Abstract

One key task of fine-grained sentiment analysis on reviews is to extract aspects or features that users have expressed opinions on. This paper focuses on supervised aspect extraction using a modified CNN called controlled CNN (Ctrl). The modified CNN has two types of control modules. Through asynchronous parameter updating, it prevents over-fitting and boosts CNN’s performance significantly. This model achieves state-of-the-art results on standard aspect extraction datasets. To the best of our knowledge, this is the first paper to apply control modules to aspect extraction.

1 Introduction

Aspect extraction is an important task in sentiment analysis (Hu and Liu, 2004) and has many applications (Pang and Lee, 2008; Liu, 2012; Cambria and Hussain, 2012). It aims to extract opinion targets (or aspects) from opinion text. In reviews, aspects are attributes or features of opinion targets. For example, from “The screen is great” in a laptop review, it aims to extract “screen”.

Aspect extraction has been performed using supervised and unsupervised approaches. Since this work focuses on supervised learning, for existing unsupervised approaches, see (Liu, 2012). Traditionally, supervised approaches (Jakob and Gurevych, 2010; Mitchell et al., 2013) use Conditional Random Fields (CRF) (Lafferty et al., 2001). Recently, deep networks have also been applied, for example, using LSTM (Williams and Zipser, 1989; Hochreiter and Schmidhuber, 1997; Liu et al., 2015) and attention mechanism (Wang et al., 2017; He et al., 2017) together with manual features (Poria et al., 2016; Wang et al., 2016).

More recently, a simple CNN model called DE-CNN (Xu et al., 2018) achieved state-of-the-art performances on aspect extraction by leveraging a double embedding mechanism. Besides using general-purpose embeddings (e.g., GloVe embeddings), DE-CNN also uses domain-specific embeddings to boost its performance without using any manual feature.

In this paper, we use DE-CNN as a base model. We notice that in traditional CNN model training process, all CNN layers are updated together (synchronously) through back-propagation. They easily over-fit the training dataset though validation dataset used for deciding the best parameters’ values. Inspired by a recent work called Deep Adaption Network (DAN) (Rosenfeld and Tsotsos, 2017), we design two kinds of control modules to adjust the input of each CNN layer. Although DAN is for incremental learning (continually adapt a model for new tasks without losing performance on previous tasks), we observe that by asynchronously updating control modules and CNN layers, it can boost the performance of a single task, too. The critical point is that we do not train all parameters at the same time. Instead, we optimize CNN layers when we fix control modules’ parameters. The control modules work as adding noise on each CNN layer’s input. This makes the training little harder and ensures the whole model does not fully fit the training data. After that, we optimize control modules by fixing CNN layers’ parameters. Since CNN layers’ parameters is optimized on noisy input, in this step, the whole model does not easily over-fit training data as well. In every step (fixing control modules or fixing CNN layers), we track the best validation model and make the next step training start with this best validation model. Once the best validation score does not change after several steps, the whole asynchronous-updating training process stops.
To achieve better efficiency, we propose two kinds of control modules: Embedding Control Module and CNN Control Module. The former is applied after the embedding layer, and the later is applied between two adjacent CNN layers. Using these control modules and asynchronously updating control modules and CNN layers prevent over-fitting. The experiment results show that this idea is promising. To the best of our knowledge, this is the first paper that incorporates control modules and asynchronously updating.

2 Related Work

CNN (LeCun et al., 1995; Kim, 2014; Du et al., 2017) is recently adopted for machine translation (Gehring et al., 2017), named entity recognition (Kalchbrenner et al., 2014; Chiu and Nichols, 2015; Ma and Hovy, 2016; Strubell et al., 2017), sentiment analysis (Poria et al., 2016; Chen et al., 2017) and aspect extraction (Xu et al., 2018). We do not purely use CNN but propose control modules to boost the performance of CNN.

DAN (Rosenfeld and Tsotsos, 2017) solves incremental learning problem by (1) training a base CNN network on the initial task, (2) encountering a new task, train on the square linear transformations of the base CNN layer to utilize base CNN network for the new task and also maintain base CNN’s performance for the initial task. Residual network (He et al., 2016) solves gradient vanishing problem on a very deep neural network by providing high-way bridges between CNN layers. We do not solve incremental/transfer learning nor gradient vanishing problems. We do asynchronous parameter update to prevent over-fitting and make the only one task better.

