Approaching ϵ-closed sets via ideals

M John Peter1,2 and R Manoharan1

1Sathyabama Institute of Science and Technology, Chennai-600119, India
2Panimalar Institute of Technology, Chennai-600123, India

E-mail: johnp.math@gmail.com

Abstract. Our intention of this paper is to initiate the new notions on ϵ_1-closed set and ϵs-closed sets. Some properties and relationships to other known closed sets are analyzed. Further we define and discuss ϵ_1-continuous and ϵs-continuous functions and their basic properties.

1. Introduction and Preliminaries

The space X_T is a TS (Topological space) with a topology \mathcal{T} on X and no axioms are considered unless it is precisely specified. Let a point $x \in X_T$, the collection of open neighborhoods of x is represented by $\mathcal{N}(x) = \{U \in \mathcal{T} : x \in U\}$. For any subset $A \subseteq X_T$, we may designate closure of A as $cl(A)$ and interior of A as $int(A)$, for the given TS X_T.

A nonempty system of subsets of a set X is called an ideal [2] on X, if the subsequent statements hold good: (i) If $L \in \mathcal{I}$ and $M \subseteq L$, then $M \in \mathcal{I}$; (ii) If $L \in \mathcal{I}$ and $M \in \mathcal{I}$, then $L \cup M \in \mathcal{I}$. An ITS (Ideal topological space) or ideal space (X_T, I) means a TS X_T with an ideal I on X.

Let I be an ideal and \mathcal{T} be a topology defined on a space X. Then for any subset A of X, $A^*(I, \mathcal{T}) = \{x \in X : A \cap U \not\in I, \forall U \in \mathcal{N}(x)\}$ is said to be local function of A for the given ideal I and the topology \mathcal{T} [2]. If there is no obscenity, we may denote $A^*(I)$ or simply A^* for $A^*(I, \mathcal{T})$. Also, $cl^*(A) = A^* \cup A$ denotes as a Kuratowski operator for the topology \mathcal{T}^*, which is finer than \mathcal{T}.

We initiate a definition for ϵ_1-closed sets that is associated to the collection of closed sets in the ITS. We discuss some properties on ϵ_1-closed sets and ϵs-closed sets using the operations of closure and interior with respect to ITS. Further we define and study ϵ_1-continuous and ϵs-continuous functions and relationships with same kind of continuous functions.

2. Some results on ϵ-Closed Sets

Talal Al-Hawary introduced and studied ϵ-closed sets [1]. In this subdivision we discuss some of the results about ϵ-closed sets and we observe that the equivalent conditions given for ϵ-closed set in [1] are incorrect.

2.1 Definition
Let X_T be topological space and $A \subseteq X_T$. The ϵ-interior of A is the collection of all open sets of X whose closures are contained in $cl(A)$, and it is represented by $int_\epsilon(A)$. The set A is said to be ϵ-open if $A = int_\epsilon(A)$ and the complement of a ϵ-open set is said to be ϵ-closed. Equivalently, a subset A of X is ϵ-closed if $A = cl_\epsilon(A)$, here $cl_\epsilon(A) = \{x \in X : cl(U) \cap cl(A) \neq \emptyset, x \in U, U \in \mathcal{T}\}$.[1]
Clearly \(\text{int}(A) \subseteq \text{int}(A) \subseteq \text{cl}(A) \) \& \(A \subseteq \text{cl}(A) \subseteq \text{cl}(A) \) and hence every \(\epsilon \)-closed set is closed, but converse is not valid for both the statements. [1]

2.2 \textbf{Remark}

We see that the next example proves the definition given for \(\epsilon \)-closed sets [1] are not equivalent.

