Competing interactions near the liquid-liquid phase transition of core-softened water/methanol mixtures

Murilo Sodré Marquesa,b,1, Vinicius Fonseca Hernandesc, Enrique Lombad, José Rafael Bordinc

aCentro das Cincias Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Nobre, CEP 47810-059, Barreiras-BA, Brazil
bInstituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Caixa Postal 15051, CEP 91501-970, Porto Alegre - RS, Brazil
cDepartamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96001-970, Pelotas-RS, Brazil.
dInstituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Calle Serrano, 119, E - 28006, Madrid - Spain

Abstract

Water is an unique material with a long list of thermodynamic, dynamic and structural anomalies, which are usually attributed to the competition between two characteristic length scales in the intermolecular interaction. It has been argued that a potential liquid-liquid phase transition (LLPT) ending at a liquid-liquid critical point (LLCP) lies at the core of the anomalous behavior of water. This transition which has been evidenced in multiple simulation studies seems to be preempted experimentally by spontaneous crystallization. Here, in order to expose the connection between the spontaneous crystallization observed in the supercooled regime in the vicinity of the LLPT, and the density anomaly, we perform extensive Molecular Dynamics simulations of a model mixture of core-softened water and methanol. The pure water-like fluid exhibits a LLPT and a density anomaly. In contrast, our pure methanol-like model does have a LLPT but lacks the density anomaly. Our results illustrate the relation between the vanishing of the density anomaly and an increase in the temperature of the spontaneous crystallization: once this temperature surpasses the LLCP critical temperature, no density anomaly is observed. This peculiar feature illustrates how fine tuning the competitive interactions determine the anomalous behavior of water/alcohol mixtures.

Keywords:
1. Introduction

All the biochemistry that is essential to life as we know it, takes place in aqueous solutions [1]. The physical properties of aqueous solutions are strongly dependent on the intermolecular interactions, and typically deviate substantially from ideality [2]. In this respect, solvation effects (clustering of molecules of one species around another species) are essential in determining the properties of solutions. Additionally, under certain circumstances, fluid-fluid phase equilibrium (demixing in two dense fluid phases) might even take place [3].

Among the most relevant aqueous mixtures, water-alcohol solutions play a key role as industrial solvents in small and large-scale separation processes [4, 5], as dispersion media [6], or solvents [7] and drugs constituents [8, 9]. Therefore, it comes as no surprise the long standing interest on the thermodynamics of water/alcohol mixtures [10, 11].

To begin with, the physical properties of water at ambient conditions are in sharp contrast with those of other liquids [12]. As a matter of fact, water presents more than 70 known anomalies [13] that make its behavior unique. For instance, it is long known that water density increases as the temperature grows from 0°C to 4°C at 1 atm [14], whereas in most materials heating is associated naturally with the thermal expansion. It has been argued that the presence of second critical point –the liquid-liquid critical point (LLCP)– may be related to water’s anomalies. First hypothesized in the seminal work of Poole and co-authors [15], and subject of a recent extensive debate [16, 17, 18, 19, 20], from simulation results this point has been estimated to lie within the so-called no-man’s land [21, 22, 23]. Due to spontaneous crystallization, there is a lack of direct experimental evidence of the LLPT, and the location of the LLCP remains elusive. Only computer simulations can provide some information in the rather extreme conditions where the LLPT is expected to occur, obviously subject to the limitations of the potential model used [24, 25, 26, 27, 28]. From a practical point of view, one can investigate the location of a critical point through an analysis of the the thermodynamic response functions in region above the LLCP. For instance, the isothermal compressibility and hence the correlation length, display a line of maxima in the P-T plane (Widom’s line) that typically ends at a critical point with where the maximum evolves into a divergence in the thermodynamic limit [29, 30, 31, 32, 33, 34]. Correspondingly, for water in addition to a Widom line ending at the vapor-liquid critical point, there is evidence of a second one that should end at the LLCP [35, 36, 37, 38, 39, 40, 41].

The location of the LLCP can be affected by the disruption of the hydrogen bond (HB) network induced by nanoconfinement [42, 43, 44, 45] or the presence of solutes [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. The latter studies mostly focus on either hydrophobic or hydrophilic solutes, from hard spheres to ions. Alcohols, in turn, represent the simplest amphiphilic molecules, with both hydrophilic and hydrophobic sites. This ambivalent behavior is essential to understand the dynamics and structural reorganization of biomolecules in water [58]. Among alcohols, methanol is the shortest molecule, with an apolar methyl group and a polar hydroxyl group. It is fully miscible for all compo-
sitions, and methanol molecules are fully integrated in water’s hydrogen bond network [59]. These solutions present anomalies in some of their thermodynamic properties, which are strongly dependent on the solute concentration and have thoroughly investigated experimentally and by computational modeling [60, 61, 62, 63, 64, 65]. On the other hand, to the best of our knowledge, the influence of amphiphilic solutes on the liquid-liquid critical region has not being investigated so far. From the experimental point of view, one is likely to find the same insurmountable difficulties as in pure water, and to obtain straight computer simulation answers using realistic potential models is a truly demanding problem.

As a feasible alternative, core-softened (CS) models, on the other hand have shown to be able to provide reasonable qualitative descriptions of the anomalies of bulk pure water, also accounting for the potential presence of a LLCP [66, 67, 68, 69, 70, 71]. The success of these simple models stems from the existence of two characteristic length scales in the potential [72]. The competition between microscopic water structures induced by the first or the second length scale is directly related to the presence of anomalies – as the competition between two fluids structures in liquid water [41]. More recently, this core-softened approach has been extended to methanol [73, 74] and water-methanol mixtures [75, 76]. In these models the methanol is modeled as a dumbbell, with a CS site as the hydroxyl-like monomer and a standard Lennard-Jones (LJ) site as the methyl-like monomer. Previous studies have shown that CS-LJ amphiphilic dimmers can exhibit water-like anomalies [77, 78], and have been used to predict a LLCP for methanol [79, 80]. Here, we will focus on how the concentration of core-softened methanol influence the LLCP of a core-softened water model.

To this end, we have studied the phase behavior of a mixture of water and amphiphilic dimmers in which water (solvent) is represented by the core-softened potential proposed by Franzese [81], and methanol is modeled as proposed by Urbic [73, 79]. Using extensive Molecular Dynamics simulations in the NPT ensemble we analyze the thermodynamic, dynamic and structural behavior in order to characterize the Low Density Liquid (LDL) phase, the High Density Liquid (HDL) phase, the LLCP and the solid region.

The remaining of the paper is organized as follows. In Section II we present our interaction models for water and methanol molecules, and summarized the details of the simulations. Next, in section III our most significant results for our methanol/water model are introduced. In particular, we will focus on the concentration dependence of the LLCP and influence on the TMD of water. The paper is closed with a brief summary of our main conclusions and future prospects.

