The Formation of a 70 M_\odot Black Hole at High Metallicity

K. Belczynski1, R. Hirschi2,3, E. A. Kaiser3, Jifeng Liu4,5, J. Casares6,7, Youjun Lu4,5, R. O’Shaughnessy8,9, A. Heger9,10, S. Justham5,11, and R. Soria4,5

1 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland; chrisbelczynski@gmail.com
2 Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
3 Astrophysics Group, Keele University, Keele ST5 5BG, UK
4 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
5 School of Astronomy and Space Science, University of the Chinese Academy of Sciences, Beijing 100012, People’s Republic of China
6 Instituto de Astrofísica de Canarias, c/Via Láctea s/n, E-38205 La Laguna, Tenerife, Spain
7 Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
8 Rochester Institute of Technology, Rochester, NY 14623, USA
9 School of Physics and Astronomy, Monash University, Victoria 3800, Australia
10 OzGrav: Australian Research Council Centre of Excellence for Gravitational Wave Discovery, Clayton, VIC 3800, Australia
11 Anton Pannekoek Institute of Astronomy and GRAPPA, University of Amsterdam, 1090 GE Amsterdam, The Netherlands

Received 2019 November 27; revised 2020 January 11; accepted 2020 January 15; published 2020 February 19

Abstract

A 70 M_\odot black hole (BH) was discovered in the Milky Way disk in a long-period detached binary system (LB-1) with a high-metallicity 8 M_\odot B star companion. Current consensus on the formation of BHs from high-metallicity stars limits the BH mass to be below 20 M_\odot due to strong mass loss in stellar winds. Using analytic evolutionary formulae, we show that the formation of a 70 M_\odot BH in a high-metallicity environment is possible if wind mass-loss rates are reduced by factor of five. As observations indicate, a fraction of massive stars have surface magnetic fields that may quench the wind mass-loss, independently of stellar mass and metallicity. We confirm such a scenario with detailed stellar evolution models. A nonrotating 85 M_\odot star model at $Z = 0.014$ with decreased winds ends up as a 71 M_\odot star prior to core collapse with a 32 M_\odot He core and a 28 M_\odot CO core. Such a star avoids the pair-instability pulsation supernova mass loss that severely limits BH mass and may form a ∼ 70 M_\odot BH in the direct collapse. Stars that can form 70 M_\odot BHs at high Z expand to significant sizes, with radii of $R \gtrsim 600 R_\odot$, however, exceeding the size of the LB-1 orbit. Therefore, we can explain the formation of BHs up to 70 M_\odot, at high metallicity and this result is valid whether or not LB-1 hosts a massive BH. However, if LB-1 hosts a massive BH we are unable to explain how such a binary star system could have formed without invoking some exotic scenarios.

1. Introduction

LB-1 is reported as a detached binary system containing a B star with a mass of 8 M_\odot (−1.2/ + 0.9 M_\odot) and a black hole (BH) with a mass of 68 M_\odot (−13/ + 11 M_\odot). The binary system orbit is almost circular, with $e = 0.03$ (−0.01/ + 0.01), and has an orbital period of $P_{\text{orb}} = 78.9$ days (−0.3/ + 0.3). This corresponds to a physical semimajor axis of $a = 300$−350 R_\odot, and a Roche lobe radius of the BH $R_{\text{BH,lobe}} \lesssim 200 R_\odot$. This system is one of the widest known binary system hosting a stellar-origin BH; see https://stellarcollapse.org. Two other binaries, proposed to host BH candidates, were also discovered by the radial velocity method by Thompson et al. (2019) and Giesers et al. (2018; although this is in a globular cluster and has a very large period, $P = 167$ days, an eccentric orbit, $e = 0.6$, and it must have formed by capture).

LB-1 was discovered by the 4 m class telescope LAMOST and the spectroscopic orbit was confirmed by the 10 m class Gran Telescopio Canarias and Keck telescopes. Chandra non-detection places the X-ray emission at the very low level, $<2 \times 10^{31}$ erg s$^{-1}$. An H$_\alpha$ emission line was observed, however, and since it follows a BH (small accretion disk around the BH from the B star wind) the double spectroscopic orbital solution was obtained. The system is on the outskirts of the Galactic disk, in the anti-Galactic center direction, about 4 kpc away from Sun. There is no globular cluster nearby (<4 kpc). The chemical composition of the B star indicates a metal abundance $Z = 0.02$ that is slightly over solar, assuming $Z_\odot = 0.017$. The full information on the system parameters and the discovery is reported in Liu et al. (2019).

