Analysis activity 14C of coral in Barrang Caddi Island, Spermonde Archipelago

N F A Firman1, A Noor1, Maming1 and M Zakir1

1 Department of Chemistry, Faculty of Mathematic and Natural Sciences, Hasanuddin University, Jl. Perintis Kemerdekaan Km. 10 Tamalanrea, Makassar 90245, Indonesia

Email: nurfaizahqilah@gmail.com

Abstract. This study aims to determine carbon-14 activity on coral from Barrang Caddi. Several stages of research were physical and chemical cleaning to eliminate contamination on coral. CO$_2$ absorption pre-treatment method, titration to determine total carbon absorbed in the process of absorption CO$_2$ and enumeration with LSC Hidex 300 SL to determine the optimum time of enumeration, the average value of activity 14C and specific activities 14C. In this study, marble from marble karst, Maros, was used as a background. The results show that the absorption capacity was 0.2188 mol CO$_2$/mol OH, the absorption efficiency of 21.87%, total carbon mass was 0.168 gram, optimum counting time was 15 minutes, average activity 14C was 433,597 DPM, enumeration efficiency was 0.567 and specific activity was 15.262 DPM/gC. It was concluded that coral in Barrang Caddi relatively new.

1. Introduction

Spermonde archipelago have high coral diversity, which are 78 genera and subgenera with a total of 262 species [1]. Coral reef is one of the oldest ecosystems that have wealth biodiversity and variation history more than a million years. This is because many coral organisms form skeleton (CaCO$_3$) at isotopes equilibrium with seawater [2].

Carbon have three isotopes which found in nature, 12C, 13C, and 14C. Abundance 12C is ~99.8 % of the total carbon on the earth, 13C is 1 %, while 14C is found one in every 1 million carbon atoms. 14C is radioactive and produces beta emissions with half-life 5730 years. 14C decays to 14N with low energy emissions of beta radiation with an average energy 49.5 keV and maximum energy 156 keV [3,4].

14C is produced in the upper atmosphere, where neutrons from sunlight hit 14N and form 14C. Chemically, 14C cannot be distinguished from 12C and 13C, then joins carbon cycle on the earth through photosynthesis and exchange CO$_2$ air-sea. 14C solved in the sea, lake, and river enter shells, corals and other marine organisms. When living, organisms form equilibrium between radiocarbon decay and their environment; which is 14C decays replaced by 14C from environment. After death, equilibrium between radiocarbon decay and 14C from environment will stop, so that 14C activity begins to decrease. 14C loss by decay can be determined time death organisms [5,3,6].

One of the methods can be used to measure radiocarbon activity is LSC. LSC is the main technique for measuring beta emission radionuclides, alpha emission, and radionuclide decay with electron capture. Although including conventional radiometric techniques, LSC remains competitive for the measurement of various radionuclides. Advantages of using LSC are simple preparation procedures and high enumeration efficiency that can reach 100%. New generation, LSC Hidex 300 SL is
equipped with the TDCR system, a system capable of simultaneously correcting quench [7,8,9]. Therefore, this research was conducted to analysis activity 14C of coral in Barrang Caddi Island.

2. Experimental

2.1. Material and Methods

2.1.1. Sampling method
Coral sample was obtained from marine near Barrang Caddi Island at coordinates S: 05.07735°, E: 119.31938° with a depth of 4-5 m above sea level. Sample was taken dead coral.

2.1.2. Material and equipment
Materials was used in this research were H$_2$O$_2$ 30%, HCl 10 %, HCl 6 N, KOH 1N, AgNO$_3$, HClO$_4$ 1 %, N$_2$ gas *(High Purity)*, filter paper, silica gel, MO indicator, PP indicator, distilled water, aquaLight LLT scintillator *(Hidex)*,marble originated from marble karst, Maros Regency as background, and coral.

Equipment was used in this research include sampling device SCUBA *(Self Contained Underwater Breathing Apparatus)*, shovel, crowbar, and cold box. Preparation equipment were series of absorption devices, oven, gloves, mortar, balance, hammer, and glass tools commonly used in laboratories. β radiation counting devices *(LSC Hidex 300 SL)*.

