ASSESSING THE FEASIBILITY OF COSMIC-RAY ACCELERATION BY MAGNETIC TURBULENCE AT THE GALACTIC CENTER

M. Fatuzzo and F. Melia

1 Physics Department, Xavier University, Cincinnati, OH 45207, USA; fatuzzo@xavier.edu
2 Department of Physics, The Applied Math Program, and Steward Observatory, The University of Arizona, AZ 85721, USA; fmelia@email.arizona.edu

Received 2012 January 6; accepted 2012 February 21; published 2012 April 12

ABSTRACT

The presence of relativistic particles at the center of our Galaxy is evidenced by the diffuse TeV emission detected from the inner ∼2° of the Galaxy. Although it is not yet entirely clear whether the origin of the TeV photons is due to hadronic or leptonic interactions, the tight correlation of the intensity distribution with the distribution of molecular gas along the Galactic ridge strongly points to a pionic-decay process involving relativistic protons. In previous work, we concluded that point-source candidates, such as the supermassive black hole Sagittarius A* (identified with the High-Energy Stereoscopic System (HESS) source J1745−290) or the pulsar wind nebulae dispersed along the Galactic plane, could not account for the observed diffuse TeV emission from this region. Motivated by this result, we consider here the feasibility that the cosmic rays populating the Galactic center region are accelerated in situ by magnetic turbulence. Our results indicate that even in a highly conductive environment, this mechanism is efficient enough to energize protons within the intercloud medium to the ∼TeV energies required to produce the HESS emission.

Key words: cosmic rays – diffusion – ISM: clouds

1. INTRODUCTION

Observations of the Galactic center (GC) with the High-Energy Stereoscopic System (HESS) have revealed the presence of diffuse TeV emission spread out roughly 0.2° in Galactic latitude b within the inner 2° of our Galaxy (Aharonian et al. 2006). The strong correlation between the >200 GeV emission and the ∼10²⁸ M⊙ of molecular gas distributed along the GC ridge, as traced by its CO and CS line emission (see, e.g., Tsuboi et al. 1999), points to the decay of neutral pions produced by the interactions of relativistic cosmic rays with the proton-rich target material along the Galactic ridge, as traced by its CO and CS line emission (see, e.g., Tsuboi et al. 1999), points to the decay of neutral pions produced by the interactions of relativistic cosmic rays with the proton-rich target. The large concentration (up to ∼10³⁰ M⊙) of dense molecular gas at the center of the Galaxy is largely confined to giant molecular clouds (GMCs) with a size ∼50–70 pc (Güsten & Philipp 2004). These GMCs appear to be clumpy with high-density (∼10³⁵ cm⁻³) regions embedded within less dense (∼10³⁴ cm⁻³) envelopes (e.g., Walmsley et al. 1986) and are threaded by a pervasive magnetic field whose milligauss strength is suggested by the

magnetic field. As a result, the electric field was so efficient at energizing protons that the required particle distributions could only be produced if the turbulent field was much weaker than the underlying field or if acceleration was limited to small “active regions” within the intercloud medium. However, the high conductivity of the medium within the GC environment makes it highly likely that a component of the electric field parallel to the underlying magnetic field would be quickly “quenched.”

The purpose of this paper is to reassess the feasibility of stochastic acceleration within the GC region with the more realistic assumption that the highly conductive medium does not allow for an electric field component parallel to the magnetic field. Toward that end, we adopt the formalism of O’Sullivan et al. (2009) to construct the turbulent fields so that the electric field vector is perpendicular everywhere to the total magnetic field. The spatial and energy diffusion of cosmic-ray protons within the molecular cloud and intercloud regions is then investigated via numerical simulations. Specifically, both the spatial and energy diffusion coefficients over a relevant range of parameter space are calculated and used to compare estimates of the time required to energize protons up to TeV energies with the escape and cooling times associated with both the cloud and intercloud environments.

Our results indicate that protons in the intercloud medium can be energized up to the ∼TeV energies required to produce the observed HESS emission. As such, stochastic particle acceleration by magnetic turbulence appears to be a viable mechanism for cosmic-ray production at the GC.

