Characterization of immobilized Tyrosinase--an enzyme that is stable in organic solvent at 100 °C

Lidong Wu¹,²*, Brijesh Rathi³,⁴, Yi Chen², Xiuhong Wu², Huan Liu¹, Jincheng Li¹, Anjie Ming³, Gang Han¹

1. Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
2. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3. Smart Sensing R&D Center, Institute of Microelectronics, Chinese Academy of Science, Beijing, 100029, China
4. Laboratory For Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University of Delhi, Delhi, 110007, India

* Corresponding author Lidong Wu
Tel.: +16172533556; E-mail addresses: lidongwu@mit.edu

Figure S1A-S1E displayed the SEM images of A) Cellulose, B) CM-Cellulose, C) Pluronic F68, D) Poly(styrene-co-divinylbenzene) and E) Glass beads. After immobilization tyrosinase onto the surface of materials, Cellulose (H), CM-Cellulose (I) and Pluronic F68 (K) morphologies totally changed and transform into another morphologies, and all of the materials surface (Figure S1K-S1L) became rough.

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018
Figure S1 the SEM of A) Cellulose, B) Carboxymethyl cellulose (CM-Cellulose), C) Pluronic F68, D) Poly(styrene-co-divinylbenzene), E) Glass beads, H) Cellulose with tyrosinase, I) CM-Cellulose with tyrosinase, J) Pluronic F68 with tyrosinase, K) Poly(styrene-co-divinylbenzene) with tyrosinase and L) Glass beads with tyrosinase.