Modyfikacja sonoelastograficznych skal oceny węzłów chłonnyc pod kątem chloniaków – doniesienie wstępne

Modified sonoelastographic scale score for lymph node assessment in lymphoma – a preliminary report

Mateusz Łasecki¹, Cyprian Olchowy¹, Dąbrówka Sokolowska-Dąbek¹, Anna Biel¹, Radostaw Chaber², Urszula Zaleska-Dorobisz¹

¹ Department of Radiology, Medical University of Wroclaw, Poland
² Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology; Medical University of Wroclaw, Poland
Correspondence: Prof. Urszula Zaleska-Dorobisz, MD, PhD, M. Curie-Skłodowskiej 68, 50–369 Wroclaw, Poland, tel.: +48 717 842 651, e-mail: urszula.zaleska-dorobisz@umed.wroc.pl

DOI: 10.15557/JoU.2015.0004

Streszczenie

Elastografia jest nową metodą pozwalającą ocenić spoistość węzłów chłonnyc. Większość prac skupia się na wykrywaniu przerzutów rakowych okolicy głowy i szyi oraz sutka. Typowa dla raków reakcja desmoplastyczna podścieliska łączno-tkankowego, odpowiadająca za wzmożoną spoistość, w chloniakach występuje rzadziej. **Material i metoda:** Badanie przeprowadzono na grupie 15 pacjentów z aktywną postacią chloniaka Hodgkinia i chloniaków nie-Hodgkinowskich oraz 16 pacjentów po zakończonym leczeniu i bez cech wznowy. Grupę kontrolną stanowiło 60 osób z odczynową limfadenopatią. Węzły chłonne oceniono pod kątem wielkości, wyglądu, typu unaczynienia oraz wyglądu elastogramu. **Wyniki:** Elastogram typu C wykazywał silną korelację dodatnią z węzłami chłonnymi prezentującymi co najmniej trzy cechy patologii w obrazie 2D. Duże węzły chłonne przekraczające 3 cm w największym wymiarze, z wzmożoną spoistością, w chloniakach rzadko występują. **Wnioski:** Typ C według naszej uproszczonej skali sonoelastograficznej obecny był głównie u chorych z aktywnym chloniakiem w węzłach wykazujących wszystkie cztery cechy, jakie ocenialiśmy w klasycznym USG, ale obserwowany był także w limfadenopatiach odczynowych. Obraz "sera z dziurami" jest charakterystyczny tylko dla dużych węzłów chłonnyc u pacjentów z aktywnymi postaciami chloniaków i choć odpowiada typowi B mapy sonoelastograficznej, to może być traktowany na równi z obrazem C.

Abstract

Elastography is a new method of assessment of lymph node consistency. The majority of papers focus on metastases detection of head and neck or breast tumors. The typical desmoplastic reaction in connective tissue stroma in cancer, which is responsible for tissue’s hardening, is seen in lymphoma less frequently. **Material and methods:** Study of 15 patients with active Hodgkin and non-Hodgkin lymphomas and 16 previously treated patients with no evidence of recurrence. A total of 60 patients suffering from reactive lymphadenopathy was the control group. The size, appearance, vascularity and elastogram of lymph node was analyzed. **Results:** Type C elastogram correlated strongly
Wstęp

Pierwszą publikacją zwracającą uwagę na istotę oceny spoistości węzłów chłonnych w badaniu palpacyjnym była Peri adenon (grec. O gruczolach) autorstwa Hipokratesa (1). Tkanki objęte procesem nowotworowym mają wyższą spoistość od tkanki zdrowych. W guzach nowotworowych wiąże się to ze zjawiskiem desmoplazji, czyli indukowanym przez cytokiny nowotworowe masowym rozplemem miofibroblastów wraz ze wzmózonym wytwarzaniem kolagenu i innych składników macierzy pozakomórkowej (2–4).

Palpacja przez stulecia była jedynym sposobem oceny zawaawosanania desmoplazji. Sytuacja uległa zmianie dopiero na przełomie XIX i XX wieku, kiedy to technologia mikroskopu umożliwiła dokładniejszą ocenę komórek (5). Do końca minionego wieku lekarze mieli do dyspozycji tylko te dwie metody.

Pojęcie „elastografia” po raz pierwszy zostało użyte przez Ophira i wsp. w 1991 roku (6). Istotą metody jest moduł Younga, opisujący wielkość odkształcenia w zależności od wartości zastosowanej siły nacisku (7).

Pierwsze badania elastograficzne węzłów chłonnych opierały się na quasi-statycznej elastografii (8). Największą słabością pierwszych technik sonoelelagnostii był brak możliwości równoczesnej interpretacji obrazu elastograficznego i klasycznego 2D. Opierając się na niej, Lyshchik, badając węzły chlonne pod kątem przerzutów z raków okolicy głowy i szyi, wykazał wysoką specyficzną (98%) i czułość (85%) punktu odciecia dla wartości współczynnika odkształcenia (strain ratio, SR) > 1,5 węzeł chlonny/mięsień (8). Obserwacje Lyshchicza zostały kilka lat później potwierdzone przez Tan (9).

Lyshchik zwrócił także uwagę na doświadczenie osoby wykonującej sonoelelagnostię – wówczas dokładność badania wahała się w przedziale 79–92% (analiza retrospektywna). Z czasem pojawiły się bardziej zawaawosanane technologicznie rodzaje elastografii, jak elastografia w czasie realnym (real-time elastography, RTE) czy elastografia fali poprzecznej (shear wave elastography, SWE). RTE pozwala na zilustrowanie spoistości tkancej ujętych w ROI (region of interest – obszar badania) w postaci kolorowej mapy, na której najczęściej „ciepłe” (czerwony, żółty) kolory oznaczają mięsień obszar, a „zimne” (niebieski) – twardy. Po zainstalowaniu odpowiedniego oprogramowania RTE dodatkowo umożliwi wglądne wyznaczenie współczynnika odkształcenia (SR), pod warunkiem że w wybranym

Introduction

The significance of lymph node consistency on palpation was introduced by Hippocrates in Peri adenon (Gr. On glands) (1). Neoplastically changed tissue has greater consistency than in health. It is caused by desmoplastic reaction, which is a massive, neoplastic cytokine-induced myofibroblast proliferation with increased collagen and other components of extracellular matrix production (2–4).