2. THE PHYSICAL CONDITIONS

The large concentration (up to ∼10³⁸ M⊙) of dense molecular gas at the GC is largely confined to giant molecular clouds (GMCs) with a size ∼50–70 pc (Güsten & Philipp 2004). These GMCs appear to be clumpy with high-density (∼10³⁵ cm⁻³) regions embedded within less dense (∼10³⁴ cm⁻³) envelopes (e.g., Walmsley et al. 1986) and are threaded by a pervasive magnetic field whose milligauss strength is suggested by the
rigidity of non-thermal filaments interacting with the molecular clouds (see, e.g., Yusef-Zadeh & Morris 1987; Morris & Yusef-Zadeh 1989; Morris 2007). Confirming evidence for such field strengths in and around the GMCs is provided by their apparent stability. The observed pressure $P_{\text{plasma}} \sim 10^{-9.2} \text{ erg cm}^{-3}$ due to the hot plasma between the clouds is an order of magnitude smaller than the turbulent pressure $P_{\text{turb}} \sim 10^{-8} \text{ erg cm}^{-3}$ within the GMC environment (Güsten & Philipp 2004), seemingly ruling out pressure confinement. If clouds are instead bound by their own magnetic fields, then equating the turbulent and magnetic $(B^2/8\pi)$ energy densities gives field strengths of $\sim 0.5 \mu \text{G}$ within the clouds, not too different from the typical value measured in the non-thermal filaments.

We are now also reasonably sure of the magnetic field strength between the clouds. In the past, the field intensity near the GC had been uncertain by two orders of magnitude. We have just seen how on a scale of $\sim 100 \text{ pc}$ field strengths can be as high as $\sim 1 \mu \text{G}$. At the other extreme, equipartition arguments based on radio observations favor fields of only $\sim 6 \mu \text{G}$ on $\sim 400 \mu \text{pc}$ scales (LaRosa et al. 2005). But a more careful analysis of the diffuse emission from the central bulge has revealed a down-break in its non-thermal radio spectrum, attributable to a transition from bremsstrahlung to synchrotron cooling of the in situ cosmic-ray electron population. Crocker et al. (2010) have shown recently that this spectral break requires a field of $\sim 50 \mu \text{G}$ extending over several hundred parsecs, lest the synchrotron-emitting electrons produce too much γ-ray emission given existing constraints (Hunter et al. 1997).

While the structure of this magnetic field is not well understood, magnetic fluctuations are expected to be present in essentially all regions of the interstellar medium. For example, molecular clouds are observed to have substantial non-thermal contributions to the observed molecular line widths (e.g., Larson 1975; Gammie & Ostriker 1996; Myers et al. 1991; Myers & Gammie 1999). These non-thermal motions are generally interpreted as arising from MHD turbulence (e.g., Arons & Max 1975; Casse et al. 2002; O'Sullivan et al. 2009; Fatuzzo et al. 2010). Adopting a static turbulent field removes the necessity of specifying a dispersion relation between the wavevectors k_n and their corresponding angular frequencies ω_n. This approach therefore allows one to consider highly nonlinear turbulence ($\delta B \gg B_0$) or even remove the background component altogether. Of course, turbulent magnetic fields in cosmic environments are not static. Nevertheless, a static formalism in spatial diffusion calculations of relativistic particles is justified for environments in which the Alfvén speed is much smaller than the speed of light.

This paper focuses on the energy diffusion of cosmic rays propagating through a turbulent magnetic environment, which then requires the use of a time-dependent formalism in order to self-consistently include the fluctuating electric fields that must also be present. Toward that end, we assume that the GC environment is well represented by a nonviscous, perfectly conducting fluid threaded by a uniform static field $B_0 = B_0 \hat{z}$, and use linear MHD theory to guide us. In general, three types of MHD waves exist in the linear regime—Alfvén, fast, and slow. Following the formalism of O'Sullivan et al. (2009), we consider here only Alfvén waves, so that the turbulent magnetic field is defined by the sum of N randomly directed waves,

$$\delta B = \sum_{n=1}^{N} A_n e^{i(\mathbf{k}_n \cdot \mathbf{r} - \omega_n t + \phi_n)},$$

where the direction of each propagation vector \mathbf{k}_n is set through a random choice of polar angles θ_n and ϕ_n, and the phase of each term is set through a random choice of ϕ_n.

