The relationship between TNF-α gene polymorphism, pro-inflammatory cytokines and bone turnover markers in COPD patients with osteoporosis

Radiyati Umi Partan, Rachmat Hidayat*

Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia

E-mail: dr.rachmat.hidayat@gmail.com

Abstract. Tumour necrosis factor alpha (TNF-α) is an important regulator of bone metabolism. Polymorphisms in the promoter region of the TNF-α gene at position 308 have been identified. We investigated whether these polymorphisms and circulating TNF-α levels were related to BMD in osteoporosis caused by COPD. We conducted this study to analyse the relationship between genetic polymorphism of tumour necrosis factor (TNF-α) -308 G/A and levels of pro-inflammatory cytokines, bone turnover marker levels, and the incidence of osteoporosis in COPD patients. This study was conducted on 70 COPD patients. BMD and bone area of the femoral neck and lumbar spines were measured using dual energy X-ray absorptiometry (Stratos®). Blood cytokines (TNF-α, interleukin (IL)-6, IL-17, IL-1β) and C-telopeptide (CTX), receptor activator of nuclear factor kB (RANKL), and osteoprotegerin (OPG) were analysed using ELISA. Polymorphism of the TNF-α gene -308 G/A was assayed by PCR-RFLP. The levels of cytokines were significantly increased in the osteoporosis group compared to those without. Polymorphism was significantly different between COPD with osteoporosis and COPD without. The frequency of the GA and AA genotypes was significantly increased in patients with osteoporosis. To conclude, there is a relationship between the TNF-α -308 G/A polymorphism and high levels of TNF-α, IL-1β, IL-6, IL-17, CTX, and the incidence of osteoporosis in patients with COPD.

1. Introduction

Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease characterised by limits of irreversible pathomechanisms. This disease causes significant morbidity and mortality. There are many candidate genes involved in the pathogenesis of COPD, but the evidence available to date cannot be directed to a candidate gene [1, 2]. This problem will become even bigger when associated with various complications that can occur in patients with COPD. Patients with COPD have beenfound to have a higher incidence of osteoporosis compared to healthy individuals [3, 4].

The pathway receptor activator of nuclear factor kB (RANK) has been known to play an important role in remodeling and disorders of mineral metabolism. Interaction between the RANK ligand (RANKL) and various cytokines and hormones stimulates osteoclast formation and activation. Osteoprotegerin (OPG) is a known antiinflammatory protein derived from osteoblast which inhibits osteoclastogenesis and decreases bone resorption through a receptor which acts as a trap against RANKL [5]. The imbalance between RANKL and OPG is involved in osteoporosis development, which is induced by systemic inflammation in COPD patients [6].

Tumour necrosis factor (TNF)-α is pleotropic inflammatory cytokine produced by monocytes, macrophages, and T cells [7]. Regulators and the region code of cytokine genes was mediated through
the production of TNF-α which varies between patients and is partly correlated with polymorphisms of the gene. The TNF-α gene polymorphism -308 G/A is a gene polymorphism characterised by a G to A transition at -308 in the promoter region [8-11]. It has been reported that the TNF-α gene polymorphism at position -308 (G/A) correlates with transcriptional activity [12]. Some reports have claimed that the variant allele A has higher production [13], while other groups stated that the G allele also produces higher levels [14]. A previous report showed that there is no relationship between TNF-α gene polymorphism -308 G/A and the incidence of COPD [15]. Therefore, this study aimed to analyse the relationship between gene polymorphism of TNF-α -308 G/A and levels of pro-inflammatory cytokines, bone turnover marker levels, and the incidence of osteoporosis in COPD patients.

2. Methods

2.1. Subjects
The research design was a cross-sectional study. This study was conducted in 70 patients with severe COPD according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria. [16] They were selected from Internal Medicine Outpatient General Hospital Mohammad Hoesin Palembang from March 2014 to May 2015. Inclusion criteria were male patients, aged more than 39 years old, with clinically stable COPD and who had provided written informed consent. Exclusion criteria for patients were lung cancer, known psychiatric illness, maintenance treatment with systemic corticosteroids, active tuberculosis or insulin-dependent diabetes mellitus.