2.3 \textbf{Example}

Let \(Z = \{ \theta_1, \theta_2, \theta_3, \theta_4 \} \) and \(\mathcal{T} = \{ \Phi, \{ \theta_2 \}, \{ \theta_3 \}, \{ \theta_2, \theta_3 \}, \{ \theta_1, \theta_2 \}, \{ \theta_1, \theta_2, \theta_3 \}, Z \} \).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
A & \text{int}(A) & \text{cl}(A) & \text{int}(A) & \text{cl}(A) \\
\hline
\Phi & \Phi & \Phi & \Phi & \Phi \\
\{ \theta_1 \} & \Phi & \{ \theta_1, \theta_4 \} & \Phi & Z \\
\{ \theta_2 \} & \{ \theta_2 \} & \{ \theta_1, \theta_2, \theta_4 \} & \{ \theta_1, \theta_2 \} & Z \\
\{ \theta_3 \} & \{ \theta_3 \} & \{ \theta_3, \theta_4 \} & \{ \theta_3 \} & Z \\
\{ \theta_4 \} & \Phi & \{ \theta_4 \} & \Phi & Z \\
\{ \theta_1, \theta_2 \} & \{ \theta_1, \theta_2 \} & \{ \theta_1, \theta_2, \theta_4 \} & \{ \theta_1, \theta_2 \} & Z \\
\{ \theta_1, \theta_3 \} & \{ \theta_3 \} & \{ \theta_1, \theta_3, \theta_4 \} & \{ \theta_3 \} & Z \\
\{ \theta_1, \theta_4 \} & \Phi & \{ \theta_1, \theta_4 \} & \Phi & Z \\
\{ \theta_2, \theta_3 \} & Z \\
\{ \theta_2, \theta_4 \} & \{ \theta_2 \} & \{ \theta_1, \theta_2, \theta_4 \} & \{ \theta_1, \theta_2 \} & Z \\
\{ \theta_3, \theta_4 \} & \{ \theta_3 \} & \{ \theta_3, \theta_4 \} & \{ \theta_3 \} & Z \\
\{ \theta_1, \theta_2, \theta_3 \} & Z \\
\{ \theta_1, \theta_2, \theta_4 \} & \{ \theta_1, \theta_2 \} & \{ \theta_1, \theta_2, \theta_4 \} & \{ \theta_1, \theta_2 \} & Z \\
\{ \theta_1, \theta_3, \theta_4 \} & \{ \theta_3 \} & \{ \theta_1, \theta_3, \theta_4 \} & \{ \theta_3 \} & Z \\
\{ \theta_2, \theta_3, \theta_4 \} & \{ \theta_2, \theta_3 \} & \{ \theta_2, \theta_3 \} & \{ \theta_2, \theta_3 \} & Z \\
\{ \theta_2, \theta_3 \} & \{ \theta_2 \} & \{ \theta_2 \} & \{ \theta_2 \} & Z \\
\{ \theta_3, \theta_4 \} & \{ \theta_3 \} & \{ \theta_3 \} & \{ \theta_3 \} & Z \\
\end{tabular}
\end{table}

From the table 1, \{ \theta_3 \} is \(\epsilon \)-open set but it is given in [1] as not \(\epsilon \)-open set. Also, the set \{ \theta_1, \theta_3 \} is not \(\epsilon \)-open which is wrongly mentioned as \(\epsilon \)-open set.

In the above example, we notice that \(\epsilon \)-open sets are \{ \Phi, \{ \theta_2 \}, \{ \theta_3 \}, \{ \theta_2, \theta_3 \}, \{ \theta_1, \theta_2 \}, \{ \theta_1, \theta_2, \theta_3 \}, Z \} \) and their complements are \{ \Phi, \{ \theta_1, \theta_2, \theta_3 \}, \{ \theta_1, \theta_2 \}, \{ \theta_1 \}, \{ \theta_2 \}, \{ \theta_3 \}, \{ \theta_4 \} \}. We observe that only \(Z, \Phi \) are satisfying the condition \(A = \text{cl}(A) \).

