Is antral membrane balloon elevation truly minimally invasive technique in sinus floor elevation surgery? A systematic review

Huda Moutaz Asmael

Abstract

Background: Minimally invasive antral membrane balloon elevation was introduced as a less traumatic technique in sinus floor elevation surgery. This is the first systematic review to assess the results of previous studies utilizing this technique.

Aims of the study: The objectives of this study were to assess the bone gain, sinus augmentation success rate, implant survival rate, and complications with minimally invasive antral membrane balloon elevation technique in comparison with the sinus floor elevation by traditional transalveolar technique (Summers’ technique).

Materials and methods: An electronic search including MEDLINE (PubMed) and Cochrane database sites was conducted and supported by manual searching for articles on minimally invasive antral membrane balloon elevation from 1945 to 16 January 2017. Sometimes the researchers were contacted to fill the missing information which was not mentioned in their articles.

Results: The extracted articles which involved utilization of balloon technique in maxillary sinus floor elevation surgery were 27 articles, among which only 10 articles met the inclusion criteria. The average of Schneiderian membrane perforation with minimally invasive antral membrane balloon elevation (MIAMBE) technique was 6.76%. The sinus augmentation success rate ranged from 100 to 71.4% with average of 91.6%. Bone gain with this technique could reach for more than 10 mm with an average of 6.96 mm.

Conclusions: Minimally invasive antral membrane balloon elevation combined the beneficial points of both lateral window approach and transalveolar approach in which it produced ≥10 mm of gained bone in minimally invasive manner. Anyhow, long follow-up period is needed to accurately identify the long-term success rate of dental implants placed with this technique.

Keywords: MIAMBE technique, Sinus augmentation, Sinus floor elevation surgery

Review

Several sinus floor elevation techniques had been introduced as a minimally invasive surgical procedure. Among which, minimally invasive antral membrane balloon elevation technique was developed to achieve better results with minimal trauma to the patient also to reduce complications and intra-operative time. Conventionally, sinus augmentation procedure is performed either via lateral approach (modified Caldwell-Luc approach) [1] or through more conservative transcrestal approach (Summers’ technique) [2].

The antral membrane balloon elevation (AMBE) technique was introduced via lateral approach (direct sinus lift surgery) [3, 4].

After that, the minimally invasive antral membrane balloon elevation (MIAMBE) technique was described via transcrestal approach (indirect sinus lift) which involved utilization of balloon device through conservative 3-mm osteotomy site [5]. Since then, several articles were published utilizing this technique. This is the first systematic review for evaluation of the (MIAMBE) technique in sinus lift surgery.
Question in focus
Is the MIAMBE effective in the terms of sinus augmentation success rate, survival rate of dental implants, bone gain, and complication rate compared with the conventional sinus floor elevation by transalveolar technique (Summers’ technique)?

Materials and methods
Search strategies
This study was executed following the PRISMA criteria for the systematic review. An electronic search including MEDLINE (PubMed) and Cochrane database sites was conducted and supported by manual searching for targeted articles through the related journals and web sites from 1945 to 16 January 2017.

Inclusion criteria
1. Prospective, retrospective studies and randomized clinical trials.
2. Articles published in English language only.
3. Human studies.
4. Healthy patients without systemic or local disease that may affect the maxillary sinus health or the sinus lift procedure outcome.
5. Studies which included at least six patients.
6. Sinus floor elevation via the transcrestal approach only (indirect sinus lift).
7. Follow-up period of at least 6 months.

Exclusion criteria
1. Case reports and studies which included less than six patients.
2. Studies published in other language than English.
3. Experimental (animal studies).
4. Sinus floor elevation via lateral approach.
5. Maxillary sinus pathology or presence of sinus septa.
6. Studies with follow up period of less than 6 months.

The process of extracting articles
The following keywords were involved in the electronic search:
MAILLARY SINUS AUMENATION, SINUS LIFT, INDIRECT SINUS LIFT, ANTRAL MEMEMBRANE ELEVATION, MINIMALLY INVASIVE ANTRAL BALLOON ELEVATION, ATROPHIC MAXILLA, SINUS FLOOR ELEVATION, SINUS MEMBRANE ELEVATION
The results (abstracts and articles) were reviewed twice by the same author at different time intervals. Hand searching for the full-text articles bibliographies of the selected studies was established. Sometimes the researchers were contacted to fill the missing information which was not mentioned in their articles or for more explanation about their results. The search process was demonstrated in (Fig. 1).

