Retraction

Retraction: High Step-Up Super - Lift DC-DC Converter with Enhanced Response (J. Phys.: Conf. Ser. 1916 012138)

Published 23 February 2022

This article (and all articles in the proceedings volume relating to the same conference) has been retracted by IOP Publishing following an extensive investigation in line with the COPE guidelines. This investigation has uncovered evidence of systematic manipulation of the publication process and considerable citation manipulation.

IOP Publishing respectfully requests that readers consider all work within this volume potentially unreliable, as the volume has not been through a credible peer review process.

IOP Publishing regrets that our usual quality checks did not identify these issues before publication, and have since put additional measures in place to try to prevent these issues from reoccurring. IOP Publishing wishes to credit anonymous whistleblowers and the Problematic Paper Screener [1] for bringing some of the above issues to our attention, prompting us to investigate further.

[1] Cabanac G, Labbé C and Magazinov A 2021 arXiv:2107.06751v1

Retraction published: 23 February 2022

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
High Step-Up Super - Lift DC-DC Converter with Enhanced Response

Suguna R ¹, Rani R ¹, Aiswar S ¹, Gnana Moorthy C¹, Mukesh E¹
¹Department of Electrical and Electronics Engineering
Vel Tech High Tech Dr. Rangarajan Dr.Sakunthala Engineering College, Chennai,
Email:sugunaramesh2429@gmail.com*, raniks2@gmail.com*, aiswardurga30@gmail.com*, moorthyc2000@gmail.com*,
Mukeshezilan@gmail.com

Abstract. This exertion mainly deals with the design, analysis and simulation of open loop and close loop super lift converter with PI (proportional Integral) and FOPID (Fractional Order Proportional Integral Derivative) controllers. The objectives of this system is to reduce ripple in output of High Step-Up Super -Lift DC-DC converter and to regulate yield voltage of High Step-Up Super –Lift DC-DC converter using PI/FOPID controller. The upshots are contrasted in terms of Settling time and steady state error. FOPID controlled closed loop super lift converter showed the superior performance.

Keywords: High Step Up Converter, Super-Lift Technique, PI (Proportional Integral) & FOPID (Fractional Order Proportional Integral Derivative).

1. Introduction

[1] proposed a rudimentary SLBC to accomplish elevated voltage move expansions, elevated change proportion what's more with confined full extension BC were utilized in elevated voltage-relevance’s. The recommended circuit wiped out a portion of the disadvantages in the traditional full extension support converter, for example, plausibility of voltage-thwart, -conduction misfortunes, expansion of complex Snubber &helper circuits and so on delicate exchanging was accomplished slightly working ailments concluded a eclectic burden kind.

[2] introduced the enhancing of DC yield of the sun oriented board by SuperLift LuoBoostConverter. The converter utilized the SL procedure to get the helped yield-voltage. The yield-voltage of the SLLBC expanded in mathematical movement. The SLLC upgraded the voltage move acquire in-power arrangement.

[3] proposed DC-DC multi-port converter by coordinating a super-lift and a buck converter (SLBC). The proposed single-input double yield (SIDO) converter had regular positive yield voltage super-lift benefits while at the same time creating a stage up voltage by Luo-converter and a stage down voltage by the buck converter. In this design, without using electromagnetic parts to create a double yield, the wave in yield voltages was kept low.
[4] researched the dependability of unregulated positive yield super-lift converter and constructs its normal model and little sign model taking care of CPL. The recreation results and test results check that under specific limitations this circuit could be steady in unregulated mode in CCM, and when directed its regulator configuration could utilize conventional PI controller and bode plot plan strategy.

Guideline of-promptness of DC machine utilizing SLC was proposed [5]. In a positive yield super-lift converter the yield voltage continues expanding dynamically in each stage by a mathematical movement and the voltage move acquire is effectively expanded.

Relative investigation of MPPT strategies for deleterious yield SLLC equipment execution of NOSLC was proposed [6]. This work consequently addresses a relative examination of P&O&In-CMPPT calculations practical to NOS-LC.

[7] gave the examination and numerical demonstrating of a non-epitome DC*DC positive yield POE_SLLC utilizing idea of Leverrier's calculation with SSA*strategy. The control-to-yield& contribution to yield move capacities were gotten for POE_SLLC.

HISLLC with PFC highlight for Light Emitting Diode (LED) illumination relevance’s was introduced [8]. The suggested-converter worked on 2modes viz.-utility-mode, PV-mode.

Configuration, displaying and examination of the activity-of these converters at MV elevator-power levels were introduced [9]. Additionally, execution evaluation-for the 2distinctive DCDC*converter geographies was led. Equally, the voltage Re-Lift and the SRLLC had extraordinary yield-voltage move acquire, extraordinary force thickness, extraordinary productivity, and extraordinary yield voltage with little waves.

[10] proposed the execution of Improved Positive Output-SuperLift Luo Converter with the sun oriented board. _IPOS LC was a kind of DCDC* converter where the positive yield-voltage expansions in mathematical movement.

General transformation proportion equations were proposed [11] relying upon the flipping activity: reversal, info, or yield*flipping. [12] presented a novel methodology super-lift procedure that carries out the yield voltage expanding in mathematical movement. It viably improved the voltage move acquire in power law.

