QCD corrections to the R-parity violating processes

\[p\bar{p}/pp \rightarrow e\mu + X \] at hadron colliders

Wang Shao-Ming\(^2\), Han Liang\(^2\), Ma Wen-Gan\(^1,2\), Zhang Ren-You\(^2\), and Jiang Yi\(^2\)

\(^1\)CCAST (World Laboratory), P.O.Box 8730, Beijing, 100080, People’s Republic of China
\(^2\)Department of Modern Physics, University of Science and Technology of China (USTC), Hefei, Anhui 230026, People’s Republic of China

Abstract

We present the QCD corrections to the processes \(p\bar{p}/pp \rightarrow e\mu + X \) at the Tevatron and the CERN large hadron collider (LHC). The numerical results show that variation of K factor is in the range between 1.28(1.32) and 1.79(1.58) at the Tevatron (LHC). We find that the QCD correction part from the one-loop gluon-gluon fusion subprocess is remarkable at the LHC and should be taken into account.

PACS: 11.30.Fs, 11.30.Pb, 12.60.Jv, 14.80.Ly
In the R-parity violating minimal supersymmetric standard model, the most general representations of superpotential can be written as

\[W_{R^p} = \frac{1}{2} \epsilon_{ab} \lambda_{ijk} \hat{L}_i^a \hat{L}_j^b \hat{E}_k + \epsilon_{ab} \lambda'_{ijk} \hat{L}_i^a \hat{Q}_j^b \hat{D}_k + \frac{1}{2} \epsilon_{\alpha\beta\gamma} \lambda''_{ijk} \hat{U}_i^\alpha \hat{D}_j^\beta \hat{D}_k^\gamma + \epsilon_{ab} \delta_i^a \hat{L}_i \hat{H}_2 \]

(0.1)

where \(i, j, k = 1, 2, 3 \) are generation indices; \(a, b = 1, 2 \) are SU(2) isospin indices and \(\alpha, \beta, \gamma \) are SU(3) color indices. \(\lambda, \lambda', \lambda'' \) are dimensionless R-violating Yukawa couplings behaving as \(\lambda_{ijk} = -\lambda_{jik} \) and \(\lambda''_{ijk} = -\lambda''_{jik} \). In above superpotential, the trilinear terms only violate either L- or B-symmetry respectively, and the terms which may produce both L- and B-violation simultaneously, are absent so that a stable proton is ensured.

An observation of electron-muon pair events with high invariant mass at hadron colliders would provide evidence of R-parity violating (RPV) interactions. The electron-muon pair productions at hadron colliders induced by RPV interactions at the leading order were investigated in Ref.\[1\]. In this report, we present the QCD corrections to the RPV processes \(pp \rightarrow e\mu + X \) at hadron colliders including the contributions of the NLO QCD and gluon-gluon fusion subprocess. We adopt the dimensional regularization (DR) method in \(D = 4 - 2\epsilon \) dimensions to isolate the ultraviolet (UV), infrared (IR) (soft and collinear) singularities. In order to remove the UV divergences, we employ the modified minimal subtraction (\(\overline{\text{MS}} \)) scheme to renormalize and eliminate UV divergences. After renormalization procedure, the virtual correction part of the cross section is UV-finite. The IR divergences from the one-loop diagrams involving gluon will be cancelled by adding the soft real gluon emission corrections by using the two cutoff phase space slicing method (TCPSS)\[2\]. The remaining collinear divergences can be absorbed into the parton distribution functions.

Although the contribution of the \(e\mu \) production via gluon-gluon fusion at the lowest order is an one-loop subprocess and this contribution part to the process \(pp \rightarrow e\mu + X \) is at \(\mathcal{O}(\alpha_s^2) \) order, which is higher than that of the NLO QCD correction to the process \(pp \rightarrow q\bar{q} \rightarrow e\mu + X \), it is possible that the production rate of the \(pp \rightarrow gg \rightarrow e\mu + X \) could be non-negligible in contrast with the NLO QCD correction to the process via \(q\bar{q} \) annihilation, due to large gluon luminosity in TeV-scale proton-proton (anti-proton) collisions. In this
report we present also the contribution part via gluon-gluon fusions.

