Menstrual Cycle Phase Modulates Auditory-Motor Integration for Vocal Pitch Regulation

Xiaoxia Zhu¹, Yang Niu², Weifeng Li³, Zhou Zhang³, Peng Liu³, Xi Chen³ and Hanjun Liu³, 4*

¹ Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, ² Department of Rehabilitation Medicine, Anhui No. 2 Province People’s Hospital, Hefei, China, ³ Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, ⁴ Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China

In adult females, previous work has demonstrated that changes in auditory function and vocal motor behaviors may accompany changes in gonadal steroids. Less is known, however, about the influence of gonadal steroids on auditory-motor integration for voice control in humans. The present event-related potential (ERP) study sought to examine the interaction between gonadal steroids and auditory feedback-based vocal pitch regulation across the menstrual cycle. Participants produced sustained vowels while hearing their voice unexpectedly pitch-shifted during the menstrual, follicular, and luteal phases of the menstrual cycle. Measurement of vocal and cortical responses to pitch feedback perturbations and assessment of estradiol and progesterone levels were performed in all three phases. The behavioral results showed that the menstrual phase (when estradiol levels are low) as associated with larger magnitudes of vocal responses than the follicular and luteal phases (when estradiol levels are high). Furthermore, there was a significant negative correlation between the magnitudes of vocal responses and estradiol levels. At the cortical level, ERP P2 responses were smaller during the luteal phase (when progesterone levels were high) than the menstrual and follicular phases (when progesterone levels were low). These findings show neurobehavioral evidence for the modulation of auditory-motor integration for vocal pitch regulation across the menstrual cycle, and provide important insights into the neural mechanisms and functional outcomes of gonadal steroids’ influence on speech motor control in adult women.

Keywords: auditory feedback, auditory-vocal integration, menstrual cycle, estradiol, progesterone

INTRODUCTION

Gonadal steroids, such as estradiol and progesterone, have demonstrable effects on behavior and neuronal activity involved in cognitive functions, emotional control, and sensory processing (Fernandez et al., 2003; Eisner et al., 2004; Jacobs and D’Esposito, 2011). In addition to their known involvement in those brain functions, gonadal steroids are believed to influence the control of vocal communication. Evidence from birdsong research shows that estrogen helps maintain the plasticity of the song system to acquire new sensory models of song, and the lack of estrogen during the normal critical period of song learning impairs the development of adult song (Schlinger, 1997).
In humans, fluctuations of gonadal steroids drive changes in voice quality such as roughness, breathiness, and ashenia (Meurer et al., 2009; Raj et al., 2010; Çelik et al., 2013) and may influence the timing of voice onset and offset (Wadnerkar et al., 2006). As compared to premenopausal women, postmenopausal women suffer from vocal deficits including lower voice fundamental frequency (F0), lower vocal intensity, and more voice instability, and their voice quality was improved with hormone replacement therapy (D’Haeseleer et al., 2009). Evidence suggests that the vocal folds contain specific estrogen and progesterone receptors in the vocalis muscle and lamina propria (Ferguson et al., 1987; Newman et al., 2000). Therefore, changes in these gonadal steroids may influence vocal motor behavior through the receptor-coupled effector mechanisms.

Both estradiol and progesterone can also influence auditory function. For example, exposing female midshipman fish to estradiol during the non-breeding season makes their auditory nerves more sensitive to the frequency of the male mating call (Sisneros et al., 2004). Acute inhibition of estradiol production in songbirds suppresses burst firing of auditory neurons and disrupts their ability to process and respond to song stimuli (Remage-Healey et al., 2010). In humans, auditory acuity, spontaneous otoacoustic emissions, and auditory processing assessed by auditory brainstem response (ABR) and auditory event-related potentials (ERPs) vary significantly as gonadal steroids change across the menstrual cycle (Serra et al., 2003; Walpurger et al., 2004; Al-Mana et al., 2010). For example, N1-P2 peak responses to pure tones were significantly reduced during the luteal phase as compared to the menstrual and follicular phase of the menstrual cycle in women, and they were negatively correlated with estradiol/progesterone levels (Walpurger et al., 2004). At the brainstem level, there was a significant increase in the wave V latency of ABR in the follicular phase and a decrease in the luteal phase (Al-Mana et al., 2010).

The control of speech motor behavior involves the integration of sensory information, particularly auditory information, into the vocal motor systems (Smotherman, 2007). Although gonadal steroids can influence both vocal motor behavior and central auditory processing, less is known about the interaction between gonadal steroids and auditory-motor integration for voice control in adult women. Auditory feedback provides information necessary to monitor and correct for errors for the guidance of speech learning during the critical phases of development, and for the maintenance of online speech production (Houde and Jordan, 1998; Jones and Munhall, 2005). When perceiving alterations of F0, intensity, or formant frequency (F1) in auditory feedback, people produce rapid compensatory vocal adjustment to stabilize their production of vocal sounds around the desired level (Burnett et al., 1998; Bauer et al., 2006; Purcell and Munhall, 2006). At the cortical level, N1 and P2 responses elicited by pitch-shifted voice auditory feedback can be modified by stimulus features (Liu et al., 2011a; Scheerer et al., 2013), attentional demands (Hu et al., 2015; Liu et al., 2015), and the nature of the vocalization task (Behroozmand et al., 2009, 2011). These two components are thought to reflect the detection and correction of feedback errors during the online monitoring of self-produced speech (Behroozmand et al., 2011; Guo et al., 2016). Also, a number of neuroimaging studies have revealed the brain regions involved in auditory-motor integration for voice control such as the superior temporal gyrus (STG), dorsal lateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), premotor cortex (PMC), and inferior frontal gyrus (IFG) (Zarate and Zatorre, 2008; Parkinison et al., 2012; Chang et al., 2013; Behroozmand et al., 2015; Belyk et al., 2016). Despite the progress made in understanding the feedback-based processing of speech motor control, the biological influence of gonadal steroids on the auditory-vocal integration is largely unknown.

