Annotated checklist of Collembola of Nepal

Prem Bahadur Budha 1* | Pratista Shrestha 1*

1Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal

*Correspondence: prem.budha@cdz.tu.edu.np

Abstract

This is the first annotated checklist of Collembola species of Nepal. It includes 167 collembolan species belonging to 78 genera and 17 families including 45 endemic species. Majority of the Nepalese collembolan species were reported from major trekking routes viz. Mount Everest, Annapurna Conservation Area and Langtang area with very few other locations. The highest record of collembola in Nepal is about 5800 m asl. Southern Terai and Siwalik range remain unexplored.

Keywords: Endemic species; Hexapods; Himalanura; Nepalanura; Springtails

1 | Introduction

Collembola, commonly known as springtails are widely distributed small terrestrial hexapods measuring 0.2–8 mm in size with approximately 9000 species in the World (Bellingr et al. 1996–2021; Deharveng et al. 2008; Timmermans et al. 2008). Previously they were considered as insects but the recent molecular studies reveal their pancrustacean relationship (Timmermans et al. 2008). They are the most diversified soil hexapods at local scale (<10 m²) (Deharveng 1996). However, they live in wide range of habitats viz. soil, leaf litter, ground vegetation, tree trunk, tree canopy, seashore, caves, deserts and even in snow or ice (André 1983; Rodgers & Kitching 1998, 2011; Rusek 1998; Shaw 2013). They play a key role in soil influencing the soil formation, soil microbial ecology, nutrient cycling, and enhance soil fertility by decomposition (Behan-Pelletier 2003; Greenslade 2007; Santos et al. 2008; Snyder & Callaham 2019). Collembolan short generation period, lower dispersal capacity (Dunger & Voigtlander 2009), quick recovery with distinct alteration (Frampton 1994; Geissen & Kampichler 2004), sensitivity (Greenslade 2007) and susceptibility to any kind of disturbances (Petrillo & Witter 2005; Greenslade et al. 2011) make them valuable marker for the indication of environment (Abbas & Parwez 2019; Gruss et al. 2019; Yin et al. 2019).

The earliest available record of Nepalese Collembola date back to early 1910s. The first species known from Nepal was probably Callytrura lineata (Parona, 1892) which was originally described as Paronella bornei Imms, 1912. After forty six years later, two species Onychiurus himalayensis and O. gurjakhanii were described by Choudhuri (1958) from the collection of 1952 British (Natural History) Museum expedition to Nepal. The major taxonomic contributions on Nepalese Collembola were done only in late 1960s. Yosii (1966a, b, 1971) reported more than 60 species with the description of two new genera viz. Nepalanura and Janetschekbrya and several new species from Nepal. Later new addictions were done by Mari Mutt and Bhattacharjee (1980), Mari Mutt (1981), Wilson (1982), Cassagnau (1984, 1993). In subsequent years, new records and species descriptions were further added from the previous expeditions’ collections by Bedos and Deharveng (1991), Tamura and Zhao (1997), Thapa (1997), D’Haese and Weiner (1998), Potapov and Cassagnau (2000), Agolin et al. (2009), Thapa (2015), Zhang (2015), Schulz (2018). Thapa (1997) first time complied the all previously known collembolan from Nepal and listed 125 species and however his later published book of Insect Diversity of Nepal comprised only 122 species of Collembola (Thapa 2015).

Most of springtails’ inventories in Nepal represent the high Himalaya, with very limited reports from mid-hills and low land. The uppermost record of collembolan from Nepal was from 5800 m asl (Janetschek 1990). Many pristine habitats of different physiographic zones of Nepal are still to be explored. The present list comprises 167 species within 78 genera, 17 families and 17 subfamilies. Taxonomic notes, global distribution of each genus is provided.

2 | Methods

The present checklist is based on the published papers on Collembola of Nepal including compiled list of Thapa (1997, 2015). All original descriptions were searched from https://biodiversityheritagelibrary.org and https://www.collembola.org. Recent papers were searched in Google and Google scholar. All species data are tabulated with the species name, original
Results and discussion

3.1 Collembola species diversity in Nepal

The updated list of Collembola of Nepal includes 167 species belonging to 78 genera in 17 subfamilies and 17 families (Table 1). Inventory of Collembola was concentrated along the major trekking routes in Nepal particularly west Nepal (Annapurna Conservation Area) and Central Nepal (Langtang area and trekking route from Banepa-Kavrepalanchowk-Ramechhap-Solukhumbu to Everest base camp) and few high elevation area of west Nepal (Fig. 1). Most of the Tarai and Shiwalik range are completely unexplored with a few exceptions (Fig. 2).

3.2 Species Accumulation Curve

The inventory of Nepalese Collembola began in 1912. Yosii (1966, 1971) discovered 65 species from different part of the country. Janetscheki (1990) is another contributor to describe more than 70 species from Nepal. Based on the available information the species discovery curve is shown in Fig. 3.

3.3 Endemic collembolan species

Endemism patterns varies among regions, habitats and taxa (Deharveng et al. 2008). Endemic species are special attention of conservation point of view. Collembola contain high endemic species (Martin et al. 2000). Nepal is rich in endemic fauna of Collembola. Out of 167 know species 45 species (27%) are endemic to Nepal (see * mark in the Table 1 for endemic species).

3.4 Codes of references

[1. Agolin et al. 2009; 2. Bellinger and Ellis 1997; 3. Cassagnau 1984; 4. Cassagnau 1993; 5. Cassagnau and Deharveng 1981; 6. Choudhuri 1958; 7. D’Haese and Weiner 1998; 8. Imms 1912; 9. Janetschek 1990; 10. Mari Mutt 1979; 11. Mari Mutt 1981; 12. Mari Mutt 1985; 13. Mari Mutt and Bhattacharjee 1980; 14. Palacios-Vargas and Gomez-Anaya 1995; 15. Potapov and Cassagnau 2000; 16. Skarzynski and Smolis 2006; 17. Thapa 2015; 18. Wilson 1982; 19. Yosii 1966b; 20. Yosii 1970; 21. Yosii 1971; 22. Yosii 1977; 23. Yosii 1990; 24. Zhang 2015 25. Mandal and Hazra, 2009, 26. Schulz, 2018]
Table 1. Checklist of the Nepalese Collembola

