A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

Xuejun Gu1, Urszula Jelen2, Jinsheng Li3, Xun Jia1 and Steve B Jiang1

1 Center for Advanced Radiotherapy Technologies and Department of Radiation Oncology, University of California San Diego, La Jolla, CA 92037-0843, USA
2 University Hospital Giessen and Marburg, Department of Radiotherapy and Radiation Oncology, Particle Therapy Center Marburg, 34045 Marburg, Germany
3 Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA

E-mail: sbjiang@ucsd.edu

Received 3 March 2011, in final form 31 March 2011
Published 10 May 2011
Online at stacks.iop.org/PMB/56/3337

Abstract
Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite-size pencil beam (FSPB) algorithm with a 3D-density correction method on graphics processing unit (GPU). This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework (Gu et al 2009 Phys. Med. Biol. 54 6287–97). Dosimetric evaluations against Monte Carlo dose calculations are conducted on ten IMRT treatment plans (five head-and-neck cases and five lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 s (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5–15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning.

(Some figures in this article are in colour only in the electronic version)
1. Introduction

Online adaptive radiotherapy (ART) appears to be attractive as it allows real-time adaptation of the treatment to daily anatomical variations (Wu et al. 2002, 2004, 2008, Court et al. 2005, 2006, Mohan et al. 2005, Lu et al. 2008, Ahunbay et al. 2008, 2010, Fu et al. 2009, Godley et al. 2009, Men et al. 2009, 2010a, 2010b, Gu et al. 2009, 2010). However, it is challenging to implement online ART in clinical practice due to various technical barriers. One major barrier is to accurately compute dose distribution on the patient’s new geometry in real time. Recently, a massive parallel computing architecture, graphics processing unit (GPU), has been introduced into the radiotherapy community and applied to accelerate computationally intensive tasks (Sharp et al. 2007, Yan et al. 2007, Li et al. 2008, Samant et al. 2008, Men et al. 2009, 2010a, 2010b, Gu et al. 2010, Lu 2010, Lu and Chen 2010, Jia et al. 2010b). Much effort has been devoted to utilize GPU to speed up dose calculation algorithms, including Monte Carlo (MC) simulation, superposition/convolution (S/C), and finite-size pencil beam (FSPB) (Hissoiny et al. 2009, 2010, Gu et al. 2009, Jia et al. 2010a, Jacques et al. 2010).

The GPU-based FSPB model developed by our group is capable of calculating the dose distribution for a 9-field prostate treatment plan within 1 s (Gu et al. 2009). However, like any other conventional FSPB models, our model only accounts for 1D-density correction along the pencil beam depth direction and thus is less accurate when major inhomogeneities exist such as in lung cancer and head-and-neck cancer cases. Jelen and Alber (2007) have proposed a 3D-density correction approach to improve the accuracy of an FSPB model (Jelen et al. 2005). This improved FSPB model, termed as the DC-FSPB model in this paper, provides both lateral and longitudinal density corrections. Using a single flat 10 × 10 cm2 beam in a lung case and a 6 × 6 cm2 beam in a head-and-neck case, the authors initially demonstrated the accuracy of the model to be better than 2% for the majority of the voxels inside the field, which is a great improvement over the conventional FSPB models. In this paper, we will focus the implementation of this DC-FSPB model on GPU and examine its accuracy and efficiency using real clinical IMRT cases. We will (1) incorporate the DC-FSPB model into our GPU-based FSPB dose calculation framework; (2) systematically evaluate and demonstrate the accuracy improvement of the GPU-based DC-FSPB algorithm (g-DC-FSPB) over the GPU-based conventional FSPB algorithm (g-FSPB) under clinically realistic situations; (3) analyze in detail the ability of the g-DC-FSPB algorithm in handling various inhomogeneity situations, and (4) assess the efficiency of the g-DC-FSPB algorithm in comparison with the g-FSPB algorithm.

2. Methods and materials

2.1. An FSPB model with 3D-density correction (DC-FSPB)

In the DC-FSPB model proposed by Jelen and Alber (2007), the coefficients of the pencil beam kernel were commissioned using the XVMC MC simulation results (Fippel et al. 1999) in a homogenous water phantom and in a heterogeneous phantom with slab geometry. Briefly, the dose at a spatial point \(r \) is the summation of the contributions from all beamlets:

\[
D(r) = \sum_{i}^{D} f_i(r),
\]

where \(f_i \) denotes the photon fluence (or beamlet intensity) for the beamlet \(i \). The dose distribution of the beamlet \(i \) with unit intensity from a point source located at \(r_s \) can be formulated as

