What is the effect of tumor diameter, lymph node metastases, and SUVmax value on prognosis in limited-stage small cell lung cancer?

Filiz Çimen1*, Melike Aloglu1, Sevim Düzgün1, Ayşegül Şentürk1, Şükran Atikcan1, Özlem Özmen2

INTRODUCTION

Accounting for approximately 15% of lung cancers, small cell lung cancer (SCLC) is a high-grade neuroendocrine tumor characterized by rapid growth and early metastatic spread1. While SCLC incidence has decreased recently, SCLC patients have a poor prognosis and a 5-year survival rate is only about 6%2.

The majority (around 70%) of SCLC patients are diagnosed with extensive-stage small cell lung cancer (ES-SCLC). Only 30% of SCLC patients are diagnosed with limited-stage small cell lung cancer (LS-SCLC); however, their prognosis does still not look optimistic with a median survival time of 15–20 months3. As per the conventional VALG staging, LS-SCLC is a disease that is restricted to one hemithorax and can be safely encompassed within a single radiation portal4.

INTRODUCTION

18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a valuable imaging method employed in staging SCLC5. PET can detect additional areas of disease that could not be detected by conventional computed tomography (CT). Furthermore, PET may be useful in predicting prognosis. Many studies confirmed the prognostic significance of metabolic parameters measured by FDG-PET in SCLC6,7. These parameters reflect the maximum standardized uptake value (SUVmax), disease activity, and tumor burden.

Recently, more studies have been conducted to investigate the prognosis-related risk factors to improve survival of SCLC patients. A variety of clinical factors, such as the patient’s age, gender, performance status, and clinical stage, may affect the prognosis of SCLC patients8. Tumor size and lymph node (LN) metastasis were found to be a prognostic
factor of cancer in NSCLC10,11. These findings thus suggested that tumor size and LN metastasis may also be prognostic factors of SCLC.

The standard treatment recommended for LS-SCLC in the current NCCN guidelines is concurrent chemoradiotherapy (CRT)12; prophylactic cranial irradiation (PCI) is planned for LS-SCLC patients who respond well to induction therapy. While the effectiveness of first-line therapy is as high as 80\%, recurrence is observed within 6 months of completion of initial therapy in most patients13.

There are not comprehensive studies as to which PET parameters demonstrate better prognostic performance in LS-SCLC. We, therefore, aimed to examine prognostic roles of SUV\textsubscript{max} parameters. This study is designed to investigate the link between survival and prognostic factors such as tumor size, LN metastasis, and metabolic activity detected on PET-CT in patients with LS-SCLC.

METHODS
We retrospectively screened patients who were admitted to Health Sciences University Ataturk Chest Diseases and Thoracic Surgery Training and Research Hospital with pathological diagnosis of LS-SCLC between January 2015 and December 2019 and were older than 18 years. Demographic characteristics, LN metastasis, tumor size, and metabolic activity uptake in PET, in addition to clinicopathological, therapeutic, and prognostic data, were systematically extracted from medical records and analyzed.

In this cohort, 77 LS-SCLC cases were identified. Clinical stage of the disease was determined by results obtained from CT, PET scans, and magnetic resonance imaging. PCI was also evaluated.

Since it is a retrospective record review, Informed Consent Form is not needed and there are no costs to the budget.

Statistical analysis
In the descriptive statistics of the data, mean, standard deviation, median, minimum–maximum, frequency, and ratio values were used. The Kolmogorov-Smirnov test was used to measure the distribution of variables. The Mann-Whitney U-test was used to analyze the quantitative independent data, while the chi-square test was used to analyze the qualitative independent data, and Fisher’s exact test was employed when the chi-square test conditions were not met. Cox regression (univariate-multivariate) and the Kaplan-Meier method were used for survival analysis. SPSS version 27.0 program was used in the analyses.

RESULTS
A total of 77 patients, including 10 females and 67 males, were included in the study. While there were 39 patients over 60 years of age, 38 patients were under 60. Patients’ data are summarized in Table 1.

