Topical Review

DNA-based construction at the nanoscale: emerging trends and applications

P Lourdu Xavier\(^1,2,4\) and Arun Richard Chandrasekaran\(^3,4\)

\(^1\) Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY) and Department of Physics, University of Hamburg, D-22607 Hamburg, Germany
\(^2\) Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
\(^3\) Confer Health, Inc., Charlestown, MA 02129, United States of America

E-mail: lourdu-xavier.paulraj@mpsd.mpg.de and arunrichard@nyu.edu

Received 8 October 2017, revised 14 November 2017
Accepted for publication 12 December 2017
Published 10 January 2018

Abstract

The field of structural DNA nanotechnology has evolved remarkably—from the creation of artificial immobile junctions to the recent DNA–protein hybrid nanoscale shapes—in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials.

Keywords: DNA origami, DNA nanotechnology, programmable matter, cryo-EM, XFEL, super-resolution, structural dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Apart from being the genetic molecule, DNA is a viable material for the bottom-up construction of nanoscale shapes and structures [1–3]. Molecular recognition and self-assembly—the elegant principles of organization and function in living materials—are the driving forces behind the fabrication of DNA-based nanoscale materials. One of the foremost goals of nanotechnology is the creation of precisely programmed structures, through the control and manipulation of matter, comparable to those involved in biological processes [4]. Among the available bottom-up construction strategies [5, 6], DNA-based self-assembly has been remarkably effective in designing and building nanoscale objects [7]. Although other biomolecules such as proteins have been used for design and self-assembly, the process is complicated due to the availability of 20 amino acid building blocks and the complex interactions between them [8, 9]. DNA, with the four canonical nucleotides, provides a predictive self-assembly process based on the Watson–Crick base pairing (simplicity in

\(^4\) Authors to whom any correspondence should be addressed.
The structural features of DNA form the basis of constructing a wide variety of architectures with well-defined shapes and sizes. For instance, the DNA duplex has a diameter of \(\sim 2\) nm, a helical pitch of \(\sim 3.4-3.6\) nm (structurally repeating building block), and a persistence length of \(\sim 50\) nm (rigidity for construction). In addition, single-stranded overhangs called sticky ends can be used to connect duplexes providing a route to hierarchical assembly (structural glue). The better stability of DNA compared to other natural nucleic acids is another advantage for DNA to be a
robust building block. DNA also provides flavor for con-
struction at the nanoscale: for example, non-Watson–Crick
base pairing (e.g. i-motifs, G-quadruplexes, triplexes) [10],
protein binding (e.g. aptamers) [11], and enzymatic activity
e.g. DNAzymes) [12] provide additional tools for the crea-
tion of functional devices and machines. The field of DNA
nanotechnology has expanded to find applications in areas
such as chemistry, biology, computation, medicine, and
materials science. In this article, we cover the basic and
emerging principles for the fabrication of self-assembled
DNA nanostructures and hierarchical assemblies and discuss
some of their applications (See figure 1 for an overview).

2. Assembly principles of self-assembled DNA
nanostructures

The notion of using DNA to build structures was proposed by
Seeman in the early 1980s [13]. The inherent nanoscale fea-
tures of DNA (discussed above) allows it to be useful as a
nanoscale building block. However, the DNA molecule is
inherently linear and in order to achieve multi-dimensional
assembly, branched DNA junctions are required. Inspired by
Holliday junctions [14], Seeman synthesized specific DNA
sequences and created an immobile four-arm DNA junction
that can serve as a construction unit [15]. The number of arms
around the junction can be expanded to contain 5, 6, 8 or
12 arms [16, 17]. Such crossover-based design of tiles or
motifs have formed the basis of nanoscale construction using
DNA, with higher order assembly provided by sticky ends
(hybridization-based), shape complementarity or protein-
mediated assembly.

2.1. Assembly based on hybridization

The first 3D objects created from DNA were a cube
(figure 2(A)) [18] and a truncated octahedron (figure 2(B))
[19]. Assembly of such structures require specific sequence
design so that different regions of component DNA strands
bind to their complementary regions in other strands. Another
example is an octahedron built from a 1.7 kilobase DNA
strand folded by five short strands (figure 2(C)) [20]. Using a
modular approach, icosahedral DNA structures have been
constructed from pre-connected 5-arm DNA junctions
(figure 2(D)) [21]. A DNA tetrahedron constructed using four
component strands is an example of designed assembly of
component DNA strands without involving ligation and
purification steps (figures 2(E) and (F)) [22]. A DNA three-
point-star motif has been used to create tetrahedra, dodeca-
hedra, and buckybells by controlling the flexibility and con-
centration of the component tiles (figure 2(G)) [23]. Each arm
of the star-shaped DNA motif is a four-arm junction and can
self-assemble into symmetric DNA polyhedra through sticky
end hybridization. Furthermore, by controlling the symmetry
of the three-point-star DNA motifs, a DNA cube has also
been constructed (figure 2(H)) [24]. Using a similar strategy,
a five-point-star motif has been used to assemble an icosah-
edron (figure 2(I)) [25]. In addition, 3D DNA prisms have
been constructed using a stepwise strategy [26]. In this case,
triangles or squares with rigid organic molecules at the ver-
tices were first synthesized. Two such units were then con-
ected by linking strands to create prism shapes (figure 2(J)).
A large number of DNA prismatic structures such as trian-
gular, square, pentagonal, and hexagonal prisms were gen-
erated using this modular approach. Such DNA objects
provide encapsulation and release of drugs and nanomaterials,
control over activity of encapsulated proteins, for biosensing,
and for the construction of 3D networks for catalysis [27].

The original goal of assembling materials with DNA was
to build a 3D DNA scaffold that could host external guests for
crystallization [13, 28]. In the process of achieving this goal,
a variety of DNA motifs have been created and used for the
construction of 2D arrays (figure 3). Some examples of such
DNA motifs are the double crossover (DX) [29] and the
triple-crossover (TX) motifs [30] that have been used for the
construction of well-defined 2D lattices with predesigned
periodicity. Another type of motif, the paraneamic crossover
(PX) DNA [31] has been used to link topologically closed
molecules and to create covalently linked 1D DNA arrays
[32, 33]. A variety of other DNA motifs have also been
developed for the construction of nanoscale objects and latt-
ces [34]. Such 2D arrays are useful as programmable scaf-
folds for the organization of nanoparticles [35] and biomolecules [36], and their design, construction and appli-
cations have been reviewed before [37, 38]. Seeman and
coworkers used a tensegrity triangle motif to create the first
rationally designed 3D DNA crystal (figure 4) [39]. The
tensegrity triangle motif contains three double helical edges
connected at the vertices by four arm junctions [40]. The ends
of the helices are tailed with sticky ends so one triangle can
connect to six such triangles. This assembly continues infi-
nitely in three directions leading to the formation of an infinite
periodic lattice (i.e. a crystal). Crystals with varying cavity
sizes were also constructed by varying the edge length of
these motifs [39, 41]. Moreover, the 3D self-assembly can be
designed to contain two different asymmetric units [42],
demonstrating the programmability of such an assembly.
Crystals from the two-helical turn tensegrity triangle motif
diffracted to 4 Å, and for it to be useful as a scaffold for
macromolecular structure determination of external guests,
the robustness has to be improved (i.e. yield high resolution
crystal structures). For this purpose, stability of such crystals
were improved by biological production of component
strands [43], sticky end modifications and sequence choice
[44], triplex-reinforced sticky ends [45] and triplex-directed
photo-crosslinking of the component motifs [46]. The role of
heterogeneity and Watson–Crick interaction strengths in the
growth of such crystals were also studied recently [47].
These designed DNA crystals have been used to host triplex-
forming oligonucleotides that can tether external molecules
on to the framework [48], a polyaniline molecule with
potential in nanoelectronics [49], a color changing strand
deployment-based device [50] and as a system to study
torsionally stressed DNA with induced changes in the helical
twist of the component motif [51].
Figure 2. DNA wire-frame objects. (A) DNA cube [18], (B) truncated octahedron [19], (C) octahedron [20], (D) icosahedron [21], (E) tetrahedron [22], (F) double tetrahedron [22], (G) tetrahedron, octahedron and bucky ball assembled from a three-point-star motif [23], (H) cube assembled from three-point-star motif [24], (I) icosahedron assembled from a five-point-star motif [25], (J) representative examples of DNA prisms [26]. Images reproduced with permission from the following: Reprinted with permission from [19]. Copyright (1994) American Chemical Society. Reprinted by permission from Macmillan Publishers Ltd: [Nature] [20], Copyright (2004). [21] John Wiley & Sons. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. From [22]. Reprinted with permission from AAAS. Reprinted with permission from Macmillan Publishers Ltd: Nature [23], Copyright 2008. Reprinted with permission from [24]. Copyright 2009 American Chemical Society. Reproduced with permission from [25]. Copyright (2008) National Academy of Sciences, U.S.A. Reprinted with permission from [26]. Copyright 2007 American Chemical Society. Reprinted by permission from Macmillan Publishers Ltd: Nature [3], Copyright 2003.
Another strategy to build DNA nanostructures is to fold a single long stranded scaffold DNA (ssDNA) by hundreds of short complementary staple strands, a method known as DNA origami (figure 5(A)) [52]. A precursor to the DNA origami concept is the octahedron built from a 1.7 kilobase DNA strand folded by five short strands [20]. While DNA origami was initially used for creating planar structures, the method was soon extended to first include the construction of 3D multilayer structures and then only twisted 2D multilayer structures [53], twisted bundles [54], and hollow 3D structures such as boxes [55], spheres and flasks [56]. Moreover, wireframe and mesh-like architectures have also been created using DNA origami by designing specific folding patterns for the scaffold strand [57, 58]. Some examples of DNA origami structures are shown in figures 5(B)–(G). The main advantages of the DNA origami strategy are the simplicity of using a singular scaffold strand and folding it into any desired shape, and the fact that it does not require purification or a stoichiometric mixture of component strands. By designing cross-shaped origami structures to contain sticky ends, long range two-dimensional arrays of DNA origami have been created (figure 5(H)) [59]. In addition, origami structures containing sticky ends can also be hierarchically assembled into larger objects [60]. The strategies involved in the creation of origami structures and their applications were recently covered in a review by Hao Yan and colleagues [61]. Alternative approaches to DNA-based construction are the molecular canvas strategy (figure 6(A)) [62] and assembly using DNA bricks (figure 6(B)) [63]. These strategies are based on single stranded DNA tiles [64] containing four domains (shown in figure 6(A)). Adjacent DNA single stranded tiles connect to each other by pairing up with complementary domains, and continue to form DNA lattices composed of parallel DNA helices.

2.2. Non-base pairing and shape-complementarity based self-assembly

Although Watson–Crick base-pairing is exceptionally powerful in creating self-assembled DNA nanostructures, non-base-pairing interactions have also been exploited for the self-assembly of pre-formed DNA-motifs/nanostructures. Various weak interactions have been used to assemble materials: DNA/RNA-like multiple hydrogen bonds in heteroaromatic modules [65], π–π stacking [66, 67], capillary forces [68], and roughness-controlled depletion attractions (entropy depletion) [69]. In a sense, in the overall process of structure and organization of DNA, the roles of geometric stacking and base-pairing based hybridization are inseparable —where the main distinction is the specifcity offered by hybridization. Though the role of stacking behavior in duplex DNA is well known [70], its implications in DNA nanotechnology have been realized only of late. Blunt-end stacking of bent triple crossover motifs have been shown to result in 1D arrays [71]. However, these interactions produced an arbitrary assembly of the motifs with no specific periodicity when compared to those assembled using motifs containing sticky ends. In most assembly strategies, preventive steps are taken to avoid such stacking by choosing appropriate...
sequence design and by the addition of poly-T loops at blunt-end locations. However, stacking interactions have now been used to assemble pre-formed DNA motifs and structures, though less frequently than the hybridization-based method (involving sticky end connections). For example, blunt end stacking (homophilic attraction) and shape complementarity have been used in the hierarchical assembly of 2D DNA origami structures [72]. Geometric arrangement of stacked blunt ends can follow two approaches. The first approach encodes bond type using a 16 bit (strands) binary code along the edges of a 2D DNA origami rectangle (figure 7(A)-(i)). By addition of specific staple strands, the edges of the rectangle can be programmed to end in blunt helices (‘1’) or by leaving out staples, these can be left as single stranded loops (‘0’). Only the blunt helices allow stacking of adjacent rectangles. This is reprogrammable—for e.g. a single set of 16 strands can create $2^{16} = 65,536$ bond types. The second approach encodes bond type using geometric complementarity between pairs of edge shapes; this approach is not reprogrammable—the shape complementarity is unique for a pair of origami structures (figure 7(A)-(ii)). Symmetry of the structures, mismatch constraints and the flexibility of edges limit the number of usable bonds in such a system. One other limitation is that the total binding energy is limited by the size of the origami while in hybridization-based assembly, the binding energies can be tailored by varying the length of sticky ends. The principles of base-stacking have been extended to assemble discrete multilayer DNA origami objects that assemble in solution through shape complementarity to form various homo- and hetero-multimeric objects [73]. These objects were used in creating micrometer-scale assemblies and reconfigurable nanodevices such as actuators, switchable gears and a nanorobot (figure 7(B)). The stability and functionality of these devices and assemblies could be controlled by cation concentration and temperature. Recently, an origami version of the tensegrity triangle was used to assemble designer 3D crystals, but instead of sticky ends connecting the units, this system relied on shape complementary blunt ends [74].

