ANALYSIS OF A SEMI-IMPLICIT STRUCTURE-PRESERVING FINITE ELEMENT METHOD FOR THE NONSTATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS

WEIFENG QIU AND KE SHI

ABSTRACT. We revise the structure-preserving finite element method in [K. Hu, Y. MA and J. Xu. (2017) Stable finite element methods preserving \( \nabla \cdot B = 0 \) exactly for MHD models. Numer. Math., 135, 371-396]. The revised method is semi-implicit in time-discretization. We prove the linearized scheme preserves the divergence free property for the magnetic field exactly at each time step. Further, we showed the linearized scheme is unconditionally stable and we obtain optimal convergence in the energy norm of the revised method even for solutions with low regularity.

1. Introduction

In this paper, we consider the nonstationary incompressible magnetohydrodynamics (MHD) equations over \([0, T] \times \Omega\) where \(\Omega \subset \mathbb{R}^d\) \((d = 2, 3)\) is a Lipschitz polyhedral domain:

\[
\begin{align*}
\frac{\partial u}{\partial t} + (u \cdot \nabla) u - R_e^{-1} \Delta u - S j \times B + \nabla p &= f, \\
j - R_m^{-1} \nabla \times B &= 0, \\
\frac{\partial B}{\partial t} + \nabla \times E &= 0, \\
\nabla \cdot B &= 0, \\
\nabla \cdot u &= 0, \\
j &= E + u \times B,
\end{align*}
\]

with the boundary and initial conditions as

\[
\begin{align*}
u &= 0, & B \cdot n &= 0, & E \times n &= 0, \quad \text{on } \partial \Omega, \\
u(x, 0) &= u_0(x), & B(x, 0) &= B_0(x),
\end{align*}
\]

where \(\nabla \cdot u_0 = \nabla \cdot B_0 = 0\). In (1.1), \(u\) is the fluid velocity, \(p\) is the fluid pressure, \(j\) is the current density, \(E\) and \(B\) are the electric and magnetic fields respectively. The system is characterized by three parameters: the hydrodynamic Reynolds number \(R_e\), the magnetic Reynolds number \(R_m\) and the coupling number \(S\). \(f \in L^2(\Omega)\) stands for the external body force. \(n\) denotes the outer unit normal vector on \(\partial \Omega\).

2000 Mathematics Subject Classification. Primary: 65N30, 76W05.

Key words and phrases. magnetohydrodynamics, finite element method, structure-preserving.

The work of Weifeng Qiu is partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302718). The work of Ke Shi is partially supported by Simons Foundation Collaboration Grants for Mathematicians (Award Number: 637267). As a convention the names of the authors are alphabetically ordered. All authors contributed equally in this article.

1
The nonstationary incompressible MHD equations have wide applications in fusion reactor blankets \cite{3}, liquid metals \cite{9, 19} and plasma physics \cite{11}. The global existence of weak solution is well known. The existence and uniqueness of local strong solutions on regular domains is proved in \cite{28}. There are many research works on numerical methods and numerical analysis on the nonstationary incompressible MHD equations. Here we just provide an incomplete list \cite{4, 5, 6, 8, 12, 18, 25}.

Recently, exactly divergence-free discretizations on the magnetic field $B$ draws more attention. Though by \cite{8} it seems that it is tolerable if this property is only satisfied weakly in numerical simulations of incompressible MHD equations, we notice that it is desirable to provide exactly divergence-free numerical magnetic filed in numerical approximations for inductionless MHD model (see \cite{20, 21, 29, 31}). Authors of \cite{15} utilized $H(\text{curl})$-conforming elements to approximate $A$ which is the potential of $B$ ($B = \nabla \times A$), such that their numerical approximation of $B$ is exactly divergence-free. It is proved in \cite{15} that a subsequence of their numerical solutions converge to the true solution on any Lipschitz polyhedral domain. In \cite{16}, a structure-preserving finite element method is developed for the nonstationary incompressible MHD equations. Besides $u$ and $B$, the electric field $E$ is also considered as an unknown in the numerical method in \cite{16}. By using discretization of the equation

$$\frac{\partial B}{\partial t} + \nabla \times E = 0,$$

the numerical approximation of $B$ is exactly divergence-free. Later in \cite{17}, it is proved that the method in \cite{16} achieves optimal convergence in the energy norm under the regularity assumption that $j \in L^\infty([0, T]; L^\infty(\Omega))$.

In this paper, our main contribution is to carefully modify/linearize the structure-preserving finite element method in \cite{16} so that it is semi-implicit with respect to time-discretization and it only need to solve a linear system at each time step. This effort is based on our rigorous analysis of the scheme. In addition, we don’t compromise on the accuracy of the method, structure-preserving and/or smoothness of the exact solutions. We prove optimal convergence for the energy norm even for solutions with low regularity. We also show that our numerical approximation of $B$ is exactly divergence-free and the method is energy conserving.

The rest of the paper is organized as follows: Section 2 we discribe the linearized scheme together with the main results from our analysis. In Section 3 we present analytic tools needed for the analysis. Details of the proofs for the main result is presented in Section 4.

2. AN IMPLICIT LINEARIZED MIXED FEM

2.1. Preliminaries. In this section, we introduce the notations and spaces that related with the scheme. We adopt the standard notation for the inner product and the norm of the $L^2$ space. Namely, for scalar valued functions the inner products are defined as:

$$(u, v) := \int_\Omega u \cdot v \, dx, \quad \|u\| := (\int_\Omega |u|^2 \, dx)^{1/2}.$$

This convention applies to vector and tensor-valued functions as well. For a function $u \in W^{k,p}(\Omega)$, we use $\|u\|_{k,p}$ for the standard norm in $W^{k,p}(\Omega)$. When $p = 2$ we drop the index $p$, i.e. $\|u\|_k := \|u\|_{k,2}$ and $\|u\| := \|u\|_{0,2}$. Vector-valued Sobolev spaces, we use the bold version of the corresponding scalar-valued spaces. For instance, $\mathbf{H}^1(\Omega) := [H^1(\Omega)]^d$. 


In this paper, we choose the classical Rham sequence [1, 2]. For each element $K$, define the linearized mixed FEM for the problem (1.1). Let $\mathcal{H}$ be a uniform partion of time domain $(0, T)$, and for generic function $U(x, t)$ we define $U^n = U(\cdot, n \tau)$. Finally, we define

$$D_{\tau} U^n = \frac{U^n - U^{n-1}}{\tau}, \quad \overline{U}^n = \frac{U^n + U^{n-1}}{2}, \quad \text{for } n = 1, 2, \cdots, N.$$

Now we are ready to derive the linearized mixed FEM for the MHD system [1,1]. For each $n > 0$ we seek approximate solution $(\mathbf{u}^n, \mathbf{p}^n, \mathbf{E}^n, \mathbf{B}^n) \in \mathbf{V} \times \mathbf{Q} \times \mathbf{C} \times \mathbf{D}$ satisfies

2. The linearized mixed FEM. Next we introduce some notation and spaces in order to define the linearized mixed FEM for the problem [1,1]. Let $\mathcal{T}_h$ be a conforming triangulation of the domain $\Omega$ with tetrahedral elements. Here we assume that the triangulation is shape-regular and quasi-uniform. For each element $K \in \mathcal{T}_h$, $h_K$ denotes the diameter of $K$ and the global mesh size is denoted by $h = \max_{K \in \mathcal{T}_h} h_K$. To approximate $(u, p)$, we use the stable pair of Stokes elements $\mathbf{V}_h \times \mathbf{Q}_h \subset H^1_0 \times H^2_0(\Omega)$ which satisfies the discrete inf-sup condition: there exists a constant $\beta > 0$ only depending on $\Omega$ such that

$$\inf_{q_h \in \mathbf{Q}_h \setminus 0} \sup_{v_h \in \mathbf{V}_h \setminus 0} \frac{\langle q_h, \nabla \cdot v_h \rangle_{\Omega}}{\|v_h\|_1\|q_h\|_0} \geq \kappa. \quad (2.1)$$

