Coupling, concentration inequalities and stochastic dynamics

Jean-René Chazottes(a), Pierre Collet(a), Frank Redig(b)

(a) Centre de Physique Théorique, CNRS, Ecole polytechnique
91128 Palaiseau, France

(b) Mathematisch Instituut Universiteit Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

September 5, 2008

dedine

In the context of interacting particle systems, we study the influence of the action of the semigroup on the concentration property of Lipschitz functions. As an application, this gives a new approach to estimate the relaxation speed to equilibrium of interacting particle systems. We illustrate our approach in a variety of examples for which we obtain several new results with short and non-technical proofs. These examples include the symmetric and asymmetric exclusion process and high-temperature spin-flip dynamics ("Glauber dynamics"). We also give a new proof of the Poincaré inequality, based on coupling, in the context of one-dimensional Gibbs measures. In particular, we cover the case of polynomially decaying potentials, where the log-Sobolev inequality does not hold.

Keywords: L^p estimates, uniform and non-uniform coupling, Poincaré's inequality, Young's inequality, exclusion process, spin-flip dynamics, Glauber dynamics, Gibbs measures.

1 Introduction

In the study of relaxation to equilibrium for interacting particle systems, several approaches have been put forward. In the uniformly ergodic regime (also known under the name "$M < \epsilon$" regime \cite{16} Chapter I), relaxation
to the unique stationary measure is exponential in the supremum norm, with an estimate in term of the so-called triple norm. In [19] this estimate (and generalizations of it) is obtained via time discretization and coupling. Exponential relaxation in the L^2 context can be derived from the Poincaré inequality, which is usually obtained via the stronger log-Sobolev inequality, which in turn implies exponential relaxation in L^∞.

For processes with a conservation law, such as the exclusion process, typically the relaxation is expected to be diffusive, i.e., with a power-law decay. This type of decay has been obtained in the context of Kawasaki dynamics in [1, 2, 5, 20] by the spectral gap method, i.e., by estimating the speed at which the spectral gap of the finite-volume generator vanishes. Alternative methods to obtain power-law decay are Nash inequalities [10], or “attractivity” and “linearity” in [7, 18].

In this paper, we present a new approach based on a combination of concentration inequalities (in the spirit of the Azuma-Hoeffding inequality, see, e.g., [15]), and coupling, thus continuing in the spirit of what we developed in [6], but now in the time-dependent context.

In the realm of concentration inequalities, a crucial quantity is the “vector” of variations of a function. The bounds, e.g., the Gaussian bound or L^p estimates, are usually in terms of the ℓ^2 norm of this vector, whereas in the ergodic theory of interacting particle systems mostly the ℓ^1 norm (commonly called triple norm) appears.

The time evolution acts on the vector of variations in a way that can be estimated in terms of a convolution with a time-dependent function ψ_t. This function ψ_t measures how well we can couple at site x if we start with a single discrepancy at the origin. The ℓ^2 norm of this convolution can then be estimated via Young’s inequality. Here the advantage of the ℓ^2 (as opposed to ℓ^1) becomes clear, since we have some flexibility in the choice of norms in Young’s inequality. Even in the conservative case, where typically the ℓ^1 norm of ψ_t is a constant not depending on time, higher norms can behave better, and can even produce the expected diffusive decay. Moreover, higher norms (i.e., ℓ^p, with $p > 1$) behave better (than the ℓ^1 norm) under spatial averaging.

For the coupling, we typically have two regimes: a regime where there is a uniform (in the starting configuration) control of the coupling and a regime where there is only a pointwise control, i.e., the coupling behaves badly for a set of exceptional (in the measure theoretical sense) configurations. In the uniform coupling regime we combine coupling with Gaussian bounds, which leads to time-dependent Gaussian bounds for exponential moments, and via this to L^p relaxation. The non-uniform coupling regime is dealt with via moment-estimates, where the configurations for which the coupling behaves
badly are “neutralized” by integration over the stationary measure. This situation is met (unavoidably) in the context of the asymmetric exclusion process, where we can estimate the L^p-relaxation in terms of a quantity related to the equilibrium behavior of a single second class particle.

We illustrate our approach in a variety of examples, for which we obtain several new results with remarkably compact proofs. These results are summarized below:

1. For the symmetric exclusion process, we obtain sharp Gaussian and L^p bounds in terms of the transition kernel of the underlying random walk, that yield the expected diffusive decay.

2. Similar diffusive estimates are obtained in the context of the voter model.

3. Exponential decay is obtained for the (subcritical) contact process.

4. For high-temperature spin-flip (or Glauber) dynamics, we obtain the usual exponential decay, however with an estimate in terms of the ℓ^2 norm, which allows for a better control of, e.g., spatial averages.

5. In the context of the asymmetric exclusion process, we illustrate our coupling method in the non-uniform situation and obtain L^p bounds in terms of a natural quantity related to the second class particle.

Moreover, our approach also allows to control the time-dependent concentration properties with respect to any initial measure satisfying a suitable concentration bound. Finally we give a new proof of the Poincaré inequality, based on coupling, in the context of one-dimensional Gibbs measures. In particular, we cover the case of polynomially decaying potentials, where the log-Sobolev inequality is not proved. In the case of finite-range or exponentially decaying potentials [11, 14], the log-Sobolev inequality, which implies Poincaré’s inequality, is known to hold.

2 Notations, definitions

2.1 Configurations

We work in the context of lattice spin systems, with state space $\Omega = \{0, 1\}^{\mathbb{Z}^d}$, $d \geq 1$ (endowed with product topology). Elements of Ω are denoted σ, η, ξ. We fix a enumeration of \mathbb{Z}^d

$$\mathbb{Z}^d = \{x_0, x_1, \ldots, x_n, \ldots\},$$
such as the spiraling enumeration illustrated in the figure below for \(d = 2 \). For \(x \in \mathbb{Z}^d \) we denote by \(n_x \) the index of \(x \) in this enumeration. Then we have an order relation defined via \(x \leq y \) iff \(n_x \leq n_y \). We further denote

\[
(\leq i) := \{ x \in \mathbb{Z}^d : n_x \leq i \}
\]

and similarly the sets \((<i), (>i), (\geq i), (\neq i)\), where we add the convention \((<0) := \emptyset\). With a slight abuse of notation, we will use the symbol \(i \) both for the index (in the enumeration) of a site \(x = x(i) \), in \(\mathbb{Z}^d \) as well as for the site itself.

For \(\Lambda \subset \mathbb{Z}^d \) we define \(\mathcal{F}_\Lambda \) to be the \(\sigma \)-field generated by \(\{ \pi_x, x \in \Lambda \} \) where \(\pi_x \) are the natural coordinate maps \(\pi_x : \sigma \mapsto \sigma(x) \). In agreement with the notation (1) we then have the \(\sigma \)-fields \(\mathcal{F}_{\leq i}, \mathcal{F}_{<i}, \) etc., where \(\mathcal{F}_{<0} \) is defined to be the trivial \(\sigma \)-field \(\{ \emptyset, \Omega \} \). \(\mathcal{F} = \mathcal{F}_{\mathbb{Z}^d} \) is the Borel sigma-field on \(\Omega \).

For \(\sigma \in \Omega \) we define \(\sigma^i \) to be the configuration obtained from \(\sigma \) by “flipping” at \(i \), i.e.,

\[
\sigma^i(j) = \begin{cases}
\sigma(j) & \text{if } j \neq i \\
1 - \sigma(i) & \text{if } j = i
\end{cases}
\]

For \(\sigma \in \Omega \) and \(i, j \in \mathbb{Z}^d \) we define

\[
\sigma^{ij}(k) = \begin{cases}
\sigma(k) & \text{if } k \not\in \{i, j\} \\
\sigma(i) & \text{if } k = j \\
\sigma(j) & \text{if } k = i
\end{cases}
\]

For \(\sigma^1, \ldots, \sigma^n \in \Omega \) and a partition \(\Lambda_1, \ldots, \Lambda_n \) of \(\mathbb{Z}^d \) (i.e., the \(\Lambda_i \)'s are pairwise disjoint and \(\bigcup_{i=1}^n \Lambda_i = \mathbb{Z}^d \)), we denote by \(\sigma_{\Lambda_1}^1 \sigma_{\Lambda_2}^2 \ldots \sigma_{\Lambda_n}^n \) the configuration that coincides with \(\sigma^i \) on \(\Lambda_1 \), \ldots, \(\sigma^n \) on \(\Lambda_n \). For instance we write \(\sigma_{<i} \sigma_i \sigma_{>i} \), etc.
For $x \in \mathbb{Z}^d$, $\sigma \in \Omega$, we denote $\tau_x \sigma$ the configuration shifted by x, i.e., $\tau_x \sigma(y) = \sigma(y - x)$.

If A is a finite subset of \mathbb{Z}^d, $|A|$ denotes its cardinality.

2.2 Functions

For a function $f : \Omega \rightarrow \mathbb{R}$ we define the “discrete derivative” in the direction σ_i at the configuration η to be

$$\nabla_i f(\eta) = f(\eta^i) - f(\eta)$$

and the variation in direction σ_i

$$\delta_i f = \sup_{\eta \in \Omega} (f(\eta^i) - f(\eta)).$$

The collection $\{\delta_i f : i \in \mathbb{Z}^d\}$ is denoted by δf.

For all $p \geq 1$, let

$$\|\delta f\|_p := \|\delta f\|_{\ell^p(\mathbb{Z}^d)} = \left(\sum_{i \in \mathbb{Z}^d} (\delta_i f)^p \right)^{\frac{1}{p}}.$$

For $p = 1$ this norm is usually called “triple norm” [16]:

$$\|f\| \equiv \|\delta f\|_1.$$

This norm is closely related to the Dobrushin-uniqueness norm, as is extensively used in [19].

A function is called local if there exists a finite subset D_f of \mathbb{Z}^d such that $\delta_i f = 0$ for all $i \notin D_f$. For $\Lambda \subset \mathbb{Z}^d$, $\alpha > 0$, and for $f : \Omega \rightarrow \mathbb{R}$, we define its spatial average by

$$\mathcal{A}_{\alpha,\Lambda}(f) = \frac{1}{|\Lambda|^\alpha} \sum_{x \in \Lambda} \tau_x f$$

(2)

where $\tau_x f : \sigma \mapsto f(\tau_x \sigma)$.

The following lemma shows a contraction property of these spatial averages.