For centuries, palpation was the only method of assessment of desmoplastic reaction progression. It has changed at the turn on XIX-XX century, when microscope technology enabled more precise cell evaluation (5). Physicians used these two methods solely by the end of the last century.

In 1991, for the first time, Ophir et al. used the term ‘elastography’ (6). The essence of this method is Young’s modulus, which measures the ratio of deformation upon the stress being put (7).

Elastography of lymph nodes was initially based on quasi-statistic analysis (8). The biggest drawback back then, was an inability to evaluate elastographic and 2D images simultaneously. Lyshchik, relying on that, reported high specificity (98%) and sensitivity (85%) for examining lymph nodes in detection of metastases of head and neck tumors, for cutoff point >1,5 for the lymph node-to-muscle strain ratio (SR) (8). A few years later Tan confirmed these results (9).

Additionally, Lyshchik retrospectively observed that accuracy of the examination is altered by ultrasonographer’s experience, ranging from 79–92%. Over time, more advanced types of elastography appeared, for example real-time elastography (RTE) and shear wave elastography (SWE). RTE depicts consistency of tissue in ROI (region of interest) on color map, where usually ‘warm’ (red, yellow) colors correspond to soft, while ‘cool’ (blue) to hard areas. Having installed additional software, RTE visualize relative strain distribution on condition that a reference tissue (for example muscle, adipose tissue) is within the ROI (9). On comparison, SWE measures exact absolute value of consistency (not a relative strain distribution as in RTE) in kilopascals (kPa) (10). SWE probe produces an acoustic radiation force (‘virtual finger’) that деформes tissue and creates shear waves, which velocity is directly dependent on tissue consistency and is based

with lymph nodes which presented at least three pathologic features in 2D image. Large lymph nodes with long axis diameter over 3 cm may have ‘cheese with holes’ appearance rather than common type C elastogram. Conclusion: According to our simplified sonoelastography scoring system, type C elastogram was present mainly in patients with active lymphoma affecting lymph nodes, which showed all four features that we analyzed using conventional ultrasonography. This elastogram was also present in reactive lymphadenopathies. Distinctive for large lymph nodes in patients with active forms of lymphoma “cheese with holes” appearance, can be considered as equal with type C image, although it is corresponding to type B sonoelastographic map.

Mateusz Łasecki, Cyprian Olchowy, Dąbrówka Sokółowska-Dąbek, Anna Biel, Radosław Chaber, Urszula Zaleska-Dorobisz

J Ultrason 2015; 15: 45–55
ROI znajduje się tkanka referencyjna (np. mięsień, tkanka tłuszczowa)\(^\text{10}\). Dla omianny SWE w badanych tkankach pozwala na uzyskanie dokładnych, bezwzględnych wartości liczbowych spoistości tkanki (a nie ich odszczelnie po zastosowaniu kompresji jak w przypadku RTE), wyrażanych w kilopaskalach (kPa)\(^\text{11}\). W celu uzyskania danych głowica SWE generuje fale dźwiękowe („wirtualny palec”) odszczelające tkanki i wtórnie tworzące w nich fale poprzeczne, których prędkość rozchodzenia się bezpośrednio zależy od spoistości tkanki i opiera się na moduł odszczelności liniowego Younga\(^\text{12}\). Jak udowodnił w 2014 roku Youk, SWE prezentuje nieco lepszą wartość diagnostyczną niż RTE (zmiany BI-RADS IV w sutkach)\(^\text{13}\).

Sonoelastografia RTE poza wyznaczeniem stosunku elastyczności węzłów względem okolicznych tkanki pozwala na stworzenie kolorowej mapy elastyczności. Próbując ujawniać to nowe narzędzie diagnostyczne w ramach umożliwiające interpretację danych, kilku autorów pokusiło się o stworzenie skali sonoelastograficznych przeznaczonych tylko dla węzłów.

Najpopularniejszymi i obecnie stosowanymi skalami są: Alam\(^\text{14}\), Tsukuba (Ishibashi)\(^\text{15}\) oraz Furukawa\(^\text{16}\) (ryc. 1). Ostatnio pojawiła się także publikacja Dudei i wsp., który w ciekawy sposób połączyli cechysonoelastograficzne w odniesieniu do klasycznego obrazu 2D\(^\text{17}\). Pewną przewagą kolorowych map sonoelastograficznych nad obliczaniem współczynnika spoistości w RTE może być skrócenie całkowitego czasu badania. Powyższe stwierdzenie opiera się na własnych doświadczeniach związanych z chorobami limfoproliferacyjnymi, w przebiegu których obserwowaliśmy dużą liczbę powiększonych węzłów chłonnych. Deng-Ke Teng\(^\text{18}\) oraz Zhi i wsp.\(^\text{19}\) udowodnili wprawdzie, że współczynnik odszczelienia daje wynik bardziej wiarygodny niż skale oparte jedynie na mapowaniu elastyczności za pomocą koloru, jednak ich badania opierały się na diagnostyce obecności przerzutów raków do węzłów chłonnych. Ostatnim argumentem przemawiającym za wartością map kolorystycznych jest fakt, że część producentów nie wyposaża (bądź nie wyposażała) standardowo aparatur w funkcje umożliwiające obliczenie współczynnika odszczelienia. Tak było w naszym przypadku, gdy zakupiono na przełomie 2011 i 2012 roku aparat Apio 500 posiadał jedynie opcję elastografii mapowanej kolorem, a funkcja SR została dokupiona kilka miesięcy później.