Results
The total electronic search results were 5395 articles. The reviewed articles were 400, and the extracted articles which involved utilization of balloon technique in the maxillary sinus floor elevation surgery were 27 articles. Siventen articles were excluded from this study [6–20] and only 10 articles met the inclusion criteria.

The results of the selected studies were categorized to assess the success rate of sinus augmentation by MIAMBE technique, to report the perforation rate of Schneiderian membrane and to identify the rate of complications associated with MIAMBE technique as shown in Table 1. The survival rate and failure rates of dental implants placed in the augmented maxillary sinus were calculated for the selected studies and registered in Table 2. The average of Schneiderian membrane perforation was calculated for the ten extracted studies utilizing MIAMBE technique, and it was 6.76%. The sinus augmentation success rate reported ranged from 100 to 71.4% with an average of 91.6%. The average of implant survival rate in these studies was 96.62%. Regarding the grafting material, synthetic bone graft was utilized in five studies. Four studies used a mixture of autogenous and synthetic bone graft while one study utilized allogenic cancellous bone graft. PRF (platelets rich fibrin) mixed with either autogenous or synthetic bone graft was used in the five studies.

Discussion
Sinus floor elevation surgery with balloon is said to be a minimally invasive technique [5], but to date, no systematic review was made to clearly present the study results, authors experience, and surgical outcomes. Results of studies that utilized MIAMBE technique could be discussed under these highlighted points.

Maxillary sinus entry and elevation of sinus membrane
There are two critical points in sinus floor elevation surgery which include entry to the sinus and elevation of Schneiderian membrane. Several atraumatic techniques had been developed to make transalveolar approach more predictable among which minimally invasive methods introduced like MIMBE technique [5], novel drills, and reamers to aid in atraumatic entry to the sinus [21]. Also, the Jeder-System which utilize hydraulic pressure had been introduced with predictable results [22]. Anyhow, the outcomes of these techniques need to be compared to reach to a reliable clue about the most effective method in sinus lift surgery.
Sinus augmentation and bone gain
The success of sinus augmentation procedure with MIAMBE technique was ranged from 100 to 71.4% with an average of 91.6% in these studies. Bone gain with MIAMBE technique could reach for more than 10 mm, it ranged from 3 to 10.8 mm with an average of 6.96 mm. It should be mentioned that some articles failed to report the gained bone in details.

The traditional procedure (Summers’ technique) had a limitation of allowing for only a minimal amount of bone gain which is 3–4 mm. While sinus floor elevation surgery via lateral approach produced a huge elevation ≥ 10 mm [23], it is considered as an invasive technique.

Implants survival rates
Implant survival rate associated with MIAMBE technique was ranged from 90 to 100% with an average of 96.62% as shown in Table 2. On the other hand, systematic reviews have evaluated the implant survival rate after osteotome-mediated sinus floor elevation surgery which shows an implant survival rate higher than 90% [24–26]. In most of MIAMBE studies, dental implant failure occurred early during the first 6 months after operation, some authors mentioned the cause for implant failure which was associated with infection, and others did not addressed the cause.

