Universality of Performance Indicators based on Citation and Reference Counts

T.S. Evans · N. Hopkins · B.S. Kaube

Abstract We find evidence for the universality of two relative bibliometric indicators of the quality of individual scientific publications taken from different data sets. One of these is a new index that considers both citation and reference counts. We demonstrate this universality for relatively well cited publications from a single institute, grouped by year of publication and by faculty or by department. We show similar behaviour in publications submitted to the arXiv e-print archive, grouped by year of submission and by sub-archive. We also find that for reasonably well cited papers this distribution is well fitted by a lognormal with a variance of around $\sigma^2 = 1.3$ which is consistent with the results of Radicchi, Fortunato, and Castellano [1]. Our work demonstrates that comparisons can be made between publications from different disciplines and publication dates, regardless of their citation count and without expensive access to the whole world-wide citation graph. Further, it shows that averages of the logarithm of such relative bibliometric indices deal with the issue of long tails and avoid the need for statistics based on lengthy ranking procedures.

Keywords bibliometrics · citation analysis · crown indicator · universality

1 Introduction

The use of relative bibliometric indicators to provide robust measures has been discussed in several contexts [2,3,10,11,12,13,14]. Radicchi et al. [1] (hereafter referred to as RFC) found a universal distribution for one such relative measure of the number of citations each paper received. The universality found by RFC was demonstrated across a wide range of scientific disciplines using the commercial Thomson Reuters’s Web of Science (WoS) database [15] to derive the citation counts. The indicator used by RFC applied to single publications was $c_f = c/c_0$, where c is the number of citations for a given paper and c_0 is the average number of citations for all papers published in the same field and in the same year as the paper being considered. RFC [1] used Thomson Reuters’s Journal of Citation Reports, which allocates one or more fields to each journal, to assign fields to each paper. This index c_f gives a measure of the significance of a given paper which can be used compare papers from a wide range of disciplines and published at different times. The big drawback is that it requires access to a global dataset of publications to calculate the average c_0.

In this paper we extend the work of RFC in three ways. First, we work with a different subset of papers, either those published by authors of one institute, and later those put on the electronic preprint repository, arXiv. Secondly, we assign the research field of a paper in different ways, via the political divisions of the institute, using either faculty or departments, and for arXiv we use its predefined subdivisions. Finally, we consider alternative indicators of a paper’s performance, involving the number of references in its bibliography as well as the number of citations of that paper. By showing that in all cases a lognormal distribution is a reasonable model for the data, we have demonstrated that these useful indices can be applied on a large number of smaller datasets. As such data may already be available for other reasons, our results will lead to a reduction in the costs of research assessment, be this for academic research or for administrative reasons.

We will start in section 2 with the case of the papers from a single institute and use this example to define the indicators we shall consider. We then comment in section 3 on the properties of our data from a...
single institute and the results for the indicators for the data from the institute. In section 4 we repeat the analysis for data from arXiv. We then discuss our results in terms of simple statistical models in section 5 and finish with some conclusions in section 6. An extensive list of tables and additional plots are given in the supplementary material.

2 Definition of Indicators

We will define the indicators used in terms of our first example, the papers from a single institute. The first index we use is defined in terms of two sets of papers:

\(\mathcal{P} \) — Complete WoS data, including uncited items and those without references, published in 2010 or before.

\(\mathcal{S} \) — Any WoS item approved by staff of one faculty in a single calendar year, or from one department in a three year interval, respectively, with at least one citation and one reference.

We assume that for any paper in the set \(\mathcal{S} \) we know all the citations coming from any paper in \(\mathcal{P} \). Then we define the relative bibliometric indicator \(c_\ell(s, \mathcal{S}, \mathcal{P}) \) (later often abbreviated to \(c_\ell \)) to be

\[
c_\ell(s, \mathcal{S}, \mathcal{P}) = \frac{c(s, \mathcal{P})}{c(s, \mathcal{S}, \mathcal{P})}, \quad s \in \mathcal{S}, \quad c_0(\mathcal{S}, \mathcal{P}) = \frac{1}{|\mathcal{S}|} \sum_{s' \in \mathcal{S}} c(s', \mathcal{P}). \tag{1}
\]

Here \(s \) is a paper drawn from the set \(\mathcal{S} \), and \(c(s, \mathcal{P}) \) is the number of citations to paper \(s \) from the set of papers \(\mathcal{P} \). Both here and in (1) \(\mathcal{P} \) was the whole Thomson Reuters database taken at some point in time. We differ over our choice of set \(\mathcal{S} \) as in (1) this was chosen to be the subset of papers (excluding some other types of publication) published in one year and in one field, as defined by the Thomson Reuters’s Journal of Citation Reports. In our case \(\mathcal{S} \) is either the set of papers published in one year from one faculty or those published in three years from one department, each faculty containing several departments of related fields.

This index is successful because several factors which might be expected to change the citations \(c(s, \mathcal{P}) \) of individual papers \(s \) will be mirrored in the behaviour of the average. For instance if we change the length of time papers have had to gather citations, changing \(\mathcal{P} \), our first guess might be that this effect would cancel in the ratio \(c_\ell \). Likewise, the numbers of citations change with the field but we might hope that this effect cancels out in taking the ratio. The results of (1) show that for their definitions of \(\mathcal{S} \) and \(\mathcal{P} \) the statistical distribution of this ratio is independent of the field and publication year used to choose the subset \(\mathcal{S} \). It is therefore not unreasonable for us to hope that by looking at the same ratio but for a different set of papers \(\mathcal{S} \), we would see the same universality.

Our use of faculties and departments of an institute to define academic field is a cruder way to split up the set of all papers \(\mathcal{P} \). For instance there are eight physics classifications in the Thomson Reuters’s Journal of Citation Reports while we have but one physics department. However the greatest differences in RFC (1) occur on broader classifications, with the differences between citation behaviour of medical, physical science and engineering fields. In this sense we hope that our broader classification will still be sufficient to show the universality of RFC (1). In this context we also note the work of Rafols and Leydesdorff (19) who showed that four different classifications including the Journal of Citation Reports had considerable differences but nevertheless they drew similar conclusions about the statistical properties of sets of papers whichever classification was used. One might hope that a department is a dynamic entity responding to shifts and changes organically and thereby it may well provide a good emergent definition of a field. Basing the analysis on the political structures of faculties and departments is a simple and workable definition and the data required is likely to be already available at many institutions. This may provide a simpler, cheaper and more practical method to analyse citation data.

Our final variation on RFC (1) is to look at other indicators involving the number of references from paper \(s \) in \(\mathcal{P} \) to other papers in the database, \(r(s, \mathcal{P}) \), a quantity readily calculable from the usual databases. A comparison of two fields with different average reference counts per paper would also be expected to show corresponding variation in citation counts. This suggests that the quantity \(c(s, \mathcal{P})/r(s, \mathcal{P}) \) could be a useful measure. However, it is clear that \(r(s, \mathcal{P}) \) can not be a good proxy for \(c_0(\mathcal{S}, \mathcal{P}) \) as the former is fixed for each paper while the latter grows in time. The solution is to use the same trick as with the \(c_\ell \) index (1) and to consider \(c(s, \mathcal{P})/r(s, \mathcal{P}) \) for paper \(s \) divided by its average. We will use the short hand notation \(c_r \) to denote this, where

\[
c_r(s, \mathcal{S}, \mathcal{P}) = \frac{c(s, \mathcal{P})}{r(s, \mathcal{P})} \frac{1}{\langle c/r \rangle(\mathcal{S}, \mathcal{P})}, \quad s \in \mathcal{S}, \quad \langle c/r \rangle(\mathcal{S}, \mathcal{P}) = \frac{1}{|\mathcal{S}|} \sum_{s' \in \mathcal{S}} c(s', \mathcal{P}) / r(s', \mathcal{P}). \tag{2}
\]

One advantage of such an indicator is that it will naturally penalise review articles, which tend to have a large number of references and citations that can distort other indices.

\(^*\) Usually \(\mathcal{S} \) is a subset of \(\mathcal{P} \), \(\mathcal{S} \subseteq \mathcal{P} \), but this is not strictly necessary.
3 Results for a Single Institute

Our data set P, consists of all approved publications authored by at least one current permanent staff member\(^3\) of the institution providing our data and with at least one citation, at least one item in the bibliography and a definite year of publication. They are necessarily in WoS\(^1\) which provides the number of citations, number of references and the year of publication. Publications were classified by Thomson Reuters as articles (78.8%), proceedings (8.1%), reviews (5.4%), editorial material (2.5%), letters (2.3%), notes (1.4%) and meeting abstracts (1.1%) with a small number of other types of publication (0.2%) (see table A1 in the supplementary material). Approval is through a web based interface in which staff confirm that they authored a given publication. This ensures that the assignment of authors to their current faculty and department will be almost perfect\(^4\). It is an important feature of this data that name and address disambiguation problems are completely avoided. The number of references is the length of the bibliography and department or faculty. Hence the category definitions are not mutually exclusive.

The distribution of publications in our dataset P is shown in Figure 1. The data tails off markedly after 2008 and before the year 1996. This is due to local factors influencing the collection of this data. The behaviour of the citations and references is familiar from elsewhere e.g.\(^5\) \(T\)\(^6\). Given these variations in the data, our focus will be on the data for 1997-2007.

3.1 The c_f measure for faculties

RFC\(^1\) showed that the relative bibliometric index, c_f\(^2\), for individual papers published in a single year and in a single field as defined by the Thomson Reuter categories, followed a universal form which was well approximated by a lognormal distribution with probability density

$$F(c_f; \mu, \sigma^2) = \frac{1}{\sigma c_f \sqrt{2\pi}} \exp \left\{ \frac{-(\log(c_f) - \mu)^2}{2\sigma^2} \right\}. \quad (3)$$

Since $\langle c_f \rangle = 1$ this leads to the constraint $\sigma^2 = -2\mu$. If we use this and the normalisation constraint, we perform a one-parameter fit of the pdf of the data to $F(c_f; \mu = -\sigma^2/2, \sigma^2)$. This was the approach used

\(^{2\text{This is the usual situation but some exceptions exist.}}\)
\(^{3\text{While almost all papers are validated, the status of a few papers is unclear but they are not included in our set. If staff}}\)
\(^{4\text{have changed fields since the publication of a paper, it is possible that some assignments will be incorrect. We presume}}\)
\(^{5\text{this is effect is small and worse for older papers.}}\)
\(^{6\text{Other references here?}}\)
\(^{7\text{To be more precise we put our data for c_f into bins with lower and upper boundaries $C(b)$ and $C(b+1) = r.c(b)$}}\)
\(^{8\text{where r is a constant. The smallest and largest value always fall in the middle of the first and last bins respectively.}}\)
\(^{9\text{The number of bins was chosen by hand to ensure a reasonable number of non-zero data points. We compare the actual}}\)
\(^{10\text{count in each bin against the number expected to lie in that bin}}\)
\(^{11\text{and department will be almost perfect}}\)
\(^{12\text{It is an important feature of this data that name and address disambiguation problems are completely avoided.}}\)
\(^{13\text{The number of references is the length of the bibliography and department or faculty. Hence the category}}\)
\(^{14\text{definitions are not mutually exclusive.}}\)
\(^{15\text{The distribution of publications in our dataset P is shown in Figure 1. The data tails off markedly after 2008 and before}}\)
\(^{16\text{This is due to local factors influencing the collection of this data. The behaviour of the citations and references is}}\)
\(^{17\text{Given these variations in the data, our focus will be on the data for 1997-2007.}}\)
Fig. 1 On the left is a histogram of the number of papers published each year with at least one author from the institute and with both a positive citation count and a positive number of references, \(c, r > 0 \). On the right the average number of references \(\langle r \rangle \) (blue triangles) and the average number of citations \(c_0 = \langle c \rangle \) (red circles) for publications with \(c, r > 0 \) published in each year.

