On a computation of rank two
Donaldson-Thomas invariants

Yukinobu Toda

Abstract

For a Calabi-Yau 3-fold X, we explicitly compute the Donaldson-Thomas type
invariant counting pairs (F, V), where F is a zero-dimensional coherent sheaf on X
and $V \subset F$ is a two dimensional linear subspace, which satisfy a certain stability
condition. This is a rank two version of the DT-invariant of rank one, studied by
Li, Behrend-Fantechi and Levine-Pandharipande. We use the wall-crossing formula
of DT-invariants established by Joyce-Song, Kontsevich-Soibelman.

1 Introduction

The purpose of this article is to write down a closed formula of the generating series of
certain rank two Donaldson-Thomas (DT) type invariants on Calabi-Yau 3-folds. The
DT-invariant is a counting invariant of stable coherent sheaves on X, and it is introduced
in [21] in order to give a holomorphic analogue of the Casson invariant on real 3-manifolds.
It is now conjectured by Maulik-Nekrasov-Okounkov-Pandharipande (MNOP) [19] that
Gromov-Witten invariants and rank one DT-invariants are related in terms of generating
functions. So far, rank one DT-invariants have been studied in several papers, e.g. [17],
[3], [16], [2].

On the other hand, it seems that higher rank DT-invariants have not been explicitly
calculated yet in any example. Although the rank one case is important in connection with
MNOP conjecture, there is also some motivation of studying higher rank DT-invariants.
For instance, the rank of a coherent sheaf is not preserved under Fourier-Mukai transfor-
mations, e.g. the Pfaffian-Grassmannian derived equivalence established in [4]. Hence in
order to compare DT-invariants under Fourier-Mukai transformations, it seems that we
also have to work with higher rank DT-invariants.

Recently the wall-crossing formula of DT-invariants has been developed by Joyce-
Song [13] and Kontsevich-Soibelman [14]. As pointed out in [14] Paragraph 6.5], cer-
tain higher rank DT-type invariants are in principle calculated by the wall-crossing for-
mula, if we are given data for the DT-invariants of rank one. In this article, we work
out the wall-crossing formula established by Joyce-Song [13], and write down the ex-
plicit formula of DT-type invariants counting rank two D0-D6 bound state, discussed
in [14] Paragraph 6.5]. We also give an evidence of the integrality conjecture proposed by
Kontsevich-Soibelman [14] Conjecture 6].
1.1 Rank one Donaldson-Thomas invariant

Let X be a smooth projective Calabi-Yau 3-fold over \mathbb{C}, i.e. $K_X = \wedge^3 T_X$ is trivial and $H^1(\mathcal{O}_X) = 0$. For $n \in \mathbb{Z}$, let $\text{Hilb}^n(X)$ is the Hilbert scheme of n-points in X,

$$\text{Hilb}^n(X) = \{ Z \subset X : \dim Z = 0, \text{ length } \mathcal{O}_Z = n \},$$

$$= \left\{ (F,v) : F \text{ is a zero-dimensional coherent sheaf on } X \text{ with length } n, \text{ and } v \in F \text{ generates } F \text{ as an } \mathcal{O}_X\text{-module.} \right\}.$$

The moduli space $\text{Hilb}^n(X)$ is projective and has a symmetric obstruction theory [21]. By integrating the associated zero-dimensional virtual cycle, we can define the rank one Donaldson-Thomas (DT) invariant,

$$\text{DT}(1,n) = \int_{[\text{Hilb}^n(X)]_{\text{vir}}} 1 \in \mathbb{Z}.$$

Another way of defining DT-invariant is to use Behrend’s constructible function [1],

$$\nu : \text{Hilb}^n(X) \to \mathbb{Z}.$$

In [1], K. Behrend shows that $\text{DT}(1,n)$ is also written as

$$\text{DT}(1,n) = \int_{\text{Hilb}^n(X)} \nu \ d\chi := \sum_{k \in \mathbb{Z}} k \chi(\nu^{-1}(k)),$$

where $\chi(*)$ is the topological Euler characteristic. Let $\text{DT}(1)$ be the generating series,

$$\text{DT}(1) = \sum_{n \in \mathbb{Z}} \text{DT}(1,n)q^n.$$

The series $\text{DT}(1)$ is computed by Li [17], Behrend-Fantechi [3] and Pandharipande-Levine [16].

Theorem 1.1. [17], [3], [16] We have the following formula,

$$\text{DT}(1) = M(-q)\chi(X).$$

Here $M(q)$ is the MacMahon function,

$$M(q) = \prod_{k \geq 1} \frac{1}{(1-q)^k}.$$

1.2 Rank two Donaldson-Thomas invariant

In this article, we consider a rank two analogue of the invariant $\text{DT}(1,n)$. Let F be a zero-dimensional coherent sheaf on X with length n, and $V \subset F$ is a two dimensional \mathbb{C}-vector subspace. We call the pair (F,V) semistable (resp. stable) if it satisfies the following stability condition.
• The subspace $V \subset F$ generates F as an O_X-module.
• For any non-zero $v \in V$, the subsheaf $F_v := O_X \cdot v \subset F$ satisfies
 \[\text{length } F_v \geq n/2, \quad (\text{resp. } \text{length } F_v > n/2). \]

We denote by $M^{(2,n)}$ the moduli space of semistable (F,V) with length $F = n$. If n is odd, the space $M^{(2,n)}$ is an algebraic space of finite type, and the integration of the Behrend function yields the DT-type invariant,

\[\text{DT}(2,n) = \int_{\overline{M}^{(2,n)}} \nu \, d\chi. \quad (1) \]

When n is even, the space $M^{(2,n)}$ is an algebraic stack, and the integration such as (1) does not make sense. However we are also able to define the DT-type invariant,

\[\text{DT}(2,n) \in \mathbb{Q}, \]

when n is even by using the technique of the Hall-algebra. The existence of the above \mathbb{Q}-valued invariant is one of the big achievement of the recent work of Joyce-Song [13]. We will give a brief introduction of the definition of $\text{DT}(2,n)$ in Section 3. Let us consider the generating series,

\[\text{DT}(2) = \sum_{n \in \mathbb{Z}} \text{DT}(2,n)q^n. \]

Applying the wall-crossing formula of DT-invariants [13], [14], we show the following formula.

Theorem 1.2. We have the following formula.

\[\text{DT}(2) = \frac{1}{4} M(q)^{2\chi(X)} - \frac{\chi(X)}{2} \{ M(q)^{\chi(X)} \cdot M(q)^{\chi(X)} \cdot N(q) \} \Delta, \quad (2) \]

where $\Delta \subset \mathbb{Z}_\geq 0^3$ is

\[\Delta = \left\{ (m_1, m_2, m_3) \in \mathbb{Z}_\geq 0^3 : -m_3 \leq m_1 - m_2 < m_3 \right\}. \]

Let us explain the notation. The series $N(q)$ is defined by

\[N(q) := \frac{d}{dq} \log M(q) = \sum_{r,n \geq 0 \atop r|n} r^2 q^n, \]

and for $f_1, f_2, \cdots, f_N \in \mathbb{Q}[q]$ given by

\[f_i = \sum_{n \geq 0} a_n^{(i)} q^n, \quad 1 \leq i \leq N, \]

and a subset $\Delta \subset \mathbb{Z}_\geq 0^N$, the series $\{ f_1 \cdot f_2 \cdots f_N \}_\Delta$ is defined by

\[\{ f_1 \cdot f_2 \cdots f_N \}_\Delta = \sum_{(n_1, n_2, \cdots, n_N) \in \Delta} a_{n_1}^{(1)} a_{n_2}^{(2)} \cdots a_{n_N}^{(N)} q^{n_1+n_2+\cdots+n_N}. \]

In the formula (2), we set $N = 3$, $f_1 = f_2 = M(q)^{\chi(X)}$ and $f_3 = N(q)$.

3
1.3 Integrality property

Following [14], we introduce the invariant

\[\Omega(2, n) = \begin{cases}
 \text{DT}(2, n), & \text{if } n \text{ is odd}, \\
 \text{DT}(2, n) - \frac{1}{4} \text{DT}(1, \frac{n}{2}), & \text{if } n \text{ is even}.
\end{cases} \]

We also prove an evidence of the integrality conjecture by Kontsevich-Soibelman [14, Conjecture 6].

Theorem 1.3. We have \(\Omega(2, n) \in \mathbb{Z} \) for any \(n \in \mathbb{Z} \).

A first few terms of \(\Omega(2, n) \) are calculated as follows,

\[\begin{align*}
 \Omega(2, 0) &= \Omega(2, 1) = 0, \\
 \Omega(2, 2) &= -\chi, \\
 \Omega(2, 3) &= -\frac{1}{6}(\chi^3 + 15\chi^2 + 20\chi), \\
 \Omega(2, 4) &= -\frac{1}{12}(\chi^4 + 30\chi^3 + 119\chi^2 + 102\chi).
\end{align*} \]

We note that \(\Omega(2, n) \) are numbers which fill a part of the marks ‘?’ in [14, Paragraph 6.5].

In the very recent paper by Stoppa [20], the invariants have also been computed up to rank three. Especially he computed the invariants both using Kontsevich-Soibelman formula and Joyce-Song formula. He also show the integrality of Kontsevich-Soibelman’s BPS invariant up to rank three.

1.4 Acknowledgement

The author thanks Tom Bridgeland and Dominic Joyce for valuable discussions. He is also grateful to Jacopo Stoppa for informing him a mistake in the first version of this paper. This work is supported by World Premier International Research Center Initiative (WPI initiative), MEXT, Japan.

1.5 Notation and convention

In this paper, all the varieties are defined over \(\mathbb{C} \). For a variety \(X \), the abelian category of coherent sheaves on \(X \) is denoted by \(\text{Coh}(X) \). The bounded derived category of coherent sheaves on \(X \), which forms a triangulated category, is denoted by \(D^b(\text{Coh}(X)) \). For a triangulated category \(D \), the shift functor is denoted by \([1]\). For a set of objects \(S \subset D \), we denote by \(\langle S \rangle_{\text{tr}} \subset D \) the smallest triangulated subcategory of \(D \) which contains \(S \). Also we denote by \(\langle S \rangle_{\text{ex}} \subset D \) the smallest extension closed subcategory of \(D \) which contains \(S \). For an abelian category \(A \) and a set of objects \(S \subset A \), the subcategory \(\langle S \rangle_{\text{ex}} \subset A \) is also defined to be the smallest extension closed subcategory of \(A \) which contains \(S \).

2 Triangulated category of D0-D6 bound state

Let \(X \) be a smooth projective Calabi-Yau 3-fold over \(\mathbb{C} \), i.e.

\[K_X = \wedge^3 T^*_X \cong \mathcal{O}_X, \quad H^1(\mathcal{O}_X) = 0. \]
We denote by $\text{Coh}_0(X)$ the subcategory of $\text{Coh}(X)$, defined by

$$\text{Coh}_0(X) = \{ E \in \text{Coh}(X) : \dim \text{Supp}(E) = 0 \}.$$

In this section, we study the triangulated subcategory of $D^b(\text{Coh}(X))$ generated by \mathcal{O}_X and objects in $\text{Coh}_0(X)$,

$$\mathcal{D}_X := \langle \mathcal{O}_X, \text{Coh}_0(X) \rangle_{\text{tr}} \subset D^b(\text{Coh}(X)).$$

The triangulated category \mathcal{D}_X is called the category of $D0$-$D6$ bound state in [14, Paragraph 6.5].

2.1 t-structure on \mathcal{D}_X

Here we construct the heart of a bounded t-structure on \mathcal{D}_X. The readers can refer [6, Section 4] for the notion of bounded t-structures and their hearts.

Lemma 2.1. There is the heart of a bounded t-structure $\mathcal{A}_X \subset \mathcal{D}_X$, written as

$$\mathcal{A}_X = \langle \mathcal{O}_X, \text{Coh}_0(X)[-1] \rangle_{\text{ex}}. \quad (3)$$

Proof. Let \mathcal{F} be the subcategory of $\text{Coh}(X)$, defined by

$$\mathcal{F} := \{ E \in \text{Coh}(X) : \text{Hom}(F, E) = 0 \text{ for any } F \in \text{Coh}_0(X) \}.$$

Then $(\text{Coh}_0(X), \mathcal{F})$ is a torsion pair on $\text{Coh}(X)$. (cf. [7].) Let $\mathcal{A}^\dagger \subset D^b(\text{Coh}(X))$ be the associated tilting,

$$\mathcal{A}^\dagger = \langle \mathcal{F}, \text{Coh}_0(X)[-1] \rangle_{\text{ex}}.$$

Note that \mathcal{A}^\dagger is the heart of a bounded t-structure on $D^b(\text{Coh}(X))$. (cf. [7, Proposition 2.1].) It is easy to see the following.

- We have

 $$\mathcal{A}^\dagger \cap D^b(\text{Coh}_0(X)) = \text{Coh}_0(X)[-1], \quad (4)$$

 in $D^b(\text{Coh}(X))$. In particular the LHS of (4) is the heart of a bounded t-structure on $D^b(\text{Coh}_0(X))$.

- For any $F \in \text{Coh}_0(X)$, we have

 $$\text{Hom}(\mathcal{O}_X, F[-1]) = \text{Hom}(F[-1], \mathcal{O}_X) = 0,$$

 by the Serre duality.

Then we can apply [22, Proposition 3.3], and conclude that $\mathcal{A}_X := \mathcal{A}^\dagger \cap \mathcal{D}_X$ is the heart of a bounded t-structure on \mathcal{D}_X, satisfying (3). \qed

The abelian category $\mathcal{A}_X \subset \mathcal{D}_X$ is described in a simpler way, as follows.
Proposition 2.2. The abelian category A_X given by (3) is equivalent to the abelian category of triples

$$(O_X^{\oplus r}, F, s),$$

where r is an integer, $F \in \text{Coh}_0(X)$ and $s : O_X^{\oplus r} \to F$ is a morphism in Coh(X). The set of morphisms from $(O_X^{\oplus r}, F, s)$ to $(O_X^{\oplus r'}, F', s')$ is given by the commutative diagrams,

$$(O_X^{\oplus r} \xrightarrow{s} F)\Rightarrow (O_X^{\oplus r'} \xrightarrow{s'} F').$$

The equivalence is given by sending a triple $E = (O_X^{\oplus r}, F, s)$ to the two term complex

$$\Phi(E) = \cdots \to 0 \to O_X^{\oplus r} \xrightarrow{s} F \to 0 \to \cdots \in A_X,$$

where $O_X^{\oplus r}$ is located in degree zero.

Proof. For a triple $E = (O_X^{\oplus r}, F, s)$ as in (5), note that the two term complex $\Phi(E)$ given by (7) fits into the exact sequence in A_X,

$$0 \to F[-1] \to \Phi(E) \to O_X^{\oplus r} \to 0.$$

Let us consider a diagram (6). Since $\text{Hom}(O_X^{\oplus r}, F'[-1]) = 0$, there is a unique morphism $\gamma : \Phi(E) \to \Phi(E')$ which fits into the commutative diagram,

$$0 \to F[-1] \xrightarrow{\beta} \Phi(E) \xrightarrow{\gamma} O_X^{\oplus r} \xrightarrow{\alpha} 0.$$

Hence $E \mapsto \Phi(E)$ is a functor from the category of triples (5) to A_X. Using the diagram (8) and $\text{Hom}(F[-1], O_X^{\oplus r'}) = 0$, it is easy to see that Φ is fully faithful. Hence it suffices to show that Φ is essentially surjective.

Let us take an object $M \in A_X$. By (3), there is a filtration in A_X,

$$M_0 \subset M_1 \subset \cdots \subset M_k = M,$$

such that each subquotient $N_i = M_i/M_{i-1}$ is isomorphic to O_X or an object in Coh$_0(X)[-1]$. We show that each M_j is quasi-isomorphic to a two term complex (7) by the induction on j. The case of $j = 0$ is obvious. Suppose that M_{j-1} is isomorphic to a two term complex $(O_X^{\oplus r} \xrightarrow{s} F)$ for $F \in \text{Coh}_0(X)$. There are two cases.

Case 1. N_j is isomorphic to O_X.

