REALIZATION OF AN EQUIVARIANT HOLOMORPHIC
HERMITIAN LINE BUNDLE
AS A QUILLEN DETERMINANT BUNDLE

INDRANIL BISWAS

(Communicated by Varghese Mathai)

Abstract. Let M be an irreducible smooth complex projective variety
equipped with an action of a compact Lie group G, and let (\mathcal{L}, h) be a G–
equivariant holomorphic Hermitian line bundle on M. Given a compact connected Riemann surface X, we construct a G–equivariant holomorphic Hermitian line bundle (L, H) on $X \times M$ (the action of G on X is trivial) such that the corresponding Quillen determinant line bundle (Q, h_Q), which is a G–equivariant holomorphic Hermitian line bundle on M, is isomorphic to the given G–equivariant holomorphic Hermitian line bundle (\mathcal{L}, h). This proves a conjecture by Dey and Mathai (2013).

1. Introduction

This work was inspired by [DM], where the following result is proved. Let M be an irreducible smooth complex projective variety and \mathcal{L} an ample line bundle on M equipped with a Hermitian structure h of positive curvature. There is a natural family of Cauchy–Riemann operators on $\mathbb{C}P^1$, parametrized by M, such that the corresponding Quillen determinant line bundle, which is a holomorphic Hermitian line bundle on M, is holomorphically isomorphic to a positive tensor power of (\mathcal{L}, h) [DM, p. 785, Theorem 1.1]. It is conjectured in [DM] that an equivariant version also holds (see [DM, p. 793, §5]).

Let M be as before. Assume that it is equipped with a C^∞ action of a compact Lie group G via holomorphic automorphisms of M. Let (\mathcal{L}, h) be any G–equivariant holomorphic Hermitian line bundle on M.

Let X be a compact connected Riemann surface equipped with a Kähler form ω_X. Let L_0 be a holomorphic line bundle on X of degree genus($X) - 2$ such that $H^0(X, L_0) = 0$. Fix a Hermitian structure h_0 on L_0.

The action of G on M and the trivial action of G on X together produce an action of G on $X \times M$. Let p_1 and p_2 be the projections of $X \times M$ on X and M respectively. Consider the Hermitian structure $H := (p_1^*h_0) \otimes (p_2^*h)$ on the holomorphic line bundle

$$L := (p_1^*L_0) \otimes (p_2^*\mathcal{L})$$

over $X \times M$. The action of G on \mathcal{L} and the trivial action of G on L_0 together produce an action of G on L, thus making L a G–equivariant holomorphic Hermitian line bundle on $X \times M$. We will consider (L, H) as a family of holomorphic Hermitian
line bundles on X. Let (Q, h_Q) be the Quillen determinant line bundle associated to the triple (L, H, ω_X). It is a G–equivariant holomorphic Hermitian line bundle on M.

We prove the following (see Theorem 2.4):

The two G–equivariant holomorphic Hermitian line bundle on M, namely (L, h) and (Q, h_Q), are isomorphic.

We note that this proves the earlier mentioned conjecture in [DM].

2. A holomorphic family and its determinant bundle

Let X be a compact connected Riemann surface. Let g be the genus of X. Fix a holomorphic line bundle L_0 on X of degree $g - 2$ such that

\begin{equation}
H^0(X, L_0) = 0.
\end{equation}

We note that such a line bundle exists. Indeed, if $g \leq 1$, then any holomorphic line bundle of degree $g - 2$ works; if $g = 2$, then any nontrivial holomorphic line bundle of degree zero works; if $g \geq 2$, then any point outside the image of the Abel-Jacobi map $\text{Sym}^{g-2}(X) \to \text{Pic}^{g-2}(X)$ works. From Riemann–Roch it follows that

\begin{equation}
\dim H^1(X, L_0) = 1.
\end{equation}

Fix a C^∞ Hermitian structure h_0 on L_0. Also, fix a Kähler form ω_X on X.

Let M be a connected complex projective manifold (meaning a connected smooth complex projective variety). Assume that a compact Lie group G acts smoothly on M via holomorphic automorphisms. Let (L, h) be a G–equivariant holomorphic Hermitian line bundle on M. This means that the holomorphic line bundle L is equipped with an action of G such that

1. for each element $z \in G$, the action of z on L is a holomorphic automorphism of the line bundle L over the automorphism of M given by the action of z on M,

2. the action of G on L is C^∞ and it preserves h.

