Segal–Bargmann transform for unitary groups in the large-N limit

Brian C. Hall
University of Notre Dame

Mathematical Topics in Quantization
Galatasaray University

September 2018
Shameless self-promotion

- “Quantum Theory for Mathematicians” and “Lie Groups, Lie Algebras, and Representations” (both Springer)
OUTLINE:

- Part 1: Segal–Bargmann transform for a compact Lie group
- Part 2: The large-N limit
- Part 3: Application to random matrix theory
Part 1: Segal–Bargmann transform for a compact Lie group
SBT: The set-up

- K: connected compact Lie group
- \mathfrak{k}: Lie algebra
- $\langle \cdot , \cdot \rangle$: Ad-invariant inner product on \mathfrak{k}
- $K_{\mathbb{C}}$: complexification of K
- E.g., if $K = SU(2)$, $K_{\mathbb{C}} = SL(2; \mathbb{C})$; if $K = U(N)$, $K_{\mathbb{C}} = GL(N; \mathbb{C})$
\[\Delta = \text{Laplacian on } K \]
\[e^{t\Delta/2} : \text{heat operator on } K \]
\[C_t : L^2(K) \rightarrow \mathcal{H}(K_C) \text{ defined by} \]
\[C_t f = (e^{t\Delta/2} f)_C, \quad t > 0. \]

\[(\cdot)_C \] denotes analytic continuation from \(K \) to \(K_C \)
Theorem (H, 1994)

There exists a measure \(\nu_t \) on \(K_C \) for which

\[
C_t : L^2(K) \rightarrow \mathcal{H}L^2(K_C, \nu_t)
\]

is a unitary map.

- \(\nu_t \) is a **heat kernel measure** on \(K_C \)
- Idea: Replace all Gaussians in the classical SBT with heat kernels
Same construction gives classical SBT on $\mathbb{R}^n/\mathbb{C}^n$

$K_{\mathbb{C}}$ identified with $T^*(K)$ ("phase space")

ν_t and C_t can also be constructed using geometric quantization (H, 2002; Florentino–Mourão–Nunes, 2006)

Related to quantization of $(1+1)$-dimensional Yang–Mills theory on cylinder (Driver–H, 1999)

Gives rise to "coherent states" that have been used in quantum gravity (esp. Thomas Thiemann and collaborators)
Part 2: The large-N limit
Take $K = U(N)$, $K_{\mathbb{C}} = GL(N; \mathbb{C})$

Take $\langle X, Y \rangle_N = N \text{ trace}(X^* Y)$

Thus $\Delta_N = \frac{1}{N} \Delta_{\text{tr}}(X^* Y)$

If $f(U) = U_{ij}$ then

$$\Delta_N(U_{ij}) = \underbrace{(-1)}_{\text{indep. of } N} U_{ij}.$$
Use “B-version” SBT:

\[B_t : L^2(K, \rho_t) \to \mathcal{H}L^2(K_C, \mu_t) \]

where \(\rho_t \) and \(\mu_t \) are heat kernel measures

- \(B_t \) given by same formula as \(C_t \); only inner products have changed
- Still a unitary map!
- Extend to matrix-valued function “entrywise”
Define

\[f(U) = U^2, \quad U \in U(N) \]

Can show:

\[
B_t^N(U^2) = e^{-t} \left[\cosh \left(\frac{t}{N} \right) Z^2 - t \frac{\sinh \left(\frac{t}{N} \right)}{t/N} Z \operatorname{tr}(Z) \right]
\]

\[
(Z \in GL(N; \mathbb{C}))
\]

where \(\operatorname{tr}(\cdot) \) is the normalized trace.

You can all help me take the limit \(N \to \infty \)!
Large-\(N\) limit: Example

- For large \(N\)
 \[
 B_t^N(U^2) \approx e^{-t} \left[Z^2 - tZ \operatorname{tr}(Z) \right].
 \]

- One more step: As \(N \to \infty\), the measure \(\mu^N_t\) concentrates onto the set where \(\operatorname{tr}(Z) = 1\)

- Thus
 \[
 B_t^N(U^2) \approx e^{-t} \left[Z^2 - tZ \right]
 \]
 where closeness is measured in \(\mathcal{H}L^2(GL(N; \mathbb{C}), \mu^N_t)\)

- In the limit, only powers of \(Z\), no traces!
Theorem (Driver–H–Kemp, inspired by Biane)

For each polynomial p, there exists a polynomial q_t such that

$$B_t^N(p(U)) \approx q_t(Z), \quad Z \in GL(N; \mathbb{C}).$$

- If $p(u) = u^2$, then $q_t(z) = e^{-t}(z^2 - tz)$
- Notation: $q_t = G_t(p)$
- Have explicit generating function for the polynomials
- Proof based on large-N behavior of Laplacian on “trace polynomials”
Part 3: Application to random matrix theory
Random matrices: Biane’s measure γ_t

