Anti-immunoglobulin, Cytoplasmic Free Calcium, and Capping in B Lymphocytes

T. POZZAN, P. ARSLAN, R. Y. TSIEN, and T. J. RINK
Consiglio Nazionale delle Ricerche Unit for the Study of Mitochondria and Institute of General Pathology, University of Padova, Padova, Italy; and the Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, England

ABSTRACT This paper examines, in mouse spleen lymphocytes, the effect of anti-immunoglobulin (anti-Ig) on the cytoplasmic free calcium concentration, \([\text{Ca}^{2+}]_i\), measured with the fluorescent indicator quin2, and the relationship of \([\text{Ca}^{2+}]_i\) to the capping of surface Ig. Anti-Ig causes a rapid rise of \([\text{Ca}^{2+}]_i\), which precedes capping. Assuming that only those 40–50% of the cells which can bind anti-Ig (the B cells) undergo a \([\text{Ca}^{2+}]_i\) response, \([\text{Ca}^{2+}]_i\) in those cells approaches 500 nM. It declines to resting levels over many minutes, roughly paralleling the formation of caps. Part of the \([\text{Ca}^{2+}]_i\) signal is due to stimulated influx across the plasma membrane, since in Ca\(^{2+}\)-free medium, anti-Ig gives a smaller and shorter \([\text{Ca}^{2+}]_i\) rise. The amplitude of this reduced transient now varies inversely with quin2 content, as if some 0.25 mmol Ca per liter of cells was released into the cytoplasm from internal stores. These stores are probably sequestered in organelles since A23187 in Ca\(^{2+}\)-free medium also causes a transient \([\text{Ca}^{2+}]_i\) rise after which anti-Ig has no effect. These organelles seem not to be mitochondria because uncouplers have hardly any effect on \([\text{Ca}^{2+}]_i\).

Though anti-Ig normally raises \([\text{Ca}^{2+}]_i\), before causing capping, there seems to be no causal link between the two events. Cells in Ca\(^{2+}\)-free medium whose stores have been emptied by A23187, still cap with anti-Ig even though there is no \([\text{Ca}^{2+}]_i\), rise. Cells loaded with quin2 in the absence of external Ca\(^{2+}\) still cap anti-Ig normally even though their \([\text{Ca}^{2+}]_i\) remains steady at below 30 nM, four times lower than normal resting \([\text{Ca}^{2+}]_i\).

Capping of surface Ig represents a dramatic reorganization of membrane components apparently involving cytoskeletal elements and requiring metabolic energy (2, 12). Formation of caps is followed by contractile activity and cell motility. Rather little is known of how ligand binding stimulates these processes although changes in ion flux and potential difference across the plasma membrane play no essential part (7). Ca\(^{2+}\) ions are well known to trigger muscle contraction and are implicated in the regulation of various forms of nonmuscle motility, so it has been attractive to suppose that a rise in cytoplasmic free Ca\(^{2+}\) mediates the B cell response to anti-Ig (2). The evidence hitherto available is entirely indirect. It is generally agreed that external Ca\(^{2+}\) is not needed. The ionophore A23187, which in other cell types raises cytoplasmic free \([\text{Ca}^{2+}]_i\) and stimulates Ca\(^{2+}\)-activated processes, actually inhibits capping in B lymphocytes. However this inhibitory effect, like those of local anesthetics (5) and cis-unsaturated fatty acids (3), is at least in part explainable (10) by depletion of cellular ATP. Recently anti-Ig has been found to cause a rapid loss of \(^{45}\)Ca from mouse spleen cells (1). This efflux was interpreted as mobilization of Ca\(^{2+}\) from internal stores causing a rise in the level of free cytoplasmic Ca\(^{2+}\) and subsequent extrusion of the mobilized ions. There was no evidence that the Ca\(^{2+}\) movements caused capping but the correlations between the two were felt to suggest “that Ca\(^{2+}\) may have a physiological role in contractile dependent capping” (2).

