Extensions of a theorem of Erdős on nonhamiltonian graphs

Zoltán Füredi† Alexandr Kostochka‡ Ruth Luo§

March 29, 2017

Abstract

Let \(n, d \) be integers with \(1 \leq d \leq \left\lfloor \frac{n-1}{2} \right\rfloor \), and set \(h(n, d) := \left(\frac{n-d}{2} \right) + d^2 \). Erdős proved that when \(n \geq 6d \), each nonhamiltonian graph \(G \) on \(n \) vertices with minimum degree \(\delta(G) \geq d \) has at most \(h(n, d) \) edges. He also provides a sharpness example \(H_{n,d} \) for all such pairs \(n, d \). Previously, we showed a stability version of this result: for \(n \) large enough, every nonhamiltonian graph \(G \) on \(n \) vertices with \(\delta(G) \geq d \) and more than \(h(n, d) + 1 \) edges is a subgraph of \(H_{n,d} \).

In this paper, we show that not only does the graph \(H_{n,d} \) maximize the number of edges among nonhamiltonian graphs with \(n \) vertices and minimum degree at least \(d \), but in fact it maximizes the number of copies of any fixed graph \(F \) when \(n \) is sufficiently large in comparison with \(d \) and \(|F| \). We also show a stronger stability theorem, that is, we classify all nonhamiltonian \(n \)-graphs with \(\delta(G) \geq d \) and more than \(h(n, d+2) \) edges. We show this by proving a more general theorem: we describe all such graphs with more than \(\left(\frac{n-(d+2)}{k} \right) + (d+2)^{(d+2)}(k+1) \) copies of \(K_k \) for any \(k \). Mathematics Subject Classification: 05C35, 05C38.

Keywords: Subgraph density, hamiltonian cycles, extremal graph theory.

1 Introduction

Let \(V(G) \) denote the vertex set of a graph \(G \), \(E(G) \) denote the edge set of \(G \), and \(e(G) = |E(G)| \). Also, if \(v \in V(G) \), then \(N(v) \) is the neighborhood of \(v \) and \(d(v) = |N(v)| \). If \(v \in V(G) \) and \(D \subset V(G) \) then for shortness we will write \(D + v \) to denote \(D \cup \{v\} \). For \(k, t \in \mathbb{N} \), \((k)_t \) denotes the falling factorial \(k(k-1)\ldots(k-t+1) = \frac{k!}{(k-t)!} \).

The first Turán-type result for nonhamiltonian graphs was due to Ore [11]:

Theorem 1 (Ore [11]). If \(G \) is a nonhamiltonian graph on \(n \) vertices, then \(e(G) \leq \left(\frac{n-1}{2} \right) + 1 \).

This bound is achieved only for the \(n \)-vertex graph obtained from the complete graph \(K_{n-1} \) by adding a vertex of degree 1. Erdős [4] refined the bound in terms of the minimum degree of the graph:

\[\delta(G) \geq \frac{n}{2}, \text{ then } e(G) \leq \frac{n^2 - 3n + 4}{4} + 1.\]

\[\delta(G) \geq \frac{n}{2}, \text{ then } e(G) \leq \frac{n^2 - 3n + 4}{4} + 1.\]
Theorem 2 (Erdős [4]). Let \(n, d \) be integers with \(1 \leq d \leq \left\lfloor \frac{n-1}{2} \right\rfloor \), and set \(h(n, d) := (\frac{n}{2}) + d^2 \). If \(G \) is a nonhamiltonian graph on \(n \) vertices with minimum degree \(\delta(G) \geq d \), then

\[
e(G) \leq \max \left\{ h(n, d), h(n, \left\lfloor \frac{n-1}{2} \right\rfloor) \right\} =: e(n, d).
\]

This bound is sharp for all \(1 \leq d \leq \left\lfloor \frac{n-1}{2} \right\rfloor \).

To show the sharpness of the bound, for \(n, d \in \mathbb{N} \) with \(d \leq \left\lfloor \frac{n-1}{2} \right\rfloor \), consider the graph \(H_{n,d} \) obtained from a copy of \(K_{n-d} \), say with vertex set \(A \), by adding \(d \) vertices of degree \(d \) each of which is adjacent to the same \(d \) vertices in \(A \). An example of \(H_{11,3} \) is on the left of Fig 1.

![Graphs H_{11,3} (left) and K'_{11,3} (right).](image)

By construction, \(H_{n,d} \) has minimum degree \(d \), is nonhamiltonian, and \(e(H_{n,d}) = (\frac{n}{2}) + d^2 = h(n, d) \). Elementary calculation shows that \(h(n, d) > h(n, \left\lfloor \frac{n-1}{2} \right\rfloor) \) in the range \(1 \leq d \leq \left\lfloor \frac{n-1}{2} \right\rfloor \) if and only if \(d < (n + 1)/6 \) and \(n \) is odd or \(d < (n + 4)/6 \) and \(n \) is even. Hence there exists a \(d_0 := d_0(n) \) such that

\[
e(n, 1) > e(n, 2) > \cdots > e(n, d_0) = e(n, d_0 + 1) = \cdots = e(n, \left\lfloor \frac{n-1}{2} \right\rfloor),
\]

where \(d_0(n) := \left\lceil \frac{n+1}{6} \right\rceil \) if \(n \) is odd, and \(d_0(n) := \left\lceil \frac{n+4}{6} \right\rceil \) if \(n \) is even. Therefore \(H_{n,d} \) is an extremal example of Theorem 2 when \(d < d_0 \) and \(H_{n,\left\lfloor (n-1)/2 \right\rfloor} \) when \(d \geq d_0 \).

In [10] and independently in [6] a stability theorem for nonhamiltonian graphs with prescribed minimum degree was proved. Let \(K'_{n,d} \) denote the edge-disjoint union of \(K_{n-d} \) and \(K_{d+1} \) sharing a single vertex. An example of \(K'_{11,3} \) is on the right of Fig 1.

Theorem 3 ([10] [6]). Let \(n \geq 3 \) and \(d \leq \left\lfloor \frac{n-1}{2} \right\rfloor \). Suppose that \(G \) is an \(n \)-vertex nonhamiltonian graph with minimum degree \(\delta(G) \geq d \) such that

\[
e(G) > e(n, d + 1) = \max \left\{ h(n, d + 1), h(n, \left\lfloor \frac{n-1}{2} \right\rfloor) \right\}.
\]

Then \(G \) is a subgraph of either \(H_{n,d} \) or \(K'_{n,d} \).

One of the main results of this paper shows that when \(n \) is large enough with respect to \(d \) and \(t \), \(H_{n,d} \) not only has the most edges among \(n \)-vertex nonhamiltonian graphs with minimum degree at least \(d \), but also has the most copies of any \(t \)-vertex graph. This is an instance of a generalization of the Turán problem called subgraph density problem: for \(n \in \mathbb{N} \) and graphs \(T \) and \(H \), let \(ex(n, T, H) \) denote the maximum possible number of (unlabeled) copies of \(T \) in an \(n \)-vertex \(H \)-free graph. When \(T = K_2 \), we have the usual extremal number \(ex(n, T, H) = ex(n, H) \).
Some notable results on the function $ex(n, T, H)$ for various combinations of T and H were obtained in [5, 2, 1, 8, 9, 7]. In particular, Erdös [5] determined $ex(n, K_s, K_t)$, Bollobás and Győri [2] found the order of magnitude of $ex(n, C_3, C_5)$, Alon and Shikhelman [1] presented a series of bounds on $ex(n, T, H)$ for different classes of T and H.

In this paper, we study the maximum number of copies of T in nonhamiltonian n-vertex graphs, i.e., $ex(n, T, C_n)$. For two graphs G and T, let $N(G, T)$ denote the number of labeled copies of T that are subgraphs of G, i.e., the number of injections $\phi : V(T) \rightarrow V(G)$ such that for each $xy \in E(T)$, $\phi(x)\phi(y) \in E(G)$. Since for every T and H, $|Aut(T)|ex(n, T, H)$ is the maximum of $N(G, T)$ over the n-vertex graphs G not containing H, some of our results are in the language of labeled copies of T in G. For $k \in \mathbb{N}$, let $N_k(G)$ denote the number of unlabeled copies of K_k’s in G. Since $|Aut(K_k)| = k!$, we have $N_k(G) = N(G, K_k)/k!$.