Taxon	Elevation (m)	No. of Global Species*	References	Notes
Order: Entomobryomorpha Borner, 1913				
Superfamily: Entomobroidea Womersley, 1934				
Family: Entomobryidae Schaffer, 1896				
Subfamily: Entomobryinae Schaffer, 1896				
Genus: Entomobrya Rondani, 1861				
Type species: *Degeeria muscorum* Nicolet, 1842	329 (5)	1		
Entomobrya aino (Matsummura & Uchida, 1931)	26			
Entomobrya chomolungmae Yosii, 1971*	1200–4350	9		
Entomobrya chooyuae Yosii, 1971*	900–4350	9		
Entomobrya lhotseae Yosii, 1971*	1200–5700	9		
Entomobrya rohtagensis Baijal, 1958	23			
*Genus: Himalanura Baijal, 1958**	19 (5)			
Type species: *Himalanura indica* Baijal, 1958				
Himalanura kangbachensis (Yosii, 1966)*	1500–4500	9		
Himalanura khumbuenis (Yosii, 1971)*	1200–4300	9		
Himalanura makalae (Yosii, 1971)*	1200–3900	9		
Himalanura nuptseae (Yosii, 1971)*	1680–5250	9		
Himalanura pangpouchensis (Yosii, 1971)*	1200–4300	9		
Genus: Sinella Brook, 1882	87 (1)			
Type species: *Sinella curvisepta* Brook, 1882	1200–4300	9		
Sinella caeca (Schött, 1896)	1100	18		
Sinella sp.				
Subfamily: Willowsiinae Yoshi and Suhardjao, 1989				
Genus: Janetschekbrya Yoshi, 1971	2 (2)	2		
Type species: *Janetschekbrya himalica* Yoshi, 1971				
Janetschekbrya brahamides (Denis, 1936)	1200–4500	9		
Janetschekbrya himalica Yoshi, 1971*	3800–4100	9		
Genus: Willowsia Shoebotham, 1917	40 (3)	2		
Type species: *Seira nigromaculata* Lubbock, 1873				
Willowsia cassagnai Zhang, 2015*	24			
Willowsia ieti Yoshi, 1971*	24			
Willowsia nivalis Yoshi, 1971*	24			
Subfamily: Lepidocyrtinae Wahlgren, 1906				
Genus: Lepidocyrtus Boulet, 1839	273 (3)			
Type species: *Lepidocyrtus curvicollis* Boulet, 1839				
Lepidocyrtus himalayanus Yoshi, 1971*	1300–3600	17		
Lepidocyrtus cf. instratus	21			
Lepidocyrtus omatus Yoshi, 1966*	2492–4160	9		
Lepidocyrtus sp.	1100	18		
Genus: Pseudosinella Schäffer, 1897	380 (4)			
Type species: *Tullbergia immaculata* Lie-Petersen, 1897				
Pseudosinella cf. immaculata	1300–3600	17		
Pseudosinella inaequalis Stach, 1960	2700–3100	6		
Pseudosinella montis Yoshi, 1971*	2700–3100	21		
Pseudosinella vaillia Yoshi, 1971*	1200–3081	9		
Family: Orchesellidae Borner, 1906				
Subfamily: Heteromurinae Absolon & Kseneman, 1942				
Genus: Dicranocentrus Schött, 1893	70 (7)			
Type species: *Dicranocentrus gracilis* Schött, 1893				
Dicranocentrus dehanvengi Mari Mutt, 1981	1500–2600	11		
Dicranocentrus indecisus Mari Mutt, 1985	2400–3081	10		
Dicranocentrus janetscheki Yoshi, 1971*	2400–3081	10		
Dicranocentrus nepalensis Mari Mutt, 1980*	1500–3225	7		
Dicranocentrus pilosus Mari Mutt, 1980*	1500–3225	13		
Dicranocentrus violaceus Mari Mutt, 1981*	1500–3225	11		
Family: Paronellidae Borner, 1913				
Subfamily: Paronellinae Borner, 1913				
Genus: Callyntrura Börner, 1906	98 (1)	11		
Type species: *Paronella anopla* Börner, 1906				
Callytrura lineata (Parona, 1892) | 8 | 12
Genus: Cyphoderopis Carpenter, 1917
Type species: Cyphoderopis kempfi Carpenter, 1917 | 17 (1) | 9
Cyphoderopis nepalensis (Wilson, 1982)* | 18
Genus: Cyphoderus Nicolet, 1842
Type species: Cyphoderus albinus Nicolet, 1842 | 72 (1) |
Cyphoderus albinus Nicolet, 1842 | 17
Genus Dicranocentroides Imms, 1912
Dicranocentroides flavesens Yosii, 1966 | 25
Genus: Troglopedetes Absolon, 1907
Type species: Troglopedetes altius Joseph, 1872 | 33 (1) | 9, 10
Troglopedetes churchillatus Wilson, 1979* | 18
Troglopedetes nepalensis Wilson, 1982* | 18

Superfamily: Isotomoidea Szeptycki, 1979

Family: Isotomidae Schaffer, 1896

Subfamily: Anurophorinae Borner, 1901

Genus: Anurophorus Nicolet, 1842
Type species: Anurophorus laricis Nicolet, 1842 | 52 (2) |
Anurophorus cuspidatus Stach, 1920 | 900–5570 | 9
Anurophorus sp. | 17
Genus: Cryptopygus Willem, 1901
Cryptopygus thermophilus (Axelson, 1900) | 1100 | 18 | 40
Genus: Folsomia Willem, 1902
Type species: Folsomia candida Willem, 1902 | 202 (7) |
Folsomia altamontana Yosii, 1971* | 900–5600 | 9
Folsomia candida Willem, 1902 | 1200–4300 | 9
Folsomia diplophthalma (Axelson, 1902) | 900–5570 | 9
Folsomia fitetana (Linnaeus, 1758) | 17
Folsomia obscurocellata Patapov & Cassagnau, 2000 | 15
Folsomia octoculata Handschin, 1925 | 22
Folsomia riozoyoshiii Patapov & Cassagnau, 2000 | 15
Genus: Hemisotoma Bagnall, 1949
Type species: Isotoma thermophila Axelson, 1900 | 10 (1) |
Hemisotoma thermophila Axelson, 1900 | 17
Genus: Isotomiella Bagnall, 1939
Type species: Isotomiella distinguenda Bagnall, 1939 | 55 (1) |
Isotomiella minor (Schäffer, 1896) | 1100–3600 | 17, 18
Genus: Uzelia Absolon, 1901
Type species: Uzelia setifera Absolon, 1901 | 12 (1) |
Uzelia cf. setifera | 1700–4500 | 9
Subfamily: Isotominiae Schaffer, 1896

