Students’ low interest in learning Art and Culture is frequently found in Indonesia by stigma, saying that Art and Culture are easier compared to applied sciences. This research becomes important because Art and Culture Learning is the result of work and creativity based on the norms and behavior of the society in Indonesia, which plays roles in preserving the cultural heritage of Indonesia through Art and Culture wisdom. The analysis shows that improvement in learning facilities has a positive effect on motivation improvement in learning Art and Culture. The selection of the right method will make the learning process more conducive and easier to be understood by the students. Learning facilities and learning methods positive and significant effect on students’ motivation in learning Art and Culture. Furthermore, the availability of a good learning facility, and strong implementation of the learning method which can affect and strengthen the students’ learning motivation.

Subjects: Educational Research; Education Studies; Secondary Education; Sociology of Education; Theories of Learning

Keywords: Education; learning environment; method-learning; motivation-art and culture
1. Introduction

1.1. Background

Education is believed to be essential in the development of any country. The national curriculum of 2013 becomes one of the efforts of a strategic government with the aim of strengthening the competitive character of Indonesians (Neolaka et al., 2016). To achieve the goals of education, it is necessary to have some learning activities (Aunurrahman, 2014). Motivation and learning that are proposed by Uno (2008) to influence each other, so the learning activities need the motivation of students (Majid, 2008).

Student learning motivation will have an impact on the quality of knowledge and difficult character formation in students (Virvou et al., 2005). A low level of enthusiasm for learning has a major influence on self-ability and character strengthening (Pogacnik & Cigic, 2006). Ignoring students due to lack of participation in learning causes students not to be able to take the benefit from learning and not developing the abilities or talents of students (Papastergiou, 2009; Schiefele, 1996). The loss of learning motivation can be caused by a lack of student participation and self-interest in learning activities (Assor et al., 2005; Deci & Ryan, 2008). However, the learning process benefits the students (Zorn et al., 2019). The decrease in interest can also decrease in student learning motivation, so it is necessary to revitalize learning that is more focused on the urgency in it and generally occurs in secondary school students (Abrahams, 2007). Self-motivation can be considered as one of the processes that greatly affects the students’ achievement (Amirkhonovaa et al., 2016). Stimulation of motivation can be realized through intense interactions between teachers and students and also the learning environment (Abrahams, 2009). The teacher plays a role in changing student’s saturation into an interest in learning (Butler, 2007; Schiefele & Schaffner, 2015).

One of the important subjects in the 2013 Curriculum is the course of Cultural Arts. Thus, Art and culture in the year of 2013 curriculum are multidimensional, multilingual, and multicultural (Wulansari, 2017). Cultural Art lessons are the result of aesthetic, artistic and creative work rooted in norms and behavioral values (Literat, 2016; Wulansari, 2017). The chapters of these courses are closely related to cultural learning in the social sphere (Zubieta, 2016). In this case, the younger generation plays an important role as the successor to the nation’s cultural heritage through the wisdom of art and culture (Saud, 2020; Widja, 2012). Art education has the potential as a source of direction for the community, especially the younger generation, to encouraging fair values (Hanif, 2016; Krauss et al., 2008). But in the development, art began to lose its existence. The lack of motivation for art learners to make art activities decrease over time (Wahyuningsih, 2012).

Bad stigma always arises in Indonesian society, especially students ignore art and culture lessons (Sumarni et al., 2018). This happens because art and culture lessons are considered insignificant because they are not included in the National Examination subjects (Mustika et al., 2013). This tendency makes students less enthusiastic and less engaged. The nature of students’ apathy towards art lessons is not only having an impact on decreasing the value of subjects but also on the development of soft skills and character-building (Kauh et al., 2017). The lack of students’ ability to understand can also cause learning to be neglected (Pell & Jarvis, 2001).

Learning facilities are one of the main factors that contributes to increasing motivation for academic achievement in the school (Hallak, 1990). School facilities mean all physical facilities and equipment in the school and the class used by school members (Abraham, 2003). School facilities consist of school land with all the physical structures on it. This refers to school buildings, playgrounds, equipment and other material resources provided in schools for effective teaching and learning processes to increase learning motivation (Onwurah, 2004) whereas proposed by Afolabi (1998) school facilities refer to buildings, furniture and equipment that contributes to a positive and quality of learning environment in the classroom for all students. The availability of an
The availability of other physical facilities, such as school buildings and other facilities, is also very important because it can increase motivation and effective learning (Okunola, 1985). As in his book, Heryati (2014) stated that the Government of Indonesia through the education method, issued Government Regulation No.24 of 2007 concerning standards for facilities and infrastructure is based on PP No.19 of 2005 concerning National Standards of Education to support the learning process. According to Barnawi (2012), minimum learning facilities include classrooms, which are equipped with student chairs, student desks, teacher chairs, teacher desks, cabinets, student work shelves, longboards, props, whiteboards, bins, washing places hands, wall clocks, electrical sockets. The age of buildings, windows, cabinets, lighting, sound, and roof conditions are factors that can influence the influence of student learning (Clark, 2002). Lawton (1999) states that there is little research on school physical design and its effect on teaching and learning. Factors that are quite important in addition to school learning facilities are learning methods.

Tampubolon (2014) stated that learning methods are used to implement plans that have been prepared in a tangible and practical form to achieve learning goals. Effective learning methods can increase student learning motivation (Han & Yin, 2016). In the use of learning methods, teachers need to involve students in assignments, so that the teacher can see how motivation and interest in learning are processing (Assor et al., 2002; Jang, 2008). Students with low motivation are more likely to ignore their learning activities (Noels et al., 2000). Teachers can also increase students’ curiosity in learning (Carson & Chase, 2009; Sinclair, 2008). Growing motivation becomes the teacher’s priority in learning methods (Dörnyei, 2003). In this case, it can increase students’ intrinsic motivation because it gives students a sense of responsibility for their tasks (de Jesus & Lens, 2005; Richardson & Watt, 2006). Teachers can take advantage of the provisions of educational institutions for students so that students are easily directed towards their tasks (Niemiec & Ryan, 2009; Reeve, 2009). Achievement of learning methods can also be supported by learning facilities.

In various studies, there is an explicit relationship between school facilities and learning motivation in schools (Lackney et al., 1994). This is the evidence in the learning process that student achievement depends on school facilities such as physical, age, building design and school building conditions (Broome, 2003; Earthman, 2002; Earthman & Lemasters, 1998; Lyons, 2001; Tanner, 1999). School learning facilities are space interpretation of the curriculum that is applied in the school (Mgbodile, 2002). Likewise, with learning methods that can affect students “learning motivation and students’ intelligence capabilities are increasing (Pradono et al., 2013). These kinds of learning methods can solve problems and find learning solutions (Govorov et al., 2016), providing learning experiences for students to make students interested and motivate their learning conditions (Zirkel et al., 2015). The results of the study that facilities and good learning methods will influence student motivation in learning (Lee et al., 2014; Sowalha et al., 2017).