Surgical complications
Intra-operative complications
The most common intra-operative complication associated with sinus lift procedure was sinus membrane tear [27]. The rate of schneiderian membrane perforation with MIAMBE technique was ranged from 0 to 21.32% with an average of 6.76%. This rate was similar to the
Study	Patients	Age (years)	N of sinus augmentation	Sinus augmentation success rate %	Baseline bone height (mm)	Bone gain (mm)	Antrostome elevation (mm)	Total bone height (mm)	Inflation balloon volume	Type of graft	Membrane perforation	Test for membrane perforation	Complications	Follow-up period after operation	
Kfir et al. [5]	12	NM 42 ± 9	NM 91.6	3.7 ± 1.4	NM > 10	10–17 ≤ 25 mL	-PRF	-ABP -Bi-Ostetic synthetic bone graft	1 8.33	Valsalva maneuver, Direct visualization	1 membrane tear, balloon rupture, implant failed	23 months			
	12	NM	NM 100	3.5 ± 1.3	NM > 10	10–18	-PRF	-ABP -Bi-Ostetic synthetic bone graft	1 0	Valsalva maneuver	1 mild periprocedural nosebleed	12 months			
Kfir et al. [29]	3	M = 18, F = 18	42 ± 9 36	97.2	3.4 ± 2.1	NM > 10	8–18 NM	-PRF -ABP -Bi-Ostetic synthetic bone graft -Fisiograft gel	1 2.77	Valsalva maneuver, Membrane perforation	1 membrane tear, implant failed	6–8 months			
Hu et al. [30]	28	M = 143, F = 14	402 ± 123.5	92.85	4.92 ± 1.24	NM Mean	10.9 ± 206	-PRF -Bio-Oss	2 7.14	Valsalva maneuver	1 mild nosebleed after surgery, membrane tear and the cases aborted	15.9 ± 2.94 months			
Kfir et al. [31]	112	M = 50, F = 62	44.1 ± 12.9	97.3% initial procedural success, 100% secondary procedural success	3.8 ± 2.1	NM > 10	11–18 NM	-PRF -Synthetic bone graft -ABP -Fisiograft gel	12 10.71	Valsalva maneuver, Direct visualization	1 infection and oroantral fistula, 4 weeks, membrane tear and procedures aborted	13 months			
Mazor et al. [32]	20	NM 37–72	24 100	2–6	NM 11	NM NM	-PRF -Synthetic bone substitute	-ABP -Calcium sulphate solution	0 0	Valsalva maneuver, Direct visualization	1 patient was allergic to the antibiotic	18 months			
Petruzzi et al. [33]	40	M = 16, F = 24	41.5	NM	8.00 ± 2.19	0.6 ≤ 20	14.66 ± 1.48	-ABP -Microscope (KarlKaps)	3 7.5	Microscope (KarlKaps)	1 m acrolaceration, 2 m microcaterizations, 4 hemifacial edema	1 year			
Peñarrocha-Diago et al. [34]	6	M = 5, F = 1	27–51 6	83.3% for the all 6 cases, 100% for the five cases	2.1–4.1 7.2–10.8 8.7	NM 11.3–14.5	-ABP -BOI-OS, bovine bone grafts	-Medi-Span endoscopy	1 16.66	Microscope (KarlKaps)	1 membrane tear, and case aborted	1 year after prosthetic loading			
Study	Patients	Age (years)	N of sinus augmentation	Sinus augmentation success rate %	Baseline bone height (mm)	Bone gain (mm) R	M	Antral membrane elevation (mm)	Total bone height (mm)	Inflate balloon volume	Type of graft	Membrane perforation	Test for membrane perforation	Complications	Follow-up period after operation
---------------	----------	-------------	-------------------------	----------------------------------	---------------------------	------------------	---	--------------------------------	-----------------------	----------------------	--------------	----------------------	-------------------------------	---------------	---------------------------
Gonzalez et al. [35]	14	M = 7 F = 7	NM NM	71.4	5.2	8.5	NM	NM	NM	NM	BIO-OSS bovine bone grafts	An operating microscope	Failure of four cases due to mucosa perforation (21.32%) and balloon breakage (7.14%). 1 implant showed marginal periimplantitis which treated successfully	1 year	
Dhandapani et al. [36]	9	NM	25–60 10	100	5–8	3–5.5	4.34 ≥ 10	13.5–9 1 cc	0	0	Irradiated allogeneic cancellous bone and marrow graft	No complications	6 months		
Asmael, and Lateef [37]	13	M = 4 F = 9	28–57 17	100	2.3–78	4.9	6.70 NM	98–17.2 0.5–1 cc	0	0	Particulate bone grafts (βTricalcium Phosphate)	Direct vi ion Hydraulic pressure	1 mild nasal bleeding 1 infraorbital ecchymosis	1 year	
Total: Average	91.6	100–71.4%	6.968 3–10.8 mm	6.76 0–21.32%											

