Perspective

Recent advancements toward non-invasive imaging of retinal amyloid-beta for early detection of Alzheimer’s disease

Liang Wang, Xiaobo Mao

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment suggested to be induced by the accumulation of amyloid-β (Aβ) in the brain, especially in the hippocampus. Cerebral Aβ deposits may be detected through positron emission tomography (PET) as early as two decades before clinically diagnosed AD-associated dementia, which provides the opportunity for early therapeutic interventions (Wang and Mao, 2021). PET may not be suitable for AD screening since it is invasive, costly, and inaccessible for routine clinical use or population screening. Aβ deposits have also been identified throughout the retina, which is a developmental outgrowth of the diencephalon and shares physiological and pathological pathways with the central nervous system (London et al., 2013). Patients with mild cognitive impairment and early AD are reported to have visual disturbances involving visual field loss with reported thinning of the retinal layers, including the retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer (Koronyo-Hamaoui et al., 2011; Wang and Mao, 2021).

Retinal Aβ deposits have been detected prior to the manifestation of cerebral Aβ deposits in transgenic mice models of AD (Koronyo-Hamaoui et al., 2011; Habiba et al., 2021). Since the retina provides an easily accessible location for non-invasive imaging, retinal Aβ may have the potential to be a surrogate for cerebral Aβ and a biomarker for the detection of AD prior to irreversible cognitive impairment. Several techniques have been explored for imaging retinal Aβ, including the use of curcumin and hyperspectral imaging, which have been shown to differentiate AD patients and normal subjects in vivo (Koronyo et al., 2017; Hadoux et al., 2019). These non-invasive imaging studies have also characterized retinal Aβ in human subjects and found correlations between retinal Aβ and cerebral manifestations, including increased cerebral Aβ load and low cognitive assessment scores (Hadoux et al., 2019; Dumitrascu et al., 2020). However, further investigations with larger sample sizes and longitudinal studies are needed to determine if retinal Aβ can be applied in routine clinical settings and potentially for population-based screening.

Aβ originates from proteolytic cleavage of amyloid precursor protein, which is expressed in various tissues including in the retina (Wang and Mao, 2021). The main isoforms of Aβ identified in AD in the brain and retina are Aβ40 and Aβ42. These monomers can spontaneously aggregate into oligomers, which can then self-assemble into β-sheeted sheets and form plaques (Naaman et al., 2020). Retinal Aβ in postmortem human tissue has been identified throughout the retinal layers both intracellularly and extracellularly. These deposits ranged from 5 μm to 20 μm with larger deposits resembling classical cerebral Aβ deposits (Wang and Mao, 2021). Investigations into non-invasive imaging of retinal Aβ have focused on extrinsic fluorophore labeling or autofluorescence.

In the past decade, curcumin, a natural and safe fluorophore, has been studied to determine its utility for characterizing retinal Aβ in vivo. When delivered systemically, curcumin has a high affinity for Aβ oligomers, β-sheeted sheets, and plaques with a higher affinity for Aβ42 than Aβ40 (Dumitrascu et al., 2020). Lipidation of curcumin (Longvida) allows improved bioavailability and stability during oral ingestion (Koronyo et al., 2020). In APP/PS1, a double transgenic AD mice model, increased retinal Aβ plaques are detected with curcumin in comparison to wild type mice with retinal Aβ being identified as early as 2.5 months without manifestation of cerebral Aβ plaques, which were detected at 5 months (Koronyo-Hamaoui et al., 2011). In human postmortem tissue, curcumin staining of whole-mount retinas showed increased Aβ load mostly in the inner retinal layers and periphery of the superior quadrant in both mild cognitive impairment and AD patients in comparison to normal controls (Koronyo-Hamaoui et al., 2011; Koronyo et al., 2017). For in vivo imaging, oral Longvida curcumin showed a 2.1-fold increase in retinal Aβ for AD patients in comparison to normal controls with retinal Aβ load also concentrated in the inner retinal layers and periphery of the superior quadrant especially surrounding the retinal vasculature (Figure 1; Koronyo et al., 2017). Increased Aβ load in the same region is found to correlate with decreased hippocampal volume and is associated with lower cognitive assessment scores. Similarly, subjects with mild cognitive impairment had elevated peripheral superior retinal Aβ levels in comparison to normal controls (Dumitrascu et al., 2020).