1.2. Importance

Previous research has discussed a lot about learning facilities, learning methods, and learning motivation, but there is no specific study to discuss art and culture lessons. As research conducted by Babić (2017) examined that how influential machine-based learning methods are as learning simulators. Hopland and Nyhus (2016) in his study discuss the students learning environment which includes learning facilities that greatly influence student’s learning motivation, but in this case, it does not specifically study the motivation to learn art and culture. The present study investigates on the students’ learning motivation in art and cultural subjects because art and cultural lessons are the
work and creativity based on the norms and behavior of Indonesian people. Cultural art lessons have a role in continuing the Indonesian nation’s cultural heritage through artistic and cultural wisdom. Santosa (2013) states students’ interest in learning art and culture is low due to the stigma of degrading the arts and culture because they are considered easier than applied sciences.

1.3. Research questions
This research is more specifically researched school learning facilities, learning methods and student learning motivation in cultural art subjects which specifically aims to explore the following questions: How do school learning facilities affect students’ learning motivation in art and culture subjects? How does the learning method affect student learning motivation in art and culture subjects? What is the influence of school learning facilities and learning methods together on the motivation to learn art and culture?

2. Methodology
2.1. Subjects and site
The population in this study were Junior Public High School students in Surakarta City, Indonesia. This study used proportional random sampling techniques to collect the data. The study also ensured the ethical consideration of the research, which considered as an important factor and author(s) also hide the confidentiality of the respondents. Referring to Hair et al. (1998) that the sample size was recommended at 100–200 respondents so that the precision value is high.

2.2. Procedure
The printed copies of the questionnaire in this study were distributed during school hours while students were still in school, and Cultural Arts learning activities were underway. In this case, the researcher got permission from the teacher for some time to compile the data from the respondents without the presence of teachers classroom. The reason to talk to the students in an open environment and can easily get the responses. It was mandatory for the respondents (Students) to complete the questionnaires and returned to the researcher’s team during the school timings. The researchers observed that students were excited and responded 100% to our survey.

2.3. Measurement
Measurement of learning facilities variable with 20 items, learning methods variables with 20 items, and learning motivation variables with 16 items. The variable variables were measured by 5 point Likert scales (1 = strongly disagree to 5 = strongly agree).

3. Result and analysis
The analytical method uses Statistical Descriptive Analysis and analysis data to test the validity, reliability test, and hypothesis testing.

3.1. Statistical descriptive analysis
Descriptive analysis is intended to find out the characteristics and responses of respondents to items in the questionnaire. According to Sugiyono (2010), descriptive analysis is a statistical analysis used to analyze data by describing or describing collected data.

Table 1. Shows demographic profile from the sample. Of the 100 respondents surveyed, 72% were women. As many as 54% of respondents age between 11 and 13 years and 49% of respondents are in 8th class.

The formula used in the calculation of descriptive analysis to determine the percentage level of answer scores of each variable is
Table 1. Profile of the sample % (N = 100)

| Demographic Variable | Categories | %   |
|----------------------|------------|-----|
| Grades               | 7th        | 49  |
|                      | 8th        | 22  |
|                      | 9th        | 29  |
| Gender               | Male       | 28  |
|                      | Female     | 72  |
| Age                  | 11–13      | 54  |
|                      | 14–16      | 45  |

Table 2. Variable indicators of learning facilities

| Learning Facility         | Number of Items | n   | N     | %   |
|---------------------------|-----------------|-----|-------|-----|
| School Building Facility  | 1, 10, 14, 15   | 1517| 2000  | 75.85 |
| Classroom Facility        | 2, 4, 7, 8, 9, 13| 2100| 3000  | 70   |
| Library Facility          | 5, 12           | 779 | 1000  | 77.90 |
| Learning Media Facility   | 3, 6, 11, 16    | 1583| 2000  | 79.15 |

n = empiric score, N = total score

Table 2 shows that learning media facilities have a good influence on the highest percentage of 79.15% because learning media can make students easier to apply the material they have learned. Then library facilities are also in a good category with a percentage of 77.90%. The library is useful for providing textbooks and reading books for students to develop insights. Furthermore, the school building facilities are in a good category with a percentage level of 75.85 because the condition of a good school building will make students comfortable in following the teaching and learning process. And the last is a study room facility that is in a good category with a percentage level of 70% where the learning space is where students follow the learning process, so the atmosphere of a conducive study room is very influential for students.

\[ \% = \frac{n}{N} \times 100\% \]

n = empiric score

N = total score

It can be explained in Table 3, that the use of discussion methods in the learning process is in a good category with a percentage of 79.60%. It indicates that the method is highly favored by students because it makes the students more active and creative. The question and answer method are also favored by students with a percentage of 78.6% which is in a good category because the question and answer method can foster students' interest in learning. The demonstration method obtained a percentage of 72.72 which means that it is in a good category since the use of this method can require students to directly practice what they have learnt. The lecture

| Learning Method              | Number of Items | n   | N     | %   |
|------------------------------|-----------------|-----|-------|-----|
| Lecturing Method             | 1, 2, 3, 4, 5, 6, 7| 2487| 3500  | 71.05 |
| Discussion Method            | 8, 9, 10, 11    | 1592| 2000  | 79.60 |
| Question & Answer Method     | 12, 13, 14, 15  | 1573| 2000  | 78.65 |
| Demonstration Method         | 16, 17, 18, 19, 20 | 1818| 2500  | 72.72 |

n = empiric score, N = total score.
method obtained a percentage of 71.05 which is included in a good category because the use of the lecture method can make students understand the lesson being taught correctly.

From Table 4, it shows that the variable of willingness is at the highest level of the percentage, which is 84.80%. This means that the application of various methods can increase students’ motivation and willingness to take part in the learning process in the classroom. Then, the variable of obligation percentage which shows the 77.75% of the respondents. This presentation means that students can balance the learning process in the classroom with their activities outside the classroom. This variable has a presentation which is 77.10%. It states that with the application of varied learning methods, students can spend more time studying to better understand the material presented. Furthermore, the variable of perseverance shows that highest level of percentage (74.80). This shows that by applying the method in a variety of ways can increase students’ motivation in learning more diligently so that the learning objectives can be achieved properly.

3.2. Validity test

A validity test is a measure that shows the level of validity of an instrument. The validity test used is the Factor Analysis Method. The Kaiser Meyer Olkin value Measure of Sampling Adequacy (KMO MSA) must be more than or equal to 0.500 and significance below 0.05 must be fulfilled so that factor analysis can be done while to find out whether each item is valid or not, it can be seen from the MSA value on Anti-Image Correlations. If the MSA value is at least 0.5, then this indicates that the item is valid and can be further analyzed (Hair et al., 1998).

Based on Table 5, which depicted the output of “KMO and Bartlett’s Test,” it can be seen that in the first test, the value of the KMO-MSA (Kaiser Meyer Olkin Measure of Adequacy) is 0.733 and is at the significance level of 0.000. By using this value, the data can be analyzed further, because it has met the criteria stating that the KMO MSA number must be greater or equal to 0.500.

While in the output of “Anti-image Matrices,” the correlation value for the validity test can be seen in the numbers with the “a” sign that indicates the MSA number (a measure of Sampling Adequacy).

