Circadian Rhythms within the Female HPG Axis: From Physiology to Etiology

Shuyi Shao1,2,\#, Huanqiang Zhao1,2,\#, Zhiying Lu1,2, Xiaohong Lei1,2, Ying Zhang1,2,*

1 Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China; \\
2 The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China

\# These authors contributed equally to this work.

*Correspondence: 13818218839@163.com

Dr. Ying Zhang, Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Huangpu District, Shanghai, 200011, China. Tel: +86-21-63455050.

ORCiD number: https://orcid.org/0000-0003-3853-5070

Disclosure statement: The authors have nothing to declare.
Declining female fertility has become a global health concern. It results partially from an abnormal circadian clock caused by unhealthy diet and sleep habits in modern life. The circadian clock system is a hierarchical network consisting of central and peripheral clocks. It not only controls the sleep-wake and feeding-fasting cycles but also coordinates and maintains the required reproductive activities in the body. Physiologically, the reproductive processes are governed by the hypothalamic-pituitary-gonadal (HPG) axis in a time-dependent manner. The HPG axis releases hormones, generates female characteristics, and achieves fertility. Conversely, an abnormal daily rhythm caused by aberrant clock genes or abnormal environmental stimuli contributes to disorders of the female reproductive system, such as polycystic ovarian syndrome (PCOS) and premature ovarian insufficiency (POI). Therefore, breaking the "time code" of the female reproductive system is crucial. In this paper, we review the interplay between circadian clocks and the female reproductive system and present its regulatory principles, moving from normal physiology regulation to disease etiology.

Keywords: circadian clock; hypothalamic-pituitary-gonadal axis; female reproductive disorders; clock genes
Introduction

The female reproductive system consists of various secretory organs that release hormones and generate female characteristics as well as achieve fertility. Physiologically, the whole system is governed by the hypothalamic-pituitary-gonadal (HPG) axis in a time-dependent manner. In the early stage of the menstrual cycle, a rise in follicle-stimulating hormone (FSH) prompts estrogen, which later stimulates luteinizing hormone (LH) secretion. About 36-40 hours after LH surges at mid-cycle, the dominant follicle releases an oocyte\(^1\)^2, and all hormones return to base levels. However, this periodic regulation is vulnerable to disruption from pathological circumstances, like eating and sleeping disorders\(^3\). With long-term exposure, these could lead to an irregular menstrual cycle, which is also a signal of multiple reproductive diseases.

The intrinsic clock oscillator in all organisms works to adapt to these disruptive challenges\(^4\). Its mechanism is indeed the circadian clock, which is entrained by external cues and rhythmically regulates the vast majority of physiological and behavioral processes of the human body. During the life of a female, circadian control is exerted at all levels, from follicle development\(^5\)^6 to coordination of hormone homeostasis\(^7\), and from embryo implantation\(^8\)^9 to the final delivery\(^10\). In humans, optimal fitness requires synchronized oscillation between the internal circadian rhythm and external environmental cycles. Once it is misaligned, the rhythm is lost and eventually diseases show up. Thereby, a novel therapeutic option, termed "chronotherapy", is put forward to use the concept of time in disease treatment, further emphasizing the status of circadian rhythms\(^11\).

Regarding biological rhythms in humans, apart from sleep and endocrine activities, reproductive rhythms are the best understood. Recent work has implicated the circadian clock genes in regulating processes in the hypothalamus, pituitary, ovary, and some endocrine organs, all of which are critical in hormone secretion\(^12\)^17. Some evidence indicates that disruption to circadian rhythms can increase the risk of irregular estrous cyclicity and polycystic ovarian syndrome (PCOS)\(^10\)^18. In this review, we focus on the relationship between the HPG axis and the circadian clock with elusive interplay and
discuss the underlying mechanisms. Furthermore, we present the regulatory principles of circadian rhythmicity, moving from normal physiology regulation to disease etiology of the female reproductive system.

The Circadian Clock System

Most organisms experience daily changes in their environment, such as light, temperature, and food. To better adapt to these precise and regular alternations, organisms, ranging from fungi and bacteria to plants and mammals, present with daily biological processes and physiological rhythms19-22. The external cues, termed zeitgebers (a German word, literally “time-givers”), entrain the circadian rhythm and further activate the regulation of the endogenous timing system. The normal function of the system is based on a hierarchical network of central and peripheral clocks. Generally, the central clocks are located in the suprachiasmatic nucleus (SCN) in the hypothalamus and regulate and convey rhythmic information to 'downstream' clocks in peripheral tissues and organs, resulting in specific biochemistry, physiology, and behavior23.

In essence, the circadian clock is a rhythmic transcriptional and translational feedback loop (TTFL). In the main loop in mammals, the transcriptional activators, CLOCK and BMAL1, accumulate in the nucleus and dimerize to bind to the E/E'-box containing enhancers or promoters of the transcriptional suppressor genes \textit{PER} and \textit{CRY}. Then, \textit{PER} and \textit{CRY} proteins physically interact and translocate to the nucleus to suppress their genes and the activities of BMAL1 and CLOCK. Once \textit{PER} and \textit{CRY} levels sufficiently degrade, a new cycle starts. In addition, a second feedback loop is formed by the nuclear receptors REV-ERB and ROR24, 25. They compete to bind with the promoter and enhancer regions of the target gene (e.g., \textit{BMAL1}) and play an inhibitory and activation role in transcription, respectively26. The CLOCK-BMAL1 target gene \textit{DBP} forms another loop, and it competes with the REV-ERB and ROR target gene \textit{NFIL3} to regulate the expression of clock genes. Ultimately, all loops mentioned above can control the expression of clock-controlled genes (CCGs), which mediate circadian output. Accordingly, TTFL forms the foundation of the physiological
activity of different tissues and organs, thus leading to cyclic variations in gene expression and tissue function. Abnormal clock genes or environmental stimuli interfere with the feedback loop and are associated with diseases of multiple systems, most prominently metabolic, cardiovascular, and mental disorders and infertility3, 27.

Chronobiology in the HPG axis

A wide variety of processes in the HPG axis and its accessory organs display biological rhythm, which is typically reflected by periodic hormones during menstruation. One is the estrogen production initiated by FSH, and the other is the postovulatory progesterone secretion from the corpus luteum. Both of the steroid hormones are regulated by the circadian clock system, the impairment of which can lead to ovarian dysfunction and infertility8, 28. In the following sections, we summarize the current chronobiological knowledge of the HPG axis, which shows diurnal rhythms in humans, and demonstrate the role of the circadian clock system in these processes.