W najnowszych piśmiennictwie dostępnych jest wiele klasyfikacji sonoelastograficznych opartych na mapowanej kolorem spoistości węzłów chłonnych\(^\text{14-16}\). Klasyfikacje te powstały w związku do zdiagnozowania przerzutów do węzłów raków plaskonablonkowych okolicy głowy i szyi oraz raków sutka. Do najczęściej używanych należą skała Tsukuba (nazywana również Ishibashi), Alam oraz Furukawa\(^\text{14-17}\).

Wedle naszej wiedzy w dostępnej literaturze brak jest publikacji przedstawiających sonoelastograficzną klasyfikację węzłów chłonnych w przebiegu chłoniaków. Celem naszej pracy było stworzenie nowej skali lub modyfikacja i uproszczenie już istniejących pod kątem oceny węzłów chłonnych zajętych przez chłoniaki.

The TNM system is commonly used in cancer staging. If any metastasis in lymph node is present, a disease is in stage III or IV (for example papillary thyroid carcinoma). Som demonstrated, that in case of the head and neck region carcinoma, presence of metastasis in lymph node
In lymphoma, a focus is put on the topography of changes to the diaphragm and as for staging, Ann Arbor Staging for Hodgkin's disease and NHL is used in adults and Murphy Staging for NHL in children. Bearing in mind pathomorphologic discrepancies and different staging system, we decided to conduct sonoelastographic study and create a scale score for lymph node assessment trying to make the existing ones more accessible. Examination of superficial lymph nodes were carried out as follows: the neck (Rouvière’s regions I–IV), the axilla (I region), the infracavicular fossa, the groin and parasternal lymph nodes. (HL – 6 and NHL – 6), 16 previously treated patients with no evidence of recurrence (HL – 6 and NHL – 10). A total of 60 patients suffering from reactive lymphadenopathy was the control group. 2 patients suffering from HL were excluded as the number of neoplastically altered lymph nodes in lymphoma is not so important as in the TNM system. In lymphoma, a focus is put on the topography of changes to the diaphragm and as for staging, Ann Arbor Staging for Hodgkin's disease and NHL is used in adults and Murphy Staging for NHL in children. Bearing in mind pathomorphologic discrepancies and different staging system, we decided to conduct sonoelastographic study and create a scale score for lymph node assessment trying to make the existing ones more accessible. Examination of superficial lymph nodes were carried out as follows: the neck (Rouvière’s regions I–IV), the axilla (I region), the infracavicular fossa, the groin and parasternal lymph nodes.

Patients and methods

Ultrasoundographic examination was performed with UIMV-Aplio500A device, including RTE sonoelastography, using a PLT-805AT probe with a frequency of 12 MHz.

The research group aged 10–67 was made up of: 15 patients presenting active disease (HL – 9 and NHL – 6), 16 previously treated patients with no evidence of recurrence (HL – 6 and NHL – 10). A total of 60 patients suffering from reactive lymphadenopathy was the control group. 2 patients suffering from HL were excluded as...
badano powierzchnie położone regiony węzłowe: szyja (regiony I–VI według Rouvière’a)\(^{29}\), dolny pachowy (region I), dolny podobojczykowy, pachwina oraz węzły chłonne przymostkowe.

Material i metoda

Badania wykonano przy wykorzystaniu aparatu UIMV-Aplio500A z sonoelastografią RTE i 12 MHz głowicy PLT-805AT. Grupę badawczą stanowili pacjenci w wieku 10–67 lat: 15 z aktywną postacią choroby (HL – 9 i NHL – 6), 16 po zakończonym leczeniu bez cech wznowy (HL – 6 i NHL – 10). Grupę kontrolną stanowiło 60 chorych z odczynowymi limfadenopatiami. Spośród osób z aktywną postacią choroby wykluczaliśmy 2 pacjentów z HL, które otrzymały leczenie chemioterapeutyczne przed wykonaniem badania. Łącznie badaniusonoelastograficznemu poddaliśmy 243 węzły i pakiety węzłowe u osób z aktywną postacią chłonika, 16 węzłów w grupie z chloniakiem w stanie remisji i 202 węzły odczynowe. Procedura badania polegała na wykonaniu klasycznego USG regionów węzłowych powierzchownie położonych węzłów chłonnych przy użyciu głowicy liniowej (12 MHz) – szyja (regiony I–VI), dolny pachowy (region I), dolny podobojczykowy, pachwiny oraz węzłów chłonne przymostkowych – i interpretacji obrazów w oparciu o: normy wielkości węzłów chłonnych w danej lokalizacji\(^{30}\) (tab. 1), typ uacznienia III lub IV według Westhoffena\(^{31}\) (ryc. 2), obniżenie echogeniczności części korowej, brak hiperechogenicznej chemioterapeutycznej.

The procedure of the study consisted of ultrasonography of the superficial lymph nodes with linear probe (12 MHz) – located in the neck (regions I–VI), axillae (region I), subclavicular fossae, groins and parasternally – and the reading of images regarding: its standard size according to localization\(^{30}\) (Tab. 1), III\(^{rd}\) or IV\(^{th}\) Westhoff’s vascularisation type\(^{31}\) (Fig. 2), cortical echogenicity decrease and the lack of hyperechogenic lymph node sinus. Sonoelastographic assessment of lymph nodes fulfilling two of aforementioned criteria and directly adjacent lymph nodes (even with normal ultrasound image) was made. Lymph node packages showing polycyclic shape were regarded as ‘a single lymph node’. We did not differentiate neoplastically changed lymph nodes from reactive ones, though it was feasible in children presenting HL – all patients were included in experimental treatment protocol (EuroNet-PHL-C1), according to which a PET-CT scan was routinely performed before the treatment (approximately together with sonoelastography). We decided not to include results of PET-CT scans of patients with NHL and adults, which were not performed routinely according to ESMO guidelines (European Society for Medical Oncology)\(^{32}\).