Let p_1 and p_2 be the projections on $X \times M$ to X and M respectively. Consider the holomorphic line bundle

$$L := (p_1^*L_0) \otimes (p_2^*L) \to X \times M.$$

It is equipped with the Hermitian structure

\begin{equation}
H := (p_1^*h_0) \otimes (p_2^*h).
\end{equation}

The action of G on M and the trivial action of G on X together define an action of G on $X \times M$. Similarly, the action of G on L and the trivial action of G on L_0 together define an action of G on L. This action of G on L clearly preserves H.

Consider (L, H) as a family of holomorphic Hermitian line bundles on X parametrized by M. Let

$$(Q, h_Q) \to M$$

be the Quillen determinant line bundle associated to (L, H, ω_X) [Qu]. For any point $y \in M$, let (L^y, H^y) be the holomorphic Hermitian line bundle on X obtained by restricting (L, H) to $X \times \{y\}$. Note that (L^y, H^y) is isomorphic to the holomorphic Hermitian line bundle (L_0, h_0). We recall that the fiber Q_y is identified with the complex line $\bigwedge^{\text{top}} H^0(X, L^y)^* \otimes \bigwedge^{\text{top}} H^1(X, L^y)$ [Qu]. In view of (2.1) and (2.2), the fiber Q_y is identified with $H^1(X, L^y)$. \[3184\]
The action of G on L produces an action of G on Q. The action of any $z \in G$ on Q is a holomorphic automorphism of the line bundle Q over the automorphism of M given by z. The action of G on Q preserves the Hermitian structure h_Q on Q because the action of G on L preserves H and the trivial action on X preserves ω_X.

Let
\begin{equation}
\xi := M \times H^1(X, L_0) \rightarrow M
\end{equation}
be the holomorphically trivial line bundle with fiber $H^1(X, L_0)$ (see (2.2)). The trivial action of G on $H^1(X, L_0)$ and the action of G on M together define an action of G on ξ. The actions of G on L and ξ together produce an action of G on $L \otimes \xi$ that is a lift of the action of G on M.

Lemma 2.1. The holomorphic line bundle Q over M is identified with $L \otimes \xi$. This identification is G-equivariant.

Proof. From (2.1) it follows that
\[R^0 p_{2*} L = 0 \]
(recall that L^y is isomorphic to L_0). By the projection formula [Ha, p. 253, Ex. 8.3], we have
\[R^1 p_{2*} L = L \otimes R^1 p_{2*} (p_1^* L_0) . \]
But $R^1 p_{2*} (p_1^* L_0) = \xi$. Therefore, we get an isomorphism
\begin{equation}
\tau : Q := \text{Det}(L) = R^1 p_{2*} L \sim L \otimes \xi .
\end{equation}
From the construction of τ it follows immediately that the isomorphism intertwines the actions of G on Q and $\mathcal{L} \otimes \xi$. \hfill \square

Let ∇^Q be the Chern connection on Q for the Hermitian structure h_Q. The curvature of ∇^Q will be denoted by $\mathcal{K}(\nabla^Q)$. The curvature $\mathcal{K}(\nabla^Q)$ can be computed using [Qu], [BGS].

Let ∇^L denote the Chern connection for (\mathcal{L}, h). Its curvature will be denoted by $\mathcal{K}(\nabla^L)$.

Proposition 2.2. The two $1,1$-forms $\mathcal{K}(\nabla^Q)$ and $\mathcal{K}(\nabla^L)$ on M coincide.

Proof. The Chern connection on the holomorphic Hermitian line bundle (L_0, h_0) (respectively, (L, H)) will be denoted by ∇^{L_0} (respectively, ∇^L). Let $\mathcal{K}(\nabla^{L_0})$ (respectively, $\mathcal{K}(\nabla^L)$) be the curvature of ∇^{L_0} (respectively, ∇^L). From the definition of H (see (2.3)) it follows immediately that
\begin{equation}
\mathcal{K}(\nabla^L) = p_1^* \mathcal{K}(\nabla^{L_0}) + p_2^* \mathcal{K}(\nabla^L) .
\end{equation}
Let $\mathcal{K}(\omega_X) \subset C^\infty(X; \Omega^{1,1}_X)$ be the curvature of TX for the Kähler form ω_X.

