Modeling mergers of known galactic systems of binary neutron stars

Alessandra Feo1, Roberto De Pietri1, Francesco Maione1 and Frank Löffler2

1 Parma University and INFN Parma, Parco Area delle Scienze 7/A, I-43124 Parma (PR), Italy
2 Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA

E-mail: alessandra.feo@fis.unipr.it

Received 10 August 2016, revised 2 December 2016
Accepted for publication 6 December 2016
Published 29 December 2016

Abstract

We present a study of the merger of six different known galactic systems of binary neutron stars (BNS) of unequal mass with a mass ratio between 0.75 and 0.99. Specifically, these systems are J1756-2251, J0737-3039A, J1906+0746, B1534+12, J0453+1559 and B1913+16. We follow the dynamics of the merger from the late stage of the inspiral process up to \(\sim 20\) ms after the system has merged, either to form a hyper-massive neutron star (NS) or a rotating black hole (BH), using a semi-realistic equation of state (EOS), namely the seven-segment piece-wise polytropic SLy with a thermal component. For the most extreme of these systems \((q = 0.75, J0453 + 1559)\), we also investigate the effects of different EOSs: APR4, H4, and MS1. Our numerical simulations are performed using only publicly available open source code such as, the Einstein toolkit code deployed for the dynamical evolution and the LORENE code for the generation of the initial models. We show results on the gravitational wave signals, spectrogram and frequencies of the BNS after the merger and the BH properties in the two cases in which the system collapses within the simulated time.

Keywords: numerical relativity, gravitational wave, neutron star binaries, Einstein toolkit

(Some figures may appear in colour only in the online journal)

1. Introduction

The direct observation of the gravitational wave (GW) signal in events GW150914 and GW151226[1, 2], emitted by the coalescence of a compact binary system composed by two black holes (BH) is the dawn of the GW astronomy era. The measured signal from those
events shows the expected signature of an inspiral and merger, and subsequent final black hole ringdown. This single event encourages further studies of properties and astrophysical implications of binary black hole (BBH) populations [3, 4]. Among compact binary systems, binary neutron star (BNS) mergers are another expected source candidate for GW astronomy. Their composition and ultra-dense neutron star (NS) matter behavior encoded in the equation of state (EOS) make them a unique target to be measured with ground-based interferometers (Advanced LIGO [5], Advanced Virgo [6], and KAGRA [7]), in order to understand the structure and properties of NS systems and the distribution of NS masses.

The first BNS system discovered is the one associated with the Pulsar (PSR) B1913+16, better known as Hulse–Taylor binary system [8]. The system is composed by a visible pulsar which, together with another NS is in orbit around a common center of mass forming a binary star system. This system provided indirect evidence of the emission of GW as predicted by General Relativity [8, 9] (from now on we will use the pulsar name to denote the corresponding BNS system). Since then, nine other binary neutron star systems have been discovered in our galaxy (see [10] for details). Among them is also the binary system of the pulsar J0453+1559 [10], with a mass ratio of \(q = M_1/M_2 = 0.75 \) [10], confirming the existence of unequal mass BNS systems in nature with a quite unexpected large mass difference between the two stars. This fact has the potential to change and improve our understanding on the nature of NS formation as well as their evolution and final fate. Because of this, large mass ratios should also be considered when computing templates of GW signals from BNS mergers for data analysis pipelines.

In this paper we analyze all known BNS systems in our galaxy for which both masses are known (see table 1) [10]). They contain both the recently discovered system J0453+1559 \((q = 0.75)\) [10], as well as J0737-3039A, which is the most relativistic binary BNS known today [12, 13] and the only binary pulsar. Driven by the experimental discovery of a \(q = 0.75 \) BNS, we present three-dimensional numerical simulations of the dynamics of BNS mergers with different total baryonic mass and different mass ratio up to \(q = 0.75 \), to understand the impact of the mass ratio on the GW signal emitted in both the last orbits before merger and in the post-merger phase. For all systems, we use the SLy EOS [20], based on the Skyrme Lyon effective nuclear interaction, where a semi-realistic seven-segment piece-wise (isentropic)-polytropic approximant [21] is implemented, namely the SLyPP EOS, including a thermal component given by \(\Gamma = 1.8 \). We use the BSSN-NOK [22–26] method for the evolution of the gravitational sector and WENO [27] as a reconstruction method for the matter sector. This study has been performed using only publicly available open source software, in particular, the Einstein toolkit (ET) [28, 29], used for the dynamical evolution, and the LORENE code [30, 31] to generate the initial models, similar to studies recently published in [32, 33]. For the most extreme model, the J0453+1559 system \((q = 0.75)\), we also investigate the effects of using different EOS for nuclear matter, which include: the APR4 EOS [34], the H4 EOS [35] and the MS1 EOS [36].

Unfortunately it is impossible to give a comprehensive list of all the individual contribution to the field of numerical simulation of BNS system and their roles. Such comprehensive review can be found in [37, 38] and references therein. For more recent work see for example, [39–44]

The organization of the paper is as follows. In section 2 we briefly review the numerical setup used. A detailed discussion of an essentially identical setup can be found in [32]). In section 3, we discuss each of the models and present the results of our simulations: the fate of these systems, the properties of the remnants, and the effect of the EOS for the case of J0453+1559. A summary and conclusions are given in section 4.

In this work we use a space-like signature \(-, +, +, +\), with Greek indices running from 0 to 3, Latin indices from 1 to 3, and the standard convention for summation over
Table 1. Known BNSs in our galaxy, as appearing in [10]. M_p is the mass of the pulsar that denotes the system and M_c the mass of its companion, q represents the mass ratio, and e the eccentricity. t_{merger} is the merger time of the system computed using equation (7) of [18], and e_{10} is the eccentricity when the rotation frequency of the system is 10 Hz, computed using equation (1.2) of [19]. The remaining columns represent the properties of the initial data used to model the BNS system using the SLy EOS, where $M^{(1)}$ and $M^{(2)}$ are the baryonic masses, e_{ID} is the measured eccentricity, Ω the initial rotation frequency, M_{ADM} the ADM mass of the system and J its angular momentum.

Pulsar	M_p (M_\odot)	M_c (M_\odot)	q	e	t_{merger} (Gyr)	e_{10} at 10 Hz	$M^{(1)}$ (M_\odot)	$M^{(2)}$ (M_\odot)	e_{ID}	Ω (krad s$^{-1}$)	M_{ADM} (M_\odot)	J (GM_\odot^2/c^2)	References
J1756-2251	1.341(7)	1.230(7)	0.92	0.18056	15.85	7.20 $\times 10^{-7}$	1.33	1.47	0.022	1.773	2.548	6.654	[11]
J0737-3039A	1.3381(7)	1.2489(7)	0.93	0.08778	0.08	1.11 $\times 10^{-6}$	1.36	1.47	0.023	1.777	2.564	6.728	[12, 13]
J1906 + 0746	1.291(11)	1.322(11)	0.98	0.08530	0.32	6.48 $\times 10^{-7}$	1.41	1.45	0.024	1.784	2.589	6.848	[14, 15]
B1534 + 12	1.3330(2)	1.3454(2)	0.99	0.27368	2.51	8.85 $\times 10^{-8}$	1.46	1.47	0.025	1.801	2.653	7.136	[16, 17]
J0453 + 1559	1.559(5)	1.174(4)	0.75	0.11252	14.55	1.14 $\times 10^{-8}$	1.27	1.74	0.030	1.816	2.708	7.238	[10]
B1913 + 16	1.4398(2)	1.3886(2)	0.96	0.61713	0.32	5.32 $\times 10^{-6}$	1.53	1.59	0.025	1.840	2.801	7.816	[8, 9]
repeated indices. The computations are performed using the standard $3+1$ split into (usually) space-like coordinates $(x, y, z) = x'$ and a time-like coordinate t. Our coordinate system $(x'^i) = (t, x') = (t, x, y, z)$ (far-from the origin) are, as it was checked, almost isotropic coordinates and (far-from the origin) they would have the usual measure unit of ‘time’ and ‘space’ and in particular t is close to be identified as the time measured from an observer at infinity. All computations are performed in normalized computational units (hereafter denoted as CU) in which $c = G = M_0 = 1$. We report the radius of the sphere used for gravitational waves extraction in CUs.

