Artificial Intelligence-Assisted Energy and Thermal Comfort Control for Sustainable Buildings: An Extended Representation of the Systematic Review

Ghezlane Halhoul Merabet¹, ⁹*, Mohamed Essaaidi¹, Mohamed Ben-Haddou², Basheer Qolomany³, Junaid Qadir⁴, Muhammad Anan⁷, Ala Al-Fuqaha⁵,⁶, Riduan Mohamed Abid⁸ and Driss Benhaddou⁹

¹ Smart Systems Laboratory (SSL), ENSIAS, Mohammed V University of Rabat, 713 Morocco
² MENTIS SA, 13, rue de Congrès, 1000 Brussels, Belgium
³ Department of Cyber Systems, College of Business and Technology, University of Nebraska at Kearney (UNK), Kearney, NE 68849, USA
⁴ Information Technology University, Lahore 54000, Pakistan
⁵ Information and Computing Technology (ICT) Division, College of Science and Engineering (CSE), Hamad Bin Khalifa University, Doha – Qatar
⁶ Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA
⁷ Software Engineering Department, Alfaisal University-Riyadh, Saudi Arabi
⁸ School of Science and Engineering, Alkhawayn University in Ifrane, 1005, Ifrane, Morocco
⁹ Department of Engineering Technology, University of Houston, TX 77204, USA

Abstract – Discussion of the environmental impact of buildings has been gaining weight in the agendas of a number of cities and countries around the world. Indeed, approximately 38% of the final energy consumption growth between 2015 and 2050 in the world is correlated to the use and occupation of buildings. In this regard, the building sector was identified as a leading contributor to global production of CO2 in the fifth report produced by the International Panel of Climate Change (IPCC) [1]. However, the same report also has identified this sector as the one with the greatest potential for reducing CO2 emissions through design opportunities, technological advances, and user behavior.

Nowadays, research has been directed towards more advanced control structures that take multiple inputs (temperature, humidity, comfort sensation, etc.) and uses artificial intelligence (AI) techniques for heating, ventilation, and air-conditioning (HVAC) control, design, management, optimization, and maintenance. This paper performs a systematic review in order to investigate the use of AI-based tools for improving the performance of energy control systems and enhance thermal comfort. This enables a holistic understanding of (1) the challenges of providing thermal comfort to the users inside buildings in an energy efficient way, and (2) the related bibliographic material to help researchers and professionals in the area undertaking such a challenge. Compared to existing reviews, this paper extends the state of the art by reviewing and categorizing all existing publications and providing the material related to the AI-assisted tools for building environment control while considering a dynamic interaction within comfort-subject-energy control loop.

Keywords – Buildings; Occupants; Control; Thermal comfort; Energy savings; Artificial intelligence; Machine learning; Heating Ventilation and Air-Conditioning (HVAC) systems; Systematic literature review
Nomenclature

Acronyms

Acronym	Description
ACMV	Air-Conditioning and Mechanical Ventilation
AI	Artificial Intelligence
AMV	Actual Mean Vote
ANN	Artificial Neural Networks
APM	Advanced Predictive Methods
ARX	Autoregressive exogenous
ASHRAE	American Society of Heating, Refrigerating, and Air-Conditioning Engineers
BN	Bayesian Network
BPSOFMAM	Binary Particle Swarm Optimization Fuzzy Mamdani
BPSOFSUG	Binary Particle Swarm Optimization Fuzzy Sugeno
CA	Context-Awareness
CI	Computational Intelligence
CIBE	Chartered Institution of Building Services Engineers
CTR	Comfort Time Ratio
DAI	Distributed Artificial intelligence
DID	Degree of Individual Dissatisfaction
DNN	Deep Neural Networks
DRL	Deep Reinforcement Learning
DT	Decision Tree
DTR	Discomfort Time Ratio
EACRA	Energy Aware Context Recognition Algorithm
eJAL	Extended Joint Action Learning
EMS	Energy Management System
FCM	Fuzzy Cognitive Maps
FLR	Fuzzy Logic Control
FRB	Fuzzy Rule Base
GA	Genetic Algorithm
GDP	General Data Protection Regulation
GA	General Data Protection Regulation
HMM	Hidden Markov Model
HVAC	Heating, Ventilating, and Air Conditioning
IEA	International Energy Agency
IEQ	Indoor Environmental Quality
IPCC	International Panel of Climate Change
KBS	Knowledge-Based System
KMA	K-Means Algorithm
kNN	k-Nearest Neighbor
LBMPC	Learning-Based Model Predictive Control
MISO	Multi-Input, Single-Output
MOABC	Multi-Objective Artificial Bee Colony
MOPSO	Multi-Objective Particle Swarm Optimization
MOGA	Multi-Objective Genetic Algorithm
MPC	Model-based Predictive Control
NIST	National Institute of Standards and Technology
OSHA	Occupational Safety and Health Administration
PID	Proportional Integral Derivative
PMV	Predicted Mean Vote
PPD	Predicted Percentage of Dissatisfied
PPV	Predicted Personal Vote
RBF	Rule Base Function
RL	Reinforcement Learning
RNN	Recurrent Neural Networks
SCADA	Supervisory Control and Data Acquisition
TPI	Thermal Perception Index
TSV	Thermal Sensation Vote

Symbols

Symbol	Description
Temp_{set}	Set-point temperature
n_i	The number of data points located within the boundary of the comfort zone for flat i over one year
n	The total number of flats in the building
w	A weight factor ∈ [0,1]
μ_r	The mean value of the optimal temperature set-point
σ_r	The thermal comfort standard deviation
t_{room}	The room temperature
Δ_{tv}	The difference between room temperature and desired temperature Δ_{tv} at any time n
H_t	The indoor air temperature at time slot t
H_p	The indoor humidity at time slot t
a, b, c	Constants defined in Kansas State University
p_v	The vapor pressure

1. Introduction

In this study, we systematically investigate how AI can be used to enhance the thermal comfort requirements and energy savings in buildings. Initially, 1077 articles related to AI approaches applied to thermal comfort and energy...
management were collected from databases and search engines including ACM Digital Library\(^1\), Scopus\(^2\), Google Scholar\(^3\), IEEE Xplore On Line (IEOL)\(^4\), Web of Science\(^5\), and Science Direct On Line (SDOL)\(^6\), apart from other sources (manual search). These databases were selected for being repositories of the main scientific publications of impact and relevance for the analyzed area within a period from 1992 to 2020. The review process followed the criteria established by the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, designed to guide systematic review and meta-analysis studies \([1], [2]\). The collected articles were passed through a screening criterion including: (1) studies performed in indoor environments; (2) works presenting innovative AI-based tools and their deployment in HVAC and thermal comfort control; and (3) describing the system performance after applying the AI control tools. A total of 120 results articles have fitted the defined criteria. The selected articles consider experimental and theoretical studies related to thermal comfort and energy consumption control. The reviewed studies were arranged chronologically ascending for presenting a literature review of the developed AI technology for improving the performance of energy savings and thermal comfort in buildings. This allows to establish an added value to the intelligence for building control systems. Moreover, the main consideration was given to the diversity amongst the occupants’ preferences in buildings, methods to measure or capture thermal comfort from the occupants, and indoor control systems (space control devices, load control, building component, occupant interactions). In addition, information including study cases, AI techniques deployed, the sources of data used, the model and/or methods adopted to infer the thermal comfort, application scenario, input(s) and controlled parameter(s) as well as the enhanced performances of thermal comfort and energy savings, are extensively summarized in Table 1.

\(^1\) https://dl.acm.org
\(^2\) https://www.scopus.com/home.uri
\(^3\) https://scholar.google.gr
\(^4\) https://ieeexplore.ieee.org/Xplore/home.jsp
\(^5\) https://mjl.clarivate.com/home
\(^6\) https://www.sciencedirect.com
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
1993	An intelligent operation support system (IOSS) to improve HVAC operations for IAQ control and energy saving for industrial application.	Field survey conducted by the authors (in an office building at the University of Alberta, Canada)	Knowledge-based system (KBS) development to optimize and automate the HVAC process	Optimized setting	PMV (Fanger’s method)	HVAC system structure (conditioning type, zone type, air volume, dehumidifying unit); Weather; Indoor setting; Supply air parameters; Clothing; Activity level	Based on the integrated distributed intelligent framework, the developed system can provide real-time planning, and assisting the interaction between the operator and the HVAC process	[3]
1998	Fuzzy controller development for improving thermal comfort and energy saving of HVAC systems.	Interviews	Fuzzy logic controller development	Fuzzy control to enhance control performance	PMV (Fanger’s model)	Air temperature; Relative humidity; Air velocity; Mean radiant temperature; Occupants’ activity level; Clothing insulation	The proposed system allows the user to compromise solution (comfort requirements /energy saving)	[4]
1999	Multi-objective supervisory control of building climate and energy.	Interviews	Fuzzy-based supervisory controller development	Optimized setting	Pre-defined (standardized) indoor temperature (i.e., between 20ºC and 24ºC)	Outside/inside temperature; Outside/inside relative Humidity; Outside/inside CO₂ concentration; Occupancy; Weighting comfort/economy factor	The proposed system allows the user to compromise solution (comfort requirements /energy saving)	[5]
2001	PMV-based fuzzy logic controller for energy conservation and indoor thermal requirements and of a heating system in a building space.	Weather data collection/Interviews	Fuzzy logic controller development	Fuzzy control for thermal sensation investigation to improve control performance	PMV and PPD calculated from: Internal air temperature; Mean radiant temperature; Relative humidity of the internal air (activity level and clothing considered constant)	While maintaining PMV index at 0 and PPD with a maximum threshold of 5%, the fuzzy controller had better performance with a heating energy of 20% (compared with conventional tuned PID control).	[6]	
2001	Developing fuzzy controller for energy saving and occupants’ thermal-visual comfort and IAQ requirements.	Interviews/Indoor climatic data	Three fuzzy controllers including fuzzy PID, fuzzy PD and adaptive fuzzy PD	Fuzzy control to enhance control performance	PMV index; Users preferences; CO₂ concentration; Illuminance level	Adaptive fuzzy PD showed the best performance for energy consumption which can reach up to 25.30% and the PMV/CO₂ responses, while for visual comfort, the non-adaptive fuzzy PD was sufficient.	[7]	
2002	Controller development for indoor environmental conditions management for users’ satisfaction while minimizing energy consumption inside a building.	Indoor/Outdoor climatic (instrumental) data	GA-based fuzzy controller development	Optimized setting (through GA)	PMV (Fanger’s model)	PMV index; User’s preferences; Indoor/Outdoor temperature; CO₂ concentration; The rate of change of CO₂ concentration; Indoor illuminance; Indoor air velocity; Indoor humidity	Overall energy saving up to 35%, with a steady-state error of 0.5 for PMV, ~80 ppm for CO₂, and ~80 lx for illuminance (after applying GA).	[8]
2003	Developing controller for HVAC system to improve indoor comfort requirements and energy performance in two real sites.	Indoor/Outdoor climatic data	GA-based fuzzy controller development	Optimized setting (through GA)	PMV (Fanger’s model)	PMV index; User’s preferences; Indoor/Outdoor temperature; CO₂ concentration; The rate of change of CO₂ concentration; Indoor illuminance; Indoor air velocity; Indoor humidity	While maintaining a steady-state indoor conditions, the developed controller showed best experimentation results in the real test cells, with up to 30% energy saving for CNRS–ENTPE case and 12.5% for ATC.	[9]
2003	Fuzzy controller for indoor environment management.	Indoor/Outdoor climatic data/questionnaires	Five fuzzy controllers including fuzzy P, fuzzy PID, fuzzy PI, and adaptive fuzzy PD	Fuzzy logic control to improve control performance	PMV (Fanger’s model)	PMV index; Outdoor temperature; CO₂ concentration; Indoor illuminance; The rate of change of CO₂ concentration	By maintaining PMV index between 0 and 0.1, and CO₂ concentration less than 20 ppm; the fuzzy P-controller showed the best performance, with heating and cooling energy saving up to 20.1%	[10]

Table 1. Descriptive analysis of the adherent works for the review using AI-assisted techniques for energy and thermal comfort management in buildings.
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
2003	Fuzzy control for indoor environmental quality, energy and cost efficiencies	Weather data (Kew, UK); Indoor climatic data/Interviews	Fuzzy logic controller development	Fuzzy logic for control decision	Defined ranges/Preferred set-points variables	Zone (indoor) temperature; CO2 concentration; Relative humidity	Fuzzy approach showed its ability to deal with multivariate problems by collaborating expert knowledge for decision making at complex level, with no significant differences with conventional controls in energy and cost efficiencies and IAQ performance.	[11]
2004	Two-objective optimization of HVAC system control with two variable air volume (VAV) systems	Recorded data of a VAV system/Indoor climatic data	GA-based supervisory control	Optimized setting to determine the optimal set-points of control	PMV-PPD (Fanger's model)	Zone temperature set-points; Supply duct static pressure set-point; Supply air temperature set-point	The on-line implementation of GA optimization allowed to save up to 19.5% of energy consumption while minimizing the zone airflow rates and satisfying thermal comfort	[12]
2005	Development of fuzzy rule-based controller using GA for HVAC system	Data collection using a real test-site/Manufactured data/Interviews	Fuzzy logic controller development and optimized via GA	Optimized setting using GA for rule weight derivation/selection performance	PMV (Fanger's model)	PMV index; Difference between supply and room temperatures; CO2 concentration; Outdoor temperature; HVAC system actuators	By considering the rule weights and rule selection, results showed that FLC controller presented improvement by 14% in energy saving and about 16.5% in system stability.	[13]
2005	Controller development to improve energy conservation with a constraint on the individual dissatisfaction of indoor environment	Meteorological year weather files of 3 different cities/Interviews (50 random population)/Indoor climatic data	Fuzzy logic control based on Nearest Neighbors (KNN) approximations	Gradient-based optimization	\(\text{DID}(\text{vote}) = \frac{1 + \text{tanh}(2(\text{vote} - 3))}{2} \)	Neighboring office temperatures; Desired temperatures of each individual	While maintaining the population dissatisfaction under 10%, experimental results showed that the Optimized HIYW presented better performance than OFSA (PPD exceeding 20% for ~15% of population and 50% for ~3%) to minimize the energy consumption	[14]
2005	Decentralized system development for controlling and reonitoring an office building	Field experiments at test-site in a real building (Villa-Wegs): Climatic data/Interviews (GUI via PDA)	Agent-based approach deployment for energy use control and customer satisfaction	Distributed AI	Personal comfort based on individual preferences for each user	Occupant preferences; Room occupancy; Temperature; Light intensity	The MAS approach allowed to save up to 40% of energy, compared to thermostat approach and almost 12% compared to timer-based approach. The reactive approach is slightly more energy consuming than the pro-active, which ensures 100% of thermal satisfaction to the users	[15]
2005	NN-based control development for individual thermal comfort optimization, and energy saving by combining a thermal space model for VAV HVAC application.	N/A (Simulation data)	Direct neural network development for better performance of comfort control	Optimized setting	PMV (Fanger's model)	Activity level; Clo value; Indoor air temperature; Mean radiant temperature; Relative air velocity; Humidity Dimension of thermal space; Cooling/heating load; HVAC capacity; Air flow rate; Mixed air ratio; Outdoor temperature/ Humidity ranges	Compared to the conventional HVAC systems, the proposed controller showed high comfort level (by maintaining the comfort zone between -0.5 and +0.5) while conserving energy. However, there still some limitations in practice.	[16]
2005	Integrated indoor environment energy management system (IEEMS) implementation for buildings application	Experiments conducted in real office buildings: Climatic data/Subjective data using Kiosk smart card	Fuzzy controller development for users’ comfort fulfillment	Fuzzy indoor comfort controller	PMV (Fanger's model)	PMV index; Indoor temperature; CO2 concentration; The rate of CO2 concentration; Indoor illuminance	Up to 38% energy conservation in both buildings without compromising the indoor comfort requirements.	[18]

