Metabolomic phenotyping of af cloned pig model

Clausen, Morten Rahr; Christensen, Kirstine Lykke; Hedemann, Mette Skou; Liu, Ying; Purup, Stig; Schmidt, Mette; Callesen, Henrik; Stagsted, Jan; Bertram, Hanne Christine S.

Published in:
B M C Physiology

DOI:
10.1186/1472-6793-11-14

Publication date:
2011

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Clausen, M. R., Christensen, K. L., Hedemann, M. S., Liu, Y., Purup, S., Schmidt, M., Callesen, H., Stagsted, J., & Bertram, H. C. S. (2011). Metabolomic phenotyping of af cloned pig model. B M C Physiology, 11(14). https://doi.org/10.1186/1472-6793-11-14
Metabolomic phenotyping of a cloned pig model

Morten R Clausen1*, Kirstine L Christensen2, Mette S Hedemann2, Ying Liu3, Stig Purup2, Mette Schmidt4, Henrik Callesen3, Jan Stagsted5 and Hanne C Bertram1

Abstract

Background: Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs.

Results: The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6) by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established.

Conclusions: From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals.
resonance (1H NMR) spectroscopy is probably the most widely applied technique for studying the metabolome based on bio-fluids, and has been used for metabolic phenotyping of humans [11]. The porcine metabolome has also been subject to investigations, and the potential of NMR-based metabolomics for elucidating the biochemical effects of dietary components such as rye versus wheat fibers [12,13], and arginine supplementation [14] as well as for studying the impact of weight on the plasma metabolome has been established [15]. However, no metabolomic investigations have so far been reported on cloned pigs. The importance of such a characterization is further underlined by the widespread use of pigs as a model in studies of cardiovascular disease, diabetes, and the metabolic syndrome [2], since the usefulness of such a model must rely on similarities in phenotype and in response to experimental treatments.

Therefore the aim of the present study was to elucidate the phenotype of a cloned pig model by characterization of multiple bio-fluids (urine, plasma and bile) using NMR-based metabolomics by comparison with outbred control pigs.

Results

Multivariate data analysis of bio-fluids

Representative 1H NMR spectra obtained for plasma, urine and bile are shown in Figure 1 (also see Additional File 1 and Additional file 2 for all data files). The NMR spectra were assigned by comparison with established libraries reported in the literature [16], the Human Metabolome Data Base (HMDB) [17], by comparison with previous studies [18,19], and with pure standards. Potential differences in the NMR metabolite profiles between cloned pigs and control pigs were investigated using PCA. For plasma and bile a tendency for grouping of cloned pigs and control pigs was observed, whereas for urine no grouping was observed (Figures 2, 3 and 4). Furthermore, while the cross-validated predictive ability of the PCA models was good for plasma and bile, the cross-validated predictive ability was poor for the PCA model obtained on urine samples (Table 1 and Figure 2), and interpretation of these data would probably require a larger set of samples. For bile and plasma, PCA resulted in differentiation between cloned and control pigs irrespective of normalization. Classification of plasma, however, was due to a global difference in metabolite concentrations covering all resonances. No explanation could be elucidated for this difference, and thus, this model did not reveal any information on metabolic differences between the two groups. For bile, performances of the normalized and non-normalized models were similar (Table 1), and inspection of loadings showed that they were superimposable, thus leading to the same conclusions (not shown). Accordingly, for data in the present study normalization had no effect on bile samples, whereas normalization of plasma data had a prominent effect. All multivariate data analysis is therefore based on normalized data.

Bile

Loadings from PCA revealed that for bile, multiple signals in the NMR spectra contributed to the differentiation of cloned pigs and control pigs (Figure 3). Bile from cloned pigs was characterised by higher intensities of signals assigned to choline (-N-(CH3)3, 3.22 ppm), phosphatidyl choline (PC) glycerol moiety (4.2 - 4.5 ppm), and PC (-CH2-N 3.68 ppm). Unsaturated lipids, probably also related to phospholipids, and total lipids, were also more abundant in bile from cloned pigs. Signals from conjugated cholate and conjugated chenodeoxycholate (7.72 - 8.05 ppm, 3.72 ppm; 3.56 ppm; 3.07 ppm) as well as their un-conjugated forms (3.46 ppm; 3.86 ppm) were consistently more abundant in bile from control pigs compared with cloned pigs.

