REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN $\dot{B}^{-1}_{\infty, \infty}$

GREGORY SEREGIN AND DAOGUO ZHOU

Abstract. We prove that if u is a suitable weak solution to the three dimensional Navier-Stokes equations from the space $L_{\infty}(0, T; \dot{B}^{-1}_{\infty, \infty})$, then all scaled energy quantities of u are bounded. As a consequence, it is shown that any axially symmetric suitable weak solution u, belonging to $L_{\infty}(0, T; \dot{B}^{-1}_{\infty, \infty})$, is smooth.

1. Introduction

The main aim of this paper is to show that suitable weak solutions to the Navier-Stokes equations, whose $\dot{B}^{-1}_{\infty, \infty}$-norm is bounded, have the Type I singularities (or Type I blowups) only. To be more precise in the statement of our results, we need to define certain notions.

Definition 1.1. Let Ω be a domain in \mathbb{R}^3 and let $Q_T := \Omega \times]0, T[$. It is said that a pair of functions v and q is a suitable weak solution to the Navier-Stokes equations in Q_T if the following conditions are fulfilled:

(i) $v \in L_{\infty}(\delta, T; L^2_{2, loc}(\Omega)) \cap L^2_{2, loc}(\Omega)$, $q \in L^2_{3, 2}(\delta, T; L^3_{2, loc}(\Omega))$ for any $\delta \in]0, T[$;

(ii) v and q satisfy the Navier-Stokes equations

$$\partial_t v + v \cdot \nabla v - \Delta v = -\nabla q, \quad \text{div} v = 0$$

in Q_T in the sense of distributions;

(iii) for $Q(z_0, R) \subset \Omega \times]0, T[$, the local energy inequality

$$\int_{B(z_0, R)} \varphi |v(x, t)|^2 dx + 2 \int_{t_0 - R^2}^{t} \int_{B(z_0, R)} \varphi |\nabla v|^2 dx d\tau \leq$$

$$\leq \int_{t_0 - R^2}^{t} \int_{B(z_0, R)} \left(|v|^2 (\partial_t \varphi + \Delta \varphi) + v \cdot \nabla \varphi (|v|^2 + 2q)\right) dx d\tau$$

holds for a.a. $t \in]t_0 - R^2, t_0[$ and for all non-negative test functions $\varphi \in C^\infty_0(B(x_0, R) \times]t_0 - R^2, t_0 + R^2[)$.

Let us introduce the following scaled energy quantities:

$$A(z_0, r) := \sup_{t_0 - r^2 < t < t_0} \frac{1}{r} \int_{B(z_0, r)} |v(x, t)|^2 dx, \quad E(z_0, r) := \frac{1}{r} \int_{Q(z_0, r)} |\nabla v|^2 dx dt,$$

$$C(z_0, r) := \frac{1}{r^2} \int_{Q(z_0, r)} |v|^3 dx dt, \quad D(z_0, r) := \frac{1}{r^2} \int_{Q(z_0, r)} |q|^3 dx dt,$$
\[G(z_0, r) := \max\{A(z_0, r), E(z_0, r), C(z_0, r)\}, \]
\[g(z_0, r) := \min\{A(z_0, r), E(z_0, r), C(z_0, r)\}. \]
Here, \(Q(z_0, r) := B(z_0, r) \times [t_0 - r^2, t_0] \) and \(B(x_0, r) \) is the ball of radius \(r \) centred at a point \(x_0 \in \mathbb{R}^3 \).

The important feature of the above quantities is that all of them are invariant with respect to the Navier-Stokes scaling.

Our main result is as follows.

Theorem 1.2. Let \(\Omega = \mathbb{R}^3 \). Assume that a pair \(v \) and \(q \) is a suitable weak solution to the Navier-Stokes equations in \(Q_T \). Moreover, it is supposed that

\[v \in L_\infty(0, T; \dot{B}_{\infty, \infty}^{-1}(\mathbb{R}^3)). \]

Then, for any \(z_0 \in \mathbb{R}^3 \times (0, T) \), we have the estimate

\[\sup_{0 < r < r_0} G(z_0, r) \leq c [r_0^{\frac{1}{2}} + \|v\|_{L_\infty(0, T; \dot{B}_{\infty, \infty}^{-1}(\mathbb{R}^3))}^2 + \|v\|_{L_\infty(0, T; \dot{B}_{\infty, \infty}^{-1}(\mathbb{R}^3))}^6], \]

where \(r_0 \leq \frac{1}{2} \min\{1, t_0\} \) and \(c \) depends on \(C(z_0, 1) \) and \(D(z_0, 1) \) only.

