On the Practical Power of Automata in Pattern Matching

Ora Amir∗ Amihood Amir† Aviezri Fraenkel‡ David Sarne§
Bar-Ilan University and NVIDIA
and Bar-Ilan University Weizmann Institute of Science
and Georgia Tech

Abstract

The classical pattern matching paradigm is that of seeking occurrences of one string - the pattern, in another - the text, where both strings are drawn from an alphabet set Σ. Assuming the text length is n and the pattern length is m, this problem can naively be solved in time $O(nm)$. In Knuth, Morris and Pratt’s seminal paper of 1977, an automaton, was developed that allows solving this problem in time $O(n)$ for any alphabet.

This automaton, which we will refer to as the KMP-automaton, has proven useful in solving many other problems. A notable example is the parameterized pattern matching model. In this model, a consistent renaming of symbols from Σ is allowed in a match. The parameterized matching paradigm has proven useful in problems in software engineering, computer vision, and other applications.

It has long been suspected that for texts where the symbols are uniformly random, the naive algorithm will perform as well as the KMP algorithm. In this paper we examine the practical efficiency of the KMP algorithm vs. the naive algorithm on a randomly generated text. We analyse the time under various parameters, such as alphabet size, pattern length, and the distribution of pattern occurrences in the text. We do this for both the original exact matching problem and parameterized matching. While the folklore wisdom is vindicated by these findings for the exact matching case, surprisingly, the KMP algorithm works significantly faster than the naive in the parameterized matching case.

We check this hypothesis for DNA texts, and observe a similar behaviour as in the random text. We also show a very structured case where the automaton is much more efficient.

1 Introduction

One of the most well-known data structures in Computer science is the Knuth-Morris-Pratt automaton, or the KMP automaton [20]. It allows solving the exact string matching problem in linear time. The exact string matching problem has input text T of length n and pattern P of length m, where the strings are composed of symbols from a given alphabet Σ. The output is all text locations where the pattern occurs in the text. The naive way of solving the exact string matching problem takes time $O(nm)$. This can be achieved by sliding the pattern to start at every text location, and comparing each of its elements to the corresponding text symbol. Using the KMP automaton, this problem can be solved in time $O(n)$. In fact, analysis of the algorithm shows that at most $2n$ comparisons need to be done.

It has long been known in the folklore that if the text is composed of uniformly random alphabet symbols, the naive algorithm’s time is also linear. This belief is bolstered by the fact that the naive algorithm’s mean

∗Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel.; oramir70@gmail.com.
†Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel, +972 3 531-8770; amir@cs.biu.ac.il; and College of Computing, Georgia Tech, Atlanta, GA 30332. Partly supported by ISF grant 1475/18 and BSF grant 2018141.
‡Dept of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel, +972 8 934-3545; aviezri.fraenkel@weizmann.ac.il.
§Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel, +972 3 531-8052; sarned@cs.biu.ac.il.

The second author heard this for the first time from Uzi Vishkin in 1985. Since then this belief has been mentioned, in many occasions, by various researchers in the community.
number of comparisons for text and pattern over a binary alphabet is bounded by
\[n \sum_{i=1}^{m} \frac{i}{2^i} \] which is bounded by \(2n\) comparisons.

The number of comparisons in the KMP algorithm is also bounded by \(2n\). However, because control in the naive algorithm is much simpler, then it may be practically faster than the KMP algorithm.

The last few decades have prompted the evolution of pattern matching from a combinatorial solution of the exact string matching problem \([16, 20]\) to an area concerned with approximate matching of various relationships motivated by computational molecular biology, computer vision, and complex searches in digitized and distributed multimedia libraries \([15, 7]\). An important type of non-exact matching is the parameterized matching problem which was introduced by Baker \([10, 11]\). Her main motivation lay in software maintenance, where program fragments are to be considered “identical” even if variable names are different. Therefore, strings under this model are comprised of symbols from two disjoint sets \(\Sigma\) and \(\Pi\) containing fixed symbols and parameter symbols respectively. In this paradigm, one seeks parameterized occurrences, i.e., exact occurrences up to renaming of the parameter symbols of the pattern string in the respective text location. This renaming is a bijection \(b: \Pi \rightarrow \Pi\). An optimal algorithm for exact parameterized matching appeared in \([5]\).

It makes use of the KMP automaton for a linear-time solution over fixed finite alphabet \(\Sigma\). Approximate parameterized matching was investigated in \([10, 17, 8]\). Idury and Schäffer \([18]\) considered multiple matching of parameterized patterns.

Parameterized matching has proven useful in other contexts as well. An interesting problem is searching for color images (e.g. \([24, 9, 3]\)). Assume, for example, that we are seeking a given icon in any possible color map. If the colors were fixed, then this is exact two-dimensional pattern matching \([2]\). However, if the color map is different the exact matching algorithm would not find the pattern. Parameterized two dimensional search is precisely what is needed. If, in addition, one is also willing to lose resolution, then a two dimensional function matching search should be used, where the renaming function is not necessarily a bijection \([1, 6]\).

