Phytochemical and pharmacological studies on *Solanum lyratum*: a review

Yue Zhao†, Wen-Ke Gao†, Xiang-Dong Wang†, Li-Hua Zhang, Hai-Yang Yu and Hong-Hua Wu*

Abstract

Solanum lyratum is one of the temperate plants, broadly distributed in Korea, China, Japan, India, and South-East Asia and well-documented in those oriental ethnic medicine systems for curing cancers, jaundice, edema, gonorrhea, cholecystitis, phlogosis, rheumatoid arthritis, etc. This review systematically summarized the research progress on *S. lyratum* respecting the botany, traditional uses, phytochemistry, pharmacology, and toxicology to increase people’s in-depth understanding of this plant, by data retrieval in a series of online or off-line electronic databases as far as we can reach. Steroidal saponins and alkaloids, terpenoids, nitrogenous compounds, and flavonoid compounds are the main chemical constituents in *S. lyratum*. Among them, steroidal alkaloids and saponins are the major active ingredients ever found in *S. lyratum*, exerting activities of anti-cancer, anti-inflammation, anti-microbial, anti-allergy, and anti-oxidation in vivo or in vitro. As a result, *S. lyratum* has been frequently prescribed for the abovementioned therapeutic purposes, and there are substantial traditional and modern shreds of evidence of its use.

Keywords: *Solanum lyratum* Thunb., Steroidal saponins, Steroidal alkaloids, Anti-cancer, Toxicity
1 Introduction
Solanum lyratum Thunb. is a herbaceous vine of the family Solanaceae, with white villous hairs on violin-shaped leaves and stems, distributed throughout China, Japan, Korea, etc. [1]. S. lyratum prefers a warm and humid environment and is distributed widely in valley grass, roadside and field. S. lyratum is commonly known as "Bai-Mao-Teng" in traditional Chinese medicine and "Back-Mo-Deung" in traditional Korean medicine [2]. In traditional Chinese medicine (TCM), S. lyratum has the functions of clearing heat and removing toxicity (“Qingre Jiedu” in Chinese), dispelling wind and eliminating dampness (“Qufeng Lishi” in Chinese). Therefore, S. lyratum has been traditionally prescribed mainly for healing jaundice, edema, gonorrhea, cholecystitis, phlogosis, and rheumatoid arthritis [3]. Modern phytochemistry and pharmacological studies revealed that S. lyratum consists of a variety of active ingredients, including steroidal saponins, steroidal alkaloids, terpenoids, lignans, and flavonoids [4]. And steroidal saponins and steroidal alkaloids have been used in the modern clinic to treat various cancers, especially lung cancer, cervical cancer, and liver cancer [3].

In the last ten years, dozens of reviews on the research progress of Solanum plants have been published, occasionally referring few phytochemistry and pharmacological reports on S. lyratum [5–8] (Fig. 1). However, there is no specialized and systematic research review on the S. lyratum species, especially on its phytochemistry and pharmacological aspects. Thus, this review intends to provide an updated and comprehensive summary on the botanical characterization, phytochemistry, and pharmacological and toxicity studies of S. lyratum to fill a gap in the research review of this plant and provides for a better exploration and application of S. lyratum. The literature for this manuscript was obtained from reports published from 1981 to Mar 2022.
2 Botany

S. lyratum is a herbaceous vine of the family Solanaceae, well-known native in China, India, Japan, Korea, North Vietnam, and the Indochina Peninsula [1]. This plant grows in a warm and humid environment, prefers light and fertile organic soil, and is distributed on hillsides, grass, ditch, and roadside at altitudes of 100–850 m. *S. lyratum* is 0.5–1 m long, and its stems and twigs are densely covered with white villous hairs [2]. The botanical characteristics of *S. lyratum* were recorded in many classics of TCM, including "Tang Xinxiu Bencao" in the Tang Dynasty [9], "Zhenglei Bencao" in the Song Dynasty [10], and "Compendium of Materia Medica" in Ming Dynasty [11].

S. lyratum is commonly known as "Bai-Mao-Teng" in TCM. It should be noted that there are several adulterants of *S. lyratum*, including *Aristolochia mollissima*, *Paederia scandens* (Lour.) Merr. and *Solanum*...
dulcamara L., all of which are so called as "Bai-Mao-Teng" that it may easily cause an event of medication confusion [12]. For example, a misuse of A. mollissima instead of S. lyratum, has ever led to a renal failure event in patients of Hong Kong [13]. Those adulterants closely resemble S. lyratum in botanical morphology, it is very important to seek advice from a professional or pharmacist before use. The plant morphological characteristics of S. lyratum are as follows: Root is slender and cylindrical. Leaves are mostly violin-shaped, with 3.5–5.5 cm long and 2.5–4.8 cm wide, and the base is 3–5 cm deep-lobed. Lateral lobes are smaller near the base. Middle lobes are usually larger oval and tend to apex acuminate. Both sides of the leaves were covered with white shiny villous hairs, and the levels own mid-vein and lateral veins. Flowers are sparsely terminal inflorescence or extra-axillary inflorescence, and the pedicel is approximately 2–2.5 cm long. Corollas are blue-purple or white and corollas are about 1.1 cm in diameter. Fruits are spherical and about 8 cm in diameter, which become reddish-black when it matures. Seeds are nearly disc-shaped and about 1.5 mm in diameter. The flowering period of S. lyratum is between May and June, while the fruiting period is between August and October. Significantly, the suitable harvest time has been recommended to be between October and December (Fig. 2) [14, 17].

3 Traditional uses

In TCM, S. lyratum has been considered as one of the "Top-grade" herbs in "Shennong Bencao Jing" (100 BC-200 AD, Han Dynasties) [18]. For centuries, it has been used for the treatments of cold and fever, malaria, jaundice, nephritis, edema, cholecystitis, rheumatoid arthritis, vaginitis, uterine erosion, and several types of cancer including lung cancer, cervical cancer, and gastric cancer [19, 21]. External applications of S. lyratum [22] have been recorded to treat carbuncle, furuncle and swollen poison, etc. In the "Compendium of Materia Medica", S. lyratum is documented [11] to have the effects of clearing heat, detoxification, and expelling rheumatism, for the treatment of rubella, erysipelas, malaria, cancer, etc. The traditional uses of S. lyratum in Korea, Japan, and the Indochina Peninsula focused mainly on the treatments of several types of cancers, warts, herpes, pyretic syndrome, diarrhea, etc., as summarized in Table 1.

4 Phytochemistry

So far, hundreds of phytochemicals have been isolated and identified from S. lyratum, including steroidal alkaloids (1–41), steroids and steroidal saponins (42–101), terpenoids (102–153), nitrogenous compounds (154–178), phenylpropanoids (179–227), flavonoids (228–258) and other compounds (259–270). Among them,
steroidal alkaloids, steroidal saponins and terpenoids are so often recognized as the main active constituents of S. lyratum [32, 33].

4.1 Steroidal alkaloids
Steroidal alkaloids in S. lyratum include mostly solani-dane (27 carbon atoms), spirosolane (27 carbon atoms) and solayraine (27 carbon atoms) (Fig. 3) types of nitrogenous sapogenins. The glycone moieties are most likely to be substituted at C-3 position of the nitrogenous sapogenin aglycone. D-glucose (D-Glc), D-galactose (D-Gal), D-xylose (D-Xyl), and L-rhamnose (L-Rha) are the common components of the glycones, in which one to four monosaccharides linked linearly or with one or more branched chains, as shown in Fig. 4.

Steroidal alkaloid is one of the characteristic ingredients of Solanum plants [34]. Until now, a total of forty-one steroidal alkaloids (1–41) have been identified from S. lyratum (Table 2). It is noteworthy that there were two epimers for the most abundant spirosolane-type steroidal alkaloids in Solanum plants, one is 22-β N type (1–4, 6–11) [33, 35–39] and the other is 22-α N type (5, 13–22) [24, 35–40] in clue of the existence of an oxa-azaspirodecane system. In addition, solanidine-type steroidal alkaloids (23–30) [35, 36, 41, 42], with a unique octahydroindolizine complex cholestan skeleton, have also been found to be existed in this plant. Further, other unusual spirosolane-type glycoalkaloids with a deformed E and F rings (piperidine, pyridine or other derived F rings) have been also occasionally discovered from S. lyratum, exemplified by compounds 31–41 [39, 43], as shown in Fig. 5.

4.2 NMR characteristics of steroidal alkaloids
Representative NMR data of the common steroidal alkaloids and saponins from S. lyratum were summarized in Tables 3, 4, 5 and 6. 13C NMR spectra of the spirosolane-type, spirostanol-type, and furostanol-type steroidal alkaloids or saponins, with intrinsic twenty-seven steroid skeleton, normally exhibit characteristic carbon signals for C-22 around $\delta_{C} 98.0$ [35], 109.0 [22], and 112.0 [40] ppm, respectively. In addition, in the high field of the 1H NMR spectra of steroidal alkaloids and saponins, the resonance signals of methylene and methine protons are generally around $\delta_{H} 1.1–3.0$, while the four methyl groups show proton resonances at $\delta_{H} 0.6–1.4$, among which there are two singlets for the methyl groups at C-18 and C-19 [44], and two doublets for those methyls at C-21 and C-27 [45].

In the 13C NMR spectra, spirosolane-type of steroidal alkaloids, characterizing a A/B/C/D ring system of C27 steroid scaffold (Table 3 and Fig. 6), show twenty-seven carbon signals generally containing four methyl carbon signals around at $\delta_{C} 16.0$ (C-18), 19.0 (C-19), 15.0 (C-21), and 19.0 (C-27). Steroidal alkaloid can be simply recognized to be a steroidal saponin with a replacement of the oxygen atom in F ring by a nitrogen atom, resulting in the high-field shifting of the carbon chemical shifts of C-22 and C-26, from $\delta_{C} 109.0$ and 67.0 to 98.0 and 47.5, respectively [30, 39, 40, 46]. In the 13C NMR spectra of the solanidine-type steroidal alkaloids, there were four methyl carbon signals around at $\delta_{C} 16.0$ (C-18), 12.0 (C-19), 19.0 (C-21), and 22.0 (C-27) [30, 38, 39, 46] besides those characteristic carbon signals around at $\delta_{C} 69.0$ (C-16), 78.0 (C-22) and 58.0 (C-26) [35, 41]. And, chemical shifts of the glycosyl anomeric carbon are at
δC 100.0–108.0, especially when the glycosidation taking place at OH-3 of the steroidal alkaloids [47–49].

4.3 Steroids and steroidal saponins

4.3.1 Steroids

Cholestanol, containing a perhydrocyclopentenophenanthrene moiety (rings A, B, C and D) with a acyclic side-chain, has been considered as the precursor of furostanol and spirostanol (Fig. 7). At present, thirty steroids have been isolated from *S. lyratum* (42–71) (Table 4) [35, 36, 39, 47, 48, 50, 52].