2 Results

As an extension of Theorem [2], we show that for each fixed graph F and any d, if n is large enough with respect to $|V(F)|$ and d, then among all n-vertex nonhamiltonian graphs with minimum degree at least d, $H_{n,d}$ contains the maximum number of copies of F.

Theorem 4. For every graph F with $t := |V(F)| \geq 3$, any $d \in \mathbb{N}$, and any $n \geq n_0(d, t) := 4dt + 3d^2 + 5t$, if G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$, then $N(G, H) \leq N(H_{n,d}, F)$.

On the other hand, if F is a star $K_{1,t-1}$ and $n \leq dt - d$, then $H_{n,d}$ does not maximize $N(G, F)$. At the end of Section 4, we show that in this case, $N(H_{n,[(n-1)/2]}, F) > N(H_{n,d}, F)$. So, the bound on $n_0(d, t)$ in Theorem 4 has the right order of magnitude when $d = O(t)$.

An immediate corollary of Theorem 4 is the following generalization of Theorem [1].

Corollary 5. For every graph F with $t := |V(F)| \geq 3$ and any $n \geq n_0(t) := 9t + 3$, if G is an n-vertex nonhamiltonian graph, then $N(G, H) \leq N(H_{n,1}, F)$.

We consider the case that F is a clique in more detail. For $n, k \in \mathbb{N}$, define on the interval $[1, [(n-1)/2]]$ the function

$$h_k(n, x) := \binom{n-x}{k} + x \binom{x}{k-1}.$$

(2)

We use the convention that for $a \in \mathbb{R}$, $b \in \mathbb{N}$, $\binom{n}{k}$ is the polynomial $\frac{1}{b!} a \times (a-1) \times \ldots \times (a-b+1)$ if $a \geq b-1$ and 0 otherwise.

By considering the second derivative, one can check that for any fixed k and n, as a function of x, $h_k(n, x)$ is convex on $[1, [(n-1)/2]]$, hence it attains its maximum at one of the endpoints, $x = 1$ or $x = [(n-1)/2]$. When $k = 2$, $h_2(n, x) = h(n, x)$. We prove the following generalization of Theorem [2].

Theorem 6. Let n, d, k be integers with $1 \leq d \leq \lfloor \frac{n-1}{2} \rfloor$ and $k \geq 2$. If G is a nonhamiltonian graph
on n vertices with minimum degree $\delta(G) \geq d$, then the number $N_k(G)$ of k-cliques in G satisfies

$$N_k(G) \leq \max \left\{ h_k(n, d), h_k\left(n, \left\lfloor \frac{n-1}{2} \right\rfloor \right) \right\}$$

Again, graphs $H_{n,d}$ and $H_{n,\lfloor (n-1)/2 \rfloor}$ are sharpness examples for the theorem.

Finally, we present a stability version of Theorem 6. To state the result, we first define the family of extremal graphs.

Fix $d \leq \lfloor (n-1)/2 \rfloor$. In addition to graphs $H_{n,d}$ and $K'_{n,d}$ defined above, define $H'_{n,d}$: $V(H'_{n,d}) = A \cup B$, where A induces a complete graph on $n-d-1$ vertices, B is a set of $d+1$ vertices that induce exactly one edge, and there exists a set of vertices $\{a_1, \ldots, a_d\} \subseteq A$ such that for all $b \in B$, $N(b) - B = \{a_1, \ldots, a_d\}$. Note that contracting the edge in $H'_{n,d}[B]$ yields $H_{n-1,d}$. These graphs are illustrated in Fig. 2.

![Figure 2: Graphs $H_{n,d}$ (left), $K'_{n,d}$ (center), and $H'_{n,d}$ (right), where shaded background indicates a complete graph.](image)

We also have two more extremal graphs for the cases $d = 2$ or $d = 3$. Define the nonhamiltonian n-vertex graph $G'_{n,2}$ with minimum degree 2 as follows: $V(G'_{n,2}) = A \cup B$ where A induces a clique or order $n-3$, $B = \{b_1, b_2, b_3\}$ is an independent set of order 3, and there exists $\{a_1, a_2, a_3, x\} \subseteq A$ such that $N(b_i) = \{a_i, x\}$ for $i \in \{1, 2, 3\}$ (see the graph on the left in Fig. 3).

The nonhamiltonian n-vertex graph $F_{n,3}$ with minimum degree 3 has vertex set $A \cup B$, where A induces a clique of order $n-4$, B induces a perfect matching on 4 vertices, and each of the vertices in B is adjacent to the same two vertices in A (see the graph on the right in Fig. 3).

![Figure 3: Graphs $G'_{n,2}$ (left) and $F_{n,3}$ (right).](image)

Our stability result is the following:

Theorem 7. Let $n \geq 3$ and $1 \leq d \leq \left\lfloor \frac{n-1}{2} \right\rfloor$. Suppose that G is an n-vertex nonhamiltonian graph.
Suppose there exist \(x, y \in V(G) \) such that there exists \(k \geq 2 \) for which

\[
N_k(G) > \max \left\{ h_k(n, d + 2), h_k(n, \left\lfloor \frac{n - 1}{2} \right\rfloor) \right\}.
\]

Let \(H_{n,d} := \{ H_{n,d}, H_{n,d+1}, K'_{n,d}, K'_{n,d+1}, H'_{n,d} \} \).

(i) If \(d = 2 \), then \(G \) is a subgraph of \(G'_{n,2} \) or of a graph in \(H_{n,2} \);
(ii) if \(d = 3 \), then \(G \) is a subgraph of \(F_{n,3} \) or of a graph in \(H_{n,3} \);
(iii) if \(d = 1 \) or \(4 \leq d \leq \left\lfloor \frac{n - 1}{2} \right\rfloor \), then \(G \) is a subgraph of a graph in \(H_{n,d} \).

The result is sharp because \(H_{n,d+2} \) has \(h_k(n, d + 2) \) copies of \(K_k \), minimum degree \(d + 2 > d \), is nonhamiltonian and is not contained in any graph in \(H_{n,d} \cup \{ G'_{n,2}, F_{n,3} \} \).

The outline for the rest of the paper is as follows: in Section 3 we present some structural results for graphs that are edge-maximal nonhamiltonian to be used in the proofs of the main theorems, in Section 4 we prove Theorem 4 in Section 5 we prove Theorem 6 and give a cliques version of Theorem 3 and in Section 6 we prove Theorem 7.

3 Structural results for saturated graphs

We will use a classical theorem of Pósa (usually stated as its contrapositive).

Theorem 8 (Pósa [12]). Let \(n \geq 3 \). If \(G \) is a nonhamiltonian \(n \)-vertex graph, then there exists \(1 \leq k \leq \left\lfloor \frac{n - 1}{2} \right\rfloor \) such that \(G \) has a set of \(k \) vertices with degree at most \(k \).

Call a graph \(G \) saturated if \(G \) is nonhamiltonian but for each \(uv \notin E(G) \), \(G + uv \) has a hamiltonian cycle. Ore’s proof [11] of Dirac’s Theorem [3] yields that

\[
d(u) + d(v) \leq n - 1
\]

for every \(n \)-vertex saturated graph \(G \) and for each \(uv \notin E(G) \).

We will also need two structural results for saturated graphs which are easy extensions of Lemmas 6 and 7 in [9].

Lemma 9. Let \(G \) be a saturated \(n \)-vertex graph with \(N_k(G) > h_k(n, \left\lfloor \frac{n - 1}{2} \right\rfloor) \) for any \(k \geq 2 \). Then for some \(1 \leq r \leq \left\lfloor \frac{n - 1}{2} \right\rfloor \), \(V(G) \) contains a subset \(D \) of \(r \) vertices of degree at most \(r \) such that \(G - D \) is a complete graph.

Proof. Since \(G \) is nonhamiltonian, by Theorem 6 there exists some \(1 \leq r \leq \left\lfloor \frac{n - 1}{2} \right\rfloor \) such that \(G \) has \(r \) vertices with degree at most \(r \). Pick the maximum such \(r \), and let \(D \) be the set of the vertices with degree at most \(r \). Since \(h_k(G) > h(n, \left\lfloor \frac{n - 1}{2} \right\rfloor) \), \(r < \left\lfloor \frac{n - 1}{2} \right\rfloor \). So, by the maximality of \(r \), \(|D| = r \).

