Measurement of the masses and widths of the bottom baryons Σ_b^+ and Σ_b^{*+}

T. Aaltonen,1 B. Álvarez González,2 S. Amerio,40 D. Amidei,32 A. Anastasov,15 A. Annovi,17 J. Antos,12 G. Apollinari,15 J.A. Appel,15 T. Arisawa,54 A. Artikov,13 J. Asaadi,49 W. Ashmanskas,15 B. Auerbach,57 A. Aurisano,49 F. Azfar,19 W. Badgett,15 T. Bae,25 A. Barbaro-Galtieri,26 V.E. Barnes,44 B.A. Barnett,23 P. Barris,44 P. Bartos,21 B. Bause,40 F. Bedeschi,12 S. Behari,23 G. Bellettini,94,2 J. Bellinger,56 D. Benjamin,14 A. Beretvas,15 A. Bhatti,46 D. Bisello,40 I. Bizjak,28 K.R. Bland,25 B. Blumenfeld,23 A. Boci,14 A. Bodek,45 D. Bortoletto,44 J. Boudreau,43 A. Boveia,11 L. Brigiadoldi,6, C. Bromberg,33 E. Brucken,21 J. Budagov,13 H.S. Budd,45 K. Burkett,15 G. Busetto,40 P. Bussey,19 A. Buzatu,31 A. Calamba,10 C. Calancha,29 S. Camarda,4 M. Campanelli,28 M. Campbell,32 F. Canelli,11 B. Carts,22 D. Carlsmit,56 R. Carosi,42 S. Carrillo,16, 14 S. Carron,15 B. Casal,9 M. Casarsa,50 A. Castro,9, 6 P. Catalist,20 D. Cauz,50 V. Cavalliere,22 M. Cavalli-Sforza,4, A. Cerri,26 L. Cerrito,28 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,42 G. Chlachidze,15 F. Chlebana,15 K. Cho,25 D. Chokheli,13 W.H. Chung,56 Y.S. Chung,45 M.A. Ciocci,42 A. Clark,18 C. Clarke,55 G. Compostella,40 M.E. Convery,15 J. Conway,7 M. Corbo,15 M. Cordelli,17 C.A. Cox,7 D.J. Cox,7 F. Crescioli,94,2 J. Cuevas,9 R. Culbert,15 D. Dagenhart,15 N. d’Ascenzo,15 M. Datta,15 P. de Barbaro,45 M. Dell’Orso,82, L. Demortier,46 M. Deninno,6 F. Devoto,21 M. d’Errico,40 A. Di Canto,94,2 B. Di Ruzza,15 J.R. Dittmann,5 M. D’Onofrio,22 S. Donati,94,2 P. Dong,15 M. Dorio,15 P. Dorigo,40 K. Ebina,54 A. Elkin,19 A. Eppig,12 R. Erbacher,7 S. Errede,22 N. Ershadat,15 R. Eusebi,49 S. Farrington,39 M. Feindt,24 J.P. Fernandez,29 R. Field,16 G. Flanagan,15 R. Forrest,7 M.J. Frank,5 M. Franklin,20 J.C. Freeman,15 Y. Funakoshi,24 I. Furic,16 M. Gallinaro,46 J.E. Garcia,18 A.F. Garfinkle,44 P. Garosi,44 H. Gerberich,22 E. Gerschtein,15 S. Giagu,47 V. Giakoumipoulou,3 P. Giannetti,42 K. Gibson,43 C.M. Ginsburg,15 N. Giokaris,3 P. Giomini,17 G. Giorgi,23 V. Glagolev,13 D. Glinzinski,15 M. Goldin,54 N. Goldschmidt,16 A. Golossanov,15 G. Gomez,9 G. Gomez-Ceballos,30 M. Goncharov,30 O. Gozdz,29 I. Gorelov,39 A.T. Goshaw,14 K. Goulianos,46 S. Grinstein,4 C. Grosso-Pilcher,11 R.C. Group,15 J. Guimaraes da Costa,20 S.R. Hahn,15 E. Halkiadakis,38 A. Hamaguchi,38 J.Y. Han,15 F. Happracher,17 K. Har,51 D. Hare,18 M. Hare,52 R.H. Harr,55 K. Hatakeyama,5 C. Hayes,39 M. Heck,24 J. Heinrich,41 M. Herndon,56 S. Hewmanage,5 A. Hocker,15 W. Hopkins,9, 15 D. Horn,24 S. Hou,1 R.E. Hughes,36 M. Hurwitz,11 U. Husemann,57 N. Hussain,33 M. Husa,33 J. Huston,33 G. Intriligator,42 M. Ionj,47 A. Ivanov,7 E. James,15 D. Jang,10 B. Jayatilaka,14 E.J. Jeon,25 S. Jindariani,15 M. Jones,44 K.K. Joo,25 S.Y. Jun,10 T.R. Junk,15 T. Kamon,25, 49 P.E. Karchin,55 A. Kasma,5 Y. Kato,38 W. Ketchum,11 J. Keung,41 V. Khodolovich,49 B. Kilminster,15 D.H. Kim,25 H.S. Kim,25 J.E. Kim,25 M.J. Kim,17 S.B. Kim,25 S.H. Kim,51 Y.K. Kim,11 J.Y. Kim,25 N. Kimura,54 M. Kirby,15 S. Klimenko,16 K. Knoepfel,15 K. Kondo,44 J.D. Kong,25 J. Königsberg,16 A.V. Kotwal,14 M. Kreps,24 J. Kroll,41 D. Krop,11 M. Kruse,14 V. Kruteljov,9, 49 T. Kuhl,24 M. Kurata,51 S. Kwang,15 A.T. Laasanen,44 L. Labarga,29 S. Lami,24 S. Lambel,15 M. Lancaster,28 R.L. LANDER,7 K. Lannon,36 A. Lath,48 G. Latino,44 T. LeCompte,2 E. Lee,49 H.S. Lee,11 J.S. Lee,25 S.W. Lee,49 S. Leon,42 J.D. Lewis,15 A. Limosani,14 C.-J. Lin,26 M. Lindgren,15 E. Lippeis,41 A. Lister,18 D.O. Litvintsev,15 C. Liu,43 H. Liu,54 Q. Liu,44 T. Liu,15 S. Lockwitch,57 A. Loginov,57 D. Lucchesi,40 J. Luedtke,24 P. Lujan,26 P. Lukens,15 G. Lungu,46 J. Lys,26 R. Lysak,12 R. Madak,15 K. Maeshima,15 P. Maestro,44, 22 S. Malik,16 G. Manca,27 A. Manousakis-Katsikakis,3 F. Margaroli,47 C. Marino,24 M. Martinez,4 P. Mstrandrea,47 K. Matera,22 M.E. Mattsson,55 A. Mazzacone,15 P. Mazzanti,6 K.S. McFarland,45 P. McIntyre,49 R. McNulty,7 A. Mehta,27 P. Mehtal,21 C. Mesropian,46 T. Miao,15 D. Mietlicki,32 A. Mitra,1 H. Miyake,51 S. Moed,15 N. Moggi,6 M.N. Mondragon,19 C.S. Moon,25 R. Moore,15 M.J. Morello,42 J. Morlock,24 P. Movilla Fernandez,15 A. Mukherjee,17 Th. Muller,24 P. Murat,15 M. Mussini,6 J. Nachtman,5, 15 Y. Nagai,51 J. Nagano,54 I. Nakano,37 A. Napier,52 J. Nett,49 C. Neu,53 M.S. Neubauer,22 J. Nielsen,26 L. Nodulman,2 S.Y. Noh,25 O. Norniella,22 L. Oakes,39 S.H. Oh,14 Y.D. Oh,25 I. Oksuz,53 T. Okusawa,38 R. Orava,21 L. Ortolan,4 S. Pagan Grisost,40 C. Pagliarone,50 E. Palencia,9 V. Papadimitriou,15 A.A. Paramonov,2 J. Patrick,15 G. Pauletta,50 M. Paulini,10 C. Paus,30 D.E. Pellett,7 A. Penzo,10 J.T. Phillips,14 G. Picentino,12 E. Pianori,41 J. Pilot,36 K. Pitts,22 C. Plager,8 L. Poddrom,56 S. Poprocki,15 K. Potamianos,44 F. Prokoshin,13 A. Pranko,26 F. Ptohos,17 G. Punzi,94,2 A. Rahaman,43 V. Ramakrishnan,56 N. Ranjan,44 I. Redondo,29 P. Renton,39 M. Rescigno,47 T. Riddick,28 F. Rimondi,6 L. Ristori,14 S. Robson,19 T. Rodrigo,9 T. Rodriguez,41 E. Rogers,22 S. Rollil,52 R. Roser,15 F. Ruffini,44 A. Ruiz,9 J. Russ,20 V. Rusi,25 A. Safonov,49 W.K. Sakumoto,45 Y. Sakurada,54 L. Santik,50 K. Sato,51 V. Saveliev,15 A. Savoy-Navarro,43 P. Schlabach,15 A. Schmidt,24 E.E. Schmidt,15 T. Schwarz,15 L. Scodellaro,9 A. Scribano,44, 42 F. Scru,42 S. Seidel,35 Y. Seiya,38 A. Semenov,13 F. Sforza,44 S.Z. Shalhout,7 T. Shears,27 P.F. Shepard,43 M. Shinojima,51 M. Shochet,11 I. Shreyber-Tecker,34 A. Simonenko,13 P. Sinervo,31
K. Sliwa, J.R. Smith, F.D. Snider, A. Soha, V. Sorin, H. Song, P. Squillacioti, M. Stancari, R. St. Denis, B. Stelzer, O. Stelzer-Chilton, D. Stentz, J. Strologas, G.L. Strycker, Y. Sudo, A. Sukhanov, I. Suslov, A. Sukhanov, R.L. Wagner, K. Sliwa, R. St. Denis, D. Whiteson, G. Velev, C. Vellidis, M. Vidal, I. Vila, R. Vilar, J. Vizán, M. Vogel, G. Volpi, P. Wagner, R.L. Wagner, T. Wakisaka, R. Wallny, S.M. Wang, A. Warburton, D. Waters, W.C. Wester III, D. Whiteson, A.B. Wicklund, P. Wittich, P. Wittich, P. Wittich, P. Wittich, K. Yamamoto, D. Yamato, T. Yang, U.K. Yang, Y.C. Yang, W.-M. Yao, G.P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, G.B. Yu, I. Yu, S.S. Yu, J.C. Yuan, A. Zanetti, Y. Zeng, C. Zhou, and S. Zucchelli

