Up-regulation of p21WAF1 expression in myeloid cells is activated by the protein kinase C pathway

J Schwallered, UR Peters1,2, Th Pabst1, G Niklaus1, DE Macfarlane5, MF Fey1,2 and A Tobler1,3
1 The Department of Clinical Research, 2 Institute of Medical Oncology, 3 Central Haematology Laboratory, University of Berne, Berne, Switzerland; and 4 Department of Medicine, Veterans Administration Hospital and University of Iowa, IA, USA

Summary Phorbol-12-myristate-13-acetate (PMA) induces p21WAF1 expression in human myeloid leukaemic HL-60 cells. We show that this induction is specifically mediated by protein kinase C (PKC). In addition, the PKC inhibitor Ro 31-8220 with predominant PKC-α isomorph specificity almost completely inhibited PMA-induced up-regulation of p21WAF1 in HL-60 cells as well as in the myelomonocytic leukaemia U937 cells. Pretreatment of HL-60 cells with Ro 31-8220 also inhibited PMA-induced activation of c-raf-1, a known PKC α target. In the phorbol ester-tolerant HL-60 subline (PET) with PKC-β isoform deficiency PMA or bryostatin-1 induced p21WAF1 expression, but to a lesser extent than in wild-type HL-60 cells. In PET cells, Ro 31-8220 and bryostatin-1-inhibited PMA-induced up-regulation of p21WAF1 expression. Our findings indicate that at least in HL-60 cells up-regulation of p21WAF1 is specifically activated by PKC. We suggest that PKC isoforms other than β, presumably the PKC-α isomorph, are involved in this process.

Cancer is characterized by profound alterations both in cell cycle control and in cellular differentiation. Such mechanisms can be studied with the help of cell line models, for example leukaemic cell lines in which both proliferation and differentiation programmes may be analysed. Phorbol ester-induced differentiation of human leukaemic myeloid HL-60 cells towards monocytic-like cells is associated with growth arrest in the G1 phase of the cell cycle. The CKI p21WAF1 (wild-type p53-activated fragment-1) is a mediator of G1 cycle arrest induced by wild-type p53 protein (El-Deiry et al., 1993), and in human leukaemia p21WAF1 expression may be up-regulated independently from p53 (Schwaller et al., 1995; Zhang et al., 1995; Blagosklonny et al., 1996).

Phorbol esters are potent activators of protein kinase C (PKC), a family of serine–threonine protein kinases that act as a central mediators of signal transduction pathways (Castagna, 1987). In HL-60 cells concordant expression pattern of PKC-α and -β isoenzymes is seen during phorbol ester-induced monocyte differentiation (Aihara et al., 1991; Edashige et al., 1992). To examine the role of PKC in up-regulating p21WAF1 expression, we modulated p21WAF1 expression by several PKC activators and inhibitors. We also investigated the expression of c-raf-1, a protein serine–threonine kinase required for p21WAF1 induction and up-stream regulation of mitogen-activated protein (MAP) kinase (Blagosklonny et al., 1995).

MATERIAL AND METHODS

Reagents

PMA, 4β-phorbol 12,13-didecanoate, 4α-phorbol-12,13-didecanoate and mezerein (all from Sigma Chemical, St Louis, MO, USA), were dissolved in acetone to a stock solution of 1 mM and stored at −20°C. Ro 31-8220 (“compound 3”, provided by Dr G Lawton, Roche Research Centre, Welwyn Garden City, Herts, UK), and bryostatin-1 (provided by Dr GR Pettit, Cancer Research Institute, Tempe, AZ, USA) were dissolved in dimethylsulphoxide (DMSO; Merck Chemical, Darmstadt, Germany) to stock solutions of 1 mM.

Cell cultures

HL-60-cells (American Type Tissue Culture Collection, ATCC, Rockville, MD, USA), S-cells (HL-60, wild-type) and PET-cells (phorbol-ester tolerant HL-60) provided by Dr DE Macfarlane, University of Iowa, IA, USA, were all cultured at low numbers of passages (<35) in McCoy’s supplemented with 10% heat-inactivated fetal bovine serum in 5% carbon dioxide at 37°C. Normal diploid lung fibroblasts (WI-38; ATCC), expressing high levels of p21WAF1, and a human breast cancer cell line MCF7 (provided by Dr A Ziemiecki, Department of Clinical Research, University of Berne, Switzerland), expressing high levels of c-raf-1, served as positive controls (Blagosklonny et al., 1995; Schwaller et al., 1995).

Northern blot analysis

RNA extraction and Northern blotting as well as hybridization were performed as described previously (Schwaller et al., 1995). Human cDNA probes were: p21WAF1 (2.1 kb; BamHI-HindIII) from pCEP (El-Deiry et al., 1993), and β-actin (0.7 kb; EcoRI-BamHI, from pH-F-A-3’UTR (Schwaller et al., 1995).

Western blot analysis

Total cellular protein was extracted and Western blotted as described (Schwaller et al., 1995). A polyclonal rabbit anti-human p21WAF1 specific antibody (C-19; Santa Cruz, Santa Cruz, CA,
USA) and a polyclonal anti-c-raf-1 antibody (Santa Cruz) were used at dilutions of 1:250 and 1:750 respectively.

