We study the problem of learning from data representations that are invariant to transformations, and at the same time selective, in the sense that two points have the same representation if one is the transformation of the other. The mathematical results here sharpen some of the key claims of \textit{i-theory}—a recent theory of feedforward processing in sensory cortex (Anselmi et al., 2013, \textit{Theor. Comput. Sci.} and arXiv:1311.4158; Anselmi et al., 2013, Magic materials: a theory of deep hierarchical architectures for learning sensory representations. \textit{CBCL Paper}; Anselmi & Poggio, 2010, Representation learning in sensory cortex: a theory. \textit{CBMM Memo No. 26}).

\textbf{Keywords}: invariance; machine learning.

1. Introduction

This paper considers the problem of learning ‘\textit{good}’ data representation that can lower the need of labeled data (sample complexity) in machine learning (ML). Indeed, while current ML systems have achieved impressive results in a variety of tasks, an obvious bottleneck appears to be the huge amount of labeled data needed. This paper builds on the idea that \textit{invariant} data representation, which are learned in an unsupervised manner, can be key to solve the problem.

Classical statistical learning theory focuses on supervised learning assuming a suitable hypothesis space to be given, and indeed, under very general conditions, this is equivalent to assuming the data representation to be given. In other words, data representation is classically not considered to be a
part of the learning problem, but rather as a prior information. In practice, *ad hoc* solutions are often empirically found for each problem.

The study in this paper is a step toward developing a theory of learning data representation. Our starting point is the intuition that, since many learning tasks are invariant to transformations of the data, learning invariant representation from ‘unsupervised’ experiences can significantly lower the ‘size’ of the problem, effectively decreasing the need of labeled data. In the following, we develop this idea and discuss how invariant representations can be learned. Crucial to our reasoning is the requirement for invariant representations to satisfy a form of selectivity, a term we borrow from computational neuroscience [9], that is broadly referred to as the property of distinguishing images that one is not the transformation of the other. Indeed, it is this latter requirement that informs the design of non-trivial invariant representations. Our work is motivated by a theory of cortex and in particular visual cortex [4].

Data representation is a classical concept in harmonic analysis and signal processing. Here representations are typically designed on the basis of prior information assumed to be available. More recently, there has been an effort to automatically learn adaptive representation on the basis of data samples. Examples in this class of methods include the so-called dictionary learning [38], autoencoders [6] and metric learning techniques [41]. The idea of deriving invariant data representation has been considered before. For example in the analysis of shapes [25], and more generally in computational topology [14] or in the design of positive definite functions associated with reproducing kernel Hilbert spaces [18]. The question of selectivity, while less studied from a computational point of view, is standard in group theory [29]. Also, invariant and selective representation are studied in statistics where they are referred to as maximal invariants [7,42]. The context and motivations in [28,35] are close to those in our study. In particular, the results in [10,28] develop invariant and stable representations within a signal processing framework. Relevant are also the ideas in [35], further developed in [36], which discuss an information theoretic perspective to the problem of learning invariant/selective representations.

In this work, we develop an ML perspective closely following computational neuroscience models of the information processing in the visual cortex [21,22,33]. Our first and main result shows that, for compact groups, representation defined by nonlinear group averages can be shown to be invariant, as well as selective, to the action of the group. While invariance can be established from the properties of the Haar measure associated with the group, selectivity is shown using probabilistic results that characterize a probability measure in terms of one-dimensional projections. An extension of this set of ideas, which form the core of the paper, is then discussed. These results bear some understanding to the nature of certain deep architecture, in particular neural networks of the convolution type.

The rest of the paper is organized as follows. We describe the concept of invariance and selective representation in Section 2 and their role for learning in Section 3. We discuss a family of invariant/selective representation for transformations that are a compact group in Section 4 that we further develop in Sections 5 and 6. Finally, we conclude in Section 7 with some comments.

2. Invariant and selective data representations

We next formalize and discuss the notion of *invariant and selective* data representation (see Definitions 2.2 and 2.3), which is the main focus of the rest of the paper.

We model the data space as a real separable Hilbert space \mathcal{H} and denote by $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$ the inner product and norm, respectively. Example of data spaces are one-dimensional signals (as in audio data), where we could let $\mathcal{H} \subseteq L^2(\mathbb{R})$, or two-dimensional signals (such as images), where we could let $\mathcal{H} \subseteq L^2(\mathbb{R}^2)$. After discretization, data can often be seen as vectors in high-dimensional Euclidean spaces, e.g., $\mathcal{H} = \mathbb{R}^d$. The case of (digital) images serves as a main example throughout the paper.
A data representation is a map from the data space in a suitable representation space, that is

$$\mu : \mathcal{I} \to \mathcal{F}.$$

Indeed, the above concept appears under different names in various branches of pure and applied sciences, e.g., it is called an encoding (information theory), a feature map (learning theory), a transform (harmonic analysis/signal processing) or an embedding (computational geometry).

In this paper, we are interested in representations which are invariant (see below) to suitable sets of transformations. The latter can be seen as a set of maps

$$\mathcal{G} \subset \{ g : \mathcal{I} \to \mathcal{I} \}.$$

The following condition is assumed throughout.

Assumption 1 The set of transformations \mathcal{G} is a group.

Recall that a group is a set endowed with a well-defined *composition/multiplication* operation satisfying four basic properties:

- closure: $gg' \in \mathcal{G}$, for all $g, g' \in \mathcal{G}$;
- associativity: $(gg')g'' = g(g'g'')$, for all $g, g', g'' \in \mathcal{G}$;
- identity: there exists $\text{Id} \in \mathcal{G}$ such that $\text{Id}g = g\text{Id} = g$, for all $g \in \mathcal{G}$;
- invertibility: for all $g \in \mathcal{G}$ there exists $g^{-1} \in \mathcal{G}$ such that $gg^{-1} = \text{Id}$.

There are different kinds of groups. In particular, ‘small’ groups such as compact (or locally compact, i.e., a group that admits a locally compact Hausdorff topology such that the group operations of composition and inversion are continuous) groups, or ‘large’ groups which are not locally compact. In the case of images, examples of locally compact groups include affine transformations like scaling, translations, rotations and their combinations. Examples of non-locally compact groups are diffeomorphisms, which can be thought of as local or global deformations.

Example 2.1 Let $I \in L^2(\mathbb{R})$. A basic example of group transformation is given by the translation group, which can be represented as a family of linear operators

$$T_\tau : L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad T_\tau I(p) = I(p - \tau) \quad \forall p \in \mathbb{R}, \ I \in \mathcal{I},$$

for $\tau \in \mathbb{R}$. Other basic examples of locally compact groups include scaling (the multiplication group) and affine transformations (affine group). Given a smooth map $d : \mathbb{R} \to \mathbb{R}$, a diffeomorphism can also be seen as a linear operator given by

$$D_d : L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad D_d I(p) = I(d(p)) \quad \forall p \in \mathbb{R}, \ I \in \mathcal{I}.$$

Note that also in this case the representation is linear.

Clearly, not all transformations have a group structure—think for example of images of objects undergoing three-dimensional rotations or observed under some form of occlusion.

Given the above premise, we next discuss properties of data representation with respect to transformations. We first add one remark about the notation.
Remark 2.1 (Notation: Group Action and Representation) If G is a group and \mathcal{I} a set, the group action is the map $(g, x) \mapsto gx \in \mathcal{I}$. In the following, with an abuse of notation we will denote by gx the group action. Indeed, when \mathcal{I} is a linear space, we also often denote by g both a group element and its representation, so that g can be identified with a linear operator. Throughout the article, we will assume the group representation to be unitary [32].

To introduce the notion of invariant representation, we recall that an orbit associated to an element $I \in \mathcal{I}$ is the set $O_I \subset \mathcal{I}$ given by $O_I = \{I' \in \mathcal{I} \mid I' = gI, \ g \in G\}$. Orbits form a partition of \mathcal{I} in equivalence classes, with respect to the equivalence relation, $I \sim I' \iff \exists g \in G$ such that $gI = I'$, for all $I, I' \in \mathcal{I}$. We have the following definition.

Definition 2.2 (Invariant Representation) We say that a representation μ is invariant with respect to G if

$$I \sim I' \Rightarrow \mu(I) = \mu(I'),$$

for all $I, I' \in \mathcal{I}$. In other words, the above definition states that if two data points are one transformation of the other, then they will have the same representation. Indeed, if a representation μ is invariant, then

$$\mu(I) = \mu(gI)$$

for all $I \in \mathcal{I}, g \in G$. Clearly, trivial invariant representations can be defined, e.g., the constant function. This motivates a second requirement, namely selectivity.

Definition 2.3 (Selective Representation) We say that a representation μ is selective with respect to G if

$$\mu(I) = \mu(I') \Rightarrow I \sim I',$$

for all $I, I' \in \mathcal{I}$.