The data in Tables 6 and 7 show that all items in the learning facility questionnaire have MSA values in Anti-Image Correlation above 0.5, which indicates that the items are valid and can be

| Table 4. Indicators of learning motivation variables |
|------------------------------------------------------|
| Learning motivation | Number of items | n  | N    | %    |
| Willingness         | 1, 2, 3, 4, 5   | 2120| 2500 | 84.80|
| Time                | 6, 7, 8, 9, 10, 11 | 2313| 3000 | 77.10|
| Obligation          | 12, 13, 14, 15  | 1555| 2000 | 77.75|
| Perseverance        | 17, 18, 19, 20  | 1496| 2000 | 74.80|

n = empiric score, N = total score.

| Table 5. Results of factor analysis |
|-------------------------------------|
| KMO and Bartlett’s Test             |
| Kaiser-Meyer-Olkin Measure of Sampling Adequacy | 0.733 |
| Bartlett’s Test of Sphericity        |
| Approx. Chi-Square                   | 3725.033 |
| Df                                  | 1540   |
| Sig.                                | 0.000  |
Table 6. Validity test results of learning facility data

| No | Learning Facilities                                                                 | Anti-Image Covariance | Anti-Image Correlation's |
|----|--------------------------------------------------------------------------------------|------------------------|--------------------------|
| 1  | The school building, in my opinion, is well maintained (physical condition, environmental cleanliness, etc.) | 0.225                  | 0.849^a                  |
| 2  | The study room (classroom, lab, art room) is very quiet and far from noise so I easily concentrate on studying. | 0.326                  | 0.747^a                  |
| 3  | I have all stationery (books, ballpoints, rulers, etc.) that are needed.               | 0.273                  | 0.766^a                  |
| 4  | In my opinion, the condition of the classroom is very comfortable for the learning process. | 0.247                  | 0.853^a                  |
| 5  | The atmosphere in the library is very comfortable and calm, so I feel happy when I am in the library. | 0.238                  | 0.815^a                  |
| 6  | A teacher always uses learning media/interesting learning tools so that I can easily receive and understand the lesson. | 0.191                  | 0.815^a                  |
| 7  | The lighting and ventilation of the study room (classroom, lab, art room) are very good so I do not find it is difficult to read and write with the fresh air I can feel when I am inside the rooms. | 0.274                  | 0.686^a                  |
| 8  | The classrooms are very quiet and far from noise sources (highways, markets, etc.) so I can concentrate easily. | 0.192                  | 0.610^a                  |
| 9  | The condition of the study room (classroom, lab, art room) is very neatly arranged.  | 0.167                  | 0.815^a                  |
| 10 | In my opinion, the school building is complete (including the number of rooms, the existence of laboratories, art rooms, etc.) | 0.205                  | 0.813^a                  |
| 11 | In explaining the material, the teacher always uses a projector or picture media so that I feel easier to comprehend the material. | 0.279                  | 0.728^a                  |
| 12 | In my opinion, the book collection in the library is complete, making it easier for me to find the material lesson. | 0.134                  | 0.618^a                  |
| 13 | The condition of the study room is always clean, neat, and beautiful so it makes me feel at home whenever I am in the classroom. | 0.188                  | 0.849^a                  |
| 14 | The environment in the school is very orderly and safe.                                | 0.196                  | 0.789^a                  |
| 15 | In my opinion, the school always completes and replaces if there is a damaged infrastructure. | 0.178                  | 0.843^a                  |
| 16 | I have all the lesson modules                                                          | 0.236                  | 0.640^a                  |

analyzed further. While in Table 8, there is 1 item in the learning motivation questionnaire, which is number 16 which is invalid since it has an MSA value on Anti-Image Correlation's 0.390 < 0.5. However, other items are declared valid and can be analyzed further because they have MSA value on Anti-Image Correlation's, which is above 0.5.

3.3. Reliability test

The reliability test is a tool to measure a questionnaire as a variable indicator. Variables are reliable if they have Cronbach Alpha values >0.70 (Ghozali, 2011). Items that pass the test are valid only. To determine whether the instrument is reliable or does not use the 0.6 limits. According to Sekaran (2003), reliability less than 0.6 is not good, 0.7 is acceptable and above 0.8 is good. The results show Cronbach Alpha for each variable as follows:
Table 7. Validity test results of learning methods

| No | Learning method                                                                 | Anti-Image Covariance | Anti-Image Correlation's |
|----|----------------------------------------------------------------------------------|------------------------|-------------------------|
| 1  | I easily understand the material lesson that the teacher delivers by using the lecture method | 0.138                  | 0.746 \(^a\)          |
| 2  | The use of the lecture method can increase my attention in the learning process in the classroom | 0.169                  | 0.767 \(^a\)          |
| 3  | I can master the lesson material taught by a teacher that uses lecture method during the learning process | 0.133                  | 0.763 \(^a\)          |
| 4  | The use of the lecture method in the learning process creates intimacy for me in studying in the classroom | 0.294                  | 0.681 \(^a\)          |
| 5  | The use of the lecture method can stimulate me to do a task given during the learning process | 0.183                  | 0.690 \(^a\)          |
| 6  | I listen to the teacher’s explanation which uses the lecture method in the learning process | 0.187                  | 0.594 \(^a\)          |
| 7  | I am motivated in the learning process when the teacher uses the lecture method | 0.248                  | 0.679 \(^a\)          |
| 8  | I can solve problems in the learning process by using the discussion method       | 0.202                  | 0.600 \(^a\)          |
| 9  | I express opinions or give ideas when the discussion takes place related to the issues discussed | 0.253                  | 0.559 \(^a\)          |
| 10 | I respect the opinions of colleagues in the discussion process                   | 0.284                  | 0.694 \(^a\)          |
| 11 | I am motivated in the learning process that uses the discussion method          | 0.343                  | 0.753 \(^a\)          |
| 12 | I am given the opportunity to ask questions during the learning process         | 0.229                  | 0.582 \(^a\)          |
| 13 | In the learning process, I ask questions that I do not understand                | 0.180                  | 0.667 \(^a\)          |
| 14 | With the use of the question and answer method, I am motivated to pay attention and participate in the learning process | 0.235                  | 0.755 \(^a\)          |
| 15 | I am interested in the learning process when the question and answer method is used | 0.322                  | 0.741 \(^a\)          |
| 16 | With the use of demonstration method, I can solve problems in the learning process | 0.220                  | 0.700 \(^a\)          |
| 17 | I can repeat the lesson material briefly using the demonstration method         | 0.301                  | 0.755 \(^a\)          |
| 18 | Through the demonstration method, I am motivated in the learning process        | 0.212                  | 0.861 \(^a\)          |
| 19 | With the use of demonstration method, I can practice the lesson material given by the teacher during the learning process | 0.236                  | 0.784 \(^a\)          |
| 20 | I am actively involved in the learning process using the demonstration method   | 0.266                  | 0.792 \(^a\)          |

From Table 9, it can be seen that learning motivation, learning facilities, and learning methods have good reliability because Cronbach's Alpha is above 0.80.