Lemma 2.1. For any $f : \Omega \rightarrow \mathbb{R}$ bounded measurable, any $p \in \mathbb{N}$ and any $\alpha > 0$, we have

$$\|\delta \mathcal{A}_{\alpha,\Lambda}(f)\|_p \leq |\Lambda|^{-\alpha + \frac{1}{p}} \|\delta f\|_1.$$
\textbf{Proof.} We use the obvious fact that \(\delta_y(\tau_x f) = \delta_{x+y} f \) and Young’s inequality to get
\[
\|\delta A_{\alpha,\Lambda}(f)\|_p = \frac{1}{|\Lambda|^{\alpha p}} \sum_i \left(\sum_j \mathbb{1}_\Lambda(j) \delta_{i+j} f \right)^p = \frac{1}{|\Lambda|^{\alpha p}} \| \mathbb{1}_\Lambda \ast \delta f \|_p^p \leq \frac{1}{|\Lambda|^{\alpha p}} \| \mathbb{1}_\Lambda \|_p^p \| \delta f \|_p^p = \frac{1}{|\Lambda|^{\alpha p-1}} \| \delta f \|_p^p
\]
where we denoted by \(\mathbb{1}_\Lambda \) the indicator function of the set \(\Lambda \).

\[\square\]

2.3 Gibbs measures

In the rest of this paper we will only consider translation-invariant measures, and in many places we will restrict to translation-invariant Gibbs measures \(\mu \) on \((\Omega, \mathcal{F})\)\cite{[8]}. We briefly recall a few definitions and facts.

Let \(\mathcal{S} \) denote the set of finite subsets of \(\mathbb{Z}^d \).

\textbf{Definition 2.1.} A translation-invariant interaction is a function
\[U : \mathcal{S} \times \Omega \to \mathbb{R}\]
such that the following conditions are satisfied:

1. \(\sigma \mapsto U(A, \sigma) \) is \(\mathcal{F}_A \)-measurable for any \(A \in \mathcal{S} \).

2. Translation invariance:
\[U(A + x, \tau_x \sigma) = U(A, \sigma) \quad \forall A \in \mathcal{S}, x \in \mathbb{Z}^d, \sigma \in \Omega.\]

3. Uniform summability:
\[\sum_{A \ni 0} \sup_{\sigma \in \Omega} |U(A, \sigma)| < \infty . \quad (3)\]

The set of all such interactions is denoted by \(\mathcal{U} \). An interaction \(U \) is called finite-range if there exists an \(R > 0 \) such that \(U(A, \sigma) = 0 \) for all \(A \in \mathcal{S} \) with \(\text{diam}(A) > R \). For \(U \in \mathcal{U}, \zeta \in \Omega, \Lambda \in \mathcal{S} \), we define the finite-volume Hamiltonian with boundary condition \(\zeta \) as
\[H_{\Lambda}^\zeta(\sigma) = \sum_{A \cap \Lambda \neq \emptyset} U(A, \sigma_A \zeta_{A^c}). \quad (4)\]
Corresponding to the Hamiltonian in (4) we have the finite-volume Gibbs measures \(\mu^U,\zeta, \Lambda \in \mathcal{V}, \) defined on \(\Omega \) by
\[
\int f(\xi) \mu^U,\zeta,\Lambda(d\xi) = \sum_{\sigma\Lambda \in \Omega_{\Lambda}} f(\sigma\zeta_{\Lambda^c}) \frac{e^{-H^\zeta_\Lambda(\sigma)}}{Z^\zeta_\Lambda} \tag{5}
\]
where \(f \) is any continuous function and \(Z^\zeta_\Lambda \) denotes the partition function normalizing \(\mu^U,\zeta,\Lambda \) to a probability measure. Because of the uniform summability condition (3), \(H^\zeta_\Lambda \) and \(\mu^U,\zeta,\Lambda \) are continuous as a function of the boundary condition \(\zeta. \)

For a probability measure \(\mu \) on \(\Omega \), we denote by \(\mu^\zeta_\Lambda \) the conditional probability distribution of \(\sigma(x), x \in \Lambda \), given \(\sigma_{\Lambda^c} = \zeta_{\Lambda^c}. \) Of course, this object is only defined on a set of \(\mu \)-measure one. For \(\Lambda, \Gamma \) finite subsets of \(\mathbb{Z}^d \), and \(\Lambda \subset \Gamma, \) we denote by \(\mu_{\Gamma}(\sigma_{\Lambda}\mid \zeta_\Lambda) \) the conditional probability to find \(\sigma_{\Lambda} \) inside \(\Lambda \), given that \(\zeta \) occurs in \(\Gamma \setminus \Lambda. \)

For \(U \in \mathcal{U} \), we call \(\mu \) a Gibbs measure with interaction \(U \) if its conditional probabilities coincide with the ones prescribed in (5), i.e., if
\[
\mu^\zeta_\Lambda = \mu^U,\zeta,\Lambda \quad \text{for } \mu \text{ almost every } \zeta \in \Omega.
\]

We denote by \(\mathcal{G}(U) \) the (non-empty) set of all translation-invariant Gibbs measures with interaction \(U. \)

For \(\mu \) a Gibbs measure on \(\Omega, \Lambda \subset \mathbb{Z}^d \), and \(\sigma \in \Omega \) we denote by \(\mu_{\sigma_{\Lambda}} \) the measure \(\mu \) conditioned on having the fixed configuration \(\sigma_{\Lambda} \) on \(\Lambda. \) For \(i \in \mathbb{Z}^d \) we denote by \(\mu_i \) the image measure of \(\mu \) under the transformation \(\sigma \mapsto \sigma_i. \) Since \(\mu \) is assumed to be a Gibbs measure, the Radon-Nikodym derivatives \(\frac{d\mu_i}{d\mu} \) exist and are continuous. Moreover, there is a constant \(C > 0 \) such that
\[
\left\| \frac{d\mu_i}{d\mu} \right\|_{\infty} \leq C. \tag{6}
\]

2.4 Dynamics and semigroups

Associated to a Gibbs measure \(\mu \) we have natural spin-flip dynamics, usually called Glauber dynamics. These are Markov processes on \(\Omega \) with generator on local functions defined via
\[
L^G_\mu f(\eta) = \sum_i c(i, \eta) \left(f(\eta^i) - f(\eta) \right)
\]
where the rates \(0 < \epsilon < c(i, \sigma) < K \) are supposed to be uniformly bounded from below and from above, and satisfy
\[
\frac{c(i, \sigma)}{c(i, \sigma^i)} = \frac{d\mu_i}{d\mu}(\sigma)
\]
which guarantees that the process with generator L^G_μ started from μ is reversible. We denote by $(S_t)_{t \geq 0}$ the $L^2(\mu)$-semigroup of this process. Notice that since μ is assumed to be translation-invariant, S_t commutes with translations.

In the course of this paper we will also deal with examples of other dynamics such as the exclusion process, the contact process, etc., see below and [16] for more details.

Next, we define the quadratic form
\[
\mathcal{E}(f, f) = \sum_i \int (\nabla_i f)^2 d\mu.
\] (7)

Associated to the generator L^G_μ we have the Dirichlet form
\[
\mathcal{E}^\mu_G(f, f) = \frac{1}{2} \sum_i \int c(i, \sigma)(\nabla_i f)^2(\sigma)\mu(d\sigma).
\] (8)

Since the rates satisfy $0 < \epsilon < c(i, \sigma) < K$, we have the obvious bounds
\[
\frac{\epsilon}{2} \mathcal{E}(f, f) \leq \mathcal{E}^\mu_G(f, f) \leq \frac{K}{2} \mathcal{E}(f, f).
\] (9)

Therefore, e.g., in inequalities like the Poincaré inequality (see below) it is equivalent to bound the variance (under μ) by the quadratic form (7) or by the Dirichlet form (8).

2.5 Coupling

For two probability measures ν, μ on Ω, a coupling is a probability measure on $\Omega \times \Omega$ with marginals μ, resp. ν. For an extensive background on coupling, we refer to [23].

We fix the following distance on Ω, though any other distance compatible with the product topology would be suited: $\text{dist}(\eta, \xi) = \sum_i 2^{-i} |\eta(i) - \xi(i)|$. The Vasserstein distance between ν, μ with respect to this distance is then defined by
\[
d(\mu, \nu) = \inf \left\{ \int \text{dist}(\eta, \xi) d\mathbb{P}(\eta, \xi) : \mathbb{P} \text{ is a coupling of } \mu \text{ and } \nu \right\}.
\] (10)

An optimal coupling is a coupling which achieves the infimum in (10). In our context, by compactness, an optimal coupling always exists.

For two Markov processes $\{\eta_t : t \geq 0\}$, $\{\xi_t : t \geq 0\}$, a coupling is a process $\{(\eta^1_t, \eta^2_t) : t \geq 0\}$ on $\Omega \times \Omega$ with marginals $\{\eta_t : t \geq 0\}$, resp.
\{\xi_t : t \geq 0\}. For spin-flip processes such as defined in the previous section, there is a natural coupling, called basic coupling, following from the so-called “graphical construction”, see [16, Chapter III, Section 1].

For a monotone Markov process [16, Chapter II] there exists a coupling such that if \(\eta \leq \xi\) (meaning that for all \(x \in \mathbb{Z}^d\) \(\eta(x) \leq \xi(x)\)), then, in the coupling, the order is preserved in the course of time, i.e., for all \(t \geq 0\), \(\mathbb{P}_{\eta,\xi}(\eta_t \leq \xi_t) = 1\).

2.6 Inequalities

Definition 2.2. Let \(\mu\) be a probability measure on \(\Omega\).

a) We say that \(\mu\) satisfies the **Gaussian exponential-moment bound** with constant \(c = c(\mu)\) (abbreviated \(\text{GEMB}(c)\)) if for all \(f : \Omega \to \mathbb{R}\) bounded measurable we have

\[
\mathbb{E}_\mu(e^{f-\mathbb{E}_\mu f}) \leq e^{c\|f\|_2^2}.
\]

(11)

b) We say that \((\mu, S_t)\) satisfies the **Poincaré inequality** if there exists a constant \(c = c(\mu)\) such that for all \(f : \Omega \to \mathbb{R}\) bounded measurable

\[
\text{Var}_\mu(f) \leq c \mathcal{E}(f, f).
\]

(12)

For Glauber dynamics with strictly positive rates, if \(\mu\) is a reversible measure for the Markov process, then the Poincaré inequality for \(\mu\) implies exponential relaxation in \(L^2(\mu)\). More precisely, from (12), (9) and the spectral theorem, we have the estimate (see [16, Theorem 4.16, Chapter IV]),

\[
\|S_t f - \mathbb{E}_\mu(f)\|_{L^2(\mu)}^2 \leq e^{-\gamma t}\|f\|_{L^2(\mu)}^2.
\]

for some \(\gamma > 0\) proportional to the constant in the Poincaré inequality.