Together with invariance, selectivity asserts that two points have the same representation if and only if one is a transformation of the other. As mentioned in the introduction, this is essentially the notion of maximal invariant which is classical in statistics [7]. Several comments are in order. First, the requirement of exact invariance as in Definition 2.2, seems desirable for (locally) compact groups, but not for non-locally compact groups such as diffeomorphisms. In the latter case, requiring a form of stability to small transformations could be natural (see [28]). Secondly, the concept of selectivity is natural since it requires that no two orbits are mapped to the same representation. It corresponds to the injectivity of a representation on the quotient space \mathcal{I} / \sim. Canonical ways to define such a representation are known, e.g., associating a canonical element to each orbit [9] or considering the modulus of the Fourier transform defined by an Abelian group [28]. In this paper, we propose a different approach to build invariant and selective representation closer to biologically plausible models of processing in the cortex, and to computations in deep learning networks. Finally, we note that assuming \mathcal{I} to be endowed with a metric, an additional desirable set of results would be to characterize the stability of the metric embedding induced by μ. In other words, it would be interesting to control the ratio (or the deviation) of the distance of two representation and the distance of two orbits. These questions are outside the scope of the current study and are left to future work. We note that related questions are a main motivation for
the study in [28]. Before describing the proposed representation strategy, we next provide a discussion of the potential impact of invariant representations on the solution of subsequent learning tasks.

3. From invariance to low sample complexity

In this section, we first recall how the concepts of data representation and hypothesis space are closely related, and then how the sample complexity of a supervised problem can be characterized by the covering numbers of the hypothesis space. Finally, we discuss how invariant representations can lower the sample complexity of a supervised learning problem.

Supervised learning amounts to finding an input–output relationship on the basis of a training set of input–output pairs. Outputs can be scalar or vector valued, as in regression, or categorical, as in multi-category or multi-label classification, binary classification being a basic example. The bulk of statistical learning theory is devoted to study conditions under which learning problems can be solved, approximately and up to a certain confidence, provided a suitable hypothesis space is given. A hypothesis space is a subset

\[\mathcal{H} \subset \{ f \mid f : \mathcal{I} \rightarrow \mathcal{Y} \}, \]

of the set of all possible input–output relations. As we comment below, under very general assumptions hypothesis spaces and data representations are equivalent concepts.

3.1 Data representation and hypothesis space

Indeed, practically useful hypothesis spaces are typically endowed with a Hilbert space structure, since it is in this setting that most computational solutions can be developed. A further natural requirement is for evaluation functions to be well defined and continuous. This latter property allows us to give a well defined meaning of the evaluation of a function at every point, a property which is arguably natural since we are interested in making predictions. The requirements of: (1) being a Hilbert space of functions; and (2) have continuous evaluation functionals, define the so-called reproducing kernel Hilbert spaces [31]. Among other properties, these spaces of functions are characterized by the existence of a feature map \(\mu : \mathcal{I} \rightarrow \mathcal{F} \), which is a map from the data space into a feature space which is itself a Hilbert space. Roughly speaking, functions in an RKHS \(\mathcal{H} \) with an associated feature map \(\mu \) can be seen as hyperplanes in the feature space, in the sense that \(\forall f \in \mathcal{H} \), there exists \(w \in \mathcal{F} \) such that

\[f(I) = \langle w, \mu(I) \rangle_{\mathcal{F}} \quad \forall I \in \mathcal{I}. \]

The above discussion illustrates how, under mild assumptions, the choice of a hypothesis space is equivalent to the choice of a data representation (a feature map). In the next section, we recall how hypothesis spaces, hence data representation, are usually assumed to be given in statistical learning theory and are characterized in terms of sample complexity.

3.2 Sample complexity in supervised learning

Supervised statistical learning theory characterizes the difficulty of a learning problem in terms of the ‘size’ of the considered hypothesis space, as measured by suitable capacity measures. More precisely, given a measurable loss function \(V : \mathcal{Y} \times \mathcal{Y} \rightarrow [0, \infty) \), for any measurable function \(f : \mathcal{I} \rightarrow \mathcal{Y} \) the
expected error is defined as,

$$\mathcal{E}(f) = \int V(f(I), y) \, d\rho(I, y),$$

where \(\rho\) is a probability measure on \(\mathcal{I} \times \mathcal{Y}\). Given a training set \(S_n = \{(I_1, y_1), \ldots, (I_n, y_n)\}\) of input-output pairs sampled identically and independently with respect to \(\rho\), and a hypothesis space \(\mathcal{H}\), the goal of learning is to find an approximate solution \(f_n = f_{S_n} \in \mathcal{H}\) to the problem

$$\inf_{f \in \mathcal{H}} \mathcal{E}(f).$$

The difficulty of a learning problem is captured by the following definition.

Definition 3.1 (Learnability and Sample Complexity) A hypothesis space \(\mathcal{H}\) is said to be learnable if, for all \(\epsilon \in [0, \infty), \delta \in [0, 1]\), there exists \(\hat{n} = \hat{n}(\epsilon, \delta, \mathcal{H}) \in \mathbb{N}\) such that

$$\inf_{f} \sup_{\rho} \mathbb{P} \left(\mathcal{E}(f_{\hat{n}}) - \inf_{f \in \mathcal{H}} \mathcal{E}(f) \geq \epsilon \right) \leq \delta. \quad (3.1)$$

The quantity \(\hat{n}(\epsilon, \delta, \mathcal{H})\) is called the sample complexity of the problem.

The above definition characterizes the complexity of the learning problem associated with a hypothesis space \(\mathcal{H}\), in terms of the existence of an algorithm that, provided with at least \(\hat{n}(\epsilon, \delta, \mathcal{H})\) training set points, can probably approximately solve the learning problem on \(\mathcal{H}\), that is with an accuracy \(\epsilon\) and a confidence \(\delta\).

The sample complexity associated with a hypothesis space \(\mathcal{H}\) can be derived from suitable notions of covering numbers, and related quantities, that characterize the size of \(\mathcal{H}\). Recall that, roughly speaking, the covering number \(N_\gamma\) associated with a metric space is defined as the minimal number of \(\gamma\) balls needed to cover the space. The sample complexity can be shown \([13,39]\) to be proportional to the logarithm of the covering number, i.e.,

$$\hat{n}(\epsilon, \delta, \mathcal{H}) \propto \frac{1}{\epsilon^2} \log \frac{N_\gamma}{\delta}.$$

As a basic example, consider \(\mathcal{I}\) to be \(d\)-dimensional and a hypothesis space of linear functions

$$f(I) = \langle w, I \rangle \quad \forall I \in \mathcal{I}, \ w \in \mathcal{I},$$

so that the data representation is simply the identity. Then the \(\epsilon\)-covering number of the set of linear functions with \(\|w\| \leq 1\) is given by

$$N_\gamma \sim \gamma^{-d}.$$

If the input data lie in a subspace of dimension \(s \leq d\), then the covering number of the space of linear functions becomes \(N_\gamma \sim \gamma^{-s}\). In the next section, we further comment on the above example, and provide an argument to illustrate the potential benefits of invariant representations.

3.3 Sample complexity of the invariance oracle

Consider the simple example of a set of images of \(p \times p\) pixels each containing an object within a (square) window of \(k \times k\) pixels and surrounded by a uniform background. Imagine the object positions to be possibly anywhere in the image. As soon as objects are translated so that they do not overlap, they
form a set where each element is orthogonal to any other. In other words, there are \(r^2 = (p/k)^2 \) possible subspaces of dimension \(k^2 \), i.e., the set of translated images can be seen as a distribution of vectors supported within a ball in \(d = p^2 \) dimensions. Following the discussion in the previous section, the best algorithm based on a linear hypothesis space will incur in a sample complexity proportional to \(d \).

Assume now to have access to an oracle that can ‘register’ each image so that each object occupies the centered position. In this case, the distribution of images is effectively supported within a ball in \(s = k^2 \) dimensions, and the sample complexity is proportional to \(s \) rather than \(d \). In other words, a linear learning algorithm would need

\[
 r^2 = d/s
\]

less examples to achieve the same accuracy. We add a few comments. First, while the above reasoning is developed for linear hypothesis space, a similar conclusion holds if nonlinear hypothesis spaces are considered. Secondly, one can see that the set of images obtained by translation is a low-dimensional manifold, embedded in a very high-dimensional space. Other transformations, such as small deformation, while being more complex, would have a much milder effect on the dimensionality of the embedded space.

The key point in the above discussion is that invariant representations can act as an invariance oracle, and have the same impact on the sample complexity. The natural question is then how invariant representations can be learned. This is what we discuss next.

4. An invariant and selective representation

In this section, we introduce an approach to build provably invariant and selective representations which constitutes the main contribution of the paper. The material is divided into three parts. First, invariance to the action of a locally compact group is derived using the classical concept of group averaging. Secondly, selectivity is established by a novel probabilistic argument. The key observation is that, for compact groups, an invariant and selective representation can be obtained by associating with each point a probability distribution supported on the corresponding orbit. Finally, a finite-dimensional representation is derived from a discrete approximation to the distribution.

