Upregulation of Barrel GABAergic Neurons Is Associated with Cross-Modal Plasticity in Olfactory Deficit

Hong Ni1, Li Huang1, Na Chen2, Fengyu Zhang2, Dongbo Liu1, Ming Ge1, Sudong Guan1, Yan Zhu1, Jin-Hui Wang1,2*

1 Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China, 2 State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China

Abstract

Background: Loss of a sensory function is often followed by the hypersensitivity of other modalities in mammals, which secures them well-awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain to be documented.

Methodology/Principal Findings: Multidisciplinary approaches, such as electrophysiology, behavioral task and immunohistochemistry, were used to examine the involvement of specific types of neurons in cross-modal plasticity. We have established a mouse model that olfactory deficit leads to a whisking upregulation, and studied how GABAergic neurons are involved in this cross-modal plasticity. In the meantime of inducing whisker tactile hypersensitivity, the olfactory injury recruits more GABAergic neurons and their fine processes in the barrel cortex, as well as upregulates their capacity of encoding action potentials. The hyperpolarization driven by inhibitory inputs strengthens the encoding ability of their target cells.

Conclusion/Significance: The upregulation of GABAergic neurons and the functional enhancement of neuronal networks may play an important role in cross-modal sensory plasticity. This finding provides the clues for developing therapeutic approaches to help sensory recovery and substitution.

Introduction

Human beings with the loss of a sensory function appear hypersensitive to other stimuli, such as blindness individuals demonstrate the enhanced touch and auditory functions for spatial identification, and deaf ones are alert to visual input for their communications [1,2,3,4,5,6]. In these types of cross-modal sensory plasticity, the hypersensitivity in the remained sensory modalities and subsequent sensory substitution maintain the homeostasis in sensory functions and well-awareness to living environments. The elucidation of the mechanisms underlying cross-modal sensory plasticity provides the clues for developing therapeutic approaches to help sensory recovery and substitution. Cross-modal sensory plasticity in rodents is accompanied by the enlargement of cortical areas for remained modalities [3,5,7,8], the high expression of certain genes [9,10] and the rewire/crosswire of neural circuits [7]. It is not known about its cellular mechanisms. Furthermore, is the cross-modal plasticity present in all types of sensations? In order to address these questions, we have developed a mouse model of olfactory deficit, and examined plastic changes in whisker tactile sensation and barrel cortical GABAergic neurons. A rationale for studying GABAergic neurons is that their rhythmic activities coordinate the behaviors of principal neurons in neural network [11,12,13,14,15,16,17]. The associative up-regulations in whisker tactile and barrel GABAergic neurons are found after a loss of olfaction.

Results

In the studies of cross-modal plasticity and its cell-specific mechanisms, we established a mouse model of olfactory deficit by injuring olfactory epithelia on left side, and examined whether the loss of olfaction up-regulates whisker tactile sensation and induces cellular changes in barrel cortex. A week after injury of olfactory epithelia, we analyzed the behavior of whiskers and the morphology/function of GABAergic neurons in barrels. As whisker afferents project to barrel cortex on contralateral side [18] and olfactory afferents mainly input to piriform cortex on the same side [19], we presented “deprivation” in figures for the right side of whiskers and the left side of barrel cortex, whereas “control” for the left side of whiskers and the right one of barrel cortex.

A loss of olfaction up-regulates whisker tactile sensation

The active and rhythmic sweeping of whiskers (i.e., whisking) signifies whisker tactile sensation in rodent [20,21,22]. The measurement of whisker behaviors usually includes free-air
whisking and stimulation-induced whisker protraction-retraction [23]. To detect whisker tactile sensation, we measured the frequency of free-air whisking, which denotes active tactile sensation, and the duration of whiskers’ retraction after puffing air toward them, which stands for tactile sensitivity to stimulations (Fig. 1). The correlation of whisking strength to tactile sensitivity is based on a rule in physiological reflex that the magnitude of reaction is proportional to the sensitivity of sensory system under a given stimulation.

Panels A-B in Fig. 1 show whisker retraction induced by puffing air to control side (right in A) and olfaction-deprived side (left in B) in a mouse. Whiskers’ retraction (pointed by yellow arrows) is more obvious on the right side where whisker afferents project to the left side of barrel cortex (i.e., the side of olfactory deprivation). Fig. 1C shows that the duration of whisker retraction is statistically longer in right side (gray bar) than left side (white; n = 15, p < 0.001). Fig. 1D shows the comparison of whisking frequency in right side (gray bar) vs. left side (white; n = 23, p < 0.01). Whisker hyperactivity associated with olfaction deficit denotes that the loss of olfactory function up-regulates whisker tactile sensation, a novel model of cross-modal sensory plasticity.

