Landesman-Lazer condition revisited: the influence of vanishing and oscillating nonlinearities

Pavel Drábek *, Martina Langerová †

Abstract. In this paper we deal with semilinear problems at resonance. We present a sufficient condition for the existence of a weak solution in terms of the asymptotic properties of nonlinearity. Our condition generalizes the classical Landesman-Lazer condition but it also covers the cases of vanishing and oscillating nonlinearities.

Keywords. resonance problem; semilinear equation; Landesman-Lazer condition; saddle point theorem; critical points.

AMS Subject Classification. Primary 35J20, 35J25. Secondary 35B34, 35B38.

1 Introduction

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain, $g : \mathbb{R} \to \mathbb{R}$ be a bounded continuous function and $f \in L^2(\Omega)$. We consider the boundary value problem

$$
-\Delta u - \lambda_k u + g(u) = f \quad \text{in } \Omega,
$$

$$
u = 0 \quad \text{on } \partial\Omega.
$$

(1)

Here λ_k, $k \geq 1$, is the k-th eigenvalue of the eigenvalue problem

$$
-\Delta u - \lambda u = 0 \quad \text{in } \Omega,
$$

$$
u = 0 \quad \text{on } \partial\Omega.
$$

(2)

By a solution of (1) we understand a function $u \in H := W^{1,2}_0(\Omega)$ satisfying (1) in the weak sense, i.e.,

$$
\int_\Omega \nabla u \nabla v \, dx - \lambda_k \int_\Omega uv \, dx + \int_\Omega g(u)v \, dx = \int_\Omega fv \, dx
$$

(3)

holds for any test function $v \in H$.

*Department of Mathematics and NTIS, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic, email: pdrabek@kma.zcu.cz; corresponding author
†NTIS, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic, email: mlanger@ntis.zcu.cz
Let \(m \geq 1 \) be a multiplicity of \(\lambda_k \). We arrange the eigenvalues of (2) into the increasing sequence:

\[
0 < \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_{k-1} < \lambda_k = \ldots = \lambda_{k+m-1} < \lambda_{k+m} \leq \lambda_{k+m+1} \leq \ldots \to \infty.
\]

The corresponding eigenfunctions, \((\phi_n)\), form an orthogonal basis for both \(L^2(\Omega) \) and \(H \). We assume that every \(\phi_n \) is normalized with respect to the \(L^2 \) norm, i.e., \(\| \phi_n \|_2 = 1 \), \(n = 1, 2, \ldots \).

We use the scalar product \((u, v) = \int_{\Omega} \nabla u \nabla v \, dx \) and the induced norm \(\| u \| = \left(\int_{\Omega} |\nabla u|^2 \, dx \right)^{\frac{1}{2}} \) on \(H \). We split the space \(H \) into the following three subspaces spanned by the eigenfunctions of (2) as follows:

\[
\hat{H} := [\phi_1, \ldots, \phi_{k-1}], \quad \bar{H} := [\phi_k, \ldots, \phi_{k+m-1}], \quad \tilde{H} := [\phi_{k+m}, \phi_{k+m+1}, \ldots].
\]

Then \(H = \hat{H} \oplus \bar{H} \oplus \tilde{H} \) with \(\dim \hat{H} = k - 1 \), \(\dim \bar{H} = m \), \(\dim \tilde{H} = \infty \). Of course, if \(k = 1 \) then \(m = 1 \) and \(\tilde{H} = \emptyset \). We split an element \(u \in H \) as \(u = \tilde{u} + \hat{u} + \bar{u} \), \(\tilde{u} \in \tilde{H}, \hat{u} \in \hat{H} \) and \(\bar{u} \in \bar{H} \). A function \(f \in L^2(\Omega) \) we split as \(f = \tilde{f} + \hat{f} + \bar{f} \), where \(\int \hat{f} v \, dx = 0 \) for any \(v \in \hat{H} \). The purpose of this paper is to introduce rather general sufficient condition of Landesman-Lazer type for the existence of a solution of (1):

If \((u_n) \subset H \) is a sequence such that \(\| u_n \|_2 \to \infty \) and there exists \(\phi_0 \in \tilde{H}, \frac{u_n}{\| u_n \|_2} \to \phi_0 \) in \(L^2(\Omega) \), then

\[
\lim_{n \to \infty} \left(\int_{\Omega} G(u_n) \, dx - \int_{\Omega} \hat{f} u_n \, dx \right) = \pm \infty. \tag{SC}_{\pm}
\]

Here, \(G(s) = \int_0^s g(\tau) \, d\tau \) is the antiderivative of \(g \).

