A Fast Algorithm for SAT in Terms of Formula Length

Junqiang Peng and Mingyu Xiao

School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China
jqpeng@foxmail.com, myxiao@gmail.com

Abstract. In this paper, we prove that the general CNF satisfiability problem can be solved in \(O^*(1.0646^L)\) time, where \(L\) is the length of the input CNF-formula (i.e., the total number of literals in the formula), which improves the current bound \(O^*(1.0652^L)\) given by Chen and Liu 12 years ago. Our algorithm is a standard branch-and-search algorithm analyzed by using the measure-and-conquer method. We avoid the bottleneck in Chen and Liu’s algorithm by simplifying the branching operation for 4-degree variables and carefully analyzing the branching operation for 5-degree variables. To simplify case-analyses, we also introduce a general framework for analysis, which may be able to be used in other problems.

Keywords: Parameterized Algorithms · Satisfiability · Measure-and-Conquer.

1 Introduction

Propositional Satisfiability is the problem of determining, for a formula of the propositional calculus, if there is an assignment of truth values to its variables for which that formula evaluates to true. By SAT, we mean the problem of propositional satisfiability for formulas in conjunctive normal form (CNF) \(^5\). The SAT problem is the first problem proved to be NP-complete \(^6\) and it plays an important role in computational complexity and artificial intelligence \(^7\). There are numerous investigations on this problem in different fields, such as approximation algorithms, randomized algorithms, heuristic algorithms, and exact and parameterized algorithms. In this paper, we study parameterized algorithms for SAT parameterized by the input length.

To measure the running time bound for the SAT problem, there are three frequently used parameters: the number of variables \(n\), the number of clauses \(m\), and the input length \(L\). The input length \(L\) is defined as the sum of the number of literals in each clause. The number of variables \(n\) should be the most basic parameter. The simple brute force algorithm to try all \(2^n\) possible assignments of the \(n\) variables will get the running time bound of \(O^*(2^n)\).\(^8\) After decades of

\(^1\) The \(O^*\) notation supervises all polynomial factors, i.e., \(f(n) = O^*(g(n))\) means \(f(n) = O(g(n)n^{O(1)})\).
Table 1. Previous and our upper bound for SAT

Running time bounds	References
\(O^*(1.0927^L)\)	Van Gelder 1988 [16]
\(O^*(1.0801^L)\)	Kullmann and Luckhardt 1997 [13]
\(O^*(1.0758^L)\)	Hirsch 1998 [10]
\(O^*(1.074^L)\)	Hirsch 2000 [11]
\(O^*(1.0663^L)\)	Wahlström 2005 [17]
\(O^*(1.0652^L)\)	Jianer Chen and Yang Liu 2009 [2]
\(O^*(1.0646^L)\)	This paper 2021

hard work, no one can break this trivial bound. The Strong Exponential Time
Hypothesis conjectures that the SAT problem cannot be solved in time \(O^*(c^n)\) for
some constant \(c < 2\) [12]. For a restricted version, the \(k\)-SAT problem (the length
of each clause in the formula is bounded by a constant \(k\)), better results have been
developed. For example, 3-SAT can be solved in \(O^*(1.3279^m)\) time [13], 4-SAT
can be solved in \(O^*(1.4986^m)\) time [13], and \(k\)-SAT can be solved in \(O^*(c(k)^m)\)
time for some value \(c(k)\) depending on \(k\) [14]. When it comes to the parameter
\(m\), Monien et al. first gave an algorithm with time complexity \(O^*(1.260^m)\) in
1981 [15]. Later, the bound was improved to \(O^*(1.239^m)\) by Hirsch in 1998 [10],
and then improved to \(O^*(1.234^m)\) by Yamamoto in 2005 [19]. Now the best
result is \(O^*(1.2226^m)\) obtained by Chu, Xiao, and Zhang [3].

The input length \(L\) is another important and frequently studied parameter.
It is probably the most precise parameter to describe the input CNF-Formula.
From the first algorithm with running time bound \(O^*(1.0927^L)\) by Van Gelder
in 1988 [16], the result was improved several times. In 1997, the bound was
improved to \(O^*(1.0801^L)\) by Kullmann and Luckhardt [13]. In 1998, the bound
was improved to \(O^*(1.0758^L)\) by Hirsch [10], and improved again by Hirsch to
\(O^*(1.074^L)\) in 2000 [11]. Then Wahlström gave an \(O^*(1.0663^L)\)-time algorithm
in 2005 [17]. In 2009, Chen and Liu [2] used the measure-and-conquer method to
analyze the running time bound and further improved the result to \(O^*(1.0652^L)\).
We list the major progress and our result in Table 1.

Our algorithm, as well as most algorithms for the SAT problem, is based
on the branch-and-search process. The idea of branch-and-search is simple and
practical: for a given CNF-formula \(F\), we iteratively branch on a variable or
literal \(x\) into two branches by assigning value 1 or 0 to it. Let \(F_{x=1}\) and \(F_{x=0}\)
be the resulted CNF-formula by assigning value 1 and 0 to \(x\), respectively. It holds
that \(F\) is satisfiable if and only if at least one of \(F_{x=1}\) and \(F_{x=0}\) is satisfiable.
To get a running time bound, we need to analyze how much the parameter \(L\)
can decrease in each branch. To break some bottlenecks in direct analysis, some
references [17,2] analyzed the algorithm based on some other measures and gave
the relation between the new measure and \(L\). The current best result [2] was
obtained by using the measure-and-conquer method, which is also to use a new
measure. This is the first time to bring the measure-and-conquer method to
this research line. In this paper, we further improve the running time bound
by still using the measure-and-conquer method. Similar to many measure-and-conquer algorithms, our algorithm and the algorithm in [2] deal with variables from high degree to low degree. The algorithm in [2] carefully analyzed branching operations for variables of degree 4. Our algorithm will simplify the branching operation for 4-degree variables and carefully analyze the branching operation for 5-degree variables. Finally, we can improve the bound to $O^*(1.0646^k)$.

2 Preliminaries

Let $V = \{x_1, x_2, ..., x_n\}$ denote a set of n boolean variables. Each variable x_i $(i \in \{1, 2, ..., n\})$ has two corresponding literals: positive literal x_i and negative literal $\overline{x_i}$ (we use $\overline{\cdot}$ to denote the negation of a literal x, and $\overline{x} = x$). A clause on V consists of some literals on V. Note that we allow a clause to be empty. A clause $\{z_1, z_2, ..., z_q\}$ is also simply written as $z_1 z_2 ... z_q$. Thus, we use zC to denote the clause containing literal z and all literals in clause C. We also use $C_1 C_2$ to denote the clause containing all literals in clauses C_1 and C_2. We use C to denote a clause that contains the negation of every literal in clause C. That is, if $C = z_1 z_2 ... z_q$, then $C = \overline{z_1} \overline{z_2} ... \overline{z_q}$. A CNF-formula on V is the conjunction of a set of clauses $F = \{C_1, C_2, ..., C_m\}$. When we say a variable x is contained in a clause (or a formula), it means that the clause (at least one clause of the formula) contains a literal x or its negative \overline{x}.

An assignment for V is a map $A : V \rightarrow \{0, 1\}$. A clause C_j is satisfied by an assignment if and only if there exists at least one literal in C_j such that the assignment makes its value 1. A CNF-formula is satisfied by an assignment A if and only if each clause in it is satisfied by A. We say a CNF-formula is satisfiable if it can be satisfied by at least one assignment. We may assign value 0 or 1 to a literal, which is indeed to assign a value to its variable to make the corresponding literal 0 or 1.

A literal z is called an (i, j)-literal (resp., an (i^+, j)-literal or (i^-, j)-literal) in a formula F if z appears i (resp. at least i or at most i) times and \overline{z} appears j times in the formula F. Similarly, we can define (i, j^+)-literal, (i, j^-)-literal, (i^+, j^+)-literal, (i^-, j^-)-literal, and so on. Note that literal z is an (i, j)-literal if and only if literal \overline{z} is a (j, i)-literal. A variable x is an (i, j)-variable if the positive literal x is an (i, j)-literal. For a variable or a literal x in formula F, the degree of it, denoted by $\deg(x)$, is the number of x appearing in F plus the number of \overline{x} appearing in F, i.e., $\deg(x) = i + j$ for an (i, j)-variable or (i, j)-literal x. A d-variable (resp., d^+-variable or d^--variable) is a variable with the degree exactly d (resp., at least d or at most d). The degree of a formula F is the maximum degree of all variables in F. For a clause or a formula C, the set of variables whose literal appears in C is denoted by $\var(C)$.

The length of a clause C, denoted by $|C|$, is the number of literals in C. A clause is a k-clause or k^+-clause if the length of it is k or at least k. We use $L(F)$ to indicate the length of a formula F. It is the sum of the lengths of all clauses in F, which is also the sum of the degrees of all variables in F. A formula F is called k-CNF formula if each clause in F has a length of at most k.

A Fast Algorithm for SAT in Terms of Formula Length 3
In a formula \mathcal{F}, a literal x is called a \textit{neighbor} of a literal z if there is a clause containing both z and x. The set of neighbors of a literal z in a formula \mathcal{F} is denoted by $N(z, \mathcal{F})$. We also use $N^{(k)}(x, \mathcal{F})$ (resp., $N^{(k^+)}(z, \mathcal{F})$) to denote the neighbors of z in k-clauses (resp., k^+-clauses) in \mathcal{F}, i.e., for any $z' \in N^{(k)}(z, \mathcal{F})$ (resp., $z' \in N^{(k^+)}(z, \mathcal{F})$), there exists a k-clause (resp., k^+-clause) containing both z and z'.