Let us recall one of definitions of the norm in the space \(\dot{B}_{\infty, \infty}^{-1}(\mathbb{R}^3) = \{ f \in S' : \|f\|_{\dot{B}_{\infty, \infty}^{-1}(\mathbb{R}^3)} < \infty \} \), which is the following:

\[\|f\|_{\dot{B}_{\infty, \infty}^{-1}(\mathbb{R}^3)} := \sup_{t > 0} t^{\frac{1}{2}} \|w\|_{L_\infty(\mathbb{R}^3)}, \]

where \(S' \) is the space of tempered distributions, \(w \) is the solution to the Cauchy problem for the heat equation with initial datum \(f \).

Definition 1.3. Assume that \(z_0 = (x_0, t_0) \) is a singular point of \(v \), i.e., there is no parabolic vicinity of \(z_0 \) where \(v \) is bounded. We call \(z_0 \) Type I singularity (or Type I blowup) if there exists a positive number \(r_1 \) such that

\[\sup_{0 < r < r_1} g(z_0, r) < \infty. \]

According to Definition 1.3, any suitable weak solution, satisfying assumption (1.1), has Type I singularities only. In particular, arguments, used in paper [21], show that axially symmetric suitable weak solutions to the Navier-Stokes equations have no Type I blowups. This is an improvement of what has been known so far, see papers [14] and [21], where condition (1.1) is replaced by stronger one

\[v \in L_\infty(0, T; BMO^{-1}(\mathbb{R}^3)). \]

Regarding other regularity results on axially symmetric solutions to the Navier-Stokes equations, we refer to papers [2, 3, 4, 5, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 24].

Another important consequence is that the smallness of \(\|v\|_{L_\infty(0, T; \dot{B}_{\infty, \infty}^{-1}(\mathbb{R}^3))} \) implies regularity, see also [1, 7].

2. PROOF OF THE MAIN RESULT

In this section, Theorem 1.2 is proved. First, we recall the known multiplicative inequality, see [6].
Proof. It follows from Lemma 2.1 that for all $u \in \dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3) \cap \dot{H}^1(\mathbb{R}^3)$, the following is valid:

\begin{equation}
\|u\|_{L^4(\mathbb{R}^3)} \leq c\|u\|_{\dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3)}^{\frac{1}{2}} \|\nabla u\|_{L^2(\mathbb{R}^3)},
\end{equation}

where $\dot{H}^1(\mathbb{R}^3)$ is a homogeneous Sobolev space.

In fact, a weaker version of (2.1) with $\|u\|_{L^4(\mathbb{R}^3)}$ instead of $\|u\|_{L^4(\mathbb{R}^3)}$ is needed. Here, $L^{1, \infty}(\mathbb{R}^3)$ is a weak Lebesgue space. An elementary proof of a weaker inequality is given in [13].

The second auxiliary statement is about cutting-off in the space $\dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3)$.

Lemma 2.2. Let $u \in \dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3)$ and $\phi \in C_0^\infty(\mathbb{R}^3)$. Then

\[\|u\phi\|_{\dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3)} \leq c(|\text{spt}\ \phi|)\|u\|_{\dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3)}. \]

We have not found out a proof of Lemma 2.2 in the literature and presented it in Appendix. Our proof is elementary and based on typical PDE’s arguments. A scaled version of the previous lemma is as follows.

Lemma 2.3. For any $u \in \dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3) \cap \dot{H}^1(B(2))$, the estimate

\begin{equation}
\|u\|_{L^4(\mathbb{R}^3)} \leq c\|u\|_{\dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3)}^{\frac{1}{2}} \|\nabla u\|_{L^2(B(2))}.
\end{equation}

is valid for a universal constant c. Moreover, if $u \in \dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3) \cap \dot{H}^1(B(x_0, 2R))$, then

\begin{equation}
\|u\|_{L^4(\mathbb{R}^3)} \leq c\|u\|_{\dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3)}^{\frac{1}{2}} \left(\|\nabla u\|_{L^2(B(2R))} + \frac{1}{R} \|u\|_{L^2(B(2R))}\right)^{\frac{1}{2}},
\end{equation}

with a universal constant c.

