Interquantile Shrinkage in Spatial Quantile Autoregressive Regression models

Ping Dong1 Jiawei Hou2 Yunquan Song2*

1School of Statistics and Information, Shanghai University of International Business and Economics
2School of Science, China University of Petroleum

Abstract

Spatial dependent data frequently occur in many fields such as spatial econometrics and epidemiology. To deal with the dependence of variables and estimate quantile-specific effects by covariates, spatial quantile autoregressive models (SQAR models) are introduced. Conventional quantile regression only focuses on the fitting models but ignores the examination of multiple conditional quantile functions, which provides a comprehensive view of the relationship between the response and covariates. Thus, it is necessary to study the different regression slopes at different quantiles, especially in situations where the quantile coefficients share some common feature. However, traditional Wald multiple tests not only increase the burden of computation but also bring greater FDR. In this paper, we transform the estimation and examination problem into a penalization problem, which estimates the parameters at different quantiles and identifies the interquantile commonality at the same time. To avoid the endogeneity caused by the spatial lag variables in SQAR models, we also introduce instrumental variables before estimation and propose two-stage estimation methods based on fused adaptive LASSO and fused adaptive sup-norm penalty approaches. The oracle properties of the proposed estimation methods are established. Through numerical investigations, it is demonstrated that the

*The corresponding author: Yunquan Song. Email: syqfly1980@163.com. This research was supported by NNSF project (61503412) of China, NSF project (ZR2019MA016) of Shandong Province of China.
proposed methods lead to higher estimation efficiency than the traditional quantile regression.

Key words: Spatial quantile autoregressive models; Quantile regression; Instrumental variables; Fused Adaptive LASSO; Fused Adaptive Sup-norm
1 Introduction

In many fields including spatial econometrics, epidemiology and regional science, spatial dependent data is a common data type to be observed. Various spatial regression models are suggested for it. Among them, a kind of simple and intuitive spatial autoregressive (SAR) model caught many academics’ attention, which was first proposed by Cliff and Ord (1973). Although a lot of studies have been done for models with independent and identically distributed random (i.i.d) disturbances, researchers has realized the heteroscedasticity exists in modelling the spatial data such as for unemployment data, crime rates data, housing prices, etc, see Anselin and Bera (1998), LeSage (1999), Zhang and Shen (2015). Lin and Lee (2010) extended the generalized method of moments (GMM) method to SAR model which allowed for heteroscedasticity. Then Kelejian and Prucha (2010) considered the GMM estimation with heteroscedasticity for a more general spatial model. Clearly, all these models focused on the conditional mean function and were easily affected by heteroscedasticity.

Quantile regression (QR) has attracted an increasing amount of attention after being introduced by Koenker and Bassett (1978). It could provide more comprehensive statistical views than traditional regression which was only in the aspect of the condition mean, while quantile regression was studied at multiple quantiles. Quantile regression allows researches to explain the heteroscedasticity through the quantile coefficients not the disturbances. Combining the SAR model and QR model opened up a new and exciting research direction, spatial quantile autoregressive (SQAR) model, which was been put forward by Su and Yang (2011). Su and Yang (2011) offered an alternative view for allowing unknown heteroscedasticity in the SAR model, taking into account of both unobserved heterogeneity and spatial dependence.

Conventional multiple-quantile regression methods often carry out analysis at each quantile level separately. However, if the quantile coefficients share some common features across quantile levels, the slope coefficients may appear constant only at a certain quantile region. It’s hard for the traditional quantile regression estimation to identify. Thus, distinguishing the quantile regions between constant coefficients and non-constant coefficients is the key problem. A natural idea is to take a hypothesis test, so Koenker (2005) brought the Wald test to distinguish the commonality of quantile slopes, but this method becomes infeasible for large
number of quantiles or predictors by greater False Discovery Rate (FDR).

Fortunately, penalization methods are useful tools to deal with the non-significant differences. They are often applied for variable selection to choose and estimate the sparse regression models. Recently, the idea of penalization has been more popular and widely used in machine learning and artificial intelligence techniques. The earliest the penalization was proposed by the Hoerl and Kennard (1970), where ridge regression was a L_2-norm regularization method for nonorthogonal problems. Tibshirani (1996) suggested L_1-norm regularization to linear regression to shrinkage the insignificant coefficients to zero, namely least absolute shrinkage and selection operator (LASSO), indicating the beginning of variable selection. For parametric models, Fan and Li (2001) proposed a class of variable selection procedures based on nonconcave and penalized likelihood method, named the smoothly clipped absolute deviation (SCAD) penalty. Then Fan and Li (2004) extended the variable selection to partially linear models for longitudinal data. Tibshirani et. al. (2005) introduced the fused LASSO, where pairwise differences between variables were penalized by the L_1-norm. To obtain a convex objective function, Zou (2006) and Friedman et. al. (2007) proposed adaptive weights L_1-penalty, namely adaptive LASSO. Rinaldo (2009) modified it to fused adaptive LASSO with better properties. For grouping structure model, Yuan and Lin (2006) introduced group LASSO to identify significant groups of predictors. Zhang and Xiang (2015) studied the oracle properties of adaptive group LASSO in high-dimensional linear models.

With the development of variable selection methods, Zou and Yuan (2008a) estimated the common slopes by a composite quantile regression method and selected nonzero slopes by adaptive Lasso. Jiang et. al. (2013) used fused adaptive Lasso and fused adaptive sup-norm to smooth neighboring quantiles. Ciuperca (2017) extended adaptive group LASSO to quantile model with grouped predictors.

However, if the spatial lag parameter is nonzero, there exists endogeneity caused by the spatial lag variables. This causes the increasing difficulties of estimating the coefficients of SQAR model including the spatial lag parameter and the regression slopes. Kim and Muller (2004) suggested a double stage quantile regression (DSQR). They use quantile regression with random regressors after the endogeneity. Su and Yang (2011) applied an instrumental variable quantile regression (IVQR) estimator to SQAR model. Kostov (2013) suggested empirical
likelihood quantile regression (ELQR) estimation, which is a non-parametric analogue of likelihood estimation for the linear model. Xu and Lee (2015) considered the instrumental variable (IV) combined MLE for estimation for SAR model with a nonlinear transform of dependent variable.

To avoid the endogeneity and identify the interquantile commonality, we combine instrumental variable and penalization approaches together, and suggest a novel estimation method for SQAR model. In the method, we adopt the fusion idea to shrink the differences of quantile slopes at two adjacent quantile levels toward zero, which could help to employ automatic estimation, and detect quantile regions with constant slope coefficients in spatial quantile autoregressive models at the same time. Two types of fusion penalties were applied in the multiple-quantile regression model: Fused Adaptive LASSO (FAL) and Fused Adaptive sup-norm (FAS).

The remainder of this article is organized as follows. In Section 2, we illustrate the proposed methods and give the asymptotic properties of the proposed penalization FAL and FAS estimators. In Section 3, we discuss the computation issues. A simulation study is conducted to assess the numerical performance of our proposed estimators in Section 4. We apply the proposed methods to analyze international economic growth data in Section 5. All technical details are added in the Appendix.

2 Methodology

2.1 Spatial Autoregressive Model

SAR model has the following form,

\[\mathbf{Y} = \alpha + \lambda \mathbf{WY} + \mathbf{X}\beta + \varepsilon, \]

(2.1)

where \(\mathbf{Y} = (Y_1, \cdots, Y_n)^T \) is an \(n \times 1 \) vector response value, and \(\mathbf{X} = (X_1, \cdots, X_n)^T \) is a matrix of \(n \) observations on \(p \) exogenous covariates, \(\mathbf{W} = \{w_{ij}\} \) is a known \(n \times n \) spatial weights matrix, \(\varepsilon = (\varepsilon_1, \cdots, \varepsilon_n)^T \) denotes an \(n \)-vector of i.i.d random disturbances with zero mean and finite variance, see Anselin (2013). In SAR model there are three type model parameters. The first one is the intercept term \(\alpha \in \mathbb{R} \). The second is nonstochastic spatial lag parameter \(\lambda \in \mathbb{R} \), representing the autocorrelation of response variable. The last one is the regression coefficient vector \(\beta = (\beta_1, \cdots, \beta_p)^T \in \mathbb{R}^{p \times 1} \).
The SAR model in equation (2.1) is also recast as

\[Y_i = \alpha + \lambda \sum_{j=1}^{n} w_{ij} Y_j + \beta^T X_i + \varepsilon_i, \]

which intuitively implies that the response of the \(i \)-th subject is linearly depends on its neighbors and covariates. It is usually supposed that the noise of \(\varepsilon_i \)'s are independent and identically distributed with zero mean and finite variance. It means that the covariance \(\text{Cov}(\varepsilon) = \sigma^2 I_n \), with \(I_n \in \mathbb{R}^{n \times n} \) is an identity matrix.

Then the observations of \(Y \) could be formulated as

\[Y = (I_n - \lambda W)^{-1}(\alpha + X \beta + \varepsilon), \tag{2.2} \]

where \((I_n - \lambda W) \) is needed to guaranteed the invertibility. According to the work of Banerjee et al. (2003), the matrix \(W \) has its largest singular value of 1 under certain normalization operations. Therefore, \(|\lambda| < 1 \) is a sufficient condition to ensure the invertibility of \((I_n - \lambda W) \). Based on this, we add one constraint of \(\lambda \), that is \(|\lambda| < 1 \).

Assuming we have weights matrix \(W \), let \(\theta = (\alpha, \lambda, \beta^T)^T \), the log likelihood function can be written as

\[
l(\theta, \sigma^2) = -\frac{n}{2} \log(2\pi\sigma^2) + \log |I_n - \lambda W| - \frac{1}{2\sigma^2} ||(I_n - \lambda W)Y - \alpha - X\beta||^2 \tag{2.3}
\]

To solve the maximum optimization problem, we first fix \(\theta \) and get the sandwiched estimator of \(\sigma^2 \), that is

\[
\hat{\sigma}^2 = [Y - A(\lambda)^{-1}(\alpha + X\beta)]^T [A(\lambda)^{-1} A(\lambda)^T]^{-1} [Y - A(\lambda)^{-1}(\alpha + X\beta)],
\]

where \(A(\lambda) = I_n - \lambda W \) is a \(n \times n \) matrix related to \(\lambda \). Then apply the estimator \(\hat{\sigma}^2 \) back to \(l(\theta, \sigma^2) \) and obtain \(l(\theta) = l(\theta, \hat{\sigma}^2) \). Take \(l(\theta) \) as the objective function and the MLE estimator of \(\theta \) could be derived by \(\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} l(\theta) \). The parameters could be estimated as \(\hat{\theta}_{\text{MLE}} = (\hat{\alpha}_{\text{MLE}}, \hat{\lambda}_{\text{MLE}}, \hat{\beta}_{\text{MLE}}^T)^T \) and the detailed asymptotic properties were provided in Anselin and Bera (1998).

Although the MLE method has many excellent theoretical properties, its computational cost is huge. When \(n \) is large, the classical MLE approach becomes computationally expensive, mainly due to the high cost of computing \(\log |A(\lambda)| \) and the relative computational complexity is \(O(n^3) \), see Trefethen and Bau (1997), Barry and Pace (1999), Smirnov and Anselin (2001). In order to reduce the computational complexity, Ma et al. (2020) proposed a naive
least squares method for SAR models, which was simple and effective. The least squares objective function is

\[Q(\theta) = \| Y - \alpha - \lambda W Y - X \beta \|^2, \quad (2.4) \]

Equation (2.4) was designated as an ordinary least squares problem, where \(Y \) is the response value and \((W Y, X)\) are the covariates. The OLS estimator of \(\theta \) could be obtained by \(\hat{\theta}_{\text{OLS}} = \arg \min_{\theta} Q(\theta) \), that is \(\hat{\theta}_{\text{OLS}} = (\hat{\alpha}_{\text{OLS}}, \hat{\lambda}_{\text{OLS}}, \hat{\beta}_{\text{OLS}}^T)^T \). The asymptotic properties of \(\hat{\theta}_{\text{OLS}} \) under certain conditions were showed in Huan et al. (2019) and Ma et al. (2020).

However, there remains the problem of endogeneity caused by the spatial lag variables, leading covariates \((W Y, X)\) of interest to be correlated with the error term \(\varepsilon \). Intuitively, instrumental variable (IV) could be adopted, which was first proposed by Wright (1928). A valid instrument induces changes in the explanatory variable \(X \), but has no independent effect on the dependent variable \(Y \). Xu and Lee (2015) considered the instrumental variable combined MLE for estimation for SAR model with a nonlinear transform of dependent variable.

One computational method of calculating IV estimators is two-stage least squares. Inspired by it, we combine the naive least squares method and instrumental variable together and consider a two-stage least squares estimation method, similar to Xie et al. (2020). Denote the \(U = W Y \), we hope to find a replacement \(\hat{U} \) such that \(\text{Cov}(\hat{U}, \varepsilon) = 0 \) and \(\text{Cov}(\hat{U}, X) \neq 0 \). In the first stage, regress each explanatory variable on all of the exogenous variables in the model. Naturally, exogenous variables \(V \) could be selected as \(W (I_n - \lambda W)^{-1} X \), according to the deformation of equation (2.1),

\[Y = (I_n - \lambda W)^{-1} \alpha + (I_n - \lambda W)^{-1} X \beta + (I_n - \lambda W)^{-1} \varepsilon. \quad (2.5) \]

But the spatial parameter \(\lambda \) is unknown, so we choose the first term of \(W (I_n - \lambda W)^{-1} X \) and let \(V = [1_n, X, W X] \), where \(1_n \) is a \(n \times 1 \) vector with all 1’s. The first stage is regressing \(U \) on the exogenous variables \(V \), and assume the regression equation has the following representation

\[U = V \Pi + v, \quad (2.6) \]

where \(v \) is the unknown error term different from \(\varepsilon \). The estimator of \(\Pi \) could be derived as \(\hat{\Pi} = (V^T V)^{-1} V^T U \) and the the predicted value is \(\hat{U} = V \hat{\Pi} \).
Then replace WY by the predictor \hat{U}. Thus, the correlation between the spatially lagged endogenous variable and the error term is eliminated. The second stage is taking a least squares regression for

$$\mathbf{Y} = \alpha + \lambda \hat{U} + \mathbf{X}\beta + \mathbf{\varepsilon}. \quad (2.7)$$

Combining equation (2.5) and (2.7), the estimators of $\mathbf{\theta}$ could be obtained. The same strategy for choosing instrumental variables can be found in McMillen (2012).