The lack of knowledge is striking, considering that gonadal steroids influence functional connectivity in the DLPFC and the ACC (Dreher et al., 2007); both brain regions are involved in auditory-vocal integration (Zarate and Zatorre, 2008). In addition, estradiol and progesterone act synergistically on the vocal musculo-mucosal complex (Abibtol et al., 1999). Previous studies have shown an important association between gonadal steroids and voice control. For example, female singers experience difficulties singing high notes, producing accurate tone, and with intricate phonation control just prior to menstruation (Lacina, 1968). Hormonal shifts in women experiencing menopause or Turner's syndrome have also been associated with significant problems with voice, speech, and hearing (Caras, 2013). Thus, increasing our understanding of the interplay between gonadal steroids and the auditory-vocal system has important implications for the gonadal steroid effects on prevalence and treatment of voice/speech disorders, in particular for women.

The menstrual cycle offers a unique opportunity to investigate how fluctuations of gonadal steroids modulate sensory processing to shape behavior in women. By using the frequency altered feedback (FAF) paradigm (Burnett et al., 1998), therefore, the present study sought to investigate the effects of gonadal steroids on auditory-motor integration for voice control in a counterbalanced, repeated-measures design during the menstrual, follicular, and luteal phases of the menstrual cycle. Participants were instructed to sustain a vowel phonation while exposed to unexpected pitch perturbations in their voice auditory feedback. We measured the magnitudes and latencies of vocal and ERP responses (N1 and P2) to pitch feedback perturbations and assessed plasma estradiol and progesterone levels across the menstrual cycle. We expected that fluctuations in gonadal steroids across the menstrual cycle would influence the auditory-motor processing of pitch feedback errors at the levels of behavior and cortex.

MATERIALS AND METHODS

Subjects

Nineteen female right-handed adults aged 19–31 years of old, who were students at Sun Yat-sen University of China, participated in the experiment. All participants were right-handed, native speakers of Mandarin Chinese. The following criteria led to inclusion in the study: nonuse of oral contraceptives, no hormone-replacement therapy, no history of lactation and pregnancy, regular monthly menstrual...
cycle, no diagnosed premenstrual syndrome, no intake of neuroactive substances (e.g., alcohol, caffeine, drugs, etc.), no prior history of neurological, psychiatric, or endocrinological illnesses, nonsmokers, no speech, language, or hearing disorders, and normal body weight (body mass index between 18.5 and 23.9 kg/m²). In all participants, pure-tone thresholds were ≤25 dB hearing level (HL) for octaves from 500 to 4000 Hz bilaterally.

Of 19 participants who eventually entered the study, 8 had to be excluded because they had anovulatory cycles during the sampling period (N = 6) or their electrophysiological data failed to reach the criteria of inclusion (N = 2) (see below). Therefore, the final study set comprised 11 participants with a mean age of 23 years [19–29 years; standard deviation (SD) = 3.9], reportedly regular menstrual cycle length (28–32 days), and a mean body mass index of 20.3 (18.5–22.4; SD = 2.2).

All participants provided written informed consent in compliance with a protocol approved by the Institution Review Board of The First Affiliated Hospital at Sun Yat-sen University of China in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki).

Hormone Assessment

Three different phases of the menstrual cycle were investigated: menstrual phase (second to fourth day of bleeding), follicular phase (15–22 days before the onset of the new menstrual cycle), and luteal phase (3–9 days before the onset of the new menstrual cycle). During the menstrual phase, both the estradiol and progesterone levels were near baseline. The follicular phase is characterized by high estradiol and low progesterone levels, while both estradiol and progesterone levels are high during the luteal phase. Venous blood samples were collected 4 h prior to the experiment for determination of estradiol and progesterone levels in all three phases, leading to a total of 33 blood samples (3 phases × 11 subjects). Serum estradiol and progesterone levels were measured by chemiluminescence immunoassay in the Immunology Laboratory of The First Affiliated Hospital at Sun Yat-sen University of China. For the estradiol, the assay sensitivity was 5.00 pg/ml, and the inter- and intra-assay coefficients of variation (CV) were 3.6 and 2.2%, respectively. For the progesterone, the assay sensitivity was 0.03 ng/ml, and the inter- and intra-assay CVs were 4.6 and 2.3%, respectively. A menstrual cycle was classified as anovulatory if progesterone levels did not rise above 5 ng/ml (Herzog et al., 1997).

