Primordial perturbations with pre-inflationary bounce

Yong Cai1,*, Yu-Tong Wang1†, Jin-Yun Zhao1‡, and Yun-Song Piao1,2§

1 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China and
2 Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China

Abstract

Based on the effective field theory (EFT) of nonsingular cosmologies, we build a stable model, without the ghost and gradient instabilities, of bounce inflation (inflation is preceded by a cosmological bounce). We perform a full simulation for the evolution of scalar perturbation, and find that the perturbation spectrum has a large-scale suppression (as expected), which is consistent with the power deficit of the cosmic microwave background (CMB) TT-spectrum at low multipoles, but unexpectedly, it also shows itself one marked lower valley, which actually provides a better fit to the dip at multipole \(l \sim 20 \). The depth of valley is relevant with the physics around the bounce scale, which is model-dependent.

PACS numbers:

* caiyong13@mails.ucas.ac.cn
† wangyutong12@mails.ucas.ac.cn
‡ zhaojinyun15@mails.ucas.ac.cn
§ yspiao@ucas.ac.cn
I. INTRODUCTION

Inflation [1][2][3][4] is the current paradigm of early universe. It predicts nearly scale-invariant scalar perturbation, which is consistent with the cosmic microwave background (CMB) observations [5][6], as well as the gravitational waves (GWs). However, it is not the final story of the early universe. As pointed out by Borde, Vilenkin and Guth [7][8], inflation is past-incomplete, and “inflationary models require physics other than inflation to describe the past boundary of the inflating region of spacetime.” [8].

This past-incompletion (singularity) of inflation has inspired radical alternatives to inflation, e.g., [9][10][11][12]. However, how to make the inflation happen in a past-complete scenario is also a noteworthy issue. In certain sense, this actually requires that the pre-inflationary phase should be past-complete. One possibility is that it is slow contracting, so that the infinite past is complete Minkowski spacetime. In such a scenario, a nonsingular bounce preceding inflation must occur (so-called the bounce inflation scenario) [13].

Recently, the Planck collaboration [14][15] have observed the power deficit of CMB TT-spectrum at large scale. This might be a hint of the pre-inflationary physics, which happens around ~ 60 efolds, e.g., [16]. The idea of bounce inflation accounted for not only the power deficit on large angular scales [13][17][18], but also a large dipole power asymmetry [17][19] in the CMB fluctuation. Thus we conjectured that the physics hinted by the CMB anomalies might be relevant with the pre-inflationary bounce, see also [20][21][22][23][24][25][26][27].

In physical time, the equation of motion of scalar perturbation ζ is

$$\ddot{\zeta}_k + \left(3H + \frac{\dot{Q}_s}{Q_s}\right)\dot{\zeta}_k + c_s^2 k^2 a^2 \zeta_k = 0. \quad (1)$$

Generally, $Q_s \sim \epsilon_{cont} = const. \gg 1$ for the contraction, while $Q_s \sim \epsilon_{inf} < 1$ for the inflation, where $\epsilon = -\dot{H}/H^2$. Thus Q_s inevitably shows itself a jumping around the nonsingular bounce, even if this phase lasts shortly enough. Previous studies neglected the effect of Q_s on the perturbation spectrum, since this effect is ambiguous without a fully stable (without the ghost and gradient instabilities) nonsingular bounce. Recently, with the effective field theory (EFT) of nonsingular cosmologies [28][29][30], we have been able to stably manipulate the bounce [31][32], see also [33][34]. This impels us to reconsider the relevant issue.

In this paper, inspired by [28][29][31][32], we build a fully stable model of bounce inflation, in which initially the universe is in the ekpyrotic contraction. By numerically solving Eq.
(1), we find that the pre-inflationary bounce not only brings the power deficit of the CMB TT-spectrum at low multipoles (as expected in [13][17]), but unexpectedly, also provides a better explanation to the dip at multipole \(l \sim 20 \) hinted by Planck [6].

II. THE LAGRANGIAN

Recently, it has been found that the nonsingular cosmological models usually suffer from the ghost or gradient instabilities \((c_s^2 < 0)\) [35][36], see also [37][38]. Based on the EFT of nonsingular cosmologies [28][29][30], this No-go result has been clearly illustrated. The cubic Galileon interaction \(\sim \Box \phi \) in Horndeski theory [39][40][41] only moves the period of \(c_s^2 < 0 \) to the outside of bounce phase, but cannot dispel it completely [42][43]. It has been found first in [28][29] that the operator \(R^{(3)} \delta g^{00} \) in EFT could play significant role in curing the gradient instability of scalar perturbation. Recently, we have built fully stable cosmological bounce models in Ref. [31] by applying the covariant \(L_{R^{(3)} \delta g^{00}} \).

We follow Ref. [31], and after defining \(\phi_\mu = \nabla_\mu \phi, \phi^\mu = \nabla^\mu \phi, \phi_{\mu\nu} = \nabla_\nu \nabla_\mu \phi, X = \phi_\mu \phi^\mu \) and \(\Box \phi = \phi^\mu \phi_\mu \), write the effective Lagrangian of nonsingular bounce inflation as (\(\phi \) is set dimensionless)

\[
L \sim \frac{M_p^2}{2} R - \frac{M_p^2}{2} X - V(\phi) + \frac{\tilde{P}(\phi, X)}{2} + L_{R^{(3)} \delta g^{00}} + L_{\delta K \delta g^{00}},
\]

\[(\text{Ghost free}) \text{ Bounce Removing } c_s^2 < 0\]

where

\[
L_{R^{(3)} \delta g^{00}} = \frac{f_1(\phi)}{2} \delta g^{00} R^{(3)}
\]

\[
= \frac{f_1(\phi)}{2}
\frac{X}{2} \int f_{\phi \phi} d \ln X - \left(f_\phi + \int \frac{f_\phi}{2} d \ln X \right) \Box \phi
\]

\[
+ \frac{f}{2X} \left[\phi_\mu \phi_\nu - (\Box \phi)^2 \right] - \frac{f - 2X f_X}{X^2} \left[\phi^\mu \phi_\mu \phi^\nu \phi_\nu - (\Box \phi) \phi^\mu \phi_\mu \phi^\nu \right],
\]

\[
L_{\delta K \delta g^{00}} = \frac{g_1(\phi)}{2} \delta K \delta g^{00}
\]

\[
= \frac{g}{2 \sqrt{-X}} \left(\frac{\phi^\mu \phi_\mu \phi^\nu \phi_\nu}{X} - \Box \phi \right) - \frac{3}{2} g H,
\]

\[
f = f_1(\phi) \left[1 + \frac{X}{f_2(\phi)} \right], \quad g = g_1(\phi) \left[1 + \frac{X}{f_2(\phi)} \right],
\]

\[(5)\]
with \(f_2 = \frac{X}{\delta g^{00}} \) = \(\dot{\phi}^2(t) \), \(R^{(3)} \delta g^{00} \) and \(\delta K \delta g^{00} \) being the EFT operators (\(R^{(3)} \) is the 3-dimensional Ricci scalars on the spacelike hypersurface). We briefly review the EFT of nonsingular cosmologies in Appendix A, see (A3) for the definition of \(\delta g^{00} \) and \(\delta K \). Though \(L_{\delta g^{00} R^{(3)}} \) has the higher order of the second order derivative of \(\phi \), it is Ostrogradski ghost-free \cite{44,45}. Additionally, \(L_{\delta g^{00} R^{(3)}} \) and \(L_{\delta K \delta g^{00}} \) do not affect the cosmological background.

