A complete psychophysiological profile of a Paralympic athlete in a ultraendurance. A case study

Pedro Belinchon-deMiguel
Universidad Europea de Madrid
Faculty of Sport Sciences
Galapagar Health Center. Madrid.
Spain

Pablo Ruisoto
Department of Basic Psychology, Psychobiology and Methodology of Behavioural Sciences. University of Salamanca, Spain

Vicente Javier Clemente-Suárez
Universidad Europea de Madrid
Faculty of Sport Sciences
Grupo de Investigación en Cultura, Educación y Sociedad. Universidad de la Costa. Barranquilla. Colombia
Department of Sport Sciences. Calle Tajo, s/n, 28670 Villaviciosa de Odón, Madrid, Spain
vctxente@yahoo.es

ABSTRACT
Psychophysiological response of athletes with spinal cord injury has not been reported yet in scientific literature. The aim of this study is to analyze the specific psychophysiological response in a Paralympic athlete during competitive activities. We collected the following psychophysiological measurements: anxiety-trait, anxiety-state, locus of control, perceived psychological stress, stress-copying style, rate of perceived exertion, perceived muscle pain, body temperature, forced vital capacity, blood oxygen saturation, blood glucose and lactate concentrations, isometric hand strength, cortical arousal, heart rate variability, heart rate and velocities of a female Paralympic spinal cord injured athlete in a 11 hours and 44 minutes mountain ultraendurance event. An increase in sympathetic autonomous nervous system, heart rate, lactate, muscular pain and rate of perceived exertion and a decrease in cortical arousal and hand strength and inspiratory muscle fatigue. These results are consistent with the expected response during a highly stressful situation and consistent with previous findings in athletes without spinal cord injury.

Keywords
Strength; Rate of perceived exertion; Lactate; Cortical Arousal; Spinal cord Injury.

ACM Reference format:
P. Belinchon-deMiguel, P. Ruisoto and V. J. Clemente-Suárez. 2018. A complete psychophysiological profile of a Paralympic athlete in a ultraendurance. A case study. In Proceedings of the 6th International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM 2018) (Salamanca, Spain, October 24 -26, 2018), F. J. García-Peñalvo Ed. ACM, New York, NY, USA, 6 pages. http://doi.org/10.1145/3284179.3284259

1 INTRODUCTION

Previous researches in athletes with spinal cord injuries (SCI) were focused on the analysis of strength, ergometry and psychological well-being, showing that long-term and short-term physical training is feasible, improving physical and psychological well-being [1-3]. Specifically, in Paralympic athletes, previous studied were focus in the study of mechanical efficiency [4], the effect of endurance strength training of the upper body musculature [5] and Intervalle training effects [6]. In this line, it has also been investigated the physical condition of wheelchair athletes attending to different levels of functional classification, determining exercise programs for cardiorespiratory improvement [7], examining physiological and performance characteristics such as maximum oxygen uptake (VO2 max) [8] or trying to predict this parameter [9]. Despite these previous researches, the organic athlete’s response in competition are understudied.

In recent years, more athletes have been involved in ultraendurance races, such as the Ironman, 100-km or longer races performed in several days and mountain marathons [10-14]. A number of biochemical blood parameters have been analyzed in ultraendurance athletes such as creatinine kinase and urea, showing an increase in muscle destruction and catabolic status of athletes [15]; lactate, showing how the ultraendurance runs are performed with a blood lactate...
commitment, coping with anxiety, self-perception, stress are showing their importance, especially the constructs of vital [23]. In these extreme probes, different psychological variables studies have seen that low perception of pain may predispose a perception and psychological inflexibility [24-28]. Previous heart rate (HR) response during a 21-hour ultraendurance event, measuring how the race was performed at 71% of maximum heart rate (HRmax) [21]. They also analyzed heart rate variability (HRV) after an Ironman race and found an increase in sympathetic modulation of the autonomic nervous system indicated by a decrease in high frequency values and an increase in the low frequency [22]. In addition, a parameter of subjective perception of intensity as is, the rating of perceived effort (RPE), showed values between 13 and 14 points on the 6-20 RPE scale [23]. In these extreme probes, different psychological variables are showing their importance, especially the constructs of vital commitment, coping with anxiety, self-perception, stress perception and psychological inflexibility [24-28]. Previous studies have seen that low perception of pain may predispose a person to become a long-distance athlete [29], examining a greater automatic suggestibility of ultraendurance athlete’s behavior than normal population [30]. These ultraendurance athletes perceived problems and challenges as a positive experience, assuming them as a challenge to test their own abilities [30,31], showing the expert athletes more proactive cognitions than novices [32]. The unique case research, in the field of sports psychology, has steadily increased in recent years [33] and ratifying this interest among researchers and professional psychologists, some authors suggest that the work of applied psychologists represents an important component of any scientific literature [34]. The unique case designs allow researchers to work in applied environments and apply procedures in the professional field, as well as establish protocols for action with elite, professional or top-level athletes [35]. And regarding the study of cases in Paralympic athletes, it must be considered that they represent a unique case each of them.