In the present paper the intracellular Ca\(^{2+}\) indicator, quin2 (13, 14), has been used to assess more directly the importance of Ca\(^{2+}\) by monitoring and manipulating the cytoplasmic free Ca\(^{2+}\) concentration, \([\text{Ca}^{2+}]_i\), in mouse spleen lymphocytes. The changes in \([\text{Ca}^{2+}]_i\), brought about by anti-Ig on cap formation are analyzed and the effects of preventing such changes are examined.

MATERIALS AND METHODS

BALB/c mouse spleen lymphocytes and thymocytes were prepared as previously described (6–10) in HEPES-buffered culture medium, either H-MEM or RPMI-1640. Viability, assessed by eosin exclusion, exceeded 95%. B-cell enriched
were then washed and resuspended in ice-cold medium and fixed with formaldehyde. The anti-Ig used to cap spleen B cells was rabbit anti-mouse immunoglobulin G (RaMlg), sometimes labeled with fluorescein isothiocyanate, FITC-RaMlg, and sometimes unlabeled. Capping of FITC-RaMlg was run for 7 min at 37°C unless stated otherwise, and assessed after formaldehyde fixation, as previously described (3, 5, 10). When it was necessary to measure the effect of RaMlg on the quin2 signal, unlabeled RaMlg was used, since the fluorescein fluorescence of FITC-RaMlg would overwhelm that of the quin2. To assess cap formation such cells were washed in ice-cold medium and exposed in the cold to FITC goat anti-rabbit Ig antibody to locate the rabbit anti-mouse Ig on the cell surface. The cells were then washed and resuspended in ice-cold medium and fixed with formaldehyde. The rabbit anti-mouse antibodies were obtained from Miles-Yeda, Rehovot, Israel, and dialyzed against phosphate-buffered saline at pH 7.4 to remove preservatives. Fab2-RaMlg was prepared by reduction of the disulfide bond with 10 mM mercaptoethanol and treatment with iodoacetamide as described by Braun et al. (1). There was not sufficient final product to recchromatograph so there may have been some contamination with intact antibody. The FITC goat antibody was a kind gift from Dr. S. Sartore, University of Padua. The culture media came from Flow Laboratories (Irvine, Scotland), the A 23187 from Calbiochem, and FCCP (carbonylcyanide, p-trifluoromethoxyphenyl hydrazone) and oligomycin from Sigma Chemical Co. (Poole, England). Analytical grade chemicals were used throughout, where available.

RESULTS

Effects of RaMlg on [Ca^{2+}]i.

In resting splenocytes suspended in 1 mM Ca medium, the fluorescence of intracellular quin2 showed that it was roughly half Ca-saturated. The indicated basal [Ca^{2+}], ranged from 100 to 150 nM, very similar to levels found in mouse thymocytes (14). Fig. 1 shows the typical effect of 40 µg/ml of RaMlg, which increased the Ca-saturation of the quin2 from 50% to some 65% indicating a rise in [Ca^{2+}]. The response showed no measurable delay and reached a maximum within 1 min, and then slowly declined over 20 min almost to the resting level. The inset in Fig. 1 shows the time course of cap formation with the same concentration of RaMlg. Clearly the [Ca^{2+}]i rise preceded capping. Fig. 2 shows that the peak of the [Ca^{2+}]i response increased with RaMlg concentration up to 40 µg/ml and then plateaued. The speed of the [Ca^{2+}]i rise also increased with RaMlg concentration.

Table I summarizes experiments that examined the specificity of the quin2 response. Preimmune Ig was ineffective. The Fab2 fragment gave virtually the same response as the original RaMlg, indicating that direct interaction with the Fc receptor is not necessary. Fab2-RaMlg was almost without effect, suggesting that receptor cross-linking is required. The residual response may have been due to traces of intact antibody. The effect of RaMlg seems specific for B-cells. The quin2 responses from unfractionated spleen cell preparation, and one enriched in B-cells directly related to the percentage of Ig + ve cells. A thymocyte preparation, lacking B lymphocytes showed no quin2 response to RaMlg.