The Circadian Clock System from Hypothalamus to Pituitary

In the hypothalamus, the SCN generates timed signals to activate gonadotropin-releasing hormone (GnRH) neurons and stimulate LH release from pituitary gonadotrope cells. There are two peptidergic pathways that the SCN regulates in GnRH neurons: vasoactive intestinal peptide (VIP)-containing neurons project directly to GnRH neurons, and arginine vasopressin (AVP)-containing neurons project to anteroventral periventricular nucleus (AVPV) Kisspeptin neurons to evoke the preovulatory GnRH/LH stimulation29-35. Regardless of receiving afferent signals from the SCN, AVPV Kisspeptin neurons were reported to host an estradiol (E2)-sensitive circadian oscillator36, 37. In murine AVPV explants, sustained autonomous oscillations were observed for up to 4 days36. In vivo, AVPV Kisspeptin neurons presented daily rhythm related to the estrous cycle—a phase delayed by 2.8 hours at diestrus when circulating E2 is low, compared to proestrus when circulating E2 is high36.
Similarly, apart from the SCN regulation, GnRH neurons express oscillations of endogenous clocks, both in vivo and in the immortalized GnRH-secreting GT1-7 cell line35,38,39. Hence, an intrinsic circadian time-keeping apparatus exists in hypothalamic extra-SCN cells. Normal circadian clock expression is required for the response activity to SCN. One study hypothesized that BMAL1 within GnRH or Kisspeptin neurons provides temporal gating of the LH surge40. However, unexpectedly, its conditional deletion in Kisspeptin or GnRH neurons did not affect the occurrence of the LH surge41. In contrast, deleting BMAL1 in global somatic cells presented undetectable LH, along with variable effects on the estrous cycle42. This suggested that the extra-SCN circadian oscillators in the hypothalamus represent a potential time-keeping system that phases the daily changes in the upstream signals and maintains a steady state.

In the pituitary, gonadotropins are stimulated by the pulsatile release of GnRH. Logically, it is not surprising that the response sensitivity rhythm of gonadotrope cells is modulated by the circadian clock system43,44. Previous data suggested that BMAL1-/- females lack both LH and FSH surges. A further study focusing on BMAL1 in gonadotrope cells found only a slight elevation in LH but no noticeable effect on reproductive deficits45, suggesting that BMAL1 is not necessary in pituitary gonadotrope cells. Currently, there are few studies on the chronobiology of the pituitary, and future studies should pay more attention to its role in the female reproductive system (Figure 1).

The Circadian Clock System in the Ovary

Ovaries have two interrelated functions: the generation of mature oocytes and the production of hormones that create an internal environment where fertilization and subsequent implantation can occur. Daily oscillations of clock genes were recently demonstrated in the ovaries, especially in cells within the follicles, including granulosa cells, theca cells, and oocytes46-49.

In granulosa cells, periodic fluctuations in ovarian steroids, including E2 and small amounts of progesterone, have been observed. The circadian clock regulates this rhythmic hormone fluctuation pattern via aromatase. The latest study using a BMAL1 deletion model showed that Cyp19a1 is
involved in the E2 circadian process. A previous study confirmed this notion and showed that its promoter region possesses an E-box site that is recognized and bound by clock genes to initiate later transcription. Cyp19a1 itself also demonstrates a circadian rhythm. It was identified to peak at ZT16 during the dark period in a 12-hour light/12-hour dark cycle. Besides that, the circadian clock also participates in progesterone production, and steroid hormone-related enzyme (StAR) is a key enzyme in this process. The clock proteins PER and CRY have an inhibitory effect on StAR, whereas the CLOCK-BMAL1 heterodimer activates its transcription via the E-box elements and thus achieves progesterone secretion and implantation. Apart from that, during hormone synthesis in granulosa cells, some other genes are also affected by the clock, including the leptin receptor (Lepr), FSH receptor (Fshr), Hsd3β2, Cyp11a1, and Ptgs2.

Rhythmic characteristics also exist in ovarian theca cells, which produce androstenedione with LH stimulation. Physiologically, ovarian sensitivity to LH is determined by the LH receptor (Lhcgr), which presents a daily rhythm under the direct control of the molecular clock. This fact is supported by decreased Lhcgr expression levels in response to PER2 or CLOCK siRNA treatment and the altered mRNA abundance patterns in theca cell BMAL1 deletion mice. Moreover, the circadian clock affects theca cell steroidogenesis. With the loss of BMAL1 function in theca cells, the synthesis of androstenedione and testosterone is notably impaired, along with decreased mRNA levels of Cyp17a1, which converts progesterone into androgen. This implies that clock genes and CCGs within theca cells play a crucial part in maintaining androgen homeostasis and probably participate in the etiology of some reproductive diseases.

In oocytes, classical clock genes are rhythmically transcribed, and it has been previously documented that transcript levels vary with the ovarian development stage: the amount of CLOCK, BMAL1, CRY1, and PER1 proteins are significantly higher in rodent oocytes at the germinal vesicle (GV) stage than at the metaphase II (MII) stage. Furthermore, the meiotic process is well regulated by the clock gene CRY1, whose knockdown in GV oocytes slows the process. However, its function does not depend on circadian clock regulation (Figure 1).
Chronodisruption in the HPG axis

Circadian clock disorders exacerbated by ambient light, time of eating, and night-shift work are increasingly common in modern society. Desynchrony of biological rhythms, especially the disrupted homeostatic oscillations in the HPG axis, can cause dramatic consequences.

Polycystic ovarian syndrome

PCOS is a common disorder detected in 10% of women of reproductive age and is characterized by hyperandrogenism, insulin resistance, and oligo-anovulation. These three characteristics interrelate in PCOS pathogenesis. Evidence suggests that excessive insulin usually accompanies hyperandrogenism, and it is widely accepted that insulin resistance inhibits liver sex hormone-binding globulin (SHBG) production and enhances androgen production, which suppresses follicular maturity and diminishes the likelihood of ovulation. Even so, the initial cause of this disease remains unclear. Recent studies have confirmed that biorhythm disorders give rise to metabolic and reproductive characteristics of PCOS.

Accumulating epidemiological evidence supports that misalignment of sleep-wake behavior is an important contributor to insulin resistance in PCOS. Early studies suggest that sleep disturbances, especially the difficulty of achieving and maintaining sleep, are twice as common in PCOS. In healthy adults, 5 days of insufficient sleep was proven to lead to a 20% decrease in insulin sensitivity, and in girls with PCOS, a disrupted morning rhythm is associated with worse insulin sensitivity. These phenomena have also been found in rodents. Continuous light exposure could induce PCOS-like ovarian changes and glucose metabolism disorders with decreased islet beta-cell function. Likewise, a constant darkness treatment led to consistent results, along with arrhythmic BMAL1 expression that promoted insulin resistance via GLUT4. More importantly, such PCOS-like alternations are reversible. Treating with melatonin or restoring normal light/dark exposure can
alleviate these hallmarks, including hyperinsulinemia and hyperandrogenism. Obstructive sleep apnea (OSA), a condition characterized by recurrent upper airway instability during sleep, has been a recent focus of research, as it affects almost one-third of PCOS patients. Although OSA is prevalent in sleep and metabolic disorders, the causality between PCOS and OSA is controversial. A previous study argued that sleep fragmentation induced by OSA in PCOS exacerbates insulin resistance and contributes to the development of type 2 diabetes. In contrast, insulin resistance and postprandial hyperglycemia can be relieved after OSA treatment with continuous positive airway pressure. Even so, its molecular mechanism is still inconclusive.

A large amount of evidence strongly links the relationship between the circadian clock and androgen production. The clock protein PER2 displays a morning peak similar to the fluctuation pattern of dehydroepiandrosterone, dehydroepiandrosterone sulfate, androstenedione, and dihydrotestosterone (DHT). Accordingly, PER2 is probably involved in androgen production. This hypothesis has been supported by the fact that decreased PER2 levels promote androgen production via insulin-like growth factor-binding protein 4 (IGFBP4) and SHBG in the liver in irregular daylight. In turn, the hyperandrogenic status owns the capacity to reset the circadian clock system programming. In rodents exposed to DHT at weaning, the internal circadian organization is weakened and characterized by disrupted PER1 phase distribution and discordant peripheral synchrony. In human granulosa cells, the testosterone stimulation can alter the oscillating pattern of PER2 and StAR. Thereby, the interplay between the circadian clock and steroidogenesis may participate in the pathophysiological regulation of PCOS.