\[
D_i(r) = F(x, y, \omega(\rho, t), \alpha_x(\rho, t), \alpha_y(\rho, t), x_0, y_0) \cdot A(t_{eq}, \theta) \cdot \left(\frac{SAD}{|r_s|} \right)^2.
\]
Here, \mathbf{r}_a denotes the projection of the vector $\mathbf{r} - \mathbf{r}_a$ onto the beamlet direction. x, y are the projections of the vector $\mathbf{r} - \mathbf{r}_a$ onto the x-axis and y-axis of the plane perpendicular to the beamlet direction. x_0 and y_0 represent the beamlet size. x, y, x_0 and y_0 are defined at the isocenter plane. SAD is the source to the axis distance. t is the portion of $|\mathbf{r}_a|$ below the surface and t_{eq} is the radiological depth. θ is the angle between the beamlet and its corresponding beam central axis. ω^i's denote weighting factors and u's are the steepness parameters of the beam’s penumbra. The function F is the summation of two terms, formulated as

$$F(x, y, \omega, u_x, u_y, x_0, y_0) = \sum_{i=1}^{2} \omega_i p(x, u_{ix}, x_0) p(y, u_{iy}, y_0).$$

(3)

Here, one term models the primary dose and the other one represents the secondary dose accounting for scattering components. Each term is a product of two independent exponential functions. Specifically $p(x, u_{ix}, x_0)$ is defined as

$$p(x, u_{ix}, x_0) = \begin{cases} \sinh (u_{ix} x_0) \exp(u_{ix} x) & \text{for } x < -x_0 \\ 1 - \cosh (u_{ix} x) \exp(-u_{ix} x_0) & \text{for } -x_0 \leq x \leq x_0 \\ \sinh (u_{ix} x_0) \exp(-u_{ix} x) & \text{for } x > x_0 \end{cases}.$$

(4)

The term for $p(y, u_{iy}, y_0)$ is similarly defined. By adjusting the parameters in equations (2)–(4), we are able to shape the beamlet dose distribution in three dimensions. Along the beamlet direction, $\Lambda(t_{eq}, \theta)$ is a function of radiological depth and off-axis angle, taking care of heterogeneity correction along beamlet depth direction as well as the horn effect at various off-axis distances. Perpendicular to the beamlet direction, the beam’s penumbra steepness is tuned according to local density ρ as $u_1(\rho, t) = f_1(\rho) \cdot u_1^w(t)$ and a smoothed density $\hat{\rho}$ as $u_2(\rho, t) = f_2(\hat{\rho}) \cdot u_2^w(t)$, where the smoothed density $\hat{\rho}$ is obtained by convolving the local density ρ with a 3D symmetric Gaussian kernel. Here, $u_1^w(t)$ and $u_2^w(t)$ are the parameters commissioned in a homogenous water phantom at a geometrical depth t and $f_1(\rho)$ and $f_2(\hat{\rho})$ are penumbra widening factors. The weighting factors ω_0 adjust the proportions of primary and secondary dose according to the smoothed density $\hat{\rho}$ and the beamlet passing history using a formula $\omega_0(\rho, t) = f_0(\hat{\rho}) \cdot (\omega_0^w(t) + \omega_0^{corr}(t))$, where $f_0(\hat{\rho})$ adjusts weighting factors locally according to a smoothed density $\hat{\rho}$. $\omega_0^w(t)$ is the commissioned weighting factor in a homogenous water phantom at a depth t. $\omega_0^{corr}(t) = \int_0^t b(\rho(t')) \, dt'$, where $b(\rho(t'))$ is a parameter describing the changing of $\omega_0(\rho, t)$ values with the existence of heterogeneities. The details of the DC-FSPB model can be found in reference Jelen and Alber (2007).

In this work, the model parameters were commissioned for the 6 MV beam of a Varian 21EX linac using MC simulated dose distributions. The dose distributions were calculated using the MCSIM MC code (Ma et al 2002) together with a realistic source model (Jiang et al 2000) for a $10 \times 10 \, \text{cm}^2$ field with SAD = 100 cm and SSD = 90 cm. A slab geometry phantom of $30 \times 30 \times 30 \, \text{cm}^3$ dimension was used for commissioning. The slab of 15 cm thickness is inserted at 8 cm below the phantom surface with the density varying from 0.1 to 2.0 g cm$^{-3}$. The parameters in the DC-FSPB model, such as u, ω, $f()$ and $b()$, were obtained by fitting the dose distributions of the DC-FSPB model to those of the MCSIM simulation.

Once the parameters are established, the dose distribution for a board beam can be calculated using equation (1). Algorithm A1 given below illustrates the CPU implementation of the DC-FSPB algorithm. It, if skipping step 11, is degenerated to the FSPB algorithm with longitudinal density correction only.

