Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective

Ji-Lei Li¹,²,³*, Esther M. Schwarzenbach⁴, Timm John⁴*, Jay J. Ague³, Fang Huang⁵, Jun Gao¹,²,⁶*, Reiner Klemd⁷, Martin J. Whitehouse⁸ & Xin-Shui Wang¹,²

Sulfur belongs among H₂O, CO₂, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ³⁴S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ³⁴S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ³⁴S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver ³⁴S-enriched sulfur to produce the positive δ³⁴S signature in arc settings. Most sulfur has negative δ³⁴S and is subducted into the deep mantle, which could cause a long-term increase in the δ³⁴S of Earth surface reservoirs.
Sulfur is one of the most common volatiles on Earth. It plays key roles in, for example, the redox evolution of the sub-arc mantle\(^1,2\), the formation of ore deposits\(^3\), and the composition of the atmosphere through volcanic SO\(_2\) degassing\(^4\). Subduction zones are the primary locations for the global sulfur cycle, transporting sulfur to the deep mantle via the descending slab or returning it to the surface by arc magmatism\(^5,6\). Compared to fresh MORB, the relatively high sulfur concentrations ([S], up to 3000 µg g\(^{-1}\)) and positive \(\delta^{34}S\) values (+5 to +11%) of volcanic rocks and melt inclusions in some arcs (e.g., Western Pacific)\(^7,8\), and the presence of sulfate in mantle xenoliths\(^9\), have been attributed to the addition of slab-derived sulfate to arc magmas by fluids\(^9,10\). Alternatively, some deep arc cumulates (e.g., Eastern Pacific) with mantle-like \(\delta^{34}S\) values suggest more limited slab-derived sulfate contributions to arc lavas and that the positive \(\delta^{34}S\) signature of the lavas results from crustal assimilation\(^10\)

The role of slab fluids in delivering sulfur species to the mantle wedge is central to this debate. Experimental results suggest that slab-derived aqueous fluids are an effective agent for transporting sulfur from the slab to the mantle wedge\(^11,12\). In addition, some studies predict that sulfates are likely the dominant sulfur species in slab-derived fluids\(^8,13\). On the other hand, sulfate is relatively rare in high-pressure (HP) rocks\(^13-18\) and experimental studies have proposed that reduced sulfur species are dominant in slab fluids\(^11\). Furthermore, in situ measurements of the \(\delta^{34}S\) compositions of sulfides from HP eclogites and serpentinites reveal significant isotopic heterogeneity and complicated sulfur behavior during slab metamorphism and metasomatism\(^13-16\). Clearly, large gaps in our knowledge of the speciation, flux, and isotopic composition of sulfur in slab fluids remain. Understanding these is of utmost importance for addressing slab–arc sulfur recycling, and has global geochemical significance for deciphering the redox state of the mantle\(^2\) and constraining the formation of arc-related ore deposits\(^12\). Direct examination of devolatilization pathways in exhumed HP rocks is essential to provide independent new perspectives critical to resolving this debate, as it provides the necessary field-based evidence for the sulfur redox state and \(\delta^{34}S\) signature of fluids released from subducted slabs.

Sulfur is transported into the subduction zone by sediments, variably altered oceanic crust (AOC), and hydrated slab mantle (serpentinites)\(^19-22\). Sulfides are commonly observed in exhumed fragments of the oceanic lithosphere such as eclogites, blueschists, HP-metapelites, and serpentinites, as well as related HP veins\(^13-18,23\). Such vein systems represent fossilized pathways for channelized flow of dehydration-related slab fluids and, thus, directly record fluid geochemical signatures\(^17,24,25\). Consequently, the study of HP vein–rock systems provides important information regarding sulfur behavior during slab dehydration and fluid transfer\(^13\). Isotopic constraints on S-bearing HP rocks and veins linked to the sequence of slab dehydration allow quantification of sulfur release during subduction of oceanic lithosphere.

Here, we report bulk-rock and in situ sulfur isotope compositions for sulfide-bearing HP rocks and veins from the late Paleozoic southwestern Tianshan (ultra-)high-pressure/low-temperature (U)HP/LT metamorphic belt (China). The sulfides in these HP rocks and veins\(^27\) provide an exceptional window into the fate of subducted sulfur. Analytical data and thermodynamic calculations point to low sulfur concentrations in slab fluids, which have negative \(\delta^{34}S\) values and are dominantly composed of reduced sulfur species. Hence, we determine modest slab-to-arc sulfur transport, and find neither significant slab sulfate flux to the mantle wedge nor a direct link between slab-derived sulfur and the positive \(\delta^{34}S\) signature of arc settings.

Results

Sample background

The Tianshan (U)HP/LT terrane is an example of deeply buried, uppermost oceanic crust covered by km-thick trench metasediments\(^26\). We selected 10 pristine samples from different sequences within a subducted oceanic slab (2 metapelites, 5 metabasites, 3 serpentinites, Supplementary Table 1) to obtain a general picture of sulfur reservoirs. Mineral assemblages suggest that one metapelite reached low blueschist-facies conditions (300–400 °C, 1.0–1.5 GPa), whereas the other metapelite (garnet–glaucoephane-bearing) reached blueschist-facies conditions (400–500 °C, 1.5–2.0 GPa)\(^27\). Metabasites with oceanic affinity are eclogites and blueschists (lawsonite relics identified) with peak metamorphic conditions clustering around 540 °C and 2.5 ± 0.2 GPa\(^28\). Sulfides in all HP metapelites and metabasites are mainly pyrite with minor amounts of chalcopyrite and bornite\(^17\). Sulfide occurs both as inclusions in garnet and in the matrix. Matrix pyrite contains garnet, omphacite, glaucoephane, lawsonite and dolomite inclusions (Supplementary Table 1). Serpentinites, composed mostly of antigorite and magnetite with minor pentlandite and millerite, are considered to be part of the subducted slab that underwent UHP metamorphism (~520 °C, >3.0 GPa)\(^28\) in the Tianshan.

