The relationship between various amyloidoses and chaperones is gathering attention. In patients with dialysis-related amyloidosis, α2-macroglobulin (α2M), an extracellular chaperone, forms a complex with β2-microglobulin (β2-m), a major component of amyloid fibrils, but the molecular mechanisms and biological implications of the complex formation remain unclear. Here, we found that α2M substoichiometrically inhibited the β2-m fibril formation at a neutral pH in the presence of SDS, a model for anionic lipids. Binding analysis showed that the binding affinity between α2M and β2-m in the presence of SDS was higher than that in the absence of SDS. Importantly, SDS dissociated tetrameric α2M into dimers with increased surface hydrophobicity. Western blot analysis revealed that both tetrameric and dimeric α2M interacted with SDS-denatured β2-m. At a physiologically relevant acidic pH and in the presence of heparin, α2M was also dissociated into dimers, and both tetrameric and dimeric α2M interacted with β2-m, resulting in the inhibition of fibril growth reaction. These results suggest that under conditions where native β2-m is denatured, tetrameric α2M is also converted to dimeric form with exposed hydrophobic surfaces to favor the hydrophobic interaction with denatured β2-m, thus dimeric α2M as well as tetrameric α2M may play an important role in controlling β2-m amyloid fibril formation.

α2-Macroglobulin (α2M), haptoglobin (Hp), and clusterin are abundantly secreted glycoproteins present in human plasma and cerebrospinal fluid and are known as acute phase proteins (13). These glycoproteins have been found to be associated with extracellular amyloid deposits in Alzheimer disease and many other amyloidoses (13). Recently, these glycoproteins have been shown to suppress the amyloid fibril formation and amorphous aggregation of various proteins and have been described as extracellular chaperones (14–18). All of these glycoproteins can interact with prefibrillar species to maintain the solubility of amyloidogenic proteins (15–17). Wilson’s group proposed that extracellular chaperones respond to misfolded and aggregated proteins in the extracellular space by binding to their exposed hydrophobic regions, maintaining the solubility of the substrate, and promoting its removal from the extracellular space via receptor-mediated endocytosis and lysosomal degradation (13, 14).

α2M is a homotetramer that is formed by noncovalent association of two disulfide-bonded dimers (19). In addition to its interactions with amyloidogenic proteins, α2M is known to trap proteases (19). The trapping of proteases is accompanied by a conformational change of α2M, which exposes receptor binding domains and consequently undergoes endocytosis by binding to low density lipoprotein receptor-related protein (20, 21). In patients with DRA, α2M is identified in the amyloid deposits (22) and forms a complex with β2-m in the blood (23). Serum concentrations of the α2M:β2-m complex are correlated with...
the progression of DRA (23). The complex formation has been thought to prevent the metabolism of β2-m in the kidney (24). Therefore, α2M may play an active role in the pathogenesis of DRA. However, it remains unclear whether α2M directly affects the formation of β2-m amyloid fibrils. Moreover, the mechanism by which α2M interacts with β2-m is poorly understood.

In this study, we first examined the effect of α2M on the formation of β2-m amyloid fibrils at a neutral pH in the presence of 0.5 mM SDS. We next assessed the interaction of α2M with β2-m adopting various conformational states (native state, denatured state, and amyloid fibrils). We also examined the structural changes of α2M under conditions where α2M interacted with β2-m. Finally, we examined the effect of α2M on the fibril growth at a physiologically relevant acidic pH and in the presence of heparin. Our results provide new insights into the effect of α2M on β2-m amyloid fibril formation and the mechanism of α2M-β2-m interaction.

EXPERIMENTAL PROCEDURES

Materials—Human α2M, human Hp, bovine serum albumin (BSA), and equine ferritin were obtained from Sigma. Recombinant human β2-m was expressed using an *Escherichia coli* expression system and purified as described previously (25). Additional procedures are discussed in the supplemental Methods.

Seed-dependent Growth Reaction of β2-m Amyloid Fibrils and Thioflavin T (ThT) Assay—Seed β2-m amyloid fibrils used for the growth reaction were prepared from the patient-derived β2-m amyloid fibrils by the repeated growth reaction at pH 7.5 with recombinant human β2-m, as described elsewhere (26). Seeds (i.e. fragmented fibrils) were prepared by sonication of the amyloid fibrils. The reaction mixture containing 30 µg/ml seeds, 25 µM β2-m, 0–25 µM α2M, Hp, BSA, or ferritin, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, 0.5 mM SDS, and 0.05% NaN₃ was incubated at 37 °C without agitation. In the presence of heparin, the reaction mixture containing 30 µg/ml seeds, 25 µM β2-m, 0 or 25 µM α2M, Hp, BSA, or ferritin, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, 0.5 mM SDS, and 0.05% NaN₃ was incubated at 37 °C without agitation.