III. A STABLE MODEL OF BOUNCE INFLATION

A. Background

A sketch of the bounce inflation scenario is plotted in Fig. 1. We will show how to build its stable model with the Lagrangian (2).

As a specific model, we set

\[
\tilde{P}(\phi, X) = \frac{\alpha_0}{(1 + (\phi/\lambda_1)^2)^2} M_p^2 X/2 + \frac{\beta_0}{(1 + (\phi/\lambda_1)^2)^2} X^2/4,
\]

\[
V(\phi) = -\frac{V_0}{2} e^{V/\sqrt{\phi}} \left[1 - \tanh \left(\frac{\phi}{\lambda_2} \right) \right] + \frac{\Lambda}{2} \left(1 - \left(\frac{\phi}{\lambda_3} \right)^2 \right) \left[1 + \tanh \left(\frac{\phi}{\lambda_2} \right) \right],
\]

with the positive constants \(\lambda_{1,2,3} \) and \(q, \alpha_0, \beta_0 \) being dimensionless. We have \(\tilde{P}(\phi, X) \neq 0 \) only around \(\phi \approx 0 \) \cite{46,47,48}, while \(\tilde{P}(\phi, X) = 0 \) for \(|\phi| \gg \lambda_1 \).
Thus we have
\[3H^2M_p^2 = \left[1 - \frac{\alpha_0}{(1 + (\phi/\lambda_1)^2)^2} \right] M_p^2 \phi^2/2 + \frac{3\beta_0}{(1 + (\phi/\lambda_1)^2)^2} \phi^4/4 + V(\phi), \] (8)
\[\dot{H}M_p^2 = -\left[1 - \frac{\alpha_0}{(1 + (\phi/\lambda_1)^2)^2} \right] M_p^2 \phi^2/2 - \frac{\beta_0}{(1 + (\phi/\lambda_1)^2)^2} \phi^4/2. \] (9)

In infinite past, the universe is almost Minkowski, which will experience the ekpyrotic contraction. In the ekpyrotic phase \(\phi \ll -\lambda_1 \) and \(-\lambda_2 \), we have \(\dot{P} = 0 \) and \(V_{ekpy} = -V_0 e^{\sqrt{2}q\phi} \) \((q \ll 1) \). Thus we could write Eqs. (8) and (9) as
\[3H^2 = \frac{\dot{\phi}^2}{2} - \frac{V_0}{M_p^2} e^{\sqrt{2}q\phi}, \quad \dot{H} = -\frac{\dot{\phi}^2}{2}. \] (10)

By solving (10), we have
\[a \sim (-t)^{1/\epsilon}, \quad \dot{\phi} = \sqrt{\frac{2}{\epsilon}} (-t)^{-1}, \] (11)
and
\[\phi(t) = \sqrt{\frac{2}{\epsilon}} \ln \left[\frac{\sqrt{\epsilon - 3}}{\epsilon \sqrt{V_0/M_p}} (-t)^{-1} \right], \] (12)
where \(\epsilon = -\dot{H}/H^2 = 1/q \gg 1 \), which suggests \(H = -\epsilon^{-1}(-t)^{-1} \).

When \(\phi \sim \lambda_1 \), we could have
\[\dot{H} \sim \left(\frac{\alpha_0}{4} - \frac{\beta_0 \dot{\phi}^2}{4M_p^2} - 1 \right) \frac{\dot{\phi}^2}{2} > 0, \] (13)
the nonsingular bounce will occur. While after \(\phi \gg \lambda_1, \lambda_2 \), the field \(\phi \) will be canonical \((\dot{P} = 0)\) again. We have
\[3H^2 = \frac{\dot{\phi}^2}{2} + \frac{\Lambda}{M_p^2} \left(1 - \left(\frac{\phi}{\lambda_3} \right)^2 \right)^2, \quad \dot{H} = -\frac{\dot{\phi}^2}{2}. \] (14)

Thus the slow-roll inflation will occur. Actually, after the nonsingular bounce, the Lagrangian (2) will reduce to \(L \sim M_p^2 R/2 - M_p^2 X/2 - V_{inf} \) with \(V_{inf} \) being the potential of slow-roll inflation.

We plot the background evolution in Fig. 2 with \(\alpha_0 = 20, \beta_0 = 5 \times 10^9, \lambda_1 = 0.224, \lambda_2 = 0.0667, \lambda_3 = 12, V_0 = 5 \times 10^{-9} M_p^4 \), \(q = 0.1, \Lambda = 2.5 \times 10^{-9} M_p^4 \). The initial values are set by (11) and (12).
FIG. 2: The background evolution of our model with $\alpha_0 = 20$, $\beta_0 = 5 \times 10^9$, $\lambda_1 = 0.224$, $\lambda_2 = 0.0667$, $\lambda_3 = 12$, $V_0 = 5 \times 10^{-9} M_p^4$, $q = 0.1$, $\Lambda = 2.5 \times 10^{-9} M_p^4$.

B. Simulation for the scalar perturbation spectrum

In unitary gauge $\delta \phi = 0$, the quadratic action of scalar perturbation ζ for (2) is (see Appendix A and also our [28])

$$S^{(2)}_\zeta = \int a^3 Q_s \left(\dot{\zeta}^2 - c_s^2 \left(\frac{\partial \zeta}{\partial a} \right)^2 \right) d^4 x,$$

in which

$$Q_s = \frac{2\dot{\phi}^4 \tilde{P}_{XX} - M_p^2 \dot{H}}{\gamma^2} + 3 \left(\frac{g_1}{2\gamma M_p} \right)^2,$$

$$c_s^2 Q_s = \frac{\dot{c}_3}{a} - M_p^2,$$

$$c_3 = \frac{a M_p^2 \dot{\beta} + \gamma \left(\frac{1 + 2f_1}{M_p^2} \right)}{\gamma},$$

with $\gamma = H + \frac{\dot{\phi}^2}{2M_p^2}$.

