A 1400 year environmental magnetic record from varved sediments of Lake Xiaolongwan (Northeast China) reflecting natural and anthropogenic soil erosion

Youliang Su1, Guoqiang Chu1, Qingsong Liu2, Zhaoxia Jiang2, Xing Gao3, and Torsten Haberzettl4

1Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, 2State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, 3State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 4Department of Physical Geography, Institute of Geography, Friedrich Schiller University Jena, Jena, Germany

Abstract Lake sediments can provide high-quality information about human activities. In this study, we investigate a sediment core from Lake Xiaolongwan using magnetic and geochemical methods. The dominant magnetic minerals of this sediment core are stable single domain (SSD) and superparamagnetic (SP) magnetite particles. The increasing amount of SP particles reflected by the rise of magnetic susceptibility and frequency dependent magnetic susceptibility since AD 1500 can be attributed to an increasing influx in pedogenic soil, which is related to a regional-scale increase in the intensity of human activity in Northeastern China. This extends the timing of human activities, which is independent from climate changes and its effects on local ecosystems in Northeastern China significantly.

1. Introduction

There is a consensus that human activities can seriously affect ecosystems. This can result in a vegetation loss [Xiao et al., 2013], soil erosion [Dearing et al., 2015], decreased biodiversity [Jiang et al., 2014], and air pollution [Yang et al., 2010]. The deterioration of ecosystems, in turn, exerts increasing pressure on human society [Vitousek et al., 1997]. To quantify the relationship between anthropogenic activities and environmental changes, it is essential to determine the development of human activities and its impacts on terrestrial ecosystems on longer time scales.

Northeastern China is located within the East Asian Monsoon region [Liu, 1985]. The vegetation cover in this region has been intensively disturbed in the recent past by logging and grazing [Chen, 2012]. Thus, the area is an ideal place to study the impact of human activity on the natural environment, e.g., soil erosion [Ye et al., 2012]. So far, only a few studies have been carried out to investigate human activities during the mid to late-Holocene in Northeastern China [Makohonienko et al., 2008]. In contrast, many investigations focused on the late-Quaternary paleoclimatic evolution [Chu et al., 2004, 2009; Xu et al., 2014].

Reconstruction of human activities can for example be carried out using historical documents [Ye et al., 2009, 2012; Zhang et al., 2011]. For instance, extensive migration in Northeastern China during the past 300 years is documented there [Ye et al., 2009]. However, historical documents are often fragmentary and only reach back several centuries.

In contrast, natural archives are often continuous covering longer time scales. Lake and peat sediments for example are mostly well preserved and can provide high-quality information. On the basis of pollen data from peat sediments, Makohonienko et al. [2008] provided evidence for human impacts on the Jinchuan site in the Changbai Mountains (Figure 1), which is located within the mixed temperate broadleaved forest zone of Northeastern China since AD 1730. Nevertheless, the accurate timing and intensity of human activity in Northeastern China have not been well resolved due to chronological issues and uncertainties of the interpretation of paleoclimatic proxies [Li et al., 2013; Panizzo et al., 2013].

This study investigates varved sediments from Lake Xiaolongwan (XLW) with environmental magnetic and geochemical methods in a well-defined chronological framework. We aim to determine the history of...
human-environment-interactions and provide new insights into the timing and intensity of human activity in Northeastern China during the past millennium.

2. Study Area

Lake XLW (42° 18’ N, 126° 21’ E, maximum water depth = 15 m, elevation = 655 m asl) is located in the western part of Longgang, Northeastern China (Figure 1). XLW was formed by alkali basaltic phreatomagmatic eruptions in the late Pleistocene [Liu, 1999]. The surface and catchment areas of the lake are about 0.079 km² and 0.16 km², respectively.

The study area is influenced by the East Asian monsoon system. Cold and dry conditions prevail during fall and winter. In contrast, summer is warm and humid. The total mean annual precipitation is 760 mm and the mean annual air temperature is ~4°C [Chu et al., 2009].

3. Methods

Piston core X06 with a length of 695 cm was recovered from a water depth of 14.5 m in the early spring of 2006 (Figure 1). The varved sediments consist of gray- and brown- colored couplets [Chu et al., 2008]. The brown-colored layer formed in fall is mainly composed of dinoflagellate cysts [Chu et al., 2008], while the gray-colored layer, generated in spring and summer, consists of other organic, siliceous matter (plant detritus, diatom, chrysophyte cysts) and clastics [Chu et al., 2008]. Previous studies using scanning electron and optical microscopes, sediment traps, and independent chronologies indicate that the laminated sediments are most likely annually layered [Chu et al., 2008]. In this study, only the top 93 cm are presented. According to varve counting results the upper 93 cm contain 1415 couplets. Sediment accumulation rates (SAR) are calculated with a resolution of 100 years. The detailed chronology was adopted from previous studies [Chu et al., 2009, 2014; Xu et al., 2014].

