The handle http://hdl.handle.net/1887/35908 holds various files of this Leiden University dissertation

Author: Soema, Peter
Title: Formulation of influenza T cell peptides : in search of a universal influenza vaccine
Issue Date: 2015-10-20
Appendix

Nederlandse samenvatting
List of publications
Curriculum vitae
Griep
Het influenzavirus (ofwel griepvirus) is een RNA-virus van de Orthomyxoviridae familie, dat de luchtwegen kan infecteren. Er bestaan drie types griepvirussen; influenza A, B en C, waarvan influenza A en B mensen kunnen infecteren. Naast mensen zijn er verschillende andere gastheren voor griepvirussen, waaronder vogels, varkens, honden en paarden. Typische symptomen tijdens een griepvirus infectie, zijn hoesten, verstopte neus, hoofdpijn, koorts, spierpijn en vermoeidheid. In ernstige gevallen kan een griepinfecatie leiden tot een primaire virale longontsteking, secundaire bacteriële longontsteking of infectie van de sinussen, welke allen potentiële dodelijk kunnen zijn in zwakke individuen.

Het griepvirus verspreidt zich gewoonlijk in de vorm van jaarlijkse epidemieën die rond het winterseizoen vallen. Schattingen van de Wereldgezondheidsorganisatie (WHO) geven aan dat jaarlijks wereldwijd 3 tot 5 miljoen mensen opgenomen moeten worden in het ziekenhuis door griep-geassocieerde ziekte, waarvan ongeveer een half miljoen mensen sterft aan directe of indirecte gevolgen van een griepinfecctie. Naast invloed op de volksgezondheid hebben deze epidemieën ook negatieve invloed op de economie, door stijgingen in ziekteverzuim en ziektekosten. Het is dus essentieel dat griepepidemieën ingeperkt worden.

Griepvaccins
Een griepvirus heeft meestal een ronde vorm met een grootte van 100 tot 150 nanometer. Het virus bestaat uit grofweg twee delen: 1) de virale envelop, bestaande uit fosfolipiden en de membraaneiwitten hemagglutinine (HA) en neuraminidase (NA), en 2) het nucleocapside, de kern die de interne eiwitten en het RNA bevat (zie Figuur 1 in Hoofdstuk 1). De membraaneiwitten HA en NA worden onderverdeeld in verschillende subtypen (18 voor HA, 11 voor NA), die samen het subtype van het griepvirus aanduiden (bijv. H1N1 of H3N2). Deze membraaneiwitten fungeren ook als antigenen. Het immuunsysteem maakt vervolgens antigeen-specifieke antilichamen aan die het virus kunnen neutraliseren.

Vaccinatie is de enige manier, naast een griepinfectie zelf, om deze antilichamen op te wekken. De antigenen van griepvirus ondergaan echter voortdurend veranderingen door antigene drift en shift, waardoor de opgewekte antilichamen niet meer aan het virus kunnen binden. Om voor deze veranderingen te compenseren, worden de huidige seizoenale griepvaccins elk jaar aangepast, aan de hand van epidemiologische voorspellingen van de antigene drift. Hierdoor bevatten de griepvaccins HA en NA subtypen die meestal identiek zijn aan de griepvirussen die in de betreffende winter circuleren. De veranderingen die veroorzaakt worden door antigene shift zijn echter niet te voorspellen. Een antigeene shift duidt een kruising aan tussen twee verschillende virussubtypen; meestal een combinatie van een humaan griepvirus en een vogel- of varkensgriepvirus. Dit
kan gebeuren wanneer er intensief contact is tussen mens en dier, zoals pluimveebedrijven en varkensstallen, waar de virussen de kans krijgen om één dezelfde gastheer te infecteren om vervolgens te recombineren tot een nieuw virussubtype. Dit kan leiden tot een pandemische griepstam, zoals de varkensgriep (ook wel Mexicaanse griep genoemd) in 2009 (H1N1). Seizoentale grieppastics zijn over het algemeen niet effectief tegen nieuwe griepstammen, omdat de vaccin-geïnduceerde antilichamen niet kruisreageren met andere HA en NA subtypen. Er zijn dus nieuwe grieppastics nodig die immuunresponsen opwekken die onafhankelijk van virussubtype bescherming bieden.

