switzerland

*Corresponding author. Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, Dr Antoni Pujadas 42, Sant Boi de Llobregat, Barcelona 08830, Spain. E-mail: albert.sanchez@pssjd.org

Editorial decision 21 March 2019; Accepted 1 April 2019
Why was the cohort set up?

The number of people aged 60 years or older is projected to significantly increase in the coming decades worldwide. According to United Nations estimates, this figure is expected to more than double by 2050 and to more than triple by 2100. Population ageing poses major challenges for the traditional social welfare state due to the greater needs for health and social care of older people.1

This project, Ageing Trajectories of Health – Longitudinal Opportunities and Synergies (ATHLOS), funded by the European Union’s Horizon 2020 Research and Innovation Program, aims to achieve a better understanding of the impact of ageing on health by developing a new single measure of health status. With this measure, the project intends to identify patterns of healthy ageing trajectories and their determinants, the critical points in time when changes in trajectories are produced, and to propose timely clinical and public health interventions to optimize and promote healthy ageing. To achieve this, a new cohort has been composed from harmonized datasets of existing international longitudinal cohorts related to health and ageing.

The ATHLOS project follows the World Health Organization’s definition of healthy ageing by studying healthy ageing as an ongoing process of developing and maintaining the functional ability that enables wellbeing in older age.2 This ongoing process interacts with the environment in which people live and can either favour health or be harmful to it. Environments are highly influential on individual behaviour, exposure to health risks, access to quality health and social care and the opportunities that ageing brings.2 Healthy ageing is thus not a unitary phenomenon but must be deconstructed into its components: mental (e.g. cognitive decline), physical (e.g. activities of daily living) and social functioning (e.g. participation in community activities).3–5

National and international research funding agencies and governments have supported several follow-up studies of population cohorts since the early 1990s [e.g. the ‘Health and Retirement Study’ (HRS)6]. HRS has been used as a model for many other longitudinal studies in a number of countries, such as the ‘English Longitudinal Study of Ageing’ (ELSA),7,8 the ‘Japanese Study of Aging and Retirement’ (JSTAR),9 the ‘Mexican Health and Aging Study’ (MHAS),10 the ‘China Health and Retirement Longitudinal Study’ (CHARLS),11 the ‘Longitudinal Aging Study in India’ (LASI)12 or the ‘Korean Longitudinal Study of Ageing’ (KLOSA).13 More recently, multi-country projects have also been initiated, such as the Study on Global Ageing and adult health (SAGE) funded by the World Health Organization,15 the Survey of Health, Ageing and Retirement in Europe (SHARE) funded by the European Commission16 and the 10/66 dementia research study.17

Although these studies have been powered to provide relevant national estimates, sample sizes might be limited for assessing the joint effect of several predisposing and protective factors.18 Additionally, although cross-country comparisons provide evidence of how contextual and health care factors impact population health, the few existing multi-country studies are limited to a selected group of countries and require a significant amount of time, co-ordination and financial resources.

Recently, strategies to harmonize data a posteriori from different longitudinal studies have been proposed to overcome some of the challenges stated above. For example, the Gateway to Global Ageing (G2AGING) is a platform funded by the National Institute on Aging, National Institutes of Health that aims to achieve data harmonization of longitudinal studies on ageing and to facilitate cross-national comparisons in population survey data.14 To date, G2AGING has harmonized the HRS datasets with the datasets of the other nine ‘HRS-family’ studies. In a broader context, an international research programme, called Maelstrom Research, provides systematic harmonization methodology and tools with the aim of leveraging the creation of research collaborations.18 In the context of ageing, Maelstrom Research has facilitated research consortia including the Integrative Analysis of Longitudinal Studies of Aging and Dementia (IALSA), which harmonized 9 studies, and the Promoting Mental Well-being and Healthy Ageing in Cities (MINDMAP), which incorporates 10 studies.19 These consortia have a specific focus on ageing and health and cover populations mostly from North America and Europe.

