Fast Track Communication

Matrix model approach to minimal Liouville gravity revisited

V Belavin1,2,3 and Yu Rud4,5

1 I E Tamm Department of Theoretical Physics, P N Lebedev Physical Institute, Leninsky prospect 53, 119991 Moscow, Russia
2 Department of Quantum Physics, Institute for Information Transmission Problems, Bolshoy Karetny per. 19, 127994 Moscow, Russia
3 Department of Theoretical Physics, National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow, Russia
4 L D Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
5 Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia

E-mail: belavin@lpi.ru

Received 23 February 2015, revised 19 March 2015
Accepted for publication 20 March 2015
Published 10 April 2015

Abstract
Using the connection with the Frobenius manifold (FM) structure, we study the matrix model description of minimal Liouville gravity (MLG) based on the Douglas String equation. Our goal is to find an exact discrete formulation of the (q, p) MLG model that intrinsically contains information about the conformal selection rules. We discuss how to modify the FM structure appropriately for this purposes. We propose a modification of the construction for Lee–Yang series involving the A_{p-1} algebra instead of the previously used A_1 algebra. With the new prescription, we calculate correlators on the sphere up to four points and find full agreement with the continuous approach without using resonance transformations.

Keywords: conformal field theory, 2D gravity, minimal Liouville gravity, matrix Models of 2D Gravity

1. Introduction

Minimal Liouville gravity (MLG) is a special model of Liouville gravity \cite{1} with the matter sector represented by the (q, p) minimal CFT model6. MLG is a BRST theory with the well-known structure of the Hilbert space \cite{2}. One of the main problems in the theory is to compute the correlators of the primary cohomologies. Because of the integrals over moduli

6 In this paper, we focus on the A-series of Virasoro minimal models.
involved in the construction of the correlators, this computation requires quite sophisticated techniques [3]. Only expressions up to four-point correlation numbers have been found explicitly so far [2, 4]. Here, we study an alternative approach to MLG that gives a simple procedure for computing the correlation functions. This approach is connected with the matrix model (MM) [5–12] of two-dimensional quantum gravity and also called a discrete approach. The basic fact about the MLG–MM correspondence is the coincidence of the spectra of the gravitational dimensions [13]. This result represents the main support of the idea that the two approaches describe the same quantum theory. In the q_p model\(^7\) of MLG, the primary BRST cohomologies O_m are labeled by two integers $m = 1, \ldots, q - 1$ and $n = 1, \ldots, p - 1$. In what follows, we assume $q < p$. Hence, the main object of our study is the generating function of the correlators of the primary cohomologies

$$Z = \left\langle \exp \sum_n \lambda_{mn} O_{mn} \right\rangle_{\text{MLG}} = \sum_{N=0}^{\infty} \sum_{n_1}^{\lambda_{m_1n_1}} \cdots \sum_{n_N}^{\lambda_{m_nN}} \left\langle O_{m_1n_1} \cdots O_{m_Nn_N} \right\rangle_{\text{MLG}}.$$

The brackets $\langle \ldots \rangle_{\text{MLG}}$ denote the integrated correlation functions, which we therefore call correlation numbers. In what follows, we call the parameters λ_{mn} Liouville coupling constants.

As was first shown in the seminal KPZ paper [13], the scaling properties of the correlators in MLG are governed by the following rule. The dependence of the correlator $G = \left\langle O_{m_1n_1} \cdots O_{m_Nn_N} \right\rangle$ on the cosmological constant is given by

$$G(\mu) = \mu^{p+q \over q} \sum_{m} \mu^{\delta_{mn}},$$

where

$$\delta_{mn} = {p + q - |pm - qn| \over 2q}, \quad O_{mn} \sim \mu^{-\delta_{mn}}. \tag{1.3}$$