Table 1. Cont.
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
2005	Dynamic illumination and temperature response control in real time conditions	Test chamber built in a Faculty of Civil Engineering in Slovenia: Climatic data	Fuzzy + proportional-integral-differential (PID) controller development for improving comfort control performance	Fuzzy logic for indoor thermal and visual comfort optimization	Temperature preference set-point (by the user)	Inside/Outside temperature; Solar direct/Reflected radiation; Inside illumination; Current roller blind position	Adjusting automatically roller blind position and window geometry according to external weather enables to get closer to thermal-visual preferences, which contributes to lower energy consumption for lighting, heating and cooling and cost-saving enhancement	[19]
2006	Centralized HVAC with multi-agent structure	Experiments/Climatic data	Multi agent-based structure development for thermal comfort control + optimized setting via ACO	Distributed AI and optimized setting based ACO	PMV (Fanger's model)	Air temperature; Radiant temperature; Relative humidity; Air velocity	The control accuracy goes around 89% to 92.5%, which means that the thermal comfort is predicted by 7.5% to 11% of error rate	[20]
2006	Adaptive fuzzy control strategy for comfort air-conditioning (CAC) system performance	Experiments conducted in an artificial environment chamber in office buildings in China: Climatic data	Indirect adaptive fuzzy model control strategy applied to improve thermal comfort and energy saving	Fuzzy adaptive controller development	PMV (Fanger's model)	PMV index calculation by measuring indoor temperature and assuming the five variables affecting thermal comfort as constant	The adaptive fuzzy controller could save almost 18.9% of energy, compared to PID controller. Results showed that the fuzzy controller has given rise to much more comfortable thermal conditions	[21]
2007	Linear reinforcement learning controller (LRLC) for energy saving while sustaining comfort requirements.	Testing environment: Climatic data/Interviews	Linear reinforcement learning controller development instead of using traditional on/off controller	Machine learning and adaptive user satisfaction simulator	PMV-PPD (Fanger's model)	Indoor/outdoor temperature; Relative humidity; CO2 concentration	Over a period of 4 years, training the LRLC, the energy consumption has been increased from 4.77MWh to 4.85MWh, however the PPD index has been decreased from 13.4% to 12.1%	[22]
2007	Development of an intelligent coordinator of fuzzy controller-agents (FCA) for indoor environmental control conditions using 3-D fuzzy comfort model	Weather data/Simulation data (Climatic/ Subjective data)	PI-like FLC standing of FCA with intelligent coordination	Intelligent control system-based fuzzy logic approach	PMV (Fanger's model)	PMV index; Illuminance level; CO2 concentration	The fuzzy controller-agent (FCA) with the intelligent coordinator (IC) showed significant results by maintaining the controlled variables in acceptable ranges (PMV between -0.5 and +0.6) besides up to 30% of energy savings	[23]
2007	Modelling indoor temperature using autoregressive models for intelligent building application	Surveys and field experiments in 26 air-conditioned and 10 naturally ventilated classrooms (Indoor/Outdoor climatic data)	Determining the adequate structure of autoregressive model with external input (ARX) and autoregressive moving average model with external input (ARMAX) for indoor temperature prediction	Predictive control	Black-box model to predict indoor temperature based on variables: Td, Ta, Vw,	Outside air temperature (Td); Global solar radiation flux (Rs); Wind speed (Vw); Outside air relative humidity (Rh)	While continuously monitoring the energy consumption to enable energy savings. Results showed that ARX model gave better temperature prediction than ARMAX model by the structure ARX(2,3,0) with a coefficient of determination of 0.9457 and the ARX(3,2,1) with a coefficient of determination of 0.9096,	[24]
2007	Fuzzy controller development for improving the indoor environmental conditions while reducing energy requirements for building energy management system	Indoor climatic data/Interviews	Fuzzy control techniques + Man Machine Interface to satisfy the users preferences	Fuzzy control for improving control performance	PMV (Fanger's model)	PMV index; Illuminance level; CO2 concentration; Users preferences	Using a suitable cost function for BEMS allowed to save energy at a level lower than recommended by the literature. Also, the users were satisfied by the adoption of the fuzzy controller	[25]
2008	Intelligent comfort control system (ICCS) design by combining the human learning and minimum energy consumption strategies for HVAC system application	Interviews/Climatic data	DNN-based controller to maintain PMV within the comfort zone for better control performance deep	Optimized setting	PMV (Fanger's model)	Comfort level (PMV index); Air temperature; Relative humidity; Air velocity; Fresh air flow rate; System to fresh air flow rate ratio; Air change	By applying the VAV control, the system could save energy whilst a higher comfort level was satisfied compared with the conventional temperature controller by maintaining the PMV within the comfort zone.	[26]

Table 1. Cont.
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based method/model	Input(s) & Controlled parameter(s)	Key Results	Ref
2009	Developing an inferential sensor based on the adaptive neuro-fuzzy modeling to estimate the average temperature in space heating systems	Experimental data from a laboratory heating in Italy (Climatic data)	ANFIS development to improve the heating systems performance	Fuzzy logic and adaptive neuro fuzzy inference system (ANFIS)	Estimating the average air temperature based on To, QSQL, and Fire	External temperature (To); Solar radiation (QSQL); boiler control signal (Fire)	The average air temperature estimated by ANFIS control model are very close to experimental results, with a highest possible RMSE = 0.5782°C.	[27]
2009	Exploring the impact of optimal control strategies of a multi-zone HVAC system on the energy consumption while maintaining thermal comfort and IAQ of a built environment.	Experiment conducted in an academic building in Lebanon (Climatic data)	GA development for the optimization of HVAC control	Optimized setting and predictive control	PMV (Fanger’s model)	Supply temperature; Fresh air amount; Supply flow rate, PMV index	Up to 30.4% savings in energy costs when compared to conventional base strategy whilst sustaining comfort and indoor air quality	[28]
2009	Predicting fan speed based on ANFIS for energy saving purpose in HVAC system	Experimental study (Simulation data/Climatic data)	PID + ANFIS model to predict fan motor speed in HVAC system	Predictive control	Desired temperature by controlling the damper	Ambient temperature; Fan motor speed; Damper gap rates	Simulation results showed that the ANFIS model is more effective and can be used as an alternative for HVAC control system. Statistically, RMS and R-squared were used for model validation in different zones (Zone-1: RMS = 15.6750 and R² = 0.9402; Zone-2: RMS = 17.7019 and R² = 0.9410; Evaporator: RMS = 3.3473 and R² = 0.9954).	[29]
2009	Estimating occupant mental performance and energy consumption of determining acceptable thermal conditions under different scenarios	Observations recorded from field studies (in 2 real buildings in Singapore and Sydney)/Data-base RP-884 [30]	Bayesian Network (BN) model was used to infer the probability of the occupants’ thermal satisfaction	Predictive control	PMV (Fanger’s model) and the adaptive comfort model	Building configuration; Operative temperature; Clothing insulation; Outdoor temperature	Two building configurations (with/without mechanical cooling) were used for simulation under different climate regions (tropical/ subtropical). Results concluded that determining acceptable thermal conditions with the adaptive model of comfort can result in significant energy saving with no large consequences for the mental performance of occupants.	[31]
2010	Energy consumption optimization and thermal comfort management using data mining approach in built environment	Climatic data collected from a test bed installed in an academic building (ERI) in Ireland	Decision tree classifier (C4.5 algorithm) model was used to predict thermal comfort under different environmental conditions	Predictive control and optimized setting	Comfort levels based on CIBSE standard: comfort temperature in offices is between 21ºC and 23ºC	CO₂ level; Humidity; Outside air humidity; Outside wind speed; Under floor input flow temperature; Under floor output flow temperature	Based on decision tree analysis and results relying ambient environmental conditions with user comfort, designers and facility managers can determine the optimal energy use.	[32]
2010	Multi-objective optimization methodology used to optimize thermal comfort and energy consumption in a residential building	Data collected from numerical experiments conducted, using 100 population, in residential buildings in Canada	- ANN used in simulation to characterize the building behavior - ANN and NSGA-II were combined for optimization and fast evaluations	Optimized setting	PMV (Fanger’s model)	HVAC-related variables (Heating/cooling temperature; Relative humidity; Supply air flowrates; Thermostat delays) and Building-related variables (Thermal mass; Window sizes)	Optimization results showed considerable improvement in thermal comfort (average PMV<4%), and reduction in energy consumption (relative error< 1%) for the total energy consumption. Simulation time was reduced compared to the classical optimization methods.	[33]