Surface-assisted assembly of 2D lattices can be achieved by close-packing of symmetric, non-interacting DNA origami structures, or by utilizing blunt-end stacking interactions between the origami units [75]. Adsorption of DNA origami structures on mica surface is mediated by Mg$^{2+}$ ions which act as salt bridges between mica and DNA. Addition of monovalent ions (such as Na$^+$) partly replaces the Mg$^{2+}$ ions.

Figure 4. Designed DNA crystals. (A) A two helical turn tensegrity triangle motif that assembled into a three-dimensional lattice, (B) the crystal formed from such a motif (C) assembly of triangles into a rhombohedral lattice, the three different directions are shown in three colors (D) the crystals structure showing triangle arrangement in the crystal, the white box shows the rhombohedral cavity formed within 8 such triangles. Images reprinted by permission from Macmillan Publishers Ltd: Nature [39], Copyright 2009.
and forms a more diffuse charge layer between the surface and the DNA [76]. As a result, the origami structures become mobile on the surface and can then associate to form extended, ordered structures on the surface (figure 7(C)). Similar assembly of DNA lattices has been shown on lipid membranes. For example, blunt-ended DNA origami structures absorbed onto mica-supported lipid bilayers in the presence of divalent cations can associate to form ordered superstructures on the surface [77]. The bilayer-adsorbed origami units are mobile on the surface and self-assemble into large micrometer-sized 2D lattices (figure 7(D)).

2.3. Protein-mediated programmable assembly of DNA–protein hybrid nanoscale shapes

While assembling/patterning of proteins on preformed-DNA nanostructures have been prevalent, there are very few examples of protein-mediated assembly of DNA nanostructures and protein–nucleic acid hybrid nanomaterials. One example is a protein–DNA co-assembling strategy to create a hybrid nanowire [78]. A homodimerization interface was engineered onto the Drosophila Engrailed Homeodomain (ENH) that allowed the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. The protein binding sites on the dsDNA molecules were tailored to result in a nanowire formation (figure 8(A)). The mechanism of formation of these hybrid structures was confirmed by x-ray crystallography. However, programmability is yet to be demonstrated in this method. A recent highlight is the work of Dietz and his colleagues where they used a set of transcription activator-like (TAL) effector proteins to induce folding of dsDNA to form DNA–protein nanoscale shapes (figure 8(B)) [79]. Even though genetic encoding of DNA nanostructures has been reported earlier [80], the key idea here is that proteins act as analogs of oligonucleotide staples in ssDNA-based origami [52]. TAL effector protein-based folding of dsDNA scaffold was used to create various 3D nanoscale shapes even at constant room temperature (figures 8(B)-(i)–(iv)). This method also has implications in improving our understanding of how compaction and organization of chromosomes work in biological conditions and protein-binding induced curvature in multilayer dsDNA-origami structures.

2.4. Computational tools for assembly design and analysis

Advances in a field are greatly influenced by the parallel development of key methods/techniques. To construct DNA nanostructures based on the assembly principles mentioned above, computational tools and efficient experimental designs have been developed in parallel. Computational tools have been of great use in structural design, prediction, and stability validation of artificial macromolecular structures and assemblies. Starting with Seeman’s JUNKART [81] DNA nanotechnology has benefitted from the development of computational tools such as SEQUIN [82] and UNIQUIMER [83] for sequence symmetry minimization of oligonucleotides used in constructing DNA complexes. Modeling programs such as GIDEON [84], TIAMAT [85] and UNIQUIMER 3D [86] allow the design, visualization and analysis of DNA motifs and structures. The program caDNAno [87] is widely used for designing DNA origami structures and the interface DAEDALUS [88] can be used to convert any 3D solid object...
specified using a computer-aided design file into the synthetic DNA sequences required to synthesize the target object. The program CanDo [89] is used for predicting the solution shape and structure of designed DNA nanostructures. While such software are made available as end-user programs for designing DNA nanostructures, several other codes and algorithms used for this purpose might also be available in the public domain. Some of these developments were the fruits of the convergence of the then-ongoing efforts on molecular (DNA) computation and designing topological structures out of DNA. Furthermore, molecular dynamics tools have also been created to simulate DNA origami assembly processes [90, 91]. Recent reports have shown prediction and analysis of structural and mechanical aspects of both tile- and origami-based DNA nanostructures.

Figure 6. Alternative methods of large scale assembly. (A) The molecular canvas strategy where selective single stranded DNA tiles from a pool of tiles assemble to form the specific pattern [62]. (B) The DNA brick strategy to create lego-like building blocks [63]. Images reproduced with permission from the following: Reprinted by permission from Macmillan Publishers Ltd: Nature [62], Copyright 2012. From [63]. Reprinted with permission from AAAS.
The assembly principles aided by computational and experimental advances have led to the creation of a variety of intricate nanoscale DNA structures with applications ranging from mimicking biological nanomachines to new materials for sensing and imaging.

3. Applications

Myriad intriguing applications have been reported using DNA nanostructures and some of these have already been reviewed extensively. These include drug-delivery [95–102], biosensing [103–108], protein functionalization, scaffolding and enzyme cascades [38, 95, 109–111]. We discuss here recent applications of DNA-based self-assembled structures in the context of structural biophysics, molecular scaffolding, plasmonics/photonics and fluorescence imaging.

3.1. DNA-assisted molecular and structural biophysics

Hybridization, biochemical conjugation and natural affinity to DNA make it possible to functionalize DNA structures with the heteroelements (proteins, small molecules, and nanoparticles). A comprehensive list of the proteins functionalized on (or used for functionalization of) nanoscale DNA constructs is provided as a reference for the readers (table 1). DNA-assisted molecular and structural biophysics is concerned with understanding the structure, function and physicochemical properties of proteins and molecules using DNA as a tool/platform. The key to carry out such studies is positioning proteins and molecules on DNA nanostructures at spatially addressable locations with high precision.

3.1.1. High-precision positioning of molecules

Single molecules studies often require isolated molecules in an environment suitable for measurements. Nanoscale precision offered by DNA-based construction has been used to place molecules at specific locations on 2D platforms and arrays in several studies. Recently, a two-armed DNA origami hinge device has been used to control the positioning of molecules with very high precision (figure 9(A)) [112]. The angle between the two arms of the hinged device can be controlled.
by adjuster helices placed between the arms, with increasing lengths of the adjuster helices resulting in higher angles between the arms (thus larger distances between molecules attached on each of the arms). This system was used to study distance-dependent dye interactions and fluctuation-dependent crosslinking interactions between bismaleimide and thiol groups. The positioning capabilities of the device were tested with photophysical and crosslinking assays, which report the co-ordinates of interest with very high resolution, reaching atomic length scale. Measurements revealed that the smallest displacement step possible was 0.4 Å, which is slightly lesser than the Bohr radius (0.529 Å).

This study reinforces the possibility of placing molecules on DNA nanostructures at very high resolution, a key to do high-resolution single molecule structural studies—thereby bolstering the concept of molecular scaffolding.

3.1.3. Single-molecule force spectrometers. Single molecule spectroscopy is a highly promising technique to understand the folding pathways and elastic response of macromolecules [117–119]. Two main drawbacks to this technique still persist: limited data throughput and noise incurred by the use of connector molecules report the events at a macroscopic scale. The former limitation can be addressed by parallel data acquisition from multiple events while the latter can be aided by the use of nanoscopic connectors that can sense minute conformational changes with minimal noise. To address this issue, rigid DNA origami beams have been used for single molecule force spectroscopy experiments [120–122]. This concept has been used to build a nanoscopic force clamp that allows autonomous operation and massively parallel data collection [121]. The device consisted of a bracket-shaped DNA origami clamp with a single stranded DNA spring extending within the space of the clamp (figure 9(E)). Single-stranded DNA molecules of different lengths attached to the molecule of interest act as entropic springs, with shorter...
Table 1. Protein/peptide components in DNA-based nanoscale constructs.

Protein component	DNA nanostructure	Binding route	Biophysical study/application/significance	Reference
Streptavidin	Nanowires, 2D arrays (cross motif), 2D origami	Biotin–avidin	Surface patterning, single molecule chemical reactions, sensors	[313–315]
Glucose oxidase/ horseradish peroxidase	DNA origami nanotube	Neutravidin–biotin	Molecular enzyme cascades	[306]
Zinc-finger protein	2D origami	DNA sequence recognition	As protein-binding adaptors	[316]
Cyan fluorescent protein, yellow fluorescent protein	2D origami	Sequence specific zinc-finger adaptors	Site-specific binding on DNA origami	[316]
Platelet-derived growth factor	2D origami	Aptamer-binding	Protein array on origami, sensing	[317]
Thrombin	2D origami	Aptamer-binding	Protein array on origami, analysis of distant-dependent protein binding	[317]
RuvAB, Neurotensin receptor type 1 (NTS1), Guanine nucleotide binding protein (Goαi)	2D Kagome-array formed from 4-arm junctions	Holliday junction-binding, His-tag and tris-NTA modification	Cryo-EM molecular support	[126, 127]
Transferrin	20-helix bundle origami nanotubes	DNA-peptide amide linkage	Amyloid nucleation and growth	[318]
Kinesin-1, Dyenin	6-helix bundle origami	SNAP tag, DNA–DNA	Biomimetic study of molecular motors	[178]
Enhanced yellow fluorescent protein (eYFP)	12-helix bundle origami	DNA-peptide amide linkage	Super-resolution microscopy	[319]
TATA box binding protein	Origami force clamp	DNA-binding	Measuring forces involving in protein binding	[121]
Green fluorescent protein	Origami device	DNA-binding	Analysis of biomolecular interactions based on nanactuation	[320]
Nucleosomes	Origami nanocaliper/hinge	DNA-binding	Force spectrometers to study histone protein binding to DNA	[115, 116]
Transcription factor p53	3D origami cage	Sequence-specific dsDNA binding	Molecular support in cryo-EM; structure solved at 14 Å	[132]
DegP (serine protease)	3D origami cage	DNA-peptide amide linkage; DNA–DNA	Multiple anchor stabilization of a 500 kDa protein in origami cage	[323]
eYFP, mKate, cytochrome C peroxidase (CCP), esterase 2 (EST2)	2D origami templates	Snap-tags and Halo-tags	Site-specific functionalization of nanostructures	[321]
RecA	Origami wireframe objects	DNA-binding	DNA–protein filament assembly	[322]
Engineered Drosophila Engrailed homeodomain (ENH)	Protein-mediated DNA nanowires	dsDNA-binding	DNA–protein hybrid nanoshapes; hierarchical assembly	[78]
Engineered transcription activator-like (TAL) effector proteins	Protein-mediated dsDNA origami	dsDNA-binding	Programmable protein-mediated folding of dsDNA, DNA–protein hybrid nanoscale shapes	[79]
Figure 9. DNA nanostructures for biophysical analysis. (A) A DNA origami hinge object that can place molecules in specific distances on the two arms of the hinge [112]. (B) The hinged DNA origami used to explore nucleosome unwrapping [114] (C) a similar DNA origami object used to study the forces between two nucleosomes [115] (D) a DNA origami nanocaliper used to study nucleosome stability [116] (E) DNA origami beams tethered on micrometer sized beads to study base stacking forces [122] (F) DNA origami based force clamps to study Holliday junction conformation [121]. Images reproduced with permission from the following: Reprinted by permission from Macmillan Publishers Ltd: Nature Nanotechnology [112], Copyright 2016. Reprinted with permission from [114]. Copyright 2016 American Chemical Society. Reprinted/adapted from [115]. © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/ Reprinted with permission from [116]. Copyright 2016 American Chemical Society. From [122]. Reprinted with permission from AAAS. From [121]. Reprinted with permission from AAAS.
arrays to host protein for cryo-EM studies for NMR analysis bundles weak alignment of membrane proteins. Six-helix DNA origami functioning at a range of pH, is suitable to achieve transient is preferred for aligning membrane proteins. DNA origami addition to retaining conditions for solution-state high crystalline media enables the measurement of RDCs. In study. Partial directional averaging of proteins in liquid resolution structural features of the macromolecules under a 40 kDa tetrameric BM2 channel protein reconstituted in detergent micelles and aided in solving the structure de novo [123, 124]. These DNA nanotubes have also been used to determine the high resolution (backbone) structure of mitochondrial uncoupling protein 2 (UCP2), a membrane protein that facilitates the transport of small molecules across the mitochondrial inner membrane (figure 10(A), bottom) [125].

3.2.2. Cryo-EM structure determination of proteins using DNA-based molecular supports. Holliday junctions tail with sticky ends have been used to construct 2D arrays and to host junction-binding proteins such as RuvA [126]. Specifically designed four-arm junctions assemble into a trigonal 2D crystalline array (figure 10(B), top). These lattices were used to arrange a 40 kDa guanine nucleotide binding protein G(o), rat neurotensin receptor type 1 (NTS1, a 43 kDa protein), and the signaling complexes of NTS1 with G(o) in 2D array [127]. Attachment of proteins on the DNA array was facilitated by N-terminal His-tags on the protein and a tris-nitrotriacetic acid (tris-NTA) modification on one of the component DNA strands of the junction unit. These arrays were analyzed by cryo-electron microscopy (Cryo-EM) which usually requires a large number of particle images for high-resolution 3D reconstruction (figure 10(B), bottom). Such 2D DNA nanoaffinity templates can be used to create dense non-overlapping arrays of protein molecules for structure determination of aperiodic single-particles using Cryo-EM, while also allowing high-throughput data collection.