Curcumin labeling with optical imaging appears to provide an in vivo, non-invasive, and accessible method for characterizing and quantifying retinal Aβ, however further investigations are necessary to determine if it can be applied in large-scale, population-wide screening for early detection of AD and monitoring disease stages. Currently, it is unclear why retinal Aβ appears to concentrate in the peripheral superior quadrant of the retina. Patients with early AD have loss of visual field in the inferior quadrant, which corresponds to the superior quadrant of the retina. Thinning of the retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer was also observed in the superior quadrant of AD patients (Wang and Mao, 2021). Future investigations into the underlying mechanism of AD progression may elucidate why this region of the retina is more vulnerable to AD pathology. While the measurement of curcumin labeling has been shown to have intraocular and interocular repeatability, future studies with larger sample sizes are necessary to determine if retinal Aβ distributions and manifestation are applicable and generalizable in different populations (Dumitrascu et al., 2020). Larger sample sizes with additional characterization of curcumin labeled Aβ may also help differentiate AD from other amyloidogenic diseases like glaucoma and age-related macular degeneration, which share similar presentations of Aβ in the retina (Wang and Mao, 2021). Like AD, glaucoma can present with Aβ deposits in the inner retinal layers with a similar pattern of retinal ganglion cell loss (Koronyo et al., 2017). Likewise, AD can present with Aβ in drusenoid deposits that are similar in appearance to reticular pseudodrusen.
Neural Regeneration Research | Vol 17 | No. 8 | August 2022

of age-related macular degeneration, which may also contain Aβ (Wang and Mao, 2021). Additional studies with increased sample sizes and longitudinal follow-up may help determine a threshold for curcumin labeled retinal Aβ load that can help predict the development of AD-associated disease progression with associated cognitive decline and cerebral atrophy.

Other extrinsic probes for labeling retinal Aβ have also been explored for accessible and non-invasive screening for AD including Aβ specific camelid-derived antibody fragments (nanobodies), amyloid-targeting fluorescent probe (ARCAM-1), and CRANAD-X probes for near-infrared fluorescence imaging (Yang et al., 2019; Cao et al., 2021; Habiba et al., 2021). All of these alternative probes have been able to differentiate APP/PS1 mice from wild type mice. In comparison to normal decline and distinguished these transgenic mice signatures indicated increased retinal Aβ load, the total scattering of light HSI spectra in proportion to the Aβ load. With these probes is needed to determine if they have a neurodegenerative effect in the retinas of AD patients (Mutsuga et al., 2012; Cao et al., 2021; Habiba et al., 2021). This data cube provides a spectral and spatial information (Hadoux et al., 2019). The regions of the retina with the most discrimination between high cerebral Aβ load cases and controls were predictively in the superior quadrant of the retina, but also in the fovea. However, it is unclear if the difference in HSI spectra between the high cerebral load cases and controls were solely due to retinal Aβ rather than a combination of other AD-associated retinal changes like hyperphosphorylated tau and inflammation (Hadoux et al., 2019). Additional studies with larger sample sizes that further characterize the effects of different AD-associated mechanisms on the HSI spectra of the eye are necessary to better understand the utility of this method for detecting retinal Aβ and potentially AD in vivo.

Despite advances in the understanding of AD, a method that is suitable for population-wide screening of AD is still under development. Since retinal Aβ load elevations have been observed prior to irreversible cerebral neurodegeneration and cognitive decline, numerous studies have explored non-invasive imaging of these Aβ aggregations for detecting AD. Methods for detecting retinal Aβ include extrinsic fluorophore labeling, which has been shown to be successful in allowing visualization of these deposits. However, only curcumin, which requires a lengthy loading period, has proven to be applicable for living human subjects. While HSI imaging without an extrinsic fluorophore cannot allow visualization of retinal Aβ deposits, it has also been successful in detecting transient retinal Aβ load in vivo for human subjects. Nevertheless, further exploration is warranted to better characterize the manifestation of retinal Aβ and validate these methods in larger, more heterogeneous populations prior to application in clinical settings.

