Depletion of serotonin selectively impairs short-term memory without affecting long-term memory in odor learning in the terrestrial slug *Limax valentianus* 

Takaaki Shirahata,1 Makoto Tsunoda,2 Tomofumi Santa,2 Yutaka Kirino,1 and Satoshi Watanabe1,3

1Laboratory of Neurobiophysics and 2Laboratory of Bioanalytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

The terrestrial slug *Limax* is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC (high-performance liquid chromatography) analysis revealed that 5,7-DHT significantly reduced serotonin content in the central nervous system. The present study suggests that acquisition, retention, and/or retrieval of short-term memory involves serotonin, and neither acquisition nor retrieval of long-term memory requires serotonin at a level as high as that required for short-term memory.

Memories are divided into short-term and long-term phases. Memory in *Limax* is not affected by protein synthesis inhibitors up to one day after conditioning, while memories that persist two or more days after conditioning are (Matsuo et al. 2002; Yasui et al. 2004). Therefore, memory until one day after conditioning should be categorized as short-term, while memory that endures after this time should be considered long-term. Since different phases of memory may involve different molecular mechanisms, we also may find differential dependence on serotonin of each memory phase. The next step will be to clarify the dependence of each memory phase on serotonin.

We conducted behavioral experiments using the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) (Daly et al. 1973; Elekes et al. 1977; Baugarten et al. 1982; Glover and Kramer 1982; Glanzman et al. 1989). 5,7-DHT produces a gradual and long-lasting reduction in the serotonin content of central neurons. In *Helisoma*, depletion of serotonin by 5,7-DHT persists for approximately one month and the normal level of serotonin is restored in two months. Depletion of serotonin occurred both in the axons and the somata, and a greater effect was observed in the former (Gadotti et al. 1986).

Terrestrial slugs (*Limax valentianus*) are maintained in our laboratory and animals weighing 0.5–1.0 g (8–16 wk after hatching) were used in the experiments (Matsuo et al. 2002). Aversive odor-taste conditioning was performed as follows: 1 ml of a mixture of equal volumes of carrot juice (prepared from carrot using a juicer, stored at –20°C) and saturated (∼1% w/v) quinidine sulfate (Wako Pure Chemicals) solution was put on a glass plate in the shape of a half-circle arc with a 6-cm radius around a marked point on the glass plate. Since quinidine solution is odorless to this species, the odor of the mixture is that of carrot. Next, the slug was placed on the glass plate with its head on the marked point. After we confirmed that the slug had begun to crawl toward the mixture and its mantle had passed the marked point, we observed its behavior and confirmed that all the slugs touched the mixture. As each slug touched the mixture, it withdrew its head, and this was used to indicate that the slug had sensed the US. After the head of the slug touched the mixture, the slug was kept in contact with the mixture for 90 sec on the glass plate and then submerged and rinsed in water for 30 sec. Finally, it was
transferred to a plastic container and kept in an incubator at 20°C.

We injected a 10-mg/mL solution of 5,7-DHT creatinine sulfate (Sigma) (final dose = 1–2 mg/g b.w.) dissolved in vehicle solution into the body cavities of the slugs in the 5,7-DHT group. The vehicle solution contained 10 mg/mL sodium L-ascorbate (Wako Pure Chemicals) as an antioxidant for 5,7-DHT, dissolved in saline (Matsuo et al. 2002). We also injected the vehicle solution into the control subjects in the same way. According to a previous study, 5,7-DHT is effective at 5 d after injection (Glanzman et al. 1989). We also confirmed this in the present study using high-performance liquid chromatography (HPLC) analysis, as described below. The experiments were designed so that the targeted step (conditioning or test) was carried out on the fifth day after the injection of 5,7-DHT.

To examine the effect of 5,7-DHT on short-term memory (Fig. 1A), conditioned response (CR) tests were performed 24 h after the conditioning. For the CR test, 1 mL of carrot juice was placed in an identical way to that used during conditioning. We then observed whether the head of the slug touched the juice. If the slug exhibited an aversive response (the head of the slug did not touch the juice within 180 sec) after its mantle passed the marked point, this was judged to be an aversive response. If it did not show an aversive response within 180 sec, this was recorded as the absence of a response. The slugs were then subjected to a mobility test to confirm their locomotor ability and to odor sensitivity tests to verify their odor sensing ability. The mobility test was performed in the same way as the CR tests, except that suspension of rat chow (the slugs’ customary daily food, type MF, Oriental Yeast; suspended in water to 0.5 g/mL just before use) was used instead of carrot juice. For the odor sensitivity test, we used garlic homogenate (an aversive odor source for slugs, prepared from garlic and stored at −20°C). In each test, we determined whether an aversive response occurred (or not) within 180 sec. To examine the effects of 5,7-DHT on long-term memory (Fig. 2A), CR tests were performed 6 d after the conditioning in a similar way. To investigate the effect of 5,7-DHT on the retrieval of long-term memory (Fig. 2C), 5,7-DHT or the vehicle solution (controls) was injected one day after conditioning. Tests were performed 6 d after the conditioning. Injection of the drug, the conditioning, and the tests were performed in the same way as described above.

