Efficient algorithm to study interconnected networks

Christian M. Schneider,1,2 Nuno A. M. Araújo,2† and Hans J. Herrmann2,3,†

1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2Computational Physics for Engineering Materials, IfB, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
3Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil

Interconnected networks have been shown to be much more vulnerable to random and targeted failures than isolated ones, raising several interesting questions regarding the identification and mitigation of their risk. The paradigm to address these questions is the percolation model, where the resilience of the system is quantified by the dependence of the size of the largest cluster on the number of failures. Numerically, the major challenge is the identification of this cluster and the calculation of its size. Here, we propose an efficient algorithm to tackle this problem. We show that the algorithm scales as $O(N \log N)$, where N is the number of nodes in the network, a significant improvement compared to $O(N^2)$ for a greedy algorithm, what permits studying much larger networks. Our new strategy can be applied to any network topology and distribution of interdependencies, as well as any sequence of failures.

PACS numbers: 64.60.ah, 64.60.aq, 89.75.Hc

I. INTRODUCTION

Most real networks are strongly dependent on the functionality of other networks [16]. For example, the performance of a power grid is assured by a system of global monitoring and control, which depends on a communication network. In turn, the servers of the communication network rely on the power grid for power supply. This interdependence between networks strongly affects their resilience to failures. Buldyrev et al. [6] have developed the first strategy to analyze this coupling in the framework of percolation. To the conventional representation of complex networks, where nodes are the agents (e.g., power stations or servers) and edges are the interactions (either physical or virtual), they added a new type of edges, namely, dependency links, to represent the inter-network coupling. Such links couple two nodes from different networks in such a way that if one fails the other cannot function either. They have shown that this coupling promotes cascading failures and strongly affects the systemic risk, drawing the attention towards the dynamics of coupled systems. A different framework based on epidemic spreading has also been proposed leading to the same conclusions [7].

To quantify the resilience of interconnected networks, one typically simulates a sequence of node failures (by removing nodes) and measures the dependence of the size of the largest connected component on the number of failures [8, 9]. The first studies have shown that, depending on the strength of the coupling (e.g., fraction of dependency links), at the percolation threshold, this function can change either smoothly (weak coupling) [11] or abruptly (strong coupling) [11]. As reviewed in Refs. [10–12], several works have followed studying, for example, the dependence on the coupling strength [8, 13], the role of network topology, and the phenomenon on geographically embedded networks [14, 15]. A more general framework was also developed to consider a network of networks [16–18]. In all cases, astonishing properties have been revealed, which were never observed for isolated systems.

For many cases of interest, the size of the largest component needs to be computed numerically as the available analytic formalisms are limited to very simple networks, interdependencies, and sequence of failures [6, 11, 13]. However, the determination of this largest component and its size is not a trivial task. When a node is removed (fails), the triggering of cascading failures and multiple interdependencies need to be considered. Here we propose an efficient algorithm, where a special data structure is used for the fast identification of the largest fragment when the network breaks into pieces. We show that the algorithm scales as $O(N \log N)$, where N is the number of nodes in the network, while the one of a greedy algorithm is $O(N^2)$. This strategy permits studying very large system sizes and many samples, which leads to much more accurate statistics. Since our description is generic, it is possible to consider any network and distribution of interdependencies, as well as sequences of failures [19, 21].

The paper is organized in the following way. The algorithm is described in Sec. II and its efficiency discussed in Sec. III. In Sec. IV we make some final remarks and discuss possible future applications.

II. ALGORITHM

Figure 1 shows the dependence of the fraction of nodes in the largest connected cluster s on the fraction of removed nodes $1 - p$, for two Erdős-Rényi networks with
more than one million nodes. When nodes are randomly removed, the largest connected component decreases in size, until the network is completely fragmented above a threshold $1 - p_c$. In the inset, we see the evolution of the number of iterations per removed node. An iteration corresponds to a set of failures in one network triggered by an internetwork coupling, i.e., by the removal of a dependency link. The number of iterations is negligibly small for low values of $1 - p$ but peaks at the threshold. Following the cascade after removing a node is the most computational demanding task. Consequently, an efficient algorithm is required to identify, in a fast way, if a node removal triggers a cascade or not.