Fig. 2 The symbols show the distribution of \(c_f \) for faculty data for all papers published in the year 2001 (left) or in 2006 (right). The lines are the best fits to lognormal with one free parameter. The values of \(\sigma^2 \) for Natural Sciences (black solid line and circles), Medicine (red triangles and dashed line) and Engineering (blue crosses and dotted line) respectively were 1.49 ± 0.10, 1.34 ± 0.06, and 1.25 ± 0.09 for 2001, and 1.38 ± 0.08, 1.19 ± 0.08, and 1.21 ± 0.19 for 2006. by RFC who found \(\sigma^2 \) to lie between 1.0 and 1.8 for the scientific fields considered with an average value of 1.3 [1].

Using the three faculties of Science (Medicine, Natural Sciences and Engineering) and a single year of publication to define our research disciplines, our subsets \(S \) of papers \(P \), we found that we had between 389 and 4501 papers in each subset \(S \) (see table A2 in the supplementary material) which proved sufficient to perform our analysis.

The data from our single institution produces curves for \(c_f \) shown for a couple of typical years in Figure 2 These distributions are very similar in shape to those found by RFC and we also found that a lognormal with a single free parameter, \(\sigma^2 \), was a good fit to the data for \(c_f \) from each faculty in any one year. As in [1] the small \(c_f \) head of the distribution and extreme tail seem to fit the least well. For the large \(c_f \) values this may be attributed to statistical errors caused by having fewer heavily cited publications while the lower \(c_f \) suggest a systematic deviation from the lognormal distribution. A \(\chi^2 \) goodness of fit test applied to the single parameter distribution resulted in \(\chi^2 \) values per degree of freedom ranging from 2.91 to 38.4 with a

* Lognormal can only be an approximation to true behaviour for low \(c_f \) as it does not include uncited publications
mean value of 15.1. See table A6 in the supplementary material for χ^2 values for each number of bins used in grouping the data.

The predominant source of discrepancy here, also visible in [1], was caused by publications with very low citation counts, i.e. roughly those with less than 10% of the mean citation counts for a given faculty. The number of papers with low citation counts can be an order of magnitude higher than suggested by the lognormal curves. With large numbers of such items, this is not a problem of low statistics. We suggest that the dominant processes leading to citation of an item with an ultimately low citation count are different from the processes prevailing at higher citation counts. We found that the meeting abstracts in particular were numerous yet had far lower citation counts (most were already removed since we studied only papers with a non-zero number of citations). Thus one explanation for the change in behaviour at low citation count is that it is due to the way different types of publication are cited coupled with the fact that the relative proportions of different types of item is different between low cited items and medium/high cited items. This would not explain the same low citation issue seen in [1] as they limit their data to articles and letters. Alternatively, or perhaps in addition, a larger proportion of citations may be self-citations for low cited articles and self-citation processes are likely to be different. Finally errors in data collection may lead to several records associated with one publication, and often all but one of these will have just one or two citations [21]. Again this will cause most distortion for low cited publications.

To deal with the low citation issue, we only fitted the lognormal to data above a minimum cutoff of $c_f > 0.1$. The value of 0.1 reflected a compromise between goodness of fit and including as much data as possible, with 88% of publications in our data set used in the fits. The resulting χ^2 values per degree of freedom were between 1.47 and 24.4 with an average of 3.98.

Fig. 3 A plot of σ^2 against year resulting from a one (left) or three (right) parameter fit of a lognormal to the c_f measure. Done for papers published in a single year from each science faculty separately with Natural Sciences (black circles), Medicine (red triangles) and Engineering (blue crosses). The dashed line indicates the universal value 1.3 suggested by RFC while the arithmetic average of all our results gives 1.44±0.13 from the one parameter fit. The data labelled All (green crosses) was found by taking the c_f for each paper, using the c_0 value appropriate to the faculty and year of publication, and fitting a single lognormal to the whole dataset.

For the years 1997 - 2007, the values of σ^2 are shown in the left hand plot of Figure 3. We found this to range from 0.92 ± 0.11 (Engineering in 1997) to 1.56 ± 0.06 (Natural Sciences in 1999). The average values for σ^2 across all these years for each faculty were 1.36 ± 0.09, 1.30 ± 0.08 and 1.25 ± 0.13 for Natural Sciences, Medicine and Engineering respectively. A simple arithmetic average gives 1.3 ± 0.1. The coincidence of the results across all three faculties is striking, especially as we have found that the average citation counts for the three faculties is quite different, matching what has been seen in other studies including [1] with Medicine being higher than Natural Sciences and Engineering having the lowest citation average. Likewise the disciplines are ranked in the same way in terms of the number of papers produced, Engineering has half the number of papers as Natural Science and a third the number of Medicine in each year.

Thus despite using a much broader definition of scientific field with a much narrower selection of papers, those from one institute, we find the same type of universality as RFC. Notwithstanding the differences

9 In [1] papers with zero citations are excluded but otherwise all articles and reviews (as classified by WoS) are included in their analysis. Lundberg [22] uses ln($c + 1$) to avoid problems with zero citation count.
in the subset \(\mathcal{P} \) being used in the two studies the universal values for \(\sigma^2 \), 1.3(1) for us, 1.3 in [11] are in encouraging agreement. Alternatively we can create a weighted average by fitting a lognormal to the \(\sigma_i \) values for all papers published in a single year, using the \(c_r \) value appropriate to the faculty and year of publication. This gives points labelled ‘All’ in Figure 8 with values of \(\sigma^2 \) a little lower, around 1.2 though still statistically consistent with our other values.

As a check on our fitting, we also fitted our data to \(A \cdot F(c_r; \mu, \sigma^2) \), a lognormal with three independent parameters, \(\sigma^2, \mu \) and the overall normalisation \(A \). The values of \(\sigma^2 \) we obtain are equivalent statistically to the values from our one parameter fit [11]. Since \(c_r = 1 \) by definition, the value of \((\mu + \frac{\sigma^2}{2})\) should be zero if the data for \(c_r \) fits a lognormal distribution. The normalisation \(A \) should be unity by construction.

Figure 11 shows a plot of \((\mu + \frac{\sigma^2}{2})\) and \((A - 1)\) against year for our data using the faculties to define \(\mathcal{P} \) and our research disciplines. These values are consistent with zero, confirming that the lognormal is a good fit.

3.2 The \(c_r \) measure for faculties

We also calculated our adjusted measure of \(c_r \) [2] for papers published in one year from one faculty, the same dataset \(\mathcal{S} \) used in Figure 3. Again a lognormal of the form [3] provided a good fit with one or three free parameters; examples are shown in Figure 5. One difference is that with \(c_r \) we get a considerable number of points to the left of the peak whereas with \(c_l \) in both [1] and Figure 2 only the peak of the lognormal parabola and points to its right are seen.

The values of \(\sigma^2 \) obtained by fitting \(c_r \) to the different subsets of papers \(\mathcal{P} \) are shown in Figure 4 for both one and three parameter fits. There was no marked improvement in goodness of fit when a cutoff was imposed, so all publications were included in the fit resulting in an average \(\chi^2 \) of 5.31 per degree of freedom for the one parameter fit. The goodness of fit data for each bin size computed are given in table A6 in the supplementary material. Considering the results for the one parameter fit first, we find that the average over all years for the \(\sigma^2 \) of Natural Sciences, Medicine and Engineering are respectively 1.47 ± 0.07, 1.37 ± 0.05, and 1.16 ± 0.06. The results suggest a universal value for \(\sigma^2 \) of 1.33 ± 0.06.

For the one parameter fit, the Natural Sciences values for \(\sigma^2 \) are either similar to or higher than those for papers from the Medicine faculty. Both are invariably higher than the Engineering faculty \(\sigma^2 \) results. In most years some of these values of \(\sigma^2 \) are three or more standard deviations apart.

On checking \(c_r \) data with a three parameter fit, the values of \(\sigma^2 \) are now found to be consistent at each year. The normalisation is also consistent with unity. The problem is now seen in the value of \((\mu + \sigma^2/2)\) (see Figure 7) which is now more than three standard deviations away from zero for Medicine and/or

10 The arithmetic averages for Natural Sciences, Medicine and Engineering are respectively 1.15 ± 0.11, 1.19 ± 0.12, and 1.27 ± 0.20 giving an overall average of 1.21 ± 0.14.
11 The averages for Natural Sciences, Medicine and Engineering are respectively 1.27 ± 0.07, 1.23 ± 0.06 and 1.19 ± 0.10 with the global average of 1.23 ± 0.08.
Fig. 5 The symbols show the distribution of c_r for the papers published in 2001 (left) or 2006 (right) from each science faculty. The lines are the best fits to a lognormal with one free parameter. The values of σ^2 for Natural Sciences (black solid line and circles), Medicine (red triangles and dashed line) and Engineering (blue crosses and dotted line), respectively were 1.65 ± 0.10, 1.37 ± 0.05, and 1.40 ± 0.06 for 2001, and 1.33 ± 0.06, 1.17 ± 0.04, and 0.98 ± 0.02 for 2006.

Fig. 6 A plot of σ^2 against year resulting from a one (left) or three (right) parameter fit of a lognormal to the c_r measure. Error bars are for one standard deviation. The papers used for each point are published in a single year from one science faculty: Natural Sciences (black circles), Medicine (red triangles) or Engineering (blue crosses).
Fig. 7 A plot of \((\mu + \sigma^2/2)\) (left) and \((A - 1)\) (right) against year obtained by fitting a lognormal to the \(c_t\) measure for which zero is expected for both quantities. For papers published in a single year from each science faculty separately with Natural Sciences (black circles), Medicine (red triangles) and Engineering (blue crosses).

Natural Science in many years. Thus while the \(c_t\) appears to have a universal distribution, it is not best described by a lognormal form.

3.3 Comparison of \(c_t\) and \(c_r\) for faculties

Since both the measures \(c_t\) and \(c_r\) lie on universal distributions, it is interesting to compare them. We may factor out the statistically insignificant variations in \(\sigma\) by working with

\[
\begin{align*}
 z_f(s, S, P) &= \frac{\ln(c_f(s, S, P)) - \mu_f(S, P)}{\sigma_f(S, P)}, \quad s \in S, \\
 z_r(s, S, P) &= \frac{\ln(c_r(s, S, P)) - \mu_r(S, P)}{\sigma_r(S, P)}, \quad s \in S
\end{align*}
\]

where we will use abbreviations \(z_f\) and \(z_r\) when unambiguous. Here \(\mu_f(S, P)\) and \(\sigma_f(S, P)\) are the mean and standard deviation parameters obtained from fitting a lognormal curve to \(c_t > 0\) data as described above, with equivalents for the \(c_r > 0\) data. It is important to note that it is sensible to work with these indices \(z_f\) and \(z_r\) since they are defined in terms of the logarithms of the normalised indices, \(\ln(c_t)\) and \(\ln(c_r)\), where there is an approximate normal distribution.

The comparison of \(z_f\) and \(z_r\) in Figures 8 and 9 shows that for the vast majority of the data, the difference between \(z_f\) and \(z_r\) is less than one. If we restrict ourselves to just review papers, as defined by WoS, we expect a larger difference since reviews have a higher than average number of references. While there is now some difference between \(z_f\) and \(z_r\) it is still less than one. As can be seen in Figures 8 and 9 (see also Figure A2 in supplementary material) there does not appear to be any significant difference between the two measures.

3.4 Departments

The data set for the institute was also analysed using the departments to define the research discipline of a paper and our subset \(P\). As some departments were found not to publish enough papers per year to draw statistically significant conclusions, it was instead decided to focus on the two most prolific departments from each of the faculties, taking papers published in three consecutive years rather than in one single year. This produced subsets \(S\) of between 209 and 1643 publications (see table A7 in supplementary material).

The single parameter lognormal distribution produced a reasonable fit when all publications were included with \(\chi^2\) values per degree of freedom ranging from 2.10 to 63.8 with an average value of 17.7. If we repeat
the fit but only on publications with a reasonable number of citations, that for $c_f > 0.1$, the goodness of fit was greatly improved with χ^2 per degree of freedom subsequently ranging from 1.06 to 55.8 with a mean of 6.98 for the c_f measure.

When the data was fitted with a single parameter lognormal we found the value of σ^2 varied between 0.9 and 1.7, with a typical value around 1.3 (see Figure 11 in supplementary material). This compares against the universal value for σ^2 of 1.3 suggested in [1]. Using a three parameter fit to check the fit it was found that $(\mu + \sigma^2/2)$ took values between -0.4 and 0.2 for large departments publishing around 500 papers per year. Smaller departments, publishing only 30 or so papers per year, showed a much bigger range for $(\mu + \sigma^2/2)$ of around -1 to 4, indicative of insufficient data.

