Cysteine Cross-linking Defines Part of the Dimer and B/C Domain Interface of the Escherichia coli Mannitol Permease*

Received for publication, November 28, 2000, and in revised form, January 11, 2001
Published, JBC Papers in Press, January 17, 2001, DOI 10.1074/jbc.M010728200

Bart A. van Montfort, Gea K. Schuurman-Wolters, Ria H. Duurkens, Robert Mensen, Bert Poolman, and George T. Robillard‡

From the Groningen Biomolecular Sciences and Biotechnology Institute and the Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Part of the dimer and B/C domain interface of the Escherichia coli mannitol permease (EII*mtl) has been identified by the generation of disulfide bridges in a single-cysteine EII*mtl, with only the activity linked Cys384 in the B domain, and in a double-cysteine EII*mtl with cysteines at positions 384 and 124 in the first cytoplasmic loop of the C domain. The disulfide bridges were formed in the enzyme in inside-out membrane vesicles and in the purified enzyme by oxidation with Cu(II)-(1,10-phenanthroline)3, and they were visualized by SDS-polyacrylamide gel electrophoresis. Discrimination between possible disulfide bridges in the dimeric double-cysteine EII*mtl was done by partial digestion of the protein and the formation of heterodimers, in which the cysteines were located either on different subunits or on one subunit. The disulfide bridges that were identified are an intersubunit Cys384-Cys384, an intersubunit Cys384-Cys124, and an in-subunit Cys124-Cys124, an intersubunit Cys384-Cys124, and an in-subunit Cys384-Cys3124. The disulfide bridges between the B and C domain were observed with purified enzyme and confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Mannitol did not influence the formation of the disulfide between Cys384 and Cys124. The close proximity of the two cysteines 124 was further confirmed with a separate C domain by oxidation with Cu(II)-(1,10-phenanthroline)3 or by reactions with dimaleimides of different length. The data in combination with other work show that the first cytoplasmic loop around residue 124 is located at the dimer interface and involved in the interaction between the B and C domain.

The uptake and concomitant phosphorylation of a wide variety of carbohydrates into bacterial cells is, in many cases, accomplished by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) (1). In a cascade of phosphorylation reactions (Fig. 1), the phosphoryl group is transferred from the energy donor phosphoenolpyruvate (PEP) via the two general components EI and HPr to the carbohydrate-specific enzymes (Enzyme II’s), which transport and phosphorylate the carbohydrates (2). All EIIs have a similar architecture and consist of the cytoplasmic A and B domains and a membrane-embedded C domain. This article deals with the mannitol-specific EII (EII*mtl) of Escherichia coli, in which the three domains are covalently linked. HPr phosphorylates the A domain of EII*mtl on His854, which subsequently phosphorylates Cys384 in the B domain. Mannitol in the periplasm is bound by the C domain, transported into the cell via C and, while bound at the cytoplasmic site of C, phosphorylated by the B domain. EII*mtl is most likely a dimeric protein and the subunit interactions occur in the C domain (3–8).

Domain interactions and in particular the B/C domain interface play an important role in the catalytic cycle of EII*mtl. The energy coupling mechanism involves conformational interaction between the B and C domain. The evidence for this notion is manifold. 1) Phosphorylation of the B domain increases the rate of transport 2–3 orders of magnitude (9, 10). 2) Modification or mutagenesis of the phosphorylation site in the B domain as well as removal of the cytoplasmic domains changes the mannitol binding kinetics of the C domain (11, 12). 3) Time-resolved fluorescence and phosphorescence spectroscopy showed that, upon phosphorylation of the B domain, Trp109 in the C domain becomes immobilized whereas Trp30 in the C domain becomes more flexible (13, 14). 4) Differential scanning calorimetry showed that the thermal stability of the C domain is higher in the presence of the B domain (15). 5) Isothermal titration calorimetry experiments indicated that a significant part of the structural changes upon the binding of mannitol to the C domain reside in the B domain. Approximately 50–60 residues are removed from the bulk water upon binding of mannitol, which was much less when the same measurements were done after removal of the B domain (16). 6) Close proximity of the B and C domain has been suggested for another PTS transporter, that is the BglF system of E. coli. 3

To date, there is no structural information about the B/C domain or dimer interface of EII*mtl or any other EII. The topological model of the C domain predicts 6 membrane-spanning assisted laser desorption-ionization-time-of-flight mass spectrometry; DTT, dithiothreitol; PAGE, polyacrylamide gel electrophoresis.

* This work was supported by the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, and the Ministry of Agriculture, Nature Management and Fishery in the framework of an industrial relevant research program of the Netherlands Association of Biotechnology Centers in the Netherlands (ABON). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Tel.: 31-50-3634321; Fax: 31-50-3634429; E-mail G.T.Robillard@chem.rug.nl.

‡ The abbreviations used are: PEP, phosphoenolpyruvate; ISO, inside-out; dPEG, decylpolyethylene glycol; CuPhe, Cu(II)-(1,10-phenanthroline)3; PTS, phosphotransferase system; mtl, mannitol; HPr, histidine-containing protein; EI, enzyme I; MALDI-TOF MS, matrix-assisted laser desorption ionization-time of flight mass spectrometry; DTT, dithiothreitol; PAGE, polyacrylamide gel electrophoresis.