RESULTS

Induction of p21WAF1 expression in HL-60 cells by phorbol ester derivatives

PMA, 4β-phorbol 12,13-didecanoate and mezerein are biologically active diterpenes that bind to and activate PKC. After treatment of the cells with these agents p21WAF1 mRNA and protein expression was up-regulated (Figure 1). Mezerein was the most potent inducer followed by PMA and 4β-phorbol 12,13-didecanoate. To distinguish between PKC-specific receptor-mediated and non-specific effects, HL-60 cells were treated with 4α-phorbol 12,13-didecanoate (10–1500 nM). This agent is structurally closely related to the tumour promoting diterpenes but displays low affinity for PKC (Castagna, 1987). No increase of p21WAF1 expression was seen. Thus, in HL-60 cells induction of p21WAF1 expression by PMA is mediated by activation of PKC.

Dose-dependent inhibition of PMA-induced p21WAF1 expression by the PKC inhibitor Ro 31-8220

In contrast to commonly used PKC inhibitors, for example staurosporine, Ro 31-8220 is less potent but more selective (Wilkinson et al., 1993). Preincubation with Ro 31-8220 (500–1000 nM) for 1 h almost completely inhibited PMA-induced p21WAF1 mRNA and protein expression (Figure 2A and B) in HL-60 cells and prevented their differentiation as shown by lack of both esterase staining and adherence to plastic. Cell viability remained > 90%. The same experiments were performed with the myelomonocytic U937 cells. Similar to HL-60 cells, Ro 31-8220 completely inhibited the PMA-induced protein expression of p21WAF1 (Figure 2B).
Bryostatin-1 induced p21WAF1 expression is also inhibited by Ro 31-8220

Bryostatins activate PKC but lack tumour-promoting properties (Smith et al., 1985). Continuous exposure of primary cultures of human acute leukaemia cells and various HL-60 cell clones to bryostatin-1 promotes growth arrest and terminal differentiation towards a monocyte-macrophage-like cell (Stone et al., 1988). Treatment of our HL-60 cell clone with bryostatin-1 (0.1–1000 nM) induced peak levels of p21WAF1 mRNA expression at concentrations of 1–10 nM. A rapid induction of p21WAF1 mRNA and protein expression was seen after approximately 90 min of bryostatin-1 exposure (5 nM; Figure 3A and B), but did not occur in cells preincubated for 1 h with Ro 31-8220.

p21WAF1 expression in the phorbol ester-tolerant HL-60 subline PET by PMA and Ro 31-8220

Phorbol ester resistance of the PET variant of HL-60 cells is due to lack of PKC-\(\beta\) expression (Macfarlane et al., 1988, 1994). Compared with HL-60 wild-type cells (S cells), a similar but more modest up-regulation of p21WAF1 mRNA was seen after PMA treatment for 15 h with PMA. Pretreatment of PET cells and S cells with Ro 31-8220 inhibited PMA-induced p21WAF1 mRNA and protein expression, although inhibition was less pronounced in PET cells (Figure 4). The same pattern was seen with bryostatin-1.

PMA induced c-raf-1 protein phosphorylation is inhibited by Ro 31-8220

In human MCF7 breast carcinoma cells induction of p21WAF1 by PMA is mediated via PKC-\(\alpha\) activation of c-raf-1 (Kolch et al., 1993; Blagosklonny et al., 1995). We confirm that in HL-60 cells PMA phosphorylates c-raf-1 protein resulting in a band shift on the Western blot and show that preincubation with Ro 31-8220 almost completely inhibited PMA-induced c-raf-1 phosphorylation (Figure 5).

DISCUSSION

The PKC multigene family consists of at least 11 known isoforms thought to regulate a variety of cellular activities (Blobe et al., 1994). HL-60 cells contain PKC-\(\alpha\), PKC-\(\beta\) and PKC-\(\delta\), but not PKC-\(\gamma\) (Aihara et al., 1991; Edashige et al., 1992). Although many agents are known to block PKC activity, only few are highly specific and none of them exclusively inhibit a given PKC-isofrom. We found almost complete inhibition of PMA-induced p21WAF1 up-regulation by the rather specific PKC-\(\alpha\) inhibitor Ro 31-8220, which indicates that this isoform might play an important role in mediating this effect (Wilkinson et al., 1993). The PMA resistance of two PKC-\(\beta\)-deficient HL60 sublines (PET, HL-525) can be restored by either PKC-\(\beta\) gene transfection or 1,25-dihydroxyvitamin D\(_3\) induced up-regulation of PKC-\(\beta\) (Macfarlane et al., 1994; Tonetti et al., 1994). In our experiments, PMA-induced PET cells showed an expression pattern similar to wild-type HL-60 cells. Up-regulation of p21WAF1 expression in PET cells was also inhibited by Ro 31-8220, which strengthens the view that PKC isoforms other than PKC-\(\beta\) might also be involved in this process.
However, as no PKC inhibitor is absolutely isofrom specific, two other PKC isofroms (α, δ) are also reasonable candidates. Interestingly, in several cell lines, increase in PKC-α expression was accompanied by growth inhibition and differentiation (Kindregan et al., 1994). PKC-α activates c-raf-1 by direct phosphorylation and c-raf-1 in turn can activate the mitogen-activated protein (MAP) kinases (Kolch et al., 1993). Two recent reports have indicated that induction of p21<wtf> expression is dependent on c-raf-1 and activation of MAP kinases (Blagosklonny et al., 1995; Liu et al., 1996). We found that in HL-60 cells the PMA-induced c-raf-1 phosphorylation can almost completely be prevented by Ro 31-8220, perhaps pointing to a role of PKCα in the induction of p21<wtf> expression in these cells.

