Genomic information of the arsenic-resistant bacterium *Lysobacter arseniciresistens* type strain ZS79\(^T\) and comparison of *Lysobacter* draft genomes

Lin Liu, Shengzhe Zhang, Meizhong Luo and Gejiao Wang\(^*\)

Abstract

Lysobacter arseniciresistens ZS79\(^T\) is a highly arsenic-resistant, rod-shaped, motile, non-spore-forming, aerobic, Gram-negative bacterium. In this study, four *Lysobacter* type strains were sequenced and the genomic information of *L. arseniciresistens* ZS79\(^T\) and the comparative genomics results of the *Lysobacter* strains were described. The draft genome sequence of the strain ZS79\(^T\) consists of 3,086,721 bp and is distributed in 109 contigs. It has a G+C content of 69.5 % and contains 2,363 protein-coding genes including eight arsenic resistant genes.

Keywords: *Lysobacter, Lysobacter arseniciresistens, Comparative genomics, Genome sequence, Xanthomonadaceae*

Introduction

Lysobacter arseniciresistens type strain ZS79\(^T\) (=CGMCC 1.10752\(^T\) = KCTC 23365 \(T\)) belongs to family *Xanthomonadaceae* [1]. It is an arsenic-resistant bacterium isolated from subsurface soil of Tieshan iron mine, Daye City, P. R. China [1]. So far, there are 32 validly published species of *Lysobacter* [2]. Most of these *Lysobacter* strains were isolated from soil except that *Lysobacter brunescens* [3] and *Lysobacter oligotrophicus* [4] were isolated from water, and *Lysobacter concretionis* [5], *Lysobacter daejeonensis* [6], *Lysobacter spongicola* [7] were isolated from sludge, sediment and deep-sea sponge, respectively.

So far, the genomic sequences of two *Lysobacter* strains have been published (*Lysobacter capsici* AZ78 [8, 9] and *Lysobacter antibioticus* 13-6 [10]), but the annotation of *L. antibioticus* 13-6 was not completed. In order to provide genome information of genus *Lysobacter*, we performed whole genome sequencing of four strains of *Lysobacter* (*L. arseniciresistens* ZS79\(^T\), *Lysobacter concretionis* Ko07\(^T\) [5], *Lysobacter daejeonensis* GH1-9\(^T\) [11], and *Lysobacter defluvii* IMMIB APB-9\(^T\) [12]). In this study, the genome features of *L. arseniciresistens* ZS79\(^T\) is provided and the comparative results of five genomes of *Lysobacter* are presented.

Organism information

Classification and features

Members of genus *Lysobacter* are rod-shaped, aerobic, Gram-negative bacteria [3]. Their G+C contents are 65.4–70.1 %. They use NO\(_3\)\(^-\), NH\(_4\)\(^+\), glutamate, aspartaginate as sole nitrogen sources, Q-8 as the major respiratory quinone, and diphosphatidylglycerol, phosphatidylylethanolamine, phosphatidylglycerol, phosphatidyl-N-methyl ethanolamine as the major polar lipids [3, 8]. In addition, they could lyse cells of many creatures including bacteria, filamentous fungi, yeasts, algae and nematodes [3].

Phylogenetic analyses of *L. arseniciresistens* ZS79\(^T\) and its related strains of family *Xanthomonadaceae* were...
performed based on 16S rRNA genes (Fig. 1a) and 831 conserved proteins (Fig. 1b). In both trees, strain ZS79T is clustered with the other four strains of genus Lysobacter. The phylogenies of the two trees are similar but genomic based tree is more stable than the 16S rRNA gene one (Fig. 1b vs 1a).

L. arseniciresistens ZS79T is aerobic, motile, and Gram-negative bacterium with a Minimum Inhibitory Concentration of 14 mM arsenite in R2A medium (Table 1). The cells are rod-shaped with one flagellum and non-spore-forming (Fig. 2). Colonies of this strain are yellow, nontransparent, convex, circular, and smooth [1].

The major ubiquinone is Q-8, the major cellular fatty acids (>10 %) are iso-C\(_{15}:0\), iso-C\(_{17:1}\)_\(\omega9\), iso-C\(_{16:0}\), iso-C\(_{11:0}\) and iso-C\(_{11:0}\)_3-OH. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and a kind of unknown phospholipid. The C+G content was 70.7 mol% (HPLC) [1].

