A mass conserving mixed stress formulation for the Stokes equations

JAY GOPALAKRISHNAN†
Portland State University, PO Box 751, Portland OR 97207, USA

AND

PHILIP L. LEDERER‡, JOACHIM SCHÖBERL§
Institute for Analysis and Scientific Computing, TU Wien
Wiedner Hauptstraße 8-10, 1040 Wien, Austria

We propose a new discretization of a mixed stress formulation of the Stokes equations. The velocity \(u \) is approximated with \(H(\text{div}) \)-conforming finite elements providing exact mass conservation. While many standard methods use \(H^1 \)-conforming spaces for the discrete velocity, \(H(\text{div}) \)-conformity fits the considered variational formulation in this work. A new stress-like variable \(\sigma \) equalling the gradient of the velocity is set within a new function space \(H(\text{curl div}) \). New matrix-valued finite elements having continuous “normal-tangential” components are constructed to approximate functions in \(H(\text{curl div}) \). An error analysis concludes with optimal rates of convergence for errors in \(u \) (measured in a discrete \(H^1 \)-norm), errors in \(\sigma \) (measured in \(L^2 \)) and the pressure \(p \) (also measured in \(L^2 \)). The exact mass conservation property is directly related to another structure-preservation property called pressure robustness, as shown by pressure-independent velocity error estimates. The computational cost measured in terms of interface degrees of freedom is comparable to old and new Stokes discretizations.

Keywords:
mixed finite element methods; incompressible flows; Stokes equations

1. Introduction

We introduce a new method for the mixed stress formulation of the Stokes equations. Let \(u \) and \(p \) be the velocity and pressure respectively. Assume that we are given an external force \(f \), the kinematic viscosity \(\nu \) and a bounded domain \(\Omega \subset \mathbb{R}^d \) \((d = 2 \text{ or } 3)\) with Lipschitz boundary \(\partial \Omega \). The standard velocity-pressure formulation

\[
\begin{align*}
-\text{div}(\nu \nabla u) + \nabla p &= f \quad \text{in } \Omega, \\
\text{div}(u) &= 0 \quad \text{in } \Omega, \\
\text{div}(u) &= 0 \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

(1.1)

†Email: gjay@pdx.edu
‡Corresponding author. Email: philip.lederer@tuwien.ac.at
§Email: joachim.schoeberl@tuwien.ac.at
can be reformulated by introducing the variable \(\sigma = \nu \nabla u \) as follows

\[
\begin{aligned}
\frac{1}{\nu} \sigma - \nabla u &= 0 \quad \text{in } \Omega, \\
\text{div}(\sigma) - \nabla p &= -f \quad \text{in } \Omega, \\
\text{div}(u) &= 0 \quad \text{in } \Omega, \\
u u &= 0 \quad \text{on } \Gamma.
\end{aligned}
\]

Many authors have studied this formulation previously, e.g., Farhloul & Fortin (2002, 1997, 1993); Farhloul (1995). The initial interest in this formulation as a numerical avenue appears to be due to the fact that fluid stresses can be computed merely by algebraic operations on \(\sigma \) (i.e., no differentiation of computed variables is needed). In this paper, we study the discretization errors and certain interesting structure-preserving features of a new numerical method based on (1.2).

Although both formulations are formally equivalent, the mixed stress formulation (1.2) requires less regularity on the velocity field \(u \). When considering a variational formulation of the classical velocity-pressure formulation (1.1), the proper spaces for the velocity and pressure are given by \(H^1_0(\Omega, \mathbb{R}^d) \) and \(L^2_0(\Omega) \), respectively. Here \(H^1_0(\Omega, \mathbb{R}^d) \) is the standard vector valued Sobolev space of order one with zero boundary conditions and \(L^2_0(\Omega) \) is the space of square integrable functions with zero mean value. This pair of spaces fulfills the inf-sup condition or the LBB condition. Moreover, the divergence operator from \(H^1_0(\Omega, \mathbb{R}^d) \) to \(L^2_0(\Omega) \) is surjective. Finite element discretizations of the velocity-pressure formulation (1.1) is an active area of research John et al. (2016). While many pairs of discrete velocity-pressure spaces are known to satisfy the discrete LBB condition (needed to prove stability), not all of them have the property that the divergence operator from the discrete velocity space to the discrete pressure space is surjective. Methods that have this surjectivity property are particularly interesting because they provide numerical velocity approximations that are exactly divergence free, leading to exact mass conservation.

Exact mass conservation (and consistency) further leads to a structure-preservation property called pressure robustness. A feature of solutions of (1.1) is that when the load \(f \) changes irrotationally (i.e., when \(f \) is perturbed by a gradient field), then the fluid velocity \(u \) does not change (since the additional force can be balanced solely by a pressure gradient). Indeed, since divergence-free functions are \(L^2 \)-orthogonal to the irrotational part of \(f \), and since the velocity \(u \) is uniquely determined within the divergence free subspace of \(H^1_0(\Omega, \mathbb{R}^d) \), the velocity cannot be altered by irrotational changes in \(f \). This property is not preserved by all finite element discretizations – see Linke (2014) – leading to velocity error estimates that depend on the pressure approximation. A practical manifestation of this is a phenomenon akin to “locking,” where the velocity error increases as \(\nu \to 0 \) (even if the pressure error remains under control). Methods that do not exhibit this limitation are called pressure robust methods.

In the recent works of Brennecke et al. (2015); Lederer et al. (2017a); Linke (2012); Linke et al. (2016), considering different velocity and pressure spaces, it was shown that a (non-conforming) modification of the load (right hand side) allows one to obtain optimal pressure-independent velocity error estimates.

An alternative to this load modification approach is the use of finite element spaces which lead to exactly divergence-free velocity approximations. In this case, no load modification is needed and the velocity error does not exhibit locking. A well-known example is the \(H^1 \)-conforming Scott-Vogelius element. However, it demands a special barycentric triangulation of \(\Omega \). Another approach, leading to exactly divergence-free discretizations, is to abandon full \(H^1 \)-conformity and retain only the continuity of the normal component of the velocity, i.e., use \(H(\text{div}) \)-conforming finite elements for approximating \(u \) instead of \(H^1 \)-conforming finite elements. Such discretizations, tailored to approximate the incom-
pressibility constraint properly, were introduced by Cockburn et al. (2005, 2007) and for the Brinkman problem by Könnö & Stenberg (2012). Therein, and also in the work by Lehrenfeld & Schöberl (2016), the \(H^1 \)-conformity is treated in a weak sense and a hybrid discontinuous Galerkin method is constructed.

Their choice of velocity and pressure space fulfills the discrete LBB condition and moreover Lederer & Schöberl (2017) shows that it is robust with respect to the polynomial order.

In this work, the idea of employing an \(H(\text{div}) \)-conforming velocity space is taken to an infinite dimensional variational setting to obtain insights into possible spaces for \(\sigma \). Obviously such a variational formulation cannot be derived using the standard velocity-pressure formulation (1.1) as it demands too much regularity on the velocity. In contrast, the mixed stress formulation (1.2) is a perfect fit. It leads to a variational formulation requiring less regularity for \(u \) and a new function space for \(\sigma \), namely \(H(\text{curl,div},\Omega) \). We call this formulation the mass conserving mixed stress (MCS) formulation. To obtain a discretization, we design new non-conforming finite elements for \(H(\text{curl,div},\Omega) \), motivated by the TDNNS method for structural mechanics introduced by Pechstein & Schöberl (2017, 2011); Sinwel (2009). Even though the resulting method, called the MCS method, includes the introduction of another variable, the computational costs are comparable to other standard methods. In two dimensions, after a static condensation step, where local element degrees of freedom are eliminated, the approximation of the velocity with polynomials of order \(k \) requires \(k+1 \) coupling degrees of freedom on each element interface for the \(H(\text{div}) \)-conforming velocity space and \(k \) for the stress space. This is the same number as for the reduced stabilized (projected jumps) \(H(\text{div}) \)-conforming hybrid discontinuous Galerkin method introduced in Lehrenfeld & Schöberl (2016). By a small modification, one could even reduce the coupling of the velocity space by considering only relaxed \(H(\text{div}) \)-conformity by the same technique utilized in Lederer et al. (2017b, 2018). Then the costs (for \(k = 1 \)) are the same as for the lowest order non-conforming \(H^1 \)-based method. Similar cost comparisons can be made in three dimensions.

There appears to be multiple approaches for the analysis of our new scheme. In this paper, we focus on one of these possible approaches, which uses a discrete \(H^1 \)-like norm for \(u \) and a \(L^2 \) norm for \(\sigma \). Even though \(u \) is approximated using \(H(\text{div}) \)-conforming elements, the use of the discrete \(H^1 \)-like norm for velocity errors permits easy comparison with the classical velocity-pressure formulation. An analysis in more “natural” norms (i.e., the \(H(\text{div}) \)-norm for \(u \) and \(H(\text{curl,div},\Omega) \)-norm for \(\sigma \)) is the topic of a forthcoming work.

The paper is organized as follows. We begin with Section 2 where we define the notations and prove certain preliminary results that we shall use throughout this work. In Section 3 we present the new MCS variational formulation of the Stokes problem. Section 4 defines the discrete variational formulation and the MCS method. After revealing the continuity requirements across element interfaces necessary for being conforming in \(H(\text{curl,div},\Omega) \), we then define new non-conforming finite elements for the \(\sigma \) variable in Section 5. All technical details needed to prove stability in certain discrete norms and convergence of the new method are included in Section 6. In Section 7 we present various numerical examples to illustrate the theory.

2. Preliminaries

In this section we define the notations we use throughout and establish properties of certain Sobolev spaces we shall need later.

Let \(\Omega \subset \mathbb{R}^d \) be an open bounded domain with Lipschitz boundary \(\Gamma := \partial \Omega \). Throughout, \(d \) is either 2 or 3. Let \(\mathcal{D}(\Omega) \) or \(\mathcal{D}(\Omega,\mathbb{R}) \) denote the set of infinitely differentiable compactly supported real-valued functions on \(\Omega \) and let \(\mathcal{D}'(\Omega) \) denote the space of distributions as usual. To indicate vector and matrix-valued functions on \(\Omega \), we include the range in the notation: \(\mathcal{D}(\Omega,\mathbb{R}^d) = \{ u : \Omega \to \mathbb{R}^d \mid u_i \in \mathcal{D}(\Omega) \} \).
Such notations are extended in an obvious fashion to other function spaces as needed. E.g., while \(L^2(\Omega) = L^2(\Omega, \mathbb{R}) \) denotes the space of square integrable real-valued functions on \(\Omega \), analogous vector and matrix-valued function spaces are defined by

\[
L^2(\Omega, \mathbb{R}^d) := \left\{ u : \Omega \to \mathbb{R}^d \mid u_i \in L^2(\Omega) \right\} \quad \text{and} \quad L^2(\Omega, \mathbb{R}^{d \times d}) := \left\{ \sigma : \Omega \to \mathbb{R}^{d \times d} \mid \sigma_{ij} \in L^2(\Omega) \right\}.
\]

Similarly, \(\mathcal{D}'(\Omega, \mathbb{R}^d) \) denotes the space of distributions whose components are distributions in \(\mathcal{D}'(\Omega) \), \(H^m(\Omega, \mathbb{R}^{d \times d}) \), denotes the space of matrix-valued functions whose entries are in the standard Sobolev space \(H^m(\Omega) \) for any \(m \in \mathbb{R} \), etc.

Certain differential operators have different definitions depending on context. By “curl” we mean any of the following three differential operators

\[
curl(\phi) = (-\partial_2 \phi, \partial_1 \phi)^T, \quad \text{for} \ \phi \in \mathcal{D}'(\Omega, \mathbb{R}) \ \text{and} \ d = 2,
\]

\[
curl(\phi) = -\partial_2 \phi_1 + \partial_1 \phi_2, \quad \text{for} \ \phi \in \mathcal{D}'(\Omega, \mathbb{R}^2) \ \text{and} \ d = 2,
\]

\[
curl(\phi) = (\partial_2 \phi_3 - \partial_3 \phi_2, \partial_3 \phi_1 - \partial_1 \phi_3, \partial_1 \phi_2 - \partial_2 \phi_1)^T, \quad \text{for} \ \phi \in \mathcal{D}'(\Omega, \mathbb{R}^3) \ \text{and} \ d = 3,
\]

where \((\cdot)^T\) denotes the transpose and \(\partial_i\) abbreviates \(\partial/\partial x_i\). The type of the operand determines which operator definition to apply in any context, so there will be no confusion. Similarly, \(\nabla\) is to be understood from context as an operator that results in either a vector whose components are \([\nabla \phi]_i = \partial_i \phi\) for \(\phi \in \mathcal{D}'(\Omega, \mathbb{R})\) or a matrix whose entries are \([\nabla \phi]_{ij} = \partial_{ij} \phi\) for \(\phi \in \mathcal{D}'(\Omega, \mathbb{R}^d)\). Finally, in a similar manner, we understand \(\text{div}(\phi)\) as either \(\sum_{i=1}^d \partial_i \phi_i\) for vector-valued \(\phi \in \mathcal{D}'(\Omega, \mathbb{R}^d)\), or the row-wise divergence \(\sum_{j=1}^d \partial_j \phi_{ij}\) for matrix-valued \(\phi \in \mathcal{D}'(\Omega, \mathbb{R}^{d \times d})\).

Let \(d = d(d - 1)/2\) (so that \(d = 1, 2, 3\) for \(d = 2, 3\), respectively). The following Sobolev spaces for \(d = 2, 3\) are essential in our study:

\[
H(\text{div}, \Omega) = \{ u \in L^2(\Omega, \mathbb{R}^d) : \text{div}(u) \in L^2(\Omega) \},
\]

\[
H(\text{curl}, \Omega) = \{ u \in L^2(\Omega, \mathbb{R}^d) : \text{curl}(u) \in L^2(\Omega, \mathbb{R}^d) \},
\]

\[
H^{-1}(\text{curl}, \Omega) = \{ \phi \in H^{-1}(\Omega, \mathbb{R}^d) : \text{curl}(\phi) \in H^{-1}(\Omega, \mathbb{R}^d) \},
\]

\[
H(\text{curl div}, \Omega) = \{ \sigma \in L^2(\Omega, \mathbb{R}^{d \times d}) : \text{curl(div} (\sigma) \in H^{-1}(\Omega, \mathbb{R}^d) \}.
\]

A well-known trace theorem permits us to define \(H_0(\text{div}, \Omega) = \{ u \in H(\text{div}, \Omega) : u \cdot n |_{\Gamma} = 0 \}\). Here, \(n\) denotes the outward unit normal on \(\Gamma\). In other occurrences, it may denote the unit outward normal on boundaries of other domains determined from context.

The action of a continuous linear functional \(f\) on an element \(x\) of a topological space \(X\) is denoted by \(\langle f, x \rangle_X\), e.g., the action of a distribution \(F \in \mathcal{D}'(\Omega, \mathbb{R}^d)\) on a \(\phi \in \mathcal{D}(\Omega, \mathbb{R}^d)\) is denoted by \(\langle F, \phi \rangle_{\mathcal{D}'(\Omega, \mathbb{R}^d)}\).

We omit the subscript in \(\langle \cdot, \cdot \rangle\) when its obvious from context. When \(X\) is a Hilbert space, we use \(X^*\) to denote its dual space. Recall that \(H^{-1}_0(\Omega)^* = H^{-1}(\Omega)\). Note that any \(f \in H^{-1}(\Omega)\) is a distribution and

\[
\langle f, \phi \rangle = \langle f, \phi \rangle_{\mathcal{D}'(\Omega)} \quad \text{(2.1)}
\]

for all \(\phi \in \mathcal{D}(\Omega)\). The inner product of \(X\) is denoted by \(\langle \cdot, \cdot \rangle_X\). When \(X\) is \(L^2(\Omega), L^2(\Omega, \mathbb{R}^d)\), or \(L^2(\Omega, \mathbb{R}^{d \times d})\), we abbreviate \(\langle \cdot, \cdot \rangle_X\) to simply \(\langle \cdot, \cdot \rangle\).

