Association of the KLK1 rs5516 G allele and the ACE D allele with aortic aneurysm and atherosclerotic stenosis

Yiming Zhang, MD, PhD, Hongliang Huang, Yuliang Ma, MM, Yifeng Sun, Guohua Wang, Liming Tang, MM

Abstract

Objective: Atherosclerosis underlies aortic aneurysm (AA) and atherosclerotic stenosis (AS). Kallikrein-1 (KLK1) and angiotensin-converting enzyme (ACE) are key molecules in kallikrein-kinin systems and renin-angiotensin systems, respectively, which are responsible for maintaining vascular balance and stability, playing important roles in atherosclerosis. We aimed to assess the involvement of single nucleotide polymorphism rs5516 in KLK1 as well as the insertion/deletion rs4646994 polymorphism in ACE in the development of AA and AS.

Methods: We enrolled Chinese Han patients with AA (N=408) and AS (N=432), as well as healthy controls (N=408). Clinical and demographic characteristics were assessed. Genotypes were analyzed with recessive and dominant models.

Results: The rs5516 G allele of KLK1 was significantly associated with AA (P<0.001), and the D allele of ACE was significantly associated with both AA (P<0.001) and AS (P<0.001). The GG and DD genotypes were significantly associated with both AA (P=0.013) and AS (P<0.001) in a recessive model, and were synergistic with hypertension in AA patients, but not in AS. Patients with CC/DD, CG/ID, or GG/II genotypes, which were synergistic with hypertension, had a greater risk of developing AA, while CC/DD, CG/DD, GG/ID, or GG/DD genotypes, which were not synergistic with hypertension, contributed to the development of AS.

Conclusion: The KLK1 rs5516 G allele is closely associated with AA, and the ACE D allele is closely related to AA and AS.

Abbreviations: AA = aortic aneurysm, AAA = abdominal aortic aneurysm, ACE = angiotensin-converting enzyme, Ang = angiotensin, AS = atherosclerotic stenosis, CT = computed tomography, KKS = kallikrein-kinin systems, KLK1 = kallikrein-1, OR = odds ratios, RAS = renin-angiotensin systems, SNP = single nucleotide polymorphism, TAA = thoracic aortic aneurysm.

Keywords: angiotensin-converting enzyme, aortic aneurysm, atherosclerotic stenosis, kallikrein 1, kallikrein kinin system, polymorphism, renin angiotensin system

1. Introduction

Abdominal aortic aneurysm (AAA) and thoracic aortic aneurysm (TAA) are chronic degenerative conditions with serious, but potentially preventable complications,[1,2] including atherosclerotic stenosis (AS), which is the leading cause of death in many countries, causing myocardial infarction and arteriosclerosis obliterans.[3] Aortic aneurysm (AA) and AS share common underlying pathogenic mechanisms, including atherosclerosis, chronic inflammation and proteolytic degradation of the aortic wall.[4]

Angiotensin II (Ang II) has been involved in the pathogenesis of atherosclerosis and arterial response to injury and restenosis, via stimulation of vascular hypertrophy, extracellular matrix production, and induction of cytokines.[5-8] Angiotensin-converting enzyme (ACE), a primary effector of the renin-angiotensin system (RAS), degrades bradykinin (a potent vasodilator) and converts angiotensin I (Ang I) to Ang II. The kallikrein-kinin system (KKS) antagonises the RAS, thus working in concert to stabilize the vascular system.

Components of the RAS and KKS are expressed within vascular tissues, potentially leading to atherosclerosis and aneurysm.[9] ACE promotes the production of Ang II by inflammatory cells,[10] and the induction of premature senescence of smooth muscle cells.[10] ACE induces endothelial dysfunction, therefore activating monocytes and macrophages, and increasing vascular inflammation, resulting in an enhancement of the atherogenic process.[11] Chronic exposure to high levels of circulating and tissue ACE may accelerate vascular wall remodeling, inducing changes in diameter and thickness.[12]

A genetic predisposition toward aneurysm and stenosis has been suggested by familial and segregation studies.[11,12] Association between the insertion/deletion (ID) polymorphism within ACE (rs4646994) and the development of AA or AS has been reported.[13] Besides, the relation between the single nucleotide polymorphism (SNP) rs5516 (g.23591691 C>G) in the gene encoding a KKS serine protease, kallikrein-1 (KLK1) and
the development of AA has also been demonstrated.[19,14,15] In the Chinese Han population, a study revealed that the frequencies of the C and G alleles in KLK1 were 79% and 21%, respectively,[14] while another study reported frequencies of 89% and 11%, respectively;[13] both studies reported an association between rs5516 and hypertension.