We have pointed out previously (13) that if subpopulations of cells respond in different ways, then the interpretation of a quin2 signal becomes more complicated. If, however, one assumes that a given proportion of the cells are unaffected while the rest have a uniform [Ca^{2+}]i change, one can calculate that change from the overall quin2 signal. With the mixed spleen cells it seems reasonable to suppose that only B-cells (those binding RaMlg) respond to RaMlg. We shall further assume that all B-cells respond, that the basal [Ca^{2+}]i is similar in all the cells, and that responsive and nonresponsive cell types have the same average dye content. Errors in these
assumptions will affect the quantitative estimates of B-cell
$[Ca^{2+}]$, but not the qualitative biological conclusions. Let x be
the fraction of B cells, i.e. those staining Ig$^+$. Define $[Ca^{2+}]_{stim}$
and F_{stim} as the $[Ca^{2+}]$, and fractional Ca-saturation of
the quin2 in those cells. Then,

$$F_{stim} = \frac{[Ca^{2+}]_{stim}/([Ca^{2+}]_{stim} + 115)}{1 - x}$$

because quin2 binds Ca$^{2+}$ with a 1:1 stoichiometry and an
effective dissociation constant $K_d \approx 115$ nM in an ionic
environment similar to that of cytoplasm (14). The fraction of
nonresponsive cells is $(1 - x)$. Let F_{rest} be the fractional
saturation of quin2 in those cells, assumed to be the same as all
the cells had before stimulation. Then the composite observed
Ca-saturation, F_{obs}, in the population exposed to RaMIg would
be $xF_{stim} + (1 - x)F_{rest}$. Solving for $[Ca^{2+}]_{stim}$, we find

$$[Ca^{2+}]_{stim} = 115 \frac{F_{obs} - (1 - x)F_{rest}}{x - F_{obs} + (1 - x)F_{rest}}$$

With this procedure one estimates that in Fig. 1 the B-cell
$[Ca^{2+}]$, rose from 115 nM to a peak of 470 nM.

**Effects of Removing External Ca$^{2+}$ and Varying
the Dye Content**

Fig. 3 shows that in Ca-free medium, RaMIg can still
produce some transient Ca$^{2+}$ response, which is therefore
attributed to triggered Ca$^{2+}$ release from intracellular stores.
Since this response is smaller and briefer than that seen with
normal external Ca$^{2+}$, e.g. in Fig. 1, RaMIg evidently also produces an increase in the Ca$^{2+}$ permeability of the plasma
membrane.

A release of Ca$^{2+}$ from internal stores is one condition in
which the presence of added intracellular Ca$^{2+}$ chelator is
expected (14) to significantly modify the $[Ca^{2+}]$, response. Fig.
3 illustrates this, showing the effect of RaMIg in Ca-free
medium on cells with two different quin2 loadings. In Fig. 3A
the cells had 1 mM quin2 and the $[Ca^{2+}]$ in the B cells is
calculated to have risen from 90 to 210 nM. With 3 mM quin2
in the cells in Fig. 3B, the change is only from 90 to 130 nM,
showing the greater Ca buffering damping the $[Ca^{2+}]$, transient.
From the quin2 content and the calculated $[Ca^{2+}]$, change in
the B cells one can obtain the amount of Ca$^{2+}$ buffered by the
quin2. This gives a minimum value for the size of the releasable
pool. Some will presumably be additionally taken up on native
Ca binding sites. For both sets of cells shown in Fig. 3, the
amount of Ca$^{2+}$ initially buffered on quin2, after addition of
RaMIg, is around 250 µmol per liter of cell water. It seems
likely that in unloaded cells the internal release of this much
Ca$^{2+}$ would transiently raise the $[Ca^{2+}]$, to considerably higher
levels. Indeed with quin2 loadings down to ~0.3 mM, the
$[Ca^{2+}]$, appear to peak at over 1 µM though the signals are
ooky and difficult to interpret quantitatively.