The stabilities require $Q_s > 0$ and $c_s^2 > 0$. Generally, $Q_s > 0$ can be obtained by applying
\(\dot{P}(\phi, X) \). While around the bounce point \(H \simeq 0 \),

\[
c_s^2 \sim -\dot{\gamma} \left(1 + \frac{2f_1}{M_p^2} \right) + \frac{2\dot{f}_1\gamma}{M_p^2} - \gamma^2.
\] (18)

We will have \(c_s^2 > 0 \) only for \(2f_1 < -M_p^2 \), as has been clarified in Refs. [28][30]. Thus the gradient instability \((c_s^2 < 0) \) is cured by \(L_{\delta g^0}R^{(3)} \), since if \(f_1 \equiv 0 \), we have \(c_s^2 \sim -\dot{\gamma} - \gamma^2 < 0 \) around the bounce point. Here, we always could set \(c_s^2 \sim O(1) \) with a suitable \(f_1(\phi) \) (see also [30]) satisfying

\[
2f_1(\phi) = \frac{\gamma}{a} \int a (Q_s c_s^2 + M_p^2) \, dt - M_p^2.
\] (19)

In conformal time \(\eta = \int dt/a \), the motion equation of \(\zeta \) is

\[
u'' + \left(c_s^2 k^2 - \frac{z''}{z_s} \right) \nu = 0,
\] (20)

where \(u = z_s \zeta \) and \(z_s = \sqrt{2a^2 Q_s} \). In infinite past, the universe is almost Minkowski, and will come through the ekpyrotic phase. The perturbation modes have the wavelength \(\lambda \simeq 1/k \ll \sqrt{z_s/z_s''} \) and \(c_s^2 = 1 \). Thus the initial state of the perturbation is

\[
u \simeq \frac{1}{\sqrt{2k}} e^{-ik\eta}.
\] (21)

The perturbation modes will pass through the ekpyrotic phase, the bounce phase and the inflation phase, sequentially. The resulting spectrum \(P_\zeta \) of \(\zeta \) (at \(-k\eta \ll 1 \)) is

\[
P_\zeta = \frac{k^3}{2\pi^2} |\zeta|^2.
\] (22)

In physical time, the motion equation of \(\zeta \) is (1). In the ekpyrotic phase, \(z_s \sim a \sim (-\eta)^{1/\epsilon_{ekpy}} \), since \(Q_s \sim \epsilon_{ekpy} = \text{const.} \gg 1 \). While in the inflationary phase, \(\epsilon_{inf} < 1 \). This suggests that \(Q_s \) (or \(z_s \sim a\sqrt{Q_s} \)) will show itself a jumping around the nonsingular bounce, which will inevitably affect \(P_\zeta \). Whether the jumping of \(Q_s \) is gentle or not is model-dependent. We will simulate its effect on \(P_\zeta \) by numerically solving Eq. (1), with \(c_s^2 = 1 \) set by Eq.(19).

It should be mentioned that if \(g_1 = 0 \) (\(L_{\delta K} \delta g^{00} \) is absent), we will have \(\gamma = H = 0 \) at the bounce point and \(Q_s \sim 1/\gamma^2 \) is divergent, see (17), so that Eq. (1) is singular. Here, in order to avoid it, we apply \(g_1(\phi) \), see also [30].

Without loss of generality, we set

\[
Q_s = A_Q \left[B - \tanh \left(\frac{t}{t_s} \right) \right],
\] (23)

\[
7
\]
which requires

\[g_1(\phi(t)) = -\frac{2HM_p^2Q_s - 2\sqrt{3H^2M_p^6Q_s + M_p^4(3M_p^2 - Q_s)\left(\dot{H}M_p^2 - 2\dot{\phi}^2P_{XX}\right)}}{Q_s - 3M_p^2} \tag{24} \]

in Lagrangian (2), see (17). We plot the spectrum \(P_\zeta \) of scalar perturbation in Fig. 3 for the background in Fig. 2 and the different values of \(B \) and \(t_s \), where \(P^{inf}_\zeta = \frac{H_{inf}^2}{8Q_{inf}^2\pi^2M_p^2}\left(\frac{k}{\mathcal{H}_{inf}}\right)^{n_s-1} \)

is that of the inflation, with \(Q_{inf}^s \) being the value of \(Q_s \) during inflation, \(n_s - 1 \simeq 0 \) (but is slightly red). The evolutions of \(Q_s \), \(g_1 \) and \(|\zeta|\) with respect to \(t \), respectively, are plotted in Figs. 7 and 8 of Appendix B.

As expected in [13], \(P_\zeta \) shows itself a large-scale cutoff, but is flat (with a damped oscillation) at small scale. However, due to the step-like evolution of \(Q_s \), the peaks and valleys of the oscillations are obviously pulled lower. Actually, after the nonsingular bounce, with Eq. (1), we shortly have the effective Hubble parameter

\[H_{inf}^{eff} = H_{inf} + \frac{\dot{Q}_s}{3Q_s} < H_{inf}, \tag{25} \]

since \(\dot{Q}_s < 0 \), see Figs. 7(b) and 8(b) in Appendix B. Thus \(P_\zeta \) is pulled lower at the corresponding scale, since \(P_\zeta \sim (H_{inf}^{eff})^2 \). The change rate of \(Q_s \) is relevant to the physics of nonsingular bounce, as showed in Eq. (23), so the depth of valley pulled lower is actually model-dependent.

In Sec. IV B, we will show that such a marked lower valley at corresponding scale helps to explain the dip around \(l \simeq 20 \) hinted by Planck [6].

IV. MORE ON THE SPECTRUM

A. Analytical estimation

We will attempt to analytically estimate \(P_\zeta \). The equation of motion for \(\zeta \) is (20). In [26], the spectrum of primordial GWs has been calculated. Here, if the effect of \(Q_s \) is neglected, the calculation will be similar.

The bounce phase is the evolution with \(\dot{H} > 0 \). We define that it begins and ends at \(\eta_{B-} \)

and \(\eta_{B+} \), respectively, at which \(\dot{H} = 0 \). We set that \(H = 0 \) at \(\eta_B \), which corresponds to the bounce point. Generally, \(\Delta \eta_B = \eta_{B+} - \eta_{B-} \lesssim 1/\mathcal{H}_{B+} \).
In our model (Sec. III), the contracting phase ($\eta < \eta_{B-}$) is ekpyrotic-like, a is almost constant for $\epsilon_{ekpy} \gg 1$. Considering the continuities of a and H at η_{B-}, we have

$$a(\eta) = a_{B-} \left[\frac{x}{(\epsilon_{ekpy} - 1)^{-1}H_{B-}^{-1}} \right]^{\frac{1}{\epsilon_{ekpy} - 1}},$$

(26)

see [26] for the details, where H_{B-} is the comoving Hubble parameter at η_{B-} and $x = \eta - \eta_{B-} + (\epsilon_{ekpy} - 1)^{-1}H_{B-}^{-1}$. We have $z_s''/z_s = a''/a$, since Q_s is constant. Thus the solution of (20) is

$$u_k = \frac{\sqrt{\pi|x|}}{2} c_{1,1} H_{\nu_1}^{(1)}(-kx)$$

(27)

where $\nu_1 = 1/2$ for $\epsilon_{ekpy} \gg 1$, and the initial condition (21) has been used.