Based on Table 10, the value of sig is known. (2-tailed) between learning facilities (X1) with learning motivation (Y) is equal to 0.000 < 0.05, which means a significant correlation between the variable learning facilities and motivation to learn. Furthermore, the relationship between learning methods (X2) and learning motivation (Y) has a significant value. (2-tailed) of 0.000 < 0.05, which means a significant correlation between the variables of the learning method with motivation to learn. Keeping in view the Pearson correlations test analysis, it is known that the value of
Table 8. Validity test results of learning motivation

| No | Learning Motivation                                                                 | Anti-Image Covariance | Anti-Image Correlation's |
|----|--------------------------------------------------------------------------------------|-----------------------|-------------------------|
| 1  | The application of learning methods in a variety of ways can arise my willingness to | 0.274                 | 0.867 a                 |
|    | pay attention and involve in the Art & Culture learning process                      |                       |                         |
| 2  | To get good grades, I will have more seriousness to study Art & Culture              | 0.301                 | 0.827 a                 |
| 3  | I have the intention to involve, participate, and pay attention when the Art & Culture| 0.136                 | 0.796 a                 |
|    | learning process in class takes place                                               |                       |                         |
| 4  | There is an awareness in me to involve, participate, and pay attention when the Art & | 0.193                 | 0.685 a                 |
|    | Culture learning process in class takes place                                        |                       |                         |
| 5  | There is support from family, so I have the willingness to study Art & Culture      | 0.305                 | 0.715 a                 |
| 6  | I am disciplined in attending and be involved in the Art & Culture learning process  | 0.176                 | 0.679 a                 |
|    | in class                                                                               |                       |                         |
| 7  | I will still be disciplined in learning Art & Culture even when the teacher is out of | 0.214                 | 0.770 a                 |
|    | class                                                                                |                       |                         |
| 8  | During the Art & Culture learning process, I did not leave the class                 | 0.209                 | 0.668 a                 |
| 9  | I am disciplined to attend my classes for the Art & Culture learning process         | 0.145                 | 0.702 a                 |
| 10 | In teaching and learning Art & Culture process I left the class just in time          | 0.296                 | 0.782 a                 |
| 11 | In the teaching and learning process of Art & Culture, I came to the class on time   | 0.133                 | 0.749 a                 |
| 12 | It is my necessity to finish the Art & Culture assignment given by the teacher by myself | 0.252                 | 0.639 a                 |
| 13 | I was required to be more active compared to other needs in participating in the Art &| 0.234                 | 0.763 a                 |
|    | Culture teaching and learning process                                                |                       |                         |
| 14 | I am responsible for every assignment given by the teacher in the teaching and learning | 0.225                 | 0.814 a                 |
|    | process of Art & Culture                                                              |                       |                         |
| 15 | I am given responsibility by the teacher to help my friends who do not understand the | 0.209                 | 0.666 a                 |
|    | material about Art & Culture provided                                                |                       |                         |
| 16 | I am able to account for my artwork to friends and teachers                           | 0.160                 | 0.390 a                 |
| 17 | After the teaching and learning of Art & Culture process takes place, I am able to    | 0.270                 | 0.607 a                 |
|    | remember the material that has been taught in the learning process                   |                       |                         |
| 18 | I give all of my attention when the Art & Culture learning process takes place in the | 0.182                 | 0.724 a                 |
|    | classroom                                                                             |                       |                         |
| 19 | In the Art & Culture teaching and learning process, I was asked to repeat the lesson | 0.249                 | 0.806 a                 |
|    | material that had been presented before                                               |                       |                         |
| 20 | I am given the opportunity to conclude the lesson material presented by the teacher  | 0.223                 | 0.676 a                 |
|    | in the Art & Culture teaching and learning process                                     |                       |                         |

$r$ calculated for the relationship of learning facilities (X1) with learning motivation (Y) is $0.613 > r$ table 0.195; it means a correlation between learning facilities variables with learning motivation. Furthermore, the value of $r$ count for the relationship between learning methods (X2) and learning motivation (Y) is $0.643 > r$ table 0.195. It means a correlation between learning methods and
Because r count or Pearson Correlations in this analysis are positive, it means that the relationship between the two variables is positive or better learning facilities and learning methods will increase students’ motivation.

3.4. Hypothesis test
The positive influence of learning facilities with learning motivation

The t-test shows the influence of one independent variable individually in explaining the dependent variable (Ghozali, 2011). An independent variable influences the dependent variable known from the significance value of the t-test (<0.05).

4. Discussion
The discussion on the results of the variable indicator analysis which shows one form of a facility in the form of learning media has a great influence on students. This happens because learning media encourage students to more easily understand and apply the material taught by the teachers. The learning method given is a significant influence on student learning patterns is a method of discussion. The discussion method gives a great influence because it can stimulate student learning motivation. The student’s learning motivation can be formed through strong will.

| Variables       | Cronbach’s Alpha | N of Items | Result |
|-----------------|------------------|------------|--------|
| Learning Motivation | 0.902            | 19         | Good   |
| Learning Facility      | 0.899            | 16         | Good   |
| Learning Method           | 0.884            | 20         | Good   |

**Correlation is significant at the 0.01 level (2-tailed).**

| Correlations | Learning Motivation | Learning Facility | Learning Method |
|--------------|---------------------|-------------------|-----------------|
| Learning Motivation | Pearson Correlation | 1 | 0.658** | 0.643** |
| Sig. (2-tailed) | 0.000 | 0.000 |
| Sum of Squares and Cross-products | 8907.560 | 5695.020 | 5375.600 |
| Covariance | 89.975 | 57.525 | 54.299 |
| N | 100 | 100 | 100 |
| Learning Facility | Pearson Correlation | 0.658** | 1 | 0.613** |
| Sig. (2-tailed) | 0.000 | 0.000 |
| Sum of Squares and Cross-products | 5695.020 | 8416.590 | 4983.700 |
| Covariance | 57.525 | 85.016 | 50.340 |
| N | 100 | 100 | 100 |
| Learning Method | Pearson Correlation | 0.643** | 0.613** | 1 |
| Sig. (2-tailed) | 0.000 | 0.000 |
| Sum of Squares and Cross-products | 5375.600 | 4983.700 | 7847.000 |
| Covariance | 54.299 | 50.340 | 79.263 |
| N | 100 | 100 | 100 |
from within the individual. To support students’ willingness, a variety of learning methods are
needed during the learning process.

The analysis shows in Table 11 which illustrated that a high regression coefficient for the
learning facility variable of 0.721 with positive parameters. It means that learning facilities have
a positive and significant effect on student learning motivation. Based on the significance test of
multiple linear regression coefficients for learning facilities, variables $t_{\text{count}} > t_{\text{table}}$, which is
8.576 $> 1.66071$ and the significance value $<0.05$, which is 0.000. The coefficient of determination
($R^2$) obtained at 0.429. The learning experience builds self-awareness up to self-capacity improve-
ment (DeMink-Carthew et al., 2020). These data imply that good learning facilities can have a great
influence on student learning motivation. Conversely, if the quality of learning facilities is low,
students’ learning motivation will be reduced, especially in arts and cultural subjects.
Infrastructure facilities which are learning facilities are needed to achieve the objectives regularly,
effective and efficient education. It is supported by Tisch and Metternich’s (2017) studies about
learning facilities are important factors to support the learning process. Brooks and Weiler (2018)
add that learning facilities are important because of their great influence on student achievement.
Learning facilities play an important role in the learning process, where learning facilities can
support student learning achievement. This is similar to Lyioma and Kipng‘etich (2017) argue the
use of learning facilities optimally has a positive impact on improving student learning achieve-
ment. It means the use of learning facilities optimally can improve the learning achievement of the
art and culture of students. The result of the study shows the use of learning facilities inappro-
priate levels. This is measured by indicators of school building facilities, study room facilities, library
facilities and learning media facilities.

