Synthesis, Biological and Anti-tumor Evaluation of Some New Nucleosides Incorporating Heterocyclic Moieties

Fekria MA Soliman, Nadia TA Dawoud* and Rehab M Hamza

Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt

Abstract

1,3-diaryl-1-propen-3-ones 1a-h, were used as building blocks for a large range of nucleoside analogs incorporating five and six-membered heterocyclic rings. Heterocyclic compounds incorporating aromatic moieties (2-11) and their N-nucleoside analogs (13-20) were synthesized. New compounds were evaluated for their potential antimicrobial, antifungal activities and for their in vitro cytotoxic activity against three cell lines: human breast cancer cell line (MCF-7), colon carcinoma cells (HCT) and human epidermid/arynx carcinoma cell line (HEp2).

Keywords: Chalcones; Heterocyclic compounds; N-Nucleosides; Antimicrobial and anticancer activities

Introduction

Heterocyclic compounds occur widely in nature. Nitrogen-containing heterocyclic molecules constitute the largest portion of these chemical entities, which are part of many natural products. Indazole derivatives are interesting compounds, with many having biological as well as pharmaceutical activity [1-3]. Some new indazole derivatives were investigated as electronically active materials [4-9]. Cyanopyridone and cyanopyridine derivatives have promising antimicrobial activities [10,11] as well as anti-cancer activities [12-14]. Oxazine derivatives represent an important classes of organic compounds, 1,3-oxazines in particular have been extensively studied because of their profound biological activities including antibacterial [15,16], antifungal [17], antitubercular [18], antitumor and anti-HIV agents [19,20]. 1,3-Oxazine derivatives are also known as progesterone receptor agonists [21]. Pyrimidine derivatives are very well known in medicinal chemistry for their therapeutic applications [22,23]. One important class of pyrimidine is 2-thiopyrimidine and its derivatives, which are also well known as 2-mercaptopyrimidine compounds [24,25]. Carbohydrates are ubiquitous in nature, readily available, cheap, biodegradable and non-toxic materials [26,27]. Presence of several functional groups and stereogenic centers in carbohydrates permit stereochemical differentiations, enantiopure compound synthesis [28,29], %); 355 (9.2%), 320

Experimental

All melting points for the prepared derivatives were measured in capillary tubes using a Gallen-Kamp apparatus and were uncorrected. The IR spectra were recorded on a Perkin-Elmer 1650 spectrophotometer (KBr pellets) and the wave numbers were given in cm-1. The 1H, 13C NMR spectra were measured in dimethyl sulphoxide-d6 as a solvent using a Varian Gemini 180 spectrometer operating at 300 MHz for 1H, and 75 MHz for 13C. TMS was used as an internal standard and the chemical shifts were reported as δ ppm. The FAB mass spectra were recorded on a JEOL SX 102/DA-6000 mass spectrometer.

Synthesis of N-(4-(5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)phenyl)benzamide (2)

A mixture of (E)-N-(4-(3-(4'-methoxyphenyl) acryloyl) phenyl) benzamide (1b) (0.01 mol) and hydrazine hydrate (0.01 mol) in 30 ml of ethanol was refluxed for 6 h. The yellow precipitate formed after cooling was filtered off, dried and recrystallized from ethanol to afford the required product (2) as yellow crystals, in 75% yield, m.p. 181°C; Requires: C, 74.39; H, 5.66; N, 11.32; Found: C, 74.35; H, 5.7; N, 11.4.

IR (cm⁻¹): 3392, 3216; 3006, 2928, 2818, 1698, 1660. MS (m/z): 3340, 2942, 2846, 1650, 1600, 1510.

Synthesis of ethyl 6-(4-chlorophenyl)-2-oxo-4-phenylcyclohex-3-ene carboxylate (3)

A mixture of (1I) (0.01 mol) and ethylacetocetate (0.01 mol) in 30 ml of absolute ethanol containing sodium ethoxide (prepared from 0.2 g of sodium metal and 4.6 ml of absolute ethanol) was refluxed for 6 h. After concentration and cooling the residue was poured into water, filtered off, washed well with dilute alcohol and recrystallized from ethanol to afford 3 as white crystals, in 60% yield, m.p 124°C. Requires: C, 71.08; H, 5.35; IR (cm⁻¹): 3006, 2928, 2818, 1698, 1660. MS (m/z, %); 355 (9.2%), 320 (3.8%), 308 (6.1%), 278 (34.6%), 249(16.6%), 192 (4.8%), 144 (100%).

Synthesis of 4-(4-chlorophenyl)-6-phenyl-3,3a,4,5-tetrahydro-2H-indazolone (4)

A mixture of 3 (0.01 mol) and hydrazine hydrate (0.01 mol) in 15 ml of acetic acid was heated under reflux for 6 h. The solvent was evaporated and the product was collected, washed well with dilute ethanol and recrystallized from ethanol to give 4 (as brown crystals, in 60% yield, m.p 144°C. Requires: C, 70.69; H, 4.65; N, 8.68; IR (cm⁻¹): 3066, 2928, 2818, 1698, 1660. MS (m/z, %); 3392, 3216; 2918, 2846, 1670, 1604, 1508. MS (m/z, %); 320, 322, 324, 325 (99.4, 30.7, 4.6%).

*Corresponding author: Nadia TA Dawoud, Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt, Tel: 021144771184/021144771184; E-mail: dawoudnadia@yahoo.com

Received October 02, 2015; Accepted November 11, 2015; Published November 17, 2015

Citation: Soliman FMA, Dawoud NTA, Hamza RM (2015) Synthesis, Biological and Anti-tumor Evaluation of Some New Nucleosides Incorporating Heterocyclic Moieties. Med chem 5: 496-504. doi: 10.4172/2161-0444.1000308

Copyright: © 2015 Soliman FMA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ISSN: 2161-0444 Med chem, an open access journal Volume 5(11): 496-504 (2015) - 496
A mixture of 1c, 1f, and 1g (0.01 mol) and urea (0.01 mol) in 15 ml of absolute ethanol containing (0.01 mol) sodium ethoxide was heated under reflux for 6 h. After concentration and cooling, the residue was diluted with water, filtered off, then washed well with warm water and recrystallized from the proper solvent to give (7a-c) respectively.