In this paper, we choose the classical $P^{k+1}$-$P^k$ Taylor-Hood pair:

$$\mathbf{V}_h := \{v_h \in H^1_0(\Omega)|v_h|_K \in P^{k+1}(K), \forall K \in \mathcal{T}_h\},$$

$$\mathbf{Q}_h := \{q_h \in L^2_0(\Omega) \cap C(\Omega)|q_h|_K \in P^k(K), \forall K \in \mathcal{T}_h\}.$$
the following governing equations:

\[
(D_r u^n_h, v) + R_e^{-1} (\nabla u^n_h, \nabla v) + \frac{1}{2}[(u^{n-1}_h \cdot \nabla u^n_h, v) - (u^{n-1}_h \cdot \nabla v, u^n_h)] = 0, \quad (2.2a)
\]

\[-SR_m^{-1}((\nabla u^n_h) \times B_h^n) \times B_h^{n-1} - (p^n_h, \nabla \cdot v) = (f^n, v), \quad (2.2b)\]

\[
(j^n_h, F) - R_m^{-1}(B_h^n, \nabla \times F) = 0, \quad (2.2c)
\]

\[
(D_r B^n_h, Z) + (\nabla \times E^n_h, Z) = 0, \quad (2.2d)
\]

\[
(\nabla \cdot u^n_h, q) = 0, \quad (2.2d)
\]

\[
j^n_h = E^n_h + u^n_h \times B_h^{n-1}, \quad (2.2e)
\]

for all \((v, q, F, Z) \in V_h \times Q_h \times C_h \times D_h\). At the initial time step, we take \(u^0_h = \Pi_V u_0, B^0_h = \Pi_D B_0\). Here \(\Pi_V u_0, \Pi_D B_0\) are projections (defined in the next section) of the initial data \(u_0, B_0\) in the spaces \(V_h, D_h\) respectively. Here the discrete curl \((\nabla_h \times \cdot)\) is a linear map \(L^2(\Omega) \to C_h\) defined as: given \(B \in L^2(\Omega), \nabla_h \times B \in C_h\) satisfies

\[
(\nabla_h \times B, F) = (B, \nabla \times F) \quad \forall F \in C_h. \tag{2.3}
\]

\[\text{Remark 2.1.} \text{ Notice that in the above scheme, the convection term and } j^n_h \text{ are linear with respect to } u^n_h, E^n_h \text{ respectively. Consequently at each time step, the above scheme leads to a linear system for all the unknowns. Here we also want to remark on the fact that in } (2.2b) \text{ we replaced } j^n_h \text{ with } R_m^{-1} \nabla_h \times B^n_h \text{ comparing with the original scheme defined in } [16]. \text{ This modification requires a global } L^2 \text{-type projection in the assembly process. Nevertheless, from the analysis below we can see that it is crucial to make such modification in order to obtain the desired optimal error estimates. It is not clear if the analysis remains valid if we keep } j^n_h \text{ in this term.} \]

2.3. Main Result. We first present the stability of the discrete problem (2.2) in the following theorem:

**Theorem 2.1.** The discrete solution \((u^n_h, p^n_h, E^n_h, B^n_h)\) satisfies

\[
\frac{\|u^n_h\|^2 - \|u^{n-1}_h\|^2}{2 \tau} + R_e^{-1} \|
abla u^n_h\|^2 + SR_m^{-2} \|
abla_h \times B^n_h\|^2 + SR_m^{-1} \frac{\|B^n_h\|^2 - \|B^{n-1}_h\|^2}{2 \tau} = (f^n, u^n_h).
\]

Consequently, we have for \(n = 1, 2, \ldots, N:\)

\[
\|u^n_h\|^2 + SR_m^{-1} \|B^n_h\|^2 + \tau \sum_{i=1}^{n} (R_e^{-1} \|
abla \pi^n_h\|^2 + 2 SR_m^{-2} \|
abla_h \times \nu^{n+1}_h\|^2)
\leq \|u^0_h\|^2 + SR_m^{-1} \|B^0_h\|^2 + C \tau \sum_{i=1}^{n} R_e \|f_i\|_{-1}^2.
\]

In addition, the magnetic field is exactly divergence free:

\[
\nabla \cdot B^n_h = 0, \quad = 1, 2, \ldots, N,
\]

provided \(\nabla \cdot B^0_h = 0\).
Proof. Taking $(v, F, Z, q) = (\overline{u}_h^n, -SR_m^{-1} \nabla_h \times \overline{B}_h^n, SR_m^{-1} \overline{B}_h^n, p_h^n)$ in (2.2a) - (2.2d) and adding together, after some algebraic simplification we have:

\[
\frac{\|u_h^n\|^2 - \|u_h^{n-1}\|^2}{2\tau} + R_e^{-1} \|\nabla \overline{u}_h^n\|^2 + SR_m^{-2} \|\nabla_h \times \overline{B}_h^n\|^2 + SR_m^{-1} \|B_h^n\|^2 - \|B_h^{n-1}\|^2 \leq (f^n, \overline{u}_h^n)
\]

\[
\leq C \|f^n\|_{-1} \|\nabla \overline{u}_h^n\| \leq CR_e \|f^n\|^2 + \frac{1}{2} R_e^{-1} \|\nabla \overline{u}_h^n\|^2.
\]

In the above estimate we used the Cauchy-Schwartz inequality, Poincaré inequality and Young’s inequality. Hence for any $n = 1, 2, \ldots, N$ if we sum over the above estimate from 1 to $k$ we have

\[
\|u_h^n\|^2 + SR_m^{-1} \|B_h^n\|^2 + \tau \sum_{i=1}^{n} (R_e^{-1} \|\nabla \overline{u}_h^n\|^2 + 2SR_m^{-2} \|\nabla_h \times \overline{B}_h^n\|^2) \leq \|u_h^0\|^2 + SR_m^{-1} \|B_h^0\|^2 + C\tau \sum_{i=1}^{n} R_e \|f_i\|^2_{-1}.
\]

This completes the proof for the first assertion. For the second part, notice that $\nabla \times C_h \subset D_h \cap H_0(\text{div}0, \Omega)$. Hence (2.2c) is equivalent as

\[
D_h B_h^n + \nabla \times E_h^n = 0.
\]

Or

\[
\frac{B_h^n - B_h^{n-1}}{\tau} + \nabla \times E_h^n = 0.
\]

Taking the divergence of the above equation we have:

\[
\nabla \cdot (B_h^n - B_h^{n-1}) = 0.
\]

This completes the proof. \(\square\)

For the error estimates, we assume that the exact solution of MHD system (1.1) uniquely exists and the unknowns have following regularity property:

\[
\begin{align*}
\mathbf{u} & \in L^\infty(0, T; H^{1+s}(\Omega)), \mathbf{u}_t \in L^2(0, T; H^{1+s}), \mathbf{u}_{tt} \in L^2(0, T; L^2(\Omega)) ; \\
p & \in L^\infty(0, T; H^s(\Omega)), p_t \in L^2(0, T; H^s(\Omega)) ; \\
\mathbf{B}, \nabla \times \mathbf{B} & \in L^\infty(0, T; H^s(\Omega)), \mathbf{B}_t, \nabla \times \mathbf{B}_t, \mathbf{B}_{tt} \in L^2(0, T; L^2(\Omega)) ; \\
\mathbf{E}, \nabla \times \mathbf{E} & \in L^\infty(0, T; H^s(\Omega)),
\end{align*}
\]

where $s > \frac{1}{2}$. Under this assumption, our main error estimate result can be summarized as follows:

**Theorem 2.2.** Let $(\mathbf{u}, p, \mathbf{B}, \mathbf{E})$ be the exact solution of (1.1) with the above regularity (2.4) holds. Let $(\mathbf{u}_h, p_h, \mathbf{B}_h, \mathbf{E}_h)$ be the numerical solution of the discrete system (2.2). Then we have for all $n = 1, 2, \ldots, N$

\[
\|\mathbf{u}^n - \mathbf{u}_h^n\|^2 + \|\mathbf{B}^n - \mathbf{B}_h^n\|^2 + C\tau \sum_{j=1}^{n} (\|\nabla \overline{\mathbf{u}}^n - \nabla \overline{\mathbf{u}}_h^n\|^2 + \|\nabla \times \overline{\mathbf{B}}^n - \nabla \times \overline{\mathbf{B}}_h^n\|^2) \leq e^{2C\tau}(h^{2\beta} + \tau^2),
\]

at each time step, we also have

\[
\|\nabla \mathbf{u}^n - \nabla \mathbf{u}_h^n\|^2 + \|\nabla \mathbf{B}^n - \nabla \mathbf{B}_h^n\|^2 \leq C(h^{2\beta} + \tau^2).
\]
with \( \beta = \min\{s, k + 1\} \) and \( C \) depends on the physical parameters but is independent of the discrete parameters \( \tau \) and \( h \). Further, at each time step, we have

\[
\|E^n - E_h^n\|^2 \leq C(\tau + h^{2\beta}). 
\]  (2.7)

\[
\|p^n - p_h^n\|^2 \leq C(\tau^{-1}h^{2\beta} + \tau). 
\]  (2.8)

If we further assume that \( u_t \in L^\infty(0, T; H^1(\Omega)); B_t, \nabla \times B_t \in L^\infty(0, T; L^2(\Omega)), \) we have that:

\[
\|E^n - E_h^n\| \leq C(\tau^2 + h^{2\beta}). 
\]  (2.9)

3. Auxiliary estimates

In this section, we gather the necessary tools for the final error estimates in the next section. First we present an approximation property for the discrete \( \Pi \)-projection operator:

**Lemma 3.1.** For any vector field \( C \in H(\text{curl}, \Omega) \), we have

\[
\|\nabla_h \times C\|_{L^p(\Omega)} \leq \|\nabla \times C\|_{L^p(\Omega)},
\]

with any \( p \in (1, \infty) \).

**Proof.** Define \( \Pi_h : L^2(\Omega) \rightarrow C_h \) be the standard \( L^2 \)-projection. By the definition of the discrete \( \text{curl} \) operator \([2,3]\) we have for any \( C \in H(\text{curl}, \Omega) \)

\[
(\nabla_h \times C, F) = (C, \nabla \times F) = (\nabla \times C, F) \quad \forall F \in C_h.
\]

Therefore, this implies that \( \nabla_h \times C = \Pi_h(\nabla \times C) \). Similar to the proof of \([7, \text{Theorem 3}]\), we have:

\[
\|\nabla_h \times C\|_{L^p(\Omega)} = \|\Pi_h(\nabla \times C)\|_{L^p(\Omega)} \leq C_p\|\nabla \times C\|_{L^p(\Omega)},
\]

with any \( p \in [1, +\infty] \).

The next result gathers classical and discrete Sobolev inequalities needed for the error estimates in the next section \([22, 14]\).

**Lemma 3.2.** For \( u \in H^{1+s}(\Omega) \) with \( s > \frac{1}{2} \) we have

\[
\|u\|_{0,p} \leq C\|u\|_1, \quad \text{for} \quad 1 \leq p \leq 6,
\]

\[
\|u\|_{0,\infty} \leq C\|u\|_{1+s}.
\]

For \( B \in H^{s}(\Omega) \) with \( s > \frac{1}{2} \), we have

\[
\|B\|_{0,3} \leq C\|B\|_s.
\]

Further, for \( B \in H^{s}(\Omega) \cap H(\text{div}0, \Omega) \), we have

\[
\|B\|_{0,3} \leq C\|B\|_s \leq C\|\nabla \times B\|.
\]

Next we define the projections of the unknowns \( (\Pi_V u, \Pi_Q p, \Pi_C E, \Pi_D B) \) and gather their approximation properties. For the fluid pair \( u, p \), we follow the idea used in \([8]\). Namely, for a fixed \( t \in (0, T) \), for the exact solution \( (u, p) \in H^0(\Omega) \times L^2(\Omega) \) we define the Stokes projection \( (\Pi_V u, \Pi_Q p) \in V_h \times Q_h \) satisfies

\[
R^{-1}_e(\nabla \Pi_V u, \nabla v) - (\Pi_Q p, \nabla \cdot v) = R^{-1}_e(\nabla u, \nabla v) - (p, \nabla \cdot v), \quad \text{for all} \quad (v, q) \in V_h \times Q_h.
\]  (3.1a)

\[
(\nabla \cdot \Pi_V u, q) = (\nabla \cdot u, q),
\]  (3.1b)

for all \( (v, q) \in V_h \times Q_h \). We can see that the above projection is defined globally over \( \Omega \) through the variational form of Stokes equations. For the electric field \( E \) we simply use the Nedlélec \( H \)-curl projection \([23]\), denoted by \( \Pi_C E \).
Finally, for the magnetic field \( B \), notice that \( B_h \in \mathcal{D}^0_h := \mathcal{D}_h \cap H_0(\text{div}, \Omega) \) and \( B \in H_0(\text{div}, \Omega) \). We define the \( L^2 \)-projection \( \Pi_D : L^2(\Omega) \to \mathcal{D}^0_h \) such that \( \Pi_D B \in \mathcal{D}^0_h \) satisfies:

\[
(\Pi_D B, Z) = (B, Z) \quad \forall Z \in \mathcal{D}^0_h. \tag{3.2}
\]

We have the following approximation property result for the projections [10, 8]:

**Lemma 3.3.** Under the regularity assumption (2.4), the above projection satisfies

\[
\|\delta_u\|_1 + \|\delta_p\| \leq Ch^\beta (\|u\|_{1+\beta} + \|p\|_\beta),
\]

\[
\frac{\partial \delta_u}{\partial t}\|_1 \leq Ch^\beta (\|u_t\|_{1+\beta} + \|p_t\|_\beta),
\]

\[
\|\Pi_V u\|_\infty + \|\Pi_V u\|_{1,3} \leq C (\|u\|_{1+\beta} + \|p\|_\beta) < \infty,
\]

\[
\|\delta_E\| + \|\nabla \times \delta_E\| \leq Ch^\beta (\|E\|_{\beta} + \|\nabla \times E\|_\beta),
\]

\[
\|\delta_B\| \leq Ch^\beta \|B\|_\beta,
\]

\[
\nabla_h \times \delta_B = 0.
\]

with \( \beta = \min\{s, k + 1\} \).

**Proof.** It suffice to establish the last two inequality and identity since others are well-known results [10]. Notice that since \( B \in H_0(\text{div}, \Omega) \) we have that its BDM projection \( \Pi_{BDM} B \in \mathcal{D}_h^0 \). This implies that

\[
\|\delta_B\| \leq \|B - \Pi_{BDM} B\| \leq Ch^\beta \|B\|_\beta. \tag{3.3}
\]

For the last identity, we can derive this identity by the definition of “\( \nabla \times \)” (2.3) and the projection \( \Pi_D \) is \( L^2 \)-projection onto \( \mathcal{D}_h^0 \); for any \( F \in C_h \)

\[
(\nabla_h \times \Pi_D B, F) = (\Pi_D B, \nabla \times F) = (B, \nabla \times F) = (\nabla_h \times B, F).
\]

This completes the proof since \( \nabla_h \times B, \nabla_h \times \Pi_D B \in C_h \).