Suppose there exist \(x, y \in V(G) - D \) such that \(xy \notin E(G) \). Among all such pairs, choose \(x \) and \(y \) with the maximum \(d(x) \). Since \(y \notin D, d(y) > r \). Let \(D' := V(G) - N(x) - \{ x \} \) and \(r' := |D'| = n - 1 - d(x) \). By (4),

\[
d(z) \leq n - 1 - d(x) = r' \quad \text{for all} \quad z \in D'.
\]
Lemma 11. For any extremal graphs of Lemma 10, if \(F \) is large then \((n-r')/2 \) \(k' \)-cliques in \(D' \) can be in at most \((n-r')/2 \) \(k' \)-cliques. Therefore \(N_k(G) \leq (n-r')/2 + r'(k-1) \leq h_k(n, [n-1]/2) \), a contradiction.

Also, repeating the proof of Lemma 7 in [6] gives the following lemma.

Lemma 10 (Lemma 7 in [6]). Under the conditions of Lemma 7, if \(r = \delta(G) \), then \(G = H_{n,\delta(G)} \) or \(G = K'_{n,\delta(G)} \).

4 Maximizing the number of copies of a given graph and a proof of Theorem 4

In order to prove Theorem 4, we first show that for any fixed graph \(F \) and any \(d \), of the two extremal graphs of Lemma 10 if \(n \) is large then \(H_{n,d} \) has at least as many copies of \(F \) as \(K'_{n,d} \).

Lemma 11. For any \(d,t,n \in \mathbb{N} \) with \(n \geq 2dt + d + t \) and any graph \(F \) with \(t = |V(F)| \) we have \(N(K'_{n,d}, F) \leq N(H_{n,d}, F) \).

Proof. Fix \(F \) and \(t = |V(F)| \). Let \(K'_{n,d} = A \cup B \) where \(A \) and \(B \) are cliques of order \(n - d \) and \(d + 1 \) respectively and \(A \cap B = \{v^*\} \), the cut vertex of \(K'_{n,d} \). Also, let \(D \) denote the independent set of order \(d \) in \(H_{n,d} \). We may assume \(d \geq 2 \), because \(H_{n,1} = K'_{n,1} \). If \(x \) is an isolated vertex of \(F \) then for any \(n \)-vertex graph \(G \) we have \(N(G,F) = (n-t+1)N(G,F-x) \). So it is enough to prove the case \(\delta(F) \geq 1 \), and we may also assume \(t \geq 3 \).

Because both \(K'_{n,d}[A] \) and \(H_{n,d} - D \) are cliques of order \(n - d \), the number of embeddings of \(F \) into \(K'_{n,d}[A] \) is the same as the number of embeddings of \(F \) into \(H_{n,d} - D \). So it remains to compare only the number of embeddings in \(\varphi : V(F) \to V(K'_{n,d}) \) such that \(\varphi(F) \) intersects \(B - v^* \) to the number of embeddings in \(\psi : V(F) \to V(H_{n,d}) \) such that \(\psi(F) \) intersects \(D \).

Let \(C \cup \overline{C} \) be a partition of the vertex set \(V(F) \), \(s := |C| \). Define the following classes of \(\Phi \) and \(\Psi \):
- \(\Phi(C) := \{ \varphi : V(F) \to V(K'_{n,d}) \text{ such that } \varphi(C) \text{ intersects } B - v^*, \varphi(C) \subseteq B, \text{ and } \varphi(\overline{C}) \subseteq V - B \} \);
- \(\Psi(C) := \{ \psi : V(F) \to V(H_{n,d}) \text{ such that } \psi(C) \text{ intersects } D, \psi(C) \subseteq (D \cup N(D)), \text{ and } \psi(\overline{C}) \subseteq V - (D \cup N(D)) \} \).

By these definitions, if \(C \neq C' \) then \(\Phi(C) \cap \Phi(C') = \emptyset \), and \(\Phi(C) \cap \Phi(C') = \emptyset \). Also \(\bigcup_{\emptyset \neq C \subseteq V(F)} \Phi(C) = \Phi \). We claim that for every \(C \neq \emptyset \),
\[
|\Phi(C)| \leq |\Psi(C)|. \tag{6}
\]

Summing up the number of embeddings over all choices for \(C \) will prove the lemma. If \(\Phi(C) = \emptyset \), then (6) obviously holds. So from now on, we consider the cases when \(\Phi(C) \) is not empty, implying \(1 \leq s \leq d + 1 \).

Case 1: There is an \(F \)-edge joining \(\overline{C} \) and \(C \). So there is a vertex \(v \in C \) with \(N_F(v) \cap \overline{C} \neq \emptyset \). Then for every mapping \(\varphi \in \Phi(C) \), the vertex \(v \) must be mapped to \(v^* \) in \(K'_{n,d} \). Let \(\varphi(v) = v^* \). So this
vertex \(v \) is uniquely determined by \(C \). Also, \(\varphi(C) \cap (B - v^*) \neq \emptyset \) implies \(s \geq 2 \). The rest of \(C \) can be mapped arbitrarily to \(B - v^* \) and \(\overline{C} \) can be mapped arbitrarily to \(A - v^* \). We obtained that \(|\Phi(C)| = (d)_{s-1}(n - d - 1)_{t-s} \).

We make a lower bound for \(|\Psi(C)| \) as follows. We define a \(\psi \in \Psi(C) \) by the following procedure. Let \(\psi(v) = x \in N(D) \) (there are \(d \) possibilities), then map some vertex of \(C - v \) to a vertex \(y \in D \) (there are \((s-1)d \) possibilities). Since \(N+y \) forms a clique of order \(d+1 \) we may embed the rest of \(C \) into \(N-v \) in \((d-1)s-2 \) ways and finish embedding of \(F \) into \(H_{n,d} \) by arbitrarily placing the vertices of \(\overline{C} \) to \(V-(D \cup N(D)) \). We obtained that \(|\Psi(C)| \geq d^2(s-1)(d-1)_{s-2}(n-2d)_{t-s} = d(s-1)(d)_{s-1}(n-2d)_{t-s} \).

Since \(s \geq 2 \) we have that

\[
\frac{|\Psi(C)|}{|\Phi(C)|} \geq \frac{d(s-1)(d-1)_{s-2}(n-2d)_{t-s}}{(d)_{s-1}(n - d - 1)_{t-s}} \geq d(2-1)\left(\frac{n-2d+1-t+s}{n-d-t+s}\right)^{t-s} = d\left(1 - \frac{d-1}{n-d-t+s}\right)^{t-s} \geq d\left(1 - \frac{(d-1)(t-s)}{n-d-t+s}\right) \geq d\left(1 - \frac{(d-1)t}{n-d-t}\right) > 1 \text{ when } n > dt + d + t.
\]

Case 2: \(C \) and \(\overline{C} \) are not connected in \(F \). We may assume \(s \geq 2 \) since \(C \) is a union of components with \(\delta(F) \geq 1 \). In \(K'_{n,d} \) there are at exactly \((d+1)s(n-d-1)_{t-s} \) ways to embed \(F \) into \(B \) so that only \(C \) is mapped into \(B \) and \(\overline{C} \) goes to \(A - v^* \), i.e., \(|\Phi(C)| = (d+1)s(n - d - 1)_{t-s} \).

We make a lower bound for \(|\Psi(C)| \) as follows. We define a \(\psi \in \Psi(C) \) by the following procedure. Select any vertex \(v \in C \) and map it to some vertex in \(D \) (there are \(sd \) possibilities), then map \(C - v \) into \(N(D) \) (there are \((d)_{s-1} \) possibilities) and finish embedding of \(F \) into \(H_{n,d} \) by arbitrarily placing the vertices of \(\overline{C} \) to \(V - (D \cup N(D)) \). We obtained that \(|\Psi(C)| \geq ds(d)_{s-1}(n-2d)_{t-s} \). We have

\[
\frac{|\Psi(C)|}{|\Phi(C)|} \geq \frac{ds(d)_{s-1}(n-2d)_{t-s}}{(d+1)s(n - d - 1)_{t-s}} \geq \frac{ds}{d+1} \left(1 - \frac{(d-1)t}{n-d-t}\right) \geq \frac{2d}{d+1} \left(1 - \frac{(d-1)t}{n-d-t}\right) \text{ because } s \geq 2 \geq 1 \text{ when } n > 2dt + d + t.
\]

\[\square \]

We are now ready to prove **Theorem 4**

Theorem 4 For every graph \(F \) with \(t := |V(F)| \geq 3 \), any \(d \in \mathbb{N} \), and any \(n \geq n_0(d,t) := 4dt + 3d^2 + 5t \), if \(G \) is an \(n \)-vertex nonhamiltonian graph with minimum degree \(\delta(G) \geq d \), then \(N(G,H) \leq N(H_{n,d}, F) \).