4.1 Invariance via group averaging

Consider a group of transformations \(G \) which is locally compact and Abelian. Recall that each locally compact group has a measure naturally associated with it, the so-called Haar measure. The key feature of the Haar measure is its invariance to the group action, and in particular for all measurable functions \(f : G \rightarrow \mathbb{R} \), and \(g' \in G \), it holds

\[
 \int dg f(g) = \int dg f(g'g).
\]

The above equation is a reminder of the invariance to translation of Lebesgue integrals and, indeed, the Lebesgue measure can be shown to be the Haar measure associated with the translation group. The invariance property of the Haar measure, associated with a locally compact group, is key to our development of invariant representation, as we describe next.

The starting point for deriving invariant representations is the following direct application of the invariance property of the Haar measure.
Proposition 4.1 Let $\psi : I \to \mathbb{R}$ be a, possibly nonlinear, functional on \mathcal{I}. Then, the functional defined by

$$
\mu : I \to \mathbb{R}, \quad \mu(I) = \int dg \psi(gI), \quad I \in \mathcal{I}
$$

is invariant in the sense of Definition 2.2.

The functionals ψ, μ can be thought to be measurements, or features, of the data. In the following, we are interested in measurements of the form:

$$
\psi : I \to \mathbb{R}, \quad \psi(I) = \eta((I, t)), \quad I \in \mathcal{I},
$$

where $t \in \mathcal{T} \subseteq \mathcal{I}$ the set of unit vectors in \mathcal{I} and $\eta : \mathbb{R} \to \mathbb{R}$ is a possibly nonlinear function. As discussed in [5], the main motivation for considering measurements of the above form is their interpretation in terms of biological or artificial neural networks, see the following remarks.

Remark 4.1 (Hubel and Wiesel Simple and Complex Cells [20]) A measurement as in (4.2) can be interpreted as the output of a neuron, which computes a possibly high-dimensional inner product with a template $t \in \mathcal{T}$. In this interpretation, η can be seen as a, so-called, activation function, for which natural choices are sigmoidal functions, such as the hyperbolic tangent or rectifying functions such as the hinge. The functional μ, obtained plugging (4.2) in (4.1) can be seen as the output of a second neuron, which aggregates the output of other neurons by a simple averaging operation. Neurons of the former kind are similar to simple cells, whereas neurons of the second kind are similar to complex cells in the visual cortex.

Remark 4.2 (Convolutional Neural Networks [26]) The computation of a measurement obtained plugging (4.2) in (4.1) can also be seen as the output of a so-called convolutional neural network, where each neuron, ψ, is performing the inner product operation between the input, I, and its synaptic weights, t, followed by a point-wise nonlinearity η and a pooling layer. Note that the convolution operation corresponds in our case to the dot product $\langle I, gt \rangle$ (where the group transformation is translation) and the pooling operation to the integral over $\eta(\langle I, gt \rangle)$.

A second reason to consider measurements of the form (4.2) is computational and, as shown later, has direct implications for learning. Indeed, to compute an invariant feature, according to (4.1) it is necessary to be able to compute the action of any element $I \in \mathcal{I}$ for which we wish to compute the invariant measurement. However, a simple observation suggests an alternative strategy. Indeed, since the group representation is unitary, then

$$
\langle gI, I' \rangle = \langle I, g^{-1}I' \rangle \quad \forall I, \ I' \in \mathcal{I}
$$

so that in particular we can compute ψ by considering

$$
\psi(I) = \int dg \eta(\langle I, gt \rangle) \quad \forall I \in \mathcal{I},
$$

where we used the invariance of the Haar measure. The above reasoning implies that an invariant feature can be computed for any point provided that, for $t \in \mathcal{T}$, the sequence $gt, g \in \mathcal{G}$ is available. This observation has the following interpretation: if we view a sequence $gt, g \in \mathcal{G}$, as a ‘movie’ of an object undergoing a family of transformations, then the idea is that invariant features can be computed for any new image provided that a movie of the template is available.
While group averaging provides a natural way to tackle the problem of invariant representation, it is not clear how a family of group averages can be ensured to be selective. Indeed, in the case of compact groups, selectivity can be provably characterized using a probabilistic argument summarized in the following three steps:

1. A unique probability distribution can be naturally associated to each orbit, Definition 4.2.
2. Each such probability distributions can be characterized in terms of one-dimensional projections, Definition 4.5.
3. One-dimensional probability distributions are easy to characterize, e.g., in terms of their cumulative distribution or their moments, Definitions 4.8 and 4.9.

We note in passing that the above development, which we describe in detail next, naturally provides as a byproduct indications on how the nonlinearity in (4.2) need to be chosen.

4.2 A probabilistic approach to selectivity

Let \(\mathcal{I} = \mathbb{R}^d \) and \(\mathcal{P}(\mathcal{I}) \) the space of probability measures on \(\mathcal{I} \). Recall that for any compact group, the Haar measure is finite, so that, if appropriately normalized, it correspond to a probability measure.

Assumption 2 In the following, we assume \(\mathcal{G} \) to be Abelian and compact, and the corresponding Haar measure to be normalized.

The first step in our reasoning is the following definition.

Definition 4.2 (Representation via Orbit Probability) For all \(I \in \mathcal{I} \), define the random variable
\[
Z_I: (\mathcal{I}, dg) \to \mathcal{I}, \quad Z_I(g) = gI \quad \forall g \in \mathcal{G},
\]
with law
\[
\rho_I(A) = \int_{Z_I^{-1}(A)} dg,
\]
for all measurable sets \(A \subset \mathcal{I} \). Let
\[
P: \mathcal{I} \to \mathcal{P}(\mathcal{I}), \quad P(I) = \rho_I \quad \forall I \in \mathcal{I}.
\]

The map \(P \) associates with each point a corresponding probability distribution. From the above definition, we see that we are essentially viewing an orbit as a distribution of points, and mapping each point in one such distribution. Then, we have the following result.

Proposition 4.3 For all \(I, I' \in \mathcal{I} \)
\[
I \sim I' \iff P(I) = P(I').
\]

Proof. We first prove that \(I \sim I' \Rightarrow \rho_I = \rho_{I'} \). Recalling that if \(C_c(\mathcal{I}) \) is the set of continuous functions on \(\mathcal{I} \) with compact support, \(\rho_I \) can be alternatively defined as the unique probability distribution such
that
\[\int f(z) \, d\rho_I(z) = \int f(Z_I(g)) \, dg \quad \forall f \in \mathcal{C}_c(I). \tag{4.5} \]

Therefore, \(\rho_I = \rho_{I'} \) if and only if for any \(f \in \mathcal{C}_c(I) \), we have \(\int_I f(Z_I(g)) \, dg = \int_{I'} f(Z_{I'}(g)) \, dg \) which follows immediately by a change of variable and invariance of the Haar measure:

\[\int f(Z_I(g)) \, dg = \int f(gI) \, dg = \int f(gI') \, dg = \int f(\tilde{g}I) \, d\tilde{g}. \]

To prove that \(\rho_I = \rho_{I'} \Rightarrow I \sim I' \), note that \(\rho_I(A) = \rho_{I'}(A) = 0 \) for all measurable sets \(A \subseteq I \) imply in particular that the support of the probability distributions of \(I \) and \(I' \), which coincides with their orbits, has non-null intersection on a set of non-zero measure. Since the support of the distributions \(\rho_I, \rho_{I'} \) are the orbits associated with \(I, I' \), respectively, then the orbits coincide, that is \(I \sim I' \). \(\square \)

The above result shows that an invariant representation can be defined considering the probability distribution naturally associated with each orbit; however, its computational realization would require dealing with high-dimensional distributions. Indeed, we next show that the above representation can be further developed to consider only probability distributions on the real line.

4.3 Tomographic probabilistic representations

In this section, we consider invariant representations induced by a set of one-dimensional projections (tomographies). We need to introduce some notation and definitions. Let \(T = S^1 \), the unit sphere in \(I \), and let \(\mathcal{P}(\mathbb{R}) \) denote the set of probability measures on the real line. For each \(t \in T \), let

\[\pi_t : I \rightarrow \mathbb{R}, \quad \pi_t(I) = \langle I, t \rangle \quad \forall I \in I. \]

If \(\rho \in \mathcal{P}(I) \), for all \(t \in T \) we denote by \(\rho^t \in \mathcal{P}(\mathbb{R}) \) the random variable with law given by

\[\rho^t(B) = \int_{\pi_t^{-1}(B)} \, d\rho, \]

for all measurable sets \(B \subseteq \mathbb{R} \).

Definition 4.4 (Radon Embedding) Let \(\mathcal{P}(\mathbb{R})^T = \{ h \mid h : T \rightarrow \mathcal{P}(\mathbb{R}) \} \) and define

\[R : \mathcal{P}(I) \rightarrow \mathcal{P}(\mathbb{R})^T, \quad R(\rho)(t) = \rho^t \quad \forall I \in I. \]

The above map associates with each probability distribution a (continuous) family of probability distributions on the real line defined by one-dimensional projections (tomographies). Interestingly, \(R \) can be shown to be a generalization of the Radon Transform to probability distributions [23]. We are going to use it to define the following data representation.

