Analysis of N^* spectra using matrices of correlation functions based on irreducible baryon operators

LHP Collaboration: S. Basaka, R. Edwardsb, R. Fiebigc, G.T. Flemingbd, U.M. Hellere, C. Morningstarf, D. Richardsb, I. Satoa and S. Wallacea

aDepartment of Physics, University of Maryland, College Park, MD 20742, USA

bThomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

cDepartment of Physics, Florida International University, Miami, FL 33199, USA

dSloane Physics Lab, Yale University, 217 Prospect St, New Haven, CT 06520, USA

eAmerican Physical Society, One Research Road, Ridge, NY 11961, USA

fDepartment of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

We present results for ground and excited-state nucleon masses in quenched lattice QCD using anisotropic lattices. Group theoretical constructions of local and nonlocal straight-link irreducible operators are used to obtain suitable sources and sinks. Matrices of correlation functions are diagonalized to determine the eigenvectors. Both chi-square fitting and Bayesian inference with an entropic prior are used to extract masses from the correlation functions in a given channel. We observe clear separation of the excited state masses from the ground state mass. States of spin $\geq \frac{5}{2}$ have been isolated by use of G_2 operators.

1. INTRODUCTION

Reproducing the spectrum of baryon resonances with spin-$1/2$ and spin-$3/2$ and both parities is an important test of lattice QCD. For that we require three-quark operators that transform irreducibly under the spinorial rotation group of the lattice [1]. Local and nonlocal straight-link operators corresponding to irreducible representations (IRs) $G_{1g,u}$, $H_{g,u}$ and $G_{2g,u}$ are constructed to obtain suitable sources and sinks [2]. Here we analyze N^* spectra using these operators.

To determine the N^* excited states, a matrix of correlation functions is computed in the quenched approximation to QCD using irreducible baryon interpolating operators $\overline{B}_i(\vec{x},t)$ of definite quantum numbers,

$$C_{ij}(t) = \sum_{\vec{x}} \langle 0|T(\overline{B}_i(\vec{x},t)\overline{B}_j(0,0))|0\rangle. \quad (1)$$

The $C_{ij}(t)$ matrices for G_1 and H states for each parity are constructed using local operators, smeared local operators and smeared straight-link operators. For G_2, we have one operator which is of smeared straight-link type (Tables 1, 3 in [2]).

The computation of masses of the lowest-lying resonances is based on the variational method applied to the matrix of correlation functions. In this paper we solve the generalized eigenvalue equation,

$$C_{ij}(t) V_j^{(\alpha)}(t) = \lambda^{(\alpha)}(t, t_0) C_{ij}(t) V_j^{(\alpha)}(t) \quad (2)$$

and determine eigenvectors $V^{(\alpha)}(t)$ for each t, with t_0 close to the source time. Then the masses of N^* states correspond to the eigenvalues of Eq. (2): $\lambda^{(\alpha)}(t, t_0) \rightarrow e^{-m^{(\alpha)}(t-t_0)} \Rightarrow$. The effective masses are determined from

$$m^{(\alpha)}_{\text{eff}} = \ln \left[\frac{\lambda^{(\alpha)}(t, t_0)}{\lambda^{(\alpha)}(t+1, t_0)} \right] \Rightarrow e^{-m^{(\alpha)}(t-t_0)}. \quad (3)$$

Another way to extract spectrum information is to calculate the spectral mass density $\rho(\omega)$ from

Presented by S. Basak
Figure 1. G_{1g} effective masses for a selected few low-lying states.

Figure 2. Lowest positive parity effective masses for the IRs G_{1g}, H_g and G_{2g}.

G_{1g}$ matrices with $t_0 = 2$. In Fig. 4 we choose to show a few low-lying states that are clearly separated. However, the details of the states above the ground state are under study. The plot shows a good plateau for the ground state and statistically significant splittings for a couple of excited states.

In Figs. 2 and 3 we have collected the effective mass plots of the lowest states of both parities for G_{1g}, G_{2g} and H. The ratio of lowest masses for G_{1g} and G_{1u} is roughly in accordance with experiment, for spin-1/2 states, the G_{1u} mass being higher. The effective masses for $H_{g,u}$ are obtained using a 7×7 matrices of correlation functions. The lowest negative parity H_u state has smaller mass than the lowest positive parity H_g state. This is compatible with the pattern found in nature for spin-3/2. However, the masses of H_u and G_{1u} overlap within errors. Our result for G_2 masses also reveals reasonable separations of the G_{2g} and G_{2u} masses, G_{2g} being lower. From Fig. 2 it is evident that the effective mass for G_{2g} (allowed spin 3/2$, 5/2$, · · ·$)$ is very similar to that for G_{2g} (allowed spin 5/2$, 7/2$, · · ·$)$. These states are orthogonal. One possibility for this is that the lowest H_g state has spin-3/2$^+$ and its mass is accidentally close to that of the lowest G_{2g} state. Another possibility is that the lowest H_g state is spin-5/2$^+$, in which case the same

lattice correlation functions using the Maximum Entropy Method (MEM) [4].

$$C(t, t_0) \rightarrow \int d\omega \rho(\omega)e^{-\omega(t-t_0)}.$$ (4)

One of the advantages of MEM is that it utilizes data on a wide range of available time slices and has been shown to yield results even for noisy data [4]. This feature may be helpful in extracting masses of excited states.