Oligo-anovulation is a typical feature of PCOS, owing to impaired oocyte development induced partially by circadian rhythm disruption. Its classical ovarian morphology is the increased number of atretic antral follicles, triggered by the apoptosis of granulosa cells. A recent study confirmed that hyperinsulinemia and hyperandrogenism share a bidirectional link, and both of them promote abnormal clock gene expression and induce granulosa cell apoptosis. Despite the relationship between circadian rhythm and apoptosis having been revealed in multiple cell types, few studies have focused on ovarian granulosa cells (Figure 2; Table 1).
Premature ovarian insufficiency

POI is a heterogeneous disease termed as insufficient ovarian activity before 40 years of age with high gonadotropins and low estrogen. Few studies have proposed a correlation with clock genes. However, the declining ovarian reserve has been observed in multiple clock gene-deficient models and shiftwork women and results from endogenous or environmentally imposed circadian misalignment.

PER and CRY are probably involved in the occurrence of POI, owing to their association with senescence. PER or CRY rhythm disruption accelerates aging in the reproductive capacity, and the level of PER1 has also been noted to decline during the physiological aging process. In rodents, middle-aged (9- to 12-month-old) PER-mutant females display a significantly lower reproductive rate with fewer litters. Their estrous cycles, characterized by prolongation and acyclicity, are comparable to that of 13- to 16-month-old females. Moreover, a recent study generated mice with PER1 and PER2 double knockout that display decreased fertility since approximately 20 weeks old, with notably fewer litters born from 32 weeks old and onwards. It seems that there exists a synergistic effect between PER1 and PER2 in the early onset of fertility decline. Likewise, CRY presents similar functions in early aging phenotypes, and, interestingly, such conditions could be restored. When tuning the light-dark cycles closely to the endogenous one inherent in CRY-deficient females, the estrous cycles recovered and fertility improved. Hence, reproductive aging could benefit from the optimal timing of environmental signals. Furthermore, as evidenced by significantly reduced follicle number in PER1 and PER2 double mutated mice, clock-related advanced aging may be due to impaired follicular development. This implies that altered PER and CRY circadian rhythms and circadian regulatory circuits could be an important factor contributing to POI.

CLOCK and BMAL1 participate in reproductive processes in mammals, and their deficiency exhibits ovulation dysfunction and decreased fertility, suggesting that they may induce POI. CLOCK affects the possibility of ovulation and conception, mediated by the LH surge. It has been
reported that *CLOCK*-mutant mice display an extended, irregular estrous cycle without an LH surge on the afternoon of proestrus28. Moreover, within their hypothalamus, the expression of both AVP in the SCN and AVP 1a receptor (Avpr1a) is decreased87. After supplementing AVP, the LH surge could be reversed to some extent87. Thereby, *CLOCK* is essential for the LH surge through the regulation of hypothalamic AVP signaling and may be involved in POI. In addition, *BMAL1* maintains proper fertility capacity via downstream hormone signaling molecules. Cyp17a1 and Cyp19a1 are essential downstream factors of BMAL1, presenting a circadian rhythm and producing androgens and estrogens, respectively51, 58. StAR is the other essential enzyme downstream of BMAL18, 9, 55, 88. It was reported that the ovaries from *StAR* knockout mice retain only a few scattered follicles with abundant stromal cells, coinciding with the features of POI89. This phenotype can, in part, explain the fertility-decline disease in humans—congenital lipoid adrenal hyperplasia (lipoidCAH). This disease induced by a *StAR* mutation and failure to move cholesterol into the mitochondria leads to accumulated cholesterol esters that damage steroidogenic capacity and result in POI90, 91(Figure 2; Table 1).

Premenstrual Syndrome

Premenstrual syndrome (PMS) is a mood disorder with a high prevalence of sleep disturbances92. Although the current study was at its initial stage, it documented that sleep disturbance and the subsequent suppression in nocturnal melatonin underlie the circadian rhythm disruption in PMS93, 94. Additionally, evening light therapy that phase shifts the melatonin rhythm could effectively improve the anxiety and mood of these patients95. It indicated that melatonin-specific treatment might hold new promise for patients with PMS in the future (Figure 2).
Dysmenorrhea

Dysmenorrhea, also known as menstrual cramps, is a rhythmic pain just before or during menstruation. A meta-analysis from 1990 to 2018 revealed a negative relationship between meal skipping and the severity of primary dysmenorrhea. Likewise, data from Palestine and China both drew similar conclusions and showed that skipping breakfast was the strongest predictor of this disorder. Recently, a hypothesis was put forward that a disrupted feeding rhythm in adolescence could trigger endometriosis, which is the most common cause of secondary dysmenorrhea. This novel conception implies that the immature reproductive system in young ages may be susceptible to interference by external cues, but how exactly they impinge on later disorders encourages more work (Figure 2).

Central Precocious Puberty

Resulting from the premature activation of the HPG axis, central precocious puberty is commonly defined as puberty that starts at an unusually early age (before 8 years in girls). During puberty, testis development in male golden hamsters has been proven to be photoperiodically controlled. However, little evidence proves the role of biorhythm in female puberty. Melatonin functions to restrain pubertal onset, which is consistent with a recent study in which melatonin was low and periods of sleep were short in precocious puberty patients. In contrast, another study held the opposite notion in its 24-hour profile where there was no difference between patients with precocious puberty and those with normal puberty. Hence, larger sample-size population studies in the future need to clarify the relevance, and female animal models are needed to reveal the underlying mechanism.
Current Progress in Circadian Medicine for the Female Reproductive System

Circadian medicine is a strategy to treat diseases by adapting to the body's original circadian rhythms. It includes light exposure modulation, behavioral modulation, pharmacological interventions, and chronotherapy.

As mentioned above, light therapy relieves anxiety in PMS. Similarly, for PCOS, several pieces of evidence support the efficacy of light exposure modulation. In rodents, the PCOS model has been successfully built by continuous light exposure. The increased prevalence of PCOS in night-shift workers has been proven in a clinic survey, indicating the risk of artificial lighting. In line with the finding, artificial light exposure at night while sleeping increased the risk of being overweight or obese, which is also characteristic of PCOS. Hence, as the main input for the SCN, light modulating can reset circadian synchrony and is consequently a potential treatment strategy for PCOS.

Behavioral modulation is another treatment. Owing to the strong relevance between disturbed sleep and PCOS, the guideline has suggested screening PCOS patients for symptoms suggestive of OSA and, when identified, providing appropriate treatment. Individualized nutrition therapy is another core intervention. In addition to various dietary strategies of meal composition, 8-hour time-restricted feeding has been proposed as a novel intervention that effectively reduces body fat and improves menstruation, hyperandrogenemia, and insulin resistance.

