Ruthenium-Mediated 18F-Fluorination and Preclinical Evaluation of a New CB1 Receptor Imaging Agent [18F]FPATPP

Salla Lahdenpohja, Noora A. Rajala, Jatta S. Helin, Merja Haaparanta-Solin, Olof Solin, Francisco R. López-Picón, and Anna K. Kirjavainen*

ABSTRACT: Cannabinoid receptor 1 (CB1R) controls various physiological and pathological conditions, including memory, motivation, and inflammation, and is thus an interesting target for positron emission tomography (PET). Herein, we report a ruthenium-mediated radiolabeling synthesis and preclinical evaluation of a new CB1R specific radiotracer, [18F]FPATPP. [18F]FPATPP was produced with 16.7 ± 5.7% decay-corrected radiochemical yield and >95 GBq/μmol molar activity. The tracer showed high stability, low defluorination, and high specific binding to CB1Rs in mouse brain.

KEYWORDS: Positron emission tomography, radiofluorination, fluorine-18, cannabinoid receptor, CB1R, FPATPP

INTRODUCTION

Cannabinoid receptors, part of the endocannabinoid system, are expressed throughout the nervous system. Cannabinoid receptors are divided into two classes, cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R). CB1R is a seven transmembrane domain G protein-coupled receptor (GPCR) and is one of the most abundant GPCRs in the brain.1,2 In the brain, CB1Rs are localized, e.g., in cerebral cortex, especially allocortex, basal ganglia and globus pallidus, substantia nigra, cerebellum, and medulla. Among vertebrate species, CB1Rs are highly conserved.3,4 Until recently, unlike CB1Rs, the expression of CB2R in the CNS was thought to be very low.1,5 However, recent studies have demonstrated the expression of the CB2A isoform in the brain. These receptors can be upregulated under pathological conditions.5,6 In the periphery and the brain, CB1Rs are mainly found in presynaptic neurons where they inhibit release of neurotransmitters, e.g., γ-aminobutyric acid (GABA) and glutamate.1,2 Activation of CB1Rs leads to activation of various signal transduction pathways, such as adenylyl cyclase regulation and ion channel regulation.1 CB1Rs control various physiological and pathological conditions such as brain development, memory and learning, appetite, motivation, sensation of pain, and inflammation. This result is in agreement with the high CB1R concentration found in the sensory, cognition, and motor regions in the brain.5 Alterations in the endocannabinoid system and CB1R expression can be caused by various neuropsychiatric and neurodegenerative conditions,7 e.g., Alzheimer’s disease (AD) impairs the CB1R activity.8

Positron emission tomography (PET) has been utilized to monitor CB1R expression in humans. Until this point, a few CB1R specific 11C- or 18F-labeled radioligands have been developed, such as (3R,5R)-5-(3-[11C]methoxyphenyl)-3-[(R)-1-phenylethylamino]-1-(4-trifluoromethylphenyl) ([(11C]-MePPEP, [(11C]1), (3R,SR)-5-(3-((18F)fluoromethoxy)phenyl)-3-((R)-1-phenylethyl)amino]-1-(4-(trifluoromethyl)-phenyl)pyrroloidin-2-one ([(18F]FMPEP-d2, [(18F]2),10 and N-((1S,2S)-2-(3-cyanophenyl)-3-[4-(2-[(18F)fluoroethoxy]phenyl)-1-methylpropyl]-2-methyl-2-[(5-methylpyridin-2-yl)oxy]propanamide ([(18F]MK-9470, [(18F]3, Figure 1).11,12

Fluorine-18 is an attractive radionuclide for PET applications due to its physical properties. Its relatively long half-life (109.8 min) enables even demanding synthesis and imaging protocols. The low positron energy (maximum β+ energy 635 keV) allows for high resolution imaging. In addition, aqueous [(18F]fluoride can be easily accessed with a cyclotron. However, the use of [(18F]fluoride in traditional nucleophilic labeling reactions, especially in the labeling of electron-rich structures, can be challenging. Late-stage [(9F]-fluorination of arenes and heteroarenes with [(18F]fluoride has been widely studied, and various synthesis methods with various labeling precursors have been developed.13−17 Metal-free approaches to 18F-
fluorination utilize arylidonium salts,18 arylsulphonium salts,19 and iodonium ylides20 as precursors. Metal-mediated 18F-fluorination utilizes complex Pd and Ni compounds as labeling precursors in the Pd-21 and Ni-mediated22 labeling processes, respectively. In Cu-mediated 18F-fluorination, arylboronic esters,23 arylboronic acids,24 and arylstannanes25 have been used as labeling precursors. Cu-mediated 18F-labeling has gained wide popularity due to the straightforward synthesis, relatively easy access to precursor materials, and wide substrate scope. However, Cu-mediated labeling of compounds containing unprotected alcohols or amines can lead to undesired side reactions. Recently, a Ru-mediated 18F-deoxyfluorination via an in situ prepared η5-coordinated ruthenium–phenol complex was introduced.26 Ruthenium has been successfully applied in the 18F-fluorination of small molecules containing electron-rich structures, including unprotected amines and heterocyclic scaffolds,27 and in the site-specific 18F-labeling of small peptides.28 18F-Deoxyfluorination is an appealing method due to the use of easily accessible phenols as starting materials.