Age, smoking rate, diagnosis method, tumor localization distribution, T stage distribution, mass diameter, local recurrence rate, and PET SUV\textsubscript{max} value did not differ significantly (p>0.05) between the groups of the deceased and living patients. The ratio of male patients in the deceased patients’ group was significantly (p=0.008) higher than in the living patients’ group. The ratio of N stage in the deceased patients’ group was significantly (p=0.000) higher than in the living patients’ group. The ratio of multiple LNs in the deceased patients’ group was significantly (p=0.000) higher than in the living patients’ group (Table 2).

The ratios of distant metastasis in the deceased patients’ group were significantly (p=0.000) higher than in the living patients’ group. The rate of brain metastases with distant metastases in the deceased patient group was found to be significantly higher (p=0.013) compared to the living patients’ group.

The ratios of bone, liver, adrenal, and contralateral lung metastases in the deceased and living patients’ groups did not show significant difference (p>0.05) (Table 2).

The ratios of chemotherapy, radiotherapy (RT), and concurrent CRT in the deceased and living patients’ groups did not show significant difference (p>0.05). The ratio of PCI in the deceased patients’ group was significantly (p=0.000) higher than in the living patients’ group (Table 2).

Key features and univariate analysis
In the univariate model, age, diagnostic method, localization, mass diameter, local recurrence, bone metastasis, adrenal metastasis, contralateral lung metastasis, PET SUV\textsubscript{max}, and sequential RT were not observed to have a significant (p>0.05) effect on survival time. In the univariate model, we observed that gender, smoking, T stage, N stage, multiple LNs, distant metastasis, brain metastasis, liver metastasis, chemotherapy, RT, concurrent CRT, and PCI had significant effect (p=0.049, p=0.021, p=0.022, p=0.000, p=0.000, p=0.003, p=0.037, p=0.029, p=0.0049, p=0.000, respectively) on survival time (Table 3).

Multivariate analysis
In the multivariate model, smoking, N stage, liver metastasis, and PCI demonstrated significant independent effect (p=0.010, p=0.003, p=0.004, p=0.000, respectively) on survival time (Table 3).
Table 1. Patients’ data.

	Min–Max	Median	Mean ± SD/n (%)
Age			
≤60			38 ± 49.4
>60			39 ± 50.6
Sex			
Female			10 ± 13.0
Male			67 ± 87.0
Smoking			
No			17 ± 22.1
Yes			60 ± 77.9
Diagnostic method			
FOB			14 ± 18.2
FNA			46 ± 59.7
Mediastinoscopy			4 ± 5.2
EBUS			13 ± 16.9
Localization			
Right up			14 ± 18.2
Right mid.			23 ± 29.9
Right b.			4 ± 5.2
Left up			33 ± 42.9
Left b.			2 ± 2.6
T stage			
I			18 ± 23.4
II			49 ± 63.6
III			10 ± 13.0
N stage			
I			31 ± 40.3
II			46 ± 59.7
Lymph node			
Single			31 ± 40.3
Multiple			46 ± 59.7
Tumor diameter	1 – 7	5	4.5 ± 1.5
Tumor diameter (cm)	≤4		32 ± 41.6
	>4		45 ± 58.4
Local recurrence	(−)		56 ± 72.7
	(+)		21 ± 27.3
Distance metastasis	No		41 ± 53.2
	Yes		36 ± 46.8
Brain			15 ± 19.5
Bone			12 ± 15.6
Liver			8 ± 10.4
Adrenal			3 ± 3.9
Contr. lung			4 ± 5.2
Chemotherapy	No		38 ± 49.4
	Yes		39 ± 50.6
Radiotherapy	No		45 ± 58.4
	Yes		32 ± 41.6
Concurrent CRT	No		40 ± 51.9
	Yes		37 ± 48.1
PCI	No		14 ± 18.2
	Yes		63 ± 81.8
Mortality	No		32 ± 41.6
	Yes		45 ± 58.4
Following time (month)	5 – 72	29	31.3 ± 16.3

FOB: Fiber optic bronchoscopy; FNA: Fine-Needle Aspiration; EBUS: Endobronchial ultrasound; T stage: Tumour stage; N stage: Node stage; Contr. Lung: Contralateral Lung; CRT: Chemoradiotherapy; PCI: Prophylactic cranial irradiation.
Table 2. Comparison of living and deceased patients' data.

