PADDED SCHUBERT POLYNOMIALS AND WEIGHTED ENUMERATION OF BRUHAT CHAINS

CHRISTIAN GAETZ AND YIBO GAO

Abstract. We prove a common generalization of the fact that the weighted number of maximal chains in the strong Bruhat order on the symmetric group is \(\binom{n}{2}! \) for both the code weights and the Chevalley weights. We also define weights which give a one-parameter family of strong order analogues of Macdonald’s reduced word identity for Schubert polynomials.

1. Introduction

Let \(S_n \) denote the (strong) Bruhat order on the symmetric group \(S_n \) (see Section 2 for background and definitions). Given a function \(wt : Cov(S_n) \to R \) from the set of covering relations of \(S_n \) to a ring \(R \), and a saturated chain \(c = (u_1 < u_2 < \cdots < u_k) \), we define the weight of \(c \) multiplicatively:

\[
wt(c) :=
\prod_{i=1}^{k-1} wt(u_i < u_{i+1}).
\]

For \(v \leq w \) in \(S_n \) we let

\[
m_{wt}(v, w) :=
\sum_{c : v \to w} wt(c)
\]

denote the total weighted number of chains over all saturated chains \(c \) from \(v \) to \(w \).

In this paper, we study several classes of weights which generalize the previously studied code weights [3] and Chevalley weights [8, 10]. Some building blocks for these new weights are given in Definition 1.1.

Definition 1.1. For \(v < w = vt_{ij} \) a covering relation in \(S_n \) with \(i < j \), let \(a_{v < w}, b_{v < w}, c_{v < w}, \) and \(d_{v < w} \) denote the number of dots in the regions \(A, B, C \), and \(D \) respectively in Figure 1. That is,

\[
a_{v < w} = \# \{ k < i \mid v_i < v_k < v_j \}
\]

\[
b_{v < w} = \# \{ i < k < j \mid v_k > v_j \}
\]

\[
c_{v < w} = \# \{ k > j \mid v_i < v_k < v_j \}
\]

\[
d_{v < w} = \# \{ i < k < j \mid v_k < v_i \}.
\]

Date: May 2, 2019.

C.G. was supported by a National Science Foundation Graduate Research Fellowship under Grant No. 1122374.
Note that we always have $b_{v \leq w} + d_{v \leq w} = j - i - 1$ and $a_{v \leq w} + c_{v \leq w} = v_j - v_i - 1$.

The Chevalley weights $\text{wt}_{\text{Chev}}(v \leq w) : \text{Cov}(S_n) \to \mathbb{Z}[\alpha_1, ..., \alpha_{n-1}]$ assign weight $\alpha_i + \cdots + \alpha_{j-1}$ to the covering relation $v \leq w = vt_{ij}$, where $t_{ij} = (i j)$ is a transposition. It was shown by Stembridge [10] that:

\begin{equation}
\text{m}_{\text{Chev}}(e, w_0)(\alpha_1, ..., \alpha_{n-1}) = \begin{pmatrix} n \\ 2 \end{pmatrix}! \cdot \prod_{1 \leq k < \ell \leq n-1} \frac{\alpha_k + \cdots + \alpha_{\ell-1}}{\ell - k}
\end{equation}

where $w_0 = n(n-1) \cdots 21$ denotes the longest permutation. Specializing all $\alpha_i = 1$ recovers the classical fact:

\begin{equation}
\text{m}_{\text{Chev}}(e, w_0)(1, ..., 1) = \begin{pmatrix} n \\ 2 \end{pmatrix}!.
\end{equation}

Recently, a new set of weights, the code weights $\text{wt}_{\text{code}} : \text{Cov}(S_n) \to \mathbb{N}$ were defined in the course of proving the Sperner property for the weak Bruhat order [4]. In the notation of Definition 1.1, the code weights are defined by $\text{wt}_{\text{code}}(v \leq w) = 1 + 2b_{v \leq w}$. In [3], it was shown that

\begin{equation}
\text{m}_{\text{code}}(w, w_0) = \begin{pmatrix} n \\ 2 \end{pmatrix} - \ell(w) ! \cdot \mathcal{S}_w(1, ..., 1)
\end{equation}

where \mathcal{S}_w is the Schubert polynomial (see Section 2), providing a strong Bruhat order analogue of Macdonald’s well known identity for $\mathcal{S}_w(1, ..., 1)$.

