Abstract

For a neutral element \(n \in L \), [III] have introduced the concept of \(n \)-distributive lattices which is a generalization of both 0-distributive and 1-distributive lattices. For a central element \(n \) of a nearlattice \(S \), we have discussed \(n \)-distributive nearlattices which is a generalization of both 0-distributive semilattices and \(n \)-distributive lattices. For an element \(n \) of nearlattice \(S \), a convex subnearlattice of \(S \) containing \(n \) is called an \(n \)-ideal of \(S \). In this paper, we have given some properties of \(n \)-distributivenearlattices. Finally, we have included a generalization of prime Separation Theorem in terms of annihilator \(n \)-ideal.

Keywords: Central element, 0-distributive lattice, \(n \)-distributive lattice, \(n \)-annihilator, annihilator \(n \)-ideal, prime \(n \)-ideal, \(n \)-distributive nearlattice.
In this paper, we generalize the concept of 0-distributive lattice and \(n\)-distributive lattice and give the notion of \(n\)-distributive nearlattice where \(n\) is a central element of this nearlattice.

A nearlattice \(S\) is a meet semilattice with the property that, any two elements possessing a common upper bound, have a supremum. Nearlattice \(S\) is distributive if for all \(x, y, z \in S\), \(x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)\) provided \(y \vee z\) exists. For detailed literature on nearlattices, we refer the reader to consult [V] and [VIII]. An element \(n\) of a nearlattice \(S\) is called medial if \(m(x, n, y) = (x \wedge y) \vee (x \wedge n) \vee (y \wedge n)\) exists in \(S\) for all \(x, y \in S\). A nearlattice \(S\) is called a medial nearlattice if \(m(x, y, z)\) exists for all \(x, y, z \in S\).

An element \(s\) of a nearlattice \(S\) is called standard if for all \(t, x, y \in S, t \wedge [(x \wedge y) \vee (x \wedge s)] = (t \wedge x \wedge y) \vee (t \wedge x \wedge s)\). The element \(s\) is called neutral if (i) \(s\) is standard and (ii) for all \(x, y, z \in S, s \wedge [(x \wedge y) \vee (x \wedge z)] = (s \wedge x \wedge y) \vee (s \wedge x \wedge z)\).

In a distributive nearlattice, every element is neutral and hence standard. An element \(n\) in a nearlattice \(S\) is called sesquimedial if for all \(x, y, z \in S\), \(((x \wedge n) \vee (y \wedge n)) \wedge [(y \wedge n) \vee (z \wedge n)] \vee (x \wedge y) \vee (y \wedge z)\) exists in \(S\).

An element \(n\) of a nearlattice \(S\) is called a upper element if \(x \vee n\) exists for all \(x \in S\). Every upper element is of course a sesquimedial element. An element \(n\) is called a central element of \(S\) if it is neutral, upper and complemented in each interval containing it.

Let \(S\) be a nearlattice and \(n \in S\). Any convex subnearlattice of \(S\) containing \(n\) is called an \(n\)-ideal of \(S\). For two \(n\)-ideals \(I\) and \(J\) of a nearlattice \(S\), [V] has given a description of \(I \vee J\) while the set theoretic intersection is the infimum. Hence, the set of all \(n\)-ideals of a nearlattice \(S\) is a lattice which is denoted by \(I_n(S)\). \(\{n\}\) and \(S\) are the smallest and largest elements of \(I_n(S)\).

An \(n\)-ideal generated by a finite number of elements \(a_1, a_2, \ldots, a_m\) is called a finitely generated \(n\)-ideal and it is denoted by \(< a_1, a_2, \ldots, a_m >_n\). The set of all finitely generated \(n\)-ideals is denoted by \(F_n(S)\). Clearly, \(< a_1, a_2, \ldots, a_m >_n = < a_1 >_n \vee < a_2 >_n \vee \ldots \vee < a_m >_n\). An \(n\)-ideal generated by a single element \(a\) is called a principal \(n\)-ideal denoted by \(< a >_n\). The set of principal \(n\)-ideals is denoted by \(P_n(S)\).

Let \(S\) be a nearlattice and \(n \in S\). For any \(a \in S\),

\[< a >_n = \{ y \in S : a \wedge n \leq y = (y \wedge a) \vee (y \wedge n) \}\]
\[
\{ y \in S : y = (y \land a) \lor (y \land n) \lor (a \land n) \} \text{whenever } n \text{ is standard element in } S.
\]

If \(n \) is an upper element in a nearlattice \(S \), then \(< a >_n = [a \land n, a \lor n] \).

