MISPR: An open-source package for high-throughput multiscale molecular simulations

Rasha Atwi¹, Matthew Bliss¹, Maxim Makeev¹, Nav Nidhi Rajput¹

¹Department of Materials Science and Chemical Engineering, Stony Brook University,
Stony Brook, New York 11794, United States

* To whom correspondence should be addressed:

Nav Nidhi Rajput; Email: navnidhi.rajput@stonybrook.edu
Table of Contents

1. File storage .. 3

Figures

Fig. S1 Code snippet of the submission of a bond dissociation energy calculation 4

Fig. S2 Distribution of error associated with (a) 13C and (b) 1H chemical shift predictions in a chloroform solvent 6

Fig. S3 Binding energy between lithium polysulfides (Li$_2$S$_x$, x = 2, 4, 8) and a functionalized graphene model at the PBE1PBE/6-31+G* level of theory ... 10

Fig. S4 Example of a (a) force field dictionary and (b) the labeled structure of the corresponding molecule 20

Fig. S5 (a) Solvents used for MD simulations with 1 M lithium bis(trifluoromethylsulfonyl)imide, (b) coordination number, and (c) diffusion coefficients computed using MISPR ... 20

Fig. S6 Code snippet of the submission of a hybrid DFT-MD workflow for a lithium bis(trifluoromethylsulfonyl)imide in monoglyme liquid solution using the default MD recipe in MISPR, GAFF parameters for the anion and solvent, and user-defined parameters for the cation ... 21

Fig. S7 Example of (a) binding energy document from the DFT database and (b) MD document 22

Fig. S8 Structure of Li$_2$S$_x$ (x = 2, 4, 8) species and pristine graphene model used in the BE calculations 34

Tables

Table S1 Sample ESP and RESP charges for a monoglyme molecule computed at the B3LYP/6-31+G* level of theory and compared to OPLS charges ... 5

Table S2 BDE results with experimental data retrieved from the iBond database1 and computational data obtained using MISPR; broken bonds are highlighted in the 2D structure of the molecule .. 7

Table S3 Methods supported by the redox potential workflow in MISPR; redox potential calculations can be done in any phase and at any charge state (i.e., any number of electron and hydrogen transfers) ... 11

Table S4 Details of the library used for the redox potential calculations .. 12

Table S5 Details of the library used for the NMR calculations along with the experimental measurements made in chloroform solvent at 298 K and referenced to tetramethylsilane ... 23

Table S6 Benchmarking results of the adiabatic IP/EA calculations using the SMD solvation model; potentials are reported relative to the Li$^+/Li$ potential scale ... 34
1. **File storage**

Every time a workflow is created and executed, the infrastructure automatically creates a single folder for the workflow with an assigned unique name that can either be provided by the user or automatically determined from the structural representation of the molecule or system of molecules (e.g., molecular formula). Within this main folder, multiple subfolders are created for calculation steps included in the workflow (e.g., geometry optimization and frequency calculation in DFT, ensemble type in MD) with a name corresponding to the type of calculation. A subfolder is also created for the final analysis performed to derive a property (such as binding energy, diffusion, or viscosity) using data parsed from the individual steps. Any file, if present, associated with a calculation is stored within its corresponding subfolder. The number and names of subfolders created are workflow-specific. All folders resulting from a workflow are confined within a parent directory configured when loading and setting the workflow input parameters.
Fig. S1 Code snippet of the submission of a bond dissociation energy calculation

```python
from fireworks import LaunchPad
from mispr.gaussian.workflows.base.bde import get_bde

lpad = LaunchPad.auto_load()

wf = get_bde(mol_operation_type="get_from_file",
             mol="dme.xyz",
             bonds=[[1, 6]],
             open_rings=False,
             process_mol_func=False,
             skips=None,
             mol_name="dme",
             solvent_gaussian_inputs="(SMD, Solvent=TetraHydroFuran)",
             save_to_db=False,
             save_to_file=True,
             visualize=True,
             tag="bde-example")

lpad.add_wf(wf)
```
Table S1 Sample ESP and RESP charges for a monoglyme molecule computed at the B3LYP/6-31+G* level of theory and compared to OPLS charges

Number	Atom	Computed ESP charges	Derived RESP charges	OPLS charges
1	O	-0.450597	-0.396634	-0.4
2	O	-0.448858	-0.396634	-0.4
3	C	0.168498	0.106870	0.14
4	C	0.173399	0.106870	0.14
5	C	0.10666	0.057713	0.11
6	C	0.096242	0.057713	0.11
7	H	0.0358	0.047255	0.03
8	H	0.036371	0.047255	0.03
9	H	0.033803	0.047255	0.03
10	H	0.034374	0.047255	0.03
11	H	0.05954	0.045847	0.03
12	H	0.021866	0.045847	0.03
13	H	0.021589	0.045847	0.03
14	H	0.025167	0.045847	0.03
15	H	0.060705	0.045847	0.03
16	H	0.025442	0.045847	0.03
Fig. S2 Distribution of error associated with (a) 13C and (b) 1H chemical shift predictions in a chloroform solvent
Table S2 BDE results with experimental data retrieved from the iBond database and computational data obtained using MISPR; broken bonds are highlighted in the 2D structure of the molecule.

