Two-Pore-Domain Potassium (K_{2P}) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes

Felix Wiedmann 1,2,3*, Norbert Frey 1,2,3 and Constanze Schmidt 1,2,3,*

1 Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany; Felix.Wiedmann@med.uni-heidelberg.de (F.W.); norbert.frey@med.uni-heidelberg.de (N.F.)
2 DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
3 HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, 69120 Heidelberg, Germany
* Correspondence: Constanze.Schmidt@med.uni-heidelberg.de; Tel.: +49-6221-568187; Fax: +49-6221-565724

Abstract: Two-pore-domain potassium (K_{2P}) channels conduct outward K^+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K_{2P} channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K_{2P}-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K_{2P}-3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K_{2P}-3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanooactive K_{2P}-2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K_{2P} channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K_{2P} channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K_{2P} channels.

Keywords: K_{2P}-channel; TASK-1; TREK-1; two-pore-domain potassium channel

1. Introduction

Two-pore-domain potassium (K_{2P}) channels are expressed throughout the human body and contribute to background potassium conductance in many different cell types [1,2]. In the human genome 15 K_{2P} channels have been described which differ from classical potassium channels by the fact that each subunit carries two pore-forming domains, and the channels thus assemble as dimers instead of tetramers (Figure 1). K_{2P} channels give rise to background or “leak” potassium currents which control a multitude of physiological processes [1]. Initially, K_{2P} currents were described as outward rectifying “leakage currents” but recent work has shown that several members of the K_{2P} family can also be voltage activated [3].

K_{2P} currents show a high degree of similarity to the potassium plateau currents I_{KP}, described in guinea-pig cardiomyocytes and the steady-state potassium current I_{KSS}, characterized in murine cardiomyocytes and the arachidonic acid-sensitive potassium current I_{KAA} from rat ventricular cardiomyocytes [4–7]. Cardiac mRNA abundance was described for several members of the K_{2P} family (Figure 2) In the present review, expression,
function, and regulation of cardiovascular K_{2P} channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K_{2P} channels (Figure 3).

Figure 1. Membrane topology and structure of K_{2P} channels. K_{2P} channel monomers (left), consisting of 4 transmembrane domains (M1–4) and 2 pore forming loops (P1–2) assemble as homo- or heterodimers. (right).

Figure 2. Cardiac mRNA levels of K_{2P} channels in the human heart (whole tissue). Expression of two-pore-domain potassium (K_{2P}) channel mRNA level in human right atrial ($n = 10$) and left ventricular ($n = 5$) tissue samples. Data are given as mean ± SEM relative to the housekeeping gene importin 8 (IPO8). * indicate $p < 0.05$ from Student’s t-tests. Data from Schmidt et al. 2015, Circulation [8].
Figure 3. Potential translational implications of cardiac K2P channel expression. AF, atrial fibrillation; OSAS, obstructive sleep apnea; PAH, pulmonary arterial hypertension; RVOT, right ventricular outflow tract; VF, ventricular fibrillation.

2. Structural Assembly and Nomenclature of K2P Channels

The 15 channel subunits of the K2P family each consists of around 300 and 550 amino acids. The sequence differences between the individual subunits of the K2P channel can sometimes be as large as to other potassium channel families. K2P18.1 (TRESK) channel subunits, for example share only 19% amino acid sequence identity with the other K2P family members. But the common feature that links them is the eponymous structural motif of two pore-forming domains per subunit, which distinguishes them from all other potassium channel groups. As shown in Figure 1, the four alphahelical transmembrane domains (M1–M4) flank two pore-forming loops (P1 and P2), each containing the potassium selective filter motif (GLG, GFG, or GYG). M1 and P1 are connected by a long extracellular loop, forming an overhead cap structure. The short amino terminus and a much longer carboxy terminus, which contains a variety of regulatory phosphorylation and protein interaction motifs, are localized intracellularly. Whereas most potassium channels form tetramers with one pore-forming loop per subunit, a functional two-pore domain potassium channel is composed of two alpha subunits (Figure 1). In addition to homodimerization, certain K2P channel subunits can also assemble as heterodimers. This is mainly described within the same subfamilies (i.e., TASK-1/TASK-3, TREK-1/TRAAK, THIK-1/THIK-2), but can also occur between TWIK-1 and TREK or TASK-1, and between TASK-1/TALK-2 subunits. Physiological relevance in the perception of hypoxia has been described for TASK-1/TASK-3 heterodimers and TWIK-1/TREK-1 heterodimers have been detected in astrocytes. Apart from the TASK-1 and TALK-1 subfamilies, all K2P channel subunits possess a conserved Cys-amino acid residue of the overhead domain that is thought to play a major, although not yet conclusively elucidated, role in dimerization. The predicted membrane topology and tertiary structure have already been confirmed by X-ray structural analysis for several K2P-channels (Table 1).
Gene Name	IUPHAR K₂P Nomenclature	Functional Name	Other Names	Crystal Structure
KCNK1	K₂P1.1	TWIK-1	hOHO, DPK, KCNO1	![Crystal Structure](image1.jpg)
KCNK2	K₂P2.1	TREK-1	TPKC1	![Crystal Structure](image2.jpg)
KCNK3	K₂P3.1	TASK-1	TBAK-1, OAT-1, PPH4	![Crystal Structure](image3.jpg)
KCNK4	K₂P4.1	TRAAK	FHEIG	![Crystal Structure](image4.jpg)
KCNK5	K₂P5.1	TASK-2		![Crystal Structure](image5.jpg)
KCNK6	K₂P6.1	TWIK-2	TOSS	-
KCNK7	K₂P7.1	TWIK-3		-

The name *kcnk8* was initially given to a murine K₂P gene which was later identified as an ortholog of the human KCNK7 gene and therefore renamed to *kcnk7*.

Gene Name	IUPHAR K₂P Nomenclature	Functional Name	Other Names	Crystal Structure
KCNK9	K₂P9.1	TASK-3	KT3.2, BIBARS, TASK32	-
Gene Name	IUPHAR K_{2P} Nomenclature	Functional Name	Other Names	Crystal Structure
-----------	-----------------------------	-----------------	-------------	------------------
KCNK10	K_{2P}10.1	TREK-2	PPP1R97	
KCNK12	K_{2P}12.1	THIK-2	-	
KCNK13	K_{2P}13.1	THIK-1	-	

KCNK11 was withdrawn due to nomenclature duplications with KCNK15

Gene Name	IUPHAR K_{2P} Nomenclature	Functional Name	Other Names	Crystal Structure
KCNK15	K_{2P}15.1	TASK-5	KT3.3, dJ781B1.1	
KCNK16	K_{2P}16.1	TALK-1	-	
KCNK17	K_{2P}17.1	TALK-2	TASK-4	
KCNK18	K_{2P}18.1	TRESK	MGR13, TRIK, TRESK2	

KCNK14 was withdrawn due to nomenclature duplications with KCNK15

Upon their discovery, the individual K_{2P}-channels received trivial names reflecting their respective structural and regulatory properties: TWIK: “Tandem of P domains in a weak inward rectifying K\(^+\) channel”, TREK: “TWIK-related K\(^+\) channel”, TASK: “TWIK-related acid-sensitive K\(^+\) channel”, TRAAK: “TWIK-related arachidonic acid activated K\(^+\) channel”, TALK “TWIK-related alkaline pH-activated K\(^+\) channel”, THIK “tandem pore domain halothane-inhibited K\(^+\) channel”, and TRESK “TWIK-related spinal cord K\(^+\) channel”. In parallel, the channels are labeled consecutively with the designations K_{2P}1.1 to K_{2P}18.1 according to the Human Genome Organization name of the encoding gene (KCNK1 to KCNK18) (see Figure 2 and Table 1). Each of the 15 subfamilies members (K_{2P}1.1 to K_{2P}18.1) contains only one member. Unfortunately, this led to a confusing nomenclature in which channels with different functional properties such as TASK-1 and TASK-2 have similar names, while other channels are titled with acronyms of factually incorrect names (for example, TWIK-1 is not a weak inward rectifier but an open rectifier). Further, some channels carry a variety of redundant names such as in case of K_{2P}3.1: TBAK1, TASK1 and OAT1. Several KCNKx designators were initially assigned to K_{2P} channel transcripts that later turned out to be orthologs of other human K_{2P} channels. Thus, KCNK8 (the murine transcript designated kcnk8 later proved to be an ortholog of human KCNK7 and was therefore renamed kcnk7), KCNK11, and KCNK14 (both orthologs ...
of KCNK15) do not exist [9]. For better understanding, we will provide the trivial names of the channel subunits in brackets in addition to the International Union of Basic and Clinical Pharmacology IUPHAR (K_{2P}X.1) names. Since they do not show any functional activity in heterologous expression systems, the channels KCNK7, KCNK12 and KCNK15 are referred to as silent K_{2P} channels. It remains unclear whether these K_{2P} channel subunits are truly nonfunctional in vivo or whether they just lack essential cofactors to achieve functionality upon heterologous expression. In fact, the functionality of the K_{2P}16.1 channels could be restored by deletion of an n-terminal ER-retention motif [8].

3. K_{2P}1.1 (TWIK-1)

Robust cardiac mRNA levels were consistently described for KCNK1 [10–15]. In a study from our laboratory, which examined the expression of all K_{2P} channels in the human heart (TaqMan-qPCR; Figure 2), the highest mRNA levels were detected for KCNK1 [10]. Atrial predominant mRNA abundance was shown in patient-derived tissue samples but not in rodents (Table 2) [10,16].

Table 2. Evidence in literature for cardiac expression of K_{2P} channel subunits at mRNA or protein level in different species.

K_{2P} Channel Subunit	Species	mRNA / mRNA	Observation	Citation
		mRNA (RT-PCR, ISH)	Ubiquitous kcnk1a and kcnk1b ortholog mRNA in embryonic heart	[11]
Zebrafish	Mouse	mRNA (RT-PCR)	No cardiac mRNA abundance	[17]
Mouse	Mouse	mRNA (RT-qPCR, TaqMan)	Moderate cardiac mRNA abundance, V > A	[16]
	Rat	mRNA (RT-PCR)	Moderate cardiac mRNA abundance, A > V	[18]
	Rat	mRNA (RT-qPCR, TaqMan)	Moderate cardiac mRNA abundance	[15]
	Rat	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance mRNA detected in sinoatrial tissue	[19]
	Human	mRNA (NB)	Cardiac mRNA abundance	[20]
	Human	mRNA (RT-PCR)	Cardiac mRNA abundance, V > A	[21]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance, A > V	[10]
	Human	mRNA (RT-qPCR)	Highest mRNA level among all K_{2P} channels	[25]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance, A > Purkinje fibers > V	[12]
	Human	mRNA (RT-qPCR, TaqMan)	mRNA detected in human ventricular tissue	[22]
	Human	mRNA (RT-qPCR)	mRNA detected in iPS-derived cardiomyocytes	[22]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance	[23]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance	[14]
	Mouse	mRNA (NB)	Cardiac mRNA abundance	[24]
	Mouse	mRNA (RT-PCR)	Cardiac mRNA abundance, V > A	[17]
	Mouse	mRNA (RT-PCR)	Cardiac mRNA abundance	[25]
	Mouse	mRNA (RT-qPCR) and protein (WB)	Cardiac mRNA abundance, V > A	[26]
Table 2. Cont.

K2p Channel Subunit	Species	Protein /mRNA	Observation	Citation
Mouse	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA levels, V > A	[16]	
Mouse	Protein (IF)	Protein expression in isolated ventricular cardiomyocytes	[27]	
Rat	mRNA (RT-PCR)	mRNA abundance in isolated ventricular cardiomyocytes	[28]	
Rat	mRNA (RT-PCR)	Cardiac mRNA abundance, A and V	[18]	
Rat	mRNA (RT-PCR)	Cardiac mRNA abundance, A and V	[29]	
Rat	mRNA (RT-PCR)	Endocardial mRNA levels > epicardial mRNA expression	[30]	
Rat	mRNA (RT-PCR)	Cardiac mRNA levels, mRNA detected in cardiomyocytes	[15]	
Rat	mRNA (RT-PCR)	Cardiac mRNA abundance	[31]	
Rat	mRNA (RT-qPCR)	Cardiac mRNA abundance, Cardiac mRNA adult heart > fetal heart	[18]	
Rat	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance in sinoatrial tissue	[19]	
Rat	mRNA (RT-PCR) and protein (IF)	Cardiac mRNA abundance, A and V Protein expression in isolated cardiomyocytes	[32]	
Rat	mRNA (RT-PCR) and protein (IF)	mRNA and protein expression in rat cardiomyocytes	[33]	
Rat	mRNA (RT-PCR) and protein (WB, IF)	Cardiac mRNA and protein expression, A and V	[34]	
Rabbit, mouse	Protein (WB)	Cardiac protein expression, SAN > A > V	[35]	
Pig	mRNA (RT-qPCR, TaqMan) and protein (WB)	Cardiac mRNA and protein expression, V = A mRNA and protein expression in sinoatrial and atrioventricular node	[36]	
Pig, human	mRNA (RT-qPCR, TaqMan)	Atrial mRNA expression in human and pig	[37]	
Human	mRNA (RT-PCR)	Cardiac mRNA abundance	[31]	
Human	mRNA (RT-PCR)	Low cardiac mRNA abundance	[38]	
Human	mRNA (RT-PCR)	Low cardiac mRNA abundance	[39]	
Human	mRNA (RT-qPCR)	Cardiac mRNA abundance, V Low mRNA abundance in iPS-derived cardiomyocytes	[22]	
Human	mRNA (RT-qPCR)	Cardiac mRNA abundance	[39]	
Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance, V > A	[10]	
Human	mRNA (RT-qPCR, TaqMan)	Low cardiac mRNA abundance	[23]	
Human	mRNA (RT-PCR, TaqMan)	Cardiac mRNA levels, V > A	[40]	
Human, mouse	mRNA (RT-qPCR, TaqMan) and protein (WB)	Cardiac mRNA and protein expression in human and mice, V > A	[41]	
Human	Protein (WB)	Cardiac protein expression	[42]	
Human	Protein (WB)	Cardiac protein expression	[43]	
Table 2. Cont.

K2P Channel Subunit	Species	Protein /mRNA	Observation	Citation
	Chicken embryo	mRNA (ISH) and protein (IF)	Cardiac mRNA and protein expression in chicken embryos	[44]
	Mouse, human	mRNA (NB)	Human and Mouse: Cardiac mRNA abundance	[45]
	Mouse	mRNA (RT-PCR)	Cardiac mRNA abundance	[17]
	Mouse	mRNA (RT-qPCR)	Cardiac mRNA levels, V > A	[26]
	Mouse	mRNA (RT-PCR) and protein (WB)	Cardiac protein expression	[25]
	Mouse, human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA expression	[46]
	Mouse	mRNA (RT-qPCR, TaqMan) and protein (WB)	Cardiac mRNA and protein expression, A and V	[16]
	Rat	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance in sinoatrial tissue	[19]
	Rat	mRNA (NB, RT-PCR)	Cardiac mRNA abundance, A and V	[47]
	Rat	mRNA (RT-PCR)	Cardiac mRNA abundance, cardiomyocyte mRNA abundance	[15]
	Rat	mRNA (RT-PCR)	Cardiac mRNA abundance	[48]
	Rat, guinea pig, human	mRNA (RT-qPCR, TaqMan)	Human: Cardiac mRNA levels, V > A Rat: Cardiac mRNA abundance, A and V Guinea pig: Cardiac mRNA levels, V > A	[49]
	Dog	Protein (WB)	Atrial protein expression	[50]
	Pig	mRNA (RT-qPCR, TaqMan) and protein (WB)	Cardiac mRNA and protein expression mRNA abundance in sinoatrial and atrioventricular node	[51]
	Pig	mRNA (RT-qPCR, TaqMan) and protein (WB)	Cardiac mRNA and protein expression	[52]
	Human	mRNA (RT-qPCR)	Low cardiac mRNA abundance	[38]
	Human	mRNA (RT-qPCR)	mRNA abundance in Purkinje fibers	[5]
	Human	mRNA (RT-qPCR)	Cardiac mRNA abundance	[14]
	Human	mRNA (RT-qPCR)	Cardiac mRNA levels, A > V	[23]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance	[22]
	Human	mRNA (RT-qPCR, TaqMan)	Low mRNA abundance in human ventricular tissue mRNA abundance in iPS-derived cardiomyocytes	[22]
	Human	mRNA (RT-qPCR, TaqMan)	mRNA levels in isolated atrial cardiomyocytes > in isolated atrial fibroblasts	[53]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance	[23]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA levels, A > V	[54]
	Human	mRNA (Affymetrix chip and RT-qPCR, TaqMan)	Cardiac mRNA abundance, A	[55]
	Human	mRNA (Affymetrix chip and RT-qPCR, TaqMan)	Cardiac mRNA levels, A > V Expression in Purkinje fibers	[14]
K_2P Channel Subunit	Species	Protein /mRNA	Observation	Citation
----------------------	---------	---------------	-------------	----------
	Human	mRNA (Affymetrix chip and RT-qPCR, TaqMan)	Cardiac mRNA expression, A > V	[12]
	Human	mRNA (RT-qPCR) and protein (IF)	Cardiac mRNA and protein expression	[56]
	Human	mRNA (RT-qPCR, TaqMan) and protein (WB)	Cardiac mRNA levels, A > V Cardiac protein expression, A	[40]
	Human	mRNA (RT-qPCR, TaqMan) and protein (WB)	Cardiac mRNA levels, A > V Cardiac protein expression, A	[10]
	Human	mRNA (bulk RNAseq)	Cardiac mRNA levels, A > V	[57]
Mouse	mRNA (RT-PCR, NB)	Human: no cardiac mRNA detectable		[58]
Mouse	mRNA (RT-qPCR)	Mouse: Low cardiac mRNA abundance, A > V		[41]
Mouse	mRNA (qRT-PCR) and protein (WB)	Cardiac mRNA abundance		[26]
Mouse	mRNA (RT-PCR, TaqMan)	No cardiac mRNA levels detectable		[16]
Rat	mRNA (RT-PCR)	No cardiac mRNA levels		[15]
Rat	mRNA (RT-PCR)	Low cardiac mRNA levels, A and V		[18]
Human	mRNA (RT-qPCR)	mRNA abundance in human ventricular tissue mRNA abundance in iPSC-derived cardiomyocytes		[22]
Human	mRNA (RT-qPCR)	Low cardiac mRNA levels		[59]
Human	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA levels		[10]
Human	mRNA (RT-qPCR, TaqMan)	No cardiac mRNA abundance		[23]
Mouse	mRNA (RT-PCR)	Cardiac mRNA abundance		[17]
Mouse	mRNA (RT-PCR)	Cardiac mRNA levels, A and V		[26]
Mouse	mRNA (RT-qPCR)	Low cardiac mRNA abundance		[25]
Mouse	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA levels, A > V		[16]
Rat	mRNA (NB)	No cardiac mRNA abundance		[60]
Rat	mRNA (RT-PCR)	Low cardiac mRNA levels, A and V		[18]
Rat	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance in sinoatrial tissue		[19]
Human	mRNA (RT-PCR)	Cardiac mRNA abundance		[61]
Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance		[23]
Human	mRNA (RT-qPCR)	mRNA abundance in human ventricular tissue mRNA abundance in iPSC-derived cardiomyocytes		[22]
Human	mRNA (RT-qPCR)	Cardiac mRNA abundance		[56]
Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA levels, A > V		[10]
K_{2p} Channel Subunit	Species	Protein /mRNA	Observation	Citation
--------------------------	----------------------------	--	--	----------
$K_{2p6.1}$ (TWIK-2)	Human	mRNA (Affymetrix chip and RT-qPCR, TaqMan)	Cardiac mRNA levels, A > V mRNA abundance in Purkinje fibers	[14]
	Human	mRNA (RT-qPCR) and protein (WB)	Very low cardiac mRNA levels Detectable protein levels	[38]
	Mouse	mRNA (RT-qPCR, TaqMan)	Moderate cardiac mRNA abundance, A and V	[16]
	Mouse	mRNA (RT-qPCR) and protein (WB)	Low cardiac mRNA abundance, A and V Cardiac protein expression	[26]
	Rat	mRNA (RT-PCR)	Cardiac mRNA abundance	[18]
	Rat	mRNA (RT-PCR)	Cardiac mRNA abundance	[62]
	Rat	mRNA (RT-PCR)	Moderate cardiac mRNA abundance	[15]
	Rat	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance in sinoatrial tissue	[19]
	Human	mRNA (NB)	No cardiac mRNA abundance	[17]
	Human	mRNA (Hybridization array)	Cardiac mRNA levels, V > A	[62]
	Human	mRNA (RT-qPCR)	mRNA abundance in human ventricular tissue mRNA abundance in iPS-derived cardiomyocytes	[22]
	Human	mRNA (RT-qPCR, TaqMan)	Low cardiac mRNA abundance	[23]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA levels, V > A	[10]
$K_{2p7.1}$ (TWIK-3)	Mouse	mRNA (RT-qPCR, TaqMan)	No cardiac mRNA abundance detectable	[16]
	Human	mRNA (RT-qPCR)	Cardiac mRNA abundance	[63]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance	[23]
	Human	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA levels, A > V	[10]
$K_{2p9.1}$ (TASK-3)	Mouse	mRNA (RT-qPCR, TaqMan)	No cardiac mRNA abundance detectable	[16]
	Mouse	mRNA (RT-qPCR)	Low cardiac mRNA abundance	[26]
	Mouse	mRNA (RT-PCR)	Low cardiac mRNA abundance	[25]
	Rat	mRNA (RT-PCR)	Low cardiac mRNA abundance, A and V	[18]
	Rat	mRNA (RT-PCR)	Cardiac mRNA abundance	[48]
	Rat	mRNA (RT-PCR)	Cardiac mRNA abundance, cardiomyocyte mRNA expression	[15]
	Rat, guinea pig, human	mRNA (RT-qPCR, TaqMan)	Human: very low cardiac mRNA abundance	[49]
			Rat: no cardiac mRNA abundance	
			Guinea pig: low cardiac mRNA abundance, V > A	
	Guinea pig	mRNA (RT-PCR)	No cardiac mRNA abundance	[64]
\(K_{2p}\) Channel Subunit	Species	Protein /mRNA	Observation	Citation
----------------------------	---------	---------------	-------------	---------
	Human	mRNA (RT-qPCR)	Moderate mRNA abundance in human ventricular tissue mRNA abundance in iPS-derived cardiomyocytes	[22]
	Human	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA levels, A > V	[10]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA abundance	[23]
	Human	mRNA (RT-qPCR) an protein (IF)	Strong cardiac mRNA and protein expression	[56]
\(K_{2p10.1}\) (TREK-2)	Mouse	mRNA (RT-qPCR, TaqMan)	No cardiac mRNA abundance detectable	[16]
	Rat	mRNA (RT-PCR)	Cardiac mRNA levels, A > V	[18]
	Rat	mRNA (RT-PCR)	Moderate cardiac abundance	[15]
	Rat	mRNA (RT-PCR, NB)	No cardiac mRNA abundance	[65]
	Human	mRNA (RT-qPCR)	mRNA abundance in human ventricular tissue mRNA abundance in iPS-derived cardiomyocytes	[22]
	Human	mRNA (RT-qPCR, TaqMan)	Mild cardiac mRNA abundance, A > V	[41]
	Human	mRNA (RT-qPCR, TaqMan)	Low cardiac mRNA abundance	[23]
	Human	mRNA (RT-qPCR, TaqMan)	Low cardiac mRNA levels, A > V	[10]
\(K_{2p12.1}\) (THIK-2)	Mouse	mRNA (RT-PCR)	Very low cardiac mRNA abundance	[15]
	Mouse	mRNA (RT-qPCR, TaqMan)	No cardiac mRNA levels detectable	[16]
	Rat	mRNA (RT-PCR)	No cardiac mRNA abundance	[66]
	Human	mRNA (NB)	Cardiac mRNA abundance	[67]
	Human	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA abundance, A and V	[10]
\(K_{2p13.1}\) (THIK-1)	Zebrafish	mRNA (RT-PCR)	Cardiac mRNA abundance	[68]
	Mouse	mRNA (RT-PCR)	Cardiac mRNA abundance	[15]
	Mouse	mRNA (RT-qPCR)	Cardiac mRNA abundance	[26]
	Mouse	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA abundance	[16]
	Rat	mRNA (RT-PCR)	Cardiac mRNA abundance	[66]
	Human	mRNA (RT-qPCR)	mRNA abundance in human ventricular tissue mRNA abundance in iPS-derived cardiomyocytes	[22]
	Human	mRNA (RT-qPCR, TaqMan)	Low cardiac mRNA abundance	[23]
	Human	mRNA (RT-qPCR, TaqMan)	Low cardiac mRNA abundance, A > V	[10]
\(K_{2p15.1}\) (TASK-5)	Mouse	mRNA (RT-qPCR)	Cardiac mRNA abundance	[26]
	Mouse	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA abundance	[16]
	Rat	mRNA (RT-PCR)	No cardiac mRNA abundance	[48]
Table 2. Cont.