Here, we use notation for the ball centred at the origin $B(R) = B(0, R)$ and $B = B(1)$.

\begin{proof}
It follows from Lemma 2.1 that for all $\phi \in C_0^\infty(\mathbb{R}^3),

\[\|u\phi\|_{L^4(\mathbb{R}^3)} \leq c\|u\phi\|_{\dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3)}^{\frac{1}{2}} \|u\phi\|_{\dot{H}^1(\mathbb{R}^3)}. \]

Taking a cut-off function ϕ such that $\phi = 1$ in B, $\phi = 0$ out of $B(2)$, and $0 \leq \phi \leq 1$ for $1 \leq |x| \leq 2$, we get inequality (2.2) from Lemma 2.2.

To prove inequality (2.3), one can use scaling and shift $x = x_0 + Ry$, $x \in B(x_0, 2R)$, $y \in B(2)$ in (2.2). \qed

In order to prove the main result, we need the following auxiliary inequalities for $C(z_0, r)$.

Lemma 2.4. For any $0 < r \leq R < \infty$, we have

\begin{equation}
C(z_0, r) \leq c\|u\|_{L^4_{\infty}(0, T; \dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3))}^{\frac{1}{2}} \left(A^{\frac{1}{2}}(z_0, 2r) + E^{\frac{1}{2}}(z_0, 2r)\right),
\end{equation}

and

\begin{equation}
C(z_0, r) \leq c\|u\|_{L^4_{\infty}(0, T; \dot{B}^{-1}_{\infty, \infty}(\mathbb{R}^3))}^{\frac{1}{2}} \left(R \right)^{\frac{1}{2}} \left(A^{\frac{1}{2}}(z_0, R) + E^{\frac{1}{2}}(z_0, R)\right).
\end{equation}
Similarly, (2.6), (2.7) and Young’s inequality with an arbitrary positive constant δ, we can derive

$$C(z_0, 2r) \leq c\delta (A(z_0, \rho) + E(z_0, \rho)) + c\delta^{-3} \|u\|_{L^6((0,T;\mathcal{B}^{1,\infty}_x(\mathbb{R}^3))}^3 \left(\frac{\rho}{r} \right)^3 .$$

Similarly,

$$C^\frac{2}{3}(z_0, 2r) \leq c\delta (A(z_0, \rho) + E(z_0, \rho)) + c\delta^{-1} \|u\|_{L^6((0,T;\mathcal{B}^{1,\infty}_x(\mathbb{R}^3))}^2 \left(\frac{\rho}{r} \right)^3 ,$$

and

$$\left(\frac{\rho}{r} \right)^2 C(z_0, \frac{\rho}{2}) \leq c\delta (A(z_0, \rho) + E(z_0, \rho)) + c\delta^{-3} \|u\|_{L^6((0,T;\mathcal{B}^{1,\infty}_x(\mathbb{R}^3))}^6 \left(\frac{\rho}{r} \right)^8 .$$

This completes the proof of inequality (2.4).

Now we are going to justify our main result.

Proof of Theorem 1.2. From the local energy inequality, it follows that, for any $0 < r < \infty$,

$$A(z_0, r) + E(z_0, r) \leq c \left(C^\frac{2}{3}(z_0, 2r) + C(z_0, 2r) + D(z_0, 2r) \right) .$$

For the pressure q, we have the decay estimate

$$D(z_0, r) \leq c \left(\frac{r}{R} D(z_0, R) + \left(\frac{R}{r} \right)^2 C(z_0, R) \right) ,$$

which is valid for any $0 < r < R < \infty$.