2. Numerical setup

The systems analyzed in this paper share a similar pre-merger dynamics: an inspiral driven by gravitational wave radiation. We follow the remnant of the merger for approximately 20 ms post-merger to determine its properties, and to be able to measure gravitational waves leaving the system. As will be shown in section 3, some of these collapse to a BH, requiring a black hole horizon finder.

We have analyzed similar models in the past for ad hoc system parameters. The same numerical setup can be used for the current study, which is why we will only briefly summarize the setup here and refer the reader to [32] for details. One fundamental aspect of the present study is that all data has been produced using only freely available, open source software. Moreover, all information necessary to reproduce and re-analyze our simulations has been made available in the same way. Detailed instruction on how to achieve this can be found on the Subversion server of the gravity group at Parma University.

In order to describe BNS systems we need to use Einstein’s field equations to describe the metric $g_{\mu\nu}$ of the dynamical spacetime

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu}. \quad (1)$$

The dynamical evolution is performed using the Einstein toolkit, which is a publicly available, community-driven general relativistic code. In particular, we have chosen the eleventh release (code name ‘Hilbert’, ET_2015_05). The ET is based on the Cactus computational toolkit [45–47], a software for high performance computing that uses: the adaptive mesh refinement (AMR) methods implemented by Carpet [48–50]. In particular, the initial data is discretized on a Cartesian grid with 6 levels of mesh refinement. The inner level contains a grid with a spacing of $dx = 0.25$ CU that corresponds to ≈ 369 m. The boundary of the inner grid in the x/y plane is at $L_{in} = 30$ CU, wide enough to contain both stars at the initial time and allowing at least ≈ 80 grid-points inside the stars. No moving, refined grids are used to follow the inspiral phase. The outer boundary of the computational domain is at $L = 720$ CU (≈ 1063 km).

We also use a mirror symmetry across the (x, y) plane which reduces the computational cost of the simulations by a factor of 2. The evolution of the spacetime metric is managed using the McLachlan package [51], and more specifically the version implementing the Einstein equations through a $3+1$ dimensional split using the BSSN-NOK formalism, where we use a fourth order finite difference stencils for the curvature evolution and a Γ-driver shift condition [26]. During evolution, a Sommerfeld-type radiative boundary condition is applied to all components of the evolved BSSN-NOK variables as described in [25], and the HLLE (Harten–Lax–van Leer–Einfeldt) approximate Riemann solver [52, 53] is used. The initial
data of our simulations are generated using the LORENE code [30] and in particular, we use the irrotational BNS data generation of [31].

We also need a proper description of matter (details can be found in [32]). In particular, the energy-momentum tensor $T_{\mu\nu}$ correspond to an ideal relativistic fluid: $T_{\mu\nu} = \rho(1 + \epsilon + \frac{2}{3} \rho) u_\mu u_\nu + P g_{\mu\nu}$, where ρ is the rest mass density, ϵ is the specific internal matter energy, u^μ is the 4-velocity of the matter and P is the pressure. We also use the conservation laws for the energy-momentum tensor, $\nabla_\mu T^{\mu\nu} = 0$ and the baryon density $\nabla_\mu (\rho u_\mu) = 0$, closed by an EOS of the type $P(\rho, \epsilon)$.

For all the BNS models investigated in this paper, we use, unless otherwise stated, a seven-segment isentropic polytropic approximant, that we refer as SLyPP, and that was already used in our previous work [32]. This EOS belongs to the SLy EOS prescription [20], supplemented by a thermal component of the type $\Gamma = 1.8$ (details can be found in [32]). In particular, we use four pieces for the crust and three pieces for the core [21]. The EOS is described through the expression

$$P(\rho, \epsilon) = P_{\text{cold}}(\rho) + P_{\text{th}}(\rho, \epsilon),$$

where each density region, $\rho_i \leq \rho < \rho_{i+1}$, satisfy:

$$P_{\text{cold}} = K_i \rho_i^\Gamma,$$

$$\epsilon_{\text{cold}} = \epsilon_i + \frac{K_i}{\Gamma - 1} \rho_i^{\Gamma - 1},$$

and ϵ_i and the polytropic constant K_i are chosen to guarantee the pressure and specific energy density continuity.

During the evolution, the EOS of the cold nuclear matter is supplemented by a thermal component of the form:

$$R_{\text{th}} = \Gamma_{\text{th}} \rho (\epsilon - \epsilon_{\text{cold}})$$

and choosing Γ_{th}, as in our previous work [32, 33], to be 1.8 according to [54–57]. Figure 1 shows a plot of the pressure P and the adiabatic index $\Gamma = \frac{d \log P}{d \log \rho}$ as a function of the baryonic density ρ for the SLy EOS (gray line) [20] and its piece-wise polytropic SLy EOS (red line) [21].

For the more extreme system ($q = 0.75, J0453 + 1559$), beside the study of the SLy EOS, we also investigate the effects of assuming other cold EOSs for nuclear matter at beta equilibrium. Summarizing, we analyzed in decreasing order of compactness:

- The APR4 EOS [34], obtained using variational chain summination methods using the Argonne two-nucleon interaction and also including boost corrections and three-nucleon interactions;
- The SLy EOS [20], based on the Skyrme Lyon effective nuclear interactions;
- The H4 EOS [35], constructed in a relativistic mean field framework including also Hyperons contributions and tuning the parameters to have the possible stiffest EOS compatible with astrophysical data;
- The MS1 EOS [36], constructed with relativistic mean field theory considering only standard nuclear matter.

We show in figure 2 the core part of figure 1 but for all the different EOS used, namely: APR4, H4, MS1 and the SLy EOSs. Notice, that up to a baryonic density of the order of 10^{14} g cm$^{-3}$, which represents the separation between the crust and the core of the NS, we use the same prescription: the one coming from the prescription of the crust given in [20] using...
Figure 1. Plot of the pressure (p) and of the adiabatic index ($\Gamma = d\log(p)/d\log(\rho)$) as a function of the baryon density (ρ) for the SLy EOS (tabulated) and its piece-wise polytropic approximation (the one used in the present work).