3 Gaussian concentration and uniform coupling

3.1 Coupling matrix

We start with a probability measure \(\mu\) that satisfies \(\text{GEMB}(c)\), and with a Markov process \(\{\sigma_t : t \geq 0\}\) with semigroup \((S_t)_{t \geq 0}\).
We apply GEMB(c) to the function $S_t f$. Therefore, we have to estimate $\delta(S_t f)$:

$$
\delta_t(S_t f) = \sup_\sigma |S_t f(\sigma^i) - S_t f(\sigma)|
\leq \sum_k D_t(i, k)\delta f \quad (13)
$$

where we introduced the matrix

$$
D_t(i, k) = \sup_\sigma P_{\sigma^i, \sigma}(\sigma^1(k) \neq \sigma^2(k)). \quad (14)
$$

This matrix depends on the choice of coupling P. In the estimates where the matrix D appears, one can later optimize over the choice of coupling.

In the translation-invariant case (i.e., if P is a translation invariant coupling) we have

$$
D_t(i, k) =: \psi_t(k - i). \quad (15)
$$

In the case of monotone dynamics, the coupling can be chosen such that the order between configurations is preserved, which implies that

$$
P_{\sigma^i, \sigma}(\sigma^1(k) \neq \sigma^2(k)) = E_{\sigma, \sigma^1, \sigma^2, 0}(\sigma^1(k) - \sigma^2(k)) = E_{\sigma, \sigma^1}(\sigma_t(k)) - E_{\sigma, \sigma^2}(\sigma_t(k)). \quad (16)
$$

Therefore, in this case, the matrix $D_t(i, k)$ is completely controled by single-site expectations of σ_t.

3.2 Time-dependent deviation bounds

Theorem 3.1. If μ satisfies GEMB(c) \((11)\), then for any pair $u, v \geq 1$ such that $\frac{1}{u} + \frac{1}{v} = \frac{3}{2}$, and for all $t \geq 0$, one has

$$
E_\mu \left(e^{S_t f - E_\mu(S_t f)} \right) \leq e^{c\|\psi_t\|_u^2\|f\|_v^2}. \quad (17)
$$

Proof. By combining \((13), (14), (15)\), we obtain

$$
\delta(S_t f) \leq \psi_t * \delta f.
$$

Therefore, Young’s inequality yields

$$
\|\delta(S_t f)\|_2^2 \leq \|\psi_t\|_u^2\|\delta f\|_v^2
$$

for any $u, v > 1$ such that $\frac{1}{u} + \frac{1}{v} = \frac{3}{2}$. The theorem is proved.
Corollary 3.1. Under the conditions of Theorem 3.1, for all $t \geq 0$, and for all $a \geq 0$, one has the deviation bounds

$$\mu(S_t f - \mathbb{E}_\mu(S_t f)) \geq a \leq \exp \left(-\frac{a^2}{4c\|\psi_t\|_u^2\|\delta f\|_v^2}\right),$$

(18)

and

$$\mu(|S_t f - \mathbb{E}_\mu(S_t f)| \geq a) \leq 2 \exp \left(-\frac{a^2}{4c\|\psi_t\|_u^2\|\delta f\|_v^2}\right).$$

(19)

Moreover, one has the following estimate for the variance

$$\text{Var}_\mu(S_t f) \leq c\|\psi_t\|_u^2\|\delta f\|_v^2,$$

(20)

and, more generally, for all $p \geq 1$,

$$\|S_t f - \mathbb{E}_\mu(S_t f)\|_{L^p(\mu)} \leq 2\sqrt{c} \left(p \Gamma\left(\frac{p}{2}\right)\right)^\frac{1}{p} \|\psi_t\|_u\|\delta f\|_v.$$

(21)

Proof. The deviation bound (18) follows easily from (17) and a standard application of the (exponential) Chebychev inequality. The deviation bound (19) follows at once from (18) applied to f and $-f$.

In order to obtain the L^p-bounds, we start from the deviation bound (19) and use the following elementary lemma.

Lemma 3.1. Suppose that X is a random variable such that for all $a \geq 0$

$$\mathbb{P}(|X| \geq a) \leq 2e^{-\frac{a^2}{\kappa^2}}$$

for some $\kappa > 0$. Then

$$\mathbb{E}(|X|^p) \leq p \Gamma\left(\frac{p}{2}\right) \kappa\frac{p}{2}$$

for all $p \geq 1$ (where Γ is Euler’s Gamma function).

Proof.

$$\mathbb{E}(|X|^p) = \int_0^\infty p a^{p-1} \mathbb{P}(|X| \geq a) da \leq 2 \int_0^\infty p a^{p-1} e^{-\frac{a^2}{\kappa^2}} da = p \Gamma\left(\frac{p}{2}\right) \kappa\frac{p}{2}.$$

The proof of Corollary 3.1 is now complete.

As we will see in the examples below, these bounds are sharp as far as the t-dependence is concerned, e.g., in the case of the symmetric exclusion process with μ a Bernoulli measure, they give the correct decay behavior.

The next corollary is about spatial averages defined in (2). It exploits the fact that in (19) and (21) we have the $\|\cdot\|_v$-norm of δf (with $v > 1$), and combines with the contraction property of Lemma 2.1.
Corollary 3.2. Suppose that μ satisfies $GEMB(c)$. Then, for all $t \geq 0$, for all $a \geq 0$, for all $\Lambda \subset \mathbb{Z}^d$ and for all $\alpha \geq 1/2$, for all $f : \Omega \to \mathbb{R}$ bounded measurable, for all $u, v > 1$ such that $\frac{1}{u} + \frac{1}{v} = \frac{3}{2}$, we have the estimates

$$
\mu \left(|S_t(A_{\alpha,\Lambda}(f)) - |\Lambda|^{1-\alpha}\mathbb{E}_\mu(S_t f)| \geq a \right) \leq 2 \exp \left(- \frac{|\Lambda|^{2\alpha-\frac{3}{2}} a^2}{4c \left\| \psi_t \right\|_u^2 \left\| \delta f \right\|_1^2} \right)
$$

and for all $p \geq 1$:

$$
\|S_t(A_{\alpha,\Lambda}(f)) - |\Lambda|^{1-\alpha}\mathbb{E}_\mu(S_t f)\|_{L^p(\mu)} \leq 2^{\sqrt{c}} \left(p\Gamma \left(\frac{p}{2} \right) \right)^{\frac{1}{p}} |\Lambda|^{-\alpha+\frac{1}{2}} \|\psi_t\|_u \|\delta f\|_1.
$$

Remark 3.1. A possible generalization of the Gaussian exponential-moment bound with constant c is the following. Suppose G is a positive convolution operator on $\ell^2(\mathbb{Z}^d)$, i.e.,

$$(G\varphi)_i = \sum_k G(i-k)\varphi(k)$$

with $G : \mathbb{Z}^d \to \mathbb{R}$ a non-negative function. A typical example of G we have in mind here is the lattice Green’s function. Associated to G, we have the quadratic form on the domain of $G^{1/2}$ defined as usual by

$$V_G(\varphi) = \langle \varphi, G\varphi \rangle.$$

We then say that a measure satisfies the Gaussian exponential moment inequality with covariance kernel G if for all $f : \Omega \to \mathbb{R}$ bounded measurable we have the inequality

$$\mathbb{E}_\mu \left(e^{f - \mathbb{E}_\mu f} \right) \leq e^{V_G(\delta f)}.$$

The analogue of the time-dependent estimate in Theorem 3.1 then becomes

$$\mathbb{E}_\mu \left(e^{S_t f - \mathbb{E}_\mu(S_t f)} \right) \leq e^{V_G(\psi_t \ast \delta g)}$$

and, by an application of Young’s inequality, we have, e.g., as a possible estimate

$$V_G(\psi_t \ast \delta g) \leq \|\psi_t\|_2 \|G\|_2 \|\delta g\|_1^2.$$
3.3 Examples

3.3.1 Symmetric exclusion process

The symmetric exclusion process (SEP) is the process defined by the generator acting on local functions

\[Lf(\eta) = \sum_{x,y} p(x,y)(f(\eta^{xy}) - f(\eta)), \]

where \(\eta^{xy} \) is obtained from \(\eta \) by exchanging occupations in \(x \) and \(y \) in the configuration \(\eta \), and where \(p(x,y) = p(0,y-x) \) is supposed to be an irreducible, symmetric and translation-invariant random walk transition probability with finite second moment. In that case the ergodic stationary measures are Bernoulli, i.e., \(\mu = \nu_\rho \) (see [16, Chapter VIII]).

Theorem 3.2. Let \((S_t)\) be the semigroup of the symmetric exclusion process. Then, for any probability measure \(\mu \) on \(\Omega \) satisfying \(\text{GEMB}(c) \) \((11) \), for all \(t \geq 0 \), for all \(p \geq 1 \), and for all \(f : \Omega \to \mathbb{R} \) bounded measurable, we have the estimates

\[\| S_t f - \mathbb{E}_\mu (S_t f) \|_{L^p(\mu)} \leq 2\sqrt{c} \left(p \Gamma \left(\frac{p}{2} \right) \right)^{\frac{1}{p}} \sqrt{p_{2_t}(0,0)} \| \delta f \|_1 \] \((22) \)

and

\[\mu (| S_t f - \mathbb{E}_\mu (S_t f) | \geq a) \leq 2 \exp \left(- \frac{a^2}{4c p_{2_t}(0,0) \| \delta f \|_1^2} \right). \] \((23) \)

In particular, if \(\nu_\rho \) denotes the Bernoulli measure with density \(\rho \), then we have \(\text{GEMB}(c) \) with \(c = 1/8 \), see [15], and hence

\[\| S_t f - \mathbb{E}_{\nu_\rho} (f) \|_{L^p(\nu_\rho)} \leq \frac{C(p) \| \delta f \|_1}{\sqrt{p_{2_t}(0,0)}} \] \((24) \)

where

\[C(p) = 2^{-\frac{1}{2}} \left(p \Gamma \left(\frac{p}{2} \right) \right)^{\frac{1}{p}}. \]

Proof. Since the SEP is monotone, we can apply (16), which gives

\[\mathbb{P}_{\sigma, \sigma'} (\sigma^1_t(k) \neq \sigma^2_t(k)) = \mathbb{E}_{\sigma, \sigma', \sigma^1_t, \sigma^2_t} (\sigma^1_t(k) - \sigma^2_t(k)) = \mathbb{E}_{\sigma, \sigma'} (\sigma_t(k)) - \mathbb{E}_{\sigma, \sigma'} (\sigma_t(k)). \] \((25) \)

Moreover the SEP is self-dual, [16, Chapter VIII, Section 1]. Therefore, for all \(\eta \in \Omega \), we have

\[\mathbb{E}_{\eta} (\eta_t(k)) = \tilde{\mathbb{E}}_k (\eta(X_t)) \] \((26) \)
where X_t is the position of a simple symmetric random walk jumping at rate one according to $p(x, y)$, and \mathbb{E}_k denotes expectation in this random walk, starting at k. Combining (25) and (26), we obtain

$$
\mathbb{E}_{\sigma, i_1}(\sigma_t(k)) - \mathbb{E}_{\sigma, i_0}(\sigma_t(k)) = p_t(i, k)
$$

and hence

$$
\psi_t(k) = p_t(0, k)
$$

which gives

$$
\|\psi_t\|_2^2 = \sum_k p_t(0, k)^2 = p_{2t}(0, 0)
$$

To finish the proof apply Corollary 3.1 with the choice $u = 2, v = 1$.

