Association Between Baseline, Achieved, and Reduction of CRP and Cardiovascular Outcomes After LDL Cholesterol Lowering with Statins or Ezetimibe: A Systematic Review and Meta-Analysis

Xin-Lin Zhang, MD;* Rong-Fang Lan, MD;* Xiao-Wen Zhang, MD; Wei Xu, MD; Lian Wang, MD; Li-Na Kang, MD; Biao Xu, MD, PhD

Background—Several lipid-lowering therapies reduce CRP (C-reactive protein) independently of LDL-C (low-density lipoprotein cholesterol) reduction, but the association between CRP parameters and benefits from more-intensive LDL-C lowering is inconclusive. We aimed to determine whether the benefits of more- versus less-intensive LDL-C lowering on cardiovascular events related to baseline, achieved, or magnitude of reduction in CRP concentrations.

Methods and Results—PubMed, EMBASE, and Cochrane were searched through July 2, 2018. We included randomized controlled cardiovascular outcome trials of LDL-C lowering with statins or ezetimibe. Two reviewers independently extracted study data and rated study quality. Data were analyzed using meta-analysis and metaregression analysis. Rate ratios of mortality and cardiovascular outcomes associated with baseline, achieved, and magnitude reduction of CRP concentration were calculated. Twenty-four trials were included, with 171 250 patients randomly assigned to more- or less-intensive LDL-C lowering treatments. Median follow-up duration was 4.2 years. More-intensive LDL-C lowering resulted in a significant reduction in incidences of all outcomes. Compared with less-intensive LDL-C lowering, more-intensive LDL-C lowering was associated with less reductions in myocardial infarction with a higher baseline CRP concentration (change in rate ratios per 1-mg/L increase in log-transformed CRP, 1.12 [95% CI, 1.04–1.22; \(P=0.007\)]), but not other outcomes. Similar risk reductions occurred for more- versus less-intensive LDL-C-lowering therapy regardless of the magnitude of CRP reduction or the achieved CRP level for all outcomes.

Conclusions—Baseline CRP concentrations might be associated with the benefits of LDL-C lowering on myocardial infarction, but no other outcomes, whereas the achieved and magnitude of reduction in CRP did not seem to have an important association.

(J Am Heart Assoc. 2019;8:e012428. DOI: 10.1161/JAHA.119.012428.)

Key Words: cardiovascular outcomes • C-reactive protein • LDL-cholesterol • lipid lowering • meta-analysis • randomized controlled trials

LDL-C (Low-density lipoprotein cholesterol) and inflammation are important risk factors for cardiovascular disease. Lowering LDL-C with statins or ezetimibe and inhibiting inflammation with canakinumab significantly reduce major cardiovascular events.\(^1\)\(^-\)\(^4\) hsCRP (high-sensitivity C-reactive protein) is a predictor of cardiovascular disease and cardiovascular mortality as well as total cholesterol and blood pressure.\(^5\)

Several lipid-lowering therapies (ie, statins and ezetimibe) prove to reduce hsCRP independently of LDL-C reduction.\(^6\) However, it is inconclusive whether benefits from LDL-C lowering are associated with baseline CRP concentrations. Larger cardiovascular benefits were observed after statin therapy among patients with elevated baseline CRP concentrations in some trials,\(^7\) but not others.\(^8\)\(^,\)\(^9\) Similarly, whether achieved and reduction of CRP concentrations would affect benefits from more-intensive LDL-C lowering is unknown. We sought to...
determine whether the benefits of LDL-C–lowering therapy on cardiovascular events related to baseline, achieved, or magnitude of reduction in CRP concentrations.

Methods
The data that support the findings of this study are available from Dr Xin-Lin Zhang upon reasonable request (xinlzhang0807@gmail.com). We conducted the meta-analysis in accord with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline.

Data Sources and Searches
We searched PubMed, EMBASE, and the Cochrane Library from their inception through July 2, 2018. The following keywords were used: lipid lowering, statin, ezetimibe, low-density lipoprotein cholesterol, randomized controlled trial, and individual drug names of statins. The search strategy is provided in Data S1. One reviewer (X.Z.) identified potential relevant citations from reference lists of the identified reports and relevant reviews.

Study Selection
Two reviewers (X.Z. and R.L.) independently evaluated the eligibility of studies. Discrepancies were resolved by discussion (W.X.). The main inclusion criteria were: (1) randomized controlled cardiovascular outcome trials involving human subjects; (2) evaluated any comparison of the following strategies: statins, ezetimibe, or placebo (therapy to lower LDL-C versus no therapy or more- versus less-intensive intervention); and (3) included a minimum of 500 patients and 40 clinical events and reported outcomes of interest with at least 6 months of follow-up. We excluded trials investigating LDL-C–lowering drugs other than statins and ezetimibe. Trials with PCSk9 (proprotein convertase subtilisin/kexin type 9) monoclonal antibodies were excluded because they do not affect CRP concentrations. We did not impose limitations on language, sex, or age.

Outcomes of Interest
Outcomes of interest were all-cause and cardiovascular mortality, myocardial infarction, stroke, coronary revascularization, and major adverse cardiovascular events (MACEs).

Data Extraction and Assessment of Study Quality
Three investigators (X.Z., R.L., and W.X.) independently extracted data using a prespecified form. Median CRP and mean LDL-C values were abstracted from each trial. Two reviewers (X.Z and W.X.) independently assessed risk of bias of each trial by using the Cochrane Collaboration’s tool, which assessing random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other sources of bias. Consensus was achieved through referral to a third investigator (L.W.) in case of disagreement.

Data Synthesis and Statistical Analysis
To investigate the association between baseline CRP concentrations and risks of mortality and cardiovascular outcomes with more-intensive LDL-C lowering, random-effects meta-regression analysis was performed, with log-transformed baseline CRP concentration as the covariate for the main model. Several other variables were added in the adjusted analyses, which included age, absolute magnitude of reduction in CRP concentrations (difference between achieved CRP concentrations in the more- and less-intensive study arms), baseline LDL-C, and absolute magnitude of reduction in LDL-C concentrations. Baseline CRP concentrations were log-transformed because their distributions were markedly skewed. Similar analyses were carried out for achieved and magnitude of reduction in CRP concentrations. Given that statins and ezetimibe differ in their effects on CRP concentrations, we performed sensitivity analyses restricted to statin

Clinical Perspective

What Is New?
• Baseline CRP (C-reactive protein) concentrations might be associated with the benefits of LDL-C (low-density lipoprotein cholesterol) lowering on myocardial infarction, but no other outcomes.
• There appears to be similar risk reductions for more- versus less-intensive LDL-C–lowering therapy regardless of the magnitude of CRP reduction or the achieved CRP level for all outcomes, but with limited number of trials.

What Are the Clinical Implications?
• More-intensive LDL-C lowering appeared to reduce the risk of myocardial infarction (but not other outcomes) to a lesser extent when baseline CRP levels were higher.
• More-intensive LDL-C lowering was associated with similar risk reduction for mortality and other cardiovascular outcomes across baseline CRP concentrations.
• The achieved and magnitude of reduction in CRP did not seem to have an important association with the benefits of LDL-C lowering on all outcomes.
trials. We also performed sensitivity analyses based on different study populations (primary or secondary prevention trials). To account for the variability in the length of follow-up for each of these trials, we used rate ratios (RRs) with their corresponding 95% CIs adjusted for patient-years as the statistic estimate.

Prespecified subgroup analyses were performed for all outcomes (see Data S1). A test for subgroup differences was performed across the examined subgroups with a χ² test of interaction. Heterogeneity was assessed by the Cochran Q test and the I² statistic. We examined potential publication bias by visually inspecting the asymmetry of the funnel plot and Begg’s test. For the summary treatment effect estimate, a 2-tailed P value <0.05 was considered statistically significant. Analyses were conducted with Stata software (version 12.0; StataCorp LP, College Station, TX) and Review Manager (version 5.3; Cochrane Collaboration).

Results

Study Selection and Characteristics

The flow diagram of the study selection is shown in Figure S1. Twenty-four trials were included in the meta-analysis and metaregression analysis. Twelve trials that were otherwise eligible were not included because CRP concentrations were not reported. All trials except 1 were multicenter studies. Statin monotherapy was used in 20 trials and statin and ezetimibe in 4 trials. Overall, 171 250 patients were randomly assigned to more- or less-intensive LDL-C–lowering treatments. Median follow-up duration was 4.2 years (range, 1–11.5). Mean age of patients were 62.7 years, and 73.0% were men. The median baseline CRP concentration was 3.1 mg/L and ranged from 0.57 to 21.2 mg/L. Detailed characteristics of each trial are presented in Tables S1 through S3.

Risk of Bias in the Included Trials

Risk of bias for each trial is shown in Table S4. Most trials had blinded outcome adjudication and blinding of participants and personnel. Risk for attrition bias and reporting bias were generally low. Publication bias was detected for a number of outcomes, as revealed by visual inspection of the funnel plots and Begg’s test (Figure S2).

All-Cause Mortality

There were 8355 deaths among 83 209 patients randomly assigned to receive more-intensive LDL-C–lowering treatment and 8989 deaths among 83 018 patients assigned to less-intensive LDL-C–lowering treatment. Metaregression analysis showed that all-cause mortality risk was not significantly different for each 1-mg/L higher log-transformed baseline CRP concentration between more- versus less-intensive LDL-C–lowering treatments (RR, 0.98; 95% CI, 0.91–1.05; P=0.512; Figure 1), with or without multivariable adjustment (Table). A similar observation was found for magnitude of reduction in CRP concentrations (RR, 0.98; 95% CI, 0.91–1.06; P=0.590; Figure S3). The overall risk reduction in all-cause mortality with more- versus less-intensive therapy across all trials was 0.91 (95% CI, 0.87–0.96) and were consistent across the range of baseline (Figure 2) and magnitude of reduction in CRP concentrations (Figure S4).

Cardiovascular Mortality

Metaregression analysis showed that cardiovascular mortality risk was not significantly different for each 1-mg/L higher log-transformed baseline CRP concentration between more- versus less-intensive LDL-C–lowering treatments (RR, 1.01; 95% CI, 0.91–1.12; P=0.803; Figure 3), with or without multivariable adjustment (Table). A similar observation was found for magnitude of reduction in CRP concentrations (RR, 0.97; 95% CI, 0.87–1.08; P=0.542; Figure S5). The overall risk reduction in cardiovascular mortality with more- versus less-intensive therapy across all trials was 0.84 (95% CI, 0.79–0.90) and was consistent across the range of baseline (Figure 4) and magnitude of reduction in CRP concentrations (Figure S6).

Myocardial Infarction

Overall, 3745 of 85 723 patients receiving the more-intensive LDL-C–lowering strategy versus 4825 of 85 527 receiving the less-intensive strategy experienced myocardial infarction. Metaregression showed that more- versus less-intensive LDL-C lowering was associated with a significant change in RR for myocardial infarction (RR, 1.12; 95% CI, 1.04–1.22; P=0.007) for each 1-mg/L higher log-transformed baseline CRP concentration (Figure 5), with or without multivariable adjustment (Table). The overall risk reduction in myocardial infarction associated with more- versus less-intensive therapy across all trials was 0.75 (95% CI, 0.70–0.81), but varied by baseline CRP concentration (Figure 6). The RR was 0.79 (95% CI, 0.72–0.87) in trials with baseline CRP concentrations ≥2.7 mg/L (median) and 0.70 (95% CI, 0.65–0.76) in trials with baseline CRP concentrations <2.7 mg/L (P=0.060 for interaction). Metaregression analysis did not show a significant correlation between magnitude of reduction in CRP concentrations and risk of myocardial infarction (RR, 0.93; 95% CI, 0.84–1.04; P=0.19; Figure S7). The overall risk reduction in myocardial infarction with more- versus less-intensive therapy was consistent across the range of magnitude of reduction in CRP concentrations (Figure S8).
Metaregression analysis showed that stroke risk was not significantly different for each 1-mg/L higher log-transformed baseline CRP concentration between more- versus less-intensive LDL-C-lowering treatments (RR, 0.94; 95% CI, 0.84–1.05; \(P = 0.253 \); Figure S9), with or without multivariable adjustment (Table). A similar observation was found for magnitude of reduction in CRP concentrations (RR, 0.90; 95% CI, 0.80–1.01; \(P = 0.084 \); Figure S10). The overall risk reduction in stroke with more- versus less-intensive therapy across all trials was consistent across the range of baseline (Figure S11) and magnitude of reduction in CRP concentrations (Figure S12).

Table. Multivariable Metaregression Models for the Association of Each 1-mg/L Increase in log(Baseline CRP Concentration), Magnitude of Reduction in CRP Concentration, Achieved CRP, and Mortality and Cardiovascular Outcomes

Outcomes	No. of Trials	log(Baseline CRP)	Rate Ratio (95% CI)			
		Adjusted for Magnitude of Reduction in CRP	log(Baseline CRP) Adjusted for Magnitude of Reduction in CRP, Baseline LDL-C, Magnitude of Reduction in LDL-C and Age	Magnitude of Reduction in CRP, Baseline LDL-C, Magnitude of Reduction in LDL-C and Age		
All-cause mortality	22	0.98 (0.91, 1.05)	1.00 (0.92, 1.10)	1.01 (0.90, 1.13)	0.98 (0.91, 1.06)	1.00 (0.96, 1.03)
Cardiovascular mortality	22	1.01 (0.91, 1.12)	1.02 (0.89, 1.16)	1.03 (0.89, 1.19)	0.97 (0.87, 1.08)	1.00 (0.94, 1.05)
Myocardial infarction	24	1.12 (1.04, 1.22)	1.16 (1.05, 1.27)	1.16 (1.02, 1.33)	0.93 (0.84, 1.04)	0.98 (0.93, 1.04)
Stroke	24	0.94 (0.84, 1.05)	0.96 (0.84, 1.09)	0.96 (0.81, 1.13)	0.90 (0.80, 1.01)	0.97 (0.91, 1.03)
Coronary revascularization	22	1.06 (1.00, 1.13)	1.07 (0.99, 1.15)	1.05 (0.96, 1.14)	0.94 (0.84, 1.04)	0.99 (0.94, 1.04)
MACE	24	1.04 (0.98, 1.11)	1.05 (0.96, 1.15)	1.08 (0.97, 1.19)	0.96 (0.89, 1.03)	0.99 (0.95, 1.03)

CRP indicates C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event.

DOI: 10.1161/JAHA.119.012428

Journal of the American Heart Association 4
Study and Subgroup

Baseline CRP ≥ median	Rate Ratio (95% CI)	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
4D (2005)	0.95 (0.85, 1.06)	559/636	573/619	7.02
A to Z (2004)	0.79 (0.61, 1.02)	104/2265	130/2232	2.46
AURORA (2009)	0.96 (0.87, 1.06)	636/1389	660/1384	7.59
CARDS (2004)	0.74 (0.53, 1.02)	61/1429	82/1412	1.80
CORONA (2007)	0.95 (0.87, 1.05)	728/2514	759/2497	7.95
HIJ-PROPER (2017)	0.69 (0.47, 1.03)	42/864	60/857	1.17
HPS (2002)	0.88 (0.82, 0.95)	1328/10269	1507/10267	9.43
IMPROVE-IT (2015)	0.99 (0.91, 1.07)	1215/9067	1231/9077	9.06
JUPITER (2008)	0.80 (0.67, 0.97)	198/8901	247/8901	3.95
Liu, et al (2016)	0.62 (0.21, 1.88)	5/400	8/398	0.16
PROSPER (2002)	0.98 (0.84, 1.15)	298/2891	306/2913	4.91
PROVE IT-TIMI 22 (2004)	0.69 (0.47, 1.00)	46/2099	66/2063	1.27
SHARP (2011)	1.02 (0.94, 1.10)	1142/4650	1115/4620	8.93

Subtotal (I-squared = 43.6%, P = 0.046)

Rate Ratio (95% CI)	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
0.93 (0.88, 0.98)	6362/47374	6744/47240	65.51

Baseline CRP < median

AFCAPS_TEXCAPS (1998)	1.04 (0.76, 1.42)	80/3304	77/3301	1.75
ALERT (2003)	1.03 (0.84, 1.25)	194/1050	189/1052	3.62
ASCOT-LLA (2003)	0.87 (0.71, 1.06)	185/5168	212/5137	3.66
HOPE-3 (2016)	0.93 (0.80, 1.08)	334/6361	357/6344	5.25
LIPID (1998)	0.76 (0.70, 0.88)	498/4512	633/4502	6.78
REAL-CAD (2018)	0.80 (0.67, 0.96)	207/6199	260/6214	4.07
SEAS (2008)	1.03 (0.79, 1.35)	105/944	100/929	2.23
TNT (2005)	1.01 (0.86, 1.19)	284/4995	282/5006	4.66
WOSCOPS (1995)	0.78 (0.61, 1.01)	106/3302	135/3293	2.48

Subtotal (I-squared = 41.6%, P = 0.090)

Rate Ratio (95% CI)	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
0.90 (0.83, 0.98)	1993/35635	2245/35778	34.49

Overall (I-squared = 44.5%, P = 0.014)

Rate Ratio (95% CI)	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
0.91 (0.87, 0.96)	8356/83209	8989/83018	100.00

Figure 2. Meta-analysis of all-cause mortality stratified by baseline CRP concentrations between more- and less-intensive lipid-lowering group. CRP indicates C-reactive protein; LDL-C, low-density lipoprotein cholesterol.