In the nonsingular bounce phase ($\eta_{B-} < \eta < \eta_{B+}$), H should cross 0. We parameterize it as $H = \alpha(t - t_B)$ [49] with $\alpha M_P^2 \ll 1$. We have

$$a \simeq a_B e^{\frac{1}{2} \alpha (t-t_B)^2} \simeq a_B \left[1 + \frac{\alpha}{2} (t-t_B)^2 \right],$$

(28)

where $a = a_B$ at the bouncing point $t = t_B$. The continuities of a and H at η_{B-} and η_{B+} suggest $H_{B+} = H_{B-} + \alpha a_B^2 (\eta_{B+} - \eta_{B-})$. In our models, $|H_{B-}| \lesssim H_{B+}/4$, see Figs. 7 and 8 in Appendix B, so that we approximately have

$$H_{B+} \simeq \alpha a_B^2 \Delta \eta_B.$$ \hspace{1cm} (29)
Thus in this phase the equation (20) is

\[u''_k + (k^2 - \alpha a_B^2)u_k = 0. \tag{30} \]

Its solution is

\[u_k(\eta) = c_{2,1}e^{l(\eta-\eta_B)} + c_{2,2}e^{-l(\eta-\eta_B)}, \tag{31} \]

where \(l = \sqrt{\alpha a_B^2 - k^2} \). Here, we have neglected the effect of \(Q_s \), or it is difficult to solve Eq. (20).

In inflationary phase \((\eta \geq \eta_B)\), \(Q_s^{inf} \) is almost constant. Considering the continuities of \(a \) and \(H \) at \(\eta_B \), we have

\[a_{inf}(\eta) = a_{B+}(-yH_{B+})^{\frac{1}{\epsilon_{inf}}}, \tag{32} \]

where \(y = \eta - \eta_B + 1/H_{B+} \), and \(H_{B+} = H_{B+}/a \), \(H_{inf} \lesssim H_{B+} \). The solution of (20) is

\[u_k = \frac{\sqrt{\pi} |y|}{2} \left[c_{3,1}H_{\nu_2}^{(1)}(-ky) + c_{3,2}H_{\nu_2}^{(2)}(-ky) \right] \tag{33} \]

where \(\nu_2 = \frac{\epsilon_{inf} - 3}{2(\epsilon_{inf} - 1)} \).

We have \(P_\zeta \) as

\[P_\zeta(k, H_{B+}, H_{B-}, \Delta \eta) \approx \frac{H_{inf}^2}{8\pi^2 Q_s^{inf} M_p^2} |c_{31} - c_{32}|^2 = P_\zeta^{inf}|c_{31} - c_{32}|^2, \tag{34} \]

where \(P_\zeta^{inf} = \frac{H_{inf}^2}{8\pi^2 Q_s^{inf} M_p^2} \) is that of the slow-roll inflation. Requiring the continuities of \(\zeta \) and \(\dot{\zeta} \), we could write the coefficients as

\[\begin{pmatrix} c_{3,1} \\ c_{3,2} \end{pmatrix} = M^{(3,2)} \times M^{(2,1)} \times \begin{pmatrix} c_{1,1} \\ c_{1,2} \end{pmatrix}, \tag{35} \]

see Appendix C for the matrices \(M^{(2,1)} \) and \(M^{(3,2)} \).

The effects of bounce has been encoded in \(M^{(3,2)} \) and \(M^{(2,1)} \) (or \(|c_{3,1} - c_{3,2}|^2 \)). We approximately have

\[|c_{3,1} - c_{3,2}|^2 \approx 1 - A \sin \left(\frac{2k}{H_{B+}} \right) - A \sin \left(\frac{2k}{H_{B+}} + 2k\Delta \eta_B \right) \tag{36} \]

for \(k \gg H_{B+} \), where

\[A = \frac{H_{B+}}{k} \left(1 - \frac{\alpha a_B^2}{2H_{B+}} \Delta \eta_B \right) \approx \frac{H_{B+}}{2k} \tag{37} \]
and (29) is used, which suggests that on small scale \(k \gg \mathcal{H}_{B+} \), \(P_\zeta \) is flat with a rapidly damped oscillation, its maximal oscillating amplitude is around \(k \simeq \mathcal{H}_{B+} \). However, if the bounce phase lasts shortly enough, \(\Delta \eta_B \ll 1/\mathcal{H}_{B+} \), (36) will be

\[
|c_{3,1} - c_{3,2}|^2 \approx 1 - \frac{\mathcal{H}_{B+}}{k} \sin \left(\frac{2k}{\mathcal{H}_{B+}} \right).
\]

(38)

While on large scale \(k \ll \mathcal{H}_{B+} \), \(P_\zeta \sim k^2 \) will have a strongly blue tilt, since

\[
|c_{3,1} - c_{3,2}|^2 \approx w(\Delta \eta_B) \left(\frac{k}{\mathcal{H}_{B+}} \right)^2
\]

(39)

where

\[
w(\Delta \eta_B) = \left[(1 - \frac{l^2}{2\mathcal{H}_{B+}}) \cosh(l \Delta \eta_B) + \frac{l}{2} \mathcal{H}_{B+} - \Delta \eta_B + \frac{l^2}{4\mathcal{H}_{B+}} \Delta \eta_B^2 \sinh(l \Delta \eta_B) \right]^2
\]

(40)

which is \(w(\Delta \eta_B) \approx 1 \) for \(\Delta \eta_B \approx 0 \).

We plot \(P_\zeta \) for (34) in Figs. 4 for the different values of \(\Delta \eta \) and \(\mathcal{H}_{B-} \). We see that for \(k > \mathcal{H}_{B+} \), \(P_\zeta \sim k^0 \) but has a damped oscillation, while for \(k < \mathcal{H}_{B+} \), \(P_\zeta \sim k^2 \) shows itself a large-scale cutoff. Thus (34) is consistent with our simulation result (see Fig. 7 in Sec. III) well at large and small scales, respectively.

However, since we have neglected the step-like evolution of \(Q_s \), the pull-lower around \(k \simeq \mathcal{H}_{B+} \) in Fig. 7(d) cannot be reflected in (34).

![Fig. 4: The power spectrum with different \(\Delta \eta \) and different \(\mathcal{H}_{B-}/\mathcal{H}_{B+} \).](image)

B. Template

To conveniently fit the observation data, a simple “Template” capturing the essential shape of \(P_\zeta \) is indispensable. Based on the simulation in Sec. III and the analytical estimate
in Sec. IV A, we write it as

\[P_{\zeta} = F(k, \mathcal{H}_{B+}, A_d, \omega_d) \cdot P_{\zeta}^{inf}, \]

where \(P_{\zeta}^{inf} = A_{inf}(\frac{k}{k_*})^{n_{inf}-1} \) is the spectrum predicted by slow-roll inflation, and \(A_{inf} \) is the amplitude at the pivot scale \(k_* \), \(n_{inf} \) is its tilt, and

\[
F(k, \mathcal{H}_{B+}, A_d, \omega_d) = \left\{ 1 + e^{-\left(\frac{k}{\mathcal{H}_{B+}}\right)^2} \left(\frac{k}{\mathcal{H}_{B+}} \right)^2 \right. \\
+ e^{-\left(\frac{k}{\mathcal{H}_{B+}}\right)^2} \left(\frac{\sin(2k/\mathcal{H}_{B+})}{k/\mathcal{H}_{B+}} \right) \left[1 - A_d \cdot e^{-O(1)\omega_d} \right] \right\}.
\]