3 The nomenclature of the enzymes is: EII, carbohydrate-specific transport protein of the PTS; EII*mtl, wild-type mannitol-specific EII of E. coli containing all four cysteines; SSACS, N-terminal His-tagged EII*mtl with Cys384, Cys320, and Cys3124 replaced with serine; SSACS-S124C, SSACS with Ser324 in the C domain replaced with a cysteine; IIChis-CL, C-terminal His-tagged cysteine-less C domain with Cys384 and Cys3124 replaced with serine; IIChis-S124C, IIChis-CL in which Ser324 is replaced with a cysteine. Numbering of residues, even in the His-tagged mutants, is always according to the numbering in the original sequence of EII*mtl.
Identifying the B/C Domain and Dimer Interface

The dissociation constant for mannitol binding of EIImtl depends on the presence of Hep. This was determined for each of the EIImtl—EIImtl complexes using a competitive binding assay with 32P-labeled mannitol, Hep, or PEP as substrates. The results indicated that EIImtl—EIImtl complexes with Hep or PEP are more stable than those with mannitol alone.

In order to investigate the role of intermolecular disulfide bonds in the stability of the EIImtl—EIImtl complexes, we examined the effects of reducing agents on their dissociation constants. Reduction of the disulfide bonds by 5 mM DTT resulted in a significant decrease in the dissociation constant for Hep binding, while the dissociation constant for mannitol binding remained unchanged.

To further investigate the role of disulfide bonds in the stability of the EIImtl—EIImtl complexes, we determined the effect of increasing concentrations of Hep on the dissociation constant for mannitol binding. The results showed that the dissociation constant for mannitol binding decreased with increasing concentrations of Hep, indicating that Hep increases the stability of the EIImtl—EIImtl complexes.

In conclusion, our results suggest that intermolecular disulfide bonds play a critical role in the stability of the EIImtl—EIImtl complexes. Further studies are needed to understand the mechanism by which these disulfide bonds regulate the stability of the complexes.

EXPERIMENTAL PROCEDURES

Chemicals—Decyl-polyethylene glycol (dPEG) was synthesized by B. Kwant (Kwant High Vacuum Oil Recycling and Synthesis, Bedum, The Netherlands). Bovine pancreas i-1-tesylamido-2-phenylthyl chloromethyl ketone-treated trypsin was from Sigma and endoproteinase Glu-C of Staphylococcus aureus V8 was from Fluka. The bimaleimides o-PDM and p-PDM were from Aldrich and BMH was obtained from Pierce. EII and HPr were purified as described previously (18, 19). All chemicals used were analytical grade.

Construction of Plasmids for Expression of SSSC, SSSC-S124C, and IHChis-S124C—Site-directed mutagenesis was performed with the Stratagene Quickchange mutagenesis kit. His-tagged EIIwt with cysteines at positions 110, 320, and 371 replaced by serine (SSSC) was constructed in pMalCisMIIAPr, which carries the gene for the N-terminal His-tagged EIImtl.6 Subsequently, SSSC-S124C was generated by replacing Ser124 with a cysteine. IHChis-CL was generated by replacing Cys110 and Cys320 by serine in pMalCisIIIChis, which carries the gene for the C domain with a C-terminal His-tag (16). IHChis-S124C was then generated by replacing Ser124 by a cysteine as described above. Mutations were identified by introducing silent restriction sites and confirmed by DNA sequence analysis.

Generation of ISO Vesicles and Purification of SSSC, SSSC-S124C, and IHChis-S124C—Growth of E. coli LSG322 (F thi-1, hisG1, argG6, metB1, tonA2, supE44, rpmL104, lacY1, galT6, gatR49, gatR50, δmutIA p), nitDF, 600RF MDBA-recA) carrying the various plasmids, and procedures to overexpress the mutant proteins were identical to those described for wild-type EIImtl (20). Inside-out (ISO) membrane vesicles containing the mutant proteins were obtained as described (21). SSSC and SSSC-S124C were purified by Ni-NTA-agarose affinity chromatography as described for 6EIImtl (14), except that DTT was used as the detergent. IHChis-CL and IHChis-S124C were purified as described (16).

EIImtl Concentration Determination and Mannitol Binding and Phosphorylation Activities—The dissociation constant for mannitol binding and EIImtl concentration in vesicles was determined by flow analysis after solubilization with 0.25% dPEG (22) with some modifications as will be described elsewhere.6 The mannitol phosphorylation activity was determined at 1 mM mannitol (23). The concentration of purified SSSC and SSSC-S124C was determined with the pyruvate burst assay, which determines the amount of PTS phosphorylation sites (24). The activities of IHChis-CL and IHChis-S124C were determined after formation of a heterodimer with EIImtl-G196D, using 33 μM mannitol as described (25).

Disulfide Cross-linking—A solution of ~6 μM enzyme in ISO vesicles or 1 μM purified protein was brought to a final concentration of 5 mM DTT and 20 mM EDTA from stocks of 0.1 and 0.5 mM, respectively. If appropriate, 90 mM EI was added. After 15 min of incubation at 0 °C, DTT and EDTA were removed on a Bio Micro-spin 6 column (Bio-Rad), equilibrated with 50 mM NaPi, pH 7.5, 0.1 mM EDTA, with (purified enzyme) or without (ISO vesicles) 0.25% dPEG. The buffer was deaerated with helium before addition of the detergent. Subsequently, HPr, MgCl2, dPEG, and PEP were added to phosphorylate the purified enzyme, provided EI was present; these additions increased the final volume by 50%. The same mixture without PEP was used to represent conditions in which the enzyme was not phosphorylated. The final concentrations of the components were 2 μM HPr, 5 mM PEP, and 5 mM MgCl2. After 5 min at 30 °C, disulfide bridge formation was initiated by oxidation with 0.1 volume of 3 μM CuII(1,10-phenanthrolin)e3− (CuPh3), followed by incubation at 30 °C for 30 min. The reaction was quenched by the addition of 65 mM EDTA from a stock of 0.5 mM NaEDTA, pH 8.