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 University of California, Davis, Davis, California 95616, USA
6 Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy
7 University of California, Los Angeles, Los Angeles, California 90024, USA
8 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
9 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
10 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
11 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
12 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
13 Duke University, Durham, North Carolina 27708, USA
14 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
15 University of Florida, Gainesville, Florida 32611, USA
16 University of Padova, I-35131 Padova, Italy
17 Laboratory of Nuclear Studies, University of Geneva, CH-1211 Geneva 4, Switzerland
18 Glasgow University, Glasgow G12 8QQ, United Kingdom
19 Harvard University, Cambridge, Massachusetts 02138, USA
20 Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
21 University of Illinois, Urbana, Illinois 61801, USA
22 Johns Hopkins University, Baltimore, Maryland 21218, USA
23 Universität der Bundeswehr München, 85577 Neubiberg, Germany
24 Erasmus University Rotterdam, 3000 DR Rotterdam, Netherlands
25 University of Oxford, Oxford OX1 3RH, United Kingdom
26 University College London, London WC1E 6BT, United Kingdom
27 University of Liverpool, Liverpool L69 7ZE, United Kingdom
28 Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
29 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
30 Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
31 University of Michigan, Ann Arbor, Michigan 48109, USA
32 Michigan State University, East Lansing, Michigan 48824, USA
33 University of New Mexico, Albuquerque, New Mexico 87131, USA
34 The Ohio State University, Columbus, Ohio 43210, USA
35 Okayama University, Okayama 700-8530, Japan
36 Osaka City University, Osaka 558, Japan
37 University of Oxford, Oxford OX1 3RH, United Kingdom
38 Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy
Using data from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV recorded by the CDF II detector at the Fermilab Tevatron, we present improved measurements of the masses and first measurements of natural widths of the four bottom baryon resonance states Σ^+_b, Σ^0_b, Σ_c^0, and Σ_c^+. These states are fully reconstructed in their decay modes to $A^+_b \pi^+$ where $A^+_b \rightarrow A^+_b \pi^+$ with $A^+_b \rightarrow pK^-\pi^+$. The analysis is based on a data sample corresponding to an integrated luminosity of 6.0 fb$^{-1}$ collected by an online event selection based on tracks displaced from the $p\bar{p}$ interaction point.

PACS numbers: 14.20.Mr, 13.30.Eg, 14.65.Fy

I. INTRODUCTION

Baryons with a heavy quark Q as the “nucleus” and a light diquark q_1q_2 as the two orbiting “electrons” can be viewed as the “helium atoms” of quantum chromodynamics (QCD). The heavy quark in the baryon may be used as a probe of confinement that allows the study of non-perturbative QCD in a different regime from that of the light baryons.

Remarkable achievements in the theory of heavy quark hadrons were made when it was realized that a single heavy quark Q with mass $m_Q \gg \Lambda_{\text{QCD}}$ in the heavy hadron H_Q can be considered as a static color source in the hadron’s rest frame [1]. Based on this conjecture, the light diquark properties of the charm baryon A^+_c and its bottom partner A^+_b can be related by an approximate $SU(2)$ symmetry with $c \leftrightarrow b$ quark exchange. Another symmetry emerges because the spin of the heavy quark S_Q decouples from the gluon field. Models exploiting these heavy quark symmetries are collectively identified as heavy quark effective theories (HQET) [2, 3].

As the spin S_Q of a light diquark (plus a gluon field) and the spin S_Q of a heavy quark are decoupled in HQET, heavy baryons can be described by the quantum numbers S_Q, m_Q, S_{qq}, m_{qq}. The total spins of the S-wave (no orbital excitation) baryon multiplets can be expressed as the sum $J = S_Q + S_{qq}$. Then the singlet A^0_b baryon, with quark content $[ud]$ according to HQET, has spin of the heavy quark $S_P = \frac{1}{2}^+$. Its flavor antisymmetric $[ud]$ diquark has spin $S_{[ud]} = 0^+$ [4]. Under these conditions the b quark and the $[ud]$ diquark make the lowest-lying singlet ground state $J^P = \frac{1}{2}^+$. The partner of the A^0_b baryon in the strange quark sector is the...
A0 baryon. The other two states \(\Sigma_b\) and \(\Sigma_b^*\) with quark content and spin of the flavor symmetric \(\{gg\}\) diquark \(S_{(gg)} = 1^+\), constitute two isospin \(I = 1\) triplets with total spin \(J^P = \frac{1}{2}^+\) and \(J^P = \frac{3}{2}^+\) [4]. These states are the lowest-lying \(S\)-wave states that can decay to the singlet \(\Lambda_b^0\) via strong processes involving soft pion emission – provided sufficient phase space is available. The \(\Sigma_b\) and \(\Sigma_b^*\) particles are classified as bottom baryon resonant states. The partners of the \(\Sigma_b^{(*)}\) states [5] in the strange quark sector are \(\Sigma^{(*)}\) baryon resonances, though the \(J^P = \frac{1}{2}^+\) \(\Sigma\) states are light enough to decay only weakly or radiatively, and only the \(J^P = \frac{3}{2}^+\) states \(\Sigma(1385)\) decay strongly via the \(\Lambda^0\pi\) mode [6].