As a consequence of the above result, we have that the initial errors satisfy:

\[
\|u^0 - u_0^0\|_1 + \|B^0 - B_0^0\| \leq Ch^\beta, \quad \nabla_h \times B^0 - \nabla_h \times B_0^0 = 0. \tag{3.4}
\]

Finally, we need the well-known discrete Gronwall’s inequality [13]:

**Lemma 3.4.** Let \( \tau, B \) and \( a_k, b_k, c_k, \gamma_k \) be non-negative numbers for all integers \( k \geq 0 \),

\[
a_J + \tau \sum_{k=0}^{J} b_k \leq \tau \sum_{k=0}^{J} \gamma_k a_k + \tau \sum_{k=0}^{J} c_k + B, \quad \text{for} \quad J \geq 0,
\]

suppose that \( \tau \gamma_k < 1 \) for all \( k \) and set \( \sigma_k = (1 - \tau \gamma_k)^{-1} \), Then it holds:

\[
a_J + \tau \sum_{k=0}^{J} b_k \leq e^{\tau \sum_{k=0}^{J} \gamma_k} \sigma_k (\tau \sum_{k=0}^{J} c_k + B).
\]

4. **Error Estimates**

In this section we present the main error estimates of the method. We first carry out the error equations for the error estimates. By convention, for a generic unknown \( U \), its numerical approximation \( \bar{U}_h \) and its projection \( \Pi \bar{U} \), we split the errors as:

\[
\bar{U} - \bar{U}_h = (\bar{U} - \Pi \bar{U}) + (\Pi \bar{U} - \bar{U}_h) := e_{\bar{U}} + \delta_{\bar{U}}. \tag{4.1}
\]
Lemma 4.1. The projection errors $(e_u, e_p, e_E, e_B)$ satisfies the system:

\begin{align*}
(D_T e_u^n, v) + R_c^{-1}(\nabla \overline{u}^n, \nabla v) - (e_p^n, \nabla \cdot v) &= -(D_T e_u^n, v) + R_1(v) + \mathcal{O}(v) + \mathcal{M}_1(v) \quad (4.3a) \\
(e_{p}^{n}, F) - R_m^{-1}(\nabla \overline{B}^n, \nabla \times F) &= -(\delta_{p}^{n}, F) + \mathcal{R}_2(F) - \mathcal{M}_2(F), \quad (4.3b) \\
(D_T e_B^n, Z) + (\nabla \times e_E^n, Z) &= -(D_T \delta_B^n, Z) - (\nabla \times e_E^n, Z) + \mathcal{R}_3(Z), \quad (4.3c) \\
(\nabla \cdot \overline{e}_u^n, q) &= 0, \quad (4.3d)
\end{align*}

for all $(v, q, F, Z) \in V_h \times Q_h \times C_h \times D_h$. Here the nonlinear terms are gathered as:

\begin{align*}
\mathcal{O}(v) &= -\frac{1}{2}[(u^{n-1} \cdot \nabla \overline{u}^n, v) - (u^{n-1} \cdot \nabla v, \overline{u}^n)] + \frac{1}{2}[(u^{n-1} \cdot \nabla \overline{u}^n, v) - (u^{n-1} \cdot \nabla v, \overline{u}^n)] \\
\mathcal{M}_1(v) &= SR_m^{-1}((\nabla \times \overline{B}^n) \times B^{n-1}, v) - SR_m^{-1}((\nabla \times \overline{B}^n) \times B^{n-1}, v), \\
\mathcal{M}_2(F) &= (\overline{u}^n \times B^{n-1} - \overline{u}^n \times B^{n-1}, F).
\end{align*}

We are ready to prove our main result Theorem 2.2 with the above error equations.

Proof of Theorem 2.2 We start by taking $(v, F, Z, q) = (\overline{e}_u^n, -SR_m^{-1} \nabla \times \overline{e}_B^n, SR_m^{-1} \overline{e}_B^n, e_p^n)$ in the error equations (4.3a) - (4.3d) and adding together, with some algebraic simplification
we have:

\[
\frac{\|e^n_u\|^2 - \|e^{n-1}_u\|^2}{2\tau} + R_e^{-1}\|\nabla e^n_u\|^2 + SR_{m}^{-1}\|e_B^n\|^2 - \|e^{n-1}_B\|^2 + SR_{m}^{-2}\|\nabla \times e^n_B\|^2 \\
= - (D_t\delta^n_{e,u}\cdot \Pi^n_{\nu}u) + SR_{m}^{-1}(\delta^n_{E,h}\times \nu_B^n) - SR_{m}^{-1}(D_t\delta^n_B\cdot \nu_B^n) - SR_{m}^{-1}(\nabla \times \delta^n_{E,B}) \\
+ R_1(\tau^n_u) + R_2(-SR_{m}^{-1}\nabla \times \nu_B^n) + R_3(\tau_B^n) \\
+ O(\tau^n_u) + M_1(\tau^n_u) + M_2(SR_{m}^{-1}\nabla \times \nu_B^n).
\]

Next we will estimate each term on the right hand side of the above identity. For the first four linear terms, we simply use the Cauchy-Schwarz inequality and the approximation property of the projections Lemma 3.3 as follows:

\[
(D_t\delta^n_{e,u}\cdot \Pi^n_{\nu}u) = \frac{1}{\tau} \int_{t_{n-1}}^{t_n} \int_{\Omega} \frac{\partial \delta^n_{e,u}}{\partial t}(\rho, \mathbf{x}) \cdot \Pi^n_{\nu}u d\mathbf{x} d\rho \\
\leq \frac{\|\delta^n_{e,u}\|}{\tau} \int_{t_{n-1}}^{t_n} \|u_t(\rho, \cdot)\|_{L^2(\Omega)} d\rho \\
\leq \|\Pi^n_{\nu}u\|^2 + \frac{\|u_t(\rho, \cdot)\|^2_{L^2(\Omega)}}{\tau} \int_{t_{n-1}}^{t_n} 1 d\rho \\
\leq \|\Pi^n_{\nu}u\|^2 + \frac{\|u_t(\rho, \cdot)\|^2_{L^2(\Omega)}}{\tau} \int_{t_{n-1}}^{t_n} 1 d\rho.
\]

For the second linear term we simply apply Cauchy-Schwarz inequality to have

\[
SR_{m}^{-1}(\delta^n_{E,h}\times \nu_B^n) \leq C h^{2\beta}\|E\|_{\beta} \|\nabla \times \nu_B^n\| \leq C\epsilon\|\nabla \times \nu_B^n\|^2 + C\epsilon^{-1}h^{2\beta}.
\]

For the third linear term, since \(\Pi_D B, B_h \in D^0_h\), with the orthogonal property of \(\Pi_D\) we have

\[
SR_{m}^{-1}(D_t\delta^n_B\cdot \nu_B^n) = 0.
\]

For the last linear term, we have

\[
SR_{m}^{-1}(\nabla \times \delta^n_{E,B}) \leq C h^{2\beta}\|\nabla \times E\|_{\beta} \|\nu_B^n\| \leq C\|\nu_B^n\|^2 + Ch^{2\beta}.
\]

Truncation error estimates: In \(R_1(v)\), there is a term as:

\[
(D_tu^n - u^n_t, \nu_u^n),
\]
here is how we estimate this term by \( \| u_t \|_{L^2(t_{n-1}, t_n; L^2(\Omega))} \):

\[
(D\tau u^n - u^n_t, \overline{e}_u^n) = \frac{1}{\tau} \int_\Omega \int_{t_{n-1}}^{t_n} u_t(\rho, \cdot) - u_t(t_n, \cdot) d\rho \cdot \overline{e}_u^n dx
\]

\[
= \frac{1}{\tau} \int_\Omega \int_{t_{n-1}}^{t_n} \int_{t_{n-1}}^{\rho} u_{tt}(\sigma, \cdot) \overline{e}_u^n d\sigma d\rho dx
\]

\[
\leq \frac{1}{\tau} \int_{t_{n-1}}^{t_n} \int_{t_{n-1}}^{\rho} \| u_{tt}(\sigma, \cdot) \| \| \overline{e}_u^n \| d\sigma d\rho = \frac{1}{\tau} \| \overline{e}_u^n \| \int_{t_{n-1}}^{t_n} \int_{t_{n-1}}^{\rho} \| u_{tt}(\sigma, \cdot) \| d\sigma d\rho
\]

\[
\leq \frac{1}{\tau} \| \overline{e}_u^n \| \int_{t_{n-1}}^{t_n} \int_{t_{n-1}}^{\rho} \| u_{tt}(\sigma, \cdot) \|_{L^2(t_{n-1}, \rho; L^2(\Omega))} \|_{L^2(t_{n-1}, \rho)} d\rho
\]

\[
\leq \frac{1}{\tau} \| \overline{e}_u^n \| \int_{t_{n-1}}^{t_n} \int_{t_{n-1}}^{\rho} \| u_{tt}(\sigma, \cdot) \|_{L^2(t_{n-1}, t_n; L^2(\Omega))} (\rho - t_{n-1})^{\frac{1}{2}} d\rho
\]

\[
\leq C\tau \| u_{tt} \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2 + C\| \overline{e}_u^n \|^2.
\]