Genus: Desoria Agassiz & Nicolet, 1841
Type species: Desoria saliana Agassiz & Nicolet, 1841 | 102 (3) |
Desoria mazda (Yosii, 1971) | 9 | 14
Desoria cf. olivacea | 9
Desoria tripinata (Mac. Gillivary, 1896) | 9
Genus: Isotoma Bourlet, 1839
Type species: Isotoma viridis Bourlet, 1839 | 68 (4) |
Isotoma anglicana Lubbock, 1873 | 3750 | 26
Isotoma decorata Brown, 1926 | 900–5570 | 9
Isotoma diversiculea Yosii, 1966 | 2700–4500 | 19
Isotoma nepalica Yosii, 1966* | 1219–4300 | 9
Isotoma viridis | 1420–5450 | 9
Genus: Parisotoma Bagnall, 1940
Type species: Isotoma notabilis Schäffer, 1896 | 28 (3) |
Parisotoma coeca Yosii, 1966 | 19
Parisotoma ekmani (Fjellberg, 1977) | 9 | 13
Parisotoma notabilis (Schäffer, 1896) | 17
Genus: Pseudisotoma Handschin, 1924
Type species: Isotoma sensibilis Tullberg, 1876 | 8 (1) |
Pseudisotoma himalayana Yosii, 1971* | 9
Subfamily: Proisotominae Stach, 1947

Genus: Folsomides Stach, 1922 | 74 (3)
Type species: Folsomides parvulus Stach, 1922
Folsomides angularis (Axelson, 1905) 1200–4300
Folsomides nepalicus Yosii, 1971* 1200–5570
Folsomides parvulus Stach, 1922 1100–4500

Genus: Folsomina Denis, 1931

Type species: Folsomina onychiurina Denis, 1931

| Folsomina onychiurina Denis, 1931 1200–5570| 9 |

Genus: Proisotoma Börner, 1901

Type species: Isotoma minutula Tullberg, 1871

| Proisotoma tenella (Reuter, 1895) 950–3600| 17 |

Genus: Weberacantha Christiansen, 1951

Type species: Weberacantha octa Christiansen, 1951

Weberacantha janetscheki (Yosii, 1971) 900–4550 9

Superfamily: Tomoceroidea Szeptycki, 1979

Family: Tomoceridae Schaffer, 1896

Genus: Plutomurus Yosii, 1956
Plutomurus vigintiferispina Lee, 1974

Genus: Tomocerina Yosii, 1955

Type species: Tomocerus minutus Tullberg, 1876

| Tomocerina simplex Yosii, 1972 2750| 17 |
| Tomocerina aokii (Yosii, 1972) 2600–4550| 9 |

Order: Poduromorpha Borner, 1913

Superfamily: Hypogastruroidea Salmon, 1964

Family: Hypogastruridae Borner, 1906

Genus: Acherontides Bonet, 1945
Type species: Acherontides atoyacensis Bonet, 1945 1200–4500

