φ-meson in Nuclear Matter

H. Kuwabara and T. Hatsuda

Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Abstract

φ-meson mass in nuclear matter (m_ϕ^*) is investigated using an effective Lagrangian of φ interacting with octet baryons. m_ϕ^* decreases by a few % in nuclear matter due to the current conservation and effective nucleon/hyperon masses. Its implication to the p-A and A-A collisions are briefly discussed.

Submitted to Prog. Theor. Phys.
In recent years, the effective meson masses in hadronic matter at finite density (ρ) and temperature (T) acquire wide interests both theoretically and experimentally (see the recent reviews, [1].) In particular, the ϕ-meson, which is a $\bar{s}s$ resonance in $J^{P} = 1^{-}$ channel with a narrow width ($m_\phi = 1019.4$ MeV and $\Gamma_\phi = 4.4$ MeV), is a unique probe for partial restoration of chiral symmetry in hot/dense hadronic matter [2, 3, 4]. Detection of ϕ through the decays $\phi \rightarrow K \bar{K}, e^+e^-, \mu^+\mu^-$ in nucleon-nucleon (A-A) and proton-nucleon (p-A) collisions could give experimental information on the spectral change of ϕ in matter: preliminary data on $\phi \rightarrow K^+K^-$ in $A-A$ collisions at AGS-BNL has been recently reported [5], and an experiment using p-A reactions is planned at KEK [6].

In this letter, we will report our recent study on the ϕ-meson mass in nuclear matter at zero T. Our starting point is an effective hadronic model composed of ϕ-meson, nucleon and hyperons. This is a generalization of the recent works by Shiomi and Hatsuda [7] and others [8, 9, 10] who studied the effect of nucleon-loops to the properties of rho and omega mesons in nuclear matter.

Let’s start with the vector coupling of ϕ with octet baryons ($B \equiv N, \Lambda_0, \Sigma^{\pm}, \Sigma^0$);

$$L_{\text{int}} = \sum_{B} g_{\phi B} \bar{B} \gamma_{\mu} B \phi^{\mu},$$ \hspace{1cm} (1)$$

where $g_{\phi B}$ being the ϕ-baryon coupling constant listed in Table 1.

Baryons	$g_{\sigma B}$	$g_{\omega B}$	$g_{\phi B}$
N	8.7	10.6	4.2*
Λ	5.2	6.9	2.3
Σ	5.2	6.9	2.3

Table1: $g_{\sigma B}$, $g_{\omega B}$ and $g_{\phi B}$ denote σ-B scalar coupling, ω-B vector coupling, and ϕ-B vector coupling, respectively. $g_{\sigma B}$ and $g_{\omega B}$ are taken from [12]. The number with * should be considered as an upper bound.

Some remarks are in order here: (i) $\phi - \Lambda$ and $\phi - \Sigma$ couplings do not break the OZI rule, since the quark lines at the vertices are connected. On the other hand, the $\phi - N$ coupling is OZI violating. (ii) Ξ is neglected, since its effect to the ϕ self-energy is doubly suppressed by the mass of Ξ and by the OZI violating nature of $\phi - \Xi$ coupling. (iii) If one relies on the quark counting rule [11], the ϕ-hyperon couplings are related to the ω-hyperon couplings as $g_{\phi \Lambda(\phi \Sigma)} = g_{\omega \Lambda(\phi \Sigma)}/3$.

2
with $g_{\omega \Lambda(\phi \Sigma)}$ being determined by the fit of the hypernuclear levels \[12\]. This is assumed in Table 1. (iv) ϕ-nucleon coupling, which is OZI violating, is not known experimentally. However, a study of the electromagnetic form-factors of the nucleon yields an upper bound of its strength \[13\]. Using the notation of ref.\[13\], $g_{\phi N}/g_{\omega N} = (\sin \epsilon + \cos \epsilon \tan \eta_1)/(\cos \epsilon - \sin \epsilon \tan \eta_1) \simeq \epsilon + \tan \eta_1 < 0.4$.

