Epidemiological survey of serum titers from adults against various Gram-negative bacterial V-antigens

Mao Kinoshita¹, Masaru Shimizu¹, Koichi Akiyama¹, Hideya Kato¹, Kiyoshi Moriyama², Teiji Sawa¹*¹

1 Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan, 2 Department of Anesthesiology, School of Medicine, Kyorin University, Tokyo, Japan

* anesth@koto.kpu-m.ac.jp

Abstract

The V-antigen, a virulence-associated protein, was first identified in Yersinia pestis more than half a century ago. Since then, other V-antigen homologs and orthologs have been discovered and are now considered as critical molecules for the toxic effects mediated by the type III secretion system during infections caused by various pathogenic Gram-negative bacteria. After purifying recombinant V-antigen proteins, including PcrV from Pseudomonas aeruginosa, LcrV from Yersinia, LssV from Photorhabdus luminescens, AcrV from Aeromonas salmonicida, and VcrV from Vibrio parahaemolyticus, we developed an enzyme-linked immunoabsorbent assay to measure titers against each V-antigen in sera collected from 186 adult volunteers. Different titer-specific correlation levels were determined for the five V-antigens. The anti-LcrV and anti-AcrV titers shared the highest correlation with each other with a correlation coefficient of 0.84. The next highest correlation coefficient was between anti-AcrV and anti-VcrV titers at 0.79, while the lowest correlation was found between anti-LcrV and anti-VcrV titers, which were still higher than 0.7. Sera from mice immunized with one of the five recombinant V-antigens displayed cross-antigenicity with some of the other four V-antigens, supporting the results from the human sera. Thus, the serum anti-V-antigen titer measurement system may be used for epidemiological investigations of various pathogenic Gram-negative bacteria.

Introduction

The type III secretion system (TTSS) plays a major role in the virulence of many Gram-negative bacteria [1–3]. Through the TTSS, Gram-negative bacteria inject their effector molecules to target eukaryotic cells and induce a favorable environment for their infections. Translocation is a mechanism through which effector molecules of the TTSS pass through the targeted eukaryotic cell membrane. During translocation, three bacterial proteins form a translocation pore structure called the ‘translocon’ [1–3]. A cap protein in the secretion apparatus of the type III secretion needle is one type of translocon protein, which is called the V-antigen in Yersinia spp. for historical reasons [4–8]. Briefly, the V-antigen, a virulence-associated protein,
was identified as an antigenic component recognized by the immune system in *Yersinia pestis* plague-infected hosts more than half a century ago [4–8]. In the 1980s, the V-antigen of *Y. pestis* was identified as a low calcium response (*lcr*)-associated protein (named LcrV) encoded in the plasmid associated with its virulence [9]. A homologous gene called PcrV was identified in the *Pseudomonas aeruginosa* genome [10]. It has been reported that the virulence-associated with the TTSS can be inhibited by a specific antibody against LcrV in *Yersinia* and PcrV in *P. aeruginosa* [11, 12]. Because vaccinating mice with LcrV or PcrV has protective effects against lethal infections by *Yersinia* or *P. aeruginosa*, respectively, anti-PcrV immunotherapies were developed to target human infections with *P. aeruginosa* using immunoglobulins [13–24] and vaccines [25–27], from which several projects have progressed to human clinical trials [28–31].

We recently published an epidemiological study on serum titers against PcrV in human volunteers [32], and another showing how prophylactic administration of human serum-derived immunoglobulin with a high anti-PcrV titer significantly improves the survival rate, pulmonary edema, and inflammatory cytokine production of a *P. aeruginosa* pneumonia model [18]. The results of both studies imply that immunity against the V-antigen and its homologs might be necessary to prevent infections caused by pathogenic bacterial species employing the TTSS-virulence mechanism [18, 32]. V-antigen homologs have been recently reported in several Gram-negative bacteria, including *Aeromonas* spp., *Vibrio* spp., and *Photobacterium luminescens* (hereafter referred to as *Ph. luminescens*) [33]. Although specific immunity against the V-antigen or its homologs appears to be important for host immunity against such bacterial infections, insufficient information is available on human immunity against V-antigens. Therefore, here, we conducted an epidemiological study on serum titers against the V-antigen and its homologs in *Y. pestis*, *Aeromonas salmonicida*, *Vibrio paraheamolyticus*, and *Ph. luminescens*. Potential associations in terms of age, titer levels, and cross-reactivity were evaluated among the recombinant V-antigen homologs. Moreover, for some species, the titer levels against these antigens were highly correlated, and some V-antigen homologs showed cross-reactivity.

Materials and methods

Construction of five recombinant Gram-negative bacterial V-antigens (PcrV, LcrV, AcrV, VcrV, and LssV) and *P. aeruginosa* porin F from the outer membrane (OprF)

Five recombinant V-antigens and recombinant *P. aeruginosa* OprF were constructed. Details on the PCR primers and cloning sites are listed in Table 1. The coding regions of the V-antigens were amplified by polymerase chain reaction (PCR) with specific primers containing restriction enzyme sites for insertion into a protein expression vector. PCR-amplified genes were cloned into the pCR2.1 cloning vector and *E. coli* TOP10F cells via TOPO cloning (Thermo Fisher Scientific, Waltham, MA, USA). After digesting the purified plasmids containing each individual cloned gene with restriction enzymes, the inserted coding regions of each gene were transferred to the multiple cloning site of the expression vector pQE30 (Qiagen, Hilden, Germany) for expression of a hexahistidine-tagged protein in *E. coli* M15. The various endotoxin-free Gram-negative bacteria V-antigens were prepared as reported previously (Fig 1) [17, 20].

Survey participants and study background

This study was approved by the Ethics Committee of Kyoto Prefectural University of Medicine (Approval number: RBMR-E-326-1; Kyoto, Japan). As a non-interventional and non-invasive retrospective observational study, the need for consent was waived by the ethics committee.
Table 1. Gene sources, primer sets for V-antigen and OprF gene cloning, and characteristics of the recombinant V-antigens and OprF used in this study.