T cel-activerende grieppastics

Om nieuwe grieppastics te ontwikkelen die kruisbeschermende immuunresponsen opwekken, is kennis van immunologie noodzakelijk. Centraal hierin staan de **antigeen-presenterende cellen (APCs)**, waaronder **dendritische cellen (DCs)**. APCs kunnen (vaccin) antigenen herkennen en opnemen, waarna ze vervolgens bepaalde epitopen van het antigeen presenteren aan T cellen via **MHC moleculen**. Tijdens dit proces moeten de DCs ook gematureerd zijn, om de antigeenpresentatie en activatie van T cellen goed te laten verlopen. Maturatie van DCs wordt meestal geïnduceerd door **pathogen-associated molecular patterns (PAMPs)**, immuunstimulatoren die aanwezig zijn in bacteriën of virussen, zoals viraal RNA. T cellen zijn onder te verdelen in twee hoofdtypen: **T helper cellen (Th)** en **cytotoxische T cellen (CTLs)**. Th helper cellen hebben verschillende functies, zoals de activatie van B cellen (die antilichamen produceren) en de ondersteuning van CTLs. CTLs zijn in staat om geïnfecteerde cellen te lyseren (zie Figuur 1D, Hoofdstuk 2), en vormen naast antilichamen de belangrijkste tak van specifieke immuniteit.

In dit proefschrift leggen we de focus op het ontwikkelen van een grieppastic dat CTLs induceert. CTLs zijn in staat om griepvirus-geïnfecteerde cellen te herkennen aan delen van het virus die aan het celoppervlak geëxposeerd worden. In tegenstelling tot antilichamen, die alleen epitopen aan de buitenkant van het virus herkennen, kunnen T cellen ook epitopen van interne virale eiwitten herkennen, die minder snel muteren. Dit zorgt ervoor dat T cellen onafhankelijk van het virussubtype kunnen reageren op een griepp Infectie en daarmee mogelijk kunnen leiden tot kruisbescherming.

T cellen opwekken met een vaccin is echter niet eenvoudig. Antigenen die de epitopen van interne virale eiwitten bevatten, zoals peptiden, hebben een zwakke **immunogenciteit**. Dit is voornamelijk te wijten aan twee factoren: 1) peptiden zijn klein en worden slecht herkend en opgenomen door DCs, en 2) door het gebrek aan PAMPs matureren de DCs niet, waardoor T cellen niet geactiveerd worden. Deze twee aspecten kunnen verbeterd worden door het gebruik van **adjuvants**.

De opname van peptiden door DCs kan verbeterd worden door zogenaamde **delivery systems** als adjuvantia te gebruiken; deeltjes die het peptide antigeen naar de DCs kunnen transporteren en in de DC via de juiste route op MHC moleculen naar het celoppervlak kunnen sturen, zogenaamde
APPENDIX

kruispresentatie. De maturatie van DCs kan door verschillende soorten immunostimulatoren geïnduceerd worden. Het formulieren van het antigeen met adjuvantia is dus een belangrijk aspect van het ontwikkelen van een peptide-gebaseerd griepevacine. Het hoofddoel van dit promotieonderzoek is dan ook het ontwikkelen van nieuwe formuleringen voor influenza peptide vaccins.

Virosomen als delivery systeem
In Hoofdstuk 3 werden virosomen gebruikt als delivery systeem voor het influenza peptide GILGFVFTL. Virosomen zijn lege virusmantels die bestaan uit de eiwitten en lipiden die in de virale envelop zitten (zie Figuur 2, Hoofdstuk 2). GILGFVFTL werden vervolgens geassocieerd met de virosomen, wat in peptide-geladen virosomen (P-V) resulteerde. Nadat was bewezen dat de associatie met peptiden de eiwitsamenstelling, de deeltjesgrootte en lading van de virosomen niet beïnvloedde, werd de immunogeniciteit van P-V getest in HLA-A2.1 transgene muizen. Uit de dierstudies bleek dat P-V beter in staat waren om peptide-specifieke T cellen op te wekken dan peptide alleen (zonder virosomen) of peptide gemixt met virosomen (dus niet geassocieerd).

De additie van CpG, een immunostimulator, bleek de immunogeniciteit van P-V zelfs verder te verbeteren. Verder bleek dat de fusogeniciteit (de eigenschap van een virus of virosoom om met een endosomaal membraan te fuseren en zo zijn inhoud af te geven in het cytoplasma) van virosomen belangrijk was om een goede T cel respons op te wekken. Vervolgens werd de effectiviteit van de P-V als vaccin getest door muizen eerst te vaccineren met P-V, om ze vervolgens te infecteren met een heteroloog griepevirus. Uit deze studie bleek dat muizen gevaccineerd met P-V minder gewichtsverlies leden, en uiteindelijk sneller herstelden van de virusinfectie. Virosomen zijn dus een effectief delivery systeem voor peptide vaccins, en de P-V met CpG formulering is in staat om griepe-specifiede CTLs op te wekken in muizen, die het herstel van een heterologe virusinfectie versnellen.