When lifestyle modification alone is insufficient, pharmacological interventions for better managing the diseases are unavoidable. As a chronobiotic agent, melatonin has a special place in PCOS. Early studies have identified its potential as a therapeutic agent to improve in vitro fertilization outcomes in PCOS patients. Currently, its favorable effect on PCOS has also been identified in a randomized controlled trial to improve hirsutism and serum TNF-α and total antioxidant capacity levels. Furthermore, in terms of metabolism, melatonin can improve lipid metabolism in PCOS patients with endometrial cancer. For other diseases such as PMS and precocious puberty, where
melatonin levels are lower than in the normal population, melatonin supplementation or receptor agonists may be helpful93, 94, 103. Besides, some circadian molecule drugs that enhance the activity of transcription factors such as PER2, CRY, REV-ERB\textsubscript{α}, and ROR\textsubscript{α}119 are currently under development for various diseases. Among them, CRY has been identified to alleviate PCOS-induced damage to ovarian tissue120, insulin resistance121, and reproductive disturbances122 in rats. Therefore, it is possible to enhance CRY activity by small molecule agonists, affecting its circadian rhythm within the HPG axis to treat and control PCOS. Last but not least, the concept of chronotherapy was put forward in the past few years, which refers to the timed dosing of drugs to enhance treatment efficacy and patient tolerance123. However, the application of this field is still relatively unknown with regard to the female reproductive system and will be a direction of future research.

\textbf{Remaining Questions and Future Direction}

The normal routine of working at sunrise and resting at sunset has been gradually eroded in the social development process. Instead, high-intensity working patterns along with consequent eating and sleeping disorders and other "modern diseases" are becoming the main theme of daily life. Therefore, larger-size population studies are needed to characterize this remolding of the circadian rhythm. On this basis, chronobiology can help reverse poor physical conditions and improve existing treatment methods.
As early as 1994, the United Nations highlighted the importance of reproductive health in human development. The decline in female fertility resulting from abnormal circadian rhythms caused by unhealthy diet and sleep habits in modern life has become a global health concern124, 125. Therefore, breaking the "time code" of the female reproductive system is an urgent task. Despite a large number of studies at present, most studies confine the role of a certain clock gene to a specific cell. As the female reproductive system is by no means a simple superposition of cells and tissues, future chronobiology studies are encouraged from a holistic perspective. Furthermore, constructing and improving the circadian clock network of the female reproductive system is needed to help determine biomarkers that could detect and diagnose circadian rhythm disturbances.
Acknowledgments:

Author Contributions: S.Y.S. and Y.Z. designed the study. S.Y.S. wrote the manuscript. S.Y.S. and H.Q.Z. generated the figures and table. H.Q.Z., X.H.L., and Z.Y.L. supervised the study. All authors have read and agreed to the published version of the manuscript.

Additional Information:

Correspondence: Dr. Ying Zhang, Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Huangpu District, Shanghai, 200011, China. Tel: +86-21-63455050. Email: 13818218839@163.com

Disclosures: The authors have nothing to disclose.

Data Availability: Data sharing is not applicable to this article because no data sets were generated or analyzed during the present study.

Conflicts of Interest: The authors declare no conflict of interest.
Reference

1. Lemarchand-Beraud T, Zufferey MM, Reymond M, Rey I. Maturation of the hypothalamo-pituitary-ovarian axis in adolescent girls. *The Journal of clinical endocrinology and metabolism*. Feb 1982;54(2):241-6. doi:10.1210/jcem-54-2-241

2. Hoff JD, Quigley ME, Yen SS. Hormonal dynamics at midcycle: a reevaluation. *The Journal of clinical endocrinology and metabolism*. Oct 1983;57(4):792-6. doi:10.1210/jcem-57-4-792

3. Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. *Nature reviews Molecular cell biology*. Feb 2020;21(2):67-84. doi:10.1038/s41580-019-0179-2

4. Silva CC, Domínguez R. Clock control of mammalian reproductive cycles: Looking beyond the pre-ovulatory surge of gonadotropins. *Reviews in endocrine & metabolic disorders*. Mar 2020;21(1):149-163. doi:10.1007/s11155-019-09525-9

5. Wiggins G, Legge M. Cyclic Variation of Cellular Clock Proteins in the Mouse Estrous Ovary. *Journal of reproduction & infertility*. Oct-Dec 2016;17(4):192-198.

6. Zheng Y, Liu C, Li Y, et al. Loss-of-function mutations with circadian rhythm regulator Per1/Per2 lead to premature ovarian insufficiency†. *Biology of reproduction*. Apr 1 2019;100(4):1066-1072. doi:10.1093/biolre/ioy245

7. Rahman SA, Grant LK, Gooley JJ, Rajaratnam SMW, Czeisler CA, Lockley SW. Endogenous Circadian Regulation of Female Reproductive Hormones. *The Journal of clinical endocrinology and metabolism*. Dec 1 2019;104(12):6049-6059. doi:10.1210/jc.2019-00803

8. Liu Y, Johnson BP, Shen AL, et al. Loss of BMAL1 in ovarian steroidogenic cells results in implantation failure in female mice. *Proceedings of the National Academy of Sciences of the United States of America*. Sep 30 2014;111(39):14295-300. doi:10.1073/pnas.1209249111

9. Ratajczak CK, Boehle KL, Muglia LJ. Impaired steroidogenesis and implantation failure in Bmal1-/- mice. *Endocrinology*. Apr 2009;150(4):1879-85. doi:10.1210/en.2008-1021

10. Yaw AM, Duong TV, Nguyen D, Hoffmann HM. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy. *Journal of neuroscience research*. Jan 2021;99(1):294-308. doi:10.1002/jnr.24606

11. Cederroth CR, Albrecht U, Bass J, et al. Medicine in the Fourth Dimension. *Cell metabolism*. Aug 6 2019;30(2):238-250. doi:10.1016/j.cmet.2019.06.019

12. Tanaka S, Ueno T, Tsunemi A, et al. The adrenal gland circadian clock exhibits a distinct phase advance in spontaneously hypertensive rats. *Hypertension research : official journal of the Japanese Society of Hypertension*. Feb 2019;42(2):165-173. doi:10.1038/s41440-018-0148-8

13. Kloehn I, Pillai SB, Officer L, Klement C, Gasser PJ, Evans JA. Sexual Differentiation of
Circadian Clock Function in the Adrenal Gland. *Endocrinology.* May 2016;157(5):1895-904. doi:10.1210/en.2015-1968

14. Cai C, Cai P, Chu G. Selection of suitable reference genes for core clock gene expression analysis by real-time qPCR in rat ovary granulosa cells. *Molecular biology reports.* Jun 2019;46(3):2941-2946. doi:10.1007/s11033-019-04755-1

15. Kobayashi M, Watanabe K, Matsumura R, et al. Involvement of the luteinizing hormone surge in the regulation of ovary and oviduct clock gene expression in mice. *Genes to cells : devoted to molecular & cellular mechanisms.* Jun 19 2018;doi:10.1111/gtc.12605

16. Bur IM, Zouaoui S, Fontanaud P, et al. The comparison between circadian oscillators in mouse liver and pituitary gland reveals different integration of feeding and light schedules. *PloS one.* Dec 15 2010;5(12):e15316. doi:10.1371/journal.pone.0015316

17. Yoo SH, Yamazaki S, Lowrey PL, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. *Proceedings of the National Academy of Sciences of the United States of America.* Apr 13 2004;101(15):5339-46. doi:10.1073/pnas.0308709101

18. Wang F, Xie N, Wu Y, et al. Association between circadian rhythm disruption and polycystic ovary syndrome. *Fertility and sterility.* Dec 23 2020;doi:10.1016/j.fertnstert.2020.08.1425

