Substantial impact of FDG PET imaging on the therapy decision in patients with early-stage Hodgkin’s lymphoma

R Naumann1, B Beuthien-Baumann2, A Reiß1, J Schulze3, A Hänel4, J Bredow2, G Kühnel3, J Kropp2, M Hänel4, M Laniado3, J Kotzerke2 and G Ehninger1

1Department of Medicine I, University Hospital Carl Gustav Carus at the Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; 2Department of Nuclear Medicine, PET Center Rossendorf, University Hospital Carl Gustav Carus at the Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; 3Department of Diagnostic Radiology, University Hospital Carl Gustav Carus at the Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; 4Department of Haematology/Oncology, Clinic of Internal Medicine III, Chemnitz Medical Center, Buergerstr. 2, 09113 Chemnitz, Germany

This prospective study assessed the impact of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) on the staging and possible consequential changes of treatment regimen in patients with Hodgkin’s lymphoma (HL). A total of 88 consecutive patients with histologically verified Hodgkin’s lymphoma underwent a PET scan in addition to conventional staging procedures. Treatment was based on the conventional staging only, and the results of the FDG-PET did not affect the treatment strategy. The evaluation focused on the suggested change in clinical stage according to the Ann Arbor classification and on the suggested change in treatment strategy rather than on a lesion-by-lesion analysis. Using all the methods performed as the standard of reference, 18F-FDG-PET staging was concordant with conventional staging in 70 out of 88 patients (80%). 18F-fluorodeoxyglucose positron emission tomography suggested a change to a different clinical stage in 18 patients (20%). Management would have been changed in 16 patients (18%): intensification of treatment in nine patients (10%) and minimisation of treatment in seven patients (8%). In the 44 patients with early disease (stage IA–IIB), treatment would have been intensified in nine out of 44 patients (20%). 18F-fluorodeoxyglucose positron emission tomography is a relevant noninvasive method that supplements conventional staging procedures and should therefore be used routinely to stage Hodgkin’s lymphoma, particularly in patients with an early stage.

British Journal of Cancer (2004) 90, 620 – 625. doi:10.1038/sj.bjc.6601561 www.bjcancer.com

Keywords: Hodgkin’s lymphoma; 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET); staging; lymphoma

Today, Hodgkin’s lymphoma (HL) is one of the malignant diseases with the highest rate of cure in adults based on improved chemotherapy and radiotherapy. The most important objective of staging is the exact detection of all nodal and extranodal lymphoma manifestations present to be able to administer the optimal therapy according to the stage and to the risk situation. The criteria for detecting involvement are mainly based on the assessment of the size of the lymph nodes, mainly revealed with computed tomography (CT), regarding lymph nodes with a diameter of more than 1 cm as pathologic. Although these criteria are generally accepted, it is known that on the one hand lymph nodes that are smaller than 1 cm may already have undergone malignant transformation and on the other hand, benign lymphadenopathy may also lead to enlarged lymph nodes (Castellino et al., 1984). Focal bone marrow involvement is typical in HL. It may be missed even if a bilateral bone marrow biopsy is taken in the dorsal iliac crest (sampling error) (Brunning et al., 1975).

As a noninvasive functional method, 18F-fluorodeoxyglucose (18F-FDG-PET) offers tomographic imaging and quantification of the metabolic activity of tumour tissue with a high spatial resolution. Supplementing the standard investigations, 18F-FDG-PET may provide further diagnostic information for staging. Today, the high sensitivity and specificity of PET for staging is no longer disputed (Kostakoglu and Goldsmith, 2000; O’Doherty et al., 2002; Schiepers et al., 2003; Staak et al., 2003). 18F-fluorodeoxyglucose is the most frequently used PET tracer in the investigation of malignant lymphoma (Hustinx et al., 2003). The majority of published studies addressed the staging of lymphoma; only limited data on the impact of FDG-PET on the treatment planning are available.

The aim of this prospective study was to assess the clinical impact of 18F-FDG-PET on the therapeutic management in a larger patient group than has been published up to now.