Tab. 1. Normy wielkości węzłów chłonnych w badanych regionach

Tab. 1. Standard size of lymph node according to localization

Lokalizacja węzłów chłonnych	Norma wielkości w USG
Szyjne*	<5–8 mm – oś krótka\(^{37}\)
Neck	<5–8 mm – short axis\(^{37}\)
Dół nadobojczykowy	<5 mm – oś krótka\(^{38}\)
Supraclavicular fossa	<5 mm – short axis\(^{38}\)
Węzły okolicy kąta żuchwy**	<15–20 mm – oś długa\(^{39,40}\)
(szyjno-dwubrzuścowe oraz szyjno-łopatowe)	<9 mm – oś krótka\(^{41}\)
At the angle of mandible**	<15–20 mm – long axis\(^{41,42}\)
(jugulodigastric and omohyoid nodes)	≤9 mm – short axis\(^{41}\)
Mięszsze ślinianki przyusznej/przysusznicze	<5 mm – oś krótka\(^{37}\)
Parotid lymph nodes	<5 mm – short axis\(^{43}\)
Doły pachowej i podobojczykowe (poziomy I–III)	<20 mm – oś długa i <10 mm – oś krótka\(^{42}\)
Axilla and subclavicular fossa (levels I–III)	<20 mm – long axis and <10 mm – short axis\(^{42}\)
Przymostkowe	<6 mm – oś długa\(^{43}\)
Paraskeletal	<6 mm – long axis\(^{43}\)
Pachwinyowe	<15 mm – oś krótka\(^{42}\)
Groin	<20 mm – oś długa\(^{44,45}\)
	<15 mm – short axis\(^{44}\)
	<20 mm – long axis\(^{44}\)

* Ze względu na częste występowanie limfadenopatii szyjnej u dzieci (według Parka – 90% dzieci w przedziale wiekowym 4–8 lat) częstotrzód (Cummings CW: Otolaryngology: Head and Neck Surgery) podaje, by za powiększone szyjne węzły chłonne u dzieci uważać te przełajuęce w oś długiej 2 cm.

**Węzły te zaliczane są do II poziomu węzłowego szyjnego, ale z uwagi na fakt, że większość chłonków spływa do nich z okolicy migdałków i śluzówki jamy ustnej, przez co są stale pobudzone odnowczyno, ich wymiary są większe.

* Due to high prevalence of cervical lymphadenopathy in children (90% in children aged 4–8 according to Park) some sources (Cummings CW: Otolaryngology: Head and Neck Surgery) imply that an enlarged lymph node in children means lymph node >2 cm in long axis.

** These lymph nodes are classified as II**\(^{nd}\) cervical nodular level, yet they are permanently enlarged reactivey as they drain the majority of lymph from tonsillar region and oral mucosa.

\(\text{J Ultrason 2015; 15: 45–55} \)
zatoki. Ocenie sonoeLASTograficznej poddano węzły wyka-
zujące przynajmniej dwa z wymienionych kryteriów oraz
węzły w ich bezpośrednim sąsiedztwie (nawet jeśli pre-
zentowały prawidłowy obraz w USG). W przypadku poli-
cyklicznych pakietów cały konglomerat węzłowy traktowa-
liśmy jak „pojedynczy węzeł chłonny”. Nie rozróżnialiśmy
zbadanych węzłów na nowotworowe i odczynowe, choć
ści z HL było to możliwe – wszystkie objęte były eks-
perymentalnym protokołem leczniczym (EuroNet-PHL-C1),
żeli którego rutynowo wykonywano badania PET-CT
przed rozpoczęciem terapii (czyli w terminie zbliżonym do
badania sonoeLASTograficznego). Ponieważ osoby dorosłe
al oraz pacjenci z NHL nie miały rutynowego PET-CT,
co było zgodne z zaleceniami ESMO (European Society for
Medical Oncology)(32), postanowiliśmy nie uwzględniać jego
wyników w tej pracy. Badanie polegało na wielokrotnym
pulsacyjnym i prostopadłym do powierzchni skóry ucisku
wybranego obszaru węzłowego, tak by obraz krzywej ucisku
podejmowałissorsko o „zaokrąglonych szczytach” (ryc. 3).
W poprawnie technicznie wykonanym badaniu elastogramy
w punktach przejścia przez linię bazową oraz maksymalnej
kompresji i dekompresji były podobne (ryc. 4 A). Jeśli nie,
najczęściej oznaczało to niewystarczającą dekompresję tka-
nek i badanie powtarzano. W przypadku, gdy grubość tka-
neck miękkich była mniejsza (np. obraz węzłów chłonnych
karkowych), zadowalaliśmy się obrazem płaskiej sinusoidy,
oba interpretowaliśmy w punktach maksymalnej kompresji
i przejścia przez krzywą w chwili kompresji, ponieważ
te typy obrazów cechowały się nieco lepszym kontrastem
kolorów w obrębie węzłów chłonnych niż obrazy w fazie
dekompresji (ryc. 4 B). Choć aktualnie zaleca się ocenę tka-
nek w czasie dekompresji, to niektórzy autorzy(33) uważali,
że ocena w punkcie maksymalnej kompresji jest również
diagnostyczna.

Results
One previously treated patient was diagnosed with a exten-
sive residual mass in the mediastinum (medical history:
PET-CT scan result), which was partly seen on 2D ultra-
sonography scans. RTE was not reproducible, thus we
excluded that patient from our study.

The examination consisted of multiple pulsating pres-
sure, that was perpendicular to the skin over nodular
areas, so as compression curve was sinusoid-shaped with
’rounded peaks’ (Fig. 3).

Elastograms in properly performed examination were
similar in crossing points of the baseline and points of
maximum compression and decompression (Fig. 4 A).
Otherwise the study was repeated, as it indicated insuf-
cient decompression of tissue. When thickness of soft
tissue was smaller (for example assessing nuchal lymph
nodes), we were satisfied of plane sinusoid-shaped curve.
In those cases we interpreted images in their point of
maximum compression and transition through the curve
on time of compression, as color contrast of lymph nodes
in these type of images was better than in those obtained
on time of decompression (Fig. 4 B). Several authors(33)
claimed that evaluation at the point of maximal compres-
sion is also of diagnostic value, yet nowadays assessment
during decompression is recommended.