Partial Digestion and Reduction—The protein was partially digested with 20 μg of trypsin or 100 μg of endoproteinase Glu-C/ml of reaction mixture for 1 h at room temperature. The digestion of the vesicles with endoproteinase Glu-C was done in the presence or absence of 0.4% dPEG. The digestion was stopped by the addition of SDS-PAGE denaturing buffer without β-mercaptoethanol. If appropriate, reduction was accomplished by the addition of the detergent (dPEG), in which the protein is solubilized. This treatment results in dissociation of the initially homodimeric enzymes and thereby facilitates the mixing of the species (26). Subsequently, the heterodimers were treated as described above for the disulfide cross-linking procedure except that EI, HPr, MgCl2, and PEP were omitted from the mixture.

Cross-linking with Dimaleimides of Varying Length—1 mM Purified IHChis-S124C was reduced and demetalted as described under “Disulfide Cross-linking.” Cross-linking was initiated by adding to the protein in 50 mM NaPi, pH 7.5, 0.1 mM EDTA plus 0.25% dPEG, 5 μM o-PDM, p-PDM, or BMH from a 10 times concentrated stock solution in N,N-dimethylformamide. The reaction was stopped with 10 mM DTT after incubation at 30 °C for 30 min.

SDS-PAGE Analysis and Immunoblotting—SDS-polyacrylamide gel electrophoresis was done with 10% acrylamide gels as described (27). A denaturing buffer without β-mercaptoethanol was used. The samples were not boiled in denaturing buffer, because this leads to aggregation. The proteins were visualized either by silver staining (28) or by immunodetection after the proteins were transferred to polyvinylidene fluoride membranes by semi-dry electrophoretic blotting. Detection, using the Western LightTM chemiluminescence detection kit with CSP-DTM as the substrate, was performed as recommended by the manufacturer (Tropix Inc.). The first antibody was an anti-His antibody from Amersham Pharmacia Biotech or Roche Molecular Biochemicals, and the second antibody was an anti-mouse IgG alkaline phosphatase conjugate (Sigma).

MALDI-TOF Mass Spectrometry—A Coomassie-stained band containing the C domain, generated by tryptic digestion, was excised from an SDS-polyacrylamide gel and completely destained with 50 mM NH4HCO3 in 40% ethanol. Subsequently, the gel piece was washed three times with 200 μl of 25 mM NH4HCO3 and cut into pieces of ~1 mm3. A 200-μl volume of 50 mM β-mercaptoethanol in 25 mM NH4HCO3 was applied and, after 2 h of incubation at room temperature, the gel pieces were extracted with two volumes of 200 μl of 60% acetonitrile, 0.1% trifluoroacetic acid by 5 min of sonication in a bath sonicator. The β-mercaptoethanol solution and the extracts were pooled and dried in a Speed-Vac. The last traces of ammonium bicarbonate were removed by adding

6 E. Vos, J. Broos, and B. Poolman, unpublished data.

4 B. A. van Montfort, R. H. Duurkens, B. Canas, J. Godorac-Zimmerman, and G. T. Robillard, unpublished results.

5 E. Vos, personal communication.
10 μl of 1% trifluoroacetic acid and subsequent drying in the SpeedVac. The dried samples were dissolved in 5 μl of 50% acetonitrile, 0.1% trifluoroacetic acid and sonicated for 5 min. Aliquots of 0.75 μl were applied onto the MALDI target and allowed to air dry. Subsequently, 0.75 μl of 10 mg/ml α-cyano-4-hydroxysuccinamic acid in 50% acetonitrile, 0.1% (v/v) trifluoroacetic acid was applied to the dried samples, which was then allowed to dry again. MALDI mass spectra were recorded with a Micromass Tofspec E MALDI time-of-flight mass spectrometer operated in reflexion mode. Spectra were calibrated externally.

RESULTS

Generation and Characterization of SSCS, SSCS-S124C, IIChis-CL, and IIChis-S124C—Two His-tagged EIImut mutants were constructed. SSCS is a single cysteine enzyme with only Cys384 in the B domain. SSCS-S124C contains Cys124 in the C domain in addition to Cys384. The phenotype of *E. coli* LGS322 expressing these mutants was analyzed on MacConkey agar externally. The dried samples were dissolved in 50% acetonitrile, 0.1% TFA and analyzed for mannitol binding, displayed dissociation constants of 45 nM and the turnover values for phosphorylation of purified SSCS and SSCS-S124C were 3200 and 2700 per min, respectively. These activities are similar to that of wild-type EIImtl (22, 29). ISO membrane vesicles bearing IIChis-CL or IIChis-S124C, solubilized with 0.25% dPEG, and analyzed for mannitol binding, displayed dissociation constants for mannitol of 32 and 70 mM, respectively. These dissociation constants are similar to previously determined values of the wild-type C domain generated by tryptic digestion of the complete protein (22) or of the separately expressed IIC (8). In addition, IIChis-CL and IIChis-S124C could both complement the mannitol-binding defective EIImut-G196D for phosphorylation activity in an *in vitro* assay, a result similar to that described for IIC (8). Overall, these kinetic data clearly indicate that SSCS and SSCS-S124C are fully functional enzymes and that both mutant C domains can bind mannitol and form functional heterodimers with EIImut.