Plasma

The PCA model of the NMR spectra of plasma samples included samples from all sampling days, thus including 9 - 11 samples of plasma from each individual pig. Manual inspection of PC1 to PC4 of the obtained model did not reveal any clustering according to sampling date, and this aspect was not investigated further. As shown in Figure 4, a clustering between cloned pigs and control pigs along PC2 could be observed and the loadings for this principal component indicates that this is mainly due to differences in lactate concentrations (1.33 ppm and 4.11 ppm) and to a minor extent signals from lipids, and a number of amino acids. Since multiple sampling was carried out an O-PLS-DA model could be constructed and cross-validated without risk of over-fitting data. This analysis confirmed that the difference between cloned pigs and control pigs should be ascribed to a higher concentration of lactate in plasma from cloned pigs compared with control pigs (Figure 5a and 5b). The constructed S-plot (Figure 5b) revealed that also alanine (1.48 ppm), threonine (1.42 ppm), and glutamate (2.45 ppm) were more abundant in plasma from cloned pigs, whereas in plasma from control pigs signals from lipoproteins (0.80 ppm; 1.20 ppm; 2.00 ppm; 5.25 ppm), creatine (3.03 ppm; 3.92 ppm), and choline (3.19 ppm) were most abundant. Relative integrals of these metabolites are presented in Table 2 and confirm these conclusions, and indicate that lactate and creatine are the most important discriminatory compounds.

Effect of cloning on inter-individual variation

The most intense signals were integrated, and the variances were calculated for each integral, in order to
Figure 1 NMR spectra and assignments. Representative 1H NMR spectra of bile, plasma and urine obtained from a cloned pig. All spectra were acquired on a 600 MHz spectrometer. Less abundant amino acids (Glu, Gln, Lys, and Arg) with complex spectra could not be unambiguously assigned in the spectral region 1.6 - 2.6 ppm in urine. Assignments: 1, bile acids, cholesterol; 2, lipids (-CH$_2$-); 3, bile acids cholestererol, lipids; 4, bisallylic protons; 5, conjugated taurine; 6, choline or phosphatidylcholine (PC) (-N-(CH$_3$)$_3$); 7, glycine/taurine conjugated cholate (CA), glycine/taurine conjugated chenodeoxycholate (CDCA); 8, Conjugated deoxycholate (H-3b), conjugated taurine (H-25); 9, PC (CH$_2$-N); 10, Conjugated glycine (H-25); 11, conjugated cholate and deoxycholate, PC-glycerol (3-CH$_2$); 12, PC-glycerol (1-CH); 13, PC (-O-CH$_2$-); 14, CH = CH, cholesterol (6-CH), PC-glycerol (2-CH); 15, Conjug bilc acids (-NH$_2$); 16, LDL/VLDL; 17, leucine; 18, valine; 19, isoleucine; 20, lactate; 21, alanine; 22, adipate; 23, acetate; 24, N-acetyl glycoproteins; 25, O-acetyl glycoproteins; 26, glutamine/glutamate; 27, pyruvate; 28, glutamate; 29, creatine; 30, choline; 31, trimethylamine-N-oxide (TMAO); 32, glucose; 33, creatinine; 34, tyrosine; 35, phenylalanine; 36, isovaleraldehyde; 37, α-hydroxyisobutyrate; 38, unknown; 39, citrate; 40, dimethylamine; 41, trimethyl amine; 42, taurine; 43, glycine; 44, phenylacetylglucose; 45, hippurate; 46, unknown; 47, alantoin; 48, urea; 49, unknown; 50, guanine. For further information about identified metabolites, please refer to Additional file 1.
elucidate the inter-individual variation for the cloned and control pigs. The ratios between the variances for cloned and for control pigs were then determined. These ratios provide a measure that can easily establish which group has the largest variation, as a value larger than one reflects a higher variation for cloned pigs than for control pigs, while a value smaller than one reflects a lower variation for cloned pigs than for control pigs. Only well-resolved peaks were used for this analysis, and consequently 10, 7, and 15 signals were integrated in bile, plasma and urine respectively (Table 3 and Additional file 3). Only three significant differences in

for control pigs, while a value smaller than one reflects a lower variation for cloned pigs than for control pigs. Only well-resolved peaks were used for this analysis, and consequently 10, 7, and 15 signals were integrated in bile, plasma and urine respectively (Table 3 and Additional file 3). Only three significant differences in