Figure 1. For $v \leq w$ a covering relation in the strong order, the permutation matrices for v and w agree, except that the black dots in v are replaced with the white dots in w. No dots may occupy the central region; the numbers of dots in the four labeled regions A, B, C and D are used in Definition 1.1.
as a weighted enumeration of chains in the weak Bruhat order \([6]\). Letting \(w = e\) in (3) gives:

\[
m_{\text{code}}(e, w_0) = \binom{n}{2}!.
\]

One motivation of this work is to understand and generalize the coincidence between (2) and (4); this is done in Theorem 1.2.

Theorem 1.2. Let \(f : \text{Cov}(S_n) \to \mathbb{Z}[z, z^2, z^3, z^4] \) be the weight function defined by

\[
f(v \prec w) := 1 + a_{v \prec w}z_A + b_{v \prec w}z_B + c_{v \prec w}z_C + d_{v \prec w}z_D.
\]

Let \(w^t : \text{Cov}(S_n) \to \mathbb{Z}[z]\) be any weight function obtained from \(f\) by specializing the variables so that \(\{z_A, z_B, z_C, z_D\} = \{0, 0, 2z, z\}\) as multisets, then:

\[
m_{\text{wt}}(e, w_0) = \binom{n}{2}!.
\]

In particular, \(m_{\text{wt}}(e, w_0)\) does not depend on \(z\).

\[\text{Figure 2. The weights considered in Theorem 1.4 (left) and in Theorem 1.3 (right) for } S_3. \text{ Unlabelled edges have weight 1.}\]

Theorem 1.3 provides a common generalization of (1) and (4); see Example 1.5.

Theorem 1.3. Let \(w^t : \text{Cov}(S_n) \to \mathbb{Z}[\alpha_1, ..., \alpha_{n-1}, z] \) be defined by

\[
w^t(v \prec vt_{ij}) = \alpha_i + \alpha_{i+1} + \cdots + \alpha_{j-1} + (b_{v \prec vt_{ij}} - d_{v \prec vt_{ij}})z.
\]

Then

\[
m_{\text{wt}}(e, w_0) = \binom{n}{2}! \cdot \prod_{k < \ell} \frac{\alpha_k + \cdots + \alpha_{\ell-1}}{\ell - k}.
\]

In particular, \(m_{\text{wt}}(e, w_0)\) does not depend on \(z\).
Theorem 1.4 extends (3) to a one-parameter family of strong Bruhat analogues of Macdonald’s identity.

Theorem 1.4. Let \(\text{wt} : \text{Cov}(S_n) \to \mathbb{Z}[z] \) be defined by

\[
\text{wt}(v \lessdot w) = 1 + b_{v \lessdot w}(2 - z) + c_{v \lessdot w}z.
\]

Then for any \(w \in S_n \) we have

\[
m_{\text{wt}}(w, w_0) = \left(\binom{n}{2} - \ell(w) \right)! \cdot \mathcal{G}_w(1, \ldots, 1).
\]

In particular, \(m_{\text{wt}}(w, w_0) \) does not depend on \(z \).

Example 1.5. Various specializations of the above Theorems give previously known results:

1. Letting \(z_B = 2 \) and \(z_A = z_C = z_D = 0 \) in Theorem 1.2 recovers (4), while letting \(z_B = z_D = 1 \) and \(z_A = z_C = 0 \) recovers (2).
2. Letting all \(z = \alpha_1 = \cdots = \alpha_{n-1} = 1 \) in Theorem 1.3 the weight becomes:

\[
\text{wt}(v \lessdot w = vt_{ij}) = (j - i) + (b_{v \lessdot w} - d_{v \lessdot w})
\]

\[
= (b_{v \lessdot w} + d_{v \lessdot w} + 1) + (b_{v \lessdot w} - d_{v \lessdot w})
\]

\[
= 1 + 2b_{v \lessdot w}.
\]

This recovers the identity (4) for the code weights.

