INTRODUCTION

An increased health awareness among athletes and the public will favor the global sports nutrition market which is predicted to have an annual growth rate of 9% from 2013 to 2019, to an estimated value of USD 37.7 billion in 2019 (http://www.transparencymarketresearch.com/sports-nutrition-market.html). High use of dietary and nutritional supplements has been reported in various regions. For example, supplement intake by elite Finnish athletes was 81% in 2002 and 73% in 2009. In Iran, women and men bodybuilders reported use of 11% and 87%, respectively. Athletes use dietary supplements to: 1. aid recovery from training; 2. acquire health benefits; 3. treat illness; and/or 4. compensate for a poor diet. According to the US Food and Drug Administration, a dietary supplement is a product (other than tobacco) to supplement the diet and contains one or more of the following ingredients: a vitamin, a mineral, an amino acid, a herb or other botanical. It supplements the diet by increasing its total daily intake, or a concentrate, metabolite, constituent, extract, or combination of these ingredients. Many sport supplements are available, however, it is only a few that are supported by enough evidence to have a performance effect including β-alanine, beetroot juice (nitrate), caffeine, creatine, sodium bicarbonate, carbohydrate and protein. Additionally, studies have also addressed supplementation and nutrient timing. Supplementation timing can be described as the strategy for intake at a specific time. For example, muscle protein synthesis (MPS) may be higher for protein ingestion after resistance exercise compared to intake before exercise. In addition, creatine monohydrate immediately after exercise may provide additional benefit due to its positive impact on muscular strength and muscle performance. Furthermore, the mTOR pathway is involved in the regulation of muscle hypertrophy, and it was hypothesized that sodium bicarbonate could enhance mTOR signaling during exercise. However, the present narrative review focuses on timing and optimal dosage and intake duration of dietary supplements with evidence-based use in sports nutrition.

Timing, optimal dose and intake duration of dietary supplements with evidence-based use in sports nutrition

Alireza Naderi1 / Erick P. de Oliveira2 / Tim N. Ziegenfuss3 / Mark E.T. Willems4*

1. Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd, Iran
2. School of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais State, Brazil
3. The Center for Applied Health Sciences, Stow, Ohio, USA
4. Department of Sport and Exercise Sciences, University of Chichester, College Lane, Chichester, United Kingdom

[Purpose] The aim of the present narrative review was to consider the evidence on the timing, optimal dose and intake duration of the main dietary supplements in sports nutrition, i.e. β-alanine, nitrate, caffeine, creatine, sodium bicarbonate, carbohydrate and protein.

[Methods] This review article focuses on timing, optimal dose and intake duration of main dietary supplements in sports nutrition.

[Results] This paper reviewed the evidence to determine the optimal time, efficacy doses and intake duration for sports supplements verified by scientific evidence that report a performance enhancing effect in both situation of laboratory and training settings.

[Conclusion] Consumption of the supplements are usually suggested into 5 specific times, such as pre-exercise (nitrate, caffeine, sodium bicarbonate, carbohydrate and protein), during exercise (carbohydrate), post-exercise (creatine, carbohydrate, protein), meal time (β-alanine, creatine, sodium bicarbonate, nitrate, carbohydrate and protein), and before sleep (protein). In addition, the recommended dosing protocol for the supplements nitrate and β-alanine are fixed amounts irrespective of body weight, while dosing protocol for sodium bicarbonate, caffeine and creatine supplements are related to corrected body weight (mg/kg bw). Also, intake duration is suggested for creatine and β-alanine, being effective in chronic daily time < 2 weeks while caffeine, sodium bicarbonate are effective in acute daily time (1-3 hours). Plus, ingestion of nitrate supplement is required in both chronic daily time < 28 days and acute daily time (2-2.5 h) prior exercise.

[Key words] Sports nutrition, Dietary supplements, Timing, Dose, Intake duration
Supplements for Enhanced Exercise Performance

Nitrate-rich Beetroot Juice and Metabolism of Nitric Oxide

Nitric oxide is a labile soluble signaling molecule, synthesized from L-arginine by nitric oxide synthase that can modulate skeletal muscle contractility, glucose homeostasis and mitochondrial respiration\(^\text{10}\). Nitric oxide bioavailability is enhanced by intake of nitrate-rich beetroot juice by alteration of nitrate to nitrite and conversion to nitric oxide\(^\text{91-12}\). This may be more important in hypoxic situations, particularly during exercise\(^\text{13}\). Moreover, beetroot juice has beneficial effects on submaximal exercise lasting 5-30 min\(^\text{14}\).

Optimal Dosage, Timing and Duration of Nitrate-rich Beetroot Juice

Nitrate-rich beetroot containing 5-7 mmol of nitrate reduces resting blood pressure and the oxygen cost of sub-maximal exercise and improves exercise performance\(^\text{15}\). Wylie et al\(^\text{16}\) reported in a dose-response study that acute ingestion of beetroot (containing 70 mL, 140 mL or 280 mL nitrate) increased nitrate and nitrite in plasma, 5, 8 and 18 fold, respectively. However, only doses of 140 mL (8.4 mmol) and 280 mL (16.8 mmol) reduced the oxygen cost during moderate-intensity cycling and improved the time to exhaustion during severe-intensity cycling compared to placebo. No additional improvement was observed in exercise performance going from a dosage of 140 mL (8.4 mmol) to 280 mL (16.8 mmol). In agreement with this finding, Hoon et al\(^\text{17}\) observed better performance in a 2,000 m rowing ergometer time trial with nitrate-rich beetroot juice containing 140 mL (8.4 mmol) nitrate within 2 h prior to the test compared with 70 mL (4.2 mmol). More recently, Jones\(^\text{18}\) stated that 5-9 mmol nitrate/day during 1-15 days seems to have beneficial effects on the physiological responses to exercise. In addition, Wylie et al\(^\text{18}\) examined the chronic effect of beetroot supplementation at dosages of 3 mmol and 6 mmol on the O\(_2\) cost of submaximal exercise with and without acute ingestion of beetroot (2 h prior exercise).

Caffeine

Caffeine (1,3,7-trimethylxanthine) is a naturally occurring psychoactive stimulant. Approximately 90% of adults, and up to 70% of competitive athletes use caffeine regularly\(^\text{20}\). Upon ingestion, caffeine is first metabolized by enzyme cytochrome P450 1A2 (CYP1A2) into theophylline (~84%), theobromine (~12%) and paraxanthine (~4%)\(^\text{21}\). Most of this first stage metabolism occurs in the liver, but brain and kidneys are also thought to play a role. Further metabolism results in formation of dimethyl- and monomethylxanthines, dimethyl and monomethyl uric acids, trimethyl- and dimethylallantoin, and uracil derivatives\(^\text{21}\). Caffeine by oral and IV administration shows similar pharmacokinetics with caffeine readily able to cross all biological membranes\(^\text{22}\). Worldwide, daily caffeine consumption is estimated to range from ~70 mg to more than 400 mg per day\(^\text{23}\). Oral ingestion of caffeine is rapidly absorbed into the bloodstream and peaks within 30-60 minutes\(^\text{24}\). Caffeine in cafefinated gums is absorbed through the buccal mucosa, and peak levels are achieved more rapidly\(^\text{25}\). Caffeine elimination varies widely due to genetic differences in cytochrome P450 1A2, but with doses of ~3-6 mg/kg bodyweight, half-life is generally 2.5-10 hours\(^\text{26}\). In addition, genetic polymorphisms in cytochrome P450 1A2 impact on performance improvements by caffeine, as AA homozygotes outperform C allele carriers, at least during endurance exercise\(^\text{27}\). Caffeine has effects on the central nervous system.
system, mainly resulting from the antagonism of adenosine receptors with physiological responses that reduce pain perception, sustain attention and vigilance, increase alertness and enhance mood. Other mechanisms that may play a role in improving exercise performance include increased sodium/potassium pump activity (which may help to maintain the membrane potential), increased calcium release from the sarcoplasmic reticulum (which may enhance excitation-contraction coupling), inhibition of phosphodiesterase enzymes (which may increase cellular concentrations of cAMP and cGMP), and increased fat oxidation/glycogen sparing (thought to be active only during the initial 15-30 minutes of exercise). For a thorough review, the reader is referred to papers by Jones, Davis and Gren and Meeusen et al.