Figure 2. Plot of the pressure (p) and of the adiabatic index ($\Gamma = d\log(p)/d\log(\rho)$) as a function of the baryon density (ρ) for the SLy EOS piece-wise polytropic approximation (the same used in figure 1) together with the APR4, H4 and MS1 EOSs.
the parametrization of Read et al of [21]. It is important to remember that the use of isentropic polytropic approximant of the EOS does not take into account possible composition effects (as for example, change in electron fraction) nor effect due to the presence of neutrino or other possible important thermal effects. To each of these EOSs correspond different maximum masses that are reported in table 4. It should also be noted that the maximum density reached in our simulation, using the parametrization of the APR4 EOS, is \(\approx 1.36 \times 10^{15} \, \text{g cm}^{-3} \).

3. Results

We have analyzed the dynamics of the merger of six different BNS systems, that appear in table 1, from the late-inspiral phase (last five-six orbits, depending on the model) until approximately 20 ms after merger. These models are J0453 + 1559, J1756-2251, J0737-3039A, B1913 + 16, J1906 + 0746, B1534 + 12, with an unequal mass ratio of \(q = 0.75, 0.92, 0.93, 0.96, 0.98, 0.99 \), respectively. In the following, we present the general characteristics of the evolution of these systems.

We extracted the gravitational wave (GW) signal from each simulation using the same procedure of [33]. In brief, for each simulation we extracted the GW signal from the curvature \(\psi_4 \) [58, 59], written in terms of spin-weighted spherical harmonics of spin \(-2\) [60]:

\[
\psi_4(t, r, \theta, \phi) = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} \psi_4^{lm}(t, r) Y_{lm}^2(\theta, \phi)
\]

up to \(l = 6 \). At null infinity, \(\psi_4 \) is related to the GW strain through the relation

\[
\psi_4 = \tilde{h}_+ - i\tilde{h}_x := \tilde{h},
\]

where \(\tilde{h} \) is the complex conjugation of the GW strain. To get the GW strain components \(h^{lm} \), we numerically integrate this expression twice

\[
\tilde{h}^{(0)}_{lm} = \int_0^t \int_0^r \int_0^{\varpi} \psi_4^{lm}(t', r) \, dt' \, dr \, \varpi
\]

\[
\tilde{h}^{(1)}_{lm} = \tilde{h}^{(0)}_{lm} - Q_0 t - Q_1
\]

and we fix the two initial values of the integration procedure (\(Q_0 \) and \(Q_1 \)) by minimizing the overall drifting. However, it is well known that this procedure still shows low-frequency spurious oscillations in the strain amplitude. As discussed in [33], we remove this (quite likely due to noise aliasing problems) by applying, after the integration and the subtraction of the linear drift, a digital high-pass Butterworth filter (an IIR filter) imposing a maximum signal suppression of \(-0.01 \, \text{dB}\) at the minimum physical frequency \(f_0 = \Omega/\pi \) (computed as twice the initial orbital frequency) and a signal suppression of \(-80 \, \text{dB}\) at \(f_0 / 10 \).

In this work we extracted the GW signal at the coordinate radius of \(R = 700 \, \text{CU} \) (1034 km) and we always report the retarded time at the detector (for GW extraction related quantities). In detail, we have \(t_{\text{ret}} = t - R^* \), \(R^* = R + 2M_{\text{ADM}} \log(-1 + R/2M_{\text{ADM}}) \) since our numerical relativity coordinate system far away form the center is almost identical to isotropic coordinates. We also implement a 1st order extrapolation in \(1/R \), as proposed in [61] (see [33] for details). This choice of reported time corresponds to the use of coordinate time for quantities integrated over the numerical grid.

To obtain the energy and the angular momentum budgets of the collapsed models we used the energy \(E_{gw} \) and the angular momentum \(J_{gw} \) carried away by GW, which are computed in term of:
\[
\frac{dE_{gw}}{dt} = \frac{R^2}{16\pi} \int d\Omega \left| \hat{h}(t, \theta, \phi) \right|^2,
\]
(10)
\[
\frac{dJ_{gw}}{dt} = \frac{R^2}{16\pi} \text{Re} \left[\int d\Omega \left(\partial_{\theta} \hat{h}(t, \theta, \phi) \right) \hat{h}(t, \theta, \phi) \right],
\]
(11)
as well as the mass \(M_{bh}\) and angular momentum of the BH \(J_{bh}\), computed using the isolated horizon formalism \([62–64]\) on the apparent horizon, utilizing the ET modules QuasilocalMeasures \([65]\) and AHFinderDirect \([66]\). The mass and angular momentum contribution of matter is defined in \([32]\). Notice that the mass of the BH \(M_{bh}\) determined with this method, has numerical fluctuations in its determination at the various time steps of less than \(5 \cdot 10^{-6}M_\odot\). This will also allow us, in one case, to estimate the accretion rate of the final BH. This reported numerical error should not be confused with the overall numerical error in the determination of the mass of the final BH discussed in \([67]\).

To evaluate the total energy emitted as gravitational waves from infinite separation up to 5 ms before merger we proceed as follow. The total energy emitted up to the beginning of the simulation is approximately given by \(+E_{gw}\) (reported on table 1), where \(M_p\) and \(M_c\) are the gravitational mass of the star and its companion while \(M_{ADM}\) is the ADM mass at the beginning of the simulation. We then add to this value the amount of gravitational energy \(E_{gw,\text{rem}}\) emitted from the beginning of the simulation up to 5 ms before the merger.

3.1. Properties of the six galactic binary neutron star systems

The overview of the evolution of known Galactic systems of BNS is presented in figure 3, where we show the amplitude of the \(r \cdot h_{22}\) mode as a function of \((t - t_{\text{merger}})\) (top), the spectrum of frequencies (spectrogram) using running-window Fourier transform on 5 ms bins as a function of the time (on the bottom-left panel), and the power spectral density (PSD, Fourier transform) of the effective GW \(\bar{h}(f)\), in the optimal oriented case for a source at 50 Mpc, where we consider the signal from 9 ms before, to 12 ms after merger in the bottom-right panel.

The evolution of the six galactic systems on top of figure 3 is shown in the order of increasing ADM mass. All these models used the SLy EOS and an interbinary coordinate separation of 44.3 km. All the numerical simulations presented in this paper were performed with a resolution of \(dx = 0.25\) CU which corresponds to \(\approx 369\) m). The green line in each BNS represents \(t_{\text{ret}} = 0\). The red line indicates the merger time at \(t = 0\) ms. We define merger time here as the time of maximal GW signal amplitude.

An additional purple line shows the formation of a BH and only appears for two of these systems (B1913 + 16 and B1534 + 12), at least during the simulation time we have investigated. These two pulsars show-case two different merger remnants involving a BH. B1913 + 16 (the Hulse–Taylor binary) rapidly collapses to a BH, while B1534 + 12 shows a delayed collapse to a BH a few milliseconds after the merger (around 25 ms in this particular simulation). For both of these systems, we increased the simulation time up to 40 ms after merger to analyze the formation of an accretion disk (see section 3.2 for details).