Remark 3.2. The L^p-estimates of Theorem 3.2 have the correct asymptotic behavior in t, namely a $t^{-d/4}$-decay, since by the local limit theorem [21],

$$
p_t(0, 0) \sim \left(\frac{d}{2\pi \vartheta}\right)\frac{d}{4} t^{-\frac{d}{2}}
$$

for large t, where

$$
\vartheta = \sum x^2 p(0, x)
$$

is the variance of the underlying random walk.

Remark 3.3. In [1], similar L^2-estimates in terms of the $\|\delta f\|_1$-norm are obtained via generalized Nash inequalities combined with the spectral gap approach. Besides we have the explicit exponential estimate (23), and the L^p-estimates (24) hold for all $p \geq 1$.

Combining the estimates of Corollary 3.2 with (28), we obtain the following estimates for “mesoscopic averages” evolved over a “mesoscopic” period of time. Concentration properties of these averages are a consequence that we have estimates in terms of the $\|\delta f\|_2$ norm which behaves better (contracts) under taking spatial averages.

Corollary 3.3. Let $g : \Omega \to \mathbb{R}$ be a bounded measurable function and assume that $\mathbb{E}_{\nu_p}(g) = 0$. For $\alpha \geq 1/2, \kappa > 0$, define

$$
Y(\Lambda, t, g, \alpha, \kappa) = S_{t|\Lambda|^{\kappa}}(A_{\alpha, \Lambda}(g)).
$$

Then, for all $p \geq 1$, for all $t > 0$ such that $t|\Lambda|^{\kappa}$ is large enough, and for all $0 < \epsilon < 1$, we have the estimates

$$
\|Y(\Lambda, t, g, \alpha, \kappa)\|_p \leq C'(p) t^{-\frac{d\epsilon}{2+2\epsilon}} |\Lambda|^{\frac{1}{1+\epsilon}(1-\frac{d\epsilon}{2})} \|\delta g\|_1
$$

where $C'(p)$ is some positive constant proportional to $C(p)$.

14
Proof. Apply Corollary 3.2 with
\[u = 1 + \epsilon, \quad v = \left(\frac{3}{2} - \frac{1}{u} \right)^{-1} = \frac{2 + 2 \epsilon}{1 + 3 \epsilon} \]
and use the inequality \(p_t(0, k) \leq p_t(0, 0) \), which gives
\[\| \psi_t \|_p^p \leq (p_t(0, 0))^{p-1}. \]
Then use (28) to finish the proof. □

Remark 3.4. Remark that the usual central limit scaling associated to the fluctuation fields corresponds to the choice \(\kappa = 2/d \), which is the critical case (as far as the volume dependence is concerned) in (29).

3.3.2 Monotone dynamics with duality: contact process and voter model

To deal with more general monotone systems with duality [16], let us come back to (16). Duality means that there exists a Markov process \(\{ A_t : t \geq 0 \} \), the so-called dual process, on the set of finite subsets of \(\mathbb{Z}^d \) such that we have the “duality relation”
\[\mathbb{E}_\eta H(A, \eta_t) = \hat{\mathbb{E}}_A H(A_t, \eta) \]
where \(H(A, \eta) = \prod_{x \in A} \eta_x \) and \(\hat{\mathbb{E}} \) denotes the expectation in the dual process starting from the finite subset \(A \). Then we have the analogue of (27) with \(A = \{ k \} \):
\[\mathbb{E}_{\sigma_{\neq i} t}(\sigma_t(k)) - \mathbb{E}_{\sigma_{= 0} t}(\sigma_t(k)) = \hat{\mathbb{P}}_{\{ k \}}(A_t \ni i) = \sum_{A \ni i} p_t(k, A). \]
Hence, in the translation-invariant case we obtain
\[\psi_t(m) = \hat{\mathbb{P}}_{\{ 0 \}}(m \in A_t). \]
For \(\| \psi_t \|_2^2 \) we have a natural probabilistic interpretation:
\[\| \psi_t \|_2^2 = \sum_k \sum_{A \ni k} p_t(0, A) p_t(0, A) = \sum_A |A| p_t(0, A) p_t(0, A) = (\hat{\mathbb{E}}_0 \times \hat{\mathbb{E}}_0)(|A_t| \mathbb{1}_{(A_t = B_t)}) \]
where in the last equality by \(\hat{\mathbb{E}}_0 \times \hat{\mathbb{E}}_0 \) we denote expectation in two independent copies of the dual process starting at \(A_0 = \{ 0 \} \).
If \(\{ \eta_t : t \geq 0 \} \) is the voter model \cite{16}, Chapter V, i.e., the spin system with rates

\[
c(x, \eta) = \begin{cases}
\sum_y p(x, y) \eta(y) & \text{if } \eta(x) = 0 \\
\sum_y p(x, y)(1 - \eta(y)) & \text{if } \eta(x) = 1
\end{cases}
\]

where \(p(x, y) = p(0, y - x) \geq 0 \) and \(\sum_y p(x, y) = 1, \sum_y (y-x)^2 p(x, y) < \infty \).

The dual process then consists of coalescent random walkers with kernel \(p(x, y) \), and our quantity of interest is

\[
\| \psi_t \|_2^2 = \sum A |A| p_t(0, x) p_t(0, x) = \mathbb{P}_{x,y}(X_t - Y_t = 0) = \mathbb{P}_{x-y}(Z_t = 0)
\]

where \(\mathbb{P}_{x,y} \) denotes expectation for two independent random walkers starting at \(x \), resp. \(y \), and jumping at rate one according to \(p(x, y) \), and \(\mathbb{P}_{x-y} \) denotes translation-invariant continuous-time random walk jumping from 0 to \(a \) at rate \(p(a) + p(-a) \). The latter random walk is symmetric and hence we recover estimates \cite{22} in that case. Of course, since we do not know neither expect that the stationary measures of the voter model satisfy GEMB(\(c \)), these estimates only serve in the transient regime. In fact, the heavy correlation structure of the non-trivial stationary measures of the voter model (see Theorem 2.8 and formula (2.7) p. 242 in \cite{16}) suggests rather a GEMB with operator \(G \) (see Remark (3.1)), where \(G \) is the Green’s function associated to the random walk \(Z_t \).

Let \(\{ \eta_t : t \geq 0 \} \) be the subcritical contact process \cite{16}, Chapter VI, i.e., the spin system with rates

\[
c(x, \eta) = \begin{cases}
\lambda \sum_y \eta(y) & \text{if } \eta(x) = 0 \\
1 & \text{if } \eta(x) = 1
\end{cases}
\]

and \(\lambda < \lambda_c \). The contact process is self-dual, and hence in the subcritical case we get from \cite{16}, Theorem 3.4, p. 290,

\[
\| \psi_t \|_2^2 = \sum A |A| p_t(0, A) p_t(0, A) \leq \sup_{A \neq \emptyset} p_t(0, A) \sup_{t \geq 0} \mathbb{E}_0(|A_t|) \leq e^{-\epsilon t}
\]

for some \(\epsilon > 0 \), which gives the corresponding Gaussian and \(L^p \)-estimates of Corollary \cite{31} if we start from a measure \(\mu \) satisfying the GEMB(\(c \)). In particular, we have

\[
\| S_t f - \mathbb{E}_\mu(S_t f) \|_{L^p(\mu)} \leq 2 \sqrt{c} \left(p \Gamma \left(\frac{p}{2} \right) \right)^{\frac{1}{p}} \| \delta f \|_1 e^{-\frac{\epsilon}{2} t}.
\]

Combining this with the estimate

\[
\mathbb{E}_\mu(|S_t f|) \leq \| \delta f \|_1 e^{-\epsilon t}
\]

16
for all f with $f(0) = 0$, where 0 denotes the all-zero configuration, we obtain that for all $p \geq 1$

$$\|S_t f\|_{L^p(\mu)} \leq C_p \|\delta f\|_1 e^{-\frac{t}{2}}.$$

For $\lambda < 1/(2d)$ this follows immediately from the uniform estimates in the “$M < e$” regime [16, p. 33]. But for $\lambda \in (1/(2d), \lambda_c)$, as far as we know, these estimates for general f are new.

3.3.3 High-temperature Glauber dynamics

In this case, we consider the process with generator acting on local functions given by

$$L f(\sigma) = \sum_i c(i, \sigma)(f(\sigma^i) - f(\sigma)).$$

The rates are chosen to be strictly positive, bounded and such that the detailed balance condition

$$\frac{c(i, \sigma)}{c(i, \sigma^i)} = \frac{d\mu^i}{d\mu}(\sigma)$$ \hspace{1cm} (30)

holds. Here μ^i denotes the image measure of μ under the spin-flip transformation $\sigma \mapsto \sigma^i$. The detailed balance condition (30) ensures that μ is a reversible measure for the dynamics. An important example is the so-called heat bath dynamics where

$$c(i, \sigma) = \mu(\sigma^i(i)|\sigma_{\Z^d \setminus \{i\}})$$ \hspace{1cm} (31)

where $\mu(x|\sigma_{\Z^d \setminus \{i\}})$ denotes the conditional probability of having spin x at site i given the configuration $\sigma_{\Z^d \setminus \{i\}}$ outside.

The reversible measure μ is now supposed to be a translation invariant Gibbs measure in the Dobrushin uniqueness regime, i.e., such that the Dobrushin matrix

$$C_{ij} = \sup_{x \in \{0,1\}, \sigma \in \Omega} |\mu(\sigma_i = x | (\sigma^j)_{\Z^d \setminus \{i\}}) - \mu(\sigma_i = x | \sigma_{\Z^d \setminus \{i\}})|$$

satisfies

$$\|C\|_\infty = \sup_i \sum_j C_{ij} < 1$$ \hspace{1cm} (32)

which implies in particular that $(I - C)$ is an invertible and positive operator in $\ell^2(\Z^d)$.