In this study, we first examined the effect of α2M on the formation of β2-m amyloid fibrils at a neutral pH in the presence of heparin. The reaction mixture containing 30 µg/ml seeds, 25 µM β2-m, 0–25 µM α2M, Hp, BSA, or ferritin, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, 0.5 mM SDS, and 0.05% NaN₃ was incubated at 37 °C with 55 nM α2M dissolved in a coating buffer supplied by the manufacturer. After washing three times with a washing buffer (50 mM phosphate buffer (pH 7.5), 100 mM NaCl), 100 µl of 0–42 µM β2-m, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, 0 or 0.5 mM SDS and 1.25 µM BSA was added to the wells and incubated for 1 h at 25 °C. After washing three times with a washing buffer containing 0.5 mM SDS, bound β2-m was detected with horseradish peroxidase-conjugated anti-human β2-m antibody (1:1,000) (Dako) followed by color development using 3,3′,5,5′-tetramethylbenzidine as the peroxidase substrate (Bio-Rad). The absorbance was measured at 450 nm in a SpectraMax 250 microplate reader (Molecular Devices, Sunnyvale, CA). The binding data were subjected to Scatchard analysis.

Amyloid Fibril Formation from β2-m Monomer—The reaction mixture containing 25 µM β2-m, 1.25 µM α2M, Hp, or BSA, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, 0.5 mM SDS, and 0.05% NaN₃ was incubated at 37 °C in a 96-well plate with moderate stirring (300 rpm) using a Teflon-coated microstirrer bar. ThT assay was performed as described above.

Circular Dichroism (CD) Measurements—Far-UV CD spectra of the mixture containing 0.14 µM α2M, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, and 0 or 0.5 mM SDS were measured with a Jasco 725 spectropolarimeter (Tokyo, Japan) and a cell of 0.1-cm path length at 25 °C. For the measurement of near-UV region, the CD signals of the mixture containing 0.69 µM α2M, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, and 0 or 0.5 mM SDS were recorded with a cell of 1-cm path length. The results were expressed in terms of mean residue ellipticity.

Analytical Ultracentrifugation—Sedimentation velocity of α2M in the presence or absence of SDS was measured using a Beckman-Coulter Optima XL-A analytical ultracentrifuge with an An-60 rotor and two-channel charcoal-filled Epon cells. The sample solution containing 1 µM α2M, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, and 0 or 0.5 mM SDS was measured at 25 °C. The data were analyzed using the software UltraScan 9.3.

8-Anilino-1-naphthalenesulfonate (ANS) Binding—ANS (Wako Pure Chemical Industries) was added at a final concentration of 10 µM to the mixture containing 1.25 µM α2M or 25 µM β2-m, 50 mM phosphate buffer (pH 7.5), 100 mM NaCl, and 0 or 0.5 mM SDS and incubated for 1 h at 25 °C. The ANS fluorescence was measured using a Hitachi F-7000 spectrofluorometer at 25 °C with excitation at 350 nm and emission at 400–600 nm.
Inhibition of Amyloid Fibril Formation by α2-Macroglobulin

Cross-linking Experiments with Bis(sulfosuccinimidyl) Suberate (BS³) and Western Blot Analysis—The reaction mixture containing 0 or 12.5 μM β2-m, 0 or 0.63 μM α2M, 50 mM citrate buffer (pH 4–5) or phosphate buffer (pH 6–7.5), 100 mM NaCl, and 0–0.5 mM SDS or 0–100 μg/ml heparin was incubated for 1 h at 25 °C. BS³ (Thermo Fisher Scientific), an amine-reactive cross-linking reagent, was then added at a final concentration of 5 mM to the mixture. After a 45-min incubation at 25 °C, the cross-linking reaction was quenched with 50 mM Tris buffer (pH 7.5). Cross-linked products were separated by 5% SDS-PAGE without reducing reagent and heat treatment. After separate SDS-PAGE performed in parallel, the proteins were transferred to PVDF membranes (Bio-Rad). The membranes were blocked with 5% skim milk. After washing three times with a washing buffer (20 mM Tris-HCl (pH 7.6), 137 mM NaCl, and 0.1% Tween 20), bound β2-m was detected with horseradish peroxidase-conjugated anti-human β2-m antibody (1:2,000) (Dako) followed by enhanced chemiluminescence with BM Chemiluminescent Blotting substrate.

