Carotid intima-media thickness in UK Biobank: Identification of novel genome-wide loci, sex-specific effects and genetic correlations with obesity and glucometabolic traits.

Rona J. Strawbridge PhD1,2, Joey Ward MSc1, Mark E.S. Bailey PhD3, Breda Cullen PhD1, Amy Ferguson PhD1, Nicholas Graham MBChB1, Keira J.A. Johnston MSc1,3,4, Laura M. Lyall PhD1, Robert Pearsall DPhil1, Jill Pell MD1, Richard J Shaw PhD1, Rachana Tank MSc1, Donald M. Lyall PhD1 and Daniel J. Smith MD1

1Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK.
2Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
3School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
4Division of Psychiatry, College of Medicine, University of Edinburgh, Edinburgh, UK

* Corresponding author:
Dr Rona J. Strawbridge (rona.strawbridge@glasgow.ac.uk)
1 Lilybank Gardens, Glasgow, G12 8RZ, UK

Short Title: GWAS of IMT in UK Biobank

Word count: 7080
Abstract

Objectives: Atherosclerosis is the underlying cause of most cardiovascular disease, but mechanisms underlying atherosclerosis are incompletely understood. Ultrasound measurement of the carotid artery intima-media thickness (cIMT) can be used to measure vascular remodelling, which is indicative of atherosclerosis. Genome-wide association studies have identified a number of genetic loci associated with cIMT, but heterogeneity of measurements collected by many small cohorts have been a major limitation in these efforts. Here we conducted genome-wide association analyses in UK Biobank (N=22,179), the largest single study with consistent cIMT measurements.

Approach and results: We used BOLT-LMM to run linear regression of cIMT in UK Biobank, adjusted for age, sex, genotyping platform and population structure. In white British participants, we identified 4 novel loci associated with cIMT and replicated most previously reported loci. In the first sex-specific analyses of cIMT, we identified a female-specific locus on Chromosome 5, associated with cIMT in women only and highlight VCAN as a good candidate gene at this locus. Genetic correlations with body-mass index and glucometabolic traits were also observed.

Conclusion: These findings replicate previously reported associations, highlight novel biology and provide new directions for investigating the sex differences observed in cardiovascular disease presentation and progression.

Introduction

Atherosclerosis is the underlying cause of the majority of cardiovascular events (CVE) and is characterised by vascular remodelling, incorporation of lipids into the vessel wall and subsequent inflammation. Atherosclerosis is a systemic process
which precedes clinical presentation of cardiovascular events such as stroke by decades. Indeed, evidence of vascular remodelling indicative of atherosclerosis has been observed as early as in adolescent age groups.

Atherosclerosis can be non-invasively assessed by ultrasound measurement of the carotid artery vessel wall, specifically the intima-media thickness (cIMT). In some cases, cIMT assessment is used for monitoring after CVE such as stroke, but could also be useful for screening individuals at high risk of CVE. Currently use is limited as it requires specialist equipment and training, and high-quality data analysis is laborious. Measurement of cIMT has been performed for research purposes, predominantly in cohorts recruited for the study of cardiovascular disease. Whilst undeniably useful, the use of clinical cohorts does not cover the whole spectrum of atherosclerotic burden in the population.

Genetic analyses of clinical cohorts have begun to identify single nucleotide polymorphisms (SNPs) associated with increased cIMT, which paves the way for better understanding of processes leading to cardiovascular events. A limitation for these studies (N~68,000) has been heterogeneity in recruitment and ultrasound methodology, which could lead to failure to detect some true genetic effects. In this respect, UK Biobank provides an unprecedented opportunity to analyse IMT measurements in a very large cohort (N~22,000) with consistent recruitment and standardised cIMT measurements, analysis and quality control.

We therefore set out primarily to identify genetic variants associated with cIMT in a large general population cohort. A secondary aim was to investigate the possibility of sex-specific genetic effects on IMT. Here we report the replication of previously reported associations, highlight novel biology and provide new directions for
Methods

Study population

The UK Biobank study (UKB) has been described in detail previously. In brief, UKB recruited ~500,000 participants from the UK between 2006 and 2010. Participants attended one of the 22 recruitment centres across the UK where they provided a blood sample for DNA extraction and biomarker analysis, and completed questionnaires covering a wide range of medical, social and lifestyle information. All participants provided informed consent and the study was conducted in accordance with the Helsinki Declaration. Generic approval was granted by the NHS National Research Ethics Service (approval letter dated 13 May 2016, Ref 16/NW/0274) and the study conducted under UK Biobank projects #7155 (PI Jill Pell) and #6553 (PI Daniel Smith).

Phenotyping

Starting in 2014, participants were invited to participate in a follow-up and imaging assessment, including ultrasound imaging of the carotid arteries. cIMT phenotyping began in 2015, in a pilot phase, where 2,272 individuals were imaged at 18 centres (with 8 centres accounting for 98% of the sample) with extensive manual quality control being conducted. Subsequently, manual quality control was deemed unnecessary and all centres began recruiting and recording automated measurements (with 10 centres accounting for 93% of the sample). Details of the protocol are available at https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=101.
brief, ultrasound measurements were recorded at 2 angles on each of the left and right carotid artery with automated software recording images and measurements of mean and maximum intima-media (UKB data fields 22670-22681). Recruitment for imaging is ongoing, but to date (2019), 25,769 individuals have ultrasound measurements of the cIMT. The average of 4 measures (2 for each of the left and right carotid arteries) was calculated for the mean (IMTmean) and for maximum IMT (IMTmax), the largest of the 4 measures was used. Where more than one value was missing due to poor quality of the image, the participant was excluded from analyses. Values were expressed in mm and natural log transformed for normality prior to analysis.

In the follow-up assessment, anthropometric measures, lifestyle variables, medication and disease history was again recorded including: age, weight, waist circumference, hip circumference, waist:hip ratio (WHR), body-mass index (BMI), systolic and diastolic blood pressure (SBP and DBP respectively), hypertension (defined as SBP≥140mmHg and/or DBP≥90mmHg and/or anti-hypertensive medication), probable type 2 diabetes (T2D, coding as per Eastwood et al 10), ischemic heart disease (ISH, defined as heart attack or angina). Corrected SBP and DBP, reflecting probable untreated levels, were calculated as per Ehret et al 11. These contemporary values were used in the analysis of cIMT.

Genotyping

DNA was extracted from blood samples provided by participants, using standard protocols. Details of the UKB genotyping and imputation procedures have been described previously 12, 13. Briefly, the full genetic data release (March 2018) was used for this study. Genotyping, pre-imputation quality control, imputation and post-
imputation quality control were conducted centrally by UKB, according to standard procedures.

Statistical analyses

Descriptive statistics and Spearman's rank correlations were conducted using Stata. Only individuals of white British ancestry were included in the GWAS to maximise homogeneity. BOLT-LMM was used to conduct genetic association analyses, to calculate heritability estimates and estimates of λ_{GC}. IMTmean and IMTmax values were natural logarithm-transformed for normality and genetic association analyses were conducted, adjusted for age, sex and genotyping array (primary analysis) or age and genotyping array (secondary analyses). SNPs were excluded if minor allele frequency <0.01, Hardy-Weinberg equilibrium $p<1 \times 10^{-6}$ or imputation score <0.3. Genome-wide significance was set at $p<5 \times 10^{-8}$, with suggestive evidence of association being set at $p<1 \times 10^{-5}$. After quality control there were 22,179 participants with IMT and genetic data for analysis.

Genetic association results were visualised using FUMA \(^{14}\) and LocusZoom \(^{15}\).

Linkage disequilibrium and genetic correlations

Linkage disequilibrium (LD) between analysed SNPs in each GWAS-significant locus was calculated and visualised in a random subset of 10000 white British individuals (or 5000 individuals where the locus is computationally too large with 10000 individuals) included in the cIMT subset, using Haploview (default settings) \(^{16}\).

Genetic correlations between IMTmean and IMTmax and relevant cardiometabolic traits were calculated, using previously published summary statistics and LD score regression \(^{17}\). IMT summary statistics were provided by the CHARGE consortium (http://www.chargeconsortium.com/). Data on glycaemic traits were contributed by
MAGIC investigators and were downloaded from www.magicinvestigators.org. Type 2 diabetes (T2D) data were contributed by the DIAGRAM consortium (http://diagram-consortium.org/downloads.html). Summary statistics for lipid traits were downloaded from the Global Lipids Genetics Consortium website (http://lipidgenetics.org/). Data on anthropometric traits were downloaded from the GIANT consortium website (http://portals.broadinstitute.org/collaboration/giant/index.php/Main_Page). Coronary artery disease data were downloaded from the CARDIoGRAMplusC4D consortium (http://www.cardiogramplusc4d.org/). Blood pressure data were provided by the International Consortium for Blood Pressure genetics (https://www.ncbi.nlm.nih.gov/projects/gap/cgibin/study.cgi?study_id=phs000585.v1.p1).

Data-mining

The GWAS catalogue (https://www.ebi.ac.uk/gwas/, accessed 20190717) was used to identify previously reported associations with significant loci. All SNPs with at least suggestive evidence of association (p<1x10^{-5}) within significantly associated loci were assessed for deleterious effect using the Ensemble variant effect predictor (VEP) 18. GWAS-significant SNPs and those predicted by VEP to have at least moderate impact were assessed for effects on genotype expression patterns of nearby genes using the Genotype Tissue Expression project (GTEx) 19. Functions of highlighted genes were explored using the NCBI Gene platform (https://www.ncbi.nlm.nih.gov/gene/, accessed 20190717) and literature identified using NCBI PubMed (https://www.ncbi.nlm.nih.gov/pubmed/, accessed 20190717).

Results
Demographic characteristics of the UKB cIMT subset are presented in Table 1. The UKB cIMT subset consist of 48.3% men. Women were slightly younger (average 54.6 years versus 56.0 years) and were healthier (average BMI 26.1 kg/m2 and SBP 132 mmHg, % with hypertension 37.0%) and smoked less (% smokers 30.4) compared to men (average 56.0 years, BMI 27.1 kg/m2, 140 mmHg, % hypertension 54.0, smokers 36.0). Values for both IMTmean and IMTmax were lower in women than in men. Measurements of IMTmean and IMTmax were highly correlated (Spearmans Rho=0.865, p<0.0001 (full cIMT subset), Rho=0.868 p<0.0001 (men) and Rho=0.852 p<0.0001 (women)). IMTmean and IMTmax were significantly and positively associated with classical risk factors including increasing age, obesity, and blood pressure (Table 2).

Primary analysis: SNPs associated with IMT\text{mean} and IMT\text{max}

Manhattan and QQ plots of the GWAS results are presented in Figure 1. There was some evidence of inflation for both IMTmean and IMTmax (λ_{GC}=1.15 and 1.10, respectively), however this is likely due to polygenicity rather than population structure (LDSR intercept (standard error) = 1.03 (0.03) for both phenotypes).

GWAS-significant evidence of association with IMTmean was observed for 176 SNPs in 8 loci (Figure 1A) and 76 SNPs in 3 loci demonstrated GWAS-significant evidence of association with IMTmax (Figure1B). The lead SNP for each locus is provided in Table 3. As BOLT-LMM includes neighbouring SNPs in the model (essentially conditioning on other SNPs in the region), each locus reported here is independent and contains only a single signal. Effect sizes of all lead SNPs were comparable with those previously reported (Beta 0.0091-0.441) 6.
Of the 8 loci significantly associated with IMTmean identified here, four are novel (Chr7, lead SNP rs342988; Chr8 (124.6Mb), rs34557926; Chr11, rs2019090; Chr19 (41.3Mb), rs111689747; Figure 2A-D) and 4 have previously been reported (Figure 2E-H).

In the previously reported loci, on Chr5 there is only one SNP, rs758080886, which reaches GWAS-significant evidence for association with IMTmean which is located 3417b from the previously reported lead SNP rs224904. rs758080886 is not available in the reference panel used by LocusZoom and is therefore not plotted, hence this region is represented by the previously reported SNP, rs224904. The LD between rs75808088 and rs224904 is moderate (r2=0.44) therefore rs224904 is not a good proxy, however this is the same for all SNPs in the locus (SFigure A). On Chr8, rs2912062 is 738b from the previously reported lead, rs2912063, and in high LD (r2=0.98), demonstrating that these SNPs represent the same signal. On Chr16, the lead SNP, rs561732, is 22.3kb from the previously reported lead, rs844396, with moderate LD (r2=0.66). The Chr19 lead here, rs1065853 is 1.15kb from the reported rs7412, but with almost complete LD (r2=0.99). The novel Chr19 locus is ~4Mb from this signal, and whilst long-range LD is possible, the calculated LD between rs111689747 and rs1065853 or rs7412 does not support this possibility (r2=0).

There were three GW-significant loci for IMTmax. Of these, two overlap with those for IMTmean: the lead SNPs for IMTmean and IMTmax on Chr7 (rs342988 and rs11762074 respectively) are 26.9kb apart with LD of r2=0.77. For Chr19, the locus not only overlaps, but the lead SNP is the same for both traits. The Chr11 for IMTmax (20.5Mb) is distinct from that for IMTmean (103.6Mb) (Figure 2I).
When considering SNPs significantly associated with IMTmean, the direction of effects on IMTmax are consistent with those for IMTmean, and the magnitude is similar (Table 1). The same is true for the Chr11 IMTmax SNP, rs11025608, which shows a similar effect size and direction in IMTmean (beta -0.008, se 0.002, p=1.6x10^{-6}). Therefore further analyses focused on IMTmean, for more robust comparisons with previous studies.