MATERIALS AND METHODS

Patients

Between April 1997 and April 2002, 88 consecutive patients with primary (n = 77) or recurrent (n = 11) HL were enrolled in our prospective study at the Department of Medicine I, University of Dresden, and the Department of Haematology/Oncology, Chemnitz Medical Center, Germany. The disease was verified

Correspondence: Dr. R Naumann;
E-mail ralph.naumann@uniklinikum-dresden.de
Received 1 September 2003; revised 13 November 2003; accepted 13 November 2003
histologically in all patients using the World Health Organization (WHO) classification system (Harris et al., 1999). Patients were examined with both conventional staging procedures and PET imaging within 4 weeks before the initiation of therapy. The local ethics committee approved the study. All patients gave their written informed consent for the performance of PET, which was regarded as a routine procedure in staging. The patients characteristics are presented in Table 1.

Conventional staging procedures

The routine staging comprised physical examination, chest X-ray, ultrasound, contrast-enhanced CT of the neck, chest, abdomen and pelvis. Full laboratory work-up included erythrocyte sedimentation rate (ESR) as well as posterior iliac crest biopsy for bone marrow evaluation. Magnetic resonance tomography (MRI) or bone scan was performed additionally in individual patients or when there was suspicion of osseous involvement. Nodal involvement was defined as lymph node enlargement of 1 cm or more on

Table 1	Patient characteristics (n = 88)		
Characteristic	**No.**	**%**	
Sex			
Male	57	65	
Female	31	35	
Age (years)			
Median	34	years	
Range	17 to 83	years	
Disease status			
Initial diagnosis	77	87	
Recurrent disease	11	13	
Histology (WHO classification)			
Classical HL			
Nodular sclerosis HL	52	59	
Lymphocyte-rich classical HL	1	1	
Mixed cellularity HL	29	33	
Lymphocyte depletion HL	1	1	
Hodgkin’s but unclassified	3	3	
Nodular lymphocyte-predominant HL	2	2	
Clinical stage (conventional staging procedures)			
IIE	7/1	8	9
IIIE	33/3	36	41
III/IIIE	22/6	28	32
IV	16	16	18

IIE = Hodgkin’s lymphoma.

The spatial resolution was 4.0 mm (axial) and 4.2 mm (transaxial). Six bed positions were taken for 8 min each. A transmission scan for attenuation correction was obtained for each patient using rotating bed positions. Attenuation correction was performed from the proximal femur to the base of the skull and, depending on the involved locations, also on the head and lower extremities. The patients fasted for at least 6 h before the PET scan. At 45 – 60 min after injection of 300 – 370 MBq 18FDG, the investigation was carried out with an ECAT EXACT-HR $^+$ scanner (Siemens/CTI, TN, USA) with an axial field of view of 15.5 cm. The posterior iliac crest biopsy for bone marrow evaluation, the patients were treated with the etoposide-free BACOPP-D regimen, which included cyclophosphamide, Adriamycin, dacarbazaine, procarbazine, prednisolone, bleomycin and vincristine (Naumann et al., 2002b). In cases of recurrence in patients with stage I or II disease, the question of the feasibility of curative treatments was addressed on the basis of clinical or imaging findings. The clinical stage of the patients was assessed according to the Ann Arbor classification (Carbone et al., 1971).

18F-FDG-PET imaging

18F-fluorodeoxyglucose positron emission tomography was performed from the proximal femur to the base of the skull and, depending on the involved locations, also on the head and lower extremities. The patients fasted for at least 6 h before the PET scan. At 45 – 60 min after injection of 300 – 370 MBq 18FDG, the investigation was carried out with an ECAT EXACT-HR + scanner (Siemens/CTI, TN, USA) with an axial field of view of 15.5 cm. The spatial resolution was 4.0 mm (axial) and 4.2 mm (transaxial). Six bed positions were taken for 8 min each. A transmission scan for attenuation correction was obtained for each patient using rotating 68Ga/68Ge rod sources. Coronal, sagittal and transverse data sets were reconstructed. The findings were interpreted visually after examining the section in the black and white mode on a high resolution display by at least two experienced investigators in consensus. Pathologically raised FDG uptake was analysed quantitatively using regions of interest (ROIs) and by determination of the standardised uptake values (SUVs) (Strauss and Conti, 1991). Regions of interest were marked with isocounts around a suspicious lesion, setting the lower threshold at the level of SUV 2.0.