We know that when \(n \) is standard and medial, the set of all principal \(n \)-ideals \(P_n(S) \) is a meet semilattice and \(< a >_n \cap < b >_n = < m(a, n, b) >_n \) for all \(a, b \in S \). Also, when \(n \) is neutral and sesquimedial, then \(P_n(S) \) is a nearlattice. By \([V] \) if \(S \) is medial nearlattice and \(n \) is a neutral element of \(S \), then \(P_n(S) \) is also a medial nearlattice.

For a distributive nearlattice with an upper element \(n \), \(P_n(S) \) is a distributive nearlattice with the smallest element \(\{ n \} \).

A proper convex subnearlattice \(M \) of a nearlattice \(S \) is called a maximal convex subnearlattice if for any convex subnearlattice \(Q \) with \(Q \supseteq M \) implies either \(Q = M \) or \(Q = S \). A proper convex subnearlattice \(M \) of a medial nearlattice \(S \) is called a prime convex subnearlattice if for any \(t \in M, m(a, t, b) \in M \) implies either \(a \in M \) or \(b \in M \). For a medial element \(n \), an \(n \)-ideal \(P \) of a nearlattice \(S \) is a prime \(n \)-ideal if \(P \neq S \) and \(m(x, n, y) \in P \) \((x, y \in S) \) implies either \(x \in P \) or \(y \in P \). Equivalently, \(P \) is prime if and only if \(< a >_n \cap < b >_n \subseteq P \) implies either \(< a >_n \subseteq P \) or \(< b >_n \subseteq P \).

Let \(n \) be a central element of a nearlattice \(S \). For \(a \in S \), we define \(\{ a \}^{\perp n} = \{ x \in S : m(x, n, a) = n \} \), known as an \(n \)-annihilator of \(\{ a \} \). Also for \(A \subseteq S \), we define \(A^{\perp n} = \{ x \in S : m(x, n, a) = n \text{ for all } a \in A \} \). \(A^{\perp n} \) is always a convex subnearlattice containing \(n \). If \(S \) is a distributive nearlattice, then it is easy to check \(\{ a \}^{\perp n} \) and \(A^{\perp n} \) are \(n \)-ideals. Moreover, \(A^{\perp n} = \cap_{a \in A} \{ a \}^{\perp n} \). If \(A \) is an \(n \)-ideal, then \(A^{\perp n} \) is called an annihilator-\(n \)-ideal which is obviously the pseudo-complement of \(A \) in \(I_n(S) \). Therefore, for a distributive nearlattice \(S \) with central element \(n \), \(I_n(S) \) is pseudocomplemented.

A nearlattice \(S \) with central element \(n \), is called an \(n \)-distributive nearlattice if for all \(a, b, c \in S, < a >_n \cap < b >_n = \{ n \} \) and \(< a >_n \cap < c >_n = \{ n \} \) imply \(< a >_n \cap < b >_n \cap < c >_n = \{ n \} \). Equivalently, \(S \) is called \(n \)-distributive nearlattice if \(a \lor b \leq n \leq a \lor b \) and \(a \land c \leq n \leq a \lor c \) imply \(a \land (b \lor c) \leq n \leq a \lor (b \land c) \).

II. Main results

To obtain the main results of this paper we need to prove the following lemmas.

Lemma (2.1): Every convex subnearlattice not containing \(n \) is contained in a maximal convex subnearlattice not containing \(n \).

Copyright reserved © J. Mech. Cont. & Math. Sci.

Shihui Akhter et al
Proof: Let F be a convex subnearlattice such that $n \notin F$. Let \mathcal{F} be the set of all convex subnearlattice containing F but not containing n. \mathcal{F} is non-empty as $F \in \mathcal{F}$. Let C be a chain in \mathcal{F} and $M = \bigcup (X | X \in C)$. Let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since C is a chain, so either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$. Then $x, y \in Y$. Hence $x \wedge y, x \vee y \in M$. Thus M is a subnearlattice of a nearlattice containing F. Also it is convex as each $X \in C$ is convex. Clearly $n \notin M$. Hence M is a maximal element of C. Therefore, by Zorn’s Lemma, \mathcal{F} has a maximal element, say Q with $F \subseteq Q$.