3 Branch-&-Search and Measure-&-Conquer

Our algorithm is a standard branch-and-search algorithm, which first applies some reduction rules to reduce the instance as much as possible and then searches for a solution by branching. The branching operations may exponentially increase the running time. We will use a measure to evaluate the size of the search tree generated in the algorithm. For the SAT problem, the number of variables or clauses of the formula is a commonly used measure. More fundamentals of branching heuristics about the SAT problem can be found in [1].

We use $T(\mu)$ to denote the maximum size or number of leaves of the search tree generated by the algorithm for any instance with the measure being at most μ. For a branching operation that branches on the current instance into l branches with the measure decreasing by at least a_i in the i-th branch, we get a recurrence relation

$$T(\mu) \leq T(\mu - a_1) + T(\mu - a_2) + \cdots + T(\mu - a_l).$$

The recurrence relation can also be simply represented by a branching vector $[a_1, a_2, \ldots, a_l]$. The largest root of the function $f(x) = 1 - \sum_{i=1}^{l} x^{-a_i}$ is called the branching factor of the recurrence. If the maximum branching factor for all branching operations in the algorithm is at most γ, then $T(\mu) = O(\gamma^\mu)$. If on each node of the search tree, the algorithm runs in polynomial time, then the total running time of the algorithm is $O^*(\gamma^\mu)$. For two branching vectors $\mathbf{a} = [a_1, a_2, \ldots, a_l]$ and $\mathbf{b} = [b_1, b_2, \ldots, b_l]$, if $a_i \geq b_i$ holds for all $i = 1, 2, \ldots, l$, then the branching factor of \mathbf{a} is not greater than that of \mathbf{b}. For this case, we say \mathbf{b} \textit{dominates} \mathbf{a}. This property will be used in many places to simplify some arguments in the paper. More details about analyzing recurrences can be found in the monograph [9].

The measure-and-conquer method [8] is a powerful tool to analyze branch-and-search algorithms. The main idea of the method is to adopt a new measure in the analysis of the algorithm. For example, instead of using the number of variables as the measure, it may set weights to different variables and use the sum of all variable weights as the measure. This method may be able to catch more structural properties and then get further improvements. Nowadays, the fastest exact algorithms for many NP-hard problems were designed by using this method. In this paper, we will also use the measure-and-conquer method.

We introduce a weight to each variable in the formula according to the degree of the variable, $w: \mathbb{Z}^+ \rightarrow \mathbb{R}^+$, where \mathbb{Z}^+ and \mathbb{R}^+ denote the sets of nonnegative
A Fast Algorithm for SAT in Terms of Formula Length

integers and nonnegative reals, respectively. Let w_i denote the weight of a variable with degree i. A variable with lower degree will not receive a higher weight, i.e., $w_i \geq w_{i-1}$. In our algorithm, the measure of a formula \mathcal{F} is defined as

$$\mu(\mathcal{F}) = \sum_x w_{\deg(x)}.$$

In other words, $\mu(\mathcal{F})$ is the sum of the weight of all variables in \mathcal{F}. Let n_i denote the number of i-variables in \mathcal{F}. Then we also have that $\mu(\mathcal{F}) = \sum_i w_i n_i$.

One important step is to set the value of weight w_i. Different values of w_i will generate different branching vectors and factors. We need to find a good setting of w_i so that the worst branching factor is as small as possible. We will get the value of w_i by solving a quasiconvex program after listing all our branching vectors. However, we pre-specify some requirements of the weights to simplify arguments. Some similar assumptions were used in previous measure-and-conquer algorithms. We set the weight such that

$w_1 = w_2 = 0$,

$0 < w_3 < 2$, $w_4 = 2w_3$, and

$w_i = i$ for $i \geq 5$.

We use δ_i to denote the difference between w_i and w_{i-1} for $i > 0$, i.e., $\delta_i = w_i - w_{i-1}$. By (2), we have

$$w_3 = \delta_3 = \delta_4.$$

We also assume that

$\delta_i \leq \delta_{i-1}$ for $i \geq 3$, and

$w_3 \geq \delta_5$.

Under these assumptions, it holds that $w_i \leq i$ for each i. Thus, we have

$$\mu(\mathcal{F}) \leq L(\mathcal{F}).$$

This tells us that if we can get a running time bound of $O^*(c^{\mu(\mathcal{F})})$ for a real number c, then we also get a running time bound of $O^*(c^{L(\mathcal{F})})$ for this problem. To obtain a running time bound in terms of the formula length $L(\mathcal{F})$, we consider the measure $\mu(\mathcal{F})$ and show how much the measure $\mu(\mathcal{F})$ decreases in the branching operations of our algorithm and find the worst branching factor among all branching vectors.

4 The Algorithm

We will first introduce our algorithm and then analyze its running time bound by using the measure-and-conquer method. Our algorithm consists of reduction operations and branching operations. When no reduction operations can be applied anymore, the algorithm will search for a solution by branching. We first introduce our reduction rules.
4.1 Reduction Rules

We have ten reduction rules. They are well-known and frequently used in the literature (see [17, 2] for examples). So we may omit the proofs of the correctness of some rules. We introduce the reduction rules in the order as stated and a reduction rule will be applied in our algorithm only when all previous reduction rules can not be applied on the instance.

R-Rule 1 (Elimination of duplicated literals). If a clause C contains duplicated literals z, remove all but one z in C.

R-Rule 2 (Elimination of subsumptions). If there are two clauses C and D such that $C \subseteq D$, remove clause D.

R-Rule 3 (Elimination of tautology). If a clause C contains two opposite literals z and \overline{z}, remove clause C.

R-Rule 4 (Elimination of 1-clauses and pure literals). If there is a 1-clause $\{x\}$ or a $(1^+, 0)$-literal x, assign $x = 1$.

Davis-Putnam Resolution, proposed in [6], is a classic and frequently used technology for SAT. Let F be a CNF-formula and x be a variable in F. Assume that clauses containing literal x are $xC_1, xC_2, ..., xC_a$ and clauses containing literal \overline{x} are $\overline{x}D_1, \overline{x}D_2, ..., \overline{x}D_b$. A Davis-Putnam resolution on x is to construct a new CNF-formula $DP_x(F)$ by the following method: initially $DP_x(F) = F$; add new clauses C_iD_j for each $1 \leq i \leq a$ and $1 \leq j \leq b$; and remove $xC_1, xC_2, ..., xC_a, \overline{x}D_1, \overline{x}D_2, ..., \overline{x}D_b$ from the formula. It is known that

Proposition 1 ([6]). A CNF-formula F is satisfiable if and only if $DP_x(F)$ is satisfiable.

In the resolution operation, each new clause C_iD_j is called a resolvent. A resolvent is trivial if it contains both a literal and the negation of it. Since trivial resolvents will always be satisfied, we can simply delete trivial resolvents from the instance directly. So when we do resolutions, we assume that all trivial resolvents will be deleted.

R-Rule 5 (Trivial resolution). If there is a variable x with at most one non-trivial resolvent, then apply resolution on x.

R-Rule 6 ([2]). If there are a 2-clause z_1z_2 and a clause C containing both z_1 and $\overline{z_2}$, then remove $\overline{z_2}$ from C.

R-Rule 7. If there are two clauses $z_1z_2C_1$ and $z_1\overline{z_2}C_2$, where literal $\overline{z_2}$ appears in no other clauses, then remove z_1 from clause $z_1z_2C_1$.

Lemma 1. Let F be a CNF-formula and F' be the resulting formula after applying R-Rule 7 on F. Then F is satisfiable if and only if F' is satisfiable.
\textbf{Proof.} Let \mathcal{F} be the original formula and \mathcal{F}' be the formula after replacing clause $z_1 z_2 C_1$ with clause $\neg z_2 C_1$ in \mathcal{F}. Clearly, if \mathcal{F}' is satisfied then \mathcal{F} is satisfied. We consider the other direction.

Assume that \mathcal{F} is satisfied by an assignment A. We show that \mathcal{F}' is also satisfied. If $z_2 C_1$ is satisfied by assignment A, then \mathcal{F}' is satisfied by assignment A. Next, we assume assignment A satisfies $z_1 \neg z_2 C_1$ but not $\neg z_2 C_1$. Then in A, we have that $z_1 = 1$ and $z_2 = 0$. Since $\neg z_2$ is a $(1,1^*)$-literal and $z_1 \neg z_2 C_2$ is the only clause containing $\neg z_2$, we know that all clauses will be satisfied if we replace $z_2 = 0$ with $z_2 = 1$ in A. Thus, \mathcal{F}' is still satisfied. \hfill \Box

\textbf{R-Rule 8 ([2]).} If there is a 2-clause $z_1 z_2$ and a clause $\neg z_1 z_2 C$ such that literal $\neg z_2$ appears in no other clauses, remove the clause $z_1 z_2$ from \mathcal{F}.