3 Model

The proposed model is depicted in Table 1. It has a double embedding (Xu et al., 2018) layer (we later use embedding layer for simplicity), multiple CNN layers, multiple control modules, and a fully-connected+softmax layer. Note that we keep the architecture of (Xu et al., 2018) and only add control modules. We apply control modules after the embedding layer and each CNN layer, except the last CNN layer.

We propose two kinds of control modules. **Embedding Control Module** As shown in Figure 1, embedding control module adds the input and the transformed input via a square matrix together. The purpose of using this control module is to keep the original embedding and meanwhile slightly adjust the representation of the embedding.

Assume the input is a sequence of word indexes \(x = (x_1, \ldots, x_n) \). Let \(x^{(1)} \) denote the output from the embedding layer. The controlled output from the embedding layer is:

\[
 z^{(1)} = (w_{emb}^{(1)} x^{(1)} + b_{emb}^{(1)}) + x^{(1)},
\]

where \(w_{emb}^{(1)} \) and \(b_{emb}^{(1)} \) are trainable weights.

CNN Control Module As shown in Figure 2, CNN control module has a bow tie structure. The size of the hidden dimensions is first reduced and later expanded. We use \(\tanh(.) \) as the intermediate activation function. To avoid over-fitting, we also apply dropout after this activation function. This bow tie structure can help to strengthen important information from each CNN’s output. The expanded output is also added to the output of CNN to keep the original representation with a slight adjustment. Finally, ReLU activation is applied to ensure the output is greater than or equal to 0.

Specifically, let \(x^{(l)} \) denote the output of the

Table 1: Network layers and parameters. CNN: \((\text{filter_size}, \text{in_dim}, \text{kernel_size})\), Others: \((\text{in_dim}, \text{out_dim})\) or \((\text{out_dim})\)

\(l\)	Type	Parameter Size
1	Emb	(vocab_size,300) (vocab_size,100)
1	Emb Ctrl	(400, 400)(400,)
2	CNN	(128, 400, 3)(128,) (128, 400, 5)(128,)
2	CNN Ctrl	(256, 128)(128,) (128, 256)(256,)
3	CNN	(256, 256, 5)(256,)
3	CNN Ctrl	(256, 128)(128,) (128, 256)(256,)
4	CNN	(256, 256, 5)(256,)
4	CNN Ctrl	(256, 128)(128,) (128, 256)(256,)
5	CNN	(256, 256, 5)(256,)
6	Linear	(256, 3) (3,)

Figure 1: Embedding Control Module

Figure 2: CNN Control Module
$(l - 1)$-th CNN layer (first layer is embedding layer). The output $z^{(l)}$ of the CNN control module is computed as:

$$z^{(l)} = \max \left(0, x^{(l)} + \left(w^{(l)}_{\text{exp}} \tanh \left(w^{(l)}_{\text{red}} x^{(l)} + b^{(l)}_{\text{red}} \right) + b^{(l)}_{\text{exp}} \right) \right),$$

(2)

where $w^{(l)}_{\text{exp}}, w^{(l)}_{\text{red}}, b^{(l)}_{\text{red}}$ and $b^{(l)}_{\text{exp}}$ are trainable weights.

Further, we let $\Theta_{\text{cnn}}, \Theta_{\text{ctrl}}, \Theta_{\text{fc}}$ denote the trainable parameters in CNN layers, control layers and the final fully connected layer, respectively. We define the asynchronous training as follows. At every step, the model is initialized to the previous step’s best validation model and save the best validation model during training.

Step (1) fix $\Theta_{\text{ctrl}}, \Theta_{\text{fc}}$, and tune on Θ_{cnn}.

Step (2) fix Θ_{cnn}, and tune on $\Theta_{\text{ctrl}}, \Theta_{\text{fc}}$.

Repeat step (1) and step (2) until the best validation score does not change after several steps. In this way, CNN layers are trained when control modules are frozen, and the control modules are trained when the CNN layers are frozen.

For better comparing with state-of-the-art method DE-CNN (Xu et al., 2018), we keep the embedding and all CNN layers the same as DE-CNN. DE-CNN has a double embedding layer, 4 CNN layers, a fully-connected layer shared across all positions of the words, and a softmax layer over the labeling space $\mathcal{Y} = \{B(-\text{Aspect}), I(-\text{Aspect}), O(\text{other})\}$ for each position of inputs. For the first CNN layer, two different filter sizes are employed. For the rest 3 CNN layers, only one filter size is used. We apply dropout after the embedding layer and each ReLU activation. As the reason indicated by (Xu et al., 2018), the double embedding layer is frozen since the training data for aspect extraction is usually small. The embedding control module lies between the embedding layer and the first CNN layer. Three CNN control modules lie between any two adjacent CNN layers. Details are also in Table 1.

