CODON USAGE BIAS MEASURED THROUGH ENTROPY APPROACH

Michael G.Sadovsky a,b,*,1

aInstitute of computational modelling of RAS

Julia A.Putintzeva b

bSiberian Federal university, Institute of natural sciences & humanities

Abstract

Codon usage bias measure is defined through the mutual entropy calculation of real codon frequency distribution against the quasi-equilibrium one. This latter is defined in three manners: (1) the frequency of synonymous codons is supposed to be equal (i.e., the arithmetic mean of their frequencies); (2) it coincides to the frequency distribution of triplets; and, finally, (3) the quasi-equilibrium frequency distribution is defined as the expected frequency of codons derived from the dinucleotide frequency distribution. The measure of bias in codon usage is calculated for 125 bacterial genomes.

Key words: frequency, expected frequency, information value, entropy, correlation, classification

* 660036 Russia, Krasnoyarsk, Akademgorodok; Institute of computational modelling of RAS; tel. +7(3912)907469, fax: +7(3912)907454

Email addresses: msad@icm.krasn.ru (Michael G.Sadovsky), kinomanka85@mail.ru (Julia A.Putintzeva).

1 To whom the correspondence should be addressed.
1 Introduction

It is a common fact, that the genetic code is degenerated. All amino acids (besides two ones) are encoded by two or more codons; such codons are called synonymous and usually differ in a nucleotide occupying the third position at codon. The synonymous codons occur with different frequencies, and this difference is observed both between various genomes (Sharp, Li, 1987; Jansen et al., 2003; Zeeberg, 2002; Supek, Vlahoviček, 2005), and different genes of the same genome (Zeeberg, 2002; Supek, Vlahoviček, 2005; Xiu-Feng et al., 2004; Suzuki et al., 2004). A synonymous codon usage bias could be explained in various ways, including mutational bias (shaping genomic G+C composition) and translational selection by tRNA abundance (acting mainly on highly expressed genes). Still, the reported results are somewhat contradictory (Suzuki et al., 2004). A contradiction may result from the differences in statistical methods used to estimate the codon usage bias. Here one should clearly understand what factors affect the method and numerical result. Boltzmann entropy theory (Gibbs, 1902; Gorban, Karlin, 2005) has been applied to estimate the degree of deviation from equal codon usage (Frappat et al., 2003; Zeeberg, 2002).

The key point here is that the deviation measure of codon usage bias should be independent of biological issue. It is highly desirable to avoid an implementation of any biological assumptions (such as mutational bias or translational selection); it must be defined in purely mathematical way. The idea of entropy seems to suit best of all here. The additional constraints on codon usage resulted from the amino acid frequency distribution affects the entropy values, thus conspiring the effects directly linked to biases in synonymous codon usage.

Here we propose three new indices of codon usage bias, which take into account all of the three important aspects of amino acid usage, i.e. (1) the number of distinct amino acids, (2) their relative frequencies, and (3) their degree of codon degeneracy. All the indices are based on mutual entropy S calculation. They differ in the codon frequency distribution supposed to be “quasi-equilibrium”. Indeed, the difference between the indices consists in the difference of the definition of that latter.

Consider a genetic entity, say, a genome, of the length N; that latter is the number of nucleotides composing the entity. A word ω (of the length q) is a string of the length q, $1 \leq q \leq N$ observed within the entity. A set of all the words occurred within an entity makes the support \mathcal{V} of the entity (or q–support, if indication of the length q is necessary). Accompanying each element $\omega, \omega \in \mathcal{V}$ with the number n_ω of its copies, one gets the (finite) dictionary of the entity. Changing n_ω for the frequency

$$f_\omega = \frac{n_\omega}{N},$$

one gets the frequency dictionary W_q of the entity (of the thickness q).
Everywhere below, for the purposes of this paper, we shall distinguish codon frequency
distribution from the triplet frequency distribution. A triplet frequency distribution is the
frequency dictionary \(W_3 \) of the thickness \(q = 3 \), where triplets are identified with neither
respect to the specific position of a triplet within the sequence. On the contrary, codon
distribution is the frequency distribution of the triplets occupying specific places within
an entity: a codon is the triplet embedded into a sequence at the coding position, only.
Thus, the abundance of copies of the words of the length \(q = 3 \) involved into the codon
distribution implementation is three times less, in comparison to the frequency dictionary
\(W_3 \) of triplets. Further, we shall denote the codon frequency dictionary as \(\mathfrak{W} \); no lower
index will be used, since the thickness of the dictionary is fixed (and equal to \(q = 3 \)).