Recently, [18F]FMPEP-\(\text{d}_2 \) has been widely used in CB1R PET studies, e.g., for imaging in schizophrenia and changes in CB1Rs in first-episode psychosis,29 to study differences in brain CB1Rs between the sexes,29 in brown adipose tissue,29 and in AD.30 An advantage of [18F]FMPEP-\(\text{d}_2 \) is its high selectivity toward CB1Rs over CB2Rs, especially in regard to decomposition.10,32 In this study, our objective was to utilize the ruthenium-mediated radiofluorination pathway to produce a stable CB1R specific tracer \(\left(\text{R}, \text{S} \right) \)-5-(3-(18F)fluorophenyl)-3-\(\text{O}-(\text{R})\text{-1-phenylethyl})\text{-}amino\)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one ([18F]FPATPP, [18F]4, Figure 1), an analogue of [18F]FMPEP-\(\text{d}_2 \), and to evaluate its usefulness for imaging in vivo and ex vivo with wild-type mice.

RESULTS AND DISCUSSION

Chemistry. We developed a simple route to produce a nonradioactive reference standard 4 for [18F]4, following the original precursor synthesis,30 as presented in Scheme 1. Briefly, compound 5 was produced from ethyl pyruvate, 4-amino benzo trifluoride, and 3-methoxybenzaldehyde in acetic acid with 45% yield. Acid-catalyzed hydrolysis of 5 with hydrochloric acid and glacial acetic acid yielded compound 6.

Radiochemistry. We adapted a ruthenium-mediated labeling method26 to produce [18F]4 starting from the phenol precursor 8, CpRu(COD)Cl complex, and no-carrier added [18F]fluoride (Figure 2A). In situ prepared ruthenium–phenol complex was used for the 18F-radiofluorination reaction. The effect of the activation method for aqueous [18F]fluoride on radiochemical yield (RCY) was studied by using solid-phase extraction (SPE) (bars 1–2, Figure 2B) and traditional azeotropic distillation (bar 4, Figure 2B). With the SPE method, the reaction temperature was varied from 100 to 130 °C (bar 1, Figure 2B) and further to 160 °C (bar 2, Figure 2B) with 10, 20, and 30 min reaction times. With the azeotropic distillation method, the reaction was conducted at 160 °C for 10–30 min (bar 4, Figure 2B). To study the effect of the base (potassium carbonate), we activated [18F]fluoride with the SPE method, added potassium carbonate to the reaction mixture, and followed the reaction for 30 min at 160 °C (bar 3, Figure 2B).

In the SPE method, the ruthenium–phenol complex was used for the [18F]fluoride elution from the anion exchange cartridge with 93 ± 5% elution efficiency (n = 12). Using 100 °C reaction temperature, no reaction occurred even after 30 min. Elevation of the temperature from 100 to 130 °C afforded a RCY (based on HPLC analysis of the crude product) of 20.9 ± 0.3% (n = 3) after 30 min reaction (bar 1, Figure 2B). Further elevation of the temperature to 160 °C provided 47.4 ± 3.5% (n = 3) RCY (based on HPLC analysis of the crude product) after 30 min reaction (bar 2, Figure 2B).

The reaction occurred faster when [18F]fluoride was activated via azeotropic distillation compared to the activation with the SPE method. With azeotropic distillation activation of...
Improved the RCY by 3.5% after a 30 min reaction time. Thus, the addition of a base was studied up to 5 h after the EOS, and no significant decomposition was observed (n = 2).

For PET applications, late-stage fluorination approaches are highly desirable to minimize the radiosynthesis time and to avoid the multiple purification processes often needed in multistep radiosyntheses. Ruthenium-mediated 18F-fluorination starting from a phenol precursor is a facile labeling method with reasonable synthesis time and good RCY. The present optimized reaction conditions, 30 min at 160 °C, were even harsher than typical reaction conditions of traditional nucleophilic 18F-fluorination. However, the good RCY and robustness of the present conditions (bar 3, Figure 2B), demonstrated by the low SD, are advantageous. For potential clinical applications, the ruthenium content in the formulated preparation must be considered. The maximum parenteral daily exposure of ruthenium according to ICH Q3D(R1) is limited to 10 μg/day. 53. In this material, the ruthenium content is rather high, limiting the administrable volume of [18F]4.

Stability of [18F]4 was studied up to 5 h after the EOS, and no significant decomposition was observed (n = 2).

For PET applications, late-stage fluorination approaches are highly desirable to minimize the radiosynthesis time and to avoid the multiple purification processes often needed in multistep radiosyntheses. Ruthenium-mediated 18F-fluorination starting from a phenol precursor is a facile labeling method with reasonable synthesis time and good RCY. The present optimized reaction conditions, 30 min at 160 °C, were even harsher than typical reaction conditions of traditional nucleophilic 18F-fluorination. However, the good RCY and robustness of the present conditions (bar 3, Figure 2B), demonstrated by the low SD, are advantageous. For potential clinical applications, the ruthenium content in the formulated preparation must be considered. The maximum parenteral daily exposure of ruthenium according to ICH Q3D(R1) is limited to 10 μg/day. 53. In this material, the ruthenium content is rather high, limiting the administrable volume of [18F]4.

Thus, the purification process needs to be refined in order to reduce the ruthenium content before clinical tracer production can be conducted via ruthenium-mediated 18F-labeling.