Treatment protocols

Patients with primary diagnosis were assigned to an early, intermediate and advanced stage according to the current risk factors of the German Hodgkin’s Lymphoma Study Group, GHSG (Sieber et al., 2000). This risk stratification may entail a change in therapy despite identical stage due to the presence of an additional risk factor (Table 2). Between April 1997 and April 2000, the patients were enrolled in the protocols of the GHSG. In the limited stage, the patients received either extended field (EF) irradiation alone or EF irradiation (trial HD 7 of the GHSG). In the intermediate stage, the patients were treated with two cycles of COPP-ABVD with EF or involved field (IF) irradiation (trial HD 8). In the advanced stage, the patients obtained COPP–ABVD or the BEACOPP regime (trial HD 9). Between May 2000 and April 2002, patients were treated in pilot studies using identical inclusion criteria. In the limited or intermediate stage, the patients received four or six cycles of ABVD, respectively, plus IF irradiation in case of residual mass (more than 1.5 cm in CT). In the advanced stage, the patients were treated with the etoposide-free BACOPP-D regimen, which included cyclophosphamide, Adriamycin, dacarbazaine, procarbazine, prednisolone, bleomycin and vincristine (Naumann et al., 2002b). In cases of recurrence in patients with stage I or II disease, the question of the feasibility of curative treatments was addressed on the basis of clinical or imaging findings. The clinical stage of the patients was assessed according to the Ann Arbor classification (Carbone et al., 1971).

18F-FDG-PET imaging

18F-fluorodeoxyglucose positron emission tomography was performed from the proximal femur to the base of the skull and, depending on the involved locations, also on the head and lower extremities. The patients fasted for at least 6 h before the PET scan. At 45 – 60 min after injection of 300 – 370 MBq 18FDG, the investigation was carried out with an ECAT EXACT-HR + scanner (Siemens/CTI, TN, USA) with an axial field of view of 15.5 cm. The spatial resolution was 4.0 mm (axial) and 4.2 mm (transaxial). Six bed positions were taken for 8 min each. A transmission scan for attenuation correction was obtained for each patient using rotating 68Ga/68Ge rod sources. Coronal, sagittal and transverse data sets were reconstructed. The findings were interpreted visually after examining the section in the black and white mode on a high resolution display by at least two experienced investigators in consensus. Pathologically raised FDG uptake was analysed quantitatively using regions of interest (ROIs) and by determination of the standardised uptake values (SUVs) (Strauss and Conti, 1991). Regions of interest were marked with isocounts around a suspicious lesion, setting the lower threshold at the level of SUV 2.0.

Treatment protocols

Patients with primary diagnosis were assigned to an early, intermediate and advanced stage according to the current risk factors of the German Hodgkin’s Lymphoma Study Group, GHSG (Sieber et al., 2000). This risk stratification may entail a change in therapy despite identical stage due to the presence of an additional risk factor (Table 2). Between April 1997 and April 2000, the patients were enrolled in the protocols of the GHSG. In the limited stage, the patients received either extended field (EF) irradiation alone or ABVD plus EF irradiation (trial HD 7 of the GHSG). In the intermediate stage, the patients were treated with two cycles of COPP-ABVD with EF or involved field (IF) irradiation (trial HD 8). In the advanced stage, the patients obtained COPP–ABVD or the BEACOPP regime (trial HD 9). Between May 2000 and April 2002, patients were treated in pilot studies using identical inclusion criteria. In the limited or intermediate stage, the patients received four or six cycles of ABVD, respectively, plus IF irradiation in case of residual mass (more than 1.5 cm in CT). In the advanced stage, the patients were treated with the etoposide-free BACOPP-D regimen, which included cyclophosphamide, Adriamycin, dacarbazaine, procarbazine, prednisolone, bleomycin and vincristine (Naumann et al., 2002b). In cases of recurrence in patients with stage I or II disease, the question of the feasibility of curative treatments was addressed on the basis of clinical or imaging findings. The clinical stage of the patients was assessed according to the Ann Arbor classification (Carbone et al., 1971).
irradiation was considered. In patients in whom it was not feasible, as well as in the stages III and IV, salvage chemotherapy and if necessary high-dose chemotherapy with stem cell support was administered.