Disulfide Bridge Formation in ISO Vesicles and Purified Enzyme—Fig. 2A shows the results of CuPhe-induced oxidation of SSCS and SSCS-S124C in ISO membrane vesicles, as visualized by immunoblotting with an antibody raised against the N-terminal His-tag. The untreated proteins migrated as a major band at ~60 kDa and are indicated as EII. The band at 36 kDa is a degradation product, whereas the one at 116 kDa (band 1) is most likely the dimer. This dimer has been observed previously upon extraction of the enzyme from the membrane (3) and is most likely not held together by a disulfide bond, since it is resistant to reduction with DTT. The amount of this band 1 is the same in all lanes. The oxidation by CuPhe of both mutants resulted in the appearance of a higher molecular weight band (band 2). The molecular mass was ~200 kDa but varied depending on the concentration of acrylamide that was used (not shown). The formation of this band was almost completely reversed by reduction of the sample with DTT, suggesting that it is stabilized by a disulfide bridge. The reduction with DTT is not complete in the particular sample in lane 5. However, in lane 11 of Fig. 2A, lane 1 of Fig. 2B, and in duplicate experiments complete reduction was observed. Both high molecular weight bands (1 and 2) have been observed previously and both were denoted as dimeric species (4, 5, 30). Also in this paper we refer to band 2 as a dimeric species, but we cannot fully exclude the possibility that it represents another oligomeric state as will be discussed below. Since Cys124 is the only candidate for disulfide formation in SSCS, the enzyme is thus capable of forming a disulfide between the two Cys residues. This is an important observation, because the dimer contacts are between the C domains (8).

Partial digestion of EIImut with endoproteinase Glu-C generated a band at 33 kDa, which corresponds to the C domain without the A and B domains. Endoproteinase Glu-C instead of trypsin was used, because it did not cleave off the N-terminal His-tag within the 1-h incubation period. The cleavage pattern of digested SSCS was the same irrespective of whether the disulfide was formed or not. In addition, the cleavage pattern was unchanged upon reduction. This shows that the disulfide bridge resides in the domains that were degraded, which is consistent with the location of Cys384 in the B domain. However, if the same oxidation and digestion procedure was followed with oxidized SSCS-S124C, a new band at 50 kDa appeared (Fig. 2A, indicated by the arrow), irrespective of whether the digestion was done in the presence or absence of the detergent dPEG. This band disappeared upon reduction of the sample with DTT. This excludes the possibility that the protein was only partially cleaved under the oxidizing conditions. Based on its size, this band is probably the result of a disulfide bridge between Cys124 of both monomers, indicating that residue 124 is at the dimer interface. Very vaguely, some other products, which could include a disulfide bridge between Cys384 and Cys124 (see below) might be visible as well.

To further examine the nature of the Cys124-Cys124 disulfide bridge, the CuPhe-induced oxidation was repeated with purified SSCS-S124C. Fig. 2B shows the result of this experiment, visualized by immunoblotting. The same observations were made when the gel was silver-stained (not shown). The oxidation of purified SSCS-S124C also yields the reducible dimer band 2. Almost no band 1 was observed after purification, which probably indicates that the affinity between two monomers is decreased. Upon endoproteinase Glu-C digestion, the 50-kDa fragment was not observed. Instead, a His-tagged fragment of 42 kDa was visible in addition to the 33-kDa C domain band. This 42-kDa band disappeared upon reduction of the sample with DTT (compare lanes 3 and 4). Endoproteinase Glu-C digestion of the B domain will generate a 7.9-kDa fragment containing Cys384. The size of the 42-kDa band thus suggests that a disulfide bond is formed between the 33-kDa C domain harboring Cys124 and the 7.9-kDa B domain fragment with Cys384. In conclusion, the data in Fig. 2, A and B, point to the formation of two different disulfides, one intersubunit Cys124-Cys124 and one interdomain Cys124-Cys384. Further evidence for both disulfides will be supplied in the following sections.

Requirements for B/C Domain Disulfide Bridge Formation—To elucidate the composition of the disulfide bridges, the CuPhe-induced oxidation was performed with purified SSCS-S124C and SSCS (Fig. 3). The two higher molecular weight bands (1 and 2) were observed again with both proteins (lanes 2 and 14). These bands were not present upon reduction with DTT and were much less intense or absent upon phosphorylation of the protein at His554 and Cys384 confirming that these bands, at least in SSCS, arise from a disulfide bridge between the two Cys residues in the dimeric complex. Instead of endoproteinase Glu-C, trypsin was used to define the cross-links. Trypsin first cleaves in the linker between the C and B domain and, subsequently, digests the A and B domain completely but leaves the C domain intact except for the N-terminal His-tag (22, 31). The proteolytically generated C domain can be observed on SDS-PAGE at 30 kDa, which is somewhat smaller than the endoproteinase Glu-C-generated C domain.
This is consistent with the removal of the His-tag and a different cleavage site in the linker between the B and C domain. The tryptic B domain fragment with Cys384 has a calculated mass of 1.9 kDa. Tryptic digestion of CuPhe-oxidized SSCS-S124C also showed a 30-kDa band, which was significantly broadened upwards when the sample was not treated with DTT (compare lanes 6 and 7). This suggests that the broadened 30 kDa comprises the C domain plus the 1.9-kDa fragment of the B domain, analogous with the 42-kDa band in Fig. 2B. Consistent with this conclusion are the following observations: (i) the broadening is not observed with SSCS-S124C oxidized with CuPhe and, subsequently reduced with DTT (lane 1), left untreated (lane 2), endoproteinase Glu-C digested and, subsequently, reduced with DTT (lane 3) or endoproteinase Glu-C digested (lane 4). The arrow indicates the 42-kDa band. Approximately 0.5 µg (A) or 0.08 µg (B) of EIImtl was loaded per lane.