Lemma 2.1 If \(F \in H_0(\text{div}, \Omega)^*\), then \(F\) is in \(H^{-1}(\text{curl}, \Omega)\) and for all \(v \in H_0^1(\Omega)\),

\[
\langle \text{curl}(F), v \rangle = \langle F, \text{curl}(v) \rangle_{H_0(\text{div}, \Omega)}.
\]
Proof. For any $F \in H_0(\text{div}, \Omega)^*$, by the Reisz representation theorem, there exists a $q^F \in H_0(\text{div}, \Omega)$ satisfying
\[
(F, v)_{H_0(\text{div}, \Omega)} = (q^F, v) + (\text{div}(q^F), \text{div}(v)).
\] (2.2)
for $v \in H_0(\text{div}, \Omega)$. Choosing $v \in \mathcal{D}(\Omega, \mathbb{R}^d)$ we conclude that F is the distribution $F = q^F - \nabla \text{div}(q^F) \in H^{-1}(\Omega, \mathbb{R}^d)$. This implies that $\text{curl}(F) = \text{curl}(q^F) \in H^{-1}(\Omega, \mathbb{R}^d)$. Thus $F \in H^{-1}(\text{curl}, \Omega)$. Moreover, for all $\phi \in \mathcal{D}(\Omega, \mathbb{R}^d)$, using (2.1),
\[
\langle \text{curl}(F), \phi \rangle_{H_0^1(\Omega, \mathbb{R}^d)} = \langle \text{curl}(q^F), \phi \rangle_{H_0^1(\Omega, \mathbb{R}^d)} = \langle \text{curl}(q^F), \phi \rangle_{\mathcal{D}(\Omega, \mathbb{R}^d)} = (q^F, \text{curl}(\phi)).
\]
By the density of $\mathcal{D}(\Omega, \mathbb{R}^d)$ in $H_0^1(\Omega, \mathbb{R}^d)$, we obtain
\[
\langle \text{curl}(F), v \rangle_{H_0^1(\Omega, \mathbb{R}^d)} = (q^F, \text{curl}(v))
\]
for all $v \in H_0^1(\Omega, \mathbb{R}^d)$. The proof is now complete due to (2.2). □

In the proof of the next result, we use a “regular decomposition” of $H_0(\text{div}, \Omega)$. Namely, there exists a $C > 0$ such that given any $v \in H_0(\text{div}, \Omega)$, there is a $\phi_v \in H_0^1(\Omega, \mathbb{R}^d)$ and a $z_v \in H_0^1(\Omega, \mathbb{R}^d)$ such that
\[
v = \text{curl}(\phi_v) + z_v, \quad \|\phi_v\|_{H^1(\Omega, \mathbb{R}^d)} + \|z_v\|_{H^1(\Omega, \mathbb{R}^d)} \leq C\|v\|_{H(\text{div}, \Omega)}.\] (2.3)

Many authors have stated this decomposition under various assumptions on Ω. Since there are too many to list here, we content ourselves by pointing to (Demlow & Hirani, 2014, Lemma 5) where one can find the result under the current assumptions on Ω and further references.

Theorem 2.1 The equality
\[
H_0(\text{div}, \Omega)^* = H^{-1}(\text{curl}, \Omega)
\]
holds algebraically and topologically.

Proof. Lemma 2.1 shows that $H_0(\text{div}, \Omega)^* \subseteq H^{-1}(\text{curl}, \Omega)$. To show $H^{-1}(\text{curl}, \Omega) \subseteq H_0(\text{div}, \Omega)^*$, let $g \in H^{-1}(\text{curl}, \Omega)$. Using the decomposition (2.3), set
\[
(G, v)_{H_0(\text{div}, \Omega)} := \langle g, \phi_v \rangle_{H_0^1(\Omega, \mathbb{R}^d)} + \langle g, z_v \rangle_{H_0^1(\Omega, \mathbb{R}^d)}.\] (2.4)

Due to the stability estimate of (2.3), G is a continuous linear functional in $H_0(\text{div}, \Omega)^*$. By Lemma 2.1, G is $H^{-1}(\text{curl}, \Omega)$. It suffices to show G coincides with g (as an element of $H^{-1}(\Omega, \mathbb{R}^d)$). To this end, let $w \in H_0^1(\Omega, \mathbb{R}^d)$. Since $H_0^1(\Omega, \mathbb{R}^d) \hookrightarrow H_0(\text{div}, \Omega)$, we have $\langle G, w \rangle_{H_0^1(\Omega, \mathbb{R}^d)} = \langle G, w \rangle_{H_0(\text{div}, \Omega)}$ so using decomposition (2.3)
\[
\langle G, w \rangle_{H_0^1(\Omega, \mathbb{R}^d)} = \langle g, \phi_w \rangle_{H_0^1(\Omega, \mathbb{R}^d)} + \langle g, z_w \rangle_{H_0^1(\Omega, \mathbb{R}^d)}.
\]

Since both w and z_w are in $H_0^1(\Omega, \mathbb{R}^d)$ the equality $w = \text{curl}(\phi_w) + z_w$ implies that $\text{curl}(\phi_w) \in H_0^1(\Omega, \mathbb{R}^d)$.

Let $\phi_n \in \mathcal{D}(\Omega, \mathbb{R}^d)$ converge to ϕ_w in $H_0^1(\Omega, \mathbb{R}^d)$. Using (2.1),
\[
\langle \text{curl}(g), \phi_n \rangle_{H_0^1(\Omega, \mathbb{R}^d)} = \langle \text{curl}(g), \phi_n \rangle_{\mathcal{D}(\Omega, \mathbb{R}^d)} = \langle g, \text{curl}(\phi_n) \rangle_{\mathcal{D}(\Omega, \mathbb{R}^d)} = \langle g, \text{curl}(\phi_w) \rangle_{H_0^1(\Omega, \mathbb{R}^d)}.
\]

Since $\text{curl}(g)$ is in $H^{-1}(\Omega, \mathbb{R}^d)$, the left-most term converges to $\langle \text{curl}(g), \phi_w \rangle_{H_0^1(\Omega, \mathbb{R}^d)}$. The right-most term $\langle g, \text{curl}(\phi_w) \rangle_{H_0^1(\Omega, \mathbb{R}^d)}$ must converge to the same limit and since $\text{curl}(\phi_w) \in H_0^1(\Omega, \mathbb{R}^d)$, the
limit must equal \(\langle g, \text{curl}(\phi_v) \rangle_{H^1_0(\Omega, \mathbb{R}^d)} \). Thus \((\text{curl}(g), \phi_v)_{H^1_0(\Omega, \mathbb{R}^d)} = \langle g, \text{curl}(\phi_v) \rangle_{H^1_0(\Omega, \mathbb{R}^d)} \) and consequently, \((G, w)_{H^1_0(\Omega, \mathbb{R}^d)} = \langle g, \text{curl}(\phi_v) + z_n \rangle_{H^1_0(\Omega, \mathbb{R}^d)} = \langle g, w \rangle_{H^1_0(\Omega, \mathbb{R}^d)} \). This proves that \(G = g \), so \(g \in H_0(\text{div}, \Omega) \).

Finally, the stated topological equality follows if we show that \(||f||_{H_0(\text{div}, \Omega)} \sim ||f||_{H^{-1}(\text{curl}, \Omega)} \), where “\(\sim \)" denotes norm equivalence. Note that by (2.3) and triangle inequality, \(||\phi_v||_{H^1(\Omega, \mathbb{R}^d)} + ||z_v||_{H^1(\Omega, \mathbb{R}^d)} \sim ||\nu||_{H(\text{div}, \Omega)} \). For any \(f \in H_0(\text{div}, \Omega) \),

\[
||f||_{H_0(\text{div}, \Omega)} = \sup_{v \in H_0(\text{div}, \Omega)} \frac{\langle f, v \rangle_{H_0(\text{div}, \Omega)}}{||v||_{H(\text{div}, \Omega)}}
\sim \sup_{\phi \in H^1_0(\Omega, \mathbb{R}^d), z \in H^1_0(\Omega, \mathbb{R}^d)} \frac{||\phi||_{H^1(\Omega, \mathbb{R}^d)} + ||z||_{H^1(\Omega, \mathbb{R}^d)}}{||f||_{H^1(\Omega, \mathbb{R}^d)}}
= \sup_{\phi \in H^1_0(\Omega, \mathbb{R}^d), z \in H^1_0(\Omega, \mathbb{R}^d)} \frac{||\text{curl}(f), \phi||_{H^1(\Omega, \mathbb{R}^d)} + ||f, z||_{H^1(\Omega, \mathbb{R}^d)}}{||\phi||_{H^1(\Omega, \mathbb{R}^d)} + ||z||_{H^1(\Omega, \mathbb{R}^d)}}
\sim ||f||_{H^{-1}(\text{curl}, \Omega)} + ||\text{curl}(f)||_{H^{-1}(\text{curl}, \Omega)}.
\]

Thus the \(H_0(\text{div}, \Omega) \) and \(H^{-1}(\text{curl}, \Omega) \) norms are equivalent. \(\square \)

3. Derivation of the MCS formulation of the Stokes equations

The goal of this section is to quickly derive a variational formulation of the mixed stress formulation of the Stokes system (1.2). Using the trace of a matrix \(\text{tr}(\tau) := \sum_{i=1}^d \tau_{ii} \) we define the deviatoric part by

\[
\text{dev}(\tau) = \tau - \frac{\text{tr}(\tau)}{d} \text{Id},
\]

where \(\text{Id} \) denotes the identity matrix. Observe that due to \(\text{div}(u) = 0 \), we have

\[
\text{dev}(\sigma) = \text{dev}(\nu \nabla u) = \nabla u - \frac{\nu}{d} \text{div}(\nabla u) \text{Id} = \nu(\nabla u - \frac{1}{d} \text{div}(\text{Id}) \text{Id}) = \nu \nabla u.
\]

Thus \(\sigma = \nu \nabla u \) in (1.2) only represents the deviatoric part of the velocity gradient. Hence we revise (1.2) to

\[
\frac{1}{\nu} \text{dev}(\sigma) - \nabla u = 0 \quad \text{in } \Omega,
\text{div}(\sigma) - \nabla p = -f \quad \text{in } \Omega,
\text{div}(u) = 0 \quad \text{in } \Omega,
uu = 0 \quad \text{on } \Gamma.
\]

We proceed to develop a variational formulation for (3.2).

For the reasons described in the introduction, we want to derive a weak formulation where the velocity \(u \) and the pressure \(p \) belong respectively to the following spaces.

\[
V := H_0(\text{div}, \Omega) = \{ u \in H(\text{div}, \Omega) : u \cdot n = 0 \text{ on } \Gamma \},
Q := L_0^2(\Omega) := \{ q \in L^2(\Omega) : \int_{\Omega} q \, dx = 0 \}.
\]
We begin with (3.2c). Multiplying (3.2c) with a test function \(q \in Q \) and integrating over the domain \(\Omega \), we obtain the familiar equation

\[
\langle \text{div}(u), q \rangle = 0. \tag{3.3}
\]

Proceeding next to (3.2b), which must be tested with a \(v \in V \), we see that \(\sigma \) in addition to being in \(L^2(\Omega, \mathbb{R}^{d \times d}) \), must also be such that \(\text{div}(\sigma) \) can continuously “act” on \(v \), i.e., \(\text{div}(\sigma) \in H(\text{div}, \Omega)^* \). By Theorem 2.1, this is the same as requiring that

\[
\text{div}(\sigma) \in H^{-1}(\text{curl}, \Omega). \tag{3.4}
\]

Since any \(\sigma \) in \(L^2(\Omega, \mathbb{R}^{d \times d}) \) has \(\text{div}(\sigma) \in H^{-1}(\Omega, \mathbb{R}^d) \), the non-redundant requirement that emerges from (3.4) is that \(\text{curl}(\text{div}(\sigma)) \in H^{-1}(\Omega, \mathbb{R}^d) \). This leads to the definition

\[
\Sigma = \{ \tau \in H(\text{curl div}, \Omega) : \text{tr}(\tau) = 0 \}
\]

where the requirement \(\text{tr}(\tau) = 0 \) is motivated by (3.1). Thus, testing (3.2b) with a \(v \in H_0(\text{div}, \Omega)^* \) and integrating the pressure term by parts, we have

\[
\langle \text{div}(\sigma), v \rangle_{H_0(\text{div}, \Omega)} + \langle \text{div}(v), p \rangle = 0. \tag{3.5}
\]

Finally, we multiply (3.2a) with a test function \(\tau \in \Sigma \) to obtain \((v^{-1} \text{dev}(\sigma), \tau) - (\nabla u, \tau) = 0 \). Since

\[
(\tau, \nabla v) = -\langle \text{div}(\tau), v \rangle_{H_0(\text{div}, \Omega)}, \quad \text{for all } \tau \in \Sigma, \ v \in H_0^1(\Omega, \mathbb{R}^d), \tag{3.6}
\]

using the fact that the exact velocity is in \(H_0^1(\Omega, \mathbb{R}^d) \), we obtain

\[
(v^{-1} \text{dev}(\sigma), \text{dev}(\tau)) + \langle \text{div}(\tau), u \rangle_{H_0(\text{div}, \Omega)} = 0. \tag{3.7}
\]

Note that in this derivation, while the normal trace of the velocity is an essential boundary condition included in the space \(V \), the zero tangential velocity boundary conditions was incorporated weakly as a natural boundary condition in (3.7).

Collecting (3.7), (3.5) and (3.3), we summarize the derived weak formulation: given \(f \in H_0(\text{div}, \Omega)^* \), find \((\sigma, u, p) \in \Sigma \times V \times Q \) such that

\[
\begin{cases}
(v^{-1} \text{dev}(\sigma), \text{dev}(\tau)) + \langle \text{div}(\tau), u \rangle_{H_0(\text{div}, \Omega)} = 0 & \text{for all } \tau \in \Sigma, \\
\langle \text{div}(\sigma), v \rangle_{H_0(\text{div}, \Omega)} + \langle \text{div}(v), p \rangle = -\langle f, v \rangle_{H_0(\text{div}, \Omega)} & \text{for all } v \in V, \\
\langle \text{div}(u), q \rangle = 0 & \text{for all } p \in Q.
\end{cases} \tag{3.8}
\]

In the remainder of the paper, we present an approximation of the weak formulation (3.8). Its possible to prove that (3.8) is well posed. However, since we shall focus on a discrete analysis of a nonconforming scheme based on (3.8), we shall not make direct use of the wellposedness in this work. As a final remark on (3.8), we note that functions in \(\Sigma \) equal its deviatoric. Thus we could remove “dev” in the first term of (3.8). However, we keep it to remind ourselves that \(\sigma \) only approximates the deviatoric part of \(v \nabla u \).

Remark 3.1 (Boundary conditions) In this work we only consider homogeneous Dirichlet boundary conditions of the velocity, \(u = 0 \) on \(\Gamma \). However, also other types of boundary conditions as for example slip boundary conditions for the velocity and homogeneous Neumann boundary conditions \((-v \nabla u + p \text{Id}) \cdot n = (-\sigma + p \text{Id}) \cdot n = 0 \) are possible. A detailed analysis regarding this topic is included in a forthcoming work.
4. A discrete formulation

We present the discrete MCS method in this section. It is a non-conforming method based on the MCS weak formulation (3.8). We shall begin by understanding the conformity requirements of $H(\text{curl}, \Omega)$ and then present the method.

Suppose Ω is partitioned by a shape regular and quasiuniform triangulation \mathcal{T}_h consisting of triangles and tetrahedrons in two and three dimensions, respectively. Here h denotes the maximum of the diameters of all elements in \mathcal{T}_h. Due to quasiuniformity $h \approx \text{diam}(T)$ for any $T \in \mathcal{T}_h$. The set of element interfaces and boundaries is denoted by \mathcal{F}_h. This set is further split into facets on the domain boundary $\mathcal{F}_h \cap \Gamma = \mathcal{F}_h^{\text{ext}}$ and facets in the interior $\mathcal{F}_h \cap \Omega = \mathcal{F}_h^{\text{int}}$. There holds $\mathcal{F}_h = \mathcal{F}_h^{\text{int}} \cup \mathcal{F}_h^{\text{ext}}$. On each facet $F \in \mathcal{F}_h^{\text{int}}$ we denote by $[\cdot]$ the usual jump operator. For facets on the boundary the jump operator is just the identity. On each element boundary, and similarly on each facet on the global boundary, using the outward unit normal vector n, the normal and tangential trace of a smooth enough $u : \Omega \to \mathbb{R}^d$ is defined by

$$u_n = u \cdot n \quad \text{and} \quad u_t = u - u_n.$$

According to this definition the normal trace is a scalar function and the tangential trace is a vector function. In two dimensions, we may fix the symbol t to a unit tangent vector, obtained say by rotating n anti-clockwise by 90 degrees (thus $t = n^{-}$), so that $u_t = (u \cdot t)t$. In a similar manner for a smooth enough $\sigma : \Omega \to \mathbb{R}^{d \times d}$ we set

$$\sigma_{nn} = \sigma : (n \otimes n) = n^T \sigma n \quad \text{and} \quad \sigma_{nt} = \sigma n - \sigma_{nn}n.$$

Thus we have a scalar “normal-normal component” and a vector-valued “normal-tangential component,” and in two dimensions t may be thought of as a unit tangent vector and $\sigma_{nt} = (t^T \sigma n)t$.