Since the publication of the discovery paper, there are a number of studies that attempt either to reject specific formation scenarios of LB-1 (the massive BH is the BH–BH merger product or a very close BH–BH binary; see Shen et al. 2019) or to explain it with some specific scenarios: stellar evolution of a massive magnetic star (Groh et al. 2019), merger of two unevolved stars (Tanikawa et al. 2019), merger of a BH and an unevolved star (Banerjee 2019; Olekaj et al. 2019). It was also pointed out that the existence of LB-1 (and its future evolution) may be in tension with the non-detection of ultraluminous X-ray sources or BH neutron star systems in the Galaxy (Safarzadeh et al. 2019). Alternatively, the nature of LB-1 is questioned with a reanalysis of observational data and results that support the idea that either the BH or both components are of lower mass than originally claimed (Abdul-Masih et al. 2019; El-Badry & Quataert 2019; Eldridge et al. 2019; Irrgang et al. 2019; Simón-Díaz et al. 2019). This would allow the classical scenario of an isolated binary evolution at high metallicity to explain the formation of LB-1.

In fact, the existence of a 70 M_\odot BH in a high-metallicity environment seems challenging. The current consensus is based on mass-loss rate estimates and their dependence on metallicity for H-rich stars (Vink et al. 2001) and He-rich stars (Vink & de Koter 2005; Sander et al. 2020) that seem to limit
BH mass to about 20 M_\odot at solar metallicity (Belczynski et al. 2010). Existing electromagnetic observations seem to support this paradigm (Casares & Jonker 2014). Note the masses of the two most massive stellar-origin BHs that are known to have formed at relatively high metallicity are the well known Cyg X-1 ($M_{BH} = 14.8 \pm 1.0 \ Z \approx 0.02$; Orosz et al. 2011) and M33 X-7 ($M_{BH} = 15.7 \pm 1.5, Z \approx 0.1 \ Z_\odot$; Valsecchi et al. 2010).

The mass of the BH in LB-1 seems to contradict pair-instability pulsation supernovae (PSPNe) and pair-instability supernova (PSN) theory, which limit BH mass to about $M_{BH} < 40-50 \ M_\odot$ (Bond et al. 1984; Heger & Woosley 2002; Woosley 2017; Farmer et al. 2019; Leung et al. 2019). This limit was recently proposed to be as high as $\sim 55 \ M_\odot$ for non-zero metallicity stars (Population I/II) by Belczynski et al. (2017). Note that for the LIGO/Virgo most massive BH–BH merger in O1/O2 (GW170729), the primary BH mass was reported to be 51.2 M_\odot. This high mass (not the merger itself) is likely a statistical fluctuation (Fishbach et al. 2019). However, even that mass can be explained as long as the BH was formed at low metallicity. The PSPN/PSN instability can be avoided (at best) for a 70 M_\odot star that produces as 69 M_\odot BH if only small neutrino mass loss takes place at the BH formation. This was envisioned to be plausible for an ultra-low metallicity and Population III stars, as they can keep massive H-rich envelopes (Heger & Woosley 2002; Woosley 2017).

Here, we propose that a similar mechanism may also work at high metallicity. The modification that we need to introduce to stellar evolution is to lower wind mass-loss rates for (at least some) massive stars. The empirical diagnostics of the winds of massive stars are complex, particularly because of the wind clumping (Fullerton et al. 2006; Oskinova et al. 2007), and the agreement between theory and observations is not always conclusive (Keszthelyi et al. 2017).

In lower-metallicity environments, such as in the LMC and the SMC galaxies, some studies have (Massa et al. 2017) indicated that wind mass-loss rates may actually be higher than the values typically adopted in evolutionary predictions (Vink et al. 2001; Belczynski et al. 2010). Other studies, however, seem to agree with standard calculations (Ramirez-Agudelo et al. 2017), and yet others point to much lower mass-loss rates than expected (Bouret et al. 2003; Ramachandran et al. 2019; Sundqvist et al. 2019). In the upper stellar mass regime, Hainich et al. (2013, 2019) determined mass-loss rates that are in broad agreement with the theoretical expectations.