Identifying the B/C Domain and Dimer Interface

This is consistent with the removal of the His-tag and a different cleavage site in the linker between the B and C domain. The tryptic B domain fragment with Cys384 has a calculated mass of ~1.9 kDa. Tryptic digestion of CuPhe-oxidized SSCS-S124C also showed an ~30-kDa band, which was significantly broadened upwards when the sample was not treated with DTT (compare lanes 6 and 7). This suggests that the broadened 30 kDa comprises the C domain plus the 1.9-kDa fragment of the B domain, analogous with the 42-kDa band in Fig. 2B. Consistent with this conclusion are the following observations: (i) the broadening is not observed with SSCS (Fig. 3; compare lanes 17 and 18); (ii) phosphorylation prior to oxidation prevented the occurrence of the broadening (compare lanes 6 and 8); and (iii) the broadening was not observed in wild-type EIImtl or in mutants of SSCS with cysteines at positions 158 or 199 (not shown). A tryptic-generated C domain of SSCS-S124C, not treated with CuPhe, also led to some broadening, which is probably due to spontaneous oxidation (compare lanes 5 and 6). Another point to note is that the addition of 100 µM mannitol did not have an effect on the occurrence of the broadening (lane 9). Finally, dimeric C domain was not observed in the tryptic digest of oxidized SSCS-S124C.

Taken together, the broadening must be the result of a disulfide bridge between Cys384 and Cys124. To exclude the possibility that this disulfide bridge is an aspecific reaction between two accessible cysteines, another control experiment was performed (Fig. 3, lanes 11 and 12). With the sample in lane 11, oxidation was carried out after trypsin treatment, whereas in lane 12 it was carried out before trypsinolysis. Clearly, the broadening of the C domain band is no longer observed when the trypsin digestion preceded the oxidation. Thus, Cys124 is not capable of reacting with just any cysteine-

Fig. 2. Immunoblot analysis of CuPhe-induced disulfide bridge formation in SSCS and SSCS-S124C in inside-out membrane vesicles (A) and in purified SSCS-S124C (B). A, after oxidation, the samples were left untreated, digested with 100 µg/ml endoproteinase Glu-C, reduced with 10 mM DTT, or digested and subsequently reduced as described under “Experimental Procedures.” The conditions are depicted in the figure. The left panel (lanes 1–6) depicts the data with SSCS and the right panel (lanes 7–12) that of SSCS-S124C. The arrow indicates the location of the 50-kDa band, which was formed in SSCS-S124C only. The bands denoted 1 and 2 represent different conformers of EII (see text). Not shown are both mutants with added DTT but not oxidized, because these samples were identical to those that were DTT-reduced after CuPhe oxidation. B, approximately 1 µM SSCS-S124C was oxidized with CuPhe and, subsequently reduced with DTT (lane 1), left untreated (lane 2), endoproteinase Glu-C digested and, subsequently, reduced with DTT (lane 3) or endoproteinase Glu-C digested (lane 4). The arrow indicates the 42-kDa band. Approximately 0.5 µg (A) or 0.08 µg (B) of EIImtl was loaded per lane.
containing peptide, present at the same concentration.

MALDI-TOF Mass Analysis—To demonstrate that the fragment, which caused the broadening of the tryptic-generated C domain, originated from the B domain, the protein was excised from the SDS-polyacrylamide gel, reduced with β-mercaptoethanol to cleave the disulfide bond between the C domain and the B domain peptide, the peptides were extracted with organic solvents, and the extract was analyzed with MALDI-TOF MS. Fig. 4 shows the mass spectrum of the extracted peptides. The spectrum only contained 4 peaks, all of which could be assigned to tryptic B domain fragments that contain Cys384. The peak at m/z 1879.05 is the fully cleaved peptide with residues 380–399 (expected m/z 1878.92), and the peak at m/z 2007.05 represents the partially cleaved fragments of residues 379–399 and/or 380–400 (expected m/z 2007.02). This partial cleavage is due to the presence of the RK and RKK sequences at the N and C terminus of these peptides, respectively, that cannot be fully cleaved by trypsin. The peaks at m/z 1954.79 and 2083.05 represent the same peptides but with a β-mercaptoethanol adduct, which gives a mass increase of 76 Da. If the same procedure was applied to the C domain band that was reduced prior to SDS-PAGE and excised from the gel following the same procedure no peptides were observed.

The B/C Disulfide Bridge Can Cross the Dimer Interface—To this point, we have provided evidence for a B/C interdomain cross-link between Cys384 and Cys124 in purified SSCS-S124C, and a cross-link between the Cys 124 of both monomers in the enzyme in ISO membrane vesicles. In addition, the data on SSCS provide unequivocal evidence for a disulfide across the dimer interface between the Cys384 residues on each B domain.

To establish whether the disulfide between Cys384 in the B domain and Cys124 in the C domain could be formed between different subunits, heterodimers consisting of IIChis-S124C and SSCS were subjected to CuPhe-induced oxidation. Each subunit in a heterodimer provides only one of the cysteines that participate in the disulfide bridge. Fig. 5A (lane 2) shows that when a 3:1 mixture of SSCS and IIChis-S124C was oxidized, the same homodimer as observed with purified SSCS alone (Fig. 5A, lane 4, and Figs. 2 and 3) was formed. In addition, a new band at ~90 kDa appeared, whereas the IIChis-S124C band became less intense (lane 2). This 90-kDa band can only be the heterodimer between SSCS and IIChis-S124C. After reduction, both the SSCS dimer and the heterodimer disappeared. This shows that the B/C domain disulfide bridge can cross the dimer interface.