2. Model and simulation details

Our water-like solvent here will be the core-softened fluid in which particles interact with the potential model proposed by Franzese [81]. Water-like particles W_{CS} are represented by spheres with a hard-core of diameter a and a soft-shell
with radius $2a$, whose interaction potential is given by

$$U^{CS}(r) = \frac{UR}{1 + e^{\Delta (r - RR)}} - U_A \exp \left(- \frac{(r - RA)^2}{2 \delta^2} \right) + U_A \left(\frac{a}{r_A} \right)^{24}.$$ \hspace{1cm} (1)

With the parameters $UR/U_A = 2$, $RR/a = 1.6$, $RA/a = 2$, $(\delta_A/a)^2 = 0.1$, and $\Delta = 15$ this potential displays an attractive well for $r \sim 2a$ and a repulsive shoulder at $r \sim a$, as can be seen in figure 1(a) (red curve). The competition between these two length scales leads to water-like anomalies, as the density anomaly, and to the existence of a liquid liquid critical point [68, 74, 81].

More recently, Urbic and co-workers proposed a dumbbell model for the methanol molecule. It consists of a pair of tangent spheres of diameter a. One monomer is apolar (the methyl group) and corresponds to 24-6 Lennard-Jones (LJ) site, whose interaction with like monomers is given by [73, 74, 79],

$$U^{LJ} = \frac{4}{3} \sigma^{2/3} \epsilon \left[\left(\frac{\sigma}{r} \right)^{24} - \left(\frac{\sigma}{r} \right)^{6} \right],$$ \hspace{1cm} (2)

with parameters $\sigma_{LJ}/a = 1.0$ and $\epsilon_{LJ}/U_A = 0.1$. The other monomer (the hydroxyl group) is a core-softened polar particle, in which the hydrogen bond interaction is accounted for by the second length scale of the potential expressed in equation 1. In the mixture, water-like and hydroxyl-like groups also interact via equation 1. For the interaction between apolar sites and the polar sites (between like and unlike molecules) the Lorentz-Berthelot mixing rules were employed using equation 2, as proposed by Urbic [73]: $\sigma_{mix} = 0.5(\sigma_{LJ} + a)$ and $U_{mix} = \sqrt{\epsilon_{LJ}U_A}$. The interaction potentials are shown in figure 1(a), and a schematic depiction of the pair interactions and the system constituents is show in figure 1(b). All quantities presented hereafter will be reported in reduced dimensionless units relative to the hydroxyl group diameter and the depth of its attractive well: $T^* = k_BT/U_A$, $\rho^* = \rho a^3$ and $P^* = Pa^3/U_A$.

The simulations were performed in the NPT ensemble with a fixed number of molecules ($N_{tot} = 1000$). $N_{met} = x_{MeOH}N_{tot}$ is the number of methanol molecules and $N_w = N_{tot} - N_{met}$ that of water molecules, where x_{MeOH} is that methanol mole fraction, which has been varied from 0.0, (pure water) to 1 (pure methanol). The temperature and pressure were controlled using the optimized constant pressure stochastic dynamics proposed by Kolb and Dünweg [82] as implemented in the ESPResSo package [83, 84]. This barostat implementation allows for the use of a large time step. This was set to $\delta t^* = 0.01$, and the equations of motion were integrated using the velocity Verlet algorithm. The Langevin thermostat [85], that keeps the temperature fixed, has a coupling parameter $\gamma_0 = 1.0$. The piston parameters for the barostat are $\gamma_p = 0.0002$ and mass $m_p = 0.001$. The particles were randomly placed in a cubic box, and then dynamics was run for 5×10^6 time steps were in the NVT ensemble to thermalize the system. This was followed by 1×10^6 time steps in the NPT ensemble to equilibrate the system’s pressure and 1×10^7 time steps further for
Figure 1: In (a), we see the interaction between water and hydroxyl's is described by the CSW potential, while other interactions behave like a 24-6 Lennard-Jones potential. In (b), our model is outlined.

the production of the results, with averages and snapshots being taken at every 1×10^5 steps. To ensure that the system temperature and pressure were well controlled we averaged this quantities during the simulations. As well, to monitor the equilibration the evolution of the potential energy along the simulation was followed. Here, the molecule density ρ is defined as $N_m/ <V_m>$ with $<V_m>$ being the mean volume at a given pressure and temperature. Isotherms were evaluated from $T^*=0.40$ up to $T^*=0.64$ with changing intervals - a finer grid was used in the vicinity of the critical points. In the same sense, the pressure was varied from $P=0.01$ up to $P=0.70$ with distinct intervals.

In order to check if the system shows density anomaly we evaluated the temperature of maximum density (TMD). The TMD is characterized by the maximum of the density versus temperature along isobars. To analyze the phase transitions and the locus of the maximum of response functions close to the critical point at the fluid phase we have calculated the isothermal compressibility κ_T, the isobaric expansion coefficient α_P and the specific heat at constant pressure C_P

$$\kappa_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_T, \quad \alpha_P = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_P, \quad C_P = \frac{1}{N_{\text{tot}}} \left(\frac{\partial H}{\partial T} \right)_P,$$ \hspace{1cm} (3)

where $H = U + PV$ is the system enthalpy, with V the mean volume obtained from the NPT simulations. The quantities shown in the Supplementary Material were obtained by numerical differentiation. As consistency check, we have obtained the same maxima locations when using statistical fluctuations [85].

Aiming at analyzing the structure of the system, we have evaluated the radial distribution function (RDF) $g(r^*)$, which was subsequently used to compute the translational order parameter τ, defined as [86]

$$\tau \equiv \int_0^{\xi_c} | g(\xi) - 1 | \, d\xi,$$ \hspace{1cm} (4)
where $\xi = r\rho^{1/2}$ is the interparticle distance r scaled with the average separation between pairs of particles $\rho^{1/2}$. ξ_c is a cutoff distance, defined as $\xi_c = L\rho^{1/2}/2$, where L is the simulation box size. For an ideal gas (completely uncorrelated fluid), $g(\xi) = 1$ and τ vanishes. For crystal or fluids with long range correlations $g(\xi) \neq 1$ over long distances, which leads to $\tau > 0$.

The system dynamics was analyzed by the mean square displacement (MSD), given by

$$\langle [\vec{r}(t) - \vec{r}(t_0)]^2 \rangle = \langle \Delta \vec{r}(t)^2 \rangle,$$ \hspace{1cm} (5)

where $\vec{r}(t_0) = \vec{r}(t)$ denote the particle position at a time t_0 and at a later time t, respectively. The MSD is then related to the diffusion coefficient D by the Einstein relation,

$$D = \lim_{t \to \infty} \frac{\langle \Delta \vec{r}(t)^2 \rangle}{6t}.$$ \hspace{1cm} (6)

For methanol molecules we have considered the center of mass displacement. The onset of crystallization was monitored analyzing the local structural environment of particles by means of the Polyhedral Template Matching (PTM) method implemented in the Ovito software [87, 88]. Ovito was also employed to visualize the phases and take the system snapshots. Of the possible crystal structures to be taken into account we have chosen the hexagonal closed packing (HCP), the one observed in previous works [73].

