Multiple solutions for a generalised Schrödinger problem with “concave–convex” nonlinearities

Andrelino V. Santos and João R. Santos Júnior

Abstract. A class of generalised Schrödinger elliptic problems involving concave–convex and other types of nonlinearities is studied. A reasonable overview about the set of solutions is provided when the parameters involved in the equation assume different real values.

Mathematics Subject Classification. 35J10, 35J25, 35J60.

Keywords. Generalised Schrödinger elliptic problems, Multiplicity of solutions, Variational methods.

1. Introduction

We are interested in investigating the following classes of stationary generalised Schrödinger problems

\[
\begin{align*}
- \text{div}(\vartheta(u) \nabla u) + \frac{1}{2} \vartheta'(u)|\nabla u|^2 &= \lambda |u|^{q-2}u + \mu |u|^{p-2}u \quad \text{in } \Omega, \\
\vartheta(u) &= 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

where \(\Omega \subset \mathbb{R}^N \), \(N \geq 3 \), is a bounded smooth domain, \(1 < q < 4 \), \(\max\{2,q\} < p < 22^* \), \(\lambda \) and \(\mu \) are real parameters and \(\vartheta : \mathbb{R} \to [1, \infty) \) is a general even \(C^1 \)-function whose hypotheses will be posteriorly mentioned.

When \(\Omega = \mathbb{R}^N \), equation \((P_{\lambda,\mu,q,p})\) is related to the existence of solitary wave solutions for the parabolic quasilinear Schrödinger equation

\[
i\partial_t z = -\Delta z + V(x)z - \rho(|z|^2)z - \Delta(l(|z|^2))l'(|z|^2)z, \quad x \in \mathbb{R}^N,
\]

where \(z : \mathbb{R} \times \mathbb{R}^N \to C \), \(V : \mathbb{R}^N \to \mathbb{R} \) is a given potential and \(l, \rho \) are real functions. Equation (1.1) appears naturally as a model for several physical phenomena, depending on the type of function \(l \) considered. In fact, if \(l(s) = s \), (1.1) describes the behaviour of a superfluid film in plasma physics; see [12]. For \(l(s) = (1 + s)^{1/2} \), (1.1) models the self-channelling of a high-power ultrashort laser in matter; see [3–5,13]. Furthermore, (1.1) also appears in plasma physics and fluid mechanics [14], in dissipative quantum mechanics [11], in the theory of Heisenberg ferromagnetism and magnons [18] and in condensed matter theory [16].

If we take \(z(t, x) = e^{-iEt}u(x) \) in (1.1), we get the corresponding steady-state equation

\[
- \Delta u + V(x)u - \Delta(l(u^2))l'(u^2)u = \rho(u) \quad \text{in } \mathbb{R}^N.
\]

In the case that \(\rho(s) = \lambda |s|^{q-2}s + \mu |s|^{p-2}s \) and \(\mathbb{R}^N \) is replaced by \(\Omega \), problem (1.2) can be obtained from \((P_{\lambda,\mu,q,p})\), simply by choosing \(\vartheta(s) = 1 + (l(s^2))^{1/2} \), for some \(C^2 \)-function \(l \).

Many authors have studied stationary Schrödinger problems like \((P_{\lambda,\mu,q,p})\) under different nonlinearities and functions \(\vartheta \), when \(\Omega = \mathbb{R}^N \). Without any intention to provide a complete overview about

João R. Santos Jr. was partially supported by CNPq-Proc. 306603/2018-7, Brazil.
the matter, we just refer the reader to some seminal contributions: In the case $\vartheta(s) = 1 + 2s^2$, see [6,8–10,15,17,22,24]. In the case $\vartheta(s) = 1 + s^2/(1 + s^2)$, see [7,20,21].

The main goal of the present paper is provide a reasonable outline about the existence of multiple solutions for problem $\left(P_{\lambda,\mu,q,p} \right)$, when the parameters involved assume different values and function ϑ satisfies general conditions which cover some of the cases previously mentioned. More specifically, we assume that

1. $\vartheta(s)$ is decreasing in $(-\infty, 0)$ and increasing in $(0, \infty)$;
2. $\vartheta(s)/s^2$ is nondecreasing in $(-\infty, 0)$ and nonincreasing in $(0, \infty)$;
3. $\lim_{|s| \to \infty} \vartheta(s)/s^2 = \alpha^2/2$, for some $\alpha > 0$.

Some examples of functions satisfying $(\vartheta_1) - (\vartheta_3)$ can be given by:

$$\vartheta_*(s) = 1 + 2s^2, \quad \vartheta_#(s) = 1 + \frac{s^2}{2(1 + s^2)} + s^2$$

and $\vartheta_1(s) = 1 + \ln(1 + e^{s^2})$;

other examples can be found in [19], where the authors consider the problem $\left(P_{\lambda,\mu,q,p} \right)$ with power type nonlinearities.

To the best of our knowledge, this is the first article to treat this type of nonlinearity for such a class of generalised Schrödinger problems in bounded domains. Our approach consists in switching the task to look for solutions of the general semilinear problem $\left(P_{\lambda,\mu,q,p} \right)$, by task to find solutions of

$$\begin{cases} -\Delta v = \lambda f'(v)|f(v)|^{q-2}f(v) + \mu f'(v)|f(v)|^{p-2}f(v) & \text{in } \Omega, \\ v = 0 & \text{on } \partial\Omega, \end{cases}$$

where $f \in C^2(\mathbb{R})$ is a solution of the ordinary differential equation

$$f'(s) = \frac{1}{\vartheta(f(s))^{1/2}} \quad \text{for } s > 0 \text{ and } f(0) = 0,$$

with $f(s) = -f(-s)$ for $s \in (-\infty, 0)$. Since f is odd and ϑ is even, equation (ODE) is yet true for negative values. It is well known that v is a weak solution of $\left(P_{\lambda,\mu,q,p}^* \right)$ if and only if $u = f(v)$ is a weak solution of $\left(P_{\lambda,\mu,q,p} \right)$; see [19] or [20]. Naturally, a weak solution of $\left(P_{\lambda,\mu,q,p}^* \right)$ is a function $u \in H_0^1(\Omega)$ satisfying

$$\int_\Omega \nabla u \nabla v dx = \lambda \int_\Omega f'(u)|f(u)|^{q-2}f(u)v dx + \mu \int_\Omega f'(u)|f(u)|^{p-2}f(u)v dx, \quad \text{(1.3)}$$

for all $v \in H_0^1(\Omega)$. Moreover, the energy functional $J_{\lambda,\mu} : H_0^1(\Omega) \to \mathbb{R}$ associated with $\left(P_{\lambda,\mu,q,p}^* \right)$ is

$$J_{\lambda,\mu}(u) = \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \int_\Omega |f(u)|^q dx - \frac{\mu}{p} \int_\Omega |f(u)|^p dx. \quad \text{(1.4)}$$

Lemma 2.1, in the next section, assures that the previous notion of weak solution makes sense, and ensures that functional $J_{\lambda,\mu}$ is well defined and is C^1.

Due to the nature of the generalised Schrödinger operator, some interesting phenomena can be observed when one compares $\left(P_{\lambda,\mu,q,p}^* \right)$ to the classical concave–convex problem involving the Laplacian operator. To be more precise, in the case of Laplacian operator, results of the existence of infinitely many high-energy solutions are observed as $1 < q < 2 < p$ and $\mu > 0$; see [2]. On the other hand, the existence of infinitely many low-energy solutions occurs as $1 < q < 2 < p$ and $\lambda > 0$ is small enough; see [1]. In the case of the generalised Schrödinger operator studied in the present paper, an analogous result of infinitely many high-energy solutions for $\mu > 0$ is only occurring for $1 < q < 4 < p$. Moreover, the counterpart of the result of infinitely many low-energy solutions for $\lambda > 0$ requires $1 < q < 2$ and $p \neq 4$. What is noticed in Theorem 1.1 is the existence of a “grey zone”, namely $2 \leq q < p \leq 4$, where the set of solutions has an intermediate behaviour, presenting simultaneously influence of both powers and the length of λ and...
μ. In such a zone, one can get a finite number of solutions as large as one want, provided that μ or λ are large enough. More specifically:

Theorem 1.1. Suppose that θ satisfies $\theta_1 - \theta_3$. The following claims hold:

(i) let $\lambda \in \mathbb{R}$, $\mu > 0$ and $1 < q < 4$. If $4 < p < 22^*$, then $(P_{\lambda,\mu,p,q})$ has a sequence of solutions $\{u_n\}$ with $J_{\lambda,\mu}(f^{-1}(u_n)) \to \infty$. Furthermore, if $\max\{q,2\} < p < 4$, then for each $k \in \mathbb{N}$ there exists $\mu_k > 0$ such that $(P_{\lambda,\mu,p,q})$ has at least k pairs of nontrivial solutions u_k with $J_{\lambda,\mu}(f^{-1}(u_k)) > 0$, provided that $\mu \in (\mu_k,\infty)$;

(ii) let $\lambda > 0$, $\mu \in \mathbb{R}$ and $p \neq 4$. If $1 < q < 2$, then $(P_{\lambda,\mu,p,q})$ has a sequence of solutions $\{u_n\}$ with $J_{\lambda,\mu}(f^{-1}(u_n)) < 0$ and $J_{\lambda,\mu}(f^{-1}(u_n)) \to 0$. Furthermore, if $2 < q < 4$, then for each $k \in \mathbb{N}$ there exists $\lambda_k > 0$ such that $(P_{\lambda,\mu,p,q})$ has at least k pairs of nontrivial solutions u_k with $J_{\lambda,\mu}(f^{-1}(u_k)) < 0$, provided that $\lambda \in (\lambda_k,\infty)$;

(iii) let $\lambda > 0$, $\mu < \lambda_1\alpha^2/4$ and $p = 4$. Then, for each $k \in \mathbb{N}$ there exists $\lambda_k > 0$ such that $(P_{\lambda,\mu,p,q})$ has at least k pairs of nontrivial solutions u_k with $J_{\lambda,\mu}(f^{-1}(u_k)) < 0$, provided that $\lambda \in (\lambda_k,\infty)$, where α is defined in (θ_3).

Throughout the paper, $|A|$ denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}^N$, $[1 < u] := \{x \in \Omega : 1 < u(x)\}$, λ_1 is the first eigenvalue of Laplacian operator with homogeneous Dirichlet boundary condition and C, C_0, C_1, C_2 stand for positive constants whose exact value is not relevant for our purpose.

The paper is organised as follows.

In Sect. 2, we study a suitable change of variable which becomes problem $(P_{\lambda,\mu,p,q})$ in a more manageable one. In Sect. 3, we prove non-existent results. In Sect. 4, we prove existence results.

2. Preliminaries

Although the proof of the next lemma can also be found in [19], for the reader’s convenience and by its relevant role throughout the paper, we provide it here.

Lemma 2.1. Let $\theta \in C^1(\mathbb{R})$ and f a solution of (ODE). The following claims hold:

(i) f is uniquely defined and it is an increasing C^2-diffeomorphism, with $f''(s) = -\theta'(f(s))/2\theta(f(s))^2$, for all $s > 0$;

(ii) $0 < f'(s) \leq 1$, for all $s \in \mathbb{R}$;

(iii) $\lim_{s \to 0} f(s)/s = 1/\theta(0)^{1/2}$;

(iv) $|f(s)| \leq |s|$, for all $s \in \mathbb{R}$;

(v) suppose $(\theta_1) - (\theta_2)$ hold. Then, $|f(s)|/2 \leq f'(s)|s| < |f(s)|$, for all $s \in \mathbb{R}\{0\}$, and the map $s \mapsto |f(s)|/\sqrt{|s|}$ is nonincreasing in $(-\infty,0)$ and nondecreasing in $(0,\infty)$;

(vi) suppose that $(\theta_1) - (\theta_3)$ hold. Then,

$$\lim_{s \to -\infty} \frac{|f(s)|}{\sqrt{|s|}} = \left(\frac{8}{\alpha^2}\right)^{1/4}$$

and

$$\lim_{s \to -\infty} \frac{f(s)}{s} = 0,$$

where α is given in (θ_3).

Proof.

(i)–(ii) Existence, uniqueness, regularity, monotonicity and (ii) follow directly from (ODE). To see that $f(\mathbb{R}) = \mathbb{R}$, observe that $f(s) = (\Upsilon^{-1})(s)$, where

$$\Upsilon(t) = \int_0^t \theta(r)^{1/2}dr.$$

Since $\theta \geq 1$, $|\Upsilon(t)| \geq |t|$ for all $t \in \mathbb{R}$. Consequently, $\lim_{|t| \to \infty} |\Upsilon(t)| = \infty$. Thence, $\lim_{s \to \infty} |f(s)| = \infty$.

Notice that, by L’Hôpital rule, we get
\[
\lim_{s \to 0} \frac{f(s)}{s} = \lim_{s \to 0} f'(s) = \frac{1}{\vartheta(0)^{1/2}}.
\]

It follows from (ii). (v) Since \(f \) is odd and \(\vartheta \) is even, it is sufficient to prove the inequalities for \(s > 0 \). For that, let \(r_1 : [0, \infty) \to \mathbb{R} \) defined by
\[
r_1(s) = f(s)\vartheta(f(s))^{1/2} - s.
\]
Notice that \(r_1(0) = 0 \) and by (ODE) and \((\vartheta_1)\), we have
\[
r_1'(s) = \vartheta'(f(s))f(s)/2\vartheta(f(s)) > 0.
\]
Therefore, the second inequality in (v) follows. Now, to prove the first inequality in (v), let \(r_2 : [0, \infty) \to \mathbb{R} \) be defined by
\[
r_2(s) = 2s - f(s)\vartheta(f(s))^{1/2}.
\]
We have that \(r_2(0) = 0 \) and by (ODE) and \((\vartheta_2)\),
\[
r_2'(s) = 1 - \vartheta'(f(s))f(s)/2\vartheta(f(s)) \geq 0,
\]
showing that the inequality in (v) holds. Moreover, since
\[
\left(\frac{f(s)}{\sqrt{s}} \right)' = \frac{2f'(s)s - f(s)}{2s\sqrt{s}} \geq 0, \ \forall \ s > 0,
\]
the second part of (v) follows.

(vi) Observe that from (v), we have
\[
\lim_{|s| \to \infty} \frac{|f(s)|}{\sqrt{|s|}} = l, \ \text{with} \ l \in (0, \infty].
\]
Again, since \(f \) is odd and \(\vartheta \) is even, it is sufficient to consider the case \(s \to \infty \). Suppose that
\[
\lim_{s \to \infty} f(s)/\sqrt{s} = \infty. \hspace{1cm} (2.1)
\]
If this is the case, then, by (i), we get \(f(s) \to \infty \) as \(s \to \infty \). By applying the L’Hôpital rule and using \((\vartheta_3)\), we conclude from (2.1) that
\[
\lim_{s \to \infty} \frac{f(s)}{\sqrt{s}} = \lim_{s \to \infty} 2f'(s)\sqrt{s}
\]
\[
= 2 \lim_{s \to \infty} \sqrt{\frac{s}{\vartheta(f(s))}}
\]
\[
= 2 \sqrt{\lim_{s \to \infty} \left(\frac{\sqrt{s}}{f(s)} \right)^2}
\]
\[
= 2 \sqrt{\lim_{s \to \infty} \vartheta(f(s))/f(s)^2}
\]
\[
= 2 \sqrt{\frac{0}{\alpha^2/2}} = 0,
\]
showing that
\[
\lim_{s \to \infty} f(s)/\sqrt{s} = 0. \hspace{1cm} (2.2)
\]
Since (2.2) contradicts (2.1), it follows that \(0 < \lim_{s \to \infty} \frac{f(s)}{\sqrt{s}} = l < \infty\). Applying one more time the L'Hôpital rule, we have
\[
l = 2 \sqrt{\frac{\lim_{s \to \infty} \left(\frac{\sqrt{s}f(s)}{f(s)}\right)^2}{\lim_{s \to \infty} \frac{d\left(f(s)\right)}{f(s)^2}}} = 2 \sqrt{\frac{1/l^2}{(\alpha^2/2)}}.
\]
Or equivalently,
\[
l = \left(\frac{8}{\alpha^2}\right)^{1/4}.
\] (2.3)

On the other hand, from (2.3),
\[
\lim_{s \to \infty} \frac{f(s)}{s} = \lim_{s \to \infty} \frac{f(s)}{\sqrt{s}} = \left(\frac{8}{\alpha^2}\right)^{1/4} \times 0 = 0.
\]
\(\square\)

Before finishing this section, we are going to introduce two technical lemmas which will be very helpful later on.

Lemma 2.2. Let \(\{u_n\}\) be a sequence of measurable functions \(u_n : \Omega \to \mathbb{R}\). Then,
\[
\chi_{\left[1 < \liminf_{n \to \infty} u_n\right]}(x) \leq \liminf_{n \to \infty} \chi_{[1 < u_n]}(x) \text{ in } \Omega,
\]
where, from now on, \(\chi_A\) stands for the characteristic function of a set \(A \subset \Omega\).