\textbf{R-Rule 9 ([2]).} If there is a 2-clause $z_1 z_2$ such that either literal z_1 appears only in this clause or there is another 2-clause $\neg z_1 z_2$, then replace z_1 with $\neg z_2$ in \mathcal{F} and then apply R-Rule 8 as often as possible.

\textbf{R-Rule 10 ([2]).} If there are two clauses $C D_1$ and $C D_2$ such that $|D_1|, |D_2| \geq 1$ and $|C| \geq 2$, then remove $C D_1$ and $C D_2$ from \mathcal{F}, and add three new clauses $xC, \neg D_1$, and $\neg D_2$, where x is a new 3-variable.

This is like the Davis-Putnam resolution in reverse and thus it is correct.

\textbf{Definition 1 (Reduced formulas).} A CNF-formula \mathcal{F} is called reduced, if none of the above reduction rules can be applied on it.

Our algorithm will first iteratively apply above reduction rules in the order to get a reduced formula. We will use $R(\mathcal{F})$ to denote the resulting reduced formula obtained from \mathcal{F}. Next, we show some properties of reduced formulas.

\textbf{Lemma 2.} In a reduced CNF-formula \mathcal{F}, all variables are 3^+-variables.

\textbf{Proof.} If there is a 1-variable, then R-Rule 4 could be applied. For a 2-variable in \mathcal{F}, if it is a $(2,0)$-variable or $(0,2)$-variable, then R-Rule 4 could be applied; if it is a $(1,1)$-variable, R-Rule 5 could be applied. \hfill \Box

\textbf{Lemma 3.} In a reduced CNF-formula \mathcal{F}, if there is a 2-clause xy, then no other clause in \mathcal{F} contains xy, $\neg xy$, or $x \neg y$.

\textbf{Proof.} If there is a clause containing xy, then R-Rule 10 could be applied. If there is a clause containing $\neg xy$ or $x \neg y$, then R-Rule 110 could be applied. \hfill \Box

\textbf{Lemma 4.} In a reduced CNF-formula \mathcal{F}, if there is a clause xyC, then

\begin{itemize}
 \item[(i)] no other clause contains xy;
 \item[(ii)] no other clause contains $\neg xy$ or $\neg x \neg y$ if x is a 3-variable.
\end{itemize}
Proof. (i): If there is a clause containing \(xy \), R-Rule 10 can be applied.

(ii): Since \(x \) is a 3-variable and all \((1^+,0)\)-literals are reduced by R-Rule 4, \(x \) is actually a \((1,2)\)-variable or \((2,1)\)-variable. If there is a clause containing \(xy \), R-Rule 7 is applicable. If there is a clause containing \(x y \), then there is only one non-trivial resolvent after resolving on \(x \), which means R-Rule 5 is applicable.

Lemma 5. In a reduced CNF-formula \(\mathcal{F} \), if there is \((1,i)\)-literal \(x \) and \(xC \) is the only clause containing \(x \), then

(i) \(|C| \geq 2 \);
(ii) all variables in \(C \) are different from all variables in \(N^{(2)}(\mathcal{T}, F) \), that is, if \(y \in N^{(2)}(\mathcal{T}, F) \), then \(y, \overline{y} \notin C \).

Proof. (i): If \(|C| = 0 \), then R-Rule 4 could be applied; if \(|C| = 1 \), which means \(xC \) is a 2-clause, then R-Rule 9 could be applied since \(x \) is a \((1,i)\)-literal.

(ii): Assume that \(y \) is a literal in \(N^{(2)}(\mathcal{T}, F) \), in other words, there is a 2-clause \(\mathcal{T}y \). Note that \(x \) is a \((1,i)\)-literal. If \(y \in C \), then R-Rule 7 could be applied; if \(y \in C \), then R-Rule 8 could be applied.

4.2 Branching Rules and the Algorithm

After getting a reduced formula, we will search for a solution by branching. In a branching operation, we will generate two smaller CNF-formulas such that the original formula is satisfiable if and only if at least one of the two new formulas is satisfiable. The two smaller formulas are generated by specifying the value of a set of literals in the original formula.

The simplest branching rule is that we pick up a variable or literal \(x \) from \(\mathcal{F} \) and branch into two branches \(\mathcal{F}_{x=1} \) and \(\mathcal{F}_{x=0} \), where \(\mathcal{F}_{x=1} \) and \(\mathcal{F}_{x=0} \) are the formulas after assigning \(x = 1 \) and \(x = 0 \) in \(\mathcal{F} \), respectively. When the picked literal \(x \) is a \((1,1^+)\)-literal, we will apply a stronger branching. Assume that \(xC \) is the only clause containing \(x \). Then we branch into two branches \(\mathcal{F}_{x=1 \land C=0} \) and \(\mathcal{F}_{x=0} \), where \(\mathcal{F}_{x=1 \land C=0} \) is the resulting formula after assigning 1 to \(x \) and 0 to all literals in \(C \) in \(\mathcal{F} \). The correctness of this branching operation is also easy to observe. Only when all literals in \(C \) are assigned 0, we need to assign 1 to \(x \).

The main steps of our algorithm for the SAT problem are given in Algorithm 1. The algorithm will execute one step only when all previous steps can not be applied. In Step 2, the algorithm first reduces the formula by applying the reduction rules. Step 3 will branch on a variable of degree \(\geq 6 \) if it exists. Steps 4-8 deal with 5-variables. Note that if Steps 1-7 do not apply, then \(\mathcal{F} \) can be written as \(\mathcal{F} = \mathcal{F}^* \land \mathcal{F}' \), where \(\mathcal{F}^* \) is a 3-CNF with var(\(\mathcal{F}^* \)) be the set of 5-variables in \(\mathcal{F} \) and var(\(\mathcal{F}^* \)) \cap var(\(\mathcal{F}' \)) = \(\emptyset \). So we can do Step 8. Steps 9-10 deal with 4-variables. When the algorithm comes to the last step, all variables must have a degree of 3 and the algorithm deals with this special case.
Algorithm 1: SAT(F)

Input: a CNF-formula F

Output: 1 or 0 to indicate the satisfiability of F

Step 1. If $F = \emptyset$, return 1. If F contains an empty clause, return 0.

Step 2. If F is not a reduced CNF-formula, iteratively apply the reduction rules to reduce it.

Step 3. If there is a d-variable x with $d \geq 6$, return SAT($F_{x=1}$) \lor SAT($F_{x=0}$).

Step 4. If there is a (1, 4)-literal x (assume x is the only clause containing x), return SAT($F_{x=1} \land C = 0$) \lor SAT($F_{x=0}$).

Step 5. If there is a 5-variable x contained in a 2-clause, return SAT($F_{x=1}$) \lor SAT($F_{x=0}$).

Step 6. If there is a 5-variable x contained in a 4+-clause, return SAT($F_{x=1}$) \lor SAT($F_{x=0}$).

Step 7. If there is a clause containing both a 5-variable x and a 4--variable, return SAT($F_{x=1}$) \lor SAT($F_{x=0}$).

Step 8. If there are still some 5-variables, then $F = F^* \land F'$, where F^* is a 3-CNF with $\text{var}(F^*)$ be the set of 5-variables in F and $\text{var}(F^*) \cap \text{var}(F') = \emptyset$. We return SAT($F^*$) \land SAT(F') and solve F^* by using the 3-SAT algorithm by Liu [14].

Step 9. If there is a (1, 3)-literal x (assume x is the only clause containing x), return SAT($F_{x=1} \land C = 0$) \lor SAT($F_{x=0}$).

Step 10. If there is a (2, 2)-literal x, return SAT($F_{x=1}$) \lor SAT($F_{x=0}$).

Step 11. Apply the algorithm by Wahlström [15] to solve the instance.

We compare our algorithm with the previous algorithm by Chen and Liu [2]. We can see that they used a simple and uniform branching rule to deal with variables of degree at least 5 and used careful and complicated branching rules for 4-variables. Their bottlenecks contain one case of branching on (2, 3)-variables (or (3, 2)-variables) and one case of dealing with 4-variables. To get further improvements, we carefully design and analyze the branching rules for 5-variables to avoid one previous bottleneck, and also refine the branching rules for 4-variables.

Framework of the Analysis

We use the measure-and-conquer method to analyze the running time bound of our algorithm, and adopt $\mu(F)$ defined in [11] as the measure to construct recurrence relations for our branching operations. Before analyzing each detailed step of the algorithm, we first introduce the general framework of our analysis.

In each sub-branch of a branching operation, we assign value 1 or 0 to some literals and remove some clauses and literals. If we assign value 1 to a literal x in the formula F, then we will remove all clauses containing x and all x literals from the clauses containing x. The assignment and removing together are called an assignment operation. We may assign values to more than one literal and we do assignment operations for each literal. Let S be a subset of literals. We use $F_{S=1}$ to denote the resulting formula after assigning 1 to each literal in S and doing
assignment operations. Note that \(F_{S=1}\) may not be a reduced formula and we will apply our reduction rules to reduce it. We use \(F'_{S=1}\) to denote the reduced formula obtained from \(F_{S=1}\), i.e., \(F'_{S=1} = R(F_{S=1})\). We analyze how much we can reduce the measure in each branch by establishing some lower bounds for

\[\Delta_S = \mu(F) - \mu(F'_{S=1}).\]

We also define

\[\xi_S^{(1)} = \mu(F) - \mu(F_{S=1});\]

\[\xi_S^{(2)} = \mu(F_{S=1}) - \mu(F'_{S=1}).\]

Thus, \(\Delta_S = \xi_S^{(1)} + \xi_S^{(2)}\).