We will consider only the $N = Z$ non-strange nuclear matter in this letter. In this case, effects of the hyperons to the ϕ-meson self-energy arise only through hyperon–anti-hyperon loops. Effective masses of hyperons $M_{\Lambda, \Sigma}^*$ in nuclear matter give density dependence of the self-energy. Nucleon contribution to the self energy has both $N - \bar{N}$ loop (polarization of the Dirac sea) and the scattering with nucleons in nuclear matter (polarization of the Fermi sea) \[8\]. The one-loop self energy from hyperon and nucleon contributions reads

$$
\Pi_{\mu \nu}^B(\omega, q; \rho) = -i g_{\phi B}^2 \int \frac{d^4k}{(2\pi)^4} \text{Tr}[\gamma^\mu G(k + q)\gamma^\nu G(k)],
$$

where the four momentum of ϕ is $q^\mu = (\omega, q)$, “Tr” is for the Dirac indices, and $G(k)$ denotes baryon propagator in nuclear matter which depends on the effective mass of the nucleon and hyperons $M_{\Lambda, \Sigma}^*$ ($B = N, \Lambda, \Sigma$). (See \[7\] for the explicit form of $G(k)$.)

Although one can calculate the density dependence of M_B^* within the framework of quantum hadrodynamics (QHD) \[14\], we adopt the following forms to study correlations between M_B^* and m_ϕ^* in a qualitative manner:

$$
g_{\sigma \Lambda(\sigma \Sigma)}^*/g_{\sigma N} = (M_{\Lambda(\Sigma)}^* - M_{\Lambda(\Sigma)}^*)/(M_N^* - M_N^*)
$$

$$
M_N^*/M_N \simeq 1 - 0.15 \rho/\rho_0,
$$

where ρ_0 is the normal nuclear-matter density, and $g_{\sigma \Lambda(\sigma \Sigma)}$ and $g_{\sigma N}$ are given in Table 1. Eq.\(3\) is an universal relation in the relativistic mean field theory \[12\] and Eq.\(4\) is a standard parametrization for the the effective nucleon mass at $\rho < 2\rho_0$ \[3\]. In Fig. 1, effective masses of N, Λ and Σ parametrized by eqs. \(3, 4\) are shown as a function of baryon density.

The effective ϕ-meson mass m_ϕ^* at rest ($\omega \neq 0, q = 0$) is obtained as a solution of the dispersion relation

$$
\omega^2 - m_\phi^2 + \sum_B \tilde{\Pi}_B(\omega, 0; \rho) = 0,
$$

where $\tilde{\Pi}_B(\omega, 0; \rho) \equiv -\Pi_{B\mu}^{\mu}(\omega, 0; \rho)/3\omega^2$, and m_ϕ is the ϕ-meson mass in the vacuum. $\Pi_{B\mu}^{\mu}$ denotes the density dependent part of $\Pi_{B\mu}$; the density independent logarithemic divergence is subtracted out in the dimensional regularization scheme following the procedure given in \[3, 4\], namely $\tilde{\Pi}_{B\mu}^{\mu}(\omega, 0; \rho) \equiv \Pi_{B\mu}^{\mu}(\omega, 0; \rho) - \Pi_{B\mu}^{\mu}(\omega, 0; 0)$. On should
note here that similar “renormalized” self-energy in the relativistic $\sigma - \omega$ model has been used to study the electron-nucleous scattering, and it has been shown that the renormalized Dirac-sea polarization gives rather good agreement with experiments on the quenching of the Coulomb sum values \[13\].

The solid line in Fig.2 show the ratio m^*_ϕ/m_ϕ calculated in the above subtraction procedure with hyperon-loops only. The hyperon contribution is less ambiguous compared to the nucleon contribution, since the absolute value of $g_{\phi N}$ in the latter case is not known. m^*_ϕ decreases by $2-3\%$ in the range $\rho_0 < \rho < 2\rho_0$. Note that the OZI rule is preserved for ϕ-hyperon vertices, while it is violated in the self-energy $\tilde{\Pi}^\mu\nu_B(\omega, 0; \rho)$. This is because the self-energy represents interaction of ϕ ($s\bar{s}$ pair) with non-strange nuclear matter. Similar phenomena are known in two-step decay processes such as $\phi \rightarrow K\bar{K} \rightarrow \rho\pi$, $f' \rightarrow K\bar{K} \rightarrow \pi\pi$, and $J/\psi \rightarrow D\bar{D} \rightarrow \rho\pi$, where each vertex preserves the rule while the whole amplitude violates the OZI rule \[16\].