Proof. Let \(d \geq 1 \). Fix a graph \(F \) with \(|V(F)| \geq 3 \) (if \(|V(F)| = 2 \), then either \(F = K_2 \) or \(F = \overline{K}_2 \)). The case where \(G \) has isolated vertices can be handled by induction on the number of isolated
vertices, hence we may assume each vertex has degree at least 1. Set
\[n_0 = 4dt + 3d^2 + 5t. \] (7)

Fix a nonhamiltonian graph G with $|V(G)| = n \geq n_0$ and $\delta(G) \geq d$ such that $N(G, F) > N(H_{n,d}, F) \geq (n - d)_t$. We may assume that G is saturated, as the number of copies of F can only increase when we add edges to G.

Because $n \geq 4dt + t$ by [7],
\[\frac{(n - d)_t}{(n)_t} \geq \left(\frac{n - d - t}{n - t} \right)^t = \left(1 - \frac{d}{n - t} \right)^t \geq 1 - \frac{dt}{n - t} \geq 1 - \frac{1}{4} = \frac{3}{4}. \]

So, $(n - d)_t \geq \frac{3}{4}(n)_t$.

After mapping edge xy of F to an edge of G (in two labeled ways), we obtain the loose upper bound,
\[2e(G)(n - 2)_{t - 2} \geq N(G, F) \geq (n - d)_t \geq \frac{3}{4}(n)_t, \]

therefore
\[e(G) \geq \frac{3}{4} \binom{n}{2} > h_2(n, \lfloor (n - 1)/2 \rfloor). \] (8)

By Pósa’s theorem (Theorem [8]), there exists some $d \leq r \leq \lfloor (n - 1)/2 \rfloor$ such that G contains a set R or r vertices with degree at most r. Furthermore by [8], $r < d_0$. So by integrality, $r \leq d_0 - 1 \leq (n + 3)/6$. If $r = d$, then by Lemma [10] either $G = H_{n,d}$ or $G = K'_{n,d'}$. By Lemma [11] and [7], $G = H_{n,d}$, a contradiction. So we have $r \geq d + 1$.

Let I denote the family of all nonempty independent sets in F. For $I \in \mathcal{I}$, let $i = i(I) := |I|$ and $j = j(I) := |N_F(I)|$. Since F has no isolated vertices, $j(I) \geq 1$ and so $i \leq t - 1$ for each $I \in \mathcal{I}$. Let $\Phi(I)$ denote the set of embeddings $\varphi : V(F) \to V(G)$ such that $\varphi(I) \subseteq R$ and I is a maximum independent subset of $\varphi^{-1}(R \cap \varphi(F))$. Note that $\varphi(I)$ is not necessarily independent in G. We show that
\[|\Phi(I)| \leq (r)_i r(n - r)_{t - i - 1}. \] (9)

Indeed, there are $(r)_i$ ways to choose $\varphi(I) \subseteq R$. After that, since each vertex in R has at most r neighbors in G, there are at most r^j ways to embed $N_F(I)$ into G. By the maximality of I, all vertices of $F - I - N_F(I)$ should be mapped to $V(G) - R$. There are at most $(n - r)_{t - i - j}$ to do it. Hence $|\Phi(I)| \leq (r)_i r^j(n - r)_{t - i - j}$. Since $2r + t \leq 2(d_0 - 1) + t < n$, this implies [9].

Since each $\varphi : V(F) \to V(G)$ with $\varphi(V(F)) \cap R \neq \emptyset$ belongs to $\Phi(I)$ for some nonempty $I \in \mathcal{I}$, [5] implies
\[N(G, F) \leq (n - r)_t + \sum_{\emptyset \neq I \in \mathcal{I}} |\Phi(I)| \leq (n - r)_t + \sum_{i=1}^{t-1} \binom{t}{i} (r)_i r(n - r)_{t - i - 1}. \] (10)
Hence
\[
\frac{N(G,F)}{N(H_{n,d},F)} \leq \frac{(n-r)_t}{(n-d)_t} + \sum_{i=1}^{t-1} \left(\frac{1}{i} \right) r (n-r)_{t-i} - 1 \\
\leq \frac{(n-r)_t}{(n-d)_t} + \frac{1}{n-r-t+2} \sum_{i=1}^{t-1} \left(\frac{1}{i} \right) r (n-r)_{t-i} \\
= \frac{(n-r)_t}{(n-d)_t} + \frac{(n)_t - (n-r)_t}{(n-d)_t} \times \frac{r}{n-r-t+2} \\
\leq \frac{(n-r)_t}{(n-d)_t} \times \frac{n-t+2}{n-t+2} + \frac{(n)_t}{(n-d)_t} \times \frac{r}{n-t+2} := f(r).
\]

Given fixed \(n,d,t\), we claim that the real function \(f(r)\) is convex for \(0 < r < (n-t+2)/2\).

Indeed, the first term \(g(r) := \frac{(n-r)_t}{(n-d)_t} \times \frac{n-t+2-2r}{n-t+2} r\) is a product of \(t\) linear terms in each of which \(r\) has a negative coefficient (note that the \(n-t+2-r\) term cancels out with a factor of \(n-r-t+2\) in \((n-r)_t\)). Applying product rule, the first derivative \(g'\) is a sum of \(t\) products, each with \(t-1\) linear terms. For \(r < (n-t+2)/2\), each of these products is negative, thus \(g'(r) < 0\). Finally, applying product rule again, \(g''\) is the sum of \(t(t-1)\) products. For \(r < (n-t+2)/2\) each of the products is positive, thus \(g''(r) > 0\).

Similarly, the second factor of the second term (as a real function of \(r\), of the form \(r/(c-r)\)) is convex for \(r < n-t+2\).

We conclude that in the interval \([d+1,(n+3)/6]\) the function \(f(r)\) takes its maximum either at one of the endpoints \(r = d+1\) or \(r = (n+3)/6\). We claim that \(f(r) < 1\) at both end points.

In case of \(r = d+1\) the first factor of the first term equals \((n-d-t)/(n-d)\). To get an upper bound for the first factor of the second term one can use the inequality \(\prod (1+x_i) < 1+2 \sum x_i\) which holds for any number of non-negative \(x_i\)'s if \(0 < \sum x_i \leq 1\). Because \(dt/(n-d-t+1) \leq 1\) by (7), we obtain that

\[
f(d+1) < \frac{n-d-t}{n-d} \times \frac{n-t-2d}{n-t-d+1} + \left(1 + \frac{2dt}{n-d-t+1} \right) \times \frac{d+1}{n-t-d+1} \\
= \left(1 - \frac{t}{n-d} \right) \times \left(1 - \frac{d+1}{n-t-d+1} \right) + \left(\frac{d+1}{n-t-d+1} \right) \times \left(\frac{2dt(d+1)}{(n-t-d+1)^2} \right) \\
= 1 - \frac{t}{n-d} \times \frac{d+1}{n-t-d+1} + \frac{t}{n-d} \times \frac{2dt(d+1)}{n-t-d+1} \times \frac{n-d}{n-t-d+1} \\
= 1 - \frac{t}{n-d} \times \left(\frac{d+1}{n-t-d+1} - \frac{2dt(d+1)}{n-t-d+1} \times \left(1 + \frac{t}{n-t-d+1} \right) \right) \\
< 1 - \frac{t}{n-d} \times \left(1 - \frac{1}{4t} - \frac{2}{3} \left(1 + \frac{1}{4d} \right) \right) \\
\leq 1 - \frac{t}{n-d} \times \left(1 - 1/12 - 2/3 \times 5/4 \right) \\
< 1.
\]

Here we used that \(n \geq 3d^2 + 2d + t\) and \(n \geq 4dt + 5t + d\) by (7), \(t \geq 3\), and \(d \geq 1\).
To bound $f(r)$ for other values of r, let us use $1 + x \leq e^x$ (true for all x). We get

$$f(r) < \exp\left\{ -\frac{(r-d)t}{n-d-t+1} \right\} + \frac{r}{n-r-t+2} \times \exp\left\{ \frac{dt}{n-d-t+1} \right\}. $$

When $r = (n + 3)/6$, $t \geq 3$, and $n \geq 24d$ by (7), the first term is at most $e^{-18/46} = 0.676\ldots$. Moreover, for $n \geq 9t$ (therefore $n \geq 27$) we get that $\frac{r}{n-r-t+2}$ is maximized when r is maximized, i.e., when $t = n/9$. The whole term is at most $(3n+9)/(13n+27) \times e^{1/4} \leq 5/21 \times e^{1/4} = 0.305\ldots$, so in this range, $f((n+3)/6) < 1$. By the convexity of $f(r)$, we have $N(G, F) < N(H_{n,d}, F)$. \qed

When F is a star, then it is easy to determine max $N(G, F)$ for all n.

