Methodological Considerations for Linking Household and Healthcare Provider Data for Estimating Effective Coverage: A Systematic Review

Emily D. Carter*¹, Hannah H. Leslie², Tanya Marchant³, Agbessi Amouzou¹, Melinda Munos¹

¹Institute for International Programs, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
²Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
³Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK

*Corresponding author: Emily Carter, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD, 21205, ecarter@jhu.edu

Word Count: 4985
ABSTRACT

Effective coverage measures assess the proportion of a population that receive a health intervention with sufficient quality to achieve health benefit. Linking population-based surveys and health facility data is a promising means of generating effective coverage estimates, however, little guidance exists on methodological considerations for these analyses.

We conducted a systematic review to assess existing knowledge related to 1) the suitability of data used in linking analyses, 2) the implications of the design of existing data sources commonly used in linking analyses, and 3) the impact of choice of method for combining datasets to obtain linked coverage estimates. The primary search was completed in Medline, with additional reviews of select sources.

Of 3192 papers reviewed, 62 publications addressed issues related to linking household and provider datasets. Limited data suggest household surveys can be used to identify sources of care, but their validity in estimating a denominator of intervention need was variable. Methods for collecting provider data and constructing quality indices were variable and presented limitations. There was little empirical data supporting an association between structural, process, and outcome quality. Few studies addressed the influence of the design of common data sources on linking analyses, including imprecise household GIS data, provider sampling frame and sampling design, and estimate stability. There was a lack of concrete evidence around the impact of these factors on linked effective coverage estimates. The most consistent evidence suggested under certain conditions, combining data sets based on geographical proximity (ecological linking) produced similar estimates to linking based on the specific provider utilized (exact-match linking).

Linking household and healthcare provider can leverage existing data sources to generate more informative estimates of intervention coverage and care. However, there is need for additional research to develop evidence-based, standardized best practices for these analyses.

What is already known?

- Linking population-based and provider data is a means of generating effective coverage estimates, however little guidance exists on methodological considerations for linking these data sources

What are the new findings?

- 62 publications address issues related to the 1) the suitability of data used in linking analyses, 2) the implications of the design of existing data sources commonly used in linking analyses, and 3) the impact of choice of method for combining datasets to obtain linked coverage estimates
- There was variable and limited evidence on the suitability of data household and provider data, particularly collecting and constructing indicators of provider quality, and on the implications of the design of existing data sources
- The most consistent evidence suggested under certain conditions, combining data sets based of geographical proximity or administrative unit produced similar estimates to linking based on the specific provider utilized
What do the new findings imply?

- There is need for additional research to develop evidence-based, standardized best practices for linked analyses of health system and population data
BACKGROUND

There is growing demand for tracking progress towards the sustainable development goals (SDGs) through effective coverage estimates [1,2]. Effective coverage measures assess not only the proportion of individuals in need of an intervention who receive it, but also the content and quality of services received with an aim to estimate the proportion of individuals receiving the health benefit of an intervention [2]. Numerous publications have estimated effective coverage [3] using a range of methods and measures to define intervention need, receipt, and quality.

Linking household and health provider data is a promising means of generating effective coverage estimates that provide population-based estimates and incorporate data on service quality from health facilities. Data from household surveys can provide a population-based estimate of intervention need and care-seeking for services, such as the proportion of women with a recent live birth who delivered in a health facility. However, a number of maternal, newborn, and child health interventions [4] cannot be accurately measured through household surveys due to reporting errors and biases by respondents (e.g., the proportion of women who received a uterotonic during delivery). Health provider assessments yield information on provider quality, including available infrastructure, commodities, equipment, human resources, and potentially provision of care. Provider data do not capture need for care in the population, care-seeking behavior, or the experience of individuals who do not access the formal health system. Linking these two data sources can provide a more complete picture of population access to and coverage of high-quality health services, for example the proportion of women who delivered at a health facility with sufficient structural resources and competence to provide appropriate labor and delivery care.

There are many approaches for combining household and provider datasets [5]. The results depend on the choice of data and of methods for combining datasets. However, very limited guidance exists to guide decision making. We conducted a systematic review to understand the current evidence base for effective coverage linking methods and identify needs for further research.

METHODS

We searched for papers addressing methods or assumptions regarding: 1) the suitability of household and provider data used in linking analyses, 2) the implications of the design of existing household (DHS and MICS) and provider (SPA and SARA) data sources commonly used in linking analyses, and 3) the impact of choice of method for combining datasets to obtain linked coverage estimates.

Our primary search was conducted in Medline. The search was limited to papers published between January 1, 2000 and June 7, 2019 that included terms related to 1) effective coverage, benchmarking, system dynamics, or universal health coverage metrics, or 2) structural, process, and/or health outcome quality, 3) linking analyses using terms adapted from Do and colleagues [5], 4) validity of self-report health indicators, and 5) spatial methods for measuring utilization or distance to care. A full list of Medline search terms and PRISMA checklist are presented in Supplementary File 1 and 2, respectively. The search was conducted using English-language terms; however, publications in English, Spanish, and French were reviewed if captured in the search. Additionally, we conducted searches using these criteria

1 We define health providers as health care outlets such as health facilities, pharmacies, and community-based health workers
in Population Health Metrics (which was not fully indexed in Medline at the time of our search), the Carolina Population Health Center, and DHS publications. In a second step, we hand-searched the references of a systematic review by Do and colleagues on linking household and facility data to estimate coverage of reproductive, maternal, newborn, and child health services [5], and a review by Amouzou and colleagues of effective coverage analyses [3]. We also hand-searched the references, citing works, and journal- or database interface-generated related publications of all articles that passed the title and abstract review. Particularly relevant papers published after the formal search date were included in the review if captured through these snowball review mechanisms.

Publications were reviewed for relevant analyses or commentary related to linking methodologies. Articles were included if they explicitly evaluated or compared assumptions used in linking approaches for at least one of the areas defined above. Title and abstract review were conducted simultaneously. Data extraction was completed by the first author (EC) and included the title, author, year of publication, country or countries included in analysis, data source, and specific analyses or findings relevant to linking loosely categorized by topic areas.

RESULTS

The Medline search produced 3055 publications, along with 97 from the Carolina Population Center, 4 from Population Health Metrics, 12 DHS publications, 35 papers included in the review by Amouzou and colleagues and 49 papers included in the review by Do and colleagues meeting the publication date restrictions. After removing duplicates, 3192 publications were included in the title and abstract review and 218 were included in the full text review. Of those papers included in the full text review, 48 publications addressed a methodological concern related to linking household and provider data and were included in the final review. Fourteen additional publications were identified through the snowball review of references and related works (Fig 1 – PRISMA flow diagram). In total 62 publications addressed a methodological concern, including the suitability of household (n=13) and provider data (n=32) for use in linking analyses, concerns related to the design of existing household (n=6) and provider (n=4) data sources, and methods for combining household and facility data (n=13). A list of publications included in the review and a summary of their contributions to the review are provided in Table 1.

-TABLE 1-

Suitability of household and provider data for linking analyses

Suitability of household data needed for linked estimates

In effective coverage linking analyses, household surveys can be used to estimate the population in need of healthcare, as well as care-seeking behavior. Household surveys must produce valid estimates of these parameters and provide care-seeking data that can be linked to provider assessments. This review identified papers discussing issues in defining intervention need (n=8) and care-seeking (n=5) that should guide selection of indicators for linking.

intervention need

Estimation of intervention need may require solely population demographics such as age (e.g., for prevention and health promotion interventions) or may require defining specific illnesses or conditions.
The latter is more subject to reporting bias [6]. Multiple studies have shown poor association or biases between maternally-reported symptoms and clinical pneumonia [7,8], malaria [9], and diarrhea [10] in children under five. A handful of studies (n=3) showed maternal report of both maternal and newborn birth complications is variable [11–13]. A simulation by Shengelia and colleagues demonstrated the effect of the divergence of true from perceived intervention need on effective coverage estimates. The authors propose estimating the posterior probability of disease based on responses to symptomatic questions using a Bayesian model to measure disease presence on a probabilistic scale [6]. However, there has been no work on how to integrate these adjusted estimates into effective coverage estimates.