3. Results and discussion

![Figure 2: ρT diagram indicating the TMD behaviour for all molar fractions until $\chi = 0.7$.](image)

We have first analyzed the behavior of the temperature of maximum density (TMD) [62]. Previous studies using a different core-softened model [76] lead to TMDs appearing at too low temperatures and densities. For the methanol geometry, in Ref. [76] it was found that the presence of small amounts of methanol
always lowers the TMD. The model constructed in that work acts as a 'structure-breaker', by disfavoring the build up of open structures (second scale), which is equivalent to a weakening of the hydrogen bond network. As a consequence, the system becomes less anomalous and the TMD decreases. In our case, as can be appreciated in figure 2, the density anomalies were observed up to high methanol fractions, \(x_{\text{MeOH}} = 0.7 \) - the complete isobars with the maxima are shown in the Supplementary Material. The existence of the density anomaly for such high methanol fraction is a consequence of the core-softened model employed. Once the water-water, water-hydroxyl and hydroxyl-hydroxyl interactions have the same intensity there is no difference for a water molecule to create a HB with another water molecule or with the hydroxyl site from the alcohol molecule. In fact, in this model, the interaction at the second scale – HB formed – is so strong that the effect of the first scale of the alkyl group are suppressed.

The LLCP was roughly estimated using the isothermal density derivatives of the pressure

\[
\left(\frac{\partial P}{\partial \rho} \right)_T = \left(\frac{\partial^2 P}{\partial \rho^2} \right)_T = 0. \tag{7}
\]

For the case of pure core-softened water molecules – \(X_{\text{MeOH}} = 0.0 \) – our simulations indicate a LLCP located near \(P_c^* \approx 0.12, T_c^* \approx 0.58 \) and \(\rho_c^* \approx 0.23 \). This result is close to the one obtained by Hus and Urbic \[79\], \(P_c^* = 0.106, T_c^* = 0.58 \) and \(\rho_c^* = 0.246 \), but distinct from the original results from Franzese \[81\], \(P_c^* = 0.286, T_c^* = 0.49 \) and \(\rho_c^* = 0.248 \). In the pure methanol limit, \(X_{\text{MeOH}} = 1.0 \), we estimate a critical point near \(P_c^* \approx 0.24, T_c^* \approx 0.54 \) and \(\rho_c^* \approx 0.29 \). The critical point is slightly above the one predicted by Urbic \[79\], \(\rho_c^* = 0.27, P_c^* = 0.1539, T_c^* = 0.503 \), which is obviously a finite size effect. Additionally, unlike Hus and Urbic \[79\], we do not use the Umbrella Sampling technique to avoid the spontaneous crystallization – more recently, Desgranes and Delhommelle \[80\] have effectively employed a non-equilibrium technique to prevent the spontaneous crystallization. Our goal here is not prevent it, but analyze how it is related to the liquid-liquid phase transition and the existence of a density anomaly.

In the Supplementary Material we provide the isobars in the \(T \times \rho \) phase diagram, the \(P \times T \) phase diagram with the phases and maxima in the response functions as the \(\kappa_T, C_T \) and \(\alpha_P \) curves for all temperatures, pressures and densities, as well tables with all critical temperatures \(T_c^* \), pressures \(P_c^* \) and densities \(\rho_c^* \) and the higher temperature where the solid phase was observed, \(T_{\text{HCP}} \).

Here, for simplicity, we show the phase diagram of four concentrations: pure core-softened water (\(x_{\text{MeOH}} = 0.0 \)), dilute regime (\(x_{\text{MeOH}} = 0.1 \)), balanced regime (\(x_{\text{MeOH}} = 0.5 \)) and methanol rich regime (\(x_{\text{MeOH}} = 0.8 \)). The latter composition corresponds to the lowest concentration of methanol without density anomaly.

The isothermal compressibility, \(\kappa_T \), is an indication of the vicinity of the critical behavior and its line of maxima in the P-T diagram defines the Widom line. In figure 3, we can see that this response function has maxima in the Widom line and in the LDL-HDL coexistence line. However, below \(T_{\text{HCP}} \) it
Figure 3: Phase diagrams for (a) pure water and mixtures with methanol concentration (b) $x = 0.1$ (dilute regime), (c) $x = 0.5$ (balanced regime), and (d) $x = 0.8$. The black solid lines are the LDL-HDL, LDL-HCP and HCP-LDL coexistence lines. Maxima in the response functions are: red triangles are maxima in κ_T below the critical point, purple squares maxima in κ_T above the critical point indicating the Widom Line (WL), orange triangles represent discontinuity in κ_T for larger pressures, green triangles are maxima in C_p and blue hexagons maxima in α_P. Blue stars are the TMD line. The gray large dot is the critical point.
has a maximum at low pressures and a discontinuity at higher pressures. The maxima at low pressures are the continuation of the Widom/LDL-HDL coexistence line that turns into a coexistence between the LDL phase and the solid hexagonal closed packed (HCP) phase. For mixtures we can clearly identify the solid phase as HCP if we consider only the hydroxyl group when using the PTM method. At higher pressures, the discontinuity coincides with a second-order HCP-HDL melting. The C_P behavior indicates the higher melting temperature T_{HCP} in the HCP-HDL phase transition, as we can see in the figure 3. For isotherms above the critical point it is possible to observe the Widom line - here we characterize it using the maxima in κ_T in supercritical isotherms and the also using the points where the water-water or OH-OH radial distribution function have the same occupancy [89]. As well, the maxima in isobaric thermal expansion coefficient, α_P, are observed at this line. As the phase diagrams in the figure 3 shows, the TMD is observed up to the limit where $T_{HCP} < T_C$. To understand the mixture behavior we will analyze in more detail the dilute and concentrated regimes.

![Figure 4: Dynamical and structural analysis of the mixture with $\chi = 0.1$](image)

(a) Diffusion coefficient for water (filled symbols) and methanol center of mass (open symbols). (b) Translational order parameter τ for water (filled symbols) and OH monomers (open symbols). Water-water radial distribution function $g_{WW}(r^*)$ for three isotherms: (c) $T^* = 0.52$ that crosses the HCP region, (d) $T^* = 0.56$ that crosses the LDL-HDL coexistence line and (e) $T^* = 0.62$ that crosses the Widom line.