2.2. GPU implementation

Algorithm A2 is the GPU implementation of algorithm A1 using Compute Unified Device Architecture (CUDA) programming environment. Similar to the CPU algorithm, in kernel 5,
Algorithm A1. An FSPB algorithm with 3D-density correction implemented on CPU (DC-FSPB).

1. Calculate a smoothed density distribution $\hat{\rho}$ by convolving the density distribution ρ from patient CT data with a spherical Gaussian kernel;
2. For each beamlet:
3. Calculate the beamlet angle θ;
4. Extract the beamlet entrance and exit points on patient’s body surface;
5. Build a lookup table for radiological depth $t_{eq} = \int_0^t \mu(t) \rho d\rho$;
6. Build a lookup table for the weighting factor correction term:
 $$\omega_{corr}^i(t) = \int_0^t b(\rho(t')) dt';$$
7. For each voxel:
8. For each beamlet such that the voxel is inside the region of interest (ROI)* of the beamlet
9. Extract $A(t_{eq}, \theta)$ from the commissioned parameter lookup table;
10. Extract $u_1^i(t)$ and $\omega_i^o(t)$ from the commissioned parameter lookup table;
11. Calculate density corrected parameters:
 $$u_1(\rho, t) = f_1(\rho) u_1^i(t);$$
 $$u_2(\rho, t) = f_2(\hat{\rho}) u_2^i(t);$$
 $$\omega_i(\rho, t) = \omega_i^o(t) + \omega_{corr}^i(t);$$
12. Calculate the dose according to equations (1) and (2);
13. End For
14. End For
15. End For

*Here, ROI is defined as a cylinder of a radius of 5 cm centered at the beamlet central axis.

Algorithm A2. An FSPB algorithm with 3D-density correction implemented on GPU (g-DC-FSPB).

1. Transfer the beam setup parameters, patient CT data, and commissioned model parameters from CPU to GPU;
2. Kernel 1: Perform an convolution to obtain smoothed density distribution $\hat{\rho}$ in parallel (step 1 in algorithm A1);
3. Kernel 2: Calculate the beamlet angle θ for all beamlets in parallel (step 3 in algorithm A1);
4. Kernel 3: Extract the beamlet entrance and exit points on the patient’s body surface for beamlets in parallel (step 4 in algorithm A1);
5. Kernel 4: Build a radiological depth lookup table and a weighting factor correction lookup table for all beamlets in parallel (steps 5–6 in algorithm A1);
6. Kernel 5: Calculate dose to all voxels in parallel for all the beamlets (steps 7–14 in algorithm A1);
7. Transfer the dose distribution from GPU to CPU.

if we skip the density correction calculations, the g-DC-FSPB algorithm is degenerated to the g-FSPB algorithm.

The efficiency of a GPU code heavily relies on the efficiency of the memory management. On a GPU card, available memory consists of constant memory, global memory, shared memory and texture memory. The constant memory is cached, which requires only one memory instruction (four clock cycles) to access. However, the available constant memory is limited to 64 kB on a typical GPU card (such as NVIDIA Tesla C1060). Due to the limited space, we store only those frequently accessed arrays with constant values in the constant memory.
memory, such as the beam setup parameters and the commissioned model parameters. The global memory is not cached and requires coalesced memory access to achieve an optimal usage, but it has a large capacity (4 GB on one Tesla C1060 card) and is writable. Thus, we assign the radiological density array and the dose distribution array in the global memory since they require memory writing. The texture memory is read-only memory, but it is cached and the texture fetch is not restricted by the coalescing memory access pattern to achieve high performance. The density array is stored in the texture memory. By doing so, the performance is improved with texture fetching in kernels 1 and 4, where the convolution and integration cannot follow the global memory coalescing accessing requirement.

The radiological depth and the weighting factor correction calculations require the integration of the density functions along the beamlet direction, which is a computationally intensive ray-tracing problem. Siddon’s algorithm is commonly used on most CPU platforms for this task (Siddon 1985). However, with Siddon’s algorithm, since the segment length that the beamlet central-axis intersects with each voxel is not constant, the lookup table of the radiological depth (or the weighting factor correction term) for each beamlet has to include two arrays: one storing the radiological depth (or the weighting factor correction term) while the other auxiliary array listing the corresponding geometrical depth. In kernel 5 of algorithm A2, for each voxel, we have to search the geometrical depth array and then calculate the corresponding radiological depth (or weighting factor). In order to reduce the memory usage and improve the efficiency, in this work we adopt another approach to avoid the storage and search of the geometrical depth auxiliary array. This approach computes the radiological depth and the weighting factor correction term at the sampling points uniformly distributed along the beamlet central-axis. The sampling step size is chosen as \(d = \frac{1}{2} \min(\delta_x, \delta_y, \delta_z) \), where \(\delta_x, \delta_y, \delta_z \) represent the voxel size in \(x, y \) and \(z \) dimensions. With this approach, the storing and searching of the geometrical depth array becomes unnecessary. The involved interpolation procedures can be conducted with high efficiency using the fast on-chip linear interpolation function.

