Molecular Detection of *Fusarium oxysporum* f. sp. *Cubense* Race TR4 Infecting Banana Groups in Indo-Gangetic Plains of India

Debashis Rana¹, Ankit Kumar Ghorai¹, Uday Bikash Oraon¹, Krishnendu Pramanik², Arpita Das³*, Joydeep Banerjee⁴ and Dilip Kumar Misra⁵

¹Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal-741252, India.
²Department of Biotechnology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal-741252, India.
³Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal-741252, India.
⁴Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, Paschim Midnapore, West Bengal-721302, India.
⁵Directorate Research, Bidhan Chandra Krishi Viswavidyalaya, Kalyani, Nadia, West Bengal-74135, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors DDKM, KP, JB and AD conceptualized the study. Authors DR, AKG and UBO collected the data and performed the experiment. Authors JB, KP and AD did the analysis. Authors DR, AKG, UBO wrote the first draft of the manuscript. Authors AD, KP and JB supervised and edited the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2020/v39i3331028

Editors:
(1) Dr. Alessandro Buccolieri, Università del Salento, Italy.
(2) A. S. Sadik, Taif University, Saudi Arabia and Ain Shams University, Egypt.
(2) Sadia Aslam, Government College for Women University, Faisalabad, Pakistan.
Complete Peer review History: http://www.sdiarticle4.com/review-history/61723

Received 10 August 2020
Accepted 15 October 2020
Published 06 November 2020

Original Research Article

ABSTRACT

Panama wilt or *Fusarium oxysporum* f. sp. *cubense* (Foc) is a major threat for banana cultivation and impacting symbolic economic losses worldwide. Previously Foc race 1 and race 2 were detected in India which eventually spread monoculture of ‘Cavendish’ bananas
resistant against these two races. Later on, another new race TR4 of Foc was detected to be incited in ‘Cavendish’ group of banana raised an alarming situation to the global banana industry. In the present study detailed survey was conducted in popular banana growing districts of West Bengal, India for visualizing the impact of disease incidence as well as collection of isolates from infected suckers and rhizomes of ‘Cavendish’ banana with an aim to develop a rapid detection technique for apprehending the presence of Foc TR4 race at early infection stages. Methods comprised of field survey followed by isolation of pathogen, test of pathogenicity and further molecular detection through Foc TR4 specific primers. Results revealed that the colonies formed on the potato dextrose agar (PDA) medium exhibited typical characteristic of Foc. Pathogenicity test conducted by considering healthy plantlet of ‘Grand Naine’ also detected characteristic symptom of Foc. Additionally, PCR assay using specific markers followed by sequencing of 28S-18S ribosomal RNA intergenic spacer spacer (IGS) confirmed the presence of this isolate in the infected samples. Phylogenetic evolution assays revealed a very close relationship of the Foc TR4 strains of India with Asia-Pacific isolates of Foc TR4. This study advocated the urgency of prevention of introduction of Foc TR4 into disease-free areas in the banana growing districts of India for maintaining sustainable banana production.

Keywords: Banana; cavendish (AAA); fusarium oxysporum f.sp. cubense; tropical race 4; PCR.

1. INTRODUCTION

Bananas or Plantains (Musa spp.) are the important fruit crops in the World rank second after orange and consider as a source of nutrition and livelihood of many developing countries including Latin America, East Asia and Africa [1]. This fruit crop is considered as a cheap source of nutrition to the economically poor vulnerable sector of the society with having export potentiality [2]. Bananas produced globally are mostly consumed by the local people in the form of traditional dishes unique for each country or in the form of processed foods. This fruit crop can meet micronutrients malnutrition of the poor people especially pregnant women and preschool children [3]. Despite of having immense potential, this fruit crop remains undervalued and suffers from many biotic and abiotic constraints. Among the biotic stresses, Fusarium wilt or Panama disease of banana, incited by Fusarium oxysporum f. sp. cubense (Foc), is the most fatal plant disease [4,5]. This deadly disease was first reported in Australia followed by rapid spread in the Panama region during 1980 from there the disease originated its name and disseminated into Asia, Africa and America at an alarming pace and affected most of the commercially exported banana cultivars [4,6,7].