2. RESULTS

We use an ensemble of 287 quenched, anisotropic $16^3 \times 64$ lattices with renormalized anisotropy $\xi = 3.0$ and $\beta = 6.1$, corresponding to $a_\pi^{-1} = 6.0$ GeV [5]. We use the anisotropic Wilson action. The parameters of the Wilson fermion action are tuned nonperturbatively so as to satisfy the continuum dispersion relation $E(p)^2 = E(0)^2 + c(p)^2p^2$ at a pion mass $m_\pi \simeq 500$ MeV. To improve the coupling of operators to the lower mass states we employ gauge-covariant smearing of the quark fields on both source and sink: $\psi(x) = (1 + \sigma^2\Delta(\tilde{U})/4N)^N\psi(x)$, where $\Delta(\tilde{U})$ is the three dimensional Laplacian and \tilde{U} denotes APE-smear $SU(3)$ link variables. The parameters used to smear the quark fields are $\sigma = 3.6$ and $N = 32$.

The effective masses are calculated from 10×10 G_{1g} matrices with $t_0 = 2$. In Fig. 4 we choose to show a few low-lying states that are clearly separated. However, the details of the states above the ground state are under study. The plot shows a good plateau for the ground state and statistically significant splittings for a couple of excited states.

In Figs. 2 and 3 we have collected the effective mass plots of the lowest states of both parities for G_1, G_2 and H. The ratio of lowest masses for G_{1g} and G_{1u} is roughly in accordance with experiment, for spin-1/2 states, the G_{1u} mass being higher. The effective masses for $H_{g,u}$ are obtained using a 7×7 matrices of correlation functions. The lowest negative parity H_u state has smaller mass than the lowest positive parity H_g state. This is compatible with the pattern found in nature for spin-3/2. However, the masses of H_u and G_{1u} overlap within errors. Our result for G_2 masses also reveals reasonable separations of the G_{2g} and G_{2u} masses, G_{2g} being lower. From Fig. 2 it is evident that the effective mass for G_{2g} (allowed spin 3/2$, 5/2$, · · ·$)$ is very similar to that for G_{2g} (allowed spin 5/2$, 7/2$, · · ·$). These states are orthogonal. One possibility for this is that the lowest H_g state has spin-3/2$^+$ and its mass is accidentally close to that of the lowest G_{2g} state. Another possibility is that the lowest H_g state is spin-5/2$^+$, in which case the same
state must be present in H_g and G_{2g}, but not in G_{1g}. Study over different values of lattice spacing is required to decide.

Finally, we present the G_{2g} MEM spectral function in Figure 4. We find that the peak of the spectral density roughly corresponds to the effective mass value.

In Table 1 we summarize our preliminary estimates of the lowest masses for the different representations extracted from single-exponential fits to the $\lambda(\alpha) (t, t_0)$ of Eqn. 1. The effective masses for the lowest states of G_1, H and G_2 for both parities, whether obtained from the variational method or preliminary MEM analysis, show a spectrum of distinct N^* masses. However, the behavior of the spectrum with m_π and the sensitivity of the spectrum to variations in the lattice volume has yet to be studied.

This work is supported by US National Science Foundation under Awards PHY-0099450 and PHY-0300065, and by US Department of Energy under contract DE-AC05-84ER40150 and DE-FG02-93ER-40762.

REFERENCES

1. C. Morningstar et al., Nucl. Phys. B (Proc. Suppl.) 129 (2004) 236 and these proceedings
2. I. Sato et al., Nucl. Phys. B (Proc. Suppl.) 129 (2004) 209 and these proceedings
3. C. Michael, Nucl. Phys. B259 (1985) 58; M. Lüscher et al., Nucl. Phys. B339 (1990) 222; C.R. Alton et al., Phys. Rev. D47 (1993) 5128
4. H.R. Fiebig, Phys. Rev. D65 (2002) 094512
5. R.G. Edwards et al., Nucl. Phys. B (Proc. Suppl.) 119 (2003) 305

Table 1

IRs	Fit range	m_{eff}	\sim Mass (MeV)
G_{1g}	9 – 20	0.208 (4)	1250
G_{1u}	8 – 12	0.321 (4)	1930
H_g	9 – 12	0.410 (2)	2460
H_u	6 – 15	0.315 (4)	1890
G_{2g}	9 – 14	0.409 (7)	2450
G_{2u}	8 – 15	0.475 (7)	2850

Figure 3. Lowest negative parity effective masses for the IRs G_{1u}, H_u and G_{2u}.

Figure 4. Example of a spectral density function from a MEM analysis of G_{2g} correlation functions.