Foliar Application of Sugar Alcohol Zinc Increases Sugar Content in Apple Fruit and Promotes Activity of Metabolic Enzymes

Yong Zhang1, Chunxia Fu1, Yujing Yan, Xiaodan Fan, and Yan’an Wang2
State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong 271018, China

Ming Li
National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China

Abstract. Application of sugar alcohol zinc (SA-Zn) spray to apple trees at certain developmental stages can improve fruit quality. Increasing the Zn concentration of fruit can improve nutritional content and promote human health. We conducted foliar application of SA-Zn to 13-year-old ‘Fuji’ apple trees at different developmental stages. The effects of SA-Zn application on Zn concentration, reducing sugar content, and carbohydrate metabolism-related enzyme activity in fruit were investigated. The foliar treatment increased Zn and reducing sugar concentrations significantly in mature fruit. Sorbitol dehydrogenase activity was higher in the fruit of trees treated before budbreak and 3 weeks after flowering compared with the control at the early fruit stage and was higher during fruit expansion in plants treated after termination of spring shoot growth. Mature fruit of trees treated during the fruit expansion stage showed higher sorbitol dehydrogenase activity than the control. Foliar SA-Zn treatment did not have a significant effect on sorbitol oxidase activity in apple fruit. Treatment before budbreak and at 3 weeks after flowering led to a significant increase in the activity of sucrose synthase and acid invertase at the early fruit stage. Treatment during the fruit expansion stage significantly increased the activity of acid invertase at maturity but had no effect on the activity of neutral invertase. Our results indicate that foliar SA-Zn application resulted in biofortification of Zn in apples, which led to higher activity of carbohydrate metabolism-related enzymes and accumulation of sugars.

Materials and Methods
Experimental design. The experiment was conducted in 2012 in an orchard (lat. 36°14’ N, long. 116°50’ E) in Feicheng City, Shandong Province, China, using 13-year-old Fuji apple trees (Malus xdomestica Borkh. ‘Red Fuji’/M. hupehensis Rehdf.). Trees were selected according to uniformity of size and the leaf Zn concentration of the chosen trees was (mean ± sd) 14.3 ± 1.2 mg kg⁻¹ dry weight, and the trees showed no symptoms of Zn deficiency. They were sprayed at different developmental stages with SA-Zn [sugar alcohol-based zinc liquid fertilizer containing 3% (m/m) nitrogen, 10% (m/m) sugar alcohol, and 7% (m/m) Zn; Beijing Xinheng Agrichemical Co., Beijing, China]. The trees were arranged in a randomized block design with five replicates per treatment (n = one tree per replicate) with five to seven guard apple trees located between the treatments. Five treatments were used: 1) control, no SA-Zn; 2) foliar application of SA-Zn before budbreak (19 Mar.); 3) foliar application of SA-Zn 3 weeks after flowering (21 May); 4) foliar application of SA-Zn at termination of spring shoot growth (10 July); and 5) foliar application of SA-Zn during fruit expansion stage (17 Aug.). We applied spray to branches before budbreak, with a 0.7% (v/v) aqueous solution of SA-Zn until runoff. After budbreak, a 0.1% (v/v) aqueous solution of SA-Zn was sprayed onto leaves until runoff. We randomly selected and picked 20 apples from the outer branches of each tree at the same canopy height 10 d after flowering (DAF); 10 fruits were collected from each tree at monthly intervals thereafter. We removed the 10 or 20 fruit peel from fruit entirely. After removing the core, the flesh was cut into pieces and mixed well per replicate. The samples weighed 10.0 g and were immediately frozen in liquid nitrogen and then enzyme activity was determined. The samples for determination of sugar contents after 1 d were stored at –80°C.

The time at which each developmental stage of apple trees begins and ends differs among years according to meteorological conditions. We defined fruit developmental stages according to Shu et al. (1993) as follows: early stage, 10 to 80 DAF; fruit

Received for publication 21 Apr. 2014. Accepted for publication 16 June 2014.
Funding for this research was obtained from the National Natural Science Foundation of China (Grant No. 31377025), the Zinc Nutrient Initiative MD-86, the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013CM022), and the National Public Benefit (Agricultural) Research Foundation of China (Grant No. 201103003 and 200903044).
1These authors contributed equally to this work as joint first authors.
2To whom reprint requests should be addressed; e-mail wy@apple@126.com.
expansion stage, 80 to 160 DAF; mature stage, 160 to 190 DAF.