The top 93 cm of core X06 were subsampled in 1 cm resolution (93 samples) which corresponds to a temporal resolution of about 27 years. In the summer of 2012, 24 soil samples were collected at 5 cm intervals from 85 to 30 cm in depth and 2 cm intervals from 30 to 0 cm in depth in a soil profile (N 42° 18.7’, E 126° 35.2’, 20 km away from XLW, Figure 1). Subsequently these samples were freeze dried and each sample was placed in a 2×2×2 cm³ plastic cube to conduct magnetic measurements. Low- and high-frequency...
mass-specific magnetic susceptibility (χ_{lf} and χ_{hf}) was measured using a multifunction Kappabridge (MFK-FA) with frequencies of 976 Hz and 15616 Hz, respectively. Frequency-dependent magnetic susceptibility (χ_{fd}) was calculated as $\chi_{fd} = \chi_{lf} - \chi_{hf}$ [Dearing et al., 1996]. An anhysteretic remanent magnetization (ARM) was imparted with a Schonstedt GSD-1 alternating field (AF) demagnetizer with a peak AF of 100 mT and a superimposed direct bias field of 0.05 mT. Anhysteretic susceptibility (χ_{ARM}) is calculated through dividing ARM by the biasing field strength [Evans and Heller, 2003].

To characterize magnetic assemblages in representative samples, hysteresis loops, isothermal remanent magnetization (IRM) acquisition curves, and backfield demagnetization curves were measured and calculated the saturation magnetization (M_s), saturation remanence magnetization (M_{rs}), coercivity (B_c), remanent coercivity (B_{cr}), using a vibrating samples magnetometer (VSM 3900) with a maximum field of 1 T. First-order reversal curves (FORCs) were measured with the same device on selected samples with field increment of 1.15 mT, and processed with the FORCinel software v1.18 [Harrison and Feinberg, 2008]. They were used to determine signals of the magnetic domain and the coercivity spectrum of the samples [Roberts et al., 2000].

Temperature-dependent magnetization curves ($\chi(T)$) characterize magnetic minerals and their alteration during heating. $\chi(T)$ curves were measured in an argon atmosphere using MFK-FA equipped with a CS-3 furnace with a maximum temperature of 700°C. Low temperature magnetic analysis discriminates magnetic mineralogies. In this study, a MPMS XL-5 magnetic measurement system was used to measure zero-field-cooling curves (ZFC). The detailed steps were as follows: Samples were cooled to 10 K in a zero field. Subsequently an IRM acquired at 2.5 T was measured during warming up to 300 K in the zero field with a temperature ramping rate of 5 K min$^{-1}$.

4. Results

4.1. Sedimentology, Geochemistry, and Physical Properties

The compound-specific $\delta^{13}C_{27-31}$ in the long-chain n-alkanes (Figure 2a) is sensitive to effective precipitation, and therefore represents a useful indicator for regional monsoonal precipitation [Chu et al., 2014; Sun et al., 2013]. An increase in $\delta^{13}C_{27-31}$ indicates less effective precipitation. $\delta^{13}C_{27-31}$ fluctuates around -31.5
from AD 600 to AD 800, and around 231 since AD 800, demonstrating a relatively stable precipitation amount with somewhat dryer conditions since AD 800.

Figure 2b illustrates an alkenone-based temperature reconstruction for the growing season from varved sediments from Lake Sihailongwan (Figure 1) 20 km to the east of XLW [Chu et al., 2012]. The temperature generally is stable except for some cold spells which occurred at AD 600–860, AD 1260–1300, AD 1510–1570, and AD 1800–1900.

Mean grain size (Mz) data from Chu et al. [2009] are shown in Figure 2e. It gradually increases from AD 600 to AD 1500. The increase accelerates at AD 1500 which is followed by more stable conditions on a high level since AD 1600. Chu et al. [2009] suggested that the trend of increased grain size during the last 300 years can be ascribed to an enhanced aeolian input of local origin.

Our results show that a significant shift in both SAR and varve thickness occurs in sediments of XLW at AD 1500 (Figures 2g and 2h). The SAR and varve thickness are often related to deforestation and agricultural land use [Zolitschka et al., 2015], and can increase by an order of magnitude, as observed at Lake Holzmaar 2800 years ago [Zolitschka, 1998] and at Lake Belau 2200 years ago [Dreibrodt and Wiethold, 2015].