In addition, three representative sulfide-bearing dehydration-related veins in blueschists or eclogites were investigated to reconstruct the sulfur behavior in subduction fluids derived from different sources (Fig. 1). Vein_1 (JTS) consists of a well-studied wallrock–sewage–vein system\(^25,29\) formed by fluid–rock interaction during prograde metamorphism (Fig 1a). The wallrock (host blueschist, garnet–glaucoephane-dominated) along the vein traverse was progressively altered to an eclogite selvage (garnet–omphacite-
dominated) and a blueschist–eclogite transition zone due to reaction with an external fluid (Fig. 1a). The wallrock–selvage–vein system equilibrated at peak metamorphic conditions of ~510°C and 2.1 GPa. Sr and Ca isotope compositions trace the fluid source to seawater-altered lithospheric slab–mantle and/or oceanic crust. Vein_2 (L1422) is a 2-cm-wide dolomite–quartz–epidote-dominated vein crosscutting a massive host blueschist (Fig. 1b). Similar to Vein_1, the blueschist–eclogite transition zone and eclogite selvage formed due to interaction with Ca-rich fluid along the conduit (Fig. 1b). The similar structure, mineral assemblages, and compositions of Vein_1 and Vein_2 indicate that they formed at similar P–T conditions. Vein_3 (L1013) is a 1–3 cm wide dolomite–quartz–epidote-dominated vein cutting massive eclogite (Fig. 1c). Occurrences of high-pressure minerals such as omphacite and rutile in Vein_3 along with the observation that no reaction halo occurs between the vein and host eclogite (Fig. 1c) indicate that the vein also formed at eclogite-facies conditions. Considering most eclogite samples in the Tianshan HP metamorphic belt were exhumed from ~80 km depth, all three HP veins are thought to represent the fluid activity that took place at ~70–90 km depths in the subduction zone.

Sulfides are found in all vein samples. In sample JTS, pyrite is the dominant sulfide inclusion in garnet, but pyrrhotite dominates in the matrix (Fig. 2a, b). This demonstrates a pyrite–pyrrhotite transition zone (Vein_1) of pyrite are given in the white rectangles. Eclogite samples in the Tianshan HP metamorphic belt were exhumed from ~80 km depth, all three HP veins are thought to represent the fluid activity that took place at ~70–90 km depths in the subduction zone.

![Photomicrographs and element mapping of sulfides](https://doi.org/10.1038/s41467-019-14110-4)

Fig. 2 Photomicrographs and element mapping of sulfides. a–e Sulfides in sample JTS. Sulfides in garnet are mainly pyrite with minor pyrrhotite and chalcopyrite, whereas the matrix contains mainly pyrrhotite with minor chalcopyrite and pyrite in both the host blueschist (a) and blueschist–eclogite transition zone (b). d–i Photomicrographs and Co-Ni maps of pyrite in the host blueschist (d–f), eclogite selvage (g–i), and vein (j–l) in sample L1422. m–p Pyrite, δ34S values, and Co-Ni maps in sample L1013. Trace-element concentrations (μg g⁻¹) of pyrite are given in the white rectangles. δ34S values and Co-Ni maps in vein pyrite (n–p) suggest two growth generations. All photomicrographs (except Co-Ni maps) use superposed transmitted and reflected light to simultaneously image silicates and sulfides. Mineral abbreviations: chalcopyrite (Ccp), dolomite (Dol), epidote (Ep), garnet (Grt), glaucophane (Gln), omphacite (Omp), phengite (Ph), pyrite (Py), pyrrhotite (Po), quartz (Qz), and rutile (Rt). Scale bar: 200 μm.
sulfur geochemistry in HP vein systems. In the host blueschist to blueschist–eclogite transition zone of Vein_1, the $[S]_{WR}$ varies between 698 µg g$^{-1}$ and 841 µg g$^{-1}$, but toward the vein and vein-like eclogite selvage, the $[S]_{WR}$ increases up to 2183 µg g$^{-1}$ (Fig. 4a). In contrast, the $^{34}S_{WR}$ values decrease gradually from +0.43‰ to −0.98‰ toward the vein (Fig. 4a). The in situ δ34S values of sulfides in garnet show little variation; however, matrix sulfides display a decreasing trend from host rock toward the vein (Fig. 4b; Method 1). The local bulk isotopic compositions of sulfides ($δ^{34}S_{sulfide}$), calculated using mean in situ δ34S values of individual sulfides (Fig. 4b) and their mineral volume ratios (Supplementary Fig. 1), have a narrow range of +0.34‰−+0.72‰ (mean +0.60‰) in the garnet along the traverse (Fig. 4b). This reflects shielding of the sulfide inclusions by garnet during fluid–rock interaction. In contrast, the $δ^{34}S_{sulfide}$ in the matrix decreases gradually from about 0.00‰ to −1.35‰ toward the vein (Fig. 4b). The $Δ^{34}S_{sulfide}$ and $Δ^{34}S_{sulfide}$ display similar decreasing trends along the traverse. Vein sulfides have uniform $δ^{34}S_{sulfide}$ values of about −1.0‰ (Fig. 4b).

The host blueschist of Vein_2 has the lowest $[S]_{WR}$ of 604 µg g$^{-1}$ and $δ^{34}S_{WR}$ values of −11.0‰ (Fig. 5a, Supplementary Table 1). Within the blueschist–eclogite transition zone, both $[S]_{WR}$ and $δ^{34}S_{WR}$ decrease and have relatively narrow ranges of 1465−1854 µg g$^{-1}$ and −8.1 to −7.7‰, respectively. These values increase further to $[S]_{WR}$ = 2167−2848 µg g$^{-1}$ and $δ^{34}S_{WR}$ = −1.7 to −0.9‰ in the eclogite selvage (Fig. 5a). The vein has the highest $[S]_{WR}$ (9251 µg g$^{-1}$) and $δ^{34}S_{WR}$ value (−0.7‰) (Fig. 5a). In situ pyrite δ34S compositions (Fig. 5b–d) are consistent with the bulk-rock analyses. Pyrite in the host blueschist has Ni-rich cores with negative δ34S values of −16.0 to −10.1‰ (weighted mean −12‰) and Ni-poor rims with δ34S values of −7.7 to −5.0‰ (weighted mean −7‰) (Fig. 5b). The vein and selvage pyrites show uniform core–mantle–rim textures recorded by Co–Ni element distribution maps (Fig. 2g–i): a Ni-rich core with modest enrichment in Co (Py_1, Co: 367 µg g$^{-1}$, $δ^{34}S$: +7.4 to +8.6‰); a massive Co-poor and moderately Ni-enriched mantle (Py_2, Co: 174 µg g$^{-1}$, Ni: 813 µg g$^{-1}$, $δ^{34}S$: +0.9 to +4.0‰); and a thin Co-rich and Ni-poor rim (Py_3, Co: 3803 µg g$^{-1}$, Ni: 229 µg g$^{-1}$, $δ^{34}S$: −6.7 to −2.3‰) (Fig. 5c, d). These three pyrite generations with variable Co–Ni contents and δ34S values likely represent three stages of fluid infiltration.