We compute the hyperbolic and exponential functions in equation (4) using CUDA intrinsic function \(\text{expf}(z) \), which is about an order of magnitude faster than the standard math function \(\text{expf}(z) \). The maximum ulp (unit of least precision) error of \(\text{expf}(z) \) is bounded by \(2 + \text{floor}(\text{abs}(1.16 \times z)) \) (NVIDIA 2010). For the data used in our g-DC-FSPB model, since \(z < 0.5 \) the error of function \(\text{expf}(z) \) is actually bounded by 2 maximum ulp, which is equal to the error of the function \(\text{expf}(z) \). Therefore, the use of the intrinsic function \(\text{expf}(z) \) can greatly increase the efficiency without losing any accuracy.

2.3. Evaluation

The g-DC-FSPB algorithm was evaluated for its accuracy against the MCSIM algorithm (Ma et al 2002) and its efficiency using ten real IMRT plans: five head-and-neck (H1–H5) cases and five lung (L1–L5) cases. All treatment plans were initially generated on the Eclipse planning system (Eclipse, Varian Medical Systems, Inc. Palo Alto, CA) and used to treat patients. Table 1 lists some relevant information for these ten evaluation cases. The original CT images were down-sampled to the resolution of 0.4 \(\times \) 0.4 \(\times \) 0.25 cm\(^3\) for the dose calculations using the MCSIM, g-FSPB and g-DC-FSPB codes. Treatment plan parameters, including beam setup, leaf sequences and monitor units, were extracted from the Eclipse planning system and converted into RTP files as the input for MCSIM dose calculation. Leaf sequences and monitor units were reformatted into fluence map files as the input of the g-FSPB and g-DC-FSPB codes. The resolution of the fluence maps (or the beamlet size) was selected as 0.2 \(\times \) 0.5 cm\(^2\) with 0.2 cm along the MLC leaf motion direction.
Table 1. Tumor site, number of beams, and case dimension for five head-and-neck (H1–H5) cases and five lung (L1–L5) cases.

Case	Tumor site	Number of beams	Number of beamlets	Number of voxels
H1	Parotid	8 (non-coplanar)	7264	128 × 128 × 72
H2	Hypopharynx	7 (non-coplanar)	4429	128 × 128 × 72
H3	Nasal cavity	8 (non-coplanar)	3381	128 × 128 × 72
H4	Parotid	5 (coplanar)	4179	128 × 128 × 72
H5	Larynx	7 (non-coplanar)	10 369	128 × 128 × 72
L1	Left lung, low lobe (close to pleura)	6 (coplanar)	637	128 × 128 × 80
L2	Right lung, low lobe (paravertebral)	6 (coplanar)	1720	128 × 128 × 103
L3	Left lung, upper lobe (close to pleura)	5 (coplanar)	921	128 × 128 × 80
L4	Right lung, upper lobe (close to heart)	7 (coplanar)	841	128 × 128 × 80
L5	Left lung (middle)	5 (coplanar)	686	128 × 128 × 80

For accuracy evaluation, the dose distributions calculated with MCSIM were used as the ground truth, with the maximum relative uncertainty less than 0.1% by simulating 2 billion particles for each beam. We computed the absolute dose in cGy for both g-DC-FSPB and MCSIM. The 3D γ-index distributions were computed using a GPU-based algorithm (Gu et al. 2011). Dose distributions were evaluated with 3%–3 mm criteria, where the 3% is relative to the maximum MCSIM dose value (D_{max}). The following statistical parameters were calculated and used as metrics to evaluate the dose calculation accuracy: (1) γ_{max}: the maximum γ value of the entire dose distribution; (2) γ_{avg}^{50}: the average γ values inside 50% isodose lines; (3) P_{50}: the percentage of voxels inside 50% isodose lines with $\gamma < 1.0$. For the efficiency evaluation, both g-FSPB and g-DC-FSPB dose calculations were conducted on an NVIDIA Tesla C1060 card. The data transferring time and the GPU computation time were recorded separately.