Therefore, the first basic requirement for the dual approach is to reproduce this spectrum. In the dual description of the (q, p) MLG model, there are two basic elements. For the spherical topology, we introduce the polynomial

$$Q(y) = y^q + u_1 y^{q-2} + \ldots + u_{q-1}, \tag{1.4}$$

where y is an auxiliary variable (we discuss in more detail below, that this polynomial defines the structure of a special Frobenius manifold (FM) and the set $\{u_n\}$ represents a special choice of coordinates on this manifold) [14, 15] and the so-called action

$$S(t_{mn}) = \text{res}_{y=\alpha} \left(\sum_{m,n} t_{mn} Q^{pm-qn} \right), \tag{1.5}$$

which defines the generating function of the correlation numbers and appears to be the subject of the String equation [16]. The parameters t_{mn} are known as KdV times (or couplings). Weights δ_{mn} ($\delta_{11} = 1$) can be assigned to the couplings t_{mn} and y so that $Q(y)$ becomes quasihomogeneous of weight $1/2$. With the identification $t_{11} \sim \mu$, it can be easily verified [16] that the spectrum of gravitational dimensions is exactly the spectrum (1.3) that appears in the continuous approach to MLG, i.e., $\delta_{mn} = \delta_{mn}$. We thus obtain a natural identification between the couplings of the two approaches $t_{mn} = \lambda_{mn}$.

\(^7\) We recall that q and p are two coprime integers.
After Douglas had shown [16] that the scaling dimensions of KdV times coincide with those of MLG coupling constants, there were attempts to verify the correspondence between the two approaches at the level of the correlation functions. However, the obtained correlators failed to satisfy conformal selection rules already at one-point level. A possible resolution of this problem was formulated by Moore et al [19]. The idea was based on the observation that MLG by definition contains an ambiguity related to the fact that the correlation numbers, which are given by integrals over moduli spaces, depend on the contact behavior when the positions of a few insertions collide with each other. Indeed, such ultraviolet information is not provided in the standard CFT formalism based on the notion of the operator product expansion. This ambiguity allows extending the possible form of the relations between Liouville coupling constants and KdV times

$$t_{nm} = \lambda_{nm} + \sum_{m_1 n_1 m_2 n_2} A_{nm}^{m_1 n_1 m_2 n_2} \lambda_{m_1 n_1} \lambda_{m_2 n_2} + \ldots,$$ \hspace{1cm} (1.6)

where the nonlinear terms are admissible only if they satisfy the resonance conditions

$$\delta_{nm} = \delta_{m_1 n_1} + \ldots + \delta_{m_k n_k}. \hspace{1cm} (1.7)$$

This is why formula (1.6) is sometimes called the resonance transformation. The idea was to tune the parameters A_{nm} of this transformation in order to satisfy the basic requirements of the MLG theory, namely, the conformal selection rules for the correlation numbers inherited from the minimal model [17] representing its matter sector⁸.

Nevertheless, it appears that except for the Lee–Yang series $(2, 2s + 1)$ [18, 19], this program can be followed literally only up to two-point correlators. Although there is full agreement when the fusion rules are satisfied, a discrepancy appears in the non-physical region, i.e., when they are not satisfied. For example, there are three-point correlators, which must be zero according to the selection rules, but they cannot be made so using the resonance transformation. It was therefore conjectured that the dual description does not exactly correspond to the MLG models but describes somewhat modified theories.

Further progress in understanding the dual models was achieved after the relation of the Douglas approach to the (q, p) MLG with the A_{q-1} FM structure was revealed (see [20–23] and the references therein). In particular, it became clear that the generating function of the correlation numbers is just the tau function of the Gelfand–Dikij integrable hierarchy connected with the A_{q-1} FM. From this relation, we can derive the nice representation

$$Z = \frac{1}{2} \int_{0}^{u*} C_{ab} (\nu) \frac{dS}{d\nu} \frac{dS}{d\nu} d\nu^*, \hspace{1cm} (1.8)$$

which will be important for our purposes. Here, $v_\alpha (\alpha = 1, \ldots, q - 1)$ are the flat coordinates on the FM, and C_{ab} are the structure constants of the A_{q-1} Frobenius algebra, the algebra of polynomials modulo the ideal generated by the polynomial $\frac{dS}{d\nu}$. We discuss the properties of the action S in the flat coordinates later. Perhaps the most important ingredient in (1.8) is the upper limit v_α, which is a special solution of the String equation

$$\frac{dS}{dv_\alpha} (v_\alpha) = 0. \hspace{1cm} (1.9)$$

⁸ We note that because of the structure of the spectrum of the gravitational dimensions in each particular model, the form of the resonance transformations is highly constrained and the problem becomes quite nontrivial (see, e.g., [18]).
It was argued in [21] that only one solution of the String equation with the special property \(v_{\alpha_\mu}(\lambda_{mn}) = 0 \) for \(\alpha > 1 \) and \(\lambda_{mn} = 0 \) (except \(\lambda_{11} = \mu \)) allows satisfying the conformal selection rules. After the transition to the flat coordinates, the necessary expressions for the structure constants were obtained in [22]. All these results made calculations in the discrete approach very clear both technically and conceptually.