Repeating the analysis with the c_r measure yielded comparable results with consistent variations between fields. Application of the same $c_r > 0.1$ cutoff improved the χ^2 statistic per degree of freedom from ranging between 0.52 and 9910 with a mean of 415 to within 0.76 and 20.1 around an average value of 3.92. The single parameter logarithmic fit had σ^2 falling between 0.8 and 1.7. The more recent years (2006–2007) showed greater deviations in the three parameter fit as these publications had less time to accumulate citations relative to the number of references.
Fig. 10 The symbols show the distribution of c_f (left) c_r (right) for department data for all papers with $c_f > 0.1$ published between years 1999–2001. The lines are the best fits to lognormal with one free parameter.

Fig. 11 A plot of σ^2 against year resulting from a one parameter fit of a lognormal to the c_f (left) c_r (right) measure. Error bars correspond to one standard deviation. The papers used for each point correspond to publications with $c_f > 0.1$ binned into three year intervals for the two most prolific departments of each faculty.

4 arXiv Data

The analysis here so far and in [1] has used global data from WoS as the set \mathcal{P} and so as the source of all citation counts. To see if universality applies when other data sets are used we have used the arXiv e-print archive. We used citations from papers in eight sub-archives between the years 1991 and 2006. We then analysed the four larger sub-archives each corresponding to different subject areas within physics. To be precise the sets \mathcal{P} and \mathcal{S} used in the definitions of c_f (1) and c_r (2) are now:

\mathcal{P} — All items in the eight sub-archives (astro-ph, gr-qc, hep-ex, hep-lat, hep-ph, hep-th, nucl-ex and nucl-th) of the arXiv preprint archive with an initial deposit date between 1991 and 2006 inclusive.

\mathcal{S} — All items belonging to one sub-archive (astro-ph, hep-ph, hep-th or gr-qc) published in a single calendar year (any one between 1997 and 2004) with at least one reference to and at least one citation from an item in \mathcal{P}.

Employing the same $c_f > 0.1$ cutoff to the one parameter lognormal fit, the χ^2 per degree of freedom was reduced from ranging from 3.92 to 59.6 with a mean of 30.8 to between 1.49 and 87.0 around an average of 8.98 whilst retaining 84% of publications. This fit resulted in σ^2 values ranging from 2.73 ± 0.23 for astro-ph in 1997 to 0.97 ± 0.09 for gr-qc in 2002. The averages for each sub-archive were astro-ph 2.49 ± 0.20, hep-ph 1.44 ± 0.11, hep-th 1.43 ± 0.10 and gr-qc 1.23 ± 0.14 resulting in an overall average of 1.35 ± 0.08. These
Fig. 12 On the left, the number of publications in our arXiv data. On the right the average number of citations (red circles) and references (blue triangles) for publications initially deposited in a given year.

Fig. 13 The symbols show the distribution of c_f (left) and c_r (right) for arXiv data for publications of four major sub-archives with $c_{fr} > 0.1$ published between 2002. The lines are the best fits to lognormal with one free parameter.

values are notably higher than those for the faculties and departments considered. This is in part due to some of the astro-ph data distorting the global average. A confirmation of the lognormal distribution fit was provided by a three parameter lognormal fit. Nearly all the σ^2 values are consistent with the constraint $\sigma^2 = -2\mu$, see Figure 14.

Using a corresponding reference count, the c_r measure was evaluated for each publication. As imposing a cutoff on c_r did not improve the goodness of fit, it was decided to use values from all publications. A single parameter lognormal fit resulted in a χ^2 per degree of freedom value ranging from 0.50 to 10.3 with an average value of 4.39. Imposing a minimum c_r cutoff did not result in any improvement in goodness of fit. The value of σ^2 was found to vary between 2.49 ± 0.06 for astro-ph in 1997 and 1.23 ± 0.06 for gr-qc in 2004. The resulting average σ^2 values were found to be 1.75 ± 0.22, 1.43 ± 0.09, 1.34 ± 0.08 and 1.35 ± 11 for astro-ph, hep-ph, hep-th and gr-qc. The overall average value was 1.68 ± 0.04.

The astro-ph data appears less consistent with the other sub-archives. This is in part caused by a much longer distribution tail with more publications with very high citation counts ($> 50c_0$) which are not typically seen for the other sub archives. The three parameter fit confirms that hep-ph, hep-th and gr-qc are well approximated by the lognormal distribution, with the constraints on the normalisation and mean preserved. So one explanation is that the processes involved in citing older astro-ph publications is different from those behind other physics sub-archives and indeed different from all other papers described here and
Fig. 14 A plot of σ^2 against year resulting from a one (left) or three (right) parameter fit of a lognormal to the c_f measure. Error bars are for one standard deviation. Not shown on left plot are markers corresponding to astro-ph 1997, astro-ph 1998, astro-ph 1999, astro-ph 2000 and astro-ph 2001 with values $3.86 \pm 23.526 \pm 28, 2.92 \pm 37, 2.75 \pm 16$ and 2.47 ± 26 respectively. Omitted from the right plot are markers corresponding to astro-ph 1997, astro-ph 1998, astro-ph 1999 and astro-ph 2002 with values $2.73 \pm 23.629 \pm 16, 2.62 \pm 22$ and 2.55 ± 11 respectively.

in \cite{1}. Alternatively, the citations in astro-ph are described by the same process and there is some unknown problems with the older astro-ph data.

5 Interpretation

So far no detailed model has been proposed which adequately explains the origin of the universality seen here and in \cite{1}.

The Price model of citations \cite{23} and its variations invariably result in power law behaviour for the whole population of papers. This fails to account for the low citation count part of actual citation distributions. However, we only study citations of papers over one or three years and for single fields and we found power laws to be visibly worse fits than a lognormal to the large citation part of our data. From the analytical results of Dorogovtsev et al. \cite{24} we derived citation distributions within the Price model for papers published within some short interval. These degree distributions depend on the number of citations and some configurable initial attractiveness. Only around the peak of the distribution can an approximate lognormal distribution be fitted but this is at far too high a value with too narrow a width. This is because all early publications have had longer to accrue citations so that almost all pick up a substantial number of citations. In reality the majority of publications pick up few citations however old they are.

One potential treatment of this problem is to introduce some artificial ageing of publications to reduce the rate at which older publications are cited. Wang et al. \cite{25} modified the standard attachment kernel by including an exponential damping factor $\propto \exp(-\lambda t)$. This, however, results in an exponential tail to the citation distribution for papers published in one year which falls off too fast for the fat-tailed distributions we see.

Lognormal distributions are typically the hallmark of multiplicative growth processes. So consider a simple stochastic process in which the citations of each publication at time t, $c_i(t)$, are assumed to evolve independently at each time step according to $c_i(t+1) \rightarrow c_i(t)\xi_i(t)$. Here $\xi_i(t)$ is chosen from a suitable probability distribution function with mean $1 + \lambda(c_i(t))^\beta$, where λ is the citation growth rate (which varies with field) and β a configurable parameter. Making a reasonable assumption that scientific knowledge propagates on the time scale of months and years and that a typical publication has a citation accruing lifetime of around 10 years, iterating the map for 10–100 time steps would appear appropriate. Initialising each publication with a uniform citation count, the model was iterated over 25 discrete time steps and the emergent distribution analysed as in section \ref{sec:3.1}. By dividing through by the mean citation count, the scale determining growth factor λ is effectively cancelled out. The resulting distribution for one million papers was found to be reasonably well described by a lognormal for a wide range of parameters. However these had variances σ^2 which were much too small for a range of β values around zero. This can be changed by choosing the initial value to be some measure of intrinsic fitness, $c_i(0) = q_i$. We can adjust the distribution of the paper fitness parameters q_i to obtain better results but this would require some a priori justification.
In any case such a model has an intrinsic problem in that its variance changes with time. For the case $\beta = 0$ the central limit theorem tells us that the variance should scale as $\sigma^2 \sim t^{-1}$ where t denotes the number of elapsed time steps. This would be manifested in a systematic temporal variation in the σ^2 parameter and we simply do not see this feature in our results, see Figures 3 and 11. Under the assumption of the simple multiplicative growth process one would expect a factor of 4 between the variances of 1997 and 2007 for any given faculty in Figure 3 which is just not observed. Even if time t is better measured in terms of the number of citations accrued (since the rate at which citations are accrued dies off with time after a few years) there is no suggestion in the data of any systematic decrease in variance over time. The data for arXiv in Figure 14 suggests a possible variation but it is an increase in variance with time, not a reduction. This invalidates the assumption that multiple multiplicative increase is independent of the last suggesting the system is governed by strong temporal correlations.

The simplest model which has no change over time in the variance of a resulting lognormal distribution is just $c_i(t) = q_i g(t) \prod \xi_i(t)$ with $g(t)$ defining the growth in the mean citation, q_i a measure of the intrinsic quality of a paper and $\xi_i(t)$ a random variable drawn from a suitable distributions. The distribution for ξ has to give $\ln(\xi)$ a mean of zero and a finite variance. Then the variance in citation counts $c_i(t)$ coming from the noise ξ will die off as $1/\sqrt{t}$. So provided the variation at initial times coming from ξ_i is small enough, the noise will be unimportant at any time. This explains the universality of the citation distributions of c_i over time which we have seen. The differences in the citations of each paper are controlled only by the intrinsic quality q_i along with the growth in the average number of citations. To explain the universality over research fields means that only $g(t)$ can depend on field, the distribution of q_i can not. The reason for this is that it is only when we look at the ratio c_i does the field dependent growth factor $g(t)$ cancel. That then leaves c_i as a universal measure across time and field, as it is controlled only by the intrinsic quality q_i.

The distribution of the c_i still has to be explained in terms of the distribution of the intrinsic qualities of a paper. The lognormal form of the curve we have seen for reasonably well cited papers (roughly for $c_i > 0.1$) leads us to conjecture that the quality of a paper is made up of a product of factors, $q_i = \prod a_i q_i^a$ where each factor q_i^a is the effect of issue labelled a. Issues may include the quality of publishing journal [23], prestige of home institutions, faculties or departments [24], differences between subdisciplines, and even a measure of the true quality of the work in the publication. Whatever the nature of these distributions over different effects, the central limit theorem will ensure only a few are needed to lead to the lognormal being a good description of normalised citation indices such as c_i [1].

Of course such a model can only capture the general behaviour of citations for a reasonable number of publications, but it does suggest that the universality seen here and in [1] means that other effects are smaller. As mentioned before the low citation results may fit a universal distribution but they are not well described by a log normal. One problem is that the lognormal form describes a continuous variable so mapping this onto the discrete values taken by c_i is most problematic for low citation count. Alternatively we have suggested that other processes such as self-citation, the increased fraction of different types of publication (such as meeting abstracts) and data errors [24] may be important only for low citation count behaviour in data.

Our results and those of [1] give a lognormal with variance of around $\sigma^2 \approx 1.3$. This is comparable to the variances typically measured in a wide range empirical lognormal distributions [25]. However our simple model above gives no insight as to why the value is not $O(10)$ or $O(0.1)$. As such is it best used as a framework for discussion.

6 Conclusions

We have shown that citation measures taken relative to averages, in particular c_f [1] and c_r [2], appear to conform to a universal behaviour independent of the source of our data. The lognormal form is a good description of this form for all publications, except for those with low citation count (say $c_i < 0.1$). We have shown this for papers from a single institute with the citations coming from Web of Science (WoS) and divisions made by the political structure of the institute, either by department or by faculty, as well as by year. We saw the same universal form in data taken from the e-print archive arXiv where now the source of citations is not WoS but arXiv itself. The earlier work of Radicchi, Fortunato and Castellano (RFC) [1] found the same universality in c_i for the whole WoS data but where publications were grouped by year and by field, there defined by the Journal of Citation Report of Thomson Reuters. Thus we have shown that useful comparisons of publications across diverse scientific fields and times can be made on subsets of papers, defined in a variety of ways. This greatly extends the practical applications of the results of [1]. It also means that evaluation of publications across different disciplines and time can be achieved from many data sets, and this choice will lead to lower costs for such evaluations.

