Rays to renormalizations
by
Genadi LEVIN

Presented by Feliks PRZYTYCKI

Summary. Let K_P be the filled Julia set of a polynomial P, and K_f the filled Julia set of a renormalization f of P. We show, loosely speaking, that there is a finite-to-one function λ from the set of P-external rays having limit points in K_f onto the set of f-external rays to K_f such that R and $\lambda(R)$ share the same limit set. In particular, if a point of the Julia set $J_f = \partial K_f$ of a renormalization is accessible from $\mathbb{C} \setminus K_f$ then it is accessible through an external ray of P (the converse is obvious). Another interesting corollary is that a component of $K_P \setminus K_f$ can meet K_f only in a single (pre-)periodic point. We also study a correspondence induced by λ on arguments of rays. These results are generalizations to all polynomials (covering notably the case of connected Julia set K_P) of some results of Levin and Przytycki (1996), Blokh et al. (2016) and Petersen and Zakeri (2019) where it is assumed that K_P is disconnected and K_f is a periodic component of K_P.

1. Introduction

1.1. Polynomial external rays. Let $Q: \mathbb{C} \to \mathbb{C}$ be a non-linear polynomial considered as a dynamical system. Conjugating Q if necessary by a linear transformation, one can assume without loss of generality that Q is monic centered, i.e., $Q(z) = z^{\deg(Q)} + az^{\deg(Q)-2} + \cdots$.

We briefly recall the necessary definitions (see e.g. [DH1], [CG], [Mil0], [LS91] for details). The filled Julia set K_Q of Q is the complement $\mathbb{C} \setminus A_Q$ to the basin of infinity $A_Q = \{z : Q^n(z) \to \infty \text{ as } n \to \infty\}$, and $J_Q = \partial A_Q = \partial K_Q$ is the Julia set (here and below $Q^n(z)$ is the image of z by the n-iterate Q of Q for n non-negative and the full preimage of z by $Q^{[n]}$ for n negative).

Let $u_Q : A_Q \to \mathbb{R}_+$ be Green’s function in A_Q such that $u_Q(z) \sim \log |z| + o(1)$ as $z \to \infty$. For all z in some neighborhood W of ∞, $u_Q(z) = \log |B_Q(z)|$.

2020 Mathematics Subject Classification: 37F10, 37F20, 37F25.
Key words and phrases: Julia set, renormalization, external rays.
Received 29 January 2021; revised 17 February 2021.
Published online 9 March 2021.

DOI: 10.4064/ba210129-19-2 [1] © Instytut Matematyczny PAN, 2021
where B_Q is the Böttcher coordinate of Q at ∞, i.e., a univalent function from W onto $\{ w : |w| > R \}$, for some $R > 1$, such that $B_Q(Q(z)) = B_Q(z)^\text{deg } Q$ for $z \in W$ and $B_Q(z)/z \to 1$ as $z \to \infty$.

An equipotential of Q of level $b > 0$ is the level set $\{ z : u_Q(z) = b \}$. Alternatively, the equipotential containing a point $z \in A_Q$ is the closure of the union $\bigcup_{n>0} Q^{-n}(Q^n(z))$ and $u_Q(z) = \lim_{n \to \infty} (\text{deg}(Q))^{-n} \log |Q^n(z)|$ is the level of this equipotential where $b = u_Q(z)$ is called the Q-level of $z \in A_Q$. Note that $u_Q(Q(z)) = (\text{deg } Q)u_Q(z)$ for all $z \in A_Q$.

The gradient flow for Green’s function (potential) u_Q equipped with direction from ∞ to J_Q defines Q-external rays. More specifically, the gradient flow has singularities precisely at the critical points of u_Q which are preimages by Q^n, $n = 0, 1, \ldots$, of critical points of Q that lie in the basin of infinity A_Q. If a trajectory R of the flow that starts at ∞ does not meet a critical point of u_Q, it extends as a smooth (analytic) curve, external ray R, up to J_Q. If R does meet a critical point of u_Q, one should consider instead two corresponding (non-smooth) left and right external rays as left and right limits of smooth external rays tending to R (for a visualization of such rays, see e.g., Figures 1(a-b) of [LP96] or images in [PZ19–PZ20]; to get an impression about the geometry of the Julia set of renormalizable polynomials, see e.g. the computer images of [Pic]). Each external ray R is parameterized by the level of equipotential $b \in (+\infty, 0)$.

The argument $\tau \in \mathbb{T} := \mathbb{R}/\mathbb{Z}$ of an external ray R is the argument of the curve R asymptotically at ∞. Informally, τ is the argument at which R crosses the “circle at infinity”. The correspondence between external rays and their arguments is one-to-one on smooth rays and two-to-one on non-smooth ones. If R is a Q-external ray of argument τ then $Q(R)$ is also a ray of argument $\sigma_{\text{deg}(Q)}(\tau)$ where $\sigma_k(t) = tk \mod(1)$. Note that, for any b large enough, B_Q maps the equipotential of level b onto the round circle $\{|w| = e^b\}$ and arcs of external rays from this equipotential to ∞ onto standard rays that are orthogonal to this circle. Finally, K_Q is connected if and only if B_Q extends as a univalent function to the basin of infinity A_Q, if and only if all external rays of Q are smooth.

Let $S = \{|z| = 1\}$ be the unit circle which we identify—when this is not confusing—with \mathbb{T} via the exponential $\mathbb{T} \ni t \mapsto \exp(2\pi it) \in S$.

1.2. Polynomial-like maps and renormalization. Let us recall [DH2] that a triple (W, W_1, f) is a polynomial-like map if W, W_1 are topological discs, $W_1 \subset W$ and $f : W_1 \to W$ is a proper holomorphic map of some degree $m \geq 2$. The set of non-escaping points $K_f = \bigcap_{n=1}^{\infty} f^{-n}(W)$ is called the filled Julia set of (W, W_1, f). By the Straightening Theorem [DH2], there exists a monic centered polynomial G of degree m which is hybrid equivalent to f, i.e., there is a quasiconformal homeomorphism $h : \mathbb{C} \to \mathbb{C}$ which is
conformal a.e. on K_f, such that $G \circ h = h \circ f$ near K_f. The map h is called a straightening. This implies in particular that K_f is the set of limit points of $\bigcup_{n \geq 0} f^{-n}(z)$ for any $z \in W$ with, perhaps, at most one exception.

We say that another polynomial-like map $(\tilde{W}, \tilde{W}_1, \tilde{f})$ of the same degree m is equivalent to (W, W_1, f) if there is a component E of $W \cap \tilde{W}$ such that $K_f \subset E$ and $f = \tilde{f}$ in a neighborhood of K_f. Taking a point z as above close to $J_f = \partial K_f$, it follows (cf. [McM, Theorem 5.11]) that $K_f = \tilde{K}_f$ and that this is indeed an equivalence relation for polynomial-like maps. Denote by f the equivalence class of the polynomial-like map (W, W_1, f), by K_f, J_f the corresponding filled Julia set and Julia set of (any representative of) f, and by f the restriction to a neighborhood of K_f of an f-representative (i.e., for any two representatives $(W^{(i)}, W_1^{(i)}, f_i)$, $i = 1, 2$, we have $f_1 = f_2 = f$ in a neighborhood of K_f).

From now on, let us fix a monic centered polynomial $P : \mathbb{C} \to \mathbb{C}$ of degree $d > 1$.

We say that f is a renormalization of P (cf. [McM], [Inou]) if f is an equivalence class of polynomial-like maps such that K_f is a connected proper subset of K_P and, for some $r \geq 1$, $f = P^r$ in a neighborhood of K_f.