Intraluminal thrombus and atherosclerotic plaques contain cytokines, neutrophils, proteolytic enzymes, and platelets.[16] Kinins released by kallikrein promote inflammation, which is considered critical in the progression of AA.[17] The transcription and translation of ACE in carotid artery are increased within regions of plaque inflammation.[15] The I/D polymorphism is associated with variations in ACE plasma levels. The DD genotype and the D allele are associated with increased ACE levels in tissue and blood.[18] Both the Ang II type 1 receptor 1166C polymorphism and hypertension are associated with AA.[19]

Although atherosclerosis might be one of primary pathological mechanisms of both AA and AS, the role of polymorphisms in the RAS and KKS pathways in the development of these diseases has not been precisely defined. Furthermore, previous genetic association studies of ACE and KLK1 polymorphisms with AA and AS yielded conflicting results.[2,3,20] Therefore, we aimed to investigate whether polymorphisms in ACE and KLK1, 2 major effectors of RAS and KKS pathways, are involved in the development of these diseases, and to investigate the role of these genes in the pathology of AA and AS. The present study might help identify individuals with higher risk of AA and AS.

2. Materials and methods

2.1. Participants

A total of 408 AA patients, 432 AS patients, and 408 controls (without AA or AS) were enrolled in 2 case-control studies performed at the Drum Tower Hospital, Nanjing, China. Patients were diagnosed with AA by ultrasound, or with AS by computed tomography (CT). AA was defined as diameter more than 3 cm for the infrarenal region of aorta.[21] AS was defined as the presence of stenosis and ischemic symptoms caused by atherosclerosis plaques.[22] From January 2008 to January 2013, all subjects admitted to our hospital were considered eligible if they met the following criteria: AA or AS patients diagnosed by ultrasound or CT, and the control group was selected from patients undergoing routine physical examination; Chinese Han; 18 to 75 years old; and residing for more than 10 years in Nanjing, Jiangsu province. Controls had to be without AA or AS, as confirmed by ultrasound or CT. Exclusion criteria were as follows: history of previous end arterectomy (possible restenosis); arterial tortuosity; cancer; chronic respiratory or liver inflammatory diseases; autoimmune disease; or renal failure. Patients with atrial fibrillation or suspected cardiac emboli were also excluded from the study to avoid confusion between cardiac and arterial sources of ischemic events. The study was approved by the ethics committee of the Nanjing Drum Tower Hospital (Nanjing, China). Written informed consent was obtained from each subject before participation.

The medical history of each patient was recorded, including smoking and drinking habits, history of diabetes, and drug treatment (Table 1). Subjects with a fasting glucose level of 7.0 mmol/L or more or those taking insulin or oral hypoglycemic drugs, were characterized as having diabetes mellitus. Hypertension was defined as a systolic blood pressure more than 140 mmHg, diastolic blood pressure more than 90 mmHg, or currently receiving antihypertensive drugs. The AA patients’ major cardiovascular drugs were alprostadil injection, Aescuven Forte Diosmin tablets, both are vasodilators, and antihypertensive drugs. The AS patients’ major cardiovascular drugs were warfarin, acetyl salicylic acid, and Aescuven Forte Diosmin.

Blood was collected from patients undergoing surgery and from healthy control participants during routine medical examination.

2.2. Genotyping

Subjects were genotyped by the Genome Research Facility, Drum Tower Hospital of Nanjing (China). Genomic DNA was extracted using the SBS DNA Extraction kit (SBS Genetech Co., Ltd., Shanghai, China), according to the manufacturer’s instructions.