Timing and Dose of Caffeine Ingestion

Caffeine intake of ~3-6 mg/kg body weight, when ingested 30-60 minutes pre-exercise, increased time-to-exhaustion, promoted greater work capacity, and reduced effort perception during endurance exercise. Also, Sprite observed lower caffeine intake (<3 mg/kg body mass) before exercise able to enhance exercise performance. Low caffeine intake improved cognitive performance such as vigilance, alertness and mood during and following exhaustive exercise through its effect on the central nervous system. In addition, pre-exercise caffeine ingestion improved high-intensity activities lasting 4-180 seconds and performance in a variety of team sports. Higher doses of caffeine do not provide greater benefits and are associated with side effects. Caffeine effects on strength and power performance is equivocal with some studies reporting benefits while others do not. Chronic caffeine ingestion upregulates CYP1A2, speeds metabolic clearance, and results in habituation in most, but not all users. As such, abstention from caffeinated foods and beverages for a few days prior to an event may maximize performance effects. Recently, however, morning ingestion of caffeine improved neuromuscular function (contraction velocity) and 3-km time trail cycling performance with lower negative side-effects compared to evening ingestion of caffeine. The positive effect of caffeine was attributed to higher activity of CYP1A2 in the morning than evening.

Sodium Bicarbonate

Bicarbonate is an extracellular buffer regulating blood pH. In a physiological environment, when a strong acid is added to extracellular fluid, bicarbonate ions act as a weak base reducing the hydrogen released by the stronger acid and forming carbonic acid. Large amounts of bicarbonate ingestion before exercise enhance the bicarbonate levels and pH capacity. In addition, bicarbonate loading also benefits exercise performance in high intensity exercises lasting 1 to 7 min. Although consistency in blood parameters with repeated bicarbonate intake was observed, the repeatability of the performance effect is ambiguous and single trials on performance effects should be treated with caution.

Timing and Dose of Sodium Bicarbonate Ingestion

To avoid or minimize gastrointestinal distress and improve exercise performance, the optimum dose of sodium bicarbonate needs to be known. McNaughton examined effects of sodium bicarbonate dose (i.e. 200, 300, 400 and 500 mg/kg) on maximal 60s cycling. Highest peak power and total work done were achieved with 300 mg/kg sodium bicarbonate with no additional benefits with higher dosages. In line, Siegler et al. observed that 200 and 300 mg/kg sodium bicarbonate further increased blood buffering capacity compared to 100 mg/kg. The peak of bicarbonate concentration was achieved 60 min after ingestion of 300 mg/kg sodium bicarbonate while most efficient time to consume 200 mg/kg sodium bicarbonate was 40-50 min prior to exercise. Also, the bicarbonate concentration reached a plateau after 90 min. Recently, Siegler et al. examined the timing of bicarbonate intake (i.e. 60, 120 and 180 min) prior to repeated bouts of high intensity exercise. No differences were found in blood buffering capacity between 60-180 min post ingestion of sodium bicarbonate 300 mg/kg. However, less gastrointestinal discomfort was observed at 180 min post ingestion of sodium bicarbonate. In line, more recently, Stannard et al revealed a high-individual variability of peak blood bicarbonate with time ranging from 30-180 min following 0.1-0.3 g/kg BM of NaHCO₃ supplementation. The authors suggested that the athletes need to individualise ingestion of NaHCO₃ and trial varying doses prior to competition. They also advised that for those athletes needing to consume NaHCO₃ ≤ 30 min prior onset of exercise, smaller doses could be ingested without side effects. In a meta-analysis by Carr et al., it was reported that sodium bicarbonate at 300 mg/kg improved high intensity performance lasting 1 minute and a higher dosage (≥ 300 mg/kg bw) was required for repeated sprints. Stomach pain and diarrhea are major side effects.

However, intake of several small doses along with intake of a meal containing carbohydrate and some fluid is recommended to reduce gastrointestinal discomfort of sodium bicarbonate intake. Thus, co-ingestion of sodium bicarbonate (300-500 mg/kg bw), 60-180 min prior to exercise along with a meal containing carbohydrate and some fluid minimized gastrointestinal symptoms and improved exercise performance.

β-alanine

β-alanine is a non-proteogenic amino acid in foods such as fish and meat, and is a precursor and rate-limiting for carnosine synthesis. Carnosine (i.e. β-alanyl-L-histidine) is abundantly present in skeletal muscle with a concentration of ~5–8 mmol/L wet muscle or ~20–30 mmol/kg dry muscle. Carnosine is involved in intramuscular pH regulation, sarcoplasmic reticulum calcium regulation, and results in habituation in most, but not all users. As such, abstention from caffeinated foods and beverages for a few days prior to an event may maximize performance effects. Recently, however, morning ingestion of caffeine improved neuromuscular function (contraction velocity) and 3-km time trail cycling performance with lower negative side-effects compared to evening ingestion of caffeine. The positive effect of caffeine was attributed to higher activity of CYP1A2 in the morning than evening.

Sodium Bicarbonate

Bicarbonate is an extracellular buffer regulating blood pH. In a physiological environment, when a strong acid is added to extracellular fluid, bicarbonate ions act as a weak base reducing the hydrogen released by the stronger acid and forming carbonic acid. Large amounts of bicarbonate ingestion before exercise enhance the bicarbonate levels and pH capacity. In addition, bicarbonate loading also benefits exercise performance in high intensity exercises lasting 1 to 7 min. Although consistency in blood parameters with repeated bicarbonate intake was observed, the repeatability of the performance effect is ambiguous and single trials on performance effects should be treated with caution.

Timing and Dose of Sodium Bicarbonate Ingestion

To avoid or minimize gastrointestinal distress and improve exercise performance, the optimum dose of sodium bicarbonate needs to be known. McNaughton examined effects of sodium bicarbonate dose (i.e. 200, 300, 400 and 500 mg/kg) on maximal 60s cycling. Highest peak power and total work done were achieved with 300 mg/kg sodium bicarbonate with no additional benefits with higher dosages. In line, Siegler et al. observed that 200 and 300 mg/kg sodium bicarbonate further increased blood buffering capacity compared to 100 mg/kg. The peak of bicarbonate concentration was achieved 60 min after ingestion of 300 mg/kg sodium bicarbonate while most efficient time to consume 200 mg/kg sodium bicarbonate was 40-50 min prior to exercise. Also, the bicarbonate concentration reached a plateau after 90 min. Recently, Siegler et al. examined the timing of bicarbonate intake (i.e. 60, 120 and 180 min) prior to repeated bouts of high intensity exercise. No differences were found in blood buffering capacity between 60-180 min post ingestion of sodium bicarbonate 300 mg/kg. However, less gastrointestinal discomfort was observed at 180 min post ingestion of sodium bicarbonate. In line, more recently, Stannard et al. revealed a high-individual variability of peak blood bicarbonate with time ranging from 30-180 min following 0.1-0.3 g/kg BM of NaHCO₃ supplementation. The authors suggested that the athletes need to individualise ingestion of NaHCO₃ and trial varying doses prior to competition. They also advised that for those athletes needing to consume NaHCO₃ ≤ 30 min prior onset of exercise, smaller doses could be ingested without side effects. In a meta-analysis by Carr et al., it was reported that sodium bicarbonate at 300 mg/kg improved high intensity performance lasting 1 minute and a higher dosage (≥ 300 mg/kg bw) was required for repeated sprints. Stomach pain and diarrhea are major side effects.