Genus: Ceratophysella Börner, 1932

Type species: Podura armata Nicolet, 1842

Ceratophysella communis (Folsom, 1898) 950–2000 17

Ceratophysella dentificala (Bagnall, 1941) 2700–2850 17

Ceratophysella horrida (Yosii, 1960) 1200–4550 17

Ceratophysella planipilis Yosii, 1966 2400 17

Ceratophysella postantarctica Yosii, 1966 1200–4550 17

Ceratophysella cf. sinensis 1200–4550 17

Ceratophysella cf. vulgarius 1200–4550 17

Genus: Hypogastrura Bourlet, 1839

Type species: Hypogastrura aquatic Bourlet, 1839

Hypogastrura carpentana Bonet, 1930 1100 17

Hypogastrura distincta (Axelson, 1902) 1200–4550 17

Hypogastrura himalayana Yosii, 1971 1680–4550 9

Hypogastrura nepalica Yosii, 1971* 1680–4550 9

Genus: Willemia Börner, 1901

Type species: Willemia anophthalma Börner, 1901

Willemia annapurna D’Haese & Weiner, 1998 1200–4500 9

Willemia anophthalma Börner, 1901 1200–4500 9

Willemia buddenbrocki Huther, 1959 1900–2400 17 20

Willemia nepalensis D’Haese & Weiner, 1998* 9

Willemia wandae Tamura & Zhao, 1997 7

Genus: Xenylla Tullberg, 1869

Type species: Xenylla maritime Tullberg, 1869

Xenylla obscura Imms, 1912 900–5570 9

Xenylla yosiiana de Gama, 1971 1420–5450 9

Xenylla mucronata Alexon, 1903 1420–5450 9

Superfamily: Neanuroidea Massoud, 1967

Family: Brachystomellidae Stach, 1949

Genus: Brachystomella Ågren, 1903

Type species: Brachystomella maritime Ågren, 1903

| 26 |
Genus: Brachystomella parvula (Schäffer, 1896)	2700	17
Family: Neanuridae Borner, 1901	197 (3)	
Subfamily: Frieseinae Massoud, 1967		
Genus: Friesea Dalla Torre, 1895	1200–4550	9
Type species: Triaena mirabilis Tullberg, 1871		
Friesea excelsa Denis, 1936	2700	19
Friesea paula Yossi, 1966	2000	17
Friesea sublimis Macnamara, 1921		
Subfamily: Neanurinae Borner, 1901		
Genus: Chaetobella Cassagnau, 1983	2400–2705	19
Type species: Lobella numatai Yossi, 1966		
Chaetobella numatai (Yossi, 1966)		
Genus: Gnatholonche Börner, 1906	3600	19
Type species: Himalmeria lama Cassagnau, 1984;		
Himalmeria digitata Cassagnau, 1984		
Himalmeria gurung Cassagnau, 1984*		
Himalmeria himalayana (Yossi, 1966)*		
Genus: Lobella Cassagnau, 1983	4160	17
Type species: Lobella roseola Yossi, 1964		
Lobellina roseola (Yossi, 1954)		
Genus: Nepalanus Yossi, 1966	4160	23
Type species: Nepalanus paranuroides Yossi, 1966		
Nepalanus paranuroides Yossi, 1966		
Genus: Nepalimeria Cassagnau, 1984	14	
Type species: Nepalimeria dal Cassagnau, 1984		
Nepalimeria coccinea Cassagnau, 1984		
Nepalimeria dal Cassagnau, 1984		
Nepalimeria ganeesh Cassagnau, 1993*		
Nepalimeria heterochaeta Cassagnau, 1984		
Nepalimeria khorenis Cassagnau, 1984*		
Nepalimeria lepchana (Yossi, 1966)*		
Genus: Paleonura Cassagnau, 1982	1200–1500	9
Type species: Paleonura spectabilis Cassagnau, 1982		
Paleonura khumbica (Cassagnau, 1971)*		
Paleonura monophthalma (Yossi, 1966)		
Paleonura reducta (Yossi, 1966)		
Paleonura siva (Yossi, 1966)		
Paleonura spectabilis Cassagnau, 1982		
Genus: Paranura Cassagnau, 1982	2700	19
Type species: Paranura sexpunctata Axelson, 1902		
Paranura quadripunctata Yossi, 1966		
Paranura tel (Yossi, 1966)		
Genus: Propeanura Yossi, 1956	1200–1500	9
Type species: Neanura pterostigma Yossi, 1956		
Propeanura hygrophi (Cassagnau & Deharveng, 1981)		
Propeanura lapidicola (Cassagnau & Deharveng, 1981)		
Genus: Symmeria Cassagnau, 1983	2700	9
Type species: Phylliomeria miranda Yossi, 1966		
Symmeria miranda (Yossi, 1966)		
Genus: Yuukianura Yossi, 1955	700–4550	9
Type species: Protanura aphurooides Yossi, 1953		
Yuukianura yasudai (Yossi, 1966)		
Subfamily: Pseudachorutinae Borner, 1906		
Genus: Cassagnaudina Massoud, 1967	700–4550	9
Type species: Cassagnaudina colifalci Cassagnau, 1955		
Cassagnaudina khumbuensis Yossi, 1971*		
Genus: Cephalachorutes Bedos & Deharveng, 1991	2700	16
Type species: Cephalachorutes asiaticus Bedos & Deharveng, 1991		
Genus: Cephalachorutes nakaoi (Yosi, 1966)	3500	19
Genus: Furculanurida Massoud, 1967	Type species: Micranurida africana Massoud, 1963	
Furculanurida ashrafi (Yosi, 1966)	19	
Genus: Grananurida Yosi, 1954	Type species: Grananurida tuberculata Yosi, 1954	
Grananurida alba (Yosi, 1966)	3600	19
Genus: Hylaeanura Arlé, 1966	Type species: Paranurella infima Arlé, 1959	
Hylaeanura nepalensis (Yosi, 1966)*	28	
Genus: Micranurida Börner, 1901	Type species: Micranurida pygmaea Börner, 1901	
Micranurida pygmaea Börner, 1901	2000–3600	17
Genus: Pseudachorudina Stach, 1949		
Pseudachorudina alpine Stach, 1949		
Pseudachorudina nepalica Yosii, 1966*	2400	19
Genus: Pseudachorutes Tullberg, 1871		
Pseudachorutes corticicolus (Schäffer, 1896)	1200–4550	9
Pseudachorutes kanchenjungae Yosi, 1966*	4160	19
Genus: Simonachorutes Skarzynski, Arbia, Piwnik, 2016		
Simonachorutes cf. romeroi	26	
Superfamily: Onychiuroidea D’Haese, 2002		
Family: Odontellidae Massoud, 1967		
Genus: Austrodontella Ellis & Bellinger, 1973		
Type species: Odontella trispina Salmon, 1951		
Austrodontella trispina (Womersley, 1935)	900–4550	17
Genus: Superodontella Stach, 1949		
Type species: Odontella ewingi Folsom, 1916		
Superodontella cf. distincta	1400–3600	17
Superodontella gladiator Agolin, Houssin & Deharveng, 2009	1	
Superodontella lamellifera (Axelson, 1903)	3500–4160	17
Superodontella montemaceli Arbea & Weiner, 1992	2800	26
Superodontella nepalica (Yosi, 1971) *	9	
Superodontella virgulata Yosi, 1966	2400	19
Family: Tullbergiidae Bagnall, 1935		
Genus: Mesaphorura Börner, 1901		
Type species: Mesaphorura krausbaueri Börner, 1901		
Mesaphorura himalaeyensis Yosi, 1971*	1200–4300	9
Genus: Onychiurus Gervais, 1841		
Type species: Podura ambulans Linnaeus, 1758		
Oxyrhynchus decemsetosus Yosi, 1966	1200–4300	9
Genus: Orthonychiurus Stach, 1954		
Type species: Orthonychiurus rectopapilatus Stach, 1933		
Orthonychiurus gurjakhani Choudhuri, 1958*	6	
Orthonychiurus himalayensis (Choudhuri, 1958)*	6	
Genus: Thalassaphorura Bagnall, 1949		
Type species: Thalassaphorura yoda (Yosi, 1966)	1100	18, 22
Thalassaphorura cf. encarpata	17	34
Order: Symphypleona Borner, 1901		
Family: Arrhopalitidae Stach, 1956		
Genus: Arrhopalites Börner, 1906	52 (1)	36
3.5 | Annotations

1. Species level identification of the Genus Entomobrya Rondani, 1861 is considered the problematic due to intraspecific morphological variations. Combination of both chaetotaxy and morphological characters are useful tools to identify them (Jordan & Baquero 2005), but it is not without complications (Katz et al. 2015).

2. Willowsia and Janetschekbrya are included in Willowsia-complex because of their scale morphology and chaetotaxy, directly derived from the Himalanura-like species (Zhang et al. 2011).

3. Sira brahmides and its re-described combination Janetschekbrya brahmides are proposed to be different species. It is supported by the differences in claw structure, color and geographical distribution (Zhang et al. 2011).

4. Zhang (2015) re-described Willowsia ieti Yosii, 1971 with the addition of characteristics such as details of mouthparts and whole body chaetotaxy.

5. Folsom (1902) stated formerly that Pseudosinella argentae differs from Tullbergia immaculata in claw and mucrones but these two species are now synonymized (Bellinger et al. 1996–2021).

6. Pseudosinella inaequalis Bagnall, 1941 and Pseudosinella inaequalis Stach, 1960 nec Bagnall are treated as two different species (Christianse & Bellinger 1996, Bellinger et al. 1996-2021).

7. Dicranocentrus pilosus Mari Mutt, 1980 has distinct morphology than other members of the genus Dicranocentrus, so it should be revised and placed in another genus (Cipola et al. 2016).
8. Cphydorideridae is included as subfamily within Paronellidae (Soto-Adames et al. 2008).

9. Absolon (1907) mentioned the type specie of Troglopedetes as T. pallidus Absolon, 1907 (Wilson 1982, Thibaud & Najt 1988).