Structural elucidation of computer-designed DNA origami structures would aid in better designing of artificial nanomachines and highly rigid structures (at high resolutions), which in turn could act as molecular scaffolds to image small proteins and molecules that are attached to them. Since the advent of new detectors and aberration-corrected electron microscopes, single-particle cryo-EM is becoming an

Figure 10. DNA-based nanostructures and scaffolds for macromolecular structure determination. (A) DNA nanotubes for aligning proteins for NMR analysis (top) and structure of a mitochondrial uncoupling protein solved using DNA nanotubes [125] (B) DNA junction based 2D arrays to host protein for cryo-EM studies [127]. (C) Cryo EM structure of a 3D DNA origami object [131] (D) a DNA origami-based molecular support for cryo-EM structure determination [132]. Images reproduced with permission from the following: Reprinted by permission from Macmillan Publishers Ltd: Nature Protocols [124], Copyright 2013. Reprinted with permission from [127]. Copyright 2011 American Chemical Society. Reproduced with permission from [131]. Reproduced with permission from [132]. Reprinted by permission from Macmillan Publishers Ltd: Nature [125], Copyright 2011.
increasingly important tool to elucidate the structures of uncrystallized aperiodic single-macromolecules [128–130]. At the time of this review preparation, there has been only one reconstructed structure of 3D DNA origami available at a reasonable resolution, that of a compact hand-shaped 3D DNA origami structure using cryo-EM, with an overall resolution of 11.5 Å, with the resolution ranging from 9.7 Å at the core to 14 Å at the periphery (figure 10(C)) [131]. This densely packed structure possessed a few unique unnatural DNA topologies such as vertical stack of five Holiday junctions and left-handed pseudohelices. The study of DNA origami structures using cryo-EM led to the use of such constructs as molecular supports for structure elucidation of other biomolecules. For example, a hollow DNA origami cage has been used as a molecular support to study the transcription factor p53 using cryo-EM [132]. The cavity of the DNA origami cage contains a single double helix with a specific sequence that the protein can bind to (figure 10(D)). Moreover, by controlling the position of this sequence, the orientation of the protein in this cage can also likely be controlled and analyzed using cryo-EM. Such DNA cages also likely protect the confined proteins from external harsh environments in EM studies.

3.3. DNA nanostructures for plasmonic/photonic materials

Spatially addressable arrangement and assembly of atoms, molecules, and nanoparticles at the nanoscale or sub-nanoscale level are crucial steps to achieve the goals of nanotechnology. Gold and silver nanoparticles (Au/Ag NPs) are the widely used nanoparticle systems in DNA-metal hybrid assembly. While there are reports on other semiconductor nanoparticle systems whose surfaces can be modified, the facile nature of functionalizing and attaching DNA on the surface of AuNPs, coupled with the nanoscale phenomenon of surface plasmon resonance in the visible range makes AuNPs the most utilized candidate in DNA-metal hybrid systems. The assembly of AuNPs into reversible macroscopic aggregates using thiol-modified oligonucleotides [133] and the precise positioning of small AuNPs on a dsDNA template [134] laid the foundation for DNA-based nanoparticle assembly. Since then, the community has made large strides in assembling a gamut of nanoparticle systems using DNA. Some examples include AuNPs arranged into 2D lattices using DNA origami nanoflowers [135], size-selective placement on a triangular origami structure [136], periodic AuNP lattices [35], and binary mixtures of anisotropic nanoparticles [137]. DNA-based positioning of nanoparticles at spatially addressable locations on complex nanoscale structures lead to emergent properties with applications as plasmonic materials [138].

With molecular self-assembly, control and arrangement of nanomaterials in complex geometries in three-dimensions can be achieved more easily at the nanoscale than with the conventional lithographic approaches. DNA, with its programmable nature, allows the assembly of plasmonic/photonic materials in desired geometries with nanoscale precision and high fidelity [139–141]. For example, DNA origami nanotubes have been used to create chiral AuNP assemblies that exhibited characteristic bisignate signatures in the visible range (figure 11(A)) [142]. In another example, 2D DNA origami sheets functionalized with linear chains of gold nanoparticles were rolled into DNA tubes to create gold nanohelices exhibiting chiral characteristics (figure 11(B)) [143]. Similarly, a 3D plasmonic chiral AuNP tetramer has also been assembled using a 2D origami rectangle (figure 11(C)) [144]. A DNA origami-based reconfigurable plasmonic nanosystem that can be controlled by toehold-based strand displacement has also been developed [145]. In this case, the origami structure had two 14-helix bundles connected in the middle, each of which carries a gold nanorod (figure 11(D)). By introducing specific DNA strands, the arms of the bundles can be connected to create a right- or left-handed optical response. DNA-functionalized gold nanorod plasmonic walkers have been designed to take nanoscale steps on a DNA origami platform [146]. The progressive steps made by the walker trigger a series of conformational changes to the plasmonically coupled system, thus giving rise to immediate spectral response changes. This dynamic walking process can be read out using optical spectroscopy (figure 11(E)) [147]. Moreover, in this system, the optical response can be tailored by modifying the number of walkers. Such a system allows monitoring of nanoscale locomotion on the order of several nanometers, which is far below the optical resolution limit.

Precise assembly of nanoparticles into crystalline and open 3D frameworks has also been achieved by connecting them through designed DNA-based polyhedral frames [148, 149]. DNA-based binding of nanoparticles to these frames, along with the geometry of the designed frames allow defined connections and architectures (figure 11(F)). Such DNA origami frames can be used to fabricate metal clusters with various symmetries and particle compositions, and to create nanoclusters with different chiroptical activities [150]. For example, toroidal metamolecules have been created using circular DNA origami frames and AuNPs (figure 11(G)) [151]. In addition to spherical nanoparticles, gold nanorods (AuNRs) assembled on 2D DNA origami templates have been shown to exhibit strong chiroptical activities [152]. Bifacial DNA origami has been used as a template to create discrete anisotropic AuNR dimer nanoarchitectures (figure 11(H)) [153]. In this system, the 3D spatial configuration was precisely tuned by rationally shifting the location of AuNRs on the origami template. This strategy was further extended to create AuNR helical superstructures with tailored chirality by designing a cross-shaped arrangement of DNA capturing strands on both sides of the 2D DNA origami template (figure 11(I)) [154]. AuNRs functionalized with complementary DNA strands bind to the origami template and assemble into AuNR helices with the origami intercalated between adjacent AuNRs. Such precise arrangement of metal particles on DNA origami has also been shown to be a viable tool for the creation surface-enhanced Raman scattering (SERS)-active nanoparticle assemblies (figure 11(J)) [155]. In a recent report, an AuNP was designed to perform a stepwise ‘roll’ directionally and progressively on DNA origami, while another AuNP was used as a stator [156]. The inter-particle distance variation generated by the rolling of the AuNP
reporter was monitored by SERS. This method could be used as an optical reporter to monitor inter-particle variations in plasmonic nanostructures. Self-similar (similar to part of itself) chains of metal nanoparticles can create nanolenses which provide extremely high field enhancements. Heck et al. created gold nanolenses by connecting gold nanoparticles, which are similar, but different in size, using DNA origami [157]. They placed 10, 20, and 60 nm spherical gold nanoparticles extremely close to each other in different geometrical arrangements on a triangular DNA origami shape using sticky ends. They studied the field enhancement effect by placing dye molecules on nanoparticles and measuring SERS as a function of geometrical arrangement of three particles and inter-particle distances. The 20-10-60 nm

Figure 11. DNA-based plasmonic nano-assemblies. (A) DNA origami bundles for chiral arrangement of AuNPs [142]. (B) DNA origami sheets with AuNPs rolled into chiral gold arrangements [143]. (C) Chiral tetramers arranged on DNA origami sheets [144]. (D) Reconfigurable DNA plasmonic nanorods hosted on DNA origami device [145]. (E) A nanoplasmonic walker on DNA origami [147]. (F) DNA origami frames used to create nanoparticle clusters. Frame shapes are shown on the left and the corresponding unit cells are shown on the right [148]. (G) Plasmonic toroidal metamolecules assembled by DNA origami [151]. (H) Gold nanorods with tunable position on DNA origami template [153]. (I) Gold nanorod helical superstructures with designed chirality arranged using DNA origami [154]. (J) DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering [155]. Images reproduced with permission from the following: Reprinted by permission from Macmillan Publishers Ltd: Nature [142], Copyright 2012. Reprinted with permission from [143]. Copyright 2012 American Chemical Society. Reprinted with permission from Macmillan Publishers Ltd: Nature Materials [145], Copyright 2014. Reprinted with permission from [147]. Copyright 2015 American Chemical Society. Reprinted by permission from Macmillan Publishers Ltd: Nature Materials [148], Copyright 2016. Reprinted with permission from [151]. Copyright 2016 American Chemical Society. Reprinted with permission from [153]. Copyright 2013 American Chemical Society. Reprinted with permission from [154]. Copyright 2015 American Chemical Society. Reprinted by permission from Macmillan Publishers Ltd: Nature Communications [155], Copyright 2014.
particle arrangement on DNA origami resulted in the maximum field enhancement matching theoretical expectations of a cascaded field enhancement effect. Zhan et al. demonstrated a controlled shift of the plasmonic resonance peak by aligning gold nanorods on a DNA origami tripod [158]. The angle between the legs was controlled by toehold-based strand displacement, in turn resulting in reconfigurable plasmonic properties. The distinct electromagnetic response from the tripod shapes matched the calculated response as a function of angle between the legs. At this point, we point the reader to a recent review article by Liu and colleagues that discusses DNA nanotechnology-based chiral plasmonic architectures in great detail [159].

3.4. DNA nanostructures in fluorescence imaging

Apart from the assembly of plasmonic materials discussed above, DNA-based constructs have been used in assembling fluorescent materials/molecules (for examples, quantum dots or fluorophores) [160–162] and in fluorescence imaging. The ability to functionalize DNA-based structures with fluorophores at spatially addressable locations with high precision makes it

Figure 12. DNA nanostructures for fluorescence imaging. (A) Fluorescent barcode based on a DNA nanorods [172]. (B) DNA-based metalfluorophores for patterned pictograms [173]. (C) Fluorescence imaging of transient binding on DNA origami for super-resolution microscopy [177]. (D) DNA origami polyhedra characterized by DNA-PAINT [60]. (E) 3D reconstruction of an origami tetrahedron structure from super-resolution light-microscopy images [183]. (F) DNA origami-based standards for quantitative fluorescence microscopy [186]. Images reproduced with permission from the following: Reprinted by permission from Macmillan Publishers Ltd: Nature Chemistry [172], Copyright 2012. Reprinted/adapted from [173]. © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BYNC) http://creativecommons.org/licenses/bync/4.0/ Reprinted with permission from [177]. Copyright 2010 American Chemical Society. From [60]. Reprinted with permission from AAAS. Reproduced with permission from [183]. Reprinted by permission from Macmillan Publishers Ltd: Nature Protocols [186], Copyright 2014. Reprinted by permission from Macmillan Publishers Ltd: Nature Chemistry [172], Copyright 2012.
useful as fluorescence nanoscale rulers [163], sensors [164], and molecular switches for probing the dynamics of sub-cellular structures and events [165, 166]. Such structures are also used to engineer the photo-physical properties of QDs/fluorophores and to create smart photonic and light harvesting devices [161, 167–170]. For instance, fluorophores strategically placed in the plasmonic hot spot using DNA would exhibit several fold enhanced fluorescence [171].

Lin et al created a fluorescent barcode using a rigid DNA origami rod with multiple fluorescent tags (figure 12(A)) [172]. Previously, fluorescence barcoding work with DNA tile arrays had been carried out for the biosensing of nucleic acids [164]. More recently, DNA origami based meta-fluorophores have been introduced, where fluorophores are densely packed on a DNA origami platform (132 dyes on a \(60 \times 30\) nm\(^2\) origami) [173]. The brightness and color of the metafluorophores can be tuned to create a pallet of 124 virtual colors. These metafluorophores were used as high throughput nucleic acid detection sensor (figure 12(B)).

Stochastic super-resolved fluorescence imaging techniques [174, 175] take advantage of the ‘on’ and ‘off’ states of fluorophores. The base pair recognition and hybridization principle of DNA coupled with the Points Accumulation for Imaging in Nanoscope Topography (PAINT) method [176] led to a versatile imaging method DNA-PAINT [177]. This method achieves the stochastic blinking of fluorophores through transient binding of free-floating imager DNA-strand (labeled with fluorophore) that docks with the target complementary strand (figure 12(C)). Fluorescence is detected only in bound states (on) and once the strand dissociates it does not fluoresce anymore (off). This allows imaging cellular structures at molecular or super resolution even with normal epi-fluorescence or confocal microscopes. This method not only enables super-resolved optical imaging of sub-cellular structures but also aids the optical characterization of DNA-based nanostructures and assemblies. For example, polyhedra assembled from DNA origami tripods have been characterized in solution using the DNA-PAINT method (figure 12(D)) [60]. Previously, Shih and co-workers studied the motor movements of dyenin and kinesin on DNA origami tubes and used DNA-PAINT to characterize the spacing (∼28 nm) between the adjacent protein molecules on the protein–DNA origami construct [178]. Further, newer versions of this method such as quantitative-PAINT and exchange-PAINT have been demonstrated using DNA origami structures [179–182]. Nollman and his colleagues applied DNA-PAINT method to collect thousands of 2D fluorescence images of a DNA origami tetrahedron in solution in a microfluidic chamber [183]. They classified the images into class averages and reconstructed the 3D structure by applying angular reconstitution in combination with multivariate statistics method (following the methods developed for 3D cryo-EM imaging—but the signal here is emitted photons from the fluorophores) (figure 12(E)). The computationally designed, well characterized DNA origami objects labeled with fluorophores act as excellent model samples for the imaging method development [183].