Proof. Let us define \(u := \liminf_{n \to \infty} u_n\) and \(g : \Omega \to \{0, 1\}\) by
\[
g(x) = \liminf_{n \to \infty} \chi_{[1 < u_n]}(x).
\]
If \(g \equiv 1\), there is nothing to be proved. Otherwise, it is sufficient to prove that if \(g(x) = 0\), then \(\chi_{[1 < u]}(x) = 0\). Indeed, observe that if \(g(x) = 0\) then there exists a subsequence \(u_{n_k}\) where \(\{n_k\} \subset \mathbb{N}\) depends on \(x\), such that
\[
\chi_{[1 < u_{n_k}]}(x) = 0, \forall k \in \mathbb{N}.
\]
Equivalently,
\[
u_{n_k}(x) \leq 1, \forall k \in \mathbb{N}.
\]
Passing to the lower limit as \(k\) goes to infinity, we obtain
\[
u(x) = \liminf_{n \to \infty} u_n(x) \leq \liminf_{k \to \infty} u_{n_k}(x) \leq 1,
\]
or yet
\[
\chi_{[1 < u]}(x) = 0.
\]
\(\square\)

Now on, let us agree that \(\{e_j\}\) stands for a Hilbertian basis of \(H^1_0(\Omega)\) composed by functions in \(L^\infty(\Omega)\) (for example, the basis composed by eigenfunctions of Laplacian operator with Dirichlet boundary condition),
\[
X_j := \text{Span}\{e_j\}, Y_k := \oplus_{j=0}^k X_j \text{ and } Z_k := \oplus_{j=k}^\infty X_j.
\]

Since \(|f(s)|\) behaves like \(|s|\) near the origin and like \(|s|^{1/2}\) at infinity, the next lemma will be very helpful to get some important estimates for the existence results.

Lemma 2.3. Let \(S_k\) be the unit sphere of \(Y_k\). There exist positive constants \(\beta_k, \beta_k(r), \alpha_k, \tau_k\) such that
\((i) \)
\[\beta_k \leq ||1 < |su||, \]
for all \(u \in S_k \) and \(s > \alpha_k \), and
\[||su|| < 1 = \Omega, \]
for all \(u \in S_k \) and \(0 < s < \tau_k \).

\((ii) \) for each \(r \in [1, 2^*] \),
\[\beta_k(r) \leq \int_{1 < |su|} |u|^r \, dx, \]
for all \(u \in S_k \) and \(s > \alpha_k \).

\textbf{Proof.} \((i) \) First, we are going to prove that (2.4) holds.

Indeed, suppose that there exist \(\{s_n\} \subset (0, \infty) \) and \(\{u_n\} \subset S_k \) with \(s_n \to \infty \) and
\[||1 < |s_n u_n||| \to 0 \text{ as } n \to \infty. \]
(2.7)

Since \(Y_k \) has finite dimension, there exists
\[u \in S_k \]
such that, up to a subsequence, \(u_n \to u \) in \(H_0^1(\Omega) \) and
\[u_n(x) \to u(x) \text{ a.e. in } \Omega. \]

Therefore,
\[|s_n u_n| \to \infty \text{ in } [u \neq 0]. \]
(2.9)

It follows from (2.8), (2.9), Lemma 2.2(1), Fatou lemma and (2.7) that
\[0 < ||u \neq 0|| \leq ||1 < \liminf_{n \to \infty} |s_n u_n||| \]
\[= \int_{\Omega} \chi_{1 < \liminf_{n \to \infty} |s_n u_n||} \, dx \]
\[\leq \int_{\Omega} \liminf_{n \to \infty} \chi_{1 < |s_n u_n||} \, dx \]
\[\leq \liminf_{n \to \infty} \int_{\Omega} \chi_{1 < |s_n u_n||} \, dx \]
\[= \liminf_{n \to \infty} ||1 < |s_n u_n||| = 0. \]

This is a clear contradiction. Therefore, (2.4) holds. Now, in order to prove (2.5), observe that if \(u \in S_k \) then, by Cauchy–Schwarz inequality
\[|u(x)| = \left| \sum_{j=0}^{k} y_j e_j(x) \right| \leq \left(\sum_{j=0}^{k} y_j^2 \right)^{1/2} \left(\sum_{j=0}^{k} e_j(x)^2 \right)^{1/2} \leq (k + 1)M^2, \]
(2.10)

where \(M := \max_{j=0}^{k} |e_j|_{\infty}. \) Consequently, choosing \(\tau_k := 1/(k + 1)M^2 \) the result follows.
By Fatou lemma, Lemma 2.2 and since Y_k has finite dimension, we have
\[
\liminf_{s \to \infty} \int_{[1<|su|]} |u|^r \, dx = \liminf_{s \to \infty} \int_{\Omega} |u|^r \chi_{[1<|su|]}(x) \, dx \\
\geq \int_{\Omega} |u|^r \liminf_{s \to \infty} \chi_{[1<|su|]}(x) \, dx \\
\geq \int_{\Omega} |u|^r \chi_{[u\neq 0]}(x) \, dx \\
= \int_{\Omega} |u|^r \, dx \geq \zeta_k(r),
\]
for all $u \in S_k$ and some $\zeta_k(r) > 0$. Choosing $0 < \beta_k(r) < \zeta_k(r)$, the result is proved.

3. Non-existent results

In this section, we are interested in proving some non-existent results which complement Theorem 1.1. More specifically:

Theorem 3.1. The following claims hold:

(i) if $\lambda, \mu \leq 0$, then $(P_{\lambda,\mu,q,p})$ does not have any nontrivial solution;
(ii) suppose that ϑ satisfies $(\vartheta_1) - (\vartheta_2)$, $1 < q \leq 2$ and $p \geq 4$ hold. If $\lambda < 0$, then $(P_{\lambda,\mu,q,p})$ does not have solutions u satisfying $J_{\lambda,\mu}(f^{-1}(u)) \leq 0$. Analogously, if $\mu < 0$, then $(P_{\lambda,\mu,q,p})$ does not have solutions u satisfying $J_{\lambda,\mu}(f^{-1}(u)) \geq 0$;
(iii) suppose that ϑ satisfies $(\vartheta_1) - (\vartheta_3)$. If $\max\{2, q\} < p \leq 4$ and $\lambda < 0$, then there exists $\mu_* > 0$ such that $(P_{\lambda,\mu,q,p})$ does not have solutions u satisfying $J_{\lambda,\mu}(f^{-1}(u)) \leq 0$, whatever $\mu \in (0, \mu_*);$ Moreover, if $1 < q < 2 < p \leq 4$ and $\mu > 0$, then there exists $s_* > 0$ such that $(P_{\lambda,\mu,q,p})$ does not have solutions u satisfying $J_{\lambda,\mu}(f^{-1}(u)) \geq 0$, whatever $\mu \in (-s_*, s_*);$ if $2 \leq q < p \leq 4$ and $\mu < 0$, then there exists $\nu_* > 0$ such that $(P_{\lambda,\mu,q,p})$ does not have solutions u satisfying $J_{\lambda,\mu}(f^{-1}(u)) \leq 0$, whatever $\mu \in (-\nu_*, \nu_*);$ if $2 \leq q < p \leq 4$, then there exist $r_* > 0$ such that $(P_{\lambda,\mu,q,p})$ does not have any nontrivial solution, whatever $\lambda, \mu \in (-r_*, r_*).$

Proof. (i) Indeed, by $f(0) = 0$ and Lemma 2.1(ii) we have $f(s)s \geq 0$ for all $s \in \mathbb{R}$. Thus, if u is a solution, then
\[
\|u\|^2 = \lambda \int_{\Omega} f'(u) \, dx + \mu \int_{\Omega} f(u) \, dx \\
= \lambda \int_{\Omega} f'(u) \, dx + \mu \int_{\Omega} f(u) \, dx \\
\leq 0.
\]
Therefore, $u = 0$.

(ii) Suppose that $\lambda < 0$ and u is a nontrivial weak solution of $(P'_{\lambda,\mu,q,p})$. By previous item, we have $\mu > 0$. By Lemma 2.1(v),
\[
\lambda \int_{\Omega} |f(u)|^q \, dx + \frac{\mu}{2} \int_{\Omega} |f(u)|^p \, dx < \|u\|^2.
\]
If $J_{\lambda,\mu}(u) \leq 0$, then
\[
\frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \int_{\Omega} |f(u)|^q \, dx - \frac{\mu}{p} \int_{\Omega} |f(u)|^p \, dx \leq 0.
\]
Thus,
\[
\|u\|^2 \leq \frac{2\lambda}{q} \int_{\Omega} |f(u)|^q \, dx + \frac{2\mu}{p} \int_{\Omega} |f(u)|^p \, dx.
\] (3.2)
By comparing (3.1) and (3.2), we get
\[
0 \leq \lambda \left(1 - \frac{2}{q}\right) \int_{\Omega} |f(u)|^q \, dx + \mu \left(\frac{1}{2} - \frac{2}{p}\right) \int_{\Omega} |f(u)|^p \, dx < 0,
\]
whenever $1 < q \leq 2$ and $p \geq 4$. This is a clear contradiction.