Definition 4.5 (TP Representation) We define the Tomographic Probabilistic (TP) representation as

\[\Psi : I \rightarrow \mathcal{P}(\mathbb{R})^T, \quad \Psi = R \circ P, \]

with \(P \) and \(R \) as in Definitions 4.2 and 4.4, respectively.
The TP representation is obtained by first mapping each point in the distribution supported on its orbit and then in a (continuous) family of corresponding one-dimensional distributions. The following result characterizes the invariance/selectivity property of the TP representation.

Theorem 4.6 Let Ψ be the TP representation in Definition 4.5, then for all $I, I' \in \mathcal{I}$,

$$ I \sim I' \iff \Psi(I) = \Psi(I'). \quad (4.6) $$

The proof of the above result is obtained combining Theorem 4.3 with the following well-known result, characterizing probability distributions in terms of their one-dimensional projections.

Theorem 4.7 (Cramer–Wold [12]) For any $\rho, \gamma \in \mathcal{P}(\mathcal{I})$, it holds

$$ \rho = \gamma \iff \rho_t = \gamma_t \quad \forall t \in \mathcal{I}. \quad (4.7) $$

Through the TP representation, the problem of finding invariant/selective representations reduces to the study of one-dimensional distributions. In the following, we relate this representation to family of measurements defined by group averages.

4.3.1 CDF representation

A natural way to describe a one-dimensional probability distribution is to consider the associated cumulative distribution function (CDF). Recall that if $\xi : (\Omega, \mathcal{P}) \rightarrow \mathbb{R}$ is a random variable with law $q \in \mathcal{P}(\mathbb{R})$, then the associated CDF is given by

$$ f_q(b) = q((\infty, b]) = \int dp(a)H(b - \xi(a)), \quad b \in \mathbb{R}, \quad (4.8) $$

where H is the Heaviside-step function. Also recall that the CDF uniquely defines a probability distribution since, by the fundamental theorem of calculus, we have

$$ \frac{d}{db} f_q(b) = \frac{d}{db} \int dp(a)H(b - \xi(a)) = \frac{d}{db} \int_{-\infty}^{b} dp(a) = p(b). $$

We consider the following map.

Definition 4.8 (CDF Vector Map) Let $\mathcal{F}(\mathbb{R}) = \{h : h : \mathbb{R} \rightarrow [0, 1]\}$, and

$$ \mathcal{F}(\mathbb{R})^\mathcal{I} = \{h : h : \mathcal{I} \rightarrow \mathcal{F}(\mathbb{R})\}. $$

Define

$$ F : \mathcal{P}(\mathbb{R})^\mathcal{I} \rightarrow \mathcal{F}(\mathbb{R})^\mathcal{I}, \quad F(\tilde{\gamma})(t) = f_{\tilde{\gamma}'} $$

for $\tilde{\gamma} \in \mathcal{P}(\mathbb{R})^\mathcal{I}$ and where we let $\tilde{\gamma}'(t) = \tilde{\gamma}(t)$ for all $t \in \mathcal{I}$.

The above map associates with a family of probability distributions on the real line their corresponding CDFs. We can then define the following representation.

Definition 4.9 (CDF representation) Let

$$ \mu : \mathcal{I} \rightarrow \mathcal{F}(\mathbb{R})^\mathcal{I}, \quad \mu = F \circ R \circ P, $$

with F, P and R as in Definitions 4.8, 4.2 and 4.4, respectively.
Then, the following result holds.

Proposition 4.10 For all \(I \in \mathcal{I} \) and \(t \in \mathcal{T} \)
\[
\mu'(I)(b) = \int dg \eta_b(I, gt), \quad b \in \mathbb{R},
\]
(4.9)

where we let \(\mu'(I) = \mu(I)(t) \) and, for all \(b \in \mathbb{R}, \eta_b : \mathbb{R} \rightarrow \mathbb{R} \), is given by \(\eta_b(a) = H(b - a), \ a \in \mathbb{R} \). Moreover, for all \(I, I' \in \mathcal{I} \)
\[
I \sim I' \iff \mu(I) = \mu(I').
\]

Proof. The proof follows, noting that \(\mu \) is the composition of the one-to-one maps \(F, R \) and a map \(P \) that is one-to-one w.r.t. the equivalence classes induced by the group of transformations \(G \). Therefore \(\mu \) is one-to-one w.r.t. the equivalence classes, i.e., \(I \sim I' \iff \mu(I) = \mu(I') \). \(\square \)

We note that, from a direct comparison, one can see that (4.9) is of the form (4.3). Different measurements correspond to different choices of the threshold \(b \).

Remark 4.3 (Activation Functions: from CDF to Moments and Beyond) The above reasoning suggests that a principled choice for the nonlinearity in (4.3) is a step function, which in practice could be replaced by a smooth approximation such as a sigmoidal function. Interestingly, other choices of nonlinearities could be considered. For example, considering different powers would yield information on the moments of the distributions (more general nonlinear function than powers would yield generalized moments). This latter point of view is discussed in some detail in Appendix A.

4.4 Templates sampling and metric embeddings

We next discuss what happens if only a finite number of (possibly random) templates are available. In this case, while invariance can be ensured, in general we cannot expect selectivity to be preserved. However, it is possible to show that the representation is *almost* selective (see below) if a sufficiently large number of templates are available.

Toward this end, we introduce a metric structure on the representation space. Recall that if \(\rho, \rho' \in \mathcal{P}(\mathbb{R}) \) are two probability distributions on the real line and \(f_\rho, f_{\rho'} \) their cumulative distributions functions, then the uniform Kolmogorov–Smirnov (KS) metric is induced by the uniform norm of the cumulative distributions, that is
\[
d_\infty(f_\rho, f_{\rho'}) = \sup_{s \in \mathbb{R}} |f_\rho(s) - f_{\rho'}(s)|,
\]
and takes values in \([0, 1]\). Then, if \(\mu \) is the representation in (4.9), we can consider the metric
\[
d(I, I') = \int du(t) d_\infty(\mu'(I), \mu'(I')),
\]
(4.10)

where \(u \) is the (normalized) uniform measure on the sphere \(\mathcal{S} \). We note that Theorems 4.7 and 4.10 ensure that (4.10) is a well-defined metric on the quotient space induced by the group transformations,
in particular
\[d(I, I') = 0 \iff I \sim I'. \]

If we consider the case in which only a finite set \(\mathcal{T}_k = \{t_1, \ldots, t_k\} \subset \mathcal{T} \) of \(k \) templates is available, each point is mapped in a finite sequence of probability distributions or CDFs and (4.10) is replaced by
\[
\hat{d}(I, I') = \frac{1}{k} \sum_{i=1}^{k} d_{\infty}(\mu^i(\hat{I}), \mu^i(I')).
\] (4.11)

Clearly, in this case we cannot expect to be able to discriminate every pair of points; however, we have the following result.

Lemma 4.1 Consider \(n \) images \(\mathcal{I}_n \) in \(\mathcal{I} \). Let \(k \geq (2/c\epsilon^2) \log(n/\delta) \), where \(c \) is a constant. Then with probability \(1 - \delta^2 \),
\[
|d(I, I') - \hat{d}(I, I')| \leq \epsilon,
\] (4.12)
for all \(I, I' \in \mathcal{I}_n \).

Proof. The proof follows from a direct application of Höeffding’s inequality and a union bound. Fix \(I, I' \in \mathcal{I}_n \). Define the real random variable \(Z : \mathcal{T} \to [0, 1], \)
\[
Z(t_i) = d_{\infty}(\mu^i(I), \mu^i(I')), \quad i = 1, \ldots, k.
\]
From the definitions, it follows that \(\|Z\| \leq 1 \) and \(\mathbb{E}(Z) = d(I, I') \). Then, Höeffding inequality implies
\[
|d(I, I') - \hat{d}(I, I')| = \left| \frac{1}{k} \sum_{i=1}^{k} \mathbb{E}(Z) - Z(t_i) \right| \geq \epsilon,
\]
with probability at most \(2e^{-c\epsilon^2 k} \). A union bound implies that the result holds uniformly on \(\mathcal{I}_n \) with probability at least \(n^22e^{-c\epsilon^2 k} \). The proof is concluded setting this probability to \(\delta^2 \) and taking \(k \geq 2/c\epsilon^2 \log n/\delta \).

We first discuss in which sense the above result provides a form of almost selectivity depending on the number of considered templates. Note that, if we let \(D \) be a metric on the representation space such that \(D(\mu(I), \mu(I')) = d(I, I') \) for all \(I, I' \in \mathcal{I} \), then the invariance and selectivity requirement is equivalent to
\[
D(\mu(I), \mu(I')) = 0 \iff I \sim I'.
\] (4.13)

After the discretization, the ideal representation \(\mu \) is effectively replaced by a discretized representation \(\hat{\mu} \), with an associated metric \(\hat{D} \) such that \(\hat{D}(\hat{\mu}(I), \hat{\mu}(I')) = \hat{d}(I, I') \), for all \(I, I' \in \mathcal{I} \). The representation \(\hat{\mu} \) is no longer selective, but only almost selective in the following sense. On the one hand it holds,
\[
I \sim I' \Rightarrow \hat{D}(\hat{\mu}(I), \hat{\mu}(I')) \leq \epsilon(k, \mathcal{I}),
\]
where \(\epsilon \) decreases as the number of examples increases. On the other hand, if
\[
\hat{D}(\hat{\mu}(I), \hat{\mu}(I')) = 0,
\]
we cannot conclude that \(D(\mu(I), \mu(I')) = 0 \) (hence that \(I \sim I' \)), but only that \(D(\mu(I), \mu(I')) \leq \epsilon(k, \mathcal{I}) \).
We add a few more comments. First, note that for the sake of simplicity, and in analogy to the basic statement of the Johnson–Linderstrauss lemma [24], in the above result we consider a finite set of points; however, the same argument can be readily extended to any compact set \(\mathcal{I}_0 \subset \mathcal{I} \). In this case, the number of templates needed is proportional to the logarithm of the covering numbers, and will be proportional to the dimension \(d \) of \(\mathcal{I} \), if \(d \) is finite. The proof of this fact is straightforward and is omitted.