19. Hurd MW, Ralph MR. The significance of circadian organization for longevity in the golden hamster. *Journal of biological rhythms.* Oct 1998;13(5):430-6. doi:10.1177/074873098129000255

20. Martino TA, Oudit GY, Herzenberg AM, et al. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. *American journal of physiology Regulatory, integrative and comparative physiology.* May 2008;294(5):R1675-83. doi:10.1152/ajpregu.00829.2007

21. Pittendrigh CS, Minis DH. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. *Proceedings of the National Academy of Sciences of the United States of America.* Jun 1972;69(6):1537-9. doi:10.1073/pnas.69.6.1537

22. Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. *Current biology : CB.* Aug 24 2004;14(16):1481-6. doi:10.1016/j.cub.2004.08.023

23. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. *Annual review of neuroscience.* 2012;35:445-62. doi:10.1146/annurev-neuro-060909-153128

24. Pretiiner N, Damiola F, Lopez-Molina L, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. *Cell.* Jul 26 2002;110(2):251-60. doi:10.1016/s0092-8674(02)00825-5

25. Sato TK, Panda S, Miraglia LJ, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. *Neuron.* Aug 19 2004;43(4):527-37. doi:10.1016/j.neuron.2004.07.018

26. Ueda HR, Chen W, Adachi A, et al. A transcription factor response element for gene expression during circadian night. *Nature.* Aug 1 2002;418(6897):534-9. doi:10.1038/nature00906

27. Sciarra F, Franceschini E, Campolo F, et al. Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility. *International journal of molecular sciences.* May 30
28. Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS. Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Current biology : CB. Aug 10 2004;14(15):1367-73. doi:10.1016/j.cub.2004.07.055

29. Robertson JL, Clifton DK, de la Iglesia HO, Steiner RA, Kauffman AS. Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology. Aug 2009;150(8):3664-71. doi:10.1210/en.2009-0247

30. Smith JT. Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe. Brain research reviews. Mar 2008;57(2):288-98. doi:10.1016/j.brainresrev.2007.04.002

31. Herbison AE. Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain research reviews. Mar 2008;57(2):277-87. doi:10.1016/j.brainresrev.2007.05.006

32. Irwig MS, Fraley GS, Smith JT, et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology. 2004;80(4):264-72. doi:10.1159/000083140

33. Messager S, Chatzidaki EE, Ma D, et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proceedings of the National Academy of Sciences of the United States of America. Feb 1 2005;102(5):1761-6. doi:10.1073/pnas.0409330102

34. Han SY, McLennan T, Czieselsky K, Herbison AE. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proceedings of the National Academy of Sciences of the United States of America. Oct 20 2015;112(42):13109-14. doi:10.1073/pnas.1512243112

35. Hickok JR, Tischkau SA. In vivo circadian rhythms in gonadotropin-releasing hormone neurons. Neuroendocrinology. 2010;91(1):110-20. doi:10.1159/000243163

36. Chassard D, Bur I, Poirel VJ, Mendoza J, Simonneaux V. Evidence for a Putative Circadian Kiss-Clock in the Hypothalamic AVPV in Female Mice. Endocrinology. Aug 2015;156(8):2999-3011. doi:10.1210/en.2014-1769

37. Smarr BL, Gile JJ, de la Iglesia HO. Oestrogen-independent circadian clock gene expression in the anteroventral periventricular nucleus in female rats: possible role as an integrator for circadian and ovarian signals timing the luteinising hormone surge. Journal of neuroendocrinology. Dec 2013;25(12):1273-1279. doi:10.1111/jne.12104

38. Zhao S, Kriegsfeld LJ. Daily changes in GT1-7 cell sensitivity to GnRH secretagogues that trigger ovulation. Neuroendocrinology. 2009;89(4):448-57. doi:10.1159/000192370

39. Chappell PE, White RS, Mellon PL. Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. The Journal of neuroscience : the official journal of the Society for Neuroscience. Dec 3 2003;23(35):11202-13.

40. Choe HK, Kim HD, Park SH, et al. Synchronous activation of gonadotropin-releasing hormone gene transcription and secretion by pulsatile kisspeptin stimulation. Proceedings of the National Academy of Sciences of the United States of America. Apr 2 2013;110(14):5677-82.
41. Bittman EL. Circadian Function in Multiple Cell Types Is Necessary for Proper Timing of the Preovulatory LH Surge. *Journal of biological rhythms*. Dec 2019;34(6):622-633. doi:10.1177/0748730419873511

42. Alvarez JD, Hansen A, Ord T, et al. The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice. *Journal of biological rhythms*. Feb 2008;23(1):26-36. doi:10.1177/0748730407311254

43. Olcese J, Sikes HE, Resuehr D. Induction of PER1 mRNA expression in immortalized gonadotropes by gonadotropin-releasing hormone (GnRH): involvement of protein kinase C and MAP kinase signaling. *Chronobiology international*. 2006;23(1-2):143-50. doi:10.1080/07420520500521996

44. Resuehr D, Wildemann U, Sikes H, Olcese J. E-box regulation of gonadotropin-releasing hormone (GnRH) receptor expression in immortalized gonadotrope cells. *Molecular and cellular endocrinology*. Nov 15 2007;278(1-2):36-43. doi:10.1016/j.mce.2007.08.008

45. Chu A, Zhu L, Blum ID, et al. Global but not gonadotrope-specific disruption of Bmal1 abolishes the luteinizing hormone surge without affecting ovulation. *Endocrinology*. Aug 2013;154(8):2924-35. doi:10.1210/en.2013-1080

46. Karman BN, Tischkau SA. Circadian clock gene expression in the ovary: Effects of luteinizing hormone. *Biology of reproduction*. Oct 2006;75(4):624-32. doi:10.1095/biolreprod.106.050732

47. Fahrenkrug J, Georg B, Hannibal J, Hindersson P, Grås S. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. *Endocrinology*. Aug 2006;147(8):3769-76. doi:10.1210/en.2006-0305

48. Grås S, Georg B, Jørgensen HL, Fahrenkrug J. Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy. *Cell and tissue research*. Dec 2012;350(3):539-48. doi:10.1007/s00441-012-1489-2

49. Sellix MT. Circadian clock function in the mammalian ovary. *Journal of biological rhythms*. Feb 2015;30(1):7-19. doi:10.1177/0748730414554222

50. Chen H, Zhao L, Kumazawa M, et al. Downregulation of core clock gene Bmal1 attenuates expression of progesterone and prostaglandin biosynthesis-related genes in rat luteinizing granulosa cells. *American journal of physiology Cell physiology*. Jun 15 2013;304(12):C1131-40. doi:10.1152/ajpcell.00008.2013

51. Vanselow J, Fürbass R, Zsolnai A, Kalbe C, Said HM, Schwerin M. Expression of the aromatase cytochrome P450 encoding gene in cattle and sheep. *The Journal of steroid biochemistry and molecular biology*. Dec 2001;79(1-5):279-88. doi:10.1016/s0960-7660(01)00144-3

52. Chu G, Ma G, Sun J, et al. Leptin Receptor Mediates Bmal1 Regulation of Estrogen Synthesis in Granulosa Cells. *Animals (Basel)*. Nov 1 2019;9(11)doi:10.3390/ani9110899