3. Results and discussion

3.1. Accuracy evaluation

3.1.1. Head-and-neck cases. Table 2 summarizes the γ-index evaluation results for five head-and-neck cases. We can see that, for all five cases, γ_{max} and γ_{avg}^{50} values are smaller and P_{50} values are larger for the g-DC-FSPB algorithm, indicating that the new algorithm with 3D-density correction constantly outperforms the conventional FSPB algorithm. Specifically, we can put these five cases into three scenarios:
Scenario 1 (cases H1 and H2)—both g-FSPB and g-DC-FSPB algorithms are accurate. For these two cases, the average γ-index values are low (≈0.3) and the passing rates are high (>97%) for both the g-FSPB and g-DC-FSPB algorithms. By closely inspecting the patient geometries and the treatment plans for cases H1 and H2, we found that there are only minor inhomogeneities on beams’ paths and thus the g-FSPB algorithm can calculate the dose distributions quite accurately. In such cases, there is not much room for the g-DC-FSPB algorithm to improve the accuracy.

Scenario 2 (case H3)—the g-FSPB algorithm is less accurate but the g-DC-FSPB algorithm can greatly improve the accuracy. Figures 1(a)–(c) show the dose distributions for case H3 calculated with the MCSIM, g-FSPB and g-DC-FSPB algorithms in the XY plane through isocenter, respectively. The γ-index distributions in the same plane are presented in figures 1(d) and (e), from which we can see that the γ-index values decrease significantly at the nasal cavity region when the 3D-density correction is applied. The statistical analysis of the γ-index also shows that the g-DC-FSPB dose distribution has a lower average γ-index value and a higher passing rate compared to the g-FSPB result. These results indicate that the g-DC-FSPB algorithm is capable of calculating dose more accurately in a low-density region (e.g. nasal cavity) than the g-FSPB algorithm.

Scenario 3 (cases H4 and H5)—both g-FSPB and g-DC-FSPB algorithms are less accurate. For these two cases, the g-FSPB dose distributions have large average γ-index values (γ_{avg} ≈0.6) and low passing rates (P_{50}≈86%). With 3D-density correction, the accuracy of the dose distributions is not much improved. By carefully inspecting these two cases, we found that in both cases there are dental fillings of very high density (~4.0 g cm⁻³).
Figure 2. (a) Dose distributions for case H4 calculated with the g-DC-FSPB algorithm in the XY plane through the isocenter. The dose difference maps in the unit of % D_{max} between the g-DC-FSPB and the MCSIM results are shown in the same plane for each individual beam at the angle: (b) 309°, (c) 0°, (d) 51°, (e) 102° and (f) 153°.

H4 in the XY plane through the isocenter, in which we can clearly see the high-density dental fillings. The dose difference maps between the MCSIM and g-DC-FSPB dose distributions for each of the five co-planar beams (309°, 0°, 51°, 102° and 153°) are illustrated in figures 2(b)–(f). We can see that the beam at angle 309° passes through the high-density dental filling region before hitting the target, causing a dose discrepancy up to 8% of D_{max} between the g-DC-FSPB and MCSIM results. This is because the density values near 4.0 g cm$^{-3}$ are far beyond our commissioned density range and thus the g-DC-FSPB algorithm cannot find proper parameters to accurately calculate the dose. For the other four beams, since they do not pass through the high-density region, the g-DC-FSPB dose distributions agree well (within 1–2% of D_{max}) with the MCSIM dose distributions.

3.1.2. Lung cases. In case L1, the tumor site is located in the lower lobe of the left lung, closing to the pleura. The five out of total six beams do not pass through low-density lung regions before hitting the target, where the g-FSPB algorithm has sufficient accuracy. The last beam goes through the low-density lung regions to reach the target and thus the 3D-density correction is needed to achieve high accuracy. The combined effect of all six beams is that, using the g-DC-FSPB method, γ_{50}^{avg} is reduced from 0.45 to 0.24 and P_{50} is increased from 94.81% to 99.35%.

In case L2, the tumor site is close to the vertebral body. Three out of six beams strike the target without passing through low-density lung regions. For these beams the g-FSPB algorithm can generate accurate results. For the other three beams, which pass through lung areas before hitting the target, the g-FSPB algorithm becomes inadequate. The dose distributions calculated with the MCSIM, g-FSPB and g-DC-FSPB algorithms are plotted in
GPU-based FSPB algorithm with 3D-density correction for radiotherapy dose calculation

Figure 3. The dose distribution of case L2 calculated with MCSIM (a), g-FSPB (b) and g-DC-FSPB (c) in the XY plane through the isocenter. The γ-index distributions in the same plane are illustrated in (d) for g-FSPB and (e) for g-DC-FSPB.

Table 3. Gamma index evaluation results for five lung cases using the g-DC-FSPB algorithm. The corresponding g-FSPB results are given in parenthesis for comparison purposes.