[13] passed on the waged of Improved Negative Output Super-Lift Luo* converter which was a changed adaptation of Negative Output Super-Lift Luo Converter. [14] presented a DCDC* converter termed upgraded SLLC was incorporated with the breeze energymodel to move extraordinary capacity to the battery. IP-OSLC was SLC in which the positive yield-voltage expansions in mathematical movement.

A force the board plot for a sunlight based independent sun based PV framework utilizing double information single yield Luo* Converter working beneath shortfall PV*Power circumstance had been projected [15]. The double info Luo converter was utilized to edge a sunlight based PV*Module &*battery to give capacity to an independent DC*load.

2. RESEARCH GAP

The surpassing inscription doesn’t pact with the simulation of Closed loop super lift converter with FOPID controller. Hence, the present work the simulation of Closed loop super lift converter with FOPID controller.
3. SYSTEM DESCRIPTION

Figure 1 outlines the Simulation Block diagram of Integrated high step up converter. Figure 2 outlines the hardware block diagram.

![Diagram](image1)

Figure 1. Simulation Block diagram of Integrated high step up converter with motor load

![Diagram](image2)

Figure 2. Hardware block diagram

4. SIMULATION RESULTS

Figure 3 outlines the Circuit diagram of OpenLoop super lift converter with source Disturbance. Figure 4 outlines the Input voltage & its significance is 18V. Figure 5 outlines the Motor Speed & its significance is 1120RPM. Figure 6 outlines the Motor Torque and its value is 2N-m.

![Diagram](image3)

Figure 3. Circuit diagram of open loop super lift converter with source disturbance
Figure 4. Input Voltage

Figure 5. Motor speed

Figure 6. Motor Torque

Figure 7 outlines the Circuit diagram of Closed loop super lift converter with PI controller. Figure 8 outlines the Input voltage & its significance is 18V. Figure 9 outlines the Motor speed & its significance is 900 RPM. Figure 10 outlines the Motor Torque & its significance is 3N-m.

Figure 7. Circuit diagram of Closed loop super lift converter with PI

Figure 8. Input Voltage
Figure 9. Motor-speed

Figure 10. Motor-Torque

Figure 11 outlines the Circuit diagram of closed-loop super lift converter with FOPID controller. Figure 12 outlines the Input voltage & its significance is 18V. Figure 13 outlines the Motor speed & its significance is 900RPM. Figure 14 outlines the Motor Torque & its significance is 3N-m.

Figure 11. Circuit diagram of Closed-loop super lift converter with FOPID

Figure 12. Input Voltage

Figure 13. Motor Speed
5. Experimental Results

The snapshot of super lift-dc-dc-converter-system is delineated in Figure 15-20 outlines the step-up super-lift dc-dc-converter&IR 2110 Driver Board. outlines the HighStep-upSuperLiftDcDc-converter with 5Volt*Pulse. the High step-upsìuperlift dc-dc converter IR2110 Driver with 12Volt*Pulse. the High step-upsùperlift dc-dc-converter power supplyBoard. the High step-up superliftdc-deconverter with Board. Figure 21-25 outlines the HighStep-upSuperLift dc-dcConverter with RLoad. outlines the HighStep-upSuperlift dc-dc8converter controller with 17Volt Input.

Figure 15. _Hardware*implementation of High Step-up Super Lift DcDc*converter snap shot
Figure 16. HighStep-upSuperLiftDcDc* converter and IR 2110 Driver Board

![Figure 16](image1.png)

Figure 17. HighStep-upSuperLiftDcDc* converter with 5Volt*Pulse

![Figure 17](image2.png)

Figure 18. HighStep-upSuperLiftDcDc* converter IR 2110Driver with 12Volt *puls

![Figure 18](image3.png)

Figure 19. HighStep-up*super lift dc\-dc converter*power supply Board

![Figure 19](image4.png)

Figure 20. HighStep-upSuperLiftDcDc* converter Board

![Figure 20](image5.png)
Figure 21. HighStep-upSuperLiftDcDc*converter with R Load

Figure 22. HighStep-upSuperLiftDcDc*converter with 17VoltInput

Figure 23. HighStep-upSuperLiftDcDc*converter with 17VoltCRO output

Figure 24. HighStep-upSuperLiftDcDc*converter with 77Voltoutput
Figure 25. HighStep-upSuperLiftDcDc converter with 77VoltCROoutput

Figure 26. Bar chart Comparison of time domain parameters using PI & FOPID. Assessment of time domain parameters using PI & FOPID is delineated in Table 1. By exhausting FOPID, the risetime is abridged from 2.38Sec to 2.27Sec; peaktime is abridged from 3.43Sec to 2.88Sec; settlingtime is abridged from 5.70Sec to 3.48Sec; steadystateerror is abridged from 3.2V to 2.4V. Henceforth, the consequence denotes that the ClosedLoop super lift Converter with FOPID is superior to Closedloop super lift converter with PI controller.