Table 1 PCA models for NMR spectral data

Bio-fluid	Normalization	n	Number of components	R²X	Q² (cum)
Bile	+	11	1	0.57	0.36
Bile	-	11	2	0.40	0.37
Urine	+	11	3	0.57	-0.17
Urine	-	11	2	0.39	0.12
Plasma	+	110	10	0.97	0.74
Plasma	-	110	10	0.95	0.91

Summary of PCA models of all biofluids, with and without normalization

*First component was used to describe the variation induced by one outlier. This outlier was included in the analysis, since the second component, which described the difference between groups, was not affected by it.
variance between cloned and control pigs were observed (bile conjugated cholate/chenodeoxy cholate, plasma valine, and urine hippurate), and could thus not support the hypothesis that cloned pigs are less variable than control pigs. The numbers of ratios above and below one were 10 and 14 respectively, after removing values that originated from the same compound (Table 3). Under the hypothesis that the variance in cloned and control animals is similar (p = 0.5) this distribution of ratios was not found to be significantly different from 50:50 and indicated a random distribution of variances.

Discussion

Cloned animals are expected to be more homogenous than outbred lines and could therefore represent a good model for research purposes where a small inter-individual variation is desired. However, only sparse data are available about the phenotypic variation of cloned pigs [9,10]. The present study for the first time reports a metabolomic phenotyping of cloned pigs. Using NMR-based metabolomics we have shown that the metabolite profile of plasma and bile, but not urine, differed for cloned pigs and normal outbred pigs. In fact, the bile and plasma concentrations of multiple metabolites differed suggesting that the cloned pigs had an altered metabolic phenotype compared with the control outbred pigs.

For plasma samples it was identified that lactate levels were higher in cloned pigs than in normal outbred pigs. Alanine and glutamate, which are both linked to the citrate cycle, were also found in higher concentrations in cloned pigs. The reason for an increased plasma lactate remains unknown. In a study on heifers, cloned animals were found to have higher oxidative metabolism than control animals as assessed by isocitrate dehydrogenase, cytochrome-c oxidase and beta-hydroxyacyl-CoA dehydrogenase activities in muscle biopsies [20]. However, the increased plasma lactate levels observed in this study indicate higher anaerobic metabolism. Consequently, the increased lactate levels in the cloned pigs are probably a consequence of another mechanism. Oocytes and embryos are inevitably exposed to oxidative stress generated by reactive oxygen species during in vitro culture [21], and this might have impact on stress sensitivity post-natally in the cloned pig. The higher plasma lactate levels might therefore reflect higher stress sensitivity in cloned pigs compared with normal pigs due to the in vitro cloning procedure.

Plasma lipid and lipoprotein signals were higher in the control group as compared to the cloned group, which may be related to differences in the regulation of lipoprotein circulation. Likewise creatine, which is involved in cellular energy production, was elevated in control pigs. Thus, several metabolites indicate that the response of cloned pigs and control pigs to a dietary intervention is not the same, and this could affect the applicability in relation to human nutrition.
Furthermore, differences in bile composition, which is also under genetic control, could affect lipid metabolism [22]. The relative content of bile acids and phospholipids affects the micelle surface and core composition in the small intestine, and thus probably has an impact on the absorption of dietary lipids [23]. Increasing amounts of phospholipids have also been shown to reduce the critical micelle concentration of bile salts, thus affecting the number of micelles [24,25]. In the present study high amounts of bile acids in the bile were associated with an increased content of lipids in plasma, though a direct causal connection could not be established. Studies with rodents have shown that an increase in plasma bile acids induced by diet, reduce liver VLDL secretion and prevent elevated serum triacylglycerol concentration [26]. These findings seem opposite to our data and further work is needed to elucidate the physiological role of production and circulation of bile acids, which also appears to be important for weight regulation [27].

