Effects of Phosphoryl Oligosaccharides of Calcium (POs-Ca) on Mycelial Growth and Fruiting Body Development of the Edible Mushroom, *Pleurotus ostreatus*

(Received February 14, 2020; Accepted April 17, 2020)

Daisuke Suzuki,†, Yuko Sato, Hiroshi Kamasaka, and Takashi Kuriki

1 Institute of Health Sciences, Ezaki Glico Co., Ltd. (4–6–5 Ohjima, Nishiyodogawa-ku, Osaka 555–8502, Japan)

Abstract: Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl maltooligosaccharides made from potato starch. POs-Ca is highly water-soluble and can supply both the calcium ion and acidic oligosaccharides in an aqueous solution. In this study, we investigated the effects of POs-Ca on the mycelial growth and fruiting body yield of *Pleurotus ostreatus*, which is one of the most widely cultivated edible mushrooms in the world. We cultivated the mushroom using both potato dextrose agar (PDA) medium and sawdust-based medium, with added calcium salts. The addition of POs-Ca into the PDA medium with a calcium concentration of 10 mg increased mycelial growth significantly ($p < 0.05$, vs. control). POs-Ca addition to the sawdust-based medium at concentrations of 1.0 to 3.0 g/100 g medium increased the amount of calcium in the fruiting bodies but did not affect the length of the cultivation period or the weight of the fruiting body. The calcium content in the fruiting body increased 12-fold when compared to the control. On the other hand, neither the CaHPO$_4$–$2H_2O$ group nor the CaHPO$_4$–$2H_2O$ with oligosaccharides group showed changes in the calcium content of the fruiting bodies. Our results indicate that the use of POs-Ca in mushroom cultivation allows for the possibility of developing new functional foods like calcium-enriched edible mushrooms. This is the first report describing the effects of POs-Ca on mushroom cultivation.

Key words: phosphoryl oligosaccharides of calcium, mycelial growth, mushroom cultivation, fruiting body, calcium accumulation, *Pleurotus ostreatus*

INTRODUCTION

Phosphoryl oligosaccharides of calcium (POs-Ca) is a highly water-soluble calcium salt prepared from potato starch hydrolysate. The phosphoryl oligosaccharides moiety consists of maltooligosaccharides with 3 to 5 glucose units and 1 phosphoryl residue at the 3- or 6-position of a glucosyl residue. Calcium phosphate has low water solubility. On the other hand, POs-Ca has high water solubility because its oligosaccharide moiety is very soluble in water. Previous studies have demonstrated that POs-Ca has various functions such as remineralization and recrystallization of tooth enamel lesions, skin barrier protection, and skin moisturization. Tanaka et al. showed that POs-Ca increased the calcium ion concentration in saliva because of its high water solubility, resulting in the enhancement of remineralization and recrystallization of tooth enamel. Moreover, chewing gum containing POs-Ca is commercially available for the prevention of dental caries. *Pleurotus ostreatus* is one of the most commonly found edible mushrooms worldwide. The growth, yield, and quality of the hyphae and fruiting bodies depend on the nutrients and the physicochemical environment of the growth medium. Lignocellulosic materials, such as corn cobs, wheat straws, cotton waste, sawdust, paper, and even food industry waste have been investigated for mushroom cultivation. Furthermore, the effects of additives, such as nitrogen and minerals, have also been widely studied. Previous studies have demonstrated that calcium salts have various functions for mushroom cultivation, e.g., increasing mycelial growth, neutralizing acid in the medium during cultivation, and increasing the calcium content of a fruiting body. Therefore, we hypothesized that POs-Ca may affect the mycelial growth and fruiting body yield of edible mushrooms.

In this study, we evaluated the effects of the highly water-soluble calcium salt, POs-Ca, on the growth of *P. ostreatus*. We observed mycelial growth on both potato dextrose agar (PDA) medium and sawdust-based medium, examined the mushroom cultivation characteristics, and analyzed the calcium content of fruiting bodies. To the best of our knowledge, this is the first report on the use of POs-Ca for mushroom cultivation.