2 Materials and methods

2.1 Sequences and Codon Tabulations

The tables of codon usage frequency were taken at Kazusa Institute site\(^2\). The corre-
sponding genome sequences have been retrieved from EMBL–bank\(^3\). The codon usage
Tables containing not less that 10000 codons have been used. Here we studied bacterial
genomes (see Table 1).

2.2 Codon bias usage indices

Let \(F \) denote the codon frequency distribution, \(F = \{ f_{\nu_1\nu_2\nu_3} \} \); here \(f_{\nu_1\nu_2\nu_3} \) is the frequency
of a codon \(\nu_1\nu_2\nu_3 \). Further, let \(\bar{F} \) denote a quasi-equilibrium frequency distribution of
codons. Hence, the measure \(I \) of the codon usage bias is defined as the mutual entropy of
the real frequency distribution \(F \) calculated against the quasi-equilibrium \(\bar{F} \) one:

\[
I = \sum_{\omega=1}^{64} f_\omega \cdot \ln \left(\frac{f_\omega}{\bar{f}_\omega} \right) .
\]

(1)

Here index \(\omega \) enlists the codons, and \(\bar{f}_\omega \in \bar{F} \) is quasi-equilibrium frequency. The measure
(1) itself is rather simple and clear; a definition of quasi-equilibrium distribution of codons
is the matter of discussion here. We propose three ways to define the distribution \(\bar{F} \); they
provide three different indices of codon usage bias. The relation between the values of
these indices observed for the same genome is the key issue, for our study.

\(^2\) www.kazusa.ac.jp/codons
\(^3\) www.ebi.ac.uk/genomes
2.2.1 Locally equilibrium codon distribution

It is well known fact, that various amino acids manifest different occurrence frequency, within a genome, or a gene. Synonymous codons, in turn, exhibit the different occurrence within the similar genetic entities. Thus, an equality of frequencies of all the synonymous codons encoding the same amino acid

\[
\tilde{f}_j = \frac{1}{L} \sum_{j \in J_i} f_j, \quad \sum_{j \in J_i} f_j = \sum_{j \in J_i} \tilde{f}_j = \varphi_i,
\]

(2)

is the first way to determine a quasi-equilibrium codon frequency distribution. Here the index \(j\) enlists the synonymous codons encoding the same amino acid, and \(J_i\) is the set of such codons for \(i\)-th amino acid, and \(\varphi_i\) is the frequency of that latter. Surely, the list of amino acids must be extended with stop signal (encoded by three codons). Obviously, \(\tilde{f}_j = \tilde{f}_k\) for any couple \(j, k \in J_i\).

2.2.2 Codon distribution vs. triplet distribution

A triplet distribution gives the second way to define the quasi-equilibrium codon frequency distribution. Since the codon frequency is determined with respect to the specific locations of the strings of the length \(q = 3\), then two third of the abundance of copies of these strings fall beyond the calculation of the codon frequency distribution. Thus, one can compare the codon frequency distribution with the similar distribution implemented over the entire sequence, with no gaps in strings location. So, the frequency dictionary of the thickness \(q = 3\)

\[
\tilde{f}_l = \hat{f}_l, \quad 1 \leq l \leq 64
\]

(3)

is the quasi-equilibrium codon distribution here.

2.2.3 The most expected codon frequency distribution

Finally, the third way to define the quasi-equilibrium codon frequency distribution is to derive it from the frequency distribution of trinucleotides composing the codon. Having the codons frequency distribution \(F\), one always can derive the frequency composition \(F_2\) of the dinucleotides composing the codons. To do that, one must sum up the frequencies of the codons differing in the third (or the first one) nucleotide. Such transformation is unambiguous\(^4\). The situation is getting worse, as one tends to get a codon distribution due to the inverse transformation. An upward transformation yields a family of dictionaries \(\{F\}\), instead of the single one \(F\). To eliminate the ambiguity, one should implement some