The B/C Disulfide Bridge Can Be Formed Intramolecularly—Next, we addressed the question whether or not the disulfide bridge between Cys384 and Cys124 can also be formed within one monomer. For this purpose, heterodimers of SSCS-S124C and a cysteine-less IIChis (IIChis-CL) were formed. It is crucial for this experiment that all the SSCS-S124C monomers are forming a heterodimer with a IIChis-CL monomer, such that only the intrasubunit disulfide bridge is possible. Therefore, an ~15-fold excess IIChis-CL was added and the het-
erodimer formation was facilitated by the addition of 170 mM Na$_3$PO$_4$, pH 7.6, which lowered the cloud point of the solution (see “Experimental Procedures”). Na$_3$PO$_4$ alone did not have an influence on the cross-linking behavior of SSCS-S124C (not shown). As can be seen in Fig. 5B, homodimers were no longer present upon oxidation with CuPhe, which is indicative of complete heterodimer formation (compare Fig. 2B, lane 2, and Fig. 5B, lane 2). Endoproteinase Glu-C digestion of the oxidized sample generated the 33-kDa C domain and the additional 42-kDa band (arrow in lane 4 of Fig. 5B); the latter is absent upon reduction of the sample with DTT. This experiment, therefore, proves that the B/C disulfide bridge can also be formed within one subunit.

Residue 124 Is Located Near the Dimer Interface—The CuPhe-induced cross-linking of SSCS-S124C in ISO membrane vesicles corresponds most likely to a disulfide bridge between Cys124 of both monomers. The CuPhe-induced oxidation was repeated with purified IIChis-S124C (Fig. 6). IIChis-S124C migrates as a monomer with an apparent molecular mass of 28 kDa in the presence of DTT. Upon oxidation, a dimeric IIChis-S124C with an apparent molecular mass of 50 kDa was observed. To confirm the close proximity of both Cys124 residues in one dimer, reduced IIChis-S124C was subjected to cross-linking with dimaleimides of different lengths, ranging from 7.7 to 15.1 Å. Fig. 6 shows that all three dimaleimides also yielded the formation of the 50-kDa dimer. These data indicate that the residue at position 124 is located at the dimer interface in purified IIChis-S124C.

DISCUSSION

In this article we describe the generation of several disulfide bridges, indicative for close proximity, between two cysteines in the dimeric EII$_{mtl}$. In the enzyme in ISO membrane vesicles, intersubunit disulfide bridges between both Cys384 residues and between both Cys124 residues are formed. Upon purification in the detergent dPEG, the intersubunit disulfide between both Cys384 residues is still formed. In addition, an inter-

Fig. 5. Heterodimer experiments to determine whether the Cys384-Cys124 disulfide can be formed intra- and intermolecularly. A, immunoblot of CuPhe-induced oxidation of homo- and heterodimers of purified SSCS (3 μM) and IIChis-S124C (1 μM). After CuPhe-induced oxidation, the samples were split and either reduced with 10 mM DTT or left untreated. Due to a poor blotting efficiency of the C domain alone, the apparent concentrations on the PVDF of EII$_{mtl}$ and the C domain differ. B, immunoblot of CuPhe-induced oxidation of heterodimers formed between purified SSCS-S124C (0.2 μM) and IIChis-CL (3 μM) in the presence of 170 mM Na$_3$PO$_4$, pH 7.6. After CuPhe-induced oxidation, the samples were reduced with DTT (lane 1), left untreated (lane 2), endoproteinase Glu-C digested and, subsequently, reduced with DTT (lane 3), or endoproteinase Glu-C digested (lane 4). The arrow indicates the 42-kDa band. Approximately 0.15 μg (A) and 0.075 μg (B) of EII$_{mtl}$ was loaded per lane.

Fig. 6. Immunoblot of cross-linking experiments with purified IIChis-S124C. IIChis-S124C (1 μM) was reduced and subjected to cross-linking by oxidation with CuPhe (lanes 1 and 2) or with α-PDM, p-PDM, and BMH, which can span 7.7, 12.0, and 15.1 Å, respectively. Lane 1 represents the sample in which DTT after CuPhe oxidation. Approximately 0.1 μg of IIChis-S124C was loaded per lane.

main cross-link between Cys384 and Cys124 is observed, which either can be formed as an inrasubunit or an intersubunit disulfide. The intersubunit disulfide between both Cys124 residues is not formed in purified EII, but it is formed in purified C domain harboring Cys124. It is important to stress that both the detergent-solubilized EII and IIC retain full binding capacity, and the soluble EII retains full mannitol phosphorylation activity. The observations made with the detergent-solubilized enzymes thus reveal structural information of functionally relevant conformations of the protein.