In order to elucidate the potential of a cloned pig model, it is also important to consider the inter-individual variation. Consequently, for all bio-fluids the variance of individual metabolites was calculated and compared with the variance for control outbred pigs. This analysis did not reveal a significant difference in variation between the two groups. Consequently, based on the present study it cannot be concluded that the inter-individual variation in the metabolic phenotype is smaller for cloned pigs compared with normal outbred pigs. While a standardized genotype does not seem to

Table 3 Variances calculated for integrals from bile, plasma, and urine

Peak number	Biofluid	Observed δ, ppm	Signal range	Variance	Clone	Control	v clone/v control
1	Bile	0.62	87 - 102	5.98	39.1	0.15	
4	Bile	2.75	2.9 - 14.7	1.60	0.89	1.80	
7	Bile	3.45	8.5 - 13.5	0.60	5.82	0.048a	
15	Bile	7.80	13.8 - 18.0	0.19	1.26	0.15	
5	Bile	7.98	1.8 - 4.9	0.57	2.15	0.26	
6, 12	Bile	3.07	5.9 - 16.8	7.03	12.5	0.56	
		4.30	3.7 - 8.5	0.94	0.74	1.27	
		4.42	0.5 - 3.8	0.049	0.036	1.38	
		3.25	12 - 53	15.2	7.05	2.16	
23	Plasma	1.91 (s)	0.005 - 0.05	5.40E-5	4.47E-5	1.21	
21	Plasma	1.47 (d)	0.006 - 0.1	0.00038	0.00037	1.02	
33	Plasma	4.04 (s)	0 - 0.03	2.77E-5	4.38E-5	0.63	
20	Plasma	4.10 (q)	0.03 - 0.7	0.013	0.017	0.78	
27	Plasma	2.36 (s)	0.003 - 0.04	4.54E-5	3.37E-5	1.35	
34	Plasma	7.18 (d)	0.003 - 0.03	3.12E-5	3.32E-5	0.94	
18	Plasma	1.03 (d)	0.004 - 0.3	0.0018	0.00038	4.58a	
21	Urine	1.48 (d)	0.82 - 7.44	22	2.5	0.87	
47	Urine	5.39 (s)	1.89 - 31.4	112	53	2.11	
33	Urine	3.04 (s)	44 - 497	2.4E4	6.5E3	3.75	
20	Urine	4.05 (s)	31 - 349	1.2E4	3.2E3	3.69	
45	Urine	7.84 (d)	3.6 - 40	138	61	2.26a	
36	Urine	7.55 (t)	3.7 - 47	185	67	2.85a	
44	Urine	3.97 (m)	8.0 - 8.7	524	178	2.94a	
37	Urine	7.64 (t)	8.1 - 28	64	19	3.44a	
44	Urine	0.94 (d)	2.8 - 18	23	14	1.61	
37	Urine	1.36 (s)	2.9 - 11	7.2	4.0	1.80	
44	Urine	7.37 (m)	1.8 - 17	5.7	30.1	0.19	
46	Urine	7.23 (d)	2.2 - 68	547	181	3.02	
46	Urine	7.06 (d)	0.7 - 60	514	146	3.52	
49	Urine	5.08 (d)	0.0 - 22.1	79	15	5.20	
48	Urine	5.78 (m)	78 - 643	2.0E4	1.2E4	1.62	

Variances based on normalized urine spectra and raw bile and plasma spectra. For each metabolite the ratios between cloned pig variances and control pig variances are shown. Peak numbers refer to the legend in Figure 1.

a, significant values.
affect the inter-individual variation, the gut-microbiota is known to affect host phenotype [19]. In the present study no systematic effect of gut-microbiota was expected since all animals received the same diet, and no difference in the contents of metabolites originating from microbial fermentation (e.g. acetic acid, butyric acid) could be demonstrated in the present study. Fluctuations in the host metabolome could arise, however, as a result of the complex interactions between nutrition, immune function, and gut-microbiota, and therefore the gut-microbiomes of cloned and normal pigs are currently being analyzed and will be the subject of additional papers. Therefore, when a low inter-individual variation between subjects is required, a standardization of the gut-microbiota might be more important than standardization of the genotype [28]. However, the present study only included a limited number of animals, and further studies with larger numbers of subjects are needed to substantiate these results. In addition the metabolites included in the analysis were chosen among the most intense resonances, which may introduce a bias. Less abundant metabolites, which are not easily detected by NMR-based metabolomics, are currently being analyzed by LC-MS-based metabolomics and will be the subject of a subsequent paper.