2.2. Anthropometry and pulmonary function test
Height and weight were determined with the patient being bare footed and wearing light-weight indoor clothing (Seca, Hamburg, Germany). From this, the body mass index (BMI) was calculated (kg/m²). Spirometry was performed according to the ATS/ERS standardization guideline using a MasterScope spirometer (Viasys HealthcareGmbH, Germany) and measured forced respiratory volume in the first second (FEV1) and forced vital capacity (FVC) [17].

Table 1. General characteristics of COPD (+) OP, COPD (-) OP, and healthy controls.

Karakteristik	COPD (+) OP (mean ± SD)	COPD (-) OP (mean ± SD)	Healthy controls (mean ± SD)
BMI (kg/m²)	20.53±2.23a1	20.19±3.64a2	20.83±2.04a3
Age (years)	66.66±9.09a1	67.00±8.09a2	61.54±7.81a3
Brinkman’s index (cigar-ettes/year)	603.94±425.80a1	500.40±256.80a2	276.86±57.79a3
COPD duration (years)	13.63±2.95a1	13.86±4.29a2	0b3
Lumbar BMD (g/m²)	0.72±0.10b1	0.93±0.09b2	0.92±0.13b3
Femoral BMD (g/m²)	0.66±0.09b1	0.86±0.09b2	0.90±0.12b3
FEV1/FVC	0.45±0.13c1	0.50±0.12c2	0.87±0.13c3
Hb (mg/dl)	13.18±1.31c1	13.64±1.13c2	13.17±2.03c3
ESR (mm/hour)	30.63±28.11c1	22.43±22.11c2	23.54±5.77c3

2.3. Bone mineral density
BMD was measured by dual energy X-ray absorptiometry (DEXA) with fan-beam technology using a total body scanner (Stratos, Paris). Individual measurements of the left hip (total femur), antero-posterior lumbar spine (L1 to L4) were expressed in absolute values in grams of mineral per unit area scanned (g/cm) and relative T-scores.
2.4. Genotyping
The DNA isolation and genotyping of the TNF-α -308 G/A polymorphism were performed according to previous studies [18, 19].

2.5. Bioinformatics analysis
Bioinformatics analysis was used to analyse the effect of polymorphism on transcriptional regulation and structure. Several types of software were used in this analysis such as TFsearch, PyMol molecular graphic system, Phyre2 and BioEdit.

2.6. TNF-α, IL-6, IL-17, and IL-1β assays
Blood levels of cytokines under study were measured through an ELISA-based capture assay using the commercial kits Human IL-6, Human IL-17, and Human IL-1β (Quantikine1 ELISA, R&D Systems, Minneapolis, MN, USA), as well as Human TNF-α (Legend MaxTM, BioLegend Inc., San Diego, CA, USA), following the manufacturer’s instructions.

2.7. RANK, OPG, and CTX assays
Blood levels of bone markers were measured through an ELISA-based capture assay by using the commercial kits Human RANK, Human OPG, Human CTX (Quantikine1 ELISA, R&D Systems, Minneapolis, MN, USA) following the manufacturer’s instructions.

2.8. Ethics
Human experimental procedures were approved by the Institutional Ethics Committee of Moehammad Hoesin Hospital, Faculty of Medical, Sriwijaya University, Palembang, South Sumatera, Indonesia.

2.9. Statistical analysis
The differences between groups were analysed using bivariate and multivariate analysis with SPSS 17.0 statistical package. P<0.05 was considered statistically significant.

3. Results

Table 2. Cytokine and biochemical (Ligand) marker levels in COPD (+) OP, COPD (-) and healthy controls.