	Living	Deceased	p		
	Mean ± sd/n (%)	Median	Mean ± sd/n (%)	Median	
Age					
≤60	16 ± 50.0	22 ±48.9			
>60	16 ± 50.0	23 ± 51.1	0.923 x²		
Sex					
Female	8 ± 25.0	2 ± 4.4	0.008 x²		
Male	24 ± 75.0	43 ± 95.6			
Smoking					
No	11 ± 34.4	6 ± 13.3	0.028 x²		
Yes	21 ± 65.6	39 ± 86.7			
Diagnostic method					
FOB	19 ± 59.4	27 ± 60.0	0.856 x²		
FNA	7 ± 21.9	7 ± 15.6	0.682 x²		
Med. copy	0 ± 0.0	4 ± 8.9	0.225 x²		
EBUS	6 ± 18.8	7 ± 15.6	0.952 x²		
Localization					
Right up	6 ± 18.8	8 ± 17.8	0.913 x²		
Right mid.	8 ± 25.0	15 ± 33.3	0.549 x²		
Right b.	1 ± 3.1	3 ± 6.7	0.634 x²		
Left up	17 ± 53.1	16 ± 35.6	0.222 x²		
Left b.	0 ± 0.0	2 ± 4.4	0.505 x²		
PET SUVmax	15.0 ± 8.6	13.2 ± 6.4	0.213 m		
T stage					
I	8 ± 25.0	10 ± 22.2	0.093 x²		
II	23 ± 71.9	26 ± 57.8			
III	1 ± 3.1	9 ± 20.0			
N stage					
I	21 ± 65.6	10 ± 22.2	0.000 x²		
II	11 ± 34.4	35 ± 77.8			
Lymph node					
Single	21 ± 65.6	10 ± 22.2	0.000 x²		
Multiple	11 ± 34.4	35 ± 77.8			
Tumor diameter	4.4 ± 1.6	5.0	0.575 m		
Tumor diameter (cm)					
≤4	15 ± 46.9	17 ± 37.8	0.425 x²		
>4	17 ± 53.1	28 ± 62.2			
Local recurrence					
No	25 ± 78.1	31 ± 68.9	0.370 x²		
Yes	7 ± 21.9	14 ± 31.1			
Distance metastasis					
No	27 ± 84.4	14 ± 31.1	0.000 x²		
Yes	5 ± 15.6	31 ± 68.9			
Brain	2 ± 6.3	13 ± 28.9	0.013 x²		
Bone	3 ± 9.4	9 ± 20.0	0.205 x²		
Liver	1 ± 3.1	7 ± 15.6	0.078 x²		
Adrenal	0 ± 0.0	3 ± 6.7	0.136 x²		
Contr. lung	0 ± 0.0	4 ± 8.9	0.137 x²		
Chemotherapy					
No	19 ± 59.4	19 ± 42.2	0.138 x²		
Yes	13 ± 40.6	26 ± 57.8			
Radiotherapy					
No	19 ± 59.4	26 ± 57.8	0.889 x²		
Yes	13 ± 40.6	19 ± 42.2			
Concurrent CRT					
No	14 ± 43.8	26 ± 57.8	0.225 x²		
Yes	18 ± 56.3	19 ± 42.2			
PCI					
No	0 ± 0.0	14 ± 31.1	0.000 x²		
Yes	32 ± 100.0	31 ± 68.9			

* Mann-Whitney U-test. ** χ² test. FOB: Fiber optic bronchoscopy; FNA: Fine-Needle Aspiration; EBUS: Endobronchial ultrasound; Med: Median; PET SUV: Positron emission tomography standardised uptake value; T stage: Tumour stage; N stage: Node stage; CRT: Chemoradiotherapy; PCI: Prophylactic cranial irradiation. χ²: Significant p-value ≤0.05 according to paired χ² test. Bold and italics indicate significant values: p<0.05.
DISCUSSION

SCLC accounts for approximately 15% of all lung cancers and demonstrates a quite aggressive clinical course with a maximum of around 25% of 5-year survival rate even in limited-stage disease (LS-SCLC)14. Factors affecting survival in LS-SCLC, therefore, have often been studied. Male gender, old age, African American race, involvement of main bronchus, and poor performance status were reported as poor prognostic factors in LS-SCLC15,16, while young age, smoking cessation, concurrent CRT, platinum-based chemotherapy, surgical treatment, pulmonary RT procedure, receiving >50 Gy of RT, and PCI were determined to increase survival17-19. In our study, gender and concurrent CRT were effective on survival in the univariate analysis while they were not found to be independent prognostic factors in the multivariate analysis. However, we determined that smoking history was an effective factor independently predictive of survival.