The first visible symptom of Fusarium wilt in banana is classified into two types of external symptoms: "yellow leaf syndrome" and "green leaf syndrome" [4,7]. In the infected plants yellowing and wilting of older leaves are observed followed by wilting of the younger leaves and complete defoliation and dying of the infected plants. Internally, in the infected plants reddish brown discoloration is observed in the xylem with necrosis in the pseudostem [4,5,8]. Foc is a soil borne pathogen and intricate to manage as resting spores chlamydospores can survive in the soil up to 30 years making difficult to cultivate susceptible cultivars in the infected soil [4]. In the absence of effective physical, chemical and biological control measure, identification of resistant source is the only effective way to resolve the issue [9]. Based on pathogenicity test, previous studies have reported banana cvs. Manzano (AAB) and Gros Michel (AAA) as differential host for race 1 whereas, cv. Bluggoe (ABB) for race 2 [7,10]. This resulted complete removal of the susceptible cultivars and rapid cultivation of resistant Cavendish cultivars against Foc Race 1 which are currently the source of 99% of banana exports. Unfortunately, later on another race was identified in both tropical and subtropical region and designated as subtropical race 4 (ST4) and tropical race 4 (TR4) and caused great devastation and economic losses in banana export industry based on cv. Cavendish [11,12,13,14-1]. Race TR4 has resulted in catastrophe to ‘Cavendish’ banana production in Malaysia, Indonesia, South China, Philippines and Northern parts of Australia [5,15,16]. Later on, it became major threat in Australasia afflicted 100,000 hectares of area keeping scope of further dissemination in new areas in more endemic form due to rapid expansion of area under ‘Cavendish’ banana [17]. Co-evaluation of different isolates and their close proximity create ambiguities in genetic characterization of the isolates thus seek immediate attention for
effective characterization that could be of significance in management of these volatile races.

India is the largest producer of banana in the world with an annual production of 29.163 million tones [18] and is considered as one of the center of diversity of banana. Significant growth in the banana industry was observed in the irrigated belt of Uttar Pradesh and Bihar states where it considered as a medium duration cash crop [2]. More than 20 banana varieties are grown commercially in this country and more than half of India’s banana belongs to ‘Cavendish’ group. Panama wilt was first identified in India from the state of West Bengal in 1911 [19]. With the onset of severe outbreak of Foc race TR-4 from the Ayodhya district of Uttar Pradesh as well as from the Katihar and Vaishali districts of Bihar, the banana industry faced huge economic losses with an average disease incidence ranging from 30-50% [20,21]. Identification of diseased plants is difficult in early stages of infection as the infected suckers and rhizomes are devoid of symptoms until four months old. Therefore, symptomless infected suckers can easily spread the fungus to new area and may cause epidemic. Therefore, early detection and prevention of further spread of the disease is imperative for management of this aggressive strain. Keeping these in the backdrop, the aim of this present investigation was to develop a rapid detection technique to identify Foc TR4 in early infection stages in the infected ‘Cavendish’ banana suckers and rhizomes which will be helpful to import disease free suckers and restrict further movement of the disease to other parts of India.

2. MATERIALS AND METHODS

2.1 Field Survey of Wilt Infected Banana Rhizome

A detailed survey work was conducted in 10 different locations of 3 commercial banana growing districts of West Bengal viz. Nadia, 24 Parganas (North) and Hooghly. The investigation was conducted during 3 seasons of 2017-18 viz. summer, rainy and winter on different commercial cultivars including ‘Rasthali’ (AAB), ‘Cavendish’ (AAA), ‘Karpuravalli’ (ABB) and cooking varieties (ABB) based on the external and internal symptoms. Interestingly, among the different cultivars only the ‘Cavendish’ banana group (Grand Naine and Robusta) was identified with the typical panama wilt symptom of variable degrees in two villages of Nadia district namely, Jallalkhalii ("23.34 N, 88.51 E") and Dogachi ("23.20 N, 88.30 E"), in Krishnanagar, West Bengal (Figs. 1, 2 and 3). The percent disease incidence was calculated by recording number of wilted plants from four sides of each filed and center region of the two villages using the following standard formula.