Care-seeking behavior

Four studies addressed the accuracy of respondent report on seeking care. Mothers in Zambia and Mozambique were able to accurately report on the type of health provider where they sought sick child [14] and delivery care [15], respectively. However, studies in two countries suggested women cannot report on the type of healthworker who attended to them during labor and delivery and immediate post-natal care [16,17]. Wang and colleagues note that provider categories are not standardized between population surveys and health system assessments, with population surveys often including vague or overly broad categories that do not directly match SPA/SARA categories and require harmonization [18].

Suitability of healthcare quality data needed for linked estimates

Provider assessments present data on service content and quality for effective coverage linking analyses. However, the measurement, construction, and interpretation of provider quality measures are highly variable and may significantly alter effective coverage estimates. This paper does not present an exhaustive review of healthcare quality measures or the association between levels of quality. A comprehensive summary of quality of care concepts and measurement approaches, along with their relative strengths and limitations, was presented by Hanefeld and colleagues [19]. Publications of particular relevance to linking analyses are noted here, with an emphasis on national provider survey data as the most common source of provider data for linking analyses.

Methods used in assessing provider quality

A review by Nickerson and colleagues found significant variability in the data collected and methods used in health facility assessment tools in LMICs [20]. While SPA and SARA data are the most widely used sources of data on health service delivery in LMICs, one paper noted that these surveys focused primarily on structural quality with less data on provision and experience of care [21]. The lack of process quality data is in part related to the reliance on direct observation of clinical care – a time- and resource-intensive method – to collect these data. None of the studies included in the review used HMIS data to generate linked coverage estimates. A desk review by MCSP found that data collected through HMIS was variable across countries, data recorded within registers often was not transmitted through the system, and only a limited number of indicators collected were related to the provision of health services [22].

Eight publications assessed alternatives to direct observation of clinical care for collecting process quality data. Two studies found variable association between process quality and maternal perceptions of the quality of care received [23,24]. Agreement between observed care and health records or
provider report was also variable [25–27]. A review by Hrisos and colleagues found few studies to support use of patient report, provider self-report, or record review as proxy measures of clinical care quality [28]. In the US, vignettes performed better than chart abstraction for estimating quality [29]. Another review found providers were unable to accurately assess their own performance, with the worst accuracy among the least skilled providers [30]. Five other publications used alternative methods for measuring process quality, including use of vignettes [24,31], register review [24,32], most recent delivery interview [33], and an mHealth tool [34], but did not assess their performance against other measurement methods.

Content of provider quality indices

Most linking papers estimating effective coverage included in this review (n=10) characterized provider quality using structural measures of quality, with or without measures of process quality. Various approaches were used to select items for inclusion in these measures. Measures of structural and process quality were derived from either national or international guidance on minimum service availability and required commodities, equipment, infrastructure, training, or actions. Measures used by effective coverage analyses included SPA or SARA structural indicators [31,35,36] and/or clinical observations [36–38], EmOC functions [26,32,39,40], and provider recall of actions during their last delivery [33,39].

Construction of provider quality indices

In addition to the range of variables used in provider measures, there was no consensus on the approach to use to select and combine variables to generate quality indices. The reviewed publications used a variety of approaches to construct indices including weighted indices [38], simple averages across all indicators or domains [31,37,39], and categorization using set thresholds or relative categories [24,35,40]. Seven publications presented data on the performance of different measurement modes and summary approaches. Two studies found the method of selecting and combining quality indicators had little effect on overall effective coverage estimates [41,42]. However, two other studies found inconsistency in the rankings of health facilities when using different index methods [43,44]. Two studies using PCA to create SPA health service indices found the reduced indices explained only a limited amount of the variance across indicators [44,45]. An analysis of SPA data in ten countries found indices empirically-derived through machine learning captured a large proportion of the service readiness data in the full SPA index, however the selected set of indicators varied across countries, and an index generated through expert review captured very little of the data from the full index [46]. Two studies found that few facilities could meet all requirements when applying a threshold, limiting the utility of the approach [40,43].

Performance of provider measures

Despite the common usage of SPA and SARA data-derived structural and process quality measures, the review found limited data explicitly assessing the association of these measures with each other and health outcomes (n=7). Three studies, two incorporating data from multiple countries, found little association between structural quality and process quality [38,47,48]. However, an analysis of SPA data from three countries found a small but significant association between ANC facility structural and process quality and suggests structural quality can limit provider performance when basic infrastructure and commodities are unavailable [42]. Akachi and Kruk emphasized the limited number of studies
showing process quality associated with health outcomes [49]. One study found a small association between an obstetric quality index and decreased neonatal mortality in Malawi [50] and another found a national UHC "health service coverage" index correlated strongly with infant mortality rate and life expectancy [51].

Implications of design of existing household and provider data sources commonly used in linking analyses

Issues related to household and cluster location data

The way in which common household surveys, particularly the DHS and MICS, collect and process location data may also impact the validity of some linked estimates. In many household datasets used for linked analyses, the precise location of individual households is often unknown. The DHS collects central point locations for clusters, rather than household locations, and displaces these points in publicly released datasets [52]. MICS often does not collect or make GIS data available [53]. Imprecision around household location may influence the accuracy of estimates generated by linking household and provider data based on geographic proximity.

Data on household location

The effect of using cluster central point locations (centroids) rather than individual household locations in linking analyses was not addressed by any publication identified in this review. However, four studies looked at the effect of using centroids of varying areal units versus household locations in distance analyses. Two studies found using US census tract [54] and zip-code [55] centroid locations produced little difference in measures of facility access compared to household location. A third study showed use of areal unit centroids resulted in misclassification of household access to health-related facilities, especially in less densely populated rural areas [56]. However, in rural Ghana, measures calculated from village centroids identified the same closest facility as measures from compound locations for over 85% of births [57].

Cluster displacement

Displacement of cluster central points might induce additional error in analyses based on geographic proximity. A DHS analytic report found that ignoring DHS displacement in analyses that used distance to a resource as a covariate resulted in increased bias and mean squared error (MSE). However, this will not affect linking by administrative unit because DHS has restricted displacement to within the representative sample administrative unit since 2009 [52]. A simulation analysis in Rwanda reported DHS cluster displacement produced less misclassification in level of access and relative service quality than healthcare provider sampling [58].

Issues related to provider sampling

Typical sampling designs for healthcare provider data also present issues for linking analyses. Both SPAs and SARAs are sampled independently of household surveys, thus, there may be no sampled facilities near household survey clusters [59]. SPA and SARA surveys typically collect data on a sample, rather than census, of public, private, and NGO health facilities and exclude non-facility providers, such as pharmacies or community health workers. In most settings, facilities are sampled and analyzed to be representative of all facilities within a managing authority, level, and/or geographic area, and the results
of the provider assessment are not intended to represent the population utilizing health services [59]. For provider assessments conducting direct observations of clinical care, the number and type of interactions observed within each health facility is dependent on patient volume and chance.

Provider sampling frame

Two papers assessed the impact of excluding non-facility providers on linked effective coverage estimates. In Zambia and Cote d’Ivoire, CHWs offered a level of care for sick children similar to first-level public facilities. Excluding these providers reduced estimates of effective coverage in Zambia where CHWs were a significant source of skilled care in rural areas estimates [31], but had little effect in Cote d’Ivoire where they were an insignificant source of care [37]. In both studies, exclusion of pharmacies did not alter effective coverage estimates as they were an uncommon source of care, though they offered moderate structural quality [31,37].

Provider sampling design

Two publications addressed the impact of facility survey sampling designs. At the facility level, Skiles and colleagues’ analysis demonstrated that sampling facilities, rather than using a census, led to an underestimation of the adequacy of the health service environment and substantial misclassification error in relative service environment for individual clusters [58]. No studies addressed the suitability of SPA or SARA facility sampling strategies for generating stable quality estimates for use in linking analyses at a level below administrative unit used for the sampling approach.