Coronary Revascularization

For each 1-mg/L higher log-transformed baseline CRP concentration, more- versus less-intensive LDL-C lowering was associated with a modest change in RRs for coronary revascularization (RR, 1.06; 95% CI, 1.00–1.13; P=0.062; Figure S13), which became nonsignificant after multivariable adjustment (Table). Metaregression analysis did not show a significant correlation between magnitude of reduction in CRP concentrations and risk of revascularization (RR, 0.94; 95% CI, 0.84–1.04; P=0.181; Figure S14). The overall risk reduction in coronary revascularization with more- versus less-intensive therapy across all trials was consistent across the range of baseline (Figure S15) and magnitude of reduction in CRP concentrations (Figure S16).

Major Adverse Cardiovascular Events

Metaregression analysis showed that MACE risk was not significantly different for each 1-mg/L higher log-transformed baseline CRP concentration between more- versus less-intensive LDL-C–lowering treatments (RR, 1.04; 95% CI, 0.98–1.11; P=0.182; Figure S17), with or without multivariable adjustment (Table). A similar observation was found for magnitude of reduction in CRP concentrations (RR, 0.96; 95% CI, 0.89–1.03; P=0.252; Figure S18). The overall risk...
Additional Analyses

Analyses excluding trials with heart failure or chronic kidney disease requiring hemodialysis, trials with less than 1000 patients, or trials published before 2000 yielded similar results (Table S5), as were analyses stratified by types of intervention in the more-intensive LDL-C-lowering treatment (Table S6), types of treatment in the less-intensive LDL-C-lowering treatment (Table S7), and type of population (Table S8). Consistent with previous studies, a lack of significant reduction in all-cause and cardiovascular mortality was observed in statin with ezetimibe trials (Table S6).

Metaregression analysis restricted to statin trials confirmed that more- versus less-intensive LDL-C lowering was associated with a significant change in RRs for myocardial infarction, but no other outcomes of interest (Table S9). For each 1-mg/L higher log-transformed baseline CRP concentration, more- versus less-intensive LDL-C lowering was associated with a significant change in RRs for myocardial infarction (RR, 1.12; 95% CI, 1.03–1.21; P=0.011) in secondary prevention trials (Table S10; Figure S21), but not in primary prevention trials (Table S11). Metaregression and meta-analysis of mortality and cardiovascular outcomes found no association with achieved CRP concentrations (Table; Figures S22 through S27).

Discussion

In this meta-analysis and metaregression analysis of 24 trials involving >170 000 patients and ≈24 000 clinical events, more-intensive LDL-C lowering appeared to reduce the risk of myocardial infarction to a lesser extent when baseline CRP levels were higher, but was associated with similar risk reduction for mortality and other cardiovascular outcomes across baseline CRP concentrations. Similar risk reductions occurred for more- versus less-intensive LDL-C-lowering therapy regardless of the magnitude of CRP reduction or the achieved CRP level for all outcomes.

Plasma CRP concentrations is a predictor of cardiovascular risk independent of other risk factors. Although a causal role of CRP for atherosclerosis and ischemic vascular disease is not supported by previous studies, there is potential in using CRP concentration as a marker for benefit from LDL-C-lowering therapy. In the AFCAPS/TexCAPS (Air Force/Texas Coronary Atherosclerosis Prevention) trial, patients with an elevated baseline CRP concentration benefited markedly from lovastatin, whereas those with a low baseline CRP level had no
cardiovascular benefit. However, others have not shown such an association both in primary and secondary prevention trials. Our present metaregression analyses demonstrated no association between baseline CRP concentrations with mortality outcomes following LDL-C lowering, which, to the best of our knowledge, has not been evaluated in randomized trials because of the rarity of mortality outcomes. It is worth noting that a significant association between baseline CRP concentrations and risks for myocardial infarction was evident, with a less-robust benefit for more-intensive LDL-C lowering in patients who had higher baseline CRP concentrations. In line with our finding, post-hoc analyses of the JUPITER (the JUPITER trial from the US Food and Drug Administration) trial from the US Food and Drug Administration revealed an inverse relationship between baseline hsCRP concentrations and clinical response to statin therapy. Subjects with baseline hsCRP above the median cut point of 4.2 mg/L had lower relative risk reduction with statin therapy than those with hsCRP <4.2 mg/L (relative risk reduction, 29% versus 58%). The very recently published St. Francis Heart Study also reported a trend toward less benefit in patients with higher baseline hsCRP.

Several trials suggest that achieving lower CRP concentrations might be associated with better outcomes for patients being treated with statins. In the PROVE IT-TIMI 22 (Pravastatin or Atorvastatin Evaluation and Infection Therapy–Thrombolysis In Myocardial Infarction 22) trial, patients who achieved CRP concentrations of <2 mg/L after

![Figure 4](https://example.com/figure4.png)

Figure 4. Meta-analysis of cardiovascular mortality stratified by baseline CRP concentrations between more- and less-intensive lipid-lowering group. CRP indicates C-reactive protein; LDL-C, low-density lipoprotein cholesterol.

DOI: 10.1161/JAHA.119.012428
statin therapy had a lower rate of cardiovascular events than those who did not. A similarly negative association was detected in the REVERSAL (Reversal of Atherosclerosis with Aggressive Lipid Lowering), A-to-Z (Aggrastat-to-Zocor), and the JUPITER trials. Fueling this debate, trials including the ASCOT-LLA (Anglo-Scandinavian Cardiac Outcome Trial–Lipid Lowering Arm), the CARDS (Collaborative Atorvastatin Diabetes Study), and TNT (Treating New Targets) studies showed no association between achieved hsCRP concentrations and magnitude of statin efficacy in the prevention of cardiovascular events. Our meta-analysis and metaregression analysis do not lend support to the hypotheses that the beneficial effects of LDL-C–lowering therapy are affected by achieved CRP concentrations, in contrast with those found with achieved LDL-C concentrations.

The REVERSAL trial demonstrates that magnitude of reduction in CRP concentrations is significantly correlated with rate of progression of atherosclerosis (determined with intravascular ultrasonography). The JUPITER trial also shows an association with magnitude of cardiovascular benefit of statin therapy. However, evidence remains scarce given that the vast majority of trials did not report these relationship data. Our metaregression analysis revealed no significant correlation between magnitude of reduction in CRP concentrations and benefit from LDL-C–lowering therapy, which needs to be confirmed in large, prospective trials in the future.

Although previous LDL-C–lowering trials with stains or ezetimibe reduce CRP concentrations, the concomitant reduction of LDL-C makes it difficult to conclude a causal role of inflammation in atherothrombotic events. The recently published CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) trial, which enrolled 10,061 patients with previous myocardial infarction and an hsCRP level of ≥2 mg/L, is a proof-of-concept trial directly testing the inflammatory hypothesis of atherothrombosis. Canakinumab confers a significant 15% reduction in MACEs without altering the lipid profile, supporting that reducing inflammation per se could reduce vascular risk. Of note, a CRP concentration <2 mg/dL after the first dose of cankinumab was associated with greater relative reduction in MACE risk. Canakinumab’s reduction in atherothrombotic events involves inhibition of interleukin-6, indicating that treatments targeting downstream from interleukin-1β merit evaluation for cardiovascular benefits. However, whether the cardiovascular benefits of canakinumab will translate to other targeted anti-inflammatory treatments that reduce CRP remains to be determined. If confirmed, whether these benefits relate to baseline, achieved, or reduction of CRP concentrations also requires investigation.
Limitations

Our study has several limitations. First, our analysis was based on trial-level data rather than patient-level data. Metaregression analyses might be subject to risk of aggregation bias because they attempt to make inferences about individuals using study-level information. Second, a number of LDL-C-lowering cardiovascular trials did not report CRP data (especially achieved CRP concentrations), which might contribute to the publication bias detected in several analyses. The inclusion of these trials, if CRP data are reported, might erase the publication bias and considerably improve the statistical power and improve strength of evidence of our analysis. Third, considerable heterogeneity was detected in several analyses, which may be attributed to the differences in patient characteristics not evaluated in our study given that no characteristics tested appeared to affect the results. Fourth, the inclusion criteria in these trials varied; these differences in selection will play out in the baseline risk and the magnitude of absolute risk reduction achieved. Fifth, the definitions of some outcomes, such as MACE and myocardial infarction, were not completely consistent across trials, and a considerable part of trials did not report outcome definition; it is unclear whether this variation could affect our results. Finally, the study enrollment included in the analysis extended from 1995 to 2018, during which...
background therapy and cardiovascular event rates have changed.

Conclusions

In this metaregression and meta-analysis, more-intensive LDL-C lowering might have reduced the risk of myocardial infarction to a lesser extent when baseline CRP levels were higher, but was associated with similar risk reduction for mortality and other cardiovascular outcomes across baseline CRP concentrations. Similar risk reductions occurred for more- versus less-intensive LDL-C–lowering therapy regardless of the magnitude of CRP reduction or the achieved CRP level for all outcomes.

Sources of Funding

This study was supported by the National Natural Science Foundation of China (No. 81600312) and Fund for Distinguished Young Scholars of Nanjing (JQX15002). The funders had no role in the study design, data collection and analysis, writing of the report, and decision to submit the article for publication.

Disclosures

None.

References

1. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Mrc/Bhf Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study: a randomised placebo-controlled trial. Lancet. 2002;360:79–86.
2. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, Ferrari GM, Ruzyllo W, de Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–2397.
3. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, Ferrari GM, Ruzyllo W, de Lucca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–2397.
4. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Zhang et al. CRP and Outcomes After LDL-C Lowering. Journal of the American Heart Association. DOI: 10.1161/JAHA.119.012428
24. Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. *N Engl J Med.* 1998;339:1349–1357.

25. Liu Z, Joerg H, Hao H, Xu J, Hu S, Li B, Sang C, Xia J, Chu Y, Xu D. Efficacy of high-intensity atorvastatin for Asian patients undergoing percutaneous coronary intervention. *Ann Pharmacother.* 2016;50:725–733.

26. Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA. Effect of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. *Circulation.* 2004;110:2809–2816.

27. Shepherd J, Blauw GJ, Boilen EL, Buckley BM, Cobbe SM, Ford I, Gav A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, Meinders AE, Norrie J, Packard CJ, Perry IJ, Sweeney BJ, Twomey BJ, Twomey C, Westendorp RG. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. *Lancet.* 2002;360:1623–1630.

28. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. *N Engl J Med.* 2004;350:1495–1504.

29. Taguchi I, Iimuro S, Iwata H, Abe M, Amiya E, Ogawa T, Ozaki Y, Sakuma I, Nakagawa Y, Hibi K, Hori H, Komoto S, Miyauchi K, Yatsuki T, Ito O, Otsuji Y, Kirakawa H, Kashiwabara Y, Okada H, Shimokawa H, Taira Y, Kimura T, Inoue T, Matsuzaki M, Nagai R. High-dose versus low-dose pitavastatin in Japanese patients with stable coronary artery disease (REAL-CAD): a randomized superiority trial. *Circulation.* 2018;137:1197–1200.

30. Rossebo AB, Pedersen TR, Boman K, Brudt P, Chambers JB, Egstrup K, Gerds T, Gohlke-Barwolf C, Holme I, Kesaniemi YA, Malbecq W, Nienaber CA, Ray S, Skjærte T, Wachtell K, Willenheimer R. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. *N Engl J Med.* 2008;359:1343–1356.

31. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DG, Tomson C, Wanner C, Krane V, Cass A, Craig J, Neil B, Jiang L, Hooi LS, Levin A, Agodoa L, Gaziano M, Kasikis B, Walker R, Masey ZA, Feldt-Rasmussen B, Kriantichchai U, Ophascharoensuk V, Fellstrom B, Holzaus H, Tersar S, Wieck M, Grobblee D, de Zeewuy D, de Jong PE, van Veldhuisen DJ, van Gilst WH. Effects of intensive versus moderate lipid lowering with statins after acute coronary syndromes. *N Engl J Med.* 2005;352:20–28.

32. Shepherd J, Blauw GJ, Murphy MB, Vlietink SD, Blauw GJ, van Santen MB, Bollen EL, Buckley BM, Cobbe SM, Ford I, Greten H, Packard CJ. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. Prevention of cardiovascular events and death with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. *N Engl J Med.* 1995;333:1301–1308.

33. Lane T, Wassef N, Poole S, Mistry Y, Lachmann HJ, Gillmore JD, Hawkins PN, Masson S, Thway K, Winter AM, Colhoun HM, Simes RJ, Libby P, Lorentzetti AJ, Macfadyen JG, Nordestgaard BG, Shepherd J, Wanner C, Ross AC, Westendorp RG, Stott DJ, Sweeney BJ, Twomey BJ, Twomey C, Westendorp RG. Pravastatin therapy for patients after myocardial infarction with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. Prevention of cardiovascular events and death with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. *N Engl J Med.* 1998;339:1349–1357.

34. Lane T, Wassef N, Poole S, Mistry Y, Lachmann HJ, Gillmore JD, Hawkins PN, Masson S, Thway K, Winter AM, Colhoun HM, Simes RJ, Libby P, Lorentzetti AJ, Macfadyen JG, Nordestgaard BG, Shepherd J, Wanner C, Ross AC, Westendorp RG, Stott DJ, Sweeney BJ, Twomey BJ, Twomey C, Westendorp RG. Pravastatin therapy for patients after myocardial infarction with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. Prevention of cardiovascular events and death with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. *N Engl J Med.* 1998;339:1349–1357.

35. Kaul S, Morrissey RP, Diamond GA. By level! What is a clinician to make of JUPITER? *Arch Intern Med.* 2010;170:1073–1077.

36. Blaha MJ, Nasir K, Budoff MJ, Dardari ZA, Blumenthal RS, Pollack S, Reichek N, Guerci AD. Impact of C-reactive protein and coronary artery calcium on benefit observed with atorvastatin. *J Am Coll Cardiol.* 2018;71:2487–2488.

37. Braunwald E. Creating controversy where none exists: the important role of C-reactive protein in the CARE, AFCAPS/ TexCAPS, PROVE IT, REVERSAL, a T to JUPITER, HEART PROTECTION, and ASCOT trials. *Eur Heart J.* 2012;33:430–432.

38. Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH, Pfeffer MA. Braunwald E. C-reactive protein levels and outcomes after statin therapy. *N Engl J Med.* 2005;352:20–28.

39. Nissen SE, Tuzcu EM, Schoenhagen P, Crowe T, Sasiela W, Tsai J, Oroyen J, Magorien RD, O’Shaughnessy C, Ganz P. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. *N Engl J Med.* 2005;352:29–38.

40. Morrow DA, de Lemos JA, Sabatine MS, Wittiov SD, Blauw GJ, Wu SH, Rifai N, Califf RM, Braunwald E. Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial. *Circulation.* 2006;114:281–288.