However, intake of several small doses along with intake of a meal containing carbohydrate and some fluid is recommended to reduce gastrointestinal discomfort of sodium bicarbonate intake. Thus, co-ingestion of sodium bicarbonate (300-500 mg/kg bw), 60-180 min prior to exercise along with a meal containing carbohydrate and some fluid minimized gastrointestinal symptoms and improved exercise performance.

β-alanine

β-alanine is a non-proteogenic amino acid in foods such as fish and meat, and is a precursor and rate-limiting for carnosine synthesis. Carnosine (i.e. β-alanyl-L-histidine) is abundantly present in skeletal muscle with a concentration of ~5–8 mmol/L wet muscle or ~20–30 mmol/kg dry muscle. Carnosine is involved in intramuscular pH regulation, sarcoplasmic reticulum calcium regulation,
enzyme regulation and antioxidant activities. In a recent meta-analysis, it was reported that β-alanine supplementation provided ergogenic benefits for high intensity exercise lasting 60 to 240 s.

Duration of β-alanine Supplementation and Optimal Dosage for Muscle Carnosine Concentration

β-alanine supplementation for 4 to 12 weeks increased muscle carnosine content by 15 to 85%. Stellingwerff et al. examined the effects of two β-alanine dosing protocols on muscle carnosine synthesis. Supplementation involved 3.2 g/d of β-alanine in the first 4-weeks with subsequent intake of 1.6 g/d for the rest of the period; the second group was supplemented daily with 1.6 gram of β-alanine for 8-weeks. Supplementation with 3.2 g/d and 1.6 g/d resulted in about a 2-fold increase of carnosine in tibialis anterior and gastrocnemius muscles compared to 1.6 g/d β-alanine for 8-weeks. The authors suggested that the increase in muscle carnosine depends only on the total amount of β-alanine ingestion and not on the initial muscle carnosine concentration, muscle fibre type or daily amount of β-alanine intake. Recently, Stegen et al. optimized the maintenance dose of β-alanine for elevated muscle carnosine content. In their study, 34 subjects (men and women) were supplemented with 3.2 g/d β-alanine every 4 days and then, divided into half, the participants resumed the β-alanine supplementation for the next 6 weeks with a maintenance dose of 0.4 g/d, 0.8 g/d or 1.2 g/d. Intake of 1.2 g/d β-alanine was demonstrated the optimum dose to maintain muscle carnosine at 30-50% above the baseline. With the intention of achieving high muscle carnosine content, β-alanine can be taken with higher dosages (i.e. 4-6 g/d) for 4-10 weeks. Also, the washout time, i.e. the time of carnosine return to its baseline value, is between 6 to 20 weeks. Collectively, it appears that 3-6 g/d of β-alanine for a period of 4-10 weeks pre-competition is the appropriate dose. However, to keep high muscle carnosine content, a maintenance dosage of 1.2 g/d seems to be the most effective. Furthermore, it should be mentioned that paresthesia is, as far as we know, the only reported side effect of β-alanine supplementation, but inhibited by slow-release capsules or by dividing intake into repeated low doses (a separation of the doses every 3-4 h).

β-alanine Timing

Only a few studies examined the effects of the timing of β-alanine supplementation. Stegen et al. demonstrated that β-alanine intake during meals (containing carbohydrate and protein) enhanced muscle carnosine content compared with in-between meals (64% vs. 41%). However, when a comparison was made with slow-release tablets, no differences were observed in muscle carnosine content. It was speculated that insulin may stimulate β-alanine uptake and augment muscle carnosine loading mediated by Na+/K+ pumps in skeletal muscle cells. However, it is not clear whether only carbohydrate ingestion with β-alanine could augment muscle carnosine content. Further research is warranted to examine co-ingestion of carbohydrate and β-alanine on muscle carnosine content and β-alanine transporters.

Creatine

First alluded to by the French physicist Michel-Eugène Chevreul in 1835, creatine (i.e. methylguanidoacetic acid) is a non-protein nitrogen compound found mainly in skeletal muscle (95%), but also in heart, brain and other tissues. Creatine has been available for more than 20 years as a dietary supplement. Creatine is a critical part of the phosphagen energy system and involved in ATP regeneration in the creatine kinase reaction. Indeed, initial interest in creatine intake focused on the ability to match cellular ATP production and demand during intense, repeated bouts of exercise. Endogenous biosynthesis of creatine occurs mainly in the liver via the synthesis of arginine, glycine and typically methionine (as S-adenosyl-methionine) at a rate of ~1-2 g/day. Humans can ingest creatine in beef, pork and certain fish, albeit in small amounts. Under normal circumstances, the rate of endogenous creatine production is approximately equal to its rate of non-enzymatic degradation into creatinine. However, when creatine is supplemented in doses of 3-5 grams or higher for several weeks, creatinine levels will increase as the excess creatine is harmlessly filtered and excreted into the urine.

Type and Role of Creatine Supplementation

Plasma bioavailability of creatine depends on the intake of the form of creatine, with creatine pyruvate resulting in higher peak creatine concentrations than creatine monohydrate and creatine citrate. However, greater benefits to strength, lean mass and/or performance remain to be demonstrated with these forms of creatine (vs. monohydrate). The long-term safety of creatine monohydrate has been well established while data remain anemic for creatine salts. During the first few days of creatine supplementation, body weight may increase by several kilograms, an effect attributed to osmotic stimulation of intra- and extra-cellular water retention and secondarily protein and/or glycogen accretion. In addition to the aforementioned increase in the capacity of the phosphagen energy system, creatine supplementation has also been shown to serve as a co-factor in gene transcription. In this scenario, oral creatine supplementation increases several myogenic regulatory factors (e.g. myogenic differentiation antigen, myogenin, and muscle regulatory factor 4) that play a role in the differentiation of satellite cells (myoblasts) into myonuclei and eventually mature muscle fibers. Thus, under certain circumstances (i.e. intense exercise and supplementation), creatine appears to increase the myonuclear protein domain. It was also demonstrated that creatine supplementation can increase glycogen storage in muscle and secondary to adenosine monophosphate-activated protein kinase phosphorylation, glucose transporter type 4 up regulation, and/or increases in insulin sensitivity. Regardless of the potential mechanisms, creatine supplementation may be of benefit to endurance athletes under certain circumstances (i.e. high carbohydrate intake and intense exercise), although any improvement in endurance performance is likely to be modest at best. In ad-
ditation to these physical performance effects, 5 g per day of creatine supplementation has also been shown to improve “fluid intelligence” (i.e. the ability to reason quickly and think abstractly) in vegetarians as well as improve certain memory tests in elderly subjects74,75

Timing and Dose of Creatine Ingestion
Creatine storage can be augmented by 2 common methods of creatine supplementation including a loading phase with ingestion of 20-25 g creatine (0.3 g/kg day) (almost every 4 hours) for 5-7 days, followed by ~3-5 g (0.03 g/kg day) per day thereafter as a maintenance dose. The creatine loading phase may increase body weight about 2% due to increased muscle water content and the osmotic effect of increased intracellular concentrations of phosphocreatine and creatine to increased muscle glycogen storage76, which may impair weight-related performance in running and in other sports in which body weight influenced energy demand77. In line, Sculthorpe et al78 reported that 25 g creatine supplementation for 5 days reduced active range of motion of shoulder extension, abduction and ankle dorsiflexion and contributed this affect due to increased retention of water into cells which increase muscle stiffness and neural outflow from the muscle spindles. The ceiling level of total creatine storage (~150–160 mmol/kg dm) is reached by a creatine loading strategy related to urine creatinine excretion by 48-55%79, however, few studies have reported that the maintenance dose of creatine supplementation is enough for enhancing of muscle creatine content80 and fatigue resistance81.