\[
\% \text{ Disease Incidence} = \frac{\text{Number of wilted plants}}{\text{Total number of plants observed}} \times 100
\]

2.2 Sample Collection and Isolation of Pathogen

Samples in the form of different portion of pseudostems were collected time to time from diseased fields from the infected plants. Sections of pseudostems were thoroughly washed with running water and cut into 5 cubic mm pieces and were surface sterilized with freshly prepared 0.1% HgCl₂ solution. The surface sterilized pseudostem pieces were further transferred to PDA media amended with Streptomycin sulphate [22]. Colonies were confirmed with the presence of macroconidia, microconidia and chlamydospore having the typical characteristic of Foc under light microscope (Zeiss; Axio Lab.A1) and transferred aseptically on potato-dextrose agar (PDA) media to isolate pure culture of the pathogen. The cultures were stored after purification until further use at 4°C.

2.3 Pathogenicity Test

Three months old suckers of healthy Grand Naine collected from All India Co-ordinated Research Project (AICRP) on Fruits, Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India were used as test plants for conducting the pathogenicity test. The healthy rhizomes of Grand Naine were planted in large cement pots, filled with 10 kg sterilized potting mix (1:1:1 ratio of garden soil, sand and decomposed farmyard manure, w:w:w) under poly house conditions. Banana plants of 30 days old were inoculated by root dipping for 30 minutes in conidial suspension (10^6 conidia / ml) of Foc isolates S1, S2 and S2a [23]. The inoculated test plants along with the uninoculated control plants were maintained at 28°C and 80% relative humidity conditions inside greenhouse. Disease incidence was recorded at every 7 days interval post inoculation. The recommended scale was used to evaluate the extent of external symptoms produced, wherein 1: depicted no symptoms, 2: depicted initial yellowing in lower leaves, 3: indicated yellowing of old lower leaves accompanied with discoloration of the younger top leaves, 4: depicted intense yellowing of all
leaves and 5: depicted dead plant [22]. PDA medium was used for isolation, purification and verification based on colony and conidial characters.

2.4 DNA Extraction, Purification and PCR Amplification

DNA was extracted from five days old Potato Dextrose broth culture of the morphologically confirmed Foc isolates. The fungal biomass mat was harvested by decanting the liquid broth. Mycelia mat (1.5 cm) weighing up to 20 mg was cut with sterile blade and put into Eppendorf tubes. Total genomic DNA was extracted using Wizard® SV Genomic DNA Purification System (Promega) following manufacturer’s protocol. DNA was collected in 200 μL molecular grade distilled water and stored at -20°C with proper labeling. A total of 25 μL PCR reaction was set up which contained 4 μL of DNA (16.3 ng/μL), 2.5 μL of 10X PCR buffer, 1 μL each of 20 pm/mL forward and reverse primer, 2.5 μL of 50 mM MgCl₂, 0.5 μL of 10 mMdNTPs mix, 1.0 μL of 1 U Taq polymerase and 12.5 μL of double distilled sterile water. PCR amplification was carried out using Foc TR4 specific primer pair 01213/16 F1 (5'-ACGTTAAGGTGCCATGAGAG-3') and 01213/16 R2 (5'-CCTCGTAGGCCACTTTTAT-3') [24]. The amplification reaction was carried out in a Veriti Thermal Cycler (Applied Biosystems) with the following parameters: initial denaturation at 94°C for 4 minutes; 35 cycles consisting 45 sec of denaturation at 94°C, 45 sec of primer annealing at 63°C, 60 sec of extension at 72°C; and a final extension for 10 min at 72°C. Amplified PCR product were separated by electrophoresis on 1.5% agarose gel prepared in 1X TAE buffer, added with ethidium bromide. Visualization of the gel electrophoresis was done using BIO-RAD Gel Documentation system with the help of 1 kb DNA ladder (Fermentas, Life Science). The amplified products were purified using GenElute™ PCR clean-Up Kit (Sigma-Aldrich) following manufacturer’s protocol and subjected to DNA sequencing. The genomic DNA was further subjected to amplification of ITS region using ITS1 and ITS4 primer pair. The annealing temperature for ITS amplification was set at 55°C.