The decrease in serotonin content caused by the 5,7-DHT treatments in the central ganglia (the cerebral ganglia and the subesophageal ganglia) was quantified by HPLC. The central ganglia were isolated from each animal 5 d after injection of the 5,7-DHT or vehicle solution and transferred to a glass tissue grinder tube containing 700 µL of 0.1 M acetic acid. This tube was heated for 5 min at 100°C, after which the ganglia were homogenized. The homogenate then was transferred to a 1.5-mL tube. Other 300 µL of 0.1 M acetic acid were added to the grinding tube and the tube was vortexed to rinse any remaining homogenate from its walls. This acetic acid rinse was also transferred to the 1.5-mL tube. The homogenized ganglia were centrifuged for 30 min (1300 rpm at 4°C) and the supernatant was lyophilized. Each sample (containing the extract of the central ganglia from a single animal) was dissolved in 200 µL of 0.1 M acetic acid. The HPLC analysis was performed using a PU-2080 pump (Jasco) and a NANOSPACE SI-2 electrochemical detector (Shiseido). Serotonin was eluted with a CAPCELLPAK C18...
UG-120 1.5 × 250 mm column (Shiseido). The mobile phase consisted of 50% acetonitrile with 25 mM formic acid and 10 mg/L of EDTA, adjusted to pH 3.0–3.5, and then vacuum-degassed and filtered. The flow rate through the column was 100 μL/min. The potential across the electrode of the detector was 0.7 V. We recorded the current output of the detector on chart paper. The serotonin content of the sample peaks was calculated by comparing them with HPLC peaks from external standards of serotonin run at the same time as the samples.

First, the effect of 5,7-DHT on short-term memory was examined using carrot juice as CS. In the control group, 80% of the slugs (n = 15) showed an aversive response (CR) to the carrot juice in the CR test performed one day after the conditioning, while none of them showed an aversive response to the rat chow in the mobility test, indicating that the control group was conditioned selectively to the CS. In contrast, only 15% of the slugs (n = 13) in the 5,7-DHT group exhibited an aversive response in the CR test, which was significantly different from the responses of the control group (P = 0.0009, Fisher's exact probability test, Fig. 1B). Moreover, all of them showed an aversive response in the odor sensitivity test, suggesting that the olfactory system was not damaged in the 5,7-DHT group. None of these animals gave an aversive response in the mobility test, and the times to reach the rat chow were not significantly different between the control and 5,7-DHT groups (20.7 ± 2.0 sec for the control group, 23.0 ± 3.0 sec for the 5,7-DHT group, P > 0.05, Student t-test). All the slugs in both the control and 5,7-DHT groups showed similar withdrawal response when their heads touched the mixture during conditioning, suggesting that the slug's ability to sense the US was approximately equal in the two groups. In the experiment using cucumber as CS, 80% of the slugs (n = 10) in the control group showed an aversive response to cucumber juice in the CR test. In contrast, only 7% of the slugs (n = 15) in the 5,7-DHT group exhibited an aversive response in the CR test, which was significantly different from the responses of the control group (P = 0.0003, Fisher’s exact probability test, Fig. 1C).

The effect of 5,7-DHT on the acquisition of long-term memory (Fig. 2A) was as follows. As in the case of short-term memory, 100% of the slugs (n = 10) in the control group that were injected with vehicle solution 5 d before the conditioning gave an aversive response in the CR test performed 6 d after the conditioning, while none of them produced an aversive response in the mobility test, indicating that the control group was conditioned selectively to the CS. In contrast to the case of short-term memory, 87% of the slugs (n = 15) in the 5,7-DHT group that were injected with 5,7-DHT solution 5 d before the conditioning showed an aversive response in the CR test 6 d after the conditioning. This was not significantly different from the control group (P > 0.05, Fisher’s exact probability test, Fig. 2B). None of them produced an aversive response in the mobility test.

The effects of 5,7-DHT on the retrieval of long-term memory (Fig. 2C) were examined with the slugs that were injected with 5,7-DHT one day after the conditioning. In the CR test performed 6 d after the conditioning, 100% of the slugs (n = 10) in the control group that were injected with vehicle solution gave an aversive response, and 90% of the slugs (n = 10) in the 5,7-DHT group showed an aversive response in the CR test. This was not significantly different from the control group (P > 0.05, Fisher's exact probability test, Fig. 2D). None of the animals produced an aversive response in the mobility test.