Theorem 1. Assume that either \((SC)_+ \) or else \((SC)_- \) holds. Then the problem (1) has at least one solution.

Remark 1. Note that the sufficient condition which is similar to \((SC)_+ \) but more restrictive than \((SC)_+ \) was introduced recently in [1] where the resonance problem with respect to the Fučík spectrum of the Laplacian was studied. In this paper, we benefit from the fact that the resonance occurs at the eigenvalue which allows us to split the underlying function space \(H \) into the sum of orthogonal subspaces. In contrast with [1], where such splitting is impossible, we can get rid of the \(f^{+} \)-part of the right-hand side \(f \) in (SC)_±. This makes our conditions more general and geometrically more transparent.

In order to interpret our conditions \((SC)_\pm \) in historical context, we first consider a bounded continuous nonlinear function \(g : \mathbb{R} \to \mathbb{R} \) with finite limits \(g(\pm \infty) := \lim_{s \to \pm \infty} g(s) \). Let us assume that

\[
g(\mp \infty) \int_{\Omega} \phi^+ \, dx - g(\mp \infty) \int_{\Omega} \phi^- \, dx < \int_{\Omega} \tilde{f} \phi \, dx \tag{LL}_\pm
\]

\[
< g(\pm \infty) \int_{\Omega} \phi^+ \, dx - g(\mp \infty) \int_{\Omega} \phi^- \, dx
\]

2
holds for all eigenfunctions \(\phi \) associated with \(\lambda_k \). This is the classical Landesman-Lazer condition (see [2]). Assume \(\| u_n \|_2 \to \infty \) and \(\frac{u_n}{\| u_n \|_2} \to \phi_0 \) for some eigenfunction \(\phi_0 \). Then by l’Hospital’s rule we have
\[
\lim_{n \to \infty} \frac{1}{\| u_n \|_2} \left(\int_\Omega G(u_n) \, dx - \int_\Omega f u_n \, dx \right) = \lim_{n \to \infty} \int_\Omega \left(\frac{G(u_n)}{u_n} - \hat{f} \right) \frac{u_n}{\| u_n \|_2} \, dx
\]
\[
= \int_\Omega (g(\infty) + \hat{f}) \phi_0^+ \, dx - \int_\Omega (g(-\infty) + \hat{f}) \phi_0^- \, dx.
\]
The last expression is either positive or negative due to (LL) and hence (SC) hold. In other words we proved that (LL) imply (SC).

Assume, moreover, \(g(-\infty) < 0 < g(\infty) \) (think, for example, about \(g(s) = \arctan s \)). Then problem (11) has a solution for all \(f \) which belong to the ”strip” around the linear subspace \(L^2(\Omega)^\perp := \left\{ f \in L^2(\Omega) : \int_\Omega f \phi \, dx = 0 \text{ for all } \phi \in \bar{H} \right\} \) of \(L^2(\Omega) \).

We note that the conditions (LL) are empty if \(g(-\infty) = g(\infty) \). On the other hand, it follows from Theorem 11 that the problem (11) with \(g(s) = \frac{s \, \text{sign}(s)}{(e + |s|) \ln(e + |s|)} \) (e is Euler’s number) has at least one solution for \(f \in L^2(\Omega)^\perp \). Indeed, \(\lim_{|s| \to \infty} \ln(\ln(e + |s|)) = \infty \) implies that (SC) hold true. Hence (SC) cover the case of vanishing nonlinearities \(g(\pm \infty) = 0 \) (see [3]). However, it should be emphasized, that in contrast with previous works on vanishing nonlinearities our approach does not require any kind of symmetry or sign condition about \(g \) (cf. [4, 9]). At the same time, it generalizes the results from [10, 11].

We also note that verification of (SC) does not require the existence of limits \(g(\pm \infty) \) at all. As an example we consider \(g(s) = \arctan s + c \cdot \cos s \) with an arbitrary constant \(c \in \mathbb{R} \). An easy calculation yields that (11) has at least one solution for any \(f \in L^2(\Omega) \) satisfying
\[
\left| \int_\Omega f \phi \, dx \right| < \frac{\pi}{2} \int_\Omega |\phi| \, dx \tag{4}
\]
for any \(\phi \in \bar{H} \). On the other hand, the conditions (LL) and various generalizations (see, e.g. [12, 13]) do not apply in this case if \(|c| \geq \frac{\pi}{2} \).