Geïnactiveerd influenza virus als adjuvant
In Hoofdstuk 4 onderzochten we de potentie van geïnactiveerd influenza virus (WIV) als een adjuvant. Zoals eerder gezegd, zijn immunostimulatoren meestal afgeleid van bacteriële of virale componenten. WIV bevat viraal RNA, wat ook een immunostimulator is. Het influenza peptide GILGFVFTL werd geformuleerd met WIV, en vervolgens ingebracht in HLA-A2.1 transgene muizen. Dit resulteerde in een verbeterde peptide-specifieke T cel respons vergeleken met peptide of WIV alleen. Om het belang van co-localisatie van WIV en het peptide te bestuderen, werden beide componenten ook apart op verschillende locaties in de muis ingebracht. Hieruit bleek dat wanneer WIV en peptide apart op verschillende locaties in de muis werden ingebracht, het adjuvant effect van WIV teniet werd gedaan. Tevens bleek dat de fusogeniciteit van WIV niet belangrijk was voor de adjuvanticiteit van WIV in combinatie met GILGFVFTL. Naast het GILGFVFTL peptide, werden ook twee andere influenza peptiden, FMYSDFHFI en NMLSTVLGV, geadjuveerd met WIV. Ook werden er chemisch gemodificeerde versies van deze drie peptiden geïncludeerd in de studie, die een betere bindingsaffiniteit hadden met MHC moleculen. Een verhoogde bindingsaffiniteit zou eventueel
kunnen leiden tot een betere immuunrespons. De resultaten van de dierstudie wezen uit dat vooral de gemodificeerde versie van FMYSDFHFI beter T cellen induceerde dan ongemodificeerd FMYSDFHFI. WIV had een adjuverend effect voor alle peptiden. Uit deze studie konden we dan ook concluderen dat WIV veel potentie heeft als een adjuvant voor T cel-inducerende peptide vaccins.

Liposomen als op maat gemaakte delivery systemen

Liposomen zijn vesicles van lipiden die als delivery systeem te gebruiken zijn voor antigenen. Er kunnen talloze lipiden gebruikt worden om liposomen te maken, die elk andere eigenschappen aan het liposoom kunnen geven. Liposomen kunnen daardoor op maat gemaakt worden voor een specifiek doeleinde; de grootte en elektrische lading kunnen bijvoorbeeld gevarieerd worden, wat eventueel tot een immuunstimulerend effect kan leiden. In Hoofdstuk 5 bestudeerden wij welke lipiden het beste gebruik konden worden in liposomen om in vitro DCs te laten matureren, wat weer een maat is voor adjuvant effect van de liposomen. Om te evalueren welke lipiden een invloed hadden op DC maturatie en de andere eigenschappen van het liposoom (zoals grootte en lading), gebruikten we design of experiments (DoE). Met behulp van DoE konden we statistische predictiemodellen voor elke uitleesparameter (liposoom grootte, lading, en de DC maturatiemarkers CD40, CD80, CD83 en CD86) genereren, afhankelijk van de lipiden in het liposoom. Deze predictiemodellen werden vervolgens gevalideerd door de uitleesparameters voor een nog niet gemaakt liposoom te voorspellen, om vervolgens het liposoom te maken en daadwerkelijk alle parameters te meten. Hieruit bleek dat de predictiemodellen zeer accuraat waren; alle DC maturatiemarkers waren correct voorspeld. Deze methode kan wellicht gebruikt worden om de ontwikkeling van liposoomformuleringen als adjuvanta voor vaccins te versnellen, aangezien DoE een relatief klein aantal experimenten benodigd om een predictiemodel te genereren.