(42)

Here, the parameters set \((\mathcal{H}_{B+}, A_d, \omega_d)\) reflects the effect of pre-inflationary bounce on the spectrum. Around \(k \gtrsim \mathcal{H}_{B+} \), we have

\[
F(k, \mathcal{H}_{B+}, A_d, \omega_d) \simeq 1 - A_d e^{-O(1)\omega_d},
\]

(43)

so \(A_d \) and \(\omega_d \) (related with the parameter \(\Delta \eta < 1/\mathcal{H}_{B+} \) in Sec. IV A) depict the width and depth of valley around \(k \gtrsim H_{B+} \), respectively. Here, \(A_d \) is related with the change rate of \(Q_s \) (neglected in Sec. IV A). With Eq. (25), we have approximately

\[
A_d \simeq \frac{2 \left| \dot{Q}_s \right|_{max}}{3H_{inf}Q_s}
\]

(44)

noting \(\dot{Q}_s < 0 \). In (42), we have

\[
F(k, \mathcal{H}_{B+}, A_d, \omega_d) \sim 1 - \frac{\sin(2k/\mathcal{H}_{B+})}{k/\mathcal{H}_{B+}}
\]

(45)

for \(k \gg \mathcal{H}_{B+} \), which equals to (38), while for \(k \ll \mathcal{H}_{B+} \), we approximately have

\[
F(k, \mathcal{H}_{B+}, A_d, \omega_d) \simeq \left(\frac{k}{\mathcal{H}_{B+}} \right)^2,
\]

which is consistent with (39). \(P_{\zeta} \) for the “Template” (42) is plotted in Fig. 5. We see that (42) has effectively captured the essential shape of \(P_{\zeta} \) showed in Fig. 3.

C. Data fitting

We modified the CAMB and CosmoMC code package and perform a global fitting with Planck2015 data. The parameter set of the lensed-ΛCDM model is \(\{ \Omega_b h^2, \Omega_c h^2, 100\theta_{MC}, \tau, \ln(10^{10} A_{inf}), n_{inf} \} \), with \(\Omega_b h^2 \) the baryon density, \(\Omega_c h^2 \) the cold dark
matter density, θ_{MC} the angular size of the sound horizon at decoupling, and τ the reionization optical depth. We also include the parameters set $\{H_B, A_d, \omega_d\}$ (so-called the bounce 3-parameters) defined in (42), which captures the physics of pre-inflationary bounce, as has been argued. We set the pivot scale $k_* = 0.05\text{Mpc}^{-1}$, roughly in the middle of the logarithmic range of scales probed by Planck.

With (42), we plot the CMB TT-spectrum $D_l^{TT} \equiv l(l + 1)C_l^{TT}/2\pi$ and ΔD_l^{TT} in Fig. 6 with the best-fit parameters set $\{\Omega_\text{b}h^2, \Omega_ch^2, 100\theta_{\text{MC}}, \tau, \ln(10^{10}A_{inf}), n_{inf}, H_B, A_d, \omega_d\}$. Since WMAP and Planck, some models attempting to explain the anomalies of CMB at large scale (but not solving the initial singularity) have been proposed [50][51][52][53][54][55].

We see that the spectrum (42) of scalar perturbation predicted by our model could fit better not only the power deficit of the CMB TT-spectrum at low multipoles, but also the dip at $l \sim 20$. Actually, after we add the bounce 3-parameters $\{H_B, A_d, \omega_d\}$ into the parameter set of the ΛCDM model, the corresponding $\Delta\chi^2$ value can be greatly improved. The details will be presented in upcoming work.

V. CONCLUSION

In bounce inflation scenario, the inflation is singularity-free (past-complete). However, its pathology-free model has been still lacking. Here, we showed such a model. The nonsingular bounce is implemented by applying $\tilde{P}(\phi, X)$, see (6), which is ghost-free, while $\epsilon_s^2 < 0$ is dispelled by $L_{\delta h_{\text{de}} R^{(3)}}$ [31].

We perform a full simulation for the evolution of scalar perturbation, and find that the spectrum P_ζ has a suppression at large scale $k \ll H_B$ but is flat (with a damped oscillation) at small scale $k \gg H_B$, which confirms the earlier results showed in [13][17] and is consistent with the power deficit of the CMB TT-spectrum at low multipoles $l \lesssim 30$; but unexpectedly, P_ζ also shows itself one marked lower valley at $k \gtrsim H_B$, though the depth is model-dependent. We show that this lower valley actually provides a better fit to the dip at $l \sim 20$ hinted by Planck [6]. Based on the simulation and the analytical estimation for the perturbation spectrum, we also offer a “Template” of P_ζ (effectively capturing the physics of bounce) to fit data.
The equation of motion of GWs mode γ_{ij} for (2) is

$$\ddot{\gamma}_k + \left(3H + \frac{Q_T}{Q_T}\right)\dot{\gamma}_k + c_s^2\frac{k^2}{a^2}\gamma_k = 0 ,$$

(46)

which is unaffected by the operators $R^{(3)}\delta g^{00}$ and $\delta K\delta g^{00}$, where $Q_T = M_p^2$. We plot the primordial GWs spectrum P_T in Fig. 5 (the black dot curve) with $P_T^{inj} = \frac{2H^{2}_{inf}}{\pi^2 M_p^4}$, see also [26]. It should be mentioned that if $Q_T \neq M_p^2$ around the nonsingular bounce (the gravity is modified completely), P_T will be different. It is also possible that the corresponding gravity has a large parity violation [56], which might be imprinted in CMB.

Our work highlight the conjecture again that the physics hinted by the large-scale anomalies of CMB is related with the pre-inflationary bounce. The nonsingular cosmological bounce also has been implemented in some models of modified gravity [57–68], see also [69][70] for reviews. Confronting the corresponding models with the CMB data will be interesting.

FIG. 5: The black dotted curve is the spectrum $P_T/P_{T,inf}$ of the primordial GWs in bounce inflation scenario, see [26], while the {green dotdashed, red dashed, brown solid} curves are those of the primordial scalar perturbation based on the results of “Template” (42) with $A_d = \{0.25, 0.8, 0.8\}$, $d = \{\pi, \pi, \pi\}$ and $\omega_d = \{0.25, 0.25, 0.1\}$, which are consistent with those in Fig. 3.

Acknowledgments

YC would like to thank Youping Wan and Yi-Fu Cai for discussions and hospitalities during his visit at University of Science and Technology of China. YSP thanks Mingzhe Li for helpful suggestions in USTC-ICTS seminar. We acknowledge the use of CAMB and
FIG. 6: The green points show the Planck2015 data with 1σ errors. The best-fit values of parameters are $\ln(10^{10}A_{inf}) = 3.091$, $n_{inf} = 0.966$, $\ln(H_{B+}) = -7.51$, $A_d = 0.87$, $\omega_d = 5.47$.

