Necessity of Dark Matter in Modified Newtonian Dynamics within Galactic Scales? - Testing the Covariant MOND in Elliptical Lenses

M.C. Chiu¹, Y. Tian² and C.M. Ko³
¹Institute of Astronomy, National Central University, Taiwan
²Department of Physics, National Central University, Taiwan
³Institute of Astronomy, Department of Physics and Center of Complex System, National Central University, Taiwan

ABSTRACT
Modified Newtonian Dynamics (MOND) and its relativistic version — TeVeS offer us an alternative perspective to understand the universe without the demand of the elusive cold dark matter. This MONDian paradigm is not only competitive with the conventional CDM in a large range of scales, but also even more successful in the galactic scale. Recently, by studying 6 lensing systems, Ferreras et al. (2008) claimed that MOND still needs dark matter even in galactic scales. When we study the same systems, however, we yield an opposite conclusion. In this contribution, we report our result and conclude that MOND does not need dark matter in galactic lensing systems. Furthermore, we extend our study to 22 SLACS (Sloan Lens ACS Survey) lenses, and obtain the same conclusion as well, i.e., no dark matter is needed in elliptical galaxies.

Key words: Gravitational lensing - MOND - dark matter - gravitation - relativity

1 INTRODUCTION
Migrom’s MOdified Newtonian Dynamics (MOND) is an alternative to the conventional dark matter paradigm for the rotation curve of galaxies and similar phenomena (Milgrom 1983). TeVeS—a relativistic MOND theory (Bekenstein 2004) offered an opportunity to explain relativistic phenomena such as cosmology and gravitational lensing (Chiu et al. 2006).

Recently, Ferreras et al. (2008) studied 6 lensing systems and claimed that MOND still needs dark matter even in galactic scales. We revisit the problem and arrive at an opposite conclusion. Here we report our result on 10 lens from CASTLES (including the 6 lens studied by Ferreras et al.) and 22 lens from SLACS.

2 LENSING EQUATION
Since in the MONDian paradigm mass distribution only follows baryon, we adopt the Hernquist model, \(|\nabla \Phi_N| = GM/(r + r_h)^2\), to the lenses. We incorporate our lensing formalism in a νHDM cosmological background (Ωₐ = 0.05, Ω⁺ = 0.17, Ωₐ = 0.78, h = 0.7).

In general, for any double-images lensing systems:
\[\theta_+ \theta_- = \theta_E^2 \frac{\theta_+ f_+ + \theta_- f_-}{\theta_+ + \theta_-}, \]

where \(\theta_\pm\) are positions of the two images, \(\theta_E^2 = 4GMD_L D_S/c^2 D_L D_S\), and \(f_\pm\) are dimensionless functions, which depend on the mass model of lenses and the forms of \(\tilde{\mu}(x)\) in MOND. We consider (i) the Bekenstein’s form \(\tilde{\mu} = (-1 + \sqrt{1 + 4x})/(1 + \sqrt{1 + 4x})\) (Bekenstein 2004), (ii) the simple form \(\tilde{\mu} = x/(1 + x)\) (Famaey & Binney 2005), and (iii) the standard form \(\tilde{\mu} = x/\sqrt{1 + x^2}\) (Sanders & McGaugh 2002). Here \(x = a/a_0\), the ratio of the actual acceleration to the acceleration parameter in MOND.

3 DATA AND RESULT
We apply 10 CASTLES lensing systems along with 22 SLACS lenses to study strong lensing in TeVeS.

CASTLES Catalogue has the most complete list of strong lensing systems. We examine 10 double-image lenses from this catalogue, of which the (aperture) stellar masses have been estimated from stellar population synthesis with two initial mass functions (IMF), Salpeter’s and Chabrier’s (Ferreras et al. 2005). In Table 2 we list the aperture mass and total mass computed from the three forms of \(\tilde{\mu}(x)\) (Bekenstein, simple and standard).