Apparatus

Throughout the experiment, all participants sat in a sound-treated booth. Prior to the data recording, the experimental system was acoustically calibrated to ensure that participants heard the voice feedback with a gain of 10 dB sound pressure level (SPL) relative to the intensity of their vocal output. This gain was used to partially mask air-born and bone-conducted voice feedback (Behroozmand et al., 2009). Voice signals were recorded through a dynamic microphone (model DM2200, Takstar Inc.) and amplified with a MOTU Ultralite Mk3 Firewire audio interface. The amplified signals were then pitch-shifted by an Eventide Eclipse Harmonizer controlled by a custom-developed program (Max/MSP, v.5.0, Cycling 74). Direction, magnitude, and duration of the pitch perturbation and the inter-stimulus interval (ISI) were controlled by this program. Transistor-transistor logic (TTL) control pulses were generated to modulate the onset and offset of the pitch perturbations. Finally, the pitch-shifted voices were amplified with an ICON NeovAmp headphone amplifier and fed back to participants through insert earphones (ER1-14A, Etymotic Research Inc.). The original voice, feedback and TTL control pulses were sampled at 10 kHz by a PowerLab A/D converter (model ML880, AD Instruments), and recorded using LabChart software (v.7.0 by AD Instruments).

To signal the onset of the pitch perturbations, we used a DIN sync cable to send the TTL control pulses to the electroencephalograph (EEG) recording system (Electrical Geodesics Inc., Eugene, OR). The EEG signals were recorded using a 64-electrode Geodesic Sensor Net, amplified by a Net Amps 300 amplifier, and saved onto a Mac Pro computer using NetStation software (v. 4.5, Electrical Geodesics Inc., Eugene, OR) with a sampling frequency of 1 kHz. During the online recording, the EEG signals across all channels were referenced to the vertex (Cz). Individual sensors were carefully adjusted to ensure that their impedance levels were <50kΩ throughout the EEG recording (Ferree et al., 2001).

Experimental Design

During each phase, participants completed the FAF-based vocal production experiment. We counterbalanced the menstrual cycle phases and randomly assigned subjects to perform the vocal tasks in a different combination of the menstrual cycle phase orders. Specifically, three of 11 participants included were tested first in their menstrual phase; 4 were tested first in their follicular phase; 4 were tested in their luteal phase. In the FAF-based vocal production experiment, participants were instructed to vocalize the vowel sound /a/ for approximately 5–6 s at their conversational pitch and loudness level. During each vocalization, participants heard their voice pitch-shifted downwards five times. The first stimulus occurred 500–1000 ms after the vocal onset, and the succeeding stimuli were presented with an ISI of 700–900 ms. Participants were asked to take a break of 2–3 s prior to initiating the next vocalization. Production of 20 consecutive vocalizations constituted one experimental block. A total of 100 trials were thus generated per block, within which the magnitude was held constant at −50 or −200 cents (100 cents = one semitone) and the duration of each perturbation was fixed at 200 ms. The magnitude of pitch perturbation was manipulated because previous research has shown its effect on the resultant behavioral and cortical responses (Behroozmand et al., 2009; Scheer et al., 2013). The order of the two blocks was counterbalanced across all participants.

Vocal Responses Measurement

Digitized voice and feedback signals were analyzed offline using event-related averaging techniques (Liu et al., 2011b). First, pulses for each glottal cycle in the voice signals were generated using Praat (Boersma, 2001), and were converted to voice F₀ contours in Hz in IGOR PRO (v.6.0, WaveMetrics Inc.). Secondly, the F₀ values in Hz were converted to the cent scale using the formula: cents = 100 × (12 × log₁₀(F₀/reference)),

 então
where 195.997 Hz (G4) served as the arbitrary reference. Voice \(F_0 \) contours were then segmented starting 200 ms before and ending 700 ms after the onset of the pitch perturbation. A visual inspection was performed on all individual trials to ensure that trials that were the result of vocal interruption or signal processing errors were excluded from further analyses. Finally, artifact-free trials were normalized by subtracting the mean \(F_0 \) values in the baseline period (−200 to 0 ms) from the \(F_0 \) values after the onset of the pitch perturbation and averaged to generate an overall response for each condition. An acceptable response was defined as one in which the contours had to exceed a value of two SDs of the pre-stimulus mean beginning at least 60 ms after the stimulus onset and lasting at least 50 ms. Response latency in milliseconds was determined as the time at which the response exceeded 2 SDs above or below the pre-stimulus mean following the perturbation onset. Response magnitude in cents was measured as the difference between the pre-stimulus mean and the peak value of the voice \(F_0 \) contour following the response onset.

EEG Data Analyses

The EEG signals were sent to NetStation software for offline analyses. All channels were re-referenced to the average of electrodes on each mastoid and band-passed filtered at 1–20 Hz. The continuous EEG data was segmented into epochs with a duration of 1000 ms. These epochs were then divided into time windows of 80–180 ms and 160–280 ms following the response onset. Response magnitude in cents was measured as the difference between the pre-stimulus mean and the peak value of the voice \(F_0 \) contour following the response onset.