41. Ridker PM, Danielson E, Fonseca FA, Genest J, Goto A, Kastelein JJ, Koenig W, Libby P, Lorenzetti AJ, Macfadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. *Lancet.* 2009;373:1175–1182.

42. Sever PS, Poulier NR, Chang CL, Thom SA, Hughes AD, Welsh P, Sattar N. Evaluation of C-reactive protein before and on-treatment as a predictor of benefit from atorvastatin: a cohort analysis from the Anglo-Scandinavian Cardiac Outcomes Trial lipid-lowering arm. *J Am Coll Cardiol.* 2013;62:717–729.

43. Soedamah-Muthu SS, Livingstone SJ, Charlton-Menys V, Betteridge DJ, Hitman GA, Neil HA, Bao W, DeMicco DA, Preston BM, Fuller JT, Stenhower CD, Schalkwijk CG, Durrington PN, Colhoun HM. Effect of atorvastatin on C-reactive protein and benefits for cardiovascular disease in patients with type 2 diabetes: analyses from the Collaborative Atorvastatin Diabetes Trial. *Diabetologia.* 2015;58:1494–1502.

44. Arsenault BJ, Parer D, DeMicco DA, Bao W, Preston BM, LaRosa JC, Grundy SM, Deedwania P, Hutter K, Libby NK, Shepherd J, Waters KD, Kastelein JJ. Prediction of cardiovascular events in statin-treated stable coronary patients of the treating to new targets randomized controlled trial by lipid and non-lipid biomarkers. *PLoS One.* 2014;9:e114519.

45. Navarese EP, Robinson JG, Kozlowski M, Kolodziejczak M, Andreatti F, Blieden K, Tantry U, Kubica R, Raggi P, Gurbel PA. Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering: a systematic review and meta-analysis. *JAMA.* 2018;319:1566–1579.

46. Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, Braunwald E, Sabatine MS. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. *JAMA.* 2016;316:1289–1297.

47. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. *Lancet.* 2018;391:319–328.

48. Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F, Koenig W, Shimokawa H, Everett BM, Glynn RJ. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). *Eur Heart J.* 2018;39:3499–3507.

49. Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? *Stat Med.* 2002;21:1559–1573.
Supplemental Material
Supplemental Methods

We conducted the meta-analysis in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline.

Data Sources and Searches

We searched PubMed, EMBASE, and the Cochrane Library from their inception through July 2, 2018. The following search terms was used: (Statin OR “Hydroxymethylglutaryl-CoA Reductase Inhibitor” OR “Pravastatin” OR “Lovastatin” OR “Simvastatin” OR “Rosuvastatin” OR “Atorvastatin” OR “Pitavastatin” OR “Mevastatin” OR “Fluvastatin” OR ezetimibe OR “LDL-C lowering”) AND Random* AND Trial. One reviewer (X.L.Z.) identified potential relevant citations from reference lists of the identified reports and relevant reviews.

Study Selection

Two reviewers (X.L.Z. and R.F.L.) independently evaluated the eligibility of studies. Discrepancies were resolved by discussion (W.X.). The main inclusion criteria were: (1) randomized controlled, cardiovascular outcome trials involving human subjects; (2) evaluated any comparison of the following strategies: statins, ezetimibe, or placebo (therapy to lower LDL-C vs. no therapy or more-intensive vs. less-intensive intervention); (3) included >500 patients and >40 clinical events and reported cardiovascular or mortality outcomes with at least 6 months of follow-up. We excluded trials investigating LDL-C lowering drugs other than statins and ezetimibe. Trials with proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies were not included because PCSK9 antibodies do not have an effect on CRP. We did not impose limitations on language, sex, or age.

Outcome Measures

The outcomes of interest were all-cause and cardiovascular mortality, myocardial infarction, stroke, coronary revascularization, and major adverse cardiovascular events (MACEs).

Data Extraction and Assessment of Study Quality

Three investigators (X.L.Z., R.F.L. and W.X.) independently extracted data using a prespecified form which included trial name, year of publication, number of patients, duration of follow-up, intervention and comparison treatments, baseline, achieved and the magnitude of reduction in CRP and LDL-C concentrations in each treatment group, and absolute event rates of mortality and cardiovascular outcomes in both treatment groups. Median CRP and mean LDL-C values were abstracted from each trial. Consensus was achieved through referral to a third investigator (L.W.) in case of disagreement. Two reviewers (X.L.Z and W.X.) independently assessed risk of bias of each trial by using the Cochrane Collaboration’s tool.

Data Synthesis and Statistical Analysis

To investigate the association between baseline CRP concentrations and risks of mortality and cardiovascular outcomes with more-intensive LDL-C lowering, random-effects meta-regression analysis was performed, with log-transformed baseline CRP concentration as the covariate for the main model. Additional co-variates including age, absolute magnitude of reduction in CRP concentrations (difference between achieved CRP concentrations in the more intensive and less intensive study arms), baseline LDL-C and absolute magnitude of reduction in LDL-C concentrations were added in the adjusted analyses. Baseline CRP concentrations were log-transformed because their distributions were markedly skewed. The association between achieved and magnitude of reduction in CRP concentrations and risks of outcomes was also assessed by meta-regression analysis. Because
statins and ezetimibe differ in their effects on CRP concentrations, we performed sensitivity analyses in statin trials. We also performed sensitivity analyses according to study population (primary or secondary prevention trials). To account for the variability in the length of follow-up for each of these trials, we used rate ratios (RRs) with their corresponding 95% CIs adjusted for patient-years as the statistic estimate.

Prespecified subgroup analyses were performed for all outcomes of interest on a trial level by (1) baseline CRP concentrations (using the median value across trials as cut-point); (2) magnitude of reduction in CRP concentrations (using the median value across trials as cut-point); (3) type of intervention in the more intensive treatment (statin, statin with ezetimibe); and (4) treatment in the less intensive group (active vs placebo). In addition, trials were stratified by achieved CRP concentrations. Sensitivity analyses excluding trials with heart failure or chronic kidney disease requiring hemodialysis, trials with less than 1000 patients, and trials published before year 2000 were performed to evaluate the robustness of our findings. To compare treatment associations in subgroups, a χ² test of interaction was performed.

Heterogeneity was assessed by the Cochran Q test and the I² statistic. A P value < 0.10 or an I² statistic > 50% indicates substantial heterogeneity. We examined potential publication bias by visually inspecting the asymmetry of the funnel plot and Begg’s test. For the summary treatment effect estimate, a 2-tailed P value less than 0.05 was considered statistically significant. Analyses were conducted with the Stata software, version 12.0 (STATA Corporation) and Review Manager, version 5.3 (Cochrane Collaboration).
PRISMA Checklist.

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2,3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	NA
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6
Section/topic	#	Checklist item	Reported on page #
-------------------------	----	---	-------------------
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2 for each meta-analysis).	6,7

RESULTS

- **Study selection**
 - Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. | 8 |
- **Study characteristics**
 - For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. | 8 |
- **Risk of bias within studies**
 - Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12). | 8 |
- **Results of individual studies**
 - For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. | 8-12 |
- **Synthesis of results**
 - Present results of each meta-analysis done, including confidence intervals and measures of consistency. | 8-12 |
- **Risk of bias across studies**
 - Present results of any assessment of risk of bias across studies (see Item 15). | 8-12 |
- **Additional analysis**
 - Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). | 12,13 |
| Section | Page | Description | Notes |
|-----------------------|------|---|-------|
| Summary of evidence | 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). | 13 |
| Limitations | 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). | 16 |
| Conclusions | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research. | 17 |
| **FUNDING** | | | 3 |
| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | |

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097
Table S1. Study and Patient Baseline Characteristics.

Trial	Year	Total No. of patients	Age, yrs	Men, %	CHD, %	Other vascular disease, %	DM, %	HB P, %	Smoker, %	BMI (kg/m²)	Median FU, ys	More intensive LDL-C lowering	Treatment	No. of patients	Baseline CRP (mg/L)	Baseline LDL-C (mg/dL)	Magnitude of reduction in CRP (mg/L)	Magnitude of reduction in LDL-C (mg/dL)		
4D	200	1255	65.7	54	50	53	100	NA	41	27.5	11.5	Atorvastatin (20 mg)	636	5	125	Placebo	1.6	40		
A to Z	200	4497	61	76	100	11	24	50	41	NA	2	Simvastatin (80 mg)	2265	20.1	112	Placebo	0.3	15.7		
AFCAPS_TEXCAPS	199	6605	58	85	<1	<1	15	22	12	NA	5.2	Lovastatin (20-40 mg)	3304	1.6	150	Placebo	0.3	40.5		
ALERT	200	2102	50	66	19	11	19	75	18.5	25.8	6.7	Fluvastatin (40 mg)	1050	1.62	159	Placebo	NA	38.2		
ASCOT-LA	200	10305	63.2	81	<1	14	25	NA	32.7	28.7	3.3	Atorvastatin (10 mg)	5168	2.72	133	Placebo	NA	37.2		
AURORA	200	2773	64.1	62	24	27	26.4	NA	15	25.4	3.8	Rosuvastatin (10 mg)	1389	4.8	100	Placebo	1.6	39		
CARDS	200	2841	61.5	68	<1	3	18	NA	46	28.7	3.9	Atorvastatin (10 mg)	1429	12.6	117	Placebo	5.3	39.8		
CARE	199	4159	59	86	100	0	14	43	21	28.5	5	Pravastatin (40 mg)	2081	3.8	139	Placebo	1.2	40.3		
CORONA	200	5011	73	76	73	13	30	63	9	27	2.7	Rosuvastatin (10 mg)	2514	3.1	137	Placebo	1.2	34		
HIJ-PERPER	201	1721	65.7	75.6	100	7	30	68	59	24.3	3.9	Pitavastatin (1-4mg) + ezetimibe (10 mg)	864	21.2	135	Placebo	NA	20		
Study	Year	Randomization	N	Primary Endpoint	Mean Difference	Standard Difference	p Value	Control Group	Treatment	N	Mean Difference	Standard Difference	p Value	Control Group	Treatment					
---------------	------	---------------	-------	------------------	-----------------	--------------------	---------	---------------	-----------	-------	-----------------	--------------------	---------	---------------	-----------					
HOPE-3	2016		201	6	12705	65.8	53.7	0	0	6	38	28	27.1	5.6						
HPS	2002		200	6	20536	64	75	65	43	29	NA	NA	NA	5						
IMPROVE-IT	2005		201	6	18144	63.6	75.7	100	5.5	27	61.5	33	28.3	6						
JUPITER	2008		200	6	17802	66	62	0	0	<1	NA	16	28.3	1.9						
LIPID	2008		199	6	9014	62	83	100	10	9	41	74	NA	6.1						
Liu, et al	2006		201	6	798	62	72	100	0	32.5	64.6	20.6	NA	1						
PREVENT-D-IT	2004		200	6	864	52	65	<1	1.5	NA	NA	74	26	3.8						
PROSPER	2002		200	6	5804	75	48	32	18	11	NA	27	NA	3.2						
PROVE-IT-TIMI 22	2004'		200	6	4162	58	78	100	8	18	50	36.8	NA	2						
REAL-CAD	2008		201	6	12413	68	83	100	14	40	75.7	16.4	24.6	3.9						
SEAS	2008		200	6	1873	68	71	0	0	0	51.5	55	27	4.4						
SHARP	2011		201	6	9270	62	62	0	15	23	13	27	4.9							
	200	10001	61	81	100	15	54	76	28.4	4.9	Atorvastatin (80 mg)	4995	1.7	97	Atorvastatin (10 mg)	5006	1.7	98	NA	23.3
----------------	-----	-------	----	----	-----	----	----	----	-----	----	---------------------	------	-----	----	---------------------	------	-----	----	-----	-----
TNT	5	6	5	100	5	15	15	54	76	28.4										
WOSCO PS	199	6595	55	100	5	3	1	16	78	4.9	Pravastatin (40 mg)	3302	2	192	Placebo	3293	2	192	NA	41.3

BMI, body mass index; CRP, C-reactive protein; CHD, coronary heart disease; DM, diabetes mellitus; FU, follow-up; HBP, high blood pressure; LDL-C, low-density lipoprotein cholesterol; NA, not available

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEScol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid IOwering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Table S2. Study Characteristics of the Included Randomized Trials.

Trial	Year	Selected composite endpoint (major adverse cardiovascular events)	Reported primary endpoint in original trial	Definition of myocardial infarction
4D	2005	Cardiac death, nonfatal myocardial infarction, and stroke	Cardiac death, nonfatal myocardial infarction, and stroke	Two of the following three criteria were met: typical symptoms; elevated levels of cardiac enzymes (i.e., a level of creatine kinase MB above 5 percent of the total level of creatine kinase, a level of lactic dehydrogenase 1.5 times the upper limit of normal, or a level of troponin T greater than 2 ng per milliliter); or diagnostic changes on the electrocardiogram.
A to Z	2004	Cardiovascular death, myocardial infarction, Stroke, or Hospitalization for acute coronary syndrome	Cardiovascular death, myocardial infarction, Stroke, or Hospitalization for acute coronary syndrome	NA
AFCAPS_TEXCAPS	1998	Myocardial infarction, unstable angina, or sudden cardiac death	Myocardial infarction, unstable angina, or sudden cardiac death	NA
ALERT	2003	Cardiac death, definite or probable non-fatal myocardial infarction, coronary-artery bypass grafting, percutaneous coronary intervention	Cardiac death, definite or probable non-fatal myocardial infarction, coronary-artery bypass grafting, percutaneous coronary intervention	An adjudicated MI was classified as definite if a new Q-wave developed in the presence of abnormal cardiac markers or symptoms, or pathological ST elevations and T-wave changes developed in the presence of abnormal cardiac markers plus symptoms. An MI was classified as probable if pathological ST elevations and T-wave changes developed in the presence of abnormal cardiac markers plus symptoms.
ASCOT-LLA	2003	Total cardiovascular events and procedures	Cardiovascular death and non-fatal myocardial infarction	NA
AURORA	2009	Nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes	Nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes	NA
CARDS	2004	Cardiovascular death, myocardial infarction, stroke, unstable angina or revascularization	Cardiovascular death, myocardial infarction, stroke, unstable angina or revascularization	NA
Study	Year	Primary Endpoint	Secondary Endpoint	Additional Criteria
---------	------	--	--	---
CARE	1996	Cardiovascular death or myocardial infarction	Cardiovascular death or myocardial infarction	NA
CORONA	2007	Cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke	Cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke	NA
HIJ-PROPER	2017	All-cause death, non-fatal myocardial infarction, non-fatal stroke, unstable angina, or revascularization	All-cause death, non-fatal myocardial infarction, non-fatal stroke, unstable angina, or revascularization	NA
HOPE-3	2016	Cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke	Cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke	EITHER Cardiac Ischemic Symptoms lasting > 20 minutes, determined by the site investigator to be secondary to ischemia OR ECG or changes consistent with acute infarction or ischemia MI AND Elevated cardiac biomarkers (values according to each hospital’s laboratory): A rise and/or fall in cardiac biomarker values (preferably troponin, CKMB, AST, LDH or myoglobin) with at least one value above the 99th percentile of the upper reference limit.
HPS	2002	Cardiovascular death, myocardial infarction, stroke, or revascularization	Mortality and fatal or non-fatal vascular events	NA
IMPROVE-IT	2015	Death from cardiovascular causes, major coronary event, or nonfatal stroke	Death from cardiovascular causes, major coronary event, or nonfatal stroke	The presence of either ECG evidence or cardiac marker evidence (post-CABG, both ECG and cardiac marker evidence were required, if the CK-MB was ≥5X ULN to <10X ULN).
JUPITER	2008	Cardiovascular death, myocardial infarction, stroke, unstable angina, or revascularization	Cardiovascular death, myocardial infarction, stroke, unstable angina, or revascularization	NA
LIPID	1998	Cardiovascular death or nonfatal myocardial infarction	Cardiovascular death	The presence of at least two new pathologic Q waves on the electrocardiogram or two of the following three criteria: at least 15 minutes of ischemic chest pain, evolutionary ST-T wave changes (as previously defined), or elevation of the serum level of creatine kinase or its MB isoenzyme to at least twice the upper limit of normal
Liu, et al	2016	Cardiovascular death, spontaneous myocardial infarction	Cardiovascular death, spontaneous myocardial infarction	A rise in cardiac biomarkers (preferably troponin), with at least 1
Study	Year	Endpoints	Description	
---------------	------	---	---	
PREVEND-IT	2004	Cardiovascular death and hospitalization for cardiovascular morbidity	At least 2 of 4 of the following, which should include either new Q waves or enzyme elevation: (1) presence or history of typical or atypical chest pain of at least 15 minutes’ duration; (2) ECG detection of ST-segment changes of at least 0.1 mV and/or T-wave inversion in at least 2 of 12 leads; (3) ECG detection of new significant Q waves in at least 2 of 12 leads; and (4) elevation of measurements of total creatine kinase (CK) and/or its isoenzyme CK-MB in at least 2 samples drawn within 48 hours of development of chest pain.	
PROSPER	2002	Coronary heart disease death or non-fatal myocardial infarction or fatal or non-fatal stroke	NA	
PROVE-IT-TIMI 22	2004	Death from any cause, myocardial infarction, documented unstable angina requiring rehospitalization, revascularization, and stroke	The presence of symptoms suggestive of ischemia or infarction, with either electrocardiographic evidence (new Q waves in two or more leads) or cardiac-marker evidence of infarction, according to the standard TIMI and American College of Cardiology definition.	
REAL-CAD	2018	Cardiovascular death, nonfatal myocardial infarction, nonfatal ischemic stroke, or unstable angina requiring emergency	Spontaneous: troponin with at least one value above the 99th percentile of the upper reference limit. Periprocedural PCI: Troponin > 3 times URL or CKMB > 3 times URL	
Study	Year	Endpoints		
-----------	------	---		
SEAS	2008	Cardiovascular death, aortic valve replacement, nonfatal myocardial infarction, hospitalization for unstable angina pectoris, heart failure, coronary-artery bypass grafting, percutaneous coronary intervention, and nonhemorrhagic stroke		
SHARP	2011	Cardiovascular death, nonfatal myocardial infarction, stroke, or coronary revascularization		
TNT	2005	Cardiovascular death, nonfatal non-procedure-related myocardial infarction, or resuscitation after cardiac arrest		
WOSCOPS	1995	Cardiovascular death or nonfatal myocardial infarction		