Similarly, for \( R_3(SR_m^{-1} \overline{e}_B) \) we have the following estimates:

\[
R_3(SR_m^{-1} \overline{e}_B) \leq C\tau \| B_{tt} \|_{L^2((t_{n-1}, t_n), L^2(\Omega))} + C\| \overline{e}_B^n \|^2.
\]

For other terms in \( R_1(\overline{e}_u^n) \), the estimates are similar as the one shown below in \( R_2(-SR_m^{-1} \nabla h \times \overline{e}_B) \) and we gather the result as follows:

\[
R_1(\overline{e}_u^n) \leq C\varepsilon \| \nabla \overline{e}_u^n \|^2 + C\varepsilon^{-1} \| \nabla u_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2;
\]

\[
\frac{1}{2} \left[ (u_{n-1} - \nabla u^n, \overline{e}_u^n) - ((\nabla \overline{e}_u^n, \overline{e}_u^n) - (u_n - \nabla u^n, \overline{e}_u^n)
\right]
\]

\[
\leq C\varepsilon \| \nabla \overline{e}_u^n \|^2 + C\varepsilon^{-1} \| \nabla u_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2 + \| \nabla u_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2)
\]

\[
-\frac{1}{2} \left[ (\nabla h \times B^n, B^n - (\nabla h \times \overline{e}_B^n) - ((\nabla \times B^n, \overline{e}_B^n))
\right]
\]

\[
\leq C\varepsilon \| \nabla \overline{e}_u^n \|^2 + C\varepsilon^{-1} \| \nabla \times B_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2.
\]

Combining the estimates for all the terms in \( R_1(\overline{e}_u^n) \) we have

\[
R_1(\overline{e}_u^n) \leq C\varepsilon \| \nabla \overline{e}_u^n \|^2 + C\| \overline{e}_u^n \|^2 + C\| \overline{e}_u^n \|^2 \| \nabla \times B_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2 + C\tau \| u_{tt} \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2 + C\tau \| u_{tt} \|_{L^2((t_{n-1}, t_n), H^1(\Omega))}^2 + C\| B_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2 + C\tau \| u_{tt} \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2
\]

\[
\leq C\varepsilon \| \nabla \overline{e}_u^n \|^2 + C\| \overline{e}_u^n \|^2 + C\| \overline{e}_u^n \|^2 \| \nabla \times B_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2 + C\| B_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2 + C\| \nabla \times B_t \|_{L^2((t_{n-1}, t_n), L^2(\Omega))}^2
\]

\[
(\overline{e}_u^n 	imes B^{n-1} - u^n 	imes B^n, \nabla h \times \overline{e}_B^n) = (\wedge^+ \times (B^{n-1} - B^n) + (\overline{e}_u^n - u^n) 	imes B^n, \nabla h \times \overline{e}_B^n)
\]

\[
= T_1 + T_2.
\]
For $T_1$,
\[
T_1 = \int_{t_{n-1}}^{t_n} \int_\Omega B_t(\rho, \cdot) \times \bar{u}^n \cdot \nabla h \times \bar{\tau}_B^n d\rho d\rho \\
\leq \|u\|_{L^\infty(t_{n-1}, t_n; L^\infty(\Omega))} \|\nabla h \times \bar{\tau}_B^n\| \int_{t_{n-1}}^{t_n} \|B_t(\rho, \cdot)\| d\rho \\
\leq \|\bar{u}\|_{L^\infty(t_{n-1}, t_n; L^\infty(\Omega))} \|\nabla h \times \bar{\tau}_B^n\| \int_{t_{n-1}}^{t_n} \|B_t(\rho, \cdot)\| d\rho \\
\leq \epsilon\|\nabla h \times \bar{\tau}_B^n\|^2 + \epsilon^{-1}\|\bar{u}\|^2_{L^\infty(t_{n-1}, t_n; L^\infty(\Omega))} \int_{t_{n-1}}^{t_n} \|B_t(\rho, \cdot)\|^2 d\rho \\
\leq \epsilon\|\nabla h \times \bar{\tau}_B^n\|^2 + C\epsilon^{-1}\|\bar{u}\|^2_{L^\infty(t_{n-1}, t_n; L^\infty(\Omega))}.
\]

The last step we used the Cauchy-Schwarz inequality and the fact that $\bar{u}^n \in H^{1+s}(\Omega) \hookrightarrow L^\infty(\Omega)$. For $T_2$, with a similar technique as above, we have
\[
T_2 \leq \epsilon\|\nabla h \times \bar{\tau}_B^n\|^2 + \epsilon^{-1}\|B_t^n\|^2_{L^3(\Omega)} \|\bar{u}_t\|^2_{L^2(t_{n-1}, t_n; H^1(\Omega))} \\
\leq \epsilon\|\nabla h \times \bar{\tau}_B^n\|^2 + C(\epsilon\|\nabla h \times \bar{\tau}_B^n\|^2 + \epsilon^{-1}(\int_{t_{n-1}}^{t_n} \|\nabla h \times B_t(\cdot, x)\| d\rho)^2) \\
\leq \epsilon\|\nabla h \times \bar{\tau}_B^n\|^2 + C\epsilon^{-1}(\int_{t_{n-1}}^{t_n} \|\nabla h \times B_t(\cdot, x)\|^2 d\rho)^2 + \int_{t_{n-1}}^{t_n} 1 d\rho \\
= \epsilon\|\nabla h \times \bar{\tau}_B^n\|^2 + C\epsilon^{-1}\|\nabla h \times B_t\|^2_{L^2(t_{n-1}, t_n; L^2(\Omega))}.
\]

Combine above estimates, we have
\[
R_2(-SR_m^{-2} \nabla h \times \bar{\tau}_B^n) \leq C\epsilon\|\nabla h \times \bar{\tau}_B^n\|^2 + C\epsilon^{-1}(\|B_t\|^2_{L^2(t_{n-1}, t_n; L^2(\Omega))} + \|\nabla h \times B_t\|^2_{L^2(t_{n-1}, t_n; L^2(\Omega))} + \|u_t\|^2_{L^2(t_{n-1}, t_n; L^2(\Omega))}).
\]

Finally, we bound the nonlinear terms as follows:
\[
O(\bar{\tau}_u^n) = -\frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{u}^n, \bar{\tau}_u^n) - (u_h^{n-1} \cdot \nabla \bar{\tau}_u^n, \bar{\tau}_u^n) + \frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{\tau}_u^n, \bar{u}^n) - (u_h^{n-1} \cdot \nabla \bar{\tau}_u^n, \bar{u}_h^n)) \\
= -\frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{u}^n, \bar{\tau}_u^n) - (u_h^{n-1} \cdot \nabla \bar{u}_h^n, \bar{\tau}_u^n)) \\
= \frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{u}_h^n, \bar{\tau}_u^n - \bar{\tau}_h^n) + \frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{\tau}_u^n, \bar{u}_h^n)) \\
= -\frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{u}_h^n, \bar{\tau}_u^n) - \frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{\tau}_u^n, \bar{u}_h^n)) \\
= -\frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{u}_h^n, \bar{\tau}_u^n) - \frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{\tau}_u^n, \bar{u}_h^n)) \\
= -\frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{u}_h^n, \bar{\tau}_u^n) - \frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{\tau}_u^n, \bar{u}_h^n)) \\
= -\frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{u}_h^n, \bar{\tau}_u^n) - \frac{1}{2}((u_h^{n-1} \cdot \nabla \bar{\tau}_u^n, \bar{u}_h^n)).
\]
The terms in the last step can be bounded using Hölder’s inequality, Sobolev inequalities Lemma 3.2, and the approximation properties of the projections in Lemma 3.3 as:

\[-\frac{1}{2}((u^{n-1} - u_h^{n-1}) \cdot \nabla u^{n-1}, v_h^{n-1}) \leq C \|u^{n-1}\|_{0,\infty} \|\nabla (\delta_u^n + \varepsilon_u^n)\|_{0,\infty} \|\nabla v_h^n\|_{0,\infty} \leq C \epsilon \|\nabla v_h^n\|^2 + C \epsilon^{-1} \|\delta_u^n + \varepsilon_u^n\|^2 + C \epsilon^{-1} h^{2\beta},\]

\[-\frac{1}{2}((u^{n-1} - u_h^{n-1}) \cdot \nabla \Pi \Pi V \overline{u}^n, v_h^n) \leq C \|\nabla (\delta_u^n + \varepsilon_u^n)\|_{0,\infty} \|\Pi \Pi V \overline{u}^n\|_{0,3} \|\nabla v_h^n\|_{0,6} \leq C \epsilon \|\nabla v_h^n\|^2 + C \epsilon^{-1} \|\delta_u^n + \varepsilon_u^n\|^2 + C \epsilon^{-1} h^{2\beta},\]

\[\frac{1}{2}(|u^{n-1}| \cdot \nabla e_h^n, \overline{u}^n - u_h^n) \leq \|u^{n-1}\|_{0,\infty} \|\nabla \delta_u^n + e_u^n\| \|\nabla v_h^n\| \leq C \epsilon \|\nabla v_h^n\|^2 + C \epsilon^{-1} \|\delta_u^n + e_u^n\|^2 + C \epsilon^{-1} h^{2\beta},\]

\[\frac{1}{2}((u^{n-1} - u_h^{n-1}) \cdot \nabla e_h^n, \Pi \Pi V \overline{u}^n) \leq \|\Pi \Pi V \overline{u}^n\|_{0,\infty} \|\delta_u^n + e_u^n\| \|\nabla v_h^n\| \leq C \epsilon \|\nabla v_h^n\|^2 + C \epsilon^{-1} \|\delta_u^n + e_u^n\|^2 + C \epsilon^{-1} h^{2\beta}.\]

This concludes that

\[C \epsilon \|\nabla v_h^n\|^2 + C \epsilon^{-1} \|\delta_u^n + e_u^n\|^2 + C \epsilon^{-1} h^{2\beta}. \quad (4.7)\]

Similarly, for \(M_1(v_h^n) + M_2(SR_m(v_h) \times v_B^n)\) we start with some algebraic rearrangement as follows:

\[M_1(v_h^n) + M_2(SR_m(v_h) \times v_B^n) = \]

\[SR_m((\nabla \times (\delta B^n + \varepsilon B^n)) \times B^{n-1}, v_h^n) + SR_m((\nabla \times \delta B^n) \times (B^{n-1} - B_h^{n-1}), v_h^n) + SR_m((\nabla \times \delta B^n) \times B^{n-1}, \nabla \times v_h^n) + SR_m((\nabla \times \delta B^n) \times (B^{n-1} - B_h^{n-1}), \nabla \times v_B^n) \]

\[= M_1 + M_2 + M_3 + M_4.\]

Next we will estimate \(M_1 + M_3\) and \(M_2 + M_4\) separately. Namely, we have

\[M_1 + M_3 = SR_m((\nabla \times (\delta B^n + \varepsilon B^n)) \times B^{n-1}, v_h^n) + SR_m((\nabla \times \delta B^n) \times B^{n-1}, \nabla \times v_h^n) = SR_m((\nabla \times \delta B^n) \times B^{n-1}, v_h^n) + SR_m((\nabla \times \delta B^n) \times (B^{n-1} - B_h^{n-1}), \nabla \times v_h^n) + SR_m((\nabla \times \delta B^n) \times (B^{n-1} - B_h^{n-1}), \nabla \times v_B^n) + SR_m((\nabla \times \delta B^n) \times (B^{n-1} - B_h^{n-1}), \nabla \times v_B^n)\]

The last two terms cancelled out due to the fact \(a \times b + b \times a = 0\), the first term vanishes due to the fact \(\nabla \times \delta_B^n = 0\), hence

\[M_1 + M_3 = SR_m((\nabla \times \delta B^n) \times B^{n-1}, \nabla \times v_B^n) \leq C \|\nabla \times \delta B^n\|_{0,6} \|\nabla \times v_B^n\| \leq C \epsilon \|\nabla \times \delta_B^n\|^2 + C \epsilon^{-1} h^{2\beta}.\]

For \(M_2 + M_4\), we insert this identity:

\[SR_m((\nabla \times \delta B^n) \times (B^{n-1} - B_h^{n-1}), v_h^n) + SR_m((\nabla \times \delta B^n) \times (B^{n-1} - B_h^{n-1}), \nabla \times v_B^n) = 0\]
into $M_2 + M_4$ with simple algebraic cancelation, we arrive at:

$$M_2 + M_4$$

$$= SR_m^{-\frac{1}{2}} [(\|\nabla \times E_{u}^{n} - E_{h}^{n}\|^2, v_u^{n} + (\Pi V \tilde{u}^{n} \times (B^{n-1} - B_h^{n-1}), \nabla \times E_{B}^{n})]$$

$$\leq C (\|\nabla \times E_{u}^{n}\|^2 + \|E_{h}^{n}\|^2 + ||E_{u}^{n-1}\|^2 + ||E_{B}^{n-1}\|^2)$$

Now if we combine all the above estimates we arrive at:

$$\frac{\|e_u^n\|^2 - \|e_u^{n-1}\|^2}{2\tau} + R^e - \|\nabla e_u^n\|^2 + SR_m^{-\frac{1}{2}} \frac{\|e_u^n\|^2 - \|e_u^{n-1}\|^2}{2\tau} + SR_m^{-\frac{1}{2}} \|\nabla \times E_{B}^{n}\|^2$$

$$\leq C (\|\nabla \times E_{u}^{n}\|^2 + \|E_{h}^{n}\|^2) + C \epsilon^{-1}(h^{2s} + ||E_{u}^{n-1}\|^2)$$

If we take $\epsilon = \min\{\frac{1}{2}R_m, \frac{1}{2}SR_m\}$, multiplying $2\tau$ on the above estimate and sum over $j = 1, \ldots, n$ we have

$$\|e_u^n\|^2 + \|e_B^n\|^2 + C\tau \sum_{j=1}^{n} (||\nabla e_u^n\|^2 + ||\nabla \times E_{B}^{n}\|^2)$$

By the fact $e_u^0 = 0, e_B^0 = 0$ and the regularity assumption (2.4), we have

$$\|e_u^n\|^2 + \|e_B^n\|^2 + C\tau \sum_{j=0}^{n} (h^{2s} + ||e_u^n\|^2)$$

$$\leq C\tau \sum_{j=0}^{n} (||e_u^n\|^2 + ||e_B^n\|^2) + C(h^{2s} + \tau^2).$$

By the discrete Gronwall’s inequality Lemma 3.4 with $C\tau < \frac{1}{2}$, we have

$$\|e_u^n\|^2 + \|e_B^n\|^2 + C\tau \sum_{j=1}^{n} (||\nabla e_u^n\|^2 + ||\nabla \times E_{B}^{n}\|^2)$$

$$\leq e^{2CT}(h^{2s} + \tau^2).$$

We complete the proof of (2.6) by applying the triangle inequality, approximation properties of the projections Lemma 3.3 together with above etimates. Combine the above estimate with (4.8) we can deduce the estimates (2.6) with the initial error estimates (3.4).
With the above estimates for \( \mathbf{u}, \mathbf{B} \), we can simply take \( \mathbf{F} = e_E^n \) in (1.3b), with some algebraic rearrangement, we arrive at:

\[
\|e_E^n\|^2 = R_m^{-1}(\nabla_h \times e_B^n, e_E^n) - (\delta_E^n, e_E^n) + R_2(e_E^n) - M_2(e_E^n)
\leq C(\|\nabla_h \times e_B^n\| + \|\delta_E^n\|)\|e_E^n\| + R_2(e_E^n) - M_2(e_E^n).
\]