Model J0453 + 1559, with an ADM mass in between the masses of B1534 + 12 and B1913 + 16, does not collapse to a BH during the simulated time (around 30 ms after merger). This is probably related to the fact that it corresponds to an extreme unequal mass system.
while the other two pulsars, that do collapse to a BH, have almost equal masses. The remaining models (see table 1) form a remnant lasting more than 20 ms after merger. All of them will eventually collapse to a BH since their masses are greater than the...
maximum mass that can be supported by the SLy EOS for a uniformly rotating star. We did not follow up on those stages in this paper.

The PSD of the effective GW signal in figure 3 (bottom-right panel) shows the presence of a dominating peak for each model, except for the one that rapidly collapses to a BH (B1913 + 16). This peak corresponds to the frequency \(f_p \) (also called \(f_2 \) or \(f_{\text{peak}} \)) of the fundamental quadrupolar \(m = 2 \) oscillation mode of the massive NS formed after the merger [68], and depends on the compactness of the star [55, 57, 69–71]. This dependence can be seen in our data as increase of \(f_p \) for more compact systems, within a range of 3 kHz to 4 kHz for models J1756-2251, J0737-3039A, J1906 + 0746 and B1534 + 12, where B1534 + 12 has the largest ADM mass. The only exception is B1913 + 16, whose PSD rapidly decays to zero as the pulsar collapses to a BH soon after the merger. Also, J0453 + 1559 does not follow this trend due to its very low \(q = 0.75 \) value, which renders this system quite different from the others.

Some of the models show other, secondary post-mergers peaks at frequencies \(f_1 \) and \(f_3 \) (also known as \(f_1 \) and \(f_3 \) in the literature) that can be seen in figure 3. They are also recognizable from the spectrum and may help to extract NS parameters (radius, mass) from GW detections [72, 73]. In table 2 we report the frequencies of all recognizable spectral peaks for the BNS systems of figure 3.

One of the systems clearly exhibiting these three peaks is B1534 + 12, with the middle peak \(f_p \) and two secondary peaks in both sides of the principal frequency. The same three peaks can be observed for models J1756-2251, J0737-3039A and J1909 + 0746. See table 2 for their specific frequencies. It should be noted that the secondary peaks \(f_{\pm} \) decays within few ms as it can be seen in the spectrograms (bottom-left) of figure 3.

On the other hand, this three-peak-structure does not show up in the case of the J0453 + 1559 (\(q = 0.75 \)). This is consistent with the results of [32], where it has been shown that the three-peak-structure is gradually suppressed for unequal mass BNS systems. A similar behavior (suppression of peaks) can be observed analyzing the same system using another EOS (see section 3.3 for more details).

Moreover, for the J0453 + 1559 system it should be noted that there is a small shift of frequency, 22 ms after the merger and show a growing in its amplitude. A simple non-linear fit of the waveform with a trial guess of the type \(h_{\tau} = A \exp(t/\tau) \sin(2\pi f_0 t + \phi) \) show the possible presence of growing mode with a growth time of \(\tau = 5.75 \) ms and a frequency equal to \(f_p = 3.331 \) kHz. This growing amplitude suggests the possible activation of an unstable mode. A similar phenomenon is also present for the J1906 + 0746 system, where 15 ms after the merger a growing mode with \(f_p = 3.329 \) kHz and \(\tau = 5.30 \) ms is observed. On the other hand, possible growing modes are not present for J1756-2251 and 0737-3039A. The possible presence of such instabilities of the remnant should not be considered unexpected, since it is well known that differentially rotating stars show dynamical instabilities, and that the threshold for their activation depends on the EOS (see [74–78] and reference therein). However, we only have an indication of the possible activation of an unstable mode since we did not carefully analyze the rotational profile of the remnant, nor did we show that the determined values are not affected by the resolution employed (that is limited to our confidence resolution for WENO reconstruction [32]). We leave the detailed study of rotational profile (along the line of [79, 80]) of the HMNS remnant to future studies.

In addition to hydrodynamical quantities, we also analyzed the gravitational waves generated by such encounters. Figure 4 shows the total energy momentum \((E_{\text{gw}}) \) that is carried away by gravitational radiation as a function of the retarded time \(t = t_{\text{ret}} \), for all six different BNS models. As can be seen from this figure, the total energy momentum carried away by GWs starts increasing only slowly at first, goes through a burst of radiation and
then approaches a more or less steady value in the post-merger region at approximately 20 ms after merger. For this reason, we report for each system the total emitted gravitational energy for three different time intervals in table 3. From infinite separation up to 5 ms before merger (inspiral phase), from 5 ms before merger up to 5 ms after merger (merger phase) and from 5 ms after merger up to 20 ms after merger (post-merger phase). As can be seen, the total amount of emitted energy is not much different for all models in the inspiral phase. The same is true for the merger phase, except for the B1913 + 16 system that promptly collapses, forms a BH, and thus reduces GW emission noticeably just after the merger. Another exception is the more extreme unequal mass ($q = 0.75$) J0453 + 1559 system, which shows

Table 2. Main peak frequencies and damping times of the post-merger phase of the simulated models at $\text{d}x = 0.25$ CU. τ_0 and f_0 are the damping time and the frequency of the oscillation of the maximum of the lapse α between 1.5 to 8 ms after t_{merger}, respectively. These values are an estimation of the properties of the quasi-radial oscillations of the remnant. The frequency f_p is determined by a single-frequency fitting procedure on the last part of h_{22} signal. The frequencies, \hat{f}_p, f_{-}, f_{+}, are derived by an analysis of the Fourier spectrum and represent the frequencies of the main and secondary peaks of the PSD (bottom-right panel of figure 3). Notice that we do not include the sixth galactic system (B1913 + 16) as it rapidly goes to a BH.

Model	τ_0 (ms)	f_0 (kHz)	f_p (kHz)	\hat{f}_p (kHz)	f_{-} (kHz)	f_{+} (kHz)
J1756-2251	2.49	1.148	3.163	3.114	2.028	4.280
J0737-3039A	2.74	1.139	3.293	3.182	2.105	4.271
J1906 + 0746	2.72	1.119	3.326	3.231	2.206	4.321
B1534 + 12	3.72	0.984	3.667	3.424	2.459	4.397
J0453 + 1559	2.54	0.998	3.331	3.268	—	—

Figure 4. Evolution of the total energy (E_{gw}) carried away by gravitational radiation in solar mass as a function of the retarded time t_{ret}, for the six different BNS models. The colored circles mark the merger time for each model as indicated in table 3.
a noticeably lower emission. This is in accordance with results in [32], where it was also observed that the GW luminosity is suppressed as the mass ratio of the two stars decreases. In the post-merger phase different models show very different emission strengths, depending on very different excitation levels of the post-merger modes.

3.2. Properties of the models collapsing to a black hole

As previously noted, of all simulated models, two collapse to a BH. B1319 + 16 does so right after the merger (after about 0.98 ms). On the other hand, B1534 + 12 does so only after a short hypermassive neutron star (HMNS) phase, lasting around 24.2 ms. In both cases, shortly after BH formation the maximum baryonic density drops below the neutron drip threshold (see figure 5), and the whole dynamics of the final disk around and accreting onto the BH is described by the single-piece of the EOS with $\Gamma = 1.28733$.