Now, let $\mu < 0$ and u be a weak solution of $(P'_{\lambda,\mu,q,p})$. In an analogous way to the first part, by using Lemma 2.1(v) and the fact that $J_{\lambda,\mu}(u) \geq 0$, we get
\[
0 \leq \lambda \left(1 - \frac{2}{q}\right) \int_{\Omega} |f(u)|^q \, dx + \mu \left(\frac{1}{2} - \frac{2}{p}\right) \int_{\Omega} |f(u)|^p \, dx \leq 0,
\]
for all $1 < q \leq 2$ and $p \geq 4$. The result follows.

(iii) If $\max\{2, q\} < p \leq 4$, $\lambda < 0$ and u is a nontrivial weak solution of $(P'_{\lambda,\mu,q,p})$, then, by $f(0) = 0$ and Lemma 2.1(ii), $f(s)s \geq 0$ for all $s \in \mathbb{R}$. Moreover, by item (i), we have $\mu > 0$. Thence,
\[
\|u\|^2 \leq \mu \int_{\Omega} f'(u) |f(u)|^{p-1} |u| \, dx.
\]
By Lemma 2.1(v),
\[
\|u\|^2 \leq \mu \int_{\Omega} |f(u)|^p \, dx.
\] (3.3)
It follows from items (v) and (vi) of Lemma 2.1 that
\[
|f(s)| \leq (8/\alpha^2)^{1/4} |s|^{1/2},
\]
for all $|s| > 1$. Thus, by Lemma 2.1(iv) and since $2 \leq p \leq 4$,
\[
\int_{\Omega} |f(u)|^p \, dx \leq \int_{\|u\| \leq 1} |u|^p \, dx + (8/\alpha^2)^{p/4} \int_{\|u\| > 1} |u|^{p/2} \, dx
\leq \int_{\|u\| \leq 1} |u|^2 \, dx + (8/\alpha^2)^{p/4} \int_{\|u\| > 1} |u|^{p/2} \, dx
\leq \int_{\|u\| \leq 1} |u|^2 \, dx + (8/\alpha^2)^{p/4} \int_{\|u\| > 1} |u|^2 \, dx.
\] (3.4)
By (3.3), (3.4) and Sobolev embeddings,
\[
\|u\|^2 \leq \mu [1 + (8/\alpha^2)^{p/4}]\|u\|^2 \leq \mu [1 + (8/\alpha^2)^{p/4}]C_1 \|u\|^2.
\] (3.5)
Since u is a nontrivial solution, we obtain
\[
0 < \frac{1}{[1 + (8/\alpha^2)^{p/4}]C_1} =: \mu_* \leq \mu.
\] (3.6)
To prove the second part, suppose that $\lambda > 0$ and u is a nontrivial solution with $J_{\lambda, \mu}(u) \geq 0$. It follows from Lemma 2.1(v) that
\[
\|u\|^2 \leq \lambda \int_{\Omega} |f(u)|^q \, dx + |\mu| \int_{\Omega} |f(u)|^p \, dx \\
\leq \frac{q}{2} \|u\|^2 + |\mu| \left(1 + \frac{q}{p} \right) |f(u)|^p \, dx.
\]
Consequently,
\[
\left(1 - \frac{q}{2} \right) \|u\|^2 \leq |\mu| \left(1 + \frac{q}{p} \right) |f(u)|^p \, dx.
\]
As $2 \leq p \leq 4$, by (3.4),
\[
\left(1 - \frac{q}{2} \right) \|u\|^2 \leq |\mu| \left(1 + \frac{q}{p} \right) [1 + (8/\alpha^2)^{q/4}] C_1 \|u\|^2.
\]
Since $1 < q < 2$, we have
\[
0 < \frac{\left(1 - \frac{q}{2} \right)}{\left(1 + \frac{q}{p} \right) [1 + (8/\alpha^2)^{q/4}] C_1} \leq |\mu|.
\]
The result is proved.

(iv) Let $2 \leq q < 4$, $\mu < 0$ and u be a nontrivial weak solution of $(P'_{\lambda, \mu, q, p})$, by Lemma 2.1(v)
\[
\|u\|^2 \leq \lambda \int_{\Omega} |f(u)|^q \, dx.
\]
By item (i), (3.4) and Sobolev embeddings,
\[
\|u\|^2 \leq \lambda [1 + (8/\alpha^2)^{q/4}] C_1 \|u\|^2.
\]
(3.7)
Since u is a nontrivial solution, we obtain
\[
0 < \frac{1}{[1 + (8/\alpha^2)^{q/4}] C_1} =: \lambda_* \leq \lambda.
\]
(3.8)
Finally, suppose that $\mu > 0$ and u is a nontrivial solution with $J_{\lambda, \mu}(u) \leq 0$. It follows from Lemma 2.1(v) that
\[
\|u\|^2 \geq -|\lambda| \int_{\Omega} |f(u)|^q \, dx + \frac{\mu}{2} \int_{\Omega} |f(u)|^p \, dx \\
\geq \frac{p}{4} \|u\|^2 - |\lambda| \left(1 + \frac{p}{2q} \right) \int_{\Omega} |f(u)|^q \, dx.
\]
Since $p < 4$,
\[
0 < \left(1 - \frac{p}{4} \right) \|u\|^2 \leq |\lambda| \left(1 + \frac{p}{2q} \right) \int_{\Omega} |f(u)|^q \, dx.
\]
Since $2 \leq q < 4$, by (3.4)
\[
\left(1 - \frac{p}{4} \right) \|u\|^2 \leq |\lambda| \left(1 + \frac{p}{2q} \right) [1 + (8/\alpha^2)^{q/4}] C_1 \|u\|^2.
\]
Therefore,

$$0 < \frac{(1 - \frac{q}{p})}{\left(1 + \frac{q}{2q}\right)[1 + (8/\alpha^2)^{q/4}]C_1} \leq |\lambda|.$$

(v) Let $2 \leq q < p \leq 4$ and u be a nontrivial weak solution of $(P_{\lambda,\mu,\rho,\sigma})$. By Lemma 2.1(v) and (3.4),

$$\|u\|^2 \geq |\lambda| \int_{\Omega} |f(u)|^q dx + |\mu| \int_{\Omega} |f(u)|^p dx \geq \left[|\lambda|[1 + (8/\alpha^2)^{q/4}]C_1 + |\mu|[1 + (8/\alpha^2)^{p/4}]C_2\right] \|u\|^2.$$

Since u is nontrivial, the result follows. \square

4. Multiplicity of solutions

The proof of the existence results will be divided in several propositions. Before, we need to introduce some definitions. We say that $J_{\lambda,\mu}$ satisfies the $(PS)^*_c$ condition, with respect to $\{Y_n\}$, if any sequence $\{u_n\} \subset H_0^1(\Omega)$, such that

$$u_n \in Y_n, J_{\lambda,\mu}(u_n) \rightarrow c \quad \text{and} \quad (J_{\lambda,\mu}|_{Y_n})'(u_n) \rightarrow 0$$

contains a subsequence converging to a critical point of $J_{\lambda,\mu}$. Any sequence $\{u_n\} \subset H_0^1(\Omega)$ satisfying (4.1) is said to be a $(PS)^*_c$ for $J_{\lambda,\mu}$. It is well known that the $(PS)^*_c$ condition implies the classical $(PS)_c$ condition; see [23].

Proposition 4.1. Suppose $(\vartheta_1) - (\vartheta_3)$ hold.

(i) If $p = 4$, then $J_{\lambda,\mu}$ satisfies the $(PS)^*_c$ condition, for all $1 < q < 4$, $\lambda \in \mathbb{R}$ and $\mu < \lambda^2/4$;

(ii) if $p \neq 4$, then $J_{\lambda,\mu}$ satisfies the $(PS)^*_c$ condition, for all $1 < q < \min\{4, p\}$ and $\lambda, \mu \in \mathbb{R}$.