The ATHLOS consortium constitutes a new collaborative research project that, among other things, uses the Maelstrom Research resources. Unlike G2AGING, Maelstrom Research offers open-source software and guidelines to harmonize data according to concrete research aims. Thus, a harmonized dataset comprising at least 17 longitudinal population studies, from Europe and international countries, was created. These studies include information on common health conditions, as well as a detailed assessment of participants’ functioning. Integrating data from existing cohort studies leads to greater sample size and statistical power to more precisely estimate the determinants and risk factors of healthy ageing. Furthermore, ageing trajectories can be compared between different countries and populations to evaluate if different cultures have diverse risk factors impacting the population’s healthy ageing.
Who is in the ATHLOS cohort?

The cohort comprises more than 410 000 individuals who participated in 17 general population longitudinal studies in 38 countries. The studies are the 10/66 Dementia Research Group Population-Based Cohort Study,17 the Australian Longitudinal Study of Aging (ALSA),20 the ATTICA Study,21 CHARLS,11 Collaborative Research on Ageing in Europe (COURAGE),22 ELSA,7 Study on Cardiovascular Health, Nutrition and Frailty in Older Adults in Spain (ENRICA),23 the Health, Alcohol and Psychosocial factors in Eastern Europe Study (HAPIEE),24 the Health 2000/2011 Survey,25 HRS,6 JSTAR,7 KLOSA,13 MHAS,10 SAGE,15 SHARE,16 the Irish Longitudinal Study of Ageing (TILDA)26 and the Uppsala Birth Cohort Multigenerational Study (UBCoS).27,28

Each study includes one or more populations and provides data on health determinants and age-related events. An overview of the included studies and their target populations is provided in Table 1. Table 2 presents sample sizes and response rates at baseline for each study and population. The median percentage of response rate at each study’s baseline was 75%, and the range was from 53% (SAGE-Mexico) to 96% (10/66-Rural China). It should be noted that the sample sizes of the CHARLS, ELSA, Health 2000/2011, HRS, JSTAR, KLOSA, MHAS and SHARE were increased in posterior waves of data collection. Supplementary Table S1, available as Supplementary data at IJE online, presents sample sizes, number of new participants, deceased participants and drop-outs for each study, population and wave.

All studies are cohorts based on questionnaires except for the UBCoS study, which collects routine health and social data for all babies born in the Uppsala Academic Hospital between the years 1915 and 1929, and their descendants. The UBCoS data were converted into periods of data collection to resemble the design of the other studies.

Finally, the study on the Identification of health and disability determinants on ageing in Italy (IDAGIT) will be subsequently included in the cohort.

How often have participants been followed up?

Most of the longitudinal studies included in the ATHLOS harmonized dataset started between 2000 and 2010 and have at least 2 waves of data collection (see Table 2). ALSA and HRS started much earlier, in the 1990s, and have more than 10 waves of data collection. SAGE has only 1 wave of data harmonized to date. However, new waves of data are expected to be harmonized in the future.

Regarding UBCoS, as register data have been collected approximately every 10 years from 1960 to 2008, we distributed the data in 6 waves.

What has been harmonized?

The data harmonization requires an a priori definition of the variables of interest and their possible values. Thus, the ATHLOS consortium defined a wide range of variables, called DataSchema variables, which included all health conditions, sociodemographic variables, personal functioning and contextual factors. These are usually assessed in population studies. Variables that have international standards or have been created by well-known scales and measured tests were employed in the harmonization process. For example, the International Classification of Functioning, Disability and Health (ICF) biopsychosocial model29 and the conceptualization of health suggested by the World Health Organization30 were used for characterizing the functioning-related variables.

The DataSchema variables were classified as follows: (i) sociodemographic and economic characteristics; (ii) lifestyle and health behaviours; (iii) health status and functional limitations; (iv) diseases; (v) death; (vi) physical measures; (vii) psychological measures; (viii) laboratory measures; (ix) social environment and life events; and (x) other administrative information. In Table 3, a list of core variables within the aforementioned domains, together with the individual studies, is provided.

What has ATHLOS found? Key findings and publications

ATHLOS includes data from all populated continents, with Europe being the most represented. Sociodemographic information by continent and country is shown in Table 4. The median year of birth was around the 1940s, with people from America being older (born in the 1930s) and those in Australia much older (born in 1914). Overall, the median age at baseline was about 60 years. Sweden exhibits a younger average age at baseline, as UBCoS cohorts were based on register data starting in 1960. The percentage of female participants was slightly above 50%, other than in Australia and Ghana, which had lower percentages. The average percentage of primary education or less stood at about 37%, but in general there was heterogeneity even in countries from the same study as in SHARE. In Europe, for example, the lowest percentage was observed in Germany (2%) and the highest percentage in Spain (58%); in South America, the percentage was very high in Venezuela (81%) and Dominican Republic (90%).