Steinhauer et al demonstrated the concept of DNA-based nanoscale ruler for super-resolution fluorescence microscopy with a rectangular 2D DNA origami labeled with two fluorophores separated by a distance below the diffraction limit [163]. Since then, DNA origami objects labeled with fluorophores with inter-fluorophore distances below the diffraction limit have become standard nanoscopy rulers in super-resolution microscopy. Schmied et al further developed this concept with various 3D DNA origami shapes, and showed that fluorophores could be placed within 5 nm next to each other and still be resolved (figure 12(F)) [184–186]. Recently, Hell and his colleagues used DNA origami objects as test samples and nanoscale fluorescence rulers to demonstrate a new variant of super-resolution imaging method MINFLUX (MINimal emission FLUxes), achieving nanometer resolution while utilizing fewer number of emitted photons than before [187]. Readers may refer to the recent review by Jungmann and co-workers for further information on the applications of DNA nanotechnology in fluorescence imaging [188].

4. Summary and perspective

With the expanding tools of structural biology, what DNA nanotechnology has to offer to the biophysical community is an important question. DNA nanostructures have been used as custom-designed model systems for method development of imaging techniques, as molecular scaffolds to obtain molecular structure of guests, to assemble or align molecules, as molecular beacons/sensors/spectrometers to probe a chemical or physical process, and as nanoscale rulers. 3D assembly of plasmonic materials in complex geometries has now become routine with DNA-based assembly routes; such constructs would be useful in probing intracellular events with dark field microscopy coupled with spectroscopy [189, 190]. DNA origami nanorulers have become standards in fluorescence microscopy and the technology has already been commercialized. As we noted above, DNA origami tubes have been used to align membrane proteins for high-resolution NMR structure determination. Cryo-EM has undergone rapid developments in the past few years in terms of resolution and the size of the macromolecules that can be imaged [191–194]. While it has become possible to determine the 3D structures of sub-100 kDa protein molecules directly with cryo-EM [194, 195], DNA based molecular supports still offer the possibility of imaging much smaller proteins/macromolecules attached to such supports as well as to study the forces or interaction energy landscape between macromolecules using unique unnatural constructs [115, 127, 132].

Highly intense femtosecond pulses of x-ray free electron lasers (XFEL) offer the possibility of imaging the structure and dynamics of biomolecules and macromolecular complexes frozen in time at room temperature while outrunning radiation damage [196–202]. XFEL single-particle diffractive imaging is in its early stages of development [203–205]. A key challenge in this emerging lensless imaging technique is measuring the weak diffraction signal of a single biomolecule above the background noise at high-resolution in a single-shot with an x-ray laser pulse. DNA nanotechnology has a lot to
offer to XFEL imaging techniques and would likely be useful to orient single macromolecules arbitrarily without the need to strictly position the molecules in the crystallographic lattice positions. Such an alignment strategy would yield enhanced signal while minimizing the orientation determination problem, and can be used to reconstruct the 3D structure of weakly scattering single biomolecules at high resolution at room temperature without the need for crystallization [206–208]. For instance, single-molecules could be rigidly attached to DNA origami tubes and low-aligned in a low-background, ultra-thin liquid-jet to obtain single-shot, single molecule diffraction with XFEL pulses, where the DNA nanostructure could also act as a holographic reference to the target molecule [209]. Furthermore, custom-designed DNA origami objects/molecular scaffolds would be excellent model samples for XFEL imaging method development [203].

On the other hand, the expanding gamut of biophysical tools offers the possibility to characterize and understand DNA-based nanostructures and assemblies in unprecedented detail. Innovations in nanoscopic tools would enable the observation of assembly process and structural dynamics of DNA nanostructures at higher resolution and faster timescales than currently possible at the single molecule level [210]. For instance, high-speed atomic force microscopy (AFM) has been used to image light-induced dynamics in DNA nanostructures and the possibilities to visualize a range of dynamics with different triggers (temperature, pH) and the dynamics of protein–DNA nanostructure interactions are quite evident [211, 212]. Other emerging techniques such as liquid phase single-particle imaging with electrons [213–215] may help understand the assembly of higher order DNA objects in solution at electron microscopy resolution; such studies are now carried out with AFM [216]. In addition, upcoming nanoscale imaging techniques such as low-energy electron diffraction [217], 3D super-resolved fluorescence imaging [183, 218], static and time resolved cryo-EM [219, 220], coherent diffusive single-particle imaging [205, 221, 222] and incoherent diffusive imaging (quantum imaging) with XFEL utilizing the fluorescence from the phosphorous (P) in nucleic acids [223, 224] would enable unique experiments with DNA-based architectures and bring new understanding of DNA nanostructures and machines. Empirical mapping of the conformational energy landscape of DNA nanostructures has concomitantly become feasible through single-molecule structural studies. Ultrafast imaging techniques [204, 210, 223–227] which utilize ultra-short (femtosecond and attosecond) pulses would likely enable us to understand the charge transfer and other ultra-fast processes in DNA nanostructures and DNA-based photonic/plasmonic constructs at the elementary timescales of atomic and electronic motions.

Conventional spectroscopic, crystallographic, and scattering techniques investigating ensembles would still be beneficial and relevant to investigate DNA nanostructures. Small angle x-ray scattering (SAXS) has been used to analyze an ensemble of DNA nanostructures in solution [228]. For example, synchrotron or home-source based SAXS has been used to analyze interhelical spacing in sheet-, brick-, and cylinder-shaped DNA origami constructs as a function of temperature and Mg2+ ion concentration [228] and to study conformational changes and flexibility in DNA devices [229]. Time-resolved fluorescence studies have also been carried out to study energy transfer between strategically positioned dyes (akin to a photonic wire) on a DNA origami platform [230]. The original goal of designing 3D DNA crystals to accommodate guest molecules is still relevant and new techniques like room temperature serial femtosecond crystallography (SFX), which simultaneously opens up ultrafast time resolved studies [197, 231] and cryogenic micro-electron diffraction (micro-ED) [232] have relaxed the size limits of crystals. With such advanced techniques, certain crystal imperfections might even lead to better resolution reconstruction [206]. Crystals with specific translational disorder produce continuous diffraction—the incoherent sum of the elastic scattering signal of each three dimensionally aligned single molecule—apart from Bragg spots (the coherent sum). In a recent SFX experiment, using only continuous diffraction signal, the single-molecule structure was reconstructed by applying coherent diffractive imaging technique’s iterative phasing leading to a resolution beyond Bragg spots [206]. Certain flexibility and disorder of DNA crystalline scaffolds could be tolerated and might in fact be beneficial in the SFX method [199, 233]. Perhaps, engineering the translational symmetry of molecules to produce only continuous diffraction and getting rid of Bragg spots in a suitably sized DNA nanocrystal/scaffold (single to a few unit cells) might open up a new avenue of DNA-assisted single particle imaging with XFEL, since multiple copies of the molecules in the same orientation with tolerable translational disorder would provide amplified single-particle signal [233]. Attempts to crystallize DNA origami structures (∼4.8 MDa) have been made and a DNA origami tensile stress triangle was recently assembled into a 3D array [74], but solving the crystal structure of such origami lattices has been challenging due to the inherent flexibility and heterogeneity of the cohering units [47]. Highly rigid, non-heterogeneous and defect-free 3D DNA nanoscale origami shapes at high resolution (atomic/near-atomic) need to be realized yet. Given the pace at which the field is progressing, with the advancements in computational tools for design and stability analysis, and synthesis methods, this seems feasible. Here, one needs to note that the increasing understanding of biological machines at high resolutions indicates that (conformational) heterogeneity in biology is quiet common—and it is not completely an undesirable quality in artificial machines, although perfection is preferred.

Assembly of nanostructures based on DNA have been thoroughly studied in recent times for the kinetic and thermodynamic constraints [234]. For DNA origami, various strategies have been used to construct a variety of shapes, and in addition, the folding pathways of origami have been optimized for better yields [235, 236]. Advances in design of such structures also allow more control over their growth and assembly [237]. The size of DNA origami nanostructures is limited by the length of the scaffold strand, with a majority of
DNA origami structures today constructed using the ~7 kb M13 single stranded scaffold [52]. This limitation is now addressed by creating scaffolds ranging in length from ~700 to ~50,000 nucleotides using different strategies (figure 13) [60, 238–242]. Thus one can choose from a library of scaffold strands to build nanostructures of desired sizes (figure 12) [243]. Earlier construction of DNA nanostructures involved a thermal annealing process. While many assemblies still have this as a requirement, recent successes in isothermal assembly has made the creation of DNA nanostructures feasible for protein–DNA hybrids since proteins or peptides do not survive the high temperatures during the annealing process [244–249]. Enzymatic production of DNA strands is another feature that aids the large scale production of DNA-based nanostructures [250], as well as using a limited set of reusable sequences to fold a desired origami structure [251]. Moreover, the cost of producing such DNA structures can be reduced by using chip-synthesized oligonucleotides [252–254]. In addition, intact bacteriophages have been used to assemble DNA origami structures [255], and very recently, biotechnological mass production of DNA origami has also been demonstrated—heralding the beginning of industrial scale DNA nanotechnology [256]. One other requirement for most DNA nanostructures is their purification after assembly [257]. Many different purification strategies have been developed for this purpose, including rate-zonal centrifugation [258, 259], PEG-based separation [123, 259, 260], size exclusion columns [259, 261], spin filters [262], magnetic bead capture [259], liquid chromatography-based techniques [263] free-flow electrophoresis [264] and the routinely used method based on agarose gel electrophoresis extraction [259, 265].

The versatility of DNA based construction has resulted in a wide variety of heterogeneous complexes. Aided by advances in chemical synthesis of DNA strands with desired functional groups, almost any guest can be attached to an underlying motif or an origami structure. Click-based functionalization [266, 267] and recognition of DNA by functional ligands and triplexes [268, 269], for example, are other routes to functionalizing designer DNA architectures. Moreover, recent efforts have demonstrated the use of xeno nucleic acids [270] in DNA nanostructures, and could be expanded to include modified nucleotides [271] and non-traditional base pairs [272]. Moreover, incorporation of unnatural base pairs has been shown to enhance the stability of DNA nanostructures [273] and can thus lead to construction of more robust architectures. It is worth noting that RNA nanostructures and RNA-based origami are also emerging following the footsteps of DNA nanotechnology [274, 275]. Simplicity in designing nanostructures and positioning molecules at spatially addressable locations in the case of nucleic acid nanostructures is the key advantage over other biomolecular constructs. With increasing understanding of the design rules [8], designer protein materials have also started to play significant roles in the development of bionanomaterials and biophysical applications [276, 277]. We envisage a high degree of synergy between protein-based designer materials and artificial nucleic acid nanostructures in the future leading to much sophisticated mimics of bio-machineries with novel functions.

Other areas of applications we did not cover in this review include drug delivery and biosensing. DNA nanocarriers show enhanced stability in biological environments [278, 279] and have been used to encapsulate cargos such as doxorubicin [280], CpG motifs [281], siRNA [282], proteins
In the biosensing aspect, DNA based biosensors have been used to detect both protein and nucleic acid targets. The amalgamation of DNA nanotechnology with lithography has unique potential in the area of sensors and molecular electronics. Dynamic DNA devices and self-replicating nanomachines are also another active area of research. Dynamic DNA devices and self-replicating nanomachines are also another active area of research. DNA nanotechnology with lithography has unique potential in the area of sensors and molecular electronics.

Acknowledgments

PLX thanks advisors H N Chapman and N C Seeman for inducting into DNA nanotechnology and for stimulating discussions and acknowledges the support of the International Max-Planck Research School for Ultrafast Imaging and Structural Dynamics (IMPRS-UFAST) of the Max-Planck Society, graduate student training program of the Linac Coherent Light Source (LCLS, Stanford), the European Research Council—Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy (AXSIS), the Human Frontiers Science Program, and the Helmholtz Association.

