Stable isotope profiles reveal active production of VOCs from human-associated microbes

Joann Phan1,3, Simone Meinardi2,3, Barbara Barletta2, Donald R Blake2 and Katrine Whiteson1

1 Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
2 Department of Chemistry, University of California, Irvine, CA United States
3 Co-first authors.

E-mail: Katrine@uci.edu

Keywords: cystic fibrosis, clinical isolates, metabolomics, volatile organic compounds

Abstract

Volatile organic compounds (VOCs) measured from exhaled breath have great promise for the diagnosis of bacterial infections. However, determining human or microbial origin of VOCs detected in breath remains a great challenge. For example, the microbial fermentation product 2,3-butanedione was recently found in the breath of Cystic Fibrosis (CF) patients; parallel culture-independent metagenomic sequencing of the same samples revealed that Streptococcus and Rothia spp. have the genetic capacity to produce 2,3-butanedione. To investigate whether the genetic capacity found in metagenomes translates to bacterial production of a VOC of interest such as 2,3-butanedione, we fed stable isotopes to three bacterial strains isolated from patients: two gram-positive bacteria, Rothia mucilaginosa and Streptococcus salivarius, and a dominant opportunistic gram-negative pathogen, Pseudomonas aeruginosa. Culture headspaces were collected and analyzed using a gas chromatographic system to quantify the abundance of VOCs of interest; mass spectroscopy was used to determine whether the stable isotope label had been incorporated. Our results show that R. mucilaginosa and S. salivarius consumed D-Glucose-13C6 to produce labeled 2,3-butanedione. R. mucilaginosa and S. salivarius also produced labeled acetaldehyde and ethanol when grown with 2H2O. Additionally, we find that P. aeruginosa growth and dimethyl sulfide production are increased when exposed to lactic acid in culture. These results highlight the importance VOCs produced by P. aeruginosa, R. mucilaginosa, and S. salivarius as nutrients and signals in microbial communities, and as potential biomarkers in a CF infection.

Introduction

Breath metabolites have incredible potential to serve as non-invasive diagnostics of bacterial infection and other diseases, but the origins of the metabolites are often unknown. Microbes contribute significantly to the complex mix of molecules present in the human body. An average human likely contains >200 000 metabolites, and half or more of them are produced by or altered by the microbes that reside in and on humans (Wikoff et al 2009, Dorrestein et al 2014, Sharon et al 2014). Furthermore, most of the genes that distinguish one person from another are encoded by the microbial community that inhabits each person; human-associated microbes encode at least an order of magnitude more genes than the human genome (McFall-Ngai et al 2013). A very early attempt to profile breath and urine metabolites by Linus Pauling at Caltech in 1971 showed that starving the gut microbes led to more consistent breath and urine profiles across study participants (Pauling et al 1971). More recent studies have sampled breath VOCs to diagnose or detect bacterial infections in pneumonia (Fijten et al 2015) and tuberculosis (Phillips et al 2010).

Some of the metabolites produced by human-associated microbes are volatile, have the capacity to travel and affect the physiology of neighboring microbial and human cells, and can be captured by breath sampling (Létoffé et al 2014, Audrain et al 2015). For example, 2,3-butanedione was detected in the breath...
Table 1. Ten top microbes in the CF airway and some of the VOCs they produce.

Microbe	VOCs	Supporting literature
Pseudomonas aeruginosa	2-butanone, 2-aminoacetophenone, dimethylsulfide, and hydrogen cyanide	Preti et al 2009, Scott-Thomas et al 2010, Smith et al 2013,
Streptococcus pneumoniae	Benzaldehyde, benzylalcohol, acetic acid, and acetaldehyde	Preti et al 2009, Filipiak et al 2012
Staphylococcus aureus	Isovaleric acid, 2-methylbutyric acid, and isovaleric acid	Preti et al 2009
Rothia mucilaginosa	Acetaldehyde	Moritani et al 2015
Veillonella	Propionic acid, acetic acid, and isovaleric acid	Dumont et al 1978
Prevotella	Acetic and succinic acids	Downes et al 2007
Haemophilus influenzae	Indole, benzaldehyde, acetic acid, and benzylalcohol	Preti et al 2009, Filipiak et al 2012
Stenotrophomonas maltophilia	Methylpyrazine, dimethylpyrazine, acetonophenone, and caprolactam	Preti et al 2009
Burkholderia spp.	Acetic acid, dimethyl disulfide, and methylcyclohexane	Tenorio-Salgado et al 2013
Granulicatella	N/A	N/A

of Cystic Fibrosis (CF) patients (Whiteson et al 2014). One challenge in identifying the cellular origin of volatile organic compounds (VOCs) is determining whether the metabolites are produced by microbial or human cells. Humans and bacteria share several fundamental pathways and have the ability to produce many of the same volatile molecules, such as isoprene and acetone, the two most abundant VOCs detected in breath (Fenske and Paulson 1999, Miekisch et al 2004, Thorn and Greenman 2012). In the case of 2,3-butanedione, a subset of microbes encode the enzymes from this fermentation pathway, however 2,3-butanedione is not known to be a product of human metabolism. Parallel metagenomic sequencing from CF patients with 2,3-butanedione in their breath showed *Streptococcus* and *Rothia* spp. contain the acetoin pathway genes leading to the production of 2,3-butanedione (Whiteson et al 2014). A similar companion study also produced in this special issue of the Journal of Breath Research shows the taxonomy of microbial genes responsible for the production of acetaldehyde and ethanol (Bos et al 2016). To determine whether 2,3-butanedione and other volatile molecules of interest such as acetaldehyde and ethanol are actively produced by bacterial isolates from CF patients, we employed the use of labeled stable isotopes fed to *in vitro* cultures to track bacterial metabolism.