Above mentioned case \(g(s) = \arctan s + c \cdot \cos s \) is covered by the so called potential Landesman-Lazer condition:
\[
G^\pm \int_\Omega \phi^+ \, dx - G^\pm \int_\Omega \phi^- \, dx < \int_\Omega \hat{f} \phi \, dx < G^\pm \int_\Omega \phi^+ \, dx - G^\pm \int_\Omega \phi^- \, dx \quad (\text{PLL})
\]
where \(G^\pm := \lim_{s \to \pm \infty} \frac{G(s)}{s} \). Indeed, l’Hospital’s rule implies \(G^- = -\frac{\pi}{2}, G^+ = \frac{\pi}{2} \) and the condition (PLL) reduces to (4). For the use of (PLL) see, e.g. the papers [14, 19].

The conditions (PLL) eliminate the influence of the bounded oscillating term \(c \cdot \cos s \) which disappears ”in an average” as \(|s| \to \infty \).

However, the conditions (PLL) do not cover the case \(g(s) = \frac{s}{1 + |s|} + c \cdot \cos s \), where \(c \in \mathbb{R} \) is an arbitrary constant. Indeed, both conditions are empty, due to the fact
$G^* = 0$. On the other hand, it follows from Theorem 1 that (1) with g given above has a solution for any $f \in L^2(\Omega)^\perp$. This fact illustrates that our conditions \([SC]_+\) refine also the conditions \([PLL]_+\) and, at the same time, they complement the results from [20] and [21].

Example 1. The boundary value problem

\[
-\Delta u - \lambda_k u + \frac{u}{(e + u^2) \ln(e + u^2)^{1/2}} + c \cdot \cos u = f \quad \text{in } \Omega,
\]

\[
\int f \phi \, dx = 0
\]

for any $\phi \in \bar{H}$. Indeed, since

\[
\lim_{|s| \to \infty} G(s) = \lim_{|s| \to \infty} \left[\ln \left(\ln(e + s^2)^{1/2} \right) + c \cdot \sin s \right] = \infty,
\]

the result follows from Theorem 1. On the other hand, the existence result for problems of type (5) does not follow from any work published in the literature so far.

2 Preliminaries

In this section we stress some helpful facts used in the proof of Theorem 1.

Lemma 1. There exist $c_1 > 0$, $c_2 > 0$ such that for any $u \in H$ we have

\[
\int_{\Omega} |\nabla \hat{u}|^2 \, dx - \lambda_k \int_{\Omega} (\hat{u})^2 \, dx \leq -c_1 \|\hat{u}\|^2
\]

and

\[
\left| \int_{\Omega} g(u) \hat{u} \, dx - \int_{\Omega} f \hat{u} \, dx \right| \leq c_2 \|\hat{u}\|.
\]

Proof. The inequality (6) follows from the variational characterization of λ_k; (7) follows from the Hölder inequality, the boundedness of g and the fact $f \in L^2(\Omega)$. □

Lemma 2. There exist $c_3 > 0$, $c_4 > 0$ such that for any $u \in H$ we have

\[
\int_{\Omega} |\nabla \hat{u}|^2 \, dx - \lambda_k \int_{\Omega} (\hat{u})^2 \, dx \geq c_3 \|\hat{u}\|^2
\]

and

\[
\left| \int_{\Omega} g(u) \hat{u} \, dx - \int_{\Omega} f \hat{u} \, dx \right| \leq c_4 \|\hat{u}\|.
\]
Proof. The inequality (8) is also a consequence of the variational characterization of \(\lambda_k \), and (9) follows similarly as (7).

Lemma 3. There exist \(c_5 > 0 \) such that for any \(u \in H \) we have
\[
\left| \int_\Omega G(u) \, dx - \int_\Omega fu \, dx \right| \leq c_5 \| u \|_2.
\] (10)

Proof. The inequality (10) follows from the Hölder inequality, the boundedness of \(g \) and the fact \(f \in L^2(\Omega) \).

3 Proof of Theorem 1

We define the energy functional associated with (1), \(E : H \to \mathbb{R} \), by
\[
E(u) := \frac{1}{2} \int_\Omega |\nabla u|^2 \, dx - \frac{\lambda_k}{2} \int_\Omega (u)^2 \, dx + \int_\Omega G(u) \, dx - \int_\Omega fu \, dx,
\]
\(u \in H \). Obviously, all critical points of \(E \) satisfy (3) and vice versa.