Advanced analytical approaches have already been applied to some studies of the ATHLOS dataset to test the methodology for developing a single measure of health status and to identify different patterns of health trajectories over time. This measure will allow for the comparison of...
health status across populations and longitudinal studies included in ATHLOS. Specifically, these analyses have already been conducted on harmonized datasets comprising ELSA and HRS studies. Evidence suggests that the average health scores and trajectories are sensitive to age and that the health status measure is a good predictor of mortality.31,32 Additionally, a large systematic review (with more than 90 000 articles screened) was conducted to summarize and synthesize the current evidence on social, biological, behavioural, psychological and sociodemographic determinants of healthy ageing.33 This systematic review indicated limited research about healthy ageing in low- and middle-
Table 2. Coverage time of interview, sample sizes and response rates at baseline of each study and population included in the ATHLOS cohort

Study / Population	Year of interview	Sample size at baseline	Response rate at baseline
10/66 Cuba	1915-29 1930-90 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	2813 94	2004 72
India	W1 W2	1160 74	1002 96
Urban China	W1 W2	1965 80	2011 95
Rural China	W1 W2	1381 80	532 88
Dominican Rep.	W1 W2	1000 86	1000 84
Venezuela	W1 W2	12099 66	2009 93
Urban Peru	W1 W2	2087 55	2087 55
Rural Peru	W1 W2	18245 81	4753 70
Urban Mexico	W1 W2	4071 67	4071 67
Rural Mexico	W1 W2	2519 60	2519 60
Puerto Rico	W1 W2	10728 61	10728 61
ALSA	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13	3037 75	18245 81
ATTICA	W1 W2 W3	4753 70	4753 70
CHARLS	W1 W2	4071 67	4071 67
COURAGE Spain	W1 W2 W3	2519 60	2519 60
Poland	W1 W2	10728 61	10728 61
ELSA	W1 W2 W3 W4 W5 W6 W7	12099 66	2009 93
ENRICA	W1 W2 W3 W4 W5 W6 W7	2519 60	2519 60
HAPIEE Poland	W1 W2	10728 61	10728 61
Czech Republic	W1 W2	8857 55	8857 55
Lithuania	W1 W2	7111 65	7111 65
HEALTH 2000/2011	W1 W2	8028 93	8028 93
HRS HRS sub-sample	W1 W2 W3 W4 W5 W6 W7	12877 82	12877 82
AHEAD	W2 W3	8297 80	8297 80
CODA	W4 W5 W6 W7 W8 W9 W10 W11 W12	2364 73	2364 73
WRB	W4 W5 W6 W7 W8 W9 W10 W11 W12	2622 70	2622 70
EBB	W4 W5 W6 W7 W8 W9 W10 W11 W12	3400 75	3400 75
MBB	W4 W5 W6 W7 W8 W9 W10 W11 W12	5102 60	5102 60
JSTAR 5 cities	W1 W2 W3	3862 60	3862 60
2 cities	W1 W2	1440 60	1440 60
3 cities	W1 W2 W3	1966 64	1966 64
KLOSAL	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	10254 64	10254 64
MHAS	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	15146 89	15146 89
SAGE South Africa	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	4227 75	4227 75
Ghana	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	5373 81	5373 81
China	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	15050 93	15050 93
Russia	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	12198 68	12198 68
Mexico	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	5448 53	5448 53
SHARE	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	30816 62	30816 62
TILDA	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	8504 62	8504 62
UBCOS Birth generation	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	20732 62	20732 62
Descendants	W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12	13052 62	13052 62

*aSample sizes derived from datasets provided by the study owners. Spouses of participants can be included.

*bThe HAPIEE study has a continuous mortality and cardiovascular follow-up from 2005 to 2015.

*cDataset will eventually be included.

*d5 cities: Adachi-Kanazawa-Shirakawa-Sendai-Takikawa.