Genome sequencing and annotation

Genome project history
The genome of *L. arseniciresistens* ZS79T was sequenced in April, 2013 and finished within two months. The high-quality draft genome sequence is available in GenBank database under accession number AVPT00000000. The genome sequencing project information is summarized in Table 2.

Growth conditions and genomic DNA preparation

L. arseniciresistens ZS79T was cultured in 50 ml of LB (Luria–Bertani) medium at 28 °C for 3 days with 160 160 r/min shaking. About 10 mg cells were harvested by centrifugation and suspended in normal saline, and then lysed using lysozyme. DNA was isolated using cells were harvested by centrifugation and suspended in normal saline, and then lysed using lysozyme. The DNA was extracted and purified using the QIAamp kit according to the manufacturer's instruction (Qiagen, Germany).

Genome sequencing and assembly
The whole genome sequencing of *L. arseniciresistens* ZS79T was performed on Illumina Hiseq2000 with Paired-End library strategy (300 bp insert size) at Majorbio Biomedical Science and Technology Co. Ltd. DNA libraries with insert sizes from 300 to 500 bp was constructed using the established protocol [13]. The obtained high quality data contains 4,528,542 × 2 paired reads and 194,996 single reads with an average read length of 91 bp. The sequencing depth was 272.6×.

Using SOAPdenovo v1.05 [14] the reads were assembled
Table 1 Classification and general features of L. arseniciresistens ZS79\(^{1}\) according to the MIGS recommendations [27]

MIGS ID	Property	Term	Evidence code*
	Classification	Domain Bacteria	TAS [28]
		Phylum Proteobacteria	TAS [29]
		Class Gammaproteobacteria	TAS [29, 30]
		Order Xanthomonadales	TAS [30, 31]
		Family Xanthomonadaceae	TAS [30, 31]
		Genus Lysobacter	TAS [3]
		Species Lysobacter arseniciresistens	TAS [1]
		Type strain: ZS79\(^{1}\) (=CGMCC 1.10752\(^{T}\) = KCTC 23365\(^{T}\)).	
	Gram stain	negative	TAS [1]
	Cell shape	rod-shaped	TAS [1]
	Motility	motile	TAS [1]
	Sporulation	non-spore-forming	TAS [1]
	Temperature range	4–37 °C	TAS [1]
	Optimum temperature	28 °C	TAS [1]
	pH range; Optimum	5.0–9.0; 7.0	TAS [1]
	Carbon source	tyrosine, hippurate, gelatin, 3-hydroxybutyric acid	TAS [1]
	MIGS-6 Habitat	subsurface soil	TAS [1]
	MIGS-6.3 Salinity	0–4 % NaCl (w/v)	TAS [1]
	MIGS-22 Oxygen requirement	aerobic	TAS [1]
	MIGS-15 Biotic relationship	free-living	NAS
	MIGS-14 Pathogenicity	non-pathogen	NAS
	MIGS-4 Geographic location	Daye City, Hubei province, China	TAS [1]
	MIGS-5 Sample collection	2011	TAS [1]
	MIGS-4.1 Latitude	30.207178 N	TAS [1]
	MIGS-4.2 Longitude	114.901092 E	TAS [1]
	MIGS-4.4 Altitude	not reported	

* Evidence codes – TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [32].

Table 2 Project information

MIGS ID	Property	Term
MIGS 31	Finishing quality	High-quality draft
MIGS-28	Libraries used	Illumina Paired-End library (300 bp insert size)
MIGS 29	Sequencing platforms	Illumina Hiseq2000
MIGS 31.2	Fold coverage	272.6x
MIGS 30	Assemblers	SOAPdenovo v1.05
MIGS 32	Gene calling method	GeneMarkS+
	Locus Tag	N799
	GenBank ID	AVPT000000000
	GenBank Date of Release	2014/10/24
	GOLD ID	GI0055236
	BIOPROJECT	PRJNA214588
MIGS 31	Source Material Identifier	ZS79\(^{1}\)
	Project relevance	Genome comparison

Fig. 2 Transmission electron microscopy of L. arseniciresistens ZS79\(^{1}\)
into 109 contigs with a cumulative genome size of 3,086,721 bp.

Genome annotation
The draft sequence of *L. arseniciresistens* ZS79\(^\text{†}\) was annotated using the National Center for Biotechnology Information Prokaryotic Genomes Annotation Pipeline [15]. The functions of the predicted genes were determined through blast alignment against the NCBI protein database. Genes were identified using the gene caller GeneMarkS\(^+\) with the similarity-based gene detection approach [16]. The different features were predicted by WebMGA [17], TMHMM [18] and SignalP [19].