The evaluation was based on created and used in our cen-
ter modified sonoeLASTographic scale score for lymphop-
roliferative disorders, which is a chimera of Tsukuba and
Furukawa scores (Fig. 5).

Fig. 3. A series of images of the same lymph node in the popliteal region in patient who has undergone enucleation of knee joint and prosthesis implanta
tion due to sarcoma. **Series of images A:** Inappropriately performed examination presents different image at point of maximum compression than at baseline (see also: Fig. 4). Note a spiked wave of tissue compression curve. **Series of images B:** Examination of the same region and patient performed properly presents similar images both at the peak of the curve and at baseline. Parabolic shape of tissue compression curve.
Ryc. 4 A. Różne typy krzywych kompresji-dekompresji. 1 – Symetryczna sinusoida o zbliżonej prędkości narastania kompresji i dekompresji oraz podobnej wysokości załamków maksymalnej kompresji i dekompresji. Na takiej krzywej prawie identyczne obrazy uzyskuje się zarówno w miejscach maksymalnej kompresji, jak i dekompresji oraz w punkcie przecięcia wykresu przez linię bazową. 2 – Niesymetryczna iglica, prędkość narastania kompresji większa niż dekompresji, zbliżona wysokość załamków maksymalnej kompresji i dekompresji – zbliżone wyniki obserwowaliśmy tylko w miejscu maksymalnej dekompresji i przecięcia linii bazowej. 3 – Niesymetryczna iglica, prędkość narastania kompresji mniejsza niż dekompresji, zbliżona wysokość załamków maksymalnej kompresji i dekompresji – zbliżone wyniki obserwowaliśmy tylko w miejscu maksymalnej dekompresji i przecięcia linii bazowej. 4 – Nie- symetryczna krzywa o płasko-kształtnym kształcie, ale z ostrymi załamkami maksymalnej kompresji i dekompresji. Powtarzalny wynik tylko w punkcie maksymalnej dekompresji. 5 – Niesymetryczna krzywa o płasko-kształtnym kształcie, z płaskimi załamkami – brak powtarzalności wyników. 6 – Niesymetryczna krzywa z widoczną arytmią kompresji-dekompresji – brak powtarzalności wyników.

Fig. 4 A. Types of compression-decompression curves. 1 – Symmetric sinusoid with similar velocity of compression and decompression increase and similar height of waves during compression and decompression. As for this type of curve, almost the same images at point of maximal compression, maximal decompression and at crossing point of baseline can be obtained. 2 – Spiked wave asymmetry, velocity of compression increase is greater than of decompression, similar height of waves during compression and decompression – similar result were obtained only at crossing point of baseline during maximal compression. 3 – Spiked wave asymmetry, velocity of compression increase is smaller than of decompression, similar height of waves during compression and decompression – similar result were obtained only at crossing point of baseline during maximal compression. 4 – Flat-shaped curve asymmetry with sharp waves of maximal compression and decompression. Reproducible results only at point of maximal decompression. 5 – Flat-shaped curve asymmetry with flat waves – results not reproducible. 6 – Curve asymmetry with present compression-decompression arrhythmia – results not reproducible.

Ryc. 4 B. Obraz węzłów chłonnych położonych powierzchownie, kiedy nie można uzyskać sinusoidalnego zarysu krzywej kompresji. Obraz A – sonoelastogram w punkcie maksymalnej kompresji płaskiej krzywej; obraz B – sonoelastogram w punkcie maksymalnej dekompresji. W obrazie kompresji lepiej widoczne jest zróżnicowanie elastyczności w węźle chłonnym, a w obrazie dekompresji zróżnicowanie elastyczności węzłów-okoliczne tkanki.

Fig. 4 B. Superficial lymph nodes ultrasound image, when sinusoid-shaped curve of compression cannot be obtained. Image A – sonoelastogram at point of maximal compression of plane curve; image B – sonoelastogram at point of maximal decompression. Different levels of elasticity in lymph node is more visible during compression, while differentiation of elasticity between lymph node and surrounding tissue is more visible on decompression.
Obrazy interpretowano, bazując na opracowanej i stosowanej przez nas ośrodka uproszczonej skali mapowania sonoelastograficznego dla zespołów limfoproliferacyjnych, stanowiącej chimerę klasyfikacji Tsukuba i Furukawa (ryc. 5).

Wyniki

W przypadku pacjentów po zakończonym leczeniu w jednym przypadku odnotowano dużą zmianę resztkową w śródpiersiu (dane z historii choroby: badanie PET-CT), widoczną jedynie fragmentarycznie w klasycznej ultrasonografii 2D. Sonoelastografia RTE (real-time elastography) nie dawała powtarzalnych wyników, przez co zmianę wyłączono z naszego badania.

U pacjentów z aktywnymi chłoniakami wszystkie 4 cechy w prezentacji 2D prezentowało 66 węzłów, 3 cechy – 119, 2 cechy – 58. W naszej zmodyfikowanej skali sonoelastograficznej (tab. 2) cecha A odpowiadała węzłom chłonnym mającym >50% ciepłych kolorów (zielony, czerwony), B – >50% zimnych kolorów (niebieski), C – gdy węzły odpowiadały stopniowi V według skali Tsukuba, gdy obecny był naciek na sąsiedzące tkanki lub obraz miał postać „sera z dziurami” (ryc. 6). Obraz „sera z dziurami” jest naszą obserwacją, nienotowaną w wcześniejszym piśmiennictwie. Cechował się powtarzalnym obrazem Tsukuba/Furukawa IV w miejscu przecięcia linii bazowej w trakcie dekompresji oraz obecnością drobnych obszarów „miękkich kolorów” w miejscu przecięcia linii bazowej w trakcie kompresji. Obszary te odpowiadały nacyniom krwionośnym widocznym w badaniu dopplerem mocy (ryc. 5).