For B1913 + 16, almost all matter quickly enters the newly formed BH within the first millisecond, to arrive at a final BH mass of $M_{\text{bh}} = 2.76 M_\odot$ and a dimensionless rotational parameter $a = J_{\text{bh}}/M_{\text{bh}}^2 = 0.80$. The measured values (on the numerical determined apparent horizon) of the mass (M_{bh}) and angular momentum (J_{bh}) do not change, within the numerical error, past 5 ms after BH formation. At the same time, the total gravitational mass present in numerical grid (outside of the horizon) is $M = 7.5, 3.0, 1.6 (10^{-2} M_\odot)$ 10, 20 and 30 ms after the formation of the BH, respectively. The details of the overall dynamics concerning the energy E_{gw} and the angular momentum J_{gw} carried away by gravitational radiation and the BH formation is shown in figure 6. From there it also apparent that about 30 ms after BH formation the accretion dynamics has stabilized, within the time-scales considered in these simulations.

In contrast to B1913 + 16, B1534 + 12 does not show a prompt collapse, as can be seen in a similar figure 7. The BH formation itself also happens slower in that case, 5 ms after BH formation the BH is characterized by a $M_{\text{bh}} = 2.45 M_\odot$ and $a = 0.61$, and these values keep increasing to their final measured values (30 ms after BH formation) of $M = 2.49 M_\odot$ and $a = 0.65$. At that time, the computational grid still contains matter of total gravitational mass of $M_{\text{disk}} = 0.06 M_\odot$ and angular momentum $J_{\text{disk}} = 0.398 GM_\odot c^2$. From this information we can deduce that the final state of the BH will be $M = 2.49 M_\odot$ and $a = 0.68$, since the amount of gravitational energy and angular momentum carried away by gravitational

Table 3.

For each model is reported the total energy emitted as gravitational waves from infinite separation up to 5 ms before merger (second column), from 5 ms before merger up to 5 ms after merger (third column) and from 5 ms after merger up to 20 ms after merger (forth column). In the fifth column is reported the merger time in ms. All these values refer to simulations performed with resolution $dx = 0.25$ CU (≈ 369 m).

Model	E_{gw} (M_\odot)	E_{gw} (M_\odot)	E_{gw} (M_\odot)	t_{merger} (ms)
J1756-2251	0.0276	0.0488	0.0189	15.3
J0737-3039A	0.0277	0.0528	0.0255	15.1
J1906 + 0746	0.0282	0.0582	0.0148	14.0
B1534 + 12	0.0297	0.0597	0.0192	13.9
J0453 + 1559	0.0287	0.0269	0.0060	11.8
B1913 + 16	0.0317	0.0276	$6 \cdot 10^{-7}$	11.8
radiation from this moment on is negligible. In this case it is possible to estimate the accretion rate from the measure of the mass of the BH. In particular, the accretion rate $A_r = \frac{dM_{\text{BH}}}{dt}$ of the remnant BH 35 ms after BH is $\approx 0.86 \times 10^{-3} \text{M}_\odot \text{ms}^{-1}$, that is still decreasing but stabilizing.

To summarize, systems B1534 + 12 and B1913 + 16 will both collapse to rapidly rotating BH, characterized by a dimensionless rotational parameter $a = \frac{J_{\text{BH}}}{M_{\text{BH}}^2}$ of 0.68 and 0.80, respectively. However, B1534 + 12 will show a short-lived HMNS, while B1913 + 16 collapses promptly.

3.3. Effect of the EOS on the J0453 + 1559 (q = 0.75) galactic system

We study the effects of different EOSs on the recently discovered [10] BNS model associated to the pulsar J0453 + 1559, which is the most asymmetric known binary system, characterized by the mass ratio of $q = 0.75$. Here we analyze, as in [81], the effect of the EOS on an unequal mass BNS. In particular, we used the three additional EOSs (see section 2) APR4, H4 and MS1. The use of a different EOS changes the threshold for (following the terminology introduced by [82]) a supra-massive neutron star (SMNS), or a hyper-massive neutron star (HMNS), as can be seen in table 4.

From this it is clear that for the J0453 + 1559 system, with a total conserved baryonic mass of 3.01 M_\odot, the final state does not need to be a BH in the case of the MS1 EOS. Since its total baryonic mass is less than the maximum mass for a non-rotating star, it will not even be a SMNS. On the other hand, the merger remnant will be a SMNS in the case of the APR4 EOS and a HMNS in the case of the SLy and H4 EOSs, for the same baryonic mass.

We evolved J0453 + 1559 for all the four EOS for about 30 ms after merger. None of these collapsed to a black hole within this time. Figure 8 (similar to figure 3) shows the amplitude of the $r \cdot h_{22}$ mode (GW signal, top panel) as a function of $t - t_{\text{merger}}$ while on the bottom (right...
side panel) we show the PSD of the effective GW $\tilde{h}(f)$ as a function of the frequency in the range $(-9, +12)$ ms around merger time. The bottom left panel shows the spectrogram, using 5 ms bins, as a function of time. Contrary to figure 3 (different binary systems), the simulated GW signal for J0453 + 1559 is very different depending on the EOS. In particular, the case of the H4 EOS shows the strongest post-merger signal corroborated with the biggest peak (the dashed black one) in the PSD panel and a frequency $f_p = 2.443$ kHz (see table 2. The SLy EOS and APR4 EOS models appear very similar, although clearly recognizable, while the other two EOSs, namely the H4 EOS and the MS1 EOS look very different. Differences like these might be useful to infer information about the EOS from signals measured by interferometers like LIGO/Virgo.

Figure 6. Angular momentum (top-panel) and mass budget (middle-panel) for the evolution of model B1913 + 16. The blue, dashed, horizontal line indicates the ADM values of the initial data, as calculated by LORENE. The red-hatched area shows the matter contribution, while the green-hatched area shows the contributions from the emitted GWs, and finally, the black-solid line represents the BH contribution. The bottom panel shows the total gravitational mass of the matter present on the numerical grid, zoomed-in to highlight the late-time accretion.

Table 4. Maximum masses for a SMNS and HMNS for a set of 4 different EOSs. Quantities in brackets show the corresponding conserved baryonic mass.

EOS	SMNS (M_\odot)	HMNS (M_\odot)
SLy	2.04 (2.42)	2.41 (2.82)
H4	2.01 (2.30)	2.37 (2.70)
APR4	2.19 (2.66)	2.60 (3.09)
MS1	2.75 (3.30)	3.29 (3.90)
The post-merger gravitational wave signal shows in all cases a quite complex evolution, especially for the first few milliseconds. The properties of the main frequency present in the GW signal as well as the estimated properties of the quasi-radial oscillation of the remnant are listed in table 5. These values likely directly depend on the EOS, as well as the specific merger dynamics, but this dependency cannot be quantified from the present simulations, and requires further investigations. It should be noted that in some of these cases the main peak shows a split, and we denote the additional frequency as \(\hat{f} \). In particular, for the SLy EOS this frequency corresponds to 3.429 kHz and for APR4 to 3.520 kHz (see table 5 and spectrograms on Figure 7).

Figure 7. Angular momentum (top-panel), mass budget (middle-panel) and total matter present in the grid (bottom-panel) for the evolution of model B1534 + 12. This figure is similar to figure 6.