Table 1. Cont.
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
2011	Intelligent control system development to optimize comfort and energy savings using soft computing techniques for building applications	Simulation data (TRNSYS 16 and MATLAB software)	PI-Like fuzzy logic controller optimization with GA	Optimized setting	PMV (Fanger's model)	PMV index; Illumination level; CO₂ concentration	While maintaining the PPD index within acceptable limits, i.e., below 10%, the proposed system has successfully managed the user's preferences for comfort requirements and energy consumption.	[34]
2011	Controller development for a heating and cooling energy system	Simulation data	GA-based fuzzy PID (GA-FPID) controller development	Predictive control	Fixed set-point temperature for the thermal zone (24°C)	Temperature	The proposed methodologies allowed to achieve higher energy efficiency and comfort requirements by lowering equipment initial and operating costs up to 35%, and comfort costs up to 45%.	[35]
2011	Multi-agent simulation for building system energy and occupants' comfort optimization	Simulation data collected from a test bed in a commercial facility building (including students, faculty and staff occupants) in Los Angeles, CA.	Multi-agent comfort and energy simulation (MACES) implementation + Proactive-MDP optimization for building and occupants' control and management	Distributed AI	PMV (Fanger's model)	PMV index; Building location; Outdoor temperature; Real-time occupancy; Time of day; Glazing areas	17% energy savings while maintaining high comfort level, approximately 85% occupants’ satisfaction.	[36]
2011	AI-based thermal control of a typical residential building in USA	Simulation data based on the American Housing Survey for 2 residential buildings in USA [37]	ANFIS development and control performance comparison with ANN	Fuzzy logic and adaptive neuro fuzzy inference system (ANFIS)	Defined comfort bands (20–25°C for winter and 23–26°C for summer) from temperature set-points (21.5°C winter and 24.5°C summer)	Dry-bulb/Wet-bulb temperature of the air stream entering the condenser; Mass flow rates of air/water/refrigerant/pressure/temperature of the refrigerant	ANFIS-based control method could save 0.3% more energy than the ANN in the winter/summer periods. ANFIS could save 0.7% more energy. Both methods satisfied thermal comfort periods (~98% in the winter and 100% in the summer), with reduced standard deviations of air temperature from the set-point for both seasons (under 0.2°C).	[38]
2011	Fuzzy adaptive comfort temperature (FACT) model development for intelligent control of smart building.	Interviews/Daily average temperature data collected from [39], of an area around Toledo in USA	FACT + Grey prediction for multi-agent control system + optimized setting through PSO	Adaptive comfort model	Customer’s preference; Outdoor environmental information (average daily temperature); Online energy production information	Using the FACT model with grey predictor in agent-based control system of a smart building, provided reasonable comfort temperature with less energy consumption to the customers.	The implementation of PSO optimizer allowed to maintain a high-level of overall comfort, i.e., mainly around 1.0, when the total energy supply was in shortage.	[40]
2011	Developing a MAS combined with an intelligent optimizer for intelligent building control	Indoor climatic data/Interviews	Coupling MAS and PSO to improve the intelligence of a multi-zone building	Optimized setting	Temperature set-point control	Occupant’s preference; Temperature; Illumination level; CO₂ concentration		[41]
2012	Improving the energy efficiency in an AC by reducing transient and steady-state electricity consumption on BRITE (Berkeley Retrofitted and Inexpensive HVAC Testbed for Energy Efficiency) platform.	Experimental data measurements using BRITE testbed	Learning-based model-predictive control (MPC) development for maintaining comfort temperature	Learning-based model predictive control	Comfort specifications based on OSHA guidelines (20°C – 24.2°C)	Occupancy; Temperature	30%-70% reduction in energy consumption while maintaining comfortable room temperature by keeping temperature close to the specified comfort middle (22°C)	[42]
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
------	------------	---------------------	-----------------------------	---------------------	-----------------------------------	----------------------------------	-------------	-----
2012	Model-based predictive control development for thermal comfort improvement with auction of available energy of a limited shared energy resource in three houses	Simulation data	Distributed model predictive control (DMPC) to obtain comfortable indoor temperature by considering the available energy limitations	Distributed model predictive control	Defined comfort temperature bounds (i.e., comfort zones)	Indoor temperature; Occupancy; Building thermal characteristics; Load disturbances profile	The developed system is flexible, in a way allowing the customer to shift between comfort and lower cost. By knowing disturbances profile, agents can make their bid to get significant savings.	[43]
2012	A discrete model-based predictive control for thermal comfort and energy conservation in a building of the University of Algarve	Weather data collection / Experiment data measurements conducted in an office building	Radial basis function (RBF) ANN development to estimate comfort level (PMV) + MOGA used with MBPC for models’ selection	Discrete models-based predictive control	PMV (Fanger’s model)	Outdoor air temperature; Outdoor air humidity; Global solar radiation; Indoor air temperature; Indoor air humidity; Globe temperature; Windows/Doors state; Activity	Up to 50% energy savings are achieved by using the MBPC, which provided good coverage of the thermal sensation scale, when used with radial basis function NN models.	[44]
2012	Coordinating occupants’ behaviors for thermal comfort improvement and energy conservation of an HVAC system	Actual building and occupants’ data measurements from a real-world tested implemented in a university building in LA, USA	Distributed AI development to achieve multi-agent thermal comfort and building energy control	Distributed AI	PMV (Fanger’s model)	Real-world feedback data; Building/occupant data; Occupant suggestions	Reducing 12% of energy consumption while maintaining 70%-75% occupant satisfaction for both proactive and proactive-MDP (showed by the distributed evaluation)	[45]
2012	Distributed AI control with information fusion-based Indoor energy and comfort management for smart building application	Simulation data	Multi-agent control system with heuristic optimization (PSO) development to enhance the comfort level and reduce energy consumption	Distributed AI	Setting comfort range as: $T_{\text{new, Total}} = [19.4^\circ\text{C}, 24.4^\circ\text{C}]$	Customer’s preference; Illumination level; CO2 concentration; Air temperature	All case studies showed the effectiveness of the system of the developed system in different operating scenarios	[46]
2013	Model-based predictive control development for optimal personalized comfort and energy consumption management in an office workplace	Occupancy and temperature data collection using SPOT+ system within a workspace environment	k-nearest neighbor (KNN) algorithm was used for occupancy prediction + LBMPC-based model for temperature prediction	Predictive control and optimized setting	PPV function defined as an affine transform of PMV: $ppv = f_{ppv}(pmv)$	Indoor temperature; Occupancy	While maintaining personal comfort (PPV) in a range of $[-0.5, +0.5]$, about 60% energy savings when compared with fixed temperature set-point, and discomfort reduction from 0.36 to 0.02 compared to baseline methods.	[47]
2013	Fuzzy method-based data-driven to model and optimize thermal conditions of smart buildings applications.	Thermal comfort survey (online questionnaire)	Type-2 fuzzy sets based for modeling thermal comfort words and energy consumption	Fuzzy control and optimized setting	Comfort temperature ranges defined by the users	Air temperature	The type-2 fuzzy model performs better, with $RMSE = 12.55$ compared to the linear regression model where the $RMSE = 17.64$. Also, the multi-objective optimization could recommend reasonable temperature interval giving comfortable sensations while reducing energy consumption.	[48]
2013	Intelligent control system deployment for energy and comfort management in commercial buildings	Simulation data	MAS development for energy and comfort management + fuzzy logic control (FLC) with optimized setting	Distributed AI and fuzzy logic control (FLC) with optimized setting	Comfort temperatures according to set values by the users (preferences)	Customer’s preference; Illumination level; Indoor temperature	Up to 0.9 is achieved by comfort factors, i.e., the customers satisfaction is ensured. The GA-based optimization allowed to minimize the energy consumption	[49]
2013	Identifying building behaviors related to energy efficiency and comfort for an office building in the Pacific Northwest	Data measurement using sensors throughout a test building.	Implementing a fuzzy knowledge-base for building behavior extraction.	Fuzzy rule base and optimized setting	Comfort levels based on average zone temperature	Time; Outside air temperature; Chiller temperature; Mixed air temperature; Return air temperature; Damper position; Exhaust fan load/current; supply fan load/current; Zone temperature	The developed framework was able to identify and extract complex building behavior, which improve the building energy management systems (BEMSs) by eliminating the low efficiency and low comfort behavior	[50]
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
------	------------	---------------------	-----------------------------	---------------------	-----------------------------------	-----------------------------------	-------------	-----
2013	Intelligent management system development for energy efficient and comfort in building environments	Distributed sensors to collect: Environmental data, Occupancy data and Energy data	User-centered control based on behavior prediction	Distributed AI	Individual thermal comfort based on the indoor temperature	Indoor/Outdoor temperature; Illumination level; CO₂ concentration; Users' preferences	Indoor thermal comfort is considered to be highly satisfactory to users while maintaining a comfort level around 0.61 (PMV). Case studies simulation results showed that the developed MAS could manage comfort needs and reduce energy consumption simultaneously	[51]
2014	Dynamic and automatic fuzzy controller for indoor for indoor thermal comfort requirements	Recorded data using a real testbed scenario	ANN with NNARX-type forecasting to feed a fuzzy logic controller	Predictive control	Building comfort scale (temperatures ranges) based on personal comfort preferences	Dry bulb outdoor/indoor air temperature; Relative humidity; Wind speed	The proposed control system allowed to achieve efficient use of energy and bring the room temperature to the maximum value of personal comfort.	[52]
2014	Predicting an integrated building heating and cooling control based on weather forecasting and occupancy behavior detection in the Solar House test-bed in real-time located in Pittsburgh	Manufacture datasets/Data (weather and occupancy) measurements through a real-time experiment	GMM + HMM were used for occupancy behavior model development; HM + AGP were implemented for weather forecasting; and a Nonlinear model predictive control (NMPC) was designed for heating/cooling system	Predictive control and optimized setting	Learning personal comfort temperature set-points for cooling/heating seasons based on the weather and occupancy information	Indoor temperatures; Indoor relative humidity; CO₂ concentration; Lighting; Motion; Acoustics; Power consumption for electrical plugs/HVAC/ lighting systems	30.1% of energy reduction in the heating season, besides 17.8% in the cooling season when comparing to the conventional scheduled temperature set-points. Also, the use of NMPC allowed reducing time not met comfort (from 4.8% to 1.2% in heating season, and from 2.5% to 1.2% for cooling season).	[53]
2014	Reinforcement learning for tenant comfort and energy use optimization in HVAC systems	Simulation data	RL (Q-learning)-based supervisory control approach	Optimized setting	Occupant's comfort is achieved by learning from the tenant preferences and occupancy patterns	Time; Tenant thermal preferences; Temperature; HVAC state; Occupancy patterns	Learning to adjust/schedule, appropriately, thermostat temperature set-points for energy efficiency while keeping the tenant comfortable	[54]
2014	Improving HVAC systems operations by coupling personalized thermal comfort and zone level energy consumption for selecting energy-aware and comfort-driven set-points	Questionnaire (subjective comfort data)/Experiment data collection	Knowledge-based approach to optimize the air flow rates performance for HVAC system	Optimized setting	Personalized comfort profiles based on the participatory sensing approach by adopting TPI scale showing thermal votes ranging from -5 to +5	Personal comfort data (Thermal preferences index); Room temperature profile (set-point, outside temperature, occupancy); Energy data (airflow profile)	About 12.08% (57.6m³/h) average daily air-flow rates were reduced in three target zones, compared to operational strategy that focus on comfort only.	[55]
2014	Improving the fuzzy controller's performance for comfort energy saving in HVAC system	Simulations (BPS tool EnergyPlus, SketchUp, MATLAB and BCVTB) using: Weather data (Toronto, Canada)/Real building model data (Hotel located in Toronto, Canada)	GA-based tuning for FLC optimization	Fuzzy control and optimized setting	Individual comfort classes: ISO 7730 based on PMV/PPD (Fanger's model)	Environmental parameters: Ambient air temperature; Mean radiant temperature; Relative humidity; Relative air velocity; Clothing insulation; Metabolic rate. Building parameters: Exterior walls; Exterior windows; Exterior door; Exterior floor; Exterior roof and Interior ceiling; Interior doors	While maintaining the GAPc operations with PMV limits of	[56]
2014	Radiator-based heating system optimization to maintain indoor thermal comfort and minimize the energy consumption for residential building	Simulations (MATLAB) using a real building model data/Indoor climatic and occupancy data measurements/Weather data	Three optimization algorithms were tested: GA, PSO and SQP to be combined with random neural network (RNN) control model to calculate the optimal control input	Predictive control and optimized setting	PMV-based set-point, defined by the Institute for Environmental Research at KSU under ASHRAE contract	Current room air temperature; Outside temperature; Number of occupants; Flowrate of inlet water for radiator	The proposed model accuracy is of MSEP=38.87% for PSO less than GA/ MSEP=21.19% for PSO less than SQP. RNN with GA allowed to maintain comfortable comfort conditions with the minimum energy consumption (400.6 MWH), compared to MPC model.	[57]
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
------	------------	---------------------	-----------------------------	----------------------	-----------------------------------	-----------------------------------	-------------	-----
2014	Deploying and evaluating a user-led thermal comfort driven HVAC control framework in office building on University of Southern California	Field study data collection: Questionnaire (subjective comfort data)/Outdoor and Indoor environmental data.	Fuzzy predictive model used to learn the user's comfort profiles.	Predictive control	Personalized comfort profiles based on TPI scale	User's preference vote; Temperature; Humidity; CO₂ concentration; Light intensity	The developed framework showed promising results for energy saving and comfort improvement. 39% reduction in daily average airflow rates (when HVAC conditions at user's desired temperature).	[58]
2014	A human and building interaction toolkit (HABIT) development for building performance simulation	Field data on comfort and behavior from a real air-conditioned office building in Philadelphia.	Coupling Agent-based model (ABM) and adaptive behaviors for energy use and thermal comfort management	Distributed AI	Sensation and acceptability ranges modeled via individual distributions, based on PMV index (Fanger's model)	Occupants behaviors profiles (Clothing adjust, Fan On, Heater On, Thermostat Up/Down, Window open); Indoor operative temperature	Up to 32% reduction of total energy use in all zones in summer without significant increase in winter are expected if building managers embrace the use of lower energy local heating/cooling options, while a promising decrease in thermal discomfort in all zones in both seasons.	[59]
2014	NN-based approach with a MAS infrastructure to improve energy efficiency, while maintaining acceptable thermal comfort level for occupants of a UCLan’s building	Recorded temperature and sensor metering data collected from an actual building/Interviews	Combining a gaussian adaptive resonance theory map (gARTMAP) with MAS for building; HMS	Distributed AI	Learning the user's thermal preferences	Current date and time; Outdoor temperature; Room temperature; Temperature of the heating element of the radiator; Hot/Water temperature; Desired room temperature (Human input)	Simulation results showed that the proposed gARTMAP-MAS HMS might use less heat to achieve the desired indoor temperature, compared to the existing rule-base HMS and fuzzy ARTMAP HMS	[60]
2014	Control logic for thermally comfortable and energy-efficient environments in buildings with double skin envelopes	Weather data/Building model data/Indoor thermal conditions data	Rule-based control logic and ANN-based control logic development for openings and cooling systems in summer	Predictive and adaptive control	Comfort range built from the cavity and indoor temperature conditions	Cavity air temperature; Indoor/Outdoor air temperature; Opening conditions of the envelope	ANN-based logic showed significant results in reducing over/undershoots out of the comfort range. Also, using simplest rule-base control logic allowed to save cooling energy.	[61]
2014	Stochastic optimized controller development to improve the energy consumption and indoor environmental comfort in smart buildings	Simulations data: occupants' data/Outdoor information	Multi-agent control system combined with GA development to find the optimal set-points	Distributed AI and optimized setting	Temperature set-point defined by user's preferences (via user interface)	Customer preferences; Temperature; Illumination level; CO₂ concentration	By defining comfort ranges as constraints, the overall occupant comfort with GA has embedded was kept between 0.97 and 0.99, and the error between set-points and the sensor data became smaller with GA. A significant reduction in the overall energy consumption (~20% compared to system without GA)	[62]
2015	Developing and testing an NN-based smart controller for maintaining a comfortable environment, and thus saving energy using a single zone test chamber	Indoor climatic data collected from a test chamber conducted in a university campus located in Glasgow	Random NN-based controller development and trained using the hybrid PSO with sequential quadratic programming	Predictive control and optimized setting	User recommendations /PMV-based set-points (Fanger's model)	Occupant preferences; Room air temperature; Air inlet temperature; CO₂ concentrations in HVAC dust/room; Actuation signal of inlet air	The proposed controller has learned the human preferences with an accuracy of 94.87% for heating, 98.39% for cooling and 99.27% for ventilation. The occupancy estimation using RNN is about 83.08%.	[63]
2015	Predictive-based controller development for multizone HVAC systems management in non-residential buildings	Climatic and occupancy data measurement of a non-residential building located in Perpignan in France	Low-order ANN-based models’ development (as controller's internal models) to supervise the HVAC subsystems and tuned through GA to solve the optimization problems	Predictive control and optimized setting	PMV (Fanger's model)	Temperature; Radiant temperature; Room occupancy;	The proposed strategy allowed to optimize the operation times of HVAC subsystems by computing the right time of turning on/off, while reducing energy consumption and improving significantly thermal comfort for cooling/heating modes and year period, compared to the basic scheduling approaches.	[64]
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
------	--	---	--	--	---	--	------	
2015	Al-theory-based optimal control for improving the indoor temperature conditions and heating energy efficiency of the building with double-skin	Weather data from TMY2 of Seoul, South Korea/Computer simulation datasets using MATLAB and TRNSYS/Building test-model data	AI-theory-based optimal control algorithms development including ANN, FL, ANFIS with 2 input, and ANFIS with one input, for improving the indoor temperature conditions and heating efficiency	Five control algorithms including: Rule + ANN; ANN + ANN; Fuzzy + ANN; ANFIS with 2 inputs + ANN; ANFIS with 1 input + ANN	Defined comfort temperature range	Indoor air temperature; Cavity air temperature (of the double skin); Outdoor air temperature; Surface opening status	Compared to the rule-based algorithm, FL, ANFIS-2 inputs and ANFIS-1 input models increased significantly the comfortable condition period by 2.92%, 2.61% and 2.73% resp. When heating energy efficiency was the main interest, then the ANN-based algorithm is applicable by reducing the SD from the average and 0.5 to 80.34 and 56.00% resp.	[65]
2015	Hybrid predictive control model development for energy and cost savings in a commercial building (Adelaide airport)	Data collected from a building management system-Johnson Controls Australia Pty Ltd/ Meteorological data obtained from the Bureau of Meteorology of Australia	Combining a linear MPC with a neural network feedback linearization (NNFL) for energy and cost savings	Model-based predictive control	Comfort range defined by ASHRAE 55: Indoor temperature ∈ [21.5°C, 24°C] during occupancy hours	Supply air temperature; Chilled water temperature;	By maintaining the indoor temperature within the defined comfort range [21.5°C – 24°C] during occupancy period (from 5:00 am to 9:30 pm), simulation results showed that about 13% of energy cost saving was achieved and up to 41% of energy saving, compared to the baseline control.	[66]
2015	Agent-based particle swarm optimization development for inter-operation of Smart Grid-BEMS framework	Data measurements from: a feeder of a Dutch low voltage network with 74 customers, a connection point of a 3-floor office building, Weather data of a winter day in the Netherlands, Occupancy profiles	Agent-based control scheme + PSO for maximizing comfort and energy efficiency	Distributed AI and optimized setting	Comfort was modeled as a temperature Gaussian function	Occupancy information; Indoor temperature; Indoor relative humidity; CO₂ concentration; Measured weather data	The proposed system could effectively improve the voltage profile of the feeder, while ensuring acceptable comfort levels.	[67]
2015	Fuzzy logic-based advanced on-off control for maintaining thermal comfort in residential buildings	Temperature data measurements (using sensors)/ Weather data of the Republic of Korea	On-off controller combined with fuzzy algorithm for thermal comfort	Fuzzy logic-based control	Desired room temperature was set to 20°C	Room air temperature Building parameters: Indoor air heat capacity; Floor heat capacity; Ceiling heat capacity; Wall heat capacity; Window heat capacity; Door heat capacity; Equivalent diameter; Boltzmann constant; Wall height; Floor dimension; Wall/Window/Door dimensions;	Compared to the conventional on-off controller, the proposed system had better control performance and saved energy.	[68]
2015	Automatic air-conditioning control development for indoor thermal comfort based on PMV and energy saving	Experiment data: Indoor climatic (environmental sensors) and personal data/Questionnaires	ANFIS + particle swarm algorithm (PSA) used to solve the inverse PMV model and determining comfort temperatures	ANFIS + particle swarm algorithm (PSA) used to solve the inverse PMV model and determining comfort temperatures	Inverse-PMV model based on the desired PMV and measured air-velocity and humidity	Indoor air temperature; Relative humidity; Air velocity	The proposed control method performed better than conventional method by effectively maintaining the PMV within a range 20.5 and up to 30% of energy saving.	[69]
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
------	---	--	---	--	-----------------------------------	---	--	-----
2015	Implementing and evaluating a multi-grid reinforcement learning method for energy conservation and comfort control of HVAC systems in buildings	Office building profile SmOHP Sz provided by EnergyPlus/Weather data of Summer daytime period of Beijing by EnergyPlus	A multi-grid method for Q-learning development for HVAC control optimization	Optimized setting	PPD-PMV (Fanger's model)	Outdoor temperature; Indoor temperature; Indoor humidity	Simulation results showed that the proposed multi-grid approach helped to accelerate the convergence of Q-learning, and performed better on energy saving and comfort than the constant grid versions.	[70]
2015	Multi-agent control architecture for cooling and heating processes in smart residential building	Weather data from SEA; Environmental data from physical sensors; Occupancy data at home and at work; Human behavior data: interviewing 5 volunteers to record their activities using smart phone logger at home & RFID system at work	Multi-agent control system (MACS) combined with ML algorithms for occupancy prediction	Machine learning and distributed AI	Desired temperature based on occupant’s behavior	Outdoor temperature; Indoor temperature; Occupancy at home; Occupancy at work; Heater power rate	The proposed system allowed to significantly improve the occupants comfort with a slight increase in energy consumption, with respect to ‘sense behavior’, compared to simple strategies with predefined temperatures	[71]
2016	Simulation-based MPC procedure for multi-objective optimization of HVAC system performance and thermal comfort, applied to a multi-zone residential building in Naples, Italy.	Climatic conditions data taken from IWEC data file for Naples/Occupancy profiles provided by IWEC [72]	MIP + GA optimization for the best solutions for HVAC system control in a day-ahead horizon	Prediction control and optimized setting	PPD^MAX; the maximum hourly value of PPD (Fanger's model)	Weather conditions; Occupancy profiles	Up to 56% operating cost reduction and improvement in thermal comfort, compared to the standard control strategy.	[73]
2016	Simulation-based multi-objective optimization for building energy efficiency and indoor thermal comfort	Wall and glass specifications data were based on EnergyPlus (ASHRAE materials) databases/Average solar absorptance data obtained from [74]; Weather data from the national center of the climatology of Iran	Implementing a multi-objective artificial bee colony (MOABC) optimizer to minimize the total energy consumption and the predicted percentage of dissatisfied	Optimized setting	PPD (Fanger's model)	Continuous variables: Room rotation; Window size; Cooling/heating setpoint temperatures; Glazing material features; Wall conductivity	The multi-objective optimization coupled with TOPSIS decision making method showed that in different climates, even though the energy consumption increased a bit by 2.9-11.3%, the PPD significantly reduced by 49.1-56.8%, compared to the baseline model.	[75]
2016	An operation collaborative optimization framework development for a building cluster with multiple buildings and distributed energy systems while maintaining indoor thermal comfort	Three DOE reference small office (post-1980)/medium office (post-1980)/real small size commercial buildings were used [76]	Multi-objective optimization through PSO was used to determine the framework operation strategies	Optimized setting	PMV (Fanger's model)	Temperature; Battery charging/discharging currents; Ice tank	Around 12.1–58.3% of energy cost saving under different electricity pricing plans and thermal comfort requirements.	[77]
2016	ANN-based algorithms development for optimal application of the setback moment during the heating season	Datasets were collected in the test module located in Seoul, South Korea /Meteorological TMY2 data were used for test location	ANN model was developed to predict the optimal start moment of the setback temperature during the normal occupied period in a building	Predictive control and optimized setting	Defined set point temperature (20–23°C) based on indoor and outdoor temperatures for occupied periods	Indoor temperature; Outdoor temperature; Temperature difference from the setback temperature	The optimized ANN model showed a promising prediction accuracy by R-squared up to 99.99%. The developed ANN-based algorithms were much better in thermal comfort improvement (97.73% by Algorithm (1)) or energy saving (14.04% by Algorithm (2)), compared to the conventional algorithm.	[78]