2.2 Spatial Quantile Autoregressive Model

Denote $U_i = \sum_{j=1}^{n} w_{ij} Y_j$ as the ith element of \mathbf{U}, which is a $p \times 1$ vector of strictly exogenous regressors, and ε_i are the iid error terms that are independent of \mathbf{X}_i. We consider the following location-scale model,

$$Y_i = \alpha + \lambda U_i + \beta^T \mathbf{X}_i + \varepsilon_i.$$

Suppose we are interested in regression at K quantile levels $0 < \tau_1 < \cdots < \tau_K < 1$, where K is a finite integer. Denote $Q_{\tau_k}(Y_i|\mathcal{F}_{-i}, \mathbf{X}_i)$ as the τ_kth conditional quantile function of given \mathcal{F}_{-i} and \mathbf{X}_i, $k = 1, 2, \cdots, K$. \mathcal{F}_{-i} is the σ-field of $\{Y_j : j \neq i\}$. τ_kth quantile of ε_i is zero, that is $Q_{\tau_k}(\varepsilon_i|\mathcal{F}_{-i}, \mathbf{X}_i) = 0$ for $i = 1, 2, \cdots, n$. Then the spatial quantile autoregressive (SQAR) model is represented as following,

$$Q_{\tau_k}(Y_i|\mathcal{F}_{-i}, \mathbf{X}_i) = \alpha_k + \lambda_k U_i + \beta_k^T \mathbf{X}_i, \quad (2.8)$$

where k is corresponding to the τ_kth quantile of ε_i, α_k is the intercept term that is τ_k-independent, λ_k is the scalar spatial lag parameter that is τ_k-dependent, and β_k is a p-vector regression parameters that is also τ_k-dependent. In matrix form, (2.8) equals

$$\mathbf{Y} = \alpha_k + \lambda_k WY + \mathbf{X}\beta_k + \mathbf{\varepsilon} \quad (2.9)$$

where we are interested in the parameter $\mathbf{\theta}_{(k)} = (\alpha_k, \lambda_k, \beta_k^T)^T$.

For SQAR models, Su and Yang (2011) applied an instrumental variable quantile regression(IVQR) estimator. But it needs grid searching and costs a lot of computation time. So, we adopt a simpler approach, which is the straightforward extension of two stage least squares estimation method, see Kim and
Muller (2004), Zietz et. al (2008), Liao and Wang (2012). This is similar to the procedure in Section 2.1.

At \(\tau_k \) quantile, we assume that \(U = WY \) has the following representation:

\[
U = V \Pi_k + v, \tag{2.10}
\]

where \(V = [1_n, X, WX] \) is a \(n \times (2p+1) \) matrix, \(\Pi_k \) is a \(\tau_k \)-dependent \((2p+1) \times 1 \) matrix of unknown parameters and \(v \) is a \(n \times 1 \) matrix of error terms. In the first stage, we estimate quantile regressions for \(U \) using the instruments variables \(V \) as explanatory variables by minimizing objective function as following,

\[
R_{0IV}(\tau_k, \Pi_k) = \sum_{i=1}^{n} \rho_{\tau_k}(U_i - V_i \Pi_k), \tag{2.11}
\]

where \(\rho_{\tau}(r) = r \psi_{\tau}(r) = \tau r I(r > 0) + (\tau - 1)r I(r \leq 0) \) is the quantile check function and \(I(\cdot) \) is the indicator function, where \(\psi_{\tau}(r) = \tau - 1 [r \leq 0] \) and \(1[\cdot] \) is the Kronecker index, see Koenker and Bassett (1978). Denote the predictor of \(U \) as \(\hat{U}_k \) at \(\tau_k \) quantile.

The reduced-form representation of \(Y \) is

\[
Y = V \pi_k + u, \tag{2.12}
\]

where \(\pi_k = \left[\begin{array}{c} 1 \\ 0_p \\ 1_p \
\end{array} \right], \Pi_k, \left[\begin{array}{c} 0 \\ 1_p \\ 0_p \end{array} \right] \theta_{(k)} = H(\Pi_k)\theta_{(k)}, 0_p \) is a \(p \times 1 \) vector with all 0’s, 1_p is a \(p \times 1 \) vector with all 1’s and \(u = \lambda_k v + \epsilon \). Another representation of (2.12) is

\[
Y = \alpha_k + \lambda_k V \Pi_k + X \beta_k + u. \tag{2.13}
\]

In the second stage, we replace \(V \Pi_k \) by estimator, and apply quantile regressions of \(Y \) on \(X \) and \(\hat{U}_k \). Thus, the correlation between the spatially lagged endogenous variables and the error terms are eliminated.

The objective function could be defined as,

\[
R_{1IV}(\tau_k, \alpha_k, \lambda_k, \beta_k) = \sum_{i=1}^{n} \rho_{\tau_k}(Y_i - \alpha_k - \lambda_k \hat{U}_{ki} - \beta_k^T X_i) \tag{2.14}
\]

where \(\hat{U}_{ki} \) is the \(i \)th element of \(\hat{U}_k \).

Minimizing the quantile loss function at each quantile level separately is equivalent to minimizing the following combined loss function,
\[
\sum_{k=1}^{K} R_{IV}^{1}(\tau_k, \theta_{(k)}) = \sum_{k=1}^{K} \sum_{i=1}^{n} \rho_{\tau_k} (Y_i - \alpha_k - \lambda_k \hat{U}_{ki} - \beta_k^T X_i). \tag{2.15}
\]

Denote \(X_i = (1, X_i)^T\), \(F_i\) as the conditional cumulative distribution function of \(Y\) given \(F_{-i}\) and \(X_i\). \(V_i\) is the \(i\)th row vector of \(V\). To establish the asymptotic properties of the estimators \(\hat{\alpha}_k\) obtained by minimizing equation (2.15), we assume the following regularity conditions:

(A1) For \(k = 1, \cdots, K, i = 1, \cdots, n\), the conditional density function of \(Y\) given \(F_{-i}\) and \(X_i\), denoted as \(f_i\), is continuous and has a bounded first derivative, and \(f_i \{Q_{\tau_k}(Y_i|F_{-i}, X_i)\}\) is uniformly bounded away from zero and infinity.

(A2) The row and column sums of the matrices \(W\) and \(I_n^* - \lambda W\) are bounded uniformly in absolute value.

(A3) For matrix \(G = W(I_n^* - \lambda W)^{-1}\), there exists a constant \(c\) such that \(cI_n - GG^T\) is positive semidefinite for all \(n\).

(A4) For all \(\tau_k, k = 1, 2, \cdots, K, \theta_{(k)}\) is in the interior of the set \(R \times D\), and \(R \times D\) is compact and convex.

(A5) The sequence \(\{(u_i, v_i, X_i)\}\) is independent and identically distributed, where \(u_i\) and \(v_i\) are the \(i\)th elements in \(u\) and \(v\) respectively.

(A6) The second geometric moment of \(X\) and the third geometric moment of \(X_i\) are finite, that is \(E(\|X\|^2) < \infty\) and \(E(\|X_i\|^3) < \infty\).

(A7) \(H(\Pi_k)\) is full column rank, for \(k = 1, 2, \cdots, K\).

(A8) The condition densities \(g_1(\cdot|x)\) and \(g_2(\cdot|x)\), respectively for \(u_i\) and \(v_i\), are Lipschitz continuous for all \(x\). Moreover, \(B_1 = E\{g_1(0|X_i)X_iX_i^T\}\) and \(B_2 = E\{g_2(0|X_i)X_iX_i^T\}\) are finite and positive definite.

(A9) \(E(\psi_\tau(u_i)|X_i) = 0\) and \(E(\psi_\tau(v_i)|X_i) = 0\).

Assumption (A1) is the basic assumption for quantile regression. Assumptions (A2)-(A4) are required in the setting of SAR model, see Lee (2003); Zhang and Shen (2015). Assumptions (A5)-(A9) are needed for two stage IV estimators, see Kim and Muller (2004).
Theorem 2.1. Assuming conditions (A1)-(A9) hold, we have

\[n^{1/2}(\hat{\theta}(k) - \theta(k)) \xrightarrow{d} N(0, \Sigma_k), \quad \text{as} \; n \to \infty, \]

where \(\Sigma_k = D_k \Omega D_k^T \), \(D_k = (H(\Pi_k)^T A_1 H(\Pi_k))^{-1} H(\Pi_k)^T [I, A_1 A_2^{-1} \lambda_k] \), \(\Omega = E(\Sigma_u \otimes V_i V_i^T) \), \(A_1 = E\{g_1(0)V_i V_i^T\}, \; A_2 = E\{g_2(0)V_i V_i^T\}, \; \Sigma_u \) is the matrix of general term \(\psi_\tau(u_i)\psi_\tau(v_i) \).

However, in some applications, the quantile slope may be constant in certain quantile regions for some predictors. If we still take estimations at each quantile level, the information of common features will be ignored, leading to the reduction of the efficiency. The best strategy is to borrow information from neighboring quantiles, see Zou and Yuan (2008b); Jiang et. al. (2014).

In the following sections, we denote \(\beta_{k,0} = \lambda_k \), and \(\beta_{k,l} \) as the slope corresponding to the \(l \)th predictor at the quantile level \(\tau_k \) where \(l = 1, 2, \ldots, p \) and \(k = 1, 2, \ldots, K \). Denote \(d_{k,l} = \beta_{k,l} - \beta_{k-1,l} \) as the slope difference at two neighboring quantiles \(\tau_{k-1} \) and \(\tau_k \), with \(k = 2, \ldots, K \) and \(d_{1,l} = \beta_{1,l} \) for \(l = 0, 1, 2, \ldots, p \).

The parameter vector \(\theta = (\alpha^T, d_1^T, \ldots, d_K^T)^T \in \mathbb{R}^{(p+1)K} \) denote the collection of unknown parameters, where \(\alpha = (\alpha_1, \ldots, \alpha_K)^T \), and \(d_k = (d_{k,0}, d_{k,1}, \ldots, d_{k,p})^T \).

Therefore, the \(\tau_k \) th quantile coefficient vector can be written as

\[\alpha_k = (\alpha_k, \lambda_k, \beta_k^T)^T = T_k \theta, \]

where \(T_k = (D_{k,0}, D_{k,1}, D_{k,2}) \in \mathbb{R}^{(p+2) \times (p+2)K} \). \(D_{k,0} \) is a \((p+2) \times K \) matrix with 1 in the first row and the \(k \) th column, but zero elsewhere, that is

\[
D_{k,0} = \begin{pmatrix}
0 & \cdots & 1 & \cdots & 0 \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{pmatrix}_{(p+2) \times K}
\]

\(D_{k,1} = 1_k^T \otimes (0_{p+1}, I_{p+1})^T \) is a \((p+2) \times k(p+1) \) matrix, where \(1_k \) is a \(k \times 1 \) vector with all 1’s, \(0_{p+1} \in \mathbb{R}^{p+1} \) is a \((p+1) \times 1 \) zero vector, \(I_{p+1} \) is the \((p+1) \times (p+1) \) identity matrix of dimension \(p+1 \). That is

\[
D_{k,1} = \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & \cdots & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots & & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1 & \cdots & 0 & 0 & \cdots & 1
\end{pmatrix}_{(p+2) \times k(p+1)}
\]
$D_{k,2}$ is a $(p + 2) \times (K - k)(p + 1)$ zero matrix.

Define $Z_{ki}^T = \left(1, \hat{U}_{ki}, X_i^T \right) T_k \in \mathbb{R}^{1 \times (p + 2)K}$. With these reparameterizations, the combined quantile objective function (2.15) can be rewritten as

$$Q_0(\theta) = \sum_{k=1}^{K} \sum_{i=1}^{n} \rho_{\tau_k} (Y_i - Z_{ki}^T \theta).$$

2.3 Penalized Joint Spatial Quantile Estimators

In order to detect the insignificant and the constant quantile slope coefficients, we propose to shrink the interquantile slope differences $\{\beta_{k,l} - \beta_{k-1,l} : k = 2, \cdots, K, l = 0, 1, 2, \cdots, p\}$ towards zero simultaneously, resulting in a simpler model structure and inducing the smoothness across quantiles.

2.3.1 Penalised Fused Adaptive Lasso Estimator

In this section, we first present the penalized spatial quantile estimator to shrink interquantile slope differences towards zero. The estimator could be obtained by minimizing the following objective function

$$Q_1(\theta) = \sum_{k=1}^{K} \sum_{i=1}^{n} \rho_{\tau_k} (Y_i - Z_{ki}^T \theta) + \tilde{\gamma}_{1n} \sum_{k=2}^{K} \sum_{l=1}^{p} \tilde{\omega}_{k,l} |d_{k,l}|,$$

where $\tilde{\gamma}_{1n} \geq 0$ is a tuning parameter controlling the degree of penalization. The adaptive weight for $d_{k,l} = \beta_{k,l} - \beta_{k-1,l}$ is $\tilde{\omega}_{k,l}$ and we set $\tilde{\omega}_{k,l} = |\tilde{d}_{k,l}|^{-1} = |\tilde{\beta}_{k,l} - \tilde{\beta}_{k-1,l}|^{-1}, k = 2, 3, \cdots, K, l = 0, 1, 2, \cdots, p$. Notice that $\tilde{\lambda}_k$ and $\tilde{\beta}_k$ are the estimators obtained by minimizing $R_{IV}(\tau_k, \alpha_k, \lambda_k, \beta_k)$ in equation (2.14). Write $\beta_{(l)} = (\beta_{1,l}, \beta_{2,l}, \cdots, \beta_{K,l})^T$. If $d_{k,l}$ is shrunk to 0, this implies the parameter $\beta_{(l)}$ remain the same for the $(k - 1)$th and the kth quantile levels. By employing this penalty, we can identify the quantile regions where each $\beta_{(l)}$ varies or remains unvarying.

To establish asymptotic properites of penalised Lasso estimator, we give two more assumptions.