Bond number	InChI code	InChI code	Molecule name	2D representation	Experimental BDE (eV)	Computed BDE (eV)	Absolute error (eV)
1	InChI=1S/CH4/h1H4	methane	![methane 2D structure](image)	4.5150	4.4980	0.0169	
2	InChI=1S/CHN/c1-2h1H	formonitrile	![formonitrile 2D structure](image)	5.3750	5.6117	0.2367	
3	InChI=1S/C2H6/c1-2h1-2H3	ethane	![ethane 2D structure](image)	3.8786	3.9347	0.0561	
4	InChI=1S/CH3F/c1-2h1H3	fluoromethane	![fluoromethane 2D structure](image)	4.7214	4.7687	0.0473	
5	InChI=1S/CH3F/c1-2h1H3	fluoromethane	![fluoromethane 2D structure](image)	4.7988	4.2804	0.5183	
6	InChI=1S/C2H3N/c1-3-2h1H3	isocyanomethane	![isocyanomethane 2D structure](image)	4.1581	4.0451	0.1129	
7	InChI=1S/CH2N2/c2-1-3h2H2	cyanamide	![cyanamide 2D structure](image)	4.2570	4.0311	0.2258	
8	InChI=1S/C2H6O/c1-3-2h1-2H3	methoxymethane	![methoxymethane 2D structure](image)	3.6163	3.5138	0.1024	
9	InChI=1S/CH3F/c1-2-3-4h2-3H2,1H3	1-fluoropropane	![1-fluoropropane 2D structure](image)	3.9388	4.3316	0.3928	
10	InChI=1S/CH3F/c1-2-3-4h2-3H2,1H3	1-fluoropropane	![1-fluoropropane 2D structure](image)	3.9388	4.3316	0.3928	
	InChI	Structure					
---	-------------------	---	---	---	---		
11	InChI=1S/CH4S/c1-2h2H,1H3	methanethiol	3.9732	4.0309	0.0577		
12	InChI=1S/CH4S/c1-2h2H,1H3	methanethiol	3.7582	3.6603	0.0978		
13	InChI=1S/CH4O2/c1-3-2h2H,1H3	hydroperoxymethane	1.9436	1.7591	0.1844		
14	InChI=1S/C3H7F/c1-3(2)/4h3H,1-2H3	2-fluoropropene	4.7343	4.9154	0.1811		
15	InChI=1S/CH3F/c1-2-3h2H2,1H3	fluoroethane	4.6311	4.8545	0.2234		
16	InChI=1S/CH3Cl/c1-2hH3	chloromethane	4.3000	4.2064	0.0935		
17	InChI=1S/CH3CN/c1-2-1-3-5h1H2	propanedinitrile	4.3817	4.7628	0.3811		
18	InChI=1S/C5H12O/c1-2-3-4-5-6h6H2,-5H2,1H3	pentan-1-ol	3.6550	3.6437	0.0112		
19	InChI=1S/CH3Cl/c1-2hH3	chloromethane	3.5991	3.6438	0.0447		
20	InChI=1S/C12H9N/c13-9-8-11-6-3-5-10-4-1-2-7-12(10)11/h1-7H,8H2	2-naphthalen-1-ylacetonitrile	3.4959	3.4197	0.0761		
21	InChI=1S/CH2O3/c2-1-4-3/h1,3H	peroxyformic acid	4.2355	3.7367	0.4987		
22	InChI=1S/C4H10O/c1-2-3-4-5h5H,2-4H2,1H3	butan-1-ol	3.6722	3.5984	0.0737		
	InChI=1S/C2H2ClF3/c3-1-2(4,5)6/h1H2	2-chloro-1,1,1-trifluorohane	4.3774	4.1860	0.1913		
---	-------------------------------------	--------------------------------------	--------	--------	--------		
24	InChI=1S/C5H12c1-4-5(2)3/h5H,4H2,1-3H3	2-methylbutane	3.7840	3.8374	0.0534		
25	InChI=1S/C3H4O/c1-2-3-4h2H,1H3	Methylketene	4.0119	4.0019	0.0099		
26	InChI=1S/C3H8/c1-3-2h3,1-2H3		4.2183	4.3126	0.0943		
27	InChI=1S/C4H10/c1-4-2(3)h4H,1-3H3		4.1151	4.0563	0.0587		
28	InChI=1S/C6H14/c1-3-5-6-4/h3-6H2,1-2H3		4.2570	4.3373	0.0803		
29	InChI=1S/C5H12c1-4-5(2)3/h5H,4H2,1-3H3		4.1194	4.0778	0.0415		
30	InChI=1S/C7H16/c1-4-6-7(3)5-2/h7H,4-6H2,1-3H3/		4.0807	4.0971	0.0164		
Fig. S3 Binding energy between lithium polysulfides (Li_2S_x, $x = 2, 4, 8$) and a functionalized graphene model at the PBE1PBE/6-31+G* level of theory.
Table S3 Methods supported by the redox potential workflow in MISPR; redox potential calculations can be done in any phase and at any charge state (i.e., any number of electron and hydrogen transfers)

Method	Notes	Example scheme(s)	Equations	Abbreviations
HOMO/LUMO	Geometry optimization is done for the molecule at the reference state to calculate the HOMO/LUMO energies.		IP = HOMO	
EA = LUMO	IP:\ ionization potential (eV)			
EA: electron affinity (eV)				
Direct electron transfer	Geometry optimization and frequency calculation are done at each charge state in one phase specified by the user (vacuum or solution).	$\Delta G_{\text{ox} \rightarrow \text{net}} = G(M^{2+}) - G(M)$		
$\Delta G_{\text{red} \rightarrow \text{net}} = G(M^{2-}) - G(M)$	$\Delta G_{\text{ox} \rightarrow \text{net}} = \frac{\Delta G_{\text{ox}, \text{net}}}{2F}$			
$\Delta G_{\text{red} \rightarrow \text{net}} = \frac{\Delta G_{\text{red}, \text{net}}}{2F}$				
$EA = -\frac{\Delta G_{\text{red}, \text{net}}}{F}$				
$EA_1 = -\frac{\Delta G_{\text{red}, \text{1}}}{F}$				
$EA_2 = -\frac{\Delta G_{\text{red}, \text{2}}}{F}$	$\Delta G_{\text{ox} \rightarrow \text{net}}$: Net Gibbs free energy oxidation			
$\Delta G_{\text{red} \rightarrow \text{net}}$: Net Gibbs free energy of reduction				
$\Delta G_{\text{red}, \text{1}}$: Gibbs free energy of reduction for the first electron transfer				
$\Delta G_{\text{red}, \text{2}}$: Gibbs free energy of reduction for the second electron transfer				
EA: electron affinity from the first electron transfer				
EA_2: electron affinity from the second electron transfer				
Vertical IP/EA	Geometry optimization is done for molecules at the reference state only at each phase specified by the user. Frequency calculation is done at each charge state and phase.	$M(g)\rightarrow M^{-}(g)$	$G = H - T\Delta S = E_{\text{SCF}} + E_{\text{ZPE}} + H_{\text{corr}} - T\Delta S_{\text{corr}}$	
$\Delta G_{\text{ox} \rightarrow \text{g}}(g) = G(M^{2+}) - G(M)$				
$\Delta G_{\text{red} \rightarrow \text{g}}(g) = G(M^{2-}) - G(M)$				
$\Delta G_{\text{ox} \rightarrow \text{s}}(g) = G(M^{2+}) - G(M)$				
$\Delta G_{\text{red} \rightarrow \text{s}}(g) = G(M^{2-}) - G(M)$	E_{SCF}: energy			
E_{ZPE}: zero-point vibrational energy correction				
S_{corr}: correction to entropy				
H_{corr}: correction to enthalpy				
$\Delta G_{\text{ox} \rightarrow \text{g}}(g)$: Gibbs free energy of reduction in the gas phase				
$\Delta G_{\text{red} \rightarrow \text{g}}(g)$: Gibbs free energy of reduction in the gas phase				
$\Delta G_{\text{ox} \rightarrow \text{s}}(g)$: Gibbs free energy of reduction in the solution phase				
$\Delta G_{\text{red} \rightarrow \text{s}}(g)$: Gibbs free energy of reduction in the solution phase				
F: Faraday constant				
n: Number of electrons				
Adiabatic IP/EA	Geometry optimization and frequency calculation are done at each charge state and phase.			
Sequential proton-coupled electron transfer (PCET)	Direct as well as adiabatic calculations are supported. Number of hydrogen transfer steps is assumed to be equal to the number of electron transfer steps.	$pK_a = \frac{\Delta G}{2.303RT}$		
$K_u = 10^{-pK_a}$ | pK_a: acid dissociation constant at the logarithmic scale
K_u: acid dissociation constant
T: temperature
R: gas constant
E^*: reduction potential
E_{app}: experimentally measured reduction potential of the reference compound
E_{avg}: average potential |
Table S4 Details of the library used for the redox potential calculations