As already mentioned, such formulated theories cannot be regarded as exactly the same MLG theories, because it is impossible to satisfy the selection rules for all correlation numbers. The natural question is what can be modified in order to obtain an exact discrete analogue of the MLG theory. The first thing that comes to mind is to analyze possible modifications of the relevant FM structures. Without going into detail, we note that a FM is a quite rigid construction that, in particular, intrinsically contains a special Milnor ring (see, e.g., [24]). It is quite natural to try a possible modification in the simplest case of the Lee–Yang series \((2, p) \). But in this case, we have \(Q' = 2y \), and the corresponding algebra is trivial, \(A_1 = 1 \). According to the previous considerations, all physics in this case is concentrated in the form of resonance transformation (1.6). In fact, this seems rather strange because the relation between Milnor rings and Verlinde algebras (fusion rings) appearing in the conformal field theories makes us think that the information about selection rules should be encoded in the structure of the Frobenius algebra itself. For the \((2, p) \) series, for example, the dimensionality of the possible candidate should correlate with the dimensionality of the Kac table (or simply with \(p \)). A question arises here: can we use the \(A_{p-1} \) algebra to describe the \((2, p) \) series of MLG models? The first answer is no, because we must construct at least at the same spectrum of gravitational dimensions as we had using \(A_1 \). But we note that the spectrum depends not only on the quasihomogeneity property of the polynomial \(Q(y) \) but also on the structure of the action \(S \). In this paper we show that the modification can be made properly such that the spectrum of the scaling dimensions reproduces the spectrum that appears in the continuous formulation. Further, we calculate the correlation numbers up to four-point correlators and show that the results agree perfectly with the results of the continuous approach without any need for the resonance transformations.

2. Calculation of one- and two-point correlation numbers

We consider the series of \((2, p), (p \geq 5 \text{ and } p \text{ is odd})\) minimal models coupled to Liouville gravity in the spherical topology. The primary fields are enumerated as \(O_n = O_{p-n}, n \in \{1, \frac{p-1}{2}\} \). As discussed, we work with the polynomial \(Q(y) = y^p + u_1 y^{p-2} + \ldots + u_{p-1} \) instead of \(Q(y) = y^2 + u_1 \). We first ensure that we obtain spectrum (1.3), i.e., \(O_k \sim \mu \frac{k+1}{2} \).

The action \(S \) with the appropriate scaling properties is

\[
S = \text{res}_{y = \infty} \left(Q^{1+2} + \sum_{n=1}^{2p-2} \lambda_n Q^{p-2n} \right). \tag{2.1}
\]

Because \(Q^{1+2} \sim \mu Q^{p-2} \) and \(Q^{1+2} \sim \lambda Q^{p-2} \), we have \(\lambda_k \sim O_k^{-1} \sim Q^{2k+1} \sim \mu^{k+1} \). Using the definition

\[
\theta_{n,k} = \text{res}_{y = \infty} Q^{k+2} y^n, \tag{2.2}
\]

J. Phys. A: Math. Theor. 48 (2015) 18FT01
we can rewrite our action in terms of $\theta_{\alpha,k}$:

$$S = \theta_{2,1} + \mu \theta_{p-2,0} + \sum_{n=2}^{p-1} \lambda_n \theta_{p-2,n},$$

(2.3)

where $\mu = \lambda_1$. In what follows, we use the proposition [21]

$$\left\{
\begin{array}{ll}
k\text{ even: } & \frac{\partial \theta_{j,k}}{\partial v_i} = \delta_{j,a} x_{j,k} \left(-\frac{v_i}{p} \right)^{k_p}, \\
k\text{ odd: } & \frac{\partial \theta_{j,k}}{\partial v_i} = \delta_{j,p-a} y_{j,k} \left(-\frac{v_i}{p} \right)^{k_p},
\end{array}\right.$$

(2.4)

where

$$x_{j,k} = \frac{\Gamma \left(\frac{1}{p} \right)}{\Gamma \left(\frac{1}{p} + \frac{k+1}{2} \right)} \left(\frac{1}{2} \right)! \quad \text{and} \quad y_{j,k} = -\frac{\Gamma \left(\frac{1}{p} \right)}{\Gamma \left(\frac{1}{p} + \frac{k+1}{2} \right)} \left(\frac{1}{2} \right)!.$$