10. Troglopedetes Absolon, 1907 was synonymized with Troglopedetelina Delamare Deboutville, 1945 after reviewing correspondence of characters and Troglopedetes Absolon, 1907 might be junior homonym or synonym to Troglopedetes Joseph, 1872 (Ellis & Bellinger 1973, Wilson 1982).

11. Paronella anopa is synonymized with Calyntrura longicoma (Mitra & Dallai 1980, Bellinger et al. 1996–2021).

12. Yosii (1966a) transferred the species Paronella bornei Imms, 1912 and Hanschinpysa bornei Salmon, 1966 to Calyntrura and synonymized with his species. The species Paronella bornei is also synonymized with Calyntrura ineeta (Parona, 1892) (Mandal & Hazra 2009).

13. As Parisotoma ekmani (Fjellberg, 1977) have lost microsensilla on 2nd abdominal segment is group position in current taxonomy is uncertain (Potapov et al. 2011).

14. Isotoma mazda Yosii, 1971 was transferred to the genus Desoria despite its unusual fit as finding new characters for new taxon was not possible (Yosii, 1990). Mandal & Hazra (2009) placed this species under the subgenus Desoria of the genus Isotoma.

15. Lawrence (1969) re-described Folsomina onychiurina Denis, 1931 and stated that some specimens described from Nepal may refer to F. yosii. However, Christiansen & Bellinger (1992) clarified that both are certainly the same species. And, the species described by Lawrence (1969) is undoubtedly a different species which was later named as Folsomina lawrencei by Greenslade (1999).

16. Gender of the type species of genus Acherontides is treated as neuter in original description (Ellis & Bellinger 1973).

17. Ceratophysella postantennalis recorded by Yosii (1966b) from Solukhumbu match the description of Ceratophysella morula, so the morphologies of both should be well studied before considering the former species as new (Skarzynski & Smolis 2006).

18. Ceratophysella postantennalis and Hypogastrura nepalica are diagnosed as conspecific thus synonymized. It is because the original description of Ceratophysella postantennalis was based on the Hypogastrura nepalica (See Skarzynski & Smolis 2006).

19. Yosii (1960, 1962) split the genus Hypogastrura into three subgenus viz. Ceratophysella, Cyclograna and Hypogastrura based on the known chaetotaxy, later treated as genus. But he mentioned in the paper that his description of genus Hypogastrura resembles with some members of genus Ceratophysella so it needs further modifications (Yosii 1960).

20. Winemania buddenbrocki-group is monophyletic and has distinct clade of its 10 species involved (D’Haese & Weiner 1998).

21. Name of the author of Paleonura khumbica is given as Paleonura khumbica (Yosii, 1971) in Janetschek (1990) and Paleonura khumbica (Cassagnau, 1971) in Bellinger et al. (1996–2021).

22. Janetschek (1990) has incorrect spelling for Paleonura as Paleanura.

23. Yosii (1977) had established Lobellina as subgenus and Yuukianura as special group within the genus Lobella.

24. Dehaverg et al. (2017) proposed for the transfer of Lobella yasudai to Genus Yuukianura for their poorly developed tubercles, complex mouthparts and lateral shift of chaetae on 5th abdominal segment.

25. Cassagnau (1993) clarified that there is an adaptive convergence between the Himalinera and Nepalimeria which is why they were commonly placed in the genus Phyllomeria formerly by Yosii.

26. Selection of Lobella ieti Yosii, 1966 as type species for Propanura by Cassagnau in 1980 violates the article 61 of International Code of Zoological Nomenclature (Ellis & Bellinger 1984).

27. The species Paranura infima was first described by Arlé in 1959 (Vázquez et al. 1998) and not in 1960. Genus Hylaearnae Arlé, 1966, also considered as Kenyura by other authors previously, is delineated based on hyperptrophied sensilla S8 on 4th antennal segment (Vázquez et al. 1998, Palacios-Vargas & Dehaverg 2010).

28. Paranura nepalensis Yosii, 1966 was considered to be included in the genus Kenyura but as the S8 sensillum is hyperptrophied it was transferred to the genus Hylaearnae (Vázquez et al. 1998).

29. Agranurida Kim and Lee, 2000 referred to as synonymy of the genus Grananurida is actually incorrectly spelled (Bellinger et al. 1996–2021).

30. Pseudachorutella nakaci Yosii, 1966 was transferred to the genus Cephalachorutella primarily based on the antennal chaetotaxy (Bedos & Dehaverg 1991).

31. Bellinger et al. (1996–2021) has incorrectly mentioned date of description of Pseudachorutes corticolasus as 1897 instead of 1896.

32. Odontella distincta is listed in Checklist of Collembola of the World as Odontella distincta Peja, 1985 nec Yosii, 1954 (Bellinger et al. 1996–2021).

33. Mesaphorura himalayensis Yosii, 1971 should be revised for its genus as its pseudocelli are not star shaped (Bellinger et al. 1996–2021).

34. Thalassaphorura encarpata (Denis, 1931) is synonymized with Onychiuris hortonensis Gisin, 1949 (Bellinger et al. 1996–2021).

35. Stenognathellus Cassagnau, 1953 is an unavailable name as type species is not designated for it (Ellis & Bellinger 1973).

36. With the revision, species of the genus Arrhopalites was split into two genera as caecus-group and pygmaeus-group into Arrhopalites and Pygmarhopalites respectively (Vargovitskh 2009).

37. Zeppelini (2011) discusses that genus Pygmarmhopalites only informs about the pygmaeus-group so it should be treated as junior synonym of Arrhopalites.

38. Yosii (1969) re-described S-chaetotaxy of Ptenothrix himalayensis to free the ambiguity of previous description.

39. All the species of the genus Szepytyckithaca are to be re-examined of body chaetotaxy for clear definition of genus and its phylogenetic relationship (Zeppelini et al. 2019).

40. Wilson (1962) misspelled “Cryptopygus” as “Cryptopagus”.

41. Wilson (1982) identified Folsomides exigus from Mahendra cave, Pokhara which is a junior synonym of Folsomides parvulus.

42. Wilson (1982) found Lobella kraepelini from Mahendra cave, Pokhara. But other authors spelled it as “kraepelini” (Yosii, 1959; Mandal and Hazra, 2009). Mandal (2018) placed this species under the genus Hyperlobella Cassagnau, 1988.