Gene	Gene source	Restriction enzyme site for expression vector	Cloning PCR primers*	Coding region size (bp)	Protein Amino-acids	MW (kDa)	Ref	
pcrV	Pseudomonas aeruginosa PA103	BamHI HindIII	5'-CGGGATCCATGGAAGTCAGAAACTTTAA-3' 5'-AAGCTTCTAGATGGCGCTGGAATGT-3'	927	PcrV	306	33.8	[34–36]
lcrV	Yersinia pestis pCD1 plasmid	BamHI HindIII	5'-CGGGATCCATGATTAGAGCCTACGAACAAACCCACAA-3' 5'-AAGCTTCTAGATGGCGCTGGAATGT-3'	1,023	LcrV	338	38.6	[9]
acrV	Plasmid JF2267 of Aeromonas salmonicida subsp. Salmonicida	SpI SaI	5'-GCATGCATGAGCACAATCCCTGACCTAC-3' 5'-GTCGACTCAAATTGCGCCAAGAATGTCG-3'	1,134	AcrV	375	41.6	14
vcrV	Vibrio parahaemolyticus, ATCC 17802D-5	BamHI PstI	5'-CGGGATCCATGACGGATATGACAACAAC-3' 5'-CTGCAGTTAAATGGCTCGTAGGATTTCTTG-3'	1,866	VcrV	619	68.3	-
lssV	Photorhabdus luminescens subsp. luminescens, ATCC 29999	BamHI HindIII	5'-GGATCCATGGAAATAGGCCATATCAAA-3' 5'-AAGCTTCTAGATGGCGCTGGAATGT-3'	1,053	LssV	362	39.0	-
oprF	Pseudomonas aeruginosa PAO1	BamHI HindIII	5'-CGGGATCCATGGAAGTCAGAAACTTTAA-3' 5'-AAGCTTCTAGATGGCGCTGGAATGT-3'	1,020	OprF	506	54.7	-

*Underlines indicate restriction enzyme sites.

https://doi.org/10.1371/journal.pone.0220924.t001

Fig 1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) separation of extracted recombinant hexahistidine-tagged V-antigen proteins. Recombinant PcrV from P. aeruginosa, LcrV from Y. pestis, AcrV from Aeromonas salmonicida, VcrV from V. parahaemolyticus, and LssV from Ph. luminescens were separated by SDS-PAGE using a 10% Bis-Tris gel.

https://doi.org/10.1371/journal.pone.0220924.g001
Adult patients (n = 186) who underwent anesthesia in the Central Operating Division of Kyoto Prefectural University of Medicine, from April 2012 to March 2013, participated in this study as volunteers, as reported previously [32]. Briefly, serum was prepared from the remaining small amount of each blood sample collected for arterial blood gas analysis for induction of anesthesia and then stored at −80˚C.

Anti-V antigen titer measurements

We developed an enzyme-linked immunoabsorbent assay (ELISA) to measure serum anti-V antigen titers. Microwell plates (Nunc C96 Maxisorp; Thermo Fisher Scientific) were coated for 2 h at 4˚C with recombinant V-antigen proteins (recombinant PcrV from *P. aeruginosa*, LcrV from *Yersinia*, AcrV from *Aeromonas*, VcrV from *Vibrio*, and LssV from *Ph. luminescens*) suspended in coating buffer (1 μg/mL in coating solution; 0.05 M NaHCO₃, pH 9.6) [32] (Fig 1). The plates were washed twice with phosphate-buffered saline (PBS) containing 0.05% Tween-20 (P9416; Sigma-Aldrich, St. Louis, MO, USA) and then blocked with 200 μL of 1% bovine serum albumin/PBS overnight at 4˚C. Samples (serial dilution: 1280×) were applied to the plates (100 μL/well) and then incubated overnight at 4˚C. Peroxidase-labeled anti-human IgG (A8667, Sigma-Aldrich) was applied at 1:60,000 for 1 h at 37˚C. After six washes, the plates were incubated with 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (A3219; Sigma-Aldrich) at room temperature for 30 min. After adding 0.5 M H₂SO₄ at 100 μL/well to the plates, the optical density (OD) at 450 nm was measured with a microplate reader (MTP-880Lab; Corona Electric, Hitachinaka, Japan). To ensure no cross-reactivity with *Escherichia coli* proteins, we performed an inhibition ELISA with a soluble fraction of *E. coli* M15 lysate, and no significant effect on titer measurement was observed. Except for human monoclonal anti-PcrV IgG mAb 6F5 as a standard to measure the anti-PcrV titer [32], there is no human anti-V-antigen IgG. Therefore, after optimization of the ELISA system for anti-PcrV titers using the mAb 6F5 standard [32], the OD measured under a consistent condition with the same secondary antibody was used to evaluate the titers.

Inhibition ELISA

Cross-reactivity was analyzed by an inhibition ELISA. Two human sera with relatively high anti-PcrV, LcrV, AcrV, VcrV, and LssV titers were diluted at 1:1000 and preincubated with either recombinant LssV or recombinant OprF (100 μg/mL) overnight at 4˚C. The anti-V-antigen titers were measured in triplicate by an ELISA using recombinant V-antigen-coated plates.