Genome properties
The whole genome sequence of *L. arseniciresistens* ZS79\(^\text{†}\) is 3,086,721 bp long with a G+C content of 69.6 % and is distributed into 109 contigs. It has 2,422 predicted genes including 2,363 (97.6 %) protein coding genes, 50 (2.1 %) RNA genes, and 9 (0.4 %) pseudo

Table 3 Genome statistics

Attribute	Value	% of Total
Genome size (bp)	3,086,721	100.00
DNA coding (bp)	2,284,152	74.00
DNA G+C (bp)	2,147,191	69.56
DNA scaffolds	109	
Total genes	2,422	100.00
Protein coding genes	2,363	97.56
RNA genes	50	2.06
Pseudo genes	9	0.37
Genes in internal clusters	811	34.32
Genes with function prediction	1633	67.42
Genes assigned to COGs	1858	76.71
Genes with Pfam domains	2038	84.14
Genes with signal peptides	539	22.81
Genes with transmembrane helices	527	22.25
CRISPR repeats	1	0.41

Table 4 Number of genes associated with general COG functional categories

Code	Value	% of Total	Description
J	157	6.48	Translation, ribosomal structure and biogenesis
A	1	0.04	RNA processing and modification
K	116	4.79	Transcription
L	127	5.24	Replication, recombination and repair
B	2	0.08	Chromatin structure and dynamics
D	27	1.11	Cell cycle control, Cell division, chromosome partitioning
V	37	1.53	Defense mechanisms
T	104	4.29	Signal transduction mechanisms
M	125	5.16	Cell wall/membrane biogenesis
N	73	3.01	Cell motility
U	89	3.67	Intracellular trafficking and secretion
O	108	4.46	Posttranslational modification, protein turnover, chaperones
C	128	5.28	Energy production and conversion
G	70	2.89	Carbohydrate transport and metabolism
E	148	6.11	Amino acid transport and metabolism
F	50	2.06	Nucleotide transport and metabolism
H	91	3.76	Coenzyme transport and metabolism
I	90	3.72	Lipid transport and metabolism
P	107	4.42	Inorganic ion transport and metabolism
Q	53	2.19	Secondary metabolites biosynthesis, transport and catabolism
R	233	9.62	General function prediction only
S	185	7.64	Function unknown
-	564	23.29	Not in COGs

The total is based on the total number of protein coding genes in the genome.
genes. A total of 1633 (67.4 %) genes have functional prediction, and 1,858 (76.7 %) genes could be assigned to Clusters of Orthologous Groups [20]. More detailed information of the genome statistics is showed in Table 3. The protein functional classification according to COGs is showed in Table 4. The genome map is showed in Fig. 3.

Insights from the genome sequences

To obtain features of *Lysobacter* genomes, we sequenced four genomes of genus *Lysobacter* and performed comparative genomic analysis among the five available genomes of this genus. The general features of these five genomes are summarized in Table 5. To calculate the pan-genome and core-genome of these five genomes, we performed orthologs clustering analysis using OrthoMCL [21]. The pan-genome has 6,409 orthologs families and the core-genome has 1,207 orthologs. The numbers of unique genes of each genome are showed in Fig. 4. To evaluate the genome variation of these five genomes, we first performed multiple alignments among these genome sequences using MAUVE [22] and then calculated the nucleotide diversity using DnaSP v5 [23]. These five genomes shared 0.73 Mb co-linear sequences. The π value of these sequences among these five genomes is 0.173 which means that the approximate nucleotide sequence homology is 83 % among genomes of *Lysobacter* [23].
In the genome of *L. arseniciresistens* ZS79^T, we found that the genomic island distributions are consistent with the genome C + G content anomaly areas (Fig. 3). In addition, few gene sequences from the other four *Lyso- bacter* genomes could be aligned with these genomic island regions (Fig. 3, ring 6 to ring 9). These results indicated that the genes within the genomic islands were most probably acquired by horizontal transfer [24] and these regions are unique in the genome of *L. arseniciresistens* ZS79^T.