In this work we consider the mass regime 70–100 M_\odot at solar metallicity. Vink & Gräfener (2012) have shown that for stars in the transitional regime (from optically thin to thick winds) the standard mass-loss rates should apply. The empirical studies that include hydrogen-rich Wolf–Rayet stars (Hamann et al. 2019) find mass-loss rates that are lower than the values theoretically predicted by Nugis & Lamers (2000) for the most luminous objects. However, what the mass-loss rates of such massive stars are when they are very young is not well known. Gruner et al. (2019) found that the mass-loss rates of the earliest O-type star in the Galaxy (HD 93129A, the primary mass is $\sim 100 \ M_\odot$) compares well with the theoretical expectations, but this result depends on an assumed clumping parameters. Furthermore, about 7% of OB stars are known to have (mostly) bipolar magnetic fields (Fossati et al. 2015; Wade et al. 2016; Grunhut et al. 2017). Some of these known magnetic stars are massive, but do not quite reach the mass regime considered here unless errors on mass estimates are considered: 61 ± 33 M_\odot for CPD-28 2561 or ~60 M_\odot for HD 148937 (David-Uraz et al. 2019). These magnetic fields may capture wind particles and reduce wind mass-loss rates independent of star mass and metallicity (Owocki et al. 2016; Georgy et al. 2017; Petit et al. 2017; Shenar et al. 2017). Here we show two things: (1) the decrease of wind mass-loss rates (independent of the reduction origin) allows some models to avoid pair-instability associated mass loss and allows for the formation of high-mass BHs ($\sim 50–70 \ M_\odot$) at high metallicity; and (2) we are not able to make such a massive BH progenitor star fit within the binary orbit of LB-1, if in fact LB-1 hosts a 70 M_\odot BH.

2. Calculations

2.1. Simple StarTrack Simulation

We used the population synthesis code StarTrack (Belczynski et al. 2002, 2008) to quickly test the possibility of the formation of a 70 M_\odot BH with decreased wind mass loss. We employed the rapid core-collapse supernova (SN) engine NS/BH mass calculation (Fryer et al. 2012), with strong PPSN/PSN mass loss (Belczynski et al. 2016). Standard winds for massive stars are used as the base model: O/B star (Vink et al. 2001) winds and LBV winds (specific prescriptions for these winds are listed in Section 2.2 of Belczynski et al. 2010). In wind mass-loss prescriptions we introduce a multiplication factor of $f_{\text{wind}} = 1.0$ as our standard calculation. Note that this approach produces a maximum of ~15 M_\odot for BHs at high metallicity ($Z = 0.02$ assuming $Z_\odot = 0.017$), as demonstrated in Figure 1.

In wind mass-loss prescriptions we introduce a multiplication factor of $f_{\text{wind}} = 0.5, 0.2$. It is clear from Figure 1 that winds need to be reduced by a factor of ~5 to produce a ~70 M_\odot BH at high metallicity. Our specific example is a star with $M_{\text{zams}} = 104 \ M_\odot$ at $Z = 0.02$ and the star is evolved with Hurley et al. (2000) analytic formulae (used in many population synthesis and globular cluster evolutionary codes). H-rich wind mass-loss rates are decreased with $f_{\text{wind}} = 0.2$. The star keeps its H-rich envelope throughout the entire evolution.