K_2P Channel Subunit	Species	Protein/mRNA	Observation	Citation
	Rat	mRNA (RT-PCR)	Moderate cardiac abundance	[15]
	Human	mRNA (RT-PCR)	Cardiac mRNA abundance	[69]
	Human	mRNA (RT-PCR, NB)	No cardiac mRNA abundance	[70]
	Human	mRNA (RT-qPCR, TaqMan)	Low cardiac mRNA abundance, A and V	[10]
$K_{2p}16.1$ (TALK-1)	Rat	mRNA (NB)	No cardiac mRNA abundance	[60]
	Rat	mRNA (RT-PCR)	Moderate cardiac abundance	[15]
	Human	mRNA (NB)	No cardiac mRNA abundance	[67]
	Human	mRNA (RT-PCR, NB)	No cardiac mRNA abundance	[71]
	Human	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA abundance, A and V	[10]
	Zebrafish	mRNA (RT-PCR)	No cardiac abundance	[72]
	Rat	mRNA (NB)	Cardiac mRNA abundance	[60]
	Human	mRNA (NB)	Cardiac mRNA abundance	[67]
	Human	mRNA (RT-PCR)	Cardiac mRNA levels, A > V	[73]
	Human	mRNA (RT-qPCR)	mRNA abundance in human ventricular tissue	[22]
	Human	mRNA (RT-qPCR)	Cardiac mRNA abundance	[56]
	Human	mRNA (RT-qPCR)	Cardiac mRNA abundance	[5]
	Human	mRNA (RT-qPCR, TaqMan)	mRNA abundance in sinoatrial and atrioventricular node Purkinje fibers > A > V	[5]
$K_{2p}17.1$ (TALK-2)	Human	mRNA (RT-qPCR)	Cardiac mRNA and protein abundance	[74]
	Human	mRNA (RT-qPCR, TaqMan)	Cardiac mRNA levels, A > V	[10]
	Human	mRNA (RT-qPCR, TaqMan) and protein (WB)	Cardiac mRNA and protein expression	[40]
	Human	Protein (WB)	Cardiac protein expression, A	[75]
	Zebrafish	mRNA (ISH)	No cardiac abundance	[76]
	Mouse	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA abundance	[77]
	Mouse	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA abundance	[16]
	Human	mRNA (RT-PCR)	No cardiac mRNA abundance	[61]
	Human	mRNA (RT-PCR)	No cardiac mRNA abundance	[78]
	Human	mRNA (RT-qPCR, TaqMan)	Very low cardiac mRNA abundance	[10]

A, expression in atrial tissue; IF, immunofluorescence; iPS, induced pluripotent stem cell; ISH, in situ hybridization; LA, left atrium; NB, Northern blot; RT-PCR, reverse transcriptase PCR; RT-qPCR, reverse transcriptase quantitative PCR; RA, right atrium; TAC, transverse aortic constriction; TaqMan, reverse transcriptase quantitative PCR employing TaqMan® hydrolyse probes to increase specificity; V, expression in ventricular tissue; WB, Western blot.
The zebrafish possess two orthologues of the human KCNK1 gene, kcnk1a and kcnk1b which, most likely as the result of an ancient genome duplication, both encode functional TWIK-1 channels. Knockdown of kcnk1a or kcnk1b in zebrafish embryos resulted in a phenotype atrial dilatation and bradycardia, suggesting a role of K2P1.1 (TWIK-1) in regulation of sinus node function and structural heart development [11]. Further, downregulation of cardiac Kcnk1 mRNA levels was reported in a diabetic rat model, displaying again a phenotype of sinus bradycardia [19]. The presence of single nucleotide polymorphisms in the KCNK1 gene might be correlated with the prevalence of coronary artery disease [79]. Christensen et al. reported the identification of three non-synonymous KCNK1 gene variants (p.R171H, p.I98M, and p.G236S) in a cohort of 373 atrial fibrillation (AF) patients. Although these variants are localized in highly conserved domains, no effect on potassium current, reversal potential, or subcellular localization was detected in heterologous expression systems [11]. Pharmacological modulation of homodimeric K2P1.1 (TWIK-1) channels by quinine and quinidine was described (Table 3) [20]. In our own studies, AF and heart failure patients showed unchanged cardiac KCNK1 mRNA levels [10,40], while others reported upregulation of KCNK1 mRNA patients with atrial dilatation [11] or Brugada syndrome [80], downregulation of KCNK1 mRNA in AF [12] or mitral valve disease [81].

K2P Channel	Drug/Compound	Effect (Organism)	EC50/IC50 (Organism)	Citation
K2P1.1 (TWIK-1)	Quinine	Inhibition (XO)	50 µM (XO)	[20]
	Quinidine	Inhibition (XO)	95 µM (XO)	[20]
	Barium	Inhibition (XO)	100 µM (XO)	[20]
	Charybdotoxin	< 10% inhibition at 3 nM (XO)	n.m.	[20]
	Dendrotoxin	< 10% inhibition at 100 nM (XO)	n.m.	[20]
	Apamin	< 10% inhibition at 300 nM (XO)	n.m.	[20]
	Clofilium	< 10% inhibition at 30 µM (XO)	n.m.	[20]
	Gilbenclamid	< 10% inhibition at 30 µM (XO)	n.m.	[20]
	Cromakalim	No effect at 100 µM (XO)	n.m.	[20]
	Tedisamil	30% inhibition at 100 µM (XO)	n.m.	[20]
	Dronedarone	No significant effect at 100 µM (XO)	n.m.	[82]
	Amiodarone	< 10% inhibition at 100 µM (XO)	n.m.	[20]
	Pinacidil	No effect at 100 µM (XO)	n.m.	[20]
	Vernakalant	No significant effect at 100 µM (XO)	n.m.	[83]
	Flecaïnide	No significant effect at 100 µM (XO)	n.m.	[84]
	Genistein	No significant effect at 100 µM (XO)	n.m.	[85]
	4-AP	< 10% inhibition at 1 mM (XO)	n.m.	[20]
	TEA	30% inhibition at 10 mM (XO)	n.m.	[20]
	GI-530159	High affinity K2P2.1 activator (MC)	890 nM (MC)	[86]
	Copper	Activation (MC)	3 µM (MC)	[87]
	Ostruthin	Activator (MC)	5.3 µM (MC)	[88]
	BL-1249	High affinity TREK-1/2 activator (XO)	5.5 µM (XO)	[89]
	ML402	High affinity TREK-1/2 activator (XO)	13.7 µM (XO)	[90]
	ML335	High affinity TREK-1/2 activator (XO)	14.3 µM (XO)	[90]
	ML67-33	High affinity TREK-1/2 activator (XO)	36.3 µM (XO); 9.7 µM (MC)	[91]
	Pranlukast	66.4% activation at 3 µM (MC)	n.m.	[92]
	DCPiB	~3-fold activation at 10 µM (MC)	n.m.	[93]
K_{2P} Channel	Drug/Compound	Effect (Organism)	EC₅₀ / IC₅₀ (Organism)	Citation
----------------------	---------------	------------------	--------------------------------------	----------
Morphine	~2-fold activation at 10 µM (MC)	n.m.	[94]	
Flufenamic acid	~4-fold activation at 100 µM (MC)	n.m.	[95]	
Niflumic acid	~2.5-fold activation at 100 µM (MC)	n.m.	[95]	
Mefenamic acid	~2-fold activation at 100 µM (MC)	n.m.	[95]	
Carbamazepine	42% activation at 100 µM (MC)	n.m.	[96]	
Valproate	28% activation at 100 µM (MC)	n.m.	[96]	
Gabapentin	25% activation at 100 µM (MC)	n.m.	[96]	
Diethyl ether	~1.75-fold activation at 600 µM (MC)	n.m.	[97]	
Chloroform	~3.5-fold activation at 800 µM (MC)	n.m.	[97]	
Lithium	31% activation at 1 mM (MC)	n.m.	[96]	
Rubidium	27% activation at 1 mM (MC)	n.m.	[96]	
Halothane	~1.4-fold activation at 1 mM (MC)	n.m.	[97]	
Isoflurane	~1.5-fold activation at 2 mM (MC)	n.m.	[97]	
Cyclopropane	~30% activation at 10% (MC)	n.m.	[98]	
Xenon	~30% activation at 80% (MC)	n.m.	[98]	
Nitrous oxide	~30% activation at 80% (MC)	n.m.	[98]	
Spadin	High affinity K_{2P}2.1 inhibitor (MC)	40 nM (MC)	[99]	
Amlodipine	Inhibition (MC)	430 nM (MC)	[100]	
Nigludipine	Inhibition (MC)	750 nM (MC)	[100]	
Pimozide	Inhibition (MC)	1.8 µM (MC)	[101]	
Fluphenthixol	Inhibition (MC)	2.0 µM (MC)	[101]	
Chlorpromazine	Inhibition (MC)	2.7 µM (MC)	[96,101]	
Sipatrigine	73.3% inhibition at 10 µM (MC)	4 µM	[59]	
Fluphenazine	Inhibition (MC)	4.7 µM (MC)	[101]	
Haloperidol	Inhibition (MC)	5.5 µM (MC)	[101]	
Norfluoxetine	Inhibition (MC)	9 µM (MC)	[102]	
Vernakalant	Inhibition (MC)	13.3 µM (MC)	[84]	
Losapine	Inhibition (MC)	19.7 µM (MC)	[101]	
Fluoxetine	Inhibition (MC)	19–37.9 µM (MC)	[96,102]	
Carvedilol	Inhibition (XO, MC)	20.3 µM (XO); 1.6 µM (MC)	[42]	
A1899 (High affinity K_{2P}3.1 inhibitor)	Inhibition (XO)	23.8 µM (XO)	[103]	
Dronedarone	Inhibition (XO, MC)	26.7 µM (XO); 6.1 µM (MC)	[82]	
Propafenone	Inhibition (XO, MC)	51.0 µM (XO); 7.9 µM (MC)	[104]	
Levobupivacaine	Inhibition (MC)	126 µM (MC)	[105]	
Diltiazem	Inhibitor (MC)	180 µM (MC)	[95]	
Lidocaine	Inhibition (MC)	207 µM (MC)	[106]	
Bupivacaine	Inhibition (MC)	370 µM (MC)	[107]	
Caffeine	Inhibition (MC)	377 µM (MC)	[108]	
Ropivacaine	Inhibition (MC)	402 µM (MC)	[105]	
Theophylline	Inhibition (MC)	486 µM (MC)	[108]	
Zinc	Inhibition (MC)	659 µM (MC)	[87]	
Mexiletine	Inhibition (XO, MC)	1.3 mM (XO); 182 µM (MC);	[104]	
Tetramethylammonium	63% inhibition (MC)	n.m.	[24]	
Lamotrigine	~10% inhibition at 10 µM (MC)	n.m.	[59]	
K_{2P} Channel	Drug/Compound	Effect (Organism)	EC₅₀ /IC₅₀ (Organism)	Citation
---------------------	---------------	------------------	---------------------------------	----------
Metoprolol	~20% inhibition at 100 µM (XO)	n.m.	[42]	
Propranolol	~30% inhibition at 100 µM (XO)	n.m.	[42]	
Citalopram	59% inhibition at 100 µM (MC)	n.m.	[96]	
Barium	50% inhibition at 300 µM (XO)	n.m.	[24]	
Ranolazine	7.35% inhibition at 300 µM (XO)	n.m.	[109]	
Clozapine	Inhibition (MC)	n.m.	[101]	
Sulpiride	No significant effect at 10 µM (MC)	n.m.	[101]	
Tiapride	No significant effect at 10 µM (MC)	n.m.	[101]	
Glibenclamide	No significant effect at 10 µM (XO)	n.m.	[24]	
Cesium	No significant effect at 100 µM (XO)	n.m.	[24]	
Gadolineum	No significant effect at 100 µM (XO)	n.m.	[24]	
TEA	No significant effect at 100 µM (XO)	n.m.	[24]	
Quinine	No significant effect at 100 µM (XO)	n.m.	[24]	
Quinidine	No significant effect at 100 µM (XO)	n.m.	[24]	
Tedisamil	No significant effect at 100 µM (XO)	n.m.	[24]	
Genistein	No significant effect at 100 µM (XO)	n.m.	[85]	
Flecainide	No significant effect at 100 µM (XO, MC)	n.m.	[84]	
Amiodarone	No significant effect (XO)	n.m.	[110]	
Sotalol	No significant effect (XO)	n.m.	[82]	
Digoxin	No significant effect (XO)	n.m.	[111]	
Digitoxin	No significant effect (XO)	n.m.	[111]	
A293	No significant effect (XO)	n.m.	[10]	
Ajmaline	No significant effect (MC)	n.m.	[104]	
GSMTx4	No significant effect (MC)	n.m.	[112]	
Magnesium	No significant effect (XO)	n.m.	[24]	
Halothane	Activation (XO, MC)	300–1000 µM (XO)	[97,113,114]	
Sevoflurane	~40% activation at 1 mM	n.m.	[114]	
Isoflurane	~15% activation at 1 mM (XO)	20% activation at 2 mM (MC)	n.m.	[97,113]
BAY2341237	High affinity K_{2P}3.1 inhibitor	7.6 nM (XO)	[115]	
BAY1000493	High affinity K_{2P}3.1 inhibitor	9.5 nM (XO)	[115]	
ML365	High affinity K_{2P}3.1 inhibitor	16 nM (MC)	[116]	
A1899 (S20951)	High affinity K_{2P}3.1 inhibitor	35 nM (XO); 7 nM (MC)	[103,115]	
S9947 (K_V1.5 blocker)	Inhibition (XO)	200 nM (XO)	[103,117]	
A293 (AVE1231)	High affinity K_{2P}3.1 inhibitor	222 nM (XO)	[10,15]	
PK-THPP	Inhibition (XO)	243 nM	[118]	
MSD-D (K_V1.5 blocker)	Inhibition (XO)	350 nM (XO)	[117]	
Amiodarone	Inhibition (XO)	400 nM (XO)	[82,110]	
Doxapram	Inhibition (XO, MC)	410 nM (XO)	[119]	
AVE01118 (K_V1.5 blocker)	Inhibition (XO)	600 nM (XO)	[117]	
Methanandamide	Inhibition (XO)	700 nM (MC)	[120]	
Digoxin	Inhibition (XO)	900 nM (XO)	[111]	
Table 3. Cont.

K_{2P} Channel	Drug/Compound	Effect (Organism)	EC₅₀ / IC₅₀ (Organism)	Citation
ICAGEN-4 (K_v1.5 blocker)	Inhibition (XO)	1.05 µM (XO)	[117]	
ML308 (High affinity K_{2P}9.1 inhibitor)	Inhibition (MC)	3.2 µM (MC)	[121]	
Carvedilol	Inhibition (XO, MC)	3.8 µM (XO); 0.83 µM (MC)	[42]	
Dicitoxin	Inhibition (XO)	7.4 µM (XO)	[111]	
Genistein	81.1% inhibition at 100 µM (XO)	12.3 µM (MC)	[85]	
Dronedarone	Inhibition (XO, MC)	18.7 µM (XO); 5.2 µM (MC)	[82]	
Propafenone	Inhibition (XO, MC)	18.1 µM (XO); 5.1 µM (MC);	[104]	
Etidocaine	Inhibition (XO)	39 µM (XO)	[122]	
Ostruthin	Inhibition (MC)	41 µM (MC)	[88]	
R-Ropivacaine	Inhibition (XO)	51 µM (XO)	[122]	
S-Ropivacaine	Inhibition (XO)	53 µM (XO)	[122]	
Bupivacaine	Inhibition (XO)	68 µM (XO)	[123]	
Etomidate	Inhibition (XO)	119 µM (XO)	[113]	
Zinc	Inhibition (XO)	175 µM (XO)	[123]	
Ranolazine	Inhibition (XO, MC)	198.4 µM (XO); 30.6 µM (MC)	[109]	
Lidocain	Inhibition (XO)	222 µM (XO)	[122]	
Mexiletine	Inhibition (XO, MC)	405 µM (XO); 97.3 µM (MC)	[104]	
Tetracaine	Inhibition (XO)	668 µM	[122]	
Mepivacaine	Inhibition (XO)	709 µM (XO)	[122]	
Agitoxin	<15% inhibition at 1 nM (XO)	n.m.	[123]	
Margatoxin	<15% inhibition at 10 nM (XO)	n.m.	[123]	
Dendrotoxin	<15% inhibition at 100 nM (XO)	n.m.	[123]	
Charybdotoxin	<15% inhibition at 200 nM (XO)	n.m.	[123]	
Anandamide	~90% inhibition at 3 µM (MC)	n.m.	[120]	
CP35940 (CB1/CB2agonist)	~50% inhibition at 10 µM (MC)	n.m.	[120]	
Sipatrigine	37% inhibition at 10 µM (MC)	n.m.	[59]	
Cilbenclamide	<15% inhibition at 30 µM (XO)	n.m.	[123]	
Propranolol	~60% inhibition at 100 µM (XO)	n.m.	[42]	
Cesium	31% inhibition at 100 µM (XO)	n.m.	[45]	
Quinidine	<20–71% inhibition at 100 µM (XO)	n.m.	[45,123]	
Quinine	<20% inhibition at 100 µM (XO)	n.m.	[45]	
Quinacrine	<20% inhibition at 100 µM (XO)	n.m.	[45]	
Barium	~19% inhibition at 100 µM (XO)	n.m.	[45]	
Daidzein	18.2% inhibition at 100 µM (XO)	n.m.	[85]	
Cromakalim	<15% inhibition at 100 µM (XO)	n.m.	[123]	
Metoprolol	~10% inhibition at 100 µM (XO)	n.m.	[42]	
Phenytoin	~50% inhibition at 200 µM (XO)	n.m.	[123]	
Diethyl ether	~45% at 600 µM (MC)	n.m.	[97]	
Magnesium	~14% inhibition at 10 mM (XO)	n.m.	[123]	
4-AP	<15% inhibition at 10 mM (XO)	n.m.	[45,123]	
Flecainide	No significant effect at 100 µM (XO, MC)	n.m.	[84]	
Ouabain	No significant effect at 100 µM (XO)	n.m.	[111]	
\(K_{2P}\) Channel	Drug/Compound	Effect (Organism)	\(EC_{50}/IC_{50}\) (Organism)	Citation
------------------	---------------	-------------------	-----------------	---------
Vernakalant	No significant effect at 100 \(\mu\)M (XO, MC)	n.m.	[84]	
Sotalol	No significant effect at 100 \(\mu\)M (XO)	n.m.	[82]	
Genistin	No significant effect at 100 \(\mu\)M (XO)	n.m.	[85]	
Propofol	No significant effect at 200 \(\mu\)M (XO)	n.m.	[113]	
Chloroform	No significant effect at 800 \(\mu\)M (MC)	n.m.	[97]	
TEA	No significant effect at 1 mM (XO)	n.m.	[45]	
Sipatrigine	45% inhibition at 10 \(\mu\)M (MC)	10 \(\mu\)M	[59]	
ML67-33	Activation (XO, MC)	27.3 \(\mu\)M (XO); 1.8 \(\mu\)M (MC)	[91]	
BL-1249	Activation (XO)	48 \(\mu\)M (XO)	[89]	
A1899	Inhibition (XO)	>20 \(\mu\)M (XO)	[103]	
Docosahexaenoate	−12-fold activation at 10 \(\mu\)M (MC)	n.m.	[58]	
Eicosapentaenoate	−8-fold activation at 10 \(\mu\)M (MC)	n.m.	[58]	
Arachidonic acid	−5-fold activation at 10 \(\mu\)M (MC)	n.m.	[58]	
Oleate	−1.5-fold activation at 10 \(\mu\)M (MC)	n.m.	[58]	
Linoleate	−1.5-fold activation at 10 \(\mu\)M (MC)	n.m.	[58]	
Riluzole	3.9-fold activation at 100 \(\mu\)M (MC)	n.m.	[58]	
Flufenamic acid	−2-fold activation at 100 \(\mu\)M (MC)	n.m.	[95]	
Niflumic acid	−2-fold activation at 100 \(\mu\)M (MC)	n.m.	[95]	
Mefenamic acid	−1.6-fold activation at 100 \(\mu\)M (MC)	n.m.	[95]	
Lamotrigine	−10% inhibition at 10 \(\mu\)M (MC)	n.m.	[59]	
Vernakalant	17.1% inhibition at 100 \(\mu\)M (XO)	n.m.	[83]	
Barium	56.7% inhibition at 1 mM (XO)	n.m.	[56]	
Charybdotoxin	No significant effect at 20 nM (XO)	n.m.	[58]	
Dendrotoxin	No significant effect at 100 nM (XO)	n.m.	[58]	
Tetrodotoxin	No significant effect at 1 \(\mu\)M (XO)	n.m.	[58]	
Tedisamil	No significant effect at 10 \(\mu\)M (XO)	n.m.	[58]	
Palmitate	No significant effect at 10 \(\mu\)M (MC)	n.m.	[58]	
Stearate	No significant effect at 10 \(\mu\)M (MC)	n.m.	[58]	
Arachidate	No significant effect at 10 \(\mu\)M (MC)	n.m.	[58]	
Fluphenazine	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Chlorpromazine	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Haloperidol	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Flupenthixol	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Loxapine	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Pimozide	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Clozapine	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Sulpiride	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Tiapride	No significant effect at 10 \(\mu\)M (MC)	n.m.	[101]	
Tolbutamide	No significant effect at 100 \(\mu\)M (XO)	n.m.	[58]	
Pinacidil	No significant effect at 100 \(\mu\)M (XO)	n.m.	[58]	
P1060	No significant effect at 100 \(\mu\)M (XO)	n.m.	[58]	
Table 3. Cont.