Secondly, while we considered the KS metric for convenience, other metrics over probability distributions can be considered. Also, we note that a natural further question is how discretization/sampling of the group affects the representation. The above reasoning could be extended to yield results in this latter case. Finally, we note that, when compared with classical results on distance preserving embedding, such as Johnson–Linderstrauss lemma [24], Theorem 4.11 only ensures distance preservation up to a given accuracy which increases with a larger number of projections. This is hardly surprising, since the problem of finding suitable embedding for probability spaces is known to be considerably harder than the analog problem for vector spaces [2]. The question of how we devise strategies to define distance preserving embedding is an interesting open problem.

5. Locally invariant and covariant representations

In the previous section, we presented the main contribution of the paper providing a framework to learn an invariant and selective representation. Here, we further discuss the connection with the processing in each layer of a deep learning architecture of the convolution type. The starting point is considering architecture performing suitable collections of ‘local’ group averages, that we call partially observable group (POG) averages. The representation thus obtained is invariant to a limited range of transformations, that it is locally invariant; see Section 5.1. Moreover, representation made of collections of POG averages are shown in Section 5.2 to satisfy a covariance property that can be useful to learn increasingly invariant representation by stacking multiple representation layers.

5.1 Partially observable group averages

For a subset \(\mathcal{G}_0 \subset \mathcal{G} \), consider a POG measurement of the form

\[
\psi(I) = \int_{\mathcal{G}_0} dg \eta(\langle I, gt \rangle).
\]

The above quantity can be interpreted as the ‘response’ of a cell that can perceive visual stimuli within a ‘window’ (receptive field) of size \(\mathcal{G}_0 \). A POG measurement corresponds to a local group average restricted to a subset of transformations \(\mathcal{G}_0 \). Clearly, such a measurement will not in general be invariant. Consider a POG measurement on a transformed point

\[
\int_{\mathcal{G}_0} dg \eta(\langle \tilde{g}I, gt \rangle) = \int_{\mathcal{G}_0} dg \eta(\langle I, \tilde{g}^{-1}gt \rangle) = \int_{\tilde{g}\mathcal{G}_0} dg \eta(\langle I, gt \rangle).
\]

If we compare the POG measurements on the same point with and without a transformation, we have

\[
\left| \int_{\mathcal{G}_0} dg \eta(\langle I, gt \rangle) - \int_{\tilde{g}\mathcal{G}_0} dg \eta(\langle I, gt \rangle) \right|.
\]
Fig. 1. A sufficient condition for invariance for locally compact groups: if \(\langle I, gt \rangle = 0 \) for all \(g \in \tilde{g}G_0 \Delta G_0 \), the integral of \(\eta_b \langle I, gt \rangle \) over \(G_0 \) or \(\tilde{g}G_0 \) will be equal.

While there are several situations in which the above difference can be zero, the intuition from the vision interpretation is that the same response should be obtained if a sufficiently small object does not move (transform) too much with respect to the receptive field size. This latter situation can be described by the assumption that the function

\[
h : \mathcal{G} \to \mathbb{R}, \quad h(g) = \eta(\langle I, gt \rangle)
\]

is zero outside of the intersection of \(\tilde{g}G_0 \cap G_0 \). Indeed, for all \(\tilde{g} \in \mathcal{G} \) satisfying this latter assumption, the difference in (5.2) would clearly be zero. The above reasoning results in the following proposition.

Proposition 5.1 Given \(I \in \mathcal{I} \) and \(t \in \mathcal{T} \), assume that there exists a set \(\tilde{G} \subset \mathcal{G} \) such that, for all \(\tilde{g} \in \tilde{G} \),

\[
\eta(\langle I, gt \rangle) = 0 \quad \forall g \notin \tilde{g}G_0 \cap G_0.
\]

Then for \(\tilde{g} \in \tilde{G} \)

\[
\psi(I) = \psi(\tilde{g}I),
\]

with \(\psi \) as in (5.1).

We add a few comments. First, we note that condition (5.3) can be weakened, requiring only \(\eta(\langle I, gt \rangle) = 0 \) for all \(g \in \tilde{g}G_0 \Delta G_0 \), where we denote by \(\Delta \) the symmetric difference of two sets \((A \Delta B = (A \cup B)/(A \cap B) \) with \(A, B \) sets). Secondly, we note that if the nonlinearity \(\eta \) is zero only in zero, then we can rewrite condition (5.3) as

\[
\langle I, gt \rangle = 0 \quad \forall g \in \tilde{g}G_0 \Delta G_0.
\]

Finally, we note that the latter expression has a simple interpretation in the case of the translation group. In fact, we can interpret (5.3) as a spatial localization condition on the image \(I \) and the template \(t \) (assumed to be positive-valued functions), see Fig. 1. We conclude with the following remark.

Remark 5.1 (Localization Condition and V1) Regarding the localization condition discussed above, as we comment elsewhere [3], the fact that a template needs to be localized could have implications from a biological modeling standpoint. More precisely, it could provide a theoretical foundation of the Gabor-like shape of the responses observed in V1 cells in the visual cortex [3,4,30].
Remark 5.2 (More on the Localization Condition) From a more mathematical point of view, an interesting question is about conditions under which whether the localization condition (5.3) is also necessary rather than only sufficient.

5.2 POG Representation

In the following, we consider a representation made of collections of local POG averages. These kind of representations satisfy a covariance property defined as follows.

Definition 5.2 (Covariance) Let $f: G \rightarrow G$ a function. f is covariant w.r.t. the group of transformations G if or only if

$$f(\tilde{g}g) = \tilde{g}f(g) \quad \forall g, \tilde{g} \in G.$$

Let now, for all $\tilde{g} \in G$, $\tilde{g}G_0 = \{g \in G | g = \tilde{g}g', \ g' \in G_0\}$, the collection of ‘local’ subsets of the group obtained from the subset G_0. Moreover, let

$$V = \int_{G_0} \text{dg}.$$

Clearly, by the invariance of the measure, we have $\int_{\tilde{g}G_0} \text{dg} = V$, for all $\tilde{g} \in G$. Then, for all $I \in \mathcal{I}$, $\tilde{g} \in G$, define the random variables

$$Z_{I,\tilde{g}}: \tilde{g}G_0 \rightarrow \mathcal{I}, \quad Z_{I,\tilde{g}}(g) = gI, \quad g \in \tilde{g}G_0,$$

with laws

$$\rho_{I,\tilde{g}}(A) = \frac{1}{V} \int_{Z_{I,\tilde{g}}^{-1}(A)} \text{dg}$$

for all measurable sets $A \subset \mathcal{I}$. For each $I \in \mathcal{I}$, $\tilde{g} \in G$, the measure $\rho_{I,\tilde{g}}$ corresponds to the distribution on the fraction of the orbit corresponding to the observable group subset $\tilde{g}G_0$. Then we can represent each point with a collection of POG distributions.

Definition 5.3 (Representation via POG Probabilities) Let $\mathcal{P}(\mathcal{I}) = \{h | h: G \rightarrow \mathcal{P}(\mathcal{I})\}$ and define

$$\tilde{P}: \mathcal{I} \rightarrow \mathcal{P}(\mathcal{I}), \quad \tilde{P}(I)(g) = \rho_{I,\tilde{g}} \quad \forall I \in \mathcal{I}, \ g \in G.$$

Each point is mapped in the collection of distributions obtained considering all possible fractions of the orbit corresponding to $\tilde{g}G_0$, $\tilde{g} \in G$. Note that, the action of an element $\tilde{g} \in G$ of the group on the POG probability representation is given by

$$\tilde{g}\tilde{P}(I)(g) = \tilde{P}(I)(\tilde{g}g)$$

for all $g \in G$. The following result holds.
Proposition 5.4 Let \(\tilde{P} \) as in Definition (5.3). Then for all \(I, I' \in \mathcal{I} \) if
\[
I \sim I' \implies \exists \tilde{g} \in \mathcal{G} \text{ such that } \tilde{P}(I') = \tilde{g}\tilde{P}(I).
\] (5.5)
Equivalently, for all \(I, I' \in \mathcal{I} \) if
\[
I' = \tilde{g}I
\]
then
\[
\tilde{P}(I')(g) = \tilde{P}(I)(\tilde{g}g) \quad \forall g \in \mathcal{G},
\] (5.6)
i.e., \(\tilde{P} \) is covariant.