Even in the presence of 1 mM external Ca$^{2+}$, a $[Ca^{2+}]$, spike
which looks like release from internal stores can sometimes be
distinguished from a subsequent plateau which presumably
reflects a new balance point between increased plasma
membrane leak and pumping. Fig. 4A shows cells with a low quin2
loading, 0.7 mM. The initial transient after RaMIg corresponds
to >800 nM [Ca$^{2+}$], in the 58% B cells, but within 30 s this sags
back to a nearly steady level around 300 nM. If the quin2
loading is increased to 3 mM (Fig. 4B), the two components of
the signal are affected just as expected for one-shot release and
sustained influx/efflux balance respectively: the initial jump is
still rapid but much smaller, whereas the subsequent rise is
slowed but not reduced in final amplitude.

Effects of A23187

With 1 mM external Ca$^{2+}$, 10-20 nM A23187 elevated
splenocyte $[Ca^{2+}]$, to the micromolar range (experiments not
shown), just as seen with thymocytes (13, 14). In Ca-free
medium A23187 caused a transient rise in splenocyte $[Ca^{2+}]$, as
shown for instance in Fig. 5A, contrasting with minimal effects
A23187 releases Ca\(^{2+}\) sequestered within organelles. In Fig. 5A, it is seen if the internal stores revealed in Fig. 5A were only or even extruded the internally released \([\text{Ca}^{2+}]_i\). Reversing the order of cycling occurring with a similar time course might be confused with capping and give rise to ambiguities in interpretation. Key experiments were therefore repeated at 20°C, when capping is slower, but endocytosis is largely abolished. Fig. 8 shows that the rate and extent of RaMIg capping in quin2-loaded cells was indistinguishable from that of controls. Additionally, cells loaded and resuspended in Ca-free medium had a \([\text{Ca}^{2+}]_i\) below 30 nM, showed only a tiny rise on addition of RaMIg similar to that in Fig. 7, yet again capped normally.

Effects of Mitochondrial Poisons

Mitochondrial poisons had little effect on basal \([\text{Ca}^{2+}]_i\), but blocked the responses to RaMIg. Fig. 6A shows that in 1 mM Ca\(^{2+}\) medium an “uncoupling” level of FCCP had little short-term effect on \([\text{Ca}^{2+}]_i\). This suggests that the mitochondria contain little Ca\(^{2+}\) and that the intracellular stores must be in other organelles. However, subsequent addition of RaMIg was without effect, indicating that the normal \([\text{Ca}^{2+}]_i\) responses require metabolic energy. Fig. 6B shows a recording in Ca-free medium where oligomycin blocked the RaMIg response. Interestingly however, the slow decline in signal, normally seen in Ca-free medium and attributed to Ca extrusion, was still present. Though FCCP releases mitochondrial Ca\(^{2+}\) while oligomycin does not, the two agents had similar effects to each other both with and without external Ca\(^{2+}\), suggesting that their common mode of action was ATP depletion.

The Relationship between \([\text{Ca}^{2+}]_i\), and Capping

From data such as that in Fig. 1 it is clear that cap formation is not primarily responsible for the \([\text{Ca}^{2+}]_i\) rise. Table II summarizes experiments which show that the rise of \([\text{Ca}^{2+}]_i\) is not necessary for capping to occur since RaMIg induced normal capping in three conditions which greatly attenuated or abolished the \([\text{Ca}^{2+}]_i\) transient. First, cells loaded with relatively high quin2 and resuspended in Ca-free solution as in Fig. 3B were able to cap normally even though the \([\text{Ca}^{2+}]_i\) rise was greatly attenuated. Next, cells loaded with quin2 in Ca-free culture medium and resuspended in Ca-free saline. This treatment greatly lowered basal \([\text{Ca}^{2+}]_i\), as shown previously for thymocytes (14). Fig. 7 shows that one batch of such cells had an initial \([\text{Ca}^{2+}]_i\) below 30 nM and showed almost no \([\text{Ca}^{2+}]_i\) response to RaMIg; presumably the RaMIg-releasable Ca stores were largely depleted by the quin2. Nonetheless these cells, too, capped normally. Fig. 7 shows, incidentally, that subsequent addition of external Ca\(^{2+}\) allowed the \([\text{Ca}^{2+}]_i\) to gradually rise to the usual stimulated level. A third approach was to apply a low dose (40 nM) of A23187 in Ca-free medium. This treatment does not significantly depress ATP (10) but discharges the internal Ca\(^{2+}\)-stores (Fig. 5A). Subsequent RaMIg produces no \([\text{Ca}^{2+}]_i\) transient but causes normal capping.

