Thickness Measurement of Metallic Film Based on a High-Frequency Feature of Triple-Coil Electromagnetic Eddy Current Sensor

Mingyang Lu, Member, IEEE, Liming Chen, Xiaobai Meng, Ruochen Huang, Anthony Peyton, and Wuliang Yin, Senior Member, IEEE

Abstract—Previously, various techniques have been proposed for reducing the lift-off effect on the thickness measurement of the nonmagnetic films, including the peak-frequency feature and phase feature in the Dodd–Deeds formulation. To realize a real-time feedback response on the thickness monitoring, the phase term in the Dodd–Deeds formulation must be taken off the integration. Previous methods were based on the slow-changing rate of the phase term when compared to the rest of the term—the magnitude term. However, the change rate of the phase term is still considerable for a range of working frequencies. In this article, a high-frequency feature has been found. That is, the ratio between the imaginary and real parts of the phase term is proportional to the integral variable \(\alpha \) under high frequencies. Based on this proportion relationship, the phase term has been taken out; and a thickness algorithm has been proposed. By combing the measured impedance from the custom-built sensor (three coils), the thickness of the metallic film can be reconstructed. Experiments have been carried out for the verification of the proposed scenario. Results show that the thickness of the metal film can be reconstructed with a small error of less than 2%, and immune to a reasonable range of lift-offs.

Index Terms—Eddy current testing (ECT), lift-off, nondestructive testing, real-time monitoring, thickness measurement.

I. INTRODUCTION

ELECTROMAGNETIC eddy current testing (ECT) has been commonly used for diverse applications of the sample checking, including measuring the properties inhomogeneity, surface inspection in order to further improve the product quality [1]–[20]. Besides the ECT method, other nondestructive testing techniques such as ultrasound have been widely used [21], which is more precisely on the surface inspection of metals. However, ultrasonic sensing is difficult on the measurement of thin materials, and can be affected by the nonconductive environment like water droplet. As one application of ECT, thickness measurement of the metallic film can be achieved by referring to the measurement signal—mutual impedance or inductance of the sensing coils. However, the lift-off of the sensor could significantly influence the measured result.

Approaches of using both the pulsed eddy current (PEC) and multifrequency have been proposed on reducing the lift-off effects when measuring the thickness of the metallic film [22]–[24]. For the PEC method, by injecting a time-domain differential-pulsed excitation current, the characteristic of the sample (including the thickness) can be derived from the signal feature. For example, a two-reference signal method has been used to reduce the lift-off effect [11]. Moreover, a lookup table has been introduced by Tai et al. [25], which is extracted from a custom-designed instrument on the thickness measurement. For the multifrequency eddy current method, by using a digital processing technique based on Walsh functions, Pinotti and Puppin [26] proposed a novel property measurement method of the metallic alloy.

Previously, various techniques have been proposed to reduce the lift-off effect on the thickness of the metallic, including the peak frequency feature, phase feature of the impedance or inductance [27]–[30]. Most of these methods are based on the slow-changing rate of the phase term \(\phi(\alpha) \), which was taken out of the integration in the Dodd–Deeds model for further fastening the reconstruction (especially for the real-time monitoring application). Although thickness measurement from the previous proposed algorithm is almost immune to the lift-off distance, the change rate of the phase term is still considerable under a range of frequencies or sample properties. Consequently, the spatial frequency (which was believed merely determined by the sensor) needed to be refitted and updated for different working frequencies.

In this article, to address the lift-off issue on the thickness measurement of metallic films, a novel algorithm has been proposed based on a high-frequency feature from the designed sensor feedback. That is the ratio between the imaginary part and real part of the phase term—\(\frac{\text{Im}(\phi(\alpha))}{\text{Re}(\phi(\alpha))} \) is found to be proportional to \(\alpha \) in the Dodd–Deeds formulation. With this relationship, the spatial frequency is a “true” constant with respect to different frequencies. The sensor is composed of three circular coils, with one transmitter coil and two
receiver coils enwound of different radii. The thickness of the nonmagnetic metal film can be reconstructed via the proposed algorithm and combined signal (measured electrical resistance) of two sensing pairs. Experiments have been carried out for the performance test and verification of the proposed thickness measurement scenario.