The sets \{ \theta_1, \theta_2, \theta_4 \} and \{ \theta_3, \theta_4 \} are \(\epsilon \)-closed sets in one sense and not \(\epsilon \)-closed sets in other sense.
2.4 Remark

In [1], author proved that arbitrary union of \(\epsilon \)-open set is \(\epsilon \)-open set. From example 2.3, we observe that the sets \(A = \{ \theta_3 \} \) and \(B = \{ \theta_1, \theta_2 \} \) are \(\epsilon \)-open sets but \(A \cup B = \{ \theta_1, \theta_2, \theta_3 \} \) is not \(\epsilon \)-open set.

3. \(\epsilon \)-closed sets via ideal

In this chapter, we are going to initiate some open and closed sets in ITS.

3.1 Definition

Let \(X_I \) be a TS with topology \(\mathcal{T} \) and \(A \subseteq X_I \). The subset \(A \) is called \(\epsilon s \)-closed set of \(X \), if \(A = cl_{\epsilon s}(A) \), where \(cl_{\epsilon s}(A) = \{ x \in X : cl(U) \cap cl(A) \neq \emptyset, x \in U, U \in \mathcal{T} \} \). The complement of \(\epsilon s \)-closed set is \(\epsilon \)-open set.

3.2 Definition

Let \((X_I, I) \) be an ITS with ideal \(I \) and the \(\epsilon I \)-interior of \(A \) is defined by \(int_{\epsilon I}(A) = U \cap cl(U) \subseteq cl_\epsilon(A) \). The set \(A \) is said to be an \(\epsilon I \)-open set if \(A = int_{\epsilon I}(A) \) and the complement of \(\epsilon I \)-open set is \(\epsilon I \)-closed set.

3.3 Definition

Let \(A \) be a subset of an ITS \((X_I, I) \), The \(\epsilon I \)-closed set is defined by \(A = cl_{\epsilon I}(A) \) and \(cl_{\epsilon I}(A) = \{ x \in X : cl(U) \cap cl_\epsilon(A) \neq \emptyset, x \in U, U \in \mathcal{T} \} \). And the complement of \(\epsilon I \)-closed set is \(\epsilon I \)-open set.

3.4 Remark

Let \(\epsilon c(X_I) \) represent the system of all \(\epsilon \)-closed sets in \(X_I \), \(\epsilon s c(X_I) \) represent the system of all \(\epsilon s \)-closed sets in \(X_I \), \(\epsilon c_I(X_I, I) \) represent the system of all \(\epsilon I \)-closed sets in \(X_I \), \(\epsilon s c_I(X_I, I) \) represent the system of all \(\epsilon I \)-closed sets in \(X_I \).

3.5 Proposition

The subsequent statements are true for any ITS

i) \(cl_{\epsilon I}(X_I, I) \subseteq \epsilon c(X_I) \) ii) \(\epsilon s c_I(X_I, I) \subseteq \epsilon s c(X_I) \) but converse need not to be true.

3.6 Proposition

In any ITS, the following statements hold good

i) \(cl_{\epsilon I}(X_I, I) = \epsilon c(X_I) \) ii) \(\epsilon s c_I(X_I, I) = \epsilon s c(X_I) \) if and only if \(I = \{ \emptyset \} \)

3.7 Remark

In the next example we are going to show that in any TS, \(\epsilon s \)-closed sets and \(\epsilon \)-closed sets are independent.

3.8 Example

Let us consider the space \(Z = \{ \theta_1, \theta_2, \theta_3 \} \) with topology \(\mathcal{T} = \{ \emptyset, \{ \theta_2 \}, \{ \theta_1 \}, \{ \theta_1, \theta_2 \}, Z \} \) and their complement is \(\mathcal{T}^c = \{ \emptyset, \{ \theta_1 \}, \{ \theta_2 \}, \{ \theta_3 \}, \{ \theta_1, \theta_2 \}, \{ \theta_1, \theta_3 \}, \{ \theta_2, \theta_3 \}, \{ \theta_1, \theta_2, \theta_3 \}, Z \} \), ideal with respect to topology is \(I = \{ \emptyset, \{ \theta_3 \}, \{ \theta_1 \}, \theta_3 \} \)
4.1 Definition