(A10) $\max_{1 \leq i \leq n} \|X_i\| = o\left(n^{1/2}\right)$.

(A11) For $1 \leq k \leq K$, there exist some positive definite matrices Γ_k and Ω_k such that $\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} Z_{ik} Z_{ik}^T = \Gamma_k$ and $\lim_{n \to \infty} n^{-1} \sum_{i=1}^{n} f_i \{Q_{\tau_k}(Y_i|F_{-i}, X_i)\} Z_{ik} Z_{ik}^T = \Omega_k$.

12
Before theoretical properties, we first denote $\theta_0 = (\theta_{j,0}, j = 1, \cdots, (p + 2)K)$ as the true value of θ. Let the index sets $A_1 = \{1, \cdots, K\}$, $A_2 = \{j : \theta_{j,0} \neq 0, j = K + 1, \cdots, (p + 2)K\}$, and $A = A_1 \cup A_2$. We write $\theta_A = (\theta_j : j \in A)^T$, and its truth as $\theta_{A,0} = (\theta_{j,0} : j \in A)^T$.

Without loss of generality, we assume that the quantile slopes β_l vary for the first s_l ($s_l < K$) quantiles, but remain constant for the remaining $(K - s_l)$ quantile levels. Suppose the model structure is known, the oracle estimator $\hat{\theta}_A \in \mathbb{R}^{K + \sum_{l=0}^{p} s_l}$ can be obtained by

$$
\hat{\theta}_A = \arg\min_{\theta_A} \sum_{k=1}^{K} \sum_{i=1}^{n} \rho_{\tau_k} (Y_i - Z_{ik,A}^T \theta_A),
$$

where $Z_{ik,A} \in \mathbb{R}^{K + \sum_{l=0}^{p} s_l}$ contains the first $K + \sum_{l=0}^{p} s_l$ elements of Z_{ik}. The properties of the oracle and fused adaptive LASSO estimators are as following.

Proposition 2.1. Under conditions (A1) – (A3), we have

$$n^{1/2} \left(\hat{\theta}_A - \theta_{A,0} \right) \xrightarrow{d} N(0, \Sigma_A), \quad \text{as } n \to \infty$$

where $\Sigma_A = \left(\sum_{k=1}^{K} \Omega_{k,A} \right)^{-1} \left\{ \sum_{k=1}^{K} \tau_k (1 - \tau_k) \Gamma_{k,A} \right\} \left(\sum_{k=1}^{K} \Omega_{k,A} \right)^{-1}$, $\Omega_{k,A}$ and $\Gamma_{k,A}$ are the top-left $(K + \sum_{l=0}^{p} s_l) \times (K + \sum_{l=0}^{p} s_l)$ submatrices of Ω_k and Γ_k, respectively.

Theorem 2.2. Suppose that conditions (A1)-(A11) hold. If $n^{1/2} \gamma_{1n} \to 0$ and $n^{\gamma_{1n}} \to \infty$ as $n \to \infty$, we have

1. **Sparsity:**

$$\Pr \left(\left\{ j : \hat{\theta}_{j,FAL} \neq 0, j = K + 1, \cdots, (p + 2)K \right\} = A_2 \right) \to 1.$$

2. **Asymptotic normality:**

$$n^{1/2} \left(\hat{\theta}_{A,FAL} - \theta_{A,0} \right) \xrightarrow{d} N(0, \Sigma_A),$$

where Σ_A is the covariance matrix of the oracle estimator given in Proposition 1.
2.3.2 Penalised Fused Adaptive Sup-norm Estimator

In fused adaptive Lasso estimation, the slope coefficients and the interquantile slope differences are penalized individually. In this section, we first present another penalty to shrink the different quantile levels associated with each predictor as one group. Denote \(d_{(-2)} = (\beta_{1,0}, \beta_{1,1}, \cdots, \beta_{1,p})^T \in \mathbb{R}^{p+1} \) as the slope coefficients at \(\tau_1 \), \(d_{(-1)} = (\alpha_1, \cdots, \alpha_K)^T \in \mathbb{R}^K \) as the vector of the intercept terms, \(d_{(0)} = (\lambda_2 - \lambda_1, \lambda_3 - \lambda_2, \cdots, \lambda_K - \lambda_{K-1})^T \) as a vector of interquantile slope differences corresponding to the spatial lag terms, \(d_{(l)} = (\beta_{2,l} - \beta_{1,l}, \beta_{3,l} - \beta_{2,l}, \cdots, \beta_{K,l} - \beta_{K-1,l})^T \), \(l = 1, 2, \cdots, p \), as a vector of interquantile slope differences corresponding to the \(l \)th predictor. The new parameter vector \(\theta \) could be recorded as \(\theta = \left(d_{T(-2)}^T, d_{I(-1)}^T, d_{0}(T), \cdots, d_{T(p)}^T \right)^T \) and update the covariates vector \(Z_{ik} \) with the order of elements of the new parameter vector \(\theta \).

The penalised estimator could be obtained by minimizing the following objective function

\[
Q_2(\theta) = \sum_{k=1}^{K} \sum_{i=1}^{n} \rho_{\tau_k}(Y_i - Z_{ik}^T \theta) + \bar{\gamma}_{2n} \sum_{l=0}^{p} \tilde{\omega}_{(l)} \|d_{(l)}\|_{\infty},
\]

where \(\tilde{\omega}_{(l)} = (\| \tilde{d}_{(l)} \|_{\infty})^{-1} = (\max_k |\beta_{k,l} - \beta_{k-1,l}|)^{-1}, \ l = 0, 1, 2, \cdots, p \) are the group-wise adaptive weights. \(\tilde{d}_{(l)} \) are the initial estimators calculated from the quantile regression method with instrument variables by minimizing equation (2.14). \(\bar{\gamma}_{2n} > 0 \) is the tuning parameter controls the degree of the group-wise penalization on the interquantile coefficients differences.

To derive the asymptotic property of the Fused Adaptive Sup-norm method, we define the index sets \(B_1 = \{-2, -1\}, B_2 = \{l : \|d_{(0)}\| \neq 0, l = 0, 1, \cdots, p\} \), and \(B = B_1 \cup B_2 \). Assume \(\theta_B = \left(d_{(l)}^T, l \in B \right)^T \) is the nonnull subset of \(\theta \) and the true parameter vector \(\theta_{B,0} = \left(d_{(l),0}^T, l \in B \right)^T \). Without loss of generality, we assume \(\|d_{(0)}\| \neq 0 \) for \(l < g \) (\(g \geq 0 \)) and \(\|d_{(l)}\| = 0 \) for \(l = g + 1, \cdots, p \), that is, \(\beta_{(l)} \) vary across quantiles for \(l < g \), the remaining \(\beta_{(l)} \) are constant for \(l \geq g \).

Proposition 2.2. Let \(\hat{\theta}_B \) be the oracle estimator of \(\theta_{B,0} \) obtained by knowing the true structure. Assuming that conditions (A1)-(A11) hold, we have

\[
n^{1/2} \left(\hat{\theta}_B - \theta_{B,0} \right) \xrightarrow{d} N(0, \Sigma_B), \quad n \to \infty
\]

where \(\Sigma_B = \left(\sum_{k=1}^{K} \Omega_{k,B} \right)^{-1} \left\{ \sum_{k=1}^{K} \tau_k (1 - \tau_k) \Gamma_{k,B} \right\} \left(\sum_{k=1}^{K} \Omega_{k,B} \right)^{-1}, \Omega_{k,B} \) and
\(\Omega_k \) and \(\Gamma_k \), respectively, where \(m = p + 1 + K + g(k - 1) \).

Theorem 2.3 shows that when the true model structure is unknown, the fused adaptive sup-norm penalized estimator of \(\theta \) has the following oracle property. The estimator could be obtained by minimizing the objective function (2.17), \(\hat{\theta}_{\text{FAS}} = \arg \min_{\theta} Q_2(\theta) \).

Theorem 2.1. Suppose that conditions (A1)-(A11) hold. If \(n^{1/2} \tilde{\gamma}_{2n} \to 0 \) and \(n\tilde{\gamma}_{2n} \to \infty \) as \(n \to \infty \), we have

1. **Sparsity:**
 \[
 \Pr \left(\left\{ l : \| \hat{d}_{(l),\text{FAS}} \| \neq 0, l = 0, 1, \cdots, p \right\} = B_2 \right) \to 1
 \]

2. **Asymptotic normality:**
 \[
 n^{1/2} \left(\hat{\theta}_{B,\text{FAS}} - \theta_B \right) \xrightarrow{d} N(0, \Sigma_B),
 \]
 where \(\Sigma_B \) is the covariance matrix of the oracle estimator given in Proposition 2.3.

2.4 Estimation of the variance of the noise

Similar to section 2.1, we give the estimator of the variance of the noise \(\hat{\sigma}_k^2 \),

\[
\hat{\sigma}_k^2 = \frac{1}{n} \| (I_n - \lambda_k W) \cdot (Y - P_k) \|_2^2.
\]

(2.19)
3 Computation

In our work, we focus on shrinking the interquantile slope differences towards zero. The above minimization (2.16) and (2.17) are equivalent to linearly constrained minimization problems, which can be formulated as a linear programming problem with linear constraints. Minimizing (2.16) is equivalent to solving

$$\hat{\theta} = \arg \min_{\theta} \sum_{k=1}^{K} \sum_{i=1}^{n} \rho_{\tau_k} (Y_i - Z_{ki}^T \theta), \quad s.t. \sum_{k=2}^{K} \sum_{l=0}^{p} \tilde{\omega}_{k,l} |d_{k,l}| \leq t, \quad (3.1)$$

where $t > 0$ is a tuning parameter that plays a similar role as $\tilde{\gamma}_{1n}$. Adopting this constrained minimization in (3.1) gives us a natural range of the tuning parameter, that is, $t \in [0, t_0^1]$, where $t_0^1 = (K - 1)(p + 1)$, see Jiang et. al. (2014). Similarly, minimizing (2.17) is equivalent to solving

$$\hat{\theta} = \arg \min_{\theta} \sum_{k=1}^{K} \sum_{i=1}^{n} \rho_{\tau_k} (Y_i - Z_{ki}^T \theta), \quad s.t. \sum_{l=0}^{p} \tilde{\omega}_{(l)} \|d_{(l)}\|_{\infty} \leq t, \quad (3.2)$$

where the tuning parameter $t \in [0, t_2^0]$ with $t_2^0 = p + 1$, see Jiang et. al. (2014).

The choice of tuning parameter t is important for the solution to (3.1) and (3.2). We consider Akaike information criterion (AIC) to choose tuning parameter t, that is,

$$\text{AIC}(t) = \text{Loss}(t) + \frac{1}{n} \text{edf}(t),$$

where $\text{Loss}(t) = \sum_{k=1}^{K} \log \left[\sum_{i=1}^{n} \rho_{\tau_k} (Y_i - Z_{ki}^T \hat{\theta}(t)) \right]$ denotes the quantile logarithmic loss and measures the goodness of fit; see (Akaike (1974)), Bondell et al. (2010). The second term focuses on the complexity of model by degree of freedom edf(t) with a multiplier $1/n$. The effective degree of freedom is also associated with the tuning parameter t or $\tilde{\gamma}_{1n}$ and $\tilde{\gamma}_{2n}$. Here we set edf(t) as the number of nonzero unique quantile slope coefficients over predictors in both FAL and FAS approaches, see Jiang et. al. (2013), Zhao et. al. (2006). Also, we could apply Bayesian Information Criterion (BIC) to choose the tuning parameter, see Schwarz (1978). Different from AIC, the multiplier on edf(t) of BIC is $\log(n)/2n$.

The detailed procedures are in the following.

Step 1. Given $\tau_k, k = 1, 2, \cdots, K$, run ordinary quantile regression of U on V by minimizing equation (2.11), and get the predictor \hat{U}_k.

16
Step 2. Take $Z_{ki}^T = \left(1, \hat{U}_{ki}, X_i^T\right) T_k$ as the covariates and Y_i as the response, where \hat{U}_{ki} is the ith element of \hat{U}_k and T_k is defined in Section 2.2.

Step 3. For each given t, estimator $\hat{\theta}(t)$ could be obtained by solving (3.1) or (3.2).

Step 4. Choose tuning parameter t by AIC or BIC above, and denote t^*.

Step 5. Solve (3.1) and (3.2) at $t = t^*$, then the FAL or FAS estimators could be obtained.

4 Simulation Study

In this section, we conduct Monte Carlo simulations to evaluate the performance of our proposed methods for SQAR models. In each example, the simulation is repeated 500 times with 9 quantile levels $\tau \in \mathbb{S}_\tau$, where $\mathbb{S}_\tau = \{0.1, 0.2, \ldots, 0.9\}$. We compare the following approaches: the conventional quantile regression method with instrument variables (RQ), the Fused LASSO method without adaptive weights (FL), the Fused Adaptive LASSO (FAL) method, the Fused Sup-norm method without adaptive weights (FS), and the Fused Adaptive Sup-norm (FAS) method. To evaluate various approaches, we examine the median of squared error (MedSE), that is the median of $\left\|\hat{\theta}(k) - \theta(k)\right\|^2$ over 500 simulations, which has been used in Liu et. al (2018) and Liang and Li (2009).

The data generating process is based on the model (2.8). Let the spatial weight matrix $W_n = I_{m_1} \otimes B_{m_2}$, where $B_{m_2} = (1/(m_2 - 1))(1_{m_2}1_{m_2} - I_{m_2})$, \otimes is the Kronecker product and 1_{m_2} is an m_2-dimensional column vector of ones, see Case (1991) and Lee (2003).