In a branching operation, we will branch into two sub branches. Assume that the set of literals in \(S_1\) are assigned the value in the first sub branch and the set of literals in \(S_2\) are assigned the value in the second sub branch. If we can show

\[\min(\Delta_{S_1}, \Delta_{S_2}) \geq a \text{ and } \Delta_{S_1} + \Delta_{S_2} \geq b,\]

then we can always get a branching vector covered by one of

\[[a, b - a] \text{ and } [b - a, a].\]

This technique will be frequently used in our analysis.

5.1 Some Lower Bounds

Next, we show some detailed lower bounds for \(\Delta_S\) (as well as for \(\Delta_{S_1} + \Delta_{S_2}\)). We first consider \(\xi_S^{(1)}\) and \(\xi_S^{(2)}\).

According to the assignment operation, we know that all variables of the literals in \(S\) will be deleted in \(F_{S=1}\). So we have a trivial bound

\[\xi_S^{(1)} \geq \sum_{v \in S} w_{\deg(v)}.\] \[(6)\]

To get better bounds, we first define some notations. For a literal \(x\) in a reduced formula \(F\), we define:

- \(n_i(x)\): the number of \(i\)-variables whose literals appear in \(N(x, F)\);
- \(n'_i(x)\): the number of \(i\)-variables whose literals appear in \(N^{(2)}(x, F)\);
- \(n''_i(x)\): the number of \(i\)-variables whose literals appear in \(N^{(3+)}(x, F)\).

Note that by the definition, we always have that \(n_i(x) = n'_i(x) + n''_i(x)\).

Next, we give some lower bounds on \(\xi_S^{(1)}\), \(\xi_S^{(2)}\), and \(\Delta_{S_1} + \Delta_{S_2}\), which will be used to prove our main results.

Lemma 6. Assume that \(F\) is a reduced CNF-formula. Let \(S = \{x\}\), where \(x\) is a literal in \(F\). It holds that

\[\xi_S^{(1)} \geq w_{\deg(x)} + \sum_{i \geq 3} n_i(x)\delta_i.\] \[(7)\]
Proof. After assigning value 1 to literal x, all clauses containing x will be removed from F, that is, all literals in $N(x, F)$ will be removed from F. By Lemma 4, we can know that all literals in $N(x, F)$ are unique. For a variable y in $N(x, F)$ (the variable of literal y and \overline{y} are the same, y), the degree of y will decrease at most 2. Moreover, if y is a 3-variable, by Lemma 4 we know that y and \overline{y} will not appear in $N(x, F)$ simultaneously since there is no other clause containing $x\overline{y}$. So the degree of y will decrease by at most 1 if y is a 3-variable.

Let $t_{1,i}(x)$ and $t_{2,i}(x)$ denote the number of i-variables that appear once and twice in $N(x, F)$, respectively. We have $n_i(x) = t_{1,i}(x) + 2t_{2,i}(x)$ and $t_{2,3}(x) = 0$. By the definition of $\xi_S^{(1)}$, we get that

$$\xi_S^{(1)} \geq w_{\text{deg}(x)} + (\sum_{3 \leq i \leq d} t_{1,i}(x)\delta_i) + (\sum_{4 \leq i \leq d} t_{2,i}(x)(\delta_i + \delta_{i-1}))$$

$$\geq w_{\text{deg}(x)} + (\sum_{3 \leq i \leq d} t_{1,i}(x)\delta_i) + (\sum_{4 \leq i \leq d} t_{2,i}(x)(\delta_i + \delta_i)) \quad \text{by } \delta_{i-1} \geq \delta_i$$

$$= w_{\text{deg}(x)} + (\sum_{3 \leq i \leq d} t_{1,i}(x)\delta_i) + (\sum_{3 \leq i \leq d} 2t_{2,i}(x)\delta_i) \quad \text{by } t_{2,3}(x) = 0$$

$$= w_{\text{deg}(x)} + \sum_{3 \leq i \leq d} (t_{1,i}(x) + 2t_{2,i}(x))\delta_i \quad \text{by } n_i(x) = t_{1,i}(x) + 2t_{2,i}(x)$$

$$= w_{\text{deg}(x)} + \sum_{3 \leq i \leq d} n_i(x)\delta_i.$$

\[\square\]

Lemma 7. Assume that F is a reduced CNF-formula of degree d. Let $S = \{x\}$, where x is a $(j, d-j)$-literal in F. It holds that

$$\xi_S^{(1)} \geq w_d + j\delta_d. \quad (8)$$

Proof. By the condition, we can know that $\text{deg}(x) = j + d - j = d$ and $\sum_{3 \leq i \leq d} n_i(x) \geq j$. By Lemma 4, we have

$$\xi_S^{(1)} \geq w_{\text{deg}(x)} + \sum_{3 \leq i \leq d} n_i(x)\delta_i$$

$$\geq w_d + \sum_{3 \leq i \leq d} n_i(x)\delta_d$$

$$= w_d + (\sum_{3 \leq i \leq d} n_i(x))\delta_d$$

$$\geq w_d + j\delta_d$$

\[\square\]

Lemma 8. Assume that F is a reduced CNF-formula of degree d. Let $S = \{x\}$, where x is a literal in F. It holds that

$$\xi_S^{(2)} \geq n_3'(\overline{x})w_3 + \sum_{4 \leq i \leq d} n_i'(\overline{x})w_{i-1}. \quad (9)$$
Proof. Recall that $\xi_{S_1}^{(2)}$ expresses how much the measure decrease after applying reduction rules on $\mathcal{F}_{S=1}$. All literals in $N(\overline{x}, \mathcal{F})$ will be assigned value 1 since R-Rule 6 is applied. So we need to consider how the degree of each variable in $N(\overline{x}, \mathcal{F})$ change in $\mathcal{F}_{S=1}$. By Lemma 8, for a literal $y \in N^{(2)}(\overline{x}, \mathcal{F})$, we can know that there is no other clause containing xy. So if variable y is an i-variable in \mathcal{F}, then the degree of y in $\mathcal{F}_{S=1}$ is at least $i-1$. Moreover, for a literal $y \in N^{(2)}(\overline{x}, \mathcal{F})$ such that y is a 3-variable, we can know that there is no other clause containing xy or \overline{xy} with Lemma 4 which means y would still be a 3-variable in $\mathcal{F}_{S=1}$. Since all variables in $N(\overline{x}, \mathcal{F})$ would not appear in $\mathcal{F}_{S=1}$ and these variables are distinct from each other by Lemma 8, the lemma holds by the definition of $\xi_{S_1}^{(2)}$.

Lemma 9. Assume that \mathcal{F} is a reduced CNF-formula of degree d. Let $S_1 = \{x\}$ and $S_2 = \{\overline{x}\}$, where the corresponding variable of x is a d-variable in \mathcal{F}. It holds that

$$\Delta_{S_1} + \Delta_{S_2} \geq 2w_d + 2d\delta_d + (n_3'(x) + n_3'(\overline{x})) (2w_3 - 2\delta_d) + \sum_{4 \leq i \leq d} (n_i'(x) + n_i'(\overline{x}))(w_i - 2\delta_d).$$

(10)

Proof. We can get that

$$\xi_{S_1}^{(1)} \geq w_d + \sum_{3 \leq i \leq d} n_i(x)\delta_i.$$ by Lemma 8 and $\deg(x) = d$

$$\xi_{S_1}^{(2)} \geq n_3'(\overline{x})w_3 + \sum_{4 \leq i \leq d} n_i'(x)w_{i-1}.$$ by Lemma 8

And we can get bounds on $\xi_{S_2}^{(1)}$ and $\xi_{S_2}^{(2)}$ by the same way. So we have that

$$\Delta_{S_1} = \xi_{S_1}^{(1)} + \xi_{S_1}^{(2)} \geq w_d + (\sum_{3 \leq i \leq d} n_i(x)\delta_i) + n_3'(\overline{x})w_3 + \sum_{4 \leq i \leq d} n_i'(x)w_{i-1}.$$ (11)

$$\Delta_{S_2} = \xi_{S_2}^{(1)} + \xi_{S_2}^{(2)} \geq w_d + (\sum_{3 \leq i \leq d} n_i(x)\delta_i) + n_3'(x)w_3 + \sum_{4 \leq i \leq d} n_i'(x)w_{i-1}.$$ (11)

By the definition of n_i and $n_i(\overline{x})$, we have

$$n_i(x) = n_i'(x) + n_i''(x), n_i(\overline{x}) = n_i'(\overline{x}) + n_i''(\overline{x}).$$ (12)

And note that $\sum_{3 \leq i \leq d}(n_i'(x) + n_i'(\overline{x}))$ is exactly the number of 2-clauses containing x or \overline{x}, so we have

$$\sum_{3 \leq i \leq d}(n_i''(x) + n_i''(\overline{x})) \geq 2(d - \sum_{3 \leq i \leq d}(n_i'(x) + n_i'(\overline{x}))).$$ (13)