All four features of lymph node in 2D ultrasound considering patients presenting active form of a disease were shown in 66 cases, 3 features in 119 and 2 features in 58 cases. In ours modified sonoelastographic scale score (Tab. 2) feature A corresponded to lymph nodes presenting >50% of warm color (green, red), B – >50% of cool color (blue), feature C corresponded to the Vth grade in Tsukuba’s score, where surrounding tissue was infiltrated or the image was of “cheese with holes” appearance (Fig. 6). The “cheese with holes” appearance is our own observation that was not mentioned before. This image corresponded to Tsukuba/Furukawa IVth grade and was reproducible in crossing point of baseline during decompression and was characterized by small areas of ‘soft colors’ in crossing point of baseline during compression. These areas represented blood vessels what was confirmed in power Doppler examination (Fig. 5). The results are as follows: 4 features: type A elastogram – 10; type B – 47, type C – 9; 3 features: type A – 18, type B – 96, type C – 5; 2 features: type A – 16, type B – 40, type C – 2. Type C elastogram correlated strongly with 4 and 3 features present, 0,72 and 0,51 respectively. For 2 present features the correlation was weak (0,16). Type C elastogram was also present considering reactive lymphadenopathy, but with low frequency for 2 features – 0,7%; for 3 features the frequency was surprisingly high – 10,3%, what was probably the result of low number of cases (<30 elements). It was not observed in previously treated and in remission patients. For type C we assumed lymph nodes that presented grades III–IV only, according to Alam’s or Tsukuba’s sonoelastographic scale scores.

Ryc. 5. Zmodyfikowana skala sonoelastograficzna dla węzłów chłonnym w przebiegu złośliwych procesów limfoproliferacyjnych
Fig. 5. Modified sonoelastographic scale score for lymph node assessment in malignant lymphoproliferative disorders
Tab. 2. Rozkład częstości występowania węzłów chlonnych wykazujących 2, 3 i 4 patologiczne cechy w badaniu USG 2D i elastogramów według uproszczonej skali przeznaczonej dla chloników

2 cechy	Aktywny HL/NHL	HL/NHL w remisji	Odczynowa limfadenopatia
A	16	9	86
B	40	7	53
C	2	0	1
Łącznie	58	16	140

3 cechy	4 cechy	
A	18	10
B	96	47
C	5	9
Łącznie	119	66

4 cechy
A
B
C
Łącznie

Tab. 2. The incidence of lymph nodes presenting 2, 3 and 4 pathologic features in 2D ultrasound and elastograms according to modified scale score for lymphoma

Ryc. 6. Duża masa węzłowa (5,3 × 2,4 cm) w prawym dole nadobojczykowym u pacjenta z HL. Widoczne silne unaczynienie typu III, brak tłuszczowej wnięcia oraz obszary niejednorodnie obniżonej echogeniczności. W fazie dekompresji w miejscu przecięcia linii bazowej węzeł prezentuje obraz Tsukuba IV, w miejscu przecięcia linii bazowej w fazie kompresji – obraz Tsukuba III/IV. Obszary „dziur w serze” pokrywają się z miejscami widocznego przepływu w badaniu dopplerem mocy

Fig. 6. Extensive nodular mass (5,3 × 2,4 cm) in right supraclavicular fossa in patient presenting HL. Pronounced type III vascularisation, lack of fatty hilum and areas of heterogeneously decreased echogenicity. At crossing point of baseline on decompression, a lymph node presents type IV, whereas on compression-type III/IV of Tsukuba image. "Cheese with holes"-like areas correspond to visible flow on power Doppler

Otrzymaliśmy następujące wyniki: 4 cechy: elastogram A – 10; B – 47, C – 9; 3 cechy: A – 18, B – 96, C – 5; 2 cechy: A – 16, B – 40, C – 2. Cecha C występowała tym częściej, im więcej cech złożoności wykazywał węzeł chlonny; odpowiednio: 2 cechy – 3,5%, 3 cechy – 4,2%, 4 cechy – 13,6%. Dla 4 i 3 cech częstość występowania elastogramu C wykazywała silną korelację dodatnią, wynoszącą odpowiednio 0,72 i 0,51. Dla 2 cech zaobserwowano słabą korelację dodatnią (0,16). Cecha C występowała również u osób z odczynowymi limfadenopatiami, jednak z mniejszą częstością dla 2 cech – 0,7%, a dla 3 cech wykazywała zdumiewającą wysoką częstość – 10,3%, co najpewniej było wynikiem małej próby (<30 elementów). Nie zaobserwowano jej u pacjentów po zakończonym leczeniu i bez objawów wznowy. Za węzły C uznaaliśmy te, które według tradycyjnych skal sonoelastograficznych odpowiadałyby jedynie stopniom III–IV według skal Alam czy Tsukuba.

Discussion

Lymphoma requires distinct diagnostic algorithm as it presents specific for malignant lymphoproliferative disorder features. Although the methods of choice in staging are PET-CT and MR modalities, ultrasonography shows the highest level of sensitivity reaching 96.8% (for PET-CT – 91.8%). However, even with the use of FNAB (fine needle aspiration biopsy), specificity of ultrasound examination is not as high as in other modalities. Therefore finding new methods, such as sonoelastography, can attribute to specificity level improvement. Desmoplastic reaction is limited and rarely observed in NHL’s, LP-HL’s (nodular lymphocyte predominant Hodgkin’s lymphoma) and LD-HL’s (lymphocyte depleted Hodgkin’s lymphoma). The rapidly proliferating cells’ ‘pressure’ is in charge of lymph node’s consistency. Desmoplastic reaction is seen...
Dyskusja