A Measure Evaluation manual emphasized that data on provision of services (collected through observation of client-staff interactions) and experience of care (collected through client exit interviews) are a sub-sample of the overall survey and representative at the level the survey is sampled to be representative – not at the facility level [59]. This paper proposed multiple linked sampling approaches to capture geographically concordant household and provider data for linked analyses. While multiple studies included in this review used a census or sample of providers derived from a household sample, none implemented this approach at a national scale.

Issues related to timing of surveys used in linked coverage estimates

Both care-seeking behavior and provider quality are likely to vary over time, and both household and provider surveys are conducted infrequently in LMICs (~3-5 years). Linked coverage estimates for RMNCH may cover a long timeframe as the reference period for care-seeking in household surveys varies from 2 weeks (sick child care) to 2-5 years (peripartum care). Population movement and quality improvement efforts at facilities further complicate associations with increasing time lags. The implications of linking household and provider indicators of different temporal periods is unclear.

Stability of provider indicators

No paper in this review specifically addressed the effect of provider indicator stability on linked effective coverage estimates. However, three linking papers presented data on the stability of some health facility indicators over time. EQUIP studies in Uganda and Tanzania found moderate variability in the availability of some maternal and newborn health commodities and services over a 2-3 year period [39,60,61].

Stability of household indicators
Care-seeking behavior, including overall rates of care and utilization of different sources of care, may also change over time. Analysis of care-seeking for child illness [62] and maternal healthcare [63] in multiple low- and middle-income countries over time showed high inconsistency in trends across countries. However, no identified studies addressed the consequences of this temporal variability within the context of linking analyses.

Impact of choice of method for combining household and provider data

The approach for combining household and provider data can potentially have a significant impact on linked coverage estimates. Methods used to link data, including exact-match and various types of ecological linking, are defined in Table 2. Exact-match linking assigns provider information to individuals in the target population based on their specific source of care. This approach, while potentially subject to the reporting biases described previously, is considered the most precise approach for combining the two data sets in the absence of individual patient health records [5]. Without data on specific source of care, ecological linking approaches are designed to approximate care-seeking behavior or model healthcare access by linking the target population to sources of care based on geographic proximity or administrative catchment area, making assumptions about service access and use.

**-TABLE 2-

Comparison of exact-match and ecological linking methods for estimating effective coverage**

Three publications explicitly compared effective coverage estimates generated using exact-match and ecological linking methods (Table 3) [31,37,39]. Estimates generated using the exact-match linking approach were considered the gold-standard measure of effective coverage. All three publications found exact-match linked effective coverage estimates were similar to straight-line [31,37], travel time [31,37], 5-km buffer [31], 10-km buffer [37], and administrative unit [31,37,39] geolinked estimates for antenatal [37], labor and delivery [37,39], postnatal [37] and sick child [31,37] care when linking was restricted by the reported provider category (e.g., hospital, health center, community health worker). Distance-restricted linking approaches, such as linking to providers within a 5 km radius, produced inaccurate results if unlinked events were treated as no care [31]. Restriction of geographic linking to only providers within the reported category of care and/or weighting by providers’ relative patient volume improved agreement between the exact-match and ecological linking estimates [37,39]. All three studies also used provider data obtained from a census of health facilities, and therefore the findings may not be applicable when household data are linked to a sample survey of health facilities.

**-TABLE 3-

Performance of measures of geographic proximity for ecological linking**

Eight studies assessed the performance of geographic measures in assigning households or individuals to their reported source of healthcare. Four studies in sub-Saharan Africa compared the predicted source of care based on geographic proximity against the true source of care. They found straight-line and road distance performed similarly [64], high performance of shortest travel time method [65], and better performance of straight-line distance compared to road distance [31,37]. In the US, a more sophisticated approach (2-stage and 3-stage floating catchment area) performed better than alternatives methods in assigning households to their source of care [66]. Three studies in sub-Saharan Africa evaluated use of Theissen boundaries, a method of defining catchment boundaries based on the
optimal distance between known providers, in assigning households to the catchment of facilities they utilized. The studies found high performance in some settings [67], but poorer performance related to the use of higher-order facilities [68] and influence of public transportation routes [69].

Statistical challenges

Most linking analyses that have generated effective coverage estimates by assigning individuals the quality score of the reported or linked source of care have derived estimates of uncertainty based on household sampling error and ignored any sampling error around provider data. However, two analyses used the Delta method (73) for estimating the variance of effective coverage estimates generated by multiplying service use and readiness [18,39]. These papers did not elaborate on why the method was chosen or compare the estimates to values generated using alternative approaches. No other papers in this analysis proposed or examined methods to derive measures of uncertainty for linked estimates.

DISCUSSION

This review found a limited number of publications that explicitly addressed methodological issues related to linking household and provider datasets. A summary of key findings and needs for further research is presented in table 4 and discussed below.

-TABLE 4-

We identified a number of papers that critically assessed household and provider data needed for linking analyses. The limited existing data on respondent-reported care-seeking suggest respondents can identify sources of care if not individual healthcare worker cadre, but additional validation in various settings and service areas, such as postnatal care, would be informative. Further, it is essential to ensure that categorization of sources of care in household surveys align with the categories used in provider assessments to facilitate linking datasets. The validity of household survey data for estimating populations in need was more variable. While some populations in need can be clearly defined, others, particularly those requiring symptom-derived diagnoses based on respondent report, have demonstrated potential for bias. Additional work is needed to explore alternative methods for identifying populations in need in population-based data collection.

The content and construction of provider quality indices was highly variable across publications, but largely derived from facility surveys and was informed by international guidelines or recommendations. Methods for collecting provider quality have a number of limitations, and no single method perfectly encompasses all aspects of care [71]. The review found a lack of agreement between measures of quality derived through various means of collection. Overall, there was little empirical data supporting association between structural quality and process quality, and measures of quality and appropriate care or good health outcomes, although the number of reviewed studies was very limited. However, as articulated by Nguhui and colleagues, there is need to consider quality indicators’ “intrinsic value as levers for management action” and application to policy decision-making in addition to their ability to capture or predict associated health gain [36]. Additional research is needed in the short term to develop and evaluate new quality indices utilizing existing data sources (e.g., facility surveys, HMIS, and medical records) with an aim of identifying a standardized approach for selecting, combining, and interpreting indicators that reflect aspects of provider quality necessary for delivering appropriate, respectful, and effective care. Longer term, substantial effort is needed to strengthen or adapt existing
mechanisms or develop alternative methods for collecting provider quality indicators that can produce timely and informative estimates for tracking effective coverage of key interventions.

A handful of studies addressed the influence of the design of common data sources on linking analyses, including the impact of imprecise household GIS data, provider sampling frame and sampling design, and estimate stability. However, there was a lack of concrete evidence around the impact of these factors on linked effective coverage estimates. Explicitly evaluating the impact of imprecise household location, sampling design, and temporal gaps between measures within the context of effective coverage estimation would be informative. Mixed results on the inclusion of non-facility providers in provider assessments for effective coverage estimation emphasize the need to empirically assess the utilization and service quality of non-facility providers in a given setting prior to conducting a linking analysis. Although data related to impact on effective coverage estimation were limited, small samples of client-staff observations, sampling of facilities, and temporal gaps between household and provider data have the potential to bias estimates. The available data suggest that developing and testing alternative means of sampling health providers could improve the validity of linked estimates of effective coverage, including evaluating joint sampling approaches proposed by Measure Evaluation [59] or used by other data collection mechanisms such as PMA2020 and the India District Level Household and Facility Survey. No papers effectively addressed statistical concerns in combining household and provider data sources. There is a need to develop and test approaches for estimating uncertainty around linked effective coverage estimates.