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARD5, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid lowering with Pitavastatin and Ezetimibe in acute coronary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of RELnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Trial	Year	Inclusion criteria	Exclusion criteria
4D	2005	Subjects with type 2 diabetes mellitus 18 to 80 years of age who had been receiving maintenance hemodialysis for less than two years.	Levels of fasting serum low-density lipoprotein (LDL) cholesterol of less than 80 mg per deciliter (2.1 mmol per liter) or more than 190 mg per deciliter (4.9 mmol per liter), triglyceride levels greater than 1000 mg per deciliter (11.3 mmol per liter); liver function values more than three times the upper limit of normal or equal to those in patients with symptomatic hepatobiliary cholestatic disease; hematopoietic disease or systemic disease unrelated to end-stage renal disease; vascular intervention, congestive heart failure, or myocardial infarction within the three months preceding the period of enrollment; unsuccessful kidney transplantation; and hypertension resistant to therapy (i.e., systolic blood pressure continuously greater than 200 mm Hg or diastolic blood pressure greater than 110 mm Hg).
A to Z	2004	Patients between the ages of 21 and 80 years with either non–ST-elevation ACS or ST-elevation MI were eligible for enrollment if they had a total cholesterol level of 250 mg/dL (6.48 mmol/L) or lower.	Patients receiving statin therapy at the time of randomization, if coronary artery bypass graft surgery was planned, or if PCI was planned within the first 2 weeks after enrollment. Patients also were excluded for having an alanine aminotransferase (ALT) level higher than 20% above the upper limit of normal (ULN); for having an increased risk for myopathy due to renal impairment (serum creatinine level 2.0 mg/dL [176.8 µmol/L]) or concomitant therapy with agents known to enhance myopathy risk, such as fibrates, cyclosporine, macrolide antibiotics, azole antifungals, amiodarone, or verapamil; or for having a prior history of nonexerciserelated elevations in creatine kinase level or nontraumatic rhabdomyolysis.
AFCAPS_TEXCAPS	1998	Men aged 45 to 73 years and postmenopausal women aged 55 to 73 years who met the lipid entrance criteria (TC, 4.65-6.82 mmol/L [180-264 mg/dL]; LDL-C, 3.36-4.91 mmol/L [130-190 mg/dL]; HDL-C, 1.16 mmol/L [45 mg/dL] for men or ≤1.22 mmol/L [47 mg/dL] for women; and triglycerides ≤ 4.52 mmol/L [400 mg/dL]).	Individuals with uncontrolled hypertension, secondary hyperlipidemia, or type 1 or type 2 diabetes mellitus that was either managed with insulin or associated with a glycohemoglobin level of at least 10% (20% above the upper limit of normal), had a body weight of more than 50% greater than the desirable limit for height
Study	Year	Eligible Participants	Ineligible Participants
---------	------	--	--
ALERT	2003	Men and women aged 30–75 years who had received renal or combined renal and pancreas transplants more than 6 months before randomisation and who had stable graft function. All patients were receiving immunosuppressive therapy with ciclosporin and had total serum cholesterol concentrations of 4.0–9.0 mmol/L.	Patients who were already taking statins, who had familial hypercholesterolaemia, had experienced acute rejection episodes in the previous 3 months, or who had a predicted life expectancy of less than 1 year.
ASCOT-LLA	2003	Men and women aged between 40 and 79 years at randomisation, with either untreated hypertension. Patients had to have total cholesterol concentrations of 6.5 mmol/L or lower, and not currently be taking a statin or a fibrate.	Previous myocardial infarction, currently treated angina, a cerebrovascular event within the previous 3 months, fasting triglycerides higher than 4.5 mmol/L, heart failure, uncontrolled arrhythmias or any clinically important haematological or biochemical abnormality on routine screening.
AURORA	2009	Men and women 50 to 80 years of age who had end-stage renal disease and had been treated with regular hemodialysis or hemofiltration for at least 3 months were recruited from 280 centers in 25 countries.	Statin therapy within the previous 6 months, expected kidney transplantation within 1 year, and serious hematologic, neoplastic, gastrointestinal, infectious, or metabolic disease (excluding diabetes) that was predicted to limit life expectancy to less than 1 year, with a history of a malignant condition, active liver disease (indicated by an alanine aminotransferase level that was more than three times the upper limit of the normal range), uncontrolled hypothyroidism, and an unexplained elevation in the creatine kinase level to more than three times the upper limit of the normal range.
CARDS	2004	Men and women aged 40–75 years with type 2 diabetes mellitus and had at least one or more of the following: a history of hypertension, retinopathy; or currently smoking (no minimum number of cigarettes per day was required).	Had any past history of myocardial infarction, angina, coronary vascular surgery, cerebrovascular accident, or severe peripheral vascular disease (defined as warranting surgery). We checked eligibility against the patient’s clinical notes and their own recall and assessed lipid eligibility criteria by blood testing at one screening and four pretreatment visits over a 10-week period.
CARE	1996	Men and postmenopausal women had an acute myocardial infarction between 3 and 20 months before randomization, were 21 to 75 years of age, and had plasma total cholesterol levels of less than 240 mg per deciliter, LDL cholesterol levels of 115 to 174 mg per deciliter.	Patients with serious noncardiovascular disease likely to interfere with participation or to cause death before the trial is over, with contraindications to pravastatin.
-------	------	---	--
CORONA	2007	Patients who were at least 60 years of age and who had chronic New York Heart Association (NYHA) class II, III, or IV heart failure of ischemic cause (as reported by investigators) and an ejection fraction of no more than 40% (no more than 35% in patients in NYHA class II)	Previous statin-induced myopathy or hypersensitivity reaction; decompensated heart failure or a need for inotropic therapy; myocardial infarction within the past 6 months; unstable angina or stroke within the past 3 months; percutaneous coronary intervention (PCI), coronary-artery bypass grafting (CABG), or the implantation of a cardioverter–defibrillator or biventricular pacemaker within the past 3 months or a planned implantation of such a device; previous or planned heart transplantation; clinically significant, uncorrected primary valvular heart disease or a malfunctioning prosthetic valve; hypertrophic cardiomyopathy; acute endomyocarditis or myocarditis, pericardial disease, or systemic disease (e.g., amyloidosis); acute or chronic liver disease; levels of alanine aminotransferase or thyrotropin of more than 2 times the upper limit of the normal range; a serum creatinine level of more than 2.5 mg per deciliter (221 μmol per liter); chronic muscle disease or an unexplained creatine kinase level of more than 2.5 times the upper limit of the normal range; previous treatment with cyclosporine; any other condition that would substantially reduce life expectancy or limit compliance with the protocol; or the receipt of less than 80% of dispensed placebo tablets during the run-in period
HIJ-PROPER	2017	All participants had been hospitalized for ST-segment elevation myocardial infarction (STEMI) or for non-ST-segment elevation myocardial infarction (NSTEMI) or unstable angina (UA) within 72 h before randomization, with at least 20 years of age.	The occurrence within 24 hours before enrolment of (i) hemodynamic instabilities such as hypotension, pulmonary oedema, congestive heart failure, acute mitral regurgitation, or ventricular rupture; (ii) ischaemic events (stroke, recurrent symptoms of cardiac ischaemia, acute occlusion of target vessel); and (iii) arrhythmic events (ventricular fibrillation, sustained ventricular tachycardia, advanced heart block).
Study	Year	Participants	Exclusion Criteria
-----------	------	---	--
HOPE-3	2016	Men 55 years of age or older and women 65 years of age or older who had at least one cardiovascular risk factor.	Participants with cardiovascular disease and those with an indication for or contraindication to statins, angiotensin-receptor blockers, angiotensin-converting–enzyme inhibitors, or thiazide diuretics.
HPS	2002	Men and women aged about 40–80 years with non-fasting blood total cholesterol concentrations of at least 3.5 mmol/L (135 mg/dL) if they were considered to be at substantial 5-year risk of death from coronary heart disease.	Patients had: chronic liver disease (cirrhosis or hepatitis) or evidence of abnormal liver function (eg, alanine aminotransferase >67 IU/L [1.5 times the central laboratory upper limit of normal: ULN]); severe renal disease or evidence of impaired renal function (creatinine >200 mmol/L); inflammatory muscle disease (eg, dermatomyositis or polymyositis) or evidence of muscle problems (creatine kinase >750 IU/L [3 ULN]); concurrent treatment with ciclosporin, fibrates, or high-dose niacin; child-bearing potential (premenopausal woman not sterilised or using reliable contraception); severe heart failure; some lifethreatening condition other than vascular disease or diabetes (eg, severe chronic airways disease or any cancer other than non-melanoma skin cancer); or conditions that might limit long-term compliance (eg, severely disabling stroke, dementia, or psychiatric disorder).
IMPROVE-IT	2015	Men and women who were at least 50 years of age if they had been hospitalized within the preceding 10 days for an acute coronary syndrome. Patients were required to have an LDL cholesterol level of 50 mg per deciliter (1.3 mmol per liter) or higher.	Planned coronary-artery bypass grafting for the acute coronary syndrome event, creatinine clearance of less than 30 ml per minute, active liver disease, or use of statin therapy that had LDL cholesterol–lowering potency greater than 40 mg of simvastatin.
Study	Year	Inclusion Criteria	Exclusion Criteria
-------	------	--------------------	-------------------
JUPITER	2008	Men 50 years of age or older and women 60 years of age or older if they did not have a history of cardiovascular disease and if, at the initial screening visit, they had an LDL cholesterol level of less than 130 mg per deciliter (3.4 mmol per liter) and a high-sensitivity C-reactive protein level of 2.0 mg per liter or more.	Previous or current use of lipid-lowering therapy, current use of postmenopausal hormone-replacement therapy, evidence of hepatic dysfunction (an alanine aminotransferase level that was more than twice the upper limit of the normal range), a creatine kinase level that was more than three times the upper limit of the normal range, a creatinine level that was higher than 2.0 mg per deciliter (176.8 μmol per liter), diabetes, uncontrolled hypertension (systolic blood pressure >190 mm Hg or diastolic blood pressure >100 mm Hg), cancer within 5 years before enrollment (with the exception of basal-cell or squamous-cell carcinoma of the skin), uncontrolled hypothyroidism (a thyroid-stimulating hormone level that was more than 1.5 times the upper limit of the normal range), and a recent history of alcohol or drug abuse or another medical condition that might compromise safety or the successful completion of the study.
LIPID	1998	Patients had an acute myocardial infarction or had a hospital discharge diagnosis of unstable angina between 3 and 36 months before study entry, and the plasma total cholesterol level measured four weeks before randomization was required to be 155 to 271 mg per deciliter and the fasting triglyceride level less than 445 mg per deciliter (5.0 mmol per liter).	A clinically significant medical or surgical event within three months before study entry, cardiac failure, renal or hepatic disease, and the current use of any cholesterol-lowering agents.
Liu, et al	2016	(1) Stable angina with inducible myocardial ischemia and indication for coronary angiography or (2) ACS requiring primary or elective PCI	Chronic atorvastatin use ≥20 mg/d (or equivalent dose of other statins) before PCI, abnormal liver enzymes (alanine aminotransferase [ALT] or aspartate aminotransferase [AST] more than 40 U/L); blood creatinine >2 mg/dL, or muscle disease.
Study	Year	Eligibility	
--------------	-------	---	
PREVEND-IT	2004	Persistent microalbuminuria, a blood pressure 160/100 mm Hg and no use of antihypertensive medication, and a total cholesterol level <8.0 mmol/L, or <5.0 mmol/L	
PROSPER	2002	Men and women aged 70–82 years if they had either pre-existing vascular disease or raised risk of such disease. Their plasma total cholesterol was required to be 4.0–9.0 mmol/L and their triglyceride concentrations less than 6.0 mmol/L.	
PROVE IT-TIMI 22	2004	Men and women who were at least 18 years old if they had been hospitalized for an acute coronary syndrome or high-risk unstable angina. Patients had to have a total cholesterol level of 240 mg per deciliter (6.21 mmol per liter) or less.	
REAL-CAD	2018	Men and women 20 to 80 years of age with stable CAD	
SEAS	2008	Men and women between the ages of 45 and 85 years who had asymptomatic, mild-to-moderate aortic valve stenosis, as	
Study	Year	Criteria	
---------	------	--	
SHARP	2011	Patients aged 40 years and older were eligible to participate if they had chronic kidney disease with more than one previous measurement of serum or plasma creatinine of at least 150 μmol/L (1.7 mg/dL) in men or 130 μmol/L (1.5 mg/dL) in women, whether receiving dialysis or not. Definite history of MI or coronary revascularization procedure; Functioning renal transplant or living donor renal; transplant planned; Less than 2 months since presentation as an acute uremic emergency; Definite history of chronic liver disease or abnormal liver function (ie, ALT N1.5× ULN or, if ALT not available, AST N1.5× ULN) (patients with a history of hepatitis are eligible if these limits are not exceeded); Evidence of active inflammatory muscle disease (eg, dermatomyositis, polymyositis) or CK N3× ULN; Definite previous adverse reaction to a statin or to ezetimibe; Concurrent treatment with a contraindicated drug; Child-bearing potential (ie, premenopausal woman who is not using a reliable method of contraception); Known to be poorly compliant with clinic visits or prescribed medication; Medical history that might limit the individual's ability to take the trial treatments for the duration of the study (eg, severe respiratory disease, history of cancer other than nonmelanoma skin cancer or recent history of alcohol or substance misuse)	
TNT	2005	Men and women 35 to 75 years of age who had clinically evident CHD, defined by one or more of the following: previous myocardial infarction, previous or current angina with objective evidence of atherosclerotic CHD, and a history of coronary revascularization. Hypersensitivity to statins; active liver disease or hepatic dysfunction defined as alanine aminotransferase or aspartate aminotransferase >1.5 times the upper limit of normal; women who are pregnant or breastfeeding; patients with nephrotic syndrome; uncontrolled diabetes mellitus; uncontrolled hypothyroidism; uncontrolled hypertension (as defined by the investigator) at the screening visit; a MI, coronary revascularization procedure or severe/unstable angina within 1 month of screening; any planned surgical procedure for the treatment of atherosclerosis; an ejection fraction <30%; hemodynamically important valvular disease; gastrointestinal disease limiting drug absorption or partial ileal bypass; any nonskin malignancy, malignant melanoma or other survival-limiting disease; unexplained creatine phosphokinase levels >6 times the upper limit of normal; concurrent therapy with long-term immunosuppressants; concurrent therapy with lipid-regulating drugs not specified as study treatment in the protocol; history of alcohol abuse; and participation in another clinical trial concurrently or within 30 days before screening.	
WOSCOPS	1995	Males aged 45-64 yr who, at randomization, display at most minor overt evidence of CHD. (1) LDL > 4.0 mmol/l at both	
Screening visits 2 and 3; (2) LDL > 4.5 mmol/l at one or both of screening visits 2 and 3; (3) LDL < 6.0 mmol/l at one or both of screening visits 2 and 3			

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid IOwering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdStage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Table S4. Listing of Potential Sources of Bias.