Proof. (i) Let $p = 4$ and $\{u_n\}$ be a $(PS)^*_c$ sequence for $J_{\lambda,\mu}$, i.e. (4.1) holds. If $\lambda > 0$ and $\mu \leq 0$, it follows by Lemma 2.1(v) that

$$C + C_0\|u_n\| \geq J_{\lambda,\mu}(u_n) - \frac{1}{p}(J_{\lambda,\mu}|_{Y_n})'(u_n)u_n \geq \left(\frac{1}{2} - \frac{1}{p}\right)\|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{2p}\right) \int_{\Omega} |f(u_n)|^q dx.$$

Now, we have to consider two cases: if $1 < q \leq 2$, we conclude from Lemma 2.1(iv) and Sobolev embedding that

$$C + C_0\|u_n\| \geq \left(\frac{1}{2} - \frac{1}{p}\right)\|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{2p}\right) C_1\|u_n\|^q. \quad (4.2)$$

Before considering the case $2 < q < 4$, observe that we cannot use Lemma 2.1(iv) in the same way as previously because $|u|^q$ might not be integrable. To overcome this difficulty, we note that, by items (v) and (vi) of Lemma 2.1

$$|f(s)| \leq (8/\alpha^2)^{1/4}|s|^{1/2}, \quad (4.3)$$

for all $s \in \mathbb{R}$. By Lemma 2.1(iv), for each $2 \leq r \leq 22^*$,

$$\int_{\Omega} |f(u)|^r dx \leq (8/\alpha^2)^{r/4} \int_{\Omega} |u|^{r/2} dx. \quad (4.4)$$

Thus, if $2 < q < 4$, it follows from (4.4) and Sobolev embedding that

$$C + C_0\|u_n\| \geq \left(\frac{1}{2} - \frac{1}{p}\right)\|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{2p}\right) (8/\alpha^2)^{q/4} C_1\|u_n\|^{q/2}. \quad (4.5)$$
By (4.2) and (4.5), \{u_n\} is bounded in \(H^1_0(\Omega)\). If \(\lambda, \mu > 0\), by Lemma 2.1(v), (4.4) and Sobolev embedding, we have

\[
C + C_0\|u_n\| \geq J_{\lambda, \mu}(u_n) - \frac{1}{4}(J_{\lambda, \mu}|_{Y_n})'(u_n)u_n
\]

\[
\geq \left(\frac{1}{4} - \frac{\mu}{\lambda_1 \alpha^2}\right)\|u\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{8}\right)\int_{\Omega} |f(u_n)|^q \, dx.
\]

Hence \{u_n\} is bounded in \(H^1_0(\Omega)\), if \(\mu < \lambda_1 \alpha^2/4\).

On the other hand, if \(\lambda, \mu \leq 0\) we get

\[
C + C_0\|u_n\| \geq J_{\lambda, \mu}(u_n) - \frac{1}{p}(J_{\lambda, \mu}|_{Y_n})'(u_n)u_n \geq \left(\frac{1}{2} - \frac{1}{p}\right)\|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{8}\right)\int_{\Omega} |f(u_n)|^q \, dx,
\]

showing that \{u_n\} is bounded in \(H^1_0(\Omega)\). If \(\lambda \leq 0\) and \(\mu > 0\),

\[
C + C_0\|u_n\| \geq J_{\lambda, \mu}(u_n) - \frac{1}{4}(J_{\lambda, \mu}|_{Y_n})'(u_n)u_n
\]

\[
\geq \left[\frac{1}{4} - \frac{\mu}{\lambda_1 \alpha^2}\right]\|u\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{4}\right)\int_{\Omega} |f(u_n)|^q \, dx.
\]

Therefore, \{u_n\} is again bounded in \(H^1_0(\Omega)\), if \(\mu < \lambda_1 \alpha^2/4\). Hence, up to a subsequence, we have

\[
u_n \rightarrow u \text{ in } H^1_0(\Omega),
\]

\[
\int_{\Omega} f'(u_n)|f(u_n)|^{q-2} f(u_n)(u_n - u) \, dx \rightarrow 0
\]

and

\[
\int_{\Omega} f'(u_n)|f(u_n)|^{p-2} f(u_n)(u_n - u) \, dx \rightarrow 0.
\]

Defining \(v_n := P_{Y_n}u\) as been the orthogonal projection of \(u\) onto \(Y_n\), we have

\[
v_n \rightarrow u \text{ in } H^1_0(\Omega).
\]

Since \(u_n - v_n \in Y_n\) and \{\(u_n - v_n\)\} is bounded in \(H^1_0(\Omega)\), we conclude that

\[
(J_{\lambda, \mu}|_{Y_n})'(u_n)(u_n - v_n) = o_n(1).
\]

Thence,

\[
\int_{\Omega} \nabla u_n \nabla (u_n - v_n) = \lambda \int_{\Omega} f'(u_n)|f(u_n)|^{q-2} f(u_n)(u_n - v_n) \, dx
\]

\[
+ \mu \int_{\Omega} f'(u_n)|f(u_n)|^{p-2} f(u_n)(u_n - v_n) \, dx + o_n(1).
\]

By (4.6), (4.7), (4.8) and (4.9), we conclude that

\[
\|u_n\|^2 = \|v_n\|^2 + o_n(1).
\]

The result follows now from (4.6) and (4.9).

(ii) Let \(p \neq 4\) and \{\(u_n\)\} be a \((PS)^*_c\) sequence for \(J_{\lambda, \mu}\). If \(\lambda > 0\) and \(\mu \leq 0\), we can reason exactly as in the case \(p = 4\). On the other hand, if \(\lambda, \mu > 0\) we have to consider separately two cases: if \(p < 4\), it follows by Lemma 2.1(v), (4.4) and Sobolev embedding that

\[
C + C_0\|u_n\| \geq J_{\lambda, \mu}(u_n) - \frac{1}{p}(J_{\lambda, \mu}|_{Y_n})'(u_n)u_n
\]
\[
\geq \left(\frac{1}{2} - \frac{1}{p} \right) \|u_n\|^2 - \frac{\mu}{2p} (8/\alpha^2)^{p/4} C_1 \|u_n\|^{p/2} - \lambda \left(\frac{1}{q} - \frac{1}{2p} \right) \int_\Omega |f(u_n)|^q \, dx.
\]

By estimating the last part as (4.2) and (4.5), we conclude that \(\{u_n\} \) is bounded in \(H_0^1(\Omega) \). In the case \(p > 4 \), it is sufficient to note that by Lemma 2.1(v)
\[
C + C_0 \|u_n\| \geq J_{\lambda,\mu}(u_n) - \frac{2}{p} (J_{\lambda,\mu}|Y_n)'(u_n) u_n \geq \left(\frac{1}{2} - \frac{2}{p} \right) \|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{2p} \right) \int_\Omega |f(u_n)|^q \, dx.
\]

Once more time, the boundedness of \(\{u_n\} \) in \(H_0^1(\Omega) \) follows from a reasoning similar to (4.2) and (4.5).

Finally, if \(\lambda, \mu \leq 0 \), we argue exactly as in the case \(p = 4 \), and if \(\lambda \leq 0 \) and \(\mu > 0 \), we have
\[
C + C_0 \|u_n\| = J_{\lambda,\mu}(u_n) - \frac{1}{p} (J_{\lambda,\mu}|Y_n)'(u_n) u_n
\]
\[
\geq \left(\frac{1}{2} - \frac{1}{p} \right) \|u_n\|^2 - \frac{\mu}{2p} (8/\alpha^2)^{p/4} C_1 \|u_n\|^{p/2} - \lambda \left(\frac{1}{q} - \frac{1}{2p} \right) \int_\Omega |f(u_n)|^q \, dx,
\]
when \(p < 4 \), and
\[
C + C_0 \|u_n\| \geq J_{\lambda,\mu}(u_n) - \frac{2}{p} (J_{\lambda,\mu}|Y_n)'(u_n) u_n \geq \left(\frac{1}{2} - \frac{2}{p} \right) \|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{2}{p} \right) \int_\Omega |f(u_n)|^q \, dx,
\]
when \(p > 4 \). In all cases, we can conclude that \(\{u_n\} \) is bounded in \(H_0^1(\Omega) \). Now the result follows exactly equal to the case \(p = 4 \). \(\square \)

Proposition 4.2. Suppose \((\vartheta_1) - (\vartheta_3)\), \(4 < p < 22^* \) and \(\mu > 0 \). Then there exist \(0 < r_k < \rho_k \) such that
\[
\max_{u \in Y_k, \|u\| = \rho_k} J_{\lambda,\mu}(u) \leq 0 \quad (4.11)
\]
and
\[
\inf_{u \in Z_k, \|u\| = r_k} J_{\lambda,\mu}(u) \to \infty \text{ as } k \to \infty. \quad (4.12)
\]