The most consistent evidence found through the review was around methods for combining data sets. Three papers compared ecological and exact match linking and reported that ecological linking produced similar estimates to exact-match linking under certain conditions. The agreement between the three publications that compared exact-match and ecological linking is promising. Exact-match linking is considered the most precise method for generating linked estimates; however, ecological linking is often more feasible because it does not require information on exact source of care or data on all providers. The papers further point to the need to maintain data on type of provider from which care was sought or the relative volume of patients seen by providers in order to generate valid estimates of effective coverage. All three studies were conducted in rural sub-Saharan Africa in settings with high utilization of public sector health facilities; additional studies evaluating the performance of these methods in settings with a more diverse healthcare landscape would be informative. Other papers evaluated ecological linking approaches and found similar estimates of access to care or effective coverage using different approaches for assessing geographic proximity, although the ability of methods to capture true source of care was more variable. External to this review, additional data suggest individuals may not always utilize the closest source of care and may bypass providers in favor of providers offering better care [35,72]. These findings along with the analyses comparing exact-match and ecological linking approaches emphasize the need to carefully select methods for performing ecological linking and to control for true care-seeking behavior as much as possible by accounting for the type of provider from which care was sought or weighting by utilization in linking analyses.

Evidence across the review demonstrates the need for careful choice of methods, data sources, and indicators when conducting studies or analyses to link household and provider data for effective coverage estimation. An exploration of the precise effect of setting characteristics, such as variation in provider quality, on effective coverage estimates is needed to guide decision-making in the selection of
linking methods. Once more of these issues have been evaluated, there will be a need for additional tools and guidance to facilitate use of these methods.

The review was limited by the diversity of terminology and fields related to the linking methodology. However, the use of multiple search strategies minimized likelihood of overlooking relevant publications. Additionally, the diversity of fields, approaches, and questions made it difficult to summarize the findings neatly, emphasizing the need for communication between researchers, more standard terminology, and, ideally, a cohesive research strategy going forward.

CONCLUSIONS

Linking household and healthcare provider data is a promising approach that leverages existing data sources to generate more informative estimates of intervention coverage and care. These methods can potentially address limitations of both household and provider surveys to generate population-based estimates that reflect not only use of services, but also the content and quality of care received and the potential for health benefit. However, there is need for additional research to develop evidence-based, standardized best practices for these analyses. The most pressing priorities identified in this review are:

1) for those collecting data from health systems to explore methods to strengthen existing provider data collection mechanisms and promote temporal and geographic alignment with population-based measures, 2) for those collecting population-based data to address validity of self-reported intervention need and ensure indicators of access and utilization of care are measured to facilitate linking analyses, and 3) for those conducting linked analyses to standardize approaches for generating and interpreting effective coverage indicators, including sources of uncertainty, to ensure we are producing evidence that is harmonized, informative, and actionable for governments and valid for monitoring population health globally.
Author contributions: Conceived of the study design: EC MM. ICMJE criteria for authorship met: EC HL TM AA MM. Agree with manuscript and conclusions: EC HL TM AA MM. Conducted review: EC. Drafted paper: EC. All authors read, edited, and approved the manuscript.

Competing Interests: We declare no competing interests in accordance with ICMJE Conflict of Interest Guidelines.

Funding: This work was supported by the Improving Coverage Measurement grant [OPP1172551] from the Bill & Melinda Gates Foundation. The funders did not have any role in the design of the study and collection, analysis, and interpretation of data or in writing the manuscript.

Data Sharing: As a review article, this article reports data from previously published studies.

Ethics Approval: Ethical approval was not required as this review only included publicly available, published data.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.
REFERENCES

1. Ng M, Fullman N, Dieleman JL, et al. Effective coverage: a metric for monitoring Universal Health Coverage. *PLoS Med* 2014;11:e1001730. doi:10.1371/journal.pmed.1001730

2. Marsh AD, Muziga M, Diaz T, et al. Effective coverage measurement in maternal, newborn, child, and adolescent health and nutrition: progress, future prospects, and implications for quality health systems. *Lancet Glob Health* 2020;8:e730–6. doi:10.1016/S2214-109X(20)30104-2

3. Amouzou A, Leslie HH, Ram M, et al. Advances in the measurement of coverage for RMNCH and nutrition: from contact to effective coverage. *BMJ Global Health* 2019;e001297.

4. Bryce J, Arnold F, Blanc A, et al. Measuring Coverage in MNCH: New Findings, New Strategies, and Recommendations for Action. *PLOS Med* 2013;10:e1001423. doi:10.1371/journal.pmed.1001423

5. Do M, Micah A, Brondi L, et al. Linking household and facility data for better coverage measures in reproductive, maternal, newborn, and child health care: systematic review. *J Glob Health* 2016;6:020501. doi:10.7189/jogh.06.020501

6. Shengelia B, Tandon A, Adams OB, et al. Access, utilization, quality, and effective coverage: an integrated conceptual framework and measurement strategy. *Soc Sci Med* 1982 2005;61:97–109. doi:10.1016/j.socscimed.2004.11.055

7. Ayede AI, Kirollos A, Fowobaje KR, et al. A prospective validation study in South-West Nigeria on caregiver report of childhood pneumonia and antibiotic treatment using Demographic and Health Survey (DHS) and Multiple Indicator Cluster Survey (MICS) questions. *J Glob Health* 2018;8:020806. doi:10.7189/jogh.08-020806

8. Hazir T, Begum K, El Arifeen S, et al. Measuring coverage in MNCH: a prospective validation study in Pakistan and Bangladesh on measuring correct treatment of childhood pneumonia. *PLoS Med* 2013;10:e1001422. doi:10.1371/journal.pmed.1001422

9. D’Acremont V, Lengeler C, Genton B. Reduction in the proportion of fevers associated with Plasmodium falciparum parasitaemia in Africa: a systematic review. *Malar J* 2010;9:240. doi:10.1186/1475-2875-9-240

10. Walker CLF, Fontaine O, Black RE. Measuring Coverage in MNCH: Current Indicators for Measuring Coverage of Diarrhea Treatment Interventions and Opportunities for Improvement. *PLOS Med* 2013;10:e1001385. doi:10.1371/journal.pmed.1001385

11. Keenan K, Hipwell A, McAloon R, et al. Concordance between maternal recall of birth complications and data from obstetrical records. *Early Hum Dev* 2017;105:11–5. doi:10.1016/j.earlhumdev.2017.01.003

12. Zimmerman LA, Shiferaw S, Sem A, et al. Evaluating consistency of recall of maternal and newborn care complications and intervention coverage using PMA panel data in SNNPR, Ethiopia. *PLoS ONE* 2019;14. doi:10.1371/journal.pone.0216612
13 Chang KT, Mullany LC, Khatry SK, et al. Validation of maternal reports for low birthweight and preterm birth indicators in rural Nepal. *J Glob Health* 2018; 8.

14 Carter ED, Ndhlouvu M, Munos M, et al. Validity of maternal report of care-seeking for childhood illness. *J Glob Health* 2018; 8:010602. doi:10.7189/jogh.08.010602

15 Stanton CK, Rawlins B, Drake M, et al. Measuring Coverage in MNCH: Testing the Validity of Women’s Self-Report of Key Maternal and Newborn Health Interventions during the Peripartum Period in Mozambique. *PLoS ONE* 2013; 8:e60694. doi:10.1371/journal.pone.0060694

16 Blanc AK, Diaz C, McCarthy KJ, et al. Measuring progress in maternal and newborn health care in Mexico: validating indicators of health system contact and quality of care. *BMC Pregnancy Childbirth* 2016; 16:255. doi:10.1186/s12884-016-1047-0

17 Blanc AK, Warren C, McCarthy KJ, et al. Assessing the validity of indicators of the quality of maternal and newborn health care in Kenya. *J Glob Health* 2016; 6:010405. doi:10.7189/jogh.06.010405

18 Wang W, Mallick L, Allen C, et al. Effective coverage of facility delivery in Bangladesh, Haiti, Malawi, Nepal, Senegal, and Tanzania. Published Online First: 1 August 2018. https://dhsprogram.com/publications/publication-as65-analytical-studies.cfm (accessed 17 May 2019).

19 Hanefeld J, Powell-Jackson T, Balabanova D. Understanding and measuring quality of care: dealing with complexity. *Bull World Health Organ* 2017; 95:368.