The inclusion of SCI athletes to new sport modalities as ultraendurance and mountain event have been previously limited by technical deficiencies in wheelchairs, then the preparation of these athletes for this new modality is already unknown. In this context, there is a lack of research focused in the psychophysiological response of athletes with SCI during competitive activities, even less in the female population and in ultraendurance events. For this reason, the present research aimed to study the psychophysiological response of a Paralympic female athlete in an ultraendurance mountain event.

2 METHODS

2.1. Participants

We analyzed the athlete G.H.B., Paralympic fencing medallist in sword and foil modes, and one of the few Spanish elite athletes who has participated in five consecutive Paralympic Games - Atlanta, Barcelona, Sydney, Athens and Beijing. She obtained twelve Olympic titles, remaining between the best eight Paralympic athletes in her modality for years. She was also in podium in a National European and World Championships. The athlete participated voluntarily, filling up an informed consent in which the disclosure of her personal data was included, following the procedures of the Helsinki Protocol.

2.2. Ultraendurance Probe

The probe consisted in an ultraendurance race defined by the following parameters: length: 11.5 kilometers, height of 1640 meters (ascension of Abantos in Madrid, Spain), accumulative altitude change of 1240 meters and 620 meters uphill. The participant completed the of in a time of 11 h and 44 min in a proposed mountain handbike prototype (Figure 1).

2.3. Procedure

The day before the ultraendurance event a psychological test battery was completed by the athlete. The following tests were delivered: Spielberger State-Trait Anxiety Inventory (STAI) that is one of the most frequently used to measure anxiety in applied psychology research. Since its reliability and sensitivity [24]; Rotter locus of Control, internal versus external control of reinforcement, often referred to as locus of control, is currently one of the most studied variables in psychology and social sciences [25]; the Perceived Stress Scale (PSS), that evaluate the degree of which people find that life is unpredictable, uncontrollable, or overloaded [26]; the AFQ-8 to study the relationship between psychological inflexibility [27]; and the Life Engagement Test, designed to measure purpose in life, defined in terms of the extent to which a person engages in activities that are personally valued [28].

Figure 1 Hand bike prototype used during the ultraendurance mountain event
A complete psychophysiological profile of a Paralympic athlete in a ultraendurance. A case study

The probe day, we measured before, during and after the mountain ultraendurance event different psychophysiological parameters depending of the availability of the athlete and the possibility of move the equipment to the different part of the mountain race. The parameters and the procedure to measure were as follow:

- Rate of perceived exertion (RPE) by the 6-20 scale (Borg 1970).
- Perceived muscle pain in a self-reported 1-100 scale.
- Body temperature (BT) by a digital infrared thermometer (Temp Touch; Xilas Medical, San Antonio, TX).
- Forced vital capacity (FVC) using a QM-SP100 (Quirumed, Spain) spirometer in a maximum inhale-exhale cycle.
- Blood oxygen saturation (BOS) and Heard Rate (HR) by a pulse oximeter (PO 30 Beurer Medical).
- Blood glucose concentration by the analysis of 5 µl of capillary finger blood using a portable analyser (One Touch Basic, LifeScan Inc. Madrid).
- Blood lactate concentration taking a sample of 5 ul capillary blood from a finger of subjects and analysed with the Lactate Pro II Arkay, Inc. system (Kyoto, Japan).
- Isometric Hand Strength (IHS) of both hands, by a grip dynamometer (Takei Kiki Koyo, Japan).
- Cortical arousal through the Critical Flicker Fusion Threshold (CFFT) in a viewing chamber (Lafayette Instrument Flicker Fusion Control Unit Model 12021) following the procedures conducted in previous studies [36,37]. An increase in CFFT suggests an increase in cortical arousal and information process, by contrast, when the values fall below the baseline, it suggests a reduction in the efficiency to process information and fatigue of central nervous system [38].