Claim 12. Suppose $F = K_{1,t-1}$ with $t := |V(F)| \geq 3$, and $t \leq n$ and d are integers with $1 \leq d \leq [(n-1)/2]$. If G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$, then

$$N(G, F) \leq \max \left\{ H_{n,d}, H_{n,[(n-1)/2]} \right\}, \quad (11)$$

and equality holds if and only if $G \in \left\{ H_{n,d}, H_{n,[(n-1)/2]} \right\}$.

Proof. The number of copies of stars in a graph G depends only on the degree sequence of the graph: if a vertex v of a graph G has degree $d(v)$, then there are $(d(v))_{t-1}$ labeled copies of F in G where v is the center vertex. We have

$$N(G, F) = \sum_{v \in V(G)} \left(\frac{d(v)}{t-1} \right). \quad (12)$$

Since G is nonhamiltonian, Pósa’s theorem yields an $r \leq [(n-1)/2]$, and an r-set $R \subset V(G)$ such that $d_G(v) \leq r$ for all $v \in R$. Take the minimum such r, then there exists a vertex $v \in R$ with $\deg(v) = r$. We may also suppose that G is edge-maximal nonhamiltonian, so Ore’s condition (4) holds. It implies that $\deg(w) \leq n-r-1$ for all $w \notin N(v)$. Altogether we obtain that G has r vertices of degree at most r, at least $n-2r$ vertices (those in $V(G) - R - N(v)$) of degree at most $(n-r-1)$. This implies that the right hand side of (12) is at most

$$r \times (r)_{t-1} + (n-2r) \times (n-r-1)_{t-1} + r \times (n-1)_{t-1} = N(H_{n,r}, F).$$

(Here equality holds only if $G = H_{n,r}$). Note that $r \in [d, [(n,1)/2]]$. Since for given n and t the function $N(H_{n,r}, F)$ is strictly convex in r, it takes its maximum at one of the endpoints of the interval. \qed

Remark 13. As it was mentioned in Section 3, $O(dt)$ is the right order for $n_0(d,t)$ when $d = O(t)$.

To see this, fix $d \in \mathbb{N}$ and let F be the star on $t \geq 3$ vertices. If $d < [(n-1)/2]$, $t \leq n$ and $n \leq dt - d$, then $H_{n,[(n-1)/2]}$ contains more copies of F than $H_{n,d}$ does, the maximum in (11) is reached for $r = [(n-1)/2]$. We present the calculation below only for $2d + 7 \leq n \leq dt - d$, the case $2d + 3 \leq n \leq 2d + 6$ can be checked by hand by plugging n into the first line of the formula below. We can proceed as follows.
In general, it is difficult to calculate the exact value of $N(H_{n,d}, F)$ for a fixed graph F. However, when $F = K_k$, we have $N(H_{n,d}, K_k) = h_k(n, d)k!$. Recall Theorem 6:

Theorem 6

Let n, d, k be integers with $1 \leq d \leq \left\lfloor \frac{n-1}{2} \right\rfloor$ and $k \geq 2$. If G is a nonhamiltonian graph on n vertices with minimum degree $\delta(G) \geq d$, then

$$N_k(G) \leq \max \left\{ h_k(n, d), h_k(n, \left\lfloor \frac{n-1}{2} \right\rfloor) \right\}.$$

Proof of Theorem 6 By Theorem 8, because G is nonhamiltonian, there exists an $r \geq d$ such that G has r vertices of degree at most r. Denote this set of vertices by D. Then $N_k(G - D) \leq \binom{n-r}{k-1}$, and every vertex in D is contained in at most $\binom{r}{k-1}$ copies of K_k. Hence $N_k(G) \leq h_k(n, r)$. The theorem follows from the convexity of $h_k(n, x)$.

Our older stability theorem (Theorem 3) also translates into the language of cliques, giving a stability theorem for Theorem 6.

Theorem 14. Let $n \geq 3$, and $d \leq \left\lfloor \frac{n-1}{2} \right\rfloor$. Suppose that G is an n-vertex nonhamiltonian graph with minimum degree $\delta(G) \geq d$ and there exists a $k \geq 2$ such that

$$N_k(G) > \max \left\{ h_k(n, d + 1), h_k(n, \left\lfloor \frac{n-1}{2} \right\rfloor) \right\}.$$

(13)

Then G is a subgraph of either $H_{n,d}$ or $K'_{n,d}$.

Proof. Take an edge-maximum counterexample G (so we may assume G is saturated). By Lemma 9, G has a set D of $r \leq \left\lfloor (n-1)/2 \right\rfloor$ vertices such that $G - D$ is a complete graph. If $r \geq d + 1$, then $N_k(G) \leq \max \left\{ h_k(n, d + 1), h_k(n, \left\lfloor \frac{n-1}{2} \right\rfloor) \right\}$. Thus $r = d$, and we may apply Lemma 10.
6 Discussion and proof of Theorem 7

One can try to refine Theorem 3 in the following direction: What happens when we consider \(n \)-vertex nonhamiltonian graphs with minimum degree at least \(d \) and less than \(e(n, d+1) \) but more than \(e(n, d+2) \) edges?

Note that for \(d < d_0(n) - 2 \),
\[
e(n, d) - e(n, d + 2) = 2n - 6d - 7,
\]
which is greater than \(n \). Theorem 7 answers the question above in a more general form—in terms of \(s \)-cliques instead of edges. In other words, we classify all \(n \)-vertex nonhamiltonian graphs with more than \(\max \{ h_s(n, d+2), h_s(n, \lfloor \frac{n-1}{2} \rfloor) \} \) copies of \(K_s \).

As in Lemma 14, such \(G \) can be a subgraph of \(H_{n,d} \) or \(K'_{n,d} \). Also, \(G \) can be a subgraph of \(H_{n,d+1} \) or \(K'_{n,d+1} \). Recall the graphs \(H_{n,d}, K'_{n,d}, H'_{n,d}, G'_{n,2} \), and \(F_{n,3} \) defined in the first two sections of this paper and the statement of Theorem 3.

![Graphs](image)

Figure 4: Graphs \(H_{n,d}, K'_{n,d}, H'_{n,d}, G'_{n,2} \), and \(F_{n,3} \).

Theorem 7 Let \(n \geq 3 \) and \(1 \leq d \leq \lfloor \frac{n-1}{2} \rfloor \). Suppose that \(G \) is an \(n \)-vertex nonhamiltonian graph with minimum degree \(\delta(G) \geq d \) such that exists a \(k \geq 2 \) for which
\[
N_k(G) > \max \{ h_k(n, d + 2), h_k(n, \lfloor \frac{n-1}{2} \rfloor) \}.
\]

Let \(\mathcal{H}_{n,d} := \{ H_{n,d}, H_{n,d+1}, K'_{n,d}, K'_{n,d+1}, H'_{n,d} \} \).

(i) If \(d = 2 \), then \(G \) is a subgraph of \(G'_{n,2} \) or of a graph in \(\mathcal{H}_{n,2} \);
(ii) if \(d = 3 \), then \(G \) is a subgraph of \(F_{n,3} \) or of a graph in \(\mathcal{H}_{n,3} \);
(iii) if \(d = 1 \) or \(4 \leq d \leq \lfloor \frac{n-1}{2} \rfloor \), then \(G \) is a subgraph of a graph in \(\mathcal{H}_{n,d} \).

Proof. Suppose \(G \) is a counterexample to Theorem 7 with the most edges. Then \(G \) is saturated. In particular, degree condition 1 holds for \(G \). So by Lemma 9 there exists an \(d \leq r \leq \lfloor (n-1)/2 \rfloor \) such that \(V(G) \) contains a subset \(D \) of \(r \) vertices of degree at most \(r \) and \(G - D \) is a complete graph.