17
Theorem 3.3. Let μ be a translation invariant Gibbs measure such that (32) holds, and consider heat bath dynamics with rates (31).

Then, for all $t \geq 0$, for all $f : \Omega \to \mathbb{R}$ bounded measurable

$$\mathbb{E}_\mu (e^{S_t f - \mathbb{E}_\mu (f)}) \leq e^{\alpha t \|\delta f\|_2^2}. \quad (33)$$

Proof. By [24, Proposition 2.5], we have the estimate

$$\delta_i (S_t f) \leq \sum_j (e^{-t(I-C)})_{ji} \delta_j f$$

which gives

$$\|\delta (S_t f)\|_2^2 \leq \|e^{-t(I-C)}\|_2^2 \|\delta f\|_2^2 \leq \|\delta f\|_2^2 e^{-\alpha t}$$

where the second inequality follows with some $\alpha > 0$, from $\|C\|_2 < 1$, which implies that $I - C$ is a strictly positive operator. The fact $\|C\|_2 < 1$ follows from $\|C\|_\infty = \|C\|_1$ (by translation invariance) and $\|C\|_2^2 \leq \|C\|_\infty \|C\|_1$. To finish the proof, we apply Theorem 3.1: it was proved in [13] that a Gibbs measure in the Dobrushin uniqueness regime satisfies GEMB(c) with c explicitly given in terms of the Dobrushin matrix. This is done in the proof of Theorem 1 therein.

The estimate (33) in turn leads to exponential relaxation in $L^p(\mu)$ via Corollary 3.4, which is the content of the next proposition.

Corollary 3.4. For all $p > 1$, for all $f : \Omega \to \mathbb{R}$ bounded measurable,

$$\|S_t f - \mathbb{E}_\mu (f)\|_{L^p(\mu)} \leq \tilde{C}(p) \|\delta f\|_2 e^{-\frac{\alpha t}{2}}$$

where $\tilde{C}(p) = 2\sqrt{c} \left(p \Gamma \left(\frac{p}{2} \right) \right) \frac{1}{p}$.

Compared with the bounds coming from the “$M < \epsilon$” criterion [16, Chapter 1] we have the $\|\cdot\|_2$ norm (instead of the triple norm), which can be an advantage, especially in view of taking spatial averages, as in Corollary 3.2.

4 Moment bounds and non-uniform coupling

In the previous section, we obtained useful estimates only in the case $\psi_t \to 0$ as $t \to \infty$. There are natural situations, such as the asymmetric exclusion process, where taking the supremum over σ in (14) spoils the decay of the matrix elements $D^\sigma_t (i,k)$ (as $|k-i|$ becomes large). The configurations which are responsible for this absence of decay can however still be exceptional in
the sense of the measure \(\mu \), so that for “typical” configurations \(\sigma \), the decay of \(D^\sigma_t(i, k) \) can still be controlled. First, we illustrate this in the context of the estimation of the variance of \(S_t f \).

We start by the martingale decomposition (telescoping) of the quantity

\[
S_t f - \mathbb{E}_\mu (S_t f) = \sum_i V_i
\]

where

\[
V_i = \mathbb{E}_\mu(S_t f | \mathcal{F}_{\leq i}) - \mathbb{E}_\mu(S_t f | \mathcal{F}_{< i}).
\]

We recall the notation \(\mu_{\sigma \leq i} \) for the measure \(\mu \) conditioned on having \(\sigma \leq i \) on the set \((\leq i)\), and similarly \(\mu_{\sigma < i_1, \sigma < i_0} \). By \(\mu_{\sigma < i_1, \sigma < i_0} \) we denote a coupling of \(\mu_{\sigma < i} \) with \(\mu_{\sigma < i_0} \), and by \(\mathbb{P}_{\sigma, \eta} \) we denote a coupling of the processes with semigroup \(S_t \) starting from \(\sigma \) in the first copy, \(\eta \) in the second copy. Later on we optimize over the choice of the coupling.

Using this notation we can estimate \(|V_i| \):

\[
|V_i(\sigma)| = \left| \int S_t f(\eta) \mu_{\sigma \leq i}(d\eta) - \int S_t f(\eta) \mu_{\sigma < i}(d\eta) \right| \\
\leq \left| \int S_t f(\eta) \mu_{\sigma < i_1, \sigma < i_0}(d\eta) - \int S_t f(\eta) \mu_{\sigma < i_0}(d\eta) \right| \\
\leq \sum_k \left(\int \mu_{\sigma < i_1, \sigma < i_0}(d\eta_1^1 d\eta_2^2) \mathbb{P}_{\eta_1, \eta_2} (\eta_1^1(k) \neq \eta_2^2(k)) \right) \delta_k f \\
= \sum_k D^\sigma_t(i, k) \delta_k f
\]

(34)

where we introduced the matrix \(D^\sigma_t \) with elements \(D^\sigma_t(i, k) \) given by

\[
D^\sigma_t(i, k) = \int \mu_{\sigma < i_1, \sigma < i_0}(d\eta_1^1 d\eta_2^2) \mathbb{P}_{\eta_1, \eta_2} (\eta_1^1(k) \neq \eta_2^2(k)).
\]

We then have the pointwise estimate

\[
|V_i(\sigma)| = |V_i(\sigma_{\leq i})| \leq (D^\sigma_t \delta f),
\]

and hence

\[
\text{Var}_\mu(S_t f) = \sum_i \mathbb{E}_\mu(V_i^2) \leq \int \|D^\sigma_t \delta f\|_2^2 \mu(d\sigma).
\]

(35)

The advantage of this expression is that it contains integration over \(\sigma \) so that “exceptional \(\sigma \)” for which \(D^\sigma_t(i, k) \) does not decay properly (as \(|k - i| \) gets large) are integrated out.
Higher moment bounds are obtained via the Burkholder-Gundy inequality, exactly as in [6, Theorems 3 and 6]. If we define

$$D^p_t(i, j) = (\mathbb{E}_\mu(D^\sigma_t(i, j))^p)^{1/p}$$

we have the following result.

Theorem 4.1. For all $t \geq 0$, for all $p \in \mathbb{N}$, for all $f : \Omega \to \mathbb{R}$ bounded measurable we have the estimate

$$\|S_tf - \mathbb{E}_\mu(S_tf)\|_{L^{2p}(\mu)} \leq 20p \|D^\sigma_t\|_2\|\delta f\|_2.$$

4.1 Example: the asymmetric exclusion process

The asymmetric exclusion process is defined via the generator on local functions

$$Lf(\eta) = \sum_{x,y} p(x,y)\eta(x)(1 - \eta(y))(f(\eta_{xy}) - f(\eta))$$

where $p(x,y)$ is a translation-invariant, nearest-neighbor, random walk kernel with non-zero mean.

For the asymmetric exclusion process, let us start in the basic coupling from $(\sigma_{\neq i} 1, \sigma_{\neq i} 0_i)$. Then, at later times, there is exactly one lattice site $k = X_t$ where $\sigma^1_t(k) \neq \sigma^2_t(k)$. X_t is the position of the so-called “second class particle” [17], starting initially at lattice site i and with the other particles distributed according to the configuration $\sigma_{\neq i}$. So, in this case, we can write

$$D^\sigma_t(i, k) = \mathbb{P}_{\sigma^1,\sigma}(\sigma^1_t(k) \neq \sigma^2_t(k)) = \mathbb{P}_{\sigma^1,\sigma}(X_t = k). \quad (36)$$

First we remark that taking the supremum over σ in (36) spoils the decay of the matrix elements. To see this, first consider the totally asymmetric nearest neighbor case in dimension one. The configuration σ is then chosen to be

$$\begin{cases}
\sigma^*(x) = 0 \text{ for } x < 0 \\
\sigma^*(x) = 1 \text{ for } x \geq 0
\end{cases}$$

and $i = 0$. In this case, the second class particle is stuck at 0, *i.e.*, $D^\sigma_t(0, k) = \delta_{0,k}$ which does not decay as a function of t.

Similarly, in the (not totally asymmetric) case starting from σ^*, the distribution of the second class particle is tight [3], *i.e.*,

$$\liminf_{t \to \infty} D^\sigma_t(0, k) > 0.$$
Therefore, we cannot apply Theorem 3.1 to obtain (useful) L^p estimates. Instead of applying Theorem 4.1, we obtain in the next theorem a variance estimate in terms of a quantity related to the second-class particle.

Theorem 4.2. Let ν_ρ be the Bernoulli measure with density ρ, i.e., with $\nu_\rho(\eta_x = 1) = \rho$. Define

$$
\Psi_t(k) = \left(\int \left(\mathbb{P}_{\eta_0 \neq 0, \eta_{t+0} = 0}(X_t = k) \right)^2 d\nu_\rho(\eta) \right)^{1/2}.
$$

(37)

Then, for all $f : \Omega \to \mathbb{R}$ bounded measurable, and for all $t \geq 0$, we have the variance estimate

$$
\text{Var}_{\nu_\rho}(S_t f) \leq \|\Psi_t\|_2^2 \|\delta f\|_1^2.
$$

Proof. The conditional distribution $\mu_{\sigma < i}$ appearing in (34) is now of course simply the Bernoulli measure on the configuration outside the region $(\leq i)$, where we have conditioned, i.e., on $\{0, 1\}^{(\geq i)}$. Therefore, using (36), the estimate for the variance (35) becomes

$$
\text{Var}_{\nu_\rho}(S_t f) \leq \sum_{i,k,l} \delta_{k} \delta_{l} \int d\nu_\rho(\sigma)d\nu_\rho(\xi)d\nu_\rho(\xi') \times
$$

$$
\mathbb{P}_{\sigma < 1, \xi > i, \sigma < 0, \xi > i}(X_t = k) \mathbb{P}_{\sigma < 1, \xi' > i, \sigma < 0, \xi' > i}(X_t = l)
$$

(38)

where we use the basic coupling [16, Chapter III, Section 1]. Then, by using the Cauchy-Schwarz inequality and translation invariance in (38), we obtain

$$
\text{Var}_{\nu_\rho}(S_t f) \leq \|\Psi_t \ast \delta f\|_2^2
$$

(39)

where Ψ_t is defined in (37). Applying Young’s inequality yields the result of the theorem.