Furthermore, a high regression coefficient in Table 13 for the learning method variable of 0.740
with positive parameters. It can be concluded that learning methods have a positive and signifi-
cant effect on students’ learning motivation in art and cultural subjects. The learning process has
the same purpose such as increasing learning motivation and student learning outcomes by
a teacher, and learn art and culture subjects to achieve a good result by the student (Briggs
et al., 2019). Based on the significance test of multiple linear regression coefficients for the
learning method variable $t_{\text{count}} > t_{\text{table}}$, namely $8.432 > 1.66071$ and the significance value
$<0.05$, which is 0.000. It is also added that the coefficient of determination ($R^2$) in Table 14
obtained at 0.420. It can be said that better learning method in school creates better students’
motivation to learn and vice versa. Learning is a two-way communication between instructor and
learner (Oyarzun et al., 2018). In the teaching and learning process, teachers can choose one
method of learning and improvisation in learning methods. The teacher must pay attention to
several things including the situation of the classroom, the purpose of learning, facilities, the
condition of students and teachers themselves.

The use of variations in learning methods or improvement of learning methods can be done so
that students do not feel bored in the learning process and increase student motivation in
following the learning process in the classroom to achieve learning objectives and students get
achievements. The result of this study is supported by DeMonbrun et al. (2017) that states learning
achievement is obtained due to the selection of appropriate and quality learning methods. If the
teacher can apply the learning method correctly and precisely depends on the needs in class, it
brings a positive impact on improving student learning achievement at school (Filges et al., 2018;
Yang et al., 2020). One favorite method for students is the discussion method. This is supported by
the high level of percentage (79.6%) of students in Table 3 and supported by the opinion of Ho and
Siegel (2014) which illustrates that discussion learning methods can encourage student learning
motivation to create nuances of learning also experience for students. The choice of discussion
method as a favorite method for students because students can explore and get much information
to foster the power of creativity and curiosity of students. Gilson et al. (2017) suggest that the
selection of the right learning method can create a fun learning atmosphere and allow students to
### Table 11. T-Test Facilities for Learning Facilities with Learning Motivation

| Coefficients | Model | Unstandardized Coefficients | Standardized Coefficients | t | 95.0% Confidence Interval for B | Correlations |
|--------------|-------|------------------------------|---------------------------|---|--------------------------------|--------------|
|              |       | B                            | Std. Error                | Beta | Lower Bound | Upper Bound | Zero-order | Partial | Part |
| 1            |       | (Constant)                   | 39.483                    | 5.087 | 7.762       | 29.388      | 49.577     | 0.655    | 0.655 |
|              | Learning Motivation | 0.721                      | 0.084                     | 0.655 | 8.576       | 0.554       | 0.888      | 0.655    | 0.655 |

Prameswari et al., Cogent Education (2020), 7: 1809770
https://doi.org/10.1080/2331186X.2020.1809770
Table 12. Result of R-value analysis of learning facilities with learning motivation

| Model | R    | R Square | Adjusted R Square | Std. error of the Estimate | R Square Change | F Change | df1 | df2 | Sig. F Change |
|-------|------|----------|-------------------|-----------------------------|----------------|----------|-----|-----|--------------|
| 1     | 0.655 | 0.429    | 0.423             | 7.71490                     | 0.429          | 73.540   | 1   | 98  | 0.000        |

a. Predictors: (Constant), Learning Facility.

The general value (R) in table (12) is 0.423, while the adjusted R square value is 0.429. This means that 42.9% of the dependent variable (Learning Motivation) can be explained by its independent variables (Learning Facilities). The remaining 57.1% is influenced by other variables that are not included in this research model.
Table 13. T-test result of learning methods with learning motivation. The positive influence of learning methods with learning motivation

| Coefficients | Model | Unstandardized Coefficients | Standardized Coefficients | T | Sig. | 95.0% Confidence Interval for B | Correlations |
|--------------|-------|-----------------------------|---------------------------|---|-----|-------------------------------|--------------|
|              |       | B                           | Std. Error                | Beta |     | Lower Bound | Upper Bound | Zero-order | Partial | Part |
| 1            | (Constant) | 27.348                  | 6.598                      | 4.145 | 0.000 | 14.254 | 40.443 | | | |
|               | Learning Method | 0.740                    | 0.088                     | 0.648 | 8.432 | 0.566 | 0.914 | 0.648 | 0.648 | 0.648 |

a. Dependent Variable: Learning Motivation.
Y = 27.348 + 0.740 X.

The result of this test indicates that the path analysis has a significant effect, known from the magnitude of the significance level is less than 0.05.
Table 14. Result of analysis of R-value of learning methods with learning motivation

| Model | R     | R Square | Adjusted R Square | Std. Error of the Estimate | Change Statistics |
|-------|-------|----------|-------------------|---------------------------|-------------------|
|       |       |          |                   |                           | R Square Change   |
|       |       |          |                   |                           | F Change          |
|       |       |          |                   |                           | df1               |
|       |       |          |                   |                           | df2               |
|       |       |          |                   |                           | Sig. F Change     |
| 1     | 0.648 | 0.420    | 0.415             | 7.77036                   | 0.420             |
|       |       |          |                   |                           | 71.100            |
|       |       |          |                   |                           | 1                 |
|       |       |          |                   |                           | 98                |
|       |       |          |                   |                           | 0.000             |

a. Predictors: (Constant), Learning Method.

The general value (R) is 0.415 in table (14), while the adjusted R square value is 0.420. This means that 42% of the dependent variable (Learning Motivation) can be explained by its independent variables (Learning Method). The remaining 58% is influenced by other variables that are not included in this research model.
Table 15. F test results of learning facilities and learning methods for learning motivation. Effect of learning facilities and learning methods on learning motivation. From the multiple linear regression analysis, it is known that the regression coefficient of each variable is positive; it means that learning facilities and learning methods are positively and significantly related to learning motivation. To find out whether the effect is positive or not, then the multiple linear regression (F test) significance test did as follows.

ANOVA

| Model | Sum of Squares | Df | Mean Square | F     | Sig. |
|-------|----------------|----|-------------|-------|------|
| 1     | Regression     | 2  | 2687.330    | 53.910| 0.000^a |
|       | Residual       | 97 | 49.849      |       |      |
|       | Total          | 99 | 10,210.000  |       |      |

a. Dependent Variable: Learning Motivation.
b. Predictors: (Constant), Learning Method, Learning Facility.

The result of this test indicates that the path analysis has a significant effect, known from the magnitude of the significance level is less than 0.05 (see table 15).

Table 16. Result of analysis of the value of R learning facilities and learning methods on learning motivation

Model Summary

| Model | R     | R Square | Adjusted R Square | Std. Error of the Estimate | Durbin-Watson |
|-------|-------|----------|-------------------|---------------------------|---------------|
| 1     | 0.726a| 0.526    | 0.517             | 7.06037                   | 2.182         |

a. Predictors: (Constant), Learning Method, Learning Facility.
b. Dependent Variable: Learning Motivation.