\(^4\) Here one must close up a sequence into a ring.
basic principle in order to avoid an implementation of extra, additional information into the codon frequency distribution development. The principle of maximum of entropy of the extended (i.e., codon) frequency distribution makes sense here (Bugaeko et al., 1996, 1998; Sadovsky, 2003, 2006). It means that a researcher must figure out the extended (or reconstructed) codon distribution \tilde{F} with maximal entropy, among the entities composing the family \{\(F\)\}. This approach allows to calculate the frequencies of codons explicitly:

$$\tilde{f}_{ijk} = \frac{f_{ij} \times f_{jk}}{f_{j}},$$ \hspace{1cm} (4)

where \tilde{f}_{ijk} is the expected frequency of codon ijk, f_{ij} is the frequency of a dinucleotide ij, and f_{j} is the frequency of nucleotide j; here $i, j, k \in \{A, C, G, T\}$.

Thus, the calculation of the measure (1) maps each genome into tree-dimension space. Table 1 shows the data calculated for 115 bacterial genomes.

3 Results

We have examined 115 bacterial genomes. The calculations of three indices (1 – 4) and the absolute entropy of codon distribution is shown in Table 1.

Table 1: Indices of codon usage bias; is the index calculated according to (2), S^* stands for the index defined due to (3), and T is the index defined due to (4). S is the absolute entropy of codon distribution. C is the class attribution (see Section 3.1).

Genomes	I	S^*	T	S	C
Acinetobacter sp.ADP1	0.1308	0.1526	0.1332	3.9111	1
Aeropyrum pernix K1	0.1381	0.1334	0.1611	3.9302	2
Agrobacterium tumefaciens str. C58	0.1995	0.1730	0.2681	3.8504	2
Aquifex aeolicus VF5	0.1144	0.1887	0.2273	3.8507	2
Archaeoglobus fulgidus DSM 4304	0.1051	0.2008	0.2264	3.9011	2
Bacillus anthracis str. Ames	0.1808	0.1880	0.1301	3.8232	1
Bacillus anthracis str. Sterne	0.1800	0.1873	0.1300	3.8236	1
Bacillus anthracis str.’Ames Ancestor’	0.1788	0.1850	0.1278	3.8246	1

continued on the next page
Genomes	I	S^*	T	S	C
Bacillus cereus ATCC 10987	0.1750	0.1791	0.1254	3.8291	1
Bacillus cereus ATCC 14579	0.1807	0.1853	0.1290	3.8220	1
Bacillus halodurans C-125	0.0538	0.1296	0.0967	3.9733	1
Bacillus subtilis subsp.subtilis str. 168	0.0581	0.1231	0.1117	3.9605	2
Bacteroides fragilis YCH46	0.0499	0.1201	0.1305	3.9824	2
Bacteroides thetaiotaomicron VPI-5482	0.0557	0.1258	0.1364	3.9713	2
Bartonella henselae str. Houston-1	0.1555	0.1650	0.1077	3.8913	1
Bartonella quintanae str. Toulouse	0.1525	0.1616	0.1039	3.8954	1
Bdellovibrio bacteriovorus HD100	0.1197	0.1593	0.2404	3.9232	2
Bifidobacterium longum NCC2705	0.2459	0.2315	0.3666	3.8011	2
Bordetella bronchiseptica RB50	0.4884	0.3165	0.5598	3.5485	2
Borrelia burgdorferi B31	0.2330	0.1555	0.0988	3.6709	1
Borrelia garinii Pbi	0.2421	0.1616	0.1008	3.6630	1
Brachyrhizobium japonicum USDA 110	0.3163	0.2236	0.3789	3.7368	2
Campylobacter jejuni RM1221	0.2839	0.1994	0.1357	3.6617	1
Campylobacter jejuni subsp. Jejuni NCTC 11168	0.2846	0.2010	0.1379	3.6660	1
Caulobacter crescentus CB15	0.4250	0.2890	0.5045	3.6062	2
Chlamydia phila caviae GPIC	0.1079	0.1199	0.0990	3.9445	1
Chlamydia phila pneumoniae CWL029	0.0803	0.1054	0.0778	3.9748	1
Chlamydia phila pneumoniae J138	0.0801	0.1050	0.0772	3.9755	1
Chlamydia phila pneumoniae TW-183	0.0802	0.1037	0.0764	3.9760	1
Chlorobium tepidum TLS	0.1767	0.1809	0.2935	3.8777	2
Chromobacterium violaceum ATCC 12472	0.4245	0.3004	0.5354	3.6218	2
Chlamydia phila pneumoniae AR39	0.0804	0.1055	0.0773	3.9748	2
Clostridium acetobutylicum ATCC 824	0.2431	0.1951	0.1305	3.7142	1