RESULTS

Effect of α2M on Seed-dependent Growth of β2-m Amyloid Fibrils—First, we examined the effects of α2M and Hp on the seed-dependent growth of β2-m amyloid fibrils at pH 7.5 monitored by ThT fluorescence assay (Fig. 1, A and B). Because lysophospholipids, nonesterified fatty acids, and SDS induce the extension of β2-m amyloid fibrils by the same mechanisms (6,8,11), the experiments were performed mainly using SDS as a model for anionic lipids. In the absence of α2M, ThT fluorescence increased without a lag phase and proceeded to equilibrium at 24–48 h after initiation of the reaction (Fig. 1A). In the presence of α2M at molar ratios of 1:200–1:20 to β2-m, a concentration-dependent inhibitory effect was observed. At a molar ratio of 1:20, the fluorescence increase was negligible. Notably, α2M exhibited a significant inhibitory effect substoichiometrically even at a molar ratio of 1:200. In the presence of 0.5 mM oleate, α2M exhibited similar concentration-dependent inhibitory effects on the fibril growth (supplemental Fig. S1). In contrast, the addition of BSA or ferritin (440 kDa) at a molar ratio of 1:20 to β2-m had little effect on the fluorescence increase, suggesting the specific inhibitory effect of α2M on the growth of β2-m amyloid fibrils. By electron microscopy, clear fibril growth was observed after a 72-h incubation in the absence of α2M and in the presence of ferritin (Fig. 1C, D, and F), whereas no fibril growth was observed in the presence of α2M at a molar ratio of 1:20 (Fig. 1C and E). In the presence of Hp, another extracellular chaperone with an action similar to α2M (16), at molar ratios of 1:100–1:1 to β2-m, a concentration-dependent inhibitory effect was observed (Fig. 1B). The inhibitory effect of Hp was much lower than that of α2M because at a molar ratio of 1:20, Hp inhibited fibril growth only slightly. By electron microscopy, no fibril growth was observed in the presence of Hp at a molar ratio of 1:1 (Fig. 1C and G). In the presence of 0.5 mM oleate, Hp exhibited similar concentration-dependent inhibitory effects on the fibril growth (supplemental Fig. S1).

Next, to determine whether α2M inhibits the seed-dependent fibril growth by binding to β2-m monomers or to the growing ends of β2-m fibrils, we used two kinetic schemes reported previously (27). The initial rates of seed-dependent growth were calculated from the increase of ThT fluorescence in the absence (black) or presence of 1:200 (molar ratio of α2M to β2-m) (blue), 1:100 (orange), or 1:20 (red) α2M, or in the presence of 1:20 BSA (green) or ferritin (purple). B, time course of fibril growth in the absence (black) or presence of 1:100 (orange), 1:20 (red), or 1:1 (purple) Hp. Each point represents the average of three ThT measurements from the same sample. S.D. was <5% of each average value. Each figure is a representative pattern of three independent experiments. C–G, electron microscopy images of the samples of seed-dependent growth reaction. The sample prepared in the absence (D) or presence of 1:20 α2M (E), 1:20 ferritin (F), or 1:1 Hp (G) was incubated at 37 °C for 72 h. C, seeds prepared by sonication. Scale bars, 1 μm. H, effect of α2M concentration on the initial rate of seed-dependent growth. The initial rates of seed-dependent growth were calculated from the increase of ThT fluorescence after a 1-h incubation in the presence of 1:800–1:10 α2M (supplemental Fig. S2) and normalized by that without α2M. At a
Inhibition of Amyloid Fibril Formation by α₂-Macroglobulin

constant β₂-m concentration, the initial rate decreased exponentially as the α₂M concentration increased (Fig. 1H). When these data points were fitted to the function: Initial rate = (m + n/[α₂M])/(m + [α₂M]) (27), a good fit was observed (r = 0.994). This may indicate that α₂M inhibits the seed-dependent fibril growth by binding to β₂-m monomers rather than binding to the growing ends of β₂-m amyloid fibrils.

Differential Binding of α₂M to β₂-m Adopting Various Conformational States—To determine whether α₂M interacts with β₂-m adopting various conformational states, including native and denatured states, and amyloid fibrils, we first analyzed the binding of native and SDS-denatured β₂-m to α₂M by dot-blot assay. Both native and SDS-denatured β₂-m were found to bind to α₂M (Fig. 2A). The spot of SDS-denatured β₂-m seemed to be darker than that of native β₂-m. In contrast, there was no detectable binding of native and SDS-denatured β₂-m to Hp and BSA. We observed previously that in the presence of 0.5 mM SDS at 37 °C, β₂-m is partially unfolded, and this β₂-m conformer weakly and reversibly aggregates into small oligomers composed of up to five molecules via hydrophobic interactions (11, 26). The far-UV CD spectrum of β₂-m in the presence of SDS was different from that in the absence of SDS (supplemental Fig. S3). Analytical ultracentrifugation revealed that at 25 °C which dot-blot assay was performed, SDS-denatured β₂-m partly aggregated into small oligomers composed of 2–4 molecules (supplemental Fig. S3). This indicates that α₂M may interact with SDS-denatured monomeric/oligomeric β₂-m. The binding of α₂M to β₂-m amyloid fibrils was also observed (Fig. 2A). This is consistent with the previous report of α₂M identified in amyloid deposits from patients with DRA (22).

To assess quantitatively the binding of native and SDS-denatured β₂-m to α₂M, we performed ELISA (Fig. 2, B and D). The ELISA data were subjected to Scatchard analysis to determine the apparent dissociation constant (Kₐ) (Fig. 2, C and E). The apparent Kₐ values for native and SDS-denatured β₂-m were 21.6 μM and 1.4 μM, respectively, clearly indicating that α₂M interacts with SDS-denatured β₂-m much more strongly than native β₂-m.