If \(r \geq d + 2 \), then because \(h_k(n, x) \) is convex, \(N_k(G) \leq h_k(n, r) \leq \max \{ h_k(n, d + 2), h_k(n, \lfloor \frac{n-1}{2} \rfloor) \} \). Therefore either \(r = d \) or \(r = d + 1 \). In the case that \(r = d \) (and so \(r = \delta(G) \)), Lemma 10 implies that \(G \subseteq H_{n,d} \). So we may assume that \(r = d + 1 \).

If \(\delta(G) \geq d + 1 \), then we simply apply Theorem 3 with \(d + 1 \) in place of \(d \) and get \(G \subseteq H_{n,d+1} \) or
\(G \subseteq K'_{n,d+1} \). So, from now on we may assume

\[
\delta(G) = d. \tag{14}
\]

Now \((14)\) implies that our theorem holds for \(d = 1 \), since each graph with minimum degree exactly 1 is a subgraph of \(H_{n,1} \). So, below \(2 \leq d \leq \left\lfloor \frac{n-1}{2} \right\rfloor \).

Let \(N := N(D) - D \subseteq V(G) - D \). The next claim will be used many times throughout the proof.

Lemma 15. (a) If there exists a vertex \(v \in D \) such that \(d(v) = d + 1 \), then \(N(v) = D \).

(b) If there exists a vertex \(u \in N \) such that \(u \) has at least 2 neighbors in \(D \), then \(u \) is adjacent to all vertices in \(D \).

Proof. If \(v \in D \), \(d(v) = d + 1 \) and some \(u \in N \) is not adjacent to \(v \), then \(d(v) + d(u) \geq d + 1 + (n - d - 2) + 1 = n \). A contradiction to \((4)\) proves (a).

Similarly, if \(u \in N \) has at least 2 neighbors in \(D \) but is not adjacent to some \(v \in D \), then \(d(v) + d(u) \geq d + (n - d - 2) + 2 = n \), again contradicting \((4)\). \(\square \)

Define \(S := \{ u \in V(G) - D : u \in N(v) \text{ for all } v \in D \} \), \(s := s \), and \(S' := V(G) - D - S \). By Lemma 15 (b), each vertex in \(S' \) has at most one neighbor in \(D \). So, for each \(v \in D \), call the neighbors of \(v \) in \(S' \) the private neighbors of \(v \).

We claim that

\(D \) is not independent. \(\tag{15} \)

Indeed, assume \(D \) is independent. If there exists a vertex \(v \in D \) with \(d(v) = d + 1 \), then by Lemma 15 (b), \(N(v) = D \). So, because \(D \) is independent, \(G \subseteq H_{n,d+1} \). Assume now that every vertex \(v \in D \) has degree \(d \), and let \(D = \{ v_1, \ldots, v_{d+1} \} \).

If \(s \geq d \), then because each \(v_i \in D \) has degree \(s = d \) and \(N = S \). Then \(G \subseteq H_{n,d+1} \). If \(s \leq d - 2 \), then each vertex \(v_i \in D \) has at least two private neighbors in \(S' \); call these private neighbors \(x_{v_i} \) and \(y_{v_i} \). The path \(x_{v_1}v_1y_{v_1}x_{v_2}v_2y_{v_2} \ldots x_{v_{d+1}}v_{d+1}y_{v_{d+1}} \) contains all vertices in \(D \) and can be extended to a hamiltonian cycle of \(G \), a contradiction.

Finally, suppose \(s = d - 1 \). Then every vertex \(v_i \in D \) has exactly one private neighbor. Therefore \(G = G'_{n,d} \) where \(G'_{n,d} \) is composed of a clique \(A \) of order \(n - d - 1 \) and an independent set \(D = \{ v_1, \ldots, v_{d+1} \} \), and there exists a set \(S \subseteq A \) of size \(d - 1 \) and distinct vertices \(z_1, \ldots, z_{d+1} \) such that for \(1 \leq i \leq d + 1 \), \(N(v_i) = S \cup z_i \). Graph \(G'_{n,d} \) is illustrated in Fig. 6.

For \(d = 2 \), we conclude that \(G \subseteq G'_{n,2} \), as claimed, and for \(d \geq 3 \), we get a contradiction since \(G'_{n,d} \) is hamiltonian. This proves \((15)\).

Call a vertex \(v \in D \) open if it has at least two private neighbors, half-open if it has exactly one private neighbor, and closed if it has no private neighbors.

We say that \(\text{paths } P_1, \ldots, P_q \) partition \(D \), if these paths are vertex-disjoint and \(V(P_1) \cup \ldots \cup V(P_q) = D \). The idea of the proof is as follows: because \(G - D \) is a complete graph, each path with endpoints in \(G - D \) that covers all vertices of \(D \) can be extended to a hamiltonian cycle of \(G \). So such a path does not exist, which implies that too few paths cannot partition \(D \):
Lemma 16. If \(s \geq 2 \) then the minimum number of paths in \(G[D] \) partitioning \(D \) is at least \(s \).

Proof. Suppose \(D \) can be partitioned into \(\ell \leq s - 1 \) paths \(P_1, \ldots, P_\ell \) in \(G[D] \). Let \(S = \{z_1, \ldots, z_\ell\} \). Then \(P = z_1P_1z_2 \ldots z_\ell P_\ell z_{\ell+1} \) is a path with endpoints in \(V(G) - D \) that covers \(D \). Because \(V(G) - D \) forms a clique, we can find a \(z_1, z_{\ell+1} \) path \(P' \) in \(G - D \) that covers \(V(G) - D - \{z_2, \ldots, z_\ell\} \). Then \(P \cup P' \) is a hamiltonian cycle of \(G \), a contradiction.

Sometimes, to get a contradiction with Lemma 16 we will use our information on vertex degrees in \(G[D] \):

Lemma 17. Let \(H \) be a graph on \(r \) vertices such that for every nonedge \(xy \) of \(H \), \(d(x) + d(y) \geq r - t \) for some \(t \). Then \(V(H) \) can be partitioned into a set of at most \(t \) paths. In other words, there exist \(t \) disjoint paths \(P_1, \ldots, P_t \) with \(V(H) = \bigcup_{i=1}^t V(P_i) \).

Proof. Construct the graph \(H' \) by adding a clique \(T \) of size \(t \) to \(H \) so that every vertex of \(T \) is adjacent to each vertex in \(V(H) \). For each nonedge \(x, y \in H' \),

\[
d_{H'}(x) + d_{H'}(y) \geq (r - t) + t + t = r + t = |V(H')|.
\]

By Ore’s theorem, \(H' \) has a hamiltonian cycle \(C' \). Then \(C' - T \) is a set of at most \(t \) paths in \(H \) that cover all vertices of \(H \).

The next simple fact will be quite useful.

Lemma 18. If \(G[D] \) contains an open vertex, then all other vertices are closed.

Proof. Suppose \(G[D] \) has an open vertex \(v \) and another open or half-open vertex \(u \). Let \(v', v'' \) be some private neighbors of \(v \) in \(S' \) and \(u' \) be a neighbor of \(u \) in \(S' \). By the maximality of \(G \), graph \(G + vu' \) has a hamiltonian cycle. In other words, \(G \) has a hamiltonian path \(v_1v_2 \ldots v_n \), where \(v_1 = v \) and \(v_n = u' \). Let \(V' = \{v_i : vv_{i+1} \in E(G)\} \). Since \(G \) has no hamiltonian cycle, \(V' \cap N(u') = \emptyset \).

Since \(d(v) + d(u') = n - 1 \), we have \(V(G) = V' \cup N(u') + u' \). Suppose that \(v' = v_i \) and \(v'' = v_j \). Then \(v_{i-1}, v_{j-1} \in V' \), and \(v_{i-1}, v_{j-1} \notin N(u') \). But among the neighbors of \(v_i \) and \(v_j \), only \(v \) is not adjacent to \(u' \), a contradiction.

Now we show that \(S \) is non-empty and not too large.
Lemma 19. $s \geq 1$.

Proof. Suppose $S = \emptyset$. If D has an open vertex v, then by Lemma 18 all other vertices are closed. In this case, v is the only vertex of D with neighbors outside of D, and hence $G \subseteq K_{n,d}$, in which v is the cut vertex. Also if D has at most one half-open vertex v, then similarly $G \subseteq K'_{n,d}$.

So suppose that D contains no open vertices but has two half-open vertices u and v with private neighbors z_u and z_v respectively. Then $\delta(G[D]) \geq d - 1$. By Pósa’s Theorem, if $d \geq 4$, then $G[D]$ has a hamiltonian v, u-path. This path together with any hamiltonian z_u, z_v-path in the complete graph $G - D$ and the edges uz_u and vz_v forms a hamiltonian cycle in G, a contradiction.