This study focuses on several bacterial isolates from CF patients that are often found in the airways when the natural lung clearance mechanisms are impaired. Therefore, the molecules that are produced by these bacteria are potentially relevant for CF, chronic obstructive pulmonary disorder, and pneumonia. CF patients’ lungs are chronically infected with opportunistic pathogens that significantly alter the health and physiology of the patient. Different types of infections can lead to varying patient outcomes (Haueter et al 2011, Ahlgren et al 2015). Among the most dominant bacteria are *Pseudomonas aeruginosa*, *Burkholderia* species, *Staphylococcus aureus*, *Stenotrophomonas maltophilia*, and *Streptococcus pneumoniae* (table 1). *Rothia mucilaginosa* has also been found to be a dominant strain in culture-independent studies of CF airway microbial communities (Lim et al 2013), and is highly abundant in CF sputum samples (Blainey et al 2012, Fodor et al 2012, Paganin et al 2015).

Our goal was to track microbial production of VOCs in clinically relevant CF bacteria. Specifically, we were interested in *P. aeruginosa*, *R. mucilaginosa*, and *Streptococcus salivarius*. *P. aeruginosa* is a widespread opportunistic pathogen in CF which becomes more dominant through time in decades-long chronic CF infections. The recent detection of 2,3-butanedione in the breath of CF patients, along with the genes necessary for acetoin metabolism from metagenomic sequencing of the same samples (Whiteson et al 2014), motivated us to see if we could verify that CF isolates are indeed producing 2,3-butanedione. Analysis of culture-independent metagenomic sequence reads from CF sputum showed that *R. mucilaginosa* and a variety of *Streptococcus* spp. encode genes involved in the production of 2,3-butanedione (Whiteson et al 2014), which induces virulence in *P. aeruginosa* (Venkataraman et al 2011, 2014, Whiteson et al 2014) and has also been found to be present in the breath of CF patients (Whiteson et al 2014). *R. mucilaginosa* is an abundant and understudied bacteria common in all human oral-microbial communities, including CF sputum, and it is known to produce the toxic volatile acetaldehyde (table 1) (Moritani et al 2015). *Streptococcus* spp. are also common in all human oral-microbial communities. A large fraction of the metagenomic reads that map to the 2,3-butanedione pathway—25% to 85%—originated from *Streptococcus* (Whiteson et al 2014). The sequences from CF sputum mapped equally well to several strains of *Streptococcus* spp., including *S. parasanguinis*, *S. salivarius* and *S. pneumonia*. We included a strain of *S. salivarius* cultured from a CF patient which is capable of producing 2,3-butanedione based on genome sequence data.

To track VOCs produced by microbial metabolism, we used stable isotopes (D-Glucose-13C6 and 2H2O), sampled headspaces of *in vitro* cultures, and analyzed these headspace samples using a gas chromatography multi column/detector system. Although metagenomic evidence suggests that *Streptococcus* spp.
and *R. mucilaginosa* may produce 2,3-butanedione (Whiteson et al. 2014), this study used stable isotopes to confirm its production by CF isolates. We also set up cultures of a clinical isolate of *P. aeruginosa* to study VOC production with and without 2,3-butanediol and other physiologically relevant products of *S. salivarius* and *R. mucilaginosa*. Future investigation for optimal *P. aeruginosa* growth conditions in supernatants from other bacteria is one of our goals in understanding how *P. aeruginosa* is affected by the neighboring CF community.

The airways of people with CF have a lower pH than healthy airways, and immediately prior to a pulmonary exacerbation event, the pH drops even lower (Tate et al. 2002, Ojoo et al. 2005, Pezzulo et al. 2012, Quinn et al. 2015). To investigate the effect of low pH on our clinical isolates, our experimental conditions also involved the use of lactic acid or buffer to adjust the media pH. In summary, results show that levels of 2,3-butanediol, acetaldehyde, and dimethyl sulfide are increased when the pH is decreased and these signatures can be used to distinguish the metabolisms of *P. aeruginosa*, *R. mucilaginosa*, and *S. salivarius*.