To understand cellular mechanisms underlying this cross-modal plasticity from olfactory deficit to whisker tactile upregulation, we examined changes in the morphology and functions of GABAergic neurons in barrel cortex. A rationale for this study is that the rhythmic activities of GABAergic cells coordinate the behaviors of principal neurons in neural network [14,15,16,17,24,25].

Anatomical changes of barrel GABAergic neurons after olfaction loss

We analyzed the number and structure of barrel cortical GABAergic cells in cross-modal sensory plasticity in FVB-Tg(GADGFP)4570Swn/J mice with olfactory injury in that somatostain-positive GABAergic cells were labeled by GFP. A week after olfactory deficit, the number of GABA cells was counted in each cross-section of barrels. The primary processes (branches from soma) and secondary ones (branches from primaries) of GABAergic neurons were measured in each of barrel sections.

Fig. 2 illustrates the effects of olfactory deficit on the number of GABAergic neurons in barrel cortex. The number of GFP-labeled cells per barrel is lower in control (2A) than olfaction-deprived side (2B). Their number on the average from all optically visible barrels with clear edge, in which the number of barrels is 101 from seven mice, is 4.78 ± 0.23 in left side (olfactory deprivation, gray bar in Fig. 2C) and 3.97 ± 0.23 in right (control, white bar; p < 0.01). Therefore, olfactory deprivation recruits more GABAergic neurons in barrel cortex.

In quantifying all subtypes of GABAergic neurons, we applied an alternative way. Cytochrome Oxidase (CO) in mitochondria is endogenous metabolic marker for neuronal activity [26,27]. Highly active GABAergic cells consume much energy produced from
CO-mediated reactions [28]. The neurons with high CO level were counted as GABAergic cells. The immunocytochemical staining of GAD67 and CO was used to be sure that CO-positive cells are GABAergic identity. As all cells are stained by hematoxylin that labels rough endoplasmic reticulum, we calculate CO-positive cells versus Nissl’s cells to quantify the ratio of GABAergic neurons to total cells.

Fig. 3 shows the effects of olfactory deprivation on the number of total GABAergic cells in barrel cortex. In the cross-section of single barrel, the number of CO-positive cells (brown, pointed by green arrows) vs. Nissl’s counterstaining cells (blue) appear lower in control (3A) than olfactory deprivation (3B). The ratios of CO-positive cells to total cells per barrel section on the average are 0.054 ± 0.0015 under control (white bar) and 0.083 ± 0.0018 under olfactory deprivation (gray in Fig. 3C; n = 10, p < 0.01). In immunocytochemical staining, GAD67 (Fig. 3D) and CO (Fig. 3E) are co-localized in the same neurons (Fig. 3F). Therefore, olfactory deprivation in mice increases the number of GABAergic neurons vs. total cells in barrel cortex.

The influences of olfactory deprivation on the process density of GABAergic neurons in barrel cortex were studied in FVB-Tg(GadGFP)4570Swn/J mice (Fig. 4). In the cross-section from single barrels, process density at GABAergic neurons appears lower in control (4A) than olfaction deficit (4B). Fig. 4C illustrates the number of primary processes per GABAergic neuron on the average from each of barrel sections under controls (white bar) vs. olfactory deprivation (gray; n = 59, p = 0.81). Fig. 4D shows that the number of secondary processes per GABAergic neuron is significantly lower under control (white bar) than olfactory deprivation (gray; n = 51, p < 0.01). Therefore, olfactory deprivation in mice also increases the fine processes of GABAergic neurons in barrel cortex.

Olfactory deprivation up-regulates encoding capacity in barrel GABAergic neurons

We investigated the changes in the spike encoding and intrinsic properties of barrel cortical GABAergic neurons in cross-modal plasticity of olfactory deprivation. Their encoding capacity was merited by inter-spike intervals (ISI), and their intrinsic properties include spike threshold potential (Vts) and refractory periods (RP) [29,30,31,32]. In whole-cell recording, ISIs were measured by evoking spikes (depolarization current, 200 ms), and ARPs were done by injecting depolarization pulses (3 ms) into the neurons after each of spikes. Thresholds were a gap between resting membrane potential (Vr) and threshold potential (Vts).