Alfvén waves do not compress the fluid through which they propagate and are therefore characterized by a fluid velocity v that satisfies the condition $\mathbf{k} \cdot \mathbf{v} = 0$. This condition in turn implies that $v \cdot \hat{B}_0 = 0$. We can therefore write the fluid velocity associated with the nth term in Equation (1) as

$$\mathbf{v}_n = \pm A_n \frac{v_A}{B_0} \frac{\hat{z} \times \mathbf{k}_n}{|\hat{z} \times \mathbf{k}_n|} e^{i(\mathbf{k}_n \cdot \mathbf{r} - \omega_n t + \phi_n)},$$

where the sign is chosen randomly for each term in the sum. The dispersion relation for Alfvénic waves is given by the expression

$$\omega_n = v_A k_n |\cos \theta_n|,$$

where ω_n is the Alfvén speed and θ_n is the angle between \mathbf{k}_n and B_0.

The corresponding magnetic field for each wave then follows from the linear form of Ampère’s law, as given by

$$A_n = \mp A_n \frac{k_n \cdot \hat{z}}{|\mathbf{k}_n \cdot \hat{z}|} \frac{\hat{z} \times \mathbf{k}_n}{|\mathbf{k}_n \cdot \hat{z}|}.$$
in each term. We find, however, that including a random sign has no effect on the statistical output measures of our numerical simulations.

The total number of terms in the sum is given by $N = N_k \log_{10}[k_{\text{max}}/k_{\text{min}}]$, and the values of k_n are evenly spaced on a logarithmic scale between $k_{\text{min}} = 2\pi/\lambda_{\text{max}}$ and $k_{\text{max}} = 2\pi/\lambda_{\text{min}}$. The desired spectrum of the turbulent magnetic field is set through the appropriate choice of Γ in the scaling:

$$A_n^2 = A_1^2 \left[\frac{k_n}{k_1} \right]^{-1} = A_1^2 \left[\frac{k_n}{k_1} \right]^{-r_1},$$

(5)

(e.g., $\Gamma = 3/2$ for Kraichnan and 5/3 for Kolmogorov turbulence). The value of A_1 is set by a parameter ξ that specifies the averaged energy density of the turbulent field via the definition,

$$\langle \delta B^2 \rangle = \left(\sum_{n} \sum_{n'} \delta B_n \cdot \delta B_{n'}^* \right) = A_1^2 \sum_{n} \left[\frac{k_n}{k_1} \right]^{-r_1} = \xi B_0^2,$$

(6)

where the $n \neq n'$ terms average to zero. We note that for our adopted scheme, the value of $\Delta k_n/k_n$ is the same for all values of n. We further note that $\xi = 2$ corresponds to the real part of the turbulent field having the same energy density as a uniform field B_0.

Naively extending the results from linear MHD theory to our formalism, one would obtain the total electric field δE associated with the turbulent magnetic field defined by Equation (1) by summing over the terms,

$$\delta E_n = -\delta v_n \times B_0.$$

(7)

Although $\delta E \cdot B_0 = 0$, the second-order term $\delta E \cdot \delta B \neq 0$. The presence of an electric field component parallel to the magnetic field in this second-order term can significantly increase the acceleration efficiency artificially, especially if the formalism is extended to the nonlinear regime ($\delta B \sim B_0$). However, the interstellar medium is highly conductive, and as such, any electric field component parallel to the magnetic field should be quickly quenched. To circumvent this problem, we adopt the formalism of O’Sullivan et al. (2009) and first obtain the total fluid velocity δv via the summation,

$$\delta v = \sum_{n=1}^{N} \delta v_n.$$

(8)

We then use the MHD condition to set the total electric field:

$$\delta E = -\frac{\delta v}{c} \times B,$$

(9)

where $B = B_0 \hat{z} + \delta B$.