The liquid polymorphism can also be observed analyzing the structure and the dynamics of the water-methanol dilute mixtures. In the figure 4 we show the
dynamical and structural behavior along three isotherms for the case $\chi = 0.1$: $T^* = 0.52$, smaller than T^*_{HCP}, $T^* = 0.56 > T^*_{HCP}$, subcritical isotherm that crosses the LDL-HDL coexistence line, and the supercritical $T^* = 0.62 > T^*_C$, that crosses the Widom line. Along the subcritical isotherm $T^* = 0.52$ three distinct behaviors can be observed. At lower pressures it corresponds to the LDL phase. Then, the diffusion constant D – figure 4(a) – decreases while the translational order parameter τ – figure 4(b) – increases. This lower diffusion and higher structure corresponds to the spontaneous crystallization in the HCP phase. Also, the maxima in the κ_T and the discontinuity in D and τ indicate a first order phase transition. Increasing the pressure it transforms into the HDL phase - here, the discontinuity in κ_T and the smooth curve for D and τ indicates that this is a second order phase transition. The radial distribution function, figure 4(c), also shows clearly three distinct structures along this isotherm. At lower pressures the LDL structure is dominated by the second length scale in the CSW potential, as the black curves in figure 4(c) indicate. Compression forces the most molecules in the system to vacate second length scale, approach each other and occupy positions at separations close to the first potential scale. As a consequence, at high pressures we observe the HDL structure - green curves in figure 4(c). Between the LDL and the HDL phases, the system freezes in a solid HCP phase, whose region is indicated by the red curves in figure 4(c). The system structure is controlled by the core-softened interactions – Eq. 1 – among water-water, water-OH and OH-OH sites. The CSW monomers change from one structure to another, while the LJ24-6 monomers behave as if they were in a gas-like phase, in agreement to what has been found in previous works for core-softened/LJ dumbbells [79, 77].

A different behavior has been observed along the subcritical isotherm, $T^* = 0.56$. At this temperature no HCP structure was found. As a consequence, only one phase transition takes place – D and τ have a discontinuity at the transition, as the shown in the Figures 4(a) and (b). At this point the system changes from LDL to HDL structure as illustrated in the figure 4(d). Also, the RDFs display a sudden change with the characteristics of one length scale to those of the other at the coexistence pressure. This is in contrast with our observations for the supercritical isotherm, $T^* = 0.56$, that crosses the Widom line. Here is also possible to see a change in the behavior of D and τ as we cross the WL – see the Figs. 4(a) and (b)–. However, the RDF in figure 4(c) shows that there is a pressure where the occupancy of the first and second length scales are the same. As Salcedo and co-authors have shown [89] this can be interpreted as an indication that the Widom line has been reached.

Nonetheless, if the mixture lacks density anomaly we do not observe the LDL-HDL coexistence. As we show in figure 5, along the subcritical and critical isotherms ($T^* = 0.48$ and $T^*_C = 0.54$ respectively) the two liquid phases are separated by the HCP region. However, we can see signatures of liquid-liquid critical point in the maxima of the response functions [76] and the equality of occupation numbers corresponding to both scale lengths, as shown in figure 5(e).

Adding alcohol to the water changes the competition scenario. The W_{CS} particles - the water and the hydroxyl groups - lead to a competition between
Figure 5: Dynamical and structural analysis of the mixture with $\chi = 0.8$ (a) Diffusion coefficient for water (filled symbols) and methanol center of mass (open symbols). (b) Translational order parameter τ for water (filled symbols) and OH monomers (open symbols). OH-OH radial distribution function $g_{OH-OH}(r^*)$ for the subcritical isotherm (c) $T^* = 0.48$, the critical (d) $T^* = 0.54$ and the supercritical (e) $T^* = 0.62$.

Figure 6: Liquid-Liquid critical temperature T^*_c, and higher temperature of spontaneous crystallization T^*_HCP for distinct concentrations of methanol in the mixture.
the two length scales that mimic full hydrogen bonding (open structure at the second length scale) or broken hydrogen bonds (dense structure dominated by separations at the first length scale) [90]. As mention, this is the source of the well known water-like anomalies and of the existence of the LLCP in these CS fluids [68]. Our results have shown a discontinuous change in the occupancy from the second to the first length scale along the liquid-liquid coexistence - there is no pressure value where the occupancy in both scales are equal (no Widom line). On the other hand, the change in the occupancy is continuous along a supercritical isotherm, with an equal occupancy in the Widom line. On the other hand, the presence of our model methanol particles changes the scenario. The hydroxyl behaves as water, but the methyl groups acts as hydrogen bond breakers, which favors structures where particles accommodate in the first length scale. This unbalanced competition kills the density anomaly. At the same time, the energy necessary to for particles to leave the second scale and occupy the first one is small. Consequently, the critical temperature T_C of the LLPT lowers with x_{MeOH}. Also, higher energy is required to leave the first scale, and this is necessary to melt the HCP crystal into the HDL phase. As a consequence, T_{HCP} increases with x_{MeOH}. The methanol concentration where these two temperatures are equal is the same as the one where water-like anomalies vanish, as illustrated in Figure 6. Summarizing, large amounts of methanol in water kill the density anomaly and suppress the LLPT by favoring spontaneous crystallization.

4. Summary and conclusions

In this paper we have explored the supercooled regime of pure water, pure methanol and their mixtures using a core-softened potential models. Our aim has been to understand the relations between density anomaly, liquid-liquid phase transition and spontaneous crystallization.

Essentially, by increasing the methanol amount in the mixture we observe three effects: the density anomaly shrinks and finally vanishes, the critical temperature for the LLPT is lowered and the temperature for the spontaneous crystallization increases. These features can be understood as a direct consequence of the uneven competition of length scales induced by the presence of methyl group in the methanol molecule. This group favors the occupancy of the first length scale by water and hydroxyl sites – i.e. disrupts the hydrogen bond network. However, even for the case of pure methanol one can determine the Widom line but the critical point disappears in the solid region. As Desgranges [80] showed, shear stress can prevent this crystallization and lead to possible experimental observations of the LLCP for pure methanol. Our results shed some light on the molecular behavior of water-methanol mixtures in the supercooled regime. A natural question that arises is how larger amphiphilic molecules might change this scenario. New simulations are being performed in this direction.
5. Acknowledgments

MSM thanks the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the PhD Scholarship and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the support to the collaborative period in the Instituto de Química Física Rocasolano. VFH thanks the CAPES, Finance Code 001, for the MSc Scholarship. JRB acknowledge the Brazilian agencies CNPq and Fundação de Apoio a Pesquisa do Rio Grande do Sul (FAPERGS) for financial support. JRB thanks Luiz Carlos de Mattos for illuminating insights. All simulations were performed in the SATOLEP Cluster from the Group of Theory and Simulation in Complex Systems from UFPel. EL acknowledges the support from the Agencia Estatal de Investigacion and Fondo Europeo de Desarrollo Regional (FEDER) under grant No. FIS2017-89361-C3-2-P.

