Continuation sheaves in dynamics: sheaf cohomology and bifurcation

K. Alex Dowling · William D. Kalies · Robert C.A.M. Vandervorst

Version date: July 14, 2022

Abstract Continuation of algebraic structures in families of dynamical systems is described using category theory, sheaves, and lattice algebras. Well-known concepts in dynamics, such as attractors or invariant sets, are formulated as functors on appropriate categories of dynamical systems mapping to categories of lattices, posets, rings or abelian groups. Sheaves are constructed from such functors, which encode data about the continuation of structure as system parameters vary. Similarly, morphisms for the sheaves in question arise from natural transformations. This framework is applied to a variety of lattice algebras and ring structures associated to dynamical systems, whose algebraic properties carry over to their respective sheaves. Furthermore, the cohomology of these sheaves are algebraic invariants which contain information about bifurcations of the parametrized dynamical systems.

1 Introduction

Dynamical systems theory is the study of the structure of invariant sets, particularly those sets that govern the long-term behavior of a system. As a dynamical system is perturbed, its global dynamics can change qualitatively through bifurcation. The global dynamics of a system can be described by the structure of its attractors. Indeed, in his fundamental decomposition theorem, Conley [7] uses the set of all attractors in a system to establish a global decomposition into minimal (chain)-recurrent components and connecting orbits
between them. The algebraic structure that underlies this decomposition is codified in the fact that the set of all attractors naturally forms a bounded, distributive lattice [16]. In a series of papers [15,16,17,18,14,19] the theoretical framework for such dynamically meaningful algebraic structures has been developed. This framework has been used to design algorithms to compute global dynamical information rigorously for explicit maps, cf. [2]. To understand dependence on parameters in dynamical systems we develop a natural mathematical framework to capture this variation. For a parametrized family of dynamical systems, structures like the lattice of attractors at a fixed parameter value may vary dramatically under small perturbations. Indeed, bifurcations can occur on a Cantor set with positive measure in the parameter space. Continuation relates these structures for varying parameter values.

Continuation of isolated invariant sets has been the central theme in Conley index theory. Conley [7] and Montgomery [26], and later Salamon [30], formulate continuation in terms of the space of isolated invariant sets:

$$\Pi[\text{Isol}] := \left\{ (\phi, S) \mid \phi \text{ a flow on } X \text{ and } S \text{ an isolated invariant set for } \phi \right\}.$$

Two pairs are “close” in the space of isolated invariant sets if the flows are “close” and the isolated invariant sets share a common isolating neighborhood. Two isolated invariant sets are related by continuation if they lie in the same quasicomponent of the space of isolated invariant sets. Both Montgomery and Salamon give proofs of the following crucial result:

Two invariant sets related by continuation share the same Conley index.

Montgomery proves this in the language of étale spaces (sheaf theory). By choosing an appropriate topology on $\Pi[\text{Isol}]$ the map

$$ (\phi, S) \mapsto \phi,$$

where the flow ϕ is an element of a topological space of flows on X, is a local homeomorphism. With it, he constructs a long exact sequence of étale spaces relating the cohomology of the invariant sets, the index of invariant sets, and the cohomology of some asymptotic sets. Montgomery’s approach is not to be confused with sheaf cohomology. By contrast, Salamon provides a direct flow-defined homotopy to establish the invariance of the Conley index. This avoids much of the algebraic topological machinery necessary for Montgomery’s approach. Salamon’s explicit method appeals to an analytic perspective of dynamics. The latter approach does not suffice for understanding the continuation of algebraic structures such as lattices of attractors or Morse representations.

In [11] Franzosa extends the approach of Kurland for attractor-repeller pairs, cf. [21], to develop an intricate theory of continuation of Morse decompositions. The idea is to augment the concept of the space of isolated invariant sets to a space of “Morse decompositions” with an appropriate topology. Our interest in data-driven dynamics, and the recent success of sheaf theory in topological data analysis, motivate us to revisit Montgomery’s viewpoint. We acknowledge this increased algebraic topology overhead with the confidence that this abstract formulation will yield a comprehensive computational framework
for continuation. The abstract formalism developed in this paper gives an elementary treatment of the continuation theory of Morse representations extending the theory by Franzosa which makes it applicable to techniques from sheaf theory such as sheaf cohomology.