A mixture of (5a) (0.2 mol), ethyl alcohol (13 ml) and (3 mol) of 25% NaOH was stirred on magnetic stirrer, (10 ml) of 30% H₂O₂ was added gradually, the solution left to cool in ice bath. After an hour, the reaction was permitted to run at 50°C for an additional 3 h. Then 5% sulphuric acid was added to neutralize the solution, the solvent was evaporated and solid product was recrystallized from benzene to give (9) as white crystals in 60% yield, m.p. 170°C. Requires: C, 67.6; H, 4.12; N, 4.12; Cl, 10.45: IR (cm⁻¹): 3430, 3230, 1686, 1590.

Synthesis of 4,6-diaryl-5,6-dihydropyrimidin-2(1H)-thione derivatives (10a-e)

A mixture of (1a, b, f, g and h) (0.01 mol) and thiourea (0.01 mol) in 30 ml ethanol containing (0.01 mol) sodium ethoxide was heated under reflux for 6 h. After concentration, the residue was diluted with water, filtered off, then washed well with warm water and recrystallized from the proper solvent to give (10a-e).

A mixture of (1a, b, f, g and h) (0.01 mol) and thiourea (0.01 mol) in 30 ml ethanol containing (0.01 mol) sodium ethoxide was heated under reflux for 6 h. After concentration and cooling, the residue was diluted with water, filtered off, then washed well with warm water and recrystallized from the proper solvent to give (10a-e).

A mixture of 1c, 1f, and 1g (0.01 mol), ethylcyanoacetate (0.01 mol) in 15 ml of absolute ethanol containing (0.01 mol) sodium ethoxide was heated under reflux for 6 h. After concentration and cooling, the residue was diluted with water, filtered off, then washed well with warm water and recrystallized from the proper solvent to give (10a-e).
130.5 (C5), 127.7 (C6), 139.3 (C7), 143.4 (C8), 134.5 (C9), 127.3 (C10), 143.1 (C1), 129.6 (C3'), 131.8 (C6'), 128.3 (C5'), 127.7 (C2'), 119.4 (C4').

11c as white crystals in 60% yield, m.p. 210°C. Requires: C, 72.18; H, 5.26; N, 10.52; Found: C, 72.2; H, 5.3; N, 10.6; IR (cm⁻¹): 3286, 1662, 1260.

Synthesis of nucleoside derivatives (13)
A suspension of 2 (0.01 mol) in 6 ml of aqueous potassium hydroxide (prepared by dissolving 0.01 mol in 6 ml of distilled water) was stirred by using a magnetic stirrer for 3 h, then a solution of 12 (0.0 mol) dissolved in 30 ml of dry acetone was added drop-wise while stirring which continued for 12 h. After evaporation of the solvent (reduced pressure), the residue was washed with dilute ethanol several times and the precipitate formed was recrystallized from ethanol to give 13 as brown crystals in 60% yield, m.p. 108°C. Requires: C, 64.92; H, 5.41; N, 7.32; Found: C, 65.0; H, 5.4; N, 7.2. IR (cm⁻¹): 3346.2, 3000.9, 2840.3, 1663.6, 1600.1. 1H–NMR (DMSO-d6): δ 6.9, 7.0 (d, H-1' and H-2'), 2.41, 2.43 (s, 3H, 2xCOCH3), 10.04 – 10.52 (s, 1H, 2xOH).

Synthesis of (2R,3S,4R,5S)-5-hydroxy-2-[3-oxo-(4-phenyl-H-2'), 2.41, 2.43 (s, 3H, 2xCOCH3) 6.82-7.94 (m, 8H, Ar–H), 9.75 (s, 1H, OH). MS (m/z): 511.5 (0.4%), 484.5 (0.4%), 473.5 (0.69%), 426 (0.45%) and the base peak at m/z 50.

Synthesis of 2R, 3S, 4R, 5S-2-(4,6-diarylyl-3-carbonitrile)-2-thioxo-1(2H)-pyridin-yl)-5'-hydroxy-tetrahydro-2H-pyran-3,4-diyl diacetate (17a,b)
A suspension of the thiocyanopyridine derivatives 7a and/or 7b (0.01 mol) in 6 ml of aqueous KOH solution (prepared from dissolving (0.01 mol) solid KOH in 6 ml of distilled water) was well stirred (magnetic stirrer) at room temperature for 3 hrs, then a solution of 12 (0.01 mol) dissolved in 30 ml of dry acetone was added drop-wise while stirring. Stirring was continued for further 12 h. After evaporation of the excess solvent (reduced pressure), the residue left was washed with dilute alcohol (several times) and the precipitate formed was recrystallized from ethanol as 17a,b.

17a as red crystals, in yield 70%, m.p 146°C. [Requires: C, 59.10; H, 4.39; N, 4.92; Cl, 6.24; S, 5.62; Found C, 59.32; H, 4.5; N, 5.10; Cl, 6.34; S, 5.78%;] IR cm⁻1: 3346.5, 2220.4, 1600.6, 1248.6 and 526.4 for OH, C≡C=N, C≡N=C=S and C–Cl.

17b as black crystals, in 60% yield, m.p. 184°C. Requires: C, 56.76; H, 3.97; N, 5.29; Cl, 6.72; S, 6.05; Found: C, 56.87; H, 4.01; N, 5.43; Cl, 6.9; S, 6.32; IR (cm⁻¹): 3300, 2228, 1597, 1232 and 525 (C=S).