Molecule number	InChI code	Molecule name	2D representation	Type	Note
1	InChI=1S/C₄H₁₀Oc1·d(2,3)5/h5H₁-3H₃	tert-butanol	![tert-butanol]	Linear oligo (ether carbonate)	formed by ring opening of EC
2	InChI=1S/C₅H₁₀O₂c1·d(3-7-5)2/h6H₃-4H₂1-2H₃	n-Propyl acetate	![n-Propyl acetate]	Solvent	Ester
3	InChI=1S/C₈H₁₈O₃Sc1·d(1-2-4-6-9-10)8-6-4-2H₃-8H₂1-2H₃	butyl sulfone	![butyl sulfone]	Electrolyte additive	SEI forming additive
4	InChI=1S/C₃H₆O₂Sc4·d(6(7)1-2-6-7)/h1-3H₂	1,3-propane sulfone	![1,3-propane sulfone]	Electrolyte additive	Suppresses decomposition of solvents with graphite electrode
5	InChI=1S/C₄H₈O₂Sc5·d(6(7)/1-2-4-7)/h1-4H₂	tetra methylene sulfolane	![tetra methylene sulfolane]	Electrolyte additive	
6	InChI=1S/C₃H₆O₂Sc1·d(6(2,4)/h3H₂-1-2H₃	ethyl methyl sulfone	![ethyl methyl sulfone]	Electrolyte additive	
7	InChI=1S/C₃H₆O₂Sc4·d(6(2,4)/h3H₂-1-2H₃	tri-methylene sulfone	![tri-methylene sulfone]	Electrolyte additive	Regulates Li deposition
8	InChI=1S/C₆H₁₄O₂Sc1·d(4-6(3(9,7,8)5-2)h6H₄-5H₂1-3H₃	ethyl sec-butyl sulfone	![ethyl sec-butyl sulfone]	Electrolyte additive	Low boiling point and high conductivity
9	InChI=1S/C₆H₁₄O₂Sc1·d(4-9(7,8)5-6(2)/h6H₄-5H₂1-3H₃	ethyl iso-butyl sulfone	![ethyl iso-butyl sulfone]	Electrolyte additive	Low melting point (< 0 °C)
10	InChI=1S/C₅H₁₂O₂Sc1·d(6(2,4)/h3H₅-4H₂1-3H₃	ethyl iso-propyl sulfone	![ethyl iso-propyl sulfone]	Electrolyte additive	Hydrolysis-resistant
11	InChI=1S/C₇H₇FO₂Sc1·d(1-11(9,10)/3·2-4-6(7)8/h2-5H,1H₃	1-flouro-2- (methyl-sulfonyl) benzene	![1-flouro-2- (methyl-sulfonyl) benzene]	Electrolyte additive	
InChI	CAS	Name	Role		
---------	------	---------------------------	--------------------		
12	C5H12O3S/c1-3(9,6,7)5-4-8-2h3-5H2,1-2H3	ethyl 2-methoxymethylethylsulfone	Electrolyte additive		
13	C7H16O4S/c1-3-12,8(9)7-6-11-5-4-10-2h3-7H2,1-2H3	ethyl methoxyethoxymethylethylsulfone	Electrolyte additive, Large oxidation potential		
14	C4H8O2/c1-3-6-4(2)5/h3h3H2,1-2H3	ethyl acetate	Solvent, Low viscosity and melting point compared to carbonates		
15	C3H6O2/c1-3(4)/5-2h1-2H3	methyl acetate	Solvent, Low viscosity and melting point compared to carbonates		
16	C2H4O2/c1-4-2-3H2H1H3	methyl formate	Solvent		
17	C5H10O2/c1-3-5(6)7-4-2h3-4H2,1-2H3	ethyl propionate	Solvent		
18	C6H10O2/c1-3-5-6(7)8-4-2h3-5H2,1-2H3	ethyl butyrate	Solvent		
19	C4H7FO2/c1-2-7-4(6)3-5h2-3H2,1H3	ethyl fluoroacetate	Solvent, Fluorinated		
20	C3H6O3/c1-3(6)2(4)5/h3h3H2,1H3	dimethyl carbonate	Solvent-Additive, Fluorinated		
21	C5H9FO2/c1-3-8-5(7)4(2)6h4H,3H2,1-2H3	ethyl 2-fluoroacetopropionate	Additive, Fluorinated		
22	C5H9FO2/c1-2-3(7)8-4-3-6h2-4H2,1H3	2-fluoroethyl propionate	Additive, Fluorinated		
23	C5H9FO2/c1-2-8-5(7)3-4-6h2-4H2,1H3	ethyl 3-fluoroacetopropionate	Additive, Fluorinated		
24	C5H10O3/c1-3-7-5(6)8-4-2h3-4H2,1-2H3	diethyl carbonate	Solvent		
25	C3H6O3/c1-5-3(4)/6-2h1-2H3	dimethyl carbonate	Solvent		
InChI	Structure	Description			
---------------	---------------------	--			
26 InChI=1S/C3H4O3/c4-3-5-1-2-6-3/h1-2H2	![Structure](image1.png)	ethylene carbonate			
27 InChI=1S/C4H6O3/c1-3-2-6-4(5/-3/h3H2,1H3	![Structure](image2.png)	propylene carbonate			
28 InChI=1S/C4H8O3/c1-3-7-4(5)/6-2/h3H2,1-2H3	![Structure](image3.png)	ethyl methyl carbonate			
29 InChI=1S/C4H10O2/c1-5-3-4-6-2/h3-4H2,1-2H3	![Structure](image4.png)	1,2-dimethoxyethane			
30 InChI=1S/C3H6O2/c1-2-5-3-4-1/h1-3H2	![Structure](image5.png)	Dioxolane			
31 InChI=1S/C4H7FO2/c1-4(6)/7-3-2-5/h2-3H2,1H3	![Structure](image6.png)	Fluoroethyl acetate			
32 InChI=1S/C4H10O2/c1-4-5-2-3-6-4/h4H2,2-3H2,1H3	![Structure](image7.png)	2-methyl-1,3-dioxolane			
33 InChI=1S/C5H8O4/c6-5-8-3-1-7-2-4-9-5/h1-4H2	![Structure](image8.png)	1,3,6-trioxocan-2-one			
34 InChI=1S/C5H10O3/c1-5-3-2-4-6-5/h5H2-4H2,1H3	![Structure](image9.png)	methyl tetrahydrofuran			
35 InChI=1S/C2H3N/c1-2-3/h1H3	![Structure](image10.png)	Acetonitrile			