A theorem due to Quillen and Bismut–Gillet–Soulé says that $\mathcal{K}(\nabla^Q)$ is given by the following fiber integral along X:
\begin{equation}
\mathcal{K}(\nabla^Q) = - \frac{1}{2\pi \sqrt{-1}} \left(\int_{(X \times M)/M} (\mathcal{K}(\nabla^L) + \frac{1}{2} \mathcal{K}(\nabla^L)^2) \wedge (1 + \frac{1}{2} p_1^* \mathcal{K}(\omega_X)) \right)_2 .
\end{equation}
[BGS] p. 51, Theorem 0.1, [Qu], where $(\beta)_2$ denotes the component of the differential form β of degree two; note that $\frac{1}{4\pi \sqrt{-1}} \mathcal{K}(\omega_X)$ is the Todd form on X for
the Kähler form ω_X that represents the Todd class $\frac{1}{2}c_1(TX)$. Using (2.6), the expression in (2.7) reduces to

$$2\pi\sqrt{-1} \cdot K(\nabla^Q) = -K(\nabla^L) \cdot \int_X (K(\nabla^{L_0}) + \frac{1}{2}K(\omega_X)) .$$

Now note that

$$\frac{1}{2\pi\sqrt{-1}} \int_X (K(\nabla^{L_0}) + \frac{1}{2}K(\omega_X)) = \deg(L_0) + \frac{1}{2}\deg(TX) = g - 2 + 1 - g = -1 .$$

Using this, from (2.8) we conclude that $K(\nabla^Q) = K(\nabla^L)$.

The Hermitian structure L_0 and the Kähler form ω_X together produce an inner product on $H^1(X, L_0)$. This inner product defines a Hermitian structure h_ξ on the holomorphic line bundle ξ in (2.4). Note that the Chern connection on ξ for h_ξ is flat.

The Hermitian structure h on \mathcal{L} and the Hermitian structure h_ξ on ξ together produce a Hermitian structure \tilde{h} on $\mathcal{L} \otimes \xi$.

Proposition 2.3. For the isomorphism τ in (2.5), there is a positive real number t such that $\tau^*\tilde{h} = t \cdot h_Q$.

Proof. There is a real valued C^∞ function f on M such that

$$\tau^*\tilde{h} = \exp(f) \cdot h_Q .$$

From Proposition 2.2 it follows the two holomorphic Hermitian line bundles (\mathcal{Q}, h_Q) and $(\mathcal{Q}, \exp(f) \cdot h_Q)$ have the same curvature. This implies that f is a harmonic function. Since M is compact and connected, any harmonic function on it is a constant one.

Theorem 2.4. The two G–equivariant holomorphic Hermitian line bundles (\mathcal{L}, h) and (\mathcal{Q}, h_Q) are isomorphic.

Proof. Consider the isomorphism

$$\frac{1}{\sqrt{t}} \cdot \tau : \mathcal{Q} \rightarrow \mathcal{L} \otimes \xi ,$$

where τ is the isomorphism in (2.5), and t is the constant in Proposition 2.3. From Lemma 2.1 and Proposition 2.3 it follows immediately that this is a G–equivariant holomorphic isomorphism that takes the Hermitian structure h_Q on \mathcal{Q} to the Hermitian structure \tilde{h} on $\mathcal{L} \otimes \xi$.

The two G–equivariant holomorphic Hermitian line bundles (\mathcal{L}, h) and $(\mathcal{L} \otimes \xi, \tilde{h})$ are clearly isomorphic. Therefore, the two G–equivariant holomorphic Hermitian line bundles (\mathcal{L}, h) and (\mathcal{Q}, h_Q) are isomorphic.

Acknowledgements

The author is grateful to the Harish–Chandra Research Institute for hospitality while the work was carried out. The author acknowledges the support of the J. C. Bose Fellowship.
REFERENCES

[BGS] J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), no. 1, 49–78. MR929146 (89g:58192a)

[DM] Rukmini Dey and Varghese Mathai, Holomorphic Quillen determinant line bundles on integral compact Kähler manifolds, Q. J. Math. 64 (2013), no. 3, 785–794, DOI 10.1093/qmath/has040. MR3094499

[Ha] Robin Hartshorne, Algebraic geometry, 1977. Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg. MR0463157 (57 #3116)

[Qu] D. Kvillen, Determinants of Cauchy-Riemann operators on Riemann surfaces (Russian), Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 37–41, 96. MR783704 (86g:32035)

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in