1.3. Assumptions. Suppose that

(p1) f is a renormalization of P.

To avoid a situation when an external ray of P can have a limit point in J_f as well as a limit point off J_f, we introduce another condition:

(p2) There exists a representative (W^*, W_1^*, f) of the renormalization f of P and some $b_*>0$ as follows. If $z \in \partial W_1^*$ belongs to an external ray of P which has a limit point in K_f then the P-level of z is at least b_*, i.e., $u_P(z) \geq b_*$.

Let us stress that external rays of P as in (p2) can cross the boundaries of W^*, W_1^* many times (or e.g. have joint arcs with the boundaries).

This condition holds if W^* is obtained by the following frequently used construction that we only indicate here; see [Mil], [McM], [Inou] for details. In the first step, a simply connected domain W_0 is built using an appropriate Yoccoz puzzle so that $\partial W_0 = L_{\text{hor}} \cup L_{\text{vert}} \cup F$ where L_{hor} is a union of finitely many arcs of a fixed equipotential of P, L_{vert} is a union of finitely many arcs of external rays of P between ends of arcs of L_{hor}, and F is a finite set of repelling periodic points of J_P or/and their preimages such that $K_f \subset W_0 \cup F$ and $f : f^{-1}(W_0) \to W_0$ is a branched covering. By the construction, every external ray of P to $J_f \setminus F$ must cross the “horizontal” part L_{hor} so that (p2) is obviously satisfied for the set of those rays. If either $L_{\text{vert}} = F = \emptyset$ (as in Example [1] that follows) or $F \cap K_f = \emptyset$, one can take $W^* = W_0$ so that
(p2) holds for $W_1^* = f^{-1}(W^*)$. If $F \subset J_f$, then $W_0 \setminus f^{-1}(W_0)$ is a degenerate annulus. Then, in the second step, W^* is modified from W_0 by “thickening” \[\text{[Mil1, p. 12]}\] around points of the set F, which adds only finitely many rays (tending to F). Then (p2) holds for $W_1^* = f^{-1}(W^*)$ as well.

Example 1. Assume that the Julia set of the polynomial P is disconnected and K is a component of K_P different from a point. In this case $K = K_f$ for some renormalization f of P and conditions (p1)–(p2) are fulfilled. The boundary of W^* (hence of W_1^*, too) can be chosen to be merely a component of an equipotential that encloses K. With such a choice, each intersection point of an external ray of P with ∂W^* has a fixed level so every external ray can cross the boundaries of W^* and W_1^* at most once.

Our goal is to study a correspondence between external rays of P that have limit points in J_f, on the one hand, and external, or polynomial-like rays of the renormalization f, on the other (up to a change of straightening, see below). In the case of disconnected Julia set J_P and the renormalization f as in Example 1 this has been done in \([LP96], [ABC16, Sect. 6]\), and \([PZ19]\).

1.4. Polynomial-like rays.

For a curve $\alpha : [0, 1) \to \hat{\mathbb{C}}$, the limit (or principal, or accumulation) set of α is $\Pr(\alpha) = \overline{\alpha} \setminus \alpha$.

Let us define external rays of the renormalization f. By \([DH2]\), since K_f is connected, the monic centered polynomial G of degree m which is hybrid equivalent to any representative of f is uniquely defined by f. Let h be a straightening of f. By this we mean a quasiconformal homeomorphism $\mathbb{C} \to \mathbb{C}$ which is conformal a.e. on K_f and satisfies $G \circ h = h \circ f$ on some neighborhood of K_f. One can also assume that h is conformal at ∞ such that $h'(\infty) \neq 0$.

As the filled Julia set K_G is connected, given $t \in \mathbb{T}$ there is a unique external ray of G of argument t, denoted by $R_{t,G}$. Its h^{-1}-image $l^h_t := h^{-1}(R_{t,G})$ is called the polynomial-like ray to K_f of argument t. As $h : \mathbb{C} \to \mathbb{C}$ is a homeomorphism, $\Pr(l^h_t) = h^{-1}(\Pr(R_{t,G}))$. Note that the straightening h is not unique. However, the polynomial G is unique, and if \tilde{h} is another straightening, although \tilde{h} defines another system of polynomial-like rays, the homeomorphism $\tilde{h}^{-1} \circ h : \mathbb{C} \to \mathbb{C}$ maps l^h_t onto \tilde{l}^h_t and $\Pr(l^h_t)$ onto $\Pr(\tilde{l}^h_t)$.

In what follows we fix a straightening map $h : \mathbb{C} \to \mathbb{C}$ (see Theorem 3(e) and its proof though). Then the set $\{l_t\}$ of polynomial-like rays is fixed, too (where we omit h in l^h_t as h is fixed). For brevity, P-external rays are called P-rays, or just rays, and polynomial-like rays to K_f are f-rays, or polynomial-like rays.

1.5. Main results.

Given a connected compact set $K \subset \mathbb{C}$ which is different from a point, we say that a curve $\gamma : [0, 1) \to \Omega := \mathbb{C} \setminus K$ converges to a prime end \hat{P} of K if, for a conformal homeomorphism $\psi : \mathbb{C} \setminus K \to \{|z| > 1\}$,
the curve $\psi \circ \gamma : [0,1) \to \{|z| > 1\}$ converges to a single point $P \in \mathbb{S}$; we say that γ converges to the prime end \hat{P} non-tangentially if moreover $\psi \circ \gamma$ converges to the point P non-tangentially, i.e., the set $\psi \circ \gamma((1-\epsilon,1))$ lies inside a sector (Stolz angle) $\{z : |\arg(z-P)-\arg P| \leq \alpha\}$ for some $\epsilon > 0$ and $\alpha \in (0,\pi/2)$. Furthermore, we say that two curves $\gamma_1, \gamma_2 : [0,1) \to \Omega$ are K-equivalent if they both converge to the same prime end and moreover have the same limit sets $\Pr(\gamma_1) = \Pr(\gamma_2)$ in ∂K.

By Lindelöf’s theorem (see e.g. [Pom, Theorem 2.16]), if two curves converge to the same prime end non-tangentially, they share the same limit set. Therefore, if γ_1, γ_2 converge to the same prime end of K non-tangentially, then γ_1, γ_2 are also K-equivalent.

The following statement was proved in [ABC16 (2)] in the set up of Example 1.

Theorem 1 (cf. [ABC16, Theorem 6.9]). Assume (p1)–(p2) hold. For each P-ray R that has an accumulation point in K_f we have $\Pr(R) \subset J_f$ and there is a unique polynomial-like ray $l = \lambda(R)$ such that the curves l, R are K_f-equivalent. Moreover, l, R converge to a single prime end of K_f non-tangentially. Furthermore, $\lambda : R \mapsto l$ maps the set of P-rays to K_f onto the set of polynomial-like rays, and is “almost injective”: λ is one-to-one except when one and only one of the following (i)–(ii) holds. Suppose that $\lambda^{-1}(\ell) = \{R_1, \ldots, R_k\}$ with $k > 1$.

(i) $k = 2$ and both rays R_1, R_2 are non-smooth and share a common arc starting at a critical point of Green’s function of P, or

(ii) there is $z \in J_f$ such that $\Pr(R_i) = \{z\}$, $i = 1, \ldots, k$, at least two of the rays R_1, \ldots, R_k are disjoint, and, for some $n \geq 0$, $P^n(z) \in Y$ where $Y \subset J_f$ is a finite collection of repelling or parabolic periodic points of P that depends merely on K_f.

If K_P is connected then (i) is not possible.