Study	Year	Random sequence generation (selection bias)	Allocatenon concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
4D	2005	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
A to Z	2004	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk	High risk
AFCAPS_T EXCAPS	1998	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk	Low risk
ALERT	2003	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk	High risk
ASCOT-LLA	2003	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk	High risk
AURORA	2009	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk	High risk
CARDS	2004	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
CARE	1996	Low risk	Unclear risk	Low risk	Low risk	Low risk	Unclear risk	Unclear risk
CORONA	2007	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	High risk
HIJ-PROPER	2017	Low risk	Unclear risk	High risk	Low risk	Low risk	Low risk	Low risk
HOPE-3	2016	Low risk	Unclear risk	Low risk	Low risk	Low risk	High risk	
HPS	2002	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	
IMPROVE-I T	2015	Low risk	Unclear risk	Low risk	Low risk	Low risk	High risk	
JUPITER	2008	Unclear risk	Low risk	Low risk	Low risk	Low risk	High risk	
LIPID	1998	Low risk	Unclear risk	Low risk	Low risk	Low risk	High risk	
Liu, et al	2016	Low risk	Unclear risk	Unclear risk	Unclear risk	Low risk	Low risk	
PREVEND-IT	2004	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	
PROSPER	2002	Low risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	
PROVE IT-TIMI 22	2004	Unclear risk	Low risk	Low risk	Low risk	Low risk	High risk	
REAL-CAD	2018	Low risk	Unclear risk	Unclear risk	Low risk	Low risk	Unclear risk	
SEAS	2008	Low risk	Unclear risk	Low risk	Unclear risk	Low risk	High risk	
SHARP	2011	Low risk	Low risk	Low risk	Low risk	Low risk	High risk	
Study	Year	Risk						
------------------	------	----------	----------	----------	----------	----------	----------	----------
TNT	2005	Low risk	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk
WOSCOPS	1995	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEScol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid LOwering with Pitavastatin and Ezetimibe in acute coronary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Table S5. Meta-analysis Excluding Trials with Potential Bias.

	Baseline CRP ≥ median		Baseline CRP < median		Overall				
	Trials	Rate Ratio (95% CI)	P value	Trials	Rate Ratio (95% CI)	P value	Trials	Rate Ratio (95% CI)	P value
All-cause mortality									
Trials with HF or requiring hemodialysis excluded	10	0.90 (0.83, 0.97)	0.007	10	0.92 (0.85, 0.99)	0.043	20	0.91 (0.86, 0.96)	0.001
Trials with less than 1000 patients excluded	12	0.93 (0.88, 0.98)	0.004	9	0.90 (0.83, 0.98)	0.011	21	0.91 (0.87, 0.96)	<0.001
Year before 2000 excluded	13	0.93 (0.88, 0.98)	0.003	6	0.93 (0.86, 1.01)	0.099	19	0.93 (0.89, 0.97)	0.001
Cardiovascular mortality									
Trials with HF or requiring hemodialysis excluded	9	0.81 (0.72, 0.91)	<0.001	11	0.85 (0.78, 0.92)	<0.001	20	0.83 (0.78, 0.90)	<0.001
Trials with less than 1000 patients excluded	12	0.85 (0.78, 0.93)	0.001	9	0.81 (0.74, 0.88)	<0.001	21	0.84 (0.79, 0.90)	<0.001
Year before 2000 excluded	11	0.85 (0.77, 0.94)	0.001	7	0.86 (0.77, 0.96)	0.007	18	0.86 (0.80, 0.92)	<0.001
Myocardial infarction									
Trials with HF or requiring hemodialysis excluded	11	0.80 (0.69, 0.88)	<0.001	11	0.71 (0.67, 0.76)	<0.001	22	0.74 (0.68, 0.80)	<0.001
Trials with less than 1000 patients excluded	13	0.79 (0.72, 0.88)	<0.001	9	0.70 (0.65, 0.76)	<0.001	22	0.75 (0.70, 0.81)	<0.001
Year before 2000 excluded	13	0.80 (0.72, 0.88)	<0.001	7	0.70 (0.63, 0.79)	<0.001	20	0.76 (0.70, 0.83)	<0.001
Stroke									
Trials with HF or requiring hemodialysis excluded	11	0.79 (0.71, 0.88)	<0.001	11	0.85 (0.77, 0.95)	0.003	22	0.82 (0.77, 0.89)	<0.001
Trials with less than 1000 patients excluded	13	0.84 (0.75, 0.93)	0.001	9	0.86 (0.77, 0.97)	0.017	22	0.85 (0.79, 0.92)	<0.001
Year before 2000 excluded	13	0.84 (0.76, 0.94)	0.001	7	0.89 (0.75, 1.06)	0.188	20	0.86 (0.78, 0.94)	0.001
---------------------------	----	-------------------	-------	---	-------------------	-------	---	-------------------	-------
Coronary revascularization									
Trials with HF or requiring hemodialysis excluded	11	0.80 (0.73, 0.88)	<0.001	10	0.77 (0.72, 0.81)	<0.001	21	0.78 (0.73, 0.83)	<0.001
Trials with less than 1000 patients excluded	12	0.82 (0.75, 0.89)	<0.001	9	0.75 (0.70, 0.81)	<0.001	21	0.78 (0.73, 0.84)	<0.001
Year before 2000 excluded	12	0.82 (0.74, 0.90)	<0.001	6	0.75 (0.68, 0.82)	<0.001	18	0.79 (0.73, 0.85)	<0.001
MACE									
Trials with HF or requiring hemodialysis excluded	11	0.80 (0.74, 0.87)	<0.001	11	0.80 (0.76, 0.85)	<0.001	22	0.81 (0.77, 0.85)	<0.001
Trials with less than 1000 patients excluded	13	0.85 (0.79, 0.90)	<0.001	9	0.79 (0.74, 0.83)	<0.001	22	0.82 (0.78, 0.86)	<0.001
Year before 2000 excluded	13	0.85 (0.79, 0.90)	<0.001	7	0.81 (0.77, 0.87)	<0.001	20	0.84 (0.80, 0.88)	<0.001

CRP, C-reactive protein; MACE, major adverse cardiovascular event.
Table S6. Sensitivity Analysis Stratified for Agent Used in the More-intensive Treatment Group.

Subgroup	Statin	Statin + ezetimibe						
	Subgroup	Trials	Rate Ratio (95% CI)	P value	Trials	Rate Ratio (95% CI)	P value	
All-cause mortality	Baseline CRP	< median	8	0.89 (0.82, 0.97)	0.005	1	1.04 (0.80, 1.36)	0.763
		≥ median	10	0.91 (0.86, 0.97)	<0.001	3	0.99 (0.90, 1.08)	0.745
Magnitude of reduction in CRP	< median	4	0.81 (0.74, 0.88)	<0.001	2	0.99 (0.92, 1.07)	0.839	
	≥ median	8	0.91 (0.87, 0.96)	<0.001	1	1.02 (0.94, 1.10)	0.671	
Total		19	0.90 (0.86, 0.94)	<0.001	4	1.00 (0.94, 1.05)	0.91	
Cardiovascular mortality	Baseline CRP	< median	9	0.81 (0.74, 0.88)	<0.001	1	0.85 (0.58, 1.24)	0.385
		≥ median	10	0.82 (0.73, 0.91)	<0.001	2	0.97 (0.88, 1.06)	0.481
Magnitude of reduction in CRP	< median	5	0.76 (0.68, 0.85)	<0.001	2	0.98 (0.88, 1.10)	0.786	
	≥ median	9	0.84 (0.75, 0.94)	0.002	1	0.92 (0.80, 1.07)	0.278	
Total		19	0.82 (0.77, 0.88)	<0.001	3	0.96 (0.88, 1.05)	0.374	
Myocardial infarction	Baseline CRP	< median	9	0.70 (0.65, 0.76)	<0.001	1	0.65 (0.39, 1.08)	0.094
		≥ median	11	0.75 (0.67, 0.86)	<0.001	3	0.88 (0.82, 0.96)	0.002
Magnitude of reduction in CRP	< median	5	0.71 (0.58, 0.87)	0.001	2	0.84 (0.70, 1.02)	0.08	
	≥ median	9	0.72 (0.64, 0.82)	<0.001	1	0.92 (0.76, 1.11)	0.378	
Total		21	0.73 (0.68, 0.78)	<0.001	4	0.88 (0.81, 0.95)	0.001	
Stroke	Baseline CRP	< median	9	0.86 (0.76, 0.97)	0.011	1	1.12 (0.69, 1.82)	0.659
		≥ median	11	0.81 (0.70, 0.93)	0.003	3	0.85 (0.75, 0.96)	0.008
Magnitude of reduction in CRP	< median	5	0.93 (0.77, 1.12)	0.443	2	0.88 (0.76, 1.02)	0.089	
	≥ median	9	0.79 (0.68, 0.91)	0.001	1	0.83 (0.68, 1.01)	0.065	
Total		21	0.83 (0.76, 0.91)	<0.001	4	0.86 (0.77, 0.97)	0.014	
Coronary Revascularization	Baseline CRP	< median	8	0.76 (0.71, 0.82)	<0.001	1	0.68 (0.49, 0.94)	0.018
		≥ median	10	0.78 (0.70, 0.86)	<0.001	3	0.89 (0.80, 0.98)	0.022
Magnitude of reduction in CRP	< median	4	0.83 (0.76, 0.90)	<0.001	2	0.83 (0.60, 1.14)	0.253	
	≥ median	8	0.76 (0.68, 0.84)	<0.001	1	0.80 (0.69, 0.94)	0.005	
Total		19	0.77 (0.72, 0.81)	<0.001	4	0.85 (0.75, 0.96)	0.010	
MACE	Baseline CRP	< median	9	0.77 (0.73, 0.81)	<0.001	1	0.93 (0.81, 1.07)	0.332
		≥ median	11	0.81 (0.75, 0.88)	<0.001	3	0.91 (0.85, 0.97)	0.004
Magnitude of reduction in CRP	< median	9	0.79 (0.72, 0.87)	<0.001	2	0.94 (0.89, 0.99)	0.010	
-----------------------------	----------	---	------------------	--------	---	------------------	------	
≥ median	0.81 (0.74, 0.88)	<0.001	1	0.84 (0.75, 0.95)	0.004			
Total	0.80 (0.76, 0.84)	<0.001	4	0.92 (0.88, 0.96)	<0.001			

CRP, C-reactive protein; MACE, major adverse cardiovascular event.
Table S7. Sensitivity Analysis Stratified for the Type of Treatment in the Less-intensive Group.

Condition	Subgroup	Active	Placebo				
	Subgroup	Trials	Rate Ratio (95% CI)	P value	Trials	Rate Ratio (95% CI)	P value
All-cause mortality	Baseline CRP	< median 2	0.90 (0.72, 1.13)	0.372	7	0.90 (0.82, 0.99)	0.026
		≥ median 5	0.82 (0.67, 1.00)	0.05	8	0.94 (0.89, 0.99)	0.015
Magnitude of reduction in CRP	< median 3	0.88 (0.74, 1.04)	0.128	3	0.91 (0.74, 1.13)	0.393	
		≥ median 1	0.69 (0.47, 1.00)	0.047	8	0.93 (0.88, 0.98)	0.009
	Total	7	0.87 (0.77, 0.98)	0.024	15	0.92 (0.88, 0.97)	0.001
Cardiovascular mortality	Baseline CRP	< median 2	0.80 (0.67, 0.95)	0.013	8	0.81 (0.74, 0.90)	<0.001
		≥ median 3	0.89 (0.71, 1.10)	0.268	9	0.84 (0.75, 0.93)	0.001
Magnitude of reduction in CRP	< median 3	0.86 (0.70, 1.06)	0.162	4	0.77 (0.67, 0.87)	<0.001	
		≥ median 1	0.78 (0.45, 1.35)	0.371	9	0.85 (0.77, 0.94)	0.003
	Total	5	0.86 (0.74, 0.99)	0.034	17	0.84 (0.78, 0.90)	<0.001
Myocardial infarction	Baseline CRP	< median 2	0.69 (0.50, 0.97)	0.031	9	0.69 (0.63, 0.75)	<0.001
		≥ median 5	0.89 (0.82, 0.97)	0.001	8	0.75 (0.66, 0.85)	<0.001
Magnitude of reduction in CRP	< median 3	0.83 (0.67, 1.02)	0.078	4	0.69 (0.61, 0.78)	<0.001	
		≥ median 1	0.89 (0.71, 1.12)	0.325	9	0.73 (0.63, 0.83)	<0.001
	Total	7	0.85 (0.77, 0.93)	0.001	17	0.72 (0.66, 0.78)	<0.001
Stroke	Baseline CRP	< median 2	0.92 (0.62, 1.36)	0.680	8	0.84 (0.75, 0.95)	0.004
		≥ median 5	0.85 (0.74, 0.97)	0.017	9	0.83 (0.72, 0.95)	0.009
Magnitude of reduction in CRP	< median 3	0.93 (0.76, 1.14)	0.496	4	0.87 (0.73, 1.05)	0.141	
		≥ median 1	0.98 (0.54, 1.80)	0.955	9	0.79 (0.69, 0.90)	<0.001
	Total	7	0.87 (0.77, 0.99)	0.030	17	0.84 (0.76, 0.92)	<0.001
Coronary Revascularization	Baseline CRP	< median 2	0.79 (0.69, 0.90)	<0.001	7	0.72 (0.65, 0.80)	<0.001
		≥ median 5	0.92 (0.86, 0.97)	0.005	8	0.76 (0.69, 0.83)	<0.001
Magnitude of reduction in CRP	< median 3	0.91 (0.85, 0.98)	0.015	3	0.74 (0.63, 0.87)	<0.001	
		≥ median 1	0.87 (0.75, 0.99)	0.043	8	0.75 (0.68, 0.82)	<0.001
	Total	7	0.85 (0.78, 0.94)	0.001	15	0.74 (0.70, 0.79)	<0.001
MACE	Baseline CRP	< median 2	0.80 (0.72, 0.88)	<0.001	8	0.78 (0.73, 0.84)	<0.001
Magnitude of reduction in CRP	\geq median	5	0.89 (0.83, 0.96)	0.001	9	0.82 (0.75, 0.90)	$<$ 0.001
-----------------------------	-----------------	---	-------------------	-------	---	-------------------	------------
$<$ median	3	0.89 (0.82, 0.98)	0.016	4	0.79 (0.67, 0.93)	0.004	
\geq median	1	0.85 (0.76, 0.96)	0.006	9	0.81 (0.74, 0.89)	$<$ 0.001	
Total	7	0.86 (0.80, 0.92)	$<$ 0.001	17	0.81 (0.76, 0.85)	$<$ 0.001	