The following primers were used to amplify KLK1 and ACE by PCR: KLK1 forward 5'-TGCTGTGAAGGCTGGAG-3'; KLK1 reverse 5'-GCACCTCATATTGGACAGATT-3'; ACE forward 5'-CTGGGAGGACGCTCCATCCCTTCT-3'; and ACE reverse 5'-GATGTGGCCATCACAATTCGTCAAT-3'.

Primers (0.4µM) were added to 12 ng/µL of template DNA, 0.2mM of dNTP mix, 10× PCR buffer (2 mM Mg2+ Plus), and 0.025 units/µL Taq DNA Polymerase (DR001A, Takara Bio, Otsu, Japan).

The PCR protocol was: initial denaturation at 95°C, 40 cycles of 94°C for 30 seconds, 57°C for 30 seconds, and 72°C for 1 minute, and a final elongation at 72°C for 10 minutes, using a 2720 Thermal Cycler (Applied Biosystems, Foster City, CA). PCR products were visualized on agarose gels and using the UVP Bioimaging GDS-8000 System and Labwork Image Acquisition and Analysis Software (version 4.5.00.0 for Windows).

KLK1 reverse primer was used to sequence KLK1 genotypes using a DNA Analyzer (3730XL, Applied Biosystems, Foster City, CA). Sequencing results were edited using the BioEdit sequence alignment editor (Ibis Biosciences, Carlsbad, CA).

For ACE, an amplicon of approximately 200bp represented the deletion (D) polymorphism, and an amplicon of approximately 500bp represented the insertion (I) polymorphism. PCR products that appeared to indicate homozygosity for the deletion polymorphism were further processed with insertion-specific primers to identify possible erroneous mistyping of heterozygotes (TTTGAGACGGAGTCTGGCTC): forward 5'-TGGGACCAAGGCCGGCGCCTAC-3'; reverse 5'-TGCGCAGCCCTCCATGCCCATAA -3'. Amplons from this reaction were visualized on agarose gels. A 338-bp PCR product indicated presence of the I allele.

2.3. Statistical analyses

Univariate analysis of continuous and discrete covariates for AA and AS was performed using t tests or z tests, chi-square tests, or Fisher exact tests, as appropriate. A dominant model was used to measure the differences between rs5516 CC homozygotes and G allele carriers, or between ACE I/D polymorphism, while a recessive model compared GG homozygotes with C allele carriers, or DD homozygotes and I allele carriers. P < 0.05 indicated statistical significance.

3. Results

3.1. Analysis of the KLK1 rs5516 in AA and AS patients

Table 1 presents the characteristics of the participants. There were more hypertensive subjects in AA and AS patients than that in control (54% and 59% vs 21%, respectively), as well as more
diabetes (6% and 23% vs 3%). In addition, more AA and AS patients were past or present smokers (16% and 17% vs 7%). Finally, more patients were past or present drinkers in AA patients than that in control (7% vs 1%).

The genotype distribution of rs5516 was consistent with Hardy-Weinberg equilibrium in control, but homozygotes for the G allele were significantly overrepresented in both AA (odds ratio [OR]=3.000, 95% confidence interval [CI]: 1.203–7.481, P=0.013, Table 2) and AS patients (OR=4.722, 95% CI: 1.986–11.227, P<0.001, Table 2), as demonstrated by a recessive model. Furthermore, the frequency of the G allele in AA patients was significantly higher than that in control (OR=1.354, 95% CI: 1.242–1.477, P<0.001, Table 2).

There was a significant difference in the KLK1 genotype distributions between AA (n=408) and AS (n=432) patients (OR=1.788, 95% CI: 1.396–2.289, P<0.001, Table 2). Furthermore, there was a significant difference in the frequency of the G allele between AA and AS patients (OR=1.283, 95% CI: 1.043–1.575, P=0.017, Table 2). The frequency of CG heterozygotes among AA patients (31.86%) was significantly higher than within AS patients (17.82%). However, there was no statistical significance in the frequency of GG homozygotes between AA and AS patients.

3.2. KLK1 rs5516 in hypertensive patients

AA patients homozygous for the G allele were significantly overrepresented among patients with hypertension, as demonstrated by a recessive model (OR=15.039, 95% CI: 2.036–111.11, P<0.001 Table 3). Furthermore, the frequency of the G allele among hypertensive patients was significantly higher than that in nonhypertensive patients (OR=1.433, 95% CI: 1.080–1.902, P=0.011, Table 3).

