Generalized Wigner-Yanase Skew Information and the Affiliated Inequality

Ma-Cheng Yang1, Cong-Feng Qiao1,2*

1School of Physical Sciences, University of Chinese Academy of Sciences
YuQuan Road 19A, Beijing 100049, China
2Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences
YuQuan Road 19A, Beijing 100049, China

\begin{abstract}
A family of skew information quantities is obtained, in which the well-known Wigner-Yanase skew information and quantum Fisher information stand as special cases. A transparent proof of convexity of the generalized skew information is given, implying a simple proof of the Wigner-Yanase-Dyson conjecture. We find in this work an exact skew information inequality for qubit system, which may regard as the information counterpart of the uncertainty relation. A lower bound for generalized skew information of a pair of incompatible observables in arbitrary dimension and also the upper bound for qubit system are achieved.
\end{abstract}

\section{Introduction}
Uncertainty relation exhibits the intrinsic limit of simultaneous measurement of incompatible observables, which in fact captures the unpredictability of the quantum world. In other words, one is hindered to gain enough information by eliminating as much as possible uncertainties in the process of quantum measurement. Based on the measures of variance, entropy, etc., abundant uncertainty relations have been established, see e.g. Refs. [1–8], which unveil the

*correspondence: qiaocf@ucas.ac.cn
measurement limit from various different aspects. On the other hand, considering of the indeterminacy inhabited in microworld, it is interesting to know the quantum limit in information content. In order to quantify the information content of a quantum state ρ with respect to an observable X, Wigner and Yanase defined the measure of “skew information” \cite{9}. It writes
\[
I(\rho, X) = -\frac{1}{2} \text{Tr} \left[(\sqrt{\rho}, X)^2 \right].
\]
(1)

Here, $[A, B] = AB - BA$ denotes commutator.

Equipped with the definition on $I(\rho, X)$ in (1), it is tempting to formulate certain constraint similar to uncertainty relation to determine the accessibility of information in the measurement of incompatible observables. In Ref. \cite{10}, Luo constructed an uncertainty relation based on Wigner-Yanase skew information, the Theorem 2 therein. However, as pointed out in Refs. \cite{11–13}, that theorem may have a problem and a counterexample was indeed given \cite{11}. Later on, an even tighter inequality \cite{14} was obtained, and again it was also found beatable \cite{15}. Up to now, unfortunately, these problems still have no proper solutions yet. Besides, it is notable that in regard of the information content, an upper bound for skew information product of two incompatible observables is in some sense even meaningful, which tells us maximally how much information one may obtain.

In this work, we introduce a family of measures about the amount of information, which satisfies the definition given by Wigner and Yanase \cite{9}. Furthermore, the Wigner-Yanase skew information and quantum Fisher information belong to this family. It is worthy noting that the Wigner-Yanase skew information and quantum Fisher information have been widely employed to the research of quantum information, such as uncertainty relation \cite{16–22}, entanglement detection \cite{23–28}, quantum coherence \cite{29–31}, and so forth. It is highly expected that the generalized skew information may impact on the quantum information science. We prove the convexity of the generalized skew information by means of a plain technique, which implies
the correctness of Wigner-Yanase-Dyson conjecture. It should be noted that the conjecture had ever been proved by Lieb [32, 33] and Hansen later [12, 34], whereas subject to a sophisticated proof of the theorem therein. We obtain a lower bound for the generalized skew information of a pair of incompatible observables in arbitrary dimension, and in the meantime an upper bound for the qubit system.

2 The generalized Wigner-Yanase skew information

We use $M_d(C)$ to denote the vector space constructed by $d \times d$ complex matrices and define the following function on $M_d(C)$

$$\zeta_\rho(X, Y) := \text{Tr}[\rho X^\dagger Y] - \sum_{i,j} f(\lambda_i, \lambda_j) \langle \psi_i | X^\dagger | \psi_j \rangle \langle \psi_j | Y | \psi_i \rangle .$$

(2)

Here, $\rho = \sum_{i=1}^d \lambda_i | \psi_i \rangle \langle \psi_i |$, $\lambda_{r+1} = \cdots = \lambda_d = 0$ and $\text{rank}(\rho) = r$. $| \psi_{r+1} \rangle, \cdots, | \psi_d \rangle$ are orthogonal bases of the null space of ρ, which implies the completeness relation $\sum_{i=1}^d | \psi_i \rangle \langle \psi_i | = 1$. And the eigenvalues λ_is are arrayed in descending order, i.e., $\lambda_1 \geq \cdots \geq \lambda_r > 0$. Then, it is straightforward to check that $\zeta_\rho(X, Y)$ is a sesquilinear function on the $M_d(C)$.

In this work we will focus on a special representative case $f(\lambda_i, \lambda_j) = m_s(\lambda_i, \lambda_j)$ with $m_s(a_1, a_2)$ denoting the generalized mean of arbitrary positive real numbers a_1 and a_2 of equal weighting [35, 36]

$$m_s(a_1, a_2) = \left(\frac{a_1^s + a_2^s}{2} \right)^{1/s},$$

(3)

where $-\infty < s < 0$. For cases $s = 0$ and $-\infty$, $m_s(a_1, a_2)$ is defined by limiting processes [35]

$$m_0(a_1, a_2) := \lim_{s \to 0} m_s(a_1, a_2) = \sqrt{a_1 a_2},$$

(4)

$$m_{-\infty}(a_1, a_2) := \lim_{s \to -\infty} m_s(a_1, a_2) = \min\{a_1, a_2\}.$$

(5)
To ensure Eq. (3) being well-defined, we require \(m_s(a_1, 0) = m_s(0, a_2) = m_s(0, 0) = 0 \). Then we can define the following sesquilinear function on \(M_d(\mathbb{C}) \)

\[
\zeta^s_\rho(X, Y) := \text{Tr}[\rho X^\dagger Y] - \sum_{i,j} m_s(\lambda_i, \lambda_j) \langle \psi_i | X^\dagger | \psi_j \rangle \langle \psi_j | Y | \psi_i \rangle ,
\]

\[
= \sum_{i \neq j} [\lambda_i - m_s(\lambda_i, \lambda_j)] \langle \psi_i | X^\dagger | \psi_j \rangle \langle \psi_j | Y | \psi_i \rangle .
\]

(6)

Here, \(M_d(\mathbb{C}) \) represents the dimension-\(d^2 \) complex inner product space [37]. Due to the hermiticity, \(\zeta^s_\rho(X, X) = \zeta^s_\rho(X, X)^* \), there are three possible cases, i.e. \(\zeta^s_\rho(X, X) > 0 \), \(\zeta^s_\rho(X, X) < 0 \), or \(\zeta^s_\rho(X, X) = 0 \). Correspondingly, \(X \) is said to be positive, negative, or neutral vector. In quantum mechanics, \(X \) denotes an observable.