53. Shimizu T, Hirai Y, Murayama C, Miyamoto A, Miyazaki H, Miyazaki K. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells. *Biochemical and biophysical research communications*. Aug 19 2011;412(1):132-5. doi:10.1016/j.bbrc.2011.07.058

54. Pilorz V, Steinelechner S. Low reproductive success in Per1 and Per2 mutant mouse females
due to accelerated ageing? Reproduction (Cambridge, England). Apr 2008;135(4):559-68. doi:10.1530/rep-07-0434

55. Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ. Reproductive biology of female Bmal1 null mice. Reproduction (Cambridge, England). Jun 2010;139(6):1077-90. doi:10.1530/rep-09-0523

56. Chu G, Yoshida K, Narahara S, et al. Alterations of circadian clockworks during differentiation and apoptosis of rat ovarian cells. Chronobiology international. Jul 2011;28(6):477-87. doi:10.3109/07420528.2011.589933

57. Mereness AL, Murphy ZC, Forrestel AC, et al. Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice. Endocrinology. Feb 2016;157(2):913-27. doi:10.1210/en.2015-1645

58. Wang Y, Chen M, Xu J, et al. Core clock gene Bmal1 deprivation impairs steroidogenesis in mice luteinized follicle cells. Reproduction (Cambridge, England). Dec 2020;160(6):955-967. doi:10.1530/rep-20-0340

59. Sasano H, Okamoto M, Mason JI, et al. Immunolocalization of aromatase, 17 alpha-hydroxylase and side-chain-cleavage cytochromes P-450 in the human ovary. Journal of reproduction and fertility. Jan 1989;85(1):163-9. doi:10.1530/jrf.0.0850163

60. Johnson MH, Lim A, Fernando D, Day ML. Circadian clockwork genes are expressed in the reproductive tract and conceptus of the early pregnant mouse. Reproductive biomedicine online. Mar-Apr 2002;4(2):140-5. doi:10.1016/s1472-6483(10)61931-1

61. Amano T, Tokunaga K, Kakegawa R, et al. Expression analysis of circadian genes in oocytes and preimplantation embryos of cattle and rabbits. Anim Reprod Sci. Sep 2010;121(3-4):225-35. doi:10.1016/j.anireprosci.2010.05.020

62. Amano T, Matsushita A, Hatanaka Y, et al. Expression and functional analyses of circadian genes in mouse oocytes and preimplantation embryos: Cry1 is involved in the meiotic process independently of circadian clock regulation. Biology of reproduction. Mar 2009;80(3):473-83. doi:10.1095/biolreprod.108.069542

63. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocrine reviews. Oct 2015;36(5):487-525. doi:10.1210/er.2015-1018

64. Stener-Victorin E, Padmanabhan V, Walters KA, et al. Animal Models to Understand the Etiology and Pathophysiology of Polycystic Ovary Syndrome. Endocrine reviews. Jul 1 2020;41(4):538-76. doi:10.1210/endrev/bnaa010

65. Li S, Zhai J, Chu W, Geng X, Chen ZJ, Du Y. Altered circadian clock as a novel therapeutic target for constant darkness-induced insulin resistance and hyperandrogenism of polycystic ovary syndrome. Translational research : the journal of laboratory and clinical medicine. May 2020;219:13-29. doi:10.1016/j.trsl.2020.02.003

66. Moran LJ, March WA, Whitrow MJ, Giles LC, Davies MJ, Moore VM. Sleep disturbances in a community-based sample of women with polycystic ovary syndrome. Human reproduction (Oxford, England). Feb 2015;30(2):466-72. doi:10.1093/humrep/deu318

67. Eckel RH, Depner CM, Perreault L, et al. Morning Circadian Misalignment during Short Sleep
Duration Impacts Insulin Sensitivity. *Current biology* : CB. Nov 16 2015;25(22):3004-10. doi:10.1016/j.cub.2015.10.011

68. Simon SL, McWhirter L, Diniz Behn C, et al. Morning Circadian Misalignment Is Associated With Insulin Resistance in Girls With Obesity and Polycystic Ovarian Syndrome. *The Journal of clinical endocrinology and metabolism*. Aug 1 2019;104(8):3525-3534. doi:10.1210/jc.2018-02385

69. Chu W, Zhai J, Xu J, et al. Continuous Light-Induced PCOS-Like Changes in Reproduction, Metabolism, and Gut Microbiota in Sprague-Dawley Rats. *Frontiers in microbiology*. 2019;10:3145. doi:10.3389/fmicb.2019.03145

70. Kahal H, Kyrou I, Uthman OA, et al. The prevalence of obstructive sleep apnoea in women with polycystic ovary syndrome: a systematic review and meta-analysis. *Sleep & breathing = Schlaf & Atmung*. Mar 2020;24(1):339-350. doi:10.1007/s11325-019-01835-1

71. Tasali E, Van Cauter E, Hoffman L, Ehrmann DA. Impact of obstructive sleep apnea on insulin resistance and glucose tolerance in women with polycystic ovary syndrome. *The Journal of clinical endocrinology and metabolism*. Oct 2008;93(10):3878-84. doi:10.1210/jc.2008-0925

72. Babu AR, Herdegen J, Fogelfeld L, Shott S, Mazzone T. Type 2 Diabetes, Glycemic Control, and Continuous Positive Airway Pressure in Obstructive Sleep Apnea. *Archives of Internal Medicine*. 2005;165(4):447-452. doi:10.1001/archinte.165.4.447

73. Fang MZ, Ohman-Strickland P, Kelly-McNeil K, et al. Sleep interruption associated with house staff work schedules alters circadian gene expression. *Sleep medicine*. Nov 2015;16(11):1388-1394. doi:10.1016/j.sleep.2015.06.011

74. Davison SL, Bell R. Androgen physiology. *Seminars in reproductive medicine*. Apr 2006;24(2):71-7. doi:10.1055/s-2006-939565

75. Sellix MT, Murphy ZC, Menaker M. Excess androgen during puberty disrupts circadian organization in female rats. *Endocrinology*. Apr 2013;154(4):1636-47. doi:10.1210/en.2012-2066

76. Chen M, Xu Y, Miao B, et al. Expression pattern of circadian genes and steroidogenesis-related genes after testosterone stimulation in the human ovary. *Journal of ovarian research*. Sep 10 2016;9(1):56. doi:10.1186/s13048-016-0264-5

77. Wilson JL, Chen W, Dissen GA, et al. Excess of nerve growth factor in the ovary causes a polycystic ovary-like syndrome in mice, which closely resembles both reproductive and metabolic aspects of the human syndrome. *Endocrinology*. Nov 2014;155(11):4494-506. doi:10.1210/en.2014-1368

78. Dissen GA, Garcia-Rudaz C, Paredes A, Mayer C, Mayerhofer A, Ojeda SR. Excessive ovarian production of nerve growth factor facilitates development of cystic ovarian morphology in mice and is a feature of polycystic ovarian syndrome in humans. *Endocrinology*. Jun 2009;150(6):2906-14. doi:10.1210/en.2008-1575

79. Hughes FM, Jr., Gorospe WC. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. *Endocrinology*. Nov 1991;129(5):2415-22. doi:10.1210/endo-129-5-2415

80. Rajakoski E. The ovarian follicular system in sexually mature heifers with special reference to seasonal, cyclical, end left-right variations. *Acta endocrinologica Supplementum*. 1960;34(Suppl
52):1-68.