The observed distribution of fluorescent ligand in the experiments had the appearance usually attributed to receptor capping. However, at 37°C, it is conceivable that receptor endocytosis occurring with a similar time course might be confused with capping and give rise to ambiguities in interpretation. Key experiments were therefore repeated at 20°C, when capping is slower, but endocytosis is largely abolished. Fig. 8 shows that the rate and extent of RaMIg capping in quin2-loaded cells was indistinguishable from that of controls. Additionally, cells loaded and resuspended in Ca-free medium had a \([\text{Ca}^{2+}]_i\) below 30 nM, showed only a tiny rise on addition of RaMIg similar to that in Fig. 7, yet again capped normally.

Table II

Conditions	Estimated peak \([\text{Ca}^{2+}]_i\)	Capping n
Control cells in 1 mM external	470	85 (6)
\([\text{Ca}^{2+}]_i\)		
Cells with high quin2 content stimulated in Ca-free medium	130	75 (2)
Cells loaded and stimulated in Ca-free solution	30	82 (2)
Cells pretreated with A23187 in Ca-free solution before stimulation	100	81 (2)

Capping was induced by the addition of 100 µg/ml FITC-RaMIg, and is expressed as a percentage of the Ig+ cells. The number of experiments is denoted by n. Estimated values for peak \([\text{Ca}^{2+}]_i\) after anti-lg stimulation were taken from parallel quin2 experiments with unlabeled RaMIg, as in Figs. 1, 3B, 7, and 5A, respectively.

Figure 6

Effects of mitochondrial poisons. Quin2 content, 1 mM, 50% Ig+. (A) 1 mM Ca solution. (B) Ca-free solution. 1 µM FCCP, 1 µg/ml oligomycin, and 40 µg/ml RaMIg added as indicated.

Figure 7

Effect of RaMIg in cells with lowered \([\text{Ca}^{2+}]_i\). Basal \([\text{Ca}^{2+}]_i\) was reduced by loading with quin2 in Ca-free saline. Capping was induced by the addition of 100 µg/ml FITC-RaMIg, and is expressed as a percentage of the Ig+ cells. The number of experiments is denoted by n. Estimated values for peak \([\text{Ca}^{2+}]_i\) after anti-lg stimulation were taken from parallel quin2 experiments with unlabeled RaMIg, as in Figs. 1, 3B, 7, and 5A, respectively.

338 THE JOURNAL OF CELL BIOLOGY-VOLUME 94, 1982
DISCUSSION

A newly developed method for introducing a fluorescent Ca\(^{2+}\)-indicator into intact cells has allowed the first measurements of the effect of RaMig on B-cell cytoplasmic [Ca\(^{2+}\)]. The use of quin2 to measure and to manipulate [Ca\(^{2+}\)] was discussed in the previous paper (14), and this work with spleen cells highlights the strengths and also certain drawbacks of the technique. The results clearly show that RaMig produces an elevation in [Ca\(^{2+}\)] in B cells by both release from internal stores and influx from the external medium. Two factors, however, prevent accurate quantitation of the response. First the presence of sufficient quin2 to give an adequate signal can perturb the [Ca\(^{2+}\)], transient in particular by partially buffering the internally released Ca\(^{2+}\) and blunting the initial transient. Second, the precise numerical estimate of the [Ca\(^{2+}\)], in stimulated B cells relies on several unproven assumptions, e.g. that all the cell types in the preparation have the same basal [Ca\(^{2+}\)], and that all the cells observed to bind RaMig give the same [Ca\(^{2+}\)] response. Nonetheless it seems likely that the B-cell [Ca\(^{2+}\)], rises from ~0.1 \(\mu\)M to over 1 \(\mu\)M within seconds of exposure to RaMig, at the concentration typically used, and remains around 0.5 \(\mu\)M for many minutes. Our data says little about how the RaMig brings about the Ca\(^{2+}\) movements except that metabolic energy seems to be needed. It is possible that cross-linking of receptor-ligand complexes starts the process, and that the recovery of basal [Ca\(^{2+}\)], in normal medium, is consequent upon receptor capping which has a roughly similar time course.