In the numerical calculations of the QCD corrected cross sections at the Tevatron and the LHC, we take the RPV parameters λ and λ' to be real for simplicity with the values as

$$
\begin{align*}
\lambda_{112} &= \lambda_{221} = 0, & \lambda_{212} &= \lambda_{121} = 0.049, & \lambda_{312} &= 0.062, & \lambda_{321} &= 0.070, \\
\lambda'_{111} &= 5.2 \times 10^{-4}, & \lambda'_{112} &= \lambda'_{113} = 0.021, \\
\lambda'_{121} &= 0.043, & \lambda'_{131} &= 0.019, & \lambda'_{211} &= \lambda'_{212} = \lambda'_{213} = 0.059, \\
\lambda'_{221} &= \lambda'_{231} = 0.18, & \lambda'_{311} &= 0.11,
\end{align*}
$$

(0.2)

where the values of λ and λ' are under the experimental constraints presented in Ref. [3]. We use the CTEQ6L parton distribution function for the tree-level cross sections and CTEQ6M for one-loop QCD corrected cross section results [4]. The factorization and the renormalization scales are set to be equal and taken as $\mu_f = \mu_r = m_{\tilde{\nu}}$. We applied the naive fixed-width scheme and fix the decay width of the sneutrino propagator being $\Gamma = 10$ GeV, to avoid the possible resonant singularities. Since the sneutrinos are non-colored supersymmetric particles, there is no problem with gauge invariance or double counting of higher-order effects in calculating the cross sections of $q\bar{q} \rightarrow e\mu$ involving the NLO QCD corrections. The gluino and squark masses are set to be $m_{\tilde{g}} = 916.1$ GeV and $m_{\tilde{q}} = 200(900)$ GeV, and 2×2 mixing matrices R^u and R^d are taken to be unit for simplification. By using the TCPSS method, we take the soft cutoff $\delta_s = 10^{-2}$ and collinear cutoff $\delta_c = \delta_s/50$. The calculations are carried out at the Tevatron with $p\bar{p}$ colliding energy $\sqrt{s} = 1.96$ TeV, and at the LHC with pp colliding energy $\sqrt{s} = 14$ TeV. Since the \overline{MS} scheme violates supersymmetry, the $q\bar{q}g$ Yukawa coupling \hat{g}_s takes a finite shift at one-loop order as shown in Eq. (0.3) [5]:

$$
\hat{g}_s = g_s \left[1 + \frac{\alpha_s}{8\pi} \left(\frac{4}{3} N_c - C_F \right) \right],
$$

(0.3)

with $N_c = 3$ and $C_F = 4/3$. In our numerical calculation we take this coupling strength shift between \hat{g}_s and g_s into account.

In Fig.1(a) and (b) we depict the curves of the tree-level and QCD corrected cross sections(σ^0 and σ^{QCD}) of the processes $p\bar{p}/pp \rightarrow e^+\mu^- + X$ involving NLO QCD and gluon-
gluon fusion subprocess corrections versus the sneutrino mass \(m_{\tilde{\nu}} \) with squark mass being 200 GeV and 900 GeV at the Tevatron and the LHC, respectively. Their corresponding K factors \(K \equiv \frac{\sigma_{QCD}}{\sigma_0} \) as the functions of \(m_{\tilde{\nu}} \) are depicted in Fig.1(c) and (d), separately. We can see the cross section curves in Fig.1(a,b) decrease rapidly with the increment of \(m_{\tilde{\nu}} \), and the QCD corrected cross sections for a sneutrino with several hundred GeV mass are changed slightly when the \(m_{\tilde{q}} \) value runs from 200 GeV to 900 GeV, due to the decrease of contribution from the squark exchanging ones. We can read out from Fig.1(c-d) that the K factors vary in the ranges of \([1.28, 1.79]\) at the Tevatron and \([1.32, 1.58]\) at the LHC. For a 100 GeV sneutrino and 900 GeV squarks, the K factors reach 1.79 and 1.58 at the Tevatron and the LHC, respectively.