Immunizing mice with the V-antigens

Certified pathogen-free, male ICR mice (4 weeks old) were purchased from Shimizu Laboratory Supplies, Co, Ltd (Kyoto, Japan). Mice were housed in cages with filter tops under pathogen-free conditions. The protocols for all animal experiments were approved by the Animal Research Committee of Kyoto Prefectural University of Medicine before undertaking the experiments (Authorization number: M29-592). Three mice per group were intradermally immunized with one of the five recombinant V-antigen proteins (10 μg/dose) adjuvanted with complete Freund’s adjuvant in the first injection, and four weeks later with incomplete Freund’s adjuvant for the second injection. Eight weeks after the first injection, the immunized mice were euthanized with a large dose intraperitoneal injection of sodium pentobarbital, and peripheral blood samples were collected. Serum titers against the five V-antigens were individually measured by ELISAs, as described above.
Phylogenetic and cluster analyses

The five V-antigens were phylogenetically analyzed using ClustalW (Genome Net, https://www.genome.jp/tools-bin/clustalw) or RStudio (version 1.2, RStudio, Boston, MA, USA. https://www.rstudio.com) with R version 3.6.1 (The R Foundation, https://www.r-project.org). Unrooted trees were prepared using the neighbor-joining method, and rooted trees were prepared using the unweighted pair group method with arithmetic means applied to the ClustalW site and the standard R function plot.hclust. Heat maps where the individual values contained in a matrix are represented as colors with dendrograms prepared using the function phylo of the package “ape” for phylogenies (http://ape-package.ird.fr.) and the function heatmap.2 of the package gplots. The predicted three-dimensional structures were generated with the Cn3D macromolecular structure viewer at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml).

Statistical analysis

We performed a regression analysis of the measured antibody titers using the regression data analysis tool of Microsoft Excel for Mac (ver. 16.16.5, Microsoft Co., Redmond, WA, USA). Statistical analyses were conducted using InStat version 4.0 (GraphPad Software Inc., La Jolla, CA, USA). P-values were calculated using the Mann-Whitney U-test. A p-value of less than 0.05 was considered statistically significant.

Results

Anti-V antigen titers and volunteer age distribution

The 186 volunteers included 111 (59.7%) males and 75 (40.3%) females and an age distribution of 20–29 years (13, 7.0%), 30–39 years (20, 10.8%), 40–49 years (26, 14.0%), 50–59 years (23, 12.4%), 60–69 years (40, 21.5%), 70–79 years (42, 22.5%), and ≥80 years (22, 11.8%). No study participant had an active infection. The titers against the V-antigen across the age distribution of the 186 participants are shown in Fig 2. There was no statistically significant correlation in the linear regression between age and each anti-V antigen titer, although high anti-PcrV titers were more common at over 50 years of age in the population, as reported previously [32]. As an overall trend, two separate titer peaks in the 40–49 and 70–79 age groups were observed in the age distribution of all anti-V-antigen titers.

Correlations among the anti-V antigen titers

We next analyzed whether any correlations existed among the five anti-V antigen titers. The anti-LcrV and the anti-AcrV titers showed the highest correlation with a correlation coefficient of 0.84, followed by the anti-AcrV and anti-VcrV titers at 0.79, and the anti-LcrV titers and anti-VcrV titers at 0.74 (Fig 3) Low correlations were detected between anti-PcrV and any of the other anti-V-antigens.

Next, the inhibition ELISA was performed to show cross-antigenicity among V-antigens. As an irrelevant non-crossreactive protein, we prepared P. aeruginosa recombinant OprF using the same E.coli-derived recombinant protein construction system. The sequence alignment scores obtained from ClustalW between OprF and V-antigens were 9.8–11.4, whereas those among V-antigens were from 21.3 (between VcrV and AcrV) to 48.3 (between LcrV and LssV). Two human sera diluted 1000× were preincubated with either recombinant LssV or recombinant OprF overnight. Then, preprocessed serum titers against each V-antigen were measured in comparison with the titer levels of the original sera (Fig 5). As a result, preincubation with OprF did not affect the specific titer levels. However, preincubation with LssV
decreased the titer levels compared with the titer levels of the original sera (\(p < 0.05 \) for AcrV, VcrV, and LssV).

Cluster analysis of the correlation coefficient values was conducted, and phylogenetic trees and a heat map were constructed (Fig 4A). The unrooted and rooted phylogenetic trees and heat map showed that anti-PcrV had a unique profile among the five anti-V-antigen titers. The anti-LssV titer was located between anti-PcrV and the three other anti-V-antigen titers. Higher homology in terms of antigenicity was observed among anti-AcrV, anti-LcrV, and anti-VcrV titers.

Cross-reactive antibodies against V-antigens and anti-V antigen titers in serum from immunized mice

To evaluate potential cross-antigenicity among the five V-antigens, the serum titers from a mouse immunized with one of the five recombinant V-antigen proteins were measured by ELISAs. Cluster analysis of the OD values from the ELISA was performed, from which phylogenetic trees and a heat map were constructed (Fig 4B). LssV and AcrV showed higher cross-
antigenicity with each other, unlike VcrV that was less cross-reactive with the other V-antigens (Fig 4B). Whereas the sera from the AcrV-immunized mice reacted with PcrV, the sera from PcrV-immunized mice did not react with AcrV.

Next, to determine whether correlations among the V-antigens had some association with the identity of the primary protein sequences, we investigated the identity of these sequences in the five V-antigens using the BLOSUM substitution score matrix in ClustalW (Fig 6). In this map, the overall similarities of two out of five of the V-antigens for the whole molecules

Fig 3. Serum titer correlations between two V-antigens. The diluted serum (1,280×) was applied to ELISAs, and OD values at 450 nm were measured. The titer correlation of the two V-antigens was mapped in an X–Y plot. OD: Optical density.

https://doi.org/10.1371/journal.pone.0220924.g003
ranged between 21% and 49%. The similarity of the amino-terminal domain (14%–51%) and central domains (14%–45%) was low in comparison with the carboxyl-terminal domain that showed 48%–84% similarity. VcrV was unique with a long additional sequence (>160 amino acids, aa) at the amino-terminal domain and an additional sequence of 80 aa in the central domain of the sequence alignment.

We also constructed phylogenetic trees of the V-antigens based on the primary amino acid sequence similarity scores of whole molecules, amino-terminal domains, central domains, and
carboxyl-terminal domains (Fig 7). In the cluster analysis of whole molecules, the similarity score was the highest between LcrV and LssV (48.6%) (Fig 7A). The amino-terminal domains showed similarity scores of <30%, except for the 51.9% similarity between LcrV and LssV (Fig 7B). For the center domains, the highest similarity score was obtained between AcrV and LssV (44.5%) (Fig 7C). In the cluster analysis of the carboxyl-terminal domains with the highest similarity scores (48%–84%) for their amino acid sequences, AcrV, LssV, and PcrV were closer than VcrV and LcrV (Fig 7D).