MIAMBE minimally invasive antral membrane balloon elevation, N number, NM not mentioned, M:F male: female numbers, M mean, R range, PRF platelets rich fibrin, PRP platelets rich plasma, ABP autogenous bone particles, PR perforation rate
Study	N of patients	Baseline bone height	Total N of implants	Implants survival rate %	N of failed implants	Implant failure rate %	Implant lengths	Implant diameters	Timing of failure	Follow-up period after operation
Kfir et al. [5]	12	3.7 ± 1.4 mm	Mean ± SD 2.08 ± 0.51	NM	1	NM	13, 17.1 mm	3.75, 5 mm	2 weeks after procedure	23 months
	12	3.5 ± 1.3 mm Mean = 3.5	Mean ± SD 1.91 ± 0.51	100	0	0	13, 17.1 mm	3.75, 5 mm	12 months	
Kfir et al. [29]	36	3.4 ± 2.1 mm	72	97.2	2	2.77	13, 17.1 mm	3.75, 5 mm	1 and 3 weeks after procedure	6–8 months
Hu et al. [30]	28	4.92 ± 1.24 mm	62	96.15	1	3.84	NM	3.8, 50 mm	2 weeks after procedure	15.9 ± 2.94 months.
Kfir et al. [31]	112	3.8 ± 2.1 mm	26	95	11 FR = 5%	5	13, 17.1 mm	3.75, 5 mm	At 6 months after procedure	13 months
Mazor et al. [32]	20	2–6 mm	37	100	0	0	13 mm	5 mm	18 months	
Petruzzi et al. [33]	40	8.00 ± 2.19 mm	56	100	0	0	11.5, 13, and 15 mm	4.00, 650 mm	1 year	
Perurrocha-Diago et al. [34]	6	2.1–4.1 mm	6	100	0	0	10, 11.5 mm	4.2, 52 mm	1 year (after prosthetic loading)	
Gonzalez et al. [35]	14	5.2 mm	11	90	1	10	13 mm	NM	1 year	
Dhandapani et al. [36]	9	5–8 mm	NM	NM	NM	NM	NM	NM	6 months	
Asmael and Lateef [37]	13	2.3–7.8 mm	23	91.30	2	8.70	10, 12 mm	4.2, 43, 48, and 5 mm	At 1 and 6 months	1 year

MIAMBE minimally invasive antrostomy balloon elevation, N number, NM not mentioned.
technique is predictable and comparable with the amount of bone achieved with the more invasive lateral window technique. Anyhow, long follow-up period is needed to accurately identify the long-term success rate of dental implants placed with this technique.

Abbreviations
ABP: Autogenous bone particles; AMBE: Antral membrane balloon elevation; M: Mean; MF: Male-female numbers; MIAMBE: Minimally invasive antral membrane balloon elevation; N: Number; NM: Not mentioned; PR: Perforation rate; PRF: Platelets rich fibrin; PRP: Platelets rich plasma; R: Range; RCT: Randomized clinical trial

Acknowledgements
I would like to kindly thank the authors of the original articles who responded instantly upon communication with them to complete the missing data or to clarify the unexplained points in their studies.

Funding
This research did not receive any funding from any funding resources.

Authors’ contributions
HMA performed all the aspects of this research which involved writing the research and collecting, interpreting, and analyzing data.

Ethics approval and consent to participate
This is not applicable as this research was a systematic review of the previous studies utilizing the MIMBE technique in the sinus lift surgery.

Consent for publication
Not applicable.

Competing interests
Huda M Asmael declares that she had no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 July 2017 Accepted: 8 February 2018
Published online: 17 April 2018

References
1. Tatum H. Lecture presented to the Alabama Implant Congress 1976.
2. Summers RB. The osteotome technique: part 3—less invasive methods of elevating the sinus floor. Compendium (Newtown, Pa). 1994;15:698–700.
3. Muronoi M, Xu H, Shimizu Y, et al. Simplified procedure for augmentation of the sinus floor using a hemostatic nasal balloon. Br J Oral Maxillofac Surg. 2003;41:120–1.
4. Soltan M, Smiler DG. Antral membrane balloon elevation. J Oral Implantol. 2005;31:85–90.
5. Kfir E, Kfir V, Mjiritsky E, et al. Minimally invasive antral membrane balloon elevation followed by maxillary bone augmentation and implant fixation. J Oral Implantol. 2006;32:26–33.
6. Yukihiro F, Sennichi S, Kazuko K, et al. Evaluation of subantral membrane balloon elevation technique using cone-beam CT. J Gifu Dent Soc. 2009;36:100–4.
7. Elbasy SE. Assessment of sinus floor elevation utilizing balloon lift technique with simultaneous implant placement: a clinical study 2010.
8. Rao GS, Reddy SK. Antral balloon sinus elevation and grafting prior to dental implant placement: review of 34 cases. Int J Oral Maxillofac Implants. 2014;29:414–8.
9. Stelzle F, Benner KU. Evaluation of different methods of indirect sinus floor elevation for elevation heights of 10 mm: an experimental ex vivo study. Clin Implant Dent Relat Res. 2011;13:124–33.
10. Chan HL, Oh TJ, Fu JH, et al. Sinus augmentation via transcresctal approach: a comparison between the balloon and osteotome technique in a cadaver study. Clin Oral Implants Res. 2013;24:985–90.
11. Stelzle F, Rohde M. Elevation forces and resilience of the sinus membrane during sinus floor elevation: preliminary measurements using a balloon method on ex vivo pig heads. Int J Oral Maxillofac Surg. 2014;29:550–7.