The result of the calculation of the determination coefficient (R^2) obtained a value of 0.526. It can be concluded that the learning facility variables and learning methods have a 52.6% contribution to the increase or decrease in student learning motivation (see table 16).

develop their creativity. It is known that interesting methods such as discussion methods are needed in the learning process in class, although other learning methods still used.

The learning facilities and learning methods of Art and Culture promote the students' activities. Also, the results of this study assert that other than learning facilities, learning methods as well may improve students' learning motivation. The result F_{calc} 53.910 with a significant number of 0.000 shows the independent variables (learning facilities and learning methods) together had a positive and significant effect in learning motivation. The combination of the two variables will support each other in increasing learning motivation. The results of the coefficient of determination (R^2) are obtained at 0.526. It means that the variable learning facilities and learning methods contribute to the form of improving or reducing student learning motivation in art and cultural subjects. Learning facility variables and learning methods contribute 52.6% to learning motivation, while the rest can be explained by variables that are not included in this study. Learning facilities have a great influence on student learning motivation as well as learning methods (Abdullahi & Yusoff, 2019). Specifically, learning facilities and learning methods are building student learning motivation (Putri & Usman, 2019). Completeness of learning facilities and fun learning methods will increase students' intrinsic motivation in achieving their learning experience (Hamidi & Chavoshi, 2018; Rheinberg & Engeser, 2018). The complete learning facilities support learning patterns in class, such as discussion methods implementation in learning using media as a learning facility. These two elements encourage the improvement of student learning.
motivation. The use of media in a discussion can simplify the teacher’s task in explaining the purpose and objectives of the learning process, such as tell the learning objectives, the division of discussion groups, and topic presentation to the student. The ease between the use of media and the application of the method of discussion will bring a positive impact on students’ interest or motivation to learn in art and cultural subjects.

5. Conclusion
This research tries to find out the role of learning facilities and learning methods of art and culture on students’ learning motivation at Junior High Schools. Learning facilities have a great influence on students’ learning motivation and learning methods. The results of the first research state that learning facilities have a positive and significant effect on students’ learning motivation. However, learning facilities in low quality decrease the students’ learning motivation, especially major in art and culture studies. Therefore, in its implementation, art, and culture as practical subjects, require better learning facilities at each learning practice activity. Also, the results of this study assert that other than learning facilities, learning methods as well may improve students’ learning motivation. Learning experience builds a self-awareness and self-capacity improvement. Art and culture have their own unique characteristics that cannot be compared to other subjects, since art and culture are subjects that emphasize creativity and appreciation of art itself. Complete learning facilities combined with effective methods, may help enhance the student’s motivation. These two elements encourage the improvement of students’ learning motivation. This research focused only on junior high school students but other alternatives though can be conducted using the different scope in a much higher level of education.

Funding
The authors received no direct funding for this research.

Author details
Nadia Sigi Prameswari1
E-mail: nadiansi@staff.uns.ac.id
ORCID ID: http://orcid.org/0000-0002-7359-6963
Muhammad Saud2
E-mail: muhammad.saud@gmail.com
ORCID ID: http://orcid.org/0000-0001-5739-7238
Joko Lulut Ambora1
E-mail: jambora30380@staff.uns.ac.id
Novita Wahyuningsih1
E-mail: novita_wey@staff.uns.ac.id
1 Faculty of Languages and Arts, Universitas Negeri Semarang, Semarang, Indonesia.
2 Department of Sociology, Faculty of Social and Political Sciences, Universitas Airlangga, Surabaya, Indonesia.

Conflict of interest
We declared that they have no conflicts of interest regarding this study.

Citation information
Cite this article as: The motivation of learning art & culture among students in Indonesia, Nadia Sigi Prameswari, Muhammad Saud, Joko Lulut Ambora & Novita Wahyuningsih, Cogent Education (2020), 7: 1809770.

References
Abdulahi, I., & Yusoff, W. Z. W. (2019). Influence of facilities performance on student’s satisfaction in Northern Nigerian universities. Facilities, 37(3/4), 168–181. https://doi.org/10.1108/F-08-2017-0088
Abraham, M. (2003). Educational Administration in Nigeria. Port Harcourt: Pan Unique Publishing Co. Ltd.
Abrahams, I. (2007). An Unrealistic Image of Science. School Science Review, 88(324), 119–122. http://eprints.lincoln.ac.uk/16722/1/1%Abramahms%20(2007)%20An%20Unrealistic%20Image%20of%20Science%20SSR.pdf
Abrahams, I. (2009). Does practical work really motivate? A study of the affective value of practical work in secondary school science. International Journal of Science Education, 31(17), 2335–2353. https://doi.org/10.1080/09500690802342836
Adegunmi, T. B. (2000). The influence of physical resources on pupils academic performance in lagos state primary school [Unpublished M.Ed. Dissertation]. University of Benin.
Afolabi, M. (1998). Introduction to research methods for writing proposals. Alpha Publishers.
Ajayi, I. A., & Ayodele, J. B. (2001). Introduction to educational planning, administration and supervision. Ado-Ekiti. Yemi Printing Services.
Amirkhanov, K. M., Ageevab, A. V., & Fakhretdinov, R. M. (2016). Enhancing students’ learning motivation through reflective journal writing. The European Proceedings of Social & Behavioural Sciences, e 2357 – 1330. http://www.futureacademy.org.uk/files/images/upload/3FTE2016F.pdf
Anderson, S. (1999). The relationship between school design variables and scores on the Iowa test of basic skills [Unpublished doctoral dissertation]. The University of Georgia.
Assor, A., Kaplan, H., Kanat-Maymon, Y., & Roth, G. (2005). Directly controlling teacher behaviors as predictors of poor motivation and engagement in girls and boys: The role of anger and anxiety. Learning and Instruction, 15 (5), 397-413. https://doi.org/10.1016/j.learninstruc.2005.07.008
Assor, A., Kaplan, H., & Roth, G. (2002). Choice is good, but relevant is excellent: Autonomy-enhancing and suppressing teacher behaviors predicting students’ engagement in school work. British Journal of Educational Psychology, 72(2), 262–278. https://doi.org/10.1348/000709902158883
Aunurrahman, A. (2014). Study and learning. Alfabeta. Babic, I. B. (2017). Machine learning methods in predicting the student academic motivation. CORR: Croatian Operational Research Review, 8(2), 443–461. DOI: 10.17535/corr.2017.0028
Barnawi, A. M. (2012). The management of school facilities. AR-RUZZ MEDIA.

Briggs, D. C., Chattergoon, R., & Burkhardt, A. (2019). Examining the dual purpose use of student learning objectives for classroom assessment and teacher evaluation. Journal of Educational Measurement, 56(4), 686–714. https://doi.org/10.1111/jedm.12233

Brooks, E., & Weiler, S. C. (2018, Spring). The relationship between the condition of Colorado elementary school facilities and student achievement. Journal of Education Finance, 43(4), 397–416. https://www.muse.jhu.edu/article/707921.

Broome, K. (2003). The relationship between design of school facilities and student behavior and academic achievement [Unpublished doctoral dissertation]. The University of Mississippi.