Some recent HQET calculations for bottom baryons are available in Ref. [7]. The mass spectra of single heavy quark baryons calculated with HQET in combined expansions in \(1/m_Q\) and \(1/N_c\), with \(N_c\) defined as a number of colors, are presented in Ref. [8]. In the potential quark model, the mass differences \(m(\Sigma_Q) - m(\Delta_Q)\) and \(m(\Sigma_b^0) - m(\Sigma_Q)\) are largely due to hyperfine splittings, hence the mass differences scale as \(1/m_Q\). Some recent predictions based on potential quark models are found in Refs. [9, 10]. There are striking patterns in the masses and mass differences of known hadrons. Some of these regularities can be understood from known general properties of the interactions of quarks, without specifying the explicit form of the Hamiltonian. Following this approach, the authors of Ref. [11] use semi-empirical mass formulae to predict the spectra of \(c\) and \(b\) baryons. The non-perturbative formalism of QCD sum rules has been applied within HQET to calculate the mass spectra of the heavy baryons \(\Lambda_Q\) and \(\Sigma_Q\) [12]. Lattice non-relativistic QCD calculations for bottom baryons [13] have been quite successful, though the uncertainties are typically large and exceed the uncertainties of the experimental measurements.

The mass splittings between members of the \(I = 1\) isospin triplets \(\Sigma_b^{(*)}\) arise from a combination of the intrinsic quark mass difference \(m(d) > m(u)\) and the electromagnetic interactions between quarks [10, 14]. Because of electromagnetic effects and the \(d\) quark being heavier than the \(u\) quark, the \(\Sigma_b^{(*)}\) states (with composition \(b\{dd\}\) i.e. all quarks with negative electric charge) are expected to be heavier than the \(\Sigma_b^{(*)}\) states whose composition is \(b\{uu\}\) [15]. No previous experimental measurements of isospin mass splitting of bottom baryons are available.

The description of strong decays of baryon resonances is a difficult theoretical task [16]. Only a few calculations [4, 17, 18] of the \(\Sigma_b^{(*)}\) natural widths are available. The widths are predicted in the range \(4.5 - 13.5\) MeV/c\(^2\) for \(\Gamma(\Sigma_b, \frac{1}{2}^-)\), and the range \(8.5 - 18.0\) MeV/c\(^2\) for \(\Gamma(\Sigma_b, \frac{3}{2}^-)\).

Until recently, direct observation of \(b\) baryons has been limited to the \(\Lambda_b^0\) reconstructed in its weak decays to \(J/\psi \Lambda^0\) and \(\Lambda_b^+ \pi^-\) [6]. The substantially enlarged experimental data sets delivered by the Tevatron allow significant advances in the spectroscopy of heavy quark baryon states. The resonance \(\Sigma_b^{(*)}\) states were discovered by CDF [19]. The charged bottom strange \(\Xi_b^-\) baryon was observed and measured [20–22] by both the CDF and D0 Collaborations. Later, D0 reported the first observation of the bottom doubly-strange particle \(\Omega_b^-\) [23]. Subsequently the CDF Collaboration confirmed the signal and measured the mass of the \(\Omega_b^-\) baryon [22]. Lastly, the neutral partner of \(\Xi_b^0\), the bottom strange baryon \(\Xi_b^0\), was reported for the first time by CDF [24]. Precise measurements of the masses and natural widths of baryon resonances in the charm sector, specifically the \(\Sigma_c^{(*)}, \Sigma_c^{(*)}++, \) and \(\Lambda_c^{++}\), were recently reported by the CDF Collaboration [25].

This study follows the first observation of the \(\Sigma_b^{(*)}\) states using 1.1 fb\(^{-1}\) [19]. We confirm the observation of those states using a larger data sample, improve the measurement technique, and add new measurements of properties of the \(\Sigma_b^{(*)}\) resonances. In the present analysis, the masses of the \(\Sigma_b^{(*)}\) and \(\Sigma_b^{(*)}\) states are determined independently, with no input from theory assumptions, differing from the previous CDF analysis [19]. Using an enlarged data sample of \(6\) fb\(^{-1}\), we extract the direct mass measurements with smaller statistical and systematic uncertainties than previously. First measurements of the natural widths of the \(J^P = \frac{3}{2}^+\) and \(J^P = \frac{1}{2}^+\) states are presented. Based on the new mass measurements, we determine the isospin mass splitting for the \(\Sigma_b^0\) and \(\Sigma_b^*\) isospin \(I = 1\) triplets.

Section II provides a brief description of the CDF II detector, the online event selection (trigger) important for this analysis, and the detector simulation. In Sec. III the data selection, analysis requirements, and reconstruction of the signal candidates are described. Section IV discusses the fit model of the final spectra and summarizes the fit results. In Sec. V we estimate the significance of signals extracted from the fits. The systematic uncertainties are discussed in Sec. VI. We present a summary of the measurements and conclusions in Sec. VII.

II. THE CDF II DETECTOR AND SIMULATION

The component of the CDF II detector [26] most relevant to this analysis is the charged particle tracking system. The tracking system operates in a uniform axial magnetic field of 1.4 T generated by a superconducting solenoidal magnet.

The CDF II detector uses a cylindrical coordinate system with \(z\) axis along the nominal proton beam line, radius \(r\) measured from the beam line and \(\phi\) defined as an azimuthal angle. The transverse plane \((r, \phi)\) is perpendicular to the \(z\) axis. The polar angle, \(\theta\), is measured from the \(z\) axis. The impact parameter of a charged particle track \(d_0\) is defined as the distance of closest approach of the particle track to the primary vertex in the transverse plane.
plane. Transverse momentum, p_T, is the component of the particle’s momentum projected onto the transverse plane. Pseudorapidity is defined as $\eta \equiv -\ln(\tan(\theta/2))$.

The inner tracking system comprises three silicon detectors: layer 00 (L00), the silicon vertex detector (SVX II) and the intermediate silicon layers (ISL) [27–30]. The innermost part, the L00 detector, is a layer of single-sided radiation tolerant silicon sensors mounted directly on the beam pipe at a radius of 1.35 – 1.6 cm from the proton beam line. It provides only an r-ϕ measurement and enhances the impact parameter resolution. Outside this, the five double-sided layers of SVX II provide up to 10 track position measurements. Each of the layers provides an r-ϕ measurement, while three return a measurement along z, and the other two return a measurement along a direction oriented at $\pm 1.2^\circ$ to the z axis. The SVX II spans the radii between 2.5 cm and 10.6 cm and covers the pseudorapidity range $|\eta| < 2.0$. The SVX II detector provides a vertex resolution of approximately 15 μm in the transverse plane and 70 μm along the z axis. A fine track impact parameter resolution $\sigma_{d_0} \approx 35 \mu$m is achieved, where the σ_{d_0} includes an approximate 28 μm contribution from the actual transverse size of the beam spot. The outermost silicon subdetector, ISL, consists of double-sided layers at radii 20 cm to 28 cm, providing two or four hits per track depending on the track pseudorapidity within the range $|\eta| < 2.0$ instrumented by the ISL.

A large open cell cylindrical drift chamber, the central outer tracker (COT) [31], completes the CDF detector tracking system. The COT consists of 96 sense wire layers arranged in 8 superlayers of 12 wires each. Four of these superlayers provide axial measurements, and four provide stereo views at $\pm 2^\circ$. The active volume of the COT spans the radial region from 43.4 cm to 132.3 cm. The pseudorapidity range $|\eta| < 1.0$ is covered for tracks passing through all layers of the COT, while for the range out to 1.0 $< |\eta| < 2.0$, tracks pass through less than the full 96 layers. The trajectory of COT tracks is extrapolated into the SVX II detector, and the tracks are refitted with additional silicon hits consistent with the track extrapolation. The two additional layers of the ISL help to link tracks in the COT to hits in the SVX II. The combined track transverse momentum resolution is $\sigma(p_T)/p_T \simeq 0.07\% p_T [\text{GeV}/c]^{-1}$.