Recently, in the first study on timing of creatine ingestion, Antonio and Ciccone82, demonstrated that 5 g creatine monohydrate ingestion post-exercise had greater benefits for body composition (i.e. gains of fat-free mass and loss of fat mass) compared with pre-exercise creatine ingestion during a 4-week resistance training program in young male recreationally bodybuilders. However, this observation was not confirmed by a study in older adults83. In addition, Cadow et al83 observed that 32 weeks of creatine supplementation (0.1 g/kg) in healthy older adults immediately following resistance training lead to greater lean muscle mass compared with immediately before resistance training and resistance training alone. It was speculated that greater lean muscle mass from post exercise creatine supplementation may be due to an increase in skeletal muscle blood flow during resistance training which would result in higher creatine transport and accumulation in exercising muscles. However, in this study creatine during resistance training increased upper and lower body strength compared with resistance training alone with no difference between pre and post-exercise creatine supplementation. More research is needed to address the issue of timing of creatine supplementation with higher dosage on muscle creatine content, body composition and high-intensity exercise performance. Importantly, exercise enhances the effectiveness of creatine storage in skeletal muscle due to an increase of muscle blood flow during exercise84 as does co-ingestion of creatine with either carbohydrate (94 g per 5 g of creatine) or a combination of carbohydrate plus protein (47 g + 50 g per 5 g of creatine, respectively) enhance muscle creatine storage85 via insulin stimulation effect. Finally, it should be emphasized that the incidence of muscle cramps/pulls/strains, dehydration, or kidney/liver stress stemming from creatine monohydrate use have been overstated as no placebo-controlled, double-blind studies of healthy subjects have ever reported these effects86,87.

Carbohydrate
During exercise, muscle glycogen and blood glucose are important substrates. It is known that by increasing the exercise intensity, carbohydrate (CHO) becomes the main energy substrate and during prolonged exercise, fat oxidation is increased with a decrease of carbohydrate oxidation. However, carbohydrate is always used88 and because storage is limited, carbohydrate intake is important for long-duration performance89.

Optimal Dosage and Timing of carbohydrate
The American College of Sports Medicine recommends 3-12 g/kg/day of carbohydrate for low and high intensities exercise, respectively9 and there are specific recommendations of carbohydrate intake before, during, and after exercise to maintain glycogen stores and enhance performance90. Collectively, timing and optimal dosage of carbohydrate supplementation is divided into 3 categories: before, during and after exercise.

Carbohydrate Intake before Exercise
In the 3-4 hours before exercise, athletes should intake 200-300 g of carbohydrates (e.g. pasta, rice and/or bread)90,91. For some individuals, glucose ingestion in the hour before exercise can result in reactive or rebound hypoglycemia during exercise (15-30 min after the onset of exercise)92 and to prevent it, an intake of 15 g of carbohydrate (sports drink, gel or bar) immediately before exercise is recommended to prevent hypoglycemia92. A carbohydrate intake at least 15 minutes before the exercise can avoid hypoglycemic symptoms when compared with 45 and 75 minutes pre-exercise93.

Carbohydrate Intake during Exercise
In recent review papers, new carbohydrate intake recommendations during exercise were proposed which depends mainly of the exercise duration94,95.

Exercise lasting less than 60 minutes
CHO intake may enhance performance96 but there is evidence that it is not necessary to intake large amounts of CHO during exercise lasting less than 60 minutes because in this case, glycogen is not a determinant of performance96. However, some studies showed better performance when carbohydrate was ingested for short duration exercise97,98. Nowadays, it is known receptors in the oral
cavity that can activate some cerebral areas associated with reward\(^9^9\) and mouth rinse with CHO seems to be able to enhance performance\(^1^0^0\) without using the gastrointestinal tract. There is also evidence that mouth-rinse can improve performance\(^1^0^1\) similar to CHO beverage intake\(^1^0^2\). Studies have shown improvements between 2% and 3% during exercise lasting approximately 1 h and the effects observed are more profound after an overnight fast, but also occurs after a meal\(^9^6\). Future work should focus on the effect of CHO mouth rinse in fed conditions, which is more reflective of a real environment of competition.

Exercise lasting more than 60 minutes

Consumption of carbohydrate during exercise of long duration enhances the performance in adults\(^1^0^3\). CHO gels and CHO-containing drinks are the main source of CHO during races, whereas the solid form is the least ingested\(^9^4\). All the CHO forms can be ingested during exercise, because there is no difference in exogenous CHO oxidation when compared the intake of solid, gel and drink forms\(^1^0^5, 1^0^6\). During competition, optimal CHO beverage concentration seems to be in the range of 5-8%, and athletes should aim to achieve a CHO intake of 60 g/h. The limitation of glucose absorption is 1.0-1.1 g/min and it is possible that when large amounts of glucose are ingested, the absorption is a limiting factor that enhances the chance of gastrointestinal problems\(^1^0^7-1^0^9\). Jeukendrup and McLaughlin\(^9^4\) suggested that when exercise last more than 2 hours, there are some benefits in performance ingesting different types of CHO (90 g/h). Combined glucose and fructose intake increases the absorption and fluid delivery because glucose and fructose are absorbed by different transporters\(^1^1^1\). Glucose transport across the brush border occurs by sodium-dependent glucose transporter, whereas fructose is absorbed by glucose transporter type 5\(^1^1^2\). A CHO intake in the form of multiple transportable carbohydrates (glucose plus fructose) can be ingested at a rate of 1.5 g/min\(^1^1^3\) to 1.8 g/min\(^1^1^4\). A solution intake with 1.2 g/min of maltodextrin and 0.6 g/min of fructose showed higher carbohydrate oxidation (approximately 1.5 g/min) than 1.8 g/min of only maltodextrin\(^1^1^4\). However, there is no consensus yet on the glucose: fructose ratio intake to optimize CHO oxidation and consequently performance. Most studies used 2:1 ratio of glucose: fructose\(^9^4, 1^0^7, 1^1^3, 1^1^6, 1^1^7\) but a recent study tested a high intake of CHO (1.8 g/min) in 10 cyclists during 150 min at 50% peak power followed by an incremental test until exhaustion and compared the proportion of fructose and maltodextrin: 0.6 fructose + 1.2 maltodextrin (0.5 ratio), 0.8 fructose + 1.0 maltodextrin (0.8 ratio) and 1.0 fructose + 0.8 maltodextrin (1.25 ratio) on performance. The authors concluded that a 0.8 ratio was better to enhance performance\(^1^1^8\). However, more studies are required to examine the glucose: fructose ratio intake on performance with different exercises intensities, duration and modalities.

Carbohydrate Intake after Exercise

Muscle glycogen is an important substrate during prolonged exercise requiring the need to replenish the storage after exercise. For complete glycogen restoration within 24 hours, it is necessary to provide 8-10 g/kg/day of CHO\(^1^0^7\). Immediately after exercise is recommended an intake of approximately 1.2 g/kg/hour of CHO for maximal muscle glycogen synthesis\(^1^1^5\). In addition, for muscle regeneration, is recommended to intake adequate amounts of protein\(^1^1^9\), however this quantity of CHO plus protein may not be tolerated. It is of practical interest that Beelen et al\(^1^2^0\) suggested that the intake of 0.8 g/kg/h of CHO plus 0.4 g/kg/h of protein presents the same glycogen synthesis than 1.2 g/kg/h CHO alone. These recommendations are important for athletes with high training or competition periods and need to replenish glycogen as fast as possible. For an active person, who has more than 24 h of interval for the next training, glycogen can be replaced during the day and post exercise CHO intake could be ingested in lower amounts. Additionally, combined ingestion of glucose and fructose does not seem to accelerate muscle glycogen resynthesis following exercise in trained cyclists\(^1^2^1\).

