Demonstration of Hybrid Multilayer Insulation for Fixed Thickness Applications

2015 Cryogenic Engineering Conference
Tucson, AZ

Wesley Johnson
GRC/LTF

James Fesmire
KSC/NE-F6

Wayne Heckle
KSC/Team ESC/Sierra Lobo
Background

• Recent testing has shown a benefit to variable density multilayer insulation.
• LB-MLI and IMLI provide a layer density of ~5 layer/cm, well below what is possible in traditional lay-ups.
• Combining LB-MLI with a traditionally made blanket (similar to RBO II and VATA II) may produce a blanket with better performance.
 – Theoretical improvement of ~30% over all traditional MLI and ~20% over all LB-MLI
• Originally planned to occur under CPST payload, but delayed due to cancellation.
Test Purpose and Objectives

• Test Purpose
 – Determine the design space surrounding hybrid MLI with a foam substrate.
 – Gain more experience with LB-MLI.

• Test Objectives
 – Understand the thickness trade between traditional MLI and LB-MLI.
 – Complete performance testing of a flight like insulation specimen.
 – Increase the understanding of LB-MLI by increasing the amount of thermal test data on it.
Test Article Configuration

- Traditional MLI
- Load Bearing MLI
- SOFI/Cryolite
Theory

Model Definitions & Assumptions:
- **tMLI:**
 - New Equation (based off of Lockheed and Modified Lockheed)
 - Accounts for Dacron netting (Modified Lockheed)
 - Accounts for perforation pattern (Lockheed)
- **LB-MLI:**
 - Layer by layer approach using discrete spacer locations
- **Integration:**
 - Solve for constant heat flux
 - Vary interface temperature
- **Variables:**
 - Warm Boundary (293 K)
 - Cold Boundary (78 K)
 - Vacuum Pressure (1×10^{-6} Torr)
Test Approach

- SOFI sprayed at MSFC and shipped to KSC
 - Target thickness half inch
- Procure 4 LB-MLI blankets from Quest through Phase III SBIR
 - 12, 14, 16, and 20 layers
 - ID designed for half inch SOFI substrate
- Make tMLI blankets in house
 - Perforated double aluminized mylar
 - Dacron netting
| Test Series | Substrate Material | Substrate Thickness (mm) | # layers, LB-MLI | # layers, tMLI | Layer Density, tMLI (layers/mm) | MLI Total Thickness (mm) | WBT (K) |
|-------------|--------------------|--------------------------|------------------|----------------|---------------------------------|--------------------------|---------|
| A174 | None | 0 | 10 | 50 | 2.0 | 36.8 | 293 |
| A175 | None | 0 | 10 | 40 | 2.3 | 38.4 | 293 |
| A181 | None | 0 | 10 | 40 | 2.7 | 34.0 | 293, 325|
| A182 | None | 0 | 10 | 30 | 3.5 | 22.9 | 293, 325|
| A183 | SOFI | 14.7 | 12 | 50 | 5.6 | 27.4 | 293, 325|
| A184 | CryoLite | 12.5 | 12 | 40 | 3.1 | 31.2 | 293, 325|
| A185 | CryoLite | 12.5 | 14 | 40 | 4.2 | 42.2 | 293 |
| A187 | CryoLite | 12.5 | 16 | 40 | 3.0 | 38.4 | 293, 325|
| A188 | CryoLite | 12.5 | 16 | 30 | 2.8 | 35.6 | 293, 325|
| A189 | CryoLite | 12.5 | 20 | 30 | 2.2 | 46.0 | 293, 325|
| A190 | SOFI | 14.7 | 14 | 40 | 2.1 | 40.4 | 293, 325|
| Test Series | # layers, LB-MLI | Layer Density, LB-MLI (layers/mm) | Area, LB-MLI (m²) | # layers, tMLI | Layer Density, tMLI (layers/mm) | Area, t-MLI (m²) |
|-------------|------------------|-----------------------------------|-------------------|--------------|----------------------------------|-----------------|
| A174 | 10 | 0.52 | 0.334 | 50 | 2.0 | 0.400 |
| A175 | 10 | 0.52 | 0.334 | 40 | 2.3 | 0.403 |
| A181 | 10 | 0.52 | 0.338 | 40 | 2.7 | 0.401 |
| A182 | 10 | 0.52 | 0.330 | 30 | 3.5 | 0.372 |
| A183 | 12 | 0.70 | 0.391 | 50 | 5.6 | 0.441 |
| A184 | 12 | 0.70 | 0.382 | 40 | 3.1 | 0.439 |
| A185 | 14 | 0.66 | 0.393 | 40 | 2.1 | 0.467 |
| A187 | 16 | 0.64 | 0.393 | 40 | 3.0 | 0.464 |
| A188 | 16 | 0.64 | 0.394 | 30 | 2.8 | 0.461 |
| A189 | 20 | 0.62 | 0.406 | 30 | 2.2 | 0.491 |
| A190 | 14 | 0.66 | 0.393 | 40 | 2.1 | 0.467 |
Installation
TEST DATA AND RESULTS
Results