The next result shows the conformity requirements in $H(\text{curl}, \Omega)$. Just as continuity of the normal component across element interfaces is needed for $H(\text{div}, \Omega)$-conformity, we shall see that continuity of the normal-tangential component of tensors is needed for $H(\text{curl}, \Omega)$-conformity. Let

$$H^m(\mathcal{T}_h) := \{ v \in L^2(\Omega) : v|_T \in H^m(T) \text{ for all } T \in \mathcal{T}_h \}.$$

For $\omega \subset \Omega$ we use $(\cdot, \cdot)_\omega$ to denote the inner product of $L^2(\omega), L^2(\omega, \mathbb{R}^d)$, or $L^2(\omega, \mathbb{R}^{d \times d})$ and similarly also $\|\cdot\|^2_\omega := (\cdot, \cdot)_\omega$.

Theorem 4.1 Suppose σ is in $H^1(\mathcal{T}_h, \mathbb{R}^{d \times d})$ and $\sigma_{nt} |_{\partial T} \in H^{1/2}(\partial T)$ for all elements $T \in \mathcal{T}_h$. Assume that the normal-tangential trace σ_{nt} is continuous across element interfaces. Then σ is in $H(\text{curl}, \Omega)$ and moreover

$$\langle \text{div}(\sigma), v \rangle_{H^0(\text{div}, \Omega)} = \sum_{T \in \mathcal{T}_h} \left[\langle \text{div}(\sigma), v \rangle_T - \langle v_n, \sigma_{nt} \rangle_{H^{1/2}(\partial T)} \right]$$

(4.1)

for all $v \in H^0(\text{div}, \Omega)$.

Proof. Using the definition of the distributional divergence and integration by parts yields

$$\langle \text{div}(\sigma), \phi \rangle = -\int_{\Omega} \sigma : \nabla \phi \, dx = \sum_{T \in \mathcal{T}_h} \int_T \text{div}(\sigma) \cdot \phi \, dx - \int_{\partial T} \sigma_n \cdot \phi \, ds$$
for any \(\phi \in \mathcal{D}(\Omega, \mathbb{R}^d) \). Splitting the boundary term into a tangential and a normal part we obtain

\[
\sum_{T \in \mathcal{T}_h} - \int_{\partial T} \sigma_n \cdot \phi \, ds = \sum_{T \in \mathcal{T}_h} - \int_{\partial T} \sigma_m \phi_n \, ds - \int_{\partial T} \sigma_m \cdot \phi_t \, ds
\]

\[
= \sum_{T \in \mathcal{T}_h} - \int_{\partial T} \sigma_m \phi_n \, ds - \sum_{F \in \mathcal{F}_h} \int_F \|\sigma_m\| \cdot \phi_t \, ds.
\]

As \(\sigma_m \) is continuous across element interfaces, the second term vanishes. Hence

\[
\langle \text{div}(\sigma), \phi \rangle = \sum_{T \in \mathcal{T}_h} \int_T \text{div}(\sigma) \cdot \phi \, dx - \int_{\partial T} \sigma_m \phi_n \, ds
\]

\[
\leq \sum_{T \in \mathcal{T}_h} \|\text{div}(\sigma)\| T\|\phi\| T + \|\sigma_m\|_{H^{1/2}(\partial T)} \|\phi_t\|_{H^{-1/2}(\partial T)} \leq c(\sigma) \|\phi\|_{H(\text{div}, \Omega)},
\]

where \(c(\sigma) \) is a constant depending on \(\sigma \). Since \(\mathcal{D}(\Omega, \mathbb{R}^d) \) is dense in \(H_0(\text{div}, \Omega) \), we conclude that \(\text{div}(\sigma) \) is in \(H_0(\text{div}, \Omega)^* \). Hence by Theorem 2.1, \(\sigma \in H(\text{curl div}, \Omega) \). The identity (4.1) also follows from (4.2) and a density argument.

According to Theorem 4.1 one of the sufficient conditions for conformity in \(H(\text{curl div}, \Omega) \) is normal-tangential continuity. Full conformity is obtained under the further condition that \(\sigma_{nm} \in H^{1/2}(\partial T) \), which demands more continuity: if the normal-normal component trace is continuous at vertices and edges in two and three dimensions, respectively, then the \(\sigma \) considered in Theorem 4.1 would satisfy \(\sigma_{nm} \in H^{1/2}(\partial T) \). If this latter constraint is relaxed, much simpler elements can be constructed, as we shall see in Section 5.

Theorem 4.1 provides the motivation for the definition of the discrete space \(\Sigma_h \) below, even though \(\Sigma_h \not\subset \Sigma \). Let \(\mathbb{P}^k(T) \) denote the space of polynomials of degree at most \(k \) restricted to \(T \). Let \(\mathbb{P}^k(T, \mathbb{R}^d) \) and \(\mathbb{P}^k(T, \mathbb{R}^{d \times d}) \) denote the space of vector and matrix-valued functions on \(T \) whose components are in \(\mathbb{P}^k(T) \), and let

\[
\mathbb{P}^k(\mathcal{T}_h) = \prod_{T \in \mathcal{T}_h} \mathbb{P}^k(T), \quad \mathbb{P}^k(\mathcal{T}_h, \mathbb{R}^d) = \prod_{T \in \mathcal{T}_h} \mathbb{P}^k(T, \mathbb{R}^d), \quad \mathbb{P}^k(\mathcal{T}_h, \mathbb{R}^{d \times d}) = \prod_{T \in \mathcal{T}_h} \mathbb{P}^k(T, \mathbb{R}^{d \times d}).
\]

Define

\[
\Sigma_h := \{ \tau_h \in \mathbb{P}^k(\mathcal{T}_h, \mathbb{R}^{d \times d}) : \text{tr}(\tau_h) = 0, \|[(\tau_h)_{nt}]\| = 0, (\tau_h)_{nt} \in \mathbb{P}^{k-1}(F, \mathbb{R}^{d-1}) \text{ for all } F \in \mathcal{F}_h \} \quad (4.3)
\]

\[
V_h := \mathbb{P}^k(\mathcal{T}_h, \mathbb{R}^d) \cap V, \quad (4.4)
\]

\[
Q_h := \mathbb{P}^{k-1}(\mathcal{T}_h) \cap Q. \quad (4.5)
\]

Note that the normal-tangential component \((\tau_h)_{nt} \mid_F \) of any \(\tau_h \in \mathbb{P}^k(\mathcal{T}_h, \mathbb{R}^{d \times d}) \) is a tangential vector field whose values are in the tangent plane parallel to the facet \(F \). By a slight abuse of notation, we do not distinguish between this tangent plane and the isomorphic \(\mathbb{R}^{d-1} \) (when we write statements like “\(\tau_{nt} \in \mathbb{P}^{k-1}(F, \mathbb{R}^{d-1}) \)” above in (4.3)).

For the derivation of a discrete variational formulation with these spaces, we return to (3.8) and identify these bilinear forms:

\[
a : L^2(\Omega, \mathbb{R}^{d \times d}) \times L^2(\Omega, \mathbb{R}^{d \times d}) \to \mathbb{R}, \quad b_1 : V \times Q \to \mathbb{R},
\]

\[
a(\sigma, \tau) := (\text{dev}(\sigma), \text{dev}(\tau)), \quad b_1(u, p) := (\text{div}(u), p).
\]
To handle the terms with the divergence of stress variables, we define another bilinear form

\[b_2 : \{ \tau \in H^1(\mathcal{T}_h, \mathbb{R}^{d \times d}) : \| \tau_{nt} \| = 0 \} \times \{ v \in H^1(\mathcal{T}_h, \mathbb{R}^d) : \| v_n \| = 0 \} \to \mathbb{R} \]

motivated by the identity (4.1) of Theorem 4.1:

\[b_2(\tau, v) := \sum_{T \in \mathcal{T}_h} \int_T \text{div}(\tau) \cdot v \, dx - \sum_{F \in \mathcal{F}_h} \int_F \| \tau_{nt} \| v_n \, ds. \]

(4.6)

By integration by parts, we find the equivalent representation

\[b_2(\tau, v) = -\sum_{T \in \mathcal{T}_h} \int_T \tau : \nabla v \, dx + \sum_{F \in \mathcal{F}_h} \int_F \tau_{nt} : \| v \| \, ds \]

(4.7)

since \(\| \tau_{nt} \| = 0 \) and \(\| v_n \| = 0 \). When trial and test functions are in the domain of these forms, the MCS weak form (3.8) can be rewritten in terms of these forms.

The discrete MCS method finds \((\sigma_h, u_h, p_h) \in \Sigma_h \times V_h \times Q_h \) satisfying

\[
\begin{align*}
\begin{align*}
& a(\sigma_h, \tau_h) + b_2(\tau_h, u_h) = 0 \quad \text{for all } \tau_h \in \Sigma_h, \\
& b_2(\sigma_h, v_h) + b_1(v_h, p_h) = -f, v_h \quad \text{for all } v_h \in V_h, \\
& b_1(u_h, q_h) = 0 \quad \text{for all } q_h \in Q_h.
\end{align*}
\end{align*}
\]

(MCS)

Note that the velocity space is the well known \(BDM^k \) space – see for example Boffi et al. (2013). The pressure space is given by piecewise polynomials of one order less than the velocity space. By this we have the property \(\text{div}(V_h) = Q_h \). Therefore, any weakly divergence-free velocity field is also strongly divergence free:

\[\text{div}(u_h), q_h = 0 \Leftrightarrow \text{div}(u_h) = 0 \text{ in } \Omega. \]

(4.8)

Thus, any velocity field \(u_h \) computed from the system (MCS) is exactly divergence free.

5. Finite elements

The aim of this section is to construct local finite elements that yield the global finite element space \(\Sigma_h \). We introduce degrees of freedom (linear functionals) on each element which help us impose the normal-tangential continuity. We also give an explicit construction of a basis on a reference element and provide an appropriate mapping to an arbitrary physical element of the triangulation. This is especially useful for the implementation as there is no need to compute a dual shape function basis by biorthogonalization. The mapping technique permits easy extension to curved elements (although analysis of curved elements is beyond the scope of this work). We then complete this section by introducing an interpolation operator that we shall use in the error analysis of the next section.

The restriction of the function space \(\Sigma_h \) defined in (4.3) to a single element \(T \) gives the local finite element space \(\Sigma_k(T) := \{ \tau_h \in P^k(T, \mathbb{R}^{d \times d}) : \text{tr}(\tau_h) = 0, (\tau_h)_{nt} \in P^{k-1}(F, \mathbb{R}^{d-1}) \text{ on all faces } F \in \mathcal{F}_T \} \), where \(\mathcal{F}_T := \{ F : F \subset \partial T \} \) is the set of element facets. Let

\[\mathcal{D} := \{ M \in \mathbb{R}^{d \times d} : (M : \text{Id}) = 0 \}. \]

Then we may equivalently write

\[\Sigma_k(T) = \{ \tau_h \in P^k(T, \mathcal{D}) : (\tau_h)_{nt} \in P^{k-1}(F, \mathbb{R}^{d-1}) \text{ on all faces } F \in \mathcal{F}_T \} \].

(5.1)

We proceed to study this space in detail, beginning with \(\mathcal{D} \).
5.1 Trace-free matrices

As a first step, we construct a basis for the space of matrices \(D = \mathbb{R}^{3,3} \) particularly suited to study normal-tangential components on facets. Let \(V_i, i \in \mathcal{V} \), denote the vertices of \(T \), where \(\mathcal{V} := \{0, 1, 2, 3\} \) and \(\mathcal{V} := \{0, 1, 2, 3\} \) in two and three dimensions, respectively. Further let \(F_i \) be the face opposite to the vertex \(V_i \) with the normal vector given by \(n_i \). The unit tangential vectors along edges are \(t_{ij} := (V_i - V_j)/|V_i - V_j| \).

Finally let \(\lambda_i \) be the unique barycentric coordinate function that equals one at the vertex \(V_i \). When \(d = 2 \), define three constant matrix functions, one for each facet-by-facet using the remaining statements. The spanning property follows by counting.

\[
S'_i := \text{dev}(\nabla \lambda_{i+1} \otimes \text{curl}(\lambda_{i+2}))
\]

where the indices \(i + 1 \) and \(i + 2 \) are taken modulo 3. When \(d = 3 \), for each \(i \in \mathcal{V} \), we define the following two constant matrix functions

\[
S'_{0i} := \text{dev}(\nabla \lambda_{i+1} \otimes (\nabla \lambda_{i+2} \times \nabla \lambda_{i+3})), \quad S'_{i} := \text{dev}(\nabla \lambda_{i+2} \otimes (\nabla \lambda_{i+3} \times \nabla \lambda_{i+4})),
\]

taking the indices \(i + 1, i + 2 \) and \(i + 3 \) modulo 4.

Lemma 5.1 The sets \(\{S'_i : i \in \mathcal{V}\} \) and \(\{S'_{0i} : i \in \mathcal{V}, \; q = 0, 1\} \) form a basis of \(D \) when \(d = 2 \) and \(3 \), respectively. Moreover, the normal-tangential component of \(S' \) and \(S'_{0i} \) vanishes everywhere on the element boundary except on \(F_i \).

\[
S'_{0i}|_{F_i} = 0, \quad (S'_{0i})_{m}|_{F_i} = 0, \quad i \neq j, \; F_j \in \mathcal{F}_T, \; i, \; j \in \mathcal{V},
\]

while on \(F_i \) it does not vanish. When \(i = j \in \mathcal{V} \) and \(d = 3 \),

\[
t_{i+2, i+3}^T S'_{0i} n_i = 0, \quad t_{i+1, i+2}^T S'_{0i} n_i \neq 0, \quad t_{i+3, i+4}^T S'_{0i} n_i \neq 0,
\]

\[
t_{i+2, i+3}^T S'_{i} n_i \neq 0, \quad t_{i+1, i+2}^T S'_{i} n_i \neq 0, \quad t_{i+3, i+4}^T S'_{i} n_i = 0.
\]

Proof. The first statement of the lemma follows once we prove the remaining statements. Indeed, the linear independence of the given sets follows by examining their normal-tangential components facet-by-facet using the remaining statements. The spanning property follows by counting.

To prove the remaining statements, we start with the two dimensional case. We define

\[
s_{i,j} = \text{dev}(\nabla \lambda_i \otimes \text{curl}(\lambda_j)).
\]

Then \(s_{i+1, i+2} = S' \). Since the \(n \)-component of the identity vanishes, for any \(p \in \mathcal{V} \) and any \(t_p \in \text{curl}(\lambda_p) \)

\[
t^T_p s_{i,j} n_p = t^T_p [\nabla \lambda_i \otimes \text{curl}(\lambda_j)] n_p = (\nabla \lambda_i \cdot t_p)(\nabla \lambda_j \cdot t_p).
\]

All the stated properties in the two-dimensional case now follow easily from this identity together with the fact that \(T \) is not degenerate.