In a series of papers, cf. [16,17,18], we developed an algebraic theory of attractors via distributive lattice theory. We use attractors as the starting point of our approach. In Diagram 1.1[left] below we outlined the algebraic theory of attractors. Diagram 1.1[middle] reformulates the left diagram in terms of functors on appropriately chosen categories of dynamical systems and Diagram 1.1[right] gives the associated étale spaces.

\[
\begin{align*}
\text{ANbhd}(\phi) & \xleftarrow{\omega} \text{RNbhd}(\phi) & \text{ANbhd} & \xleftarrow{\omega} \text{RNbhd} & \text{II}[\text{ANbhd}] & \xleftarrow{\text{II}[\omega]} & \text{II}[\text{RNbhd}] \\
\text{Att}(\phi) & \xleftarrow{\alpha} \text{Rep}(\phi) & \text{Att} & \xleftarrow{\alpha} \text{Rep} & \text{II}[\text{Att}] & \xleftarrow{\text{II}[\alpha]} & \text{II}[\text{Rep}]
\end{align*}
\]

The first diagram [left], which was established in [16, Diag. (1)], appears categorically in the second diagram [middle], and then in the associated étale spaces [right]. For example, the space II[Att] is the space of points (\(\phi, A\)), where \(A \in \text{Att}(\phi)\) is an attractor. The latter is the analogue of the space of isolated invariant sets. Diagram (1.1)[right] allows us to define a sheaf of attractors over the space of dynamical systems, cf. Fig. 1.1. In the first sections of the paper we develop the categorical theory of continuation for contravariant functors. We can apply this theory in various dynamical settings such as the lattice of attractors, the semi-lattice of isolated invariant sets, but also the (non-distributive) lattice of Morse representations. For the latter we adopt the algebraic treatment of Morse representations and decompositions introduced in [18, Def. 7], which repairs the classical approach of labeling of invariant sets. Morse decompositions are formulated as an order embedding from a Morse representation into a finite poset. By applying the categorical theory to Morse representations and studying the resulting sheaves we obtain a generalization of Franzosa’s theory of continuation of Morse decompositions. In the various settings we can define associated sheaves, e.g. the sheaf of attractors and the sheaf of Morse representations. If we invoke sheaf cohomology the algebraic structures of attractors and Morse representations can be used to define new invariants. We investigate sheaf cohomology in the setting of bifurcation theory as an illustration. With the strides made in computational dynamics and the success of sheaf theory in topological data analysis (cellular sheaves), we have the necessary prerequisites to achieve a computational method for modeling continuation.

As a first step, the focus of this paper is to construct and study sheaves which encode the continuation of structures in dynamics. The first seven sections of the paper detail an abstract approach to building sheaves for an arbitrary structure. We routinely return to attractors to showcase how this approach may be applied.

Our first goal is to formulate algebraic structures in dynamics as functors. Section 2 equips dynamical systems with the compact-open topology, and then with a categorical structure using the notion of topological conjugacies. This yields the domain category for the aforementioned functors, and a topology to attach algebraic information to with sheaves. Section 3 then explicitly shows that the attracting neighborhood lattice ANbhd(\(\phi\))

\[
\begin{align*}
\text{ANbhd}(\phi) & \xleftarrow{\omega} \text{RNbhd}(\phi) & \text{ANbhd} & \xleftarrow{\omega} \text{RNbhd} & \text{II}[\text{ANbhd}] & \xleftarrow{\text{II}[\omega]} & \text{II}[\text{RNbhd}] \\
\text{Att}(\phi) & \xleftarrow{\alpha} \text{Rep}(\phi) & \text{Att} & \xleftarrow{\alpha} \text{Rep} & \text{II}[\text{Att}] & \xleftarrow{\text{II}[\alpha]} & \text{II}[\text{Rep}]
\end{align*}
\]
and the attractor lattice $\text{Att}(\phi)$ can be expressed as functors from the category of dynamical systems to a category of lattices. These constitute an example to which we apply the later theory. Section 4 gives prerequisites for continuation: A category with a topology on the objects, and a pair of functors we call a "continuation frame". We prove the existence of an étalé space encoding continuation for these functors. The end of the section constructs morphisms of the étalé spaces using natural transformations between the corresponding functors. Section 5 first applies the framework built in Section 4 to the attractor case from Section 3. This yields the étalé space of attractors. Furthermore, we formulate a morphism of étalé spaces from the dual repeller operator, seen in Fig. 1.1. Lastly, we describe the functorial setup for finite sublattices of attractors and Morse representations. This will eventually define a Morse representation sheaf. While Section 4 produces étalé spaces for attractors, repellers, etc., in Section 6 we port over their algebra. We begin by equipping the attractor and repeller étalé spaces with the binary lattice operations. Then, the Conley form on attractors is stated on the level of the attractor étalé space. Later, when we discuss sheaf cohomology, the Conley form will be a crucial tool in building sheaves in an abelian category. The end of Section 6 expands on this, detailing how the algebra of attractors can be stored in a ring. Section 7 passes through the equivalence between étalé spaces and sheaves. From an abstract continuation frame we build a sheaf which encodes the continuation of the unstable structure. The attractor functor begets an attractor lattice sheaf, and the Conley form becomes a morphism of sheaves. We also discuss the functors built at the end of Section 6, which give us Ring-valued sheaves storing the continuation of attractors. To conclude the section we consider the sheaf of finite attractor sublattices, and the sheaf of Morse representations, as set up in Section 5. In the last three sections of the paper, we use