4. NUMERICAL ANALYSIS

The equations that govern the motion of a relativistic charged proton with Lorentz factor γ through the turbulent medium are

$$\frac{d}{dt}(\gamma m_p v) = e \left[\delta E + \frac{v \times B}{c} \right].$$

(10)

and

$$\frac{dr}{dt} = v.$$
the particles tracked in our baseline experiment. As expected from the random nature of stochastic acceleration, $\sigma_v \propto \sqrt{t}$ once particles have had a chance to sample the turbulent nature of the underlying fields, i.e., for $t \gtrsim \lambda_{\text{max}}/c$.

The spatial diffusion of particles will be different in the parallel and perpendicular directions to the underlying magnetic field $B_0\hat{z}$, resulting in different variances in the distributions of particle displacement along and across the underlying field. To illustrate this point, we plot $\sigma_x \equiv \sqrt{\langle \Delta x^2 \rangle}$ and $\sigma_z \equiv \sqrt{\langle \Delta z^2 \rangle}$ as a function of time in Figure 4 for the particles in our baseline experiment. As expected, particles diffuse farther in the direction parallel to the magnetic field, and both output measures become $\propto \sqrt{t}$ at time $t \gtrsim \lambda_{\text{max}}/c$.

A fundamental issue in this analysis is what value of N_k will allow our discrete treatment of the turbulent field to adequately represent the continuous fields found in nature. Toward that end, we repeated our baseline experiment with $N_k = 250$. The difference in output measures was smaller than 10%, indicating that setting $N_k = 25$ provides good accuracy in our results. We also repeated our baseline experiment with $\lambda_{\text{min}} = 0.0002$ pc. Again, the difference in output measures was smaller than 10%, indicating that our output measures are not sensitive to the value of λ_{min} so long as the particle radius of gyration $R_g > \lambda_{\text{min}}$ (see also Fatuzzo et al. 2010).
Guided by the results of our baseline analysis, we will perform the remainder of our experiments using \(N_k = 25 \) and \(\lambda_{\text{min}} = 0.1 R_g \), where

\[
R_g = \frac{\gamma m_e c^2}{e B_0} \tag{13}
\]

is the radius of gyration for the injected particles in the absence of turbulence. The governing equations for each particle will be integrated out to a time sufficiently long to ensure that \(\sigma_y, \sigma_x, \) and \(\sigma_z \) are proportional to \(\sqrt{t} \) by the end of the integration (usually \(\Delta t = 100 \lambda_{\text{max}}/c \)), and the particles have therefore fully sampled the turbulent nature of the magnetic and electric fields. This scheme is expected to provide accurate results with minimal computing resources.

As a consistency check, we perform a set of experiments (2–7) using the same physical conditions corresponding to models W3 and X3 presented in O’Sullivan et al. (2009; see Table 1 and Figures 3 and 4). Specifically, we consider a physical environment defined by the parameters \(B_0 = 3 \mu G \) and \(v_A = 0.002 \), and a turbulent field defined by \(\Gamma = 5/3 \) (Kolmogorov) and \(\lambda_{\text{max}} = 1 \) kpc for \(\xi = 0.2 \) (corresponding to model W3 for which \(\langle \delta B/B_0 \rangle^2 = 0.1 \) and \(\xi = 2 \) (corresponding to model X3 for which \(\langle \delta B/B_0 \rangle^2 = 1 \)). We compare our results for the acceleration time \(\tau_{\text{acc}} \) to those obtained by O’Sullivan et al. (2009) in Figure 5. While there is general agreement between these results, our values of the acceleration times are consistently about a factor of two greater than those to which we are comparing.

As a final consistency check, we compare in Figure 6 the spatial diffusion coefficients \(D_\perp \) and \(D_\parallel \) obtained for Experiments 5–7 to those obtained by Fatuzzo et al. (2010) for which \(\xi = 2 \) (open squares and circles). The dotted line serves as a reference and has a slope of 1/2, clearly indicating that \(\sigma_y \propto \sqrt{t} \) for time \(t \gtrsim \lambda_{\text{max}}/c \).
turbulent magnetic field adopted in this work is equivalent to that used in our earlier work. We note also that the presence of a weak turbulent electric field (i.e., \(\delta E \ll \delta B \)), which was not included in the calculations of Fatuzzo et al. (2010), has a negligible effect on the spatial diffusion of particles.