For PET tracers for clinical use, a generally acknowledged limit for RCP is 95%. A significant difference was found in the RCP at EOS and stability of [18F]4 compared to [18F]FMPEP-d₄. Lahdenpohja et al. reported that the RCP of [18F]FMPEP-d₄ at EOS varied between 95.5 ± 100% and was a function of radioactivity concentration, which was 20–200 MBq/mL (n > 150) in a 10% ethanol solution, and the RCP was declined as a function of time due to radiolytic decomposition. 32 The shelf life of the [18F]FMPEP-d₄ was determined to be 120 min. 32 For [18F]4 formulated in a similar ethanol solution, the RCP at EOS was 99.9% when the RAC was 200–450 MBq/mL and the shelf life was determined to be at least 300 min, with no significant development of radioactive impurities. This difference in stability toward radiolysis is an advantage of [18F]4 as compared to [18F]FMPEP-d₄.

Animal Studies. The animal studies were divided into five sections; in vivo 120 min dynamic PET/computed tomography (CT) studies, ex vivo digital autoradiography of brain at 120 min, ex vivo biodistribution at 30, 60, and 120 min, and radiometabolite analysis at 30, 60, and 120 min. The fifth separate section was an ex vivo biodistribution study with [18F]FMPEP-d₄. The potency and receptor selectivity of [18F]4 was not determined separately. However, blocking studies using the selective CB1R antagonist rimonabant (SR141716) were conducted for both in vivo PET and ex vivo autoradiography and biodistribution. Rimonabant is highly specific for CB1Rs in the CNS (Ki 1.98 nM), and its selectivity for CB1Rs over CB2Rs is more than 1000 fold. 53 Rimonabant is thus suitable to demonstrate the specificity of the tracer to CB1Rs.

In Vivo PET Imaging. In vivo evaluation was performed for [18F]4 with wild-type mice with (n = 3, 1 female) and without blocking (n = 3, 1 female). The [18F]4 tracer uptake reached its maximum 30 min after the injection. This observation is comparable to a mice study by Takkinen et al. with [18F]FMPEP-d₄ which similarly reached its tracer uptake maximum at 30 min. 31 In a rat study by Casteels et al. with [18F]MK-9470, the tracer uptake was considerably slower, reaching its maximum at 300 min post injection (p.i.). 11 The peak standardized uptake values (SUVs) of [18F]4 were 1.92 for the whole brain, 1.80 for the neocortex, and 2.14 for the hippocampus (Figure 3A–D). This outcome is somewhat
higher than with $^{[18F]}$FMPEP-d_2, where the whole brain SUV was 1.5, and noticeably higher than with $^{[18F]}$MK-9470, where the whole brain SUVs were 0.6–1.6 in rats. For $^{[18F]}$4, the washout phase began immediately after the peak uptake, declining to a SUV of 1.3 at 120 min p.i. For $^{[18F]}$FMPEP-d_2, essentially no washout was observed up to 90 min p.i. in the study by Takkinen et al. For $^{[18F]}$MK-9470, no washout was observed even after 600 min in the study with rats by Casteels et al. Human studies using $^{[18F]}$FMPEP-d_2 demonstrated slow washout, and with $^{[18F]}$MK-9470, no washout was observed even after 6 h. Overall, the uptake behavior and the kinetics suggest that $^{[18F]}$4 might show superior characteristics in clinical imaging compared to $^{[18F]}$FMPEP-d_2 and $^{[18F]}$MK-9470.

The pretreatment with 2 mg/kg rimonabant reduced the binding of $^{[18F]}$4 120 min after injection by 58, 59, and 62% for the whole brain, neocortex, and hippocampus, respectively (Figure 3A–D), when the injected amount of $^{[18F]}$4 was 1.7 ± 0.7 μg/kg ($n = 6$). The moderate dose of rimonabant blocked a large percentage of the binding of $^{[18F]}$4 in specific murine CB1R-rich areas, such as the neocortex and hippocampus, and avoided CB1R poor areas, such as the thalamus.

Ex Vivo Autoradiography. In addition to the in vivo PET studies, we performed ex vivo brain autoradiographic studies 120 min after $^{[18F]}$4 injection to examine smaller brain areas in more detail. Figure 4A shows specific $^{[18F]}$4 binding in CB1R-rich areas, like striatum, globus pallidus, hippocampus, cortex, and cerebellar gray matter. The binding of $^{[18F]}$4 even allowed us to distinguish different hippocampal and cortical layers and the cerebellar gray matter with similar resolution to the in vitro studies in mice using the CB1R agonist $^{[3H]}$CP55,940-37,38 or showing similar hippocampal distribution to that observed in CB1R immunohistochemical studies. Previous autoradiography studies in mice with the PET radioligand $^{[18F]}$FMPEP-d_2 did not discriminate the cortical and hippocampal layering with as high a resolution.

The blocking of $^{[18F]}$4 with rimonabant was also evident in the autoradiographic images (Figure 4A). In addition, we quantified the binding of $^{[18F]}$4 in the different CB1R-rich regions using the thalamus as a reference region given the very low level of CB1Rs in that brain region in mice (Figure 4B). The ratios with respect to the thalamus were 2.3 for the parietotemporal cortex, 2.8 for the striatum, 2.5 for the frontal cortex, 2.6 for the whole hippocampus, 3.7 for the cortex and cerebellar gray matter, and 4.9 for the globus pallidus. The region-to-thalamus ratios in the mice pretreated with rimonabant were close to 1, indicating complete displacement of speciﬁc tracer binding. The P values were less than 0.001 for all analyzed regions.