ORCID IDs

P L Xavier https://orcid.org/0000-0001-5132-2999
Arun Richard Chandrasekaran https://orcid.org/0000-0001-6757-5464

References

[1] Seeman N C 2016 Structural DNA Nanotechnology (Cambridge: Cambridge University Press)
[2] Jones M R, Seeman N C and Mirkin C A 2015 Programmable materials and the nature of the DNA bond Science 347 1260901
[3] Seeman N C 2003 DNA in a material world Nature 421 427–31
[4] Feynman R P 1960 There’s plenty of room at the bottom Eng. Sci. 23 22–36
[5] Heinrich A J, Lutz C P, Gupta J A and Eigler D M 2002 Molecule cascades Science 298 1381–7
[6] Eigler D M and Schweizer E K 1990 Positioning single atoms with a scanning tunnelling microscope Nature 344 524–6
[7] Seeman N C and Belcher A M 2002 Emulating biology: building nanostructures from the bottom up Proc. Natl. Acad. Sci. USA 99 6451–5
[8] Huang P S, Boyken S E and Baker D 2016 The coming of age of de novo protein design Nature 537 320–7
[9] Bale J B et al 2016 Accurate design of megadalton-scale two-componenticosahedral protein complexes Science 353 389–94
[10] Yatsunyk L A, Mendoza O and Mergrny J L 2014 ‘Nano-oddities’: unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices Acc. Chem. Res. 47 1836–44
[11] Meng H M, Liu H, Kuai H, Peng R, Mo L and Zhang X B 2016 Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy Chem. Soc. Rev. 45 2583–602
[12] Wang F, Lu C H and Willner I 2014 From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures Chem. Rev. 114 2881–941
[13] Seeman N C 1982 Nucleic-acid junctions and lattices J. Theor. Biol. 99 237–47
[14] Holliday R 1964 A mechanism for gene conversion in fungi Genet. Res. 5 282–304
[15] Kallenbach N R, Ma R I and Seeman N C 1983 An Immobile nucleic acid junction constructed from oligonucleotides Nature 305 829–31
[16] Wang Y, Mueller J E, Kemper B and Seeman N C 1991 The assembly and characterization of 5-arm and 6-arm DNA junctions Biochemistry 30 5667–74
[17] Wang X and Seeman N C 2007 The assembly and characterization of 8-arm and 12-arm DNA branched junctions J. Am. Chem. Soc. 129 8169–76
[18] Chen J and Seeman N C 1991 The synthesis from DNA of a molecule with the connectivity of a cube Nature 350 631–3
[19] Zhang Y and Seeman N C 1994 The construction of a DNA truncated octahedron J. Am. Chem. Soc. 116 1661–9
[20] Shih W M, Quispe J D and Joyce G F 2004 A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron Nature 427 618–21
[21] Bhattacharya D, Mehta S, Krishnan R, Indi S S, Basu A and Krishnan Y 2009 Icosahedral DNA nanocapsules by modular assembly Angew. Chem., Int. Ed. 48 4134–7
[22] Goodman R P, Schaup I A, Tardin C F, Erben C M, Berry R M, Schmidt C F and Turcherfield A J 2005 Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication Science 310 1661–5
[23] He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W and Mao C 2008 Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra Nature 452 198–201
[24] Zhang C, Ko S H, Su M, Leng Y, Ribbe A E, Jiang W and Mao C 2009 Symmetry controls the face geometry of DNA polyhedra J. Am. Chem. Soc. 131 1413–5
[25] Zhang C, Su M, He Y, Zhao X, Fang P, Ribbe A E, Jiang W and Mao C 2008 Conformational flexibility facilitates self-assembly of complex DNA nanostructures Proc. Natl. Acad. Sci. USA 105 10665–9
[26] Aldaye F A and Sleiman H F 2007 Modular access to structurally switchable 3D discrete DNA assemblies J. Am. Chem. Soc. 129 13376–7
[27] Chandrasekaran A R and Levchenko O 2016 DNA nanocages Chem. Mater. 28 5569–81
[28] Seeman N C 1985 Macromolecular design, nucleic acid junctions and crystal formation J. Biomol. Struct. Dyn. 3 11–34
Nanotechnology 29 (2018) 062001
P L Xavier and A R Chandrasekaran

[29] Fu T J and Seeman N C 1993 DNA double-crossover molecules Biochemistry, 32 3211–20

[30] LaBean T, Yan H, Koptaesch J, Liu F, Winfree E, Reif J H and Seeman N C 2000 The construction of DNA triple-crossover molecules J. Am. Chem. Soc. 122 1848–60

[31] Shen Z, Yan H, Wang T and Seeman N C 2004 Parametric crossover DNA: a generalized holliday structure with applications in nanotechnology J. Am. Chem. Soc. 126 1666–74

[32] Ohayon Y P, Sha R, Flint O, Chandrasekaran A R, Abdallah H O, Wang T, Wang X, Zhang X and Seeman N C 2015 Topological linkage of DNA tiles bonded by parametric cohesion ACS Nano 9 10296–303

[33] Forsyth P et al 2015 Covalent linkage of one-dimensional DNA arrays bonded by parametric cohesion ACS Nano 9 10304–12

[34] Seeman N C et al 1998 New motifs in DNA nanotechnology Nanotechnology 9 257

[35] Sharma J, Chhabra R, Liu Y, Ke Y and Yan H 2006 DNA-templated self-assembly of two-dimensional and periodic gold nanoparticle arrays Angew. Chem., Int. Ed. 45 730–5

[36] Park S H, Yin P, Liu Y, Reif J H, LaBean T H and Yan H 2005 Programmable DNA self-assembly for nanoscale organization of ligands and proteins Nano Lett. 5 729–33

[37] Chandrasekaran A R and Zhuo R 2016 A ‘tile’tale: Hierarchical self-assembly of DNA lattices Appl. Mater. Today 2 7–16

[38] Chandrasekaran A R 2016 Programmable DNA scaffolds for spatially-ordered protein assembly Nanoscale 8 4436–46

[39] Zheng J, Birktoft J J, Chen Y, Wang T, Sha R, Constantinoiu P E, Ginell S L, Mao C and Seeman N C 2009 From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal Nature 461 74–7

[40] Liu D, Wang M, Deng Z, Walulut R and Mao C 2004 Tensegrity: construction of rigid DNA triangles with flexible four-arm dna junctions J. Am. Chem. Soc. 126 2324–5

[41] Nguyen N, Birktoft J J, Sha R, Wang T, Zheng J, Constantinoiu P E, Ginell S L, Chen Y, Mao C and Seeman N C 2012 The absence of tertiary interactions in a self-assembled DNA crystal structure J. Mol. Recognit. 25 234–7

[42] Wang T, Sha R, Birktoft J, Zheng J, Mao C and Seeman N C 2010 A DNA crystal designed to contain two molecules per asymmetric unit J. Am. Chem. Soc. 132 15471–3

[43] Sha R, Birktoft J J, Nguyen N, Chandrasekaran A R, Zheng J, Zhao X, Mao C and Seeman N C 2013 Self-assembled DNA crystals: the impact on resolution of 5'-phosphates and the DNA source Nano Lett. 13 793–7

[44] Ohayon Y P, Chandrasekaran A R, Hernandez C, Birktoft J J, Sha R, Ginell S, Lukeman P, Mao C, Chaikin P M and Seeman N C 2015 Programmable crystal contacts used to improve the resolution of self-assembled 3D DNA crystals J. Biomol. Struct. Dyn. 33 (Suppl. 1) 50–1

[45] Zhao J, Chandrasekaran A R, Li Q, Li X, Sha R, Seeman N C and Mao C 2015 Post-assembly stabilization of rationally designed DNA crystals Angew. Chem., Int. Ed. 54 9936–9

[46] Abdallah H O, Ohayon Y P, Chandrasekaran A R, Sha R, Fox K R, Brown T, Rusling D A, Mao C and Seeman N C 2016 Stabilisation of self-assembled DNA crystals by tripod-directed photo-cross-linking Chem. Commun. 52 8014–7

[47] Stahl E, Praetorius F, de Oliveira Mann C C, Hopfner K P and Dietz H 2016 Impact of heterogeneity and lattice bond strength on DNA triangle crystal growth ACS Nano 10 9156–64

[48] Rusling D A, Chandrasekaran A R, Ohayon Y P, Brown T, Fox K R, Sha R, Mao C and Seeman N C 2014 Functionalizing designer DNA crystals with a triple-helical veneer Angew. Chem., Int. Ed. 53 3979–82

[49] Wang X, Sha R, Kristiansen M, Hernandez C, Hao Y, Mao C, Canary J W and Seeman N C 2017 An organic semiconductor organized into 3D DNA arrays by ‘bottom-up’ rational design Angew. Chem., Int. Ed. 56 6445–8

[50] Hao Y, Kristiansen M, Sha R, Birktoft J J, Hernandez C, Mao C and Seeman N C 2017 A device that operates within a self-assembled 3D DNA crystal Nat. Chem. 9 824–7

[51] Hernandez C, Birktoft J J, Ohayon Y P, Chandrasekaran A R, Abdallah H, Sha R, Stojanoff V, Mao C and Seeman N C 2017 Self-assembly of 3D DNA crystals containing a torsionally stressed component Cell Chem. Biol. 24 1401–6

[52] Rothemund P W 2006 Folding DNA to create nanoscale shapes and patterns Nature 440 297–302

[53] Douglas S M, Dietz H, Lied I T, Högborg B, Graf F and Shih W M 2009 Self-assembly of DNA into nanoscale three-dimensional shapes Nature 459 414–8

[54] Dietz H, Douglas S M and Shih W M 2009 Folding DNA into twisted and curved nanoscale shapes Science 325 725–30

[55] Andersen E S et al 2009 Self-assembly of a nanoscale DNA box with a controllable lid Nature 459 73–6

[56] Han D, Pal S, Nangreave J, Deng Z, Liu Y and Yan H 2011 DNA origami with complex curvatures in three-dimensional space Science 332 342–6

[57] Zhang F, Jiang S, Wu S, Li Y, Mao C, Liu Y and Yan H 2015 Complex wireframe DNA origami nanostructures with multi-arm junction vertices Nat. Nanotechnol. 10 779–84

[58] Benson E, Mohammed A, Gardell J, Masich S, Creizler E, Orponen P and Högborg B 2015 DNA rendering of polyhedral meshes at the nanoscale Nature 523 441–4

[59] Liu W, Zhong H, Wang R and Seeman N C 2011 Crystalline two-dimensional DNA-origami arrays Angew. Chem., Int. Ed. Engl. 50 264–7

[60] Inamura R, Ke Y, Jungmann R, Schlichthaeuser T, Woehrstein J B and Yin P 2014 Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT Science 344 65–9

[61] Hong F, Zhang F, Liu Y and Yan H 2017 DNA origami: scaffolds for creating higher order structures Chem. Rev. 117 12584–640

[62] Wei B, Dai M and Yin P 2012 Complex shapes self-assembled from single-stranded DNA tiles Nature 485 623–6

[63] Ke Y, Ong L L, Shih W M and Yin P 2012 Three-dimensional structures self-assembled from DNA bricks Science 338 1177–83

[64] Yin P, Hariardi R F, Sahu S, Choi H M, Park S H, Labean T H and Reif J H 2008 Programming DNA tube circumferences Science 321 824–6

[65] Zimmerman S C and Corbin P S 2000 Heteroaromatic modules for self-assembly using multiple hydrogen bonds Molecular Self-Assembly Organic Versus Inorganic Approaches (Structure and Bonding vol 96) ed M Fuiita (Heidelberg: Springer) pp 63–94

[66] Claessens C G and Stoddart J F 1997 π–π interactions in self-assembly J. Phys. Org. Chem. 10 254–72

[67] Klosterman J K, Yamauchi Y and Fujita M 2009 Engineering discrete stacks of aromatic molecules Chem. Soc. Rev. 38 1714–25

[68] Bowden N, Terfort A, Carbeck J and Whitesides G M 1997 Self-assembly of mesoscale objects into ordered two-dimensional arrays Science 276 233–5

[69] Zhao K and Mason T G 2007 Directing colloidal self-assembly through roughness-controlled depletion attractions Phys. Rev. Lett. 99 268301

[70] Nakata M, Zanchetta G, Chapman B D, Jones C D, Cross J O, Pindak R, Bellini T and Clark N A 2007 End-to-end
stacking and liquid crystal condensation of 6- to 20-base pair DNA duplexes Science 318 1276–9

[71] Wang R, Kuzuya A, Liu W and Seeman N C 2010 Blunt-ended DNA stacking interactions in a 3-helix motif Chem. Commun. 46 4905–7

[72] Woo S and Rothemund P W K 2011 Programmable molecular recognition based on the geometry of DNA nanostructures Nat. Chem. 3 620–7

[73] Gerling T, Wagenaubauer K F, Neuner A M and Dietz H 2015 Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components Science 347 1446–52

[74] Zhang T, Hartl C, Fischer S, Frank K, Nickels P, Heuer-Jungemann A, Nickel B and Liedl T 2017 3D DNA origami crystals arXiv:1706.06965 [cond-mat.soft]

[75] Aghchet Rafat A, Pirzer T, Scheible M B, Kostina A and Simmel F C 2014 Surface-assisted large-scale ordering of DNA origami tiles Angew. Chem., Int. Ed. 53 7665–8

[76] Pastré D, Piétrement O, Fusil S, Landousy F, Jeussent J, David M O, Hamon L, Le Cam E and Zozime A 2003 Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study Biophys. J. 85 2507–18

[77] Suzuki Y, Endo M and Sugiyama H 2015 Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures Nat. Commun. 6 8052

[78] Mou Y, Yu J Y, Wannier T M, Guo C L and Mayo S L 2015 Computational design of co-assembling protein–DNA nanowires Nature 525 230–3

[79] Praetorius F and Dietz H 2017 Self-assembly of genetically encoded DNA–protein hybrid nanoaspects shapes Science 355 eaam5488

[80] Elbaz J, Yin P and Voigt C A 2016 Genetic encoding of DNA nanostructures and their self-assembly in living bacteria Nat. Commun. 7 11179

[81] Seeman N C 1985 Interactive design and manipulation of macro-molecular architecture utilizing nucleic acid junctions J. Mol. Graph. 3 34–9

[82] Seeman N C 1990 De novo design of sequences for nucleic acid structural engineering J. Biomol. Struct. Dyn. 8 573–81

[83] Wei B, Wang Z and Mi Y 2007 Uniquimer: software of de novo DNA sequence generation for DNA self-assembly-an introduction and the related applications in DNA self-assembly J. Comput. Theor. Nanosci. 4 133–46