Case	γ\text{max}	γ_{50}^{avg}	P_{50}
L1	1.53 (1.92)	0.24 (0.45)	99.35% (94.81%)
L2	2.35 (3.30)	0.36 (0.71)	96.64% (76.38%)
L3	1.68 (3.07)	0.32 (0.75)	99.16% (76.60%)
L4	2.70 (4.59)	0.63 (1.53)	81.33% (28.55%)
L5	2.19 (4.34)	0.49 (1.13)	90.24% (57.03%)

The tumor in case L4 is in the middle of the lung, indicating that all beams have to pass through the low-density lung regions before hitting the target. The dose distributions in the XY plane through isocenter calculated with the MCSIM, g-FSPB and g-DC-FSPB algorithms are shown in figures 4(a)–(c). The γ-index distributions in the same plane calculated with the g-FSPB and g-DC-FSPB algorithms are plotted in figures 4(d) and (e). From figures 4(a), (b) and (d), we observe that in the high dose region, the g-FSPB algorithm heavily overestimates the calculated dose. From figures 4(c) and (e), we can see that the g-DC-FSPB algorithm can correct the overestimation of the g-FSPB algorithm and greatly improve the agreement with MCSIM, especially inside the target region. However, in lung regions outside the target, the density correction is overdone, resulting in an underestimated dose.
The dose distribution for case L4 is analyzed individually for each of the seven coplanar beams at the gantry angles of 35°, 5°, 330°, 280°, 250°, 230°, and 210°. In figure 5, we plot the normalized depth dose curves and depth density curves for each beam. Here, we normalize three depth dose curves for each beam to the maximum dose calculated with the MCSIM algorithm for that beam. We can see that, without 3D-density correction, all the depth dose curves exhibit a monotonic decrease after the maximum dose and do not show a clear inhomogeneity correction effect. In contrast, the depth dose curves calculated with the g-DC-FSPB algorithm exhibit a proper trend of density correction, i.e. build-down and build-up effects, as indicated by the MCSIM depth dose curves. Overall, the calculated dose distribution of each beam is significantly improved with 3D-density correction. For the composite dose distribution, as shown in table 3, the γ-index passing rate inside 50% isodose line has been improved from 28.55% to 81.33%. However, for some beams the g-DC-FSPB algorithm overcorrects the density effect, leading to a much underestimated dose in lung regions. This phenomenon is particularly obvious for a gantry angle such as 35°, which is mainly responsible for the discrepancy shown in figure 4(e). Similarly, for case L5, the improvement of dose distribution achieved by the 3D-density correction method is dramatic. However, the γ-index passing rate in the 50% isodose line for the g-DC-FSPB algorithm is still less satisfactory due to the similar overcorrection issue.

3.2. Efficiency evaluation

Table 4 lists computation time for dose calculation using the g-FSPB and g-DC-FSPB algorithms. We can see that the dose distribution of a realistic IMRT plan can be computed at a very high efficiency. For nine out of ten testing cases, the dose calculation can be completed within 1 s using either algorithm. For all ten cases, the median data transfer time between CPU and GPU is 0.2 s, and the median GPU computation time is 0.37 s for the g-DC-FSPB algorithm and 0.33 s for the g-FSPB algorithm. Since the computation time is so short, the data transfer time takes a significant portion of the total computation time, up to 50% in case
Figure 5. The depth dose curves and the depth density curves along the beam central axis for seven beams (a) 35°, (b) 5°, (c) 330°, (d) 280°, (e) 250°, (f) 230° and (g) 210°. The depth dose curves are normalized to each beam’s maximum dose calculated with MCSIM.

L1. We can also see that, while the accuracy of the g-DC-FSPB algorithm is much higher than that of the g-FSPB algorithm, its efficiency sacrifice is quite mild (~5–15% slower in terms of the total computation time).
Table 4. Dose calculation time using the g-FSPB (in parenthesis) and g-DC-FSPB algorithms for ten testing cases. T_{tr} is the data transfer time between CPU and GPU. T_{gpu} is the GPU computation time. $T_{tot} = T_{tr} + T_{gpu}$.

Case	T_{tr} (s)	T_{gpu} (s)	T_{tot} (s)
H1	0.20	0.64 (0.55)	0.84 (0.75)
H2	0.20	0.40 (0.35)	0.60 (0.55)
H3	0.20	0.38 (0.34)	0.58 (0.54)
H4	0.19	0.35 (0.32)	0.54 (0.51)
H5	0.20	1.31 (1.10)	1.51 (1.30)
L1	0.21	0.22 (0.20)	0.43 (0.41)
L2	0.22	0.40 (0.36)	0.62 (0.58)
L3	0.21	0.30 (0.25)	0.51 (0.46)
L4	0.18	0.25 (0.23)	0.43 (0.41)
L5	0.21	0.33 (0.29)	0.54 (0.50)
Median	0.20	0.37 (0.33)	0.56 (0.53)

4. Conclusions

In this paper, we detailed the implementation of the g-DC-FSPB algorithm. The dosimetric evaluation of the g-DC-FSPB algorithm was conducted on five head-and-neck and five lung IMRT treatment plans. Using the dose distributions computed with the MCSIM MC code as reference, we assessed the accuracy improvement of the g-DC-FSPB algorithm over the g-FSPB algorithm.