II. FORMULATION ON THE THICKNESS MEASUREMENT OF METAL PLATE

From our previous work, it has been found the lift-off of the sensor could significantly affect the sensor response including the induced voltage, impedance, or mutual inductance of the transmitter and receiver [31], [32]. The accuracy of the sensor response is vital for the reconstruction of the sample properties. Since different dimensions of the sensor could get different sensor responses, a hypothesis of combining two sensing pairs with different coil dimensions could be a solution for reducing the lift-off effect. Thus, as shown in Fig. 1, an air-core sensor is designed, with one transmitter and two receiver coils enwound on the same lift-off plane.

Assume the sensing coils in all the coils have the same turns N, spiral span h, and coil thickness t, then the impedance change (subtract of the impedance for the presence and absence of the specimen) tested by two sensing pairs can be derived from the Dodd–Deeds formulation [33]

$$\Delta Z_1(\omega) = j\omega r_1^2 K \int_0^\infty \frac{P_1(\alpha)}{\alpha^6} A(\alpha)\phi(\alpha) d\alpha$$

$$\Delta Z_2(\omega) = j\omega r_2^2 K \int_0^\infty \frac{P_2(\alpha)}{\alpha^6} A(\alpha)\phi(\alpha) d\alpha$$

In (1)

$$K = \frac{\pi N^2 \mu_0}{h^2 t^2}$$

(3)

\(r_1\) and \(r_2\) are the mean radii of (the outer and inner radii) the receivers 1 and 2

$$r_1 = \frac{r_1 + r_2}{2}$$

(4)

$$r_2 = \frac{r_1' + r_2'}{2}$$

(5)

$$\phi(\alpha) = \frac{(a_1 + \mu_1 a)(a_1 - \mu_1 a) - (a_1 + a_1\mu_1)(a_1 + a_1\mu_1)e^{2a_1c}}{(a_1 - \mu_1 a)(a_1 - a_1\mu_1) + (a_1 + a_1\mu_1)(a_1 + \mu_1 a)e^{2a_1 c}}$$

\(a_1 = \sqrt{a^2 + j\omega \sigma \mu_1 a_0}\) \(A(\alpha) = e^{-2an_0}(e^{-2an_0} - 2e^{-an_0} + 1)\)

$$P_1(\alpha) = \int_{ar_1}^{ar_2} \tau J_1(\tau) d\tau \int_{ar_1}^{ar_2} \tau J_1(\tau) d\tau$$

(9)

$$P_2(\alpha) = \int_{ar_1}^{ar_2} \tau J_1(\tau) d\tau \int_{ar_1}^{ar_2} \tau J_1(\tau) d\tau$$

(10)

where \(r_1, r_1', r_2, r_2'\) are the inner radii of the transmitter, receiver 1, and receiver 2; \(r_1, r_2\) are the outer radii of the transmitter, receiver 1, and receiver 2; \(\omega\) is the working angular frequency; \(N\) denotes the turns of the transmitter and receiver spiral coils; \(\mu_0\) is the vacuum permeability; \(\mu_1\) depicts the relative permeability of the specimen; \(c\) is the thickness of the metallic plate; \(\sigma\) is the electrical conductivity of the sensor; \(J_1\) is the first-order Bessel function of the first kind; \(\tau\) and \(a\) denote the integrated parameters.