Vocal Responses

Figure 1 shows the grand-averaged voice \(F_0 \) contours (A) and the T-bar plots (B) of the magnitudes of vocal responses to pitch-shifted auditory feedback. One two-way RM-ANOVA conducted on the magnitudes of vocal responses revealed a significant main effect of menstrual cycle phase \([F(2, 20) = 19.054, p < 0.001] \), in which there was a significant decrease in estradiol levels during the menstrual phase (22.6 ± 2.1 pg/ml) (mean ± standard error, same as below) as compared to the follicular phase (109.9 ± 18.2 pg/ml) \((p = 0.001) \) and the luteal phase (98.7 ± 9.8 pg/ml) \((p < 0.001) \). Similarly, the main effect of menstrual cycle phase for progesterone also reached significance \([F(2, 20) = 42.674, p < 0.001] \), in which the luteal phase (9.0 ± 1.4 ng/ml) was associated with higher progesterone levels than both the menstrual (0.2 ± 0.02 ng/ml) \((p < 0.001) \) and follicular phases (0.3 ± 0.06 ng/ml) \((p < 0.001) \).

Results

Hormonal Data

As expected, there was a significant main effect of menstrual cycle phase for estradiol \([F(2, 20) = 5.888, p = 0.023] \), indicating a significant increase of response magnitude during the menstrual phase when compared with the follicular phase \((p = 0.040) \) and luteal phase \((p = 0.025) \) (See Figure 1B). The main effect of pitch shift \([F(1, 10) = 0.408, p = 0.537] \) and the interaction between menstrual cycle phase and pitch shift \([F(2, 20) = 0.531, p = 0.549] \) did not reach significance. For the latencies of vocal responses, there were no significant main effects of menstrual cycle phase \([F(2, 20) = 0.420, p = 0.581] \), pitch shift \([F(1, 10) = 2.873, p = 0.121] \) and their interactions \([F(2, 20) = 1.397, p = 0.271] \).

ERP Findings

Figures 2, 3 show the grand-averaged ERP waveforms (left column) and topographical distributions of P2 responses (right column) as a function of menstrual cycle phase for the −50 and −200 cents conditions, respectively. As can be seen, change in cortical responses to pitch perturbations across the three menstrual cycle phases was primarily reflected in the P2 component. The luteal phase (blue lines) was associated with smaller P2 amplitudes than the menstrual (black lines) and follicular phases (red lines). This change can also be seen in the topographical distributions of P2 responses in Figures 2, 3.
contrast, N1 responses appeared to remain constant across the menstrual cycle phase.

Figure 4 shows the T-bar graphs of the N1 and P2 responses as a function of menstrual cycle phase for the −50 (black bars) and −200 cents (blank bars) conditions. A three-way RM-ANOVA conducted on the N1 amplitudes revealed a significant main effect of electrode site \(F(2, 20) = 1.718, p = 0.205 \) or pitch shift \(F(1, 10) = 1.049, p = 0.330 \) (see Figure 4A). As for the N1 latencies, the −50 cents condition elicited significantly longer N1 latencies than the −200 cents condition \(F(1, 10) = 21.561, p = 0.001 \) (see Figure 4B). The main effects of menstrual cycle phase \(F(2, 20) = 0.564, p = 0.578 \) and electrode site \(F(9, 90) = 2.034, p = 0.137 \), however, did not reach significance. Neither did the interactions between any of these variables \((p > 0.05) \).

A three-way RM-ANOVA conducted on the P2 amplitudes revealed significant main effects of menstrual cycle phase \(F(2, 20) = 12.479, p < 0.001 \), pitch shift \(F(1, 10) = 7.916, p = 0.018 \), and electrode site \(F(9, 90) = 20.648, p < 0.001 \). Post-hoc Bonferroni comparison revealed that P2 amplitudes were significantly smaller during the luteal phase than that during the menstrual phase \((p = 0.007) \) and follicular phase \((p < 0.001) \), while the difference between the menstrual and follicular phases did not reach significance \((p = 0.850) \) (see Figure 4C). In addition, the −50 cents condition elicited significantly smaller P2 amplitudes than −200 cents condition \((p = 0.018) \). There were no significant interactions between any of these variables \((p > 0.05) \).

Regarding the P2 latencies, main effects of menstrual cycle phase \(F(2, 20) = 0.652, p = 0.476 \), pitch shift \(F(1, 10) = 3.209, p = 0.103 \), and electrode site \(F(9, 90) = 1.080, p = 0.366 \) did not reach significance. A significant interaction, however, was found between menstrual cycle phase and pitch shift \(F(2, 20) = 4.912, p = 0.018 \). Follow-up two-way RM-ANOVAs revealed that the −50 cents condition elicited significantly longer P2 latencies than the −200 cents condition \(F(1, 10) = 6.549, p = 0.028 \) during the luteal phase (see Figure 4D). The main effect of pitch shift on the P2 latencies, however, did not reach significance during the menstrual phase \(F(1, 10) = 0.177, p = 0.683 \) or follicular phase \(F(1, 10) = 4.771, p = 0.054 \).