We will apply Saddle Point Theorem due to P. Rabinowitz [22]:

Theorem 2. Let \(E \in C^1(H, \mathbb{R}) \) and \(H = H^- \oplus H^+ \), \(\dim H^- < \infty \), \(\dim H^+ = \infty \).

Assume that
(a) There exist a bounded neighborhood \(D \) of \(0 \) in \(H^- \) and a constant \(\alpha \in \mathbb{R} \) such that \(E \bigg|_{\partial D} \leq \alpha \).

(b) There exists a constant \(\beta > \alpha \) such that \(E \bigg|_{H^+} \geq \beta \).

(c) \(E \) satisfies (PS) condition.

Then the functional \(E \) has a critical point in \(H \).

At first we verify the Palais-Smale condition.

Lemma 4. Let us assume (SC)\(_2\). Then \(E \) satisfies (PS) condition, i.e., if \((u_n) \subset H \) is a bounded sequence and \(\nabla E(u_n) \to v \) in \(H \), then there exist a subsequence \((u_{n_k}) \subset (u_n) \) and an element \(u \in H \) such that \(u_{n_k} \to u \) in \(H \).

Proof. In the first step we prove that \((u_n) \) is bounded in \(L^2(\Omega) \). Assume the contrary, i.e., \(\| u_n \|_2 \to \infty \). Set \(v_n := \frac{u_n}{\| u_n \|_2} \). Then
\[
\frac{E(u_n)}{\| u_n \|_2} := \frac{1}{2} \int_\Omega |\nabla v_n|^2 \, dx - \frac{\lambda_k}{2} \int_\Omega (v_n)^2 \, dx + \int_\Omega \frac{G(u_n)}{\| u_n \|_2^2} \, dx - \frac{1}{\| u_n \|_2} \int_\Omega fv_n \, dx \to 0. \quad (11)
\]
The second term is equal to \(-\frac{\lambda_k}{2} \) since \(\| v_n \|_2 = 1 \), the last two terms go to zero since
\[
\left| \frac{1}{\| u_n \|_2} \int_\Omega fv_n \, dx \right| \leq \frac{\| f \|_2}{\| u_n \|_2} \to 0.
\]
and
\[
\left| \int_{\Omega} \frac{G(u_n)}{\|u_n\|^2_2} \, dx \right| = \frac{1}{\|u_n\|^2_2} \left| \int_{\Omega} \left(\int_0^{u_n(x)} g(s) \, ds \right) \, dx \right| \\
\leq \frac{1}{\|u_n\|^2_2} \sup_{s \in \mathbb{R}} |g(s)| \cdot \int_{\Omega} |u_n(x)| \, dx \leq \frac{c}{\|u_n\|^2_2} \to 0
\]

(for some \(c > 0\)) by the embedding \(L^2(\Omega) \hookrightarrow L^1(\Omega)\). Then it follows from (11) that \((v_n)\) is a bounded sequence in \(H\). Passing to a subsequence, if necessary, we may assume that there exists \(v \in H\) such that \(v_n \rightharpoonup v\) (weakly) in \(H\) and \(v_n \to v\) in \(L^2(\Omega)\).

For arbitrary \(w \in H\),
\[
0 \leftarrow \left(\nabla E'(u_n), w \right) = \int_{\Omega} \nabla v_n \nabla w - \lambda_k \int_{\Omega} v_n w \, dx \\
+ \frac{1}{\|u_n\|^2_2} \int_{\Omega} g(u_n) w \, dx - \frac{1}{\|u_n\|^2_2} \int_{\Omega} f w \, dx.
\]
We have \(\int_{\Omega} \nabla v_n \nabla w \, dx \to \int \nabla v \nabla w \, dx\) by \(v_n \to v\) in \(H\), \(\int_{\Omega} v_n w \, dx \to \int v w \, dx\) by \(v_n \to v\) in \(L^2(\Omega)\), \(\frac{1}{\|u_n\|^2_2} \int_{\Omega} f w \, dx \to 0\), \(\frac{1}{\|u_n\|^2_2} \int_{\Omega} g(u_n) w \, dx \to 0\) by \(f \in L^2(\Omega)\), the boundedness of \(g\) and by our assumption \(\|u_n\|^2_\infty \to \infty\). Then it follows from (12) that
\[
\int_{\Omega} \nabla v \nabla w \, dx - \lambda_k \int_{\Omega} v w \, dx = 0
\]
holds for arbitrary \(w \in H\), i.e., \(v = \phi_0 \in \tilde{H}\) is an eigenfunction associated with \(\lambda_k\).