For the last two terms, with a similar treatment as in the previous proofs, we can bound these two terms as follows:

\[
R_2(e_E^n) = (\overline{\mathbf{u}} - \mathbf{u}) \times \mathbf{B} - (\mathbf{u} \times (\mathbf{B} - \mathbf{B}), e_E^n) - R_m^{-1}(\nabla_h \times (\overline{\mathbf{B}} - \mathbf{B}), e_E^n)
\leq C\tau \frac{1}{4} \|e_E^n\|\|(u_t)_{L^2(t_{n-1}, t_n; H^1(\Omega))}\|\|e_E^n\|_{0,3} + \|e_E^n\|_{0,\infty}||B_t||_{L^2(t_{n-1}, t_n; L^2(\Omega))}
+ C\tau \frac{1}{2} \|e_E^n\|\|\nabla \times B_t\|_{L^2(t_{n-1}, t_n; L^2(\Omega))},
\]

\[
M_2(e_E^n) = (\overline{\mathbf{u}} - \mathbf{u}) \times \mathbf{B} - (\mathbf{u} \times (\mathbf{B} - \mathbf{B}), e_E^n) - R_m^{-1}(\nabla_h \times (\overline{\mathbf{B}} - \mathbf{B}), e_E^n)
\leq C\tau \|e_E^n\|\|(u_t)_{L^2(t_{n-1}, t_n; H^1(\Omega))}\|\|e_E^n\|_{0,3} + \|e_E^n\|_{0,\infty}||B_t||_{L^2(t_{n-1}, t_n; L^2(\Omega))}
\leq C\tau \|e_E^n\|\|\nabla \times B_t\|_{L^2(t_{n-1}, t_n; L^2(\Omega))},
\]

The above estimates is due to Sobolev inequality Lemma 3.2 and Theorem 1 in [27], stability of the solution Theorem 2.1 and the estimates for \( \mathbf{u}, \mathbf{B} \). This completes the proof for (2.7) with a simple triangle inequality and projection error estimates for \( \mathbf{E} \) in Lemma 3.3.

With a slightly stronger regularity assumption with \( \mathbf{u}_t \in L^\infty(0, T; H^1(\Omega)), \mathbf{B}_t, \nabla \times \mathbf{B}_t \in L^\infty(0, T; L^2(\Omega)) \) we can regain the full order of \( \tau \) as:

\[
R_2(e_E^n) = (\overline{\mathbf{u}} - \mathbf{u}) \times \mathbf{B} - (\mathbf{u} \times (\mathbf{B} - \mathbf{B}), e_E^n) - R_m^{-1}(\nabla_h \times (\overline{\mathbf{B}} - \mathbf{B}), e_E^n)
\leq C\tau \|e_E^n\|\|(u_t)_{L^\infty(t_{n-1}, t_n; H^1(\Omega))}\|\|e_E^n\|_{0,3} + \|e_E^n\|_{0,\infty}||B_t||_{L^\infty(t_{n-1}, t_n; L^2(\Omega))}
+ C\tau \|e_E^n\|\|\nabla \times B_t\|_{L^\infty(t_{n-1}, t_n; L^2(\Omega))},
\]

this completes the proof for (2.9).

Finally we use a classical inf-sup argument to bound \( e_\rho \) as in (2.8). By the inf-sup condition (2.1) we know that there exists \( \mathbf{w}_h \in \mathbf{V}_h \) such that

\[
\|e_\rho^n\| \leq \frac{1}{\kappa} \frac{(e_\rho^n, \nabla \cdot \mathbf{w}_h)}{\|\mathbf{w}_h\|_1}. \tag{4.9}
\]

On the other hand, by error equation (4.3a) we have

\[
(e_\rho, \nabla \cdot \mathbf{w}_h) = (D_{\tau} e^n_{\mathbf{u}}, \mathbf{w}_h) + (D_{\tau} e^n_{\mathbf{B}}, \mathbf{w}_h) + R_1(e_\rho^n, \nabla \mathbf{w}_h) - R_1(\mathbf{w}_h) - \Omega(\mathbf{w}_h) - \mathbf{M}_1(\mathbf{w}_h). \tag{4.10}
\]

Each of the terms on the right hand side can be estimated as follows:

\[
(D_{\tau} e^n_{\mathbf{u}}, \mathbf{w}_h) = \frac{1}{\tau} \int_{t_{n-1}}^{t_n} \int_{\Omega} \frac{\partial \mathbf{u}_t}{\partial t} \cdot \mathbf{w}_h dt dx = \frac{1}{\tau} \int_{t_{n-1}}^{t_n} \int_{\Omega} \frac{\partial \mathbf{u}_t}{\partial t} \cdot \mathbf{w}_h d\mathbf{x} dt,
\]

\[
\leq \frac{1}{\tau} \int_{t_{n-1}}^{t_n} \int_{\Omega} \frac{\partial \mathbf{u}_t}{\partial t} \|\mathbf{w}_h\| d\mathbf{x} dt \leq C\frac{1}{\tau} \int_{t_{n-1}}^{t_n} \mathbf{u}_t(\rho, \cdot) \|\mathbf{w}_h\| d\mathbf{x} dt \leq C\tau^{-\frac{1}{2}} h^{\beta} \|\mathbf{u}_t\|_{L^2(t_{n-1}, t_n; H^3(\Omega))} \|\mathbf{w}_h\|_1,
\]

\[
R_1(e_\rho^n, \nabla \mathbf{w}_h) \leq C \|\nabla e_\mathbf{u}^n\| \|\mathbf{w}_h\|_1 \leq C(\tau + h^\beta) \|\mathbf{w}_h\|_1.
\]
For $\mathcal{R}_1(w_h)$, with a similar estimates for the terms in $\mathcal{R}_1(\tilde{\sigma}_u^n)$, we have:

$$\mathcal{R}_1(w_1) \leq C\tau^{\frac{1}{2}}\|w_h\|_1.$$ 

Notice the above result is slightly different from the estimates for $\mathcal{R}_1(\tilde{\sigma}_u^n)$ due to the fact that we don’t apply the weighted Young’s inequality here for each term. For instance,

$$R_e^{-1}(\nabla \tilde{u}^n - \nabla u^n, \nabla w_h) \leq C\tau^{\frac{1}{2}}\|\nabla u_t\|_{L^2(t_{n-1}, t_n; L^2(\Omega))}\|w_h\|_1.$$ 

Similarly, for $\mathcal{O}(w_h)$ we have:

$$\mathcal{O}(w_h) \leq C(\tau + h^\beta)\|w_h\|_1,$$

For $\mathcal{M}_1(w_h)$, we have

$$\mathcal{M}_1(w_h) = SR_m^{-1}(\nabla h \times \overline{B}^n) \times B^{n-1}, w_h) - SR_m^{-1}(\nabla h \times \overline{B}^n) \times B^{n-1}, w_h)$$

$$= SR_m^{-1}(\nabla h \times \overline{B}^n) \times (B^{n-1} - B^{n-1}), w_h) + SR_m^{-1}(\nabla h \times (\overline{B}^n - \overline{B}^n) \times B^{n-1}, w_h)$$

$$\leq C\|\nabla h \times \overline{B}^n\|_{0,3}B^{n-1} - B^{n-1}\|w_h\|_{0,6} + C\|\nabla h \times (\overline{B}^n - \overline{B}^n)\|\|B^{n-1}\|_{0,3}\|w_h\|_{0,6}$$

$$\leq C\|\nabla \overline{B}^n\|_{0,3}B^{n-1} - B^{n-1}\|w_h\|_1 + C\|\nabla h \times (\overline{B}^n - \overline{B}^n)\|\|\nabla h \times B^{n-1}\|\|w_h\|_1$$

$$\leq C h^\beta\|w_h\|_1.$$ 

For the last term we start with Cauchy-Schwarz inequality to have:

$$(D_\tau e_u^n, w_h) \leq \|D_\tau e_u^n\|\|w_h\|.$$ 

If now we directly bound $\|D_\tau e_u^n\| \leq \tau^{-1}(\|e_u^n + e_u^{n-1}\|$ we will lose a full power of $\tau$ which means there is no convergence order in time for $e_p$. In stead, we take $v = D_\tau e_u^n$ in (4.3a) to have,

$$\|D_\tau e_u^n\|^2 = -(D_\tau \delta_u^n, w_h) - R_e^{-1}(\nabla e_u^n, \nabla D_\tau e_u^n) + \mathcal{R}_1(D_\tau e_u^n) + \mathcal{O}(D_\tau e_u^n) + \mathcal{M}_1(D_\tau e_u^n).$$ 