CRP, C-reactive protein; MACE, major adverse cardiovascular event.
Subgroup	Trials	Rate Ratio (95% CI)	P value	Trials	Rate Ratio (95% CI)	P value	
All-cause mortality							
Baseline CRP							
< median	6	0.94 (0.86, 1.02)	0.127	3	0.86 (0.73, 1.00)	0.051	
≥ median	3	0.87 (0.71, 1.08)	0.208	6	0.90 (0.81, 1.00)	0.051	
Magnitude of reduction in CRP							
< median	2	1.04 (0.84, 1.27)	0.739	4	0.85 (0.73, 0.98)	0.029	
≥ median	4	0.90 (0.79, 1.03)	0.139	2	0.85 (0.63, 1.16)	0.301	
Total	9	0.93 (0.86, 1.01)	0.065	9	0.87 (0.79, 0.96)	0.004	
Cardiovascular mortality							
Baseline CRP							
< median	7	0.86 (0.76, 0.98)	0.019	3	0.78 (0.69, 0.87)	<0.001	
≥ median	3	0.70 (0.46, 1.06)	0.091	5	0.93 (0.84, 1.04)	0.184	
Magnitude of reduction in CRP							
< median	3	0.79 (0.58, 1.09)	0.150	4	0.83 (0.70, 0.99)	0.036	
≥ median	4	0.76 (0.58, 0.99)	0.042	3	0.93 (0.80, 1.08)	0.327	
Total	10	0.80 (0.69, 0.92)	0.002	8	0.86 (0.77, 0.95)	0.004	
Myocardial infarction							
Baseline CRP							
< median	7	0.66 (0.58, 0.74)	<0.001	3	0.73 (0.64, 0.83)	<0.001	
≥ median	3	0.63 (0.39, 1.02)	0.058	7	0.87 (0.81, 0.93)	<0.001	
Magnitude of reduction in CRP							
< median	3	0.68 (0.59, 0.80)	<0.001	4	0.80 (0.68, 0.94)	0.007	
≥ median	4	0.64 (0.45, 0.91)	0.012	3	0.81 (0.72, 0.93)	0.002	
Total	10	0.66 (0.58, 0.76)	<0.001	10	0.81 (0.75, 0.88)	<0.001	
Stroke							
Baseline CRP							
< median	7	0.86 (0.73, 1.00)	0.053	3	0.88 (0.71, 1.11)	0.001	
≥ median	3	0.64 (0.45, 0.92)	0.016	7	0.83 (0.74, 0.93)	0.279	
Magnitude of reduction in CRP							
< median	3	1.07 (0.73, 1.57)	0.741	4	0.90 (0.78, 1.03)	0.121	
≥ median	4	0.68 (0.54, 0.85)	0.001	3	0.80 (0.66, 0.99)	0.037	
Total	10	0.80 (0.68, 0.92)	0.003	10	0.85 (0.78, 0.93)	<0.001	
Coronary Revascularization							
Baseline CRP							
< median	6	0.66 (0.58, 0.75)	<0.001	3	0.80 (0.74, 0.87)	<0.001	
≥ median	3	0.71 (0.56, 0.89)	0.003	6	0.87 (0.79, 0.95)	0.003	
Magnitude of reduction in CRP							
< median	2	0.65 (0.53, 0.79)	<0.001	4	0.89 (0.82, 0.96)	0.002	
≥ median	4	0.71 (0.60, 0.84)	<0.001	2	0.81 (0.70, 0.93)	0.003	
Total	9	0.70 (0.64, 0.76)	<0.001	9	0.84 (0.78, 0.90)	<0.001	
MACE							
Baseline CRP							
< median	7	0.78 (0.71, 0.86)	<0.001	3	0.79 (0.73, 0.85)	<0.001	
Magnitude of reduction in CRP	≥ median	3	0.68 (0.52, 0.90)	0.007	7	0.89 (0.84, 0.94)	<0.001
-----------------------------	----------	---	-------------------	-------	---	-------------------	------
	< median	3	0.79 (0.59, 1.06)	0.118	4	0.86 (0.77, 0.95)	0.004
≥ median	4	0.71 (0.59, 0.86)	<0.001	3	0.87 (0.78, 0.96)	0.007	
Total	10	0.75 (0.68, 0.83)	<0.001	10	0.85 (0.80, 0.90)	<0.001	

CRP, C-reactive protein; MACE, major adverse cardiovascular event.
Table S9. Multivariable Meta-regression Models for the Association of Each 1-mg/L Reduction in log(baseline CRP Concentration), Magnitude of Reduction in CRP Concentration, and Mortality and Cardiovascular Outcomes in Statin Trials.

Outcomes	No. of Trials	log(Baseline CRP)	Magnitude of reduction in CRP	Achieved CRP	log(Baseline CRP) Adjusted for Magnitude of reduction in CRP	log(Baseline CRP) Adjusted for Magnitude of reduction in CRP, Baseline LDL-C, Magnitude of reduction in LDL-C and Age
All-cause mortality	18	0.97 (0.90, 1.05)	1.01 (0.93, 1.10)	1.00 (0.96, 1.04)	0.98 (0.88, 1.09)	0.99 (0.86, 1.14)
Cardiovascular mortality	19	0.98 (0.87, 1.10)	0.99 (0.88, 1.12)	1.00 (0.94, 1.07)	0.98 (0.83, 1.15)	1.01 (0.84, 1.22)
Myocardial infarction	20	1.12 (1.01, 1.23)	0.95 (0.84, 1.07)	0.99 (0.93, 1.04)	1.18 (1.06, 1.30)	1.22 (1.06, 1.41)
Stroke	20	0.91 (0.79, 1.04)	0.90 (0.78, 1.02)	0.96 (0.90, 1.03)	0.96 (0.80, 1.16)	0.97 (0.76, 1.24)
Revascularization	18	1.04 (0.96, 1.12)	0.94 (0.85, 1.05)	0.99 (0.94, 1.05)	1.04 (0.96, 1.15)	1.04 (0.89, 1.22)
MACE	20	1.03 (0.95, 1.12)	0.97 (0.89, 1.05)	0.99 (0.95, 1.04)	1.05 (0.94, 1.17)	1.08 (0.95, 1.22)

CRP, C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event.
Table S10. Multivariable Meta-regression Models for the Association of Each 1-mg/L Reduction in log(baseline CRP Concentration), Magnitude of Reduction in CRP Concentration, and Mortality and Cardiovascular Outcomes in Secondary Prevention Trials*.

Outcomes	No. of Trials	log(Baseline CRP)	Magnitude of Reduction in CRP	log(Baseline CRP) Adjusted for Magnitude of Reduction in CRP
All-cause mortality	9	0.98 (0.87, 1.10)	1.09 (0.72, 1.65)	1.01 (0.84, 1.22)
Cardiovascular mortality	8	1.03 (0.90, 1.19)	1.11 (0.76, 1.61)	1.03 (0.86, 1.23)
Myocardial infarction	10	1.12 (1.03, 1.21)	1.00 (0.68, 1.48)	1.15 (1.02, 1.29)
Stroke	10	0.95 (0.85, 1.07)	0.83 (0.59, 1.17)	0.94 (0.82, 1.07)
Coronary revascularization	9	1.04 (0.97, 1.11)	0.87 (0.67, 1.14)	1.06 (0.99, 1.13)
MACE	10	1.04 (0.98, 1.10)	1.02 (0.80, 1.29)	1.04 (0.94, 1.14)

*Meta-regression analyses were not adjusted for age, baseline LDL-C and magnitude reduction of LDL-C because of limited number of trials.

CRP, C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event.
Table S11. Multivariable Meta-regression Models for the Association of Each 1-mg/L Reduction in log(baseline CRP Concentration), Magnitude of Reduction in CRP Concentration, and Mortality and Cardiovascular Outcomes in Primary Prevention Trials*

Outcomes	No. of Trials	log(Baseline CRP)	Magnitude of Reduction in CRP	log(Baseline CRP) Adjusted for Magnitude of Reduction in CRP
All-cause mortality	9	0.87 (0.71, 1.07)	0.92 (0.83, 1.01)	0.96 (0.55, 1.66)
Cardiovascular mortality	10	0.82 (0.59, 1.14)	0.95 (0.78, 1.15)	0.73 (0.22, 2.43)
Myocardial infarction	10	0.91 (0.67, 1.25)	0.95 (0.79, 1.14)	1.29 (0.35, 4.72)
Stroke	10	0.71 (0.53, 0.96)	0.89 (0.74, 1.05)	0.74 (0.22, 2.43)
Coronary revascularization	9	1.01 (0.76, 1.35)	0.98 (0.83, 1.16)	1.11 (0.44, 2.78)
MACE	10	0.90 (0.73, 1.12)	0.96 (0.84, 1.08)	0.89 (0.35, 2.27)

*Meta-regression analyses were not adjusted for age, baseline LDL-C and magnitude reduction of LDL-C because of limited number of trials.

CRP, C-reactive protein; LDL-C, low-density lipoprotein cholesterol; MACE, major adverse cardiovascular event.
Figure S1. Identification and Selection of Randomized Clinical Trials Evaluating the Effect of Low-Density Lipoprotein Cholesterol Lowering Therapy on Cardiovascular Outcomes.

Records identified through database searching (n=29086)
- Embase: 17512
- Pubmed: 8002
- Cochrane library: 3932

Records excluded as duplicate publications (n=17124)

Records screened after duplicates removed (n=11962)

Records excluded as not relevant (n=5082)

Records screened (n=6880)

- Not a randomized controlled trial (n=5113)
- Not a cardiovascular outcomes trial (n=1707)

60 Full-text articles assessed for eligibility

12 Not reporting data on CRP
12 Fewer than 40 clinical events
7 Trial duration < 6 months
5 head-to-head comparisons

Studies included in the meta-analysis (n=24)

CRP, C-reactive protein.
Figure S2. Publication Bias. (A) All-cause mortality; (B) cardiovascular mortality; (C) myocardial infarction; (D) stroke; (E) Coronary revascularization; (F) MACE.

MACE, major adverse cardiovascular event.
Figure S3. Meta-regression Analysis of All-Cause Mortality Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S4. Meta-analysis of All-cause Mortality Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

Study and Subgroup	Rate Ratio (95% CI)	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
CRP reduction ≥ median				
4D (2005)	0.95 (0.85, 1.06)	559/636	573/619	8.83
AURORA (2009)	0.96 (0.87, 1.06)	636/1389	600/1384	9.48
CARDs (2004)	0.74 (0.53, 1.02)	61/1429	82/1412	2.14
CORONA (2007)	0.95 (0.87, 1.05)	728/2514	750/2497	9.89
HOPE-3 (2016)	0.93 (0.80, 1.08)	334/6361	357/6344	6.73
HPS (2002)	0.88 (0.82, 0.95)	1328/10269	1507/10267	11.54
JUPITER (2008)	0.80 (0.67, 0.97)	198/8901	247/8901	5.14
PROVE IT-TIMI 22 (2004)	0.69 (0.47, 1.00)	46/2099	66/2063	1.71
SHARP (2011)	1.02 (0.94, 1.10)	1142/4650	1115/4620	10.99
Subtotal (I-squared = 45.4%, p = 0.067)	0.92 (0.87, 0.98)	5032/38248	5366/38107	66.45
Subtotal effect: z = 2.75, p = 0.006				
CRP reduction < median				
A to Z (2004)	0.79 (0.61, 1.02)	104/2265	130/2232	3.27
AFCAPS_TexCAPS (1998)	1.04 (0.76, 1.42)	80/3304	77/3301	2.34
IMPROVE-IT (2015)	0.99 (0.91, 1.07)	1215/9067	1231/9077	11.14
LIPID (1998)	0.78 (0.70, 0.88)	498/4512	633/4502	8.55
REAL-CAD (2018)	0.80 (0.67, 0.96)	207/6199	260/6214	5.29
SEAS (2008)	1.03 (0.79, 1.35)	105/444	100/929	2.97
Subtotal (I-squared = 67.1%, p = 0.010)	0.89 (0.79, 1.00)	2209/26291	2431/26255	33.55
Subtotal effect: z = 1.93, p = 0.053				
Overall (I-squared = 54.0%, p = 0.007)	0.91 (0.86, 0.96)	7241/54639	7797/64362	100.00
Overall effect: z = 3.57, p < 0.001				

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDs, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PRoPer level of lipid Iowing with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LipID, Long-term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Figure S5. Meta-regression Analysis of Cardiovascular Mortality Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S6. Meta-analysis of Cardiovascular Mortality Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
CRP reduction ≥ median					
4D (2005)	0.82 (0.68, 0.96)	202/636	241/619	7.50	
AURORA (2009)	1.00 (0.86, 1.16)	324/1389	324/1384	8.82	
CARDs (2004)	0.67 (0.40, 1.11)	25/1429	37/1412	1.95	
CARE (1995)	0.81 (0.62, 1.05)	96/2081	119/2076	5.05	
CORONA (2007)	1.00 (0.88, 1.12)	489/2514	487/2497	9.97	
HOPE-3 (2016)	0.90 (0.72, 1.12)	154/6381	171/6344	6.41	
HPS (2002)	0.83 (0.76, 0.92)	761/10269	937/10267	11.05	
JUPITER (2008)	0.53 (0.41, 0.69)	83/8901	157/8901	5.11	
PROVE IT-TIMI 22 (2004)	0.78 (0.45, 1.35)	361/4650	378/4620	1.71	
SHARP (2011)	0.92 (0.80, 1.07)	2537/40329	2890/40185	66.66	
Subtotal (I-squared = 64.0%, p = 0.003)					
CRP reduction < median					
A to Z (2004)	0.75 (0.57, 1.00)	83/2265	109/2232	4.72	
AFCAPS_TEXCAPS (1998)	0.66 (0.37, 1.26)	17/3304	25/3301	1.38	
IMPROVE-IT (2015)	1.00 (0.89, 1.13)	53/9067	538/9077	10.05	
LIPID (1998)	0.76 (0.66, 0.88)	331/4512	433/4502	9.10	
PREVEND-IT (2004)	1.00 (0.25, 3.97)	4/433	4/431	0.30	
REAL-CAD (2018)	0.77 (0.58, 1.02)	86/619	112/6214	4.76	
SEAS (2008)	0.83 (0.56, 1.21)	97/1944	56/929	3.03	
Subtotal (I-squared = 45.4%, p = 0.085)					
Overall (I-squared = 55.6%, p = 0.003)					

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDs, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid lowering with Pitavastatin and Ezetimibe in acute coronary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Figure S7. Meta-regression Analysis of Myocardial Infarction Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S8. Meta-analysis of Myocardial Infarction Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

Study and Subgroup	Rate Ratio (95% CI)	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
CRP reduction ≥ median				
4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid lowering with Pitavastatin and Ezetimibe in acute coronary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdStage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.	0.84 (0.67, 1.07)	124/636	143/619	6.59
AURORA (2009)	0.85 (0.64, 1.12)	91/1369	107/1384	5.77
CARDs (2004)	0.53 (0.35, 0.82)	33/1429	61/1412	3.52
CARE (1996)	0.76 (0.62, 0.93)	157/2081	207/2075	7.36
CORONA (2007)	0.81 (0.63, 1.03)	115/2514	141/2497	6.47
HOPE-3 (2016)	0.65 (0.45, 0.95)	45/6361	69/6344	4.10
HPS (2002)	0.62 (0.55, 0.71)	357/10269	574/10257	9.22
JUPITER (2008)	0.46 (0.30, 0.70)	31/8901	68/8901	3.49
PROVE IT-TIMI 22 (2004)	0.89 (0.71, 1.12)	139/2099	153/2063	6.89
SHARP (2011)	0.92 (0.76, 1.11)	213/4650	230/4620	7.86
Subtotal (I-squared = 64.1%, p = 0.003)	0.74 (0.65, 0.85)	1308/40329	1753/40185	61.27
Subtotal effect: z = 4.50, p < 0.001				
CRP reduction < median				
A to Z (2004)	0.96 (0.77, 1.20)	151/2265	155/2232	7.01
AFCAPS, TexCAPS (1998)	0.60 (0.43, 0.83)	57/3304	95/3301	4.83
IMPROVE-IT (2015)	0.87 (0.80, 0.95)	977/9067	1110/9077	10.26
LIPID (1998)	0.72 (0.63, 0.83)	336/4512	463/4502	9.02
PREVEND-IT (2004)	0.53 (0.23, 1.25)	8/433	15/431	1.12
REAL-CAD (2018)	0.56 (0.38, 0.82)	40/6199	72/6214	3.96
SEAS (2003)	0.60 (0.35, 1.02)	22/944	36/929	2.53
Subtotal (I-squared = 64.5%, p = 0.010)	0.75 (0.64, 0.87)	1591/26724	1954/26686	38.73
Subtotal effect: z = 3.75, p < 0.001				
Overall (I-squared = 64.9%, p = 0.000)	0.75 (0.68, 0.82)	2896/67053	3707/66871	100.00
Overall effect: z = 6.02, p < 0.001				
p = 0.07 for interaction (≥ median vs. < median)				