Figure 1. Black hole mass for single stars at metallicities estimated for LB-1 as a function of initial star mass. For standard wind mass-loss prescriptions only low-mass black holes are predicted: $M_{BH} < 15 \ M_\odot$. For reduced wind mass loss, however, much heavier black holes are formed: $M_{BH} = 30 \ M_\odot$ for winds reduced by factor of two, and $M_{BH} = 70 \ M_\odot$ for winds reduced by factor of five of the standard values. Note that to reach even higher masses it is necessary to switch off pair-instability pulsation supernovae that severely limit black hole masses.
evolution, the star has a mass of $M_{\text{tot}} = 69.8 M_\odot$ with an H-rich envelope mass of $M_{\text{env}} = 24.8 M_\odot$, He core mass of $M_{\text{He}} = 44.99 M_\odot$, and CO core mass of $M_{\text{CO}} = 34.8 M_\odot$. According to the simplistic population synthesis prescription (no PPSN/PSN for stars with $M_{\text{He}} < 45.0 M_\odot$; Woosley 2017) this star is not yet subject to PPSN/PSN. The star undergoes core collapse and with 1% neutrino mass loss it forms a BH through direct collapse: $M_{\text{BH}} = 69.1 M_\odot$.

2.2. Single-star Evolutionary Models

To explore the possibility of the LB-1 BH being the descendant of a single star and to test simple estimates from Section 2.1, we ran a series of stellar evolution models using the MESA code revision 11701 (Paxton et al. 2011; 2013; 2015; 2018; 2019). We used a solar initial composition of $Z = 0.014$ for all models with an Asplund et al. (2009) metal mixture (initial zfrcs = 6), and the corresponding opacity tables (kappa_file_prefix='"a09"') including low-temperature tables (kappa_lowT_prefix='"lowT_fa05_a09p"') and C/O-enhanced (type 2) opacity tables (kappa_CO_prefix='"-a09_co"'). For convection, we used the Schwarzschild boundary location condition and included convective boundary mixing with a value of the exponentially decaying diffusion coefficient parameter f and f_0 everywhere equal to 0.004. For the reaction network, we used the basic.net and autoextend_net=.true., with which MESA adapts the network along the evolution to the smallest network needed to trace energy generation. The main “stabilizing” setting/approximation was the use of extra pressure at the surface of the star by setting Pextra_factor=2. Another one was the use of MLT++ (see Paxton et al. 2013, Section 7). These settings might underestimate the radius of the star in our models. The models were evolved until at least the end of core He burning and generally stopped due to convergence issues near the end of core carbon burning.

We used the “Dutch” scheme for mass loss with a default Dutch_scaling_factor = 0.85. The two main mass-loss prescriptions experienced by our hydrogen-rich models are from Vink et al. (2001) for hot stars and from de Jager et al. (1988), which we used for the cool “Dutch” wind. In order to reduce the mass-loss rates, we lowered the Dutch_scaling_factor by introducing a multiplication factor in front of wind mass-loss rates and changing it over a wide range, $f_{\text{wind}} = 1.0–0.0$. We calculated nonrotating and rotating models (see Table 1). The standard rotation settings were used (Heger et al. 2000). Rotation is set on the zero-age main sequence and the initial rotation rate, in terms of $\Omega/\Omega_{\text{crit}}$, is given in Table 1. We include the following rotation-induced instabilities; Eddington–Sweat circulation, secular shear instability, and Taylor–Spruit dynamo (Spruit 2002). Table 1 gives the key properties of representative stellar models. Using the physical ingredients described above and considering that the main uncertainty in the models is mass loss, we reduced the mass loss with a multiplication factor given in the table in an attempt to produce a final total mass equal to that of LB-1, i.e., around 70 M_\odot.

Considering nonrotating models, a model without mass loss ($M_{\text{zams}} = 70 M_\odot, f_{\text{wind}} = 0.0$) is also included for reference as the most extreme (and unrealistic) case. With the rescaled wind, $f_{\text{wind}} = 0.576$, a model with an initial mass of 100 M_\odot ends up having a total mass 70.8 M_\odot. This model has final core masses that will experience pair-instability pulsation mass loss, however, and thus lose more mass before it produces a BH. Furthermore, its radius is too large to fit in the orbit of LB-1. The most interesting model is $M_{\text{zams}} = 85 M_\odot$, with $f_{\text{wind}} = 0.333$. The final total mass is 70.9 M_\odot and very importantly the final CO core mass is below the limit for PPSN mass loss. Indeed, the CO core mass of this model is $M_{\text{CO}} = 27.6 M_\odot$ (see Figure 2), which is below the CO core mass threshold for PPSN according to Table 1 in Woosley (2017); no pulsations for models with CO core masses below 28 M_\odot. It is thus possible for this model to produce a 70 M_\odot BH. Unfortunately, the maximum radius of this model

