Introduction

It is with reference to the research article “Silver nanoparticles to self-assembled films: Green synthesis and characterization” by Zoya Zaheer & Rafiuddin [1]. The Uv-vis absorption peak of silver nanoparticles synthesized from oxalic acid and silver nitrate, appearing at 425 nm has been ascribed to the characteristic extinction coefficient [2] of small mono dispersed spherical nanoparticles [3-5] although it is ubiquitously known that this absorption is only due to surface plasmon resonance (SPR) of silver nanoparticles. The extinction coefficient, defined as \( A = abc \) is concentration dependent (where \( A = \) absorbance, \( a = \) absorption coefficient, \( b = \) path length= 1cm, \( c = \) concentration). The equation assumes the form, \( a = A/c \) where extinction coefficient varies with concentration.

The authors [1] have said, with great conviction that, the exact position of absorption of silver depends on the dielectric constant of the medium without any experimental evidence. However, it is universally known that this absorption band is solely dependent on the surface plasmon vibration of silver nanoparticles and the other compounds present in the solution. It has nothing to do with dielectric constant of the solvent. As the concentration of silver nanoparticles increases, the absorbance also increases (Figure 1) without any change in the \( A_{max} \) [1].

They have argued further, that according to TEM images, the nanoparticles were formed first in the solution, and subsequently aggregated into large particles due to adsorption of Ag⁺ on to the surface of Ag⁺ through van der Waals forces. It must be made clear that TEM images show shape and size of nanoparticles irrespective of their scattering or aggregation. The adsorption of Ag⁺ on the Ag⁺ is a matter of metal ion and a metal atom which are available in different quantities in the solution. The van der Waals or London forces are extremely weak forces which keep two neutral atoms such as He / Ar or molecules like CH₄ together without bearing any charge on them. Such molecules or atoms must have a temporary dipole due to non spherical shape or non spherical distribution of electrons which brings them together. Silver ions and silver nanoparticles are dispersed and some of them get accumulated but the van der Waals forces are not operative here. The substances in which adjacent molecules / atoms are held together by van der Waals forces are frequently gases at room temperature [6] and their boiling points are extremely low (Table 1).

![Figure 1: UV-Visible spectra of yellow color silver sol. Reaction conditions: [Ag⁺]- 200 x 10⁻⁴ moldm⁻³; [Oxalic acid]-4.0 x10⁻⁴ moldm⁻³; [CTAB]-10.0 x 10⁻⁴ moldm⁻³; Temperature -30 °C.](image)

The authors [1] have proposed the following mechanism for the formation of Silver nanoparticles in aqueous medium at pH 3 (Figure 2).

It is true that oxalic acid is a weak acid and hence incompletely ionized but monoionic species (equation 1) will not be stable. It will lose the second proton forming \( \text{C}_2\text{O}_4^{2-} \) ion (equation 2) and subsequently react with silver nitrate to yield silver nanoparticles. Their claim that silver oxalate is not formed when silver nitrate is added to oxalic acid at room temperature at pH 3, is incorrect. We have experimentally investigated that when \( 10^{-3} \) M oxalic acid is mixed with AgNO₃, or vice versa, a thick white crystalline precipitate is instantaneously formed which settles at the bottom of container. After standing for about 1 h it reduces silver nitrate to silver nanoparticles and carbon dioxide is released with a simultaneous change in color, according to the following reaction:

\[
2\text{AgNO}_3 + (\text{COOH})_2 \xrightarrow{\text{RT}} \text{Ag}_2\text{C}_2\text{O}_4 + 2\text{HNO}_3 \\
\text{Ag}_2\text{C}_2\text{O}_4 \xrightarrow{140^\circ C} 2\text{Ag} + 2\text{CO}_2
\]
Table 1: Contribution to the total van der Waals Lattice Energy in Kcal/mole [6].

| Molecule | Dipole-Dipole | Dipole-induced Dipole | Dispersion | Total | b.Pt., 0K |
|----------|---------------|-----------------------|------------|-------|-----------|
| Ar       | 0             | 0                     | 2.03       | 2.03  | 76        |
| CO       | 0             | 0.002                 | 2.09       | 2.09  | 81        |
| HCl      | 0.79          | 0.24                  | 4.02       | 5.05  | 188       |
| NH₃      | 3.18          | 0.37                  | 3.52       | 7.07  | 239.6     |
| H₂O      | 8.69          | 0.46                  | 2.15       | 11.3  | 373.1     |

Figure 2: Mechanism for the formation of Silver nanoparticles in aqueous medium at pH 3.

However, if it is heated to 140°C immediate decomposition occurs leaving behind Silver nanoparticles of dark brown color[7]. Equation 6 showing the formation of Ag₄²⁺ leading to aggregation / deposition of Ag⁺ ions over Ag₀ is likely but Ag₄²⁺ formation is dubious. Recently Zoya Zaheer et al. [8] have reported green synthesis of silver nanoparticles from Dioscorea deltoidea tuber extract and their characterization by various techniques. They have again suggested that surface plasmon resonance peak is dependent on dielectric constant of the medium [9]. Unfortunately this reference [9] has no mention of dielectric constant in the entire manuscript. Unwarranted statement involving dielectric constant is misleading. In fact, the biomolecules present in the tuber and silver nanoparticles are responsible for the surface plasmon resonance band. It has been suggested that Ag⁺ reacts with Ag⁺ to form Ag₂⁺ which dimerizes to Ag₄⁺. As given in their previous paper [1], it has neither experimental proof nor it is a convincing hypothesis.

Conflicts of Interest
The authors declare no conflict of interest.

Acknowledgment
None.

References
1. Zoya Zaheer, Rafiuddin (2012) Silver nanoparticles to self-assembled films: Green synthesis and characterization. Colloids Surfs B: Biointerfaces 90: 48-52.
2. Gudiksen MS, Lieber CM (2000) Diameter-Selective Synthesis of Semiconductor Nanowires J Am Chem Soc 122(36): 8801-8802.
3. Henglein A (1993) Physicochemical properties of small metal particles in solution: microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97(21): 5457-5471.
4. Hanglein A (1998) Colloidal Silver Nanoparticles: Photochemical Preparation and Interaction with O₂, CCl₄, and Some Metal Ions. Chem Mater 10(1): 444-550.
5. Kim DW, Shin SI, Oh SG (2003) Surfactant Sciences Series. In: Mittal KL & Shah DO (Eds.), Marcel Dekker, New York, USA, pp. 255.
6. M Clyde Day, Joel Selbin (1971) Theoretical Inorganic Chemistry. (2nd edn), Affiliated East West Press Pvt. Ltd., India, pp. 210.
7. Navaladian S, Viswanathan B, Viswanath R, Varadarajan T (2007) Thermal decomposition as route for silver nanoparticles. Nanoscale Res Lett 2(1): 44-48.
8. Zaheer Z, Aazam ES, Hussain S (2016) Reversible encapsulation of silver nanoparticles into the helix of amylose (water soluble starch). Royal Society of Chemistry 6: 60513-60521.
9. Bakshi MS (2011) Nanosphere Control Tendency of Phospholipids and Proteins: Protein_Nanoparticle Composites, Seeding, Self-Aggregation, and Their Applications in Bionanotechnology and Nanotoxicology. J Phys Chem C 115: 13947-13960.