K_{2P} Channel	Drug/Compound	Effect (Organism)	EC₅₀ /IC₅₀ (Organism)	Citation
	Glibenclamide	No significant effect at 200 µM (XO)	n.m.	[58]
	Cobalt	No significant effect at 500 µM (XO)	n.m.	[58]
	Dronedarone	No significant effect at 100 µM (XO)	n.m.	[82]
	Flecaïnide	No significant effect at 100 µM (XO)	n.m.	[84]
	Genistein	No significant effect at 100 µM (XO)	n.m.	[85]
	Ranolazine	3.32 % inhibition at 300 µM (XO)	n.m.	[109]
	Diethyl ether	No significant effect at 600 µM (MC)	n.m.	[97]
	Chloroform	No significant effect at 800 µM (MC)	n.m.	[97]
	Halothane	No significant effect at 1 mM (MC)	n.m.	[97]
	Diltiazem	No significant effect at 1 mM (MC)	n.m.	[95]
	TEA	No significant effect at 1 mM (XO)	n.m.	[58]
	4-AP	No significant effect at 1 mM (XO)	n.m.	[58]
	Caesium	No significant effect at 1 mM (XO)	n.m.	[58]
	Isoflurane	No significant effect at 2 mM (MC)	n.m.	[97]
	Digoxin	No significant effect (XO)	n.m.	[111]
	Digitoxin	No significant effect (XO)	n.m.	[111]
K_{2P.5.1} (TASK-2)	A293 (High affinity K_{2P}3.1 inhibitor)	Inhibition (XO)	8.1 nM (XO)	[10,15]
	A1899 (High affinity K_{2P}3.1 inhibitor)	Inhibition (XO)	12 µM (XO)	[103]
	Quinine	Inhibition (XO)	22.4 µM (XO)	[17]
	Quinidine	65% inhibition at 100 µM (XO)	n.m.	[17]
	Zinc	15.3% inhibition at 100 µM (XO)	n.m.	[17]
	Ranolazine	30.02% inhibition at 300 µM (XO)	n.m.	[17]
	Barium	16.9% inhibition at 1 mM (XO)	n.m.	[17]
	Lidocaine	60.4% inhibition at 10 mM (XO)	n.m.	[17]
	Bupivacaine	80.9% inhibition at 10 mM (XO)	n.m.	[17]
	Arachidonic acid	No significant effect at 10 µM (XO)	n.m.	[17]
	4-AP	No significant effect at 100 µM (XO)	n.m.	[17]
	Dronedarone	No significant effect at 100 µM (XO)	n.m.	[82]
	Flecaïnide	No significant effect at 100 µM (XO)	n.m.	[84]
	Genistein	No significant effect at 100 µM (XO)	n.m.	[85]
	Vernakalant	No significant effect at 100 µM (XO)	n.m.	[83]
	Digoxin	No significant effect (XO)	n.m.	[111]
	Digitoxin	No significant effect (XO)	n.m.	[111]
	TEA	No significant effect at 1 mM (XO)	n.m.	[17]
	Cesium	No effect at 1 mM (XO)	n.m.	[17]
K_{2P.6.1} (TWIK-2)	Barium	Inhibition (MC)	~100 µM (MC)	[124]
	Quinidine	73% inhibition at 100 µM (XO)	n.m.	[124]
	Quinine	73% inhibition at 100 µM (XO)	n.m.	[124]
	Genistein	~30% inhibition at 100 µM (XO)	n.m.	[85]
	Dronedarone	10.7% inhibition at 100 µM (XO)	n.m.	[82]
	Chloroform	32% inhibition at 300 µM (XO)	n.m.	[124]
	Halothane	27% inhibition at 750 µM (XO)	n.m.	[124]
Table 3. Cont.

K_{2P} Channel	Drug/Compound	Effect (Organism)	EC₅₀/IC₅₀ (Organism)	Citation
Cesium	92% inhibition of inward current at 10 mM (XO)	n.m.	[124]	
TEA	No significant effect at 5 mM (XO)	n.m.	[124]	
4-AP	No significant effect at 3 mM (XO)	n.m.	[124]	
Glibenclamide	No significant effect at 10 µM (XO)	n.m.	[124]	
Vernakalant	No significant effect at 100 µM (XO)	n.m.	[83]	
Flecaïnide	No significant effect at 100 µM (XO)	n.m.	[84]	
K_{2P}7.1 (TWIK-3)	Non-functional channel			
DCPIB	−3-fold activation at 10 µM (MC)	n.m.	[93]	
Halothane	65.6% activation at 1 mM (XO)	n.m.	[125]	
BAY2341237	Inhibition (XO)	2.3 nM (XO)	[115]	
BAY1000493	Inhibition (XO)	15.1 nM (XO)	[115]	
A1899	Inhibition (XO, MC)	318 nM (XO); 70 nM (MC)	[103]	
ML308	High affinity K_{2P}9.1 inhibitor	413 nM (MC)	[121]	
A293	Inhibition (XO)	950 nM (XO)	[10,15]	
ML365	Inhibition (MC)	990 nM (MC)	[116]	
Copper	Inhibition (MC)	2.7 µM (MC)	[87]	
Zinc	Inhibition (MC)	12.7 µM (MC)	[87]	
Mibefradil	Inhibition (MC)	24.6 µM (MC)	[126]	
Doxapram	Inhibition (XO)	37 µM (XO)	[119]	
L-703,606 oxalate	Inhibition (MC)	45.5 µM (MC)	[126]	
Oligomycin A	Inhibition (MC)	47.7 µM (MC)	[126]	
GW2974	Inhibition (MC)	50.1 µM (MC)	[126]	
Loratadine	Inhibition (MC)	63.4 µM (MC)	[126]	
Dihydro-β-erythroidine hydrobromide	Inhibition (MC)	73.8 µM (MC)	[126]	
(±)-Octolothepin maleate	Inhibition (MC)	73.8 µM (MC)	[126]	
Ruthenium red	Inhibitor (XO)	114 µM	[127]	
Etomidate	Inhibition (XO)	128 µM (XO)	[113]	
Mevastatin	Inhibition (MC)	159 µM (MC)	[126]	
Ostruthin	Inhibition (MC)	227 µM (MC)	[88]	
Barium	11% inhibition at 100 µM (XO)	290 µM (XO)	[64]	
Arachidonic acid	4.81% inhibition at 10 µM (XO)	n.m.	[125]	
Genistein	−60% inhibition at 100 µM (XO)	n.m.	[85]	
Bupivacaine	50.2–56% inhibition at 100 µM (XO, MC)	n.m.	[70,125]	
Alphaxolone	49.2% inhibition at 100 µM (XO)	n.m.	[125]	
Quinidine	42.2% inhibition at 100 µM (XO)	n.m.	[125]	
Table 3. Cont.

K_{2P} Channel	Drug/Compound	Effect (Organism)	EC_{50}/IC$_{50}$ (Organism)	Citation
	Quinine	36.9% inhibition at 100 µM (XO)	n.m.	[125]
	Dronedarone	31.7% inhibition at 100 µM (XO)	n.m.	[82]
	Fluoxetine	31% inhibition at 100 µM (MC)	n.m.	[102]
	Ketamine	7.3% inhibition at 100 µM (XO)	n.m.	[125]
	Pentobarbital	4.3% inhibition at 100 µM (XO)	n.m.	[125]
	Glibenclamide	3.6% inhibition at 100 µM (XO)	n.m.	[125]
	Ranolazine	28.28% inhibition at 300 µM (XO)	n.m.	[109]
	TEA	6% inhibition at 1 mM (XO)	n.m.	[125]
	Xenon	No significant effect at 80% (MC)	n.m.	[98]
	Nitrous oxide	No significant effect at 80% (MC)	n.m.	[98]
	Cyclopropane	No significant effect at 10% (MC)	n.m.	[98]
	Propofol	No significant effect at 200 µM (XO)	n.m.	[113]
	Vernakalant	No significant effect at 100 µM (XO)	n.m.	[83]
	Flecaïnide	No significant effect at 100 µM (XO)	n.m.	[84]
	Digoxin	No significant effect (XO)	n.m.	[111]
	Digitoxin	No significant effect (XO)	n.m.	[111]
	Cesium	8–12% inhibition at 10 mM (XO)	n.m.	[64,125]
	Ostruthin	Activator (MC) 3.7 µM (MC)	[86]	
	ML335	High affinity TREK-1/2 activator 5.2 µM (XO)	[90]	
	ML402	High affinity TREK-1/2 activator 5.9 µM (XO)	[90]	
	Arachidonic acid	Activation (MC) 7.3 µM (MC)	[65]	
	BL-1249	High affinity TREK-1/2 activator 8.0 µM (XO)	[69]	
	ML67-33	High affinity TREK-1/2 activator 30.2 µM (XO); 1.6 µM (MC)	[91]	
$K_{2P10.1}$ (TREK-2)	11-deoxyprostaglandin F2α	~5-fold activation at 2 µM (MC)	n.m.	[128]
	Pranlukast	228% activation at 3 µM (MC)	n.m.	[92]
	Ocosahexaenoic acid	~5-fold activation at 20 µM (MC)	n.m.	[65]
	Linolenic acid	~6-fold activation at 20 µM (MC)	n.m.	[65]
	Eicosapentaenoic acid	~8-fold activation at 20 µM (MC)	n.m.	[65]
	Linoleic acid	~8-fold activation at 20 µM (MC)	n.m.	[65]
	Flufenamic acid	~4-fold activation at 100 µM (MC)	n.m.	[95]
	Niflumic acid	~2.5-fold activation at 100 µM (MC)	n.m.	[95]
	Mefenamic acid	~2-fold activation at 100 µM (MC)	n.m.	[95]
	Ruthenium red	Inhibition (XO) 230 nM (XO)	[127]	
	A1899	Inhibition (XO) 8.4 µM (XO)	[103]	
	Carvedilol	Inhibition (XO, MC) 24 µM (XO); 7.6 (MC)	[43]	
	Fluoxetine	68% inhibition at 10 µM (MC) 28.7 µM (MC)	[96]	
	Diltiazem	Inhibition (MC) 330 µM (MC)	[95]	
	Fluphenthixol	~80% inhibition at 10 µM (MC)	n.m.	[101]
	Pimozide	~80% inhibition at 10 µM (MC)	n.m.	[101]
	Fluphenazine	~70% inhibition at 10 µM (MC)	n.m.	[101]
	Clozapine	~50% inhibition at 10 µM (MC)	n.m.	[101]
	Loxapine	~50% inhibition at 10 µM (MC)	n.m.	[101]
Table 3. Cont.

K_{2P} Channel	Drug/Compound	Effect (Organism)	EC_{50} /IC_{50} (Organism)	Citation
	Haloperidol	~50% inhibition at 10 µM (MC)	n.m.	[101]
	Paroxetin	33% inhibition at 20 µM (MC)	n.m.	[96]
	Citalopram	59% inhibition at 100 µM (MC)	n.m.	[96]
	Chlorpromazine	57% inhibition at 100 µM (MC)	n.m.	[96,101]
	Vernakalant	19.8% inhibition at 100 µM (XO)	n.m.	[83]
	Barium	36% inhibition at 2 mM (MC)	n.m.	[65]
	Sulpiride	No significant effect at 10 µM (MC)	n.m.	[101]
	Tiapride	No significant effect at 10 µM (MC)	n.m.	[101]
	Elaidic acid	No significant effect at 20 µM (MC)	n.m.	[65]
	Stearic acid	No significant effect at 100 µM (MC)	n.m.	[65]
	Palmitic acid	No significant effect at 100 µM (MC)	n.m.	[65]
	Gabapentin	No significant effect at 100 µM (MC)	n.m.	[96]
	Valproate	No significant effect at 100 µM (MC)	n.m.	[96]
	Carbamazepine	No significant effect at 100 µM (MC)	n.m.	[96]
	Flecaïnide	No significant effect at 100 µM (XO)	n.m.	[84]
	Genistein	No significant effect at 100 µM (XO)	n.m.	[85]
	Dronedarone	No significant effect at 100 µM (XO)	n.m.	[82]
	Quinidine	No significant effect at 100 µM (XO)	n.m.	[65]
	Bupivacaine	No significant effect at 100 µM (MC)	n.m.	[65]
	Gadolinium	No significant effect at 100 µM (MC)	n.m.	[65]
	Ranolazine	No significant effect at 300 µM (XO)	n.m.	[109]
	TEA	No significant effect at 1 mM (MC)	n.m.	[65]
	Lidocaine	No significant effect at 1 mM (MC)	n.m.	[65]
	Lithium	No significant effect at 1 mM (MC)	n.m.	[96]
	Rubidium	No significant effect at 1 mM (MC)	n.m.	[96]
	Digitoxin	No significant effect (XO)	n.m.	[111]
	Digoxin	No significant effect (XO)	n.m.	[111]

K_{2P12.1}

	Quinidine	Inhibition (XO) 160 µM (XO)	n.m.	[8]
	Halothane	~50% inhibition at 5 mM (XO)	n.m.	[8]
	Arachidonic acid	No significant effect at 5 µM (XO)	n.m.	[8]
	Lysophosphatidylcholine	~20% activation at 10 µM (XO)	n.m.	[66]
	Arachidonic acid	69.6–85% activation at 5–20 µM (XO) 980 nM (XO)	n.m.	[66,68]
	Dronedarone	14.9% activation at 100 µM (XO)	n.m.	[82]
	Quinidine	10.9% activation at 100 µM (XO)	n.m.	[129]
	Amiodarone	9.3% activation at 100 µM	n.m.	[129]
	Ranolazine	4.98% activation at 300 µM (XO)	n.m.	[109]

K_{2P13.1} (THIK-1)

	A1899 (High affinity K_{2P3.1} inhibitor)	Inhibition (XO) 2.2 µM (XO)	n.m.	[103]
	Mexiletine	74.6% inhibition at 1.5 mM (XO) 356 µM (XO)	n.m.	[68,129]
	Halothane	56% inhibition at 5 mM (XO) 2.8 mM (XO)	n.m.	[66]
	Lidocaine	59.2% inhibition at 100 µM (XO)	n.m.	[68]
	Carvedilol	No significant effect at 100 µM (XO)	n.m.	[129]
	Metoprolol	No significant effect at 100 µM (XO)	n.m.	[129]
	Vernakalant	No significant effect at 100 µM (XO)	n.m.	[83]
	Flecaïnide	No significant effect at 100 µM (XO)	n.m.	[84]
Table 3. Cont.

K_{2P} Channel	Drug/Compound	Effect (Organism)	EC_{50} / IC_{50} (Organism)	Citation
	Verapamil	No significant effect at 100 µM (XO)	n.m.	[129]
	Propafenone	26% inhibition at 100 µM (XO)	n.m.	[129]
	Genistein	~20% inhibition at 100 µM (XO)	n.m.	[85]
	Propranolol	37.6% inhibition at 200 µM (XO)	n.m.	[129]
	Chloroform	No significant effect at 1 mM (XO)	n.m.	[66]
	Barium	88.7% inhibition at 2 mM (XO)	n.m.	[66,68]
	Digoxin	No significant effect (XO)	n.m.	[111]
	Digitoxin	No significant effect (XO)	n.m.	[111]

K_{2P}15.1 (TASK-5) Non-functional channel

Drug/Compound	Effect (Organism)	EC_{50} / IC_{50} (Organism)
Digitoxin	~30% inhibition at 100 µM (XO)	n.m.
Ranolazine	23.04% inhibition at 300 µM (XO)	n.m.
Halothane	26.8% inhibition at 800 µM (XO)	n.m.
Chloroform	21.5% inhibition at 800 µM (XO)	n.m.
Barium	51.4% inhibition at 1 mM (XO)	n.m.
Quinine	45.1% inhibition at 1 mM (XO)	n.m.
Quinidine	36.8% inhibition at 1 mM (XO)	n.m.
TEA	14.9% inhibition at 1 mM (XO)	n.m.
Arachidonic acid	No significant effect at 20 µM (XO)	n.m.
4-AP	No significant effect at 100 µM (XO)	n.m.
Vernakalant	No significant effect at 100 µM (XO)	n.m.
Flecaïnide	No significant effect at 100 µM (XO)	n.m.
Genistein	No significant effect at 100 µM (XO)	n.m.
Dronedarone	No significant effect at 100 µM (XO)	n.m.
Isoflurane	No significant effect at 800 µM (XO)	n.m.
Cesium	No significant effect at 1 mM (XO)	n.m.
Digoxin	No significant effect (XO)	n.m.

K_{2P}16.1 (THIK-1)

Drug/Compound	Effect (Organism)	EC_{50} / IC_{50} (Organism)
A1899 (High affinity K_{2P}3.1 inhibitor)	Inhibition (XO)	8.1 µM (XO)
A293 (High affinity K_{2P}3.1 inhibitor)	Inhibition (XO)	18.1 µM (XO)

K_{2P}17.1 (THIK-2)

Drug/Compound	Effect (Organism)	EC_{50} / IC_{50} (Organism)		
Propafenone	296.1% activation at 100 µM (XO, MC)	75.4 µM (XO)		
Quinidine	57.7% activation at 100 µM (XO)	n.m.		
Mexiletine	20.6% activation at 100 µM (XO)	n.m.		
Verapamil	20.5% inhibition at 100 µM (XO)	n.m.		
Amiodarone	12.5% inhibition at 100 µM (XO)	n.m.		
Sotalol	9.8% inhibition at 100 µM (XO)	n.m.		
Ranolazine	8.3–34.88% inhibition at 100–300 µM (XO)	n.m.		
Barium	81.2–82.8% inhibition at 2 mM (XO)	n.m.		
Cesium	No significant effect at 1–2 mM (XO)	n.m.		
Arachidonic acid	No significant effect at 100 µM (XO)	n.m.		
Flecaïnide	No significant effect at 100 µM (XO)	n.m.		
Genistein	No significant effect at 100 µM (XO)	n.m.		
Carvedilol	No significant effect at 100 µM (XO)	n.m.		
Amitriptyline	No significant effect at 100 µM (XO)	n.m.		
K_{2P} Channel	Drug/Compound	Effect (Organism)	EC_{50} /IC_{50} (Organism)	Citation
-----------------	-----------------	--	----------------------------	----------
	Ajmaline	No significant effect at 100 µM (XO)	n.m.	[75]
	Vernakalant	No significant effect at 100 µM (XO)	n.m.	[83]
	Dronedarone	No significant effect at 100 µM (XO)	n.m.	[82]
	Digoxin	No significant effect (XO)	n.m.	[111]
	Digitoxin	No significant effect (XO)	n.m.	[111]
	Metoprolol	17.3% activation at 100 µM (XO)	n.m.	[75]
	Propranolol	139.2% activation at 100 µM (XO)	n.m.	[75]
	Bupivacaine	25.7% inhibition at 1 mM (XO)	n.m.	[73]
	TEA	19.9% inhibition at 1 mM (XO)	n.m.	[67]
	Quinidine	17.8% inhibition at 1 mM (XO)	n.m.	[73]
	Lidocaine	13.1% inhibition at 1 mM (XO)	n.m.	[73]
	4-AP	No significant effect at 0.1-2 mM (XO)	n.m.	[67,73]
	Chloroform	44.7% inhibition at 800 µM (XO)	n.m.	[67]
	Halothane	56.4% inhibition at 800 µM (XO)	n.m.	[67]
	Isoflurane	58.4% activation at 800 µM (XO)	n.m.	[67]
	Vernakalant	Activation (XO, MC)	40 µM (MC)	[83]
	Isoflurane	Activation (XO)	162 µM (XO)	[61]
	Sevoflurane	Activation (XO)	224 µM (XO)	[61]
	Halothane	Activation (XO)	300 µM (XO)	[61]
	Desflurane	Activation (XO)	658 µM (XO)	[61]
	Dronedarone	29% activation at 100 µM (XO)	n.m.	[82]
	Loratadine	Inhibition (MC)	490 nM (MC)	[126]
	A1899 (High affinity $K_{2P}3.1$ inhibitor)	Inhibition (XO)	900 nM (XO)	[103]
	Cloxiquine	Inhibition (MC)	3.2 µM (MC)	[130]
$K_{2P}18.1$ (TRESK)	Zinc	Inhibition (XO)	5–10 µM for the murine but not the human ortholog	[131]
	Arachidonic acid	43% inhibition at 20 µM (MC)	6.6 µM (MC)	[73,78]
	Lamotrigine	Inhibition (MC)	47 µM (MC)	[132]
	Bupivacaine	−75% inhibition at 100 µM (MC)	80.4 µM (XO)	[61,133]
	Tetracaine	Inhibition (XO)	496 µM (XO)	[61]
	Ropivacaine	Inhibition (XO)	610 µM (XO)	[61]
	Chlorprocaine	Inhibition (XO)	832 µM (XO)	[61]
	Mepivacaine	Inhibition (XO)	1300 µM (XO)	[61]
	Lidocaine	~70–75% inhibition at 1 mM (MC)	3.4 mM (MC)	[61,73,78]
	Mibefradil	Inhibition at 3 µM (XO)	n.m.	[131]
	Quinidine	49% inhibition at 10 µM (MC)	n.m.	[133]
	Linoleic acid	~35% inhibition at 20 µM (MC)	n.m.	[78]
	Oleic acid	~50% inhibition at 20 µM (MC)	n.m.	[78]
	Docosahexaenoic acid	~60% inhibition at 20 µM (MC)	n.m.	[78]
	Propafenone	95% inhibition at 50 µM (MC)	n.m.	[78]
	Glyburide	76% inhibition at 50 µM (MC)	n.m.	[78]
	Quinidine	90% inhibition at 100 µM (MC)	n.m.	[78]
	Quinidine	41.9–75% inhibition at 100 µM (MC)	n.m.	[61,78]
	Etomidate	30.5% inhibition at 100 µM (XO)	n.m.	[61]
	Pentobarbital	10.4% inhibition at 100 µM (XO)	n.m.	[61]
Table 3. Cont.