*e2 cities: Tosu-Naha.

*f3 cities: Chofu-Tondabayashi-Hiroshima.
Domain	Sub-domains	10/66	ALSA	ATTICA	CHARLS	COURAGE	ELSA	ENRICA	HAPIEE	H2000/11	HRS	JSTAR	KLOSA	MHAS	SAGE	SHARE	TILDA	UBCoS
Sociodemographic and economic characteristics	Birth	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Sex	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Marital status	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Education	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Living alone	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Employment/retirement	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Wealth	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Lifestyle and health behaviours	Tobacco	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Alcohol	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Physical activity	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Health status and functional limitations	Memory	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Dizziness	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Orientation	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Walking speed	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Energy	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Sleep	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Pain	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Incontinence	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Hearing/sight	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Mobility	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Activities of Daily Living (ADL)	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Instrumental ADL	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Cognitive impairment	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Self-reported health	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Falls	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Diseases	Diabetes	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Respiratory	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Hypertension	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Joint disorders	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Cardiovascular disease	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Cancer	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Death	Living status	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Physical measures	Body measures	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Grip strength	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Blood pressure	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Psychological measures	Screening measure of cognition	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Depression	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Anxiety	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Laboratory measures	Glucose, cholesterol, ...	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Social environment and life events	Social network	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Social support	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Social participation	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Social trust/cohesion	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Life events	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Loneliness	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Administrative variables	ID participant/household, date of interview, etc.	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
income countries and confirmed the heterogeneity in the conceptualization and definition of healthy ageing.

What are the main strengths and weaknesses of ATHLOS?

The harmonized dataset in the ATHLOS project constitutes a new cohort that has been created by collecting data from 17 longitudinal studies from five continents. The harmonization approach and tools used in this project were adapted from the methodology developed by Maelstrom Research.18 This approach is systematic and rigorous to ensure that harmonized variables are comparable.

It should be noted that the harmonization is a retrospective process, as studies were not initially designed to be harmonized. The heterogeneity in study design, instruments and data collection limits the amount and quality of

Continent	Country	n	Year of birth (median)	Age at participant’s baseline (median)	Female (%)	Primary education or less (%)	Studies involved
Europe	Austria	6411	1945	63	58	14	SHARE
	Belgium	8720	1948	60	55	21	SHARE
	Czech Republic	18092	1946	60	56	14	HAPIEE, SHARE
	Denmark	5553	1948	60	54	13	SHARE
	Estonia	7075	1945	65	59	6	SHARE
	Finland	9673	1948	47	54	47	Health2000
	France	8105	1946	61	57	40	SHARE
	Germany	8690	1946	62	54	2	SHARE
	Greece	6969	1949	55	54	38	ATTICA, SHARE
	Hungary	3076	1948	63	57	2	SHARE
	Ireland	9638	1948	62	46	29	SHARE, TILDA
	Italy	7158	1945	63	55	48	SHARE
	Lithuania	7111	1945	61	55	12	HAPIEE, SHARE
	Luxembourg	1610	1950	62	53	37	SHARE
	Netherlands	6547	1946	61	54	14	SHARE
	Poland	17532	1947	58	54	20	COURAGE, HAPIEE, SHARE
	Portugal	2080	1947	64	57	56	SHARE
	Slovenia	3755	1948	63	56	10	SHARE
	Spain	15952	1944	65	54	58	COURAGE, ENRICA, SHARE
	Sweden	66243	1945	16	50	35	SHARE, UBCoS
	Switzerland	4571	1946	62	55	11	SHARE
	United Kingdom	18489	1944	59	54	38	ELSA
Eurasia	Russia	4947	1946	62	64	9	SAGE
Asia	China	38990	1951	59	53	60	10/66, CHARLS, SAGE
	India	14202	1947	55	61	58	10/66, SAGE
	Israel	3857	1946	61	55	21	SHARE
	Japan	7268	1945	63	52	25	JSTAR
	South Korea	10254	1945	61	56	45	KLOSA
North America	United States of America	37317	1938	56	56	27	HRS
	Cuba	2813	1930	74	65	58	10/66
	Dominican Republic	2011	1931	74	66	90	10/66
	Mexico	28817	1944	59	58	72	10/66, MHAS, SAGE
	Puerto Rico	2009	1932	76	67	44	10/66
South America	Peru	1933	1932	74	61	56	10/66
	Venezuela	1965	1935	71	64	81	10/66
	Ghana	5573	1950	60	49	47	SAGE
	South Africa	4227	1947	60	57	62	SAGE
Oceania	Australia	2087	1914	78	49	36	ALSA
Total		411320	1945	58	54	37	The 17 studies
information that can be pooled. Thus, we are conducting thorough documentation of the whole process, not only for the sake of reproducibility and transparency, but also to estimate the quality of harmonization for every variable.