Table 1. Cont.
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/ method	Input(s) & Controlled parameter(s)	Key Results
2016	ANN-based control algorithm development for improving thermal comfort and building energy efficiency of accommodation buildings during the cooling season	Climatic conditions data collected during cooling season/ Datasets collected from the simulation model (using MATLAB and TRNSYS)	Two ANN-based algorithms: 1st model for predicting the cooling energy consumption during the setback period and 2nd model for predicting the optimal starting moment of thermal control during setback periods	Predictive and adaptive controls	Fixed set-point temperature during occupied periods (23°C with 3°C dead-band) and setback temperature (25°C) for unoccupied hours	Indoor air temperatures; Outdoor air temperature	Simulation results showed that ANN models gave accurate prediction results with acceptable error (for thermal comfort and energy saving improvement): 1st model: Average difference = 17.07%/MBE = 17.66%, 2nd model: Average difference = 20.87%/MBE = 21.90%
2016	Multi-objective control and management for smart energy buildings	Interviews/Indoor and Outdoor climatic data collected using physical sensors (during the experiments)	Hybrid multi-objective genetic algorithm (HMOGA) development for optimizing the energy management	Optimized setting	Discomfort parameter based on the user preferences, defined as: Discomfort = (Temp - Tempmin)²	Temperature; Illumination level; CO₂ concentration	31.6% energy saving could be achieved for smart control building, and the thermal comfort index was improved by 71.8%, compared to the conventional optimization methods.
2016	Real-time information-based energy management controller development for smart homes applications	Data collection using physical sensors (human occupancy)/ Simulation data	GA was used for solving the complex energy optimization and appliance scheduling problem	Optimized setting	User preferences; External parameters (price signal, user presence, temperature)		The proposed algorithms are flexible enough to maintain the user’s comfort while reducing the peak to average ratio (PAR) and electricity cost up to 22.77% and 22.63% resp.
2016	Deploying an intelligent MBPC solution for HVAC systems in a University building	Data collection (6768 samples): Atmospheric data collected by an intelligent weather station / Room data collected by SPWS devices/HVAC data using BMS interface software	A MOGA framework was used to design the predictive model radial basis function (RBF) neural networks (NN)	Predictive control	PMV (Fanger’s model)	Room air relative humidity; Room air temperature; Air conditioning reference temperature; Atmospheric air relative humidity; Solar radiation	The BMPC HVAC showed significant results in reducing energy cost and maintaining thermal comfort level during the whole occupation period, compared to scheduled standard, temperature-regulation control.
2016	A personalized energy management system (PEMS) development for HVAC systems in residential buildings	Experiments Data collected from a laboratory building during 3 months (8:30 AM to 10:00 PM) (using sensors)/ Weather forecast were obtained from the internet	Hidden Markov model (HMM) used for modelling occupancy + ANFIS for modeling the occupant behavior	Predictive control	comfort margins specified by the user using a thermostat (i.e., personalized comfort bands)	Ambient temperature; Room temperature; Occupancy	By maintaining temperature within the comfort band, about 9.7% to 25% reduction in energy consumption as well as the cost, from 8.2% to 18.2%.
2017	Proposing an AI-based heating and cooling energy supply model, responding to abnormal/abrupt indoor situations, to enhance thermal comfort and energy consumption reduction	Climatic, geometries and human data for each building were adopted from references [85], [86]	A decision making based-ANN model was developed to maintain desired room temperature and optimize cooling and heating air supply	Optimized setting	PMV-PPD (Fanger’s model)	Relative humidity; Heat loss; Room temperature Human factors/indoor conditions: Metabolic rate; Clothing insulation; Cooling/Heating temperatures	Thermal comfort improvement by 2.5% for an office building, and around 10.2% for residential buildings, as annual energy consumption reduction by 17.4% for an office building and 25.7% for residential buildings.
2017	AI-based controller development for improving thermal comfort and reducing peak energy demands in a district heating system	Temperature information of the past 62 years in Seoul, South Korea/Other climatic, geometries and users’ data were adopted from references [85], [86]	ANN-based thermal comfort optimizer (Opt. ANN) development	Optimized setting and predictive control	PMV-PPD (Fanger’s model)	Relative humidity; External work rate; Air velocity; Clothing insulation; Metabolic rate; Temperature; Floor area; Building height; Wall/ Window depth	The proposed model’s effectiveness was up to 27% for thermal comfort, and a reduction of annual energy loss over 30% for cooling and 40% for heating, compared to a conventional thermostat on/off controller.