13 (T) Others? Check for citations and look for others?
One area that deserves further investigation is to look at emergent definitions of research field. The definition of field in our work has been done through top-down methods: the faculty or department of authors and the arXiv classifications here, the Thomson Reuters Journal of Citation Reports in [1]. The alternative is to define fields of research from the relationships between papers themselves, using network clustering (community detection) methods [20]. Such bottom-up methods gave similar results on a broad statistical scale in [19] but it would be interesting to try such emergent definitions of field them in this context. In particular using modern overlapping community detection methods such as [31,32,33,34,35] allow papers to be in more than one category and provide a better definition of field.

One example of a practical application of our results is that it can be used to cut costs of research assessment. For instance the Research Excellence Framework (REF) run by Higher Education Funding Council for England (HEFCE) will assess the quality of research in UK higher education institutions. For the 2014 exercise, it is proposed that staff submit up to four publications for assessment. An expert opinion is to be sought on each publication and for some fields (sub-panels in the language of REF) the experts will be provided with some citation information. This is a citation count for each paper along with as yet unspecified “discipline-specific contextual information about citation rates for each year of the assessment period to inform, if appropriate, the interpretation of citation data” [36]. More sophisticated measures, including the normalisation of citation counts using world citation averages for different fields, were highlighted in a report commissioned by HEFCE [7] but are not to be provided. However these measures are not to be provided presumably on the grounds of cost as access to world-wide data sets S are then needed. On the other hand, our work suggests that for the REF we could define a similar measure c_f [1] but now in terms of the average values found from all those submitting. That is we define the averages in f in terms of subset S of all papers authored by the staff, in a given year and in a given field. For organisational purposes, e.g. to select appropriate expert referees, the REF has defined its fields of research so these could be used much as we have used faculties or departments as a convenient definition of research field. Since four papers are already required for the REF, extending its requirements to all papers published by each contributor does not require major changes or additional cost in the data collection since most institutions collect data on all published papers for a variety of reasons. As the data from additional papers are only used to find averages, the extra processing required is minimal. The drawback of this approach is that the measures c_f or c_r would be relative to a UK standard in this case. If one field of UK research was weaker than another, this would not be apparent in the normalised measures based on UK counts. Still our normalised indices c_f or c_r would be considerably better than raw citation counts, are cheap to calculate and allow simple comparisons between Institutes within each field which is key goal of the REF. In any case, should data on the global position of each field be available separately, for instance some were given in HEFCE’s own report [7] or may be part of the unspecified “contextual information” provided [36], a correction for global difference between research fields in the UK could be made if that was deemed important.

By dividing citation counts by references and scaling by the average of this quantity, it was hoped to capture more of the variation in citation patterns between research fields. The c_r measure appears reasonably well described by the lognormal distribution. However this measure seems to be largely correlated with c_f, even for review articles which one might expect to have unusually large numbers of references. So it appears that c_f is most useful in identifying the occasional publication with unusual characteristics. As c_f is trivial to calculate alongside c_r, it is also a useful check on any calculation.

Though we have focused on using c_f [1] and c_r [2] for individual papers, there is no reason why these could not be used as the basis for the analysis of individuals [15], groups of researchers [37], or a journal [16,39,22,17]. There has been some debate about the best way to combine measures for individual papers into a measure for a group of papers, centred round the crown indicator [1], see [15] for one view and other references on this topic. One of the criticisms [27,45,10,11] focuses on the long-tailed nature of the distribution of citations, even for those in a single year and a field, a problem in many other ways too [12,13]. The long-tail suggests that simple arithmetic averages of citations measures (normalised or not) are inappropriate. By way of comparison, for all its other faults, the h-index [44] is specifically designed to take such long-tails into account. However our approach suggests this is unnecessary. Our results and those in [1] show that the logarithm of our normalised citation measure is well approximated by a normal distribution, for which there is no long tail. The idea of using logarithms to overcome the long tail has appeared elsewhere [22] but was used in a different way. Thus the issue of long tails can be dealt with simply by taking averages of the logarithm of our normalised citation indices. For instance our z_1 and z_2 indices of f are working in terms of $\ln(c_f)$ and $\ln(c_r)$, and use the mean and average of the distribution of the space of the logarithm of the normalised citation indices.

To illustrate what we mean consider the example of journals. Suppose we consider a set of papers published in one journal, J. For simplicity assume that each paper, $j \in J$, is considered to be in a single subset $S(j)$, i.e. from a unique field [4]. Then for that paper $c_f(j, S(j), P) = c(j, P)/c_0(S(j), P)$. By studying

$-$ Should papers be assigned to more than one field we would suggest weighting contributions from one paper to each field. So a paper assigned to two fields would be treated a two separate ‘half-papers’.
the data on papers in that field $S(j)$ we can fix a mean $\mu_f(S(j), P)$ and standard deviation $\sigma_f(S(j), P)$ from the distribution of $\ln(c_j)$ (ignoring low cited papers when doing this fit as we suggest). Then each paper j published in that year is assigned a score, $z_l(j, S(j), P) = \ln(c_j(S(j), P)) - \mu_f(S(j), P)/\sigma_f(S(j), P)$ of [4]. Papers with zero citation do not affect the fitting of the $\ln(c_j)$ distributions but would give $z_l = -\infty$, a problem also encountered in [22] when using logarithms of citations. A simple trick we would suggest to deal with this would be to treat zero cited papers as having a quarter of a citation. The motivation is that we envisage associating the discrete valued citation count of zero with a bin of a continuous variable running from zero to one half. A citation value of quarter is the midpoint of this bin. An obvious measure of a journal in one year would then be the arithmetic average of the z_l values of all published papers. That is our journal index would be $z_l(J) = |J|^{-1} \sum_{j \in J} z_l(j, S(j), P)$. It makes sense to take the arithmetic average of values as the $\ln(c_j)$ distribution is not fat-tailed. For such measures, the set of papers in a journal need not be from a single field, thus providing a practical method of comparing multi-disciplinary journals with specialised ones.

If the journal has papers from only one subset S (so $S = S(j) \forall j \in J$), so from one field and for one window in time used to select the subsets S, our measure $z_l(J)$ of journal J is then simply

$$z_l(J) = \frac{\ln[c_l(J, P)] - \mu_f(S, P)}{\sigma_f(S, P)}$$

(5)

$$\ln[c_l(J, P)] = \frac{1}{|J|} \ln \left[\prod_{j \in J} c(j, P) \right] - \ln[c_0(S, P)] .$$

(6)

This form highlights another feature of our approach. Our use of the logarithm of citation count as a measure of an individual paper means that when we look at collections of papers and take arithmetic averages of our index values, the result contains geometric means of the raw citation counts rather than the much criticised arithmetic mean of citation counts, i.e. we are exploiting $\sum_j \ln(c_j(P)) = \ln[\prod_{j \in J} c(j, P)]$. By way of comparison, Lundberg [22] works with the $\ln[\sum_j c(j, P)]$ which is a very different quantity as it still involves an arithmetic mean of a values taken from a fat-tailed distribution.

We could apply exactly the same approach to assign an index to a journal but based on our index c_l of [2]. This is the same context in which normalisation by reference counts has been suggested before [16, 17]. However we note that in these earlier approaches the arithmetic average citation count was divided by $\sum_j c_j$ [15]. Alternatively a more precise measure is that papers with zero citation are assigned an effective count of $c_{\text{eff}} = 0.25$ and $c_0 = 10$ we find $c_{\text{eff}} \approx 0.248$ which is a tiny error. In this case zero cited papers would score $z_l = -2.67$.

If we were to include uncited papers, point (a) would increase our values of c_0 but this can be absorbed into a shift in μ for our lognormal distribution. We estimate that this effect is equivalent to increasing μ by about 0.14 whereas μ has a typical value of around -0.7 which is not noticeable but not overwhelming as it is similar in size to the deviations we found of $\mu + \sigma^2/2$ from zero when we use a three-parameter fit Fig[3] (where $\mu + \sigma^2/2 = 0$ is not enforced). However while this may explain part of the variation in $\mu + \sigma^2/2$, its deviations from zero are not consistently of one sign and certainly possible corrections to c_0 do not seem to interfere significantly with our analysis. If this was significant we would find that the relation $\mu + \sigma^2/2 = 0$ would not hold. However our three-parameter fits showed no serious problems with this relationship. Radicchi et al. [11] also noted that this shift had no effect on their results.

\[15\] Alternatively a more precise measure is that papers with zero citation are assigned an effective count of c_{eff} where $0.5 F(c_{\text{eff}}/c_0; \mu_f, \sigma_f) = \int_0^{0.5} dF(c'/c_0; \mu_f, \sigma_f)$ and F is the lognormal distribution of [3]. However with typical values of $\sigma^2 = 1.3$, $\mu = -\sigma^2/2$ and $c_0 = 10$ we find $c_{\text{eff}} \approx 0.248$ which is a tiny error. In this case zero cited papers would score $z_l = -2.67$.

\[16\] Across our data for the Institute we have 84% of papers with $c, r > 0$ used in our analysis with another 13% of papers with $c = 0$ but $r > 0$. If we use this to estimate the effect of zero cited papers, it suggests that including them would increase $\ln(c_l)$ by about 0.14.
The normalisation issue of (b) does not affect our fitting as the lognormal distributions we predict have around 2% of papers with a citation of one half or less\footnote{With F the lognormal distribution of (6) we have $0.0198 \approx \int_0^{0.5/c_0} dc' F(c'/c_0; \mu_f, \sigma_f)$ for typical values of $\sigma^2 = 1.3$, $\mu = -\sigma^2/2$ and $c_0 = 10$.}. So leaving our uncited papers will have a large effect on our fits through the normalisation of the whole data. Fig. (11) confirms that when the normalisation is left a free parameter, noise in the fit is much larger than the effect of excluding uncited papers from the total normalisation.

For us point (c) is irrelevant as we exclude low cited and hence zero cited papers from the fit.

Overall then we feel that while including zero cited papers would be an improvement in our analysis, they are unlikely to alter our conclusions.

In fact we go further and emphasise that papers with low numbers of citations do not appear to fit a ‘universal’ lognormal model even if there is a universal distribution for such publications. One problem is that the relation between discrete valued citation counts and a continuous distribution such as the lognormal is difficult for low cited papers. We have also suggested that there are additional processes involved for zero and low cited publications such as an increase in the proportion of non-standard types of publication, the nature of self-citation processes and errors in the data \[21\]. In general another factor is that errors in bibliographic records often lead to the creation of a distinct record that has only one or two citations in the nature of self-citation processes and errors in the data \[21\]. Of course such processes will be more important for disciplines with low numbers of citations and we interpret this as consistent with the observation by Waltman et al. \[13\] that the deviations they discussed were worse for fields with low numbers of citations while they improved when zero cited papers were excluded. We note in particular that if the proportion of low cited papers is variable from year to year or from field to field, then our results suggest that such variations will upset an analysis based on a ranking or percentile using the whole data. In our approach using z_t the proportion of low cited papers in each field has little effect as they are excluded from our fit. However the ranking of a paper with a high z_t will change depending on the variations in the number of low cited papers.

To summarise, our approach is as follows. To compare papers from different fields and published at different times from a large set of papers, first split the papers into subsets (\mathcal{S}) using publication date and an available definition of field. Then, using the data for citations to each paper which probably come from a larger set \mathcal{P}, the data for the indices $c_t = c/c_0$ (1) and $c_t = (c/r)/(c/r)$ of (2) are fitted to a lognormal but only using reasonably well cited papers. We suggest an operational definition that $c_1, c_2 > 0.1$ for any reasonably well cited publication. The position of each publication on this curve, even those not used to do the fit, gives a measure that gives a meaningful comparison across disciplines and time.