4.2. Survey of Parameter Space

As noted above, the spatial and energy diffusion of particles through turbulent fields is not sensitive to the minimum wavelength so long as the particle’s radius of gyration exceeds \(\lambda_{\text{min}} \). For a given environment, as defined by \(B_0 \) and \(v_A \), the diffusion process is thus dependent upon the maximum turbulence wavelength \(\lambda_{\text{max}} \), the turbulent field strength, as characterized by \(\xi \), and the turbulence spectrum, as characterized by the spectral index \(\Gamma \).

Quasi-linear theory predicts that the energy diffusion coefficient for relativistic particles scales as

\[
D_\gamma \propto \frac{v_A^2}{c^2} \frac{\delta B^2}{B_0^2} \left(\frac{R_\gamma}{\lambda_{\text{max}}} \right)^{-1} \frac{p^2 c^2}{R_{\text{gc}}},
\]

where \(p \) is the particle momentum (Schlickeiser 1989). For relativistic particles, the energy diffusion coefficient should therefore scale to our model parameters as

\[
D_\gamma \propto \xi^{2-\Gamma} \Gamma^{1-\Gamma} \gamma_0^0.
\]

Equation (15), however, does not appear to be valid in the strong turbulence limit (O’Sullivan et al. 2009). We therefore investigate how the energy diffusion coefficient depends upon \(\lambda_{\text{max}} \) and \(\xi \) for Kolmogorov (\(\Gamma = 5/3 \)) turbulence. Specifically, we perform two sets of experiments designed to explore parameter space around our baseline values. For the first set (Experiments 8–10), we vary \(\lambda_{\text{max}} \) from 0.32 to 10 pc, while in the second set (Experiments 11–13) we vary \(\xi \) between 0.2 and 6.4.

The energy diffusion coefficients for Experiments 1 and 8–10 are presented in Figure 7, with the best-line fit to the data indicating that \(D_\gamma \propto \lambda_{\text{max}}^{-0.47} \). This result confirms that quasi-linear theory, which predicts that \(D_\gamma \propto \lambda_{\text{max}}^{-0.67} \) for Kolmogorov turbulence, is not applicable in the strong turbulence limit (\(\xi \gtrsim 1 \)). The energy diffusion coefficients for Experiments 1 and 8–10 are presented in Figure 8, with the best-line fit to the data indicating that \(D_\gamma \propto \xi^{1.2} \) in both the weak and strong turbulence limits.

5. APPLICATION TO THE GC ENVIRONMENT

The stochastic acceleration of protons in a magnetically turbulent environment is essentially a one-dimensional random walk process that results in a particle energy distribution that broadens in time. Our goal in this section is to calculate the characteristic particle energy for both the intercloud medium and the molecular cloud region observed at the GC. As is shown in Section 4, a numerical treatment of particle diffusion requires an integration time step \(\delta t \sim 0.1 \lambda_{\text{min}} \sim 0.01 R_g \), but a total integration time that is \(\Delta t \sim 100 \lambda_{\text{max}} \). Numerically integrating the equations of motion for protons that are energized from a thermal state to TeV energies is therefore not computationally feasible given the small radius of gyration of thermal particles.

As such, we determine the characteristic particle energy in each region by comparing the acceleration time \(\tau_{\text{acc}} = \gamma_0^0/D_\gamma \), which characterizes how long it would take a distribution of low-energy particles to attain energies \(\sim \gamma_0^0 m_p c^2 \), with the escape time \(\tau_{\text{esc}} = R^2/D_{\|} \), which characterizes how long it would take those particles to diffuse a distance \(R \) along the preferential \(\hat{z} \)-direction, and the proton cooling time \(\tau_{\text{pp}} \), which characterizes how long a proton can move through a region before losing a significant fraction of its energy to \(pp \) scattering with the ambient medium.