5 | Conclusions

The history of collembolan research in Nepal is of about 110 years. All collembolan faunas of Nepal were investigated by foreign scientists. Species level information is scattered in various publications all over the world. Species checklists are important to understand species diversity and richness in a particular geographic area given in specific time which is the first
basic information required for ecological studies, biodiversity assessments and developing biodiversity conservation strategies. Faunal checklists are lacking in Nepal. The present list includes 167 species belonging to 78 genera and 17 families including 45 endemic species to Nepal. The most of the collections of collembolan was found from the mountain trekking routes in Nepal. Tarai and Shiwalik range remains still unexplored.

Acknowledgements

We would like to acknowledge Prof. Dr. V. K. Thapa for his initiation to compile the data on insects of Nepal and provided all past literature to PB including his book published in 2015. We also acknowledge anonymous reviewers for their valuable comments which helped to improve the paper quality.

Authors’ contributions

Both authors wrote the manuscript. Shrestha, P. prepared the distribution map of Collembola in Nepal. Budha, P. edited the manuscript, incorporated reviewer’s comments and finalized it.

Conflicts of interest

Authors declare no conflict of interest.

ORCID

Prem Bahadur Budha https://orcid.org/0000-0003-0205-0979
Pratista Shrestha https://orcid.org/0000-0002-7164-7210

References

Abbas, M. J. and Parvez, H. 2019. Diversity and relative abundance of Collembola in a wheat (Triticum aestivum) field at Aligarh. bioRxiv. https://doi.org/10.1101/580811.
Agolin, M., Houssin, C. and Deharveng, L. 2009. Superodontella gladiator, a new species of the family Odontellidae (Collembola: Poduromorpha) from Nepal with extremely elongated mouthparts. Zootaxa 2208:51–57. https://doi.org/10.11646/zootaxa.2208.1.4
André, H. 1983. Notes on the ecology of corticolous epiphyte dwellers. 2. Collembola. Pedobiologia. https://doi.org/10.1016/b978-0-12-592201-2.50078-6
Bedos, A. and Deharveng, L. 2009. Cephalachorutes gen. n., a new genus of tropical Neanuridae (Collembola), Tijdschrift voor Entomologie 134(1):145–153.
Behan-Pelletier, V. M. 2003. Acari and Collembola biodiversity in Canadian agricultural soils. Canadian Journal of Soil Science 83:279–288. https://doi.org/10.4141/s01-063
Bellinger, P. F., Christiansen, K. A. and Janssens, F. 1996–2021. Checklist of the Collembola of the World. Retrieved from https://www.collembola.org/
Bellinger, P. F. and Ellis, W. N. 1997. Generic names of Collembola: Supplement 1984–1996. Tijdschrift voor Entomologie 140:1–11.
Cassagnau, P. and Deharveng, L. 1981. Sur le genre Vitronura (Collemboles: Neanuridae): aspect systématique et approche cytogénétique. Bulletin du Museum national d’histoire naturelle 3(1):151–173.
Cassagnau, P. 1982. Sur les Neanurinae primitifs suceurs et les lignées qui en dérivent (Collemboles). Travaux du Laboratoire d’Ecobiologie des Arthropodes Edaphiques, Toulouse 3(3):1–11.
Cassagnau, P. 1984. Introduction a’étude des Phyliomériens (Collemboles, Neanurinae): diagnostics preliminaires des especes. Travaux du Laboratoire d’Ecobiologie des Arthropodes Edaphiques, Toulouse 4(3):1–30.
Cassagnau, P. 1993. Les Collemboles Neanurinae de l’Himalaya: III genre Nepalimeria. Revue Suisse de Zoologie 100(1):91–112. https://doi.org/10.5962/bhl.part.82502
Choudhuri, D. K. 1958. Some new species of Onychiurus Gervais (Collemboles: Onychiuridae) from Nepal and Uganda. Proceedings of Royal Entomological Society of London, Series B 27:147–154.
https://doi.org/10.1111/j.1365-3113.1958.tb00431.x
Christiansen, K. and Bellinger, P. 1992. Insects of Hawaii, Collembola. Honolulu, University of Hawaii press. p 445.
Christiansen, K. and Bellinger, P. 1996. Cave Pseudosinella and Oncopodura new to science. Journal of Caves and Karst Studies 58(1):38–53.
Cipola, N. G., Oliveira, F. G. L., Morais, J. W. and Bellini, B. C. 2016. The Heteromurini Absolon & Ksenemann (Collembola, Entomobryidae): a review of the genera status and diagnoses, keys for species of Alloscopus Borner and Heteromurrella Mari Butt and description of a new species. Zootaxa 4084(2):151–186. https://doi.org/10.11646/zootaxa.4084.2.1
D’Haese, C. and Weiner, W. M. 1998. A review of Willemia buddenbrockii group (Collembola, Poduromorpha, Hypogastruridae) with cladistics analysis. Journal of Natural History 32(7):969–986. https://doi.org/10.1080/00222939800770501
Deharveng, L. 1996. Soil Collembola diversity, endemism, and reforestation: A case study in the Pyrenees (France). Conservation Biology 10(1):74–84. https://10.1046/j.1523-1739.1996.10010074.x
Deharveng, L., D’Haese, C. A. and Bedos, A. 2008. Global diversity of Springtails (Collembola: Hexapoda) in freshwater. Hydrobiologia 595:329–338. https://doi.org/10.1007/s10750-007-9116-z
Deharveng, L., Palacios-Vargas, J. G. and Bedos, A. 2017. A list of Yuukianura Yossi, 1955 species of the world (Collembola: Neanuridae: Neanurinae: Lobellini), with description of a new species of unusual ecology from Santo Island (Vanuatu). Zoosystema 39(1):55–67. https://doi.org/10.5252/z2017n1a7
Dunger, V. and Voigtlander, K. 2009. Soil fauna (Lumbricidae, Collembola, Diplopoda and Chilopoda) as indicators of soil ecosystem development in post-mining sites of eastern Germany - a review. Soil Organisms 81(1):1–51.
Ellis, W. N. and Bellinger, P. F. 1973. An annotated list of the generic names of Collembola (Insecta) and their type species. Monografien van de Nederlandse Entomologische Vereniging 7:1–74.
Ellis, W. N. and Bellinger, P. F. 1984. Generic names of Collembola: Supplement 1973–1983. Tijdschrift voor Entomologie 127:1–15.
Fjellberg, A. 1977. On the identity of Isotoma ekmani nom. nov. pro I. pallida Agrell, 1939 (nec Nicolet, 1842, Moniez, 1894) (Collembola: Isotomidae). Scandinavian Entomology 8:9–11. https://doi.org/10.1163/187631277x00026

Folsom, J. W. 1902. Collembola of the grave. Psyche 9(315):363–367.