So far, we are not able to obtain the precise rate of decay of the quantity $\|\Psi_t\|_2$ appearing in (39). However, in order to get a feeling about the decay of this quantity, introduce, for $q \in \mathbb{T}_d = (-\pi, \pi]^d$,

$$
S(q, t, \eta) = \mathbb{E}_{\eta_0 \neq 0, \eta_{t+0} = 0}(e^{iq \cdot X_t}).
$$

Then, by Parseval’s identity,

$$
\|\Psi_t\|_2^2 = \frac{1}{(2\pi)^d} \int \int_{\mathbb{T}_d} |S(q, t, \eta)|^2 dq \nu_\rho(d\eta).
$$

We can first average over η, i.e., introduce

$$
S(k, t) = \int \mathbb{P}_{\eta_0 \neq 0, \eta_{t+0} = 0}(X_t = k) \nu_\rho(d\eta) = \frac{1}{\rho(1 - \rho)} \mathbb{E}_{\nu_\rho}((\eta_t(k) - \rho)(\eta_0(0) - \rho))
$$

21
For this quantity we have the conjectured diffusive behavior in $d \geq 3$

$$S(k, t) \sim t^{-\frac{d}{2}} \mathcal{N}\left(\frac{k - a(\rho)t}{D(\rho)t^{1/2}}\right)$$

where \mathcal{N} is the standard normal density, and $a(\rho) = (1 - 2\rho)b$, with b the first moment of the underlying random walk, whereas for $d = 1$ the conjectured behavior is supperdiffusive, more precisely

$$S(k, t) \sim t^{-\frac{2}{3}} \Phi\left((k - (1 - 2\rho)bt)t^{-\frac{2}{3}}\right)$$

with Φ an unknown scaling function, see [22].

This means that for the Fourier transform

$$S(q, t) = \int S(q, t, \eta) \nu(\eta) d\eta$$

we have the conjectured diffusive behavior

$$S(q, t) \sim \exp\left(ia(\rho, t) \cdot q - \frac{1}{2}q^2D(\rho)t\right)$$

in dimension $d \geq 3$, with $a(\rho, t) = (1 - 2\rho)b$, where b is the first moment of the underlying random walk, whereas in $d = 1$,

$$S(q, t) \sim e^{ia(\rho)qt} \hat{\Phi}(qt^{\frac{2}{3}})$$

where

$$\hat{\Phi}(q) = \int_{\mathbb{R}^d} e^{iq \cdot x} \Phi(x) dx.$$

For t large, it is reasonable to expect that $S(q, t, \eta)$ behaves (in leading order in t) as its average over η, for $\nu(\eta)$ typical η. If we insert this, we find the following corresponding large t behavior of $\|\Psi_t\|_2^2$:

$$\|\Psi_t\|_2^2 \sim \begin{cases} Ct^{-\frac{d}{2}} & \text{for } d \geq 3 \\ Ct^{-\frac{2}{3}} & \text{for } d = 1 \end{cases}$$

which gives the corresponding variance estimates

$$\text{Var}_{\nu}(S_t f) \leq \begin{cases} C\|\delta f\|_2^2 t^{-\frac{d}{2}} & \text{for } d \geq 3 \\ C\|\delta f\|_2^2 t^{-\frac{2}{3}} & \text{for } d = 1. \end{cases}$$
5 The Poincaré inequality for one-dimensional Gibbs measures

In this section we prove the Poincaré inequality via coupling in the context of one-dimensional Gibbs measures for a large class of potentials, including polynomially decaying ones. For finite-range potentials, Poincaré’s inequality was proved in [12]. For finite-range and exponentially decaying potentials the log-Sobolev inequality is obtained in [11, 14], which is stronger than the Poincaré inequality, and implies exponential relaxation in L^∞. Our result covers the intermediate case where the log-Sobolev inequality does not hold but the Poincaré inequality does.

The idea to derive the Poincaré inequality is to estimate the V_i appearing in the telescoping identity for $f - \mathbb{E}_\mu(f)$ by introducing the coupling matrix as before, but also taking into account the integration over the coupling of the conditional distributions $\mu_{\sigma < i \bar{\sigma}_i}$ and $\mu_{\sigma < i \sigma_i}$, instead of replacing it by the supremum of the integrand. In the sequel, we use the notation $\bar{\sigma}_i = 1 - \sigma_i$.

Let $\mu_{\sigma < i \bar{\sigma}_i, \sigma < i \sigma_i}$ be a coupling of the conditional probabilities $\mu_{\sigma < i \bar{\sigma}_i}$ and $\mu_{\sigma < i \sigma_i}$. We measure its “quality” by

$$\Theta(j) := \sup_\sigma \sup_i \left(\int \mathbb{1}_{\xi_i \neq \xi_{i+j}} \mu_{\sigma < i \bar{\sigma}_i, \sigma < i \sigma_i}(d\xi^1_i d\xi^2_i) \right), \forall j \in \mathbb{N}. \quad (40)$$

Typically, for one-dimensional Gibbs measures, we expect $\Theta(j)$ to be small for j large. Indeed, if we are far from the boundary, the boundary condition is not felt and we can couple successfully for different boundary conditions. Observe that if μ is a product measure then $\Theta = 0$.

We state our result in terms of a summability condition for Θ and hereafter show that this condition is satisfied for the long-range Ising model. In the following theorem, by “interaction” we mean an interaction in the sense of Definition 2.1. In particular, it is translation-invariant and uniformly summable.

Moreover, we need to assume the following condition on the interaction:

$$\sum_{A \ni 0} \text{diam}(A) \|U(A, \cdot)\|_\infty < \infty. \quad (41)$$

Notice that this implies that there is a unique Gibbs measure for U. This condition is a bit stronger than the classical condition found in [8, Chapter 8, Section 8.3].

In order to assure the existence of a coupling that leads to the Poincaré inequality, we will also need the following stronger condition. There exists
\(\alpha > 3 \) and \(C > 0 \) such that for all \(m \):

\[
\sum_{A \ni 0, \text{diam}(A) > m} \|U(A, \cdot)\|_{\infty} \leq \frac{C}{m^{\alpha}}. \tag{42}
\]

Theorem 5.1. Let \(U \) be an interaction on \(\mathbb{Z} \) satisfying condition (41). If there exists a coupling \(\mu_{\sigma_i, \sigma_i} < \bar{\sigma}, \sigma_i \) of the conditional probabilities \(\mu_{\sigma_i, \sigma_i} \) and \(\mu_{\sigma_i, \sigma_i} \) such that

\[
\|\Theta^{1/q}\|_1 = \sum_{j \geq 1} (\Theta(j))^{1/q} < \infty \tag{43}
\]

for some \(q > 2 \), then there exists \(C = C(q) > 0 \) such the Gibbs measure associated to \(U \) satisfies the Poincaré inequality

\[
\text{Var}_{\mu}(f) \leq C \left(1 + \|\Theta^{1/q}\|^2_1 \right) \mathcal{E}(f, f).
\]

Moreover, if the interaction \(U \) of the Gibbs measure \(\mu \) satisfies (42), then such a coupling exists.

Remark 5.1. An example where the theorem applies is the long-range Ising model with interaction

\[
U(\{i, j\}, \sigma) = \frac{\beta (2\sigma_i - 1)(2\sigma_j - 1)}{|i - j|^{\kappa}}
\]

for \(i \neq j \in \mathbb{Z} \), and \(U(A, \sigma) = 0 \) for all other subsets \(A \subset \mathbb{Z} \), where \(\beta \in \mathbb{R} \), and \(\kappa > 4 \). For the proof of (42) in this case, we use the so-called house-of-cards coupling; see the appendix below.

Proof. We will prove the Poincaré inequality under the condition (43). The existence of a coupling satisfying this condition under (42) is proved in the appendix.

One starts with the telescoping identity

\[
f(\sigma) - \mathbb{E}_{\mu}(f) = \sum_i V_i(\sigma)
\]

where

\[
V_i = \mathbb{E}_{\mu}(f|\mathcal{F}_{\leq i}) - \mathbb{E}_{\mu}(f|\mathcal{F}_{< i}).
\]

Then, estimate

\[
|V_i(\sigma)| = |V_i(\sigma_{\leq i})| \leq \int f(\sigma_{< i}\xi_{\geq i})\mu_{\sigma_{< i}\sigma_i}(d\xi_{\geq i}) - f(\sigma_{< i}\sigma_i\xi_i)\mu_{\sigma_{< i}\sigma_i}(d\xi_{\geq i})
\]
and telescope further to obtain

\[|V_i(\sigma)| \leq \int \mu_{\sigma_i,\sigma_i,\sigma_i}(d\xi_{>i}^1 d\xi_{>i}^2) \times \left(|\nabla_i f(\sigma_{<i}\xi_{>i}^2)| + \sum_{j \geq i+1} \mathbb{I}_{\xi_{>i}^2 \neq \xi_j^1} \left| \nabla_j f(\sigma_{<i}\xi_{(i,j)}^1\xi_j^2\xi_{(j,\infty)}) \right| \right). \]

To alleviate notations we set, for \(j \geq i + 1, \)

\[(\sigma\xi)_{i,j}^{1,2} := \sigma_{<i}\bar{\sigma}_i^{1}\xi_{(i,j)}^1\xi_j^2\xi_{(j,\infty)} \]

then we can rewrite

\[|V_i(\sigma)| \leq \int |\nabla_i f(\sigma_{\leq i}\xi_{>i})| \mu_{\sigma_{<i}\sigma_i}(d\xi_{>i}) \]

\[+ \int \sum_{j \geq 1} \mathbb{I}_{\xi_{(i,j)}^1 \neq \xi_j^1} \nabla_i f(\sigma_{<i}\xi_{i,j}^{1,2}) \left| \mu_{\sigma_{<i},\sigma_{<i},\sigma_i}(d\xi_{>i}^1 d\xi_{>i}^2) \right| \times \]

\[\left(\sum_{j \geq 1} \Theta^{1/q}(j) \left(\int |\nabla_i f(\sigma_{<i}\xi_{i,j}^{1,2})|^{p} \mu_{\sigma_{<i},\sigma_{<i},\sigma_i}(d\xi_{>i}^1 d\xi_{>i}^2) \right)^{1/p} \right) \quad (45) \]

where \(\Theta \) is defined in (40).

We denote by \(\mu_{\sigma}^{ij}(d\xi_{>i}) \) the distribution of \(((\sigma\xi)_{i,j}^{1,2})_{>i} \) under the measure \(\mu_{\sigma_{<i},\sigma_{<i},\sigma_i}(d\xi_{>i}^1 d\xi_{>i}^2) \) (where the dependence on \(\sigma \) is in fact only on \(\sigma_{\leq i} \)).