Determination of zinc concentration. The collected apples were peeled, cut into pieces, and oven-dried at 45 °C. The dried samples were acid digested in a 50-ml tube and analyzed for Zn content using an SP9-400 atomic absorption spectrophotometer (Pye, Cambridge, U.K.).

Determination of reducing sugar content. The samples were taken from the freezer and homogenized in 5 mL distilled water and centrifuged at 12,000 × g for 20 min. The precipitate was resuspended in distilled water and shaken, centrifuged a second time at 12,000 × g for 20 min, and the supernatants were pooled. The extract was filtered into a 50-mL volumetric flask and the concentration of total reducing sugar was determined by 3,5-dinitrosalicylic acid colorimetry.

Enzyme extraction and assays. Invertase, SDH, and SOX were extracted according to Yamaki (1986) with modifications. Immediately after harvest, a 10.0-g composited sample from at least 10 apples was frozen immediately by centrifugal filtration at 1°C on Sephadex G-25 columns (Sigma) equilibrated with 50 mm MOPS-NaOH (pH 7.5), 5 mM MgCl₂, 2.5 mM DTT, and 0.5 mg·mL⁻¹ bovine serum albumin (BSA). The homogenate was centrifuged at 10,000 × g for 20 min, and the supernatant was desalted immediately by centrifugal filtration at 1°C on Sephadex G-25 columns (Sigma) equilibrated with 50 mm MOPS-NaOH (pH 7.5), 5 mM MgCl₂, 2.5 mM DTT, and 0.5 mg·mL⁻¹ BSA. The activity of SS related to sucrose cleavage was assayed by the quantity of uridine diphosphate (UDP)-glucose coupled to the reduction of NAD⁺ in the presence of excess UDP-glucose dehydrogenase according to a slight modification of the procedure described by Morell and Copeland (1985).

Statistical analysis. Significant differences among the treatments and the control were determined through an analysis of variance using SAS (Version 8.1; SAS Institute, Cary, NC) followed by the Fisher’s least significant difference test. The mean values were separated using Fisher’s least significant difference test at the P < 0.05 level of significance.

Results

Effects of foliar SA-Zn application on changes of Zn concentration in fruit. The concentration of Zn in apple fruit increased up to 70 DAF and then decreased with fruit enlargement (Table 1). Application of SA-Zn spray before budbreak and 3 weeks after flowering led to an increased Zn concentration at all stages. Application of SA-Zn spray after termination of spring shoot growth led to a significantly higher Zn concentration at 100 DAF. All treatments led to a significant increase in Zn concentration at maturity with the largest increases occurring in plants treated after termination of spring shoot growth and during the fruit expansion stage (Table 1).

Effects of foliar SA-Zn application on the concentration of reducing sugars in fruit. The concentration of reducing sugars in apples increased throughout fruit development (Table 2). There were no significant differences between the treatments and control during the early fruit stage. However, application of SA-Zn spray led to increased sugar concentrations at 100 to 190 DAF with the most significant increase during the fruit expansion stage.

Effects of foliar SA-Zn application on activity of sorbitol metabolism-related enzymes in fruit. Sorbitol dehydrogenase activity was very low during the early fruit stage (Table 3). When SA-Zn spray was applied before budbreak and 3 weeks after flowering, SDH activity was increased significantly during the early fruit stage compared with the control; however, these differences were no longer significant at maturity. Application of SA-Zn spray after termination of spring shoot growth led to

Table 1. Effects of foliar application of sugar alcohol zinc (SA-Zn) at different development stages on Zn concentration in Fuji apple fruit.

Treatment stagex	10 d	40 d	70 d	100 d	130 d	160 d	190 d
CK	7.11 b	8.79 b	9.80 c	9.26 b	7.02 b	3.51 b	1.64 c
T1	8.92 a	10.66 a	10.54 b	9.73 a	7.42 a	4.19 a	2.17 b
T2	10.02 a	11.11 a	9.84 a	7.53 a	4.46 a	2.13 b	
T3	10.25 a	8.05 a	3.98 a	2.96 a			
T4	10.25 a	8.05 a	3.98 a	2.96 a			
Zn concentration in fruit (mg kg⁻¹)							

Table 2. Effects of foliar application of sugar alcohol zinc (SA-Zn) at different development stages on the concentration of reducing sugars in Fuji apple fruit.