Conclusion
MIAMBE technique is proved to be a minimally invasive procedure which is associated with low post-operative complications. The amount of gained bone with MIAMBE technique is predictable and comparable with the amount of bone achieved with the more invasive lateral window technique. Anyhow, long follow-up period is needed to accurately identify the long-term success rate of dental implants placed with this technique.

Post-operative complications
Complications registered with MIAMBE technique in these studies involved sinus membrane perforation, implant failure, infection, oroantral fistula, balloon rupture, mild self-limiting nose bleeding, and infra-orbital ecchymosis. All studies reported less post-operative pain, bleeding, and self-limiting nose bleeding, and discomfort on the patient side. On the surgeon side, it offered shorter learning curve and less surgical time.

This systematic review detected several shortcomings in the studies utilized (MIAMBE technique), these include:

- One study was not critical in the presentation of its results and did not include the failed aborted cases in the total sinus augmentation success rate.
- Some studies failed to report the number of sinus augmentation procedures as it differed from the number of the patients enrolled in these studies.
- Some did not mention the cause of membrane perforation or implant failure.
- Some studies did not mentioned well-defined implant survival or success criteria according to which they depend in reporting the survival rate of implants.
- Lack of long follow-up period in most of these studies.
- Lack of randomized clinical trial (RCT) studies as shown in (Table 1).

of bone achieved with the more invasive lateral window technique. Anyhow, long follow-up period is needed to accurately identify the long-term success rate of dental implants placed with this technique.

Abbreviations
ABP: Autogenous bone particles; AMBE: Antral membrane balloon elevation; M: Mean; MF: Male-female numbers; MIAMBE: Minimally invasive antral membrane balloon elevation; N: Number; NM: Not mentioned; PR: Perforation rate; PRF: Platelets rich fibrin; PRP: Platelets rich plasma; R: Range; RCT: Randomized clinical trial

Acknowledgements
I would like to kindly thank the authors of the original articles who responded instantly upon communication with them to complete the missing data or to clarify the unexplained points in their studies.

Funding
This research did not receive any funding from any funding resources.

Authors’ contributions
HMA performed all the aspects of this research which involved writing the research and collecting, interpreting, and analyzing data.

Ethics approval and consent to participate
This is not applicable as this research was a systematic review of the previous studies utilizing the MIMBE technique in the sinus lift surgery.

Consent for publication
Not applicable.

Competing interests
Huda M Asmael declares that she had no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 July 2017 Accepted: 8 February 2018
Published online: 17 April 2018

References
1. Tatum H. Lecture presented to the Alabama Implant Congress 1976.
2. Summers RB. The osteotome technique: part 3—less invasive methods of elevating the sinus floor. Compendium (Newtown, Pa). 1994;15:698–700.
3. Muronoi M, Xu H, Shimizu Y, et al. Simplified procedure for augmentation of the sinus floor using a haemostatic nasal balloon. Br J Oral Maxillofac Surg. 2003;41:120–1.
4. Soltan M, Smiler DG. Antral membrane balloon elevation. J Oral Implantol. 2005;31:85–90.
5. Kfir E, Kfir V, Mjiritsky E, et al. Minimally invasive antral membrane balloon elevation followed by maxillary bone augmentation and implant fixation. J Oral Implantol. 2006;32:26–33.
6. Yukihiro F, Sennichi S, Kazuko K, et al. Evaluation of subantral membrane balloon elevation technique using cone-beam CT. J Gifu Dent Soc. 2009;36:100–4.
7. Elbasy SE. Assessment of sinus floor elevation utilizing balloon lift technique with simultaneous implant placement: a clinical study 2010.
8. Rao GS, Reddy SK. Antral balloon sinus elevation and grafting prior to dental implant placement: review of 34 cases. Int J Oral Maxillofac Implants. 2014;29:414–8.
9. Stelzle F, Benner KU. Evaluation of different methods of indirect sinus floor elevation for elevation heights of 10 mm: an experimental ex vivo study. Clin Implant Dent Relat Res. 2011;13:124–33.
10. Chan HL, Oh TJ, Fu JH, et al. Sinus augmentation via transcresctal approach: a comparison between the balloon and osteotome technique in a cadaver study. Clin Oral Implants Res. 2013;24:985–90.
11. Stelzle F, Rohde M. Elevation forces and resilience of the sinus membrane during sinus floor elevation: preliminary measurements using a balloon method on ex vivo pig heads. Int J Oral Maxillofac Surg. 2014;29:550–7.