MATERIALS AND METHODS

Microorganism and chemicals. *Pleurotus ostreatus* was
purchased from Kagawashiitake Co. (Miyagi, Japan). The stock culture was inoculated on PDA medium (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan), incubated at 25 °C for 7 days, and used throughout the experiments. Petri plates were stored at 4 °C. Calcium hydrogen phosphate dihydrate (CaHPO₄·2H₂O) (FUJIFILM Wako Pure Chemical Co., Osaka, Japan), POs-Ca (POs-Ca 50, calcium content approximately 5 % (w/w), Glico Nutrition Co., Ltd., Osaka, Japan), and Oligotose (Sanwa Starch Co., Ltd., Nara, Japan) were used as additives. To evaluate the effects of calcium, the additive amount was adjusted to the concentration of elemental calcium in calcium salts. Mycelial growth on the PDA medium supplemented with calcium salts. The calcium salts tested were POs-Ca and CaHPO₄·2H₂O. *P. ostreatus* was cultivated with the PDA medium containing 20.2, 101.1, 202.2, 606.7, and 1011.1 mg/dish of POs-Ca and 4.3, 21.5, 42.9, 128.8, and 214.7 mg/dish of CaHPO₄·2H₂O. In both groups, the calcium concentration was adjusted to 1.5, 10, 30, and 50 mg/dish. Control dishes contained PDA medium only. The medium was autoclaved (121 °C, 15 min) and poured into petri dishes (20 mL/dish). *P. ostreatus* stock culture was previously grown on PDA medium in a dish, as described above. The precultured *P. ostreatus* was cut with a sterile cork borer (7 mm in diameter) and inoculated onto the center of each dish (1 plug/dish). The inoculated dishes were incubated at 25 °C for 7 days in the dark, and then the colony diameter was measured. Due to deviations from absolute circularity, both the largest and smallest diameters of the colonies were measured, and the mean was calculated. The measurements of mycelial growth were determined on Days 4, 5, and 7. All experiments were conducted in quintuplicate.

Mycelial growth on the sawdust-based medium supplemented with calcium salts. Sawdust of Japanese beech (2 × 2 mm) and wheat bran (4:1, v/v) were mixed, and the moisture content of the medium was adjusted to 63 % (w/w) with tap water. The calcium salts, POs-Ca and CaHPO₄·2H₂O were added at an elemental calcium concentration of 150 mg/100 g medium. The calcium level was set based on the result of mycelial growth on the sawdust-based medium described in the preceding paragraph. With regard to the group of CaHPO₄·2H₂O with oligosaccharides, the amount of oligosaccharides was adjusted to be equivalent to the oligosaccharide moiety of POs-Ca (95 % of the weight of POs-Ca). Then tap water was added to the mixture to give a moisture content of 63 % (w/w), and it was mixed well for homogeneity. Twenty grams (in fresh weight) of the substrate was tightly packed into a test tube (length, 98 mm; inner diameter, 22 mm). The test tubes were capped with a polypropylene cap and autoclaved at 121 °C for 30 min. After cooling, precultured *P. ostreatus* was cut with a sterile cork borer (7 mm diameter) and inoculated onto the center of each test tube (1 plug/tube). The cultures were incubated for 14-15 days at 25 °C with 70 % relative humidity. The surface of the culture was then removed to induce fruiting body formation. The cultures were transferred to another incubator maintained at 15 °C with 90 % relative humidity and continuously illuminated (500–600 lx) by fluorescent lamps. The harvested fruiting bodies were dried in a conventional air oven for 48 h at 100 °C. After drying, the weights were measured. The dried fruiting bodies were powdered with a conventional mill. Next, the dried fruiting bodies obtained from 10 or 11 tubes in each group were combined and mixed well.