Proof. To prove (4.11), observe that by Lemma 2.1(v)
\[
|f(s)| \geq f(1)|s|^{1/2}, \text{ if } |s| > 1.
\]
Thus, for each \(u \in S_k \) and \(\rho > 0 \)
\[
J_{\lambda,\mu}(\rho u) \leq \frac{1}{2} \rho^2 + \frac{\lambda}{q} \int_\Omega |f(\rho u)|^q \, dx - \frac{\mu}{p} f(1)^p \rho^{p/2} \int_{|s| < |\rho u|} |s|^{p/2} \, ds.
\]

By Lemma 2.3(ii), there exist positive constants \(\alpha_k, \beta_k(p/2) \) such that, for every \(u \in S_k \) and \(\rho > \alpha_k \), we get
\[
J_{\lambda,\mu}(\rho u) \leq \frac{1}{2} \rho^2 + \frac{\lambda}{q} \int_\Omega |f(\rho u)|^q \, dx - \frac{\mu}{p} f(1)^p \beta_k(p/2) \rho^{p/2}. \quad (4.13)
\]
Now, we are going to consider two cases: if \(1 < q \leq 2 \), it follows from Lemma 2.1(iv) and Sobolev embedding that
\[
J_{\lambda,\mu}(\rho u) \leq \frac{1}{2} \rho^2 + \frac{\lambda}{q} C_1 \rho^q - \frac{\mu}{p} f(1)^p \beta_k(p/2) \rho^{p/2}.
\]
Since $p > 4$, choosing $\rho_k > \max\{1, \lfloor p/(2 + |\lambda|C_1/q)/\mu f(1)p\beta_k(p/2)\rfloor^{2/(p-4)}\}$, we have

$$J_{\lambda, \mu}(\rho_k u) \leq \left(\frac{1}{2} + \frac{|\lambda|}{q} C_1\right) \rho_k^2 - \frac{\mu}{p} f(1)p\beta_k(p/2)\rho_k^{p/2} < 0,$$

for all $u \in S_k$. On the other hand, if $2 < q < 4$, by (4.13), (4.4) and Sobolev embedding, we have

$$J_{\lambda, \mu}(\rho u) \leq \frac{1}{2} \rho^2 + \frac{|\lambda|}{q} (8/\alpha^2)^{q/4} C_1 \rho^{q/2} - \frac{\mu}{p} f(1)p\beta_k(p/2)\rho^{p/2}.$$

Therefore, choosing $\rho_k > \max\{1, \lfloor p/(2 + |\lambda|C_1/q)/\mu f(1)p\beta_k(p/2)\rfloor^{2/(p-4)}\}$, we have

$$J_{\lambda, \mu}(\rho_k u) \leq \left(\frac{1}{2} + \frac{|\lambda|}{q} (8/\alpha^2)^{q/4} C_1\right) \rho_k^2 - \frac{\mu}{p} f(1)p\beta_k(p/2)\rho_k^{p/2} < 0,$$

for all $u \in S_k$. This proves (4.11).

To prove (4.12), note that for any $1 \leq r < 2^*$, we can define

$$\theta_{r,k} := \sup_{u \in Z_k \setminus \{0\}} \frac{|u|_r}{\|u\|}.$$

It is a straightforward consequence of compact Sobolev embeddings that

$$\theta_{r,k} \to 0 \text{ as } k \to \infty;$$

see Lemma 3.8 in [23].

If $1 < q < 2$, by Lemma 2.1(iv) and (4.4)

$$J_{\lambda, \mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{|\lambda|}{q} \int_{\Omega} |u|^q \, dx - \frac{\mu}{p} (8/\alpha^2)^{p/4} \int_{\Omega} |u|^{p/2} \, dx.$$

By Sobolev embeddings and (4.14),

$$J_{\lambda, \mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{|\lambda|}{q} C_1 \|u\|^q - \frac{\mu}{p} (8/\alpha^2)^{p/4} \theta_{p/2,k}^2 \|u\|^{p/2},$$

for all $u \in Z_k$. Since $1 < q < 2$, for $\|u\| \geq R_*$ with $R_* > 0$ large enough,

$$\frac{|\lambda|}{q} C_1 \|u\|^q < \frac{1}{r} \|u\|^2,$$

for some $r > 2p/(p-2)$. Thus, for $\|u\| \geq R_*$, we get

$$J_{\lambda, \mu}(u) \geq \left(\frac{1}{2} - \frac{1}{r}\right) \|u\|^2 - \frac{\mu}{p} (8/\alpha^2)^{p/4} \theta_{p/2,k}^2 \|u\|^{p/2}.\quad(4.16)$$

It follows from (4.15) that, by choosing $r_k = 1/\mu(8/\alpha^2)^{p/4} \theta_{p/2,k}^{2/(p-4)}$, there exists $k_0 \in N$ such that $r_k \geq R_*$ for all $k \geq k_0$. Therefore,

$$J_{\lambda, \mu}(u) \geq \left(\frac{r - 2}{2r} - \frac{1}{p}\right) \rho_k^2,$$

for all $u \in Z_k$ with $\|u\| = r_k$ and $k \geq k_0$. Since $r_k \to \infty$ as $k \to \infty$, the result follows. If $2 \leq q < 4$, it follows from (4.4) that

$$J_{\lambda, \mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{|\lambda|}{q} (8/\alpha^2)^{q/4} \int_{\Omega} |u|^{q/2} \, dx - \frac{\mu}{p} (8/\alpha^2)^{p/4} \int_{\Omega} |u|^{p/2} \, dx.$$

By Sobolev embeddings and (4.14),

$$J_{\lambda, \mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{|\lambda|}{q} (8/\alpha^2)^{q/4} C_1 \|u\|^q - \frac{\mu}{p} (8/\alpha^2)^{p/4} \theta_{p/2,k}^2 \|u\|^{p/2}.\quad(4.17)$$
Now, since $1 \leq q/2 < 2$, we can proceed in an analogous way to the case $1 < q < 2$ for the choice of r_k. Since we can choose ρ_k even greater, in order to have $\rho_k > r_k$, the result follows. \hfill \Box

Proposition 4.3. Suppose that ϑ satisfies $(\vartheta_1) - (\vartheta_3)$, $1 < q < 2$ and $\lambda > 0$ hold. Then, there exist $0 < r_k < \rho_k$ such

(i) $\inf_{u \in Z_k, \|u\| = \rho_k} J_{\lambda, \mu}(u) \geq 0$;

(ii) $\max_{u \in Y_k, \|u\| = r_k} J_{\lambda, \mu}(u) < 0$;

(iii) $\inf_{u \in Z_k, \|u\| \leq \rho_k} J_{\lambda, \mu}(u) \to 0$ as $k \to \infty$.

Proof.

(i) Let us consider $p \geq 4$. Since $1 < q < 2$, by Lemma 2.1(iv), (4.4) and (4.14), we get

$$J_{\lambda, \mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \int_{\Omega} |u|^q \, dx - \frac{|\mu|}{p} (8/\alpha^2)^{p/4} \int_{\Omega} |u|^{p/2} \, dx$$

$$\geq \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \theta_{q,k} \|u\|^q - \frac{|\mu|}{p} (8/\alpha^2)^{p/4} \rho_{p/2,k}^{p/2} \|u\|^{p/2},$$

for all $u \in Z_k$. If $p \geq 4$, there exists $\delta > 0$ small enough, such that

$$\frac{|\mu|}{p} (8/\alpha^2)^{p/4} \rho_{p/2,k}^{p/2} \|u\|^{p/2} \leq \frac{1}{4} \|u\|^2,$$

for all $u \in Z_k$ with $\|u\| \leq \delta$ (and k large enough if $p = 4$). Thus, by choosing

$$\rho_k = (4\lambda \theta_{q,k}/q)^{1/(2-q)},$$

we have $(1/4)\rho_k^2 = (\lambda/q)\theta_{q,k}^2 \rho_k^2$. Consequently, $\rho_k \to 0$ as $k \to \infty$, and therefore, there exists $k_0 > 0$ satisfying $\rho_k \leq \delta$ for all $k \geq k_0$. Finally, by (4.19)

$$J_{\lambda, \mu}(u) \geq \frac{1}{4} \|u\|^2 - \frac{\lambda}{q} \theta_{q,k} \|u\|^q = 0,$$

for all $u \in Z_k, k \geq k_0$, with $\|u\| = \rho_k$. On the other hand, if $2 < p < 4$, we conclude from (4.18) that

$$J_{\lambda, \mu}(u) \geq \frac{1}{2} \|u\|^2 - \left[\frac{\lambda}{q} + \frac{|\mu|}{p} (8/\alpha^2)^{p/4} \right] \eta_k \|u\|^\gamma,$$

for all $u \in Z_k$ with $\|u\| < 1, 1 < \gamma := \min\{q,p/2\} < 2$, $\eta_k := \max\{\theta_{q,k}, \theta_{p/2,k}\}$ and $k \geq k_0$. Thus, by choosing

$$\rho_k = \left(2(\lambda/q) + |\mu| (8/\alpha^2)^{p/4} / p \eta_k^\gamma \right)^{1/(2-\gamma)},$$

with $k \geq k_0$, the result follows.