Among the AS patients, we observed significant association between the GG genotype and hypertension (OR=1.149, 95% CI: 1.069–1.235, P<0.001, Table 3). The frequency of the C allele in hypertensive patients was significantly higher than that in non-hypertensive patients (OR=1.688, 95% CI: 1.707–2.436, P=0.005, Table 3).

3.3. Analysis of the ACE I/D polymorphism in AA and AS patients

The genotype frequencies of ACE I/D polymorphism were consistent with Hardy–Weinberg equilibrium in control. There was a significant association between the DD genotype and AA or AS, as demonstrated by a recessive model (OR [AA/Control]=1.517, 95% CI: 1.288–1.788, P<0.001; and OR [AS/Control]=1.353, 95% CI: 1.144–1.600, P<0.001, respectively, Table 4).

Individuals with at least one copy of the D allele were significantly overrepresented in the AA group (OR=1.517, 95% CI: 1.288–1.788, P<0.001, Table 4), as demonstrated by a dominant model, and the frequency of the D allele in AA and AS patients was significantly higher than that in control (OR [AA/Control]=1.354, 95% CI: 1.242–1.477, P<0.001; and OR [AS/Control]=1.258, 95% CI: 1.151–1.374, P<0.001, respectively, Table 4).

Furthermore, the frequency of the D allele in AA patients was significantly higher than that in AS patients (OR=1.077, 95% CI: 1.001–1.159, P=0.047, Table 4), and the frequency of ID heterozygotes among AA patients (25.74%) was significantly higher than that in AS patients (18.06%).

3.4. I/D polymorphism of the ACE in hypertensive patients

The ACE DD genotype was overrepresented in AA patients with hypertension, as demonstrated by a recessive model (OR=1.241,
This analysis also showed that the GG patients and that of the AS patients was not significant. The difference between the frequency of GG genotype of the AA versus AS, there was a significant difference between the frequency of the D allele between hypertensive and nonhypertensive AS patients (P = 0.722, Table 5).

3.5. Combined analysis of KLK1 and ACE genotypes in AA and AS subjects

We observed that the CC/DD, CG/DD, and GG/DD genotypes were significantly more frequent among AA patients than in healthy controls, and that the CC/DD, CG/DD, GG/DD, and GG/DD genotypes were significantly more frequent in AS patients than in healthy controls (Table 6).

4. Discussion

In this study, we found that both rs5516 and the I/D polymorphism of the ACE gene were associated with AA and AS. Furthermore, the GG genotype as well as the DD was associated with AA and AS. Comparing the genotyping of the patients with AA versus AS, there was a significant association between CG/GG genotypes and the patients with AA in a dominant model. This analysis also showed that the rs5516 minor (G) allele was associated with AA in a statistically significant manner. However, the difference between the frequency of GG genotype of the AA patients and that of the AS patients was not significant. This follows for the ID/DD genotypes using a dominant model, and the D allele as well.

We found that the ACE D and the KLK1 G alleles were associated with AA and AS, likely via the proinflammatory and vascular remodeling properties of Ang II and kinins. Furthermore, the patients with CC/DD, or CG/DD or GG/DD genotypes, which were synergistic with hypertension, had a greater risk of developing AA, while CC/DD or CG/DD, or GG/DD or GG/DD genotypes, which were not synergistic with hypertension, contributed to the risk of developing AS.

We believe that these ACE and KLK1 genotypes affect the extent of the inflammatory reaction, influencing AA and AS development in different manners. The KKS and RAS pathways are mutually antagonistic, and thus the physiological roles of the D and G alleles would be expected to oppose one another. We hypothesize that these 2 factors may be synergistic in certain pathological conditions, such as in artery stenosis caused by atherosclerosis.

High blood pressure in the aorta contributes to vascular remodeling and inflammation of the arterial wall. In this way, hypertension is likely to contribute to the occurrence of AA. We found that individuals with either the GG or DD genotypes in combination with hypertension were overrepresented in AA patients. However, this was not the case in patients diagnosed with AS, suggesting that the modulated inflammatory process caused by alteration of KLK1 and ACE activity is likely to contribute to the development of AS independently of hypertension.