CosmoMC. This work is supported by NSFC, No. 11575188, 11690021, and also supported by the Strategic Priority Research Program of CAS, No. XDA04075000, XDB23010100.

Appendix A: The EFT of nonsingular cosmologies

In this Appendix, we briefly review the EFT of nonsingular cosmologies, see [28] for the details.

With the ADM $3+1$ decomposition, we have

\[
g_{\mu\nu} = \begin{pmatrix} N_k N^k - N^2 N_j \\ N_i \\ N^j \end{pmatrix}, \quad g^{\mu\nu} = \begin{pmatrix} -N^{-2} N^j \\ N^i \\ h^{ij} - \frac{N^i N^j}{N^2} \end{pmatrix},
\]

and $\sqrt{-g} = N \sqrt{h}$, where $N_i = h_{ij} N^j$. The induced metric on 3-dimensional hypersurface is $h_{\mu\nu} = g_{\mu\nu} + n_\mu n_\nu$, where $n_\mu = n_0 (dt/dx^\mu) = (-N, 0, 0, 0)$, $n^\nu = g^{\mu\nu} n_\mu = (1/N, -N^i / N)$ is orthogonal to the spacelike hypersurface, and $n_\mu n^\mu = -1$. Thus

\[
h_{\mu\nu} = \begin{pmatrix} N_k N^k \\ N_i \\ h_{ij} \end{pmatrix}, \quad h^{\mu\nu} = \begin{pmatrix} 0 & 0 \\ 0 & h^{ij} \end{pmatrix}.
\]
The EFT is [28]

\[
S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} f(t) R - \Lambda(t) - c(t) g^{00} \right. \\
+ \frac{M_4^2}{2}(\delta g^{00})^2 - \frac{m_3^2(t)}{2} \delta K \delta g^{00} - m_4^2(t) (\delta K^2 - \delta K_{\mu\nu} \delta K^{\mu\nu}) + \frac{\tilde{m}_4^2(t)}{2} R^{(3)} \delta g^{00} \\
- \tilde{m}_4^2(t) \delta K^2 + \frac{\tilde{m}_5(t)}{2} R^{(3)} \delta K + \frac{\tilde{x}(t)}{2} (R^{(3)})^2 + \ldots \\
- \frac{\tilde{x}(t)}{M_p^2} \nabla_i R^{(3)} \nabla^i R^{(3)} + \ldots \right],
\]

(A3)

where \(\delta g^{00} = g^{00} + 1, \) \(R^{(3)} \) is the 3-dimensional Ricci scalar, \(K_{\mu\nu} = h^{\mu}_\sigma \nabla_\sigma n_\nu \) is the extrinsic curvature, \(\delta K_{\mu\nu} = K_{\mu\nu} - h_{\mu\nu} H \).

Here, we focus on building a stable model of bounce inflation. We only consider the coefficients set \((f, c, \Lambda, M_2, m_3, \tilde{m}_4) \), and set other coefficients in (A3) equal to 0. We always could set \(f = 1 \), which suggests \(c(t) = -M_p^2 \dot{H} \) and \(c(t) + \Lambda(t) = 3M_p^2 H^2 \).

As pointed out in Ref. [33], the \(R^{(3)} \delta K \) operator in EFT could play similar role as \(R^{(3)} \delta g^{00} \), which we will consider elsewhere. Mapping (2) into the EFT (A3), we have \(M_4^2(t) = X^2 \dot{P}_{XX}, m_3^2(t) = -g_1(\phi) \) and \(\tilde{m}_4 = f_1(\phi) \). Only with \((M_2, m_3, \tilde{m}_4) \neq 0 \), the quadratic action of scalar perturbation \(\zeta \) is (see, e.g., our [28])

\[
S^{(2)}_\zeta = \int d^4x a^3 Q_s \left(\dot{\zeta}^2 - c_s^2 \frac{(\partial \zeta)^2}{a^2} \right),
\]

(A4)

where

\[
Q_s = \frac{2M_4^2}{\gamma} + \frac{3m_3^6}{4M_p^2 \gamma^2} - \frac{\dot{H}M_p^2}{\gamma^2},
\]

(A5)

\[
c_s^2 Q_s = \frac{\dot{c}_3}{a} - M_p^2
\]

(A6)

\[
c_3 = \frac{aM_p^2}{\gamma} \left(1 + \frac{2\tilde{m}_4^2}{M_p^2} \right),
\]

(A7)

where \(\gamma = H - m_3^2/(2M_p^2) \). Only if \(Q_s > 0 \) and \(c_s^2 > 0 \), the nonsingular cosmological model is healthy. In models with the operator \((\delta g^{00})^2 \), \(Q_s > 0 \) always can be obtained, since \((\delta g^{00})^2 \) contributes \(\dot{\zeta}^2 \). While \(c_s^2 > 0 \) requires \(\dot{c}_3 > aM_p^2 \), which is

\[
c_3|_{t_f} - c_3|_{t_i} > M_p^2 \int_{t_i}^{t_f} a dt.
\]

(A8)

The inequality (A8) suggests that \(c_3 \) must cross 0 (\(\tilde{m}_4^2 = M_p^2/2 \) or \(\gamma \) is divergent), since the integral \(\int a dt \) is infinite. Thus if the \(R^{(3)} \delta g^{00} \) operator is absent, \(c_s^2 > 0 \) throughout is
impossible. We can set \(c_s^2 \simeq 1 \) by

\[
2m_4^2 = \frac{\gamma}{a} \int a \left(Q_s c_s^2 + M_p^2 \right) dt - M_p^2.
\]
(A9)

Appendix B: More on the simulation

We plot the evolutions of \(Q_s, g_1, |\zeta| \) with respect to \(t \), and also \(P_\zeta(k) \) for the background in Fig. 2, with different values of \(B \) and \(t_* \) in this Appendix.

We see how \(|\zeta| \) evolves with \(a \) in different phases. Theoretically, \(\zeta \sim 1/a \) for the perturbation modes with \(k \gg \sqrt{z_s''/z_s} \), while \(\zeta \sim \text{const.} \) for the perturbation modes with \(k \ll \sqrt{z_s''/z_s} \), which is consistent with our Figs. 7(c) and 8(c).

![Graphs](image)

(a) \(Q_s \)
(b) \(10^5 (3H + Q_s/Q_s) \)

(c) \(|\zeta| \) for \(k = \{10^{-5}, 3 \times 10^{-5}, 10^{-3}, 10^{-2}\} \) from top to bottom

(d) \(P_\zeta/P_\zeta^{inf} \)

FIG. 7: We set \(A_Q = 3, B = 2, t_* = 4 \times 10^4 \) and the background is given by Fig. 2.
FIG. 8: We set \(A_Q = 3, \ B = 1.6, \ t_* = 3 \times 10^4 \) and the background is given by Fig. 2.