Through further deductions from (1), the impedance change of transmitter–receiver 1 can be divided as its real and imaginary integration parts

$$\text{Re}(\Delta Z_1(\omega)) = -\omega r_1^2 K \int_0^\infty \frac{P_1(\alpha)}{\alpha^6} e^{-2an_0}(e^{-2an_0} - 2e^{-an_0} + 1) \times \text{Im}(\phi(\alpha)) d\alpha$$

$$\text{Im}(\Delta Z_1(\omega)) = \omega r_1^2 K \int_0^\infty \frac{P_1(\alpha)}{\alpha^6} e^{-2an_0}(e^{-2an_0} - 2e^{-an_0} + 1) \times \text{Re}(\phi(\alpha)) d\alpha$$

(11)

(12)

Previously, the phase term \(\phi(\alpha)\) was taken out of the integration considering it changes slowly with respect to \(\alpha\) when compared with the magnitude part. Consequently, the multifrequency features including the peak frequency for the nonmagnetic materials and zero-crossing frequency for the magnetic materials have been formulated [28], [32]. However, it has been found the change rate of the phase term \(\phi(\alpha)\) cannot be neglected under a range of working frequencies.

As Fig. 2 depicts, for the nonmagnetic material, \(\mu_1 = 1\). The term \(\text{Im}(\phi(\alpha))/\text{Re}(\phi(\alpha))\) is found to be linear with the variable \(\alpha\). The proportional factor is defined as \(T(\omega)\)

$$\text{Im}(\phi(\alpha)) = T(\omega)\alpha \text{Re}(\phi(\alpha))$$

(13)

For a certain sample and working frequency, the proportional factor \(T(\omega)\) is a constant.

The solution of \(T\) can be derived as

$$T(\omega) = \lim_{a \to 0} \frac{\text{Im}(\phi(\alpha))}{\text{Re}(\phi(\alpha))}$$

(14)

Through mathematical manipulations using MATLAB symbolic variables and functions, (14) becomes

$$T(\omega) = \frac{\left(\frac{(j - 1)\sqrt{2}(e^{(1+j)c\sqrt{2\omega \mu_0}} + 1)}{\sqrt{\cos \omega \mu_0 (e^{(1+j)c\sqrt{2\omega \mu_0}} - 1)}}\right)^2}{\sqrt{\cos \omega \mu_0 (e^{2c\sqrt{2\omega \mu_0}} - 2e^{c\sqrt{2\omega \mu_0}}\cos(c\sqrt{2\omega \mu_0}) + 1)} + 1)))}$$

(15)

Equation (15) can be further deduced as

$$T(\omega) = \frac{\sqrt{2\left(1 + e^{2c\sqrt{2\omega \mu_0}} - 2e^{c\sqrt{2\omega \mu_0}}\cos(c\sqrt{2\omega \mu_0}) + 1\right)}}{\sqrt{\cos \omega \mu_0 (e^{2c\sqrt{2\omega \mu_0}} - 2e^{c\sqrt{2\omega \mu_0}}\cos(c\sqrt{2\omega \mu_0}) + 1)} + 1}$$

(16)
Fig. 2. \((\text{Im}(\phi(\alpha)))/\text{Re}(\phi(\alpha))\) is linear with the variable \(\alpha\) for different frequencies. (a) Linear plot. (b) Log-log plot.

For the thin-film metallic plate, (16) can be simplified through the Padé approximation.

\[
T(\omega) = \frac{1}{\sqrt{2\omega \sigma_0}} \left(1 + \frac{1}{c^2 \omega \sigma_0} \right) .
\]

(17)

As can be observed from Fig. 3(a) that the real part of \(\text{Re}(\phi(\alpha))\) term varies slowly with \(\alpha\) under higher frequencies. A small value function \(G\) is used to approximate \(\text{Re}(\phi(\alpha))\). From (2), since \(\phi(\alpha)\) is determined by the sample and working frequency instead of the sensor parameters, the function \(G\) is merely controlled by the variable \(\omega, \sigma,\) and \(c\). Therefore, for a high working frequency

\[
\text{Re}(\phi(\alpha)) = -e^{-2\alpha G(\omega, \sigma, c)} .
\]