That is, \(\nabla E(u_n) \to 0\) in \(L^2(\Omega)\).

Now, by the assumption \(\nabla E(u_n) \to 0\) and the orthogonal decomposition of \(H\),
\[
0(\|\tilde{u}_n\|) = (\nabla E(u_n), \tilde{u}_n) = \int_{\Omega} |\nabla \tilde{u}_n|^2 \, dx - \lambda_k \int_{\Omega} (\tilde{u}_n)^2 \, dx \\
+ \int_{\Omega} g(u_n) \tilde{u}_n \, dx - \int_{\Omega} f \tilde{u}_n \, dx.
\]
By Lemma 1 it follows from (13) that
\[
o(1) \leq -c_1 \|\tilde{u}_n\| + c_2
\]
with \(c_1, c_2 > 0\) independent of \(n\). Hence \(\|\tilde{u}_n\|\) is a bounded sequence.

Similarly, we also have
\[
0(\|\tilde{u}_n\|) = (\nabla E(u_n), \tilde{u}_n) = \int_{\Omega} |\nabla \tilde{u}_n|^2 \, dx - \lambda_k \int_{\Omega} (\tilde{u}_n)^2 \, dx \\
+ \int_{\Omega} g(u_n) \tilde{u}_n \, dx - \int_{\Omega} f \tilde{u}_n \, dx.
\]
By Lemma 2 it follows from (14) that
\[o(1) \geq c_3 \| \tilde{u}_n \| - c_4 \]
with \(c_3, c_4 > 0 \) independent of \(n \). Hence \(\| \tilde{u}_n \| \) is a bounded sequence. Let us split now \(E(u_n) \) as follows
\[
E(u_n) = \frac{1}{2} \int_{\Omega} |\nabla \hat{u}_n|^2 \, dx - \frac{\lambda_k}{2} \int_{\Omega} (\hat{u}_n)^2 \, dx + \frac{1}{2} \int_{\Omega} |\nabla \tilde{u}_n|^2 \, dx - \frac{\lambda_k}{2} \int_{\Omega} (\tilde{u}_n)^2 \, dx \\
+ \int_{\Omega} G(u_n) \, dx - \int_{\Omega} \tilde{f} u_n \, dx - \int_{\Omega} f^+ \hat{u}_n \, dx - \int_{\Omega} f^+ \tilde{u}_n \, dx.
\]

The boundedness of \(\| \tilde{u}_n \| \) and \(\| \nu_n \| \) implies that \(A, B \) and \(D \) are bounded terms. On the other hand, \((\text{SC})_+ \) forces \(C \to +\infty \) and \((\text{SC})_- \) forces \(C \to -\infty \). In particular, we conclude \(E(u_n) \to \pm \infty \) which contradicts the assumption of the boundedness of \(E(u_n) \). We thus proved that \((u_n) \) is a bounded sequence in \(L^2(\Omega) \).

In the second step we select a strongly convergent subsequence (in \(H \)) from \((u_n) \). Let us examine again the terms in
\[
E(u_n) := \frac{1}{2} \int_{\Omega} |\nabla u_n|^2 \, dx - \frac{\lambda_k}{2} \int_{\Omega} (u_n)^2 \, dx + \int_{\Omega} G(u_n) \, dx - \int_{\Omega} f u_n \, dx.
\]

By the assumption \(E(u_n) \) is bounded. The boundedness of the sequence \((u_n) \) in \(L^2(\Omega) \) implies that \(\int (u_n)^2 \, dx, \int G(u_n) \, dx \) and \(\int f u_n \, dx \) are bounded independently of \(n \), as well. Therefore, \(\| u_n \|^2 = \int |\nabla u_n|^2 \, dx \) must be also bounded. Hence, we may assume, without lost of generality, that \(u_n \to u \) in \(H \) for some \(u \in H \), and \(u_n \to u \) in \(L^2(\Omega) \). Then
\[
0 \leftarrow (\nabla E(u_n), u_n - u) = \int_{\Omega} \nabla u_n \nabla (u_n - u) \, dx - \lambda_k \int_{\Omega} u_n (u_n - u) \, dx \\
+ \int_{\Omega} g(u_n)(u_n - u) \, dx - \int_{\Omega} f(u_n - u) \, dx.
\]

Since
\[
-\lambda_k \int_{\Omega} u_n (u_n - u) \, dx + \int_{\Omega} g(u_n)(u_n - u) \, dx - \int_{\Omega} f(u_n - u) \, dx \to 0,
\]
we conclude that
\[
\int_{\Omega} \nabla u_n \nabla (u_n - u) \, dx \to 0
\]
as well. So,
\[
\int_{\Omega} |\nabla u_n|^2 \, dx - \int_{\Omega} \nabla u_n \nabla u \, dx \to 0
\]
which together with
\[\int_\Omega \nabla u_n \nabla u \, dx \to \|u_n\|^2 \]
(this is due to the weak convergence \(u_n \to u\)) yields
\[\|u_n\| \to \|u\|. \]
The uniform convexity of \(H\) then implies that \(u_n \to u\) in \(H\). Hence \(E\) satisfies the condition (c) in Theorem 2.

