Research Paper

The Effect of Eight Weeks of Aerobic Training Combined With Resveratrol on MFn1 and MFn2 Expression in Cardiac Myocytes in a Non-alcoholic Fatty Liver Animal Model

Hasan Delroz1, *Ahmad Abdi1, Alireza Barari1, Parvin Farzanegi2

1. Department of Sport Physiology, Faculty of Physical Education and Sport Sciences Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
2. Department of Sport Physiology, Faculty of Physical Education and Sport Sciences Sari Branch, Islamic Azad University, Sari, Iran.

Objective

Nonalcoholic fatty liver disease is the most common chronic liver disorder. The present study aimed to examine the effect of aerobic training along with Resveratrol on the cardiac expression of Mfn1 and Mfn2 in nonalcoholic fatty liver disease male rats.

Method

In this experimental study, 48 Wistar male rats were classified into two groups NAFLD (n=40) and control-normal (n=8). NAFLD was induced in rats with a high-fat diet and then subdivided into five subgroups NAFLD, SHAM, TRNAF, SUPNAF, and TRSUPNAF. Training groups have performed a running program on a motor-driven treadmill for eight weeks. Resveratrol (20 mg/kg) was injected into the SUPNAF and TRSUPNAF groups. Forty-eight hours after the last training session, the rats were anatomized; hearts were removed and immediately frozen in liquid nitrogen and stored at -80°C for measuring the Mfn1 and Mfn2. Statistical analysis was performed using a 1-way analysis of variance Tukey post hoc tests, and significance was accepted at P≤0.05.

Result

The results showed that the induction of NAFLD reduced expression of Mfn1 (P=0.001) and Mfn2 (P=0.001) compared to control-normal. Also, in SUPNAF and TRSUPNAF groups, Mfn1 (P=0.002 and P=0.017 respectively) and Mfn2 (P=0.000 and P=0.000 respectively) increased significantly compared to the NAFLD group.

Conclusion

The combination of aerobic exercise and resveratrol may be due to changes in expression of mitochondrial fusion, modifying indexes apoptosis induced by oxidative stress in NAFLD patients.

Keywords: Exercise, Herbs, Mitochondrial dynamics, Fatty liver

Extended Abstract

1. **Introduction**

Non-alcoholic fatty liver disease is a chronic liver disorder [1]. This metabolic disorder can affect mitochondrial dynamics [3]. The decrease in fusion proteins in fatty liver disease is due to an increase in fat, which disrupts mitochondrial function, loss of membrane potential, decreased oxygen, and increased ROS production [5, 6].

According to the various research, it has been reported that regular aerobic activity can reduce fat and liver vulnerability and reduce inflammation in non-alcoholic fatty liver. It has also been reported that resveratrol due to its polyphenol...
nol compounds can reduce the vulnerability of fatty liver and mitochondrial dynamics in cardiac myocytes [13].

The aim of this study was to investigate the effect of aerobic exercise supplemented with resveratrol on the expression of Mfn1 and Mfn2 in cardiac mitochondrial myocytes in a non-alcoholic fatty liver animal model.

2. Materials and Methods

In this experimental study, 48 Wistar eight-week-old male rats were selected as the sample and randomly divided into diseased group (NAFLD) and Control-healthy group (CN). Control rats were fed a standard diet; they were fed a high-fat diet for 6 weeks to induce NAFLD [21].

The diseased group rats itself were divided into 5 experimental subgroups: Diseased (NAFLD), Sham (SHAM), Practice-Patient (TRNAF), Supplement-Patient (SUPNAF), and Practice-Supplement-Patient (TRSUPNAF). The training program was eight weeks, starting at 15 m/min for the first week, 5 min for each session, and 1-2 m/min for each session. The time was also increased by 2-4 min, reaching at speed of 20 m/min in the fourth week; the time met 60 min and remained unchanged until the last week [22].

In the SUPNAF and TRSUPNAF groups, resveratrol was injected intraperitoneally at a dose of 20 mg/kg [23]. Real time PCR was used to evaluate the expression of Mfn1 and Mfn2. One-way ANOVA and Tukey post hoc test were used for statistical analysis at the significant level of P≤0.05.