Lemma (2.2): Let S be a nearlattice with a central element n. A convex subnearlattice M not containing n is maximal if and only if for all $a \notin M$ there exists $b \in M$ such that $m(a, n, b) = n$.

Proof: Suppose M is a maximal convex subnearlattice and $n \notin M$. Also let $a \notin M$. Suppose for all $b \in M$, $m(a, n, b) \neq n$. Set $M_1 = \{y \in L: y \wedge n \leq (a \wedge b) \leq (a \vee b) \vee n \leq y \vee n\}$. Obviously, M_1 is convex subnearlattice as n is central. Moreover, $n \notin M_1$. For otherwise $n \wedge n \leq (a \vee b) \wedge n \leq (a \wedge b) \vee n \leq n \vee n$ implies $m(a, n, b) = n$ which gives a contradiction to the assumption. For $b \in M$, $b \wedge n \leq (a \vee b) \wedge n \leq (a \wedge b) \vee n \leq b \vee n$ implies $b \in M_1$ and so $M \subseteq M_1$. Also, $a \wedge n \leq (a \vee b) \wedge n \leq (a \wedge b) \vee n \leq a \vee n$ implies $a \in M_1$ but $a \notin M$ so $M \subset M_1$. Therefore, we have a contradiction to the maximality of M and so there exists some $b \in M$ such that $m(a, n, b) = n$. Conversely, if M is not maximal and $n \notin M$, then by Lemma (2.1), M properly contained in a maximal convex subnearlattice N not containing n. Then for any element $a \in N - M$ there exists an element $b \in M$ such that $m(a, n, b) = n$. Thus, by convexity $a, b \in N$ and $a \wedge b \leq n \leq a \vee b$ imply $n \in N$ which is a contradiction. Hence M must be maximal.

Following two lemmas are due to [VII]

Lemma (2.3): A proper subset I of a join semilattice S is a maximal ideal if and only if $S - I$ is a minimal prime up set (filter).

Lemma (2.4): Let I be an ideal of a join semilattice S with 1. Then there exists a maximal ideal containing I.

Theorem (2.5): For a medial element n, any prime ideal P containing n of a nearlattice S is a prime n-ideal.

Proof: Since every ideal P is a convex subnearlattice, so any ideal P containing n is an n-ideal. To show the primeness, let $m(a, n, b) \in P$. Then $a \wedge b \leq m(a, n, b)$ implies $a \wedge b \in P$. Since P is prime ideal so either $a \in P$ or $b \in P$. Hence P is a prime n-ideal.

Following lemma is due to [VI]
Lemma (2.6): Every ideal disjoint from a filter \(F \) is contained in a maximal ideal disjoint from \(F \).

Theorem (2.7): Let \(S \) be a nearlattice with a center element \(n \). If the intersection of all prime \(n \)-ideals of \(S \) is \(\{n\} \), then \(S \) is \(n \)-distributive.

Proof: Let \(< a >_n \cap < b >_n = \{n\} \) and \(< a >_n \cap < c >_n = \{n\} \). Let \(P \) be any prime \(n \)-ideal. If \(a \in P \), then \(< a >_n \subseteq P \) and so \(< a >_n \cap < b >_n \cap < c >_n \subseteq P \). If \(a \notin P \), then \(< b >_n \cap < c >_n \subseteq P \) as \(P \) is prime \(n \)-ideal. Hence \(< b >_n \cup < c >_n \subseteq P \). Therefore, \(< a >_n \cap < b >_n \cup < c >_n \subseteq P \) for all prime \(n \)-ideals \(P \). Therefore, \(< a >_n \cap < b >_n \cup < c >_n \subseteq \{n\} \) and so \(S \) is \(n \)-distributive.

Lemma (2.8): Let \(S \) be a nearlattice with a center element \(n \). Then \(p \in \{x\}^{\downarrow}n \) if and only if \(p \land x \leq n \leq p \lor x \).

Proof: \(p \in \{x\}^{\downarrow}n \) if and only if \(m(p, n, x) = n \) if and only if \((p \land x) \lor (p \land n) \lor (x \land n) = (p \lor x) \land (p \lor n) \land (x \lor n) = n \), as \(n \) is central. This implies that \(p \land x \leq n \leq p \lor x \).