The vein pyrite of Vein_3 has a thick Co-poor but Ni-rich core ($δ^{34}S$ = −8‰) and a thin Co-rich but Ni-poor rim ($δ^{34}S$ = −5‰) (Figs. 2n–p, 5f). In contrast, pyrite in the host eclogite contains a Co–Ni-rich core with MORB-like δ34S values (−1.3 to −0.5‰), but its rim is analogous to the vein pyrite core in Co–Ni–As contents, δ34S values (about −8‰), and mineral inclusions (omphacite and rutile) (Figs. 2m, 5e). This indicates that the vein-forming fluid also altered the immediate eclogite and caused pyrite regrowth surrounding the cores.

Sulfur concentrations in aqueous fluids from DEW modeling. The sulfur concentration in fluids ($[S]_{fluid}$) is the most important factor determining the slab sulfur output, as aqueous fluids are thought to be the major agent for slab–mantle sulfur transfer11. We use the DEW (Deep Earth Water) model31,32 to calculate subduction zone $[S]_{fluid}$ (Method 2), as this allows a quantitative prediction of speciation and solubilities in fluids at upper mantle conditions. Because sulfur solubility and speciation is redox-dependent, an estimate of the fO_2 is required prior to calculation. The fO_2 of subducted AOC is FMQ + 1 (ref. 33) (one log unit above Fayalite–Magneteite–Quartz buffer) at the trench and decreases gradually with increasing depth (below FMQ at depths corresponding to eclogite-facies conditions)17,34, as generally reducing fluids (<FMQ) are generated17,34. In contrast, the redox...
was not included in the calculation for JTS-G external uncertainties of standard measurements. Red stars show pyrite (Py), and pyrrhotite (Po). Source data are provided in Supplementary Data.

Vein sulfls mostly below the detection limits or very low.

Vein sulfls include two types of pyrite. Texture investigation indicates that one type (orange diamonds) is late-stage with deserpentinization of completely serpentinized rocks (usually those beneath oceanic crust) in which awaruite is present produces reducing H2-bearing fluids35. Dehydration of incompletely serpentinized rocks (usually those beneath oceanic crust) in which awaruite is present produces reducing H2-bearing fluids, whereas deserpentinization of completely serpentinized rocks (usually those once directly exposed to seawater) in which awaruite is absent produces oxidizing fluids in the subduction zone35. The former is applicable in our case, as the majority of slab mantle occurs beneath oceanic crust and is not fully serpentinized. For former is applicable in our case, as the majority of slab mantle

Host blueschist	Blueschist-eclogite transition zone	Eclogite selvage	Omphacite selvage	Vein	Omphacite selvage
JTS-B (1.35 m)	JTS-D (0.88 m)	JTS-E (0.43 m)	JTS-G (0.05 m)	JTS-G′ (0.02 m)	JTS-I (0.02 m)
S34S compositions from veils (Vein_1). a Calculated [S]WR and δ34SWR compositions based on measured whole-rock (WR) compositions of acid volatile sulflide (AVS), chromium reducible sulflide (CRS) and sulfate (Method 1). Rectangle height indicates sulflur content, and underlined δ34S values above rectangles refer to calculated δ34SWR compositions. Sulflur contents are mostly below the detection limits or very low. b In situ δ34S compositions of sulflides along the proflile. Sulflides occurring as inclusion in garnet are denoted by circles, matrix sulflides by squares, and vein sulflides by diamonds. Bold black lines refer to calculated δ34Sfluid values (see also Supplementary Fig. 1). Vein sulflurdes include two types of pyrite. Texture investigation indicates that one type (orange diamonds) is late-stage with δ34S around −0.21‰, which was not included in the calculation for JTS-G′ and JTS-H. The vertical bars show the analytical errors calculated after propagating the within-run and external uncertainties of standard measurements. Red stars show δ34S fluid compositions from a. Mineral abbreviations: chalcopyrite (Ccp), garnet (Grt), pyrite (Py), and pyrrhotite (Po). Source data are provided in Supplementary Data.					

state of slab serpentinite is more complicated (either above or below FMQ) and is suggested to vary due to different degrees of pre-subduction serpentinization9, producing both highly oxidizing or reducing fluids35. Dehydration of incompletely serpentinized rocks (usually those beneath oceanic crust) in which awaruite is present produces reducing H2-bearing fluids, whereas deserpentinization of completely serpentinized rocks (usually those once directly exposed to seawater) in which awaruite is absent produces oxidizing fluids in the subduction zone35. The former is applicable in our case, as the majority of slab mantle occurs beneath oceanic crust and is not fully serpentinized. For details regarding slab O2 estimates see the Supplementary Note 1.

Following a typical subduction geothermal gradient36, [S] and its speciation in slab fluids were calculated for given fO2 conditions at 60 km (FMQ), 75 km (FMQ), 90 km (FMQ-1), 120 km (FMQ-2), and 150 km (FMQ-3) for subducted sediments and oceanic crust, whereas fO2 was 1–2 log units higher for serpentinites at the corresponding depths (Supplementary Table 2). Results show that [S]fluid is largely dependent on P–T conditions (Fig. 6a) and is generally very low (<0.1 molal), similar to previous thermodynamic modelling37–39. Critically, however, our results reveal a distinct [S]fluid peak (0.20–0.35 molal) at ~3.0 GPa, regardless of whether the fluids equilibrated with metasediments, metabasalts or serpentinites (Fig. 6a), indicating a sulfur release pulse at ~90 km depth. Sulfur species are fO2-dependent and dominated by reduced aqueous H2S and HS− at all model subduction zone P–T–fO2 conditions (Supplementary Fig. 2), consistent with our natural observations. Oxygen fugacity variations of ±1 unit will only change the proportion of sulfur species in the fluid (e.g., slight increases of SO42− and/or HSO4− abundances), but will not cause significant [S]fluid changes (Supplementary Fig. 2).