(ii) By Lemma 2.1(iii), there exists $\varepsilon > 0$ such that

$$|f(s)| \geq \varepsilon |s|,$$

for all $|s| \leq 1$. Thus,

$$J_{\lambda, \mu}(u) \leq \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \varepsilon \int_{\|u\| \leq 1} |u|^q \, dx + \frac{|\mu|}{p} \int_{\Omega} |f(u)|^p \, dx.$$

By the second part of Lemma 2.3(i) and Lemma 2.1(iv), we have

$$J_{\lambda, \mu}(ru) \leq \frac{1}{2} r^2 - \frac{\lambda}{q} \varepsilon \int_{\Omega} |ru|^q \, dx + \frac{|\mu|}{p} \int_{\Omega} |ru|^p \, dx,$$
for all $u \in S_k$ and $0 < r < \tau_k$. Since Y_k has finite dimension, there exists $\zeta_k(q) > 0$ such that

$$J_{\lambda,\mu}(ru) \leq \frac{1}{2} r^2 - \frac{\lambda}{q} \varepsilon q \zeta_k(q) r^q + \frac{[\mu]}{p} \int |ru|^2 \, dx,$$

for all $u \in S_k$ and $0 < r < \tau_k$, where in the last part we use the fact that $p > 2$. By Sobolev embeddings,

$$J_{\lambda,\mu}(ru) \leq \frac{1}{2} r^2 - \frac{\lambda}{q} \varepsilon q \zeta_k(q) r^q + \frac{[\mu]}{p} C_1 r^2.$$

Thence,

$$J_{\lambda,\mu}(ru) \leq \left(\frac{1}{2} + \frac{[\mu]}{p} C_1 \right) r^2 - \frac{\lambda}{q} \varepsilon q \zeta_k(q) r^q,$$

for all $0 < r < \min\{1, \rho_k, \tau_k\}$. Since $1 < q < 2$, by choosing

$$0 < r_k < \min\{1, \tau_k, \rho_k, [\lambda \varepsilon q \zeta_k(q)]^{1/(2-q)} \},$$

the item is proved.

(iii) By (4.20) and (4.21), we conclude that

$$o_k(1) \leq b_k := \inf_{u \in Z_k, \|u\| \leq \rho_k} J_{\lambda,\mu}(u) \leq J_{\lambda,\mu}(0) = 0,$$

where $o_k(1) \to 0$ as $k \to \infty$. Consequently, $b_k \to 0$ as $k \to \infty$. \hfill \qedsymbol

Proof of Theorem 1.1(i): Since $J_{\lambda,\mu}$ is an even functional, the first part of Theorem 1.1(i) is a direct consequence of fountain theorem in [23] and Propositions 4.1(ii) and 4.2. To prove the second part, observe that if $1 < q < 2$, it follows from $\mu > 0$, Lemma 2.1(iv), (4.4) and Sobolev embeddings that

$$J_{\lambda,\mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{[\lambda]}{q} C_1 \|u\|^q - \frac{\mu}{p} (8/\alpha^2)^{p/4} \theta^{p/2}_{p/2,m} \|u\|^{p/2},$$

for all $u \in Z_m$. On the other hand, if $2 \leq q < 4$, it follows from $\mu > 0$, (4.4) and Sobolev embeddings that

$$J_{\lambda,\mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{[\lambda]}{q} (8/\alpha^2)^{q/4} C_2 \|u\|^q - \frac{\mu}{p} (8/\alpha^2)^{p/4} \theta^{p/2}_{p/2,m} \|u\|^{p/2},$$

for all $u \in Z_m$. Consequently,

$$J_{\lambda,\mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{[\lambda]}{q} C_3 \|u\|^\alpha(q) - \frac{\mu}{p} (8/\alpha^2)^{p/4} \theta^{p/2}_{p/2,m} \|u\|^{p/2},$$

where $\alpha : (1, 4) \to [1, 2)$ is give by $\alpha(s) = s$ if $1 < s < 2$ and $\alpha(s) = s/2$ if $2 \leq s < 4$. Thence, there exists R_* large enough such that

$$\frac{1}{4} \|u\|^2 \geq \frac{[\lambda]}{q} C_3 \|u\|^\alpha(q),$$

for all $u \in Z_m$ with $\|u\| \geq R_*$. Since $p < 4$,

$$J_{\lambda,\mu}(u) \geq \left[\frac{1}{4} - \frac{\mu}{p} (8/\alpha^2)^{p/4} \theta^{p/2}_{p/2,m} \right] \|u\|^{p/2},$$

for all $u \in Z_m$ with $\|u\| \geq \max\{R_*, 1\}$. Observe that there exists $m_0 > 0$ such that

$$\frac{1}{4} \geq \frac{\mu}{p} (8/\alpha^2)^{p/4} \theta^{p/2}_{p/2,m},$$

for all $m \geq m_0$. By choosing $r_m = \max\{R_*, m\}$, we have

$$\inf_{u \in Z_m, \|u\| = r_m} J_{\lambda,\mu}(u) \to \infty \text{ as } m \to \infty. \quad (4.22)$$
Finally, by items (iv) and (v) of Lemma 2.1 and (4.4), there exists $C > 0$ such that
\[J_{\lambda,\mu}(\rho u) \leq \frac{\rho^2}{2} + \frac{|\lambda|}{q} C \rho^\alpha(\|u\|) \int_\omega |u|^\alpha(\|u\|)dx - \frac{\mu}{p} f(1)^p \rho^{p/2} \int_{|\rho u| > 1} |u|^{p/2}dx, \]
for all $u \in S_m$. It follows from Lemma 2.3(ii) and Sobolev embedding that there exists $\alpha_m, \beta_m(p/2) > 0$ such that
\[J_{\lambda,\mu}(\rho_m u) \leq \frac{\rho_m^2}{2} + \frac{|\lambda|}{q} C \rho_m^\alpha(\|u\|) - \frac{\mu}{p} f(1)^p \beta_m(p/2) \rho_m^{p/2}, \]
for some $\rho_m > \max\{\alpha_m, r_m\}$ and for all $u \in S_m$. Therefore, there exists $\mu_m > 0$ such that
\[\max_{u \in Y_m, \|u\| = \rho_m} J_{\lambda,\mu}(u) \leq 0, \quad (4.23) \]
for all $\mu > \mu_m$. To finish the proof, let us define
\[B_m = \{ u \in Y_m : \|u\| \leq \rho_m \}, \]
\[\Gamma_m = \{ \gamma \in C(B_m, H^1_0(\Omega)) : \gamma \text{ is odd and } \gamma|_{\partial B_m} = id \} \]
and
\[c_m = \inf_{\gamma \in \Gamma_m} \max_{u \in B_m} J_{\lambda,\mu}(\gamma(u)). \]
By definition of c_m and Lemma 3.4 in [23], we have
\[\infty > c_m \geq \inf_{u \in Z_m, \|u\| = r_m} J_{\lambda,\mu}(u), \quad (4.24) \]
for all m. On the other hand, by (4.22), we conclude that
\[\inf_{u \in Z_m, \|u\| = r_m} J_{\lambda,\mu}(u) > 0, \]
for all $m \geq m_0$. It is also a consequence of (4.22) and (4.24) that given $k \in \mathbb{N}$, there exists $m(k) > m_0$ with $k \leq m(k) - m_0$, such that we have at least k different numbers c_j when $m_0 \leq j \leq m(k)$. Thus, by (4.23) and Theorem 3.5 in [23], there exist $\mu_k := \mu_{m(k)} > 0$ and a $(PS)_{c_j}$-sequence for $J_{\lambda,\mu}$, for each $m_0 \leq j \leq m(k)$, whenever $\mu > \mu_k$. Finally, by Proposition 4.1(ii), it follows that the numbers c_j are critical points of $J_{\lambda,\mu}$ as $\mu > \mu_k$.