In this case, we have the commutative diagram,

\[
\begin{array}{ccc}
O_X[-1] & \rightarrow & 0 \\
F[-1] & \rightarrow & M_{j-1} & \rightarrow & O_X^{\oplus r},
\end{array}
\]

since \(H^1(O_X) = 0\). Taking the cones, we obtain the distinguished triangle,

\[
F[-1] \rightarrow M_j \rightarrow O_X^{\oplus r+1}.
\]

Therefore \(M_j\) is quasi-isomorphic to a two term complex \((O_X^{\oplus r+1} \rightarrow F)\).

Case 2. \(N_j\) is isomorphic to \(F'[\cdot -1]\) for \(F' \in \text{Coh}_0(X)\).

In this case, we have the commutative diagram,

\[
\begin{array}{ccc}
F'[\cdot -2] & \rightarrow & 0 \\
F[-1] & \rightarrow & M_{j-1} & \rightarrow & O_X^{\oplus r},
\end{array}
\]

since \(\text{Hom}(F'[\cdot -2], O_X^{\oplus r}) = 0\). Taking the cones, we obtain the distinguished triangle,

\[
F''[-1] \rightarrow M_j \rightarrow O_X^{\oplus r}.
\]

Here \(F''\) fits into the exact sequence of sheaves \(0 \rightarrow F \rightarrow F'' \rightarrow F' \rightarrow 0\), hence \(F'' \in \text{Coh}_0(X)\). Then \(M_j\) is quasi-isomorphic to a two term complex \((O_X^{\oplus r} \rightarrow F'')\).

In what follows, we write an object \(E \in A_X\) as a two term complex \((O_X^{\oplus r} \rightarrow F)\) occasionally. We set \(S_0, S_x \in A_X\) for \(x \in X\) as follows,

\[
S_0 = (O_X \rightarrow 0), \quad S_x = (0 \rightarrow O_x).
\]

The following lemma is obvious.

Lemma 2.3. An object \(E \in A_X\) is simple if and only if \(E\) is isomorphic to \(S_0\) or \(S_x\) for \(x \in X\). Any objects in \(A_X\) is written as successive extensions of these simple objects.

2.2 Stability condition on \(A_X\)

Here we discuss stability conditions on \(A_X\), and the associated (semi)stable objects in \(A_X\). The stability condition discussed here is based on the notion of stability conditions on triangulated categories by Bridgeland [5].

Let \(A_X \subset D_X\) be the abelian category given by \((3)\). We set \(\Gamma = \mathbb{Z} \oplus \mathbb{Z}\) and a group homomorphism

\[
\text{cl}: K(A_X) \rightarrow \Gamma,
\]

by the following,

\[
\text{cl}: (O_X^{\oplus r} \rightarrow F) \mapsto (r, \text{length } F).
\]

Also we denote by \(\mathbb{H} \subset \mathbb{C}\) the upper half plane,

\[
\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}.
\]
Definition 2.4. A stability condition on \mathcal{A}_X is a group homomorphism $Z : \Gamma \to \mathbb{C}$, which satisfies
\[Z(\text{cl}(E)) \in \mathbb{H}, \]
for any non-zero object $E \in \mathcal{A}_X$.

In what follows, we write $Z(\text{cl}(E))$ as $Z(E)$ for simplicity.

Remark 2.5. By Lemma 2.3, a group homomorphism $Z : \Gamma \to \mathbb{C}$ is a stability condition on \mathcal{A}_X if and only if
\[Z(1, 0) \in \mathbb{H}, \quad Z(0, 1) \in \mathbb{H}. \]
In particular the set of stability conditions is parameterized by points in \mathbb{H}^2.

Remark 2.6. For a stability condition $Z : \Gamma \to \mathbb{C}$ on \mathcal{A}_X, the pair (Z, \mathcal{A}_X) determines a stability condition on \mathcal{D}_X in the sense of Bridgeland [5].

The notion of (semi)stable objects are defined as follows.

Definition 2.7. Let $Z : \Gamma \to \mathbb{C}$ be a stability condition on \mathcal{A}_X. We say $E \in \mathcal{A}_X$ is Z-semistable (resp. stable) if for any non-zero proper subobject $0 \subseteq F \subseteq E$ in \mathcal{A}_X, the following inequality holds,
\[\arg Z(F) < \arg Z(E), \quad (\text{resp. } \arg Z(F) \leq \arg Z(E).) \]

2.3 Semistable objects in \mathcal{A}_X

We fix three stability conditions on \mathcal{A}_X,
\[Z_* : \Gamma \to \mathbb{C}, \quad * = \pm, 0 \] (10)
satisfying the following,
\[\arg Z_+(1, 0) > \arg Z_+(0, 1), \quad \arg Z_0(1, 0) = \arg Z_0(0, 1), \quad \arg Z_-(1, 0) < \arg Z_-(0, 1). \]

The set of Z_*-(semi)stable objects are characterized as follows.

Proposition 2.8. (i) An object $E \in \mathcal{A}_X$ is Z_--(semi)stable if and only if E is isomorphic to
\[(\mathcal{O}_X^{\oplus r} \to 0) \quad \text{or} \quad (0 \to F), \] (11)
for $r \in \mathbb{Z}$ and $F \in \text{Coh}_0(X)$. (resp. isomorphic to S_0 or S_x for $x \in X$, given in (7).)

(ii) Any object in \mathcal{A}_X is Z_0-semistable, and $E \in \mathcal{A}_X$ is Z_0-stable if and only if E is isomorphic to S_0 or S_x for $x \in X$.

(iii) An object $E \in \mathcal{A}_X$ is Z_+-(semi)stable if and only if E is isomorphic to (11), (resp. S_0 or S_x for $x \in X$,) or isomorphic to $(\mathcal{O}_X^{\oplus r} \to F)$ with $r > 0$, $F \neq 0$, satisfying the following.
• The image of the induced morphism between global sections,

\[V = \text{Im}\{H^0(s) : \mathbb{C}^r \to H^0(F)\}, \quad (12) \]

is \(r \)-dimensional and generates \(F \) as an \(\mathcal{O}_X \)-module.

• For any non-zero proper subvector space \(0 \subsetneq W \subsetneq V \), the subsheaf \(F_W := \mathcal{O}_X \cdot W \subset F \) satisfies

\[
\frac{\text{length } F_W}{\text{dim } W} \geq \frac{\text{length } F}{r}, \quad \left(\text{resp. } \frac{\text{length } F_W}{\text{dim } W} > \frac{\text{length } F}{r} \right). \quad (13)
\]

Proof. (i) Take a non-zero object \(E \in \mathcal{A}_X \), which is isomorphic to \((\mathcal{O}_X \xrightarrow{s} F) \) for \(F \in \text{Coh}_0(X) \). We have the exact sequence in \(\mathcal{A}_X \),

\[
0 \longrightarrow F[-1] \longrightarrow E \longrightarrow \mathcal{O}_X^{\oplus r} \longrightarrow 0. \quad (14)
\]

If \(r \neq 0 \) and \(F \neq 0 \), then we have

\[
\text{arg } Z_-(F[-1]) > \text{arg } Z_-(E),
\]

hence (14) destabilizes \(E \). Therefore if \(E \) is \(Z_+ \)-semistable, we have \(r = 0 \) or \(F = 0 \). Furthermore if \(E \) is \(Z_- \)-stable, \(r = 1 \) or length \(F = 1 \) must hold. Hence \(E \) is isomorphic to \(S_0 \) or \(S_x \) for \(x \in X \). Conversely it is easy to see that objects in (11), (resp. \(S_0 \), \(S_x \) for \(x \in X \)) are \(Z_- \)-semistable. (resp. \(Z_- \)-stable.)

(ii) The proof of (ii) is obvious.

(iii) Let us take a non-zero object \(E = (\mathcal{O}_X \xrightarrow{s} F) \in \mathcal{A}_X \). If \(r = 0 \) or \(F = 0 \), it is easy to see that \(E \) is \(Z_+ \)-semistable, and it is furthermore \(Z_+ \)-stable if and only if \(E \) is isomorphic to \(S_0 \) or \(S_x \) for \(x \in X \). Therefore we assume that \(r \neq 0 \) and \(F \neq 0 \).

Suppose that \(E \) is \(Z_+ \)-(semi)stable, and take \(V \subset H^0(F) \) as in (12). If \(\text{dim } V < r \), then there is an injection \(\mathcal{O}_X \hookrightarrow E \) in \(\mathcal{A}_X \). Then we have

\[
\text{arg } Z_+(\mathcal{O}_X) > \text{arg } Z_+(E),
\]

This contradicts to that \(E \) is \(Z_+ \)-semistable, hence \(V \) is \(r \)-dimensional. Furthermore if \(V \) does not generate \(F \) as an \(\mathcal{O}_X \)-module, there is a closed point \(x \in X \) and a surjection \(E \twoheadrightarrow \mathcal{O}_x[-1] \) in \(\mathcal{A}_X \). Since

\[
\text{arg } Z_+(E) > \text{arg } Z_+(\mathcal{O}_x),
\]

this is a contradiction. Also take a subvector space \(0 \subsetneq W \subsetneq V \) and the subsheaf of \(F \), \(F_W = \mathcal{O}_X \cdot W \subset F \). Then there is an injection in \(\mathcal{A}_X \),

\[(\mathcal{O}_X \otimes \mathbb{C} W \twoheadrightarrow F_W) \hookrightarrow E,\]

hence the \(Z_+ \)-(semi)stability implies the desired inequality (13).

Conversely suppose that \(V \) is \(r \)-dimensional, \(V \) generates \(F \) as an \(\mathcal{O}_X \)-module and the inequality (13) holds. Since \(V \) generates \(F \), the morphism \(s : \mathcal{O}_X^{\oplus r} \to F \) is surjective, and \(E \) is a coherent sheaf. Take an injection in \(\mathcal{A}_X \),

\[
E' = (\mathcal{O}_X^{\oplus r} \xrightarrow{s'} F') \hookrightarrow E. \quad (15)
\]
If \(r' = r \), then (15) is an isomorphism since \(\mathcal{O}_X^{\oplus r} \xrightarrow{\alpha} F \) is surjective. If \(r' = 0 \), then \(\operatorname{arg} Z_+(E') < \operatorname{arg} Z(E) \) is obviously satisfied. Let us assume \(0 < r' < r \), and take \(F'' = \operatorname{Im} s' \subset F' \). Note that there are injections in \(\mathcal{A}_X \).

\[
E'' = (\mathcal{O}_X^{\oplus r'} \rightarrow F'') \hookrightarrow E' \hookrightarrow E.
\]

Since the cokernel of \(E'' \hookrightarrow E' \) lies in \(\operatorname{Coh}_0(X)[-1] \), we have

\[
\operatorname{arg} Z_+(E') \leq \operatorname{arg} Z_+(E'').
\]

(16)

Also since \(V \) is \(r \)-dimensional, the inequality (13) implies

\[
\operatorname{arg} Z_+(E) > \operatorname{arg} Z_+(E''), \quad \text{(resp. } \operatorname{arg} Z_+(E) \geq \operatorname{arg} Z_+(E'').\text{)}
\]

(17)

By (15) and (17), the object \(E \) is \(Z_+ \)-semistable.

\[\square\]

Remark 2.9. By Proposition 2.8 (iii), giving a \(Z_+ \)-semistable \(E \in \mathcal{A}_X \) is equivalent to giving a pair \((F, V)\), where \(F \in \operatorname{Coh}_0(X) \) and \(V \) is a linear subspace \(V \subset H^0(F) \) which generates \(F \) as an \(\mathcal{O}_X \)-module, and satisfying the stability condition (13). The notion of such pairs \((F, V)\) also makes sense for non-projective Calabi-Yau 3-fold \(X \).

Example 2.10. (i) If \(r = 1 \), then \((F, V)\) gives a \(Z_+ \)-semistable object if and only if \(V \) generates \(F \) as an \(\mathcal{O}_X \)-module. Suppose that \(X = \mathbb{C}^3 \). The torus \(T = \mathbb{G}_m^3 \) acts on \(X \), and the \(T \)-invariant pairs \((F, V)\) with length \(F = n \) bijectively corresponds to 3-dimensional partitions. For instance, the case of \(n = 3 \) is as follows,

\[
F = \begin{cases}
\mathbb{C} \oplus \mathbb{C}x \oplus \mathbb{C}x^2 \\
\mathbb{C} \oplus \mathbb{C}y \oplus \mathbb{C}y^2 \\
\mathbb{C} \oplus \mathbb{C}z \oplus \mathbb{C}z^2 \\
\mathbb{C} \oplus \mathbb{C}x \oplus \mathbb{C}y \\
\mathbb{C} \oplus \mathbb{C}y \oplus \mathbb{C}z \\
\mathbb{C} \oplus \mathbb{C}y \oplus \mathbb{C}z
\end{cases}
\quad \supset V = \begin{cases}
\mathbb{C} \\
\mathbb{C} \\
\mathbb{C} \\
\mathbb{C} \\
\mathbb{C} \\
\mathbb{C}
\end{cases}
\]

Here \(x, y, z \) are coordinates of \(\mathbb{C}^3 \).

(ii) Suppose that \(X = \mathbb{C}^3 \) and \((r, n) = (2, 3)\). In the notation of (i), the \(T \)-fixed \(Z_+ \)-semistable \((F, V)\) are classified as follows.

\[
F = \begin{cases}
\mathbb{C} \oplus \mathbb{C}x \oplus \mathbb{C}x^2 \\
\mathbb{C} \oplus \mathbb{C}y \oplus \mathbb{C}y^2 \\
\mathbb{C} \oplus \mathbb{C}z \oplus \mathbb{C}z^2 \\
\mathbb{C}x \oplus \mathbb{C}y \oplus \mathbb{C}xy \\
\mathbb{C}y \oplus \mathbb{C}z \oplus \mathbb{C}yz \\
\mathbb{C}x \oplus \mathbb{C}z \oplus \mathbb{C}xz
\end{cases}
\quad \supset V = \begin{cases}
\mathbb{C}x \\
\mathbb{C}y \\
\mathbb{C}z \\
\mathbb{C}x \oplus \mathbb{C}y \\
\mathbb{C}y \oplus \mathbb{C}z \\
\mathbb{C}x \oplus \mathbb{C}z
\end{cases}
\]

2.4 Moduli stacks

Here we discuss the moduli stack of objects in \(\mathcal{A}_X \) and its substack of semistable object. For the notion of stacks, the readers can refer [15].
Let $\text{Obj}(\mathcal{A}_X)$ be the 2-functor,

$$\text{Obj}(\mathcal{A}_X) : \text{Sch} / \mathbb{C} \to \text{groupoid},$$

which sends a \mathbb{C}-scheme S to the groupoid of objects $E \in D^b(X \times S)$, which is relatively perfect over S and satisfies $L_i^* E \in \mathcal{A}_X$ for any closed point $s \in S$. (See [18].) Here $i : X \times \{s\} \to X \times S$ is the inclusion. The 2-functor $\text{Obj}(\mathcal{A}_X)$ forms a stack, and we have the decomposition,

$$\text{Obj}(\mathcal{A}_X) = \bigsqcup_{(r,n) \in \Gamma} \text{Obj}^{(r,n)}(\mathcal{A}_X),$$

where $\text{Obj}^{(r,n)}(\mathcal{A}_X) \subset \text{Obj}(\mathcal{A}_X)$ is the substack of objects $E \in \mathcal{A}_X$ with $\text{cl}(E) = (r,n)$.