Note that in case (ii) any two disjoint P-rays completed by the joint limit point z split the plane into two domains such that one of them contains $K_f \setminus \{z\}$, and the other one, points from $K_P \setminus K_f$. In particular, if K_P is connected, the second domain must contain a component of $K_P \setminus K_f$ that goes all the way to a pre-periodic point $z \in J_f$. In fact, this is “if and only if”: see Theorem 2(b) below.

For an illustration, see e.g. pictures in [McM, p. 116, explained in Example IV, p. 115] of a “dragon” filled Julia set of a quadratic polynomial P admitting three renormalizations; the maps λ corresponding to these renormalizations are one-to-one except at countably many polynomial-like rays.

(1) One can show that if γ_1 converges to a single point $a \in \partial K$, then γ_2 is K-equivalent to γ_1 if and only if γ_1, γ_2 are homotopic through a family of curves in Ω converging to a.

(2) In [ABC16], a different terminology is used.
where \(\lambda \) is 6-to-1 in the top picture, 2-to-1 in the left bottom and 3-to-1 in the right bottom. In all three cases, the landing points of rays where \(\lambda \) is not one-to-one are (pre-)periodic to a fixed point of \(P \) where six \(P \)-rays land.

The next two theorems are consequences of the proof of Theorem 1.

Theorem 2. Assume (p1)–(p2).

(a) If a point \(a \in J_f \) is accessible along a curve \(s \in \mathbb{C} \setminus K_f \), then \(a \) is the landing point of a \(P \)-ray \(R \); moreover the curves \(s, R \) are \(K_f \)-equivalent.

(b) There exists a finite set \(Y \subset J_f \) of repelling or parabolic periodic points of \(f \), as follows. Let \(S \) be a component of \(K_P \setminus K_f \) such that \((S \setminus S) \cap J_f \neq \emptyset \). Then \(S \setminus S \) is a single point \(b \in J_f \), and moreover \(f^n(b) \in Y \) for some \(n \geq 0 \).

Note that part (a) is in fact an easy corollary of Lemma 2.1 similar to a result of [LP96]. Part (b) is void if (and only if) \(K_f \) is itself a component of \(K_P \).

For the next statement, we introduce the following notations. Let \(\Lambda \subset \mathbb{T} \) be the set of arguments of all \(P \)-rays that have their limit points in \(J_f \). Observe that by Theorem 1 the whole limit sets of such rays are in \(J_f \) and, given \(\tau \in \Lambda \), there is a unique \(P \)-ray, denoted by \(R_{\tau,P} \), which has its limit set in \(J_f \). Indeed, this is obvious if the \(P \)-ray of argument \(\tau \) is smooth. On the other hand, if there are two \(P \)-rays, left and right, of argument \(\tau \), only one of them can have its limit point in \(J_f \) because the other one must go to another component of \(K_P \). Now, the map \(\lambda \) of Theorem 1 induces a map \(p: \Lambda \rightarrow \mathbb{T} \) such that for all \(\tau \in \Lambda \),

\[
\lambda(R_{\tau,P}) = l_{p(\tau)}.
\]

By Theorem 1, \(\text{Pr}(l_{p(\tau)}) = \text{Pr}(R_{\tau,P}) \), and moreover \(R_{\tau,P}, l_{p(\tau)} \) are \(K_f \)-equivalent.

Given a positive integer \(k \), let \(\sigma_k: \mathbb{T} \rightarrow \mathbb{T}, \sigma_k(t) = kt \mod 1 \). Recall that \(\deg(f) = m \). Let \(D := \deg(P^r) = d^r \).

Theorem 3 (cf. [PZ19]).

(a) \(\Lambda \) is a compact nowhere dense subset of \(\mathbb{T} \) which is invariant under \(\sigma_D \).

(b) \(\sigma_m \circ p = p \circ \sigma_D \) on \(\Lambda \).

(c) The map \(p: \Lambda \rightarrow \mathbb{T} \) is surjective and finite-to-one, and moreover “almost injective” as defined in Theorem 1.

(d) \(p: \Lambda \rightarrow \mathbb{T} \) extends to a continuous monotone degree one map \(\tilde{p}: \mathbb{T} \rightarrow \mathbb{T} \).

(e) The map \(p \) is unique in the following sense: if \(\tilde{p}: \Lambda \rightarrow \mathbb{T} \) corresponds to another straightening \(\tilde{h} \), then \(\tilde{p}(t) = p(t) + k/(m - 1) \mod 1 \) for some \(k = 0, 1, \ldots, m - 1 \).

In the set up of Example 1, i.e., when \(K_P \) is disconnected and \(K_f \) is a periodic component of \(K_P \), Theorem 3 was proved in [PZ19] (by a different
method), with part (c) replaced by an explicit bound for the cardinality of fibers of the map \(p \) as well as with an extra statement about the Hausdorff dimension of the set \(\Lambda \).

A detailed proof of the main Theorem 1 is given in Sect. 2 and the proofs of Theorems 2, 3 are in Sect. 3. The proof of Theorem 1 follows rather closely the proofs of [LP96, Lemma 2.1] and [ABC16, Theorems 6.8–6.9]. An essential difference is that we have to adapt the proofs to the situation that external rays of \(P \) can cross the boundary of \(W_1^* \) as in (p2) many times.

2. Proof of Theorem 1. Let \(f : W_1^* \to W^* \) be a representative of \(f \) as in (p2). As \(K_f \) is connected, all the critical points of \(f \) are in \(K_f \). Hence, for each \(k \), \(f^k : f^{-k}(W_1^* \setminus K_f) \to W_1^* \setminus K_f \) is an unbranched (degree \(m^k \)) map. Therefore, \(L_k := f^{-k}(\partial W_1^*) \) is the boundary of a simply connected domain \(f^{-k}(W_1^*) \).

Let \(\mathcal{R} \) denote the set of all \(P \)-rays \(R \) such that \(R \) has a limit point in \(J_f \). First, we show that all limit points of \(R \in \mathcal{R} \) are in \(J_f \), introducing some notations along the way. Let

\[
b_{*,k} = \inf\{u_P(z) : z \in R \cap L_k, R \in \mathcal{R}\}.
\]

By (p2), \(b_{*,0} > 0 \). As \(R \in \mathcal{R} \) implies \(P^r(R) \in \mathcal{R} \), we have \(b_{*,k} \geq b_{*,0}/D^k \), hence \(b_{*,k} > 0 \), for all \(k \). Let \(R \in \mathcal{R} \) and \(k \geq 0 \). Since \(R \cap L_k \) is a closed set and \(b_{*,k} > 0 \), there exists a unique point \(z_k(R) \in R \cap L_k \) such that \(u_P(z_k(R)) = \inf\{u_P(z) : z \in R \cap L_k\} \). Observe that the arc \(\Gamma_{k,R} \) of \(R \) from \(z_k(R) \) down to \(J_f \) lies entirely in \(f^{-k}(W_1^*) \). As \(\bigcap_{k \geq 0} f^{-k}(W_1^*) = K_f \), we see immediately that the limit set of \(R \), which is \(\bigcap_{k \geq 0} \overline{T_{K,R}} \), is a subset of \(J_f \).

Before proceeding with more notations and the main lemma, let us note that \(b_{*,k} = b_{*,0}/D^k \), \(k = 1,2,\ldots \). Indeed, as \(f^k : f^{-k}(W_1^* \setminus K_f) \to W_1^* \setminus K_f \) is an unbranched covering, each component of \(f^{-k}(R) \) is an arc of some ray from \(\mathcal{R} \). This implies that \(b_{*,k} \leq b_{*,0}/D^k \). The opposite inequality was seen before.