3. Results

Data analysis showed that there was a significant difference in the rate of Mfn1 expression of cardiomyocytes between different groups (F=11.743, P=0.000). The Tukey post hoc test showed significant differences between following groups: CN groups with NAFLD (P=0.001), SHAM (P=0.001), and TRNAF (P=0.001); between NAFLD group with SUPNAF (P=0.002) and TRSUPNAF (P=0.017); between SHAM group with SUPNAF (P=0.002) and TRSUPNAF (P=0.015); and also between TRNAF and TRSUPNAF group (P=0.013) (Figure 1).

Other results of this study showed a significant difference in the rate of Mfn2 expression of cardiomyocytes between different groups (P=0.000, F=27.482). The Tukey post hoc test showed significant differences between following groups: CN groups with NAFLD (P=0.001), SHAM (P=0.001) and TRNAF (P=0.001); between NAFLD group with SUPNAF (P=0.000) and TRSUPNAF (P=0.000); between SHAM group with SUPNAF (P=0.000) and TRSUPNAF (P=0.000); and also between TRNAF group with SUPNAF (0.000) and TRSUPNAF (P=0.000) (Figure 2).

4. Discussion

The results of this study showed that Mfn1 and Mfn2 expression was significantly decreased in the fatty liver mice compared to the healthy group. The reason for the decrease in these parameters may be due to the fusion protein imbalance. The decrease in the balance between fusion proteins in fatty liver disease is due to an increase in fat, which disrupts mitochondrial function [5, 6]. Excessive ROS induced by fatty liver can induce apoptosis and cardiac necrosis [26].

Liu et al. (2014) in a study on male fatty liver model rats reported a decrease in Mfn1 and Mfn2 [16]. In NAFLD, mitochondrial dysfunction inhibits Mfn2, resulting in decreased mitochondrial respiration of cardiac myocytes and increased susceptibility to oxidative stress [11]. Other results of this study showed a significant increase in Mfn1 and Mfn2 expression in extract and exercise-extract groups compared to the diseased group.

![Figure 1](image-url). Changes in MFn1 expression in cardiomyocytes in different groups

- a. difference with healthy control (CN);
- b. difference with diseased group (NAFLD);
- c. difference with sham (SHAM);
- d. difference with practice-patient (TRNAF).

At the 0.05 level.
Regular physical activity reduces inflammatory markers and increases capacity or antioxidant activity and reduces oxidative stress [5]. The decrease in oxidative stress indices is associated with increased expression of MFn1 and MFn2 genes, which enhances mitochondrial fusion activity [39].

Our findings indicate that administration of resveratrol along with aerobic exercise has a greater therapeutic effect on increased cardiac MFn1 and MFn2 expression than exercise alone. The use of resveratrol is associated with decreased ROS production and decreased expression of inflammatory cytokines as well as increased anti-inflammatory markers and improved antioxidant status [13]. Resveratrol appears to induce mitochondrial biogenesis by activating AMPK and mitochondrial transcription factors [43]. Aerobic exercise along with antioxidant supplements, including resveratrol, greatly help to inhibit the production of free radicals and oxidative stress in cardiac tissue cells of NAFLD patients, thereby enhancing the expression of fusion genes.

Ethical Considerations

Compliance with ethical guidelines

This study was conducted in accordance with the ethical standards of working with animals in accordance with the Ethics Committee of Islamic Azad University of Sari Branch: Code R.IAU.SARI.REC.1397.8.

Funding

The present paper was extracted from the PhD dissertation of the first author, Department of Sport Physiology, Faculty of Physical Education and Sport Sciences, Ayatollah Amoli Branch, Islamic Azad University, Amol.

Authors' contributions

Conceptualization, Methodology and Validation: Ahmad Abdi, Hasan Delroz, Parvin Farzanegi; Investigation, Resource, Original Draft Preparation: Ahmad Abdi, Hasan Delroz, Parvin Farzanegi, Alireza Barari; Editing and Review: Ahmad Abdi, Hasan Delroz; Supervision and Project Administration: Ahmad Abdi, Alireza Barari, Parvin Farzanegi, Funding Acquisition: Hasan Delroz.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank Islamic Azad University of Amol.
مقدمه

یک اختلال مزمن کبدی است که با نام کبد چرب غیرالکلی نیز شناخته می‌شود که ناشی از انباشت چربی در کبد است. این اختلال شامل استئاتوهپاتیسی، مقاومت به انسولین، کاهش اکسیژن، افزایش تولید گروه اکسیدان‌های بیشتر، افزایش بافت قلبی و سایر اختلالات متابولیک می‌شود.