Synthesis of 2S,3R,4S,5S-2-(6-(4-chlorophenyl)-4-(2-bromophenyl)-2,3,4,5-tetrahydro-pyrimidin-1-yl)-mercapto-5-hydroxy-tetrahydro-2H-pyran-3,4-diyl diacetate (18a) and 2S,3S,4R,5S-2-(6-(6-chlorophenyl)-4-(2-bromophenyl)-2,3,4,5-tetrahydro-pyrimidin-1-yl)-mercapto-5-hydroxy-tetrahydro-2H-pyran-3,4-diyl diacetate (18b)
A suspension of the pyrimidin-2-thione derivatives (10a) and/or (10c) (0.01 mol) in 6 ml of aqueous KOH solution (prepared from dissolving (0.01 mol) solid KOH in 6 ml of distilled water) was well stirred (magnetic stirrer) at room temperature for 3 h, then a solution of 12 (0.01 mol) dissolved in 30 ml of dry acetone was added drop-wise while stirring. Stirring was continued for further 12 h. After evaporation of the excess solvent (reduced pressure), the residue left was washed with dilute alcohol (several times) and the precipitate formed was recrystallized from ethanol to give (18a,b).

18a as grey crystals, in yield 70%, m.p. 188°C. Requires: C, 50.46; H, 3.86; N, 4.71; S, 5.38; Cl, 6.24; Br, 13.4; Found: C, 50.52; H, 3.98; N, 4.81; S, 5.45; Cl, 5.45; Br, 13.5; IR (cm⁻1): 3398, 2652, 1671, 1563, 625 and 518 (C-Br). H-NMR spectrum (DMSO-d6): δ 1.19, 2.49 (s, 6H, 2xCOCH3), 3.34 (d, 2H, CH2), 4.29 (t, 1H, CH), 5.37, 5.38 (d, 1H, CH), 5.40, 5.41 (d, 1H, CH), 7.23–7.64 (m, 9H, Ar–H), 9.05 (s, 1H, SH), 9.99 (s, 1H, OH).

18b as white crystals, in 75% yield, m.p. 154°C. Requires: C, 53.57; H, 4.28; N, 5.00; S, 5.71; Br, 14.3; Found: C, 53.87; H, 4.31; N, 5.01; S, 5.82; Br, 14.4; IR (cm⁻¹): 3394, 2644, 1657, 1569, 549 (C-Br). H-NMR spectrum (DMSO-d6): δ 1.01, 2.49 (s, 6H, 2xCOCH3), 3.43 (d, 2H, CH2), 4.29 (d, 2H, CH), 5.39 (t, 1H, CH), 7.06–7.96 (m, 8H, Ar–H), 9.09 (s, 1H, SH), 10.10 (s, 1H, OH). MS (m/z, %): 424 M⁺ (0.02%).

Synthesis of nucleoside derivatives (19a-c)
A suspension of pyrimidin-2-thione derivatives (10b,d,e) (0.01 mol) in 6 ml of aqueous KOH solution (prepared from dissolving (0.01 mol) solid KOH in 6 ml of distilled water) was well stirred (magnetic stirrer) at room temperature for 3 h, then a solution of 12 (0.01 mol) dissolved in 30 ml of dry acetone was added drop-wise while stirring. Stirring was continued for further 12 h. After evaporation of the excess solvent (reduced pressure), the residue left was washed with dilute alcohol (several times) and the precipitate formed was recrystallized from ethanol to give (18a,b).
alcohol (several times) and the precipitate formed was recrystallized from ethanol to give (19a-c).

19a, as Grey crystals, in 70% yield, m.p. 120°C. Requires: C, 54.64; H, 5.41; N, 5.2; S, 5.95; Br, 13.1; IR (cm⁻¹): 3294, 1674, 1572, 1256, 728 (C-Cl).

IH-NMR (DMSO-d6): δ 2.49, 2.50 (d, 2H, CH₂), 3.33, 3.44, 3.59 (t, 1H-CH), 3.71, 4.33 (d, 1H, CH₁'–CH₂'), 5.38, 5.385 (d, 1H, CH₂'), 5.39, 5.40 (d,1H, CH₃'), 5.44, 5.45, 5.46 (t, 1H, CH₄'), 5.47, 6.65 (d, 2H, CH₂5'), 6.82-7.73 (m, 8H, Ar–H), and at 10.06 (s, 1H, OH). MS (m/z, %): 478 (0.55%).

19b as orange crystals, in 75% yield, m.p. 190°C. IR (cm⁻¹): 3401, 1670, 1595, 1240, 752 (C-Cl).

IH-NMR (DMSO-d6): δ 2.49, 2.50 (d, 2H, CH₂), 3.43 (t, 1H, CH), 6.76, 6.77 (d, 1H, CH₂5'), 6.99-7.61 (m, 7H, Ar–H), 8.18(s, 1H, OH). MS (m/z, %): 480 M⁺1 (0.22%).

19c as black crystals, 60% yield, m.p. 224°C. Requires: C, 54.71; H, 4.16; N, 5.55; S, 6.34; Cl, 7.03; Found: C, 54.89; H, 4.32; N, 5.76; S, 6.56; Cl, 7.12; IR (cm⁻¹): 3343-3225, 1740, 1602, 1243.

C-NMR (DMSO-d6): δ 3.55 (s, 3H, OCH₃), 5.93 (s, 1H, NHCO), 7.01-7.90 (m, 13H, Ar–H), 10.1 (s, 1H, OH). MS (m/z, %): 300 M⁺2 (0.59%).

Synthesis of (2R,3S,4R,5S)-2(4(-2-chlorophenyl)-6-phenyl-4'-1,3-oxazine-2-ylamino)-5'-hydroxytetrahydro-2H-pyran-3',4'-diyl diacetate (20a) and (2R,3S,4R,5S)-2(6-(4-benzamidophenyl)-4-(4-methoxyphenyl)-4H-1,3-oxazin-2-ylamino)-5'-hydroxytetrahydro-2H-pyran-3',4'-diyl diacetate (20b)

A suspension of the Oxazine derivatives 11a and/or 11b (0.01 mol) in 6 ml of aqueous KOH solution (prepared from dissolving (0.01 mol) solid KOH in 6 ml of distilled water) was well stirred (magnetic stirrer) at room temperature for 3 h, then a solution of 12 (0.01 mol) dissolved in 30 ml of dry acetone was added drop-wise while stirring. Stirring was continued for further 12 h. After evaporation of the excess solvent (reduced pressure), the residue left was washed with dilute alcohol (several times) and the precipitate formed was recrystallized from ethanol to give 20a,b.