Fig. 1. Map showing incidence of Foc TR4
Fig. 2. Cavendish group of banana cultivar (Rubusta-AAA) highly infected with Panama wilt in Dogachia, Krishnanagar, West Bengal; (A-B): Banana field infected with Panama wilt, (C): Symptoms of Banana plant showing yellowing of leaves with petiole buckling, (D): Splitting of pseudostem, (E): Internal symptom with vascular discoloration, (F): No discoloration present (in healthy plant)

Fig. 3. Cavendish group of banana (Grand Naine cultivar -AAA) highly infected with Panama wilt in Jallakhali village of Krishnanagar, West Bengal; (A-B): Symptoms of banana plant showing yellowing of leaves with petiole buckling, (C): Splitting of pseudostem, (D): Internal symptom with vascular discoloration, (E): No discoloration present (in healthy plant)
2.5 Sequencing and Phylogenetic Analysis

All the PCR amplified products were sequenced utilizing commercial sequence facility of Agri Genome Labs Pvt Ltd. (Hyderabad). The sequencing was done using ABI 3730XL DNA Analyser. The complete nucleotide sequences were subjected for similarity search using BLASTn search program (http://www.ncbi.nlm.nih.gov/BLAST/). All the retrieved sequences were submitted to GenBank with legal annotations. http://www.ncbi.nlm.nih.gov/BLAST/). All the retrieved sequences were submitted to NCBI GenBank with legal annotations having the Accession numbers: MH454071, MH454072, MH454073, MH457246 and MH457247. The sequences were compared with equivalent sequences from a range of other Foc race TR4 isolates documented in GenBank. Multiple sequence alignment was carried out using the software ClustalW and ClustalX version 2.0 [25]. The evolutionary history was inferred using the Neighbor-Joining method [26] and further Phylogenetic trees were constructed. The optimal tree with the sum of branch length = 18.50000000 was shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) was shown next to the branches [27]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the number of differences method [28] and are in the units of the number of base differences per sequence. The analysis involved 11 nucleotide sequences. All positions containing gaps and missing data were eliminated. There was a total of 413 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [29].

3. RESULTS AND DISCUSSION

3.1 Survey, Disease Incidence and Symptomatology

In the present study survey has been conducted in the three important banana growing districts of West Bengal during winter season (December, 2018). However, disease was detected in Jallalkhali (23.34 N, 88.51 E) and Dogachi (23.20 N, 88.30 E), villages of West Bengal, India. Grand Naine and Robusta (Cavendish group) exhibited symptoms like chlorosis and yellowing of old leaves with petiole buckling, splitting of pseudostem at the base and reddish brown to black vascular discoloration with no visual symptoms in fruits. Interestingly, no visible symptoms were observed in 3-5 months old cut open rhizome or suckers. In both the locations, high disease incidence was observed where, 72.5% of disease incidence was observed in Jallalkhali and 75% incidence was detected in Dogachi village. Symptoms observed in the present study over the infected Cavendish group of bananas were similar to the earlier report [9,30]. Jallalkhali and Dogachi villages are the belt of banana cultivation in Nadia district of West Bengal where monoculture of banana cultivation is the only practice followed since long back. Farmers of these areas were unaware about the bio-safety related issues and instead of using healthy planting material, suckers from infected plant are commonly used as propagating material. This might be the reason behind wide outburst of the disease in these villages. Detection of Foc TR4 race in the Cavendish group of bananas in Taiwan in the year 1994 followed by its transmission in other banana growing countries considered as a serious threat in the export industry and economy of those countries. India was not an exception where this race was probably introduced through disease infected planting materials from its neighboring countries where Foc TR4 was detected earlier. In India, Foc TR4 incursion was not reported as a regular phenomenon and recently it has been identified from the Katihar district of Bihar and from Uttar Pradesh also [30,31]. Bihar is the neighbouring state of West Bengal from where this race might be introduced in West Bengal.