Parameterized matching can also be naively done in time \(O(nm)\). Based on our intuition for exact matching, it is expected that here, too, the naive algorithm is competitive with the KMP automaton-based algorithm of \([5]\) in a randomly generated text.

In this paper we investigate the practical efficiency of the automaton-based algorithm vs. the naive algorithm both in exact and parameterized matching. We consider the following parameters: pattern length, alphabet size, and distribution of pattern occurrences in the text. Our findings are that, indeed, the naive algorithm is faster than the automaton algorithm in practically all settings of the exact matching problem. However, it was interesting to see that the automaton algorithm is always more effective than the naive algorithm for parameterized matching over randomly generated texts. We analyse the reason for this difference.

We established that the randomness of the text is what made the naive algorithm so efficient for exact matching. We, therefore, ran the comparison in a very structured artificial text, and the automaton algorithm was a clear winner.

Having understood the practical behavior of the naive vs. automaton algorithm over randomly generated texts, we were curious if there were “real” texts with a similar phenomenon. We ran the same experiments over DNA texts and observed a similar behavior as that of a randomly generated text.

2 Problem Definition

We begin with basic definitions and notation generally following \([13]\).

Let \(S = s_1s_2\ldots s_n\) be a string of length \(|S| = n\) over an ordered alphabet \(\Sigma\). By \(\varepsilon\) we denote an empty string. For two positions \(i\) and \(j\) on \(S\), we denote by \(S[i..j] = s_i\ldots s_j\) the factor (sometimes called substring) of \(S\) that begins at position \(i\) and ends at position \(j\) (it equals \(\varepsilon\) if \(j < i\)). A prefix of \(S\) is a factor that begins at position 1 (\(S[1..]\)) and a suffix is a factor that ends at position \(n\) (\(S[..n]\)).

The exact string matching problem is defined as follows:
Definition 1 (Exact String Matching) Let Σ be an alphabet set, $T = t_1 \cdots t_n$ the text and $P = p_1 \cdots p_m$ the pattern, $t_i, p_j \in \Sigma$, $i = 1, \ldots, n$; $j = 1, \ldots, m$. The exact string matching problem is:

input: text T and pattern P.

output: All indices j, $j \in \{1, \ldots, n - m + 1\}$ such that

$$t_{j+i-1} = p_i, \quad \text{for } i = 1, \ldots, m$$

We simplify Baker’s definition of parameterized pattern matching.

Definition 2 (Parameterized-Matching) Let Σ, T and P be as in Definition 1. We say that P parameterize-matches or simply p-matches T in location j if $p_i \cong t_{j+i-1}$, $i = 1, \ldots, m$, where $p_i \cong t_j$ if and only if the following condition holds:

for every $k = 1, \ldots, i - 1$, $p_i = p_{i-k}$ if and only if $t_j = t_{j-k}$.

The p-matching problem is to determine all p-matches of P in T.

It two strings S_1 and S_2 have the same length m then they are said to parametrize-match or simply p-match if $s_1 \cong s_2$, for all $i \in \{1, \ldots, m\}$.

Intuitively, the matching relation \cong captures the notion of one-to-one mapping between the alphabet symbols. Specifically, the condition in the definition of \cong ensures that there exists a bijection between the symbols from Σ in the pattern and those in the overlapping text, when they p-match. The relation \cong has been defined by Baker’s [5] in a manner suitable for computing the bijection.

Example: The string $ABABCCBA$ parameterize matches the string $XYXZZYX$. The reason is that if we consider the bijection $\beta : \{A, B, C\} \to \{X, Y, Z\}$ defined by $A \xrightarrow{\beta} X$, $B \xrightarrow{\beta} Y$, $C \xrightarrow{\beta} Z$, then we get $\beta(ABABCCBA) = XXYXZZYX$. This explains the requirement in Def. 2 where two symbols match iff they also match in all their previous occurrences.

Of course, the alphabet bijection need not be as extreme as bijection β above. String $ABABCCBA$ also parameterize matches $BABACCAB$, because of bijection $\gamma : \{A, B, C\} \to \{A, B, C\}$ defined as: $A \xrightarrow{\gamma} B$, $B \xrightarrow{\gamma} A$, $C \xrightarrow{\gamma} C$.

For completeness, we define the KMP automaton.

Definition 3 Let $P = p_1 \ldots p_m$ be a string over alphabet Σ. The KMP automaton of P is a 5-tuple $(Q, \Sigma, \delta_s, \delta_f, q_0, q_a)$, where $Q = \{0, \ldots, m\}$ is the set of states, Σ is the alphabet, $\delta_s : Q \to Q$ is the success function, $\delta_f : Q \to Q$ is the failure function, $q_0 = 0$ is the start state and $q_a = m$ is the accepting state.

The success function is defined as follows:

$\delta_s(i) = i + 1$, $i = 0, \ldots, m - 1$ and $\delta_s(0) = 0$

The failure function is defined as follows:

Denote by $l(S)$ the length of the longest proper prefix of string S (i.e. excluding the entire string S) which is also a suffix of S.

$\delta_f(i) = l(P[1..i])$, for $i = 1, \ldots, m$.