20 Nickerson JW, Adams O, Attaran A, et al. Monitoring the ability to deliver care in low- and middle-income countries: a systematic review of health facility assessment tools. *Health Policy Plan* 2015; 30:675–86. doi:10.1093/heapol/czu043

21 Sheffel A, Karp C, Creanga AA. Use of Service Provision Assessments and Service Availability and Readiness Assessments for monitoring quality of maternal and newborn health services in low-income and middle-income countries. *BMJ Glob Health* 2018; 3. doi:10.1136/bmjgh-2018-001011

22 Maternal and Child Survival Program (MCSP). What Data on Maternal and Newborn Health Do National Health Management Information Systems Include? 2018. https://www.mcspprogram.org/resource/what-data-on-maternal-and-newborn-health-do-national-health-management-information-systems-include/ (accessed 20 May 2019).

23 Diamond-Smith N, Sudhinaraset M, Montagu D. Clinical and perceived quality of care for maternal, neonatal and antenatal care in Kenya and Namibia: the service provision assessment. *Reprod Health* 2016; 13:92. doi:10.1186/s12978-016-0208-y

24 Larson E, Hermosilla S, Kimweri A, et al. Determinants of perceived quality of obstetric care in rural Tanzania: a cross-sectional study. *BMC Health Serv Res* 2014; 14:483. doi:10.1186/1472-6963-14-483

25 Hoogenboom G, Thwin MM, Velink K, et al. Quality of intrapartum care by skilled birth attendants in a refugee clinic on the Thai-Myanmar border: a survey using WHO Safe Motherhood Needs Assessment. *BMC Pregnancy Childbirth* 2015; 15:17. doi:10.1186/s12884-015-0444-0
26 Nesbitt RC, Lohela TJ, Manu A, et al. Quality along the Continuum: A Health Facility Assessment of Intrapartum and Postnatal Care in Ghana. *PLOS ONE* 2013;8:e81089. doi:10.1371/journal.pone.0081089

27 Osen H, Chang D, Choo S, et al. Validation of the World Health Organization tool for situational analysis to assess emergency and essential surgical care at district hospitals in Ghana. *World J Surg* 2011;35:500–4. doi:10.1007/s00268-010-0918-1

28 Hrisos S, Eccles MP, Francis JJ, et al. Are there valid proxy measures of clinical behaviour? a systematic review. *Implement Sci* 2009;4:37. doi:10.1186/1748-5908-4-37

29 Peabody JW, Luck J, Glassman P, et al. Comparison of Vignettes, Standardized Patients, and Chart Abstraction: A Prospective Validation Study of 3 Methods for Measuring Quality. *JAMA* 2000;283:1715–22. doi:10.1186/jama.283.13.1715

30 Davis DA, Mazmanian PE, Fordis M, et al. Accuracy of Physician Self-assessment Compared With Observed Measures of Competence: A Systematic Review. *JAMA* 2006;296:1094–102. doi:10.1001/jama.296.9.1094

31 Carter ED, Ndhlouvu M, Eisele TP, et al. Evaluation of methods for linking household and health care provider data to estimate effective coverage of management of childhood illness: results of a pilot study in Southern Province, Zambia. *J Glob Health* 2018;8:010607. doi:10.7189/jogh.08.010607

32 Wilunda C, Oyerinde K, Putoto G, et al. Availability, utilisation and quality of maternal and neonatal health care services in Karamoja region, Uganda: a health facility-based survey. *Reprod Health* 2015;12:30. doi:10.1186/s12978-015-0018-7

33 Marchant T, Tilley-Gyado RD, Tessema T, et al. Adding Content to Contacts: Measurement of High Quality Contacts for Maternal and Newborn Health in Ethiopia, North East Nigeria, and Uttar Pradesh, India. *PLOS ONE* 2015;10:e0126840. doi:10.1371/journal.pone.0126840

34 Mboya D, Mshana C, Kessy F, et al. Embedding systematic quality assessments in supportive supervision at primary healthcare level: application of an electronic Tool to Improve Quality of Healthcare in Tanzania. *BMC Health Serv Res* 2016;16:578. doi:10.1186/s12913-016-1809-4

35 Kanyangarara M, Munos MK, Walker N. Quality of antenatal care service provision in health facilities across sub-Saharan Africa: Evidence from nationally representative health facility assessments. *J Glob Health* 2017;7:021101. doi:10.7189/jogh.07.021101

36 Nguhiu PK, Barasa EW, Chuma J. Determining the effective coverage of maternal and child health services in Kenya, using demographic and health survey data sets: tracking progress towards universal health coverage. *Trop Med Int Health* 2017;22:442–53. doi:10.1111/tmi.12841

37 Munos M, Maiga A, Do M, et al. Linking household survey and health facility data for effective coverage measures: a comparison of ecological and individual linking methods using the Multiple Indicator Cluster Survey in Côte d’Ivoire. *J Glob Health* 2018;8.
38 Leslie HH, Sun Z, Kruk ME. Association between infrastructure and observed quality of care in 4 healthcare services: A cross-sectional study of 4,300 facilities in 8 countries. *PLoS Med* 2017;14:e1002464. doi:10.1371/journal.pmed.1002464

39 Willey B, Waiswa P, Kajjo D, et al. Linking data sources for measurement of effective coverage in maternal and newborn health: what do we learn from individual- vs ecological-linking methods? *J Glob Health* 2018;8:010601. doi:10.7189/jogh.08.010601

40 Gabrysch S, Simushi V, Campbell OMR. Availability and distribution of, and geographic access to emergency obstetric care in Zambia. *Int J Gynecol Obstet* 2011;114:174–9. doi:10.1016/j.ijgo.2011.05.007

41 Lozano R, Soliz P, Gakidou E, et al. Benchmarking of performance of Mexican states with effective coverage. *Lancet Lond Engl* 2006;368:1729–41. doi:10.1016/S0140-6736(06)69566-4

42 Sheffel A. Association between Antenatal Care Facility Readiness and Provision of Care at the Individual and Facility Level in Haiti, Malawi, and Tanzania. 2018.

43 Fisseha G, Berhane Y, Worku A, et al. Quality of the delivery services in health facilities in Northern Ethiopia. *BMC Healh Serv Res* 2017;17:187. doi:10.1186/s12913-017-2125-3

44 Mallick L, Wang W, Temsah G. A comparison of summary measures of quality of service and quality of care for family planning in Haiti, Malawi, and Tanzania. Published Online First: 1 August 2017.https://dhsprogram.com/publications/publication-mr20-methodological-reports.cfm (accessed 17 May 2019).

45 Jackson EF, Siddiqui A, Gutierrez H, et al. Estimation of indices of health service readiness with a principal component analysis of the Tanzania Service Provision Assessment Survey. *BMC Healh Serv Res* 2015;15:536. doi:10.1186/s12913-015-1203-7

46 Leslie HH, Zhou X, Spiegelman D, et al. Health system measurement: Harnessing machine learning to advance global health. *PLOS ONE* 2018;13:e0204958. doi:10.1371/journal.pone.0204958

47 Kruk ME, Chukwuma A, Mbaruku G, et al. Variation in quality of primary-care services in Kenya, Malawi, Namibia, Rwanda, Senegal, and the United Republic of Tanzania. *Bull World Healh Organ* 2017;95:408–18. doi:10.2471/BLT.16.175869

48 Zurovac D, Guintran J-O, Donald W, et al. Health systems readiness and management of febrile outpatients under low malaria transmission in Vanuatu. *Malar J* 2015;14:489. doi:10.1186/s12936-015-1017-4

49 Akachi Y, Kruk ME. Quality of care measuring a neglected driver of improved health. *Bull World Healh Organ* 2017;95:465–72. doi:10.2471/BLT.16.180190

50 Leslie HH, Fink G, Nsona H, et al. Obstetric Facility Quality and Newborn Mortality in Malawi: A Cross-Sectional Study. *PLoS Med* 2016;13:e1002151. doi:10.1371/journal.pmed.1002151
51 Leegwater A, Wong W, Avila C. A concise, health service coverage index for monitoring progress towards universal health coverage. *BMC Health Serv Res* 2015;15:230. doi:10.1186/s12913-015-0859-3

52 Perez-Haydrich C, Warren JL, Burgert CR, et al. Guidelines on the use of DHS GPS data. Published Online First: 2013. https://dhsprogram.com/publications/publication-SAR8-Spatial-Analysis-Reports.cfm (accessed 14 Sep 2018).