4 Experiment

We conduct experiments on two benchmark datasets from SemEval challenges (Pontiki et al., 2014, 2016), as shown in Table 2. The first
Datasets	Training Set	Testing Set
SemEval-14 Laptop | 3045/2358 | 800/654
SemEval-16 Restaurant | 2000/1743 | 676/622

Table 2: Datasets Statistics: number of sentences(Sent.) and number of aspects(Asp.)

	Laptop Dataset	Restaurant Dataset
CRF	74.01	69.56
IHS,RD	74.55	-
NLANGP	72.34	-
WDEmb	75.16	-
LSTM	75.71	70.35
BiLSTM-CNN-CRF	77.8	72.5
RNCRF	78.42	-
CMLA	77.80	-
MIN	77.58	73.44
THA & STN	79.52	73.61
BERT	77.19	71.52
DE-CNN	81.59	74.37
DAN-	78.28	70.43
DAN-	76.68	72.94
DAN	80.24	73.35
Ctrl-	79.47	71.15
Ctrl-	81.66	73.77
Ctrl	**82.73**	**75.64**

Table 3: Comparison results in F_1 score: results are averaged scores of 5 runs. *indicates the result is statistically significant at the level of 0.01.

4.1 Compared Methods

We perform a comparison of Ctrl with two groups of baselines. The results of the first group are non-CNN based methods. **CRF** is conditional random fields. **IHS,RD** (Chernyshevich, 2014) and **NLANGP** (Toh and Su, 2016) are the best systems from the original challenges (Pontiki et al., 2014, 2016). **WDEmb** (Yin et al., 2016) is enhanced CRF with multiple embeddings. **LSTM** (Liu et al., 2015; Li et al., 2018) is a BiLSTM implementation. **BiLSTM-CNN-CRF** (Reimers and Gurevych, 2017) is the state-of-the-art named entity recognition system. **BERT** (Devlin et al., 2018) fine-tunes pre-trained language model on aspect extraction tasks. The following methods use multi-task learning and opinion lexicon or human annotation are adopted for opinion supervision: **RNCRF** (Wang et al., 2016) is a recursive neural network and CRF jointed model for aspect and opinion terms co-extraction. **CMLA** (Wang et al., 2017) solves the co-extraction through a multi-layer coupled-attention network. **MIN** (Li and Lam, 2017) solves co-extraction, and discriminate sentimental/non-sentimental sentences. **THA & STN** (Li et al., 2018) uses opinion summary and aspect history to improve prediction.

The second group is a CNN-based method. **DE-CNN** (Xu et al., 2018) is a pure CNN-based sequence labeling model which utilizes double embedding. This is the base model that Ctrl is adapted from. We use this baseline to show the improvements from Ctrl. The remaining baselines use DE-CNN as the basic network and add an extra intermediate layer between layers in the basic network. **DAN** (Rosenfeld and Tsotsos, 2017) adopts linear transformation as control modules for a incremental learning method on image classification. **DAN-** tunes on all fully connected layers given frozen random-value CNN layers. **DAN** optimizes all parameters in fully connected layers and CNN layers together. **DAN-** gives random-value CNN layers (un-trainable), tunes on control modules and fully connected layers. **DAN** synchronously trains the control modules, CNN layers, and fully connected layer. **Ctrl** synchronously updates the control modules, CNN layers, and fully connected layer. **Ctrl** asynchronously updates parameters. These are variations of our model.

4.2 Results and Analysis

From Table 3, we can see that our model Ctrl performs the best. The variations of Ctrl always outperform that of DAN. It shows that a purely linear transformation is unable to produce noise and prevent over-fitting. Ctrl - -’s result shows the
adaptive ability of the control modules. Ctrl updates all parameters in the overall network synchronously, but under-performs DE-CNN though it has control modules. The reason is that in synchronous updating, control modules just make the overall network deeper. As in Figure 3, the first plot shows that Ctrl- and Ctrl can reach a similar training loss level and Ctrl- is faster. They have the same learning rate. It means that fixed control modules make the training harder. In the second plot, Ctrl-’s validation loss decreases and then increases. This is an apparent over-fitting signal. But, Ctrl’s validation loss tends flat even after several-steps training. From the last test-score plot, we can see that Ctrl has similar testing performance as Ctrl- in the first step training. In Ctrl’s second step training (between the first and second green lines), the test score continues improving. The results and plots show that through asynchronous updating, control modules can prevent over-fitting and improve CNN performance.