Biodistribution. We evaluated $^{[18F]}$4 biodistribution at 30, 60, and 120 min p.i. (Figure 5A). We observed high 18Fradioactivity binding in the whole brain, cortex, and liver. The whole brain uptake was $9.8 ± 3.2$% of the injected dose per gram of tissue (%ID/g), the cortex uptake was $11.5 ± 3.7$%ID/g, and the liver uptake was $12.1 ± 0.7$%ID/g at 30 min p.i. Radioactivity washout was moderate; hence, the measured whole brain uptake was $4.9 ± 0.9$%ID/g, the cortex uptake was $5.1 ± 1.7$%ID/g, and the liver uptake was $8.2 ± 1.6$%ID/g at 120 min p.i. Bone uptake at 120 min p.i. was insignificant ($0.4 ± 0.1$%ID/g), indicating a low deﬂuorination and subsequent bone accumulation. In the rimonabant treated mice, the cortex uptake at 120 min p.i. was $1.8 ± 0.2$%ID/g.

In a separate study, we investigated the ex vivo biodistribution of $^{[18F]}$FMPEP-d_2 in healthy mice (Figure 5B). It is worth noting that $^{[18F]}$FMPEP-d_2 had lower 18F-
radioactivity uptake, 5.6 ± 1.3%ID/g, in the whole brain at 30 min p.i. than with [18F]4. In addition, skull bone (parietal bone) radioactivity uptake showed a great difference; with [18F]FMPEP-d2, uptake was as high as 2.7 ± 0.5%ID/g at 120 min p.i. as compared to 0.4 ± 0.1%ID/g with [18F]4. Defluorination of [18F]FMPEP-d2 at 120 min was over 6-fold compared to [18F]4. In human studies, [18F]FMPEP-d2 defluorination has been low.35 However, defluorination can lead to a high skull bone uptake and thus may obscure the imaging of close by structures due to the spillover effect. This result indicates that the 18F-label located on the aromatic ring in [18F]4 is more stable against defluorination than the 18F-label located in the [18F]fluoromethoxy tail in [18F]FMPEP-d2.

Metabolite Analysis. [18F]4 was metabolized slowly. In the plasma and cortex samples collected at 120 min p.i. (n = 5), two polar radioactive metabolites in plasma and one in cortex were observed. The amount of residual [18F]4 in plasma was approximately 21.3 ± 3.5% of the total 18F-radioactivity at 120 min p.i. The amount of residual [18F]4 in the cortex at 120 min p.i. was 75.0 ± 4.3% (Figure 6). The amount of residual [18F]FMPEP-d2 has been shown to be 86% at 180 min p.i., which is somewhat higher than the value obtained with [18F]4.31 However, the higher brain uptake of [18F]4 and much lower formation of [18F]fluoride as compared to [18F]FMPEP-d2 will presumably be an advantage for imaging.

Figure 4. (A) Representative ex vivo brain autoradiography images of [18F]4 binding 120 min post injection in a nontreated mouse and a mouse pretreated with rimonabant to block the [18F]4 binding. (B) Ratios of the parietotemporal cortex (Ptc), striatum (Str), frontal cortex (Fc), hippocampus (Hippo), cortex, cerebellar gray matter (CB), and globus pallidus (Gp, n = 3, 1 female) to the thalamus (Tha) without blocking (n = 8, 1 female) and with blocking (Bl. n = 3, 1 female). ***P < 0.001, statistical analyses were performed with the Mann–Whitney U test.

Figure 5. Ex vivo biodistribution of (A) [18F]4 (30 min n = 4, 60 min n = 2, 120 min n = 8, 1 female) and (B) [18F]FMPEP-d2 (30 min n = 3, 60 min n = 4, 120 min n = 12, 5 females). Data are presented as injected dose per gram of tissue (%ID/g) and expressed as mean ± SD. *P < 0.05, **P < 0.005, statistical analyses were performed with the Mann–Whitney U test.

Figure 6. Amount of the [18F]4 of the total 18F-radioactivity in plasma and cortex. The radiometabolites were analyzed at 30 min (n = 4), 60 min (n = 2), and 120 min (n = 5) post injection. A double exponential decay equation has been used for the fitting of the curves.

2013 https://dx.doi.org/10.1021/acschemneuro.0c00313 ACS Chem. Neurosci. 2020, 11, 2009–2018
Summary of $^{[18F]}$F4 Specificity and Selectivity. In vivo PET, ex vivo autoradiography, and ex vivo biodistribution blocking study results with the CB1R selective and specific rimonabant demonstrated specific receptor occupancy of $^{[18F]}$F4. In addition, $^{[18F]}$F4 is a very close structural analogue to the well-known CB1R tracer $^{[18F]}$FMPEP-d2, which has an in vitro potency (K_s) of 0.187 nM for CB1R and CB2R selectivity of 3580.8 These observations support our conclusion that $^{[18F]}$F4 binds specifically to CB1Rs.

CONCLUSIONS

We successfully implemented a ruthenium-mediated late-stage radiofluorination method to produce a new CB1R imaging tracer, $^{[18F]}$FPATPP, $^{[18F]}$F4. 18F-labeling of the aromatic ring was effective with good RCY and reasonable synthesis time. There is room for improvement as the reaction conditions are harsh. Nonetheless, this proof-of-concept study shows that ruthenium-mediated 18F-labeling is a suitable and robust method for radiotracer production. $^{[18F]}$F4 was shown to be more stable against radiolysis than its analogue $^{[18F]}$FMPEP-d2, with an over 300 min shelf life compared to a 120 min shelf life. In the preclinical evaluation, $^{[18F]}$F4 showed significantly lower defluorination and faster washout compared to $^{[18F]}$FMPEP-d2. The in vivo and ex vivo results suggest that $^{[18F]}$F4 is a potent and selective tracer for CB1R. The properties of $^{[18F]}$F4 make the tracer suitable for clinical evaluation.

