ЭНДОВАСКУЛЯРНЫЕ МЕТОДЫ ЛЕЧЕНИЯ
ПРИ ОСТРОЙ ТРОМБОЭМБОЛИИ ЛЕГОЧНОЙ АРТЕРИИ

Чернявский М.А., Кудаев Ю.А., Чернов А.В., Жердев Н.Н., Чернова Д.В.

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр им. В. А. Алмазова» Минздрава России, Санкт-Петербург, Россия

Резюме
Тромбоэмболия легочной артерии является жизнеугрожающим состоянием вследствие развития острой правожелудочковой недостаточности и кардиогенного шока. Основным методом реперфузии при массивной легочной эмболии остается системный тромболизис, проведение которого сопряжено с риском фатальных геморрагических осложнений. В течение последних двух десятилетий наблюдается все больший интерес к использованию эндоваскулярных технологий, позволяющих восстановить кровоток по окклюзированным легочным артериям в сроки до трех недель от верифицированного эпизода эмболии и снизить риск больших кровотечений. Проводимые в настоящее время исследования подтверждают высокую эффективность и безопасность интервенционных методов лечения, внедрение которых в клиническую практику позволит улучшить прогноз больных с массивной тромбоэмболией легочной артерии.

Ключевые слова: катетерная фрагментация, тромболизис, тромбоэмболия легочной артерии, эндоваскулярные методы лечения.

Для цитирования:
Чернявский М.А., Кудаев Ю.А., Чернов А.В., Жердев Н.Н., Чернова Д.В. Эндоваскулярные методы лечения при острой тромбоэмболии легочной артерии. Трансляционная медицина. 2018;5(4): 5–11.
ENDOVASCULAR TREATMENT OF ACUTE PULMONARY EMBOLISM

Chernyavskiy M.A., Kudaev Y.A., Chernov A.V., Zherdev N.N., Chernova D.V.
Almazov National Medical Research Centre, Saint Petersburg, Russia

Abstract
Thromboembolism of pulmonary artery is life-threatening condition due to acute right ventricle failure and cardiogenic shock. System thrombolysis is the main way of reperfusion in massive pulmonary embolism with a very high risk of fatal hemorrhage complications. There is a popular revascularization method in two last decades such as endovascular treatment. It allows to recover the blood flow into occluded pulmonary arteries up to three weeks after confirmed embolism episode and to decrease major bleeding risks. Now trials corroborate the high efficacy and safety of interventional treatment the usage of which would allow to improve prognosis in massive pulmonary embolism.

Key words: catheter fragmentation, thrombolysis, pulmonary embolism, endovascular treatment.

For citation:
Chernyavskiy M.A., Kudaev Y.A., Chernov A.V., Zherdev N.N., Chernova D.V. Endovascular treatment of acute pulmonary embolism. Translyatsionnaya meditsina=Translational Medicine. 2018;5(4): 5–11 pages. (In Russ.)
пациента. К категории высокого риска относятся больные с явлениями кардиогенного шока и артериальной гипотензии. При стабильной гемодинамике производят оценку маркеров дисфункции и повреждения правого желудочка (ПЖ). Признаки дисфункции ПЖ и повышение сердечных маркеров указывают на наличие у пациента промежуточного риска, при отсутствии риск считается низким. При ТЭЛА высокого и промежуточного риска решается вопрос о реперфузионном лечении, а больным низкого риска проводится только антикоагулянтная терапия.

Основным методом реперфузии у пациентов высокого риска является системный тромболизис, позволяющий быстро восстановить кровоток по окклюзированным ЛА [7]. Однако, проведение тромболитической терапии (ТЛТ) сопряжено с риском развития крупных кровотечений, частота возникновения которых по данным международного регистра ICOPER составляет 22% [8]. Кроме того, около 30% пациентов с массивной ТЭЛА имеют абсолютные противопоказания к выполнению тромболизиса, такие как перенесенная в недавнем прошлом операция, тяжелая травма или инсульт, прогрессирование онкологического заболевания [9]. В качестве альтернативного способа лечения при неэффективности или наличии противопоказаний к ТЛТ является хирургическая эмболэктомия, проведение которой возможно только в условиях специализированных центров, так как операция сопряжена с высоким уровнем госпитальной летальности, достигающим 30% [10].