Fig. 5 shows the effect of olfactory deprivation on sequential spikes at GABAergic neurons. This manipulation appears to increase the number of spikes in a given time (Fig. 5A). The ISI values of spikes 1–2 up to 4–5 are 8.7 ± 0.25, 10.5 ± 0.5, 12.85 ± 0.86 and 14.82 ± 1.06 ms under controls (open symbols
in Fig. 5B); and are 6.2±0.25, 8.31±0.56, 10.51±0.9 and 12.0±1.08 ms a week after olfactory deprivation (filled symbols). ISI values for corresponding spikes under two conditions are statistically different (n=15, p<0.01). Therefore, the capacity of encoding action potentials at barrel GABAergic neurons is enhanced in cross-modal plasticity of olfactory deprivation.

Fig. 6 illustrates the influences of olfactory deficit on Vts and ARPs at barrel cortical GABAergic neurons. The values of Vts-Vr for spikes 1-5 are 34.34±1.1, 38.83±1.2, 39.7±1.2, 40.11±1.14 and 40.27±1.0 mV under control (open symbols in Fig. 6A); and are 28.8±1.06, 34.85±1.3, 35.5±1.1, 36.1±0.83 and 37.72±1.0 mV under olfactory deficit (filled, n=15). Vts-Vr values for corresponding spikes under two conditions are statistically different (p<0.01). Furthermore, ARPs at GABAergic neurons appear to be shortened (Fig. 6B). ARP values for spikes 1-4 are 4.1±0.1, 4.6±0.13, 4.94±0.15 and 5.23±0.2 ms under control (open symbols in Fig. 6C); and are 3.55±0.07, 4.03±0.08, 4.34±0.13 and 4.56±0.14 ms under olfactory deprivation (filled symbols). ARP values for corresponding spikes are statistically different under two conditions (n=15, p<0.01). Thus, olfactory deprivation reduces threshold potentials and shortens refractory periods to raise the capacity of encoding action potentials at barrel GABAergic neurons.

Afterhyperpolarization enhances the capacity of encoding sequential spikes

How do we explain the correlation between the hypersensitivity of whisker tactile sensation and upregulation of barrel GABAergic cells after olfactory deprivation? GABAergic neurons may directly take part in encoding tactile sensation with the proportional correlation between tactile sensitivity and their activities. Alternatively, principal neurons encode the sensations; whereas GABAergic neurons increase the sensitivity of principal neurons to input signals. We examined the second hypothesis.

GABAergic neurons can be activated after spikes fired at principal neurons via a feedback route [14,15,16,24], which falls into the phase of pyramidal afterhyperpolarization (AHP). To examine the regulation of this inhibitory component in spike encoding, we injected depolarization pulses to evoke spikes and HP pulses (3 ms) immediately after each of spikes to simulate AHP in barrel pyramidal neurons. Fig. 7 shows spike capacity at these neurons with and without giving AHP pulses. Short-term AHP pulses appear to enhance spike encoding (Fig. 7A). Fig. 7B illustrates an analysis of ISI between spikes one and two (ISI1-2) up to four and five (ISI4-5). Values from ISI1-2 to ISI4-5 are 15.04±0.95, 33.26±1.17, 39.66±1.23 and 43.34±1.09 ms under control (open symbols); and are 14.23±0.71, 27.83±1.26, 35.24±1.44 and 38.3±1.3 ms under AHP pulses (filled symbols). ISI values for corresponding spikes under the two conditions are statistically different (p<0.01, n=18), except for ISI1-2. Therefore, AHP increases the capacity of encoding sequential spikes, granting our hypothesis that feedback inhibition mediated by GABAergic neurons enhances the function of their target cells (such as principal neurons) in encoding the sensations.