To identify the binding sites for α₂M in the β₂-m molecule, we performed nuclear magnetic resonance (NMR) experiments. ¹⁵N-Labeled β₂-m was titrated with increasing concentrations of α₂M both in the presence and absence of 0.5 mM SDS at 25 °C. Although each peak position did not shift in ¹H-¹⁵N heteronuclear single-quantum coherence (HSQC) spectra, the intensities of all peaks decreased simultaneously both in the absence and presence of SDS (supplemental Fig. S4). The decrease in signal intensity in the presence of SDS was greater than that in the absence of SDS. In contrast, the peak intensities remained unchanged when β₂-m was titrated with BSA (supplemental Fig. S4). Although the specific regions of β₂-m to interact with α₂M are unidentified, these data show that α₂M strongly interacts with β₂-m (see “Discussion”).

Effect of α₂M on Amyloid Fibril Formation from β₂-m Monomer—Because α₂M interacted with SDS-denatured β₂-m, we next examined the effect of α₂M on the SDS-induced amyloid fibril formation from β₂-m monomer. When β₂-m alone was incubated in the presence of 0.5 mM SDS at pH 7.5 and with agitation, ThT fluorescence increased sigmoidally with a 10-h lag time, then proceeded to equilibrium after 30–40 h (Fig. 3A). Although final equilibrium levels were varied from experiment to experiment, similar kinetics was observed in the presence of Hp and BSA (Fig. 3A). In contrast, no increase in ThT fluorescence was observed during a 40-h incubation when β₂-m was incubated with α₂M (Fig. 3A). By electron microscopy, clear amyloid fibril formation was observed when β₂-m was incubated alone or with Hp or BSA (Fig. 3, B, D, and E), whereas only amorphous aggregates were occasionally found in the presence of α₂M (Fig. 3C). These data indicate that α₂M may inhibit the de novo amyloid fibril formation from β₂-m monomer by binding to SDS-denatured monomeric/oligomeric β₂-m.

Structural Analysis of α₂M in the Presence of SDS—Although the structural change of β₂-m is observed in the presence of 0.5 mM SDS, below the critical micelle concentration (supplemental Fig. S3) (11, 26), it is unclear whether the structure of α₂M is affected by 0.5 mM SDS. The far-UV CD spectrum of α₂M in the presence of SDS was slightly different from that in the absence

FIGURE 2. Differential binding of α₂M to β₂-m adopting various conformational states. A, binding of native and SDS-denatured β₂-m to immobilized α₂M, Hp, and BSA and binding of α₂M to immobilized β₂-m amyloid fibrils were assessed by dot-blot assay as under “Experimental Procedures.” B–E, binding affinities of native and SDS-denatured β₂-m to immobilized α₂M. α₂M was immobilized on an ELISA plate and incubated with β₂-m in the absence (B) or presence (D) of SDS as described under “Experimental Procedures.” Bound β₂-m was detected with horseradish peroxidase-conjugated anti-human β₂-m antibody, and the absorbance at 450 nm was determined. Each point represents the average of three wells. Error bars, S.D. Each figure is a representative pattern of two independent experiments. C and E, Scatchard plots of the binding data shown in B and D, respectively.
of SDS (Fig. 4A). On the other hand, the near-UV CD spectra of both samples were clearly different from each other in the range of 250–300 nm (Fig. 4B). These data suggest the SDS-induced change in the secondary and tertiary structures of α2M.

To investigate whether tetrameric α2M is dissociated into dimers in 0.5 mM SDS, we next performed sedimentation velocity analytical ultracentrifugation. In the absence of SDS, the sedimentation coefficient of α2M was 17 S, consistent with a tetramer (Fig. 4C). In the presence of SDS, α2M existed as two major forms with sedimentation coefficients of 11 S and 17 S, corresponding to a dimer and a tetramer, respectively (Fig. 4D). These results indicate that α2M is partly dissociated and exists as both dimeric and tetrameric forms in the presence of 0.5 mM SDS.

The interaction between extracellular chaperones and misfolded proteins can be attributed to hydrophobic interactions (13, 14, 28). We obtained further information about the conformations of α2M and β2-m by ANS binding experiments, which are used to probe the exposure of the hydrophobic surfaces. Intriguingly, when α2M was incubated with 0.5 mM SDS, an ~3-fold increase in ANS fluorescence intensity (λ_{em} = 470 nm) and a blue shift of the spectrum were observed (Fig. 4E). Jensen et al. (29) showed that the surface hydrophobicity of dimeric α2M is significantly higher than that of tetrameric α2M. Thus, it is reasonable to consider that SDS-induced dimerization of α2M (Fig. 4D) may lead to the exposure of the hydrophobic surfaces on α2M. Similarly, when β2-m was incubated with 0.5 mM SDS, an increase in ANS fluorescence intensity and a blue shift of the spectrum were observed (Fig. 4F), indicating that SDS induced the exposure of the hydrophobic surfaces on β2-m. These results clearly indicate that the much stronger binding of α2M to SDS-denatured β2-m than to native β2-m (Fig. 2) may be due to SDS-induced exposure of the hydrophobic surfaces on both α2M and β2-m.