2.1.3. Physical and chemical cleaning
Physical cleaning, coral was cleaned, brushed several times, rinsed with distilled water and dried. Then, determine the initial weight of coral. Chemical cleaning, sampled was immersed with mixture H$_2$O$_2$ 30 % and KOH 1N with ratio 50:50 and ultrasonic for ± 15 minutes. Coral separated from cleaning solution and rinsed several times with distilled water. Then, immersed with H$_2$O$_2$ 30% and HClO$_4$ 1% for 30-120 seconds. Then, immersed with HCl 6 N for 15-60 seconds and rinsed with distilled water. The sample was dried in oven at 60 °C. Coral was reweighed to obtain percentage reduction weight during chemical cleaning process [10].

2.1.4. CO$_2$ absorption
Coral sample was weighed with variation mass from 5 to 50 grams and put into round bottom flask. Sample was added HCl 10% and released CO$_2$ gas. CO$_2$ gas passed through acid absorber *(AgNO$_3$)*, water absorber and CO$_2$ Absorber *(KOH)*. The reaction occurs [11,12]:

\[
\text{CaCO}_3(s) + \text{HCl}(l) \rightarrow \text{CaCl}_2(s) + \text{CO}_2(g) + \text{H}_2\text{O(aq)}
\]

\[
\text{CO}_2(g) + 2 \text{KOH(aq)} \rightarrow \text{K}_2\text{CO}_3(aq) + \text{H}_2\text{O(aq)}
\]

After process completed, N$_2$ gas *(high purity)* was flowed absorption device with CO$_2$ gas produced.

2.1.5. Determine total carbon
Total carbon was calculated based on the difference between the first and second stages of titration. The first stage, sample was added MO indicator and titrated with HCl 5 M. The second stage, sample was added BaCl$_2$ until saturation, then precipitate was filtered. Solution was added PP indicator and titrated with HCl 5 M [11].

2.1.6. Measurement of 14C activity in coral samples
Sample 8 mL was mixed with Scintillator AquaLight LLT 12 mL and put in vial 20 mL. Then, analyzed with LSC Hidex 300 SL for 2-240 minutes. Marble as background [13,14].
3. Result and discussion

3.1. Physical and chemical cleaning

Corals are cleaned physically and chemically. This was done to eliminate modern carbon contamination originating from surface coral (endolytic activity), which could influence 14C activity value [10].

3.2. CO$_2$ absorption

The amount of gas absorbed by the KOH can be determined by determining total carbon through the titration process to obtain the following Table 1:

Table 1. The values of absorption capacity, absorption efficiency and total carbon mass

Absorption Capacity	Absorption Efficiency	Total carbon mass
$0.2187 \text{ mol CO}_2/\text{mol OH}$	21.87%	0.168 gram

3.3. Measurement of 14C activity

Enumerator Liquid scintillation has the role of detecting particle emissions of β from 14C contained in sample. LSC output from analysis process were DPM for estimating nuclear disintegrations per minute, total count or total count per minute (CPM) and TDCR for measuring quench or efficiency of enumeration [15].

Sample was added with cocktail containing scintillator and scintillator solvent. Function adding cocktails is to convert decay energy from radionuclide samples becoming photons of light, then forwarded to PMT [16,17]. Measurement 14C activity in coral was carried out in two stages. The first stage, determined optimum time of counts. The second stage, determined the average value of counts at optimum time.

![Figure 1. Optimum Time of Counts](image_url)

Based on Figure 1, the value of enumeration at the beginning of time instability. Enumeration began to stabilize in the 15th minute (optimum time), with DPM value 504.510 and TDCR value 0.669. There are several factors that can affect enumeration instability, a). Instability between carbonate solution and scintillator, b). Quench effect (chemical quench and color quench). Chemical quench occurs during transfer energy from solvent to scintillator. Chemical species can capture or take π aromatic solvent thus reducing availability π for efficiency transfer energy [16]. The second stage,
sample was counted repeatedly during optimum time, it was found that the average CPM, DPM, and TDCR were 285.271; 433.597 and 0.657.

3.4. Determine specific activity of 14C
Specific activity of 14C was used for determining coral age. Specific activity was obtained from difference DPM sample and DPM background divided by total carbon. Marble used as background standard [18,19]. The specific activity was obtained 15.262 DPM/gC. Compared to specific activities between sample and modern carbon [20], it was found that the coral analysed was still relatively modern.