Conclusions

In conclusion, despite the limited number of animals, the present metabolomic study on multiple bio-fluids clearly indicated alterations in the metabolic phenotype of cloned pigs compared with control pigs, and this should be taken into consideration when cloned animals are used as model animals. In addition, the present NMR-based analyses of plasma, bile and urine could not demonstrate a smaller inter-individual variation in cloned pigs compared with control pigs.

Methods

Animals and sampling

All experimental procedures involving animals were approved by the Danish Animal Experimental Committee. Cloning was performed using somatic cell nuclear transfer as previously described [29] with donor cells from cultured ear fibroblasts obtained from a Danish Landrace × Yorkshire (65%:35%) sow. The cloned embryos were transferred surgically to surrogate sows (recipients) five to six days after cloning as described [30]. The cloned piglets were obtained by Cesarian section on gestation day 116 [30]. The sows were treated 24 h before with a prostaglandin analogue (175 μg Estrumate i.m., Pitman-Moore, UK). As controls, normal litters (75% Danish Landrace × 25% Yorkshire) were obtained after standard artificial insemination and Cesarian section. All pigs were reared in the experimental stables of Aarhus University (Tjele, Denmark).

Two surrogate sows gave birth to 9 cloned piglets, of which 5 survived. Two normal control litters resulted in 18 female pigs, of which 6 were allocated as controls. Pigs were then nursed by surrogate sows and weaned after 28 days. They were kept on a standard diet for an additional 2 months, and were individually housed thereafter. The weight at 3 months of age was for clones 37.8 ± 4.0 kg (Mean ± SEM, n = 5) and for controls 37.9 ± 2.3 kg (n = 6). The pigs were then fed *ad libitum* with a wheat-based high energy diet containing 10% sugar and 10% soy oil. Blood from the jugular vein was taken biweekly after overnight fasting for plasma preparation. The blood samples were stored on ice and centrifuged within 1.5 h at 3000 rpm for 10 min at 4°C. Pigs were killed with a bolt pistol at an age of 8 1/2 months after overnight fasting. Weights of clones and controls at time of slaughter were 143.6 ± 8.8 kg and 179.5 ± 4.0 kg, respectively. Blood samples were obtained during desanguination for serum preparation, and urine and bile samples were obtained directly by puncture of the respective bladders. The blood samples were placed 1 h at room temperature and subsequently centrifuged at 3000 rpm for 10 min at 4°C. Serum, plasma, bile, and urine samples were frozen and kept at -80°C until analysis.

NMR spectroscopy

The NMR measurements were performed at 310 K on a Bruker Avance III 600 spectrometer, operating at a 1H frequency of 600.13 MHz, and equipped with a 5-mm 1H TXXI probe (Bruker BioSpin, Rheinstetten, Germany).

For plasma and serum samples 500 μL aliquots were mixed with 100 μL D₂O containing 0.05% w/w sodium trimethylsilyl-[2,2,3,3-2H₄]-1-propionate (TMSP), for urine samples 300 μL aliquots were mixed with 300 μL D₂O containing 0.005% w/w TMSP, while for bile samples 400 μL aliquots were mixed with 200 μL D₂O containing 0.025% w/w TMSP. Urine pH was adjusted to 7.0 prior to NMR measurements. On all bio-fluids, standard one-dimensional (1D) 1H NMR spectra were acquired using single 90° pulse experiment with a total of 64 scans and a relaxation decay of 5 s. Water suppression was achieved by irradiating the water peak during the relaxation delay, and 16 K data points spanning a spectral width of 12.15 ppm were collected. In addition, on plasma samples 1D 1H NMR spectra were also acquired with a Carr-Purcell-Meiboom-Gill (CPMG) delay added in order to attenuate broad signals from high-molecular-weight components. In the CPMG experiment a relaxation decay of 3 s was applied and 32 K data points spanning a spectral width of 17.36 ppm were collected.
Data pre-processing
All spectra were referenced to the TMSP signal at 0 ppm and the spectral region from 0.5 - 9.5 ppm was used. For multivariate data analysis spectra were aligned using the icoshift procedure [31] in MATLAB (version R2009b, The Mathworks Inc., Natick, MA, USA). Then spectra were subdivided into 0.006 ppm spectral regions and integrated, leaving out the region 5.0 - 4.6 ppm, which included residual water resonance.