36 InChI=1S/C4H6O2/c5-4-2-1-3-6-4/h1-3H2	![Structure](image11.png)	Gamma-Butyrolactone			
37 InChI=1S/C4H10O3/c1-3-5-4-2/h3-4H2,1-2H3	![Structure](image12.png)	Diethyl ether			
38 InChI=1S/C2H6O3S/c1-4(2)/3/h1-2H3	![Structure](image13.png)	Dimethyl sulfoxide			
39 InChI=1S/C4H7NO2/c1-5-2-3-7-4(5)/6h2-3H2,1H3	![Structure](image14.png)	3-methyl oxazolidin-2-one			
InChI	Name	Type			
--------------	-------------------------------	------------------			
InChI=1S/C4H8O/c1-2-4-5-3-1/h1-4H2	tetrahydrofuran	Solvent			
InChI=1S/C5H10O2S/c1-5-2-3-8(6,7)-4-5/h5H,2-4H2,1H3	3-methyl sulfolane	Solvent-additive			
InChI=1S/C4H8O2/c1-4-2-5-3-6-4/h4H2,2-3H2,1H3	4-methyl dioxolane	Solvent			
InChI=1S/C5H8O/c1-2-4-3-7-5(6)8-4/h4H2,2-3H2,1H3	1,2-butylene carbonate	Solvent			
InChI=1S/C5H9CO2/c1-2-3-5(7)-8-4-6/h2-4H2,1H3	chloromethyl butyrate	Solvent			
InChI=1S/C6H14O2/c1-3-7-5-6-8-4-2/h3-4H2,1-2H3	1,2-diethoxethane	Solvent			
InChI=1S/C4H10S/c1-3-5-4-2/h3-4H2,1-2H3	diethyl sulfoxide	Additive			
InChI=1S/C4H6F2O3/c1-4-7-9-2-3(5)/6/h3H2,1H3	difluoro ethyl methyl carbonate	Solvent			
InChI=1S/C3H8O2/c1-4-3-5-2/h3H2,1-2H3	dimethoxymethane	Solvent			
InChI=1S/C2H6S/c1-3-2/h1-2H3	dimethyl sulfide	Solvent			
InChI=1S/C3H8O2/c6-5-3-1-2-4-7-5/h1-4H2	δ-valero lactone	Lactone			
InChI=1S/C4H6F2O2/c1-2-8-4(7)-3(5)/6/h3H2,1H3	ethyl difluoro acetate	Solvent-Additive			
InChI=1S/C5H9F2O3/c1-2-9-5(8)10-3-4(6)/7/h4H2,2-3H2,1H3	ethyl difluoro ethyl carbonate	Solvent			
No.	InChI	Chemical Name	Property		
-----	----------------	-----------------------------------	---		
53	InChI=1S/C6H12F2O2/c1-2-9-3-4-10-5-6(7)8h6H2-5H2,1H3	ethoxy difluoro ethoxy ethane	Solvent Fluorinated		
54	InChI=1S/C5H9FO3/c1-2-8-5(7)9-4-3-6h2-4H2,1H3	ethyl fluoroethyl carbonate	Solvent Offers higher conductivity than diethyl carbonate		
55	InChI=1S/C6H13FO2/c1-2-8-5-6-9-4-3-7h2-6H2,1H3	ethoxy fluoro ethoxy ethane	Solvent Fluorinated		
56	InChI=1S/C2H6O2/c3-1-2-4h3-4H1-2H2	ethylene glycol	Filler material Component of solid-state polymer electrolytes		
57	InChI=1S/C3H8O2/c1-5-3-2-4h4H2-3H2,1H3	2-methoxyethanol	Solvent		
58	InChI=1S/C5H12O2/c1-3-7-5-4-6-2h3-5H2,1-2H3	1-ethoxy-2-methoxyethane	Solvent High relative permittivity and lower viscosity compared to dimethyl carbonate		
59	InChI=1S/C4H10O2S/c1-3-7(5,6)4-2h3-4H2,1-2H3	ethyl methyl sulfone	Solvent Low melting point and high conductivity		
60	InChI=1S/C2H4O/c1-2-3-1h1-2H2	ethylene oxide	Polymer host Polymer electrolyte material		
61	InChI=1S/C6H12O3/c1-3-5-9-6(7)8-4-2h3-5H2,1-2H3	ethyl propyl carbonate	Solvent		
62	InChI=1S/C5H12O3/c1-3-5-6-4-2h3-5H2,1-2H3	ethyl propyl ether	Solvent		
63	InChI=1S/C2H4O3S/c3-6-4-1-2-5-6h1-2H2	ethylene sulfite	Additive Film forming electrolyte additive		
64	InChI=1S/C7H14OS2S/c1-2-10(8,9)7-5-3-4-6-7h7H2-6H2,1H3	ethyl cyclopentyl sulfone	Solvent High oxidation potential		
65	InChI=1S/C5H7F3O3/c1-2-10(4)11-3-5(6,7)8h62-3H2,1H3	ethyl trifluoro ethyl carbonate	Solvent Fluorinated Good low temperature performance		
InChI	Description				
----------------	---				
C6H6F9O4P	tris(2,2,2-trifluoroethyl) phosphate				
Co-solvent	Flame-retarding in EC-PC-EMC electrolytes				
1S/C4H8O2S/c1	ethyl vinyl sulfone				
Solvent	High conductivity in LiTFSI electrolyte				
1S/C4H9F3O2S/c1	trifluoro propyl methyl sulfone				
Solvent	Fluorinated; Forms a protective SEI layer on the graphite anode upon reduction				
1S/C4H5FO2/c5	fluoro propylene carbonate				
Solvent	Highly polar				
1S/C5H10O2/c1	methyl butyrate				
Cosolvent	Film-forming additive used in gel-based electrolytes				
1S/C4H5NO2/c1	methyl cyanoacetate				
Additive	nucleophile				
1S/C3H5FO3/c1	mono fluoro dimethyl carbonate				
Solvent	Fluorinated, Higher conductivities than dimethyl carbonates at low concentrations				
79. InChI=1S/C4H7FO3/c1-7-4(6)8-3-2-5h2-3H2,1H3
Mono fluoro ethyl methyl carbonate
Solvent
Fluorinated