These phylogenetic analyses using the primary amino acid sequences did not match well with the phylogenetic trees constructed from the correlations among the serum IgG titers of the five V-antigens (Fig 4A). In particular, VcrV, which has an extremely long central domain containing regions that are missing in the other V-antigens, occupied a separate position in the phylogenetic trees constructed from the primary amino acid sequences. Therefore, these findings suggest the titer cross-antigenicity in human sera may not be correlated with the similarity in primary amino acid sequences.

As we have reported previously, a blocking monoclonal antibody called Mab166 against PcrV recognizes the conformational structure, but not the primary amino acid sequence [15]. As shown in Fig 8, the predicted three-dimensional structures of the V-antigens had similar dumbbell-like structures with two globular domains on either end of a grip formed by two coiled-coil motifs [37]. The grip that connected the two globular domains contained an antiparallel coiled-coil structure comprising central and carboxyl-terminal coiled-coil regions. The carboxyl-terminal was folded into a single long α-helix. Regarding the blocking antibody recognizing the three-dimensional conformational epitopes and not the primary amino acid sequences, not only the serum titer levels, but also the specific components that bind to the

Fig 5. Inhibition ELISA. Anti-V-antigen titers of human sera (n = 2), which showed relatively high titers against all five V-antigens, preincubated with either recombinant LssV or OprF were measured in comparison with the original titer levels of the sera. *p < 0.05 with the Mann-Whitney U-test between mean values of original serum titers and those of titers after pre-inhibition with recombinant proteins. OD: Optical density.

https://doi.org/10.1371/journal.pone.0220924.g005
Fig 6. ClustalW sequence alignment of the five primary V-antigen sequences. The overall sequence similarities of two of the five V-antigens across the whole molecules were between 21% and 49%. The similarity of the amino-terminal domain (14%–51%) and central domains (14%–45%) was low in comparison with the carboxyl-terminal domain that
had a 48%–84% similarity range. VcrV was unique with a long additional amino-terminal domain sequence (>160 aa) and an additional sequence (80 aa) in the central domain of the sequence alignment.

https://doi.org/10.1371/journal.pone.0220924.g006

specific blocking regions in V-antigen molecules may be important to prevent the pathogenesis associated with TTSS virulence.

Discussion

Yersinia LcrV has been recognized as a V-antigen with immunoprotective characteristics in *Yersinia* infections since the 1950s [4, 5, 7, 8]. However, after almost 50 years, LcrV, *P. aeruginosa* PcrV, and *Aeromonas* AcrV were anatomically visualized as distinct structures on the tip of the needle of the injectisome of the type III secretion apparatus [38–41]. Because specific antibodies binding to a particular portion of this structure inhibit the translocation of type III secretory toxins in *Yersinia* and *P. aeruginosa* [11, 42], gaining a better understanding of the interactions between V-antigens and the host humoral immunity against the virulence of bacterial type III secretion is important to develop potential non-antibiotic treatments for infections in various hosts.

Cross-antigenicity among *Yersinia* spp. was reported nearly 40 years ago. In 1980, cross-immunity to *Y. pestis* was noted in mice that had been orally infected with *Y. enterocolitica* serotype O3 [43]. In 1983, it was also reported that partial protection in mice against *Y. pestis* had a 48%–84% similarity range. VcrV was unique with a long additional amino-terminal domain sequence (>160 aa) and an additional sequence (80 aa) in the central domain of the sequence alignment.

https://doi.org/10.1371/journal.pone.0220924.g006

Fig 7. Phylogenetic trees and heat maps based on the primary amino acid sequences (whole molecule, amino-terminal, center, and carboxyl-terminal) of the V-antigens. Phylogenetic analyses of the primary amino acid sequences of whole molecules, amino-terminal, center, and carboxyl-terminal domains were performed. The sequence alignment scores obtained from ClustalW are shown. Phylogenetic trees (an unrooted tree, neighbor-joining method) and a heat map demonstrating sequence alignment scores between two V-antigens as a color-index were constructed. A. Complete primary sequence. B. Amino-terminal domain. C. Center domain. D. Carboxyl-terminal domain. The amino acid positions in the amino-terminal, center, and carboxyl-terminal domains are as follows: LcrV: #1–#164, #165–#278, and #279–#326 respectively; PcrV: #1–#142, #143–#256, and #257–#294, respectively; AcrV: #1–#162, #163–#316, and #317–#361, respectively; VcrV: #1–#361, #362–#558, and #559–#607, respectively; LssV: #1–#170, #171–#280, and #281–#325, respectively.

https://doi.org/10.1371/journal.pone.0220924.g007

Fig 7. Phylogenetic trees and heat maps based on the primary amino acid sequences (whole molecule, amino-terminal, center, and carboxyl-terminal) of the V-antigens. Phylogenetic analyses of the primary amino acid sequences of whole molecules, amino-terminal, center, and carboxyl-terminal domains were performed. The sequence alignment scores obtained from ClustalW are shown. Phylogenetic trees (an unrooted tree, neighbor-joining method) and a heat map demonstrating sequence alignment scores between two V-antigens as a color-index were constructed. A. Complete primary sequence. B. Amino-terminal domain. C. Center domain. D. Carboxyl-terminal domain. The amino acid positions in the amino-terminal, center, and carboxyl-terminal domains are as follows: LcrV: #1–#164, #165–#278, and #279–#326 respectively; PcrV: #1–#142, #143–#256, and #257–#294, respectively; AcrV: #1–#162, #163–#316, and #317–#361, respectively; VcrV: #1–#361, #362–#558, and #559–#607, respectively; LssV: #1–#170, #171–#280, and #281–#325, respectively.