If $d = 3$, then by Dirac’s Theorem, $G[D]$ has a hamiltonian cycle, i.e. a 4-cycle, say C. If we can choose our half-open v and u consecutive on C, then $C - uv$ is a hamiltonian v, u-path in $G[D]$, and we finish as in the previous paragraph. Otherwise, we may assume that $C = vxuy$, where x and y are closed. In this case, $d_G(x) = d_G(y) = 3$, thus $xy \in E(G)$. So we again have a hamiltonian v, u-path, namely $vxuy$, in $G[D]$. Finally, if $d = 2$, then $|D| = 3$, and $G[D]$ is either a 3-vertex path whose endpoints are half-open or a 3-cycle. In both cases, $G[D]$ again has a hamiltonian path whose ends are half-open. \hfill \Box

Lemma 20. $s \leq d - 3$.

Proof. Since by (14), $\delta(G) = d$, we have $s \leq d$. Suppose $s \in \{d - 2, d - 1, d\}$.

Case 1: All vertices of D have degree d.

Case 1.1: $s = d$. Then $G \subseteq H_{n,d+1}$.

Case 1.2: $s = d - 1$. In this case, each vertex in graph $G[D]$ has degree 0 or 1. By (15), $G[D]$ induces a non-empty matching, possibly with some isolated vertices. Let m denote the number of edges in $G[D]$.

If $m \geq 3$, then the number of components in $G[D]$ is less than s, contradicting Lemma 16. Suppose now $m = 2$, and the edges in the matching are $x_1 y_1$ and $x_2 y_2$. Then $d \geq 3$. If $d = 3$, then $D = \{x_1, x_2, y_1, y_2\}$ and $G = F_{n,3}$ (see Fig 3 (right)). If $d \geq 4$, then $G[D]$ has an isolated vertex, say x_3. This x_3 has a private neighbor $w \in S'$. Then $|S + w| = d$ which is more than the number of components of $G[D]$ and we can construct a path from w to S visiting all components of $G[D]$.

Finally, suppose $G[D]$ has exactly one edge, say $x_1 y_1$. Recall that $d \geq 2$. Graph $G[D]$ has $d - 1$ isolated vertices, say x_2, \ldots, x_d. Each of x_i for $2 \leq i \leq d$ has a private neighbor u_i in S'. Let $S = \{z_1, \ldots, z_{d-1}\}$. If $d = 2$, then $S = \{z_1\}$, $N(D) = \{z_1, u_2\}$ and hence $G \subseteq H_{n,2}$. So in this case the theorem holds for G. If $d \geq 3$, then G contains a path $u_d x_d z_{d-1} x_{d-1} z_{d-2} x_{d-2} \ldots z_2 x_1 y_1 z_1 x_2 u_2$ from u_d to u_2 that covers D.

Case 1.3: $s = d - 2$. Since $s \geq 1$, $d \geq 3$. Every vertex in $G[D]$ has degree at most 2, i.e., $G[D]$ is a union of paths, isolated vertices, and cycles. Each isolated vertex has at least 2 private neighbors in S'. Each endpoint of a path in $G[D]$ has one private neighbor in S'. Thus we can find disjoint paths from S' to S' that cover all isolated vertices and paths in $G[D]$ and all are disjoint from S. Hence if the number c of cycles in $G[D]$ is less than $d - 2$, then we have a set of disjoint paths from $V(G) - D$ to $V(G) - D$ that cover D (and this set can be extended to a hamiltonian cycle in G).

Since each cycle has at least 3 vertices and $|D| = d + 1$, if $c \geq d - 2$, then $(d + 1)/3 \geq d - 2$, which
is possible only when \(d < 4 \), i.e. \(d = 3 \). Moreover, then \(G[D] = C_3 \cup K_1 \) and \(S = N \) is a single vertex. But then \(G = K_{n,3}' \).

Case 2: There exists a vertex \(v^* \in D \) with \(d(v^*) = d + 1 \). By Lemma 15 (b), \(N = N(v^*) - D \), and so \(G \) has at most one open or half-open vertex. Furthermore,

\[
\text{if } G \text{ has an open or half-open vertex, then it is } v^*, \text{ and by Lemma 15 there are no other vertices of degree } d + 1. \tag{16}
\]

Case 2.1: \(s = d \). If \(v^* \) is not closed, then it has a private neighbor \(x \in S' \), and the neighborhood of each other vertex of \(D \) is exactly \(S \). In this case, there exists a path from \(x \) to \(S \) that covers \(D \). If \(v^* \) is closed (i.e., \(N = S \)), then \(G[D] \) has maximum degree 1. Therefore \(G[D] \) is a matching with at least one edge (coming from \(v^* \)) plus some isolated vertices. If this matching has at least 2 edges, then the number of components in \(G[D] \) is less than \(s \), contradicting Lemma 16. If \(G[D] \) has exactly one edge, then \(G \subseteq H_{n,d}' \).

Case 2.2: \(s = d - 1 \). If \(v^* \) is open, then \(d_{G[D]}(v^*) = 0 \) and by (16), each other vertex in \(D \) has exactly one neighbor in \(D \). In particular, \(d \) is even. Therefore \(G[D - v^*] \) has \(d/2 \) components. When \(d \geq 3 \) and \(d \) is even, \(d/2 \leq s - 1 \) and we can find a path from \(S \) to \(D \) that covers \(D - v^* \), and extend this path using two neighbors of \(v^* \) in \(S' \) to a path from \(V(G) - D \) to \(V(G) - D \) covering \(D \). Suppose \(d = 2 \), \(D = \{v^*, x, y\} \) and \(S = \{z\} \). Then \(z \) is a cut vertex separating \(\{x, y\} \) from the rest of \(G \), and hence \(G \subseteq K_{n,2}' \). If \(v^* \) is half-open, then by (16), each other vertex in \(D \) is closed and hence has exactly one neighbor in \(D \). Let \(x \in S' \) be the private neighbor of \(v^* \). Then \(G[D] \) is 1-regular and therefore has exactly \((d + 1)/2 \) components, in particular, \(d \) is odd. If \(d \geq 2 \) and is odd, then \((d + 1)/2 \leq d - 1 = s \), and so we can find a path from \(x \) to \(S \) that covers \(D \).

Finally, if \(v^* \) is closed, then by (16), every vertex of \(G[D] \) is closed and has degree 1 or 2, and \(v^* \) has degree 2 in \(G[D] \). Then \(G[D] \) has at most \([d/2]\) components, which is less than \(s \) when \(d \geq 3 \). If \(d = 2 \), then \(s = 1 \) and the unique vertex \(z \) in \(S \) is a cut vertex separating \(D \) from the rest of \(G \). This means \(G \subseteq K_{n,3}' \).

Case 2.3: \(s = d - 2 \). Since \(s \geq 1 \), \(d \geq 3 \). If \(v^* \) is open, then \(d_{G[D]}(v^*) = 1 \) and by (16), each other vertex in \(D \) is closed and has exactly two neighbors in \(D \). But this is not possible, since the degree sum of the vertices in \(G[D] \) must be even. If \(v^* \) is half-open with a neighbor \(x \in S' \), then \(G[D] \) is 2-regular. Thus \(G[D] \) is a union of cycles and has at most \([(d + 1)/3]\) components. When \(d \geq 4 \), this is less than \(s \), contradicting Lemma 16. If \(d = 3 \), then \(s = 1 \) and the unique vertex \(z \) in \(S \) is a cut vertex separating \(D \) from the rest of \(G \). This means \(G \subseteq K_{n,4}' \).

If \(v^* \) is closed, then \(d_{G[D]}(v^*) = 3 \) and \(\delta(G[D]) \geq 2 \). So, for any vertices \(x, y \) in \(G[D] \),

\[
d_{G[D]}(x) + d_{G[D]}(y) \geq 4 \geq (d + 1) - (d - 2 - 1) = |V(G[D])| - (s - 1).
\]

By Lemma 17 if \(s \geq 2 \), then we can partition \(G[D] \) into \(s - 1 \) paths \(P_1, ..., P_{s-1} \). This would contradict Lemma 16. So suppose \(s = 1 \) and \(d = 3 \). Then as in the previous paragraph, \(G \subseteq K_{n,4}' \).

Next we will show that we cannot have \(2 \leq s \leq d - 3 \).
Lemma 21. $s = 1$.