For an example of the KMP automaton see Fig. 1.

Theorem 1 The KMP automaton can be constructed in time $O(m)$.

3 The Exact String Matching Problem

The Knuth-Morris-Pratt (KMP) search algorithm uses the KMP automaton in the following manner:

Variables:

pointer_t points to indices in the text. pointer_p points to indices in the pattern.
Initialization:
set pointer pointer_t to 1. set pointer pointer_p to 0.

Main Loop:
While $\text{pointer}_t \leq n - m + 1$ do:
 If $\text{pointer}_t = \delta_s(\text{pointer}_p)$ then do:
 $\text{pointer}_t \leftarrow \text{pointer}_t + 1$
 $\text{pointer}_p \leftarrow \delta_f(\text{pointer}_p)$
 If $\text{pointer}_p = m - 1$ then do:
 output “pattern occurrence ends in text location pointer_t”.
 $\text{pointer}_p \leftarrow \delta_f(m)$
 enddo
 enddo
else ($\text{pointer}_t \neq \delta_s(\text{pointer}_p)$) do:
 if $\text{pointer}_p = 0$ then $\text{pointer}_t \leftarrow \text{pointer}_t + 1$
 else $\text{pointer}_p \leftarrow \delta_f(\text{pointer}_p)$
endif
 go to beginning of while loop
endwhile

Theorem 2 [20] The time for the KMP search algorithm is $O(n)$. In fact, it does not exceed $2n$ comparisons.

4 The Parameterized Matching Problem

Amir, Farach, and Muthukrishnan [5] achieved an optimal time algorithm for parameterized string matching by a modification of the KMP algorithm. In fact, the algorithm is exactly the KMP algorithm, however, every equality comparison “$x = y$” is replaced by “$x \cong y$” as defined below.

Implementation of “$x \cong y$”
Construct table $A[1], \ldots, A[m]$ where $A[i] = \text{the largest } k, \ 1 \leq k < i, \text{ such that } p_k = p_i$. If no such k exists then $A[i] = i$.

The following subroutines compute “$p_i \cong t_j$” for $j \geq i$, and “$p_i \cong p_j$” for $j \leq i$.

\begin{algorithm}
\begin{small}
\begin{tabular}{l}
Compare(p_i,t_j) \\
\hspace{1em} if $A[i] = i$ and $t_j \neq t_{j-1}, \ldots, t_{j-i+1}$ then return equal \\
\hspace{1em} if $A[i] \neq i$ and $t_j = t_{j-i+A[i]}$ then return equal \\
\hspace{4em} return not equal \\
\end{tabular}
\end{small}
\end{algorithm}

\begin{algorithm}
\begin{small}
\begin{tabular}{l}
Compare(p_i,p_j) \\
\hspace{1em} if ($A[i] = i$ or $A[i] \geq j$) and $p_j \neq p_{i+1}, \ldots, p_{j-1}$ then return equal \\
\hspace{1em} if $i - A[i] < j$ and $p_j = p_{j-i+A[i]}$ then return equal \\
\hspace{4em} return not equal \\
\end{tabular}
\end{small}
\end{algorithm}

\begin{theorem}[3] The p-matching problem can be solved in $O(n \log \sigma)$ time, where $\sigma = \min(m,|\Sigma|)$.
\end{theorem}

\begin{proof}

The table A can be constructed in $O(m \log \sigma)$ time as follows: scan the pattern left to right keeping track of the distinct symbols from Σ in the pattern in a balanced tree, along with the last occurrence of each such symbol in the portion of the pattern scanned thus far. When the symbol at location i is scanned, look up this symbol in the tree for the immediately preceding occurrence; that gives $A[i]$.

\textbf{Compare} can clearly be implemented in time $O(\log \sigma)$. For the case $A[i] \neq i$, the comparison can be done in time $O(1)$. When scanning the text from left to right, keep the last m symbols in a balanced tree. The check $t_j \neq t_{j-1}, \ldots, t_{j-i+1}$ in \textbf{Compare(p_i,t_j)} can be performed in $O(\log \sigma)$ time using this information. Similarly, \textbf{Compare(p_i,p_j)} can be performed using $A[i]$. Therefore, the automaton construction in KMP algorithm with every equality comparison “$x = y$” replaced by “$x \cong y$” takes time $O(m \log \sigma)$ and the text scanning takes time $O(n \log \sigma)$, giving a total of $O(n \log \sigma)$ time.

As for the algorithm’s correctness, Amir, Farach and Muthukrishnan showed that the failure link in automaton node i produces the largest prefix of $p_1 \cdots p_i$ that p-matches the suffix of $p_1 \cdots p_i$.

\end{proof}

5 Our Experiments

Our implementation was written in C++. The platform was Dell latitude 7490 with intel core i7 - 8650U, 32 GB RAM, with 8 MB cache. The running time was computed using the \texttt{chrono} high resolution clock. The random strings were generated using the \texttt{random} Python package.