Karakteristik	COPD (+) OP (mean ± SD)	COPD (-) OP (mean ± SD)	Healthy controls (mean ± SD)	P
TNF-α (pg/ml)	6.37±7.35b1	2.96±1.05b2	1.47±0.77b3	b=0,00; b=0,01
IL-1B (pg/ml)	0.64±1.01a1	0.52±0.58a2	0.36±0.39a3	a=0,28; a=1,00
IL6 (pg/ml)	3.77±4.06a1	3.69±4.14a2	1.16±0.83b3	a=1,00; b=0,01
IL17 (pg/ml)	2.34±1.39a1	2.29±1.95a2	1.37±1.56b3	a=1,00; b=0,04
RANKL (pg/ml)	440.07±537.99a1	351.63±505.20b2	134.56±269.11b3	a=1,00 b=0,02
OPG (pg/ml)	6.96±2.57a1	6.90±2.74a2	8.52±2.97b3	a=1,00 b=0,06
CTX (pg/ml)	0.74±0.35b1	0.32±0.16b2	0.36±0.21b3	b=0,00 b=0,00

* p<0,005, b p> 0,005, 1-way Anova, followed by Bonferroni post-hoc test; 1 COPD (+)OP vs COPD(-)OP, 2 COPD(-) OP vs healthy control, 3 COPD (+) OP vs healthy control
Table 3. Differences in A-308G TNFA frequencies in COPD (+) OP, COPD (-) OP, and healthy controls.

Genotype	COPD (+) OP (n=35)	COPD (-) OP (n=35)	Healthy controls (n=35)	Total
AA (n,%)	1 (2,85)	-	-	1(0,95)
GA (n,%)	12 (34,28)	5 (14,29)	8 (22,86)	25 (23,80)
GG (n,%)	22 (62,85)	30 (85,71)	27 (77,14)	79 (75,23)
Total	35 (100)	35 (100)	35 (100)	105 (100)

Table 4. Detailed differences between two groups.

Genotype	COPD (+) OP (n=34)	COPD (-) OP (n=35)	P	OR	95% CI
GA (n)	12	5	0,029	3,54	1,10 - 11,41
GG (n)	22	30			

Genotype	COPD (+) OP (n=34)	Healthy controls (n=35)	P	OR	95% CI
GA (n)	12	8	0,192	1,99	0,70 - 5,67
GG (n)	22	27			
SS					

Genotype	COPD (+) OP (n=35)	Healthy controls (n=35)	P	OR	95% CI
GA (n)	5	8	0,356	0,56	0,19 - 1,92
GG (n)	30	27			

The age, body mass index, Brinkman Index, duration of COPD, FEV1/FVC ratio were not significantly different between groups (P>0.05). The level of femur and lumbar BMD were significantly decreased in the COPD with osteoporosis group compared to the COPD group (P<0.05). Level of hemoglobin, leukocyte, ESR, blood glucose, urea, creatinine and calcium were not significantly different between groups (p>0.05).

The levels of OPG and RANK were not significantly different between COPD patients with osteoporosis and those without. The levels of TNF-α, IL-1B, IL-6, IL-17 and CTx were significantly different between COPD with osteoporosis and COPD without. The levels of TNF-α, IL-1B, IL-6, IL-17 and CTx were significantly increased in COPD with osteoporosis compared to COPD without osteoporosis. The TNF α-gene polymorphism was significantly different between COPD with osteoporosis and those without. The frequency of the genotypes GA and AA was significantly increased in COPD patients with osteoporosis.

Figure 1 shows the results of several bioinformatic software packages to model the binding between DNA and transcription factors, and indicates different binding models. Polymorphism of TNF-α at position -308G/A was included in the promoter area. Myeloid zinc finger 1 (Mzf1) was identified as a transcription factor that binds to the polymorphic region. The nucleotide change from G to A at position -308 affected the binding of Mzf1. Polymorphism -308G of TNF-α showed two sides when binding the Mzf1 protein to the DNA. In contrast, -308A of TNF-α resulted only one side binding of Mzf1. Those changes in the binding structures were suggested to affect the transcriptional regulation of TNF-α and in turn change the production of TNF-α.
4. Discussions