Frampton, G. K. 1994. Sampling to detect effects of pesticides on epigeal Collembola (Springtails). Aspects of Applied Biology 37:121–130.

Geissen, V. and Kampichler, C. 2004. Limits to the bioindication potential of Collembola in environmental impact analysis: a case study of forest soil-liming and fertilization. Biology and Fertility of Soils 39:383–390. https://doi.org/10.1007/s00374-003-0714-2

Greenslade, P. 1999. Revision of Folosolina Denis (Collembola: Isotomidae) with a description of a new species from Southeast Asia and the Pacific region and comments on ecology. The Raffles Bulletin of Zoology 47(1):1–15.

Greenslade, P. 2007. The potential of Collembola to act as indicators of landscape stress in Australia. Australian Journal of Experimental Agriculture 47:424–434. https://doi.org/10.1071/ea05264

Greenslade, P., Bell, L. and Florentine, S. 2011. Auditing revegetated catchments in southern Australia: decomposition rates and collembolan species assemblages. Soil Organisms 83(3):433–450.

Gruss, I., Twardowski, J. P., Krolczyk, A. L. J. and Medynska-Juraszek, A. 2019. The effect of biochar used as soil amendment on morphological diversity of Collembola. Sustainability 11:5216.

Imms, A. D. 1912. On some Collembola from India, Burma and Ceylon; with a catalogue of the oriental species of the order. Proceedings of the General Meetings of Scientific Business of the Zoological Society of London, London, Messrs Longmans, Green, and Co. Janetschek, F. 1990. Berichte des naturwissenschaftlich-medizinischenver eins in Innsbruck. Innsbruck, Universitätsverlag Wagner. p 119.

Jordana, R. and Baquer, E. 2005. A proposal of characters for taxonomic identification of Entomobrya species (Collembola: Entomobryomorpha), with a description of a new species. Abhandlungen und Berichte des Naturkundemuseums Gorlitz 76(2):117–134.

Katz, A. D., Giordano, R. and Soto-Adames, F. 2015. Taxonomic review and phylogenetic analysis of fifteen North American Entomobrya (Collembola, Entomobryidae), including four new species. ZooKeys 525:1–75. https://doi.org/10.3897/zookeys.525.6020

Lawrence, P. N. 1969. Isotomidae from the Solomon Islands (Collembola). Pacific Insects 11(3–4):545–559.

Mandal, A. K. and Hazra, G. P. 2009. The diversity of Collembola (Hexapoda) from East and North-East India with some notes on their ecology. Records of the Zoological Survey of India, Occasional paper 288:1–206.

Mandal, G.P., Suman, K.K. and Bhattacharya K.K. 2010. On some collection of collembolan present in the apterygota section. Records of Zoological Survey of India 112(3):95–100.

Mandal, G.P. 2018. Collembola of India- An updated checklist. Halteres 9: 116–130. doi: 10.5281/zenodo.1280640

Mari Jutt, M. A. 1979. A revision of genus Dicranocentrus Schött (Insecta: Collembola: Entomobryidae). M.Sc., University of Puerto Rico, Rio Piedras, Puerto Rico.

Mari Jutt, M. A. 1981. Two new Dicranocentrus from Nepal and a key to the Indian and Nepalese species (Collembola: Entomobryidae). Pan-Pacific Entomologist 57(4):493–599.

Mari Jutt, M. A. 1985. Eight species of Dicranocentrus and redescriptions for D. thaicus and D. pilosus (Collembola: Entomobryidae: Orchesellinae). Journal of Agriculture of University of Puerto Rico 69(3):297–322.

Mari Jutt, M. A. and Bhattacharjee, R. K. 1980. Four new species of Dicranocentrus from northeast India and Nepal (Collembola: Entomobryidae: Orchesellinae). Pacific Insects 22(1–2):162–170.

Martín, J., García-Barros, E., Gurrea, P., Lucíañez, M. J., Munguira, M. L., Sanz, M., Simón, J. C. 2000. High endemism areas in the Iberian Peninsula. Belgian Journal of Entomology 2:47–57.

Mitra, S. K. and Dallai, R. 1980. Studies of the genus Campylobothrach Ott, 1893 (Collembola: Entomobryidae: Parornelinae) with the description of a new species from Zaire. Italian Journal of Zoology 13(1):273–321.

Palacios-Vargas, J. G. and Gomez-Anaya, J. 1995. Two New Mexican Species of Paleonura (Collembola: Neanuridae). Journal of the Kansas Entomological Society 68(1):95–102.

Palacios-Vargas, J. G. and Deharveng, L. 2010. A new species of Kenyura (Collembola: Neanuridae: Pseudachorutinae) from Nicaragua. Brenesia 73:74–75–88.

Petrillo, H. A. and Witter, J. A. 2005. Invertebrate biodiversity in northern hardwood ecosystems under varying disturbance regimes. Proceedings of the Beech Bark Disease Symposium, Saranak Lake, NY, USA, Department of Agriculture, Forest Service, Northeastern Research Station.

Potapov, M. and Cassagnou, P. 2000. Two new species of Folsomia (Collembola, Isotomidae) from Nepal. Contributions from Biological Laboratory, Kyoto University 29(2):75–81.

Potapov, M., Janion, C. and Deharveng, L. 2011. Two new species of Parisotoma (Collembola: Isotomidae) from the Western Cape, South Africa. Zootaxa 2771:17–24. https://doi.org/10.1164/zootaxa.2771.1.2

Rogers, D. J. and Kitching, R. L. 1998. Vertical stratification of rainforest Collembolan (Collembola: Insecta) assemblages: Description of ecological patterns and hypotheses concerning their generation. Ecography 21(4):392–400. https://doi.org/10.1111/j.1600-0587.1998.tb00404.x

Rogers, D. J. and Kitching, R. L. 2011. Rainforest Collembola (Hexapoda: Collembola) and the insularity of epiphyte microhabitats. Insect Conservation and Diversity 4(2):99–106.