به همراه تغییرات وراثی، ریوکسیژن، رقابت غیرچشم‌یار، تغییرات وراثی، افزایش تولید گروه اکسیدان‌های بیشتر، افزایش بافت قلبی و سایر اختلالات متابولیک می‌شود.

با توجه به این شرایط، اقدام به تمرینات ورزشی و مصرف رزوراترول از جمله راه‌های پیشنهادی برای کاهش بیان یافته‌های کبد چرب غیرالکلی است.

کلید واژه‌ها:
فعالیت ورزشی، گیاه دارویی، پویایی میتوکندریایی و کبد چرب

مقاله نویسندگان:
پیمان فرزانگی، علیرضا بهاری، بهرام مهدوی، هادی میرهجاجی، احمد عبدی

مراجع:
1. Nonalcoholic Fatty liver Disease (NAFLD)
2. Steatohepatitis
3. Mitochondrial dynamic
4. Mito Fusion 1
5. Mito Fusion 2
6. Reactive Oxygen Species (ROS)
بحث در مورد تأثیر تمرین هوازی همراه با مکمل رزوراترول بر میتوکندری قلبی میکوسیت های میتوکندری قلبی در مدل NAFLD. هدف از این مطالعه به تکمیل مطالعات قبلی در این زمینه بود.

مقدمه
بیماری قلبی عروقی یکی از بیماری‌های رایج در جهان است. در انسان‌ها و موش‌ها هنگامی که محافظت در برابر بیماری کبد چرب غیرالکلی می‌شود، پروتئین تحقیقات زیست پزشکی گزارش کرده‌اند یکی از عواملی که باعث افزایش خطر بیماری‌های قلبی عروقی و کبد چرب غیرالکلی می‌شود. این بیماری‌ها قبلاً در مواردی مانند افرادی که مصرف مکمل غیرطبیعی را نکرده‌اند و سالم‌ترین دارایی‌های بهبودی انجام ندهند، مشاهده شده است. مطالعات نشان داده‌اند که تغییرات پروتئینی و النزول میتوکندری در بیماری کبد چرب غیرالکلی و مشکلات در بیماری‌های قلبی عروقی به وجود می‌آید.

مواد و روش‌ها
مطالعات اخیر نشان داده که یک ارتباط قوی بین بیماری‌های قلبی عروقی و بیماری‌های کبدی وجود دارد. این ارتباط به طور کلی با توجه به تحقیقات اصلی، این بیماری‌ها نزدیکی می‌شوند.

روش‌های مطالعه
روش‌های مطالعه شامل تحقیقاتی است که در مورد تأثیر تمرین هوازی و مکمل‌های غذایی بر میتوکندری میکوسیت‌ها می‌باشد.

نتایج
نتایج مطالعه نشان داد که تمرین هوازی همراه با مکمل رزوراترول اثری بهتری نسبت به تمرین و یا مکمل رزوراترول به تنهایی داشت.

بحث
بیماری‌های قلبی عروقی و کبد چرب غیرالکلی باعث آسیب سلولی و بهبود آپوپتوز ناشی از تولید بیش از حد رادیکال‌های آزاد، پاسخ‌های شدید التهابی، تمنع انتقال الکترون و نابلوسی سلولی و ریواژیون می‌شوند.

7. Cyclooxygenase (COX)

References
1. Assay and methods.
2. Statistical analysis.
3. Results.
4. Discussion.

چریب شود، بلکه ROS و سایتکلافه‌های را که به تاتهم پیشرفت نمی‌کنند.

موارد و رویش‌ها
مطالعات نشان داده که تحقیقات‌های بازاری و مصرف‌های غذایی اثری بهتری نسبت به تجویز رژیم‌های غذایی به تنهایی داشت.

8. Cyclooxygenase (COX)

References
1. Assay and methods.
2. Statistical analysis.
3. Results.
4. Discussion.

چریب شود، بلکه ROS و سایتکلافه‌های را که به تاتهم پیشرفت نمی‌کنند.