Now we are ready to proof the lemma:

$$\Delta_{S_1} + \Delta_{S_2} \geq w_d + (\sum_{3 \leq i \leq d} n_i(x)\delta_i) + n_3'(\overline{x})w_3 + \sum_{4 \leq i \leq d} n_i'(x)w_{i-1}$$
Lemma 10. Assume that \mathcal{F} is a reduced CNF-formula of degree d. Let x be a $(1, d - 1)$-literal and xC be the only clause containing x in \mathcal{F}. Let $S = \{x\} \cup \overline{C}$. It holds that

$$\Delta_S \geq w_d + 2w_3 + \sum_{3\leq i \leq d} n'_i(x)w_i.$$ \hspace{1cm} (14)

Proof. By Lemma 6 we can know that $|C| \geq 2$ and all variables in C and $N^{(2)}(\overline{C}, \mathcal{F})$ are different. So after assigning value 1 to all literals in S, all 2-clauses containing \overline{C} in \mathcal{F} would become 1-clauses in $\mathcal{F}_{S=1}$ and the degree of each variable in these 1-clauses would not change after assigning operation. Then, by

$$+ w_d + \left(\sum_{3 \leq i \leq d} n_i(x)\delta_i \right) = \sum_{4 \leq i \leq d} n'_i(x)w_i - 1 \hspace{1cm} \text{by (11)}$$

$$= 2w_d + (n'_3(x) + n'_3(\overline{x}))w_3 + \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))w_i - 1$$

$$+ \sum_{3 \leq i \leq d} (n_i(x) + n_i(\overline{x}))\delta_i$$

$$= 2w_d + (n'_3(x) + n'_3(\overline{x}))w_3 + \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))w_i - 1$$

$$+ \sum_{3 \leq i \leq d} (n_i(x) + n_i(\overline{x}))\delta_i$$

$$\geq 2w_d + (n'_3(x) + n'_3(\overline{x}))w_3 + \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))w_i - 1$$

$$+ \sum_{3 \leq i \leq d} (n_i(x) + n_i(\overline{x}))\delta_i + \sum_{3 \leq i \leq d} (n''_i(x) + n''_i(\overline{x}))\delta_i$$

$$\geq 2w_d + (n'_3(x) + n'_3(\overline{x}))w_3 + \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))w_i - 1$$

$$+ \sum_{3 \leq i \leq d} (n_i(x) + n_i(\overline{x}))\delta_i + 2(d - \sum_{3 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))\delta_i)$$

$$\geq 2w_d + 2d\delta_d + (n'_3(x) + n'_3(\overline{x}))w_3 + \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))w_i - 1$$

$$+ \sum_{3 \leq i \leq d} (n_i(x) + n_i(\overline{x}))\delta_i - 2\delta_d$$

$$= 2w_d + 2d\delta_d + (n'_3(x) + n'_3(\overline{x}))(w_3 + \delta_d - 2\delta_d)$$

$$+ \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))(w_{i-1} + \delta_i - 2\delta_d)$$

$$= 2w_d + 2d\delta_d + (n'_3(x) + n'_3(\overline{x}))(2w_3 - 2\delta_d)$$

$$+ \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))(w_i - 2\delta_d).$$

\hspace{1cm} \text{by (3)}
applying R-Rule4, all variables in these 1-clauses get assignments. In conclusion, all variables in C and $N^{(2)}(\overline{x}, F)$ would not appear in $F_{S=1}$. By the definition of Δ_S, we have

$$
\Delta_S \geq \sum_{v \in S} w_{\text{deg}(v)} + \sum_{3 \leq i \leq d} n_i'(|x|)w_i
$$

$$
\geq w_d + (|S| - 1)w_3 + \sum_{3 \leq i \leq d} n_i'(|x|)w_i
$$

$$
= w_d + |C|w_3 + \sum_{3 \leq i \leq d} n_i'(|x|)w_i
$$

$$
\geq w_d + 2w_3 + \sum_{3 \leq i \leq d} n_i'(|x|)w_i.
$$

\[\square\]

Lemma 11. Assume that F is a reduced CNF-formula of degree d. Let x be a $(1, d - 1)$-literal and xC be the only clause containing x in F. Let $S_1 = \{x\} \cup C$ and $S_2 = \{\overline{x}\}$. It holds that

$$
\Delta_{S_1} + \Delta_{S_2} \geq 2w_d + 2w_3 + 2(d - 1)\delta_d.
$$

Proof. We can get that

$$
\Delta_{S_1} \geq w_d + 2w_3 + \sum_{3 \leq i \leq d} n_i'(\overline{x})w_i,
$$

by Lemma10 (16)

$$
\Delta_{S_2} \geq w_d + \sum_{3 \leq i \leq d} n_i(|x|)\delta_i,
$$

by Lemma6 and $\deg(x) = d$.

Since \overline{x} is a $(d - 1, 1)$-literal, the number of literals in $N^{(3+)}(\overline{x}, F)$, namely $\sum_{3 \leq i \leq d} n'_{i1}(\overline{x})$, is at least $2((d - 1) - \sum_{3 \leq i \leq d} n_1'(|x|))$. We can know that

$$
\sum_{3 \leq i \leq d} n_i'(|x|) = \sum_{3 \leq i \leq d} n_1'(|x|) + \sum_{3 \leq i \leq d} n''_{i1}(|x|)
$$

$$
\geq \sum_{3 \leq i \leq d} n_1'(|x|) + 2((d - 1) - \sum_{3 \leq i \leq d} n_1'(|x|))
$$

$$
= 2(d - 1) - \sum_{3 \leq i \leq d} n_1'(|x|).
$$

So we have

$$
\Delta_{S_1} + \Delta_{S_2} \geq w_d + 2w_3 + \left(\sum_{3 \leq i \leq d} n_i'(|x|)w_i \right) + w_d + \sum_{3 \leq i \leq d} n_i(|x|)\delta_i
$$

$$
\geq 2w_d + 2w_3 + \left(\sum_{3 \leq i \leq d} n_i'(|x|)w_i \right) + \left(\sum_{3 \leq i \leq d} n_i(|x|) \right)\delta_d
$$

$$
\geq 2w_d + 2w_3 + \left(\sum_{3 \leq i \leq d} n_i'(|x|)w_i \right)
$$
\[+ (2(d-1) - \sum_{3 \leq i \leq d} n'_i(\overline{x}))\delta_d \quad \text{by (17)} \]
\[= 2w_d + 2w_3 + 2(d-1)\delta_d + \sum_{3 \leq i \leq d} n'_i(\overline{x})(w_i - \delta_i) \]
\[\geq 2w_d + 2w_3 + 2(d-1)\delta_d. \]

Lemma 12. Assume that \(F \) is a reduced CNF-formula of \(d = 5 \). Let \(S_1 = \{ x \} \) and \(S_2 = \{ \overline{x} \} \), where the corresponding variable of \(x \) is a 5-variable in \(F \). If all clauses containing \(x \) or \(\overline{x} \) are 3\(+ \)-clauses, it holds that
\[\Delta_{S_1} + \Delta_{S_2} \geq 2w_5 + \left(\sum_{3 \leq i \leq 5} (n_i(x) + n_i(\overline{x})) \right)\delta_5
+ \left(\sum_{3 \leq i \leq 4} (n_i(x) + n_i(\overline{x})) \right)(w_3 - \delta_3). \] (18)

Proof. By Lemma 6 and \(\text{deg}(x) = d = 5 \), we can get that
\[\Delta_{S_1} \geq w_5 + \sum_{3 \leq i \leq 5} n_i(x)\delta_i. \]
\[\Delta_{S_2} \geq w_5 + \sum_{3 \leq i \leq 5} n_i(\overline{x})\delta_i. \] (19)

So we have
\[\Delta_{S_1} + \Delta_{S_2} \geq w_5 + \sum_{3 \leq i \leq 5} n_i(x)\delta_i + w_5 + \sum_{3 \leq i \leq 5} n_i(\overline{x})\delta_i \quad \text{by (19)} \]
\[= 2w_5 + (n_3(x) + n_3(\overline{x}))\delta_3 + (n_4(x) + n_4(\overline{x}))\delta_4 + (n_5(x) + n_5(\overline{x}))\delta_5 \]
\[= 2w_5 + \left(\sum_{3 \leq i \leq 5} (n_i(x) + n_i(\overline{x})) \right) - \sum_{3 \leq i \leq 4} (n_i(x) + n_i(\overline{x}))\delta_5
+ \left(\sum_{3 \leq i \leq 4} (n_i(x) + n_i(\overline{x})) \right)w_3 \quad \text{by (8)} \]
\[= 2w_5 + \left(\sum_{3 \leq i \leq 5} (n_i(x) + n_i(\overline{x})) \right)\delta_5 + \left(\sum_{3 \leq i \leq 4} (n_i(x) + n_i(\overline{x})) \right)w_3 \quad \text{by (8)} \]
\[= 2w_5 + \left(\sum_{3 \leq i \leq 5} (n_i(x) + n_i(\overline{x})) \right)\delta_5 + \left(\sum_{3 \leq i \leq 4} (n_i(x) + n_i(\overline{x})) \right)(w_3 - \delta_3). \]

\[\square \]

6 Step Analysis

Equipped with the above lower bounds, we are ready to analyze the branching vector of each step in the algorithm.
6.1 Step 2

In this step, we do not branch and only apply reduction rules to reduce the formula. However, it is still important to show that the measure will never increase when applying reduction rules, and reduction operations use only polynomial time.