Перспективным методом, позволяющим восстановить кровоток в ЛА и спасти жизнь пациента с острой правожелудочковой недостаточностью, при наличии высокого риска кровотечения и отсутствии возможности выполнения хирургической эмболэктомии, является интервенционное лечение, которое все чаще применяется в клинической практике. Высокую эффективность катетерной фрагментации с локальным введением тромболитических препаратов многие авторы объясняют тем, что механическое разрушение тромбэмболов улучшает проникновение фибринолитика в их толщу при окклюзирующем поражении ЛА. Так, Fava M., et al. (1997) наблюдали полное восстановление просвета ЛА после эндоваскулярного разрушения тромбов и селективного введения урокиназы у 14 (87,5%) из 16 больных с острой ТЭЛА [11]. Tajima H., et al. (2004) при использовании механической фрагментации с аспирацией тромбэмболов и локального тромболизиса у 25 пациентов с ТЭЛА отметили, что во всех случаях наступало клиническое улучшение, среднее давление в ЛА снизилось с 36,2 до 22,4 мм рт.ст., периоперационная летальность отсутствовала [12]. Применение катетерной фрагментации с селективной ТЛТ у 110 больных с острой легочной эмболией в ФГБУ «НМИЦ им. Е.Н. Мешалкина» сопровождалось стабилизацией клинического состояния в 98% случаев, при этом уровень летальности составил 1,8% [13].

Интересны результаты серии работ зарубежных врачей, посвященных локальному тромболизису с применением сниженных доз фибринолитиков у пациентов с ТЭЛА высокого и промежуточно-высокого риска. Так, в клиническом исследовании PERFECT положительный клинический эффект достигнут у 24 больных из 28 с ТЭЛА высокого (85,7%) и у 71 из 73 с ТЭЛА промежуточно-высокого риска (97,3%), среднее давление в ЛА снизилось с 51,17 ± 14,06 мм рт.ст. до 37,23 ± 15,81 мм рт.ст., улучшение функции ПЖ по данным эхокардиографии наблюдалось в 89,1% случаев. При этом за счет снижения дозы тромболитического препарата зарегистрировано 0% больших и 12,9% малых кровотечений [14]. Похожие данные по эффективности селективной ТЛТ с использованием сниженных доз тканевого активатора плазминогена и ультразвука получены в клиническом исследовании SEATTLE II, в которое были включены 150 больных с острой ТЭЛА. Количество крупных кровотечений составило 10%, а летальность — 2,7% [15].

По данным мета-анализа 35 нерандомизированных исследований, включающих 594 пациента, у которых применялись эндоваскулярные методы лечения массивной легочной эмболии, клинический успех, определяемый как стабилизация системной гемодинамики, снижение давления в ЛА и улучшение функции ПЖ, составил 87%, а число кровотечений не превышало 2,4%, что свидетельствует об их эффективности и безопасности [16].

Показания к эндоваскулярному лечению

Цель интервенционного лечения заключается в устранении обструкции ЛА, что приводит к снижению давления в ЛА и легочного сосудистого сопротивления (ЛСС), восстановлению функции ПЖ, улучшению клинического состояния пациентов [17].

В 2014 г. разработаны и внедрены в практику рекомендации Европейского общества кардиологов по ведению пациентов с острой эмболией системы ЛА, согласно которым при ТЭЛА высокого риска и наличии соответствующих оснащенности и опыта возможно использование методик эндоваскулярной фрагментации и/или удаления тромбов в ЛА, в том числе сопряженных с локальным тромболизисом (класс рекомендации Iа, уровень
доказательности C). Также интервенционные вмешательства могут рассматриваться при промежуточно-высоком риске, если предполагаемый риск кровотечения после системного тромболизиса высокий (класс рекомендации IIb, уровень доказательности B) [7].

Выбор способа эндоваскулярной реперфузии основывается на наличии или отсутствии у больного абсолютных противопоказаний к ТЛТ. У пациентов с высоким риском кровотечения выполняют вмешательства без введения тромболитических препаратов. К таким методикам относятся катетерная фрагментация тромбов, реолитическая, аспирационная и ротационная тромбэктомия. Для лечения больных, у которых нет абсолютных противопоказаний к проведению ТЛТ, применяют катетерный или фармакомеханический тромболизис.