Thermostabiele Bionaalden voor toediening van griepvaccins

Griepvaccins worden normaliter intramusculair (i.m.) toegediend via een injectienaald, of in sommige gevallen met een intranasale spray. Aan i.m. toediening kleven echter enkele nadelen, zoals de noodzaak van getraind personeel, de kans op prikaccidenten en daarmee op besmettingen met bijvoorbeeld hepatits B en naaldafval wat hergebruik niet uitsluit. Deze punten zijn vooral problematisch in ontwikkelingslanden. Tevens wordt de vraag naar vervanging van de naald in de westere wereld steeds groter om de acceptatie van vaccinatie te verhogen. Vloeibare vaccins zijn tevens afhankelijk van de koude keten; ze zijn gevoelig voor hoge temperaturen. Om deze redenen wordt er gezocht naar alternatieve toedieningsvormen voor (influenza) vaccins. In Hoofdstuk 7 onderzochten wij het gebruik van Bionaalden voor de toediening van verschillende griepvaccins. Bionaalden zijn holle implantaten gemaakt van biodegradeerbaar zetmeel, welke gevuld kunnen worden met een gevriesdroogd vaccin (zie Figuur 1, Hoofdstuk 7). Na een onderhuidse toediening (ideaaliter onder hoge druk met een injector), lost de Bionaald met vaccin op. In onze studie vulden wij Bionaalden met vier verschillende typen griepvaccins (WIV, virosomen, split en subunit; zie Figuur 2, Hoofdstuk 1), en vaccineerden vervolgens muizen met deze Bionaalden. Dit resulteerde
APPENDIX

in het algemeen in goede influenza-specifieke antilichaam responses voor alle groepen; alleen de virosom en subunit groepen waren iets minder immunogeen. Tevens waren deze Bionaald vaccins in staat om influenza-specifieke T cellen op te wekken. Vervolgens werd er ook gekeken naar de thermostabiliteit van de Bionaalden. Vloeibare vaccins moeten normaliter constant gekoeld worden, maar vaccins in de vaste fase (zoals gevriesdroogd vaccin) zijn in het algemeen stabiel. Na een maand blootstelling aan een temperatuur van 60°C waren de griepvaccins in de Bionaalden nog steeds intact, terwijl vloeibare griepvaccins binnen enkele dagen hun antigeniciteit verliezen. Hieruit kunnen we concluderen dat Bionaalden geschikt zijn als een alternatieve toedieningsvorm voor griepvaccins, en ook zeer stabiel zijn buiten de koude keten.

Conclusies en vooruitblik
Er zijn in dit proefschrift verschillende adjuvantiaontwikkeld voor gebruik met influenza peptiden. Virosomen waren in combinatie met CpG in staat om de immunogeniciteit van het GILGFVFTL peptide significant te verhogen. Dit leidde tot een verhoging van het aantal peptide-specifieke CTLs in muizen. De geïnduceerde CTLs waren vervolgens in staat om de ernst van een heterologe griepinfectie te verminderen en het herstel na infectie te bevorderen. Tevens werd aangetoond dat eigenschappen van het virosom, zoals peptide associatie en fusogeniciteit, cruciaal waren voor de inductie van T cellen. Virosomen hebben dus de potentie om een goed delivery systeem te zijn voor peptide vaccins.

WIV bleek een effectief adjuvant te zijn voor verschillende peptiden. Het was in staat om de T cel responsen tegen de peptiden significant te verhogen, mits WIV en peptide antigeen op dezelfde plek toegepast werden. Verder bleek dat modificatie van de peptiden om de bindingsaffiniteit te bevorderen de T cel respons kon verhogen. WIV bleek dus een effectief adjuvant te zijn voor peptide vaccins.

De toepassing van de design of experiments methode bleek zeer nuttig te zijn om liposoomformuleringen te optimaliseren. Ook bleek dat deze methode in staat was om biologische responsen geïnduceerd door liposomen, zoals in vitro DC maturatie, te voorspellen aan de hand van de liposoomsamenstelling. Deze methode kan dus in de toekomst gebruikt worden om de ontwikkeling van liposoomformuleringen voor vaccins te versnellen.

Uit de studie met Bionaalden bleek dat verscheidene influenza vaccins in Bionaalden te formuleren waren. Deze bleken immunogeen en thermostabiel te zijn. Influenza vaccins zijn dus met Bionaalden op een alternatieve wijze toe te dienen, zonder het gebruik van conventionele injectienaalden.

Het hoofddoel van het onderzoek in dit proefschrift was de ontwikkeling van een universeel griepvaccin. De studies in dit proefschrift zijn bijna allemaal uitgevoerd met één influenza peptide antigen, GILGFVFTL. Een vaccin gebaseerd op een enkel peptide is echter voor een humaan vaccin
niet genoeg; er komen meerdere HLA varianten voor in de humane populatie die allen andere epitopen binden. Er zijn dus meerdere peptiden nodig om een voldoende brede basis te leggen voor T cel immuniteit in de gehele humane populatie. Er moeten dus nog flinke stappen gezet worden voordat peptide vaccins daadwerkelijk op de markt komen.