- Probability measure γ_t on S^1
- Describes large-N eigenvalue distribution for random matrices from $(U(N), \rho_t)$
- $\gamma_t(E) = \text{limiting fraction of eigenvalues in } E \subset S^1$
- Fact: for $t < 4$, have

$$\text{supp}(\gamma_t) \not\subset S^1$$
Random matrices: Biane’s measure γ_t
Biane showed that G_t extends to a map

$$G_t : L^2(S^1, \gamma_t) \rightarrow \mathcal{H}(\Sigma_t)$$

where Σ_t is a certain domain in the plane

Map satisfies

$$\|f\|_{L^2(S^1, \gamma_t)}^2 = \lim_{N \rightarrow \infty} \int_{U(N)} \|f(u)\|_{HS}^2 \, d\rho_t(u)$$

$$= \lim_{N \rightarrow \infty} \int_{GL(N)} \|G_t f(Z)\|_{HS}^2 \, d\mu_t(Z)$$

First equality is by the definition of γ_t and second by unitarity of B_t
Define

\[f_t(\lambda) = \lambda \exp \left\{ \frac{t \lambda + 1}{2 \lambda - 1} \right\} \]

If \(|\lambda| = 1\) then \(|f_t(\lambda)| = 1\)

But there are other points where \(|f_t(\lambda)| = 1\)

Then

\[\partial \Sigma_t = \{ \lambda \in \mathbb{C} | \ |f_t(\lambda)| = 1 \text{ and } |\lambda| \neq 1 \} \]
Random matrices: properties of Σ_t

- Simply connected for $t \leq 4$, doubly connected for $t > 4$ (unit circle in black)
Random matrices: properties of Σ_t

- Simply connected for $t \leq 4$, doubly connected for $t > 4$ (unit circle in black)

Figure: $t = 4.01$
Random matrices: properties of Σ_t

- **Key point:** f_t maps $\mathbb{C} \setminus \tilde{\Sigma}_t$ conformally onto $\mathbb{C} \setminus \text{supp}(\gamma_t)$
- You will remember this, right?
Random matrices: Theorem

Theorem (H–Kemp)

Eigenvalues of random matrices from \((GL(N; \mathbb{C}), \mu_t)\) cluster into \(\bar{\Sigma}_t\) as \(N \to \infty\)

- Interpretation:

 \[f_t(\text{resolvent set for } GL(N; \mathbb{C})) = \text{resolvent set for } U(N) \]

 (for large \(N\)).
Simulations of eigenvalues for $N = 2,000$ and $t = 3.0, 4.0$

$t = 3$

$t = 4$
If \(\lambda \notin \bar{\Sigma}_t \) then

\[
G_t^{-1}(((z - \lambda)^{-1}) = \frac{f_t(\lambda)}{\lambda} \frac{1}{u - f_t(\lambda)}, \quad u \in \text{supp}(\gamma_t) \subset S^1.
\]

Since \(\lambda \notin \bar{\Sigma}_t \) then \(f_t(\lambda) \notin \text{supp}(\gamma_t) \), so RHS is well-defined in \(L^2(S^1, \gamma_t) \).

Hence for \(\lambda \notin \bar{\Sigma}_t \), have

\[
\lim_{N \to \infty} \int_{\text{GL}(N)} \|(Z - \lambda)^{-1}\|_{HS}^2 \ d\mu_t(Z) = \|\ast\|^2 < \infty
\]
But

\[\| (Z - \lambda)^{-1} \|_{HS}^2 \]

blows up as \(\lambda \) approaches spectrum of \(Z \)

Thus, previous result is possible only if \(\lambda \) is (with high probability as \(N \to \infty \)) not an eigenvalue of \(Z \in (GL(N; \mathbb{C}), \mu_t) \)
The heat kernel measure μ^N_t is distribution of Brownian motion b^N_t in $GL(N; \mathbb{C})$

Then b^N_t converges to a “free multiplicative Brownian motion” b_t as $N \to \infty$ (element of an operator algebra)

Then b_t has a Brown measure, which is a sort of “eigenvalue distribution” for the operator b_t

Our theorem: Support of Brown measure is in closure of Σ_t

Proof is mostly as indicated, but really need to let $N \to \infty$ first
• Joint work with Driver and Kemp: preliminary results and conjectures about actual distribution of eigenvalues in Σ_t.
• More precisely: computing the Brown measure of b_t (not just its support)
• Expect: limiting eigenvalue distribution for matrices in $GL(N; \mathbb{C})$ will coincide with the Brown measure
THANK YOU FOR YOUR ATTENTION!