In Table 1 we list the tree-level cross sections of the processes \(pp/\bar{p}p \rightarrow e^+\mu^- + X \), their K factors and the contributing parts from gluon-gluon fusion mechanism in conditions of taking different mass values of sneutrino and squark at the Tevatron and the LHC, with positron transverse momentum \(p_T \) \(> p_T^{cut} = 20 \) GeV at the Tevatron and \(p_T \) \(> p_T^{cut} = 25 \) GeV at the LHC. We can read from Table 1 that the relative corrections from the gluon-gluon fusion subprocess at the Tavatron is less than 1% and can be negligible, but at the LHC the relative corrections from the gluon-gluon fusion subprocess can reach 6% when \(m_{\tilde{\nu}} \) has the value of 200 GeV due to large gluon luminosity at the LHC. We can see that in evaluating the QCD corrections to the processes \(pp/\bar{p}p \rightarrow e^+\mu^- + X \) at the LHC, it is reasonable to take the contribution from the gluon-gluon fusion subprocess into account.
Figure 1: The tree-level and total QCD corrected cross sections (σ^0 and σ^{QCD}) of the processes $p\bar{p}/pp \rightarrow e^+\mu^- + X$ involving NLO QCD and gluon-gluon fusion subprocess corrections at the Tevatron and the LHC as the functions of the sneutrino mass $m_{\tilde{\nu}}$ with different squark masses are shown in Fig.7(a) and (b), respectively. Fig.7(c-d) show the corresponding relations between the K factors of the processes and the sneutrino mass $m_{\tilde{\nu}}$. (c) at the Tevatron, (d) at the LHC.
Table 1: The tree-level cross sections of the processes \(p\bar{p}/pp \rightarrow e^+\mu^- + X \) (in fb), the K factor and the relative correction from the gluon-gluon fusion subprocess with different mass values (GeV) of the sneutrino and the squark at the Tevatron and the LHC, in conditions of positron transverse momentum \(p_T > p_{T \text{cut}} = 20 \text{ GeV} \) for the Tevatron and \(p_T > p_{T \text{cut}} = 25 \text{ GeV} \) for the LHC.

\(m_{\tilde{\nu}} \)	\(m_{\tilde{q}} \)	\(\sigma^0_{\text{Tevatron}} \)	\(K_{\text{Tevatron}} \)	\(\sigma^{gg}_{\text{Tevatron}}/\sigma^0_{\text{Tevatron}} \)	\(\sigma^0_{\text{LHC}} \)	\(K_{\text{LHC}} \)	\(\sigma^{gg}_{\text{LHC}}/\sigma^0_{\text{LHC}} \)
200	200	39.83	1.5737	0.00487	467.5	1.525	0.0598
500	200	1.925	1.4312	0.00741	61.25	1.477	0.0107
900	200	0.2436	1.6671	0.00229	15.13	1.520	0.0144
200	900	39.60	1.6421	0.00488	61.25	1.477	0.0107
500	900	1.708	1.3954	0.000461	58.60	1.489	0.00707
900	900	0.03171	1.2778	0.00195	12.37	1.433	0.00154

Table 1: The tree-level cross sections of the processes \(p\bar{p}/pp \rightarrow e^+\mu^- + X \) (in fb), the K factor and the relative correction from the gluon-gluon fusion subprocess with different mass values (GeV) of the sneutrino and the squark at the Tevatron and the LHC, in conditions of positron transverse momentum \(p_T > p_{T \text{cut}} = 20 \text{ GeV} \) for the Tevatron and \(p_T > p_{T \text{cut}} = 25 \text{ GeV} \) for the LHC.

In summary, we studied the QCD corrections to the lepton flavor violating processes \(p\bar{p}/pp \rightarrow e\mu + X \) at the Tevatron and the LHC including the one-loop QCD corrections to \(q\bar{q} \rightarrow e\mu \) subprocess and the one-loop subprocess \(gg \rightarrow e\mu \). In our investigating parameter space the K factors vary in the ranges of \([1.28, 1.79]\) at the Tevatron and \([1.32, 1.58]\) at the
LHC. For a 100 GeV sneutrino and 900 GeV squarks, the K factors reach 1.79 and 1.58 at the Tevatron and the LHC, respectively. We find that the contribution to the total QCD correction from the one-loop gluon-gluon fusion subprocess is remarkable at the LHC, and its relative correction can reach 6% at the LHC when $m_{\tilde{\nu}} = m_{\tilde{q}} = 200$ GeV.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China, the Education Ministry of China and a special fund sponsored by Chinese Academy of Sciences.

References

[1] Sun Yan-Bin, et al., Commun. Theor. Phys. 44, 107-116(2005), [hep-ph/0412205]

[2] B. W. Harris and J.F. Owens, Phys. Rev. D65 (2002) 094032, [hep-ph/0102128]

[3] R. Barbieri, et al., [hep-ph/9810232] B. Allanach et al., [hep-ph/9906224] F. Deliot, et al., Phys. Lett. B475 (2000)184; G. Moreau, et al., Nucl. Phys. B604 (2001)3; S. Bar-Shalom, G. Eilam and B. Mele, Phys. Rev. D64 (2001) 095008.

[4] J. Pumplin, et al., JHEP 0207, 012 (2002); D. Stump, et al., JHEP 0310, 046 (2003).

[5] W. Beenakker, R. Höpker, P.M. Zerwas, Phys. Lett. B378 (1996) 159; W. Beenakker, R. Höpker, T. Plehn, P.M. Zerwas, Z. Phys. C75 (1997) 349.