Materials and methods

Bacterial strains and growth conditions

The bacterial strains chosen for this study were isolated from CF patients at the UCSD Adult CF Clinic: *Pseudomonas aeruginosa* PaFLR01, *Rothia mucilaginosa* RmFLR01, and *Streptococcus salivarius* SsFLR02. Strains were grown at 37°C for 24 h in Todd Hewitt (TH) broth (BD Becto, Fisher Scientific). From the 24 h cultures, triplicate OD300 0.05 cultures were started in TH broth with 30 mM D-Glucose-13C6 (Sigma-Aldrich and Cambridge Isotope Laboratory), unless otherwise noted. Some conditions involve the addition of 30% 2H2O (Sigma-Aldrich) or 100 mM pH 6.5 potassium phosphate buffer (Fisher Scientific). We used OD500 to measure cell densities, instead of OD600 that is traditionally used, because *P. aeruginosa* strain PaFLR01 produces pyocyanin, a colorful phenazine that absorbs at 691 nm.

P. aeruginosa pyocyanin measurement

At the end of each experiment, *P. aeruginosa* cultures were centrifuged to pellet cells and supernatants were collected to read absorbance measurements at 691 nm with a spectrophotometer.

Headspace gas capture and gas chromatography

A modified bioreactor and a gas chromatographic (GC) system were used for headspace gas collection and VOC analysis (Colman et al. 2001, Umber et al. 2013). In particular, replicates of three individual glass culture tubes were placed in the bulb of the bioreactor (figure 1(a)) and, in order to replace any laboratory air, the reactor was flushed for 6 min at 1.5 l min⁻¹ with ultra clean air collected at 10 000 feet at the Crooked Creek Research station in White Mountain (California). After flushing, the bioreactor was incubated at 37°C for 48 h statically and the headspace was collected and analyzed using a GC system as described in previous works (Colman et al. 2001, Shin et al. 2009, Umber et al. 2013, Whiteson et al. 2014). Briefly, headspace sample was cryogenically pre-concentrated in a stainless steel loop filled with glass beads. The sample was re-vaporized using
hot water (at approximately 80 °C) and split into five streams directed to a multi-column/detector GC system (all Hewlett Packard 6890) using UHP helium as carrier gas. The system consists of three Hewlett-Packard 6890 GC units. The first GC is equipped with two different column combinations output to an electron capture detector (ECD) and an FID; the second GC is output to an FID; and the third GC is equipped with two different column combinations and output to a quadrupole mass spectrometer detector working in selected ion monitoring (SIM) mode, and an ECD. The MSD is set to operate in SIM mode and scan mode simultaneously.

The different VOCs are expressed in part per trillion by volume. The average from the triplicate samples and a one-tailed student’s t-test was used to identify VOCs that were significantly elevated compared to the media control.

Genome annotation

P. aeruginosa and *S. salivarius* genomes were sequenced on the Illumina MiSeq platform at San Diego State University. *R. mucilaginosa* was sequenced on the Illumina MiSeq platform at microbesNG at the University of Birmingham. All sequenced genomes were uploaded onto RAST for annotation (Aziz et al 2008).

Experimental design

Figure 1 displays the conditions of the experiment. All conditions were tested as biological triplicates in 2 ml volumes for 48 h, static. The media control included three conditions: TH broth with 2H$_2$O, TH broth with D-Glucose-13C$_{6}$, and TH with both 2H$_2$O and D-Glucose-13C$_{6}$. The *P. aeruginosa* control included two conditions: *P. aeruginosa* grown in TH with 2H$_2$O or TH with D-Glucose-13C$_{6}$ and pyruvate. The *R. mucilaginosa* and *S. salivarius* controls included each strain grown in TH with 2H$_2$O and D-Glucose-13C$_{6}$ (Panel I). *P. aeruginosa* was cultured in TH with the addition three metabolites: 20 mM 2,3-butanedione, 20 mM lactic acid, and 30 mM pyruvate (Panel II). We collected *R. mucilaginosa* and *S. salivarius* supernatants to perform cross-feeding experiments with *P. aeruginosa*, but *P. aeruginosa* did not grow. Therefore, we excluded that portion of the data set, but still kept the supernatants (Panel III) because the strains were cultured with a single labeled isotope, D-Glucose-13C$_{6}$.

CFC-11 is consistent across all samples

Trichlorofluoromethane (CFC-11) is a VOC we do not expect to see produced by our strains and is constant across all samples (supplementary figure 2). Therefore, CFC-11 is a good negative control for the GC system.

Results and discussion

Production of 2,3-butanedione, acetaldehyde, and ethanol

2,3-butanedione, acetaldehyde, and ethanol are fermentation products derived from pyruvate metabolism (figure 2). As part of glycolysis, glucose is converted to pyruvate. Following pyruvate metabolism, pyruvate can either be converted to acetalactate or acetaldehyde by the enzymes acetalactate synthase (BudB, E.C. 2.2.1.6) or pyruvate decarboxylase (Pdc, E.C. 4.1.1.1), respectively (figure 2). Acetalactate is then broken down to 2,3-butanedione and acetoxy by the enzyme BudA (E.C. 4.1.1.5; figure 2). Acetaldehyde can be converted to ethanol by alcohol dehydrogenase (ADH, E.C. 1.1.1.1; figure 2); the reaction is reversible. By using D-Glucose-13C$_{6}$, we expect to see labeled VOCs derived from pyruvate metabolism, specifically 2,3-butanedione, acetaldehyde, and ethanol. We expect *R. mucilaginosa* and *S. salivarius* to consume glucose, but glucose is not a preferred carbon source for *P. aeruginosa*, so we included 2H$_2$O in our experiments in order to track active *P. aeruginosa* metabolism.