Let us show that $\text{Obj}^{(0,n)}(\mathcal{A}_X)$ is an algebraic stack of finite type by describing it as a global quotient stack of the Quot scheme. For $(r,n) \in \Gamma$, recall that the Grothendieck’s Quot scheme [8] parameterizes isomorphism classes of quotients,

$$\text{Quot}^{(n)}(\mathcal{O}_X^{\oplus r}) = \{ \mathcal{O}_X^{\oplus r} \xrightarrow{s} F : F \in \text{Coh}_0(X), \text{length } F = n \}/ \cong.$$

Here two quotients $\mathcal{O}_X^{\oplus r} \xrightarrow{s} F$ and $\mathcal{O}_X^{\oplus r} \xrightarrow{s'} F'$ are isomorphic if and only if there is a commutative diagram,

$$\begin{array}{ccc}
\mathcal{O}_X^{\oplus r} & \xrightarrow{s} & F \\
\text{id} & \downarrow \cong & \\
\mathcal{O}_X^{\oplus r} & \xrightarrow{s'} & F'.
\end{array}$$

In particular there are no non-trivial automorphisms, and the resulting moduli space $\text{Quot}^{(n)}(\mathcal{O}_X^{\oplus r})$ is a projective fine moduli scheme. Note that there is a natural right $\text{GL}(r, \mathbb{C})$-action on $\text{Quot}^{(n)}(\mathcal{O}_X^{\oplus r})$, given by

$$(\mathcal{O}_X^{\oplus r} \xrightarrow{s} F) \cdot g = (\mathcal{O}_X^{\oplus r} \xrightarrow{s g} F).$$

We set

$$U^{(n)} = \{ (\mathcal{O}_X^{\oplus n} \xrightarrow{s} F) \in \text{Quot}^{(n)}(\mathcal{O}_X^{\oplus n}) \mid H^0(s) : \mathbb{C}^n \xrightarrow{\cong} H^0(F) \}.$$

It is easy to see that $U^{(n)}$ is an open substack of $\text{Quot}^{(n)}(\mathcal{O}_X^{\oplus n})$. For an object $F \in \text{Coh}_0(X)$ with length $F = n$, let us choose an isomorphism $\mathbb{C}^n \cong H^0(F)$. By applying $\otimes_\mathbb{C} \mathcal{O}_X$ and composing the natural surjection,

$$\mathcal{O}_X^{\oplus n} \cong H^0(F) \otimes_\mathbb{C} \mathcal{O}_X \to F,$$

we obtain a point in $U^{(n)}$. Such a point is obtained up to a choice of an isomorphism $\mathbb{C}^n \cong H^0(F)$, hence $\text{Obj}^{(0,n)}(\mathcal{A}_X)$ is constructed as the quotient stack,

$$\text{Obj}^{(0,n)}(\mathcal{A}_X) = [U^{(n)}/\text{GL}(n, \mathbb{C})].$$
For $r > 0$, the moduli stack $\text{Ob}_{j}^{(r,n)}(A_X)$ is constructed as follows. Let $Q \in \text{Coh}(U^{(n)} \times X)$ be an universal quotient sheaf restricted to $U^{(n)}$, and $\pi_U : U^{(n)} \times X \to U^{(n)}$ the projection. We construct the affine bundle $U^{(r,n)} \to U^{(n)}$ as

$$U^{(r,n)} = \text{Spec}_{U^{(n)}} \text{Sym}^r(\pi_U, Q^{\otimes r}) \to U^{(n)}.$$

It is easy to see that $U^{(r,n)}$ represents the functor sending a \mathbb{C}-scheme S to the set of isomorphism classes of the diagram,

$$O^{\otimes n}_{S \times X} \to F \to O^{\otimes r}_{S \times X},$$

where F is a coherent sheaf on $S \times X$ flat over S, and the induced quotient $O^{\otimes n}_{X} \to F|_{\{s\} \times X}$ for each closed point $s \in S$ determines a point in $U^{(n)}$. There is a right $\text{GL}(r, \mathbb{C})$-action on $U^{(r,n)}$ along the fibers of the morphism (18), acting on the right arrow of (19). Also the right $\text{GL}(n, \mathbb{C})$-action on $U^{(n)}$ naturally lifts to the right action on $U^{(r,n)}$, and these actions commute. Hence there is a right $G^{(r,n)} := \text{GL}(r, \mathbb{C}) \times \text{GL}(n, \mathbb{C})$-action on $U^{(r,n)}$, and the moduli stack $\text{Ob}_{j}^{(r,n)}(A_X)$ can be constructed as

$$\text{Ob}_{j}^{(r,n)}(A_X) = [U^{(r,n)}/G^{(r,n)}].$$

In particular $\text{Ob}_{j}^{(r,n)}(A_X)$ is an algebraic stack of finite type over \mathbb{C}.

Proposition 2.11. For any $p \in U^{(r,n)}$, there is a $G^{(r,n)}$-invariant analytic open subset $p \in U_p \subset U^{(r,n)}$, a $G^{(r,n)}$-equivariant embedding $U_p \subset M_p$ for a complex manifold with a right $G^{(r,n)}$-action, and a $G^{(r,n)}$-invariant holomorphic function $f_p : M_p \to \mathbb{C}$ such that

$$U_p = \{z \in M_p : df_p(z) = 0\}.$$

Proof. Suppose that $p \in U^{(r,n)}$ corresponds to a diagram,

$$O^{\otimes n}_X \to F \to O^{\otimes r}_X,$$

such that $F \in \text{Coh}_0(X)$ decomposes as

$$F = \bigoplus_{i=1}^k F_i, \quad \text{Supp}(F_i) = \{x_i\}, \quad \text{length } F_i = n_i,$$

for distinct closed points $x_1, x_2, \cdots x_i \in X$ and $n_i \in \mathbb{Z}$. Let us take an analytic small open neighborhood $x_i \in V_i \subset X$ such that each V_i is isomorphic to \mathbb{C}^3 as a complex manifold, and $V_i \cap V_j = \emptyset$ for $i \neq j$. Note that we have

$$p \in \{(O^{\otimes n}_X \to F' \to O^{\otimes r}_X) \in U^{(r,n)} : \text{Supp}(F') \subset \bigcup_i V_i\},$$

and define $p \in U_p \subset U^{(r,n)}$ to be the connected component of the RHS of (21), which contains p. Obviously U_p is $G^{(r,n)}$-invariant analytic open subset of $U^{(r,n)}$. Restricting to each V_i, giving a point on U_p is equivalent to giving a collection of diagrams,

$$O^{\otimes n}_{V_i} \to F'_i \to O^{\otimes r}_{V_i}, \quad \text{length } F'_i = n_i,$$

(22)
for each $1 \leq i \leq k$ such that the induced morphism

$$
\mathbb{C}^n = H^0(\mathcal{O}_X^\oplus n) \to \bigoplus_{i=1}^k H^0(\mathcal{O}_{V_i}^\oplus n) \to \bigoplus_{i=1}^k H^0(F_i'),
$$

is an isomorphism. Since $V_i \cong \mathbb{C}^3$, giving such a collection of data \ref{eq:22} is equivalent to giving a point

$$
\{(X_i, Y_i, Z_i, \{v_i^{(j)}\}_{j=1}^n, \{s_i^{(j)}\}_{j=1}^r)\}_{i=1}^k \in \prod_{i=1}^k M_n(\mathbb{C})^\times 3 \times (\mathbb{C}^n)^n \times (\mathbb{C}^n)^r,
$$

satisfying

$$
X_iY_i = Y_iX_i, \quad X_iZ_i = Z_iX_i, \quad Y_iZ_i = Z_iY_i, \quad 1 \leq i \leq k; \tag{24}
$$

$$
\det \left(v^{(1)}, v^{(2)}, \cdots, v^{(n)} \right) \neq 0. \tag{25}
$$

Here X_i, Y_i, Z_i are elements of $M_n(\mathbb{C})$, $v_i^{(j)}, s_i^{(j)}$ are elements of \mathbb{C}^n, and we have regarded

$$
v_i^{(j)} := \sum_{i=1}^k v_i^{(j)} \in \bigoplus_{i=1}^k \mathbb{C}^n_i = \mathbb{C}^n,
$$

as a column vector of $M_n(\mathbb{C})$. We set M_p to be an open subset of the RHS of \ref{eq:23}, satisfying only \ref{eq:25}. Then the zero set of the equation \ref{eq:24} is the critical locus of the holomorphic function $f_p: M_p \to \mathbb{C}$,

$$
f_p \left(\{(X_i, Y_i, Z_i, \{v_i^{(j)}\}_{j=1}^n, \{s_i^{(j)}\}_{j=1}^r)\}_{i=1}^k \right) = \sum_{i=1}^k \text{tr}(X_iY_iZ_i - Z_iY_iX_i).
$$

Obviously $G^{(r,n)}$ acts on M_p from the right, f_p is $G^{(r,n)}$-invariant, and there is a $G^{(r,n)}$-equivariant isomorphism between U_p and \{df_p = 0\} $\subset M_p$. \hfill \Box

Let $Z: \Gamma \to \mathbb{C}$ be a stability condition on \mathcal{A}_X. Let

$$
\mathcal{M}^{(r,n)}(Z) \subset \text{Obj}^{(r,n)}(\mathcal{A}_X), \tag{26}
$$

be the substack of Z-semistable objects $E \in \mathcal{A}_X$ with $\text{cl}(E) = (r, n)$. By Proposition \ref{prop:2.8}, we have

$$
\mathcal{M}^{(r,n)}(Z_-) = \begin{cases} \text{Obj}^{(r,n)}(\mathcal{A}_X), & r = 0 \text{ or } n = 0, \\ \emptyset, & \text{otherwise}. \end{cases}
$$

$$
\mathcal{M}^{(r,n)}(Z_0) = \text{Obj}^{(r,n)}(\mathcal{A}_X).
$$

Here Z_* is given by \ref{eq:10}. The moduli stack $\mathcal{M}^{(r,n)}(Z_+)$ is described as follows.

Lemma 2.12. There is a $\text{GL}(r, \mathbb{C})$-invariant Zariski open subset $Q^{(r,n)} \subset \text{Quot}^{(n)}(\mathcal{O}_X^\oplus r)$ such that

$$
\mathcal{M}^{(r,n)}(Z_+) = [Q^{(r,n)} / \text{GL}(r, \mathbb{C})].
$$
Proof. Let \(\tilde{U}^{(r,n)} \subset U^{(r,n)} \) be the open subset corresponding to diagrams,

\[O_X^{\oplus n} \to F \xrightarrow{s} O_X^{\oplus r}, \]

such that \(s \) is surjective. Then the action of the subgroup \(\{ \text{id} \} \times \text{GL}(n, \mathbb{C}) \subset G^{(r,n)} \) on \(U^{(r,n)} \) is free, and the quotient space is

\[\tilde{U}^{(r,n)}/\text{GL}(n, \mathbb{C}) = \text{Quot}^{(n)}(O_X^{\oplus r}). \]

We set \(Q^{(r,n)} \subset \text{Quot}^{(n)}(O_X^{\oplus r}) \) to be the subset corresponds to quotients \(O_X^{\oplus r} \to F \) such that the associated two term complex \((O_X^{\oplus r} \xrightarrow{s} F) \) \(\in \mathcal{A}_X \) is \(Z_+ \)-semistable. The subset \(Q^{(r,n)} \) is \(\text{GL}(r, \mathbb{C}) \)-invariant, and it is straightforward to see that \(Q^{(r,n)} \) is open in \(\text{Quot}^{(n)}(O_X^{\oplus r}) \). (e.g. use the arguments of the openness of stability in [23, Theorem 3.20].) By (20), the quotient stack of \(Q^{(r,n)} \) by the action of \(\text{GL}(r, \mathbb{C}) \) coincides with the desired stack \(\mathcal{M}^{(r,n)}(Z_+) \).

3 Hall algebras and Donaldson-Thomas invariants

In this section, we review the result of Joyce-Song [13] applied in our abelian category \(\mathcal{A}_X \).

3.1 Notation

In this subsection, we introduce some notation on algebraic groups, following [11]. Let \(G \) be an affine algebraic group over \(\mathbb{C} \) with maximal torus \(T^G \). We say \(G \) is special if every principal \(G \)-bundles over \(\mathbb{C} \) is locally trivial in the Zariski topology. For a subset \(S \subset G \), the normalizer \(N_G(S) \) and the centralizer \(C_G(S) \) of \(S \) in \(G \) are

\[N_G(S) = \{ g \in G : g^{-1}Sg = S \}, \]
\[C_G(S) = \{ g \in G : sg = gs \text{ for all } s \in S \}, \]

and the centre of \(G \) is \(C(G) := C_G(G) \). For a subset \(S \subset T^G \), note that \(S \subset T^G \cap C(C_G(S)) \).

Definition 3.1. [11, Definition 5.5] We define the set \(Q(G, T^G) \) to be the set of closed \(\mathbb{C} \)-subgroups \(S \) of \(T^G \), satisfying

\[S = T^G \cap C(C_G(S)). \]

We say \(G \) is very special if any \(S \in Q(G, T^G) \) is special.

It is shown in [11, Lemma 5.6] that \(Q(G, T^G) \) is a finite set, and any \(S \in Q(G, T^G) \) is written as an intersection of \(T^G \) and \(C_G(\{ t_i \}) \) for a finite set of points \(t_1, \ldots, t_k \in G \).

Example 3.2. Suppose that \(G = \text{GL}(2, \mathbb{C}) \), and \(\mathbb{G}_m^2 \cong T^G \subset G \) is the subgroup of diagonal matrices. Then \(Q(G, T^G) \) consists of \(T^G \) and the following subgroup. (cf. [11, Example 5.7].)

\[\mathbb{G}_m^2 \cong \left\{ \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} : t \in \mathbb{C}^* \right\} \subset T^G. \]

In particular \(\text{GL}(2, \mathbb{C}) \) is a very special algebraic group.
In [11], D. Joyce introduces an important rational number $F(G, T^G, S)$ for a very special algebraic group G and $S \in Q(G, T^G)$, as follows.

Definition 3.3. [11, Definition 5.8], [11, Definition 6.7] Let G be a very special algebraic group. For $S \subset S'$ in $Q(G, T^G)$, we define $n_{T^G}^{G}(S, S') \in \mathbb{Z}$ to be

$$n_{T^G}^{G}(S, S') = \sum_{S' \in A \leq \{S'' \in Q(G, T^G) : S'' \subset S'\}, \cap_{s'' \in A} s'' = S} (-1)^{|A|-1},$$

and for $S \in Q(G, T^G)$, define $F(G, T^G, S) \in \mathbb{Q}$ by

$$F(G, T^G, S) = \lim_{t \to 1} \sum_{S' \in Q(G, T^G)} \left| \frac{N_G(T^G)}{C_G(S') \cap N_G(T^G)} \right|^{-1} \cdot n_{T^G}^{G}(S, S') \cdot \frac{P_t(S)}{P_t(C_G(S'))}.$$

Here for a quasi-projective \mathbb{C}-variety Y, the virtual Poincaré polynomial $P_t(Y) \in \mathbb{Q}[t]$ is defined by

$$P_t(Y) = \sum_{j,k \geq 0} \dim(-1)^k W_j(H^k_c(Y, \mathbb{C})) t^j,$$

where $W_*(H^k_c(Y, \mathbb{C}))$ is the weight filtration on the compact support cohomology group $H^k_c(Y, \mathbb{C})$ introduced by Deligne. The existence of the limit $t \to 1$ is proved in [11, Theorem 6.6].

Example 3.4. For $G = GL(2, \mathbb{C})$, it is easy to calculate $F(G, T^G, S)$ as follows. (cf. Example 3.2, [11, Paragraph 6.2].)

$$F(G, T^G, T^G) = \frac{1}{2}, \quad F(G, T^G, \mathbb{G}_m) = -\frac{3}{4}.$$

Here $\mathbb{G}_m \subset T^G$ is given by (27).

3.2 Hall algebra

Let X be a smooth projective Calabi-Yau 3-fold over \mathbb{C}, and $\mathcal{A}_X \subset D_X$ the abelian subcategory given by [3]. Here we introduce the Hall algebra based on the algebraic stack $\text{Obj}(\mathcal{A}_X)$, following [11, Definition 6.8].

Definition 3.5. We define the \mathbb{Q}-vector space $\mathcal{H}(\mathcal{A}_X)$ to be spanned by symbols,

$$[\mathcal{X} \xrightarrow{f} \text{Obj}(\mathcal{A}_X)],$$

where \mathcal{X} is an algebraic stack of finite type with affine geometric stabilizers, and f is a morphism of stacks, with relations as follows.

- For a closed substack $\mathcal{Y} \subset \mathcal{X}$ and $\mathcal{U} = \mathcal{X} \setminus \mathcal{Y}$, we have

$$[\mathcal{X} \xrightarrow{f} \text{Obj}(\mathcal{A}_X)] = [\mathcal{Y} \xrightarrow{\text{fix}} \text{Obj}(\mathcal{A}_X)] + [\mathcal{U} \xrightarrow{\text{fix}} \text{Obj}(\mathcal{A}_X)].$$
• For a quasi-projective \mathbb{C}-variety U, we have

$$[\mathcal{X} \times U \xrightarrow{\pi_X} \mathcal{O}(\mathcal{A}_X)] = \chi(U)[\mathcal{X} \xrightarrow{f} \mathcal{O}(\mathcal{A}_X)].$$

Here $\pi_X: \mathcal{X} \times U \to \mathcal{X}$ is the projection, and $\chi(U) = P_t(U)|_{t=1} \in \mathbb{Z}$.