Table 1. Cont.
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/ method	Input(s) & Controlled parameter(s)	Key Results	Ref
2017	A personalized thermal comfort model (BCM) development for smart HVAC systems control	The ASHRAE RP-884 dataset [89]/ Experimental data collected by the authors at the University of Southampton in UK (interviews, sensors measurements)/Thermal properties of chosen houses and HVAC systems are based on data presented by [90].	Bayesian network-based model development for learning individual users' preferences	Predictive control and optimized setting	BCM by combining the static and adaptive models to quantify: the user's optimal comfort temperature (\(T_{opt}\)); the user's vote (\(T_{vote}\)); and the user's thermal sensitivity (\(P_T\)).	Indoor climate conditions; User votes; Outdoor weather conditions; Number of occupants during summer/ winter; Observation count for each occupant;	By using an alternative comfort scale, the proposed model outperformed the existing approaches by 13.2%–25.8%. The heating algorithm allowed to reduce energy consumption by 6.4% to 10.5% for heating, and by 15.1% to 39.4% for air-conditioning, while reducing discomfort by 24.8%.	[91]
2017	A low-cost, high-quality decision-making mechanism (DMM) targeting smart thermostats in a smart building environment located in Chania, Greece	Building specifications based on real buildings located in Greece/ Weather conditions data and Energy pricing data for 2010 [92].	ANN + Fuzzy Inference System (FIS) combination to determine temperature set-points/thermal zone and their dynamic refinement	ANP + Fuzzy logic (FIS)	PPD (Fanger’s model)	Thermal zones’ temperature; Humidity; Number of occupants per room; Current external weather conditions (Temperature; Humidity; Solar radiation)	Comparing to RBCs, the proposed framework allowed to reach a higher thermal comfort while reducing energy consumption by an average between 18%–40%. The use of FL and considering the dynamic behavior of the world allowed to improve the total cost by 7%–19% on average.	[93]
2017	Designing and implementing a smart controller by integrating the internet of things (IoT) with cloud computing for HVAC within an environment chamber.	Occupancy and Indoor climatic data were measured using sensor nodes (by the authors).	Random neural network (RNN) model development for occupancy estimation, and optimized with the hybrid PSO-SQP	Occupancy estimation-based control and optimized setting	PMV (Fanger’s model)	HVAC inlet air temperature; HVAC inlet air CO\(_2\) concentrations; Inlet air temperature of the environment chamber; CO\(_2\) concentration of the environment chamber	By maintaining the PMV set-points, results showed that the hybrid RNN-based occupancy estimation algorithm was accurate by 88%. About 27.12% reduction in energy consumption with the smart controller, compared to the simple rule-based controller.	[94]
2017	RNN-based smart controller development for HVAC by integrating IoT with cloud computing and web services	Occupancy and Indoor climatic data were measured using sensor nodes (by the authors).	RNN models were trained with PSO-SQP for estimating the occupancy and PMV set-points for HVAC control	Optimized setting and occupancy estimation	PMV (Fanger’s model)	Room temperature; Inlet air temperature; Inlet CO\(_2\) concentration; Inlet air actuation signal (valve opening)	By evaluating the intelligent controller architectures, the energy consumption was 4.4% less than Case-1 and 19.23% less than Case-2. The RNN HVAC controller was successfully able to maintain the user defined set-points and accurate temperature for PMV set-points.	[95]
2017	A newly developed Epistemic-Deontic-Axiologic (EDA) agent-based solution supporting the energy management system (EMS) in office buildings	Experimental studies were conducted in an (air-conditioned) academic building by applying standardized questionnaire surveys [96] to collect subjects' personal data/Climatic data recorded by sensors	Support vector machine (SVM) based algorithms: SVM and C-SVC was embedded to BEMS to establish thermal sensation model and comfort requirement	Distributed AI and machine learning	Personal thermal sensation model for MET is occupant’s personal activity: TSV = \(P_T(T_{opt}, T_{vote}, P_T, RH, MET, Clo)\) Group-of-people-based thermal sensation model for MET is group of people average activity: AMV = \(P_T(T_{opt}, T_{vote}, P_T, RH, MET, Clo)\)	Temperature; Relative humidity; Globe temperature; Air velocity; Occupant’s personal activity; Clothing insulation level	Case studies simulations showed the abilities of the developed model in energy saving by 3.3–10%, compared to the pre-set control systems, while fulfilling the individual thermal comfort requirements (by maintaining the average value of TSV within the range \([-0.5, +0.5]\]).	[97]
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/ method	Input(s) & Controlled parameter(s)	Key Results	Ref
------	--	---	--	-----------------------------------	--	--	--------------------------------	-----
2017	Deploying a software application based mobile sensing technology (Occupant Mobile Gateway (OMG)) for occupant-aware energy management of mix of buildings in California	Pilot test-sites conducted in 4 different mix-academic buildings in California; Subjective feedback data using OMG App. And objective thermal data measurements using embedded sensors/Data vintages (pre-1980, post-1980 and ASHRAE 90.1) from the US-DOE medium size office building as reference model [98].	Logistic regression (LR) techniques were applied for generating personalized comfort profiles and group-level models	Machine learning and predictive control	Generating data-driven thermal comfort model by learning from real-time occupant subjective feedback via smart-phone/server (OMG) application and objective thermal data	Indoor temperature; Relative humidity; Location; Occupancy; Subjective feedback	Simulations results implementing occupant-driven models showed that thermal management learned by subjective feedback had the potential energy savings while maintaining acceptable levels of thermal comfort	[99]
2017	Implementing a predictive control strategy in a commercial BEMS for boilers in buildings	Experimental data collected from two heating seasons through a BEMS having a set of 22 temperature sensors implemented in an academic building located in Spain.	NN development to predict time required for building conditioning	Predictive control	Prefixed internal temperature: an average of 20°C at 8:00 and 22°C throughout the rest of the day	Internal temperature; External temperature; Water heating system temperature	The predictive strategy allowed to reduce around 20% of energy required to heat the building without compromising the user’s thermal comfort, compared to BEMS based on scheduled ON/OFF control.	[100]
2017	An HVAC optimization framework deployment for energy-efficient predictive control for HVAC systems in office buildings	Real data measured using sensors and metric Climatic and occupancy levels data in an academic building located in Spain.	Random forest (RF) regression techniques used for energy-efficient predictive control of HVAC	Predictive control and optimized setting	Comfort ranges defined by Royal Decree 1826/2009, i.e., setting indoor temperature between 21°C and 26°C.	Indoor/Outdoor temperatures; Indoor/Outdoor relative humidity; Occupancy level	The proposed Next 24h-Energy framework showed significant results in reducing energy consumption for heating (48%) and cooling (39%), without affecting the user's comfort (defined by indoor temperature between 21°C and 26°C).	[101]
2017	A smart heating set-point scheduler development for an office building control located in the UK	Building information model located in Cardiff, UK; Occupant surveys (N=30); Weather information from local weather stations/Data generated using EnergyPlus by varied heating set-points.	A multi-objective GA was coupled with ANN model for energy sum and average PPD (for occupied hours) calculation during 24-hour period	Predictive control and optimized setting	PPD (Fanger’s model)	Weather information (Outdoor temperature; Solar radiation; Humidity); Hour of the day; Heating set-point temperature; Occupancy profile; Indoor temperature (of the previous 3 times steps)	4.93% energy savings whilst improving thermal comfort by reducing the PPD by an average of 0.76%.	[102]
2017	A deep reinforcement learning based data-driven approach development for building HVAC control	Weather profiles obtained from the National Solar Radiation Data-Base [103] and time-of-use price data from the Southern California Edison [104]/EnergyPlus models data.	Deep reinforcement learning (DRL)-based algorithm	Optimized setting	Desired temperature range [19°C, 24°C] based on ASHRAE standard	Current (physical) time; Zone temperature; Environment disturbances (Ambient temperature; Solar irradiance intensity; Multi-step forecast of weather data)	Up to 20%-70% energy cost reduction while meeting the room temperature requirements, compared to a conventional rule-based approach.	[105]
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/ method	Input(s) & Controlled parameter(s)	Key Results	Ref
------	------------	---------------------	----------------------------	---------------------	-------------------------------------	-----------------------------------	-------------	-----
2017	A reinforcement learning-based thermostat schedule controller development using long-short-term memory recurrent neural network for an office HVAC system	Simulation data from a single office space model (EnergyPlus/MATLAB/BCVTB)/Occupancy data measurements (3 occupants) Weather data	Actor-critic-based RL and Long-Short-Term Memory (LSTM) recurrent neural network (RNN)	Optimized setting	PMV (Fanger's model)	Office occupancy; Indoor/Outdoor temperature; Solar irradiance; Cloud cover; Energy demand from the last time step	An average 2.5% energy savings was achieved while improving thermal comfort by an average of 15%, compared to other control baselines (Ideal PMV & Control Variable).	[106]
2017	A hybrid rule-based energy saving approach development using ANN and GA in buildings.	Data obtained from authors’ simulation model/Historical, warnings and recommendations data recorded via a GUI/Climatic and occupancy data collected using installed sensors in the pilot zone	ANN model used with GA-based optimization process for generating optimal energy saving rule	Optimized setting	PMV (Fanger’s model)	Time information; Outdoor air temperature; Wind speed; Wind direction; Solar radiation; Solar azimuth angle; Solar altitude angle; Zone air temperature; Zone air sensible heating rate; Zone ideal total cooling rate; Occupancy	Validation results showed an average 25% energy savings while satisfying occupants’ (elderly people) comfort conditions, i.e., PMV was kept within the range of [-1, +1].	[107]
2017	Deploying machine learning techniques to balance energy consumption and thermal comfort in ACMV systems through computational intelligence techniques in optimizations	Experimental (environmental and personal) data collected in the thermal laboratory of an academic building (from a previous study conducted by the authors) [108]	Extreme learning machines (ELM) and NN models were integrated with sparse Firefly Algorithm (sFA) and sparse Augmented Firefly Algorithm (sAFA)	Predictive control and optimized setting	PMV (Fanger’s model)	Environmental parameters: Ambient air temperature; Ambient air velocity; Air relative humidity; Mean radiant temperature/ Occupant parameters: Metabolic rate; Clothing insulation factors; External work done	Maximum energy saving rate (ESR) prediction was about -31% using sparse AFA optimizations while maintaining thermal comfort within the pre-established comfort zone (when PMV=0).	[109]
2017	Machine learning-based thermal environment control development	Climatic and Subjective data from human thermal comfort experiments conducted in an environment chamber in an office building in California	ANN-based algorithm used for predicting the occupant’s thermal preference	Prediction control	Individual’s thermal preference/feedback	Environment temperature; Relative humidity; Thermal comfort feedback	A total of up to 45% more energy savings and 44.3% better thermal comfort performance than the PMV model.	[110]
2018	The benefits of including ambient intelligent systems for building’s EMS control to optimize the energy/comfort trade-off	Occupants’ subjective votes by varying temperature by 1°C/ Occupancy data collection using RFIDS cards/Other collected data: Current indoor temperature and time of the day measured by the authors	k-means algorithm enabling automatic configuration of HVAC system	Optimized setting	Learning occupants’ preferences (via individual subjective rating votes) to quantify the group occupant comfort	User’s vote; User’s presence	The energy consumption was reduced by an average of 5.75 kWh while maintaining the majority of the occupants within acceptable comfort levels (the comfort rate was 5% lower than the baseline).	[111]
2018	Optimizing the passive design of newly-built residential buildings in hot summer and cold winter region of China	Weather data was a TMY of Shanghai from the EnergyPlus website [112]/Dataset with a sample of 1100 cases generated by SimLab software/ Construction data of the base-case building model based on a real apartment in Shanghai, some features were adopted from the building code – DGI [113]	Non-dominated sorting GA II (NSGA-II) was combined with ANN model for multi-objective optimization	Optimized setting	The annual indoor thermal prediction was based on Spokolay’s theory:	37 variables related to natural ventilation, solar shading, thermal insulation and passive solar heating	The defined objectives Comfort Time Ratio (CTR) and Building Energy Demand (BED) were significantly improved, i.e., the annual thermal comfort hours were extended by 516.8–560.6 hours, and the annual BED was reduced by 27.86–33.29% compared to base-case design.	[114]
2018	A novel type of decentralized and cooperative method development for decision-making strategies in the buildings’ context, based on reinforcement learning.	Weather data of 2013 were from the KNMI; Construction data from DOE 2004 standard for the Netherlands were used for all considered buildings, Climatic conditions and Occupancy levels measurement for each building	Extended joint action learning (eJAI) was developed and compared with Q-learning and Nash n-player game (Nash-NPG) methods	Optimized setting	Thermal comfort index is conceptualized as a Gaussian function of indoor temperature:	Outdoor conditions (Outdoor temperature; Relative humidity); Occupancy levels; Lights; Device usage; Thermostat profiles	The long-term learning analysis showed that Q-learning and eJAI gave acceptable comfort losses (AC ≤ 0.4), for demand/response balance, eJAI (Median=1.67) was slightly better than Q-learning (Median=2.21)	[115]

Table 1. Cont.
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/ method	Input(s) & Controlled parameter(s)	Key Results	Ref
2018	Plug&play solution of an HVAC thermostat’s set-point scheduling inspired by reinforcement learning technique	Building dynamic and sensor data were produced by the EnergyPlus suite [92]/Building model data from an actual building located in Greece/Weather data collected in 2010 were publicly available	Neural Fitted Q-iteration (NFQ); RL-based algorithm deployment for control performance	RL-based controller development	PMV (Fanger’s model)	Outdoor temperature; Solar radiation; Indoor humidity; Indoor temperature	With energy/comfort trade-off balance, an average up to 32.4% energy savings and up to 27.4% comfort improvements in average, compared with rule-based control set-points.	[116]
2018	A demand-driven cooling control (DCC) based on machine learning techniques for HVAC systems in office buildings	Building construction data and thermal environment comply with the Green Mark Platinum standard [117]/Occu-pancy levels data collected using motions sensors installed in 11 offices for 7.5 months, Other measured data: Room climate (via sensors)/Interviews through HMI/ Energy usage data recorded (energy meters)	k-means clustering and kNN algorithms were applied for learning the occupants’ behavior	Predefined comfort conditions (comfort mode set-points: 22°C and 22.5°C) during working hours (8:00 to 18:00)/weekdays	Machine learning and predictive control	Occupancy profiles (time of the daily first arrival/last departure; daily maximum vacancy duration during working hours); Indoor air temperature; Indoor relative humidity; Indoor CO₂ concentration; Occupants’ preferences	While maintaining room temperature to the comfort set-point (temperature deviations means all less than 0.1°C in both the baseline and the DCC tests); between 7% and 52% energy savings were ensured compared to the conventionally-scheduled cooling systems.	[118]
2018	A novel real-time automated HVAC control system built on top of an Internet of Things (IoT)	Experiment data: Climate conditions using sensors/Interviews (User-feedback interface)/Occupancy tracked by embedded sensors	ANN MPL-based times-series predictive model + Mixed Integer Linear Programming (MILP) problem optimizer	Predictive control and optimized setting	User’s zoning feedback reflecting his dissatisfaction, while thermal comfort is function of temperature based on ISO 7730: \(\phi_{m} = 1 - (\text{energy consumption}) \)	User’s feedback; Indoor thermal parameters (temperature; relative humidity; brightness; CO₂ level; air pressure; smoking)	Between 20% and 40% energy savings were achieved while maintaining temperature within the comfort range (except the pre-peak cooling hour).	[119]
2018	Agent-based control system for and optimized and intelligent control of the built environment	Simulation data	An evolutionary MOGA development for achieving energy-comfort trade-off	Distributed AI and optimized setting	Thermal comfort ranges based on the users’ preferences as \(C_{\text{max}} \) within the ASHRAE standard	Users’ preferences; Temperature; Artificial illumination; CO₂ concentrations in air; Relative humidity	By applying MOGA optimizer allowed to save up to 67% energy consumption and about 99.73% overall comfort improvement.	[120]
2018	Combining a Comfort Eye sensor with a sub-zonal heating system control for building climate management	Test room (office building in Italy) characteristics data/Climate data measurement using the ‘Comfort Eye’ system/Outdoor temperature collected from a local weather station.	PID tuned with fuzzy logic (PID-PMV)	Fuzzy PID	PMV (Fanger’s model)	Mean radiant temperature; Wall temperature; Air temperature; Relative humidity; Air velocity; PMV	Up to 17% energy savings with respect to the standard ON/OFF monзо-zone control, thermal comfort has been slightly improved with a minimum deviation from the neutral condition (PMV=0)	[121]
2018	A whole BEM-DRL framework development for HVAC optimal control in a real office building (Intelligent Workplace (IW)) located in Pennsylvania	Building specifications data/Three months measured climate data (from Jan 1st 2017 to March 31th 2017)/TMY3 weather data [92]	A DRL-based model development	Optimized setting	PPD (Fanger’s model)	Mullion system supply water temperature set-point	About 15% heating energy savings with similar comfort conditions as the base-case	[122]
2018	An indoor-climate framework development for air-conditioning and mechanical ventilation (ACMV) systems control in buildings	Environmental parameters were recorded during the experiments using embedded sensors/Subjective data were obtained through interviews/ A sample of 1155 energy models’ data was experimentally collected	Single layered feedforward artificial neural network (SLFF-ANN)-based energy model + QAT optimization algorithm	Predictive control and optimized setting	TSI (Cool-Discomfort/Comfort/ Warm-Discomfort) based on ASHRAE 7-point sensation scale	ACMV system: Energy; Frequency; Environmental: Air temperature; Relative humidity; Mean radiant temperature / Physiological: Skin temperature; Pulse rate; Skin conductance; Oxygen saturation/ Personal: Clothing insulation; Body surface area; Age	An average of 36.5% energy saving was ensured, and it was found that 23°C is the ideal comfort temperature with a minimum energy use.	[123]