A function \(F : (X, I) \rightarrow (Y, J) \) is called as i) \(cs \)-continuous function if \(F^{-1}(\mathcal{P}) \) is \(cs \)-closed set in \((X, I) \) for every closed set \(\mathcal{P} \) in \((Y, J) \), ii) \(cs_\ell \)-continuous function if \(F^{-1}(\mathcal{P}) \) is \(cs_\ell \)-closed set in \((X, I) \) for every \(cs_\ell \)-closed set \(\mathcal{P} \) in \((Y, J) \).

4. \(cs \)-continuous function and \(cs_\ell \)-continuous function

4.1 Definition

4.2 Example
4.2 Theorem
Every εs–continuous function is εs–continuous function
Proof: Using the proposition 3.5 every εsI closed set is εs–closed set but converse need not to be true.

4.3 Example
Let us consider the space Z={θ₁, θ₂, θ₃} with Topology $T = \{\Phi, \{\theta_2\}, \{\theta_1, \theta_2\}, Z\}$ and their complement is $T^c = \{\Phi, \{\theta_2\}, \{\theta_1, \theta_2\}, \{\theta_3\}, Z\}$, Ideal with respect to topology is $I = \{\Phi, \{\theta_3\}, \{\theta_1, \theta_3\}\}$. Now we define $F: Z \rightarrow Y$ such that $F(\theta_1) = F(\theta_2) = \theta_1, F(\theta_3) = \theta_3$

This implies that $F^{-1}\{\theta_1\} = F^{-1}\{\theta_2\} = \theta_1, F^{-1}\{\theta_3\} = \theta_1, F^{-1}\{\theta_3\} = \theta_3$.

Now consider the closed sets $F^{-1}\{Z\} = Z, F^{-1}\{\Phi\} = \Phi, F^{-1}\{\theta_2\} = \{\theta_2\}, (\{\theta_3\} = \theta_3$, since $\{\Phi, \{\theta_3\}, Z\}$ are εs-closed sets \Rightarrow F is εs-continuous function. But $\{\theta_1\}$ is not εs–closed sets \Rightarrow F is not εs-continuous function.

εs-continuous function \Rightarrow εs-continuous function, but converse is not valid.

Acknowledgement
I would like to thank the referee for their comments and suggestion to improve this article.

References
[1] Talal Al-Hawary 2018 ε-closed sets Thai J. of Math. 16 Number 3: 675-681
[2] Manoharan R and Thangavelu P 2013 Some New Sets and Topologies in Ideal Topological Spaces Chinese J. of Math. Volume 2013 Article ID 973608 Hindawi publishing corporation
[3] Levine N 1963 Semi-open sets and semi-continuity in topological spaces Amer. Math. Monthly 70 36-41
[4] Levine N 1970 Generalized closed sets in topology Rend. Circ. Mat. Palermo 19 (2) 89-96
[5] Talal Al-Hawary and Al-Omari A 2008 Generalized b-closed sets Mutah Lil-Buhuth Wad-Dirasat 5(1) 27-39
[6] Tong J 1989 On Decomposition of continuity in topological spaces Acta Math. Hung. 54 (1-2) 51-55
[7] Balachandran K, Sundaram P and Maki H 1991 On generalized continuous maps in topological spaces Mem. Fac. Sci. Kōchi Univ. Ser. A Math 12 5-13.
[8] Julian Dontchev and Haruo Maki 1999 On 0-generalized closed sets Internat. J. Math. & Math. Sci. 22 No 2 (239-249)
[9] Talal Al-Hawary 2017 Fuzzy W-closed sets Cogent Mathematics 4:1343518.
[10] Kuyucu F, Noiri T and Ozkurt A A 2008 A note on W-I-Continuous functions Acta Math. Hungar. 119(4) (393-400)