UKB IMT GWAS and the CHARGE consortium IMT GWAS meta-analysis

The largest GWAS meta-analysis of IMTmean previously published \(^6\) included 68,962 individuals from 30 studies with a variety of recruitment strategies, inclusion criteria and measurements of cIMT. The range of average ages was 37.7-78.8 years and average IMTmean 0.50-1.13mm. The single largest study within the meta-analysis included 8,663 individuals (approximately evenly split between men and women. That meta-analysis reported 11 robustly associated loci\(^6\), of which nine lead SNPs were available in UKB (Table 2). Seven of these demonstrated significant \((p<0.05)\) associations with IMTmean, with consistent effect directions when compared to the previous report \(^6\) (Table 2). One SNP demonstrated a non-significant association and one demonstrated a significant association but inconsistent direction (Table 2).

Conversely, of the lead SNPs reported here for UKB, 10 were available in the CHARGE meta-analysis (Table 3). Of these, nine were significant \((p<0.05)\) with consistent effect directions to those reported in UKB. One lead SNP was not significant. Effects sizes were generally 2-3-fold larger in UKB than in the CHARGE meta-analysis.

Secondary analyses: sex-specific genetic effects on IMT
Sex-specific analyses suggest that the genetic variants associated with IMTmean in men and women is distinctly different (Figure 3): In men-only analyses (Figure 3A), three GWAS-significant loci were identified on Chr7 (rs35099106), Chr8 (6.4Mb, rs2912063) and Chr19 (rs1065853), all of which overlap with those identified in the primary (sex-combined) analysis (Table 3 and Figure 4). The Chr7 lead SNP is in strong LD with that for IMTmax (rs11762074, r²=0.97) but only moderate LD with the sex-combined IMTmean lead SNP (rs342988, r²=0.64). The lead SNPs on Chr8 and 19 are consistent with either the primary analysis or with previously reported lead SNPs.

In analysis of women (Figure 3B), only a locus on Chr5 was GWAS-significant (Table 3 and Figure 4). The lead SNP for this locus, rs309563, is ~1.2Mb from, and demonstrated no LD with, the lead sex-combined SNP for IMTmean (r²=0) or the previously reported lead SNP for this locus (rs224904, r²=0, SFigure A), suggesting that it is a separate locus.

Effect directions for SNPs with suggestive evidence of association were consistent between men and women, however in men, the SNPs associated with cIMT in women demonstrated 3-6 fold smaller (non-significant) effect sizes (STable 4). In contrast, for the SNPs associated with cIMT in men, effect sizes were halved in women, with at least nominal significance being observed for most SNPs, and suggested significance noted for the Chr19/APOE locus.

Genetic correlations with cardiovascular phenotypes and risk factors

UKB IMTmean and IMTmax GWAS demonstrated significant genetic correlations with the CHARGE GWAS IMTmean meta-analyses (rg =0.77-0.82, Table 4). As
the individuals included in the IMTmean and IMTmax analyses overlap completely was not possible to compare these analyses. Significant positive genetic correlations were observed between IMTmean and total obesity (BMI), type 2 diabetes (T2D), fasting glucose and insulin (Table 4). For IMTmax, positive correlations with total and central obesity (BMI and WHRadjBMI), T2D, fasting glucose and rheumatoid arthritis were observed. It was surprising to note that a significant positive association with high density lipoprotein (HDL) and a significant negative association with fasting insulin was observed. The significance of these findings is unclear.

In men, similar to the sex-combined results, IMTmean was positively genetically correlated with the CHARGE IMTmean meta-analyses, total obesity, fasting glucose and fasting insulin. In women, only the genetic correlations with the CHARGE meta-analyses survive FDR correction (STable 5).

Datamining

The GWAS catalogue was explored (using lead SNPs and locus positions, as per Table 3) to identify previous associations with the cIMT-associated loci (STable 6). Chr7 and Chr8 (6.4Mb) have previously been associated with diastolic blood pressure (DBP), whilst Chr11, Chr13 and both Chr19 loci have previously been associated with coronary artery disease and/or pulse pressure or cIMT.

Atherosclerosis is considered a condition requiring both fatty deposits and inflammation in the vascular wall. Therefore it was interesting to note the reported associations of Chr8 (6.4Mb) and Chr11 with immune response or immune components as well as the Chr19 (45Mb) locus with lipid (and other biomarker) levels and Chr7 with fatty liver disease. The Chr19 locus includes the apolipoprotein gene cluster (including APOE), which has been the focus of much research into lipid
levels, cardiovascular disease and Alzheimer’s disease. In contrast, previous associations at the Chr5, Chr8 (124Mb) and Chr16 loci have no obvious relevance to cIMT. For the vast majority of previous associations with relevant traits, the effects on cIMT were in the expected direction: the alleles associated with increased DBP, systolic blood pressure (SBP), pulse pressure, total cholesterol, low-density lipoprotein (LDL), apolipoprotein E (APOE) and lipoprotein A (LP(a)) levels and lipoprotein phospholipase A2 activity were associated with increased cIMT, as were the alleles associated with decreased HDL levels. The only unexpected finding was that the rs7412 allele associated with decreasing triglyceride (TG) levels was associated with increased cIMT, however the authors suggest that the skewed distribution of lipids in those homozygous for this allele might cause inflation of test statistics and that this should be considered when interpreting results.

Of SNPs within significantly associated loci showing at least suggestive evidence of association with IMTmean, 13 SNPs were predicted to have functional or coding effects (STable 7). Lead SNPs and those predicted by VEP to have functional or coding effects were assessed for evidence of genotype-specific effects on gene expression levels (eQTLs) in the GTEx dataset (STable 8). Only rs2019090 on Chr11 demonstrated eQTLs in a tissue of obvious relevance, namely the aorta, where the cIMT-increasing allele was associated with increased RP11-563P16.1 levels. Lack of knowledge about this gene’s role precludes interpretation of this finding.

Candidate genes

Of the genes highlighted by eQTL analysis (though in a tissue of unclear relevance), APOE (Chr19) has been widely studied in cardiovascular (and other, notably
Alzheimer’s diseases, whilst the function of $MCPH1-AS1(CTD-2541M15.3)$ (Chr8) is thought to be as a regulator of $MCPH1$, a DNA damage response gene with no obvious role in vessel wall biology. Similarly, $CBFA2T3$ (Chr16) has documented roles in cancer biology as a transcriptional repressor but again there is no obvious role in vascular biology.

Only $VCAN$ (Chr5, women-only locus) is potentially an interesting candidate gene. Its encoded product, versican, is a chondroitin sulphate proteoglycan present in the adventitia and intima of normal blood vessels (reviewed in). Versican protein levels have been shown to increase dramatically during progression of vascular diseases including atherosclerosis. Versican exists as a variety of protein isoforms of different sizes, due to alternative splicing, a variety of post-translational modifications and proteolytic cleavage. The diverse effects of versican in vascular pathology are likely determined by the balance of different sized isoforms and partners in complexes: larger molecules are better able to bind and thus retain LDL in the vessel wall; loss of the largest versican isoform has been observed in aortic aneurysms; various cytokines promote different sized versican entities or versican degradation; smaller versican isoforms could act directly as mitogens for arterial smooth muscle cells; and the smallest isoform of versican influences elastic fibre formation and therefore vessel function. Therefore, it is interesting to note that the lead SNP for the women-only locus is an eQTL for a versican antisense molecule, $VSCAN1-AS1$, in testes, suggesting yet another mechanism regulating versican expression, although the role of versican in the testes is unknown. Full understanding of versican biology is required before the impact of this SNP is predictable.
Discussion

Here we present results from a GWAS of the largest single study of IMT to date, and the first sex-specific analysis of IMT. We identified 10 loci (4 of which were novel) associated with cIMT and one locus specific for IMTmean women. We also found genetic correlations with obesity, glucometabolic and lipid traits, which suggest differences between sexes.

Many studies have reported the utility of cIMT measurements as predictors of CVD (reviewed by Katakami et al 23), although whether predictive power is independent of traditional risk factors is still unclear. A large part of the discrepancies in the literature is likely due to the different protocols used (which part of the carotid artery is measured, whether plaque is included or not, whether mean (IMTmean) or maximum (IMTmax) values are used) in the analyses. Indeed it has been reported that IMTmean and IMTmax differ in their predictive value 23. Therefore the partial overlap in loci associated with IMTmean and IMTmax is of interest. For the most part, SNPs influencing one phenotype also influence the other, but the relative importance of each locus (and/or mechanism) differs. This hints at differences in biology between the 2 measures, which is perhaps not surprising: overall increases in vascular wall thickness could indicate general vascular dysfunction, which is a component of high blood pressure for example. Local increases in vascular wall thickness are likely indicative of plaque formation, which precede vessel occlusion and ischemic events.

Sex-specific differences in cardiovascular disease are well established, therefore the distinctly different IMTmean GWAS results for men compared to women were intriguing. The existence of a women-only locus, whereas the men-only analysis largely resembled the sex-combined analysis, is unexpected. It suggests that the
sex-combined results could be “driven” by the men. This is unlikely given the fairly balanced sex distribution of the sample (48% men vs 52% women), however the larger variability in measures in men compared to women could cause this effect. It has been observed that sex-differences in IMT measures can be attributed to sex-differences in risk factors such as BMI and blood pressure \(^{24}\). Despite UKB being approximately 20 years older than the subjects in that study, similar sex differences in risk factors are observed here. It is also worth noting that menopause status is associated both with cIMT measures and cardiovascular risk factors \(^{25, 26}\). Menopause status was not considered in the study, as direction of effect is unclear. However this factor would be worth considering for future studies of sex differences.

Another noteworthy finding is the stronger effect of APOE rs7412 in men compared to women (Beta=0.027 vs 0.016 respectively). To our knowledge this is the first demonstration of a sex effect of APOE variation in a cardiovascular disease phenotype, which is of value when considering the relatively nascent concept of an ageing, sex and APOE triad \(^{27}\). Sex-specific differences in APOE-e genotypes associations with Alzheimer’s disease (AD) have been noted (summarised by Fisher et al \(^{28}\)), with female carriers of APOE-e3/e4 demonstrating increased risk of AD and faster decline than their male counterparts. Indeed this finding (a variant that increases risk of atherosclerosis for men and AD for women) supports the hypothesis that women have higher rates for AD than men, at least partly because men with CVD die earlier than women, therefore in the at-risk age-range for AD, men have lower CVD risk than women \(^{28}\).

In line with known epidemiology and previous genetic findings \(^{29}\), the genetic correlations between IMTmean or IMTmax and obesity and glucometabolic traits are unsurprising. The lack of genetic correlations with lipid traits is unexpected, but may
reflect the relative health, adherence to statin therapy or healthy diet of the general population sample of UKB.

In comparison with the CHARGE consortium IMT meta-analysis, this study was smaller (22,000 vs 68,000) but used a phenotype that was recorded in a consistent manner in all individuals, reducing heterogeneity in measurements. This is likely the reason for identifying loci not reported by CHARGE as well as the larger effect sizes reported here, and is in line with previous observations (for example the C4D 30 and CARDioGRAM findings 31).

It should be noted that there is some evidence of inflation of the GWAS statistics, for which there are a number of possible explanations. Polygenicity is an obvious explanation and highly plausible, as it is observed most complex traits. Whilst the pilot phase cIMT data (N~2500) underwent manual QC procedures, the full IMT dataset (N~22,000) did not. Comparisons between the QCed and non-QCed data in the pilot study show very high correlation (IMTmean rho=1.0, IMTmax rho=0.98), however the possibility of noise in measurements cannot be excluded. Despite this limitation, the consistent effect sizes and directions of most previous IMT loci suggests that this study is valid.

In conclusion, we have conducted a GWAS of cIMT (mean and maximum measures) in the largest single study sample to date, in which we identified four novel loci and validated 7 of 11 previously reported loci. We also report the first sex-specific analysis of IMT, in which we identified a novel women-only locus. Genetic correlations with obesity and glucometabolic traits were observed, and \textit{VACN} was highlighted as a plausible candidate gene in the women-only locus. Overall, our findings represent an important stimulus for the further elucidation of mechanisms of
vascular pathology, particularly differences between men and women and could contribute to stratified medicine approaches.

Data availability

GWAS summary statistics are available upon request, to the corresponding author. Raw data and coding can be requested via UK Biobank directly.

Acknowledgements

We thank all participants and staff of the UK Biobank study.

Sources of Funding

The UK Biobank was established by the Wellcome Trust, Medical Research Council, Department of Health, Scottish Government and Northwest Regional Development Agency. UK Biobank has also had funding from the Welsh Assembly Government and the British Heart Foundation. Data collection was funded by UK Biobank. RoJS is supported by a UKRI Innovation- HDR-UK Fellowship (MR/S003061/1). JW is supported by the JMAS Sim Fellowship for depression research from the Royal College of Physicians of Edinburgh (173558). AF is supported by an MRC Doctoral Training Programme Studentship at the University of Glasgow (MR/K501335/1). KJAJ is supported by an MRC Doctoral Training Programme Studentship at the Universities of Glasgow and Edinburgh. DJS acknowledges the support of a Lister Prize Fellowship (173096) and MRC Mental Health Data Pathfinder Award (MC_PC_17217).

Disclosures

The authors have no conflicts of interest to declare.