Determination of calcium content in fruiting body. The content of calcium in the dried fruiting bodies from the sawdust-based medium was determined using an inductively-coupled plasma (ICP) emission spectroscopy (ICPS-8100, Shimadzu Co., Kyoto, Japan). The sample (0.2 g) was digested with a mixture of sulfuric acid and nitric acid and diluted with water. The diluted solution was applied to the ICP emission spectroscopy. These chemical analyses were performed at Kobelco Research Institute, Inc. (Hyogo, Japan).

Statistics. Statistical analysis of all experimental data was performed using the statistical software package JMP13.2. Analysis of variance was followed by the comparison of means using Tukey’s honest significance test. Differences were considered to be significant when p < 0.05.

RESULTS AND DISCUSSION

The effects of calcium salts on the mycelial growth on PDA medium.

Mycelial growth was observed within 7 days post-inoculation on the PDA medium. Table 1 shows the effects...
we observed that the mycelial growth increased, except for the PDA medium. In the experiment supplemented with CaHPO$_4$ \cdot 2H$_2$O (B group), and without calcium salt (control, C). For A and B groups, the calcium level was adjusted to 10, 30, and 50 mg/dish, respectively. The cultivation was performed for 8 days at 25 °C.

For A and B groups, the calcium level was adjusted to 10, 30, and 50 mg/dish, respectively. The cultivation was performed for 8 days at 25 °C.

Table 1. Mycelial growth of *P. ostreatus* on PDA medium supplemented with calcium reagents.

Calcium reagent	Additive content of calcium (mg/plate)	Mycelial growth (mm)	Days 4	Days 5	Days 7
Control			38.1±0.7a	50.1±1.2bc	76.8±1.5a
POs-Ca			39.3±1.6a	52.4±1.5bcd	78.3±1.5a
CaHPO$_4$ \cdot 2H$_2$O			37.5±2.4a	48.7±2.1b	83.6±1.3a

Each value is expressed as mean ± SD ($n = 5$). Mean values followed by the same letter(s) are not significantly different at the 5 % level (Tukey-Kramer’s HSD test).

of POs-Ca and CaHPO$_4$ \cdot 2H$_2$O on the mycelial growth on the PDA medium. In the experiment supplemented with POs-Ca, we observed that the mycelial growth decreased as supplementation increased on Days 4 and 5. However, after 7 days of incubation, the colony diameter for the 10 mg/dish of calcium contained in POs-Ca was significantly increased by 82.8 mm ($p < 0.05$, vs. control). The PDA medium supplemented with 1, 5, 30, and 50 mg/dish of calcium contained in POs-Ca did not show any effects on mycelial growth on Days 7.

For the experiment supplemented with CaHPO$_4$ \cdot 2H$_2$O, we observed that the mycelial growth increased, except for the 1 mg/dish of calcium contained in CaHPO$_4$ \cdot 2H$_2$O. On Day 7 of cultivation, the group supplemented with 30 mg/dish of calcium contained in CaHPO$_4$ \cdot 2H$_2$O measured 84.6 mm ($p < 0.05$, vs. control). POs-Ca and calcium phosphate were shown to have positive effects on mycelial growth of *P. ostreatus* using potato

Table 2. Mycelial growth of *P. ostreatus* on sawdust medium supplemented with calcium reagents.

Calcium reagent	Additive content of calcium (mg/100 g of medium)	Mycelial growth (mm)	Days 7	Days 14	Days 21
Control			31.7±1.9a	33.6±1.2a	129.8±2.5a
POs-Ca			31.2±1.6a	34.4±1.4ab	132.4±2.5a
CaHPO$_4$ \cdot 2H$_2$O			29.9±1.7a	31.5±1.4a	127.7±2.0a

Each value is expressed as mean ± SD ($n = 5$). Mean values followed by the same letter(s) are not significantly different at the 5 % level (Tukey-Kramer’s HSD test).

sugar agar medium and reported that CaHPO$_4$ \cdot 2H$_2$O did not affect the mycelial growth of *P. ostreatus* under 1 %. Our results are consistent with their findings. As shown in Fig. 1, the appearance and density of mycelium from POs-Ca and CaHPO$_4$ groups were similar to that of the control group.