Daarentegen zijn er op dit moment wel enkele andere universele griepvaccinconcepten in de klinische ontwikkelingsfase. De eerste resultaten zijn enigszins hoopgevend; er kunnen influenza-specifieke T cellen worden geïnduceerd. Of deze immuunresponsen daadwerkelijk genoeg zijn om heterologe griepinfecties tegen te gaan moet nog blijken. Tevens zouden deze vaccins de huidige seizoenale vaccins kunnen aanvullen om bredere immuunresponsen te verkrijgen. De komende jaren zullen uitwijzen of een universeel griepvacccin daadwerkelijk haalbaar is.
APPENDIX

VERKLARENDE WoORDENLIJST

Adjuvantia
Stoffen die de immunogeniciteit van antigenen versterken. Kunnen delivery systemen en/of immuunstimulatoren zijn.

Antigeen
Een molecuul dat een immuunreactie kan opwekken.

Antigeen-presenterende cellen (APCs)
Cel die antigenen opnemen, om vervolgens epitopen daarvan aan T cellen te presenteren via MHC moleculen.

Antigene drift
Spontane mutaties in het genoom van influenza virus, die de epitopen van voornamelijk HA en NA veranderen.

Antigene shift
Kruising tussen twee afzonderlijke virusstammen, waardoor een nieuw griepevirus ontstaat.

Antigeniciteit
De mate waarin een antigeen zijn correcte structuur, welke antistoffen herkennen, behoudt.

Antilichaam
Eiwit dat aan lichaamsvreemde stoffen kan binden, om ze onschadelijk te maken.

Co-localisatie
Toediening van antigeen en adjuvant op dezelfde locatie.

CpG
Een herhalend DNA patroon wat voorkomt in verschillende pathogenen, zoals virussen en bacteriën. Is een immuunstimulator.

Cytoplasma
Ruimte van een cel die het cytosol en de organellen bevat. Antigenen die in het cytoplasma terecht komen kunnen via MHC-I moleculen gepresenteerd worden.

Cytotoxische T cel (CTL)
T cel die geïnfecteerde cellen (of tumorcellen) kan lyseren.

DC maturatie
Een gematureerde DC heeft karakteristieke dendrieten, en brengt verschillende costimulatoire moleculen tot expressie die nodig zijn voor een succesvolle activatie van T cellen.

Delivery systeem
Deeltjes die het antigeen kunnen vervoeren en op de juiste plek (meestal APCs) afleveren.

Dendritische cel (DC)
Een van de meest voorkomende antigeen-presenterende cellen.

Design of experiments (DoE)
Methode om systematisch de invloeden van bepaalde factoren te screenen. Kan ook gebruikt worden om predictiemodellen te genereren.

Endosomaal membraan
Membraan van het endosoom. Lichaamsvreemde stoffen kunnen door DCs geïnternaliseerd worden in endosomen, losse blaasjes (vesikels) bestaande uit het celmembraan.

Epitoop
Een deel van een antigeen dat herkend kan worden door antilichamen, B cellen of T cellen.