(18)

Substitute (13) and (18) into (11) and (12), the real and imaginary parts of the impedance change from transmitter–receiver 1 under high working frequencies are

\[
\text{Re}(\Delta Z_1(\omega)) = \omega T(\omega) R_1 K \int_0^\infty \frac{P_1(\alpha)}{\alpha^5} e^{-2\alpha l_0} \times (e^{-2\alpha h} - 2e^{-\alpha h} + 1)e^{-2\alpha G(\omega, \sigma, c)} d\alpha
\]

(19)

\[
\text{Im}(\Delta Z_1(\omega)) = -\omega R_1 K \int_0^\infty \frac{P_1(\alpha)}{\alpha^5} e^{-2\alpha b} \times (e^{-2\alpha h} - 2e^{-\alpha h} + 1)e^{-2\alpha G(\omega, \sigma, c)} d\alpha .
\]

(20)

As can be seen from Fig. 4, the Bessel series \((P_1(\alpha))/\alpha^5 e^{-2\alpha b} (e^{-2\alpha h} - 2e^{-\alpha h} + 1)\) can be estimated as a sinusoidal function multiplied by the lift-off decay factor \(e^{-2\alpha l_0}\). Therefore, the integration term in (19) becomes

\[
\int_0^\infty \frac{P_1(\alpha)}{\alpha^5} e^{-2\alpha l_0} (e^{-2\alpha h} - 2e^{-\alpha h} + 1) d\alpha = \Delta Z_m \int_0^{2\alpha l_1} e^{-2\alpha (l_0 + G)} \sin^2 \left(\frac{\alpha \pi}{2\alpha_{tr_1}} \right) d\alpha
\]

\[
= \Delta Z_m \frac{\pi^2}{4(l_0 + G)(4\alpha_{tr_1}^2 (l_0 + G)^2 + \pi^2)} .
\]

(21)

\(\alpha_{tr_1}\) is a constant and named as the spatial frequency for the transmitter and receiver 1 sensing pair. \(\Delta Z_m\) denotes the normalization factor, which determines the ratio between the Bessel series and sinusoidal function and can be defined at
the peak point when \(\alpha = a_{t1} \)

\[
\Delta Z_{m1} = \frac{P_1(a_{t1})}{a_{t1}^3} (e^{-2\alpha h} - 2e^{-a_{t1}h} + 1). \tag{22}
\]

With a small sensor lift-off \(l_0 \), according to the Padé approximation, \(e^{-4a_{t1}(l_0 + G)} \) can be estimated as \((1 - 4a_{t1}(l_0 + G)) \). Therefore, (21) becomes

\[
\int_0^\infty \frac{P_1(\alpha)}{\alpha^3} e^{-2\alpha(l_0+G)}(e^{-2\alpha h} - 2e^{-a_{t1}h} + 1) d\alpha = \Delta Z_{m1} \frac{a_{t1} \pi^2}{(4a_{t1}^2(l_0 + G)L^2 + \pi^2)}. \tag{23}
\]

Substitute (23) into (19), the real part of the impedance from transmitter–receiver 1 sensing pair becomes

\[
\text{Re}(\Delta Z_1(\omega)) = \Delta Z_{m1} \frac{a_{t1} \pi^2 \omega T(\omega) r_1 K}{(4a_{t1}^2(l_0 + G)L^2 + \pi^2)}. \tag{24}
\]

It can be seen from (24) that \(\text{Re}(\Delta Z_1(\omega)) \) can be calculated by a simple equation instead of integrating over the entire \(\alpha \) domain.