3. Letting \(z = 0 \) in Theorem 1.3 recovers Stembridge’s identity (1) for the Chevalley weights.

4. Letting \(z = 0 \) in Theorem 1.4 recovers the strong order Macdonald identity (3).

Section 2 covers background and definitions. Theorems 1.3 and 1.4 are proven in Sections 3 and 4 respectively. Finally, Section 5 discusses symmetries of the weights from Definition 1.1 and completes the proof of Theorem 1.2.

2. Background and definitions

2.1. **Bruhat order.** Let \(s_1, \ldots, s_{n-1} \) denote the adjacent transpositions in the symmetric group \(S_n \). For any permutation \(w \in S_n \), its length \(\ell(w) \) is the minimal number of simple transpositions needed to write \(w = s_{i_1} \cdots s_{i_{\ell}} \) as a product.

The (strong) Bruhat order \(S_n = (S_n, \leq) \) is defined by its covering relations: \(v \lessdot w \) whenever \(w = vt_{ij} \) for some \(i, j \) and \(\ell(w) = \ell(v) + 1 \). The Bruhat order has unique minimal element the identity permutation \(e \), and unique maximal element \(w_0 = n(n-1)\ldots21 \) of length \(\binom{n}{2} \), called the longest element. The Hasse diagram of \(S_3 \) is shown in Figure 2.
2.2. Schubert polynomials and padded Schubert polynomials. For $w \in S_n$, the Schubert polynomials $\mathcal{G}_w(x_1,...,x_n)$, introduced by Lascoux and Schützenberger [5], represent the classes of Schubert varieties in the cohomology $H^*(G/B)$ of the flag variety. They can be defined recursively as follows:

- $\mathcal{G}_{w_0}(x_1,...,x_n) = x_1^{n-1}x_2^{n-1}...x_{n-2}^2x_1 = x^\rho$, where $\rho = (n-1,n-2,...,1)$ denotes the staircase composition, and
- $\mathcal{G}_{w}s_i = N_i \cdot \mathcal{G}_w$ when $\ell(ws_i) < \ell(w)$.

Here N_i denotes the i-th Newton divided difference operator:

$$N_i \cdot g(x_1,...,x_n) := \frac{g(x_1,...,x_n) - g(x_1,...,x_{i+1},x_i,...,x_n)}{x_i - x_{i+1}}.$$

The Schubert polynomials $\{\mathcal{G}_w\}_{w \in S_n}$ form a basis for the vector space $V_n = \text{span}_Q\{x^\gamma | \gamma \leq \rho\}$, where here \leq denotes component-wise comparison.

Let $\tilde{V}_n = \text{span}_Q\{x^\gamma y^{\rho - \gamma}\}$, then the padded Schubert polynomials $\tilde{\mathcal{G}}_w$, introduced in [3], are defined as the images of the $\tilde{\mathcal{G}}_w$ under the natural map $x^\gamma \mapsto x^\gamma y^{\rho - \gamma}$ from $V_n \rightarrow \tilde{V}_n$. Define a differential operator $\Delta : \tilde{V}_n \rightarrow \tilde{V}_n$ by

$$\Delta = \sum_{i=1}^{n} x_i \frac{\partial}{\partial y_i}.$$

Proposition 2.1 ([3]). For any $w \in S_n$ we have:

$$\Delta \tilde{\mathcal{G}}_w = \sum_{u : w \leq u} (1 + 2b_{w,u})\tilde{\mathcal{G}}_u.$$

3. Proof of Theorem 1.3

We will modify a proof idea for [11] due to Stanley [9]. Let’s define some linear operators on the cohomology ring of the flag variety

$$H^*(G/B) \simeq \mathbb{C}[x_1,...,x_n]/I,$$

where I is the ideal generated by all symmetric polynomials in $x_1,...,x_n$ with vanishing constant terms. The core of the argument comes from interpreting the operator Δ with respect to two different bases of $H^*(G/B)$: one is $\{\mathcal{G}_w | w \in S_n\}$ and the other one is $\{x^\gamma | \gamma \leq \rho\}$.