[84] Birac J J, Sherman W B, Kopatsch J, Constantinou P E and Seeman N C 2006 Architecture with GIDEON, a program for design in structural DNA nanotechnology J. Mol. Graph. Model. 25 470–80

[85] Williams S, Lund K, Lin C, Wonka P, Lindsay S and Yan H 2008 Tiamat: a three-dimensional editing tool for complex DNA structures The 14th Int. Meeting on DNA Computing Proc. ed A Goel et al (Czech Republic: Silesian University in Opava) pp 112–21

[86] Zhu J, Wei B, Yuan Y and Mi Y 2009 UNIQUMER 3D, a software system for structural DNA nanotechnology design, analysis and evaluation Nucl. Acids Res. 37 2164–75

[87] Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M and Shih W M 2009 Rapid prototyping of 3D DNA-origami shapes with cdDNAo Nucle. Acids Res. 37 5001–6

[88] Veneriano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W and Bathe M 2016 Designer nanascale DNA assemblies programmed from the top down Science 352 1534

[89] Castro C E, Kilchherr F, Kim D N, Shiao E L, Wauer T, Wortmann P, Bathe M and Dietz H 2011 A primer to scrafolded DNA origami Nat. Methods 8 221–9

[90] Maffeo C, Yoo J and Aksimentiev A 2016 De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation Nucl. Acids Res. 44 3013–9

[91] Snodin B E K, Romano F, Rovigatti L, Ouldridge T E, Louis A A and Doye J P F 2016 Direct simulation of the self-assembly of a small DNA origami ACS Nano 10 1724–37

[92] Kim D N, Kilchherr F, Dietz H and Bathe M 2012 Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures Nucl. Acids Res. 40 2862–8

[93] Pan K, Kim D N, Zhang F, Adendorff M R, Yan H and Bathe M 2014 Lattice-free prediction of three-dimensional structure of programmed DNA assemblies Nat. Commun. 5 5578

[94] Pan K, Bricker W P, Ratanalert S and Bathe M 2017 Structure and conformational dynamics of scaffolded DNA origami nanoparticles Nucl. Acids Res. 45 6284–98

[95] Chandrasekaran A R, Anderson N, Kizer M, Halvorsen K and Wang X 2016 Beyond the fold: emerging biological applications of DNA origami ChemBioChem 17 1081–9

[96] Linko V, Ora A and Kostiainen M A 2015 DNA nanonanotropes as smart drug-delivery vehicles and molecular devices Trends Biotechnol. 33 586–94

[97] Chen Y J, Groves B, Muscat R A and Seelig G 2015 DNA nanotechnology from the test tube to the cell Nat. Nanotechnol. 10 748–60

[98] Pei H, Zuo X, Zhu D, Huang Q and Fan C 2014 Functional DNA nanostuctures for theranostic applications Acc. Chem. Res. 47 550–9

[99] Oikhom H A and Kjems J 2017 The utility of DNA nanostructures for drug delivery in vivo Expert Opin. Drug Deliv. 14 137–9

[100] Chandrasekaran A R 2016 DNA origami and biotechnology applications: a perspective J. Chem. Technol. Biotechnol. 91 843–6

[101] Chandrasekaran A R 2016 Designer DNA architectures: applications in nanomedicine Nanobiomedicine 3 6

[102] Angell C, Xie S, Zhang L and Chen Y 2016 DNA nanotechnology for precise control over drug delivery and gene therapy Small 12 1117–32

[103] Chao J, Zhu D, Zhang Y, Wang L and Fan C 2016 DNA nanotechnology-enabled biosensors Biosens. Bioelectron. 76 68–79

[104] Krishnan Y and Bathe M 2012 Designer nucleic acids to probe and program the cell Trends Cell Biol. 22 624–33

[105] Chandrasekaran A R, Wady H and Subramanian H K K 2016 Nucleic acid nanostructures for chemical and biological sensing Small 12 2689–700

[106] Chandrasekaran A R 2017 DNA nanobiosensors: an outlook on signal readout strategies J. Nanomater. 2017 2820619

[107] Lee J B, Camplongo M J, Kahn J S, Roh Y H, Hartman M R and Luo D 2010 DNA-based nanostructures for molecular sensing Nanoscale 2 188–97

[108] Pei H, Zuo X, Pan D, Shi J, Huang Q and Fan C 2013 Scaledfolded biosensors with designed DNA nanostructures NPG Asia Mater. 5 e51

[109] Teller C and Willner I 2010 Organizing protein–DNA hybrids as nanostructures with programmed functionalities Trends Biotechnol. 28 619–28

[110] Wilner O and Willner I 2012 Functionalized DNA Nanotechnol. Chem. Rev. 112 2326–56

[111] Saccù B and Niemeyer C M 2011 Functionalization of DNA nanostructures with proteins Chem. Soc. Rev. 40 5910–21

[112] Funke J J and Dietz H 2016 Placing molecules with Bohr radius resolution using DNA origami Nat. Nanotechnol. 11 47–52

[113] Kornberg R D 1974 Chromatin structure: a repeating unit of histones and DNA Science 184 868–71
[114] Funke J J, Ketterer P, Lieleg C, Korber P and Dietz H 2016 Exploring nucleosome unwrapping using DNA origami Nano Lett. 16 7891–8

[115] Funke J J, Ketterer P, Lieleg C, Schunter S, Korber P and Dietz H 2016 Uncovering the forces between nucleosomes organized by DNA origami. J. Am. Chem. Soc. 138 3248–9

[116] Le J V, Luo Y, Darcy M A, Lucas C R, Goodwin M F, Poirier M G and Castro C E 2016 Probing nucleosome stability with a DNA origami nanocaliper ACS Nano 10 7073–84

[117] Fernandez J M and Li H 2004 Force-clamp spectroscopy monitors the folding trajectory of a single protein Science 303 1674–8

[118] Rief M, Gantel M, Oesterhell F, Fernandez J M and Gaub H E 1997 Reversible unfolding of individual titin immunoglobulin domains by AFM Science 276 1109–12

[119] Smith S B, Cui Y and Bustamante C 1996 Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules Science 271 795–9

[120] Pfitzner E, Wachau C, Kilchherr F, Pelz B, Shih W M, Rief M and Dietz H 2013 Rigid DNA beams for high-resolution single-molecule mechanics Angew. Chem., Int. Ed. 52 7766–71

[121] Nickels P C, Wünsch B, Holzmeister P, Bae W, Kneer L M, Grohmann D, Tinnefeld P and Liedl T 2016 Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp Science 354 305–7

[122] Kilchherr F, Wachau C, Pelz B, Rief M, Zacharias M and Dietz H 2016 Single-molecule dissection of stacking forces in DNA Science 353 aaf5508

[123] Douglas S M, Chou J J and Shih W M 2007 DNA-nanotube-induced alignment of membrane proteins for NMR structure determination Proc. Natl. Acad. Sci. USA 104 6644–8

[124] Bellot G, McClintock M A, Chou J J and Shih W M 2013 DNA nanotubes for NMR structure determination of membrane proteins Nat. Protocols 8 755–70

[125] Berardi M J, Shih W M, Harrison S C and Chou J J 2011 Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching Nature 476 109–13

[126] Malo J, Mitchell J C, Véniens-Bryan C, Harris J R, Wille H, Sherratt D J and Turberfield A J 2005 Engineering a 2D protein–DNA crystal Angew. Chem., Int. Ed. 44 3057–61

[127] Selmi D N, Adamson R J, Attrill H, Goddard A D, Gilbert R J C, Watts A and Turberfield A J 2011 DNA-templated protein arrays for single-molecule imaging Nano Lett. 11 657–60

[128] Fernandez-Leiro R and Scheres S H W 2016 Unravelling biological macromolecules with cryo-electron microscopy Nature 537 339–46

[129] Glaeser R M 2016 How good can cryo-EM become? Nat. Methods 13 28–32

[130] Bai X C, McMullan G and Scheres S H 2015 How cryo-EM is revolutionizing structural biology Trends Biochem. Sci. 40 49–57

[131] Bai X C, Martin T G, Scheres S H W and Dietz H 2012 Cryo-EM structure of a 3D DNA-origami object Proc. Natl. Acad. Sci. USA 109 20012–7

[132] Martin T G, Bharat T A M, Joerger A C, Bai X C, Praetorius F, Fersht A R, Dietz H and Scheres S H W 2016 Design of a molecular support for cryo-EM structure determination Proc. Natl. Acad. Sci. USA 113 E7456–63

[133] Mirkin C A, Leticinger R L, Mucic R C and Storhoff J J 1996 A DNA-based method for rationally assembling nanoparticles into macroscopic materials Nature 382 607–9

[134] Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P and Schultz P G 1996 Organization of nanocrystal molecules using DNA Nature 382 609–11

[135] Schreiber R, Santiago I, Ardavan A and Turberfield A J 2016 Ordering gold nanoparticles with DNA origami nanoflowers ACS Nano 10 7503–6

[136] Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N and Bokor J 2010 Gold nanoparticle self-similar chain structure using DNA origami J. Am. Chem. Soc. 132 3248–9

[137] O’Brien M N, Jones M R, Lee B and Mirkin C A 2015 Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization Nat. Mater. 14 833–9

[138] Schreiber R, Do J, Roller E-M, Zhang T, Schuller V J, Nickels P C, Feldmann J and Liedl T 2014 Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds Nat. Nanotechnol. 9 74–8

[139] Wang Z G, Song C and Ding B 2013 Functional DNA nanostructures for photonic and biomedical applications Small 9 2210–22

[140] Rangnekar A and LaBean T H 2014 Building DNA nanostructures for molecular computation, templated assembly, and biological applications Acc. Chem. Res. 47 1778–88

[141] Pinheiro A V, Han D, Shih W M and Yan H 2011 Challenges and opportunities for structural DNA nanotechnology Nat. Nanotechnol. 6 763–72

[142] Kuzyk A, Schreiber R, Fan Z Y, Pardatscher G, Roller E M, Hogele A, Simmel F C, Govorov A O and Liedl T 2012 DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response Nature 483 311–4

[143] Shen X, Song C, Wang J, Shi D, Wang Z, Liu N and Ding B 2012 Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures J. Am. Chem. Soc. 134 146–9

[144] Shen X, Asenjo-Garcia A, Liu Q, Jiang Q, Garcia de Abajo F J, Liu N and Ding B 2013 Three-dimensional plasmonic chiral tetramers assembled by DNA origami Nano Lett. 13 2128–33

[145] Kuzyk A, Schreiber R, Zhang H, Govorov A O, Liedl T and Liu N 2014 Reconfigurable 3D plasmonic metamolecules Nat. Mater. 13 862–6

[146] Zhou C, Duan X and Liu N 2015 A plasmonic nanorod that walks on DNA origami Nat. Commun. 6 8102

[147] Urban M J, Zhou C, Duan X and Liu N 2015 Optically resolving the dynamic walking of a plasmonic walker couple Nano Lett. 15 8392–6

[148] Tian Y, Zhang Y, Wang T, Xin H L, Li H and Gang O 2016 Lattice engineering through nanoparticle–DNA frameworks Nat. Mater. 15 654–61

[149] Chandrasekaran A R 2016 DNA-nanoparticle tinkerbots ChemBioChem 17 1090–2

[150] Tian Y, Wang T, Liu W, Xin H L, Li H, Ke Y, Shih W M and Gang O 2015 Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames Nat. Nanotechnol. 10 637–44

[151] Urban M J, Dutta P K, Wang P, Duan X, Shen X, Ding B, Ke Y and Liu N 2016 Plasmonic toroidal metamolecules assembled by DNA origami J. Am. Chem. Soc. 138 5495–8

[152] Chen Z, Lan X, Chiu Y C, Lu X, Ni W H, Gao H W and Wang Q B 2015 Strong chiroptical activities in gold nanorod dimers assembled using DNA origami templates ACS Photon. 2 392–7

[153] Lan X, Chen Z, Dai G, Lu X, Ni W and Wang Q 2013 Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality J. Am. Chem. Soc. 135 11441–4

[154] Lan X, Lu X, Shen C, Ke Y, Ni W and Wang Q 2015 Au nanorod helical superstructures with designed chirality J. Am. Chem. Soc. 137 457–62
[155] Thacker V V, Herrmann L O, Sigle D O, Zhong T, Liedt T, Baumber J J and Keyser U F 2014 DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering Nat. Commun. 5 3448

[156] Liu B et al 2017 A gold-nanoparticle-based SERS reporter that rolls on DNA origami templates ChemNanoMat 3 760–3

[157] Heck C, Prinz J, Dathe A, Merk V, Stranik O, Fritzschke W, Kneipp J and Bald I 2017 Gold nanolenses self-assembled by DNA origami ACS Photon. 4 1123–30

[158] Zhan P et al 2017 Reconfigurable three-dimensional gold nanorod plasmonic nanostructures organized on DNA origami tripod ACS Nano 11 1172–9

[159] Zhou C, Duax X and Liu N 2017 DNA-nanotechnology-enabled chiral plasmonics from static to dynamic Acc. Chem. Res. 50 2906–14

[160] Copp S M, Schultz D E, Swasey S and Gwinn E G 2015 Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures ACS Nano 9 2303–10

[161] Ko S H, Du K and Liddle A 2013 Quantum-dot fluorescence lifetime engineering with DNA origami constructs Angew. Chem. Int. Ed. 52 1193–7