In conclusion, our experiments show that in the HL-60 cell leukaemia model up-regulation of the p21<wtf> is mediated by PKC and PKC isofroms other than β presumably the α type are involved.

ACKNOWLEDGEMENTS

This work was supported by grants from the Swiss National Foundation (31-32524.91, 31-37577.93 and 31-43458.95 to AT and MFF; JS was supported by a scholarship from the Swiss National Foundation and TP was supported by a grant of the Swiss Cancer League. We would like to thank Drs B Vogelstein and WE El-Deiry; Johns Hopkins Medical School, Baltimore, MD, USA, for providing the p21<wtf> cDNA clone.

REFERENCES

Aihara H, Asaoka Y, Kimihisa Y and Nishizuka Y (1991) Sustained activation of protein kinase C is essential to HL-60 cell differentiation to macrophage. Proc Natl Acad Sci USA 88: 11062–11066
Blagosklonny MV, Alvarez M, Fojo A and Neckers LM (1996) Bel-2 protein downregulation is not required for differentiation of multidrug resistant HL60 leukemia cells. Leukemia Res. 20: 101–107
Blagosklonny MV, Schulte TW, Nguyen P, Minnaugh EG, Trepel J and Neckers L (1995) Taxol induction of p21<wtf> and p53 requires c-raf-1. Cancer Res 55: 4623–4626
Blobe GC, Obeid LM and Hannun YA (1994) Regulation of protein kinase C and role in cancer biology. Cancer Metas Rev 13: 411–431
Castagna M (1987) Phorbol esters as signal transducers and tumor promoters. Biol Cell 59: 3–14
Edaishi K, Sato-EF, Akimaru K, Kasai M and Utsunomiya K (1992) Differentiation of HL-60 cells by phorbol ester is correlated with up-regulation of protein kinase C-α. Arch Biochem Biophys 299: 200–205
El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B (1993) WAF-1, a potential mediator of p53 tumor suppression. Cell 75: 817–825
Kindregan HC, Rosenbaum SE, Ohno S and Niles RM (1994) Characterization of conventional protein kinase C (PKC) isofrom expression during F9 teratocarcinoma differentiation. J Biol Chem 269: 27756–27761
Kolch W, Heidecker G, Kochs G, Hummel R, Vahid H, Mischak H, Finkenzeller G, Marme D and Rapp UR (1993) Protein kinase Cα activates RAP-1 by direct phosphorylation. Nature 364: 249–252
Liu Y, Martindale JL, Gorospe M and Holbrook NJ (1996) Regulation of p21/WAF1/CIP1 expression through mitogen-activated protein kinase signaling pathway. Cancer Res 56: 31–35
Macfarlane DE, Gailani D and Vann K (1988) A phorbol ester tolerant (PET) variant of HL-60 promyelocytes. Br J Haematol 68: 291–302
Macfarlane DE and Manzel L (1994) Activation of β-isofrom of protein kinase C (PKCβ) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. J Biol Chem 269: 4327–4331
Schwaller J, Koelfler HP, Niklaus G, Loetscher P, Nagel S, Fey MF and Tobler A (1995) Posttranscriptional stabilization underlies p53-independent induction of p21<wtf> in differentiating human leukemia cells. J Clin Invest 95: 973–979
Smith JB, Smith L and Pettit GR (1985) Bryostatins: potent, new mitogens that mimic phorbol ester tumor promoters. Biochem Biophys Res Comm 132: 939–945
Stone RM, Sariban E, Pettit GR and Kufe DW (1988) Bryostatin 1 activates protein kinase C and induces monocytic differentiation of human HL-60 leukemic cells. Blood 72: 208–213
Tonetti DA, Hennig-Chubb C, Yamashita DT and Hubermann E (1994) Protein kinase C-β is required for macrophage differentiation of human HL-60 leukemia cells. J Biol Chem 269: 23230–23235
Wilkinson SE, Parker PJ and Nixon JS (1993): Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochem J 294: 335–337
Zhang W, Grasso L, McClain CD, Gombel AM, Cha Y, Travali S, Deisseroth AB and Mercer WE (1995) p53-independent induction of WAF1/CIP1 in human leukemia cells is correlated with growth arrest accompanying monocyte/macrophage differentiation. Cancer Res 55: 668–674