N stage is another factor whose relationship with SCLC survival has been examined. Salem et al. reported that the patients without mediastinal LN involvement showed better survival rates in their CRT study in stages 1–2 SCLC patients20. Guan and Zhang also found in their study involving 88 LS-SCLC patients that the presence of lymphadenopathy at mediastinal levels 2 and 3 before chemotherapy was associated with SCLC recurrence21. In a study in China, tumor size and LN metastasis were determined to be independent prognostic factors in stage 3A SCLC, and tumor size ≤4 cm and single LN metastasis were found to be associated with longer survival22. In our study, similar to the literature data, N stage was found to be an independent factor effective on survival in LS-SCLC.

Another independent factor found to be effective on LS-SCLC survival in this study was PCI. Although a study in the literature reports that PCI has no effect on the development time of brain metastasis and overall survival (OS) in SCLC patients

Table 3. Comparison of univariate and multivariate model.

	Univariate model	Multivariate model				
	HR	95%CI	p	HR	95%CI	p
Age	1.34	0.74 – 2.42	0.331			
Sex	4.16	1.00 – 17.28	0.049			
Smoking	2.80	1.17 – 6.71	0.021	3.30	1.33 – 8.21	0.010
Diagnostic method	1.05	0.81 – 1.36	0.712			
Localization	1.05	0.83 – 1.34	0.667			
PET SUV\textsubscript{max}	0.97	0.93 – 1.02	0.229			
T stage	2.01	1.11 – 3.65	0.022			
N stage	4.69	2.26 – 9.74	0.000	3.24	1.48 – 7.10	0.003
Lymph node multiple	4.69	2.26 – 9.74	0.000			
Tumor diameter				0.91	1.36	0.282
Local recurrence	1.27	0.67 – 2.41	0.459			
Distant metastasis	3.56	1.88 – 6.77	0.000			
Brain	2.85	1.44 – 5.65	0.003			
Bone	1.17	0.56 – 2.44	0.676			
Liver	2.37	1.05 – 5.34	0.037	3.515	1.501 – 8.232	0.004
Adrenal	1.54	0.47 – 5.03	0.473			
Contr. Lung	1.47	0.52 – 4.12	0.466			
Chemotherapy	1.95	1.07 – 3.54	0.029			
Radiotherapy	1.15	0.64 – 2.09	0.642			
Concurrent CRT	0.55	0.30 – 1.00	0.049			
PCI	0.11	0.06 – 0.23	0.000	0.13	0.06 – 0.28	0.000

Cox regression (forward likelihood ratio); HR: Hazard ratio; PET SUV: Positron emission tomography standardized uptake value; T stage: Tumour stage; N stage: Node stage; Contr. Lung: Contralateral lung; CRT: Chemoradiotherapy; PCI: Prophylactic cranial irradiation. Bold and italics indicate significant values: p<0.05.
who underwent N0 M0 surgical resection, it has been concluded that PCI significantly increased survival in both extensive- and limited-stage diseases, extensive-stage elderly patient (≥70 years) group, SCLC patients in complete remission, LS-SCLC patients who underwent definitive surgery, and LS-SCLC patients who underwent definitive CRT.

Pre-CRT PET/CTs were analyzed in 120 individuals with LS-SCLC. On univariate analysis, SUV\textsubscript{max}, SUV\textsubscript{mean}, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of the primary tumor were not associated with OS, local-regional failure (LRF), or disease-free survival (DFS). On univariate analysis, MTV was substantially associated with DFS (p=0.024), but not on multivariate analysis. In LS-SCLC, pretreatment PET-CT scans and advanced metric measures had no independent prognostic significance. Also in our study, we did not observe a significant difference in PET-CT SUV\textsubscript{max} values.