20a as pale yellow crystals, 60% yield, m.p. 158-160°C. Requires: C, 64.39; H, 5.36; N, 6.82; Found: C, 64.94; H, 5.40; N, 6.8. IR (cm⁻¹): 3482, 3302, 1654, 1666, 1591. 1H-NMR (DMSO-d₆): δ 6.9 d, 2H-CH-CH) 2.1 - 2.6 (s, 6H, 2xCOCH₃), 10.2 (s, 1H, NH), 10.5 (s, 1H, OH), 3.8 (s, 3H, OCH₃), and 7.02 – 8.13 (m, 13H-Ar). 13C-NMR (DMSO-d₆): δ 24.1, 26.4, 38.6, 55.3.

20b as yellow crystals, 60% yield, m.p. 110-112°C. Requires: C, 59.94; H, 4.99; N, 5.59; Cl, 7.09; Found: C, 60.1; H, 5.0; N, 5.6; Cl, 7.1. IR (cm⁻¹): 3482, 3302, 1654, 1666, 1591, 1593. 1H-NMR (DMSO-d₆): δ 6.9 d, 2H-CH-CH) 2.1 - 2.6 (s, 6H, 2xCOCH₃), 10.2 (s, 1H, NH), 10.5 (s, 1H, OH), 3.8 (s, 3H, OCH₃), and 7.02 – 8.13 (m, 13H-Ar). 13C-NMR (DMSO-d₆): δ 24.1, 26.4, 38.6, 55.3.

Results and Discussion

1,3-diaryl-1-propen-3-ones, 1a-h, which were synthesized according to the literature [34], were used as starting material for the synthesis of a large range of heterocyclic compounds (compound series 2-6) as depicted in Scheme 1.

Thus, condensation of 1h with excess of hydrazine hydrate in dry ethanol led to the formation of the corresponding N-[4-(5-(4'-methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl]phenyl)benzamide 2 [35-37]. The infrared spectrum of 2 showed absorption bands at 3340, 1650, 1600 due to υNH, υC=O (amide) and υC=N, respectively. Compound 1f reacted with ethyl acetoacetate (1:1) under the same conditions to afford ethyl 6-(2-chlorophenyl)-2-oxo-4-phenylcyclohex-3-ene carboxylate 3 [38-40] which reacted with hydrazine hydrate affording 4 [41]. The IR spectrum of 3 showed absorption bands at 1698, 1660 cm⁻¹ due to two C=O groups, while its MS showed a molecular ion peak at m/z 355. The IR spectrum of 4 showed absorption bands at 3392 and 3216 for (NH/OH), 1670 (CONH) and 1604 (C=N). The mass spectrum of 4 revealed a molecular ion peak at m/z 322.

Scheme 1: Heterocycle synthesis from 1,3-diaryl-1-propen-3-ones.
Reaction of 1c, f, g with active methylene compounds namely, ethyl cyanoacetate and/or malononitrile [42] in the presence of ammonium acetate afforded the corresponding 4,6-diaryl-2-oxo-1,2-dihydropyridine-3-carbonitrile 5a-c and 2-imino-4,6-diaryl-1,2-dihydro-3-carbonitrile 6a-c, respectively (Scheme 1). The infrared spectra of 5a-c showed absorption bands (in cm⁻¹) at 3460-3230 (NH/OH), 2230-2210 (C≡N) and 1654-1662 due to the amide C=O, while the infrared spectra of 6a-c showed N-H absorption bands at 3366 and 3114 cm⁻¹, C≡N bands at 2220 and 2212 cm⁻¹ and were devoid of υC=O. The ¹H-NMR spectrum of 5a (DMSO-d₆) showed signals at δ 3.83 ppm due to three OCH₃ protons, 8.28 ppm due to one NH proton and an aromatic multiplet at δ 7.12-8.00 ppm. Its MS spectrum showed a molecular ion peak at m/z 336.3.

Scheme 2 depicts the reactions undertaken with cyanopyridone derivatives 5a,c. The reaction of 5a,c with phosphorus pentasulphide in a non-polar solvent, (e.g., xylene under reflux) afforded the corresponding 4,6-diaryl-2-thioxo-1,2-dihydropyridin-3-carbonitrile derivatives 7a-b. The IR spectra showed absorption bands at 3354, 3437, 1218, 1212 cm⁻¹ for NH and C=S, respectively. The mass spectrum of 7a revealed a molecular ion peak at m/z 352.5. The reaction of compound 5a with 40% H₂SO₄–AcOH afforded the corresponding 4,6-diaryl-2-oxo-1,2-dihydropyridine-3-carboxamide derivative 8a. Its IR spectrum revealed absorption bands at 1648 due to the presence of C=O, NH/OH at 3410, 3464 cm⁻¹ and were devoid of absorptions arising from the presence of C≡N. In a similar manner, hydrolysis of 5a in ethanolic NaOH (25%) accompanied by oxidation with H₂O₂ afforded the corresponding 4,6-diaryl-2-oxo-1,2-dihydropyrimidin-3-carboxylic acid 9a. Its IR spectrum revealed the presence of broad OH and NH absorption bands at 3433 and 3200 cm⁻¹, 1686 du, a strong C=O stretch and was devoid of any absorption for CN.