In the following, we will prove that \(\zeta^s_\rho(X, X) \) is always nonnegative, hence \(\zeta^s_\rho(X, X) \) can be treated as the generalized Wigner-Yanase skew information

\[
I^s(\rho, X) := \zeta^s_\rho(X, X) .
\]

(7)

Indeed, the Wigner-Yanase skew information is merely the special case of \(s = 0 \)

\[
I(\rho, X) = I^0(\rho, X)
\]

\[
= \text{Tr}[\rho X^\dagger X] - \sum_{i,j} m_0(\lambda_i, \lambda_j) |\langle \psi_i | X | \psi_j \rangle|^2
\]

\[
= \text{Tr}[\rho X^\dagger X] - \text{Tr}[\sqrt{\rho}X^\dagger \sqrt{\rho}X]
\]

\[
= -\frac{1}{2} \text{Tr}[|\sqrt{\rho}|^2 X^2] .
\]

(8)

Here, \(m_0(a_1, a_2) = \sqrt{a_1a_2} \) signifies the geometric mean. Notice that if \(m_s(\lambda_i, \lambda_j) \) is replaced by the generalized mean with weight \(w \in [0, 1] \), i.e. \(m_s(\lambda_i, \lambda_j) = (w \lambda_i^s + (1 - w) \lambda_j^s)^{1/s} \), we obtain the Wigner-Yanase-Dyson skew information \(I_w(\rho, X) = \text{Tr}[\rho X^\dagger X] - \text{Tr}[\rho^w X^\dagger \rho^{1-w} X] \)

due to the fact \(\lim_{s \to 0} m_s(\lambda_i, \lambda_j) = \lambda_i^w \lambda_j^{1-w} \). It is easy to see that the quantum Fisher inform-
mation (QFI) \[38, 39\] is the special case of
\[F(\rho, X) = I^{-1}(\rho, X) \] \[= \text{Tr}[\rho X^\dagger X] - \sum_{i,j} m_{-1}(\lambda_i, \lambda_j) |\langle \psi_i | X^\dagger | \psi_j \rangle|^2. \] \[11\] \[12\]

Here, \(m_{-1}(a_1, a_2) = \frac{2^{1/a_1+1/a_2}}{1/a_1+1/a_2}\) signifies harmonic mean. Given \(X\) an observable, \(X = X^\dagger\), QFI can be expressed in terms of a symmetric logarithmic derivative [39–41], that is
\[F(\rho, X) = \frac{1}{4} \text{Tr}[\rho L^2] \] with
\[L = 2i \sum_{k,l=1}^r \frac{\lambda_k - \lambda_l}{\lambda_k + \lambda_l} \langle \psi_k | X | \psi_l \rangle \langle \psi_k | \psi_l \rangle. \] It is noted that Hansen has proposed the metric adjusted skew information as a generalized Wigner-Yanase skew information via Morozova-Chentsov function [12]. Because the generalized mean \(m_s(a_1, a_2)\) is an operator mean, that is, \(m_s(1, a)\) is an operator monotone function and satisfying equation \(m_s(1, a) = am_s(1, a^{-1})\), if and only if \(-1 \leq s \leq 1\) [42], \(I^s(\rho, X)\) reduces to the metric adjusted skew information if \(-1 \leq s \leq 0\).

As a measure of information amount, \(I^s(\rho, X)\) should be nonnegative and “skew” implies \(I^s(\rho, X) = 0\) if \([\rho, X] = 0\), as argued by Wigner and Yanase [9]. In forthcoming contents, we have a detailed discussions and prove that the generalized skew information \(I^s(\rho, X)\) satisfies the same requirements with Wigner-Yanase skew information.

Theorem 1. \(I^s(\rho, X)\) is independent of the trace of \(X\) and satisfies \(I^s(U \rho U^\dagger, X) = I^s(U^\dagger X U)\) for some unitary matrix \(U\); If \(X\) is a conserved quantity of an isolated system, \(I^s(\rho, X)\) is independent of time; \(I^s(\rho, X) \geq 0\), where equal holds if and only if \(\rho\) and \(X\) are commutative, \([\rho, X] = 0\).

Proof. By definition, the generalized skew information can be expressed as
\[I^s(\rho, X) = \sum_{i \neq j} [\lambda_i - m_s(\lambda_i, \lambda_j)] |\langle \psi_i | X^\dagger | \psi_j \rangle|^2, \] \[13\]
which is not dependent on the diagonal entries of \(X\) in the eigenspace of \(\rho\). Considering that the trace of \(X\) is independent of basis, \(I^s(\rho, X)\) is independent of the trace of \(X\).
above equation, obviously \(I^s(\rho, X) \) satisfies \(I^s(U\rho U^\dagger, X) = I^s(\rho, U^\dagger X U) \) for some unitary matrix \(U \). If \(X \) is a conserved quantity of an isolated system, then we have \([U, X] = 0\) and \(I^s(U\rho U^\dagger, X) = I^s(\rho, X)\), where \(U \) is the time revolution operator. As a matter of fact, we can prove that \(I^s(\rho, X) \geq 0 \) is true even for normal matrix \(X \). If \(X \) is normal, i.e. \(XX^\dagger = X^\dagger X \), then \(\text{Tr}[\rho X^\dagger X] = \sum_{ij} \lambda_i |\langle \psi_i | X^\dagger \psi_j \rangle|^2 \), \(\text{Tr}[\rho XX^\dagger] = \sum_{ij} \lambda_j |\langle \psi_i | X^\dagger \psi_j \rangle|^2 \) and \(\text{Tr}[\rho X^\dagger X] = \text{Tr}[\rho XX^\dagger] = \sum_{ij} \frac{\lambda_i + \lambda_j}{2} |\langle \psi_i | X^\dagger \psi_j \rangle|^2 \). Thus

\[
I^s(\rho, X) = \sum_{i,j} \left| \frac{\lambda_i + \lambda_j}{2} - m_s(\lambda_i, \lambda_j) \right| |\langle \psi_i | X^\dagger \psi_j \rangle|^2 \geq 0 ,
\]
due to the monotonicity of the generalized mean i.e., \(m_r(a_1, a_2) \leq m_s(a_1, a_2) \) if \(r < s \) \[35\]. If \([\rho, X] = 0\), \(X \) is then diagonalizable in the eigenspace of \(\rho \). Therefore, \(I^s(\rho, X) = \sum_{i \neq j} |\lambda_i - m_s(\lambda_i, \lambda_j)| |\langle \psi_i | X^\dagger \psi_j \rangle|^2 = 0 \) and vice versa. \(\Box \)