4.3.2 Steroidal saponins

Steroidal saponins reported in *S. lyratum* are well-known characterized by possessing the steroid-derived aglycones normally consisting of a hydrophobic C$_{27}$-skeleton of cholestan with an oxygen fused into the F ring, exemplified by the spirostanol (27 carbon atoms), furostanol (27 carbon atoms) and cholestanol (27 carbon atoms) as the most common scaffolds. Nevertheless, C$_{21}$-steroidal saponins have also been reported to be existed in *S. lyratum* (Fig. 8). As is known, the remaining hydrophilic glycone unit of a steroidal saponin has been frequently reported to be substituted at the C-3 position of the sapogenin.
No	Compounds	Chemical formula	Molecular Wt	Refs.
1	(3β,22α,25R)-Spirosol-S-en-3-ol-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{45}H_{77}NO_{17}	899.4878	[33]
2	(3β,22α,25R)-Spirosol-S-en-3-ol-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→3)-O-β-D-galactopyranoside	C_{45}H_{77}NO_{21}	1031.5301	[33]
3	(3β,5a,22α,25R)-Spirosol-3-ol-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{45}H_{77}NO_{17}	901.5035	[33]
4	(3β,5a,22α,25R)-Spirosol-3-ol-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{50}H_{83}NO_{21}	1033.5458	[33]
5	Solasonine	C_{46}H_{79}NO_{16}	885.5086	[35]
6	Tomatidenol	C_{2}H_{4}NO_{2}	413.3294	[36]
7	Solamarine	C_{46}H_{79}NO_{16}	883.4929	[35]
8	Solamargine	C_{46}H_{79}NO_{15}	867.4980	[35, 37]
9	Soladulcicidine	C_{45}H_{73}NO_{2}	415.3450	[35, 37]
10	Soladulcicine-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{50}H_{83}NO_{21}	1033.5458	[34, 38]
11	4-Tomatiden-3-one	C_{2}H_{4}NO_{2}	411.3137	[36]
12	Solasodiene	C_{46}H_{79}NO	395.3188	[35]
13	Solalaratine A	C_{46}H_{79}NO_{11}	709.4401	[24]
14	Solalaratine B	C_{47}H_{79}NO_{16}	871.4929	[24]
15	Solalaratine B’	C_{47}H_{79}NO_{17}	901.5035	[39]
16	Soladulcicidine	C_{45}H_{73}NO_{2}	415.3450	[40]
17	1,4-Solasodadien-3-one	C_{47}H_{79}NO_{2}	409.2981	[36]
18	7-Oxosoladulcine	C_{46}H_{79}NO_{3}	427.3086	[36]
19	Solalarrayne A’	C_{47}H_{79}NO_{17}	899.4878	[39]
20	(3β,22β,25S)-Spirosol-S-ene-3-O-β-D-glucopyranosyl-(1→2)-O-α-L-rhamnopyranosyl-(1→4)-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-glucopyranoside	C_{50}H_{83}NO_{19}	999.5403	[35]
21	Solasodine	C_{46}H_{79}NO_{2}	413.3294	[36]
22	Solalaratine C	C_{46}H_{79}NO_{21}	1033.5458	[35]
23	5α-Solanidane-3β,16α-diol	C_{46}H_{79}NO_{2}	415.3450	[36]
24	(25S or R)-Solanid-S-ene-3β,23β-diol-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{45}H_{77}NO_{17}	899.4878	[41]
25	(25S or R)-Solanid-S-ene-3β,23β-diol-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{50}H_{83}NO_{21}	1031.5301	[35]
26	(25S or R)-Solanid-S-ene-3β,23β-diol-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{45}H_{77}NO_{17}	901.5035	[41]
27	(25S or R)-Solanid-S-ene-3β,23β-diol-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{50}H_{83}NO_{21}	1033.5458	[35, 41]
28	Dihydroleptinidin diacetate	C_{2}H_{4}NO_{4}	499.3662	[41]
29	Solanogantamine diacetate	C_{14}H_{10}N_{2}O_{3}	498.3821	[41]
30	Dihydroleptinidine	C_{14}H_{10}N_{2}O	399.3501	[42]
31	Solalaratine A	C_{46}H_{79}NO_{17}	901.5035	[43]
32	Solalaratine B	C_{46}H_{79}NO_{17}	899.4878	[43]
33	(3β,5a,25S)-16,23-Epoxo-23,24-imocholest-16,20,23(3)-trien-3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1→3)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{50}H_{83}NO_{21}	1027.4988	[39]
34	15β-Hydroxysterol(3β,25R)-16,23-epoxy-23,24-imocholest-5,16,20,23(N)-tetraen-3β-ol-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{46}H_{79}NO_{18}	940.4931	[39]
35	15β-Hydroxysterol(3β,5a,25R)-16,23-epoxy-23,24-imocholest-16,20,23(N)-trien-3β-ol-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{46}H_{79}NO_{18}	938.4790	[39]
36	16,23-Epoxo-22,26-imocholest-22α,23,25(26)-trien-3-O-β-D-glucopyranosyl-(1→2)-O-β-D-glucopyranosyl-(1→4)-O-β-D-galactopyranoside	C_{46}H_{79}NO_{17}	895.4565	[39]
37	Solalaratine C	C_{46}H_{79}NO_{17}	893.4409	[43]
38	Solalaratine D	C_{46}H_{79}NO_{17}	893.4409	[43]
D-Glc, D-Gal, D-Xyl, L-Rha, and L-arabinose (L-Ara) are the common members of the glycones, in which one to five monosaccharides linked linearly or with one or more branched chains, as shown in Fig. 9.

Till now, a total of thirty steroidal saponins (72–101) have been identified from S. lyratum (Table 5 and Fig. 10). Most of the isolated steroidal saponins of S. lyratum belong to the spirostane-type (72–87) [4, 22, 46, 49], C_{21}-steroidal subclass (89–93) [40, 46, 51] and furostanol-type (94–101) [22, 23, 40, 46]. Notably, when F-ring of a spirostanol is ring-opened, a new sapogenin skeleton of a furostanol is then afforded. As far as we know, the furostanol and its derivatives are the only reported ring-opened steroidal saponins ever isolated from S. lyratum up to now (94–101) [22, 23, 40, 46].

4.4 NMR characteristics of steroidal saponins

In short, in the 13C NMR spectra, spirostanol and furostanol-types of steroidal saponins, characterizing a A/B/C/D ring system of C_{27}-steroidal scaffold, show twenty-seven carbon signals generally containing four methyl carbon signals at δ_C 16.0 (C-18), 19.0 (C-19), 14.0 (C-21), and 17.0 (C-27) or two olefinic carbon signals at δ_C 140.0 (C-5) and 120.0 (C-6) [47, 49] (Table 6 and Fig. 11). The carbon chemical shift of CH$_3$-19 will downfield shifted from δ_C 12.0 to δ_C 19.0 [47, 49], when the two methylenes at C-5,6 being dehydrogenated (-H$_2$) to form a double bond [53]. The carbon resonances of C-16, 17, 22 (spiroketal carbon) and C-26 in a spirostanol-type steroidal saponin, were at about δ_C 81.0, 62.0, 109.0 and 67.0, respectively [47, 49], while those in a furostanol-type steroidal saponin were at about δ_C 81.0, 64.0, 112.0

Table 2 (continued)

No	Compounds	Chemical formula	Molecular Wt	Refs.
39	Solalyraine E	C$_{45}$H$_{69}$NO$_{17}$	895.4565	[43]
40	Solalyraine F	C$_{45}$H$_{69}$NO$_{18}$	911.4515	[43]
41	Solalyraine G	C$_{45}$H$_{67}$NO$_{18}$	909.4358	[43]

Fig. 6 Representative six common steroidal alkaloids
Table 3 Representative 13C NMR data of six common steroid alkaloids

Position	Compound 8a (spirosolane-type)	Compound 4b (spirosolane-type)	Compound 19b (solanidane-type)	Compound 26c (solanidane-type)	Compound 24c (solalyraine-type)	Compound 33b (solalyraine-type)
1	37.6	38.2	38.5	37.1	37.3	29.7
2	30.3	30.4	30.7	31.5	31.5	30.4
3	78.1	79.3	79.9	71.2	71.6	79.3
4	39.0	35.3	39.6	38.2	42.3	30.4
5	148.0	46.0	142.1	45.0	141.0	46.1
6	121.9	29.8	122.3	28.7	121.3	32.9
7	32.7	33.2	33.1	32.3	32.1	35.3
8	31.8	36.5	32.8	35.4	31.7	38.0
9	50.4	55.6	51.5	54.5	50.2	55.7
10	37.2	36.8	38.0	35.6	36.6	36.9
11	21.3	22.1	21.9	21.0	20.8	22.2
12	40.2	40.6	40.4	39.6	39.4	37.1
13	40.7	42.4	42.2	41.4	41.4	48.1
14	56.8	57.5	57.7	57.4	57.7	57.2
15	32.5	33.0	33.0	31.5	31.5	35.2
16	78.9	84.7	84.8	69.6	69.6	138.7
17	63.6	63.2	63.0	62.2	62.2	149.8
18	16.7	16.7	16.5	16.8	16.6	17.1
19	19.5	12.7	19.8	12.4	19.4	12.6
20	41.7	42.8	42.8	30.6	30.6	141.4
21	15.8	14.7	14.9	18.9	18.9	12.3
22	98.5	100.2	100.2	78.9	78.9	162.6
23	34.8	33.4	33.2	67.0	67.0	141.7
24	31.2	28.9	28.9	37.1	37.1	63.2
25	31.7	29.5	29.5	26.9	26.9	31.6
26	48.2	46.7	46.7	58.7	58.7	38.2
27	19.9	18.6	18.6	22.4	22.4	16.6

Gal-(1→3)-skeleton

1'	102.7	102.8	102.3	102.3	102.3	102.7
2'	73.2	73.2	73.1	73.1	73.2	73.2
3'	75.3	75.2	75.4	75.4	75.3	75.3
4'	80.2	80.5	80.8	80.8	80.2	80.2
5'	75.9	76.3	76.5	76.5	75.9	75.9
6'	61.1	60.9	60.4	60.4	61.1	61.1

Glc-(1→3)-skeleton

1'	100.3	102.7	102.3	102.3	102.7	102.7
2'	78.0	73.2	73.1	73.1	73.2	73.2
3'	77.8	75.3	75.4	75.4	75.3	75.3
4'	78.6	80.2	80.8	80.8	80.2	80.2
5'	77.0	76.3	76.5	76.5	75.9	75.9
6'	61.3	60.9	60.4	60.4	61.1	61.1

Rha-(1→4)-Gal

1''	102.1	72.6	72.9	74.2	69.6	18.8
2''	72.6	72.9	74.2	69.6	18.8	18.8
3''	72.9	74.2	69.6	18.8	18.8	18.8
4''	74.2	69.6	18.8	18.8	18.8	18.8
5''	69.6	18.8	18.8	18.8	18.8	18.8
6''	18.8	18.8	18.8	18.8	18.8	18.8
and 75.0, respectively [22, 48]. It is worth noting that the proton chemical shift (δH) difference (Δab = δa - δb) of the two geminal protons (Ha and Hb) of CH2-26 has been recognized for ascertaining 25R or 25S orientation of the CH3-27 [Δab ≤ 0.48 for 25R, Δab ≥ 0.57 for 25S] in the spirostanol and furostanol-types of steroidal saponins [45, 54, 55]. Similarly, the abovementioned empirical law for configuration assignment of C-25 applies equally well to spirosolane-type of steroidal alkaloids (Table 3).

4.5 Terpenoids

So far, fifty-one terpenoids, including sesquiterpenoids, monoterpenoids and triterpenoids (Table 7 and Fig. 12), have been isolated from *S. lyratum*. Among them, sesquiterpenoids are the most common terpenoids in *S. lyratum*, including eudesmane-type sesquiterpenoids (102–119) [52, 56–64] and the related derivatives (120–128) [39, 47, 58, 60, 62], monocyclic sesquiterpenoids (129–139) [25, 47, 56, 58, 62], vetispirane-type sesquerpenoids (140–147) [1, 56, 62, 64], and guaiane-type sesquerpenoids (148) [47]. In addition to the abovementioned constituents, two monoterpenoids (149–150) and three pentacyclic triterpenoids (151–153) have also been found in *S. lyratum*.

4.6 Nitrogenous compounds

Nitrogenous compounds found in *S. lyratum* include arylamides (154–167) [36, 47, 65–68], aliphatic amides (168–169) [47], and other nitrogenous compounds (170–178) (Table 8 and Fig. 13) [47, 65].

4.7 Phenylpropanoids

4.7.1 Lignans

Till now, a total of twenty-eight lignans (179–205) have been isolated from *S. lyratum* (Table 9, Fig. 14), including simple lignans (184, 188) [32, 47, 68], liganonolides

Table 3 (continued)

Position	Compound 8^a (spirosolane-type)	Compound 4^b (spirosolane-type)	Compound 19^b (solanidane-type)	Compound 26^c (solanidane-type)	Compound 24^c (solalyraine-type)	Compound 33^c (solalyraine-type)
Rha''‑(1 → 2)‑Gal	102.9	104.3	105.0	105.0	104.3	104.3
1''	72.6	81.0	85.0	85.8	85.8	81.1
2''	72.8	77.6	78.0	78.0	87.9	87.9
3''	74.0	71.0	71.7	71.7	71.0	71.0
4''	70.5	78.3	77.4	77.4	78.3	78.3
5''	18.6	62.7	61.4	61.4	62.0	62.0
Glc'(1 → 4)‑Gal	104.3	104.9	105.0	105.0	104.3	104.3
1'''	94.7	95.0	95.1	95.1	94.7	94.7
2'''	94.6	94.9	95.0	95.0	94.7	94.7
3'''	94.6	95.1	95.3	95.3	94.7	94.7
4'''	94.6	95.0	95.2	95.2	94.7	94.7
5'''	94.6	95.1	95.3	95.3	94.7	94.7
6'''	62.7	62.0	61.4	61.4	62.0	62.0
Glc''‑(1 → 2)‑Glc^c	104.7	106.2	106.7	106.7	104.7	104.7
1'''	75.6	75.6	74.9	74.9	75.6	75.6
2'''	78.5	78.7	78.2	78.2	78.5	78.5
3'''	71.6	71.8	70.2	70.2	71.6	71.6
4'''	78.0	77.9	77.4	77.4	78.0	78.0
5'''	63.2	63.2	63.1	63.1	63.1	63.1
6'''	63.2	63.2	63.1	63.1	63.1	63.1

^a In C5D5N; ^b In CD3OD; ^c In CDCl3
Zhao et al. Natural Products and Bioprospecting (2022) 12:39

(185) [47], cyclolignans (179–183) [32, 47], monoepoxy-ylignans (187), bisepoxyylignans (189–193) [32, 47, 66], and norlignans (203–205) [20, 32, 47]. Lignans with one or more isovaleroyloxyl substitution, as exemplified by compounds 195–204 [20], has been frequently uncovered from S. lyratum in recent years. Notably, neolignans including compounds 186–187 [47], and 195–202, exhibited neuroprotective effects against human neuroblastoma SH-SY5Y cell injury induced by H2O2 [20].

4.7.2 Coumarins, simple phenylpropanoids and their derivatives

So far, seven coumarins (206–212) and eight simple phenylpropanoids (213–220) and their derivatives (221–227) have been isolated from S. lyratum as shown in Table 10 and Fig. 15.