Hydrothermal sulflur isotope fractionation. Effects of sulfur isotope fractionation during hydrothermal processes are largely influenced by pressure, temperature, fO2 and the pH of the fluid40,41. We thermodynamically calculated fO2–pH diagrams42 (Fig. 7a–d) for different P–T conditions to reveal δ34S fractionation in subduction zones. Our DEW calculations suggest that slab fluids are generally alkaline and the pH value ranges from neutral (pHn) to pHn + 2, consistent with previous work43. According to fO2 (Supplementary Table 2) and pH estimates of subduction zone fluids, all the fO2–pH conditions plot in fields dominated by the species H2S or HS− (yellow area, Fig. 7a–e), in agreement with DEW results (Supplementary Fig. 2). The fO2–pH diagram indicates limited sulfur isotope fractionation
In both closed and open systems, theoretical calculations and vein (sample L1422, red lines refer to the δ34S values of pyrite precipitation styles of sul-

In Supplementary Data.

slabs. The vein pyrite core with negative δ34S (−8‰) in sample L1013 (Fig. 2n) thus likely represents the δ34S signature of fluids derived from the abundant subducted metasediments in the Tianshan HP belt16,26.

Pristine oceanic crust is typically within the range of the average mantle δ34S of −0.91 ± 0.50‰45. However, pre-

Subduction sulfur output estimate. a [S]fluid derived from different lithologies in the subduction zone calculated by DEW model. Numbers in

Fig. 6 Sulfur concentrations in fluids and slab water fluxes used for subduction sulfur output estimate. a [S]fluid derived from different lithologies in the subduction zone calculated by DEW model. Numbers in brackets refer to oxygen fugacity (relative to FMQ buffer) used at certain P–T conditions. Shaded areas indicate [S]fluid variations if O2 changes within ±1 unit. Sulfur species and proportions at every point are given in Supplementary Fig. 2. b Depth-dependent water flux released from global subducting slabs49. Water flux is calculated every 10 km between 50–100 km. For example, about 0.91 × 10¹⁴ g yr⁻¹ H₂O is dehydrated from the upper volcanic layer over the depth interval 80–90 km (corresponding to X-axis 90 km). Source data are provided in Supplementary Data.

Fig. 5 Whole-rock (WR) and in situ pyrite δ34S compositions of vein samples. a Calculated [S]WR and δ34S_WR compositions from bulk-rock analyses along the traverse of sample L1422. Errors of δ34S_WR and S_WR calculated from analytical reproducibility are smaller than the symbols used. HB host blueschist, BETZ blueschist-eclogite transition zone, ES eclogite selvage. b Histograms of in situ pyrite δ34S values in the HB, ES, and vein (sample L1422, red lines refer to the δ34S_WR values). c Histograms of pyrite δ34S values in the sample L1013. Source data are provided in Supplementary Data.

(<3‰) at different P–T conditions along the subduction interface (Fig. 7a–d). In particular, at the vein-forming P–T conditions of this study, fO2 (<FMQ)17 and pH range (pH₄, to pH₉, + 2) suggest sulfur isotope fractionations <1.3‰ (Fig. 7e). In addition, precipitation styles of sulfide in hydrothermal settings (closed- or open-system) may also influence the sulfur isotope fractionation41. In both closed and open systems, theoretical calculations (Method 3) display <1‰ fractionation if pyrite precipitated from H₂S-dominated fluids at 550 °C (Fig. 7f, g), consistent with previous calculations14,15.

δ34S values of fluids from different slab reservoirs. The small sulfur isotope fractionation between sulfides and equilibrated H₂S-bearing fluids10,44 (Fig. 7) demonstrates that the δ34S values of vein sulfides approximately represent the fluid δ34S composition and can be used as a tracer for source discrimination. Our measured negative δ34S_WR values of −12 to −8‰ in metasediments (Fig. 3) are similar to their protoliths, the young marine sedimentary rocks (Phanerozoic) that mostly have δ34S values of −24 to −8‰ due to the presence of biogenically produced sulfide19,44. It is suggested that sulfide in sediments retains its δ34S characteristics during subduction metamorphism13 and that metasediments may act as a negative δ34S reservoir in subducting
Consequently, the δ^{34}S of vein sulfides from sample JTS (-1%) is interpreted to record the sulfur isotope signature of fluids released from the oceanic crust (the dike and gabbrò part, in particular). This fluid source interpretation is consistent with the δ^{34}S$_{WR}$ of the host blueschist ($+0.43\%$o, Supplementary Table 1) and trace-element contents29 and Sr–Ca isotope compositions35 of the vein.

Serpentinites are quite heterogeneous in [S], $S^{6+}/\Sigma S$, and bulk-rock δ^{34}S (refs 21,36), and are readily influenced by late-stage fluids during exhumation23. Our three measured Tian Shan UHP serpentinites all have positive δ^{34}S$_{WR}$ compositions, consistent with bulk-rock results for Voltri Massif serpentinites21,47,48 (Fig. 3) and in situ sulfide δ^{34}S compositions from Corsican serpentinites34. We suggest that variably serpentinized slab mantle beneath oceanic crust is characterized by positive δ^{34}S compositions as a result of sulfide addition via sulfate reduction at high-temperatures30 during partial serpentinization. Thus, the Py$_1$ with positive δ^{34}S ($+8\%$o) in vein sample L1422 (Figs. 2k, 5d) is interpreted to reflect the characteristic δ^{34}S composition of fluids derived from the partly serpentinized slab mantle. The pyrite mantle (Py$_2$) with positive but decreasing δ^{34}S (from +4.0 to +0.9%) of vein sample L1422 (Figs. 2k, 5d) likely represents fluid mixing with an increased AOC contribution relative to slab serpentinites. The negative δ^{34}S (-5%o) of thin rims on vein pyrite (Figs. 2n, 5d) with the sharply increasing Co concentrations (Fig. 2k, o) may represent retrograde oxidized fluids during exhumation17, as evidenced by the surrounding fractures with albite–calcite–magnetite infillings and neighboring retrogression of matrix omphacite.