References
1. Hansson GK. Inflammation and Atherosclerosis: The End of a Controversy. *Circulation*. 2017;136:1875-1877.
2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. *N Engl J Med*. 2005;352:1685-1695.
3. Ried-Larsen M, Grontved A, Moller NC, Larsen KT, Froberg K and Andersen LB. Associations between objectively measured physical activity intensity in childhood and measures of subclinical cardiovascular disease in adolescence: prospective observations from the European Youth Heart Study. *Br J Sports Med*. 2014;48:1502-1507.
4. Bis JC, Kavousi M, Franceschini N, Isaacs A, Abecasis GR, Schminke U, Post WS, Smith AV, Cupples LA, Markus HS, Schmidt R, Huffman JE, Lehtimaki T, Baumert J, Munzel T, Heckbert SR, Dehghan A, North K, Oostra B, Bevan S, Stoegerer EM, Hayward C, Raitakari O, Meisinger C, Schillert A, Sanna S, Volzke H, Cheng YC, Thorsson B, Fox CS, Rice K, Rivadeneira F, Nambi V, Halperin E, Petrovic KE, Peltonen L, Wichmann HE, Schnabel RB, Dorr M, Parsa A, Aspelund T, Demissie S, Kathiresan S, Reilly MP, Taylor K, Uitterlinden A, Couper DJ, Sitzer M, Kahonen M, Illig T, Wild PS, Orru M, Ludemann J, Shuldiner AR, Eiriksdottir G, White CC, Rotter JI, Hofman A, Seissler J, Zeller T, Usala G, Ernst F, Launer LJ, D’Agostino RB, Sr., O’Leary DH, Ballantyne C, Thiery J, Ziegler A, Lakatta EG, Chilukoti RK, Harris TB, Wolf PA, Psaty BM, Polak JF, Li X, Rathmann W, Uda M, Boerwinkle E, Klop N, Schmidt H, Wilson JF, Viikari J, Koenig W, Blankenberg S, Newman AB, Witteman J, Heiss G, Duf J, Scuteri A, Gamache L, Mitchell BD, Gudnason V, O’Donnell CJ and Consortium CA. Multi-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. *Nat Genet*. 2011;43:940-947.
5. Natarajan P, Bis JC, Bielak LF, Cox AJ, Dorr M, Feitosa MF, Franceschini N, Guo X, Hwang SJ, Isaacs A, Jhun MA, Kavousi M, Li-Gao R, Lyytikainen LP, Marioni RE, Schminke U, Stitziel NO, Tada H, van Setten J, Smith AV, Vojinovic D, Yanek LR, Yao J, Yerges-Armstrong LM, Amin N, Baber U, Borecki IB, Carr JJ, Chen YI, Cupples LA, de Jong PA, de Koning H, de Vos BD, Demirkan A, Fuster V, Franco OH, Goodarzi MO, Morris TB, Schmidt H, Wilson JF, Wilkoevicz S, Newman AB, Witteman J, Heiss G, Duf J, Scuteri A, Gamache L, Mitchell BD, Gudnason V, O’Donnell CJ and Consortium CA. Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis. *Circ Cardiovasc Genet*. 2016;9:511-520.
6. Franceschini N, Giambartolomei C, de Vries PS, Finan C, Bis JC, Huntley RP, Lovering RC, Tajuddin SM, Winkler TW, Graff M, Kavousi M, Dale C, Smith AV, Hofer E, van Leeuwen EM, Noihe M, Lu L, Scholz M, Sargurupremraj M, Pitkanen N, Franzen O, Joshi PK, Noordam R, Marioni RE, Hwang SJ, Musani SK, Schminke U, Palmas W, Isaacs A, Correa A, Zonderman AB, Hofman A, Teumer A, Cox AJ, Uitterlinden AG, Wong A, Smit AJ, Newman AB, Britton A, Ruusalepp A, Sennblad B, Hedblad B, Pasaniuc B, Penninx BW, Langefeld CD, Wassel CL, Tzourio C, Fava
C, Baldassarre D, O'Leary DH, Teupser D, Kuh D, Tremoli E, Mannarino E, Grossi E, Boerwinkle E, Schadt EE, Ingelsson E, Veglia F, Rivadeneira F, Beutner F, Chauhan G, Heiss G, Sniider H, Campbell H, Volzke H, Markus HS, Deary IJ, Jukema JW, de Graaf J, Price J, Pott J, Hopewell JC, Liang J, Thiery J, Engmann J, Gertow K, Rice K, Taylor KD, Dhana K, Kiemeney L, Lind L, Raffield LM, Launer LJ, Holdt LM, Dorr M, Dichgans M, Taylor R, Sitzer M, Kumari M, Kivimaki M, Nalls MA, Melander O, Raitakari O, Franco OH, Rueda-Ochoa OL, Roussos P, Whincup PH, Amouyel P, Girál P, Anugu P, Wong Q, Malik R, Rauramaa R, Burkhart R, Hardy R, Schmidt R, de Mutsert R, Morris RW, Strawbridge RJ, Wannamethee SG, Haggl S, Shah S, McLachlan S, Trompet S, Seshadri S, Kurl S, Heckbert SR, Ring S, Harris TB, Lehtimäki T, Galesloot TE, Shah T, de Faire U, Plagnol V, Rosamond WD, Post W, Zhu X, Zhang X, Guo X, Saba Y, Consortium M, Dehghan A, Seldenrijk A, Morrison AC, Hamsten A, Psaty BM, van Duijn CM, Lawlor DA, Mook-Kanamori DO, Bowden DW, Schmidt H, Wilson JF, Wilson JG, Rotter J, Wardlaw J, Deanfield J, Halcox J, Lytikainen LP, Loeffler M, Evans MK, Debette S, Humphries SE, Volker U, Gudnason V, Hingorani AD, Björkergen JLM, Casas JP and O'Donnell CJ. GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nat Commun. 2018;9:5141.

7. Gertow K, Sennblad B, Strawbridge RJ, Ohrvik J, Zabaneh D, Shah S, Veglia F, Fava C, Kováusi M, McLachlan S, Kivimäki M, Bolton JL, Folkesen L, Gigante B, Leander K, Vikstrem M, Larsson M, Silveira A, Deanfield J, Voight BF, Fontanillas P, Sabater-Lleal M, Colombo GL, Kumari M, Langenberg C, Wareham NJ, Utterlinden AG, Gabrielsen A, Hedin U, Franco-Cereceda A, Nyyssonen K, Rauramaa R, Tuomainen TP, Savonen K, Smit AJ, Girál P, Mannarino E, Robertson CM, Talmud PJ, Hedblad B, Hofman A, Erdmann J, Reilly MP, O'Donnell CJ, Farrall M, Clarke R, Franzosi MG, Seedorf U, Syvanen AC, Hansson GK, Eriksson P, Samani NJ, Watkins H, Price JF, Hingorani AD, Melander O, Witteman JC, Baldassarre D, Tremoli E, de Faire U, Humphries SE and Hamsten A. Identification of the BCAR1-CFDP1-TMEM170A locus as a determinant of carotid intima-media thickness and coronary artery disease risk. Circ Cardiovasc Genet. 2012;5:656-65.

8. Matthews PM and Sudlow C. The UK Biobank. Brain. 2015;138:3463-5.

9. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T and Collins R. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

10. Eastwood SV, Mathur R, Atkinson M, Brophy S, Sudlow C, Flai G, de Lusignan S, Allen N and Chaturvedi N. Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank. PLoS One. 2016;11:e0162388.

11. Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, Thorleifsson G, Luan J, Donnelly LA, Kanoni S, Petersen AK, Pihler V, Strawbridge RJ, Shungin D, Hughes MF, Meirelles O, Kaakinen M, Bouatia-Naji N, Kristiansson K, Shah S, Kleber ME, Guo X, Lytikainen LP, Fava C, Eriksson N, Nolte IM, Magnuson PK, Salfatí EL, Rallys DL, Theusch E, Smith AJ, Folkesen L, Witkowska K, Pers TH, Joehanes R, Kim SK, Lataniotis L, Jansen R, Johnson AD, Warren H, Kim YJ, Zhao W, Wu Y, Tayo BO, Bochud M, Consortium CH-E, Consortium C-H, Wellcome Trust Case Control C, Absher D, Adair LS, Amin N, Arking DE, Axelsson T, Baldassarre D, Falk B, Bandinelli S, Barnes MR, Barroso I, Bevan S, Bis JC, Björnsdottir G, Boehrke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Bornstein SR, Brown MJ, Burnier M, Cabrera CP, Chambers JC,
Chang IS, Cheng CY, Chines PS, Chung RH, Collins FS, Connell JM, Doring A, Dallongeville J, Danesh J, de Faire U, Delgado G, Dominiczak AF, Doney AS, Drenos F, Edkins S, Eicher JD, Elosua R, Enroth S, Erdmann J, Eriksson P, Esko T, Evangelou E, Evans A, Fall T, Farrall M, Felix JF, Ferrieres J, Ferrucci L, Fornage M, Forrester T, Franceschini N, Franco OH, Franco-Cereceda A, Fraser RM, Ganas SK, Gao H, Gertzov K, Gianfagna F, Gigante B, Giulianini F, Goel A, Goodall AH, Goodarzi MO, Gorski M, Grassler J, Groves CJ, Gudnason V, Gylensten U, Hallmans G, Hartikainen AL, Hassinen M, Havulinna AS, Hayward C, Hercberg S, Herzig KH, Hicks AA, Hingorani AD, Hirschhorn JN, Hofman A, Holmen J, Holmen OL, Hottenga J, Howard P, Hsiung CA, Hunt SC, Ikram MA, Illig T, Iribarren C, Jensen RA, Kahonen M, Kang HM, Kathiresan S, Keating BJ, Khaw KT, Kim YK, Kim E, Kvivimaki M, Klopp N, Kolovou G, Komulainen P, Kooper JS, Kosova G, Krauss RM, Kuh D, Katalik Z, Kuusisto J, Kvaloy K, Kaula TA, Lee NR, Lee IT, Lee WJ, Levy D, Li X, Liang KW, Lin H, Lin L, Lindstrom J, Lobbens S, Mannisto S, Muller G, Muller-Nurasyid M, Mach F, Markus HS, Marouli E, McCarthy MI, McKenzie CA, Meneton P, Menini C, Metspalu A, Mijatovic V, Molliere L, Montasser ME, Morris AD, Morrison AC, Mulas A, Nagaraja R, Narisu N, Nikus K, O’Donnell CJ, O’Reilly PF, Ong KK, Paccaud F, Palmer CD, Parsa A, Pedersen NL, Penninx BW, Perola M, Peters A, Poultet N, Pramstaller PP, Psaty BM, Quertermous T, Rado DC, Rasheed A, Rayner NW, Renstrom F, Rettig R, Rice KM, Roberts R, Rose LM, Rossouw J, Samani NJ, Sanna S, Saramies J, Schunkert H, Sebert S, Sheu WH, Shin YA, Sim X, Smit JH, Smith AV, Sosa MX, Specter TD, Stancakova A, Stanton AV, Stirrups KE, Stringham HM, Sundstrom J, Swift AJ, Syvanen AC, Tai ES, Tanaka T, Tarasov KV, Teumer A, Thorsteinsdottir U, Tobin MD, Tremoli E, Utterlinden AG, Uusitupa M, Vaez A, Vaidya D, van Duijn CM, van Iperen EP, Vasan RS, Verwoerd GC, Virtamo J, Vitart V, Voight BF, Vollenweider P, Wagner A, Wain LV, Wareham NJ, Watkins H, Weder AB, Westra HJ, Wilks R, Wilsngaard T, Wilson JF, Wong TY, Yang TP, Yao J, Yengo L, Zhang W, Zhao JH, Zhu X, Bovet P, Cooper RS, Mohlke KL, Saleheen D, Lee JY, Elliott P, Gierman HJ, Willer CJ, Franke L, Hovingh GK, Taylor KD, Dedoussis G, Sever P, Wong A, Lind L, Assimes TL, Njolstad I, Schwarz PE, Langenberg C, Snider H, Caulfield MJ, Melander O, Laakso M, Saltevo J, Rauramaa R, Tuomilehto J, Ingelsson E, Lehtimaki T, Hveem K, Palmas W, Marz W, Kumari M, Salomaa V, Chen YI, Rotter JI, Froogle PG, Jarvelin MR, Lakatta EG, Kuulasmaa K, Franks PW, Hamsten A, Wichmann HE, Palmer CN, Stefansson K, Ridker PM, Loos RJ, Chakravarti A, Deloukas P, Morris AP, Newton-Cheh C and Munroe PB. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016.

12. Biobank U. Genotype imputation and genetic association studies of UK Biobank Interim Data Release. 2015;11 September 2015.

13. Biobank U. Genotyping of 500,000 UK Biobank participants. Description of sample processing workflow and preparation of DNA for genotyping. 2015;11 September 2015.

14. Watanabe K, Taskesen E, van Bochooven A and Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

15. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR and Willer CJ. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336-7.

16. Barrett JC, Fry B, Maller J and Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263-5.
17. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, ReproGen C, Psychiatric Genomics C, Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control C, Duncan L, Perry JR, Patterson N, Robinson EB, Daly MJ, Price AL and Neale BM. An atlas of genetic correlations across human diseases and traits. *Nat Genet.* 2015;47:1236-41.

18. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thomann A, Flicek P and Cunningham F. The Ensembl Variant Effect Predictor. *Genome Biol.* 2016;17:122.

19. Consortium GT. The Genotype-Tissue Expression (GTEx) project. *Nat Genet.* 2013;45:580-5.

20. Hoffmann TJ, Theusch E, Haldar T, Ranatunga DK, Jorgenson E, Medina MW, Kvale MN, Kwok PY, Schaefer C, Krauss RM, Iribarren C and Risch N. A large electronic-health-record-based genome-wide study of serum lipids. *Nat Genet.* 2018;50:401-413.

21. Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. *Pathology.* 2019;51:165-176.

22. Wight TN and Merrilees MJ. Proteoglycans in atherosclerosis and restenosis: key roles for versican. *Circ Res.* 2004;94:1158-67.

23. Katakami N, Matsuoka TA and Shimomura I. Clinical utility of carotid ultrasonography: Application for the management of patients with diabetes. *J Diabetes Investig.* 2019;10:883-898.

24. Juonala M, Kahonen M, Laitinen T, Hutri-Kahonen N, Jokinen E, Taittonen L, Pietikainen M, Helenius H, Viikari JS and Raitakari OT. Effect of age and sex on carotid intima-media thickness, elasticity and brachial endothelial function in healthy adults: the cardiovascular risk in Young Finns Study. *Eur Heart J.* 2008;29:1198-206.

25. de Kat AC, Dam V, Onland-Moret NC, Eijkemans MJ, Broekmans FJ and van der Schouw YT. Unraveling the associations of age and menopause with cardiovascular risk factors in a large population-based study. *BMC Med.* 2017;15:2.