Recall that we have defined Δ on \tilde{V}_n. We can define it naturally on V_n since $V_n \rightarrow \tilde{V}_n$ is an isomorphism. Namely, it can be seen from definition that $\Delta x^\gamma = (\sum_{i=1}^{n}(n-i - \gamma_i)x_i)x^\gamma$ for $\gamma \leq \rho$ (in which case $\gamma_i = 0$). Moreover, we can extend this definition of Δ to $\mathbb{C}[x_1,...,x_n]$ by the same formula. We claim that such definition is in fact well-defined on $\mathbb{C}[x_1,...,x_n]/I$. This is formulated in the following technical lemma, which is necessary for the correctness of the main proof but is not related to the key idea of the proof.

Lemma 3.1. The linear operator $\Delta : x^\gamma \mapsto (\sum_{i=1}^{n}(n-i - \gamma_i)x_i)x^\gamma$ is well-defined on $\mathbb{C}[x_1,...,x_n]/I$ and coincides with $\sum_{i=1}^{n} x_i \frac{\partial}{\partial y_i}$ on \tilde{V}_n.
Proof. We need to check that if $f \in I$, then $\Delta f \in I$. For convenience, we will first pad every monomial x^γ to $x^\gamma y^{\rho - \gamma}$, allowing negative exponents on y-variables, so that we can use $\Delta = \sum_i \frac{\partial}{\partial y_i} x_i$, and then specialize y_i's to 1. This is compatible with the definition as in the statement of the lemma. This means $\Delta(fg) = f\Delta(g) + g\Delta(f)$. As a result, it suffices to check if f is a generator of I, then $\Delta f \in I$.

Let's pick the power sum symmetric functions $f = x_1^k + \cdots + x_n^k$ as generators, for $k \geq 1$. After padding, we get $\sum_j \left(\frac{x_j}{y_j}\right)^k y^\rho$. Then

$$
\Delta \left(\sum_{j=1}^n \left(\frac{x_j}{y_j}\right)^k y^\rho\right) = \left(\sum_{i=1}^n \frac{\partial}{\partial y_i} x_i\right) \left(\sum_{j=1}^n \left(\frac{x_j}{y_j}\right)^k y^\rho\right) = \sum_{i,j=1}^n \frac{x_i^k}{y_j^k} \left(\frac{\partial}{\partial y_i} y^\rho\right) + \sum_{i=1}^n x_i y^\rho \left(\frac{\partial}{\partial y_i} y_i^k\right) = \left(\sum_{i=1}^n x_i \frac{\partial}{\partial y_i} y^\rho\right) \left(\sum_{j=1}^n \frac{x_j^k}{y_j^k}\right) - (k+1)y^{\rho}\sum_{i=1}^n \frac{x_i^{k+1}}{y_i^{k+1}}.
$$

It is clear that both terms belong to I after specializing y_i's to 1. So we are done. \square

Now let $\alpha_1, \ldots, \alpha_{n-1}$ be as in Theorem 1.3 and define a linear operator M as multiplication by

$$
\alpha_1 x_1 + \alpha_2 (x_1 + x_2) + \alpha_3 (x_1 + x_2 + x_3) + \cdots + \alpha_{n-1} (x_1 + \cdots + x_{n-1}) = \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_{n-1} x_{n-1}
$$

where $\beta_i = \alpha_i + \cdots + \alpha_{n-1}$. By Monk's rule (see e.g. [7]),

$$
M \mathcal{S}_w = \sum_{w' \equiv w} (\alpha_i + \cdots + \alpha_{j-1}) \mathcal{S}_{w'_{ij}}.
$$