We implemented the naive algorithm for exact string matching and for parameterized matching. The same code was used for both, except for the implementation of the equivalence relation for parameterized matching, as described above. This required implementing the A array. We also implemented the KMP algorithm for exact string matching, and used the same algorithm for parameterized matching. The only difference was the implementation of the equivalence parameterized matching relation.

The text length n was 1,000,000 symbols. Theoretically, since both the automaton and naive algorithm are sequential and only consider a window of the pattern length, it would have been sufficient to run the experiment on a text of size twice the pattern \[4\]. However, for the sake of measurement resolution we opted for a large text. Yet the size of 1,000,000 comfortably fits in the cache, and thus we avoid the caching issue. In general, any searching algorithm for patterns of length less than 4MB would fit in the cache if appropriately constructed in the manner of \[4\]. Therefore our decision gives as accurate a solution as possible.

We ran patterns of lengths $m = 32, 64, 128, 256, 512, \text{ and } 1024$. The alphabet sizes tested were $|\Sigma| = 2, 4, 6, 8, 10, 20, 40, 80, 160, 320$. For each size, 10 tests were run, for a total of 600 tests.

\[5\]
Methodology: We generated a uniformly random text of length 1,000,000. If the pattern would also be randomly generated, then it would be unlikely to appear in the text. However, when seeking a pattern in the text, one assumes that the pattern occurs in the text. An example would be searching for a sequence in the DNA. When seeking a sequence, one expects to find it but just does not know where. Additionally, we considered the common case where one does not expect many occurrences of the pattern in the text. Consequently, we planted 100 occurrences of the pattern in the text at uniformly random locations. The final text length was always 1,000,000. The reason for inserting 100 pattern occurrences is the following. We do not expect many occurrences, and a 100 occurrences in a million-length text means that less than 0.1% of the text has pattern occurrences. On the other hand, it is sufficient to introduce the option of actually following all elements of the pattern 100 times. This would make a difference in both algorithms. They would both work faster if there were no occurrences at all.

We also implemented a variation where half of the pattern occurrences were in the last quarter of the text. For each alphabet size and pattern length we generated 10 tests and considered the average result of all 10 tests. It should be noted that from a theoretical point of view, the location of the pattern should not make a difference. We tested the different options in order to verify that this is, indeed, the case.

5.1 Exact Matching

5.1.1 Results

Tables 1 and 2 in the Appendix show the alphabet size, the pattern length, the average of the running times of the naive algorithm for the 10 tests, the average of the running time of the KMP algorithm for the 10 tests, and the ratio of the naive algorithm running time over the KMP algorithm running time. Any ratio value below 1 means that the naive algorithm is faster. A small value indicates a better performance of the naive algorithm. Any value above 1 indicates that the KMP algorithm is faster than the naive algorithm. The larger the number, the better the performance.

To enable a clearer understanding of the results, we present them below in graph form. The following graphs show the results of our tests for the different pattern lengths. In Figs. 2 and 3, the x-axis is the pattern size. The y-axis is the ratio of the naive algorithm running time to the KMP algorithm running time. The different colors depict alphabet sizes. In Fig. 2, the patterns were inserted at random, whereas in Fig. 4 the patterns appear at the last half of the text.

To better see the effect of the pattern distribution in the text, Fig. 4 maps, on the same graph, both cases. In this graph, the x-axis is the average running time of all pattern lengths per alphabet size, and the y-axis is the ratio of the naive algorithm running time to the KMP algorithm running time. The results of the uniformly random distribution are mapped in one color, and the results of all pattern occurrences in the last half of the text are mapped in another.

We note the following phenomena:

1. The naive algorithm performs better than the automaton algorithm. Of the 600 tests we ran, there were only 3 instances where the KMP algorithm performed better than the naive, and all were subsumed by the average. In the vast majority of cases the naive algorithm was superior by far.

2. The naive algorithm performs relatively better for larger alphabets.

3. For a fixed alphabet size, there is a slight increase in the naive/KMP ratio, as the pattern length increases.

4. The distribution of the pattern occurrences in the text does not seem to make a change in performance.

An analysis of these implementation behaviors appears in the next subsection.
5.1.2 Analysis

We analyse all four results noted above.

Better Performance of the Naive Algorithm

We have seen that the mean number of comparisons of the naive algorithm for binary alphabets is bounded by

\[n \sum_{i=1}^{m} \frac{i}{2^i} \]

which is bounded by \(2n\) comparisons.

The running time of the KMP algorithm is also bounded by \(O(2n)\). However, the control of the KMP algorithm is more complex than that of the naive algorithm, which would indicate a constant ratio in favor of the naive algorithm. However, when the KMP algorithm encounters a mismatch it follows the failure link, which avoids the need to re-check a larger substring. Thus, for longer length patterns, where there are more possibilities of following the failure links for longer distances, there is a lessening advantage of the naive algorithm.

Better Performance of the Naive Algorithm for Larger Alphabets

This is fairly clear when we realize that the mean performance of the naive algorithm for alphabet of size \(k\) is:

\[n \sum_{i=1}^{m} \frac{i}{k^i} = n \frac{k}{(k-1)^2} \] comparisons.

