Table S1. Equation about model-based weight probability scores for LMA sizes

Age	Size	Gender	Formula
Adults	3	Male	$e^{1.497-0.312w} + \frac{1}{1 + e^{14.977-0.312w} + e^{10.46-0.153w} + e^{-16.184+0.123w}}$
	3	Female	$e^{0.456-0.235w} + \frac{1}{1 + e^{8.46-0.235w} + e^{-11.053+0.189w}}$
	4	Male	$e^{10.46-0.153w} + \frac{1}{1 + e^{14.977-0.312w} + e^{10.46-0.153w} + e^{-16.184+0.123w}}$
	4	Female	$\frac{1}{1 + e^{10.46-0.153w} + e^{-15.053+0.189w}}$
	5	Male	$\frac{1}{1 + e^{14.977-0.312w} + e^{10.46-0.153w} + e^{-16.184+0.123w}}$
	5	Female	$e^{-15.053+0.189w} + \frac{1}{1 + e^{14.977-0.312w} + e^{15.053+0.189w}}$
	6	Male	$e^{-10.184+0.123w} + \frac{1}{1 + e^{14.977-0.312w} + e^{0.46-0.153w} + e^{-16.184+0.123w}}$
	6	Female	$\frac{1}{1 + e^{14.977-0.312w} + e^{10.46-0.153w} + e^{-16.184+0.123w}}$
Adolescents	2.5	Male	$e^{24.597-0.688w} + \frac{1}{1 + e^{24.597-0.688w} + e^{12.948-0.267w} + e^{-10.291+0.139w}}$
	2.5	Female	$e^{24.597-0.688w} + \frac{1}{1 + e^{24.597-0.688w} + e^{12.948-0.267w} + e^{-10.291+0.139w}}$
	3	Male	$e^{12.948-0.267w} + \frac{1}{1 + e^{24.597-0.688w} + e^{12.948-0.267w} + e^{-10.291+0.139w}}$
	3	Female	$\frac{1}{1 + e^{12.948-0.267w} + e^{10.291-0.139w}}$
	4	Male	$\frac{1}{1 + e^{24.597-0.688w} + e^{12.948-0.267w} + e^{-10.291+0.139w}}$
	4	Female	$\frac{1}{1 + e^{12.948-0.267w} + e^{10.291-0.139w}}$
	5	Male	$e^{-10.291+0.139w} + \frac{1}{1 + e^{24.597-0.688w} + e^{12.948-0.267w} + e^{-10.291+0.139w}}$
	5	Female	$\frac{1}{1 + e^{24.597-0.688w} + e^{12.948-0.267w} + e^{-10.291+0.139w}}$
Children	1.5	Male	$e^{7.782-0.803w} + \frac{1}{1 + e^{7.782-0.803w} + e^{-12.193+0.618w} + e^{-23.526+0.981w}}$
	1.5	Female	$\frac{1}{1 + e^{7.782-0.803w} + e^{-12.193+0.618w} + e^{-23.526+0.981w}}$
	2	Male	$\frac{1}{1 + e^{7.782-0.803w} + e^{-12.193+0.618w} + e^{-23.526+0.981w}}$
	2	Female	$\frac{1}{1 + e^{7.782-0.803w} + e^{-12.193+0.618w} + e^{-23.526+0.981w}}$
	2.5	Male	$e^{-12.193+0.618w} + \frac{1}{1 + e^{7.782-0.803w} + e^{-12.193+0.618w} + e^{-23.526+0.981w}}$
	2.5	Female	$\frac{1}{1 + e^{7.782-0.803w} + e^{-12.193+0.618w} + e^{-23.526+0.981w}}$
	3	Male	$e^{-12.193+0.618w} + \frac{1}{1 + e^{7.782-0.803w} + e^{-12.193+0.618w} + e^{-23.526+0.981w}}$
	3	Female	$\frac{1}{1 + e^{7.782-0.803w} + e^{-12.193+0.618w} + e^{-23.526+0.981w}}$

"w" represents weight in the above table. We used "mlogit" in STATA software to calculate the coefficient for the multi-nominal logistic regression model.