Discussion
Thermodynamic modelling shows that at subduction zone P–T–fO_2–pH conditions sulfur in fluids is dominated by the reduced H$_2$S and HS$^-$ species, whereas sulfate species (e.g. SO$_4^{2-}$, HSO$_3^-$) are rare (Supplementary Fig. 2). This is consistent with our petrological evidence for the occurrence of sulfate, but not sulfate, in the veins (Figs. 1–2), the very low sulfate concentrations in rocks and veins (Fig. 4a; Supplementary Table 1), and previous experimental results31. If sulfide fluids are dominated by sulfate as some recent studies propose13, several predictions follow. First, the oxidizing fluid will produce a redox gradient in the immediate wallrock, but this is not recorded in the selvages we examined. Second, reduction from S^{6+} to S^{2-} will cause oxidation within the immediate rock and vein (in particular during vein crystallization) in the form of hematite or magnetite17, which, however, are absent from the veins or selvages. Third, complete sulfate–sulfide transformation will produce very high δ^{34}S values in the product phases, which is also not observed in the veins or

Fig. 7 Thermodynamic modelling of sulfur isotope fractionation as a function of temperature, fO_2 and pH. a–d Influence of fO_2 and pH on the isotopic compositions of pyrite precipitated from hydrothermal fluids at ionic strength $I = 1.0$ and δ^{34}S$_{Py}$ = 0‰, at specific P–T conditions of various depths along the subduction interface. The squares (metasediment), circles (metabasalt) and diamonds (serpentinite) represent estimated fO_2 conditions (Supplementary Note 1) and calculated pH values from the DEW model. The rectangles denote slab fO_2–pH conditions from ref. 43. The color scales (%e) refer to δ^{34}S contours as a function of fO_2 and pH, and the gray solid line indicates the contour with no sulfur isotope fractionation. e. δ^{34}S fractionation modelling at P–T conditions of the vein samples studied here. f–g Sulfur fractionation calculation plots of FeS$_2$ precipitation from fluids at 550 °C in a closed system (f) and an open system following a Rayleigh fractionation model (g). Solid lines denote the fluid phase, whereas the dashed lines represent the precipitated phase. The orange and blue lines represent the results for H$_2$S- and SO$_4^{2-}$-fluids, respectively. Initial δ^{34}S$_{fluid}$ is 0‰. The shaded area indicates the expected sulfur fraction of sulfide precipitation under a channelized fluid flux. Source data are provided in Supplementary Data.
This page discusses the mass-balance calculations of subduction sulfur input and output. It covers the comparison of subduction sulfur input vs. output, sulfur influx and outflux estimations, and the importance of certain sulfur reservoirs. The figure illustrates the sulfur fluxes from different reservoirs, categorized by source, and the sulfur output window. The text explains the dehydrating slab fluids and their contribution to the sulfur cycle, including the sulfate introduced during pre-subduction hydrothermal seafloor alteration. It also mentions the significance of sulfur isotope compositions and the role of sediment and gabbro in the sulfur release. The study provides evidence for the isotopic exchange during fluid-rock interaction and the significant contributions from different model scenarios.
Fig. 9 Diagram illustrating fluid-mediated sulfur release in the subduction zone. a Schematic lithologic succession of typical subducted oceanic lithosphere. The bold arrows refer to channelized fluid flow, and the dashed rectangle refers to the sequences of this case study in the Tianshan. b Estimated sulfur flux (arrow sizes represent the relative sulfur amounts) and isotope compositions released from the subducting slab at different depths via fluid flow. Inset circle shows the key parameters during net δ^{34}S calculation of slab fluids to sub-arc mantle, such as global H_2O flux, sulfur concentration and isotopic composition of fluids derived from different sequences of the subducting slab. f_3/F_5 ratio of 20% is the maximum value from DEW results. Numbers in ellipsoids refer to bulk sulfur isotope compositions in reservoirs of subduction settings (data sources see text). Red stars represent the depths of metasediments, metabasites (including veins) and serpentinites in this study formed in the subduction zone. Not to scale. Source data are provided in Supplementary Data.

from the slab to the mantle wedge. This maintains elevated sulfur contents of the mantle source for arc magmas (250–500 µg g$^{-1}$)6,7 in comparison to MORB (80–300 µg g$^{-1}$)56. Additional significant release by, for example, slab melting is unlikely, as $[S]$ in melts is much lower than in aqueous fluids ($D_{fluid/melt}$ usually >200)11. This slab-arc sulfur cycle is operated by fluid-mediated H_2S and/or HS^- transport with negative δ^{34}S composition, which has no direct links to the high oxygen fugacity and heavy δ^{34}S signature observed in arc volcanic rocks.

Our work also sheds further light on the nature of arc magmas. The reason for the higher fO_2 of arc magmas57,58 relative to MORBs is still debatable. Intraoceanic or rare continental arcs, like those of the Western Pacific, may record flux melting; mantle peridotites with elevated fO_2 values in these settings have been thought to be influenced by slab-derived oxidizing agents59,60. In contrast, continental arcs, like those of the Eastern Pacific arcs where crust thickness may modulate the melting degree61, may represent a complicated melting mode involving decompression and mantle peridotite that is not necessarily oxidized59,62. Direct comparisons of Western and Eastern Pacific arcs may be challenging due to their different melting modes and arc maturity59,60. The P–T evolution of the Tianshan eclogites (representing cold/old subducted oceanic slab) corresponds more closely to the thermal structure of subduction zones beneath the Western Pacific arcs59. However, our finding of negligible sulfate in the slab fluids indicates that slab $SO_4^{2–}$ was unlikely to be the main oxidizing agent during South Tianshan Ocean subduction. In such environments, the high fO_2 of sub-arc mantle may instead result from addition of slab H_2O and CO_2 (refs 63,64), instead of oxidized sulfur species. Processes including incorporation of H_2 into orthopyroxene63 and the formation of diamond64 and CH4 (ref. 65) in the mantle wedge may produce oxidized melts that elevate the fO_2 of Western Pacific arc magmas.