K2P Channel	Drug/Compound	Effect (Organism)	EC50 /IC50 (Organism)	Citation
Ketamine	14.5% inhibition at 100 µM (XO)	n.m.	[61]	
Alphaxalone	45.4% inhibition at 100 µM (XO)	n.m.	[61]	
Gabapentin	4.2% inhibition at 100 µM (XO)	n.m.	[61]	
Barium	38% inhibition at 3 mM (MC)	n.m.	[78,133]	
Ethanol	–15% inhibition at 150 mM (MC)	n.m.	[61,133]	
Apamin	No significant effect at 100 nM (XO)	n.m.	[133]	
Ruthenium red	No significant effect at 5 µM (MC)	n.m.	[133]	
Glibenclamide	No significant effect at 10 µM (MC)	n.m.	[133]	
Stearic acid	No significant effect at 20 µM (MC)	n.m.	[78]	
Digoxin	No significant effect at 100 µM (XO)	n.m.	[111]	
Digitoxin	No significant effect at 100 µM (XO)	n.m.	[111]	
Flecainide	No significant effect at 100 µM (XO)	n.m.	[84]	
Genistein	No significant effect at 100 µM (XO)	n.m.	[85]	
Tolazamide	No significant effect at 100 µM (MC)	n.m.	[78]	
Glipizide	No significant effect at 100 µM (MC)	n.m.	[78]	
Paxilline	No significant effect at 100 µM (MC)	n.m.	[78]	
Penitrem A	No significant effect at 100 µM (MC)	n.m.	[78]	
Ranolazine	No significant effect at 300 µM (XO)	n.m.	[109]	
Cesium	No significant effect at 1 mM (MC)	n.m.	[133]	
4-AP	No significant effect at 1 mM (XO)	n.m.	[73,78]	
TEA	No significant effect at 1 mM (XO)	n.m.	[61,73,78]	
Mercury	Inhibition (XO)	n.m.	[131]	
Tetraptethyl-ammonium	Inhibition (MC)	n.m.	[130]	

Potency of different drugs or compounds to activate or inhibit heterologously expressed K2P currents. Compounds that are used as experimental high-affinity inhibitors of individual K2P channels are highlighted in bold. Please note, however, that these compounds are by no means completely specific for single members of the K2P family. IC50, mean inhibitory concentration; MC, mammalian cells; n.m., not measured; XO, Xenopus laevis oocytes.

The physiological role of K2P.1.1 (TWIK-1) channel subunits has not been conclusively clarified, mostly due to lack of specific inhibitors and its very low currents in heterologous expression systems [82]. If measurable, heterologously expressed K2P.1.1 (TWIK-1) channel homodimers give rise to potassium currents that are sensitive to acidic pH as well as external K+ concentration [134]. Therefore, it was speculated whether K2P.1.1 (TWIK-1) might contribute to cardiac I_{K1}, I_{KAcH}, I_{KATP}, and I_{TASK} currents [11–14,80,135,136]. Altered ion conductivity under low extracellular potassium concentrations (for example Na+ permeability, which shifts homodimeric K2P.1.1 (TWIK-1) channels from an inhibitory to an excitatory channel) could link K2P.1.1 (TWIK-1) channels to the pathophysiology of hypokalemia-induced rhythm disturbances [137]. Through its ability to heterodimerize with other K2P subunits, K2P.1.1 (TWIK-1) subunits could modulate the pharmacological and functional properties of atrial K2P.3.1 (TASK-1) channel subunits [138–140].

4. K2P.2.1 (TREK-1)

Mechanosensitivity is a unique feature of the TREK/TRAALK subfamily, as these K2P channels are activated by membrane stretch and osmotic swelling [141]. Temperature, lipids, extracellular or intracellular pH, anesthetics or other drugs, phosphorylation, glycosylation, G protein-coupled receptors and other protein partners represent further regulators of homodimeric K2P.2.1 (TREK-1) channels [97,124,141–144]. The versatility of this channel is further enhanced by alternative translation initiation (ATI) variants that
Cells 2021, 10, 2914
differ in spatiotemporal expression, single-channel conduction, ion selectivity and regarding their pharmacological profile [43,145,146]. Further, K$_{2p}$2.1 (TREK-1) channel subunits are reported to from heterodimers with K$_{2p}$1.1 (TWIK-1), K$_{2p}$4.1 (TRAALK) and K$_{2p}$10.1 (TREK-2) [147,148].

In the rat heart, Kcnk2 mRNA and protein expression has been described in both atrial and ventricular tissue samples (Table 2) [28,29,32,33,149]. However, in the mouse heart, most studies describe ventricular-dominant K$_{2p}$2.1 (TREK-1) expression or mRNA abundance patterns [16,26,41]. Abundant K$_{2p}$2.1 (TREK-1) expression was also detected in the porcine heart, with the highest expression levels in the sinoatrial and atrioventricular nodal tissue [36,37] and in human cardiac tissue samples, where again ventricular dominant K$_{2p}$2.1 (TREK-1) expression could be observed [10,37,40,41]. Interestingly, a transmural gradient of ventricular K$_{2p}$2.1 (TREK-1) expression levels was described with endocardial expression levels 17-fold higher than that in the epicardium, [30,149]. Strikingly, this gradient seems to parallel transmural changes in stretch-activated potassium currents, as mechanical stretch has been shown to cause increased action potential shortening in subendocardial cardiomyocytes compared to the subepicardium [150].

Homodimeric K$_{2p}$2.1 (TREK-1) channels are inhibited by the anticonvulsant drugs valproate, gabapentin and carbamazepine [102] by the antidepressants like fluoxetine, paroxetine, citalopram or escitalopram (Table 3) [96,102], and the antipsychotics haloperidol or clozapine [101]. While some of these interactions would only be relevant at supratherapeutic plasma levels, others already have an impact in the physiological range [141]. It has therefore been speculated whether the blockade of cardiac K$_{2p}$2.1 (TREK-1) channels could contribute to the proarrhythmic potential of these compounds [41,141]. Remarkably, K$_{2p}$2.1 (TREK-1) knockout was shown to cause a phenotype of QT interval prolongation, linking loss of cardiac K$_{2p}$2.1 (TREK-1) to QT prolongation [151]. Likewise, antiarrhythmic drugs were described to block K$_{2p}$2.1 (TREK-1) channels: Vaughan Williams class I compounds lidocaine, mexiletine and propafenone, class III antiarrhythmic drugs dronedarone and vernakalant, the beta-blocker carvedilol and late sodium current inhibitor ranolazine were identified as in vitro K$_{2p}$2.1 (TREK-1) inhibitors (Table 3) [43,82,84,104,106,109]. Since IC$_{50}$ levels are mostly in the supratherapeutic range, it is unclear to what extent inhibition of K$_{2p}$2.1 (TREK-1) contributes to the antiarrhythmic effects of these compounds.

In isolated rat ventricular cardiomyocytes the mechano-, pH-, and arachidonic acid-sensitive potassium current I$_{KAA}$ displays a number of further features like activation by volatile anesthetics, inhibition by cAMP analogues as well as beta-adrenergic receptor agonists, the absence of a relevant voltage dependency, a specific single-channel conductance and burst mode activity, which identify it as a K$_{2p}$2.1 (TREK-1) current (Table 4) [7,28,29,32,33,149,152]. Further, resting membrane potentials of chicken embryo-derived atrial cardiomyocytes are regulated by K$_{2p}$2.1 (TREK-1) [153]. Finally, cardiomyocyte-specific K$_{2p}$2.1 (TREK-1) knockout mice exhibit a phenotype of stress-induced sick sinus syndrome and prolongation of QT intervals that could be reproduced in a transgenic model which employed C-terminal truncation of beta IV spectrin to disrupt its interaction with K$_{2p}$2.1 (TREK-1), thereby impairing intracellular K$_{2p}$2.1 (TREK-1) protein trafficking [27,151]. In a similar fashion, knockout of K$_{2p}$2.1 (TREK-1) channel surface targeting by its protein partners POPDC1 or POPDC2 revealed a phenotype of exercise-induced and age-dependent sick sinus syndrome [154,155], while a double-knockout mouse displayed AV conduction disturbance [156]. Moreover, a familial autosomal recessive POPDC1 mutation has been associated with the phenotype of limb-girdle muscular dystrophy type X2 in combination with AV block [157] and POPDC2 mutations have been shown to cause AV block without a skeletal muscle phenotype [158]. The fact that K$_{2p}$2.1 (TREK-1) channels are activated in acidosis and by mechanical stress has given rise to speculation about a role of this channel in the development of cardiac arrhythmias for more than two decades [28]. Metabolic changes associated with myocardial ischemia lead to a decrease in pH. By activating K$_{2p}$2.1 (TREK-1), this can
cause a dispersion of repolarization and consecutively the development of arrhythmias. Similarly, altered wall tension due to hypertension, valvular vitiation, in the margins of myocardial scars, or AF may activate K$_{\text{2P}}$.1 (TREK-1) [141,158,159]. Recently, a heterozygous missense mutation (I267T) of K$_{\text{2P}}$.1 (TREK-1) was identified in a patient with idiopathic right ventricular outflow tract tachycardia [160]. This mutation results in an amino acid exchange from isoleucine to threonine in close proximity to the selectivity filter of the channel, leading to increased stretch sensitivity and sodium permeability.

Table 4. Functional evidence for K$_{\text{2P}}$ channel expression in the cardiovascular system.

K$_{\text{2P}}$ Channel Subunit	Species	Population/Model/Methodology	Observation	Citation
K$_{\text{2P}}$.1 (TWIK-1)	Zebrafish	Morpholino knockdown mRNA (RT-PCR, ISH)	Knockdown of kcnk1a or kcnk1b in zebrafish embryos resulted in a phenotype atrial dilatation and bradycardia	[11]
	Mouse	CREM-transgenic murine AF model mRNA (RT-qPCR, TaqMan)	Moderate cardiac mRNA expression, V > A Ventricular mRNA downregulated in murine AF model	[16]
	Rat	Goto-Kakizaki type 2 diabetic rats mRNA (RT-qPCR, TaqMan)	Downregulation of sinoatrial mRNA levels in Goto-Kakizaki type 2 diabetic rats	[19]
	Human	Patient-derived tissue samples mRNA (RT-PCR)	Identical mRNA levels in failing and healthy hearts	[21]
	Human	Patient-derived tissue samples	Upregulation of atrial mRNA levels in patients with atrial dilatation	[11]
	Human	Patient-derived tissue samples	Upregulation of atrial mRNA levels in patients with Brugada syndrome	[80]
	Human	Patient-derived tissue samples	Downregulation of atrial mRNA levels in AF	[12]
	Human	AF patients	Identification of three non-synonymous KCNK1 gene variants (p.R171H, p.I98M, and p.G236S) in a cohort of 373 atrial fibrillation (AF) patients	[11]
	Human	mRNA (RT-qPCR, TaqMan)	No regulation of atrial mRNA levels in AF	[10]
K$_{\text{2P}}$.2.1 (TREK-2)	Mouse	CREM-transgenic murine AF model Murine TAC model mRNA (RT-qPCR, TaqMan)	Upregulated of atrial and ventricular mRNA in a murine AF model Downregulation of atrial and ventricular mRNA in a murine TAC model	[16]
	Rat	Rat model of isoproterenol-induced left ventricular hypertrophy	Increased protein levels upon isoproterenol stimulation	[149]
K_{2P} Channel Subunit	Species	Population/Model/Methodology	Observation	Citation
-------------------------------	---------	------------------------------	-------------	---------
	Mouse	Protein (IF)	Global K_{2P}2.1 (TREK-1) knockout mice showed an exaggerated form of pressure overload-induced concentric ventricular hypertrophy, which could be prohibited only by fibroblast-specific deletion of K_{2P}2.1 (TREK-1) whereas the cardiomyocyte-specific knockout of K_{2P}2.1 (TREK-1) resulted in cardiac dysfunction under pressure-overload conditions	[161]
Human	Patient-derives tissue samples mRNA (RT-qPCR, TaqMan)	Downregulation of atrial mRNA in AF	[37]	
Pig	Large animal model of burst pacing-induced AF and heart failure	Downregulation of atrial mRNA and protein	Attenuation of the AF phenotype by KCNK2 gene therapy	[36,37]
Rat	Goto-Kakizaki type 2 diabetic rats mRNA (RT-qPCR, TaqMan)	Upregulation of sinuatrial mRNA levels in Goto-Kakizaki type 2 diabetic rats	[19]	
Human	Index patient	A heterozygous missense mutation (I267T) of K_{2P}2.1 (TREK-1) was identified in a patient with idiopathic right ventricular outflow tract tachycardia	[160]	
Chicken	Isolated atrial cardiomyocytes	Resting membrane potentials of chicken embryo-derived atrial cardiomyocytes are regulated by K_{2P}2.1	[153]	
Rat	Isolated rat ventricular cardiomyocytes	In isolated rat ventricular cardiomyocytes the mechano-, pH-, and arachidonic acid-sensitive potassium current I_{KAA} displays a number of characteristics which identify it as a K_{2P}2.1 (TREK-1) current	[7,28,29,32,33,149,152]	
Mouse	Kcnk2 knockout mouse	Phenotype of QT interval prolongation and sick sinus syndrome	[35]	
Rat	Isolated rat ventricular cardiomyocytes	K_{2P}3.1 (TASK-1) currents were isolated from rat ventricular cardiomyocytes by lowering pH, activation of cardiac α1-adrenergic receptors and by administration of the inhibitor A293	[15,162,163]	
Mouse	Isolated cardiomyocytes	Patch-clamp measurements of K_{2P}3.1 (TASK-1) currents (controlled by knockout mice)	[45]	
Pig	Isolated atrial cardiomyocytes	Patch-clamp measurements of K_{2P}3.1 (TASK-1) currents using A293: APD prolongation via K_{2P}3.1 (TASK-1) inhibition	[52–54,164]	
Table 4. Cont.

K_{2P} Channel Subunit	Species	Population/Model/Methodology	Observation	Citation
	Human	Isolated atrial cardiomyocytes	Patch-clamp measurements of K_{2P}3.1 (TASK-1) currents using A293: APD prolongation via K_{2P}3.1 (TASK-1) inhibition. \(I_{\text{TASK-1}}\) was identified to carry up to 28% of the background potassium current in isolated human atrial cardiomyocytes	[10,39,40,53,56].
	Human	iPSC	Prolongation of APD values by transfection of K_{2P}3.1 (TASK-1) siRNA	[22]
	Zebrafish	Morpholino knockdown	Decreased heart rate was observed after K_{2P}3.1 (TASK-1) knockdown	[165].
	Mouse	CREM-transgenic murine AF model, Murine TAC model mRNA (RT-qPCR, TaqMan) and protein (WB)	Downregulation of atrial mRNA and protein level in murine AF model, Downregulation of atrial mRNA and protein level in murine TAC model	[16]
	Guinea pig	Excised guinea pig hearts	Prolongation of atrial effective refractory periods upon TASK-1 inhibition at pH 7.8	[49]
	Mouse	Kcnk3 knockout mouse	Phenotype of QTc prolongation (around 30%), prolongation of single cell APDs or monophasic action potentials and a broad QRS complex	[47]
	Rat	Kcnk3 knockout rat	Phenotype of cardiomyocyte APD prolongation as well as resting membrane depolarization	[15]
	Dog	Dog model of postoperative AF	Downregulation of atrial TASK-1 expression in postoperative AF	[50]
	Pig	Large animal model of burst pacing-induced AF	Uregulation of atrial TASK-1 expression and currents, Acute cardioversion upon TASK-1 inhibition, Rhythm control of AF upon TASK-1 gene therapy of pharmacological TASK-1 inhibition	[52,141,164]
	Human	mRNA (RT-qPCR, TaqMan), protein (WB)	Upregulation of atrial TASK-1 expression and currents in cAF	[10,41,55,57]
	Human	AF patient cohort	Three genetic KCNK3 variants which reduce the expression or channel function were found in patients with familial AF	[49]
	Mouse	Kcnk3 knockout mouse	Compared to wild-type littermates, Kcnk3 knockout mice showed a preservation of systolic as well as diastolic function and a relative abrogation in concentric left ventricular hypertrophy upon TAC-induced pressure overload	[46]
Table 4. Cont.

$\text{K}_2\text{P Channel Subunit}$	Species	Population/Model/Methodology	Observation	Citation
$\text{K}_2\text{P}4.1$ (TRAAK)	Human	Patient cohorts	KCNK3 loss-of-function mutations were found to cause idiopathic pulmonary arterial hypertension	[166]
	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan) and protein (WB)	Upregulation of atrial mRNA and protein in AF Downregulation of atrial mRNA in heart failure	[40]
	Mouse	Kcnk4 knockout mice	No obvious cardiac phenotype reported	[167,168]
	Human	Patient-derived tissue samples mRNA (RT-qPCR)	Downregulation of ventricular mRNA levels in non-ischemic heart failure	[22]
	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan)	No regulation of atrial mRNA levels in AF patients	[10]
	Mouse	Kcnk5 knockout mice	Observation of subviable phenotype and sudden unexplained dead but association with arrhythmia or cardiomyopathy remains speculative as no detailed cardiac characterization was reported	[169]
$\text{K}_2\text{P}5.1$ (TASK-2)	Mouse	CREM-transgenic murine AF model mRNA (RT-qPCR, TaqMan)	No regulation of atrial mRNA in murine AF model	[16]
	Rat	Goto-Kakizaki type 2 diabetic rats mRNA (RT-qPCR, TaqMan)	Downregulation of sinoatrial mRNA levels in Goto-Kakizaki type 2 diabetic rats	[19]
	Human	mRNA (RT-qPCR, TaqMan)	Trend towards downregulation of atrial mRNA levels in AF	[10]
	Mouse	CREM-transgenic murine AF model Murine TAC model mRNA (RT-qPCR, TaqMan)	No regulation in murine AF model Upregulation of atrial mRNA in murine TAC model	[16]
$\text{K}_2\text{P}6.1$ (TWIK-2)	Rat	Goto-Kakizaki type 2 diabetic rats mRNA (RT-qPCR, TaqMan)	Downregulation of sinoatrial mRNA levels in Goto-Kakizaki type 2 diabetic rats	[19]
	Mouse	Kcnk6 knockout mouse	Kcnk6 knockout mice are hypertensive and display elevated RV pressure level as well as enhanced vascular contractility	[170–172]
	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan)	No regulation of atrial mRNA in AF patients	[10]
$\text{K}_2\text{P}7.1$ (TWIK-3)	Human, Mouse	mRNA (RT-qPCR, TaqMan)	Most studies showed very low cardiac mRNA levels. Functionality of the channel still under debate.	[16] al. 2015, Wang et al. 2018
	Human	Patient-derived tissue samples mRNA (RT-qPCR)	Upregulation of atrial mRNA levels in AF	[63]
Table 4. Cont.

\(K_{2P}\) Channel Subunit	Species	Population/Model/Methodology	Observation	Citation
\(K_{2P}9.1\) (TASK-3)	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan)	No mRNA regulation in AF	[10]
	Mouse	\(Kcnk7\) knockout mouse	No cardiac phenotype of the \(Kcnk7\) knockout mouse has been described	[173]
	Human	Genetic disease	\(KCNK9\) imprinting syndrome linked to obstructive sleep apnea	
	Human	Patient-derived tissue samples mRNA (RT-qPCR)	Downregulation of ventricular mRNA levels in heart failure	[22]
	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan)	Trend towards upregulation in AF	[10]
	Mouse	\(Kcnk9\) knockout mouse	Phenotype of concentric left ventricular hypertrophy with preserved ejection fraction	[46]
	Human	Single channel patch-clamp measurements on isolated human atrial cardiomyocytes	Evidence for heteromeric \(K_{2P}9.1/3.1\) but not for \(K_{2P}9.1\) homodimers	[56]
\(K_{2P}10.1\) (TREK-2)	Human, mouse	Patient-derived tissue samples, CREM-transgenic murine AF model, Murine TAC model, mRNA (RT-qPCR, TaqMan)	No regulation of atrial mRNA levels in AF patients No regulation of atrial or ventricular mRNA levels in a murine AF model No changes in ventricular mRNA levels in a murine TAC model Upregulation of left and right atrial mRNA in heart failure patients	[41]
	Mouse	\(Kcnk10\) knockout mouse	No cardiac phenotype of the \(Kcnk10\) knockout mouse has been described	[174]
	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan)	No regulation of atrial mRNA levels in AF patients	[10]
\(K_{2P}12.1\) (THIK-2)	Human, Rat, Mouse	mRNA (NB, RT-PCR, RT-qPCR, TaqMan)	Most studies show very low cardiac mRNA levels. Functionality of the channel still under debate.	[10,15,16,66,67]
\(K_{2P}13.1\) (THIK-1)	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan)	Downregulation of atrial mRNA level in cAF patients	[10]
	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan)	Trend towards downregulation of atrial mRNA level in heart failure patients	[40]
	Pig	Large animal model of burst-pacing induced AF and heart failure	Downregulation of atrial protein expression in combined AF and heart failure	[129]
\(K_{2P}15.1\) (TASK-5)	Human, Rat, Mouse	mRNA (RT-PCR, RT-qPCR)	Most studies show rather low cardiac mRNA levels. Functionality of the channel still under debate.	[10,15,69,70] Wiedemann et al. 2018
	Human	Patient-derived tissue samples mRNA (RT-qPCR, TaqMan)	No regulation of atrial mRNA levels in cAF patients	[10]
\(K_{2P}16.1\) (TALK-1)	Mouse	CREM-transgenic murine AF model mRNA (RT-qPCR, TaqMan)	Downregulation of atrial mRNA levels in murine AF model	[16]
	Human, Rat	mRNA (NB, RT-PCR, RT-qPCR, TaqMan)	Most studies show negligible or low cardiac mRNA levels	[10,15,60,67,71]
$K_{\text{2}P}$ Channel Subunit	Species	Population/Model/Methodology	Observation	Citation
-------------------------------	---------	-----------------------------	-------------	---------
$K_{2P17.1}$ (TALK-2)	Human, Mouse	Index patient HL-1 cells (cultured cardiomyocyte cell line), mRNA (RT-qPCR)	Downregulation of ventricular mRNA levels in non-ischemic heart failure iPSC: KCNK17 knockdown led to APD prolongation	[22]
	Human	Patient-derived tissue samples, iPSC mRNA (RT-qPCR)	A patient suffering from progressive and severe cardiac conduction disorder in combination with idiopathic ventricular fibrillation was identified to carry both, a splice site mutation in the sodium channel gene SCN5A as well as a gain-of-function mutation in the KCNK17 gene HL-1 cells: KCNK17 knockdown overexpression led to APD shortening	[5]
	Human	Index family Patient derived iPSC	A common KCNK17 gain-of-function variant might be protective for LQTS by promoting APD shortening	[74]
	Human	Patient-derived tissue samples, mRNA (RT-qPCR, TaqMan)	Downregulation of right atrial mRNA levels in cAF	[10]
	Human	Patient-derived tissue samples, mRNA (RT-qPCR, TaqMan) and protein (WB)	Downregulation of left and right atrial protein and mRNA level in HF	[40]

| $K_{2P18.1}$ (TRESK) | Zebrafish, Mouse, Human | mRNA (ISH, RT-PCR, RT-qPCR, TaqMan) | Most studies show negligible cardiac mRNA levels | [10,16,61,76–78] |

Evidence in literature for cardiac relevance of K_{2P} channel subunits. A, expression in atrial tissue; AF, atrial fibrillation; HF, heart failure; IF, immunofluorescence; iPSC, induced pluripotent stem cell; ISH, in situ hybridization; LA, left atrium; NB, Northern blot; RT-PCR, reverse transcriptase PCR; RT-qPCR, reverse transcriptase quantitative PCR; RA, right atrium; TAC, transverse aortic constriction; TaqMan, reverse transcriptase quantitative PCR employing TaqMan® hydrolyse probes to increase specificity; V, expression in ventricular tissue; WB, Western blot.