81. Sun Y, Wang P, Li H, Dai J. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes. *Journal of cellular physiology*. Dec 2018;233(12):9563-9574. doi:10.1002/jcp.26859

82. Qin T, Lu XT, Li YG, et al. Effect of Period 2 on the proliferation, apoptosis and migration of osteosarcoma cells, and the corresponding mechanisms. *Oncology letters*. Aug 2018;16(2):2668-2674. doi:10.3892/ol.2018.8952

83. Tucker EJ, Grover SR, Bachelot A, Touraine P, Sinclair AH. Premature Ovarian Insufficiency: New Perspectives on Genetic Cause and Phenotypic Spectrum. *Endocrine reviews*. Dec 2016;37(6):609-635. doi:10.1210/er.2016-1047

84. Takasu NN, Nakamura TJ, Tokuda IT, Todo T, Block GD, Nakamura W. Recovery from Age-Related Infertility under Environmental Light-Dark Cycles Adjusted to the Intrinsic Circadian Period. *Cell reports*. Sep 1 2015;12(9):1407-13. doi:10.1016/j.celrep.2015.07.049

85. Brzezinski A, Saada A, Miller H, Brzezinski-Sinai NA, Ben-Meir A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. *Journal of ovarian research*. Nov 21 2018;11(1):95. doi:10.1186/s13048-018-0471-3

86. Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. *Molecular and cellular endocrinology*. Feb 5 2020;501:110655. doi:10.1016/j.mce.2019.110655

87. Miller BH, Olson SL, Levine JE, Turek FW, Horton TH, Takahashi JS. Vasopressin regulation of the proestrous luteinizing hormone surge in wild-type and Clock mutant mice. *Biology of reproduction*. Nov 2006;75(5):778-84. doi:10.1095/biolreprod.106.052845

88. Pan X, Taylor MJ, Cohen E, Hanna N, Mota S. Circadian Clock, Time-Restricted Feeding and Reproduction. *International journal of molecular sciences*. Jan 28 2020;21(3)doi:10.3390/ijms21030831

89. Hasegawa T, Zhao L, Caron KM, et al. Developmental roles of the steroidogenic acute regulatory protein (STAR) as revealed by STAR knockout mice. *Molecular endocrinology (Baltimore, Md)*. Sep 2000;14(9):1462-71. doi:10.1210/mend.14.9.0515

90. Bose HS, Pescovitz OH, Miller WL. Spontaneous feminization in a 46,XX female patient with congenital lipid adrenal hyperplasia due to a homozygous frameshift mutation in the steroidogenic acute regulatory protein. *The Journal of clinical endocrinology and metabolism*. May 1997;82(5):1511-5. doi:10.1210/jcem.82.5.3962

91. Fujieda K, Tajima T, Nakae J, et al. Spontaneous puberty in 46,XX subjects with congenital lipid adrenal hyperplasia. Ovarian steroidogenesis is spared to some extent despite inactivating mutations in the steroidogenic acute regulatory protein (SIAR) gene. *The Journal of clinical investigation*. Mar 15 1997;99(6):1265-71. doi:10.1172/jci119284

92. Shechter A, Boivin DB. Sleep, Hormones, and Circadian Rhythms throughout the Menstrual Cycle in Healthy Women and Women with Premenstrual Dysphoric Disorder. *Int J Endocrinol*. 2010;2010:259345. doi:10.1155/2010/259345

93. Shechter A, Lesperance P, Ng Ying Kin NM, Boivin DB. Pilot investigation of the circadian
plasma melatonin rhythm across the menstrual cycle in a small group of women with premenstrual dysphoric disorder. *PloS one.* 2012;7(12):e51929. doi:10.1371/journal.pone.0051929

94. Rahman SA, Marcu S, Kayumov L, Shapiro CM. Altered sleep architecture and higher incidence of subsyndromal depression in low endogenous melatonin secretors. *Eur Arch Psychiatry Clin Neurosci.* Jun 2010;260(4):327-35. doi:10.1007/s00406-009-0080-7

95. Parry BL, Berga SL, Mostofi N, Klauber MR, Resnick A. Plasma melatonin circadian rhythms during the menstrual cycle and after light therapy in premenstrual dysphoric disorder and normal control subjects. *Journal of biological rhythms.* Feb 1997;12(1):47-64. doi:10.1177/074873049701200107

96. Bajalan Z, Alimoradi Z, Moafi F. Nutrition as a Potential Factor of Primary Dysmenorrhea: A Systematic Review of Observational Studies. *Gynecologic and obstetric investigation.* 2019;84(3):209-224. doi:10.1159/000495408

97. Abu Helwa HA, Mitaeb AA, Al-Hamshri S, Sweileh WM. Prevalence of dysmenorrhea and predictors of its pain intensity among Palestinian female university students. *BMC women’s health.* Jan 15 2018;18(1):18. doi:10.1186/s12905-018-0516-1

98. Hu Z, Tang L, Chen L, Kaminga AC, Xu H. Prevalence and Risk Factors Associated with Primary Dysmenorrhea among Chinese Female University Students: A Cross-sectional Study. *Journal of pediatric and adolescent gynecology.* Feb 2020;33(1):15-22. doi:10.1016/j.jpag.2019.09.004

99. Fujiwara T, Ono M, Mieda M, et al. Adolescent Dietary Habit-induced Obstetric and Gynecologic Disease (ADHOGD) as a New Hypothesis-Possible Involvement of Clock System. *Nutrients.* May 2 2020;12(5)doi:10.3390/nu12051294

100. Latronico AC, Brito VN, Carel JC. Causes, diagnosis, and treatment of central precocious puberty. *Lancet Diabetes Endocrinol.* Mar 2016;4(3):265-274. doi:10.1016/S2213-8587(15)00380-0

101. Hance MW, Mason JI, Mendis-Handagama SM. Effects of photo stimulation and nonstimulation of golden hamsters (Mesocricetus auratus) from birth to early puberty on testes structure and function. *Histol Histopathol.* Nov 2009;24(11):1417-24. doi:10.14670/HH-24.1417

102. Attanasio A, Borrelli P, Gupta D. Circadian rhythms in serum melatonin from infancy to adolescence. *The Journal of clinical endocrinology and metabolism.* Aug 1985;61(2):388-90. doi:10.1210/jcem-61-2-388

103. de Holanda FS, Tufik S, Bignotto M, et al. Evaluation of melatonin on the precocious puberty: a pilot study. *Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology.* Aug 2011;27(8):519-23. doi:10.3109/09513590.2010.501888

104. Ehrenkranz JR, Tamarkin L, Comite F, et al. Daily rhythm of plasma melatonin in normal and precocious puberty. *The Journal of clinical endocrinology and metabolism.* Aug 1982;55(2):307-10. doi:10.1210/jcem-55-2-307

105. Waldhauser F, Boepple PA, Schemper M, Mansfield MJ, Crowley WF, Jr. Serum melatonin in central precocious puberty is lower than in age-matched prepubertal children. *The Journal of clinical endocrinology and metabolism.* Oct 1991;73(4):793-6. doi:10.1210/jcem-73-4-793