Interaction of Tetrameric and Dimeric α2M with SDS-denatured β2-m—To demonstrate the interaction of tetrameric and dimeric α2M with SDS-denatured β2-m, we performed BS₃ cross-linking experiments. When α2M was incubated with SDS, two bands corresponding to tetramer and dimer was iden-
Inhibition of Amyloid Fibril Formation by \(\alpha_2\)-Macroglobulin

Fig. S5, suggesting that the SDS-induced interaction of \(\alpha_2\)M with \(\beta_2\)-m is not the generic hydrophobic interaction between SDS-denatured proteins.

Effect of \(\alpha_2\)M on Seed-dependent Growth of \(\beta_2\)-m Amyloid Fibrils at an Acidic \(pH\) in the Presence of Heparin—To analyze the interaction of \(\alpha_2\)M with \(\beta_2\)-m in other physiologically relevant *in vitro* conditions (30, 31), we next examined the effect of \(\alpha_2\)M on seed-dependent growth of \(\beta_2\)-m amyloid fibrils at an acidic \(pH\) in the presence of heparin. When \(\beta_2\)-m monomers were incubated with seeds at \(pH\) 6.3 in the presence of 100 \(\mu\)g/ml heparin and with agitation, seed-dependent growth was observed (Fig. 6, A and B). However, when incubated with \(\alpha_2\)M, this reaction was inhibited during a 45-h incubation (Fig. 6, A and C). As shown in SDS-PAGE (Fig. 6D) and Western blot analysis (Fig. 6E), a small proportion of tetrameric \(\alpha_2\)M was dissociated into dimers, and both tetramers and dimers harbored \(\beta_2\)-m at \(pH\) 6.3 in the presence of heparin. As shown in Fig. 7A, pH-dependent dissociation of tetrameric \(\alpha_2\)M into dimers was observed in the absence of heparin. Moreover, both tetramers and dimers harbored more \(\beta_2\)-m according to the reduction in \(pH\) (Fig. 7B).

DISCUSSION

In the mechanism of amyloido genesis from natively folded proteins such as \(\beta_2\)-m and transthyretin, their partial unfolding is believed to be a prerequisite for their assembly into amyloid fibrils both *in vitro* and *in vivo* (32). We propose a model of the interaction of \(\alpha_2\)M with \(\beta_2\)-m under normal and amyloido genic denaturing conditions (*e.g.* SDS, lipids, low \(pH\)) (Fig. 8). Under normal conditions, because the hydrophobic surfaces of both \(\alpha_2\)M and \(\beta_2\)-m are not exposed, tetrameric native \(\alpha_2\)M interacts weakly with native \(\beta_2\)-m (Fig. 8A). Under amyloido-
Inhibition of Amyloid Fibril Formation by α2-Macroglobulin

a2M can strongly interact with denatured monomeric/oligomeric β2-m with exposed hydrophobic surfaces (Fig. 8B). This scenario is consistent with the finding that the binding affinity between a2M and β2-m in the presence of SDS is higher than that in the absence of SDS (Fig. 2 and supplemental Fig. S4). At the same time, Figs. 5–7 indicate that tetrameric a2M may also interact with denatured monomeric/oligomeric β2-m, suggesting that the effect of tetrameric a2M on β2-m fibrillogenesis is not a minor one. Under amyloidogenic denaturing conditions, tetrameric a2M may also be partially denatured, inducing the exposure of the hydrophobic surfaces without dissociating into dimers.

Gouin-Charnet et al. (24) reported that several peptides from the β2-m sequence (e.g. Phe30-Asp38, Val49-Trp60, and Leu64-Thr73) bind to a2M and suggested that the a2M binding sites are buried in the native form of β2-m complexed with the heavy chain of the class I major histocompatibility complex, and β2-m released from the complex binds to a2M. Interestingly, these binding sites, especially Phe30-Asp38 and Leu64-Thr73, are hydrophobic regions (33). Our data suggested that under conditions where native β2-m is denatured, tetrameric a2M may also be converted to a dimeric form with exposed hydrophobic surfaces to favor the hydrophobic interaction with denatured β2-m, thus dimeric a2M as well as tetrameric a2M may interact with denatured β2-m. Based on this scenario, we attempted to identify the binding sites for a2M in the SDS-denatured β2-m molecule by NMR experiments (supplemental Fig. S4). However, when 15N-labeled β2-m was titrated with increasing concentrations of a2M, the intensities of all peaks in 1H-15N HSQC spectra decreased simultaneously. Because a2M is thought to bind to a variety of proteins via hydrophobic interactions (14, 16), the result suggests that a2M interacts with the broad hydrophobic surfaces of SDS-denatured β2-m rather than the specific region of β2-m. Alternatively, as a2M is much larger than β2-m (360 kDa as a dimer versus 12 kDa), a2M-β2-m complex formation makes the tumbling of the β2-m molecule much slower, leading to the simultaneous decreases in peak intensities of bound β2-m. More elaborate NMR studies are essential to identify the specific region of β2-m to interact with a2M.