Standard of reference

As pathologic confirmation of all lesions (gold standard) was impossible, the results of all methods performed were subsumed in a standard of reference. Positive findings at clinical examination, CT or another conventional technique and appropriate {\(^{18}\)F-FDG-PET} findings were interpreted as a manifestation of HL (true-positive). Negative findings with both standard methods and {\(^{18}\)F-FDG-PET} were regarded as true-negative. The result of the comparison between conventional diagnostics and {\(^{18}\)F-FDG-PET} was rated as discordant if both procedures led to an identical clinical stage. In cases of discrepancy, imaging studies were reviewed by an interdisciplinary panel comprising of colleagues from the departments of nuclear medicine, diagnostic radiology and haematology. In these patients, PET imaging findings within final staging as well as response to therapy and follow-up information were used to evaluate the precision of the initial PET scans.

RESULTS

All patients could be assessed for evaluation.

Concordant results

Using all the methods performed as the standard of reference, staging by {\(^{18}\)F-FDG-PET} was concordant with conventional staging procedures in 70 out of 88 patients (80%). Of these 70 patients, six had stage I, 29 had stage II, 20 had stage III and 15 had stage IV according to the Ann Arbor classification.

Discordant results

In 18 patients (20%), discordant results between PET and conventional staging procedures were found.

- **True-positive PET findings**: In 11 patients (13%), additional lymphoma sites were found.
- **True-negative PET findings**: In one patient, a false-positive cervical ultrasound finding was correctly identified by PET.
- **False-negative PET findings**: In three patients, {\(^{18}\)F-FDG-PET} could not identify retroperitoneal nodal involvement. In one patient, {\(^{18}\)F-FDG-PET} did not detect biopsy-proven liver involvement. {\(^{18}\)F-FDG-PET} failed to detect inguinal and cervical nodal HL in two more cases. Response to therapy and final CT scans were used to verify the described false-negative nodal PET findings in retrospect.
- **False-positive PET findings**: No false-positive PET findings occurred.

Change in clinical stage

Of the 88 patients examined, the staging would have changed in 18 patients (20%) as a result of the {\(^{18}\)F-FDG-PET} scan. In all, 11 patients (13%) would have been upstaged and seven patients (8%) would have been downstaged. There would have been one upstaging from clinical stage I to II, one from I to IV, four from II to III, one from II to IV and four from III to IV. Figure 1 shows the PET image of one patient, where the additional focal liver uptake would have changed the stage from II to III according to the modified Ann Arbor classification (patient no. 13). Downstaging was suggested for two patients from II to I, one patient from III to I, three patients from III to II and one patient from IV to II.

Figure 1 Additional focal liver uptake (solid arrow) would have changed former stage II (cervical and mediastinal involvement, dashed arrows) to stage III (patient no. 13, Table 3).
DISCUSSION

Precise staging is prerequisite to establish the optimum treatment strategy in patients with HL (Lister et al, 1989). Owing to the increasing use of combination chemotherapy at early stages, the result of the H6-F study of the EORTC, use of prognostic factors and improved CT and MRI techniques, staging laparotomy has disappeared as a routine staging procedure (Glatstein et al, 1969; Carde et al, 1993).

In the last few years, the value of FDG-PET for the staging of malignant diseases has been recognised. The use of elevated 18F-FDG uptake as an indicator for malignant disease renders 18F-FDG-PET independent of morphological conditions. The published sensitivity and specificity emphasises the value of 18F-FDG-PET in the staging of lymphoma and explains the increasing acceptance of this method (Jerusalem et al, 2001; Naumann et al, 2001; Spaepen et al, 2001; Kostakoglu et al, 2002; Guay et al, 2003). Elstrom et al were able to confirm the high sensitivity of 18F-FDG-PET for HL, diffuse large-cell NHL, and for the follicular subtype of indolent NHL (Elstrom et al, 2003).