https://doi.org/10.1371/journal.pone.0220924.g007
infection by the *Y. enterocolitica* V-antigen was linked to the partial cross-reactivity of V-antigens [44]. Later, DNA sequencing of the most common serotypes of human pathogenic *Y. enterocolitica* and *Y. pseudotuberculosis* revealed two evolutionary distinct types of V-antigen in *Yersinia* spp. [45]. One type is represented by *Y. enterocolitica* serotype O8 strains WA, WA-314, and NCTC 10938 (LcrV-YenO8), whereas the other type is represented by *Y. pestis*, *Y. pseudotuberculosis*, and *Y. enterocolitica* serotypes O3, O9, and O5 (LcrV-Yps) [45]. By raising monospecific antisera against both types of V-antigen (*Y. enterocolitica* serotypes O3 and O8), anti-V-antigen serum was protective only when the immunizing V-antigen was the same type as the V-antigen produced by the infecting strain. The difference in protective immunity between the two types was caused by the presence of a hypervariable region between amino acids 225 and 232 [45]. The protectivity of the V-antigen was later confirmed and refined using the recombinant V-antigen of *Y. pseudotuberculosis* and monospecific anti-V-antigen serum [46]. In this previous study, antiserum against the *Y. pseudotuberculosis* V-antigen provided mice with passive immunity to challenge infection with *Y. pestis* or *Y. pseudotuberculosis*, but not *Y. enterocolitica* O8 (strain WA). These previous studies on cross-antigenicity to *Yersinia* V-antigens in mice imply that the structure of the critical domain, but not the overall primary amino acid sequence similarity per se, is important for protective immunity.

Other than *Yersinia* LcrV, only two studies of *P. aeruginosa* PcrV have reported antibody titers against *P. aeruginosa* PcrV in human serum [32, 47]. No other studies investigating antibody titers against other V-antigens have been reported to date. *V. parahaemolyticus*, a Gram-negative marine bacterium, of which the V-antigen titers were examined in the present study, causes food-borne gastroenteritis [48, 49]. Among *Vibrio* spp., *V. harveyi* (a Gram-negative bioluminescent marine bacterium) is ubiquitous in the marine environment. It is considered as one of the important bacterial species that form the normal flora of healthy shrimp, and its genome carries a V-antigen homolog gene [33, 50]. This bacterium is sometimes recognized as causing high mortality of shrimps in the worldwide shrimp fishing industry [51, 52]. As a halophilic *Vibrio* species, *V. alginolyticus*, which causes wound infections, was first recognized as pathogenic to humans in 1973 [53]. Recent studies have proposed that *V. alginolyticus* possesses the same TTSS gene organization as *V. parahaemolyticus* and *V. harveyi* [54, 55]. *Aeromonas* spp., such as *A. salmonicida* and *A. hydrophila*, are not pathogenic to humans, but cause infections in salmon and trout, and carry the AcrV V-antigen homolog [33]. However, *A. hydrophila* sometimes causes gastroenteritis in humans who acquire such infections by ingesting food or water containing sufficient numbers of this organism [56–58]. *Ph. luminescens* (a gammaproteobacterium in the *Enterobacteriaceae* family) is also not pathogenic to humans, but is a lethal pathogen of insects and possesses a pathogenicity island encoding the TTSS including the LssV V-antigen homolog [59–62]. It lives in the gut of an
entomopathogenic nematode in the Heterorhabditidae family [33]. However, human infections with *Photorhabdus* spp. have recently been reported in the USA and Australia, suggesting that these bacteria are emerging human pathogens [63]. In comparison with the infections caused by *P. aeruginosa*, infections caused by *Y. pestis* or *V. parahaemolyticus* are less common. Therefore, it is interesting that titers against V-antigens from non-human pathogens were also detected in this study. Anti-AcrV showed a high correlation with anti-LcrV, and some correlation was detected between anti-LssV and anti-VcrV. The titers against the antigens from non-human pathogens might result from cross-antigenicity among the V-antigen homologs. Our cluster analysis with the heat map of anti-V-antigen titers from the 186 adult volunteers displayed a higher correlation between LcrV, AcrV, and VcrV than the correlation between PcrV and LssV and the other V-antigens (Fig 4A).

Immunizing mice with one of the five recombinant V-antigens resulted in cross-antigenicity of the sera against the V-antigens (Figs 4B and 5). This result shows that VcrV is unique, while AcrV, LssV, and LcrV share some degree of cross-antigenicity with each other, although the results differed slightly from the cross-antigenicity observed with human sera. In our previous study on anti-PcrV titers in human sera, administration of extracted IgG derived from high titer anti-PcrV sera protected against challenge with lethal pneumonia in a murine model [18]. In this study, among the 198 volunteer-derived sera [32], the top 10 high titer sera against PcrV (greater than or equivalent to 0.5 at OD 450 nm) were used. Although we have human monoclonal IgG specific against PcrV as a standard for anti-PcrV measurement, no such human standard IgG against the other four V-antigens are available to date. It is difficult at this time to clearly evaluate where the level of protection is sufficient, but as many as 5% of the volunteers showed protective levels in our previous study [18], and the cross-antigenicity among the five V-antigens probably has a certain level of clinical significance in human immunity. Therefore, despite no similar immunological experiments being performed with other V-antigens, our study has shown that the cross-reactive antigenicity we observed among the various V-antigens with serum-specific anti-V antigen titers may afford some degree of immunological protection against various Gram-negative bacteria. Further investigation of the conformational blocking epitopes in the needle cap structure of type III secretory apparatus and the immunological aspects of the structural antigenicity of a critical portion of the V-antigens should provide a better understanding of how to effectively block the TTSS-associated virulence associated with various Gram-negative pathogens.

Supporting information

S1 Fig.

(JPEG)

Acknowledgments

We thank Sandra Cheesman, Ph.D., and Mitchell Arico from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author Contributions

Conceptualization: Teiji Sawa.

Data curation: Mao Kinoshita, Teiji Sawa.

Formal analysis: Mao Kinoshita, Teiji Sawa.

Funding acquisition: Teiji Sawa.
Investigation: Mao Kinoshita, Teiji Sawa.