This is clearly decreasing the larger the alphabet size. However, the repetitive traversal of the failure link, even in cases where there is no equality in the comparison check, will still raise the relative running time of the KMP algorithm. Here too, the longer the pattern length, the more failure link traversals of the KMP, and thus less overall comparisons, which slightly decreases the advantage of the naive algorithm.

The Distribution of Pattern Occurrences in the Text

If the pattern is not periodic, and if the patterns are not too frequent in the text, then there will be at most one pattern in a text substring of length \(2m\). In these circumstances, there is really no effect to the distribution of the pattern in the text. We would expect a difference if the pattern is long with a small
5.1.3 A Very Structured Example

All previous analyses point to the conviction that the more times a prefix of the pattern appears in the text, and the more periodic the pattern, the better will be the performance of the KMP algorithm. The most extreme case would be of text A^n (A concatenated n times), and pattern $A^{m-1}B$. Indeed the results of this case appear in Fig. 5.

Theoretical analysis of the naive algorithm predicts that we will have nm comparisons, where n is the text length and m is the pattern length. The KMP algorithm will have $2n$ comparisons, for any pattern length. Thus the ratio q of naive to KMP will be $O(m^2)$. In fact, when we plot $\frac{n}{q}$ we get twice the cost of the control of the KMP algorithm. This can be seen in Fig. 5 to be 5.

5.2 Parameterized Matching

5.2.1 Results

The exact matching results behaved roughly in the manner we expected. The surprise came in the parameterized matching case. Below are the results of our tests. As in the exact matching case, the tables show the alphabet size, the pattern length, the average of the running times of the naive algorithm for the 10 tests, the average of the running time of the automaton-based algorithm for the 10 tests, and the ratio q of the naive algorithm running time over the automaton-based algorithm running time. Any ratio value above 1 means that the automaton-based algorithm is faster. A large value indicates a better performance of the automaton-based algorithm.

The following graphs show the results of our tests for the different pattern lengths. The x-axis is the pattern size. The y-axis is the ratio of the naive algorithm running time to the automaton-based algorithm running time. The different colors depict alphabet sizes. To better see the effect of the pattern distribution in the text, we also map, on the same graph, both cases. In this graph, the x-axis is the average running time of
all pattern lengths per alphabet size, and the y-axis is the ratio of the naive algorithm running time to the automaton-based algorithm running time. The results of the uniformly random distribution are mapped in one color, and the results of all pattern occurrences in the last half of the text are mapped in another.

The parameterized matching results appear in tables 3 and 4 in the appendix. Figs. 6 and 7 map the results of the parameterized matching comparisons for the case where the patterns were inserted at random vs. the case where the patterns appear at the last half of the text. In Fig. 8, we map at the same graph the average results of both the cases where the patterns appear at the text uniformly at random, and where the patterns appear at the last half of the text.

The results are very different from the exact matching case. We note the following phenomena:

1. The automaton-based algorithm **always performs significantly better** than the naive algorithm.
2. The automaton-based algorithm performs relatively better for larger alphabets.
3. For a fixed alphabet size, the pattern length does not seem to make much difference.
4. The distribution of the pattern occurrences in the text does not seem to make a change in performance.

An analysis of these implementation behaviors and an explanation of the seemingly opposite results from the exact matching case appear in the next subsection.

5.2.2 Analysis

We analyse all four results noted above.

Better Performance of the Automaton-based Algorithm

We have established that the mean number of comparisons for the naive algorithm in size \(k \) alphabet is

\[
 n \sum_{i=1}^{m} \frac{i}{k^i} = n \frac{k}{(k - 1)^2}
\]

comparisons.

However, when it comes to parameterized matching, any order of the alphabet symbols is a match, thus the mean number of comparisons is to be multiplied by \(k! \). Therefore, for size 2 alphabet we get \(4n \) comparisons, and the number rises exponentially with the alphabet size. Also, the automaton-based algorithms is constant at \(2n \) comparisons. Even for a size 2 alphabet, there is twice the number of comparisons in the naive algorithm than in the automaton-based algorithm. Note, also, that because of the need to find the last parameterized match, the control mechanism even of the naive algorithm, is more complex. This results in a superior performance of the automaton-based algorithm even for small alphabets. Of course, the larger the alphabet, the better the performance of the automaton-based algorithm.

Pattern Length

The pattern length does not play a role in the automaton-based algorithm, where the number of comparisons is always bounded by \(2n \). In the naive case, the multiplication of the factorial of the alphabet size is so overwhelming that it dominates the pattern length. For example, note that for an extremely large alphabet, there would be a leading prefix of different alphabet symbols. That prefix will always be traversed by the naive algorithm. The larger the alphabet, the longer will be the mean length of that prefix.
Pattern Distribution

As in the exact matching case, for a non-periodic pattern that does not appear too many times, the distribution of occurrences will have no effect on the complexity.

6 DNA Data

Having understood the behavior of the naive algorithm and the automaton-based algorithm in randomly generated texts, the natural question is are there any “real” texts for which the naive algorithm performs better than the automaton-based algorithm.