A review of the literature only revealed a small number of studies concentrating solely on primary and recurrence staging in

Table 3 Patients with suggested changes to stage and/or treatment strategy due to 18F-FDG-PET

Patient no.	Disease status (P, R)	Stage	Standard	PET	Change in stage	Change in treatment
1	P	IIIA	IIIA		Downstaging	Minimisation
2	R	IAE	IVA		Upstaging	No change
3	P	IIIB	IIIB		Downstaging	Minimisation
4	P	IIIA	IVA		Upstaging	No change
5	R	IIAE	II AE		Upstaging	Minimisation
6	R	II B	II B		Upstaging	Minimisation
7	P	IVA	IIA		Downstaging	Minimisation
8	P	IIIA	IIA		Upstaging	No change
9	P	II A	II A		Downstaging	Intensification
10	P	IIAE	II AE		Downstaging	Intensification
11	P	II A	II AE		No change	Intensification
12	P	IIB	IB		Downstaging	Minimisation
13	P	II A	II AE		Upstaging	Intensification
14	P	IIA	IVA		Upstaging	Intensification
15	P	I A	IIA		Upstaging	No change
16	P	II B	IV B		Upstaging	No change
17	P	IIA	IIA		No change	Intensification
18	P	IIA	IIA		No change	Minimisation
19	P	IIA	IIA		No change	Minimisation
20	P	IIIB	IVB		Upstaging	No change
21	P	IIIB	IVB		Upstaging	No change
22	P	II A	II AE		No change	Intensification

P = primary diagnosis, R = recurrent disease.
Clinical

underwent consequent intensification of treatment in accordance of a total of 22 patients investigated (18%). Of these, one patient Castellino RA, Hoppe RT, Blank N, Young SW, Neumann C, Rosenberg SA, Elstrom R, Guan L, Baker G, Nakhoda K, Vergilio JA, Zhuang H, Pitsilos S, Glatstein E, Guernsey JM, Rosenberg SA, Kaplan HS (1969) The value of stages resulted in six out of 28 (21%) patients (Menzel et al, 2002) reported on upstaging in four patients out of a total of 22 patients investigated (18%). Of these, one patient underwent consequent intensification of treatment in accordance with the therapy strategies of the GHSG (Weihrauch et al, 2002). The rate of upstaged patients in our study (13%) was quite similar.

To our knowledge, our study comprising 88 prospectively investigated HL patients is the largest-scale PET study on this topic that has been published up to now. The main result of our study was the high rate of treatment intensification in patients with limited stages I and II (20%). The selective consideration of patients with stage II increased the rate to 22%.

False-negative PET findings in the detection of CT-positive and PET-negative areas underscore our own observation and our recommendation to use 18F-FDG-PET not instead, but in combination with conventional diagnostics. In six patients (7%) of our study, the use of the standard of reference prevented a downstaging owing to false-negative PET findings. In a further female patient, the 18F-FDG-PET did not detect a third and thus therapy-relevant lymph node location. Theoretically, in a total of six patients (7%) this would have erroneously led to a minimisation of therapy. Weihrauch et al (2002) reported a similar experience in their prospective study mentioned above, in which 18F-FDG-PET missed Hodgkin’s foci in six patients (27%). Although inflammatory lesions, in particular, can cause a pitfall in PET imaging, we did not observe any false-positive PET findings that suggested erroneous upstaging in our study (Moog et al, 1998a; Huetlenschmidt et al, 2001; Naumann et al, 2002a).