Table 1. Cont.
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/ method	Input(s) & Controlled parameter(s)	Key Results	Ref
2019	A novel optimization framework using a deep learning-based control for building thermal load	Data from a reference office building at PNNL/Weather information from the TMY-3/Utility rate structure from schedule E-20 tariff of the Pacific Gas and Electric Company [124]	Recurrent neural network (RNN) development for thermal load prediction + Black-box optimization (Mesh Adaptive Direct Search (MADS))	Load prediction and optimized setting	Defined zone temperature cooling set-points (23.3°C in occupied hours)	Weather information; Occupancy states	Up to 12.8% cost savings compared with a rule-based strategy, while maintaining the users’ thermal comfort during the occupied periods.	[125]
2019	A learning-based optimization framework development for HVAC systems in smart buildings	15,000 hours of simulation data in TRNSYS were used for training and testing performances/Weather dataset from Singapore-Airport-486980 [125]	Deep NN for predicting thermal comfort + deep deterministic policy gradients (DDPG) for energy optimization	Bayesian predictive control and optimized setting	Predicted thermal comfort value at time slot t: $M_t = \Phi(t_{in}^d, H_{in}^d)$	Thermal model parameters: Indoor/Outdoor air temperature; Indoor/Outdoor air humidity; Comfort prediction parameters: Air temperature; Humidity; Radiant temperature; Air speed; Metabolic rate; Clothing insulation	DDPG allowed to achieve higher degree of thermal comfort with an average value closer to the preset threshold of 0.5. DDPG could save 6% more energy than the baseline methods.	[127]
2019	AI-based agent development for indoor environment control while optimizing energy use of air-conditioning and ventilation fans in a classroom and a laboratory	Experimental data (Climate, energy, subjective and occupancy) collected using embedded sensors in a laboratory room and a classroom environment/Weather information (10th years data) from EnergyPlus- [128]	A deep-RL (with double Q-learning) algorithm was adopted	Optimized setting	PMV (Fanger’s model)	Indoor temperature; Outdoor temperature; CO2 levels; PMV index	AI-agent has successfully managed the indoor environment within an acceptable PMV values between -0.1 and +0.07, and 10% lower CO2 levels, while reducing energy consumption by about 4% to 5%, compared with a conventional control system	[129]
2020	A novel MPC relied on artificial intelligence-based approach development for institutional and commercial buildings control.	Hourly measurements from October 1st, 2017 to March 31st, 2018 of an institutional building; Weather forecasts retrieved using CanMETEO [130]	Gauss Precise Regressions (GPR) model with squared exponential Kernel function applied to MPC for control-oriented model development	Predictive control and optimized setting	Pre-defined set-point ramps (temperature) profiles	Outdoor air temperature (OAT); Indoor air temperature set-point (T_o); Indoor air temperature set-point variation (A_T); Predicting building heating load (HD); Electrical baseload (EBL); Electric demand margin (EDM); Total heating load (HB); Daytime value; Occupancy level	The AI-based MPC strategies allowed to reduce the natural gas consumption and the building heating demand by 22.2% and 4.3% resp. as well as improving thermal comfort, while minimizing the required amount of time and information, compared with business as usual control strategies.	[131]
2020	Hybrid data-driven approaches development for predicting building indoor temperature response in VAV systems.	Data generated using EnergyPlus building simulation models: 1) One-story office building located in Newark, NJ and 2) DOE medium office building located in Chicago, IL.	Multivariate linear regression (MLR) and ANN trained by Bayesian Regulation (BR) algorithm models were used for predicting the indoor temperature variation	Predictive control	Defined comfort zones	Damper position variables; ASHRAE sky clearness index; Lighting schedule; Equipment schedule; Occupancy schedule; Zone average temperature; Wall surface temperature; Dry/Wet-bulb external temperature; Supply air temperature; Outside air velocity; Time-of-day, Incident solar radiation	The proposed model allowed to improve the control and optimization of buildings space cooling	[132]
Table 1. Cont.

Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
2020	An event-triggered paradigm based on RL approach for smart learning and autonomous micro-climate control in buildings.	Generated data using a real Building model data in EnergyPlus/Chicago Weather data (Chicago-O'Hare Int'l AP 725300) is used for simulation.	Stochastic and deterministic policy gradient RL for event-triggered control	Optimized setting and event-triggered control	Occupants’ discomfort rate: proportional to the square of deviation of desired temperature and the coefficient of proportionality \(\eta \).	Indoor/Outdoor temperature; Heater status (0 when off/1 when on); Desired temperature	Simulation results showed that the proposed algorithms learn the optimal policy in an appropriate time, i.e., optimal thresholds were found \(T_{in} = 12.5°C \) and \(T_{out} = 17.5°C \) resulting an optimal rewards rate.	[133]
2020	A neural network-based approach for energy management and climate control optimization of buildings (applied to two-story building in Italy).	Historical data (October 2018-February 2019, and October-November 2019) from the building automation system and a weather station provided by the CETEMPS (https://cemeps.aquila.info.it)	MPC with neural network-based models	Predictive control and optimized setting	Constant set-point temperature (defined as \(T_{ref} = 25°C \)) for each zone.	Control inputs: Temperature set-points; Compressor mode (Boolean)	The proposed model showed significant results in energy savings (5.7% energy reduction of one zone) and better comfort compared to the baseline controller.	[134]
2020	Comfort and energy management of daily and seasonally used appliances for smart buildings application in hottest areas.	Data, including appliances and power rating as well as the occupants’ data, were taken from the reference [135]	Binary Particle Swarm Optimization (BPSO) + Fuzzy logic: Mamdani FIS & Sugeno FIS	Two proposed controllers: BPSOFMAM and BPSOFMUG	Fanger’s PMV method	Room temperature; Outdoor temperature; Initialised set-points; Occupancy level; Price	Simulation results showed that the BPSOFMUG controller outperformed the BPSOFMAM in terms of energy efficiency by 16%, while comfort computation, via PMV, was kept in satisfactory range.	[136]
2020	Thermal comfort control relying on a smart WiFi-based thermostat deployment for residential applications	Data collected from 700+ university student residences in the Midwest USA; historical WiFi thermostat readings, monthly energy consumption, building geometry, and weather data obtained from NOAA’s Climate Data Online resource	Nonlinear autoregressive network with exogenous inputs (NARX) neural network using Levenberg-Marquart as training function	Learning-based predictive control	Fanger’s PMV method	Building Geometry; Occupancy level; Comfort parameters; Human times; Cool/heat/fan status; Cooling/heating set-point; Indoor air temperature; Relative humidity; Outdoor weather conditions	The proposed dynamic model has showed in both high- and low-efficiency residences, cooling energy savings were around 85% and 95% respectively, while the PMV index was maintained within the desired range \([0–0.5]\).	[137]
2020	A network-based deterministic model development to respond the ever-changing users’ fickle taste that can deteriorate thermal comfort and energy efficiency in building spaces.	Data obtained from actual devices installed in buildings/Questionnaire surveys of users.	Fuzzy inference system (FIS) to determine abnormal situations + ANN	Three controllers were tested: Thermostat On/Off; ANN; ANN + FDM	Fanger’s PMV method	Heat loss of the room (HL); Relative humidity (RH); Metabolic rate (MET); Clothing insulation (Clo)	ANN-FDM showed significant results by improving thermal comfort by up to 4.3% rather than thermostat model and up to 44.1% of energy efficiency rather than ANN model.	[138]
2020	ANN-based prognostic models’ development for load demand (LD) prediction for a Greek island by capturing three different forecasting horizons: medium, short and very short-terms.	Meteorological and LD data collected from the island of Tilos in Greece covering a period from April 2015 to April 2017.	Multilayer Perception ANN and stochastic/persistence autoregressive (AR) time series forecasting models’ development for load demand prediction.	Predictive control	Biometeorological human comfort-discomfort thermal index: Cooling power (CP) index \(CP = 1.163 \cdot (10.45 + 10 \cdot u^{0.5} - u) \cdot (33 - T) \) (\(T \): temperature, °C and \(u \): wind speed, m/s)	Relative humidity; Barometric pressure; Solar irradiation; Cooling Power index = \{Air temperature, Wind speed\}	Results showed that both medium- and short-terms prognoses showed significant ability to predict LD by errors around 7.9% and 7.2% respectively enabling a better management for end-user and energy.	[139]

\[\tau_c = -1.2/3600 \text{ unit } K^{-2}s^{-1} \]

* https://catalog.data.gov/dataset/noas-climate-divisitional-database-selmidv

* Comfort parameters: room air velocity, clothing level, metabolic rate, mean radiant temperature, room temperature and relative humidity.
| Year | Study Case | Source of Data used | Underlying AI/ML techniques | Application Scenario | Thermal comfort-based model/ method | Input(s) & Controlled parameter(s) | Key Results | Ref |
|------|------------|---------------------|----------------------------|----------------------|-------------------------------------|-----------------------------------|-------------|-----|
| 2020 | An intelligent-based ML model to predict the energy performances in heating loads (HL) and cooling loads (CL) of residential buildings. | Dataset freely available at the Center of machine learning and intelligent systems repository, where 768 buildings located in Athens, Greece were simulated using Ecotec software. | ANN and Deep NN models were evaluated for CL and HL forecasting. | Predictive control | Comfort conditions considered in the internal design of the buildings, i.e., clothing level of 0.6 G10 with internal temperature of 21°C, 60% of humidity, 0.3 m/s air speed and 300 Lux lighting level | Relative Compactness; Surface Area; Wall Area; Roof Area; Overall Height; Orientation; Glazing Area; Glazing Area Distribution | Deep NN showed better results compared to ANN in terms of HL and CL prediction, by applying state-based sensitivity analysis (SBSA) technique allowing to improve the model by selecting the most significant variables. | 140 |
| 2020 | A novel personal thermal comfort prediction method using less physiological parameters. | 45 experiments were conducted with 3 subjects in an office room in Shanghai, thermal sensation surveys/questionnaires of the occupants to collect personal information, physiological parameters + environmental variables measurements | ANN was used to evaluate the thermal sensation | Predictive control | Thermal sensation vote classified into 5 categories {cold, cool, neutral, warm, hot} | Personal information: Name; Sex; Age; Height; Weight; BMI; L: Thermal sensation vote (TSV) | Based on the 3 physiological parameters, the proposed model showed good prediction accuracy and stability by an average of 89.2% and a standard deviation around 2.0%, this model will be used in HVAC operations for energy savings as well. | 141 |
| 2020 | Investigating the performances and comparative analyses of combined on-demand and predictive models for thermal conditions control in buildings. | Geometries/Design parameters of the building's model and simulation parameters adopted from templates[85], [86], [142] and ASHRAE 90.1-2016, School Secondary in the EnergyPlus. Weather data file obtained from EnergyPlus Weather Data website. | Combining ANN and the fuzzy inference system (FIS) to control supply air mass and its temperature | On-demand and predictive controls | Fanger's PMV/PPD method | Climate conditions; Building geometry; Design parameters; Indoor temperature; Human Comfort (PMV/PPD); Outdoor temperature | The combination of the predictive and on-demand algorithms improved the energy efficiency from 13.1% to 44.4% and reduced the thermal dissatisfaction by 20% to 33.6%, compared to each independent model. | 143 |
| 2020 | A multi-objective optimization method for a passive house (PH) design by considering energy demand, thermal comfort and cost. | Simulation data using EnergyPlus, weather data of Tianjin city (case location) derived from the Chinese Standard Weather Data published by EnergyPlus Website. | Three methods were combined: Redundancy analysis (RDA), Gradient Boosted Decision Trees (GBDT) and Non-dominated sorting GA (NSGA-II) for multi-optimization purpose | Optimized setting | The annual cumulative comfort ratio (CTR)-based adaptive model \(CTR = \frac{1}{m} \sum_{k=1}^{m} \left(\frac{w_{P_{k}}}{\sum_{p=1}^{P} w_{P_{p}}} \right) \left(T_{o_{k}} - T_{m} \right) \) | Building features: Wall and roof; Exterior windows; Building shape; Airtightness and building layout | The implemented model outperformed other tested methods (SVM and ANN) with a SD=0.048. The optimization results showed around 88.2% energy savings rate and improvement in thermal comfort by 37.7% compared to base-case building. | 144 |
| 2020 | A predictive model for thermal energy by integrating IoT architecture and classifier ensemble techniques for smart buildings application. | Recorded real-sensor data through a monitoring-system including parameters of buildings multiplicity, corresponding to one-month in the year of 2014. | Combining classifier techniques: SVM, logistic regression (LR) and random forest (RF) for temperature prediction in conditioned spaces | Predictive control | Indoor temperature was set by the user or by the learning algorithm (by considering the user and defined temperature by the proposed methodology) \(T_{\text{target}} \) | Temperature of dining room; CO\(_2\) of dining room; Temperature of indoor room; Relative humidity of Dining room/Room; Room lighting; Solar irradiance; Day of week | Simulation results showed that the proposed approach presented the highest accuracy, by 91.526% compared to neural networks, ensemble RF and SVM. | 145 |

10 http://archive.ics.uci.edu/ml/datasets.php
11 https://energyplus.net/weather
12 \(w_f = \begin{cases} 1, & \text{if } T_{\text{lower}} \leq T \leq T_{\text{upper}} \\ 0, & \text{if } T < T_{\text{lower}} \text{ or } T > T_{\text{upper}} \end{cases} \)
Year	Study Case	Source of Data used	Underlying AI/ML techniques	Application Scenario	Thermal comfort-based model/method	Input(s) & Controlled parameter(s)	Key Results	Ref
2020	A novel optimization method for building environment design by integrating a GA, an ANN, MRA and an FLC based on the results of computational fluid dynamics (CFD) analysis.	Measured data from experiments, and simulation data from CFD analysis using ANSYS-FLUENT	Integrating GA + ANN + multivariate regression analysis (MRA) + FLC to optimize indoor environment and energy saving	Optimized setting	Fanger’s PMV method	Ventilation rate; Inlet temperature; Inlet angle	While maintaining PMV within the range [-0.5; +0.5], the integration of GA, ANN, MRA and FLC in the design process allowed to reduce the variable space and computational cost by 50% and 35.7% respectively.	[146]
2020	A building intelligent thermal comfort control and energy prediction based on the IoT and artificial intelligence.	Data measurements using real-sensors (monitoring system) through one-experiment/Occupants data obtained by human-computer interaction.	Back Propagation (BP) Neural Networks to build the PMV prediction model	Predictive control and optimized setting	Fanger’s PMV method	Air temperature; Average radiant temperature; Air velocity; Relative humidity; Metabolic rate; Clothing insulation	Simulation results showed that the system performed better than traditional control on energy-saving and thermal comfort. But, still some limitations, i.e., there was about 3% of error between the expected value and the actual value.	[147]
2020	An energy flexibility quantification methodology based on supervised machine learning techniques for hybrid demand-side control for high-rise office building.	Simulation data based on a real (30-floor) high-rise building model parameters using TRNSYS 18.	Multiple linear regression, support vector regression and the backpropagation NN were incorporated for building demand prediction	Predictive control	The indoor air temperature was set at 24ºC (pre-defined comfort conditions)	Ambient temperature; Solar air temperature; Supply/Return water temperature of the AHU and the space cooling system; Power consumptions of chillers; Internal gains; Indoor air setpoint temperature.	The hybrid controller allowed to reduce the time duration of the peak power, which was reduced by 61% of the grid importation	[148]
2020	A framework development for optimal control over AHUs by combining DRL methods and long-short-term-memory networks (LSTM).	Two-years operational data of three AHUs installed in an office building and stored in a building automation system	Deep reinforcement learning (DRL)-based method for energy and comfort control	Predictive control and optimized setting	Fanger’s PMV/PPD method	Environmental states (e.g., month, hour, day in week…); AHU states (reference temperature, return/supply/mixed air temperatures, supply air CO2 concentration, static air pressure…); Actions (fan speed, damper position, heating valve status …)	27% to 30% lower energy consumption compared to rule-based control, while maintaining the average PPD at 10%.	[149]
2. Conclusion

This paper presents a review of the existing publications related to Building Energy Management Systems that use artificial intelligence (AI) to improve energy efficiency while considering the thermal comfort factor in buildings. Furthermore, evaluations of the applications of these techniques performed in the publications to assess the performances of AI-based tools in energy savings and thermal comfort optimization were investigated and compiled according to the inclusion criteria. The research design applied in the reviewed publications was mostly case study approach, while the data source or data collection on thermal comfort and energy consumption was mainly obtained by conducting experiments in real environments (questionnaires or interviews with the occupants and data measurements) or by adopting existing and publicly available datasets.