Amyloid deposits, including those found in Alzheimer disease and DRA, contain not only major components of amyloid fibrils but also many other amyloid associated molecules, e.g. glycosaminoglycans, apolipoproteins, and glycoproteins (4), suggesting that these molecules affect the deposition of amyloid fibrils. a2M was found in amyloid deposits from patients with DRA (22). Moreover, the complex of a2M with β2-m was detected in serum obtained from the patients (23). These data suggested that a2M favors the formation of β2-m amyloid fibrils by modifying the degradation process of β2-m. On the other hand, recent studies have shown that a2M inhibits the amyloid fibril formation of amyloid β peptide, calcitonin, and lysozyme (16). The amorphous aggregation of proteins with no connections with amyloid diseases is also prevented by a2M (14). These results suggest that a2M can protect a variety of proteins from the formation of insoluble aggregates.

In the current study, we showed that a2M inhibits both seed-dependent growth of β2-m amyloid fibrils (Figs. 1 and 6) and

Inhibition of Amyloid Fibril Formation by α2-Macroglobulin
Inhibition of Amyloid Fibril Formation by α2-Macroglobulin

Amyloid fibril formation from β2-m monomer (Fig. 3). The growth and de novo formation of the fibrils were almost completely inhibited even at a 1:20 molar ratio of α2M to β2-m, suggesting that α2M interacts with one or more β2-m molecules. The dot-blot assay revealed the interaction of α2M with β2-m adopting a broad range of conformational states, including the native state, SDS-denatured state, and amyloid fibrils (Fig. 2). In the presence of SDS, β2-m exists as denatured monomers and oligomers (11, 26). We confirmed that under the conditions used here, SDS-denatured β2-m partly aggregated into small oligomers composed of 2–4 molecules (supplemental Fig. S3). Thus, α2M may interact not only with monomers but also with oligomers (Fig. 8B). In fact, Yerbury et al. (17) reported that α2M interacts with prefibrillar species to maintain the solubility of amyloidogenic proteins. These findings suggest that α2M plays an important role in controlling the amyloid fibril formation of β2-m by binding to denatured monomeric/oligomeric β2-m. In addition, it has been reported that α2M protects cells from the toxicity of amyloid β peptide and promotes the uptake of amyloid β peptide in macrophage-like cells (34), suggesting that α2M and other extracellular chaperones are important elements of a system of extracellular protein folding quality control that protects against the toxicity and accumulation of amyloid β peptide. When the efficient protein quality control machinery of α2M and other extracellular chaperones is overwhelmed, the denatured β2-m and other amyloidogenic proteins may form extracellular amyloid deposits in vivo (12, 16). Although α2M interacted with the amyloid fibrils (Fig. 2A), this complex may be too huge to be removed from the extracellular space via receptor-mediated endocytosis and lysosomal degradation, leading to the co-deposition of α2M with amyloid fibrils in vivo (22).

Mettenburg et al. (35) reported that a chemically stabilized preparation of human α2M conformational intermediates binds to natively unfolded amyloid β peptides more strongly than native α2M. Interestingly, Haslbeck et al. (36) reported that under conditions of heat stress, oligomeric small heat shock proteins display structural changes with increased surface hydrophobicity and exhibit increased chaperone activity by complexing a variety of nonnative proteins. Moreover, Poon et al. (37) showed that the chaperone action of clusterin is enhanced as clusterin oligomer is dissociated at mildly acidic pH. These indicate that the conformational change of α2M may be critical to bind to denatured proteins. Although the proteolytic cleavage in the “bait region” of α2M could prime the conformational changes that by modifying the dimer-dimer interaction would enhance the interaction with unfolded/misfolded proteins, the chaperone activity of α2M was reported to be abolished in the conformational change induced by trypsin (14).

α2M exists as a tetramer in human plasma and cerebrospinal fluid (13). On the other hand, tetrameric α2M can be dissociated into dimers in vitro by denaturants (38, 39), oxidative modification (40), or low pH (41, 42). We also showed that dimeric α2M is formed by 0.5 mM SDS (Figs. 4 and 5) or at low pH (Fig. 7). Similar to tetrameric α2M, dimeric α2M retains the ability to bind proteases (38, 42). Interestingly, the receptor binding domain of dimeric α2M for receptor-mediated endocytosis is exposed irrespective of the conformational change induced by the trapping of proteases (43).