continued on the next page
Genomes	I	S^*	T	S	C
Clostridium perfringens str. 13	0.3602	0.2752	0.1943	3.5816	1
Clostridium tetani E88	0.3240	0.2381	0.1767	3.6088	1
Corynebacterium efficiens YS-314	0.2983	0.2379	0.3980	3.7494	2
Corynebacterium glutamicum ATCC 13032	0.0964	0.1510	0.1674	3.9498	2
Coxiella burnetii RSA 493	0.0843	0.1050	0.0892	3.9648	2
Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough	0.2459	0.1980	0.3183	3.8090	2
Enterococcus faecalis V583	0.1592	0.1838	0.1295	3.8453	1
Escherichia coli CFT073	0.1052	0.1305	0.1734	3.9576	2
Escherichia coli K12 MG1655	0.1206	0.1463	0.1933	3.9372	2
Helicobacter hepaticus ATCC 51449	0.1760	0.1513	0.1065	3.8315	1
Helicobacter pylori 26695	0.1420	0.1646	0.1843	3.8454	2
Helicobacter pylori J99	0.1404	0.1660	0.1895	3.8479	2
Lactobacillus johnsonii NCC 533	0.2113	0.1937	0.1481	3.7856	1
Lactobacillus plantarum WCFS1	0.0813	0.1453	0.1544	3.9537	2
Lactococcus lactis subsp. Lactis II1403	0.1923	0.1857	0.1173	3.8068	1
Legionella pneumophila subsp. Pneumophila str. Philadelphia 1	0.1018	0.1098	0.0880	3.9339	1
Leifsonia xyli subsp. Xyli str. CTCB07	0.3851	0.2411	0.4032	3.6490	2
Listeria monocytogenes str. 4b F2365	0.1389	0.1766	0.1012	3.8600	1
Mannheimia succiniciproducens MBEL55E	0.1390	0.1624	0.1571	3.8943	1
Mesorhizobium loti MAFF303099	0.2734	0.2019	0.3402	3.7751	2
Methanocaldococcus jannaschii DSM 2661	0.2483	0.2108	0.1324	3.6751	2
Methanopyrus kandleri AV19	0.2483	0.2108	0.1324	3.6751	1
Methanosarcina acetivorans C2A	0.0530	0.1223	0.0876	3.9718	1
Methanosarcina mazei Go1	0.0739	0.1314	0.0889	3.9468	1
Methylococcus capsulatus str. Bath	0.2847	0.2096	0.3738	3.7709	2
continued on the next page					
Genomes	I	S^*	T	S	C
--	---------	---------	---------	---------	-----
Mycobacterium avium subsp. Paratuberculosis str. K10	0.4579	0.2779	0.4819	3.6038	2
Mycobacterium bovis AF2122/97	0.2449	0.1688	0.2862	3.7931	2
Mycobacterium leprae TN	0.1075	0.1216	0.1717	3.9513	2
Mycobacterium tuberculosis CDC1551	0.2387	0.1618	0.2749	3.8029	2
Mycobacterium tuberculosis H37Rv	0.2457	0.1696	0.2878	3.7929	2
Mycoplasma mycoides subsp. mycoides SC	0.4748	0.2571	0.2247	3.4356	1
Mycoplasma penetrans HF-2	0.4010	0.2320	0.2047	3.5294	1
Neisseria gonorrhoeae FA 1090	0.1610	0.1740	0.2343	3.8852	2
Neisseria meningitidis MC58	0.1481	0.1708	0.2244	3.8969	2
Neisseria meningitidis Z2491 serogroup A str. Z2491	0.1541	0.1786	0.2342	3.8898	2
Nitrosomonas europeae ATCC 19718	0.0824	0.1104	0.1587	3.9806	2
Nocardia farcinica IFM 10152	0.4842	0.2917	0.4968	3.5343	2
Nostoc sp.PCC7120	0.0877	0.1308	0.1124	3.9638	1
Parachlamydia sp. UWE25	0.1689	0.1397	0.1027	3.8561	1
Photorhabdus luminescens subsp. Laumondii TTO1	0.0704	0.1183	0.1068	3.9838	1
Porphyromonas gingivalis W83	0.0476	0.1167	0.1559	4.0034	2
Prochlorococcus marinus str. MIT 9313	0.0472	0.0956	0.0773	4.0203	1
Prochlorococcus marinus subsp. Marinus str. CCMP1375	0.1729	0.1423	0.1177	3.8697	1
Prochlorococcus marinus subsp. Pastoris str. CCMP1986	0.2556	0.1671	0.1412	3.7354	1
Propionibacterium acnes KPA171202	0.1277	0.1338	0.1700	3.9293	2
Pseudomonas aeruginosa PAO1	0.4648	0.3204	0.5733	3.5827	2
Pseudomonas putida KT2440	0.2847	0.2255	0.4061	3.7696	2
Pseudomonas syringae pv. Tomato str. DC3000	0.1960	0.1736	0.3013	3.8633	2