Example 1. The model in this example only has a univariate predictor. The data are generated from

$$Y_i = \alpha(\tau_n) + \lambda(\tau_n)U_i + \beta(\tau_n)X_i + e_i, \quad i = 1, \ldots, n, \quad (4.1)$$

where τ_n is randomly from \mathbb{S}_τ, $\alpha(\tau_n) = \alpha + b F_n^{-1}(\tau_n)$, $\lambda(\tau_n) = \lambda + c_0 F_n^{-1}(\tau_n)$, $\beta(\tau_n) = \beta + c_1 F_n^{-1}(\tau_n)$. $F_n^{-1}(\tau_n)$ is the τ_n quantile of distribution F_n. Two distribution F_n are considered as $N(0, 1)$. X_i are generated from $U(0, 1)$. The sample size n is chosen as $n = m_1 \times m_2 = 80, 120, 160$, where $m_2 = 4$ and $m_1 =$
20, 30, 40. \(\lambda \) is chosen as \(\lambda = 0.2, 0.5, 0.8 \), implying the low autocorrelation, medium autocorrelation and high autocorrelation respectively. \(\alpha \) is chosen as \(\alpha = 3 \), and \(\beta \) is chosen as \(\beta = 3 \). Four settings of regression coefficients are considered as

I: \(b = 0.5, c_0 = 0.1 \) and \(c_1 = 0.2 \). The data are from a heteroscedastic model, where all the coefficients vary across quantile levels.

II: \(b = 0.5, c_0 = 0 \) and \(c_1 = 0.2 \). The data are from a heteroscedastic model, where intercept term \(\alpha(\tau_{n,i}) \) and slope coefficients of predictor \(\beta(\tau_{n,i}) \) vary across quantile levels, the spatial lag parameter is a constant.

III: \(b = 0.5, c_0 = 0.1 \) and \(c_1 = 0 \). The data are from a heteroscedastic model, where intercept term \(\alpha(\tau_{n,i}) \) and spatial lag parameter \(\lambda(\tau_{n,i}) \) vary across quantile levels, the slope coefficient of predictor \(\beta(\tau_{n,i}) \) stays invariant for all quantiles.

IV: \(b = 0.5, c_0 = 0 \) and \(c_1 = 0 \). The data are from a homoscedastic model, where only the intercept term \(\alpha(\tau_{n,i}) \) varies across quantile levels, the spatial lag parameter \(\lambda(\tau_{n,i}) \) and slope coefficients of predictor \(\beta(\tau_{n,i}) \) stay invariant for all quantiles.

Table 1-3 report the MedSE of coefficients for four settings where \(F_n \) are considered as \(N(0, 1) \). Apparently, FL, FAL, FS and FAS methods have smaller MedSE than the conventional RQ method. Among them, FAL or FL performs best. Higher autocorrelation in the SQAR models brings larger MedSE. And with the increasing of sample size, the MedSE become smaller. Observing the performance for four settings, when \(\lambda \) and \(\beta \) are invariant for all quantiles, the penalized estimation methods have the smallest MedSE; when \(\lambda \) varies across quantile levels, the MedSE were little affected, no matter whether the \(\beta \) is varying or not.

Example 2. To explore the influence of the \(F_n \) distribution, we consider \(F_n \) as \(t(3) \) distribution in this example. Other settings are as same as Example 1.

All the results are shown in Table 4-6. Compared with Example 1, the performance of five methods become worse, especially the conventional RQ method.
Table 1: The MedSE of coefficients for four settings with $n = 80$, where F_n is $N(0,1)$ in Example 1.

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$\lambda = 0.2$									
RQ	0.7361	0.6044	0.4944	0.4103	0.3659	0.3810	0.4715	0.4479	0.6859
FL	0.2756	0.2542	0.2548	0.2642	0.2571	0.2742	0.2832	0.2564	0.2720
FAL	0.3082	0.2993	0.2655	0.2611	0.2556	0.2702	0.2778	0.2731	0.3177
FS	0.3647	0.3566	0.3283	0.3091	0.2827	0.2622	0.2870	0.2950	0.3267
FAS	0.3597	0.3283	0.3292	0.3003	0.2678	0.2707	0.2610	0.2767	0.3384

$\lambda = 0.5$									
RQ	0.6828	0.5190	0.4522	0.3550	0.3288	0.3237	0.4073	0.4219	0.6336
FL	0.2356	0.2410	0.2433	0.2404	0.2341	0.2361	0.2233	0.2246	0.2202
FAL	0.2535	0.2382	0.2516	0.2496	0.2351	0.2299	0.2084	0.2224	0.2158
FS	0.3287	0.3094	0.3015	0.2781	0.2522	0.2532	0.2412	0.2585	0.3374
FAS	0.3338	0.3151	0.2991	0.2865	0.2684	0.2438	0.2412	0.2575	0.3193

$\lambda = 0.7$									
RQ	0.6060	0.4539	0.4794	0.4002	0.3677	0.3498	0.4052	0.3930	0.4090
FL	0.2265	0.2094	0.2101	0.2092	0.2147	0.2137	0.2144	0.2153	0.2160
FAL	0.2185	0.1980	0.2035	0.2000	0.1994	0.2000	0.1980	0.1980	0.1980
FS	0.2385	0.2207	0.2162	0.2162	0.2162	0.2162	0.2162	0.2162	0.2162
FAS	0.2375	0.2211	0.2156	0.2156	0.2156	0.2156	0.2156	0.2156	0.2156

$\lambda = 0.9$									
RQ	0.5216	0.3931	0.2813	0.2674	0.1991	0.2374	0.3063	0.3619	0.5391
FL	0.1634	0.1378	0.1383	0.1276	0.1257	0.1423	0.1600	0.1860	0.1901
FAL	0.1600	0.1407	0.1465	0.1417	0.1321	0.1530	0.1748	0.1659	0.1995
FS	0.2198	0.2033	0.1665	0.1686	0.1426	0.1513	0.1999	0.1762	0.2564
FAS	0.2373	0.1916	0.1661	0.1537	0.1343	0.1355	0.1567	0.1698	0.2459

Note: $b = 0.5$, $c_1 = 0.1$, $c_2 = 0.2$.
Table 2: The MedSE of coefficients for four settings with $n = 120$, where F_n is $N(0,1)$
in Example 1.

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$\lambda = 0.2$									
RQ	0.3559	0.3513	0.2660	0.2676	0.2541	0.2588	0.3249	0.3858	0.4761
FL	0.1843	0.1782	0.1672	0.1642	0.1666	0.1802	0.1771	0.1977	0.2607
FAL	0.1967	0.1877	0.1711	0.1678	0.1617	0.1732	0.1786	0.1872	0.2421
FS	0.2546	0.2085	0.1920	0.1888	0.1849	0.2013	0.2268	0.2576	0.2756
FAS	0.2332	0.2090	0.1842	0.1855	0.1814	0.2087	0.2133	0.2416	0.2691
$\lambda = 0.3$									
RQ	0.3533	0.2052	0.2014	0.1770	0.1706	0.1809	0.1973	0.1951	0.3334
FL	0.1335	0.1184	0.1062	0.1274	0.1304	0.1198	0.1364	0.1366	0.1580
FAL	0.1437	0.1108	0.1035	0.1274	0.1292	0.1293	0.1361	0.1732	
FS	0.2327	0.1541	0.1356	0.1451	0.1404	0.1525	0.1479	0.1699	0.1857
FAS	0.2098	0.1421	0.1287	0.1271	0.1323	0.1339	0.1267	0.1676	0.1852
$\lambda = 0.5$									
RQ	0.3350	0.2763	0.2539	0.2537	0.1949	0.2552	0.3135	0.3532	0.4313
FL	0.1985	0.1680	0.1590	0.1591	0.1540	0.1562	0.1498	0.1703	0.1812
FAL	0.1865	0.1712	0.1598	0.1710	0.1548	0.1512	0.1533	0.1737	0.2055
FS	0.2329	0.1950	0.1785	0.1763	0.1631	0.1755	0.1875	0.2222	0.2546
FAS	0.2114	0.1872	0.1728	0.1719	0.1588	0.1691	0.1825	0.1982	0.2368

Table 2: The MedSE of coefficients for four settings with $n = 120$, where F_n is $N(0,1)$ in Example 1.
Table 3: The MedSE of coefficients for four settings with $n = 160$, where F_n is $N(0, 1)$ in Example 1.

τ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
b									
c_0									
c_1									
b									
c_0									
c_1									

$\lambda = 0.2$
b
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

$\lambda = 0.5$
b
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

$\lambda = 0.8$
b
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
Table 4: The MedSE of coefficients for four settings with \(n = 80 \), where \(F_n \) is \(t(3) \) in Example 2.

\(\tau \)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RQ	0.9463	0.6905	0.6112	0.4751	0.4608	0.5056	0.5749	0.5150	0.8897
FL	0.3711	0.3123	0.2972	0.2714	0.2998	0.3217	0.3554	0.3221	0.3635
FAL	0.3259	0.3855	0.3135	0.2878	0.3242	0.3289	0.3599	0.3862	0.3840
FS	0.4135	0.4274	0.3887	0.3657	0.3687	0.3722	0.3765	0.3420	0.4699
FAS	0.4240	0.4209	0.3764	0.3665	0.3608	0.3514	0.3730	0.3537	0.4267
\(\lambda = 0.2 \)									
RQ	0.5850	0.3408	0.3053	0.3099	0.2482	0.2472	0.2909	0.3254	0.4617
FL	0.1949	0.1621	0.1686	0.1763	0.1823	0.1820	0.1830	0.1881	0.2137
FAL	0.2013	0.1549	0.1644	0.1731	0.1754	0.1765	0.1878	0.1843	0.1993
FS	0.2971	0.2272	0.2267	0.2136	0.1907	0.1982	0.1857	0.2158	0.2823
FAS	0.2947	0.2145	0.2173	0.2185	0.1888	0.1891	0.1947	0.2047	0.2210
\(\lambda = 0.5 \)									
RQ	0.7528	0.6191	0.5385	0.4966	0.4438	0.4160	0.5480	0.4863	0.6749
FL	0.3091	0.3052	0.3056	0.2909	0.2579	0.2538	0.2722	0.2625	0.2995
FAL	0.2914	0.2994	0.2899	0.2813	0.2751	0.2657	0.2614	0.2641	0.2733
FS	0.3966	0.3516	0.3631	0.3254	0.3099	0.3101	0.3136	0.2948	0.3602
FAS	0.3884	0.3876	0.3841	0.3098	0.2958	0.3178	0.3256	0.3299	0.3552
\(\lambda = 0.8 \)									
RQ	0.5243	0.2756	0.2604	0.2807	0.2193	0.2225	0.2736	0.3078	0.4781
FL	0.1594	0.1452	0.1547	0.1565	0.1553	0.1378	0.1319	0.1266	0.1557
FAL	0.1608	0.1515	0.1552	0.1466	0.1512	0.1512	0.1498	0.1434	0.1590
FS	0.2565	0.1778	0.1978	0.2169	0.1954	0.1693	0.1648	0.1711	0.2379
FAS	0.2359	0.1791	0.1969	0.2011	0.1849	0.1588	0.1381	0.1776	0.2206
\(\lambda = 1 \)									
RQ	1.1589	0.2932	0.8547	0.8133	0.7553	0.8164	1.0451	1.2126	1.9087
FL	0.4223	0.4224	0.4194	0.4478	0.4443	0.4732	0.4551	0.4439	0.4976
FAL	0.4094	0.4163	0.4104	0.4762	0.4448	0.5036	0.4843	0.4590	0.5056
FS	0.4645	0.4472	0.4872	0.4819	0.4737	0.4915	0.5183	0.5250	0.5645
FAS	0.5062	0.4251	0.4910	0.5114	0.4871	0.5441	0.5629	0.5339	0.6779
\(\lambda = 2 \)									
RQ	0.7590	0.3768	0.3172	0.2952	0.2585	0.2803	0.2697	0.3597	0.5286
FL	0.2036	0.1673	0.1550	0.1606	0.1552	0.1471	0.1521	0.1645	0.1947
FAL	0.1784	0.1540	0.1587	0.1504	0.1515	0.1423	0.1573	0.1847	0.2267
FS	0.2299	0.2068	0.2110	0.1969	0.1785	0.1827	0.1720	0.2095	0.2617
FAS	0.2409	0.1891	0.2126	0.1880	0.1895	0.1755	0.1746	0.2045	0.2548

22
Table 5: The MedSE of coefficients for four settings with $n = 120$, where F_n is $t(3)$ in Example 2.

λ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
τ									
γ									

$\lambda = 0.2$

RQ	0.4104	0.4361	0.3280	0.2880	0.2693	0.3108	0.3802	0.4710	0.5317
FL	0.2118	0.2092	0.1890	0.1844	0.2010	0.2178	0.2423	0.2572	0.2688
FAL	0.2145	0.1899	0.1834	0.1953	0.2002	0.2130	0.2550	0.2624	0.2851
FS	0.2874	0.2706	0.2321	0.2404	0.2121	0.2253	0.2664	0.2877	0.3488
FAS	0.2837	0.2610	0.2123	0.2263	0.2047	0.2371	0.2522	0.3010	0.3334

$\lambda = 0.5$

RQ	0.3577	0.2137	0.2095	0.1974	0.1949	0.1898	0.2230	0.2040	0.3143
FL	0.1469	0.1153	0.1183	0.1406	0.1267	0.1240	0.1310	0.1430	0.1866
FAL	0.1398	0.1193	0.1151	0.1247	0.1317	0.1251	0.1385	0.1520	0.1875
FS	0.2049	0.1729	0.1602	0.1550	0.1443	0.1592	0.1576	0.1688	0.1964
FAS	0.1733	0.1372	0.1378	0.1375	0.1309	0.1353	0.1553	0.1411	0.1521

$\lambda = 0.8$

RQ	0.3891	0.1996	0.2927	0.3027	0.2430	0.2814	0.3272	0.3952	0.5016
FL	0.1793	0.1876	0.1789	0.1872	0.1806	0.1835	0.1915	0.2071	0.2162
FAL	0.1837	0.1913	0.1750	0.1854	0.1741	0.1697	0.1799	0.1929	0.2057
FS	0.2574	0.2589	0.2316	0.2193	0.2038	0.1993	0.2545	0.2660	0.2834
FAS	0.2414	0.2387	0.2158	0.2106	0.1836	0.2029	0.2554	0.2647	0.2742

$\lambda = 1.0$

RQ	0.3833	0.2078	0.1946	0.1637	0.1712	0.1711	0.1808	0.1960	0.2097
FL	0.1259	0.1229	0.1129	0.1296	0.1195	0.1216	0.1181	0.1227	0.1140
FAL	0.1215	0.1188	0.1069	0.1170	0.1205	0.1138	0.1105	0.1115	0.1126
FS	0.2091	0.1548	0.1514	0.1427	0.1390	0.1431	0.1400	0.1480	0.1654
FAS	0.1713	0.1367	0.1394	0.1387	0.1388	0.1386	0.1427	0.1247	0.1546