The effects of calcium salts on the mycelial growth on sawdust medium.

The growth of mycelia on sawdust-based medium supplemented with calcium salts, POs-Ca and CaHPO$_4$ \cdot 2H$_2$O, is reported in Table 2. In contrast to the PDA medium experiment, we observed that the mycelial growth decreased as POs-Ca supplementation increased.

In the experiment supplemented with CaHPO$_4$ \cdot 2H$_2$O, mycelial growth increased as supplementation increased. On Day 21 of cultivation, the mycelial growth significantly increased versus the growth of the control on the saw-
The effects of calcium salts on the sawdust-based cultivation of \textit{P. ostreatus}.

Table 3 shows the results of the sawdust-based cultivation of \textit{P. ostreatus}. Overall, the pH values decreased during cultivation for the groups grown on sawdust-based medium. The pH range was 4.8 to 5.5 before inoculation, and the pH range was 4.3 to 4.6 after harvest. It is well-known that growth medium pH decreases during mushroom cultivation due to oxalic acid secretions from the mushrooms.\(^{13}\)

The average cultivation period for the sawdust-based medium groups ranged from 27.5 to 29.9 days. Thus, there were no significant differences between the groups. As shown in Fig. 2, the quality of fruiting bodies cultivated from sawdust-based medium containing POs-Ca was the same as the control group. The average dry weight of the fruiting bodies from the sawdust-based medium groups ranged from 0.24 to 0.27 g/tube, and there were no significant differences between the groups. The addition of the calcium salts to the sawdust-based growth medium did not affect the cultivation period length or the amount of fruiting bodies present (\(p < 0.05\)). These results are confirmed by the results of Sekiya, which previously indicated that CaHPO\(_4\) did not affect the cultivation period or the amount of fruiting bodies when compared to the control.\(^{13}\)

Calcium content in the fruiting bodies of \textit{P. ostreatus} from sawdust-based medium supplemented with calcium salts.

The amount of calcium contained in the fruiting body of \textit{P. ostreatus} was determined using an ICP emission spectroscopy. Table 4 shows the results of the calcium content measurements in dried fruiting bodies from the sawdust-based medium supplemented with the calcium salts. The total amount of calcium contained in the fruiting bodies from the sawdust-based medium with no calcium salt was 0.07 mg/g. The calcium concentration of the fruiting bodies increased with the increasing calcium content, and the POs-Ca group with 150 mg calcium/100 g medium contained 0.85 mg/g calcium. The absorption ratio was 12.1 vs the control. POs-Ca increased the calcium content of the fruiting bodies without affecting quality, yield, or the cultivation period. In contrast, the addition of CaHPO\(_4\)
2H₂O did not affect the calcium content of the fruiting bodies. Tabata and Shinohara reported that the absorption ratio of calcium in the fruiting bodies of *P. ostreatus* from the sawdust-based medium supplemented with CaHPO₄·2H₂O was 1.1 vs. control,¹³ and our results are consistent with their reported results. The primary reason for the efficiency of accumulating calcium in the fruiting bodies might be that POs-Ca is more accessible to cells of the mycelium than calcium phosphate because of its water solubility. Like POs-Ca, calcium chloride is also a highly water-soluble calcium salt. However, it was reported that calcium chloride strongly inhibited the mycelial growth of *P. ostreatus* and reduced the yield of fruiting bodies.¹⁴ The addition of CaHPO₄·2H₂O with oligosaccharides also did not affect the calcium content of the fruiting body, which indicates that the ester bond between the oligosaccharide and phosphate is essential for accumulating calcium in the fruiting body.