Butler, R. (2007). Teachers' achievement goal orientations and associations with teachers' help seeking: Examination of a novel approach to teacher motivation. Journal of Educational Psychology, 99(2), 241–252. https://doi.org/10.1037/0022-0663.99.2.241

Carson, R. L., & Chase, M. A. (2009). An examination of physical education teacher motivation from a self-determination theoretical framework. Physical Education and Sport Pedagogy, 14(4), 335–353. https://doi.org/10.1080/17408980802301886

Chandan, J. S. (1999). Management theory and practice. New Delhi Vikas Publishing House. P.T.Ltd.

Clark, H. (2002). Building education: The role of the physical environment in enhancing teaching and research. London.

de Jesus, S. N., & Lens, W. (2005). An integrated model for the study of teacher motivation. Applied Psychology, 54(1), 119–134. https://doi.org/10.1111/j.1464-0597.2005.00199.x

Deci, E. L., & Ryan, R. M. (2008). Self-determination theory: A macrotheory of human motivation, development, and health. Canadian Psychology, 49(3), 182–185. https://doi.org/10.1037/a0012801

DeMinck-Carthew, J., Netchoh, S., & Forber, K. (2020). Exploring the potential for students to develop self-awareness through personalized learning. The Journal of Educational Research, 1–12, 165–176. https://doi.org/10.1080/00220671.2020.1764647

DeMonbrun, M., Finelli, C. J., Prince, M., Borrego, M., Shekhar, P., Henderson, C., & Waters, C. (2017). Creating an instrument to measure student response to instructional practices. Journal of Engineering Education, 106(2), 273–298. https://doi.org/10.1002/jee.20162

Dörnyei, Z. (2003). Attitudes, orientations, and motivations in language learning: Advances in theory, research, and applications. Language Learning, 53(51), 3–32. https://doi.org/10.1111/1467-9922.53222

Earlham, G. (2002). School facility conditions and student academic achievement. UCLA: Institute for Democracy, Education, & Access.

Earlham, G., & Lemasters, L. (1998). Where children learn: A discussion of how facility affects learning (ERIC Document Reproduction Service No. ED419368). Virginia Educational Facility Planners Annual Meeting.

Filges, T., Sonne-Schmidt, C. S., & Nielsen, B. C. V. (2018). Small class sizes for improving student achievement in primary and secondary schools: A systematic review. Campbell Systematic Reviews, 14(1), 1–107. https://doi.org/10.4073/csr.2018.10

Ghozoli, I. (2011). Multivariate analysis application with program IBM SPSS 19. The Board of Publisher Diponegoro University.

Gilson, C. B., Carter, E. W., & Biggs, E. E. (2017). Systematic review of instructional methods to teach employment skills to secondary students with intellectual and developmental disabilities. Research and Practice for Persons with Severe Disabilities, 42(2), 89–107. https://doi.org/10.1177/1540796917698831

Govorov, A., Govolova, M., & Bulakova, A. (2016). Methods of student motivation by means of E-Learning system. Communications in Computer and Information Science, 674, 429–438. Cham: Springer. https://link.springer.com/chapter/10.1007/978-3-319-49700-6_43

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. Prentice Hall International Inc.

Hollak, J. (1990). Investing in the future setting educational priorities in the developing world. IIEP and Pergamon Press.

Hamidi, H., & Chavoshi, A. (2018). Analysis of the essential factors for the adoption of mobile learning in higher education: A case study of students of the University of Technology. Telematics and Informatics, 35(4), 1053–1070. https://doi.org/10.1016/j.tele.2017.09.016

Han, J., & Yin, H. (2016). Teacher motivation: definition, research development and implications for teachers. Cogent Education, 3(1), 1–18. https://doi.org/10.1080/2331186X.2016.1217819

Hanif, M. (2016, December). Dongrek art (The study of cultural value and its potency as the source of character education). Gulawentah: The Journal of Social Study, 1(2), 132–141. https://doi.org/10.25273/gulawentah.v1i2.1036

Heryati, Y. D. M. M. (2014). The management of educational resources. Pustaka Setia.

Ho, F., & Siegel, L. S. (2014). A study of the relationships among chinese multicharacter words, subtypes of readers, and instructional methods. Journal of Learning Disabilities, 49(1), 97–110. https://doi.org/10.1177/0022219414529334

Hopland, A. O., & Nyhus, D. H. (2016). Learning environment and student effort. International Journal of Educational Management, 30(2), 271–286. https://doi.org/10.1108/IJEM-05-2014-0070

Jang, H. (2008). Supporting students’ motivation, engagement, and learning during an uninteresting activity. Journal of Educational Psychology, 100(4), 798–811. https://doi.org/10.1037/a0012841

Kahve, E., Nelson, K., & Picton, C. (2017, July). Student interest as a key driver of engagement for first year students. Student Success Journal, 8(2), 55–66. https://doi.org/10.5204/ssj.v8i2.379

Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725. https://doi.org/10.1037/a0022-0663.100.3.716

Lockney, J., Park, P., & Wittling, L. (1994). The cost of facility development: A comparative analysis of public and private sector facility development processes and costs. (Johnson Controls Institute for Environmental Quality in Architecture Monograph Series Report R94-9). University of Wisconsin-Milwaukee: Center for Architecture and Urban PlanningResearch.

Lawton, M. (1999). School design can say a lot about teaching and learning. Harvard Educational Letter, 15(1), 5–8.

Lee, K., Ning, F., & Goh, H. C. (2014). Interaction between cognitive and non-cognitive factors: The influences of academic goal orientation and working memory on
mathematical performance. Educational Psychology, 34(1), 73–91. https://doi.org/10.1080/01443410.2013.836158

Literat, I. (2016). Interrogating participation across disciplinary boundaries: Lessons from political philosophy, cultural studies, art, and education. New Media & Society, 18(8), 1787–1803. https://doi.org/10.1177/1461444816639036

Lyioma, T., & Kipng’etich. (2017). Perception of teachers on availability of instructional materials and physical facilities in secondary schools of Arusha District, Tanzania. International Journal of Educational Policy Research and Review, 4(5), 103–112. https://doi.org/10.15739/JEPRR.17.012

Lyons, J. (2001). Do school facilities really impact a child’s education? (ERIC Reproduction Service No. ED 458791). Council of Educational Facility Planners International.

Majid, A. (2008). Plan of study. PT REMAJA ROSDAKARYA. Mbodjole, T. O. (Ed.). (2002). Educational administration and supervision. Heinemann Educational Books.