References

[1] A. H. Harvey, D. G. Friend, Chapter 1 - physical properties of water - contribution of the national institute of standards and technology, in: D. A. Palmer, R. Fernandez-Prini, A. H. Harvey (Eds.), Aqueous Systems at Elevated Temperatures and Pressures, Academic Press, London, 2004, pp. 1 – 27. doi:https://doi.org/10.1016/B978-012544461-3/50002-8, URL http://www.sciencedirect.com/science/article/pii/B9780125444613500028

[2] W. Fawcett, Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details, OUP E-Books, Oxford University Press, USA, 2004. URL https://books.google.com.br/books?id=sggTDAAAQBAJ

[3] C. Gray, K. Gubbins, C. Joslin, Theory of Molecular Fluids: Volume 2: Applications, International Series of Monographs on Chemistry, OUP Oxford, 2011.

[4] E. Ruckenstein, I. Shulgin, Thermodynamics of Solutions: From Gases to Pharmaceutics to Proteins, SpringerLink: Springer e-Books, Springer New York, 2009. URL https://books.google.com.br/books?id=UbMHTAYep4UC

[5] J. Azamat, Selective separation of methanol-water mixture using functionalized boron nitride nanosheet membrane: a computer simulation study, Structural Chemistry 30 (2019) 14511457. doi:10.1007/s11224-019-01300-5.

[6] V. Champreda, D. Stuckey, A. Boontawan, Separation of methanol/water mixtures from dilute aqueous solutions using pervaporation technique, Advanced Materials Research 550-553 (2012) 3004–3007. doi:10.4028/www.scientific.net/AMR.550-553.3004
[7] H. Serrar, A. Bouabellou, Y. Bouachiba, A. Taabouche, A. Bouhank, Y. Bellal, H. Merabti, Effect of water and methanol solvents on the properties of cuo thin films deposited by spray pyrolysis. Thin Solid Films 686 (2019) 137282. doi:https://doi.org/10.1016/j.tsf.2019.05.001
[8] M. M. Muoz, A. Jouyban, F. Martinez, Solubility and preferential solvation of acetaminophen in methanol + water mixtures at 298.15 k. Physics and Chemistry of Liquids 54 (4) (2016) 515–528. arXiv:https://doi.org/10.1080/00319104.2015.1121785, doi:10.1080/00319104.2015.1121785.
[9] M. Florea, I. Constantinescu, A. Nedelcu, C. M. Gutu, M. Abdulrazzaq, L. Al-Hakeem, L. Popa, Water structuring effect of methanol and ethanol on ion pairing of some guanidium containing pharmaceutical substances. analytical applications, Farmacia 67 (2019) 627–633. doi:10.31925/farmacia.2019.4.11
[10] F. Franks, D. J. G. Ives, The structural properties of alcohol-water mixtures. Q. Rev. Chem. Soc. 20 (1966) 1–44. doi:10.1039/QR9662000001
URL http://dx.doi.org/10.1039/QR9662000001
[11] F. Franks, Water A Comprehensive Treatise: Volume 4: Aqueous Solutions of Amphiphiles and Macromolecules, Water, Springer US, 2013.
[12] R. Podgornik, Water and life: the unique properties of h2o: Ruth m. lynden-bell, simon conway morris, john d. barrow, john l. finney and charles harper (eds). crc press; 1 edition, 2010, Journal of Biological Physics 37. doi:10.1007/s10867-011-9217-9
[13] M. Chaplin, Anomalous properties of water, http://www.lsbu.ac.uk/water/anmllies.html (July 2020).
[14] G. S. Kellu, Density, thermal expansivity, and compressibility of liquid water from 0.deg. to 150.deg., correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale., J. Chem. Eng. Data 20 (1975) 97–105.
[15] P. Poole, F. Sciortino, U. Essmann, H. Stanley, Phase-behavior of metastable water, Nature 360 (1992) 324–328. doi:10.1038/360324a0
[16] D. T. Limmer, D. Chandler, The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. The Journal of Chemical Physics 135 (13) (2011) 134503. arXiv:https://doi.org/10.1063/1.3643333, doi:10.1063/1.3643333
URL https://doi.org/10.1063/1.3643333

14
[17] D. T. Limmer, D. Chandler, The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. ii, The Journal of Chemical Physics 138 (21) (2013) 214504. arXiv:https://doi.org/10.1063/1.4807479
URL https://doi.org/10.1063/1.4807479

[18] P. H. Poole, R. K. Bowles, I. Saika-Voivod, F. Sciortino, Free energy surface of st2 water near the liquid-liquid phase transition, The Journal of Chemical Physics 138 (3) (2013) 034505. arXiv:https://doi.org/10.1063/1.4775738
URL https://doi.org/10.1063/1.4775738

[19] J. C. Palmer, R. Car, P. G. Debenedetti, The liquid-liquid transition in supercooled st2 water: a comparison between umbrella sampling and well-tempered metadynamics, Faraday Discuss. 167 (2013) 77–94. doi:10.1039/C3FD00074E
URL http://dx.doi.org/10.1039/C3FD00074E

[20] J. C. Palmer, A. Haji-Akbari, R. S. Singh, F. Martelli, R. Car, A. Z. Panagiotopoulos, P. G. Debenedetti, Comment on the putative liquid-liquid transition is a liquid-solid transition in atomistic models of water [i and ii: J. chem. phys. 135, 134503 (2011); j. chem. phys. 138, 214504 (2013)], The Journal of Chemical Physics 148 (13) (2018) 137101. arXiv:https://doi.org/10.1063/1.5029463
doi:10.1063/1.5029463
URL https://doi.org/10.1063/1.5029463

[21] F. Caupin, Escaping the no man’s land: Recent experiments on metastable liquid water, Journal of Non-Crystalline Solids 407 (2015) 441 – 448, 7th IDMRCs: Relaxation in Complex Systems. doi:https://doi.org/10.1016/j.jnoncrysol.2014.09.037
URL http://www.sciencedirect.com/science/article/pii/S002230931400492X

[22] A. Taschin, P. Bartolini, R. Erano, R. Righini, R. Torre, Evidence of two distinct local structures of water from ambient to supercooled conditions, Nat. Comm. 4 (2013) 2401.