Braun et al. (1) found that RaMig applied to mouse spleen lymphocytes reduced the cell-associated \(^{40}\)Ca by 20 to 30% within the first 2 min. This loss could have been due to a primary acceleration of Ca efflux which would lower [Ca\(^{2+}\)], or to internal release of Ca\(^{2+}\) raising [Ca\(^{2+}\)], with subsequent Ca efflux. The authors offered the latter explanation, which the quin2 data supports. Our estimate for the RaMig-releasable stores of 250 \(\mu\)moles per liter cell water is ~25% of total cell Ca\(^{2+}\). The similarity of this figure to the RaMig induced \(^{40}\)Ca loss suggests that the recovery to basal [Ca\(^{2+}\)], seen for instance in Fig. 3, is achieved by Ca\(^{2+}\) extrusion rather than internal sequestration.

Our data argue against a causal role for Ca\(^{2+}\) in anti-Ig-induced capping since apparently normal capping occurred when the [Ca\(^{2+}\)], rise was much reduced and even when [Ca\(^{2+}\)], remained well below normal throughout. A simple scheme which seems to encompass the present evidence is shown in Fig. 9. Here, binding of anti-Ig activates independently, and in parallel, an influx of Ca\(^{2+}\), Ca\(^{2+}\) release from internal stores and capping. Under normal conditions we therefore expect the observed positive correlations between the [Ca\(^{2+}\)], rise or increased Ca tracer loss (1) and capping. This correlation is also predicted by a sequential model in which anti-Ig binding causes first the [Ca\(^{2+}\)], rise, which then causes the capping. But finding conditions that suppress [Ca\(^{2+}\)], elevation without affecting capping appears to preclude the sequential model, while being quite compatible with the parallel scheme.

Effects of A23187 and certain local anesthetics and cis-unsaturated fatty acids have been interpreted in terms of supposed alterations of cell Ca\(^{2+}\), and perhaps indicating a role for Ca\(^{2+}\) in capping. There are, however, other interpretations of these data. A23187, at much higher doses (>200 nM) than those used in the present study and with normal extracellular Ca\(^{2+}\), inhibits capping, and disrupts formed caps (2). The inhibition may be partly, or even mainly, attributable to the ATP depletion associated with this treatment. However, although such data may indicate that high Ca\(^{2+}\) disorganizes the cytoskeletal rearrangements involved in capping (2) it hardly supports the role for Ca\(^{2+}\) in the capping itself. At concentrations that inhibit capping, both local anesthetics and cis-unsaturated fatty acids deplete cellular ATP sufficiently to explain most, or even all, of the inhibition (3, 5), while evidence of effects on lymphocyte Ca\(^{2+}\) is lacking.

The present findings raise a number of intriguing questions including the following: (a) What is the intracellular signal for capping, if not Ca\(^{2+}\)? Perhaps the cross-linking of surface Ig might constitute a sufficient stimulus to trigger the cytoskeletal rearrangements (7). (b) What is the message for internal Ca\(^{2+}\) release? Could this release be another direct consequence of receptor cross-linking, or is a soluble second messenger involved? (c) How does RaMig promote Ca\(^{2+}\) influx? (d) Why is the [Ca\(^{2+}\)], rise blocked by mitochondrial poisons? (e) Where is the releasable Ca\(^{2+}\)? All that can be said so far is that it seems not to be in mitochondria. (f) Perhaps most important of all, what function might the [Ca\(^{2+}\)], rise have? The cell locomotion that follows RaMig capping may well be Ca\(^{2+}\)-triggered (2).
Also perhaps $[\text{Ca}^{2+}]_i$ is an important regulator of B-cell differentiation and proliferation. Admittedly, unmodified RaMIg is not an effective mitogen on mouse spleen cells, possibly because capping occurs too rapidly (9). Anti-Ig is, however, mitogenic in rabbit spleen cells, and various treatments such as enzymic removal of the Fc fragment can make RaMIg mitogenic to mouse cells (8). Future investigation will need to be directed to such systems for assessment of the involvement of Ca^{2+} in effective mitogenic stimulation of B lymphocytes.