Lemma 13. For any CNF-formula F, it holds that

$$\mu(R(F)) \leq \mu(F).$$

Proof. It suffices to verify that each reduction rule would not increase the measure of the formula.

R-Rule 1-8 simply remove some literals, which would not increase the measure of the formula.

Next, we consider R-Rule 9 and 10. Note that now R-Rule 4 and 5 are not applicable, and then all variables in F are 3^+-variables. The reason is below.

If there is a 1-variable, we could apply R-Rule 4. For a 2-variable in F, if it is a $(2, 0)$-variable or $(0, 2)$-variable, R-Rule 4 would be applicable; if it is a $(1, 1)$-variable, R-Rule 5 would be applicable.

For R-Rule 9, without loss of generalization, we assume z_1 is an i-variable and z_2 is a j-variable such that $3 \leq i \leq j$. After applying this rule, z_2 will become an $i+j-2$-variable since we replace z_1 with $\overline{z_2}$ and clause $z_1 z_2$ is removed by R-Rule 3. Next, we show that $\mu(R(F)) - \mu(F) = w_{i+j-2} - w_i - w_j \leq 0$ holds.

By (2), (4) and (3), we can know that:

- if $i = 3$, then
 $$w_{3+j-2} - w_3 - w_j = \delta_{j+1} - w_3 \leq \delta_4 - w_3 = 0;$$
- if $i = 4$, then
 $$w_{4+j-2} - w_4 - w_j = \delta_{j+2} + \delta_{j+1} - w_4 \leq \delta_6 + \delta_5 - w_4 < 0;$$
- if $i \geq 5$, then
 $$w_{i+j-2} - w_i - w_j = (i + j - 2) - i - j = -2 < 0.$$

For R-Rule 10, two clauses CD_1 and CD_2 in F are replaced with three clauses $xC, \overline{C}D_1$ and $\overline{C}D_2$. We introduce a 3-variable x and also decrease the degree of each variable in C by 1. The introduction of x increases the measure of the formula by w_3. On the other hand, since all variables are 3^+-variable in F and $|C| \geq 2$, the degree decreasing for the variables in C contributes the measure decreasing of at least $2 \min \{\delta_i | i \geq 3\} = 2$. Since $w_3 < 2$, we know that

$$\mu(R(F)) - \mu(F) = w_3 - 2 \min \{\delta_i | i \geq 3\} = w_3 - 2 < 2 - 2 = 0.$$

Lemma 14. For any CNF-formula F, we can apply the reduction rules in polynomial time to transfer it to $R(F)$.

\[\square\]
Proof. Each application of any one of the first eight reduction rules removes some literal from the formula and then it decreases \(L(\mathcal{F}) \) at least by 1. For R-Rule 9, after replacing \(z_1 \) with \(\overline{z} \), the clause \(z_1 z_2 \) will be removed by R-Rule 8. So each application of it decreases \(L(\mathcal{F}) \) by at least 2.

It is easy to see that each application of R-Rule 10 increases \(L(\mathcal{F}) \) by at most 1. In the proof of Lemma 13, we have shown that the measure \(\mu(\mathcal{F}) \) decreases at least by \(2 - w_3 \) in this step. Since \(w_3 \) is a constant less than 2, let \(w_3 = 2 - \epsilon \) for a constant \(\epsilon \), then \(\mu(\mathcal{F}) \) decreases by at least \(\epsilon \) after applying R-Rule 10.

In order to make the proof clear, we define a new measure \(M(\mathcal{F}) = L(\mathcal{F}) + 2\mu(\mathcal{F})/\epsilon \). It is easy to see that \(M(\mathcal{F}) \) is bounded by a polynomial of \(L(\mathcal{F}) \). For R-Rule 1-9, it decreases \(M(\mathcal{F}) \) by at least 1. For R-Rule 10, it increases \(M(\mathcal{F}) \) by at most 1. Assume the resulted CNF-formula after applying R-Rule 10 is \(\mathcal{F}' \). It holds that \(L(\mathcal{F}) - L(\mathcal{F}') \geq -1 \) and \(\mu(\mathcal{F}) - \mu(\mathcal{F}') \geq \epsilon \). So

\[
M(\mathcal{F}) - M(\mathcal{F}') = L(\mathcal{F}) - L(\mathcal{F}') + 2(\mu(\mathcal{F}) - \mu(\mathcal{F}'))/\epsilon \geq -1 + 2 = 1.
\]

Since each reduction rule decreases \(M(\mathcal{F}) \) at least by 1, it must stop in polynomial time if we iteratively apply the reduction rules. \(\square \)

6.2 Step 3

In this step, we branch on a variable \(x \) of degree at least 6. The two sub-branches are: \(S_1 = \{x\} \); \(S_2 = \{\overline{x}\} \). We have the following result:

Lemma 15. The branching vector generated by Step 3 is covered

\[
[w_6 + \delta_6, w_6 + 11\delta_6] \text{ or } [w_6 + 11\delta_6, w_6 + \delta_6].
\] (20)

Proof. Since R-Rule 4 is not applicable, both \(x \) and \(\overline{x} \) are \((1^+, 1^+)\)-literals. By the condition of this case, we have \(d \geq 6 \) and \(\delta_d = \delta_6 \) by (2).

By Lemma 7, we can get that \(\Delta_{S_1} \geq \xi_{S_1}^{(1)} \geq w_d + j\delta_d \geq w_6 + \delta_6 \) since \(x \) is a \((j, d-j)\)-literal with \(j \geq 1 \). Also, we can get \(\Delta_{S_2} \geq w_6 + \delta_6 \) by the same method.

By Lemma 9, \(w_3 > \delta_d \) and \(w_i > 2\delta_d \) for \(4 \leq i \leq d \), we have that

\[
\Delta_{S_1} + \Delta_{S_2} \geq 2w_d + 2\delta_d + (n'_3(x) + n'_3(\overline{x}))(2w_3 - 2\delta_d) + \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))(w_i - 2\delta_d) \\
\geq 2w_6 + 12\delta_6.
\]

With \(\min(\Delta_{S_1}, \Delta_{S_2}) \geq w_6 + \delta_6 \) and \(\Delta_{S_1} + \Delta_{S_2} \geq 2w_6 + 12\delta_6 \), we can know that the branching vector of this case is covered by

\[
[w_6 + \delta_6, w_6 + 11\delta_6] \text{ or } [w_6 + 11\delta_6, w_6 + \delta_6].
\]

\(\square \)
6.3 Step 4

In this step, the algorithm will consider a (1, 4)-literal \(x \). Assume that \(xC \) is the only clause containing \(x \). The two sub-branches are: \(S_1 = \{ x \} \cup \overline{C} \); \(S_2 = \{ \overline{x} \} \). We have the following result:

Lemma 16. The branching vector generated by step 4 is covered by

\[
[w_5 + 2w_3, w_5 + 8\delta_5] \text{ or } [w_5 + 8\delta_5, w_5 + 2w_3].
\]

Proof. By Lemma 10 we get that \(\Delta_{S_1} \geq w_4 + 2w_4 + \sum_{3 \leq i \leq d} n'(\overline{x})w_i \geq w_5 + 2w_3 \).

By Lemma 7 we have that \(\Delta_{S_2} \geq \xi_{S_2}^{(1)} \geq w_d + j\delta_d = w_5 + 4\delta_5 \) since \(\overline{x} \) is a (4, 1)-literal.

By Lemma 11 we can get that \(\Delta_{S_1} + \Delta_{S_2} \geq 2w_d + 2w_3 + 2(d - 1)\delta_d = 2w_5 + 2w_3 + 8\delta_5 \).

Since \(w_3 < 2 \) and \(w_5 = 5 \) by (2), we have \(2w_5 > 5w_3 \), i.e., \(2w_5 - 4w_3 > w_3 \).

Since \(w_4 = w_3 \) by (1), we have \(2w_5 - 2w_4 > w_3 \), which implies that \(2\delta_5 > w_3 \).

So \(\min(\Delta_{S_1}, \Delta_{S_2}) \geq w_5 + 2w_3 \). Since \(\Delta_{S_1} + \Delta_{S_2} \geq 2w_5 + 2w_3 + 8\delta_5 \), we know that the branching vector of this case is covered by

\[
[w_5 + 2w_3, w_5 + 8\delta_5] \text{ or } [w_5 + 8\delta_5, w_5 + 2w_3].
\]

\(\square \)

6.4 Step 5

In this step, we branch on a 5-variable \(x \) such that either \(x \) or \(\overline{x} \) is in a 2-clause. The two sub-branches are: \(S_1 = \{ x \} \); \(S_2 = \{ \overline{x} \} \). We have the following result:

Lemma 17. The branching vector generated by step 5 is covered by one of

\[
[w_5 + 2\delta_5, w_5 + 4w_3 + 4\delta_5], \quad [w_5 + 4w_3 + 4\delta_5, w_5 + 2\delta_5],
\]

\[
[w_5 + 3\delta_5, w_5 + 2w_3 + 5\delta_5], \quad \text{and } [w_5 + 2w_3 + 5\delta_5, w_5 + 3\delta_5].
\]

Proof. We will consider two subcases:

Case 1. There are at least two 2-clause containing literal \(x \) or \(\overline{x} \). Now it holds that \(\sum_{3 \leq i \leq d} n'_i(x) + n'_i(\overline{x}) \geq 2 \). By Lemma 14 we get that \(\Delta_{S_1} \geq \xi_{S_1}^{(1)} \geq w_d + j\delta_d \geq w_5 + 2\delta_5 \) since \(x \) is a (2, 3)-literal or (3, 2)-literal. In a similar way, we can get that \(\Delta_{S_2} \geq w_5 + 2\delta_5 \).