![Fig. 1.1](image)

Given a parametrized dynamical system ϕ, we construct an étalé space of attractors $\phi^{-1}\Pi[\text{Att}]$ over parameter space, cf. Sect. 10.1.2. The fiber at a parameter value $\lambda \in \Lambda$ is the attractor lattice of ϕ_{λ}. Global sections are illustrated by dotted lines. The failure of these global sections to reach all attractors can be measured using sheaf cohomology.

the continuation sheaves to study bifurcations in parametrized dynamical systems. Section 8 pulls the continuation sheaves back to parameter space for any given parametrized dynamical system. For a topological space Λ we define a parametrized dynamical system on X as a continuous map $\phi: T \times X \times \Lambda \to X$ such that $\phi^\lambda := \phi(\cdot, \cdot, \lambda)$ is dynamical system.
on X for all $\lambda \in \Lambda$. The map $\lambda \mapsto \phi^\lambda$, called the transpose, is a continuous map without additional assumptions on the topological spaces Λ and X. In Section 8.2 we show that the continuation of attractors is conjugacy invariant.

Theorem (Conjugacy Invariance Theorem, cf. Thm. 8.7) Let X, Y be compact metric spaces. Suppose $\phi_* : \Lambda \to \text{DS}(T, X)$ and $\psi_* : \Lambda \to \text{DS}(T, Y)$ are conjugate parametrized dynamical systems. Then, the étale spaces $\phi_*^{-1}\Pi[\text{Att}]$ and $\psi_*^{-1}\Pi[\text{Att}]$ are homeomorphic.

Section 9 applies the continuation sheaves to bifurcations. A stable parametrization is shown to produce locally constant sheaves. The pull-back for the attractor sheaf is denoted by $A\phi_*$. In terms of sheaf cohomology with respect to $A\phi_*$ we obtain the following result:

Theorem (cf. Thm. 9.14) Let Λ be both contractible and locally contractible, and let $\mathcal{N} \subset \Lambda$ be a deformation retract of Λ with ϕ_* stable on \mathcal{N}. Suppose that

$$H^k(\Lambda, \mathcal{N}; A\phi_*) \neq 0, \quad \text{for some } k \geq 0.$$

Then, there exist a bifurcation point in $\lambda_0 \in \Lambda \setminus \mathcal{N}$.

Section 10 computes attractor sheaf cohomology for the pitchfork, saddle-node, transcritical, and S-shaped bifurcations.

Theorem (cf. Thm. 10.7) Let ϕ_* be a parametrized dynamical system over \mathbb{R} with a pitchfork bifurcation at λ_0. Then,

- $A\phi_*$ is acyclic and $H^0(\Lambda; A\phi_*) \cong \mathbb{Z}_2^3$.

Moreover, there exists a value $\lambda_0 \in \mathbb{R}$ such that

$$H^k(\Lambda, \mathcal{N}; A\phi_*) \cong \begin{cases}
\mathbb{Z}_2^2 & \text{if } k = 1 \text{ and } a > \lambda_0; \\
\mathbb{Z}_2 & \text{if } k \neq 1 \text{ or } a \leq \lambda_0, \\
0 & \text{if } k = 0.
\end{cases}$$

where $\mathcal{N} = [a, \infty)$, Furthermore, for $\mathcal{N} := (-\infty, a]$, then $H^k(\Lambda, \mathcal{N}; A\phi_*) \cong 0$ for all k and for all $a \in \mathbb{R}$.

Different types of bifurcations can have different cohomology in their attractor sheaves, but if two systems experience the same type of bifurcation, the cohomology is isomorphic. We propose this as a tool for classifying bifurcations, in much the same way singular homology classifies topological spaces. We believe this invariant to be computable by utilizing the existing theory for combinatorial dynamics [17,2] and cellular sheaf cohomology [8]. This will be the subject of future work.