Protein

Protein metabolism during and after exercise is affected by sex, age, intensity, duration, and type of exercise\(^9^1\). Strength exercise affects muscle protein turnover which can persist for up 72 h and there is evidences that the timing of intake and the protein source during recovery can regulate the protein synthesis and influence muscle hypertrophy\(^1^2^2\). The current Recommended Dietary Allowance is 0.8 g/kg/day for sedentary adults\(^1^1^9\) and for athletes are needed to intake higher amounts of protein, ranging from 1.2-2.0 g/kg/day\(^6\). The type of protein and consequently digestibility, amount and type amino acids can influence the protein synthesis\(^1^2^2\). Milk intake showed higher myofibrillar protein synthesis rates than beef during the first 2 hours after resistance exercise, but no difference was observed after 5 hours\(^1^2^4\). Phillips\(^1^4^6\) showed greater muscle protein synthesis after beef intake compared to soy intake. Furthermore, a comparison of milk with soy protein revealed a higher fractional synthesis ratio with milk after exercise\(^1^2^5\) and also promoted higher gain of lean mass\(^1^2^6\). Milk presents 4:1 casein-whey protein. A review\(^1^2^7\) compared the effects of whey, casein, and soy on mixed muscle protein fractional protein rate. Higher protein synthesis was observed with whey protein after exercise\(^1^2^7\) which may be due to whey’s leucine content and rapid absorption. Actually, it has become apparent that leucine is the main amino acid to activate the mTOR pathway\(^6\) and protein synthesis, however if adequate protein is consumed, the additional leucine does not seems to influence lean mass gain\(^1^2^8, 1^2^9\).

Timing of Protein Intake

The timing of protein intake with respect to an exercise bout seems to be an important. Muscle protein synthesis
(MPS) seems to be higher when ingested after resistance exercise compared to before exercise; however, there is no consensus. Tipton et al. showed no difference in MPS with protein intake before or after exercise. A recent meta-analysis showed that the total protein intake during the day is more important than the timing. Although the intake of protein close to the exercise could be important, protein synthesis is elevated after 16-48 hours of resistance exercise and this period can be considered as a "window of opportunity." Recently, it was demonstrated that an important moment in the 24-hour period for protein intake is before sleep. The effect of 40 g casein plus CHO intake 30 minutes before sleep was examined and the authors concluded that protein ingested immediately before sleep improved whole-body protein balance during post exercise overnight recovery. After this study, the same research group showed that an intake of 27.5 g of protein plus 15 g of CHO before sleep promoted higher muscle mass gain when compared with a non-caloric placebo intake after 12 weeks of resistance exercise program in young individuals. However, it is important to emphasize that the group that received protein supplementation before sleep also increased the total protein intake, therefore, it is not known whether the timing or total protein consumption was the most important. More studies are necessary comparing the timing of protein intake with the same total protein intake between the groups.

Dose of Protein Intake

The amount of protein necessary to stimulate maximum MPS seems to be an important factor to stimulate lean mass gain. Areta et al. tested the effect of 80 g of whey protein throughout 12 hours after resistance exercise ingested in different forms: 8 × 10 g every 1.5 h; 4 × 20 g every 3 h; or 2 × 40 g every 6 h. It was concluded that 20 g of protein consumed every 3 h showed higher protein synthesis. It seems that the ideal dose of protein per meal for adults is 20 g per meal and an intake higher, for example 40 g, does not increase protein synthesis and promotes higher urea synthesis and amino acid oxidation. Additionally, it is important to remember that when protein is ingested in correct doses, co-ingestion with carbohydrate does not increase protein synthesis. Elderly individuals seem to require higher protein intake, mainly after exercise, due to the decrease in the capacity of digestion, postprandial distribution, muscle amino acid uptake, and anabolic intracellular signaling.

For this population, it is recommended an intake of 30-40 g of protein per meal and immediately post-exercise. Recently, a new recommendation of protein intake per kilo per meal was proposed. The authors suggested an intake of ~0.25-0.34 g/kg/meal for younger and ~0.40 g/kg/meal for older individuals. An important information is that this recommendation was based on six retrospective studies, whereas in five studies whey was used as protein source. Whey contains higher amounts of leucine than other protein sources, therefore the recommendation of protein dose in each meal can be higher when foods that contain less leucine are ingested.

Conclusions

Several nutritional sports foods and supplements are effective at influencing energy supply, with substantial evidence for carbohydrate and creatine supplements and for physiological buffering agents such as β-alanine and sodium bicarbonate. This paper reviewed the evidence to determine the optimal time and efficacy doses for sports supplements verified by scientific evidences that report a performance enhancing effect in both situation of laboratory and training settings. These sports supplements included; β-alanine, beetroot juice (nitrate), caffeine, creatine, sodium bicarbonate, carbohydrate and protein (Table 1).

Table 1. Summary of practical guidelines for recommended doses, timing and intake duration of sports supplements.

Supplements	Recommendation doses	Timing	Intake duration
β-alanine	3-6 g	Ingestion of β-alanine with a meal containing carbohydrate and protein	4-10 weeks
Beetroot juice (nitrate)	~ 5-9 mmol	2-2.5 h prior to exercise	1-28 days
Caffeine	~ 3-6 mg / (kg bw)	60-90 min prior to exercise	Na
Creatine	20-25 g (loading dose)	Post-exercise creatine ingestion with beverages containing carbohydrate and protein	5-7 days
Sodium bicarbonate	300-500 mg / (kg bw)	60-180 min prior to exercise	1-3 days
Carbohydrate	300-400 g carbohydrate rich meal	3-4 hr prior to exercise	Na
Carbohydrate mouth rinsing	During exercise lasting less than 60 min	Na	
30-80 g/h glucose or maltodextrin with 6-8% carbohydrate concentration	During exercise lasting 1-2 hr	Na	
80 g/h glucose or maltodextrin + fructose (2:1) with 8-10% carbohydrate solution	During exercise lasting more than 2.5 h	Na	
1.2 g / (kg bw) or 0.8 g / (kg bw) carbohydrate + 0.4 g / (kg bw) protein	After exercise	Na	
Protein	20-25 g for young athletes	After exercise	Na
40 g for elderly athletes	~0.25-0.30 g / kg each meal for young person	Meal frequency	Na
~0.40 g / kg each meal for older person			
It was concluded that β-alanine should be taken at a dosage of 3-6 g along with each meal containing carbohydrate and protein plus a dose of 1.2 g as a maintenance dose following acute β-alanine supplementation. For nitrate-rich beetroot juice, the recommendation is the consumption of 140 ml (8.4 mmol) containing nitrate, 2-3 h prior to middle distance and endurance exercise. Caffeine should be ingested with a dosage of 3-6 mg/(kg bw), 30-60 min prior to exercise. Creatine is best supplemented in forms of monohydrate with daily intakes of 3-5 g, or for optimal absorption, 20 g divided into 4 daily intakes of 5 g in combination with carbohydrate and protein. Carbohydrate supplementation before exercise is essential to improve exercise performance. It is suggested that 1-4 g/kg carbohydrate is needed 1-4 h before exercise. In addition, carbohydrate mouth rinse can improve exercise performance (~2-3%) mediated by receptors in the oral cavity and the brain, during exercise lasting less than 60 min. When the exercise duration is more than 60 min, the advice is to ingest 90 g/h of mixed carbohydrates (60 g/h glucose plus 30 g/h fructose). This is important during prolonged endurance events of 3-5 g, or for optimal absorption, 20 g divided into 4 daily intakes of 5 g in combination with carbohydrate and protein. Carbohydrate supplementation before exercise is essential to improve exercise performance. It is suggested that 1-4 g/kg carbohydrate is needed 1-4 h before exercise. In addition, carbohydrate mouth rinse can improve exercise performance (~2-3%) mediated by receptors in the oral cavity and the brain, during exercise lasting less than 60 min. When the exercise duration is more than 60 min, the advice is to ingest 90 g/h of mixed carbohydrates (60 g/h glucose plus 30 g/h fructose). This is important during prolonged endurance events of 3 hours or more, and, 1.2 g/kg/h carbohydrate is required for glycogen repletion immediately post exercise. Finally, Protein should be ingested in each main meal, immediately post exercise, and also before sleeping with an amount of 20-25 g for stimulating muscle protein synthesis. However, more research is warranted in the field of supplementation timing and optimal dosage to understand what dosage and time point is most critical for the health and exercise performance of athletes. Finally, it is recommended to examine the repeatability of performance effects of supplement intake by multiple trials.