By Lemma 10 \(w_4, w_5 \geq 2w_3 \), and \(\sum_{3 \leq i \leq 5} n'_i(x) + n'_i(\overline{x}) \geq 2 \), we have that

\[
\Delta_{S_1} + \Delta_{S_2} \geq 2w_d + 2d\delta_d + (n'_3(x) + n'_3(\overline{x}))(2w_3 - 2\delta_d)
\]

\[
+ \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))(w_i - 2\delta_d)
\]

\[
\geq 2w_5 + 10\delta_5 + \sum_{3 \leq i \leq 5} (n'_i(x) + n'_i(\overline{x}))(2w_3 - 2\delta_5)
\]
Similarly, we get that the branching vector of this case is covered by

$$\sum S \geq 2w_5 + 2\delta_5$$

By Lemma 6, we get that

$$\Delta \geq 2w_5 + 4w_3 + 6\delta_5.$$

Case 2. There is only one 2-clause containing literal x or \overline{x}. Note that

$$\sum_{3\leq i \leq d} n_i(x) + n_i(\overline{x}) = 1.$$

For literal x, it is contained in at least two clauses and at most one of them is 2-clause. So $\sum_{3\leq i \leq d} n_i(x) \geq 3$ holds.

By Lemma 9, we get that $\Delta_{S_1} \geq \xi_{S_1} \geq w_5 + \sum_{3\leq i \leq d} n_i(x)\delta_i \geq w_5 + (\sum_{3\leq i \leq d} n_i(x))\delta_5 \geq w_5 + 3\delta_5.$ Similarly, we also can get that $\Delta_{S_2} \geq w_5 + 3\delta_5$.

By Lemma 8, $w_4, w_5 \geq 2w_3$ and $\sum_{3\leq i \leq d} n_i(x) + n_i(\overline{x}) = 1$, we get that

$$\Delta_{S_1} + \Delta_{S_2} \geq 2w_2 + 2d\delta_d + (n_i(x) + n_i(\overline{x}))(2w_3 - 2\delta_d)$$

$$\geq 2w_5 + 10\delta_5 + \sum_{3 \leq i \leq 5} (n_i(x) + n_i(\overline{x}))(2w_3 - 2\delta_5)$$

$$\geq 2w_5 + 10\delta_5 + (2w_3 - 2\delta_5)$$

$$\geq 2w_5 + 2w_3 + 8\delta_5.$$

Since $\min(\Delta_{S_1}, \Delta_{S_2}) \geq w_5 + 3\delta_5$ and $\Delta_{S_1} + \Delta_{S_2} \geq 2w_5 + 2w_3 + 8\delta_5$, we know that the branching vector of this subcase is covered by

$$[w_5 + 3\delta_5, w_5 + 2w_3 + 3\delta_5]$$

These two cases complete the proof. \qed

6.5 Step 6

In this step, all clauses containing a 5-variable are 3\(^{+}\)-clauses now. We branch on a 5-variable x contained in a 4\(^{+}\)-clause. The two sub-branches are: $S_1 = \{x\};$ $S_2 = \{\overline{x}\}$. We have the following result:

Lemma 18. The branching vector generated by step 6 is covered by

$$[w_5 + 4\delta_5, w_5 + 7\delta_5] \text{ or } [w_5 + 7\delta_5, w_5 + 4\delta_5].$$

Proof. Literal x is contained in at least two 3\(^{+}\)-clauses. So $\sum_{3\leq i \leq d} n_i(x) \geq 4$ holds. By Lemma 8, we get that $\Delta_{S_1} \geq \xi_{S_1} \geq w_5 + (\sum_{3\leq i \leq d} n_i(x))\delta_5 \geq w_5 + 4\delta_5.$ Similarly, we get that $\Delta_{S_2} \geq w_5 + 4\delta_5$.

Let m_4 be the number of 4\(^{+}\)-clauses containing x. Since $m_4 \geq 1$, we have that

$$\sum_{3 \leq i \leq 5} n_i(x) + n_i'(x) \geq 2(5 - m_4) + 3m_4 \geq 10 + m_4 \geq 11.$$
By Lemma 12 and $w_3 \geq \delta_5$, we get that
\[
\Delta S_1 + \Delta S_2 \geq 2w_5 + \left(\sum_{3 \leq i \leq 5} (n_i(x) + n_i(\overline{x})) \right) \delta_5 \\
+ \left(\sum_{3 \leq i \leq 4} (n_i(x) + n_i(\overline{x}))(w_3 - \delta_5) \right) \\
\geq 2w_5 + 11\delta_5.
\]

Since $\min(\Delta S_1, \Delta S_2) \geq w_5 + 4\delta_5$ and $\Delta S_1 + \Delta S_2 \geq 2w_5 + 11\delta_5$, we know that the branching vector of this case is covered by
\[
[w_5 + 4\delta_5, w_5 + 7\delta_5] \text{ or } [w_5 + 7\delta_5, w_5 + 4\delta_5].
\]

\[\square\]

6.6 Step 7

In Step 7, all clauses containing a 5-variable are 3-clauses. We branch on a 5-variable x whose literal and a literal of a 4-variable are in the same clause. The two sub-branches are: $S_1 = \{x\}$; $S_2 = \{\overline{x}\}$. We have that

Lemma 19. The branching vector generated by step 7 is covered by
\[
[w_5 + 4\delta_5, w_5 + w_3 + 5\delta_5] \text{ or } [w_5 + w_3 + 5\delta_5, w_5 + 4\delta_5]. \tag{23}
\]

Proof. There is at least one 4-variable whose literal is in $N(x, F) \cup N(\overline{x}, F)$. So it holds that $\sum_{3 \leq i \leq 4}(n_i(x) + n_i(\overline{x})) \geq 1$.

For literal x, it is contained in at least two 3-clauses, which means that $\sum_{3 \leq i \leq d} n_i(x) \geq 4$ holds. By Lemma 11, we get that $\Delta S_1 \geq \xi_{S_1}^{(1)} \geq w_5 + \sum_{3 \leq i \leq 5} n_i(x) \delta_i \geq w_5 + \left(\sum_{3 \leq i \leq 4} n_i(x) \right) \delta_5 = w_5 + 4\delta_5$. Similarly, we can get that $\Delta S_2 \geq w_5 + 4\delta_5$.

By Lemma 12 and $\sum_{3 \leq i \leq 4} n_i(x) + n_i(\overline{x}) \geq 1$, we get that
\[
\Delta S_1 + \Delta S_2 \geq 2w_5 + \left(\sum_{3 \leq i \leq 5} (n_i(x) + n_i(\overline{x})) \right) \delta_5 \\
+ \left(\sum_{3 \leq i \leq 4} (n_i(x) + n_i(\overline{x}))(w_3 - \delta_5) \right) \\
\geq 2w_5 + w_3 + 9\delta_5.
\]

Since $\min(\Delta S_1, \Delta S_2) \geq w_5 + 4\delta_5$ and $\Delta S_1 + \Delta S_2 \geq 2w_5 + 2w_3 + 8\delta_5$, we know that the branching vector is covered by
\[
[w_5 + 4\delta_5, w_5 + w_3 + 5\delta_5] \text{ or } [w_5 + w_3 + 5\delta_5, w_5 + 4\delta_5].
\]

\[\square\]
6.7 Step 8

In Step 8, the literals of all 5-variables form a 3-SAT instance F^*. We apply the $O^*(1.3279^n)$-time algorithm in [14] for 3-SAT to solve our problem, where n is the number of variables in the instance. Since $w_5 = 5$, we have that $n = \mu(F^*)/w_5 = \mu(F^*)/5$. So the running time for this part will be $O^*(1.3279^{\mu(F^*)/w_5}) = O^*(1.0584^{\mu(F^*)})$.

6.8 Step 9

In this step, we branch on a (1, 3)-literal x. The two sub-branches are: $S_1 = \{x\}; S_2 = \{\overline{x}\}$. We have the following result:

Lemma 20. The branching vector generated by step 9 is covered by

$$[w_4 + 2w_3, w_4 + 6\delta_4] \text{ or } [w_4 + 6\delta_4, w_4 + 2w_3].$$

Proof. By Lemma 10, we get that $\Delta_{S_1} \geq w_d + 2w_3 + \sum_{3 \leq i \leq d} n'_i(x)w_i \geq w_4 + 2w_3$.

By Lemma 7, we have that $\Delta_{S_2} \geq \sum_{3 \leq i \leq d} n'_i(x)w_i \geq w_4 + 3\delta_4 \geq \Delta_{S_1}$ since \overline{x} is a (3, 1)-literal.

By Lemma 11, we get that $\Delta_{S_1} + \Delta_{S_2} \geq 2w_d + 2w_3 + 2(d - 1)\delta_d = 2w_4 + 2w_3 + 6\delta_4$.