Next, consider the \(d = 3 \) case. Let \(s_{i,j,k} = \text{dev}(\nabla \lambda_i \otimes (\nabla \lambda_j \times \nabla \lambda_k)) \). If \(i, j, k, l \) is any permutation of \(\mathcal{V} \), by elementary manipulations, we see that for any \(p \in \mathcal{V} \) and any \(t_p \in n^+_p \),

\[
t^T_p s_{i,j,k} n_p = c(n_i \cdot t_p)(n_j \cdot n_p).
\]

for some \(c \neq 0 \). Therefore on any facet \(F_p \), we have \(t^T_p (s_{i,j,k}) n_p = t^T_p (s_{i+1, i+2, i+3}) n_p = c(n_{i+1} \cdot t_p)(n_{i+1} \cdot n_p) \)

which vanishes for all \(p \neq i \) since \(n_{i+1} \cdot t_{i+1} = 0 \) and \(t_{i+1} \cdot n_{i+2} = t_{i+1} \cdot n_{i+3} = 0 \). Similarly, we conclude that \((S'_{0i})_{m} = 0 \) on all facets except \(F_i \). Since (5.5) also implies

\[
t_{i+2, i+3}^T s_{i,j,k} n_l = 0, \quad t_{i+1, i+2}^T s_{i,j,k} n_l \neq 0, \quad t_{i+3, i+4}^T s_{i,j,k} n_l \neq 0,
\]

the statements in (5.4) also follow. □
5.2 Normal-tangential bubbles

Let the element space of interior normal-tangential bubbles be defined by

\[\mathcal{B}_k(T) := \{ \tau_h \in \Sigma_k(T) : (\tau_h)_n = 0 \}. \]

Lemma 5.2 Any \(b \in \mathcal{B}_k(T) \) can be expressed as either

\[b = \sum_{i \in \mathcal{I}} \mu_i \lambda_i S_i \quad \text{or} \quad b = \sum_{q=0}^{d} \sum_{i \in \mathcal{I}} \mu_i^q \lambda_i S_i^q, \]

\((5.6) \)

for \(d = 2 \) or \(3 \), respectively, where \(\mu_i, \mu_i^0, \mu_i^1 \in \mathbb{P}^{k-1}(T) \). Consequently,

\[\dim \mathcal{B}_k(T) = \begin{cases} \frac{3}{2} k(k+1), & \text{if } d = 2, \\ \frac{8}{6} k(k+1)(k+2), & \text{if } d = 3. \end{cases} \]

Proof. We only show the proof in the \(d = 2 \) case as the \(d = 3 \) case is similar. By Lemma 5.1 applied to the matrix \(b(x) \), we obtain

\[b(x) = \sum_{i \in \mathcal{I}} a_i(x) S_i, \]

\((5.7) \)

and matching degrees, we conclude that \(a_i \in \mathbb{P}^k(T) \). Let \(c_i \) equal the constant value of \(S_i^1|_{F_i} \), which is nonzero by Lemma 5.1. Then \(t_i^T b(x)n_i = c_i a_i(x) = 0 \) for all \(x \in F_i \). Since \(a_i(x) \) vanishes on \(F_i \), it must take the form \(a_i(x) = \mu_i(x) \lambda_i(x) \) for some \(\mu_i \in \mathbb{P}^{k-1}(T) \). This proves (5.6).

The dimension count follows from (5.6): again considering only the \(d = 2 \) case, since \(\mu_i \in \mathbb{P}^{k-1}(T) \) and \(\{ \lambda_i S_i^1 : i \in \mathcal{I} \} \) is a linearly independent set, the expansion in (5.6) shows that \(\dim \mathcal{B}_k(T) \) is \(3 \times \dim \mathbb{P}^{k-1}(T) \). \(\square \)

5.3 Mappings

Suppose \(\hat{T} \) is the unit simplex \((d = 2 \) or \(3 \)\) and \(T \in \mathcal{T}_h \). Let \(\phi_T : \hat{T} \to T \) be an affine homeomorphism and set \(F_T := \phi_T^T \). Due to the shape regularity of the mesh,

\[\| F_T \|_\infty \approx h \quad \text{and} \quad \| F_T^{-1} \|_\infty \approx h^{-1} \quad \text{and} \quad |\det(F_T)| \approx h^d. \]

\((5.8) \)

The proper transformation for functions in the \(H(\text{div}) \)-conforming velocity space \(V_h \) is the Piola transformation given by \(\mathcal{P}(\hat{u}_h) := (\det F_T)^{-1} F_T \hat{u}_h \), where \(\hat{u}_h \) is a given polynomial on the reference element. The Piola map preserves the normal components on facets, so is useful for enforcing normal continuity. For functions demanding tangential continuity, the proper transformation is the covariant transformation given by \(\mathcal{C}(\hat{u}_h) := F_T^{-1} \hat{u}_h \). Therefore, to enforce the normal-tangential continuity required of tensors in \(\Sigma_h \), we combine the above two transformations and define

\[\mathcal{M}(\hat{\sigma}_h) := \frac{1}{\det(F_T)} F_T^{-T} \hat{\sigma}_h F_T^T, \]

\((5.9) \)

where \(\hat{\sigma}_h \in \Sigma_h(\hat{T}) \). Of particular interest to us is how the normal-tangential components on facets \(F \in \mathcal{F}_T \) map. To study this, we use the restrictions of the map \(\phi_T \) to a reference facet \(\hat{F} \) as well as to a
reference edge \(\hat{E} \) (a \(d - 2 \) subsimplex) in the \(d = 3 \) case, denoted by \(\phi_T|_\hat{E} \) and \(\phi_T|_\hat{E} \), respectively. Their gradients are denoted by \(F_T^E = (\phi_T|_\hat{E})' \) and \(F_T^E = (\phi_T|_\hat{E})' \). In the next result, \(\hat{n} \) and \(n \) denote the outward unit normals vector on \(\hat{F} \) and \(F \), respectively, while \(\hat{t} \) denotes a unit tangent vector along \(\hat{E} \) (when \(d = 3 \)) or \(\hat{F} \) (when \(d = 2 \)), and similarly, \(t \) denotes a unit tangent vector along \(E \) or \(F \).

Lemma 5.3 Using the above notations and letting \(\tau = \mathcal{H}(\hat{\tau}) \), we have

\[
e t^T \tau n = \hat{t}^T \hat{\tau} \hat{n}, \quad \text{where } c = \begin{cases} \det(F_T^E)^2 & \text{if } d = 2, \\ \det(F_T^E) \det(F_T^E) & \text{if } d = 3. \end{cases}
\]

Furthermore,

\[
\text{tr}(\hat{\tau}) = 0 \Leftrightarrow \text{tr}(\tau) = 0.
\]

Proof. The unit normals and tangents on the reference and mapped configurations are related by

\[
n = \frac{\det(F_T)}{\det(F_T^E)} F_T^{-T} \hat{n} \quad \text{and} \quad t = \frac{1}{\det(F_T^E)} F_T \hat{t},
\]

with the understanding that in two dimensions we should replace \(F_T^E \) by \(F_T^E \). Then

\[
n^T t = \frac{1}{\det(F_T^E)} (\hat{t}^T F_T^E)^{-1} \hat{\tau} \hat{t} = \frac{1}{\det(F_T^E) \det(F_T^E)} \hat{t}^T \hat{\tau} \hat{n}.
\]

Finally, the statement on traces follows from \(\text{tr}(F_T^{-T} \hat{t}^T F_T^E) = \text{tr}(\hat{\tau}) \). \(\square \)

5.4 Definition of the finite element

We define the local finite element in the formal style of Ciarlet (2002) (also adopted in other texts, e.g., Ern & Guermond (2004); Braess (2013)) as a triple \((T, \Sigma_k(T), \Phi(T)) \), where the geometrical element \(T \) is either a triangle or a tetrahedron, the space \(\Sigma_k(T) \) is defined by (5.1), and \(\Phi(T) \) is a set of linear functionals representing the degrees of freedom defined as follows. The first group of degrees of freedom is associated to the set of element facets \(\mathcal{F}_T \), the set of \(d - 1 \) subsimplices of \(T \): for each \(F \in \mathcal{F}_T \), define

\[
\Phi^F(\tau) := \left\{ \int_F \tau_m \cdot r \, ds : r \in \mathbb{R}^{k-1}(F, \mathbb{R}^{d-1}) \right\}.
\]

(5.10)

The next group is the set of interior degrees of freedom given by

\[
\Phi^T(\tau) := \left\{ \int_T \tau : F_T \hat{\eta} F_T^{-1} \, dx : \hat{\eta} \in \mathcal{B}_k(\hat{T}) \right\}.
\]

(5.11)

Then set

\[
\Phi(T) := \Phi^T \cup \{ \Phi^F : F \in \mathcal{F}_T \}.
\]

(5.12)

We proceed to prove that this set of degrees of freedom is unisolvent and that the number of degrees of freedom matches the dimension of \(\Sigma_k(T) \).
Theorem 5.1 The triple \((T, \Sigma_k(T), \Phi(T))\) defines a finite element and
\[
\dim(\Sigma_k(T)) = \begin{cases}
\frac{3}{2} (k+1)(k+2) - 3, & \text{if } d = 2, \\
\frac{8}{6} (k+1)(k+2)(k+3) - 8(k+1), & \text{if } d = 3.
\end{cases}
\]

Proof. To prove the unisolvency of the degrees of freedom, consider a \(\phi \in \Sigma_k(T)\) satisfying \(\phi(\tau_h) = 0\) for all \(\phi \in \Phi(T)\). As \((\tau_h)_m \in \mathbb{P}^{k-1}(F, \mathbb{R}^{d-1})\) the facet degrees of freedom \(\phi(\tau_h) = 0\) imply that \(\tau_h \in \mathcal{B}(T)\). The interior degrees of freedom then yield
\[
0 = \int_T \tau_h : F_T F_T^{-1} = \int_T F_T^T \tau_h F_T^{-T} : \hat{\eta} = \int_T (\det F_T)^{-1} \mathcal{M}^{-1}(\tau_h) : \hat{\eta} = \int_T \mathcal{M}^{-1}(\tau_h) : \hat{\eta}
\]
for all \(\hat{\eta} \in \mathcal{B}(\hat{T})\). By Lemma 5.3, \(\mathcal{M}^{-1}(\tau_h)\) is in \(\mathcal{B}(\hat{T})\), so this yields \(\mathcal{M}^{-1}(\tau_h) = 0\) and thus \(\tau_h = 0\).

It only remains to prove the dimension count. The dimension of \(\Sigma_k(T)\) is given by \(\dim \mathbb{P}(T, \mathcal{D})\) minus the number of linearly independent conditions represented by the constraints \((\tau_h)_m \in \mathbb{P}^{k-1}(F, \mathbb{R}^{d-1})\) for all \(F \in \mathcal{F}_T\) that every \(\tau_h \in \Sigma_k(T)\) must satisfy. Therefore,
\[
\dim(\Sigma_k(T)) \geq \dim \mathbb{P}(T, \mathcal{D}) - \dim \left[\mathbb{P}(F, \mathbb{R}^{d-1}) \setminus \mathbb{P}^{k-1}(F, \mathbb{R}^{d-1}) \right]
\]
\[
= (d^2 - 1) \dim \mathbb{P}(T) - (d+1)(d-1) \dim \left[\mathbb{P}(F) \setminus \mathbb{P}^{k-1}(F) \right].
\]

Let \(N_{\Sigma_k}\) denote the number on the right hand side. Using Lemma 5.2 to count the number of degrees of freedom in \(\Phi(T)\), we find that it coincides with \(N_{\Sigma_k}\). Since \(N_{\Sigma_k}\) linear functionals on \(\Sigma_k(T)\) are unisolvent, we conclude that \(\dim(\Sigma_k(T)) = N_{\Sigma_k}\), which after simplification agrees with the statement of the theorem. \(\square\)

5.5 Construction of shape functions

In view of the previous results, we can now write down shape functions in barycentric coordinates. Its not difficult to see that on any triangle \(T\), the set of functions
\[
\lambda_i^{\alpha_1} \lambda_{i+1}^{\alpha_2} \lambda_{i+2}^{\alpha_3} S_i, \quad \lambda_i^{\beta_1} \lambda_{i+1}^{\beta_2} \lambda_{i+2}^{\beta_3} (\lambda_i S_i),
\]
for all \(i \in \mathcal{V}\), and all multi-indices \((\alpha_1, \alpha_2)\) and \((\beta_0, \beta_1, \beta_2)\), with \(\alpha_i \geq 0\), \(\beta_i \geq 0\) having length \(\alpha_1 + \alpha_2 = \beta_0 + \beta_1 + \beta_2 = k - 1\), form a basis for \(\Sigma_k(T)\). Similarly, when \(T\) is a tetrahedron, the following set is a basis for \(\Sigma_k(T)\):
\[
\lambda_i^{\alpha_1} \lambda_{i+1}^{\alpha_2} \lambda_{i+2}^{\alpha_3} \lambda_{i+3}^{\alpha_4} S_i, \quad \lambda_i^{\beta_1} \lambda_{i+1}^{\beta_2} \lambda_{i+2}^{\beta_3} \lambda_{i+3}^{\beta_4} (\lambda_i S_i),
\]
for all \(i \in \mathcal{V}, q = 0, 1\), and all multi-indices \((\alpha_1, \alpha_2, \alpha_3)\) and \((\beta_0, \beta_1, \beta_2, \beta_3)\), with \(\alpha_i \geq 0\), \(\beta_i \geq 0\) having length \(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = \beta_0 + \beta_1 + \beta_2 + \beta_3 = k - 1\). Instead of proving the linear independence of functions in (5.13) or (5.14), in the remainder of this section, we opt to do so for another set of reference element shape functions that we have implemented. By using a Dubiner basis instead of barycentric monomials, the ensuing construction produces better conditioned matrices.

We start by defining some basic notations needed for the construction. The reference element is given by
\[
\hat{T} := \{ (x_1, x_2) \in \mathbb{R}^2 : 0 \leq x_1, x_2 \text{ and } x_1 + x_2 \leq 1 \} \quad \text{for } d = 2,
\]
\[
\hat{T} := \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : 0 \leq x_1, x_2, x_3 \text{ and } x_1 + x_2 + x_3 \leq 1 \} \quad \text{for } d = 3.
\]
For $d = 2$ we further define the reference faces and the corresponding normal and tangential vectors (see left picture in Figure 1) by

\[
\hat{F}_0 = \{(x_1, x_2) \in \mathbb{R}^2 : 0 \leq x_1, x_2 \leq 1, x_1 + x_2 = 1\}, \quad \hat{n}_0 := \frac{1}{\sqrt{2}}(1, 1)^T, \quad \hat{t}_0 := \frac{1}{\sqrt{2}}(-1, 1)^T,
\]

\[
\hat{F}_1 = \{(0, x_2) \in \mathbb{R}^2 : 0 \leq x_2 \leq 1\}, \quad \hat{n}_1 := (-1, 0)^T, \quad \hat{t}_1 := (0, -1)^T,
\]

\[
\hat{F}_2 = \{(x_1, 0) \in \mathbb{R}^2 : 0 \leq x_1 \leq 1\}, \quad \hat{n}_2 := (0, -1)^T, \quad \hat{t}_2 := (1, 0)^T.
\]

For the three dimensional case we have

\[
\hat{F}_0 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : 0 \leq x_1, x_2, x_3 \leq 1, x_1 + x_2 + x_3 = 1\},
\]

\[
\hat{F}_1 = \{(0, x_2, x_3) \in \mathbb{R}^3 : 0 \leq x_2, x_3 \leq 1, 0 \leq x_2 + x_3 \leq 1\},
\]

\[
\hat{F}_2 = \{(x_1, 0, x_3) \in \mathbb{R}^3 : 0 \leq x_1, x_3 \leq 1, 0 \leq x_1 + x_3 \leq 1\},
\]

\[
\hat{F}_3 = \{(x_1, x_2, 0) \in \mathbb{R}^3 : 0 \leq x_1, x_2 \leq 1, 0 \leq x_1 + x_2 \leq 1\},
\]

with the associated normal and tangential vectors (see right picture in Figure 1)

\[
\hat{n}_0 := \frac{1}{\sqrt{3}}(1, 1, 1)^T, \quad \hat{n}_0 := \frac{1}{\sqrt{2}}(-1, 1, 0)^T, \quad \hat{n}_0 := \frac{1}{\sqrt{2}}(0, 1, -1)^T,
\]

\[
\hat{n}_1 := (-1, 0, 0)^T, \quad \hat{n}_1 := (0, -1, 0)^T, \quad \hat{n}_1 := (0, 0, -1)^T,
\]

\[
\hat{n}_2 := (0, -1, 0)^T, \quad \hat{n}_2 := (1, 0, 0)^T, \quad \hat{n}_2 := (0, 0, -1)^T,
\]

\[
\hat{n}_3 := (0, 0, -1)^T, \quad \hat{n}_3 := (1, 0, 0)^T, \quad \hat{n}_3 := (0, -1, 0)^T.
\]

In Section 5.1 we presented the construction of element wise constant matrices. Applying these techniques on the reference element (including a scaling with a proper constant) we derive for $d = 2$ the
matrices given by
\[S^0 := \sqrt{3} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \hat{S}^1 := \begin{pmatrix} 0.5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -0.5 \end{pmatrix} \quad \text{and} \quad \hat{S}^2 := \begin{pmatrix} 0.5 & -1 & 0 \\ 0 & 0 & -0.5 \end{pmatrix}, \]
(5.15)
and for \(d = 3 \) the matrices
\[S^0_0 = \sqrt{6} \begin{pmatrix} \frac{2}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} , \quad S^0_1 = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} , \quad S^0_2 = \begin{pmatrix} \frac{2}{3} & 1 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} , \quad S^0_3 = \begin{pmatrix} \frac{2}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} , \quad S^1_0 = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} , \quad S^1_1 = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} , \quad S^1_2 = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix} , \quad (5.16) \]