(2.5)

In the same way as in [23], we can obtain the formulas for the structure constant

$$C_{\alpha\beta\gamma} = \left(-\frac{v_1}{p} \right)^{\frac{\alpha+\beta+\gamma-1}{2}} \theta(\alpha, \beta, \gamma),$$

(2.6)

where $\theta(\alpha, \beta, \gamma) = 1 \Leftrightarrow \alpha \in \left[|\beta + \gamma - p| + 1 \right] \cap \left[p - 1 - |\beta - \gamma| \right]$, and its derivative in the flat coordinates on the line $v_{a>0} = 0$,

$$\partial_\delta C_{\alpha\beta\gamma} = \theta(\alpha, \beta, \gamma, \delta, p) \frac{2p - \alpha - \beta - \gamma - p}{2p} \left(-\frac{v_1}{p} \right)^{\frac{\alpha+\beta+\gamma-1}{2}}.$$

(2.7)

if $(\alpha + \beta + \gamma + p - 2p - 2)/2 \in \mathbb{N}_0$, where

$$\theta(\alpha, \beta, \gamma, \delta, p) = \left[(p - m_1) \chi_{m_1} (m_2 + m_3 - m_4) + \frac{2p + m_4 - m_1 - m_2 - m_3}{2} \times \chi_{m_1+2,2p-m_1} (m_2 + m_3 - m_4) \right],$$

(2.8)

and $\delta = \text{RankedMax}\left[\{ \alpha, \beta, \gamma, \delta \} \right]$.

We now calculate one-point numbers. As we know from the conformal selection rules, the one-point correlation numbers of all operators except the unity operator must be zero. Indeed, we find

$$Z_1 = \langle \mathcal{O}_n \rangle = \int_0^{v_1} C_{p-1,a\beta} \frac{\partial S^{(0)}}{\partial v_{a\beta}} \frac{\partial S^{(n)}}{\partial v_{1}} dv_1.$$

(2.9)

Taking into account that

$$C_{p-1,a\beta} \sim \delta_{a\beta}, \quad \frac{\partial S^{(0)}}{\partial v_{a\beta}} \sim \delta_{a,p-2}, \quad \frac{\partial S^{(n)}}{\partial v_{a\beta}} \sim \delta_{a,p-2n},$$

(2.10)
it follows that the one-point function $Z_1 = 0$ for $n \neq 1$. In particular, in the case $n = 1$, we find

$$Z_0 = \langle O_1 \rangle = \frac{1}{2} \int_0^{u_1} C_{p-1, \alpha \beta} \frac{\partial S^{(0)}}{\partial \alpha} \frac{\partial S^{(0)}}{\partial \beta} du_1$$

$$= \frac{1}{2} \int_0^{u_1} C_{p-1, p-2, p-2} \left(y_{2,1} \left(\frac{u_1}{p} \right)^2 + \mu \right) du_1.$$ \hspace{1cm} (2.11)

Substituting $\mu = \frac{u_1^2}{2p}$, we can obtain

$$Z_0 = \frac{1}{(p - 2)p(p + 2)} \frac{u_{n+1}^{p+2}}{p^{p+3}}.$$ \hspace{1cm} (2.12)

And the two-point correlator is

$$Z_{12} = \langle O_n O_{n1} \rangle = \int_0^{u_1} C_{p-1, \alpha \beta} \frac{\partial S^{(n_1)}}{\partial \alpha} \frac{\partial S^{(n_2)}}{\partial \beta} du_1$$

$$= \delta_{n_1, n_2} \left(-\frac{1}{p} \right)^{p-2n-1} \frac{u_{n+1}^{p-2n_1}}{p - 2n_1}.$$ \hspace{1cm} (2.13)

Hence, the two-point correlators have a proper diagonal form. On the other hand, a simple analysis based on the new action S shows that there is no way to use the freedom of the resonance transformations in this case.