موارد و رویش‌ها
مطالعات نشان داده که تحقیقات‌های بازاری و مصرف‌های غذایی اثری بهتری نسبت به تجویز رژیم‌های غذایی به تنهایی داشت.

8. Cyclooxygenase (COX)

References
1. Assay and methods.
2. Statistical analysis.
3. Results.
4. Discussion.

چریب شود، بلکه ROS و سایتکلافه‌های را که به تاتهم پیشرفت نمی‌کنند.

موارد و رویش‌ها
مطالعات نشان داده که تحقیقات‌های بازاری و مصرف‌های غذایی اثری بهتری نسبت به تجویز رژیم‌های غذایی به تنهایی داشت.

8. Cyclooxygenase (COX)

References
1. Assay and methods.
2. Statistical analysis.
3. Results.
4. Discussion.
به طور تصادفی به دو گروه بیمار و کنترلـسالم) تقسیم شدند. موش های صحرایی در گروه کنترل به مدت CN (درصد چربی، 12 شش هفته تحت رژیم غذایی استاندارد (شامل درصد سایر 3 درصد پروتئین، و 28 درصد کربوهیدرات، 57 در موش ها، NAFLD موارد) قرار گرفتند، در حالی که جهت القای حیوانات به مدت شش هفته تحت رژیم پرچرب (شامل 24 درصد پروتئین، 50 درصد چربی، 22 درصد سایر موارد) قرار گرفتند. 4 و 4 نمونه مولکولی از Draft-Genom نمونه ها تهیه و رزوراترول را در آن معلق و تجویز شد. برای کاهش درصد خطا برای کلیه آزمودنی ها و (SUPNAF) محلول به صورت یکجا تهیه شد و در گروه‌های TRSUPNAF (تمرینـمکملـبیمار صحرایی گروه تمرین، یک برنامه هشت هفته ای (پنج روز هفته) تمرین هوازی را اجرا کردند، در حالی که دیگر موش های صحرایی در هیچ برنامه تمرینی شرکت نکردند.

پروتکل تمرین

پروتکل تمرین هوازی را برای موش های صحرایی مبتلا به کبد چرب غیرالکلی می‌باشد و شکسته شده در همان بسته راهنمایی که در جدول 1 ذکر شده است. برای کاهش درصد خطا برای کلیه آزمودنی ها و (SUPNAF) محلول به صورت یکجا تهیه شد و در گروه‌های TRSUPNAF (تمرینـمکملـبیمار صحرایی گروه تمرین، یک برنامه هشت هفته ای (پنج روز هفته) تمرة و انجام آزمایشات بیولوژیک و رابطه بین آنها و اثرات تمرین و ایمنی در موش های صحرایی.

جدول شماره 1

هفته	مدت (دقیقه)	شدت (متر بر دقیقه)
اول	5	15
دوم	20	20
سوم	15	20
چهارم	19	20
پنجم	17	20
ششم	16	20
هفتم	15	20

برای تجربه‌های مصرف‌رسانی، میزان گرم پودر رزوراترول (شرکت نوترابیو آمریکا) با دسترسی فاصله‌ای تکنولوژی و خلوص 96/87 درصد) با غلظت 10 میلی گرم در میلی مول به عنوان استوک ساخته شد. برای هربار آزمایش، میزان گرم پودر رزوراترول با غلظت 99/87 فارماکولوژی و خلوص در میلی مول به عنوان استوک ساخته شد. برای هربار آزمایش، 10 میکرولیتر اتانول هفت درصد یا DMSO در هر موش گامی از صحرایی را تزریق داشتند. برای کاهش درصد خطا برای کلیه آزمودنی ها و (SUPNAF) محلول به صورت یکجا تهیه شد و در گروه‌های TRSUPNAF (تمرینـمکملـبیمار صحرایی گروه تمرین، یک برنامه هشت هفته ای (پنج روز هفته) تمرة و انجام آزمایشات بیولوژیک و رابطه بین آنها و اثرات تمرین و ایمنی در موش های صحرایی.
مکانیزم طبیعی آماری در آزمون تحلیل واریانس یک طرفه