What are the main problems inherent to the harmonization?

In the course of the harmonization process, we encountered several challenges. First, the harmonization potential is a trade-off between the number of studies (quantity) that can be included and the content equivalence (precision) within the study-specific variables. For example, education can be harmonized using standard criteria, such as the ISCED2011, creating a categorical variable based on the highest qualification or generating a continuous variable for years of education. Greater precision in the definition of education would entail a lower number of studies that could be included. Second, some variables were at times conceptually different across studies, even though they described the same underlying construct. For example, employment may be addressed directly (e.g. are you employed?) or indirectly (e.g. are you retired?). The same applies to energy level, which can be addressed in terms of presence of energy (e.g. do you have energy for daily life?) or inversely (e.g. did you feel tired out or low in energy?). In this case, our intention was to address the variable in aggregate and not the way in which the question was asked. Further, ethical and legal issues may restrict the sharing and pooling of individual data. For example, studies may not publicly provide biomarker or mortality information of participants who have been lost to follow-up. Therefore, managing and pooling large datasets from different studies poses significant challenges, but the advantages seem worthwhile if we consider the global coverage and the gain in statistical power.

Can I get hold of the data? Where can I find out more?

A platform of free software applications, developed by Maelstrom Research, is used to store the original datasets, guide the harmonization process and create a web portal for the studies from the ATHLOS Consortium, as well as the final harmonized databases. These software applications have General Public Licences and can therefore be used and freely modified according to the ATHLOS project needs. The web catalogue can be found at: https://athlos.pssjd.org. External users interested in using the harmonized datasets should contact the ATHLOS Scientific Committee: (athlos@pssjd.org).

Profile in a nutshell

- The Ageing Trajectories of Health – Longitudinal Opportunities and Synergies (ATHLOS) cohort harmonizes existing longitudinal data from 17 international cohort studies.
- It aims to achieve a better understanding of the impact of ageing on health and to propose timely clinical and public health interventions to optimize and promote healthy ageing.
- The cohort comprises more than 411 000 individuals from 38 countries. Most of the studies started between 2000 and 2010 and have between 2 and 13 waves of data collection. New waves of data collected during the ATHLOS project and other studies will be incorporated in updated versions of the harmonized dataset.
- Harmonized datasets include variables classified in the following areas: (i) sociodemographic and economic characteristics; (ii) lifestyle and health behaviours; (iii) health status and functional limitations; (iv) diseases; (v) death; (vi) physical measures; (vii) psychological measures; (viii) laboratory measures; (ix) social environment and life events; and (x) other administrative information.
- The catalogues of the studies and final harmonized databases, together with documentation of the whole harmonization process, can be found in the web portal: (https://athlos.pssjd.org). External users interested in using the harmonized datasets should contact the ATHLOS Scientific Committee: (athlos@pssjd.org).

Supplementary data

Supplementary data are available at IJE online.

Funding

This work was supported by the five-year Ageing Trajectories of Health: Longitudinal Opportunities and Synergies (ATHLOS)
project. The ATHLOS project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 635316. See Appendix for more information about funding in each study.

Acknowledgements
The authors thank the ATHLOS Consortium for useful discussions and gratefully acknowledge the funding of institutions and the work of people who carried out the studies and provided data for this paper. See appendix for acknowledgements in each study.

Conflict of interest: None declared.