Usually, mushrooms contain very little if any vitamin D₂, but are abundant in the D₂ provitamin ergosterol. Ergosterol is the principal sterol in mushrooms and is present in relatively high concentrations in *P. ostreatus*.¹⁵ Numerous studies have reported that the ergosterol converts into vitamin D₂ with ultraviolet (UV) irradiation or sunlight.²⁰²¹²² Vitamin D₂ promotes the absorption of calcium from the intestine to help build and maintain bones.²³ Several studies have reported that vitamin D₂ from vitamin D₂-enriched mushrooms is well absorbed and quickly converted to vitamin D₂. Calcium and vitamin D₂-enriched mushrooms may have the potential to assist in bone mineralization and prevent osteoporosis. In the future, we plan to evaluate further the feasibility of edible mushrooms supplemented with POs-Ca.

CONFLICTS OF INTEREST

T.K. currently serves on the board of directors of Ezaki Glico Co., Ltd. T.K. is also the President and CEO of Glico Nutrition Co., Ltd., which is a supplier of POs-Ca. Glico Nutrition Co., Ltd. is a wholly owned subsidiary of Ezaki Glico Co., Ltd. All authors declare no other competing interests.

ACKNOWLEDGMENTS

We thank Dr. Yasushi Obatake from the Nara Forest Research Institute, Japan, for the invaluable technical assistance.

REFERENCES

1. H. Kamasaota, K. To-o, K. Kusaka, T. Kuriki, T. Kometani, and S. Okada: Effect of phosphorly oligosaccharides on iron solubility under neutral conditions. *Biosci. Biotechnol. Biochem.*, 61, 1209–1210 (1997).
2. T. Tanaka, N. Yagi, T. Ohta, Y. Matsuo, H. Terada, K. Kamasaota, K. To-o, T. Kometani, and T. Kuriki: Evaluation of the distribution and orientation of remineralized enamel crystallites in subsurface lesions by X-ray diffraction. *Caries Res.*, 44, 253–259 (2010).
3. H. Sambe, K. Sugimoto, K. Nomura, and T. Kuriki: Effects of phosphorly oligosaccharides of calcium (POs-Ca) on epidermal cells and human skin. *J. Appl. Glycosci.*, 62, 107–113 (2015).
4. C. Sánchez: Cultivation of *Pleurotus ostreatus* and other edible mushrooms. *Appl. Microbiol. Biotechnol.*, 85, 1321–1337 (2010).
5. A. Philippoussis, G. Zervakis, and P. Diamantopoulou: Bioconversion of lignocellulosic wastes through the cultivation on the edible mushrooms *Agrocybe aegerita*, *Volvariella volvacea*, and *Pleurotus spp.* *World J. Microbiol. Biotechnol.*, 17, 191–200 (2001).
6. R. Naraia, R.K. Sahu, S. Kumar, S.K. Garg, C.S. Singh, and R.S. Kanaia: Influence of different nitrogen rich supplements during cultivation of *Pleurotus florida* on corn cob substrate. *Environmentalis*, 29, 1–7 (2009).
7. T. Tesfay, T. Godifey, R. Mesfin, and G. Kalayu: Evaluation of waste paper for cultivation of oyster mushroom (*Pleurotus ostreatus*) with some added supplementary materials. *AMB Exp.*, 10, 15 (2020).
8. E.Y. Jo, J.L. Cheon, and J.H. Ahn: Effect of food waste compost on the antler-type fruiting body yield of *Ganoderma lucidum*. *Mycobiology*, 41, 42–46 (2013).
9. D.C. Zied, J.M. Savoie, and A. Pardo-Giménez: Soybean the main nitrogen source in cultivation substrates of edible and medicinal mushrooms. in *Soybean and Nutrition*, H.A. El-Shamy, ed., InTech Open Access, Rijeka, pp. 433–452 (2011).
10. S.G. Jonathan and I.O. Fasidi: Effect of carbon, nitrogen and mineral sources on growth of *Psathyrella atrorubensata* (Pegler), a Nigerian edible mushroom. *Food Chem.*,...
T. Tabata and T. Ogura: Absorption of calcium and magnesium to the fruit body of Aragekikurage (Auricularia polypyricha (Mont.) Sacc.) from sawdust culture media supplemented with calcium and magnesium salts. *Food Sci. Technol. Res.*, 9, 250–253 (2003).