The solid line in Fig.3 shows the ratio m^*_ϕ/m_ϕ calculated in the above subtraction procedure with nucleon-loops only. We have used $g_{\phi N}/g_{\omega N} = 0.32$ in Fig.3 which is close to the upper bound given in Table 1: thus the resultant decrease of m^*_ϕ in Fig.3 should be considered as an upper limit originating from the nucleon-loop. Note here that the nucleon contribution contains the polarization of Dirac sea and fermi sea. The former (latter) tends to decreases (increases) the effective mass.

The negative mass shift in Fig.2 and Fig.3 is a direct consequence of the current conservation ($\partial_\mu (B\gamma^\mu B) = 0$) and $M^*_B/M_B < 1$, which was first discussed in \[4, 10\] for rho and omega mesons. For the ϕ-meson, the current conservation implies that the propagator of ϕ (without a small Fermi-sea polarization) has a form $D(q) \simeq 1/(Z^{-1}q^2 - m^2_\phi)$ with Z being a finite wave-function renormalization in medium. $M^*_B/M_B < 1$ implies that ϕ is more dressed by baryonic clouds in medium, which leads to $Z < 1$. Thus, one arrives at the conclusion $m^*_\phi/m_\phi \equiv Z < 1$. This mechanism is quite general and does not depend on the details of the interaction and on the virtual particles running in the loop; for example, a similar decrease of m^*_ϕ should be seen even when one replaces the baryonic loops by the constituent-quark loop.

To see the effect of the ultraviolet cutoff on the finite part of the loop integral in (2), let us define $\tilde{\Pi}^\mu\nu_B(\omega, 0; \rho, \Lambda_{cut}) \equiv \Pi^\mu\nu_B(\omega, 0; \rho, \Lambda_{cut}) - \Pi^\mu\nu_B(\omega, 0; 0, \Lambda_{cut})$ and use this in (5). We take covariant cutoff for Λ_{cut} for simplicity. When $\Lambda_{cut} \rightarrow \infty$, $\tilde{\Pi}^\mu\nu_B(\omega, 0; \rho, \Lambda_{cut})$ reduces to $\tilde{\Pi}^\mu\nu_B(\omega, 0; \rho)$. The dashed lines in Fig.2 and Fig.3 are the results of such calculations for three cases, $\Lambda_{cut} = 1, 2, 10$ GeV. Although the cutoff dependence is not negligible, the qualitative picture we draw in the above is not affected. Also, “renormalized” curve (solid line) is more favorable from the phenomenological point of view, since it can explain the quenching of the Coulomb sum
values as we have mentioned before.

We have considered only the nucleon and hyperon loops in the ϕ self-energy. Another possible contribution is the kaon-loop in medium, which was studied by Ko et al. They found that the kaon-loop also has a tendency to decrease m^*_ϕ at low densities provided that the effective kaon mass $\bar{m}^*_K = (m^*_{K^-} + m^*_{K^+})/2$ decreases in medium. However, it is still controversial whether \bar{m}^*_K really decreases in nuclear matter or not (see e.g. [17]). In QCD sum rules (QSR), m^*_ϕ is shown to decrease as a result of the partial restoration of chiral symmetry in nuclear matter, in particular by the medium modification of the strangeness condensate $\langle \bar{s}s \rangle$ [3]. Unfortunately, it is hard to make a solid connection of this result with that in this letter, since the kinematical region to extract m^*_ϕ in two approaches are quite different (deep Euclidian region in QSR versus on-shell region in the approach here).

Recently, Enyo et al. have proposed an experiment to create ϕ-meson in heavy nuclei using the proton-nucleus reaction and to detect lepton pairs and kaon pairs from ϕ decaying in the nucleus [6]. A possible signal in this experiment is a double ϕ-meson peak in the e^+e^- spectrum and also a large change of the branching ratio $\Gamma(\phi \to e^+e^-)/\Gamma(\phi \to K^+K^-)$. Also, E859 at BNL-AGS has recently reported a possible spectral change of the ϕ-peak in K^+K^- spectrum in heavy ion collisions [5]. In such experiments, a shoulder structure of the ϕ-peak should be a possible signal of the mass shift of ϕ.