The calculated negative δ^{34}S ($–2.5 ± 3‰$) released from the subducted slab (Fig. 9) contrasts with the positive δ^{34}S values found in the inclusions of Western Pacific arc rocks1,5,8. In general, the mantle wedge should have mantle-like δ^{34}S values of $~0‰$. Therefore, the positive δ^{34}S signature in arc-related rocks requires additional sulfur sources or processes for $34S$ enrichment. Volcanic degassing effects on melt δ^{34}S are highly dependent on redox state66,67. But even under oxidizing conditions ($FMQ + 2$), increases in melt δ^{34}S caused by degassing are modest ($~1.5‰$)66. Therefore, the negative-to-positive shift in the δ^{34}S composition of melts must happen as part of the partial melting processes, such that significant sulfur isotope fractionation accompanies the melt oxidation. For example, $32S$ may be scavenged into surrounding mantle to form sulfides while H_2 is incorporated into orthopyroxene65, producing $34S$-rich sulfate in oxidizing melt and finally isotopically heavier arc magmas. Thus,
further studies will be necessary to assess the processes that may lead to the positive $\delta^{34}S$ compositions in arc magmas. Our comparison of subduction input with output fluxes indicates that most of the sulfur (>80%) with negative $\delta^{34}S$ values ($<-3.7\%o$) is retained in the descending slab and recycled to the deep mantle (Fig. 9). This may have resulted in a progressive $\delta^{34}S$-enrichment of Earth’s surface sulfur reservoirs13,19, and can explain the negative $\delta^{34}S$ values of alkaline magmas related to ocean island basalts (OIBs) since the Phanerozoic20.

Methods

Analytical methods. Bulk-rock sulfur contents and isotopic compositions were measured at the Geological Institute at the Freie Universität Berlin. Extraction of the bulk-rock sulfur was performed by extracting the acid volatile sulfide (AVS), chromium reducible sulfur (CRS), and the sulfate fraction26. Sulfur isotope measurements of AVS, CRS, and sulfate fractions were done on a Thermo Fisher Scientific MAT 253 mass spectrometer combined with a Eurovector elemental analyzer. The $\delta^{34}S_{AVS}$ of individual samples were calculated by summing sulfur amounts of measured AVS, CRS, and sulfate. The $\delta^{34}S_{CRS}$ was calculated by measured $\delta^{34}S$ values of AVS, CRS, and sulfate in combination with their amounts. In situ sulfur isotopes of sulfides on epoxy discs were analyzed via Secondary Ionization Mass Spectrometry (SIMS) using a Cameca IMS 1280 instrument located at the Swedish Museum of Natural History, Stockholm, Sweden (NORDSIM facility) for sample JTS and at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS, Beijing, China) for other samples. Measurements were conducted over a rastered 10 x 10 μm area using a 15 keV primary beam with 20 kV collision energy (10 kV primary, −10 kV secondary) and a primary beam current of ∼1 nA. All $\delta^{34}S$ results are reported with respect to the Vienna-CDD standard. Detailed descriptions of $\delta^{34}S$ measurement parameters and standard references are given in the Supplementary Note 4. Elemental Co and Ni X-ray maps of pyrite were made in wavelength-dispersive spectrometer mode by electron microprobe (CAMECA SXFive FE) at the IGGCAS. An acceleration voltage of 20 kV, beam current of 1.0 nA, and an incident energy (10 kV primary, 10 kV secondary) and a primary beam current of 20 kV were used. All Co and Ni data were acquired in sequence layers. The total effective length of subduction zones is ~38,500 km, the slab thickness of the sequence layers in the slab, ρ is the density of the sequence layers, C_{S} is the sulfur concentration [S], and $\delta^{34}S_{FS}$ is the sulfur isotope composition of the sequence layers. The total effective length of subduction zones is ~38,500 km, with a global range of 90% of global trench length94. The convergence rate of 6.2 cm yr$^{-1}$ used here is taken from an average rate of 17 active oceanic subduction zones69. Based on the oceanic lithosphere straticgraph (Penrose style) and its average $\delta^{34}S$ and $\delta^{34}S_{FS}$ composition from the best current understanding (supplementary Fig. 3), the calculated global sulfur input via subducting slabs is estimated to be 46.5 ± 1.0 × 10^{15} gy r$^{-1}$. The bulk slab sulfur isotope composition of this sulfur input is estimated at −3.60%. Using the same method, the calculated global water flux (1.06 ± 0.35 × 10^{15} gy r$^{-1}$) of subducted slabs is very close to previous estimates (1.0 ± 0.9 × 10^{15} gy r$^{-1}$)95.

Estimate of global sulfur input into subduction zones. The input sulfur flux F_{I} and its isotopic composition into subduction zones are:

$F_{I} = \left(L \cdot R \cdot t \cdot p \cdot s \right) / C_{0}$

and $\delta^{34}S_{I} = 1000 \cdot \left(\delta^{34}S_{I} - F_{I} \right)$

where L is the global length of subduction zones, R is the convergence rate, t is the thickness of the sequence layers in the slab, p is the density of the sequence layers, C is the sulfur concentration [S], and $\delta^{34}S_{I}$ is the initial fluid sulfur isotope composition (set as 0‰). $\delta^{34}S_{I}$ is the fraction of sulfur remaining in the fluid.

Sulfur output and $\delta^{34}S$ released by slab fluids. The output sulfur flux released from the subducted slab via fluids (F_{O}) is:

$F_{O} = \left(L \cdot R \cdot t \cdot p \cdot C_{1} \right) / C_{S}$

and the net sulfur isotope composition of fluids released from the subducted slab $(\delta^{34}S_{FU})$ is:

$\delta^{34}S_{FU} = \left(F_{O} / F_{I} \right) \cdot \delta^{34}S_{FU}$

where C_{F} flux refers to $[S]_{FLUX}$ and $[S]_{FU}$ to the fluid flux released from the subducted slab, based on water fluxes (0.32 ± 0.11 × 10^{15} gy r$^{-1}$) and $[S]_{FU}$ from the DEW model, the calculated sulfur output at 70–100 km is 2.46 ± 0.20 × 10^{15} gy r$^{-1}$ (5.3% of total input F_{I}) with a $\delta^{34}S$ value of −1.84 ± 0.3 ‰. The net $\delta^{34}S$ value of slab fluids released at 70–100 km depths is further adjusted to −2.54 ± 0.3 ‰ (Fig. 9) considering fluid–rock isotopic exchange.