4.8 Flavonoids

Thirty-one flavonoids (228–258) have been reported from S. lyratum (Table 11, Fig. 16), including flavonols (228, 230, 232–236, 246–249, 251, 256–258) [47, 54, 68, 70–72], flavanones (229, 245) [47, 72], isoflavones (237–244, 250) [47, 54, 69, 71], chalcones (231) [47], and isoflavan-4-ols (252–255) [73], usually in the form of flavonoid glycoside with C-3 or C-7 substitution of the monosaccharides (D-Glc, D-Gal, D-Xyl, L-Rha, and L-Ara) and disaccharides [Rha (1→6) Glc, Xyl (1→2) Glc, Api (1→2) Glc and Xyl (1→6) Glc].

4.9 Other compounds

In addition to the abovementioned constituents, other compounds including anthraquinones and fatty acids have also been isolated from S. lyratum (Table 12, Fig. 17).

Table 4 Steroids isolated from S. lyratum

No	Compounds	Chemical formula	Molecular Wt	Refs.
42	Tigogenin	C27H44O3	416.3290	[47]
43	Diosgenin	C27H42O3	414.3134	[47]
44	(25R)-Spirost-4-ene-3,12-dione	C27H40O3	426.2770	[47]
45	(25R)-Spirostane-4,6-dien-3-one	C27H38O3	410.2821	[47]
46	(25R)-Spirost-4-en-3-one	C27H36O3	412.1977	[47]
47	7-Ketodiosgenin	C27H38O3	428.2927	[47]
48	Agigenin	C27H36O3	428.2927	[47]
49	Hecogenin	C27H38O3	430.3083	[47]
50	Δ(28)-22-Isoprostene-2,3-diol	C27H36O3	430.3038	[47]
51	Gitogenin	C27H38O3	432.3240	[47]
52	20-Hydroxydiosgenone	C27H36O3	428.2927	[47]
53	(25R)-25-HydroxySpirost-4-en-3-one	C27H36O3	430.3083	[47]
54	Tigogenone	C27H38O3	414.3134	[50]
55	Δ(15)-deoxytigogenin-(25R)-Spirost-3,5-diene	C27H36O3	396.3208	[48]
56	Diosgenin	C27H38O3	398.3185	[35]
57	Yamogenin	C27H36O3	390.2406	[47]
58	Periplagenin	C27H36O3	314.2246	[51]
59	16-Dehydropregnenolone	C27H36O3	314.2246	[51]
60	3-Hydroxy-5-pregn-16-en-20-one	C27H36O3	316.2402	[51]
61	3β,6α,16β-Trihydroxy-5α-pregnen-20(5S)-carboxylic acid (22,16)-lactone	C27H36O3	344.2351	[47]
62	24-Methylcholest-5-en-3,16-diol	C30H48O2	416.3654	[47]
63	Cholesterol	C30H50O	386.3549	[40]
64	5α-Stigmastane-3,6-dione	C30H48O2	428.3654	[40]
65	4-Methylcholest-7-en-3β-ol	C30H46O	400.3705	[50]
66	24α-Methylcholestane-7,22-diene-3β,5α,6β-triol	C30H48O3	430.3447	[36]
67	5α-Stigmastane-3-hydroxy-6-dione	C30H46O2	430.3811	[40]
68	β-Sitosterol	C30H46O	428.7330	[44]
69	Daucosterol	C30H48O	576.4390	[44]
70	Ergosterol endoperoxide	C30H46O3	428.3290	[52]
71	9,11-Dehydroergosterol endoperoxide	C30H46O3	426.3134	[52]
Table 5 Steroidal saponins isolated from *S. lyratum*

No	Compounds	Chemical formula	Molecular Wt	Refs.
72	Diosgenin-3-O-β-D-glucopyranosyl-(1 → 3)-(O-β-D-glucopyranosyl-(1 → 2))-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-glucopyranosiduronic acid methyl ester	C_{53}H_{88}O_{27}	1064.5403	[22]
73	Diosgenin-3-O-β-D-glucopyranosyl-(1 → 3)-(O-β-D-glucopyranosyl-(1 → 2))-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-glucopyranosiduronic acid methyl ester	C_{53}H_{88}O_{27}	1034.5298	[22]
74	Diosgenin-3-O-β-D-glucopyranosiduronic acid methyl ester	C_{53}H_{88}O_{27}	1016.5192	[47]
75	Diosgenin-3-O-α-L-rhamnopyranosyl-(1 → 2)-O-β-D-glucopyranosiduronic acid	C_{50}H_{80}O_{21}	736.4034	[47]
76	Diosgenin-3-O-α-L-rhamnopyranosyl-(1 → 2)-O-β-D-glucopyranosiduronic acid methyl ester	C_{50}H_{80}O_{21}	750.1490	[47]
77	Diosgenin-3-O-β-D-glucopyranosiduronic acid	C_{50}H_{80}O_{21}	590.3455	[47]
78	Diosgenin-3-O-β-D-glucopyranosyl-(1 → 3)-O-β-D-glucopyranosyl-(1 → 4)-O-α-L-rhamnopyranosyl-(1 → 2)-O-β-D-glucopyranosiduronic acid methyl ester	C_{50}H_{80}O_{21}	1016.5192	[47]
79	Diosgenin-3-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-galactopyranoside	C_{50}H_{80}O_{21}	738.4190	[47, 49]
80	Diosgenin-3-O-β-D-glucopyranosyl-(1 → 3)-(O-α-L-rhamnopyranosyl-(1 → 2))-O-β-D-glucopyranosiduronic acid methyl ester	C_{50}H_{80}O_{21}	884.4770	[4]
81	(25R)-Spirost-5-en-3β-ol-O-β-D-glucopyranosyl-(1 → 4)-(O-α-L-rhamnopyranosyl-(1 → 2))-O-β-D-galactopyranoside	C_{48}H_{52}O_{18}	900.4719	[22]
82	Funkioside D	C_{48}H_{52}O_{18}	900.4719	[22]
83	Aspidistrin	C_{48}H_{52}O_{18}	1048.5452	[47]
84	(25R)-Spirost-5-en-3β-ol-O-β-D-glucopyranosyl-(1 → 3)-(O-α-L-rhamnopyranosyl-(1 → 2))-O-β-D-glucopyranosiduronic acid methyl ester	C_{48}H_{52}O_{18}	912.4719	[4]
85	Giotogenin-3-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-galactopyranoside	C_{48}H_{52}O_{18}	740.4347	[47]
86	(3β,25S)-Spirost-5-en-3-β-D-glucopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-galactopyranoside	C_{46}H_{50}O_{17}	902.4875	[46]
87	(3β,25S)-Spirost-5-en-3-β-D-glucopyranosyl-(1 → 3)-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-galactopyranoside	C_{46}H_{50}O_{17}	900.4719	[47]
88	Lyratoside D	C_{48}H_{52}O_{18}	592.3611	[40]
89	16-Dehydropregnenolone-3-O-α-L-rhamnopyranosyl-(1 → 2)-O-β-D-glucopyranosiduronic acid	C_{50}H_{80}O_{21}	636.3146	[51]
90	Lyratoside E	C_{48}H_{52}O_{18}	784.3881	[40]
91	Lyratoside F	C_{48}H_{52}O_{18}	800.3831	[40]
92	5α-Preg-16-en-3β-ol-20-one-3-β-D-glucopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-galactopyranoside	C_{38}H_{50}O_{17}	802.3987	[46]
93	Pallydioside B	C_{48}H_{52}O_{18}	916.4668	[40]
94	26-O-β-D-Glucopyranosyl-(22S,25S)-3β,26-dihydroxy-22-methoxyfurost-5-ene-3-O-α-L- rhamnose-(1 → 2)-3-O-β-D-glucuronopyranosyl-(1 → 3)-O-β-D-glucuronopyranosiduronic acid methyl ester	C_{48}H_{52}O_{18}	930.4824	[23]
95	26-O-β-D-Glucopyranosyl-(22S,25S)-3β,26-dihydroxy-22-methoxyfurost-5-ene-3-O-β-D-glucopyranosyl-(1 → 3)-O-α-L-rhamnose-(1 → 2)-3-O-β-D-glucuronopyranosyl-(1 → 4)-O-β-D-glucuronopyranosiduronic acid methyl ester	C_{48}H_{52}O_{18}	1078.5196	[23]
96	26-O-β-D-Glucopyranosyl-(22S,25S)-3β,26-dihydroxy-22-methoxyfurost-5-ene-3-O-α-L-rhamnose-(1 → 2)-3-O-β-D-glucuronopyranosyl-(1 → 4)-O-β-D-glucuronopyranosiduronic acid methyl ester	C_{48}H_{52}O_{18}	944.5247	[40]
97	Lyratoside C	C_{48}H_{52}O_{18}	1094.5509	[40]
98	26-O-β-D-Glucopyranosylfurostan-3,22,26-triol-3-O-β-D-glucopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-galactopyranosyl-(1 → 4)-O-β-D-galactopyranosiduronic acid methyl ester	C_{48}H_{52}O_{18}	1082.5509	[46]
99	26-O-β-D-Glucopyranosylfurostan-3,22,26-triol-3-O-β-D-glucopyranosyl-(1 → 2)-O-β-D-glucopyranosyl-(1 → 4)-O-β-D-galactopyranosyl-(1 → 4)-O-β-D-galactopyranosiduronic acid methyl ester	C_{48}H_{52}O_{18}	1096.5666	[46]
100	26-O-β-D-Glucopyranosyl-(25R)-5,20(22)-dienefurostan-3β,26-diol	C_{48}H_{52}O_{18}	576.3662	[22]
101	26-O-β-D-Glucopyranosyl-(25R)-5α-furostan-22(22)-ene-3β,26-diol	C_{48}H_{52}O_{18}	578.3819	[22]

5 Pharmacology

Water decoction of the whole herb of *S. lyratum* was commonly used to treat various diseases, and the fresh whole herb was mashed to remedy herpes and warts for external use. Modern pharmacological evaluations revealed that extracts, fractions or compounds isolated from *S. lyratum* possessed various therapeutic potentials. Recently, the plant has been most extensively studied for its anti-cancer pharmacological properties. Meanwhile, other pharmacological effects such as anti-inflammatory, anti-oxidant, anti-microbial, anti-allergy, and hepatoprotective activities of *S. lyratum* have also been assessed, as summarized in Table 13.
Table 6 Representative 13C NMR data of six common steroidal saponins (in C$_5$H$_5$N-d$_5$)

Position	Compound 73 (spirostanol-type)	Compound 79 (spirostanol-type)	Compound 60 (C$_{21}$-steroid-type)	Compound 91 (C$_{21}$-steroid-type)	Compound 97 (furostanol-type)	Compound 99 (furostanol-type)
1	37.2	37.6	32.5	37.3	37.4	37.2
2	29.9	30.4	32.2	30.2	30.2	30.8
3	78.5	78.4	70.6	78.0	77.2	77.4
4	34.8	39.4	37.3	39.3	39.2	34.8
5	44.7	141.2	45.5	141.4	141.0	44.7
6	28.9	121.6	29.1	121.3	121.6	28.9
7	32.4	32.4	32.3	31.7	32.1	32.4
8	35.3	31.9	34.0	30.3	31.6	35.2
9	54.4	50.5	56.6	50.7	50.2	54.4
10	35.8	37.2	36.0	37.1	37.0	35.8
11	21.3	21.3	21.4	20.9	21.0	21.2
12	40.1	40.1	39.3	35.1	39.7	40.0
13	40.8	40.6	46.6	46.3	40.5	41.1
14	56.4	56.8	55.4	56.4	56.5	56.3
15	32.1	32.3	35.4	32.3	32.2	32.1
16	81.1	81.2	144.7	144.6	81.3	81.3
17	63.0	63.2	155.5	155.2	64.2	64.3
18	16.5	16.4	16.3	15.9	19.3	16.5
19	12.3	19.5	12.4	19.2	19.3	12.3
20	42.0	42.1	196.3	196.2	40.7	40.5
21	14.9	15.0	30.5	27.1	16.3	16.3
22	109.2	109.3		112.6	112.6	
23	31.8	32.0		30.8	30.0	
24	29.2	29.4		28.4	28.2	
25	30.6	30.7		34.2	34.2	
26	66.9	67.0		75.2	75.2	
27	17.2	17.3		17.2	17.1	
22-OCH$_3$						
Gal-(1→3)-skeleton						
1'	102.5	103.0	100.3	102.7	102.4	
2'	73.1	73.5	73.2	73.3	73.3	
3'	75.5	75.4	75.6	75.6	75.6	
4'	79.8	79.8	81.0	81.0	81.0	
5'	75.3	75.9	75.1	75.2	75.2	
6'	60.6	61.0	60.4	60.4	60.5	
Glc'-(1→4)-Gal						
1''	104.9	107.0	105.2	105.0	105.0	
2''	81.2	75.2	86.1	86.1	86.1	
3''	87.0	78.4	78.5	78.5	78.4	
4''	70.4	72.4	71.8	71.8	71.8	
5''	77.6	78.7	78.2	78.2	78.9	
6''	63.0	63.1	63.2	63.2	63.2	
Glc''-(1→2)-Glc''						
1'''	104.7	106.9	106.9	106.9	106.9	
2'''	76.1	76.6	76.7	76.7	76.7	
3'''	77.5	77.6	77.6	77.6	77.6	
4'''	71.1	70.3	70.3	70.3	70.3	
5'''	77.8	78.9	78.9	78.9	78.9	
6'''	62.5	61.6	61.6	61.6	61.6	
Table 6 (continued)

Position	Compound 73 (spirostanol-type)	Compound 79 (spirostanol-type)	Compound 60 (C_{21}-steroid-type)	Compound 91 (C_{21}-steroid-type)	Compound 97 (furostanol-type)	Compound 99 (furostanol-type)
Xyl-(1→3)-Glc'						
1'''	104.9					
2'''	75.0					
3'''	78.5					
4'''	70.7					
5'''	67.2					
26-Glc		105.2	105.2	105.2		
1'''		75.2	75.2	75.2		
2'''		78.6	78.6	78.6		
3'''		71.7	71.7	71.7		
4'''		78.5	78.5	78.5		
5'''		62.9	62.9	62.9		
6'''						

Fig. 7 Chemical structures of steroids from *S. lyratum*
5.1 Anti-cancer

5.1.1 Extracts and fractions

The heat-clearing and detoxicating property of *S. lyratum* is favorable in the treatment of cancer [17, 19, 21]. It has been reported that *S. lyratum* treats various cancers by inhibiting the tumor growth [74, 75], enhancing immunity [76, 78] and inducing apoptosis via activating both extrinsic and intrinsic apoptotic pathways [27, 34, 79].