53 FAQ - UNICEF MICS. http://mics.unicef.org/faq (accessed 19 Jun 2019).

54 Bliss RL, Katz JN, Wright EA, et al. Estimating Proximity to Care: Are straight line and zipcode centroid distances acceptable proxy measures? *Med Care* 2012;50:99–106. doi:10.1097/MLR.0b013e31822944d1

55 Jones SG, Ashby AJ, Momin SR, et al. Spatial implications associated with using Euclidean distance measurements and geographic centroid imputation in health care research. *Health Serv Res* 2010;45:316–327.

56 Healy MA, Gilliland JA. Quantifying the magnitude of environmental exposure misclassification when using imprecise address proxies in public health research. *Spat Spatio-Temporal Epidemiol* 2012;3:55–67. doi:10.1016/j.sste.2012.02.006

57 Nesbitt RC, Gabrysch S, Laub A, et al. Methods to measure potential spatial access to delivery care in low- and middle-income countries: a case study in rural Ghana. *Int J Health Geogr* 2014;13:25. doi:10.1186/1476-072X-13-25

58 Skiles MP, Burgert CR, Curtis SL, et al. Geographically linking population and facility surveys: methodological considerations. *Popul Health Metr* 2013;11:14. doi:10.1186/1478-7954-11-14

59 Turner A, Angeles G, Tsui A, et al. Sampling Manual for Facility Surveys for Population, Maternal Health, Child Health and STD Programs in Developing Countries, July 2001 — MEASURE Evaluation Manual Series, No. 3. 2001. https://www.measureevaluation.org/resources/publications/ms-01-03 (accessed 17 May 2019).

60 Baker U, Peterson S, Marchant T, et al. Identifying implementation bottlenecks for maternal and newborn health interventions in rural districts of the United Republic of Tanzania. *Bull World Health Organ* 2015;93:380–9. doi:10.2471/BLT.14.141879

61 Marchant T, Nathan R, Jones C, et al. Individual, facility and policy level influences on national coverage estimates for intermittent preventive treatment of malaria in pregnancy in Tanzania. *Malar J* 2008;7:260. doi:10.1186/1475-2875-7-260

62 Winter R, Wang W, Florey L, et al. Levels and Trends in Care Seeking for Childhood Illness in USAID MCH Priority Countries. *DHS Comparative Reports No. 38*. Rockville, MD, USA: ICF International 2015.

63 Wang W, Soumya A, Wang S, et al. Levels and Trends in the Use of Maternal Health Services in Developing Countries. *DHS Comparative Reports No. 26*. Calverton, MD, USA: ICF Macro 2011.
64 Noor AM, Amin AA, Gething PW, et al. Modelling distances travelled to government health services in Kenya. *Trop Med Int Health* 2006;11:188–96. doi:10.1111/j.1365-3156.2005.01555.x

65 Tanser F, Gisbersen B, Herbst K. Modelling and understanding primary health care accessibility and utilization in rural South Africa: An exploration using a geographical information system. *Soc Sci Med* 2006;63:691–705. doi:10.1016/j.socscimed.2006.01.015

66 Delamater PL, Shortridge AM, Kilcoyne RC. Using floating catchment area (FCA) metrics to predict health care utilization patterns. *BMC Health Serv Res* 2019;19:144. doi:10.1186/s12913-019-3969-5

67 Tsoka JM, Le Sueur D. Using GIS to measure geographical accessibility to primary health care in rural South Africa: research in action. *South Afr J Sci* 2004;100:329–30.

68 Gething PW, Noor AM, Zurovac D, et al. Empirical modelling of government health service use by children with fevers in Kenya. *Acta Trop* 2004;91:227–37. doi:10.1016/j.actatropica.2004.05.002

69 Tanser F, Hosegood V, Benzler J, et al. New approaches to spatially analyse primary health care usage patterns in rural South Africa. *Trop Med Int Health* 2001;6:826–38. doi:10.1046/j.1365-3156.2001.00794.x

70 Oehlert GW. A Note on the Delta Method. *Am Stat* 1992;46:27–9. doi:10.1080/00031305.1992.10475842

71 Brook RH, McGlynn EA, Cleary PD. Measuring Quality of Care. *N Engl J Med* 1996;335:966–70. doi:10.1056/NEJM199609263351311

72 Akin JS, Hutchinson P. Health-care facility choice and the phenomenon of bypassing. *Health Policy Plan* 1999;14:135–51.
Table 1. Summary of publications included in the review and contribution to the literature

AUTHOR	YEAR	COUNTRY	KEY METHOD CONTRIBUTION
SUITABILITY OF HOUSEHOLD AND PROVIDER DATA FOR LINKING ANALYSES			
Ayede [7]	2018	Nigeria	• Accuracy of maternal report of pneumonia symptoms measured through household survey
Blanc [16]	2016	Mexico	• Accuracy of maternal report of delivery / immediate PNC attendant measured through household survey
Blanc [17]	2016	Kenya	• Accuracy of maternal report of delivery / immediate PNC attendant measured through household survey
Carter [14]	2018	Zambia	• Accuracy of maternal report of care-seeking for child illness measured through household survey
Chang [13]	2018	Nepal	• Accuracy of maternal report of birthweight and preterm birth measured through household survey
D’Acremont [9]	2010	SSA	• Reduced proportion of fever cases that are malaria
Hazir [8]	2013	Pakistan & Bangladesh	• Accuracy of maternal report of pneumonia symptoms measured through household survey
Keenan [11]	2017	US	• Accuracy of maternal recall of birth complications
Shengela [6]	2005	-	• Effect of true versus perceived intervention need on effective coverage estimation
Stanton [15]	2013	Mozambique	• Accuracy of maternal report of place of delivery measured through household surveys
Walker [10]	2013	-	• Issues with measurement of child diarrheathrough household surveys
Wang [18]	2018	Multiple Regions	• Issues with provider categories and alignment between DHS and SPA surveys
Zimmerman [12]	2019	Ethiopia	• Reliability of maternal report of maternal and newborn birth complications
SUITABILITY OF HOUSEHOLD AND PROVIDER DATA FOR LINKING ANALYSES			
Akachi [49]	2017	-	• Need for global benchmarks for quality
Carter [31]	2018	Zambia	• Quality score for child health effective coverage
Davis [30]	2006	High-income countries	• Agreement between provider self-assessment and observed quality
Diamond-Smith [23]	2016	Kenya & Namibia	• Association between maternal perception of care and measured structural and process quality
Fisseha [43]	2017	Ethiopia	• Internal consistency of structural and process quality indicator
Gabrysch [40]	2011	Zambia	• Quality score for labor and delivery effective coverage
Hoogenboom [25]	2015	Thai-Myanmar Border	• Agreement between facility records and observed care
Hrisos [28]	2009	High-income countries	• Systematic review of agreement between observed quality of care and provider self-report, patient-report, and/or chart review
Jackson [45]	2015	Tanzania	• PCA to reduce quality index
Kanyangarara [35]	2017	SSA	• Quality score for ANC effective coverage
Kruk [47]	2017	SSA	• Association between structural and process quality
Larson [24]	2014	Tanzania	• Association between maternal perception of care and service availability and respect
Leegwater [51]	2015	-	• Vignettes for measuring quality
Leslie [50]	2016	Malawi	• Association between UHC index and infant mortality and life expectancy at national level
Leslie [38]	2017	SSA	• Quality score for ANC, labor and delivery, sick child, and family planning effective coverage
Author	Year	Region(s)	Focus
Leslie	2018	Multiple Regions	Association between structural and process quality
Lozano	2006	Mexico	Performance of approaches for generating service readiness indices
Mallick	2017	Haiti, Malawi & Tanzania	Comparison of measures of family planning quality
Marchant	2015	Ethiopia, Nigeria, India	Measurement of quality using "last delivery module"
Mboya	2016	Tanzania	mHealth tool to measure quality
MCSP	2018	Multiple Regions	Availability and quality of data captured through HMIS
Munos	2018	Cote D’Ivoire	Quality score for ANC, labor and delivery, PNC, and child health effective coverage
Nesbitt	2013	Ghana	Quality score for labor and delivery and PNC effective coverage
Nguhuu	2017	Kenya	Quality score for ANC, labor and delivery, sick child, and family planning effective coverage
Nickerson	2015	Multiple Regions	Comparison of data collected through health facility assessments
Osen	2011	Ghana	Agreement between provider reported and observed surgical service quality
Peabody	2000	US	Agreement between vignettes, chart abstraction, and simulated client measures
Sheffel	2018	Multiple Regions	Summary of quality data collected through SPA and SPA
Sheffel	2018	Haiti, Malawi, Tanzania	Association between structural and process quality
Willey	2018	Uganda	Quality score for labor and delivery and newborn care effective coverage
Wilunda	2015	Uganda	Quality score for maternal and neonatal care effective coverage
Zurovac	2015	Vanuatu	Poor association between structural quality and clinical care in fever management