Z uwagi na specyficzny charakter złożonych procesów limfoproliferacyjnych, którymi cechują się chłoniaki, wymagają one odmiennego algorytmu badania. Choć standardem w ocenie ich stopnia zaawanowania są badania PET-CT i MR, to USG charakteryzuje się największą czułością ze wszystkich metod obrazowania, sięgającą 96,8% (PET-CT – tylko 91,8%). Problem stanowi niska specyficzność, która nawet przy zastosowaniu BCI (biopsja cienkoigłowa) nie dorównuje innym metodom obrazowania. Z tego powodu istotne jest poszukiwanie sposobów pozwalających na poprawę specyficzności badania USG, do których niewątpliwie można zaliczyć sconoelastografię. W chłoniakach nieziarniczych oraz w HL LP (chłoniak Hodgkina bogaty w limfocyty) i LD (chłoniak Hodgkina ubogolimfocytarny) desmoplastja występuje rzadko i jedynie w ograniczonym stopniu, a za pośredniczającą węzłów chłonnich odpowiada przede wszystkim „ciśnienie” szybko dziewiących się komórek. W postaci NS (stwardnienie guzkowe) i MC (mieszankomórkowa) chłoniaka Hodgkina desmoplastja jest obecna, ale najczęściej pojawia się dopiero w późniejszych etapach choroby, a w fazie komórkowej stwardnienia guzkowego może być nieobecna. Taki charakter rozrostu HL NS różni się od obserwowanego w przerzutach węzłowych raków. Z powyższego powodu oraz z uwagi na fakt, że w badaniu chorych z chłoniakami często dokonuje się wielokrotnie oceny ultrasonograficznej wszystkich powierzchniowych regionów węzłowych, na znaczeniu zyskuje prosta i specyficzna dla chłoniaków skala sconoelastograficzna.

Do oceny naszej skali, tak jak i innych skalsonoelastograficznych, niezbędna jest według autorów prawidłowa technika wykonywania kompresji tkanki. Tylko wówczas można uzyskać powtarzalne elastogramy.

Choć przedstawione badania nie zostały jeszcze zakończone, to wstępnie uzyskane wyniki zachęcają do ich dalszego prowadzenia. Jednocześnie liczymy na zaangażowanie ośrodków innych niż nas w celu weryfikacji skuteczności i przydatności zaproponowanej przez nas skali w praktyce.

Piśmiennictwo / References

1. Potter P (ed.): Loeb Classic Library: Hippocrates. Vol. V, Harvard University Press, Cambridge 1995: 108–125.
2. Paget S: The distribution of secondary growths in cancer of the breast. Lancet 1889; 133: 571–573.
3. Yen TW, Aardal NP, Bronner MP, Thorne DR, Savard CE, Lee SP et al.: Myofibroblasts are responsible for the desmoplastic reaction surrounding human pancreatic carcinoma. Surgery 2002; 131: 129–134.
4. Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.
5. Borst M: Die Lehre von den Geschwülsten mit einem mikroskopischen Atlas. Bergmann, Wiesbaden 1902.
6. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasound Imaging 1991; 13: 111–134.
7. Young T: A Course of Lectures on Natural Philosophy and the Mechanical Arts. Vol. I: Text, Vol. II: Plates. Joseph Johnson, London 1807: 143–145.
8. Lyschick A, Higashi T, Asato R, Tanaka S, Ito J, Hiraoka M et al.: Cervical lymph node metastases: diagnosis at sonoelastography – initial experience. Radiology 2007; 243: 258–267.
9. Tan R, Xiao Y, He Q: Ultrasound elastography: its potential role in assessment of cervical lymphadenopathy. Acad Radiol 2010; 17: 849–855.
10. Havre RF, Waage JR, Gilja OH, Odegard S, Nesje LB: Real-time elastography: strain ratio measurements are influenced by the position of the reference area. Ultraschall Med 2011; 33: 559–568.
11. Barr RG, Memo R, Schaub CR: Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 2012; 28: 13–20.

in NS (nodular sclerosis) type and MC (mixed-cell) type of Hodgkin’s lymphoma, predominantly in advanced stages of the disease, yet in cellular phase of nodular sclerosis may be absent. This feature of NS-HL differentiates them from carcinoma metastasis in lymph node. Considering the above, together with the fact of repeated ultrasound examinations of superficial nodular regions, simple and specific sonoelastographic scale score for lymphoma emerges.

According to the authors, an appropriate tissue compression technique is required to use ours and others sonoelastographic scale scores properly. This is the only way to obtain reproducible elastograms.

Although the study is still in progress, the preliminary results are encouraging for carrying them on. We would like to ask other clinical centers for cooperation and verification of practical effectiveness and usefulness of the above proposed scale score.
Modified sonoelastographic scale score for lymph node assessment in lymphoma – a preliminary report

12. Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS: An overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev 2011; 7: 255–282.

13. Youk JH, Son EJ, Gweon HM, Kim H, Park YJ, Kim JA: Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultrasound Med Biol 2014; 40: 2336–2344.

14. Alam F, Naito K, Horiguchi J, Fukuda H, Tachikake T, Ito K: Accuracy of sonographic elastography in the differential diagnosis of enlarged cervical lymph nodes: comparison with conventional B-mode sonography. AJR Am J Roentgenol 2008; 191: 604–610.

15. Ishibashi N, Yamagata K, Sasaki H, Seto K, Shinya Y, Ito H et al.: Real-time tissue elastography for the diagnosis of lymph node metastasis in oral squamous cell carcinoma. Ultrasound Med Biol 2012; 38: 389–395.

16. Furukawa MK, Fujita Y, Kubota A, Furukawa M, Hanamura H: Diagnosis of cervical lymph node metastasis of head and neck squamous cell carcinoma – usefulness of power Doppler ultrasonography and elastography. Medix 2007; suppl.: 20–23.

17. Dudea SM, Botar-Jid C, Dumitriu D, Vasilescu D, Manole S, Lenghel ML: Differentiating benign from malignant superficial cervical lymph nodes with sonoelastography. Medical Ultrason 2013; 15: 132–139.