In the tenosynovial tissues of DRA patients, infiltrating macrophages into β2-m amyloid deposits cause local inflammation, resulting in tissue destruction and further amyloid deposition (44). At sites of inflammation, factors such as elevated temperature, reactive oxygen species, and lowered pH may cause damage to extracellular proteins, inducing them to partially unfold (14). α2M expression is increased in response to inflammation (45), and at localized inflammatory sites, the local pH is known to fall to <6 (46–50). This raises the possibility that α2M may respond to unfolded/misfolded proteins in acidic environments at inflammatory sites. In fact, pH-dependent dissociation of tetrameric α2M into dimers was observed (Fig. 7A) and both tetramers and dimers interacted with more β2-m according to the reduction in pH (Fig. 7B). This pH-dependent dissociation of α2M and enhancement of the chaperone activity are similar to those of clusterin (37). However, these extracellular chaperones could not prevent the progression of β2-m amyloid deposition in vivo because the efficient protein quality control machinery of extracellular chaperones might be overwhelmed in the inflammatory environments.

We cannot rule out the possibility that the stronger binding efficiency of α2M dimers may not actually show up in vivo simply because only the small amounts of dimers are present. Thus, future studies are essential to examine whether tetrameric α2M is converted to dimeric form and tetrameric/dimeric α2M interact with unfolded/misfolded proteins in vivo in the extracellular environment where native proteins are denatured.

In conclusion, we revealed that α2M inhibits the formation of β2-m amyloid fibrils. Moreover, we demonstrated that tetrameric and dimeric α2M interact with denatured β2-m. These results suggest that α2M plays an important role in controlling the abnormal aggregation of unfolded proteins in the extracellular space. Further understanding of the function of α2M may help the development of the therapeutics and prophylaxis of DRA and other protein deposition diseases.

Acknowledgments—We thank M. Sakai for performing analytical ultracentrifugation, H. Okada and R. Nomura for excellent technical assistance, and T. Ban for helpful discussion.

REFERENCES
1. Chiti, F., and Dobson, C. M. (2009) Nat. Chem. Biol. 5, 15–22
2. Geiyo, F., Yamada, T., Odani, S., Nakagawa, Y., Arakawa, M., Kunitomo, T., Kataoka, H., Suzuki, M., Hirasawa, Y., Shirahama, T., Cohen, A. S., and Schmid, K. (1985) Biochem. Biophys. Res. Commun. 129, 701–706
3. Corazza, A., Rennella, E., Schanda, P., Mimmi, M. C., Cutulli, T., Raimondi, S., Giorgetti, S., Fogolari, F., Vignolo, P., Frydman, L., Gal, M., Bellotti, V., Brutscher, B., and Esposito, G. (2010) J. Biol. Chem. 285, 5827–5835
4. Heegaard, N. H. (2009) Amyloid 16, 151–173
5. Calabrese, M. F., and Miranker, A. D. (2007) J. Mol. Biol. 367, 1–7
6. Hasegawa, K., Tsutsumi-Yasuhara, S., Okoshi, T., Ohhashi, Y., Kimura, H., Takahashi, N., Yoshida, H., Miyazaki, R., Goto, Y., and Naiki, H. (2008) Biochem. J. 416, 307–315
7. Jahn, T. R., Parker, M. J., Homans, S. W., and Radford, S. E. (2006) Nat. Struct. Mol. Biol. 13, 195–201
8. Okoshi, T., Hasegawa, K., Ohhashi, Y., Kimura, H., Takahashi, N., Yoshida, H., Miyazaki, R., Goto, Y., and Naiki, H. (2008) Nephrol. Dial. Transplant. 23, 3247–3255
Inhibition of Amyloid Fibril Formation by α2-Macroglobulin