80. InChI=1S/C5H10O3/c1-4(2)-8-5(6)7-3/h4H,1-3H3
methyl isopropyl carbonate
Solvent
Alkyl carbonate

81. InChI=1S/C5H10O3/c1-3-4-8-5(6)-7-2/h3-4H2,1-2H3
methyl propyl carbonate
Solvent

82. InChI=1S/C4H8O3S/c1-4-3-2-8-7(4,5)/6/h4H,2-1H3
methyl triethylene sulfone
Solvent

83. InChI=1S/C2H6O2S/c1-5(2,3)/4/h1-2H3
dimethyl sulfone
Solvent
Enhanced safety with ethylene carbonate due to the high flash point of the mixture

84. InChI=1S/C5H5F5O3/c1-12-3(11)13-2-4(6,7)/5(8,9)/10/h2H2,1H3
tenpa fluoro propyl methyl carbonate
Solvent
Fluorinated; High molecular volume and molecular weight

85. InChI=1S/C3H6O3S/c1-3-2-5-7(4)/6-3/h3H,2-1H3
propylene sulfate
Additive
Film-forming

86. InChI=1S/C5H9F4O3/c1-11-4(10)/12-2-5(8,9)/3(6)/7/h3H,2-1H3
tenpa fluoro propyl methyl carbonate
Solvent
Fluorinated

87. InChI=1S/C4H5F3O3/c1-9-3(8)/10-2-4(5,6)/7/h2H2,1H3
trifluoro ethyl methyl carbonate
Solvent
Fluorinated

88. InChI=1S/C5H7F3O3/c1-10-4(9)/11-3-2-5(6,7)/8/h2-3H2,1H3
trifluoro propyl methyl carbonate
Solvent
Fluorinated

89. InChI=1S/C12H26O2S/c1-7-11(9)/3(6)15(13,14)12(8-2)/10(5,6)h9-12H,7-8H2,1-6H3
ethyl iso-butyl sulfone
Solvent
| InChI | Structure | Identity | Notes | |
|---|---|---|---|---|
| 90 | ![Structure](https://example.com/structure90.png) | InChI=1S/C10H22O2S/c1-7-9(3,4)13(11,12)10(5,6)8-2/h7-8H2,1-6H3 | ethyl-isopropyl sulfone | Solvent |
| 91 | ![Structure](https://example.com/structure91.png) | InChI=1S/C8H12F6O2S/c9-7(10,11)3-1-5-17(15,16)6-2-4-8(12,13)14/h1-6H2 | 3,3,3-trifluoropropyl methyl sulfone | Solvent |
| 92 | ![Structure](https://example.com/structure92.png) | InChI=1S/C4H8O3/c1-6-3-4(5)7-2/h3H2,1-2H3 | methyl methoxy acetate | Solvent |
| 93 | ![Structure](https://example.com/structure93.png) | InChI=1S/C6H12O3/c1-5-8-3-9-6(2)7/h5H,4H2,1-3H3 | methoxy-2-propyl acetate | Solvent |
| 94 | ![Structure](https://example.com/structure94.png) | InChI=1S/C3H5FO2/c1-6-3(5)2-4/h2H2,1H3 | methyl fluoro acetate | Solvent |
| 95 | ![Structure](https://example.com/structure95.png) | InChI=1S/C5H12O2/c1-3-6-5-7-4-2/h3-5H2,1-2H3 | ethoxy methoxy ethane | Solvent |
| 96 | ![Structure](https://example.com/structure96.png) | InChI=1S/C2H6O3S/c1-4-6(3)5-2/h1-2H3 | dimethyl sulfite | Solvent |
| 97 | ![Structure](https://example.com/structure97.png) | InChI=1S/C2H6O3S/c1-5-6(2,3)4/h1-2H3 | methyl methane sulfonate | Solvent |
| 98 | ![Structure](https://example.com/structure98.png) | InChI=1S/C2H6O4S/c1-5-7(3,4)6-2/h1-2H3 | dimethyl sulfate | Solvent |
| 99 | ![Structure](https://example.com/structure99.png) | InChI=1S/C4H8O2S/c1-4-2-7(5,6)3-4/h4H2,1H3 | 2-methyltrimethylene sulfone | Solvent |
| 100 | ![Structure](https://example.com/structure100.png) | InChI=1S/C5H8O2/c1-4-2-3-5(6)7-4/h4H2,1H3 | γ-valero lactone | Solvent |

Improvement in safety compared to ethylene carbonate
Fig. S4 Example of a (a) force field dictionary and (b) the labeled structure of the corresponding molecule.