To form a disulfide bond, the C$_{α}$ atoms of the cysteines have to come within 3.8–4.5 Å of each other (32). The two Cys384 and two Cys124 residues are thus in very close proximity both at the
B/C domain interface and the dimer interface of EIImtl. The multiplicity of possible disulfides is easy to understand in the light of the interdomain dynamics that are essential for the entire phosphorylation and transport cycle. The architecture and functioning of EIImtl necessitates an interdomain flexibility in which the B domain interacts with various domains at different stages in the catalytic cycle. (i) The active sites of the A and B domains, each of which are proteins of ~15 kDa, must approach one another to transfer the phosphoryl group from His354 in the A domain to Cys384 in the B domain, then (ii) this same region of the B domain, containing a phosphorylated Cys384, must interact with the C domain to effect the conformational energy coupling which enables the translocation and subsequent phosphorylation of mannitol. (iii) The phosphorylation group can cross the dimer interface from the A domain of one monomer to the B domain of the other monomer (illustrated in Fig. 1) (33, 34) or from the B domain of one monomer to the mannitol-bound by the C domain of another monomer (25, 35). It is, therefore, logical that the active site Cys384 in the B domain is in close proximity with different regions of the enzyme at different steps in the catalytic cycle and that, during the cross-linking process, these various domain interactions transiently occur and lead to the cross-links observed. Upon purification in detergent, a different pattern of the disulfide bridges is observed, which is additional evidence for this dynamic situation.

The observation of different higher aggregated forms of EIImtl, all denoted as dimeric forms, is not new. Band 1 was observed upon extraction of the enzyme from the membrane, whereas band 2 appeared upon cross-linking via disulfides, dimaleimides, or lysine-specific cross-linkers (3–5, 30). Band 1 is insensitive to reduction suggesting that it is stabilized by noncovalent interactions rather than disulfides. In this regard, it is noteworthy that most observations of band 1 stem from measurements on protein extracted from the membrane but not purified. It is likely that its aggregation state is stabilized by lipids complexed to the protein. Band 2’s position and, thus, its estimated mass varies with the degree of cross-linking in the polyacrylamide gel, but it is close to that of a tetramer. In a single-cysteine EIImtl, the tetramer can be generated when a single disulfide bond cross-links two dimers whose subunits are held together by native-like interactions, as in the case of band 1. The tetramer could also arise from two disulfide-bonded dimers that come together to form a tetramer. The band in between 1 and 2 (lane 3, Fig. 2A) could represent the loss of a monomer from a tetramer, which is only possible in the inter-dimer cross-linked tetramer. A possible tetrameric state of the enzyme, however, does not lead to other conclusions for the close proximity of the cysteine at positions 384 and 124. In the future we will examine the possible tetrameric nature of EIImtl in more detail with analytical ultracentrifugation as has been done for the lactose carrier of Streptococcus thermophilus (36).

As summarized in the Introduction, there is a lot of kinetic and thermodynamic evidence for conformational coupling at the B/C domain interface. However, there was no direct structural information about the location of this interface. Here, we present for the first time the location of at least part of the B/C domain interface, which is formed by the first cytoplasmic loop in the C domain and the region around the active-site cysteine in the B domain. The first evidence for the importance of this loop in the interaction with the B domain came from time-resolved fluorescence spectroscopy studies on a series of single-tryptophan containing mutants (13). Notably, a change in the time-resolved anisotropy of tryptophan 109 was observed upon phosphorylation of the B domain. The location around residue 124 is in a region which is conserved among mannitol-specific EIIIs of different origin (37). Close proximity of this region of the C domain and the B domain active site was already suggested by photocross-linking experiments. Recent kinetic data on a series of phenylalanine to tryptophan replacements in this first cytoplasmic loop suggest that residues 126 and 133 are critical for the phosphorylation of mannitol but not for mannitol binding. The data suggest that these residues are located at or near the dimer interface and involved in the B/C domain interaction, which is consistent with the data presented here.

The location of the interface in the first cytoplasmic loop is very interesting, because all previously described mutations that have an influence on the functioning of EIImtl are located in the predicted second cytoplasmic loop. This is also the location of the GIXE motif (residues 254–257), which is highly conserved in all EII’s and speculated to be involved in substrate binding (38). Replacement of Glu257 in this motif led to enzymes with no or only low affinity mannitol binding, depending on the substituent, as well as defective transport (39). Another region in the same loop is also important for activity. For instance, replacement of Gly196 or His199 led to enzymes, which exhibited no or low affinity binding for mannitol (25, 34, 40). Interestingly, a heterodimer of the inactive mutants E257A and H195A was significantly active in transport and phosphorylation of mannitol, suggesting that these residues are in close proximity (35). Also data on the glucose transporter of E. coli point to a role for the second cytoplasmic loop in substrate binding (41).

In conclusion, the data presented here suggests that residues 124 and 384 of both subunits can come within 5 A of each other and are located at the B/C domain and dimer interface. An intriguing question is what happens at the B/C domain interface upon phosphorylation. Phosphorescence data of single tryptophan mutants in the C domain show that a conformational change takes place upon phosphorylation of Cys384, different from that upon mannitol binding (14). With the current pairs of cysteines, however, it is not possible to figure out what is happening precisely, because phosphorylation prevents Cys384 from forming a disulfide. In the future, we will screen several cysteine mutants in these regions of the protein to determine the exact borders of the B/C domain and dimer interface and changes therein upon mannitol binding and/or B domain phosphorylation. Eventually this will lead to a more detailed understanding of the energy coupling mechanism at the B/C domain interface in EIImtl.

Acknowledgment—Jaap Broos is acknowledged for critical reading of the manuscript and useful discussions.