Favors More Intensive LDL-C Lowering | Favors Less Intensive LDL-C Lowering
0.2 | 1 | 2 |
Figure S9. Meta-regression Analysis of Stroke Rate Ratio Plotted Against log(baseline CRP Concentrations) in the More Intensive Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S10. Meta-regression Analysis of Stroke Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S11. Meta-analysis of Stroke Stratified by Baseline CRP Concentrations.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
Baseline CRP ≥ median					
4D (2004)	1.06 (0.78, 1.46)	64/636	76/619		4.33
A to Z (2004)	0.78 (0.48, 1.29)	28/2265	35/2232		2.05
AIRUORA (2009)	1.17 (0.78, 1.74)	53/389	45/364		2.98
CARDs (2004)	0.53 (0.31, 0.90)	21/1429	39/1422		1.83
CARE (1996)	0.60 (0.46, 0.78)	54/2081	78/2076		3.67
CORONA (2007)	0.66 (0.64, 1.13)	60/2514	104/2457		4.93
HIJ-PROPER (2017)	0.99 (0.48, 1.91)	17/864	18/857		1.22
HPS (2002)	0.76 (0.67, 0.86)	44/10269	585/10267		10.72
IMPROVE-I (2015)	0.86 (0.74, 1.00)	296/5607	345/5077		9.21
JUPITER (2006)	0.52 (0.34, 0.79)	32/8001	64/9001		2.71
Liu et al (2010)	0.65 (0.36, 1.11)	21/460	32/696		1.80
PROSPER (2002)	1.04 (0.82, 1.32)	125/2891	131/2913		6.06
PROVE IT-TIMI 22 (2004)	0.98 (0.84, 1.18)	21/699	21/696		1.45
SHARP (2011)	0.83 (0.68, 1.01)	176/4650	211/4620		7.38
Subtotal	**0.63 (0.75, 0.52)**	**1472/45455**	**1784/49318**		**60.34**

Subtotal effect: z = 3.55, p = 0.001

Baseline CRP < median	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
AFCAPS-TexCAPS (1996)	0.62 (0.41, 1.67)	14/3304	17/3301		1.08
ALERT (2003)	1.02 (0.77, 1.36)	93/1650	91/1652		4.79
ASCOT-LLA (2003)	0.73 (0.56, 0.96)	86/1668	121/1517		5.12
HOPE-3 (2016)	0.71 (0.52, 0.92)	70/1661	59/1544		4.39
LIPID (1998)	0.66 (0.57, 0.79)	164/4512	204/4562		7.23
PREVEND-IT (2004)	1.74 (0.51, 6.94)	74/333	44/331		0.38
REAL-CAD (2019)	1.13 (0.87, 1.45)	127/610	113/6214		6.56
SEAS (2009)	1.12 (0.66, 1.84)	53/444	20/689		2.54
TNT (2005)	0.76 (0.60, 0.96)	117/4955	155/5000		6.63
WOSCAPS (1995)	0.80 (0.60, 1.04)	46/338	51/3253		2.95
Subtotal	**0.67 (0.77, 0.58)**	**765/56268**	**884/56269**		**39.66**

Subtotal effect: z = 2.23, p = 0.024

Overall (l-squared = 33.0%, p = 0.001)	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
Overall	0.65 (0.76, 0.51)	2237/85723	2268/85527		100.00

Overall effect: z = 4.28, p < 0.001

p = 0.56 for interaction (≥ median vs. < median)

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid lOWering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-I, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long—term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of ReNal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Figure S12. Meta-analysis of Stroke Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

Study and Subgroup	Rate Ratio (95% CI)	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
CRP reduction ≥ median				
4D (2005)	1.08 (0.79, 1.46)	84/636	76/619	6.19
AURORA (2009)	1.17 (0.79, 1.74)	53/1389	45/1384	4.35
CARDS (2004)	0.53 (0.31, 0.90)	21/1429	39/1412	2.72
CARE (1996)	0.69 (0.49, 0.98)	54/2081	78/2078	5.30
CORONA (2007)	0.85 (0.64, 1.13)	89/2514	104/2497	6.97
HOPE-3 (2016)	0.71 (0.52, 0.96)	70/6361	99/6344	6.27
HPS (2002)	0.78 (0.67, 0.86)	444/10269	585/10267	13.84
JUPITER (2008)	0.52 (0.34, 0.78)	33/8501	64/8901	3.98
PROVE IT-TIMI 22 (2004)	0.98 (0.54, 1.60)	21/2099	21/2063	2.17
SHARP (2011)	0.83 (0.68, 1.01)	176/4650	211/4620	10.03
Subtotal (I-squared = 44.6%, p = 0.061)	0.79 (0.70, 0.90)	1045/40329	1322/40185	61.81
Subtotal effect: z = 3.54, p < 0.001				
CRP reduction < median				
A to Z (2004)	0.79 (0.48, 1.29)	28/2265	35/2322	3.04
AFCAPS-TexCAPS (1998)	0.82 (0.41, 1.67)	14/3304	17/3301	1.63
IMPROVE-IT (2015)	0.86 (0.74, 1.00)	296/5067	345/5077	12.17
LIPID (1989)	0.83 (0.67, 1.01)	169/4512	204/4502	9.86
PREVEND-IT (2004)	1.74 (0.51, 5.94)	7/433	4/431	0.58
REAL-CAD (2018)	1.13 (0.87, 1.45)	127/6159	113/6214	7.89
SEAS (2006)	1.12 (0.68, 1.84)	33/944	29/929	3.02
Subtotal (I-squared = 4.0%, p = 0.396)	0.90 (0.81, 1.01)	674/26724	747/26866	38.19
Subtotal effect: z = 1.81, p < 0.070				
Overall (I-squared = 35.6%, p = 0.047)	0.84 (0.76, 0.92)	1719/67053	2069/66671	100.00
Overall effect: z = 3.60, p < 0.001				

p = 0.13 for interaction (≥ median vs. < median)

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEScol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PRoper level of lipid IOwering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Figure S13. Meta-regression Analysis of Coronary Revascularization Rate Ratio Plotted Against log(baseline CRP Concentrations) in the More Intensive Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S14. Meta-regression Analysis of Coronary Revascularization Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S15. Meta-analysis of Coronary Revascularization Stratified by Baseline CRP Concentrations.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	Weight	
4D (2005)	0.74 (0.52, 1.05)	55/636	72/619	2.51
A to Z (2004)	0.95 (0.74, 1.21)	119/2286	124/2232	3.96
AURORA (2009)	0.97 (0.76, 1.21)	148/1380	152/1394	4.46
CARDOS (2004)	0.70 (0.41, 1.17)	24/1429	34/1412	1.32
CARE (1996)	0.75 (0.65, 0.87)	294/2081	391/2078	8.34
HIJ-PROPER (2017)	0.87 (0.73, 1.03)	225/864	257/857	5.69
HPS (2002)	0.71 (0.63, 0.79)	513/10269	726/10267	7.42
IMPROVE-IT (2015)	0.94 (0.88, 1.01)	1650/9067	1793/9077	9.72
JUPITER (2008)	0.52 (0.44, 0.77)	76/8001	131/8001	3.39
Liu et al (2016)	0.57 (0.31, 1.03)	10/400	20/398	1.04
PROSPER (2002)	0.82 (0.54, 1.25)	38/2891	48/2913	1.88
PROVE IT-TIMI 22 (2004)	0.87 (0.75, 1.00)	342/2098	368/2063	5.63
SHARP (2011)	0.80 (0.69, 0.94)	284/4850	352/4620	6.16
Subtotal	0.81 (0.74, 0.89)	3825/49041	4495/46821	59.52
Overall	0.79 (0.73, 0.83)	6608/92776	7338/82569	100.00

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDOS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PRoper level of lipid LOwering with Pitavastatin and Ezetimibe in acute coronary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PREVENT IT, the Prevention of Renal and Vascular ENdStage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Study and Subgroup	Rate Ratio (95% CI)	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight
CRP reduction ≥ median				
4D (2005)	0.74 (0.52, 1.05)	55/636	72/619	3.40
AURORA (2009)	0.97 (0.78, 1.21)	148/1389	152/1384	5.95
CARDS (2004)	0.70 (0.41, 1.17)	24/1429	34/1412	1.80
CARE (1996)	0.75 (0.65, 0.87)	294/2081	391/2078	8.34
HOPE-3 (2016)	0.68 (0.49, 0.96)	56/636	82/634	3.54
HPS (2002)	0.71 (0.63, 0.79)	513/10266	725/10267	9.69
JUPITER (2008)	0.58 (0.44, 0.77)	76/8901	131/8901	4.55
PROVE IT-TIMI 22 (2004)	0.87 (0.75, 1.00)	342/2099	388/2063	8.71
SHARP (2011)	0.90 (0.69, 0.94)	284/4650	352/4620	8.11
Subtotal (β-squared = 42.8%, p = 0.082)	0.77 (0.70, 0.84)	1792/37815	2327/37688	54.10
Subtotal effect: z = 5.82, p < 0.001				

CRP reduction < median				
A to Z (2004)	0.95 (0.74, 1.21)	119/2265	124/2232	5.30
AFCAPS-TEXCAPS (1998)	0.67 (0.53, 0.86)	106/3304	157/3301	5.37
IMPROVE-IT (2015)	0.94 (0.88, 1.01)	1600/9087	1703/9077	11.28
LIPID (1995)	0.92 (0.74, 0.92)	555/4512	700/4502	9.84
REAL-CAD (2018)	0.85 (0.76, 0.95)	525/619	625/614	9.51
SEAS (2008)	0.95 (0.49, 0.86)	77/644	117/629	4.50
Subtotal (β-squared = 67.7%, p = 0.008)	0.83 (0.75, 0.92)	3106/26292	3525/26255	45.90
Subtotal effect: z = 3.41, p = 0.001				
Overall (I-squared = 66.5%, p = 0.000)	0.79 (0.74, 0.86)	4898/64106	5852/63943	100.00
Overall effect: z = 5.95, p < 0.001				

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid lowering with Pitavastatin and Ezetimibe in acute coronary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-Term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Figure S17. Meta-regression Analysis of MACE Rate Ratio Plotted Against log(baseline CRP Concentrations) in the More Intensive Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S18. Meta-regression Analysis of MACE Rate Ratio Plotted Against Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

CRP, C-reactive protein; RR, rate ratio.
Figure S19. Meta-analysis of MACE Stratified by Baseline CRP Concentrations.

Study and Subgroup	Rate Ratio (55% CI)	No. of Patients With Event/Total No.	Weight %
Baseline CRP ≥ median			
4D (2006)	0.91 (0.78, 1.06)	264/635	4.22
A to Z (2004)	0.89 (0.77, 1.03)	309/2285	4.39
AURORA (2009)	0.97 (0.85, 1.10)	356/1339	4.77
CARDs (2004)	0.65 (0.48, 0.85)	83/1429	2.22
CARE (1998)	0.77 (0.65, 0.92)	212/2081	3.74
CORONA (2007)	0.94 (0.85, 1.04)	582/2514	5.67
HIJ-FRUPER (2017)	0.89 (0.76, 1.04)	263/664	4.27
HPS (2002)	0.79 (0.74, 0.83)	2003/10269	6.70
IMPROVE-IT (2016)	0.94 (0.86, 0.99)	2572/2907	6.79
JUPITER (2006)	0.57 (0.46, 0.69)	142/6901	3.21
Liu, et al (2016)	0.62 (0.42, 0.93)	35/400	1.25
PROSPER (2002)	0.87 (0.76, 0.99)	408/2891	4.66
PROVE-IT TIMI 22 (2004)	0.85 (0.76, 0.96)	470/2099	5.21
SHARP (2011)	0.84 (0.75, 0.95)	526/4630	5.24
Subtotal (I-squared = 74.3%, p = 0.000)	0.84 (0.75, 0.95)	5455/493455	62.53
Subtotal effect: z = 5.26, p < 0.001			

Baseline CRP < median			
AFCAPS-TEXCAPS (1968)	0.63 (0.50, 0.80)	116/3304	2.77
ALERT (2003)	0.79 (0.63, 0.98)	137/1050	2.93
ASCOT-LLA (2003)	0.83 (0.70, 0.91)	389/5158	4.60
HOPE-3 (2019)	0.77 (0.65, 0.91)	235/6301	3.90
LIPID (1969)	0.79 (0.70, 0.87)	357/4512	5.59
PREVEND-IT (2004)	0.87 (0.45, 1.58)	21/433	0.56
REAL-CAD (2019)	0.80 (0.68, 0.94)	266/6190	4.11
SEAS (2008)	0.92 (0.80, 1.07)	323/644	4.51
TNT (2005)	0.79 (0.70, 0.90)	434/4995	4.58
WOSCOPS (1995)	0.73 (0.58, 0.89)	114/3022	3.44
Subtotal (I-squared = 8.9%, p = 0.369)	0.79 (0.75, 0.83)	2662/36268	37.47
Subtotal effect: z = 6.74, p < 0.001			
Overall (I-squared = 67.7%, p = 0.006)	0.82 (0.78, 0.86)	11117/85723	109.00
Overall effect: z = 8.60, p < 0.001			

$p = 0.18$ for interaction ($≥$ median vs. < median)

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of Lescol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial—Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDs, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; HIJ-PROPER, the Heart Institute of Japan PROper level of lipid Iowering with Pitavastatin and Ezetimibe in acute coronary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PREVEND-IT, the Prevention of Renal and Vascular Endstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Figure S20. Meta-analysis of MACE Stratified by Magnitude of Reduction in CRP Concentrations Between More-intensive and Less-Intensive Lipid-Lowering Group.

Study and Subgroup	Rate Ratio (95% CI) More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %	
CRP reduction ≥ median				
4D (2005)	0.91 (0.78, 1.06)	294/636	315/619	5.92
AURORA (2009)	0.97 (0.85, 1.10)	396/1389	408/1384	6.50
CARDS (2004)	0.65 (0.49, 0.85)	83/1429	127/1412	3.23
CARE (1996)	0.77 (0.65, 0.92)	212/2081	274/2078	5.23
CORONA (2007)	0.94 (0.85, 1.04)	692/2514	732/2487	7.56
HOPE-3 (2016)	0.77 (0.65, 0.91)	235/6361	304/6344	5.43
HPS (2002)	0.79 (0.74, 0.83)	2033/10269	2585/10267	8.71
JUPITER (2008)	0.57 (0.46, 0.69)	142/6901	251/6901	4.55
PROVE IT-TIMI 22 (2004)	0.85 (0.78, 0.96)	470/2099	543/2063	7.02
SHARP (2011)	0.84 (0.75, 0.95)	526/4650	619/4620	7.05
Subtotal (I-squared = 73.6%, p = 0.000)	0.82 (0.75, 0.88)	5083/40329	6158/40185	61.10

Subtotal effect: z = 5.04, p < 0.001

CRP reduction < median	Rate Ratio (95% CI) More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %	
A to Z (2004)	0.89 (0.77, 1.03)	309/2265	343/2232	6.04
AFCAPS_TexCAPS (1998)	0.63 (0.50, 0.80)	116/3304	183/3301	3.96
IMPROVE-IT (2015)	0.94 (0.89, 0.99)	2572/9067	2742/9077	8.81
LIPID (1998)	0.78 (0.70, 0.87)	557/4512	715/4502	7.22
PREVEND-IT (2004)	0.87 (0.49, 1.56)	21433	24431	0.96
REAL-CAD (2018)	0.80 (0.68, 0.94)	266/199	334/214	5.70
SEAS (2008)	0.92 (0.80, 1.07)	333/644	355/529	6.19
Subtotal (I-squared = 70.3%, p = 0.003)	0.84 (0.76, 0.93)	4174/26724	4696/26686	38.90

Subtotal effect: z = 3.52, p < 0.001

Overall (I-squared = 74.1%, p = 0.000) | 0.82 (0.78, 0.88) | 9257/67063 | 10854/66871 | 100.00 |

Overall effect: z = 6.22, p < 0.001
p = 0.63 for interaction (≥ median vs. < median)

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; ALERT, Assessment of LEscol in Renal Transplantation Study; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; ASCOT-LLA, Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm; HIJ-PROPER, the Heart Institute of Japan PRoper level of lipid LOwering with Pitavastatin and Ezetimibe in acute coRonary syndrome trial; HOPE-3, Heart Outcomes Prevention Evaluation; HPS, Heart Protection Study; IMPROVE-IT, Improved Reduction of Outcomes: Vytorin Efficacy International Trial; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPIID, Long–term Intervention with Pravastatin in Ischaemic Disease; PREVEND IT, the Prevention of REnal and Vascular ENdstage Disease Intervention Trial; PROSPER, PROspective Study of Pravastatin in the Elderly at Risk; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection; TNT, Treating to New Targets; WOSCOPS, West of Scotland Coronary Prevention Study.
Figure S21. Meta-regression Analysis of Myocardial Infarction Rate Ratio Plotted Against log(baseline CRP Concentrations) in the Secondary Prevention Trials.