TNF-\(\alpha\) is a pleotropic inflammatory cytokine produced by monocytes, macrophages, and T cells [7]. Circulated TNF-\(\alpha\) is controlled by various factors, including genetic transcription, post-translational mRNA stability control, cleavage of the membrane to form a soluble form, and expression of the receptor [20]. In this study, the serum levels of TNF-\(\alpha\) were significantly higher in the COPD patients with the GA genotype compared to those with the GG genotype (\(P<0.05\)). This finding showed that the A allele may increase the transcription and production of TNF-\(\alpha\), although we did not compare results with the AA genotype due to minimal sample. These results showed similarities with the opinions of a previous study that a variant allele A induces higher production [13]. TNF-\(\alpha\) triggers osteoclastogenesis, mediated through ab interaction with the TNF-\(\alpha\) receptor [21]. On the other hand, TNF-\(\alpha\) inhibits osteogenesis in stem cell mesenchymal cells through pathway runt-related transcription factor 2 (Runx2), osterix (OSX), and insulin-like growth factor-1 [22-25].

Figure 1. Software modelling of transcription factor binding.

Different concentrations of TNF-\(\alpha\) were suggested as a result of the polymorphism -308G/A in the promoter region that affects the binding pattern of Mzf1 transcription factor. Mzf1 transcription factor is a member of the SCAN domain family and especially expressed in the hematopoietic cells. This transcription factor is involved in the regulation of hematopoietic-specific genes [26]. The function of
Mzf1 is almost similar with previous study related with the preeclampsia disease, in these transcriptional regulation was grouped as a transcription factor that down regulated the expression levels of related genes [27]. Therefore, nucleotide changes from guanine to adenine, which affected the binding site of Mzf1, are suggested to loosen the suppression function of these transcription factors. Although, it is still unclear and contradictive, whether the polymorphism affects the increase of TNF-α expression [12, 28] or not [29-31], but our study showed similar results to a previous study in which the polymorphism of -308A increase the expression level of TNF-α [32]. At least in part, our result was supported by the theory of polymorphism in position -308 affecting the expression levels of TNF-α [33].

Elevated levels of TNF-α in COPD with the GA genotype was accompanied by significant differences in the levels of IL-1β, IL-6, and IL-17. This finding indicated that the differences in the levels of TNF-α based on the differences in genotype giving an effect on other inflammatory cytokines. This finding is consistent with the previous statement that inflammatory response to TNF-α mediated both directly and through stimulation of the expression of IL-1 and other pro-inflammatory cytokines [34]. Its also indicated that the complications in COPD with GA genotype are very likely due to the levels of TNF-α, IL-1β, IL-6 and IL-17.

In this study, the levels of CTX serum were significantly higher in COPD compared to the GA and GG genotype (P<0.05). Meanwhile, for RANK and OPG, there were no significant differences between COPD with GA genotype compared with GG genotype. This finding indicated that the high levels of TNF-α in COPD with GA genotype trigger the activation of osteoclasts characterised by the increased resorption marker CTX. This is consistent with previous theories that turnover and normal bone remodeling is controlled by hormones and local cytokines IL-1, IL-6 and IL-11 together with TNF-α to stimulate osteoclast development and trigger bone resorption [35].

Meanwhile, when we stratified by value of BMD osteoporosis and osteoporosis, we found that the levels of CTX in COPD patients with osteoporosis were significantly higher compared to the COPD patients without osteoporosis (p<0.05). For levels of OPG and RANKL, there was no significant difference between COPD patients with osteoporosis compared to those without osteoporosis (p>0.05). For TNF-α levels, the levels were significantly higher in the COPD patients with osteoporosis BMD compared with those without (p<0.05), though compared to levels of IL-1β, IL-6, and IL-17 was not significantly different (p>0.05). This finding indicated that the decline in BMD in patients with COPD involves an increase in CTX and pro-inflammatory cytokines. Chronic inflammatory cytokine production triggers bone turnover associated with an increased risk of fractures due to increased bone fragility [36-38]. This study was consistent with previous studies stating that there were no significant differences in the levels of RANKL in osteoporosis in patients with COPD (P>0.05) [38], but this contrasts with other studies that reported increased levels of OPG to be significant in osteoporosis in patients with COPD (P<0.05) [39,40].