Further we denote

\[R_{\sigma}^{ij}(\eta_{>i}) = \frac{d\mu_{\sigma}^{ij}(\eta_{>i})}{d\mu_{\sigma_{<i},\sigma_i}(\eta_{>i})}. \]

With this notation, we rewrite (45)

\[|V_i(\sigma)| \leq \int |\nabla_i f(\sigma_{\leq i}\xi_{>i})| \mu_{\sigma_{<i}\sigma_i}(d\xi_{>i}) \]

\[+ \sum_{j \geq 1} \Theta^{1/q}(j) \left(\int |\nabla_i f(\sigma_{<i}\eta_{>i})|^{p} R_{\sigma}^{ij}(\eta_{>i}) \mu_{\sigma_{<i},\sigma_i}(d\eta_{>i}) \right)^{1/p}. \quad (46) \]

The following lemma tells us that we can find a coupling \(\mu_{\sigma_{<i},\sigma_{<i},\sigma_i} \) such that we have a uniform control on \(R_{\sigma}^{ij}(\eta_{>i}) \).
Lemma 5.1. Under the assumption (41), there exists a coupling \(\mu_{\sigma_i, \bar{\sigma}_i} \) such that

\[
R_{ij}^{(\eta_{>i})} \leq C
\]

for some constant \(C > 0 \) only depending on \(U \).

The proof of this lemma is given in the appendix. It uses the classical so-called “house-of-cards coupling”, which under the stronger condition (42) will also satisfy (43).

Using lemma 5.1 we proceed to rewrite (46)

\[
|V_i(\sigma)| \leq \int |\nabla_i f(\sigma_{<i}\xi_{>i})| \mu_{\sigma_{<i}\bar{\sigma}_i}(d\xi_{>i})
+ C^{1/p} \sum_{j \geq 1} \Theta^{1/q}(j) \left(\int |\nabla_{i+j} f(\sigma_{<i}\bar{\sigma}_i\eta_{>i})|^{p} \mu_{\sigma_{<i}\bar{\sigma}_i}(d\eta_{>i}) \right)^{1/p}.
\]

Introduce

\[
\Xi_{\sigma}(i, k) = \left(\int |\nabla_k f(\sigma_{<i}\bar{\sigma}_i\eta_{>i})|^{p} \mu_{\sigma_{<i}\bar{\sigma}_i}(d\eta_{>i}) \right)^{1/p}
\]

then, using Cauchy-Schwarz’s inequality, we have

\[
V_i^2(\sigma) \leq 2 \int (\nabla_i f)^2(\sigma_{<i}\sigma_i\xi_{>i}) \mu_{\sigma_{<i}\sigma_i}(d\xi_{>i})
+ 2C^{2/p} \left(\sum_{j \geq 1} \Xi_{\sigma}(i, i+j) \Theta^{1/q}(j) \right)^2
\]

\[
\leq 2 \int (\nabla_i f)^2(\sigma_{<i}\sigma_i\xi_{>i}) \mu_{\sigma_{<i}\sigma_i}(d\xi_{>i})
+ 2C^{2/p} \left(\sum_{j \geq 1} (\Xi_{\sigma}(i, i+j))^2 \Theta^{1/q}(j) \right) \sum_{j \geq 1} \Theta^{1/q}(j).
\]

Now use Jensen’s inequality, remembering that \(2/p > 1 \), to estimate

\[
\Xi_{\sigma}(i, k)^2 = \left(\int |\nabla_k f(\sigma_{<i}\bar{\sigma}_i\eta_{>i})|^{p} \mu_{\sigma_{<i}\bar{\sigma}_i}(d\eta_{>i}) \right)^{2/p}
\]

\[
\leq \int (\nabla_k f(\sigma_{<i}\bar{\sigma}_i\eta_{>i}))^2 \mu_{\sigma_{<i}\bar{\sigma}_i}(d\eta_{>i}). \tag{48}
\]
Integrating w.r.t. μ then gives, using (6),
\[
\int \Xi_\sigma(i,k)^2 d\mu \leq \int \int (\nabla_k f(\sigma_{<i}\bar{\eta}_{>i}))^2 \mu_{\sigma_{<i}\sigma_{>i}}(d\eta_{>i}) \mu(d\sigma_{<i}) \\
= \int (\nabla_k f(\sigma_{<i}\bar{\sigma}_{>i}))^2 \mu(d\sigma) \\
\leq C' \int (\nabla_k f(\sigma))^2 \mu(d\sigma).
\] (49)

Combining now (49) with (48) we arrive at the estimate
\[
\text{Var}_{\mu}(f) = \sum_i \int V_i^2 d\mu \\
\leq 2 \sum_i \int (\nabla_i f)^2 d\mu \\
\quad + 2C''\|\Theta^{1/q}\|_1 \sum_i \sum_{j \geq 1} \Theta^{1/q}(j) \int (\nabla_{i+j} f)^2 d\mu
\] (50)

where $C'' = C^2/pC'$. Putting
\[
\Upsilon(k) = \int (\nabla_k f)^2 d\mu \quad \text{and} \quad \Theta'_q(j) = \Theta^{1/q}(j) \mathbb{1}_{\{j \geq 1\}}
\]
we can rewrite and estimate the double sum in (50), using Young’s inequality,
\[
\sum_i \sum_{j \geq 1} \Theta^{1/q}(j) \int (\nabla_{i+j} f)^2 d\mu = \|\Upsilon \Theta'_q\|_1 \leq \|\Upsilon\|_1 \|\Theta^{1/q}\|_1
\]
which finally yields, for $q > 2$,
\[
\text{Var}_{\mu}(f) \leq 2(1 + C''\|\Theta^{1/q}\|_1^2) \mathcal{E}(f, f).
\]

The proof of the theorem is complete. \[\square\]

Remark 5.2. It is clear that there could be many couplings satisfying the conclusion of Lemma 5.1. The trivial example is the product coupling. However, we want a coupling having the property (43), and hence the product coupling does not serve our purposes.
Remark 5.3. In the case of product measures, the second term in (44) is absent since in that case we can perfectly couple the conditional distributions, i.e., for all $j > i$

$$\int 1_{\{\xi^j_i \neq \xi^j_j\}} \mu_{\sigma < \sigma_i, \sigma < \sigma_i} (d\xi^1_i d\xi^2_i) = 0.$$

So we obtain the estimate

$$|V_i(\sigma)| \leq \int |\nabla_i f(\xi)| \mu_{\sigma < \sigma_i} (d\xi)$$

and using Cauchy-Schwarz’s inequality one gets

$$\int V_i(\sigma)^2 \mu(d\sigma) \leq \int (\nabla_i f(\sigma))^2 \mu_{\sigma < \sigma_i} (d\sigma) = \int (\nabla_i f)^2 d\mu,$$

which gives the Poincaré inequality for product measures:

$$\text{Var}_\mu(f) = \int \sum_i V_i^2 d\mu \leq \sum_i \int (\nabla_i f)^2 d\mu.$$

6 Appendix: the house-of-cards coupling

In this appendix we first show that the “house of cards coupling”, which is an explicit coupling of the conditional probabilities $\mu_{\sigma < \sigma_i}$ and $\mu_{\sigma < \sigma_i}$, satisfies the estimate (47), under the uniqueness condition (41). Next, we show that under the condition (42), the coupling also satisfies (43).

6.1 Estimate of Lemma 5.1

The house of cards coupling of the conditional distributions $\mu_{\sigma < \sigma_i}$ and $\mu_{\sigma < \sigma_i}$ runs as follows. We start by generating the symbols $(\sigma^1_{i+1}, \sigma^2_{i+1})$ as the optimal coupling of the conditional distribution $\mu_{\sigma < \sigma_i} (\cdot |_{i+1})$ with $\mu_{\sigma < \sigma_i} (\cdot |_{i+1})$. The symbols $(\sigma^1_{i+1}, \sigma^2_{i+1})$ being generated, we generate $(\sigma^1_{i+2}, \sigma^2_{i+2})$ as the optimal coupling of the conditional distributions $\mu_{\sigma < \sigma_i} (\cdot |_{i+2})$ with $\mu_{\sigma < \sigma_i} (\cdot |_{i+1})$, etc.

Remark that at each stage where we generate new symbols, we simply couple optimally two probability measures on $\{0,1\}$. More explicitly, if P_p gives mass p to $\{1\}$ and mass $1-p$ to $\{0\}$, and Q_q gives mass q to $\{1\}$ and mass $1-q$ to $\{0\}$, then the optimal coupling is gives mass $p \wedge q$ to $\{(1,1)\}$, $p - p \wedge q$ to $\{(1,0)\}$, $q - p \wedge q$ to $\{(0,1)\}$ and $1 - p - q + p \wedge q$ to $\{(0,0)\}$.