Table 5. Main peak frequencies and the estimated damping times of the quasi-radial oscillation of the post-merger phase of the simulation of the J0453 + 1559 system using different choices for the EOS, using a resolution of \(dx = 0.25 \) CU. \(\tau_0 \) and \(f_0 \) are the damping time and the frequency of the oscillation of the lapse \(\alpha \) between 1.5 to 8 ms after \(t_{\text{merger}} \). The frequency \(f_\alpha \) is determined by a single-frequency fitting procedure on the last part of \(h_{22} \) signal, while the other two \(f_\alpha, \hat{f} \) are derived by the analysis of the Fourier spectrum (bottom-right panel of figure 8). There are other secondary peaks but they are not reported here since they are below the LIGO/Virgo design sensitivity.

EOS	\(\tau_0 \) (ms)	\(f_0 \) (kHz)	\(f_\alpha \) (kHz)	\(\hat{f}_\alpha \) (kHz)	\(\hat{f} \) (kHz)
SLy	2.54	0.998	3.331	3.268	3.429
APR4	1.83	1.136	3.310	3.310	3.520
H4	2.79	0.992	2.439	2.359	
MS1	2.05	1.048	1.998	1.916	

The post-merger gravitational wave signal shows in all cases a quite complex evolution, especially for the first few milliseconds. The properties of the main frequency present in the GW signal as well as the estimated properties of the quasi-radial oscillation of the remnant are listed in table 5. These values likely directly depend on the EOS, as well as the specific merger dynamics, but this dependency cannot be quantified from the present simulations, and requires further investigations. It should be noted that in some of these cases the main peak shows a split, and we denote the additional frequency as \(\hat{f} \). In particular, for the SLy EOS this frequency corresponds to 3.429 kHz and for APR4 to 3.520 kHz (see table 5 and spectrograms on Figure 7).
The frequency is active during the merger phase for times comparable to the damping time τ_0 of oscillations of the ADM lapse ($\alpha = (-g^{00})^{1/2}$) and the maximum matter density. This effect is much stronger in the case of the APR4 EOS and is almost not present for the EOSs that correspond to less compact stars, namely stars described by the H4 and MS1 EOS, where the oscillations of the maximum density are smaller. One should also mention that this split does not show up in all other simulated model where the masses of the two stars are almost equal. Unfortunately at this point it is not possible to make any definite conclusion on the origin of this split and to relate it to the fact that the two stars have very different masses.

Figure 8. Overview of the evolution of model J0453 + 1559 using different EOS. The meaning of plot is the same of figure 3. One should note the strong suppression of the side peaks of the main one and the presence of a double peaks structure of the main in the case of the SLy and APR4 EOS.
Figure 9. Evolution of instantaneous frequency of the $l = m = 2$ component of the GW signal f (where $f(t) = d\text{arg}(h_{22}(t))/dt$), as function of the retarded time (t_{ret}), for the J0453 + 1559 system, and depending on the EOS. The evolution is essentially identical for the first 5 ms, and the effect of the EOS only starts to be visible after about 7 ms.

Figure 10. Evolution of the total energy emitted in gravitational waves (E_{gw}) for the evolution of J0453 + 1559, as a function of the retarded time (t_{ret}) and depending on the used EOS. The energy is almost identical for the first 5 ms where the total energies emitted are 2.47, 2.41, 2.23, and $2.42 \times 10^{-3} M_\odot$ for the APR4, SLy, H4 and MS1 EOS, respectively.
We would also like to note that, for system J0453 + 1559, the GW spectrogram (bottom-left panel) shows a small signal at \(f = 1.67 \text{ kHz} \) starting at 12 ms after merger for SLy, and from 10 ms after merger in the case of the APR4 EOS, but not noticeably for the other EOSs.

In order to better understand the dynamics of the GWs emission, we show the instantaneous frequency of the \(h_{22} \) component of the GW signal, namely to the quantities

\[
\frac{\text{d} \arg \left(h_{22}(t) \right)}{\text{d}t},
\]

in figure 9. We observe almost no difference between evolutions using different EOS for the first 5 ms, while after this the evolution shows a very strong influence on the EOS. As it can be seen in table 5 and figure 8, there is a strong dependence of the frequency of the main peaks on the used EOS. The signals from SLy and and APR4 show similarities also here, the signals from the other two EOSs are clearly different.

Similarly, and as shown in figure 10 and table 6, while there is almost no dependence of the total energy emitted in GWs for \(5 - 7 \) ms after merger, there are clear differences after that. The APR4 model shows the highest amount of radiated energy, while the model using MS1 shows considerably less, and also stops emitting noticeably much sooner than the other three models.

4. Conclusions

We have presented a study of the merger of six different known galactic systems of BNSs of unequal mass with a mass ratio between 0.75 and 0.99: J1756-2251, J0737-3039A, J1906 + 0746, B1534 + 12, J0453 + 1559 and B1913 + 16. For all of these, we used a semi-realistic, seven segment piece-wise polytropic SLyPP EOS with a thermal component of \(\Gamma = 1.8 \). For the most extreme of these systems (\(q = 0.75 \), J0453 + 1559), we also have investigated the effects of different EOSs, namely: APR4, H4, and MS1.

We follow the dynamics of the merger from the late stage of the inspiral process up to \(\sim 20 \) ms after the system has merged, either to form a HMNS or a rotating BH. All simulations have been performed using only publicly available, open-source codes such as, the Einstein toolkit code deployed for the dynamical evolution, and the LORENE code for the generation of the initial models. All simulations start with the stars at a distance of 44.3 km, which corresponds to 3–4 orbits before merger, and all use a resolution of \(\Delta x = 0.25 \text{ CU} \). We followed the late-inspiral phase and post-merger for more than 20 ms (in some cases up to 40 ms).

A detailed comparison with the now huge literature (see [18, 38, 83]) on BNS systems is difficult and beyond the scope of the present work. This is particularly difficult because in most of the work full details on the numerical setting and a detailed descriptions of the EOS are lacking. Also, in most of the numerical work the crust part of the EOS is not considered or just approximated by a single polytropic EOS. In fact, in the interpretation of the results one

EOS	\(E_{gw} (M_\odot) \) (−5...−5)	\(E_{gw} (M_\odot) \) (5...20)	\(t_{merger} \) (ms)
SLy	0.0287	0.0060	11.8
APR4	0.0295	0.0161	11.3
H4	0.0276	0.0109	10.3
MS1	0.0270	0.0012	8.17

Table 6. Total energy emitted as gravitational waves for system J0453 + 1559, from infinite separation up to 5 ms before merger (second column), from 5 ms before merger up to 5 ms after merger (third column) and from 5 ms after merger up to 20 ms after merger (forth column), for four different EOSs. The fifth column shows the merger time.
should keep in mind that the final scenario is strongly dependent on the EOS, i.e. that the post-merger remnant may be either a supra-massive neutron star (SMNS), a hyper-massive neutron star (HMNS), or directly a BH surrounded by an accretion disk.