Now we prove that also (a) and (b) hold. To this end we have to consider separately the case \((SC)_+\) and \((SC)_-\).

1. Let us assume that \((SC)_+\) holds. We set
\[H^- := \mathring{H}, \quad H^+ := \bar{H} \oplus \mathring{H}. \]

It follows from Lemma 1 and 3 that
\[\lim_\|\hat{u}\|_2 \to \infty E(\hat{u}) := \lim_\|\hat{u}\|_2 \to \infty \left[\frac{1}{2} \int_\Omega |\nabla \hat{u}|^2 \, dx - \frac{\lambda_k}{2} \int_\Omega (\hat{u})^2 \, dx \right. \]
\[\left. + \int_\Omega G(\hat{u}) \, dx - \int_\Omega f(\hat{u}) \, dx \right] = -\infty. \] (15)

On the other hand, we prove that there exists \(\beta \in \mathbb{R}\) such that
\[\inf_{u \in H^+} E(u) \geq \beta. \]
Assume the contrary, that is, there exists a sequence \((u_n) \subset H^+\) such that
\[\lim_{n \to \infty} E(u_n) = -\infty. \] (16)

Then \(\|u_n\|_2 \to \infty\), and for \(v_n := \frac{u_n}{\|u_n\|_2} \ (v_n \in H^+)\) we have
\[0 \geq \limsup_{n \to \infty} \frac{E(u_n)}{\|u_n\|_2^2} := \limsup_{n \to \infty} \left[\frac{1}{2} \int_\Omega |\nabla v_n|^2 \, dx - \frac{\lambda_k}{2} \int_\Omega (v_n)^2 \, dx \right. \]
\[\left. + \int_\Omega \frac{G(u_n)}{\|u_n\|_2^2} \, dx - \int_\Omega f \frac{v_n}{\|u_n\|_2} \, dx \right]. \] (17)

Clearly, by Lemma 3 we have
\[\int_\Omega \frac{G(u_n)}{\|u_n\|_2^2} \, dx - \int_\Omega f \frac{v_n}{\|u_n\|_2} \, dx \to 0. \] (18)
It follows from (17) and (18) that $\|v_n\|$ is bounded. Passing to a subsequence if necessary, we may assume that there exists $v \in H^+$ such that $v_n \rightharpoonup v$ in H and $v_n \rightarrow v$ in $L^2(\Omega)$. Moreover,

$$\liminf_{n \rightarrow \infty} \int_{\Omega} |\nabla v_n|^2 \, dx \geq \int_{\Omega} |\nabla v|^2 \, dx$$

by the weak lower semicontinuity of the norm in H. We deduce from (17) - (19) that

$$\int_{\Omega} |\nabla v|^2 \, dx - \lambda_k \int_{\Omega} (v)^2 \, dx \leq 0,$$

and hence, from Lemma 2, it follows that $v = \phi_0 \in \bar{H}$ is an eigenfunction associated with λ_k. That is,

$$\| u_n \|_2 \rightarrow \phi_0 \text{ in } L^2(\Omega).$$

By Lemma 2, by the properties of the orthogonal decomposition of H^+ and f and by the condition (SC)$_+$, we have for $u_n \in H^+$:

$$\lim_{n \rightarrow \infty} E(u_n) := \lim_{n \rightarrow \infty} \left[\frac{1}{2} \int_{\Omega} |\nabla u_n|^2 \, dx - \frac{\lambda_k}{2} \int_{\Omega} (u_n)^2 \, dx + \int_{\Omega} G(u_n) \, dx - \int_{\Omega} f u_n \, dx \right]$$

$$= \lim_{n \rightarrow \infty} \left[\frac{1}{2} \int_{\Omega} |\nabla \tilde{u}_n|^2 \, dx - \frac{\lambda_k}{2} \int_{\Omega} (\tilde{u}_n)^2 \, dx \right. + \int_{\Omega} G(u_n) \, dx - \int_{\Omega} \tilde{f} u_n d\Omega - \int_{\Omega} f^+ \tilde{u}_n d\Omega$$

$$\geq \lim_{n \rightarrow \infty} \left[c_3 \| \tilde{u}_n \|^2 - \| f^+ \tilde{u}_n \| \right] + \lim_{n \rightarrow \infty} \left[\int_{\Omega} G(u_n) \, dx - \int_{\Omega} \tilde{f} u_n d\Omega \right]$$

$$= + \infty.$$

This contradicts (16).