In *S. lyratum* tumor-bearing mice, both ethanol and aqueous extracts of *S. lyratum* could improve immune function and exhibited anti-cancer potential with certain tumor inhibitory effect by improving the activities of natural killer (NK) and cluster of differentiation 4 (CD4) cells, and elevating the contents of serum Interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α) [77, 78, 80]. Total alkaloids from *S. lyratum* (SLTA, 24 mL/kg) could inhibit the tumor growth in mice with Lewis lung cancer, and when combined with cisplatin, a synergistic effect had been shown to down-regulate the mRNA expression of Notch1, Notch3 and Jagged1 in Notch signaling pathway [81]. In addition, the hexane fraction of the methanol extract (50 mg/kg) of *S. lyratum* showed similar inhibitory activity on tumor growth in mice with Lewis lung carcinoma tumor, potentially acting through up-regulating Fas, caspase-8, caspase-3, and p53, and down-regulating FasL and B-cell lymphoma-2 (Bcl-2) in the mitochondrial pathway [27, 79].

Further studies revealed that the 70% ethanol extract of *S. lyratum* (SLE) could suppress tumor angiogenesis in vitro by repressing migration, invasion, and tube formation of tumor-derived vascular endothelial cells (Td-ECs). The mechanism of the anti-angiogenic effect of SLE may be related to the inhibitory activity of vascular endothelial growth factor (VEGF) via reducing
Fig. 10 Chemical structures of steroidal saponins from S. lyratum

Fig. 11 Representative six common steroidal saponins
the number of lipid rafts in the cell membrane [43] and interfering with the lipid rafts by agglutinating cell membrane cholesterol [75]. These changes led to the inhibition of VEGFR2 phosphorylation and activation of its downstream signaling molecules, thereby inhibiting tumor angiogenesis [43]. In addition, SLTA could induce apoptosis of lung carcinoma A549 cells by inhibiting the nuclear factor-kappa B (NF-κB) signaling pathway [82], while glycoalkaloids of *S. lyratum* (SLGS) significantly inhibited the activity of A549-derived exosomes with IC_{50} = 99.59 μg/mL [43].

5.1.2 Compounds

The cytotoxic tests involved in most in vitro studies of *S. lyratum* have shown that the compounds isolated

Fig. 12 Chemical structures of terpenoids from *S. lyratum*
No	Compounds	Chemical formula	Molecular Wt	Refs.
102	Lyratol A	C_{15}H_{24}O_{3}	252.1725	[56]
103	Lyratol B	C_{15}H_{24}O_{3}	252.1725	[57]
104	Lyratol C	C_{15}H_{26}O_{4}	270.1831	[58]
105	Dehydrocarlssonone	C_{15}H_{22}O_{2}	234.162	[52]
106	Lyratol G	C_{15}H_{26}O_{4}	268.1675	[59]
107	Solaijiangxin A	C_{15}H_{26}O_{3}	250.1529	[60]
108	Solaijiangxin G	C_{15}H_{26}O_{3}	250.1529	[61]
109	Solaijiangxin F	C_{15}H_{26}O_{3}	250.1529	[61]
110	Solanoid A	C_{15}H_{18}O_{2}	230.1307	[62]
111	Rishitin	C_{15}H_{18}O_{2}	216.1514	[62]
112	Solanoid B	C_{15}H_{20}O_{2}	216.1514	[62]
113	Solanoid D	C_{15}H_{20}O_{2}	234.162	[62]
114	(4™,5™,7™,10™)-4-Hydroxyudesmane-2,11-dien-1-one	C_{15}H_{22}O_{2}	234.162	[62]
115	Nardoeudesmol A	C_{15}H_{22}O_{2}	234.162	[62]
116	Solaijiangxin D	C_{15}H_{26}O_{3}	268.1675	[60]
117	Atrectylsnollde I	C_{15}H_{18}O_{2}	230.1307	[52]
118	1β-Hydroxy-1,2-dihydro-o-santonin	C_{15}H_{24}O_{4}	264.1362	[59]
119	Solaijiangxin H	C_{15}H_{24}O_{4}	308.1988	[64]
120	Septemlobin G	C_{15}H_{20}O_{4}	264.1362	[47]
121	Septemlobin H	C_{15}H_{20}O_{4}	280.1311	[47]
122	Lycifuranone A	C_{15}H_{20}O_{4}	248.1412	[62]
123	(+)-(R)-5,5-Dimethyl-4-(2,6-dimethylbenzyl)-solafuranone	C_{15}H_{20}O_{4}	232.1463	[47]
124	Lyratol D	C_{15}H_{26}O_{3}	248.1412	[58]
125	Solaijiangxin B	C_{15}H_{28}O_{4}	262.1205	[60]
126	Solanoid C	C_{15}H_{22}O_{2}	248.1412	[62]
127	Solaijiangxin C	C_{15}H_{22}O_{2}	246.1256	[60]
128	Solafuranone	C_{15}H_{22}O_{2}	232.1463	[39]
129	Blumenol C	C_{15}H_{20}O_{2}	210.162	[47]
130	Blumenol	C_{15}H_{20}O_{2}	224.1776	[47]
131	Dehydrovomifoliol	C_{15}H_{20}O_{2}	222.1256	[58]
132	Blumenol A	C_{15}H_{20}O_{2}	224.2412	[58]
133	Boscialin	C_{15}H_{20}O_{2}	226.1529	[56]
134	3β-Hydroxyl-5α,6α -epoxy-7-megastigmen-9-one	C_{15}H_{20}O_{2}	224.1412	[56]
135	Lyratol E	C_{15}H_{20}O_{2}	242.1518	[58]
136	(4α)-4-[(3-Oxo-1-buten-1-ylidene)-3α,5,5-trimethylcyclohexane-1α,3β-diol	C_{15}H_{20}O_{2}	224.1412	[56]
137	Lyratol F	C_{15}H_{20}O_{2}	224.1412	[56]
138	1α -Hydroxybisabol-2,10-dien-4-one	C_{15}H_{20}O_{2}	236.1776	[62]
139	Solalyratin B	C_{15}H_{20}O_{6}	418.2355	[25]
140	Anhydro-β-rotunol	C_{15}H_{20}O_{2}	216.1514	[62]
141	2-(1'Y,2™,di-hydroxyl-1™-methyl-ethyl)-6,10-dimethyl-9-hydroxy-10-spirodec-6-en-8-one	C_{15}H_{20}O_{4}	268.1675	[56]
142	Solaijiangxin E	C_{15}H_{20}O_{4}	292.2038	[1]
143	2-Hydroxysolaijiangxin E	C_{15}H_{20}O_{4}	308.1988	[1]
144	Solaijiangxin I	C_{15}H_{20}O_{4}	292.2038	[64]
145	7-Hydroxysolaijiangxin I	C_{15}H_{20}O_{4}	308.1988	[64]
146	(1'S,2'R,5'R,10'R)-2-(1'Y,2™,di-hydroxyl-1™-methyl-ethyl)-6,10-dimethylspiro[4,5]dec-6-en-8-one	C_{15}H_{20}O_{4}	252.1725	[56]
147	(1‘R,2‘R,5‘R,10‘R)-2-(1‘Y,2‘™,di-hydroxyl-1™-methyl-ethyl)-6,10-dimethylspiro[4,5]dec-6-en-8-one	C_{15}H_{20}O_{4}	252.1725	[56]
148	Pipelol A	C_{15}H_{20}O_{2}	254.1882	[47]
149	Paeeveitol C	C_{15}H_{20}O_{2}	170.1307	[47]
150	2-Phenylethyl-(6-O-α-L-arabinofuranosyl)-O-β-D-glucopyranoside	C_{21}H_{32}O_{10}	444.1995	[47]
from *S. lyratum* possess a good cytotoxic potential for several cancer cells.

In the process of cytotoxic investigation by MTT assay and flow cytometry, the characteristic compounds 5, 8, 21 from the methanolic extract of *S. lyratum* showed significant cytotoxicities against huh-7 and HepG2 cell lines with IC₅₀ values of 9.6 ± 0.5 and 10.8 ± 0.1 μM, 11.7 ± 0.3 and 19.4 ± 0.4 μM, and 10.3 ± 1.5 and 91.8 ± 9.4 μM, respectively. The mechanism was attributed to cell cycle arrest at S-phase [83]. while sesquiterpenoids 104, 106, 108, 109, 116, 118, 124, 126, 127, 132, 135, 142, and 143 were evaluated for their cytotoxicity activities with IC₅₀ 1.9–8.6 μg/mL against HONE-1 cells [1, 57, 58, 60, 61]. Among them, compounds 126–127 showed potent cytotoxicity activity with IC₅₀ 2.1 and 1.9 μg/mL, slightly weaker than the positive controls etoposide and cisplatin (IC₅₀ 1.6 and 1.7 μg/mL) [1, 57, 58, 60, 61]. Notably, the IC₅₀ differences of the positive controls (etoposide and cisplatin) may have been caused by the operation of the author, so the experimental cytotoxicity results need to be further verified.
Further, the cytotoxic potentials of nine steroids saponins and alkaloids (36, 72, 73, 81–83, 86) against ASGC7901 and BEL-7402 cancer cell lines were tested, and compounds 72, 73, and 83 showed attractive anti-proliferative activities with respective IC\textsubscript{50} values of 6.39–9.11 μM, 3.19–8.86 μM and 0.39–1.16 μM, as compared with IC\textsubscript{50} values of 0.17–5.34 μM and 8.15–23.06 μM of positive control adriamycin and 5-fluorouracil, respectively [22]. Another, a glycoalkaloid (10) exhibited significant cytotoxicity against mouse colon cancer CT-26 cells with IC\textsubscript{50} 3.5 μM, as compared to IC\textsubscript{50} values of 1.8 μM of positive control etoposide, in clue of the inhibition on the expressions of survivin and NF-κB/p65 and the induction of the AIF nuclear translocation [74]. Besides those characteristic constituents of S. lyratum, four other compounds 267–270 have been evaluated their cytotoxicities against hepatocellular carcinoma cell lines, and 267 and 269 showed significant inhibitory activities against HepG2 cell lines with IC\textsubscript{50} values of 46.07 μM and 45.39 μM, respectively [26].

5.2 Anti-inflammatory

5.2.1 Extracts and fractions

Inflammation is closely related to cancer disease [84]. The detoxication and detumescence effect of S. lyratum can be used as a supplement to modern anti-inflammatory agents.

Total alkaloid fraction from the 70% ethanol extract of S. lyratum significantly relieved the inflammatory effect of the lipopolysaccharide-stimulated RAW264.7 macrophages for 48 h. Further evaluation revealed that this total alkaloid fraction could inhibit the release of Cyclooxygenase-2 (COX-2), and Prostaglandin E2 (PGE2) from lipopolysaccharide-stimulated RAW264.7 macrophages [85].