For head-and-neck cases, (1) when only minor heterogeneities exist, the g-FSPB algorithm is already quite accurate and the improvement achieved by the g-DC-FSPB algorithm is mild; (2) when air cavities are near the target, the g-DC-FSPB algorithm can significantly improve the accuracy of dose distribution; (3) when there are high-density dental filling materials in the beam paths, the dose calculation accuracy of the g-DC-FSPB algorithm is unsatisfactory although there is still an improvement over the g-FSPB algorithm, due to the fact that such high-density materials were not considered in the commissioning process.

For all lung cases, the accuracy of calculated dose distributions is significantly improved with the 3D-density correction method. However, the degree of such improvement is highly dependent on inhomogeneities presented in the beam paths. When the majority of beams in a treatment plan reach the target without passing through the low-density lung region, the accuracy of dose distribution calculated by the g-FSPB algorithm is already satisfactory, while there is still a significant improvement with the 3D-density correction method. When more than half of the beams in a treatment plan have to pass through the low-density lung region before reaching the target, the accuracy of the g-FSPB algorithm is poor, while the g-DC-FSPB algorithm can dramatically improve the dose calculation accuracy.

In the original work of Jelen and Alber (2007), better than 2% of accuracy was demonstrated for the majority of the voxels inside the field when using the DC-FSPB model, which seems better than our g-DC-FSPB algorithm. We would like to point out that their accuracy was accomplished for a single flat 10×10 cm2 beam in a lung case and a 6×6 cm2 beam in a head-and-neck case, while our results were obtained for ten real clinical IMRT cases.

Regarding the efficiency, we see that for nine out of ten testing cases, the dose calculation can be completed well within 1 s for both g-FSPB and g-DC-FSPB algorithms. The median
GPU computation times are less than half a second for both algorithms. Compared to the g-FSPB algorithm, the g-DC-FSPB algorithm slightly sacrifices the computation efficiency, about 5–15% slower in terms of the total computation time. However, the significant accuracy improvement of the g-DC-FSPB algorithm far outweighs the slight efficiency lost, indicating that this algorithm is more suitable for online IMRT replanning.

Acknowledgments

This work was supported in part by the University of California Lab Fees Research Program and by an NIH/NCI grants 1F32 CA154045-01. We would like to thank NVIDIA for providing GPU cards for this project.