Proof. The proof follows noting that
\[
\rho_{I, \tilde{g}} = \rho_{I, \tilde{gg}}
\]
holds since, using the same characterization of \(\rho \) as in (4.5), we have that for any \(f \in \mathcal{C}_c(\mathcal{I}) \)
\[
\int_{\tilde{g}\mathcal{G}} f(Z_{I, \tilde{g}}(g)) \, dg = \int_{\tilde{g}\mathcal{G}} f(gI') \, dg = \int_{\tilde{g}\mathcal{G}} f(g\tilde{g}I) \, dg = \int_{\tilde{g}\mathcal{G}} f(gI) \, dg,
\]
where we used the invariance of the measure. \(\square \)

Following the reasoning in the previous sections and recalling Definition 4.4, we consider the
mapping given by one-dimensional projections (tomographies) and corresponding representations.

Definition 5.5 (TP-POG Representation) Let \(\mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}} = \{ h : \mathcal{G} \times \mathcal{T} \to \mathcal{P}(\mathbb{R}) \} \) and define
\[
\tilde{R} : \mathcal{P}(\mathcal{I})^{\mathcal{G}} \to \mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}}, \quad \tilde{R}(h)(g, t) = R(h(g))(t) = h'(g),
\]
for all \(h \in \mathcal{P}(\mathcal{I})^{\mathcal{G}}, g \in \mathcal{G}, t \in \mathcal{T} \). Moreover, we define the Tomographic Probabilistic POG representation as
\[
\tilde{\Psi} : \mathcal{I} \to \mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}}, \quad \tilde{\Psi} = \tilde{R} \circ \tilde{P},
\]
with \(\tilde{P} \) as in Definition 5.3.

We have the following result.

Proposition 5.6 The representation \(\tilde{\Psi} \) defined in 5.5 is covariant, i.e., \(\tilde{\Psi}(\tilde{g}I)(g) = \tilde{\Psi}(I)(\tilde{g}g) \).

Proof. The map \(\tilde{\Psi} = \tilde{R} \circ \tilde{P} \) is covariant if both \(\tilde{R} \) and \(\tilde{P} \) are covariant. The map \(\tilde{P} \) was proved to be
covariant in proposition 5.4. We then need to prove the covariance of \(\tilde{R} \), i.e., \(\tilde{g}\tilde{R}(h)(g, t) = \tilde{R}(h(\tilde{g}g), t) \)
for all \(h \in \mathcal{P}(\mathcal{I})^{\mathcal{G}} \). This follows from
\[
\tilde{R}(\tilde{g}h)(g, t) = R(\tilde{g}h(g))(t) = R(h(\tilde{g}g))(t) = R(h(\tilde{g}g), t).
\] \(\square \)

The TP-POG representation is obtained by first mapping each point \(I \) in the family of distributions
\(\rho_{I,g}, g \in \mathcal{G} \) supported on the orbit fragments corresponding to POG, and then in a (continuous) family
of corresponding one-dimensional distributions \(\rho_{I,g}, g \in \mathcal{G}, t \in \mathcal{T} \). Finally, we can consider the repre-
sentation obtained representing each distribution via the corresponding CDF.
Definition 5.7 (CDF-POG Representation) Let \(\mathcal{F}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}} = \{ h : \mathcal{G} \times \mathcal{T} \to \mathcal{F}(\mathbb{R}) \} \) and define
\[
\bar{F} : \mathcal{P}(\mathcal{I})^{\mathcal{G} \times \mathcal{T}} \to \mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}}, \quad \bar{F}(h)(g, t) = F(h(g, t)) = F_{h(g, t)},
\]
for all \(h \in \mathcal{P}(\mathcal{I})^{\mathcal{G} \times \mathcal{T}} \) and \(g \in \mathcal{G}, t \in \mathcal{T} \). Moreover, define the CDF-POG representation as
\[
\bar{\mu} : \mathcal{I} \to \mathcal{F}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}}, \quad \bar{\mu} = \bar{F} \circ \bar{R} \circ \bar{P},
\]
with \(\bar{P} \) and \(\bar{F} \) as in Definitions 5.3 and 5.5, respectively.

It is easy to show that
\[
\mu_{\bar{g}, t}(I)(b) = \int_{\mathcal{G} \not\ni \bar{g}} \eta_b(I, gt) \, dg,
\]
where we let \(\mu_{\bar{g}, t}(I) = \mu(I)(\bar{g}, t) \).

6. Further developments: hierarchical representation

In this section, we discuss some further developments of the framework presented in the previous section. In particular, we sketch how multi-layer (deep) representations can be obtained abstracting and iterating the basic ideas introduced before.

Hierarchical representations, based on multiple layers of computations, have naturally arisen from models of information processing in the brain [15, 33]. They have also been critically important in recent ML successes in a variety of engineering applications, see e.g., [34]. However, the mathematical explanation of this success is still not clear (see however [16]).

In this section, we address the question of how to generalize the framework previously introduced to consider multi-layer representations.

Recall that the basic idea for building invariant/selective representation is to consider local (or global) measurements of the form
\[
\int_{\mathcal{G} \ni \bar{g}} \eta(I, gt) \, dg,
\]
with \(\mathcal{G}_0 \subseteq \mathcal{G} \). A main difficulty to iterate this idea is that, following the development in previous sections, the representation (5.7–5.7), induced by collection of (local) group averages, maps the data space \(\mathcal{I} \) in the space \(\mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}} \). The latter space lacks an inner product as well as natural linear structure needed to define the measurements in (6.1). One possibility to overcome this problem is to consider an embedding in a suitable Hilbert space. The first step in this direction is to consider an embedding of the probability space \(\mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}} \) in a (real separable) Hilbert space \(\mathcal{H} \). Interestingly, this can be achieved considering a variety of reproducing kernels over probability distributions, as we describe in Appendix B. Here we note that if \(\Phi : \mathcal{P}(\mathbb{R}) \to \mathcal{H} \) is one such embedding, then we could consider a corresponding embedding of \(\mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}} \) in the space
\[
L^2(\mathcal{G} \times \mathcal{T}, \mathcal{H}) = \left\{ h : \mathcal{G} \times \mathcal{T} \to \mathcal{H} \left| \int \|h(g, t)\|^2 \, dg \, du(t) \right. \right\},
\]
where \(\|\cdot\| \) is the norm induced by the inner product \(\langle \cdot, \cdot \rangle \) in \(\mathcal{H} \) and \(u \) is the uniform measure on the sphere \(\mathcal{I} \subseteq \mathcal{I} \). The space \(L^2(\mathcal{G} \times \mathcal{T}, \mathcal{H}) \) is endowed with the inner product
\[
\langle h, h' \rangle = \int \langle h(g, t), h'(g, t) \rangle^2 \, dg \, du(t),
\]
for all $h,h' \in L^2(\mathcal{G} \times \mathcal{T}, \mathcal{H})$, so that the corresponding norm is exactly
\[
\|h\|_{2,\mathcal{H}}^2 = \int \|h(g,t)\|^2 \, dg \, du(t).
\]
The embedding of $\mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}}$ in $L^2(\mathcal{G} \times \mathcal{T}, \mathcal{H})$ is simply given by
\[
J_\Phi : \mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}} \to L^2(\mathcal{G} \times \mathcal{T}, \mathcal{H}), \quad J_\Phi(\rho)(g,t) = \Phi(\rho(g,t)),
\]
i.e., for all $\rho \in \mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}}$. Provided with the above notation we have the following result.

Proposition 6.1 The representation defined by
\[
\tilde{Q} : \mathcal{I} \to L^2(\mathcal{G} \times \mathcal{T}, \mathcal{H}), \quad \tilde{Q} = J_\Phi \circ \tilde{\Psi},
\]
with $\tilde{\Psi}$ as in Definition 5.5, is covariant, in the sense that,
\[
\tilde{Q}(gI) = g\tilde{Q}(I)
\]
for all $I \in \mathcal{I}$, $g \in \mathcal{G}$.

Proof. The proof follows, checking that by definition both \tilde{R} and J_Φ are covariant and using proposition 5.4. The fact that \tilde{R} is covariant was proved in Theorem 5.6. The covariance of J_Φ, i.e.,
\[
\tilde{g}J_\Phi(h)(g,t) = J_\Phi(h)(\tilde{g}g,t)
\]
for all $h \in \mathcal{P}(\mathbb{R})^{\mathcal{G} \times \mathcal{T}}$, follows from
\[
J_\Phi(\tilde{g}h)(g,t) = \Phi(\tilde{g}h(g,t)) = \Phi(h(\tilde{g}g,t)) = J_\Phi(h)(\tilde{g}g,t).
\]
Now, since \tilde{P} was already proved covariant in Theorem 5.4, we have that, being $\tilde{Q} = J_\Phi \circ \tilde{R} \circ \tilde{P}$ composition of covariant representations, \tilde{Q} is covariant, i.e.,
\[
\tilde{g}\tilde{Q}(I) = \tilde{Q}(\tilde{g}I).
\]

Using the above definitions, a **second-layer** invariant measurement can be defined considering,
\[
v : \mathcal{I} \to \mathbb{R}, \quad v(I) = \int_{\mathcal{G}_0} \eta(\langle \tilde{Q}(x), g\tau \rangle_2) \, dg.
\]
where $\tau \in L^2(\mathcal{G} \times \mathcal{T}, \mathcal{H})$ has unit norm.