Our study is designed to investigate the link between survival and prognostic factors such as tumor size, LN metastasis, and metabolic activity detected on PET-CT in LS-SCLC patients. In the univariate model, we observed that gender, smoking, T stage, N stage, multiple LNs, distant metastasis, brain metastasis, liver metastasis, sequential chemotherapy, sequential RT, concurrent CRT, and PCI had significant effect on survival time. In the multivariate model, smoking, N stage, liver metastasis, and PCI demonstrated significant independent effect on survival time.

Our findings will provide useful information for especially the management of LS-SCLC patients.

CONCLUSION

Chemoradiotherapy can be used to treat LS-SCLC, and improvements in radiotherapy have greatly increased overall survival. According to the findings of our study and previous research, concurrent CRT is the cornerstone of care for LS-SCLC. In addition, PCI improves OS and DFS and reduces the incidence of cranial metastases. The N stage, smoking, and gender all have a significant impact on survival.

AUTHORS’ CONTRIBUTION

ÇF: Conceptualization, Data curation, Writing – original draft. MA: Data curation, Writing – original draft. SD: Data curation. AS: Data curation. ŞA: Conceptualization. ÖO: Formal Analysis.

REFERENCES

1. Kalemerian GP, Akerley W, Bogner P, Borghaei H, Chow LQ, Downey RJ, et al. Small cell lung cancer. J Natl Compr Canc Netw. 2013;11(1):78-98. https://doi.org/10.6040/jncn.2013.0011
2. Cancer Research UK [Internet]. Survival. 2017 [cited on Jun 15, 2020]. Available from: https://www.cancerresearchuk.org/about-cancer/lung-cancer/survival
3. Rudin CM, Giaccone G, Ismaila N. Treatment of Small-Cell Lung Cancer: American Society of Clinical Oncology Endorsement of the American College of Chest Physicians Guideline. J Oncol Pract. 2016;12(1):83-6. https://doi.org/10.1200/JOP.2015.008201
4. Micke P, Faldum A, Metz T, Beeh KM, Bittinger F, Hengstler JG, et al. Staging small cell lung cancer: Veterans Administration Lung Study Group versus International Association for the Study of Lung Cancer—what limits limited disease? Lung Cancer. 2002;37(3):271-6. https://doi.org/10.1016/s0169-5002(02)00072-7
5. Kamel EM, Zwahlen D, Wyss MT, Stumpe KD, von Sculthess GK, Steinert HC. Whole-body (18)F-FDG PET improves the management of patients with small cell lung cancer. J Nucl Med. 2003;44(12):1911-7. PMID: 14660716
6. Lee YJ, Cho A, Cho BC, Yun M, Kim SK, Chang J, et al. High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limited and extensive stage small-cell lung cancer. Clin Cancer Res. 2009;15(7):2426-32. https://doi.org/10.1158/1078-0432.CCR-08-2258
7. Kwon SH, Hyun SH, Yoon JK, An YS, Oh YT, Choi JH, et al. The highest metabolic activity on FDG PET is associated with overall survival in limited-stage small-cell lung cancer. Medicine (Baltimore). 2016;95(5):e2772. https://doi.org/10.1097/MD.0000000000002772
8. Chang H, Lee SJ, Lim J, Lee JS, Kim YJ, Lee WW. Prognostic significance of metabolic parameters measured by 18F-FDG PET/CT in limited-stage small-cell lung carcinoma. J Cancer Res Clin Oncol. 2019;145(5):1361-7. https://doi.org/10.1007/s00432-019-02848-9
9. Foster NR, Mandrekar SJ, Schild SE, Nelson GD. Age, gender, performance status and stage outperformed stage alone in predicting overall survival (OS) in patients with small cell lung cancer: a pooled analysis of 1.623 patients from the North Central Cancer Treatment Group. J Clin Oncol. 2007;25(18_suppl):7723. https://doi.org/10.1200/jco.2007.25.18_suppl.7723
10. Zhang J, Gold KA, Lin-HY, Swisher SG, Xing Y, Lee JJ, et al. Relationship between tumor size and survival in non-small-cell lung cancer (NSCLC): an analysis of the surveillance, epidemiology, and end results (SEER) registry. J Thorac Oncol. 2015;10(4):682-90. https://doi.org/10.1097/JTO.0000000000000456
11. Deng XF, Jiang L, Liu QZ, Zhou D, Hou B, Cui K, et al. Lymph node micrometastases are associated with disease recurrence and poor survival for early-stage non-small cell lung cancer patients: a meta-analysis. J Cardiothorac Surg. 2016;11:28. https://doi.org/10.1186/s13019-016-0427-x
12. Zhuoqun W. Analysis of prognostic factors in 92 patients with small cell lung [D]. Dalian: Dalian Medical University; 2017.
13. Zarogoulidis K, Zlogas E, Papagiannis A, Charitopoulos K, Dimitriadi K, Economides D, et al. Interferon alpha-2a and combined chemotherapy as first line treatment in SCLC patients:
LS-SCLC Prognostic factors