Treatment stagex	10 d	40 d	70 d	100 d	130 d	160 d	190 d
CK	9.12 a	17.10 c	25.14 a	40.33 b	58.40 c	76.14 c	82.42 c
T1	9.58 a	18.59 a	26.87 a	47.05 a	69.43 b	88.20 b	92.83 b
T2	19.84 a	28.86 a	49.65 a	65.47 b	89.78 b	95.00 b	
T3	48.30 a	71.72 a	88.03 a	92.37 b			
T4	94.74 a	101.5 a					

1 Early stage, 10 to 80 DAF; fruit expansion stage, 80 to 160 DAF; mature stage, 160 to 190 DAF.
2 Different letters in the same column indicate significant differences (P < 0.05) (Fisher’s least significant difference test).
3 CK = no SA-Zn; T1 = sprayed before budbreak; T2 = sprayed at 3 weeks after flowering; T3 = sprayed at termination of spring shoot growth; T4 = sprayed at fruit expansion stage.
increased SDH activity at 100 and 130 DAF. Foliar SA-Zn application during the fruit expansion stage was associated with a significant increase in SDH activity. SA-Zn application had no significant effect on SOX activity (Table 3).

Effects of foliar SA-Zn application on SS activity in fruit. Sucrose synthase activity decreased with fruit development (Table 4). Application of SA-Zn spray before budbreak and 3 weeks after flowering led to a significant increase in SS activity from 10 to 100 DAF. Treatment during the fruit expansion stage was also associated with a significant increase in SS activity. SA-Zn application had no effect on NI activity (Table 5).

Discussion

Foliar application of SA-Zn provides an efficient means of achieving biofortification of cereal grains (Cakmak, 2008). Research on brown rice (*Oryza sativa* L.) found that soil application of SA-Zn failed to cause a substantial increase in Zn concentration in the grain but that foliar application led to fortification of this nutrient (Wissuwa et al., 2008). Foliar SA-Zn application has consistently and significantly contributed to increased grain Zn in rice irrespective of cultivar, environmental conditions, and management practices in China, India, Laos, Thailand, and Turkey (Phattarakul et al., 2012). Foliar application of SA-Zn could be an effective strategy in biofortifying legumes with Zn (Pandey et al., 2013). Our results demonstrated that application of SA-Zn spray to branches and leaves of apple trees at different growth stages resulted in an increased concentration of Zn in fruit.

Sugars produced by photosynthesis are transported to sink organs as sucrose and sorbitol; sorbitol is the main form transported to fruit in apple trees (Loescher et al., 1982). In fruit, sucrose and sorbitol are transformed into reducing sugars, including fructose and glucose, by various enzymes (e.g., AI, NI, SS, SDH, and SOX) (Berüter et al., 1997; Loescher et al., 1982). In the present study, foliar application of SA-Zn had no significant effect on reducing sugars during the early fruit stage, probably because fructose and glucose were used in tissue building (Koch, 2004). However, all of the SA-Zn treatments were associated with a significant increase in the concentration of reducing sugars in mature fruit.

In fruit, sorbitol is transformed into fructose by SDH and into glucose by SOX for storage or participation in other metabolic processes (Yamaguchi et al., 1996). Foliar SA-Zn application led to increased SDH activity, which contributed to the increasing of reducing sugar in fruit. The results showed SOX activity exhibited low levels in fruit. This is probably because SOX accounts for only one-fifth of SDH activity, and more than 80% of SOX exists in bound form (Chong, 1971). The transformation of sucrose into fructose and glucose is converted by SS, AI, and NI in fruit, leading to differences in sugar concentration between fruit and phloem that drive sucrose unloading (Wind et al., 2010).

Foliar application of SA-Zn had a significant effect on SS activity during the early stages but no effect during later stages of fruit development, probably because SS activity is generally higher in early stages than in mature stages of growth (Li et al., 2002). During early growth, fruit require more UDP-glucose (produced from sucrose by SS catalysis) for synthesis of base materials (Koch, 2004).

In fruit, many sugar-metabolizing enzymes (e.g., SDH, SOX, SS, AI, and NI) are closely related to sink strength and plant growth, fruit require more UDP-glucose (produced from sucrose by SS catalysis) for synthesis of base materials (Koch, 2004).