Assume that $0 < r \leq \frac{\rho}{4} < \rho \leq 1$. Combining (2.7) and (2.6), we find

$$A(z_0, r) + E(z_0, r) + D(z_0, r) \leq$$

$$\leq c \left(C^\frac{2}{3}(z_0, 2r) + C(z_0, 2r) + \left(\frac{\rho}{r} \right)^2 C(z_0, \frac{\rho}{2}) + \frac{r}{\rho} D(z_0, \frac{\rho}{2}) \right) .$$

Now, let us estimate each term on the right hand side of the last inequality. From (2.4), (2.5), and Young’s inequality with an arbitrary positive constant δ, we can derive

$$(\frac{\rho}{r})^2 C(z_0, \frac{\rho}{2}) \leq c\delta (A(z_0, \rho) + E(z_0, \rho)) + c\delta^{-3} \|u\|_{L^6((0,T;\mathcal{B}^{1,\infty}_x(\mathbb{R}^3))}^6 \left(\frac{\rho}{r} \right)^8 .$$

Proof. Obviously, (2.5) easily follows from (2.4). So, we need to prove the first inequality only. By the Hölder inequality, we have

$$\|u(\cdot, t)\|_{L^3(B(x_0, r))} \leq cr^{\frac{3}{4}} \|u(\cdot, t)\|_{L^{4,\infty}(B(x_0, r))}$$

and thus, by (2.3),

$$C(z_0, r) = \frac{1}{r^2} \int_{z_0 - r^2}^{z_0} \|u(\cdot, t)\|^3_{L^3(B(x_0, r))} dt$$

$$\leq c \frac{1}{r^2} \|u\|^2_{L^6((0,T;\mathcal{B}^{1,\infty}_x(\mathbb{R}^3))} \left(\int_{t_0 - (2r)^2}^{t_0} \|\nabla u(\cdot, t)\|^2_{L^2(B(x_0, 2r))} dt + \frac{1}{r^2} \|u(\cdot, t)\|_{L^2(B(x_0, 2r))}^2 dt \right)$$

$$\leq c \frac{1}{r^2} \|u\|^2_{L^6((0,T;\mathcal{B}^{1,\infty}_x(\mathbb{R}^3))} \left(\int_{t_0 - (2r)^2}^{t_0} \|\nabla u(\cdot, t)\|^2_{L^2(B(x_0, 2r))} dt + \frac{\sup_{-(2r)^2 < t < t_0} \|u(\cdot, t)\|_{L^2(B(x_0, 2r))}^2 dt + \frac{\delta}{r} D(z_0, \frac{\rho}{2}) \right) .$$

This completes the proof of inequality (2.4). \qed
Denote $E(r) = A(z_0, r) + E(z_0, r) + D(z_0, r)$. By a simple inequality $D(z_0, \rho/2) \leq cD(z_0, \rho)$,

$$E(r) \leq c(\delta + \frac{r}{\rho})E(\rho) + c\left\{ \|u\|^2_{L^\infty(0,T; \dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3))} \left(\frac{\rho}{r} \right) \delta^{-1} + \|u\|^6_{L^\infty(0,T; \dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3))} \left[\left(\frac{\rho}{r} \right)^3 + \left(\frac{\rho}{r} \right)^8 \right] \delta^{-3} \right\}.$$

Letting $r = \theta \rho$ and $\delta = \theta$ and picking up θ such that $2c\theta^{1/2} \leq 1$, we find

$$E(\theta r) \leq \theta^{1/2}E(\rho) + c\left\{ \|u\|^2_{L^\infty(0,T; \dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3))} \theta^{-2} + \|u\|^6_{L^\infty(0,T; \dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3))} \theta^{-11} \right\}.$$

Standard iteration gives us that for $0 < r \leq \frac{1}{2}$,

$$E(r) \leq c\left(r^{1/2}E(1) + \|u\|^2_{L^\infty(0,T; \dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3))} + \|u\|^6_{L^\infty(0,T; \dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3))} \right).$$

Taking into account (2.4), we get in addition that

$$C(z_0, r) \leq c\left(r^{1/2}E(1) + \|u\|^6_{L^\infty(0,T; \dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3))} \right).$$

This completes the proof of Theorem 1.2. \qed

Appendix A. Proof of Lemma 2.2.