CRP, C-reactive protein; RR, rate ratio.
Figure S22. Meta-analysis of All-Cause Mortality Stratified by the Achieved CRP Concentrations.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
Achieved CRP ≥ median					
4D (2005)	0.95 (0.85, 1.06)	559/636	573/619		10.65
AURORA (2009)	0.96 (0.87, 1.06)	636/1389	660/1384		11.30
CARDS (2004)	0.74 (0.53, 1.02)	61/1429	82/1412		2.93
CORONA (2007)	0.95 (0.87, 1.05)	728/2514	759/2497		11.71
JUPITER (2008)	0.80 (0.67, 0.97)	198/8901	247/8901		6.64
LIPID (1995)	0.78 (0.70, 0.88)	498/4512	633/4502		10.37
SHARP (2011)	1.02 (0.94, 1.10)	1142/4650	1115/4620		12.77
Subtotal (I² = 66.9%, p = 0.006)	**0.91 (0.84, 0.98)**	**3822/24031**	**4069/23935**		**66.36**
Subtotal effect: z = 2.35, p = 0.019					
Achieved CRP < median					
A to Z (2004)	0.79 (0.61, 1.02)	104/2265	130/2232		4.37
AFCAPS_TEXCAPS (1998)	1.04 (0.76, 1.42)	80/3304	77/3301		3.19
IMPROVE-IT (2015)	0.99 (0.91, 1.07)	1215/9067	1231/9077		12.91
PROVE IT-TIMI 22 (2004)	0.69 (0.47, 1.00)	46/2069	66/2063		2.37
REAL-CAD (2018)	0.80 (0.67, 0.96)	207/6199	260/6214		6.81
SEAS (2008)	1.03 (0.79, 1.35)	105/644	100/929		3.99
Subtotal (I² = 50.6%, p = 0.072)	**0.90 (0.79, 1.02)**	**1757/23878**	**1864/23816**		**33.64**
Subtotal effect: z = 1.71, p = 0.087					
Overall (I² = 57.6%, p = 0.005)	**0.91 (0.85, 0.97)**	**5579/47909**	**5933/47751**		**100.00**
Overall effect: z = 3.03, p = 0.022					
p = 0.87 for interaction (≥ median vs. < median)					

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection.
Figure S23. Meta-analysis of Cardiovascular Mortality Stratified by the Achieved CRP Concentrations.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	Weight %	
Achieved CRP ≥ median				
4D (2005)	0.82 (0.68, 0.98)	202/636	241/619	9.03
AURORA (2009)	1.00 (0.96, 1.16)	324/1389	324/1384	10.27
CARDS (2004)	0.67 (0.40, 1.11)	25/1429	37/1412	2.73
CARE (1996)	0.81 (0.62, 1.05)	96/2081	119/2078	6.49
CORONA (2007)	1.00 (0.88, 1.12)	488/2514	487/2497	11.29
JUPITER (2008)	0.53 (0.41, 0.69)	83/6901	157/8901	6.55
LIPID (1998)	0.76 (0.66, 0.88)	331/4512	433/4502	10.53
SHARP (2011)	0.92 (0.80, 1.07)	361/4650	389/4620	10.53
Subtotal (I²=74.4%, p = 0.000)		1910/26112	2166/26013	67.43

Subtotal effect: z = 2.88, p = 0.004

Achieved CRP < median				
A to Z (2004)	0.75 (0.57, 1.00)	83/2265	109/2232	6.11
AFCAPS_TEXCAPS (1998)	0.68 (0.37, 1.26)	17/3304	25/3301	1.97
IMPROVE-IT (2015)	1.00 (0.89, 1.13)	537/9067	538/9077	11.36
PREVEND-IT (2004)	1.00 (0.25, 3.97)	44/33	4/431	4.44
PROVE IT-TIMI 22 (2004)	0.78 (0.45, 1.35)	23/2099	29/2063	2.41
REAL-CAD (2018)	0.77 (0.58, 1.02)	86/1999	112/6214	6.16
SEAS (2008)	0.83 (0.56, 1.21)	47/944	56/929	4.12
Subtotal (I²=13.9%, p = 0.324)		797/24311	873/24247	32.57

Subtotal effect: z = 2.10, p = 0.036

Overall (I²=59.9%, p = 0.002) | 0.84 (0.76, 0.92) | 2707/50423 | 3059/60260 | 100.00 |

Overall effect: z = 3.75, p < 0.001
p = 0.52 for interaction (≥ median vs. < median)

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection.
Figure S24. Meta-analysis of Myocardial Infarction Stratified by the Achieved CRP Concentrations.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	Weight %	
Achieved CRP ≥ median				
4D (2005)	0.84 (0.67, 1.07)	124/636	43/619	7.52
AURORA (2009)	0.85 (0.64, 1.12)	91/1389	107/1384	6.41
CARDOS (2004)	0.53 (0.35, 0.82)	33/1429	61/1412	3.65
CARE (1996)	0.76 (0.62, 0.93)	157/2081	207/2078	8.61
CORONA (2007)	0.81 (0.63, 1.03)	115/2514	141/2497	7.34
JUPITER (2008)	0.46 (0.30, 0.70)	31/8901	68/8901	3.62
LIPID (1998)	0.72 (0.63, 0.83)	336/4512	463/4502	11.17
SHARP (2011)	0.92 (0.76, 1.11)	213/4650	230/4620	9.35
Subtotal (I-squared = 50.9%, p = 0.047)	0.76 (0.67, 0.86)	1100/26112	1420/26013	57.67
Subtotal effect: z = 4.45, p < 0.001				

Achieved CRP < median	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	Weight %	
A to Z (2004)	0.96 (0.77, 1.20)	151/2265	155/2232	8.11
AFCAPS_TEXCAPS (1998)	0.60 (0.43, 0.83)	57/3304	95/3301	5.21
IMPROVE-IT (2015)	0.87 (0.80, 0.95)	977/9067	1119/9077	13.28
PREVEND-IT (2004)	0.53 (0.23, 1.25)	8/433	15/431	1.09
PROVE IT-TIMI 22 (2004)	0.89 (0.71, 1.12)	139/2099	153/2063	7.93
REAL-CAD (2018)	0.56 (0.38, 0.82)	40/6199	72/6214	4.16
SEAS (2008)	0.60 (0.35, 1.02)	22/644	36/629	2.55
Subtotal (I-squared = 55.8%, p = 0.035)	0.78 (0.67, 0.91)	1394/24311	1644/24247	42.33
Subtotal effect: z = 3.16, p = 0.002				

Overall (I-squared = 54.6%, p = 0.006)	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	Weight %	
Overall effect: z = 5.47, p < 0.001	0.77 (0.70, 0.85)	2494/50423	3064/50260	100.00
p = 0.81 for interaction (≥ median vs. < median)				

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; AURORA, An Assessment of Survival and Cardiovascular Events; CARDOS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection.
Figure S25. Meta-analysis of Stroke Stratified by the Achieved CRP Concentrations.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	Weight %	
Achieved CRP ≥ median				
4D (2005)	1.08 (0.79, 1.46)	84/638	76/619	7.80
AURORA (2009)	1.17 (0.79, 1.74)	53/139	45/1384	5.55
CARDS (2004)	0.53 (0.31, 0.90)	21/1429	39/1412	3.51
CARE (1996)	0.69 (0.49, 0.98)	54/2081	78/2076	6.72
CORONA (2007)	0.85 (0.64, 1.13)	89/2514	104/2497	8.74
JUPITER (2008)	0.52 (0.34, 0.78)	33/8001	64/8001	5.08
LIPID (1998)	0.83 (0.67, 1.01)	169/4512	204/4502	12.14
SHARP (2011)	0.83 (0.68, 1.01)	176/4650	211/4620	12.35
Subtotal (I-squared = 51.4%, p = 0.044)	0.81 (0.69, 0.95)	679/26112	821/26013	61.89
Subtotal effect: z = 2.64, p = 0.008				

Achieved CRP < median				
A to Z (2004)	0.79 (0.48, 1.29)	28/2285	35/2232	3.91
AFCAPS_TexCAPS (1998)	0.82 (0.41, 1.67)	14/3304	17/3301	2.12
IMPROVE-IT (2015)	0.86 (0.74, 1.00)	206/9067	345/9077	14.78
PREVEND-IT (2004)	1.74 (0.51, 5.94)	7/433	4/431	0.75
PROVE-IT TIMI 22 (2004)	0.96 (0.54, 1.60)	21/2099	21/2063	2.81
REAL-CAD (2018)	1.13 (0.87, 1.45)	127/1699	113/1624	9.84
SEAS (2008)	1.12 (0.68, 1.84)	33/944	29/929	3.89
Subtotal (I-squared = 0.0%, p = 0.501)	0.93 (0.83, 1.05)	526/24311	564/24247	38.11
Subtotal effect: z = 1.18, p = 0.230				

| Overall (I-squared = 36.7%, p = 0.077) | 0.87 (0.76, 0.97) | 1205/50423 | 1385/50260 | 100.00 |
| Overall effect: z = 2.56, p = 0.010 |

Favors More Intensive LDL-C Lowering
Favors Less Intensive LDL-C Lowering

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection.
Figure S26. Meta-analysis of Coronary Revascularization Stratified by the Achieved CRP Concentrations.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
Achieved CRP ≥ median
4D (2005) | 0.74 (0.52, 1.05) | 55/636 | 72/619 | 3.59
AURORA (2009) | 0.97 (0.78, 1.21) | 148/1389 | 152/1384 | 6.60
CARDS (2004) | 0.70 (0.41, 1.17) | 24/1429 | 34/1412 | 1.85
CARE (1999) | 0.75 (0.65, 0.87) | 294/2081 | 391/2076 | 9.70
JUPITER (2005) | 0.58 (0.44, 0.77) | 76/8901 | 131/8901 | 4.91
LIPID (1998) | 0.82 (0.74, 0.92) | 585/4512 | 708/4502 | 11.80
SHARP (2011) | 0.80 (0.69, 0.94) | 284/4850 | 352/4626 | 9.39
Subtotal (I-squared = 35.2%, p = 0.160) | 0.79 (0.72, 0.86) | 1466/23598 | 1840/23516 | 47.84
Subtotal effect: z = 5.01, p < 0.001
Achieved CRP < median
A to Z (2004) | 0.95 (0.74, 1.21) | 119/2265 | 124/2232 | 5.81
AFCAPS_TexCAPS (1998) | 0.67 (0.53, 0.86) | 106/3304 | 157/3301 | 5.88
IMPROVE-IT (2015) | 0.94 (0.88, 1.01) | 1690/9067 | 1793/9077 | 13.94
PROVE IT-TIMI 22 (2004) | 0.87 (0.75, 1.00) | 342/2099 | 388/2063 | 10.20
REAL-CAD (2018) | 0.85 (0.76, 0.95) | 529/6199 | 626/6214 | 11.47
SEAS (2008) | 0.65 (0.49, 0.86) | 77/944 | 117/929 | 4.65
Subtotal (I-squared = 63.9%, p = 0.017) | 0.84 (0.76, 0.94) | 2863/23878 | 3265/23816 | 52.16
Subtotal effect: z = 3.23, p = 0.001
Overall (I-squared = 60.5%, p = 0.002) | 0.81 (0.75, 0.88) | 4329/47476 | 5045/47332 | 100.00
Overall effect: z = 5.36, p < 0.001
p = 0.33 for interaction (≥ median vs. < median)

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long-term Intervention with Pravastatin in Ischaemic Disease; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection.
Figure S27. Meta-analysis of MACE Stratified by the Achieved CRP Concentrations.

Study and Subgroup	Rate Ratio (95% CI)	No. of Patients With Event/Total No.	More Intensive LDL-C Lowering	Less Intensive LDL-C Lowering	Weight %
Achieved CRP ≥ median					
4D (2005)	0.91 (0.78, 1.06)	294/636	315/619		6.81
AURORA (2009)	0.97 (0.85, 1.10)	395/1389	408/1384		7.56
CARDS (2004)	0.65 (0.49, 0.85)	83/1429	127/1412		3.85
CARE (1996)	0.77 (0.65, 0.92)	212/2081	274/2078		6.14
CORONA (2007)	0.94 (0.85, 1.04)	692/2514	732/2497		8.72
JUPITER (2008)	0.57 (0.46, 0.69)	142/8901	251/8901		5.37
LIPID (1998)	0.78 (0.70, 0.87)	557/4512	715/4502		8.35
SHARP (2011)	0.84 (0.75, 0.95)	526/4650	619/4620		8.17
Subtotal (I-squared = 77.3%, p = 0.000)	0.81 (0.73, 0.90)	2902/26112	3441/26013		54.97
Subtotal effect: z = 3.89, p < 0.001					
Achieved CRP < median					
A to Z (2004)	0.89 (0.77, 1.03)	309/2265	343/2232		7.05
AFCAPS_TEXCAPS (1998)	0.63 (0.50, 0.80)	118/3304	183/3301		4.71
IMPROVE-IT (2015)	0.94 (0.89, 0.99)	2572/9067	2742/9077		10.07
PREVENT-IT (2004)	0.87 (0.49, 1.56)	21/433	24/431		1.19
PROVE IT-TIMI 22 (2004)	0.85 (0.76, 0.96)	470/2099	543/2063		8.14
REAL-CAD (2018)	0.80 (0.68, 0.94)	268/6199	334/6214		6.67
SEAS (2008)	0.92 (0.80, 1.07)	333/844	355/829		7.21
Subtotal (I-squared = 58.9%, p = 0.024)	0.86 (0.79, 0.93)	4087/24311	4524/24247		45.03
Subtotal effect: z = 3.55, p < 0.001					
Overall (I-squared = 71.9%, p = 0.000)	0.83 (0.78, 0.89)	6989/50423	7965/50260		100.00
Overall effect: z = 5.39, p < 0.001					
p = 0.39 for interaction (≥ median vs. < median)					

4D, German Diabetes Dialysis Study—Die Deutsche Diabetes Dialyse Studies; A to Z, Aggrastat to Zocor; AFCAPS-TexCAPS, Air Force/Texas Coronary Atherosclerosis Prevention Study; AURORA, An Assessment of Survival and Cardiovascular Events; CARDS, Collaborative Atorvastatin Diabetes Study; CARE, Cholesterol And Recurrent Events; CORON, the Controlled Rosuvastatin Multinational Trial in Heart Failure; JUPITER, Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin study group; LIPID, Long–term Intervention with Pravastatin in Ischaemic Disease; PROVE IT-TIMI 22, Pravastatin or Atorvastatin Evaluation and Infection Therapy; REAL-CAD, Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy With Pitavastatin in Coronary Artery Disease; SEAS, Simvastatin and Ezetimibe in Aortic Stenosis; SHARP, Study of Heart and Renal Protection.