Fig. S5 (a) Solvents used for MD simulations with 1 M lithium bis(trifluoromethylsulfonyl)imide, (b) coordination number, and (c) diffusion coefficients computed using MISPR.
Fig. S6 Code snippet of the submission of a hybrid DFT-MD workflow for a lithium bis(trifluoromethylsulfonyl)imide in monoglyme liquid solution using the default MD recipe in MISPR, GAFF parameters for the anion and solvent, and user-defined parameters for the cation
Fig. S7 Example of (a) binding energy document from the DFT database and (b) MD document
Table S5 Details of the library used for the NMR calculations along with the experimental measurements made in chloroform solvent at 298 K and referenced to tetramethylsilane

Molecule number	InChI code	Molecule name	2D representation	1C NMR spectra frequency (MHz)	1H NMR spectra frequency (MHz)	1C NMR chemical shift (ppm)	1H NMR chemical shift (ppm)	Ref		
1	InChI=1S/H2O/h1H2	water		75.5, 126, 151		1.2: 1.56		2		
2	InChI=1S/C2H4O2/c 1-2(3)(4)h1H3,(H,3,4)	acetic acid		300, 500, 600	75.5, 126, 151	3: 175.99	4,5,6: 2.10	2		
3	InChI=1S/C3H6O/c1 -3(2)4/h1-2H3	acetone		300, 500, 600	75.5, 126, 151	1: 207.07	2,3: 30.92	4,5,6,7,8,9: 2.17	2	
4	InChI=1S/C2H3N/c1 -2-3/h1-2H2	acetonitrile		300, 500, 600	75.5, 126, 151	1: 1.89	2: 116.43	3,4,5: 2.10	2	
5	InChI=1S/C6H6/c1- 2-4-6-5-3-1/h1-6H	benzene		300, 500, 600	75.5, 126, 151	0,1,2,3,4,5: 128.37	6,7,8,9,10,11: 7.36	2		
6	InChI=1S/C4H10O/c 1-4(2,3)5/h5H,1-3H3	tert -butyl alcohol		25.16	300	2.3,4: 31.23	1: 69.05	5,6,7,8,9,10,11,12,13: 1.262	14: 2.01	3
7	InChI=1S/CO2/c2-1-3	carbon dioxide		300, 500, 600	75.5, 126, 151	2: 124.99		2		
8	InChI=1S/CS2/c2-1-3	carbon disulfide		300, 500, 600	75.5, 126, 151	2: 192.83		2		
9	InChI=1S/CCl4/c2- 1(3,4)5	carbon tetrachloride		300, 500, 600	75.5, 126, 151	4: 96.34		2		
19 InChI=1S/C4H10O2/c1-5-3-4-6-2h3-4H2,1-2H3 1,2-dimethoxyethane 300, 500, 600 75.5, 126, 151 2.3: 71.84 4.5: 59.08 6,7,8,9: 3.55 10,11,12,13,14,15: 3.40

20 InChI=1S/C2H6/c1-2h1-2H3 ethane 300, 500, 600 75.5, 126, 151 0.1: 6.89 2.3,4,5,6,7: 0.87

21 InChI=1S/C2H6O/c1-2-3h1,2H2,1H3 ethanol 300, 500, 600 75.5, 126, 151 1: 58.28 2: 18.41 3.4: 3.66 5,6,7: 1.19 8: 1.33

22 InChI=1S/C4H8O2/c1-3-6-4-2h3H2,1-2H3 ethyl acetate 300, 500, 600 75.5, 126, 151 2: 60.49 3: 14.19 4: 171.36 5: 21.04 6,7: 4.12 8,9,10: 1.26 11,12,13: 2.05

23 InChI=1S/C2H4/c1-2h1-2H2 ethylene 300, 500, 600 75.5, 126, 151 0.1: 123.13 2,3,4,5: 5.4

24 InChI=1S/C2H6O2/c3-1-2h1-2H2 ethylene glycol 300, 500, 600 75.5, 126, 151 2.3: 63.79 4.5,6,7: 3.76

25 InChI=1S/C12H18/c1-7- 8(2)10(4)12(6)11(5)9(7)3/h1-6H3 hexamethylbenzene 300, 500, 600 75.5, 126, 151 0,1,2,3,4: 132.21 6,7,8,9,10,11: 16.98 12,13,14,15,16,17, 18,19,20,21,22,23, 24,25,26,27,28,29: 2.24

26 InChI=1S/C6H14/c1-3-5-6-4-2h3-6H2,1-2H3 n-hexane 300, 500, 600 75.5, 126, 151 0,1: 31.64 2,3: 22.70 4,5: 14.14 14,15,16,17,18,19: 0.89 6,7,8,9,10,11,12,13: 1.27

27 InChI=1S/C6H18OSi2/c1-3-5-6-4-2h3-6H2,1-2H3 hexamethyldisiloxane 300, 500, 600 75.5, 126, 151 3.5,6,8: 1.97 9,10,11,15,16,17,18, 19,20,24,25,26, 0.07
37 InChI=1S/C3H6/c1-3-2/h3H,1H2,2H3 300, 500, 600 75.5, 126, 151 0: 19.50, 1: 133.91, 2: 115.74 3,4,5: 1.73 6: 5.83, 7: 4.94, 8: 5.03

38 InChI=1S/C5H5N/c1-2-4-6-5-3/h1-5H 300, 500, 600 75.5, 126, 151 1: 135.96 2,3: 123.75 4,5: 149.90 6: 7.68, 7: 7.29, 9: 8.62

39 InChI=1S/C4H5N/c1-2-4-5-3/h1-5H 300, 500, 600 75.5, 126, 151 1,2: 117.77, 3,4: 107.98 5: 8.40, 6: 6.7, 7: 6.83, 8: 6.26

40 InChI=1S/C4H9N/c1-2-4-5-3-1/h1-4H2 300, 500, 600 75.5, 126, 151 1,2: 25.56 3,4: 46.93 5,6,7,8: 1.68, 9,10,11,12: 2.87

41 InChI=1S/C4H9O2/c1-2-4-5-3-1/h1-4H2 300, 500, 600 75.5, 126, 151 1,2: 25.62 3,4: 67.97 5,6,7,8: 1.85, 9,10,11,12: 3.76