3. Calculation of three-point correlators

In this section, we calculate three-point numbers and compare the resulting normalized expression with the expression from the continuous approach

$$Z_{123} = \langle O_n O_{n2} O_{n3} \rangle = C_{p-1, \alpha \beta} \frac{\partial S^{(n_1)}}{\partial \alpha} \frac{\partial S^{(n_2)}}{\partial \beta} = C_{p-2n_1, p-2n_2, p-2n_3} \frac{\partial S^{(n_3)}}{\partial \gamma}.$$ \hspace{1cm} (3.1)

To obtain an expression for $\frac{\partial S_{ij}}{\partial \alpha_k}$, we proceed as follows. We use the Douglas String equation as

$$\frac{\partial}{\partial \alpha_k} \frac{\partial S}{\partial \alpha^\alpha} \bigg|_{\alpha^\alpha} = 0, \quad \alpha = 1, \ldots, p - 1.$$ \hspace{1cm} (3.2)

Substituting (2.3), we have

$$\frac{\partial}{\partial \alpha_k} \left[\frac{\partial^2 S_{1,1}}{\partial \alpha^\alpha} + \mu \frac{\partial^2 S_{1,0}}{\partial \alpha^\alpha} + \sum_{n=2}^{p-1} \delta_{n,0} \frac{\partial^2 S_{2n,0}}{\partial \alpha^\alpha} \right] = 0.$$ \hspace{1cm} (3.3)

Hence, we obtain the following useful equation

$$C_{2 \mu} \frac{\partial S_{1 \beta}}{\partial \alpha_k} + \delta_{n,2k} = 0.$$ \hspace{1cm} (3.4)
Taking the special nonzero condition for $C_{2a\beta}$ into account, namely, $C_{2a\beta} \neq 0$ iff $\alpha + \beta = p \pm 1$, we can recursively obtain an expression for $\frac{\partial C_{p\beta}}{\partial \lambda_k}$. Indeed, considering (3.4) for $\alpha = 1$ and for $\alpha = -p$, we obtain

$$\frac{\partial C_{p\beta}}{\partial \lambda_k} = 0, \quad \frac{\partial C_{p+1\beta}}{\partial \lambda_k} = \frac{p}{v_{n1}} \delta_k \cdot \frac{p-1}{2},$$

(3.5)

If $\alpha \neq p - 1$ and $\alpha \neq 1$, then $\beta = p + 1 - \alpha$ or $\beta = p - 1 - \alpha$, and we obtain

$$\frac{\partial C_{p+1-a\beta}}{\partial \lambda_k} = \frac{p}{v_{n1}} \left(\frac{\partial C_{p\beta}}{\partial \lambda_k} + \delta_{a2k} \right),$$

(3.6)

from (3.4). By recursive computation, we can get zero for odd β and for even β:

$$\frac{\partial C_{p\beta}}{\partial \lambda_k} = \left(\frac{p}{v_{n1}} \right)^{\beta+2k+1-p} \text{ if } \beta \geq \frac{p+1}{2} - k.$$

(3.7)

Combining (2.6) and (3.7), we obtain

$$Z_{123} = \left(\frac{v_{n1}}{p} \right)^{p-1-\sum n_i} \prod_{\text{max} 1, \frac{p+1}{2} - n_i}^{p-1} (-1)^{\frac{p-1}{2} - n_i - \theta_{123}} \left(2n, p - 2n_1, p - 2n_2 \right).$$

(3.8)

After some operations with this expression, we finally find

$$Z_{123} = \left(\frac{v_{n1}}{p} \right)^{p-1-\sum n_i} \theta_{123},$$

(3.9)

where θ_{123} denotes the nonzero condition of this expression. It turns out that it coincides with the selection rules for three-point correlators\(^9\), which come from the CFT fusion rules, i.e., $\theta_{123} = 1$ if $n_3 \in [n_1 - n_2 + 1; n_1 + n_2 - 1]$ or $p - n_3 \in [n_1 - n_2 + 1; n_1 + n_2 - 1]$.

We now have all necessary ingredients for comparing with the continuous approach. Using (2.12), (2.13), and (3.9), we find the normalized expression for three-point numbers

$$\frac{Z_{123}^2}{Z_{11}Z_{22}Z_{33}} = \prod_{i=1}^{p-1} \frac{(p - 2n_1)}{(p - 2)p(p + 2)} \theta_{123},$$

(3.10)

This is exactly the same as the continuous expression calculated in [4] for general (q, p) models

$$\frac{\langle O_{n1}O_{n2}O_{n3} \rangle^2}{\prod_{i=1}^{p} \langle O_{n1}^2 \rangle} = \frac{\prod_{i=1}^{3} |m_i p - n_i q|}{p(p + q)(p - q)} \theta_{123},$$

(3.11)

where θ_{123} denotes the selection rules of general (q, p) models.