We thank the Consiglio Nazionale delle Ricerche (C.N.R.) and the Science Research Council for financial support, Dr. G. A. Smith for purified quin2/AM, and Mr. Giovanni Ronconi and Ms. W. Globe for technical assistance.

Received for publication 30 October 1981, and in revised form 3 May 1982.

REFERENCES

1. Braun, J., R. I. Sha'afi, and E. R. Unanue. 1979. Crosslinking by ligands to surface immunoglobulin triggers mobilization of intracellular Ca^{2+} in B lymphocytes. J. Cell Biol. 82:755-766.
2. Braun, J., and E. R. Unanue. 1980. B lymphocyte biology studied with anti-lg antibodies.
3. Corps, A. N., T. Pozzan, T. R. Henketh, and J. C. Metcalf. 1980. Cis-unsaturated fatty acids inhibit cap formation on lymphocytes by depleting cellular ATP. J. Biol. Chem. 255:10566-10568.
4. Guerrez, C., R. R. Bernabe, and J. Vega. 1979. Purification of human T and B cells by a discontinuous density gradient of Percoll. J. Immunol. Methods. 29:57-63.
5. Montecucco, C., S. Ballardini, G. P. Zanolin, and T. Pozzan. 1981. Effect of local anesthetics on lymphocyte capping and energy metabolism. Biochem. Pharmacol. 30:2989-2992.
6. Montecucco, C., T. Pozzan, and T. J. Rink. 1979. Diacylglycerol fluorescent probes of membrane potential block lymphocyte capping, deplete cellular ATP, and inhibit respiration of isolated mitochondria. Biochem. Biophys. Acta. 552:252-257.
7. Montecucco, C., T. J. Rink, T. Pozzan, and J. C. Metcalf. 1980. Triggering of lymphocyte capping appears not to require changes in potential or ion fluxes across the plasma membrane. Biochem. Biophys. Acta. 959:65-70.
8. Parker, D. C. 1980. Induction and suppression of polyclonal antibody responses by anti-lg reagents and antigen nonspecific helper factors. Immunol. Rev. 52:115-139.
9. Pozzan, T., A. N. Corps, T. R. Henketh, and J. C. Metcalf. 1981. Mitogenic stimulation and the redistribution of concanavalin A receptors on lymphocytes. Exp. Cell Res. 134:399-408.
10. Pozzan, T., A. N. Corps, C. Montecucco, T. R. Henketh, and J. C. Metcalf. 1980. Cap formation by various ligands on lymphocytes shows the same dependence on high cellular ATP levels. Biochem. Biophys. Acta. 502:358-366.
11. Rink, T. J., C. Montecucco, T. R. Henketh, and R. Y. Tsien. 1980. Lymphocyte membrane potential assessed with fluorescent probes. Biochem. Biophys. Acta. 595:15-30.
12. Taylor, R. B., W. P. H. Duffins, M. C. Raft, and S. DePetris. 1971. Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody. Nature New Biol. 233:225-229.
13. Tsien, R. Y., T. Pozzan, and T. J. Rink. 1982. T-cell mitogens cause early changes in cytoplasmic free Ca^{2+} and membrane potential in lymphocytes. Nature (Lond.). 295:68-77.
14. Tsien, R. Y., T. Pozzan, and T. J. Rink. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J. Cell Biol. 94:325-334.