Strength Assessment and Restoration of RC Structures by Structural Health Monitoring Techniques

1G.Buvanesan, 2P.Haritha, 3A.Karthikeyan, 4Vidhya K, 5R.Manirasu

1,2,3P.G Students, 4Proffesor, 5Assistant Professor

1,2,3Mahendra Engineering College, Tamilnadu, India.

Abstract

Fundamentally, concrete is extensively used as structural material because of the truth of its exorbitant quality cost extent in various applications. Significant improvements usually are foreseen to deftly inconvenience-free providers over the range of its inferred arrangement life. Regardless, these wants are not perceived in multiple revisions given the truth of assistant insufficiency, material rot, unanticipated loadings or physical wickedness, and subsequently, Civil structures like structures, dams, ranges, etc. are presented to steady deterioration all through the long haul. This level of damage or disintegrating depends on the unimagined substances and artistry at each the structure stage. The breaking down of advancements can be a last result of the extent of factors far-reaching radiator hurt, ice movement, substance attack, utilization of steel, etc. at some stage in the structure's lifestyle scope. The adequacy assessment is consequently essential for finding the construction's contemporary convenience and its expansion for future developments or alterations in its utilization. Such an evaluation can be finished using the methodologies: a) Visual evaluation, b) Non-Destructive Testing c) Partial Destructive Testing. Also, it changes into essential for structures hit with the guide of a seismic quake, a bomb sway, or any exceptional calamity. All around, Soundness evaluation to be executed for improvements which are navigated 15 years of age.

I. Introduction

Therefore, concrete is wholly used as a structural material due to the truth of its exorbitant quality cost extent in various applications. Healthy advancements are naturally foreseen to inconvenience-free providers all through its inferred arrangement life deftly. Regardless, these wants are not perceived on multiple promotions because of the truth of essential need, material debilitating, sudden over loadings, or physical harm. Subsequently, Civil structures like structures, dams, ranges, etc. are presented to consistent rot all through the long haul. This mischief level or disintegrating depends upon the unfathomable substances and artistry at each structure stage. The disintegrating of advancements can be a last result of the extent of factors far-reaching radiator hurt, ice movement, manufactured attack, the disintegration of steel, etc. at some stage in the structure's lifestyle length. The sufficiency assessment is essential for finding the system's current usefulness and degree for future unforeseen developments or the change in its utilization. Such an evaluation should be possible to utilize the going with methodologies: a) Visual evaluation, b) Non-Destructive Testing, C) Partial Destructive Testing. Besides, it changes into essential for structures hit with a seismic quake guide, a bomb sway, or any unprecedented catastrophe. Soundness evaluation to be executed for advancements that are navigated 15 years of age.

II. Methodology

Visual Inspection or Field Condition Survey

Cracks: The sorts and width of the splits must be recorded. On the off chance that a break is accepted to be dynamic, uncovering might be mounted to record any development.

- Joints: The designs and specifications, all things considered, must be recorded close by with any prominent insufficiencies.
- Delamination: Areas of delamination must be recognized by the method of type and their profundity recorded.
- Spalling: Locations, profundities, and state of spall should be recorded.
- Water Infiltration: Signs of water penetration must be recorded, close by with whether the holes had been fiery at the hour of the review. Invasion related to rust recoloring or flowering should be recognized appropriately.
- Exposed steel: The degree and condition of the presented steel should be recorded.
- Corrosion: Noted consumption may comprise surface recoloring because erosion of the inserted metal and
Risk of Corrosion against the Potential Difference Readings

Table 2 Risk of Corrosion against the Potential Difference Readings

Potential difference levels (mV)	Chance of re-bar being corroded
less than -500	visible evidence of corrosion
-350 to -500	95%
-200 to -350	50%
More than -200	5%

Non Destructive Test Results and Discussion

Fig 1 Image of the Water Tank
Result of the Test Conducted
Test Result for Half Cell Potential Difference

The Water tank was constructed in the year 1985. The capacity of Water tank was 15000 litres. The water tank is rested on four Columns, where columns are connected by Braces of size 250mmx250mm.

Fig 2 Image of Spalled Column of the Water Tank

Fig 3 Image of the Spalled Brace of the Water Tank

Tests Conducted on Water Tank

Fig 4 Half Cell Potential Difference Test being conducted on Column of the Water Tank
Table 4 Result for Half Cell Potential Difference Test Conducted at column and Braces of the Water tank

Member	Point 1 (in mV)	Point 2 (in mV)	Point 3 (in mV)	Average (in mV)	Probability of Corrosion
Column 1	-460	-420	-397	-426	90%
Column 2	-405	-426	-415	-415	90%
Column 3	-396	-411	-387	-398	90%
Column 4	-368	-391	-361	-367	90%

Test Result for Rebound Hammer

Table 5 Result for Rebound Hammer Test conducted at the column and Braces

S. No	Concrete Member	Rebound Number	Degree with Horizontal, in degrees	Average Rebound number
1.	Column 1	27	0	26.00
		25	0	
		26	0	
2.	Column 2	24	0	22.33
		21	0	
		22	0	
3.	Column 3	24	0	22.67
		23	0	
4.	Column 4	27	0	27.33
		29	0	
		26	0	
5.	Brace 1	25	0	24.67
		23	0	
		26	0	
6.	Brace 2	26	0	23.67
		28	0	
		27	0	
7.	Brace 3	24	0	25.33
		27	0	
		25	0	
8.	Brace 4	23	0	23.33
		26	0	
		21	0	
Tests conducted on Ration Shop Building in Kenjanur

Fig 4 Half Cell Potential Difference test being conducted on the Ration Shop building