In our study, 18F-FDG-PET suggested upstaging into a clinical stage IV in six cases, in two patients with consequences for treatment owing to the detection of disseminated bone involvement and bone marrow infiltration (BMI). In fact, 18F-FDG-PET is more sensitive and specific than bone scintigraphy in identifying cortical bone involvement in malignant lymphoma and is consequently likely to supersede this method (Moog et al, 1999). 18F-fluorodeoxyglucose positron emission tomography as a sensitive method for the detection of bone marrow infiltration can provide additional information to that of bone marrow biopsy in the staging of malignant lymphomas (Bangerter et al, 1998; Carr et al, 1998; Moog et al, 1998b; Naumann and Beuthien-Baumann, in press).

On the basis of our results, we consider 18F-FDG-PET to be of value especially in stages I and II, since in these stage groups the input from the PET result on the treatment was substantial. In stages III and IV, 18F-FDG-PET may not be cost effective. As in most other publications, our investigation was a monocentric study. In the future, multicentric studies are absolutely necessary in order to underpin further the role of 18F-FDG-PET as an additional method in clinical staging of patients with HL.

REFERENCES

Bangerter M, Moog F, Buchmann I, Kotzerke J, Grieshammer M, Hafner M, Elsner K, Frickhofen N, Reise SN, Bergmann I (1998) Whole-body 2-[18F]-fluoro-2-deoxy-g-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol 9: 1117 – 1122

Brunning RD, Bloomfield CD, McKenna RW, Peterson LA (1975) Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. Ann Intern Med 82: 365 – 366

Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M (1971) Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res 31: 1860 – 1861

Carde P, Hagenbeek A, Hayat M, Moncoutui M, Thomas J, Burgers MJ, Noordijk EM, Tanguy A, Meerdorf HT, Le Fur R (1993) Clinical staging versus laparotomy and combined modality with MOPP versus ABVD in early-stage Hodgkin’s disease: the H6 twin randomized trials from the European Organization for Research and Treatment of Cancer Lymphoma Cooperative Group. J Clin Oncol 11: 2258 – 2272

Carr R, Barrington SF, Madan B, O’Doherty MJ, Saunders CA, van der Walt J, Timothy AR (1998) Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood 91: 3340 – 3346

Castellino RA, Hoppe RT, Blank N, Young SW, Neumann C, Rosenberg SA, Kaplan HS (1984) Computed tomography, lymphography, and staging laparotomy: correlations in initial staging of Hodgkin disease. Am J Roentgenol 143: 37 – 42

Eletrom R, Guan L, Baker G, Nakhoda K, Vergilio JA, Zhuang H, Pitsilos S, Bagg A, Downs L, Mehrotra A, Kim S, Alavi A, Schuster SJ (2003) Utility of FDG-PET scanning in lymphoma by WHO classification. Blood 101: 3875 – 3876

Glatstein E, Guerney JM, Rosenberg SA, Kaplan HS (1969) The value of laparotomy and splenectomy in the staging of Hodgkin’s disease. Cancer 24: 709 – 718

Guay C, Lépine M, Verreault J, Bénard F (2003) Prognostic value of PET using 18F-FDG in Hodgkin’s disease for posttreatment evaluation. J Nucl Med 44: 1225 – 1231

Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 17: 3835 – 3849

Huetlenschmidt B, Sautter-Bihl ML, Lang O (2001) Whole body positron emission tomography in the treatment of Hodgkin disease. Cancer 91: 302 – 310

HustinX R, Lemaire C, Jerusalem G, Moreau P, Cataldo D, Duysinx B, Aerts J, Fassotse MF, Foirad J, Luxen A (2003) Whole-body tumor imaging using PET and 2-18F-fluoro-l-tyrosine: preliminary evaluation and comparison with 18F-FDG. J Nucl Med 44: 533 – 539

Hustinx R, Lemaire C, Jerusalem G, Moreau P, Cataldo D, Duysinx B, Aerts J, Fassotse MF, Foirad J, Luxen A (2003) Whole-body tumor imaging using PET and 2-18F-fluoro-l-tyrosine: preliminary evaluation and comparison with 18F-FDG. J Nucl Med 44: 533 – 539

Hustinx R, Lemaire C, Jerusalem G, Moreau P, Cataldo D, Duysinx B, Aerts J, Fassotse MF, Foirad J, Luxen A (2003) Whole-body tumor imaging using PET and 2-18F-fluoro-l-tyrosine: preliminary evaluation and comparison with 18F-FDG. J Nucl Med 44: 533 – 539