Methodology: Mao Kinoshita, Masaru Shimizu, Koichi Akiyama, Hideya Kato.

Project administration: Teiji Sawa.

Resources: Masaru Shimizu, Kiyoshi Moriyama.

Supervision: Teiji Sawa.

Writing – original draft: Mao Kinoshita, Teiji Sawa.

Writing – review & editing: Kiyoshi Moriyama, Teiji Sawa.

References
1. Cornelis GR. The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery. Biol Chem. 2010; 391(7):745–51. https://doi.org/10.1515/BC.2010.079 PMID: 20482311
2. Erhardt M, Namba K, Hughes KT. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol. 2010; 2(11):a000299. https://doi.org/10.1101/cshperspect.a000299 PMID: 20926156
3. Galan JE, Lara-Tejero M, Marlows TC. Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014; 68:415–38. https://doi.org/10.1146/annurev-micro-092412-155725 PMID: 25002086
4. Bacon GA, Burrows TW. The basis of virulence in Pasteurella pestis: an antigen determining virulence. Br J Exp Pathol. 1956; 37(5):481–93 PMID: 13374206
5. Burrows TW. An antigen determining virulence in Pasteurella pestis. Nature. 1956; 177(4505):426–7 https://doi.org/10.1038/177426b0 PMID: 13309325
6. Burrows TW. Biochemical properties of virulent and avirulent strains of bacteria: Salmonella typhosa and Pasteurella pestis. Ann N Y Acad Sci. 1960; 88:1125–35 https://doi.org/10.1111/j.1749-6632.1960.tb20102.x PMID: 13889227
7. Burrows TW, Bacon GA. The basis of virulence in Pasteurella pestis: attempts to induce mutation from avirulence to virulence. Br J Exp Pathol. 1954; 35(2):129–33 PMID: 13149733
8. Burrows TW, Bacon GA. The effects of loss of different virulence determinants on the virulence and immunogenicity of strains of Pasteurella pestis. Br J Exp Pathol. 1958; 39(3):278–91 PMID: 13546547
9. Goguen JD, Yother J, Straley SC. Genetic analysis of the low calcium response in Yersinia pestis multid (Ap lac) insertion mutants. J Bacteriol. 1984; 160(3):842–8 PMID: 6094509
10. Yahr TL, Mende-Mueller LM, Friese MB, Frank DW. Identification of type III secreted products of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol. 1997; 179(22):7165–8. https://doi.org/10.1128/jb.179.22.7165-7168.1997 PMID: 9371466
11. Pettersson J, Holmstrom A, Hill J, Leary S, Frithz-Lindsten E, von Euler-Matell A, et al. The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol Microbiol. 1999; 32(5):961–76 https://doi.org/10.1046/j.1365-2958.1999.01408.x PMID: 10361299
12. Sawa T, Ito E, Nguyen VH, Haught M. Anti-PcrV antibody strategies against virulent Pseudomonas aeruginosa. Hum Vaccin Immunother. 2014; 10(10):2843–52. https://doi.org/10.4161/21645515.2014.971641 PMID: 25483637
13. Baer M, Sawa T, Flynn P, Luehrsen K, Martinez D, Wiener-Kronish JP, et al. An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect Immun. 2009; 77(3):1083–90. https://doi.org/10.1128/IAI.00815-08 PMID: 19103766
14. Faure K, Fujimoto J, Shimabukuro DW, Ajayi T, Shimé N, Moriyama K, et al. Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model. J Immune Based Ther Vaccines. 2003; 1(1):2. https://doi.org/10.1186/1476-8518-1-2 PMID: 12943554
15. Frank DW, Vallis A, Wiener-Kronish JP, Roy-Burman A, Spack EG, Mullaney BP, et al. Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J Infect Dis. 2002; 186(1):64–73. https://doi.org/10.1086/341069 PMID: 12089663
16. Imamura Y, Yanagihara K, Fukuda Y, Kaneko Y, Seki M, Izumikawa K, et al. Effect of anti-PcrV antibody in a murine chronic airway Pseudomonas aeruginosa infection model. Eur Respir J. 2007; 29(5):965–8. https://doi.org/10.1183/09031936.00147406 PMID: 17301098
17. Katoh H, Yasumoto H, Shimizu M, Hamaoka S, Kinoshita M, Akiyama K, et al. IV Immunoglobulin for acute lung injury and bacteremia in Pseudomonas aeruginosa pneumonia. Crit Care Med. 2016; 44(1):e12–24. https://doi.org/10.1097/CCM.0000000000001271 PMID: 2637571

18. Kinoshita M, Katoh H, Yasumoto H, Shimizu M, Hamaoka S, Naito Y, et al. The prophylactic effects of human IgG derived from sera containing high anti-PcrV titers against pneumonia-causing Pseudomonas aeruginosa. Hum Vaccin Immunother. 2016; 12(11):2833–46. https://doi.org/10.1080/21645515.2016.1299280 PMID: 27454613

19. Neely AN, Holder IA, Wiener-Kronish JP, Sawa T. Passive anti-PcrV treatment protects burned mice against Pseudomonas aeruginosa challenge. Burns. 2005; 31(2):153–8. https://doi.org/10.1016/j.burns.2004.09.002 PMID: 15683685

20. Shime N, Sawa T, Fujimoto J, Faure K, Allmond LR, Karaca T, et al. Therapeutic administration of anti-PcrV F(ab')2 in sepsis associated with Pseudomonas aeruginosa. J Immunol. 2001; 167(10):5880–6. https://doi.org/10.4049/jimmunol.167.10.5880 PMID: 11698464

21. Song Y, Baer M, Srinivasan R, Lima J, Yarranton G, Bebbington C, et al. PcrV antibody-antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice. Eur J Clin Microbiol Infect Dis. 2012; 31(8):1837–45. https://doi.org/10.1007/s10096-011-1509-2 PMID: 22187351