M_{zams}	$\Omega/\Omega_{\text{crit}}$	f_{wind}	M_{ini}	M_{He}	M_{CO}	R_{max}/R_\odot
100	0.6	0.576	61.6	49.5	43.9	260.8
100	0.8	0.882	43.4	43.4	37.5	165.5

Table 1

Initial Mass, Rotation, and Mass-loss Rescaling Factor (Columns 1–3) and Final Total, He and CO Core Masses, and Maximum Radius (Columns 4–7) of the Stellar Models

Figure 2. Stellar structure evolution diagram of the $M_{\text{zams}} = 85 M_\odot$ nonrotating model with low stellar winds (reduced by a factor of 3 compared to the default) at $Z = 0.014$. The blue regions show the convective regions. The red shading indicates nuclear energy generation and the gray shading indicates regions where cooling by neutrino emission dominates. The evolution of the star is presented as a function t^*, the time left until collapse/last model. The diagram presents the end of core hydrogen burning (left side), core helium burning, and carbon burning (gray, lower right corner). The top black solid lines indicate the total mass and the red dashed line indicates the He-free/poor core (defined as the region where the mass fraction of He is less than one percent). This model produces a 70.9 M_\odot star at core collapse, with an He core of $M_{\text{He}} = 31.6 M_\odot$ and CO core of $M_{\text{CO}} = 27.6 M_\odot$ and is most likely not subject to pair-instability pulsation supernova mass loss. This model can thus form a 70 M_\odot black hole if there is no mass loss at BH formation.

Belczynski et al.
in one specific case the lower bound of the second mass gap can be shifted to \(\sim 70 M_\odot \). Such a case was proposed for metal-poor (Population III) stars, for which wind mass loss is negligible even for high-mass stars and then such stars can retain massive H-rich envelopes throughout their evolution. The retention of a massive H-rich envelope allows a star to ignite an H-burning shell, which supports the outer stellar layers and helps the density/temperature in the stellar interior avoid the pair-instability regime (where the adiabatic index becomes small \(\gamma < 4/3 \)). In principle, one can imagine a stable (against PPSN/PSN) stellar configuration with a 70 \(M_\odot \) star at the core collapse, with an He core mass of \(\geq 40 M_\odot \) and H-rich envelope of \(\geq 30 M_\odot \) for a metal-poor star (for which mass loss is expected to be low, at least lower than that at high metallicity).

We found that a similar configuration can be achieved for high-metallicity stars if wind mass-loss rates are decreased in stellar evolution models. For one model, a nonrotating \(M_{\text{zams}} = 85 M_\odot \) and \(Z = 0.014 \) star, we can form a 70 \(M_\odot \) BH as a single-star or a binary component in a very wide noninteracting binary if standard wind mass-loss rates are reduced by factor of \(\sim 5 \). This is a rather surprising and unexpected result on its own. Note that this result is totally independent of LB-1 and its true nature, whether it hosts a massive BH or not. This model, however, is not useful in the context of LB-1, as the stellar radius of this star (\(\geq 650 R_\odot \)) is too large to fit within LB-1’s orbit.

The main uncertainty in the massive star models is mass loss. We reduced the mass-loss rates in order to produce higher final masses. Note that reduced wind mass loss does not have to be in effect for all stars, but it may be possible that wind is quenched only for some fraction of very massive stars (e.g., via magnetic capture of wind particles; see Section 1). Other studies (e.g., Limongi & Chieffi 2018; Chieffi & Limongi 2019), however, show that a higher mass loss is needed in the red supergiant (RSG) phase to reproduce the absence of observed SNe II above a certain luminosity (Smartt 2009). Evolved massive stars are also expected to lose mass via eruptive events, e.g., LBV-type mass loss, beyond the Humphreys–Davidson limit (Humphreys & Davidson 1979; Langer 2012; Smith 2014). This extra mass loss was suggested to explain the apparent lack of cool luminous massive stars in the Milky Way (Mennekens & Vanbeveren 2014). Note that our model of a nonrotating 85 \(M_\odot \) star that can produce a 70 \(M_\odot \) BH enters the cool \((\log_{10}(T_{\text{eff}}) \approx 3.9) \) and luminous \((\log_{10}(L/L_\odot) \approx 6.3) \) regions of the H–R diagram (see Figure 3). Even at low metallicity, Small Magellanic Cloud stars are not found at such low temperatures and high luminosities (see Figure 13 of Ramachandran et al. 2019).