Now, choose a conformal isomorphism \(\psi \) from \(C \setminus K_f \) onto \(D^* = \{ |z| > 1 \} \) such that \(\psi(z)/z \to e \) as \(z \to \infty \), for some \(e > 0 \). A curve \(\hat{R} \) in \(D^* \) with limit set in \(S = \{ |z| = 1 \} \) is called a \(K \)-related ray if its preimage \(\psi^{-1}(\hat{R}) \) is a \(P \)-ray \(R \in \mathcal{R} \), i.e., \(R \) has its limit set in \(K_f \). The argument of \(\hat{R} \) is said to be the argument of the ray \(\psi^{-1}(\hat{R}) \). Let \(A_K = \psi(W^* \setminus K_f) \) be an “annulus” with boundary curves \(\psi(\partial W^*) \) and \(S \). Denote \(\tilde{z}_k(R) = \psi(z_k(R)) \). Note that \(\tilde{z}_k(R) \in \psi(L_k) \cap \hat{R} \) and the arc of the \(R \)-related ray \(\hat{R} \) from \(\tilde{z}_k(R) \) to \(S \) is contained in the “annulus” between \(\psi(L_k) \) and \(S \). An arc of a \(K \)-related ray \(\tilde{R} = \psi(R) \) from the point \(\tilde{z}_0(R) = \psi(z_0(R)) \) \(\in \psi(L_0) \) to \(S \) is called a \(K \)-related arc. Its argument is the argument of the corresponding ray. The following main lemma and its proof are minor adaptations of the ones of [LP96, Lemma 2.1].
Lemma 2.1.

1° Every K-related arc has a finite length, and hence converges to a unique point of \mathbb{S}.

2° For every closed arc $I \subset \mathbb{S}$ (in particular a point), the set $K(I)$ of arguments of all K-related arcs converging to a point of I is a non-empty compact set.

3° The set of all K-related arcs in $\{z : 1 < |z| < 1 + \epsilon\}$ converging to a point z_0 lies in a Stolz angle

$$\{z : |\arg(z - z_0) - \arg z_0| \leq \alpha\},$$

where $\alpha \in (0, \pi/2)$ and ϵ do not depend on $z_0 \in \mathbb{S}$.

Proof. 1° Let $B_{*,k} = \sup \{u_P(z) : z \in L_k\}$. For every $k \geq 0$ there is a number C_k such that, for every ray $R \in \mathcal{R}$, the length of the arc R_k of R between the points $z_k(R)$ and $z_{k+1}(R)$ is bounded by C_k. This is because the latter arc is an arc of a P-ray that joins two equipotentials of positive levels $B_{*,k}$, $b_{*,k}$. Denote $\tilde{L}_k = \psi(L_k)$. Then \tilde{L}_k is a compact subset of \mathcal{A}_K which surrounds \mathbb{S}. By the above, every K-related arc \tilde{R} splits into arcs $\tilde{R}_k = \psi(R_k)$, $k \geq 0$, i.e., \tilde{R}_k is the arc of \tilde{R} joining $\tilde{z}_k(\tilde{R})$ and $\tilde{z}_{k+1}(\tilde{R})$. For every k, the supremum of the lengths over all arcs \tilde{R}_k of the K-related rays \tilde{R} is bounded by

$$\tilde{C}_k = C_k \sup \{|\psi'(z)| : z \in \overline{W}_1^* \setminus f^{-k-2}(W_1^*)\}.$$

Let $A_{1,K} = \psi(W_1^* \setminus K_f)$ and $g = \psi \circ f \circ \psi^{-1} : A_{1,K} \to \mathcal{A}_K$. Then z tends to \mathbb{S} if and only if $g(z)$ tends to \mathbb{S}. It is well-known (see e.g. [P86]) that g extends to an expanding holomorphic map in an annulus $U_0 = \{z : 1 - \rho_0 < |z| < 1 + \rho_0\}$ for some $\rho_0 > 0$. This means that after passing if necessary to an iterate of g (which we also denote g) we have

$$|(g^{-1})'(z)| < c < 1$$

for every $z \in U_0$ and for every branch g^{-1} such that $g^{-1}(z) \in U_0$.

Fix a set $\tilde{L}_m \subset U = A_K \cap U_0$ for some m large enough. Then, for each $n = 1, 2, \ldots, \tilde{L}_{n+m} = \{z \in U : g^n(z) \in \tilde{L}_{n+m}\}$. Denote by l_n the supremum of the lengths of \tilde{R}_{n+m} over all $R \in \mathcal{R}$. Note that each l_n is finite, because $l_n \leq \tilde{C}_{m+n}$. In fact, much more is true: as $g^n(\tilde{R}_{n+m})$ is \tilde{S}_m for some ray $S \in \mathcal{R}$, [4] yields $l_n < c^n l_0$. Given a K-related ray \tilde{R}, the length of its arc from the point $\tilde{z}_m(\tilde{R})$ to \mathbb{S}, which is in the component of $\mathcal{C} \setminus \gamma_0$ containing \mathbb{S}, is bounded from above by $\sum_{n=0}^{\infty} c^n l_0 < \infty$. Moreover, the same argument shows the following

Claim 1. The lengths of the arcs of K-related rays \tilde{R} between $\tilde{z}_k(\tilde{R})$ and \mathbb{S} tend uniformly to zero (exponentially in k).
2° Fix a closed non-degenerate arc \(I \subset \mathbb{S} \). There exists a \(K \)-related ray converging to a point of \(I \). Indeed, otherwise no \(K \)-related ray ends in the arc \(g^n(I) \), for any \(n \). This is impossible because \(g^n(I) = \mathbb{S} \) for large \(n \) and the set of \(K \)-related rays is non-empty (for example, it contains images by \(\psi \) of \(P \)-rays landing at repelling periodic points of the polynomial-like map \(f : W_1^* \to W^* \); for the existence of such \(P \)-rays, see [Mil0], [EL89], [LP96]). We need to show that the set \(K(I) \) of arguments of all \(K \)-related rays ending in \(I \) is closed.

This is an immediate consequence of the next claim which follows, basically, from Claim 1 and will also be useful later on. Given a \(K \)-related ray \(\tilde{R}_t \) of argument \(t \) (i.e., \(t \in \Lambda \)) consider its arc \(\tilde{r}_t \) between \(\hat{L}_0 \) and \(\mathbb{S} \), parameterized as a curve \(\tilde{r}_t : [b^*,0,0] \to A_K \cup \mathbb{S} \) as follows. For any \(b \in [b^*,0,0] \), define the point \(r_t(x) \in A_K \) to be such that \(\psi^{-1}(r_t(x)) \) is a point of a \(P \)-ray of argument \(t \) and equipotential level \(b \). Finally, let \(\tilde{r}_t(0) = \lim_{b \to 0} \tilde{r}_t(x) \in \mathbb{S} \) where the limit exists by 1°.

Claim 2. The family \(\mathcal{R} = \{\tilde{r}_t\}_{t \in \Lambda} \) is a compact subset of \(C[b^*,0,0] \).

Let us first show that this family is equicontinuous. In view of Claim 1, this will follow from the equicontinuity of the restricted family \(\mathcal{R}_m = \{\tilde{r}_t : [b^*,0,b^*,0/D^m] \to A_K \} \) for each integer \(m > 1 \). Fix \(m \) and consider two objects: a compact set \(E_m \subset \mathbb{C} \) bounded by the equipotential of levels \(b^*,0 \) and \(b^*,0/D^m \) of \(P \) and a family \(\mathcal{R}_m \) of (closed) arcs in \(E_m \) of all \(P \)-rays that join the equipotential levels \(b^*,0, b^*,0/D^m \) and are parameterized by the equipotential level \(b \in [b^*,0,b^*,0/D^m] \). It is easy to see that this is a compact subset of \(C[b^*,0,b^*,0/D^m] \) (indeed, map this family by a fixed high iterate of \(P \) to a family of smooth arcs of \(P \)-rays which are preimages of segments of standard rays by the Böttcher coordinate \(B_P \) at infinity; hence, this new family is compact; then pull it back). As \(\mathcal{R}_m \subset C[b^*,0,b^*,0/D^m] \) is compact, it is equicontinuous. In turn, since \(\psi^{-1} \) is a homeomorphism on \(E_m \) (onto its image) and each \(\psi^{-1}(\tilde{r}_t) \) is in \(\mathcal{R}_m \), the family \(\mathcal{R}_m \) is equicontinuous too. Thus \(\mathcal{R} \) is an equicontinuous family.