The HPLC experiments indicated that the mean ± SEM serotonin content of the central ganglia from the control group (n = 4) was 132 ± 28 pmol, while that from the 5,7-DHT group (n = 4) was 60 ± 10 pmol. This reduction in serotonin content (45% of the control group) caused by injection of 5,7-DHT was statistically significant (P = 0.025, one-tailed unpaired Student t-test, Fig. 3).

The present study has clearly demonstrated that the injection of 5,7-DHT impairs either the acquisition, retention, or retrieval of short-term memory during aversive odor-taste associative learning in the slug. Unlike short-term memory, 5,7-DHT treatment does not impair the acquisition or retrieval of long-term memory. These results suggest that serotonin is not involved in the acquisition or retrieval of long-term memory, or that a lower amount (less than 45%) of serotonin remaining after the treatment with 5,7-DHT is enough for long-term memories. Because responses to rat chow in the mobility test and that to garlic in the odor sensitivity test were similar between the control and 5,7-DHT groups, and the withdrawal response appeared to be similar, 5,7-DHT is unlikely to have significant nonlearning dependent effects.

The present results also suggest that short-term and long-term memories are processed independently, and that the latter can be established in the absence of the former. In *Aplysia*, two independent parallel processing pathways for short-term and long-term memories have been demonstrated. Although both short-term and long-term memories depend on serotonin, the serotonin antagonist cyproheptadine does not block the induction of long-term memory, but it does block the induction of short-term memory (Emptage and Carew 1993). In the marine mollusk *Hermissenda* serotonin-induced short-term enhancement of the generator potential in identified photoreceptors can be blocked without affecting long-term enhancement in the same cells (Crow and Forrester 1993). Although these examples are similar to the present results, the underlying neural networks are quite different. Odor learning in *Limax* may require a much more complex neural system, the PC lobe, which contains about 10⁷ neurons and exhibits network dynamics common to higher cognitive centers (Gelperin and Tank 1990).

Another example of the parallel processing of short-term and long-term memories is found in *Drosophila*, whose memory one day after conditioning is disrupted by mutation of the *radish* gene, which encodes phospholipase-A2 (Chiang et al. 2004); 2–7 d after conditioning, memory is not disrupted by the mutation (Tully et al. 1994). In this case, the upstream transmitters are not known. Distinct pharmacological effects on short-term and long-term memories have also been reported in the one-trial step-down inhibitory avoidance task in rat (Izquierdo et al. 2002). In humans, some clinical conditions can result in impaired short-term memory while normal long-term memory retrieval.
mains intact (Baddeley and Warrington 1970; Shallice and Warrington 1970).

Our results indicate that aversive odor learning in Limax requires serotonin, and short-term and long-term memories are distinguished by their differential dependence on serotonin. Because the CNS of Limax is easily studied with electrophysiological techniques in an isolated brain preparation (Inoue et al. 2004), Limax appears to be an ideal model animal for studying the phases of memory during odor learning.

Acknowledgments

We thank R. Matsuo for technical advice. This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sciences, and Technology, Japan (Nos. 15390010, 15790025, 16659011, and 17790032).

References

Baddeley, A.D. and Warrington, E.K. 1970. Amnesia and the distinction between long- and short-term memory. J. Verb. Learn. Verb. Behav. 9: 176–189.

Baumgarten, H.G., Jenner, S., Bjöö, H.G., Kimura, T., Suzuki, H., Kono, E., and Sekiguchi, T. 1998. Mapped serotoninergic neurons in the slug Helisoma. J. Comp. Physiol. [A] 184: 553–562.

Watanabe, S., Inoue, T., and Kirino, Y. 2003. Contribution of excitatory chloride conductance in the determination of the direction of traveling waves in an olfactory center. J. Neurosci. 23: 2932–2938.

Yamada, A., Sekiguchi, T., Suzuki, H., and Mizukami, A. 1992. Behavioral analysis of internal memory states using cooling-induced retrograde amnesia in Limax flavus. J. Neurosci. 12: 729–735.

Yamane, T. and Gelperin, A. 1987. Aminergic and peptidergic amplification of intracellular cyclic AMP levels in a molluscan neural network. Cell. Mol. Neurobiol. 7: 291–301.

Yamane, T., Oestericher, A.B., and Gelperin, A. 1989. Serotonin-stimulated biochemical events in the procerbral lobe of the slug Limax flavus. Cell. Mol. Neurobiol. 9: 447–459.

Received November 7, 2005; accepted in revised form February 14, 2006.
Depletion of serotonin selectively impairs short-term memory without affecting long-term memory in odor learning in the terrestrial slug *Limax valentianus*

Takaaki Shirahata, Makoto Tsunoda, Tomofumi Santa, et al.

*Learn. Mem.* 2006, 13:
Access the most recent version at doi:10.1101/lm.133906

References
This article cites 24 articles, 8 of which can be accessed free at:
http://learnmem.cshlp.org/content/13/3/267.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.