Note that in order to follow the ideas described in Section 5.1 we took a particular choice of the numbering of the vertices of \(\hat{T} \) and the corresponding tangential vectors. Similar as in Lemma 5.1, a elementary calculations show that
\[
\begin{align*}
&\hat{t}^i_j \hat{S} \hat{n}_j = \delta_{ij} \quad \text{and} \quad \hat{t}^i_j \lambda_i \hat{S} \hat{n}_j = 0 \quad \text{for} \quad i, j = 0, 1, 2, \\
&\hat{t}^i_j \lambda_{ij} \hat{S} \hat{n}_j = \delta_{ij} \delta_{kl} \quad \text{and} \quad \hat{t}^i_j \lambda_i \hat{S} \hat{n}_j = 0 \quad \text{for} \quad i, j \in \{0, 1, 2, 3\} \quad \text{and} \quad k, l = 0, 1. \tag{5.17}
\end{align*}
\]
and that \(\{\hat{S}_i : i = 0, 1, 2\} \) and \(\{\hat{S}_q : i = 0, 1, 2, 3; q = 0, 1\} \) is a basis for \(\mathbb{D} \) in two and three dimensions, respectively. Based on these constant matrices we now construct shape function for the local stress

We start with the two dimensional case. Let \(l_i(x_1) \) be the Legendre polynomial of order \(i \) and let \(\hat{p}_i(x_1, x_2) := x_1^i l_i(x_1/x_2) \) be the scaled Legendre polynomial of order \(i \). Further let \(p_j(x_1) \) be the Jacobi polynomial of order \(j \) with coefficients \(\alpha = j, \beta = 0 \). For a detailed definition we refer to the works Abramowitz (1974); Andrews et al. (1999). We then define
\[
\hat{r}_{ij}(\lambda_\alpha, \lambda_\beta, \lambda_\gamma) := t_i^j (\lambda_\beta - \lambda_\alpha, \lambda_\alpha + \lambda_\beta) p_j^{2i+1}(\lambda_\gamma - \lambda_\alpha - \lambda_\beta). \tag{5.18}
\]
The polynomials \(\hat{r}_{ij}(\lambda_\alpha, \lambda_\beta, \lambda_\gamma) \) with \(0 \leq i + j \leq k \) and an arbitrary permutation \((\alpha, \beta, \gamma) \) of \((0, 1, 2) \) form a basis of the polynomial space \(P^k(\hat{T}, \mathbb{R}) \). Next note that \(p_0^{2i+1} \) is constant, thus \(\hat{r}_{ij}(\lambda_\alpha, \lambda_\beta, \lambda_\gamma) = \hat{r}_0(\lambda_\alpha, \lambda_\beta) \). Then there holds that for \(0 \leq i \leq k \) the restriction of the polynomials \(\hat{r}_0(\lambda_{j+1}, \lambda_{j+2}) |_{\hat{T}} \), where the indices \(j + 1 \) and \(j + 2 \) of the barycentric coordinate functions are taken modulo \(3 \), form a basis of the polynomial space \(P^k(\hat{T}, \mathbb{R}) \) (see chapter 3.2 in Karniadakis & Sherwin (2013) or in Dubiner (1991)). By this we define a local basis of the stress space by
\[
\hat{\Psi}_k^T := \{ \hat{S} \hat{r}_0(\lambda_{j+1}, \lambda_{j+2}) : j = 0, 1, 2 \quad \text{and} \quad 0 \leq i \leq k \}, \\
\hat{\Psi}_k^T := \{ \lambda_i \hat{S} \hat{r}_0(\lambda_0, \lambda_1, \lambda_2) : j = 0, 1, 2 \quad \text{and} \quad 0 \leq i + l \leq k \}.
\]
For \(d = 3 \) we define similar as before
\[
\hat{r}_{ij}(\lambda_\alpha, \lambda_\beta, \lambda_\gamma, \lambda_\delta) \tag{5.19}
:= t_i^j (\lambda_\beta - \lambda_\alpha, \lambda_\alpha + \lambda_\beta) p_j^{2i+1}(\lambda_\gamma - \lambda_\alpha - \lambda_\beta, \lambda_\gamma + \lambda_\alpha + \lambda_\beta) p_i^{2j+1}(\lambda_\delta - \lambda_\alpha - \lambda_\beta - \lambda_\gamma),
\]
where $p^{i,j}_t(x_1, x_2) := x_1^j x_2^i$ is the scaled Jacobi polynomial. Again we have that $\hat{r}_{ijl}(\lambda_\alpha, \lambda_\beta, \lambda_\gamma, \lambda_\delta)$ with $0 \leq i + j + l \leq k$ and an arbitrary permutation $(\alpha, \beta, \gamma, \delta)$ of $(0, 1, 2, 3)$ defines a basis for $\mathbb{P}_k(\hat{T}, \mathbb{R})$ and that for $0 \leq i + l \leq k$ the restriction $\hat{r}_{ijl0}(\lambda_{j+1}, \lambda_{j+2}, \lambda_{j+3})|_{\hat{F}^1}$ is a basis of $\mathbb{P}_k(\hat{F}_1, \mathbb{R})$ where the indices of the barycentric coordinate functions are now taken modulo 4. By this we define the local basis on the reference tetrahedron by

$$
\hat{\Psi}_k^F := \{ \hat{S}^F_{ijl0}(\lambda_{j+1}, \lambda_{j+2}, \lambda_{j+3}) : j = 0, 1, 2, 3 \text{ and } q = 0, 1 \text{ and } 0 \leq i + l \leq k - 1 \},
$$

$$
\hat{\Psi}_k^T := \{ \hat{S}^T_{ijl}(\lambda_0, \lambda_1, \lambda_2) : j = 0, 1, 2, 3 \text{ and } q = 0, 1 \text{ and } 0 \leq i + l + g \leq k - 1 \}.
$$

Theorem 5.2 The set of functions $\{ \hat{\Psi}_k^F \cup \hat{\Psi}_k^T \}$ is a basis for $\Sigma_k(\hat{T})$.

Proof. We start with the two dimensional case. An elementary calculation shows that the functions $\lambda_i \hat{S}_i$ with $i = 0, 1, 2$ are linearly independent. Let $\alpha_i^F \in \mathbb{R}$ and $\beta_i^T \in \mathbb{R}$ be arbitrary coefficients and define $\hat{S}_i^F := \hat{S}^F_{ijl}(\lambda_{j+1}, \lambda_{j+2})$ and $\hat{B}_i^T := \lambda_i \hat{S}^T_{ijl}(\lambda_0, \lambda_1, \lambda_2)$. We assume that

$$
\sum_{j=0}^{k-1} \sum_{l=0}^{k-1} \alpha_i^F \hat{S}_i^F + \sum_{j=0}^{k-1} \sum_{l=0}^{k-1} \beta_i^T \hat{B}_i^T = 0
$$

and show that this induces that all coefficients are equal to zero. This then proves the linear independency of $\{ \hat{\Psi}_k^F \cup \hat{\Psi}_k^T \}$. Let \hat{F}_g with $g = 0, 1, 2$ be an arbitrary reference face. Due to (5.17), there holds

$$
\hat{t}_g^T \left(\sum_{j=0}^{k-1} \sum_{l=0}^{k-1} \alpha_i^F \hat{S}_i^F + \sum_{j=0}^{k-1} \sum_{l=0}^{k-1} \beta_i^T \hat{B}_i^T \right) \hat{r}_g = \hat{t}_g^F \left(\sum_{j=0}^{k-1} \alpha_i^F \hat{S}_i^F \right) \hat{r}_g = \hat{t}_g^F \left(\sum_{j=0}^{k-1} \beta_i^T \hat{B}_i^T \right) \hat{r}_g = 0.
$$

As $\hat{r}_{ijl}(\lambda_{j+1}, \lambda_{j+2})$ is a polynomial basis on \hat{F}_g, and \hat{S}_i^F, \hat{R}_g and \hat{t}_g are constant it follows that all coefficients α_i^F have to be zero. As g was arbitrary we conclude $\alpha_i^F = 0$ for $j = 0, 1, 2$ and $0 \leq i \leq k - 1$.

As the functions $\lambda_i \hat{S}_i$ are linearly independent we have for each $g = 0, 1, 2$ (due to the assumption at the beginning)

$$
\sum_{i=0}^{k-1} \sum_{l=0}^{k-1} \lambda_i \hat{S}_i^F \hat{B}_i^T = \sum_{i=0}^{k-1} \sum_{l=0}^{k-1} \beta_i^T \hat{B}_i^T \lambda_i \hat{S}_i^F = 0.
$$

As $\hat{r}_{ijl}(\lambda_{j+1}, \lambda_{j+2}, \lambda_{j+3})$ is a basis for $\lambda_\gamma \mathbb{P}^{k-1}_k(\hat{T})$, and the last equation holds true for all points in \hat{T} we conclude $\beta_i^T = 0$ for $0 \leq i + l \leq k - 1$. As g was arbitrary we conclude that all coefficients are equal to zero. Note that by $\text{tr}(S^F) = 0$, all shape function in $\{ \hat{\Psi}_k^F \cup \hat{\Psi}_k^T \}$ are trace free and are further tensor valued polynomials up to order k. Further the normal tangential trace is only a polynomial up to order $k - 1$ thus all shape functions belong to $\Sigma_k(\hat{T})$. Counting the dimensions we have by Theorem 5.1

$$
|\hat{\Psi}_k^F| + |\hat{\Psi}_k^T| = 3k + \frac{3k(k+1)}{2} = N_{\Sigma_k},
$$

what concludes the proof. In three dimensions we proceed similar. The linearly independence can be shown with the same steps. Further with the same arguments all shape functions belong to $\Sigma_k(\hat{T})$. Again by Theorem 5.1 and

$$
|\hat{\Psi}_k^F| + |\hat{\Psi}_k^T| = 8 \frac{k(k+1)}{2} + 8 \frac{k(k+1)(k+2)}{6} = N_{\Sigma_k},
$$

we conclude the proof. \qed
Remark 5.1 Note how the basis was separated into shape functions associated to faces ($\tilde{\Psi}_k^F$) and shape functions associated to the element interior ($\tilde{\Psi}_k^I$). The polynomial degrees in each group can be separately chosen to construct a variable-degree global finite element space (e.g., for hp adaptivity). E.g., the span of the union of $\tilde{\Psi}_k^F$ and $\tilde{\Psi}_k^I$ gives an element space that has normal-tangential trace of degree $k_1 - 1$ and inner (bubble) shape functions of degree k_2.

5.6 Construction of a global basis

Using the local basis on the reference triangle \hat{T} we can now simply define a global basis for the stress space Σ_h. This is done in the usual way. Using the mapping \mathcal{M} and a basis function $\tilde{S} \in \{\tilde{\Psi}_k^F, \tilde{\Psi}_k^I\}$ we define the restriction of a global shape function S (with support on a patch) on an arbitrary physical element $T \in \mathcal{T}_h$ by

$$S := \mathcal{M}(\tilde{S}).$$

Next we identify all topological entities, vertices and faces, of the physical element T with the corresponding entities of the global mesh. This identification is needed as faces and vertices coincide for adjacent physical elements. Note that the global orientation of the faces (and edges) plays an important role in order to assure (normal-tangential) continuity. This is a well known difficulty: see Zaglmayr (2006) for a detailed discussion regarding this topic. By this we construct global basis functions which are, restricted on a physical element $T \in \mathcal{T}_h$, always a mapped basis function of the basis defined on the reference element \hat{T}.

Further note that due to Lemma 5.3 the resulting basis functions are normal tangential continuous, thus $\|S_n\| = 0$. To see this let ϕ_1 be the mapping of an arbitrary element T_1 and let ϕ_2 be the mapping of an element T_2 such that $F = T_1 \cap T_2$. There exists a reference face $\hat{F} \subset \partial \hat{T}$ such that $F = \phi_1(\hat{F}) = \phi_2(\hat{F})$ (in the sense of a set) and $\phi_1|_F = \phi_2|_F$ (in the sense of equivalent functions). By this, and the same ideas for an reference edge \hat{E} in the three dimensional case, the constant c in Lemma 5.3 is the same for both mappings. In two dimensions we have the identity $S_n = (t^T S_n) t$, thus Lemma 5.3 implies normal-tangential continuity of S because S was a mapped basis functions of the reference element. In three dimensions S_n is a tangent vector in F. Each tangent vector can be represented as a linear combination of two arbitrary edge tangent vectors $t_i \subset \partial F$. By Lemma 5.3 we deduce that the scalar values $t_i^T S_n$ are preserved, thus again we have normal tangential continuity. Taking all functions in $\{\tilde{\Psi}_k^F, \tilde{\Psi}_k^I\}$ and mapping them to each element separately results in a basis for Σ_h.

5.7 An interpolation operator for the stress space.

We finish this section by introducing an interpolation operator for the stress space and showing an approximation result. Using the global degrees of freedom of Σ_h a canonical interpolation operator I_{Σ_h} can be defined as usual. On each $T \in \mathcal{Q}_h$, the interpolant $(I_{\Sigma_h} \sigma)|_T$ coincides with the canonical local interpolant $I_T(\sigma|_T)$ defined, as usual, using the local degrees of freedom in $\Phi(T)$, by

$$\phi(\sigma - I_T \sigma) = 0 \quad \text{for all } \phi \in \Phi(T). \quad (5.20)$$

Recalling the map \mathcal{M} from (5.9), note that $\mathcal{M}^{-1}(\sigma) = \det(F_T^T) F_T^T \sigma F_T^{-T}$.

Lemma 5.4 For any $\sigma \in H^1(T, \mathbb{R}^{d \times d})$,

$$\mathcal{M}^{-1}(I_T \sigma) = I_T(\mathcal{M}^{-1}(\sigma)).$$
Proof. Since both the left and right hand sides are in \(\Sigma_k(\hat{T})\), it suffices to prove that
\[
\hat{\phi}(\mathcal{M}^{-1}(I_T \sigma) - I_T(\mathcal{M}^{-1} \sigma)) = 0 \quad \text{for all } \hat{\phi} \in \Phi(\hat{T}).
\]

To see that (5.21) holds for the interior degrees of freedom on \(\hat{T}\) as defined in (5.11), noting that \(F_{\hat{T}}\) is the identity, we have for all \(\hat{\eta} \in \mathcal{B}_k(\hat{T})\),
\[
\int_{\hat{T}} \left[\mathcal{M}^{-1}(I_T \sigma) - I_T(\mathcal{M}^{-1} \sigma) \right] : F_{\hat{T}} \hat{\eta} F_{\hat{T}}^{-1} \, \text{d}\hat{x} = \int_{\hat{T}} \left[\mathcal{M}^{-1}(I_T \sigma) - \mathcal{M}^{-1} \sigma \right] : \hat{\eta} \, \text{d}\hat{x}
\]
due to the equality of interior degrees of freedom on \(T\) in (5.20).