The analysis presented here is based on events recorded with a three-tiered trigger system configured to collect large data samples of heavy hadrons decaying through multi-body hadronic channels. We refer to this as the displaced two-track trigger. We use two configurations of this trigger, the “low-p_T” and the “medium-p_T” selections. At level 1, the trigger uses information from the hardware extremely fast tracker [32]. The “low-p_T” configuration of the displaced two-track trigger requires two tracks in the COT with $p_T > 2.0 \text{GeV}/c$ for each track, and with an opening angle of $|\Delta\phi| < 90^\circ$ between the tracks in the transverse plane. Additionally the track pair scalar sum must satisfy $p_{T1} + p_{T2} > 4.0 \text{GeV}/c$. The corresponding criteria imposed in the “medium-p_T” configuration are $p_T > 2.0 \text{GeV}/c$ for each track, opening angle $|\Delta\phi| < 135^\circ$, and $p_{T1} + p_{T2} > 5.5 \text{GeV}/c$. The level 2 silicon vertex trigger (SVT) [33, 34] associates the track pair from the extremely fast tracker with hits in the SVX II detector and recognizes both tracks using a large look-up table of hit patterns. The SVT repeats the level 1 p_T criteria and limits the opening angle to $2^\circ < |\Delta\phi| < 90^\circ$. Only in the case of the medium-p_T configuration are the charges of the tracks required to be of opposite sign. Crucially, the SVT imposes a requirement on the transverse impact parameter of each track to be $0.12 < d_0 < 1 \text{ mm}$, given the excellent resolution provided by SVX II. Finally, the distance in the transverse plane between the beam axis and the intersection point of the two tracks projected onto their total transverse momentum is required to be $L_{xy} > 200 \mu$m. The level 3 software trigger uses a full reconstruction of the event with all detector information and confirms the criteria applied at level 2. The trigger criteria applied to the d_0 of each track in the pair and to L_{xy} preferentially select decays of long-lived heavy hadrons over prompt background, ensuring that the data sample is enriched with b hadrons.

The mass resolution on the $\Sigma_b^{(*)}$ resonances is predicted with a Monte Carlo simulation that generates b quarks according to a next-to-leading order calculation [35] and produces events containing final state hadrons by simulating b quark fragmentation [36]. Mass values of 5807.8 MeV/c^2 for Σ_b and 5829.0 MeV/c^2 for Σ_b^* [19] are used in the Monte Carlo generator. Final state decay processes are simulated with the EVTGEN [37] program, and all simulated b hadrons are produced without polarization. The generated events are input to the detector and trigger simulation based on GEANT3 [38] and processed through the same reconstruction and analysis algorithms as are used on the data.

III. DATA SAMPLE AND EVENT SELECTION

This analysis is based on data equivalent to 6.0 fb^{-1} of $p\bar{p}$ collisions collected with the displaced two-track trigger between March 2002 and February 2010. We study $\Sigma_b^{(*)}$ resonances in the exclusive strong decay mode $\Sigma_b^{(*)} \rightarrow A_b^0 \pi_b^\pm$, where the low momentum pion π_b^\pm is produced near kinematic threshold [39]. The A_b^0 decays to $A_1^+ \pi_b^-$ with a prompt pion π_b^- produced in the weak decay. This is followed by the weak decay $A_1^+ \rightarrow pK^-\pi^+$. To reconstruct the parent baryons, the tracks of charged particles are combined in a kinematic fit to form candidates. No particle identification is used in this analysis. The following two complementary quantities defined in the plane transverse to the beam line and relating the decay path of baryons to their points of origin are used: the proper decay time of the baryon candidate h expressed in length units $ct(h)$, and the impact parame-
The momentum vector of the candidate with respect to the heavy baryon decay vertex in the transverse plane. The transverse impact parameter \(d_0(h)\) of the candidate is defined analogously to the one of a charged particle track. An event-specific primary interaction vertex is used in the calculation of the \(cT(h)\) and \(d_0(h)\) quantities. The measurement uncertainties \(\sigma_{cT}\) and \(\sigma_{d_0}\) originate from the track parameter uncertainties and the uncertainty on the primary vertex.

A. Reconstruction of the \(\Lambda_b^0\) candidates

The analysis begins with reconstruction of the \(\Lambda_c^+ \rightarrow pK^-\pi^+\) decay by fitting three tracks to a common vertex. The invariant mass of the \(\Lambda_c^+\) candidate is required to be within \(\pm 18\) MeV/c\(^2\) of the world-average \(\Lambda_c^+\) mass [6]. The momentum vector of the \(\Lambda_c^+\) candidate is then extrapolated to intersect with a fourth pion track, the \(\pi^-\) candidate, to form the \(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-\) candidate vertex. The \(\Lambda_b^0\) vertex is subjected to a three-dimensional kinematic fit with the \(\Lambda_c^+\) candidate mass constrained to its world average value [6]. The probability of the constrained \(\Lambda_b^0\) vertex fit must exceed 0.01%. Standard quality requirements are applied to each track, and only tracks with \(p_T > 400\) MeV/c are used. All tracks are re-fitted using pion, kaon and proton mass hypotheses to properly correct for the differences in multiple scattering and ionization energy loss. At least two tracks among the \(p, K^-, \pi^+\), and \(\pi^-\) candidates are required to fulfill the level 2 (SVT) trigger requirements.

To suppress prompt backgrounds from the primary interaction, the decay vertex of the \(\Lambda_b^0\) is required to be distinct from the primary vertex. To achieve this, cuts on \(cT(\Lambda_b^0)\) and its significance \(cT(\Lambda_b^0)/\sigma_{cT}\) are applied. We require the \(\Lambda_c^+\) vertex to be close to the \(\Lambda_b^0\) vertex by applying cuts on \(cT(\Lambda_c^+)\) where the corresponding quantity \(L_{xy}(\Lambda_c^+)(h)\) is calculated with respect to the \(\Lambda_b^0\) vertex. The requirement \(cT(\Lambda_c^+) > -150\) \(\mu\)m reduces contributions from \(\Lambda_c^+\) baryons directly produced in \(p\bar{p}\) interaction and from random combination of tracks faking \(\Lambda_c^+\) candidates which may have negative \(cT(\Lambda_c^+)\) values.

The other restriction, \(cT(\Lambda_c^+) < 250\) \(\mu\)m, aims at reducing contributions from \(D^0 \rightarrow D^+\pi^-\) decays, followed by \(D^+ \rightarrow K^-\pi^+\pi^+\) decays. The requirements take into account \(cT\) resolution effects and exploit the much shorter \(\Lambda_c^+\) lifetime compared to the \(D^+\) [19, 40]. To reduce combinatorial background and contributions from partially reconstructed decays, we ask \(\Lambda_b^0\) candidates to point to the primary vertex by requiring the impact parameter \(d_0(\Lambda_b^0)\) not to exceed 80 \(\mu\)m. The choice of analysis requirements to identify \(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-\) candidates is made using an optimization based on the experimental data only. The figure of merit \(S/\sqrt{S+B}\) is used during the optimization, where \(S\) is the \(\Lambda_b^0\) signal and \(B\) is the background under the signal, respectively. At every step of the optimization procedure, both quantities are obtained from fits of the \(\Lambda_c^+\pi^-\) invariant mass spectrum and are determined from the corresponding numbers of candidates fit within \(\pm 3\sigma\) of the \(\Lambda_c^+\) signal peak. Table I summarizes the resulting \(\Lambda_b^0\) analysis requirements.