In a murine model of transverse aortic constriction (TAC)-induced pressure overload upregulation of ventricular $Kcnk2$ mRNA expression was described [16]. In a similar fashion, $K_{2P2.1}$ (TREK-1) protein levels were increased in a rat model of isoproterenol-induced left ventricular hypertrophy [149]. Global $K_{2P2.1}$ (TREK-1) knockout mice showed an exaggerated form of pressure overload-induced concentric ventricular hypertrophy, which could be prohibited only by fibroblast-specific deletion of $K_{2P2.1}$, (TREK-1) whereas the cardiomyocyte-specific knockout of $K_{2P2.1}$ (TREK-1) resulted in cardiac dysfunction under pressure-overload conditions [161]. In a murine atrial fibrillation (AF) model of CREM-IbΔC-X transgenic mice, downregulation of atrial $K_{2P2.1}$ (TREK-1) mRNA and protein levels were observed [16,41]. It, however, remains uncertain whether this is also the case for AF patients: while one study described AF-associated downregulation of atrial $K_{2P2.1}$ (TREK-1) [37] others merely describe a trend that does not reach statistical significance [10,40,41]. One possible explanation is the remote regulation of atrial $K_{2P2.1}$ (TREK-1) expression by ventricular heart failure, a mechanism recently described for $K_{2P3.1}$ (TASK-1) [40] and also observed for $K_{2P2.1}$ (TREK-1) in another study [41]. Indeed, in contrast to the other study, the cohort of patients characterized in the former study was performed in patients who all suffered from severe heart failure. In a similar fashion, a strong trend towards downregulation of atrial $Kcnk2$ mRNA could be observed in a murine
model of TAC-induced pressure overload [16]. Furthermore, downregulation of atrial \(K_{\text{2P}2.1} \) (TREK-1) protein expression was described in a porcine model of combined AF and heart failure [36] and gene therapeutic restoration of \(K_{\text{2P}2.1} \) (TREK-1) expression was able to attenuate the AF phenotype [37].

For a more detailed description of the cardiac role of \(K_{\text{2P}2.1} \) (TREK-1), we would like to refer to the following literature [41,141,158].

5. \(K_{\text{2P}3.1} \) (TASK-1)

Among the entire \(K_{\text{2P}} \) family, \(K_{\text{2P}3.1} \) (TASK-1) is the channel with the best characterized cardiac significance. \(K_{\text{2P}3.1} \) (TASK-1) channels are expressed in neuronal tissue, cardiomyocytes, vascular smooth muscle cells, the carotid body glomus, the adrenal gland, brown adipose tissue and immunocytes, where they control important physiological processes [2,113]. \(K_{\text{2P}3.1} \) (TASK-1) channels are regulated by a number of different stimuli, such as pH level, hypoxia, PKA, PKC, or PLC activity, and several drugs like volatile anesthetics [2].

In the murine and the rat heart, \(KCNK3 \) mRNA was detected, both in atrial as well as in ventricular tissue samples (Northern blot, RT-PCR, Taq-Man qPCR; Table 2) [15,16,18,25,26,34,44,45,47]. Humans, however, show an almost atrial-specific \(K_{\text{2P}3.1} \) (TASK-1) expression within the heart with 14- to 16-fold lower expression levels in ventricular tissue (RT-PCR, Taq-Man qPCR, microarray, bulk RNASeq, Western blot) [10,12,14,39,49,54,56,57]. In guinea pigs and domestic swine, atrial-specific \(K_{\text{2P}3.1} \) (TASK-1) expression was also described [49,51–54].

Several clinically relevant antiarrhythmic drugs have been identified to inhibit homodimeric \(K_{\text{2P}3.1} \) (TASK-1) channels at either physiological or subtherapeutic concentrations (Table 3). Among them are the class I antiarrhythmic drugs propafenone, mexiletine, lidocaine, and quinidine [104,122,123], the betablockers propranolol and carvedilol [42], class III antiarrhythmics amiodarone and dronedarone [82,110] as well as cardiac glycosides [111] and ranolazine [109]. The respiratory stimulant doxapram was further identified as a potent blocker of both \(K_{\text{2P}3.1} \) (TASK-1) and \(K_{\text{2P}9.1} \) (TASK-3) channels through which it presumably exerts the main part of its respiratory drive-increasing effect [119,175]. Furthermore, preclinical experimental antiarrhythmic drugs developed as specific inhibitors of the \(K_{\text{V}1.5} \) channel (A239 [AVE1231], A1899 [S20591], AVE0118, S9947, MSD-D, and ICAGEN-4) are potent \(K_{\text{2P}3.1} \) (TASK-1) inhibitors [117]. Although no direct structural similarities of the pore regions of both channels could be detected, these compounds were shown to be 1.4- to 70-fold more potent \(K_{\text{2P}3.1} \) (TASK-1) inhibitors as compared to \(K_{\text{V}1.5} \) [117]. In addition, bisamides represent a new class of high-affinity \(K_{\text{2P}3.1} \) (TASK-1) inhibitors with \(IC_{50} \) values in the single-digit nanomolar range, as in the case of compound ML365 (Table 3) [116].

Availability of high-affinity inhibitors enables functional detection of \(K_{\text{2P}3.1} \) (TASK-1) currents in isolated cardiomyocytes. \(K_{\text{2P}3.1} \) (TASK-1) currents were isolated from rat ventricular cardiomyocytes by lowering pH, activation of cardiac \(\alpha_1 \)-adrenergic receptors and by administration of the inhibitor A293 (Table 4) [15,162,163]. Patch-clamp measurements of murine \(K_{\text{2P}3.1} \) (TASK-1) current could be confirmed by the use of \(Kcnk3 \) knockout mice [25] and likewise, functional detection of \(K_{\text{2P}3.1} \) (TASK-1) currents was achieved by patch-clamp technique in isolated porcine [52–54,164] and human atrial cardiomyocytes, where a significant APD prolongation could be demonstrated [10,39,40,53,56]. Under physiological conditions, \(I_{\text{TASK-1}} \) was identified to carry up to 28% of the background potassium current in isolated human atrial cardiomyocytes [39].

In induced pluripotent stem cell- (iPSC-) derived cardiomyocytes (iPSC), APD values could be prolonged by transfection of \(K_{\text{2P}3.1} \) (TASK-1) siRNA [22]. In a zebrafish model, a decreased heart rate was observed after \(K_{\text{2P}3.1} \) (TASK-1) knockdown, which was accompanied by an increased atrial diameter [165]. In excised guinea pig hearts, APD remained unchanged upon \(K_{\text{2P}3.1} \) (TASK-1) inhibition with A293 or ML365. Switching the pH level from pH 7.4 to 7.8, however, resulted in significant prolongation of atrial effective refractory periods [49]. Global \(Kcnk3 \) knockout mice exhibited a phenotype of QTc prolongation...
(around 30%), prolongation of single cell APDs or monophasic action potentials and a broad QRS complex [25,26]. In transgenic Kcnk3 knockout rats, APD prolongation as well as resting membrane depolarization was described [163].

In a porcine large animal model of AF, atrial K2P3.1 (TASK-1) expression was found to be significantly upregulated (TaqMan qPCR, western blot, patch-clamp electrophysiology) [52,141,164]. These results could also be reproduced on atrial tissue samples from atrial fibrillation patients (TaqMan qPCR, microarray, bulk RNAseq, western blot, patch-clamp electrophysiology) [10,41,55,57]. Considering its atrial-specific expression, its effect on atrial APD, and its upregulation in patients with AF, K2P3.1 (TASK-1) channels combine several properties that make it an ideal molecular target for the treatment of AF.

Inhibition of K2P3.1 (TASK-1) in cardiomyocytes from AF patients has been shown to counteract AF-induced APD shortening [104,154]. After administration of A293 (200 nM), APDs of atrial cardiomyocytes isolated from AF patients could be prolonged around 30% to values observed in sinus rhythm controls [104,154]. After intravenous application of K2P3.1 (TASK-1) inhibitors in healthy control pigs, significant prolongation of both, atrial effective refractory periods and ADP values pointed towards class III antiarrhythmic effects of K2P3.1 (TASK-1) inhibition [53,54]. Furthermore, the inducibility of atrial arrhythmias was significantly reduced by K2P3.1 (TASK-1) inhibitors in different studies [176–178]. In a similar fashion, intravenous administration of K2P3.1 (TASK-1) inhibitors A293 and doxapram led to rapid, safe and successful cardioversion of artificially induced AF episodes in a porcine large animal model [53,54]. These antiarrhythmic effects could further be employed for rhythm control in a porcine model of burst pacing induced “persistent” AF, induced via implanted pacemakers using a biofeedback algorithm [53,164] and reproduced with an AAV-mediated anti-K2P3.1 (TASK-1) gene therapy approach [52]. Based on these encouraging results, the currently ongoing DOCTOS trial (doxapram conversion to sinus rhythm; EudraCT No: 2018-002979-17) was started, which investigates whether the FDA and EMA approved K2P3.1 (TASK-1) inhibitor doxapram can cardiovert AF in patients [2,179].

Interestingly, also reduction of atrial K2P3.1 (TASK-1) expression was linked to AF as in a dog model of postoperative AF, a phosphorylation dependent downregulation of K2P3.1 (TASK-1) was reported [50] and CREM-TG AF mice display atrial downregulation of K2P3.1 (TASK-1) expression, independently from their rhythm state [40]. Finally, three genetic variants (two kozak variants and missense variant K2P3.1 (TASK-1) V123L mutation all of which reduce the expression or channel function) were found in patients with familial AF [49].

In addition to its role in the control of heart rhythm, K2P3.1 (TASK-1) is also discussed as a regulator of cardiac energetics and metabolic function, as Kcnk3 knockout mice were protected from pressure overload-induced cardiomyopathy. Compared to wild-type littermates, Kcnk3 knockout mice showed a preservation of systolic as well as diastolic function and a relative abrogation in concentric left ventricular hypertrophy upon TAC-induced pressure overload [46].

Moreover, K2P3.1 (TASK-1) channels were described to be expressed in in human pulmonary artery smooth muscle cells, where they serve as regulators of the basal membrane potential and consecutively regulate pulmonary vascular tone [180]. Furthermore, KCNK3 loss-of-function mutations were found to cause idiopathic pulmonary arterial hypertension [166] and acute pharmacological K2P3.1 (TASK-1) inhibition in pigs led to a mild but significant increase in invasively measured pulmonary arterial pressure [164]. In the context of adrenal KCNK3 expression, a role of the K2P3.1 (TASK-1) channel in aldosterone secretion and blood pressure control is further discussed. Global Kcnk3 knockout mice display a phenotype of mild hyperaldosteronism [181] and single nucleotide polymorphisms in the KCNK3 gene were associated with plasma aldosterone levels [182]. Accordingly, elevated systolic blood pressure values were described in the Kcnk3 knockout mouse [25]. Finally, K2P3.1 (TASK-1) channels are also discussed to be involved in regulating function
of immune cells and in thermogenesis in brown adipose tissue [183]. Thus, there is a need for further studies that exclude systemic side effects in the use of TASK-1 inhibitors for treatment of AF.

6. K_{2P}4.1 (TRAALK)

Although it was suspected about 20 years ago, that the K_{2P}4.1 (TRAALK) channel, based on northern blot analysis, might be mainly expressed in the human heart there is little evidence to date for a cardiac role of this K_{2P} channel. Several studies reported cardiac KCNK4 mRNA expression, mostly with atrial predominant expression patterns (TaqMan qPCR; Table 2) in human as well as in murine heart tissue samples [10,22,26,41]. Compared with other cardiac ion channels, however, expression levels were relatively low [10,16,41]. A mild inhibitory effect of vernakalant and the late sodium channel blocker ranolazine has also been described for hK_{2P}4.1 (TRAALK) homodimeric channels (Table 3) [83,109].

Kcnk4 knockout mice were reported to display smaller ischemic areas upon cerebral infarction. No obvious phenotype of heart rhythm disorder or heart failure was described, and the mice were reported as viably and healthy [167,168]. We are, however, not aware of any studies that explicitly study the cardiac phenotype of these transgenic mice (Table 4).

7. K_{2P}5.1 (TASK-2)

Shortly after the first description of the KCNK5 gene, RT-PCR experiments had already indicated robust cardiac abundance of KCNK5 mRNA [184], while other studies (RT-PCR) considered the cardiac mRNA levels to be rather low (Table 2) [22,23,26,38]. Our own studies indicated atrial predominant KCNK5 mRNA abundance within the human and murine heart [10,16]. Further, a trend towards downregulation of atrial KCNK5 mRNA in patients, suffering from chronic AF was noted that did not reach statistical significance [10]. K_{2P}5.1 (TASK-2) homodimers are a molecular target on volatile and amide type local anesthetics (Table 3) [185,186] and inhibited by supratherapeutic concentrations of ranolazine [109]. siRNA transfection experiments pointed towards a functional role of K_{2P}5.1 (TASK-2) in setting the membrane potential of pulmonary artery myocytes [187]. In the diabetic rat model with sinus bradycardia, mentioned above, downregulation of cardiac Kcnk5 mRNA expression was reported (Table 4) [19]. Finally, genome-wide association studies could identify a risk locus, associated with the development of coronary artery disease and migraine within the KCNK5 gene [188].

Breeding of global Kcnk5 knockout mice resulted in a small number of female homozygous offspring, pointing towards a phenotype which might cause antenatal mortality [169]. Further, Gerstin et al. reported that one homozygote female animal was found dead in the cage at 12 days of age [169]. However, whether this was associated with cardiomyopathy or arrhythmia remains speculative.

8. K_{2P}6.1 (TWIK-2)

Robust cardiac expressions patterns of KCNK6 mRNA, derived from RT-PCR were described [10,18,22], while others report mild to moderate cardiac expression of this channel (RT-PCR, WB; Table 2) [15,23,26]. Interestingly, mRNA levels were reported to be significantly higher in the adult as compared to the neonatal rat heart [18]. Furthermore, abundant Kcnk6 mRNA levels were found in rat saphenous arteries [189]. Upon TAC-induced pressure overload, an upregulation of murine ventricular Kcnk6 mRNA could be observed (Table 4) [16]. Kcnk6 deficient mice are hypertensive and display elevated RV pressure level as well as enhanced vascular contractility which was linked to enhanced rho kinase activity [170–172]. The physiological relevance of K_{2P}6.1 (TWIK-2) is under debate because these channels conduct only low currents in the heterologous expression system [82]. It further was recently reported that K_{2P}6.1 (TWIK-2) channel subunits give rise to functional K_{2P} currents in endolysosomes, where they affect the size and number of lysosomes [190] so it remains unclear whether the cell membrane is indeed the actual site of action of these channels.
9. \(\text{K}_{2\text{P}}7.1 \) (TWIK-3)

The mainly neuronally detected \(\text{K}_{2\text{P}}7.1 \) (TWIK-3) channel is a silent \(\text{K}_{2\text{P}} \) channel without proven potassium conductance in heterologous expression systems [191]. Only very low cardiac expression levels have been described for \(\text{KCNK7} \) (RT-qPCR, TaqMan qPCR; Table 2) [10,23]. It was, however, speculated whether its mRNA expression might be up-regulated in atrial tissue samples, derived from AF patients [63]. Although not explicitly cardiac characterized, a global \(\text{Kcnk7} \) knockout mouse showed no obvious cardiac phenotype. Homozygous transgenic mice and wild-type littermates did not differ significantly in general appearance, gross anatomy, locomotion, or overt behavior (Table 4) [173].

10. \(\text{K}_{2\text{P}}9.1 \) (TASK-3)

The cardiac relevance of \(\text{K}_{2\text{P}}9.1 \) (TASK-3) channel subunits which are primarily known for their role in apoptosis, aldosterone secretion and tumor genesis remains controversial. Whereas most studies detected only relatively low mRNA levels in the human heart (qPCR, TaqMan qPCR; Table 2) [10,22,26,49], others showed high atrial expression, almost comparable to \(\text{K}_{2\text{P}}3.1 \) (TASK-1) (RT qPCR, IF) [56]. In the rodent heart, low \(\text{Kcnk9} \) (TASK-3) mRNA abundance been described [15,16,18,25,26,48].

Echocardiographic characterization of \(\text{Kcnk9} \) knockout mice revealed a phenotype of concentric left ventricular hypertrophy with preserved ejection fraction (Table 4) [46]. In contrast to \(\text{Kcnk3} \) knockout mice, however, these animals are not TAC resistant, and heart failure symptoms are more likely to occur at a later time point [46]. Downregulation of ventricular \(\text{KCNK9} \) mRNA expression (TaqMan qPCR) in heart failure patients might point towards a pathophysiological role of this channel [22].

Single channel patch-clamp measurements, performed in isolated human atrial cardiomyocytes were able to detect a channel with characteristics corresponding to a heteromer of \(\text{K}_{2\text{P}}3.1 \) (TASK-1) and \(\text{K}_{2\text{P}}9.1 \) (TASK-3) [56]. However, besides this heteromeric and homodimeric \(\text{K}_{2\text{P}}3.1 \) (TASK-1) channels, no current corresponding to a homodimeric \(\text{K}_{2\text{P}}9.1 \) (TASK-3) channels could be detected. Functional studies in motoneurons or in rat carotid body glomus cells indicate that the \(\text{K}_{2\text{P}}3.1 \) (TASK-1)/ \(\text{K}_{2\text{P}}9.1 \) (TASK-3) heterodimer portion was about 52–75% and thus only a minority of \(\text{K}_{2\text{P}}3.1 \) (TASK-1) channels are expressed as monomer at the cell surface [192,193]. Since the pharmacological properties of homodimeric and heterodimeric channels differ, heterodimerization has to be taken into account when targeting the \(\text{K}_{2\text{P}}3.1 \) (TASK-1) channel in the treatment of cardiac arrhythmias.

A rare genetic disease, \(\text{KCNK9} \) imprinting syndrome, also known as Birk-Barel Syndrome is inherited in an autosomal dominant, maternally imprinted manner and associated with congenital central hypotonia, severe feeding difficulties, delayed development, and dysmorphic manifestations [194]. While no direct cardiac manifestation has been described to date, affected individuals may develop obstructive sleep apnea syndrome, which is particularly interesting because it again links the \(\text{K}_{2\text{P}} \) channels of the TASK subfamily to this disease entity.

Together with \(\text{K}_{2\text{P}}3.1 \) (TASK-1), \(\text{K}_{2\text{P}}9.1 \) (TASK-3) contributes to peripheral and central respiratory regulation [195]. Therefore, these \(\text{K}_{2\text{P}} \)-channels are likely to constitute a molecular target of the respiratory stimulant doxapram [53]. \(\text{K}_{2\text{P}}9.1 \) (TASK-3) homodimers are further inhibited by the class III antiarrhythmic drug dronedarone [82] and the antianginal drug ranolazine [109].

Hopefully, the recently available high-affinity \(\text{K}_{2\text{P}}9.1 \) (TASK-3) inhibitors and activators will help to answer the question of the functional relevance of \(\text{K}_{2\text{P}}9.1 \) (TASK-3) channels in cardiomyocytes.

11. \(\text{K}_{2\text{P}}10.1 \) (TREK-2)

The role of \(\text{K}_{2\text{P}}10.1 \) (TREK-2) channel subunits has so far been characterized mainly in the central nervous system (CNS), where this channel shows ubiquitous expression. However, a \(\text{KCNK10} \) knockout mouse showed remarkably few neurobehavioral phenotypes besides discrete abnormalities in anxiety-related behavior [174]. A cardiac phenotype
of this mouse has not been described yet. Pharmacological in vitro measurements revealed vernakalant and carvedilol as inhibitors of K_{2P}10.1 (TREK-2) homodimer channels (Table 3) [43,83]. Low cardiac mRNA abundance was described by our group and others (RT-PCR, TaqMan qPCR; Table 2) [10,15,22,40]. However, the expression patterns appeared atrial-predominant both in murine and patient-derived samples [10,41]. No relevant changes of K_{2P}10.1 (TREK-2) expression could be detected in murine disease models of TAC-induced pressure overload or CREM-TG AF (Table 4) [16]. However, in right and left atrial patient-derived tissue samples, significant mRNA upregulation was demonstrated upon systolic heart failure [41].

12. K_{2P}12.1 (THIK-2)

K_{2P}12.1 (THIK-2) is referred to as a silent K_{2P}-channel. This is likely due to both, a N-terminal retention signal and a low endogenous open probability [196]. While cardiac K_{2P}12.1 (THIK-2) mRNA levels (RT-PCR, TaqMan qPCR) were described to be rather low (Table 2) [10,15,16,67], K_{2P}12.1 (THIK-2) expression was detected in rat saphenous arteries [189] and might therefore be of relevance in control of vascular tone.