Footnotes

1. $\theta = 0.5$, $c_0 = 0.1$, $c_1 = 0.2$
2. $\theta = 0.5$, $c_0 = 0.1$, $c_2 = 0.2$
3. $\theta = 0.5$, $c_0 = 0.1$, $c_2 = 0.2$
Table 6: The MedSE of coefficients for four settings with \(n = 160 \), where \(F_n \) is \(t(3) \) in Example 2.

| \(\lambda = 0.2 \) | \(\tau \) | \(0.1 \) | \(0.2 \) | \(0.3 \) | \(0.4 \) | \(0.5 \) | \(0.6 \) | \(0.7 \) | \(0.8 \) | \(0.9 \) |
|---|---|---|---|---|---|---|---|---|---|
| RQ | 0.3097 | 0.2284 | 0.2403 | 0.2530 | 0.2083 | 0.2071 | 0.2702 | 0.3022 | 0.3597 |
| FL | 0.1474 | 0.1383 | 0.1404 | 0.1374 | 0.1436 | 0.1441 | 0.1551 | 0.1716 | 0.1653 |
| FAL | 0.1621 | 0.1475 | 0.1513 | 0.1484 | 0.1499 | 0.1549 | 0.1544 | 0.1668 | 0.1792 |
| FS | 0.1972 | 0.1790 | 0.1714 | 0.1590 | 0.1735 | 0.1553 | 0.1816 | 0.2043 | 0.2582 |
| FAS | 0.1854 | 0.1781 | 0.1664 | 0.1523 | 0.1541 | 0.1448 | 0.1640 | 0.1929 | 0.2283 |
| \(\lambda = 0.5 \) | \(\tau \) | \(0.1 \) | \(0.2 \) | \(0.3 \) | \(0.4 \) | \(0.5 \) | \(0.6 \) | \(0.7 \) | \(0.8 \) | \(0.9 \) |
| RQ | 0.2424 | 0.1734 | 0.1488 | 0.1556 | 0.1471 | 0.1424 | 0.1439 | 0.1996 | 0.2201 |
| FL | 0.1145 | 0.1013 | 0.0997 | 0.1001 | 0.1008 | 0.1045 | 0.1096 | 0.1116 | 0.1200 |
| FAL | 0.1218 | 0.1059 | 0.1063 | 0.0957 | 0.0927 | 0.1094 | 0.1077 | 0.1195 | 0.1414 |
| FS | 0.1449 | 0.1158 | 0.1160 | 0.1211 | 0.1117 | 0.1156 | 0.1171 | 0.1319 | 0.1591 |
| FAS | 0.1227 | 0.1120 | 0.1067 | 0.1048 | 0.0996 | 0.1166 | 0.1148 | 0.1203 | 0.1582 |
| \(\lambda = 0.8 \) | \(\tau \) | \(0.1 \) | \(0.2 \) | \(0.3 \) | \(0.4 \) | \(0.5 \) | \(0.6 \) | \(0.7 \) | \(0.8 \) | \(0.9 \) |
| RQ | 0.3475 | 0.2341 | 0.2922 | 0.3561 | 0.3093 | 0.4084 | 0.4312 | 0.4713 | 1.0290 |
| FL | 0.1856 | 0.1806 | 0.1864 | 0.2019 | 0.2045 | 0.1950 | 0.2251 | 0.2278 | 0.2455 |
| FAL | 0.2224 | 0.2011 | 0.1955 | 0.1996 | 0.2088 | 0.2056 | 0.2225 | 0.2238 | 0.2662 |
| FS | 0.2623 | 0.2011 | 0.2148 | 0.2035 | 0.1958 | 0.2321 | 0.2523 | 0.2772 | 0.3963 |
| FAS | 0.2528 | 0.1916 | 0.2237 | 0.2100 | 0.2110 | 0.2437 | 0.2758 | 0.2753 | 0.4243 |
| \(\lambda = 1 \) | \(\tau \) | \(0.1 \) | \(0.2 \) | \(0.3 \) | \(0.4 \) | \(0.5 \) | \(0.6 \) | \(0.7 \) | \(0.8 \) | \(0.9 \) |
| RQ | 0.4755 | 0.3241 | 0.2922 | 0.3561 | 0.3093 | 0.4094 | 0.4312 | 0.4713 | 1.0290 |
| FL | 0.1856 | 0.1806 | 0.1864 | 0.2019 | 0.2045 | 0.1950 | 0.2251 | 0.2278 | 0.2455 |
| FAL | 0.2224 | 0.2011 | 0.1955 | 0.1996 | 0.2088 | 0.2056 | 0.2225 | 0.2238 | 0.2662 |
| FS | 0.2623 | 0.2011 | 0.2148 | 0.2035 | 0.1958 | 0.2321 | 0.2523 | 0.2772 | 0.3963 |
| FAS | 0.2528 | 0.1916 | 0.2237 | 0.2100 | 0.2110 | 0.2437 | 0.2758 | 0.2753 | 0.4243 |

24
Example 3. To further study the difference between fused LASSO and fused Sup-norm, we consider a more complex example. The data are generated from model

\[Y_i = \alpha(\tau_{n,i}) + \lambda U_i + \beta(\tau_{n,i})X_i + e_i, \quad i = 1, \cdots, n, \tag{4.2} \]

where \(\tau_{n,i} \) is randomly from \(S_\tau \), \(\alpha(\tau_{n,i}) = \alpha + b F_n^{-1}(\tau_{n,i}), \)

\[\beta(\tau_{n,i}) = \begin{cases} \beta + c_1 F_n^{-1}(\tau_{n,i}) & 0 < \tau_{n,i} < 0.49, \\ \beta & 0.49 \leq \tau_{n,i} < 1. \end{cases} \]

We only consider the situation where \(F_n \) is the standard normal distribution \(N(0,1) \), the sample size \(n = 120 \). The spatial lag parameter \(\lambda \) is a constant, and we consider three situations \(\lambda = 0.2, 0.5, 0.8 \). \(\alpha \) is chosen as \(\alpha = 3 \), the corresponding varying factor \(b = 0.5 \), and \(\beta \) is chosen as \(\beta = 3 \), the corresponding varying factor \(c_1 = 0.2 \). Therefore, the model is heteroscedastic, where the intercept term \(\beta \) is varying across all the quantile levels, but the slope coefficient of predictor is not. \(\beta(\tau_{n,i}) \) varies for the quantiles \{0.1, 0.2, 0.3, 0.4\}, but remains a constant for the quantiles \{0.5, 0.6, 0.7, 0.8, 0.9\}.

The results are presented in Table 7. Apparently, FAL and FL methods are better than FS and FAS methods when detecting the insignificant of partial-varying coefficients.

Example 4. The model in this example has bivariate predictors. The data are generated from

\[Y_i = \alpha(\tau_{n,i}) + \lambda(\tau_{n,i})U_i + \beta_1(\tau_{n,i})X_{i1} + \beta_2(\tau_{n,i})X_{i2} + e_i, \quad i = 1, \cdots, n, \tag{4.3} \]

where \(\tau_{n,i} \) is still randomly from \(S_\tau \), \(\alpha(\tau_{n,i}) = \alpha + b F_n^{-1}(\tau_{n,i}), \lambda(\tau_{n,i}) = \lambda + c_0 F_n^{-1}(\tau_{n,i}), \beta_1(\tau_{n,i}) = \beta_1 + c_1 F_n^{-1}(\tau_{n,i}), \beta_2(\tau_{n,i}) = \beta_2 + c_2 F_n^{-1}(\tau_{n,i}) \). In Example 1, we discussed the case with varying intercept term. Without loss of generality, we consider \(\alpha = b = 0 \). \(F_n^{-1}(\tau_{n,i}) \) is the \(\tau_{n,i} \) quantile of distribution \(N(0,1) \). \(e_i \overset{i.i.d.}{\sim} N(0,1) \) and \(X_{i1}, X_{i2} \) are generated from \(U(0,1) \) independently. If \(c_0 = c_1 = c_2 = 0 \), (4.3) is a homoscedastic model with the constant spatial parameter \(\lambda(\tau_{n,i}) = \lambda \) and constant quantile slope \(\beta_1(\tau_{n,i}) = \beta_1, \beta_2(\tau_{n,i}) = \beta_2 \). However, if at least one of \(c_0, c_1, c_2 \) is not zero, (4.3) becomes a heteroscedastic model with \(\lambda(\tau_{n,i}), \beta_1(\tau_{n,i}), \) or \(\beta_2(\tau_{n,i}) \) varying in \(\tau_{n,i} \). The sample size \(n \) is chosen as \(n = 120 \). \(\lambda \) is chosen as \(\lambda = 0.2, 0.5, 0.8 \). \(\beta_1 \) is chosen as \(\beta_1 = 2 \) and \(\beta_2 \) is chosen as \(\beta_2 = 3 \). We consider the following five settings.
Table 7: The MedSE of coefficients in Example 3.

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RQ	0.3528	0.2100	0.1968	0.1715	0.1655	0.1730	0.2053	0.2288	0.3421
FL	0.1525	0.1176	0.1119	0.1182	0.1159	0.1129	0.1188	0.1419	0.1797
FAL	0.1684	0.1224	0.1202	0.1229	0.1167	0.1106	0.1136	0.1325	0.1809
FS	0.2295	0.1713	0.1409	0.1451	0.1230	0.1418	0.1288	0.1752	0.2187
FAS	0.2050	0.1558	0.1378	0.1319	0.1299	0.1333	0.1224	0.1523	0.1975

\(\lambda = 0.2 \)

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RQ	0.3437	0.2450	0.1589	0.1630	0.1605	0.1901	0.1848	0.2535	0.4139
FL	0.1418	0.1153	0.0962	0.1095	0.1015	0.1009	0.1062	0.1217	0.1637
FAL	0.1411	0.1023	0.0979	0.1023	0.0999	0.1061	0.1037	0.1193	0.1442
FS	0.1796	0.1272	0.1236	0.1328	0.1257	0.1353	0.1270	0.1587	0.2367
FAS	0.1878	0.1241	0.1213	0.1247	0.1220	0.1225	0.1141	0.1611	0.2062

\(\lambda = 0.5 \)

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RQ	0.5329	0.3991	0.3059	0.3229	0.3667	0.3626	0.3682	0.4810	0.6016
FL	0.1641	0.1564	0.1192	0.1224	0.1148	0.1263	0.1314	0.1298	0.1518
FAL	0.1678	0.1239	0.1163	0.1203	0.1291	0.1262	0.1255	0.1329	0.1551
FS	0.2170	0.1963	0.1527	0.1546	0.1463	0.1437	0.1345	0.1445	0.1768
FAS	0.2310	0.1957	0.1552	0.1780	0.1628	0.1457	0.1549	0.1719	0.2528

\(\lambda = 0.8 \)
I: \(c_0 = 0.1, \ c_1 = 0.3, \ c_2 = 0.5 \). In this case, all the parameters are dependent on quantiles.

II: \(c_0 = 0, \ c_1 = 0.3, \ c_2 = 0.5 \). In this case, spatial lag parameter is constant and the impact \(\beta \) of the covariate \(X \) on \(Y \) is different at different quantiles.

III: \(c_0 = 0.1, \ c_1 = 0, \ c_2 = 0.5 \). In this case, \(\beta_1(\tau_{n,i}) \) stays invariant for all quantiles. The spatial lag parameter and \(\beta_2(\tau_{n,i}) \) vary across quantiles.

IV: \(c_0 = 0, \ c_1 = 0, \ c_2 = 0.5 \). Only \(\beta_2(\tau_{n,i}) \) varies across quantiles. The spatial lag parameter and \(\beta_1(\tau_{n,i}) \) stay invariant for all quantiles.

V: \(c_0 = 0, \ c_1 = 0, \ c_2 = 0 \). In this case, all the parameters stay invariant for all quantiles.

Table 8 - 10 reveals the MedSE of coefficients in the bivariate case with \(\lambda = 0.2, \ 0.5, \ 0.8, \) and \(F_n \) is chosen to be standard normal. We consider five settings and the results show that our proposed approaches yield smaller MedSE than RQ method. The MedSE become smaller with more constant coefficients. And with the increasing of spatial lag parameters, the MedSE become greater.

5 Real data

We apply our proposed methods to analyze a classical crime dataset, which were originally from Anselin, L.(1988). The dataset contains 49 observations and 22 variables, in which 16 variables are the ID values. The response variable is residential burglaries and vehicle thefts per thousand households in the neighborhood (CRIME). There are 5 covariates: housing value (HOVAL), household income (INC), open space in neighborhood (OPEN), percentage housing units without plumbin (PLUMB), distance to CBD (DISCBD). Our purpose is to investigate the effects of covariates on CRIME in Columbus.

By classical SAR model, only two covariates are significance, that is, HOVAL and INC. The estimated SQAR model is as follows,

\[
 \text{CRIME} = \text{Constant}(\tau) + \lambda(\tau) W \cdot \text{CRIME} + \beta_1(\tau) \text{HOVAL} + \beta_2(\tau) \text{INC} + \epsilon \quad (5.1)
\]

We employ the classical quantile regression method(RQ), FAS, FAL to the dataset and \(\tau = \{0.1, 0.2, \ldots, 0.9\} \). The results are shown in Figure 1.
Table 8: The MedSE of coefficients for five settings with $n = 120$ and $\lambda = 0.2$ in Example 4.