In addition, linear correlation analyses were performed to examine the relationship between the magnitudes of vocal and ERP (P2) responses and estradiol/progesterone concentrations across the menstrual cycle phase. The results revealed a significant negative correlation between the mean magnitudes of vocal responses and estradiol levels \((R^2 = 0.143, p = 0.036) \), indicating that higher estradiol levels are associated with smaller magnitudes of vocal responses (see Figure 5). The mean magnitudes of vocal responses, however, were not significantly correlated with progesterone levels \((R^2 = 0.016, p = 0.482) \). In addition, the mean amplitudes of P2 responses were not correlated with estradiol \((R^2 = 0.021, p = 0.425) \) and progesterone levels \((R^2 = 0.006, p = 0.659) \).

DISCUSSION

The present study investigated the influence of gonadal steroids on auditory-motor integration for voice control across the menstrual cycle in young adult women. The behavioral findings showed a significant increase in the magnitudes of vocal responses during the menstrual phase when estradiol levels were low, and that there was a significant negative correlation between the magnitudes of vocal responses and estradiol levels. At the cortical level, P2 amplitudes were significantly smaller during the luteal phase when progesterone levels were high when compared to the menstrual and follicular phases. These findings provide evidence for the modulation of neurobehavioral responses to pitch-shifted voice auditory feedback by menstrual cycle phase.
suggesting that gonadal steroids, particularly estradiol, may have a modulatory effect on the auditory-motor processing of feedback errors during vocal pitch regulation.

Previous behavioral studies have demonstrated that changes in gonadal steroids can influence the perceptual features (e.g., roughness, breathiness, asthenia, etc.) of the voice across the menstrual cycle (Meurer et al., 2009; Raj et al., 2010; Çelik et al., 2013). For example, using GRBAS scale of perceptual evaluation, Çelik et al. (2013) reported that voice quality was at the highest level during the mid-menstrual period when estrogen and progesterone levels were high and showed a significant decrease during the premenstrual period when those hormones levels were low. Findings from the present study further show that auditory-motor integration for voice control can be modulated as a function of menstrual cycle phase. Our behavioral findings revealed larger vocal responses to pitch-perturbations during the menstrual phase when estradiol levels were low and a significant negative correlation between them. This finding is complimentary to previous studies that showed decreased cortical responses (N1-P2 peak amplitude) or shorter subcortical responses (ABR) to pure tones during the luteal phase when the progesterone levels were high in women (Serra et al., 2003; Walpurger et al., 2004; Al-Mana et al., 2010).

Our behavioral results revealed larger vocal responses to pitch perturbations during the menstrual phase relative to the follicular and luteal phases, while higher estradiol levels were associated with the menstrual phase than the follicular and luteal phase. Furthermore, Pearson correlation analyses revealed a significant negative correlation between the magnitudes of vocal responses and estradiol levels, suggesting a possible interaction between vocal compensation for pitch feedback errors and estradiol concentration. The effects of estradiol on the vocal motor behavior have been documented in animal studies. For example, the duration of fictive vocalization produced by the midshipman fish is rapidly responsive to steroid hormones including androgens and estrogens (Remage-Healey and Bass, 2004), and behavioral selectivity of conspecific vocalizations can be enhanced through modulating the synthesis of estradiol in seasonally-breeding songbirds (Caras, 2013).
Although direct evidence of estradiol effect on vocal motor output in humans is scarce, it has been reported that specific estradiol receptors have been identified in the normal human larynx (Ferguson et al., 1987; Newman et al., 2000). By activating receptor-coupled effector mechanisms through binding to those specific receptors in the larynx, estradiol may be capable of directly influencing the female laryngeal muscles such as the cricothyroid and thyroarytenoid muscles (Liu et al., 2011c) to modulate the vocal compensation for pitch-shifted auditory feedback. On the other hand, the neural substrates involved in the auditory-vocal integration include the STG, PMC, IFG, DLPFC, and ACC (Zarate and Zatorre, 2008; Behroozmand et al., 2015). Estradiol passes the blood-brain-barrier and binds to receptors in various parts of the brain, including the frontal and middle temporal lobes (Goldstein et al., 2001; Ostlund et al., 2003). Thus, estradiol may also influence vocal motor function through the modulation of these receptors in the neural substrates involved in the feedback-based voice control. Taken together, changes in vocal responses to pitch-shifted auditory feedback may be caused by estradiol through the specific receptors that exist in the larynx and the neural substrates involved in the auditory-vocal integration.

The present study also revealed a significant decrease in the amplitudes of P2 responses during the luteal phase when progesterone levels were high. This is consistent with previous findings that showed the inhibitory effect of progesterone on the central auditory processing. For example, the N1-P2 peak amplitude to neutral auditory stimuli was significantly decreased during the luteal phase and negatively correlated to the progesterone concentration (Walpurger et al., 2004). Postmenopausal females treated with estradiol alone had better performance of speech perception in noise than did those treated with both estradiol and progesterone (Guimaraes et al., 2006). Accumulating evidence has shown that P2 component reflects not only the central auditory processing (e.g., error detection) but also the feedback-based motor processing (e.g., error correction) in the online monitoring of vocal production. For example, when compensating for pitch perturbations in voice auditory feedback, individuals with Parkinson’s disease produced significantly larger P2 responses than healthy controls due to enhanced activity in the brain regions including the STG, PMC, and IFG (Huang et al., 2016). Also, P2 responses were found to be significantly correlated with regional homogeneity of those brain regions in the resting-state (Guo et al., 2016). Thus, decreased P2 responses during the luteal phase rise observed in the present study are
indictive of the influence of menstrual cycle phase on the cortical processing of vocal pitch regulation.