We let $w(\cdot, t) = S(t)f(\cdot)$ and $w_\varphi(\cdot, t) = S(t)\varphi f(\cdot)$, where $S(t)$ is a solution operator of the Cauchy problem for the heat equation with the initial data f and φf, respectively. Then $u := w \varphi - w_\varphi$ satisfies the equation

$$\partial_t u - \Delta u = -2\text{div}(\nabla \varphi w) + w \Delta \varphi$$

and the initial condition $u(\cdot, 0) = 0$. A unique solution to the problem is as follows:

$$u(x, t) = I + J,$$

where

$$I = -\int_0^t \int_{\mathbb{R}^3} \Gamma(x - y, t - \tau)(2\text{div}(\nabla \varphi w))(y, \tau)dyd\tau,$$

$$J = \int_0^t \int_{\mathbb{R}^3} \Gamma(x - y, t - \tau)(w \Delta \varphi)(y, \tau)dyd\tau,$$

and Γ is the heat kernel.

Let us evaluate I. We abbreviate

$$A := \|f\|_{\dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3)} = \sup_{t > 0} \sqrt{7}\|w(\cdot, t)\|_{L^\infty(\mathbb{R}^3)}$$

and $\Omega = \text{spt} \varphi$. Then we have

$$\sqrt{7}|I| \leq 2A\sqrt{t} \int_0^t \frac{1}{\sqrt{\Omega}} \frac{1}{(4\pi(t - \tau))^{3/2}} \exp \left\{ -\frac{|x - y|^2}{4(t - \tau)} \right\} \frac{|x - y|}{t - \tau} dyd\tau \leq$$

$$\leq cA \int_0^t \sqrt{\frac{t}{\tau(t - \tau)^2}} \int_{\Omega} \exp \left\{ -\frac{|x - y|^2}{4(t - \tau)} \frac{|x - y|}{\sqrt{t - \tau}} \right\} dyd\tau =$$
\[= cA \left[\int_0^{\frac{t}{2}} \ldots + \int_{\frac{t}{2}}^t \ldots \right] = cA(I_1 + I_2). \]

Regarding \(I_1 \), consider first the case \(0 < t < 1 \). By the standard change of variables, we have
\[
I_1 \leq cAC_0 \int_0^{\frac{t}{2}} \sqrt{\frac{t}{\tau}} \frac{1}{\sqrt{t - \tau}} d\tau
\]
with
\[
C_0 = \int_{\mathbb{R}^3} \exp\{-|u|^2\}|u|du.
\]
And thus \(I_1 \leq cA \). In the second case \(t \geq 1 \),
\[
I_1 \leq c|\Omega| \int_0^{\frac{t}{2}} \sqrt{\frac{t}{\tau}} \frac{1}{(t - \tau)^2} d\tau \leq c|\Omega| \frac{1}{t} \leq c|\Omega|.
\]

Now, let us evaluate \(I_2 \). Obviously,
\[
I_2 \leq c \int_0^{t} \frac{1}{(t - \tau)^2} \int_{\Omega} \exp \left\{ -\frac{|x - y|^2}{4(t - \tau)} \right\} \frac{|x - y|}{\sqrt{t - \tau}} dy d\tau.
\]
Make change of variables \(\vartheta = t - \tau \), then
\[
I_2 \leq c \int_0^{\infty} \frac{1}{\vartheta^2} \int_{\Omega} \exp \left\{ -\frac{|x - y|^2}{4\vartheta} \right\} \frac{|x - y|}{\sqrt{\vartheta}} dy d\vartheta =
\]
\[
= c \int_0^{\infty} \ldots + c \int_1^{\infty} \ldots = J_1 + J_2.
\]
For \(J_1 \), we have
\[
J_1 \leq cC_0 \int_0^{\frac{1}{\sqrt{\vartheta}}} d\vartheta \leq cC_0.
\]
Finally, \(J_2 \) is bounded as follows:
\[
J_2 \leq c \int_1^{\infty} \frac{1}{\vartheta^2} d\vartheta \leq c|\Omega|.
\]

The quantity \(J \) is estimated in the same way. Lemma 2.2 is proved.

Acknowledgement The first author is supported by the grant RFBR 17-01-00099-a. The second author thanks Professors Cheng He and Zhifei Zhang for helpful discussions.
REGULARITY OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS IN \(\dot{B}_{\infty,1}^{-1} \)

References

[1] A. Cheskidov, R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in \(B_{\infty,1}^{-1} \), Arch. Ration. Mech. Anal. 195 (2010) 159-169.