Rusek, J. 1998. Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity & Conservation 7(9):1207–1219. https://doi.org/10.1023/a:1008887817883

Santos, E. M. R., Franklin, E. and Luizao, F. J. 2008. Litter decomposition revegetated catchments in southern Australia: decomposition rates and landscape stress in Australia. Australian Journal of Soil Research 47:383–390. https://doi.org/10.1071/so080374-003-0714-2

Schulz, H.J. 2018. Bemerkenswerte Collembolenfunde aus Nepal (Insecta: Collembola).In Hartmann, M., M.V.L. Barclay & J. Weipert (eds):Biodiversität und Naturausstattung im Himalaya
VI- Verein der Freundene und Förderer des
Naturekundemuseums Erfurt e. V., Erfurt: 179–182.
Shaw, P. 2013. The use of inert pads to study the Collembola of
suspended soils. Soil Organisms 85(1):69–74.
Skarzynski, D. and Smolits, A. 2006. Description of Ceratophysella
robustiseta sp. n. from greenhouses in England, with notes on
synonymy of C. postanennalis Yosii, 1966 and taxonomic
status of C. morula Deharveng & Bourgeois, 1991 (Collembola:
Hypogastruridae). Revue Suisse de Zoologie 113(2):297–303.
https://doi.org/10.5962/bhl.part.80353
Snyder, B. A. and Callaham, M. A. 2019. Soil fauna and their potential
responses to warmer soils. In: (Eds) Ecosystem consequences
of soil warming. Elsevier Netherlands. pp 279–296.
https://doi.org/10.1016/b978-0-12-813493-1.00012-0
Soto-Adames, F. N., Barra, J., Christiansen, K. and Jordana, R. 2008.
Suprageneric classification of Collembola Entomobryomorpha.
Annals of Entomological Society of America 101(3): 501–513.
https://doi.org/10.1603/0013-8746(2008)101[501:scsco2.0.co2
South, A. 1961. The taxonomy of the British species of Entomobrya
(Collembola). Transactions of the Royal Entomological Society
of London 119:387–416. https://doi.org/10.1111/j.1365-
2311.1961.tb00798.x
Tamura, H. and Zhao, L. 1997. Two Onychiurid species new to China
(Collembola). Entomologia Sinica 4(1):47–52.
https://doi.org/10.1111/j.1744-7917.1997.tb00070.x
Thapa, V. K. 1997. An inventory of Nepal's insects. Kathmandu, Nepal,
IUCN-The World Conservation Union. p 475.
Thapa, V. K. 2015. Insect diversity in Nepal. Format Printing Press,
Kathmandu, Nepal. p 1094.
Thibaud, J. M. and Najt, J. 1988. Collemboles (Insecta) de l'Equateur
de l'Equateur avec revision de quatre genres. Bulletin du
Museum National d'Histore Naturelle 10(4):719–730.
Timmermans, M., Roelofs, D., Mariën, J. and Van Straalen, N. 2008.
Revealing panchrustacean relationships: Phylogenetic analysis
of ribosomal protein genes places Collembola (springtails) in
a monophyletic Hexapoda and reinforces the discrepancy
between mitochondrial and nuclear DNA markers. BMC
Evolutionary Biology 8(1):1–10. https://doi.org/10.1186/1471-
2148-8-83
Vargovitch, R. S. 2009. Species composition of the family
Arrhopalitidae (Collembola: Symphypleona). Vestnik Zoologii
43(4):17–19. https://doi.org/10.2478/v10058-009-0016-8
Vázquez, M. M., Cutz-Pool, L. Q. and Palacios-Vargas, J. G. 1998. A
new species of Hylaeanura (Collembola: Neanuridae:
Pseudachorutinae). Southwestern Entomologist 23(4):367–371.
Wilson, J. M. 1982. A review of world Troglopedetini (Insecta,
Collembola, Paronellidae) including an identification table
and descriptions of new species. Transactions British Cave
Research Association 9(3):210–226.
Yin, R., Eisenhauer, N., Schmidt, A., Gruss, I., Purahong, W., Siebert,
J., et al. 2019. Climate change does not alter land-use effects
on soil fauna communities. Applied Soil Ecology 140:1–10.
https://doi.org/10.1016/j.apsol.2019.03.026.
Yosii, R. 1959. Studies on the Collembolan fauna of Malay and
Singapore with special reference to the genera Lobella,
Lepidocorytus and Callyntrura. Contributions from the Biological
laboratory, Kyoto University 10:1–65.
Yosii, R. 1960. Studies on the Collembolan genus Hypogastrura. The
American Midland Naturalist 64(2):257–281.
https://doi.org/10.2307/422661
Yosii, R. 1962. Studies on the Collembolan genus Hypogastrura II.
Contributions from the Biological Laboratory, Kyoto University
13:1–25.
Yosii, R. 1966a. On some Collembola of Afghanistan, India and
Ceylon, collected by the Kuppe-expedition, 1960. Results of the
Kyoto University Scientific Expedition to the Karakoram and
Hindukush 8:333–405.
Yosii, R. 1966b. Collembola of Himalaya. Journal of the College of
Arts and Sciences, Chiba University 4:461–531.
Yosii, R. 1969. Dicyrtomina and Ptenothrix (Insecta: Collembola) of the
Solomon Islands. Zoological Journal of the Linnean Society
48(2):217–236.
https://doi.org/10.1111/j.1096-3642.1969.tb00712.x
Yosii, R. 1970. On some Collembola of Japan and adjacent countries
II. Contributions from the Biological Laboratory, Kyoto University
23(1):1–32.
Yosii, R. 1971. Collembola of Khumbu Himal. Ergebn Forsch
Unternehmens Nepal Himalaya 4(1):80–130.
Yosii, R. 1977. Critical check list of the Japanese species of
Collembola. Contributions from the Biological Laboratory, Kyoto
University 25(2):141–170.
Yosii, R. 1990. Report on the cryophilous Collembola, collected by Dr.
S. Koehshima. Contributions from the Biological Laboratory,
Kyoto University 27(4):523–534.
Zeppelini, D. 2011. Phylogeny of Arrhopalites s.l. (Collembola:
Symphypleona: Arrhopalitidae): testing the monophyly of
the recently erected genera Arrhopalites s.s. and Pygmarrhopalites.
Invertebrate Systematics 25(2):91–105.
https://doi.org/10.1071/is10044
Zeppelini, D., Lopes, B. and Lima, E. 2019. A new species of
Szepyzkitheca (Collembola, Symphypleona, Sphyrothecinae)
from Brazil. Neotropical Entomology 48(2):269–276.
Zhang, F. 2015. Some Willowsia from Nepel and Vietnam (Collembola:
Entomobryidae) and description of one new species. Zootaxa
3905(4):489–499. https://doi.org/10.1164/zootaxa.3905.4.3
Zhang, F., Chen, J. X. and Deharveng, L. 2011. New insight into the
systematics of the Willowsia complex (Collembola: Entomobryidae).
Annales de la Société entomologique de France, Taylor & Francis.
https://doi.org/10.1080/00379271.2011.10697692