Note that Monk’s rule only holds modulo the ideal I, and not as an identity of polynomials. Define another linear operator R by

$$
R \mathcal{S}_w = \sum_{w: w \equiv u} (b_{w \equiv u} - d_{w \equiv u}) \mathcal{S}_u.
$$

Write $M_1 = M$ and define $M_{k+1} = [M_k, R] := M_k R - R M_k$ for $k \geq 1$. Here, $[,]$ is the standard Lie bracket.

Lemma 3.2. The operator M_k is the same as multiplication by the element $(k-1)!((\beta_1 x_1^k + \beta_2 x_2^k + \cdots + \beta_{n-1} x_{n-1}^k)).$
Proof. Let’s analyze R a bit more. We have
\[
R\mathfrak{S}_w = \sum_{u: w \leq u} (b_{w \leq u} - d_{w \leq u})\mathfrak{S}_u
\]
\[
= \sum_{u: w \leq u} (1 + 2b_{w \leq u})\mathfrak{S}_u - \sum_{u: w \leq u} (1 + b_{w \leq u} + d_{w \leq u})\mathfrak{S}_u
\]
\[
= \sum_{u: w \leq u} (1 + 2b_{w \leq u})\mathfrak{S}_u - \sum_{u: w \leq u} (j - i)\mathfrak{S}_{u_{ij}}
\]
\[
= \Delta\mathfrak{S}_w - ((n - 1)x_1 + (n - 2)x_2 + \cdots + x_{n-1})\mathfrak{S}_w
\]
where the last equality follows from Proposition 2.1 and Monk’s rule (as a
special case of M by assigning $\alpha_1 = \cdots = \alpha_{n-1} = 1$).

We use induction on k. Since multiplications by polynomials commute
with each other, we have $M_kR - RM_k = M_k\Delta - \Delta M_k$. Let’s compute what
it does on monomials x^γ:
\[
x^\gamma = M_k\left(\sum_{i=1}^{n-1} (n - i - \gamma_i)x_i\right) x^\gamma
\]
\[
= (k - 1)! \left(\sum_{i,j=1}^{n-1} (n - i - \gamma_i)\beta_j x_i x_j^k\right) x^\gamma
\]
while on the other hand,
\[
\Delta M_k x^\gamma = (k - 1)! \Delta \sum_j \beta_j x_1^{\gamma_j} \cdots x_{j-1}^{\gamma_{j-1}} x_j^{\gamma_j + 1} x_{j+1}^{\gamma_{j+1}} \cdots x_{n-1}^{\gamma_{n-1}}
\]
\[
= (k - 1)! \left(\sum_{i \neq j} (n - i - \gamma_i)\beta_j x_i x_j^k\right) x^\gamma
\]
\[
+ (k - 1)! \left(\sum_i (n - i - \gamma_i - k)\beta_i x_i^{k+1}\right) x^\gamma.
\]
Here, the calculation of $\Delta M x^\gamma$ uses the fact that Δ is defined on all of
$\mathbb{C}[x_1, \ldots, x_n]/I$ (Lemma 3.1), since the coefficient of x_j may exceed $n - j$.
As a result, we see that $(M_k\Delta - \Delta M_k)x^\gamma = k!(\sum_{i=1}^{n-1} \beta_i x_i^{k+1})x^\gamma$. So the
induction step goes through.

Remark. In fact, the operator R can be more elegantly written as
\[
Rf = y^p \cdot \Delta(f/y^p),
\]
when $f \in \mathbb{W}_n$ is already padded.

Lemma 3.3. View $M_k = (k - 1)! \sum_{i=1}^{n-1} \beta_i x_i^k$ as polynomials. Then $\Pi_k M_k$
lies in the ideal I if $\sum kp_k = \binom{n}{2}$ and $p_1 < \binom{n}{2}$.