To determine how the acceleration and escape times depend on particle energy for the intercloud medium (\(B_0 = 50 \mu \mathrm{G}, v_A = 35 \mathrm{km \, s}^{-1}, R = 200 \mathrm{pc} \)), we perform a set of experiments (14–18) using our baseline parameters \(\Gamma = 5/3, \lambda_{\text{max}} = 1 \mathrm{pc} \), and \(\xi = 2 \). We perform two additional experiments (19 and 20) at \(\gamma_0 = 10^5 \) and \(\gamma_0 = 10^6 \) for the same environment, but with \(\Gamma = 3/2 \). We perform a final set of experiments (21–26) to determine how the acceleration and escape times depend on particle energy for the molecular cloud medium (\(B_0 = 500 \mu \mathrm{G}, v_A = 11 \mathrm{km \, s}^{-1}, R = 30 \mathrm{pc} \)).

The energy loss rate of protons with energies needed to produce \(\pi^0 \)-decay \(\gamma \)-rays is dominated by nuclear energy losses due to \(pp \) scattering with the ambient medium (Aharonian & Atoyán 1996). As such, the cooling time, \(\tau_{pp} \), of the protons depends on the \(pp \) scattering cross-section, \(\sigma_{pp} \), and the inelasticity parameter, \(\kappa \). Over a broad range of proton energies, neither of these quantities significantly varies so the usual method is to adopt the constant average values \(\sigma_{pp} \approx 40 \mathrm{mb} \) and \(\kappa \approx 0.45 \) (see, e.g., Markoff et al. 1997). That being the case, the proton cooling time becomes independent of proton...
result appears to hold true for both Kolmogorov (\(\Gamma = 3\)) and Kraichnan (\(\Gamma = 3/2\)) turbulence, and suggests that energy diffusion in the strong turbulence limit is not sensitive to the turbulence power spectrum. In contrast, while the acceleration time associated with the molecular clouds is comparable to those in the intercloud medium, the escape time and the proton cooling time are significantly shorter. As such, it is clear from Figure 10 that TeV protons cannot be energized within the molecular cloud environment.

6. CONCLUSION

The purpose of this paper has been to assess the feasibility of stochastic acceleration within the GC region in producing the TeV cosmic rays revealed by the diffuse HESS emission correlated with the molecular gas distributed along the GC ridge. As shown in previous work, this emission can be produced by cosmic rays with an energy distribution that has a high-energy tail extending out beyond a few TeV. Such a distribution is naturally produced by the stochastic acceleration of particles in a magnetically turbulent environment (which is effectively a one-dimensional random walk in energy). Thus, the remaining question is whether or not this mechanism is efficient enough to energize protons to the required TeV energies in the highly conductive interstellar medium permeating the GC.

To resolve this issue, we performed a series of numerical experiments in order to calculate the spatial and energy diffusion coefficients for protons in both the molecular cloud and the intercloud medium located within the inner several hundred parsecs of the galaxy. We then estimated the characteristic energy of the resulting particle distribution by comparing the acceleration time required for particles to reach a certain energy, the escape time which characterizes how long it takes protons to diffuse out of each region, and the cooling time which characterizes how long a proton can move through a region before losing a significant fraction of its energy to \(pp\) scattering with the ambient medium.

Our results indicate that for the physical conditions observed in the intercloud medium, together with reasonable estimates of the turbulent field strength and maximum turbulence wavelength, protons can be accelerated to characteristic energies \(\sim3\) TeV, indicating that the TeV cosmic rays observed by HESS can thus be produced via stochastic acceleration within the turbulent intercloud environment. In contrast, while the acceleration time associated with the molecular clouds is comparable to those in the intercloud medium, the escape time and the proton cooling time are significantly shorter. As such, protons cannot be energized to TeV energies within the molecular cloud environment.

These results are very encouraging, not only because the idea of stochastic acceleration in a turbulent magnetic field at the GC appears to be a viable mechanism for producing the cosmic rays observed in that region, but especially because the characteristic energy attained by the relativistic protons matches the observations very well. We note, in this regard, that the physical conditions used in our simulations are unique to the GC. As such, cosmic rays like those observed by HESS are not easily produced by this mechanism anywhere else in the Galaxy.