We performed the same experiments on DNA data. The experimental setting was identical to that of the randomly generated texts with the following differences:

1. The DNA of the fruit fly, *Drosophila melanogaster* is 143.7 MB long. We extracted 60 subsequences of length 1,000,000 each, as FASTA data from the NIH National Library of Medicine, National Center for Biotechnology Information. We ran 10 tests on each of the six pattern lengths 32, 64, 128, 256, 512, 1024.

2. The alphabet size is 4, due to the four bases in DNA sequence.

Figs. 9 and 10 below show the ratio between the average running time of the naive algorithm and the automaton based algorithm. As in the uniformly random text we see that for the exact matching case the ratio is less than 1, i.e., the naive algorithm is faster, whereas in the parameterized matching case, the ratio is more than 1, indicating that the automaton based algorithm is faster.
7 Conclusions

The folk wisdom has always been that the naive string matching algorithm will outperform the automaton-based algorithm for uniformly random texts. Indeed this turns out to be the case for exact matching. This study shows that this is not the case for parameterized matching, where the automaton-based algorithm always outperforms the naive algorithm. This advantage is clear and is impressively better the larger the alphabets. The same result is true for searches over DNA data.

The conclusion to take away from this study is that one should not automatically assume that the naive string matching algorithm is better. The matching relation should be analysed. There are various matchings for which an automaton-based algorithm exists. We considered here parameterized matching, but other matchings, such as ordered matching [12, 14, 19], or Cartesian tree matching [21, 22, 23], can also be solved by automaton-based methods. In a practical application it is worthwhile spending some time considering the type of matching one is using. It may turn out to be that the automaton-based algorithm will perform significantly better than the naive, even for uniformly random texts. Alternately, even non-uniformly random data may be such that the naive algorithm performs better than the automaton based algorithm for exact matching.

An open problem is to compare the search time in DNA data to the search time in uniformly random data. While it is clear that DNA data is not uniformly random, it would be interesting to devise an experimental setting to compare search efficiency in both types of strings.

References

[1] A. Amir, A. Aumann, M. Lewenstein, and E. Porat. Function matching. SIAM Journal on Computing, 35(5):1007–1022, 2006.

[2] A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two dimensional pattern matching. SIAM J. Comp., 23(2):313–323, 1994.

[3] A. Amir, K. W. Church, and E. Dar. Separable attributes: a technique for solving the submatrices character count problem. In Proc. 13th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 400–401, 2002.
Figure 9: Performance in the Exact Matching case on DNA sequences.

[4] A. Amir and M. Farach. Efficient 2-dimensional approximate matching of half-rectangular figures. Information and Computation, 118(1):1–11, April 1995.

[5] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parameterized matching. Information Processing Letters, 49:111–115, 1994.

[6] A. Amir and I. Nor. Generalized function matching. J. of Discrete Algorithms, 5(3):514–523, 2007.

[7] A. Apostolico and Z. Galil (editors). Pattern Matching Algorithms. Oxford University Press, 1997.

[8] A. Apostolico, M. Lewenstein, and P. Erdős. Parameterized matching with mismatches. Journal of Discrete Algorithms, 5(1):135–140, 2007.

[9] G.P. Babu, B.M. Mehtre, and M.S. Kankanhalli. Color indexing for efficient image retrieval. Multimedia Tools and Applications, 1(4):327–348, Nov. 1995.

[10] B. S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of Computer and System Sciences, 52(1):28–42, 1996.

[11] B. S. Baker. Parameterized duplication in strings: Algorithms and an application to software maintenance. SIAM Journal on Computing, 26(5):1343–1362, 1997.

[12] S. Cho, J. C. Na, K. Park, and J. S. Sim. Fast order-preserving pattern matching. In Proc. 7th conf. Combinatorial Optimization and Applications COCOA, volume 8287 of Lecture Notes in Computer Science, pages 295–305. Springer, 2013.

[13] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge University Press, 2007.

[14] M. Crochemore, C.S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S.P. Pissis, J. Radoszewski, W. Rytter, and T. Walen. Order-preserving incomplete suffix trees and order-preserving indexes. In Proc. 20th International Symposium on String Processing and Information Retrieval (SPIRE), volume 8214 of LNCS, pages 84–95. Springer, 2013.

[15] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[16] M.J. Fischer and M.S. Paterson. String matching and other products. Complexity of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113–125, 1974.
Figure 10: Performance in the Parameterized Matching case on DNA Sequences.

[17] C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized matching. In Proc. 12th Annual European Symposium on Algorithms (ESA 2004), pages 414–425, 2004.

[18] R.M. Idury and A.A Schäffer. Multiple matching of parameterized patterns. In Proc. 5th Combinatorial Pattern Matching (CPM), volume 807 of LNCS, pages 226–239. Springer-Verlag, 1994.

[19] J. Kim, A. Amir, J.C. Na, K. Park, and J.S. Sim. On representations of ternary order relations in numeric strings. In Proc. 2nd International Conference on Algorithms for Big Data (ICABD), volume 1146 of CEUR Workshop Proceedings, pages 46–52, 2014.