13. K_{2P}13.1 (THIK-1)

K_{2P}13.1 (THIK-1) mRNA was described in the CNS, arterial smooth muscle cells, the kidney and myocardial tissue samples via RT-PCR [15,22,26,66,68]. In patient-derived myocardial tissue samples, KCNK13 mRNA abundance (TaqMan qPCR) could be demonstrated with atrial predominance (Table 2) [10]. Heterologously expressed K_{2P}13.1 (THIK-1) channel homodimers were inhibited by the antiarrhythmic drugs lidocaine, mexiletine, propafenone and propranolol, while administration of quinidine, amiodarone, dronedarone or ranolazine resulted in a mild channel activation (Table 3) [82,109,129].

The observation of reduced KCNK13 mRNA levels in patients with chronic AF or heart failure, which could also be recapitulated in a porcine large animal model of combined AF and heart failure might point towards a physiological role of K_{2P}13.1 (THIK-1) currents in regulating atrial electrophysiology [10,40,129]. Finally, ventricular expression levels of KCNK13 mRNA, were described as unchanged in heart failure patients (Table 4) [22].

14. K_{2P}15.1 (TALK-5)

Data on cardiac expression of K_{2P}15 (TASK-5) remain sparse. While some work has shown evidence of KCNK15 mRNA abundance in rodent hearts (RT-PCR), very low levels of mRNA at best have been detected in human (northern blot, RT-PCR, TaqMan qPCR; Table 2) [10,26,48,69,70] or rodent (RT-PCR, TaqMan-qPCR) [15,16,26] heart samples by other groups. Downregulation of atrial KCNK15 mRNA was reported in a murine CREM-TG model of AF (Table 4) [16]. Finally, functionality of K_{2P}15 (TASK-5) channel subunits is still controversial, as recombinantly expressed K_{2P}15 (TASK-5) homodimers do not give rise to potassium currents [8].

15. K_{2P}16.1 (TALK-1)

K_{2P}16.1 (TALK-1) is primarily expressed in pancreatic beta cells, where it is supposed to regulate insulin secretion. Recently, a gain of function mutation in KCNK16 was identified to cause maturity-onset diabetes of the young [197]. Five studies showed low to negligible abundance of KCNK16 mRNA in human or rat cardiac tissue samples (Table 2) [10,15,60,67,71]. Upon heterologous expression in <i>Xenopus laevis</i> oocytes, homodimeric K_{2P}16.1 (TALK-1) channels are inhibited by ranolazine (Table 3) [109].

16. K_{2P}17.1 (TALK-2)

K_{2P}17.1 (TALK-2) channel subunits are expressed in the human heart (northern blot, RT-PCR, Taq-Man qPCR, western blot) [5,10,22,40,67,73,75] and in patient-derived iPSC (RT-PCR, qPCR, IF) [22,74]. Cardiac mRNA levels of KCNK17 were described as atrial predominant with highest abundance in purkinje fibers (qPCR, Taq-Man qPCR; Table 2) [5,10].
Reports of reduced KCNK17 mRNA levels in atrial fibrillation [10] and heart failure [22,40] suggest a role for K\textsubscript{2P}17.1 (TALK-2) in the pathophysiology of important cardiac pathologies. K\textsubscript{2P}17.1 (TALK-2) channel subunits were described to heterodimerize with atrial K\textsubscript{2P}3.1 (TASK-1), thereby modulating biophysical and pharmacological properties of atrial I\textsubscript{TASK-1} [198]. In heterologous expression systems, K\textsubscript{2P}17.1 (TALK-2) channel homodimers were reported to be activated by propafenone, quinidine, mexiletine, propranolol, vernakalant, and metoprolol [75]. Amiodarone, sotalol, verapamil, and ranolazine were further described to inhibit K\textsubscript{2P}17.1 (TALK-2) homodimers (Table 3) [75,83]. In iPSC, suppression of K\textsubscript{2P}17.1 (TALK-2) expression was shown to prolong APD (Table 4) [22] while overexpression of K\textsubscript{2P}17.1 (TALK-2) shortened APD levels in the cultured, cardiomyocyte derived HL-1 cell line [5]. Recently, a patient suffering from progressive and severe cardiac conduction disorder in combination with idiopathic ventricular fibrillation was identified to carry both, a splice site mutation in the sodium channel gene SCN5A as well as a mutation in the KCNK17 gene [5]. This K\textsubscript{2P}17.1 (TALK-2) G88R mutation, located in the first extracellular pore loop was shown to increase K\textsubscript{2P}17.1 (TALK-2) currents to about three times upon heterologous expression. Overexpression of K\textsubscript{2P}17.1 (TALK-2) G88R in spontaneously beating HL-1 cells was shown to result in a reduction of the beating frequency, hyperpolarization of the membrane potential and a strong slowing of the upstroke velocity [5].

Single nucleotide polymorphisms in the KCNK17 gene which increase K\textsubscript{2P}17.1 (TALK-2) channel subunit expression levels are associated with the occurrence of ischemic stroke in Caucasians but not in a Chinese population [137,199]. This observation links the channel once again to the pathophysiology of atrial fibrillation. KCNK17 was further proposed as a genetic modifier of long QT syndrome type 2 severity, as a common KCNK17 gain-of-function variant was shown to be LQTS protective by promoting APD shortening [74].

The cardiac characterization of the K\textsubscript{2P}17.1 (TALK-2) channel is complicated by the fact that to date no specific inhibitors are available that would allow functional studies (Table 3). Furthermore, no ortholog to the KCNK17 gene could be identified in mice and the porcine K\textsubscript{2P}17.1 (TALK-2) channel subunit does not appear to show functional activity after heterologous expression in *Xenopus laevis* oocytes (unpublished observation of our lab).

17. K\textsubscript{2P}18.1 (TRESK)

KCNK18 mRNA, encoding K\textsubscript{2P}18.1 (TRESK) channel subunits was detected in human spinal cord, trigeminal ganglia, and brain but not in the heart (RT-PCR and TaqMan qPCR; Table 2) [10,61,77,78]. Accordingly, K\textsubscript{2P}18.1 (TRESK) channels are supposed to play a key role in pain perception and KCNK18 was identified as a potential susceptibility gene for migraine, while a cardiac role of this channel is rather unlikely [1]. TRESK channels may nevertheless exert indirect effects on the cardiovascular system: For example, high-fat diet-induced vagal afferent dysfunction has been described to be mediated via upregulation of K\textsubscript{2P}18.1 (TRESK) [200]. Heterologously expressed K\textsubscript{2P}18.1 (TRESK) channel homodimers are inhibited by lidocaine, verapamil, quinidine and apamin (Table 3) [76,200].

18. Conclusions

Overall, K\textsubscript{2P} channels are an exciting and relevant new potassium channel class with relevance to a wide variety of disease conditions. For several members, reproducible mRNA regulation patterns in atrial fibrillation, heart failure and other cardiac disease could be described. However, the functional consequence remains difficult to assess, especially in cases where no specific channel inhibitors are available (Table 3), since surface expression and current amplitude in cardiomyocytes cannot be directly inferred from mRNA expression [11]. Further, the actual significance of the individual K\textsubscript{2P} subgroups, some of which show only weak expression patterns, merits further investigation. To date, little is also known about the differential expression of K\textsubscript{2P} channels in different cardiac cell populations and the consequence of remodelling in different cell types. In this regard, single cell next generation sequencing technology is expected to provide further evidence...
Cells 2021, 10, 2914

soon. Furthermore, computational models of cardiac electrophysiology must consider effects of K_{2P} channels. Taken together, emerging evidence suggests that K_{2P} channels play an important role in cardiac repolarization and in the development of various cardiac arrhythmias such as atrial fibrillation, conduction disorders, and ventricular proarrhythmia that goes far beyond the role of unspecific leak currents.

Author Contributions: Conceptualization, F.W., N.F. and C.S.; writing—original draft preparation, F.W.; writing—review and editing, C.S. and N.F.; visualization, F.W.; supervision, N.F.; project administration, C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: F.W. and C.S. have filed patent applications for pharmacological and genetic targeting of cardiac TASK-1 channels for therapy of atrial arrhythmias.

References

1. Enyedi, P.; Czirják, G. Molecular Background of Leak K⁺ Currents: Two-Pore Domain Potassium Channels. *Physiol. Rev.* 2010, 90, 559–605. [CrossRef] [PubMed]

2. Kraft, M.; Büscher, A.; Wiedmann, F.; L’hoste, Y.; Haefeli, W.E.; Frey, N.; Katus, H.A.; Schmidt, C. Current Drug Treatment Strategies for Atrial Fibrillation and TASK-1 Inhibition as an Emerging Novel Therapy Option. *Front. Pharm.* 2021, 12, 191. [CrossRef] [PubMed]

3. Schewe, M.; Nematian-Ardestani, E.; Sun, H.; Musinzski, M.; Cordeiro, S.; Bucci, G.; de Groot, B.L.; Tucker, S.J.; Rapelidius, M.; Baukrowitz, T. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. *Cell* 2016, 164, 937–949. [CrossRef] [PubMed]

4. Yue, D.T.; Marban, E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. *Pflug. Arch.* 1988, 413, 127–133. [CrossRef]

5. Friedrich, C.; Rinné, S.; Zumhagen, S.; Kiper, A.K.; Silbernagel, N.; Netter, M.F.; Stallmeyer, B.; Schulze-Bahr, E.; Decher, N. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. *EMBO Mol. Med.* 2014, 6, 937–951. [CrossRef] [PubMed]

6. Xu, H.; Guo, W.; Nerbonne, J.M. Four kinetically distinct depolarization-activated K⁺ currents in adult mouse ventricular myocytes. *J. Gen. Physiol.* 1999, 113, 661–678. [CrossRef]

7. Kim, D.; Clapham, D.E. Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. *Science* 1989, 244, 1174–1176. [CrossRef]

8. Schmidt, C.; Wiedmann, F.; Voigt, N.; Zhou, X.B.; Heijman, J.; Lang, S.; Albert, V.; Kallenberger, S.; Ruhrparwar, A.; Szabó, G.; et al. Upregulation of K(2P)3.1 K⁺ Current Causes Action Potential Shortening in Patients With Chronic Atrial Fibrillation. *Circulation* 2015, 132, 82–92. [CrossRef]

9. Renigunta, V.; Zou, X.; Kling, S.; Schlichthörl, G.; Daut, J. Breaking the silence: Functional expression of the two-pore-domain potassium channel THIK-2. *Pfug. Arch. 2014, 466, 1735–1745. [CrossRef] [PubMed]

10. Christensen, A.H.; Chatelain, F.C.; Huttner, I.G.; Olesen, M.S.; Soka, M.; Feliciangeli, S.; Huetter, J.; Nielsch, U.; Morawietz, H. Comparing the global mRNA expression profile of human atrial and ventricular myocardium with high-density oligonucleotide arrays. *J. Mol. Cell Cardiol.* 2016, 97, 24–35. [CrossRef]

11. Ellinghaus, P.; Scheubel, R.J.; Dobrev, D.; Ravens, U.; Holtz, J.; Huetter, J.; Nielusch, U.; Morawietz, H. Comparing the global mRNA expression profile of human atrial and ventricular myocardium with high-density oligonucleotide arrays. *J. Thorac. Cardiovasc. Surg.* 2005, 129, 1383–1390. [CrossRef]

12. Ördög, B.; Brutyö, E.; Puskás, L.G.; Papp, J.G.; Varró, A.; Szabad, J.; Boldoghói, Z. Gene expression profiling of human cardiac potassium and sodium channels. *Int. J. Cardiol.* 2006, 111, 386–393. [CrossRef]

13. Gaborit, N.; Le Bouter, S.; Szuts, V.; Varro, A.; Escande, D.; Nattel, S.; Demolombe, S. Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. *J. Physiol.* 2007, 582, 675–693. [CrossRef] [PubMed]

14. Putzke, C.; Wemböhner, K.; Sachse, F.B.; Rinné, S.; Schlichthörl, G.; Li, X.T.; Jaé, L.; Eckhardt, I.; Wischmeyer, E.; Wulf, H.; et al. The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. *Cardiovasc. Res.* 2007, 75, 59–68. [CrossRef]

15. Wiedmann, F.; Schulte, J.S.; Gomes, B.; Zafeiriou, M.P.; Ratte, A.; Rathjens, F.; Fehrmann, E.; Scholz, B.; Voigt, N.; Müller, F.U.; et al. Atrial fibrillation and heart failure-associated remodeling of two-pore-domain potassium (K2P) channels in murine disease models: Focus on TASK-1. *Basic Res. Cardiol.* 2018, 113, 27. [CrossRef]

16. Howarth, F.C.; Qureshi, M.A.; Jayapaklash, P.; Parekh, K.; Öz, M.; Dobrzynski, H.; Adrian, T.E. The Pattern of mRNA Expression Is Changed in Sinoatrial Node from Goto-Kakizaki Type 2 Diabetic Rat Heart. *J. Diabetes Res.* 2018, 2018, 8454078. [CrossRef]

17. Liu, W.; Saint, D.A. Heterogeneous expression of tandem-pore K⁺ channel genes in adult and embryonic rat heart quantified by real-time polymerase chain reaction. *Clin. Exp. Pharm. Physiol.* 2004, 31, 174–178. [CrossRef] [PubMed]
18. Wang, Z.; Yue, L.; White, M.; Pelletier, G.; Nattel, S. Differential Distribution of Inward Rectifier Potassium Channel Transcripts in Human Atrium Versus Ventricle. *Circulation* 1998, 98, 2422–2428. [CrossRef] [PubMed]

19. McGeachie, M.; Ramoni, R.L.; Mychaleckyj, J.C.; Furie, K.L.; Dreyfuss, J.M.; Liu, Y.; Herrington, D.; Guo, X.; Lima, J.A.; Post, W.; et al. Integrative predictive model of coronary artery calcification in atherosclerosis. *Circulation* 2009, 120, 2448–2454. [CrossRef] [PubMed]

20. Schmidt, C.; Wiedmann, F.; Zhou, X.B.; Heijman, J.; Voigt, N.; Ratte, A.; Lang, S.; Kallenberger, S.M.; Campana, C.; Weymann, A.; et al. Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: Implications for patient-specific antiarrhythmic drug therapy. *Eur. Heart J.* 2017, 38, 1764–1774. [CrossRef]

21. Chai, S.; Wan, X.; Nossal, D.M.; Liu, H.; Moravec, C.S.; Ramirez-Navarro, A.; Desch, F. Beta-Adrenergic Stimulation and Activated by Volatile Anesthetics. *Circ. Res.* 2001, 89, 256–266. [CrossRef]

22. Medhurst, A.D.; Rennie, G.; Chapman, C.G.; Meadows, H.; Duckworth, M.D.; Kelsell, R.E.; Gloger, I.L.; Pangalos, M.N. Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. *Brain Res. Mol. Brain Res.* 2001, 86, 101–114. [CrossRef]

23. Fink, M.; Duprat, F.; Lesage, F.; Reyes, R.; Romey, G.; Heurteaux, C.; Lazdunski, M. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. *EMBO J.* 1996, 15, 6854–6862. [CrossRef]

24. Decher, N.; Wemhöner, K.; Rinné, S.; Netter, M.F.; Zuzarte, M.; Aller, M.I.; Kaufmann, S.G.; Li, X.T.; Meuth, S.G.; Daut, J.; et al. Knock-Out of the Potassium Channel TASK-1 Leads to a Prolonged QT Interval and a Disturbed QRS Complex. *Cell. Physiol. Biochem.* 2011, 28, 77–86. [CrossRef]

25. Donner, B.C.; Schuller, M.; Geduldig, N.; Hüning, A.; Mersmann, J.; Zacharowski, K.; Kovacevic, A.; Decking, U.; Aller, M.I.; Schmidt, K.G. Functional role of TASK-1 in the heart: Studies in TASK-1-deficient mice show prolonged cardiac repolarization and reduced heart rate variability. *Basic Res. Cardiol.* 2011, 106, 75–87. [CrossRef]

26. Li, X.T.; Dyachenko, V.; Zuzarte, M.; Putzke, C.; Preisig-Müller, R.; Isenberg, G.; Daut, J.; et al. βIV-Spectrin regulates TREK-1 membrane targeting in the heart. *Cardiovasc. Res.* 2014, 102, 166–175. [CrossRef] [PubMed]

27. Aimond, F.; Rauzier, J.-M.; Bony, C.; Vassort, G. Simultaneous Activation of p38 MAPK and p42/44 MAPK by ATP Stimulates the K+ Current ITREK in Cardiomyocytes. *J. Biol. Chem.* 2000, 275, 29110–29116. [CrossRef] [PubMed]

28. Tan, J.H.; Liu, W.; Saint, D.A. Trek-like potassium channels in rat cardiac ventricular myocytes are activated by intracellular ATP. *J. Membr. Biol.* 2002, 185, 201–207. [CrossRef] [PubMed]

29. Tan, J.H.C.; Liu, W.; Saint, D.A. Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle. *Exp. Physiol.* 2004, 89, 237–242. [CrossRef]

30. Rinné, S.; Renigunta, V.; Schlichthör, G.; Zuzarte, M.; Bittner, S.; Meuth, S.G.; Decher, N.; Daut, J.; Preissig-Müller, R. A splice variant of the two-pore domain potassium channel TREK-1 with only one pore domain reduces the surface expression of full-length TREK-1 channels. *Pflug. Arch.* 2014, 466, 1559–1570. [CrossRef]

31. Terrenoire, C.; Lauritzen, I.; Lesage, F.; Romey, G.; Lazdunski, M. A TREK-1-Like Potassium Channel in Atrial Cells Inhibited by β-Adrenergic Stimulation and Activated by Volatile Anesthetics. *Circ. Res.* 2001, 89, 336–342. [CrossRef] [PubMed]

32. Li, X.T.; Dyachenko, V.; Zuzarte, M.; Putzke, C.; Preissig-Müller, R.; Isenberg, G.; Daut, J. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. *Cardiovasc. Res.* 2006, 69, 86–97. [CrossRef]

33. Jones, S.A.; Morton, M.J.; Hunter, M.; Boyett, M.R. Expression of TASK-1, a pH-sensitive twin-pore domain K+ channel, in rat myocardies. *Am. J. Physiol. Heart Circ. Physiol.* 2002, 283, H181–H185. [CrossRef]

34. Schmidt, C.; Wiedmann, E.; Tristram, F.; Anand, P.; Wenzel, W.; Lugtenbri, P.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Cardiac expression and atrial fibrillation-associated remodeling of K2P2.1 (TREK-1) K+ channels in a porcine model. *Life Sci.* 2014, 97, 107–115. [CrossRef]

35. Lugtenbiel, P.; Wenz, F.; Syren, P.; Geschwill, P.; Govorov, K.; Seyler, C.; Frank, D.; Schweizer, P.A.; Franke, J.; Weiss, T.; et al. TRENK1 (K2P2.1) K+ channels are suppressed in patients with atrial fibrillation and heart failure and provide therapeutic targets for rhythm control. *Basic Res. Cardiol.* 2017, 112, 8. [CrossRef] [PubMed]

36. Marionneau, C.; Aimond, F.; Brunet, S.; Niwa, N.; Finck, B.; Kelly, D.P.; Nerbonne, J.M. PPARα-mediated remodeling of repolarizing voltage-gated K+ (Kv) channels in a mouse model of metabolic cardiomyopathy. *J. Mol. Cell. Cardiol.* 2008, 44, 1002–1015. [CrossRef]

37. Limberg, S.H.; Netter, M.F.; Rolles, C.; Rinné, S.; Schlichthör, G.; Zuzarte, M.; Vassiliou, T.; Moosdorf, R.; Wulf, H.; Daut, J.; et al. TASK-1 channels may modulate action potential duration of human atrial cardiomyocytes. *Cell Physiol. Biochem.* 2011, 28, 613–624. [CrossRef] [PubMed]

38. Schmidt, C.; Wiedmann, F.; Kallenberger, S.M.; Ratte, A.; Schulte, J.S.; Scholz, B.; Müller, F.U.; Voigt, N.; Zafeiriou, M.-P.; Ehrlich, J.R.; et al. Stretch-activated two-pore-domain (K2P) potassium channels in the heart: Focus on atrial fibrillation and heart failure. *Prog. Biophys. Mol. Biol.* 2017, 130, 233–243. [CrossRef] [PubMed]

39. Staudacher, K.; Staudacher, I.; Ficker, E.; Seyler, C.; Gierent, J.; Kisselbach, J.; Rahm, A.K.; Trappe, K.; Schweizer, P.A.; Becker, R.; et al. Cardvedilol targets human K2P 3.1 (TASK1) K+ leak channels. *Br. J. Pharm.* 2011, 163, 1099–1110. [CrossRef]

40. Gaborit, N.; Wichter, T.; Varro, A.; Szuts, V.; Lamirault, G.; Eckardt, L.; Paul, M.; Breithardt, G.; Schulze-Bahr, E.; Escande, D.; et al. Transcriptional profiling of ion channel genes in Brugada syndrome and other right ventricular arrhythmogenic diseases. *Eur. Heart J.* 2009, 30, 487–496. [CrossRef] [PubMed]
41. Kisselbach, J.; Seyler, C.; Schweizer, P.A.; Gerstberger, R.; Becker, R.; Katus, H.A.; Thomas, D. Modulation of K2P 2.1 and K2P 10.1 K(+) channel sensitivity to carvedilol by alternative mRNA translation initiation. Br. J. Pharm. 2014, 171, 5182–5194. [CrossRef] [PubMed]

42. Graham, V.; Zhang, H.; Willis, S.; Creazzo, T.L. Expression of a two-pore domain K+ channel (TASK-1) in developing avian and mouse ventricular conduction systems. Dev. Dyn. 2006, 235, 143–151. [CrossRef] [PubMed]

43. Duprat, F.; Lesage, F.; Fink, M.; Reyes, R.; Heurteaux, C.; Lazdunski, M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997, 16, 5464–5471. [CrossRef]

44. Duan, W.; Hicks, J.; Makara, M.A.; Ikayeva, O.; Abraham, D.M. TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H566–H580. [CrossRef]

45. Kim, Y.; Bang, H.; Kim, D. TBAK-1 and TASK-1, two-pore K(+) channel subunits: Kinetic properties and expression in rat heart. Am. J. Physiol. 1999, 277, H1669–H1678. [CrossRef]

46. Karschin, C.; Wischmeyer, E.; Preisig-Müller, R.; Rajan, S.; Daut, J.; Karschin, A. Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-3, associated with the central auditory nervous system. Mol. Cell Neurosci. 2001, 18, 632–648. [CrossRef]