Next, consider the facet degrees of freedom. We only consider the \(d = 3\) case (as the other case is simpler). On an arbitrary facet \(\hat{F} \in \mathcal{F}_{\hat{T}}\), choose two arbitrary edges \(E_1, E_2\) with unit tangential vectors \(\hat{t}_1, \hat{t}_2\). Using a dual tangential basis \(\hat{s}_1, \hat{s}_2\) such \(\hat{t}_i \cdot \hat{t}_i = \delta_{ij}\), we expand
\[
\mathcal{M}^{-1}(I_T \sigma - \sigma)|_{E} = [\hat{t}_1^T \mathcal{M}^{-1}(I_T \sigma - \sigma) \hat{n}] \hat{s}_1 + [\hat{t}_2^T \mathcal{M}^{-1}(I_T \sigma - \sigma) \hat{n}] \hat{s}_2.
\]

Next we choose arbitrary \(\hat{t}_1, \hat{t}_2 \in \mathbb{P}^{k-1}(\hat{F}, \mathbb{R})\) and define
\[
\hat{r} := \frac{\hat{r}_1}{\det(F_{E_1})} \hat{t}_1 + \frac{\hat{r}_2}{\det(F_{E_2})} \hat{t}_2.
\]
Let \(r := \hat{r} \circ \phi_T\). Using a biorthogonal basis \(s_1, s_2\) with respect to unit tangents \(t_1, t_2\) of mapped edges \(E_1, E_2\), we have \(r := r_1 t_1 + r_2 t_2\). Using Lemma 5.3 we deduce
\[
\mathcal{M}^{-1}(I_T \sigma - \sigma)|_{E} = \det(F_{E_1}) \det(F_{E_2}) [t_1^T (I_T \sigma - \sigma) n] \hat{s}_1 + \det(F_{E_2}) \det(F_{E_2}) [t_2^T (I_T \sigma - \sigma) n] \hat{s}_2,
\]
so
\[
\int_{\hat{F}} \mathcal{M}^{-1}(I_T \sigma - \sigma)|_{E} : \hat{r} \, \text{d}\hat{x} = \int_{E_1} [t_1^T (I_T \sigma - \sigma) n] r_1 s_1 \cdot t_1 \, dx + \int_{E_2} [t_2^T (I_T \sigma - \sigma) n] r_2 s_2 \cdot t_2 \, dx
\]
\[
= \int_{E_1} [(t_1^T (I_T \sigma - \sigma) n) s_1 + (t_2^T (I_T \sigma - \sigma) n) s_2] \cdot [r_1 t_1 + r_2 t_2] \, dx
\]
\[
= \int_{E} (I_T \sigma - \sigma)|_{E} : \hat{r} \, \text{d}x = 0
\]
where the last equality is due to the equality of the facet degrees of freedom in (5.20).

\[\blacksquare\]

Theorem 5.3 (Interpolation operator for \(\Sigma_k\)). For any \(m \geq 1\) and any \(\sigma \in \{ \tau \in H^m(\mathcal{T}_h, \mathbb{R}^{d \times d}) : \| \tau \| = 0 \}\), the interpolant \(I_{E_h} \sigma\) is well defined and there is a mesh-independent constant \(C\) such that
\[
\| \sigma - I_{E_h} \sigma \|_{L^2(\Omega)} + \sqrt{\sum_{F \in \mathcal{F}_h} h \| (\sigma - I_{E_h} \sigma)|_F \|_{F}^2} \leq C h^s \| \sigma \|_{H^s(\mathcal{T}_h)}
\]
for all \(s \leq \min(k, m)\).

Proof. Let \(\hat{\sigma} = \mathcal{M}^{-1}(\sigma|_T)\). By Lemma 5.4, \(\mathcal{M}^{-1}(\sigma - I_T \sigma) = \hat{\sigma} - I_T \hat{\sigma}\). By the unisolvency of the reference element degrees of freedom (Theorem 5.1),
\[
\sigma - I_T \hat{\sigma} = 0 \quad \text{for all } \sigma \in \mathbb{P}^{k-1}(\hat{T}, \mathbb{R}^{d \times d}).
\]
Now a standard argument using the Bramble-Hilbert lemma, the continuity of \(I_T : H^s(\hat{T}, \mathbb{R}^{d \times d}) \rightarrow L^2(\hat{T}, \mathbb{R}^{d \times d})\), and scaling arguments, finish the proof.\[\blacksquare\]
6. A priori error analysis

In this section we show discrete inf-sup stability of the MCS method, optimal error estimates (Theorem 6.3) and pressure robustness (Theorem 6.4). The error analysis is in the following norms.

\[\| \tau_h \|_{\Sigma_h}^2 := \| \tau_h \|_{L^2(\Omega)}^2 = \| \text{dev}(\tau_h) \|_{L^2(\Omega)}^2, \quad \tau_h \in \Sigma_h, \]

\[\| v_h \|_{V_h}^2 := \| v_h \|_{1,h}^2 := \sum_{T \in \mathcal{T}_h} \| \nabla v_h \|_T^2 + \sum_{F \in \mathcal{F}_h} \frac{1}{h} \| (v_h)_n \|_F^2, \quad v_h \in V_h, \]

\[\| q_h \|_{Q_h}^2 := \| q_h \|_{L^2(\Omega)}^2, \quad q_h \in Q_h. \]

Comparing with (appropriate) norms of the infinite dimensional spaces \(V \) and \(\Sigma \), these norms might seem unnatural. But we choose these norms in order to obtain velocity error estimates in an \(H^1 \)-like norm comparable to the standard velocity-pressure formulation. Since our discrete spaces do not admit \(H^1 \)-conformity, our \(\| \cdot \|_{V_h} \)-norm contains a term that penalizes the tangential discontinuities (as in the analysis of discontinuous Galerkin methods). The \(L^2 \)-like norm on the \(\Sigma_h \) is also related to an \(H^1 \)-like norm of the velocity since we expect \(\sigma_h \) to be an approximation of \(\nabla u \).

6.1 Norm equivalences

We use \(A \sim B \) to indicate that there are constants \(c, C > 0 \) independent of the mesh size \(h \) and the viscosity \(\nu \) such that \(c A \leq B \leq C A \). We also use \(A \lesssim B \) when there is a \(C > 0 \) independent of \(h \) and \(\nu \) such that \(A \leq C B \) (and \(\gtrsim \) is defined similarly). Due to quasiuniformity, the following estimates follow by standard scaling arguments: for any \(\hat{x} \in \Sigma_h(\hat{T}) \), letting \(\tau = \mathcal{M}(\hat{x}) \),

\[h^d \| \tau_h \|_{\Sigma_h}^2 \sim \| \tau_h \|_{\Sigma_h}^2. \]

(6.1)

On any \(F \in \mathcal{F}_T \), Lemma 5.3, together with a scaling argument yields

\[h^{d+1} \| \hat{T}_h n \|_F^2 \sim \| \hat{T}_h \hat{n} \|_{\Sigma_h}^2. \]

(6.2)

Lemma 6.1 For all \(\tau_h \in \Sigma_h \),

\[h \| \tau_h \|_{\Sigma_h}^2 \sim \sum_{T \in \mathcal{T}_h} \| \text{dev}(\tau_h) \|_{T}^2 + \sum_{F \in \mathcal{F}_h} h \| (\tau_h)_n \|_F^2. \]

Proof. By finite dimensionality, for any face \(\hat{F} \in \mathcal{F}_T \),

\[h \| \hat{T}_h \hat{n} \|_{\Sigma_h}^2 \lesssim \| \hat{n} \|_{\Sigma_h}^2, \quad \text{for all } \hat{x}_h \in \Sigma_h(\hat{T}). \]

Due to (6.2) and (6.1), this yields

\[\sum_{F \in \mathcal{F}_h} h \| (\tau_h)_n \|_F^2 \lesssim \sum_{T \in \mathcal{T}_h} \| \tau_h \|_{T}^2, \quad \text{for all } \tau_h \in \Sigma_h(T). \]

This proves one side of the stated equivalence. The other side is obvious. \(\square \)

On each facet \(F \in \mathcal{F}_h \) with normal vector \(n_F \), let \(\Pi_F^0 \) denote the \(L^2 \) projection onto the space of constant tangential vectors in \(n_F \), i.e., for any vector function \(v \in L^2(F, n_F^\perp) \), the projection \(\Pi_F^0 v \in n_F^\perp \) satisfies \((\Pi_F^0 v, t)_F = (v, t)_F \) for all \(t \in n_F^\perp \).
LEMMA 6.2 For all $v_h \in V_h$,

$$\|v_h\|_{V_h}^2 \approx \sum_{T \in \mathcal{T}_h} \|\nabla v_h\|_T^2 + \sum_{F \in \mathcal{F}_h} \frac{1}{h} \|\Pi_h^0((v_h)_F)\|_F^2$$

Proof. One side of the equivalence is obvious from the continuity of Π_h^0. For the other direction,

$$\|v_h\|_{V_h}^2 \leq \sum_{T \in \mathcal{T}_h} \|\nabla v_h\|_T^2 + \sum_{F \in \mathcal{F}_h} \frac{2}{h} \|\Pi_h^0((v_h)_F)\|_F^2 + \frac{2}{h} \|((v_h)_F)\|_T^2 - \Pi_h^0((v_h)_F)\|_F^2.$$

(6.3)

Now, on each facet $F \in \mathcal{F}_T$, we use the standard estimate $\|((v_h)_F) - \Pi_h^0((v_h)_F)\|_F \lesssim h^{1/2} \|\nabla v_h\|_T$ to complete the proof.

\square

6.2 Stability analysis

LEMMA 6.3 (Continuity of a, b_1 and b_2) The bilinear forms a, b_1 and b_2 are continuous:

$$a(\sigma_h, \tau_h) \lesssim \frac{1}{\sqrt{V}} \|\sigma_h\|_{\Sigma_h} \frac{1}{\sqrt{V}} \|\tau_h\|_{\Sigma_h}$$

for all $\sigma_h, \tau_h \in \Sigma_h$

$$b_1(v_h, p_h) \lesssim \|v_h\|_{V_h} \|p_h\|_{Q_h}$$

for all $v_h \in V_h, p_h \in Q_h$

$$b_2(\sigma_h, v_h) \lesssim \|\sigma_h\|_{\Sigma_h} \|v_h\|_{V_h}$$

for all $\sigma_h \in \Sigma_h, v_h \in V_h$.

Proof. The continuity for the bilinear forms a and b_1 follows from the Cauchy-Schwarz inequality, we only consider b_2, which by (4.7) can be written as

$$b_2(\sigma_h, v_h) = -\sum_{T \in \mathcal{T}_h} \int_T \sigma_h \cdot \nabla v_h \, dx + \sum_{F \in \mathcal{F}_h} \int_F (\sigma_h)_T \cdot [(v_h)_F] \, ds.$$

Since $(\sigma_h)_T = (\text{dev}(\sigma_h))_T$, we conclude the proof by Cauchy-Schwarz inequality and Lemma 6.1. \square

LEMMA 6.4 (Coercivity of a on the kernel) Let $K_h := \{(\sigma_h, q_h) \in \Sigma_h \times Q_h : b_1(v_h, q_h) + b_2(\sigma_h, v_h) = 0$ for all $v_h \in V_h\}$. For all $(\sigma_h, p_h) \in K_h$,

$$\frac{1}{V} \left(\|\sigma_h\|_{\Sigma_h} + \|p_h\|_{Q_h} \right)^2 \lesssim a(\sigma_h, \sigma_h).$$

Proof. Let $(\sigma_h, p_h) \in K_h$ be arbitrary. As $v^{-1} \|\sigma_h\|_{L^2(\Omega)}^2 = a(\sigma_h, \sigma_h)$ it is sufficient to bound only the norm of p_h. It is well known – see e.g., Boffi et al. (2013) – that for any $p_h \in Q_h$

$$\exists v_h \in V_h : \text{div}(v_h) = p_h, \quad \|v_h\|_{V_h} \lesssim \|p_h\|_{Q_h}.$$

(6.4)

With this v_h,

$$2\|p_h\|_{Q_h}^2 = \sum_{T \in \mathcal{T}_h} \int_T p_h p_h \, dx = \sum_{T \in \mathcal{T}_h} \int_T \text{div}(v_h) p_h \, dx = b_1(v_h, p_h)$$

$$= -b_2(\sigma_h, v_h)$$

$$\leq \|\text{dev}(\sigma_h)\|_{L^2(\Omega)} \|v_h\|_{V_h} \|v_h\|_{V_h}$$

$$\leq \|\sigma_h\|_{\Sigma_h} \|p_h\|_{Q_h}$$

using Lemma 6.1, by (6.4).
Next, we proceed to verify the discrete LBB condition (in Theorem 6.1 below). Define
\[
V_h^0 := \{ v_h \in V_h : \text{div}(v_h) = 0 \},
\]
\[
\|v_h\|_{1,\text{dev},h} := \left(\sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|_F^2 + \sum_{F \in \mathcal{F}_h} \frac{1}{h} \| \|v_h\|_F \|_F^2 \right)^{1/2}.
\]

Since \(\|\nabla v_h\|_F^2 \sim \|\text{dev}(\nabla v_h)\|_F^2 + \|\text{div}(v_h)\|_F^2 \) on any \(T \in \mathcal{T}_h \) and for any \(v_h \in V_h \), we have
\[
\|v_h\|_{1,\text{dev},h} \sim \|v_h\|_h \quad \text{for all} \; v_h \in V_h^0.
\] (6.5)

A first step towards proving the LBB condition is the construction of a specific stress function \(\tau_h \) which only depends on \(\text{dev}(\nabla v_h) \) for any \(v_h \in V_h^0 \). Using this \(\tau_h \) we prove an LBB condition for \(b_2 \) on \(V_h^0 \), which is the content of the next lemma. As \(\tau_h \in \Sigma_h \) has a zero trace, we cannot in general control the divergence of a general \(v_h \in V_h \) solely using such a \(\tau_h \). Therefore, to complete the proof of the full inf-sup condition (in the proof of Theorem 6.1 below), we utilize an appropriate pressure test function as well.

Lemma 6.5 For any nonzero \(v_h \in V_h \) there exists a nonzero \(\tau_h \in \Sigma_h \) satisfying \(b_2(\tau_h, v_h) \gtrsim \|v_h\|_{1,\text{dev},h}^2 \) and \(\|\tau_h\|_{\Sigma_h} \lesssim \|v_h\|_{1,\text{dev},h} \); so by (6.5),
\[
\|v_h\|_{V_h} \lesssim \sup_{\tau_h \in \Sigma_h} \frac{b_2(\tau_h, v_h)}{\|\tau_h\|_{\Sigma_h}} \quad \text{for all} \; v_h \in V_h^0.
\]

Proof. Since the ideas are the same for \(d = 2 \) and \(3 \), for ease of exposition, we give the details of the proof only in the \(d = 2 \) case. Because of the decomposition of the degrees of freedom into face and interior degrees of freedom (see (5.10) and (5.11)), we may decompose \(\Sigma_h = \Sigma_h^0 \oplus \Sigma_h^1 \) where \(\Sigma_h^0 = \oplus_{K \in \mathcal{K}_h} \mathcal{Q}_h^0(T) \) and \(\Sigma_h^1 \) is the span of facet shape functions (see also Remark 5.1). In particular, \(\Sigma_h^1 \) contains the lowest order shape function \(S^F \) with the property that \(S^p_{nt} \in n_{\frac{1}{2}} \) and \(\|S^p_{nt}\|_2 = 1 \) on the facet \(F \) and equals \((0, 0) \) on all other facets in \(\mathcal{F}_h \). \(S^F \) can be explicitly written down by mapping (5.15) or by appropriately scaling (5.2)). Given any \(v_h \in V_h^0 \), define
\[
\tau_h^0 := \sum_{T \in \mathcal{T}_h} \sum_{F \in \mathcal{F}_T} -(S^F : \text{dev}(\nabla v_h)) \lambda_F^T S^F, \quad \tau_h^1 := \sum_{F \in \mathcal{F}_h} \frac{1}{h} (\Pi^0_h \|v_h\|_F) S^F,
\] (6.6)
where \(\lambda_F^T \) is the barycentric coordinate of \(T \) that vanishes on \(F \) (thus is \(\lambda_F^T S^F \) is a linear inner \(nt \)-bubble). Below we shall construct a linear combination of these functions to obtain the \(\tau_h \) stated in the lemma.

By (6.1) and (6.2), a scaling argument (like in Lemma 6.1) shows that there is a mesh-independent \(C_1 \) such that
\[
\|\tau_h^0\|_{\Sigma_h}^2 \leq C_1 \sum_{F \in \mathcal{F}_h} \frac{1}{h} \|\Pi^0_h \|v_h\|_F\|_F^2 \leq C_1 \sum_{F \in \mathcal{F}_h} \frac{1}{h} \|\|v_h\|_F\|_F^2 \leq C_1 \sum_{F \in \mathcal{F}_h} \frac{1}{h} \|\|v_h\|_F\|_F^2.
\] (6.7)

A similar scaling argument also shows that
\[
\|\tau_h^0\|_{\Sigma_h}^2 \leq \sum_{T \in \mathcal{T}_h} \|\text{dev}(\nabla v_h)\|_F^2.
\] (6.8)
Let us also note that (6.7) and (6.8) yield

\[\delta \]

Since the functions \(S^f \) form a basis for \(\mathbb{D} \) by Lemma 5.1, a scaling argument shows that

\[b_2(\tau_h^0, v_h) \gtrsim \sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T. \]

(6.9)

Next, set \(\tau = \gamma_0 \tau_h^0 + \gamma_1 \tau_h^1 \) where \(\gamma_0 \) and \(\gamma_1 \) are positive constants to be chosen. Then

\[b_2(\tau, v_h) \gtrsim \gamma_0 \sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T + \gamma_1 b_2(\tau_h^1, v_h) \]

by (6.9)

\[= \gamma_0 \sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T + \gamma_1 \left(\sum_{T \in \mathcal{T}_h} - \int_T \tau_h^1 : \nabla v_h \, dx + \sum_{F \in \mathcal{F}_h} \int_F (\tau_h^1)_{nm} : (v_h)_{mn} \, ds \right) \]

\[= \gamma_0 \sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T - \gamma_1 \sum_{T \in \mathcal{T}_h} \int_T \tau_h^1 : \nabla v_h \, dx + \gamma_1 \sum_{F \in \mathcal{F}_h} \frac{1}{h} \| \Pi_F^0 (v_h) \|^2_F \]

by (6.6).