Normalization is often a prerequisite for bio-fluid analysis, especially for urine, because absolute urine metabolite concentrations are highly variable. However, the normalization procedure also affects score- and loading plots in multivariate data analysis [32]. In the present study multivariate data analysis (SIMCA-P+ software, Umetrics AB, Umeå, Sweden) of spectral data was carried out both on raw data and data normalized to the total signal intensities of the NMR spectra.

Multivariate data analysis
All multivariate analyses were carried out with full cross-validation (leave-one-out) and principal component analysis (PCA) was applied to the centered and pareotoscaled data to explore any clustering behaviour of the samples. Furthermore, orthogonal partial least squares discriminant analysis (O-PLS-DA) was performed on spectra of the plasma samples.

Serum samples collected on the day of slaughter were included in the analysis of plasma samples. No grouping of the serum samples was observed in the PCA, and therefore plasma and serum was pooled for the multivariate analysis.

Statistical analysis
All statistical analyses were performed using the Statistics Toolbox in MATLAB. The relative integrals from plasma analysis were analysed using a one-way analysis of covariance.

For investigation of the variability of metabolite concentrations within groups, integrals of baseline separated metabolites were determined using Topspin 2.1 (Bruker Biospin, Faellanden, Switzerland). The variances of the integrals were determined within each experimental group (clone/control). For urine, normalized integrals were used, whereas for serum and bile absolute integrals were used. In order to test the equality of variance, an F-test was carried out using the varrest2 function in Matlab, and p-values below 0.05 were considered significant.

For each metabolite the ratio between cloned and control variances was calculated. Values smaller than one thus reflect a lower variance in the cloned group and a value higher than one reflects a higher variance in the cloned group. For each metabolite the probability of the ratio to be either above or below one was expected to be 0.5 and binomially distributed. Thus, the probability of observing a number of ratios below one was computed using the binocdf function and a p-value below 0.05 was considered significant.

Additional material

Acknowledgements
Nina Eggert and Ditte Bruun Dittey are acknowledged for their assistance with NMR measurements. Anette Pedersen, Ruth Kristensen, Janne Adamsen, and Klaus Villemoes are acknowledged for excellent technical work with cloning. Bente Synnesvedt is acknowledged for expert assistance with the surgeries. Dr. Henry Jørgensen is thanked for designing composition of the pig diet.

The project was financially supported by a grant from the Danish Strategic Research Council (FO5U 2101-06-0034), the Danish Advanced Technology Foundation (013-2006-2), and The Danish Research Council FTP (09-6649307).

Author details
1Department of Food Science, Science and Technology, Aarhus University, Aarhus, Denmark. 2Department of Animal Health and Bioscience, Science and Technology, Aarhus University, Tjele, Denmark. 3Department of Genetics and Biotechnology, Science and Technology, Aarhus University, Tjele, Denmark. 4Veterinary Reproduction and Obstetrics, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark. 5Department of Food Science, Science and Technology, Aarhus University, Tjele, Denmark.

Authors’ contributions
JSG, HC, HCB and MSH designed the experiments. YL and HC cloned the embryos based on cells prepared by SP. MS transferred the embryos and performed the Caesarian sections. JSG, MSH, and KLC performed the animal experiments and the sampling. MRC did the NMR data analysis and assignments, statistical and multivariate data analysis and wrote the manuscript. MRC, HCB, JSG, and HC edited the manuscript, and the manuscript was read and approved by all authors.