The athlete also wore a GPS device (SPI Elite; GSPorts Systems, Canberra, Australia) inserted in a purpose-built backpack that recorded speed and distance, as well as a HR transmitter belt (Polar Electro, Kempele, Finland) to incorporate HR data. Athlete’s accelerations were also recorded using a triaxial built-in accelerometer with an operational sampling rate of 100 Hz. After collection, data were downloaded to a personal computer where further analysis was carried out with Team AMS software (GSPorts, V1.2, Canberra, Australia) following the procedure of previous research [39,40]. In addition, the participant wore a polar v800 heart rate monitor (Polar Electro Oy, Finland) validated to analyse RR function to analyse heart rate variability (HRV) and used by previous researchers [1,42]. We analysed (i) 20 minutes of HRV before the race as a HRV baseline, (ii) the first 3:35 probe time (iii) the time period between 3:35 and 6:12 probe time, (iv) the time period between 6:12 and 8:00 probe time, (v) the time period between 8:00 and 11:44 probe time. We used Kubios HRV software (University of Kuopio. Kuopio, Finland) to analyse the sum of the squared differences between adjacent normal R-R intervals (RMSSD) variable of HRV temporal domain. The complete moments of measurements are shown in Table 1.

3 RESULTS AND DISCUSSION

Psychological measurements:

Reported trait anxiety [17] and state-anxiety [10] were below percentile 50. Score in the locus of control scale was 5, indicating a strong internal locus of control, in other words, the athlete attributes the cause of success or failure is perceived as the result of variables of which the subject has some degree of control and direct responsibility: his own abilities, effort or persistence. Reported perceived psychological stress [30] was above percentile 50. However, it is characterized by a very healthy coping style: low psychological inflexibility and high life engagement, both good predictors of well-being and psychological health, that would mitigate the harmful effects of stress [24-28].

Psychophysiological measurements:

The athlete’s metabolic response (Table 1) showed how blood lactate concentration was maintained below the anaerobic threshold, as well as previous ultraendurance studies conducted with cyclists, swimmers or kayakers [11,16]. The long duration of the event prevented the maintenance of a high intensity and thus the accumulation of large quantities of lactate; in addition, the low intensity of the race permitted the use of the accumulated lactate as an energy substrate, decreasing its concentration [14]. However, blood glucose fluctuated, showing a decrease in the middle of the event (over the 6h), possibly due to a poor nutritional strategy planning [23], fact that occasioned discomfort, headache and dizziness to the athlete. Despite this fluctuation and taking into consideration the normal glucose limits [43], she did not presented hypoglycemia, remarking her lower glucose values as professional athletes, being both lowers than healthy sedentary population [44].

Parameter	unity	Previous day	pre	3:35	6:12	8:00	11:44	post 10 h	post 15 h	post 21 h
BOS	%	99	97	97	96	94	96			
HR	bpm	60	99	117	128	119	125			
RPE	-	6	6	10	16	18	20			
RIHS	kg	34.3	37.3	41.3	35.5	33.1	32.6			
Despite the low values of blood lactate obtained during the ultraendurance event, the RPE increased progressively reaching the maximum value at the end of the event. These values were higher than those recorded in triathletes (Ironman modality) or after a 3 and 5 hours cycloergometer tests [16,23]. The cortical accumulation of adenosine in neurons due to the high consumption of ATP during the event may have produced these high RPE values [45]. Thus, despite a low concentration of blood lactate, the Paralympic athlete perceived the ultraendurance event as a highly stressful effort. However, muscle pain remained low and moderate during the event reaching the highest peak ten hours after the event, which is in line with previous research that determines that the low perception of pain can predispose an athlete to become a long-distance athlete [21]. We can see a dentate shape in his HR, high training status of the Paralympic athlete as well as pain can predispose an athlete to become a long-distance athlete [21]. However, muscle pain did not decrease as in the first tranche, clearly seeing the effect of fatigue. Therefore, the results obtained are consistent with previous studies that determined that ultraendurance athletes require the ability to maintain a steady long-term performance at a high exercise intensity [15]. In this line, the sympathetic activation presented by the Paralympic athlete since the previous moments of the race showed an anticipatory anxiogenic response, also during the race an increase in sympathetic response was observed, as previous studies conducted in mountain ultraendurance runners [14], but with lower values of RMSSD, showing a higher impact of the ultraendurance race for the Paralympic athlete. The HRV seems to be an important tool to control workload during training as well [49].