1258

Rev Assoc Med Bras 2022;68(9):1252-1258

14. Amini A, Byers LA, Welsh JW, Komaki RU. Progress in the management of limited-stage small cell lung cancer. Cancer. 2014;120(6):790-8. https://doi.org/10.1002/cncr.28505

15. Foster NR, Mandrekar SJ, Schild SE, Nelson GD, Rowland Junior KM, Deming RL, et al. Prognostic factors differ by tumor stage for small cell lung cancer: a pooled analysis of North Central Cancer Treatment Grouptrials. Cancer. 2009;115(12):2721-31. https://doi.org/10.10102/cncr.24314

16. Lally BE, Geiger AM, Urbanic JJ, Butler JM, Wentworth S, Perry MC, et al. Trends in the outcomes for patients with limited stage small cell lung cancer: An analysis of the Surveillance, Epidemiology, and End Results database. Lung Cancer. 2009;64(2):226-31. https://doi.org/10.10102/cncr.2008.08.010

17. Chen J, Jiang R, Garces YI, Jatoi A, Stoddard SM, Sun Z, et al. Prognostic factors for limited-stage small cell lung cancer: a study of 284 patients. Lung Cancer. 2010;67(2):221-6. https://doi.org/10.10102/cncr.2009.04.006

18. Aynaci Ö, Canyilmaz E, Serdar L, Kandaz M, Bahat ZM, Yoney A. Survival and prognostic factors in limited stage small cell lung cancer: A retrospective study from northeast Turkey. J Cancer Res Ther. 2016;12(1):238-43. https://doi.org/10.4103/0973-1482.151446

19. Xie D, Marks R, Zhang M, Jiang G, Jatoi A, Garces YI, et al. Nomograms Predict Overall Survival for Patients with Small-Cell Lung Cancer Incorporating Pretreatment Peripheral Blood Markers. J Thorac Oncol. 2015;10(8):1213-20. https://doi.org/10.1097/JTO.0000000000000585

20. Salem A, Mistry H, Hatton M, Locke I, Monnet I, Blackhall F, et al. Association of chemoradiotherapy with outcomes among patients with stage I to IVs stage III small cell lung cancer: secondary analysis of a randomized clinical trial. JAMA Oncol. 2019;5(3):e185335. https://doi.org/10.1001/jamaoncol.2018.5335

21. Guan Y, Zhang X. Determination of Risk Factors Related to Supraclavicular Recurrence for Limited-Stage Small Cell Lung Cancer (SCLC) Patients. Med Sci Monit. 2019;25:4968-73. https://doi.org/10.12659/MSM.916279

22. Wang L, Dou X, Liu T, Lu W, Ma Y, Yang Y. Tumor size and lymph node metastasis are prognostic markers of small cell lung cancer in a Chinese population. Medicine (Baltimore). 2018;97(31):e11712. https://doi.org/10.1097/MD.0000000000011712

23. Lou Y, Zhong R, Xu J, Qiao R, Teng J, Zhang Y, et al. Does surgically resected small-cell lung cancer without lymph node involvement benefit from prophylactic cranial irradiation? Thorac Cancer. 2020;11(5):1239-44. https://doi.org/10.1111/1759-7714.13381

24. Schild SE, Foster NR, Meyers JP, Ross HJ, Stella PJ, Garces YI, et al. Prophylactic cranial irradiation in small-cell lung cancer: findings from a North Central Cancer Treatment Group Pooled Analysis. Ann Oncol. 2012;23(11):2919-24. https://doi.org/10.1093/ancon/nds043