Appendix C: The matrices elements of \(\mathcal{M}^{(2,1)} \) and \(\mathcal{M}^{(3,2)} \)

We define \(l = \sqrt{\alpha a_B^2 - k^2}, \ x_1 = 1/|\mathcal{H}_{B-}|, \ x_2 = \mathcal{H}_{B+}, \ y_{1,2} = (\eta_{B+} - \eta_B) \), and have

\[
\mathcal{M}_{11}^{(2,1)} = \frac{\sqrt{\pi x_1}}{4l} \left[(l + \alpha a_B^2 y_1) H_{\nu_1}^{(1)}(k x_1) - k H_{\nu_1-1}^{(1)}(k x_1) \right] e^{-ly_1}, \quad (C1)
\]
\[
\mathcal{M}_{12}^{(2,1)} = \frac{\sqrt{\pi x_1}}{4l} \left[(l + \alpha a_B^2 y_1) H_{\nu_1}^{(2)}(k x_1) - k H_{\nu_1-1}^{(2)}(k x_1) \right] e^{-ly_1}, \quad (C2)
\]
\[
\mathcal{M}_{21}^{(2,1)} = \frac{\sqrt{\pi x_1}}{4l} \left[(l - \alpha a_B^2 y_1) H_{\nu_1}^{(1)}(k x_1) - k H_{\nu_1-1}^{(1)}(k x_1) \right] e^{ly_1}, \quad (C3)
\]
\[
\mathcal{M}_{22}^{(2,1)} = \frac{\sqrt{\pi x_1}}{4l} \left[(l - \alpha a_B^2 y_1) H_{\nu_1}^{(2)}(k x_1) - k H_{\nu_1-1}^{(2)}(k x_1) \right] e^{ly_1}, \quad (C4)
\]
\[M^{(3,2)}_{11} = \frac{i \sqrt{\pi x_2}}{2} \left[(l - \alpha a_B^2 y_2) H^{(2)}_{\nu_2} (k x_2) + k H^{(2)}_{\nu_2 - 1} (k x_2) \right] e^{ly_2}, \tag{C5} \]

\[M^{(3,2)}_{12} = \frac{i \sqrt{\pi x_2}}{2} \left[-(l + \alpha a_B^2 y_2) H^{(2)}_{\nu_2} (k x_2) + k H^{(2)}_{\nu_2 - 1} (k x_2) \right] e^{-ly_2}, \tag{C6} \]

\[-M^{(3,2)}_{21} = \frac{i \sqrt{\pi x_2}}{2} \left[(l - \alpha a_B^2 y_2) H^{(1)}_{\nu_2} (k x_2) + k H^{(1)}_{\nu_2 - 1} (k x_2) \right] e^{ly_2}, \tag{C7} \]

\[-M^{(3,2)}_{22} = \frac{i \sqrt{\pi x_2}}{2} \left[-(l + \alpha a_B^2 y_2) H^{(1)}_{\nu_2} (k x_2) + k H^{(1)}_{\nu_2 - 1} (k x_2) \right] e^{-ly_2}. \tag{C8} \]

[1] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[2] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[3] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
[4] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[5] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A13 (2016) [arXiv:1502.01589 [astro-ph.CO]].
[6] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A20 (2016) [arXiv:1502.02114 [astro-ph.CO]].
[7] A. Borde and A. Vilenkin, Phys. Rev. Lett. 72, 3305 (1994) [gr-qc/9312022].
[8] A. Borde, A. H. Guth and A. Vilenkin, Phys. Rev. Lett. 90, 151301 (2003) [gr-qc/0110012].
[9] J. Khoury, B. A. Ovrut, P. J. Steinhardt and N. Turok, Phys. Rev. D 64, 123522 (2001) [hep-th/0103239].
[10] Y. F. Cai, T. Qiu, Y. S. Piao, M. Li and X. Zhang, JHEP 0710, 071 (2007) [arXiv:0704.1090 [gr-qc]].
[11] Y. S. Piao and E. Zhou, Phys. Rev. D 68, 083515 (2003) [hep-th/0308080]; Z. G. Liu, J. Zhang and Y. S. Piao, Phys. Rev. D 84, 063508 (2011) [arXiv:1105.5713].
[12] P. Creminelli, A. Nicolis and E. Trincherini, JCAP 1011, 021 (2010) [arXiv:1007.0027 [hep-th]].
[13] Y. S. Piao, B. Feng and X. m. Zhang, Phys. Rev. D 69, 103520 (2004) [hep-th/0310206]; Y. S. Piao, Phys. Rev. D 71, 087301 (2005) [astro-ph/0502343]; Y. S. Piao, S. Tsujikawa and X. m. Zhang, Class. Quant. Grav. 21, 4455 (2004) [hep-th/0312139].
[14] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 571, A1 (2014) [arXiv:1303.5062 [astro-ph.CO]].
[15] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A16 (2016) [arXiv:1506.07135 [astro-ph.CO]].

[16] Y. Cai, Y. T. Wang and Y. S. Piao, Phys. Rev. D 92, 2, 023518 (2015) [arXiv:1501.01730 [astro-ph.CO]].

[17] Z. G. Liu, Z. K. Guo and Y. S. Piao, Phys. Rev. D 88, 063539 (2013) [arXiv:1304.6527 [astro-ph.CO]].

[18] T. Biswas and A. Mazumdar, Class. Quant. Grav. 31, 025019 (2014) [arXiv:1304.3648 [hep-th]].

[19] Z. G. Liu, Z. K. Guo and Y. S. Piao, Phys. Rev. D 88, 063539 (2013) [arXiv:1304.6527 [astro-ph.CO]].

[20] T. Biswas and A. Mazumdar, Class. Quant. Grav. 31, 025019 (2014) [arXiv:1304.3648 [hep-th]].

[21] J. Mielczarek, JCAP 0811, 011 (2008) [arXiv:0807.0712 [gr-qc]].

[22] J. Q. Xia, J. Wang, G. Li and X. Zhang, Phys. Rev. Lett. 112, 251301 (2014) [arXiv:1403.7623 [astro-ph.CO]].

[23] Z. G. Liu, H. Li and Y. S. Piao, Phys. Rev. D 90, no. 8, 083521 (2014) [arXiv:1405.1188 [astro-ph.CO]].

[24] T. Qiu and Y. T. Wang, JHEP 1504, 130 (2015) [arXiv:1501.03568 [astro-ph.CO]].

[25] Y. Wan, T. Qiu, F. P. Huang, Y. F. Cai, H. Li and X. Zhang, JCAP 1512, no. 12, 019 (2015) [arXiv:1509.08772 [gr-qc]].

[26] H. G. Li, Y. Cai and Y. S. Piao, Phys. Rev. D 90, no. 8, 083521 (2014) [arXiv:1405.1188 [astro-ph.CO]].

[27] S. Ni, H. Li, T. Qiu, W. Zheng and X. Zhang, arXiv:1707.05570 [astro-ph.CO].

[28] Y. Cai, Y. Wan, H. G. Li, T. Qiu and Y. S. Piao, JHEP 1701, 090 (2017) [arXiv:1610.03400 [gr-qc]].