История интервенционных методов лечения

Впервые о применении у 10 пациентов с ТЭЛА устройства для катетерной эмболэктомии, состоящего из фиксированной к двухпросветной трубке (12 F) чашечки диаметром 12 мм и баллонного катетера, сообщили Greenfield L., et al в 1971 году. Данное аспирационное устройство они вводили в ЛА через бедренную вену. Чашечку устанавливали в окклюзированную главную ветвь ЛА, затем проводили баллонный катетер за область обструкции и раздували, чтобы исключить дистальное смещение тромба, далее аспирировали тромбэмболы в устройство, создавая разрежение шприцем. Непосредственный положительный клинический успех был достигнут у 8 из 10 больных. Двое пациентов умерли во время операции от правожелудочковой недостаточности. Еще в течение месяца после вмешательства один человек умер от пневмонии и двое от повторной легочной эмболии. Данное исследование показало, что использование эндоваскулярных технологий позволяет добиться положительного результата при лечении данной категории больных [18].

Дальнейшая активная разработка и внедрение малоинвазивных методик при ТЭЛА, направленных на восстановление проходимости ЛА, происходит на 90-х годах прошлого столетия. В 1996г. Uflacker R., et al применили тромбэктомическое устройство Amplatz у 5 больных с легочной эмболией. Данное исследование показало, что использование эндоваскулярных технологий позволяет добиться положительного результата при лечении данной категории больных [18].

Следующий этап развития связан с предложением Schmitz-Rode T. фрагментировать тромбоэмболы ЛА специальным вращающимся на проводнике катетером типа Pigtail. В 2000г. Schmitz-Rode T., et al представили результаты механической фрагментации тромбоэмболов ЛА у 20 больных с массивной ТЭЛА. В 16 случаях достигнут положительный клинический результат. После вмешательства среднее систолическое давление в ЛА снизилось с 31 ± 6 мм рт.ст. до 28 ± 8 мм рт.ст. Трое пациентов умерли в раннем послеоперационном периоде от правожелудочковой недостаточности и один от сепсиса. Метод, по заявлению авторов, обеспечивал быстрое и безопасное улучшение гемодинамики при сравнительно невысокой стоимости расходных материалов [20]. Методика Schmitz-Rode остается актуальной и в наши дни.

К настоящему времени в арсенале ангиохирургов и интервенционных кардиологов появились современные системы для аспирационной, ротационной и реолитической тромбэктомии, которые при необходимости могут сочетаться с селективным тромболизисом [16].

Эндоваскулярные методы лечения без селективного тромболизиса

Применяются у пациентов с высоким риском кровотечения с целью снижения давления в ЛА и ЛСС путем механического разрушения тромбов на мелкие фрагменты, а при возможности и их удаления. К ним относятся катетерная фрагментация тромбов, реолитическая, аспирационная и ротационная тромбэктомия.

Для катетерной фрагментации тромбов могут быть использованы катетер Pigtail (5–6F), периферический баллонный катетер (6–7F) с диаметром баллона 5-10 мм. Основным недостатком методики является риск развития дистальной эмболии фрагментами неокклюзирующего тромба, способной ухудшить состояние больного [21]. Для снижения риска эмболии фрагментация тромбов в ряде случаев сочетается с их аспирацией.

Реолитическая тромбэктомия — метод удаления тромба из ветвей ЛА с использованием гидродинамических устройств типа AngioJet. Струя гепаринизированного физиологического раствора под высоким давлением создает эффект Вентури, за счет которого тромб одновременно разрушается и удаляется через катетер (AngioJet, Oasis, Hydrolyzer) [22].

Ротационная тромбэктомия — эндоваскулярная реканализация ветвей ЛА диаметром до 10 мм системой Aspirex (Straub Medical). Центральная часть катетера Aspirex представлена врачающейся с высокой скоростью винтовой осью, что приводит
к созданию отрицательного давления, под действием которого происходит разрушение и удаление тромба, при этом отсутствие открытой вращающейся головки минимизирует риск повреждения стенки сосуда.

Аспирационная тромбэктомия — удаление тромбоэмболов широкопросветным катетером 8–9F за счет отрицательного давления, создаваемого с помощью специального аспирационного шприца (Argon Medical Devices).