26. Thurston RC, Chang Y, Barinas-Mitchell E, Jennings JR, Landsittel DP, Santoro N, von Kanel R and Matthews KA. Menopausal Hot Flashes and Carotid Intima Media Thickness Among Midlife Women. *Stroke.* 2016;47:2910-2915.

27. de Kat AC, Dam V, Onland-Moret NC, Eijkemans MJ, Broekmans FJ and van der Schouw YT. Unraveling the associations of age and menopause with cardiovascular risk factors in a large population-based study. *BMC Med.* 2017;15:2.

28. Fisher DW, Bennett DA and Dong H. Sexual dimorphism in predisposition to Alzheimer’s disease. *J Steroid Biochem Mol Biol.* 2016;160:134-47.

29. Strawbridge RJ and van Zuydam NR. Shared Genetic Contribution of Type 2 Diabetes and Cardiovascular Disease: Implications for Prognosis and Treatment. *Curr Diab Rep.* 2018;18:59.

30. Coronary Artery Disease Genetics C. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. *Nat Genet.* 2011;43:339-44.

31. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersson K, Anderson JL, Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, Buysschaert I, Cardiogenics, Carlquist JF, Chen L, Cichon S, Codd V, Davies RW, Dedoussis G, Dehghan A, Demissie S, Devaney JM, Diemert P, Do R, Doering A, Eifert S, Mokhtari NE, Ellis SG, Elouja R, Engel JT, Epstein SE, de Faire U, Fischer M, Folsom AR, Frier J, Gigante B, Girelli D, Gretarsdottir S, Gudnason V, Gulcher JR, Halperin E, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, Iribarren C, Jones GT, Jukema JW, Kaiser MA, Kaplan
Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333-8.

Figure Legends

Figure 1: QQ and Manhattan plots of results of the GWAS of A) IMTmean and B) IMTmax.

Figure 2: Regional plots for novel IMTmean-associated loci on A) Chr7 (rs342988), B) Chr8 (rs34557926), C) Chr11 (rs2019090), D) Chr19 (rs111689747) and known IMTmean-associated loci on E) Chr5 (rs224904, instead of lead SNP rs75808086), F), Chr8 (rs2912062), G) Chr16 (rs561732), H) Chr19 (rs1065853) as well as the novel locus for IMTmax on Chr11 (rs11025608). The lead SNP is indicated by a purple diamond. LD (r2) between other SNPs and the lead SNP is indicated by colour. Grey indicates LD is not known.

Figure 3: QQ and Manhattan plots of results of the GWAS of IMTmean in A) men only and B) women only.

Figure 4: Regional plots for sex-specific IMTmean-associated loci. Men-only loci on A) Chr7 (rs35099106), B) Chr8 (rs2912063), C) Chr19 (rs1065853) and the women-only locus on D) Chr5 (rs309563). The lead SNP is indicated by a purple diamond.
LD (r^2) between other SNPs and the lead SNP is indicated by colour. Grey indicates LD is not known.
	Men	Women	all
N (%)	10708 (48.3)	11471 (51.7)	22179
Age (years)	63.9 (7.6)	62.4 (7.3)	63.1 (7.5)
Weight (Kg)	83.8 (13.2)	69.2 (13.9)	76.2 (15.0)
Waist (cm)	94.0 (10.4)	82.6 (11.5)	88.1 (12.4)
Hip (cm)	101.2 (7.2)	101.4 (9.8)	101.3 (8.6)
WHR	0.93 (0.06)	0.81 (0.07)	0.87 (0.09)
BMI (kg/m2)	27.0 (3.8)	26.1 (4.7)	26.5 (4.3)
SBP (mmHg)	141 (17)	134 (18)	137 (18)
DBP (mmHg)	80 (10)	77 (10)	79 (10)
Corrected SBP (mmHg)*	145 (19)	137 (20)	141 (10)
Corrected DBP (mmHg)*	83 (11)	79 (11)	81 (11)
IMTmean (mm)	0.706 (0.135)	0.658 (0.109)	0.682 (0.125)
IMTmax (mm)	0.952 (0.216)	0.875 (1.86)	0.912 (0.204)
N hypertension	7320 (69.0)	6121 (53.8)	13441 (61.2)
N on BPmedication	3026 (28.4)	1973 (17.3)	4999 (22.7)
N on lipid lowering medication	3255 (34.5)	1681 (17.7)	3255 (34.5)
N probable t2d	614 (5.7)	325 (2.8)	939 (4.2)
N ISH	275 (2.6)	97 (0.9)	372 (1.7)
n current smoking	444 (4.2)	356 (3.1)	800 (3.6)

Where: * adjusted for blood pressure medication as per Ehret et al, T2D, type 2 diabetes; ISH, ischemic heart disease
	men		women		all							
	rho	p	rho	p	rho	p	rho	p				
Age (years)	0.385	\textless 0.0001	0.320	\textless 0.0001	0.465	\textless 0.0001	0.397	\textless 0.0001	0.433	\textless 0.0001	0.369	\textless 0.0001
Weight (Kg)	0.062	\textless 0.0001	0.117	\textless 0.0001	0.057	\textless 0.0001	0.121	\textless 0.0001	0.147	\textless 0.0001	0.204	\textless 0.0001
Waist (cm)	0.109	\textless 0.0001	0.169	\textless 0.0001	0.105	\textless 0.0001	0.176	\textless 0.0001	0.179	\textless 0.0001	0.243	\textless 0.0001
Hip (cm)	0.073	\textless 0.0001	0.122	\textless 0.0001	0.075	\textless 0.0001	0.134	\textless 0.0001	0.078	\textless 0.0001	0.130	\textless 0.0001
WHR	0.100	\textless 0.0001	0.150	\textless 0.0001	0.087	\textless 0.0001	0.140	\textless 0.0001	0.190	\textless 0.0001	0.236	\textless 0.0001
BMI (kg/m2)	0.089	\textless 0.0001	0.152	\textless 0.0001	0.073	\textless 0.0001	0.148	\textless 0.0001	0.105	\textless 0.0001	0.174	\textless 0.0001
SBP (mmHg)	-0.030	0.0054	0.001	0.9306	0.025	0.0145	0.051	\textless 0.0001	0.083	\textless 0.0001	0.117	\textless 0.0001
DBP (mmHg)	0.237	\textless 0.0001	0.216	\textless 0.0001	0.324	\textless 0.0001	0.297	\textless 0.0001	0.320	\textless 0.0001	0.308	\textless 0.0001
Corrected SBP (mmHg)*	0.021	0.0534	0.055	\textless 0.0001	0.071	\textless 0.0001	0.099	\textless 0.0001	0.030	\textless 0.0001	0.061	\textless 0.0001
Corrected DBP (mmHg)*	0.250	\textless 0.0001	0.239	\textless 0.0001	0.333	\textless 0.0001	0.313	\textless 0.0001	0.306	\textless 0.0001	0.286	\textless 0.0001
Analysis	SNP	CHR	locus*	Genes under the locus	A1 freq	A0	A1 beta	se	chi-2	P	GWAS SNPs in locus	
------------------	--------------	------	--------	---	---------	----	---------	------	-------	--------	-------------------	
				ATG10, RPS23, ATP6AP1L	CA	C	0.15	0.013	0.002	30.6	3.10E-08	
IMTmean sex	rs758080886	5	35423859-35528567	LOC401324	C	T	0.28	0.011	0.002	44.2	3.00E-11	
combined	rs342988	7	35423859-35528567	MCPPH1, MIR8055	C	G	0.71	0.012	0.002	56.2	6.70E-14	
				FBXO23, KLHL38, ANAXA13	C	T	0.64	0.111	0.002	48.8	2.90E-12	
	rs2912062	8	6470650-6494850	MIR4693	A	T	0.29	0.009	0.002	33.2	8.20E-09	
				CBFA2T3, LOC100129697, TRAPPCL	T	C	0.65	0.009	0.002	34.8	3.60E-09	
	rs111689747	19	41188985-41371458	CYP2A6, CYP2A7, CYP2G1PCYP2B7P, CYP2B6, SNRPA, MIA, EGLN2, RAB4B, MIA-RAB4B, RAB4B-EGLN2, CIORF54, ITPKC, ADCK4, NUMBL, LTBP4, SHKBP1, SPTNB4	G	A	0.99	0.044	0.007	41.5	1.20E-10	
		19	45412079-45426792	BCAM, PVRL2, TOMM40, APOE, APOC1, APOC1P1, APOC4-APO2, APOC4-APO2, APOC4, APOC4, RELB	G	T	0.92	0.021	0.003	60.8	6.20E-15	
IMTmax sex	rs11762074a	7	35428513-35505204	LOC401324	T	C	0.77	0.014	0.002	39	4.30E-10	
combined	rs11025608d	11	PRMT3, SLC6A5	G	T	0.44	0.010	0.002	30.6	3.20E-08		
rs	ID	Gene	Minor	Minor allele frequency (MAF)	Minor allele frequency (MAF)	p-value	Odds ratio (OR)	p-value				
----------	----------	-----------------------------	-------	-------------------------------	-------------------------------	---------	-----------------	---------				
rs1065853c	rs1065853	BCAM, PVRL2, TOMM40, APOE, APOC1, APOC1P1, APOC4-APOA2, APOC2, CLPTM1, APOC4, RELB	G	0.92	0.026	0.003	56.1	6.90E-14				
	rs1065853c	LOC401324	C	0.24	0.016	0.003	34.1	5.20E-09				
	rs1065853c	MCHP1, MIR8055	A	0.71	0.007	0.003	44.5	2.60E-11				
	rs1065853c	BCAM, PVRL2, TOMM40, APOE, APOC1, APOC1P1, APOC4-APOA2, APOC2, CLPTM1, APOC4, RELB	G	0.92	0.027	0.004	39.1	4.00E-10				
	rs309563d	VCAN, HAPLN1	A	0.66	-0.01	0.002	37.6	8.90E-10				

Where: *, region bordered by gwas-significant SNPs; a, LD between rs342988, rs11762074 and rs35099106 suggests that these SNPs represent 1 signal; b, LD between rs2912062 and rs2912063 indicate that these SNPs are proxies; c, consistent lead SNP convincingly demonstrates that the same locus is being identified; d, novel locus.
Table 4: Genetic correlations between IMTmean, IMTmax and cardiometabolic traits and risk factors

p2	IMTmean	FDR-p	IMTmax	FDR-p						
CHARGE IMTmean 2018	0.82	0.07	11.1601	6.39E-29	1.53E-27	0.79	0.09	8.56	1.16E-17	2.79E-16
CHARGE IMTmean 2011	0.77	0.08	9.7403	2.03E-22	2.44E-21	0.74	0.10	7.6706	1.71E-14	2.05E-13
BMI	0.13	0.03	3.8486	1.19E-04	9.50E-04	0.22	0.04	4.9424	7.72E-07	6.17E-06
Fasting Glucose	0.26	0.07	3.73	1.91E-04	1.15E-03	0.50	0.14	3.6953	2.20E-04	1.32E-03
Fasting Insulin	0.30	0.10	3.0553	2.25E-03	1.08E-02	-0.17	0.05	-3.5411	3.99E-04	1.91E-03
Type 2 Diabetes	0.21	0.08	2.8074	4.99E-03	2.00E-02	0.28	0.09	3.2499	1.15E-03	4.62E-03
HDL	-0.09	0.04	-2.3216	2.03E-02	6.94E-02	0.17	0.06	2.823	4.76E-03	1.63E-02
WHR adjBMI	0.10	0.05	2.0435	4.10E-02	1.23E-01	0.24	0.09	2.7267	6.40E-03	1.92E-02
Rheumatoid arthritis	0.11	0.06	1.7488	8.03E-02	2.14E-01	0.31	0.12	2.5252	1.16E-02	3.08E-02
Smoking onset	-0.15	0.15	-0.977	3.29E-01	5.63E-01	-0.09	0.08	-1.0276	3.04E-01	5.21E-01
Fasting Proinsulin	0.13	0.14	0.9269	3.54E-01	5.66E-01	-0.08	0.08	-0.9862	3.24E-01	5.18E-01
DBP	0.02	0.02	1.1779	2.39E-01	5.73E-01	0.10	0.05	1.9659	4.93E-02	1.18E-01
Cholesterol	-0.06	0.06	-0.9904	3.22E-01	5.94E-01	-0.07	0.06	-1.1716	2.41E-01	4.46E-01
Triglycerides	0.03	0.04	0.8345	4.04E-01	6.06E-01	-0.15	0.17	-0.8927	3.72E-01	5.58E-01
SBP	0.02	0.02	0.7862	4.32E-01	6.10E-01	0.06	0.08	0.8107	4.18E-01	5.89E-01
Fasting Insulin adjBMI	0.10	0.10	1.001	3.17E-01	6.34E-01	0.10	0.08	1.3348	1.82E-01	3.64E-01
Ever Smoker	0.06	0.06	1.0029	3.16E-01	6.89E-01	0.18	0.13	1.3399	1.80E-01	3.93E-01
Ulcerative Collitis	-0.05	0.08	-0.6214	5.34E-01	7.12E-01	0.02	0.02	0.7077	4.79E-01	6.39E-01
Cigarettes per day	0.05	0.11	0.465	6.42E-01	8.11E-01	0.10	0.17	0.5961	5.51E-01	6.96E-01
LDL	-0.01	0.05	-0.2795	7.80E-01	8.14E-01	0.01	0.02	0.4633	6.43E-01	6.71E-01
Irritable Bowel Disorder	-0.02	0.05	-0.3614	7.18E-01	8.20E-01	0.08	0.15	0.5662	5.71E-01	6.53E-01
Cardiovascular disease	-0.07	0.21	-0.307	7.59E-01	8.28E-01	-0.03	0.07	-0.5171	6.05E-01	6.60E-01
Crohns Disease	0.02	0.06	0.3635	7.16E-01	8.60E-01	-0.16	0.29	-0.574	5.66E-01	6.79E-01
2hr Glucose	-0.02	0.12	-0.1734	8.62E-01	8.62E-01	-0.01	0.06	-0.1364	8.92E-01	8.92E-01
Supplementary Table 1: Comparison of GWAS significant SNPs for IMTmean on IMTmax