We add several comments. First, following the analysis in the previous sections, Equation (6.3) can be used to define invariant (or locally invariant) measurements, and hence representations defined by collections of measurements. Secondly, the construction can be further iterated to consider multi-layer representations, where at each layer an intermediate representation is obtained considering ‘distributions of distributions’. Thirdly, considering multiple layers naturally begs the question of how the number and properties of each layer affect the properties of the representation. Preliminary answers to these questions are described in [3,5,27,30]. A full mathematical treatment is beyond the scope of the current paper, which however provides a formal framework to tackle them in future work.

7. Discussion

Motivated by the goal of characterizing good data representation that can be learned, this paper studies the mathematics of an approach to learn data representation that are invariant and selective to suitable transformations. While invariance can be proved rather directly from the invariance of the Haar measure
associated with the group, characterizing selectivity requires a novel probabilistic argument developed in the previous sections.

Several extensions of the theory are natural and have been sketched with preliminary results in [3,5,27,30]. Some other relevant works are [10,11,17,28,36].

The main directions that need a rigorous theory extending the results of this paper are:

- **Hierarchical architectures.** We described how the theory can be used to analyze local invariance properties, in particular for locally compact groups. We described covariance properties. Covariant layers can integrate representations that are locally invariant into representations that are more globally invariant.

- **Approximate invariance for transformations that are not groups.** The same basic algorithm analyzed in this paper is used to yield approximate invariance, provided the templates transform as the image, which requires the templates to be tuned to specific object classes [27].

We conclude with a few general remarks connecting our paper with this special issue on deep learning, and especially with an eventual theory of such networks.

Hierarchical architectures of simple and complex units. Feedforward architecture with \(n \) layers, consisting of dot products and nonlinear pooling functions, are quite general computing devices, basically equivalent to Turing machines running for \(n \) time points (for example the layers of the HMAX architecture in [33] can be described as AND operations (dot products) followed by OR operations (pooling), i.e., as disjunctions of conjunctions). Given a very large set of labeled examples, it is not too surprising that greedy algorithms such as stochastic gradient descent can find satisfactory parameters in such an architecture, as shown by the recent successes of Deep Convolutional Networks. Supervised learning with millions of examples, however, is not, in general, biologically plausible. Our theory can be seen as proving that a form of unsupervised learning in convolutional architectures is possible and effective, because it provides invariant representations with small sample complexity.

Two stages: group and non-group transformations. The core of the theory applies to compact groups such as rotations of the image in the image plane. Exact invariance for each module is equivalent to a localization condition which could be interpreted as a form of sparsity [3]. If the condition is relaxed to hold approximately, it becomes a *sparsity condition for the class of images w.r.t. the dictionary* \(t_k \) *under the group* \(G \), when restricted to a subclass of similar images. This property, which is similar to compressive sensing ‘incoherence’ (but in a group context), requires that \(I \) and \(t_k \) have a representation with rather sharply peaked autocorrelation (and correlation), and guarantees approximate invariance for transformations which do not have group structure; see [27].

Robustness of pooling. It is interesting that the theory is robust with respect to the pooling nonlinearity. Indeed, as discussed, very general class of nonlinearities will work, see Appendix A. Any nonlinearity will provide invariance, if the nonlinearity does not change with time and is the same for all the simple cells pooled by the same complex cells. A sufficient number of different nonlinearities, each corresponding to a complex cell, can provide selectivity [3].

Biological predictions and biophysics, including dimensionality reduction and PCAs. There are at least two possible biophysical models for the theory. The first is the original Hubel and Wiesel model of simple cells feeding into a complex cell. The theory proposes the ‘ideal’ computation of a CDF, in which case the nonlinearity at the output of the simple cells is a threshold. A complex cell, summing the outputs of a set of simple cells, would then represent a bin of the histogram; a different complex
cell in the same position pooling a set of similar simple cells with a different threshold would represent another bin of the histogram.

The second biophysical model for the HW module that implements the computation required by \(i \)-theory consists of a single cell, where dendritic branches play the role of simple cells (each branch containing a set of synapses with weights providing, for instance, Gabor-like tuning of the dendritic branch) with inputs from the LGN; active properties of the dendritic membrane distal to the soma provide separate threshold-like nonlinearities for each branch separately, while the soma summates the contributions for all the branches. This model would solve the puzzle that so far there seems to be no morphological difference between pyramidal cells classified as simple vs. complex by physiologists. Further, if the synapses are Hebbian it can be proved that Hebb’s rule, appropriately modified with a normalization factor, is an online algorithm to compute the eigenvectors of the input covariance matrix, therefore tuning the dendritic branches weights to principal components, and thus providing an efficient dimensionality reduction.

\((n \rightarrow 1) \). The present phase of ML is characterized by supervised learning algorithms relying on large sets of labeled examples \((n \rightarrow \infty) \). The next phase is likely to focus on algorithms capable of learning from very few labeled examples \((n \rightarrow 1) \), like humans seem able to do. We propose and analyze a possible approach to this problem based on the unsupervised, automatic learning of a good representation for supervised learning, characterized by small sample complexity \((n) \). In this view, we take a step toward a major challenge in learning theory beyond the supervised learning, that is the problem of representation learning, formulated here as the unsupervised learning of invariant representations that significantly reduce the sample complexity of the supervised learning stage.

Funding

We would like to thank the McGovern Institute for Brain Research for their support. This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF (National Science Foundation) STC (Science and Technology Center) award CCF-1231216. Additional support was provided by the Eugene McDermott Chair and Italian Institute of Technology.

References

1. Akhiezer, N. (1965) *The Classical Moment Problem: and Some Related Questions in Analysis*. University mathematical monographs. Edinburgh: Oliver & Boyd.
2. Andoni, A., Ba, K. D., Indyk, P. & Woodruff, D. P. (2009) Efficient sketches for earth-mover distance, with applications. *FOCS*. IEEE Computer Society, pp. 324–330.
3. Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A. & Poggio, T. (2013) Unsupervised learning of invariant representations in hierarchical architectures. *Theor. Comput. Sci.* (preprint) arXiv:1311.4158.
4. Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A. & Poggio, T. (2013) Magic materials: a theory of deep hierarchical architectures for learning sensory representations. *CBCL Paper*.
5. Anselmi, F. & Poggio, T. (2010) Representation learning in sensory cortex: a theory. *CBMM Memo No. 26*.
6. Bengio, Y. (2009) *Learning deep architectures for AI*. Foundations and Trends in Machine Learning 2. Boston, Delft: Now publishers inc.
7. Berger, J. (1993) *Statistical Decision Theory and Bayesian Analysis*. Springer Series in Statistics. New York: Springer-Verlag.
8. Berlinet, A. & Thomas-Agnan, C. (2004) *Reproducing Kernel Hilbert Spaces in Probability and Statistics*. Boston: Kluwer Academic.
9. Cadieu, C., Kouh, M., Pasupathy, A., Connor, C., Riesenhuber, M. & Poggio, T. (2004) A model of V4 shape selectivity and invariance. *J. Neurophysiol.*, 98, 1733–1750. Published 1 September 2007.
10. Chen, X., Chen, X. & Mallat, S. (2015) Deep Haar scattering networks. *Inf. Inference* (this issue).
11. Cohen, T. & Welling, M. (2015) Transformation properties of learned visual representations. *International Conference on Learning Representations*.
12. Cramer, H. & Wold, H. (1936) Some theorems on distribution functions. *J. Lond. Math. Soc.*, 4, 290–294.
13. Cucker, F. & Smale, S. (2002) On the mathematical foundations of learning. *Bull. Am. Math. Soc.*, 39, 1–49.
14. Edelsbrunner, H. & Harer, J. L. (2010) *Computational Topology, An Introduction*. New York: American Mathematical Society.
15. Fukushima, K. (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biol. Cybern.*, 36, 193–202.
16. Galanti, T., Wolf, L. & Hazan, T. (2015) A PAC theory of the transferable. *Inf. Inference* (Current Issue).
17. Gens, R. & Domingos, P. (2014) Deep symmetry networks, Neural Information Processing Systems (NIPS).
18. Haasdonk, B. & Burkhardt, H. (2007) Invariant Kernel functions for pattern analysis and machine learning. *Mach. Learn.*, 68, 35–61.
19. Hein, M. & Bousquet, O. (2005) Hilbertian metrics and positive definite kernels on probability measures. *AISTATS 2005*. Max-Planck-Gesellschaft, pp. 136–143.
20. Hubel, D. & Wiesel, T. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. *J. Physiol.*, 160, 106.
21. Hubel, D. & Wiesel, T. (1965) Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. *J. Neurophysiol.*, 28, 229.
22. Hubel, D. & Wiesel, T. (1968) Receptive fields and functional architecture of monkey striate cortex. *J. Physiol.*, 195, 215.
23. Jan Boman, F. L. (2009) Support theorems for the radon transform and Cramer-Wold theorems. *J. Theor. Probab.*, 22, 683–710.
24. Johnson, W. B. & Lindenstrauss, J. (1984) Extensions of Lipschitz mappings into a Hilbert space. *Contemp. Math.*, 54, 129–138.
25. Kazhdan, M., Funkhouser, T. & Rusinkiewicz, S. (2003) Rotation invariant spherical harmonic representation of 3D shape descriptors. *Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP’03*, pp. 156–164.
26.lecun, Y. & Bengio, Y. (1995) Convolutional networks for images, speech, and time series. *The Handbook of Brain Theory and Neural Networks*. MA: MIT Press Cambridge, 255–258.
27. Leibo, J. Z., Liao, Q., Anselmi, F. & Poggio, T. (2014) The invariance hypothesis implies domain-specific regions in visual cortex. http://dx.doi.org/10.1101/004473.
28. Mallat, S. (2012) Group invariant scattering. *Commun. Pure Appl. Math.*, 65, 1331–1398.
29. Olver, P. (2009) *Equivalence, Invariants and Symmetry*. Cambridge: Cambridge University Press.
30. Poggio, T., Mutch, J., Anselmi, F., Tacchetti, A., Rosasco, L. & Leibo, J. Z. (2013) Does invariant recognition predict tuning of neurons in sensory cortex? *MIT-CSAIL-TR-2013-019, CBCL-313*. CBCL Technical Report.
31. Ramm, A. G. (1998) On the theory of reproducing kernel hilbert spaces. *J. Inverse Ill-Posed Probl.*, 6, 515–520.
32. Reed, M. & Simon, B. (1978) *Methods of Modern Mathematical Physics II Fourier Analysis, Self-Adjointness*. London: Academic Press.
33. Riesenhuber, M. & Poggio, T. (1999) Hierarchical models of object recognition in cortex. *Nat. Neurosci.*, 2, 1019–1025.
34. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R. & LeCun, Y. (2014) OverFeat: integrated recognition, localization and detection using convolutional networks. *International Conference on Learning Representations (ICLR2014)*, Calgary.
35. Soatto, S. (2009) Actionable information in vision. *Computer Vision, 2009 IEEE 12th International Conference on*. IEEE, pp. 2138–2145.
36. Soatto, S. & Chiuso, A. Visual scene representations: sufficiency, minimality, invariance and deep approximation. *Proceedings of the ICLR Workshop, 2015* (also ArXiv: 1411.7676, 2014).
Appendix A. Representation via moments