Mustika, D. T., Yuliasma, & Susmiarti. (2013). Students’ creativity improvement in learning art of dance by implementing cooperative learning model at state junior high school 1 Padang Panjang. E-Jurnal Art, Drama, Dance, & Music FBS Padang State University, 2(1), 44–49. http://ejournal.upc.id/index.php/edratsa/article/view/2435

Neolaka, F., Manggao, M., & Nenotek, S. A. (2015, October). The implementation of curriculum 2013 at state junior high school 1 central Kupang Kupang regency academic year 2013/2014. Journal of Education: Theory, Research, and Development, 1(10), 2010–2015. http://journal.umn.ac.id/index.php/jptpp/article/view/7410

Niemiec, C. P., & Ryan, R. M. (2009). Autonomy, competence, and relatedness in the classroom: Applying self-determination theory to educational practice. Theory and Research in Education, 7(2), 133–144. https://doi.org/10.1177/1477878509104318

Noels, K. A., Pelletier, L. G., Clément, R., & Vallerand, R. J. (2000). Why are you learning a second language? Motivational orientations and self-determination theory. Language Learning, 50(1), 57–85. https://doi.org/10.1111/0023-8333.00111

Okunola, P. O. (1985). Resource utilization and projection in secondary education in Oyo State of Nigeria (An Unpublished Ph.D. Thesis). University of Ibadan.

Onwuchekwa, C. (2004). School plant management. In T. O. Mbodjole (Ed.), Fundamentals in educational administration and planning. Magnet Computer Services.

Oyarzun, B., Stefaniak, J., Bol, L., & Morrison, G. R. (2018). Effects of learner-to-learner interactions on social presence, achievement and satisfaction. Journal of Computing in Higher Education, 30(1), 154–175. https://doi.org/10.1080/1043721X.2017.1354357

Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. ELSEVIER: Computers & Education Journal, 52(1), 1–12. https://doi.org/10.1016/j.compedu.2008.06.004

Pell, T., & Jarvis, T. (2001). Developing attitude to science scales for use with children of ages from five to eleven years. International Journal of Science Education, 23(8), 847–862. https://doi.org/10.1080/09500690010016111

Pogacnik, L., & Cicig, B. (2006). How to motivate students to study before they enter the lab. Journal of Chemical Education, 83(7), 1094. https://doi.org/10.1021/ed083p1094

Pradono, S., Astriani, M. S., & Moniaga, J. (2013, October). A method for interactive learning. International Journal of Communication & Information Technology (Commit), 7(2), 46–48. doi: 10.1109/AITk9F014.2019.9144964

Putri, L. W., & Usman, O. (2019, July 5). Influence of learning strategy, learning style, practical facilities, and medig learning on learning outcomes of SMK students. Learning Style, Practical Facilities, and Media Learning on Learning Outcomes of SMK Students. http://dx.doi.org/10.2139/ssrn.3415475

Reeve, J. (2009). Why teachers adopt a controlling motivating style toward students and how they can become more autonomy supportive. Educational Psychologist, 44(3), 159–175. https://doi.org/10.1080/00461520903028990

Rheinberg, F., & Engeser, S. (2018). Intrinsic motivation and flow. In Heckhausen J., Heckhausen H. (eds), Motivation and action (pp. 579–622). Springer.

Richardson, P. W., & Watt, H. M. G. (2006). Who chooses teaching and why? Profiling characteristics and motivations across three Australian universities. Asia Pacific Journal of Teacher Education, 34(1), 27–56. https://doi.org/10.13598/edsp0500482090

Santosa, H. (2013, September). The roles of learning motivation on students of art and design. Dimension Jurnal: Pendidikan Seni, 2013–212.

Saud, M. (2020). Youth participation in political activities: The art of participation in Bhakkar, Punjab Pakistan. Journal of Human Behavior in Social Environment, 1–18. https://doi.org/10.1080/10913320.2019.1745112

Sawalha, K., Al-Mi, A., Sawalha, A., Ko, H., Abdelli, I., El-Shawish, S., & Hussien, A. (2017). Factors influencing academic motivation among UOS medical students. Journal of Health Science, 5, 177–180. doi: 10.17265/2328-7136/2017.04.004

Schiefele, U. (1996). Topic interest, text representation, and quality of experience. Contemporary Educational Psychology, 12(1), 3–18. https://doi.org/10.1006/ceps.1996.0002

Schiefele, U., & Schaffner, E. (2015). Teacher interests, mastery goals, and self-efficacy as predictors of instructional practices and student motivation. Contemporary Educational Psychology, 42, 159–171. https://doi.org/10.1016/j.cedpsych.2015.06.005

Sekaran, U. (2003). Research methods for business: A skill building approach. John Wiley and Sons Inc.

Sinclair, C. (2008). Initial and changing student teacher motivation and commitment to teaching. Asia-Pacific Journal of Teacher Education, 36(2), 79–104. https://doi.org/10.1080/0311187070171658

Sugiyono, (2010). Quantitative and qualitative research method and R&D. Publisher CV Aksara.

Sumarni, S., Prameswari, N. S., Suharto, M., & Maryono, D. (2018). Game-based learning as the media of art and culture learning for junior high school students in Indonesia. International Journal of Management and Applied Science, 4, 1–4. https://dx.doi.org/10.2991/icalc-18.2019.13

Tampubolon, S. (2014). Classroom action research as profession development of educators and science. Erlangga.

Tanner, C. K. (1999). A design assessment scale for elementary schools. http://www.designshare.com/Research/AnFingerDASE1.htm

Tisch, M., & Metternich, J. (2017). Potentials and limits of learning factories in research, innovation transfer, education, and training. Procedia Manufacturing, 9, 89–96 doi:10.1016/j.promfg.2017.04.027

Uno, H. B. (2000). Theory of motivation and its measurement. Bumi Aksara.

Virvou, M., Katsionis, G., & Manos, K. (2005). Combining software games with education: Evaluation of its educational effectiveness. Educational Technology...
and Society, 8(2), 54–65. https://www.jstor.org/stable/10.2307/jeductechsoci.8.2.54

Wahyuningsih, S. (2012). The revitalization of dongkrek art performance as the effort of strengthening local identity and development of cultural tourism asset in Madiun Regency East Java (Research Report). Universitas Sebelas Maret Surakarta.

Widja, I. G. (2012). Education as cultural ideology. Master (S2) and Doctoral Program (S3) The Study of Culture Udayana University.

Wulansari, B. Y. (2017). The presentation of cultural art and traditional games through local theme wisdom in the curriculum of early childhood education. INDRIA (Scientific Journal of Pre-School Education and Early School Education), II(1), 1–11. https://pinpdf.com/proceeding-icete-2016.html

Yong, X., Zhao, X., Tian, X., & Xing, B. (2020). Effects of environment and posture on the concentration and achievement of students in mobile learning.

Interactive Learning Environments, 1–14. https://doi.org/10.1080/10494820.2019.1707692

Zirkel, S., Garcia, J. A., & Murphy, M. C. (2015). Experience-sampling research methods and their potential for education research. Educational Researcher, 44(1), 7–16. https://doi.org/10.3102/0013189X14566879

Zorn, C., Dillenseger, J.-P., Bauer, E., Moerschel, E., Bachmann, B., Buissink, C., & Jamault, B. (2019). Motivation of student radiographers in learning situations based on role-play simulation: A multicentric approach involving trainers and students. ELSEVIER: Radiography, 25(1), 18–25. https://doi.org/10.1016/j.radi.2018.09.002

Zubiesta, L. F. (2016). Learning through practise: Chewa women’s roles and the use of rock art in passing on cultural knowledge. Journal of Anthropological Archaeology, 43, 13–28. https://doi.org/10.1016/j.jaa.2016.05.002

© 2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Education (ISSN: ) is published by Cogent OA, part of Taylor & Francis Group.
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com