• Let U be a quasi-projective \mathbb{C}-variety and G a very special algebraic group, which acts on U with maximal torus T^G. Then we have

$$[[U/G] \xrightarrow{f} \mathcal{O}(\mathcal{A}_X)] = \sum_{S \in \mathcal{O}(G,T^G)} F(G,T^G,S)[[U/S] \xrightarrow{\tau_S} \mathcal{O}(\mathcal{A}_X)].$$

Here $\tau_S: [U/S] \to [U/G]$ is a natural morphism.

We denote by $\mathcal{E}(\mathcal{A}_X)$ the stack of short exact sequences in \mathcal{A}_X. There are morphisms of stacks,

$$p_i: \mathcal{E}(\mathcal{A}_X) \longrightarrow \mathcal{O}(\mathcal{A}_X),$$

sending a short exact sequence $0 \to A_1 \to A_2 \to A_3 \to 0$ to objects A_i respectively. There is an associative product on $\mathcal{H}(\mathcal{A}_X)$ based on Ringel-Hall algebras, defined by

$$[\mathcal{X} \xrightarrow{f} \mathcal{O}(\mathcal{A}_X)] * [\mathcal{Y} \xrightarrow{g} \mathcal{O}(\mathcal{A}_X)] = [\mathcal{Z} \xrightarrow{p_{2h}} \mathcal{O}(\mathcal{A}_X)],$$

where the morphism h fits into the Cartesian square,

$$\begin{array}{ccc}
\mathcal{Z} & \xrightarrow{h} & \mathcal{E}(\mathcal{A}_X) & \xrightarrow{p_2} & \mathcal{O}(\mathcal{A}_X) \\
\downarrow & & & \downarrow (p_1,p_3) & \\
\mathcal{X} \times \mathcal{Y} & \xrightarrow{f \times g} & \mathcal{O}(\mathcal{A}_X)^2
\end{array}$$

We have the following.

Theorem 3.6. [9, Theorem 5.2] The $*$-product is well-defined and associative with unit given by $[\text{Spec } \mathbb{C} \to \mathcal{O}(\mathcal{A}_X)]$ which corresponds to $0 \in \mathcal{A}_X$.

3.3 Donaldson-Thomas invariant

Let $Z: \Gamma \to \mathbb{C}$ be a stability condition on \mathcal{A}_X. The embedding of the algebraic stack defines an element

$$\delta^{(r,n)}(Z) = [\mathcal{M}^{(r,n)}(Z) \subset \mathcal{O}(\mathcal{A}_X)] \in \mathcal{H}(\mathcal{A}_X).$$

In order to define counting invariants of Z-semistable objects, we want to take a (weighted) Euler characteristic of the moduli stack $\mathcal{M}^{(r,n)}(Z)$. However in general, geometric points on the moduli stack $\mathcal{M}^{(r,n)}(Z)$ have non-trivial stabilizers, hence its Euler characteristic does not make sense. Instead we take the ‘logarithm’ of $\delta^{(r,n)}(Z)$ in $\mathcal{H}(\mathcal{A}_X)$ to kill non-trivial stabilizers.
Definition 3.7. [12, Definition 3.18] We define \(\epsilon^{(r,n)}(Z) \in \mathcal{H}(A_X) \) to be

\[
\epsilon^{(r,n)}(Z) = \sum_{l \geq 0} \frac{(-1)^{l-1}}{l} \delta^{(r,n_1)}(Z) \cdot \ldots \cdot \delta^{(r,n_l)}(Z).
\]

(29)

Since \(\delta^{(r,n)}(Z) \) is non-zero only if \(r \geq 0 \) and \(n \geq 0 \), the sum (29) is a finite sum. Also if \(r \) and \(n \) are coprime, then \(\epsilon^{(r,n)}(Z) = \delta^{(r,n)}(Z) \). The important fact [9, Corollary 5.10], [10, Theorem 8.7] is that \(\epsilon^{(r,n)}(Z) \) is supported on ‘virtual indecomposable objects’, and written as

\[
\epsilon^{(r,n)}(Z) = \sum_{i=1}^{m} c_i \left[U_i \times \text{Spec} \mathbb{C}/G_m \right] \overset{f_i}{\to} \text{Obj}(A_X),
\]

(30)

for quasi-projective \(\mathbb{C} \)-varieties \(U_1, \ldots, U_m \), and \(c_1, \ldots, c_m \in \mathbb{Q} \). Now the (weighted) Euler characteristic of \(\epsilon^{(r,n)}(Z) \) makes sense.

Definition 3.8. Suppose that \(\epsilon \in \mathcal{H}(A_X) \) is written as

\[
\epsilon = \sum_{i=1}^{m} c_i \left[U_i \times \text{Spec} \mathbb{C}/G_m \right] \overset{f_i}{\to} \text{Obj}(A_X)].
\]

(31)

For a constructible function \(\mu: \text{Obj}(A_X) \to \mathbb{Z} \), we define \(\chi(\epsilon, \mu) \in \mathbb{Q} \) to be

\[
\chi(\epsilon, \mu) = \sum_{i=1}^{m} c_i \sum_{k \in \mathbb{Z}} \chi(f_i^{-1} \mu^{-1}(k)).
\]

Next recall that for any \(\mathbb{C} \)-scheme \(U \), K. Behrend [1] associates a canonical constructible function \(\nu: U \to \mathbb{Z} \), satisfying the following.

- For \(p \in U \), suppose that there is an analytic open neighborhood \(p \in U_p \), a complex manifold \(M_p \) with \(U_p \subset M_p \), and a holomorphic function \(f_p: M_p \to \mathbb{C} \) such that \(U_p = \{ df_p = 0 \} \). Then
 \[
 \nu(p) = (-1)^{\dim M_p} (1 - \chi(M_p(f_p))).
 \]
 Here \(M_p(f_p) \) is the Milnor fiber of \(f_p \) at \(p \).

- If \(U \) has a symmetric perfect obstruction theory with zero dimensional virtual cycle \(U^{vir} \), we have
 \[
 \int_{U^{vir}} 1 = \int_U \nu \, d\chi.
 \]

The notion of Behrend’s constructible function can be easily extended to an arbitrary algebraic stack. (cf. [13, Proposition 4.4].) Hence we have the Behrend constructible function,

\[
\nu: \text{Obj}(A_X) \to \mathbb{Z}.
\]

Explicitly using the notation of (20) and Proposition 2.11, we have

\[
\nu(p) = (-1)^{n+r+nr} (1 - \chi(M_p(f_p))),
\]

for \(p \in U^{(r,n)} \). We then define \(DT^{(r,n)} \in \mathbb{Q} \) as follows. (cf. [13, Definition 5.13].)
Definition 3.9. We define $\text{DT}(r,n) \in \mathbb{Q}$ to be

$$\text{DT}(r,n) = \chi(\epsilon(r,n)(Z_+), -\nu).$$

Here we need to change the sign of the Behrend function. This is basically because that the Behrend functions on the variety M and on the stack $M \times [\text{Spec} \mathbb{C}/\mathbb{G}_m]$ have the different sign.

Remark 3.10.

(i) If $r = 1$, then $\text{DT}(1,n)$ coincides with the Donaldson-Thomas invariant counting points, studied and calculated in [19], [17], [3], [16]. The result is

$$\sum_{n \geq 0} \text{DT}(1,n)q^n = M(-q)^{\chi(X)},$$

where $M(q)$ is the MacMahon function,

$$M(q) = \prod_{k \geq 1} \frac{1}{(1 - q^k)^k}. \quad (32)$$

(ii) For $n = 0$, the invariant $\text{DT}(r,0)$ is easily shown to be (cf. [13, Example 6.2], [14, Paragraph 6.5]),

$$\text{DT}(r,0) = \frac{1}{r^2}. \quad (33)$$

(iii) For $r = 0$, the invariant $\text{DT}(0,n)$ is computed in [13, Paragraph 6.3], [14, Paragraph 6.5], [22, Remark 8.13] using the wall-crossing formula. The result is

$$\exp \left(\sum_{n \geq 0} (-1)^{n-1} \text{DT}(0,n)q^n \right) = M(-q)^{\chi(X)}, \quad (34)$$

hence

$$\text{DT}(0,n) = -\chi(X) \sum_{m \geq 0, m|n} \frac{1}{m^2}. \quad (35)$$

3.4 Euler characteristic version

In Section 5, we will also use the Euler characteristic version of counting invariants of \mathbb{Z}_+-semistable objects in \mathcal{A}_X, defined as follows.

Definition 3.11. We define $\text{Eu}(r,n) \in \mathbb{Q}$ to be

$$\text{Eu}(r,n) = \chi(\epsilon(r,n)(Z_+), 1).$$

Here 1 is the constant constructible function on $\text{Obj}(\mathcal{A}_X)$ which takes the value at 1.

Similarly to $\text{DT}(r,n)$, the invariant $\text{Eu}(r,n)$ is already computed when $r = 0$ or $n = 0$. The result is (cf. [13, Example 6.2], [22, Remark 5.14],)

$$\text{Eu}(r,0) = \frac{(-1)^{r-1}}{r^2}, \quad (36)$$

$$\text{Eu}(0,n) = \chi(X) \sum_{m \geq 0, m|n} \frac{1}{m^2}. \quad (37)$$
4 Computation of DT(2, n)

In this section, we deduce the generating series of DT(2, n) using the wall-crossing formula of DT-invariants.

4.1 Combinatorial coefficients

In this subsection, we introduce some notation which will be used in describing the wall-crossing formula. For \(\Gamma = \mathbb{Z} \oplus \mathbb{Z} \), we set \(C(\Gamma) = \{(r, n) \in \Gamma \setminus \{0\} : r \geq 0, n \geq 0\} \).

Define \(\mu : C(\Gamma) \to \mathbb{Q} \cup \{\infty\} \) to be \(\mu(r, n) = n/r \).

Definition 4.1. For \(l \geq 1 \), we define the map \(s_l : C(\Gamma)^l \to \{0, \pm 1\} \), as follows. Suppose that \(v_1, \ldots, v_l \in C(\Gamma)^l \) satisfies one of (a) or (b) for each \(i \),

(a) \(\mu(v_i) > \mu(v_{i+1}) \) and \(\mu(v_1 + \cdots + v_i) \geq \mu(v_{i+1} + \cdots + v_l) \).

(b) \(\mu(v_i) \leq \mu(v_{i+1}) \) and \(\mu(v_1 + \cdots + v_i) < \mu(v_{i+1} + \cdots + v_l) \).

Then \(s_l(v_1, \ldots, v_l) = (-1)^k \), where \(k \) is the number of \(i = 1, \ldots, l - 1 \) satisfying (b).

Otherwise \(s_l(v_1, \ldots, v_l) = 0 \).

Definition 4.2. For \(l \geq 1 \), we define the map \(u_l : C(\Gamma)^l \to \mathbb{Q} \), as follows,

\[
 u_l(v_1, \ldots, v_l) = \sum_{1 \leq \ell' \leq \ell} \sum_{\psi, \xi \text{ non-decreasing surjective maps}} (-1)^l \prod_{a=1}^{\ell'} s_{\xi^{-1}(a)} \left(\left\{ \sum_{k \in \psi^{-1}(j)} v_k \right\}_{j \in \xi^{-1}(a)} \right) \prod_{b=1}^{\ell'} \frac{1}{|\psi^{-1}(b)|!}. \tag{38}
\]

We introduce the notion of bi-colored weighted ordered vertex, as follows.

Definition 4.3. We call a data

\[
 \Lambda = (V, \pi, v, \leq), \tag{39}
\]

bi-colored weighted ordered vertex if it satisfies the following.

- \(V \) is a finite set.
- \(\pi : V \to \{\bullet, \circ\} \) is a map, where \(\{\bullet, \circ\} \) is a set with two elements.
• v is a map $v: V \rightarrow \mathbb{Z}_{\geq 1}$.

• \leq is a total order on V.

Let Λ be a data (39) with $l = |V|$. The total order \leq on V gives an identification between V and $\{1, \cdots, l\}$. We set V_\bullet and V_\circ to be

$$V_\bullet = \{ v \in V : \pi(v) = \bullet \},$$
$$V_\circ = \{ v \in V : \pi(v) = \circ \}.$$

We set $v_i \in C(\Gamma)$ to be

$$v_i = \begin{cases} (v(i), 0), & \text{if } i \in V_\bullet, \\ (0, v(i)), & \text{if } i \in V_\circ. \end{cases}$$

We set $s(\Lambda) \in \{0, \pm 1\}$ and $u(\Lambda) \in \mathbb{Q}$ to be

$$s(\Lambda) = s_l(v_1, \cdots, v_l), \quad u(\Lambda) = u_l(v_1, \cdots, v_l).$$

Also we set

$$r(\Lambda) = \sum_{i \in V_\bullet} v(i), \quad n(\Lambda) = \sum_{i \in V_\circ} v(i).$$

We define $\text{DT}(\Lambda) \in \mathbb{Q}$ and $\text{Eu}(\Lambda) \in \mathbb{Q}$ to be

$$\text{DT}(\Lambda) = \prod_{i \in V_\bullet} \text{DT}(v(i), 0) \prod_{i \in V_\circ} \text{DT}(0, v(i)),$$
$$\text{Eu}(\Lambda) = \prod_{i \in V_\bullet} \text{Eu}(v(i), 0) \prod_{i \in V_\circ} \text{Eu}(0, v(i)).$$

Definition 4.4. Let $\Lambda = (V, \pi, v, \leq)$ be a bi-colored weighted ordered vertex. We define the set $\mathcal{E}(\Lambda)$ to be the set of data

$$(E, s, t),$$

satisfying the following.

• E is a finite set and s, t are maps $E \rightarrow V$, i.e. the data (V, E, s, t) determines a quiver. The geometric realization of this quiver is connected and simply connected.

• For any $e \in E$, we have $\pi s(e) \neq \pi t(e)$.

• For any $e \in E$, we have $s(e) < t(e)$ with respect to the total order \leq on V.

For $(E, s, t) \in \mathcal{E}(\Lambda)$, we set $E_{\bullet \rightarrow \circ}$ to be

$$E_{\bullet \rightarrow \circ} = \{ e \in E : \pi s(e) = \bullet \}.$$
4.2 Combinatorial descriptions of $DT(r, n)$, $Eu(r, n)$

Using the combinatorial data given in the previous subsection, we can describe the invariant $DT(r, n)$ as follows.

Theorem 4.5. We have the following formula.

$$DT(r, n) = \sum_{\Lambda=(V, \pi, v, \leq) \text{ is a bi-colored weighted ordered vertex with } r(\Lambda)=r, \ n(\Lambda)=n.} (-1)^{rn} u(\Lambda) \ DT(\Lambda)$$

$$= \left(-\frac{1}{2} \right)^{|V|-1} \sum_{(E,s,t) \in \mathcal{E}(\Lambda)} (-1)^{|E \rightarrow s|} \prod_{e \in E} v(s(e))v(t(e)).$$ (40)

Proof. Let $\chi : \Gamma \times \Gamma \to \mathbb{Z}$ be

$$\chi((r, n), (r', n')) = rn' - r'n.$$

For $E, F \in \mathcal{A}_X$, we have

$$\chi(\text{cl}(E), \text{cl}(F)) = \dim \text{Hom}(E, F) - \dim \text{Ext}^1(E, F)$$

$$+ \dim \text{Ext}^1(F, E) - \dim \text{Hom}(F, E),$$ (41)

by the Riemann-Roch theorem and the Serre duality. The equation (41) provides an analogue of [13, Equation (39)] and Proposition [2,11] provides an analogue of [13, Theorem 5.3]. The proof of the Behrend function identity given in [13, Theorem 5.9] depends on these two properties, hence the analogue of [13, Theorem 5.9] also holds for our abelian category \mathcal{A}_X. Then we can apply the proof of [13, Theorem 5.16] for stability conditions $Z_\pm : \Gamma \to \mathbb{C}$, and obtain the same formula given in [13, Theorem 5.6]. Noting that

$$\chi((r, 0), (r', 0)) = 0, \quad \chi((0, n), (0, n')) = 0,$$

we obtain the formula (40). \hfill \square

The formula for $Eu(r, n)$ is similarly obtained by using [12, Theorem 6.28] instead of [13, Theorem 5.16].