Эндоваскулярные методы лечения с локальным тромболизисом

Катетерный тромболизис применяется у пациентов высокого и промежуточно-высокого риска при наличии относительных противопоказаний к системной ТЛТ, поскольку частота развития крупных кровотечений при селективном тромболизисе ниже, ввиду применения более низких доз тромболитиков [23]. Осуществляется путем длительной непрерывной инфузии фибринолитического препарата при помощи 5F катетера в тромб. Применяются различные схемы введения лекарственных препаратов, средняя терапевтическая доза тканевого активатора плазминогена составляет 0,5–2,0 мг в час и проводится в течение 12-24ч.

Фармакомеханический тромболизис представляет собой сочетание одного из механических методов с селективной ТЛТ. Наиболее часто используют комбинацию механической фрагментации тромбов с локальным тромболизисом, так как у пациентов с нестабильной гемодинамикой отсутствует возможность длительного введения фибринолитика. С целью разрушения тромбов используют различные ангиографические катетеры, чаще всего катетер Schmitz-Rode (5–6F), а в качестве тромболитического препарата — альтеплазу, тенектепазу, проурокиназу [13, 22]. Вмешательство выполняется под местной анестезией. Осуществляется пункция и катетеризация правой или левой подключичной вены. Проводится зондирование правых отделов сердца и легочного ствола с тензиометрией малого круга кровообращения, выполняется ангиопульмонография. После определения объема поражения сосудов малого круга кровообращения осуществляется фрагментация тромбоэмбола путем вращательного и поступательного перемещения кончика катетера Schmitz-Rode в дистальном и проксимальном направлениях по окклюзированым ЛА. Одновременно в момент выполнения фрагментации через катетер в толщу тромбов вводят тромболитический препарат. Введение фибринолитика проводится с паузами в течение 1-2 мин и продолжается в течение 20-30 минут. Тромболитический процесс завершается постоянным введением гепарина на протяжении 24 часов под контролем активированного частичного тромбопластинового времени. На 2 сутки антиагрегантная терапия продолжается введением низкомолекулярного гепарина и при отсутствии противопоказаний назначают варфарин [24]. Парентеральное введение антиагрегантов прекращают при достижении терапевтических значений международного нормализованного отношения (2,0–3,0). Терапия пероральными антиагрегантами продолжается как минимум 3 месяца.

Высокая эффективность отмечена при использовании системы EkoSonic (EKOS Corporation, США), в которой применяется катетер для инфузии тромболитика с ультразвуковым сердечником. Ультразвук вызывает дезагрегацию фибриновых волокон и улучшает доставку фибринолитика вглубь тромба [25, 26].

Осложнения

Серьезными осложнениями интервенционных методов лечения при ТЭЛА являются перфорация или диссекция крупных ветвей ЛА, способные привести к массивному легочному кровотечению и гибели больного. Риск перфорации повышается при вмешательствах на ветвях ЛА диаметром менее 6 мм [27]. Чтобы минимизировать риск возникновения перфорации ЛА, тромбэктомию следует выполнять только из основных и долевых ветвей ЛА. Редким, но не менее грозным осложнением катетерной тромбэктомии служит тампонада перикарда вследствие повреждения миокарда ПЖ, поэтому от хирурга требуется повышенная осторожность и аккуратность во время вмешательства. К осложнениям, связанным с применением различных механических устройств для эндоваскулярной тромбэктомии, относится внутрисосудистый гемолиз [28, 29]. Кроме того, могут наблюдаться небольшие кровотечения на фоне проводимой антикоагулянтной терапии, контраст-индуцированная нефропатия, аллергические реакции на рентген-контрастные препараты. В месте сосудистого доступа встречается развитие гематом, псевдоаневризм или артерио-венозных фистул.

Заключение

Стремительное развитие эндоваскулярной хирургии в течение последних десятилетий позволило применить малоинвазивные методы при лечении пациентов с массивной легочной эмболией. Использование современных малотравматических методик способствует снижению смертности от острый ТЭЛА, уменьшению количества геморрагических осложнений вследствие использования более низ-
кых доз тромболитических препаратов и первичной профилактики ХТЭЛГ. В большинстве стран эндо- васкулярные технологии продолжает набирать по- пулярность при массивной ТЭЛА, а дальнейшее их развитие и теоретическая обоснованность примене- ния позволит повысить класс и уровень рекомен- даций, а возможно и персонализированно выбирать оптимальный метод реперфузии для каждого паци- ента, повысив эффективность лечения.