CHR	BP	SNP	A1	A0	A1freq	Beta	se	P	IMTmax	se	P
5	81634499	rs758080886	CA	C	0.15	0.003	3.11E-08	0.015	0.003	2.10E-07	
5	8161381	rs420800	G	A	0.95	-0.017	4.30E-08	-0.018	0.004	9.20E-06	
5	81618075	rs224803	C	T	0.95	-0.017	4.80E-08	-0.018	0.004	1.00E-05	
5	81683739	rs224805	A	G	0.05	0.017	4.10E-08	0.017	0.004	2.50E-05	
5	81699253	rs224960	A	G	0.52	0.008	4.90E-08	0.008	0.002	8.00E-06	
7	35423859	rs2541899	C	T	0.24	0.009	2.20E-08	0.009	0.002	1.70E-05	
7	35428513	rs12155459	A	T	0.77	-0.011	2.40E-10	-0.013	0.002	2.80E-09	
7	35429465	rs11766731	G	T	0.77	-0.011	1.60E-10	-0.013	0.002	1.90E-09	
7	35435835	rs2541905	T	C	0.23	0.011	4.60E-10	0.013	0.002	2.50E-09	
7	35436932	rs70981917	C	CT	0.43	0.008	9.70E-09	0.009	0.002	2.70E-06	
7	35438779	rs2013385	A	G	0.32	0.009	5.10E-10	0.011	0.002	2.00E-08	
7	35438831	rs741408	T	C	0.23	0.011	3.80E-11	0.013	0.002	7.50E-10	
7	35440055	rs2592856	C	T	0.23	0.011	2.60E-11	0.013	0.002	5.50E-10	
7	35440155	rs11762074	T	C	0.77	-0.011	1.80E-11	-0.014	0.002	4.30E-10	
7	35446189	rs2592855	T	C	0.23	0.011	2.40E-11	0.013	0.002	5.20E-10	
7	35448018	rs2250212	A	G	0.32	0.010	3.10E-10	0.011	0.002	1.20E-08	
7	35449334	rs998652	A	G	0.23	0.011	2.60E-11	0.013	0.002	5.70E-10	
7	35451830	rs17763314	G	A	0.77	-0.011	2.50E-11	-0.013	0.002	5.70E-10	
7	35451910	rs2592851	T	C	0.23	0.011	2.50E-11	0.013	0.002	5.60E-10	
7	35452092	rs1362655	G	A	0.23	0.011	2.60E-11	0.013	0.002	5.90E-10	
7	35455088	rs2592850	T	A	0.32	0.010	2.80E-10	0.011	0.002	1.30E-08	
7	35456691	rs2592849	A	T	0.32	0.010	3.20E-10	0.011	0.002	1.40E-08	
7	35457954	7:35457954_AT_A	AT	A	0.32	0.009	5.50E-10	0.012	0.002	3.90E-09	
7	35458137	rs140476889	A	AAAC	0.32	0.010	2.90E-10	0.011	0.002	1.20E-08	
7	35458551	rs200832044	GT	G	0.32	0.009	9.00E-10	0.011	0.002	3.20E-08	
7	35458934	rs342976	T	C	0.32	0.009	4.40E-10	0.011	0.002	1.90E-08	
7	35459888	rs342977	G	A	0.23	0.011	4.40E-11	0.013	0.002	1.10E-09	
7	35460547	rs342979	C	T	0.32	0.009	3.90E-10	0.011	0.002	1.60E-08	
---	---	---	---	---	---	---	---	---			
7	35461538	rs342981	G	A	0.32	0.010	0.002	**3.30E-10**	0.011	0.002	**1.60E-08**
7	35461715	rs2551797	T	C	0.32	0.010	0.002	**3.30E-10**	0.011	0.002	**1.60E-08**
7	35462145	rs342982	G	T	0.32	0.010	0.002	**3.20E-10**	0.011	0.002	**1.60E-08**
7	35464620	rs34502079	A	AT	0.33	0.010	0.002	**8.30E-11**	0.012	0.002	**3.00E-09**
7	35464784	rs342983	T	G	0.27	0.010	0.002	**1.70E-10**	0.012	0.002	**3.20E-08**
7	35466464	rs342986	G	A	0.23	0.011	0.002	**3.90E-11**	0.013	0.002	**1.00E-09**
7	35466658	rs35361607	A	AC	0.37	0.008	0.001	**2.80E-08**	0.009	0.002	**1.80E-06**
7	35466755	rs342987	T	G	0.23	0.011	0.002	**3.70E-11**	0.013	0.002	**1.00E-09**
7	35467026	rs342988	C	T	0.28	0.011	0.002	**8.90E-12**	0.013	0.002	**8.80E-10**
7	35467677	7:35467677_TAA_T	TAA	T	0.24	0.011	0.002	**3.80E-11**	0.013	0.002	**1.00E-09**
7	35467896	rs342989	A	G	0.23	0.011	0.002	**3.60E-11**	0.013	0.002	**9.80E-10**
7	35468763	rs17697812	T	C	0.77	-0.011	0.002	**4.90E-11**	-0.013	0.002	**1.20E-09**
7	35469045	rs342990	G	T	0.38	0.008	0.001	**2.80E-08**	0.009	0.002	**8.50E-07**
7	35469691	rs342991	G	T	0.32	0.009	0.002	**8.20E-10**	0.011	0.002	**2.60E-08**
7	35469835	rs342992	C	T	0.23	0.011	0.002	**4.90E-11**	0.013	0.002	**1.20E-09**
7	35469898	rs342993	G	A	0.32	0.009	0.002	**7.20E-10**	0.011	0.002	**2.50E-08**
7	35471979	rs342996	G	C	0.33	0.009	0.002	**6.00E-10**	0.011	0.002	**2.10E-08**
7	35474622	rs342997	T	C	0.32	0.009	0.002	**7.20E-10**	0.011	0.002	**2.60E-08**
7	35475980	rs342998	T	C	0.32	0.009	0.002	**7.20E-10**	0.011	0.002	**2.60E-08**
7	35477175	rs343000	C	T	0.23	0.011	0.002	**5.60E-11**	0.013	0.002	**1.50E-09**
7	35478327	rs343001	C	G	0.32	0.009	0.002	**7.30E-10**	0.011	0.002	**2.60E-08**
7	35478515	rs343002	T	C	0.23	0.011	0.002	**5.60E-11**	0.013	0.002	**1.50E-09**
7	35479439	rs343003	C	T	0.23	0.011	0.002	**5.90E-11**	0.013	0.002	**1.50E-09**
7	35481642	rs343004	C	A	0.32	0.009	0.002	**9.00E-10**	0.011	0.002	**3.00E-08**
7	35482940	rs343005	G	T	0.32	0.009	0.002	**8.70E-10**	0.011	0.002	**2.60E-08**
7	35483018	rs343006	C	A	0.32	0.009	0.002	**9.10E-10**	0.011	0.002	**2.60E-08**
7	35483055	rs343007	G	T	0.32	0.009	0.002	**8.00E-10**	0.011	0.002	**2.60E-08**
7	35485648	rs343010	C	A	0.32	0.009	0.002	**7.50E-10**	0.011	0.002	**2.60E-08**
7	35487040	7:35487040_CT_C	CT	C	0.29	0.011	0.002	**3.20E-09**	0.013	0.002	**1.60E-08**
7	35488349	rs343011	T	G	0.23	0.011	0.002	**5.50E-11**	0.013	0.002	**1.50E-09**
7	35488769	rs343012	C	A	0.32	0.009	0.002	**7.40E-10**	0.011	0.002	**2.70E-08**
SNP ID	rsID	Allele 1	Allele 2	Genotype Frequency 1	Genotype Frequency 2	Genotype Frequency 3	p-Value	q-Value			
-----------	----------	----------	----------	----------------------	----------------------	----------------------	---------	---------			
8	6470650	C	A	0.76	0.01	0.002	6.60E-10	0.009	0.002		
8	6471126	G	A	0.76	0.01	0.002	2.50E-10	0.009	0.002		
Gene ID	rs	Chromosome	Position	Effect	p-value	OR					
----------	------	------------	----------	--------	---------------	-----					
rs2959802	G	11	11137038	A	0.64	1.30E-08					
rs2959801	G	12	254356	T	0.67	4.50E-11					
rs11998083	C	12	1256	T	0.64	1.80E-11					
rs2957999	A	12	1256	C	0.70	3.90E-08					
rs2957998	A	12	1137040	G	0.71	7.90E-10					
rs295891	C	12	1137041	T	0.65	6.70E-10					
rs295412	A	12	1137041	G	0.65	2.20E-09					
rs295857	A	12	1137041	A	0.72	5.10E-10					
rs7005662	C	10	1256	T	0.72	1.50E-10					

OR values are significant at the 0.05 level.
| Chromosome | Position | SNP ID | Allele 1 | Allele 2 | MAF 1 | MAF 2 | P Value 1 | P Value 2 | P Value 3 | P Value 4 | P Value 5 | P Value 6 | P Value 7 | P Value 8 | P Value 9 | P Value 10 | P Value 11 | P Value 12 | P Value 13 | P Value 14 | P Value 15 | P Value 16 | P Value 17 | P Value 18 | P Value 19 | P Value 20 | P Value 21 | P Value 22 | P Value 23 | P Value 24 | P Value 25 | P Value 26 | P Value 27 | P Value 28 | P Value 29 | P Value 30 | P Value 31 | P Value 32 | P Value 33 | P Value 34 | P Value 35 | P Value 36 | P Value 37 | P Value 38 | P Value 39 | P Value 40 |
|------------|----------|--------|----------|----------|-------|-------|----------|
Gene	rsID	Chromosome	Amino	Gp	Chromosome	Amino	Gp	p-value	q-value	p-value	q-value
10	30162423	rs2150562	A	G	0.31	0.009	0.002	8.70E-09	0.007	0.002	5.60E-04
10	30163133	rs777393148	TC	T	0.31	0.008	0.002	3.30E-08	0.007	0.002	1.00E-03
10	30165983	rs7096778	T	C	0.41	0.008	0.001	1.60E-08	0.007	0.002	1.40E-04
10	30166035	rs7078837	C	A	0.41	0.008	0.001	1.40E-08	0.007	0.002	1.10E-04
10	30166547	rs10826719	G	A	0.41	0.008	0.001	1.70E-08	0.007	0.002	1.30E-04
10	30167009	rs1571759	T	C	0.41	0.008	0.001	1.30E-08	0.007	0.002	1.20E-04
10	30167754	rs10740811	G	A	0.41	0.008	0.001	1.10E-08	0.007	0.002	8.50E-05
10	30168031	rs2369339	T	C	0.32	0.009	0.002	5.10E-09	0.007	0.002	2.60E-04
10	30168699	rs2202	C	T	0.32	0.009	0.002	8.80E-09	0.007	0.002	2.80E-04
10	30169653	rs10763764	A	T	0.42	0.008	0.001	1.10E-08	0.007	0.002	8.60E-05
10	30170487	rs914279	T	G	0.42	0.008	0.001	6.80E-09	0.007	0.002	7.00E-05
11	103660567	rs974819	T	C	0.29	0.010	0.002	5.60E-10	0.010	0.002	3.70E-07
11	103660962	rs2019090	A	T	0.29	0.010	0.002	3.70E-10	0.010	0.002	3.30E-07
11	103669291	rs796784254	T	TTATTGAA	0.29	0.010	0.002	5.80E-10	0.010	0.002	4.20E-07
11	103673277	rs2128739	A	C	0.28	0.009	0.002	2.20E-09	0.010	0.002	1.10E-06
11	103673294	rs2839812	T	A	0.28	0.009	0.002	2.20E-09	0.010	0.002	1.10E-06
11	103693627	rs11226029	G	A	0.29	0.009	0.002	1.10E-08	0.009	0.002	3.30E-06
11	103696851	rs1384705	C	T	0.29	0.009	0.002	1.30E-08	0.009	0.002	3.20E-06
13	111049623	rs9515203	T	C	0.74	-0.009	0.002	1.10E-08	-0.009	0.002	1.20E-05
16	88966667	rs844396	C	T	0.68	0.008	0.002	4.50E-08	0.009	0.002	1.40E-05
16	88968540	rs564669	T	C	0.62	0.008	0.001	4.30E-08	0.008	0.002	2.70E-05
16	88969969	rs865102	A	G	0.65	0.008	0.001	9.10E-09	0.008	0.002	1.30E-05
16	88970040	rs4995274	T	C	0.65	0.008	0.001	3.20E-08	0.008	0.002	2.90E-05
16	88970776	rs475796	C	G	0.65	0.008	0.001	1.00E-08	0.008	0.002	1.40E-05
16	88970818	rs561795	A	G	0.65	0.008	0.001	1.30E-08	0.008	0.002	1.30E-05
16	88972554	rs488251	G	A	0.68	0.008	0.002	3.30E-08	0.008	0.002	4.00E-05
16	88974516	rs548591	A	G	0.62	0.008	0.001	1.80E-08	0.008	0.002	1.60E-05
16	88974860	rs533406	A	G	0.62	0.008	0.001	2.70E-08	0.008	0.002	2.40E-05
16	88975447	rs8058234	C	G	0.62	0.008	0.001	3.20E-08	0.008	0.002	4.10E-05
16	88975910	rs7405380	G	C	0.62	0.008	0.001	2.20E-08	0.008	0.002	3.80E-05
16	88975954	rs7404039	A	G	0.62	0.008	0.001	2.70E-08	0.008	0.002	5.20E-05
rsID	Gene	Chromosome	Position	Minor Allele	Frequency	Minor Allele Frequency	P-value	Minor Allele Frequency	P-value		
--------	-----------	------------	----------	--------------	------------	------------------------	---------------	--------------------------	---------------		
88976477	rs1673931	16	8883601	T	0.62	0.008	2.30E-08	0.008	3.50E-05		
88976968	rs529900	16	8947951	G	0.62	0.008	2.50E-08	0.008	3.90E-05		
88982789	rs12444726	16	9002301	G	0.63	0.008	4.70E-08	0.007	2.90E-04		
88987861	rs1673932	16	9056701	T	0.63	0.008	3.50E-08	0.008	5.30E-05		
88988989	rs561732	16	9111101	T	0.65	0.008	4.70E-08	0.008	3.80E-05		
41188985	rs113228202	19	9269401	G	0.99	-0.036	3.40E-08	-0.034	6.70E-05		
41333152	rs111689747	19	9323801	G	0.99	-0.040	7.10E-10	-0.044	2.20E-07		
41371458	rs111240159	19	9378201	C	0.99	-0.037	4.00E-09	0.008	3.60E-07		
45337737	rs11667253	19	9432601	C	0.30	-0.009	2.70E-08	-0.009	1.10E-05		
45338220	rs4369782	19	9487001	A	0.30	-0.009	2.90E-08	-0.009	9.60E-06		
45338493	rs4605275	19	9541401	T	0.30	-0.009	3.40E-08	-0.009	9.20E-06		
45341948	rs10407439	19	9595801	A	0.30	-0.009	2.30E-08	-0.009	9.90E-06		
45342241	rs4239533	19	9650201	A	0.30	-0.009	1.80E-08	-0.009	8.50E-06		
45397229	rs1160983	19	9704601	G	0.97	0.023	4.70E-08	0.030	1.70E-08		
45412079	rs7412	19	9759001	C	0.92	0.021	2.10E-15	0.025	1.00E-13		
45413233	rs1065853	19	9813401	G	0.92	0.021	1.60E-15	0.026	6.90E-14		
45414399	rs72654473	19	9867801	C	0.90	0.013	2.40E-08	0.017	8.70E-09		
45415640	rs4459225	19	9922201	G	0.89	0.013	3.20E-08	0.017	1.30E-08		
45416831	rs390082	19	9976601	T	0.89	0.013	4.10E-08	0.017	2.00E-08		
45425178	rs190712692	19	10031001	G	0.95	0.023	1.30E-12	0.028	7.80E-11		
45426792	rs141622900	19	10085401	G	0.95	0.023	1.90E-12	0.026	4.00E-10		
SNP	Genomic region	Nearest Coding Gene	Alleles Effect/Other	Effect allele frequency	Beta (SE)	p-value	Alleles Effect/Other	A1 freq	beta	P	Consistent
----------------	----------------	---------------------	----------------------	------------------------	----------------	--------------	---------------------	---------	---------	---------	------------
rs201648240	chr1:208953176	D/I	0.83	-0.0062 (0.0011)	3.6 x 10^{-9}						
rs224904	chr5:81637916	ATP6AP1L C/G	0.95	-0.0088 (0.0016)	5.1 x 10^{-8} G/C	0.05	0.0163	7.20E-07			y
rs6907215	chr6:143608968	AIG1 T/C	0.6	-0.0040 (0.0007)	4.7 x 10^{-8} C/T	0.40	0.0060	6.80E-05			Y
rs13225723	chr7:106416467	PIK3CG A/G	0.22	0.0052 (0.0009)	3.2 x10^{-9} G/A	0.89	-0.0097	0.0004			y
rs2912063	chr8:6486033	MCPH1 A/G	0.71	0.0045 (0.0008)	8.9 x 10^{-9} A/G	0.71	0.0122	8.3E-14			y
rs11785239	chr8:8205010	SGK223 T/C	0.65	-0.0043 (0.0008)	8.7 x 10^{-9} C/T	0.37	-0.0045	0.0033			n
rs11196033	chr10:114410998	VTI1A A/C	0.48	0.0042 (0.0008)	3.9x10^{-8} C/A	0.49	0.0011	0.4500			n
rs844396	chr16:88966667	CBFA2T3 T/C	0.3	-0.0051 (0.0009)	6.0x10^{-9} C/T	0.68	0.0086	4.80E-08			y
rs148147734a	8:123401537-indel	ZHX2 −/G	0.54	0.0050 (0.0007)	3 x 10^{-11} G/A	0.54	0.0015	3.70E-05			y
rs200482500	8:10606223-indel	PINX1 −/GTACC	0.52	0.0056 (0.0008)	7 x 10^{-12} G/A	0.54	0.0015	3.70E-05			y
rs7412	19:45412079	APOE T/C	0.08	-0.0119 (0.0015)	1 x 10^{-14} C/T	0.0214		7.1E-15			y