Regarding the respiratory muscle response, we found a decrease of FVC values after the race, fact that reflect a fatigue of respiratory muscle and remark the necessity for specific training of these musculature. The respiratory muscle fatigue may be involved in limiting exercise tolerance or that other factors, including alterations in the sensation of dyspnea or mechanical load, may be important. The major consequence of respiratory muscle fatigue is an increased sympathetic vasoconstrictor outflow to working skeletal muscle through a respiratory muscle metaboreflex, thereby reducing limb blood flow and increasing the severity of exercise induced locomotor muscle fatigue. In terms of O2 saturation the results show constant levels during the race which helped the athlete to delay the onset of muscle fatigue [50].

An important fact observed in the present research was the no difference in the psychophysiological response of the Paralympic spinal cord injured athlete and athletes without injury. This fact allows us that training methodologies used in no injured athletes could be used in spinal cord injured athletes to improve their performance in ultraendurance events [8]. In this line new training model based on high intensity as reverse training periodization could be an effective election for these athletes [51,52].

LIHS	kg	35.5	38.7	37.4	38.1	39.4	32.5			
FVC	ml	3900	3700	3400	3600	3100				
Temperature	°C	36.2	35.1	37.4	33.1	35.4				
Lactate	mmol/l	1.8	2.1	3.1	3	3.1				
Glucose	mmol/l	8.6	9	8.5	6.7	9.2				
Cortical arousal	Hz	27.6	29.6	30	28.1	25.2	26.1			
Muscular Pain	1-100	10	5	5	40	60	75	90	27	25
RMSSD	Ms	16.4	17.3	8.9	7.4	7.0	6.5			

BOS: Blood oxygen saturation; HR: Heart Rate; RPE: Rating of perceived effort; RIHS: Right Isometric Hand Strength; LIHS: Left Isometric Hand Strength; FVC: Forced vital capacity; RMSSD: sum of the squared differences between adjacent normal R-R intervals.
Figure 2. Changes in heart rate and speed during the ultraendurance event.

4 CONCLUSIONS

An increase in sympathetic autonomous nervous system, heart rate, lactate, muscular pain and rated of perceived exertion and a decrease in cortical arousal and hand strength and inspiratory muscle fatigue in a spinal cord injured female athlete during an ultraendurance mountain event. These results are consistent with the expected response during a highly stressful situation and consistent with previous findings in athletes without spinal cord injury.

REFERENCES

[1] Hicks A, Martin K, Ditor D, Latimer A, Craven C, Bugaresti J, et al. Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 2003;41(1):34.

[2] Jacobs PL, NAS, H, RUSINSKI JW. Circuit training provides cardiorespiratory and strength benefits in persons with paraplegia. Med Sci Sports Exerc 2001;33(S):711-717.

[3] Ditor D, Latimer A, Ginis KM, Arbour K, McCartney N, Hicks A. Maintenance of exercise participation in individuals with spinal cord injury: effects on quality of life, stress and pain. Spinal Cord 2003;41(8):446.

[4] Brizuela G, Polo M, Martos J, Sanchis E. Influencia del diámetro del aro de propulsión sobre la frecuencia cardíaca y la lactacidemia en un atleta en silla de ruedas de elite mundial. Motricidad. Eur J Hum Mov. 2006;16.

[5] Turbanski S, Schmidtleicher D. Effects of heavy resistance training on strength and power in upper extremities in wheelchair athletes. J Strength Cond Res 2010;24(1):8-16.

[6] Torlak N, Dugue B, Klupzinski D, Rasseneur L, Rouillon J, Lonsdorfer J. Interval training program on a wheelchair ergometer for paraplegic subjects. Spinal Cord 2001;39(10):532.

[7] Florczak RE, Rasch EK, Finley M, Rodgers MM. Improved upper-body endurance following a 12-week home exercise program for manual wheelchair users. J Rehabil Res Dev 2003;40(4):501.

[8] Lakomy HK, Campbell I, Williams C. Treadmill performance and selected physiological characteristics of wheelchair athletes. Br J Sports Med 1987;21(3):130-133.

[9] Vinet A, Le Gallais D, Bouges S, Bernard P, Poulsen M, Varray A, et al. Prediction of VO2peak in wheelchair-dependent athletes from the adapted Leger and Boucher test. Spinal Cord 2002;40(10):507.