5.2.2 Compounds

In vitro, diosgenin-3-α-L-rhamnosyl-(1→2)-O-β-D-glucopyranosiduronic acid (75) could inhibit the lipopolysaccharide-induced expression of intercellular cell adhesion molecule-1 (ICAM-1) protein at 16 μg/mL, and exhibited anti-inflammatory activities [86]. In addition, the anti-inflammatory experiments with

Table 8 Nitrogenous compounds isolated from S. lyratum

No	Compounds	Chemical formula	Molecular Wt	Refs.
154	3-(4-Hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)-2-methoxyethyl] acrylamide	C\textsubscript{17}H\textsubscript{22}NO\textsubscript{5}	343.142	[65]
155	N-trans-Feruloyl-3-methoxyoctopamine	C\textsubscript{19}H\textsubscript{21}NO\textsubscript{5}	359.1369	[36]
156	N-trans-Feruloyloctopamine	C\textsubscript{19}H\textsubscript{21}NO\textsubscript{5}	329.1263	[65]
157	(E)-N-(2-Hydroxy-2-(4-hydroxyphenyl)-ethyl)-3-(4-hydroxyphenyl) acrylamide	C\textsubscript{17}H\textsubscript{20}NO\textsubscript{5}	299.1158	[66]
158	N-trans-Feruloylfuramine	C\textsubscript{19}H\textsubscript{21}NO\textsubscript{5}	313.353	[65]
159	N-trans-Feruloyl-3-O-methyl dopamine	C\textsubscript{19}H\textsubscript{21}NO\textsubscript{5}	343.142	[47, 65]
160	N-trans-Coumaroyloctopamine	C\textsubscript{19}H\textsubscript{21}NO\textsubscript{5}	283.1208	[47, 67]
161	N-cis-Feruloylfuramine	C\textsubscript{19}H\textsubscript{21}NO\textsubscript{5}	313.353	[47]
162	N-cis-Femloyloctopamine	C\textsubscript{19}H\textsubscript{21}NO\textsubscript{5}	329.1263	[36]
163	(E)-N-(4-Aminobutyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide	C\textsubscript{18}H\textsubscript{20}NO\textsubscript{5}	264.1474	[68]
164	(Z)-N-(4-Aminobutyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide	C\textsubscript{18}H\textsubscript{20}NO\textsubscript{5}	264.1474	[68]
165	Hibiscuwanin B	C\textsubscript{18}H\textsubscript{20}NO\textsubscript{5}	491.1944	[47]
166	N-trans-Femloybutyric acid	C\textsubscript{18}H\textsubscript{20}NO\textsubscript{5}	279.1107	[36]
167	N-Docosanoylurumine	C\textsubscript{18}H\textsubscript{20}NO\textsubscript{5}	459.4076	[47]
168	Soyacerebroside I	C\textsubscript{18}H\textsubscript{20}NO\textsubscript{5}	713.5442	[47]
169	Soyacerebroside II	C\textsubscript{18}H\textsubscript{20}NO\textsubscript{5}	713.5442	[47]
170	Strychnine	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	334.1681	[65]
171	Neoecchinulin A	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	323.1634	[47]
172	β-Hydroxyindole acetic acid	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	175.0633	[47]
173	(R)-2-Amino-5-((1H-indol-3-yl)-4-oxopentanoic acid	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	246.1004	[47]
174	Dihydrouracil	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	114.0429	[47]
175	Uracil	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	112.0273	[47]
176	Thymidine	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	242.0903	[47]
177	Uridine	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	244.0695	[47]
178	Adenosine	C\textsubscript{19}H\textsubscript{20}NO\textsubscript{5}	267.0968	[47]
polymorphonuclear leukocytes of rats (rat PMNs) with ginkgolide B as the positive control, compounds 139, 207–210 showed significant β-glucuronidase inhibitory activities with IC$_{50}$ values range of 6.3–9.1 μM [25], while four 4-hydroxyisoflavans 252–255 afforded anti-inflammatory activities with inhibitory ratios release of β-glucuronidase in the range of 30.3–38.6% at 10 μM [73].

5.3 Antioxidant activity

5.3.1 Extracts

Modern pharmacological studies have revealed that cancer or other diseases are primarily associated with the production and accumulation of excessive free radicals [87], which are commonly produced by the continuous contact between our body and the outside world. Thus,
Antioxidants can effectively relieve the harmful effects of free radicals. It has been confirmed that S. lyratum extracts and compounds possess significant antioxidant activities. 50% Ethanol extract of S. lyratum (10 μg/mL) could protect against oxidized low-density lipoprotein (Ox-LDL)-induced injury in cultured human umbilical vein endothelial cells (HUVECs) by direct antioxidative action [88]. In the DPPH radical-scavenging tests in vitro using the spectrophotometric method with vitamin C as the positive control, the ethanol and ethyl acetate extracts from S. lyratum showed antioxidative potential with IC50 of 0.230 mg/mL and 1.010 mg/mL, respectively [89].

5.3.2 Compounds

Five flavones 236, 248, 249, 251, and 258 from the ethanol extracts of S. lyratum possessed the capability of scavenging DPPH free radicals with IC50 values of 2.56–21.33 μg/mL [70]. It seems that the glycosidation of the flavone C-3 and C-5 is essential for the scavenging of DPPH free radicals.

5.4 Antimicrobial

5.4.1 Extracts and fractions

There were reports verified the antibacterial potential of S. lyratum extracts. For example, the water-soluble polysaccharide of S. lyratum exerted a significant antibacterial activity against Staphylococcus aureus, Salmonella, Pasteurella, Escherichia coli, Candida albicans, and Pseudomonas aeruginosa. The inhibition zone diameters were > 13 mm at a concentration of 120 mg/mL [90].

5.4.2 Compounds

Several gram-positive bacteria (S. aureus and Enterococcus faecalis) were used to assess the antimicrobial activity of a new compound 266 from S. lyratum, with minimum inhibitory concentration (MIC) values of

Table 9 Lignans isolated from S. lyratum

No	Compounds	Chemical formula	Molecular Wt	Refs.
179	(+)‐Isolariciresinol	C22H22O8	414.1315	[47]
180	ent‐Isolariciresinol	C22H22O8	414.1315	[32, 47]
181	(+)‐Lyoniresinol	C22H22O8	420.1784	[47]
182	Isolariciresinol‐9‐acetate	C22H22O7	402.1679	[66]
183	Aviculin	C22H22O8	414.1315	[32, 47]
184	(−)‐Secoisolariciresinol	C22H22O8	362.1729	[32, 47]
185	(+)‐Matairesinol	C22H22O8	358.1416	[47]
186	Leptolepisin D	C22H22O10	516.1995	[32, 47]
187	Cixuvatone	C22H22O9	434.1577	[32, 47]
188	3‐Methoxy‐4‐hydroxy‐5‐(8’S)‐3’‐methoxy‐4’‐hydroxyphenylpropyl alcohol E‐cinnamic alcohol 4‐O‐β‐D‐glucopyranoside	C20H22O11	522.2101	[68]
189	(+)‐Pinoresinol	C10H14O6	358.1416	[32, 47]
190	(+)‐Medioresinol	C10H14O7	388.1522	[47]
191	(+)‐Syringaresinol	C10H14O7	418.1628	[32]
192	(−)‐Syringaresinol	C10H14O7	418.1628	[47]
193	(−)‐Epipinoresinol	C10H14O7	388.1522	[32, 47]
194	(+)‐Lariciresinol	C10H14O5	360.1573	[47]
195	(7S,8R,7'R,8'R)‐Solanumin A	C10H14O5	544.2672	[20]
196	(7R,8S,7'S,8'S)‐Solanumin A	C10H14O5	544.2672	[20]
197	Solanumin B	C10H14O5	544.2672	[20]
198	Solanumin C	C10H14O5	544.2672	[20]
199	Solanumin D	C10H14O5	544.2672	[20]
200	Solanumin E	C10H14O5	544.2672	[20]
201	Solanumin F	C10H14O5	558.2829	[20]
202	Solanumin G	C10H14O5	558.2829	[20]
203	Solanumin H	C10H14O5	456.2148	[20]
204	Solanumin I	C10H14O5	526.2567	[20]
205	Cinnacassin D	C10H14O5	508.1733	[47]
2.0 μM (1.08 μg/mL) and 10.0 μM (5.44 μg/mL), respectively [21].

5.5 Other activities
The extracts of *S. lyratum* showed a therapeutic potential on the tetrachloride-induced liver damage in rats, by decreasing significantly the activity of transaminase in rat serum [91, 92]. Further, there was an in vivo report revealed that the aqueous extract of *S. lyratum* possessed strong antiallergy activity [93] by inhibiting dose-dependently the histamine release from the rat peritoneal mast cells and decreasing the mRNA expression of L-histamine decarboxylase [94]. Lastly, the ethanol extract of *S. lyratum* possesses molluscicidal activities with IC50 values of 30–50 mg/mL [95].

Notably, several Chinese patent prescriptions with *S. lyratum* as the major component herb, showed significant anticancer efficacies in reported clinic trials. For example, ‘Baiyingtang’ (composed of *S. lyratum*, *Herba Patriniae*, *Houttuynia cordata*, *Lilium brownii* var., *Asparagus cochinchinensis*(Lour.)Merr.) retention enema could reduce plasma transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) levels and increase plasma IL-4 levels in patients with pelvic tumors receiving radiotherapy [96]. ‘Baiying decoction’ (composed of *S. lyratum*, *Ophiocordyceps sinensis*, *Houttuynia cordata*, *Lilium brownii* var., *Asparagus cochinchinensis*(Lour.)Merr.) treatment could ameliorate the marrow suppression and the quality of life in patients with advance non-small cell lung cancer, with high safety [97].

6 Toxicology
Up to now, the toxicity studies of the isolated compounds and extracts of *S. lyratum* may have been overlooked by researchers, while few studies have found the toxic potential of *Solanum* glycoalkaloid [125]. The toxic properties of Glycoalkaloids including solamargine (8) have been reviewed by Sinani Al S.S.S. et al. are due to (1) their ability to disrupt cell-membrane function by complexation with membrane 3β-hydroxysterols to form aggregates and damage the membrane integrity [126], (2) their anti-acetylcholinesterase activity on the central nervous system [126, 127], and (3) changes caused by them in active transport of ions through membranes, resulting in disorders in general body metabolism [126]. Additionally, in the acute toxicity experiment with rats, neither mortality nor clinical alterations were shown, except for the mild transient diarrhea with 70% ethanol extract of *S. lyratum* at 5000 mg/kg [31]. In future, more pharmacological evidences should be sought on the possible adverse effects and the toxicities of *S. lyratum* extracts and their bioactive constituents when

No	Compounds	Chemical formula	Molecular Wt	Refs.
206	Scopoletin	C_{10}H_{8}O_{4}	192.0423	[47]
207	Solalyrin A	C_{20}H_{16}O_{5}	336.0998	[25]
208	Coumestrol	C_{15}H_{8}O_{5}	268.0372	[25]
209	Puerariafuran	C_{16}H_{12}O_{5}	284.0685	[25]
210	9-Hydroxy-2,2-dimethylpyrano[5′,6′:2,3]-coumestan	C_{20}H_{16}O_{5}	336.0998	[25]
211	Magnolioside	C_{18}H_{18}O_{6}	354.0951	[69]
212	7-(2,3-Epoxy-3-methyl-3-butyloxy)-6-methoxycoumarin	C_{17}H_{20}O_{5}	276.0998	[47]
213	Caffeic acid	C_{7}H_{6}O_{4}	180.0423	[47]
214	p-Hydroxybenzaldehyde	C_{7}H_{6}O_{4}	122.0368	[47]
215	Protocatechuic acid	C_{7}H_{6}O_{4}	154.0266	[47]
216	Syringaldehyde	C_{9}H_{10}O_{4}	182.0579	[47]
217	Syringate	C_{9}H_{10}O_{5}	198.0528	[47]
218	Isovanillin	C_{8}H_{8}O_{3}	152.0473	[47]
219	Vanillic acid	C_{8}H_{8}O_{3}	168.0423	[36]
220	p-Hydroxyphenethyl alcohol	C_{8}H_{10}O_{2}	138.0681	[36]
221	Zhebeiresinol	C_{14}H_{16}O_{6}	280.0947	[32, 47]
222	Eugenyl-O-β-D-apiofuranosyl-(1''→6'')-O-β-D-glucopyranoside	C_{20}H_{28}O_{11}	444.1632	[47]
223	Syringin	C_{16}H_{20}O_{7}	372.1420	[32]
224	Arbutin	C_{16}H_{20}O_{7}	358.1416	[36]
225	Dihydroconiferyl ferulate	C_{20}H_{22}O_{7}	388.1522	[36]
226	Dihydrosinapyl ferulate	C_{22}H_{24}O_{7}	502.4022	[47]

Fig. 16 Chemical structures of flavonoids from S. lyratum
used in treatments of acute, subchronic, or chronic diseases. Further, more clinical trials must be conducted to evaluate the safety and clinical efficacy of *S. lyratum* in humans.

7 Conclusion

This review summarized the latest advancements of *S. lyratum* in botany, traditional uses, phytochemistry, pharmacology, and toxicology. Phytochemical and pharmacological studies have validated many modern usages of this plant. A total of 270 chemical constituents have been isolated from *S. lyratum*, including steroidal alkaloids, steroidal saponins, terpenoids, nitrogenous compounds, phenylpropanoids, flavonoids, etc. It has been popular in traditional practices due to its potential efficacy on cancer and inflammation, and showed important biological properties in scientific investigations. In the phytochemical analysis of *S. lyratum* extracts, aqueous and ethanol extracts were commonly acquired from *S. lyratum*, whose main components included total alkaloids and total saponins. In modern pharmacological studies, compounds and extracts from *S. lyratum* were evaluated in vivo and in vitro, and their anticancer and cytotoxic, anti-inflammatory, antioxidant, antimicrobial, anti-allergy, and hepatoprotective activities have been demonstrated. However, many aspects of *S. lyratum* have not been studied yet and some relative studies on *S.