Proof. Write $M_k = (k - 1)! \sum_{i=1}^{n} \beta_i x_i^k$ with $\beta_n = 0$. As $\Pi_k M_k$ is
homogeneous of degree $\binom{n}{2}$, we can write it as $f\mathfrak{S}_w$ modulo I, where f depends
only on β_i’s. In fact, we can obtain $f \mathcal{G}_{w_0}$ by first multiplying out $\prod_k M_{p_k}^k$ and then performing subtraction with respect to the homogeneous part of degree $\binom{n}{2}$ in $\mathbb{C}[x_1, \ldots, x_n]/I$. This shows that f is a polynomial of degree at most $\binom{n}{2} - 2\ell + \ell = \binom{n}{2} - \ell$.

On the other hand, if $\beta_i = \beta_i + 1$, then $\prod_{k \geq 1} M_{p_k}^k$ is symmetric in x_i and x_{i+1}. Consequently, $N_i(\prod_k M_{p_k}^k) = 0$, where N_i is the i-th divided difference operator introduced in Section 2. But $0 = N_i(f \mathcal{G}_{w_0}) = f(N_i \mathcal{G}_{w_0}) = f \mathcal{G}_{w_0 s_i}$. As $\mathcal{G}_{w_0 s_i} \neq 0$, we deduce that f is a polynomial of degree at most $\binom{n}{2} - \ell$.

Lemma 3.4. With M, R as above, $(M + zR)^{\binom{n}{2}} \cdot 1 = M^{\binom{n}{2}} \cdot 1$.

Proof. Notice that $R \cdot 1 = R \cdot \mathcal{G}_c = 0$ as $b_{w \leq s_i} = d_{w \leq s_i} = 0$. The rest is a simple consequence of Lemma 3.2 and Lemma 3.3. Namely, expand $(M + zR)^{\binom{n}{2}}$ and move R’s towards the right such that in each step, we replace $\cdots RM_k \cdots$ by $\cdots M_k R \cdots - \cdots M_{k+1} \cdots$, keeping the total degree. In the end when no such moves are possible, either R appears on the right side, resulting in a term equal to 0 (since $R \cdot 1 = 0$), or $\prod_{k \geq 1} M_{p_k}^k$ appears with $\sum kp_k = \binom{n}{2}$, which is also 0 except the single term $M^{\binom{n}{2}}$.

Theorem 1.3 now follows easily.

Proof of Theorem 1.3. Recall that we have

\[M \cdot \mathcal{G}_w = \sum_{w \leq w_{t_{ij}}} (\alpha_i + \cdots + \alpha_{j-1}) \mathcal{G}_{w_{t_{ij}}} \]

\[R \cdot \mathcal{G}_w = \sum_{w \leq u} (b_{w \leq u} - d_{w \leq u}) \mathcal{G}_u \]

so putting them together,

\[(M + zR) \cdot \mathcal{G}_w = \sum_{w \leq u} \text{wt}(w \leq u) \mathcal{G}_u. \]

An iteration (or induction) immediately gives

\[(M + zR)^\ell \cdot \mathcal{G}_w = \sum_{w \leq u, \ell(w) = \ell(u) - \ell} m_{\text{wt}}(w, u) \cdot \mathcal{G}_u. \]

Taking $w = e$ and $\ell = \binom{n}{2}$ in the above setting, we obtain that $m_{\text{wt}}(e, w_0)$ is the coefficient of \mathcal{G}_{w_0} in $(M + zR)^{\binom{n}{2}}$, modulo I. By Lemma 3.4, such coefficient does not depend on z. When $z = 0$, our result is given by Stembridge [10] (see also Stanley [9]).
4. Proof of Theorem 1.4

We first note a simple fact about the specialization of \tilde{S}_w: since \tilde{S}_w has total x-degree $\ell(w)$ and total y-degree $(n^2) - \ell(w)$, we have

$$(\Delta \tilde{S}_w)(1, \ldots, 1) = \left(\binom{n}{2} - \ell(w) \right) \tilde{S}_w(1, \ldots, 1).$$

We then have the following lemma.