When *R. mucilaginosa* and *S. salivarius* consume D-Glucose-13C$_{6}$, our data show that 13C was incorporated into 2,3-butanedione. We attribute labeled 2,3-butanedione to *R. mucilaginosa* and *S. salivarius* metabolism because while there was unlabeled 2,3-butanedione in the media and *P. aeruginosa* controls, 13C was only incorporated when D-Glucose-13C$_{6}$ was metabolized by *R. mucilaginosa*, and *S. salivarius* (figure 3(a)). Genetic evidence also supports these findings. *P. aeruginosa*, *R. mucilaginosa*, and *S. salivarius* have the genetic capability to convert pyruvate to acetalactate by BudB (E.C. 2.2.1.6) (figure 2). Only *R. mucilaginosa* and *S. salivarius* have the genetic capacity to convert acetalactate to 2,3-butanedione and acetoin through BudA (E.C. 4.1.1.5) (figure 2).

Through fermentation, pyruvate can be converted to acetaldehyde by pyruvate decarboxylase (Pdc, E.C. 4.1.1.1; figure 2). An example of an in vitro study of milk fermentation demonstrated through use of labeled isotopes that *Streptococcus thermophilus* was able to convert 13C-glucose to acetaldehyde (Ott et al 2000). Surprisingly, while the CF isolates of *R. mucilaginosa* and *S. salivarius* produced acetaldehyde and ethanol, the cultures grown with D-Glucose-13C$_{6}$ did not lead to production of 13C-labeled acetaldehyde or ethanol (shaded areas of figures 3(b) and (c)). When *R. mucilaginosa* and *S. salivarius* are cultured in media with 2H$_2$O, both acetaldehyde and ethanol are labeled (unshaded areas of figures 3(b) and (c)). *P. aeruginosa* cultures did not produce any of the fermentation products shown in figure 3 in levels higher than the media controls. Labeled acetaldehyde was also detected in the media control when 2H$_2$O was present. We expected deuterium incorporation into acetaldehyde to depend on bacterial enzymes. However, acetaldehyde is a weak
Acid, and in the presence of base in the media the deuterium exchange with the alpha carbons of acetaldehyde could occur.

Acetaldehyde production may rely on acetate, acetyl-CoA, pyruvate, L-threonine, ethanol, or 2-deoxyribose-5-phosphate (Ott et al 2000). Our results suggest that acetaldehyde and ethanol production bypass glucose. Although both R. mucilaginosa and S. salivarius have the capacity to convert glucose to pyruvate, RAST annotations of the two strains suggest they do not have the genetic capability to convert pyruvate to acetaldehyde by pyruvate decarboxylase (E.C. 4.1.1.1; figure 2). Because the acetaldehyde and ethanol we detected in R. mucilaginosa and S. salivarius cultures are labeled in the presence of 2H$_{2}$O but not D-Glucose-13C$_{6}$, they may share a common pathway that involves the hydrolysis of 2H$_{2}$O.

Based on genome annotations (figure 2), P. aeruginosa, R. mucilaginosa, and S. salivarius are genetically capable of converting ethanol to acetaldehyde by alcohol dehydrogenase (E.C. 1.1.1.1) (figure 2). S. salivarius is also genetically capable of converting acetyl-CoA.
to acetaldehyde by acetaldehyde dehydrogenase (E.C. 1.2.1.10) (figure 2). *P. aeruginosa* has the genetic capability to convert acetate or acetyl-CoA to acetaldehyde through enzymes aldehyde dehydrogenase (E.C. 1.2.1.3) and acetaldehyde dehydrogenase (E.C. 1.2.1.10), respectively (figure 2). However, the culturing conditions did not lead *P. aeruginosa* to produce significant levels of acetaldehyde compared to *R. mucilaginosa* or *S. salivarius*, and acetaldehyde and ethanol were not labeled in the presence of 2H$_2$O in the *P. aeruginosa* cultures.

Decreasing the pH of TH broth to pH 6.5 by adding 100 mM potassium phosphate (figure 3) led to an increase in growth and an even greater increase in the production of 13C labeled 2,3-butanediol and unlabeled acetaldehyde by *R. mucilaginosa* (figures 3(a) and (b)); OD$_{600}$ of unbuffered cultures reached 0.73–0.76 while the OD$_{600}$ of the pH 6.5 culture reached 2.48–2.55. *S. salivarius*, on the other hand, showed higher 2,3-butanediol production in unbuffered media compared to buffered pH 6.5 media. To verify the presence and measure the concentrations of 2,3-butanediol in our samples, Voges–Proskauer assays were performed on supernatants (supplementary figure 1). The results were consistent with our gas chromatography findings, in that we detected high levels of 2,3-butanediol in the *R. mucilaginosa* supernatant (figure 3(a) and supplementary figure 1).