No	Compounds	Chemical formula	Molecular Wt	Refs.
228	5,7,3',5'-Tetrahydroxy-3,4'-dimethoxy-6'-prenylflavonoide	C_{22}H_{32}O_{6}	414.1315	[47]
229	5,7-Dihydroxy-6-isopentenyl-2,4'-dimethoxydihydroflavone	C_{22}H_{24}O_{6}	384.1573	[47]
230	3-Methoxyquercetin	C_{16}H_{12}O_{6}	316.0583	[47]
231	7,9,2,4'-Tetrahydroxy-8-isopentenyl-5-methoxychalcone	C_{21}H_{20}O_{6}	370.1416	[47]
232	6,7-Bis-2,3'-((2,2-dimethylhydropyrano)-5,4'-dihydroxy-3-methoxyflavone	C_{30}H_{30}O_{7}	452.1835	[47]
233	Wightianin	C_{21}H_{20}O_{8}	402.1315	[47]
234	5-Hydroxy-4,7-dimethoxy-8,6,7-dimethyldihydroflavone	C_{19}H_{17}O_{7}	362.1154	[47]
235	Quercetin 3'-O-β-D-glucoside	C_{16}H_{16}O_{13}	464.0955	[47]
236	Kaempferol	C_{18}H_{14}O_{9}	286.0477	[47]
237	3'-Hydroxydaidzein	C_{15}H_{10}O_{8}	270.0528	[47]
238	Daidzein	C_{15}H_{10}O_{4}	254.0579	[47]
239	Formononetin	C_{15}H_{22}O_{8}	268.0736	[71]
240	Ononin	C_{16}H_{22}O_{8}	240.0579	[69]
241	Daidzin	C_{15}H_{22}O_{8}	416.1107	[69]
242	Genistin	C_{15}H_{22}O_{8}	432.1056	[69]
243	Genistein	C_{15}H_{22}O_{8}	270.0528	[71]
244	5-Hydroxyxylononin	C_{22}H_{20}O_{14}	446.1213	[69]
245	Naringenin	C_{16}H_{12}O_{5}	272.0685	[72]
246	Apigenin	C_{16}H_{12}O_{5}	270.0528	[71]
247	Apigenin-7-O-β-D-glycoside	C_{21}H_{20}O_{9}	432.1056	[68]
248	Apigenin-7-O-β-D-apiofuranosyl(1 → 2)-O-β-D-glucopyranoside	C_{28}H_{32}O_{14}	564.1479	[68]
249	Quercetin	C_{15}H_{10}O_{8}	304.0417	[72]
250	Acacetin-7-O-glucoside	C_{15}H_{10}O_{8}	352.1574	[50]
251	Rutin	C_{15}H_{12}O_{8}	360.0477	[67]
252	4,7,2'-Trihydroxy-4'-methoxyisoflavan	C_{16}H_{22}O_{8}	288.0998	[73]
253	Lyratin A	C_{20}H_{22}O_{8}	342.1467	[73]
254	Lyratin B	C_{20}H_{22}O_{8}	340.1311	[73]
255	Lyratin C	C_{20}H_{22}O_{8}	358.1416	[73]
256	Kaempferide	C_{19}H_{22}O_{8}	300.0634	[70]
257	Wogonin	C_{18}H_{22}O_{8}	284.0685	[47]
258	Afzelin	C_{21}H_{32}O_{10}	432.1056	[70]
should be further explored in the following aspects in the future.

Firstly, the pharmacological activities are mostly proven from the aqueous and ethanol extracts from *S. lyratum*, while insufficient pharmacological studies have been conducted on pure compounds. In addition, some activities are lacking comparisons to standards or positive and negative controls. Other studies especially on anticancer and anti-inflammatory activities have shown that the IC\textsubscript{50} values of the test extracts/compounds of *S. lyratum* are above 200 μg/mL, which can be considered that such extracts/compounds are actually poorly active.

Secondly, pharmacological studies were mostly performed in cell models and animals while investigations in humans have been seldomly performed. Hence, the future investigation should be focused on the bioactivity of *S. lyratum* in various clinical studies with humans. In addition, the DPPH radical scavenging test and antimicrobial activities also should be guaranteed in vivo, instead of solely relying on method models in vitro.

Thirdly, global quality control standards of *S. lyratum* are needed urgently and should be improved. Simultaneous qualitative and quantitative measures are recommended to be used for those major active constituents of *S. lyratum*.

Table 12 Other compounds isolated from *S. lyratum*

No	Compounds	Chemical formula	Molecular Wt	Refs.	
259	Erythritol	C\textsubscript{4}H\textsubscript{10}O\textsubscript{4}	122.0579	[47]	
260	Mannitol	C\textsubscript{6}H\textsubscript{12}O\textsubscript{6}	182.0790	[47]	
261	3,4',5'-Trihydroxystilbene	C\textsubscript{14}H\textsubscript{12}O\textsubscript{3}	228.0786	[72]	
262	1,3,5-Trihydroxy-7-methylantraquinone	C\textsubscript{15}H\textsubscript{14}O\textsubscript{5}	272.0685	[50]	
263	1,5-Dihydroxy-3-methoxy-7-methylantraquinone	C\textsubscript{16}H\textsubscript{14}O\textsubscript{5}	286.0841	[50]	
264	Physcion-8-O-β-D-glucopyranoside	C\textsubscript{22}H\textsubscript{24}O\textsubscript{10}	446.1213	[50]	
265	Ethyl-α-D-arabinofuranoside	C\textsubscript{7}H\textsubscript{14}O\textsubscript{5}	178.0841	[69]	
266	Solanrubiellin A	C\textsubscript{14}H\textsubscript{20}O\textsubscript{5}	544.1733	[21]	
267	Solacetal A	C\textsubscript{27}H\textsubscript{40}O\textsubscript{7}	476.2774	[26]	
268	Solacetal B	C\textsubscript{26}H\textsubscript{38}O\textsubscript{6}	446.2628	[26]	
269	Solacetal C	C\textsubscript{28}H\textsubscript{44}O\textsubscript{8}	478.2931	[26]	
270	Solacetal D	C\textsubscript{28}H\textsubscript{44}O\textsubscript{8}	508.3036	[26]	
Bioactivities	Object	In vitro / in vivo	Mechanism	Extracts/Compounds	Refs.
-----------------------	---	--------------------	--	--	---
Anti-lung cancer	mice with Lewis lung cancer	In vivo	Down-regulating the expression of Notch signaling pathway, improving the NK cell activity, increasing the number of CD8+ cells, increasing sub-G1 peaks, and activating caspase-8,-9, and -3 protein, \(IC_{50} = 170 \mu g/mL \)	Total alkaloids, methanol and ethanol extracts	[19, 82, 98]
	Balb/C mouse with A549 lung cancer	In vivo / In vitro	Up-regulating the expression of bid mRNA, caspase-9, and inhibiting the tumor angiogenesis in Balb/C mice	50%, 80% ethanol extracts	[99]
	A549 cells and tumor-derived vascular	In vitro	Interfering with cell membrane lipid rafts, inhibiting tumor angiogenesis, inhibiting the activity of A549-derived exosomes, increasing immunity, suppressing Td-ECs migration, invasion, and tube formation, inhibiting pathways proteins, \(IC_{50} = 99.9-100 \mu g/mL \)	Compounds 1–4, 19, 31, 32, 37–41	[33, 43]
	endothelial cells				
	AS49 cells	In vitro	Increasing expression of IκBa and fas protein, decreasing expression of NF-xB/ p65, Survivin, fasL and p-ικBa proteins, arresting the cell cycle at the G2 phase, down-regulating the protein levels of PI3K, protein kinase B (Akt), Ras, microtubule-associated protein2 (MAP2), and VEGF, activating caspase-8 and caspase-3 proteins, \(IC_{50} = 6.54-13.49 \mu g/mL \)	Total alkaloids, ethanol and aqueous extracts, Compounds 42, 44, 55, 231	[47, 82, 86, 100–102]
	SPC-A-1 cells	In vitro	Inhibiting cell proliferation, promoted cell apoptosis, decreasing the expression of Bcl-xl, increasing the expression of fas, caspase-3, and bid, \(IC_{50} = 5–12.5 \) mg/mL	Ethanol and aqueous extracts	[103, 104]
Anti-hepatoma	Hep3B cells	In vitro	Inducing apoptosis and inhibit proliferation, \[140 IC_{50} = 47.81 \mu M, 269 IC_{50} = 46.07 \mu M, 271 IC_{50} = 45.39 \mu M \]	Compounds 138, 267, 269	[20, 26, 62]
	BEL-7402 cells	In vitro	Inducing apoptosis, activity similar to adriamycin and greater than 5-fluorouracil, \(IC_{50} = 0.39–23.0 \mu M \)	Compounds 36, 72, 73, 81–83, 86	[22]
	Huh-7 cells	In vitro	Inducing apoptosis, activating p38 and Caspase-3 protein, \(IC_{50} = 15 \) mg/mL	Total alkaloids	[105]
	SMMC-7721 cells	In vitro	Up-regulating Fas, caspase-8, caspase-3, and p53, down-regulating FasL, survivin and Bcl-2 in the mitochondrial pathway, \(IC_{50} = 5 \) mg/L	75% ethanol extracts	[79]
Bioactivities	Object	In vitro/ in vivo	Mechanism	Extracts/Compounds	Refs.
-----------------------	---------------------------------	-------------------	--	--	---------------
Anti-sarcoma	S180 tumor-bearing mice	In vivo	Arresting the cell cycle at G0/G1 phase, improving immune response, promoting splenocytes proliferation, NK cell and Cytotoxic T lymphocyte (CTL) activity, interleukin-2 and interferon-γ production from splenocytes, and increasing the thymus and spleen indices to a certain extent	EtOAc fractions, total saponins, ethanol extracts	[77, 80, 106]
Anti-cervical cancer	HeLa cells	In vitro	Up-regulating the expression of caspase-3 mRNA, down-regulating the expression of survivin mRNA, activation of caspase-3, IC_{50} = 14.53 μg/mL	75% Ethanol and aqueous extracts, compounds: 44, 55, 59, 74, 75, 177, 229, 231, 237	[42, 47, 107–109]
Anti-ovarian cancer	A2780 cells	In vitro	Inducing cell cycle arrest, enhanced reactive oxygen species (ROS) accumulation, activating the p53 signaling pathway, increasing the percentage of Cluster of Differentiation 86 (CD86+) cells, decreasing the percentage of Cluster of Differentiation 26 (CD26+) cells, and down-regulating expression of Bcl-2 mRNA	Ethanol and aqueous extracts	[110]
HO8910 cells	In vitro	Inducing apoptosis, inhibiting proliferation in a dose-dependent, IC_{50} = 5 μg/mL	75% Ethanol extracts	[111]	
SKOV3 cells	In vitro	Arresting the cell cycle at the G1/S phase, up-regulating the expression of caspase-3, caspase-9 mRNA anti-tumor effect, and increasing the lactate dehydrogenase (LDH) release, IC_{50} = 4.51–7.78 μg/mL	90% Ethanol extracts	[112]	
Anti-breast cancer	CHO cells	In vitro	Arresting the cell cycle at G2 phase, and inhibiting proliferation of CHO cells, IC_{50} = 0.5–1 g/mL	Aqueous extracts	[113]
MCF-7 cell	In vitro	Up-regulating the expression of Bax mRNA and down-regulating the expression of survivin mRNA, IC_{50} = 160 μg/mL	Total saponins	[114]	
Bioactivities	Object	In vitro / in vivo	Mechanism	Extracts/Compounds	Refs.
-----------------------	---------------------	--------------------	--	--	-------
Anti-oral cancer	HSC-3, SAS, and CAL-27 cell	In vitro	Arresting the cell cycle at G0/G1 phase, suppressing the anti-apoptotic proteins Bcl-2 and Bcl-xl, increasing the pro-apoptotic proteins Bax and Bad, promoting the production of ROS and Ca^{2+}, decreasing the mitochondrial membrane potential, stimulating NO production, and activating caspase-8, -9, and -3 proteins activities, IC_{50} = 40 μg/mL	Chloroform extracts	[115]
Anti-stomach cancer	BGC823 cells	In vitro	Blocking the cell cycle in the G_{1}/M phase, inducing apoptosis and inhibiting proliferation, IC_{50} = 25 μg/mL	Compounds 44, 55, 231	[47]
	SGC-7901 cells	In vitro	Down-regulating expression of Bcl-xl mRNA and proteins, up-regulating expression of bid mRNA and proteins, caspase-9 and bid genes, strengthening the activity of Caspase-3, blocking the cell cycle in the G_{2}/M phase, IC_{50} = 1.24–7.65 g/L	Aqueous extracts, total saponin, compounds 8, 86	[3, 116, 117]
Anti-colon cancer	HT-29 cells	In vitro	Down-regulating expression of survivin gene, up-regulating the expression of Caspase-3, 8, 9 mRNA and proteins, down-regulating the expression of Notch 1 mRNA, influencing the Notch signaling pathway to inhibit colorectal cancer cell proliferation and inducing apoptosis	Aqueous extracts	[118]
	CT-26 cells	In vitro	Increasing caspase-independent apoptosis associated with increased nuclear translocation of AIF, IC_{50} = 3.5 μM	Compounds 10, 105	[74]
	HT-29 cells	In vitro	Inducing apoptosis and inhibiting proliferation, ED_{50} = 1.9–3.7 μg/mL	Compounds 107, 116, 125, 127, 134, 136, 142, 143	[1, 60, 119]
Anti-leukemia	Leukemia mice	In vivo	Inhibiting the precursors of T cells and B cells, promoting the precursors of macrophages, increasing macrophage and NK cell activities, promoting the activity of macrophage phagocytosis in the peripheral blood mononuclear cells (PBMC) and peritoneal cells	Ethanol extracts	[78]
	HL-60 cells	In vitro	Up-regulating the expression of Bax mRNA, down-regulating expression of Bcl-2 mRNA, increasing Bax/ Bcl-2 protein ratio, IC_{50} = 3.5 mg/mL	Aqueous extracts	[120]
	P-388 cells	In vitro	Inhibiting proliferation and inducing apoptosis, ED_{50} = 2.7–3.1 μg/mL	Compounds 134, 136	[119]
Bioactivities	Object	In vitro/in vivo	Mechanism	Extracts/Compounds	Refs.
----------------	--	------------------	--	--	---------------
Anti-prostate cancer	DU-145 cells and xenograft athymic nude mice	In vitro/in vivo	Blocking the expression of cell cycle proteins (Cyclin D1, Cyclin E1, CDK2, CDK4, CDK6, and P21) and inducing apoptosis via ROS and activation of the P38 pathway, IC_{50} = 32.18 μM	Steroidal glycoalkaloid	[121]
Anti-bone cancer	U-2 OS cells	In vivo	Arresting the cell cycle at the G1 phase, promoting the production of ROS and NO, decreasing the levels of mitochondrial membrane potential and promoting the activations of caspase-8, 9, 3; promoting the Bax level and release of cytochrome C, IC_{50} = 25 μg/mL	50% Ethanol extracts	[122]
Anti-neuroblastoma	SH-SYSY cells	In vitro	Increasing the expression of Bcl-2 protein, and inhibiting the expression of Bax protein in tert-Butyl hydroperoxide (tBHP)-induced SH-SYSY cells. inhibiting tBHP-induced ROS production, IC_{50} = 25–50 μM	Total alkaloids, compounds 194-203	[20, 123]
Anti-inflammatory	SD rats	In vivo	Decreasing the content of PGE2 and cyclooxygenase-2 (COX-2) in serum polymorphonuclear leukocytes of rats, IC_{50} = 10 μM	Aqueous and ethanol extracts, total saponins	[85, 86, 124]
Anti-microbial	Staphylococcus aureus, Escherichia coli, Salmonella, Candida albicans, Pseudomonas aeruginosa	In vitro	Inhibiting the growth of Staphylococcus aureus, Escherichia coli, salmonella, and Candida albicans, MIC = 100 mg/mL, pseudomonas aeruginosa, MIC = 50 mg/mL	Crude extracts, polysaccharides	[73]
	Gram-positive bacteria	In vitro	Inhibiting the S. aureus and E. faecalis, MIC = 2–10 μM	Compound 266	[21]
Anti-allergy	Normal mice	In vivo	Inhibiting the histamine release, adding the level of cAMP, inhibiting overexpression of L-histamine decarboxylase mRNA	Aqueous extracts	[2]
	Mast cells	In vitro	Reducing the expression level of the mRNA of histidine decarboxylase (HDC), affecting IgE-mediated anaphylactic reaction and substance P-induced HDC mRNA over-expression	Aqueous extracts	[93]
	Normal mice	In vivo	Inhibiting the allergy to peritoneal mast cell histamine, delaying the kinetics of Low-Density Lipoprotein (LDL) oxidation, increasing the activity of peroxidase (POD) and superoxide dismutase (SOD), reducing the activity of malonaldehyde (MDA)	Aqueous extracts	[88]
Bioactivities	Object	In vitro / in vivo	Mechanism	Extracts/Compounds	Refs.
-------------------------------	------------------	--------------------	---	---	---------
Antioxidant activity	SH-SYSY cells	In vitro	Preserving mitochondrial membrane potential and reducing oxidative stress, \(\text{IC}_{50} = 4.64 \mu M, 457.12 \mu M \), respectively; inhibiting \(\text{tBHP} \)-induced ROS production, oxidative stress, \(\text{IC}_{50} = 20 \text{ mg/L} \)	Compounds: 9, 10, Total alkaloids	[87, 123]
			Compounds 9, 10 Total alkaloids		
			Scavenging activity of the stable DPPH free radical, \(\text{IC}_{50} = 5.98–23.16 \text{ mg/L} \)	Ethyl acetate extracts, compounds 236, 248, 249, 251, 258	[70]
			Scavenging free radical, ethanol extract \(\text{IC}_{50} = 0.23 \text{ mg/mL} \), ethyl acetate extract \(\text{IC}_{50} = 1.01 \text{ mg/mL} \), 251 \(\text{IC}_{50} = 3.30 \text{ mg/mL} \), 253 \(\text{IC}_{50} = 6.73 \text{ mg/mL} \)	Ethanol and ethyl acetate extract of \(S. \) _lyratum_ fruits, compounds 249, 251	[89]
Hepatoprotective activity	CCl4 induce mice	In vivo	Decreasing alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) contents, reducing CCl4-induced liver injury, anti-lipid peroxidation effect, decreasing transaminase activities in serum	Ethanol extracts	[91, 92]
Molluscidal activity	Snails	In vitro	Having a molluscidal effect, \(\text{IC}_{50} = 30–50 \text{ mg/mL} \)	Ethanol extracts, compound 21	[95]
Finally, in toxicological studies of *S. lyratum*, no unequivocal proof of the toxicological activities in human exists. Further, relationship studies between systematic toxicity and safety evaluation are still needed to assure safety for clinical application in the future. Pharmacological effects of *S. lyratum* have been demonstrated by ethanol and aqueous extracts of high doses, the effectiveness of high doses extracts in treating diseases provides the possibility of finding active compounds. Therefore, it is important to study the therapeutic window (the range between the doses that produce the desired therapeutic effect and doses that produce toxicity) and the long-term in vivo toxicity for further research on *S. lyratum*.