Since $\min(\Delta_{S_1}, \Delta_{S_2}) \geq w_4 + 2w_3$ and $\Delta_{S_1} + \Delta_{S_2} \geq 2w_4 + 2w_3 + 6\delta_4$, we know that the branching vector of this case is covered by

$$[w_4 + 2w_3, w_4 + 6\delta_4] \text{ or } [w_4 + 6\delta_4, w_4 + 2w_3].$$

\[\square\]

6.9 Step 10

In this step, we branch on a (2, 2)-literal x. The two sub-branches are: $S_1 = \{x\}; S_2 = \{\overline{x}\}$. We have the following result:

Lemma 21. The branching vector generated by step 10 is covered by

$$[w_4 + 2\delta_4, w_4 + 6\delta_4] \text{ or } [w_4 + 6\delta_4, w_4 + 2\delta_4].$$

Proof. By Lemma 7, we get that $\Delta_{S_1} \geq \sum_{3 \leq i \leq d} n'_i(x)w_i \geq w_4 + 2\delta_4$ since x is a (2, 2)-literal. Similarity, we can get that $\Delta_{S_2} \geq w_4 + 2\delta_4$.

By Lemma 9, we have

$$\Delta_{S_1} + \Delta_{S_2} \geq 2w_d + 2\delta_d + (n'_3(x) + n'_3(\overline{x}))(2w_3 - 2\delta_d)$$

$$\quad + \sum_{4 \leq i \leq d} (n'_i(x) + n'_i(\overline{x}))(w_i - 2\delta_d)$$

$$\quad = 2w_4 + 8\delta_4 + (n'_3(x) + n'_3(\overline{x}))(2w_3 - 2\delta_4)$$
\[+ (n'_4(x) + n'_4(\overline{x}))(w_4 - 2\delta_4) \]
\[= 2w_4 + 8\delta_4. \]

Since \(\min(\Delta_{S_1}, \Delta_{S_2}) \geq w_4 + 2\delta_4 \) and \(\Delta_{S_1} + \Delta_{S_2} \geq 2w_4 + 8\delta_4 \), we know that the branching vector is covered by
\[[w_4 + 2\delta_4, w_4 + 6\delta_4] \text{ or } [w_4 + 6\delta_4, w_4 + 2\delta_4]. \]

\[\square \]

6.10 Step 11

All variables are 3-variables now. We apply the \(O^*(1.1279^n) \)-time algorithm by Wahlström [18] to solve this special case, where \(n \) is the number of variables. For this case, we have that \(n = \mu(\mathcal{F})/w_3 \). So the running time of this part is
\[O^*((1.1279^{1/w_3})\mu(\mathcal{F})). \]

7 The Final Result

Each one of the branching vectors above will generate a constraint in our quasi-convex program to solve the best value for \(w_3 \) and \(w_4 \). Let \(\alpha_i \) denote the branching factor for branching vector \((i)\) where \(14 \leq i \leq 21 \). We want to find the minimum value \(\alpha \) such that \(\alpha \leq \alpha_i \) and \(\alpha \leq 1.1279^{1/w_3} \) (generated by Step 11) under the assumptions (2) and (4). By solving this quasiconvex program, we get that \(\alpha = 1.0646 \) by letting \(w_3 = 1.9234132344759123 \) and \(w_4 = 3.8468264689518246 \). Note that \(\alpha = 1.0646 \) is greater than 1.0584 the branching factor generated in Step 8. So 1.0646 is the worst branching factor in the whole algorithm. By [15], we get the following result.

Theorem 1. Algorithm 4 solves the SAT problem in \(O^*(1.0646^L) \) time.

We also show the whole weight setting in Table 2 and the branching vector of each step under the setting in Table 3.

Table 2. The weight setting
\(w_1 = w_2 = 0 \)
\(w_3 = 1.9234132344759123 \)
\(w_4 = 3.8468264689518246 \)
\(w_5 = 5 \)
\(w_i = i(i \geq 6) \)

From Table 3, we can see that we have four bottlenecks: Steps 7, 9, 10, and 11. In fact, Steps 9, 10, and 11 have the same branching vector \([4w_3, 8w_1]\) under
Table 3. The branching vector and factor for each step

Steps	Branching vectors	Branching factors
Step 3	$[w_6 + \delta_6, w_6 + 11\delta_6]$	1.0636
Step 4	$[w_6 + 2w_3, w_5 + 8\delta_5]$	1.0632
Step 5	$[w_5 + 3\delta_5, w_5 + 2w_3 + 5\delta_5]$	1.0618
	$[w_5 + 2\delta_5, w_5 + 4w_3 + 4\delta_5]$	1.0636
Step 6	$[w_5 + 4\delta_5, w_5 + 7\delta_5]$	1.0636
Step 7	$[w_5 + 4\delta_5, w_5 + 5\delta_5 + w_3]$	1.0646
Step 8	$O^*((1.3279^{1/w_5})^\mu)$	1.0584
Step 9	$[w_4 + 2w_3, w_4 + 6\delta_4]$	1.0646
Step 10	$[w_4 + 2\delta_4, w_4 + 6\delta_4]$	1.0646
Step 11	$O^*((1.1279^{1/w_3})^\mu)$	1.0646

the assumption that $w_4 = 2w_3$ (for Step 11, the worst branching vector in [18] is $[4, 8]$). The branching factor for these three steps will decrease if the value of w_3 increases. On the other hand, the branching factor for Step 7 will decrease if the value of w_3 decreases. We set the best value of w_3 to balance them. If we can either improve Step 7 or improve Steps 9, 10, and 11 together, then we may get a further improvement. However, the improvement is very limited and several other bottlenecks will appear.

8 Concluding Remarks

In this paper, we show that the SAT problem can be solved in $O^*(1.0646^L)$ time, improving the previous bound in terms of the input length obtained more than 10 years ago. Nowadays, improvement becomes harder and harder. However, SAT is one of the most important problems in exact and parameterized algorithms, and the state-of-the-art algorithms are frequently mentioned in the literature. Furthermore, in order to give a neat and clear analysis, we introduce a general analysis framework, which can even be used to simplify the analysis for other similar algorithms based on the measure-and-conquer method.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
2. Chen, J., Liu, Y.: An improved SAT algorithm in terms of formula length. In: Dehne, F.K.H.A., Gavrilova, M.L., Sack, J., Tóth, C.D. (eds.) Algorithms and Data Structures, 11th International Symposium, WADS 2009, Banff, Canada, August 21-23, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5664, pp. 144–155. Springer (2009). [https://doi.org/10.1007/978-3-642-03367-4_13]
3. Chu, H., Xiao, M., Zhang, Z.: An improved upper bound for SAT. In: AAAI 2021. AAAI Press (To appear)

4. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA. pp. 151–158. ACM (1971). https://doi.org/10.1145/800157.805047

5. Cook, S.A., Mitchell, D.G.: Finding hard instances of the satisfiability problem: A survey. In: Du, D., Gu, J., Pardalos, P.M. (eds.) Satisfiability Problem: Theory and Applications, Proceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, March 11-13, 1996. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 35, pp. 1–17. DIMACS/AMS (1996). https://doi.org/10.1090/dimacs/035/01

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960). https://doi.org/10.1145/321033.321034

7. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple $O(2^{0.288n})$ independent set algorithm. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006. pp. 18-25. ACM Press (2006)

8. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009). https://doi.org/10.1145/1552285.1552286

9. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series, Springer (2010). https://doi.org/10.1007/978-3-642-16533-7

10. Hirsch, E.A.: Two new upper bounds for SAT. In: Karloff, H.J. (ed.) Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA. pp. 521–530. ACM/SIAM (1998), http://dl.acm.org/citation.cfm?id=314613.314838

11. Hirsch, E.A.: New worst-case upper bounds for SAT. J. Autom. Reason. 24(4), 397–420 (2000). https://doi.org/10.1023/A:1006340920104

12. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci. 62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

13. Kullmann, O., Luckhardt, H.: Deciding propositional tautologies: Algorithms and their complexity. preprint 82 (1997)

14. Liu, S.: Chain, generalization of covering code, and deterministic algorithm for k-sat. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. LIPIcs, vol. 107, pp. 88:1–88:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.88

15. Monien, B., Speckenmeyer, E., Vornberger, O.: Upper bounds for covering problems. Methods of operations research 43, 419–431 (1981)

16. Van Gelder, A.: A satisfiability tester for non-clausal propositional calculus. Inf. Comput. 79(1), 1–21 (1988). https://doi.org/10.1016/0890-5401(88)90014-4

17. Wahlström, M.: An algorithm for the SAT problem for formulae of linear length. In: Brodal, G.S., Leonardi, S. (eds.) Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005. Proceedings. Lecture Notes in Computer Science, vol. 3669, pp. 107–118. Springer (2005). https://doi.org/10.1007/11561071_12
18. Wahlström, M.: Faster exact solving of SAT formulae with a low number of occurrences per variable. In: Bacchus, F., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3569, pp. 309–323. Springer (2005). https://doi.org/10.1007/11499107_23

19. Yamamoto, M.: An improved O(1.234^m)-time deterministic algorithm for SAT. In: Deng, X., Du, D. (eds.) Algorithms and Computation, 16th International Symposium, ISAAC 2005, Sanya, Hainan, China, December 19-21, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3827, pp. 644–653. Springer (2005). https://doi.org/10.1007/11602613_65