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
I:									
RQ	0.8033	0.5007	0.4440	0.3441	0.3685	0.4010	0.4801	0.5829	0.9362
FL	0.5635	0.3454	0.2809	0.2680	0.2609	0.3115	0.3901	0.5320	0.9175
FAL	0.5400	0.3540	0.2742	0.2517	0.2673	0.3117	0.3973	0.5431	0.8370
FS	0.6291	0.3911	0.3269	0.2983	0.3160	0.3563	0.4243	0.5442	0.8868
FAS	0.5681	0.3778	0.2781	0.2921	0.2880	0.3439	0.3998	0.5227	0.8777
II:									
RQ	0.7965	0.4997	0.3366	0.3215	0.3160	0.3387	0.3817	0.5284	0.9532
FL	0.5703	0.3350	0.2513	0.2328	0.2434	0.2684	0.3385	0.5158	0.8735
FAL	0.5484	0.3407	0.2488	0.2115	0.2301	0.2811	0.3452	0.5295	0.8813
FS	0.6624	0.4086	0.2847	0.2547	0.2562	0.3110	0.3489	0.4928	0.8329
FAS	0.6230	0.3879	0.2687	0.2352	0.2467	0.2891	0.3541	0.5090	0.8444
III:									
RQ	0.7395	0.4766	0.4014	0.3721	0.3785	0.4070	0.4493	0.4778	0.7583
FL	0.4862	0.3034	0.2887	0.2640	0.2823	0.2970	0.3362	0.4632	0.7052
FAL	0.4786	0.3280	0.2777	0.2664	0.2713	0.2903	0.3579	0.4379	0.6769
FS	0.5622	0.3996	0.3191	0.3172	0.3189	0.3366	0.3870	0.4560	0.7231
FAS	0.5506	0.3748	0.2904	0.2898	0.2849	0.3069	0.3847	0.4518	0.7210
IV:									
RQ	0.6641	0.4541	0.3526	0.3057	0.2977	0.3297	0.3825	0.4640	0.8274
FL	0.4838	0.3007	0.2290	0.2001	0.2042	0.2490	0.2973	0.4145	0.6819
FAL	0.5098	0.3284	0.2502	0.2224	0.2131	0.2480	0.3072	0.4176	0.6696
FS	0.5654	0.3640	0.2986	0.2500	0.2454	0.2688	0.3275	0.4427	0.7348
FAS	0.5460	0.3213	0.2666	0.2291	0.2283	0.2562	0.3048	0.4378	0.7472
V:									
RQ	0.5055	0.3710	0.3219	0.2688	0.2662	0.2597	0.3078	0.3604	0.5291
FL	0.2027	0.2005	0.1919	0.1812	0.1860	0.1935	0.1886	0.1922	0.1933
FAL	0.2253	0.2043	0.2025	0.1890	0.1890	0.1816	0.1919	0.1897	0.2037
FS	0.3594	0.2992	0.2432	0.2233	0.2109	0.2282	0.2352	0.2740	0.3784
FAS	0.2953	0.2764	0.2317	0.2079	0.1943	0.1992	0.2121	0.2371	0.2996
Table 9: The MedSE of coefficients for five settings with $n = 120$ and $\lambda = 0.5$ in Example 4.

	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RQ	0.8961	0.6095	0.4799	0.5328	0.5204	0.5220	0.6176	0.8057	1.0785
FL	0.5607	0.3738	0.2925	0.3015	0.3251	0.3823	0.4554	0.6125	0.9551
FAL	0.5350	0.3600	0.2950	0.3014	0.3596	0.3866	0.4531	0.6334	0.9590
FS	0.6476	0.4382	0.3265	0.3375	0.3315	0.4132	0.5337	0.6160	0.9562
FAS	0.6438	0.4060	0.3355	0.3262	0.3330	0.3882	0.5112	0.5784	0.8777

I: $c_0 = 0.1, c_1 = 0.3, c_2 = 0.5$

RQ	0.8822	0.5761	0.3761	0.3572	0.3865	0.3471	0.4494	0.6523	1.1157
FL	0.5643	0.3087	0.2390	0.2412	0.2531	0.2639	0.3508	0.5010	0.8318
FAL	0.5683	0.3172	0.2429	0.2402	0.2458	0.2643	0.3314	0.4850	0.8504
FS	0.6297	0.3754	0.2775	0.2747	0.2771	0.3062	0.3744	0.5050	0.8529
FAS	0.6531	0.3594	0.2730	0.2630	0.2814	0.2854	0.3809	0.5090	0.8954

II: $c_0 = 0, c_1 = 0.3, c_2 = 0.5$

RQ	0.8026	0.5894	0.5010	0.5291	0.5281	0.5107	0.6593	0.7243	1.0619
FL	0.4746	0.3600	0.3301	0.3232	0.3280	0.3695	0.4449	0.5231	0.7656
FAL	0.4541	0.3330	0.3369	0.3434	0.3431	0.3491	0.4395	0.5630	0.7463
FS	0.5348	0.3928	0.3539	0.3607	0.3661	0.3705	0.4764	0.5533	0.7249
FAS	0.5453	0.4206	0.3537	0.3585	0.3572	0.3793	0.5099	0.5410	0.7075

III: $c_0 = 0.1, c_1 = 0, c_2 = 0.5$

RQ	0.8468	0.5404	0.4083	0.3515	0.3494	0.3177	0.4899	0.6032	1.0036
FL	0.4715	0.3083	0.2475	0.2147	0.2432	0.2602	0.3104	0.4143	0.7018
FAL	0.4920	0.3237	0.2312	0.2187	0.2350	0.2416	0.3092	0.4243	0.6637
FS	0.5684	0.3638	0.3157	0.2682	0.2590	0.2714	0.3340	0.4387	0.7120
FAS	0.5145	0.3572	0.2896	0.2353	0.2584	0.2719	0.3260	0.4204	0.6686

IV: $c_0 = 0, c_1 = 0, c_2 = 0.5$

RQ	0.5819	0.3920	0.3408	0.3645	0.3314	0.3042	0.3463	0.472054	0.706793
FL	0.2112	0.2069	0.1998	0.2012	0.1990	0.2086	0.2105	0.202647	0.212494
FAL	0.2280	0.2116	0.2059	0.2092	0.2079	0.2020	0.2082	0.1997	0.2219
FS	0.3151	0.2753	0.2349	0.2382	0.2285	0.2302	0.2544	0.2795	0.3711
FAS	0.2996	0.2467	0.2249	0.2117	0.2164	0.2173	0.2382	0.2670	0.3311
Table 10: The MedSE of coefficients for five settings with $n = 120$ and $\lambda = 0.8$ in Example 4.

Setting	c_0	c_1	c_2	τ					
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
I:									
RQ	1.9994	1.6943	1.6610	1.7097	1.8468	2.2542	2.2902	3.1073	5.2059
FL	0.8370	0.6886	0.6897	0.6765	0.7409	0.8420	0.8532	1.0659	1.4000
FAL	0.8044	0.6621	0.6261	0.6819	0.7391	0.8003	0.9006	1.0408	1.4038
FS	0.8356	0.6922	0.6312	0.6736	0.7508	0.8771	0.9533	1.0263	1.3788
FAS	0.9016	0.7883	0.7651	0.7855	0.8155	0.8308	0.9737	1.1282	1.4742
II:									
RQ	1.5138	1.0281	0.7203	0.7340	0.6468	0.6783	0.8807	1.0346	1.7676
FL	0.5750	0.3693	0.2583	0.2652	0.2650	0.3129	0.4106	0.5086	0.8215
FAL	0.6591	0.3779	0.2819	0.2785	0.2630	0.2892	0.3832	0.5095	0.8616
FS	0.6431	0.4324	0.3196	0.2936	0.2824	0.2995	0.3876	0.4986	0.8399
FAS	0.7495	0.4498	0.3583	0.3119	0.2852	0.2944	0.3884	0.5192	0.8596
III:									
RQ	1.9433	1.9610	1.7021	1.7796	1.9362	2.2630	2.7850	3.6951	6.2834
FL	0.7960	0.7297	0.7047	0.7242	0.7972	0.8743	0.9738	1.1403	1.5335
FAL	0.7290	0.7189	0.6964	0.7204	0.7888	0.8812	0.9843	1.1594	1.5945
FS	0.9143	0.7436	0.7693	0.7740	0.8588	0.9101	1.0490	1.1737	1.5680
FAS	0.8928	0.8439	0.8130	0.8313	0.9437	0.9508	1.0541	1.2682	1.7148
IV:									
RQ	1.4731	0.9350	0.7291	0.6092	0.6399	0.6692	0.8357	0.8907	1.6522
FL	0.4796	0.3202	0.2616	0.2526	0.2514	0.2806	0.3610	0.4515	0.6561
FAL	0.4962	0.3408	0.2992	0.2399	0.2455	0.2583	0.3529	0.4630	0.7212
FS	0.5578	0.4001	0.3301	0.2807	0.2873	0.2827	0.3509	0.4725	0.6851
FAS	0.6292	0.4584	0.3369	0.2831	0.2725	0.3005	0.3639	0.4681	0.7756
V:									
RQ	1.0086	0.7686	0.7119	0.5718	0.5442	0.5357	0.6989	0.7088	1.3848
FL	0.2529	0.2472	0.2474	0.2464	0.2251	0.2223	0.2259	0.2436	0.2665
FAL	0.2623	0.2417	0.2337	0.2428	0.2214	0.2143	0.2301	0.2301	0.2563
FS	0.3439	0.3035	0.2886	0.2664	0.2389	0.2287	0.2653	0.3195	0.4046
FAS	0.3497	0.2746	0.2906	0.2615	0.2562	0.2268	0.2890	0.3202	0.4469
Figure 1: Estimated quantile coefficients: Constant, λ, β_1 and β_2 from RQ (solid line), FAL (dashed line with triangle), and FAS (dashed line with stars) methods. Shaded areas are the 90% confident bands from regular RQ method.
It is interesting that the constant estimators by FAL or FAS are almost constant separately on nine quantile levels in Figure but the estimators of traditional RQ method still vary. The second subfig show that λ estimators at nine quantiles by FAL only vary significantly from τ = 0.1 to τ = 0.2, and not very significantly across all the nine quantile levels. To further verify the shrinkage results, we conduct hypothesis tests to check the constancy of slope coefficients. The Wald test for the equality of λ on quantile levels τ = 0.1, ⋅⋅⋅, 0.9 returns a p-value of 0.01147, and on quantile levels τ = 0.2, ⋅⋅⋅, 0.9 returns a p-value of 0.8663. The two p-values imply the effect of spatial lag variables vary significantly across the all the nine quantile levels under significance level α = 0.05, but even nearly keep constant across τ = 0.2, ⋅⋅⋅, 0.9. This agrees with the results from fused adaptive LASSO. For fused adaptive Lasso, the coefficients differences are penalized individually, so FAL could recognize the situation where the quantile slope coefficients appear constant in certain quantile regions, but vary in others.

On the other hand, for the covariate HOVAL and INC, the equality test on the quantile coefficients at τ = 0.1, ⋅⋅⋅, 0.9 returns two p-values near zero, showing that at a whole the effect of HOVAL and INC vary across the nine quantile levels. The equality test at τ = 0.3, ⋅⋅⋅, 0.9 return p-values 0.6438 and 0.2730 separately, which implying the effect of HOVAL and INC almost keep constant across τ = 0.3, ⋅⋅⋅, 0.9. This is consist with the results by FAL. FAS method tends to shrink all the quantile coefficients to a constant so it couldn’t distinguish the single difference of the coefficients when between τ = 0.2 and τ = 0.3.

6 Conclusion and discussion

In this paper, we suggest two new fused penalties methods (FAL and FAS) to shrinkage the interquantile parameters in spatial quantile autoregressive model. Through our method, we realized estimating the parameters and identifying the commonality among parameters in different quantiles at the same time. Lots of simulation experiments and real data analysis also show the greater performance of the new methods than that of traditional estimation method for spatial quantile autoregressive model.

In reality, however, there exist irrelevant variables. Most popular methods to select important predictors are also penalties approaches. How to combine
the two penalization methods together in spatial quantile autoregressive model is an interesting research.

Appendix

A.1 Proof of Theorem 2.1

Proof. Assumption (A1) - (A4) are the basic assumptions for SQAR model and make sure the existence of estimators.

In Assumption (A5), the sequence \(\{(u_i, v_i, X_i)\} \) is independent and identically distributed, that is

\[
P(u_i, v_i) = P(u_i)P(v_i); \\
P(u_i, X_i) = P(u_i)P(X_i); \\
P(v_i, X_i) = P(v_i)P(X_i).
\]

Then

\[
P(u_i, V_i) = P(u_i, [1, X_i, (W_iX)_i]T) \\
= P(u_i, [X_i, W_iX]T) \\
= P(u_i)P([X_i, W_iX]T) \\
= P(u_i)P(V_i),
\]

where \(W_i \) is the \(i \)th row vector of \(W \). Similarly, \(P(v_i, V_i) = P(v_i)P(V_i) \). So the sequence \(\{(u_i, v_i, V_i)\} \) is independent and identically distributed. It is satisfied to the Assumption 1 in Kim and Muller (2004).

Denote the \(X_{ij} \) as the \((i, j) \)th element of \(X \), \(X_{j} \) as the \(j \)th column of of \(X \). Then

\[
E(||V_i||^3) = E(||[1, X_i, W_iX]T||^3) \\
= E \left[1 + X_iX_i^T + W_iX(W_iX)^T \\
X_i^T + X_i^TX_iX_i^T + X_i^TW_iX(W_iX)^T \\
(W_iX)^T + (W_iX)^TW_iX(W_iX)^T \\
(W_iX)^T + (W_iX)^T X_i^T + (W_iX)^TW_iX(W_iX)^T \right]
\]

According to Assumption (A6), the second geometric moment of \(X \) and the third geometric moment of \(X_i \) are finite, so \(E(||V_i||^3) < \infty \), that is the third geometric moment of \(V_i \) is finite. The Assumption 2(i) in Kim and Muller (2004) is proved.
Under Assumption (A8),

\[A_1 = E \{ g_1(0|V_i) V_i V_i^T \} \]

\[= E \{ g_1(0|V_i) \} V_i V_i^T \]

\[= E \{ g_1(0|V_i) \} [1, X_i, W_i X] [1, X_i, W_i X]^T \]

\[= E \{ g_1(0|X_i) \} (X_i X_i^T + W_i X (W_i X)^T) \]

\[= B_1 + B'_1 \]

where \(B'_1 = E \{ g_1(0|X_i) \} W_i X (W_i X)^T \). According to Assumption (A8), \(B_1 \) and \(B'_1 \) are finite and positive definite, so \(A_1 \) is also finite and positive definite. Similarly, \(A_2 \) is finite and positive definite. The Assumption 2(iii) in Kim and Muller (2004) is proved.