There still remains much uncertainty and many apparent differences even in the recent literature. Different data sets are used as many are not publicly available for analysis by other groups. The different treatment of zero cited papers, different preferred forms for citation curves and different schemes for fitting data, means that direct comparison between our results and other recent papers such as \[11,12,13\] is difficult. Nevertheless, despite these differences, our work leads us to highlight some general ideas which may produce robust measures of the performance of a publication and of collections of publications. In particular by working with the logarithm of citation measures normalised by time and field, $\ln(c_t)$, produces distributions without a fat tail. Even if these are not a normal distribution (as we suggest for reasonably well cited papers) the mean and standard deviation of the $\ln(c_t)$ distribution will be a good characterisation of the data. With no fat tail it then also makes sense to use arithmetic averages of $\ln(c_t)$ when looking at collections of papers. One clear signal that such an approach makes sense is that we see no systematic variation in our measured parameter σ across time or field.

Acknowledgements We would like to than L.Waltman, N.J.van Eck and A.F.J.van Raan for useful comments. NH would like to thank the Nuffield Foundation for a Summer Student bursary. BSK would like to thank the Imperial College London UROP scheme for a bursary. We thank O.Kibaroglu and D.Hook for help in obtaining and interpreting the raw data, Thomson Reuters for allowing us to use the citation and reference counts for the data for the Institute, and P.Ginsparg for providing the data from arXiv.

References

1. F. Radicchi, S. Fortunato and C. Castellano. Universality of citation distributions: Toward an objective measure of scientific impact. Proc Natl Acad Sci USA, 105:17268\-17272, 2008.

2. A. Schubert and T. Braun. Relative indicators and relational charts for comparative assessment of publication output and citation impact. Scientometrics, 9:281\-291, 1986.

3. P. Vinkler. Evaluation of some methods for the relative assessment of scientific publications. Scientometrics, 10:157\-177, 1986.
4. H. Moed, R. De Bruin and Th. van Leeuwen. New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications. *Scientometrics*, 33:381–422, 1995.
5. P. Vinkler. Relations of relative scientometric impact indicators, the relative publication strategy index. *Scientometrics*, 40:163–169, 1997.
6. D.W. Akos and R.E. Tauxt. Peer reviews and bibliometric indicators: A comparative study at a Norwegian university. *Research Evaluation*, 13:33–41, 2004.
7. A. van Raan, H. Moed and T. van Leeuwen. Scoping study on the use of bibliometric analysis to measure the quality of research in UK higher education institutions. Report to HEFCE by the Centre for Science and Technology Studies, Leiden University, November 2007.
8. F. Radicchi C. Castellano. On the fairness of using relative indicators for comparing citation performance in different disciplines. *Scientometrics*, 57:85–90, 2001.
9. H. Daniel L. Bornmann. Universality of citation distributions — a validation of radicchi et al.'s relative indicator $c_f = c/c_o$ at the micro level using data from chemistry. *Journal of the American Society for Information Science and Technology*, 60:1664–1670, 2009.
10. L. Waltman, N.J. van Eck, T.N. van Leeuwen, M.S. Visser, and A.F.J. van Raan. Towards a new crown indicator: Some theoretical considerations. *Journal of Informetrics*, 5:37–47, 2011.
11. F. Radicchi and C. Castellano. Rescaling citations of publications in physics. *Phys. Rev. E*, 83:046116, 2011.
12. Pedro Albarrán, Juan Crespo, Ignacio Ortuño, and Javier Ruiz-Castillo. The skewness of science in 219 sub-fields and a number of aggregates. *Scientometrics*, 88:385–397, 2011.
13. L. Waltman, N. J. van Eck, and A. F. J. van Raan. Universality of citation distributions revisited. *J. Am. Soc. Inf. Sci.*, 1:72, 2012.
14. Y.-H. Eom and S. Fortunato. Characterizing and Modeling Citation Dynamics. *PLoS One*, 6:e24926, 2011.
15. Thomson Reuters. http://www.isiknowledge.com *Web of Science*, 2009.
16. V. Yankovskaya. Citation analysis significance of scientific journals. *Scientometrics*, 3:223, 1981.
17. J. Nicolaisen and T. F. Frandsen. The Reference Return Ratio. *J. Informetrics*, 2:128, 2008.
18. L. Leydesdorff, L. Bornmann, R. Mutz, and T. Opthof. Turning the tables in citation analysis one more time: Principles for comparing sets of documents. *Journal of the American Society for Information Science and Technology*, 2011.
19. L. Leydesdorff, I. Rafols. Content-based and algorithmic classifications of journals: Perspectives on the dynamics of scientific communication and indexer effects. *Journal of the American Society for Information Science and Technology*, 60:1–13, 2009.
20. R. L. Goldstone, K. Börner, J. T. Maru. The simultaneous evolution of author and paper networks. *PNAS*, 101:5266527, 2004.
21. C.P. Bourne. Frequency and impact of spelling errors in bibliographic data bases. *Information Processing & Management*, 13:1–12, 1977.
22. J. Lundberg. Lifting the crown–citation z-score. *Journal of Informetrics*, 3:223, 1981.
23. D. J. de S. Price. A general theory of bibliometric and other cumulative advantage processes. *J. Amer. Soc. Inform. Sci.*, 2:292–306, 1976.
24. A.N. Samukhin S.N. Dorogovtsev, J.F.F Mendes. Structure of growing networks with preferential linking. *Physical Review Letters*, 85:4633–4636, 2000.
25. D. Yu, M. Wang, G. Yu. Effect of the age of papers on the preferential attachment in citation networks. *Physica A: Statistical Mechanics and its Applications*, 388:4273–4276, 2009.
26. V. Lattiviere and Y. Gingras. The impact factor’s Matthew effect: a natural experiment in bibliometrics. Technical report, arXiv:0908.3177, 2009.
27. W.O. Hagstrom. Inputs, Outputs, and the Prestige of University Science Departments. *Sociology of Education*, 44:375, 1971.
28. E. Lillquist and S. Green. The discipline dependence of citation statistics. *Scientometrics*, 84:749, 2010.
29. M. Åblåe E. Limpert, W. A. Stahel. Log-normal distributions across the sciences: Keys and clues. *BioScience*, 51:341–352, 2001.
30. S. Fortunato Community detection in graphs. *Physics Reports*, 486:75–174, 2010.
31. T.S. Evans and R. Lambiotte, Line Graphs, Link Partitions and Overlapping Communities. *Phys. Rev. E*, 80:016105, 2009.
32. T.S. Evans and R. Lambiotte, Line Graphs of Weighted Networks for Overlapping Communities. *Eur. Phys. J. B*, 77:265–272, 2010.
33. T.S. Evans, Clique Graphs and Overlapping Communities. *J. Stat. Mech.*, 2010:P12037, 2010.
34. Y.-Y. Ahn, J.P. Bagrow, and S. Lehmann. Fuzzy overlapping communities in networks. *Nature*, 466:761–764, 2010.
35. S. Gregory, Fuzzy overlapping communities in networks. *Journal of Statistical Mechanics*, 2011:P02017, 2011.
36. HEFCE report “Assessment framework and guidance on submissions”, REF 02.2011, July 2011. Also “Part 2A Main Panel A Criteria”, and similarly named 2B and 2C documents, downloaded from http://www.hefce.ac.uk/research/ref/ 15th February, 2012.
37. L. Bornmann, G. Wallon, and A. Ledin. Does the committee peer review select the best applicants for funding? An investigation of the selection process for two European molecular biology organization programmes. *PLoS One*, 3:e3480, 2008.
38. H.F. Moed. *Citation analysis in research evaluation*. Springer, 2005.
39. H.-D. Daniel. *Guards of science. Fairness and reliability of peer review*. Wiley Interscience, 1993/2004.
40. L. Bornmann and R. Mutz. Further steps towards an ideal method of measuring citation performance: The avoidance of citation (ratio) averages in field-normalization. *J. Informetrics*, 5(1):228–230, 2011.
41. Loet Leydesdorff and Tobias Ophof. Remaining problems with the “new crown indicator” (mcns) of the cwts. *J. Informetrics*, 5:224–225, 2011.
42. J. Adams, K.A. Gurney, and L. Jackson. Calibrating the zoom: a test of zita hypothesis. *Scientometrics*, 75:81–95, 2008.
43. L. Leydesdorff and S. Bensman. Classification and powerlaws: The logarithmic transformation. *J Am Soc Inf Scientists Technologists*, 57:1470–1486, 2006.
44. P.O. Seglen. An index to quantify an individual’s scientific research output. *PNAS*, 102:16569, 2005.
45. H.F. Moed. *The skewness of science*. *Journal of the American Society For Information Science*, 43:628, 1992.
Supplementary Material

Fitting Process

Our subsets of papers \mathcal{S} are either (i) papers published by authors in one faculty of our institute in one calendar year, (ii) papers published by authors in one department of our institute in three consecutive calendar years, or (iii) papers placed on sub-archive of arXiv in a calendar year. We also place the restriction that papers in each \mathcal{S} have positive numbers of both citations and references. The latter are likely not to be significant publications but zero cited papers form a significant proportion of all academic papers, see Tables A1 and A12.

Once we have defined our set we fix the average number of citations for that set, $c_0(\mathcal{S}, P)$ following (1) and $\langle c/r \rangle(\mathcal{S}, P)$ of (2). With the average we can find the indices c_f and c_r for each individual paper. In the following we will refer to c_f alone but we used an identical procedure for our analysis of c_r.

We define bins with boundaries $C(b)$ such that $C(b+1) = r.c(b)$ where r is a constant. The number of bins is given and then we choose values of r and the bottom and top bin boundaries such that the smallest and largest values of c_f in the data under consideration always fall in the middle of the first and last bins respectively. The number of bins was chosen by hand to ensure a reasonable number of non-zero data points.

When fitting the data we compare the actual count in each bin against the number expected to lie in that bin $\int_{C(b)}^{C(b+1)} F(c_f; \mu = -\sigma^2/2, \sigma^2)$. The points shown on plots correspond to value we used for a single bin, using the midpoint of the bins to locate the points horizontally. It makes more sense to use the geometric mean of the bin boundaries to represent the position of the bin but $\sqrt{c(b)c(b+1)}$ differs from the midpoint $(c(b) + c(b+1))/2$ only by a factor of $O((r-1)^2)$ which is negligible in terms of visualisation.

Single Institution

Type	All items	c. r > 0	c. r > 0 and date
Poetry	1	0.00%	
Bibliography	1	0.00%	
Abstract of Published Item	2	0.00%	
Software Review	9	0.01%	
Item About an Individual	15	0.01%	
Reprint	16	0.02%	
Biographical-Item	58	0.05%	
Book Review	157	0.15%	
News Item	64	0.06%	
Correction, Addition	159	0.10%	
Discussion	157	0.10%	
Correction	403	0.38%	
Meeting Abstract	15222	14.39%	
Note	1250	1.18%	
Letter	3251	3.07%	
Editorial Material	3555	3.36%	
Review	4649	4.40%	
Proceedings Paper	9211	8.71%	
Article	67629	63.94%	
TOTAL	105767	78267	78216

Table A1 Different Types of Publication in Data for Single Institution. $c, r > 0$ indicates that papers counted must have at least one reference and one citation. The last two columns the publications must also have a valid year of publication. Data stretches from 1970 to 2010 as shown in Figure 1.
Year	Faculty	N_p	c_0	σ^2	res.err./d.o.f.	Bins	χ^2/d.o.f.
1997	Natural Sciences	1357	49.07	1.33(10)	2.15	12	24.4
	Medicine	471	22.63	1.27(15)	1.96	8	3.7
	Engineering	2754	NA	1.13(5)	0.82	24	65.9
	All	2615	NA	1.13(5)	0.63	24	3.4
1998	Natural Sciences	1529	44.41	1.45(11)	2.15	14	4.7
	Medicine	478	22.59	1.54(18)	1.56	9	1.8
	Engineering	2849	NA	1.24(7)	1.03	24	12.4
	All	2754	NA	1.24(7)	0.78	24	7.5