REFERENCES

1. Heikkinen A, Alaranta A, Helenius I, Vasankari T. Dietary supplementation habits and perceptions of supplement use among elite Finnish athletes. Int J Sport Nutr Exerc Metab. 2011; 21: 271-9.
2. Karimian J, Esfahani PS. Supplement consumption in body builder athletes. J Res Med Sci. 2011; 16: 1347-53.
3. Maughan RJ. Risks and Rewards of Dietary Supplement Use by Athletes. Maughan RJ. The Encyclopedia of Sports Medicine: An IOC Medical Commission Publication, Volume XIX, Sports Nutrition. Chichester, UK. Wiley-Blackwell. 2014; 291-9.
4. Braun H, Currell K Steel SJ. Supplements and Ergogenic Aids. In Lanham-New SA, Steel SJ, Shirreffs SM, Collins AL eds. Sport and Exercise Nutrition. Chichester, UK. Wiley-Blackwell. 2011; 90-118.
5. Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med Sci Sports Exerc. 2016; 48: 543-68.
6. Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J Appl Physiol. 2009; 106: 1374-84.
7. Antonio J, Ciccone V. The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr. 2013; 10: 36.
8. Kakigi R, Yoshihara T, Ozaki H, Ogura Y, Ichinoseki-Sekine N, Kobayashi H, Naito H. Whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in human skeletal muscle. Eur J Appl Physiol. 2014; 114: 735-42.
9. McNaughton LR. Bicarbonate ingestion: effects of dosage on 60s cycle ergometry. J Sports Sci. 1992; 10: 415-23.
10. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001; 81: 209-37.
11. Bryan NS. Nitrite in nitric oxide biology: cause or consequence? A systems-based review. Free Radic Biol Med. 2006; 41: 691-701.
12. Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Physiol Rev. 2004; 73: 395-400.
13. Lamsley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, Dimenna FJ, Gilchrist M, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo controlled study. J Appl Physiol. 2011; 110: 591-600.
14. Jones AM. Dietary nitrate supplementation and exercise performance. Sports Med. 2014; 1: 35-45.
15. Jones AM, Vanhatalo A, Bailey SJ. Influence of dietary nitrate supplementation on exercise tolerance and performance. Nestle Nutr Inst Workshop Ser. 2013; 75: 27-40.
16. Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard PG, Jeukendrup AE, Vanhatalo A, Jones AM. Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Appl Physiol. 2013; 115: 325-36.
17. Hoon MW, Jones AM, Johnson NA, Blackwell JR, Broad EM.
Lundy B, Rice AJ, Burke LM. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000 m rowing performance in trained athletes. *Int J Sports Physiol Perform.* 2013; 9: 615-20.

18. Wylie LJ, Ortiz de Zevallos J, Isidore T, Nyman L, Vanhatalo A, Bailey SJ, Jones AM. Dose-dependent effects of dietary nitrate on the oxygen cost of moderate-intensity exercise: Acute vs. chronic supplementation. *Nitric Oxide.* 2016; 57: 30-9.

19. Carpentier A, Strager S, Bréjeon C, Poortmans JR. Nitrate supplementation, exercise and kidney function: Are there detrimental effects? *Med Sci Sports Exerc.* 2015; 47: 1519-22.

20. Chester N, Wojek N. Caffeine consumption amongst British athletes following changes to the 2004 WADA prohibited list. *Int J Sports Med.* 2008; 29: 524-8.

21. Arnaud MJ. The pharmacology of caffeine. *Prog Drug Res.* 1987; 31: 273-313.

22. Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. *Pharmacol Rev.* 1999; 51: 83-133.

23. Barone JJ, Roberts HR. Caffeine consumption. *Food Chem Toxicol.* 1996; 34: 119-29.

24. Cox GR, Desbrow B, Montgomery PG, Anderson ME, Bruce CR, Mackrides TA, Martin DT, Moquin A, Roberts A, Hawley JA, Burke LM. Effect of different protocols of caffeine intake on metabolism and endurance performance. *J Appl Physiol.* 2002; 93: 990-9.

25. Kamimori GH, Karyekar CS, Otterstetter R, Cox DS, Balkin TJ, Belenky GL, Eddington ND. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. *Int J Pharm.* 2002; 234: 159-67.

26. Jones G. Caffeine and other sympathomimetic stimulants: modes of action and effects on sports performance. *Essays Biochem.* 2008; 44: 109-23.

27. Womack CJ, Saunders MJ, Bechtel MK, Bolton DJ, Martin M, Luden ND, Dunham W, Hancock M. The influence of a CY-P1A2 polymorphism on the ergogenic effects of caffeine. *J Int Soc Sports Nutr.* 2012; 15: 9.

28. Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. *Brain Res Brain Res Rev.* 1992; 17: 139-70.

29. Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. *Sports Med.* 2009; 39: 813-32.

30. Meesuen R, Roelands B, Spriet LL. Caffeine, exercise and the brain. *Nestle Nutr Inst Workshop Ser.* 2013; 76: 1-12.

31. Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, Taylor L, Willoughby D, Stout J, Graves BS, Wildman R, Ivy JL, Spano M, Smith AE, Antonio J. International society of sports nutrition position stand: caffeine and performance. *J Int Soc Sports Nutr.* 2010; 7: 5.

32. Spriet LL. Exercise and sport performance with low doses of caffeine. *Sports Med.* 2014; 2: 175-84.

33. Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exercise. *Int J Sport Nutr Exerc Metab.* 2008; 18: 412-29.

34. Duncan MJ, Oxford SW. The effect of caffeine ingestion on mood state and bench press performance to failure. *J Strength Cond Res.* 2011; 25: 178-85.

35. Astorino TA, Martin BJ, Schachtsieck L, Wong K, Ng K. Minimal effect of acute caffeine ingestion on intense resistance training performance. *J Strength Cond Res.* 2011; 25: 1752-8.

36. Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. *Eur J Appl Physiol.* 2008; 102: 127-32.

37. Collomp K, Caillaud C, Audran M, Chanal JL, Prefaut C. Effect of acute or chronic administration of caffeine on performance and on catecholamines during maximal cycle ergometer exercise. *C R Seances Soc Biol Fil.* 1990; 184: 87-92.

38. Mora-Rodriguez R, Pallarés JG, López-Gullón JM, López-Samanes Á, Fernández Elías VE, Ortega JF. Improvements on neuromuscular performance with caffeine ingestion depend on the time-of-day. *J Sci Med Sport.* 2015; 18: 338-42.

39. Pataky MW, Womack CJ, Saunders MJ, Goffe JL, D’Lagos AC, El-Sohemy A, Luden ND. Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. *Scand J Med Sci Sports.* 2016; 26: 613-9.