Figure 1 shows a prominent \(\Lambda_b^0\) signal in the \(\Lambda_c^+\pi^-\) invariant mass distribution, reconstructed using the optimized criteria. A binned maximum-likelihood fit finds a signal of approximately 16300 candidates at the expected \(\Lambda_b^0\) mass, with a signal to background ratio around 1.8. The fit model describing the invariant mass distribution comprises the Gaussian \(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-\) signal on top of a background shaped by several contributions. Random four-track combinations dominating the right sideband are modeled with an exponentially decreasing function. Coherent sources populate the left sideband and leak under the signal. These include reconstructed \(B\) mesons that pass the \(\Lambda_b^0 \rightarrow \Lambda_c^+\pi^-\) selection criteria, partially reconstructed \(\Lambda_b^0\) decays, and fully reconstructed \(\Lambda_b^0\) decays other than \(\Lambda_c^+\pi^-\) (e.g. \(\Lambda_b^0 \rightarrow \Lambda_c^+K^-\)). Shapes representing the physical background sources are derived from Monte Carlo simulations. Their normalizations are constrained to branching ratios that are either measured (for \(B\) meson decays, reconstructed within the same \(\Lambda_c^+\pi^-\) sample) or theoretically predicted (for \(\Lambda_b^0\) decays) [19, 40].

B. Reconstruction of \(\Sigma_b^{(*)}\pm\) candidates

To reconstruct the \(\Sigma_b^{(*)}\pm\) candidates, each \(\Lambda_c^+\pi^-\) candidate with invariant mass within the \(\Lambda_b^0\) signal region, \(5.561 - 5.677\) GeV/c\(^2\), is combined with one of the tracks remaining in the event with transverse momentum down to 200 MeV/c. The \(\Lambda_b^0\) mass range covers \(\pm 3\) standard deviations as determined by a fit to the signal peak of the \(\Lambda_b^0\) signal. To increase the efficiency for reconstructing \(\Sigma_b^{(*)}\pm\) decays near the kinematic threshold, the

TABLE I: Analysis requirements for \(\Lambda_b^0\) reconstruction. The quantity \(cT(\Lambda_c^+)\) is defined analogously to Eq. (1) as the \(\Lambda_b^0\) proper time where \(L_{xy}(\Lambda_c^+)\) is calculated with respect to the \(\Lambda_b^0\) vertex.

Quantity	Requirement
\(cT(\Lambda_b^0)\)	> 200 \(\mu\)m
\(cT(\Lambda_b^0)/\sigma_{cT}\)	> 12.0
\(d_0(\Lambda_b^0)\)	< 80 \(\mu\)m
\(cT(\Lambda_c^+ \rightarrow \Lambda_b^0)\)	> -150 \(\mu\)m
\(cT(\Lambda_c^+ \rightarrow \Lambda_b^0)\)	< 250 \(\mu\)m
\(p_T(\pi^-)\)	> 1.5 GeV/c
\(p_T(\Lambda_b^0)\)	> 4.0 GeV/c
\(\text{Prob}(\chi^2_{2\sigma})\) of \(\Lambda_b^0\) vertex fit	> 0.01%
The transverse momentum of the soft pion is required to point back to the primary vertex by requiring an impact the primary vertex, the soft pion track is required to originate from a common point. Furthermore, since the quality criteria applied to soft pion tracks are loosened in comparison with tracks used for the \(A_0^0 \) candidates. The basic COT and SVX II hit requirements are imposed on \(\pi^0 \) tracks, and only tracks with a valid track fit and error matrix are accepted.

Random combinations of \(A_0^0 \) signal candidates with \(\pi^0 \) tracks constitute the dominant background to the \(\Sigma_b^{(\pm)} \rightarrow A_0^0 \pi^0 \) signal. The remaining backgrounds are random combinations of soft tracks with \(B \) mesons reconstructed as \(A_0^0 \) baryons, and combinatorial background events [19]. To reduce the background level, a kinematic fit is applied to the resulting combinations of \(A_0^0 \) candidates and soft pion tracks \(\pi^0 \) to constrain them to originate from a common point. Furthermore, since the bottom baryon resonance originates and decays at the primary vertex, the soft pion track is required to point back to the primary vertex by requiring an impact parameter significance, \(d_0(\pi^0) / \sigma_{d_0} \), smaller than three. The transverse momentum of the soft pion is required to be smaller than the \(\pi^0 \) transverse momentum. As we already require \(pr(\pi^0) \) > 1.5 GeV/c (Table I) the condition imposed on the soft pion \(pr \) is fully efficient. The \(\Sigma_b^{(\pm)} \) candidate selection requirements are summarized in Table II.

![Invariant mass distribution of \(A_0^0 \rightarrow \Lambda_u^+ \pi^- \) candidates with the projection of a mass fit overlaid.](image)

TABLE II: \(\Sigma_b^{(\pm)} \) candidate selection requirements.

Quantity	Requirement
\(m(\Lambda_u^+ \pi^-) \)	\(\in (5.561, 5.677) \) GeV/c^2
\(d_0(\pi^0) \)	< 0.1 cm
\(pr(\pi^0) \)	> 200 MeV/c
\(d_0(\pi^0) / \sigma_{d_0} \)	< 3.0
\(pr(\pi^0) / pr(\pi^-) \)	< 1.5
\(p_T(\Sigma_b^{(\pm)}) \)	> 4.0 GeV/c

The analysis of the \(\Sigma_b^{(\pm)} \) mass distributions is performed using the \(Q \) value

\[
Q = m(\Lambda_u^+ \pi^-) - m(A_0^0) - m_\pi, \quad (2)
\]

where \(m_\pi \) is the known charged pion mass [6] and \(m(A_0^0) \) is the reconstructed \(\Lambda_u^+ \pi^- \) mass. The mass resolution of the \(A_0^0 \) signal and most of the systematic uncertainties cancel in the mass difference spectrum. The \(\Sigma_b^{\pm} \) and \(\Sigma_b^{-}\) signals are reconstructed as two narrow structures in the \(Q \)-value spectrum. The properties, yields, and significance of the resonance candidates are obtained by performing unbinned maximum-likelihood fits on the \(Q \)-value spectra.

The shapes of the \(\Sigma_b^{(\pm)} \) resonances are each modeled with a non-relativistic Breit-Wigner function. Since the soft pion in \(\Sigma_b^{(\pm)} \) strong decay modes is emitted in a \(P \)-wave, the width of the Breit-Wigner function is modified as follows [41]:

\[
\Gamma(Q; Q_0, \Gamma_0) = \Gamma_0 \left(\frac{p_{\pi^0}}{p_{\pi^0}} \right)^3, \quad (3)
\]

where \(Q_0 \) is the \(Q \) value at the resonance pole; \(p_{\pi^0} \) and \(p_{\pi^0} \) are the momenta of the soft pion in the \(\Sigma_b^{(\pm)} \) rest frame, off and on the resonance pole respectively; and \(\Gamma_0 \) is the corrected width. The soft pion momenta are calculated based on two-body decay kinematics [6]. Both \(Q_0 \) and \(\Gamma_0 \) are floating fit parameters.

The Breit-Wigner function is convoluted with the detector resolution, which is described by a narrow core Gaussian plus a broad Gaussian. Their widths \(\sigma_n \) and \(\sigma_v \) and relative weights \(g_n \) and \((1 - g_n) \) are calculated from the CDF full Monte Carlo simulation. Numerical convolution is necessary because the modified width depends on the mass. The effects of imperfect modeling in the simulation are discussed with the systematic uncertainties in Sec. VI.