Figure 3. Olfactory deprivation raises the number of Cytochrome Oxidase (CO) positive cells that are GABAergic in mouse barrel cortex. The ratio of CO-positive cells to total cells from each of barrel cross-sections was examined by CO histochemistry and subsequent Nissl's counterstaining, and was estimated based on brown (CO-positive cells) vs. blue (Nissl's) cells. A) illustrates a cross-section view of a single barrel from right side (control); and B) shows a cross-section view of a single barrel from left side (olfactory deprivation). Green arrows point to CO positive cells. C) shows quantitative data in the ratio of CO-positive cells to total per barrel section from right-side (control, white bar) and left-side (olfactory deprivation, gray) in mice (n=10, p<0.01, **). D-F) Barrel CO-positive neurons are GABAergic. Immunocytochemical staining images present glutamate decarboxylase (GAD67) positive neurons (green in D), CO-positive cells (red in E) and the merged imaging of GAD67-CO cells (F) under a laser scanning confocal microscopy. doi:10.1371/journal.pone.0013736.g003
Figure 4. Olfactory deprivation raises process density of barrel GABAergic neurons that are somatostatin-positive and labeled with eGFP. A) shows GABAergic neuron and its processes in cross-section of a single barrel from right side (control). B) shows GABAergic neuron and its processes in cross-section of single barrel from left side (olfactory deprivation). C) shows quantitative data in primary processes from each of GABAergic cells (n = 59) under controls (white bar) and olfactory deprivation (gray, p = 0.81). D) shows the secondary processes from each of GABAergic neurons (n = 51) under control (white bar) and olfactory deprivation (gray, p < 0.01).

doi:10.1371/journal.pone.0013736.g004

Figure 5. Olfactory deprivation increases the capacity of spike encoding of barrel GABAergic neurons that are somatostatin-positive and labeled with eGFP. Depolarization pulses were injected to evoke sequential spikes. A) shows sequential spikes at GABAergic neurons from right-side barrel cortex (control, blue line) and from left-side (olfactory deprivation, red line). Dash lines represent threshold potentials. B) shows quantitative data in inter-spike intervals at GABAergic neurons from right-side barrel cortex (control, blue symbols) and from left-side (olfactory deprivation, red symbols; n = 15, p < 0.01, **).

doi:10.1371/journal.pone.0013736.g005
We established a novel model of cross-modal sensory plasticity that olfactory deficit upregulates whisker tactile sensation in mice (Fig. 1), and investigated cell-specific mechanisms in barrel cortex. The hypersensitivity of whisker tactile after the olfactory injury is coming up with the increases in the number of barrel GABAergic neurons (Figs. 2–3), the density of their fine processes (Fig. 4) and the capacity of their encoding digital spikes (Figs. 5–6). AHP mediated by inhibitory inputs onto principal neurons in barrel cortex enhances their capacity of encoding action potentials (Fig. 7). Such changes at the cellular level are embedded into the mechanisms underlying cross-modal sensory plasticity after a loss of olfaction.

It is well known that blindness possesses the enhanced touch and auditory functions for spatial localization, and deaf individuals are alert to visual inputs for their communication [1,2,3,4,5,6]. Here, we report a new model of cross-modal plasticity from olfactory loss to whisker tactile sensitization, strengthening a hypothesis that cross-modal sensor plasticity is present in all types of sensations. In cross-modal sensory plasticity, the hypersensitivities in the remained sensory modalities and subsequent sensory substitution in that the information acquired from a sensor modality is used to accomplish the tasks served primarily by another one maintain individuals' awareness to their living environment.

In terms of mechanisms underlying cross-modal sensory plasticity in rodents, the studies show the enlargement of cortical...
areas for the spared modalities [3,5,8], the high expression of
certain genes [9,10] and the rewire/crosswire of neural circuits [7]
after the loss of a specific sensation. In studying cell-specific
mechanism, we found that the upregulation of GABAergic
neurons in barrel cortex is associated with whisker tactile
sensitization, and afterhyperpolarization raises encoding capacity
at GABA-targeting cells (e.g., principal neurons) in barrel cortex.
The viable types of rhythmic activities in central GABAergic cells
coordinate the behaviors of principal neurons [15,16,17,24,25].
These natures in barrel GABAergic neurons and their upregula-
tion may play important role in the sensitization of spared sensory
modalities in the cross-modal plasticity.

Regarding the initiation of cross-modal plasticity, how does a
cortical area send out the signals about losing a sensory input to
other areas for the remained sensory modalities, such as the signals
of olfactory deprivation from piriform cortex to barrel cortex in
our model? It has been proposed that neural circuits among these
areas are rewired or crosswired [7]. In the rewire of neural circuits,
there is a formation of new connections between an area of losing
sensory input and the areas for other modalities, especially in
young age. On the other hand, the crosswire of neural circuits
among sensory cortices is physically present and functionally silent,
which can be activated by the signals about losing a specific
sensation. Either of possibilities remains to be examined (Fig. 8).