\(v_{\text{m}}\) can be used as a general indicator for minerogenic input [Dearing et al., 2015; Haberzettl, 2015; Kastner et al., 2010; Sandgren and Snowball, 2001]. From AD 600 to 800 \(v_{\text{m}}\) shows stable values around 7 \(10^2\) m\(^3\)kg\(^{-1}\) and increases to 12 \(10^2\) m\(^3\)kg\(^{-1}\) around AD 800 (Figure 2c). It remains stable again on this higher level until AD 1500 when a sudden distinct increasing trend lasting until today begins.

\(\gamma_h\) is often used as a proxy for the relative contribution of surface erosion of clays and silts from well-developed low- to midaltitude soil profiles [Dearing et al., 1996, 2001]. From AD 600 to 800 \(\gamma_h\) remains stable with values around 0.3 \(10^{-8}\) m\(^3\)kg\(^{-1}\). At AD 1500 the values suddenly increase to 1.2 \(10^{-8}\) m\(^3\)kg\(^{-1}\) (Figure 2d).

According to these results, the sequence can be divided into two zones (Figures 2c–2e) lasting from AD 600–1500 (93–39 cm) and AD 1500–2005 (39–0 cm).

4.2. Mineral Magnetic Properties of Selected Samples

Hysteresis loops are saturated in a 0.2 T field, indicating the dominance of low-coercivity ferrimagnetic minerals (Figures 3a and 3e). In addition, the shape of the hysteresis loops is consistent with the characteristics...
of single domain (SD) particles [Liu et al., 2012]. The FORC diagrams for the two representative samples are consistent with the horizontal distribution to 60 mT and peaks around 9 mT. The vertical distribution is less than 5 mT, demonstrating a relatively weak magnetic interaction. Some closed circles-like features indicate the existence of single domain (SD) particles and a few pseudo-single domain (PSD) particles (Figures 3b and 3f).

The \(\chi - T \) curves (Figures 3c and 3g) show a relatively stable susceptibility with increasing temperature up to 420\(^\circ \)C, followed by a significant rise at around 460\(^\circ \)C. This may reflect the conversion of weakly magnetic paramagnetic minerals (e.g., iron silicates or clay minerals) into strongly magnetic ferrimagnetic minerals during heating [Liu et al., 2005]. Magnetization gradually declines from 520\(^\circ \)C and approaches zero at 580\(^\circ \)C, the Curie point of magnetite. Nevertheless, no visible Verwey transition can be detected at 120 K in the low temperature ZFC curves of the samples (Figures 3d and 3h), probably due to fine grained particles or oxidization of magnetite [Smirnov, 2006].

4.3. Bi-Logarithmic Plot of \(\chi_{ARM}/\chi_{fd} \) Versus \(\chi_{ARM}/\chi_{lf} \)

Oldfield and Yu [1994] proposed that a bi-logarithmic plot of \(\chi_{ARM}/\chi_{fd} \) versus \(\chi_{ARM}/\chi_{lf} \) can be used to distinguish the sources of magnetic minerals in sediments effectively, e.g., samples rich in biogenic magnetite (magnetoosomes) and those rich in ferromagnetic minerals derived from eroded soils [Oldfield, 2013; Oldfield and Crowther, 2007]. Magnetic properties of the upper part of the sediments from XLW match well with unburnt topsoil samples from the Cotswolds region in England [Oldfield and Crowther, 2007] and Chinese paleosols reported by Chen et al. [1995] and Zheng et al. [1991] (Figure 4). Between AD 600 and 1500 only one data point is comparable to the above mentioned samples (Figure 4). This occurs at AD 630.

5. Discussion

The enhancement of \(\chi_{fd} \) since AD 1500 is probably caused by an increase in the concentration of SP particles. These fine-grained magnetic particles are often related to soils, in which ultra-fine SP and SD particles can be formed by pedogenesis [Liu et al., 2005; Zhou et al., 1990]. A strong correlation of \(R^2 = 0.99 \) with a similar slope can be observed between \(\chi_{fd} \) and \(\chi_{HL} \) from XLW sediments and a soil profile nearby (Figures 1 and 5d). This suggests that the high \(\chi_{fd} \% \) in the sediments of Lake XLW can be attributed to pedogenic soil. The pedogenetic soil components can be transported either fluvially or by aeolian processes into the lake. The study area is located in the pathway of dust storms [Qu et al., 2001] and due to their small catchment area and closed morphology without rivers maar lakes act as “natural sediment traps” [Chu et al., 2009; Zolitschka et al., 2015]. The catchment is covered by dense forest, which limits minerogenic clastic input from local sources. Moreover, the area is supposed to be the birthplace of the Manchu people, the imperial family of the Qing dynasty (AD 1644–1911). Common people were not allowed to enter this area until 1970s. This means that the catchment was not exposed to human activity during this time [Chen, 2012]. Therefore, Chu et al. [2009] already assumed that the trend of increasing grain size in XLW sediments during the last 300 years can be related to an enhanced aeolian input of local origin.