In summary, *S. lyratum* can be considered as an important and valuable resources for human health. Further research is needed in terms of quality control, toxicity and pharmacological mechanism to provide a theoretical basis for exploitation of the medicinal functions of *S. lyratum*.

Acknowledgements

The authors are grateful to the staff of researchers at the State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine. The authors acknowledge the support of the Tianjin Committee of Science and Technology of China, the National Key Research and Development Project of China, and the Important Drug Development Fund, Ministry of Science and Technology of China.

Author contributions

The manuscript was prepared by Y. Zhao, Y. Zhao, W.-K. Gao, and X.-D. Wang who completed the writing of this review. The research work was supported by the projects of H.-H. Wu. All the authors reviewed the final version of the manuscript and approved it for publication. To the best of our knowledge and belief, this manuscript has not been published in whole or in part nor is it being considered for publication elsewhere. All authors have seen the manuscript and approved to submit to your journal. All authors read and approved the final manuscript.

Funding

This study was funded by a grant (No. 21ZYJDLC00080) from the Tianjin Committee of Science and Technology of China, the National Key Research and Development Project of China (No. 2018YFC1707304, 2018YFC1707905, and 2018YFC1707403) and the Important Drug Development Fund, Ministry of Science and Technology of China (No. 2018ZX09735-002).

Declarations

Competing interests

The authors declare no conflict of interest.

Received: 6 August 2022 Accepted: 13 October 2022

Published online: 09 November 2022

References:

1. Yao F, Song QL, Zhang L, Li GS, Dai SJ. Three new cytotoxic sesquiterpenoids from *Solanum lyratum*. Phytochem Lett. 2013;6:453–6.
2. Kang B, Lee E, Hong J, Lee J, Kim H. Abolition of anaphylactic shock by acetyl*Solanum lyratum* Thunb. Int J Immunopharmacol. 1997;19:729–34.
3. Ren J, Feng G, Wang M, Sun L. The primary study on the anti-tumor effect of total saponin of *Solanum lyratum* Thunb. Cancer Res Prevent Treat. 2006;33:262–4.
4. Shoji Y, Murakami N, Yamasaki M. A furostanol glucuronide from *Solanum lyratum*. Phytochemistry. 1985;24:2748–50.
5. Chen FF, Zhang YW, Huang XF. Steroidal saponins and their pharmacological activities in *Solanum* plants. Zhongguo Zhong Yao Za Zhi. 2016;41:976–88.
6. Bártová V, Bártá J, Jarošová M. Antifungal and antimicrobial proteins and peptides of potato (*Solanum tuberosum* L.) tubers and their applications. Appl Microbiol Biotechnol. 2019;103:5533–47.
7. Kaundra JS, Zhang YJ. The genus *solanum*: an ethnopharmacological, phytochemical and biological properties review. Nat Prod Bioprospect. 2019;9:77–137.
8. Elízalde-Romero CA, Montoya-Inzunza LA, Contreras-Angulo LA, Heredia JB, Gutiérrez-Grijalva EP. Solanum fruits: phytochemicals, bioaccessibility and bioavailability, and their relationship with their health-promoting effects. Front Nutr. 2021;8:790582.
9. Su J. Xinxiu Bencao. Shanghai: Shanghai Scientific & Technical Publishers; 1957. p. 174.
10. Jiang XW, Wu QN. Comparison and identification of *Solanum lyratum* Thunb and Aristolochia mollissima Hance. J Jiangxi Univ Tradit Chin Med. 2006;18:35–6.
11. Chen XM, Chen QH. *Solanum lyratum* and its mixed varieties. Zhong Yao Cai. 2005;28:462–3.
12. Liu XB, Wu J. Study on pharmacognostic identification of *Solanum lyratum*. J Sci Teachers’ Univ. 2021;41:72–6.
13. Knapp S. A revision of the Dulcamaroid Clade of *Solanum*. (Solanaceae). Phytokeys. 2013;2:1–432.
14. Editorial Board of Flora of China. Flora of China. Beijing: China Science Publishing; 1978. p. 86–7.
15. Ming HY, Wang E, Ma XP. Study on the ethnic medicine *Solanum lyratum* Thunb. and patent literature analysis. Asia-Pacific Tradit Med. 2017;13:59–61.
16. Xiao ZM, Wang AM, Wang XY, Shen SR. A study on the inhibitory effect of *Solanum lyratum* Thunb extract on Lewis lung carcinoma lines. Afr J Tradit Complement Altern Med. 2013;10:444–8.
17. Li SS, Hou ZL, Yao GD, Guo R, Wang YX, Lin B, Huang XX, Song SJ. Lignans and neolignans with isovaleroyloxy moiety from *Solanum lyratum* Thunb.: chiral resolution, configurational assignment and neuroprotective effects. Phytochemistry. 2020;178:112461.
18. Chen H, Du K, Sun Y, Hao Z, Zhang Y, Bai J, Wang Q, Hu H, Feng W, Solanrubellin A. A hydroxooctanoic dimer with antibacterial and cytotoxic activity from *Solanum lyratum*. Nat Prod Res. 2020;34:3176–81.
19. Xu YL, Lv J, Wang WF, Liu Y, Xu YL, Xu TH. New steroidal alkaloid and furano glucosides isolated from *Solanum lyratum* with cytotoxicity. Chin J Nat Med. 2018;16:499–504.
20. Shoji Y, Mitsuyuki M, Murakami N. Two new steroidal glucuronides from *Solanum lyratum*, I. Planta med. 1986;6:496–8.
21. Lee Y, Hsu FL, Nohara T. Two new soladulcidine glycosides from *Solanum lyratum*. Chem Pharm Bull. 1997;45:1381–2.
22. Zhang DW, Yang Y, Yao F, Yu QY, Dai SJ. Solalyratins A and B, new anti-inflammatory metabolites from *Solanum lyratum*. J Nat Med-Tokyo. 2012;66:362–6.
23. Li SS, Liu QB, Zhang YY, Shi SC, Guo R, Yao GD, Lin B, Huang XX, Song SJ. Oxylipin vanillyl acetal from *Solanum lyratum*. Fitoterapia. 2020;134:105599.
24. Lee JH, Lee YH, Lee HJ, Lee HJ, Lee EO, Ahn KS, Shim BS, Bae H, Choi SH, Ahn KS, Baek NI, Kim DK, Kim SH. Caspase and mitogen activated protein kinase pathways are involved in *Solanum lyratum* herba induced apoptosis. J Ethnopharmacol. 2009;123:121–7.
25. Ikeda T, Tsumagari H, Honbu T, Nohara T. Cytotoxic activity of steroidal glycosides from *Solanum* plants. Biol Pharm Bull. 2003;26:1198–201.
26. Yang JS, Wu CC, Kuo CL, Lan YH, Yeh CC, Yu CC, Lien JC, Hsu YM, Kuo WW, Wood WG, Tszuki M, Chung JG. *Solanum lyratum* extracts induce...
extrinsic and intrinsic pathways of apoptosis in WEHI-3 murine leukemia cells and inhibit allgort cancer. Evid Based Complement Alternat Med. 2012:2012:254960.