[23] N. J. Hestand, J. L. Skinner, Perspective: Crossing the widom line in no man’s land: Experiments, simulations, and the location of the liquid-liquid critical point in supercooled water The Journal of Chemical Physics 149 (14) (2018) 140901. arXiv:https://doi.org/10.1063/1.5046687
doi:10.1063/1.5046687
URL https://doi.org/10.1063/1.5046687

[24] J. C. Palmer, P. H. Poole, F. Sciortino, P. G. Debenedetti, Advances in computational studies of the liquid-liquid transition in water and water-like models Chemical Reviews 118 (18) (2018) 9129–9151, pMID: 30152093. arXiv:https://doi.org/10.1021/acs.chemrev.
[25] Y. Liu, J. C. Palmer, A. Z. Panagiotopoulos, P. G. Debenedetti, Liquid-liquid transition in st2 water, J. Chem. Phys. 137 (2012) 214505.

[26] Y. Ni, J. L. Skinner, Evidence for a liquid-liquid critical point in supercooled water within the e3b3 model and a possible interpretation of the kink in the homogeneous nucleation line, The Journal of Chemical Physics 144 (21) (2016) 214501. arXiv:https://doi.org/10.1063/1.4952991
doi:10.1063/1.4952991
URL https://doi.org/10.1063/1.4952991

[27] R. S. Singh, J. W. Biddle, P. G. Debenedetti, M. A. Anisimov, Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled tip4p/2005 water, The Journal of Chemical Physics 144 (14) (2016) 144504. arXiv:https://doi.org/10.1063/1.4944986
doi:10.1063/1.4944986
URL https://doi.org/10.1063/1.4944986

[28] C. A. Angell, Two phases?, Nat. Mater. 13 (2014) 673675.

[29] G. G. Simeoni, T. Bryk, F. A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, T. Scopigno, The widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids, Nature Physics 6 (2010) 503–507. doi:https://doi.org/10.1038/nphys1683

[30] V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov, E. N. Tsiok, Widom line for the liquidgas transition in lennard-jones system, The Journal of Physical Chemistry B 115 (48) (2011) 14112–14115. pMID: 21699267. arXiv:https://doi.org/10.1021/jp2039898
doi:10.1021/jp2039898
URL https://doi.org/10.1021/jp2039898

[31] V. Brazhkin, Y. Fomin, V. Ryzhov, E. Tsiok, K. Trachenko, Liquid-like and gas-like features of a simple fluid: An insight from theory and simulation, Physica A: Statistical Mechanics and its Applications 509 (2018) 690 – 702. doi:https://doi.org/10.1016/j.physa.2018.06.084
URL http://www.sciencedirect.com/science/article/pii/S0378437118308094

[32] I. Zern, J. Torres-Arenas, E. de Jess, B. Ramirez, A. Benavides, Discrete potential fluids in the supercritical region, Journal of Molecular Liquids 293 (2019) 111518. doi:https://doi.org/10.1016/j.molliq.2019.111518
URL http://www.sciencedirect.com/science/article/pii/S016773221933168X

[33] J. Losey, R. J. Sadus, The widom line and the lennard-jones potential, The Journal of Physical Chemistry B 123 (39) (2019) 8268–8273. pMID: 31498625. arXiv:https://doi.org/10.1021/acs.jpcb.9b05426
[34] V. Bianco, G. Franzese, Hydrogen bond correlated percolation in a supercooled water monolayer as a hallmark of the critical region, Journal of Molecular Liquids 285 (2019) 727 – 739. doi:https://doi.org/10.1016/j.molliq.2019.04.090
URL http://www.sciencedirect.com/science/article/pii/S0167732218350086

[35] L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino, H. E. Stanley, Relation between the widom line and the dynamic crossover in systems with a liquid–liquid phase transition, Proceedings of the National Academy of Sciences 102 (46) (2005) 16558–16562. arXiv:https://www.pnas.org/content/102/46/16558.full.pdf doi:10.1073/pnas.0507870102
URL https://www.pnas.org/content/102/46/16558

[36] G. Franzese, H. E. Stanley, The widom line of supercooled water, Journal of Physics: Condensed Matter 19 (20) (2007) 205126. doi:10.1088/0953-8984/19/20/205126

[37] Stanley, H. E., Kumar, P., Franzese, G., Xu, L., Yan, Z., Mazza, M. G., Buldyrev, S. V., Chen, S.-H., Mallamace, F., Liquid polyamorphism: Possible relation to the anomalous behaviour of water, Eur. Phys. J. Special Topics 161 (2008) 1–17. doi:10.1140/epjst/e2008-00746-3
URL https://doi.org/10.1140/epjst/e2008-00746-3

[38] P. Kumar, G. Franzese, H. E. Stanley, Dynamics and thermodynamics of water, Journal of Physics: Condensed Matter 20 (24) (2008) 244114. doi:10.1088/0953-8984/20/24/244114
URL https://doi.org/10.1088/0953-8984/20/24/244114

[39] J. L. F. Abascal, C. Vega, Widom line and the liquid-liquid critical point for the tip4p/2005 water model, The Journal of Chemical Physics 133 (23) (2010) 234502. arXiv:https://doi.org/10.1063/1.3506860 doi:10.1063/1.3506860
URL https://doi.org/10.1063/1.3506860

[40] J. Luo, L. Xu, C. A. Angell, H. E. Stanley, S. V. Buldyrev, Physics of the jagla model as the liquid-liquid coexistence line slope varies, The Journal of Chemical Physics 142 (22) (2015) 224501. arXiv:https://doi.org/10.1063/1.4921559 doi:10.1063/1.4921559
URL https://doi.org/10.1063/1.4921559

[41] P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo,
J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, L. G. M. Pettersson, Water: A tale of two liquids, Chemical Reviews 116 (13) (2016) 7463–7500, pMID: 27380438. arXiv:https://doi.org/10.1021/acs.chemrev.5b00750, doi:10.1021/acs.chemrev.5b00750. URL https://doi.org/10.1021/acs.chemrev.5b00750

[42] M. Meyer, H. E. Stanley, Liquid–liquid phase transition in confined water: A monte carlo study, The Journal of Physical Chemistry B 103 (44) (1999) 9728–9730. arXiv:https://doi.org/10.1021/jp984142f, doi:10.1021/jp984142f. URL https://doi.org/10.1021/jp984142f

[43] C. E. Bertrand, Y. Zhang, S.-H. Chen, Deeply-cooled water under strong confinement: neutron scattering investigations and the liquid-liquid critical point hypothesis, Phys. Chem. Chem. Phys. 15 (2013) 721–745. doi:10.1039/C2CP43235H. URL http://dx.doi.org/10.1039/C2CP43235H

[44] L. Xu, V. Molinero, Is there a liquid-liquid transition in confined water?, The Journal of Physical Chemistry B 115 (48) (2011) 14210–14216, pMID: 21923129. arXiv:https://doi.org/10.1021/jp205045k, doi:10.1021/jp205045k. URL https://doi.org/10.1021/jp205045k