Конфликт интересов / Conflict of interest
Авторы заявили об отсутствии потенциаль- но го конфликта интересов. / The authors declare no conflict of interest.

Благодарности / Acknowledgments

Список литературы / References
1. Savelyev VS, Gologorsky VA, Kirlenko AI. Phlebology: Guideline for doctors. M.: Medicine, 2001. p. 175. In Russian. [Савельев В. С., Гологорский В. А., Ки- ренко А. И. Флебология: Руководство для врачей. М.: Медицина, 2001. с. 175].
2. Kucher N, Rossi E, De Rosa M, et al. Massive pulmonary embolism. Circulation. 2006; 113: 577–582.
3. Le Gal G, Righini M, Roy P, et al. Prediction of pulmonary embolism in the emergency department: The Revised Geneva Score. Ann Intern Med. 2006; 144: 165–171.
4. Pego V, Lensing AW, Prins MH, et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med. 2004; 350: 2257–2264.
5. Tapson VF, Humbert M. Incidence and prevalences of chronic thromboembolic pulmonary hypertension. Proc Am Thorac Soc. 2006; 3: 564–567.
6. Riedel M, Stanek V, Widimsky J, et al. Long-term follow-up of patients with pulmonary thromboembolism: late prognosis and evolution of hemodynamic and respiratory data. Chest. 1982; 81: 151–158.
7. Konstantinides S, Torbicki A, Agnelli G, et al. 2014 ESC Guidelines on the diagnosis and management of acute pulmonary embolism: The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J. 2014; 35: 3033–3073.
8. Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet. 1999; 353: 1386–1389.
9. Kasper W, Konstantinides S, Geibel A, et al. Management strategies and determinants of outcome in acute major pulmonary embolism: results of a multicenter registry. J Am Coll Cardiol. 1997; 30: 1165–1171.
10. Stein PD, Alnas M, Beemath A, et al. Outcome of pulmonary embolectomy. Am J Cardiol. 2007; 99: 421–423.
11. Fava M, Loyola S, Flores P, et al. Mechanical fragmentation and pharmacologic thrombolysis in massive pulmonary embolism. J Vase Interv Radiol. 1997; 8(2): 261–266.
12. Tajima H, Murata S, Kumazaki T, et al. Hybrid treatment of acute massive pulmonary thromboembolism: mechanical fragmentation with a modified rotating pigtail catheter, local fibrinolytic therapy, and clot aspiration followed by systemic fibrinolytic therapy. Interventional Radiology AJR. 2004; 183: 589-595.
13. Klevanets JE, Karpenko AA, Shilova AN. Use of local thrombolysis in patients with massive pulmonary thromboembolism and moderate-to-severe pulmonary hypertension. Angiology and vascular surgery. 2017; 23(4): 7-11. In Russian. [Клеванец Ю. Е., Карпенко А. А., Ши- лова А. Н. Применение локального тромболизиса при массивной тромбоэмболии легочной артерии с умеренной и выраженной легочной гипертензией. Ангиология и сосудистая хирургия. 2017; 23(4): 7-11].
14. Kuo WT, Banerjee A, Kim PS, et al. Pulmonary embolism response to fragmentation, embolectomy, and catheter thrombolysis (PERFECT): Initial results from a prospective multicenter registry. Chest. 2015; 148(3): 667–673.
15. Piazza G, Hohlfelder B, Jaff MR, et al. A Prospective, Single-Arm, Multicenter Trial of Ultrasound-Facilitated, Catheter-Directed, Low-Dose Fibrinolysis for Acute Massive and Submassive Pulmonary Embolism. JACC: Cardiovascular Interventions. 2015; 8(10): 1382-1392.
16. Kuo WT, Gould MK, Louis JD, et al. Catheter-directed therapy for the treatment of massive pulmonary embolism: systematic review and meta-analysis of modern techniques. J. Vasc. Interv. Radiol. 2009; 20: 1431–1440.
17. Jaff’ MR, McMurtry MS, Archer SL, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011; 123: 1788–1830.
18. Greenfield LJ, Bruce TA, Nichols NB. Transvenous pulmonary embolectomy by catheter device. Ann Surg. 1971; 174: 881–886.
19. Uflacker R, Strange C, Vujic I. Massive pulmonary embolism: preliminary results of treatment with the Amplatz thrombectomy device. J Vasc Interv Radiol. 1996; 7(4): 519–528.
20. Schmitz-Rode T, Janssens U, Duda SH, et al. Massive pulmonary embolism: percutaneous emergency treatment by pigtail rotation catheter. JACC. 2000; 36(2): 375-380.
21. Brady AJ, Crake T, Oakley CM. Percutaneous catheter fragmentation and distal dispersion of proximal pulmonary embolus. Lancet. 1991; 338: 1186–1189.
22. Engelberger RP, Kucher N. Catheter-based reperfusion treatment of pulmonary embolism. Circulation. 2011; 124: 2139–2144.
23. SkaE, Beemath A, Siddiqui T, et al. Catheter-tip embolectomy in the management of acute massive pulmonary embolism. Am J Cardiol. 2007; 99: 415–420.
24. Karpenko AA, Klevanets JE, Mironenko SP, et al. Functional state of right ventricular myocardium in patients with acute pulmonary embolism before and after thrombolytic therapy. Kardiologiia. 2014; 5: 29-33. In Russian. [Карпенко А. А., Клеванец Ю. Е., Мироненко С. П. и др. Функциональное состояние миокарда правого желудочка у пациентов с острой тромбоэмболией ле- гочной артерии до и после тромболитической терапии. Кардиология. 2014; 5: 29-33].
25. Engelberger RP, Kucher N. Ultrasound-assisted thrombolysis for acute pulmonary embolism: a systematic review. Eur Heart J. 2014; 35(12): 758–764. 26. Kucher N,
Boekstegers P, Muller O, et al. Randomized controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation. 2014; 129(4): 479-486.