\(^9\) In the next condition, there is no minimum in the upper limits as soon as we take $n_i \in [1, \frac{p+1}{2}]$.

4. Calculation of four-point correlators

In this section, we calculate four-point numbers and compare their normalized expression with the expressions found in the continuous approach:

\[Z_{1234}^{\text{disc}} = \frac{\partial^2 \nu^\gamma_{\lambda \lambda} C_{\gamma \beta} \partial \partial \gamma}{\partial \partial \lambda \lambda \partial \partial \lambda \lambda} + \frac{\partial^2 \nu^\gamma_{\lambda \lambda} C_{\gamma \beta} \partial \partial \gamma}{\partial \partial \lambda \lambda \partial \partial \lambda \lambda}. \]

(4.1)

To obtain an expression for \(\partial^2 \nu^\gamma_{\lambda \lambda} \), we proceed the same way as for calculating \(\partial \nu^\beta_{\lambda k} \), differentiating (3.4) with respect to \(\lambda_j \), we obtain

\[\frac{\partial^2 \nu^\beta_{\lambda j} C_{\gamma \beta} \partial \partial \gamma}{\partial \partial \lambda j \partial \lambda k} + \frac{\partial \nu^\beta_{\lambda j} C_{\gamma \beta} \partial \partial \gamma}{\partial \partial \lambda j \partial \lambda k} = 0. \]

(4.2)

Noting that \(\partial \nu^\beta_{\lambda j} C_{\gamma \beta} \partial \partial \gamma = -\frac{1}{p} \delta_{\alpha + \beta + \gamma, 2p} \), we rewrite (4.2) as

\[C_{\gamma \beta} \frac{\partial^2 \nu^\beta_{\lambda j} \partial \partial \gamma}{\partial \partial \lambda j \partial \lambda k} = -\frac{1}{p} \left(\frac{p}{v_{\beta 1}} \right)^{n_\beta + n_\gamma - \frac{p-1}{2}} \sum_{n=\frac{p+1}{2}}^{p-1} \sum_{m=\frac{p+1}{2}}^{p-1} \left(\frac{p}{v_{\beta 1}} \right)^{n+m} \delta_{\alpha + 2p - 2n - 2m}. \]

(4.3)

Using the ansatz

\[\frac{\partial^2 \nu^\beta_{\lambda j} \partial \partial \gamma}{\partial \partial \lambda j \partial \lambda k} = -\frac{1}{p} \left(\frac{p}{v_{\beta 1}} \right)^{n_\beta + n_\gamma - \frac{p-1}{2}} \frac{p-1}{2} \sum_{n=\frac{p+1}{2}}^{p-1} \sum_{m=\frac{p+1}{2}}^{p-1} f(\beta, p - n - m), \]

(4.4)

in the same way as we obtained result (3.7), we obtain

\[\frac{\partial^2 \nu^\beta_{\lambda j} \partial \partial \gamma}{\partial \partial \lambda j \partial \lambda k} = -\frac{1}{p} \left(\frac{p}{v_{\beta 1}} \right)^{n_\beta + n_\gamma - \frac{p-1}{2}} \frac{p-1}{2} \sum_{n=\frac{p+1}{2}}^{p-1} \sum_{m=\frac{p+1}{2}}^{p-1} \sum_{i=1}^{\beta/2} \delta_{\beta + m, \frac{p-1}{2} + i}. \]

(4.5)

for even \(\beta \). Combining (2.6) and (4.5), we can see that the first term in (4.1) is

\[\frac{\partial^2 \nu^\gamma_{\lambda \lambda} C_{\gamma \beta} \partial \partial \gamma}{\partial \partial \lambda \lambda \partial \partial \lambda \lambda} = \frac{1}{p} \left(\frac{p}{v_{\beta 1}} \right)^{n_\beta + n_\gamma} \sum_{n=\frac{p+1}{2}}^{p-1} \sum_{m=\frac{p+1}{2}}^{p-1} (-1)^{p-1-m-n+2m} \delta_{m+n, \frac{p-1}{2} + i}. \]

(4.6)

where

\[\delta_{m+n, \frac{p-1}{2} + i}. \]