Theorem 2. For arbitrary observable \(X \) and quantum state \(\rho \), \(I^s(\rho, X) \) is a monotonically decreasing function of \(s \) and less than or equal to variance, say

\[
I^0(\rho, X) \leq \cdots \leq I^{-\infty}(\rho, X) \leq V(\rho, X), \tag{14}
\]
and \(I^s(\rho, X) = V(\rho, X) \) when \(\rho \) is a pure state. Here, \(V(\rho, X) = \text{Tr}[\rho X^\dagger X] - |\text{Tr}[\rho X^\dagger]|^2 \) stands for variance.

Proof. Since the generalized mean \(m_s(a_1, a_2) \) monotonically increases with \(s \) \[35\], \(I^s(\rho, X) \) is a monotonically decreasing function. Hence, according to the definitions of \(I^s(\rho, X) \) and \(V(\rho, X) \), we only need to compare \(\sum_{i,j} m_s(\lambda_i, \lambda_j) |\langle \psi_i | X^\dagger \psi_j \rangle|^2 \) with \(|\text{Tr}[X^\dagger]|^2 \). It is obvious that \(g_\rho(X, Y) = \sum_{i,j} m_s(\lambda_i, \lambda_j) \langle \psi_i | X^\dagger | \psi_j \rangle \langle \psi_j | Y | \psi_i \rangle \) is a sesquilinear function on the \(M_d(\mathbb{C}) \) and \(g_\rho(X, X) = \sum_{i,j} m_s(\lambda_i, \lambda_j) |\langle \psi_i | X^\dagger | \psi_j \rangle|^2 \geq 0, \forall X, Y \in M_d(\mathbb{C}) \). Thus, \(g_\rho(X, Y) \) is a semidefinite inner product on the \(M_d(\mathbb{C}) \), which implies the Cauchy-Schwarz inequality, \(\forall X, Y \in M_d(\mathbb{C}), \)

\[
g_\rho(X, X) g_\rho(Y, Y) \geq |g_\rho(X, Y)|^2. \tag{15}
\]
Taking \(X \) to be a hermitian operator and \(Y = 1 \), we have

\[
g_\rho(X, X) \geq \left(\sum_i \lambda_i \langle \psi_i \vert X \vert \psi_i \rangle \right)^2 = \text{Tr}[\rho X]^2 ,
\]

where \(g_\rho(1, 1) = \sum_{i,j} m_s(\lambda_i, \lambda_j) \delta_{ij} = \sum_i \lambda_i = 1 \) is employed. Therefore the conclusion \(I^*(\rho, X) \leq V(\rho, X) \) is obtained. If \(\rho = \vert \psi \rangle \langle \psi \vert \), the pure state, then \(\sum_{i,j} m_s(\lambda_i, \lambda_j) \vert \langle \psi_i \vert X \vert \psi_j \rangle \vert^2 = (\langle \psi \vert X \vert \psi \rangle)^2 \), and hence \(I^*(\rho, X) = V(\rho, X) \). \(\square \)

Since the unification of ensembles will inevitably leads to certain information loss of individual ensembles, the information content of a grand ensemble is less than that of the average information content of component ensembles. Therefore, the generalized skew information should satisfy the following convexity.

Theorem 3. For arbitrary observable \(X \), \(I^*(\rho, X) \) is a convex function of density matrices, i.e.,

\[
I^*(\rho, X) \leq \sum_i p_i I^*(\rho_i, X) .
\]

Here, \(\rho = \sum_i p_i \rho_i \) with \(\sum_i p_i = 1 \) and \(0 < p_i < 1 \).

Proof. Because the set of density matrices is a convex hull of pure states, any density matrix can then be expressed as the convex combination of pure sates,

\[
\rho = \sum_i p_i \vert \phi_i \rangle \langle \phi_i \vert .
\]

Considering of this, without loss of generality, we are legitimate to perform the proof with the convex combination of pure states. Since \(\text{Tr}[\rho X^2] \) is linear in density matrix, it is enough only to compare \(\sum_{i,j} m_s(\lambda_i, \lambda_j) \vert \langle \psi_i \vert X \vert \psi_j \rangle \vert^2 \) with \(\sum_i p_i \vert \langle \phi_i \vert X \vert \phi_i \rangle \vert^2 \). The decomposition of Eq. (18) is not unique, there exist infinite number of similar decompositions. This can be grasped in light of the well-known theorem for the classification of quantum ensembles [33, 43], which states that ensembles \(\{p_i, \vert \phi_i \rangle \} \) and \(\{q_j, \vert \varphi_j \rangle \} \) generate the same density matrix if
and only if $\sqrt{p_i} |\phi_i\rangle = \sum_j U_{ij} \sqrt{q_j} |\varphi_j\rangle$ hold for some unitary matrix U. Thus, the ensemble \{\pi_i, |\phi_i\rangle\} is associated with eigen-ensemble \{\lambda_i, |\psi_i\rangle\} via unitary matrix U, i.e. $\sqrt{p_i} |\phi_i\rangle = \sum_j U_{ij} \sqrt{\lambda_j} |\psi_j\rangle$. Then

$$\sum_i p_i |\langle \phi_i | X | \phi_i \rangle|^2 = \sum_i \left| \sum_{j,j'} U^{*}_{ij} X'_{j,j'} U_{ji} \right|^2$$

$$= \sum_i |X''_{ii}|^2 \leq \text{Tr}[X'^2]$$

$$= \sum_{i,j} \lambda_i \lambda_j |\langle \psi_i | X | \psi_j \rangle|^2 . \quad (19)$$

Here, $X'_{j,j} = \sqrt{\lambda_j} \lambda_j' \langle \psi'_j | X | \psi_j \rangle$, $X'' = U^* X' U^T$ and $\text{Tr}[X'^2] = \text{Tr}[X''^2]$ since U is unitary.