Table A2 Faculty data from graphs generated using Radicchi measure using 1 parameter fit of Equation (3). Here, and in later tables, the column labelled res.err./d.o.f. is the just the sum of squares of residuals divided by the degree of freedom (number of bins minus number of parameters) squared. This differs from χ^2/d.o.f. as we weight the residuals by the expectation for that bin in finding χ^2.
Year	Faculty	N_p	c_0	σ^2	$\mu + \frac{c_0}{\sigma^2}$	residual error/df
1997	Natural Sciences	869	38.88	1.09(12)	-0.1(1)	1.0
	Medicine	1357	49.07	1.23(14)	0.0(1)	1.5
	Engineering	389	23.50	0.85(13)	0.1(1)	1.4
1998	Natural Sciences	902	42.92	1.15(18)	-0.1(1)	1.1
	Medicine	1381	51.89	1.02(9)	-0.2(1)	1.6
	Engineering	471	22.63	1.22(25)	0.1(2)	2.6
1999	Natural Sciences	842	51.41	0.93(8)	-0.3(0)	0.8
	Medicine	1529	44.41	1.29(17)	0.0(1)	2.0
	Engineering	478	22.59	1.53(25)	0.2(1)	1.5
2000	Natural Sciences	921	39.91	1.11(10)	-0.1(1)	1.0
	Medicine	1660	44.31	1.31(11)	0.0(1)	1.4
	Engineering	515	21.91	1.37(12)	0.2(1)	1.2
2001	Natural Sciences	1084	38.70	1.26(11)	0.0(1)	0.9
	Medicine	1879	39.83	1.23(14)	0.1(1)	2.2
	Engineering	663	20.37	1.17(13)	0.1(1)	1.5
2002	Natural Sciences	1136	37.95	1.25(18)	-0.1(1)	1.8
	Medicine	2016	38.69	1.22(9)	0.0(1)	1.4
	Engineering	774	18.43	1.33(15)	0.1(1)	1.9
2003	Natural Sciences	1147	36.13	1.41(9)	0.0(0)	0.7
	Medicine	2024	39.16	1.26(8)	0.0(0)	1.3
	Engineering	845	16.67	1.22(15)	0.1(1)	2.2
2004	Natural Sciences	1342	28.90	1.13(9)	-0.1(1)	1.1
	Medicine	2140	31.00	1.15(12)	0.1(1)	2.6
	Engineering	944	15.05	1.42(17)	0.2(1)	2.3
2005	Natural Sciences	1377	23.00	1.10(9)	0.1(1)	1.1
	Medicine	2181	20.87	1.17(8)	0.0(1)	1.6
	Engineering	927	13.46	1.03(11)	0.1(1)	2.2
2006	Natural Sciences	1242	22.63	1.14(11)	-0.1(1)	1.1
	Medicine	2278	21.93	1.09(4)	0.0(0)	0.8
	Engineering	981	11.61	1.10(26)	0.0(1)	4.7
2007	Natural Sciences	1254	16.02	1.09(14)	0.0(1)	1.6
	Medicine	2267	17.65	1.13(20)	0.0(1)	1.5
	Engineering	929	8.63	1.76(43)	0.2(2)	4.2

Table A3 Faculty data from graphs generated using Radicchi measure using a 3 parameter fit $A \cdot F(c_f; \mu, \sigma^2)$.
Year	Faculty	\(N_p\)	\(\langle c_r \rangle\)	\(\sigma^2\)	res.err./d.o.f.	Bins	\(\chi^2/d.o.f.\)
1997	Natural Sciences	982	1.49	1.33(5)	0.6	14	3.6
	Medicine	1561	1.89	1.40(5)	1.0	14	7.2
	Engineering	443	1.06	1.03(6)	0.8	9	4
1998	Natural Sciences	1064	1.64	1.55(8)	0.9	14	2.6
	Medicine	1646	2.02	1.61(7)	1.4	14	4.0
	Engineering	543	1.04	1.11(11)	1.8	9	5.5
1999	Natural Sciences	1030	1.79	1.70(9)	1.0	14	2.3
	Medicine	1770	1.62	1.44(4)	0.9	14	2.9
	Engineering	569	0.92	1.30(9)	1.2	9	1.0
2000	Natural Sciences	1062	1.66	1.61(8)	1.3	12	35.4
	Medicine	1939	1.57	1.39(4)	1.1	14	3.7
	Engineering	637	0.92	1.31(4)	0.8	8	27.2
2001	Natural Sciences	1244	1.36	1.61(11)	1.6	14	3.4
	Medicine	2103	1.44	1.38(3)	0.9	14	7.5
	Engineering	760	0.92	1.40(6)	1.1	9	0.8
2002	Natural Sciences	1321	1.41	1.62(9)	1.4	14	2.5
	Medicine	2262	1.36	1.41(4)	1.0	14	3.9
	Engineering	858	0.78	1.21(5)	1.2	9	1.1
2003	Natural Sciences	1319	1.28	1.57(6)	0.9	14	2.1
	Medicine	2272	1.33	1.39(6)	2.1	13	3.9
	Engineering	921	0.69	1.07(4)	1.1	9	1.4
2004	Natural Sciences	1497	0.99	1.37(4)	0.8	14	1.6
	Medicine	2484	1.05	1.28(4)	1.5	14	17
	Engineering	1045	0.66	1.18(5)	1.5	9	0.8
2005	Natural Sciences	1583	0.85	1.31(5)	1.2	13	2.4
	Medicine	2409	1.01	1.28(6)	2.2	14	4.9
	Engineering	1018	0.55	1.10(6)	1.8	9	1.5
2006	Natural Sciences	1426	0.74	1.33(6)	1.1	14	6.6
	Medicine	2581	0.71	1.17(4)	1.5	14	3.3
	Engineering	1100	0.45	0.98(2)	0.9	9	3.2
2007	Natural Sciences	1397	0.49	1.18(2)	0.5	14	0.8
	Medicine	2463	0.59	1.30(6)	2.0	14	6.4
	Engineering	929	0.33	1.05(5)	1.4	9	1.1

Table A4 Data from graphs generated using the \(c_r\) measure using 1 parameter fit, see Equation \([\ref{4}]\).
Year	Faculty	Np	(cᵣ)	σ²	μ + μᵣ	residual error/df
1997	Natural Sciences	982	1.40	1.0(1)	-0.2(0)	0.5
	Medicine	1561	1.89	1.1(1)	-0.1(1)	1.3
	Engineering	443	1.06	1.0(0)	0.1(0)	0.4
1998	Natural Sciences	1064	1.04	1.0(1)	-0.4(0)	0.8
	Medicine	1646	2.02	1.1(1)	-0.2(1)	1.3
	Engineering	543	1.04	0.9(1)	-0.1(1)	1.6
1999	Natural Sciences	1030	1.79	1.0(1)	-0.4(1)	1.2
	Medicine	1770	1.62	1.1(1)	-0.1(0)	1.0
	Engineering	569	0.92	1.2(2)	0.1(1)	1.5
2000	Natural Sciences	1062	1.66	1.0(1)	-0.3(1)	1.8
	Medicine	1939	1.57	1.1(1)	-0.1(1)	1.3
	Engineering	637	0.92	1.1(1)	0.0(1)	1.0
2001	Natural Sciences	1244	1.56	1.0(1)	-0.3(1)	1.6
	Medicine	2103	1.44	1.1(1)	-0.1(0)	1.3
	Engineering	760	0.92	1.2(1)	0.1(0)	0.8
2002	Natural Sciences	1321	1.41	1.0(1)	-0.4(1)	1.5
	Medicine	2262	1.36	1.1(1)	-0.2(0)	1.6
	Engineering	858	0.78	1.1(1)	0.1(0)	1.2
2003	Natural Sciences	1319	1.26	1.2(1)	-0.2(1)	0.9
	Medicine	2272	1.33	1.0(1)	-0.2(1)	2.1
	Engineering	921	0.69	1.0(1)	0.1(0)	1.4
2004	Natural Sciences	1407	0.99	1.1(1)	-0.1(0)	0.9
	Medicine	2484	1.05	1.0(1)	-0.1(1)	2.5
	Engineering	1045	0.66	1.1(1)	0.0(0)	1.2
2005	Natural Sciences	1573	0.83	1.1(1)	0.0(0)	0.9
	Medicine	2409	1.01	1.0(1)	-0.2(0)	1.9
	Engineering	1018	0.55	1.1(1)	0.1(1)	2.0
2006	Natural Sciences	1426	0.74	0.9(1)	-0.2(0)	1.0
	Medicine	2581	0.71	1.0(1)	-0.1(1)	2.2
	Engineering	1100	0.45	0.9(1)	0.0(1)	3.1
2007	Natural Sciences	1399	0.49	1.0(1)	-0.1(0)	0.8
	Medicine	2463	0.59	1.0(2)	-0.2(0)	1.4
	Engineering	929	0.33	0.9(0)	-0.1(0)	1.1

Table A5 Faculty data from graphs generated using the cᵣ measure using 3 parameter fit, $A \cdot F(cᵣ; \mu, \sigma^2)$.
Measure	c^*_r	Bins	χ^2/d.o.f Min	χ^2/d.o.f Max	χ^2/d.o.f Mean
c_f	0.0	8	11.5	11.5	11.5
		9	2.1	4.5	3.6
		14	12.3	12.3	12.3
		15	26.7	26.7	26.7
		16	6.5	49.5	20.9
		17	4.4	63.8	23.2
		18	4.4	37.8	18.9
	0.1	8	11.5	11.5	11.5
		9	1.2	4.5	2.4
		14	12.3	12.3	12.3
		15	55.8	55.8	55.8
		16	3.0	24.6	10.6
		17	2.6	4.3	3.4
		18	1.7	9.5	4.5
		19	1.1	5.1	2.7
c_r	0.0	9	0.5	1.0	0.7
		15	9914.6	9914.6	9914.6
		17	3.1	10.1	6.2
		18	1.1	5.3	3.0
		19	0.6	5.7	1.8
	0.1	8	3.0	3.0	3.0
		9	0.8	1.3	1.0
		16	13.0	20.1	16.5
		17	1.8	1.9	1.8
		18	1.0	6.3	3.4
		19	1.1	7.8	3.0

Table A6: Table of χ^2 values for the one parameter lognormal goodness of fit to faculty data. c^* denotes the threshold below which publications were not included in the fitting.
Fig. A1 The distribution of c_f for faculty data for all papers published in the year 2007 (left) or only those with in $c_f > 0.1$ (right). The lines are the best fits to lognormal with one free parameter. Publications with very low citation counts $c_f < 0.1$ can be seen to be poorly described by lognormal distribution.

Fig. A2 Scatter plot of z_f vs. z_r of (4) for all items (left) and review articles only (right).
Fig. A3 A plot of $(\mu + \sigma^2/2)$ (left) and $(A - 1)$ (right) against year obtained by fitting a lognormal to the c_f measure for which zero is expected for both quantities. Not shown on the right Figure are data points corresponding to Chemical Engineering and Mechanical Engineering for 2005-2007 corresponding to 1.4(9) and 0.9(7) respectively.