Cross-modal sensory plasticity may be initiated by the process
that sensory afferents are rewired in cross-modal manner after a
loss of sensation. It was observed that the afferents from the
remained sensory organs project to a cortical region of losing
functional input [3,5,7,8]. Visual stimuli evoke the potentials in
the auditory cortex of deaf individuals, and ring stimuli evoke the
potentials in blindness’s visual cortex. When the afferents from the
remained sensory organs project to the cortical area that loses
sensory inputs, sensory substitution may form. In the meantime,
the signals to the cortices of the remained modalities are weak,
which leads to the expansion of these cortices to maintain
homeostasis in their sensations and even sensory hypersensitivity.
This cross-modal projection of afferents can be explained by the
repealing among sensory afferents and the attraction from each of
sensory cortices to specific afferents. Signals in Wnts family
function to both repeal and attract the extension of axons
[33,34,35].

It remains to be addressed about molecular mechanisms for the
neural circuits to be rewired. This rewire includes the crosswire
circuits to be reactivated between sensory cortices and the afferents
of the remained modalities to reach a sensory cortex that loses
input signals. In our study, it is also to be addressed how
GABAergic neurons are up-regulated, whether the morphology
and functions of other neurons in barrel cortex are changed after a
loss of olfaction, how these never cells coordinate work together
to up-regulate whisker tactile sensation. Our finding, the
regulation of GABAergic neurons mechanistically for cross-modal
sensory plasticity, is an initiative for cross-modal sensory plasticity,
a less studied field in neuroscience. A revelation of their
mechanisms provides the clues for developing therapeutic
approaches to help sensory recovery and substitution.

It may be questioned whether olfactory deprivation on left side
affects olfactory pathway on right side, and whether the left side of
piriform cortex after olfactory deprivation receives the signals from
right side of olfactory pathway, since there is a connection between
two sides of olfactory bulbs [36]. The following points do not favor
these arguments. The cross-links between olfactory bulbs are not
matured until postnatal week two [36], whereas olfaction in our
study is deprived at PND 12 (Methods). The deprivation-induced
structural defects in olfactory bulbs, such as the loss of glomeruli
and olfactory tracts (Figure S2), do not support these cross-links to
be developed well. Moreover, when examining piriform cortex on
both sides, we observed that the dendrites of GABAergic neurons
in the deprived side are less than those in control side (Figure S3),
indicating less effect of these cross-links on piriform cortex.

We used the immunocytochemical staining of GAD67 and CO
to examine whether all subtypes of GABAergic neurons are
involved in cross-modal sensory plasticity (Fig. 3). This datum
could be argued by a possibility that CO-positive cells are
GABAergic. CO in mitochondria is endogenous metabolic maker
for neuronal activity [26,27]. Highly active GABAergic neurons
consume much energy produced from CO-mediated reactions
[28]. The neurons with a high CO level are likely GABAergic
cells, including somatostain (SOM)- and parvalbumin (PV)-
positive neurons [37]. On the other hand, our data at least
indicate that the plasticity of SOM-positive GABAergic cells is
associated with cross-modal sensory plasticity. As SOM-GABAer-
gic neurons coordinate the activities of large populations of
excitatory neurons [11,12,13], these coordinated excitatory
neurons may upregulate barrel cortex and whisker tactile sensation
in mice. We introduce a novel model of cross-modal sensory

Figure 8. A schematic diagram illustrates cross-modal sensory
plasticity from olfaction deprivation to whisker tactile upre-
gulation and the involvement of GABAergic neurons. The left
side of olfaction was deficit (red-cross marker), which leads to the
down-regulation of piriform cortex (blue arrow). In meantime, whisker
tactile sensation in the right side is up-regulated (expanded arrow),
compared with the control. This cross-modal plasticity from olfaction to
whisker tactile sensation is accompanied by the increases in the
number of GABAergic cells (green), the density of their fine processes as
well as the functions of encoding digital spikes (red arrow) in the barrels
of sensory cortex for whisker tactile (orange columns). How the
information about a loss of olfaction from piriform cortex is transmitted
to barrel cortex remains to be investigated, as indicated by a question
marker.
doi:10.1371/journal.pone.0013736.g008
plasticity from olfactory deficit to whisker tactile hypersensitivity, and present its cell-specific mechanism, i.e., the upregulation of GABAergic neurons that enhance their target-cell's encoding (Fig. 8). Our data provide avenues for therapeutics to benefit sensory recovery and substitution.