Our calculations indicate that along the subduction thermal gradient, at different subduction depths, the variations of temperature, pressure, $\delta^{34}S$, and pH will not cause large sulfur isotope fractionation (Fig. 7). Thus, the fluid $\delta^{34}S$ compositions obtained at 70–100 km depths can be extrapolated to different depths in the subduction zone. Following the similar assumptions and calculation approach, we obtained sulfur outfluxes and associated $\delta^{34}S$ values of slab fluids released at 30–50 km (0.00004 × 10^{12} gy r$^{-1}$ - 1.0‰), 50–70 km (0.009 × 10^{12} gy r$^{-1}$ - 3.2‰), 150–230 km (0.32 × 10^{12} gy r$^{-1}$ - 0.1‰), and 150–230 km (0.32 × 10^{12} gy r$^{-1}$ - 1.0‰), based on the water flux released from the slab at different depths as calculated by van Keken et al.45. The total sulfur output at 30–230 km is calculated at 2.91 ± 0.23 × 10^{12} gy r$^{-1}$ (6.3% of total input F_{I}) with a $\delta^{34}S$ value of −2.13% (Fig. 9).

Uncertainties on output sulfur $\delta^{34}S$ estimates. The estimates of sulfur fluxes released from the slab have significant uncertainties. However, our study provides a robust isotopic signature for the slab fluids. The $\delta^{34}S$ estimate remains at slightly negative values in all of the following scenarios:

- The uncertainty of $\delta^{34}S_{FU}$ is mostly dependent on the $\delta^{34}S$ value of fluids released by the AOC at 70–100 km, which provides the major fluid flux and has a relatively high sulfur concentration (0.7 wt.%). Although we consider a large $\delta^{34}S$ range of fluid outflux (−6 to +4‰), the errors on the $\delta^{34}S$ of slab fluid released at 70–100 km are all less than ±2.5% (2σ). Changes in other parameters and assumptions cause variations of less than ±1‰ in $\delta^{34}S$. Hence, we estimate ±3‰ as a reasonable uncertainty.

- Our study is based on the best current knowledge of slab structure and water budget96. However, new research based on ocean-bottom seismic data reports that...
mantle hydration may extend up to 24 km beneath the Moho, which indicates that the subducting plate may contain much more water than previously thought. If we adopt this assumption of a thicker serpentinized upper mantle and recalculate the water and sulfur fluxes (i.e., enlarged the serpentine-dehydrated water amounts in the subduction zone accordingly), the sulfur input increases to 7.6×10^{13} yr$^{-1}$ and sulfur output increases to 3.93×10^{13} yr$^{-1}$ but the sulfur productivity (5.2%) of the subducting slab shows little variation. More importantly, the net δ^{34}S displays almost no change at 70–100 km (~−2.4%). This consolidates our prediction of slab-released sulfur regarding the δ^{34}S signatures of arc settings.

Subducted sediment types and their redox state may have a potential effect on our results, even though there currently is no firm consensus about how much sediment is subducted. Metasediment in the Franciscan complex contains red ferruginous chert, but its proportion is subordinate compared to greywackes. Sediment is subducted. Metasediment in the Franciscan complex contains red ferruginous chert, but its proportion is subordinate compared to greywackes.

Data availability

The source data underlying Figs. 3–9 and Supplementary Figs. 1 and 2 are provided as Supplementary Data.

Code availability

The computer code including the Deep Earth Water model (2019) and EQ3 packages to perform the DEW calculations in this study is publicly available from the DEEP CARRON OBSERVATORY website (www.deepcommunity.org/resources.html) for research purposes.

Received: 19 June 2019; Accepted: 17 December 2019;
Published online: 24 January 2020

References

1. Wallace, P. J. & Edmonds, M. The sulfur budget in magmas: evidence from melt Inclusions, submarine glasses, and volcanic gas emissions. Rev. Mineral. Geochem. 73, 215–246 (2011).
2. Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).
3. Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric in

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14110-4

ARTICLE
44. Farquhar, J., Wu, N. P., Canfield, D. E. & Oduro, H. Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. *Econ. Geol. 105*, 509–533 (2010).

45. Labidi, J., Cartigny, P., Birck, J. L., Assayag, N. & Bourrand, J. J. Determination of multiple sulfur isotopes in glasses: a reappraisal of the MORB δ34S. *Chem. Geol. 334*, 189–192 (2012).

46. Alt, J. C. Sulfur isotopic profile through the oceanic crust: sulfur mobility and seawater-sediment sulfur exchange during hydrothermal alteration. *Geology* 23, 585–588 (1995).

47. Alt, J. C. et al. Uptake of carbon and sulfur during seafloor serpentinization and the effects of subduction metamorphism in Ligurian peridotites. *Chem. Geol. 322*, 268–277 (2012).

48. Schwarzenbach, E. M. Serpentinization, Fluids and Life: Comparing Carbon and Sulfur Cycles in Modern and Ancient Environments. Thesis, ETH Zurich (2011).

49. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. *J. Geophys. Res. 116*, B01401 (2011).

50. Hilton, D. R., Fischer, T. P. & Muzzio, B. Noble gases and volcanic recycling at subduction zones. *Rev. Miner. 47*, 319–370 (2002).

51. Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. *J. Volcanol. Geoth. Res. 140*, 217–240 (2005).

52. Bebout, G. E. Metamorphic chemical geodynamics of subduction zones. *Earth Planet. Sci. Lett. 260*, 373–393 (2007).

53. Peacock, S. M. Fluid processes in subduction zones. *Science 248*, 329–337 (1990).

54. Cai, C., Wiens, D. A., Shen, W. & Eimer, M. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. *Nature 563*, 389–392 (2018).