Although P2 responses were not significantly correlated with progesterone levels, we speculate that the observable decreased P2 responses with the luteal phase rise in progesterone might be partly related to the inhibitory effect of progesterone and its metabolites on the central auditory system through their interaction with the steroid binding sites on γ-aminobutyric acid-A (GABA-A) receptors (Follesa et al., 2001). Allopregnanolone, a progesterone metabolite, has been observed to positively modulate GABA-A receptor-evoked responses in cortical neurons (Stell et al., 2003), and its brain level mirrors changes in progesterone (Wang et al., 1996). 5-hydroxytryptamine (5-HT) is thought to be involved in the central auditory processing (Juckel et al., 1999), and high levels of allopregnanolone can enhance GABA-A receptor-mediated responses and inhibit 5-HT neuronal activity, leading to a decrease in neuronal excitability. The greatest GABA-A receptor inhibition of 5-HT release was found at times when progesterone and hence allopregnanolone, levels were highest (Felton and Auerbach, 2004), and allopregnanolone significantly potentiated the inhibitory responses of 5-HT neurons to GABA-A receptor activation (Kaura et al., 2007). Accordingly, a potential mechanism underlying the association between the decreased cortical responses to feedback perturbations and the luteal phase rise in progesterone in women may include an allopregnanolone-mediated potentiation of GABAergic inhibition of serotonergic transmission.

In addition to the individual actions of estradiol and progesterone, we cannot rule out the possibility that fluctuations of both estradiol and progesterone may make contributions to the modulation of neurobehavioral responses to pitch-shifted voice auditory feedback across the menstrual cycle. For example, participants with high estrogen levels produced smaller mismatch negativity (MMN) to neutral auditory stimuli than did participants with low estrogen levels (Schirmer et al., 2008),
and women with Turner’s syndrome who are estrogen deficient have higher rates of hearing decline and abnormal ABR relative to general population (Caras, 2013), suggesting the influence of estrogen on the central auditory processing (Pinaud and Tremere, 2012). On the other hand, the motor evoked potential, or the amplitude of the muscle response, has been shown to be significantly reduced during the luteal phase relative to the follicular phase in women, indicating an inhibitory effect of progesterone on the motor cortex (Smith et al., 2002, 2003). Moreover, some studies have reported a coadjuvant effect of estrogen and progesterone. Estradiol has been shown to induce nuclear progesterone receptors in some brain areas, and estrogen treatment is required for progesterone-evoked dopamine release or progesterone-related sexual behaviors (Dluzen and Ramirez, 1990; Moffatt et al., 1998). Given the complex interplay of

the central nervous system with the reproductive system and immune system, further studies with a larger sample size should be conducted to explore this sensory-neuroendocrine interaction in speech motor control.

Overall, the present study probed the interaction between gonadal steroids and auditory-motor integration for voice control across the menstrual cycle. The results showed the modulation of vocal and cortical responses in compensating for pitch errors in voice auditory feedback across the menstrual cycle phase and revealed a significant negative correlation between the magnitudes of vocal responses and estradiol levels. Despite the poor understanding of the biological mechanisms underlying the regulation of auditory-vocal integration, we believe that these findings provide neurobehavioral evidence for the impact of menstrual cycle on the auditory-motor integration in humans. Our results suggest that caution must be exercised in interpreting the impact of menstrual variation on behavioral performance in women of reproductive age.

AUTHOR CONTRIBUTIONS

XZ, YN, XC, and HL designed the experiment; XZ, YN, WL, and ZZ performed the experiment and analyzed the data; XZ, YN, WL, PL, XC, and HL interpreted the results and wrote the manuscript; all authors read and approved the final manuscript.

ACKNOWLEDGMENTS

This study was funded by grants from National Natural Science Foundation of China (Nos. 31371135, 81301675, and 81472154), Guangdong Natural Science Funds for Distinguished Young Scholar (No. S2013050014470), Guangdong Province Science and Technology Plan Project (No. 2013B022000058), Guangzhou Science and Technology Programme (No. 201604020115), and the Fundamental Research Funds for the Central Universities (Nos. 15ykjc13b). XZ, YN, and WL contributed equally to this work.