5. Conclusions
We conclude that there is a relationship between TNF-α -308 G/A polymorphism, the high levels of TNF-α, IL-1β, IL-6, IL-17, CTX, and the incidence of osteoporosis in patients with COPD.

6. References
[1] Agusti AGN, Noguera A, Sauleda J et al 2003 Systemic effects of chronic obstructive pulmonary disease *Eur Respir J* 21(2) pp 347-60
[2] Boyle WJ, Simonet WS, Lacey D L 2003 Osteoclast differentiation and activation *Nature* 423 pp 337-342
[3] Bolton CE, Ionescu AA, Shiels KM et al 2004 Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease *Am J Respir Crit Care Med* 170 : 1286-93
[4] Partan RUP, Hermansyah 2013 Prevalence and osteoporosis risk factors on patients with chronic obstructive lung disease *Clinical Rheumatology (Conference Article)* S150
[5] Moffett SP, Zmuda JM, Oakley JI et al 2005 Tumor necrosis factor-a polymorphism bone strength phenotypes and the risk of fracture in older women The Journal of Clinical Endocrinology & Metabolism 90 pp 34913497

[6] Gregory R and Mundy MD 2007 Osteoporosis and Inflammation Nutrition Reviews 65: S147-S151

[7] Barnes PJ 2004 Mediators of chronic obstructive pulmonary disease pharmacol rev 56 pp 515-48

[8] Zhang L, Gu H, Gu Y, Zeng X 2016 Association between TNF-α -308 G/A polymorphism and COPD susceptibility: a meta-analysis update International Journal of COPD 11 pp 1367-79

[9] Reséndiz-Hernández JM, Ambrocio-Ortiz E, Pérez-Rubio G et al 2018 TNF promoter polymorphisms are associated with genetic susceptibility in COPD secondary to tobacco smoking and biomass burning International Journal of COPD 13 pp 627-37

[10] Reséndiz-Hernández JM, Sansores RH, Hernández-Zenteno RJ et al 2015 Identification of genetic variants in the TNF promoter associated with COPD secondary to tobacco smoking and its severity International Journal of COPD 10 pp 1241-51

[11] Pujhari SK, Ratho RK, Prabhakar S et al 2012 TNF-α promoter polymorphism: a factor contributing to the different immunological and clinical phenotypes in Japanese encephalitis BMC Infect Dis 12 pp 23

[12] Hajeer AH and Hutchinson IV 2001 Influence of tnfα gene polymorphisms on tnfα production and disease human immunology 62 pp 1191-1199

[13] Elahi M, Asotra K, Matata B et al 2009 Tumour necrosis factor alpha-308 gene locus promoter polymorphism: an analysis of association with health and disease bba-molecular basis of disease

[14] Wilson a Symons j Medowell T et al 1997 Effects of a polymorphism in the human tumor necrosis factor promoter on transcriptional activation Proc NATL Acad Sci USA 94 3195-3199

[15] Cui K, Ge XY, Ma HL 2015 Association of the TNF-α +489 G/A polymorphism with chronic obstructive pulmonary disease risk in Asians: meta-analysis Genetics and Molecular Research 14(2) 5210-20

[16] GINA 2009 Global strategy for diagnosis management and prevention of chronic obstructive pulmonary disease (update 2009)

[17] Oudijk EJD, Lammers JWJ, Koenderman L 2003 Systemic inflammation in chronic pulmonary disease EurRespirJ 22(46) : 5s-13s

[18] Hessen DO, Daufresne M, Leinaas HP 2013 Temperature size relations from the cellular genomic perspective Biol Rev 88:476–489

[19] Koechlin C, Couillard A, Simar D et al 2004 Does oxidative stress alter quadriceps endurance in chronic obstructive pulmonary disease? American Journal of Respiratory and Critical care Medicine 169: 1022 – 1027

[20] Rahman I, Adcock IM 2006 Oxidative stress and redox regulation of lung inflammation in COPD Eur Respir J 28(1): 219-42

[21] Bai P, Sun Y, Jin JI 2011Disturbance of the OPG/RANK/RANKL pathway and systemic inflammation in COPD patients with emphysema and osteoporosis Respiratory Research 12: 15