3.2 Isolation and Morphological Identification of Foc Isolate

Within 3-5 days of transfer of infected pseudostem in the PDA media, white and pink aerial mycelial growth was observed over the pseudostem pieces (Fig. 4). Radial growth of the isolates was completed 9 days after incubation. The initial growth of the isolates in the media was thin followed by vigorous fluffy growth showing violet colour pigmentation. Plenty of straight to falcate shaped and two to three septate macroconidia (25 - 40 x 3.6 - 4 μm in size) having boot shaped foot cells were also observed. Elliptical and kidney shaped aseptate micro conidia (6.64-10.45 x 2.24-3.50 μm in size) were abundantly produced. Chlamydospores were produced abundantly either singly or in chains (Fig. 5). In the present investigation, the microscopic studies carried out with the violet colour pigmented culture of the Foc isolates
obtained from infected ‘Cavendish’ bananas revealed resemblance of the asexual structures studied earlier [22]. The violet color pigmented culture was also affirmed by the previous studies as the typical characteristic of Foc in PDA medium [4,6,32]. Thus, present study competently proved the morphological identity of the isolates from the infected banana plants as Foc.

Fig. 4. A. Culture of Foc isolated from 5 cubic mm pieces of infected pseudostem. 4.B. Pure culture of Foc in PDA media

Fig. 5. A. Morphology of Macroconidia (100 x) 5 B. Morphology of Microconidia (100X) 5 C. Morphology of Chlamydospore. 5 D. Morphology of Hyphae containing macro and microconidia
3.3 Pathogenicity Testing

Pathogenicity test is the prerequisite for determining the formae of the isolates as parasitic isolates of *F. oxysporum* could not be differentiated from the saprophytes [33]. In the present study, all the Foc isolates (Foc-S1, Foc-S2 and Foc-S2a) (Table 1) produced typical symptom of Panama wilt to both ‘Grand Naine’ and ‘Robusta’ cultivars during pathogenicity testing at greenhouse. It was observed that 7 days after inoculation, the lower leaves started turning yellow followed by shedding of the infected leaves with little discoloration of younger leaves. Disease severity could be categorized in to scale three as per the earlier classification [22] based on the external symptoms in the infected plants of both the cultivars. Further, culture was raised from the re-isolated pathogen from artificially inoculated wilt infected banana plants resembled typical colony characteristics and conidial morphology of Foc isolates as observed during initial isolation from survey (Fig. 6). In the present study, pathogenicity test conducted with the Foc isolates produced external symptoms on the inoculated ‘Cavendish’ test plants were identical with the observations reported earlier [23].

Pathogenicity test confirmed that the Foc isolated from the ‘Cavendish’ banana plantations of Jallakhali and Dogachi was TR4 race.