Similarly, the real part of the impedance from transmitter–receiver 2 sensing pair is

\[
\text{Re}(\Delta Z_2(\omega)) = \Delta Z_{m2} \frac{a_{t2} \pi^2 \omega T(\omega) r_2 K}{(4a_{t2}^2(l_0 + G)L^2 + \pi^2)}. \tag{25}
\]

In (25), \(a_{t2} \) is the spatial frequency for the transmitter and receiver 2 sensing pair. And,

\[
\Delta Z_{m2} = \frac{P_2(a_{t2})}{a_{t2}^3} (e^{-2a_{t2}h} - 2e^{-a_{t2}h} + 1). \tag{26}
\]

Assume the real parts of the impedance are \(R_1 \) and \(R_2 \), i.e., \(R_1 = \text{Re}(\Delta Z_1(\omega)) \) and \(R_2 = \text{Re}(\Delta Z_2(\omega)) \), combine (24) with (25)

\[
T(\omega) = \frac{R_1(4a_{t1}^2(l_0 + G)^2 + \pi^2)}{a_{t1} \pi^2 \omega r_1 K \Delta Z_{m1}} = \frac{R_2(4a_{t2}^2(l_0 + G)^2 + \pi^2)}{a_{t2} \pi^2 \omega r_2 K \Delta Z_{m2}}. \tag{27}
\]

Further deductions from (27), the lift-off term can be substituted as

\[
(l_0 + G)^2 = \frac{\pi^2}{4a_{t1}a_{t2}}(a_{t1} r_1 \Delta Z_{m1} R_1 + a_{t2} r_2 \Delta Z_{m2} R_1) - \frac{a_{t1} r_1 \Delta Z_{m1} R_1}{4a_{t1}a_{t2}}(a_{t1} r_2 \Delta Z_{m2} R_1 + a_{t2} r_2 \Delta Z_{m1} R_1). \tag{28}
\]

Then substitute \((l_0 + G)^2 \) into (27), \(T(\omega) \) can be derived

\[
T(\omega) = \frac{\left(\frac{a_{t1}^2}{a_{t2}^2} - \frac{a_{t2}^2}{a_{t1}^2}\right) R_1 R_2}{(a_{t1} r_2 \Delta Z_{m1} R_1 + a_{t2} r_1 \Delta Z_{m2} R_1) K a_{t1} a_{t2} \omega^2}. \tag{29}
\]

Combine (29) with (17) under the single frequency \(\omega \), the thickness of the thin film plate can be reconstructed as

\[
c = \frac{1}{\sqrt{(\frac{a_{t1}^2-a_{t2}^2}{a_{t1} a_{t2} \omega^2}) R_1 R_2 (2\pi \omega L)^2} - \omega L}_{a_{t1} a_{t2} \omega^2}} - \omega L \mu_0 \tag{30}
\]

where \(\Delta Z_{m1} \) and \(\Delta Z_{m2} \) are defined in (22) and (26).

From (30), the thickness of the nonmagnetic thin film can be reconstructed from the measured resistance (real part of the impedance) of transmitter–receiver 1 and transmitter–receiver 2 sensing pairs. It can be observed from (30) that the reconstructed thickness could be more accurate under a bigger difference between either dimensions of sensing pair (related to \(a_{t1} \) and \(a_{t2} \)), and or the measured resistance \((R_1 - R_2) \), which generally increases with frequencies, and large working frequencies.

III. EXPERIMENTAL VERIFICATION

To verify the feasibility of the designed sensor and the performance of the thickness formulation in (30), experiments have been carried out for the mutual impedance measurement using the designed sensor under different frequencies and lift-offs.

As Fig. 5 depicts, the copper wire with a thickness of 0.25 mm is seamlessly enwound on three plastic cylinder rods. As demonstrated in Table I, three coils have the same number of turns, spiral span, and lift-offs. The lift-off was controlled by the plastic lift-off spacers and ranges from 1 to 6 mm. The sensor was deployed on the films and its coils were connected to the Zurich impedance analyzer for...
TABLE II
PARAMETERS OF THE METALLIC FILMS

	Aluminium	Copper
Actual thickness (μm)	44, 66	30, 60
Electrical conductivity (MS/m)	35	57

Fig. 6. Experimental data for the multifrequency electrical resistance (real part of the measured impedance) of aluminum films under the sensor lift-off of 1 and 4 mm. (a) 44 μm. (b) 66 μm.