جدول ۲ مقایسه سطح P در پرسازمان بین گروه‌ها

متغیر	F	df	Sig
بین گروه‌ها	۶	۲۷	۰/۰۰۰
بین گروه‌های مختلف (۵)	۶	۲۷	۰/۰۰۰

MFn2 و MFn1
میتوئپروپسیا، در گروه‌های مختلف NAFLD، شاخص‌های میتوفیژن (MFn1, MFn2) نشان داده می‌شود که در گروه‌های عصاره و تمرین بیمار، نسبت به گروه‌های نارسای جذب رادیکال‌های آزاد می‌شود. در نتیجه، تفاوت معنی‌دار بین میتوفیژن‌های MFn1 و MFn2 در گروه‌های مختلف می‌باشد.

به طور کلی، نتایج این پژوهش نشان می‌دهد که کاهش پروتئین‌های اکسیداتیو باعث مهار اختلال در عملکرد میتوکندری می‌شود. این پژوهش نشان‌دهنده حساسیت نسبی خاص اکسیداتیو نسبت به پروتئین‌های میتوکندری است. به طور کلی، نتایج این پژوهش نشان می‌دهد که کاهش پروتئین‌های اکسیداتیو باعث مهار اختلال در عملکرد میتوکندری می‌شود. این پژوهش نشان‌دهنده حساسیت نسبی خاص اکسیداتیو نسبت به پروتئین‌های میتوکندری است.
توجه گیری
نتایج مختلف حاضر نشان دهنده مزایا ترکیبی تمرین ورزشی MFn1 و MFn2 به گونه‌ای بهبود می‌آورد که شامل افزایش حساسیت به تنش (MFn1) و تاریکی‌سازی (MFn2) می‌باشد. رویکردی مربوط به تغییرات می‌توکان در بیماران می‌تواند به بهبود وضعیت لازم باشد.

ملاحظات اختلالی
یکی از اصول اختلال پیشگیری
این تحقیق با تأکید کمیته اختلال در دانشگاه آزاد سری و با کد R.IAU.SRCI.1397.3886 انجام شد.

خانم مدرس
این تحقیق در قالب رساله دکتری آقای حسن دلروز انجام گردید.

مشارکت‌کنندگان
مهدیم، روش‌شناسی و انتخاب‌سنجی: احمد عبده، حسن طهرانی و پریسا فرازگی، تحقیق و بررسی متابولی، نگارش پژوهش انجام‌شده، پریسا فرازگی، پرویز گامی و پژوهشگر مشاور تمایل.

MFn1 در بررسی حساسیت به تنش (MFn2) بهبود می‌آورد که شامل افزایش حساسیت به تنش (MFn1) و تاریکی‌سازی (MFn2) می‌باشد. رویکردی مربوط به تغییرات می‌توکان در بیماران می‌تواند به بهبود وضعیت لازم باشد.

کلکش غلت خاصی اسپرسینگنرین با فعالیت MFn1 و MFn2 کاهش می‌آورد. درمان ترکیبی تمرین ورزشی MFn2 بهبود دهنده است که بهبود لازم است. درمان ترکیبی تمرین ورزشی MFn2 بهبود دهنده است که بهبود لازم است. درمان ترکیبی تمرین ورزشی MFn2 بهبود دهنده است که بهبود لازم است.

APK1
AMPK
11. Estrogen-Related Receptor Alpha
12. AMP-activated protein kinase

MFn2 و MFn1

مظهرهایی از دیدگاه مادری و فن، اثر محلول خاصی‌ترین پات‌های اسپرسینگنرین با فعالیت MFn1 و MFn2 کاهش می‌آورد. درمان ترکیبی تمرین ورزشی MFn2 بهبود دهنده است که بهبود لازم است. درمان ترکیبی تمرین ورزشی MFn2 بهبود دهنده است که بهبود لازم است.

MFn2 و MFn1
تعارض منافع
در این پژوهش هیچگونه تضاد منافعی برای نویسندگان وجود ندارد.