[10] Suarez VC, Arroyo, Victor Eugenio Munoz Fernandez, Campo DR, Valdivielso FN, Rave JMG, Santos-Garcia DJ. Analysis of selected physiological performance determinants and muscle damage in a 24-hour ultra-endurance relay race: Brief clinical report. Int Sportmed J 2011;12(4):179-186.

[11] Suarez VC, Valdivielso FN, Rave JMG. Changes in biochemical parameters after a 20-hour ultra-endurance kayak and cycling event. Int Sportmed J 2011;12(1):1-6.

[12] Page AJ, Reid SA, Speedy DB, Mulligan GP, Thompson J. Exercise-associated hypotension, renal function, and nonsteroidal antiinflammatory drug use in an ultraendurance mountain run. Clin J Sport Med 2007;17(1):43-48.

[13] Belinchon-deMiguel P, Clemente-Suárez VJ. Psychophysiological, Body Composition, Biomechanical and Autonomic Modulation Analysis Procedures in an Ultraendurance Mountain Race. J Med Syst 2018;42(2):32.

[14] Clemente-Suárez VJ. Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event. Appl Physiol Nutr Metab 2014;40(3):269-273.

[15] Neumayr G, Ganzner H, Sturm W, Pfister R, Mitterbauer G, Hortnagl H. Physiological effects of an ultra-cycle ride in an amateur athlete - a case report. J Sports Sci Med 2002;1(1):20-26.

[16] Laursen PB, Rhodes EC, Langille RH. The effects of 3000-m swimming on subsequent 3-h cycling performance: implications for ultraendurance triathletes. Eur J Appl Physiol 2000;83(1):28-33.

[17] Schaumacker YO, Jankovits R, Bültermann D, Schmid A, Berg A. Hematological indices in elite cyclists. Scand J Med Sci Sports 2002;12(5):301-308.

[18] Fallon KE, Sivyer G, Siwy K, Dare A. The biochemistry of runners in a 1600 km ultramarathon. Br J Sports Med 1999;33(4):264-269.

[19] Warburton DE, Welsh RC, Haykowsky MJ, Taylor DA, Hume DP. Biochemical changes as a result of prolonged strenuous exercise. Br J Sports Med 2002;36(4):301-303.

[20] Clemente-Suárez V, Mielgo-Ayuso J, Quiles J, Varela-Lopez A, Aranda P. Effect of α-tocopherol megadoses on hemolytic parameters and antioxidant capacity of rats in an ultraendurance probe. Physiol Int 2017;104(4):291-306.

[21] Neumayr G, Ganzner H, Sturm W, Pfister R, Mitterbauer G, Hortnagl H. Heart rate response to ultraendurance cycling. Br J Sports Med 2003;37(1):89-90.

[22] Roussey G, Rudnicki R, Urban W, Mayer H, Schlogl A, Skrabal F. Hemodynamic and autonomic changes induced by Ironman: prediction of competition time by blood pressure variability. J Appl Physiol 2005;99(5):1728-1735.

[23] Jeukendrup AE, Moseley L, Mainwaring GI, Samuels S, Ferry S, Mann CH. Exogenous carbohydrate oxidation during ultraendurance exercise. J Appl Physiol 2006;100(4):1134-1141.

[24] Marteau TM, Bekker H. The development of a six-item short-form of the state scale of the Spielberger State–Trait Anxiety Inventory (STAI). Br J Clin Psychol 1992;31(3):301-306.

[25] Rotter JB. Internal versus external control of reinforcement: A case history of a variable. Am Psychol 1990;45(4):489.

[26] Remor E. Psychometric properties of a European Spanish version of the Perceived Stress Scale (PSS). Span J Psychol 2006;9(1):86-93.

[27] Simon E, Verboom P. Psychological inflexibility and child anxiety. J Child Fam Stud 2016;25(12):3565-3573.

[28] Scheir MF, Wroesch C, Baum A, Cohen S, Martine LM, Matthews KA, et al. The life engagement test: Assessing life in the 21st Century. J Med Syst 2006;30(3):291.

[29] Freund W, Weber F, Billich C, Birklein F, Breimhorst M, Schuett UH. Ultra-Marathon Runners Are Different: Investigations into Pain Tolerance and Personality Traits of Participants of the TransEurope FootRace 2009. Pain Pract 2013;13(7):524-532.