As can be seen, the multidimensional impedance measurement. The operation frequency of the Zurich impedance analyzer ranges from 1 to 500 kHz. Lower frequencies will result in a reduced signal-to-noise ratio (SNR). In addition, the maximum of the frequency was capped at 500 kHz to ensure that no skin or diffusion effects exist (so that the electromagnetic field could penetrate deeply enough to interact or reflect with respect to the bottom surface of the metallic film). The skin depth as a function of frequency is shown in (31). For the measurement, the parasitic capacitance is an unavoidable and unwanted capacitance that exists between the sensor plates, and adjacent coils due to their proximity. As illustrated in Fig. 5, to address the measurement issue due to the proximity effect, the reference signals have been measured. By subtracting the reference signals when the sensor is deployed in the free space, the ambient noise signals can be significantly eliminated. Besides, since the maximum frequency is only 500 kHz (far away from the resonance frequency), the parasitic capacitance of the coil is not an issue

\[
\rho = \frac{1}{\sqrt{\pi f \sigma \mu_0}}
\]

(31)

For the nonmagnetic materials, as illustrated in Table II, the aluminum and copper films with the electrical conductivity of 35 MS/m, 57 MS/m, and thickness of 44 μm (or 66 μm) and 30 μm (or 60 μm) have been utilized for the experiment. The electrical conductivity of the aluminum and copper films has been measured in previous research via the four-terminal sensing method.

IV. RESULTS

A. Measurement of Sensor Response

Fig. 6 denotes the multifrequency electrical resistance (i.e., the real part of the measured impedance) of the aluminum films (44 and 66 μm) from both transmitter–receiver 1 and transmitter–receiver 2 with the sensor lift-off of 1 and 4 mm. It can be observed that a larger sensor lift-off will result in an attenuation of the sensor response, which is due to the reduced interaction between the sensor and metallic films. Moreover, the multifrequency resistance curve of transmitter–receiver 2 is slightly left-shifted and larger than that of transmitter–receiver 1, which is determined by the radius of the coil [as can be seen from (9) and (10)]. As Fig. 7
Fig. 8. Reconstructed thickness of aluminum films under different working frequencies with the sensor lift-off of 1 and 4 mm. (a) 44 μm. (b) 66 μm.

Fig. 9. Reconstructed thickness of copper films under different working frequencies with the sensor lift-off of 1 and 4 mm. (a) 30 μm. (b) 60 μm.

depicts, a similar trend can be seen from the multifrequency resistance curve of the copper films.

B. Reconstructed Thickness

Furthermore, the measured electrical resistance of both aluminum and copper films has been inputted in the thickness formulation—(30) for the thickness reconstruction. In Fig. 8, the reconstructed thickness of the aluminum film is gradually reduced and close to the actual value under the increased frequency. After a specific frequency, the reconstructed thickness is slightly lower than the actual value but almost immune to the frequency changes. A similar trend can be found in Fig. 9 for the thickness reconstruction of the copper films. It can be observed that the thickness of the films can be reconstructed precisely with only a small error of less than 2% (with a maximum sensor lift-off of 4 mm).

C. Lift-Off Effects

Since the reconstructed thickness of the metallic film is more accurate under the high frequency (not higher than the skin-effect frequency), the working frequency is selected as 500 kHz for the further accuracy analysis of an extended sensor lift-off. It can be seen from Figs. 10 and 11 that, the reconstructed thickness gradually drifts away from the actual value but becomes almost immune to the lift-off of the sensor. For a maximum sensor lift-off of 6 mm, the reconstruction error is less than 2%. However, as can be seen from Fig. 12, it has been found further significantly increased sensor lift-offs could result in an inaccurate value when using (30), which is due to the small value of measured electrical resistance. Therefore, the reconstructed thickness scenario can only
be valid on a reasonable range of sensor lift-offs (particularly smaller than 12 mm). In Fig. 12, another sample—brass film with an electrical conductivity of 15.9 MS/m and thickness of 100 μm—has been added for further comparison of the reconstruction on different metals. Due to the limitation of the skin effect (31), the limit of the thickness that can be measured is 116, 92, and 178 μm for aluminum, copper, and brass films.