Fig. A4 A plot of σ^2 against year resulting from a three parameter fit of a lognormal to the c_f (left) and c_r (right) measure. Error bars mark one standard deviation. The papers used for each point correspond to publications with $c_r > 0.1$ binned into three year intervals for the two most prolific departments in each faculty.
Fig. A5 A plot of \((\mu + \sigma^2/2)\) (left) and \((A - 1)\) (right) against year obtained by fitting a lognormal to the \(c_e\) measure for which zero is expected for both quantities. Error bars are for one standard deviation. The papers used for each point correspond to publications with \(c_e > 0.1\) binned into three year intervals for the two most prolific departments in each faculty.
Year	Department	N_p	c_0	σ^2	res.err./d.o.f.	Bins	χ^2/d.o.f.
1996-1998	Sp.Medical Inst.	1178	38.60	1.39(14)	1.0	19	3.40
	Invst.Sciences	585	53.08	1.41(12)	0.6	16	24.57
	Physics	1001	35.48	1.45(10)	0.7	19	2.01
	Chemistry	458	35.20	1.11(9)	0.3	19	1.15
	Chem.Eng.	318	21.75	0.85(9)	0.3	18	1.68
	Mech.Eng.	209	15.76	1.40(10)	0.7	9	1.22
1999-2001	Sp.Medical Inst.	1454	34.60	1.48(13)	1.1	19	3.57
	Invst.Sciences	724	37.67	1.37(9)	0.4	19	1.06
	Physics	1087	37.40	1.49(10)	0.7	18	9.46
	Chemistry	492	40.93	1.19(13)	0.7	15	55.83
	Chem.Eng.	358	17.86	1.29(18)	0.5	17	2.57
	Mech.Eng.	232	12.58	1.61(23)	0.7	9	1.50
2002-2004	Sp.Medical Inst.	1643	27.22	1.52(12)	1.3	17	4.31
	Invst.Sciences	950	28.93	1.07(10)	0.8	19	3.08
	Physics	1301	30.13	1.64(12)	0.8	19	2.37
	Chemistry	616	25.71	1.14(11)	0.7	16	4.06
	Chem.Eng.	420	14.04	1.01(10)	0.4	16	3.02
	Mech.Eng.	307	9.48	1.26(26)	1.5	9	4.49
2005-2007	Sp.Medical Inst.	1352	13.89	1.39(15)	1.2	18	3.36
	Invst.Sciences	1435	15.21	1.47(16)	1.3	19	5.09
	Physics	614	13.81	1.53(15)	0.4	19	2.02
	Chemistry	452	6.86	1.19(37)	1.4	14	12.25
	Chem.Eng.	289	5.90	1.22(51)	2.8	8	11.49

Table A7 Department data from graphs generated using the c_f measure using 1 parameter fit, see Equation 3.
Year	Department	N_p	c_0	σ^2	res.err./d.o.f.	Bins	χ^2/d.o.f.
1996-1998	Sp.Medical Inst.	1178	38.60	1.39(14)	0.99	19	3.4
	Invest.Sciences	585	53.08	1.41(12)	0.63	16	24.6
	Physics	1001	35.48	1.45(10)	0.66	19	2.0
	Chemistry	458	35.20	1.11(9)	0.31	19	1.1
	Chem.Eng.	318	21.75	0.85(9)	0.32	18	1.7
	Mech.Eng.	209	15.76	1.45(32)	0.33	18	2.6
	All	3749	NA	1.07(5)	1.55	19	38.2
1999-2001	Sp.Medical Inst.	1454	44.80	1.48(13)	1.10	19	3.0
	Invest.Sciences	724	37.67	1.37(9)	0.43	19	1.1
	Physics	1087	37.40	1.49(10)	0.73	18	9.5
	Chemistry	492	40.93	1.19(13)	0.68	15	55.8
	Chem.Eng.	358	17.86	1.29(18)	0.48	17	2.6
	Mech.Eng.	232	12.58	1.74(40)	0.37	18	3.4
	All	4347	NA	1.14(5)	1.67	19	17.5
2002-2004	Sp.Medical Inst.	1643	27.22	1.52(12)	1.31	17	4.3
	Invest.Sciences	950	28.93	1.07(10)	0.83	19	3.7
	Physics	1301	30.13	1.64(12)	0.82	19	2.4
	Chemistry	616	25.71	1.14(11)	0.67	16	4.1
	Chem.Eng.	420	14.04	1.01(10)	0.42	16	3.0
	Mech.Eng.	307	9.48	1.41(39)	0.65	16	7.5
	All	5237	NA	1.10(2)	1.01	19	11.7
2005	Sp.Medical Inst.	1552	13.89	1.49(14)	1.20	18	3.4
	Invest.Sciences	925	14.03	1.61(19)	0.90	18	3.4
	Physics	1435	15.21	1.47(16)	1.25	19	5.1
	Chemistry	614	13.81	1.53(15)	0.44	19	2.0
	Chem.Eng.	452	6.86	1.19(37)	1.36	14	12.3
	Mech.Eng.	289	5.90	1.14(56)	1.03	15	16.9
	All	5267	NA	1.20(15)	5.42	19	28.7

Table A8 Department data from graphs generated using the c_f measure using 3 parameter fit, $A \cdot F(c_f; \mu, \sigma^2)$.

Year	Department	N_p	$\langle c_r \rangle$	$\langle r \rangle$	σ^2	res.err./d.o.f.	Bins	χ^2/d.o.f.
1996-1998	Sp. Medical Inst.	1160	1.73	34.71516	1.23(6)	0.68	16	20.1
	Invest. Sciences	588	2.09	33.9882	1.43(15)	0.58	18	4.9
	Physics	1016	1.61	29.06846	1.40(10)	0.63	18	2.2
	Chemistry	452	1.72	33.06004	1.32(12)	0.37	18	2.6
	Chem. Eng.	330	1.19	25.00847	0.90(5)	0.19	17	1.9
	Mech. Eng.	194	0.88	24.52174	1.12(12)	0.14	19	0.6
	All	3740	NA	1.22(8)	2.16	19	1.28	
1999-2001	Sp. Medical Inst.	1447	1.39	38.27055	1.23(6)	0.64	19	2.4
	Invest. Sciences	723	1.52	34.19949	1.20(10)	0.55	18	2.4
	Physics	1078	1.90	28.48872	1.69(19)	1.36	16	13.0
	Chemistry	499	1.47	33.94849	1.26(7)	0.26	19	1.1
	Chem. Eng.	340	0.76	31.96345	0.76(8)	0.30	19	1.7
	Mech. Eng.	230	0.79	22.90421	1.15(12)	0.18	18	1.0
	All	4317	NA	1.24(8)	2.73	19	28.1	
2002-2004	Sp. Medical Inst.	1665	1.65	38.30216	1.21(7)	0.83	19	3.3
	Invest. Sciences	934	1.06	38.889	1.22(11)	0.69	19	2.6
	Physics	1361	1.41	28.85268	1.48(12)	1.02	18	4.6
	Chemistry	613	1.63	36.20420	1.28(9)	0.36	18	1.0
	Chem. Eng.	386	0.62	32.1796	0.79(8)	0.35	17	1.8
	Mech. Eng.	252	0.59	24.49508	0.87(10)	0.19	18	0.9
	All	5151	NA	1.20(8)	2.84	19	9.6	
2005-2007	Sp. Medical Inst.	1309	0.59	39.91351	1.07(14)	1.39	18	6.3
	Invest. Sciences	775	0.59	41.52976	1.10(16)	0.82	19	3.7
	Physics	1295	0.75	32.43238	1.21(14)	1.18	19	7.8
	Chemistry	509	0.60	38.56109	1.08(15)	0.51	18	2.9
	Chem. Eng.	298	0.38	33.19509	0.69(11)	0.29	19	1.7
	Mech. Eng.	216	0.36	25.71429	0.71(14)	0.33	16	2.3
	All	4402	NA	1.01(11)	4.06	19	21.4	

Table A9 Department data from graphs generated using the c_r measure using 1 parameter fit, see Equation 3.
Year	Department	\(N_p \)	\(\langle c_f \rangle \)	\(\sigma^2 \)	\(\mu + \frac{\sigma^2}{2} \)	res.err./d.o.f.
1996-1998	Sp.Medical Inst.	1376	38.60	1.4(2)	0.1(1)	1.0
	Invest.Sciences	717	53.08	1.0(1)	-0.1(1)	0.5
	Physics	1195	35.48	1.2(1)	-0.1(1)	0.6
	Chemistry	510	35.20	1.1(1)	0.1(1)	0.3
	Chem.Eng.	363	21.75	0.8(1)	0.1(1)	0.3
	Mech.Eng.	228	15.76	1.7(4)	0.3(2)	0.8
1999-2001	Sp.Medical Inst.	1761	34.60	1.3(2)	0.1(1)	1.0
	Invest.Sciences	849	37.67	1.3(1)	0.1(1)	0.3
	Physics	1286	37.40	1.1(1)	-0.2(1)	0.6
	Chemistry	566	40.93	0.7(1)	-0.3(1)	0.5
	Chem.Eng.	385	17.86	1.5(4)	0.3(2)	0.5
	Mech.Eng.	266	12.58	2.1(6)	0.4(3)	0.9
2002-2004	Sp.Medical Inst.	1896	27.22	1.5(2)	0.1(1)	1.5
	Invest.Sciences	1050	28.93	1.0(2)	-0.0(1)	0.9
	Physics	1576	30.13	1.4(2)	-0.1(1)	0.9
	Chemistry	669	25.71	1.1(2)	0.1(1)	0.8
	Chem.Eng.	451	14.04	1.1(2)	0.1(1)	0.5
	Mech.Eng.	307	9.48	1.6(6)	0.3(3)	2
2005-2007	Sp.Medical Inst.	1763	13.89	1.6(3)	0.1(1)	1.4
	Invest.Sciences	1043	14.03	2.1(6)	0.2(2)	1.0
	Physics	1605	15.21	1.6(4)	0.1(2)	1.5
	Chemistry	668	13.81	2.0(4)	0.0(1)	0.4
	Chem.Eng.	452	6.86	3.2(17)	-0.2(4)	1.1
	Mech.Eng.	289	5.90	2.5(20)	-0.1(6)	3.2

Table A10 Department data from graphs generated using the \(c_f \) measure using 3 parameter fit, \(A \cdot F(c_f; \mu, \sigma^2) \).
Measure	c_f	c_r	Bins	χ^2/d.o.f Min	χ^2/d.o.f Max	χ^2/d.o.f Mean
c*	0.0	0.0	8	2.9	6.4	4.6
			9	4.5	10.5	6.9
			12	33.8	33.8	33.8
			13	8.8	12.7	10.8
			14	4.6	38.4	19.6
	0.1	0.1	8	3.7	3.7	3.7
			9	1.6	5.7	2.7
			12	24.4	24.4	24.4
			13	3.7	5.6	4.5
			14	1.7	9.0	3.4

Table A11 Table of χ^2 values for the one parameter lognormal goodness of fit to departmental data. c^* denotes the threshold below which publications were not included in the fitting.
Table A12 Different sub-archives in arXiv data.

Sub-archives	All papers	Papers with c, r > 0		
	Number	%	Number	% total
astro-ph	69934	34.1%	56332	30.2%
cond-mat	1	0.0%	0	0.0%
gr-qc	15675	7.6%	13843	7.9%
hep-ex	7193	3.5%	6373	3.6%
hep-lat	7597	3.7%	6905	3.9%
hep-ph	49632	24.2%	46535	26.5%
hep-th	45691	19.9%	38871	21.0%
nucl-ex	2543	1.3%	2287	1.3%
nucl-th	11514	5.6%	9748	5.6%
quant-ph	1	0.0%	0	0.0%
TOTAL	205081		175614	

Fig. A6 A plot of $(\mu + \sigma^2/2)$ (left) and $(A - 1)$ (right) against year obtained by fitting a lognormal to the c_f measure for which zero is expected for both quantities.
Fig. A7 A plot of σ^2 against year resulting from a three parameter fit of a lognormal to the c_t (left) and c_r (right) measure. Error bars correspond to one standard deviation. Omitted from the left plot are markers corresponding to astro-ph 1997, astro-ph 1999 and astro-ph 2001 with values 5.57 ± 1.11, 6.10 ± 2.52 and 3.34 ± 1.18.