22. Wang Q, Li H, Zhou J, Zhong M, Zhu D, Feng N, et al. PcrV antibody protects multi-drug resistant Pseudomonas aeruginosa induced acute lung injury. Respir Physiol Neurobiol. 2014; 193:21–8. https://doi.org/10.1016/j.resp.2014.01.001 PMID: 24418353

23. Warrener P, Varkey R, Bonnell JC, DiGiandomenico A, Camara M, Cook K, et al. A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models. Antimicrob Agents Chemother. 2014; 58(12):4384–91. https://doi.org/10.1128/AAC.02643-14 PMID: 24841258

24. Le HN, Quetz JS, Tran VG, Le VTM, Aguilar-Alves F, Pinheiro MG, et al. MEDI3902 correlates of protection against severe Pseudomonas aeruginosa pneumonia in a rabbit acute pneumonia model. Antimicrob Agents Chemother. 2018; 62(5). https://doi.org/10.1128/AAC.02565-17 PMID: 29483117

25. Hamaoka S, Naito Y, Katoh H, Shimizu M, Kinoshita M, Akiyama K, et al. Efficacy comparison of adjuvants in PcrV vaccine against Pseudomonas aeruginosa pneumonia. Microbiol Immunol. 2017; 61(2):64–74. https://doi.org/10.1111/1348-0421.12467 PMID: 28370521

26. Moriyama K, Wiener-Kronish JP, Sawa T. Protective effects of affinity-purified antibody and truncated vaccines against Pseudomonas aeruginosa V-antigen in neutropenic mice. Microbiol Immunol. 2009; 53(11):587–94. https://doi.org/10.1111/j.1348-0421.2009.00165.x PMID: 19903258

27. Naito Y, Hamaoka S, Kinoshita M, Kainuma A, Shimizu M, Katoh H, et al. The protective effects of nasal PcrV-CpG oligonucleotide vaccination against Pseudomonas aeruginosa pneumonia. Microbiol Immunol. 2018; 62(12):774–85. https://doi.org/10.1111/1348-0421.12656 PMID: 30378708

28. Ali SO, Yu XQ, Robbie GJ, Wu Y, Shoemaker K, Yu L, et al. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect. 2019; 25(5):629 e1–e6. https://doi.org/10.1016/j.cmi.2018.08.004 PMID: 30107283

29. Francois B, Luyt CE, Dugard A, Wolff M, Diehl JL, Jaber S, et al. Safety and pharmacokinetics of an anti-PcrV PEQylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial. Crit Care Med. 2012; 40(8):2320–6. https://doi.org/10.1097/CCM.0b013e3182533416 PMID: 22622405

30. Jain R, Beckett VV, Konstan MW, Accurso FJ, Burns JL, Mayer-Hamblett N, et al. KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. J Cyst Fibros. 2018; 17(4):484–91. https://doi.org/10.1016/j.jcf.2017.12.006 PMID: 29292092

31. Milla CE, Chmiel JF, Accurso FJ, VanDevanter DR, Konstan MW, Yarranton G, et al. Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol. 2014; 49(7):650–8. https://doi.org/10.1002/ppul.22890 PMID: 24019259

32. Yasumoto H, Katoh H, Kinoshita M, Shimizu M, Hamaoka S, Akiyama K, et al. Epidemiological analysis of serum anti-Pseudomonas aeruginosa PcrV titers in adults. Microbiol Immunol. 2016; 60(2):114–20. https://doi.org/10.1111/1348-0421.12353 PMID: 26696420

33. Sawa T, Katoh H, Yasumoto H. V-antigen homologs in pathogenic gram-negative bacteria. Microbiol Immunol. 2014; 58(5):267–85. https://doi.org/10.1111/1348-0421.12147 PMID: 24641673

34. Liu PV. The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. 3. Identity of the lethal toxins produced in vitro and in vivo. J Infect Dis. 1966; 116(4):481–9. Epub 1966/10/01. https://doi.org/10.1093/infdis/116.4.481 PMID: 4959184
35. Sawa T, Corry DB, Gropper MA, Ohara M, Kurahashi K, Wiener-Kronish JP. IL-10 improves lung injury and survival in *Pseudomonas aeruginosa* pneumonia. J Immunol. 1997; 159(6):2858–66. Epub 1997/09/23 PMID: 9300709

36. Sawa T, Ohara M, Kurahashi K, Twining SS, Frank DW, Doroques DB, et al. *In vitro* cellular toxicity predicts *Pseudomonas aeruginosa* virulence in lung infections. Infect Immun. 1998; 66(7):3242–9. Epub 1998/06/25 PMID: 9632591

37. Gazi AD, Charova SN, Panopoulos NJ, Kokkinidis M. Coiled-coils in type III secretion systems: structural flexibility, disorder and biological implications. Cell Microbiol. 2009; 11(5):719–29. https://doi.org/10.1111/j.1462-5822.2009.01297.x PMID: 19215225

38. Broz P, Mueller CA, Muller SA, Philippsen A, Sorg I, Engel A, et al. Function and molecular architecture of the *Yersinia* injectisome tip complex. Mol Microbiol. 2007; 65(5):1311–20. https://doi.org/10.1112/j.1126/science.1118476 PMID: 17697254

39. Mota LJ. Type III secretion gets an LcrV tip. Trends Microbiol. 2006; 14(5):197–200. https://doi.org/10.1016/j.tim.2006.02.010 PMID: 16564172

40. Mueller CA, Broz P, Cornelis GR. The type III secretion system tip complex and translocon. Mol Microbiol. 2008; 68(5):1085–95. https://doi.org/10.1111/j.1365-2958.2008.06237.x PMID: 18430138

41. Mueller CA, Broz P, Muller SA, Ringler P, Erne-Brand F, Sorg I, et al. The V-antigen of *Yersinia* forms a distinct structure at the tip of injectisome needles. Science. 2005; 310(5748):674–6. https://doi.org/10.1126/science.1118476 PMID: 16254184

42. Sawa T, Yahr TL, Ohara M, Kurahashi K, Gropper MA, Wiener-Kronish JP, et al. Active and passive immunization with the *Pseudomonas* V antigen protects against type III intoxication and lung injury. Nat Med. 1999; 5(4):392–8. https://doi.org/10.1038/7391 PMID: 10202927