METHODS

Chemistry. General Chemistry Methods. FPATPP precursor, (3R,5R)-5-(3-hydroxyphenyl)-3-(((R)-1-phenylethyl)amino)-1-(4-(trifluoromethyl)phenyl)pyrrolidine-2-one, was obtained from PharmaSynth (PharmaSynth AS, Tartu, Estonia). The ruthenium complex was synthesized as previously published.26 Reference standard $^{[18F]}$FPATPP, $^{[18F]}$F4 labeling of the aromatic ring was effective with good RCY and reasonable synthesis time. There is room for improvement as the reaction conditions are harsh. Nonetheless, this proof-of-concept study shows that ruthenium-mediated 18F-labeling is a suitable and robust method for radiotracer production. $^{[18F]}$F4 was shown to be more stable against radiolysis than its analogue $^{[18F]}$FMPEP-d2, with an over 300 min shelf life compared to a 120 min shelf life. In the preclinical evaluation, $^{[18F]}$F4 showed significantly lower defluorination and faster washout compared to $^{[18F]}$FMPEP-d2. The in vivo and ex vivo results suggest that $^{[18F]}$F4 is a potent and selective tracer for CB1R. The properties of $^{[18F]}$F4 make the tracer suitable for clinical evaluation.

Chemistry. General Chemistry Methods. FPATPP precursor, (3R,5R)-5-(3-hydroxyphenyl)-3-(((R)-1-phenylethyl)amino)-1-(4-(trifluoromethyl)phenyl)pyrrolidine-2-one, was obtained from PharmaSynth (PharmaSynth AS, Tartu, Estonia). The ruthenium complex was synthesized as previously published.26 Reference standard $^{[18F]}$FPATPP, $^{[18F]}$F4 labeling of the aromatic ring was effective with good RCY and reasonable synthesis time. There is room for improvement as the reaction conditions are harsh. Nonetheless, this proof-of-concept study shows that ruthenium-mediated 18F-labeling is a suitable and robust method for radiotracer production. $^{[18F]}$F4 was shown to be more stable against radiolysis than its analogue $^{[18F]}$FMPEP-d2, with an over 300 min shelf life compared to a 120 min shelf life. In the preclinical evaluation, $^{[18F]}$F4 showed significantly lower defluorination and faster washout compared to $^{[18F]}$FMPEP-d2. The in vivo and ex vivo results suggest that $^{[18F]}$F4 is a potent and selective tracer for CB1R. The properties of $^{[18F]}$F4 make the tracer suitable for clinical evaluation.

Chemistry. General Chemistry Methods. FPATPP precursor, (3R,5R)-5-(3-hydroxyphenyl)-3-(((R)-1-phenylethyl)amino)-1-(4-(trifluoromethyl)phenyl)pyrrolidine-2-one, was obtained from PharmaSynth (PharmaSynth AS, Tartu, Estonia). The ruthenium complex was synthesized as previously published.26 Reference standard $^{[18F]}$FPATPP, $^{[18F]}$F4 labeling of the aromatic ring was effective with good RCY and reasonable synthesis time. There is room for improvement as the reaction conditions are harsh. Nonetheless, this proof-of-concept study shows that ruthenium-mediated 18F-labeling is a suitable and robust method for radiotracer production. $^{[18F]}$F4 was shown to be more stable against radiolysis than its analogue $^{[18F]}$FMPEP-d2, with an over 300 min shelf life compared to a 120 min shelf life. In the preclinical evaluation, $^{[18F]}$F4 showed significantly lower defluorination and faster washout compared to $^{[18F]}$FMPEP-d2. The in vivo and ex vivo results suggest that $^{[18F]}$F4 is a potent and selective tracer for CB1R. The properties of $^{[18F]}$F4 make the tracer suitable for clinical evaluation.
Preparation of FPATPP Precursor for Radiosynthesis. FPATPP precursor (6.9 ± 0.7 μmol) and ruthenium complex (24.5 ± 2.5 μmol) were dissolved in ethanol (50 mL) and heated at 80 °C for 30 min. 1.3-Bis(2,6-diisopropylphenyl)imidazolium chloride was dissolved in MeCN (150 μL) and added to the reaction mixture to produce mixture A. The reaction mixture was used without purification.

Radiochemistry Optimization Study. Prior to the production of [18F]FPATPP for preclinical studies, the Ru-mediated radiofluorination method was tested with temperatures from 100 to 160 °C and reaction times from 10 to 30 min. In addition, for drying of [18F]fluoride, a SPE method and an azotropic distillation method were tested.

In the SPE method, a PS-HCO3- anion exchange cartridge (Syntha GmbH, Hamburg, Germany) was used. Aqueous [18F]F– was trapped in a cartridge preconditioned with potassium oxalate (3 mL, 10 mg/mL) and water (2 mL). The cartridge was washed with CH3CN (1 mL), and [18F]KF was eluted to a conical vial with mixture A. The cartridge was rinsed with DMSO (150 μL) and 1:1 DMSO/MeCN solution (50 μL). The reaction mixture was heated at 100, 130, or 160 °C for 30 min, and the reaction was followed with radio-HPLC. In the base-added SPE method, K2CO3 (14.8 ± 0.6 μmol) was dissolved in MeCN (150 μL) and added to the reaction mixture to produce mixture A. The reaction mixture was used without purification.