[22] McLean RR 2009 Proinflammatory cytokines and osteoporosis CurrOsteoporosRep 7:134-139

[23] Tarigan AP, Syafiiuddin T, Yunus F, Suradi 2015 Association of Tumor Necrosis Factor alpha and Lymphotoxin Alpha gene polymorphisms with the presence of chronic obstructive pulmonary disease Acta Med Indones 47(4) pp 283-90

[24] Wang N, Zhou Z, Wu T et al 2016 TNF-α-induced NF-kB activation upregulates microRNA-150-3p and inhibits osteogenesis of mesenchymal stem cells by targeting β-catenin Open Biology 6: 150258

[25] Sui BD, Hu CH, Zheng CX, JIn JY 2016 Microenvironmental views on mesenchymal stem cell differentiation in aging Journal of Dental Research 1 pp 1-8

[26] Aggarwal B, Gupta SC, Kim JH 2012 Historical perspectives on tumor necrosis factor and its superfamily: 25 years latera golden journey Blood 119 pp 651-665
[27] Vrieze A, de Greef MH, Wijkstra PJ et al 2007 Low bone mineral density in COPD patients related to worse lung function low weight and decreased fat-free mass Osteoporos Int pp 18: 1197–1202

[28] Setiyohadi B 2014 Osteoporosis akibat inflamasi Dalam Setiyohadi B Nuhonni SA (ed) Osteoporosis & Penyakit Tulang Metabolik Perosi Jakarta : 208-222

[29] Lu X, Gilbert L, He X et al 2006 Transcriptional regulation of the osterix (Oxs Sp7) promoter by Tumor Necrosis Factor identifies disparate effects of Mitogen-activated protein kinase and NFkB pathways Journal of Biological Chemistry 281(10): 6297-6306

[30] Qidway T and Khan F 2011 Tumour necrosis factor gene polymorphism and disease prevalence Scandinavian journal of Immunology 74 pp 522-547

[31] Wennberg P, Nordström P, Lorentzon R 2002 TNF-a gene polymorphism and plasma TNF-a levels are related to lumbar spine bone area in healthy femaleCaucasian adolescents European Journal of Endocrinology 146 pp 629–634

[32] Messer G, Spengler U, Jung MC et al 1991 Polymorphic Structure of the Tumor Necrosis Factor (TNF) Locus: An Ncol Polymorphism in the First Intron of the Human TNF-alpha Gene Correlates with A Variant Amino Acid in Position 26 and a Reduced Level of TNF-alpha Production J Exp Med 173 pp 209-219

[33] Matheson M, Ellis J, Walter E 2006 Association of IL-8, CXCR2 and TNF-a polymorphisms and airway disease J hum genet 51 pp 196-203

[34] Kwan TS Padrines M, Théoleyre S et al 2004 IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology Cytokine Growth Factor Rev 15:49 60

[35] Boyce BF, Yao Z, Xing L 2009 Osteoclasts have Multiple Roles in Bone in Addition to Bone Resorption Crit Rev Eukaryot Gene Expr 19(3) : 171–180

[36] Mcevoy CE, Ensrud KE, Berder E et al 1998 Association between corticosteroid use and vertebral fractures in older men with chronic obstructive pulmonary disease am j respir crit care med 157 pp 704-709

[37] Dam TT, Harrison S, Fink HA et al 2010 Bone mineral density and fractures in older men with chronic obstructive pulmonary disease or asthma osteoporos int 21 pp 1341-1349

[38] Théoleyre S, Wittrant Y, Tat SK 2004 The molecular triadOPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling Cytokine Growth Factor Rev 15:457-75

[39] Khosla S 2001 Minireview: The OPG/RANKL/RANK System Endocrinology 142 (120) : 5050 – 5055

[40] Burgess TL, Qian Y, Kaufman S et al 1999 The Ligand for Osteoprotegerin (OPGL) Directly Activates Mature Osteoclasts The Journal of Cell Biology 145 (3) : 527–538