Considering

$$\lambda_i \lambda_j \leq \min\{\lambda_i, \lambda_j\} , \text{ for } 0 \leq \lambda_i, \lambda_j \leq 1 , \quad (20)$$

then the assertion follows. \qed

We have proved the convexity of the generalized skew information by virtue of the theorem for classification of quantum ensembles. If $m_s(\lambda_i, \lambda_j)$ is replaced by the generalized mean with weight $w \in [0, 1]$, i.e., $m_s(\lambda_i, \lambda_j) = (w \lambda_i^s + (1 - w) \lambda_j^s)^{1/s}$, we can then obtain more skew information quantities, and the convexity can be proved in a similar way. This indicates that the renowned Wigner-Yanase-Dyson conjecture is confirmed.

Theorem 4. The information content of the union of two systems should be the sum of the information contents of the components, that is, the generalized skew information satisfies additivity

$$I^s(\rho_A \otimes \rho_B, X_A + X_B) = I^s(\rho_A, X_A) + I^s(\rho_B, X_B) , \quad (21)$$

where X_A and X_B are observables of two subsystems respectively.

Proof. We only need to calculate the two terms $\text{Tr}[\rho X^2]$ and $\sum_{i,j} m_s(\lambda_i, \lambda_j) |\langle \psi_i | X | \psi_j \rangle|^2$ respectively. After simplification, we have $\text{Tr}[\rho X^2] = \text{Tr}[(\rho_A \otimes \rho_B)(X_A + X_B)^2] = \text{Tr}[\rho_A X_A^2] + \text{Tr}[\rho_B X_B^2]$.

8
Next we calculate \(\sum_{i,j} m_s(\lambda_i, \lambda_j) \left| \langle \psi_i | X | \psi_j \rangle \right|^2 \). Assuming that \(\rho_A, \rho_B \) have the following spectrum decompositions

\[
\rho_A = \sum_i \lambda_i \vert \psi_i^A \rangle \langle \psi_i^A \vert , \quad \rho_B = \sum_i \lambda_i \vert \psi_i^B \rangle \langle \psi_i^B \vert .
\] (22)

And then \(\rho = \rho_A \otimes \rho_B \) has spectrum decomposition

\[
\rho = \sum_{i,j} \lambda_i^A \lambda_j^B \vert \psi_i^A \rangle \langle \psi_j^B \vert \langle \psi_j^B \vert \langle \psi_i^A \vert .
\] (23)

The second term becomes

\[
\sum_{ij} \sum_{kl} m_s(\lambda_i^A \lambda_j^B, \lambda_k^A \lambda_l^B) \left| \langle \psi_i^A | \langle \psi_j^B | X_A + X_B | \psi_k^A \rangle | \psi_l^B \rangle \right|^2 = \]

\[
\sum_{ij} \sum_{kl} m_s(\lambda_i^A \lambda_j^B, \lambda_k^A \lambda_l^B) \left| \langle \psi_i^A | X_A | \psi_k^A \rangle \delta_{ij} + \langle \psi_j^B | X_B | \psi_l^B \rangle \delta_{ik} \right|^2 ,
\] (24)

which simplifies into three terms

\[
\sum_{ij} \sum_k m_s(\lambda_i^A \lambda_j^B, \lambda_k^A \lambda_l^B) \left| \langle \psi_i^A | X_A | \psi_k^A \rangle \right|^2 ,
\] (25)

\[
\sum_{ij} \sum_l m_s(\lambda_i^A \lambda_j^B, \lambda_i^A \lambda_l^B) \left| \langle \psi_j^B | X_B | \psi_l^B \rangle \right|^2 ,
\] (26)

\[
2 \sum_{ij} m_s(\lambda_i^A \lambda_j^B, \lambda_i^A \lambda_j^B) \left| \langle \psi_i^A | X_A | \psi_i^A \rangle \langle \psi_i^A | X_B | \psi_j^B \rangle \right|^2 .
\] (27)

Considering that the properties of generalized mean \(m_s(a_1 b, a_2 b) = bm_s(a_1, a_2) \) and \(m_s(a, a) = a \), these terms become

\[
\sum_{ik} m_s(\lambda_i^A, \lambda_k^A) \left| \langle \psi_i^A | X_A | \psi_k^A \rangle \right|^2 ,
\] (28)

\[
\sum_{jl} m_s(\lambda_j^B, \lambda_l^B) \left| \langle \psi_j^B | X_B | \psi_l^B \rangle \right|^2 ,
\] (29)

\[
2 \text{Tr}[\rho_A X_A] \text{Tr}[\rho_B X_B] .
\] (30)

Via \(\text{Tr}[\rho X^2] - \sum_{i,j} m_s(\lambda_i, \lambda_j) \left| \langle \psi_i | X | \psi_j \rangle \right|^2 \), the assertion follows. \(\square \)
Above, we prove all the properties proposed by Wigner and Yanase besides the subadditivity

\[I^s(\rho, X_A + X_B) \geq I^s(\rho_A, X_A) + I^s(\rho_B, X_B), \]

(31)

where \(\rho_A = \text{Tr}_B[\rho], \rho_B = \text{Tr}_A[\rho] \) are reduced density matrices. Wigner and Yanase only proved that the subadditivity is true for pure state and conjectured that it is always true because the whole system contains the additional statistical correlation information. Unfortunately, the conjecture has been negatived by Hansen [44]. However, quantum state \(\rho \) always can be transformed into the normal form by local filtering or SLOCC (stochastic local operations assisted by classical communication) transformation [45]

\[\rho = \frac{1}{d^2} 1 \otimes 1 + \sum_{\mu\nu} \chi_{\mu\nu} \pi_\mu \otimes \pi_\nu, \]

(32)

where \(\pi_\mu \)'s are traceless orthogonal observables. Obviously, under the local filtering transformation all the quantum state will satisfy subadditivity because the reduced matrices are the maximal mixed state and skew information will be zero.

The generalized skew information \(I^s(\rho, X) \) reduces to the variance for pure state. The next result reveals that the generalized skew information only depends on the purity of quantum state in some sense for a qubit system.