تشکر و قدردانی
پژوهشگران تشکر و قدردانی خود را از دانشگاه آزاد اسلامی واحد آیت اللّه آملی اعلام می‌کنند.
[29] Jheng HF, Tsai PJ, Guo SM, Kuo LH, Chang CS, Su IJ, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Molecular and Cellular Biology. 2012; 32(2):309-19. [DOI:10.1128/MCB.05603-11] [PMID] [PMCID]

[30] Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovascular Research. 2009; 84(1):91-9. [DOI:10.1093/cvr/cvp181] [PMID] [PMCID]

[31] Perry CGR, Lally J, Holloway GP, Heigenhauser GJF, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. The Journal of Physiology. 2010; 588(Pt 23):4795-810. [DOI:10.1113/jphysiol.2010.199448] [PMID] [PMCID]

[32] Iqbal S, Hood DA. Oxidative stress-induced mitochondrial fragmentation and movement in skeletal muscle myoblasts. American Journal of Physiology-Cell Physiology. 2014; 306(12):C1176-C83. [DOI:10.1152/ajpcell.00017.2014] [PMID] [PMCID]

[33] Macnins MI, Zacharewicz E, Martin BJ, Haikalisi ME, Skelly LE, Tarnopolsky MA, et al. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. The Journal of Physiology. 2017; 595(9):2955-68. [DOI:10.1113/JP272570] [PMID] [PMCID]

[34] Konopka AR, Suer MK, Wolff CA, Harber MP. Markers of human skeletal muscle mitochondrial biogenesis and quality control: Effects of age and aerobic exercise training. The Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014; 69(4):371-8. [DOI:10.1093/gerona/glt107] [PMID] [PMCID]

[35] Powers SK, Talbert EE, Adhijhetty PJ. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. The Journal of Physiology. 2011; 589(9):2129-38. [DOI:10.1113/jphysiol.2010.201327] [PMID] [PMCID]

[36] Sabouny R, Fraunberger E, Geoffrion M, Ng ACH, Baird SD, Srechtan RA, et al. The Keap1-Nrf2 stress response pathway promotes mitochondrial hyperfusion through degradation of the mitochondrial fission protein Drp1. Antioxidants & Redox Signaling. 2017; 27(18):1447-59. [DOI:10.1089/ars.2016.6855] [PMID] [PMCID]

[37] Lisca M, Borda-d’Água B, Medina-Gómez G, Lelliott CJ, Paz JC, Rojo M, et al. Mitochondrial fusion is increased by the nuclear coactivator PGC-1β. PLoS One. 2008; 3(10):e3613. [DOI:10.1371/journal.pone.0003613] [PMID] [PMCID]

[38] Ikeda Y, Sciarretta S, Nagarajan N, Rubattu S, Volpe M, Frati G, et al. New insights into the role of mitochondrial dynamics and autophagy during oxidative stress and aging in the heart. Oxidative Medicine and Cellular Longevity. 2014; 2014:210934. [DOI:10.1155/2014/210934] [PMID] [PMCID]

[39] Trewin AJ, Berry BJ, Wojtovich AP. Exercise and mitochondrial dynamics: Keeping in shape with ROS and AMPK. Antioxidants. 2018; 7(1):7. [DOI:10.3390/antiox7010007] [PMID] [PMCID]

[40] Feng H, Kang C, Dickman JR, Koenig R, Awoyinka I, Zhang Y, et al. Training-induced mitochondrial adaptation: Role of peroxisome proliferator-activated receptor γ coactivator-1α, nuclear factor-κB and β-blockade. Experimental Physiology. 2013; 98(3):784-95. [DOI:10.1113/exphysiol.2012.069286] [PMID]

[41] Wyckelsma VL, Levinger I, McKenna MJ, Formosa LE, Ryan MT, Petersen AC, et al. Preservation of skeletal muscle mitochondrial content in older adults: Relationship between mitochondria, fibre type and high-intensity exercise training. The Journal of Physiology. 2017; 595(11):3345-59. [DOI:10.1113/JP273950] [PMID] [PMCID]

[42] Marton O, Koltai E, Takeda M, Koch LG, Britton SL, Davies KJA, et al. Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats. Pflügers Archiv. European Journal of Physiology. 2015; 467(4):779-88. [DOI:10.1007/s00424-014-1554-7] [PMID] [PMCID]

[43] Hart N, Sarga L, Csende Z, Koltai E, Koch LG, Britton SL, et al. Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food and Chemical Toxicology. 2013; 61:53-9. [DOI:10.1016/j.fct.2013.01.051] [PMID] [PMCID]