continued on the next page
Genomes	I	S^*	T	S	C
Pyrococcus abyssi GE5	0.0983	0.1962	0.1996	3.8887	2
Pyrococcus furiosus DSM 3638	0.1000	0.1641	0.1079	3.8847	1
Pyrococcus horikoshii OT3	0.0899	0.1508	0.1260	3.9105	1
Salmonella enterica subsp. Enterica serovar Typhi Ty2	0.1272	0.1465	0.2068	3.9327	2
Salmonella typhimurium LT2	0.1293	0.1490	0.2100	3.9300	2
Shewanella oneidensis MR-1	0.0700	0.1320	0.1329	3.9795	2
Shigella flexneri 2a str. 2457T	0.1196	0.1429	0.1913	3.9416	2
Shigella flexneri 2a str. 301	0.1097	0.1343	0.1791	3.9529	2
Sinorhizobium meliloti 1021	0.1960	0.2199	0.3013	3.8633	2
Staphylococcus aureus subsp. Aureus MRSA252	0.2338	0.2086	0.1531	3.7572	1
Staphylococcus aureus subsp. Aureus MSSA476	0.2356	0.2071	0.1554	3.7557	1
Staphylococcus aureus subsp. Aureus Mu50	0.2318	0.2056	0.1522	3.7591	1
Staphylococcus aureus subsp. Aureus MW2	0.2368	0.2106	0.1562	3.7535	1
Staphylococcus aureus subsp. Aureus N315	0.2348	0.2083	0.1543	3.7564	1
Staphylococcus epidermidis ATCC 12228	0.2277	0.2036	0.1399	3.7613	1
Staphylococcus haemolyticus JCSC1435	0.2304	0.2043	0.1526	3.7619	1
Streptococcus agalactiae 2603V/R	0.1690	0.1794	0.1200	3.8372	1
Streptococcus agalactiae NEM316	0.1679	0.1790	0.1209	3.8371	1
Streptococcus mutans UA159	0.1577	0.1783	0.1240	3.8468	1
Streptococcus pneumoniae R6	0.0952	0.1529	0.1210	3.9152	1
Streptococcus pneumoniae TIGR4	0.0957	0.1525	0.1209	3.9168	1
Streptococcus pyogenes M1 GAS	0.1227	0.1619	0.1137	3.8900	1
Streptococcus pyogenes MGAS10394	0.1167	0.1596	0.1101	3.8974	1
Streptococcus pyogenes MGAS315	0.1189	0.1636	0.1108	3.8929	1

continued on the next page
Table 1 – continued

Genomes	I	S^*	T	S	C
Streptococcus pyogenes MGAS5005	0.1215	0.1612	0.1115	3.8929	1
Streptococcus pyogenes MGAS8232	0.1194	0.1608	0.1114	3.8932	1
Streptococcus pyogenes SSI-1	0.1189	0.1597	0.1111	3.8932	1
Streptococcus thermophilus CNRZ1066	0.1210	0.1710	0.1325	3.8908	1
Streptococcus thermophilus LMG 18311	0.1235	0.1737	0.1339	3.8881	1
Sulfolobus tokodaii str. 7	0.1932	0.1639	0.1253	3.7954	1
Thermoplasma acidophilum DSM 1728	0.0920	0.1668	0.2228	3.9315	2
Thermoplasma volcanium GSS1	0.0692	0.1345	0.1247	3.9379	2
Treponema pallidum str. Nichols	0.0548	0.0894	0.1095	4.0205	2
Ureaplasma parvum serovar 3 str. ATCC 700970	0.4111	0.2316	0.1950	3.5023	1