It remains to prove that it is closed. So suppose a sequence \(\tilde{r}_{t_n} \) converges uniformly in \([b^*,0,0] \). In particular, \(\tilde{r}_{t_n} \) crosses \(\hat{L}_k \) for each \(k \) large enough. One can assume that \(t_n \) tends to some \(t \). Then the sequence of arcs of \(P \)-rays \(\psi^{-1} \circ \tilde{r}_{t_n} \), on the one hand, tends, uniformly on each interval \([b^*,0,b^*,0/D^m] \), to an arc \(r \) of a \(P \)-ray of argument \(t \), on the other hand, crosses each \(L_k \) with \(k \) large. Hence, \(r \) has a limit point in \(K_f \). Applying \(\psi \) we find that the limit of \(\tilde{r}_{t_n} \) is a \(K \)-related arc, which ends the proof of the claim.

This proves 2° when \(I \) is not a single point. By the intersection of compacta, 2° also holds if \(I \) is a point.

3° Every branch of \(g^{-n} \) is a well defined univalent function in every disc contained in \(U_0 \). Hence, by the Koebe distortion theorem (see e.g. [Gol]), one
can choose $0 < \rho' < \rho_0$ such that for every $z \in U' = \{z : 1 - \rho' < |z| < 1 + \rho'\}$, every $n = 1, 2, \ldots$ and every branch g^{-n},

$$\frac{|(g^{-n})'(x)|}{|g^{-n})'(y)|} < 2$$

whenever $|z - x| < \rho'$ and $|z - y| < \rho'$.

We reduce U' further as follows. By Claim 1, fix $m_0 > m$ such that the length of the arc of any K-related ray R between $\tilde{z}_{m_0}(R)$ and S is less than ρ'. On the other hand, if z lies in an unbounded component of $R \setminus z_{m_0}(R)$, i.e., in the arc of R between $z_{m_0}(R)$ and ∞, then $u_{J}(z) \geq b_{*,m_0}$, in particular, there is $r > 0$ independent of z and R as above such that the distance between z and J_{P} is at least r. Therefore, there exists some $\rho_1 \in (0, \rho')$ such that for every $z \in \{z : 1 < |z| < 1 + \rho_1\}$; if z belongs to a K-related ray R then z lies in an arc of R between $\tilde{z}_{m_0}(R)$ and S. Let

$$U_1 = \{z : 1 - \rho_1 < |z| < 1 + \rho_1\}.$$

We introduce the following notations:

Given $x \in U_1$, denote by l_x the part of the K-related ray passing through x between x and S (if such a ray exists). This notation is correct: as already noted before, if another K-related ray passes through x and next ramifications from l_x, it goes to a component of $\psi(J(f))$, not to S. So it is not K-related.

Denote by h_x the interval which joins x and S, orthogonal to S. Denote by $l(x)$ and $h(x)$ the corresponding Euclidean lengths. Find a large enough N such that $\tilde{\gamma}_0 := \tilde{L}_N$ in U_1. By the choice of U_1,

$$l(x) < \rho' \quad \text{for all } x \text{ between } \tilde{\gamma}_0 \text{ and } S.$$

Let $\tilde{\gamma}_1 = g^{-1}(\tilde{\gamma}_0)$. There exists a positive β_0 less than 1 such that

$$\frac{h(x)}{l(x)} > \beta_0$$

for all points x in the annulus V between $\tilde{\gamma}_0$ and $\tilde{\gamma}_1$.

Fix the maximal $\epsilon_0 > 0$ such that

$$U_2 = \{z : 1 - \epsilon_0 < |z| < 1 + \epsilon_0\}$$

does not intersect $\tilde{\gamma}_1$. We intend to prove assertion 3^o of our lemma with

$$\alpha = \arccos\left(\frac{\beta_0}{8L}\right)$$

where $L = \sup\{|g'(z)| : z \in U_0\}$ and with ϵ between 0 and ϵ_0 so small that $1 < |z| < 1 + \epsilon$ and $h(z)/|z - z_0| \geq 2 \cos \alpha$ implies $|\arg(z - z_0) - \arg z_0| \leq \alpha$.
It is enough to prove that
\[
\frac{h(x)}{l(x)} > \beta = \frac{\beta_0}{4L}
\]
for all \(x \in U_2 \). Assume the contrary: there exists \(x_* \in U_2 \) that belongs to some \(K \)-related ray \(\tilde{R} \) with
\[
h(x_*) / l(x_*) \leq \beta.
\]
Choose the minimal \(n \geq 1 \) such that \(g^n(x_*) \in V \).

The lengths \(h^{(i)} \) and \(l^{(i)} \) of the curves \(g^i(h_{x_*}) \) and \(g^i(l_{x_*}) \) cannot exceed \(\rho' \) for all \(i = 0, 1, \ldots, n \). This holds for \(l^{(i)} \) by (3), because \(g^i(x_*) \) is between \(\tilde{\gamma}_0 \) and \(\mathbb{S} \). We cope with \(h^{(i)} \)'s by induction: Length \(h^{(0)} \) < \(\rho \) by the definition of \(U_1 \). If it holds for all \(i \leq j - 1 \) then by (2),
\[
\frac{h^{(j-1)}}{l^{(j-1)}} \leq 4\beta = \beta_0 / L.
\]
Then
\[
h^{(j)} \leq Lh^{(j-1)} \leq \beta_0 \cdot l^{(j-1)} < l^{(j-1)} < \rho'.
\]
Now we use the assumption (6) and again apply (2) to obtain, for \(z_* = g^n(x_*) \in \tilde{S}_N \),
\[
\frac{h(z_*)}{l(z_*)} \leq \frac{h^{(n)}}{l^{(n)}} \leq 4\beta = \beta_0 / L < \beta_0.
\]
This contradicts (4).

Comment. The key bound (5) can also be seen directly from (4) (with, for instance, \(\beta = \beta_0 / 10 \)) by applying, besides the Koebe distortion bound (2), another distortion bound: there is a function \(\epsilon : (0, 1) \to (0, +\infty) \), with \(\epsilon(r) \to 0 \) as \(r \to 0 \), such that for any univalent function \(\varphi \) on the unit disc, if \(\varphi(0) = 0 \) and \(\varphi'(0) = 1 \), then
\[
\left| \log \frac{\varphi(z)}{z} \right| < \epsilon(|z|)
\]
(see e.g. [Gol]). This bound is applied to the function
\[
\varphi(z) = \frac{g^{-n}(w + \rho_0 z) - g^{-n}(w)}{(g^{-n})'(w)\rho_0}
\]
where \(n \) is minimal such that \(g^n(x) \in V \), and \(w \in \mathbb{S} \) is the projection of \(g^n(x) \) to \(\mathbb{S} \) and reducing \(\rho' \). Note that \((g^{-n})'(w) > 0 \) because \(g \) preserves \(\mathbb{S} \).