[162] Bui H, Onodera C, Kidwell C, Tan Y, Graugnard E, Kuang W, Lee J, Knowlton W B, Yurke B and Hughes W L 2010 Programmable periodicity of quantum dot arrays with DNA origami nanotubes Nano Lett. 10 3367–72

[163] Steinhauer C, Jungmann R, Sobey T L, Simmel F C and Tinnefeld P 2009 DNA origami as a nanoscopic ruler for super-resolution microscopy Angew. Chem., Int. Ed. 48 8870–3

[164] Lin C, Liu Y and Yan H 2007 Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing Nano Lett. 7 507–12

[165] Modi S, Swetha M G, Goswami D, Gupta G D, Mayor S and Krishnan Y 2009 A DNA nanomachine that maps spatial and temporal pH changes inside living cells Nat. Nanotechnol. 4 325–30

[166] Modi S, Nizak C, Surana S, Halder S and Krishnan Y 2013 Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell Nat. Nanotechnol. 8 459–67

[167] Cannon B L, Kellis D L, Davis P H, Lee J, Kuang W, Hughes W L, Graugnard E, Yurke B and Knowlton W B 2015 Excitonic ANd Logic gates on DNA brick nanobreadboards ACS Photon. 2 398–404

[168] Albinsson B, Hannestad J K and Börjesson K 2012 Functionalized DNA nanostructures for light harvesting and charge separation Coord. Chem. Rev. 256 2399–413

[169] Dutta P K, Varghese R, Nangreave J, Lin S, Yan H and Liu Y 2011 DNA-directed artificial light-harvesting antenna J. Am. Chem. Soc. 133 11985–93

[170] Hemmig E A, Creature C, Wünsch B, Hecker L, Mair P, Parker M A, Emmott S, Tinnefeld P, Keyser U F and Chin A W 2016 programming light-harvesting efficiency using DNA origami Nano Lett. 16 2369–74

[171] Acuna G, Möller F, Holzmeister P, Beater S, Lalkens B and Tinnefeld P 2012 Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas Science 338 506–10

[172] Lin C, Jungmann R, Leifer A M, Li C, Lener D, Church G M, Shih W M and Yin P 2012 Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA Nat. Chem. 4 832–9

[173] Woehrstein J B, Strauss M T, Ong L L, Wei B, Zhang D Y, Jungmann R and Yin P 2017 Sub-100-nm metallofluorophores with digitally tunable optical properties self-assembled from DNA Sci. Adv. 3 e1602128

[174] Sahl S J, Hell S W and Jacobs S 2017 Fluorescence nanoscopy in cell biology Nat. Rev. Mol. Cell Biol. 18 685–701

[175] Hell S W 2007 Far-field optical nanoscopy Science 316 1153–8

[176] Sharonov A and Hochstrasser R M 2006 Wide-field subdiffraction imaging by accumulated binding of diffusing probes Proc. Natl. Acad. Sci. USA 103 18911–6

[177] Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P and Simmel F C 2010 Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami Nano Lett. 10 4756–61

[178] Derr N D, Goodman B S, Jungmann R, Leschziner A E, Shih W M and Reck-Peterson S L 2012 Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold Science 338 662–5

[179] Jungmann R, Avendano M S, Dai M, Woehrstein J B, Agasti S S, Feiger Z, Rodal A and Yin P 2016 Quantitative super-resolution imaging with qPAINT Nat. Methods 13 439–42

[180] Schmitzbaeuer J, Strauss M T, Schlichtbaeuer T, Schueder F and Jungmann R 2017 Super-resolution microscopy with DNA-PAINT Nat. Protocols 12 1198–228

[181] Jungmann R, Avendalio M S, Woehrstein J B, Dai M, Shih W M and Yin P 2014 Multiplexed 3D cellular super-resolution imaging with DNA-paint and exchange-paint Nat. Methods 11 313–8

[182] Dai M, Jungmann R and Yin P 2016 Optical imaging of individual biomolecules in densely packed clusters Nat. Nanotechnol. 11 798–807

[183] Salas D, Le Gall A, Fiche J-B, Valeri A, Ke Y, Bron P, Bellot G and Nollmann M 2017 Angular reconstruction-based 3D reconstructions of nanomolecular structures from superresolution light-microscopy images Proc. Natl. Acad. Sci. USA 114 9273–8

[184] Schmied J J, Gietl A, Holzmeister P, Forthmann C, Steinhauer C, Dammeyer T and Tinnefeld P 2012 Fluorescence and super-resolution standards based on DNA origami Nat. Methods 9 1133–4

[185] Schmied J J, Forthmann C, Pibiri E, Falkens B, Nickels P, Liedt T and Tinnefeld P 2013 DNA origami nanopillars as standards for three-dimensional superresolution microscopy Nano Lett. 13 781–5

[186] Schmied J J, Raab M, Forthmann C, Pibiri E, Wünsch B, Dammeyer T and Tinnefeld P 2014 DNA origami-based standards for quantitative fluorescence microscopy Nat. Protocols 9 1367–91

[187] Balzarotti F, Eilers Y, Gwosch K C, Gynä H, Westphal V, Stefan F D, Elf J and Hell S W 2017 Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes Science 355 606–12

[188] Schlichthaeuer T, Strauss M T, Schueder F, Woehrstein J B and Jungmann R 2016 DNA nanotechnology and fluorescence applications Curr. Opin. Biotechnol. 39 41–7

[189] Lee K, Cui Y, Lee L P and Irudayaraj J 2015 Quantitative imaging of single mRNA splice variants in living cells Nat. Nanotechnol. 9 474–80

[190] Liu G L et al 2006 A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting Nat. Nanotechnol. 1 47–52

[191] Frank J 2017 Advances in the field of single-particle cryo-electron microscopy over the last decade Nat. Protocols 12 209–12

[192] Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne J L S and Subramaniam S 2015 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor Science 348 1147–51

[193] Kühlbrandt W 2014 The resolution revolution Science 343 1443–4
[194] Merk A et al 2016 Breaking cryo-EM resolution barriers to facilitate drug discovery Cell 165 1698–707

[195] Khoshtouei M, Radjainia M, Baumeister W and Danef R 2017 Cryo-EM structure of haemoglobin at 3 Å A determined with the Volta phase plate Nat. Commun. 8 16099

[196] Neutze R, van der Spoel D, Weckert E and Hajdu J 2000 Potential for biomolecular imaging with femtosecond x-ray pulses Nature 406 752–7

[197] Chapman H N et al 2011 Femtosecond x-ray protein nanocrystallography Nature 470 73–7

[198] Bouet S et al 2012 High-resolution protein structure determination by serial femtosecond crystallography Science 337 362–4

[199] Johansson L C, Staubch B, Ishchenko A and Cherezov V 2017 A bright future for serial femtosecond crystallography with XFELs Trends Biochem. Sci. 42 749–62

[200] Chapman H N et al 2006 Femtosecond diffractive imaging with a soft-x-ray free-electron laser Nat. Phys. 2 839–43

[201] Gaffney K J and Chapman H N 2007 Imaging atomic structure and dynamics with ultrafast x-ray scattering Science 316 1444–47

[202] Chapman H N 2017 Opportunities for structure determination using x-ray free-electron laser pulses X-Ray Free Electron Lasers: Applications in Materials, Chemistry and Biology ed U Bergmann et al (Cambridge: The Royal Society of Chemistry) pp 397–417

[203] Aquila A et al 2015 The linac coherent light source single particle imaging road map Struct. Dyn. 2 041701

[204] Seibert M et al 2011 Single mimivirus particles intercepted and imaged with an x-ray laser Nature 470 78–81

[205] Ekeberg T et al 2015 Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser Phys. Rev. Lett. 114 098102

[206] Ayyer K et al 2016 Macromolecular diffractive imaging using imperfect crystals Nature 530 202–6

[207] Küpper J et al 2014 X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser Phys. Rev. Lett. 112 083002

[208] Sayre D and Chapman H N 1995 X-ray microscopy Acta Cryst. A 51 237–52

[209] Xavier P L, Seeman N C and Chapman H N 2017 DNA-assisted flow-aligned single-particle diffractive imaging using XFEL in preparation

[210] Peplow M 2017 The next big hit in molecule hollywood Nanotechnology 29 062001

[211] Shibata M, Nishimasu H, Kodera N, Hirano S, Ando T, Uchihashi T and Nureki O 2017 Real-space and real-time structure and dynamics with ultrafast x-ray scattering Science 352 725–9

[212] Küpper J et al 2014 X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser Phys. Rev. Lett. 112 083002

[213] Sayre D and Chapman H N 1995 X-ray microscopy Acta Cryst. A 51 237–52

[214] Xavier P L, Seeman N C and Chapman H N 2017 DNA-assisted flow-aligned single-particle diffractive imaging using XFEL in preparation

[215] Peplow M 2017 The next big hit in molecule hollywood Nanotechnology 29 062001

[216] Shibata M, Nishimasu H, Kodera N, Hirano S, Ando T, Uchihashi T and Nureki O 2017 Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy Nat. Commun. 8 1430

[217] Willner E M, Kamada Y, Suzuki Y, Emura T, Hidaka K, Dietz H, Sugiyama H and Endo M 2017 Single-molecule observation of the photoregulated conformational dynamics of DNA origami nanosensors Angew. Chem., Int. Ed. 56 pp 15324–28

[218] Park J et al 2015 3D structure of individual nanocrystals in solution by electron microscopy Science 349 290–5

[219] Chen Q, Smith J M, Park J, Kim K, Ho D, Rasool H L, Zettl A and Alivisatos A P 2013 3D motion of DNA-Au nanococonjugates in graphene liquid cell electron microscopy Nano Lett. 13 4536–61

[220] Mueller C, Herb M, Dwyer J R and Miller R J D 2013 Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons J. Phys. Chem. Lett. 4 2339–47

[221] Lee Tin Wah J, David C, Rudnuk S, Baigil D and Estevez-Torres A 2016 Observing and controlling the folding pathway of DNA origami at the nanoscale ACS Nano 10 1978–87

[222] Longchamp J N, Rauschenbach S, Abb S, Escher C, Latychevskaia T, Kern K and Fink H W 2017 Imaging proteins at the single-molecule level Proc. Natl. Acad. Sci. USA 114 14747–9

[223] Weisenburger S, Boening D, Schomburg B, Giller K, Becker S, Griesinger C and Sandoghdar V 2017 Cryogenic optical localization provides 3D protein structure data with Angstrom resolution Nat. Methods 14 141–4

[224] Dashi A et al 2014 Trajectories of the ribosome as a Brownian nanomachine Proc. Natl. Acad. Sci. USA 111 17492–7

[225] Frank J 2017 Time-resolved cryo-electron microscopy: recent progress J. Struct. Biol. 200 303–6

[226] Hosseinizadeh A et al 2017 Conformational landscape of a virus by single-particle x-ray scattering Nat. Methods 14 877–81

[227] Kurt R P et al 2017 Correlations in scattered x-ray laser pulses reveal nanoscale structural features of viruses Phys. Rev. Lett. 119 138102

[228] Schneider R et al 2017 Quantum imaging with incoherently scattered light from a free-electron laser Nat. Phys. (https://doi.org/10.1038/nphys4301)

[229] Classen A, Ayyer K, Chapman H N, Röhlberger R and von Zanthier J 2017 Incoherent diffractive imaging via intensity correlations of hard x rays Phys. Rev. Lett. 119 055301

[230] Lorent U J and Zewail A H 2013 Biomechanics of DNA structures visualized by 4D electron microscopy Proc. Natl. Acad. Sci. USA 110 2822–7

[231] Pande K et al 2016 Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein Science 352 725–9

[232] Kärtner F X et al 2016 AXSIS: exploring the frontiers in attosecond x-ray science, imaging and spectroscopy Nucl. Instrum. Methods Phys. Res. A 829 24–9

[233] Fischer S, Hartl C, Frank K, Rädler J O, Liedl T and Nickel B 2016 Shape and interhelical spacing of DNA origami nanostructures studied by small-angle x-ray scattering Nano Lett. 16 4828–27

[234] Bruetzel L K, Gerling T, Sedlak S M, Walker P U, Zheng W, Dietz H and Lipert J 2016 Conformational changes and flexibility of DNA devices observed by small-angle x-ray scattering Nano Lett. 16 4871–9

[235] Nicoli F, Barth A, Bae W, Neukirchinger F, Crevenna A H, Lamb D C and Liedl T 2017 Directional photonic wire mediated by homo-forster resonance energy transfer on a DNA origami platform ACS Nano 11 11264–72

[236] Cheng R K Y, Abela R and Hennig M 2017 X-ray free electron laser: opportunities for drug discovery Essays Biochem. 61 529–42

[237] de la Cruz M J et al 2017 Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED Nat. Methods 14 399–402

[238] Chapman H N, Yefanov O M, Ayyer K, White T A, Barty A, Morgan A, Mariani V, Oberthuer D and Pande K 2017 Continuous diffraction of molecules and disordered molecular crystals J. Appl. Crystallogr. 50 1084–103

[239] Wei X, Nangreave J and Liu Y 2014 Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics Acc. Chem. Res. 47 1861–70

[240] Dunn K E, Dannenberg F, Ouldridge T E, Kwiatkowska M, Turberfield A J and Bath J 2015 Guiding the folding pathway of DNA origami Nature 525 82–6