3.4 PCR Detection of the FocTR4 Isolate

Detection of pathogen is an important consideration and conventionally, pathogenicity test and Vegetative compatibility grouping (VCG) are deployed which having some bottleneck [34,35]. Recently PCR based detection method have been considered as reliable protocol for early and accurate detection of the isolate identity followed by apprehension of diversity and species synteny [23,30,36]. In the present study high quality genomic DNA was obtained from the Foc infected Cavendish cultivars (Grand Naine and Robusta) after morphological confirmation in Potato Dextrose broth culture. PCR amplification using the TR4 (VCG 01213/16) specific primer pair resulted expected amplicon of 455 bp (Fig. 7). PCR with ITS1/ITS4 primer set amplified expected band of approximately 600 bp from DNA extracted from the cultures of Foc isolated from both Cavendish cultivars (Grand Naine and Robusta) that consisted of both ITS region and 5.8S regions. The sequences retrieved were further analyzed through NCBI blast. PCR with the template DNA using TR4 (VCG 01213/16) specific primers finally proved the Foc isolates of West Bengal collected from Cavendish group of Banana (Grand Naine and Robusta) was TR4 with the generation of 455 bp amplicon consisting the partial conserved sequence of 28S-18S ribosomal RNA intergenic spacer region (IGS). The primer pairs were designed earlier [21] by utilizing the SNP identified from the IGS region and successfully detected TR4 (VCG 01213/16) among other races and vegetative compatibility groups of Foc by amplifying 455 bp region of the IGS. Similarly, these pair of primers were used previously to find out the distribution of Foc TR4 in Asia and reported amplification of 455 bp amplicon only in cases of VCG 1213/16 [37]. Confirmation of the presence of TR4 isolate in Pakistan through deploying IGS specific primer of TR4 was also reported [36].

3.5 Sequencing and Phylogenetic Analysis

The partial nucleotide sequences of Foc TR4 infecting ‘Cavendish’ banana cultivars (Grand Naine and Robusta) were deposited in the GenBank and assigned with accession numbers of MH454071 (592 bp), MH454072 (588 bp), MH454073 (589 bp), MH457246 (455 bp), and MH457247(427 bp). Blast analysis of the sequences of ITS region (MH454071, MH454072 and MH454073) depicted 99.64, 99.30 and 99.73% nucleotide sequence identity (nsi), respectively, with Foc tropical race 4 strain B2 rDNA repeat region (LT571434, Netherland). Whereas, blast analysis of the sequences of IGS region (MH457246 and MH457247) revealed 99.32 and 99.53% nucleotide sequence identity (nsi), respectively, with Foc voucher BRIP 62353a 28S ribosomal RNA gene and 28S-18S ribosomal RNA intergenic spacer, partial sequence (KX101211, Australia) and Foc race 4 strain B2 rDNA repeat region (LT571434, Netherland). Multiple sequence alignment was carried out using ClustalW and ClustalX version 2.0 affirmed the same result as mentioned above.

Table 1. Details of the *Foc* isolates collected from West Bengal

S. No	Isolate	Cultivar of the isolate	Location
1	S1	Robusta (AAA)	Dogachia, Krishnanagar
2	S2	Grand Naine (AAA)	Jallakhali, Krishnanagar
3	S2a	Tissue cultured Grand Naine (AAA)	Jallakhali, Krishnanagar
Further, phylogenetic tree was drawn to analyze the phylogenetic relationship of the sequenced genome of Foc TR4 isolates with a number of selected Foc TR4 DNA sequences retrieved from GenBank. Phylogenetic tree was constructed using ITS and IGS region separately. Both the phylogenetic tree clearly indicated that Foc West Bengal isolates S1, S2 and S2a were most closely related with the Foc TR4 isolates of Asia (Figs. 8 and 9). The introgression of Foc TR4 isolate in West Bengal was not having any well established hypothesis. In the present study, the
evolutionary relationship drawn with the sequence of amplicon generated from amplifying IGS and ITS region using MEGA 7 revealed close phylogenetic relationship of the West Bengal isolates with isolates from Karnataka, Uttar Pradesh and Bihar in India and other Asian isolates from Taiwan, China, Indonesia and Pakistan [17, 24, 30, 31, 38].

Fig. 8. Molecular phylogenetic analysis using nucleotide sequences amplified using ITS primer pair, the evolutionary history was inferred using the Neighbor-Joining method based on the Kimura 2-parameter model. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed. Evolutionary analyses were conducted in MEGA7.