According to Kyoto Encyclopedia of Genes and Genomes [25] annotation result, all of the five *Lysobacter* genomes have a nearly complete type II secretion system which could secret cell wall degrading enzymes [26]. This result may correspond to the behavior of *Lysobacter* members that were able to lyse cells of many microorganisms [3]. In addition, the genomes of *L. arseniciresistens* ZS79^T, *L. concretionis* Ko07^T, and *L. defluvii* IMMIB APB-9^T contain genes for flagellar assembly, whereas the genome of *L. daejeonensis* GH1-9^T does not contain any genes for flagellar assembly and *L. capsici* AZ78 does not contain genes for flagellar filament (Additional file 1: Table S2). These genotypes correspond to the phenotype descriptions that *L. daejeonensis* and *L. capsici* are non-motile [8, 11].

Genomic analysis showed eight genes corresponding to arsenic resistance in the genomes of *L. arseniciresistens* ZS79^T (Additional file 1: Table S3). This result well explained the arsenite resistance of this strain [1]. By contrast, fewer arsenic resistance were found in the genomes of *L. concretionis* Ko07^T, *L. defluvii* IMMIB APB-9^T, *L. capsici* AZ78, and *L. daejeonensis* GH1-9^T compared to strain ZS79^T.

Conclusions

The genomic information of *L. arseniciresistens* ZS79^T and the comparative genomics analysis of the five *Lysobacter* strains are obtained. The genomic based phylogeny is in agreement with the 16S rRNA gene based one indicating the usefulness of genomic information for

Table 5 General features of the five Lysobacter genomes^a

Strains	Source	Size (Mb)	G+C content	CDSs	rRNA clusters	rRNAs	Genome status	Contigs	Contigs NS50 (bp)	GenBank No.
L. arseniciresistens ZS79^T	Iron-mined soil	3.1	69.58 %	2,363	3	46	Draft	109	101,761	AVPT000000000
L. concretionis Ko07^T	Anaerobic granules	3.0	67.25 %	2,232	3	46	Draft	26	386,139	AVPS000000000
L. daejeonensis GH1-9^T	Green house soils	3.3	67.29 %	2,570	4	48	Draft	99	101,460	AVPU000000000
L. defluvii IMMIB APB-9^T	Municipal solid waste	2.7	70.22 %	2,443	13	44	Draft	578	16,113	AVBH000000000
L. capsici AZ78	Tobacco & tomato rhizosphere	6.3	66.43 %	5,139	8	65	Draft	174	101,988	JAJA000000000

^aThe genome of *L. arseniciresistens* ZS79^T, *L. concretionis* Ko07^T, *L. daejeonensis* GH1-9^T and *L. defluvii* IMMIB APB-9^T are sequenced in this study. The genome of *L. capsici* AZ78 was sequenced by Puoplo et al. [9].

Fig. 4 The core-genome and the unique genes of the five Lysobacter genomes. The Venn diagram shows the number of orthologous gene families of the core-genome (in the center) and the numbers of unique genes of each genome.
Additional file

Additional file 1: Table S1. The proteins for Type II secretion in Lysobacter genomes. Table S2. The proteins for flagellar assembly in Lysobacter genomes. Table S3. The arsenic resistances genes found in five Lysobacter genomes. (MDSX 17 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LL carried out sequence alignments and drafted the manuscript. SZ performed the genome annotation and genome comparison. ML and GW coordinated the study, participated in the design and corrected the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the National High Technology Research and Development Program of China (2012AA101402) and the National Natural Science Foundation of China (31470226).

Received: 29 October 2014 Accepted: 8 October 2015
Published online: 27 October 2015