40. Bishop D. Dietary supplements and team-sport performance. *Sports Med.* 2010; 40: 995-1017.

41. Burke LM. Practical considerations for bicarbonate loading and sports performance. *Nestle Nutr Inst Workshop Ser.* 2013; 75: 15-26.

42. Froio de Araujo Dias G, da Eira Silva V, de Salles Painelli V, Sale C, Giannini Artioli G, Gualano B, Saunders B. (In)Consistencies in Responses to Sodium Bicarbonate Supplementation: A Randomised, Repeated Measures, Counterbalanced and Double-Blind Study. *PLoS One.* 2015; 10: e0143086.

43. Siegel JC, Midgley AW, Polman RCJ, Lever R. Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. *J Strength Con Res.* 2010; 24: 2551-7.

44. Siegel JC, Marshal P WM, Bray J, Towlson CH. Sodium bicarbonate supplementation and ingestion timing: does it matter? *J Strength Cond Res.* 2012; 26: 19538.

45. Stannard RL, Stellingwerf T, Artioli GG, Saunders B, Cooper S, Sale C. Dose-Response of Sodium Bicarbonate Ingestion Highlights Individuality in Time Course of Blood Analte Reponses. *Int J Sport Nutr Exerc Metab.* 2016: 445-53.

46. Carr AJ, Hopkins WG, Gore CJ. Effects of alkalosis and acidosis on performance: a meta-analysis. *Sports Med.* 2011; 41: 801-14.

47. Carr AJ, Slater GJ, Gore CJ, Dawson B, Burke LM. Effects of sodium bicarbonate on (H3O3-), pH and gastrointestinal symptoms. *Int J Sport Nutr Exerc Metab.* 2011; 25: 179-94.

48. Sahlin K. Muscle energetics during explosive activities and on one-repetition maximum muscular strength. *Eur J Appl Physiol.* 2008; 102: 127-32.

49. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA. The absorption of orally supplied beta-alanine and its effect on muscle carcinosine synthesis in human vastus lateralis. *Amino Acids.* 2006; 30: 279-89.

50. Derave W, Everaert I, Beeckman S, Baguet A. Muscle carcinosine metabolism and beta-alanine supplementation in relation...
to exercise and training. Sports Med. 2010; 40: 247-63.
51. Naderi A, Hemat Far A, Willems ME, Sadeghi M. Effect of Four Weeks of β-alanine Supplementation on Muscle Carnosine and Blood Serum Lactate during Exercise in Male Rats. J Diet Suppl. 2016; 13: 487-94.
52. Bellinger PM. β-alanine supplementation for athletic performance: an update. J Strength Cond Res. 2014; 28: 1751-70.
53. Mannion AF, Jakeman PM, Willan PL. Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man. Exp Physiol. 1995; 80: 89-101.
54. Parker CJ Jr, Ring E. A comparative study of the effect of carnosine on myofibrillar-ATPase activity on vertebrate and invertebrate muscles. Comp Biochem Physiol. 1970; 37: 413-9
55. Smith-Ryan AE, Fukuda DH, Stout JR, Kendall KL. The influence of β-alanine supplementation on markers of exercise-induced oxidative stress. Appl Physiol Nutr Metab. 2014; 39: 38-46.
56. Hobson RM, Saunders B, Ball G, Harris RC, Sale C. Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012; 43: 25-37.
57. Stellingwerff T, Anwander H, Egger A, Buehler T, Kreis R, Decombaz J, Boesch C. Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout. Amino Acids. 2012; 42: 2461-72.
58. Stegen S, Bex T, Vervaet C, Vanhee L, Achten E, Derave W. β-Alanine dose for maintaining moderately elevated muscle carnosine levels. Med Sci Sports Exerc. 2014; 46: 1426-32.
59. Blancquaert L, Everaert I, Derave W. Beta-alanine supplementation, muscle carnosine and exercise performance. Curr Opin Clin Nutr Metab Care. 2015; 18: 63-70.
60. Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, and Derave W. Carnosine loading and washout in human skeletal muscles. J Appl Physiol. 2009; 106: 837-42.
61. Décombaz J, Beaumont M, Vuijchoud J, Bouisset F, Stellingwerff T. Effect of slow-release β-alanine tablet on absorption kinetics and paresthesia. Amino Acids. 2012; 43: 67-76.
62. Stegen S, Blancquaert L, Everaert I, Bex T, Achten E, Derave W. Meal and β-alanine coingestion enhances muscle carnosine loading. Med Sci Sports Exerc. 2013; 45: 1478-85.
63. Williams MH, Branch JD. Creatine supplementation and exercise performance: an update. J Am Coll Nutr. 1998; 17: 216-34.
64. Greenhaff PL, Bodin K, Soderlund K, Hultman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol. 1994; 266: E725-30.
65. Jäger R, Harris RC, Purpura M, Francaux M. Comparison of new forms of creatine in raising plasma creatine levels. J Int Soc Sports Nutr. 2007; 4: 17.
66. Casey A, Greenhaff PL. Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance? Am J Clin Nutr. 2000; 72: 607S-17S.
67. Hespel P, Derave W. Ergogenic effects of creatine in sports and rehabilitation. Subcell Biochem. 2007; 46: 245-59.
68. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003; 244: 89-94.
69. Buford TW, Kreider RB, Stout JR, Greenwood M, Campbell B, Spano M, Ziegenfuss T, Lopez H, Landis J, Antonio J. International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr. 2007; 4: 6.
70. Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, Gómez AL, Pearson DR, Fink WJ, Kraemer WJ. Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc. 1999; 31: 1147-56.
71. Olsen S, Aagaard P, Kadi F, Tufekovic G, Verney J, Olesen JL, Sueta C, Kjaer M. Creatine supplementation augments the increase in satellite cell and m yonuclei number in human skeletal muscle induced by strength training. J Physiol. 2006; 573: 525-34.
72. Sewell DA, Robinson TM, Greenhaff PL. Creatine supplementation does not affect human skeletal muscle glycogen content in the absence of prior exercise. J Appl Physiol. 2008; 104: 508-12.
73. Van Loon LJ, Murphy R, Oosterlaar AM, Cameron-Smith D, Hargreaves M, Wagenmakers AJ, Snow R. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin Sci (Lond). 2004; 106: 99-106.
74. McMorris T, Harris RC, Swain J, Corbett J, Collard K, Dyson RJ, Dye L, Hodgson C, Draper N. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology. 2006; 185: 93-103.
75. Rae C, Digney AL, McEwan SR, Bates TC. Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci. 2003; 270: 2147-50.
76. Robinson TM, Sewell DA, Hultman E, Greenhaff PL. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol. 1999; 87: 598-604.
77. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab. 2003; 13: 198-226.
78. Sculthorpe N, Grace F, Jones P, Fletcher I. The effect of short-term creatine loading on active range of movement. Appl Physiol Nutr Metab. 2010; 35: 507-11.
79. Law YL, Ong WS, Gillian Yap TL, Lim SC, Von Chia E. Effects of two and five days of creatine loading on muscular strength and anaerobic power in trained athletes. J Strength Cond Res. 2009; 23: 906-14.
80. Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol. 1996; 81: 232-7.
81. Rawson ES, Stec MJ, Frederickson SJ, Miles MP. Low-dose creatine supplementation enhances fatigue resistance in the absence of weight gain. Nutrition. 2011; 27: 451-5.
82. Candow DG, Zello GA, Ding B, Farthing JP, Chilibeck PD, McLeod K, Harris J, Johnson S. Comparison of creatine supplementation before versus after supervised resistance training in healthy older adults. Res Sports Med. 2014; 22: 61-74.
83. Candow DG, Vogt E, Johannsmeyer S, Forbes SC, Farthing JP. Effects of oral creatine and resistance training on myosin
heavy chain expression. *Appl Physiol Nutr Metab.* 2015; 40: 689-94.