Fig. 9. Molecular phylogenetic analysis using nucleotide sequences amplified using specific primer, the evolutionary history was inferred using the Neighbor-Joining method based on the Kimura 2-parameter model. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed. Evolutionary analyses were conducted in MEGA7.
4. CONCLUSION
Disease incidence and symptomatology of the surveyed districts confirmed the prevalence of panama disease in ‘Cavendish’ group of banana. Pathogenicity testing further established the typical symptom of Panama wilt to both Grand Naine and Robusta cultivars. Molecular detection as well as phylogenetic study using both ITS and IGS region validated that the Foc West Bengal isolates were closely related with the Foc TR4 isolates of Asia. Hence, it is the first molecular evidence for the presence of Foc TR4 from Indo-Gangetic plains. As the disease goes undetected in 4 months young rhizomes, the present report highlighted the urgency of extending molecular detection through deploying Foc TR4 specific primer set for proper diagnosis of the disease in the infected rhizomes in nursery and in quarantine stations. Rapid identification and eradication of the Foc TR4 infected rhizomes is the only way to curtail down the spread of this devastating race of Foc within the country and protect the ‘Cavendish’ banana plantation of India.

CONSENT
As per international standard or university standard, respondents’ written consent has been collected and preserved by the author(s).

ACKNOWLEDGEMENTS
The author would like to acknowledge AICRP on Fruits and Department of Plant Pathology, BCKV for providing field and lab facilities to conduct the present survey and investigation.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Aguilar-Hawod KGI, de la Cueva FM, Cumagun CJR. Genetic diversity of Fusarium oxysporum f. sp. cubense causing Panama wilt of banana in the Philippines. Pathogens. 2020;9(1):32-55. DOI:10.3390/pathogens9010032
2. Damodaran T, Rai RB, Jha SK, Sharma DK, Mishra VK, Dhama K, et al. Impact of social factors in adoption of CSR BIO-A cost effective, eco-friendly bio-growth enhancer for sustainable crop production. South Asian J Exp Biol. 2013;3(4):158-165.
3. Fungo R. Potential of bananas in alleviating micronutrient efficiencies in the great lakes region of East Africa. African Crop Science Conference Proceedings. 2009;9:317-324.
4. Stover RH. Fusarial wilt (Panama Disease) of bananas and other Musa species. England: Commonwealth Mycological Institute, Kew, Surrey. 1962;117.
5. Ploetz RC. Fusarium-induced diseases of tropical, perennial crops. Phytopathol. 2006;96(6):648-652. DOI: 10.1094/PHTY-96-0648
6. Ploetz RC. Compatibility vegetative groups in Fusarium oxysporum f. sp. cubense: classifying previously non characterized strains. Act Hortic. 1990;275:699-706.
7. Pérez-Vicente L. Fusarium wilt (Panama disease) of bananas: An updating review of the current knowledge on the disease and its causal agent. Xvi Reun Intern Acor. 2004;1-16.
8. Ploetz RC, Pegg K. Fusarium wilt. In: Jones EDR editor. Diseases of Banana, Abaca and Wallingford, UK: CABI Publishing; 2000.
9. Ploetz RC. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Prot. 2015;73:7 - 15. Available:https://doi.org/10.1016/j.cropro.2015.01.007
10. Waite BH, Stover RH. Studies on fusarium wilt of bananas: Variability and the cultivar concept in Fusarium oxysporum f. Cubense. Can J Bot. 1960;38(6):985-994.
11. Su HJ, Chuang TJ, Kong WS. Physiological race of Fusarial wilt fungus attacking Cavendish banana of Taiwan. Taiwan Banana Research Institute; 1977.
12. Su HJ, Hwang SC, Ko WH. Fusarial wilt of bananas in Taiwan. Plant Dis. 1986;70(9):813-818.
13. Stover RH, Simmonds NW. Bananas 3rd ed. Tropical Agriculture Series; 1987.
14. Stover RH. Fusarium wilt of banana. In: Ploetz RC editor. Some history and current status of the disease. USA; ARC Press, USA; 1990.
15. Molina AB, Fabregar E, Sinohin VG, Yi G, Viljoen A. Recent occurrence of Fusarium oxysporum f. sp. cubense tropical race 4 in Asia. Act Hortic. 2009;828:109-116.
16. Buddenhagen IW. Understanding strain diversity in Fusarium oxysporum f. sp.
China. Fungal Genom Biol. Fusarium oxysporum distributio QS, Sheng O, et al. Li CY, Mostert G, Zuo CW, Beukes I, Yang R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(11):2947-2948. Available:https://doi.org/10.1093/bioinformatics/btm404

Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783-791.