Table 3. The effects of sugar alcohol zinc (SA-Zn) spraying at different development stages on changes of sorbitol dehydrogenase (SDH) and sorbitol oxidase (SOX) activity in Fuji apple fruit.

Days after flowering (DAF)z	Enzyme	Treatment stagec	Activitiesb (mmol·g⁻¹ h⁻¹)
10 d	SDH	CK	0.26 b
		T1	0.95 b
		T2	1.79 a
		T3	6.97 a
		T4	7.24 a
	SOX	CK	1.39 a
		T1	1.61 a
		T2	2.64 a
		T3	1.35 a
		T4	1.71 a
40 d			
70 d			
100 d			
130 d			
160 d			
190 d			

1) Early stage, 10 to 80 DAF; fruit expansion stage, 80 to 160 DAF; mature stage, 160 to 190 DAF.
2) Different letters in the same column indicate significant differences (P < 0.05) (Fisher’s least significant difference test).
3) CK = no SA-Zn; T1 = sprayed before budbreak; T2 = sprayed at 3 weeks after flowering; T3 = sprayed at termination of spring shoot growth; T4 = sprayed at fruit expansion stage.

Table 4. The effects of sugar alcohol zinc (SA-Zn) at different development stages on the changes of sucrose synthase (SS) cleavage activity in Fuji apple fruit.

Days after flowering (DAF)c	Enzyme	Treatment stagec	Activitiesb (mmol·g⁻¹ h⁻¹)
10 d	SS	CK	6.68 b
		T1	7.49 a
		T2	7.70 a
		T3	4.00 a
		T4	2.54 a
40 d			
70 d			
100 d			
130 d			
160 d			
190 d			

1) Early stage, 10 to 80 DAF; fruit expansion stage, 80 to 160 DAF; mature stage, 160 to 190 DAF.
2) Different letters in the same column indicate significant differences (P < 0.05) (Fisher’s least significant difference test).
3) CK = no SA-Zn; T1 = sprayed before budbreak; T2 = sprayed at 3 weeks after flowering; T3 = sprayed at termination of spring shoot growth; T4 = sprayed at fruit expansion stage.

Table 5. The effects of sugar alcohol zinc (SA-Zn) spraying at different development stages on changes of acid invertase (AI) and neutral invertase (NI) activity in Fuji apple fruit.

Days after flowering (DAF)c	Enzyme	Treatment stagec	Activitiesb (mmol·g⁻¹ h⁻¹)
10 d	AI	CK	8.13 b
		T1	9.13 a
		T2	10.33 a
		T3	14.63 a
		T4	14.63 a
40 d			
70 d			
100 d			
130 d			
160 d			
190 d			

1) Early stage, 10 to 80 DAF; fruit expansion stage, 80 to 160 DAF; mature stage, 160 to 190 DAF.
2) Different letters in the same column indicate significant differences (P < 0.05) (Fisher’s least significant difference test).
3) CK = no SA-Zn; T1 = sprayed before budbreak; T2 = sprayed at 3 weeks after flowering; T3 = sprayed at termination of spring shoot growth; T4 = sprayed at fruit expansion stage.
activity; the activity of SDH, SS, and AI largely determines the sink strength of fruit (Hockema and Etxeberria, 2001; Nosarszewski et al., 2004; Zhou et al., 2006). In the present study, foliar SA-Zn application led to increased activity of SDH, AI, and SS. Therefore, the increased concentration of reducing sugars was probably a result of enhanced activity of these enzymes induced by SA-Zn application, which led to large sink strength.

Interestingly, we found that the effect of foliar SA-Zn application on enzyme activity becomes less obvious with increasing time after application. Repeated foliar treatment with SA-Zn may be required to obtain continuous effects.

Literature Cited

Andreini, C. and I. Bertini. 2012. A bioinformatics view of zinc enzymes. J. Inorg. Biochem. 111:159–156.

Archbold, D.D. and M. Nosarszewski. 2004. Patterns of sorbitol metabolism and availability during apple fruit set. HortScience 39:887.

Berüter, J., M.E.S. Feusi, and P. Riüedi. 1997. Sorbitol and sucrose partitioning in the growing apple fruit. J. Plant Physiol. 151:269–276.

Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 302:1–17.

Chong, C. 1971. Study of the seasonal and daily distribution of sorbitol and related carbohydrates within apple seedlings by analysis of selected tissues and organs. Can. J. Plant Sci. 51:519–525.