9. Relini, A., Canale, C., De Stefano, S., Rolandi, R., Giorgetti, S., Stoppini, M., Rossi, A., Fogolari, F., Corazza, A., Esposito, G., Gliozzi, A., and Bellotti, V. (2006) J. Biol. Chem. 281, 16521–16529
10. Sasahara, K., Yagi, H., Sakai, M., Naiki, H., and Goto, Y. (2008) Biochim. Biophys. Acta 1779, 224–229
11. Yamamoto, S., Hasegawa, K., Yamaguchi, I., Tsutsumi, S., Kardos, J., Goto, Y., Gejyo, F., and Naiki, H. (2004) Biochemistry 43, 11075–11082
12. Naiki, H., and Nagai, Y. (2009)
13. Wilson, M. R., Yerbury, J. J., and Poon, S. (2008)
14. French, K., Yerbury, J. J., and Wilson, M. R. (2008)
15. Kumita, J. R., Poon, S., Caddy, G. L., Hagan, C. L., Dumoulin, M., Yerbury, J. J., Stewart, E. M., Robinson, C. V., Wilson, M. R., and Dobson, C. M. (2007) J. Mol. Biol. 369, 157–167
16. Wyatt, A. R., and Wilson, M. R. (2010) J. Biol. Chem. 285, 3532–3539
17. Yerbury, J. J., Kumita, J. R., Meehan, S., Dobson, C. M., and Wilson, M. R. (2009) J. Biol. Chem. 284, 4246–4254
18. Yerbury, J. J., Poon, S., Meehan, S., Thompson, B., Kumita, J. R., Dobson, C. M., and Wilson, M. R. (2007) FASEB J. 21, 2312–2322
19. Sottrup-Jensen, L. (1989) J. Biol. Chem. 264, 5700–5704
20. Feldman, S. R., Gionis, S. L., and Pizzio, S. V. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5700–5704
21. Kolodziej, S. I., Wagenknecht, T., Strickland, D. K., and Stoops, J. K. (2002) J. Biol. Chem. 277, 28031–28037
22. Argiles, A., Mourad, G., Axelrud-Cavadores, C., Watrin, A., Mion, C., and Cavadores, J. C. (1989) Clin. Sci. 76, 547–552
23. Motomura, Y., Ando, Y., Haraoka, K., Sun, X., Iwamoto, H., Uchimura, T., and Maruyama, I. (2003) Kidney Int. 64, 2244–2252
24. Gouin-Charnet, A., Laune, D., Granier, C., Mani, J. C., Pau, B., Mourad, G., and Argilés, A. (2000) Clin. Sci. 98, 427–433
25. Chiba, T., Haghara, Y., Higurashi, T., Hasegawa, K., Naiki, H., and Goto, Y. (2003) J. Biol. Chem. 278, 47016–47024
26. Kihara, M., Chatani, E., Sakai, M., Hasegawa, K., Naiki, H., and Goto, Y. (2005) J. Biol. Chem. 280, 12012–12018
27. Naiki, H., Gejyo, F., and Nakakuki, K. (1997) Biochemistry 36, 6243–6250
28. Wyatt, A. R., Yerbury, J. J., and Wilson, M. R. (2009) J. Biol. Chem. 284, 21920–21927
29. Jensen, P. E., Hägglof, E. M., Arbelaez, I. F., Stigbrand, T., and Shanbhag, V. P. (1993) Biochim. Biophys. Acta 1164, 152–158
30. Relini, A., De Stefano, S., Torrassa, S., Cavalleri, O., Rolandi, R., Gliozzi, A., Giorgetti, S., Raimondi, S., Marchese, L., Verga, L., Rossi, A., Stoppini, M., and Bellotti, V. (2008) J. Biol. Chem. 283, 4912–4920
31. Myers, S. L., Jones, S., Jahn, T. R., Morten, I. J., Tennent, G. A., Hewitt, E. W., and Radford, S. E. (2006) Biochemistry 45, 2311–2321
32. Kelly, J. W. (1998) Curr. Opin. Struct. Biol. 8, 101–106
33. Platt, G. W., Routledge, K. E., Homans, S. W., and Radford, S. E. (2008) J. Mol. Biol. 378, 251–263
34. Yerbury, J. J., and Wilson, M. R. (2010) Cell Stress Chaperones 15, 115–121
35. Mettenburg, J. M., Arandjelovic, S., and Gionis, S. L. (2005) J. Neurochem. 93, 53–62
36. Haslebeck, M., Kastenmüller, A., Buchner, J., Weinkauf, S., and Braun, N. (2008) J. Mol. Biol. 378, 368–374
37. Poon, S., Rybchyn, M. S., Easterbrook-Smith, S. B., Carver, J. A., Pan-Khurst, G. J., and Wilson, M. R. (2002) J. Biol. Chem. 277, 39532–39540
38. Liu, D., Feinman, R. D., and Wang, D. (1987) Biochemistry 26, 5221–5226
39. Sjöberg, B., Pap, S., and Kjems, J. (1987) Eur. J. Biochem. 162, 259–264
40. Reddy, V. Y., Desorchers, P. E., Pizzo, S. V., Gionis, S. L., Sahakian, J. A., Levine, R. L., and Weiss, S. J. (1994) J. Biol. Chem. 269, 4683–4691
41. Pap, S., Sjöberg, B., and Mortensen, K. (1990) Eur. J. Biochem. 191, 41–45
42. Pochon, F., Barray, M., and Delain, E. (1989) Biochim. Biophys. Acta 996, 132–138
43. Shanbhag, V. P., Desorchers, P. E., Pizzo, S. V., Sahakian, J. A., and Radford, S. E. (2006) J. Biol. Chem. 281, 16521–16529
44. Kazama, J. I., Yamamoto, S., Takahashi, N., Ito, Y., Maruyama, H., Narita, I., and Gejyo, F. (2006) J. Bone Miner. Metab. 24, 182–184
45. Okubo, H., Ishibashi, H., Shibata, K., Tsuda-Kawamura, K., and Yanase, T. (1984) Inflammation 8, 171–179
46. Lardner, A. (2001) J. Leukocyte Biol. 69, 522–530
47. Leake, D. S. (1997) Atherosclerosis 129, 149–157
48. Jacobus, W. E., Taylor, G. J., 4th, Hollis, D. P., and Nunnally, R. L. (1977) Nature 265, 751–756
49. Brosius, J. W., Butterworth, J., Tennant, M. C., and Gordon, A. (1990) J. Neurochem. 55, 1624–1630