Received: 3 May 2011 Accepted: 22 August 2011
Published: 22 August 2011

References
1. Galli-Sanguinetti P, Zabielski R, Hammon HM, Metges CC: Nutritional programming of gastrointestinal tract development. Is the pig a good model for man? Nutr Rev Rev 2010, 23:4-22.
2. Litter-Brown JC, Corson AM, Clarke L: Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal 2010, 4:899-920.
3. Bell FF, Gentry RG: Evidence for an altered lipid metabolic state in circulating blood monocytes under conditions of hyperlipemia in swine and its implications in arterial lipid metabolism. Arterioscl Throm Vas Biol 1992, 12:155.
4. Dixon JL, Stoops JD, Parker JL, Laughlin MH, Weisman GA, Sturek M: Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Atheroscl Throm Vas Biol 1999, 19:2881.
5. Mahley RW, Wissgraber KH, Innerarity T, Brewer HB Jr, Assmann G: Swine lipoproteins and atherosclerosis. Changes in the plasma lipoproteins and apoproteins induced by cholesterol feeding. Biochemistry 1975, 14:2817-2823.
6. Terpstra AHM, Lapre JA, de Vries HT, Beynen AC. Transiency of the different cholesterolemic responses to dietary cellulose and psyllium in pigs and two strains of hamsters. J Anim Physiol Anim Nutr 2000, 84:178-191.

7. Jernsen TW, Mazur MJ, Pettigrew JE, Perez-Mendosa VG, Zachary J, Schook LB. A Cloned Pig Model for Examining Atherosclerosis Induced by High Fat, High Cholesterol Diets. Anim Biotechnol 2010, 21:179-187.

8. St.John. Aberrant heterologous transmission of mtDNA in cloned pigs arising from double nuclear transfer. Mol Reprod Dev 2009, 72:450-460.

9. Archer GS, Diedot S, Friend TH, Walker S, Zaurbriecher G, Lawhorm B, Piedrahita JA. Hierarchical phenotypic and epigenetic variation in cloned swine. Biol Reprod 2003, 69:430.

10. Carter DB, Lai L, Park KW, Samuel M, Lattimer JC, Jordan KR, Estes DM, Bless-Williford C, Prather RS. Phenotyping of transgenic cloned piglets. Cloning Stem Cells 2002, 4:131-145.

11. Rezzi S, Ramadan Z, Martin FPJ, Fay LB, van Bladeren P, Lindon JC, Bertram HC, Knudsen KEB, Serena A, Malmendal A, Nielsen NC, Frette XC, Andersen HJ. NMR-based metabonomics studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread. Br J Nutr 2006, 95:953-962.

12. He Q, Kong X, Wu G, Rem P, Tang H, Hao F, Huang R, Li T, Tan B, Li P. Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids 2009, 37:199-208.

13. Nissen PM, Nebel C, Oktbrief N, Bertram HC. Metabolomics Reveals Relationship between Plasma Inositols and Birth Weight: Possible Markers for Fetal Programming of Type 2 Diabetes. J Biol Biotechnol 2011.

14. Lindon JC, Nichols KJ, Everett JR. NMR spectroscopy of biofluids. Annu Rev NMR Spectrosc 1999, 38:1-88.

15. Wishart DS, Taur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Wysocki S, Boivin D, Cronin MTS, Shchepetov A, Arndt D, Boulianne L, Boulianne F, Cowan AJ, Qin Y, R Tab et al. HMDB: the Human Metabolome Database. Nucleic Acids Res 2007, 35:D521-D526.

16. Gowda GAN, Somashekar BS, Ijare OB, Sharma A, Kapoor VK, Khetrapal CL. One-step analysis of major bile components in human bile using H-1 NMR spectroscopy. Lipids 2006, 41:577-589.

17. Clausen P, Buhler P, Nygaard Lærke H. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 2010, 202:190-202.

18. Zhang S, Cheng C, Lanza R, Nair KS, Raithby D, Vitek O. Interdependence of Signal Processing and Analysis of Urine 1H NMR Spectra for Metabolic Profiling. Anal Chem 2009, 81:6680-6688.