Some limitations of studying pH dependent microbial physiology include the additional nutrients provided by the buffer (i.e., perhaps the phosphate buffer provides phosphate which boosts growth); buffered media may also eradicate micro-gradients relevant in the CF lung. For example, *R. mucilaginosa* produced more 2,3-butanediol in buffered pH 6.5 media while *S. salivarius* produced more when grown in unbuffered media. *S. salivarius* cultured in unbuffered media may include micro-gradients that are even more acidic than the buffered pH 6.5 media. Early dairy literature demonstrated that as pH becomes more acidic, *Streptococci* produce a higher yield of 2,3-butanediol (diacetyl) (Michaelian *et al* 1938). Without the restriction of a buffered environment, *S. salivarius* has the ability to further decrease the pH of its micro-environment. Therefore, the local pH may be much lower in an unbuffered condition than the buffered pH 6.5 media, driving the physiology of a subpopulation of cells. While buffers are useful to control the pH, especially for bulk measurements of VOCs like those presented here, future studies using pH sensitive dyes and imaging may allow observation of the local spatial structure of interactions.

P. aeruginosa physiology is affected by exposure to microbial metabolites

P. aeruginosa is a dominant opportunistic pathogen in CF and for this reason, to understand the polymicrobial community dynamics, it is essential to investigate its role and interactions with other bacteria and their metabolites. When *P. aeruginosa* was exposed to 2,3-butanediol, lactic acid, and pyruvate in TH broth, not only did we detect production of dimethyl sulfide (DMS; figure 4(a)), we also detected production of pyocyanin in the culture (figure 4(b)). DMS is a VOC that is well studied in the marine food web and is important in environmental sciences (Yoch 2002, CarrIÓN *et al* 2015); DMS has also been detected in the breath of CF patients (Kamboures *et al* 2005), and *P. aeruginosa* has been shown to produce DMS and stimulate the growth of Aspergillus (Briard *et al* 2016). The stable isotope labeled substrates (2H$_2$O and D-Glucose-13C$_6$) did not lead to label incorporation into DMS, potentially because glucose is not a preferred carbon source for *P. aeruginosa*, and DMS production may not depend on 2H$_2$O exchange.

Pyocyanin is an active redox phenazine produced by *P. aeruginosa* and found in the lungs of CF patients (Mentel *et al* 2009, Hunter *et al* 2012, Glasser *et al* 2014). Interestingly, DMS, pyocyanin production, and growth are higher when *P. aeruginosa* is cultured with 20 mM lactic acid (figures 4(a) and (b)). Lactic acid both lowers pH and is a preferred carbon source for *P. aeruginosa*, which could lead to better growth and therefore increased production of DMS, pyocyanin and other metabolic products. In our conditions, neither *R. mucilaginosa* nor *S. salivarius* produce DMS.

Figure 1. *R. mucilaginosa* cultures.

Figure 2. Some limitations of studying pH dependent microbial physiology include the additional nutrients provided by the buffer (i.e., perhaps the phosphate buffer provides phosphate which boosts growth); buffered media may also eradicate micro-gradients relevant in the CF lung. For example, *R. mucilaginosa* produced more 2,3-butanediol in buffered pH 6.5 media while *S. salivarius* produced more when grown in unbuffered media. *S. salivarius* cultured in unbuffered media may include micro-gradients that are even more acidic than the buffered pH 6.5 media. Early dairy literature demonstrated that as pH becomes more acidic, *Streptococci* produce a higher yield of 2,3-butanediol (diacetyl) (Michaelian *et al* 1938). Without the restriction of a buffered environment, *S. salivarius* has the ability to further decrease the pH of its micro-environment. Therefore, the local pH may be much lower in an unbuffered condition than the buffered pH 6.5 media, driving the physiology of a subpopulation of cells. While buffers are useful to control the pH, especially for bulk measurements of VOCs like those presented here, future studies using pH sensitive dyes and imaging may allow observation of the local spatial structure of interactions.

P. aeruginosa physiology is affected by exposure to microbial metabolites

P. aeruginosa is a dominant opportunistic pathogen in CF and for this reason, to understand the polymicrobial community dynamics, it is essential to investigate its role and interactions with other bacteria and their metabolites. When *P. aeruginosa* was exposed to 2,3-butanediol, lactic acid, and pyruvate in TH broth, not only did we detect production of dimethyl sulfide (DMS; figure 4(a)), we also detected production of pyocyanin in the culture (figure 4(b)). DMS is a VOC that is well studied in the marine food web and is important in environmental sciences (Yoch 2002, CarrIÓN *et al* 2015); DMS has also been detected in the breath of CF patients (Kamboures *et al* 2005), and *P. aeruginosa* has been shown to produce DMS and stimulate the growth of Aspergillus (Briard *et al* 2016). The stable isotope labeled substrates (2H$_2$O and D-Glucose-13C$_6$) did not lead to label incorporation into DMS, potentially because glucose is not a preferred carbon source for *P. aeruginosa*, and DMS production may not depend on 2H$_2$O exchange.