84. Green AL, Hultman E, Macdonald IA, Sewell IA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. *Am J Physiol.* 1996; 271: E821-6.

85. Steenge GR, Simpson EJ, Greenhaff PL. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. *J Appl Physiol.* 2000; 89: 1165-71.

86. Greenwood M, Kreider RB, Melton C, Rasmussen C, Lancaster S, Cantler E, Milnor P, Almada A. Creatine supplementation during college football training does not increase the incidence of cramping or injury. *Mol Cell Biochem.* 2003; 244: 83-8.

87. Poortmans JR, Francaux M. Adverse effects of creatine supplementation: fact or fiction? *Sports Med.* 2000; 30: 155-70.

88. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. *Am J Physiol.* 1993; 265: E830-91.

89. Jeukendrup AE. Nutrition for endurance sports: marathon, triathlon, and road cycling. *J Sports Sci.* 2011; 29: S91-9.

90. Lafusso D. Diet and physical activity in patients with type 1 diabetes. *Acta Biomed.* 2006; 77: 41-6.

91. Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. *Med Sci Sports Exerc.* 2009; 41: 709-31.

92. Foster C, Costill DL, Fink WJ. Effects of preexercise feedings on endurance performance. *Med Sci Sports.* 1979; 11: 1-5.

93. Jeukendrup AE, Killer SC. The myths surrounding pre-exercise carbohydrate intake during exercise. *Curr Opin Clin Nutr Metab Care.* 2009; 12: 533-8.

94. De Oliveira EP, Burini RC. The impact of physical exercise on the gastrointestinal tract. *Curr Opin Clin Nutr Metab Care.* 2011; 29: S79-85.

95. De Oliveira EP, Burini RC. Food-dependent, exercise-induced gastrointestinal distress. *J Int Soc Sports Nutr.* 2011; 8: 12.

96. De Oliveira EP, Burini RC, Jeukendrup AE. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. *Sports Med.* 2014; 44 Suppl 1: S79-85.

97. De Oliveira EP, Burini RC. Carbohydrate-dependent, exercise-induced gastrointestinal distress. *Nutrients.* 2014; 6: 4191-9.

98. Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease—sugars. *Best Pract Res Clin Gastroenterol.* 2003; 17: 943-56.

99. Jeukendrup AE, Moseley L. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. *Scand J Med Sci Sports.* 2010; 20: 112-21.

100. Wallis GA, Rowlands DS, Shaw C, Jentjens RL, Jeukendrup AE. Oxidation of combined ingestion of maltodextrins and fructose during exercise. *Med Sci Sports Exerc.* 2005; 37: 426-32.

101. Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. *Sports Med.* 2003; 33: 117-44.

102. Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. *J Appl Physiol.* 2004; 96: 1277-84.

103. Jentjens RL, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. *J Appl Physiol.* 2006; 100: 807-16.

104. O’Brien WJ, Rowlands DS, Shaw C, Jentjens RL, Jeukendrup AE. Oxidation of combined ingestion of maltodextrins and fructose during exercise. *J Appl Physiol.* 2006; 100: 807-16.

105. O’Brien WJ, Rowlands DS. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exog- enous carbohydrate oxidation rate, gut comfort, and performance. *Am J Physiol Gastrointest Liver Physiol.* 2011; 300: G181-9.
122. Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. *J Appl Physiol.* 2009; 106: 1692-701.

123. Burd NA, Gorissen SH, van Loon LJ. Anabolic resistance of muscle protein synthesis with aging. *Exerc Sport Sci Rev.* 2013; 41: 169-73.

124. Burd NA, Gorissen SH, van Vliet S, Snijders T, van Loon LJ. Differences in postprandial protein handling after beef compared with milk ingestion during postexercise recovery: a randomized controlled trial. *Am J Clin Nutr.* 2015; 102: 828-36.

125. Wilkinson SB, Tamopolsky MA, Macdonald MJ, Macdonald JR, Armstrong D, Phillips SM. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. *Am J Clin Nutr.* 2007; 85: 1031-40.

126. Hartman JW, Tang JE, Wilkinson SB, Tamopolsky MA, Lawrence RL, Fullerton AV, Phillips SM. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. *Am J Clin Nutr.* 2007; 86: 373-81.

127. Tang JE, Phillips SM. Maximizing muscle protein anabolism: the role of protein quality. *Curr Opin Clin Nutr Metab Care.* 2009; 12: 66-71.

128. Koopman R, Verdijk LB, Manders RJ, Gijsen AP, Gorselink M, pijpers E, Wagenmakers AJ, van Loon LJ. Co-ingestion of protein and leucine stimulates muscle protein synthesis rates to the same extent in young and elderly lean men. *Am J Clin Nutr.* 2006; 84: 623-32.

129. Van Loon LJ. Fructose Congestion Does Not Accelerate Postexercise Muscle Glycogen Repletion. *Med Sci Sports Exerc.* 2016; 48:907-12.

130. Van Loon LJ. Leucine as a pharmaconutrient in health and disease. *Curr Opin Clin Nutr Metab Care.* 2012; 15: 71-7.

131. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. *Am J Physiol Endocrinol Metab.* 2007; 292: E71-6.

132. Schoenfeld BJ, Aragon AA, Krieger JW. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis. *J Int Soc Sports Nutr.* 2013; 10: 53.

133. Wall BT, Cermak NM, van Loon LJ. Dietary protein considerations to support active aging. *Sports Med.* 2014; 44: S185-94.

134. Res PT, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, Senden JM, Van Loon LJ. Protein ingestion before sleep improves postexercise overnight recovery. *Med Sci Sports Exerc.* 2012; 44: 1560-9.

135. Snijders T, Res PT, Smeets JS, van Vliet S, van Kranenburg J, Maase K, Kies AK, Verdijk LB, van Loon LJ. Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. *J Nutr.* 2015; 145: 1178-84.

136. Areta JL, Burke LM, Ross ML, Camera DM, West DW, Broad EM, Jeacocke NA, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. *J Physiol.* 2013; 591: 2319-31.

137. Breen L, Phillips SM. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. *Nutr Metab (Lond).* 2011; 8: 68.

138. Breen L, Phillips SM. Interactions between exercise and nutrition to prevent muscle waste during ageing. *Br J Clin Pharmacol.* 2013; 75: 708-15.

139. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. *Am J Clin Nutr.* 2014; 99: 86-95.

140. Hamer HM, Wall BT, Kiskini A, de Lange A, Groen BB, Bakker JA, Gijsen AP, Verdijk LB, van Loon LJ. Carbohydrate co-ingestion with protein does not further augment post-prandial muscle protein accretion in older men. *Nutr Metab (Lond).* 2013; 10: 15.

141. Staples AW, Burd NA, West DW, Currie KD, Atherton PJ, Moore DR, Rennie MJ, Macdonald MJ, Baker SK, Phillips SM. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. *Med Sci Sports Exerc.* 2011; 43: 1154-61.

142. Padddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. *Curr Opin Clin Nutr Metab Care.* 2009; 12: 86-90.

143. Moore DR, Churchward-Venne TA, Ward O, Breen L, Burd NA, Tipton KD, Phillips SM. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. *J Gerontol A Biol Sci Med Sci.* 2015; 70: 57-62.

144. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. *J Sports Sci.* 2011; 29: S17-27.

145. Jeukendrup AE. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. *Curr Opin Clin Nutr Metab Care.* 2010; 13: 452-7.

146. Phillips SM. Nutrient-rich meat proteins in offsetting age-related muscle loss. *Meat Sci.* 2012; 92: 174-8.