Materials and Methods

The establishment of cross-modal plasticity relevant to olfactory system

The study and all experiments conducted were fully approved by the Institutional Animal Care Unit Committee in Administration Office of Laboratory Animals Beijing China (B10831). In the model of a loss of olfaction, we have deprived the olfaction permanently by dropping chloroform (40 μl) into the top of unilateral nasal cavity (left side) to injure olfactory epithelium cells in FVB-Tg(GADGFP)4570Swn/J mice (Jackson Lab, USA) at postnatal days (PND) 12. Nasal cavities on right side of these mice were opened for control. One week after this manipulation, the successful deprivation was tested based on the morphological changes of olfactory epithelia (supplementary Fig. S1) and bulb (supplementary Fig. S2). A few of points are given below. Epithelia in left nasal cavity are still functional since mice with olfactory deprivation still have sneezing induced by placing hydrochloride in front of nasal, i.e., trigeminal pathway was not injured. Left olfactory deprivation and right side control are based on the fact that both sides of olfactory system, barrel cortex and whisker behavior are inherently symmetrical [18,23,36]. We applied this unilateral olfactory deprivation without examining the physiological loss of olfactory function because mice with bilateral deprivation show an extreme malnutrition and high death rate.

A week after olfactory deprivation, we examined the behavior of whiskers under digital video camera, the intrinsic properties of GFP-labeled GABAergic neurons by whole-cell recordings, the number and morphology of these cells by a laser scanning confocal microscope. We used Cytochrome Oxidase histochemistry plus Nissl's counterstaining and immunocytochemistry to examine a change of total GABAergic neurons. These studies were statistically compared on left side (olfactory loss) vs. right side (control) in the same mice.

Electrophysiological study

Cerebral cortical slices (400 μm) were prepared from FVB-TgGad-GFP (4570Swn/J) mice whose GABAergic neurons express green fluorescent protein (GFP). PND 19–22 mice were anesthetized by injecting chloral hydrate (300 mg/kg) and decapitated by a guillotine. The slices were sectioned with a Vibratome in the modified and oxygenized (95% O2 and 5% CO2) artificial cerebrospinal fluid (mM: 124 NaCl, 3 KCl, 1.2 NaH2PO4, 26 NaHCO3, 2.4 HEPES; pH 7.35) at 4°C. The slices were sliced in the cross section of barrel cortex at 20 μm by a freezing microtome. The sections were washed by PBS for 3 times, and stained by CO histochemistry [26]. Subsequent Nissl's counterstaining included that the sections were defatted in xylene, and stained by CO histochemistry [26]. In the study of CO histochemistry plus Nissl's counterstaining, the brain tissues were placed in sucrose/PBS with concentrations of 10%, 20% and 30% sequentially until they sank. Cortical tissue was sliced in the cross section of barrel cortex at 20 μm by a freezing microtome. The sections were washed by PBS for 3 times, and stained by CO histochemistry [26]. Subsequent Nissl's counterstaining included that the sections were defatted in xylene, passed in alcohol with gradient concentrations and placed in hematoxylin. Sections were washed, decolorized, dehydrated, air-dried and cover-slipped. The distribution and number of CO-positive neurons (CO higher activity) were observed under conventional optical microscope. In the study of the number of GABAergic neurons, cortical tissue was sliced in the cross section of barrel cortex at 40 μm by a Vibratome. In the study of the fine structure of GABAergic neurons, cortical tissue was sliced in the cross section of barrel cortex at 60 μm. The sections were washed in PBS, air-dried and cover-slipped. The images of

FVB-TgGadGFP (4570Swn/J) mice in one week after olfactory deprivation were anesthetized by the intraperitoneal injection of sodium pentobarbital, and were perfused with 4% paraformaldehyde in 0.1 M phosphate buffer solution (PBS) from left ventricle/aorta until the body was rigid. The brains were quickly isolated and fixed in 4% paraformaldehyde in 0.1 M phosphate buffer solution (PBS) for additional 24 hours. In the study of CO histochemistry plus Nissl's counterstaining, the brain tissues were placed in sucrose/PBS with concentrations of 10%, 20% and 30% sequentially until they sank. Cortical tissue was sliced in the cross section of barrel cortex at 20 μm by a freezing microtome. The sections were washed by PBS for 3 times, and stained by CO histochemistry [26]. Subsequent Nissl's counterstaining included that the sections were defatted in xylene, passed in alcohol with gradient concentrations and placed in hematoxylin. Sections were washed, decolorized, dehydrated, air-dried and cover-slipped. The distribution and number of CO-positive neurons (CO higher activity) were observed under conventional optical microscope. In the study of the number of GABAergic neurons, cortical tissue was sliced in the cross section of barrel cortex at 40 μm by a Vibratome. In the study of the fine structure of GABAergic neurons, cortical tissue was sliced in the cross section of barrel cortex at 60 μm. The sections were washed in PBS, air-dried and cover-slipped.
GFP-GABAergic neurons’ structure and number in the cross-sections of barrel cortex were taken under a laser scanning confocal microscopy (Olympus FV-1000, Japan).