Theorem 5. For a qubit system, if quantum states \(\rho \) and \(\rho' \) have same purity, i.e. \(\text{Tr}[\rho^2] = \text{Tr}[\rho'^2] \), then for nonzero observables \(X \) and \(X' \), in case \([\rho', X'] \neq 0 \) we have

\[I^s(\rho, X) = \eta I^s(\rho', X') , \]

(33)

where \(\eta = |\langle \psi_1 | X | \psi_2 \rangle|^2 / |\langle \psi_1 | X' | \psi_2 \rangle|^2 \).

To prove the claim, we first show the following lemma.

Lemma 1. For a qubit system, if \(\rho \) and \(\rho' \) have the same purity, they possess the same set of eigenvalues.
Proof. Assume the eigenvalues of ρ, ρ' satisfy $\lambda_1 \geq \lambda_2$ and $\lambda'_1 \geq \lambda'_2$ respectively. $\text{Tr}[\rho^2] = \text{Tr}[\rho'^2]$ implies $\lambda_1^2 + \lambda_2^2 = \lambda'_1^2 + \lambda'_2^2$. Considering $\lambda_1 + \lambda_2 = \lambda'_1 + \lambda'_2 = 1$, it is easy to find $\lambda_1 \lambda_2 = \lambda'_1 \lambda'_2$, and therefore $(\lambda_1 - \lambda'_1)(1 - \lambda_1 - \lambda'_1) = 0$, which tells $\lambda_1 = \lambda'_1$ on account of $\lambda_1 \geq \lambda_2$ and $\lambda'_1 \geq \lambda'_2$.

For a qubit system, we notice that

$$I^s(\rho, X) = (\lambda_1 - m_s(\lambda_1, \lambda_2)) |\langle \psi_1 | X | \psi_2 \rangle|^2 + (\lambda_2 - m_s(\lambda_2, \lambda_1)) |\langle \psi_2 | X | \psi_1 \rangle|^2 = (1 - 2m_s(\lambda_1, \lambda_2)) |\langle \psi_1 | X | \psi_2 \rangle|^2.$$ \hspace{1cm} (34)

According to Lemma 1, we can find $I^s(\rho, X) = \eta I^s(\rho', X')$ with $\eta = |\langle \psi_1 | X | \psi_2 \rangle|^2 / |\langle \psi'_1 | X' \psi'_2 \rangle|^2$. In Fig. 1, we plot $I^s(\rho, \sigma_x)$ versus different purity for qubit system, which visualizes the conclusions of Theorems 1 and 2. Note, here for qubit system it is enough to consider only the Pauli operator σ_x for exhibition according to Theorem 5.

3 The skew information inequality

Uncertainty relation sets a lower bound for measurement of a pair of observables X, Y, which mathematically writes

$$V(\rho, X)V(\rho, Y) \geq |\text{Cov}(\rho; X, Y)|^2,$$ \hspace{1cm} (35)

the Schrödinger form [3]. Here, $\text{Cov}(\rho; X, Y) = \text{Tr}[\rho X^\dagger Y] - \text{Tr}[\rho X^\dagger] \text{Tr}[\rho Y]$ signifies the covariance. The skew information also has a similar expression which reveals the quantum limit of information content.

Theorem 6. For arbitrary dimensional system, a skew information inequality exists, that is

$$I^s(\rho, X)I^s(\rho, Y) \geq \frac{1}{16} (I^s(\rho, X + Y) - I^s(\rho, X - Y))^2.$$ \hspace{1cm} (36)
Figure 1: The generalized skew information $I^s(\rho, X)$ with different purity. The horizontal lines exhibit $I^{-\infty}(\rho, X)$ for different purity, while the other curves show the changes of $I^s(\rho, X)$ versus s with definite purity. Here, $\rho = 1/2(1 + \vec{r} \cdot \vec{\sigma})$, $\text{Tr}[\rho^2] = 1/2(1 + |r|^2)$. Note, the solid red curve and solid red line are overlapped for pure states.
Proof. We first show that $\text{Re} \, \zeta^s_\rho(X, Y)$, defined in (6), is a bilinear function in the real vector space $\mathcal{H}_d = \{X|X = X^\dagger, X \in M_d(C)\}$. This is somewhat obvious, since one may notice that $\text{Re} \, \zeta^s_\rho(X, Y) = \frac{[\zeta^s_\rho(X, Y) + \zeta^s_\rho(Y, X)]}{2}$, and hence $\text{Re} \, \zeta^s_\rho(X, Y)$ is symmetric in X and Y.

Moreover, the bilinear function $\text{Re} \, \zeta^s_\rho(X, Y)$ is semi-definite since $\text{Re} \, \zeta^s_\rho(X, X) = \zeta^s_\rho(X, X) \geq 0, \forall X \in \mathcal{H}_d$. The above arguments imply the Cauchy-Schwarz inequality, $I^s(\rho, X)I^s(\rho, Y) \geq |\text{Re} \, \zeta^s_\rho(X, Y)|^2$, and that the polarization identity in bilinear form of $\text{Re} \, \zeta^s_\rho(X, Y)$ will certainly yield $\text{Re} \, \zeta^s_\rho(X, Y) = \frac{1}{4}(I^s(\rho, X + Y) - I^s(\rho, X - Y))$.

\begin{theorem}
For a qubit system, we have the following skew information inequalities:

$$|\text{Re} \, \zeta^s_\rho(X, Y)|^2 \leq I^s(\rho, X)I^s(\rho, Y) \leq |\zeta^s_\rho(X, Y)|^2.$$ \tag{37}

Here,

$$\text{Re} \, \zeta^s_\rho(X, Y) = \frac{1}{4}(I^s(\rho, X + Y) - I^s(\rho, X - Y)),$$ \tag{38}

$$\text{Im} \, \zeta^s_\rho(X, Y) = \frac{1}{2i} \text{Tr} [\rho [X, Y]].$$ \tag{39}

\end{theorem}

Proof. The first half part of the inequality has been proved in Theorem 6. For the latter, we proceed the proving under two situations.

Case 1: when ρ is a maximally mixed state, i.e. $\text{Tr}[\rho^2] = \frac{1}{2}$ or a pure state, i.e. $\text{Tr}[\rho^2] = 1$.