Fig. A8 A plot of $(\mu + \sigma^2/2)$ (left) and $(A - 1)$ (right) against year obtained by fitting a lognormal to the c_r measure for which zero is expected for both quantities.
Measure	c_t^*	Bins	χ^2/d.o.f Min	χ^2/d.o.f Max	χ^2/d.o.f Mean
	0.0	9	3.9	14.7	10.6
		13	21.6	59.6	34.3
		14	23.0	57.2	40.1
	0.1	8	2.8	2.8	2.8
		9	1.5	14.7	4.8
		12	6.0	16.2	11.1
		13	2.0	87.0	18.8
		14	3.0	13.5	6.5
	0.0	9	0.5	3.7	1.6
		13	8.0	10.0	9.0
		14	2.0	10.3	5.0
	0.1	9	0.9	4.0	2.5
		12	29.6	29.6	29.6
		13	2.8	45.4	15.4
		14	2.6	11.5	6.2

Table A13 Table of χ^2 values for the one parameter lognormal goodness of fit to arXiv data. c^* denotes the threshold below which publications were not included in the fitting.
Year	sub-archive	Np	c0	σ^2	res.err./d.o.f.	Bins	χ^2/d.o.f.
1997	astro-ph	1116	30.32	3.86(13)	0.88	13	2.0
	hep-ph	2753	37.91	1.43(15)	4.15	14	10.1
	hep-th	1969	33.00	1.45(11)	2.91	12	16.2
	gr-qc	718	22.27	1.32(16)	2.48	9	3.0
	All	6556	NA	1.26(8)	3.98	19	67.5
1998	astro-ph	1829	25.47	3.26(28)	3.53	12	6.0
	hep-ph	2735	40.47	1.74(11)	2.56	14	4.2
	hep-th	2072	34.53	1.51(9)	2.08	13	11.1
	gr-qc	893	17.99	1.20(12)	2.68	9	2.6
	All	7529	NA	1.54(9)	3.60	19	18.1
1999	astro-ph	2690	18.89	2.92(37)	5.03	14	13.3
	hep-ph	3050	34.12	1.49(13)	4.69	13	8.6
	hep-th	2118	32.38	1.53(10)	2.29	13	6.6
	gr-qc	978	17.60	1.17(5)	1.39	9	1.5
	All	8836	NA	1.57(9)	4.33	19	14.9
2000	astro-ph	2605	21.22	2.75(16)	2.56	14	4.6
	hep-ph	3130	28.12	1.39(11)	3.80	14	6.2
	hep-th	2483	29.50	1.53(9)	1.96	14	3.0
	gr-qc	914	15.51	1.47(17)	2.90	9	4.7
	All	9132	NA	1.39(8)	4.59	19	16.1
2001	astro-ph	3254	16.90	2.47(26)	4.99	14	10.4
	hep-ph	3205	26.61	1.42(9)	2.88	14	3.8
	hep-th	2460	25.29	1.39(9)	2.21	14	3.4
	gr-qc	947	14.23	1.26(18)	3.71	9	5.0
	All	9866	NA	1.49(11)	5.94	19	20.4
2002	astro-ph	4176	17.64	1.87(17)	5.36	14	9.4
	hep-ph	3114	22.84	1.31(12)	4.69	13	7.4
	hep-th	2560	24.93	1.36(11)	3.09	14	5.6
	gr-qc	945	13.35	0.98(8)	2.25	9	2.0
	All	10795	NA	1.26(8)	5.64	19	18.3
2003	astro-ph	5478	17.42	1.37(7)	4.81	13	87.0
	hep-ph	2887	20.16	1.42(10)	2.82	14	5.0
	hep-th	2639	19.14	1.33(11)	3.18	14	5.9
	gr-qc	997	11.58	1.23(13)	3.26	8	2.8
	All	12001	NA	1.22(4)	4.31	19	156.8
2004	astro-ph	4929	10.59	1.44(15)	8.70	13	8.9
	hep-ph	3042	14.25	1.29(11)	3.37	14	6.0
	hep-th	2534	14.65	1.33(13)	3.10	14	6.1
	gr-qc	1171	8.65	1.17(21)	5.97	9	14.7
	All	11676	NA	1.09(9)	8.37	19	23.4

Table A14 arXiv data from graphs generated using the c_f measure using 1 parameter fit, see Equation (3).
Table A15 ArXiv data from graphs generated using the c_f measure using 3 parameter fit, $A \cdot F(c_f; \mu, \sigma^2)$.

Year	sub-archive	N_p	c_0	σ^2	$\mu + \sigma^2$	res.err./d.o.f.		
1997	astro-ph	1116	30.32	5.57(111)	0.3(2)	0.9		
	hep-ph	2753	37.91	1.48(22)	0.2(1)	3.8		
	hep-th	1969	33.00	1.34(7)	0.1(0)	1.2		
	gr-qc	718	22.27	1.29(21)	0.2(1)	2.4		
1998	astro-ph	1829	25.47	2.83(104)	-0.3(3)	4.5		
	hep-ph	2735	40.47	1.58(8)	0.1(0)	1.2		
	hep-th	2072	34.53	1.30(9)	0.0(1)	1.6		
	gr-qc	893	17.99	1.26(19)	0.2(1)	3.1		
1999	astro-ph	2605	18.89	6.19(252)	-0.2(4)	3.3		
	hep-ph	3050	34.12	1.47(12)	0.2(1)	2.6		
	hep-th	2118	32.38	1.31(10)	0.0(1)	1.8		
	gr-qc	978	17.60	1.15(7)	0.0(0)	1.4		
2000	astro-ph	2605	21.22	2.49(45)	0.1(2)	2.9		
	hep-ph	3130	28.12	1.42(15)	0.2(1)	3.1		
	hep-th	2483	29.50	1.56(13)	0.1(1)	1.9		
	gr-qc	914	15.51	1.6(33)	0.2(2)	3.6		
2001	astro-ph	3254	16.90	3.34(118)	0.1(3)	6.0		
	hep-ph	3205	26.61	1.43(5)	0.2(0)	1.0		
	hep-th	2460	25.29	1.40(11)	0.1(1)	1.7		
	gr-qc	947	14.23	1.29(36)	0.1(2)	5.4		
2002	astro-ph	4176	17.64	2.2(42)	0.3(2)	6.1		
	hep-ph	3114	22.84	1.28(13)	0.2(1)	3.2		
	hep-th	2560	24.93	1.33(18)	0.1(1)	3.3		
	gr-qc	945	13.35	0.92(6)	0.1(0)	1.5		
2003	astro-ph	3478	17.42	1.34(8)	0.1(0)	3.9		
	hep-ph	2887	20.16	1.43(12)	0.2(1)	2.1		
	hep-th	2639	19.14	1.30(20)	0.0(1)	4.0		
	gr-qc	997	11.58	1.26(22)	0.1(1)	4.2		
2004	astro-ph	4929	19.59	1.55(30)	0.1(1)	8.4		
	hep-ph	3042	14.25	1.37(19)	0.2(1)	3.7		
	hep-th	2534	14.65	1.45(23)	0.2(1)	3.3		
	gr-qc	1171	8.65	1.32(46)	0.1(3)	9.0		
Year	sub-archive	\(N_p\)	\(\langle c_r \rangle\)	\(\langle r \rangle\)	\(\sigma^2\)	res.err./d.o.f.	Bins	\(\chi^2/d.o.f\)
------	-------------	--------	----------------	----------------	------------	----------------	------	----------------
1997	astro-ph	1401	4.50	12.59243	3.04(19)	1.80	14	5.1
	hep-ph	3143	2.01	27.99745	1.66(9)	3.08	14	8.9
	hep-th	2255	2.03	23.82306	1.61(6)	1.63	14	4.4
	gr-qc	762	2.62	14.46325	1.67(9)	1.58	9	1.9
	All	7561	NA	0	1.92(6)	2.85	19	5.2
1998	astro-ph	2107	3.24	12.44186	2.66(17)	2.95	13	8.0
	hep-ph	3308	2.10	27.8815	1.83(5)	1.75	14	4.8
	hep-th	2357	2.02	24.81375	1.71(4)	1.01	14	2.0
	gr-qc	898	2.15	15.88419	1.72(9)	1.66	9	1.6
	All	8620	NA	0	2.00(6)	3.18	19	5.4
1999	astro-ph	2714	2.67	12.47973	2.48(10)	2.22	14	5.9
	hep-ph	3575	1.61	30.89538	1.64(4)	1.85	14	6.8
	hep-th	2477	1.77	26.16795	1.72(4)	1.12	14	2.5
	gr-qc	981	1.91	15.80224	1.54(5)	1.02	9	0.5
	All	9747	NA	0	1.88(3)	1.99	19	6.3
2000	astro-ph	3126	2.61	13.3151	2.33(9)	2.30	14	4.9
	hep-ph	3545	1.19	32.50945	1.45(6)	2.67	14	4.0
	hep-th	2773	1.48	27	1.52(4)	1.45	14	2.1
	gr-qc	968	1.59	16.12293	1.38(5)	1.21	9	3.7
	All	10412	NA	0	1.73(3)	2.32	19	2.4
2001	astro-ph	3443	2.14	14.14551	2.27(8)	2.37	14	5.0
	hep-ph	3686	1.12	33.89935	1.57(6)	2.60	14	7.0
	hep-th	2786	1.21	28.22505	1.40(3)	1.19	14	4.4
	gr-qc	997	1.41	17.08325	1.45(5)	1.17	9	0.5
	All	10912	NA	0	1.72(4)	3.15	19	6.6
2002	astro-ph	4157	2.41	13.94199	1.73(7)	3.02	14	3.3
	hep-ph	3656	0.86	36.68545	1.36(7)	3.52	14	7.3
	hep-th	2900	1.07	30.37	1.36(5)	2.06	14	3.7
	gr-qc	1025	1.28	18.14927	1.42(5)	1.11	9	1.1
	All	11718	NA	0	1.49(5)	4.37	19	9.3
2003	astro-ph	5512	1.90	15.28538	1.45(4)	3.04	14	6.7
	hep-ph	3406	0.72	39.10423	1.40(3)	1.23	14	2.8
	hep-th	2826	0.80	31.52937	1.27(3)	1.29	13	10.0
	gr-qc	1110	1.00	20.16667	1.45(3)	0.76	9	0.8
	All	12854	NA	0	1.40(4)	4.06	19	10.4
2004	astro-ph	5414	0.98	18.73335	1.44(2)	1.27	14	10.3
	hep-ph	3395	0.52	40.162	1.25(4)	2.02	14	3.9
	hep-th	2823	0.61	34.2136	1.26(4)	1.47	14	4.0
	gr-qc	1135	0.63	22.19631	1.24(6)	1.69	9	2.3
	All	12767	NA	0	1.20(3)	3.74	19	19.2

Table A16: ArXiv Data from graphs generated using the \(c_r\) measure using 1 parameter fit, see Equation (3).
Year	sub-archive	N_p	$\langle c_f \rangle$	σ^2	$\mu + \frac{\sigma^2}{2}$	res.err./d.o.f.
1997	astro-ph	945	4.75	1.17(48)	-0.3(2)	1.8
	hep-ph	2820	2.18	1.39(12)	0.1(1)	2.2
	hep-th	1909	2.17	1.29(12)	-0.1(1)	1.7
	gr-qc	667	2.73	1.34(15)	0.0(1)	1.7
1998	astro-ph	1463	3.42	0.94(19)	-0.6(1)	3.3
	hep-ph	2700	2.27	1.31(6)	-0.1(0)	1.4
	hep-th	1984	2.15	1.22(11)	-0.2(1)	1.7
	gr-qc	751	2.28	1.22(8)	0.0(0)	1.0
1999	astro-ph	2008	2.87	1.58(46)	-0.3(2)	4.9
	hep-ph	3018	1.75	1.23(7)	-0.1(0)	1.8
	hep-th	2101	1.9	1.22(10)	-0.2(1)	1.8
	gr-qc	867	1.99	1.18(24)	0.0(1)	3.8
2000	astro-ph	2421	2.77	1.85(26)	-0.1(1)	2.6
	hep-ph	3055	1.31	1.2(12)	-0.1(1)	3.0
	hep-th	2422	1.6	1.22(11)	-0.1(1)	2.4
	gr-qc	846	1.69	1.09(20)	-0.1(1)	3.6
2001	astro-ph	2592	2.32	1.67(32)	-0.2(2)	4.6
	hep-ph	3098	1.27	1.14(5)	-0.1(0)	1.9
	hep-th	2452	1.31	1.07(4)	-0.1(0)	1.2
	gr-qc	889	1.5	1.13(6)	-0.1(0)	1.1
2002	astro-ph	3117	2.55	1.31(17)	0.0(0)	4.3
	hep-ph	3147	0.98	1.03(6)	-0.1(0)	1.8
	hep-th	2568	1.18	1.1(6)	-0.1(0)	1.4
	gr-qc	905	1.39	1.13(14)	-0.1(1)	2.6
2003	astro-ph	4164	2.91	1.16(17)	-0.1(1)	7.0
	hep-ph	2889	0.84	1.09(9)	-0.2(1)	2.7
	hep-th	2507	0.89	1.00(10)	-0.2(1)	3.5
	gr-qc	975	1.12	0.95(7)	-0.2(0)	1.6
2004	astro-ph	4528	1.09	1.16(4)	-0.1(0)	2.0
	hep-ph	2716	0.64	0.78(7)	-0.2(0)	2.4
	hep-th	2366	0.72	0.89(5)	-0.2(0)	1.6
	gr-qc	959	0.74	0.78(4)	-0.2(0)	1.3

Table A17 ArXiv data from graphs generated using the c_f measure using 3 parameter fit, $A \cdot F(c_f; \mu, \sigma^2)$.