IMPLICATIONS OF DESIGN OF EXISTING HOUSEHOLD AND PROVIDER DATA SOURCES COMMONLY USED IN LINKING ANALYSES
- **Household data**
 - Bliss [54] 2012 USA | Comparison of distance using centroid versus true location
 - Healy [56] 2012 Canada & UK | Comparison of distance using centroids of varying areal groupings
 - Jones [55] 2010 US | Comparison of distance using zip-code centroid versus true household location
 - Nesbitt [57] 2014 Ghana | Comparison of straight-line distance, network distance, raster and network-based travel time distance measures using village versus compound centroid
 - Perez-Heydrich [52] 2013 - | Effect of DHS cluster displacement on distance measures
 - Skiles [58] 2013 Rwanda | Effect of DHS cluster displacement on estimates of service environment

IMPLICATIONS OF DESIGN OF EXISTING HOUSEHOLD AND PROVIDER DATA SOURCES COMMONLY USED IN LINKING ANALYSES
- **Provider data**
 - Carter [31] 2018 Zambia | Effect of excluding non-facility providers from sampling frame on effective coverage estimates
 - Munos [37] 2018 Cote d’Ivoire | Effect of excluding non-facility providers from sampling frame on effective coverage estimates
 - Skiles [58] 2013 Rwanda | Effect of facility sampling on estimates of service environment
 - Turner [59] 2001 - | Limitations of SPA sampling design
 - Approach for joint sampling of households and facilities for linking analyses

IMPLICATIONS OF DESIGN OF EXISTING HOUSEHOLD AND PROVIDER DATA SOURCES COMMONLY USED IN LINKING ANALYSES
- **Survey timing**
| Author | Year | Location | Purpose |
|--------------|------|-------------------|---|
| Baker [60] | 2005 | Uganda & Tanzania | Stability of facility diagnostic capacity over time |
| Marchant [61]| 2008 | Tanzania | Stability of IPTp stocks |
| Wang [63] | 2011 | Multiple Regions | Stability of maternal health care-seeking behaviors measured through |
| | | | household survey over time |
| Willey [39] | 2018 | Uganda | Stability of facility infrastructure indicators for labor, delivery, and |
| | | | newborn care |
| Winter [62] | 2015 | Multiple Regions | Stability of care-seeking for child illness behaviors measured through |
| | | | household survey over time |

IMPACT OF CHOICE OF METHOD FOR COMBINING HOUSEHOLD AND PROVIDER DATA

- Comparison of exact-match and ecological linking methods for estimating effective coverage

Author	Year	Location	Purpose
Carter [31]	2018	Zambia	Comparison of exact-match and ecological linking methods in estimating
			effective coverage in sick child care
Munos [37]	2018	Cote d’Ivoire	Comparison of exact-match and ecological linking methods in estimating
			effective coverage in ANC, labor and delivery, PNC, and sick child care
Willey [39]	2017	Uganda	Comparison of exact-match and ecological linking methods in estimating
			effective coverage in ANC, labor and delivery, PNC, and sick child care

IMPACT OF CHOICE OF METHOD FOR COMBINING HOUSEHOLD AND PROVIDER DATA

- Performance of measures of geographic proximity for ecological linking

Author	Year	Location	Purpose
Carter [31]	2018	Zambia	Comparison of true-source of care for child illness to straight-line and
			road distance measures
Delamater [66]	2019	US	Comparison of FCA, simple distance, and Huff distance measure against
			true utilization patterns
Gething [68]	2004	Kenya	Comparison of Theissen boundaries and true utilization patterns
Munos [37]	2018	Cote d’Ivoire	Comparison of true-source of care for ANC, labor and delivery, PNC, and
			sick child illness to straight-line and road distance measures
Noor [64]	2006	Kenya	Comparison of true-source of care for child fever to closest by
			Euclidian and road distance
Tanser [69]	2001	South Africa	Comparison of Theissen boundaries and true utilization patterns
Tanser [65]	2006	South Africa	Comparison of typical source of care to closest by travel time
Tsoka [67]	2004	South Africa	Comparison of Theissen boundaries and true utilization patterns

IMPACT OF CHOICE OF METHOD FOR COMBINING HOUSEHOLD AND PROVIDER DATA

- Statistical challenges

Author	Year	Location	Purpose
Wang [18]	2018	Multiple Regions	Use of Delta method for estimating effective coverage variance
Willey [39]	2018	Uganda	Use of Delta method for estimating effective coverage variance
Table 2. Table of linking approaches

APPROACH	METHOD
EXACT-MATCH	Link to specific reported source of care
ECOLOGICAL	Link to one or more providers based on geographic proximity or administrative association
Geographic Proximity	
• Straight-line / Euclidean distance	Closest by absolute (crow-flies) distance
• Manhattan distance	Closest by sum of horizontal and vertical distance between points on a grid (blockwise)
• Minokowski distance	Closest by weighted average of Euclidean and Manhattan distance
• Road Distance	Closest by distance along a road (line and joint) network
• Raster-based travel time	Closest by travel time between points on a continuous grid surface with variable transit speed coefficients in each cell
• Network-based travel time	Closest by travel time along a road network accounting for variable speed and road conditions
• Buffer	All providers within a defined radius from household
• Theissen Polygon	Define catchment boundaries based on optimal distance between known providers
• Kernel Density Estimation	Define relative draw of providers over geographic area weighted by quality
• Interpolated Surface	Define continuous surface of provider access or quality by smoothing between provider point data
• Floating Catchment Area	Define catchments for known providers allowing for cross-border use (catchment overlap) and distance decay
Administrative	All providers within administrative unit boundaries
Table 3. Exact versus ecological linking estimates for select indicators across studies