Pyocyanin is an active redox phenazine produced by *P. aeruginosa* and found in the lungs of CF patients (Mentel *et al* 2009, Hunter *et al* 2012, Glasser *et al* 2014). Interestingly, DMS, pyocyanin production, and growth are higher when *P. aeruginosa* is cultured with 20 mM lactic acid (figures 4(a) and (b)). Lactic acid both lowers pH and is a preferred carbon source for *P. aeruginosa*, which could lead to better growth and therefore increased production of DMS, pyocyanin and other metabolic products. In our conditions, neither *R. mucilaginosa* nor *S. salivarius* produce DMS.

Figure 3. Some limitations of studying pH dependent microbial physiology include the additional nutrients provided by the buffer (i.e., perhaps the phosphate buffer provides phosphate which boosts growth); buffered media may also eradicate micro-gradients relevant in the CF lung. For example, *R. mucilaginosa* produced more 2,3-butanediol in buffered pH 6.5 media while *S. salivarius* produced more when grown in unbuffered media. *S. salivarius* cultured in unbuffered media may include micro-gradients that are even more acidic than the buffered pH 6.5 media. Early dairy literature demonstrated that as pH becomes more acidic, *Streptococci* produce a higher yield of 2,3-butanediol (diacetyl) (Michaelian *et al* 1938). Without the restriction of a buffered environment, *S. salivarius* has the ability to further decrease the pH of its micro-environment. Therefore, the local pH may be much lower in an unbuffered condition than the buffered pH 6.5 media, driving the physiology of a subpopulation of cells. While buffers are useful to control the pH, especially for bulk measurements of VOCs like those presented here, future studies using pH sensitive dyes and imaging may allow observation of the local spatial structure of interactions.
As such, we find that among our strains, DMS production is unique to *P. aeruginosa*.

Production of acetone and isoprene

Acetone and isoprene are the two most abundant VOCs detected in breath and can be produced by either human or bacterial cells. In our study, we find that acetone was detected as a labeled volatile in each of the media controls and experimental conditions where $^{2}\text{H}_2\text{O}$ was present (figure 5(a)). Therefore, the production of acetone cannot be attributed to any of the strains because of its presence in the media controls. The use of $^{2}\text{H}_2\text{O}$ is not a reliable method for identifying metabolic production of acetone and potentially other VOCs including butanal, 2-methylpropanal, 2-methylbutanal, 2,3-butanedione, acetaldehyde, ethanol, and isoprene. GC analysis revealed that acetone was detected as a labeled volatile in each of the media controls, it was not detected in the supernatants. Further investigation is needed to understand the role of microbial metabolism in isoprene production.

Conclusions

Analysis of VOCs in breath often leads to the detection of molecules that could be of human or microbial origin. Our microbial culture experiments using stable isotope labeled substrates demonstrate that microbial metabolism is responsible for the production of several VOCs found in breath, including 2,3-butanedione, acetaldehyde, ethanol, and isoprene. GC analysis and Voges–Proskauer test results have confirmed that clinical isolates of *R. mucilaginosa* and *S. salivarius* produce 2,3-butanedione, which has previously been supported by metagenomics data (Whiteson et al 2014). Acetaldehyde is an important molecule for human health because it is a toxic carcinogenic molecule that is produced by members of the oral microbial community. Although it can be derived from pyruvate, acetaldehyde production can start from other substrates, including acetyl-CoA, acetate, 2-deoxyribose-5-phosphate, ethanol, and L-threonine (Ott et al 2000). We found that our *P. aeruginosa* strain produced DMS, which is more abundant when *P. aeruginosa* is cultured in TH supplemented with lactic acid. Finally, we found that labeled isoprene was produced by both *P. aeruginosa* and *R. mucilaginosa*. Isoprene is one of the most abundant VOCs detected in breath, but when compared to other studies that measure concentrations of isoprene, our strains produced much less than what has been detected in breath.
(King et al 2009, Khan et al 2013). This approach is promising for teasing apart the interactions that affect breath VOC production in human-associated microbial communities. For example, future studies that involve feeding stable isotope labeled substrates to one type of bacteria, and cross-feeding the metabolic products to another bacteria, could help us understand metabolic interdependencies and their VOC signatures in polymicrobial infections. As non-invasive diagnoses are being developed, identifying the contributing bacteria of an infection in CF is ideal for employing more specific and timely treatments. Lab results may take several days while results from breath samples can be instantaneous. Studies focused on the microbial origin of volatile molecules are critical for using breath data for earlier diagnosis and targeted treatments of infections.

Acknowledgments

We are grateful to members of the Whiteson and Blake groups, Dr Lieuwe D J Bos, and Dr Heather Maughan for comments on the manuscript. This independent research was supported by the Gilead Sciences Research Scholars Program in Cystic Fibrosis. Our isolates and initial momentum came from Dr Doug Conrad, Director of the UCSD Adult CF Clinic, Dr Robert Quinn, Mike Furlan, Dr Yan Wei Lim, and Prof Forest Rohwer during the era of the CF Expedition team, and we are grateful for years of fun conversation and ideas.