Thus, each genome is mapped into three-dimensional space determined by the indices (1 – 4). The Table provides also the fourth dimension, that is the absolute entropy of a codon distribution. Further (see Section 3.1), we shall not take this dimension into consideration, since it deteriorates the pattern observed in three-dimensional case.

Meanwhile, the data on absolute entropy calculation of the codon distribution for various bacterial genomes are rather interesting. Keeping in mind, that maximal value of the entropy is equal to $S_{max} = \ln 64 = 4.1589\ldots$, one sees that absolute entropy values observed over the set of genomes varies rather significantly. Treponema pallidum str. Nichols exhibits the maximal absolute entropy value equal to 4.0205, and Mycoplasma mycoides subsp. mycoides SC has the minimal level of absolute entropy (equal to 3.4356).

3.1 Classification

Consider a dispersion of the genomes at the space defined by the indices (1 – 4). The scattering is shown in Figure 1. The dispersion pattern shown in this figure is two-horned; thus, two-class pattern of the dispersion is hypothesized. Moreover, the genomes in the three-dimensional space determined by the indices (1 – 4) occupy a nearly plane subspace. Obviously, the dispersion of the genomes in the space is supposed to consists of two classes.

Whether the proximity of genomes observed at the space defined by three indices (1 – 4) meets a proximity in other sense, is the key question of our investigation. Taxonomy
is the most natural idea of proximity, for genomes. Thus, the question arises, whether the genomes closely located at the space indices (1 – 4), belong the same or closely related taxons? To answer this question, we developed an unsupervised classification of the genomes, in three-dimensional space determined by the indices (1 – 4).

To develop such classification, one must split the genomes on K classes, randomly. Then, for each class the center is determined; that latter is the arithmetic mean of each coordinate
corresponding to the specific index. Then each genome (i.e., each point at the three-dimensional space) is checked for a proximity to each K classes. If a genome is closer to other class, than originally was attributed, then it must be transferred to this class. As soon, as all the genomes are redistributed among the classes, the centers must be recalculated, and all the genomes are checked again, for the proximity to their class; a redistribution takes place, where necessary. This procedure runs till no one genome changes its class attribution. Then, the discernibility of classes must be verified. There are various discernibility conditions (see, e.g., (Gorban, Rossiev, 2004)).

Here we executed a simplified version of the unsupervised classification. First, we did not checked the class discernibility; next, a center of a class differs from a regular one. A straight line at the space determined by the indices $(1 – 4)$ is supposed to be a center of a class, rather than a point in it. So, the classification was developed with respect to these two issues. The Table 1 also shows the class attribution, for each genome (see the last column indicated as C').

4 Discussion

Clear, concise and comprehensive investigation of the peculiarities of codon bias distribution may reveal valuable and new knowledge towards the relation between the function (in general sense) and the structure of nucleotide sequences. Indeed, here we studied the relation between the taxonomy of a genome bearer, and the structure of that former. A structure may be defined in many ways, and here we explore the idea of ensemble of (considerably short) fragments of a sequence. In particular, the structure here is understood in terms of frequency dictionary (see Section 1; see also (Bugaeko et al., 1996, 1998; Sadovsky, 2003, 2006) for details).

Figure 1 shows the dispersion of genomes in three-dimensional space determined by the indices $(1 – 4)$. The projection shown in this Figure yields the most suitable view of the pattern; a comprehensive study of the distribution pattern seen in various projections shows that it is located in a plane (or close to a plane). Thus, the three indices $(1 – 4)$ are not independent.

Next, the dispersion of the genomes in the indices $(1 – 4)$ space is likely to hypothesize the two-class distribution of the entities. Indeed, the unsupervised classification developed for the set of genomes gets it. First of all, the genomes of the same genus belong the same class, as a rule. Some rare exclusion of this rule result from a specific location of the entities within the “bullet” shown in Figure 1.