[241] Marras A E, Zhou L, Koliopoulos V, Su H J and Castro C E 2016 Directing folding pathways for multi-component DNA
Nanotechnology 29 (2018) 060011
P. L Xavier and A R Chandrasekaran

original nanostructures with complex topology New J. Phys. 18 055005

[237] Li W, Yang Y, Jiang S, Yan H and Liu Y 2014 Controlled nucleation and growth of DNA tile arrays within prescribed DNA origami frames and their dynamics J. Am. Chem. Soc. 136 3724–7

[238] Pound E, Ashton J R, Recercll H A and Woollat A T 2009 Polymerase chain reaction based scaffold preparation for the production of thin, branched DNA origami nanostructures of arbitrary sizes Nano Lett. 9 4302–5

[239] Zhang H, Chao J, Pan D, Liu H, Huang Q and Fan C 2012 Folding super-sized DNA origami with scaffold strands from long-range PCR Chem. Commun. 48 6405–7

[240] Said H, Schuller V J, Eber F J, Wege C, Liedl T and Richert C 2013 M13–a small scaffold for DNA origami Nanostruct. 5 284–90

[241] Erkelenz M, Bauer D M, Meyer R, Gatsogiannis C, Raunser S, Saccà B and Niemeyer C M 2014 A facile method for preparation of tailored scaffolds for DNA-origami Small 10 73–7

[242] Marchi A N, Saeem I, Vogen B N, Brown S and LaBean T H 2014 Toward larger DNA origami Nano Lett. 14 5740–7

[243] Chandrasekaran A R, Pushpanathan M and Halvorsen K 2016 Evolution of DNA origami scaffolds Mater. Lett. 170 221–4

[244] Sobczak J P, Martin T G, Gerling T and Dietz H 2012 Rapid folding of DNA into nanoscale shapes at constant temperature Science 338 1456–61

[245] Jungmann R, Liedl T, Sobey T L, Shih W M and Simmel F C 2008 Isothermal assembly of DNA origami structures using denaturing agents J. Am. Chem. Soc. 130 10062–3

[246] Song J, Zhang Z, Zhang S, Liu L, Li Q, Xie E, Gothelf K V, Besenbacher F and Dong M 2013 Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami Small 9 2954–9

[247] Myhrvold C, Dai M, Silver P A and Yin P 2013 Isothermal self-assembly of complex DNA structures under diverse and biocompatible conditions Nano Lett. 13 4242–8

[248] Zhang Z, Song J, Besenbacher F, Dong M and Gothelf K V 2013 Self-assembly of DNA origami and single-stranded tile structures at room temperature Angew. Chem., Int. Ed. 52 9219–23

[249] Kopiecki A, Schneider A, Csáki A and Fritzschke W 2015 Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing Nano Lett. 15 2702–6

[250] Ducani C, Kaul C, Moche M, Shih W M and Hogberg B 2013 Enzymatic production of ‘monoclonal stoichiometric’ single-stranded DNA oligonucleotides Nat. Methods 10 647–52

[251] Niekamp S, Blumer K, Natsi P M, Tsui K, Garbutt J and Douglas S M 2016 Folding complex DNA nanostructures from limited sets of reusable sequences Nucleic Acids Res. 44 e102

[252] Saeem I, Ma K S, Marchi A N, LaBean T H and Tian J 2010 In situ synthesis of DNA microarray on functionalized cycled olein copolymer substrate ACS Appl. Mater. Interfaces 2 491–7

[253] Marchi A N, Saeem I, Tian J and LaBean T H 2013 One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold ACS Nano 7 903–10

[254] Schmidt T L, Beliveau B J, Uca Y O, Thielmann M, Da Cruz F, Wu C T and Shih W M 2015 Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries Nat. Commun. 6 8634

[255] Nickels P C, Ke Y, Jungmann R, Smith D M, Leichsenring M, Shih W M, Liedl T and Hogberg B 2014 DNA origami structures directly assembled from intact bacteriophages Small 10 1763–9

[256] Praetorius F, Kick B, Behler K L, Honemann M N, Weuster-Botz D and Dietz H 2017 Biotechnological mass-production of DNA origami Nature 552 84–7

[257] Mathur D and Medinzi I L 2017 Analyzing DNA nanotechnology: a call to arms for the analytical chemistry community Anal. Chem. 89 2646–63

[258] Lin C, Perrault S D, Kwak M, Graf F and Shih W M 2013 Purification of DNA-origami nanostructures by rate-zonal centrifugation Nucl. Acids Res. 41 e40

[259] Shaw A, Benson E and Högbäck B 2015 Purification of functionalized DNA origami nanostructures ACS Nano 9 4968–75

[260] Stahl E, Martin T G, Praetorius F and Dietz H 2014 Facile and scalable preparation of pure and dense DNA origami solutions Angew. Chem., Int. Ed. 53 12735–40

[261] Wickham S F J, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H and Turberfield A J 2011 Direct observation of stepwise movement of a synthetic molecular transporter Nat. Nanotechnol. 6 166–9

[262] Douglas S M, Bachelet I and Church G M 2012 A logic-gated nanorobot for targeted transport of molecular payloads Science 335 831–4

[263] Halvorsen K, Kizer M E, Wang X, Chandrasekaran A R and Basanta-Sanchez M 2017 Shear dependent LC purification of an engineered DNA nanoswitch and implications for DNA origami Anal. Chem. 89 5673–7

[264] Timm C and Niemeyer C M 2015 Assembly and purification of enzyme-functionalized DNA origami structures Angew. Chem., Int. Ed. 54 6745–50

[265] Bellot G, McClintock M A, Lin C and Shih W M 2011 Recovery of intact DNA nanostructures after agarose gel-based separation Nat. Methods 8 192–4

[266] Marth G, Hartley A M, Reddington S C, Sargisson L L, Parcollet M, Dunn K E, Jones D B and Stulz E 2017 Precision templated bottom-up multiprotein nanoassembly through defined click chemistry linkage to DNA ACS Nano 11 5003–10

[267] Valsangkar V, Chandrasekaran A R, Wang R, Haruehanroengra P, Levcchenko O, Halvorsen K and Sheng J 2017 Click-based functionalization of a 2’-O-propargyl-modified branched DNA nanostructure J. Mater. Chem. B 5 2074–7

[268] Rushing D A and Fox R K 2014 Sequence-specific recognition of DNA nanostructures Methods 67 123–33

[269] Chandrasekaran A R and Rushing D A 2017 Triplex-forming oligonucleotides: a third strand for DNA nanotechnology Nucleic Acids Res. (https://doi.org/10.1093/nar/gkx1230/4708261)

[270] Taylor A I, Beuron F, Peak-Chee S Y, Morris E P, Heredewin P and Holliger P 2016 Nanostructures from synthetic genetic polymers ChemBioChem 17 1107–10

[271] Georgiadis M M, Singh I, Kellett W F, Hoshika S, Benner S A and Richards N G 2015 Structural basis for a six nucleotide genetic alphabet J. Am. Chem. Soc. 137 6947–55

[272] Malyshev D A, Dhami K, Lavergne T, Chen T, Dai N, Malyshchev D A, Dhami K, Lavergne T, Chen T, Dai N, Foster J M, Correà I R Jr and Romesberg F E 2014 A semi-synthetic organism with an expanded genetic alphabet Nature 509 385–8

[273] Liu Q, Liu G, Wang T, Fu J, Li R, Song L, Wang Z G, Ding B and Chen F 2017 Enhanced stability of DNA nanostructures by incorporation of unnatural base pairs ChemPhysChem 18 2977–80

[274] Grabow W W and Jaeger L 2014 RNA self-assembly and RNA nanotechnology Acc. Chem. Res. 47 1871–80

[275] Sparvathy S L, Geary C W and Andersen E S 2017 3D DNA Nanostructure: Methods and Protocols ed Y Ke and P Wang (New York: Springer) pp 51–80

[276] Chevalier A et al 2017 Massively parallel de novo protein design for targeted therapeutics Nature 550 74–9
Nanotechnology 29 (2018) 060011

[277] Liu Y, Gonen S, Gonen T and Yeates T 2017 Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system (https://doi.org/10.1101/212233)

[278] Hahn J, Wickham S F J, Shih W M and Perrault S D 2014 Addressing the instability of DNA nanostructures in tissue culture Nature Nanotechnol. 8 8765–75

[279] Ponnsuswamy N, Basting M M C, Nathwani B, Ryu J H, Chou L Y T, Vinther M, Li W A, Anastassacos F M, Mooney D J and Shih W M 2017 Oligosilane-based coating protects DNA nanostructures from low-salt denaturation and nucleosome degradation Nat. Commun. 8 15654

[280] Jiang Q et al 2012 DNA origami as a carrier for circumvention of drug resistance J. Am. Chem. Soc. 134 13396–403

[281] Schelller V J, Heidegger S, Sandholzer N, Nickels P C, Suhartta N A, Endres S, Bourquin C and Liedt T 2011 Cellular immunostimulation by CpG-sequence-coated DNA origami structures ACS Nano 5 6966–702

[282] Lee H et al 2012 Moleularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery Nat. Nanotechnol. 7 389–93

[283] Ora A, Järveduvali E, Zhang H, Avuvinen H, Santos A H, Kostiainen M A and Linko V 2016 Cellular delivery of enzyme-loaded DNA origami Chem. Commun. 52 14161–4

[284] Huang Y, Huang W, Chan L, Zhou B and Chen T 2016 A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity Biomaterials 103 183–96

[285] Hansen C H, Yang D, Koussa M A and Wong W P 2017 Nanoswitch-linked immunosorbent assay (NLISA) for fast, sensitive, and specific protein detection Proc. Natl. Acad. Sci. USA 114 10367–72

[286] Chandrasekaran A R, Zavalas J and Halvorsen K 2016 Programmable DNA nanowatches for detection of nucleic acid sequences ACS Sens. 1 120–3

[287] Robinson B H and Seeman N C 1987 The design of a biochip: a self-assembling molecular-scale memory device Protein Eng. 1 295–300

[288] Kershner R J et al 2009 Placement and orientation of individual DNA shapes on lithographically patterned surfaces Nat. Nanotechnol. 4 557–61

[289] Gopinath A, Miyazono E, Faraon A and Rothemund P W 2016 Engineering and mapping nanocavity emission via precision placement of DNA origami Nature 535 401–5

[290] Yin P and Strano M S 2013 Metallized DNA nanostructures as carrier of metal complexes Chem. Commun. 52 15134–41

[291] Czogalla A, Franquelim H G and Schwille P 2016 DNA nanostructures on membranes as tools for synthetic biology Biophys. J. 110 1698–707

[292] Qian L and Winfree E 2011 Scaling up digital circuit computation with DNA strand displacement cascades Science 332 1196–201

[293] Adleman L M 1994 Molecular computation of solutions to combinatorial problems Science 266 1021–4

[294] Chandrasekaran A R, Levchenko O, Patel D S, Maclsaac M and Halvorsen K 2017 Addressable configurations of DNA nanostructures for rewritable memory Nucl. Acids Res. 45 11459–65

[295] Yazi S, Yuan Y, Ma J, Zhao H and Milenkovic O 2015 A rewritable, random-access DNA-based storage system Sci. Rep. 5 14138

[296] Kostiainen M A and Linko V 2016 Cellular delivery of CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria Nature 547 345–9

[297] Robinson B H and Seeman N C 1987 The design of a biochip: a self-assembling molecular-scale memory device Protein Eng. 1 295–300

[298] Kershner R J et al 2009 Placement and orientation of individual DNA shapes on lithographically patterned surfaces Nat. Nanotechnol. 4 557–61

[299] Kershner R J et al 2009 Placement and orientation of individual DNA shapes on lithographically patterned surfaces Nat. Nanotechnol. 4 557–61

[300] Yazi S, Yuan Y, Ma J, Zhao H and Milenkovic O 2015 A rewritable, random-access DNA-based storage system Sci. Rep. 5 14138

[301] Robinson B H and Seeman N C 1987 The design of a biochip: a self-assembling molecular-scale memory device Protein Eng. 1 295–300

[302] Kershner R J et al 2009 Placement and orientation of individual DNA shapes on lithographically patterned surfaces Nat. Nanotechnol. 4 557–61

[303] Kershner R J et al 2009 Placement and orientation of individual DNA shapes on lithographically patterned surfaces Nat. Nanotechnol. 4 557–61

[304] Yazi S, Yuan Y, Ma J, Zhao H and Milenkovic O 2015 A rewritable, random-access DNA-based storage system Sci. Rep. 5 14138

[305] Robinson B H and Seeman N C 1987 The design of a biochip: a self-assembling molecular-scale memory device Protein Eng. 1 295–300
[319] Jusuk I, Vietz C, Raab M, Dammeyer T and Tinnefeld P 2015 Super-resolution imaging conditions for enhanced yellow fluorescent protein (eYFP) demonstrated on DNA origami nanorulers Sci. Rep. 5 14075

[320] Ke Y, Meyer T, Shih W M and Bellot G 2016 Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator Nat. Commun. 7 10935

[321] Sacca B, Meyer R, Erkelenz M, Kiko K, Arndt A, Schroeder H, Rabe K S and Niemeyer C M 2010 Orthogonal protein decoration of DNA origami Angew. Chem., Int. Ed. 49 9378–83

[322] Schiffels D, Szalai V A and Liddle J A 2017 Molecular precision at micrometer length scales: hierarchical assembly of DNA–protein nanostructures ACS Nano 11 6623–9

[323] Sprengel A et al 2017 Tailored protein encapsulation into a DNA host using geometrically organized supramolecular interactions Nat. Commun. 8 14472