Therefore, the existence of LB-1, if it really hosts a massive 70 \(M_\odot \) BH, points to some other possibilities. (i) Pair-instability does not operate in stars as expected. This would allow a rapidly rotating massive star to evolve homogeneously, retaining a small radius and forming a 70 \(M_\odot \) helium-rich object that would directly collapse to a BH. (ii) Or the BH is a descendant of a BH–BH or BH–star merger in the inner binary and LB-1 was originally a triple system. Note that this would also require homogeneous evolution of two \(\sim 30–50 M_\odot \) stars to not affect a nearby B star, but this would not require violating pair-instability theory. However, a gravitational-wave kick during a BH–BH merger or any natal kick at BH formation might be incompatible with the very low eccentricity.
of LB-1. (iii) Perhaps some stars expand less due to an exotic composition and modifications of opacities or to an unknown additional mixing process. Alternatively, LB-1 may have lower-mass components than was claimed in the discovery paper and then standard stellar/binary evolution can account for the formation of such system.

Note that if BHs as massive as $70 M_\odot$ exist in young and metal-rich environments, e.g., Galactic disk, they would most likely have low spins, since our models employ effective angular momentum transport by a magnetic dynamo ($\alpha \lesssim 0.15$; see Belczynski et al. 2017). If such a massive BH could catch a companion, e.g., in an open cluster, or have formed in a wide binary with another BH that then evolves into close/merging system, e.g., by a “lucky” natal kick injection into a short period and eccentric orbit, then LIGO/Virgo will sooner or later discover such massive BHs. LIGO/Virgo detection of objects of such mass will be burdened with large errors, ~ 20–30 M_\odot. up and down, so in principle even a detection of a $100 M_\odot$ BH could be possibly explained by one of our models.

The authors would like to thank Lida Oskinova and the anonymous reviewer for useful comments. K.B. acknowledges support from the Polish National Science Center (NCN) grant Maestro (2018/30/A/ST9/00050). K.B. and R.H. acknowledge support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. R.H. and E.K. acknowledge support from the ChETEC COST Action (CA16117), supported by COST (European Cooperation in Science and Technology). A.H. acknowledges support from the National Science Foundation under grant No. PHY-1430152.

Acknowledgments: Edge support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. R.H. and E.K. acknowledge support from the ChETEC COST Action (CA16117), supported by COST (European Cooperation in Science and Technology). A.H. acknowledges support from the Division of Science and Technology, MEXT, Japan. R.H. and E.K. acknowledge support from the ChETEC COST Action (CA16117), supported by COST (European Cooperation in Science and Technology). A.H. acknowledges support from the National Science Foundation under grant No. PHY-1430152.

References

Abdul-Masih, M., Banyard, G., Bodensteiner, J., et al. 2019, arXiv:1912.04092
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Banerjee, S. 2019, arXiv:1912.06022
Belczynski, K., Bulik, T., Fryer, C. L., et al. 2010, ApJ, 714, 1217
Belczynski, K., Kalogera, V., & Bulik, T. 2002, ApJ, 572, 407
Belczynski, K., Kalogera, V., Rasio, F. A., et al. 2008, ApJS, 174, 223
Belczynski, K., Heger, A., Gladysz, W., et al. 2016, A&A, 594, A97
Belczynski, K., Klenczki, J., Fields, C. E., et al. 2017, arXiv:1706.07053
Bond, J. R., Arnett, W. D., & Carr, B. J. 1984, ApJ, 280, 825
Bouret, J. C., Lanz, T., Hillier, D. J., et al. 2003, ApJ, 595, 1182
Casares, J., & Jonker, P. G. 2014, SSRV, 183, 223
Chieffi, A., & Limongi, M. 2019, arXiv:1911.08988
David-Uraz, A., Erba, C., Petit, V., et al. 2019, MNRAS, 483, 2814