Catchment materials may contain coarse particles, e.g., evident by a weak correlation between precipitation proxy \(\delta^{13}C_{27-31} \) and \(\chi_{fd} \) from ~AD 1600 to AD 2000 (Figure 5a). However, these coarse-grained particles do...
not contribute to the X_{fd} signal because they are insensitive to the frequency-dependent measurements [Liu et al., 2012]. No significant relationship is observed between X_{fd} and temperature or rainfall proxies in the sediment record from XLW (Figures 2a, 2b, 2d, and 5c). Thus, the increase in X_{fd} should not be related to changes in paleoclimatic conditions, but is assumed to be caused by an increasing influx of soil into the lake caused by increasing erosion due to human activities. Such a pattern was also reported from other regions of China. For example, recent sediments from the Yangtze delta in Eastern China are characterized by high values of both X_{ld} and X_{fd}% carried by soil-derived SP minerals [Wang et al., 2011]. Dearing et al. [2015] investigated the magnetic properties of Lake Erhai sediments in Yunnan, China. They observed that peak levels of disturbed land pollen taxa, topsoil, and gully erosion, defined by both X_{ld} and X_{fd}, are related to the documented environmental crisis in the late Ming and Qing dynasties (AD 1644–1911).

Evidence from lake sediments can be combined with historical records to produce an integrated record of the impact of human activity over time [Dearing et al., 2015]. Previous studies have shown that human activities significantly changed the natural landscape of Northeastern China by land cultivation especially during the past 300 years [Ye et al., 2009; Zhang et al., 2011]. Major areas of Eastern Asia were converted from natural vegetation to anthropogenic cropland since the AD 1700 [Goldewijk et al., 2011]. Since AD 1658, the Qing government issued “the order to encourage farming in East River Liao” to attract mainland people to migrate to Northeastern China [Chen, 2012]. Thus, more arable farmland in Northeastern China was needed.

Figure 5. Correlations between (a) X_{lf} and $\delta^{13}C_{27-31}$, (b) Mz and $\delta^{13}C_{27-31}$, (c) X_{ld} and $\delta^{13}C_{27-31}$ of XLW sediments, and (d) X_{lf} and X_{ld} of XLW sediments and the soil profile.
6. Conclusion

Detailed rock magnetic analyses indicate that increasing SP particles in sediments from XLW since AD 1500 can be attributed to an increasing influx of soil, which is related to enhanced human activities and consistent with Chinese population dynamics. This shifts the previously reported timing of significant human activities in Northeastern China from AD 1700 to AD 1500. Chinese population dynamics have a positive but nonlinear relation with the influx of soil into XLW.

Acknowledgments

The data presented in this paper are available upon request to the corresponding author. The authors thank Luo Wang, Zongqi Duan, Deke Xu, and Pengxiang Hu for helpful discussions. We are grateful to Frank Oldfield and an anonymous reviewer for their valuable comments. This research was supported by the NSFC grants 41304052, 41430962, 41371219, GASI-GEOGE-03, and the Chinese Continental Shelf Deep Drilling Program (GZH201100202).

References

Chen, F. H., R. J. Wu, D. Pompei, and F. Oldfield (1995), Magnetic property and particle size variations in the late Pleistocene and Holocene parts of the Dadongling Loess Section near Xining, China, Quat. Proc., 4, 27–40.

Chen, Y. (2012), Study on the Changes of Ecological Environment of Northeastern Area In the Qing Dynasty, PhD thesis, Dep. of History and Geogr., Shandong Univ., Jinan, China.

Chen, Z. (1997), Chinese population changes and climatic variances [in Chinese], Geochem. Geophys. Geosyst., 10.1002/2015GC005880.

Oldfield, F. (2013), Mud and magnetism: Records of late Pleistocene and Holocene environmental change recorded by magnetic measurements, Quat. Sci. Rev., 99, 28–40.

Oldfield, F. (2007), Sources of fine-grained magnetic minerals in sediments: a problem revisited, Holocene, 17, 1265–1271.