Proof. Suppose $s = d - k$ where $3 \leq k \leq d - 2$.

Case 1: $G[D]$ has an open vertex v. By Lemma 18 every other vertex in D is closed. Let $G' = G[D] - v$. Then $\delta(G') \geq k - 1$ and $|V(G')| = d$. In particular, for any $x, y \in D - v$,

\[d_{G'}(x) + d_{G'}(y) \geq 2k - 2 \geq k + 1 = d - (d - k - 1) = |V(G')| - (s - 1). \]

By Lemma 17 we can find a path from S to S in G containing all of $V(G')$. Because v is open, this path can be extended to a path from $V(G) - D$ to $V(G) - D$ including v, and then extended to a hamiltonian cycle of G.

Case 2: D has no open vertices and $4 \leq k \leq d - 2$. Then $\delta(G[D]) \geq k - 1$ and again for any $x, y \in D$, $d_{G[D]}(x) + d_{G[D]}(y) \geq 2k - 2$. For $k \geq 4$, $2k - 2 \geq k + 2 = (d + 1) - (d - k - 1) = |D| - (s - 1)$.

Since $k \leq d - 2$, by Lemma 17 $G[D]$ can be partitioned into $s - 1$ paths, contradicting Lemma 16.

Case 3: D has no open vertices and $s = d - 3 \geq 2$. If there is at most one half-open vertex, then for any nonadjacent vertices $x, y \in D$, $d_{G[D]}(x) + d_{G[D]}(y) \geq 2 + 3 = 5 \geq (d + 1) - (d - 3 - 1)$, and we are done as in Case 2.

So we may assume G has at least 2 half-open vertices. Let D' be the set of half-open vertices in D. If $D' \neq D$, let $v^* \in D - D'$. Define a subset $D^- = D'$, otherwise, let $D^- = D' + v^*$. Let G' be the graph obtained from $G[D]$ by adding a new vertex w adjacent to all vertices in D^-. Then $|V(G')| = d + 2$ and $\delta(G') \geq 3$. In particular, for any $x, y \in V(G')$, $d_{G'}(x) + d_{G'}(y) \geq 6 \geq (d + 2) - (d - 3 - 1) = |V(G')| - (s - 1)$. By Lemma 17 $V(G')$ can be partitioned into $s - 1$ disjoint paths P_1, \ldots, P_{s-1}. We may assume that $w \in P_1$. If w is an endpoint of P_1, then D can also be partitioned into $s - 1$ disjoint paths $P_1 - w, P_2, \ldots, P_{s-1}$ in $G[D]$, a contradiction to Lemma 16.

Otherwise, let $P_1 = x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_k$ where $x_i = w$. Since every vertex in $(D^- - v^*)$ is half-open and $N_{G'}(w) = D^-$, we may assume that x_{i-1} is half-open and thus has a neighbor $y \in S'$. Let $S = \{z_1, \ldots, z_{d-3}\}$. Then

\[yx_{i-1}x_{i-2} \ldots x_1z_1x_{i+1} \ldots x_kz_2P_2z_3 \ldots z_{d-4}P_{d-4}z_{d-3} \]

is a path in G with endpoints in $V(G) - D$ that covers D. \hfill \Box

Now we may finish the proof of Theorem 7. By Lemmas 19, 21 $s = 1$, say, $S = \{z_1\}$. Furthermore, by Lemma 20

\[d \geq 3 + s = 4. \quad (17) \]

Case 1: D has an open vertex v. Then by Lemma 18 every other vertex of D is closed. Since $s = 1$, each $u \in D - v$ has degree $d - 1$ in $G[D]$. If v has no neighbors in D, then $G[D] - v$ is a clique of order d, and $G \subseteq K'_{d_d}$. Otherwise, since $d \geq 4$, by Dirac’s Theorem, $G[D] - v$ has a hamiltonian cycle, say C. Using C and an edge from v to C, we obtain a hamiltonian path P in $G[D]$ starting with v. Let $v' \in S'$ be a neighbor of v. Then $v'Pz_1$ is a path from S' to S that covers D, a contradiction.
Case 2: \(D \) has a half-open vertex but no open vertices. It is enough to prove that

\[
G[D] \text{ has a hamiltonian path } P \text{ starting with a half-open vertex } v, \tag{18}
\]

since such a \(P \) can be extended to a hamiltonian cycle in \(G \) through \(z_1 \) and the private neighbor of \(v \). If \(d \geq 5 \), then for any \(x, y \in D \),

\[
d_{G[D]}(x) + d_{G[D]}(y) \geq d - 2 + d - 2 = 2d - 4 \geq d + 1 = |V(G[D])|.
\]

Hence by Ore’s Theorem, \(G[D] \) has a hamiltonian cycle, and hence \(\tag{18} \) holds.

If \(d < 5 \) then by \(\tag{17} \), \(d = 4 \). So \(G[D] \) has 5 vertices and minimum degree at least 2. By Lemma \(\tag{17} \) we can find a hamiltonian path \(P \) of \(G[D] \), say \(v_1v_2v_3v_4v_5 \). If at least one of \(v_1, v_5 \) is half-open or \(v_1v_5 \in E(G) \), then \(\tag{18} \) holds. Otherwise, each of \(v_1, v_5 \) has 3 neighbors in \(D \), which means \(N(v_1) \cap D = N(v_5) \cap D = \{v_2, v_3, v_4\} \). But then \(G[D] \) has hamiltonian cycle \(v_1v_2v_5v_4v_3v_1 \), and again \(\tag{18} \) holds.

Case 3: All vertices in \(D \) are closed. Then \(G \subseteq K'_{n,d+1} \), a contradiction. This proves the theorem.

\[\square \]

7 A comment and a question

- It was shown in Section \(\tag{2} \) that the right order of magnitude of \(n_0(d, t) \) in Theorem \(\tag{4} \) when \(d = O(t) \) is \(dt \). We can also show this when \(d = O(t^{3/2}) \). It could be that \(dt \) is the right order of magnitude of \(n_0(d, t) \) for all \(d \) and \(t \).

- Is there a graph \(F \) and positive integers \(d, n \) with \(n < n_0(d, t) \) and \(d \leq \lfloor (n - 1)/2 \rfloor \) such that for some \(n \)-vertex nonhamiltonian graph \(G \) with minimum degree at least \(d \),

\[
N(G, F) > \max\{N(H_{n,d}, F), N(K'_{n,d}, F), N(H_{n,\lfloor (n - 1)/2 \rfloor}, F)\}?
\]

References

[1] N. Alon and C. Shikhelman, Many \(T \) copies in \(H \)-free graphs, J. of Combin. Theory Ser. B. 121 (2016), 146–172.

[2] B. Bollobás, E. Győri, Pentagons vs. triangles, Discrete Math. 308 (2008) 4332–4336.

[3] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69–81.

[4] P. Erdős, Remarks on a paper of Pósa, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 227–229.

[5] P. Erdős, On the number of complete subgraphs contained in certain graphs, Magy. Tud. Akad. Mat. Kutató Intéz. Közl. 7 (1962) 459–474.

[6] Z. Füredi, A. Kostochka, and R. Luo, A stability version for a theorem of Erdős on nonhamiltonian graphs, to appear in Discrete Math.

Also see: arXiv:1608.05741, posted on August 19, 2016, 4 pp.
[7] Z. Füredi and L. Özkahya, On 3-uniform hypergraphs without a cycle of a given length, *Discrete Applied Mathematics* **216** (2017), 582–588.

[8] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph, *J. Combin. Theory Ser. B* **102** (2012) 1061–1066.

[9] H. Hatami, J. Hladký, D. Král’, S. Norine, and A. Razborov, On the number of pentagons in triangle-free graphs, *J. Combin. Theory Ser. A*. **120** (2013), 722–732.

[10] B. Li and B. Ning, Spectral analogues of Erdős’ and Moon-Moser’s theorems on Hamilton cycles, *Linear Multilinear Algebra*, **64** (2016), no.11, 1152–1169.

[11] O. Ore, Arc coverings of graphs, *Acta Math. Acad. Sci. Hung.* **10** (1959), 337–356.

[12] L. Pósa, A theorem concerning Hamilton lines, *Magyar Tud. Akad. Mat. Kutató Int. Közl.* **7** (1962), 225–226.

[13] L. Pósa, On the circuits of finite graphs, *Magyar. Tud. Akad. Mat. Kutató Int. Közl.* **8** (1963/1964), 355–361.