Test Result for Half Cell Potential Difference

Table 6 Result for Half Cell Potential Difference Test Conducted on Ration Shop

Member Plinth	Half Cell potential Difference between Reinforcement and Concrete in mV
Beam	
Point 1	-223
Point 2	-209
Point 3	-159
Point 4	-169
Point 5	-185
Point 6	-168
Point 7	-207
Point 8	-185
Point 9	-221
Average	-192

Table 6 Result for Half Cell Potential Difference Test Conducted on Ration Shop

Member-Main Roof	Half Cell potential Difference between Reinforcement and Concrete in mV
Main Roof	
Point 1	-271
Point 2	-307
Point 3	-289
Point 4	-321
Point 5	-332
Point 6	-296
Point 7	-281
Point 8	-312
Point 9	-290
Point 10	-312
Point 11	-261
Point 12	293
Average	-298
Test Result of Rebound Hammer Test

Table 7 Result for Rebound Hammer test conducted on Staff Quarters

S. No	Concrete Member	Rebound Number	* Degree with Horizontal, in degrees	Average Rebound number
1.	Sunshade 1	17	90	16.00
		15	90	
		18	90	
		14	90	
2.	Sunshade 2	28	90	26.00
		23	90	
		25	90	
		27	90	
3.	Main Roof slab	32	90	33.00
		35	90	
		30	90	
		37	90	
		31	90	
		36	90	
		34	90	
		30	90	
		38	90	
		36	90	
		29	90	
		31	90	
4.	Water tank Slab	28	90	28.00
		31	90	
		25	90	
5.	Portico Slab	34	90	34.00
		36	90	

III. Conclusion

To finish the NDT tests in the picked adventure domains, we found that the water tank at Sunnambukarayur was in defenseless condition. Its fundamental people were devoured to 90%. It gets mismatched for use, while the Ration shop working at Kenjanur and Staff quarters at Bhavanisagar are in worthy condition anyway, some minor disfigurements had been mitigated. The damages arranged in the Ration shop and staff quarters can be adjusted by grasping sensible fixing methods. The proper fixing techniques for remedying the minor injuries in the structures had been proposed.

IV. References

1. AntonellaGuida, AntonellaPagliuca & Alessandro Tranquillino Minerva, 2012, “A Non-Invasive Technique for Qualifying the Reinforced Concrete Structure”, International Journal of Geophysics, Vol.10, pp.1-9.
2. FadhluhartiniMuftah, 2012, “Pulse Velocity and Rebound Hammer Test on Reinforced concrete slab in the Former Civil Engineering Laboratory”, Proceedings of Sixth International Symposium on Advances in Science and Technology, Malaysia, pp.1-9.
3. J. HOLA, K. SCHABOWICZ, 2010, “State-of-The-Art Non- Destructive Methods for Diagnostic Testing of Building Structures” –anticipated development trends. Archives of Civil and Mechanical Engineering Wroclaw, Poland, Vol.10, no.3, pp. 3-18.
4. Vidhya, K., & Kandasamy, S. (2014). Study on the flexural strength of coal ash brick masonry wall elements. Journal of Structural Engineering (India), 41(4), 410–419.
5. Sudharsan, N., & Palanisamy, T. (2018). A comprehensive study on potential use of waste materials in brick for
sustainable development. Ecology, Environment and Conservation, 24, S339–S343.
6. M. Z. Jumaat, M. H. Kabir and M. Obaydullah, 2006, “A Review of the Repair of Reinforced Concrete Beams”, Journal of Applied Science Research, Vol.2, no.6, pp.317-326.
7. Mahdi Shariati, 2011, “Assessing the strength of reinforced concrete structures through Ultrasonic Pulse Velocity and Schmidt Rebound Hammer tests”, Scientific Research and Essays, Vol.6, no.1, pp. 213-220.
8. M. J. Monteiro, N. J. Pathak, 2011, “Structural Soundness of Building”. International journal of Earth Sciences and Engineering, Vol.4, no.06, pp.677-680.
9. Sudharsan, N, & Sivalingam, K. (2019). Potential utilization of waste material for sustainable development in construction industry. International Journal of Recent Technology and Engineering, 8(3), 3435–3438.
10. Nicholas J, Carino, 1999, “Non destructive Techniques to investigate Corrosion status in Concrete Structures”. Journal of performance of Constructed Facilities, Vol.13, no.3, pp.96-105.
11. Peter C. Chang, Alison Flatau and S. C. Liu, 2008, “Review Paper Health Monitoring of Civil Infrastructure”, Structural Health Monitoring, Vol.2, no.3, pp.257-267.
12. Rajan L. Wankhade, Amarsinh B. Landage, 2013, “Non- destructive Testing of Concrete Structures in Karad Region”, Procedia Engineering, Vol.51, pp.8-18.
13. Sanjeev Kumar Verma, Sudhir Singh Bhaduria and Saleem Akhtar, 2013, “Review of Non Destructive Testing for Condition Monitoring of Concrete Structures”, Journal of Construction Engineering, Vol.10, pp.1-11.
14. Vidhya, K., & Kandasamy, S. (2013). Study on properties of bricks manufactured using fly ash and pond ash. Pollution Research, 32(2), 405–409.
15. Sudharsan, N., & Grant, B. C. J. (2018). Comparison of static response of laced reinforced concrete beams with conventional reinforced concrete beams by numerical investigations. International Journal of Civil Engineering and Technology, 9(8), 700–704.
16. Vidhya, K., & Kandasamy, S. (2016). Experimental Investigations on the Properties of Coal-Ash Brick Units as Green Building Materials. International Journal of Coal Preparation and Utilization, 36(6), 318–325.