[2] L. Burk, Q. Zhang, A priori bounds for the vorticity of axially symmetric solutions to the Navier-Stokes equations, Adv. Differential Equations 15 (5-6) (2010) 531-560.

[3] D. Chae, J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math.Z. 239(4) (2002) 645-671.

[4] C.-C. Chen, R. M. Strain, H.-T. Yau, T.-P. Tsai, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations, Int. Math. Res. Not. 2008 (2008) 1-31.

[5] C.-C. Chen, R. M. Strain, H.-T. Yau, T.-P. Tsai, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations II, Comm. Partial Differential Equations 34 (2009) 203-232.

[6] H. Hajjej, L. Molinet, T. Ozawa, B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, IN Harmonic analysis and nonlinear partial differential equations, 159-175, RIMS Kôkyûroku Bessatsu, B26, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011.

[7] T. Himidi, D. Li, Small \(B_{\infty,1}^{-1} \) implies regularity. Dyn. Partial Differ. Equ. 14 (2017) no. 1, 1-4.

[8] T. Y. Hou, L. Zhen, C. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations 33 (7-9) (2008) 1622-1637.

[9] T. Y. Hou, C. Li, Dynamic stability of the three-dimensional axisymmetric Navier-Stokes equations with swirl, Comm. Pure Appl. Math. 61 (2008) 661-697.

[10] Q. Jiu, Z. Xin, Some Regularity Criteria on Suitable Weak Solutions of the 3-D Incompressible Axisymmetric Navier-Stokes Equations, New Studies in Advanced Mathematics, Vol. 2 (International Press, Somerville, MA, 2003), pp. 119-139.

[11] G. Koch, N. Nadirashvili, G. Seregin, V. Sverak, Liouville theorems for the Navier-Stokes equations and applications, Acta Math. 203 (2009) 83-105.

[12] O. A. Ladyzhenskaya, On the unique global solvability to the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry, Zap. Nauchn. Semin. LOMI 7 (1968) 155-177.

[13] M. Ledoux, On improved Sobolev embedding theorems, Mathematical Research Letters, 10 (2003) 659-669.

[14] Z. Lei, Q. Zhang, A Liouville theorem for the axially-symmetric Navier-Stokes equations, J. Funct. Anal. 261 (8) (2011) 2323-2345.

[15] Z. Lei, Q. Zhang, Structure of solutions of 3D axisymmetric Navier-Stokes equations near maximal points, Pacific J. Math. 254 (2) (2011) 335-344.

[16] Z. Lei, E. Navas, Q. Zhang, A priori bound on the velocity in axially symmetric Navier-Stokes equations, Comm. Math. Phys. 341 (1) (2016) 289-307.

[17] Z. Lei, Q. Zhang, Criticality of the axially symmetric Navier-Stokes equations, Pacific J. Math. 289 (1) (2017) 169-187.

[18] X. Pan, Regularity of solutions to axisymmetric Navier-Stokes equations with a slightly supercritical condition, J. Differential Equations 260 (12) (2016) 8485-8529.

[19] G. Seregin, V. Sverak, On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations, Comm. Partial Differential Equations 34 (2009) 171-201.

[20] G. Seregin, W. Zajączkowski, A sufficient condition of regularity for axially symmetric solutions to the Navier Stokes equations, SIAM J. Math. Anal. 39 (2) (2007) 669-685.

[21] G. Seregin, A note on bounded scale-invariant quantities for the Navier-Stokes equations, J. Math. Sci. (N.Y.) 185 (5) (2012) 742-745.

[22] M. R. Ukhovskii, V. I. Yudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech. 32 (1968) 52-61.

[23] W. Wang, Z. Zhang, Regularity of weak solutions for the Navier-Stokes equations in the class \(L^\infty(BMO^{-1}) \), Commun. Contemp. Math. 14 (3) (2012) 1250020, 24 pp.

[24] D. Wei, Regularity criterion to the axially symmetric Navier-Stokes equations, J. Math. Anal. Appl. 435 (1) (2016) 402-413.
Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
E-mail address: seregin@maths.ox.ac.uk

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China
E-mail address: daoguozhou@hpu.edu.cn