Under Assumption (A7) and (A9), the Assumption 2(ii) and 2(iv) are easily satisfied.

Thus, according to the Proposition 2 in Kim and Muller (2004), the Theorem 2.1 is proved.

According to Jiang et. al. (2014), more general cases \((p > 1)\) have the similar propositions and theorems. So for ease to illustrate, we just consider \(p = 1 \) in the next subsections.

A.2 Proof of Proposition 2.1

Proof. Without loss of generality, we assume the quantile slopes \(\beta = \beta_1 \) vary for the first \(s_1 \) \((s_1 < K)\) quantiles, but remain constant for the remaining \((K - s_1)\) quantile levels.

At first, we consider about minimizing the following formula

\[L_n(\delta) = \sum_{k=1}^{K} \sum_{i=1}^{n} \left[\rho_{\tau_k} \left\{ Y_i - Z_{k,i,A}^T \left(\theta_{A,0} + \frac{1}{\sqrt{n}} \delta \right) \right\} - \rho_{\tau_k} \left(Y_i - Z_{k,i,A}^T \theta_{A,0} \right) \right]. \]

The minimizer \(\hat{\delta} \) is \(n^{1/2} \left(\hat{A} \right) \) and \(\delta \in \mathbb{R}^{K+s} \) is a bounded vector. Under the identity in Knight (1998), we obtain

\[\rho_{\tau}(r - s) - \rho_{\tau}(r) = -s\{\tau - I(r < 0)\} + \int_{0}^{s} \{I(r \leq t) - I(r \leq 0)\} dt. \]
Then, L_n can be written as

$$
L_n(\delta) = -n^{-1/2} \sum_{k=1}^{K} \sum_{i=1}^{n} Z_{ki,A}^T \{ r_k - I (y_i - Z_{ki,A}^T \theta_{A,0} < 0) \} \delta + \\
\sum_{k=1}^{K} \sum_{i=1}^{n} n^{-1/2} Z_{ki,A}^T \delta \int_{0}^{n^{-1/2} Z_{ki,A}^T} \{ I (Y_i - Z_{ki,A}^T \theta_{A,0} \leq t) - I (Y_i - Z_{ki,A}^T \theta_{A,0} > 0) \} \, dt \\
\triangleq M_n^{(1)}(\delta) + \sum_{k=1}^{K} V_n^{(k)}.
$$

Denote $M_n^{(2)}(\delta) = \sum_{k=1}^{K} \frac{1}{2} \delta^T \left\{ n^{-1} \sum_{i=1}^{n} f_i (Z_{ki,A}^T \theta_{A,0}) Z_{ki,A} Z_{ki,A}^T \right\} \delta$. We can rewrite L_n as

$$
L_n(\delta) = M_n^{(1)}(\delta) + M_n^{(2)}(\delta) + \left[\sum_{k=1}^{K} V_n^{(k)} - M_n^{(2)}(\delta) \right] \\
\triangleq M_n^{(1)}(\delta) + M_n^{(2)}(\delta) + M_n^{(3)}(\delta).
$$

According to the Assumptions (A10)-(A11), we need to show $V_n^{(k)}$’s mean and variance in detail.

$$
E \left\{ V_n^{(k)} \right\} = \sum_{i=1}^{n} \int_{0}^{n^{-1/2} Z_{ki,A}^T} \delta \left\{ F_i (Z_{ki,A}^T \theta_{A,0} + t) - F_i (Z_{ki,A}^T \theta_{A,0}) \right\} \, dt \\
= \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{Z_{ki,A}^T} n^{1/2} \left\{ F_i (Z_{ki,A}^T \theta_{A,0} + n^{-1/2} t) - F_i (Z_{ki,A}^T \theta_{A,0}) \right\} \, dt \\
= \frac{1}{n} \sum_{i=1}^{n} \int_{0}^{Z_{ki,A}^T} f_i (Z_{ki,A}^T \theta_{A,0}) \, t \, dt + o_p(1) \\
= \frac{1}{2} \delta^T \left\{ \frac{1}{n} \sum_{i=1}^{n} f_i (Z_{ki,A}^T \theta_{A,0}) Z_{ki,A} Z_{ki,A}^T \right\} \delta + o_p(1).
$$
\[
\text{Var} \left\{ V_n^{(k)} \right\} = E \left[V_n^{(k)} - E \left\{ V_n^{(k)} \right\} \right]^2
\]
\[
= E \left[\sum_{i=1}^{n} \int_0^{1/2} z_{ki,A}^T \delta \left\{ I (y_i - z_{ki,A}^T \theta_{A,0} \leq t) - I (y_i - z_{ki,A}^T \theta_{A,0} \leq 0) \right\}
- f_i \left(z_{ki,A}^T \theta_{A,0} + t \right) + f_i \left(z_{ki,A}^T \theta_{A,0} \right) \right] \ dt \right]^2
\]
\[
\leq \sum_{i=1}^{n} E \left[\int_0^{1/2} z_{ki,A}^T \delta \left\{ I (y_i - z_{ki,A}^T \theta_{A,0} \leq t) - I (y_i - z_{ki,A}^T \theta_{A,0} \leq 0) \right\} - f_i \left(z_{ki,A}^T \theta_{A,0} + t \right) + f_i \left(z_{ki,A}^T \theta_{A,0} \right) \right] dt \right| \times 2 \left| n^{-1/2} z_{ki,A}^T \delta \right|
\]
\[
\leq 4n^{-1/2} E \left\{ B_n^{(k)} \right\} \max_{1 \leq i \leq n} \| z_{ki,A} \| \| \delta \|.
\]

It’s easy to see that for any fixed \(\delta \in \mathbb{R}^{K+s} \),
\[
\text{Var} \left\{ V_n^{(k)} \right\} \to 0.
\]

Therefore, according to the Lindeberg-Feller Central Limit Theorem and Cramer-Wold Device, the first term and second of \(L_n(\delta) \) have,
\[
M_n^{(1)}(\delta) \overset{d}{\to} - \sum_{k=1}^{K} \delta^T S_k,
\]
\[
M_n^{(2)}(\delta) \to \frac{1}{2} \delta^T \left(\sum_{k=1}^{K} \Omega_{k,A} \right) \delta,
\]
where \(S_k \sim N (0, \tau_k (1 - \tau_k) \Gamma_{k,A}) \).

As for the third term \(M_n^{(3)}(\delta) \), we know \(M_n^{(3)}(\cdot) \) is a convex function and \(M_n^{(3)}(\delta) \to 0 \) for any fixed \(\delta \). Due to the Convexity Lemma in Jiang et. al. (2013), this point-wise convergence can be strengthened to the uniform convergence. In other word, \(h_n(\delta) \to 0 \) uniformly on any compact subset of \(\mathbb{R}^{K+s} \). In conclusion,
\[
L_n(\delta) \to - \sum_{k=1}^{K} \delta^T S_k + \frac{1}{2} \delta^T \left(\sum_{k=1}^{K} \Omega_{k,A} \right) \delta.
\]

and the minimizer to \(L_n(\delta) \), defined as \(\hat{\delta} \), follows the asymptotic normal distribution \(N (0, \Sigma_A) \), where \(\Sigma_A = \left(\sum_{k=1}^{K} \Omega_{k,A} \right)^{-1} \left\{ \sum_{k=1}^{K} \tau_k (1 - \tau_k) \Gamma_{k,A} \right\} \left(\sum_{k=1}^{K} \Omega_{k,A} \right)^{-1} \). \(\square \)
A.3 Proof of Theorem 2.2

Without loss of generality, we consider the oracle estimator in the setting with \(p = 1 \). Then notation can then be simplified by letting \(\theta_j \) be the \(j \) th element of \(\theta \) and \(\hat{\omega}_j = |\hat{\theta}_{K+j}|^{-1} \) for \(j = 2, 3, \ldots, K \).

A.3.1 Root-n Consistency Lemma

Lemma 1 (Root-n consistency of \(\hat{\theta}_{FAL} \)). Assume conditions A1 – A11 hold, if \(n^{1/2} \gamma_{1n} \to 0 \), then \(\hat{\theta}_{FAL} - \theta_0 = O_p (n^{-1/2}) \).

Proof. As in Fan and Li (2001), we only need to show that for any \(\epsilon > 0 \), there exists a sufficiently large constant \(\eta \), such that
\[
P \left\{ \inf_{\|\xi\| = \eta} Q_1 (\theta_0 + n^{-1/2} \xi) > Q_1 (\theta_0) \right\} \geq 1 - \epsilon,
\]
where \(Q_1 (\cdot) \) is defined in (2.16) when \(p = 1 \). In section 2.3.1, we assume the slopes \(\beta_k \) vary for the first \(s_1 < K \) quantiles, but remain constant for the rest \((K - s_1) \) quantile levels. Then, we consider
\[
Q_1 (\theta_0 + n^{-1/2} \xi) - Q_1 (\theta_0) \geq L_n (\xi) + n \gamma_{1n} \sum_{j=K+2}^{2K} \tilde{w}_j \left(|\theta_{j,0} + n^{-1/2} \xi_j| - |\theta_{j,0}| \right)
\]
\[
= L_n (\xi) + n \gamma_{1n} \sum_{j=K+2}^{K+s_1} \tilde{w}_j \left(|\theta_{j,0} + n^{-1/2} \xi_j| - |\theta_{j,0}| \right) + n \gamma_{1n} \sum_{j=K+s_1+1}^{2K} \tilde{w}_j |n^{-1/2} \xi_j|
\]
\[
\geq L_n (\xi) + n \gamma_{1n} \sum_{j=K+2}^{K+s_1} \tilde{w}_j \left(|\theta_{j,0} + n^{-1/2} \xi_j| - |\theta_{j,0}| \right),
\]
where \(\tilde{w}_j \overset{p}{\to} |\theta_{j,0}|^{-1} \) for any \(\theta_{j,0} \neq 0 \). According to the assumption \(n^{1/2} \gamma_{1n} \to 0 \) and \(\|\xi\| = \eta \), we have
\[
n \gamma_{1n} \sum_{j=K+2}^{K+s_1} \tilde{w}_j \left(|\theta_{j,0} + n^{-1/2} \xi_j| - |\theta_{j,0}| \right) = n^{1/2} \gamma_{1n} \sum_{j=K+2}^{K+s_1} \tilde{w}_j \xi_j \text{ sgn} (\theta_{j,0}) \to 0
\]
uniformly in any compact set of \(\mathbb{R}^{2K} \).

Combined with the Proposition 2.1, the right side of inequality (A.1) is dominated by the quadratic term \(M_n^{(2)} (\xi) \) when \(n \) is sufficiently large. Based on assumption (A11), we know \(Q_1 (\theta_0 + n^{-1/2} \xi) - Q_1 (\theta_0) \geq 0 \) is always holds when \(\|\xi\| = \eta \) (as \(\eta \to \infty \)).

\[\square\]
A.3.2 Proof of Theorem 2.2

Proof.

Sparsity:
Under the model assumption, \(\theta \) can be decomposed as \((\theta_{A}^{C}, \theta_{A}^{T})^{T} \), where \(\theta_{A} \in \mathbb{R}^{K+s_1} \), and \(\theta_{A}^{C} \in \mathbb{R}^{K-s_1} \). Denote \(\hat{\theta} = \left(\hat{\theta}_{A}^{T}, \hat{\theta}_{A}^{C} \right)^{T} \) and by the way of contradiction suppose \(\hat{\theta}_{A}^{C} \neq 0 \). Let \(\theta^{*} \) be a vector constructed by replacing \(\hat{\theta}_{A}^{C} \) with \(0^{T} \) in \(\hat{\theta} \), that is, \(\theta^{*} = \left(\hat{\theta}_{A}^{T}, 0_{K-s_1}^{T} \right)^{T} \). We have

\[
Q_{1}(\theta^{*}) - Q_{1}(\hat{\theta}) = \left\{ Q_{1}(\theta^{*}) - Q_{1}(\theta_{0}) \right\} - \left\{ Q_{1}(\hat{\theta}) - Q_{1}(\theta_{0}) \right\}
\]

\[
= L_{n} \left\{ n^{1/2} \left(\hat{\theta}_{A}^{T} - \theta_{A}^{T,0}, 0_{K-s_1}^{T} \right) \right\} - L_{n} \left\{ n^{1/2} \left(\hat{\theta} - \theta_{0} \right) \right\} - n \sum_{j=K+s_1+1}^{2K} \tilde{w}_{j} \left| \hat{\theta}_{j} \right| .
\]

Following the Lemma 1 of root-n consistent of \(\hat{\theta} \), the first and the second term in (A.2) are both \(O_{p}(1) \). Then, we consider the third term in

\[
- n \tilde{\gamma}_{1n} \sum_{j=K+s_1+1}^{2K} \tilde{w}_{j} \left| \hat{\theta}_{j} \right|
\]

\[
= - n \tilde{\gamma}_{1n} n^{1/2} \sum_{j=K+s_1+1}^{2K} \left(n^{1/2} \hat{\theta}_{j} \right)^{-1} \left| \hat{\theta}_{j} \right| \to o(n^{1/2}) \quad (as \ n \tilde{\gamma}_{1n} \to \infty),
\]

where \(\hat{\theta}_{j} = O_{p}(1) \), when \(\theta_{j,0} = 0, n^{1/2} \). Therefore, (A.2) is dominated by the third term and \(Q_{1}(\theta^{*}) < Q_{1}(\hat{\theta}) \) always holds, which contradicts that \(\hat{\theta} \) is the minimizer of \(Q_{1}(\theta) \).