References

Ahlgren H G, Benedetti A, Landry J S, Bernier J, Matouk E, Radzioch D, Lands L C, Rousseau S and Nguyen D 2015 Clinical outcomes associated with Staphylococcus aureus and Pseudomonas aeruginosa airway infections in adult cystic fibrosis patients BMC Pulm. Med. 15:67
Audrain R, Farag M A, Ryu C M and Ghigo J-M 2015 Role of bacterial volatile compounds in bacterial biology FEMS Microbiol. Rev. 39 222–33
Aziz R K et al 2008 The RAST server: rapid annotations using subsystems technology BMC Genomics 9 75
Blainey P C, Milla C E, Cornfield D N and Quake S R 2012 Quantitative analysis of the human airway microbial ecology reveals a pervasive signature for cystic fibrosis Sci. Transl. Med. 4 155ra130
Bos I D J, Meinardis S, Blake D and Whiteson K 2016 Bacteria in the airways of patients with cystic fibrosis are genetically capable of producing VOCs in breath J. Breath Res. 10 047103
Briard B, Heddegott C and Latgé J-P 2016 Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus mBio 7 e0219-16
Carroli G, Curson A R J, Kumarasen D, Fu Y, Lang A S, Mercade E and Todd J D 2015 A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments Nat. Commun. 6 6579
Colman J J, Swanson A L, Meinardis S, Sive B C, Blake D R and Rowland F S 2001 Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-tropics A and B Anal. Chem. 73 3723–31
Dorrestein P C, Mazmanian S K and Knight R 2014 Finding the missing links among metabolites, microbes, and the host Immunity 40 824–32
Downes J, Sutcliffe I C, Booth V and Wade W G 2007 Prevotella macrosp. nov., isolated from the human oral cavity Int. J. Syst. Evol. Microbiol. 57 2936–9
Dumont J, Magloire H and Benay G 1978 (Gas chromatography analysis of volatile monocarboxylic aliphatic acids (C2–C6) of 15 strains of Veillonella of oral origin). J. Biol. Buccale 6 95–102
Fenske J D and Paulson S E 1999 Human breath emissions of VOCs J. Air Waste Manag. Assoc. 49 594–8 1995
Fijten R, Schnabel R, Smolinska A, Dallinga J, Boumans M L, Stoberingh E, Boots A, Roekarts P, Bergmans D and Schooten F-J 2015 Exhaled breath: non-invasive diagnosis of ventilator-associated pneumonia Eur. Respir. J. 46 OA3248
Filipiak W, Spornring A, Baur M M, Ager C, Filipiak A, Wiesenhofer H, Nagl M, Tropmair J and Amann A 2012 Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae using GC-MS Microbiology 158 3044–53
Fodor A A, Klem E R, Gilpin D F, Elborn J S, Boucher R C, Tunney M M and Wolfgang M C 2012 The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations PLoS One 7 e45001
Glasser N R, Kern S E and Newman D K 2014 Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force Mol. Microbiol. 92 399–412
Hauser A R, Jain M, Bar-Meir M and McCollery S A 2011 Clinical significance of microbial infection and adaptation in cystic fibrosis Clin. Microbiol. Rev. 24 29–70
Hunter R C, Klepac-Ceraj V, Lorenzi M M, Grotzinger H, Martin T R and Newman D K 2012 Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity Am. J. Respir. Cell Mol. Biol. 47 738–45
Julsing M K, Rijkpema N, Woerdeman H J, Quax W J and Kayser O 2007 Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis Appl. Microbiol. Biotechnol. 75 1377–84
Kamboures M A, Blake D R, Cooper D M, Newcomb R L, Barker M, Larson J K, Meinardis S, Nussbaum E and Rowland F S 2005 Breath sulfides and pulmonary function in cystic fibrosis Proc. Natl Acad. Sci. USA 102 15762–7
Khan A, Staimer N, Tjoa T, Galassetti P, Blake D R and Delfino R J 2013 Relations between isoprene and nitric oxide in exhaled breath and the potential influence of outdoor ozone: a pilot study J. Breath Res. 7 036007
King J, Kupferthaler A, Unterkoller K, Koc H, Teschl S, Teschl G, Miekisch W, Schubert J, Hinterhuber H and Amann A 2009 Isoprene and acetone concentration profiles during exercise on an ergometer J. Breath Res. 3 27006
Létoffé S, Audrain B, Bernier S P, Delepiere M and Ghigo J-M 2014 Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH mBio 5 e00944-13
Lim Y W et al 2013 Mechanistic model of Rothia mucilaginosa adaptation toward persistence in the CF lung, based on a genome reconstructed from metagenomic data PLoS One 8 e64285
McFall-Ngai M et al 2013 Animals in a bacterial world, a new imperative for the life sciences Proc. Natl Acad. Sci. 110 5229–36
Mentel M, Ahuja E G, Mavrodi D V, Breinbauer R, Thomashow L S and Blankenfeldt W 2009 Of two make one: the biosynthesis of phenazines ChemBioChem 10 2295–304