Synthesis of [18F]FPATPP for Preclinical Studies. Aqueous [18F]F– solution was dried using azotropic distillation with MeCN, K2CO3 (40 μmol), and ethanol (50 mL). The mixture was heated at 160 °C for 30 min. After heating, the mixture was diluted with HPLC eluent (1 mL) and 1:1 DMSO/MeCN solution (50 μL) and 1:1 DMSO/MeCN solution (50 μL). The reaction mixture was heated at 100 °C for 30 min, and the reaction was followed with radio-HPLC.

In the azotropic distillation method, aqueous [18F]F– solution was dried using azotropic distillation with MeCN, K2CO3 (14.8 ± 4.2 μmol), and Kryptox Kd (16.6 ± 0.6 μmol) at 120 °C with helium flow to form the dry [18F]KF/K222-complex. Mixture A was added to the reaction vessel, and the reaction was heated at 160 °C for 30 min. The reaction was followed with radio-HPLC.

Synthesis of [18F]FPATPP for In Vivo PET Imaging. Dynamic PET scans were performed for 5 month old mice with an Inveon Multimodality PET/CT scanner (Siemens Medical Solutions USA, Knoxville, Tennessee). Mice were anesthetized with 2.5% isoflurane/oxygen gas, and body temperature was maintained with a heating pad and a bubble-wrap cover. CT transmission scans were performed to correct for attenuation. PET scans were initiated in parallel with an intravenous (iv) bolus injection of [18F]MPEP to the mouse tail vein (4–5 month old, n = 6, 2 females; injected radioactivity 4.0 ± 0.4 MBq; injected mass 56 ± 25 ng, 1.7 ± 0.7 μg/kg).

Dynamic emission scans were acquired for 120 min in 3D list mode, with an energy window of 350–650 keV. Scanning times were 120 min (54 frames 30 × 10 s, 15 × 60 s, 4 × 300 s, 2 × 600 s, 3 × 1200 s). The list mode data were stored in 3D sinograms. Data were reconstructed with OSEM3D/MAP software (2 OSEM3D iterations and 18 MAP iterations). The PET/CT images were preprocessed in Matlab R2017a (The MathWorks, Natick, Massachusetts) with an in-house semiautomated pipeline for preclinical images that uses SPM12 (Wellcome Department of Cognitive Neurology, London, UK) preprocessing functionalities and analysis routines. Images were first cropped to a bounding box containing the heads, and individual PET images were coregistered through a rigid-body transformation to their corresponding CT slice. Subjects were spatially normalized through a two-step registration (a rigid followed by an affine transformation) of each subject’s CT to a template CT that was previously constructed as an average of several subjects and was aligned with an atlas T2-weighted MRI template. The combination of transformations was then applied to the PET images, which were also resampled to a voxel size of 0.2 × 0.2 × 0.2 mm3 (trilinear interpolation), matching the anatomical atlas dimensions.

Volume of interest (VOI) analysis of the whole brain, neocortex, and hippocampus was performed on each subject by averaging the signal inside a slightly modified version of the Ma et al.40 atlas delineated VOIs, and data were obtained as standardized uptake values (SUVs). SUVs were calculated as follows: SUV = tissue activity concentration (μCi/mL)/[(injected dose (μCi)/body weight (g))]−1. It was assumed that 1 mL of tissue equals 1 g. Tissue activity and dose were decay corrected to the same time point.

Ex Vivo Biodistribution and Brain Autoradiography with [18F]FMPEP. All in vivo animals (n = 6, 2 females) and additional 2 month old mice (n = 11, males, injected radioactive 7.0 ± 3.0 MBq; injected mass 160 ± 60 ng, 6.2 ± 2.6 μg/kg) were used for ex vivo studies to examine the biodistribution and metabolism of [18F]MPEP. Thus, the injected dose and injected mass to all the animals used (n = 17) were 5.9 ± 2.8 MBq and 120 ± 70 ng, 4.6 ± 3.0 μg/kg, respectively. After iv injection of [18F]MPEP, mice were sacrificed in deep anesthesia of 4.0% isoflurane with cardiac puncture at 30 (n = 4), 60 (n = 2), and 120 min (n in vivo animals, n = 6 and 2 month old mice n = 5). Organs were immediately dissected, weighed, and measured for 18F-radioactivity in a 2480 Wizard Gamma Counter (Wallac PerkinElmer, Turku, Finland).

For autoradiography, brains were further frozen and cut into 20 μm coronal cryosections for digital autoradiography, and the slices were exposed on an imaging plate (BAS-TR2025, Fuji Photo Film Co.) for approximately 2 half-lives and scanned with a Fuji BAS5000 phosphorimager (FUJIFILM Life Science, Stamford, Connecticut). Digital autoradiographic images were analyzed for count densities with the Aida 4 program (Raytest Isotopenmessgeräte GmbH, Straubenhardt, Germany). For brain slices, regions of interest (ROIs) were drawn over the parietotemporal cortex, striatum, frontal cortex, hippocampus, cerebellar gray matter, and thalamus. The autoradiography was quantified as ratios of the different ROIs relative to the thalamus, which was used as the reference region.
Ex Vivo Biodistribution with [18F]FMPEP-d2. After iv injection of [18F]FMPEP-d2, to the mouse tail vein, the mice were sacrificed at the following time points: 30 min (3–4 month old, n = 3, males; injected radioactivity 1.3 ± 0.3 MBq; injected mass 1.5 ± 0.5 ng), 60 min (3–4 months old, n = 4, males; injected radioactivity 1.2 ± 0.8 MBq; injected mass 1.3 ± 1.0 ng), and 120 min (1.5–6 month old, n = 12, 5 females; injected radioactivity 2.6 ± 0.8 MBq; injected mass 3.1 ± 1.1 ng). Mice were sacrificed in deep anesthesia of 4.0% isoflurane with cardiac puncture. Organs were operated in the similar manner as in the biodistribution study with [18F]4.