Kaplan HS (1984) Computed tomography, lymphography, and staging laparotomy: correlations in initial staging of Hodgkin disease. Am J Roentgenol 143: 37 – 42

REFERENCES

Bagg A, Downs L, Mehrotra A, Kim S, Alavi A, Schuster SJ (2003) Utility of FDG-PET scanning in lymphoma by WHO classification. J Clin Oncol 21: 3340 – 3346

Staging of Hodgkin’s lymphoma with PET

British Journal of Cancer (2004) 90(3), 620 – 625

© 2004 Cancer Research UK
Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N, Reske SN (1998a) Extranodal malignant lymphoma: detection with FDG PET versus CT. *Radiology* 206: 475–481

Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN (1998b) 18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. *J Clin Oncol* 16: 603–609

Moog F, Kotzerke J, Reske SN (1999) FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. *J Nucl Med* 40: 1407–1413

Naumann R, Vaic A, Beuthien-Baumann B, Bredow J, Kropp J, Kittner T, Franke WG, Ehninger G (2001) Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin's disease and non-Hodgkin's lymphoma. *Br J Haematol* 115: 793–800

Naumann R, Beuthien-Baumann B (in press) Can [F18]FDG Positron emission tomography replace bone marrow biopsy in staging of patients with malignant lymphoma? *Clin Lymphoma*

Naumann R, Beuthien-Baumann B, Fischer R, Kittner T, Bredow J, Kropp J, Ockert D, Ehninger G (2002a) Simultaneous occurrence of Hodgkin's lymphoma and eosinophilic granuloma: a potential pitfall in positron emission tomography imaging. *Clin Lymphoma* 3: 121–124

Naumann, R, Haenel A, Kroschina F, Friedrichsen K, Zschuppe E, Moelle M, Freund S, Fiedler E, Ehninger G, Haenel M (2002b) BACOPP-D as treatment in patients with advanced Hodgkin's lymphoma. *Blood* 100: 4761a

O'Doherty MJ, Macdonald EA, Barrington SF, Mikhaeel NG, Schey S (2002) Positron emission tomography in the management of lymphomas. *Clin Oncol* 14: 415–426

Sieber M, Engert A, Diehl V (2000) Treatment of Hodgkin's disease: results and current concepts of the German Hodgkin's Lymphoma Study Group. *Ann Oncol* 11(Suppl 1): S81–S85

Schiepers C, Flimont JE, Czernin J (2003) PET for staging of Hodgkin's disease and non-Hodgkin's lymphoma. *Eur J Nucl Med Mol Imaging* 30(Suppl 1): S82–S88

Spaepen K, Strooobants S, Dupont P, Thomas J, Vandenberghpe P, Balzarini J, De Wolf-Peeters C, Mortelmans L, Verhoe F (2001) Can positron emission tomography with [(18)F]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin's disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? *Br J Haematol* 115: 272–278

Staaak J, Dietlein M, Engert A, Weihrauch MR, Schomacker K, Fischer T, Eschner W, Borchmann P, Diehl V, Schicha H, Schnell R (2003) Hodgkin’s lymphoma in nuclear medicine: diagnostic and therapeutic aspects. *Nuklearmedizin* 42: 19–24

Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. *J Nucl Med* 32: 623–648

Weihrauch MR, Re D, Bischoff S, Dietlein M, Scheidhauer K, Krug B, Textoris F, Anser S, Franklin J, Bohlen H, Wolf J, Schicha H, Diehl V, Tesch H (2002) Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. *Ann Hematol* 81: 20–25

O’Doherty MJ, Macdonald EA, Barrington SF, Mikhaeel NG, Schey S (2002) Positron emission tomography in the management of lymphomas. *Clin Oncol* 14: 415–426

Schiepers C, Flimont JE, Czernin J (2003) PET for staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. *Eur J Nucl Med Mol Imaging* 30(Suppl 1): S82–S88