aPublished cIMT SNP in LD with our most significant SNP: rs11781551 (r^2 = 0.95 with rs148147734)
Supplemental Table 3: Effects of GWAS-significant loci reported here in the CHARGE meta-analysis of IMT.

Analysis	SNP	CHR	BP	A1 freq	beta	p bolt lmm inf	A1 freq	Beta	Meta P	Het ISq	Het Df	Het PVal	Consistent
IMTmean sex combined	rs758080886	5	81 634 499	CA	0.15	0.013	3.10E-08						
	rs342988a, d	7	35 467 026	C	0.28	0.011	3.00E-11	0.75	-0.003	1.53E-04	7.4	27	0.3533
	rs2912062b	8	6 485 295	C	0.71	0.012	6.70E-14	0.70	0.004	5.53E-08	2.6	28	0.4260
	rs34557926d	8	124 607 159	C	0.64	-0.011	2.90E-12	0.38	0.004	3.45E-06	0	27	0.7801
	rs2019090d	11	103 668 962	A	0.29	0.009	8.20E-09	0.28	0.002	0.0046	25.3	29	0.1048
	rs561732	16	88 988 989	T	0.65	0.009	3.60E-09	0.67	0.004	1.95E-06	56.9	18	0.0012
	rs111689747d	19	41 333 152	G	0.99	-0.044	1.20E-10						
	rs1065853c	19	45 413 233	G	0.92	0.021	6.20E-15						
IMTmax sex combined	rs11762074a	7	35 440 155	T	0.77	-0.014	4.30E-10	0.79	-0.004	5.94E-07	27.6	29	0.0829
	rs11025608d	11	20 554 790	G	0.44	-0.010	3.20E-08	0.57	-0.001	0.1911	32.1	26	0.0566
	rs1065853c	19	45 413 233	G	0.92	0.026	6.90E-14						
IMTmean Men	rs35099106a	7	35 497 055	C	0.24	0.016	5.20E-09	0.21	0.005	3.65E-07	37.5	25	0.0290
	rs2912063b	8	6 486 033	A	0.71	0.017	2.60E-11	0.71	0.005	8.96E-09	9	27	0.3292
	rs1065853c	19	45 413 233	G	0.92	0.027	4.00E-10						
IMTmean Women	rs309563d	5	82 896 644	A	0.66	-0.012	8.90E-10	0.66	-0.003	1.10E-05	13.5	28	0.2591

Where: *, region bordered by gwas-significant SNPs; a, LD between rs342988, rs11762074 and rs35099106 suggests that these SNPs represent 1 signal; b, LD between rs2912063 and rs2912063 indicate that these SNPs are proxies; c, consistent lead SNP convincingly demonstrates that the same locus is being identified; d, novel locus.
Supplementary Table 4: Comparison of GWAS significant SNPs for IMTmean in men and women