Formulering
De samenstelling van hulpstoffen die in een vaccin zitten, waaronder stabilisatoren en adjuvantia.
Term	Definition
Fusogeniciteit	De eigenschap van een virus of virosoom om met een endosomaal membraan te fuseren en zo zijn inhoud af te geven in het cytoplasma.
GILGFVFTL Peptide	Antigeen (en epitoop) afgeleid van influenza Matrix eiwit 1. Kan alleen gepresenteerd worden via humane HLA-A2.1 moleculen.
Heterologe virusinfectie	Een infectie met een griepstam die niet hetzelfde is als de griepstam in het vaccin.
HLA-A2.1 transgene muizen	Muizen met een humaan MHC (HLA-A2.1) molecuul.
Immunogeniciteit	Het vermogen van een antigeen om een immuunrespons op te wekken.
Immunostimulator	Stoffen die het immuunsysteem activeren.
In vitro	Een test buiten een levend organisme; vaak op cellinen.
Koude keten	Voorzieningen, zoals gekoelde transport en opslag, nodig om (vloeibare) vaccins tussen de 2°C en 8°C te houden, omwille van de vaccinstabiliteit.
Kruisbescherming	Zie kruisreageren.
Kruispresentatie	Normaliter worden door de DC alle opgenomen antigenen via MHC-II moleculen gepresenteerd. Voor de activatie van CTLs moeten antigenen echter via MHC-I moleculen gepresenteerd worden. Door kruispresentatie kunnen peptide antigenen via MHC-I moleculen gepresenteerd worden.
Kruisreageren	Een immuunrespons die tegen meerdere griepvirusstammen kan reageren, ongeacht virussubtype.
Lyseren	Het doden van een cel door het breken van het celmembraan.
Maturatiemarkers	Moleculen die door gematureerde DCs tot expressie worden gebracht. Deze zijn cruciaal voor een goede T cel activatie.
MHC moleculen	Major histocompatibility complex; eiwitten aan het oppervlak van (immuun)cellen die epitopen presenteren aan T cellen. Menselijke MHC moleculen worden humaan leukocytenantigeen (HLA) genoemd.
Pathogen-associated molecular pattern (PAMP)	Moleculen afkomstig van pathogenen, die als immunostimulatoren kunnen fungeren.
Peptide	Keten van een klein aantal aminozuren; in dit geval rond de 10. Kan vaak ook een epitoop bevatten.
Universeel griepvaccin	Griepvaccin dat tegen elke griepstam effectief is.
APPENDIX

LIST OF PUBLICATIONS

P.C. Soema, G-J. Willems, W. Jiskoot, J-P. Amorij and G.F.A. Kersten. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach. Eur J Pharm Biopharm, 2015; 94: 427-435.

P.C. Soema, R. Kompier, J-P. Amorij and G.F.A. Kersten. Current and next generation influenza vaccines: Formulation and production strategies. Eur J Pharm Biopharm, 2015; 94: 251-263.

P.C. Soema, E. van Riet, G.F.A. Kersten and J-P. Amorij. Development of cross-protective influenza a vaccines based on cellular responses. Front Immunol, 2015; 6: 237.

P.C. Soema, S.K. Rosendahl Huber, G-J. Willems, W. Jiskoot, G.F.A. Kersten and J-P. Amorij. Influenza T-cell epitope-loaded virosomes adjuvanted with CpG as a potential influenza vaccine. Pharm Res, 2015; 32(4): 1505-1515.

P.C. Soema, G-J. Willems, K. van Twillert, G. van de Wijdeven, C.J. Boog, G.F.A. Kersten and J-P. Amorij. Solid bioneedle-delivered influenza vaccines are highly thermostable and induce both humoral and cellular immune responses. PLoS One, 2014; 9(3): e92806.

K. Saatchi, P.C. Soema, N. Gelder, R. Misri, K. McPhee, J.H. Baker, S.A. Reinsberg, D.E. Brooks and U.O. Hafeli. Hyperbranched polyglycerols as trimodal imaging agents: design, biocompatibility, and tumor uptake. Bioconjug Chem, 2012; 23(3): 372-381.

A. Yanai, U.O. Hafeli, A.L. Metcalfe, P.C. Soema, L. Addo, C.Y. Gregory-Evans, K. Po, X. Shan, O.L. Moritz and K. Gregory-Evans. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant, 2012; 21(6): 1137-1148.

B. Slutter, P.C. Soema, Z. Ding, R. Verheul, W. Hennink and W. Jiskoot. Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. J Control Release, 2010; 143(2): 207-214.
Peter Soema was born on the 3rd of July in 1987 in The Hague. After graduating from the Gymnasium Haganum in The Hague in 2005, he started his study Bio-Pharmaceutical Sciences at Leiden University. After obtaining his Bachelor’s degree in 2009, he continued his studies for a Master’s degree. During his study he completed two internships. The first internship was performed at the division for Drug Delivery Technology of the Leiden Academic Centre for Drug Research (LACDR), during which he investigated polymer-protein conjugates to be used for nasal vaccination. Subsequently, he went to the Faculty of Pharmaceutical Sciences of the University of British Columbia for his second internship, where he studied magnetic stem cell targeting to the eye. In 2011 he obtained his Master’s degree with honors. In the same year, he started his PhD project at the Institute for Translational Vaccinology (Intravacc) under the supervision of Prof. dr. Gideon Kersten, Prof. dr. Wim Jiskoot (Leiden University) and Dr. Jean-Pierre Amorij, which resulted in this thesis. He is currently working at the same company as a scientist on vaccine delivery.