Pretreatment Studies with [18F]4. The specificity of [18F]4 on mouse cerebral CB1Rs was examined in a 120 min in vivo study, and then, the same mice were used for ex vivo biodistribution and brain autoradiography studies. An inverse CB1R agonist rimonabant (90 µL, 2 mg/kg in 10% EtOH in Kleptose β-cyclodextrin; rimonabant, Merck; Kleptose β-cyclodextrin, APL pharma specials, Stockholm, Sweden) was administered iv into the mouse tail vein (n = 3, 1 female) 10 min prior to injection of [18F]4. Control mice (n = 3, 1 female) were given vehicle (90 µL, 10% EtOH in Kleptose β-cyclodextrin). The binding specificity of [18F]4 was estimated by comparing the binding of [18F]4 in the presence and absence of rimonabant. Mice were sacrificed 120 min after iv injection of [18F]4, and the 11-F-radioactivity distribution differences between pretreated and control mice were examined with in vivo PET imaging, ex vivo autoradiography, and 2480 Wizard Gamma Counter, and the data were analyzed as described in the previous sections.

Metabolite Analyses with [18F]4. The 2 month old animals (n = 11, used only for ex vivo studies) were used for metabolite analysis. Plasma and brain samples were collected at 30 (n = 4), 60 (n = 2), and 120 min (n = 5) p.i. Plasma samples were treated with MeCN and centrifuged to remove the proteins from the solution. Brain tissue samples were treated with the 40/60 (v/v) 1% TFA (aq)/MeCN and centrifuged to remove the proteins from the solution. The supernatants were applied to HPTLC silica gel 60 RP-18 plates (Art. 1.05914.0001, Merck, Darmstadt, Germany), and the plates were developed in 40/60 (v/v) 1% TFA (aq)/MeCN. After drying, the TLC plates were exposed to an imaging plate for approximately 4 h and the imaging plate was scanned with a Fuji Analyzer BAS5000. The amount of [18F]4 and its radioactive metabolites were analyzed with the Aida 4 program, and radioactive liquid chromatography; %ID/g, injected dose per gram of tissue; iv, intravenous; PET, positron emission tomography; p.i., post injection; Ptc, parietotemporal cortex; ROI, region of interest; SD, standard deviation; SPE, solid-phase extraction; SUV, standardized uptake value; Str, striatum; Tha, thalamus; TLC, thin-layer chromatography; VOI, volume of interest.

Statistical Analyses. Values are expressed as mean ± standard deviation (SD). For ex vivo brain autoradiography and biodistribution, statistical analyses were performed with the Mann–Whitney U test (GraphPad Prism 6.0).

AUTHOR INFORMATION

Corresponding Author
Anna K. Kirjavainen — Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland; Email: anna.kirjavainen@utu.fi

Authors
Salla Lahdenpohja — Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland; orcid.org/0000-0003-2456-5009
Noora A. Rajala — Radiopharmacetical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
Jatta S. Helin — Preclinical Imaging, Turku PET Centre and MediCity Research Laboratory, University of Turku, Turku, Finland
Merja Haaparanta-Solin — Preclinical Imaging, Turku PET Centre and MediCity Research Laboratory, University of Turku, Turku, Finland
Olof Solin — Radiopharmaceutical Chemistry Laboratory, Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland; Accelerator Laboratory, Åbo Akademi University, Turku, Finland

Francisco R. López-Picón — Preclinical Imaging, Turku PET Centre and MediCity Research Laboratory, University of Turku, Turku, Finland

Complete contact information is available at: https://pubs.acs.org/10.1021/acschemneuro.0c00313

Author Contributions ▲S.L. and N.A.R. contributed equally. All authors have given approval to the final version of the manuscript.

Funding
The study was funded by the Academy of Finland (grants no. 266891 and 307924) and State Funding for University Level Health Research (project no. 11017).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We acknowledge the cyclotron staff at Åbo Akademi University and preclinical imaging staff at University of Turku for their technical help. The Central Animal Laboratory of University of Turku is acknowledged for the animal care.

ABBREVIATIONS
Aρ, molar activity; Bl., blocked; CB1, cannabinoid receptor 1; CB2R, cannabinoid receptor 2; CB, cortex and cerebellar gray matter; CT, computed tomography; Fc, frontal cortex; Gp, globus pallidus; GPCR, G protein-coupled receptor; Hippo, hippocampus; HPLC, high performance liquid chromatography; %ID/g, injected dose per gram of tissue; ir, intravenous; PET, positron emission tomography; p.i., post injection; Ptc, parietotemporal cortex; ROI, region of interest; SD, standard deviation; SPE, solid-phase extraction; SUV, standardized uptake value; Str, striatum; Tha, thalamus; TLC, thin-layer chromatography; VOI, volume of interest.