5 Conclusion

We propose to add two kinds of control modules for CNN-based aspect extraction model. Through asynchronous update, our model Ctrl outperforms state-of-the-art methods significantly.

References

Erik Cambria and Amir Hussain. 2012. Sentic Computing Techniques, Tools, and Applications 2nd Edition.

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang. 2017. Improving sentiment analysis via sentence type classification using bilstm-crf and cnn. Expert Systems with Applications, 72:221–230.

Maryna Chernyshevich. 2014. Ihs r&d belarus: Cross-domain extraction of product features using crf. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 309–313.

Jason PC Chiu and Eric Nichols. 2015. Named entity recognition with bidirectional lstm-cnns. arXiv preprint arXiv:1511.08308.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Jiachen Du, Lin Gui, Ruifeng Xu, and Yulan He. 2017. A convolutional attention model for text classification. In National CCF Conference on Natural Language Processing and Chinese Computing, pages 183–195. Springer.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. 2017. Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. 2017. An unsupervised neural attention model for aspect extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 388–397.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summarizing customer reviews. In KDD ’04, pages 168–177.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

John Lafferty, Andrew McCallum, and Fernando C Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML ’01, pages 282–289.

Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10):1995.

Xin Li, Lidong Bing, Piji Li, Wai Lam, and Zhimou Yang. 2018. Aspect term extraction with history attention and selective transformation. arXiv preprint arXiv:1805.00760.

Xin Li and Wai Lam. 2017. Deep multi-task learning for aspect term extraction with memory interaction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2886–2892.
Bing Liu. 2012. *Sentiment Analysis and Opinion Mining*. Morgan & Claypool Publishers.

Pengfei Liu, Shaqf Joty, and Helen Meng. 2015. Fine-grained opinion mining with recurrent neural networks and word embeddings. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 1433–1443.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional lstm-cnns-crf. *arXiv preprint arXiv:1603.01354*.

Margaret Mitchell, Jacqui Aguilar, Theresa Wilson, and Benjamin Van Durme. 2013. Open domain targeted sentiment. In *ACL ’13*, pages 1643–1654.

Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. *Found. Trends Inf. Retr.*, 2:1–135.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representation. In *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*, pages 1532–1543.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Al-Smadi Mohammad, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orphée De Clercq, et al. 2016. Semeval-2016 task 5: Aspect based sentiment analysis. In *Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016)*, pages 19–30.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou, Ion Androutsopoulos, and Suresh Manandhar. 2014. Semeval-2014 task 4: Aspect based sentiment analysis. In *Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)*, pages 27–35, Dublin, Ireland. Association for Computational Linguistics and Dublin City University.

Soujanya Poria, Erik Cambria, and Alexander Gelbukh. 2016. Aspect extraction for opinion mining with a deep convolutional neural network. *Knowledge-Based Systems*, 108:42–49.

Nils Reimers and Iryna Gurevych. 2017. Reporting score distributions makes a difference: Performance study of lstm-networks for sequence tagging. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 338–348.

Amir Rosenfeld and John K Tsotsos. 2017. Incremental learning through deep adaptation. *arXiv preprint arXiv:1705.04228*.

Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. 2017. Fast and accurate entity recognition with iterated dilated convolutions. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 2670–2680.

Zhiqiang Toh and Jian Su. 2016. Nlangp at semeval-2016 task 5: Improving aspect based sentiment analysis using neural network features. In *Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016)*, pages 282–288.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and Xiaokui Xiao. 2016. Recursive neural conditional random fields for aspect-based sentiment analysis. *arXiv preprint arXiv:1603.06679*.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and Xiaokui Xiao. 2017. Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In *AAAI*, pages 3316–3322.

Ronald J Williams and David Zipser. 1989. A learning algorithm for continually running fully recurrent networks. *Neural computation*, 1(2):270–280.

Hu Xu, Bing Liu, Lei Shu, and Philip S. Yu. 2018. Double embeddings and cnn-based sequence labeling for aspect extraction. In *ACL*.

Yichun Yin, Furu Wei, Li Dong, Kaimeng Xu, Ming Zhang, and Ming Zhou. 2016. Unsupervised word and dependency path embeddings for aspect term extraction. *arXiv preprint arXiv:1605.07843*.