Previous studies have examined the hypothesis that the KLK1-GG genotype is related to aneurysmal disease of the abdominal aorta and denotes a predisposition for AAA, but studies reached conflicting conclusions with inconsistent results. Indeed, Baas et al. reported that no KLK1 SNPs were association with AAA in 1024 Dutch subjects, while Biros

Table 3	Multivariable association of rs5516 with AA or AS and hypertension.							
	Hypertension	Nonhypertension	OR (95% CI)	P value	Hypertension	Nonhypertension	OR (95% CI)	P value
Genotype								
CC	134	126	Reference		195	130	Reference	
CG	68	62	1.021 (0.771–1.352)	0.886	54	23	0.922 (0.840–1.012)	0.1
GG	18	0	<0.001		6	24	1.149 (1.069–1.235)	<0.001
Allele								
C	336	314	Reference		444	283	Reference	
G	104	62	1.433 (1.080–1.902)	0.011	66	71	1.688 (1.170–2.436)	0.005

AA = aortic aneurysm, AS = atherosclerotic stenosis, CI = confidence interval, N = number of individuals, OR = odds ratio, P = 2-sided P value.

Table 4	Multivariable association of ACE I/D polymorphism with AA and AS.								
	Control (408)	AA (408)	OR (AA/Control, 95% CI)	P value	AS (432)	OR (AS/Control, 95% CI)	P value	AA/AS (95% CI)	P value
Genotype									
I	107	88	Reference		130	Reference		1.451 (1.167–1.804)	0.001
D	207	105	1.621 (1.123–2.34)	0.01	78	1.834 (1.522–2.210)	<0.001	1.121 (1.007–1.248)	0.037
DD	94	215	1.517 (1.288–1.788)	<0.001	224	1.353 (1.144–1.600)	<0.001	1.077 (1.001–1.159)	0.047
Allele									
I	421	281	Reference		338	Reference			
D	395	535	1.354 (1.242–1.477)	<0.001	526	1.258 (1.151–1.374)	<0.001		

AA = aortic aneurysm, ACE = angiotensin-converting enzyme, AS = atherosclerotic stenosis, CI = confidence interval, N = number of individuals, OR = odds ratio, P = 2-sided P value.
et al.[10] found that rs5516 was associated with large AAA, but not with small ones. Similarly, reports on the influence of the ACE DD genotype on AAA development have been inconsistent. Hamano et al.[20] reported no difference in the genotype distributions in well-matched cohorts for age, sex, and atherosclerotic risk factors, but Fatini et al.[23] found an independent relationship between the ACE DD genotype and AAA (17). The ACE D allele was found to be associated with carotid intima-media thickness, and DD homozygotes had significantly greater carotid intima-media thickness than subjects carrying the II or ID genotype.[24] However, whether the D allele is associated with the presence of carotid plaques[25] or not[23] remains unclear.

Antoniou et al.[11] found an increased prevalence of I/D heterozygotes in patients with aneurysm and/or hernia; however, they found no correlation between the ACE DD genotype, the D allele and the presence of AAA. Unlike the study by Antoniou et al.[11] our study analyzed the combined effect of the ACE and KLK1 polymorphisms. Our data failed to demonstrate an association between AA and the ID or CG genotype, or synergistic effects of the ID or CG genotype with hypertension in AA patients, probably due to the small sample size. Additionally, we were unable to recruit patients diagnosed with AA and AS simultaneously. The observed ORs were not so large, suggesting that these polymorphisms contribute to AA and AS development, but that they are not the major causes.

5. Conclusion

The KLK1 rs5516 G allele is closely associated with AA, and the ACE D allele is closely related to AA and AS.

Acknowledgments

This work was supported by grants from the Nature Science Foundation of Zhejiang Province (China) (LQ15H020004).