18. Teng DK, Lin YQ, Guo F, Sun LN: Value of ultrasound elastography in assessment of enlarged cervical lymph nodes. Asian Pac J Cancer Prev 2012; 13: 2081–2085.

19. Zhi H, Xiao XY, Yang HY, Ou B, Wen YL, Luo BM: Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol 2010; 17: 1227–1233.

20. Rubesin SE, Furlid SE: Other tumors of the colon. In: Gore RM, Levine MS (eds.): Textbook of Gastrointestinal Radiology. Saunders, Philadelphia 2000: 1049–1074.

21. Regenbogen VS, Ghahremani GG, Zabrowski RJ, Rochester D: Burkitt’s lymphoma – an overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev 2011; 7: 255–282.

22. Al-Kaabi J, Ahmed S, Rizvi A, Burney I: Non-Hodgkin lymphoma mimicking polymyalgia rheumatica in a young patient. Oman Med J 2008; 23: 273–276.

23. Birgersdotter A, Baumforth KR, Porwit A, Sjöberg J, Björkholm M et al.: Connective tissue growth factor is expressed in malignant cells of Hodgkin lymphoma but not in other mature B-cell lymphomas. Am J Clin Pathol 2010; 133: 271–280.

24. Birgersdotter A, Baumforth KR, Wei W, Murray PG, Sjöberg J, Björkholm M et al.: Inflammation and tissue repair markers distinguish the nodular sclerosis and mixed cellularity subtypes of classical Hodgkin’s lymphoma. Br J Cancer 2009; 101: 1393–1401.

25. Som PM: Detection of metastasis in cervical lymph nodes: CT and MR criteria and differential diagnosis. AJR Am J Roentgenol 1992; 158: 961–969.

26. Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos G, Young RC et al.: Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Coldsotwold meeting. J Clin Oncol 1989; 7: 1630–1636.

27. Murphy SB: Classification, staging and end results of treatment in childhood non-Hodgkin’s lymphoma: dissimilarities from lymphomas in adults. Semin Oncol 1980; 7: 332–339.

28. Murphy SB, Fairclough DL, Hutchison RE, Berard CW: Non-Hodgkin’s lymphomas of childhood: an analysis of the histology, staging, and response to treatment of 338 cases at a single institution. J Clin Oncol 1989; 7: 186–193.

29. Rouvière H: Lymphatic System of the Head and Neck. Edwards Brothers, Ann Arbor (MI, USA) 1938.

30. Fletcher CD: Pathology and Genetics of Tumours of the Haematopoietic System. IARC Press, Lyon 2001.

31. Westhoffen M, Reichel C, Nadjmi D: Die farblose Duplexsonographie der Halslymphknoten. Otorhinolaryngologica Nova 1994; 4: 285–291.

32. Engert A, Eichenauer DA, Dreymling M: ESOM Guidelines Working Group. Hodgkin’s lymphoma: ESOM Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 (suppl. 5): v168–v171.

33. Kudo M, Shiina T, Moriyasu F, Iijima H, Tateishi R, Yada N et al.: JSUM ultrasound elastography practice guidelines: liver. J Med Ultrasonics 2013; 40: 325–357.

34. Al-Kaabi J, Ahmed S, Rizvi A, Burney I: Non-Hodgkin lymphoma mimicking polymyalgia rheumatica in a young patient. Oman Med J 2008; 23: 273–276.

35. Kansal R, Singleton TP, Ross CW, Finn WG, Padmore RF, Schnitzer B: Follicular Hodgkin lymphoma: a histopathologic study. Am J Pathol 2002; 117: 29–35.

36. Ying M, Ahuja A, Brook F, Brown B, Metreweli C: Nodal shape (S/L) and its combination with size for assessment of cervical lymphadenopathy: which cut-off should be used? Ultrasound Med Biol 1999; 25: 1169–1175.

37. van Hoorst M, Brekel K, Heijenbrok MW, van Kasteren JH, van de Moosdijk CN, Roldaan AC et al.: Metastases in supravacular lymph nodes in lung cancer: assessment with palpation, US, and CT. Radiology 2004; 232: 75–80.

38. Bartlett ES, Walters TD, Yu E: Can axial-based nodal size criteria be used in other imaging planes to accurately determine “enlarged” head and neck lymph nodes? ISRN Otolaryngol 2013; 2013: 232968.

39. Cummings CW: Otolaryngology: Head and Neck Surgery. Elsevier Mosby, Philadelphia 2005.

40. van den Brekel MW, Casteljns JA, Stel HV, Golding RP, Meyer CJ, Snow GB: Modern imagining techniques and ultrasound-guided aspiration cytology for the assessment of neck node metastases: a prospective comparative study. Eur Arch Otorhinolaryngol 1993; 250: 11–17.

41. Whitman GJ, Lu TJ, Adejolu M, Krishnamurthy S, Sheppard D: Lymph node metastasis of head and neck squamous cell carcinoma – usefulness of power Doppler ultrasonography and elastography. Medical Ultrason 2013; 15: 132–139.

42. Whitman GJ, Lu TJ, Adejolu M, Krishnamurthy S, Sheppard D: Lymph node metastasis of head and neck squamous cell carcinoma – usefulness of power Doppler ultrasonography and elastography. Medical Ultrason 2013; 15: 2081–2085.

43. Heijenbrok K, van Kasteren JH, van de Moosdijk CN, Roldaan AC et al.: Metastases in supravacular lymph nodes in lung cancer: assessment with palpation, US, and CT. Radiology 2004; 232: 75–80.

44. Bartlett ES, Walters TD, Yu E: Can axial-based nodal size criteria be used in other imaging planes to accurately determine “enlarged” head and neck lymph nodes? ISRN Otolaryngol 2013; 2013: 232968.

45. Habermann TM, Steensma DP: Lymphadenopathy. Mayo Clin Proc 2000; 75: 723–732.