[29] P. Creminelli, D. Pirtskhalava, L. Santoni and E. Trincherini, JCAP 1611, no. 11, 047 (2016) [arXiv:1610.04207 [hep-th]].

[30] Y. Cai, H. G. Li, T. Qiu and Y. S. Piao, Eur. Phys. J. C 77, no. 6, 369 (2017) [arXiv:1701.04330 [gr-qc]].

[31] Y. Cai and Y. S. Piao, JHEP 1709, 027 (2017) [arXiv:1705.03401 [gr-qc]].

[32] R. Kolevatov, S. Mironov, N. Sukhov and V. Volkova, JCAP 1708, no. 08, 038 (2017)
[arXiv:1705.06626 [hep-th]].
[33] Y. Cai and Y. S. Piao, arXiv:1707.01017 [gr-qc].
[34] A. Ijjas and P. J. Steinhardt, Phys. Lett. B 764, 289 (2017) [arXiv:1609.01253 [gr-qc]].
[35] M. Libanov, S. Mironov and V. Rubakov, JCAP 1608, no. 08, 037 (2016) [arXiv:1605.05992 [hep-th]].
[36] T. Kobayashi, Phys. Rev. D 94, no. 4, 043511 (2016) [arXiv:1606.05831 [hep-th]].
[37] R. Kolevatov and S. Mironov, Phys. Rev. D 94, no. 12, 123516 (2016) [arXiv:1607.04099 [hep-th]].
[38] S. Akama and T. Kobayashi, Phys. Rev. D 95, no. 6, 064011 (2017) [arXiv:1701.02926 [hep-th]].
[39] G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[40] C. Deffayet, X. Gao, D. A. Steer and G. Zahariade, Phys. Rev. D 84, 064039 (2011) [arXiv:1103.3260 [hep-th]].
[41] T. Kobayashi, M. Yamaguchi and J. Yokoyama, Prog. Theor. Phys. 126, 511 (2011) [arXiv:1105.5723 [hep-th]].
[42] A. Ijjas and P. J. Steinhardt, Phys. Rev. Lett. 117, no. 12, 121304 (2016) [arXiv:1606.08880 [gr-qc]].
[43] D. A. Easson, I. Sawicki and A. Vikman, JCAP 1111, 021 (2011) [arXiv:1109.1047 [hep-th]].
[44] D. Langlois and K. Noui, JCAP 1602, no. 02, 034 (2016) [arXiv:1510.06930 [gr-qc]].
[45] D. Langlois and K. Noui, JCAP 1607, no. 07, 016 (2016) [arXiv:1512.06820 [gr-qc]].
[46] E. I. Buchbinder, J. Khoury and B. A. Ovrut, Phys. Rev. D 76, 123503 (2007) [hep-th/0702154].
[47] L. Battarra, M. Koehn, J. L. Lehners and B. A. Ovrut, JCAP 1407, 007 (2014) [arXiv:1404.5067 [hep-th]].
[48] M. Koehn, J. L. Lehners and B. Ovrut, Phys. Rev. D 93, 10, 103501 (2016) [arXiv:1512.03807 [hep-th]].
[49] Y. F. Cai et.al, JCAP 0803, 013 (2008) [arXiv:0711.2187 [hep-th]].
[50] C. R. Contaldi, M. Peloso, L. Kofman and A. D. Linde, JCAP 0307, 002 (2003) [astro-ph/0303636].
[51] E. Dudas, N. Kitazawa, S. P. Patil and A. Sagnotti, JCAP 1205, 012 (2012) [arXiv:1202.6630 [hep-th]].
[52] S. Das, G. Goswami, J. Prasad and R. Rangarajan, JCAP 1506, no. 06, 001 (2015) [arXiv:1412.7093 [astro-ph.CO]].
[53] Y. F. Cai, E. G. M. Ferreira, B. Hu and J. Quintin, Phys. Rev. D 92, no. 12, 121303 (2015) [arXiv:1507.05619 [astro-ph.CO]].
[54] K. Wang, L. Santos, J. Q. Xia and W. Zhao, JCAP 1701, no. 01, 053 (2017) [arXiv:1608.04189 [astro-ph.CO]].
[55] E. A. Kontou, J. J. Blanco-Pillado, M. P. Hertzberg and A. Masoumi, JCAP 1704, no. 04, 034 (2017) [arXiv:1701.01706 [hep-th]].
[56] Y. T. Wang and Y. S. Piao, Phys. Lett. B 741, 55 (2015) [arXiv:1409.7153 [gr-qc]].
[57] D. Yoshida, J. Quintin, M. Yamaguchi and R. H. Brandenberger, Phys. Rev. D 96, no. 4, 043502 (2017) [arXiv:1704.04184 [hep-th]].
[58] Y. Misonoh, M. Fukushima and S. Miyashita, Phys. Rev. D 95, 4, 044044 (2017) [arXiv:1612.09077 [gr-qc]].
[59] M. Giovannini, Phys. Rev. D 95, 8, 083506 (2017) [arXiv:1612.00346 [hep-th]].
[60] S. Banerjee and E. N. Saridakis, Phys. Rev. D 95, 6, 063523 (2017) [arXiv:1604.06932 [gr-qc]].
[61] T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Phys. Rev. Lett. 108, 031101 (2012) [arXiv:1110.5249 [gr-qc]]; T. Biswas, A. S. Koshelev, A. Mazumdar and S. Y. Vernov, JCAP 1208, 024 (2012) [arXiv:1206.6374 [astro-ph.CO]].
[62] M. Vasilic, Phys. Rev. D 95, 12, 123506 (2017) [arXiv:1704.02589 [gr-qc]].
[63] Y. B. Li, J. Quintin, D. G. Wang and Y. F. Cai, JCAP 1703, 03, 031 (2017) [arXiv:1612.02036 [hep-th]].
[64] S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 92 (2015) 2, 024016 [arXiv:1504.06866 [gr-qc]]; S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 91 (2015) 6, 064036 [arXiv:1502.06125 [gr-qc]]; S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 90 (2014) 12, 124083 [arXiv:1410.8183 [gr-qc]].
[65] S. H. Hendi, M. Momennia, B. Eslam Panah and M. Faizal, Astrophys. J. 827, 2, 153 (2016) [arXiv:1703.00480 [gr-qc]]; S. H. Hendi, M. Momennia, B. Eslam Panah and S. Panahiyan, Universe 16, 26 (2017) [arXiv:1705.01099 [gr-qc]].
[66] S. Chinaglia, A. Colleaux and S. Zerbini, arXiv:1708.08667 [gr-qc].
[67] M. Giovannini, arXiv:1708.08713 [hep-th].
[68] S. Farnsworth, J. L. Lehners and T. Qiu, arXiv:1709.03171 [gr-qc].
[69] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Phys. Rept. \textbf{692}, 1 (2017) [arXiv:1705.11098 [gr-qc]].

[70] D. Battefeld and P. Peter, Phys. Rept. \textbf{571}, 1 (2015) [arXiv:1406.2790 [astro-ph.CO]].