47. Skarsfeldt, M.A.; Jepps, T.A.; Bomholtz, S.H.; Abildgaard, L.; Gregers, E.; Svendsen, J.H.; Diness, J.G.; Grunnet, J.; et al. Pharmacologic TWIK-Related Acid-Sensitive K+ Channel (TASK-1) Potassium Channel Inhibitor A293 Facilitates Acute Cardioversion of Paroxysmal Atrial Fibrillation in a Porcine Large Animal Model. J. Am. Heart Assoc. 2020, e015751. [CrossRef] [PubMed]

48. Farley, S.; Kokkin, N.; Mura, A.; et al. Genetic Ablation of TASK-1 (Tandem of P Domains in a Weak Inward Rectifying K(+) Channel-Related Acid-Sensitive K(+) Channel-1) (K2P3.1) K(+) Channels Suppresses Atrial Fibrillation and Prevents Electrical Remodeling. Circ. Arrhythm. Electrophysiol. 2012, 12, e007465. [CrossRef]

49. Barth, A.S.; Merk, S.; Arnoldi, E.; Zwermann, L.; Kloos, P.; Gebauer, M.; Steinmeyer, K.; Bleich, M.; Kääb, S.; Hinterseer, M.; et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: Expression of a ventricular-like genomic signature. Circ. Res. 2005, 96, 1022–1029. [CrossRef] [PubMed]

50. Darkow, E.; Nguyen, T.T.; Stolina, M.; Kari, F.A.; Schmidt, C.; Wiedmann, F.; Baczkó, I.; Kohl, P.; Rajamani, S.; Ravens, U.; et al. Small Conductance Ca(2+)-Activated K(+) (SK) Channel mRNA Expression in Human Atrial and Ventricular Tissue: Comparison Between Donor, Atrial Fibrillation and Heart Failure Tissue. Front. Physiol. 2021, 12, 650964. [CrossRef] [PubMed]

51. Kisselbach, J.; Seyler, C.; Schweizer, P.A.; Gerstberger, R.; Becker, R.; Katus, H.A.; Thomas, D. Modulation of K2P 2.1 and K2P 10.1 K(+) channel sensitivity to carvedilol by alternative mRNA translation initiation. Br. J. Pharm. 2014, 171, 5182–5194. [CrossRef] [PubMed]

52. Graham, V.; Zhang, H.; Willis, S.; Creazzo, T.L. Expression of a two-pore domain K+ channel (TASK-1) in developing avian and mouse ventricular conduction systems. Dev. Dyn. 2006, 235, 143–151. [CrossRef] [PubMed]

53. Duprat, F.; Lesage, F.; Fink, M.; Reyes, R.; Heurteaux, C.; Lazdunski, M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997, 16, 5464–5471. [CrossRef]

54. Duan, W.; Hicks, J.; Makara, M.A.; Ikayeva, O.; Abraham, D.M. TASK-1 and TASK-3 channels modulate pressure overload-induced cardiac remodeling and dysfunction. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H566–H580. [CrossRef]

55. Kim, Y.; Bang, H.; Kim, D. TBAK-1 and TASK-1, two-pore K(+) channel subunits: Kinetic properties and expression in rat heart. Am. J. Physiol. 1999, 277, H1669–H1678. [CrossRef]

56. Karschin, C.; Wischmeyer, E.; Preisig-Müller, R.; Rajan, S.; Daut, J.; Karschin, A. Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K(+) channel subunit, TASK-3, associated with the central auditory nervous system. Mol. Cell Neurosci. 2001, 18, 632–648. [CrossRef]

57. Skarsfeldt, M.A.; Jepps, T.A.; Bomholtz, S.H.; Abildgaard, L.; Gregers, E.; Svendsen, J.H.; Diness, J.G.; Grunnet, J.; et al. Pharmacologic TWIK-Related Acid-Sensitive K+ Channel (TASK-1) Potassium Channel Inhibitor A293 Facilitates Acute Cardioversion of Paroxysmal Atrial Fibrillation in a Porcine Large Animal Model. J. Am. Heart Assoc. 2020, e015751. [CrossRef] [PubMed]

58. Barth, A.S.; Merk, S.; Arnoldi, E.; Zwermann, L.; Kloos, P.; Gebauer, M.; Steinmeyer, K.; Bleich, M.; Kääb, S.; Hinterseer, M.; et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: Expression of a ventricular-like genomic signature. Circ. Res. 2005, 96, 1022–1029. [CrossRef] [PubMed]

59. Rinné, S.; Kiper, A.K.; Schlichthörfl, G.; Dittmann, S.; Netter, M.F.; Limberg, S.H.; Silbernagel, N.; Zuzzarte, M.; Moosdorf, R.; Wulf, H.; et al. TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes. J. Mol. Cell Cardiol. 2015, 81, 71–80. [CrossRef] [PubMed]

60. Darkow, E.; Nguyen, T.T.; Stolina, M.; Kari, F.A.; Schmidt, C.; Wiedmann, F.; Baczkó, I.; Kohl, P.; Rajamani, S.; Ravens, U.; et al. Small Conductance Ca(2+)-Activated K(+) (SK) Channel mRNA Expression in Human Atrial and Ventricular Tissue: Comparison Between Donor, Atrial Fibrillation and Heart Failure Tissue. Front. Physiol. 2021, 12, 650964. [CrossRef] [PubMed]

61. Fink, M.; Lesage, F.; Duprat, F.; Heurteaux, C.; Reyes, R.; Fosset, M.; Lazdunski, M. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 1998, 17, 3297–3308. [CrossRef]

62. Meadows, H.J.; Chapman, C.G.; Duckworth, D.M.; Kelsell, R.E.; Lazdunski, M.; Honoré, E. TWIK-2, an inactivating 2P domain K+ channel. J. Biol. Chem. 2000, 275, 28722–28730. [CrossRef]

63. Wang, R.P.; Wang, S.; Chen, D.; Yang, N.; Lei, L.C.; Wang, Z.Y.; Ye, H.M.; Ren, L.H.; Yang, S.X. mRNA genomics change and significance of important ion channel proteins in patients with atrial fibrillation. Zhonghua Yi Xue Za Zhi 2018, 98, 3171–3177. [CrossRef] [PubMed]

64. Rajan, S.; Wischmeyer, E.; Liu, G.X.; Preisig-Müller, R.; Daut, J.; Karschin, A.; Derst, C. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histidating as pH sensor. J. Biol. Chem. 2000, 275, 16650–16657. [CrossRef]
63. Bang, H.; Kim, Y.; Kim, D. TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. *J. Biol. Chem.* 2000, 275, 17412–17419. [CrossRef] [PubMed]

64. Rajan, S.; Wischmeyer, E.; Karschin, C.; Preisig-Müller, R.; Grzeschik, K.H.; Daut, J.; Karschin, A.; Derst, C. THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. *J. Biol. Chem.* 2001, 276, 7302–7311. [CrossRef]

65. Girard, C.; Duprat, F.; Terrenoire, C.; Tinel, N.; Fosset, M.; Romey, G.; Lazardusni, M.; Lesage, F. Genomic and Functional Characteristics of Novel Human Pancreatic 2P Domain K+ Channels. *Biochem. Biophys. Res. Commun.* 2001, 282, 249–256. [CrossRef]

66. Staudacher, I.; Illg, C.; Gierten, J.; Seehausen, S.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Cloning and characterization of zebrafish K(2P)13.1 (THIK-1) two-pore-domain K(+) channels. *J. Mol. Cell Cardiol.* 2019, 126, 96–104. [CrossRef] [PubMed]

67. Ashmole, I.; Goodwin, P.A.; Stanfield, P.R. TASK-5, a novel member of the tandem pore K+ channel family. *Pflügers Arch.* 2001, 442, 828–833. [CrossRef]

68. Kim, D.; Gnatenco, C. TASK-5, a new member of the tandem-pore K(+) channel family. *Biochem. Biophys. Res. Commun.* 2001, 284, 923–930. [CrossRef]

69. Han, J.; Kang, D.; Kim, D. Functional properties of four splice variants of a human pancreatic tandem-pore K+ channel, TALK-1. *Am. J. Physiol. Cell Physiol.* 2003, 285, C529–C538. [CrossRef]

70. Staudacher, I.; Illg, C.; Gierten, J.; Seehausen, S.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Identification and functional characterization of zebrafish K(2P)17.1 (TASK-4, TALK-2) two-pore-domain K(+). *Eur. J. Pharm.* 2018, 831, 94–102. [CrossRef]

71. Decher, N.; Maier, M.; Dittrich, W.; Gassenhuber, J.; Brüggemann, A.; Busch, A.E.; Steinmeyer, K. Characterization of TASK-4, a novel member of the pH-sensitive, two-domain potassium channel family. *FEBS Lett.* 2001, 492, 84–89. [CrossRef]

72. Chai, S.; Wan, X.; Ramirez-Navarro, A.; Tesar, P.J.; Kaufman, E.S.; Ficker, E.; George, A.L., Jr; Deschênes, I. Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. *J. Clin. Invest.* 2018, 128, 1043–1056. [CrossRef]

73. Staudacher, I.; Illg, C.; Chai, S.; Deschenes, I.; Seehausen, S.; Gramlich, D.; Müller, M.E.; Wieder, T.; Rahm, A.K.; Mayer, C.; et al. Cardiovascular pharmacology of K(2P)17.1 (TASK-4, TALK-2) two-pore-domain K(+) channels. *Naunyn Schmiedebergs Arch. Pharm.* 2018, 391, 1119–1131. [CrossRef] [PubMed]

74. Rahm, A.K.; Wiedmann, F.; Gietert, J.; Schmidt, C.; Schweizer, P.A.; Becker, R.; Katus, H.A.; Thomas, D. Functional characterization of zebrafish K2P18.1 (TREK2) two-pore-domain K+ channels. *Naunyn Schmiedebergs Arch. Pharm.* 2014, 387, 291–300. [CrossRef]

75. Keshavaprasad, B.; Liu, C.; Au, J.D.; Kindler, C.H.; Cotten, J.F.; Yost, C.S. Species-specific differences in response to anesthetics and other modulators by the K2P channel TRESK. *Anesth. Analg.* 2005, 101, 1042–1049. [CrossRef]

76. Sano, Y.; Inamura, K.; Miyake, A.; Mochizuki, S.; Kitada, C.; Yokoi, H.; Nozawa, K.; Okada, H.; Matsushime, H.; Furuichi, K. A novel two-pore-domain pore-forming K+ channel, TRESK, is localized in the spinal cord. *J. Biol. Chem.* 2003, 278, 27406–27412. [CrossRef]

77. Wiedmann, F.; Rinné, S.; Donner, B.; Decher, N.; Katus, H.A.; Schmidt, C. Mechanosensitive TREK-1 two-pore-domain potassium (K(2P)) channels in the cardiovascular system. *Prog. Biophys. Mol. Biol.* 2021, 159, 126–135. [CrossRef] [PubMed]

78. Wiedmann, F.; Schlund, D.; Faustino, F.; Kraft, M.; Ratte, A.; Thomas, D.; Katus, H.A.; Schmidt, C. N-Glycosylation of K(2P)17.1 (TALK-2) two-pore-domain (K2P) Channels. *Int. J. Mol. Sci.* 2019, 20, 5193. [CrossRef]

79. Lesage, F.; Guillemare, E.; Fink, M.; Duprat, F.; Lazardusni, M.; Romey, G.; Barhanin, J. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. *EMBO J.* 1996, 15, 1004–1011. [CrossRef]

80. Gaborit, N.; Steenman, M.; Lamirault, G.; Le Meur, N.; Lande, G.; Léger, J.; Charpentier, F.; Christ, T.; Dobrev, D.; et al. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. *Circulation* 2005, 112, 471–481. [CrossRef] [PubMed]

81. Schmidt, C.; Wiedmann, F.; Schweizer, P.A.; Becker, R.; Katus, H.A.; Thomas, D. Novel electrophysiological properties of dronedarone: Inhibition of human cardiac two-pore-domain potassium (K2P) channels. *Naunyn Schmiedebergs Arch. Pharm.* 2012, 385, 1003–1016. [CrossRef]

82. Lesage, F.; Lazardusni, M. Molecular and functional properties of two-pore-domain potassium channels. *Am. J. Physiol. Ren. Physiol.* 2000, 279, F793–F801. [CrossRef]

83. Loucif, A.J.C.; Saintot, P.P.; Liu, J.; Antonio, B.M.; Zellmer, S.G.; Yoger, K.; Veale, E.L.; Wilbre, A.; Omoto, K.; Cao, L.; et al. GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K2P) channel opener, reduces rat dorsal root ganglion neuron excitability. *Br. J. Pharm.* 2018, 175, 2272–2283. [CrossRef] [PubMed]

84. Goonetilleke, L.; Quayle, J. TREK-1 K(+) channels in the cardiovascular system: Their significance and potential as a therapeutic target. *Cardiovasc. Ther.* 2012, 30, e23–e29. [CrossRef]

85. Gruss, M.; Mathie, A.; Lieb, W.R.; Franks, N.P. The two-pore-domain K(+) channels TREK-1 and TASK-3 are differentially modulated by copper and zinc. *Mol. Pharm.* 2004, 66, 530–537. [CrossRef]

86. Joseph, A.; Thuy, T.T.T.; Thanh, L.T.; Okada, M. Antidepressive and anxiolytic effects of ostruthin, a TRED-1 channel activator. *PloS ONE* 2018, 13, e0201092. [CrossRef]

87. Pope, L.; Arrigoni, C.; Lou, H.; Bryant, C.; Gallardo-Godoy, A.; Renslo, A.R.; Minor, D.L., Jr. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K(2P) Channels. *ACS Chem. Neurosci.* 2018, 9, 3135–3165. [CrossRef]

88. Lolicato, M.; Arrigoni, C.; Mori, T.; Sekioka, Y.; Bryant, C.; Clark, K.A.; Minor, D.L., Jr. K(2P)2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. *Nature* 2017, 547, 364–368. [CrossRef]
Bagriantsev, S.N.; Ang, K.H.; Gallardo-Godoy, A.; Clark, K.A.; Arkin, M.R.; Renslo, A.R.; Minor, D.L., Jr. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. *ACS Chem. Biol.* 2013, 8, 1841–1851. [CrossRef] [PubMed]

Wright, P.D.; McCoull, D.; Walsh, Y.; Large, J.M.; Hadrys, B.W.; Gaurilcikaite, E.; Byrom, L.; Veale, E.L.; Jerman, J.; Mathie, A. Pranlukast is a novel small molecule activator of the two-pore domain potassium channel TREK2. *Biochem. Biophys. Res. Commun.* 2019, 520, 35–40. [CrossRef]

Minieri, L.; Pivonova, H.; Caprini, M.; Harantova, L.; Anderova, M.; Ferroni, S. The inhibitor of volume-regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes. *Br. J. Pharm.* 2013, 168, 1240–1254. [CrossRef]

Devilliers, M.; Busserolles, J.; Lolliguer, S.; Deval, E.; Pereira, V.; Alloui, A.; Christin, M.; Mazet, B.; Delmas, P.; Noel, J.; et al. Activation of TREK-1 by morphine results in analgesia without adverse side effects. *Nat. Commun.* 2013, 4, 2941. [CrossRef]

Takahira, M.; Sakurai, M.; Sakurada, N.; Sugiyama, K. Fenamates and diltiazem modulate lipid-sensitive mechano-gated 2P domain K(+) channels. *Pflug. Arch.* 2005, 451, 474–478. [CrossRef] [PubMed]

Gruss, M.; Bushell, T.J.; Bright, D.P.; Lieb, W.R.; Mathie, A.; Franks, N.P. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. *Mol. Pharm.* 2004, 65, 443–452. [CrossRef]

Mazella, J.; Petrault, O.; Lucas, G.; Deval, E.; Beraud-Dufour, S.; Gandin, C.; El-Yacoubi, M.; Widmann, C.; Guyon, A.; Chevet, E.; et al. Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: A new concept in the antidepressant drug design. *PLoS Biol.* 2010, 8, e1000355. [CrossRef] [PubMed]

Unudurthi, S.D.; Wu, X.; Qian, L.; Amari, F.; Onal, B.; Li, N.; Makara, M.A.; Smith, S.A.; Snyder, J.; Enyeart, J.J. Potent Inhibition of Native TREK-1 K+ Channels by Bupivacaine. *Anesthesiology* 2007, 106, 1291–1298. [CrossRef] [PubMed]

Thomas, D.; Plant, L.D.; Wilkens, C.M.; McCrossan, Z.A.; Goldstein, S.A.N. Alternative Translation Initiation in Rat Brain Yields K2P2.1 Potassium Channels Permeable to Sodium. *Neuron* 2008, 58, 589–870. [CrossRef]

Liu, H.; Enyeart, J.A.; Enyeart, J.J. Potent Inhibition of Native TREK-1 K+ Channels by Selected Dihydropyridine Ca2+ Channel Antagonists. *J. Pharmacol. Exp. Ther.* 2007, 323, 39–48. [CrossRef] [PubMed]

Shin, H.W.; Soh, J.S.; Kim, H.Z.; Hong, J.; Woo, D.H.; Heo, J.Y.; Hwang, E.M.; Park, J.Y.; Lee, C.J. The inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on K2P (two-pore domain potassium) channel TREK-1. *J. Anesth.* 2014, 28, 81–86. [CrossRef] [PubMed]

Ratte, A.; Wiedmann, F.; Kraft, M.; Katus, H.A.; Schmidt, C. Antiarrhythmic Properties of Ranolazine: Inhibition of Atrial Fibrillation Associated TASK-1 Potassium Channels. *Front. Pharm.* 2019, 10, 1367. [CrossRef] [PubMed]

Thümmler, S.; Duprat, F.; Lazdunski, M. Antipsychotics inhibit TREK but not TRAAK channels. *Biochem. Biophys. Res. Commun.* 2007, 354, 284–289. [CrossRef] [PubMed]

Punke, M.A.; Licher, T.; Pongs, O.; Friederich, P. Inhibition of human TREK-1 channels by bupivacaine. *Anesth. Analg.* 2003, 96, 1665–1673. [CrossRef] [PubMed]

Nayak, T.K.; Harinath, S.; Nam, S.; Somasundaram, K.; Sikdar, S.K. Inhibition of Human Two-Pore Domain K+ Channel TREK1 by Local Anesthetic Lidocaine: Negative Cooperativity and Half-of-Sites Saturation Kinetics. *Mol. Pharmacol.* 2009, 76, 903–917. [CrossRef] [PubMed]

Harinath, S.; Sikdar, S.K. Inhibition of human TREK-1 channels by caffeine and theophylline. *Epilepsy Res.* 2005, 64, 127–135. [CrossRef]

Zhang, H.; Shepherd, N.; Creazzo, T.L. Temperature-sensitive TREK currents contribute to setting the resting membrane potential in embryonic atrial myocytes. *J. Physiol.* 2008, 586, 3645–3656. [CrossRef]

Giertzen, J.; Ficker, E.; Bloehs, R.; Schweizer, P.A.; Zitrone, E.; Zolch, E.; Karle, C.; Katus, H.A.; Thomas, D. The human cardiac K2P3.1 (TASK-1) potassium leak channel is a molecular target for the class III antiarrhythmic drug amiodarone. *Naunyn Schmiedebergs Arch. Pharm.* 2010, 381, 261–270. [CrossRef] [PubMed]

Schmidt, C.; Wiedmann, F.; Gaubatz, A.R.; Ratte, A.; Katus, H.A.; Thomas, D. New Targets for Old Drugs: Cardiac Glycosides Inhibit Atrial-Specific K(2P)3.1 (TASK-1) Channels. *J. Pharm. Exp. 2018*, 365, 614–623. [CrossRef]

Seyler, C.; Li, J.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Inhibition of cardiac two-pore-domain K+ (K2P) channels by the antiarrhythmic drug vernakalant—comparison with flecainide. *Eur. J. Pharm. 2014*, 724, 51–57. [CrossRef] [PubMed]

Bae, C.; Sachs, F.; Gottlieb, P.A. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. *Biochemistry 2011*, 50, 6295–6300. [CrossRef] [PubMed]

Putzke, C.; Hanley, P.J.; Schlichthör, G.; Preisig-Müller, R.; Rinné, S.; Anetseder, M.; Eckenhoff, R.; Berkowitz, C.; Vassiliou, T.; Wulf, H.; et al. Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1. *Am. J. Physiol. Cell Physiol.* 2007, 293, C1319–C1326. [CrossRef] [PubMed]

Rödström, K.E.J.; Kiper, A.K.; Zhang, W.; Rinné, S.; Pike, A.C.W.; Goldstein, M.; Conrad, L.J.; Delbeck, M.; Hahn, M.G.; Meier, H.; et al. A lower X-gate in TASK channels traps inhibitors within the vestibule. *Nature 2020*, 582, 443–447. [CrossRef] [PubMed]
114. Zou, B.; Flaherty, D.P.; Simpson, D.S.; Maki, B.E.; Miller, M.R.; Shi, J.; Wu, M.; McManus, O.B.; Golden, J.E.; Aubé, J.; et al. ML365: Development of Bis-Amides as Selective Inhibitors of the KCNK3/TASK1 Two Pore Potassium Channel. In Probes Reports from the NIH Molecular Libraries Program; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2010.

115. Kiper, A.K.; Rinné, S.; Rolles, C.; Ramírez, D.; Seebohm, G.; Netter, M.F.; González, W.; Decher, N. Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea? Pflug. Arch. 2015, 467, 1081–1090. [CrossRef]

116. Ramírez, D.; Bedoya, M.; Kiper, A.K.; Rinné, S.; Morales-Navarro, S.; Hernández-Rodríguez, E.W.; Sepúlveda, F.V.; Decher, N.; González, W. Structure/Activity Analysis of TASK-3 Channel Antagonists Based on a 5,6,7,8 tetrahydropyrido[4, 3-d]pyrimidine. Int. J. Mol. Sci. 2019, 20, 2252. [CrossRef] [PubMed]

117. Cotten, J.F.; Keshavaprasad, B.; Laster, M.J.; Eger, E.I., 2nd; Yost, C.S. The ventilatory stimulant doxapram inhibits TASK tandem pore (K2P) potassium channel function but does not affect minimum alveolar anesthetic concentration. Anesth. Analg. 2006, 102, 779–785. [CrossRef] [PubMed]

118. Maingret, F.; Patel, A.J.; Lazdunski, M.; Honoré, E. The endocannabinoid anandamide is a direct and selective blocker of the background K(+) channel TASK-1. EMBO J. 2001, 20, 47–54. [CrossRef] [PubMed]

119. Miller, M.R.; Zou, B.; Shi, J.; Flaherty, D.P.; Simpson, D.S.; Yao, T.; Maki, B.E.; Day, V.W.; Douglas, J.T.; Wu, M.; et al. Development of a Selective Chemical Inhibitor for the Two-Pore Potassium Channel, KCNK9. In Probes Reports from the NIH Molecular Libraries Program; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2010.