We continue as follows (cf. [ABC16, proof of Theorem 6.9]). Recall that a straightening \(h : \mathbb{C} \to \mathbb{C} \) is a quasiconformal homeomorphism which is holomorphic at \(\infty \) and \(h'(\infty) \neq 0 \). It conjugates the polynomial-like map \(f \) to the polynomial \(G \) near their filled Julia sets \(K_f \) and \(K_G \). Let \(B_G : A_G \to \mathbb{D}^* \) be the Böttcher coordinate of \(G \) such that \(B_G(z)/z \to 1 \) as \(z \to \infty \), which is well defined in the basin of infinity \(A_G = \mathbb{C} \setminus K_G \) as \(K_G \) is connected.
We have the following picture:

\[(7)\quad \mathbb{D}^* \xrightarrow{\psi^{-1}} \mathbb{C} \setminus K_f \xrightarrow{h} \mathbb{C} \setminus K_G \xrightarrow{B_G} \mathbb{D}^*.\]

Consider the map \(\Psi := \psi \circ h^{-1} \circ B_G^{-1} : \mathbb{D}^* \to \mathbb{D}^*\) from the uniformization plane of the polynomial \(G\) to the \(g\)-plane of \(K\)-related rays. It is a quasiconformal homeomorphism which is holomorphic at \(\infty\). For \(u \in \mathbb{S}\), let \(L_u = \Psi(r_u \cap \mathbb{D}^*)\) where \(r_u = \{tu : t > 0\}\) is a standard ray in the uniformization plane of \(G\)\(^{(3)}\).

Lemma 2.2. The curve \(L_u\) converges non-tangentially to a unique point \(z_0 = z_0(u)\) of the unit circle \(\mathbb{S}\). Moreover, there is \(\beta \in (0, \pi/2)\) such that, for any \(u \in \mathbb{S}\) and all \(z \in L_u\) close enough to \(\mathbb{S}\),

\[(8)\quad |\arg(z - z_0) - \arg z_0| \leq \beta.\]

Here \(\beta\) depends only on the quasiconformal deformation of the straightening map \(h\). Furthermore, for every \(z_0 \in \mathbb{S}\) there exists a unique \(u\) such that \(L_u\) lands at \(z_0\).

Proof of Lemma 2.2 (cf. [ABC16, Section 6]). The map \(\Psi : \mathbb{D}^* \to \mathbb{D}^*\) extends to a homeomorphism of the closures and then to a quasiconformal homeomorphism \(\Psi^*\) of \(\mathbb{C}\) by \(\Psi^*(z) = 1/\Psi^*(1/\bar{z})\) (see [Ahl]). Note that the quasiconformal deformations of \(\Psi\) and \(\Psi^*\) are the same, equal to the quasiconformal deformation \(M\) of the straightening map \(h\). Consider the curve \(L_u^* = \Psi^*(r_u)\). It is an extension of the curve \(L_u\), which crosses \(\mathbb{S}\) at a point \(z_0 = \Psi^*(u)\). As a quasiconformal image of a straight line, the curve \(L_u^*\) has the following property [Ahl]: there exists \(C = C(M) > 0\) such that

\[|z - z_0|/|z - 1/\bar{z}| < C\]

for every \(z \in L_u^*\).

Therefore, \(L_u^*\) tends to \(z_0\) non-tangentially; moreover, \[(8)\] holds for some \(\beta = \beta(C(M))\). The last claim follows from the fact that \(\Psi^*\) is a homeomorphism. \(\blacksquare\)

Now, define the correspondence \(\lambda\) as follows (having in mind \[(7)\]). Let \(R\) be a \(P\)-ray to \(K_f\). By Lemma 2.1, the \(K\)-related ray \(\tilde{R} = \psi(R)\) tends to a point \(z_0 \in \mathbb{S}\). By Lemma 2.2, there exists a unique \(L_u\) which tends to \(z_0\). The curve \(\psi^{-1}(L_u) = h^{-1} \circ B_G^{-1}(\{tu : t > 1\})\) is a polynomial-like ray \(l_{\tau}\) where \(u = e^{2\pi i \tau}\). Let

\[\lambda(R) := \psi^{-1}(L_u).\]

The correspondence \(\lambda\) is “onto” by the first claim of Lemma 2.2 along with Lemma 2.1(2°).

Now, both curves \(\tilde{R}, L_u\) in \(\mathbb{D}^*\) tend to the point \(z_0 \in \mathbb{S}\) non-tangentially, by Lemmas 2.1 and 2.2 respectively. Then, by definition, the \(P\)-ray \(R\) and the

\[\text{(3) Note that the curve } L_u \text{ lies in the left-hand disc } \mathbb{D}^* \text{ of } (7) \text{ while the point } u \text{ is at the boundary of the right-hand disc there.}\]
polynomial-like ray \(\lambda(R) \) converge to a single prime end of \(\mathcal{K}_\mathfrak{f} \) non-tangentially, hence \(R \) and \(\lambda(R) \) are also \(\mathcal{K}_\mathfrak{f} \)-equivalent. Finally, the condition that \(R \) and \(\lambda(R) \) are \(\mathcal{K}_\mathfrak{f} \)-equivalent uniquely determines the polynomial-like ray \(\lambda(R) \).

It remains to prove the “almost injectivity” of \(\lambda \). This is a direct consequence of the one-to-one correspondence between \(\mathcal{K} \)-related rays and curves \(\mathcal{L}_u \) established above and the following claim whose proof is identical to the one of \([\text{ABC16, Theorem 6.8}] \) (for completeness, we reproduce it below with obvious changes in notation). While passing from \(\mathcal{K} \)-related rays to \(\mathcal{P} \)-rays we use the fact that if a \(\mathcal{K} \)-related ray is periodic, the corresponding \(\mathcal{P} \)-ray converges to a periodic point of \(\mathcal{P} \) which is either repelling or parabolic (by the Snail Lemma \([\text{Mil0}] \), it cannot be irrationally indifferent).

Lemma 2.3. Any point \(w \in \mathcal{S} \) is the landing point of precisely one \(\mathcal{K} \)-related ray, except when one and only one of the following holds:

(i) \(w \) is the landing point of exactly two \(\mathcal{K} \)-related rays which are non-smooth and have a common smooth arc that goes to \(w \);

(ii) \(w \) is a landing point of at least two disjoint \(\mathcal{K} \)-related rays, in which case \(w \) is a (pre)periodic point of \(g \) and some iterate \(g^n(w) \) belongs to a finite set \(\hat{Y} \) (depending only on \(\mathcal{K} \)) of \(g|_{\mathcal{S}} \)-periodic points each of which is the landing point of finitely many, but at least two, \(\mathcal{K} \)-related rays, which are periodic of the same period depending merely on the landing point \(w \).

Moreover, if \(w \) is periodic then (i) cannot hold.

Proof. Assume that there are two \(\mathcal{K} \)-related rays landing at a point \(w \in \mathcal{S} \) and that (i) does not hold. We need to prove that then (ii) holds. Since (i) does not hold, there exist disjoint \(\mathcal{K} \)-related rays landing at \(w \). Let us study this case in detail.

Associate to any such pair of rays \(\hat{R}_t, \hat{R}_{t'} \) an open arc \((\hat{R}_t, \hat{R}_{t'}) \) of \(\mathcal{S} \) as follows. Two points of \(\mathcal{S} \) with the arguments \(t, t' \) split \(\mathcal{S} \) into two arcs. Let \((\hat{R}_t, \hat{R}_{t'}) \) be the one that contains no arguments of \(\mathcal{K} \)-related rays except possibly for those that land at \(w \). Geometrically, this means the following. The \(\mathcal{K} \)-related rays \(\hat{R}_t, \hat{R}_{t'} \) together with \(w \in \mathcal{S} \) split the plane into two domains. The arc \((\hat{R}_t, \hat{R}_{t'}) \) corresponds to one of them, disjoint from \(\mathcal{S} \). Let \(L(\hat{R}_t, \hat{R}_{t'}) = \delta \) be the angular length of \((\hat{R}_t, \hat{R}_{t'}) \). Clearly, \(0 < \delta < 1 \). Now we make a few observations.