Lemma 4.1. Fix $w \in S_n$. Then

$$\sum_{u: w \preceq u} \tilde{S}_u(1, \ldots, 1) (b_{w \preceq u} - c_{w \preceq u}) = 0.$$

Proof. Let’s recall some classical facts about \tilde{S}_u and $\tilde{S}_{u^{-1}}$. Since there is a simple bijection (transpose) between RC-graphs of u and u^{-1} (see for example [1]), the number of monomials appearing in the expansion of \tilde{S}_u is the same as in $\tilde{S}_{u^{-1}}$. This says $\tilde{S}_u(1, \ldots, 1) = \tilde{S}_{u^{-1}}(1, \ldots, 1)$. Moreover, as $\ell(u) = \ell(u^{-1})$, $(\Delta \tilde{S}_u)(1, \ldots, 1) = (\Delta \tilde{S}_{u^{-1}})(1, \ldots, 1)$. In addition, notice that $w \preceq u$ if and only if $w^{-1} \preceq u^{-1}$ and that $b_{w \preceq u} = c_{w^{-1} \preceq u^{-1}}$ via a reflection symmetry of permutation diagrams.

Apply Proposition 2.1 to w and w^{-1} separately. We have

$$\Delta \tilde{S}_{w^{-1}} = \sum_{u: w^{-1} \preceq u} (1 + 2b_{w^{-1} \preceq u^{-1}}) \tilde{S}_u$$

$$= \sum_{u^{-1}: w^{-1} \preceq u^{-1}} (1 + 2b_{w^{-1} \preceq u^{-1}}) \tilde{S}_{u^{-1}}$$

$$= \sum_{u: w \preceq u} (1 + 2c_{w \preceq u}) \tilde{S}_{u^{-1}},$$

$$\Delta \tilde{S}_w = \sum_{u: w \preceq u} (1 + 2b_{w \preceq u}) \tilde{S}_u.$$

Now take the principal specialization and subtract these two equations. The left-hand side becomes zero as explained above. Recalling from above that $\tilde{S}_{u^{-1}}(1, \ldots, 1) = \tilde{S}_u(1, \ldots, 1)$, we obtain the desired equality. \hfill \square

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We proceed by induction on $(\binom{n}{2} - \ell(w))$. The base case $w = w_0$ is trivial as both sides equal 1. Now fix w and assume that the statement is true for all u with $\ell(u) > \ell(w)$. The following calculation
is straightforward:

\[m_{\text{wt}}(w, w_0) = \sum_{u: w \preceq u} (1 + b_{w \preceq u}(2 - z) + c_{w \preceq u}z)m_{\text{wt}}(u, w_0) \]

\[= \sum_{u: w \preceq u} (1 + b_{w \preceq u}(2 - z) + c_{w \preceq u}z) \left(\binom{n}{2} - \ell(u) \right)! \tilde{\mathcal{S}}_u(1, \ldots, 1) \]

\[= \left(\binom{n}{2} - \ell(w) - 1 \right)! \sum_{u: w \preceq u} (1 + 2b_{w \preceq u}) \tilde{\mathcal{S}}_u(1, \ldots, 1) \]

\[- \left(\binom{n}{2} - \ell(w) - 1 \right)!z \sum_{u: w \preceq u} (b_{w \preceq u} - c_{w \preceq u}) \tilde{\mathcal{S}}_u(1, \ldots, 1). \]

By Lemma 4.1, the second term in the above expression becomes 0. And by the principal specialization of Proposition 2.1, we have that

\[\sum_{u: w \preceq u} (1 + 2b_{w \preceq u}) \tilde{\mathcal{S}}_u(1, \ldots, 1) = \left(\binom{n}{2} - \ell(w) \right)! \tilde{\mathcal{S}}_w(1, \ldots, 1). \]