25. Rule WG, Foster NR, Meyers JP, Ashman JB, Vora SA, Kozelsky TF, et al. Prophylactic cranial irradiation in elderly patients with small-cell lung cancer: findings from a North Central Cancer Treatment Group pooled analysis. J Geriatr Oncol. 2015;6(2):119-26. https://doi.org/10.1016/j.jgo.2014.11.002

26. Aupérin A, Arriagada R, Pignon JP, Le Péchoux C, Gregor A, Stephens RJ, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med. 1999;341(7):476-84. https://doi.org/10.1056/NEJM199908123410703

27. Chen MY, Hu X, Xu YJ, Chen M. The impact of prophylactic cranial irradiation for post-operative patients with limited stage small cell lung cancer. Medicine (Baltimore). 2018;97(44):e13029. https://doi.org/10.1097/MD.0000000000013029

28. Farooqi AS, Holliday EB, Allen PK, Wei X, Cox JD, Komaki R. Prophylactic cranial irradiation after definitive chemoradiotherapy for limited-stage small cell lung cancer: Do all patients benefit? Radiother Oncol. 2017;122(2):307-12. https://doi.org/10.1016/j.radonc.2016.11.012

29. Ong LT, Dunphy M, Foster A, Woo KM, Zhang Z, Perez CA, et al. Prognostic value of preradiotherapy (18)F-FDG PET/CT volumetrics in limited-stage small-cell lung cancer. Clin Lung Cancer. 2016;17(3):184-8. https://doi.org/10.1016/j.clc.2015.07.004

arandomized trial. Lung Cancer. 1996;15(2):197-205. https://doi.org/10.1016/0169-5002(95)00583-8

22. Wang L, Dou X, Liu T, Lu W, Ma Y, Yang Y. Tumor size and lymph node metastasis are prognostic markers of small cell lung cancer in a Chinese population. Medicine (Baltimore). 2018;97(31):e11712. https://doi.org/10.1097/MD.0000000000011712

23. Lou Y, Zhong R, Xu J, Qiao R, Teng J, Zhang Y, et al. Does surgically resected small-cell lung cancer without lymph node involvement benefit from prophylactic cranial irradiation? Thorac Cancer. 2020;11(5):1239-44. https://doi.org/10.1111/1759-7714.13381

24. Schild SE, Foster NR, Meyers JP, Ross HJ, Stella PJ, Garces YI, et al. Prophylactic cranial irradiation in small-cell lung cancer: findings from a North Central Cancer Treatment Group Pooled Analysis. Ann Oncol. 2012;23(11):2919-24. https://doi.org/10.1093/ancon/nds043

25. Rule WG, Foster NR, Meyers JP, Ashman JB, Vora SA, Kozelsky TF, et al. Prophylactic cranial irradiation in elderly patients with small-cell lung cancer: findings from a North Central Cancer Treatment Group pooled analysis. J Geriatr Oncol. 2015;6(2):119-26. https://doi.org/10.1016/j.jgo.2014.11.002

26. Aupérin A, Arriagada R, Pignon JP, Le Péchoux C, Gregor A, Stephens RJ, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med. 1999;341(7):476-84. https://doi.org/10.1056/NEJM199908123410703

27. Chen MY, Hu X, Xu YJ, Chen M. The impact of prophylactic cranial irradiation for post-operative patients with limited stage small cell lung cancer. Medicine (Baltimore). 2018;97(44):e13029. https://doi.org/10.1097/MD.0000000000013029

28. Farooqi AS, Holliday EB, Allen PK, Wei X, Cox JD, Komaki R. Prophylactic cranial irradiation after definitive chemoradiotherapy for limited-stage small cell lung cancer: Do all patients benefit? Radiother Oncol. 2017;122(2):307-12. https://doi.org/10.1016/j.radonc.2016.11.012

29. Ong LT, Dunphy M, Foster A, Woo KM, Zhang Z, Perez CA, et al. Prognostic value of preradiotherapy (18)F-FDG PET/CT volumetrics in limited-stage small-cell lung cancer. Clin Lung Cancer. 2016;17(3):184-8. https://doi.org/10.1016/j.clc.2015.07.004