References
1. World Population Prospects: The 2017 Revision | Multimedia Library - United Nations Department of Economic and Social Affairs [Internet]. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html (22 June 2018, date last accessed).
2. World Report on Ageing And Health. 2015. www.who.int (18 July 2018, date last accessed).
3. Cosco TD, Prina AM, Perales J, Stephan BCM, Brayne C. Lay perspectives of successful ageing: a systematic review and meta-ethnicnography. BMJ Open 2013;3:e002710.
4. Cosco TD, Prina AM, Perales J, Stephan BCM, Brayne C. Operational definitions of successful ageing: a systematic review. Int Psychogeriatr 2014;26:373–81.
5. Perales J, Martin S, Ayuso-Mateos JL et al. Factors associated with active ageing in Finland, Poland, and Spain. Int Psychogeriatr 2014;26:1363–75.
6. Sonnega A, Faul JD, Ostfeld MB, Langa KM, Phillips JWR, Weir DR. Cohort profile: the Health and Retirement Study (HRS). Int J Epidemiol 2014;43:576–85.
7. Steptoe A, Breeze E, Banks J, Nazroo J. Cohort profile: the English longitudinal study of ageing. Int J Epidemiol 2013;42:1640–48.
8. Marmot M, Oldfield Z, Clemens S et al. English Longitudinal Study of Ageing: Waves 1–7, 1998–2015. Swindon: UK Data Service, Economic and Social Research Council; 2017.
9. Hidheiko I, Satoshi S, Hideki H. JSTAR First Results 2009 Report. Discuss Pap. Research Institute of Economy, Trade and Industry (RIETI). 2009. https://www.rieti.go.jp/jp/publications/wp/09e047.pdf (9 November 2015, date last accessed).
10. Wong R, Michaels-Obregon A, Palloni A. Cohort profile: the Mexican Health and Aging Study (MHAS). Int J Epidemiol 2013;42:1640–48.
11. Zhao Y, Hu Y, Smith JP, Strauss J, Yang G. Cohort profile: the Chinese Health and Retirement Longitudinal Study (CHARLS). Int J Epidemiol 2014;43:61–68.
12. Arokiasamy P, Bloom DE, Feeney KC, Ozolins M. Longitudinal Aging Study in India: Vision, Design, Implementation, and Some Early Results. PCDA Work Pap #812011 [Internet]. 2011. https://lasi.hsph.harvard.edu/publications/longitudinal-aging-study-india-vision-design-implementation-and-some-early-results (22 June 2018, date last accessed).
13. Park JH, Lim S, Lim JY et al. An overview of the Korean Longitudinal Study on Health and Aging. Psychiatry Investig 2007;4:84–95.
14. Wang S, Min J, Lee J. Harmonization of Cross-National Studies of Aging to the Health and Retirement Study: USER GUIDE, Health Behavior, Version A. 2014. https://www.rand.org/content/dam/rand/pubs/working_papers/WR800/WR861z8/RAND_WR861z8.pdf (8 June 2018, date last accessed).
15. Kowal P, Chatterji S, Naidoo N et al. Data resource profile: the World Health Organization Study on global AGEing and adult health (SAGE). Int J Epidemiol 2012;41:1639–49.
16. Börsch-Supan A, Brandt M, Hunkler C et al. Data resource profile: the Survey of Health, Ageing and Retirement in Europe (SHARE). Int J Epidemiol 2013;42:992–1001.
17. Prina AM, Acosta D, Acosta I et al. Cohort profile: the 10/66 study. Int J Epidemiol 2017;46:406–6i.
18. Fortier I, Raina P, Van den Heuvel ER et al. Maelstrom Research guidelines for rigorous retrospective data harmonization. Int J Epidemiol 2017;46:103–105.
19. Beenackers MA, Doiron D, Fortier I et al. MINDMAP: establishing an integrated database infrastructure for research in ageing, mental well-being, and the urban environment. BMC Public Health 2018;18:158.
20. Luszcz MA, Giles LC, Anstey KJ, Browne-Yung KC, Walker RA, Windsor TD. Cohort profile: the Australian Longitudinal Study of Ageing (ALSA). Int J Epidemiol 2016;45:1054–63.
21. Pitsavos C, Panagiotakos DB, Chrysohoou C, Stefanadis C. Epidemiology of cardiovascular risk factors in Greece: aims, design and baseline characteristics of the ATTICA study. BMC Public Health 2003;3:32.
22. Leonard M, Chatterji S, Koskenen S et al. Determinants of health and disability in ageing population: the COURAGE in Europe Project (collaborative research on ageing in Europe). Clin Psychol Psychother 2014;21:193–98.
23. Rodríguez-Artalejo F, Graciani A, Guallar-Castillón P et al. Rational and methods of the study on nutrition and cardiovascular risk in Spain (ENRICA). Rev Española Cardiol 2011;64:876–82.
24. Peasey A, Bobak M, Kubinova R et al. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and design of the HAPIEE study. BMC Public Health 2006;6:255.
25. Koskenen S. Health 2000 and 2011 Surveys—THL Biobank, National Institute for Health and Welfare, https://thlb.fi/biobank/thl-biobank-for-researchers/sample-collections/health-2000-and-2011-surveys (18 July 2018, date last accessed).
26. Whelan B, Savva GM. Design and methodology of the Irish Longitudinal Study on Ageing. J Am Geriatr Soc 2013;61:526–58.
27. Koupil I. The Uppsala studies on developmental origins of health and disease. J Intern Med 2007;261:426–36.
28. Koupil I, Goodman A. Health equity: a life course approach. Public Serv Rev Eur Union 2011;11:382–83.
29. WHO | International Classification of Functioning, Disability and Health (ICF). World Health Organization 2018. http://www.who.int/classifications/icf/en/ (8 June 2018, date last accessed).
30. Salomon J, Mathers C, Chatterji S, Sadana R, Ustün T, Murray C. Quantifying individual levels of health: definitions, concepts and measurement issues. In: Health Systems Performance: Assessment Debates, Methods and Empiricism. Geneve: World Health Organisation, 2003, pp. 301–18.
Appendix