(4.7)
or, explicitly
\[
\varphi(i) = \frac{p + 1 - 2i}{4} + \frac{n_3 + n_4 - \frac{p + 1}{2} + i}{2} - \frac{n_3 - \frac{p + 1}{2} + i}{2} - \frac{n_4 - \frac{p + 1}{2} + i}{2}.
\]

Using (2.7), (3.7), and (4.6), we obtain the normalized expression
\[
\frac{Z_{\text{disc}}^{1234}}{\sqrt{Z_{11}Z_{22}Z_{33}Z_{44}}} = \sqrt{\prod (p - 2n_i)} \frac{(p - 2)p(p + 2)}{2(p - 2)p(p + 2)} \times \left[\sum_{\frac{p - 1}{2} \geq n_i - n_i} \left(-1 \right)^{\frac{p + 1}{2} - n_i - n_i + \frac{1}{2}} \sum_{i=1}^{t} \varphi(i) \right] + \sum_{n=\frac{p - 1}{2} - n_1}^{\frac{p - 1}{2} - n_4} \sum_{m=\frac{p - 1}{2} - n_4}^{\frac{p - 1}{2} - n_4} F(n_1, n_2, n, m, p),
\]

where
\[
F(n_1, n_2, n, m, p) = \left(m + n - n_1 - n_2 \right) (-1)^{p + m - n_1 - n_2} \vartheta \times (2n, 2m, p - 2n_1, p - 2n_2).
\]

It is easy to verify that (4.9) is symmetric. In the continuous approach, for \(n_1 \leq \ldots \leq n_4 \), this quantity is
\[
\frac{Z_{\text{cont}}^{1234}}{\sqrt{Z_{11}Z_{22}Z_{33}Z_{44}}} = \sqrt{\prod (p - 2n_i)} \frac{2(p - 2)p(p + 2)}{(p - 2)p(p + 2)} \times \left(\sum_{i=2}^{n_1} \sum_{n_i = -(n_i - 1)}^{n_i - 1} \left(p - 2(n_i - t) \right) - n_1(p + 2n_1) \right).
\]

We recall that (4.11) is obtained [2] under the assumption that the number of conformal blocks of the four-point correlator is exactly \(n_1 \). This can be expressed through the following condition
\[
\begin{cases}
 n_1 + n_2 + n_3 + n_4 \text{ even: } n_1 + n_4 \leq n_2 + n_3, \\
 n_1 + n_2 + n_3 + n_4 \text{ odd: } -n_1 + n_2 + n_3 + n_4 \geq p - 2.
\end{cases}
\]

The domain defined by (4.12) belongs to the physical region (where the conformal selection rules for four-point correlators are fulfilled). We find that in this domain (4.9) coincides with (4.11). It is interesting to note that outside of (4.12) our expression (4.9) gives zero values, while the previous consideration based on the polynomial \(Q \) of the second degree in \(y \) gives sometimes nonzero values outside (4.12) [20], which makes these two results significantly different. It would be interesting to provide an appropriate analysis of this subset in the continuous approach in the analogous way it was performed in [2] for the domain 4.12, but this would take us beyond the scope of this article. Anyway, the perfect agreement with the currently available results in the continuous approach, i.e. in the domain (4.12), shows that the new proposed construction without resonance transformation is another possible candidate for the description of \((2, p)\) MLG.
5. Conclusion

We have considered another description of the Lee–Yang series of MLG models. At the level of the correlation functions up to four points, we verified that the results obtained using this description agree with the results obtained using the initial continuous definition of MLG. The computation differs significantly from the previous one [18–20]. In particular, it does not require any resonance transformation. The essential modification is related to another choice of the FM relevant for the \((q, p)\) MLG model. The construction for the \((2, p)\) model is now based on the \(A_{p-1}\) Frobenius algebra. We find this description more natural because the dimension of the \(A_{p-1}\) algebra exactly equals the number of basic physical BRST cohomologies constructed from the primary fields in the minimal model \((2, p)\) (modulo the standard symmetry factor 2 of the Kac table). It can therefore play the role of the regulator ensuring the necessary satisfaction of the selection rules, while in the previous scheme this role had to be solved by supplementary resonance transformations.

It would be interesting to seek a possible alternative description without resonances in the general \((q, p)\) case. Certainly, this question is related to the longstanding problem of \(p = q\) duality in the discrete approach to MLG [25, 26]. Apparently, an appropriate description should be symmetric under the interchange of \(q\) and \(p\).