If ρ is the maximally mixed, the inequality is true on account of $I^s(\rho, X) = 0$. Otherwise, if ρ is a pure state and $\rho = \sum_{i=1}^{2} \lambda_i |\psi_i\rangle \langle \psi_i|, \lambda_1 = 1, \lambda_2 = 0, \langle \psi_i|\psi_j\rangle = \delta_{ij}$, we have

$$\zeta^s_\rho(X, Y) = \sum_{i \neq j} [\lambda_i - m_s(\lambda_i, \lambda_j)] \langle \psi_i|X^\dagger|\psi_j\rangle \langle \psi_j|Y|\psi_i\rangle$$

$$= \langle \psi_1|X^\dagger|\psi_2\rangle \langle \psi_2|Y|\psi_1\rangle.$$ \tag{40}
Here, we have employed the previous convention $m_s(1,0) = m_s(0,1) = 0$. Similarly, we have $I^s(\rho, X) = |\langle \psi_1 | X^\dagger | \psi_2 \rangle|^2$ and $I^s(\rho, Y) = |\langle \psi_1 | Y^\dagger | \psi_2 \rangle|^2$. Thus
\[
|\zeta^s_{\rho}(X, Y)|^2 = I^s(\rho, X)I^s(\rho, Y).
\]

Case 2: when ρ is a mixed state with $\frac{1}{2} < \text{Tr}[\rho^2] < 1$. We define the following matrix similar to covariance matrix for two observables X and Y:
\[
\mathcal{P}^s(\rho) := \begin{pmatrix}
\zeta^s_{\rho}(X, X) & \zeta^s_{\rho}(X, Y) \\
\zeta^s_{\rho}(Y, X) & \zeta^s_{\rho}(Y, Y)
\end{pmatrix}
\]
(42)
\[
\mathcal{P}^s(\rho)
\] is a Hermitian matrix due to the Hermiticity of $\zeta^s_{\rho}(X, Y)$. Now, the question is equivalent to prove that $\mathcal{P}^s(\rho)$ is an indefinite matrix, i.e. $\det \mathcal{P}^s(\rho) \leq 0$ for arbitrary observables X, Y and quantum state ρ. A matrix is indefinite if and only if $\langle \psi | A | \psi \rangle$ is real for all $|\psi\rangle \in \mathbb{C}^2$ and there are vectors $|\psi\rangle, |\phi\rangle \in \mathbb{C}^2$ such that $\langle \phi | A | \phi \rangle < 0 < \langle \psi | A | \psi \rangle$. Assuming $|\psi\rangle = (c_1, c_2)^T$ with $c_1, c_2 \in \mathbb{C}$, we then have
\[
\langle \psi | \mathcal{P}^s(\rho) | \psi \rangle = \zeta^s_{\rho}(X', X') = I^s(\rho, X')
\]
(43)
where $X' = c_1 X + c_2 Y$. Therefore, whether $\mathcal{P}^s(\rho)$ is indefinite or not hinges completely on the vectors within subspace $\text{span}\{X, Y\} = \{X' | X' = c_1 X + c_2 Y\}$. To be specific, $\mathcal{P}^s(\rho)$ is indefinite if and only if there are both positive vector X'_1 and negative vector X'_2 within the subspace $\text{span}\{X, Y\}$. Then we may construct positive and negative vectors when $-\infty < s \leq 0$. In light of Theorem 1, when X' is a Hermitian matrix, i.e. c_1 and c_2 are both real numbers, it is then a positive vector, $I^s(\rho, X') > 0$. That means for arbitrary observables X, Y, the positive vector within the subspace $\text{span}\{X, Y\}$ is obtained. For negative vector, $\forall A \in M_d(\mathbb{C})$, we have
\[
I^s(\rho, A) = (\lambda_1 - m_s(\lambda_1, \lambda_2))|\tilde{A}_{21}|^2 + (\lambda_2 - m_s(\lambda_2, \lambda_1))|\tilde{A}_{12}|^2.
\]
(44)
Here, \(\tilde{A}_{12} = \langle \psi_1 | A | \psi_2 \rangle \) and \(\tilde{A}_{21} = \langle \psi_2 | A | \psi_1 \rangle \) can be viewed as matrix elements of \(A \) with respect to basis \(\{ | \psi_1 \rangle, | \psi_2 \rangle \} \), which means \(A \) and \(\tilde{A} \) are associated via unitary transformation, \(\tilde{A} = U^\dagger A U \) with \(U U^\dagger = 1 \).

For qubit system, arbitrary two observables \(X, Y \) can be expressed as

\[
X = \begin{pmatrix} \times & \alpha \\ \alpha^* & \times \end{pmatrix}, \quad Y = \begin{pmatrix} \times & \beta \\ \beta^* & \times \end{pmatrix}.
\]

(45)

Here, the diagonal elements can be any real numbers; \(\alpha, \beta \) are arbitrary nonzero complex numbers. Since unitary transformation does not change the Hermiticity, that means after the unitary transformation, \(X \) and \(Y \) may take similar forms

\[
\tilde{X} = \begin{pmatrix} \times & \alpha' \\ \alpha'^* & \times \end{pmatrix}, \quad \tilde{Y} = \begin{pmatrix} \times & \beta' \\ \beta'^* & \times \end{pmatrix}.
\]

(46)

And hence

\[
\tilde{X}' = U^\dagger X' U = \begin{pmatrix} \times & c_1 \alpha' + c_2 \beta' \\ c_1 \alpha'^* + c_2 \beta'^* & \times \end{pmatrix},
\]