[45] L. B. Krott, J. R. Bordin, N. M. Barraz, M. C. Barbosa, Effects of confinement on anomalies and phase transitions of core-softened fluids, The Journal of Chemical Physics 142 (13) (2015) 134502. arXiv:https://doi.org/10.1063/1.4916563, doi:10.1063/1.4916563. URL https://doi.org/10.1063/1.4916563

[46] D. G. Archer, R. W. Carter, Thermodynamic properties of the nacl + h2o system. 4. heat capacities of h2o and nacl(aq) in cold-stable and supercooled states, The Journal of Physical Chemistry B 104 (35) (2000) 8563–8584. arXiv:https://doi.org/10.1021/jp0003914, doi:10.1021/jp0003914. URL https://doi.org/10.1021/jp0003914

[47] R. W. Carter, D. G. Archer, Heat capacity of nano3(aq) in stable and supercooled states. ion association in the supercooled solution, Phys. Chem. Chem. Phys. 2 (2000) 5138–5145. doi:10.1039/B0062320. URL http://dx.doi.org/10.1039/B0062320

[48] D. Corradini, S. V. Buldyrev, P. Gallo, H. E. Stanley, Effect of hydrophobic solutes on the liquid-liquid critical point, Phys. Rev. E 81 (2010) 061504. doi:10.1103/PhysRevE.81.061504. URL https://link.aps.org/doi/10.1103/PhysRevE.81.061504

[49] D. Corradini, P. Gallo, S. Buldyrev, H. Stanley, Liquid-liquid critical point of mixtures of jagla ramp potential particles and hard spheres, Proceedings
of the International School of Physics "Enrico Fermi" 176 (2012) 393–397. doi:10.3254/978-1-61499-071-0-0-393

[50] D. Corradini, Z. Su, H. E. Stanley, P. Gallo, A molecular dynamics study of the equation of state and the structure of supercooled aqueous solutions of methanol. The Journal of Chemical Physics 137 (18) (2012) 184503. arXiv:https://doi.org/10.1063/1.4767060
URL https://doi.org/10.1063/1.4767060

[51] P. Kumar, Z. Yan, L. Xu, M. G. Mazza, S. V. Buldyrev, S.-H. Chen, S. Sastry, H. E. Stanley, Glass transition in biomolecules and the liquid-liquid critical point of water. Phys. Rev. Lett. 97 (2006) 177802. doi:10.1103/PhysRevLett.97.177802
URL https://link.aps.org/doi/10.1103/PhysRevLett.97.177802

[52] J. Bachler, P. H. Handle, N. Giovambattista, T. Loerting, Glass polymorphism and liquid-liquid phase transition in aqueous solutions: experiments and computer simulations. Phys. Chem. Chem. Phys. 21 (2019) 23238–23268. doi:10.1039/C9CP02953B
URL http://dx.doi.org/10.1039/C9CP02953B

[53] D. Corradini, P. Gallo, Liquid-liquid coexistence in NaCl aqueous solutions: a simulation study of concentration effects. The Journal of Physical Chemistry B 115 (48) (2011) 14161–14166. PMID: 21851078. arXiv:https://doi.org/10.1021/jp2045977
URL https://doi.org/10.1021/jp2045977

[54] A. P. Furlan, C. E. Fiore, M. C. Barbosa, Influence of disordered porous media on the anomalous properties of a simple water model. Phys. Rev. E 92 (2015) 032404. doi:10.1103/PhysRevE.92.032404
URL https://link.aps.org/doi/10.1103/PhysRevE.92.032404

[55] D. González-Salgado, J. Troncoso, E. Lomba, The temperature of maximum density for amino acid aqueous solutions: an experimental and molecular dynamics study. Fluid Phase Equilibria (2020) 112703. doi:https://doi.org/10.1016/j.fluid.2020.112703
URL http://www.sciencedirect.com/science/article/pii/S0378381220302491

[56] J. Troncoso, D. González-Salgado, L. Roman, Temperature of maximum density for binary aqueous solutions of five amino acids. Journal of Chemical & Engineering Data 64 (12) (2019) 5847–5856. arXiv:https://doi.org/10.1021/acs.jced.9b00752
URL https://doi.org/10.1021/acs.jced.9b00752

[57] J. Troncoso, D. González-Salgado, L. Roman, Temperature of maximum density of proteins in water: α-chymotrypsin and bovine serum albumin. The Journal of Chemical Thermodynamics 142 (2020) 106008. doi:https://doi.org/10.1016/j.jct.2019.106008
[58] C. Van Oss, The Properties of Water and Their Role in Colloidal and Biological Systems, Interface Science and Technology, Elsevier Science, 2008.

[59] D. Mallamace, S.-H. Chen, C. Corsaro, E. Fazio, F. Mallamace, H. E. Stanley, Hydrophilic and hydrophobic competition in water-methanol solutions, Sci. China Phys. Mech. Astron 62 (2019) 107003.

[60] K. Nishikawa, H. Hayashi, T. Iijima, Temperature dependence of the concentration fluctuation, the kirkwood-buff parameters, and the correlation length of tert-butyl alcohol and water mixtures studied by small-angle x-ray scattering, The Journal of Physical Chemistry 93 (17) (1989) 6559–6565. arXiv:https://doi.org/10.1021/j100354a054, doi:10.1021/j100354a054.

[61] D. Gonzalez-Salgado, I. Nezbeda, Excess properties of aqueous mixtures of methanol: Simulation versus experiment, Fluid Phase Equilibria 240 (2) (2006) 161 – 166. doi:https://doi.org/10.1016/j.fluid.2005.12.007.

[62] D. Gonzalez-Salgado, K. Zemnkov, E. G. Noya, E. Lomba, Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol, The Journal of Chemical Physics 144 (18) (2016) 184505. arXiv:https://doi.org/10.1063/1.4948611, doi:10.1063/1.4948611.

[63] G. Plinks, E. Hawlicka, K. Heinzinger, Molecular dynamics simulations of water-methanol mixtures, Chemical Physics 158 (1) (1991) 65 – 76. doi:https://doi.org/10.1016/0301-0104(91)87055-Z.

[64] M. Martinez-Jimnez, H. Saint-Martin, A four-site molecular model for simulations of liquid methanol and watermethanol mixtures: Meoh-4p, Journal of Chemical Theory and Computation 14 (5) (2018) 2526–2537. PMID: 29566336. arXiv:https://doi.org/10.1021/acs.jctc.7b01265, doi:10.1021/acs.jctc.7b01265.

[65] M. C. Sanchez, H. Dominguez, O. Pizio, Molecular dynamics simulations of the properties of water-methanol mixtures. effects of force fields, Condensed Matter Physics 22 (2019) 13602.
[66] E. A. Jagla, Core-softened potentials and the anomalous properties of water, J. Chem. Phys. 111 (1999) 8980.