In all evolutions presented in this work, the amount of baryonic matter ‘leaving’ the grid is less than 0.01 M_{\odot}, i.e. of the maximum level of non-conservation of the total baryonic mass present in the simulation domain. Using the SLy EOS (in its piece-wise polytropic representation used here), of the simulated systems, J1756-2251 and J0737-3039A result in a SMNS (very close to the threshold $M_{\text{SLy}}^{\text{max}} = 2.82 M_{\odot}$ to be HMNS), while all the other correspond to HMNSs. Only two of the HMNSs collapse to a BH within the simulated time (35 ms); one right after the merger (B1913 + 16, Hulse–Taylor system), and the second after a short hyper-massive NS phase of 25 ms (B1534 + 12). These cases have some resemblance to the already analyzed cases in [32], namely models SLy16vs16 and SLy15vs15, respectively. Both models result in a BH surrounded by an accretion disk, but with a disk of very much different mass. The final dimensionless rotational parameter of the BH ($a = J_{\text{BH}}/M_{\text{BH}}^{2}$) is 0.80 for B1913 + 16, while the expected final value for B1534 + 12 is 0.68.

We also considered the evolution of J0453 + 1559, using also three different EOSs. The remnant just after the merger is a HMNS for SLy and H4, while it is a SMNS in the case of APR4, and in the case of M1 the system is even below the non-rotating maximum mass. Nevertheless, none of these models collapses to a BH within the first 35 ms after merger. We have also shown that the inspiral phase of the merger is not very sensitive to the EOS in the very first 5 ms and its differences, as shown in [33], may be quite likely due to the different eccentricity of the generated model. The last part of the inspiral phase shows, instead, strong dependence on the EOS and indeed to the different compactness of the star and of its tidal deformability. Tidal effects during this phase may in principle be detected by future LIGO/Virgo/KAGRA detectors but will be mixed with other effects that depend on the eccentricity of the initial data, as for example, the NS spin or magnetic fields, that can have a similar impact [79, 84–86]. Thus, it is crucial to reduce the orbital eccentricity in simulations to maximize the precision with which we can extract neutron-star parameters and constrain the neutron star EOS from GW observations. This task has already been considered in [56], and we will leave the task to find the appropriate method to generate the (still-lacking) public initial data with no eccentricity to future work.

Most of the energy in GWs is emitted during the merger (from 5 ms before to 5 ms after it). The GW signal during the inspiral is essentially identical for all models. On the other hand, the total amount of energy emitted in the post-merger (from 5 ms to 20 ms after merger) is almost of the same size as the total energy emitted during the whole inspiral phase (from infinite separation to 5 ms before merger). We note that for the more extreme unequal mass case (J0453 + 1559) the total energy emitted is much reduced, in agreement with the results of [32], where it was shown that the GW luminosity is suppressed as the mass ratio of the two stars decreases. There is also the notable exception of B1913 + 16, which promptly collapses to a BH and shortly after stops emitting GWs. This is similar to binary black hole mergers, which would make it more difficult to discriminate this case from a BBH merger.

Finally, we would like to remark that the merger and post-merger phases show a very complicated GW pattern, stemming likely from very complex excitation mode dynamics. Because of this, we expect it to be unlikely that semi-analytic templates could be assembled to represent the full GW signal from the inspiral to the post-merger phase. The only common characteristic (beside the one from inspiral phase up to five ms before merger) seems to be that there is a final and sustained phase in the late post-merger dynamics in which there is only a dominating mode in the 22-component.
Acknowledgments

This project greatly benefited from the availability of public software that enabled us to conduct all simulations, namely ‘LORENE’ and the ‘Einstein Toolkit’. We do express our gratitude the many people that contributed to their realization.

This work would have not been possible without the support of the SUMA INFN project that provided the financial support of the work of AF and the computer resources of the CINECA ‘GALILEO’ HPC Machine, where most of the simulations were performed. Other computational resources were provided by the Louisiana Optical Network Initiative (QB2, allocations loni_hyrel, loni_numrel, and loni_cactus), and by the LSU HPC facilities (SuperMike II, allocations hpc_hyrel15 and hpc_numrel). FL is directly supported by, and this project heavily used infrastructure developed using support from the National Science Foundation II, allocations loni_hyrel, loni_numrel, and loni_cactus), and by the LSU HPC facilities (SuperMike II, allocations hpc_hyrel15 and hpc_numrel). FL is directly supported by, and this project heavily used infrastructure developed using support from the National Science Foundation II, allocations loni_hyrel, loni_numrel, and loni_cactus), and by the LSU HPC facilities (SuperMike II, allocations hpc_hyrel15 and hpc_numrel). FL is directly supported by, and this project heavily used infrastructure developed using support from the National Science Foundation II, allocations loni_hyrel, loni_numrel, and loni_cactus), and by the LSU HPC facilities (SuperMike II, allocations hpc_hyrel15 and hpc_numrel). FL is directly supported by, and this project heavily used infrastructure developed using support from the National Science Foundation II, allocations loni_hyrel, loni_numrel, and loni_cactus), and by the LSU HPC facilities (SuperMike II, allocations hpc_hyrel15 and hpc_numrel).