We use a kinematically motivated model for the background, described by a second order polynomial modulated with a threshold square root-like term,

\[
BG(Q; m_T, C, b_1, b_2) = \sqrt{(Q + m_T)^2 - m_T^2} \times P^2(Q; C, b_1, b_2), \quad (4)
\]

where \(C, b_1, \) and \(b_2 \) are the second order \(P^2 \) polynomial coefficients and \(m_T \) is a threshold fixed to 0.140 GeV/c^2, the mass of the pion.

The full model for the \(Q \)-value spectra of all isospin partner states \(\Sigma_b^{(*)+} \) and \(\Sigma_b^{(*)-} \) describes two narrow structures on top of a smooth background with a threshold. The negative logarithm of the extended likelihood function (NLL) is minimized over the un unbinned set of \(Q \) values.

values observed for N candidates in data:

$$- \ln (\mathcal{L}) = - \sum_{k=1}^{N} \ln (N_{k} S_{k} + N_{2} S_{2} + N_{b} B_{G})$$

$$+ (N_{1} + N_{2} + N_{b})$$

$$- N \ln (N_{1} + N_{2} + N_{b}).$$

Independent likelihood functions are used for $\Sigma_{b}^{(+)}$ and $\Sigma_{b}^{(-)}$ candidates. The Q-value spectrum is fit over the range $0.003 - 0.210 \text{GeV/c}^2$. The effect of this choice is discussed in Sec. VI. The probability density functions (PDF) in Eq. (5) are defined as follows:

(i) $S_{i} = S(Q; Q_{0}, \Gamma_{0}, \sigma_{n}^i, g_{n}^i, \sigma_{w}^i)$ is the normalized convolution of a Breit-Wigner and a double Gaussian responsible for the Σ_{0}^b (Σ_{1}^b) ($i = 1$) or Σ_{2}^b (Σ_{3}^b) ($i = 2$) signals. Here Q_{0} is the floating pole mass and Γ_{0} is the floating natural width. The detector’s Gaussian resolution parameters $\sigma_{n}^i, \sigma_{w}^i$ and g_{n}^i are set from the Monte Carlo data. A dominant with $g_{n} \sim 70\%$ relative weight narrow core σ_{n} of about 1.2MeV/c^2 is set for the Σ_{2}^b (Σ_{3}^b) and about 1.4MeV/c^2 for Σ_{4}^b (Σ_{5}^b). A broad component σ_{w} of about 2.9MeV/c^2 is set for the Σ_{2}^b (Σ_{3}^b) and about 3.8MeV/c^2 for Σ_{4}^b (Σ_{5}^b).

(ii) N_{i}^b is the floating yield of the Σ_{2}^b (Σ_{3}^b) ($i = 1$) or Σ_{4}^b (Σ_{5}^b) ($i = 2$).

(iii) $B_{G} = B_{G}(Q; m_{T}, C, b_{1}, b_{2})$ is the PDF corresponding to the background form in Eq. (4).

(iv) N_{b} is the floating yield of the background contribution. The sum of fitted yields, $N_{1} + N_{2} + N_{b}$, is the Poisson mean value of the total number of candidates N for the particular species Σ_{2}^b or $\Sigma_{3}^b, \Sigma_{4}^b$ or Σ_{5}^b corresponding to isospin triplets Σ_{2}^b and Σ_{3}^b.

The total number of floating parameters in the fit per each pair of isospin partners is nine.

Extensive tests on several thousand statistical trials show that the likelihood fit yields unbiased estimates with proper uncertainties.

The experimental $\Sigma_{b}^{(*)} - \Sigma_{b}^{(*)}$ Q-value distributions, each fitted with the unbinned likelihoods described above, are shown in Fig. 2. The projection of the corresponding likelihood fit is superimposed on each graph. The Q-value distributions show clear signals of $\Sigma_{b}^{(*)} - \Sigma_{b}^{(*)}$ and $\Sigma_{b}^{(*)}$, respectively. The pull distributions are shown in the bottom plots of both figures and are calculated as the residuals of the histogram with respect to the corresponding likelihood fit projection normalized by the data uncertainty. Both pull distributions are evenly distributed around zero with fluctuations of $\pm 2\sigma$, approximately. The fit results are given in Table III.

V. SIGNAL SIGNIFICANCE

The significance of the signals is determined using a log-likelihood ratio statistic [42, 43], $-2 \ln (\mathcal{L}/\mathcal{L}_{1})$. We define hypothesis H_{1} corresponding to the presence of $\Sigma_{b}^{(*)} - \Sigma_{b}^{(*)} + \Sigma_{b}^{(*)}$ signals on top of the background. The H_{1} hypothesis is described by the likelihood \mathcal{L}_{1}; see Eq. (5). The various null hypotheses, each identified with H_{0} and nested to H_{1} correspond to a few different less complex scenarios described by the likelihood \mathcal{L}_{0}. The likelihood ratio is used as a χ^{2} variable to derive p values for observing a deviation as large as in our data or larger, assuming H_{0} is true. The number of degrees of freedom of the χ^{2} equals the difference ΔN_{dof} in the number of degrees of freedom between the H_{1} and H_{0} hypotheses in each case. We consider the following types of H_{0} to estimate the significance of the two-peak signal structure and of individual peaks of the observed $\Sigma_{b}^{(*)}$ and $\Sigma_{b}^{(*)}$ states:

(i) A single enhancement is observed anywhere in the fit range. The corresponding likelihood \mathcal{L}_{0} includes only a single peak PDF on top of the background form in Eq. (4), the same as for the \mathcal{L}_{1}. The difference in the number of degrees of freedom is $\Delta N_{\text{dof}} = 3$. The width Γ_{0} floats in the fit over the wide range $1 - 70 \text{MeV/c}^2$. The position of the enhancement Q_{0} is allowed to be anywhere within the default fit range. We test the case in which the observed two narrow structures could be an artifact of a wide bump where a few bins fluctuated down to the background level.

(ii) The signal $\Sigma_{b}^{(*)}$ is observed but the Σ_{b} is interpreted as background. We impose a loose requirement on the existence of the second peak, $\Sigma_{b}^{(*)}$ fixing only the width of $\Sigma_{b}^{(*)}$ to the expected theoretical value of 12MeV/c^2 [17]. We let the fitter find the $\Sigma_{b}^{(*)}$ position within the default fit range. The number of free parameters is changed by 4.

(iii) The signal Σ_{b} is observed but the $\Sigma_{b}^{(*)}$ is interpreted as background. This null hypothesis is similar to the previous one. The width of the Σ_{b} is fixed to 7MeV/c^2 [17].

State	Q_{0} value, MeV/c^2	Yield Γ_{0}, MeV/c^2	Yield MeV/c^2
Σ_{b}^{*+}	56.2$^{+0.5}_{-0.5}$	$4.9^{+0.1}_{-0.1}$	340^{+50}_{-50}
Σ_{b}^{*-}	75.8$^{+0.6}_{-0.6}$	$7.5^{+0.2}_{-0.2}$	540^{+50}_{-50}
Σ_{b}^{*0}	52.1$^{+0.8}_{-0.8}$	$9.7^{+0.8}_{-0.8}$	470^{+50}_{-50}
Σ_{b}^{*+}	72.8$^{+0.7}_{-0.7}$	$11.5^{+0.2}_{-0.2}$	800^{+110}_{-110}
(iv) Neither the Σ_b nor the Σ^*_b is observed, and the H_0 hypothesis is the default background model used in L_1. We consider the case in which the smooth background fluctuates to two narrow structures corresponding to the H_1 hypothesis. The difference in the number of degrees of freedom is 6.

In addition to all the cases considered above, we introduce an additional case in which the H_1 hypothesis corresponds to any single wide enhancement considered in (i) while the H_0 hypothesis is the default background considered in (iv). This special test determines the significance of the single enhancement with respect to pure background.