This work was funded by NIH R01 NS07318, NIH KO1 AG056841, American Parkinson’s Disease Association, Parkinson’s Foundation the Stanley Fahn Junior Faculty Award PF-JFA-1933, and Maryland Stem Cell Research Foundation Discovery Award 2019-MSRCFD-4292.

Liang Wang, Xiaobo Mao* University of Miami Miller School of Medicine, Miami, FL, USA (Wang L) Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA (Mao X)

*Correspondence to: Xiaobo Mao, PhD, xmao4@jhmi.edu.
https://orcid.org/0000-0001-6587-556X (Xiaobo Mao)

References

Cao KJ, Kim JH, Kroeger H, Gaffney PM, Lin JH, Sigurdson C, Cui Y (2021) ARCAM-1 facilitates noninvasive detection of amyloid-containing deposits in the retina. Transl Vis Sci Technol 10:5.

Dumitrescu OM, Lyden PO, Takeda T, Sheyn J, Shersai A, Sherzai D, Sherman DS, Rosenberry R, Cheng S, Johnson KO, Czesnyński AD, Verdooren S, Frutschi S, Black KL, Koronyo Y, Koronyo-Hamaoui M (2020) Sectoral segmentation of retinal amyloid imaging in subjects with cognitive decline. Alzheimers Dement (Amst) 12:e12109.

Habiba U, Descallar J, Kreislauf A, Adhikari UK, Kumar S, Morley JW, BuI BV, Hamauo MK, Tayebi M (2021) Detection of retinal and blood Abeta oligomers with nanobodies. Alzheimers Dement (Amst) 13:e12119.

Hadoux X, Hui F, Lim JKH, Masters CL, Pelbay A, Chevalier S, Ha L, Le L, Fowler CI, Rowe C, Villemagne VL, Taylor EN, Fluke C, Soucy JP, Lesage F, Silvestre JP, Rosa-Neto P, Muthooraarachchi S, Gauthier S, Nasredine ZS, et al. (2019) Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat Commun 10:4227.

Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au W, Gile SJ, Blanco A, Fuchs DT, Ashfaq A, Frantschy S, Cole GM, Miller CA, Hinton DR, Verdooren SR, Black KL, Koronyo-Hamaoui M (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight 2:e93621.

Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz J (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54:5204-5217.

London A, Benhar J, Schwartz M (2013) The retina as a window to the brain—from eye research to CNS disorders. Nat Rev Neurol 9:46-53.

More SS, Vince R (2015) Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline. ACS Chem Neurosci 6:306-315.

Mutsuga T, Chambers JK, Uchida K, Tei M, Makkubchi T, Mizorogi T, Takashima A, Nakayama H (2012) Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to non-senile tangles in Alzheimer’s brain. J Vet Med Sci 74:51-57.

Naaman E, Yari S, Izkovich C, Safari S, Macii F, Korman L, Mimmoun M, Mann I, Gazit E, Adler-Abramovich L, Zait-Soudry S (2020) The retinal toxicity profile towards assemblies of Amyloid-β indicate the predominant pathophysiological activity of oligomeric species. Sci Rep 10:20954.

Wang L, Mao X (2021) Role of retinal amyloid-beta in neurodegenerative diseases and enveloping mechanisms and emerging clinical applications. Int J Mol Sci 22:2360.

Yang J, Yang J, Li Y, Yu Y, Ran C (2019) Near infrared fluorescence ocular imaging (NIRFOI) of Alzheimer’s disease. Mol Imaging Biol 21:35-43.

https://https://doi.org/10.4103/1673-5374.332137

How to cite this article: Wang L, Mao X (2022) Recent advances towards non-invasive imaging of retinal amyloid-beta for early detection of Alzheimer’s disease. Neuro Regen Res 17(8): 744-742.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

©Article author(s) (unless otherwise stated in the text of the article) 2022. All rights reserved. No commercial use is permitted unless otherwise expressly granted.