Proof of Theorem 1.1(ii): Since $J_{\lambda,\mu}$ is an even functional, the proof of first part of Theorem 1.1(ii) follows from dual fountain theorem in [23] and Propositions 4.1(ii) and 4.3. To prove the second part, note that, since $2 \leq q < 4$ and $\lambda > 0$, it follows by (4.4) and Sobolev embeddings that
\[J_{\lambda,\mu}(u) \geq \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} (8/\alpha^2)^{q/4} \|u\|^{q/2} - \frac{|\lambda|}{p} (8/\alpha^2)^{p/4} \|u\|^{p/2}, \]
for all $u \in Z_m$. Thus, for m large enough, we have $0 < \eta_m := \max\{\theta_{q/2,m}, \theta_{p/2,m}\} < 1$ and
\[J_{\lambda,\mu}(u) \geq \frac{1}{2} \|u\|^2 - \left(\frac{\lambda}{q} + \frac{|\lambda|}{p} \right) (8/\alpha^2)^{\eta_m^2} \|u\|^{q/2}, \quad (4.25) \]
for all $u \in Z_m$ with $\|u\| < 1$. By choosing $\rho_m = \left[2 (\lambda/q + |\lambda|/p) (8/\alpha^2)^{\eta_m^2} \right]^{2/(4-q)}$, it follows that for $m \geq m_*$, with m_* large enough
\[\inf_{u \in Z_m, \|u\| = \rho_m} J_{\lambda,\mu}(u) \geq 0. \quad (4.26) \]
On the other hand, by Lemma 2.1(iii) and (4.4)
\[J_{\lambda,\mu}(ru) \leq \frac{r^2}{2} - \frac{\lambda}{q} \varepsilon^q \int_{|ru| \leq 1} |ru|^q dx + \frac{|\lambda|}{p} (8/\alpha^2)^{2\varepsilon^2} \int_{\Omega} |u|^{p/2} dx, \]
for all \(u \in S_m \). It follows from Lemma 2.3(i) that there exists \(\tau_m > 0 \) such that

\[
J_{\lambda,\mu}(r_m u) \leq \frac{r_m^2}{2} - \frac{\lambda}{q} r_m \int_{\Omega} |u|^q dx + \frac{|\mu|}{p} (8/\alpha^2)^p/4 r_m^p/2 \int_{\Omega} |u|^{p/2} dx,
\]

for some \(0 < r_m < \min\{\tau_m, \rho_m\} \) fixed and for all \(u \in S_m \). Although \(q \) can be greater than \(2^* \) when the dimension \(N \) is large enough, it is a consequence of definition of \(Y_m \) that \(Y_m \subset L^\infty(\Omega) \), and therefore, \(|.|_q\) defines a norm in \(Y_m \). Since \(Y_m \) has finite dimension,

\[
J_{\lambda,\mu}(r_m u) \leq \frac{r_m^2}{2} - \frac{\lambda}{q} r_m \zeta_m(q) + \frac{|\mu|}{p} (8/\alpha^2)^p/4 C_1 r_m^p/2,
\]

for some \(\zeta_m(q) > 0 \). Therefore, there exists \(\lambda_m > 0 \) such that

\[
b_m := \max_{u \in Y_m, \|u\| = r_m} J_{\lambda,\mu}(u) < 0,
\]

for all \(\lambda > \lambda_m \).

Finally, by (4.25), we conclude that

\[
o_m(1) \leq \inf_{u \in Z_m, \|u\| \leq \rho_m} J_{\lambda,\mu}(u) \leq J_{\lambda,\mu}(0) = 0,
\]

where \(o_m(1) \rightarrow 0 \) as \(m \rightarrow \infty \), showing that

\[
d_m := \inf_{u \in Z_m, \|u\| \leq \rho_m} J_{\lambda,\mu}(u) \rightarrow 0 \text{ as } m \rightarrow \infty.
\]

To finish the proof, for each \(t \geq m \geq m_+ \), we are going to apply Theorem 3.5 in [23] to the functional \(-J_{\lambda,\mu}\) on \(Y_t \); for this, let us define:

\[
Z^t_m = \bigoplus_{j=m}^{t} X_j,
\]

\[
B^t_m = \{ u \in Z^t_m : \|u\| \leq \rho_m \},
\]

\[
\Gamma^t_m = \{ \gamma \in C(B^t_m, Y_m) : \text{\(\gamma \) is odd and } \gamma_{|\partial B^t_m} = id \}
\]

and

\[
c^t_m = \sup_{\gamma \in \Gamma^t_m} \min_{u \in B^t_m} J_{\lambda,\mu}(\gamma(u)).
\]

By definition of \(c^t_m \) and Lemma 3.4 in [23], we have

\[
d_m < c^t_m \leq b_m,
\]

for all \(t \geq m \geq m_+ \). Therefore, up to a subsequence, there exists

\[
c_m \in [d_m, b_m]
\]

such that

\[
c^t_m \rightarrow c_m \text{ as } t \rightarrow \infty.
\]

From (4.27), (4.28) and (4.30), given \(k \in \mathbb{N} \), there exist \(m(k) \) with \(k < m(k) - m_* \) and \(\lambda_k := \lambda_{m(k)} > 0 \) such that we have at least \(k \) different numbers \(c_m \) as \(m_* \leq m \leq m(k) \), whenever \(\lambda > \lambda_k \). Thus, by Theorem 3.5 in [23], for each \(m_* \leq m \leq m(k) \), there exists \(u_t \in Y_t \) such that

\[
c^t_m - 2/t \leq J_{\lambda,\mu}(u_t) \leq c^t_m + 2/t \text{ and } \|(J_{\lambda,\mu}|_{Y_t})(u_t)\| \leq 8/t,
\]

whenever \(\lambda > \lambda_k \). Consequently, by (4.31) and (4.32), up to a subsequence, \(\{u_t\} \) is a \((PS)^*_{c_m}\) sequence. By Proposition 4.1(ii), \(c_m \) is a critical point of \(J_{\lambda,\mu} \) for all \(m_* \leq m \leq m(k) \). The result follows. \(\square \)

Proof of Theorem 1.1(iii): It is sufficient to argue exactly as in the proof of the second part of Theorem 1.1(ii) and use Proposition 4.1(i) instead of Proposition 4.1(ii). \(\square \)
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)
[2] Bartsch, T., Willem, M.: On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 123, 3555–3561 (1995)
[3] Borovskii, A.V., Gal’kin, A.L.: Dynamical modulation of an ultrashort high-intensity laser pulse in matter. JETP 77, 562–573 (1993)
[4] Brandi, H.S., Manus, C., Mainfray, G., Lehner, T., Bonnaud, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys. Fluids B 5, 3539–3550 (1993)
[5] Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse. Phys. Rev. Lett. 70, 2082–2085 (1993)
[6] Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equations: a dual approach. Nonlinear Anal. 56, 213–226 (2004)
[7] De Bouard, A., Hayashi, N., Saut, J.C.: Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun. Math. Phys. 189, 73–105 (1997)
[8] Deng, Y., Peng, S., Yan, S.: Positive soliton solutions for generalised quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 258, 115–147 (2015)
[9] do Ó, J.M., Miyagaki, O.H., Soares, S.: Soliton solutions for quasilinear Schrödinger equations: the critical exponential case. Nonlinear Anal. 67, 3357–3372 (2007)
[10] do Ó, J.M., Miyagaki, O.H., Soares, S.: Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 249, 722–744 (2010)
[11] Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. 37, 83–87 (1980)
[12] Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)
[13] Laedke, E.W., Spatschek, K.H., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1983)
[14] Litvak, A.G., Sergeev, A.M.: One dimensional collapse of plasma waves. JETP Lett. 27, 517–520 (1978)
[15] Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)
[16] Makhankov, V.G., Fedyanin, V.K.: Non-linear effects in quasi-one-dimensional models of condensed matter theory. Phys. Rep. 104, 1–86 (1984)
[17] Poppenberg, M., Schmitt, K., Wang, Z.Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14(3), 329–344 (2002)
[18] Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Phys. A 110, 41–80 (1982)
[19] Santos, A. V., Santos Júnior, J. R., Suárez, A.: Study of a class of generalised Schrödinger equations, submitted and under revision, arXiv:1807.10529 (2018)
[20] Shen, Y., Wang, Y.: Soliton solutions for generalised quasilinear Schrödinger equations. Nonlinear Anal. 80, 194–201 (2013)
[21] Shen, Y., Wang, Y.: A class of generalised quasilinear Schrödinger equations. Commun. Pure Appl. Anal. 15, 853–870 (2016)
[22] Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. Partial Differ. Equ. 39, 1–33 (2010)
[23] Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
[24] Yang, J., Wang, Y., Abdelgadir, A.A.: Soliton solutions for quasilinear Schrödinger equations. J. Math. Phys. 54, 071502 (2013)