By (15) there exists $R > 0$ such that for $D := \{ u \in H^- : \|u\| \leq R \}$ the following inequality holds

$$\sup_{u \in \partial D} E(u) < \alpha := \beta - 1.$$

Hence, we proved (a) and (b) in Theorem 2.

2. Let us assume that (SC)$_-$ holds. In this case we set

$$H^- := \tilde{H} \oplus \bar{H}, \quad H^+ := \tilde{H}.$$

Let $u \in H^+$. Then by Lemmas 2 and 3 we have

$$E(u) := \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{\lambda_k}{2} \int_{\Omega} (u)^2 \, dx + \int_{\Omega} G(u) \, dx - \int_{\Omega} f u \, dx$$

$$\geq c_3 \| u \|^2 - c_5 \|u\|_2 \geq c_3 \| u \|^2 - c_6 \|u\|.$$
Hence there exists $\beta \in \mathbb{R}$ such that $\mathcal{E}(u) \geq \beta$ for all $u \in H^+$. On the other hand, we prove that

$$\lim_{\|u\| \to \infty, u \in H^-} \mathcal{E}(u) = -\infty.$$ \hspace{1cm} (20)

Notice, that $\dim H^- < \infty$ implies that the norms $\| \cdot \|$ and $\| \cdot \|_2$ are equivalent on H^-. Assume by the contradiction that (20) does not hold, i.e., there exist a sequence $(u_n) \subset H^-$ and a constant $c \in \mathbb{R}$ such that $\|u_n\|_2 \to \infty$ and

$$\mathcal{E}(u_n) \geq c.$$ \hspace{1cm} (21)

Set $v_n := \frac{u_n}{\|u_n\|_2}$. Due to $\dim H^- < \infty$ we may assume that there exists $v \in H^-$ such that $v_n \to v$ both in H and $L^2(\Omega)$. Then

$$0 \leq \liminf_{n \to \infty} \frac{\mathcal{E}(u_n)}{\|u_n\|_2^2} = \liminf_{n \to \infty} \left[\frac{1}{2} \int_\Omega |\nabla v_n|^2 \, dx - \frac{\lambda_k}{2} \int_\Omega (v_n)^2 \, dx + \int_\Omega G(u_n) \, dx - \int_\Omega f v_n \, dx \right] \geq \frac{1}{2} \int_\Omega |\nabla \hat{u}_n|^2 \, dx - \frac{\lambda_k}{2} \int_\Omega (\hat{u}_n)^2 \, dx,$$

by Lemma 3. According to Lemma 1 (22) implies $v = \phi_0 \in \tilde{H}$, an eigenfunction associated with λ_k. Hence $\frac{u_n}{\|u_n\|_2} \to \phi_0$ in $L^2(\Omega)$. Now, it follows from the orthogonal decomposition of H^- and f, Lemma 1 and (SC) that for $u_n \in H^-,$

$$\lim_{n \to \infty} \mathcal{E}(u_n) := \lim_{n \to \infty} \left[\frac{1}{2} \int_\Omega |\nabla u_n|^2 \, dx - \frac{\lambda_k}{2} \int_\Omega (u_n)^2 \, dx + \int_\Omega G(u_n) \, dx - \int_\Omega f u_n \, dx \right]$$

$$= \lim_{n \to \infty} \left[\frac{1}{2} \int_\Omega |\nabla \hat{u}_n|^2 \, dx - \frac{\lambda_k}{2} \int_\Omega (\hat{u}_n)^2 \, dx + \int_\Omega G(u_n) \, dx - \int_\Omega \tilde{f} u_n \, dx - \int_\Omega f^\perp \hat{u}_n \, dx \right]$$

$$\leq \lim_{n \to \infty} \left[-c_1 \|\hat{u}_n\|^2 + c_2 \|\hat{u}_n\| \right] + \lim_{n \to \infty} \left[\int_\Omega G(u_n) \, dx - \int_\Omega \tilde{f} u_n \, dx \right]$$

$$= -\infty.$$ \hspace{1cm} (22)

This contradicts (21), i.e., (20) holds true. Let us choose again $D := \{ u \in H^- : \|u\| \leq R \}$. Then, for $R > 0$ large enough, we have

$$\sup_{u \in \partial D} \mathcal{E}(u) < \alpha := \beta - 1.$$ \hspace{1cm} (23)

and (a) and (b) in Theorem 2 are proved.