The ATHLOS project researchers are grateful for data contribution and funding in the following studies:

- The 10/66 study (10/66):
 The 10/66 study is supported by the Wellcome Trust (GR066133/ GR080002), the European Research Council (340755), US Alzheimer’s Association, WHO, FONDACIT (Venezuela) and the Puerto Rico State Government, and the Medical Research Council (MR/K021907/1 to A.M.P.). The authors gratefully acknowledge the work of the 10/66 Dementia Research Group who provided data for this paper.

- The Australian Longitudinal Study of Ageing (ALSA):
 The ALSA study was supported by grants from the South Australian Health Commission, the Australian Rotary Health Research Fund, the US National Institute on Aging (Grant No. AG 08523–02), the Office for the Ageing (SA), Elderly Citizens Homes (SA), the National Health and Medical Research Council (NH&MRC 22922), the Premiers Science Research Fund (SA) and the Australian Research Council (DP0879152; DP130100428). The authors gratefully acknowledge the work of the project team at the Flinders Centre for Ageing Studies, Flinders University who provided data for this paper.

- The ATTICA study:
 The ATTICA study is supported by research grants from the Hellenic Cardiology Society (HCS2002) and the Hellenic Atherosclerosis Society (HAS2003). The authors gratefully acknowledge the work of the project team at the Harokopio University who provided data for this paper.

- The China Health and Retirement Longitudinal Study (CHARLS):
 The CHARLS study has received critical support from Peking University, the National Natural Science Foundation of China, the Behavioral and Social Research Division of the National Institute on Aging and the World Bank. The authors gratefully acknowledge the work of the project team at the Peking University who provided data for this paper.

- Collaborative Research on Ageing (COURAGE) in Europe:
 The COURAGE study was supported by the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement number 223071 (COURAGE in Europe). Data from Spain were also collected with support from the Instituto de Salud Carlos III-FIS research grants number PS09/00295, PS09/01845, PI12/01490, PI13/00059, PI16/00218 and PI16/01073; the Spanish Ministry of Science and Innovation ACI-Promoción (ACI2009-1010); the European Regional Development Fund (ERDF) ‘A Way to Build Europe’ grant numbers PI12/01490 and PI13/00059; and by the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III. Data from Poland were collected with support from the Polish Ministry for Science and Higher Education grant for an international co-financed project (number 1277/7PR/UE/2009/7, 2009–2012) and Jagiellonian University Medical College grant for project COURAGE-POLFUS (K/ZDS/005241). The authors gratefully acknowledge the work of COURAGE researchers who provided data for this paper.