A measure of codon usage bias is matter of study of many researchers (see, e.g., (Nakamura et al., 2000; Galtier et al., 2006; Carbone et al., 2003; Sueoka, Kawanishi, 2000; Bierne, Eyre-Walker, 2006)). There have been explored numerous approaches for the bias index implementation. Basically, such indices are based either on the statistical or probabilistic features
of codon frequency distribution (Sharp, Li, 1987; Jansen et al., 2003; Nakamura et al., 2000), others are based on the entropy calculation of the distribution (Zeeberg, 2002; Frappat et al., 2003) or similar indices based on the issues of multidimensional data analysis and visualization techniques (Carbone et al., 2003, 2005). An implementation of an index (or a set of indices) affects strongly the sense and meaning of the observed data; here the question arises towards the similarity of the observations obtained through various indices implementation, and the discretion of the fine peculiarities standing behind those indices.

Entropy seems to be the most universal and sustainable characteristics of a frequency distribution of any nature (Gibbs, 1902; Gorban, 1984). Thus, the entropy based approach to a study of codon usage bias seems to be the most powerful. In particular, this approach was used by Suzuki et al. (2004), where the entropy of the codon frequency distribution has been calculated, for various genomes, and various fragments of genome. The data presented at this paper manifest a significant correspondence to those shown above; here we take an advantage of the general approach provided by Suzuki et al. (2004) through the calculation of more specific index, that is a mutual entropy.

An implementation of an index (or indices) of codon usage bias is of a merit not itself, but when it brings a new comprehension of biological issues standing behind. Some biological mechanisms affecting the codon usage bias are rather well known (Bierne, Eyre-Walker, 2006; Galtier et al., 2006; Jansen et al., 2003; Sharp et al., 2003; Supek, Vlahoviček, 2005; Xiu-Feng et al., 2004). The rate of translation processes are the key issue here. Quantitatively, the codon usage bias manifests a significant correlation to $C + G$ content of a genetic entity. Obviously, the $C + G$ content seems to be an important factor (see, e.g. (Carbone et al., 2003, 2005)); some intriguing observation towards the correspondence between $C + G$ content and the taxonomy of bacteria is considered in (Gorban, Zinovyev, 2007).

Probably, the distribution of genomes as shown in Figure 1 could result from $C + G$ content; yet, one may not exclude some other mechanisms and biological issues determining it. An exact and reliable consideration of the relation between structure (that is the codon usage bias indices), and the function encoded in a sequence is still obturated with the widest variety of the functions observed in different sites of a sequence. Thus, a comprehensive study of such relation strongly require the clarification and identification of the function to be considered as an entity. Moreover, one should provide some additional efforts to prove an absence of interference between two (or more) functions encoded by the sites.

A relation between the structure (that is the codon usage bias) and taxonomy seems to be less deteriorated with a variety of features to be considered. Previously, a significant dependence between the triplet composition of 16S RNA of bacteria and their taxonomy has been reported (Gorban et al., 2000, 2001). We have pursued similar approach here. We studied the correlation between the class determined by the proximity at the space defined by the codon usage bias indices ($1 – 4$), and the taxonomy of bacterial genomes.
The data shown in Table 1 reveal a significant correlation of class attribution to the taxonomy of bacterial genomes. First of all, the correlation is the highest one for species and/or strain levels. Some exclusion observed for \textit{Bacillus} genus may result from a modification of the unsupervised classification implementation; on the other hand, the entities of that genus are spaced at the head of the bullet (see Figure 1). A distribution of genomes over two classes looks rather complicated and quite irregular. This fact may follow from a general situation with higher taxons disposition of bacteria.

Nevertheless, the introduced indices of codon usage bias provide a researcher with new tool for knowledge retrieval concerning the relation between structure and function, and structure and taxonomy of the bearers of genetic entities.

Acknowledgements

We are thankful to Professor Alexander Gorban from Liecester University for encouraging discussions of this work.