Hacisalihoglu, G., I.J. Hart, Y.H. Wang, I. Cakmak, and L.V. Kochian. 2003. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiol. 131:595–602.

Hockema, B.R. and E. Etxeberria. 2001. Metabolic contributors to drought-enhanced accumulation of sugars and acids in oranges. J. Amer. Soc. Hort. Sci. 126:599–605.

Hubbard, N.L., S.C. Huber, and D.M. Pharr. 1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol. 91:1527–1534.

Koch, K. 2004. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7:235–246.

Li, P., X. Dong, Y. Wang, C. Liu, Y. Yuan, and P. Li. 2002. Activity and subcellular localization of sucrose synthase in ‘Starkrimson’ apple during fruit development. Acta Hort. Sinica 29:375–377.

Loescher, W.H., G.C. Marlow, and R.A. Kennedy. 1982. Sorbitol metabolism and sink-source interconversions in developing apple leaves. Plant Physiol. 70:335–339.

Morell, M. and L. Copeland. 1985. Sucrose synthase of soybean nodules. Plant Physiol. 78:149–154.

Neilsen, G.H., E.J. Hogue, D. Neilsen, and P. Bowen. 2005. Postbloom humic- and fulvic-based zinc sprays can improve apple zinc nutrition. HortScience 40:205–208.

Nosarszewski, M., A.M. Clements, A.B. Downie, and D.D. Archbold. 2004. Sorbitol dehydrogenase expression and activity during apple fruit set and early development. Physiol. Plant. 121:391–398.

Pandey, N., B. Gupta, and G.C. Pathak. 2013. Enhanced yield and nutritional enrichment of seeds of Pisum sativum L. through foliar application of zinc. Sci. Hort. 164:474–483.

Park, S.W., K.J. Song, M.Y. Kim, J.H. Hwang, Y.U. Shin, W.C. Kim, and W.I. Chung. 2002. Molecular cloning and characterization of four cDNAs encoding the isoforms of NAD-dependent sorbitol dehydrogenase from the Fuji apple. Plant Sci. 162:513–519.

Phattarakul, N., B. Rerkasem, L. Li, L. Wu, C. Zou, H. Ram, V. Sohu, B. Kang, H. Surek, M. Kalayci, A. Yazici, F. Zhang, and I. Cakmak. 2012. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil 361:131–141.

Shu, H.R., X.S. Luo, G.L. Wu, E. Zhou, Z.Z. Li, and M.R. Gu. 1993. Fruit cultivated physiology. Beijing Agriculture Press, Beijing, China.

Shi, Z.-h., C.-s. Chu, L.-j. Hwang, and C.-s. Shieh. 2001. Light, temperature, and sucrose affect color, diameter, and soluble solids of disks of wax apple fruit skin. HortScience 36:279–281.

Sturm, A. and G.-Q. Tang. 1999. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci. 4:401–407.

Wind, J., S. Smeekens, and J. Hanson. 2010. Sucrose: Metabolite and signaling molecule. Phytochemistry 71:1610–1614.

Wissuwa, M., A. Ismail, and R. Graham. 2008. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48.

Yamada, K., Y. Oura, H. Mori, and S. Yamaki. 1998. Cloning of NAD-dependent sorbitol dehydrogenase from apple fruit and gene expression. Plant Cell Physiol. 39:1375–1379.

Yamaguchi, H., Y. Kanayama, J. Soejima, and S. Yamaki. 1996. Changes in the amounts of the NAD-dependent sorbitol dehydrogenase and its involvement in the development of apple fruit. J. Amer. Soc. Hort. Sci. 121:848–852.

Yamaki, S. 1986. Roles of four sorbitol related enzymes and invertase in the seasonal alteration of sugar metabolism in apple tissue. J. Amer. Soc. Hort. Sci. 111:134–137.

Zhang, Y., C. Fu, Y. Yan, Y.a. Wang, M. Li, M. Chen, J. Qian, X. Yang, and S. Cheng. 2013. Zinc sulfate and sugar alcohol zinc sprays at critical stages to improve apple fruit quality. HortTechnology 23:490–497.

Zhou, R., L. Cheng, and A.M. Dandekar. 2006. Down-regulation of sorbitol dehydrogenase and up-regulation of sucrose synthase in shoot tips of the transgenic apple trees with decreased sorbitol synthesis. J. Exp. Bot. 57:3647–3657.