(47)

where \(X' = c_1 X + c_2 Y \). Considering Eq. (44), if \(c_1 \) and \(c_2 \) satisfy \(c_1 \alpha' + c_2 \beta' \neq 0 \) and \(c_1 \alpha'^* + c_2 \beta'^* = 0 \), then \(I^s(\rho, X') < 0 \). Thus the negative vector \(X' = c_1 X + c_2 Y \) is constructed, where \(c_1 \neq 0, c_2 = -\frac{\alpha'^*}{\beta'} c_1 \) and \(\alpha' \neq \kappa \beta' \) with \(\kappa \) being a real number. Note, in case \(\alpha' = 0 \) or \(\beta' = 0 \), we readily have \(I^s(\rho, X) = 0 \) or \(I^s(\rho, Y) = 0 \). On the other hand, if \(\alpha' = \kappa \beta' \) and \(X \) is linearly dependent on \(Y \), i.e., \(X = \kappa Y \), then \(\det P^s(\rho) = 0 \). Of the case \(s = -\infty \), because \(I^{-\infty}(\rho, X) = (\lambda_1 - \lambda_2) |\langle \psi_1 | X | \psi_2 \rangle|^2 \) and \(\zeta_p^{-\infty}(X, Y) = (\lambda_2 - \lambda_1) \langle \psi_1 | X | \psi_2 \rangle \langle \psi_1 | Y | \psi_2 \rangle \), we have \(I^{-\infty}(\rho, X) I^{-\infty}(\rho, Y) = |\zeta_p^{-\infty}(X, Y)|^2 \). Hereto, we have proved the theorem in all possible situations, and notice that the polarization identity for the sesquilinear form of \(\zeta_p^s(X, Y) \) gives

\[
\zeta_p^s(X, Y) = \frac{1}{4} [(I^s(\rho, X + Y) - I^s(\rho, X - Y)) + i(I^s(\rho, X - iY) - I^s(\rho, X + iY))],
\]

(48)
Figure 2: The skew information inequality for Pauli operators σ_x and σ_y in quantum state $\rho = 1/2(1 + \vec{r} \cdot \vec{\sigma})$ with $\vec{r} = r(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)^T$, $\theta = \phi = \pi/6$, $r \in [0, 1]$. The dashdotted blue and dashed orange curves correspond to quantum Fisher information and Wigner-Yanase skew information respectively.

which implies

\[
\text{Re} \, \zeta^s_{\rho}(X, Y) = \frac{1}{4}(I^s(\rho, X + Y) - I^s(\rho, X - Y)),
\]

(49)

\[
\text{Im} \, \zeta^s_{\rho}(X, Y) = \frac{1}{2i} \text{Tr}[\rho[X, Y]].
\]

(50)

\[\square\]

Corollary 1. For a qubit system, the skew information inequality

\[
\mathcal{I}^s_{\rho}(X, Y) \leq \frac{1}{4} |\text{Tr}[\rho[X, Y]]|^2
\]

(51)

exists, where $\mathcal{I}^s_{\rho}(X, Y) := I^s(\rho, X)I^s(\rho, Y) - \frac{1}{16} [I^s(\rho, X + Y) - I^s(\rho, X - Y)]^2$ and $\mathcal{I}^s_{\rho}(X, Y) \geq 0$.
For comparison, we notice that the Schrödinger uncertainty relation Eq. (35) can be reformulated as

\[\mathcal{V}_\rho(X, Y) \geq \frac{1}{4} |\text{Tr}[\rho[X, Y]]|^2, \tag{52} \]

with \(\mathcal{V}_\rho(X, Y) := V(\rho, X)V(\rho, Y) - \frac{1}{16} [V(\rho, X + Y) - V(\rho, X - Y)]^2 \). Eq. (52) is an improvement to the Robertson uncertainty relation [2]

\[V(\rho, X)V(\rho, Y) \geq \frac{1}{4} |\text{Tr}[\rho[X, Y]]|^2. \tag{53} \]

Eq. (52) sets a lower bound for the measurement uncertainty of incompatible observables. As a counterpart, our inequality Eq. (51) provides an upper bound for accessible information about incompatible observables. To illustrate, we plot the constraint contour for the case of Pauli operators \(\sigma_x \) and \(\sigma_y \) in Fig. 2.

Now we exhibit certain physical meanings of the above results. The real part of \(\zeta^s_\rho(X, Y) \) can be reformulated with the anticommutator of \(X, Y \), and we then get the following inequality:

\[
\frac{1}{4} \left| \langle\{X, Y\}\rangle - 2 \text{Re} \eta^s_\rho(X, Y) \right|^2 \leq I^s(\rho, X)I^s(\rho, Y) \\
\leq \frac{1}{4} \left| \langle\{X, Y\}\rangle \right|^2 + \frac{1}{4} \left| \langle\{X, Y\}\rangle \right|^2 - 2 \text{Re} \eta^s_\rho(X, Y) \left| \right|^2. \tag{54}
\]

Here, \(\eta^s_\rho(X, Y) := \sum_{i,j} m_s(\lambda_i, \lambda_j) \langle \psi_i | X | \psi_j \rangle \langle \psi_j | Y | \psi_i \rangle \). It has been demonstrated that the skew information can be viewed as a measure of quantum coherence [29] and satisfies the bona fide criteria for coherence monotones [46]. Therefore, the generalized skew information provide the more alternative choices for coherence measure. The coherence of a quantum state depends on the choice of the reference basis. An interesting question is to consider the trade-off relation for quantum coherence measures in different reference bases [47–49]. \(I^s(\rho, X) \) and \(I^s(\rho, Y) \) quantifies the coherence in the eigen-basis of observables \(X \) and \(Y \), respectively. Therefore, Eq. (54) also represents a coherence uncertainty relation.
4 Discussion

The generalized skew information is found can play an important role in quantum information science. In this paper, we revisit the skew information introduced by Wigner and Yanase and define a generalized skew information quantity $I^s(\rho, X)$ which contains Wigner-Yanase skew information and QFI as special cases. We give a transparent convexity proof about $I^s(\rho, X)$, which in the meantime provides a simple proof of Wigner-Yanase-Dyson conjecture. We consider the quantum limit from the information point of view, which yields the skew information inequality and stands as a supplements to the known uncertainty relation. In practice, for accessible information content, the upper limit usually might be more meaningful than the lower one. Nevertheless, it should be noted that the result Eq. (51) is only applicable to the qubit system, the highlight in quantum information, its high dimensional extension still requires extra strength to fulfill.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China(NSFC) under the Grants 11975236 and by the University of Chinese Academy of Sciences.

References

[1] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschr. Phys. 33, 879–893 (1927).

[2] H. P. Robertson, The Uncertainty Principle, Phys. Rev. 34, 163 (1929).

[3] annotated by A. Angelow and M. C. Batoni, About Heisenberg Uncertainty Relation (by E. Schrödinger) (2008).
[4] H. Maassen and J. B. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103 (1988).

[5] S. Friedland, V. Gheorghiu, and G. Gour, Universal uncertainty relations, Phys. Rev. Lett. 111, 230401 (2013).

[6] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, Entropic uncertainty relations and their applications, Rev. Mod. Phys. 89, 015002 (2017).