Theorem 4.6. We have the following formula.

$$Eu(r, n) = \sum_{\Lambda=(V, \pi, v, \leq) \text{ is a bi-colored weighted ordered vertex with } r(\Lambda)=r, \ n(\Lambda)=n.} u(\Lambda) \ Eu(\Lambda)$$

$$= \left(\frac{1}{2} \right)^{|V|-1} \sum_{(E,s,t) \in \mathcal{E}(\Lambda)} (-1)^{|E \rightarrow s|} \prod_{e \in E} v(s(e))v(t(e)).$$ (42)

As a corollary, we have the following.
Corollary 4.7. We have
\[DT(r, n) = (-1)^{rn+r-1} Eu(r, n). \] (43)

Proof. By the formulas (33), (35), (36) and (37), we have
\[DT(\Lambda) = (-1)^{|V|+r} Eu(\Lambda), \]
for a bi-colored weighted ordered vertex \(\Lambda = (V, \pi, v, \leq) \) with \(r(\Lambda) = r \). Applying formulas (40) and (42), we obtain (43). \(\square \)

4.3 Computation of \(s(\Lambda) \)
In this subsection, we compute \(s(\Lambda) \) for a data (39) with \(r(\Lambda) = 2 \). Let us take a data (39) with \(|V| = l \) and
\[r(\Lambda) = 2, \quad n(\Lambda) = n. \] (44)

We fix an identification between \(V \) and \(\{1, \cdots, l\} \) induced by the total order \(\leq \). We denote by \(\pi(\Lambda) \) the sequence of \(\bullet \) and \(\circ \), given by
\[\pi(\Lambda) = \pi(1) \pi(2) \cdots \pi(l). \]

Note that we have \(|V_{\bullet}| \leq 2 \). We first have the following lemma.

Lemma 4.8. Suppose that \(\pi(1) = \pi(2) = \circ \), i.e. \(\pi(\Lambda) \) is
\[\circ \bullet \cdots \circ \bullet \cdots . \]

Then \(s(\Lambda) = 0. \)

Proof. Since \(\mu(v_1) = \mu(v_2) \) and \(\infty = \mu(v_1) > \mu(v_2 + \cdots + v_l) \), \((v_1, \cdots, v_l) \) does not satisfy (a) nor (b) in Definition 4.1. \(\square \)

Next we compute the case of \(|V_{\bullet}| = 1 \).

Lemma 4.9. Suppose that \(|V_{\bullet}| = 1 \) with \(s(\Lambda) \neq 0 \). Then the value \(s(\Lambda) \) is computed as follows.

- Suppose that \(\pi(1) = \circ, \pi(2) = \bullet \) and \(\pi(i) = \circ \) for all \(i \geq 3 \), i.e. \(\pi(\Lambda) \) is
 \[\circ \bullet \circ \cdots \circ \bullet . \] (45)
 Then \(s(\Lambda) = (-1)^{l}. \)

- Suppose that \(\pi(1) = \bullet \) and \(\pi(i) = \circ \) for all \(i \geq 2 \), i.e. \(\pi(\Lambda) \) is
 \[\bullet \circ \circ \cdots \circ . \] (46)
 Then \(s(\Lambda) = (-1)^{l-1}. \)
Proof. By Lemma 4.8, the sequence \(\{\pi(1), \pi(2), \ldots, \pi(l)\} \) is either (45) or (46). In case (45), (resp. (46)), the condition (a) or (b) in Definition 4.1 is satisfied and the number of \(1 \leq i \leq l - 1 \) in which (b) holds is \(l - 2 \). (resp. \(l - 1 \)).

The case of \(|V_*| = 2\) is computed as follows.

Lemma 4.10. Suppose that \(|V_*| = 2\) with \(s(\Lambda) \neq 0 \). Then \(l \geq 3 \) and \(s(\Lambda) \) is computed as follows.

- **Suppose that \(V_* = \{1, 2\} \), i.e. \(\pi(\Lambda) \) is**
 \[
 1 \circ 2 \circ \ldots \circ l .
 \]
 Then \(s(\Lambda) = (-1)^{l-1} \).

- **Suppose that \(V_* = \{1, a\} \) for \(a \geq 3 \), i.e. \(\pi(\Lambda) \) is**
 \[
 1 \circ 2 \circ \ldots \circ a^{-1} \circ a \circ a+1 \circ \ldots \circ l .
 \]
 Then we have
 \[
 v(2) + v(3) + \cdots + v(a-2) < v(a-1) + v(a+1) + \cdots + v(l),
 \]
 \[
 v(2) + v(3) + \cdots + v(a-2) + v(a-1) \geq v(a+1) + \cdots + v(l),
 \]
 and \(s(\Lambda) = (-1)^l \).

- **Suppose that \(V_* = \{2, 3\} \), i.e. \(\pi(\Lambda) \) is**
 \[
 1 \circ 2 \circ 3 \circ \ldots \circ l .
 \]
 Then we have \(v(1) < v(4) + \cdots + v(l) \) and \(s(\Lambda) = (-1)^l \).

- **Suppose that \(V_* = \{2, a\} \) for \(a \geq 4 \), i.e. \(\pi(\Lambda) \) is**
 \[
 1 \circ 2 \circ 3 \circ \ldots \circ a^{-1} \circ a \circ a+1 \circ \ldots \circ l .
 \]
 Then we have
 \[
 v(1) + v(3) + \cdots + v(a-2) < v(a-1) + v(a+1) + \cdots + v(l),
 \]
 \[
 v(1) + v(3) + \cdots + v(a-2) + v(a-1) \geq v(a+1) + \cdots + v(l),
 \]
 and \(s(\Lambda) = (-1)^{l-1} \).

Proof. By Lemma 4.8, the sequence \(\pi(\Lambda) \) is one of (45), (46), (47), (48), (49), (50). In each case, \(s(\Lambda) \) is easily computed by Definition 4.1. For instance, let us consider the case (50). Since \(\mu(v_{a-2}) \leq \mu(v_{a-1}) \) and \(\mu(v_{a-1}) > \mu(v_a) \), we have

\[
\mu(v_1 + v_2 + \cdots + v_{a-2}) < \mu(v_{a-1} + \cdots + v_l), \tag{53}
\]
\[
\mu(v_1 + v_2 + \cdots + v_{a-2} + v_{a-1}) \geq \mu(v_{a} + \cdots + v_l). \tag{54}
\]

Since \(v_2 = v_a = (1, 0) \), the conditions (53), (54) are equivalent to (51), (52) respectively. Conversely, if conditions (51), (52) are satisfied it is easy to check that one of (a) or (b) in Definition 4.1 holds at each \(1 \leq i \leq l - 1 \). In this case, the number of \(1 \leq i \leq l - 1 \) in which \(\mu(v_i) \leq \mu(v_{i+1}) \) holds is \(l - 3 \), hence \(s(\Lambda) = (-1)^{l-1} \).
4.4 Computation of $u(\Lambda)$

In this subsection, we compute $u(\Lambda)$ for a data (39) satisfying (44). We fix an identification between V and $\{1, 2, \ldots, l\}$ via \leq. Let us take $1 \leq l' \leq l$ and a map

$$\psi: \{1, 2, \ldots, l\} \to \{1, 2, \ldots, l'\}, \quad (55)$$

which appears in (38). Note that $\pi(i) = \pi(j)$ if $\psi(i) = \psi(j)$, hence the map π descends to the map

$$\pi': \{1, \ldots, l'\} \to \{\bullet, \circ\}, \quad (56)$$

via ψ. We set $v': \{1, \ldots, l'\} \to \mathbb{Z}_{\geq 1}$ to be

$$v'(i) = \sum_{j \in \psi^{-1}(i)} v(j).$$

Then the data

$$\Lambda' = (\{1, \ldots, l'\}, \pi', v', \leq),$$

is a bi-colored weighted ordered vertex. The map ψ descends to the map of the sequences $\pi(\psi): \pi(\Lambda) \to \pi'(\Lambda')$. First we compute the case of $|V_\bullet| = 1$.

Lemma 4.11. Suppose that $V_\bullet = \{a\}$ for $1 \leq a \leq l$. Then we have

$$u(\Lambda) = \frac{(-1)^{l-a}}{(a-1)!l!(l-a)!}. \quad (57)$$

Proof. In this case, we have $v(a) = 2$ and the number l'' which appears in (38) must be 1. For a map (55), the map $\pi(\psi): \pi(\Lambda) \to \pi'(\Lambda')$ is either one of the following forms by Lemma 4.8.

$$\begin{align*}
a = 1 & \quad \begin{array}{c}
\bullet \circ \cdots \circ \circ \cdots \circ \\
\downarrow & \downarrow & \downarrow \\
\bullet & \circ & \cdots & \circ \\
\end{array} \\
a \geq 2 & \quad \begin{array}{c}
\circ \cdots \bullet \circ \cdots \circ \circ \cdots \circ \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\circ & \bullet & \circ & \cdots & \circ \\
\end{array}
\end{align*}$$

For simplicity we calculate the case of $a \geq 2$. The case of $a = 1$ is similar. By the definition of u_l in (38) and using Lemma 4.9, we have

$$u(\Lambda) = \frac{1}{(a-1)!} \sum_{\psi: \{a+1, \ldots, l\} \to \{3, \ldots, l'\}, \psi \text{ is a non-decreasing surjective map}} (-1)^{l'} \prod_{i=1}^{l'} \frac{1}{|\psi^{-1}(i)|!}. \quad (57)$$

Then we apply Lemma 4.12 below and conclude (57). \qed
We have used the following lemma, whose proof is written in \cite[Proposition 4.9]{12}.

Lemma 4.12. For any \(l \geq 1 \), we have

\[
(-1)^{l-l'} \prod_{i=1}^{l'} \frac{1}{|\psi^{-1}(i)|!} = \frac{1}{l!}.
\]

Next we compute \(u(\Lambda) \) when \(|V_\bullet| = 2 \). We write \(V_\bullet = \{a, b\} \) for \(1 \leq a < b \leq l \). Note that we have

\[
v(a) = v(b) = 1, \quad l'' \leq 2.
\]

Here \(l'' \) is a number which appears in (58). When \(b - a \geq 3 \), the coefficient \(u(\Lambda) \) does not contribute to the sum (48) by the following lemma.

Lemma 4.13. Suppose that \(V_\bullet = \{a, b\} \) with \(b - a \geq 3 \). Then we have

\[
\sum_{(E,s,t) \in \mathcal{E}(\Lambda)} (-1)^{|E_{s-t}|} \prod_{e \in E} v(s(e))v(t(e)) = 0. \tag{58}
\]

Proof. Take \((E,s,t) \in \mathcal{E}(\Lambda)\). Since the quiver \((V,E,s,t)\) is connected and simply connected, there is unique \(a < i < b \) and \(e, e' \in E \) such that

\[
s(e) = a, \quad t(e) = s(e') = i, \quad t(e') = b.
\]

Since \(b - a \geq 3 \), there is \(a < j < b \) such that \(j \neq i \). Since \((V,E,s,t)\) is connected, there is \(e'' \in E \) such that either \((s(e''), t(e'')) = (a, j)\) or \((s(e''), t(e'')) = (j, b)\) holds. Suppose that \((s(e''), t(e'')) = (a, j)\) holds, i.e. the geometric realization of the quiver \((V,E,s,t)\) is as follows,

\[
\begin{array}{c}
\cdots \quad e \quad \cdots \quad \cdots \quad e' \quad \cdots \quad \cdots \\
\end{array}
\]

Note that by the simply connectedness of \((V,E,s,t)\), there is no \(e''' \in E \) which satisfies \((s(e'''), t(e''')) = (j, b)\). We set \(E' \) to be the set

\[
E' = (E \setminus \{e''\}) \bigsqcup \{e'''\},
\]

and define maps \(s', t' : E' \to V \) so that \(s'|_{E \setminus \{e''\}} = s|_{E \setminus \{e''\}} \), \(t'|_{E \setminus \{e''\}} = t|_{E \setminus \{e''\}} \), and \((s(e'''), t(e''')) = (j, b)\). The geometric realization of the quiver \((V,E',s',t')\) is as follows,

\[
\begin{array}{c}
\cdots \quad e \quad \cdots \quad e' \quad \cdots \quad \cdots \\
\end{array}
\]

Since \(v(a) = v(b) = 1 \), we have

\[
(-1)^{|E_{\bullet}|} \prod_{e \in E} v(s(e))v(t(e)) + (-1)^{|E'_{\bullet}|} \prod_{e \in E'} v(s'(e))v(t'(e)) = 0.
\]

Therefore the sum (58) vanishes. \qed
We compute $u(\Lambda)$ when $b - a \leq 2$. Let us divide $u(\Lambda)$ into the following sum,

$$u(\Lambda) = u^{(1)}(\Lambda) + u^{(2)}(\Lambda) + u^{(3)}(\Lambda).$$

Each $u^{(i)}(\Lambda)$ is the following.

- $u^{(1)}(\Lambda)$ is defined by the sum \[38\] with $l'' = 1$ and $\psi: \{1, \cdots, l\} \to \{1, \cdots, l'\}$ satisfying $|\pi' - 1| = 2$. Here $\pi': \{1, \cdots, l\} \to \{\bullet, \circ\}$ is given by \[56\].
- $u^{(2)}(\Lambda)$ is defined by the sum \[38\] with $l'' = 1$ and $\psi: \{1, \cdots, l\} \to \{1, \cdots, l'\}$ satisfying $|\pi' - 1| = 1$.
- $u^{(3)}(\Lambda)$ is defined by the sum \[38\] with $l'' = 2$.

We compute $u^{(1)}(\Lambda)$ as follows.

Lemma 4.14. (i) Suppose that $V_* = \{a, a+1\}$ for $1 \leq a \leq l - 1$. Then $u^{(1)}(\Lambda)$ is non-zero if and only if

$$v(1) + \cdots + v(a - 1) < v(a + 2) + \cdots + v(l).$$

In this case, we have

$$u^{(1)}(\Lambda) = \frac{(-1)^{l-a}}{(a-1)!(l-a-1)!}.$$ (61)

(ii) Suppose that $V_* = \{a, a+2\}$ for $1 \leq a \leq l - 2$. Then $u^{(1)}(\Lambda)$ is non-zero if and only if

$$v(1) + \cdots + v(a - 1) < v(a + 1) + v(a + 3) + \cdots + v(l),$$

$$v(1) + \cdots + v(a - 1) + v(a + 1) \geq v(a + 3) + \cdots + v(l).$$

In this case, we have

$$u^{(1)}(\Lambda) = \frac{(-1)^{l-a-1}}{(a-1)!(l-a-2)!}.$$ (61)

Proof. The computations of (i) and (ii) are identical, so we only check (ii). Let $\psi: \{1, \cdots, l\} \to \{1, \cdots, l'\}$ be a map which appears in \[38\]. By Lemma 4.8, the map $\pi(\psi): \pi(\Lambda) \to \pi'(\Lambda')$ is one of the following forms,

$$a = 1 \quad \begin{array}{ccccccc} 1 & \circ & \circ & \cdots & \cdots & \cdots & \circ \end{array}$$

$$a \geq 2 \quad \begin{array}{cccccccc} \circ & \cdots & a & \circ & a & \cdots & \circ & \cdots & \circ \end{array}$$
For simplicity we calculate the case of $a \geq 2$. By Lemma 4.10, we see that $u^{(1)}(\Lambda)$ is non-zero only if (59) and (60) hold. By Lemma 4.10 and (38), we have

$$u^{(1)}(\Lambda) = \frac{1}{(a - 1)!} \sum_{\psi: \{a+3, \ldots, l\} \to \{5, \ldots, l'\}} (-1)^{l-1} \prod_{i=5}^{l'} \frac{1}{|\psi^{-1}(i)|!},$$

where ψ is a non-decreasing surjective map.

Applying Lemma 4.12, we obtain (61). \[\square\]

The computation of $u^{(2)}(\Lambda)$ is as follows.