Thus the first term in the above expression becomes \(\left(\binom{n}{2} - \ell(w) \right)! \tilde{\mathcal{S}}_w(1, \ldots, 1) \), which is what we want.

\[\square \]

5. Weight symmetries and the proof of Theorem 1.2

It is well known that the maps \(v \mapsto w_0v \) and \(v \mapsto vw_0 \) are antiautomorphisms of the Bruhat order \(S_n \) and that \(v \mapsto v^{-1} \) is an automorphism \([2]\); Proposition 5.1 determines the effect of these maps on the quantities \(a, b, c, \) and \(d \) from Definition 1.1.

Proposition 5.1. Let \(v \preceq w \) be a covering relation in \(S_n \).

1. \(a_{v \preceq w} = d_{v^{-1} \preceq w^{-1}} \) and \(b_{v \preceq w} = c_{v^{-1} \preceq w^{-1}} \),
2. \(b_{v \preceq w} = d_{w_0w \preceq u_0v} \), and
3. \(a_{v \preceq w} = c_{w_0w \preceq v_0w} \).

Proof. These are clear from Figure 1 after observing that inversion corresponds to reflecting the permutation matrix across the main (top-left to bottom-right) diagonal, that left multiplication by \(w_0 \) corresponds to reflecting across the vertical axis, and that right multiplication by \(w_0 \) corresponds to reflecting across the horizontal axis.

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. There are six cases to consider, depending on which pair of \(z_A, z_B, z_C \), and \(z_D \) are equal to \(z \) and \(2 - z \) (the others being zero); which element of the pair is sent to \(z \) or \(2 - z \) does not matter, since the claimed result is independent of \(z \).

For the pair \(\{ z_B, z_C \} \), letting \(w = e \) in Theorem 1.4 proves the result. For \(\{ z_B, z_D \} \), letting \(\alpha_1 = \cdots = \alpha_{n-1} \) in Theorem 1.3 gives weights

\[\text{wt}(v \preceq w) = (1 + b_{v \preceq u} + d_{v \preceq w}) + (b_{v \preceq w} - d_{v \preceq w})z \]
which clearly give all of the desired linear combinations of $b_{v < w}$ and $d_{v < w}$.

Applying the symmetries from Proposition 5.1 then yields the remaining pairs. □

ACKNOWLEDGEMENTS

The authors wish to thank Alex Postnikov for helpful suggestions.

REFERENCES

[1] Nantel Bergeron and Sara Billey. RC-graphs and Schubert polynomials. Experiment. Math., 2(4):257–269, 1993.
[2] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005.
[3] Christian Gaetz and Yibo Gao. A combinatorial duality between the weak and strong Bruhat orders. arXiv e-prints, 2018. arXiv:1812.05126 [math.CO].
[4] Christian Gaetz and Yibo Gao. A combinatorial \mathfrak{sl}_2-action and the Sperner property for the weak order. arXiv e-prints, 2018. arXiv:1811.05501 [math.CO].
[5] Alain Lascoux and Marcel-Paul Schützenberger. Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math., 294(13):447–450, 1982.
[6] I.G. Macdonald. Notes on Schubert polynomials. Publications du LACIM, Université du Québec à Montréal, 1991.
[7] Laurent Manivel. Symmetric functions, Schubert polynomials and degeneracy loci, volume 6 of SMF/AMS Texts and Monographs. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001. Translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3.
[8] Alexander Postnikov and Richard P. Stanley. Chains in the Bruhat order. J. Algebraic Combin., 29(2):133–174, 2009.
[9] Richard Stanley. A survey of the Bruhat order of the symmetric group (transparencies). http://www-math.mit.edu/~rstan/transparencies/bruhat.pdf
[10] John R. Stembridge. A weighted enumeration of maximal chains in the Bruhat order. J. Algebraic Combin., 15(3):291–301, 2002.