We also work out the masses for 22 SLACS lens. SLACS lens come from SDSS Luminous Red Galaxy and MAIN SDSS galaxy sample, in which the dispersion velocity can be estimated. We use the M-σ relation in (Sanders 2000) to create a M-σ-R_eff relation of V-band in MOND, and apply
Table 1. Aperture mass (total mass) of 10 lenses from CASTLES ($10^{10}M_\odot$) in νHDM

Lens	Bekenstein	Simple	Standard
Q0142 − 100	10.79 (18.36)	13.66 (23.20)	16.05 (27.31)
HS0818 + 1227	18.14 (28.30)	23.39 (36.17)	27.79 (43.35)
FBQ9091 + 2635	1.54 (2.16)	1.91 (2.67)	2.15 (3.01)
BRI0952 − 0115	2.01 (2.48)	2.59 (3.21)	3.19 (3.93)
Q1017 − 207	2.45 (3.89)	3.22 (7.55)	3.81 (9.15)
HEI1104 − 1805	45.17 (59.58)	58.44 (77.08)	71.78 (94.68)
LBQ1009 − 025	7.71 (10.79)	9.76 (13.67)	11.53 (16.15)
B1030 + 071	9.76 (16.61)	12.06 (20.51)	13.80 (23.47)
SBS1520 + 530	11.91 (16.67)	15.20 (21.28)	18.08 (25.31)
HE2149 − 274	7.04 (13.58)	8.96 (17.28)	10.67 (20.58)

Figure 1. Comparison of mass from lensing and mass from dynamical measurement (i.e., velocity dispersion). Simple form gives the best correlation.

Table 2. Mass of 22 lenses from SLACS ($10^{10}M_\odot$) in νHDM

Lens	M_{bek}	M_{apl}	M_{std}	M_σ
SDSS J092097.8 − 005550	15.22	19.68	23.45	36.82
SDSS J015758.9 − 005626	29.68	38.12	45.13	77.94
SDSS J021652.5 − 081345	119.91	151.50	172.79	262.12
SDSS J025245.2 + 003958	25.84	33.44	40.27	64.49
SDSS J033012.1 − 002052	27.26	35.43	42.76	50.07
SDSS J072805.0 + 383526	25.72	32.95	38.35	58.20
SDSS J080558.8 + 470639	26.01	33.88	39.57	49.75
SDSS J090315.2 + 416109	41.75	54.77	65.92	87.36
SDSS J102053.3 + 002328	18.00	23.12	28.76	35.49
SDSS J230321.7 + 142218	16.67	21.95	27.23	33.32
SDSS J234111.6 + 000019	18.03	23.12	28.76	35.49

Figure 2. Aperture mass (M_ap) for 10 lenses from CASTLES ($10^{10}M_\odot$) in νHDM.

4 SUMMARY

Our investigation supports that there is no need of dark matter in elliptical galaxies.

Among the three choices of $\tilde{\mu}(x)$ of MOND, simple form seems to yield the best fit with dynamical counterparts. This echoes the dynamical studies in spiral galaxies (Famaey & Binney 2005; Famaey et al. 2007).

ACKNOWLEDGMENT

This work is supported in part by NSC96-2112-M-008-014-MY3.

REFERENCES

Bekenstein J.D., 2004, PRD 70, 083509
Chiu M.C., Ko C.M., Tian Y., ApJ, 636, 565
Famaey B., Binney J., 2005, MNRAS 363, 603
Famaey B., Gentile G., Brunton J.-P., Zhao H.-S., 2007, PRD 75, 063002
Ferreras I., Saha P., Williams L., 2005, ApJ 623, L5
Ferreras I., Sakellariadou M., Yusaf M.F., 2008, PRL 100, 031302
Milgrom M., 1983, ApJ 270, 356
Sanders R.H., 2000, MNRAS 313, 767
Sanders R.H., McGaugh S.S., 2002, ARAA 40, 263