References
1. Luo G, Shi Z, Wang G, Lysobacter arsenicirestis sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol. 2012;62:1659–65. PubMed http://www.ncbi.nlm.nih.gov/pubmed/21880727.
2. NCBI Taxonomy Browser http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
3. Christiansen P, Cook FD. Lysobacter, a New Genus of Nonfruiting, Gilding Bacteria with a High Base Ratio. Int J Syst Bacteriol. 1978;28:287.
4. Fukuda W, Kimura T, Araki S, Miyoshi Y, Atomi H, Imanaka T. Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol. 2013;63:3313–8. PubMed http://www.ncbi.nlm.nih.gov/pubmed/23475347.
5. Bae HS, Im WT, Lee ST. Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol. 2005;55:1743–5. PubMed http://www.ncbi.nlm.nih.gov/pubmed/15870428.
6. Ten LN, Jung HM, Im WT, Yoo SA, Lee ST. Lysobacter daejeonensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. J Microbiol. 2008;46:519–24. PubMed http://www.ncbi.nlm.nih.gov/pubmed/18974952.
7. Romanenko LA, Uchino M, Tanaka N, Frolova GM, Mikhailov VV. Lysobacter spongicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol. 2008;58:370–4. PubMed http://www.ncbi.nlm.nih.gov/pubmed/18218933.
8. Park JH, Kim R, Aisam Z, Jeong OG, Chung YR. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol. 2008;58:387–92. PubMed http://www.ncbi.nlm.nih.gov/pubmed/18218936.
9. Puopolo G, Sonego P, Engelen K, Pertot I. Draft Genome Sequence of Lysobacter capsici A27B, a Bacterium Antagonistic to Plant-Pathogenic Oomycetes. Genome Announc. 2014;2. PubMed http://www.ncbi.nlm.nih.gov/ pubmed/24762937.
10. Zhou L, Li M, Yang J, Wei L, Ji G. Draft Genome Sequence of Antagonistic Agent Lysobacter antibioticus 13-6. Genome Announc. 2014;2. PubMed http://www.ncbi.nlm.nih.gov/pubmed/25301638.
11. Weon HY, Kim BY, Baek YK, Yoo SH, Kwon SW, Stacklebrandt E, et al. Two novel species, Lysobacter daecheongensis sp. nov. and Lysobacter yangyangensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol. 2006;56:947–51. PubMed http://www.ncbi.nlm.nih.gov/pubmed/16627636.
12. Yassin AF, Chen WM, Hupfer H, Sletting G, Kroppenstedt RM, Arun AB, et al. Lysobacter defluvi sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol. 2007;57:1131–6. PubMed http://www.ncbi.nlm.nih.gov/pubmed/17473271.
13. Illumina official website http://www.illumina.com
14. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18. PubMed http://www.ncbi.nlm.nih.gov/pubmed/23587118.
15. Prokaryotic Genome Annotation Pipeline http://www.ncbi.nlm.nih.gov/genome/annotation_prok.
16. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29(12):2667–8. PubMed http://www.ncbi.nlm.nih.gov/pubmed/1140670.
17. Wu S, Zhu Z, Fu L, Niu B, Liu W. WeMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444. PubMed http://www.ncbi.nlm.nih.gov/pubmed/21899761.
18. Krogh A, Larsson BÈ, Von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80. PubMed http://www.ncbi.nlm.nih.gov/pubmed/1115613.
19. Dyrolf Bendtsen J, Nielsen JH, von Heijne G. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340(4):783–95. PubMed http://www.ncbi.nlm.nih.gov/pubmed/15223320.
20. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kyrjutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41. PubMed http://www.ncbi.nlm.nih.gov/pubmed/12959567.
21. Li L, Stoegerl JR, Coos DS, OrthMC. Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89. PubMed http://www.ncbi.nlm.nih.gov/pubmed/12952885.
22. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403. PubMed http://www.ncbi.nlm.nih.gov/pubmed/15231754.
23. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1415–22. PubMed http://www.ncbi.nlm.nih.gov/pubmed/19346325.
24. Langille MG, Hsiao WW, Brinkman FS. Detecting genomic islands using bioinformatics approaches. Nat Rev Microbiol. 2010;8:373–82. PubMed http://www.ncbi.nlm.nih.gov/pubmed/20035641.
25. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M, Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–205. PubMed http://www.ncbi.nlm.nih.gov/pubmed/24214961.
26. Canicotto NP. Type II secretion: a protein secretion system for all seasons. Trends Microbiol. 2003;11:358–8. PubMed http://www.ncbi.nlm.nih.gov/pubmed/12952885.
27. Field D, Garrity G, Gray T, Morrison N, Selengut J, Serr K, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26:541–7. PubMed http://www.ncbi.nlm.nih.gov/pubmed/18464787.
28. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9. PubMed http://www.ncbi.nlm.nih.gov/pubmed/2112744.
29. Garrity G, Bell J, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In: Garrity G, Brenner D, Krieg N, Staley J, editors. Bergey’s Manual of Systematic Bacteriology, vol. 2. 2nd ed. New York: Springer; 2005. p. 1.
30. Validation of publication of new names and new combinations previously effective published outside the IJSEM. Int J Syst Evol Microbiol. 2005;55:1743–5. PubMed [http://www.ncbi.nlm.nih.gov/pubmed/16166658].
31. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–30. PubMed [http://www.ncbi.nlm.nih.gov/pubmed/1082651.
32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. PubMed http://www.ncbi.nlm.nih.gov/pmid/24132122.
33. Langille MG, Brinkman FS. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics. 2009;25:664–5. PubMed http://www.ncbi.nlm.nih.gov/pubmed/19151094.