27. Biederer J, Charalambous N, Paulsen F, et al. Treatment of acute pulmonary embolism: local effects of three hydrodynamic thrombectomy devices in an ex vivo porcine model. J Endovase Ther. 2006; 13: 549–560.

28. Danetz JS, McLafferty RB, Ayerdi J, et al. Pancreatitis caused by rheolytic thrombolysis: an unexpected complication. J Vasc Interv Radiol. 2004; 15: 857–860.

29. Dukkipati R, Yang EH, Adler S, et al. Acute kidney injury caused by intravascular hemolysis after mechanical thrombectomy. Nat Clin Pract Nephrol. 2009; 5: 112–116.

Информация об авторах:
Чернявский Михаил Александрович, д.м.н. руководитель научно-исследовательского отдела сосудистой и интервенционной хирургии ФГБУ «НМИЦ им. В.А. Алмазова»;
Кудаев Юрий Анатольевич, врач-кардиолог отделения сосудистой и гибридной хирургии ФГБУ «НМИЦ им. В.А. Алмазова»;
Чернов Артемий Владимирович, заведующий отделением сосудистой и гибридной хирургии ФГБУ «НМИЦ им. В.А. Алмазова»;
Жердев Николай Николаевич, научный сотрудник научно-исследовательского отдела сосудистой и интервенционной хирургии ФГБУ «НМИЦ им. В.А. Алмазова»;
Чернова Дарья Викторовна, научный сотрудник научно-исследовательского отдела сосудистой и интервенционной хирургии ФГБУ «НМИЦ им. В.А. Алмазова»;

Author information:
Mikhail A. Chernyavskiy, MD, PhD, head of research-department of vascular and intervention surgery, Almazov National Medical Research Centre;
Yuri A. Kudaev, MD, cardiologist of department of vascular and hybrid surgery, Almazov National Medical Research Centre;
Artemiy V. Chernov, MD, head of department of vascular and hybrid surgery, Almazov National Medical Research Centre;
Nikolai N. Zherdev, MD, research assistant of research-department of vascular and intervention surgery, Almazov National Medical Research Centre;
Chernova Darya Victorovna, research assistant of research-department of vascular and intervention surgery and intervention surgery, MD vascular and intervention surgery, Almazov National Medical Research Centre.