T. Tabata and T. Ogura: Absorption of calcium and magnesium by the fruiting body of the cultivated mushroom *Hypsizygus marmoreus* (peck) bigelow from sawdust culture media. *J. Food Sci.*, 68, 76–79 (2003).

T. Tabata and H. Shinohara: Absorption of calcium salts added culture media by Hiratake (*Pleurotus ostreatus* (Fr.) Quél.) and Nameko (*Pholiota nameko* J. Ito). *J. Jpn. Soc. Food Sci. Technol.*, 42, 682–686 (1995).

G. Zervakis, A. Philippoussis, S. Ioannidou, and P. Diamantopoulou: Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. *Folia Microbiol.*, 46, 231–234 (2001).

C.O. Ogidi, E.D. Akindulureni, O.Y. Agbetola, and B.J. Akinuye: Calcium bioaccumulation by *Pleurotus ostreatus* and *Lentinus squarrosulus* cultivated on palm tree wastes supplemented with calcium-rich animal wastes or calcium salts. *Waste Biomass Valor.*, 11, 4235–4244 (2019).

Y. Obatake, S. Murakami, T. Matsumoto, and Y. Fukumasa-Nakai: Isolation and characterization of a sporeless mutant in *Pleurotus eryngii*. *Mycoscience*, 44, 33–40 (2003).

A. Jarosz-Wilkołazka and M. Graż: Organic acid production by white rot Basidiomycetes in the presence of metallic oxides. *Can. J. Microbiol.*, 52, 779–785 (2006).

A. Sekiya: Absorption of iron or calcium in fruit-body of *Pleurotus ostreatus* from iron salts or calcium salts containing culture media. *J. Integr. Stud. Diet. Habits*, 10, 27–29 (1999).

S. Shao, M. Hernandez, J.K. Kramer, D.L. Rinner, and R. Tsao: Ergosterol profiles, fatty acid composition, and antioxidant activities of button mushrooms as affected by tissue part and developmental stage. *J. Agric. Food Chem.*, 58, 11616–11625 (2010).

J.L. Mau, P.R. Chen, and J.H. Yang: Ultraviolet irradiation increased vitamin D2 content in edible mushrooms. *J. Agric. Food Chem.*, 46, 5269–5272 (1998).

P. Urbain, and J. Jakobsen: Dose-Response effect of sunlight on vitamin D2 production in *Agaricus bisporus* mushrooms. *J. Agric. Food Chem.*, 63, 8156–8161 (2015).

O. Taofiq, Â. Fernandes, L. Barros, M.F. Barreiro, and I.C.F.R. Ferreira: UV-irradiated mushrooms as a source of vitamin D$_2$: A review. *Trends Food Sci. Technol.*, 70, 82–94 (2017).

P. Lips: Vitamin D physiology. *Prog. Biophys. Mol. Biol.*, 92, 4–8 (2006).

S.R. Koyyalamudi, S.C. Jeong, C.H. Song, K.Y. Cho, and G. Pang: Vitamin D2 formation and bioavailability from *Agaricus bisporus* button mushrooms treated with ultraviolet irradiation. *J. Agric. Food Chem.*, 57, 3351–3355 (2009).

G. Lee, H. Byun, K. Yoon, J. Lee, K. Choi, and E. Jeung: Dietary calcium and vitamin D2 supplementation with enhanced *Lentinula edodes* improves osteoporosis-like symptoms and induces duodenal and renal active calcium transport gene expression in mice. *Eur. J. Nutr.*, 48, 75–83 (2009).