Lemma 4.15. We have $u^{(2)}(\Lambda) \neq 0$ if and only if $V_\bullet = \{a, a+1\}$ for some $1 \leq a \leq l-1$. In this case, we have

$$u^{(2)}(\Lambda) = \frac{(-1)^{l-a-1}}{2(a - 1)! (l - a - 1)!}. \quad (62)$$

Proof. Suppose that $u^{(2)}(\Lambda) \neq 0$. By the definition of $u^{(2)}(\Lambda)$, it is obvious that $V_\bullet = \{a, a+1\}$ for some $1 \leq a \leq l-1$. By Lemma 4.8, the map $\pi(\psi): \pi(\Lambda) \to \pi'(\Lambda')$ is one of the following forms,

For simplicity we treat the case of $a \geq 2$. By Lemma 4.10 and the definition of $u^{(2)}(\Lambda)$, we have

$$u^{(2)}(\Lambda) = \frac{1}{2(a - 1)!} \sum_{\psi: \{a+2, \ldots, l\} \to \{3, \ldots, l'\}} (-1)^{l'} \prod_{i=3}^{l'} \frac{1}{|\psi^{-1}(i)|!},$$

where ψ is a non-decreasing surjective map.

Applying Lemma 4.12, we obtain (62). \[\square\]

Finally we compute $u^{(3)}(\Lambda)$.

Lemma 4.16. (i) Suppose that $V_\bullet = \{a, a+1\}$ for $1 \leq a \leq l-1$. Then $u^{(3)}(\Lambda)$ is non-zero if and only if the following condition holds,

$$v(1) + v(2) + \cdots + v(a-1) = v(a+2) + \cdots + v(l).$$

In this case, we have

$$u^{(3)}(\Lambda) = \frac{(-1)^{l-a}}{2(a - 1)! (l - a - 1)!}.$$
(ii) Suppose that \(V_\ast = \{a, a+2\} \) for \(1 \leq a \leq l-2 \). Then \(u^{(3)}(\Lambda) \) is non-zero either one of the following conditions holds,

\[
v(1) + \cdots + v(a-1) = v(a+1) + \cdots + v(l),
\]

(63)

\[
v(1) + \cdots + v(a-1) + v(a+1) = v(a+2) + \cdots + v(l).
\]

(64)

If \((\text{63})\) (resp. \((\text{64})\)) holds, then we have

\[
u^{(3)}(\Lambda) = \frac{(-1)^{l-a-1}}{2(a-1)!(l-(a-1))!}, \quad \text{(resp.} \frac{(-1)^{l-a}}{2(a-1)!(l-a-1)!} \text{)}
\]

(65)

Proof. The computations of (i), (ii) are identical, so we only check (ii). Suppose that \(u^{(3)}(\Lambda) \neq 0 \) and let \(\psi: \{1, \cdots, l\} \to \{1, \cdots, l'\} \) and \(\xi: \{1, \cdots, l'\} \to \{1, 2\} \) be maps which appear in the sum \((\text{58})\). By the definition of \(u^{(3)}(\Lambda) \), the subset \((\psi \circ \xi)^{-1}(i)\) contains an element of \(V_\ast \) for \(i = 1, 2 \). Therefore \((\psi \circ \xi)^{-1}(1)\) is one of the following,

\[
(\psi \circ \xi)^{-1}(1) = \{1, 2, \cdots, a\},
\]

(66)

\[
(\psi \circ \xi)^{-1}(1) = \{1, 2, \cdots, a, a+1\}.
\]

(67)

If \((\text{66})\) (resp. \((\text{67})\)) holds, then the condition \((\text{63})\) (resp. \((\text{64})\)) holds. For simplicity we treat the case in which \((\text{66})\) holds. The map \(\pi(\psi): \pi(\Lambda) \to \pi'(\Lambda') \) together with the map \(\xi \) is as follows,

\[
\begin{array}{cccccc}
(\circ \cdots \circ & a) & (\circ \circ \cdots \circ & a+2 & \cdots & \circ \circ) \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
(\circ \circ \cdots \circ & \circ \circ) & (\circ \circ & \circ \circ & \cdots & \circ) \\
\downarrow & \downarrow & \cdots & \circ & \circ \\
1 & 2
\end{array}
\]

By Lemma \(4.9\) and the definition of \(u^{(3)}(\Lambda) \), we have

\[
u^{(3)}(\Lambda) = -\frac{1}{2} \cdot \frac{1}{(a-1)!} \sum_{\psi: \{a+3 \cdots, l'\} \to \{5 \cdots, p'\}, \psi \text{ is a non-decreasing surjective map}} (-1)^{l'} \prod_{i=5}^{l'} \frac{1}{|\psi^{-1}(i)|}.
\]

Applying Lemma \(4.12\) we obtain \((\text{65})\).

4.5 **Generating series of DT(2, n)**

Combining the calculations in the previous subsections, we compute DT(2, n). We divide DT(2, n) into the following four parts,

\[
\text{DT}(2, n) = \text{DT}^{(0)}(2, n) + \text{DT}^{(1)}(2, n) + \text{DT}^{(2)}(2, n) + \text{DT}^{(3)}(2, n).
\]

Each DT\(^{(i)}\)(2, n) is the following.
• DT\((0, 2, n)\) is defined by the sum \(40\) for bi-colored weighted ordered vertices \(\Lambda = (V, \pi, v, \leq)\) with \(r(\Lambda) = 2\), \(n(\Lambda) = n\) and \(|V_*| = 1\).

• For \(1 \leq i \leq 3\), DT\((i, 2, n)\) is defined by the sum \(40\) for bi-colored weighted ordered vertices \(\Lambda = (V, \pi, v, \leq)\) with \(r(\Lambda) = 2\), \(n(\Lambda) = n\), \(|V| = 2\), and \(u(\Lambda)\) is replaced by \(u(i)(\Lambda)\).

We define the generating series DT\((i, 2)\) by

\[
DT(i, 2) = \sum_{n \geq 0} DT(i, 2, n)q^n.
\]

In what follows, we compute DT\((i, 2)\). Recall the definition of the MacMahon function \(M(q)\) given in \(32\).

Lemma 4.17. We have the following formula.

\[
DT(0, 2) = 1\frac{1}{4}M(q)^{2\chi(X)}.
\]

Proof. Let \(\Lambda = (V, \pi, v, \leq)\) be a bi-colored weighted ordered vertex with \(|V| = l\) and \(V_* = \{a\}\) for \(1 \leq a \leq l\). Obviously the set \(E(\Lambda)\) consists of one element \((E, s, t) \in E(\Lambda)\), whose geometric realization is as follows,

\[\delta \cdots \delta \cdots \delta \cdots \delta\]

Note that we have \(|E_{\rightarrow 0}| = l - a\). By Remark 3.10 Theorem 4.5 and Lemma 4.11 we have

\[
DT(0, 2) = \sum_{l \geq 1, 1 \leq a \leq l, \substack{v: (1, \ldots, l) \rightarrow Z_{\geq 1}, \\ v(a) = 2}} \frac{(-1)^{l-a}}{(a-1)!(l-a)!} \cdot \frac{1}{4} \prod_{i \neq a} DT(0, v(i))q^{v(i)}
\]

\[\left(-\frac{1}{2}\right)^{l-1} \cdot (-1)^{l-a} \prod_{i \neq a} 2v(i)\]

\[= \frac{1}{4} \sum_{l \geq 0, v: (1, \ldots, l) \rightarrow Z_{\geq 1}} \frac{1}{l!} \prod_{i=1}^{l} (-2v(i)) DT(0, v(i))q^{v(i)}\]

\[= \frac{1}{4} \exp \left(\sum_{n \geq 0} -2n DT(0, n)q^n\right)\]

\[= \frac{1}{4} M(q)^{2\chi(X)}.
\]

Here we have used the following in \(69\),

\[
\sum_{1 \leq a \leq l} \frac{1}{(a-1)!(l-a)!} \cdot \frac{1}{2^{l-1}} = \frac{1}{(l-1)!}
\]

and the formula \(34\) in \(70\).
Next let us compute $\mathrm{DT}^{(1)}(2)$. We introduce the following notation. We define the series $N(q)$ to be

$$N(q) := \frac{d}{dq} \log M(q) = \sum_{n \geq 0, \ r | n} r^2 q^n.$$

For series $f_1, f_2, \cdots, f_N \in \mathbb{Q}[q]$ given by

$$f_i = \sum_{n \geq 0} a^{(i)}_n q^n, \quad 1 \leq i \leq N,$$

and a subset $\Delta \subset \mathbb{Z}^{N}_{\geq 0}$, we define the series $\{f_1 \cdot f_2 \cdots f_N\}_\Delta$ to be

$$\{f_1 \cdot f_2 \cdots f_N\}_\Delta = \sum_{(n_1, n_2, \cdots, n_N) \in \Delta} a^{(1)}_{n_1} a^{(2)}_{n_2} \cdots a^{(N)}_{n_N} q^{n_1 + n_2 + \cdots + n_N}. \quad (71)$$

Lemma 4.18. We have the following formula,

$$\mathrm{DT}^{(1)}(2) = -\chi(X) \left\{ M(q)^{\chi(X)} \cdot M(q)^{\chi(X)} \cdot N(q) \right\}_\Delta. \quad (72)$$

Here $\Delta \subset \mathbb{Z}^3_{\geq 0}$ is

$$\Delta = \{(m_1, m_2, m_3) \in \mathbb{Z}^3_{\geq 0} : -m_3 \leq m_1 - m_2 < m_3\}. \quad (73)$$

Proof. Let $\Lambda = (V, \pi, v, \leq)$ be a bi-colored weighted ordered vertex with $r(\Lambda) = 2$, $n(\Lambda) = n$ and $|V_\bullet| = 2$. Let $|V| = l$ and we identify V and $\{1, \cdots, l\}$ via \leq. By Lemma 4.13 the data Λ contributes to (70) only if one of the following conditions hold.

- We have $V_\bullet = \{a, a + 1\}$ for $1 \leq a \leq l - 1$. In this case, there are two types for $(E,s,t) \in \mathcal{E}(\Lambda)$.

Type A: There is unique $1 \leq c \leq a - 1$ and $e, e' \in E$ such that

$$s(e) = s(e') = c, \quad t(e) = a, \quad t(e') = a + 1.$$

In this case, we have $|E_{\bullet \rightarrow 0}| = l - a - 1$. If we fix such c, there are 2^{l-3}-choices of such $(E,s,t) \in \mathcal{E}(\Lambda)$. One of their geometric realizations is as follows,

Type B: There is unique $a + 2 \leq c \leq l$ and $e, e' \in E$ such that

$$t(e) = t(e') = c, \quad s(e) = a + 1, \quad s(e') = a.$$

In this case, we have $|E_{\bullet \rightarrow 0}| = l - a$. If we fix such c, there are 2^{l-3}-choices of such $(E,s,t) \in \mathcal{E}(\Lambda)$. One of their geometric realizations is as follows,
• We have $V_a = \{a, a + 2\}$ for $1 \leq a \leq l - 2$. In this case, we call an element $(E, s, t) \in \mathcal{E}(\Lambda)$ as Type C.

Type C: There is $e, e' \in E$ such that

$$s(e) = a, \quad t(e) = s(e') = a + 1, \quad t(e') = a + 2.$$

There are 2^{l-3}-choices of $(E, s, t) \in \mathcal{E}(\Lambda)$. One of their geometric realizations is as follows,

![Image](image1.png)

We write $DT^{(1)}(2)$ as

$$DT^{(1)}(2) = DT_A^{(1)}(2) + DT_B^{(1)}(2) + DT_C^{(1)}(2),$$

where $DT_A^{(1)}(2)$, $DT_B^{(1)}(2)$ and $DT_C^{(1)}(2)$ are contributions of $(E, s, t) \in \mathcal{E}(\Lambda)$ of type A, B and C respectively. Using Lemma 4.14 (i) and Theorem 4.5, the series $DT^{(1)}(2)$ is computed as follows,

$$DT_A^{(1)}(2) = \sum_{l \geq 1, 1 \leq a \leq l-1, 1 \leq c \leq a-1, \atop v: \{1, \ldots, l\} \to \mathbb{Z}_{\geq 1}, v(a)=v(a+1)=1, \atop v(1)+\cdots+v(a-1)<v(a+2)+\cdots+v(l)} \frac{(-1)^{l-a}}{(a-1)!(l-a-1)!} \prod_{i \neq a, a+1} DT(0, v(i)) q^{v(i)}$$

$$= \frac{1}{4} \sum_{a \geq 0, b \geq 0, k \geq 1, \atop v: \{1, \ldots, a\} \to \mathbb{Z}_{\geq 1}, v': \{1, \ldots, b\} \to \mathbb{Z}_{\geq 1}, \atop v(1)+\cdots+v(a+k)<v'(1)+\cdots+v'(6)} \frac{b}{a!} \prod_{i=1}^{a} (-v(i)) q^{v(i)} \cdot DT(0, v(i)) q^{v'(i)} \cdot (-k^2) DT(0, k) q^k$$

$$= \frac{\chi(X)}{4} \{M(q)^{\chi(X)} \cdot M(q)^{\chi(X)} \cdot N(q)\}_{\Delta_A}. \quad (74)$$

Here Δ_A is defined by

$$\Delta_A = \{(m_1, m_2, m_3) \in \mathbb{Z}_{\geq 0}^3 : m_1 + m_3 < m_2\},$$

and we have used the formula (35) in (74). Using Lemma 4.14 similar computations show that

$$DT_B^{(1)}(2) = -\frac{\chi(X)}{4} \{M(q)^{\chi(X)} \cdot M(q)^{\chi(X)} \cdot N(q)\}_{\Delta_B},$$

$$DT_C^{(1)}(2) = -\frac{\chi(X)}{4} \{M(q)^{\chi(X)} \cdot M(q)^{\chi(X)} \cdot N(q)\}_{\Delta_C},$$

31
where Δ_B is defined by
\[
\Delta_B = \{(m_1, m_2, m_3) \in \mathbb{Z}_0^3 : m_1 < m_2 + m_3\},
\]
and Δ is defined by (73). Noting that $\Delta_B = \Delta_A \coprod \Delta$, we obtain the formula (72).

Finally we show that $DT^{(i)}(2)$ vanish for $i = 2, 3$.

Lemma 4.19. We have $DT^{(i)}(2, n) = 0$ for any $n \geq 0$ and $i = 2, 3$.

Proof. Let $\Lambda = (V, \pi, v, \leq)$ be a bi-colored weighted ordered vertex with $r(\Lambda) = 2$, $|V| = l$, and take $(E, s, t) \in E(\Lambda)$. By Lemma 4.13 we may assume that $V = \{a, a + 1\}$ or $V = \{a, a + 2\}$ for some $1 \leq a \leq l - 1$. Let us consider the following data,
\[
\Lambda^* = (V, \pi, v, \leq^*), \quad (E, s^*, t^*),
\]
by setting \leq^*, s^* and t^* to be
\[
\alpha \leq^* \beta \text{ if and only if } \alpha \geq \beta, \quad s^* = t, \quad t^* = s.
\]
Then it is obvious that $(E, s^*, t^*) \in E(\Lambda^*)$. For instance, the relationship between geometric realizations is as follows,
\[
(L, E, s, t) : \quad \cdots \quad \overset{1}{\cdots} \quad \overset{a}{\cdots} \quad \overset{b}{\cdots} \quad \overset{l}{\cdots}
\]
\[
(L^*, E, s^*, t^*) : \quad \cdots \quad \overset{1}{\cdots} \quad \overset{a}{\cdots} \quad \overset{l}{\cdots} \quad \overset{b}{\cdots}
\]
Note that if $V = \{a, a + 1\}$, then (E, s, t) is of type A (resp. B) in the proof of Lemma 4.18 if and only if (E^*, s^*, t^*) is of type B (resp. A). Also if $V = \{a, a + 2\}$, then Λ satisfies (63), (resp. (64)) if and only if Λ^* satisfies (64), (resp. (63).) Hence the map
\[
(L, (E, s, t)) \mapsto (L^*, (E, s^*, t^*))
\]
is a free involution on the set of pairs $(L, (E, s, t))$ for data (39) satisfying $V = \{a, b\}$ with $0 < b - a \leq 2$ and $(E, s, t) \in E(\Lambda)$. Using the computations of $u^{(2)}(\Lambda)$, $u^{(3)}(\Lambda)$ in Lemma 4.15 and Lemma 4.16, it is easy to check that
\[
(-1)^{|E \cdot \circ|} u^{(i)}(\Lambda) + (-1)^{|E^* \cdot \circ|} u^{(i)}(\Lambda^*) = 0,
\]
for $i = 2, 3$. Therefore $DT^{(i)}(2, n) = 0$ for any $n \geq 0$ and $i = 2, 3$. \qed

Summarizing Lemma 4.17, Lemma 4.18 and Lemma 4.19, we obtain the following.
Theorem 4.20. We have the following formula.

\[DT(2) = \frac{1}{4} M(q)^2 \chi(x) - \frac{\chi(x)}{2} \{ M(q) \chi(x) \cdot M(q) \chi(x) \cdot N(q) \} \Delta, \]

for \(\Delta = \{(m_1, m_2, m_3) \in \mathbb{Z}^3_{\geq 0} : -m_3 \leq m_1 - m_2 < m_3\} \).