120. Kindler, C.H.; Yost, C.S.; Gray, A.T. Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem. Anesthesiology 1999, 90, 1092–1102. [CrossRef] [PubMed]

121. Leonoudakis, D.; Gray, A.T.; Winegar, B.D.; Kindler, C.H.; Harada, M.; Taylor, D.M.; Chavez, R.A.; Forsayeth, J.R.; Yost, C.S. An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J. Neurosci. 1998, 18, 868–877. [CrossRef] [PubMed]

122. Meadows, H.J.; Randall, A.D. Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel. Neuropharmacology 2001, 40, 551–559. [CrossRef]

123. Bruner, J.K.; Zou, B.; Zhang, H.; Zhang, Y.; Schmidt, K.; Li, M. Identification of novel small molecule modulators of K2P18.1 two-pore potassium channel. Eur. J. Pharmacol. 2014, 740, 603–610. [CrossRef]

124. Eckert, M.; Egenberger, B.; Döring, F.; Wischmeyer, E. TREK-1 isoforms generated by alternative translation initiation display different susceptibility to the antidepressant fluoxetine. Neuropharmacology 2011, 61, 918–923. [CrossRef]

125. Braun, G.; Lengyel, M.; Enyedi, P.; Czirják, G. Differential sensitivity of TREK-1, TREK-2 and TRAAK channels to the polycationic dye ruthenium red. Br. J. Pharm. 2015, 172, 1728–1738. [CrossRef]

126. Dadi, P.K.; Vieira, N.C.; Days, E.; Dickerson, M.T.; Vinson, P.N.; Weaver, C.D.; Jacobson, D.A. Selective Small Molecule Activators of TREK-2 Channels Stimulate Dorsal Root Ganglion c-Fiber Nociceptor Two-Pore-Domain Potassium Channel Currents and Limit Calcium Influx. ACS Chem. Neurosci. 2017, 8, 558–568. [CrossRef] [PubMed]

127. Staudacher, I.; Seehausen, S.; Ilg, C.; Lugeniibel, P.; Schweizer, P.A.; Katus, H.A.; Thomas, D. Cardiac K(2P)13.1 (THIK-1) two-pore-domain K(+) channels: Pharmacological regulation and remodeling in atrial fibrillation. Prog. Biophys. Mol. Biol. 2019, 144, 128–138. [CrossRef]

128. Wright, P.D.; Weir, G.; Cartland, J.;Tickle, D.; Kettleborough, C.; Cader, M.Z.; Jerman, J. Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochem. Biophys. Res. Commun. 2013, 441, 463–468. [CrossRef] [PubMed]

129. Czirják, G.; Enyedi, P. Zinc and Mercuric Ions Distinguish TRESK from the Other Two-Pore-Domain K(+) Channels. Mol. Pharmacol. 2006, 69, 1024–1032. [CrossRef] [PubMed]

130. Guo, Z.; Cao, Y.Q. Over-expression of TRESK K(+) channels reduces the excitability of trigeminal ganglion nociceptors. PLoS ONE 2014, 9, e87029. [CrossRef]

131. Kang, D.; Marilash, E.; Kim, D. Functional expression of TRESK-2, a new member of the tandem-pore K+ channel family. J. Biol. Chem. 2004, 279, 28063–28070. [CrossRef] [PubMed]

132. Cotten, J.F. TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore potassium channel antagonists stimulate breathing in isoflurane-anesthetized rats. Anesth. Analg. 2013, 116, 810–816. [CrossRef]

133. Lambert, M.; Mendes-Ferreira, P.; Ghigna, M.R.; LeRibeux, H.; Adão, R.; Boet, A.; Capuano, V.; Rucker-Martin, C.; Brás-Silva, C.; Quarck, R.; et al. Kcnk3 Dysfunction Exaggerates The Development Of Pulmonary Hypertension Induced By Left Ventricular Pressure Overload. Cardiovasc. Res. 2021. [CrossRef]

134. Heidecker, B.; Lamirault, G.; Kasper, E.K.; Wittstein, I.S.; Champion, H.C.; Breton, E.; Russell, S.D.; Hall, J.; Kittleson, M.M.; Baughman, K.L.; et al. The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences. Eur. Heart J. 2010, 31, 1188–1196. [CrossRef] [PubMed]

135. Bouter, S.L.; Harchi, A.E.; Marionneau, C.; Belloq, C.; Chambellan, A.; Veen, T.V.; Boixel, C.; Gavillet, B.; Abriel, H.; Quang, K.L.; et al. Long-Term Amiodarone Administration Remodels Expression of Ion Channel Transcripts in the Mouse Heart. Circulation 2004, 110, 3028–3035. [CrossRef]

136. Ma, L.; Zhang, X.; Chen, H. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia. Sci. Signal. 2011, 4, ra37. [CrossRef] [PubMed]
137. Plant, L.D.; Zuniga, L.; Araki, D.; Marks, J.D.; Goldstein, S.A.N. SUMOylation Silences Heterodimeric TASK Potassium Channels Containing K2P1 Subunits in Cerebellar Granule Neurons. *Sci. Signal.* 2012, 5, ra84. [CrossRef]

138. Hwang, E.M.; Kim, E.; Yarishkin, O.; Woo, D.H.; Han, K.-S.; Park, N.; Bae, Y.; Woo, J.; Kim, D.; Park, M. A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. *Nat. Commun.* 2014, 5, 1–15. [CrossRef]

139. Choi, J.H.; Yarishkin, O.; Kim, E.; Bae, Y.; Kim, A.; Kim, S.C.; Ryoo, K.; Cho, C.H.; Hwang, E.M.; Park, J.Y. TWIK-1/TASK-3 heterodimeric channels contribute to the neurotensin-mediated excitation of hippocampal dentate gyrus granule cells. *Exp. Mol. Med.* 2018, 50, 1–13. [CrossRef]

140. Reyes, R.; Duprat, F.; Lesage, F.; Fink, M.; Salinas, M.; Farman, N.; Lazdunski, M. Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. *J. Biol. Chem.* 1998, 273, 30863–30869. [CrossRef]

141. Feliciangeli, S.; Chatelain, F.C.; Bichet, D.; Lesage, F. The family of K2P channels: Salient structural and functional properties. *J. Physiol.* 2015, 593, 2587–2603. [CrossRef]

142. Maingret, F.; Patel, A.J.; Lesage, F.; Lazdunski, M.; Honore, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. *J. Biol. Chem.* 1999, 274, 26691–26696. [CrossRef]

143. Patel, A.J.; Honoré, E.; Lesage, F.; Fink, M.; Romey, G.; Lazdunski, M. Inhalational anesthetics activate two-pore-domain background K+ channels. *Nat. Neurosci.* 1999, 2, 422–426. [CrossRef] [PubMed]

144. Patel, A.J.; Honoré, E.; Maingret, F.; Lesage, F.; Fink, M.; Duprat, F.; Lazdunski, M. A mammalian two pore domain mechano-gated S-like K+ channel. *EMBO J.* 1998, 17, 4283–4290. [CrossRef] [PubMed]

145. Levitz, J.; Royal, P.; Comoglio, P.; Wdziekonski, B.; Schaub, S.; Clemens, D.M.; Isacco, E.Y.; Sandoz, G. Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels. *Proc. Natl. Acad. Sci. USA* 2016, 113, 4194–4199. [CrossRef]

146. Blin, S.; Ben Soussia, I.; Kim, E.-J.; Brau, F.; Kang, D.; Lesage, F.; Bichet, D. Mixing and matching TREK/TRAACK subunits generate heterodimeric K+ channels with unique properties. *Proc. Natl. Acad. Sci. USA* 2016, 113, 4200–4205. [CrossRef] [PubMed]

147. Wang, W.; Zhang, M.; Li, P.; Yuan, H.; Feng, N.; Peng, Y.; Wang, L.; Wang, X. An increased TREK-1-like potassium current in ventricular myocytes during rat cardiac hypertrophy. *J. Cardiovasc. Pharm.* 2013, 61, 302–310. [CrossRef] [PubMed]

148. Kelly, D.; Mackenzie, L.; Hunter, P.; Small, B.; Saint, D. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart. *Clin. Exp. Pharmacol. Physiol.* 2006, 33, 642–648. [CrossRef] [PubMed]

149. Kennard, L.E.; Chumbley, J.R.; Ranatunga, K.M.; Armstrong, S.J.; Veale, E.L.; Mathie, A. Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. *Br. J. Pharmacol.* 2012, 167, 593–602. [CrossRef] [PubMed]

150. Schmidt, C.; Wiedmann, F.; Schweizer, P.A.; Becker, R.; Katus, H.A.; Thomas, D. Class I antiarrhythmic drugs inhibit human background K+ channels. *Nat. Neurosci.* 2015, 18, 495–499. [CrossRef] [PubMed]

151. Peyronnet, R.; Nerbonne, J.M.; Kohl, P. Cardiac Mechano-Gated Ion Channels and Arrhythmias. *Circ. Res.* 2016, 118, 311–329. [CrossRef]

152. Froese, A.; Breher, S.S.; Waldeyer, C.; Schindler, R.F.; Nikolaev, V.O.; Rinn, S.; Wischmeyer, E.; Schlömer, K.; Kathöfer, S.; et al. Popeye domain containing K2P17.1 background K+ channels. *Biochem. Biophys. Res. Commun.* 2014, 451, 415–420. [CrossRef] [PubMed]
162. Wiedmann, F.; Beyersdorf, C.; Zhou, X.-B.; Kraft, M.; Foerster, K.I.; El-Battrawy, I.; Lang, S.; Borggrefe, M.; Haefeli, W.E.; Frey, N. The Experimental TASK-1 Potassium Channel Inhibitor A293 Can Be Employed for Rhythm Control of Persistent Atrial Fibrillation in a Translational Large Animal Model. Front. Physiol. 2021, 11, 1869. [CrossRef]

163. Liang, B.; Soka, M.; Christensen, A.H.; Olesen, M.S.; Larsen, A.P.; Knap, F.K.; Wang, F.; Nielsen, J.B.; Andersen, M.N.; Humphreys, D.; et al. Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. J. Mol. Cell Cardiol. 2014, 67, 69–76. [CrossRef]

164. Wirth, K.J.; Brendel, J.; Steinmeyer, K.; Linz, D.K.; Rütten, H.; Gögelen, H. In vitro and in vivo effects of the atrial selective antiarrhythmic compound AVE1231. J. Cardiovasc. Pharm. 2007, 49, 197–206. [CrossRef]

165. Knobloch, K.; Brendel, J.; Peukert, S.; Rosenstein, B.; Busch, A.E.; Wirth, K.J. Electrophysiological and antiarrhythmic effects of the novel I(Kur) channel blockers, S9947 and S20951, on left vs. right pig atrium in vivo in comparison with the I(Kr) blockers dofetilide, azimilide, d,J-sotalol and ibutilide. Nauyn Schmiedebergs Arch. Pharm. 2002, 366, 482–487. [CrossRef]

166. Manichaikul, A.; Rich, S.S.; Allison, M.A.; Guagliardo, N.A.; Bayliss, D.A.; Carey, R.M.; Barrett, P.Q. KCNK3 Variants Are Associated With Hyperaldosteronism and Hypertension. Hypertension 2016, 68, 356–364. [CrossRef] [PubMed]

167. Gerstlin, K.M.; Gong, D.H.; Abdallah, M.; Winegar, B.D.; Eger, E.I.; Gray, A.T. Mutation of KCNK5 or Kir3.2 Potassium Channels Does Not Change Minimum Alveolar Anesthetic Concentration. Anesth. Analg. 2003, 96, 1345–1349. [CrossRef]

168. Lloyd, E.E.; Crossland, R.F.; Marrelli, S.P.; Reddy, A.K.; Taffet, G.E.; Hartley, C.J.; Bryan, R.M., Jr. Disruption of the novel I(Kur) channel blockers, S9947 and S20951, on left vs. right pig atrium in vivo in comparison with the I(Kr) blockers dofetilide, azimilide, d,J-sotalol and ibutilide. Nauyn Schmiedebergs Arch. Pharm. 2002, 366, 482–487. [CrossRef]

169. Lloyd, E.E.; Crossland, R.F.; Marrelli, S.P.; Bryan, R.M., Jr. Endothelium-dependent relaxations in the aorta from K(2P)6.1 knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 305, R60–R67. [CrossRef] [PubMed]

170. Yost, C.S.; Oh, I.; Eger, E.I., 2nd; Sonner, J.M. Knockout of the gene encoding the K(2P) channel KCNK7 does not alter volatile anesthetic sensitivity. Behav. Brain Res. 2008, 193, 192–196. [CrossRef]

171. Mirkovic, K.; Palmersheim, J.; Lesage, F.; Wickman, K. Behavioral characterization of mice lacking Trek channels. Front. Behav. Neurosci. 2012, 6, 60. [CrossRef]

172. Niemeyer, M.I.; Cid, L.P.; Barros, L.F.; Sepulveda, F.V. Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 2001, 276, 43166–43174. [CrossRef]

173. Gray, A.T.; Zhao, B.B.; Kindler, C.H.; Winegar, B.D.; Mazurek, M.J.; Xu, J.; Chavez, R.A.; Forsayeth, J.R.; Yost, C.S. Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology 2000, 92, 1722–1730. [CrossRef] [PubMed]

174. Knobloch, K.; Brendel, J.; Peukert, S.; Rosenstein, B.; Busch, A.E.; Wirth, K.J. Electrophysiological and antiarrhythmic effects of the novel I(Kur) channel blockers, S9947 and S20951, on left vs. right pig atrium in vivo in comparison with the I(Kr) blockers dofetilide, azimilide, d,J-sotalol and ibutilide. Nauyn Schmiedebergs Arch. Pharm. 2002, 366, 482–487. [CrossRef] [PubMed]

175. Pandit, L.M.; Lloyd, E.E.; Reynolds, J.O.; Lawrence, W.S.; Reynolds, C.; Wehrens, X.H.; Bryan, R.M. TWIK-2 channel deficiency leads to pulmonary hypertension through a rho-kinase-mediated process. Hypertension 2014, 64, 1260–1265. [CrossRef] [PubMed]

176. Mirkovic, K.; Palmersheim, J.; Lesage, F.; Wickman, K. Behavioral characterization of mice lacking Trek channels. Front. Behav. Neurosci. 2012, 6, 60. [CrossRef]

177. Lambert, M.; Capuano, V.; Boet, A.; Tesson, L.; Bertero, T.; Nakhlé, M.K.; Remy, S.; Anegon, I.; Pechoux, C.; Hautefort, A.; et al. Characterization of Kenk3-Mutated Rat, a Novel Model of Pulmonary Hypertension. Circ. Res. 2019, 125, 678–695. [CrossRef]

178. Knobloch, K.; Brendel, J.; Rosenstein, B.; Bleich, M.; Busch, A.E.; Wirth, K.J. Atrial-selective antiarrhythmic actions of novel Ikur blockers, S9947 and S20951, on left vs. right pig atrium in vivo in comparison with the I(Kr) blockers dofetilide, azimilide, d,J-sotalol and ibutilide. Nauyn Schmiedebergs Arch. Pharm. 2002, 366, 482–487. [CrossRef] [PubMed]

179. Peyronnet, R.; Ravens, U. Atria-selective antiarrhythmic drugs in need of alliance partners. Pharm. Res. 2019, 145, 104262. [CrossRef]

180. Olschewski, A.; Li, Y.; Tang, B.; Hanze, J.R.; Eul, B.; Bohle, R.M.; Wilhelm, J.; Morty, R.E.; Brau, M.E.; Weir, E.K. Impact of TASK-1 in human pulmonary smooth muscle cells. Circ. Res. 2006, 98, 1072–1080. [CrossRef] [PubMed]

181. Ma, L.; Roman-Campos, D.; Austin, E.D.; Eyries, M.; Sampson, K.S.; Soubrier, F.; Germain, M.; Trégouët, D.A.; Borczuk, A.; Rensonweig, E.B.; et al. A novel channelopathy in pulmonary arterial hypertension. N. Engl. J. Med. 2013, 369, 351–361. [CrossRef]

182. Davies, L.A.; Hu, C.; Guagliardo, N.A.; Sen, N.; Chen, X.; Talley, E.M.; Carey, R.M.; Bayliss, D.A.; Barrett, P.Q. TASK channel deletion in mice causes primary biliary cirrhosis. Proc. Natl. Acad. Sci. USA 2008, 105, 2203–2208. [CrossRef]

183. West, J.D.; Austin, E.D.; Rizzi, E.M.; Yan, L.; Tanjore, H.; Crabtree, A.L.; Moore, C.S.; Muthian, G.; Carrier, E.J.; Jacobson, D.A.; et al. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int. J. Mol. Sci. 2021, 22, 5014. [CrossRef]

184. Heurteaux, C.; Guy, N.; Laigle, C.; Blondeau, N.; Duprat, F.; Mazzuca, M.; Lang-Lazdunski, L.; Widmann, C.; Zanzouri, M.; Romey, G.; et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 2004, 23, 2684–2695. [CrossRef] [PubMed]

185. Laigle, C.; Confort-Gouny, S.; Le Fur, Y.; Coizzone, P.J.; Viola, A. Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia. PLoS ONE 2012, 7, e53266. [CrossRef] [PubMed]

186. Kindler, C.H.; Paul, M.; Zou, H.; Liu, C.; Winegar, B.D.; Gray, A.T.; Yost, C.S. Amide local anesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5). J. Pharm. Exp. 2003, 306, 84–92. [CrossRef]

187. Gönczi, M.; Szentandrás, N.; Johnson, I.T.; Heagerty, A.M.; Weston, A.H. Investigation of the role of TASK-2 channels in rat pulmonary arteries; pharmacological and functional studies following RNA interference procedures. Br. J. Pharmacol. 2006, 147, 496–505. [CrossRef] [PubMed]

188. Winsvold, B.S.; Bettella, F.; Witoelar, A.; Antilla, V.; Gormley, P.; Kurth, T.; Terwindt, G.M.; Freilinger, T.M.; Frei, O.; Shadrin, A.; et al. Shared genetic risk between migraine and coronary artery disease: A genome-wide analysis of common variants. PLoS ONE 2017, 12, e0185663. [CrossRef]
187. Shvetsova, A.A.; Gaynullina, D.K.; Schmidt, N.; Bugert, P.; Lukoshkova, E.V.; Tarasova, O.S.; Schubert, R. TASK-1 channel blockade by AVE1231 increases vasocontractile responses and BP in 1- to 2-week-old but not adult rats. *Br. J. Pharm.* 2020, 177, 5148–5162. [CrossRef]

188. Bobak, N.; Feliciangeli, S.; Chen, C.C.; Ben Soussia, I.; Bittner, S.; Pagnotta, S.; Ruck, T.; Biel, M.; Wahl-Schott, C.; Grimm, C.; et al. Recombinant tandem of pore-domains in a Weakly Inward rectifying K(+) channel 2 (TWIK2) forms active lysosomal channels. *Sci. Rep.* 2017, 7, 649. [CrossRef]

189. Salinas, M.; Reyes, R.; Lesage, F.; Fosset, M.; Heurteaux, C.; Romey, G.; Lazdunski, M. Cloning of a new mouse two-P domain channel subunit and a human homologue with a unique pore structure. *J. Biol. Chem.* 1999, 274, 11751–11760. [CrossRef]

190. Berg, A.P.; Talley, E.M.; Manger, J.P.; Bayliss, D.A. Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. *J. Neurosci.* 2004, 24, 6693–6702. [CrossRef]

191. Kim, D.; Cavanaugh, E.J.; Kim, I.; Carroll, J.L. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. *J. Physiol.* 2009, 587, 2963–2975. [CrossRef]

192. Zadeh, N.; Graham, J.M., Jr. KCNK9 Imprinting Syndrome. In *GeneReviews®*; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2017.

193. Yost, C.S. A new look at the respiratory stimulant doxapram. *CNS Drug Rev.* 2006, 12, 236–249. [CrossRef] [PubMed]

194. Chatelain, F.C.; Bichet, D.; Feliciangeli, S.; Larroque, M.M.; Braud, V.M.; Douguet, D.; Lesage, F. Silencing of the tandem pore domain halothane-inhibited K+ channel 2 (THIK2) relies on combined intracellular retention and low intrinsic activity at the plasma membrane. *J. Biol. Chem.* 2013, 288, 35081–35092. [CrossRef]

195. Graff, S.M.; Johnson, S.R.; Leo, P.J.; Dadi, P.K.; Dickerson, M.T.; Nakhe, A.Y.; McInerney-Leo, A.M.; Marshall, M.; Zaborska, K.E.; Schaub, C.M.; et al. A KCNK16 mutation causing TALK-1 gain of function is associated with maturity-onset diabetes of the young. *JCI Insight* 2021, 6, e138057. [CrossRef]

196. Suzuki, Y.; Tsutsumi, K.; Miyamoto, T.; Yamamura, H.; Imaizumi, Y. Heterodimerization of two pore domain K+ channel TASK1 and TALK2 in living heterologous expression systems. *PLoS ONE* 2017, 12, e0186252. [CrossRef] [PubMed]

197. Domingues-Montanari, S.; Fernández-Cadenas, I.; Del Rio-Espinola, A.; Mendiñoroz, M.; Fernandez-Morales, J.; Corbeto, N.; Delgado, P.; Ribó, M.; Rubiera, M.; Obach, V.; et al. KCNK17 genetic variants in ischemic stroke. *Atherosclerosis* 2010, 208, 203–209. [CrossRef] [PubMed]

198. Grabauskas, G.; Wu, X.; Zhou, S.; Li, J.; Gao, J.; Owyang, C. High-fat diet-induced vagal afferent dysfunction via upregulation of 2-pore domain potassium TRESK channel. *JCI Insight* 2019, 4, e130402. [CrossRef] [PubMed]

199. Park, H.; Kim, E.J.; Ryu, J.H.; Lee, D.K.; Hong, S.G.; Han, J.; Han, J.; Kang, D. Verapamil Inhibits TRESK (K(2P)18.1) Current in Trigeminal Ganglion Neurons Independently of the Blockade of Ca(2+) Influx. *Int. J. Mol. Sci.* 2018, 19, 1961. [CrossRef]

200. Enyedi, P.; Czirjak, G. Properties, regulation, pharmacology, and functions of the K2P channel, TRESK. *Pflügers Arch. Eur. J. Physiol.* 2015, 467, 945–958. [CrossRef]