The review outcomes revealed that different types of AI-based tools were applied in different parts of buildings control systems. For instance, artificial neural networks (ANNs) were used due to their ability to solve recognition and classification problems, and their operation is based on learning algorithms, which makes them memorize and classify the data. In building control, ANNs were introduced in order to define the notion of thermal comfort, in cases where the calculation of the predicted mean vote (PMV) index was not possible. In the same line, one of the current trends is the use of fuzzy logic (FL), as it is more adapted to the human reasoning. Since the late 1990’s, works using FL to handle thermal comfort as subjective or fuzzy variable have been reported. They aimed to control environments where the highest degree of satisfaction and a good energy saving performance were reached, the majority of these works used the PMV comfort index. This line of control approaches, based on intuition and judgment aim to achieve a simple, adaptive and efficient control, without resorting to a structural model of the process. Their performances are usually compared to conventional controllers, and their superiority lies mainly in the fact that additional knowledge about the system behavior (expressed in natural language - fuzzy or assimilated by learning methods - neural networks), or a degree of optimality (genetic algorithms) are considered.

Beyond that, the introduction of AI technologies is still limited in the building sector. This is mainly due to the fact that Machine Learning (ML) algorithms generally require a large amount of high-quality data, yet the building, or more precisely, the energy sector has until now had little data compared to other sectors (internet, telecom, mobility, industry). This situation, perhaps less favorable than other sectors, does not mean that ML will not be used in the building sector. Changes and technological advances are leading to a growth in the volume and complexity of data (deployment of smart meters, IoT, Cloud Computing, etc.), which allows the development of even more efficient solutions and tools.

3. References

[1] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and PRISMA Group, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” PLoS Med, vol. 6, no. 7, pp. 336–341, Jul. 2009, doi: 10.1371/journal.pmed.1000097.

[2] A. Liberati et al., “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration,” Annals of internal medicine, vol. 151, no. 4, p. W–65, 2009, doi: 10.1371/journal.pmed.1000100.

[3] H. Zhou, M. Rao, and K. T. Chuang, “Knowledge-based automation for energy conservation and indoor air quality control in HVAC processes,” Engineering Applications of Artificial Intelligence, vol. 6, no. 2, pp. 131–144, Apr. 1993, doi: 10.1016/0952-1976(93)90029-W.

[4] M. Hamdi and G. Lachiver, “A fuzzy control system based on the human sensation of thermal comfort,” in 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228), Anchorage, AK, USA, 1998, vol. 1, pp. 487–492, doi: 10.1109/FUZZY.1998.687534.
[5] Th. Bernard and H.-B. Kuntze, “Multi-objective optimization of building climate control systems using fuzzy-logic,” in 1999 European Control Conference (ECC), Karlsruhe, Aug. 1999, pp. 2572–2577, doi: 10.23919/ECC.1999.7099712.

[6] M. M. Gouda, S. Danaher, and C. P. Underwood, “Thermal comfort based fuzzy logic controller,” Building Services Engineering Research and Technology, vol. 22, no. 4, pp. 237–253, Nov. 2001, doi: 10.1177/01436244010200403.

[7] D. Kolokotsa, D. Tsiavos, G. S. Stavrakakis, K. Kalaitzakis, and E. Antonidakis, “Advanced fuzzy logic controllers design and evaluation for buildings’ occupants thermal–visual comfort and indoor air quality satisfaction,” Energy and Buildings, vol. 33, no. 6, pp. 531–543, Jul. 2001, doi: 10.1016/S0378-7788(00)00098-0.

[8] D. Kolokotsa, G. S. Stavrakakis, K. Kalaitzakis, and D. Agoris, “Genetic algorithms optimized fuzzy controller for the indoor environmental management in buildings implemented using PLC and local operating networks,” Engineering Applications of Artificial Intelligence, vol. 15, no. 5, pp. 417–428, Sep. 2002, doi: 10.1016/S0952-1976(02)00090-8.

[9] R. Alcalá, J. M. Benítez, J. Casillas, J. Cordón, and R. Pérez, “Fuzzy Control of HVAC Systems Optimized by Genetic Algorithms,” Applied Intelligence, vol. 18, no. 2, pp. 155–177, 2003.

[10] D. Kolokotsa, “Comparison of the performance of fuzzy controllers for the management of the indoor environment,” Building and Environment, vol. 38, no. 12, pp. 1439–1450, Dec. 2003, doi: 10.1016/S0360-1323(03)00130-6.

[11] A. B. Shepherd and W. J. Batty, “Fuzzy control strategies to provide cost and energy efficient high quality indoor environments in buildings with high occupant densities,” Building Services Engineering Research and Technology, vol. 24, no. 1, pp. 35–45, Feb. 2003, doi: 10.1119/0143624403bt059oa.

[12] N. Nassif, S. Kajl, and R. Sabourin, “Two-objective on-line optimization of supervisory control strategy,” Building Services Engineering Research and Technology, vol. 25, no. 3, pp. 241–251, Aug. 2004, doi: 10.1119/0143624404bt105oa.

[13] R. Alcalá, J. Casillas, O. Cordón, A. González, and F. Herrera, “A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning systems,” Engineering Applications of Artificial Intelligence, vol. 18, no. 3, pp. 279–296, Apr. 2005, doi: 10.1016/j.engappai.2004.09.007.

[14] S. Ari, I. A. Cosden, H. E. Khalifa, J. F. Dannenhoffer, P. Wilcoxen, and C. Isik, “Constrained Fuzzy Logic Approximation for Indoor Comfort and Energy Optimization,” in NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society, Detroit, MI, USA, 2005, pp. 500–504, doi: 10.1109/NAFIPS.2005.1548586.

[15] P. Davidsson and M. Boman, “Distributed monitoring and control of office buildings by embedded agents,” Information Sciences, vol. 171, no. 4, pp. 293–307, May 2005, doi: 10.1016/j.ins.2004.09.007.

[16] Jian Liang and Ruxu Du, “Thermal comfort control based on neural network for HVAC application,” in Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005., Toronto, Canada, 2005, pp. 819–824, doi: 10.1109/CCA.2005.1507230.

[17] D. Kolokotsa, K. Kalaitzakis, E. Antonidakis, and G. Stavrakakis, “Interconnecting smart card system with PLC controller in a local operating network to form a distributed energy management and control system for buildings,” Energy conversion and Management, vol. 43, no. 1, pp. 119–134, 2002.

[18] D. Kolokotsa, K. Niachou, V. Geros, K. Kalaitzakis, G. S. Stavrakakis, and M. Santamouris, “Implementation of an integrated outdoor environment and energy management system,” Energy and Buildings, vol. 37, no. 1, pp. 93–99, Jan. 2005, doi: 10.1016/j.enbuild.2004.05.008.

[19] M. T. Lah, B. Zupančić, and A. Krainer, “Fuzzy control for the illumination and temperature comfort in a test chamber,” Building and Environment, vol. 40, no. 12, pp. 1626–1637, Dec. 2005, doi: 10.1016/j.buildenv.2004.11.008.

[20] M. Hadjiski, V. Sgurev, and V. Boishina, “Multi-Agent Intelligent Control of Centralized HVAC Systems,” IFAC Proceedings Volumes, vol. 39, no. 19, pp. 195–200, 2006, doi: 10.3182/20061002-4-BG-4905.00033.

[21] Y. Huang and N. Li, “Indoor Thermal Comfort Control Research Based on Adaptive Fuzzy Strategy,” in Computational Engineering in Systems Applications, 2006, p. 4.

[22] K. Dalamagkidis, D. Kolokotsa, K. Kalaitzakis, and G. S. Stavrakakis, “Reinforcement learning for energy conservation and comfort in buildings,” Building and Environment, vol. 42, no. 7, pp. 2686–2698, Jul. 2007, doi: 10.1016/j.buildenv.2006.07.010.

[23] A. I. Dounis and C. Caraiscos, “Intelligent Coordinator of Fuzzy Controller-Agents for Indoor Environment Control in Buildings Using 3-D Fuzzy Comfort Set,” in 2007 IEEE International Fuzzy Systems Conference, London, UK, Jun. 2007, pp. 1–6, doi: 10.1109/FUZZY.2007.4295573.
A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tomlin, “Reducing Transient and Steady State
R. Yang and L. Wang, “Energy management of multi
Z. Wang, R. Yang, L. Wang, R. C. Green, and A. I. Dounis, “A fuzzy adaptive comfort temperature model
”Local Weather Forecast, News and Conditions | Wea
U. C. Bureau, “American Housing Survey (AHS),” T
L. Klein et al., “Towards Optimiz
A. I. Dounis, P. Tiropanis, A. Argiriou, and A. Diamantis, “Intelligent control
L. Magnier and F. Haghighat, “Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network,” Building and Environment, vol. 45, no. 3, pp. 739–746, Mar. 2010, doi: 10.1016/j.buildenv.2009.08.016.
A. I. Dounis, P. Tiropanis, A. Argiriou, and A. Diamantis, “Intelligent control system for reconciliation of the energy savings with comfort in buildings using soft computing techniques,” Energy and Buildings, vol. 43, no. 1, pp. 66–74, Jan. 2011, doi: 10.1016/j.enbuild.2010.08.014.
G. Jahedi and M. M. Ardehali, “Genetic algorithm-based fuzzy-PID control methodologies for enhancement of energy efficiency of a dynamic energy system,” Energy Conversion and Management, vol. 52, no. 1, pp. 725–732, Jan. 2011, doi: 10.1016/j.enconman.2010.07.051.
L. Klein et al., “Towards Optimization of Building Energy and Occupant Comfort Using Multi-Agent Simulation,” in International Symposium on Automation and Robotics in Construction, Seoul, Korea, Jun. 2011, doi: 10.22260/ISARC2011/0044.
U. C. Bureau, “American Housing Survey (AHS),” The United States Census Bureau.
https://www.census.gov/programs-surveys/ahs.html (accessed Mar. 11, 2020).
J. W. Moon, S. K. Jung, Y. Kim, and S.-H. Han, “Comparative study of artificial intelligence-based building thermal control methods – Application of fuzzy, adaptive neuro-fuzzy inference system, and artificial neural network,” Applied Thermal Engineering, vol. 31, no. 14–15, pp. 2422–2429, Oct. 2011, doi: 10.1016/j.applthermaleng.2011.04.006.
“Local Weather Forecast, News and Conditions | Weather Underground.”
https://www.wunderground.com/ (accessed Mar. 11, 2020).
Z. Wang, R. Yang, L. Wang, R. C. Green, and A. I. Dounis, “A fuzzy adaptive comfort temperature model with grey predictor for multi-agent control system of smart building,” in 2011 IEEE Congress of Evolutionary Computation (CEC), New Orleans, LA, USA, Jun. 2011, pp. 728–735, doi: 10.1109/CEC.2011.5949691.
R. Yang and L. Wang, “Energy management of multi-zone buildings based on multi-agent control and particle swarm optimization,” in 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, Oct. 2011, pp. 159–164, doi: 10.1109/ICSMC.2011.6083659.
A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tomlin, “Reducing Transient and Steady State Electricity Consumption in HVAC Using Learning-Based Model-Predictive Control,” Proceedings of the IEEE, vol. 100, no. 1, pp. 240–253, Jan. 2012, doi: 10.1109/JPROC.2011.2161242.
P. H. Shaikh, N. B. M. Nor, P. Nallagownden, and I. Elamvazuthi, “Stochastic optimized intelligent controller for smart energy efficient buildings,” Sustainable Cities and Society, vol. 13, pp. 41–45, Oct. 2014, doi: 10.1016/j.scs.2014.04.005.

R. Emmanuel, C. Clark, A. Ahmadinia, A. Javed, D. Gibson, and H. Larijani, “Experimental testing of a random neural network smart controller using a single zone test chamber,” IET Networks, vol. 4, no. 6, pp. 350–358, Nov. 2015, doi: 10.1049/iet-net.2015.0020.

A. Garnier, J. Eynard, M. Caussanel, and S. Grieu, “Predictive control of multizone heating, ventilation and air-conditioning systems in non-residential buildings,” Applied Soft Computing, vol. 37, pp. 847–862, Dec. 2015, doi: 10.1016/j.asoc.2015.09.022.

J. W. Moon, “Comparative performance analysis of the artificial-intelligence-based thermal control algorithms for the double-skin building,” Applied Thermal Engineering, vol. 91, pp. 334–344, Dec. 2015, doi: 10.1016/j.applthermaleng.2015.08.038.

Hao Huang, Lei Chen, and E. Hu, “A hybrid model predictive control scheme for energy and cost savings in commercial buildings: Simulation and experiment,” in 2015 American Control Conference (ACC), Chicago, IL, USA, Jul. 2015, pp. 256–261, doi: 10.1109/ACC.2015.7170745.

L. A. Hurtado, P. H. Nguyen, and W. L. Kling, “Smart grid and smart building inter-operation using agent-based particle swarm optimization,” Sustainable Energy, Grids and Networks, vol. 2, pp. 32–40, Jun. 2015, doi: 10.1016/j.segan.2015.03.003.

C.-S. Kang, C.-H. Hyun, and M. Park, “Fuzzy logic-based advanced on–off control for thermal comfort in residential buildings,” Applied Energy, vol. 155, pp. 270–283, Oct. 2015, doi: 10.1016/j.apenergy.2015.05.119.

K. L. Ku, J. S. Liaw, M. Y. Tsi, and T. S. Liu, “Automatic Control System for Thermal Comfort Based on Predicted Mean Vote and Energy Saving,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 1, pp. 378–383, Jan. 2015, doi:10.1109/TASE.2014.2366206.

B. Li and L. Xia, “A multi-grid reinforcement learning method for energy conservation and comfort of HVAC buildings in 2015,” IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, Aug. 2015, pp. 444–449, doi: 10.1109/CoASE.2015.7294119.