The reactions of 1,3-diaryl-2-propen-1-ones 1a,b,e,g and 1h with thiourea in boiling absolute ethanol containing sodium ethoxide afforded the corresponding 4,6-diaryl pyrimidine-2-thione derivatives 10a-e in reasonable yields, while its reaction with urea under acid catalyzed conditions afforded the corresponding 2-amino-4,6-diaryl-1,3-oxazine derivatives 11a-c respectively (Scheme 3).

The infrared spectra of 10a-e displayed absorption bands at 3408-3140 cm⁻¹, 1112 and 1012 cm⁻¹, due to NH, and C=S, respectively. The ¹H-NMR spectrum of 10b showed signals at δ 2.09 and 2.46 ppm due to two CH₂ protons, δ 7.82–8.12 ppm due to an aromatic multiplet and one D₂O exchangeable signal at δ 10.27 ppm due to an NH proton. The structure of 11a-c was confirmed by infrared spectrum, which revealed the presence of N-H stretches at 3348-3200 cm⁻¹. The ¹H-NMR spectrum of 11b showed signals at δ 2.1 ppm due to two NH₂ protons, δ 3.81 and 3.82 ppm due to a CH₂ proton, δ 6.9, 7.02 for a CH₂ proton.
and a multiplet for the aromatic protons at δ 7.5-8.1 ppm. The 13C-NMR spectrum showed signals at δ 161.1 (Cα), 168.8 (Cβ), 130.5 (Cγ), 127.7 (Cγ), 139.3 (Cδ), 143.4 (Cε), 134.5 (Cε), 127.3 (Cε), 143.1 (Cε), 129.6 (Cε), 131.8 (Cε), 128.3 (Cε), 127.7 (Cε), 119.4 (Cε) and its mass spectrum showed a molecular ion peak m/z 575 indicating the partial hydrolysis of one acetyl and aqueous potassium hydroxide to afford the corresponding nucleosides derivatives 15 and 16, respectively. The IR spectra of 15 and 16 showed absorption bands at 3315-3314 cm⁻¹ due to OH/NH and C=O groups, respectively. Spectral results showed that the electron withdrawing character of 4-chlorophenyl and the furan ring at positions 4 and 6 in the pyrimidine ring of the nucleosides 15 and 16 were helpful in the partial hydrolysis of the cyano group at position 3 of the pyrimidine moiety as evidenced by the fact that no cyano stretching absorption band was observed in the IR. The 1H-NMR spectrum of 15 (DMSO-d₆) showed signals at δ 4.41 ppm due to NH protons, an aromatic multiplet at δ 6.68-7.90 ppm, two doublets at δ 8.05 and 8.07 ppm due to OH protons, triplets at δ 3.3, 3.41, 3.44 ppm due to CH₂ protons and a singlet at 8.07 ppm due to NH₂ protons. Its mass spectrum showed a molecular ion peak at m/z 497.45. The 1H-NMR spectrum of 16 (DMSO-d₆) showed signals at δ 1.97 and 2.49 ppm as two singlets arising from the two COCH₂ groups at C₁, C₂, a singlet at δ 6.55 ppm due to proton in the pyrimidine moiety, two doublets at δ 2.44 and 3.44 ppm due to two anomic protons at C₁' and C₂', a multiplet at δ 6.82-7.94 ppm for the aromatic protons and two signals, one at δ 8.12 ppm for the NH₂ and at 9.75 ppm due to the OH proton at C₁'. Its mass spectrum showed the molecular ion peak at m/z 511.5.

The reaction of 2,3,4-tri-O-acetyl-α-D-xylopyranosyl bromide 12 with 4,6-diaryl-3-cyano-1-(2H)-pyridines 7a and b afforded the corresponding 2R,3S,4R,5S-2-(4,6-diaryl-3-cyano-2-thioxo-1-(2H)-pyridin-yl)-5'-hydroxy-tetrahydro-2H-pyran-3,4-diyl diacetates 17a and b, respectively. This is supported by the presence of C=S stretching absorptions at 2220 and 2228 cm⁻¹ and 1248 and 1232 cm⁻¹ for the C=S moiety. The mass spectrum of 17a showed molecular ion peak at m/z 351.5. The electron releasing effect of OCH₃ at position-4 of the aromatic moiety was balanced by the electron withdrawing effect of the chlorophenyl, thereby stabilizing the cyano group at position 3 towards alkaline hydrolysis. The electronic character of

Scheme 4: Reaction of Compound 12 with Heterocycles.
the sulphur moiety at carbon 2 may also have helped stabilize the –C=S group towards the effect of the alkali on the compound 17b. Interaction of 2,3,4-tri-O-acetyl-α-D-xylopyranosyl bromide 12 with pyrimidine thione derivatives 10a and 10c in aqueous KOH/acetone afforded the corresponding 2S,3S,4S,5S-2-(6-(phenyl)-4(2-bromo phenyl)-2,3,4,5-tetrahydro-pyrimidin-1-yl)-mercaptop-5-hydroxy tetra-2H-pyran-3,4-diyl)acetate (18a) and 2S,3S,4S,5S-2-(6-(4-chloro phenyl)-4-(2-bromo phenyl)-2,3,4,5-tetrahydro-pyrimidin-1-yl)-mercaptop-5-hydroxytetra-2H-pyran-3,4-diyl)acetate (18b), respectively. The IR spectra of 18a and 18b revealed weak absorption bands arising from SH stretching at 2625 and 2644 cm⁻¹ and were devoid of C=S absorptions. The 1H-NMR spectrum of 18a (DMSO-d₆) showed signals at δ 1.19 ppm, 2.49 ppm (COCH, protons), δ 3.32 ppm due to CH, protons, δ 4.29 ppm (CH proton), a multiplet at δ 7.23-7.64 ppm, δ 9.05 (SH proton) and at δ 9.99 ppm due to OH proton. The mass spectrum of 18b showed a molecular ion peak at m/z 424.