[7] J.-L. Li and C.-F. Qiao, The Optimal Uncertainty Relation, Ann Phys 531, 1900143 (2019).

[8] J.-L. Li and C.-F. Qiao, The Generalized Uncertainty Principle, Ann Phys 2000335 (2020).

[9] E. P. Wigner and M. M. Yanase, Information Contents of Distributions, Proc Natl Acad Sci U S A 49, 910 (1963).

[10] S. L. Luo, Wigner-Yanase skew information and uncertainty relations, Phys. Rev. Lett. 91, 180403 (2003).

[11] Ángel Rivas and A. Luis, Intrinsic metrological resolution as a distance measure and non-classical light, Phys. Rev. A 77, 063813 (2008).

[12] F. Hansen, Metric adjusted skew information, Proc. Natl. Acad. Sci. U.S.A. 105, 9909–9916 (2008).

[13] D. Li, X. Li, F. Wang, H. Huang, X. Li, and L. C. Kwek, Uncertainty relation of mixed states by means of Wigner-Yanase-Dyson information, Phys. Rev. A 79, 052106 (2009).

[14] S. L. Luo and Q. Zhang, On skew information, IEEE Trans. Inf Theory 50, 1778–1782 (2004).
[15] K. Yanagi, S. Furuichi, and K. Kuriyama, A Generalized Skew Information and Uncertainty Relation, IEEE Trans. Inf Theory 51, 4401–4404 (2005).

[16] J. S. Dehesa, R. González-Férez, and P. Sánchez-Moreno, The Fisher-information-based uncertainty relation, Cramer–Rao inequality and kinetic energy for the D-dimensional central problem, J. Phys. A: Math. Theor. 40, 1845–1856 (2007).

[17] P. Gibilisco, D. Imparato, and T. Isola, A Volume Inequality for Quantum Fisher Information and the Uncertainty Principle, J. Stat. Phys. 130, 545–559 (2007).

[18] A. Andai, Uncertainty principle with quantum Fisher information, J. Math. Phys. 49, 012106 (2008).

[19] P. Gibilisco, D. Imparato, and T. Isola, A Robertson-type uncertainty principle and quantum Fisher information, Linear Algebra Appl 428, 1706–1724 (2008).

[20] I. V. Toranzo, S. López-Rosa, R. O. Esquivel, and J. S. Dehesa, Heisenberg-like and Fisher-information-based uncertainty relations for N-electron-dimensional systems, Phys. Rev. A 91, 062122 (2015).

[21] L.-M. Zhang, T. Gao, and F.-L. Yan, Tighter uncertainty relations based on Wigner-Yanase skew information for observables and channels, Phys. Lett. A 387, 127029 (2021).

[22] R. Ren, P. Li, M. Ye, and Y. Li, Tighter sum uncertainty relations based on metric-adjusted skew information, Phys. Rev. A 104, 052414 (2021).

[23] Z. Q. Chen, Wigner-Yanase skew information as tests for quantum entanglement, Phys. Rev. A 71, 052302 (2005).

[24] N. Li and S. L. Luo, Entanglement detection via quantum Fisher information, Phys. Rev. A 88, 014301 (2013).
[25] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezze, and A. Smerzi, Fisher information and multiparticle entanglement, Phys. Rev. A 85, 022321 (2012).

[26] Y. Akbari-Kourbolagh and M. Azhdargalam, Entanglement criterion for multipartite systems based on quantum Fisher information, Phys. Rev. A 99, 012304 (2019).

[27] Y. Hong, S. L. Luo, and H. T. Song, Detecting k-nonseparability via quantum Fisher information, Phys. Rev. A 91, 042313 (2015).

[28] Z. Ren, W. Li, A. Smerzi, and M. Gessner, Metrological Detection of Multipartite Entanglement from Young Diagrams, Phys. Rev. Lett. 126, 080502 (2021).

[29] D. Girolami, Observable measure of quantum coherence in finite dimensional systems, Phys. Rev. Lett. 113, 170401 (2014).

[30] G. Karpat, B. Çakmak, and F. F. Fanchini, Quantum coherence and uncertainty in the anisotropic XY chain, Phys. Rev. B 90, 104431 (2014).

[31] S. Luo and Y. Sun, Quantum coherence versus quantum uncertainty, Phys. Rev. A 96, 022130 (2017).

[32] E. H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv Math (N Y) 11, 267–288 (1973).

[33] M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2010).

[34] F. Hansen, Extensions of Lieb’s Concavity Theorem, J. Stat. Phys. 124, 87–101 (2006).
[35] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cambridge University Press, 1952).

[36] P. S. Bullen, Handbook of means and their inequalities, volume 560 (Springer Science & Business Media, 2003).

[37] J. Bognár, Indefinite Inner Product Spaces (Springer, Berlin, Heidelberg, 1974).

[38] C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1, 231–252 (1969).

[39] G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, J. Phys. A: Math. Theor. 47, 424006 (2014).

[40] S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994).

[41] A. S. Holevo, Probabilistic and statistical aspects of quantum theory, volume 1 (Springer Science & Business Media, 2011).

[42] Y. Nakamura, Classes of Operator Monotone Functions and Stieltjes Functions, 887–896 (Birkhäuser Basel, Basel, 1989).

[43] L. P. Hughston, R. Jozsa, and W. K. Wootters, A Complete Classification of Quantum Ensembles Having a Given Density-Matrix, Phys. Lett. A 183, 14–18 (1993).

[44] F. Hansen, The Wigner-Yanase Entropy is not Subadditive, J. Stat. Phys. 126, 643–648 (2007).

[45] F. Verstraete, J. Dehaene, and B. D. Moor, Normal forms and entanglement measures for multipartite quantum states, Phys. Rev. A 68, 012103 (2003).
[46] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).

[47] S. Cheng and M. J. W. Hall, Complementarity relations for quantum coherence, Phys. Rev. A 92, 042101 (2015).

[48] U. Singh, A. Pati, and M. Bera, Uncertainty Relations for Quantum Coherence, Mathematics 4, 47 (2016).

[49] Z. Fan, Y. Peng, Y. R. Zhang, S. Liu, L. Z. Mu, and H. Fan, Complementary relation of quantum coherence and quantum correlations in multiple measurements, Sci Rep 9, 268 (2019).