V. Conclusion

In this article, a novel algorithm has been proposed for the thickness reconstruction of nonmagnetic metal films. First, an air-core sensor with three circular coils enwound has been designed for the measurement of the electrical resistance from the sensor response. By combining the measurement of two sensing pairs (with one transmitter and two receivers), the thickness of the metallic film (nonmagnetic) can be reconstructed. The thickness algorithm has considered an extended lift-off of the sensor. The thickness algorithm can therefore potentially be applied for the online real-time thickness monitoring in the future. The thickness reconstruction scenario reaches its highest performance under a high working frequency (best performance is under 500 kHz in this article). From the experiments on aluminum and copper films with different thicknesses, the proposed algorithm can reconstruct the thickness of the film precisely, with a small error of less than 2%. Moreover, the thickness measurement scheme is valid in a small range of sensor lift-offs, as further increased lift-off will significantly reduce the interaction between the sensor and metal. Therefore, it is worth to investigate an optimal sensor geometry (maybe combine the pancake coil with helix coil) for a large range of lift-offs in the future.

ACKNOWLEDGMENT

Author Contributions: (Methodology, manuscript drafting) Mingyang Lu and Xiaobai Meng; (conceptualization, manuscript revision) Mingyang Lu; (experimental data curation, manuscript review) Mingyang Lu, Liming Chen, and Ruochen Huang; (Supervision) Mingyang Lu, Wuliang Yin, and Anthony Peyton. All authors have read and agreed to the published version of this article.

REFERENCES

[1] J. C. Moulder, E. Uzal, and J. H. Rose, “Thickness and conductivity of metallic layers from eddy current measurements,” Rev. Sci. Instrum., vol. 63, no. 6, pp. 3455–3465, Jun. 1992.
[2] X. Chen and Y. Lei, “Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method,” NDT E Int., vol. 75, pp. 33–38, Oct. 2015.
[3] Y. Y. Shin, D.-M. Choi, Y.-J. Kim, and S.-S. Lee, “Signal characteristics of differential-pulsed eddy current sensors in the evaluation of plate thickness,” NDT E Int., vol. 42, no. 3, pp. 215–221, Apr. 2009.
[4] Y. K. Shin, D.-M. Choi, Y.-J. Kim, and S.-S. Lee, “Signal characteristics of differential-pulsed eddy current sensors in the evaluation of plate thickness,” NDT E Int., vol. 42, no. 3, pp. 215–221, Apr. 2009.
[5] G. Tian, A. Sophian, and P. Jackson, “Steel corrosion characterization using pulsed eddy current systems,” IEEE Sensors J., vol. 12, no. 6, pp. 2113–2120, Jun. 2012.
[6] M. Lu, A. Peyton, and W. Yin, “Acceleration of frequency sweeping in eddy-current computation,” IEEE Trans. Magn., vol. 53, no. 7, pp. 1–8, Jul. 2017.
[7] Y.-K. Shin, D.-M. Choi, Y.-J. Kim, and S.-S. Lee, “Signal characteristics of differential-pulsed eddy current sensors in the evaluation of plate thickness,” NDT E Int., vol. 42, no. 3, pp. 215–221, Apr. 2009.
[8] G. Y. Tian and A. Sophian, “Reduction of lift-off effects for pulsed eddy current NDT,” NDT E Int., vol. 38, no. 4, pp. 319–324, Jun. 2005.
[9] A. V. Egorov et al., “Inspection of aluminum alloys by a multi-frequency eddy current method,” Defence Technol., vol. 11, no. 2, pp. 99–103, Jun. 2015.
[10] W. Yin and A. J. Peyton, “Thickness measurement of non-magnetic plates using multi-frequency eddy current sensors,” NDT E Int., vol. 40, no. 1, pp. 43–48, Jan. 2007.
M. Lu, X. Meng, L. Chen, R. Huang, W. Yin, and A. Peyton, “Measure-
netic (EM) analysis, and inversion of EM properties for metallic structure.