	Willey Labor & Delivery Structural QoC	Carter Child Health Urban Structural QoC	Carter Child Health Rural Structural QoC	Munos Labor & Delivery Structural QoC	Munos Child Health Process QoC	Munos Labor & Delivery Structural QoC	Munos Child Health Structural QoC	Munos Child Health Process QoC									
	% (95% CI)	% Diff															
Exact-match	9.86 (3.2-16.5)	REF	49 (43.6-54.5)	REF	60.3 (55.6-65.1)	REF	37.2 (30.5-43.9)	REF	40.1 (32.9-47.3)	REF	22.9 (18.2-27.5)	REF	16.8 (12.8-20.8)	REF			
Ecological - Geographic																	
Absolute Distance	36.5 (29.5-43.5)	-1.9%	39.8 (32.2-47.5)	-0.7%	18.2* (12.3-24.1)	-20.5%	14.3 (9.1-19.6)	-14.9%									
Absolute Distance & Provider Category	49.1 (43.7-54.6)	0.2%	61.1 (56.3-65.9)	1.3%	37 (30.0-44.0)	-0.5%	39.6 (31.2-47.1)	-1.2%	20.8* (16.1-25.4)	39.8 (32.2-47.5)	-20.5%	14.3 (9.1-19.6)					
Road Distance	36.8 (30.0-44.0)	-1.1%	40.4 (32.6-48.1)	0.7%	16* (10.9-21.1)	-30.1%	13.8 (8.5-19.1)	-17.9%									
Road Distance & Provider Category	48.7 (43.2-54.1)	-0.6%	58.8 (54.1-63.5)	-2.5%	37.5 (30.4-44.6)	0.8%	40.2 (32.5-47.9)	0.2%	20.2* (16.0-24.4)	-11.8%	16.5 (12.3-21.8)	-1.8%					
Radius 5 km & Provider Category	49.2 (43.7-54.7)	0.4%	59.4 (54.8-64.1)	-1.5%													
Radius 10 km – Unweighted	35.3* (29.3-41.4)	-5.1%	39.1 (32.0-46.2)	-2.5%	18.8* (14.9-22.7)	-17.9%	15.7 (12.4-19.1)	-6.5%									
Radius 10 km – Weighted	37.5 (30.6-44.4)	0.8%	39.8 (32.5-47.1)	-0.7%	19.1* (15.1-23.0)	-16.6%	15.6 (12.1-19.1)	-7.1%									
KDE - Single	71.8* (69.3-74.2)	46.5%	55* (50.4-59.6)	-8.8%													
KDE - Aggregate	74.3* (73.2-75.5)	51.6%	54.9* (50.4-59.5)	-9.0%													
Ecological - Administrative																	
Facility Catchment & Provider Category	49.1 (43.6-54.6)	0.2%	59.8 (55.1-64.5)	-0.8%													
Sub-District & Provider Category	49.4 (43.9-54.9)	0.8%	57.9 (53.4-62.4)	-4.0%													
District - Unweighted	4.7* (21.4-31.7)	-52.5%															
District - Unweighted & Provider Category	11.0 (3.8-18.2)	11.8%															
District - Weighted	37.9 (31.3-44.4)	1.9%	40.7 (33.7-47.7)	1.5%	19.7* (16.1-23.2)	-14.0%	21.2* (17.4-25.0)	26.2%									
District - Weighted & Provider Category	38.8* (31.9-45.7)	4.3%	40.8 (33.6-48.0)	1.7%	21.1* (16.4-25.8)	-7.9%	17.1 (13.1-21.2)	1.8%									
Ecological linking restricted to only providers within the category, type of outlet, managing authority, and facility level reported by survey respondent.

Simple average of provider quality scores applied, not accounting for differentials in patient volume.

Provider quality scores weighted by provider utilization volume for relevant health area.
Table 4. Summary of evidence related to methodological issues for linking analyses and related needs for future research

Suitability of household and provider data for linking analyses
- Need valid data on target population for the intervention, and suitable data on service contact/care-seeking
- Need provider data reflective of select aspects of quality of care, standardized indices, and clear interpretation of measures

Issue	Evidence	Action
How valid are data on target population for interventions?	• Symptom/diagnosis-based conditions may be biased • Rare conditions are not captured with sufficient sample	• Explore alternative methods for defining population in need (e.g., biomarkers, Bayesian modeling of disease probability)
How valid are data on care-seeking?	• Limited data suggest respondent able to identify type of provider but not type of health worker • Inconsistent and sometimes poorly defined provider categories	• Align categories of care across data collection tools • Validate care-seeking in more settings/hotline areas
How are quality of care data being collected and what are the limitations of these methods?	• Mostly through health facility surveys • HMIS data not widely used — limited QoC data collected • Alternative methods (record review, provider or client report, etc) correlate poorly with provision of services/process quality	• Assess validity of existing QoC measurement methods • Assess availability/usability of HMIS data for EC estimation • Develop and test new methods for assessing provision of care and experience of care
How are quality measures being constructed and what do we know about the performance of these indices?	• Mostly SPA / SARA structural data, limited indicators on provision or experience of care, EmONC signal functions • Variable set of indicators used based on guidelines and standards • Many methods for combining indicators have been tried • Handful of studies comparing methods produced conflicting results	• Develop standardized and validated summary QoC measures
How well do measures of quality track with each other, clinical quality and/or health benefit?	• Limited evidence of weak or no association between 1) structural and process quality, 2) experience of care and provision of care, 3) measured quality and clinical care / health outcomes	• Standardize methods and terminology for defining and interpreting QoC measures to more accurately reflect role in the coverage cascade

Implications of design of existing household and health provider data sources commonly used in linking analyses
- DHS / MICS household location unknown, cluster location displaced and may introduce imprecision into ecological linking analyses
- SPA / SARA often use sample of facilities and subsample of client-staff interactions that may not be representative of true service environment
- Household and provider surveys are sampled and conducted independently — data are typically temporally and geographically discordant

Issue	Evidence	Action
Does imprecise DHS/MICS household location data affect ecological linking results?	• Handful of studies suggest minimal effect on geolinking results	• Assess impact of household versus cluster centroid location versus displaced centroid in ecological linking analyses in multiple settings
How does SPA / SARA sampling design affect estimates?	• 2 studies suggest impact of excluding non-facility providers is context specific • Client-staff interactions sampled to be representative at same level as overall survey — not at facility level • One study showed sampling of facilities resulted in moderate misclassification of service environment across linking methods • Joint sampling method proposed in 2001 — over-sample providers around sampled household clusters	• Assess effect of provider sampling (vs census) on linked estimates • Assess effect of within-facility sampling of healthworkers and client-healthworker observations • Triangulate with other sources of facility data (e.g., HMIS) to take advantage of the greater detail of the SPA assessment with the bigger sample of the facility records • Account for uncertainty in estimates based on the
How stable are indicators over time?
- Studies demonstrate moderate indicator variability over months/years
- No studies directly related to effect on linking analyses
- Assess stability of key provider and household indicators
- Develop and test methods to account for unstable estimates, including more frequent data collection methods (e.g., through HMIS) if needed

Impact of choice of method for combining household and provider data
- Multiple approaches for combining data sets, each with strengths and limitations
- Exact-match linking based on specific source of care most precise, but ecological linking based on geographic proximity or administrative unit is more feasible

Issue	Evidence	Action
How do exact-match and ecological linking approaches compare?	3 studies found ecological methods produced estimates similar to exact-match under certain conditions in settings with high use of public providers	
- Restricting analyses by source of care category and/or weight by utilization volume improved agreement with exact-match | Assess performance of ecological methods in settings with greater variation in provider landscape, provider quality
- Define guidance, such as provider quality variation thresholds, for selection of linking method |
| How do different ecological linking methods and measures of geographic proximity perform? | Similar results using straight-line, road distance, and travel time
- Variable performance of ecological methods in identifying true source of care / reported category of care | Identify preferred measures of geographic proximity to use in linking analyses
- Create standard, accessible tools for conducting geolinking |
| What are the statistical challenges in combining data for effective coverage estimation? | Most analyses base estimates on household sampling error
- 2 papers used delta method, but no comparison to other methods | Develop approaches for estimating uncertainty around linked estimates |
Figure 1. PRISMA Flow Diagram
PRISMA 2009 Flow Diagram

Identification

Records identified through database searching
(n = 3055 Medline
n = 79 Carolina Pop Center
n = 4 Pop Health Metrics)

Additional records identified through other sources
(n = 12 DHS
n = 49 Do review
n = 32 Amouzou review)

Records after duplicates removed
(n = 3192)

Screening

3192 titles/abstracts screened

2974 records excluded

Eligibility

218 Full-text articles assessed for eligibility

170 full-text articles excluded, with reasons
(n = 6 conference abstract
n = 2 full text could not be found
n = 162 did not address methods or describe relevant measures)

48 Studies included in review

Included

62 Studies included in review

14 additional studies identified through snowball