CHR	BP	SNP	ALLELE1	ALLELE0	A1F	BETA	SE	P	A1F	BETA	SE	P
5	82870033	5:82870033	TC	T	0.65	-0.011	0.002	3.50E-08	0.66	-0.002	0.002	4.80E-01
5	82871546	rs309581	T	C	0.65	-0.011	0.002	2.00E-08	0.66	-0.002	0.002	4.90E-01
5	82871657	rs309580	A	T	0.65	-0.011	0.002	2.50E-08	0.66	-0.002	0.002	4.40E-01
5	82873262	rs309579	G	T	0.65	-0.011	0.002	2.20E-08	0.66	-0.002	0.002	4.00E-01
5	82874549	rs309578	G	A	0.65	-0.011	0.002	2.50E-08	0.66	-0.002	0.002	4.40E-01
5	82874942	rs309577	T	A	0.65	-0.011	0.002	1.20E-08	0.65	-0.002	0.002	3.30E-01
5	82878519	rs178024	G	A	0.65	-0.011	0.002	1.70E-08	0.66	-0.003	0.002	2.40E-01
5	82882637	rs10646744	G	GAAAA	0.64	-0.011	0.002	3.60E-08	0.64	-0.002	0.002	3.20E-01
5	82884891	rs310520	T	A	0.65	-0.011	0.002	1.10E-08	0.66	-0.003	0.002	2.50E-01
5	82885467	5:82885467	ACTCT	A	0.65	-0.011	0.002	4.50E-08	0.65	-0.002	0.002	3.20E-01
5	82886448	5:82886448	AAAC	A	0.65	-0.011	0.002	4.60E-08	0.65	-0.002	0.002	3.20E-01
5	82887835	rs4260646	A	G	0.65	-0.011	0.002	4.00E-08	0.65	-0.002	0.002	3.90E-01
5	82887839	rs3864259	C	T	0.65	-0.011	0.002	4.00E-08	0.65	-0.002	0.002	3.80E-01
5	82888812	rs310498	T	C	0.64	-0.011	0.002	3.20E-08	0.65	-0.003	0.002	2.80E-01
5	82890586	rs753731735	ATCAG	A	0.66	-0.011	0.002	2.80E-08	0.66	-0.003	0.002	1.70E-01
5	82891343	rs310502	A	T	0.65	-0.012	0.002	2.20E-08	0.65	-0.003	0.002	2.30E-01
5	82891552	rs310503	G	T	0.66	-0.012	0.002	2.40E-09	0.66	-0.003	0.002	1.80E-01
5	82896644	rs309563	A	T	0.66	-0.012	0.002	8.90E-10	0.66	-0.003	0.003	2.30E-01
5	82898246	rs309570	T	G	0.66	-0.012	0.002	1.90E-09	0.67	-0.003	0.002	2.00E-01
5	82899830	rs309574	C	T	0.66	-0.012	0.002	2.10E-09	0.67	-0.003	0.002	2.00E-01
5	82900450	rs309575	C	A	0.66	-0.012	0.002	2.60E-09	0.67	-0.003	0.002	1.90E-01
5	82902032	rs1673051	G	A	0.66	-0.012	0.002	1.40E-09	0.67	-0.003	0.002	2.90E-01
5	82902267	rs12153581	A	T	0.66	-0.012	0.002	1.40E-09	0.67	-0.003	0.002	2.90E-01
5	82904002	rs617228	C	G	0.66	-0.012	0.002	1.20E-09	0.67	-0.003	0.002	2.90E-01
5	82905733	rs471580	C	G	0.66	-0.012	0.002	1.30E-09	0.67	-0.003	0.002	3.00E-01
5	82909489	rs796444361	AC	A	0.64	-0.012	0.002	2.40E-09	0.65	-0.002	0.003	4.30E-01
5	82911748	rs492356	C	G	0.66	-0.012	0.002	2.00E-09	0.66	-0.002	0.002	3.20E-01
5	82913284	rs567721	C	G	0.65	-0.011	0.002	4.40E-09	0.65	-0.002	0.002	4.50E-01
	rs	Gene	SNP	Allele 1	Allele 2	Minor Allele Frequency	Major Allele Frequency	p-Value	Odds Ratio	95% CI		
---	------	------	-----	----------	----------	------------------------	------------------------	-----------	------------	-------------		
5	82913361	rs566799	G	A	0.66	-0.012	0.002	1.80E-09	0.66	0.002	3.40E-01	
5	82913780	rs651198	T	G	0.66	-0.012	0.002	1.70E-09	0.66	0.002	3.40E-01	
5	82914527	rs336946	C	G	0.65	-0.012	0.002	3.90E-09	0.65	0.002	4.50E-01	
5	82915184	rs336943	C	T	0.65	-0.012	0.002	3.90E-09	0.65	0.002	4.50E-01	
5	82915497	rs336942	A	G	0.65	-0.012	0.002	3.90E-09	0.65	0.002	4.40E-01	
5	82929987	rs9784716	C	A	0.67	-0.012	0.002	2.00E-09	0.67	0.003	2.70E-01	
5	82932634	rs12189364	C	T	0.67	-0.011	0.002	1.10E-08	0.68	0.003	1.90E-01	
5	82933835	rs71709944	C	CT	0.69	-0.013	0.002	1.20E-09	0.69	0.002	3.60E-01	
5	82933913	rs17206069	G	A	0.67	-0.011	0.002	8.70E-09	0.68	0.003	1.90E-01	
7	35428513	rs12155459	A	T	0.77	-0.007	0.002	3.30E-03	0.77	0.015	4.20E-08	
7	35429465	rs11766731	G	T	0.77	-0.007	0.002	2.80E-03	0.77	0.015	3.50E-08	
7	35438831	rs741408	T	C	0.23	0.007	0.002	1.70E-03	0.23	0.016	1.20E-08	
7	35440055	rs2592856	C	T	0.23	0.007	0.002	1.80E-03	0.23	0.016	6.90E-09	
7	35440155	rs11762074	T	C	0.77	-0.007	0.002	1.50E-03	0.77	0.016	5.80E-09	
7	35446189	rs2592855	T	C	0.23	0.007	0.002	1.30E-03	0.23	0.016	9.70E-09	
7	35449334	rs998652	A	G	0.23	0.007	0.002	1.40E-03	0.23	0.016	1.00E-08	
7	35451830	rs17765314	G	A	0.77	-0.007	0.002	1.40E-03	0.77	0.016	9.10E-09	
7	35451910	rs2592851	T	C	0.23	0.007	0.002	1.40E-03	0.23	0.016	9.00E-09	
7	35452092	rs1362655	G	A	0.23	0.007	0.002	1.40E-03	0.23	0.016	9.40E-09	
7	35455088	rs2592850	T	A	0.32	0.007	0.002	4.50E-04	0.32	0.014	4.60E-08	
7	35456691	rs2592849	A	T	0.32	0.007	0.002	4.70E-04	0.32	0.014	4.70E-08	
7	35457954	rs3457954	AT	A	0.32	0.007	0.002	8.40E-04	0.32	0.014	1.60E-08	
7	35458137	rs140476889	A	AAAAC	0.32	0.007	0.002	4.70E-04	0.32	0.014	3.30E-08	
7	35459888	rs342977	G	A	0.23	0.007	0.002	2.40E-03	0.23	0.016	8.10E-09	
7	35460547	rs342979	C	T	0.32	0.007	0.002	5.20E-04	0.32	0.014	4.70E-08	
7	35461538	rs342981	G	A	0.32	0.007	0.002	4.70E-04	0.32	0.014	4.60E-08	
7	35461715	rs2551797	T	C	0.32	0.007	0.002	4.80E-04	0.32	0.014	4.70E-08	
7	35462145	rs342982	G	T	0.32	0.007	0.002	4.80E-04	0.32	0.014	4.50E-08	
7	35466464	rs342986	G	A	0.23	0.007	0.002	2.30E-03	0.23	0.016	7.90E-09	
7	35466755	rs342987	T	G	0.23	0.007	0.002	2.30E-03	0.23	0.016	7.50E-09	
7	35467026	rs342988	C	T	0.28	0.007	0.002	7.40E-04	0.28	0.015	6.00E-09	
7	35467677	7:35467677	TAA	T	0.24	0.007	0.002	1.50E-03	0.24	0.016	0.003	1.80E-08
7	35467896	rs342989	A	G	0.23	0.007	0.002	2.40E-03	0.23	0.016	0.003	7.00E-09
7	35468763	rs17697812	T	C	0.77	-0.007	0.002	2.60E-03	0.77	-0.016	0.003	9.30E-09
7	35469835	rs342992	C	T	0.23	0.007	0.002	2.60E-03	0.23	0.016	0.003	9.50E-09
7	35477175	rs343000	C	T	0.23	0.007	0.002	2.40E-03	0.23	0.016	0.003	1.10E-08
7	35478515	rs343002	T	C	0.23	0.007	0.002	2.40E-03	0.23	0.016	0.003	1.10E-08
7	35479439	rs343003	C	T	0.23	0.007	0.002	2.40E-03	0.23	0.016	0.003	1.10E-08
7	35488349	rs343011	T	G	0.23	0.007	0.002	2.30E-03	0.23	0.016	0.003	1.10E-08
7	35496678	rs343026	T	G	0.32	0.007	0.002	7.70E-04	0.32	0.014	0.003	4.50E-08
7	35497055	rs35099106	C	CT	0.23	0.007	0.002	2.50E-03	0.24	0.016	0.003	5.20E-09
7	35498200	rs343029	A	G	0.23	0.007	0.002	2.20E-03	0.23	0.016	0.003	6.60E-09
7	35500493	rs343031	G	A	0.32	0.007	0.002	7.70E-04	0.32	0.014	0.003	4.00E-08
7	35503445	rs343036	G	C	0.23	0.007	0.002	2.20E-03	0.23	0.016	0.003	6.40E-09
7	35503600	rs343037	G	T	0.23	0.007	0.002	2.20E-03	0.23	0.016	0.003	6.50E-09
7	35503696	rs343038	G	C	0.32	0.007	0.002	8.10E-04	0.32	0.014	0.003	3.70E-08
7	35505204	rs343039	C	T	0.23	0.007	0.002	2.60E-03	0.23	0.016	0.003	5.50E-09
8	6470650	rs3020257	C	A	0.76	0.007	0.002	9.90E-04	0.76	0.016	0.003	2.50E-08
8	6471126	rs2980664	G	A	0.76	0.008	0.002	4.80E-04	0.76	0.015	0.003	2.70E-08
8	6472105	rs2959801	G	A	0.69	0.006	0.002	1.50E-03	0.69	0.015	0.003	2.00E-09
8	6472603	rs11137038	G	A	0.64	0.007	0.002	2.80E-04	0.64	0.014	0.002	3.20E-08
8	6473356	rs1256	C	G	0.70	0.007	0.002	3.40E-04	0.70	0.016	0.003	4.10E-10
8	6473758	rs2454517	A	G	0.70	0.007	0.002	3.10E-04	0.70	0.016	0.003	1.40E-09
8	6475489	rs2980662	G	C	0.68	0.007	0.002	8.80E-04	0.69	0.014	0.003	2.40E-08
8	6476626	rs7005662	C	T	0.72	0.008	0.002	1.70E-04	0.73	0.015	0.003	8.60E-09
8	6478481	rs2253560	G	A	0.72	0.008	0.002	1.80E-04	0.73	0.015	0.003	5.00E-09
8	6478960	rs11137040	C	G	0.70	0.007	0.002	3.40E-04	0.71	0.014	0.003	3.30E-08
8	6479432	rs2515559	A	G	0.72	0.008	0.002	2.60E-04	0.72	0.015	0.003	2.30E-08
8	6483059	rs201338994	ATAAAT	A	0.72	0.008	0.002	1.10E-04	0.73	0.016	0.003	2.40E-09
8	6484505	8:6484505	CA	C	0.72	0.008	0.002	6.60E-05	0.73	0.016	0.003	1.30E-09
8	6484510	rs2454524	A	C	0.72	0.008	0.002	6.70E-05	0.73	0.016	0.003	1.30E-09
8	6484530	rs2246801	C	T	0.72	0.008	0.002	8.60E-05	0.72	0.016	0.003	1.10E-09
Chromosome	Position	SNP ID	Allele 1	Allele 2	Minor Allele Frequency	Minor Allele Effect	Major Allele Frequency	Major Allele Effect	P-value			
------------	----------	--------	----------	----------	-----------------------	---------------------	----------------------	---------------------	---------			
8	6484635	rs2278147	C	A	0.71 0.008 0.002	1.90E-04	0.71 0.017 0.003	3.00E-11				
8	6484982	rs2448611	C	T	0.87 0.001 0.003	8.30E-01	0.70 0.015 0.003	2.70E-08				
8	6485295	rs2912062	C	G	0.70 0.008 0.002	1.60E-04	0.71 0.017 0.003	3.10E-11				
8	6486033	rs2912063	A	G	0.71 0.008 0.002	2.20E-04	0.71 0.017 0.003	2.60E-11				
8	6487449	rs3020263	G	A	0.72 0.008 0.002	1.00E-04	0.72 0.016 0.003	7.40E-10				
8	6488577	rs3020264	G	A	0.72 0.008 0.002	1.10E-04	0.72 0.016 0.003	1.30E-09				
8	6488787	rs1974946	G	A	0.72 0.008 0.002	1.10E-04	0.72 0.016 0.003	1.40E-09				
8	6490200	rs2433143	C	T	0.73 0.008 0.002	2.80E-04	0.73 0.015 0.003	1.50E-08				
8	6490544	8:6490544	TA	T	0.70 0.007 0.002	7.00E-04	0.71 0.016 0.003	1.80E-09				
19	45412079	rs7412	C	T	0.92 0.016 0.003	4.40E-06	0.92 0.027 0.004	4.40E-10				
19	45413233	rs1065853	G	T	0.92 0.016 0.003	4.00E-06	0.92 0.027 0.004	4.00E-10				
Supplemental Table 5: Genetic correlations with IMTmean by sex

Phenotype	men	women								
	rg	se	z	p	FDR-P	rg	se	z	p	FDR-P
CHARGE IMTmean 2011	0.88	0.11	7.87	3.57E-15	8.21E-14	0.71	0.10	7.45	9.14E-14	2.1E-12
CHARGE IMTmean 2018	0.86	0.12	6.88	6.06E-12	6.97E-11	0.70	0.10	6.87	6.48E-12	7.46E-11
BMI	0.18	0.05	3.66	2.48E-04	1.90E-03	0.21	0.09	2.47	1.35E-02	1.04E-01
Fasting Glucose	0.23	0.09	2.74	6.22E-03	3.57E-02	-0.12	0.05	-2.36	1.84E-02	1.06E-01
Fasting Insulin	0.31	0.11	2.71	6.70E-03	3.08E-02	0.23	0.10	2.36	1.84E-02	8.45E-02
Type 2 Diabetes	0.26	0.11	2.45	1.42E-02	5.46E-02	0.10	0.05	2.11	3.52E-02	1.35E-01
Rheumatoid arthritis	0.21	0.09	2.33	1.96E-02	6.43E-02	0.18	0.10	1.74	8.23E-02	2.70E-01
Ever Smoker	0.19	0.10	1.97	4.87E-02	1.40E-01	-0.10	0.07	-1.52	1.29E-01	3.70E-01
WHR adjBMI	0.12	0.07	1.75	8.08E-02	2.06E-01	0.03	0.02	1.36	1.74E-01	4.44E-01
Smoking onset	-0.36	0.22	-1.63	1.03E-01	2.37E-01	0.08	0.06	1.24	2.14E-01	4.93E-01
Fasting Proinsulin	0.28	0.18	1.57	1.18E-01	2.46E-01	0.03	0.02	1.06	2.88E-01	6.02E-01
HDL	-0.06	0.04	-1.28	2.00E-01	3.83E-01	-0.09	0.09	-1.04	3.00E-01	5.74E-01
Fasting Insulin adjBMI	0.10	0.11	0.90	3.69E-01	6.53E-01	-0.05	0.06	-0.86	3.89E-01	6.87E-01
Ulcerative Collitis	-0.08	0.10	-0.75	4.56E-01	7.49E-01	0.03	0.05	0.59	5.56E-01	9.13E-01
2hr Glucose	-0.10	0.14	-0.72	4.72E-01	7.24E-01	0.07	0.13	0.55	5.81E-01	8.91E-01
Triglycerides	0.04	0.06	0.69	4.88E-01	7.02E-01	0.07	0.13	0.53	5.95E-01	8.55E-01
Irritable Bowel Disorder	-0.03	0.08	-0.41	6.85E-01	9.27E-01	-0.04	0.09	-0.49	6.28E-01	8.49E-01
DBP	0.01	0.03	0.38	7.06E-01	9.02E-01	0.07	0.16	0.46	6.46E-01	8.25E-01
Cigarettes per day	0.05	0.14	0.33	7.38E-01	8.93E-01	-0.03	0.07	-0.45	6.52E-01	7.89E-01
LDL	0.02	0.06	0.30	7.66E-01	8.81E-01	-0.12	0.27	-0.43	6.67E-01	7.67E-01
Cholesterol	-0.02	0.07	-0.27	7.86E-01	8.61E-01	0.04	0.10	0.40	6.87E-01	7.52E-01
Cardiovascular disease	-0.05	0.30	-0.16	8.72E-01	9.11E-01	-0.02	0.08	-0.26	7.96E-01	8.33E-01
SBP	0.00	0.03	-0.05	9.56E-01	9.56E-01	-0.01	0.17	-0.04	9.69E-01	9.69E-01
Supplemental Table 6: Previous associations with SNPs in GWAS-significant loci