Furthermore, 2,3,4-tri-O-acetyl-α-D-xylopyranosyl bromide 12 reacted with other pyrimidine thione derivatives 10b,d and e in aqueous KOH/acetone to afford the corresponding nucleosides 19a-c. The infrared spectra of 19a-c revealed the presence of absorption bands at 3401, 3343, 3294, 1740, 1674, 1670, 1256-1240 cm⁻¹ for OH/NH, C=O and C=S functionalities. The 1H-NMR spectrum of 19a (DMSO-d₆) showed signals at δ 2.49 and 2.50 ppm to CH₂ protons, δ 5.39 and 5.40 ppm due to three CH₃ protons, and at δ 10.06 ppm due to OH protons, while its MS showed a molecular ion peak at m/z 300. The 1H-NMR spectrum of 20c (DMSO-d₆) showed signals at δ 5.35 ppm due to three OCH₃ protons and δ 5.93 ppm due to NHCO proton. Interaction of 2-amino-4,6-dialyl-1,3-oxazine derivatives 11b and 11c with 2,3,4-tri-O-acetyl-α-D-xylo pyranosyl bromide 12 afforded the corresponding nucleosides 20a and 20b, respectively. The infrared spectra of 20a and 20b revealed absorption bands at 3482, 3302, 1654, 1670, 1674, 1500-1450 cm⁻¹ for OH/NH, C=O and C=S functionalities. The 1H-NMR spectrum of 20a (DMSO-d₆) showed singlet signals at δ 4.79 and 4.95 ppm due to two acetyl groups, a singlet at δ 3.91 ppm due to pyran CH₂ units, a doublet at δ 4.00 ppm (oxazine ring CH – CH), a singlet at δ 4.06 ppm due to NH proton, a multiplet due to the aromatic protons at δ 7.42-7.82 ppm and a singlet at δ 8.05 ppm due to OH protons. Its mass spectrum showed a molecular ion at m/z 484.5. The 1H-NMR (DMSO-d₆) of 20b showed a doublet at δ 6.99 ppm due to ammonic protons of C-‘, C-‘- indicating the presence of a β configuration and the other protons of the xylopyranosyl at δ 2.4-2.5 ppm. The acetyl protons showed two singlets at δ 2.1 ppm and 2.6 ppm, and the NH proton showed a singlet at δ 10.2 ppm. The OH proton of C₆ resonate at δ 10.5 ppm, three protons of the methoxy group showed a singlet at δ 3.8 ppm, while the aromatic protons gave a multiplet at δ 7.02-8.13 ppm. Its 13C-NMR (DMSO-d₆) showed two signals for the COCH₃ groups at δ 24.1 and 26.4 ppm, a signal at δ 38.6 ppm due to OCH₃ and a methylene group signal at δ 55.3 ppm.

Biological Evaluation

Antimicrobial activity

Previously untested compounds were evaluated for antimicrobial activity against eight strains of microorganisms using the agar diffusion technique. The tested compounds were screened against two Gram-positive bacteria, Staphylococcus aureus (RCMB 000106) Bacillus subtilis (RCMB 000107); two Gram-negative bacteria, Pseudomonas aeruginosa (RCMB 000102), Escherichia coli (RCMB 000103) and four fungi, Aspergillus fumigatus (RCMB 000203), Geotrichum candidum (RCMB 052006), Candida albicans (RCMB 000502) and Syncephalastrum racemosum (RCMB 000503) by the disk diffusion method. Penicillin G, Streptomycin were used as positive control for bacterial strains while, Itraconazole and Clotrimazole were used as positive controls for the fungi strains. The investigation of antibacterial screening data revealed that compounds 5c and 10e were the most potent towards the Gram-positive bacteria S. aureus and B. subtilis. Compounds 6c, 10e and 11b showed good to moderate activity against Gram-positive bacteria S. aureus and B. subtilis. Compound 2 was less potent, while 7b, 10a were inactive. As for the bacterial inhibition of the Gram-negative bacteria, the screening data showed that compounds, 5c and 7a were the most potent against E. coli. Compounds 2, 6c and 11b showed a relatively poor inhibition towards E. coli. All the tested analogs showed no activity against P. aeruginosa. Similarly, compounds 7b and 10a,c,e were inactive against the Gram-negative bacteria P. aeruginosa or E. coli. The bacterial zone of inhibition values are given in Table 1.

Minimum inhibitory concentrations (MICs) were determined by the broth dilution technique. The nutrient broth, which contained logarithmic serially two fold diluted amounts of test compound, and controls were inoculated with approximately 5 × 10⁶ c.f.u./ml of actively dividing bacteria cells. The cultures were incubated for 24 h. At 37°C and the growth was monitored visually and spectrophotometrically. The lowest concentration (highest dilution) required to arrest the growth of bacteria was regarded as minimum inhibitory concentration (MIC). To obtain the minimum bactericidal concentration (MBC), 0.1 ml volume was taken from each tube and spread on agar plates. The number of c.f.u. was counted after 18-24 h of incubation at 35°C. MBC was defined as the lowest drug concentration at which 99.9% of the inoculums were killed. The minimum inhibitory concentration and minimum bactericidal concentration are given in Table 2.

Antifungal studies

Antifungal activity testing was also done by the disk diffusion method [43]. For assaying antifungal activity Aspergillus fumigatus

Comp. No.	Diameter of zone of inhibition (mm)			
	Gram-positive bacteria	Gram-negative bacteria		
	S. aureus	B. subtilis	P. aeruginosa	E. coli
2	17.9 ± 0.05	16.1 ± 0.01	NA	10.1 ± 0.01
5c	24.0 ± 0.01	26.4 ± 0.05	NA	16.8 ± 0.02
6c	20.0 ± 0.08	19.5 ± 0.03	NA	9.8 ± 0.06
7a	23.4 ± 0.01	26.4 ± 0.03	NA	16.3 ± 0.08
7b	NA	NA	NA	NA
10a	NA	NA	NA	NA
10c	NA	NA	NA	NA
10e	20.4 ± 0.08	21.8 ± 0.01	NA	NA
11b	21.2 ± 0.05	22.8 ± 0.09	NA	9.6 ± 0.08
Standard a	29.48 ± 0.02	32.56 ± 0.05	28.32 ± 0.1	33.56 ± 0.07
Standard b	25.0 ± 0.2	29.0 ± 0.04	24.0 ± 0.1	25.0 ± 0.03
DMSO	--	--	--	--

Table 1: Antibacterial activity of compounds 2, 5c, 6c, 7a,b, 10a,c,e and 11b.