Lemma (2.9): Let \(S \) be a nearlattice with a central element \(n \). Then \(p \in \{x\}^{\downarrow}n \) if and only if \(p \lor n \in \{x \lor n\}^{\downarrow}n \) in \([n] \) and \(p \land n \in \{x \land n\}^{\downarrow}d \) in \((n) \).

Proof: Let \(p \in \{x\}^{\downarrow}n \). Then \(p \land x \leq n \leq p \lor x \) and so \((p \lor n) \land (x \lor n) = (p \land x) \lor n = n \) and \((p \land n) \lor (x \land n) = (p \lor x) \lor n = n \) as \(n \) is central element. Thus \(p \lor n \in \{x \lor n\}^{\downarrow}n \) in \([n] \) and \(p \land n \in \{x \land n\}^{\downarrow}d \) in \((n) \). Conversely, let \(p \lor n \in \{x \lor n\}^{\downarrow}n \) in \([n] \) and \(p \land n \in \{x \land n\}^{\downarrow}d \) in \((n) \). Then since \(n \) is central element, so \((p \lor n) \land (x \lor n) = n \) and \((p \land n) \lor (x \land n) = n \). This implies \(p \land x \leq n \). Also, \((p \lor n) \lor (x \lor n) = n \) implies \(p \lor x \land n = n \) and so \(p \leq n \). Hence \(p \land x \leq n \leq p \lor x \). Therefore, by Lemma (2.8), \(p \in \{x\}^{\downarrow}n \).

Now, we give some characterizations of \(n \)-distributive nearlattices.

Theorem (2.10): For a nearlattice \(S \) with a central element \(n \), the following conditions are equivalent:

(i) \(S \) is \(n \)-distributive
(ii) For every \(a \in S \), \(\{a\}^{\downarrow}n \) is an \(n \)-ideal
(iii) For any \(A \subseteq S \), \(A^{\downarrow}n \) is an \(n \)-ideal
(iv) \(I_n(S) \) is pseudocomplemented.
(v) \(I_n(S) \) is 0-distributive
(vi) Every maximal convex subnearlattice not containing \(n \) is prime.
Proof: (i)⇒(ii). Let \(x, y \in \{a\}^n \). Then \(a \land x \leq n \leq a \lor x \) and \(a \land y \leq n \leq a \lor y \). Since \(S \) is distributive, so \(a \land (x \lor y) \leq n \leq a \lor (x \land y) \). Then \(a \land (x \lor y) \leq n \leq a \lor (x \land y) \) and \(a \land (x \lor y) \leq n \leq a \lor (x \land y) \) imply \(x \land y, x \lor y \in \{a\}^n \) [by Lemma (2.8)]. Since \(m(x, n, a) = n \), so \(n \in \{a\}^n \).

Again, let \(x, y \in \{a\}^n \) and \(x \leq t \leq y \). Then \(a \land x \leq n \leq a \lor x \) and \(a \land y \leq n \leq a \lor y \) so \(a \land t \leq n \leq a \lor t \) which implies that \(t \in \{a\}^n \). Hence \(\{a\}^n \) is an \(n \)-ideal.

(ii)⇒(iii). Since \(\{a\}^n \) is an \(n \)-ideal and \(A^\perp = \cap_{a \in A} \{\{a\}^n\} \), so \(A^\perp \) is an \(n \)-ideal.

(iii)⇒(iv) is trivial as for any \(n \)-ideal \(A \in I_n(S) \), \(A^\perp \) is the pseudocomplement of \(A \) in \(I_n(S) \).

(iv)⇒(v) is also trivial because every pseudocomplemented lattice is 0-distributive.

(v)⇒(vi). Suppose \(F \) is maximal convex subnearlattice not containing \(n \). Since \(F = \{F \} \cap \{F\} \) and \(n \in F \), so either \(n \notin \{F\} \) or \(n \notin \{F\} \). Hence by the maximality of \(F \), either \(F \) is an ideal or a filter. Let \(x \notin F \) and \(y \notin F \). Then byLemma (2.2), there exist \(a \in F \) and \(b \in F \) such that \(m(x, n, a) = n = m(y, n, b) \). This implies \(a \land m \leq n \leq x \lor a \) and \(y \lor b \leq n \leq y \lor b \). Hence \(x \land a \land b \leq n \), \(y \land a \land b \leq n \) and \(x \lor a \lor b \geq n \), \(y \lor a \lor b \geq n \) and so \(a \land b, a \lor b \in F \). Then \(x \lor y \lfloor_a \leq n \cap a \land b \lor y \cap a \land b \lor n \)

\[= [n, x \land a \lor b] \land n = [n, n] = [n] \] as \(n \) is central.