REFERENCES

Abitbol, J., Abitbol, P., and Abitbol, B. (1999). Sex hormones and the female voice. *J. Voice* 13, 424–446. doi: 10.1016/S1040-1359(99)00048-4

Al-Mana, D., Ceramic, R., Djahanbakhch, O., and Luxon, L. M. (2010). Alteration in auditory function during the ovarian cycle. *Hear. Res.* 268, 114–122. doi: 10.1016/j.heares.2010.05.007

Bauer, J. J., Mittal, J., Larson, C. R., and Hain, T. C. (2006). Vocal responses to unanticipated perturbations in voice loudness feedback: an automatic mechanism for stabilizing voice amplitude. *J. Acoust. Soc. Am.* 119, 2363–2371. doi: 10.1121/1.2173513

Behroozmand, R., Karvelis, L., Liu, H., and Larson, C. R. (2009). Vocalization-induced enhancement of the auditory cortex responsiveness during voice F0 feedback perturbation. *Clin. Neurophysiol.* 120, 1303–1312. doi: 10.1016/j.clinph.2009.04.022

Behroozmand, R., Liu, H., and Larson, C. R. (2011). Time-dependent neural processing of auditory feedback during voice pitch error detection. *J. Cogn. Neurosci.* 23, 1205–1217. doi: 10.1162/jocn.2010.21447

Behroozmand, R., Shebek, R., Hansen, D. R., Oya, H., Robin, D. A., Howard, M. A. III, et al. (2015). Sensory-motor networks involved in speech production and motor control: an fMRI study. *Neuroimage* 109, 418–428. doi: 10.1016/j.neuroimage.2015.02.006

Belyk, M., Pfordresher, P. Q., Liotti, M., and Brown, S. (2016). The neural basis of vocal pitch imitation in humans. *J. Cogn. Neurosci.* 28, 621–635. doi: 10.1162/jocn_a_00914

Boersma, P. (2001). Praat, a system for doing phonetics by computer. *Glott Int.* 5, 341–345.

Burnett, T. A., Freedland, M. B., Larson, C. R., and Hain, T. C. (1998). Voice F0 responses to manipulations in pitch feedback. *J. Acoust. Soc. Am.* 103, 3153–3161. doi: 10.1121/1.423073

Caras, M. L. (2013). Estrogenic modulation of auditory processing: a vertebrate comparison. *Front. Neuroendocrin.* 34, 285–299. doi: 10.1016/j.yfrne.2013.07.006

Çelik, O., Çelik, A., Atespare, A., Boyaci, Z., Çelebi, S., Gündüz, T., et al. (2013). Voice and speech changes in various phases of menstrual cycle. *J. Voice* 27, 622–626. doi: 10.1016/j.jvoice.2013.02.006
Chang, E. F., Nizolek, C. A., Knight, R. T., Nagarajan, S. S., and Houde, J. F. (2013). Human cortical sensorimotor network underlying feedback control of vocal pitch. Proc. Natl. Acad. Sci. U.S.A. 110, 2653–2658. doi:10.1073/pnas.1216827110

Chen, Z., Liu, P., Wang, E. Q., Larson, C. R., Huang, D., and Liu, H. (2012). ERP correlates of languge-specific processing of auditory pitch feedback during self-vocalization. Brain Lang. 121, 25–34. doi:10.1016/j.bandl.2012.02.004

D’Haeseleer, E., Depypere, H., Claesys, S., Van Borsel, J., and Van Lierde, K. (2009). The menopause and the female larynx, clinical aspects and therapeutic options: a literature review. Maturitas 64, 27–32. doi:10.1016/j.maturitas.2009.06.009

Dluzen, D. E., and Ramirez, V. D. (1990). Auditory evoked potentials reflect serotonergic neuronal activity—a study in behaving cats administered drugs acting on 5-HT1A autoreceptors in the dorsal raphe nucleus. Neuropharmacology 21, 710–716. doi:10.1016/S0098-133X(99)00074-3

Kaura, V., Ingram, C. D., Gartsie, S. E., Young, A. H., and Judge, S. J. (2007). The progesterone metabolite allopregnanolone potentiates GABA(A) receptor-mediated inhibition of 5-HT neuronal activity. Eur. Psychopharmacol. 17, 108–115. doi:10.1016/j.euroneuro.2006.02.006

Lacina, V. (1968). Der Einfluss der Menstruation auf die Stimme der Saengerinnen. Folia Phoniatr. Log. 20, 13–24. doi:10.1159/000263184

Liu, H., Behroozmand, R., Bove, M., and Larson, C. R. (2011c). Laryngeal electromyographic responses to perturbations in voice pitch auditory feedback. J. Acoust. Soc. Am. 129, 3946–3954. doi:10.1121/1.3575953

Liu, H., Meshman, M., Behroozmand, R., and Larson, C. R. (2011a). Differential effects of perturbation direction and magnitude on the neural processing of voice pitch feedback. Clin. Neurophysiol. 122, 951–957. doi:10.1016/j.clinph.2010.08.010

Liu, P., Chen, Z., Jones, J. A., Huang, D., and Liu, H. (2011b). Auditory feedback control of vocal pitch during sustained vocalization: a cross-sectional study of adult aging. PLoS ONE 6:e22791. doi:10.1371/journal.pone.0022791

Liu, Y., Hu, H., Jones, J. A., Guo, Z., Li, W., Chen, X., et al. (2015). Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors. Eur. J. Neurosci. 42, 1895–1904. doi:10.1111/ejns.12949

Meurer, E. M., Gavez, V., von Eye Corleta, H., and Capp, E. (2009). Menstrual cycle influences on voice and speech in adolescent females. J. Voice 23, 109–113. doi:10.1016/j.jvoice.2007.03.001

Moffatt, C. A., Rissman, E. F., Shapnik, M. A., and Blaustein, J. D. (1998). Induction of progesterin receptors by estradiol in the forebrain of estrogen receptor-alpha gene-disrupted mice. J. Neurosci. 18, 9556–9563.