Applying the Cauchy Schwarz inequality and also Young’s inequality with \(\delta > 0 \) we further have

\[b_2(\tau, v_h) \gtrsim \gamma_0 \sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T - \gamma_1 \| \tau_h^0 \|_{\Sigma_h} \sqrt{\sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T} + \gamma_1 \sum_{F \in \mathcal{F}_h} \frac{1}{h} \| \Pi_F^0 (v_h) \|^2_F \]

\[\gtrsim \left(\gamma_0 - \frac{\gamma_1 \delta}{2} \right) \sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T + \left(1 - \frac{C_1}{2\delta} \right) \frac{\gamma_1}{h} \sum_{F \in \mathcal{F}_h} \| \Pi_F^0 (v_h) \|^2_F, \]

where in the last step we also used (6.7). Choosing \(\delta = C_1, \gamma_1 = 1/\delta = 1/C_1, \) and \(\gamma_0 = 1, \)

\[b_2(\tau, v_h) \gtrsim \sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T + \sum_{F \in \mathcal{F}_h} \frac{1}{h} \| \Pi_F^0 (v_h) \|^2_F. \]

(6.10a)

Let us also note that (6.7) and (6.8) yield

\[\| \tau \|_{\Sigma_h} \lesssim \sum_{T \in \mathcal{T}_h} \| \text{dev}(\nabla v_h) \|^2_T + \sum_{F \in \mathcal{F}_h} \frac{1}{h} \| \Pi_F^0 (v_h) \|^2_F. \]

(6.10b)

The estimates (6.10) and the norm equivalences of (6.5) and Lemma 6.2 complete the proof.

Theorem 6.1 (Discrete LBB-condition) For all \(v_h \in V_h, \)

\[\sup_{(\tau_h, q_h) \in \Sigma_h \times Q_h} \frac{b_1(v_h, q_h) + b_2(\tau_h, v_h)}{\| \tau_h \|_{\Sigma_h} + \| q_h \|_{Q_h}} \geq \| v_h \|_{V_h}. \]

(6.11)

Proof. By Lemma 6.5, for any \(v_h \in V_h, \) there is a \(\tau_h \in \Sigma_h \) satisfying \(b_2(\tau_h, v_h) \gtrsim \| v_h \|_{V_h}^2 \) and \(\| \tau_h \|_{\Sigma_h} \lesssim \| v_h \|_{V_h}. \) Next we choose the pressure variable \(q_h = \text{div}(v_h), \) which is possible due to the specific choice of \(V_h \) and \(Q_h, \) so that \(b_1(v_h, q_h) = \| \text{div}(v_h) \|_{Q_h}^2. \) With these choices of \(\tau_h \) and \(q_h, \) we have

\[\frac{b_1(v_h, q_h) + b_2(\tau_h, v_h)}{\| \tau_h \|_{\Sigma_h} + \| q_h \|_{Q_h}} \geq \frac{\| v_h \|_{V_h}^2}{\| \tau_h \|_{\Sigma_h} + \| q_h \|_{Q_h}} \gtrsim \| v_h \|_{V_h}. \]

□
Remark 6.1 (Residual stabilization alternative) A crucial ingredient in the proof of the LBB condition was the choice made in (6.6). The choice of $\tilde{\tau}^h$ in terms of $(S^F : \text{dev}(\nabla v_h))\lambda^F_i S^F$ was admissible as $\text{dev}(\nabla u_h)$ is a polynomial of degree $k - 1$ and Σ_h contains the element-wise bubbles of degree k in $\mathcal{B}_h(T)$. This choice would not be admissible if we had used bubbles in $\mathcal{B}_{h-1}(T)$ instead of $\mathcal{B}_h(T)$. Therefore, if we replace the stress space by the lower degree space

$$\overline{\Sigma}_h := \{ \tau_h \in \mathbb{P}^{k-1}(\mathcal{T}_h, \mathbb{R}^{d \times d}) : \text{tr}(\tau_h) = 0, \|\{\tau_h\}_{\text{nt}}\| = 0 \},$$

the above proof can no longer be used to conclude stability of the resulting method. Yet, its possible to get a good method (with optimal error convergence results) using $\overline{\Sigma}_h$ by a residual-based stabilization term. Define $c : [L^2(\Omega, \mathbb{R}^{d \times d}) \times V] \times [L^2(\Omega, \mathbb{R}^{d \times d}) \times V] \to \mathbb{R}$ by

$$c((\sigma, u), (\tau, v)) := -\sum_{T \in \mathcal{T}_h} \frac{v}{2} \int_T \left(\frac{1}{\nu} \sigma - \nabla u \right) : \left(\frac{1}{\nu} \tau - \nabla v \right) \, dx.$$

When this form is added to the system (MCS) and Σ_h is replaced by $\overline{\Sigma}_h$, it is possible to prove stability.

Theorem 6.2 (Consistency) The mass conserving mixed stress formulation (MCS) is consistent in the following sense. If the exact solution of the mixed Stokes problem (3.2) is such that $u \in H^1(\Omega, \mathbb{R}^d)$, $\sigma \in H^1(\Omega, \mathbb{R}^{d \times d})$ and $p \in L^2(\Omega, \mathbb{R})$, then

$$a(\sigma, \tau_h) + b_2(\tau_h, u) + b_2(\sigma, v_h) + b_1(v_h, p) + b_1(u, q_h) = (-f, v_h)_\Omega$$

for all $v_h \in V_h$, $q_h \in Q_h$, and $\tau_h \in \Sigma_h$.

Proof. As the exact solutions σ and u are continuous we have $\|\sigma_m\| = 0$ and $\|u_t\| = 0$ on all faces $F \in \mathcal{T}_h$ and thus using representations (4.6) and (4.7) we have

$$b_2(\sigma, v_h) = \sum_{T \in \mathcal{T}_h} \int_T \text{div}(\sigma) \cdot v_h \, dx - \sum_{F \in \mathcal{F}_h} \int_F \|\sigma_m\|_\Omega (v_h)_n \, ds = \sum_{T \in \mathcal{T}_h} \int_T \text{div}(\sigma) \cdot v_h \, dx$$

and

$$b_2(\tau_h, u) = -\sum_{T \in \mathcal{T}_h} \int_T \tau_h : \nabla u \, dx + \sum_{F \in \mathcal{F}_h} \int_F \|\tau_h\|_\Omega \cdot \|u_t\| \, ds = -\sum_{T \in \mathcal{T}_h} \int_T \tau_h : \nabla u \, dx.$$

Using $\text{div}(u) = 0$ we further get that $b_1(u, q_h) = 0$, so all together we have

$$a(\sigma, \tau_h) + b_2(\tau_h, u) + b_2(\sigma, v_h) + b_1(v_h, p) + b_1(u, q_h)$$

$$= \int_\Omega \frac{1}{\nu} \text{dev}(\sigma) : \text{dev}(\tau_h) \, dx - \sum_{T \in \mathcal{T}_h} \int_T \tau_h : \nabla u \, dx + \sum_{F \in \mathcal{F}_h} \int_F \text{div}(\sigma) \cdot v_h \, dx + \int_\Omega \text{div}(v_h)p \, dx.$$

For the exact solution we have $\text{dev}(\sigma) = \nabla u$. Further, as $\text{div}(u) = 0$, a simple calculation shows that $\tau_h : \nabla u = \tau_h : \text{dev}(\nabla u) = \text{dev}(\tau_h) : \nabla u.$ Using integrating by parts for the last integral we conclude

$$a(\sigma, \tau_h) + b_2(\tau_h, u) + b_2(\sigma, v_h) + b_1(v_h, p) + b_1(u, q_h)$$

$$= \int_\Omega \text{div}(\sigma) \cdot v_h \, dx + \int_\Omega \text{div}(v_h)p \, dx = \int_\Omega [\text{div}(\sigma) - \nabla p] \cdot v_h \, dx = \int_\Omega -fv_h \, dx.$$
6.3 Error estimates

Theorem 6.3 (Optimal convergence rates) Let \(u \in H^1(\Omega, \mathbb{R}^d) \cap H^m(\mathcal{B}_h, \mathbb{R}^d) \), \(\sigma \in H^1(\Omega, \mathbb{R}^{d \times d}) \cap H^{m-1}(\mathcal{B}_h, \mathbb{R}^{d \times d}) \) and \(p \in L^2_0(\Omega, \mathbb{R}) \cap H^{m-1}(\mathcal{B}_h, \mathbb{R}) \) be the exact solution of the mixed Stokes problem (3.2). Further let \(\sigma_h, u_h \) and \(p_h \) be the solution of the mass conserving mixed stress formulation (MCS).

For \(s = \min(m - 1, k) \) there holds
\[
\| u - u_h \|_{V_h} + \frac{1}{V} \| \sigma - \sigma_h \|_{\Sigma_h} + \frac{1}{V} \| p - p_h \|_{Q_h} \lesssim h^s \left(\| u \|_{H^{s+1}(\mathcal{B}_h)} + \frac{1}{V} \| \sigma \|_{H^s(\mathcal{B}_h)} + \frac{1}{V} \| p \|_{H^s(\mathcal{B}_h)} \right).
\]

Proof. The proof is based on the discrete stability established above, which we shall use after bounding the error by triangle inequality into interpolation error and a discrete measure of error, as follows:
\[
\| u - u_h \|_{V_h} + \frac{1}{V} \| \sigma - \sigma_h \|_{\Sigma_h} + \frac{1}{V} \| p - p_h \|_{Q_h} \\
\lesssim \| u - I_{V_h} u \|_{V_h} + \frac{1}{V} \| \sigma - I_{\Sigma_h} \sigma \|_{\Sigma_h} + \frac{1}{V} \| p - I_{Q_h} p \|_{Q_h} \\
+ \| I_{V_h} u - u_h \|_{V_h} + \frac{1}{V} \| I_{\Sigma_h} \sigma - \sigma_h \|_{\Sigma_h} + \frac{1}{V} \| I_{Q_h} p - p_h \|_{Q_h}.
\]

Here \(I_{\Sigma_h} \) is the interpolation operator studied in Theorem 5.3, \(I_{V_h} \) is the standard \(H(\text{div}) \)-conforming interpolant – see Brezzi et al. (1985); Raviart & Thomas (1977) – and \(I_{Q_h} \) is the \(L^2 \) projection into \(Q_h \). Note that for \(s = \min(m - 1, k) \) we have the approximation results
\[
\| u - I_{V_h} u \|_{V_h} \lesssim h^s \| u \|_{H^{s+1}(\mathcal{B}_h)} \quad \text{and} \quad \| p - I_{Q_h} p \|_{Q_h} \lesssim h^s \| p \|_{H^s(\mathcal{B}_h)}.
\]

When this is combined with (5.22) of Theorem 5.3, the first three terms on the right hand side \((6.12)\) can be bounded as needed.

To bound the remaining terms of \((6.12)\), we first define the following norm on the product space \(V_h \times \Sigma_h \times Q_h \) given by
\[
\|(u_h, \sigma_h, p_h)\|_\ast := \sqrt{V} \| u_h \|_{V_h} + \frac{1}{\sqrt{V}} \left(\| \sigma_h \|_{\Sigma_h} + \| p_h \|_{Q_h} \right).
\]

Using the Brezzi theorem – see for example in Boffi et al. (2013) – the LBB condition of the bilinear forms \(b_1 \) and \(b_2 \) (Theorem 6.1), the coercivity of \(a \) (Lemma 6.4) and the continuity (Lemma 6.3) imply inf-sup stability of the bilinear form
\[
B(u_h, \sigma_h, p_h; v_h, \tau_h, q_h) := a(\sigma_h, \tau_h) + b_1(u_h, q_h) + b_1(v_h, p_h) + b_2(\sigma_h, v_h) + b_2(\tau_h, u_h),
\]
with respect to the product space norm \(\|(\cdot, \cdot, \cdot)\|_\ast \), i.e.,
\[
\|(I_{V_h} u - u_h, I_{\Sigma_h} \sigma - \sigma_h, I_{Q_h} p - p_h)\|_\ast \leq \sup_{(v_h, \tau_h, q_h) \in V_h \times \Sigma_h \times Q_h} \frac{B(I_{V_h} u - u_h, I_{\Sigma_h} \sigma - \sigma_h, I_{Q_h} p - p_h; v_h, \tau_h, q_h)}{\|(v_h, \tau_h, q_h)\|_\ast}
\]
\[
\leq \sup_{(v_h, \tau_h, q_h) \in V_h \times \Sigma_h \times Q_h} \frac{B(I_{V_h} u - u_h, I_{\Sigma_h} \sigma - \sigma_h, I_{Q_h} p - p_h; v_h, \tau_h, q_h)}{\|(v_h, \tau_h, q_h)\|_\ast},
\]
where we used the consistency result of Theorem 6.2 in the last step.
Next, we estimate the terms that form $B(h^u - u_0, \sigma_p - \sigma, \varphi_0 p - p; v_h, \tau_h, q_h)$. Using the Cauchy
Schwarz inequality,

$$a(I_{\Sigma_n} \sigma - \sigma, \tau_h) + b_1(h^u - u, q_h) + b_1(v_h, I_{\Omega_h} p - p) \leq \frac{1}{\sqrt{V}} \|I_{\Sigma_n} \sigma - \sigma\|_{\Sigma_h} \|\tau_h\|_{\Sigma_h} + \sqrt{V} \|I_{\Omega_h} u - u\|_{\Omega_h} \|q_h\|_{\Omega_h} + \sqrt{V} \|v_h\|_{\Omega_h} \|I_{\Omega_h} p - p\|_{\Omega_h} \leq ||(h^u - u, I_{\Sigma_n} \sigma - \sigma, I_{\Omega_h} p - p)||_*, ||(v_h, \tau_h, q_h)||_*.$$

For the terms including the bilinear form b_2 we also have by the Cauchy Schwarz inequality applied on each element and each facet

$$b_2(I_{\Sigma_n} \sigma - \sigma, v_h) + b_2(\tau_h, h^u - u) \leq \sum_{F \in \mathcal{F}_h} \sqrt{h \|I_{\Sigma_n} \sigma - \sigma\|_{\Sigma_h} F} \frac{1}{\sqrt{h}} \|v_h\|_{F \Sigma_h} + \sum_{T \in \mathcal{F}_h} \|I_{\Sigma_n} \sigma - \sigma\|_{T} \|\nabla v_h\|_{T} + \sum_{F \in \mathcal{F}_h} \sqrt{h \|I_{\Sigma_n} \sigma - \sigma\|_{\Sigma_h} F} \frac{1}{\sqrt{h}} \|(h^u - u)_{n T}\|_{F} + \sum_{T \in \mathcal{F}_h} \|\tau_h\|_{T} \|\nabla(h^u - u)\|_{T}.$$

Scaling with \sqrt{V} and applying the norm equivalence Lemma 6.1 finally yields

$$b_2(I_{\Sigma_n} \sigma - \sigma, v_h) + b_2(\tau_h, h^u - u) \leq \left(\frac{1}{\sqrt{V}} \|I_{\Sigma_n} \sigma - \sigma\|_{\Sigma_h} F + \frac{1}{\sqrt{V}} \sqrt{\sum_{F \in \mathcal{F}_h} h \|I_{\Sigma_n} \sigma - \sigma\|_{\Sigma_h} F^2} + \sqrt{V} \|h^u - u\|_{\Omega_h}\right) \|(v_h, \tau_h, 0)||_*.$$

All together this leads to the estimate

$$||(h^u - u_0, I_{\Sigma_n} \sigma - \sigma_0, I_{\Omega_h} p - p_h)||_* \leq ||(h^u - u, I_{\Sigma_n} \sigma - \sigma, I_{\Omega_h} p - p)||_* + \frac{1}{\sqrt{V}} \sqrt{\sum_{F \in \mathcal{F}_h} h \|I_{\Sigma_n} \sigma - \sigma\|_{\Sigma_h} F^2}.$$

Again, with (6.13) and (5.22) we conclude the proof. \hfill \Box

6.4 Pressure robustness

We define the continuous Helmholtz projector P as the rotational part of a Helmholtz decomposition (see Girault & Raviart (2012)) of a given load f

$$f = \nabla \theta + \xi =: \nabla \theta + P(f),$$

with $\theta \in H^1(\Omega)/\mathbb{R}$ and $\xi =: P(f) \in \{v \in H_0(\text{div}, \Omega) : \text{div}(v) = 0\}$. Testing the second line of (3.8) with an arbitrary divergence free testfunction $v \in \{v \in H_0(\text{div}, \Omega) : \text{div}(v) = 0\}$, we see that

$$\langle \text{div} \sigma, v \rangle_{H_0(\text{div}, \Omega)} = - \langle P(f), v \rangle_{H_0(\text{div}, \Omega)};$$

hence $\sigma = v \nabla u$ is steered only by a part of f, namely $P(f)$. If the right hand side is perturbed by a gradient field $\nabla \alpha$, then σ and u should not change as $P(f + \nabla \alpha) = P(f)$. In the work by Linke (2014) this relation was discussed in a discrete setting. If a discrete method fulfills this property, it is called...
pressure robust because one can then deduce an H^1-velocity error that is independent of the pressure. The convergence estimate of Theorem 6.3 includes the scaled term $1/\nu \|p\|_{H^1(\mathcal{T}_h)}$ which blows up as $\nu \to 0$. However, the mass conserving mixed stress formulation (MCS) is pressure robust, allowing us to conclude that velocity errors do not blow up as $\nu \to 0$ by virtue of the next theorem.