Similarly, \(< y \lor n \lfloor_{n \lfloor n} < a \land b \lor n = [n] \). Since \(I_n(S) \) is a \(0 \)-distributive, so \(< a \land b \lor y \lfloor n \cap a \land b \lor n = [n] \). This implies \([n, (a \land b \land (x \lor y)) \lor n] = n \). Hence \(a \land b \land (x \lor y) \leq n \).

Dually, \(< x \land n \lfloor_a \leq n \cap a \land b \lor n = [n] \) and \(< y \land n \lfloor n \cap a \lor b \lor n = [n] \). Without loss of generality, suppose \(F \) is filter. If \(x \lor y \in F \), then \(a \land b \land (x \lor y) \leq n \) implies \(n \in F \) which is a contradiction. Hence \(x \lor y \notin F \). Therefore, \(F \) is a prime filter. Similarly, if \(F \) is a ideal, then it is a prime ideal.

(vi)⇒(i). Let \(a \land b \leq n \leq a \lor b \) and \(a \land c \leq n \leq a \lor c \) provided \(a \lor b \) and \(a \lor c \) exist. We need to show that \(a \land (b \lor c) \leq n \leq a \lor (b \land c) \). If not, without loss of generality, let \(a \land (b \lor c) \notin n \) and \(b \lor c \notin n \). Then by Lemma 1, there exists a maximal convex subnearlattice \(M \ni F \) and \(n \notin M \). But a convex subnearlattice containing a filter is itself a filter. Then by (vi), \(M \) is a filter.

Now, \(a \in M \) and \(b \lor c \in M \) imply \(a \land b \in M \) or \(a \land c \in M \) as \(M \) is prime. This implies \(n \in M \) which is a contradiction. Hence \(a \land (b \lor c) \leq n \leq a \lor (b \land c) \). Therefore, \(S \) is \(n \)-distributive.

Copyright reserved © J. Mech. Cont. & Math. Sci.
Shidul Akhter et al
Corollary (2.11): In an n-distributive nearlattice every filter not containing n is contained in a prime filter.

Proof: This is trivial by Lemma (2.1) and Theorem (2.10).

Theorem (2.12): Let S be an n-distributive nearlattice. If A ≠ {n} and A = ∩ {I ∈ Iₙ(S): I ≠ {n}}, then A¹ⁿ = {x ∈ S: {x}¹ⁿ ≠ {n}}.

Proof: Let x ∈ A¹ⁿ. Then m(x, n, a) = n for all x ∈ A. Since A ≠ {n} so \{x\}¹ⁿ ≠ {n}. Hence x ∈ R.H.S. So A¹ⁿ ⊆ R.H.S. Conversely, let x ∈ R.H.S. Since S is n-distributive so \{x\}¹ⁿ is an n-ideal and so \{x\}¹ⁿ ≠ {n}. Then A ⊆ \{x\}¹ⁿ and so A¹ⁿ ⊇ \{x\}¹ⁿ. Therefore, A¹ⁿ = {x ∈ S: \{x\}¹ⁿ ≠ \{n\}}.

Theorem (2.13): Let S be a nearlattice with a central element n. Then S is distributive if and only if for a convex subnearlattice \(\mathcal{F}\) disjoint with \(\{x\}¹ⁿ(x \in S)\), there exists a prime convex subnearlattice \(P \ni \mathcal{F}\) and disjoint with \(\{x\}¹ⁿ\).