1. If \(\mathcal{K} \)-related disjoint rays of arguments \(t_1, t_1' \) land at a common point \(w_1 \), while \(\mathcal{K} \)-related disjoint rays of arguments \(t_2, t_2' \) land at a point \(w_2 \neq w_1 \), then the arcs \((\hat{R}_{t_1}, \hat{R}_{t'_1}), (\hat{R}_{t_2}, \hat{R}_{t'_2}) \) are disjoint.

(\text{(4)}) In \([\text{ABC16, Theorem 6.8(ii)}] \), it is claimed erroneously that all \(\mathcal{K} \)-related rays to the point \(w \) are smooth (cf. \([\text{PZ20}] \)). Note that this claim is not relevant to the rest of \([\text{ABC16}] \).
The above follows from the definition of the arc \((\hat{R}_t, \hat{R}_t')\).

(2) If disjoint \(K\)-related rays \(\hat{R}_t, \hat{R}_t'\) of arguments \(t, t'\) land at a common point \(w\), then the \(K\)-related rays \(g(\hat{R}_t), g(\hat{R}_t')\) are also disjoint and land at the common point \(g(w)\). Moreover,

\[
L(g(\hat{R}_t), g(\hat{R}_t')) \geq \min\{D\delta \pmod{1}, 1 - D\delta \pmod{1}\} > 0.
\]

Indeed, the images \(g(\hat{R}_t), g(\hat{R}_t')\) are disjoint near \(g(w)\), because \(g\) is locally one-to-one. Hence, \(g(\hat{R}_t) \cap g(\hat{R}_t') = \emptyset\), because otherwise the corresponding \(P\)-rays would have their limit sets in different components of \(KP\), a contradiction since both rays \(g(\hat{R}_t), g(\hat{R}_t')\) are \(K\)-related. Since the argument of \(g(\hat{R}_t)\) is represented by the point \(Dt \pmod{1} \in (0, 1)\), we get the inequality of (2).

Let us consider the following set \(\hat{Z}(K)\) of points in \(\mathbb{S}\): \(w \in \hat{Z}(K)\) if and only if there is a pair of disjoint \(K\)-related rays \(\hat{R}, \hat{R}'\) which both land at \(w\) and satisfy \(L(\hat{R}, \hat{R}') \geq 1/(2D)\). Denote by \(\hat{Y}(K)\) the set of periodic points which are in forward images of the points of \(\hat{Z}(K)\).

(3) If the set \(\hat{Z}(K)\) is non-empty, then it is finite, and consists of (pre)-periodic points.

Indeed, \(\hat{Z}(K)\) is finite by (1). Assume \(w \in \hat{Z}(K)\). Then by (2) some iterate \(g^n(w)\) must hit \(\hat{Z}(K)\) again.

To complete the proof, choose disjoint \(K\)-related rays \(\hat{R}_t, \hat{R}_t'\) landing at \(w \in \mathbb{S}\) and use this to prove that all claims of (ii) hold.

We show that the orbit \(w, g(w), \ldots\) cannot be infinite. Indeed, otherwise by (1)–(2), we have a sequence of non-degenerate pairwise disjoint arcs \((g^n(\hat{R}_t), g^n(\hat{R}_t')) \subset \mathbb{S}, n = 0, 1, \ldots\) By (2), some iterates of \(w\) must hit the finite set \(\hat{Z}(K)\) and hence \(\hat{Y}(K)\) (which are therefore non-empty), a contradiction.

Hence for some \(0 \leq n < l\), \(g^n(w) = g^l(w)\); let us verify that the other claims of (ii) hold. Replacing \(w\) by \(g^n(w)\), we may assume that \(w\) is a (repelling) periodic point of \(g\) of period \(k = l - n\). By (2), \(w \in \hat{Y}(K)\). By [LP96, Theorem 1], the set of \(K\)-related rays landing at \(w\) is finite, and each \(K\)-related ray landing at \(w\) is periodic with the same period. Hence, (ii) holds. Finally, the last claim of the lemma follows because a periodic non-smooth ray must have infinitely many broken points, hence, no other ray can have a common arc with it that goes up to the Julia set; see [ABC16, Lemma 6.1] for details.

3. Proofs of Theorems 2–3

3.1. Theorem 2. Part (a) is an immediate corollary of Lemma 2.1 and Lindelöf’s theorem, as in [LP96]. Indeed, since a curve \(s \subset W \setminus K_f\) converges
to a point \(a \in K_f \), the curve \(\tilde{s} = \psi(s) \) converges to a point \(z_0 \in \hat{S} \), and the limit of the function \(\psi^{-1} \) along the curve \(\tilde{s} \) exists and equals \(a \). By Lemma 2.1 there is a \(K \)-related ray \(R \) that tends to \(z_0 \), and it tends non-tangentially. Then, by [Pom] Corollary 2.17, the \(P \)-ray \(R \) converges to the same point \(a \). By definition, the curves \(s, R \) are \(K_f \)-equivalent.

Let us prove part (b). The closed set \(S \cup K_f \) is connected and so too is its complement (by the Maximum Principle). Consider the set \(\tilde{S} = \psi(S) \subset \mathbb{D}^* \). Let \(I = \tilde{S} \setminus \tilde{S} \). Then \(I \) is a connected closed subset of the unit circle \(\hat{S} \).

Let us prove \(I \) is a single point. Otherwise there is an interior point \(x \in I \) which is \(g \)-periodic. Let \(\beta \) be a \(K \)-related ray that lands at \(x \). Notice that since \(x \) is an interior point of \(I \), \(\beta \) must cross \(\tilde{S} \). Now, since \(x \) is \(g \)-periodic, \(R = \psi^{-1}(\beta) \) is a periodic \(P \)-ray, hence it converges to a periodic point \(a \in \mathbb{S} \setminus S \) of \(P \) and crosses \(S \), a contradiction since \(S \subset K_P \). This proves that \(I \) is a single point; denote it by \(z_0 \).

Choose two sequences \(z_n', z_n'' \) of \(S \) tending to \(z_0 \) from the left and from the right respectively, and two sequences of \(K \)-related rays \(l_n', l_n'' \) so that \(l_n' \) lands at \(z_n' \) and \(l_n'' \) lands at \(z_n'' \). Then, passing perhaps to subsequences, by Claim 2 in the proof of Lemma 2.1 the sequence \(l_n' \) tends to a \(K \)-related ray \(l' \) and \(l_n'' \) tends to a \(K \)-related ray \(l'' \), where \(l' \) and \(l'' \) land at the same \(z_0 \). By the above, \(l', l'' \) are disjoint.

Now we apply Lemma 2.3 to conclude that \(z_0 \) is \(g \)-(pre-)periodic, and some iterate of \(z_0 \) lies in a finite set \(Y \subset \hat{S} \) of periodic points, which is independent of \(z_0 \). Hence, the point \(a \) is \(P \)-(pre-)periodic, and some iterate of \(a \) lies in a finite set \(Y \subset J_f \) of periodic points, which is independent of \(a \). As every point of \(Y \) is a landing point of a periodic ray, it can be either repelling or parabolic.