Table IV summarizes the results of these tests. The null hypothesis most likely to resemble our signal is a broad single enhancement fluctuating to the two narrow structures. The results of this study establish conclusively the $\Sigma_b^{(*)-}$ and $\Sigma_b^{(*)+}$ signals with significance of 6σ or higher.

VI. SYSTEMATIC UNCERTAINITIES

The systematic uncertainties considered in our analysis are the following:

(i) The uncertainty due to the CDF tracker momentum scale.

(ii) The uncertainty due to the resolution model (see Sec. IV) described by the sum of two Gaussians.

(iii) The choice of background model.

(iv) An uncertainty due to the choice of Q-value fit range.

To calibrate the tracker momentum scale, the energy loss in the material of CDF tracking detectors and the
strength of the magnetic field must be determined. Both effects are calibrated and analyzed in detail using high statistics samples of J/ψ, $\psi(2S)$, $T(1S)$, Z^0 reconstructed in their $\mu^+\mu^-$ decay modes as well as $D^0 \to K^-\pi^+$, $\psi(2S) \to J/\psi(\to \mu^+\mu^-)\pi^+\pi^-$ [44, 45]. The corresponding corrections are taken into account by tracking algorithms. Any systematic uncertainties on these corrections are largely negligible in the $\Sigma_b^{(*)}$ Q-value measurements. The uncertainties on the measured mass differences due to the momentum scale are estimated from the deviations between Q_0 values observed in similar decays reconstructed in CDF data and the known Q_0 values [6]. The reference modes are $\Sigma^{+\pm} \to A^+_1\pi^+_s$, $\Sigma^0 \to A^+_0\pi^-\pi^0$, $A^{++} \to A^+_1\pi^+_s\pi^-\pi^0$, and $D^{++} \to D^0\pi^+_s\pi^-\pi^0$. The linear extrapolation of the measured offsets as a function of Q_0 towards the $\Sigma_b^{(*)}$ kinematic regime is taken as the mass-scale uncertainty. The determined systematic uncertainty on the momentum scale covers also any residual charge-dependence of the scale. For the mass difference Q_0, the systematic uncertainty due to a possible imperfect alignment of the detector is negligible [44].

Following the method used in Ref. [46], the $D^{*+} \to D^0(\to K^-\pi^+)\pi^+_s$ signal peak in the mass difference distribution $m(D^{*+})-m(D^0)$ has been reconstructed in several bins of soft pion transverse momentum $p_T(\pi_s)$ starting with 200 MeV/c as in the data. Each signal distribution is subjected to an unbinned maximum-likelihood fit with the sum of a Breit-Wigner function convoluted with a double Gaussian function to describe the detector resolution. The background under the D^{*+} signals is described by an empirical function [47, 48]. For each of the $p_T(\pi_s)$ bins, the fit determines the D^{*+} width, which never exceeds 0.2 MeV/c2. Because the D^{*+} natural width is much smaller than the tracking resolution, the value of 0.2 MeV/c2 is assigned as a systematic uncertainty on the measured $\Sigma_b^{(*)}$ natural width due to the momentum scale of the CDF tracker.

Unless otherwise specified, the systematic uncertainties discussed below are evaluated for the measurable quantities Q_0 and Γ_0 by generation of statistical trials. In each trial, the sample is generated according to the PDF (see Table III) with the nuisance parameters modified by the uncertainty with respect to the default set of parameters. Then the sample is subjected to the unbinned maximum-likelihood fit twice, with the default PDF and with the PDF of the modified nuisance parameter set. The fit results are compared on a trial-by-trial basis, and their difference is computed. The systematic uncertainty is found from the mean of a Gaussian fit of the distribution of the computed differences.

The statistical uncertainties on the resolution model parameters due to the finite size of the Monte Carlo datasets introduce a systematic uncertainty. Variations of the double Gaussian widths σ_n and σ_w and the weight y_n within their statistical uncertainties returned from the fits of Monte Carlo spectra are propagated into the measurable quantities using the statistical trials.

The CDF tracking simulation does not reproduce with perfect accuracy the tracking resolutions, especially for soft tracks at the kinematic threshold of $\Sigma_b^{(*)}$ decays. To estimate this contribution, we use the $D^{*\pm}$ meson decay as the reference mode reconstructed down to $p_T(\pi^0_s) = 200$ MeV/c in the observed and simulated samples. We compare the mass resolution of the reference signal found in data with the one predicted by Monte Carlo simulation. The comparison is made independently for $D^{*+} \to D^0\pi^+_s$ and $D^{*-} \to D^0\pi^-_s$ states, as a function of soft pion p_T using early data (Period 1) and late data (Period 2). Figure 3 shows the comparisons of the narrow core resolution between the data and Monte Carlo both for D^{*+} (left plot) and D^{*-} (right plot). The resolution is stable as a function of data-taking time.

The CDF Monte Carlo simulation typically underestimates the $D^{*\pm}$ resolutions in the experimental data: $\sigma_n(data) \lesssim 1.25\sigma_n(Monte Carlo)$. Similar relations are found for the broad component of the resolution: $\sigma_w(data) \lesssim 1.40\sigma_w(Monte Carlo)$. These factors are used as the sources of the systematic uncertainties. The resolution extracted for the D^{*-} is systematically smaller than for the D^{*+} by at most 20% for σ_n and by at most 40% for σ_w. The Monte Carlo predictions for σ_n and σ_w are decreased by these latter factors to estimate the other bounds of the systematic uncertainties. In both cases the conservative approach is taken.

To find the systematic uncertainty associated with the choice of background shape, we change our background PDF to the one used for the $D^{*\pm}$ mass difference spectra [47, 48] and compare with the default background PDF.

The uncertainty associated with the fit range is estimated by varying the default low edge down to 0.0015 GeV/c2 and up to 0.006 GeV/c2. The fit results are slightly sensitive to the choice of the low edge and any observed biases are assigned as another systematic uncertainty.

The final systematic uncertainties are listed in Table V.

VII. RESULTS AND CONCLUSIONS

The analysis results are arranged in Table VI. From the measured $\Sigma_b^{(*)\pm}$ Q values we extract the absolute masses using the known value of the π^\pm mass [6] and the CDF A^0_b mass measurement, $m(A^0_b) = 5619.7 \pm 1.2$ (stat) ± 1.2 (syst) MeV/c2, as obtained in an independent sample [44]. The A^0_b statistical and systematic uncertainties contribute to the systematic uncertainty on the $\Sigma_b^{(*)\pm}$ absolute masses.

Using the measured Q values, we extract the isospin mass splittings for the isotriplets of the $J^{P} = \frac{1}{2}^+$ and $J^{P} = \frac{3}{2}^+$ states. The statistical uncertainties on the Q-measurements of the corresponding charge states are added in quadrature. We assume that the correlated sys-
standard deviations.

constructed with a significance well in excess of six Gaussian

has been confirmed with every individual signal recon-

\[\Sigma \]
optical uncertainties due to mass scale, fit bias due to

choice are added in quadrature.

of the resolution are completely canceled in the isospin

systematic uncertainties due to mass scale, fit bias due to

choice of fit range, and imperfect Monte Carlo description of the resolution are completely canceled in the isospin

mass splittings. The uncertainties due to background

choice are added in quadrature.

In conclusion, we have measured the masses and widths

of the \(\Sigma_b^{(*)} \) baryons using a sample of approximately

16 300 \(A_0^0 \) candidates reconstructed in their \(A_0^0 \rightarrow A_1^0 \pi^- \)

mode corresponding to 6 fb\(^{-1}\) of CDF data.

The first observation [19] of the \(\Sigma_b^{(*)} \) bottom baryons has been confirmed with every individual signal recon-

structed with a significance well in excess of six Gaussian standard deviations.

The statistical precision on the direct mass differences

is improved by a factor of two over the previous measure-

ment [19]. The measurements are in good agreement with the previous results and supersede them.