42 InChI=1S/C7H8/c1-7-5-3-2-4-6-7/6H,1H3 25.16 89.56 0: 137.83 1,2: 129.09 3: 21.41 4,5: 128.28 6: 125.38 7,8,12,13,14: 7.38, 7.0, 9,10,11: 2.34

43 InChI=1S/C6H15N/c1-4-7(5-2)6-3/h4-6H2,1-3H3 15.09 300 1,2,3: 46.46, 4,5,6: 11.78 7,8,12,13,14: 4.5,6: 3.325 13,14,15: 0.97

44 InChI=1S/C2H3NS/c1-3-2-4/h1H3 50.18 300 2: 30.48, 3: 128.9 4,5,6: 3.325

45 InChI=1S/C4H2O3/c5-3-1-2-4-6(7-3)/H-1-2H 25.16 300 1: 136.76, 2: 125.38 3,4: 164.58 7,8: 7.048
46 InChI=1S/C5H6N2/c 1-5-4-6-2-3-7-5h2-4H,1H3
 2- methylpyrazine
 25.16 89.56
 2: 154.11
 3: 21.53
 4: 144.85
 5: 141.90
 6: 143.90

47 InChI=1S/C3H7N/c1-2-3-4H2H1,1,3-4H2
 allylamine
 25.16 89.56
 1: 44.82
 2: 140.01
 3: 113.48

48 InChI=1S/C2H4O/c1-2-3/h2H,1H3
 acetaldehyde
 50.18 300
 1: 107.81
 2: 137.52

49 InChI=1S/CH2O2/c2-1-3/h1H,(H,2,3)
 formic acid
 15.09 89.56
 1: 50.40
 2: 82.18

50 InChI=1S/C3H6N2/c1-3-2h3H,2H2,1H3
 methyl hydrazine
 25.16 89.56
 2: 43.49

51 InChI=1S/C3H3N/c1-2-3-4H2H1,1H2
 acrylonitrile
 15.09 89.56
 1: 107.81
 2: 137.52

52 InChI=1S/C3H7N/c1-2-3-4-2h1-2H3
 2-butynyl
 50.18 300
 0.1: 3.33
 2.3: 74.56

53 InChI=1S/C3H4O/c1-2-3-4h1,4H,3H2
 propargyl alcohol
 25.16 89.56
 1: 50.40
 2: 82.18

54 InChI=1S/C3H7N/c1-3-2-4-3h3-4H2H1,1H3
 2methyl aziridine
 25.16 89.56
 1: 25.23
 2: 28.6
 3: 19.84

3
55 InChI=1S/C2H5NO/c 1-3-2- 4H2,1H3, (H,3,4) N-methyl formamide 15.09 399.65 2: 28.21 3: 166.49 4,5,6: 2.815 7: 7.4 8: 8.159

56 InChI=1S/C3H9N/c1-3-2- 4H3,1H2,1- 2H3 isopropylamine 15.09 89.56 1: 42.83 2-3: 26.21 4: 3.102 5,6,7,8,9,10: 1.071 11,12: 1.221

57 InChI=1S/C3H8O/c1-2-3-4H2,1- 3H2,1H3 propanol 15.09 89.56 1: 25.89 2: 64.25 3: 10.28 4: 3.102 5,6,7: 3.582 8,9,10: 0.94 11: 2.26

58 InChI=1S/CH4NO2/c 1-2-3-4H1H3, (H,3,4)/q +1 nitromethane 15.09 399.65 3: 62.59 4,5,6: 4.341

59 InChI=1S/C2H7NO/c 3-1-2-4H1H1- 3H2 ethanolamine 15.09 89.56 2: 43.96 3: 63.18 4: 3.102 5,6,7,8,9: 1.071 11,12: 1.221

60 InChI=1S/C3H2N2/c 4-2-1-3-5H1H2 malononitrie 25.16 300 2: 8.77 3,4: 109.35 5: 3.662

61 InChI=1S/C3H4N2/c 1-2-5-3-4H1-1H1- 3H, (H,4,5) imidazole 15.09 89.56 2,4: 121.88 3: 135.35 4,5: 7.129 7: 7.729

62 InChI=1S/C5H8/c1-3-5-4-2H3,1H1- 2,5H2 1,4-pentadiene 25.16 300 0: 38.01 1,2: 136.46 3,4: 115.47 5,6: 2.723 7: 7.729

63 InChI=1S/C5H8/c1-2-4-5-3-1H1-2H3, 5H2 cyclopentene 25.16 89.56 0: 22.98 1,2: 32.59 3,4: 130.77 5,6: 1.82 7: 7.4 8: 8.159 11,12: 2.30
CAS	**InChI**	**Name**	**H**	**M**	**D**
64	InChI=1S/C4H7N/c1-4(2)3-5/h4H1-2H3	isobutyronitrile	5.16	399.65	2: 19.87, 3: 19.98, 4: 123.83, 6: 7.8, 8, 10, 11: 1.331
65	InChI=1S/C4H6O/c1-2-3-4-5/h1-5H3-4H2	3-butyln-1-OL	3.16	89.65	1: 22.68, 2: 60.79, 3: 81.40, 4: 70.11, 5: 6.24, 9: 3.48, 10: 2.077
66	InChI=1S/C4H6O/c1-2-3-4-5/h1-5H3-2+	crotonaldehyde	15.09	89.65	1: 154.32, 2: 18.61, 3: 134.61, 4: 194.04, 5: 6.88, 6: 6.146, 7: 9.497
67	InChI=1S/C4H6O/c1-3-4-5/h1-4-4H3-2+	3-Butyn-2-ol	25.16	89.65	1: 57.86, 2: 24.16, 3: 86.03, 4: 72.12, 5: 6.88, 6: 6.146, 7: 9.497
68	InChI=1S/C4H6O/c1-2-4-5-3-1/h1-2H3-4H2-5-1/h2-2H3	2,5-dihydrofuran	25.16	89.65	1.2: 75.42, 3.4: 126.34, 5: 2.61, 6: 6.24, 7: 9.497, 8: 9.508, 9: 6.211
69	InChI=1S/C4H6O/c1-2-4-5-3-1/h1-3H2,4H2	2,5-dihydrofuran	25.16	89.65	1: 29.28, 2: 198.82, 3: 137.49, 4: 128.96, 5: 6.67, 6: 6.146, 7: 9.497, 8: 9.508, 9: 6.211
70	InChI=1S/C4H6O/c1-3-4-5-3-1/h1-2H3-4H2	methyl vinyl ketone	15.09	89.56	1: 26.32, 2: 198.82, 3: 137.49, 4: 128.96, 5: 6.67, 6: 6.146, 7: 9.497, 8: 9.508, 9: 6.211
71	InChI=1S/C4H6O/c1-3-5-4-2/h1H4H2,2H3	ethoxyethane	15.09	300	1: 74.61, 2: 14.22, 3: 90.85, 4: 26.51, 5: 6.67, 6: 6.146, 7: 9.497, 8: 9.508, 9: 6.211
72	InChI=1S/C5H10/c1-2-4-5-3-1/h1-5H2	cyclopentane	15.09	300	0: 1, 2, 3, 4: 26.51, 5: 6.67, 6: 6.146, 7: 9.497, 8: 9.508, 9: 6.211, 10: 1.530
InChI=1S/C2H3NS/c 1-4-2-3/h1H3 N-methyl thiocyanate 25.16 300 2: 16.39 4,5,6: 2.596