D. Zupan i, M. Lu trek, and M. Gams, “Multi-Agent Architecture for Control of Heating and Cooling in a Residential Space,” The Computer Journal, vol. 58, no. 6, pp. 1314–1329, Jun. 2015, doi: 10.1093/comjnl/bux058.

ASHRAE, International Weather for Energy Calculations (IWEC Weather Files) Users Manual and CD-ROM. ASHRAE Atlanta, 2001.

F. Ascione, N. Bianco, C. De Stasio, G. M. Mauro, and G. P. Vanoli, “Simulation-based model predictive control by the multi-objective optimization of building energy performance and thermal comfort,” Energy and Buildings, vol. 111, pp. 131–144, Jan. 2016, doi: 10.1016/j.enbuild.2015.11.033.

K. Dornelles, V. Roriz, and M. Roriz, “Determination of the solar absorptance of opaque surfaces,” in 24th International Conference on Passive and Low Energy Architecture, 2007, pp. 452–9.

N. Delgarm, B. Sajadi, and S. Delgarm, “Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC),” Energy and Buildings, vol. 131, pp. 42–53, Nov. 2016, doi: 10.1016/j.enbuild.2016.09.003.

X. Li, J. Wen, and E.-W. Bai, “Developing a whole building cooling energy forecasting model for on-line operation optimization using proactive system identification,” Applied Energy, vol. 164, pp. 69–88, 2016.

X. Li, J. Wen, and A. Malikwai, “An operation optimization and decision framework for a building cluster with distributed energy systems,” Applied Energy, vol. 178, pp. 98–109, Sep. 2016, doi: 10.1016/j.apenergy.2016.06.030.

J. W. Moon and S. K. Jung, “Algorithm for optimal application of the setback moment in the heating season using an artificial neural network model,” Energy and Buildings, vol. 127, pp. 859–869, Sep. 2016, doi: 10.1016/j.enbuild.2016.06.046.

J. W. Moon and S. K. Jung, “Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings,” Applied Thermal Engineering, vol. 103, pp. 1135–1144, Jun. 2016, doi: 10.1016/j.applthermaleng.2016.05.002.

P. H. Shaikh, N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, and T. Ibrahim, “Intelligent multi-objective control and management for smart energy efficient buildings,” International Journal of Electrical Power & Energy Systems, vol. 74, pp. 403–409, Jan. 2016, doi: 10.1016/j.ijepes.2015.08.006.
[81] M. Rasheed et al., “Real Time Information Based Energy Management Using Customer Preferences and Dynamic Pricing in Smart Homes,” Energies, vol. 9, no. 7, p. 542, Jul. 2016, doi: 10.3390/en9070542.

[82] G. Mestre et al., “An Intelligent Weather Station,” Sensors, vol. 15, no. 12, pp. 31005–31022, 2015, doi: 10.3390/s151229841.

[83] A. E. Ruano et al., “The IMBPC HVAC system: A complete MBPC solution for existing HVAC systems,” Energy and Buildings, vol. 120, pp. 145–158, May 2016, doi: 10.1016/j.enbuild.2016.03.043.

[84] M. Soudari, S. Srinivasan, S. Balasubramanian, J. Vain, and U. Kotta, “Learning based personalized energy management systems for residential buildings,” Energy and Buildings, vol. 127, pp. 953–968, Sep. 2016, doi: 10.1016/j.enbuild.2016.05.059.

[85] A. Ashrae, “Standard 55-2004,” Thermal environmental conditions for human occupancy, vol. 744, 2004.

[86] “Indoor Design Conditions - Summer and Winter,” Engineering Toolbox. https://www.engineeringtoolbox.com/inside-design-conditions-d_1570.html (accessed Mar. 15, 2020).

[87] J. Ahn and S. Cho, “Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments,” Applied Energy, vol. 204, pp. 117–130, Oct. 2017, doi: 10.1016/j.apenergy.2017.06.079.

[88] J. Ahn and S. Cho, “Development of an intelligent building controller to mitigate indoor thermal dissatisfaction and peak energy demands in a district heating system,” Building and Environment, vol. 124, pp. 57–68, Nov. 2017, doi: 10.1016/j.buildenv.2017.07.040.

[89] R. de Dear, G. Brager, and C. D., Developing an Adaptive Model of Thermal Comfort and Preference - Final Report on RP-884., vol. 104. 1997.

[90] A. Rogers, S. Ghosh, R. Wilcock, and N. R. Jennings, “A scalable low-cost solution to provide personalised home heating advice to households,” in Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings, 2015, pp. 1–8.

[91] F. Auffenber, S. Snow, S. Stein, and A. Rogers, “A Comfort-Based Approach to Smart Heating and Air Conditioning,” ACM Trans. Intell. Syst. Technol., vol. 9, no. 3, pp. 1–20, Dec. 2017, doi: 10.1145/3057730.

[92] “Weather Data | EnergyPlus,” Weather data sources for energyplus framework, 2015. https://energyplus.net/weather (accessed Mar. 14, 2020).

[93] P. Danassis, K. Siozios, C. Korkas, D. Soudris, and E. Kosmatopoulos, “A low-complexity control mechanism targeting smart thermostats,” Energy and Buildings, vol. 139, pp. 340–350, Mar. 2017, doi: 10.1016/j.buildenv.2017.01.013.

[94] A. Javed, H. Larijani, A. Ahmadinia, R. Emmanuel, M. Mannion, and D. Gibson, “Design and Implementation of a Cloud Enabled Random Neural Network-Based Decentralized Smart Controller With Intelligent Sensor Nodes for HVAC,” IEEE Internet of Things Journal, vol. 4, no. 2, pp. 393–403, Apr. 2017, doi: 10.1109/JIOT.2016.2627403.

[95] A. Javed, H. Larijani, A. Ahmadinia, and D. Gibson, “Smart Random Neural Network Controller for HVAC Using Cloud Computing Technology,” IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 351–360, Feb. 2017, doi: 10.1109/TII.2016.2597746.

[96] A. Standard, “Standard 55-2010, Thermal environmental conditions for human occupancy,” American Society of Heating, Refrigerating and Air Conditioning Engineers, 2010.

[97] L. Jiang, R. Yao, K. Liu, and R. McCrindle, “An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings,” Applied Energy, vol. 205, pp. 440–452, Nov. 2017, doi: 10.1016/j.apenergy.2017.07.081.

[98] M. Deru et al., “US Department of Energy commercial reference building models of the national building stock,” 2011.

[99] K. Konis and M. Annavaram, “The Occupant Mobile Gateway: A participatory sensing and machine-learning approach for occupant-aware energy management,” Building and Environment, vol. 118, pp. 1–13, Jun. 2017, doi: 10.1016/j.buildenv.2017.03.025.

[100] M. Macarulla, M. Casals, N. Forcada, and M. Gangolells, “Implementation of predictive control in a commercial building energy management system using neural networks,” Energy and Buildings, vol. 151, pp. 511–519, Sep. 2017, doi: 10.1016/j.enbuild.2017.06.027.

[101] D. Manjarres, A. Mera, E. Perea, A. Lejarazu, and S. Gil-Lopez, “An energy-efficient predictive control for HVAC systems applied to tertiary buildings based on regression techniques,” Energy and Buildings, vol. 152, pp. 409–417, Oct. 2017, doi: 10.1016/j.enbuild.2017.07.056.

[102] J. Reynolds, J.-L. Hippolyte, and Y. Rezgui, “A smart heating set point scheduler using an artificial neural network and genetic algorithm,” in 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), Funchal, Jun. 2017, pp. 704–710, doi: 10.1109/ICE.2017.8279954.
“Solar Resource Data and Tools | Grid Modernization | NREL.” https://www.nrel.gov/grid/solar-resource/renewable-resource-data.html (accessed Mar. 15, 2020).

“Southern California Edison,” SCE – Document Library, 2017. https://library.sce.com/ (accessed Mar. 15, 2020).

T. Wei, Y. Wang, and Q. Zhu, “Deep Reinforcement Learning for Building HVAC Control,” in Proceedings of the 54th Annual Design Automation Conference 2017 on - DAC ’17, Austin, TX, USA, 2017, pp. 1–6, doi: 10.1145/3061639.3062224.

Yuan Wang, Kirubakaran Veluswamy, and Biao Huang, “A Long-Short Term Memory Recurrent Neural Network Based Reinforcement Learning Controller for Office Heating Ventilation and Air Conditioning Systems,” Processes, vol. 5, no. 4, p. 46, Aug. 2017, doi: 10.3390/pr5030046.

B. Yuce and Y. Rezgui, “An ANN-GA Semantic Rule-Based System to Reduce the Gap Between Predicted and Actual Energy Consumption in Buildings,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 3, pp. 1351–1363, Jul. 2017, doi: 10.1109/TASE.2015.2490141.

D. Zhai, Y. C. Soh, and W. Cai, “Operating points as communication bridge between energy evaluation with air temperature and velocity based on extreme learning machine (ELM) models,” in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2016, pp. 712–716.

D. Zhai and Y. C. Soh, “Balancing indoor thermal comfort and energy consumption of ACMV systems via sparse swarm algorithms in optimizations,” Energy and Buildings, vol. 149, pp. 1–15, Aug. 2017, doi: 10.1016/j.enbuild.2017.05.019.

C. Zhong and J.-H. Choi, “Development of a Data-Driven Approach for Human-Based Environmental Control,” Procedia Engineering, vol. 205, pp. 1665–1671, 2017, doi: 10.1016/j.proeng.2017.10.341.

P. Carreira, A. A. Costa, V. Mansur, and A. Arsénio, “Can HVAC really learn from users? A simulation-based study on the effectiveness of voting for comfort and energy use optimization,” Sustainable Cities and Society, vol. 41, pp. 275–285, Aug. 2018, doi: 10.1016/j.scs.2018.05.043.

“EnergyPlus,” Energy.gov. https://www.energy.gov/eere/buildings/energyplus-0 (accessed Mar. 15, 2020).

D. 08-205-2015, “Design Standard for Energy Efficiency of Residential Buildings,” http://www.shwjmc.cn/upfile/2018227158120.pdf, Shanghai, China, 2016.

S. Gou, V. M. Nik, J.-L. Scartezzini, Q. Zhao, and Z. Li, “Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand,” Energy and Buildings, vol. 169, pp. 484–506, Jun. 2018, doi: 10.1016/j.enbuild.2017.09.095.

L. A. Hurtado, E. Mocanu, P. H. Nguyen, M. Gibescu, and R. I. G. Kamphuis, “Enabling Cooperative Behavior for Building Demand Response Based on Extended Joint Action Learning,” IEEE Transactions on Industrial Informatics, vol. 14, no. 1, pp. 127–136, Jan. 2018, doi: 10.1109/TII.2017.2753408.

C. Marantos, C. P. Lamprakos, V. Tsoutsouras, K. Siozios, and D. Soudris, “Towards plug&play smart thermostats inspired by reinforcement learning,” in Proceedings of the Workshop on INTeelligent Embedded Systems Architectures and Applications – INTESA ’18, Turin, Italy, 2018, pp. 39–44, doi: 10.1145/3285017.3285024.

“Green Mark for Non-Residential Buildings NRB:2015,” BCA Green Mark, Singapore, 2015. [Online]. Available: https://policy.asiapacificenergy.org/sites/default/files/Green Mark for Non-Residential Buildings NRB 2015.pdf.

Y. Peng, A. Rysanez, Z. Nagy, and A. Schlüter, “Using machine learning techniques for occupancy-prediction-based cooling control in office buildings,” Applied Energy, vol. 211, pp. 1343–1358, Feb. 2018, doi: 10.1016/j.apenergy.2017.12.002.

A. Rajith, S. Soki, and M. Hiroshi, “Real-time optimized HVAC control system on top of an IoT framework,” in 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Apr. 2018, pp. 181–186, doi: 10.1109/FMEC.2018.8364062.

P. H. Shaikh, N. B. M. Nor, P. Nallagownden, and I. Elamvazuthi, “Intelligent multi-objective optimization for building energy and comfort management,” Journal of King Saud University - Engineering Sciences, vol. 30, no. 2, pp. 195–204, Apr. 2018, doi: 10.1016/j.jksues.2016.03.001.

L. Zampetti, M. Arnesano, and G. M. Revel, “Experimental testing of a system for the energy-efficient zonal heating management in indoor environments based on PMV,” Energy and Buildings, vol. 166, pp. 229–238, May 2018, doi: 10.1016/j.enbuild.2018.02.019.

Z. Zhang, A. Chong, Y. Pan, C. Zhang, S. Lu, and K. P. Lam, “A deep reinforcement learning approach to using whole building energy model for hvac optimal control,” in 2018 Building Performance Analysis Conference and SimBuild, 2018, p. 9.
[142] “INNOVA Thermal Comfort Booklet,” [Online]. Available: http://www.labeee.ufsc.br/antigo/arquivos/publicacoes/Thermal_Booklet.pdf.

[143] L.-Y. Sung and J. Ahn, “Comparative Analyses of Energy Efficiency between on-Demand and Predictive Controls for Buildings’ Indoor Thermal Environment,” Energies, vol. 13, no. 5, p. 1089, Mar. 2020, doi: 10.3390/en13051089.

[144] R. Wang, S. Lu, and W. Feng, “A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost,” Energy, vol. 192, p. 116723, Feb. 2020, doi: 10.1016/j.energy.2019.116723.

[145] H. Xu, Y. He, X. Sun, J. He, and Q. Xu, “Prediction of thermal energy inside smart homes using IoT and classifier ensemble techniques,” Computer Communications, vol. 151, pp. 581–589, Feb. 2020, doi: 10.1016/j.comcom.2019.12.020.

[146] T. Zhang, Y. Liu, Y. Rao, X. Li, and Q. Zhao, “Optimal design of building environment with hybrid genetic algorithm, artificial neural network, multivariate regression analysis and fuzzy logic controller,” Building and Environment, vol. 175, p. 106810, May 2020, doi: 10.1016/j.buildenv.2020.106810.

[147] Y. Zhao, P. V. Genovese, and Z. Li, “Intelligent Thermal Comfort Controlling System for Buildings Based on IoT and AI,” Future Internet, vol. 12, no. 2, p. 30, Feb. 2020, doi: 10.3390/fi12020030.

[148] Y. Zhou and S. Zheng, “Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities,” Applied Energy, vol. 262, p. 114416, Mar. 2020, doi: 10.1016/j.apenergy.2019.114416.

[149] Z. Zou, X. Yu, and S. Ergen, “Towards optimal control of air handling units using deep reinforcement learning and recurrent neural network,” Building and Environment, vol. 168, p. 106535, Jan. 2020, doi: 10.1016/j.buildenv.2019.106535.