4. Conclusions
In this research concluded that specific activity of 14C in coral sample (15.262 DPM/gC). So, the coral age was obtained relatively modern.

Acknowledgement
This research was supported by PMDSU scholarship funded by The Ministry of Research and Technology, Indonesia, 2019.

References
[1] Moll H 1983 Zonation and Diversity of Sclerectina on Reefs Off South Indonesia Thesis Leiden University Netherland
[2] Dubinsky Z and Stambler N 2011 Coral Reef: An Ecosystem in Transition Springer Science 9 13-24
[3] Hopley D 2011 Encyclopedia of Modern Coral Reef Springer Science 830-834
[4] Varlam C, Stefanescu I, Varlam M and Varner I, 2005 Optimization of 14C Concentration Measurement in Aqueous Samples Using the Direct Absorption Method and LSC Advances in Liquid Scintillation Spectrometry 423-428
[5] Key R M 2001 Radiocarbon Radiocarbon 2339-2353
[6] Hajdas I 2008 Radiocarbon Dating and Its Applications in Quaternary Studies Quaternary Science Journal 57 24-2
[7] Arjomand A 2010 Accelerator Mass Spectrometry-enabled Studies: Current Status and Future Prospects Bioanalysis 2 519-541
[8] Hidex 2016 Hidex 300 SL Automatic TDCR Liquid Scintillation Counter Finland PerkinElmer
[9] Hou X 2018 Liquid Scintillation Counting for Determination of Radionuclides in Environmental and Nuclear Application Journal of Radioanalytical and Nuclear Chemistry DOI 10.1007/s10967-018-6258-6
[10] Adkins J F, Griffin S, Kashgarian M, Cheng H, Druffel E R M, Boyle E A, Edwards R L and Shen C 2002 Radiocarbon Dating of Deep-Sea Corals Radiocarbon 44 567-580
[11] Hartoko D A, Noor A, Zakir M and Maming 2016 Utilization of Hydroxide Compound as CO$_2$ Absorbent for Measurement of Carbon-14 in Coral Reef Sample From Spermonde Archipelago. Marina Chemica Acta 17 1-7
[12] Varlam C, Stefanescu I, Varlam M, Pospescu I and Faurescu I 2007 Applying the Direct Absorption Method and LSC for 14C Concentration Measurement in Aqueous Samples Radiocarbon 49 281-289
[13] Bronic I K, Todorovic N, Todorovic N, Nikolov J and Baresic 2012 Intercomparison of Low-Level Tritium and Radiocarbon Measurements in Environmental Samples The First International Conference on Radiation and Dosimetry in Various Fields of Reasearch Rad 2012
[14] Jauhari and Maming 2014 Determination of The Coral Age in Spermonde Archipelago Measurement 14C Activity Using LSC (Liquid Scintillation Counting) Method Marina Chemica Acta 15 13-20
[15] Gillis J M 2014 Detection and Analysis of Low Level Tritium in Rainwater for A Proposed Environmental Monitoring Program Thesis Colorado State University Colorado

[16] Hou X 2010 Workshop on Radioanalytical Chemistry for Radioecology and Waste Management: Report, Evaluation, Abstract, and Full Paper of the Presentations Technical University of Denmark Denmark

[17] Bronic I K, Horvatincic N, Baresic J and Obelic B 2009 Measurement of 14C Activity by Liquid Scintillation Counting Appl. Radiat. Isot. 67 800-804

[18] Rahmaniah W N, Noor A, Zakir M and Maming 2015 Comparison of MEA, DEA and TEA as CO$_2$ Absorbents for Measurement of Carbon-14 in Coral Reef Sample from Spermonde Islands Marina Chimica Acta 16 2-9

[19] Canducci C, Bartolomei P, Magnani G, Rizzo A, Piccoli A, Tositti L, Espasito M 2013 Upgrade of The CO$_2$ Direct Absorption Method for Low-Level 14C Liquid Scintillation Counting, Proceedings of the 21st international Radiocarbon Conference Radiocarbon 55 2-3

[20] Libby W F 1960 Radiocarbon Dating, Nobel Lecture Elsavier Publishing Company Amsterdam