Hainich, R., Bauche-Langer, A., & Hamann, W.-R. 2013, in Massive Stars: From Alpha to Omega, 155
Hamann, W. R., Gräfener, G., Liermann, A., et al. 2019, A&A, 625, A57
Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368
Heger, A., & Woosley, S. E. 2002, ApJ, 567, 1025
Humphreys, R. M., & Davidson, K. 1979, ApJ, 232, 409
Huygen, A., Geier, S., Kreuzer, S., Pelisoli, I., & Heber, U. 2019, arXiv:1912.08338
Keszthelyi, Z., Puls, J., & Wade, G. A. 2017, A&A, 598, A4
Langer, N. 2012, ARA&A, 50, 107
Leung, S.-C., Nomoto, K., & Blinnikov, S. 2019, ApJ, 887, 72
Limongi, M., & Chieffi, A. 2018, ApJS, 237, 13
Liu, J., Zhang, H., Howard, A. W., et al. 2019, Natur, 575, 618
Massa, D., Fullerton, A. W., & Prinja, R. K. 2017, MNRAS, 470, 3765
Mennkekes, N., & Vanbeveren, D. 2014, A&A, 564, A134
Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227
Olejak, A., Belczynski, K., Bulik, T., & Sobolewska, M. 2019, arXiv:1908.08775
Orosz, J. A., McClintock, J. E., Auñerberg, J. P., et al. 2011, ApJ, 742, 84
Osorio, L. M., Hamann, W. R., and Feldmeier, A. 2007, A&A, 476, 1331
Owocki, S. P., ud-Doula, A., Sundqvist, J. O., et al. 2016, MNRAS, 462, 3830
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
Paxton, B., Schwab, J., Bauer, E. W., et al. 2018, ApJS, 234, 34
Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10
Pettit, V., Keszthelyi, Z, Machnis, R., et al. 2017, MNRAS, 466, 1052
Ramachandran, V., Hamann, W.-R., Osokina, L. M., et al. 2019, A&A, 625, A104
Ramírez-Aguado, O. H., Sana, H., de Koter, A., et al. 2017, A&A, 600, A81
Safarzadeh, M., Ramírez-Ruiz, E., & Belczynski, K. 2019, arXiv:1912.10456
Sander, A. A. C., Vink, J. S., & Hamann, W. R. 2020, MNRAS, 491, 4406
Shen, R. F., Matzner, C. D., Howard, A. W., & Zhang, W. 2019, arXiv:1911.12581
Shenar, T., Oskinova, L. M., Järvinen, S. P., et al. 2017, A&A, 606, A91
Simón-Díaz, S., Maíz Apellániz, J., Lennon, D. J., et al. 2019, arXiv:1912.07255
Smartt, S. J. 2009, ARA&A, 47, 63
Smith, N. 2014, ARA&A, 52, 487
Spruit, H. C. 2002, A&A, 381, 923
Sundqvist, J. O., Björklund, R., Puls, J., & Najarro, F. 2019, arXiv:1910.06586
Sundqvist, J. O., Björklund, R., Puls, J., & Najarro, F. 2019, arXiv:1910.06586
Takakawa, A., Kinugawa, T., Kumaoto, J., & Fujii, M. S. 2019, arXiv:1912.04509
Thompson, T. A., Kochanek, C. S., Stanek, K. Z., et al. 2013, ApJ, 766, 37
Valsecchi, F., Glebbeek, E., Farr, W. M., et al. 2010, Natur, 468, 77
Vink, J. S., & de Koter, A. 2005, A&A, 442, 387
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574
Vink, J. S., & Gräfener, G. 2012, ApJ, 751, L34
Wade, G. A., Neiner, C., Alecian, E., et al. 2016, MNRAS, 456, 2
Woosley, S. E. 2017, ApJ, 836, 244

ORCID iDs

J. Casares © https://orcid.org/0000-0001-5031-0128
Youjun Lu © https://orcid.org/0000-0002-1310-4664
R. O’Shaughnessy © https://orcid.org/0000-0001-5832-8517
A. Heger © https://orcid.org/0000-0002-3684-1325

Belczynski et al.