Proof: Let S be n-distributive and \(F\) be a convex subnearlattice disjoint from \(\{x\}¹ⁿ\). Then by Zorn’s Lemma, there exists a maximal convex subnearlattice \(P\) disjoint from \(\{x\}¹ⁿ\). Since \(P = (P) \cap (P)\) so either \((P) \cap (\{x\}¹ⁿ) = \phi\) or \((P) \cap (\{x\}¹ⁿ) = \phi\). Thus by the maximality of \(P\), it is either an ideal or a filter. Without loss of generality, let \(P\) be a filter. We claim that \(x \in P\). If \(P \ni [x] \neq P\). Then by the maximality of \(P\), \((P \ni [x]) \cap (\{x\}¹ⁿ) = \phi\). Let \(t \in (P \ni [x]) \cap (\{x\}¹ⁿ)\). Then \(t \geq p \land x\) for some \(p \in P\) and \(t \land x \leq n \leq t \lor x\). Thus \(p \land x \leq t \land s \leq n\). Hence \((p \lor n, n, x) = n\) which implies \(p \lor n \in (\{x\}¹ⁿ)\). But \(p \lor n \in P\) if \(P\) is a filter. This gives a contradiction to the fact that \(P \ni (\{x\}¹ⁿ) = \phi\). Therefore \(x \in P\). Let \(z \notin P\), then \((P \ni [z]) \land (\{x\}¹ⁿ) = \phi\). Let \(y \in (P \ni [z]) \land (\{x\}¹ⁿ)\). Then \(y \land x \leq n \leq y \lor x\) and \(y \geq p \land z\) for some \(p \in P\) so \(p \land x \land z \leq y \land x \leq n\). Hence \(m(z, n, (p \land x) \lor n) = n\) where \((p \land x) \lor n \in P\) as \(P\) is a filter. Then by Lemma (2.2), \(P\) is a maximal filter not containing n. Therefore, by Theorem (2.10), \(P\) is Prime.

Conversely, let \(<x >ₙ \cap <y >ₙ = \{n\}\) and \(<x >ₙ \cap <z >ₙ = \{n\}\). We need to prove that \(<x >ₙ \cap (<y >ₙ \lor <z >ₙ) = \{n\}\). That is, \(x \land (y \lor z) \not\leq n\). Then \([y \lor z] \land (\{x\}¹ⁿ) = \phi\). Otherwise \(t \in [y \lor z] \land (\{x\}¹ⁿ)\) implies \(t \land x \leq n \leq t \lor x\) and \(t \geq y \lor z\). These imply \(x \land y \lor z \leq t \land x \leq n\) is a contradiction. So there exists a prime filter \(P\) containing \([y \lor z]\) disjoint with \(\{x\}¹ⁿ\). Since \(z \in \{x\}¹ⁿ\) so \(y, z \not\in P\). Hence \(y \lor z \not\in P\) as \(P\) is prime. This implies \(P \ni (y \lor z)\) is a contradiction. Dually by taking \(x \lor (y \land z) \not\leq n\), we would have another contradiction. Therefore, \(x \land (y \lor z) \leq n \leq x \lor (y \land z)\) and so \(S\) is n-distributive.
III. Conclusion

In this paper, we generalize the concept of 0-distributive lattice and \(n \)-distributive lattice where \(n \) is a neutral element of this lattice and give the notion of \(n \)-distributive nearlattice where \(n \) is a central element of this nearlattice. We also include several nice characterizations of \(n \)-distributive nearlattices and prove some interesting results on \(n \)-distributive nearlattices.

References

I. A. S. A. Noor and M. A. Latif, *Finitely generated \(n \)-ideals of a lattice*, SEA Bull. Math., 22(1998), pp. 73-79

II. M. A. Latif and A. S. A. Noor, *A generalization of Stone’s representation theorem*, The Rajshahi University Studies(Part-B),31(2003), pp. 83-87.

III. M. AyubAli, A.S.A. Noor and Sompa Rani Poddar, *\(n \)-distributive lattice*, Journal of Physical Sciences, 16(2012), pp. 23-30.

IV. P. Balasubramani and P.V. Venkatanarasimhan, *Characterizations of the 0-distributive Lattices*, Indian J. Pure Appl. Math., 32(3)(2001), pp. 315-324.

V. S. Akhter, *A Study of Principal \(n \)-Ideals of a Nearlattice*, Ph.D. Thesis, Rajshahi University, Bangladesh(2003).

VI. S. Akhter and A. S. A. Noor, *Semi Prime Filters in Join Semilattices*, Annals of Pure and Applied Mathematics, 18(1)(2018), pp. 45-50. DOI: http://dx.doi.org/10.22457/apam.v18i1a6

VII. S. Akhter and A. S. A. Noor, *1-distributive join semilattice*, J. Mech. Cont. & Math. Sci., 7(2)(2013), pp. 1067-1076.

VIII. W. H. Cornish and A. S. A. Noor, *Standard elements in a nearlattice*, Bull. Austral. Math. Soc. 26(2)(1982), pp. 185-213.

IX. Y. S. Powar and N. K. Thakare, *0-distributive semilattices*, Journal of Pure and Applied Algebra, 56(1978), 469-475.