The authors thank H. Shiomi for useful discussions and helps. We also thank Y. Akiba for suggesting us to study the cutoff dependence, and H. Hamagaki, Y. Miake and K. Yagi for discussions on E859 data at AGS.
References

[1] T. Hatsuda, *Hadron Structure and the QCD Phase Transition*, hep-ph/9502343 (1995); R. Pisarski, *Applications of Chiral Symmetry*, hep-ph/9503330 (1995); G. E. Brown and M. Rho, *Chiral Restoration in Hot and/or Dense Matter*, hep-ph/9504250 (1995).

[2] D. Lissauer and E. V. Shurayk, Phys. Lett. **B253** (1991) 15;
P. Bi and J. Rafelski, Phys. Lett. **B262** (1991) 485;
J. P. Blaizot and R. Mendez Galain, Phys. Lett. **B271** (1991) 32.

[3] T. Hatsuda and S. H. Lee, Phys. Rev. **C46** (1992) R34.

[4] C. M. Ko, P. Levai, X. J. Qiu and C. T. Li, Phys. Rev. **C45** (1992) 1400.
K. L. Haglin and C. Gale, Nucl. Phys. **B421** (1994) 613.
M. Asakawa and C. M. Ko, Phys. Rev. **C50** (1994) 3064; Nucl. Phys. **A572** (1994) 732.

[5] B. Cole, in *Proceedings of Quark Matter '95*, Nucl. Phys. **A** (1995) in press.

[6] H. Enyo, in *Properties and Interactions of Hyperons*, ed. B. Gibson, P. Barnes and K. Nakai (World Scientific, 1994, Singapore); KEK-PS proposal (1994).

[7] H. Shiomi and T. Hatsuda, Phys. Lett. **B334** (1994) 281.

[8] K. Saito, T. Maruyama and K. Soutome, Phys. Rev. **C40** (1989) 407;
H. Kurasawa and T. Suzuki, Prog. Theor. Phys. **84** (1990) 1030;
K. Tanaka, W. Bentz, A. Arima and F. Beck, Nucl. Phys. **A528** (1991) 676;
M. Jaminon and G. Ripka, Nucl. Phys. **A564** (1993) 505.

[9] J. C. Caillon and J. Labasouque, Phys. Lett. **B311** (1993) 19

[10] H. -C. Jean, J. Piekarewicz and A. G. Williams, Phys. Rev. **C49** (1994) 1981.

[11] See e.g., J. J. J. Kokkedee, *The Quark Model*, (Benjamin, 1969, New York).

[12] N. K. Glendenning et al., Phys. Rev. **C48** (1993) 889.

[13] R. L. Jaffe, Phys. Lett. **B229** (1989) 275.

[14] B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. **16** (1986).

[15] H. Kurasawa and T. Suzuki, Nucl. Phys. **A490** (1988) 571.
[16] H. Lipkin, Int. J. of Mod. Phys. E1 (1992) 603.

[17] H. Yabu, F. Myhrer and K. Kubodera, Phys. Rev. D50 (1994) 3549, and refer-
ences therein.

Figure captions

Fig.1: Ratio of baryon mass in matter M_B^* and that in vacuum M_B ($B = N, \Lambda, \Sigma$) as a function of ρ/ρ_0.

Fig.2: Ratio of the ϕ-meson mass in matter m_{ϕ}^* and that in vacuum m_{ϕ} as a function of ρ/ρ_0. Only hyperon contributions are included in the ϕ-meson self-energy.

Fig. 3: Same with Fig.2 except that only the nucleon contribution is included.
Fig. 1
Hyperon renormalized $\Lambda_{\text{cut}} = 1$ GeV, $\Lambda_{\text{cut}} = 2$ GeV, $\Lambda_{\text{cut}} = 10$ GeV

Fig. 2
Fig. 3