Here we used the fact that $(\nabla \cdot e_u^n, q) = 0$ for all $n$ due to the error equation (4.3a). The second term on the right hand side can be bounded as:

$$-R_e^{-1}(\nabla e_u^n, \nabla D_\tau e_u^n) = -R_e^{-1}(2\tau)^{-1}((\|\nabla e_u^n\|^2 - \|\nabla e_u^{n-1}\|^2) \leq C(\tau + \tau^{-1}h^{2\beta}).$$ 

For the rest terms on the right hand side, we bound them in the same way as above, after simplification, we arrive at:

$$\|D_\tau e_u^n\|^2 \leq C\tau^{\frac{3}{2}}h^\beta\|D_\tau e_u^n\| + C(\tau + h^\beta)\|D_\tau e_u^n\| + C(\tau + \tau^{-1}h^{2\beta}).$$ 

This implies that

$$\|D_\tau e_u^n\| \leq C(\tau^{\frac{3}{2}} + \tau^{-\frac{1}{2}}h^\beta).$$ 

Finally if we combine all the above estimates into (4.9), (4.10), we finally have:

$$\|e_p^n\|^2 \leq C(\tau^2 + \tau^{-1}h^{2\beta}).$$ 

This completes all the estimates in Theorem 2.2
References

[1] D.N. Arnold, R. S Falk, and R. Winther, *Finite element exterior calculus, homological techniques, and applications*. Acta numerica, 15:1-155, 2006.

[2] D.N. Arnold, R. S Falk, and R. Winther, *Finite element exterior calculus: from hodge theory to numerical stability*. Bulletin of the American mathematical society, 47(2):281-354, 2010.

[3] M.A. Abdou et al. (2001), On the exploration of innovative concepts for fusion chamber technology, *Fusion Eng. Des.*, 54, pp. 181–247.

[4] S. Badia, R. Codina and R. Planas (2013). On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics, *J. Comput. Phys.*, 234, pp. 399–416.

[5] L. Bañes and A. Prohl (2010). Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations, *Mathematics of Computation*, 79(272), pp. 1957–1999.

[6] R. Codina and N. Hernández (2011). Approximation of the thermally coupled MHD problem using a stabilized finite element method, *J. Comput. Phys.*, 230, pp. 1281–1303.

[7] M. Crouzeix and V. Thomée (1987). The Stability in $L^p$ and $W^{1,p}$ of the $L^2$-Projection onto Finite Element Function Spaces, *Mathematics of Computation*, 48(178), pp. 521–532.

[8] H. Gao and W. Qiu (2019). A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations, *Computer Methods in Applied Mechanics and Engineering*, 346, pp. 982–1001.

[9] J. Gerbeau, C. Le Bris and T. Lelièvre (2006). Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, *Oxford University Press*, Oxford.

[10] V. Girault and P-A. Raviart. *Finite element methods for Navier-Stokes equations: theory and algorithms*, volume 5. Springer Science & Business Media, 2012.

[11] J. Goedbloed and S. Poedts (2004). Principles of Magnetohydrodynamics with Applications to Laboratory and Astrophysical Plasmas, *Cambridge University Press*, Cambridge, MA.

[12] Y. He (2015). Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations, *IMA Journal of Numerical Analysis*, 35(2), pp. 767–801.

[13] J. Heywood and R. Rannacher (1990). Finite element approximation of the nonstationary Navier-Stokes problem IV: Error analysis for second-order time discretization, *SIAM J. Numer. Anal.*, 27, pp. 353-384.

[14] R. Hiptmair, *Finite elements in computational electromagnetism*, Acta. Numer., 11 (2002), pp. 237-339.

[15] R. Hiptmair, M. Li, S. Mao and W. Zheng (2018). A fully divergence-free finite element method for magnetohydrodynamic equations, *Math. Models Methods Appl. Sci.*, 28, pp. 659–695.

[16] K. Hu, Y. Ma and J. Xu (2017). Stable finite element methods preserving $\nabla \cdot \mathbf{B} = 0$ exactly for MHD models, *Numer. Math.*, 135, pp. 371–396.

[17] Y. Ma, J. Xu and G. Zhang (2016). Error estimates for structure-preserving discretization of the incompressible MHD system, [arXiv:1608.03033](https://arxiv.org/abs/1608.03033).

[18] L. Marioni, F. Bay and E. Hachem (2016). Numerical stability analysis and flow simulation of lid-driven cavity subjected to high magnetic field, *Phys. Fluids*, 28, pp. 57–102.

[19] R. Moreau (1990). Magnetohydrodynamics, *Kluwer Academic Publishers*, New York.

[20] M.-J. Ni, R. Munipalli, P. Huang, N.B. Morley, M.A. Abdou (2007). A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I. On a rectangular collocated grid system, *J. Comp. Phys.*, 227, pp. 174–204.

[21] M.-J. Ni, R. Munipalli, P. Huang, N.B. Morley, M.A. Abdou (2007). A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh, *J. Comp. Phys.*, 227, pp. 205–228.

[22] L. Nirenberg, *An extended interpolation inequality*, Ann. Scuola Norm. Sup. Pisa (3), 20(1966), pp. 733-737.

[23] P. Monk, *Finite element methods for Maxwell's equations*. Oxford University Press, New York, 2003.

[24] E. Phillips, H. Elman, E. Cyr, J. Shadid and R. Pawlowski (2016). Block preconditioners for stable mixed nodal and edge finite element representations of incompressible resistive MHD, *SIAM J. Sci. Comput.*, 36, pp. B1009–B1031.

[25] A. Prohl (2008). *Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system*, *M2AN Math. Model. Numer. Anal.*, 42, pp. 1065–1087.
[26] W. Qiu and K. Shi, *Analysis on an HDG Method for the p-Laplacian Equations*, J Sci Comput (2019) 80: 1019. DOI https://doi.org/10.1007/s10915-019-00967-6.

[27] K. Hu, W. Qiu and K. Shi *Convergence of a B-E based finite element method for MHD models on Lipschitz domains*. J. Comput. and Appl. Math. DOI https://doi.org/10.1016/j.cam.2019.112477

[28] M. Sermane and R. Temam (1984). Some mathematics questions related to the MHD equations, *Commun. Pure Appl. Math.*, XXXIV, pp. 635–664.

[29] S. Xu, N. Zhang and M. Ni (2013), Influence of flow channel insert with pressure equalization opening on MHD flows in a rectangular duct, *Fusion Eng. Des.*, 88, pp. 271–275.

[30] G. Zhang, J. Yang and C. Bi (2018). Second order unconditionally convergent and energy stable linearized scheme for MHD equations, *Adv. Comput. Math.*, 44, pp. 505–540.

[31] J. Zhang and M. Ni (2014). A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured Cartesian adaptive system, *J. Comp. Phys.*, 256, pp. 520–542.

DEPARTMENT OF MATHEMATICS, CITY UNIVERSITY OF HONG KONG, 83 TAT CHEE AVENUE, HONG KONG, CHINA.

E-mail address: weifeqiu@cityu.edu.hk

DEPARTMENT OF MATHEMATICS AND STATISTICS, OLD DOMINION UNIVERSITY, NORFOLK, VA 23529, USA.

E-mail address: kshi@odu.edu