Test	Substrate (W/m²)	LB-MLI (W/m²)	tMLI (W/m²)	Heat Load (W)	Interface Temperature (K)	Cold Vacuum Pressure (mTorr)
A174	0.410	0.343	0.137	181		2.0E-03
A175	0.395	0.328	0.132	178		5.0E-03
A181	0.376	0.317	0.127	194		2.6E-03
A182	0.552	0.489	0.182	194		6.7E-02
A183	0.976	0.824	0.730	228		7.5E-02
A184	0.635	0.542	0.472	219		4.2E-02
A185	1.239	1.028	0.865	215		5.8E-01
A187	1.046	0.868	0.735	261		4.8E-03
A188	1.046	0.868	0.742	268		3.5E-03
A189	1.031	0.828	0.684	265		2.8E-03
A190	0.970	0.814	0.685	254		3.4E-03

WBT = 293 K

Test	Substrate (W/m²)	LB-MLI (W/m²)	tMLI (W/m²)	Heat Load (W)	Interface Temperature (K)	Cold Vacuum Pressure (mTorr)
A181	0.420	0.354	0.142	199		2.6E-03
A182	0.673	0.597	0.222	210		5.6E-02
A183	1.255	1.059	0.939	247		5.9E-02
A184	0.859	0.733	0.638	240		3.8E-02
A185	Not Attempted due to Poor Vacuum Conditions					
A187	1.331	1.104	0.935	280		5.9E-03
A188	1.355	1.124	0.961	290		6.4E-03
A189	1.340	1.076	0.890	289		4.5E-03
A190	1.330	1.117	0.940	275		1.0E-02

WBT = 325 K
tMLI Performance

- 293 K W boundary
- 325 K W boundary
Heat Flux vs LB-MLI layers

Constant thickness ~ 38 mm (1.5 inches)
Data from A139 (60 layers tMLI) and A142 (20 layers LB-MLI) for 0 and 20 layer LB-MLI
Mass Comparison

Hybrid MLI Masses

- SOFI Mass (g)
- Cryolite Mass (g)
- LB-MLI Mass (g)
- tMLI Mass (g)

Density, g/cc

- A174
- A175
- A181
- A182
- A183
- A184
- A185
- A187
- A188
- A189
- A190

Mass, g

- A174
- A175
- A181
- A182
- A183
- A184
- A185
- A187
- A188
- A189
- A190
Conclusions

• Testing completed on hybrid MLI blankets between 293 K and 78 K.
 – Substrate (SOFI or CryoLite) on the cold side
 – Load Bearing MLI in middle
 – Traditional MLI on warm side

• Issues
 – Vacuum systems – were resolved and testing repeated
 – Constant layer density tMLI
 • Noticed that performance tailed off with blanket reuse
 – LB-MLI had higher heat flux than expected
 • Varied between 1.5 and 2.5 times expected
 • Had discussions with vendor

• Heat fluxes greater than expected
 – Due to degradation of traditional MLI over time
 – Tests A174 and A175 showed sensitivity of blankets about as expected with similar results

• System mass density decreased with increasing LB-MLI layers
 – Lower layer density of LB-MLI

• Demonstrates the sensitivities in optimizing a blanket design, even just for building on a calorimeter