Asymptotic normality:
Let

\[
Q_{1} \left\{ \left(\theta_{A}^{T,0} + n^{-1/2} \delta^{T}, 0_{K-s_1}^{T} \right) \right\} - Q_{1} \left\{ \left(\theta_{A}^{T,0}, 0_{K-s_1}^{T} \right) \right\}
\]

\[
= L_{n}(\delta) + n \tilde{\gamma}_{1n} \sum_{j=K+2}^{K+s_1} \tilde{w}_{j} \left(|\theta_{j,0} + n^{-1/2} \delta_{j}| - |\theta_{j,0}| \right)
\]

\[
= L_{n}(\delta) + n^{1/2} \tilde{\gamma}_{1n} \sum_{j=K+2}^{K+s_1} \tilde{w}_{j} \delta_{j} \text{sgn} (\theta_{j,0}),
\]

where \(\delta \in \mathbb{R}^{K+s_1} \) is a fixed vector. According to the Proposition 2.1, we know

\[
L_{n}(\delta) \to - \sum_{k=1}^{K} \delta^{T} \mathbf{S}_{k} + \frac{1}{2} \delta^{T} \left(\sum_{k=1}^{K} \Omega_{k,A} \right) \delta,
\]

38
and
\[n^{1/2} \bar{\gamma}_{1n} \sum_{K+2}^{K+s_1} \bar{w}_j \delta_j \text{sgn} (\theta_{j,0}) \xrightarrow{p} 0 \quad (as \ n^{1/2} \bar{\gamma}_{1n} \to 0). \]

Therefore, the (A.3) can be deduced to the following conclusion.

\[Q_1 \left\{ (\theta_{A,0}^T + n^{-1/2} \delta^T, 0_{K-s_1}^T) \right\} - Q_1 \left\{ (\theta_{A,0}^T, 0_{K-s_1}^T) \right\} \to \frac{1}{2} \delta^T \left(\sum_{k=1}^{K} \Omega_{k,A} \right) \delta \]

and the minimizer to (A.3), defined as \(\hat{\delta} \), follows the asymptotic normal distribution \(N(0, \Sigma_A) \), where \(\Sigma_A \) is the covariance matrix of the oracle estimator given in Proposition 2.1.

From the properties of convex functions, we know that the minimizer to (A.3) is unique and \(n^{1/2} \left(\hat{\theta}_{A,FAL} - \theta_{A,0} \right) \) is a minimizer to (A.3). Hence, we get
\[n^{1/2} \left(\hat{\theta}_{A,FAL} - \theta_{A,0} \right) = \hat{\delta} \xrightarrow{d} N(0, \Sigma_A). \] Jiang et al. (2014) stated that more general cases follow the similar exposition, but with more complicated notations. So the Theorem 2.2 is proved.

\[\square \]

A.4 Proof of Proposition 2.2

\textit{Proof}. The proof is similar to the proof of Proposition 2.1 and thus is skipped. \(\square \)

A.5 Proof of Theorem 2.3

\textit{Proof}. Similar to the proof of Theorem 2.2. \(\square \)

A.5.1 Root-n Consistency Lemma

\textbf{Lemma 2} (Root-n consistency of \(\hat{\theta}_{FAS} \)). Assume conditions A1 – A11 hold, if \(n^{1/2} \bar{\gamma}_{2n} \to 0 \), then \(\hat{\theta}_{FAS} - \theta_0 = O_p \left(n^{-1/2} \right) \)

\textit{Proof}. As in Lemma 1, we only need to show that for any \(\epsilon > 0 \), there exists a sufficiently large constant \(\eta \), such that
\[P \left\{ \inf_{\|\xi\| = \eta} Q_2 \left(\theta_0 + n^{-1/2} \xi \right) > Q_2 (\theta_0) \right\} \geq 1 - \epsilon \]
where \(Q_2(\cdot) \) is defined in (2.17) in section 2.3.2. Note that

\[
Q_2 \left(\theta_0 + n^{-1/2} u \right) - Q_2 \left(\theta_0 \right) = \frac{\left\{ \left\| \theta_{(l),0} + n^{-1/2} u_{(l)} \right\|_\infty - \left\| \theta_{(l),0} \right\|_\infty \right\}}{L_n(u) + n\tilde{\gamma}_{2n} \sum_{l=1}^{g} \tilde{w}_{(l)} \left\{ \left\| \theta_{(l),0} + n^{-1/2} u_{(l)} \right\|_\infty - \left\| \theta_{(l),0} \right\|_\infty \right\}}
\]

(A.4)

where \(\tilde{w}_{(l)} = \left[\max \left\{ \left| \tilde{d}_{k,l} \right| , k = 2, \ldots, K \right\} \right]^{-1} \) is the group-wise weight for the \(l^{th} \) predictor and \(\theta_0 = \{ \theta_{(l),0}, l = -1, 0, 1, \ldots, p \} \). Due to the assumption in section 2.3.2, we have

\[
n\tilde{\gamma}_{2n} \sum_{l=1}^{g} \tilde{w}_{(l)} \left\{ \left\| \theta_{(l),0} + n^{-1/2} \xi_{(l)} \right\|_\infty - \left\| \theta_{(l),0} \right\|_\infty \right\} \xrightarrow{P} 0 \ (as \ n^{1/2}\tilde{\gamma}_{2n} \to 0).
\]

Combined with the Proposition 2.1, the right side of inequality (A.4) is dominated by the quadratic term \(M_n^{(2)}(\xi) \geq 0 \) when \(n \) is sufficiently large. Based on assumption (A11), we know \(Q_2 \left(\theta_0 + n^{-1/2} \xi \right) \geq Q_2 \left(\theta_0 \right) \) is also always holds when \(\| \xi \| = \eta \).

\[\square \]

A.5.2 Proof of Theorem 2.3

Proof.

Sparsity:

The proof is taken the similar arguments as theorem 2.1. Under the assumption in section 2.3.2, \(\theta \) can decomposed as \(\theta = (\theta_B^T, \theta_{BC}^T)^T \), where \(\theta_B = \left(\theta_{(l)}^T \right)_{(0)} \ldots, \theta_{(g)}^T \right)^T \) and \(\theta_{BC} = \left(\theta_{(l)}^T \right)_{(p)} \right)^T \). Denote \(\theta = (\theta_B^T, \theta_{BC}^T)^T \) and by the way of contradiction suppose \(\theta_{BC} \neq 0 \). Let \(\theta^* \) be a vector constructed by replacing \(\theta_{BC} \) with \(0^T \) in \(\hat{\theta} \), that is, \(\theta^* = (\hat{\theta}_B^T, 0^T_{(p-g)K})^T \). Note that

\[
Q_2 \left(\theta^* \right) - Q_2(\hat{\theta}) = \{Q_2 \left(\theta^* \right) - Q_2 \left(\theta_0 \right) \} - \{Q_2(\hat{\theta}) - Q_2 \left(\theta_0 \right) \}
\]

(A.5)

\[
= L_n \left\{ n^{1/2} \left(\theta_B^T - \theta_{B,0}^T, 0^T_{(p-g)K} \right)^T \right\} - L_n \left\{ n^{1/2} \left(\hat{\theta} - \theta_0 \right) \right\} - n\tilde{\gamma}_{2n} \sum_{l=g+1}^{p} \tilde{w}_{(l)} \left\| \hat{\theta}_{(l)} \right\|_\infty.
\]

40
Following the Lemma 2 of $\hat{\theta}_{FAS}$, the first and second term in (A.5) are both $O_p(1)$. Similarly, the third term

$$- n\tilde{\gamma}_2n \sum_{l=g+1}^{p} \tilde{w}_l(l) \|\hat{\theta}(l)\|_\infty$$

$$= - n\tilde{\gamma}_2n n^{1/2} \sum_{l=g+1}^{p} \left[\max_{l=g+1} \left\{ n^{1/2} |\hat{\theta}(l)| \right\} \right]^{-1} \|\hat{\theta}(l)\|_\infty \rightarrow o(n^{1/2}) \quad (as \ n\tilde{\gamma}_2n \rightarrow \infty),$$

where $\max_{l=g+1} \left\{ n^{1/2} |\hat{\theta}(l)| \right\} = O_p(1)$ for $l = g + 1, \ldots, p$, when $\tilde{\lambda}_2n \rightarrow \infty$. Therefore, (A.5) is dominated by the third term and $Q_2(\theta^*) < Q_2(\hat{\theta})$ always holds.

Asymptotic normality:
The proof is similar to the proof of Theorem 2.2 and thus is skipped.

References

Akaike, H., (1974). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716-723.

Anselin, L., Bera, A. K. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. Statistics textbooks and monographs, 155, 237-290.

Anselin, L. (2013). Spatial econometrics: methods and models (Vol. 4). Springer Science and Business Media.

Banerjee, S., Carlin, B. P., Gelfand, A. E. (2003). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC.

Barry, R. P., Pace, R. K. (1999). Monte Carlo estimates of the log determinant of large sparse matrices. Linear Algebra and its applications, 289(1-3), 41-54.

Bondell, H. D., Reich, B. J., Wang, H. (2010). Noncrossing quantile regression curve estimation. Biometrika, 97(4), 825-838.

Case, A. C. (1991). Spatial patterns in household demand. Econometrica: Journal of the Econometric Society, 953-965.

Cliff, A.D., Ord, J.K., (1973). Spatial Autocorrelation. Pion Ltd., London.

Ciuperca, G. (2017). Adaptive fused LASSO in grouped quantile regression. Journal of Statistical Theory and Practice, 11(1), 107-125.

Fan, J., and Li, R., (2001). Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties, Journal of the American statistical Association, 96, 1348-1360.
Fan, J., Li, R. (2004). New estimation and model selection procedures for semi-parametric modeling in longitudinal data analysis. Journal of the American Statistical Association, 99(467), 710-723.

Friedman, J., Hastie, T., H´ofling, H., Tibshirani, R. (2007). Pathwise coordinate optimization. The annals of applied statistics, 1(2), 302-332.

Jiang, L., Wang, H. J., Bondell, H. D. (2013). Interquantile shrinkage in regression models. Journal of Computational and Graphical statistics, 22(4), 970-986.

Jiang, L., Bondell, H. D., Wang, H. J. (2014). Interquantile shrinkage and variable selection in quantile regression. Computational Statistics and Data Analysis, 69, 208-219.

He, X., (1997). Quantile Curves Without Crossing. The American Statistician, 51, 186-192.

Hoerl, A. E., Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67.

Huang, D., Lan, W., Zhang, H. H., Wang, H. (2019). Least squares estimation of spatial autoregressive models for large-scale social networks. Electronic Journal of Statistics, 13(1), 1135-1165.

Kelejian, H. H., Prucha, I. R. (2010). Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of econometrics, 157(1), 53-67.

Kato, K. (2010), Solving l_1 Regularization Problems With Piecewise Linear Losses, Journal of Computational and Graphical Statistics, 19, 1024-1040.

Kim, T. H., Muller, C. (2004). Two-stage quantile regression when the first stage is based on quantile regression. The Econometrics Journal, 7(1), 218-231.

Knight, K. (1998). Limiting distributions for L1 regression estimators under general conditions. Annals of statistics, 755-770.

Koenker, R., Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33-50.

Koenker, R., (2005). Quantile Regression. Cambridge University Press, Cambridge.

Kostov, P. (2013). Empirical likelihood estimation of the spatial quantile regression. Journal of Geographical Systems, 15(1), 51-69.

Lee, L. F. (2003). Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econometric Reviews, 22(4), 307-335.

LeSage, J. P., 1999. The theory and practice of spatial econometrics. www.spatial-econometrics.com.
Liao, W. C., Wang, X. (2012). Hedonic house prices and spatial quantile regression. Journal of Housing Economics, 21(1), 16-27.

Liang, H., Li, R. (2009). Variable selection for partially linear models with measurement errors. Journal of the American Statistical Association, 104(485), 234-248.

Lin, X., Lee, L. F. (2010). GMM estimation of spatial autoregressive models with unknown heteroskedasticity. Journal of Econometrics, 157(1), 34-52.

Liu, X., Chen, J., Cheng, S. (2018). A penalized quasi-maximum likelihood method for variable selection in the spatial autoregressive model. Spatial statistics, 25, 86-104.

Ma, Y., Pan, R., Zou, T., Wang, H. (2020). A naive least squares method for spatial autoregression with covariates. Statistica Sinica, 30, 653-672.

McMillen, D. P., (2012). Quantile regression for spatial data. Springer Science and Business Media.

Pearl, J. (2000). Models, reasoning and inference. Cambridge, UK: Cambridge University Press, 19.

Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory, 7(2), 186-199.

Rinaldo, A. (2009). Properties and refinements of the fused lasso. The Annals of Statistics, 37(5B), 2922-2952.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461-464.

Smirnov, O., Anselin, L. (2001). Fast maximum likelihood estimation of very large spatial autoregressive models: a characteristic polynomial approach. Computational Statistics and Data Analysis, 35(3), 301-319.

Su, L., & Yang, Z. (2011). Instrumental Variable Quantile Estimation of Spatial Autoregressive Models.

Tibshirani, R., (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B 58, 267-288.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005), Sparsity and Smoothness via the Fused Lasso. Journal of the Royal Statistical Society, Series B, 67, 91-108.

Trefethen, L. N., Bau III, D. (1997). Numerical linear algebra (Vol. 50). Siam.

Wright, P. G. (1928). Tariff on animal and vegetable oils. Macmillan Company, New York.
Xie, T., Cao, R., Du, J. (2020). Variable selection for spatial autoregressive models with a diverging number of parameters. Statistical Papers, 61(3), 1125-1145.

Xu, X., Lee, L. F. (2015). A spatial autoregressive model with a nonlinear transformation of the dependent variable. Journal of Econometrics, 186(1), 1-18.

Yuan, M., Lin, Y., (2006). Model Selection and Estimation in Regression With Grouped Variables. Journal of the Royal Statistical Society, Series B, 68, 49-67.

Zhao, P., Rocha, G., Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of Statistics, 37(6A), 3468-3497.

Zhang Y. Q., Shen D. M., (2015). Estimation of semi-parametric varying-coefficient spatial panel data models with random-effects. Journal Statistical Plan and Inference 159:64-80

Zhang, C., Xiang, Y., 2015. On the oracle property of adaptive group LASSO in high-dimensional linear models. Statistical Papers, 57(1), 249-265.

Zietz, J., Zietz, E. N., Sirmans, G. S. (2008). Determinants of house prices: a quantile regression approach. The Journal of Real Estate Finance and Economics, 37(4), 317-333.

Zou, H., (2006), The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, 101, 1418-1429.

Zou, H., Yuan, M., 2008a. Composite quantile regression and the oracle model selection theory. The Annals of Statistics 36, 1108-1126.

Zou, H., Yuan, M., 2008b. Regularized simultaneous model selection in multiple quantiles regression. Computational Statistics and Data Analysis 52, 5296-5304.