- The Seniors-ENRICA:
 The Seniors-ENRICA cohort was funded by an unconditional grant from Sanofi-Aventis, the Ministry of Health of Spain, FIS grant 12/1166 (State Secretary for R + D and FEDER-FSE) and the Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III. The authors gratefully acknowledge the work of the project team at the Universidad Autónoma de Madrid who provided data for this paper.

- The English Longitudinal Study of Ageing (ELSA):
 ELSA is supported by the U.S. National Institute of Aging, the National Centre for Social Research, the University College London (UCL) and the Institute for
Fiscal Studies. The authors gratefully acknowledge the UK Data Service and UCL who provided data for this paper.

- The Health, Alcohol and Psychosocial factors In Eastern Europe (HAPIEE) study:
 The HAPIEE study was supported by the Wellcome Trust [grant numbers WT064947, WT081081], the US National Institute of Aging [grant number 1RO1AG23522] and the MacArthur Foundation Initiative on Social Upheaval and Health. The authors gratefully acknowledge the work of the project teams at University College London, the National Institute of Public Health in Prague, the Jagiellonian University Medical College in Krakow and the Kaunas University of Medicine who provided data for this paper.

- The Health 2000/2011 study:
 The authors gratefully acknowledge the National Institute for Health and Welfare in Finland who provided data for this paper.

- Health and Retirement Study (HRS):
 The HRS study is supported by the National Institute on Aging (grant number NIA U01AG009740) and the Social Security Administration, and is conducted by the University of Michigan. The authors gratefully acknowledge the University of Michigan who provided data for this paper.

- The Japanese Study of Aging and Retirement (JSTAR):
 The JSTAR is conducted by the Research Institute of Economy, Trade and Industry (RIETI), the Hitotsubashi University, and the University of Tokyo. The authors gratefully acknowledge the RIETI who provided data for this paper.

- The Korean Longitudinal Study of Ageing (KLOSA):
 The KLOSA study is funded by the Korea Employment Information Service (KEIS) and was supported by the Korea Labor Institute’s KLOSA Team. The authors gratefully acknowledge the KEIS who provided data for this paper.

- The Mexican Health and Aging Study (MHAS):
 The MHAS study is partly sponsored by the National Institutes of Health/National Institute on Aging (grant number NIH R01AG018016) and the INEGI in Mexico. The authors gratefully acknowledge the MHAS team who provided data for this paper retrieved from www.MHASweb.org

- The Study on Global Ageing and Adult Health (SAGE):
 The SAGE study is funded by the U.S. National Institute on Aging and has received financial support through Interagency Agreements (OGHA 04034785; YA1323-08-CN-0020; Y1-AG-1005-01) and Grants (R01-AG034479; IR21-AG034263-0182). The authors gratefully acknowledge the World Health Organization who provided data for this paper.

- The Survey of Health, Ageing and Retirement in Europe (SHARE):
 The SHARE study is funded by the European Commission through FP5 (QLK6-CT-2001–00360), FP6 (SHARE-I3: RII-CT-2006–062193, COMPARE: CIT5-CT-2005–028857, SHARELIFE: CIT4-CT-2006–028812) and FP7 (SHARE-PREP: N’211909, SHARE-LEAP: N’227822, SHARE M4: N’261982). Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the U.S. National Institute on Aging (U01 AG09740-13S2, P01 AG005842, P01 AG08291, P30 AG12815, R21 AG025169, Y1-AG-4553–01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C) and from various national funding sources is gratefully acknowledged (see www.share-project.org).

- The Irish Longitudinal study on Ageing (TILDA):
 The authors gratefully acknowledge the Trinity College Dublin and the Irish Social Science Data Archive (www.ucd.ie/issda) who provided data for this paper.

- The Uppsala Birth Cohort Multigenerational Study (UBCOS):
 The UBCos study has received funding from the Swedish Research Council for Health, Working Life and Welfare (FORTE; 2006–1518 and 2013–1084) and from the Swedish Research Council (VR; 2013–5104 and 2013–5474). The authors gratefully acknowledge the Centre for Health Equity Studies at the Stockholm University and Karolinska Institutet’s team who provided data for this paper.