Fusarium wilt: A call to action. Tropical race 4 (Foc TR4) in the Philippines. Available:https://doi.org/10.1093/philipath/psw054

Thangavelu R, Mostert D, Gopi M, Devi, PG, Padmanaban B, Molina AB, Viljoen A. First detection of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) on Cavendish banana in India. Eur J Plant Pathol. 2019;154(3):777-786. Available:https://doi.org/10.1007/s10658-019-01701-6

Damodaran T, Mishra VK, Jha SK, Ahmad I., Gopal R. First report of Fusarium wilt in banana caused by Fusarium oxysporum f. sp. cubense Tropical race 4 in India. Plant Dis. 2018;102(5):1022-1022. DOI: 10.1094/PDIS-07-18-1263-PDN Available:https://doi.org/10.1094/PDIS-07-18-1263-PDN

Perez-Vicente L, Dita MA, de la Parte EM. Technical manual prevention and diagnostic of Fusarium Wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). Food and Agriculture Organisation of United States; 2014.

Dita MA, Waalwijk C, Buddenhagen IW, Souza Jr MT, Kema GHJA. Molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathol. 2010;59(2):348-357. DOI: 10.1111/j.1365-3059.2009.02221.x

Li CY, Mostert G, Zuo CW, Beukes I, Yang QS, Sheng O, et al. Diversity and distribution of the banana wilt pathogen Fusarium oxysporum f. sp. cubense in China. Fungal Genom Biol. 2013;3(2):1-6. Available:http://dx.doi.org/10.4172/2165-8056.1000111

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm, A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(11):2947-2948.

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phyllogenetic trees. Mol biol evol. 1987;4 (4):406-425.
diversity in Fusarium oxysporum f. sp. cubense. Mycol Res. 2006;110(3):297–305.
Available:https://doi.org/10.1016/j.mycres.2005.10.004
34. Smith LJ, Smith MK, Tree D, O’Keefe D, Galea VJ. Development of a small-plant bioassay to assess banana grown from tissue culture for consistent infection by Fusarium oxysporum f. sp. cubense. Aust Plant Pathol. 2008;37(2):171-179.
35. Muhammad A, Hussain I, Khanzada KA, Kumar L, Ali M, Yasmin, T, Hyder MZ. Molecular characterization of Fusarium oxysporum f. sp. Cubense (Foc) tropical race 4 causing Panama disease in Cavendish banana in Pakistan. Pak J Agril Sci. 2017; 54(1):1-8. DOI: 10.21162/PAKJAS/17.4674
36. Mostert D, Molina A B, Daniells J, Fourie G, Hermanto C, Chao CP, Fabregar E, Sinohin VG, Masdek N, Thangavelu R, Li C, Yi G, Mostert L, Viljoen A. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia. Plos One. 2017;12 (7): 14.
Available:https://doi.org/10.1371/journal.pone.0181630
37. Chittarath K, Mostert D, Crew KS, Viljoen A, Kong G, Molina AB, Thomas JE. First report of Fusarium oxysporum f. sp. cubense tropical race 4 (VCG 01213/16) associated with Cavendish bananas in Laos. Plant Dis. 2017;102:449–450. Available: https://doi.org/10.1094/PDIS-08-17-1197-PDN
38. Hung TN, Jung NQ, Mostert D, Viljoen A, Chao CP, and Molina AB. First report of Fusarium wilt of Cavendish bananas, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (VCG 01213/16), in Vietnam. Plant Dis. 2017; 102(2):448. Available: https://doi.org/10.1094/PDIS-08-17-1140-PDN

© 2020 Rana et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/61723