Remark 4.21. By Corollary 4.7 and Theorem 4.20, we have

\[\sum_{n \geq 0} \text{Eu}(2, n) q^n = -\frac{1}{4} M(q)^2 \chi(x) - \frac{\chi(x)}{2} \{ M(q) \chi(x) \cdot M(q) \chi(x) \cdot N(q) \} \Delta, \]

for \(\Delta = \{(m_1, m_2, m_3) \in \mathbb{Z}^3_{\geq 0} : -m_3 \leq m_1 - m_2 < m_3\} \).

5 Integrality property

In this section, we study the invariant \(\Omega(2, n) \in \mathbb{Q} \), defined as follows.

Definition 5.1. We define \(\Omega(2, n) \in \mathbb{Q} \) to be

\[\Omega(2, n) = \begin{cases} DT(2, n), & n \text{ is odd}, \\ DT(2, n) - \frac{1}{4} DT(1, \frac{n}{2}), & n \text{ is even}. \end{cases} \]

By Corollary 4.7, the invariant \(\Omega(2, n) \) is also written as

\[\Omega(2, n) = \begin{cases} -\text{Eu}(2, n), & n \text{ is odd}, \\ -\text{Eu}(2, n) - (-1)^{\frac{n}{2}} \text{Eu}(1, \frac{n}{2}), & n \text{ is even}. \end{cases} \] (76)

In this section, we show the following result, which is an evidence of the integrality conjecture by Kontsevich-Soibelman [14, Conjecture 6].

Theorem 5.2. We have \(\Omega(2, n) \in \mathbb{Z} \).

It seems that Theorem 5.2 is not obvious from the explicit formula (75). Instead of using (75), we give a geometric proof of Theorem 5.2 using the definition of \(DT(2, n) \).

Let \(Q^{(2, n)} \subset \text{Quot}^{(n)}(O_X^{\geq 2}) \) be a GL(2, \mathbb{C})-invariant Zariski open subset constructed in Lemma 2.12. By Lemma 2.12, there is a smooth morphism

\[f : Q^{(2, n)} \to \text{Obj}^{(2, n)}(A_X). \]

For \(p \in Q^{(2, n)} \), we denote by \(E_p \in A_X \) the object corresponding to \(f(p) \in \text{Obj}^{(2, n)}(A_X) \).

By the definition of \(DT(2, n) \), it is obvious that \(\Omega(2, n) \in \mathbb{Z} \) when \(n \) is odd. Therefore in what follows we set \(n = 2m \) for \(m \in \mathbb{Z} \). We take a GL(2, \mathbb{C})-invariant stratification of \(Q^{(2, 2m)} \),

\[Q^{(2, 2m)} = Q_0^{(2, 2m)} \coprod Q_1^{(2, 2m)} \coprod Q_2^{(2, 2m)} \coprod Q_3^{(2, 2m)} \coprod Q_4^{(2, 2m)}, \]

as follows.
Then we can write

$$\delta \in \mathcal{H}(\mathcal{A}_X)$$

for Z_+^e-stable $E_i \in \mathcal{A}_X$ with $\text{cl}(E_i) = (1, m)$ and E_1 is not isomorphic to E_2.

* $Q_0^{(2,2m)}$ corresponds to $p \in Q^{(2,2m)}$ such that $E_p \in \mathcal{A}_X$ is Z_+^e-stable.

* $Q_1^{(2,2m)}$ corresponds to $p \in Q^{(2,2m)}$ such that $E_p \in \mathcal{A}_X$ fits into a non-split exact sequence

$$0 \rightarrow E_1 \rightarrow E_p \rightarrow E_2 \rightarrow 0,$$

(77)

for Z_+^e-stable $E_i \in \mathcal{A}_X$ with $\text{cl}(E_i) = (1, m)$ and E_1 is not isomorphic to E_2.

* $Q_2^{(2,2m)}$ corresponds to $p \in Q^{(2,2m)}$ such that $E_p \in \mathcal{A}_X$ is isomorphic to $E_1 \oplus E_2$ for Z_+^e-stable $E_i \in \mathcal{A}_X$ with $\text{cl}(E_i) = (1, m)$ and E_1 is not isomorphic to E_2.

* $Q_3^{(2,2m)}$ corresponds to $p \in Q^{(2,2m)}$ such that $E_p \in \mathcal{A}_X$ fits into a non-split exact sequence (77) such that $E_1 \cong E_2$.

* $Q_4^{(2,2m)}$ corresponds to $p \in Q^{(2,2m)}$ such that $E_p \in \mathcal{A}_X$ is isomorphic to $E_1^{(2,2m)}$ for a Z_+^e-stable $E_1 \in \mathcal{A}_X$.

Then we can write

$$\delta^{(2,2m)}(Z_+) \in \mathcal{H}(\mathcal{A}_X)$$

as

$$\delta^{(2,2m)}(Z_+) = \sum_{i=0}^{4} \delta_i,$$

where δ_i is

$$\delta_i = \left[\frac{Q_i^{(2,2m)}}{GL(2, \mathbb{C})} \right] \rightarrow Obj(\mathcal{A}_X)
= \frac{1}{2} \left[\frac{Q_i^{(2,2m)}}{\mathbb{G}_m^2} \right] \rightarrow Obj(\mathcal{A}_X) - \frac{3}{4} \left[\frac{Q_i^{(2,2m)}}{\mathbb{G}_m} \right] \rightarrow Obj(\mathcal{A}_X).$$

(78)

Here we have used the relation (28) and Example 3.4.

Lemma 5.3. The element $\delta^{(1,m)}(Z_+) * \delta^{(1,m)}(Z_+) \in \mathcal{H}(\mathcal{A}_X)$ is written as

$$\delta^{(1,m)}(Z_+) * \delta^{(1,m)}(Z_+) = \sum_{i=1}^{4} \tilde{\delta}_i,$$

(79)

where each $\tilde{\delta}_i$ is as follows.

$$\tilde{\delta}_1 = \int_{(p_1, p_2) \in Q^{(1,m)} \times Q^{(1,m)} \setminus D} \left[\frac{\mathbb{P}(\text{Ext}^1(E_{p_2}, E_{p_1}))}{\mathbb{G}_m} \right] \rightarrow Obj(\mathcal{A}_X) d\mu,$$

(80)

$$\tilde{\delta}_2 = \left[\frac{(Q^{(1,m)} \times Q^{(1,m)}) \setminus D}{\mathbb{G}_m^2} \right] \rightarrow Obj(\mathcal{A}_X),$$

(81)

$$\tilde{\delta}_3 = \int_{p \in Q^{(1,m)}} \left[\frac{\mathbb{P}(\text{Ext}^1(E_p))}{\mathbb{A}^1 \times \mathbb{G}_m} \right] \rightarrow Obj(\mathcal{A}_X) d\mu,$$

(82)

$$\tilde{\delta}_4 = \left[\frac{Q^{(1,m)}}{\mathbb{A}^1 \times \mathbb{G}_m^2} \right] \rightarrow Obj(\mathcal{A}_X).$$

(83)
Here \(D \subset Q^{(1,m)} \times Q^{(1,m)} \) is a diagonal, the algebraic groups in the denominators act on the varieties in the numerators trivially. The measure \(\mu \) for the integrations \((80), (82)\) sends constructible sets on \(Q^{(1,m)} \times Q^{(1,m)} \) or \(Q^{(1,m)} \) to the associated elements of the Grothendieck group of varieties.

Proof. Recall that \(\delta^{(1,m)}(Z_+) \ast \delta^{(1,m)}(Z_+) \) is defined by taking the fiber product of the following diagram,

\[
\mathcal{E}_X(A_X) \\
\downarrow^{(p_1,p_3)} \\
[Q^{(1,m)}/G_m] \times [Q^{(1,m)}/G_m] \longrightarrow \text{Obj}(A_X) \times \text{Obj}(A_X).
\]

Here \(G_m \) acts on \(Q^{(1,m)} \) trivially. Take \(\mathbb{C} \)-valued points \(\rho_i : \text{Spec} \mathbb{C} \to Q^{(1,m)} \) for \(i = 1, 2 \), which corresponds to \(E_i \in A_X \). We have the associated elements in the Hall-algebra,

\[
f_i = \left[\text{Spec} \mathbb{C}/G_m \xrightarrow{\rho_i} [Q^{(1,m)}/G_m] \to \text{Obj}(A_X) \right].
\]

Then \(f_1 \ast f_2 \) is as follows,

\[
f_1 \ast f_2 = \left[\frac{\text{Ext}^1(E_2, E_1)}{\text{Hom}(E_2, E_1) \times G_m^2} \to \text{Obj}(A_X) \right].
\]

Here \((t_1, t_2) \in G_m^2 \) acts on \(\text{Ext}^1(E_2, E_1) \) and \(\text{Hom}(E_2, E_1) \) via multiplying \(t_1 t_2^{-1} \), and \(\text{Hom}(E_2, E_1) \) acts on \(\text{Ext}^1(E_2, E_1) \) trivially. For \(u \in \text{Ext}^2(E_2, E_1) \), the stabilizer group of the \(G_m^2 \)-action on \(\text{Ext}^1(E_2, E_1) \) at \(u \) is \(G_m^2 \) if \(u = 0 \) and the diagonal subgroup \(G_m \subset G_m^2 \) if \(u \neq 0 \). Therefore we have

\[
f_1 \ast f_2 = \left[\frac{\mathbb{P}(\text{Ext}^1(E_2, E_1))}{\text{Hom}(E_2, E_1) \times G_m} \to \text{Obj}(A_X) \right] + \frac{\text{Spec} \mathbb{C}}{\text{Hom}(E_2, E_1) \times G_m} \to \text{Obj}(A_X)
\]

Here the algebraic groups in the denominators act trivially on the varieties in the numerators. Since \(E_i \in A_X \) are \(Z_+ \)-stable, we have

\[
\text{Hom}(E_1, E_2) = \begin{cases} \mathbb{A}^1, & \text{if } \rho_1 = \rho_2, \\ \text{Spec} \mathbb{C}, & \text{if } \rho_1 \neq \rho_2. \end{cases}
\]

Taking the integration of \((80)\) over points on \((Q^{(1,m)} \times Q^{(1,m)}) \setminus D \) and \(D \cong Q^{(1,m)} \), we obtain the decomposition \((79)\).

Lemma 5.4. The element \(\delta_0 \in \mathcal{H}(A_X) \) is written as \((71)\) such that \(\chi(\delta_0, 1) \in \mathbb{Z} \).

Proof. For a point \(p \in Q_0^{(2,2m)} \), the object \(E_p \in A_X \) satisfies \(\text{Aut}(E_p) = G_m \) since \(E_p \) is \(Z_+ \)-stable. Hence the diagonal subgroup \(G_m \subset \text{GL}(2, \mathbb{C}) \) acts on \(Q_0^{(2,2m)} \) trivially, and the quotient group \(\text{GL}(2, \mathbb{C})/G_m = \text{PGL}(2, \mathbb{C}) \) acts freely on \(Q_0^{(2,2m)} \). Hence \(\delta_0 \) is written as \([M/G_m] \to \text{Obj}(A_X)) \] for an algebraic space \(M = Q_0^{(2,2m)}/\text{PGL}(2, \mathbb{C}) \), and \(G_m \) acts on \(M \) trivially. Since any algebraic space is written as a disjoint union of quasi-projective varieties, \(\delta_0 \) is written as \((31)\) with each \(c_i \in \mathbb{Z} \). Therefore \(\chi(\delta_0, 1) \in \mathbb{Z} \) follows. □

35
For $1 \leq i \leq 4$, we set $\epsilon_i \in H(A_X)$ as follows,

$$\epsilon_i = \delta_i - \frac{1}{2} \tilde{\delta}_i.$$

Lemma 5.5. The element $\epsilon_1 \in H(A_X)$ is written as (31) such that $\chi(\epsilon_1, 1) \in \mathbb{Z}$.

Proof. For $p \in Q_1^{(2,2m)}$, it is easy to see that the object $E_p \in A_X$ satisfies $\text{Aut}(E_p) = \mathbb{G}_m$ by using the exact sequence (77). Hence $\text{PGL}(2, \mathbb{C})$ acts freely on $Q_1^{(2,2m)}$ as in the proof of Lemma 5.4, and the quotient space $Q_1^{(2,2m)}/\text{PGL}(2, \mathbb{C})$ is an algebraic space over \mathbb{C}. Also it is easy to see that the objects $E_i \in A_X$ which appear in (77) are uniquely determined up to isomorphisms for a given $p \in Q_1^{(2,2m)}$. Hence there is a map of algebraic spaces,

$$\gamma: Q_1^{(2,2m)}/\text{PGL}(2, \mathbb{C}) \to (Q^{(1,m)} \times Q^{(1,m)}) \setminus D,$$

such that if $\gamma(p) = (p_1, p_2)$, there is an exact sequence in A_X,

$$0 \to E_{p_1} \to E_p \to E_{p_2} \to 0. \quad (87)$$

By the construction, closed points of the fiber of γ at (p_1, p_2) bijectively correspond to isomorphism classes of objects $E_p \in A_X$ which fit into an exact sequence (87), which also bijectively correspond to closed points in $\mathbb{P}(\text{Ext}^1(E_{p_2}, E_{p_1}))$. Therefore we have

$$\chi(\epsilon_1, 1) = \int_{(p_1, p_2) \in (Q^{(1,m)} \times Q^{(1,m)}) \setminus D} \chi(\mathbb{P}(\text{Ext}^1(E_{p_2}, E_{p_1})))d\chi$$

$$- \frac{1}{2} \int_{(p_1, p_2) \in (Q^{(1,m)} \times Q^{(1,m)}) \setminus D} \chi(\mathbb{P}(\text{Ext}^1(E_{p_2}, E_{p_1})))d\chi,$$

$$= \frac{1}{2} \int_{(p_1, p_2) \in (Q^{(1,m)} \times Q^{(1,m)}) \setminus D} \dim \text{Ext}^1(E_{p_2}, E_{p_1})d\chi$$

$$= \int_{(p_1, p_2) \in \text{Sym}^2(Q^{(1,m)}) \setminus D} \dim \text{Ext}^1(E_{p_2}, E_{p_1})d\chi \in \mathbb{Z}. \quad (88)$$

In (88), we have used the fact that

$$\dim \text{Ext}^1(E_{p_2}, E_{p_1}) = \dim \text{Ext}^1(E_{p_1}, E_{p_2}),$$

for $(p_1, p_2) \in (Q^{(1,m)} \times Q^{(1,m)}) \setminus D$, which follows from the formula (11) and

$$\text{Hom}(E_{p_1}, E_{p_2}) = \text{Hom}(E_{p_2}, E_{p_1}) = 0.$$

Lemma 5.6. The element $\epsilon_2 \in H(A_X)$ is written as (31) such that $\chi(\epsilon_2, 1) = 0$.