REFERENCES
(1) Howlett, A. C., Barth, F., Bonner, T. I., Cabral, G., Casellas, P., Devane, W. A., Felder, C. C., Herkenham, M., Mackie, K., Martin, B. R., Mechoulam, R., and Pertwee, R. G. (2002) International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol Rev. 54 (2), 161–202.
(2) Mechoulam, R., and Parker, L. A. (2013) The Endocannabinoid System and the Brain. Annu. Rev. Psychol. 64, 21–47.
(3) Herkenham, M., Lynn, A. B., Little, M. D., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice, K. C. (1990) Cannabinoid Receptor Localization in Brain. Proc. Natl. Acad. Sci. U. S. A. 87 (5), 1932–1936.
(4) Glass, M., Dragunow, M., and Faull, R. L. (1997) Cannabinoid Receptors in the Human Brain: A Detailed Anatomical and Quantitative Autoradiographic Study in the Fetal, Neonatal and Adult Human Brain. Neuroscience 77 (2), 299–318.
(5) Jordan, C. J., and Xi, Z.-X. (2019) Progress in Brain Cannabinoid CB2 Receptor Research: From Genes to Behavior. Neurosci. Biobehav. Rev. 98, 208–220.
(6) Yu, S.-J., Reiner, D., Shen, H., Wu, K.-J., Liu, Q.-R., and Wang, Y. (2015) Time-Dependent Protection of CB2 Receptor Agonist in Stroke. PLoS One 10 (7), e0132487.
(7) Fattore, L., Mechoulam, R., and Pertwee, R. G. (2002) International Union of Pharmacology. XVIII. The CB2 Cannabinoid Receptor. Pharmacol Rev. 54 (2), 161–202.
(8) Fagan, S. G., and Campbell, V. A. (2015) Cannabinoids in Neurologic and Mental Disease. Elservier Inc., San Diego, CA.
(9) Yasuno, F., Brown, A. K., Zogbhi, S. S., Krushinski, J. H., Chernet, E., Tauscher, J., Schaus, J. M., Phebus, L. A., Chesterfield, A.
Produced $^{[18F]}$Fluoride with Diaryliodonium Salts

$^{[18F]}$MK-9470, a Positron Emission Tomography (PET) Tracer for in Vivo Human PET Brain Imaging of the Cannabinoid-1 Receptor.

(2014) A General Copper-mediated Nucleophilic 18FFluorination of Arenes. Angew. Chem., Int. Ed. 53 (9), 8533–8542.

(2012) Preclinical Evaluation and Quantification of $^{[18F]}$MK-9470 as a Radioligand for PET Imaging of the Type 1 Cannabinoid Receptor in Rat Brain. Eur. J. Nucl. Med. Mol. Imaging 39 (9), 1467–1477.

(2016) 18FRadiolabeling Strategies: Advantages and Disadvantages of Currently Applied Labeling Methods. In Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates (Postigo, A., Ed.) pp 29–103, Elsevier, United States.

Fluorine-18 Radiolabeling Strategies—Advantages and Disadvantages of Currently Applied Labeling Methods. In Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates (Postigo, A., Ed.) pp 29–103, Elsevier, United States.

(1995) Reactions of Cyclotron-Produced $^{[18F]}$Fluoride with Diaryliodonium Salts—a Novel Single-Step Route to No-Carrier-Added $^{[18F]}$Fluoroarenes. J. Chem. Soc., Chem. Commun. 1995 (21), 2215–2216.

(2012) 18FRadiolabeling of Aromatic Compounds Using Organofluorine Chemistry (Reddy, V. P., Ed.) pp 215–278, Elsevier, United States.

(1995) Reactions of Cyclotron-Produced $^{[18F]}$Fluoride with Diaryliodonium Salts—a Novel Single-Step Route to No-Carrier-Added $^{[18F]}$Fluoroarenes. J. Chem. Soc., Chem. Commun. 1995 (21), 2215–2216.

(2012) 18FRadiolabeling of Aromatic Compounds Using Organofluorine Chemistry (Reddy, V. P., Ed.) pp 215–278, Elsevier, United States.

(1995) Reactions of Cyclotron-Produced $^{[18F]}$Fluoride with Diaryliodonium Salts—a Novel Single-Step Route to No-Carrier-Added $^{[18F]}$Fluoroarenes. J. Chem. Soc., Chem. Commun. 1995 (21), 2215–2216.

(2011) A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent for PET Imaging. Science (Washington, DC, U. S.) 334 (6056), 639–642.

(2012) Nickel-Mediated Oxidative Fluorination for PET with Aqueous $^{[18F]}$Fluoride. J. Am. Chem. Soc. 134 (42), 17456–17458.

(2014) A General Copper-mediated Nucleophilic 18FFluorination of Arenes. Angew. Chem., Int. Ed. 53 (30), 7751–7755.
for Endocannabinoid-Mediated Functions through Conditional Genetic Rescue in Forebrain GABAergic Neurons. *Brain Struct. Funct.* 222 (8), 3431–3452.

(39) Laurén, H. B., Lopez-Picon, F., Brandt, A. M., Rios-Rojas, C., and Holopainen, I. E. (2010) Transcriptome Analysis of the Hippocampal CA1 Pyramidal Cell Region after Kainic Acid-Induced Status Epilepticus in Juvenile Rats. *PLoS One* 5 (5), No. e10733.

(40) Ma, Y., Smith, D., Hof, P., Foerster, B., Hamilton, S., Blackband, S., Yu, M., and Benveniste, H. (2008) *In Vivo* 3D Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic Resonance Microscopy. *Front. Neuroanat.* 2, 1.