In immunocytochemical study of co-localization of CO and glutamate decarboxylase (GAD67), cortical tissue was sliced by a Vibratome for 40 μm. The sections were incubated in monoclonal anti-GAD67 (1:200) and polyclonal anti-CO (1:100) antibodies (Sigma, USA) at 4°C with shaking for 24 hours, and then were incubated in FITC-jointed anti-mouse and red-fluorescent-jointed anti-rabbit (1:200) antibodies [26,41]. Images of GAD67 (green) and CO (red) stained neurons in barrel cortex were taken by a laser scanning confocal microscope, in which the parameters of laser beam and PMT were fixed for all experiments.

The number and structures of GABAergic neurons were analyzed by a commercialized software MetaMorph in Meta Imaging Series (ver. 6.1, Universal Imaging Cooperation in Molecular Device). As brain tissues were sliced in series sections, the counting and analysis in cell number and structures were able to be done at least from two sections for each of barrels. The analyzed sections were chosen in a manner of one section from every two in order to prevent the influence of cells that crossed the neighboring sections on the analysis.

Behavioral studies

Mice sweep whiskers actively to explore their environments and maintain their perception to the world, in which whisking behavior is proportionally associated with whisker tactile sensation [18,20,21,22]. Whisker’s tactile sensitivity was tested by free-air whisking and air-puffing induced whisker retraction [23]. Based on data recorded in awaking and restrained mice by digital video camera in high speed, we analyzed the time of whisker sweeping (whisking frequency) and the duration of backward sweeping (retraction duration) induced by puffing air toward whiskers on “deprivation” side versus “control” side. The correlation of whisking strength to tactile sensitivity is based on a rule in physiological reflex, i.e., reaction magnitude is proportional to the sensitivity of sensory system under the condition of constant stimuli.

Supporting Information

Figure S1 Chloroform (40 μl) dropped into the top of nasal cavity injures olfactory epithelium cells showed by Nissl’s staining.

References

1. Collignon O, Voos P, Lassonde M, Lepore F (2009) Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research 192: 343–350.
2. Dye MW, Hauser PC, Bavelier D (2008) Visual skills and cross-modal plasticity in deaf readers: possible implications for acquiring meaning from print. Annual New York Academic Science 1145: 71–82.
3. Finney EM, Fine I, Dobkins KR (2001) Visual stimuli activate auditory cortex in the deaf. Nature Neuroscience 4: 1171–1173.
4. Neville H, Bavelier D (2002) Human brain plasticity: evidence from sensory deprivation and altered language experience. Progress in Brain Research 138: 177–186.
5. Ptito M, Kupers R (2005) Cross-modal plasticity in early blindness. Journal of Integrative Neuroscience 4: 479–480.
6. Ptito M, Moesgaard SM, Gjedde A, Kupers R (2005) Cross-modal plasticity revealed by electrotactile stimulation of the tongue in congenitally blind. Brain 128: 606–614.
7. Kadosh RC, Walsh V (2006) Cognitive neuroscience: rewired or crosswired brains? Current Biology 16: R962–963.
8. Sanchez-Vives MV, Nowak LG, Descalzo VF, Garcia-Velasco JV, Gallego R, et al. (2008) Crossmodal audio-visual interactions in primary visual cortex of visually deprived cats: a physiological and anatomical study. Progress in Brain Research 155: 287–311.
9. Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nature Reviews of Neuroscience 3: 445–452.
10. Wieloch T, Nikolic K (2006) Mechanisms of neural plasticity following brain injury. Current Opinion in Neurobiology 16: 250–264.
11. Bourdel M, Gibson JR, Connors BW (2000) A network of electrical coupled interneurons drives synchronized inhibition in neocortex. Nature Neuroscience 3: 904–910.
12. Long MA, Jutras MJ, Connors BW, Burwell RD (2005) Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nature Neuroscience 8: 61–66.
13. Fanello E, Richardson KA, Connors BW (2008) Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. Journal of Neurophysiology 100: 2640–2652.
14. Klausberger T, Somogyi P (2005) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 312: 53–57.
15. McAlpin CJ, Fisahn A (2001) Interneurons unbound. Nature Reviews Neuroscience 2: 11–23.
16. Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. Journal of Physiology (London) 562: 9–29.
17. Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426: 442–446.