30. Lee MH, Cheng JJ, Lin CY, Chen YJ, Lu MK. Precursor-feeding strategy for the production of solanine, solanidine and solasonine by a cell culture of Solanum lyratum. Process Biochem. 2007;42:899–903.

31. Guo XH, Weng LJ, Yi LT, Geng D. Toxicological safety evaluation in acute and 21-day studies of ethanol extract from Solanum lyratum Thunb. Evid Based Complement Alternat Med. 2022;2022:18518324.

32. Xu YL, Xu YJ, Shi HH, Liu Y, Xu TH. Lignanoids from Solanum lyratum. J Chin Pharm Sci. 2018;27:289–94.

33. Han L, Wang JN, Sun CX, Cao QX, Du X. Anti-angiogenic activities of glycoalkaloids isolated from Solanum lyratum in tumor-derived vascular endothelial cells. Phytochem Lett. 2019;29:212–9.

34. Zhao DK, Zhao Y, Chen SY, Kennelly EJ. Solanum steroidal glycoalkaloids: structural diversity, biological activities, and biosynthesis. Nat Prod Rev. 2021;38:1423–4.

35. Zang YL. Study on antitumor active components of Solanum lyratum Thunb. Master’s thesis. China Academy of Chinese Medical Sciences. 2008.

36. Yang YD. Studies on the chemical constituents and bioactivities of three plants, Doctoral thesis. Huazhong University of Science and Technology. 2014.

37. Jia YR, Tian XL, Liu K, Chen C, Wang XL, Zhang CC, Sun LX. Simultaneous determination of four alkaloids in Solanum lyratum Thunb by UPLC-MS/MS method. Pharmazie. 2012;67:111–5.

38. Ye WC, Wang H, Zhao SX, Che CT. Steroidal glycoside and glycoalkaloid from Solanum lyratum. Biochem Syst Ecol. 2001;29:421–3.

39. Wu T, Du X, Wang JN, Liu LY, Yang YK. Two new glycoalkaloids from Solanum lyratum Thunb. J Chin Pharm Sci. 2021;30:18–23.

40. Yin HL. Study on the active constituents from Solanum indicum and Solanum lyratum for ANTI-HSV influenza virus, Doctoral thesis. Beijing University of Technology. 2013.

41. Murakami K, Ezima H, Takaishi Y, Takeda Y, Fujita T, Sato A, Tomimatsu T. Solanine biosynthesis in Solanum lyratum. Yakugaku Zasshi. 1981;101:275–9.

42. Qi W. Study on chemical constituents and pharmacokinetics of antitumor active fractions of Solanum sternoid glycoalkaloids. Master’s thesis. China Academy of Chinese Medical Sciences. 2009.

43. Du X, Wang JN, Sun J, Wu T, Cao XQ, Liu LY, Yang YK. Steroidal glycoalkaloids from Solanum lyratum. J Chin Pharm Sci. 2021;30:203–4.

44. Wang XW, Zhao Y, Dong QX, Wu XL, Yu HY, Zhang LH, Han LF, Zhang Y, Wang T, Wu HH. Amides and lignans from Solanum lyratum. Phytochem Lett. 2021;45:25–9.

45. Yang JZ, Guo GM, Zhou LX, Ding D. Study on the chemical constituents of Solanum lyratum. Zhongguo Zhong Yao Za Zhi. 2002;27:46–7.

46. Li GS, Yao F, Zhang L, Liu X, Dai SJ. New sesquiterpene derivatives from Solanum lyratum and their cytotoxicities. J Asian Nat Prod Res. 2014;16:129–34.

47. Sun LX, Qi W, Yang HY, Jia YR, Tong LJ. Nitrogen-containing compounds from Solanum lyratum Thunb: Biochem Syst Ecol. 2011;39:203–4.

48. Yang JZ, Guo GM, Zhou LX, Ding D. Study on the chemical constituents of Solanum lyratum. Zhongguo Zhong Yao Za Zhi. 2002;27:46–7.

49. Li RL. Extraction, isolation and structural identification of chemical constituents of Solanum lyratum Thunb, Master’s thesis. Zhengzhou University. 2006.

50. Yin HL, Li JL, Dong JX. Chemical constituents from Solanum lyratum Thunb. Military Med Sci. 2010;34:65–7.

51. Ji H, Hou LH, Yuan M. Chemical Constituents Having Antioxidant Activities of Solanum lyratum. Chem Nat Compd. 2014;20:179–80.

52. Zhang DW, Li GH, Yu QY, Dai SJ. Studies on flavonoids and amides from herbs of Solanum lyratum. China J Chin Med. 2009;39:271–3.

53. Wang LJ. Study on chemical constituents of Chinese herbal medicine for anti-cancer and anti-malarial, Maeter’s thesis. Zhengzhou University. 2004.

54. Zhang DW, Li GH, Yu QY, Dai SJ. New anti-inflammatory 4-hydroxysoflavonoids from Solanum lyratum. Chem Pharm Bull (Tokyo). 2010;58:40–2.

55. Kim SP, Nam SH, Friedman M. The tomato glycoalkaloid α-tomatine induces caspase-independent cell death in mouse colon cancer CT-26 cells and transplanted tumors in mice. J Agr Food Chem. 2015;63:1142–50.

56. Han L, Wang JN, Cao QX, Sun CX, Du X. An-te-xiao capsule inhibits tumor growth in non-small cell lung cancer by targeting angiogenesis. Biomed Pharmacother. 2018;108:941–51.

57. Xiao ZM, Wang AM, Wang XY, Shen SR. A study on the inhibitory effect of Solanum lyratum extract on Lewis lung carcinoma lines. Afr J Tradit Complement Altern Med. 2014;10:444–8.

58. Guan Y, Zhao H, Yan X, Meng J, Wang WL. Study on anti-tumor effect of Solanum lyratum Thunb extract in S180 tumor-bearing mice. Afr J Tradit Complement Altern Med. 2014:10:444–8.

59. Yang JS, Wu CC, Kuo CL, Hsu CC, Cheuh FS, Hsu CK, Wang CK, Chang CY, Ip SW, Hsu YM, Kuo WW, Chung XG. Solanum injustum extract affected immune response in normal and leukemia murine animal in vivo. Hum Exp Toxicol. 2010;29:539–67.

60. Mo XQ, Wei HY, Huang GR, Xu LY, Chen YL, Qi J, Xian W, Qin YC, Wei LD, Zhao L, Huang YQ, Xing W, Pu HQ, Wei PY, Li CG. Liancang OC: Molecular mechanisms of apoptosis in hepatocellular carcinoma cells induced by ethanol extract of Solanum lyratum Thunb through the mitochondrial pathway. World J Gastroentero. 2017;23:1010–7.
80. Wu T, Wang J, Du X. Effect of the effective parts of total steroidal alkaloids from Solanum lyratum on tumor inhibition in vivo and immune regulation in vitro. Cent South S machining. 2020;18:1786–90.

81. Sun XF, Hu SL, Zhou F, Wang Y. Effect of total alkaloids from Solanum lyratum Thunb on tumour growth in mice with Lewis lung cancer. Chin J Clin Pharmacol. 2019:35:1781–3.

82. Wei X, Li CG, Li T, Nong S, Yan WJ. Solanum lyratum Thunberg alkaloid induces human lung adenocarcinoma A549 cells apoptosis by inhibiting NF-κB signaling pathway. Zhong Yao Cai. 2013;36:787–90.

83. Fekry MI, Ezzat SM, Salama MM, Alshehri OY, Al-Abd AM. Bioactive glycoalkaloids isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci Rep-LK. 2019:9:1–11.

84. Cao W, Zhou XQ. Protective effect of notoginsenoside and tanshinone on oxidative stress. J Steroid Biochem. 2014;140:106–15.

85. Zhang C, Li ZW, Wang J, Jiang XT, Xiao MF, Wang J, Lu SY, Li SY, Wang HM. Ethanol extracts of Solanum lyratum Thunb regulate ovarian cancer cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) via the ROS-mediated p38 Pathway. J Immunol Res. 2021;2021:5569354.

86. Liu HW. SLT screening of anticancer active site and researching of lung cancer. J Pharm Pract. 2011;19:603–5.

87. Wang MF, Yu LH, Wan HF, Tu SS. Influence of extracts of Solanum lyratum Thunb on apoptosis and Bcl-x1/Bax expression in human lung cancer SPC-A-1 cells. J Nan搁 Univ Med Sci. 2013;51:8–12.

88. Wei X, Tu S, Zhao XS, Wan FM, Yu LH. Experimental study on apoptosis induced by ethanol extracts of Solanum lyratum Thunb in human lung cancer SPC-A-1 cells. China Pharm. 2008;19:256–6.

89. Huo Y, Wang M, Wang XB, Han ZF, Dong X. Effects of Solanum lyratum Thunberg alkaloid on the expression of p38 MAPK and Caspase-3 in hepatoama Huh-7 cells. Global Tradit Chin Med. 2018;11:987–90.

90. Liu SH, Shen XH, Wei XF, Mao XH, Huang T. Immunomodulatory activity of butanol extract from Solanum lyratum in tumor-bearing mice. Immuno Pharm. Imunimmunopharm. 2010;33:100–6.

91. Wang WF, Liu Y, Wu GM, Yang T, Zhang D, Xu YJ. Screening the anti-tumor active components of the Solanum lyratum Thunb. extract. J Changchun Univ Tradit Chin Med. 2018;34:8883–6.

92. Lin SH, Peng XD, He HB, Wang YH, Li Y, He GX, Liu YL, Li YL, Zeng CJ. Antiproliferative activity of the total saponin of Solanum lyratum Thunb in Hela cells by inducing apoptosis. Pharmazie. 2008;63:836–9.

93. Chen CJ, Huang KY, Sun CL. Study on DPPH free radicals caventinct activity of Solanum lyratum Thunb fruit extractives. Food Res Dev. 2006;27:45–8.

94. Yang HL, Sun ZL, Ding R, Cao G. Extraction and in vitro antibacterial test of polysaccharide from Solanum lyratum Thunb. J Tradit Chin Veterinary Med. 2005;4:24–5.

95. Yang JH, Choi CJ, Kim DK, Lee KR, Zee OP. Effect of Solanum lyratum extract on the hepatotoxicity of carbon tetrachloride in rats. Saengyak Geunhak Hoe Chi. 1996;27:167–72.

96. Li GT. Protective effect of Solanum lyratum Thunb ethanol extract for carbon tetrachloride-induced acute liver injury. Chin Pract Med. 2015;108–9.

97. Kim HM, Lee EJ. Solanum lyratum inhibits anaphylactic reaction and suppresses the expression of L-histidine decarboxylase mRNA. Immuno Pharm. 1998;20:135–46.

98. Kang B, Lee E, Hong J, Lee J, Kim H. Abolition of anaphylactic shock by Solanum lyratum. Int J Immunopharmacol. 1998;19:729–34.

99. Cai SX. Studies on extraction, purification, determination and molluscicidal effect of glycosidal steroid alkaloids in Solanum lyratum Thunb, Master's thesis. Hunan Agricultural University. 2005.

100. Yin LH, Zhang J, Pan XY, Zhao FD, Liu OM. Effect of Bajiangtang on inflammatory cytokines in patients with acute radioleosis. Jiangxi Med J. 2020;55:1781–3.

101. Liu YS, Xin XB. Efficacy of the Bajiang decoction plus chemotherapy on NSCLC. Chin J Clin Med. 2018;10:27–9.

102. Han L, Zhu Y, Sun CX, Wang JH. Inhibitory effect of lung cancer cells total alkaloids from Solanum lyratum Thunb on the growth of transplanted Lewis in mice. Trad Chin Drug Res Clin Pharm. 2015;26:573–6.

103. Fu HW. SLT screening of anticancer active site and researching of lung cancer A549 cell proliferation inhibition mechanism, Master’s thesis. Nanchang University. 2008.

104. Tu S, Wei X, Zhao XM, Yu LH, Wan FS. The influence of Solanum lyratum Thunb extract on apoptosis and the expression of Fas/Fasl genes in human lung cancer A549 cells. Lishizhen Med Mater Med Res. 2008;19:603–5.

105. Han L, Sun CX, Wang JN. Effect of total alkaloids from Solanum lyratum on regulating apoptosis and cell cycle of A549 cells through VEGF-related pathway. Trad Chin Drug Res Clin Pharm. 2016;27:509–13.

106. Tu S, Wan FS, Wei X, Nong S, Zhu JF, Liu ZQ. Solanum lyratum Thunberg alkaloid induces human lung adenocarcinoma A549 cells apoptosis by activating FAS-pathway. Lishizhen Med Mater Med Res. 2013;24:66–8.
125. Li ZW, Zhou BL, Liu X, Zhang P. The progress of researching into physiological and ecological activities of glycoalkaloid in Solanaceae. Acta Agric Shanghai. 2011;27:129–34.
126. Al Sinani SSS, Eltayeb EA. The steroidal glycoalkaloids solamargine and solasonine in Solanum plants. S Afr J Bot. 2017;112:253–69.
127. Arkhypova VN, Dzyadevych SV, Soldatkin AP, El’Skaya AV, Martelet C, Jaffrezic-Renault N. Development and optimisation of biosensors based on pH-sensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids. Biosens Bioelectron. 2003;18:1047–53.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.