55. Auger, J. I. & Nicolescu, S. Carbon dioxide released from subduction zones by fluid-mediated reactions. *Nat. Geosci. 7*, 355–360 (2014).

56. Chaussson, M., Albarede, F. & Sheppard, S. M. F. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. *Earth Planet. Sci. Lett. 92*, 144–156 (1989).

57. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. *Science 325*, 605–607 (2009).

58. Evans, K. A., Elburg, M. A. & Kamenetsky, V. S. Oxidation state of subarc mantle. *Geology 40*, 783–786 (2012).

59. Foden, J., Sossi, P. A. & Nebel, O. Controls on the iron isotopic composition of global arc magmas. *Earth Planet. Sci. Lett. 494*, 190–201 (2018).

60. Benard, A., Woodland, A. B., Arculus, R. J., Nebel, O. & McAlpine, S. R. B. Variation in sub-arc mantle oxygen fugacity during partial melting recorded in refractory peridotite xenoliths from the West Bismarck Arc. *Chem. Geol. 486*, 16–30 (2018).

61. Chin, E. J., Shimizu, K., Bybee, G. M. & Erdman, M. E. On the development of the calc-alkaline and tholeiitic magmas series: A deep crustal cumulative perspective. *Earth Planet. Sci. Lett. 482*, 277–287 (2018).

62. Kilgore, M. L., Peslier, A. H., Brandon, A. D. & Lamb, W. M. Water and oxygen fugacity in the lithospheric mantle wedge beneath the Northern Canadian Cordillera (Alligator Lake). *Geochim. Geophy. Geosyst. 19*, 3844–3860 (2018).

63. Tollan, P. & Hermann, J. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene. *Nat. Geosci. 12*, 667–671 (2019).

64. Malaspina, N., Scambelluri, M., Poli, S., Van Roermund, H. M. L. & Langenhorst, F. The oxidation state of mantle wedge majoritic garnet websterites metamorphosed by C-bearing subduction fluids. *Earth Planet. Sci. Lett. 482*, 417–426 (2010).

65. Song, S. G., Su, L., Niu, Y., Lai, Y. & Zhang, L. CH4 inclusions in orogenic harzburgite: evidence for reduced slab fluids and implication for redox melting in mantle wedge. *Geochim. Cosmochim. Acta 73*, 1737–1754 (2009).

66. Fiege, A. et al. Experimental investigation of the S and S-isotope distribution between H2O + CO2 fluids and basalts melts during degeneration. *Chem. Geol. 393–394*, 36–54 (2015).

67. Fiege, A. et al. Sulphur isotope fractionation between fluid and anodesite melt: an experimental study. *Geochim. Cosmochim. Acta 142*, 501–521 (2014).

68. Hutchison, W. et al. Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth. *Nat. Commun. 10*, 4208 (2019).

69. Liebmann, J. et al. Tracking water-rock interaction at the Atlantic Massif (MAR, 30 degrees N) using sulfur geochemistry. *Geochim. Geophy. Geosyst. 19*, 4561–4583 (2018).

70. Whitehouse, M. J. Multiple sulfur isotope determination by SIMS: evaluation of reference sulfides for Δ34S with observations and a case study on the determination of Δ34S. *Geostand. Geomat. Res. 37*, 19–33 (2013).

71. Chen, L. et al. Extreme variation of sulfur isotope compositions in pyrite from the Quilino sediment-hosted gold deposit, West Quilino, central China: an in situ SIMS study with implications for the source of sulfur. *Miner. Depositas 50*, 643–656 (2015).

72. Ding, T. et al. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. *Geochim. Cosmochim. Acta 65*, 2433–2437 (2001).

73. Wolery, T. J. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user’s guide, and related documentation (Version 7.0). Pacific Northwest DOE (1992).

74. Sverjensky, D. A. Thermodynamic modelling of fluids from surficial to mantle conditions. *J. Geol. Soc. 176*, 348–374 (2019).

75. Sverjensky, D. A. & Huang, F. Diamond formation due to a pH drop during fluid-rock interactions. *Nat. Commun. 6*, 8702 (2015).

76. Debret, B. et al. Evolution of Fe redox state in serpentine during subduction. *Earth Planet. Sci. Lett. 400*, 206–218 (2014).

77. Wakabayashi, J. Anatomy of a subduction complex: architecture of the Franciscan Complex, California, at multiple length and time scales. *Int. Geol. Rev. 57*, 669–746 (2015).

78. Kagoshima, T. et al. Sulphur geochemical cycle. *Sci. Rep. 5*, 8330 (2015).

Acknowledgements

This project was supported by the National Key R&D Program of China (2018YFF070701), Natural National Science Foundation of China (41772056 and 41300455). J.L.L. thanks the funding from Youth Innovation Promotion Association CAS (2018090) and the CSC for supporting his one-year stay at Yale University and three months at Freie Universitat Berlin. J.A. gratefully acknowledges support from the U.S. National Science Foundation (EAR-1650329). NordSIMS is a Swedish infrastructure supported under VR grant 2017-00671; this is contribution 610. We thank U. Wiesther and F. Schmid for help with bulk-rock S analyses; Q. Mao and D. Zhang for help with EMP analyses; and H. Ieno, L. Chen, L.L. Dong, and J. Li for help with SIMS analyses. We are grateful to J.A.D. Connolly, S. Tasara, B.T. Li, and X.Q. Zhou for their helpful discussions and suggestions. Special thanks go to P. van Keken for providing detailed global water flux data, which enhances the reliability of our mass-balance calculation significantly.

Author contributions

J.L.L. and T.J. designed the study. J.L.L., T.J., G.R.K. and R.K. collected the samples. J.L.L., R. K. and X.S.W. performed the microprobe mapping and laser trace-element analysis. E.M. S. and J.L.L. conducted the bulk sulfur isotope analysis. J.L.L. and M.J.W. conducted the SIMS analysis. F.H. performed the DEW calculation. J.L.L., E.M.S., T.J. and J.A. performed the mass-balance calculations. All authors contributed to the extensive discussion and manuscript writing.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-14110-4.

Correspondence and requests for materials should be addressed to J.L.L., T.J. or J.G.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020