Proof. Let $T^G = \mathbb{G}_m^2 \subset \text{GL}(2, \mathbb{C})$ be the subgroup of diagonal matrices, and consider the associated \mathbb{G}_m^2-action on $Q_2^{(2,2m)}$. Since the subgroup $\mathbb{G}_m \subset T^G$ given by (27) acts on
$Q^{(2,2m)}_2$ trivially, the quotient group $T^G/G_m \cong G_m$ acts on $Q^{(2,2m)}_2$. The set of T^G/G_m-fixed points is the image of the map

$$\iota: (Q^{(1,m)} \times Q^{(1,m)}) \setminus D \to Q^{(2,2m)}_2,$$

defined by

$$(\mathcal{O}_X \overset{s_1}{\to} F_1, \mathcal{O}_X \overset{s_2}{\to} F_2) \mapsto (\mathcal{O}_X^{\mathbb{Z}^2} \overset{(s_1,s_2)}{\to} F_1 \oplus F_2).$$

It is easy to see that ι is an injection, and T^G/G_m acts on $Q^{(2,2m)}_2 \setminus \text{Im} \iota$ freely. We set $\widetilde{Q}^{(2,2m)}_2$ to be the quotient algebraic space,

$$\widetilde{Q}^{(2,2m)}_2 = (Q^{(2,2m)}_2 \setminus \text{Im} \iota)/(T^G/G_m).$$

Noting (78), we obtain that

$$\epsilon_2 = \frac{1}{2} \left[\frac{\text{Im} \iota}{G_m^2} \right] \to \text{Obj}(A_X) + \frac{1}{2} \left[\frac{\widetilde{Q}^{(2,2m)}_2}{G_m} \right] \to \text{Obj}(A_X),$$

$$- \frac{3}{4} \left[\frac{Q^{(2,2m)}_2}{G_m} \right] \to \text{Obj}(A_X) - \frac{1}{2} \left[\frac{(Q^{(1,m)} \times Q^{(1,m)}) \setminus D}{G_m} \right] \to \text{Obj}(A_X),$$

$$= \frac{1}{2} \left[\frac{\widetilde{Q}^{(2,2m)}_2}{G_m} \right] \to \text{Obj}(A_X) - \frac{3}{4} \left[\frac{Q^{(2,2m)}_2}{G_m} \right] \to \text{Obj}(A_X).$$

(89)

Hence ϵ_2 is written as (31). Let us compute the Euler characteristic of $\widetilde{Q}^{(2,2m)}_2$. For a point $p \in Q^{(2,2m)}_2$ and the object $E_p \in A_X$, take $(p_1,p_2) \in (Q^{(1,m)} \times Q^{(1,m)}) \setminus D$ such that $E_p \cong E_{p_1} \oplus E_{p_2}$. It is easy to see that the pair (E_1,E_2) is uniquely determined up to isomorphisms and a permutation. Hence $p \mapsto (p_1,p_2)$ defines a well-defined map,

$$\gamma: Q^{(2,2m)}_2 \to \text{Sym}^2(Q^{(1,m)}) \setminus D.$$

For $(p_1,p_2) \in \text{Sym}^2(Q^{(1,m)}) \setminus D$, the $\text{GL}(2,\mathbb{C})$-action on $Q^{(2,2m)}_2$ induces a map,

$$\text{GL}(2,\mathbb{C}) \to \gamma^{-1}(p_1,p_2),$$

which is a G_m^2-bundle over $\gamma^{-1}(p_1,p_2)$. Restricting to $\gamma^{-1}(p_1,p_2) \setminus \text{Im} \iota$, we obtain the G_m^2-bundle over $\gamma^{-1}(p_1,p_2) \setminus \text{Im} \iota$,

$$\text{GL}(2,\mathbb{C}) \setminus (T^G \cup i(T^G)) \to \gamma^{-1}(p_1,p_2) \setminus \text{Im} \iota.$$
The free $\mathbb{T}^G / \mathbb{G}_m \cong \mathbb{G}_m$-action on $Q^{(2,2m)} \backslash \text{Im } \iota$ restricts to the free \mathbb{G}_m-action on $\gamma^{-1}(p_1, p_2) \backslash \text{Im } \iota$. By (90), we have

$$P_t((\gamma^{-1}(p_1, p_2) \backslash \text{Im } \iota) / \mathbb{G}_m) = \frac{t^4 + t^2 - 1}{t^2 - 1} = t^2 + 2.$$

By inverting $t = 1$, we obtain

$$\chi((\gamma^{-1}(p_1, p_2) \backslash \text{Im } \iota) / \mathbb{G}_m) = 3. \quad (91)$$

Now the map γ descends to a map

$$\gamma' : \tilde{Q}_2^{(2,2m)} \rightarrow \text{Sym}^2(Q^{(1,m)} \backslash D),$$

such that the Euler characteristic of each fiber of γ' is 3 by (91). Therefore we obtain

$$\chi(\tilde{Q}_2^{(2,2m)}) = 3 \cdot \chi(\text{Sym}^2(Q^{(1,m)} \backslash D)) = \frac{3}{2} \left(\chi(Q^{(1,m)})^2 - \chi(Q^{(1,m)}) \right). \quad (92)$$

On the other hand, since the T^G / \mathbb{G}_m-fixed points in $Q_2^{(2,2m)}$ coincides with $\text{Im } \iota$, the localization implies

$$\chi(Q_2^{(2,2m)}) = \chi(Q^{(1,m)})^2 - \chi(Q^{(1,m)}). \quad (93)$$

By (89), (92) and (93), we obtain $\chi(\epsilon_2, 1) = 0$. \hfill \Box

Lemma 5.7. The element $\epsilon_3 \in H(\mathcal{A}_X)$ is written as (77) such that

$$\chi(\epsilon_3, 1) \equiv \frac{m}{2} \chi(Q^{(1,m)}), \quad (\text{ mod } \mathbb{Z}). \quad (94)$$

Proof. For a point $p \in Q_3^{(2,2m)}$, the object $E_p \in \mathcal{A}_X$ satisfies

$$\text{Aut}(E) = \text{Stab}_p(\text{GL}(2, \mathbb{C})) \cong A^1 \rtimes \mathbb{G}_m,$$

since E_p fits into the exact sequence (77) with $E_1 \cong E_2$. Then for the diagonal matrices $T^G \subset \text{GL}(2, \mathbb{C})$, we have $\text{Stab}_p(\text{GL}(2, \mathbb{C})) \cap T^G$ is the subgroup $\mathbb{G}_m \subset T^G$ given by (27).

Therefore the action of T^G on $Q_3^{(2,2m)}$ descends to the free action of $T^G / \mathbb{G}_m \cong \mathbb{G}_m$. We set $Q_3^{(2,2m)}$ to be the quotient algebraic space,

$$\tilde{Q}_3^{(2,2m)} = Q_3^{(2,2m)}/(T^G / \mathbb{G}_m).$$

Using (78) and the relation (28), we have

$$\epsilon_3 = \frac{1}{2} \left[\left[\frac{Q_3^{(2,2m)}}{\mathbb{G}_m} \right] \rightarrow \text{Obj}(\mathcal{A}_X) \right] - \frac{3}{4} \left[\left[\frac{Q_3^{(2,2m)}}{\mathbb{G}_m} \right] \rightarrow \text{Obj}(\mathcal{A}_X) \right] \quad (95)$$

$$- \frac{1}{2} \int_{p \in Q^{(1,m)}} \left[\left[\frac{\mathbb{P}(\text{Ext}^1(E_p, E_p))}{\mathbb{G}_m} \right] \rightarrow \text{Obj}(\mathcal{A}_X) \right]. \quad (96)$$

38
Here the algebraic groups in the denominators act on the varieties in the numerators trivially. Therefore \(\varepsilon_3 \) is written as \((31)\). Let us calculate the Euler characteristic of \(\tilde{Q}_3^{(2,2m)} \). For \(p \in Q_3^{(2,2m)} \), let \(\gamma(p) \in Q^{(1,m)} \) be the point such that \(E_p \) fits into the exact sequence \((77)\) with \(E_1 \cong E_{\gamma(p)} \). It is easy to see that \(p \mapsto \gamma(p) \) is a well-defined morphism of varieties,

\[
\gamma: Q_3^{(2,2m)} \rightarrow Q^{(1,m)}.
\]

For \(p' \in Q^{(1,m)} \), the fiber of \(\gamma \) at \(p' \) carries a surjection,

\[
\gamma': \gamma^{-1}(p') \twoheadrightarrow \text{Ext}^1(E_{p'}, E_{p'}) \setminus \{0\},
\]

which sends a point \(p \in \gamma^{-1}(p') \) to the extension class of \((77)\). For \(u \in \text{Ext}^1(E_{p'}, E_{p'}) \setminus \{0\} \), we have the surjective morphism,

\[
\gamma'': \text{GL}(2, \mathbb{C}) \twoheadrightarrow \gamma^{-1}(u),
\]

induced by the \(\text{GL}(2, \mathbb{C}) \)-action on \(Q^{(2,2m)} \). Each fiber of \(\gamma'' \) is isomorphic to the special algebraic group \(\mathbb{A}^1 \rtimes \mathbb{G}_m \), hence \(\gamma'' \) is Zariski locally trivial. The free \(T_G/\mathbb{G}_m \)-action on \(Q_3^{(2,2m)} \) restricts to the free \(T_G/\mathbb{G}_m \cong \mathbb{G}_m \)-action on \(\gamma^{-1}(u) \), and the virtual Poincaré polynomial of the quotient space is

\[
P_t(\gamma^{-1}(u)/\mathbb{G}_m) = \frac{P_t(\text{GL}(2, \mathbb{C}))}{P_t(\mathbb{A}^1 \rtimes \mathbb{G}_m)P_t(T_G/\mathbb{G}_m)}
= t^2 + 1.
\]

(97)

Now \(\gamma' \) descends to a morphism

\[
\gamma^{-1}(E)/\mathbb{G}_m \twoheadrightarrow \mathbb{P}(\text{Ext}^1(E, E)),
\]

such that the Euler characteristic of each fiber is equal to \(P_t(\gamma^{-1}(u)/\mathbb{G}_m) |_{t=1} = 2 \) by \((97)\). Therefore \(\chi(\tilde{Q}_3^{(2,2m)}) \) is

\[
\chi(\tilde{Q}_3^{(2,2m)}) = 2 \int_{p \in Q^{(1,m)}} \dim \text{Ext}^1(E_p, E_p) \, d\chi.
\]

(98)

Since \(\mathbb{G}_m \) acts on \(Q_3^{(2,2m)} \) freely, we have \(\chi(Q_3^{(2,2m)}) = 0 \). By \((95)\) and \((98)\), we have

\[
\chi(\varepsilon_3, 1) = \frac{1}{2} \int_{p \in Q^{(1,m)}} \dim \text{Ext}^1(E_p, E_p) \, d\chi.
\]

(99)

On the other hand, the same argument of [3, Theorem 4.11] shows that

\[
\int_{p \in Q^{(1,m)}} (-1)^{\dim \text{Ext}^1(E_p, E_p)} \, d\chi = (-1)^m \chi(Q^{(1,m)}).
\]

(100)

By \((99)\) and \((100)\), we obtain \((94)\).
Lemma 5.8. The element $\epsilon_4 \in H(A_X)$ is written as (41) and we have

$$\chi(\epsilon_4, 1) = -\frac{1}{4}\chi(Q^{(1,m)}).$$

Proof. By (78) and noting that $F(G, T^G, T^G) = 1$, $F(G, T^G, \mathbb{G}_m) = -1$ for $G = \mathbb{A}^1 \times \mathbb{G}_m^2$, $T^G = \{0\} \times \mathbb{G}_m^2$, and $\mathbb{G}_m \subset T^G$ given by (27), we have

$$\epsilon_4 = \frac{1}{2} \left[\left[\frac{Q^{(1,m)}}{\mathbb{G}_m^2} \right] \to \mathcal{O}bj(A_X) \right] - \frac{3}{4} \left[\left[\frac{Q^{(1,m)}}{\mathbb{G}_m} \right] \to \mathcal{O}bj(A_X) \right]$$

$$- \frac{1}{2} \left[\left[\frac{Q^{(1,m)}}{\mathbb{G}_m^2} \right] \to \mathcal{O}bj(A_X) \right] + \frac{1}{2} \left[\left[\frac{Q^{(1,m)}}{\mathbb{G}_m} \right] \to \mathcal{O}bj(A_X) \right]$$

$$= -\frac{1}{4} \left[\left[\frac{Q^{(1,m)}}{\mathbb{G}_m} \right] \to \mathcal{O}bj(A_X) \right].$$

Here the algebraic groups in the denominators act on the varieties in the numerators trivially. The above formula immediately imply the result.

Proof of Theorem 5.2:

Proof. By (76), Lemma 5.4, Lemma 5.5, Lemma 5.6, Lemma 5.7, and Lemma 5.8, we obtain

$$\Omega(2, 2m) \equiv -\frac{\chi(Q^{(1,m)})}{4}\left\{2m - 1 + (-1)^m\right\} \pmod{\mathbb{Z}}$$

$$\equiv 0 \pmod{\mathbb{Z}}.$$

References

[1] K. Behrend. Donaldson-Thomas invariants via microlocal geometry. Ann. of Math (to appear). math.AG/0507523

[2] K. Behrend and J. Bryan. Super-rigid Donaldson-Thomas invariants. Math. Res. Lett., Vol. 14, pp. 559–571, 2007.

[3] K. Behrend and B. Fantechi. Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory, Vol. 2, pp. 313–345, 2008.

[4] L. Borisov and A. Caldararu. The Pfaffian-Grassmannian derived equivalence. J. Algebraic. Geom., Vol. 18, pp. 201–222, 2009.

[5] T. Bridgeland. Stability conditions on triangulated categories. Ann. of Math, Vol. 166, pp. 317–345, 2007.

[6] S. Gelfand and Y. Manin. Methods of Homological Algebra (2nd edition). Springer Monographs in Mathematics. Springer-Verlag, 2003.
[7] D. Happel, I. Reiten, and S. O. Smalø. Tilting in abelian categories and quasitilted algebras. *Mem. Amer. Math. Soc*, Vol. 120, , 1996.

[8] D. Huybrechts and M. Lehn. *Geometry of moduli spaces of sheaves*, Vol. E31 of *Aspects in Mathematics*. Vieweg, 1997.

[9] D. Joyce. Configurations in abelian categories II. Ringel-Hall algebras. *Advances in Math*, Vol. 210, pp. 635–706, 2007.

[10] D. Joyce. Configurations in abelian categories III. Stability conditions and identities. *Advances in Math*, Vol. 215, pp. 153–219, 2007.

[11] D. Joyce. Motivic invariants of Artin stacks and ‘stack functions’. *Quarterly Journal of Mathematics*, Vol. 58, p. 2007, 2007.

[12] D. Joyce. Configurations in abelian categories IV. Invariants and changing stability conditions. *Advances in Math*, Vol. 217, pp. 125–204, 2008.

[13] D. Joyce and Y. Song. A theory of generalized Donaldson-Thomas invariants. *preprint*. math.AG/0810.5645.

[14] M. Kontsevich and Y. Soibelman. Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. *preprint*. math.AG/0811.2435.

[15] G. Laumon and L. Moret-Bailly. *Champs algébriques*, Vol. 39 of *Ergebnisse der Mathematik und ihrer Grenzgebiete*. Springer Verlag, Berlin, 2000.

[16] M. Levine and R. Pandharipande. Algebraic cobordism revisited. *preprint*. math.AG/0605196.

[17] J. Li. Zero dimensional Donaldson-Thomas invariants of threefolds. *Geom. Topol.*, Vol. 10, pp. 2117–2171, 2006.

[18] M. Lieblich. Moduli of complexes on a proper morphism. *J. Algebraic Geom.*, Vol. 15, pp. 175–206, 2006.

[19] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande. Gromov-Witten theory and Donaldson-Thomas theory. I. *Compositio. Math*, Vol. 142, pp. 1263–1285, 2006.

[20] J. Stoppa, D0-D6 states counting and GW invariants. *preprint*. math.AG/0912.2923.

[21] R. P. Thomas. A holomorphic casson invariant for Calabi-Yau 3-folds and bundles on K3-fibrations. *J. Differential. Geom*, Vol. 54, pp. 367–438, 2000.

[22] Y. Toda. Curve counting theories via stable objects I: DT/PT correspondence. *preprint*. math.AG/0902.4371.

[23] Y. Toda. Moduli stacks and invariants of semistable objects on K3 surfaces. *Advances in Math*, Vol. 217, pp. 2736–2781, 2008.
Institute for the Physics and Mathematics of the Universe, University of Tokyo
E-mail address: toda-914@pj9.so-net.ne.jp, yukinobu.toda@ipmu.jp