References

[1] Antoniou GA, Lazarides MK, Patera S, et al. Assessment of insertion/deletion polymorphism of the angiotensin-converting enzyme gene in abdominal aortic aneurysm and inguinal hernia. Vascular 2013;21:3–5.
[2] Hinterseer I, Erdman R, Donoso LA, et al. Role of complement cascade in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2011;31:1653–60.
[3] Liphy P, Ralker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011;473:317–25.
[4] Wassef M, Baxter BT, Chisholm RL, et al. Pathogenesis of abdominal aortic aneurysms: a multidisciplinary research program supported by the National Heart, Lung, and Blood Institute. J Vasc Surg 2001;34:730–8.
[5] Fukuhara M, Geary RL, Diz DI, et al. Angiotensin-converting enzyme expression in human carotid artery atherosclerosis. Hypertension 2001;35:353–9.
[6] Kunieda T, Minamino T, Nishi J, et al. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 2006;114:953–60.
[7] Brasier AR, Recinos A 3rd, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol 2002;22:1257–66.
[8] Heeseman J, Sluiter JC, Daemen MJ. Angiotensin-converting enzyme and vascular remodeling. Circ Res 2007;101:441–54.
[9] Birso E, Norman PE, Walder PJ, et al. A single nucleotide polymorphism in exon 3 of the kalikrein 1 gene is associated with large but not small abdominal aortic aneurysm. Atherosclerosis 2011;217:452–7.
[10] Shen XZ, Lukacher AE, Billet S, et al. Expression of angiotensin-converting enzyme changes major histocompatibility complex class I peptide presentation by modifying C terminus of peptide precursors. J Biol Chem 2008;283:9957–65.
[11] Salo JA, Sirola-Soininen S, Bondestam S, et al. Familial occurrence of abdominal aortic aneurysm. Ann Intern Med 1999;130:637–42.
12 Sandford RM, Bown MJ, London NJ, et al. The genetic basis of abdominal aortic aneurysms: a review. Eur J Vasc Endovasc 2007;33:381–90.
13 Pola R, Gaetani E, Santoliquido A, et al. Abdominal aortic aneurysm in normotensive patients: association with angiotensin-converting enzyme gene polymorphism. Eur J Vasc Endovasc 2001;21:445–9.
14 Jiang S, Hsu YH, Venner SA, et al. Effects of protein coding polymorphisms in the kallikrein 1 gene on baseline blood pressure and antihypertensive response to irbesartan in Chinese hypertensive patients. J Hum Hypertens 2011;25:327–33.
15 Zhao W, Wang L, Lu X, et al. A coding polymorphism of the kallikrein 1 gene is associated with essential hypertension: a tagging SNP-based association study in a Chinese Han population. J Hypertens 2007;25:1821–7.
16 Carrell TW, Burnand KG, Booth NA, et al. Intraluminal thrombus enhances proteolysis in abdominal aortic aneurysms. Vascular 2006;14:9–16.
17 Moreau ME, Garbacki N, Molinaro G, et al. The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci 2005;99:6–38.
18 Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86:1343–6.
19 Jones GT, Thompson AR, van Bockxmeer FM, et al. Angiotensin II type 1 receptor 1166C polymorphism is associated with abdominal aortic aneurysm in three independent cohorts. Arterioscl Throm Vas 2008;28:764–70.
20 Hamano K, Ohishi M, Ueda M, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is not a risk factor predisposing to abdominal aortic aneurysm. Eur J Vasc Endovasc 1999;18:158–61.
21 Hiratzka LF, Bakris GL, Beckman JA, et al. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography, Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, Society for Vascular Medicine2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation 2010;121:e266–369.
22 Adriaensen ME, Kock MC, Stijnen T, et al. Peripheral arterial disease: therapeutic confidence of CT versus digital subtraction angiography and effects on additional imaging recommendations. Radiology 2004;233:385–91.
23 Castellano M, Muesan ML, Rizzoni D, et al. Angiotensin-converting enzyme ID polymorphism and arterial wall thickness in a general population. The Vobarno Study. Circulation 1995;91:2721–4.
24 Kauma H, Paivansalo M, Savolainen MJ, et al. Association between angiotensin converting enzyme gene polymorphism and carotid atherosclerosis. J Hypertens 1996;14:1183–7.
25 Watanabe Y, Ishigami T, Kawanoto Y, et al. Angiotensin-converting enzyme gene ID polymorphism and carotid plaques in Japanese. Hypertension 1997;30:569–73.