Chr	BP (Mb)	SNP	RA	RAF	OR	Beta (95% CI)	P-value *10^-x	Mapped gene	P-value annotation	GWAS catalogue accession	A1	beta	p_bolt_lmm_inf	direction
5	81696676	rs446064	9	10-29	SSBP2	3 x 10-29	AC007652.1, AC009531.1	Diastolic blood pressure	GCST006287	Adolescent idiopathic scoliosis	0.01	3.6E-11	consistent	
7	35428286	rs342989	A	0.23	0.163	3 x 10-15	AC007652.1, AC009531.1	Diastolic blood pressure	GCST006627	A	0.01	8.7E-08	consistent	
7	35435712	rs2541918	T	0.68	0.157	8 x 10-7	AC007652.1	PR interval	GCST004280	C	-0.02	0.00022	consistent	
7	35506177	rs11763856	T	0.04	3.055	1 x 10-8	AC007652.1	PR interval	GCST007045	C	-0.02	0.00022	consistent	
7	35515178	rs343064	A	0.40	1.310	3 x 10-8	AC007652.1	Non-alcoholic fatty liver disease histology (Fibrosis)	GCST007226	C	0.00	0.96		
8	6493731	rs17077154	G	0.07	0.302	8 x 10-6	MCPH1	Cytomegalovirus antibody response	GCST001272	C	0.01	0.0019	consistent	
8	6494184	rs141416541	T	0.03	0.451	4 x 10-7	MCPH1	Diastolic blood pressure	GCST004280	C	0.01	0.0019	consistent	
11	103718366	rs1917445	6	10-7	AP002989.1	4 x 10-7	AP002989.1	Neutrophil count	GCST001059	C	0.01	2.6E-06		
11	103789839	rs974819	T	0.31	0.067	6 x 10-29	AP002989.1	Coronary artery disease	GCST005196	T	0.01	5.6E-10	consistent	
11	103789839	rs974819	T	0.31	0.061	1 x 10-8	AP002989.1	Coronary artery disease	GCST005195	T	0.01	5.6E-10	consistent	
11	103789839	rs974819	T	0.32	1.07	2 x 10-9	AP002989.1	Coronary heart disease	GCST000999	T	0.01	5.6E-10	consistent	
11	103798234	rs2019090	A	0.36	1.07	4 x 10-9	AP002989.1	Myocardial infarction	GCST003117	A	0.01	3.7E-10	consistent	
13	110397276	rs9515203	T	0.74	0.068	6 x 10-24	COL4A2	T	-0.01	1.1E-08	consistent			
13	110397276	rs9515203	T	0.74	0.068	6 x 10-24	COL4A2	T	-0.01	1.1E-08	consistent			
13	110397276	rs9515203	T	0.74	0.060	4 x 10-23	COL4A2	T	-0.01	1.1E-08	consistent			
19	41319286	rs73045269	T	0.15	0.070	1 x 10-14	CCDC97, TGFB1	T	0.00	0.99				
19	41326326	rs12980942	A	0.16	0.061	7 x 10-15	TGFB1	C	0.00	0.29				
19	41345604	rs4803455	A	0.49	0.054	4 x 10-17	TGFB1	C	0.00	0.19				
19	41345604	rs4803455	A	0.50	0.048	2 x 10-17	TGFB1	C	0.00	0.19				
19	41345604	rs4803455	A	0.50	0.162	8 x 10-11	TGFB1	C	0.00	0.19				
19	41346870	rs2288874	T	0.42	0.053	4 x 10-16	TGFB1	C	0.00	0.11				
19	41348629	rs8108632	T	0.48	1.05	4 x 10-8	TGFB1	G	0.00	0.2				
19	41353016	rs1800470	A	0.62	0.259	5 x 10-26	TGFB1, ACO11462.1, B9D2, TMEM91, ACO11462.1	G	0.00	0.33				
19	41355454	rs4803457	T	0.149	2 x 10-8	Pulse pressure	GCST007096	T	0.00	0.32				
19	44908822	rs7412	C	0.93	2.07	1 x 10-7	APOE	G	0.00	2.1E-15				
19	44908822	rs7412	C	0.93	2.21	4 x 10-13	APOE	G	0.00	2.1E-15				
19	44908822	rs7412	C	2.31	3 x 10-105	APOE	GCST005549	C	0.02	2.1E-15				
SNP	Transcript	MAF	Log10(p-value)	Disease/Age	p-value	Log10(p-value)								
-----	-------------	-----	----------------	-------------	---------	----------------								
rs7412	2 x 10^{-76}	APOE	Alzheimer's disease or family history of Alzheimer's disease	GCST005922	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Alzheimer's disease or family history of Alzheimer's disease	GCST007320	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Blood protein levels (APOE)	GCST006585	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Cardiovascular disease	GCST007072	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Cardiovascular risk factors (LDL-cholesterol)	GCST004704	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Carotid intima media thickness	GCST007436	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Cholesterol, total	GCST002896	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Cholesterol, total	GCST004209	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Coronary artery disease	GCST005194	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Coronary artery disease	GCST005196	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Coronary artery disease	GCST005195	C	0.02	2.1E-15							
rs7412	2 x 10^{-76}	APOE	Coronary artery disease (broad definition)	GCST004787	C	0.02	2.1E-15							
rsID	Beta	SE	p-value	Gene	Phenotype	rsID	Beta	SE	p-value	Gene	Phenotype			
--------	-------	-------	---------	--------	---	--------	-------	-------	---------	--------	---			
19	44908822	rs7412	9 x 10-62	APOE	Family history of Alzheimer's disease	GST005921	C	0.02	2.1E-15					
19	44908822	rs7412	T 0.08	0.156	6 x 10-14	APOE	HDL cholesterol	GST004207	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	High density lipoprotein cholesterol levels	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.95	0.152	2 x 10-7	APOE	High density lipoprotein cholesterol levels	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	HDL cholesterol	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	HDL cholesterol	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	HDL cholesterol	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	HDL cholesterol	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	HDL cholesterol	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	HDL cholesterol	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	HDL cholesterol	GST007140	C	0.02	2.1E-15	consistent		
19	44908822	rs7412	C 0.92	0.079	5 x 10-29	APOE	HDL cholesterol	GST007140	C	0.02	2.1E-15	consistent		
Study ID	rsID	Sample Type	Minor Allele	Minor Allele Frequency	Major Allele Frequency	p-value	Log10(p-value)	Gene	Description					
----------	------	-------------	--------------	------------------------	------------------------	---------	----------------	------	--------------					
19	44908822	rs7412	T	0.06	0.94	2.780	3 x 10^-9	APOE	Lipoprotein(a) levels adjusted for apolipoprotein(a) isoforms					
19	44908822	rs7412	T	0.08	0.92	0.419	3 x 10^-19	APOE	Low density lipoprotein cholesterol levels					
19	44908822	rs7412	C	0.92	0.08	0.493	2 x 10^-37	APOE	Low density lipoprotein cholesterol levels (EA)					
19	44908822	rs7412	C	0.95	0.05	0.574	9 x 10^-59	APOE	Low density lipoprotein cholesterol levels (Hispanic)					
19	44908822	rs7412	C	0.89	0.11	0.522	2 x 10^-36	APOE	Low density lipoprotein cholesterol levels (AA)					
rs7412	APOE	C/T	Effect Size	Beta (SE)	Gene Trait	SNP ID	P Value	Consistency						
-------	------	-----	-------------	----------	------------	---------	---------	-------------						
44908822	Low density lipoprotein cholesterol levels	0.498	1 x 10^-300	GCST007141	C	0.02	2.1E-15	consistent						
44908822	Metabolite levels (Free cholesterol in large LDL)	-0.59	2 x 10^-120	GCST003665	C	0.02	2.1E-15	consistent						
44908822	Pulse pressure	0.3826	4 x 10^-10	GCST004278	C	0.02	2.1E-15	consistent						
44908822	Pulse pressure	0.3753	5 x 10^-31	GCST006629	C	0.02	2.1E-15	consistent						
44908822	Pulse pressure	-0.361	4 x 10^-24	GCST007269	C	0.02	2.1E-15	consistent						
44908822	Response to statins (baseline LDL-C)	-6.2	2 x 10^-47	GCST001408	C	0.02	2.1E-15	consistent						
44908822	Systolic blood pressure	-0.326	2 x 10^-11	GCST007267	C	0.02	2.1E-15	consistent						
44908822	Systolic blood pressure	4 x 10^-21	GCST007087	C	0.02	2.1E-15	consistent							
44908822	Total cholesterol levels	-0.27	1 x 10^-8	GCST004548	C	0.02	2.1E-15	consistent						
44908822	Total cholesterol levels (Trans-ethnic initial)	-0.374	8 x 10^-315	GCST004235	C	0.02	2.1E-15	consistent						
44908822	Total cholesterol levels (EA)	0.342	1 x 10^-300	GCST007143	C	0.02	2.1E-15	consistent						
44908822	Total cholesterol levels (Hispanic)	0.411	3 x 10^-31	GCST007143	C	0.02	2.1E-15	consistent						
44908822	Total cholesterol levels (AA)	0.381	3 x 10^-20	GCST007143	C	0.02	2.1E-15	consistent						
44908822	Total cholesterol levels	0.348	1 x 10^-300	GCST007143	C	0.02	2.1E-15	consistent						
44908822	Triglycerides (EA)	-0.09	5 x 10^-31	GCST007142	C	0.02	2.1E-15	inconsistent						
44908822	Triglycerides	-0.087	2 x 10^-32	GCST007142	C	0.02	2.1E-15	inconsistent						
19	44909976	rs1065853	T	0.08	-0.72	2 x 10-58	AC011481.3	Blood protein levels (isoform E3), APOE	GCST005806	G	0.02	1.6E-15	consistent	
19	44909976	rs1065853	G	0.93	-0.603	324	AC011481.3	Free cholesterol levels in large LDL	GCST005485	G	0.02	1.6E-15	consistent	
19	44909976	rs1065853	T	0.06	13.125	2 x 10-26	AC011481.3	Total cholesterol levels	GCST007441	G	0.02	1.6E-15	consistent	
19	44909976	rs1065853	T	0.06	-0.573	5 x 10-50	AC011481.3	Total cholesterol levels in LDL	GCST005447	G	0.02	1.6E-15	consistent	
SNP	chr	pos	Allele	Consequence	IMPACT	SYMBOL	SIFT	PolyPhen						
-------------	-----	--------	--------	------------------	---------	--------	-----------------------------	-------------------						
rs6658335	1	1707555	T	missense_variant	MODERATE	CDK11A	tolerated_low_confidence(0.06)	benign(0.007)						
rs2912010	8	6621465	T	synonymous_variant	LOW	MCPH1	-	-						
rs1057090	8	6621521	A	missense_variant	MODERATE	MCPH1	tolerated(0.08)	benign(0.129)						
rs1057090	8	6621521	G	missense_variant	MODERATE	MCPH1	deleterious(0.02)	benign(0.025)						
rs1057090	8	6621521	T	missense_variant	MODERATE	MCPH1	tolerated(1)	benign(0)						
rs2912016	8	6621657	A	synonymous_variant	LOW	MCPH1	-	-						
rs2912057	8	6625961	G	missense_variant	MODERATE	MCPH1	-	-						
rs2912057	8	6625961	G	missense_variant	MODERATE	MCPH1	-	-						
rs11558719	10	72213199	T	missense_variant	MODERATE	ASCC1	tolerated(0.21)	benign(0.203)						
rs28375406	16	88930433	G	missense_variant	MODERATE	LOC105371409	tolerated_low_confidence(0.07)	unknown(0)						
rs12924185	16	88950476	T	missense_variant	MODERATE	LOC100129697	tolerated_low_confidence(0.07)	unknown(0)						
rs1160983	19	44893972	A	synonymous_variant	LOW	TOMM40	-	-						
rs7412	19	44908822	T	missense_variant	MODERATE	APOE	deleterious(0)	probably_damaging(1)						
Supplemental Table 8: EQTLS identified in GTEx

SNP Id	Chr	Pos	A1	A2	Gene Symbol	Gencode Id	P-Value	NES	Tissue	
lead	5	82896644	A	T	VCAN-AS1	ENSGO0000249835.2	4.60E-06	-0.2	Testis	
VEP	8	6479042	C	T	MCPH1-AS1	ENSGO0000271743.1	5.20E-06	-0.44	Testis	
VEP	8	6479042	C	T	MCPH1-AS1	ENSGO0000271743.1	2.70E-05	-0.26	Thyroid	
VEP	8	6478986	C	T	MCPH1-AS1	ENSGO0000271743.1	8.30E-06	-0.28	Nerve - Tibial	
VEP	8	6478986	C	T	MCPH1-AS1	ENSGO0000271743.1	8.00E-06	-0.43	Testis	
VEP	8	6479178	C	A	MCPH1-AS1	ENSGO0000271743.1	3.90E-06	-0.37	Colon - Transverse	
VEP	8	6479178	C	A	MCPH1-AS1	ENSGO0000271743.1	1.30E-05	-0.3	Esophagus - Muscularis	
VEP	8	6479178	C	A	MCPH1-AS1	ENSGO0000271743.1	4.30E-09	-0.37	Nerve - Tibial	
VEP	8	6479178	C	A	MCPH1-AS1	ENSGO0000271743.1	3.10E-06	-0.58	Prostate	
VEP	8	6479178	C	A	MCPH1-AS1	ENSGO0000271743.1	3.90E-06	-0.46	Stomach	
VEP	8	6479178	C	A	MCPH1-AS1	ENSGO0000271743.1	2.80E-06	-0.47	Testis	
VEP	8	6479178	C	A	MCPH1-AS1	ENSGO0000271743.1	1.00E-07	-0.33	Thyroid	
VEP	8	6483482	C	T	MCPH1-AS1	ENSGO0000271743.1	2.30E-05	-0.26	Nerve - Tibial	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	3.10E-06	-0.52	Brain - Cortex	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	7.70E-07	-0.46	Brain - Nucleus accumbens (basal ganglia)	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	1.20E-06	-0.65	Cells - EBV-transformed lymphocytes	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	5.40E-11	-0.55	Colon - Transverse	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	1.60E-06	-0.35	Esophagus - Muscularis	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	8.70E-11	-0.43	Nerve - Tibial	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	2.70E-06	-0.58	Ovary	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	2.10E-06	-0.48	Stomach	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	4.80E-08	-0.55	Testis	
lead	8	6485295	C	G	MCPH1-AS1	ENSGO0000271743.1	2.40E-07	-0.34	Thyroid	
lead	8	6486033	A	G	MCPH1-AS1	ENSGO0000271743.1	4.60E-06	-0.51	Brain - Cortex	
Lead	rs2912063	8	6486033	A	G	MCPH1-AS1	ENSG00000271743.1	2.00E-06	-0.44	
------	-----------	---	---------	---	---	-----------	-------------------	----------	------	
	rs2912063	8	6486033	A	G	MCPH1-AS1	ENSG00000271743.1	8.40E-11	-0.55	
	rs2912063	8	6486033	A	G	MCPH1-AS1	ENSG00000271743.1	3.80E-07	-0.37	
	rs2912063	8	6486033	A	G	MCPH1-AS1	ENSG00000271743.1	2.90E-06	-0.59	
	rs2912063	8	6486033	A	G	MCPH1-AS1	ENSG00000271743.1	1.20E-06	-0.5	
	rs2912063	8	6486033	A	G	MCPH1-AS1	ENSG00000271743.1	1.10E-07	-0.54	
	rs2912063	8	6486033	A	G	MCPH1-AS1	ENSG00000271743.1	3.30E-07	-0.34	
	rs2019090	11	103668962	A	T	RP11-563P16.1	ENSG00000254987.1	3.70E-05	-0.3	
	rs561732	16	88988989	T	C	CBFA2T3	ENSG00000129993.10	7.10E-15	-0.47	
	rs561732	16	88988989	T	C	CBFA2T3	ENSG00000129993.10	1.90E-05	-0.17	
	VEP	rs28375406	16	88996841	A	G	CBFA2T3	ENSG00000129993.10	2.90E-10	-0.39
	VEP	rs28375406	16	88996841	A	G	CBFA2T3	ENSG00000129993.10	1.50E-05	-0.17
	VEP	rs7412	19	45412079	C	T	APOE	ENSG00000130203.5	2.20E-05	-0.29

Where: CTD-2541M15.3 also known as MCPH1-AS1