Acknowledgments

We thank Kim Davis for the proof reading of our manuscript before its submission.

Author Contributions

Conceived and designed the experiments: JHW. Performed the experiments: HN LH NC DL MG SG YZ. Analyzed the data: HN LH NC DL. Wrote the paper: JHW. Drew Figure 8: FZ. Contributed to experimental works equally: HN LH. Worked on project design and paper writing: JHW.
20. Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) ‘Where’ and ‘what’ in the whisker sensorimotor system. Nature Reviews of Neuroscience 9: 601–613.
21. Kleinfeld D, Ahissar E, Diamond ME (2006) Active sensation: insights from the rodent vibrissa sensorimotor system. Current Opinion in Neurobiology 16: 435–444.
22. Petersen CCH (2003) The barrel cortex-integrating molecular, cellular and system physiology. Pflugers Arch - European Journal of Physiology 447: 126–134.
23. Towal RB, Hartmann MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate head movements. Journal of Neuroscience 26: 8838–8846.
24. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6: 347–470.
25. Wang J-H, Kelly PT (2001) Ca2+/CaM signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal fast-spiking neurons of hippocampal CA1. J Physiol (Lond) 533: 407–422.
26. Hevner RF, Wong-Riley MT (1989) Brain cytochrome oxidase: purification, antibody production and immunohistochemical/histochemical correlation in the CNS. Journal of Neuroscience 9: 3884–3898.
27. Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic maker for neuronal activity. Trends in Neurosciences 12: 94–101.
28. Gulyas AI, Buzsaki G, Freund TF, Hirase H (2006) Population of hippocampal inhibitory neurons express different levels of cytochrome c. European Journal of Neuroscience 23: 2581–2594.
29. Chen N, Chen SL, Wu YL, Wang JH (2006) The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochemical and Biophysical Research Communications 340: 151–157.
30. Chen N, Chen X, Wang J-H (2008) Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. Journal of Cell Science 121: 2961–2971.
31. Chen N, Zhu Y, Gao X, Guan S, Wang J-H (2006) Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochemical and Biophysical Research Communications 340: 281–287.
32. Wang JH, Wei J, Chen X, Yu J, Chen N, et al. (2008) The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. Journal of Cell Science 121: 2951–2960.
33. Ciani L, Salinas PG (2005) Wnts in the vertebrate nervous system: from patterning to neuronal connectivity. Nature Reviews of Neuroscience 6: 351–362.
34. Davis E, Ghosh A (2007) Should I stay or should I go: Wnt signals at the synapses. Cell 130: 593–596.
35. Lie D, Colamarino SA, Song H, Desire L, Mira H, et al. (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437: 1370–1375.
36. Yan Z, Tan J, Qin G, Lu Y, Ding C, et al. (2008) Precise circuitry links bilaterally symmetric olfactory maps. Neuron 58: 613–624.
37. Maier DH, McCasland JS (1997) Calcium-binding protein phenotype defines metabolically distinct groups of neurons in barrel cortex of behaving hamsters. Experimental Neurology 145: 71–80.
38. Wang J-H (2003) Short-term cerebral ischemia causes the dysfunction of interneurons and more excitation of pyramidal neurons. Brain Research Bulletin 60: 53–58.
39. Chen N, Yu J, Qian H, Ge R, Wang JH (2010) Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS ONE 5(7), e11608.
40. Ge R, Chen N, Wang JH (2009) Real-time neuronal homeostasis by coordinating VGSC intrinsic properties. Biochem Biophys Res Commun 387: 505–509.
41. Qi Y, Huang L, Ni H, Zhou X, Zhang J, et al. (2009) Intracellular Ca2+ regulates spike encoding at cortical GABAergic neurons and cerebellar Purkinje cells differently. Biochemical and Biophysical Research Communications 381: 129–133.