*Table 1: Assessment of time domain parameters using PI & FOPID

Controller type	Tr(SEC)	Tp(SEC)	Ts(SEC)	Ess(V)
PI	2.38	3.43	5.70	3.2
FOPID	2.27	2.88	3.48	2.4

Figure 26. Bar chart Comparison of time domain parameters using PI & FOPID

6. Conclusion

Closedloop super lift converter with PI and FOPID are projected, scrutinized & simulated by means of MAT-LAB. The outcomes are compared by means of settling time and steady state error. By exhausting FOPID, the risetime is abridged from 2.38Sec to 2.27Sec; peaktime is abridged from 3.43Sec to 2.88Sec; settlingtime is abridged from 5.70Sec to 3.48Sec; steadystateerror is abridged from 3.2V to 2.4V. Hence, the outcome denotes that the ClosedLoop super lift Converter with FOPID is superior to Closedloop super lift converter with PI controller. The benefits of proposed system are High efficiency, Less voltage stress, Less ripple factor, Good regulation.

The current exertion deal with the simulation of Closedloop super lift converter with PI and FOPID controller. Closed loop super lift converter with PR controller can be completed in *Future.
References

[1] J. Barsana Banu; M. Balasingh Moses, Modeling-andsimulation of-isolated full bridge with superliftboost-converter, 2016 10th International Conference on Intelligent Systems and Control (ISCO) Year 2016 Conference Paper

[2] Anushka S.-Tekade,-RahulJuneja,-ManishKurwale,-PrashantDebre, Design of Positive – Output Super Lift Luo Boos Converter for Solar Inverter 2016 International Conference on Energy Efficient Technologies for Sustainability (ICETS) Year 2016 Conference Paper

[3] Behdad Faridpak; Meisam Farrokhifar; Mojtaba Nasiri; Arman Alahyari; Nasser Saadoghi, Developing a super lift luconverter with integration of buck converters for electric vehicle applications, CSEE Journal of Power and Energy Systems Year: 2020 Early Access Article Publisher: CSEE

[4] Jing Li; Jinjun Liu Modeling and analysis of elementary-positive output super-lift converter feeding constant-power load 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC) Year 2016 Conference Paper Publisher IEEE

[5] V. Venkatesh; L. Yamin C.; Kamalakannan, Regulation of speed-DC machine using super lift converter 2017 Third International Confon Sensing, Signal Processing and Security (ICSSS) Year 2017 Conference Paper Publisher IEEE

[6] PDhivya; ICephass; MDhanunjaya Rao Comparative analysis of MPPT techniques for negative-output super-lift Luo converter and hardware implementation of NOSLC 2018 International Conference on Power Energy, Control and Transmission Systems (ICPECTS) Year 2018 Conference Paper Publisher IEEE

[7] Man Mohan Garg; Mukesh Kumar Pathak; Lakshmikumar Behera Dynamic modeling of a non-ideal DC–DC positive output elementary super lift Luo converter 2017 International Conference on Technological Advancements in Power and Energy (TAPEnergy) Year 2017 Conference-Paper Publisher IEEE

[8] Jambulingam Jawahar Babu; Vinopra Thirumavalavan Hybrid Input SuperLift-Luo Converter with Power-Factor Correction Feature for LED Lighting-Applications 2018 International Conference on Emerging Trends and Innovations In Engineering and Technological Research (ICETIETR) Year 2018 Conference Paper Publisher IEEE

[9] Sawsan Sayed; Mouna Elmenshawy; Mariam Elmenshawy; Lazhar Ben Bramhi; Ahmed Massoud Design and analysis of high-gainmedium-voltage DC–DC converters for high-power PV applications 2018 IEEE 12th International Conference on Compatibility Power—Electronics and Power Engineering (CPEPOWERENG2018) Year 2018 Conference Paper Publisher IEEE

[10] S. Archana Nath; Jayarama Pradeep, PV based design of improved positive output superlift Luo converter, 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM) Year 2016 Conference Paper Publisher IEEE

[11] Richard Marquez; Marco A. Contreras-Ordaz - The Three-Terminal Converter Cell - Graphs, and Generation of DC to DC Converter Families IEEE Transactions on Power Electronics Year 2020 Volume 35 Issue 8 Journal Artic Publisher IEEE

[12] A. Haldorai and A. Ramu, Security and channel noise management in cognitive radio networks, Computers & Electrical Engineering, vol. 87, p. 106784, Oct. 2020. doi:10.1016/j.compeleceng.2020.106784

[13] A. Haldorai and A. Ramu, Canonical Correlation Analysis Based Hyper Basis Feedforward Neural Network Classification for Urban Sustainability, Neural Processing Letters, Aug. 2020. doi:10.1007/s11063-020-10327-3

[14] JRonithChristina; Jayarama Pradeep, Design and implementation of wind energy based improved positive output super lift Luo converter 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM) Year 2016 Conference Paper Publisher IEEE
[15] Diksha Agarwal; I Anand;–Subramaniam Senthilkumar, A power management scheme for a standalone solar PV system utilizing super lift Luoconverter. 2019IEEEInternational Conference on Electrical Computer-and Communication Techno(ICECCT) Year2019 Conference Paper Publishe IEEE

Retracted