So the investigation now turns to the very important subsequent question, which we already alluded to in Section 1, viz., can we understand the origin of cosmic rays observed at Earth, at least up to energies \(\sim3\)–5 TeV, as the result of stochastic acceleration at the GC followed by energy-dependent diffusion and escape across the Milky Way? Simulations designed to address this issue are currently underway, and the results will be reported elsewhere.

This work was supported by Xavier University through the Hauck Foundation. At the University of Arizona, partial support
was provided by the NASA grant NNX08AX34G and the ONR grant N00014-09-C-0032. In addition, F.M. is grateful to Amherst College for its support through a John Woodruff Simpson Lectureship. Finally, we are happy to acknowledge Stephen O'Sullivan for helpful discussions.

REFERENCES

Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2006, Nature, 439, 695
Aharonian, F. A., & Atoyan, A. M. 1996, A&A, 309, 917
Arons, J., & Max, C. E. 1975, ApJ, 196, L77
Ballantyne, D., Melia, F., & Liu, S. 2007, ApJ, 657, L13
Casse, F., Lemoine, M., & Pelletier, G. 2002, Physic. Rev. D, 65, 023002
Crocker, R., Fatuzzo, M., Jokipii, R., Melia, F., & Volkas, R. 2005, ApJ, 622, 892
Crocker, R. M., Jones, D. I., Melia, F., Ott, J., & Protheroe, R. J. 2010, Nature, 463, 65
Crutcher, R. M. 1998, in Interstellar Turbulence, ed. J. Franco & J. Carraminana (Cambridge: Cambridge Univ. Press), 213
Crutcher, R. M. 1999, ApJ, 520, 706
Fatuzzo, M., & Adams, F. C. 1993, ApJ, 412, 146
Fatuzzo, M., & Melia, F. 2011, MNRAS, 410, L23
Fatuzzo, M., Melia, F., Todd, E., & Adams, F. C. 2010, ApJ, 725, 515

Gammie, C. F., & Ostriker, E. C. 1996, ApJ, 466, 814
Giacalone, J., & Jokipii, J. R. 1994, ApJ, 430, L137
Güsten, R., & Philipp, S. 2004, in The Dense Interstellar Medium in Galaxies, ed. S. P Falzner, C. Kramer, C. Staubmeier, & A. Heithausen (Berlin: Springer), 253
Hunter, S. D., Bertsch, D. L., Catelli, J. R., et al. 1997, ApJ, 481, 205
LaRosa, T. N., Brogan, C. L., Shore, S. N., et al. 2005, ApJ, 626, L23
Larson, R. B. 1981, MNRAS, 194, 809
Markoff, S., Melia, F., & Sarcevic, I. 1997, ApJ, 489, L47
McKee, C. F., & Zweibel, E. G. 1995, ApJ, 440, 686
Morris, M. 2007, arXiv:astro-ph/0701050
Morris, M., & Yusef-Zadeh, F. 1989, ApJ, 343, 703
Mouschovias, T. Ch., & Psaltis, D. 1995, ApJ, 444, L105
Myers, P. C., & Gammie, C. F. 1999, ApJ, 522, 141
Myers, P. C., & Goodman, A. A. 1988, ApJ, 326, L27
Myers, P. C., Ladd, E. F., & Fuller, G. A. 1991, ApJ, 372, 95
O’Sullivan, S., Reville, B., & Taylor, A. M. 2009, MNRAS, 400, 248
Rockefeller, G., Fryer, C. L., Melia, F., & Warren, M. S. 2004, ApJ, 604, 662
Schlickeiser, R. 1989, ApJ, 336, 243
Tsuboi, M., Toshihiro, H., & Ukita, N. 1999, ApJS, 120, 1
Walmsley, C. M., Guesten, R., Angerhofer, P., Churchwell, E., & Mundy, L. 1986, A&A, 155, 129
Wommer, E., Melia, F., & Fatuzzo, M. 2008, MNRAS, 387, 987
Yusef-Zadeh, F., & Morris, M. 1987, AJ, 94, 1178