Here, we propose an efficient data structure to recognize the beginning of a cascade and identify the different fragments resulting from a node removal. Since we are interested in the evolution of the largest connected component, we only follow this cluster. Our algorithm uses a hierarchical data structure with different levels. As illustrated in Fig. 2, we choose the node with the highest degree as the root and assign to it the level $L = 0$. All neighbors of this root are on the second level ($L = 1$) and they are directly connected to the root. All neighbors of the second level, which have not an assigned level yet, are then placed on the third level. We proceed iteratively in the same way, until all nodes of the cluster have a level. Note that we can have links within the same level and between levels but, in the latter, the level difference is limited to unity. The depth of the level structure is the maximal distance between the root and any other node in the network. For random networks, this depth approximately scales with $\log N$ [23, 24] and it scales even slower for many scale-free networks [25]. Note that, in the case of n coupled networks we will have n different hierarchical structures, i.e., one per network, representing its largest component.

When a node in level L is removed, the ordering needs to be updated. All neighbors at a higher level $L+1$ which are connected to another node in level L remain in the same level, as shown in Fig. 3. The nodes in level $L+1$ which have no further neighbors in level L but only in level $L+1$, need to be updated (moved one level up) as well as the entire branch connected to them. In those two cases, the size of the largest connected component in this iteration is just changed by unity (the initially removed node). If neither of those cases occurs, i.e. all neighbors have a higher level, we proceed iteratively through the branch of neighbors with a breadth first search (up in level) until we detect one node in level L' which has at least one neighbor in level L' or $L' - 1$ which is not detected by the breadth first search. In this case, the entire branch of detected nodes is updated, starting from the last node in level L'. On the other hand, if no node in the branch establishes a connection with the other branches, it implies that the largest component was split into sub-networks and one has to decide which one is the largest. Then the size of the largest connected component is adjusted and all nodes reorganized (see example in Fig. 4).

III. NUMBER OF COMMANDS AND COMPUTATIONAL TIME

To assess the efficiency of the algorithm, we study the dependence of the number of commands C_N on the network size N. We count as a command, every time a node in one of the networks is removed, its level changed, or just checked during the reorganization of the level struc-
FIG. 3. (Color online) Example of a node removal. In this case, the red (light) node with $L = 1$ is removed. Since the only neighbor of this node with higher level has another neighbor with $L = 1$, the size of the largest connected cluster is only reduced by one.

FIG. 4. (Color online) Example of a reorganization due to a node removal. In the example, the root node is removed, thus the level structure has to be reorganized. First, the largest subnetwork is identified and all the other subnetworks are removed. One of the surviving first neighbors of the old root is randomly selected to become the new root. Then the levels of its neighbors are updated as well as their branches. Note that the update of a branch is complete when the level of a node remains the same. In the worst case scenario, the complexity of the entire update process is $O(M)$, where M is the size of the entire branch.

FIG. 5. (Color online) The number of used commands in the program C_N versus the system size N. The function $f(N) = C_0 \log(N) N^{C_1}$ is fitted to the observed values. The fitting parameter C_1 is 1.02 ± 0.03 for Erdős-Rényi networks and 0.97 ± 0.04 for scale-free networks, respectively.

Figure 5 shows the size dependency of the average computational time $t(N)$ required to compute an entire sequence of node removals. We show the ratio $t(N)/t(N/2)$ obtained from two computers with 6 MB and 12 MB CPU cache for Erdős-Rényi networks (main plot) and scale-free networks (inset). In both cases, we observe a crossover between two different scaling regimes at a certain system size N^*. This crossover at $N^* = 4000$ and $N^* = 8000$ for 6 MB cache and 12 MB cache, respectively, depends on the size of the CPU cache memory (L2). For network sizes $N < N^*$, the size of the system is such that all information can be kept inside the CPU cache, being more efficient. For $N > N^*$, not all information fits in the CPU cache and the efficiency decreases, since the access to the Random Access Memory (RAM) is slower.

In the first regime $N < N^*$ the increase of the CPU time is consistent with an algorithm scaling as $O(N \log N)$. In the second regime $N \gg N^*$ the CPU time seems to converge to the same logarithmic scaling.
V. ACKNOWLEDGMENT

We acknowledge financial support from the ETH Risk Center, from the Swiss National Science Foundation under contract 200021 126853 and by New England UTC Year 23 grant, awards from NEC Corporation Fund, the Solomon Buchsbaum Research Fund.
[25] R. Cohen and S. Havlin, Phys. Rev. Lett. 90, 058701 (2003).

[26] P. Erdős and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960).

[27] M. Molloy and B. Reed, Random Struct. Algorithms 6, 161 (1995).

[28] W. Li, A. Bashan, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Phys. Rev. Lett. 108, 228702 (2012).