Wuliang Yin (Senior Member, IEEE) received the B.Sc. and M.Sc. degrees in electronic measurement and instrumentation from Tianjin University, Tianjin, China, in 1992 and 1995, respectively, and the Ph.D. degree in automotive electronics from Tsinghua University, Beijing, China, in 1999. He joined the Department of Electrical and Electronic Engineering, School of Engineering, The University of Manchester, Manchester, U.K., as a Mettler Toledo (MT) Sponsored Lecturer, in 2012, and he joined the Process Tomography Group, UMIST, where he was a Senior Lecturer, where he was a Reader in electronic instrumentation in 2001, and a Lecturer. In 1996, he joined Lancaster University, Lancaster, U.K., as a Lecturer. He was a Principal Engineer with Kratos Analytical Ltd., Manchester, from 1986 to 1989, where he was involved in developing precision electronic instrumentation systems for magnetic sector and quadrupole mass spectrometers. He joined the Process Tomography Group, UMIST, where he was a Lecturer. In 1996, he joined Lancaster University, Lancaster, U.K., as a Senior Lecturer, where he was a Reader in electronic instrumentation in 2001, and a Professor in 2004. Since 2004, he has been a Professor of electromagnetic tomography engineering with The University of Manchester, Manchester. His current research interests include instrumentation, applied sensor systems, and electromagnetic.

Anthony Peyton received the B.Sc. degree in electrical engineering and electronics and the Ph.D. degree from The University of Manchester Institute of Science and Technology (UMIST), Manchester, U.K., in 1983 and 1986, respectively. He was a Principal Engineer with Kratos Analytical Ltd., Manchester, from 1986 to 1989, where he was involved in developing precision electronic instrumentation systems for magnetic sector and quadrupole mass spectrometers. He joined the Process Tomography Group, UMIST, where he was a Lecturer. In 1996, he joined Lancaster University, Lancaster, U.K., as a Senior Lecturer, where he was a Reader in electronic instrumentation in 2001, and a Professor in 2004. Since 2004, he has been a Professor of electromagnetic tomography engineering with The University of Manchester, Manchester. His current research interests include instrumentation, applied sensor systems, and electromagnetic.

Xiaobai Meng is currently a Ph.D. Researcher with the Faculty of Art, Science and Technology, University of Northampton, Northampton, U.K., after graduating from The University of Manchester, Manchester, U.K. She has authored or coauthored over 20 publications. Her current research interests include nondestructive eddy current sensing, magnetic sensors, and electromagnetic modeling.

Ruochen Huang is currently pursuing the Ph.D. degree under the supervision of Wuliang Yin with the School of Electrical and Electronics Engineering, The University of Manchester, Manchester, U.K., with a focus on finite-element method (FEM) modeling software packages for electromagnetic (EM) simulations.

Linting Chen received the B.S. degree from the University of Fuzhou University, Fuzhou, China, in 2014, and the M.S. degree in chemical engineering from the Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, China, in 2017. She is currently pursuing the Ph.D. degree in electrical and electronic engineering with The University of Manchester, Manchester, U.K. Her research interests currently focus on wearable devices design based on advanced materials for human health monitoring.

C. V. Dodd and W. E. Deeds, “Analytical solutions to eddy-current probe-coil problems,” J. Appl. Phys., vol. 39, no. 6, pp. 2829–2838, May 1968.