106. Shaaban Z, Jafarzadeh Shirazi MR, Nooranzadeh MH, et al. Decreased Expression of Arginine-Phenylalanine-Amide-Related Peptide-3 Gene in Dorsomedial Hypothalamic Nucleus of
Constant Light Exposure Model of Polycystic Ovarian Syndrome. *Int J Fertil Steril*. Apr 2018;12(1):43-50. doi:10.22074/ijfs.2018.5206

107. Park YM, White AJ, Jackson CL, Weinberg CR, Sandler DP. Association of Exposure to Artificial Light at Night While Sleeping With Risk of Obesity in Women. *JAMA Intern Med*. Aug 1 2019;179(8):1061-1071. doi:10.1001/jamainternalmed.2019.0571

108. Wright KP, Jr., McHill AW, Birks BR, Griffin BR, Rusterholz T, Chinoy ED. Entrainment of the human circadian clock to the natural light-dark cycle. *Current biology : CB*. Aug 19 2013;23(16):1554-8. doi:10.1016/j.cub.2013.06.039

109. Mo L, Mansfield DR, Joham A, et al. Sleep disturbances in women with and without polycystic ovary syndrome in an Australian National Cohort. *Clinical endocrinology*. Apr 2019;90(4):570-578. doi:10.1111/cen.13922

110. Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. *The Journal of clinical endocrinology and metabolism*. Dec 2013;98(12):4565-92. doi:10.1210/jc.2013-2350

111. Shang Y, Zhou H, Hu M, Feng H. Effect of Diet on Insulin Resistance in Polycystic Ovary Syndrome. *The Journal of clinical endocrinology and metabolism*. Oct 1 2020;105(10). doi:10.1210/clinem/dgaa425

112. Porchia LM, Hernandez-Garcia SC, Gonzalez-Mejia ME, Lopez-Bayghen E. Diets with lower carbohydrate concentrations improve insulin sensitivity in women with polycystic ovary syndrome: A meta-analysis. *European journal of obstetrics, gynecology, and reproductive biology*. May 2020;248:110-117. doi:10.1016/j.ejogrb.2020.03.010

113. Zhang X, Zheng Y, Guo Y, Lai Z. The Effect of Low Carbohydrate Diet on Polycystic Ovary Syndrome: A Meta-Analysis of Randomized Controlled Trials. *Int J Endocrinol*. 2019;2019:4386401. doi:10.1155/2019/4386401

114. Li C, Xing C, Zhang J, Zhao H, Shi W, He B. Eight-hour time-restricted feeding improves endocrine and metabolic profiles in women with anovulatory polycystic ovary syndrome. *J Transl Med*. Apr 13 2021;19(1):148. doi:10.1186/s12967-021-02817-2

115. Pacchiarotti A, Carlonagno G, Antonini G, Pacchiarotti A. Effect of myo-inositol and melatonin versus myo-inositol, in a randomized controlled trial, for improving in vitro fertilization of patients with polycystic ovarian syndrome. *Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology*. 2016;32(1):69-73. doi:10.3109/09513590.2015.1101444

116. Kim MK, Park EA, Kim HJ, et al. Does supplementation of in-vitro culture medium with melatonin improve IVF outcome in PCOS? *Reproductive biomedicine online*. Jan 2013;26(1):22-9. doi:10.1016/j.rbmo.2012.10.007

117. Mousavi R, Alizadeh M, Asghari Jafarabadi M, et al. Effects of Melatonin and/or Magnesium Supplementation on Biomarkers of Inflammation and Oxidative Stress in Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial. *Biol Trace Elem Res*. May 19 2021;doi:10.1007/s12111-021-02725-y

118. Stanosz S, von Mach-Szczypinski J, Sieja K, Kooeciuszkiewicz J. Micronized estradiol and
progesterone therapy in primary, preinvasive endometrial cancer (1A/G1) in young women with polycystic ovarian syndrome. *The Journal of clinical endocrinology and metabolism.* Dec 2014;99(12):E2472-6. doi:10.1210/jc.2014-1693

119. Sen A, Sellix MT. The Circadian Timing System and Environmental Circadian Disruption: From Follicles to Fertility. *Endocrinology.* Sep 2016;157(9):3366-73. doi:10.1210/en.2016-1450

120. Yang Y, Yang L, Qi C, et al. Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NFkappaB signaling pathway. *Mol Med Rep.* Nov 2020;22(5):3851-3861. doi:10.3892/mmr.2020.11469

121. Huang Y, Li W, Wang CC, Wu X, Zheng J. Cryptotanshinone reverses ovarian insulin resistance in mice through activation of insulin signaling and the regulation of glucose transporters and hormone synthesizing enzymes. *Fertility and sterility.* Aug 2014;102(2):589-596 e4. doi:10.1016/j.fertnstert.2014.05.012

122. Xia Y, Zhao P, Huang H, Xie Y, Lu R, Dong L. Cryptotanshinone reverses reproductive disturbances in rats with dehydroepiandrosterone-induced polycystic ovary syndrome. *Am J Transl Res.* 2017;9(5):2447-2456.

123. Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. *Annu Rev Pharmacol Toxicol.* 2007;47:593-628. doi:10.1146/annurev.pharmtox.47.120505.105208

124. Mills J, Kuohung W. Impact of circadian rhythms on female reproduction and infertility treatment success. *Curr Opin Endocrinol Diabetes Obes.* Dec 2019;26(6):317-321. doi:10.1097/MED.0000000000000511

125. Harter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. *The Journal of endocrinology.* Sep 2018;238(3):R173-R183. doi:10.1530/JOE-18-0108
Table 1. Effect of mutated clock genes and the potential diseases in the female reproductive system.

Mutated Genes	Effect	Potential Disease	References
BMAL1	Irregular estrous cycles	POI; PCOS	53
	Abnormal StAR expression	POI	6
	Insulin resistance	PCOS	65
CLOCK	Irregular estrous cycle	POI; PCOS	28
	Undetectable LH surges	POI; PCOS	28
PER	Excessive androgen	PCOS	60
	Irregular estrous cycle	POI; PCOS	54
	Lower reproductive rate with fewer litters	POI	54
CRY	Reduced oocyte maturation ability	POI; PCOS	62
	Irregular estrous cycle	POI; PCOS	64
	Infertility	POI; PCOS	64
Figure 1: Organization of the circadian clock system within the female hypothalamic-pituitary-gonadal (HPG) axis. The light entrains the central clock in the suprachiasmatic nucleus (SCN), which drives the daily rhythms of the sleep-wake and feeding-fasting cycles, as well as hormone release within the HPG axis. The circadian clock works at the HPG axis by means of transcription and translation feedback loops. In the main loop, the transcriptional activators CLOCK-BMAL1 activate the transcription of PER, CRY, DBP, ROR, and REV-ERB genes. PER and CRY proteins physically interact and suppress the activities of CLOCK-BMAL1. REV-ERB and ROR compete to bind with the promoter and enhancer regions of the BMAL1 and play an inhibitory and activation role in transcription, respectively. DBP forms another loop, and it competes with the REV-ERB and ROR target gene NFIL3 to regulate the expression of the clock genes. All these loops control the expression of clock-controlled genes (CCGs), which mediate various reproductive processes. (The yellow box shows the CCGs mentioned in this article.)
Figure 2: Chronodisruption caused by environmental cues within the female HPG axis. a) Environmental cues that lead to circadian rhythm disruption within the HPG axis. b) Circadian clock misalignment induces multiple pathophysiological alternations in the female reproductive system.