References

Ahunbay E E, Peng C, Chen G P, Narayanan S, Yu C, Lawton C and Li X A 2008 An on-line replanning scheme for interfractional variations Med. Phys. 35 3607–15
Ahunbay E E, Peng C, Holmes S, Godley A, Lawton C and Li X A 2010 Online adaptive replanning method for prostate radiotherapy Int. J. Radiat. Oncol. Biol. Phys. 77 1561–72
Court L E, Dong L, Lee A K, Cheung R, Bonnen M D, O’Daniel J, Wang H, Mohan R and Kuban D 2005 An automatic CT-guided adaptive radiation therapy technique by online modification of multileaf collimator leaf positions for prostate cancer Int. J. Radiat. Oncol. Biol. Phys. 62 154–63
Court L E, Tishler R B, Petit J, Cormack R and Chin L 2006 Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study Phys. Med. Biol. 51 2493–501
Fippel M, Laub W, Huber B and Nassili F 1999 XVMC-fast Monte Carlo dose calculation for photon beam treatment planning Z. Med. Phys. 4 255–60
Fu W H, Yang Y, Yue N J, Heron D E and Huq M S 2009 A cone beam CT-guided online plan modification technique to correct interfractional anatomic changes for prostate cancer IMRT treatment Phys. Med. Biol. 54 1691–703
Godley A, Ahunbay E, Peng C and Li X A 2009 Automated registration of large deformations for adaptive radiation therapy of prostate cancer Med. Phys. 36 1433–41
Gu X J, Choi D J, Men C H, Pan H, Majumdar A and Jiang S B 2009 GPU-based ultra-fast dose calculation using a finite size pencil beam model Phys. Med. Biol. 54 6287–97
Gu X J, Jia X and Jiang S B 2011 GPU-based fast gamma index calculation Phys. Med. Biol. 56 1431–41
Gu X J, Pan H, Liang Y, Castillo R, Yang D S, Choi D J, Castillo E, Majumdar A, Guerrero T and Jiang S B 2010 Implementation and evaluation of various demons deformable image registration algorithms on a GPU Phys. Med. Biol. 55 207–19
Hissoiny S, Ozell B and Despres P 2009 Fast convolution-superposition dose calculation on graphics hardware Med. Phys. 36 1998–2005
Hissoiny S, Ozell B and Despres P 2010 A convolution-superposition dose calculation engine for GPUs Med. Phys. 37 1029–37
Jacques R, Taylor R, Wong J and McNutt T 2010 Towards real-time radiation therapy: GPU accelerated superposition/convolution Comput. Medh. Programs Biomed. 98 285–92
Jelen U and Alber M 2007 A finite size pencil beam algorithm for IMRT dose optimization: density corrections Phys. Med. Biol. 52 617–33
Jelen U, Sohn L and Alber M 2005 A finite size pencil beam for IMRT dose optimization Phys. Med. Biol. 50 1747–66
Jia X, Gu X J, Sempau J, Choi D, Majumdar A and Jiang S B 2010a Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport Phys. Med. Biol. 55 3077–86
Jia X, Lou Y F, Li R J, Song W Y and Jiang S B 2010b GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation Med. Phys. 37 1757–60
Jiang S B, Deng J, Li J S, Pawlicki T, Boyer A L and Ma C-M 2000 Modeling and commissioning of clinical photon beams for Monte Carlo treatment planning Proc. 13th Int. Conf. on the Use of Computer in Radiation Therapy (ICCR) ed W Schlegel and T Bottfeld (Heidelberg: Springer) pp 434–6
Li G et al 2008 Accuracy of 3D volumetric image registration based on CT, MR and PET/CT phantom experiments J. Appl. Clin. Med. Phys. 9 17–36
Lu W G 2010 A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning Phys. Med. Biol. 55 7175–210
Lu W G, Chen M, Chen Q, Ruchala K and Olivera G 2008 Adaptive fractionation therapy: I. Basic concept and strategy Phys. Med. Biol. 53 5495–511
Lu W G and Chen M L 2010 Fluence-convolution broad-beam (FCBB) dose calculation Phys. Med. Biol. 55 7211–29
Ma C-M, Li J S, Pawlicki T, Jiang S B, Deng J, Lee M C, Koumrian T, Luxton M and Brain S 2002 A Monte Carlo dose calculation tool for radiotherapy treatment planning Phys. Med. Biol. 47 1671
Men C H, Gu X J, Choi D J, Majumdar A, Zheng Z Y, Mueller K and Jiang S B 2009 GPU-based ultrafast IMRT plan optimization Phys. Med. Biol. 54 6565–73
Men C H, Jia X and Jiang S B 2010a GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy Phys. Med. Biol. 55 4309–19
Men C H, Jia X, Jiang S B and Romeijn H E 2010b Ultrafast treatment plan optimization for volumetric modulated arc therapy (VMAT) Med. Phys. 37 5787–91
Mohan R, Zhang X D, Wang H, Kang Y X, Wang X C, Liu H, Ang K, Kuban D and Dong L 2005 Use of deformed intensity distributions for on-line modification of image-guided IMRT to account for interfractional anatomic changes Int. J. Radiat. Oncol. Biol. Phys. 61 1258–66
NVIDIA 2010 NVIDIA CUDA Compute Unified Device Architecture, Programming Guide version 3.2 (NVIDIA)
Samant S S, Xia J Y, Muyan-Ozcelik P and Owens J D 2008 High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy Med. Phys. 35 5546–53
Sharp G C, Kandasamy N, Singh H and Folkert M 2007 GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration Phys. Med. Biol. 52 5771–83
Siddon R L 1985 Fast calculation of the exact radiological path for a 3-dimensional CT array Med. Phys. 12 252–5
Wu C, Jeraj R, Lu W G and Mackie T R 2004 Fast treatment plan modification with an over-relaxed Cimmino algorithm Med. Phys. 31 191–200
Wu C, Jeraj R, Olivera G H and Mackie T R 2002 Re-optimization in adaptive radiotherapy Phys. Med. Biol. 47 3181–95
Wu Q J, Thongphiew D, Wang Z, Mathayomchan B, Chankong V, Yoo S, Lee W R and Yin F F 2008 On-line re-optimization of prostate IMRT plans for adaptive radiation therapy Phys. Med. Biol. 53 673–91
Yan H, Ren L, Godfrey D J and Yin F F 2007 Accelerating reconstruction of reference digital tomosynthesis using graphics hardware Med. Phys. 34 3768–76