Testing the constancy of Spearman’s rho in multivariate time series

Ivan Kojadinovic1 · Jean-François Quessy2 · Tom Rohmer3

Received: 14 July 2014 / Revised: 9 January 2015 / Published online: 1 May 2015
© The Institute of Statistical Mathematics, Tokyo 2015

Abstract A class of tests for change-point detection designed to be particularly sensitive to changes in the cross-sectional rank correlation of multivariate time series is proposed. The derived procedures are based on several multivariate extensions of Spearman’s rho. Two approaches to carry out the tests are studied: the first one is based on resampling and the second one consists of estimating the asymptotic null distribution. The asymptotic validity of both techniques is proved under the null for strongly mixing observations. A procedure for estimating a key bandwidth parameter involved in both approaches is proposed, making the derived tests parameter-free. Their finite-sample behavior is investigated through Monte Carlo experiments. Practical recommendations are made and an illustration on trivariate financial data is finally presented.

Electronic supplementary material The online version of this article (doi:10.1007/s10463-015-0520-2) contains supplementary material, which is available to authorized users.

Ivan Kojadinovic
ivan.kojadinovic@univ-pau.fr

Jean-François Quessy
jean-francois.quessy@uqtr.ca

Tom Rohmer
tom.rohmer@univ-nantes.fr

1 Laboratoire de mathématiques et applications, UMR CNRS 5142, Université de Pau et des Pays de l’Adour, B.P. 1155, 64013 Pau Cedex, France

2 Département de mathématiques et d’informatique, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada

3 Laboratoire de mathématiques Jean Leray, Université de Nantes, B.P. 92208, 44322 Nantes Cedex 3, France
Keywords Change-point detection · Empirical copula · HAC kernel variance estimator · Multiplier central limit theorems · Partial-sum processes · Ranks · Spearman’s rho · Strong mixing

1 Introduction

Let X_1, \ldots, X_n be a multivariate times series of d-dimensional observations and, for any $i \in \{1, \ldots, n\}$, let F_i denote the cumulative distribution function (c.d.f.) of X_i.

We are interested in procedures for testing $H_0 : F_1 = \cdots = F_n$ against $\neg H_0$. Notice that the aforementioned null hypothesis can be simply rewritten as

$$H_0 : \exists F \text{ such that } X_1, \ldots, X_n \text{ have } c.d.f. F. \quad (1)$$

Such statistical procedures are commonly referred to as tests for change-point detection (see, e.g., Csörgő and Horváth 1997, for an overview of possible approaches).

The majority of tests for H_0 developed in the literature deal with the case $d = 1$. We aim at developing nonparametric tests for multivariate time series that are particularly sensitive to changes in the dependence among the components of the d-dimensional observations. The availability of such tests seems to be of great practical importance for the analysis of economic data, among others. In particular, assessing whether the dependence among financial assets can be considered constant or not over a given time period appears crucial for risk management, portfolio optimization and related statistical modeling (see, e.g., Wied et al. 2014; Dehling et al. 2014, and the references therein for a more detailed discussion about the motivation for such statistical procedures).

The above context, rather naturally, suggests to address the informal notion of dependence through that of copula (see, e.g., Nelsen 2006). Assume that H_0 in (1) holds and that, additionally, the common marginal c.d.f.s F_1, \ldots, F_d of X_1, \ldots, X_n are continuous. Then, from the work of Sklar (1959), the common multivariate c.d.f. F of the observations can be written as

$$F(x) = C\{F_1(x_1), \ldots, F_d(x_d)\}, \quad x \in \mathbb{R}^d,$$

where the function $C : [0, 1]^d \rightarrow [0, 1]$ is the unique copula associated with F. It follows that H_0 can be rewritten as

$$H_0,_{m \cap} H_0,_{c} : \exists F_1, \ldots, F_d \text{ such that } X_1, \ldots, X_n \text{ have marginal } c.d.f. \text{s } F_1, \ldots, F_d, \quad (2)$$

$$H_0,_{c} : \exists C \text{ such that } X_1, \ldots, X_n \text{ have copula } C. \quad (3)$$

Several nonparametric tests designed to be particularly sensitive to certain alternatives under $H_0,_{m \cap} \neg H_0,_{c}$ were proposed in the literature. Tests for the constancy of Kendall’s tau (which is a functional of C) were investigated by Gombay and Horváth (1999) (see also, Gombay and Horváth 2002) and Quessy et al. (2013) in the case of serially independent observations. A version of the previous tests adapted to a very general class of bivariate time series was proposed by Dehling et al. (2014). Recent multivariate alternatives are the tests studied in (Bücher et al. 2014, see also the references therein) based on Cramér–von Mises functionals of the sequential empirical copula process.