[30] Schütz UH, Schmidt-Trucksäss A, Knechtle B, Machnig H, Jankovits R, Leistritz A, Mauch K, et al. The TransEurope Footrace Project: longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 6:4-stage 4,486 km transcontinental ultramarathon. BMC medicine 2012;10(1):78.

[31] Steyn BJ. Strategies used by South African non-elite athletes to cope with the environmental stressors associated with endurance events. S Afr J Res Sport Phys Educ Recreation 2007;29(2):99-107.

[32] Baker J, Côté J, Deakin J. Cognitive characteristics of expert, middle of the pack, and back of the pack ultra-endurance triathletes. Psychol Sport Exerc 2005;6(5):551-558.
[33] McCarthy P, Barker J, Jones M, Moran AP. Single-case research methods in sport and exercise psychology. Routledge; 2011.

[34] Keegan RJ, Schinke R, Chirban S, Durand-Bush N, Cotterill S. Guidelines for writing applied case studies in sport and exercise psychology. Rev Psico Deporte 2017;26(3).

[35] Kinugasa T. The application of single-case research designs to study elite athletes’ conditioning: An update. J Appl Sport Psychol 2013;25(1):157-166.

[36] Clemente-Suárez VJ, Robles-Pérez JJ. Acute effects of caffeine supplementation on cortical arousal, anxiety, physiological response and marksmanship in close quarter combat. Ergonomics 2015;58(11):1842-1850.

[37] Clemente-Suárez VJ, de la Vega R, Robles-Pérez JJ, Lautenschlager M, Fernández-Lucas J. Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump. Int J Psychophysiol 2016;110:212-216.

[38] Saito S. Does fatigue exist in a quantitative measurement of eye movements? Ergonomics 1992;35(5-6):607-615.

[39] Clemente-Suárez VJ, Robles-Pérez JJ, Fernandez-Lucas J. Psycho-physiological response in an automatic parachute jump. J Sports Sci 2017;35(19):1872-1878.

[40] Fox, Stuart Ira Agud Aparicio, Luis J. Fisiología humana. ; 2003.

[41] Lippi G, Brocco G, Franchini M, Schena F, Guidi G. Comparison of serum creatinine, uric acid, albumin and glucose in male professional endurance athletes compared with healthy controls. Clin Chem Lab Med 2004;42(6):644-647.

[42] Langberg H, Bjørn C, Boushel R, Hellsten Y, Kjaer M. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans. J Physiol 2002;542(3):977-983.

[43] Clemente-Suárez VJ. Periodized training archive better autonomic modulation and aerobic performance than non periodized training. J Sports Med Phys Fitness 2017 doi: 10.23736/S0022-4707.17.07582-X

[44] Vallverdú M, Ruiz-Muñoz A, Roca E, Caminal P, Rodríguez FA, Irurtia A, et al. Assessment of Heart Rate Variability during an Endurance Mountain Trail Race by Multi-Scale Entropy Analysis. Entropy 2017;19(12):658.

[45] Clemente-Suárez VJ. The application of cortical arousal assessment to control neuromuscular fatigue during strength training. J Mot Behav 2017;49(4):429-434.

[46] Clemente-Suárez VJ. Cortical arousal and central nervous system fatigue after a mountain marathon.(Activación cortical y fatiga del sistema nervioso después de una maratón de montaña). CCD. 2017;12(35):143-148. doi: 10.12800/ccd

[47] Romer LM, Polkey MI. Exercise-induced respiratory muscle fatigue: implications for performance. J Appl Physiol 2008;104(3):879-888.

[48] Clemente-Suárez VJ. The use of autonomic modulation device to control training performance after high-intensity interval training program. J Med Syst 2018;42(3):47.

[49] Beltrán-Velasco AI, Bellido-Esteban A, Ruisoto-Palomera F, Clemente-Suárez VJ. Use of Portable Digital Devices to Analyze Autonomic Stress Response in Psychology Objective Structured Clinical Examination. J Med Syst 2018;42(2):35.

[50] Fox, Stuart Ira Agud Aparicio, Luis J. Fisiología humana. ; 2003.

[51] Fox, Stuart Ira Agud Aparicio, Luis J. Fisiología humana. ; 2003.

[52] Clemente-Suárez VJ, Dalamitros A, Ribeiro J, Souza A, Fernandez RJ, Vilas-Boas JP. The effects of two different swimming training periodization on physiological parameters at various exercise intensities. Eur J Sport Sci 2017;17(4):425-432.