Comp. No.	Diameter of zone of inhibition (mm)							
	Gram-positive bacteria	Gram-negative bacteria						
	S. aureus	B. subtilis	P. aeruginosa	E. coli				
5c	MIC	MBC	MIC	MBC	MIC	MBC	MIC	MBC
6c	39	100	19	50	NA	>100	156	>100
7a	39	100	19	50	NA	>100	156	>100
11b	39	100	39	100	NA	>100	625	>100

Table 2: MIC and MBC results of compounds 5c, 6c, 7a and 11b.
Cytotoxicity studies

Cytotoxicity assays were performed using compounds 4, 5c, 10c and 11c against three cancer cell lines, breast cancer cell line MCF-7, colon carcinoma cells (HCT), human epidermid/arynx carcinoma cell line (HEp2) by using a modified method [35]. The results (Tables 3 and 4) showed that 4 had slight activity toward the HCT cell line (IC₅₀ = 4.7 µg/ml) and its activity towards MCF-7 cell line was lower (IC₅₀ = 2.7 µg/ml). Compound 11c exhibited cytotoxic activity against the HCT cell line (IC₅₀ = 10.2 µg/ml) and a higher cytotoxic activity against MCF-7 with IC₅₀ = 20.7 µg/ml. The cytotoxic activity of 5c towards HEp-2 was moderately potent with an IC₅₀ = 10.2 µg/ml while its cytotoxic activity against colon carcinoma cells was very low with an IC₅₀ = 2.1 µg/ml. The cytotoxic activity of 10c towards MCF-7 cell line was relatively weak with an IC₅₀ = 4.8 µg/ml while the cytotoxicity against HCT cell line was nearly inactive given the observed IC₅₀ of 0.5 µg/ml.

The nucleoside analogs 14, 17a, 18a, and 20b (Table 5) showed cytotoxic activity against HTCC and MCF-7 and Hepatocellular carcinoma cells HepG2. The IC₅₀ of compound 14, with values 0.9 and 1.5 µg/ml, indicates high potency against HCT and MCF-7, respectively.

Table 3: MIC and MFC of compounds 5c, 6c, 7a, 11b.

Comp. No.	Diameter of zone of inhibition (mm)	AF	GC	CA	SR
5c	MIC 39 78 19 39 78 156 156 313 MFC				
6c	39 78 39 78 156 313 313 625 MFC				
7a	19 39 19 39 78 156 156 313 MFC				
11b	39 78 78 156 313 313 625 MFC				

*Positive control Intracnazote and doxorimazole. AF: Aspergillus fumigatus, GC: Geotrichum candidum, CA: Candida albicans, SR: Syncephalastrum racemosum. MIC (µg/ml)=Minimum inhibitory concentration, that is, the lowest concentration of the compound to inhibit the growth of fungus completely. MFC (µg/ml)=Minimum fungicidal concentration, that is, the lowest concentration of the compound for killing the fungus completely.

Table 4: In vitro Cytotoxic activity of 4, 5c, 10c, 11c in human MCF-7, HCT, HEp2 cell lines.

Cell lines*	IC₅₀ (µg/ml)*b,c
MCF-7	2.7
HCT	4.7
HEp2	2.7

*Cell lines = breast carcinoma cells (MCF-7), colon carcinoma cells (HCT), human epidermid/arynx carcinoma cell line (HEp2). *b* Assays were performed in triplicate.

References

1. Taguchi T, Terasawa T, Abe O, Yoshida Y, Tominaga T, et al. (1985) A comparative study of 5'-DFUR and tegafur in recurrent breast cancer. Gan To Kagaku Ryoho 12: 2052-2060.

2. Kreis W, Watanabe KA, Fox J (1978) Structural requirements for the enzymatic deamination of cytosine nucleosides. J Helt Chem Acta 61: 1011-1016.

3. Secrist JA 3rd, Tiwari KN, Riordan JM, Montgomery JA (1991) Synthesis and biological activity of 2'-deoxy-4'-thio-pyrimidine nucleosides. J Med Chem 34: 2361-2366.

4. Dyson MR, Cole PL, Walker RT (1991) The synthesis and antiviral activity of some 4'-thio-2'-deoxy nucleoside analogues. J Med Chem 34: 2782-2786.

5. Tiwari KN, Secrist JA, Montgomery JA (1994) Synthesis and biological activity of 4'-thiouracil nucleosides of 2-chloroadenine. Nucleosides Nucleotides 13: 1819.

6. Takashi JK, Mioyama M, Aksahi H, Sasaki T (1994) Synthesis and antitumor activities of 2'-deoxy-4'-thiopyrimidine nucleosides. Nucleosides Nucleotides 13: 1347.

7. Yoshimura Y, Kitano K, Yamada K, Sakata S, Miura S, et al. (2000) Synthesis and biological activities of 2'-deoxy-2'-fluoro-4'-thiocytobunospyrimidine and -pyrimidinyl nucleosides. Bioorg Med Chem 8: 1545-1558.

8. Adamo MFA, Aaddington RM, Baldwin JE, Day AL (2004) A parallel synthesis approach towards a family of C-nucleosides. Tetrahedron 60: 841-849.

9. Kumar RK, Davis DR (1997) Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Res 25: 1272-1280.

10. Amr AE (2000) Ind J Heterocycl Chem 10: 49-58.

11. Amr AE, Mohamed AM, Ibrahim AAZ (2003) Synthesis of Some New Chiral Triyclic and Macrocyclic Pyridine Derivatives as Antimicrobial Agents. Naturforshc 58: 861-866.