Recall that the hypothesis (c) in Theorem 2 is proved in Lemma 4 for both cases (SC)$_\pm$. It then follows from Theorem 2 that under the assumptions (SC)$_\pm$ there exists
a critical point of \mathcal{E}. Since this is also a solution of (1), the proof of Theorem 1 is finished.

Acknowledgment. This research was supported by the Grant 13-00863S of the Grant Agency of Czech Republic and by the European Regional Development Fund (ERDF), project ”NTIS New Technologies for the Information Society”, European Centre of Excellence, CZ.1.05/1.1.00/02.0090.

References

[1] P. Drábek, S.B. Robinson, On the solvability of resonance problems with respect to the Fučík Spectrum, J. Math. Anal. Appl. 418 (2014), 884-905.

[2] E.M. Landesman, A.C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623.

[3] P. Drábek, Solvability and Bifurcations of Nonlinear Equations, Longman Scientific & Technical, Pitman Res. Notes in Math. Series 264, Longman, 1992.

[4] P. Drábek, Existence and multiplicity results for some weakly nonlinear elliptic problems at resonance, Čas. pěst. mat. (Math. Bohemica) 108 (1983), 272-284.

[5] P. Drábek, Bounded nonlinear perturbations of second order linear elliptic problems, Comment. Math. Univ. Carolinse 22, 2 (1981), 215-221.

[6] D.G. de Figueiredo, W.M. Ni, Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition, Nonlinear Anal. Theory, Methods and Applications 3 (1979), 629-634.

[7] A. Cañada, K-set contractions and nonlinear vector boundary value problems, Journal of Mathematical Analysis and Applications 117 (1986), 1-22.

[8] C.P. Gupta, Solvability of a boundary value problem with the nonlinearity satisfying a sign condition, Journal of Mathematical Analysis and Applications 129 (1988), 482-492.

[9] R. Iannacci, M.N. Nkashama, J.R. Ward, Nonlinear second order elliptic partial differential equations at resonance, Trans. Am. math. Soc. 311 (1989), 711-726.

[10] S. Fučík, M. Krbec, Boundary value problems with bounded nonlinearity and general nullspace of linear part, Mathematische Zeitschrift 155 (1977), 129-138.

[11] P. Hess, A remark on the preceding paper of Fučík and Krbec, Mathematische Zeitschrift 155 (1977), 139-141.

[12] P. Drábek, On the resonance problem with nonlinearity which has arbitrary linear growth, J. Math. Anal. Appl. 127 (1987), 435-442.

[13] P. Drábek, Landesman-Lazer condition for nonlinear problems with jumping nonlinearities, J. Differential Equations 85 (1990), 186-199.
[14] A.A. Bliss, J. Buerger, A.J. Rumbos, Periodic boundary-value problems and Dancer-Fučík spectrum under conditions of resonance, Electron. J. Differential Equations 112 (2011), 1-34.

[15] P. Tomiczek, Potential Landesman-Lazer type conditions and the Fucik spectrum, Electron. J. Diff. Eqns. 94 (2005), 1-12.

[16] P. Tomiczek, The Duffing equation with the potential Landesman-Lazer condition, Nonlinear Analysis: Theory, Methods and Applications 70 (2009), 735-740.

[17] P. Tomiczek, Periodic Problem with a Potential Landesman Lazer Condition, Boundary Value Problems 2010, 2010:586971. doi:10.1155/2010/586971

[18] P. Tomiczek, A generalization of the Landesman-Lazer condition, Electron. J. Diff. Eqns. 04 (2001), 1-11.

[19] C.L. Tang, Solvability for Two-Point Boundary Value Problems, J. Math. Anal. Appl. 216 (1997), 368-374.

[20] M.N. Nkashama, S.B. Robinson, Resonance and Nonresonance in Terms of Average Values, J. Differential Equations 132 (1996), 46-65.

[21] M.N. Nkashama, S.B. Robinson, Resonance and nonresonance in terms of average values. II, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 5, 1217-1235.

[22] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Amer. Math. Soc., Providence, RI, 1986.