43. Alonso JM, Vilmer E, Mazigh D, Mollaret HH. Mechanisms of acquired resistance to plague in mice infected by *Yersinia enterocolitica* O:3. Curr Microbiol. 1980; 4:117–22

44. Wake A, Maruyama T, Akiyama Y, Yamamoto M. he role of virulence antigen (VW) in the protection of mice against *Yersinia pestis* infection. Curr Microbiol. 1983; 8:73–7

45. Roggenkamp A, Geiger AM, Leitritz L, Kessler A, Heesemann J. Passive immunity to infection with *Yersinia* spp. mediated by anti-recombinant V antigen is dependent on polymorphism of V antigen. Infect Immun. 1997; 65(2):446–51 PMID: 9009295

46. Motin VL, Nakajima R, Smirnov GB, Brubaker RR. Passive immunity to *yersinia* mediated by anti-recombinant V antigen and protein A V antigen fusion peptide. Infect Immun. 1994; 62(10):4192–201 PMID: 7927675

47. Moss J, Ehrmantraut ME, Banwart BD, Frank DW, Barbieri JT. Sera from adult patients with cystic fibrosis contain antibodies to *Pseudomonas aeruginosa* type III apparatus. Infect Immun. 2001; 69(2):1185–8. https://doi.org/10.1128/IAI.69.2.1185-1188.2001 PMID: 11160019

48. McCarter L. The multiple identities of *Vibrio parahaemolyticus*. J Mol Microbiol Biotechnol. 1999; 1(1):51–7 PMID: 10941784

49. Li L, Meng H, Gu D, Li Y, Jia M. Molecular mechanisms of *Vibrio parahaemolyticus* pathogenesis. Microbiol. Res. 2019; 222:43–51. https://doi.org/10.1016/j.micres.2019.03.003 PMID: 30928029

50. Vandenbergh E, Verdonck L, Robles-Arozarena R, Rivera G, Bolland A, Balladare M, et al. *Vibrios* associated with *Litopenaeus vannamei* larvae, postlarvae, broodstock, and hatchery probiotics. Appl Environ Microbiol. 1999; 65(6):2592–7 PMID: 10347048

51. Karunasagar I, Pai R, Malathi GR, Karunasagar I. Mass mortality of *Penaeus monodon* larvae due to antibiotic resistant *Vibrio harveyi* infection. Aquaculture 1994; 128:203–9

52. Liu PC, Lee KK, Yi KC, Kou GH, Chen SN. Isolation of *Vibrio harveyi* from diseased kuruma prawns *Penaeus japonicus*. Curr Microbiol. 1996; 33(2):129–32 https://doi.org/10.1007/s002849900087 PMID: 8662165

53. Zen-Yoji H, Le Clair RA, Ota K, Montague TS. Comparison of *Vibrio parahaemolyticus* cultures isolated in the United States with those isolated in Japan. J Infect Dis. 1973; 127(3):237–41. https://doi.org/10.1093/infdis/127.3.237 PMID: 4568903

54. Zhao Z, Chen C, Hu CQ, Ren CH, Zhao JJ, Zhang LP, et al. The type III secretion system of *Vibrio alginolyticus* induces rapid apoptosis, cell rounding and osmotic lysis of fish cells. Microbiology. 2010; 156(Pt 9):2864–72. https://doi.org/10.1099/mic.0.040626-0 PMID: 20576689

55. Zhao Z, Zhang L, Ren C, Zhao J, Chen C, Jiang X, et al. Autophagy is induced by the type III secretion system of *Vibrio alginolyticus* in several mammalian cell lines. Arch Microbiol. 2011; 193(1):53–61. https://doi.org/10.1007/s00203-010-0646-9 PMID: 21040072

56. Barillo DJ, McManus AT, Ciolfi WG, McManus WF, Kim SH, Pruitt BA Jr. *Aeromonas* bacteraemia in burn patients. Burns. 1996; 22(1):48–52 https://doi.org/10.1016/0305-4179(95)00075-5 PMID: 8719317
57. Juan HJ, Tang RB, Wu TC, Yu KW. Isolation of *Aeromonas hydrophila* in children with diarrhea. J Microbiol Immunol Infect. 2000; 33(2):115–7 PMID: 10917882

58. Vila J, Ruiz J, Gallardo F, Vargas M, Soler L, Figueras MJ, et al. *Aeromonas spp.* and traveler’s diarrhea: clinical features and antimicrobial resistance. Emerg Infect Dis. 2003; 9(5):552–5 https://doi.org/10.3201/eid0905.020451 PMID: 12737738

59. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, et al. The genome sequence of the entomopathogenic bacterium *Photorhabdus luminescens*. Nat Biotechnol. 2003; 21(11):1307–13. https://doi.org/10.1038/nbt886 PMID: 14528314

60. ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, et al. *Photorhabdus*: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev. 2003; 26(5):433–56. https://doi.org/10.1111/j.1574-6976.2003.tb00625.x PMID: 12586390

61. Silva CP, Waterfield NR, Daborn PJ, Dean P, Chilver T, Au CP, et al. Bacterial infection of a model insect: *Photorhabdus luminescens* and *Manduca sexta*. Cell Microbiol. 2002; 4(6):329–39 https://doi.org/10.1046/j.1462-5822.2002.00194.x PMID: 12067318

62. Waterfield NR, Daborn PJ, ffrench-Constant RH. Genomic islands in *Photorhabdus*. Trends Microbiol. 2002; 10(12):541–5 https://doi.org/10.1016/s0966-842x(02)02463-0 PMID: 12564983

63. Gerrard JG, McNevin S, Alfredson D, Forgan-Smith R, Fraser N. *Photorhabdus* species: bioluminescent bacteria as emerging human pathogens? Emerg Infect Dis. 2003; 9(2):251–4. https://doi.org/10.3201/eid0902.020220 PMID: 12603999