12. Hamam AG, Fahmy AMR, Amr AE, Mohamed AM (2003) Synthesis of novel triyclicheterocyclic compounds as potential antitumor agents using chromanone and thiocromanone synthons. Int J Chem 428: 1985-1993.

13. Hammam AG, Abdel Hafez NA, Midura WH, Nikolajczyk MZ (2000) Chemistry of Seven-Membered Heterocycles, VI. Synthesis of Novel Bicyclic Heterocyclic Compounds as Potential Anticancer and Anti-HIV Agents. Naturforsch 55: 417-424.
14. Hammam AG, Sharaf MA, Abdel Hafez NA (2001) Int J Chem 40B: 213-225.
15. Rashad AE, Mahmoud AE, Ali MM (2011) Synthesis and anti cancer effects of some novel Pyrazolo[3,4-d]-Pyrimidine derivatives by generating reactive oxygen species in human breast adenocarcinoma cells. Eur J Med Chem 46: 1019-1026.
16. Seo TS, Li Z, Ruparel H, Ju J (2003) Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. J Org Chem 68: 609-612.
17. Ikemoto NI, Schreiber SL (1992) Total synthesis of (-)-hikizimycin employing the strategy of two directional chain synthesis. J Am Chem Soc 114: 2524-2536.
18. Maitly JK, Mukherjeey S, Drew MG, Achari BB, Mandal SB (2007) First example of 5S-O-linked pseudosaccharides: synthesis of bicyclic nucleosides containing azido or extended carbohydrate moiety. Carbohydr Res 342: 2511-2521.
19. Trípphi S, Maitly JK, Achari BB, Mandal SB (2005) Bicyclic nucleoside analogues from D-glucose: Synthesis of chiral as well as racemic 4-dioxepane ring-fused derivatives. Carbohydrate Res 340: 1081-1087.
20. Pérez N, Gordillo B (2003) Rapid synthesis of (±)-r-7-benzyloxy methyl-Cyclopenta-Cis-[4,5]-3-oxazolo [3,2-a] Pyrimidinones versatile carboyclic nucleoside Precursors. Tetrahedron 59: 671-676.
21. Nguyen-Ba N, Brown WL, Chan L, Lee N, Brasilli L, et al. (1999) Synthesis and anti-HIV activity of 3 dithiolane nucleosides. Chem Commun 1245-1246.
22. Hanahan JR, Hutchinson DW (1992) The enzymatic synthesis of antiviral agents. J Biotechnol 23: 193-210.
23. Shira H, Yokozeki K (1988) Enzymatic production of ribavirin from purine nucleosides by Brevibacterium acetylicum ATCC954. Agric Biol Chem 52: 1777-1783.
24. Wei XK, Ding QB, Zhang L, Guo YL, Ou L, et al. (2008) Induction of nucleoside phosphorylase in Enterobacter aerogenes and enzymatic synthesis of adenine boronate esters of 2-O-isopropylidene-a-D-xylofuranose. Bioorg & Med Chem Lett 21: 3880-3883.
25. Jelinek R, Kolusheva S (2004) Carbohydrate biosensors. Chem Rev 104: 4707-4729.
26. Tatsuka K, Hosokawa S (2005) Total synthesis of selected bioactive natural products: illustration of strategy and design. Chem Rev 105: 4707-4729.
27. Trivedi R, Reddy ER, Kumar KCh, Sridhan B, Kumar KP, et al. (2011) Efficient Synthesis, Structural Characterization and antimicrobial activity of chiral aryl boronate esters of 2-O-isopropylidene-a-D-xylofuranose. Bioorg & Med Chem Lett 21: 3880-3883.
28. Ermilov RK, Soliman FMA, Abdelmonem SH (2011) Synthesis, antimicrobial and antitumor activity of some 3,5-diaryl-and 3,5-triaryl-2-pyrazoline derivatives. J Amer Sci 7: 756-767.
29. Saleh RM, Soliman AY, Soliman FMA (1991) Some reaction of chalcone epoxides. Rev Roum Chem 36: 1337-1343.
30. Sampour A, Selim MI, Hataba AM (1972) Synthesis Elaboration on Chalcone and its derivatives. Egypt J Chem 15: 531.
31. Abdalla M, Saleem MA, Hataba AM (1979) Egypt J Chem 21: 455-463.
32. Sampour A, Selim MI, Hataba AM (1979) Egypt J Chem 21: 443-445.
33. Cekaviciute M, Simokaitiene J, Grauzulveicijus JV, Bulka G, Jankauskas V (2011) Dyes and Pigments 92: 654-658.
34. Rosenquist A, Kvarnstrom I, Classon B, Samuelsson B (1996) Synthesis of Enantioomerically Pure Bis(hydroxymethyl)-Branched Cyclohexenyl and Cyclohexyl Purines as Potential Inhibitors of HIV. J Org Chem 61: 654-658.
35. Tsengchali T, Chawengkirttikul R, Rachaphaew N, Reutrakul V, Sangsuwan R, et al. (1998) Antitumor activity of tripolidie against cholangiocarcinoma growth in vitro and in hamsters. Cancer Lett 133: 169-175.
36. Sampson PB, Liu Y, Forrest B, Cumming G, Li SW, et al. (2015) The discovery of Polo-like kinase 4 inhibitors: identification of (1R,2S)-2-((E)-4-(((cis)-2,6-dimethylmorpholino)methyl)styryl)-1H-indazole-6-yl)-5'-methoxyspirocyclopropane-1,3'-indolin-2'-one (CFI-400945) as a potent, orally active antitumor agent. J Med Chem 58: 147-169.
37. Yu B, Yu Z, Qi PP, Yu DQ, Liu HM (2015) Discovery of orally active anticancer candidate CFI-400945 derived from biologically promising spirooxindoles. Success and challenges. Eur J Med Chem 95: 35-40.