3.2. Theorem 3. Proof of (b), (c): It follows from the definition of \(\Lambda \) that \(\sigma_D(\Lambda) = \Lambda \) and \(\sigma_m \circ p = p \circ \sigma_D \) on \(\Lambda \). By invariance and since \(\Lambda \neq \mathbb{T} \), the set \(\Lambda \) contains no intervals; (c) is a reformulation of a part of the statement of Theorem 1.

Proof of (a), (d): Considering \(\Lambda \) as a subset of \(\mathbb{S} = \{ |z| = 1 \} \) define a new map \(p_K : \Lambda \to \mathbb{S} \) as follows: for \(\tau \in \Lambda \), let \(p_K(\tau) \in \mathbb{S} \) be the landing point of a \(K \)-related ray of argument \(\tau \). Recall the map \(\Psi = \psi \circ h^{-1} \circ B_{G}^{-1} : \mathbb{D}^* \to \mathbb{D}^* \) introduced in the proof of Theorem 1 and its quasi-conformal extension \(\Psi^* : \mathbb{C} \to \mathbb{C} \). By Lemma 2.2 and the definition of the maps \(\lambda \) and \(p \), we have

\[
p_K = \Psi^*|_{\mathbb{S}} \circ p.
\]

Since \(\Psi^* : \mathbb{S} \to \mathbb{S} \) is an orientation preserving homeomorphism, it is enough to prove (a), (d) with \(p \) replaced by \(p_K \). By Lemma 2.2, \(p_K^{-1}(I) \) is closed in \(\mathbb{S} \) for any closed arc \(I \subset \mathbb{S} \). Therefore, \(\Lambda = p_K^{-1}(\mathbb{S}) \) is closed and the map \(p_K : \Lambda \to \mathbb{S} \) is continuous. To show (d), define an extension \(\tilde{p}_K : \mathbb{S} \to \mathbb{S} \) of
$p_K : A \to \mathbb{S}$ in an obvious way as follows. Let $J := (t_1, t_2)$ be a component of $\mathbb{S} \setminus A$. Then $p_K(t_1) = p_K(t_2) = w_J$ because otherwise there would be a point of \mathbb{S} with no K-related rays landing at it. Let $\tilde{p}_K(\tau) = w_J$ for all $\tau \in J$. Then $\tilde{p}_K : \mathbb{S} \to \mathbb{S}$ is continuous. Now, given $t \in \mathbb{S}$, the set $\tilde{p}_K^{-1}\{\{t\}\}$ is either a singleton or a non-trivial closed arc. This follows from the definition of \tilde{p}_K and because K-related rays with different arguments do not intersect unless case (i) of Theorem 2.3 takes place. Therefore, $\tilde{p}_K : \mathbb{S} \to \mathbb{S}$ is monotone and of degree one.

Proof of (e): Let \tilde{h} be another straightening, $\tilde{\Psi} : \mathbb{D}^* \to \mathbb{D}^*$ the corresponding quasiconformal map and $\tilde{\Psi}^* : \mathbb{C} \to \mathbb{C}$ its quasiconformal extension. As $p_K : \mathbb{S} \to \mathbb{S}$ is independent of the straightening, by [9] we have $\tilde{p} = T|_{\mathbb{S}} \circ p$ where $T = (\tilde{\Psi}^*)^{-1} \circ \tilde{\Psi}^*$. On the other hand, on \mathbb{D}^*, $T = (B_G \circ \tilde{h}) \circ (B_G \circ h)^{-1}$, hence T commutes with $z \mapsto z^m$ for $|z| > 1$ near \mathbb{S}, by definitions of h, B_G. Therefore, the homeomorphism $\nu := T|_{\mathbb{S}} : \mathbb{S} \to \mathbb{S}$ commutes with $z \mapsto z^m$ on \mathbb{S}, too. It is then well known that $\nu(z) = vz$ for some $v \in \mathbb{C}$ with modulus 1 such that $v^m = v$ (proof: as $\nu(1)^m = \nu(1)$ let $v = \nu(1)$, so that a homeomorphism $\nu_0 = v^{-1} \nu : \mathbb{S} \to \mathbb{S}$ commutes with $z \mapsto z^m$ too and $\nu_0(1) = 1$; then there is a lift $\tilde{\nu}_0 : \mathbb{R} \to \mathbb{R}$ of ν_0 such that $\tilde{\nu}_0(0) = 0$, $\tilde{\nu}_0 - 1$ is 1-periodic and $\tilde{\nu}_0(mx) = m\tilde{\nu}_0(x)$ for all $x \in \mathbb{R}$, which in turn implies $\tilde{\nu}_0(n/m^k) = n/m^k$ for all $n, k \in \mathbb{Z}_{>0}$; by continuity, $\tilde{\nu}_0(x) = x$ for all x).

Acknowledgments. In [Le12], we answered, under an extra assumption, a question posed by Alexander Blokh to the author whether an accessible point of the filled Julia set K_f of a renormalization f of P by some curve outside of K_f is always accessible by an external ray of P (i.e., by a curve outside of the filled Julia set K_P). Theorem 2(a) strengthens this result of [Le12], under a weaker assumption (p2). Theorem 3 was added following a recent work [PZ19] which also served as an inspiration for writing up this paper. Finally, we would like to thank Feliks Przytycki for a helpful discussion and the referee for comments that helped to improve the exposition.

References

[Ahl] L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966.

[ABC16] A. Blokh, D. Childers, G. Levin, L. Oversteegen and D. Schleicher, An extended Fatou–Shishikura inequality and wandering branch continua for polynomials, Adv. Math. 228 (2016) 1121–1174.

[CG] L. Carleson and Th. W. Gamelin, Complex Dynamics, Springer, 1993.

[DH1] A. Douady and J. H. Hubbard, Exploring the Mandelbrot Set. The Orsay Notes, 1983–1984, preprint.

[DH2] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287–343.
A. Eremenko and G. Levin, *Periodic points of polynomials*, Ukrainian Math. J. 41 (1989), 1258–1262.

G. M. Goluzin, *Geometric Theory of Functions of a Complex Variable*, Transl. Math. Monogr. 26, Amer. Math. Soc., 1969.

H. Inou, *Renormalization and rigidity of polynomials of higher degree*, J. Math. Kyoto Univ. 42 (2002), 351–392.

G. Levin and M. L. Sodin, *Polynomials with disconnected Julia sets and Green maps*, preprint 23/1990-91, Landau Center for Research in Mathematical Analysis, Inst. Math., The Hebrew Univ. of Jerusalem, 1991; https://www.researchgate.net/publication/317411781

G. Levin, *Rays to renormalizations*, manuscript, 2012.

G. Levin and F. Przytycki, *External rays to periodic points*, Israel J. Math. 94 (1996), 29–57.

C. McMullen, *Complex Dynamics and Renormalization*, Ann. of Math. Stud. 135, Princeton Univ. Press, 1994.

J. Milnor, *Dynamics in One Complex Variable: Introductory Lectures*, Springer, 2000.

J. Milnor, *Local connectivity of Julia sets: expository lectures*, arXiv:math/9207220 (1992).

C. Petersen and S. Zakeri, *On the correspondence of external rays under renormalization*, arXiv:1903.00800 (2019).

C. Petersen and S. Zakeri, *Periodic points and smooth rays*, arXiv:2009.02788 (2020).

Ch. Pommerenke, *Boundary Behavior of Conformal Maps*, Springer, 1992.

F. Przytycki, *Riemann map and holomorphic dynamics*, Invent. Math. 85 (1986), 439–455.

Genadi Levin
Institute of Mathematics
The Hebrew University of Jerusalem
Givat Ram, Jerusalem, 91904, Israel
E-mail: genady.levin@mail.huji.ac.il