References

Bierne, N., Eyre-Walker, A. Variation in synonymous codon use and DNA polymorphism within the Drosophila genome. J. Evol. Biol. 19(1), 1–11 (2006)

Bugaenko N.N., Gorban A.N., Sadovsky M.G. Towards the determination of information content of nucleotide sequences. Russian J.of Mol.Biol. 30, 529–541 (1996)

Bugaenko N.N., Gorban A.N., Sadovsky M.G. Maximum entropy method in analysis of genetic text and measurement of its information content Open Sys.& Information Dyn.. 5, 265–278 (1998)

Carbone, A., Zinovyev, A., Képès, F. Codon adaptation index as a measure of dominating codon bias. Bioinformatics. 19(16), 2005–2015 (2003)

Carbone, A., Képès, F. Zinovyev, A. Codon bias signatures, organization of microorganisms in codon space, and lifestyle. Mol.Biol.Evol. 22(3), 547–561 (2006)

Frappat, L., Minichini, C., Sciarrino, A., Sorba, P. Universality and Shannon entropy of codon usage. Phys.Review E. 68, 061910 (2003)

Fuglsang, A. Estimating the “Effective Number of Codons”: The Wright Way of Determining Codon Homozygosity Leads to Superior Estimates. Genetics. 172, 1301–1307 (2006)

Galtier, N., Bazin, E., Bierne, N. GC-biased segregation of non-coding polymorphisms in Drosophila. Genetics. 172, 221–228 (2006)

Gibbs, J.W. Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics. C. Scribner’s Sons, New Haven (1902)
Gorban, A.N., Zinovyev, A.Yu. The Mystery of Two Straight Lines in Bacterial Genome Statistics. Release 2007 [arXiv:q-bio/0412015]

Gorban, A.N., Karlin, I.V. Invariant Manifolds for Physical and Chemical Kinetics, Lect. Notes Phys. 660, Springer, Berlin, Heidelberg (2005).

Gorban, A.N., Rossiev, D.A. Neurocomputers on PC. Nauka plc., Novosibirsk (2004).

Gorban, A.N., Popova, T.G., Sadovsky, M.G., Wunsch, D.C. Information content of the frequency dictionaries, re-construction, transformation and classification of dictionaries and genetic texts // Intelligent Engineering Systems through Artificial Neural Networks: 11 – Smart Engineering System Design, N.-Y.: ASME Press 657–663 (2001)

Gorban, A.N., Popova, T.G., Sadovsky, M.G. Classification of symbol sequences over their frequency dictionaries: towards the connection between structure and natural taxonomy. Open Systems & Information Dynamics. 7(1), 1–17 (2000)

Gorban, A.N. Equilibrium Encircling. Equations of Chemical Kinetics and their Thermodynamic Analysis. Novosibirsk, Nauka Publ. (1984) 256 p.

Jansen, R., Bussemaker, H.J. and Gerstein, M. Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. NAR 31, 2242–2251 (2003)

Nakamura, Y., Gojobori, T., Ikemura, T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. 28, 292 (2000).

Sadovsky, M.G. Comparison of real frequencies of strings vs. the expected ones reveals the information capacity of macromolecules. Journal of Biol.Phys. 29, 23–38 (2003)

Sadovsky, M.G. Information capacity of nucleotide sequences and its applications. Bulletin of Math.Biology. 68, 156–178 (2006)

Sharp, P.M., Wen-Hsiung Li. The codon adaptation index — a measure of directional synonymous codon usage bias, and its potential applications. NAR 15, 1281–1295 (1987)

Sharp, P.M., Bailes, E., Grocock, R.J., Peden, J.F., Soccett, R.E. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Research. 33, 1141–1153 (2005)

Sueoka, N., Kawanishi, Y. DNA G+C content of the third codon position and codon usage biases of human genes. Gene. 261(1), 53–62 (2000)

Supek, F. and Vlahoviček, K. Comparison of codon usage measures and their applicability in prediction of microbial gene expressivity. BMC Bioinformatics. 6, 182–197 (2005)

Suzuki, H., Saito, R. and Tomita, M. The ‘weighted sum of relative entropy’: a new index for synonymous codon usage bias. Gene. 335, 19–23 (2004)

Xiu-Feng Wan, Dong Xu, Kleinhofs, A., Jizhong Zhou Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evolutionary Biology. 4, 19–30 (2004)

Zeeberg, B. Shannon Information Theoretic Computation of Synonymous Codon Usage Biases in Coding Regions of Human and Mouse Genomes. Genome Res. 12, 944–955 (2002)