REFERENCES

1. Postma, P. W., Lengeler, J. W., and Jacobson, G. R. (1993) Microbiol. Rev. 57, 543–594
2. Robillard, G. T., and Broos, J. (1999) Biochim. Biophys. Acta 1422, 73–104
3. Roosveldt, P. F., and Robillard, G. T. (1994) Biochemistry 33, 5652–5665
4. Slobodkin, G. M., and Jacobson, G. R. (1996) Biochemistry 25, 4046–4051
5. Pas, H., Ellory, J. C., and Robillard, G. T. (1987) Biochemistry 26, 6689–6696
6. Lolkema, J. S., Kuiper, H., ten Hoeve Duurkens, R. H., and Robillard, G. T. (1993) Biochemistry 32, 1396–1400
7. Koning, R. I., Keggstra, W., Oostergetel, G., Schuurman Wolters, G., Robillard, G. T., and Brissos, A. (1999) J. Mol. Biol. 287, 845–851
8. Boer, H., ten Hoeve-Duurkens, R., Schuurman-Wolters, G., J. Dijkstra, A., and Robillard, G. T. (1994) J. Biol. Chem. 269, 17863–17871
9. Lolkema, J. S., ten Hoeve-Duurkens, R. H., Dijkstra, D. S., and Robillard, G. T. (1991) Biochemistry 30, 6716–6721
10. Elfrink, M. G., Driessen, A. J., and Robillard, G. T. (1990) J. Bacteriol. 172, 7119–7125
11. Lolkema, J. S., Dijkstra, D. S., ten Hoeve-Duurkens, R. H., and Robillard, G. T. (1991) Biochemistry 30, 6721–6726
12. Boer, H., ten Hoeve-Duurkens, R. H., Lolkema, J. S., and Robillard, G. T. (1995) Biochemistry 34, 3239–3247
13. Dijkstra, D. S., Broos, J., Visser, A. W. G., Vanhove, A., and Robillard, G. T.

7 E. Vos, R. Ter Horst, G. T. Robillard, B. Poolman, and J. Broos, manuscript in preparation.
Identifying the B/C Domain and Dimer Interface

(1997) Biochemistry 36, 4860–4866
14. Broos, J., Strambini, G. B., Gonnelli, M., Vos, E. P., Koolhof, M., and Robillard, G. T. (2000) Biochemistry 39, 10877–10883
15. Meijberg, W., Schuurman Wolters, G. K., and Robillard, G. T. (1998) J. Biol. Chem. 273, 7949–7956
16. Meijberg, W., Schuurman Wolters, G. K., Boer, H., Scheek, R. M., and Robillard, G. T. (1998) J. Biol. Chem. 273, 20785–20794
17. Sugiyama, J. E., Mahmoodian, S., and Jacobson, G. R. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 9603–9607
18. Robillard, G. T., Dovijewaard, G., and Lolkema, J. S. (1979) Biochemistry 18, 2984–2989
19. van Dijk, A. A., de Lange, L., Bachovchin, W. W., and Robillard, G. T. (1990) Biochemistry 29, 8164–8171
20. Robillard, G. T., Boer, H., van Weeghel, R. P., Wolters, G., and Dijkstra, A. (1993) Biochemistry 32, 9553–9562
21. Broos, J., ter Veld, F., and Robillard, G. T. (1999) Biochemistry 38, 9798–9803
22. Lolkema, J. S., Dijkstra, D. S., ten Hoeve Duurkens, R. H., and Robillard, G. T. (1990) Biochemistry 29, 10659–10663
23. Robillard, G. T., and Blaauw, M. (1987) Biochemistry 26, 5796–5803
24. Brouwer, M., Efferink, M. G., and Robillard, G. T. (1982) Biochemistry 21, 82–88
25. Boer, H., ten Hoeve Duurkens, R. H., and Robillard, G. T. (1996) Biochemistry 35, 12903–12908
26. Broos, J., Hoeve Duurkens, R. T., and Robillard, G. T. (1998) J. Biol. Chem. 273, 3865–3870
27. Laemmli, U. K. (1970) Nature 227, 680–685
28. Blum, H., Beier, H., and Gross, H. J. (1987) Electrophoresis 8, 93–99
29. Dijkstra, D. S., Broos, J., Lolkema, J. S., Enequist, H., Minke, W., and Robillard, G. T. (1996) Biochemistry 35, 6628–6634
30. Roossien, F. F., van Es-Spiekman, W., and Robillard, G. T. (1986) FEBS Lett. 196, 284–290
31. Stephan, M. M., and Jacobson, G. R. (1986) Biochemistry 25, 8230–8234
32. Hazes, B., and Dijkstra, B. W. (1988) Protein Eng. 2, 119–125
33. van Weeghel, R. P., van der Hoek, Y. Y., Pas, H. H., Efferink, M., Keck, W., and Robillard, G. T. (1991) Biochemistry 30, 1768–1773
34. Weng, Q. P., Elder, J., and Jacobson, G. R. (1992) J. Biol. Chem. 267, 19529–19535
35. Saraceni Richards, C. A., and Jacobson, G. R. (1997) J. Bacteriol. 179, 5171–5177
36. Friesen, R. H., Knol, J., and Postman, B. (2000) J. Biol. Chem. 275, 33527–33535; Correction (2000) J. Biol. Chem. 275, 40658
37. Henstra, S. A., Tolner, B., Duurkens, R. H. T., Konings, W. N., and Robillard, G. T. (1996) J. Bacteriol. 178, 5586–5591
38. Lengeler, J. W., Tiggesmeyer, F., Vogler, A. P., and Wohrl, B. M. (1990) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 326, 489–504
39. Saraceni Richards, C. A., and Jacobson, G. R. (1997) J. Bacteriol. 179, 1135–1142
40. Weng, Q. P., and Jacobson, G. R. (1993) Biochemistry 32, 11211–11216
41. Ruijter, G. J., van Mears, G., Verwey, M. A., Postma, P. W., and van Dam, K. (1992) J. Bacteriol. 174, 2843–2850