[67] A. B. de Oliveira, P. A. Netz, T. Colla, M. C. Barbosa, Structural anomalies for a three dimensional isotropic core-softened potential, The Journal of Chemical Physics 125 (12) (2006) 124503. doi:10.1063/1.2357119 URL http://aip.scitation.org/doi/10.1063/1.2357119

[68] A. B. de Oliveira, G. Franzese, P. A. Netz, M. C. Barbosa, Waterlike hierarchy of anomalies in a continuous spherical shouldered potential, The Journal of Chemical Physics 128 (6) (2008) 064901. URL https://doi.org/10.1063/1.2830706

[69] P. Vilaseca, G. Franzese, Isotropic soft-core potentials with two characteristic length scales and anomalous behaviour, Journal of Non-Crystalline Solids 357 (2011) 419–426. doi:10.1016/j.jnoncrysol.2010.07.053

[70] A. Skibinsky, S. V. Buldyrev, G. Franzese, G. Malescio, H. E. Stanley, Liquid-liquid phase transitions for soft-core attractive potentials, Phys. Rev. E 69 (2004) 061206. doi:10.1103/PhysRevE.69.061206 URL https://link.aps.org/doi/10.1103/PhysRevE.69.061206

[71] Y. D. Fomin, E. N. Tsiok, V. N. Ryzhov, Inversion of sequence of diffusion and density anomalies in core-softened systems, J. Chem. Phys. 135 (2011) 234502.

[72] M. A. Barbosa, E. Salcedo, M. C. Barbosa, Multiple liquid-liquid critical points and density anomaly in core-softened potentials, Phys. Rev. E 87 (2013) 032303.

[73] M. Hu, G. Muna, T. Urbic, Properties of a soft-core model of methanol: An integral equation theory and computer simulation study, The Journal of Chemical Physics 141 (16) (2014) 164505. arXiv:https://doi.org/10.1063/1.4899316 doi:10.1063/1.4899316 URL https://doi.org/10.1063/1.4899316

[74] G. Muna, T. Urbic, Structure and thermodynamics of core-softened models for alcohols, The Journal of Chemical Physics 142 (21) (2015) 214508. arXiv:https://doi.org/10.1063/1.4922164 doi:10.1063/1.4922164 URL https://doi.org/10.1063/1.4922164

[75] M. Hu, G. akelj, T. Urbi, Properties of methanol-water mixtures in a coarse-grained model, Acta Chimica Slovenica 62 (3) (2015) 524–530. doi:10.17344/acsi.2015.1441 URL https://journals.matheo.si/index.php/ACS/i/article/view/1441
[76] A. P. Furlan, E. Lomba, M. C. Barbosa, Temperature of maximum density and excess properties of short-chain alcohol aqueous solutions: A simplified model simulation study, The Journal of Chemical Physics 146 (14) (2017) 144503. arXiv:https://doi.org/10.1063/1.4979806 doi:10.1063/1.4979806 URL https://doi.org/10.1063/1.4979806

[77] J. R. Bordin, L. B. Krott, M. C. Barbosa, Self-assembly and water-like anomalies in janus nanoparticles, Langmuir 31 (31) (2015) 8577–8582, pMID: 26190234. arXiv:https://doi.org/10.1021/acs.langmuir.5b01555 doi:10.1021/acs.langmuir.5b01555 URL https://doi.org/10.1021/acs.langmuir.5b01555

[78] J. R. Bordin, Waterlike features, liquid crystal phase and self-assembly in janus dumbbells, Physica A: Statistical Mechanics and its Applications 459 (2016) 1 – 8. doi:https://doi.org/10.1016/j.physa.2016.04.032 URL http://www.sciencedirect.com/science/article/pii/S0378437116301637

[79] M. Hus, T. Urbic, Existence of a liquid-liquid phase transition in methanol, Phys. Rev. E 90 (2014) 062306. doi:10.1103/PhysRevE.90.062306 URL https://link.aps.org/doi/10.1103/PhysRevE.90.062306

[80] C. Desgranges, J. Delhommelle, Communication: Existence and control of liquid polymorphism in methanol under shear, The Journal of Chemical Physics 149 (11) (2018) 111101. arXiv:https://doi.org/10.1063/1.5052376 doi:10.1063/1.5052376 URL https://doi.org/10.1063/1.5052376

[81] G. Franzese, Differences between discontinuous and continuous soft-core attractive potentials: The appearance of density anomaly, Journal of Molecular Liquids 136 (3) (2007) 267 – 273, eMLG/JMLG 2006. doi:https://doi.org/10.1016/j.molliq.2007.08.021 URL http://www.sciencedirect.com/science/article/pii/S016773220700150X

[82] A. Kolb, B. Dunweg, Optimized constant pressure stochastic dynamics, The Journal of Chemical Physics 111 (10) (1999) 4453–4459. arXiv:https://doi.org/10.1063/1.479208 doi:10.1063/1.479208 URL https://doi.org/10.1063/1.479208

[83] H. Limbach, A. Arnold, B. Mann, C. Holm, Espressoan extensible simulation package for research on soft matter systems, Computer Physics Communications 174 (9) (2006) 704 – 727. doi:https://doi.org/10.1016/j.cpc.2005.10.005 URL http://www.sciencedirect.com/science/article/pii/S001046550500576X
[84] A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Košovan, C. Holm, Espresso 3.1: Molecular dynamics software for coarse-grained models, in: M. Griebel, M. A. Schweitzer (Eds.), Meshfree Methods for Partial Differential Equations VI, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 1–23.

[85] M. Allen, D. Tildesley, D. Tildesley, Computer Simulation of Liquids, Oxford University Press, 2017. URL https://books.google.com.br/books?id=nlExDwAAQBAJ

[86] J. R. Errington, P. D. Debenedetti, Relationship between structural order and the anomalies of liquid water, Nature (London) 409 (2001) 318.

[87] P. M. Larsen, S. Schmidt, J. Schiøtz, Robust structural identification via polyhedral template matching, Modelling and Simulation in Materials Science and Engineering 24 (5) (2016) 055007. doi:10.1088/0965-0393/24/5/055007. URL https://doi.org/10.1088/0965-0393/24/5/055007

[88] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING 18 (1). doi:{10.1088/0965-0393/18/1/015012}

[89] E. Salcedo, N. M. Barraz, M. C. Barbosa, Relation between occupation in the first coordination shells and widom line in core-softened potentials, The Journal of Chemical Physics 138 (16) (2013) 164502. arXiv:https://doi.org/10.1063/1.4802006 URL https://doi.org/10.1063/1.4802006

[90] A. B. de Oliveira, P. Netz, M. C. Barbosa, An ubiquitous mechanism for water-like anomalies, Europhys. Lett. 85 (2009) 36001.