THEOREM 6.4 (Pressure robustness) Let $u \in H^1(\Omega, \mathbb{R}^d) \cap H^m(\mathcal{T}_h, \mathbb{R}^d)$ and let $\sigma \in H^1(\Omega, \mathbb{R}^{d\times d}) \cap H^{m-1}(\mathcal{T}_h, \mathbb{R}^{d\times d})$ be the exact solution of the mixed Stokes problem (3.2). Further let σ_h, u_h be the solution of the mass conserving mixed stress formulation (MCS). For $s = \min(m - 1, k)$ there holds

$$\|u - u_h\|_{\Sigma_h} + \frac{1}{\nu} \|\sigma - \sigma_h\|_{\Sigma_h} \lesssim h^s \|u\|_{H^{s+1}(\mathcal{T}_h)}.$$

Proof. The proof follows along the lines of the proof of Theorem 6.3. Using the triangle inequality,

$$\|u - u_h\|_{\Sigma_h} + \frac{1}{\nu} \|\sigma - \sigma_h\|_{\Sigma_h} \lesssim \|u - I_{h} u\|_{\Sigma_h} + \frac{1}{\nu} \|\sigma - I_{\Sigma_h} \sigma\|_{\Sigma_h} + \|I_{h} u - u_h\|_{\Sigma_h} + \frac{1}{\nu} \|I_{\Sigma_h} \sigma - \sigma_h\|_{\Sigma_h}.$$

The first two terms can be estimated using the approximation results (6.13) and (5.22). Next note that from the LBB condition of Lemma 6.5 on V^0_h and the trivial coercivity inequality $a(\sigma_h, \sigma_h) \geq (1/\nu) \|\sigma_h\|_{\Sigma_h}^2$ for all $\sigma_h \in \Sigma_h$, we conclude inf-sup stability of the bilinear form $B(u_h, \sigma_h; v_h, \tau_h, 0)$ with respect to the product space norm $\|(\cdot, \cdot)\|_*$ on the subspace $V^0_h \times \Sigma_h \times \{0\}$, i.e.,

$$\|I_{h} u - u_h\|_{\Sigma_h} + \frac{1}{\nu} \|I_{\Sigma_h} \sigma - \sigma_h\|_{\Sigma_h} = \frac{1}{\sqrt{\nu}} \|(I_{h} u - u_h, I_{\Sigma_h} \sigma - \sigma_h, 0)\|_* \leq \sup_{(v_h, \tau_h) \in V^0_h \times \Sigma_h} \frac{B(I_{h} u - u_h, I_{\Sigma_h} \sigma - \sigma_h; v_h, \tau_h, 0)}{\sqrt{\nu} \|(v_h, \tau_h, 0)\|_*}.$$

Note that the form is continuous by Lemma 6.3. By steps similar to those in the proof of the consistency result of Theorem 6.2 we have

$$B(u, \sigma, 0; v_h, \tau_h, 0) = \int_\Omega \text{div}(\sigma) \cdot v_h = \int_\Omega -f \cdot v_h + \int_\Omega \nabla p \cdot v_h = \int_\Omega -f \cdot v_h$$

for all $v_h, \tau_h \in V^0_h \times \Sigma_h$, where we used $\text{div}(\sigma) = -f + \nabla p$ and integration by parts for ∇p. This shows that the method is also consistent on the subspace of divergence-free velocity test functions, a key ingredient to obtain pressure robustness. We now have

$$\sup_{(v_h, \tau_h) \in V^0_h \times \Sigma_h} \frac{B(I_{h} u - u_h, I_{\Sigma_h} \sigma - \sigma_h; v_h, \tau_h, 0)}{\sqrt{\nu} \|(v_h, \tau_h, 0)\|_*} = \sup_{(v_h, \tau_h, q_h) \in V^0_h \times \Sigma_h} \frac{B(I_{h} u - u_h, I_{\Sigma_h} \sigma - \sigma_h; v_h, \tau_h, 0)}{\sqrt{\nu} \|(v_h, \tau_h, q_h)\|_*}.$$

The rest of the proof follows along the previous lines using the identity $\sigma = \nu \nabla u$ and we obtain

$$\|u - u_h\|_{\Sigma_h} + \frac{1}{\nu} \|\sigma - \sigma_h\|_{\Sigma_h} \lesssim h^s \|u\|_{H^{s+1}(\mathcal{T}_h)} + \frac{1}{\nu} \|\sigma\|_{H^1(\mathcal{T}_h)} \lesssim h^s \|u\|_{H^{s+1}(\mathcal{T}_h)}. \quad \square$$
7. Numerical examples

In the following we present a numerical example to validate the results of Section 6. All numerical examples were implemented within the finite element library NGSolve/Netgen, see Schöberl (1997, 2014). Let \(\Omega = [0, 1]^d \) and choose the right hand side \(f = - \text{div}(\sigma) + \nabla p \) with the exact solution given by

\[
\sigma = \nu \nabla \text{curl}(\psi_2), \quad \text{and} \quad p := x^5 + y^5 - \frac{1}{3} \quad \text{for } d = 2
\]

\[
\sigma = \nu \nabla \text{curl}(\psi_3), \quad \text{and} \quad p := x^5 + y^5 + z^5 - \frac{1}{2} \quad \text{for } d = 3,
\]

where \(\psi_2 := x^2(x - 1)^2y(y - 1)^2 \) and \(\psi_3 := x^2(x - 1)^2y^2(y - 1)^2z^2(z - 1)^2 \) defines velocity through a vector and scalar potential in two and three dimensions respectively. In Figure 2 different errors are plotted for varying polynomial orders \(k = 2, 3, 4, 5 \) in the two dimensional case with a fixed viscosity \(\nu = 10^{-3} \). As predicted by Theorem 6.3, the \(H^1 \)-seminorm error of the velocity, the \(L^2 \)-norm error of the stress and the \(L^2 \)-norm error of the pressure have the same optimal convergence rate.

The \(L^2 \)-norm of the velocity error converges at one higher order as shown in the bottom right plot of Figure 2. This can be explained by the standard Aubin-Nitsche duality argument, by which we can prove

\[
||u - u_h||_{L^2(\Omega)} \lesssim h^{k+1}||u||_{H^{k+1}(\bar{\Omega})}
\]

whenever the problem admits full elliptic regularity and the exact solution \(u \) is smoother. This argument works in both two and three dimensions. The higher observed rate of convergence in three dimensions (for \(\nu = 10^{-3} \)), given by the estimated order of convergence (eoc), can be seen in Table 1.

Next, we study pressure robustness. The above-mentioned right hand side \(f \) consists of an irrotational part (the gradient of the pressure) and a part with curl. We study how the velocity error (in \(H^1 \) seminorm) varies as \(\nu \to 0 \) for the presented MCS method and the standard Taylor-Hood method – see e.g., F. Brezzi (1991) and Girault & Raviart (2012) – using the same polynomial approximation order for the velocity in the two dimensional case. We observe in Figure 3 that the error of the Taylor-Hood method increases as \(\nu \to 0 \) and behaves as if it were scaled by a factor \(1/\nu \) for small values of \(\nu \). This is the locking phenomenon we discussed earlier: clearly the Taylor-Hood method is not pressure robust (and does not provide exactly divergence-free numerical velocity). In contrast, the velocity errors in the MCS method (also in Figure 3) appear to be not influenced by varying values of \(\nu \). This behaviour is observed for several polynomial orders \(k = 2, 3, 4 \). These observations match the predictions of Theorem 6.4.

We conclude with a few remarks on the cost of solving the discrete system (MCS). After an element wise static condensation step there are two different types of degrees of freedom (dofs) that couple at element interfaces. These coupling dofs determine the costs for the factorization step of the assembled matrix. In the \(d = 2 \) case, the normal continuity of the \(H(\text{div}) \)-conforming velocity space demands \(k + 1 \) dofs per interface, while the normal-tangential continuity of the stress space \(\Sigma_h \) requires \(k \) dofs, i.e., we have \(2k + 1 \) dofs per interface. This is comparable to the number of interface degrees of freedom for standard methods. In fact, it is identical to the number of dofs per interface of an advanced method (with a reduced stabilization called “projected jumps”) presented in the recent work of Lehrenfeld & Schöberl (2016). Similar cost comparison observations apply for the \(d = 3 \) case.
Fig. 2. Convergence plots for the two dimensional case with a fixed viscosity $\nu = 10^{-3}$.

Acknowledgements

Philip L. Lederer has been funded by the Austrian Science Fund (FWF) through the research programme “Taming complexity in partial differential systems” (F65) - project “Automated discretization in multiphysics” (P10). Part of this work was completed while two of the authors were at “BCAM – Basque Center for Applied Mathematics.” We gratefully acknowledge the hospitality of BCAM and its funding through “MINECO: BCAM Severo Ochoa excellence accreditation SEV-2013-0323.”

References

ABRAMOWITZ, M. (1974) Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables. Dover Publications, Incorporated.

ANDREWS, G., ASKEY, R. & ROY, R. (1999) Special Functions. Encyclopedia of Mathematics and
its Applications. Cambridge University Press.

Boffi, D., Brezzi, F. & Fortin, M. (2013) *Mixed Finite Element Methods and Applications.* Springer Science & Business Media.

Braess, D. (2013) *Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie.* Springer.

Brennecke, C., Linke, A., Merdon, C. & Schöberl, J. (2015) Optimal and pressure-independent L^2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions. *J. Comput. Math.*, 33, 191–208.

Brezzi, F., Douglas Jr., J. & Marini, L. D. (1985) Two families of mixed finite elements for second order elliptic problems. *Numerische Mathematik,* 47, 217–235.

Ciarlet, P. (2002) *The Finite Element Method for Elliptic Problems.* Classics in Applied Mathematics. Society for Industrial and Applied Mathematics.

Cockburn, B., Kanschat, G. & Schötzau, D. (2005) A locally conservative LDG method for the incompressible Navier-Stokes equations. *Mathematics of Computation,* 74, 1067–1095.

Cockburn, B., Kanschat, G. & Schötzau, D. (2007) A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. *Journal of Scientific Computing,* 31, 61–73.

Demlow, A. & Hirani, A. N. (2014) A posteriori error estimates for finite element exterior calculus: the de Rham complex. *Found. Comput. Math.,* 14, 1337–1371.
Fig. 3. The H^1-seminorm error for the MCS method and a Taylor-Hood approximation for $k = 2, 3, 4$ and varying viscosity ν.

REFERENCES

Dubiner, M. (1991) Spectral methods on triangles and other domains. *Journal of Scientific Computing*, 6, 345–390.

Ern, A. & Guermond, J.-L. (2004) *Theory and Practice of Finite Elements*. Applied Mathematical Sciences 159, 1 edn. Springer-Verlag New York.

F. Brezzi, R. S. F. (1991) Stability of higher-order Hood-Taylor method. *SIAM J. Numer. Anal.*, 28.

Farhloul, M. (Fall 1995) Mixed and nonconforming finite element methods for the stokes problem. *Canadian Applied Mathematics Quarterly*, 3.

Farhloul, M. & Fortin, M. (1993) A new mixed finite element for the Stokes and elasticity problems. *SIAM J. Numer. Anal.*, 30, 971–990.

Farhloul, M. & Fortin, M. (1997) Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. *Numer. Math.*, 76, 419–440.

Farhloul, M. & Fortin, M. (2002) Review and complements on mixed-hybrid finite element methods for fluid flows. *Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000)*, vol. 140., pp. 301–313.

Girault, V. & Raviart, P.-A. (2012) *Finite element methods for Navier-Stokes equations: theory and algorithms*, vol. 5. Springer Science & Business Media.

John, V., Linke, A., Merdon, C., Neilan, M. & Rebholz, L. (2016) On the divergence constraint in mixed finite element methods for incompressible flows. *SIAM Review*, **accepted**.

Karniadakis, G. & Sherwin, S. (2013) *Spectral/hp element methods for computational fluid dynamics*. Oxford University Press.

Könnö, J. & Stenberg, R. (2012) Numerical computations with H(div)-finite elements for the Brinkman problem. *Computational Geosciences*, 16, 139–158.
REFERENCES

LEDERRER, P. L., LINKE, A., MERDON, C. & SCHÖBERL, J. (2017a) Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements. *SIAM J. Numer. Anal.*, **55**, 1291–1314.

LEDERRER, P. L., LEHRENFELD, C. & SCHÖBERL, J. (2017b) Hybrid Discontinuous Galerkin methods with relaxed $H(\text{div})$-conformity for incompressible flows. Part I. to appear in *SIAM journal on numerical analysis* (preprint arXiv:1707.02782).

LEDERRER, P. L., LEHRENFELD, C. & SCHÖBERL, J. (2018) Hybrid Discontinuous Galerkin methods with relaxed $H(\text{div})$-conformity for incompressible flows. Part II. arXiv preprint arXiv:1805.06787.

LEDERRER, P. L. & SCHÖBERL, J. (2017) Polynomial robust stability analysis for $H(\text{div})$-conforming finite elements for the Stokes equations. *IMA Journal of Numerical Analysis*, drx051.

LEHRENFELD, C. & SCHÖBERL, J. (2016) High order exactly divergence-free hybrid discontinuous galerkin methods for unsteady incompressible flows. *Computer Methods in Applied Mechanics and Engineering*, **307**, 339 – 361.

LINKE, A. (2012) A divergence-free velocity reconstruction for incompressible flows. *C. R. Math. Acad. Sci. Paris*, **350**, 837–840.

LINKE, A. (2014) On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. *Computer Methods in Applied Mechanics and Engineering*, **268**, 782–800.

LINKE, A., MATTHIES, G. & TOBIASKA, L. (2016) Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors. *ESAIM: M2AN*, **50**, 289–309.

PECHSTEIN, A. S. & SCHÖBERL, J. (2011) Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. *Math. Models Methods Appl. Sci.*, **21**, 1761–1782.

PECHSTEIN, A. S. & SCHÖBERL, J. (2017) The TDNNS method for Reissner-Mindlin plates. *Numer. Math.*, **137**, 713–740.

RAVIART, P.-A. & THOMAS, J. M. (1977) A mixed finite element method for 2nd order elliptic problems. *Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975)*. Berlin: Springer, pp. 292–315. Lecture Notes in Math., Vol. 606.

SCHÖBERL, J. (1997) NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. *Computing and Visualization in Science*, **1**, 41–52.

SCHÖBERL, J. (2014) C++11 Implementation of Finite Elements in NGSolve. *Institute for Analysis and Scientific Computing, Vienna University of Technology.*

SINWEL, A. S. (2009) A New Family of Mixed Finite Elements for Elasticity. *Ph.D. thesis*, JKU Linz.

ZAGLMAYR, S. (2006) High order finite element methods for electromagnetic field computation. *Ph.D. thesis*, JKU Linz.