References

[1] Abbott B P et al and Virgo, LIGO Scientific 2016 Phys. Rev. Lett. 116 061102
[2] Abbott B P et al and Virgo, LIGO scientific 2016 Phys. Rev. Lett. 116 241103
[3] Abbott B P et al and Virgo, LIGO scientific 2016 Phys. Rev. Lett. 116 241102
[4] Abbott B P et al and Virgo, LIGO scientific 2016 Astrophys. J. 818 L22
[5] Aasi J et al and LIGO Scientific 2015 Class. Quantum Grav. 32 074001
[6] Acernese F et al and VIRGO 2015 Class. Quantum Grav. 32 024001
[7] Aso Y, Michimura Y, Somiya K, Ando M, Miyakawa O, Sekiguchi T, Tatsumi D, Yamamoto H and KAGRA 2013 Phys. Rev. D 88 043007
[8] Hulse R A and Taylor J H 1975 Astrophys. J. 195 L51
[9] Weisberg J M, Nice D J and Taylor J H 2010 Astrophys. J. 722 1030
[10] Martinez J G, Stovall K, Freire P C C, Deneva J S, Jenet F A, McLaughlin M A, Bagchi M, Bates S D and Ridolfi A 2015 Astrophys. J. 812 143
[11] Faulkner A J 2004 et al Astrophys. J. 618 L119
[12] Burgay M et al 2003 Nature 426 531
[13] Kramer M et al 2006 Science 314 97
[14] Lorimer D R et al 2006 Astrophys. J. 640 428
[15] van Leeuwen J et al 2015 Astrophys. J. 798 118
[16] Wolszczan A 1991 Nature 350 688
[17] Fonseca E, Stairs I H and Thorsett S E 2014 Astrophys. J. 787 82
[18] Lorimer D R 2008 Living Rev. Relativ. 11 8
[19] Moore B, Favata M, Arun K G and Mishra C K 2016 Phys. Rev. D 93 124061
[20] Douchin F and Haensel P 2001 Astron. Astrophys. 380 151
[21] Read J S, Lackey B D, Owen B J and Friedman J L 2009 Phys. Rev. D 79 124032
[22] Nakamura T, Oohara K and Kojima Y 1987 Proc. Theor. Phys. Suppl. 90 1
[23] Shibata M and Nakamura T 1995 Phys. Rev. D 52 5428
[24] Baumgarte T W and Shapiro S L 1999 Phys. Rev. D 59 024007
[25] Alcubierre M, Brügmann B, Drahmlitsch T, Font J A, Papadopoulos P, Seidel E, Stergioulas N and Takahashi R 2000 Phys. Rev. D 62 044034
[26] Alcubierre M, Brügmann B, Diener P, Kopppitz M, Pollney D, Seidel E and Takahashi R 2003 Phys. Rev. D 67 084023
[27] Shu C-W 1998 Lect. Notes Math. 1697 325
[28] Löffler F et al 2012 Class. Quantum Grav. 29 115001
[29] Einstein Toolkit Einstein Toolkit: Open Software for Relativistic Astrophysics http://einsteintoolkit.org/
[30] LORENE LORENE: Langage Objet pour la RELativite Numérique www.lorene.obspm.fr/
[31] Gourgoulhon E, Grandclement P, Taniguchi K, Marck J-A and Bonazzola S 2001 Phys. Rev. D 63 064029
[32] De Pietri R, Feo A, Maione F and Löffler F 2016 Phys. Rev. D 93 064047
[33] Maione F, De Pietri R, Feo A and Löffler F 2016 Class. Quantum Grav. 33 175009
[34] Akmal A, Pandharipande V and Ravenhall D 1998 Phys. Rev. C 58 1804
[35] Lackey B D, Nayyar M and Owen B J 2006 Phys. Rev. D 73 024021
[36] Muller H and Stert B D 1995 Phys. Rev. C 52 2072
[37] Faber J A and Rasio F A 2012 Living Relativ. 15 8
[38] Baiotti L and Rezzolla L 2016 arXiv:1607.03540
[39] Clark J A, Bauswein A, Stergioulas N and Shoemaker D 2016 Class. Quantum Grav. 33 085003
[40] Lehner L, Liebling S L, Palenzuela C and Motl P M 2016 Phys. Rev. D 94 043003
[41] Dietrich T, Moldenhauer N, Johnson-McDaniel N K, Bernuzzi S, Markakis C M, Brgmann B and Tichy W 2015 Phys. Rev. D 92 124007
[42] Sekiguchi Y, Kiuchi K, Kyotoku K, Shibata M and Taniguchi K 2016 Phys. Rev. D 93 124046
[43] Andresen H, Mueller B, Mueller E and Janka H-T 2016 arXiv:1607.05199
[44] Guilet J, Bauswein A, Just O and Janka H-T 2016 arXiv:1610.08532
[45] Cactus developers Cactus Computational Toolkit www.cactuscode.org/
[46] Goodale T, Allen G, Lanfermann G, Massó J, Radke T, Seidel E and Shalf J 2003 Vector and Parallel Processing (5th Int. Conf. Lecture Notes in Computer Science) (Berlin: Springer)
[47] Allen G, Goodale T, Lanfermann G, Radke T, Rideout D and Thornburg J 2011 Cactus Users’ Guide
[48] Schnetter E, Hawley S H and Hawke I 2004 Class. Quantum Grav. 21 1465
[49] Schnetter E, Diener P, Dorband E N and Tiglio M 2006 Class. Quantum Grav. 23 S553
[50] Carpet Carpet: Adaptive Mesh Refinement for the Cactus Framework www.carpetcode.org/
[51] McLachlan McLachlan, a public BSSN code www.cct.lsa.edu/~eschneitt/McLachlan/
[52] Harten A, Lax P D and van Leer B 1983 SIAM Rev. 25 35
[53] Einfeldt B 1988 SIAM J. Numer. Anal. 25 294
[54] Bauswein A, Janka H-T and Oechslin R 2010 Phys. Rev. D 82 084043
[55] Hoyt Dzetska K, Kyotoku K, Okawa H and Shibata M 2015 Phys. Rev. D 91 064060
[56] Kyotoku K, Shibata M and Taniguchi K 2014 Phys. Rev. D 90 064006
[57] Hotokezaka K, Kiuchi K, Kyotoku K, Muranushi T, Sekiguchi Y-I, Shibata M and Taniguchi K 2013 Phys. Rev. D 88 044026
[58] Newman E and Penrose R 1962 J. Math. Phys. 3 566
[59] Baker J G, Campanelli M and Lousto C O 2002 Phys. Rev. D 65 044001
[60] Thorne K S 1980 Rev. Mod. Phys. 52 299
[61] Lousto C O, Nakano H, Zlochower Y and Campanelli M 2010 Phys. Rev. D 82 104057
[62] Ashtekar A, Beetle C, Dreyer O, Fairhurst S, Krishnan B, Lewandowski J and Wisniewski J 2000 Phys. Rev. Lett. 85 3564
[63] Ashtekar A, Beetle C and Lewandowski J 2002 Class. Quantum Grav. 19 1195
[64] Ashtekar A and Krishnan B 2004 Living Relativ. 7 10
[65] Dreyer O, Krishnan B, Shoemaker D and Schnetter E 2003 Phys. Rev. D 67 024018
[66] Thornburg J 2004 Class. Quantum Grav. 21 743
[67] Alic D, Kastaun W and Rezzolla L 2013 Phys. Rev. D 88 064049
[68] Stergioulas N, Bauswein A, Zoglouris K and Janka H-T 2011 Mon. Not. R. Astron. Soc. 418 427
[69] Bauswein A, Stergioulas N and Janka H-T 2014 Phys. Rev. D 90 023002
[70] Bauswein A and Janka H-T 2012 Phys. Rev. Lett. 108 011101
[71] Bauswein A, Stergioulas N and Janka H-T 2016 Eur. Phys. J. A 52 56
[72] Takami K, Rezzolla L and Baiotti L 2015 Phys. Rev. D 91 064001
[73] Takami K, Rezzolla L and Baiotti L 2015 J. Phys.: Conf. Ser. 600 012056 (Proc. Spanish Relativity Meeting: Almost 100 Years After Einstein Revolution (2014))
[74] Watts A L, Andersson N and Jones D I 2005 Astrophys. J. 618 L37
[75] Baiotti L, De Pietri R, Manca G M and Rezzolla L 2007 Phys. Rev. D 75 044023
[76] Manca G M, Baiotti L, De Pietri R and Rezzolla L 2007 Class. Quantum Grav. 24 S171
[77] De Pietri R, Foa A, Franci L and Löffler F 2014 Phys. Rev. D 90 024034
[78] Löffler F, De Pietri R, Foa A, Maione F and Franci L 2015 Phys. Rev. D 91 064057
[79] Kastaun W and Galeazzi F 2015 Phys. Rev. D 91 064027
[80] Kastaun W, Ciolfi R and Giacomazzo B 2016 Phys. Rev. D 94 044060
[81] Lehner L, Liebling S L, Palenzuela C, Caballero O L, O’Connor E, Anderson M and Neilson D 2016 Class. Quantum Grav. 33 184002
[82] Baumgart T W, Shapiro S L and Shibata M 2000 Astrophys. J. 528 L29
[83] Lehner L and Pretorius F 2014 Ann. Rev. Astron. Astrophys. 52 661
[84] Tichy W 2012 Phys. Rev. D 86 064024
[85] Etoienne B Z, Paschalidis V, Haas R, Mósta P and Shapiro S L 2015 Class. Quantum Grav. 32 175009
[86] East W E, Paschalidis V and Pretorius F 2016 Class. Quantum Grav. 33 244004