Oldfield, F., and C. Crowther (2007), Establishing fire incidence in temperate soils using magnetic measurements, Palaeogeogr. Palaeoclimatol. Palaeoecol., 249(3-4), 362–369.
Oldfield, F., and L. H. Yu (1994), The influence of particle-size variations on the magnetic properties of sediments from the North-Eastern Irish Sea, Sedimentology, 41(6), 1093–1108.

Panizzo, V. N., A. W. Mackay, N. L. Rose, P. Riosal, and M. J. Leng (2013), Recent palaeolimnological change recorded in Lake Xiaolongwan, northeast China: Climatic versus anthropogenic forcing, Quat. Int., 290, 322–334.

Qiu, X.F., Y. Zeng, and Q.L. Miao (2001), Temporal-spatial distribution as well as tracks and source areas of sand-dust storms in China [in Chinese with English Abstract], Acta Geogr. Sin., 56, 316–322.

Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), First-order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105(B12), 28,461–28,475.

Sandgren, P., and I. Snowball (2001), Application of mineral magnetic techniques to paleolimnology, in Tracking Environmental Change Using Lake Sediments. Physical and Geochemical Methods, vol. 2, edited by Last, W. M., and J. P. Smol, pp. 217–238, Kluwer Acad., Dordrecht, Netherlands.

Smirnov, A. V. (2006), Memory of the magnetic field applied during cooling in the low-temperature phase of magnetite: Grain size dependence, J. Geophys. Res., 111, B12S04, doi:10.1029/2006JB004573.

Sun, Q., M. M. Xie, L. M. Shi, Z. Y. Zhang, Y. Lin, W. Y. Shang, K. J. Wang, W. Li, J. Q. Liu, and G. Q. Chu (2013), Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China, J. Paleolimnol., 50(3), 331–344.

Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo (1997), Human domination of Earth’s ecosystems, Science, 277(5325), 494–499.

Wang, Z. H., M. T. Li, R. H. Zhang, C. C. Zhuang, Y. Liu, Y. Saito, J. L. Xie, and B. C. Zhao (2011), Impacts of human activity on the late-Holocene development of the subaqueous Yangtze delta, China, as shown by magnetic properties and sediment accumulation rates, Holocene, 21(3), 393–407.

Xiao, X. Y., X. D. Yang, J. Shen, S. M. Wang, B. Xue, and X. F. Tong (2013), Vegetation history and dynamics in the middle reach of the Yangtze River during the last 1500 years revealed by sedimentary records from Taibai Lake, China, Holocene, 23(1), 57–67.

Xu, D. K., H. Y. Lu, G. Q. Chu, N. Q. Wu, C. M. Shen, C. Wang, and L. M. Mao (2014), 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record, Sci. Rep., 4, 1–7, doi:10.1038/srep03611.

Yang, T., Q. S. Liu, H. X. Li, Q. L. Zeng, and L. S. Chan (2010), Anthropogenic magnetic particles and heavy metals in the road dust: Magnetic identification and its implications, Atmos. Environ., 44(9), 1175–1185.

Ye, Y., X. Q. Fang, Y. Y. Ren, X. Z. Zhang, and L. Chen (2009), Cropland cover change in Northeast China during the past 300 years, Sci. China, 52(8), 1172–1182.

Ye, Y., X. Q. Fang, and M. A. U. Khan (2012), Migration and reclamation in Northeast China in response to climatic disasters in North China over the past 300 years, Reg. Environ. Change, 12(1), 193–206.

Zhang, X. Z., W. C. Wang, X. Q. Fang, Y. Ye, and J. Y. Zheng (2011), Vegetation of Northeast China during the late seventeenth to early twentieth century as revealed by historical documents, Reg. Environ. Change, 11(4), 869–882.

Zheng, H. B., F. Oldfield, L. Y. Yu, J. Shaw, and Z. S. An (1991), The magnetic-properties of particle-sized samples from the Luo-Chuan Loess section—Evidence for Pedogenesis, Phys. Earth Planet. Inter., 68(3-4), 230–258.

Zhou, L. P., F. Oldfield, A. G. Wintle, S. G. Robinson, and J. T. Wang (1990), Palygorskite pedogenic origin of magnetic variations in Chinese Loess, Nature, 346(6286), 737–739.

Zolitschka, B. (1998), A 14,000 year sediment yield record from western Germany based on annually laminated lake sediments, Geomorphology, 22(1), 1–17.

Zolitschka, B., P. Francus, A. E. K. Ojala, and A. Schimmelmann (2015), Varves in lake sediments—a review, Quat. Sci. Rev., 117, 1–41.