[20] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comp., 6:323–350, 1977.

[21] S. G. Park, A. Amir, G. M. Landau, and K. Park. Cartesian Tree Matching and Indexing. In Nadia Pisanti and Solon P. Pissis, editors, Proc. 30th Symposium on Combinatorial Pattern Matching (CPM), volume 128 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:14, 2019.

[22] S. G. Park, M. Bataa, A. Amir, G. M. Landau, and K. Park. Finding patterns and periods in cartesian tree matching. Theor. Comput. Sci., 845:181–197, 2020.

[23] S. Song, G. Gu, C. Ryu, S. Faro, T. Lecroq, and K. Park. Fast algorithms for single and multiple pattern cartesian tree matching. Theor. Comput. Sci., 849:47–63, 2021.

[24] M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1):11–32, 1991.
Appendix

	patt. length	Naive	KMP	$\frac{Naive}{KMP}$		patt. length	Naive	KMP	$\frac{Naive}{KMP}$
2	32	4514.1	6712.5	0.6623	32	3174.2	5409.9	0.5879	
	64	4493.9	6727.8	0.6623	64	3167.8	5428.3	0.5818	
	128	4697.3	6764.3	0.693	128	3136.8	5293.0	0.5917	
	256	4522.9	6814.2	0.6666	256	3109.7	5228.2	0.5942	
	512	4764.7	6734.7	0.7051	512	3108.8	5110.5	0.608	
	1024	4521.4	6188.7	0.7304	1024	3141.1	4928.7	0.6368	

6	32	2225.1	4331.2	0.5139	32	1771.8	3903.4	0.4553
	64	2199.2	4263.2	0.5157	64	1794.5	3852.4	0.4659
	128	2180.9	4270.6	0.5108	128	1764.0	3789.7	0.4654
	256	2169.2	4201.4	0.5163	256	1766.5	3798.4	0.4652
	512	2193.2	4128.4	0.5314	512	1771.9	3670.6	0.4827
	1024	2238.7	4110.1	0.5455	1024	1827.3	3596.6	0.5085

10	32	1593.1	3598.9	0.4427	32	1312.0	3309.2	0.396
	64	1578.3	3586.4	0.44	64	1428.6	3297.7	0.4269
	128	1564.8	3563.9	0.4391	128	1252.7	3264.9	0.3817
	256	1594.5	3531.6	0.4516	256	1187.4	3161.3	0.375
	512	1554.3	3626.0	0.4317	512	1281.7	3166.8	0.4
	1024	1892.5	3380.0	0.5619	1024	1274.6	2923.1	0.4347

40	32	943.9	2846.7	0.3316	32	898.1	2758.7	0.3242
	64	964.3	2869.3	0.3358	64	938.4	2777.9	0.335
	128	972.5	2852.5	0.3401	128	946.7	2824.5	0.3336
	256	952.6	2835.3	0.3363	256	875.9	2709.0	0.323
	512	975.4	2769.0	0.3523	512	875.8	2635.9	0.3302
	1024	970.5	2655.4	0.3655	1024	899.6	2605.0	0.346

160	32	810.9	2686.1	0.302	32	790.3	2712.0	0.2916
	64	794.0	2733.1	0.2918	64	833.4	2711.1	0.3074
	128	922.2	2771.1	0.3281	128	803.3	2676.3	0.3005
	256	899.2	2700.6	0.3285	256	782.2	2743.0	0.2877
	512	897.8	2635.6	0.3374	512	875.5	2690.4	0.3269
	1024	861.6	2534.9	0.3399	1024	883.8	2563.6	0.3427

Table 1: Implementation Results - Exact Matching, patterns uniformly distributed.
patt. length	Naive	KMP	Naive	KMP		patt. length	Naive	KMP	Naive	KMP
-------------	-------	-----	-------	-----						
2			6931.1	0.6649	32	3091.7	5362.9	0.5759		
64	4570.1	6695.7	0.6824	64	3203.2	5499.5	0.5819			
128	4462.8	7002.2	0.667	128	3190.4	5373.6	0.5933			
256	4441.5	6644.9	0.6692	256	3200.3	5413.1	0.5924			
512	4786.4	6441.1	0.744	512	3305.2	5340.0	0.6176			
1024	4493.8	6360.6	0.7105	1024	3322.4	5125.8	0.6469			
32	2374.7	4683.6	0.509	32	1836.3	3978.1	0.4616			
64	2336.6	4586.8	0.5093	64	1804.2	3930.2	0.4589			
128	2467.1	4597.0	0.534	128	1816.9	3908.6	0.465			
256	2350.4	4453.1	0.5274	256	1802.8	3875.2	0.4655			
512	2306.2	4447.2	0.5243	512	1792.0	3832.8	0.4684			
1024	2411.2	4302.9	0.5597	1024	1889.1	3640.7	0.5183			
32	1741.8	3762.0	0.4608	32	1242.4	3173.7	0.3916			
64	1719.8	3772.8	0.4528	64	1173.5	3251.9	0.3615			
128	1616.5	3800.2	0.4264	128	1286.4	3302.4	0.3847			
256	1685.1	3814.7	0.4424	256	1334.3	3234.5	0.411			
512	1774.0	3724.7	0.4737	512	1231.7	3090.4	0.399			
1024	1727.8	3484.3	0.4922	1024	1263.8	3031.5	0.4168			
32	1108.6	3048.3	0.3606	32	867.4	2912.6	0.2988			
64	1014.5	3084.3	0.3283	64	941.2	2912.8	0.3248			
128	1142.9	3210.4	0.3533	128	1023.5	2872.7	0.3546			
256	1026.3	3005.2	0.3413	256	1005.4	2949.3	0.3397			
512	1503.7	2930.9	0.5205	512	956.0	2852.1	0.355			
1024	1170.1	2926.9	0.3951	1024	954.3	2701.8	0.3532			
32	981.8	2855.0	0.3393	32	769.6	2662.8	0.2894			
64	863.6	2818.4	0.3061	64	771.8	2681.5	0.2882			
128	908.6	2842.8	0.3178	128	799.5	2627.0	0.304			
256	851.2	2796.4	0.3047	256	917.9	2722.0	0.3345			
512	909.6	2917.1	0.313	512	967.3	2757.1	0.3455			
1024	1174.9	2815.9	0.4093	1024	951.2	2601.3	0.3604			