InChI=1S/C3H7NO/c 1-2-3(4)/h3H,1H3,(H2, 4,5) N,N-dimethyl formamide 25.16 89.56 2: 36.43 3: 21.67 4: 15.0 5: 31.5 6: 1.89 7,8: 4.01 9,10: 3.97 11: 8.6

InChI=1S/C3H7NO/c 1-2-3(4)/h3H,1H3,(H2, 4,5) N,N-dimethyl formamide 25.16 89.56 2: 28.95 3: 9.76 4: 177.68 5: 6.2 6: 2.43 7,8: 4.01 9,10: 3.97 11: 8.6

InChI=1S/C3H7NO/c 1-2-3(4)/h3H,1H3,(H2, 4,5) N,N-dimethyl formamide 25.16 89.56 2: 155.51 3: 21.67 4: 15.0 5: 31.5 6: 1.89 7,8: 4.01 9,10: 3.97 11: 8.6

InChI=1S/C3H7NO/c 1-2-3(4)/h3H,1H3,(H2, 4,5) N,N-dimethyl formamide 25.16 89.56 2: 155.51 3: 21.67 4: 15.0 5: 31.5 6: 1.89 7,8: 4.01 9,10: 3.97 11: 8.6

InChI=1S/C4H11N/c 1-2-3-4(2)5/h4H2,1H3,(H,4, 5) sec-butyramine 25.16 89.56 1: 48.55 2: 32.95 3: 23.50 4: 10.68 5: 2.79 6: 1.36 7: 6.6 8: 1.41

InChI=1S/C4H11N/c 1-2-3-4(2)5/h4H2,1H3,(H,4, 5) sec-butyramine 25.16 89.56 1: 48.55 2: 32.95 3: 23.50 4: 10.68 5: 2.79 6: 1.36 7: 6.6 8: 1.41

InChI=1S/C4H11N/c 1-2-3-4(2)5/h4H2,1H3,(H,4, 5) sec-butyramine 25.16 89.56 1: 48.55 2: 32.95 3: 23.50 4: 10.68 5: 2.79 6: 1.36 7: 6.6 8: 1.41

InChI=1S/C4H11N/c 1-2-3-4(2)5/h4H2,1H3,(H,4, 5) sec-butyramine 25.16 89.56 1: 48.55 2: 32.95 3: 23.50 4: 10.68 5: 2.79 6: 1.36 7: 6.6 8: 1.41

InChI=1S/C2H3NS/c 1-4-2-3/h1H3 N-methyl thiocyanate 25.16 300 2: 16.39 4,5,6: 2.596

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25

InChI=1S/C2H6N2O/c 1-2-3/h1H3 (N,N-dimethyl dimethyldiamino) 25.16 399.65 1: 58.8 2: 12.97 3: 45.11 4: 114.15 5: 7.95 6: 3.317 7,8,9,10,11,12: 1.36 13: 1.053 14,15: 1.25
Fig. S8 Structure of Li$_2$S$_x$ ($x = 2, 4, 8$) species and pristine graphene model used in the BE calculations

Table S6 Benchmarking results of the adiabatic IP/EA calculations using the SMD solvation model; potentials are reported relative to the Li$^+$/Li potential scale

	Experimental IP (V)	B3LYP/6-311++G**	B3LYP/def2-TZVPD		
	IP (eV)	EA (eV)	IP (eV)	EA (eV)	
6 – ethyl methyl sulfone					
THF ($\varepsilon = 7.4257$)					
Acetone ($\varepsilon = 20.493$)	5.5 (LiTFSI)4	5.964	-0.776	5.947	0.527
Water ($\varepsilon = 78.355$)		6.072	-0.690	6.030	0.770
27 – propylene carbonate					
THF ($\varepsilon = 7.4257$)					
Acetone ($\varepsilon = 20.493$)	5.8 (LiClO$_4$)5	6.904	-0.858	6.828	-0.734
Water ($\varepsilon = 78.355$)		6.697	-0.260	6.627	-0.493
53 – ethoxy difluoro ethoxy ethane					
THF ($\varepsilon = 7.4257$)					
Acetone ($\varepsilon = 20.493$)		5.025	-1.031	5.002	0.507
Water ($\varepsilon = 78.355$)		4.995	-0.952	4.910	0.701
References

1. Internet Bond-energy Databank (pKa and BDE)—iBonD Home Page, <http://ibond.nankai.edu.cn/> (2022).

2. Fulmer, G. R. et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. *Organometallics* **29**, 2176-2179 (2010).

3. SDBSWeb, <https://sdb.sdb.db.aist.go.jp> (2022).

4. Sun, X.-G. & Angell, C. A. New sulfone electrolytes for rechargeable lithium batteries.: Part I. Oligoether-containing sulfones. *Electrochemistry communications* **7**, 261-266 (2005).

5. Yamaki, J.-i. in *Advances in Lithium-Ion Batteries* 155-183 (Springer, 2002).