The isospin mass splittings within the \(I = 1 \) triplets of the \(\Sigma_b \) and \(\Sigma_b^{(*)} \) states have been extracted for the first time. The \(\Sigma_b^{(*)-} \) states have higher masses than their \(\Sigma_b^{(*)+} \) partners, following a pattern common to most of the known isospin multiplets [15]. This measurement fa-

vors the phenomenological explanation of this ordering as due to the higher masses of the \(d \) quark with respect to the \(u \) quark and the larger electromagnetic contribution due to electrostatic Coulomb forces between quarks in \(\Sigma_b^{(*)-} \) states than in \(\Sigma_b^{(*)+} \) ones. The difference in the

s

Measurable quantity	Scale	Resolution	Background	Fit range	Total	Percentage
\(Q(\Sigma_b^-) \) [MeV/c\(^2\)]	-0.38	-0.07	-0.04	-0.03	-0.39	-0.7
\(\Gamma(\Sigma_b^-) \) [MeV/c\(^2\)]	+0.20	+0.85	+0.50	+0.50	+1.13	+23
\(Q(\Sigma_b^{(*)-}) \) [MeV/c\(^2\)]	-0.56	-0.08	-0.06	-0.09	-0.58	-0.8
\(\Gamma(\Sigma_b^{(*)-}) \) [MeV/c\(^2\)]	+0.20	+0.65	+0.30	+0.30	+0.89	+12
\(Q(\Sigma_b^0) \) [MeV/c\(^2\)]	-0.20	-0.96	-0.30	-0.90	-1.36	-18
\(\Gamma(\Sigma_b^0) \) [MeV/c\(^2\)]	+0.20	+0.94	+0.40	+0.40	+1.16	+12
\(Q(\Sigma_b^{(*)0}) \) [MeV/c\(^2\)]	-0.35	-0.12	-0.05	-0.03	-0.38	-0.7
\(\Gamma(\Sigma_b^{(*)0}) \) [MeV/c\(^2\)]	+0.20	+0.64	+0.50	+0.50	+0.97	+8.5

The left (right) plot shows the ratio of the widths of the narrow component of the \(D^{*+} (D^{*-}) \) mass resolution for data and simulation (circles) and for different subsamples of data (triangles) as a function of the transverse momentum of the soft pion. The last bin on every plot corresponds to a statistics integrated above 1.0 GeV/c.

FIG. 3: The left (right) plot shows the ratio of the widths of the narrow component of the \(D^{*+} (D^{*-}) \) mass resolution for data and simulation (circles) and for different subsamples of data (triangles) as a function of the transverse momentum of the soft pion. The last bin on every plot corresponds to a statistics integrated above 1.0 GeV/c.
measured isospin mass splittings between the Σ^+_b and Σ^-_b isorotriplets supports the theoretical estimate of Ref. [10]. The natural widths of the Σ^+_b and Σ^-_b states have been measured for the first time. The measurements are in agreement with theoretical expectations.

Acknowledgments

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

Table VI: Summary of the final results. The first uncertainty is statistical and the second is systematic.

State	Q value, MeV/c2	Absolute mass, MeV/c2	Natural width Γ, MeV/c2
Σ^-_b	$56.2^{+0.6+0.4}_{-0.5-0.4}$	$5815.5^{+0.6}_{-0.5} \pm 1.7$	$4.9^{+1.1}_{-2.1} \pm 1.1$
Σ^+_b	$75.8 \pm 0.6^{+0.1}_{-0.6}$	$5835.1 \pm 0.6^{+1.7}_{-1.8}$	$7.5^{+2.2+0.9}_{-1.8-1.4}$
Σ^-_b	$52.1^{+0.9+0.1}_{-0.8-0.4}$	$5811.3^{+0.9}_{-0.8} \pm 1.7$	$9.7^{+3.8+1.2}_{-2.8-1.1}$
Σ^+_b	$72.8 \pm 0.7^{+0.1}_{-0.6}$	$5832.1 \pm 0.7^{+1.7}_{-1.8}$	$11.5^{+2.7+1.0}_{-2.2-1.5}$

Isospin mass splitting, MeV/c2

- $m(\Sigma^+_b) - m(\Sigma^-_b) = -4.2^{+1.1}_{-1.0} \pm 0.1$
- $m(\Sigma^+_b) - m(\Sigma^-_b) = -3.0^{+1.0}_{-0.9} \pm 0.1$

[1] N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989); *Ibid.* 237, 527 (1990); N. Isgur and M. B. Wise, Phys. Rev. D 42, 2388 (1990).
[2] M. Neubert, Phys. Rept. 245, 259 (1994).
[3] A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000).
[4] J. G. Korner, M. Kramer, and D. Pirjol, Prog. Part. Nucl. Phys. 33, 787 (1994).
[5] Throughout the text the notations $\Sigma^{(*)}_b$ or $\Sigma^{(*)}_b \pm$ represent the four states Σ^-_b, Σ^+_b, Σ^+_b, and $\Sigma^{(*)}_b \pm$ while the notations $\Sigma^{(*)}_b$ or $\Sigma^{(*)}_b \pm$ include Σ^-_b, Σ^+_b, or Σ^+_b, $\Sigma^{(*)}_b \pm$ pairs of states correspondingly.
[6] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[7] D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 72, 034026 (2005); D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Lett. B 659, 612 (2008); D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Atom. Nucl. 72, 178 (2009).
[8] E. E. Jenkins, Phys. Rev. D 54, 4515 (1996); *Ibid.* 55, 10 (1997); *Ibid.* 77, 034012 (2008).
[9] J. L. Rosner, J. Phys. G 34, S127 (2007); M. Karliner and H. J. Lipkin, Phys. Lett. B 660, 539 (2008); M. Karliner, B. Keren-Zur, H. J. Lipkin, and J. L. Rosner, Anals Phys. 324, 2 (2009); M. Karliner, Nucl. Phys. Proc. Suppl. 187, 21 (2009); H. Garciilazo, J. Vijande, and A. Valcarce, J. Phys. G 34, 961 (2007).
[10] J. L. Rosner, Phys. Rev. D 75, 013009 (2007).
[11] R. Roncaglia, A. Dzierba, D. B. Lichtenberg, and E. Predazzi, Phys. Rev. D 51, 1248 (1995); R. Roncaglia, D. B. Lichtenberg, and E. Predazzi, Phys. Rev. D 52, 1722 (1995); D. B. Lichtenberg, R. Roncaglia, and E. Predazzi, Phys. Rev. D 53, 6678 (1996).
[12] X. Liu, H. X. Chen, Y. R. Liu, A. Hosaka, and S. L. Zhu, Phys. Rev. D 77, 014031 (2008); J. R. Zhang and M. Q. Huang, Phys. Rev. D 77, 094002 (2008).
[13] N. Mathur, R. Lewis, and R. M. Woloshyn, Phys. Rev. D 66, 014502 (2002); R. Lewis and R. M. Woloshyn, Phys. Rev. D 79, 014502 (2009).
[14] N. Isgur, Phys. Rev. D 21, 779 (1980) [Erratum-ibid. D 23, 817 (1981)]; N. Isgur, H. R. Rubinstein, A. Schröder, and H. J. Lipkin, Phys. Lett. B 89, 79 (1979); S. Godfrey and N. Isgur, Phys. Rev. D 34, 899 (1986).
[15] L. H. Chan, Phys. Rev. D 31, 204 (1985); W. Y. P. Hwang and D. B. Lichtenberg, Phys. Rev. D 35, 3526 (1987); S. Capstick, Phys. Rev. D 36, 2800 (1987); M. Genovese, J. M. Richard, B. Silvestre-Brac, and K. Varga, Phys. Rev. D 59, 014012 (1998); C. W. Hwang and C. H. Chung, Phys. Rev. D 78, 073013 (2008).