Table 2: Implementation Results - Exact Matching, patterns at end.
patt. length	Naive	KMP	KMP Naive
32	25738.0	6871.8	3.7655
64	25996.5	6761.4	3.893
128	26080.5	6780.8	3.871
256	26269.7	6688.6	3.934
512	2604.0	6440.3	4.056
1024	26456.0	6277.9	4.2167

patt. length	Naive	KMP	KMP Naive
2	26104.6	7489.6	3.5351
4	26734.4	7538.6	3.5998
64	26281.4	7370.8	3.6136
64	26104.6	7489.6	3.5351
8	26198.2	7099.7	4.0304
128	26104.6	7489.6	3.5351
256	26305.4	7299.7	3.9123
512	26104.6	7489.6	3.5351
256	26104.6	7489.6	3.5351
1024	26104.6	7489.6	3.5351

Table 3: Implementation Results - Parameterized Matching, patterns uniformly distributed.
patt. length	Naive	KMP	Naive	KMP	patt. length	Naive	KMP	Naive	KMP
32	26063.4	6801.4	3.8439		32	26616.5	7505.3	3.61	
64	26285.3	6878.0	3.828		64	26571.7	7443.4	3.6226	
128	26053.8	7047.4	3.7047		128	26385.6	7829.9	3.4449	
256	26612.5	6671.7	3.996		256	26236.1	7649.5	3.4807	
512	26501.7	6764.8	3.9329		512	26600.5	7356.9	3.6748	
1024	26397.8	6506.4	4.0685		1024	26676.7	7038.6	3.8591	
32	26312.4	7071.4	3.828		32	27246.5	7421.6	3.8491	
64	26733.2	6924.6	3.9976		64	27046.1	7185.0	3.9748	
128	26470.1	7067.1	3.8636		128	27117.6	7170.1	4.009	
256	26346.3	6701.1	4.0218		256	27154.8	7089.7	4.04	
512	26610.6	6682.2	4.117		512	26901.8	6998.0	4.0791	
1024	26632.3	6399.8	4.2563		1024	27227.5	6667.8	4.2963	
32	29612.8	7759.5	3.9578		32	29588.6	6153.9	5.0995	
64	28948.9	7748.2	3.8873		64	29393.4	6010.3	5.1754	
128	29305.1	7925.5	3.829		128	29498.7	6312.8	4.8688	
256	29457.3	7619.7	4.0189		256	29659.5	5966.3	5.1945	
512	29650.7	7836.9	3.9754		512	29067.8	5802.3	5.226	
1024	30742.0	7421.5	4.3099		1024	28922.4	5455.1	5.5624	
32	34179.7	5577.9	6.2968		32	41534.5	5441.2	7.6963	
64	34385.3	5723.2	6.2199		64	41907.7	5373.0	7.8299	
128	34951.8	5758.1	6.1685		128	41709.3	5474.4	7.6894	
256	36703.8	6033.8	6.216		256	41900.3	5211.0	8.1372	
512	37417.4	5828.4	6.7656		512	41753.4	5196.7	8.1023	
1024	35190.1	5488.2	6.5708		1024	43312.9	5074.3	8.5567	
32	52173.125	4773.875	10.9192		32	67440.5	3981.8	16.8561	
64	54173.0	5176.9	10.4658		64	71874.8	4294.4	16.7108	
128	56313.9	5032.4	11.1442		128	72359.4	4315.2	16.725	
256	54897.4	5257.0	10.433		256	72268.3	4179.1	17.2654	
512	55123.0	5025.2	11.0268		512	72729.5	4234.7	17.1366	
1024	55603.0	4915.0	11.26		1024	73777.8	4152.8	17.7372	

Table 4: Implementation Results - Parameterized Matching, patterns at end.