Another interesting issue is related to the problem described at the end of the preceding section: the origin of the discrepancy between the two versions in the region outside (4.12). The question of computing (spherical and higher-genera) multipoint correlators (and also the correlators of the gravitational descendants) deserves to be studied in this perspective. This problem, in particular, requires more detailed analysis of the structure constants of the \(A_{p-1}\) Frobenius algebra in the flat coordinates. We plan to investigate this question in the near future.

Acknowledgments

We are grateful to A Belavin for reading the manuscript and making useful comments. The work was performed at the Institute for Information Transmission Problems with the financial support of the Russian Science Foundation (Grant No.14-50-00150).

References

[1] Polyakov A M 1981 Quantum Geometry of Bosonic Strings Phys. Lett. B 103 207–10
[2] Belavin A and Zamolodchikov A 2006 Integrals over moduli spaces, ground ring, and four-point function in minimal Liouville gravity Theor. Math. Phys. 147 729–54
[3] Zamolodchikov A 2004 Higher equations of motion in Liouville field theory Int. J. Mod. Phys. A 1952 510
[4] Zamolodchikov A 2005 Three-point function in the minimal Liouville gravity Theor. Math. Phys. 142 183–96
[5] Kazakov V, Migdal A A and Kostov I 1985 Critical properties of randomly triangulated planar random surfaces Phys. Lett. B 157 295–300
[6] Kazakov V 1986 Ising model on a dynamical planar random lattice: exact solution Phys. Lett. A 119 140–4
[7] Kazakov V 1989 The appearance of matter fields from quantum fluctuations of 2D gravity Mod. Phys. Lett. A 4 2125
[8] Staudacher M 1990 The Yang–Lee edge singularity on a dynamical planar random surface Nucl. Phys. B 336 349
[9] Brezin E and Kazakov V 1990 Exactly solvable field theories of closed Strings Phys. Lett. B 236 144–50
[10] Douglas M R and Shenker S H 1990 Strings in less than one-dimension Nucl. Phys. B 335 635
[11] Gross D J and Migdal A A 1990 Nonperturbative two-dimensional quantum gravity Phys. Rev. Lett. 64 127
[12] Krichever I 1992 The dispersionless Lax equations and topological minimal models Commun. Math. Phys. 143 415–29
[13] Knizhnik V, Polyakov A M and Zamolodchikov A 1988 Fractal structure of 2D quantum gravity Mod. Phys. Lett. A 3 819
[14] Dubrovin B 1992 Integrable systems in topological field theory Nucl. Phys. B 379 627–89
[15] Dijkgraaf R, Verlinde H L and Verlinde E P 1991 Topological Strings in d less than 1 Nucl. Phys. B 352 59–86
[16] Douglas M R 1990 Strings in less than one-dimension and the generalized KdV hierarchies Phys. Lett. B 238 176
[17] Belavin A, Polyakov A M and Zamolodchikov A 1984 Infinite conformal symmetry in two-dimensional quantum field theory Nucl. Phys. B 241 333–80
[18] Belavin A and Zamolodchikov A 2009 On correlation numbers in 2D minimal gravity and matrix models J. Phys. A: Math. Theor. A42 304004
[19] Moore G W, Seiberg N and Staudacher M 1991 From loops to states in 2D quantum gravity Nucl. Phys. B 362 665–709
[20] Belavin A, Dubrovin B and Mukhametzhanov B 2014 Minimal Liouville gravity correlation numbers from Douglas String equation J. High Energy Phys. JHEP01(2014)156
[21] Belavin V 2014 Unitary minimal Liouville gravity and Frobenius manifolds J. High Energy Phys. JHEP07(2014)129
[22] Belavin A and Belavin V 2014 Frobenius manifolds, integrable hierarchies and minimal Liouville gravity J. High Energy Phys. JHEP09(2014)151
[23] Belavin V 2015 Correlation functions in unitary minimal Liouville gravity and Frobenius manifolds J. High Energy Phys. JHEP02(2015)052
[24] Lee B 2015 G-Frobenius manifolds arXiv:1501.02118v1 [math.AG]
[25] Fukuma M, Kawai H and Nakayama R 1992 Explicit Solution for p – q Duality in Two-Dimensional Quantum Gravity Commun. Math. Phys. 148 101–16
[26] Ginsparg P H, Goulian M, Piessens M and Zinn-Justin J 1990 (p, q) string actions Nucl. Phys. B 342 539–63