In Section 4.3.1, we have discussed the derivation of invariant selective representation considering the CDFs of suitable one-dimensional probability distributions. As we commented in Remark 4.3, alternative representations are possible, for example by considering moments. Here we discuss this point of view in some more detail.

Recall that if $\xi : (\mathcal{O}, p) \to \mathbb{R}$ is a random variable with law $q \in \mathcal{P}(\mathbb{R})$, then the associated moment vector is given by

$$m_r^q = \mathbb{E}|\xi|^r = \int dq|\xi|^r, \quad r \in \mathbb{N}. \quad (A.1)$$

In this case we have the following definitions and results.

Definition A.1 (Moments Vector Map) Let $\mathcal{M}(\mathbb{R}) = \{h : \mathbb{N} \to \mathbb{R}\}$, and

$$\mathcal{M}(\mathbb{R})^\mathcal{I} = \{h : \mathcal{I} \to \mathcal{M}(\mathbb{R})\}.$$

Define

$$M : \mathcal{P}(\mathbb{R})^\mathcal{I} \to \mathcal{M}(\mathbb{R})^\mathcal{I}, \quad M(\bar{\mu})(t) = m_{\bar{\mu}'}$$

for $\bar{\mu} \in \mathcal{P}(\mathbb{R})$ and where we let $\bar{\mu}(t) = \bar{\mu}'$, for all $t \in \mathcal{I}$.

The above mapping associates to each one-dimensional distribution the corresponding vector of moments. Recall that this association uniquely determines the probability distribution if the so-called Carleman’s condition is satisfied:

$$\sum_{r=1}^{\infty} m_{2r}^{-1/2r} = +\infty,$$

where m_r is the set of moments of the distribution.

We can then define the following representation.

Definition A.2 (Moments Representation) Let

$$\mu : \mathcal{I} \to \mathcal{M}(\mathbb{R})^\mathcal{I}, \quad \mu = M \circ R \circ P,$$

with M, P and R as in Definitions A.1, A.2 and A.4, respectively.

Then, the following result holds.
Theorem A.3 For all $I \in \mathcal{I}$ and $t \in \mathcal{T}$

$$\mu'(I)(r) = \int dg|\langle I, gt \rangle|', \quad r \in \mathbb{N},$$

where we let $\mu(I)(t) = \mu'(I)$. Moreover, for all $I, I' \in \mathcal{I}$

$$I \sim I' \iff \mu(I) = \mu(I').$$

Proof. $\mu = M \circ R \circ P$ is a composition of a one-to-one map R, a map P that is one-to-one w.r.t. the equivalence classes induced by the group of transformations \mathcal{G}, and a map M that is one-to-one since Carleman’s condition is satisfied. Indeed, we have

$$\sum_{r=1}^{\infty} \left(\int dg|\langle I, gt \rangle|^{2r} \right)^{-1/2r} \leq \sum_{r=1}^{\infty} \left(\int dg|\langle I, gt \rangle| \right)^{-(1/2r)2r} = \sum_{r=1}^{\infty} \frac{1}{C} = +\infty,$$

where $C = \int dg|\langle I, gt \rangle|$. Therefore, μ is one-to-one w.r.t. the equivalence classes, i.e., $I \sim I' \iff \mu(I) = \mu(I')$. \hfill \Box

We add one remark regarding possible developments of the above result.

Remark A.1 Note that the above result essentially depends on the characterization of the moment problem of probability distributions on the real line. In this view, it could be further developed to consider, for example the truncated case, when only a finite number of moments is considered or the generalized moments problem, where families of (nonlinear) continuous functions, more general than powers, are considered (see e.g., [1]).

Appendix B. Kernels on probability distributions

To consider multi-layers within the framework proposed in the paper, we need to embed probability spaces in Hilbert spaces. A natural way to do so is by considering appropriate positive definite (PD) kernels, that is symmetric functions $K : X \times X \to \mathbb{R}$ such that

$$\sum_{j=1}^{n} K(\rho_i, \rho_j)\alpha_i\alpha_j \geq 0$$

for all $\forall \rho_1, \ldots, \rho_n \in X, \alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and where X is any set, e.g., $X = \mathbb{R}$ or $X = \mathcal{P}(\mathbb{R})$. Indeed, PD kernels are known to define a unique reproducing kernel Hilbert space (RKHS) \mathcal{H}_K for which they correspond to reproducing kernels, in the sense that if \mathcal{H}_K is the RKHS defined by K, then $K_x = K(x, \cdot) \in \mathcal{H}_K$ for all $x \in X$ and

$$\langle f, K_x \rangle_K = f(x) \quad \forall f \in \mathcal{H}_K, \quad x \in X,$$

where $\langle \cdot, \cdot \rangle_K$ is the inner product in \mathcal{H}_K (see for example [8] for an introduction to RKHS).
Many examples of kernels on distributions are known and have been studied. For example [19,40] discuss a variety of kernels of the form

$$K(\rho, \rho') = \int \int d\gamma(x)\kappa(p_\rho(x), p_{\rho'}(x)),$$

where $p_\rho, p_{\rho'}$ are the densities of the measures ρ, ρ' with respect to a dominating measure γ (which is assumed to exist) and $\kappa : \mathbb{R}^+_0 \times \mathbb{R}^+_0 \to \mathbb{R}$ is a PD kernel. Recalling that a PD kernel defines a pseudo-metric via the equation

$$d_K(\rho, \rho')^2 = K(\rho, \rho) + K(\rho', \rho') - 2K(\rho, \rho').$$

It is shown in [19,40] how different classic metrics on probability distributions can be recovered by suitable choices of the kernel κ. For example,

$$\kappa(x, x') = \sqrt{xx'},$$

corresponds to the Hellinger’s distance, see [19,40] for other examples.

A different approach is based on defining kernels of the form

$$K(\rho, \rho') = \int \int d\rho(x) d\rho'(x')k(x, x'),$$

where $k : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a PD kernel. Using the reproducing property of k, we can write

$$K(\rho, \rho') = \left\langle \int d\rho(x)k_s, \int d\rho(x)k_{\rho'} \right\rangle_k = \langle \Phi(\rho), \Phi(\rho') \rangle,$$

where $\Phi : \mathcal{P}(\mathbb{R}) \to \mathcal{H}$ is the embedding $\Phi(x) = \int d\rho(x')k_s$ mapping each distribution in a corresponding kernel mean, see e.g., [8]. Condition on the kernel k, hence on K, ensuring that the corresponding function d_K is a metric which has been studied in detail, see e.g., [37].