Newman, S. R., Butler, J., Hammond, E. H., and Gray, S. D. (2000). Preliminary report on hormone receptors in the human vocal fold. J. Voice 14, 72–81. doi:10.1080/08921997.00(08)00966-X

Ostlund, H., Keller, E., and Hurd, Y. L. (2003). Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann. N.Y. Acad. Sci. 1037, 54–63. doi:10.1111/anna.2006.1286.006

Parkinson, A. L., Flagniere, S. G., Manes, J. L., Larson, C. R., Rogers, B., and Robin, D. A. (2012). Understanding the neural mechanisms involved in sensory control of voice production. NeuroImage 61, 314–322. doi:10.1016/j.neuroimage.2012.02.068

Pinaud, R., and Tremere, L. A. (2012). Control of central auditory processing by a brain-generated oestrogen. Nat. Rev. Neurosci. 13, 521–527. doi:10.1038/nrn3291

Pourcell, D. W., and Munhall, K. G. (2006). Compensation following real-time manipulation of formants in isolated vowels. J. Acoust. Soc. Am. 119, 2288–2297. doi:10.1121/1.2173544

Raj, A., Gupta, B., Chowdhury, A., and Chadha, S. (2010). A study of voice changes in various phases of menstrual cycle and in postmenopausal women. J. Voice 24, 363–368. doi:10.1016/j.jvoice.2008.10.005

Remage-Healey, L., and Bass, A. H. (2004). Rapid, hierarchical modulation of vocal patterning by steroid hormones. J. Neurosci. 24, 5892–5900. doi:10.1015/j.neurosci.2002.12.040

Remage-Healey, L., Coleman, M. J., Oyama, R. K., and Schlinger, B. A. (2010). Brain estrogens rapidly strengthen auditory encoding and guide song preference in a songbird. Proc. Natl. Acad. Sci. U.S.A. 107, 3852–3857. doi:10.1073/pnas.0908665107

Scheerer, N. E., Behich, J., Liu, H., and Jones, J. A. (2013). ERP correlates of the magnitude of pitch errors detected in the human voice. Neuroscience 240, 176–185. doi:10.1016/j.neuroscience.2013.02.054

Schirmer, A., Escoffier, N., Li, Q. Y., Li, H., Strafford-Wilson, J., and Li, W. I. (2008). What grabs his attention but not hers? Estrogen correlates with neurophysiological measures of vocal change detection. Psychoneuroendocrinology 33, 718–727. doi:10.1016/j.psyneuen.2008.02.010

Schlinger, B. A. (1997). Sex steroids and their actions on the birdsong system. J. Neurosci. 17, 619–631. doi:10.1015/1073-989X(97)01081-J

Serra, A., Maiolino, L., Agnello, C., Messina, A., and Caruso, S. (2003). Auditory brain stem response throughout the menstrual cycle. Ann. Oto. Rhinol. Laryngol. 112, 549–553. doi:10.1007/0-387-94031-200612
Sisneros, J. A., Forlano, P. M., Deitcher, D. L., and Bass, A. H. (2004). Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. *Science* 305, 404–407. doi: 10.1126/science.1097218

Smith, M. J., Adams, L. F., Schmidt, P. J., Rubinow, D. R., and Wassermann, E. M. (2002). Effects of ovarian hormones on human cortical excitability. *Ann. Neurol.* 51, 599–603. doi: 10.1002/ana.10180

Smith, M. J., Adams, L. F., Schmidt, P. J., Rubinow, D. R., and Wassermann, E. M. (2003). Abnormal luteal phase excitability of the motor cortex in women with premenstrual syndrome. *Biol. Psychiat.* 54, 757–762. doi: 10.1016/S0006-3223(02)01924-8

Smotherman, M. S. (2007). Sensory feedback control of mammalian vocalizations. *Behav. Brain. Res.* 182, 315–326. doi: 10.1016/j.bbr.2007.03.008

Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M., and Mody, I. (2003). Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. *Proc. Natl. Acad. Sci. U.S.A.* 100, 14439–14444. doi: 10.1073/pnas.2435457100

Wadnerkar, M. B., Cowell, P. E., and Whiteside, S. P. (2006). Speech across the menstrual cycle: a replication and extension study. *Neurosci. Lett.* 408, 21–24. doi: 10.1016/j.neulet.2006.07.032

Walpurger, V., Pietrowsky, R., Kirschbaum, C., and Wolf, O. T. (2004). Effects of the menstrual cycle on auditory event-related potentials. *Horm. Behav.* 46, 600–606. doi: 10.1016/j.yhbeh.2004.07.002

Wang, M., Seippel, L., Purdy, R. H., and Bäckström, T. (1996). Relationship between symptom severity and steroid variation in women with premenstrual syndrome: study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnan-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one. *J. Clin. Endocrinol. Metab.* 81, 1076–1082.

Zarate, J. M., and Zatorre, R. J. (2008). Experience-dependent neural substrates involved in vocal pitch regulation during singing. *NeuroImage* 40, 1871–1887. doi: 10.1016/j.neuroimage.2008.01.026

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Zhu, Niu, Li, Zhang, Liu, Chen and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.