28
Abbreviate $\Lambda_j = (i, i + j]$, $\Lambda_{j,N} = (i + j + 1, N]$, and the coupling $\mu_{\sigma, i, \eta} = \mu_1^\sigma$. We now have to estimate the ratio
\[
\frac{\mu_1^\sigma(\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j}, \sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}})}{\mu_1^\sigma(\sigma_{\Lambda_j}^2 = \eta_{\Lambda_j}, \sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}})}
\]
uniformly in σ, η, j, N. We proceed as follows.
\[
\frac{\mu_1^\sigma(\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j}, \sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}})}{\mu_1^\sigma(\sigma_{\Lambda_j}^2 = \eta_{\Lambda_j}, \sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}})} = \frac{\mu_1^\sigma(\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j})\mu_1^\sigma(\sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}}|\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j})}{\mu_1^\sigma(\sigma_{\Lambda_j}^2 = \eta_{\Lambda_j})\mu_1^\sigma(\sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}}|\sigma_{\Lambda_j}^2 = \eta_{\Lambda_j})} \times
\]
\[
\frac{\sum_{\zeta_{\Lambda_j}} \mu_1^\sigma(\sigma_{\Lambda_j}^2 = \zeta_{\Lambda_j}|\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j})\mu_1^\sigma(\sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}}|\sigma_{\Lambda_j}^2 = \zeta_{\Lambda_j})}{\sum_{\zeta_{\Lambda_j}} \mu_1^\sigma(\sigma_{\Lambda_j}^1 = \zeta_{\Lambda_j}|\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j})\mu_1^\sigma(\sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}}|\sigma_{\Lambda_j}^2 = \zeta_{\Lambda_j})}.
\]
From the construction of the coupling, we have the following “consistency” property
\[
\mu_1^\sigma(\sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}}|\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j}, \sigma_{\Lambda_j}^2 = \zeta_{\Lambda_j}) = \mu_{\sigma, i, \eta, \Lambda_j, \sigma, i, \zeta_{\Lambda_j}}(\sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}}) = \mu_{\sigma, i, \zeta_{\Lambda_j}}(\eta_{\Lambda_{j,N}})
\]
where the last line follows because $\mu_{\sigma, i, \eta, \Lambda_j, \sigma, i, \zeta_{\Lambda_j}}$ is a coupling of $\mu_{\sigma, i, \eta, \Lambda_j}$ and $\mu_{\sigma, i, \zeta_{\Lambda_j}}$. Now we use that under the uniqueness condition \([41]\) on the potential U of the one-dimensional Gibbs measure μ, we have the uniform estimate (see e.g., \([42]\))
\[
\sup_{\zeta, \xi} \frac{\mu_{\sigma, i, \zeta, \Lambda_j}(\eta_{\Lambda_{j,N}})}{\mu_{\sigma, i, \zeta, \Lambda_j}(\eta_{\Lambda_{j,N}})} \leq C.
\]
(52)
So we obtain, combining the previous estimates with (52), that
\[
\frac{\mu_1^\sigma(\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j}, \sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}})}{\mu_1^\sigma(\sigma_{\Lambda_j}^2 = \eta_{\Lambda_j}, \sigma_{\Lambda_{j,N}}^2 = \eta_{\Lambda_{j,N}})} \leq C \sum_{\zeta_{\Lambda_j}} \frac{\mu_1^\sigma(\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j})\mu_1^\sigma(\sigma_{\Lambda_{j,N}}^2 = \zeta_{\Lambda_j}|\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j})}{\mu_1^\sigma(\sigma_{\Lambda_j}^2 = \eta_{\Lambda_j})\mu_1^\sigma(\sigma_{\Lambda_{j,N}}^2 = \zeta_{\Lambda_j}|\sigma_{\Lambda_j}^2 = \eta_{\Lambda_j})}
\]
\[
= C \frac{\mu_1^\sigma(\sigma_{\Lambda_j}^1 = \eta_{\Lambda_j})}{\mu_1^\sigma(\sigma_{\Lambda_j}^2 = \eta_{\Lambda_j})} \leq C^2.
\]
(53)
6.2 The behavior of \(\Theta \) for the house-of-cards process

We now specify the relation between the decay of \(\Theta(j) \) and the decay of the potential of the one-dimensional Gibbs measure. The coupling of \(\mu_{\sigma_1,\sigma_i} \) and \(\mu_{\sigma_i,\sigma'} \) is as in the previous subsection, via sequentially generating the symbols \(\sigma_{1,i}, \sigma_{2,i} \) by iteratively using the optimal coupling of the conditional distributions of the next symbol given the symbols already generated.

The crucial quantity appearing in \([4]\) which is used to compare with a house of cards process (i.e., a Markov chain with state space \(\mathbb{N} \cup \{0\} \) which can go up by one unit or go down to zero in a single time step) is

\[
\inf_{a,\sigma,\eta \sigma_{(-m,\ldots,m)} = \eta_{(-m,\ldots,m)}} \frac{\mu(\sigma_0 = a | \sigma_{Z\{0\}})}{\mu(\sigma_0 = a | \eta_{Z\{0\}})} \geq 1 - \gamma_m.
\]

The house of cards process is then the Markov chain \(\{Z_n : n \in \mathbb{N}\} \) on \(\mathbb{N} \) with transition probabilities

\[
P(Z_{n+1} = m + 1 | Z_n = m) = 1 - \gamma_m = 1 - P(Z_{n+1} = 0 | Z_n = m).
\]

The chain \(Z_n \) dominates the process counting the number of matches in the optimal coupling of \(\mu_{\sigma_1,\sigma_i} \) and \(\mu_{\sigma_i,\sigma'} \). The transience of \(Z_n \) is thus sufficient to have a successful coupling. More precisely, we have the following relation between \(\Theta \) and the return probabilities of the house of cards process:

\[
\Theta(k) \leq \sum_{l=k}^{\infty} P(Z_l = 0). \tag{54}
\]

If we have \(\gamma_m \leq m^{-\alpha} \), then the corresponding return probabilities satisfy \(P(Z_m = 0) \leq C m^{-\alpha} \), and if \(\gamma_m \leq e^{-\alpha m} \), then also \(P(Z_m = 0) \leq C e^{-\alpha m} \).

To estimate \(\gamma_m \) in terms of the potential \(U \) of the Gibbs measure \(\mu \in \mathcal{G}(U) \), we proceed as follows. Let \(\sigma, \sigma' \in \Omega \) be such that \(\sigma_{\{-m,\ldots,m\}} = \sigma'_{\{-m,\ldots,m\}} \) then

\[
\log \frac{\mu(\sigma_0 = a | \sigma_{Z\{0\}})}{\mu(\sigma_0 = a | \sigma'_{Z\{0\}})} \leq \sup_a |H^\sigma_{\{0\}}(a) - H^{\sigma'}_{\{0\}}(a)|
\]

\[
\leq \sum_{A \ni 0, \text{diam}(A) \geq m} \|U(A, \cdot)\|_{\infty}
\]

which gives an upper bound for \(\gamma_m \)

\[
\gamma_m \leq \exp \left(\sum_{A \ni 0, \text{diam}(A) \geq m} \|U(A, \cdot)\|_{\infty} \right) - 1. \tag{55}
\]
To satisfy condition (43) it is sufficient, according to (54), to have

$$\sum_{k=1}^{\infty} \left(\sum_{m \geq k} \mathbb{P}(Z_m = 0) \right)^{\frac{1}{q}} < \infty$$

(56)

for some $q > 2$.

Therefore if there exists $\alpha > 3$ such that for all m large enough

$$\sum_{A \ni 0, \text{diam}(A) \geq m} \|U(A, \cdot)\|_{\infty} \leq C m^\alpha$$

(57)

then there exists $q > 2$ such that (56) is satisfied.

As an example, take the long-range Ising model with interaction

$$U\left(\{i, j\}, \sigma\right) = \frac{\beta (2\sigma_i - 1)(2\sigma_j - 1)}{|i - j|^\kappa}$$

for $i \neq j \in \mathbb{Z}$, and $U(A, \sigma) = 0$ for all other finite subsets $A \subset \mathbb{Z}$, and where $\beta \in \mathbb{R}$. It is immediate to check that this interaction satisfies (41) for all $\kappa > 2$ and for all β. Using (55), we can choose

$$\gamma_m = C \sum_{k \geq m} \frac{1}{k^\kappa} \sim C' \frac{1}{m^{\kappa-1}}.$$

Therefore, combining (56), we conclude that (43) holds for all $\kappa > 4$.

Acknowledgments. We thank M. Balázs, J.-D. Deuschel and T. Mountford for inspiring discussions and email exchanges.

References

[1] L. Bertini, B. Zegarlinski, Coercive inequalities for Kawasaki dynamics. The product case. Markov Processes & Related Fields 5, 125–162 (1999).

[2] L. Bertini, B. Zegarlinski, Coercive inequalities for Gibbs measures. J. Funct. Anal. 162, 257–286 (1999).

[3] M. Bramson, T. Mountford, Stationary blocking measures for one-dimensional nonzero mean exclusion processes. Ann. Probab. 30, 1082–1130 (2002).
[4] X. Bressaud, R. Fernández, A. Galves, Decay of correlations for non-Hölderian dynamics. A coupling approach. Electron. J. Probab. 4 No. 3, 19pp. (1999).

[5] N. Cancrini, P. Cesi, C. Roberto, Diffusive long-time behavior of Kawasaki dynamics. Electron. J. Probab. 10, 216–249 (2005).

[6] J.-R. Chazottes, P. Collet, C. Kuelske, and F. Redig, Concentration inequalities for random fields via coupling. Probab. Theory & Related Fields 137, 201–225 (2007).

[7] J.-D. Deuschel, Algebraic L^2 decay of attractive critical processes on the lattice. Ann. Probab. 22, 264–283 (1994).

[8] H.-O. Georgii, Gibbs Measures and Phase Transitions. Walter de Gruyter & Co., Berlin, 1988.

[9] H.-O. Georgii, O. Häggström, C. Maes, The random geometry of equilibrium phases. In “Phase transitions and critical phenomena”, Vol. 18, 1–142, Phase Transit. Crit. Phenom., 18, Academic Press, San Diego, CA, 2001.

[10] K. Golden, S. Goldstein, J.L. Lebowitz, Nash estimates and the asymptotic behavior of diffusions. Ann. Probab. 16, 1127–1146 (1988).

[11] A. Guionnet, B. Zegarlinski, Lectures on logarithmic Sobolev inequalities, preprint (2006).

[12] R. Holley, Rapid convergence to equilibrium in one-dimensional stochastic Ising models. Ann. Probab. 13 (1985), no. 1, 72–89.

[13] C. Külske, Concentration inequalities for functions of Gibbs fields with application to diffraction and random Gibbs measures. Comm. Math. Phys. 239 (2003), no. 1-2, 29–51.

[14] E. Laroche, Hypercontractivité pour des systèmes de spins de portée infinie. [Hypercontractivity for infinite-range spin systems] Probab. Theory & Related Fields 101 (1995), no. 1, 89–132.

[15] M. Ledoux, The concentration of measure phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence, RI, 2001.

[16] T.M. Liggett, Stochastic interacting systems: contact, voter and exclusion processes. Springer-Verlag, Berlin, 1999.
[17] T.M. Liggett, *Interacting particle systems*. Reprint of the 1985 original. Classics in Mathematics. Springer-Verlag, Berlin, 2005.

[18] T.M. Liggett, L_2 rates of convergence for attractive reversible nearest particle systems: the critical case. Ann. Probab. **19**, 935–959 (1991).

[19] C. Maes, S.B. Shlosman, When is an interacting particle system ergodic? Comm. Math. Phys. **151**, 447–466 (1993).

[20] F. Martinelli, *Lectures on Glauber dynamics for discrete spin models*. Lectures on probability theory and statistics (Saint-Flour 1997), 93–191, Lecture Notes in Math. **1717**, Springer, Berlin, 1999.

[21] F. Spitzer, *Principles of random walks*. Second edition. Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg, 1976.

[22] H. Spohn, *Large scale dynamics of interacting particle systems*, Springer-Verlag New York, 1991.

[23] H. Thorisson, *Coupling, stationarity, and regeneration*. Springer-Verlag, New York, 2000.

[24] L. Wu, Poincaré and transportation inequalities for Gibbs measures under the Dobrushin uniqueness condition. Ann. Probab. **34**, 1960–1989 (2006).