Michaelian M B, Hoecker W H and Hammer B W 1938 Effect of pH on the production of acetyl-methylcarbinol plus diacetyl in milk by the citric acid fermenting streptococci J. Dairy Sci. 21 213–8
Miekisch W, Schubert J K and Noedel-Schomburg G F E 2004 Diagnostic potential of breath analysis—focus on volatile organic compounds Clin. Chim. Acta Int. J. Clin. Chem. 347 25–39
Moritani K, Takeshita T, Shibata Y, Ninomiya T, Kiyohara Y and Yamashita Y 2015 Acetaldehyde production by major oral microbes Oral Dis. 21 748–54
Ojoo J C, Mulrennan S A, Kastelik J A, Morice A H and Redington A E 2005 Exhaled breath condensate pH and exhaled nitric oxide in allergic asthma and in cystic fibrosis Thorax 60 22–26
Ott A, Germond J-E and Chaintreau A 2000 Origin of acetaldehyde during milk fermentation using 13C-labeled precursors J. Agric. Food Chem. 48 1512–7
Paganin P et al 2015 Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function PLoS One 10 e0124348
Pauling L, Robinson A B, Teranishi R and Cary P 1971 Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography Proc. Natl Acad. Sci. USA 68 2374–6
Pezzulo A A et al 2012 Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung Nature 487 109–13
Phillips M, Basa-Dalay V, Bothamley G, Cataneo R N, Lam P K, Pezzulo A A et al 2010 Breath biomarkers of active pulmonary tuberculosis Tuberc. Eshimb. Societ. 90 145–51
Preti G, Thaler E, Hanson C W, Troy M, Eades J and Gelperin A 2009 Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: analysis by solid-phase microextraction and gas chromatograph–mass spectrometry J. Chromatogr. B 877 2011–8
Quinn R A, Blake D R, Conrad D and Rohwer F 2014 Breath gas fermentation and cystic fibrosis exacerbation ISME J. 8 1247–56
Quinn R A, Whitson K, Lim Y W, Salomon P, Bailey B, Mienardi S, Sanchez S E, Blake D, Conrad D and Rohwer F 2015 A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation ISME J. 9 1024–38
Scott-Thomas A J, Syhre M, Pattemore P K, Epton M, Laing R, Pearson I and Chambers S T 2010 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung BMC Pulm. Med. 10 56
Sharon G, Garg N, Debelius J, Knight R, Dorrestein P C and Mazmanian S K 2014 Specialized metabolites from the microbiome in health and disease Cell Metab. 20 719–30
Shin H-W, Umber B J, Mienardi S, Leu S-Y, Zaldivar F, Blake D R and Cooper D M 2009 Acetaldehyde and hexanaldehyde from cultured white cells J. Transl. Med. 7 31
Smith D, Španěl P, Gilchrist F J and Lenney W 2013 Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection J. Breath Res. 7 44001
Tate S, MacGregor G, Davis M, Innes J and Greening A 2002 Airways in cystic fibrosis are acidified: detection by exhaled breath condensate Thorax 57 926–9
Tenorio-Salgado S, Tinoco R, Vasquez-Duhalt R, Caballer-Mellado J and Perez-Rueda E 2013 Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens Bioengineered 4 236–43
Thorn R M S and Greenman J 2012 Microbial volatile compounds in health and disease conditions J. Breath Res. 6 24001
Umber B J, Shin H-W, Mienardi S, Leu S-Y, Zaldivar F, Cooper D M and Blake D R 2013 Gas signatures from Escherichia coli and Escherichia coli-inoculated human whole blood Clin. Transl. Med. 2 13
Venkataraman A, Rosenbaum M A, Perkins S D, Werner J J and Angenent L T 2011 Metabolite–based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems Energy Environ. Sci. 4 4550–9
Venkataraman A, Rosenbaum M A, Werner J J, Winans S C and Angenent L T 2014 Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa ISME J. 8 1210–20
Whitson K L, Mienardi S, Lim Y W, Schmieder R, Maughan H, Quinn R, Blake D R, Conrad D and Rohwer F 2014 Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanediol fermentation ISME J. 8 1247–56
Wikoff W R, Anfora A T, Liu J, Schultz P G, Lesley S A, Peters E C and Suzdak G 2009 Metabolomics analysis reveals large effects of gut microbiota on mammalian blood metabolites Proc. Natl Acad. Sci. USA 106 3698–703
Xue J and Ahring B K 2011 Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis Appl. Environ. Microbiol. 77 2399–405
Yoch D C 2002 Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulide Appl. Environ. Microbiol. 68 5804–15
Zhao Y, Yang I, Qin B, Li Y, Sun Y, Su S and Xian M 2011 Biosynthesis of isoprene in Escherichia coli via methylenethyltrithol phosphate (MEP) pathway Appl. Microbiol. Biotechnol. 90 1915–22
Zurbriggen A, Kirst H and Melis A 2012 Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria) Bioenergy Res. 5 814–28