2 Categories of dynamical systems

Throughout this paper we use the following definition of dynamical system. We give spaces of dynamical systems a categorical as well as a topological structure as outlined below.
Definition 2.1 Let \((X, \mathcal{T})\) be a topological space and let \(\mathbb{T}\) be the (additive) topological monoid (or group) with topology \(\mathcal{T}_\mathbb{T}\). A dynamical system is a continuous map \(\phi : \mathbb{T} \times X \to X\) that satisfies

(i) \(\phi(0, x) = x\) for all \(x \in X\);
(ii) \(\phi(t, \phi(s, x)) = \phi(t + s, x)\) for all \(s, t \in \mathbb{T}\) and all \(x \in X\).

The set of all dynamical systems on the phase space \(X\) with time space \(\mathbb{T}\) is denoted by \(\text{DS}(\mathbb{T}, X)\). Also, \(\phi(t, x)\) may be denoted \(\phi_t(x)\).

The time space \(\mathbb{T}\) is either \(\mathbb{Z}, \mathbb{Z}^+, \mathbb{R},\) or \(\mathbb{R}^+\). In applications, for example those arising from differential equations, it is common for the topology on \(\mathbb{T} = \mathbb{R}\) (or \(\mathbb{R}^+\)) to be the standard topology, which we assume throughout the rest of this paper, but certain results do not require the topology \(\mathcal{T}\) to have specific properties. Certain properties of the phase space topology \(\mathcal{T}\) do play a crucial role. In particular, for clarity of the presentation of the main ideas of this paper, we always consider the phase space \(X\) to be a compact topological space. For some results, such as Theorem 8.7, we additionally assume a metric on \(X\). Such restrictions are explicitly stated and explained when needed.

We endow \(\text{DS}(\mathbb{T}, X)\) with a suitable topology. One natural choice arises by viewing \(\text{DS}(\mathbb{T}, X)\) as a function space with the compact-open topology, i.e. the topology generated by the subbasis of sets of the form

\[\{ \phi \mid \phi(K) \subset U \text{ for } K \text{ compact in } \mathbb{T} \times X \text{ and } U \text{ open in } X \}\]

by varying pairs \((K, U)\).

Next we endow \(\text{DS}(\mathbb{T}, X)\) with a categorical structure and refer to \(\text{DS}(\mathbb{T}, X)\) as the category of dynamical systems on \(X\) over \(\mathbb{T}\). An object \(\phi \in \text{ob}(\text{DS}(\mathbb{T}, X))\) is a dynamical system \(\phi : \mathbb{T} \times X \to X\). A morphism in \(\text{hom}(\phi, \psi)\) is defined as \(\tau \times h\) such that

(i) \(h : X \to X\) is a continuous map;
(ii) \(\tau : \mathbb{T} \times X \to \mathbb{T}\) is a continuous reparametrization that is strictly monotone and bijective for each \(x\) and satisfies \(\tau(0, x) = 0\);
(iii) the following diagram commutes. cf. [37],

\[
\begin{array}{ccc}
\mathbb{T} \times X & \xrightarrow{\phi} & X \\
\downarrow{\tau \times h} & & \downarrow{h} \\
\mathbb{T} \times X & \xrightarrow{\psi} & X
\end{array}
\]

We refer to such a morphism \(\tau \times h\) as a (topological) quasiconjugacy. Note that \(\text{hom}(\phi, \psi)\) can also be endowed with the compact-open topology, so that both the objects and the hom-set of \(\text{DS}(\mathbb{T}, X)\) are topological spaces. We abuse notation so that an open subset \(\Omega \subset \text{ob}(\text{DS}(\mathbb{T}, X))\) is referred to as an open set \(\Omega\) in \(\text{DS}(\mathbb{T}, X)\).

Remark 2.2 Note that the conditions on reparametrizations imply that \(\tau = \text{id}\) in the case that \(\mathbb{T} = \mathbb{Z}\), cf. [36, II(7.2)]. This in part motivates the terminology of quasiconjugacy. When \(\mathbb{T} = \mathbb{R}\), the case \(h = \text{id}\) yields a reparametrization of time \(\tau(t, x)\).
Remark 2.3 For special subsets of dynamical systems, such as smooth flows on a manifold, topologies other than the compact-open topology may be more appropriate. For clarity of presentation, we use the notation $DS(T, X)$ to mean that the objects and morphisms of this category are given the compact-open topology. However, in other cases, similar results to those obtained for $DS(T, X)$ follow from the abstract theory presented in Section 4.

Remark 2.4 More restrictive choices of the set of morphisms lead to subcategories. For example, one may consider from least restrictive to most restrictive: topological (semi)equivalence with reparametrization of time, topological (semi)conjugacy, or no structure on the morphism set, i.e. $\text{hom}(\phi, \phi) = \{\text{id} \times \text{id}\}$ and $\text{hom}(\phi, \psi) = \emptyset$ when $\phi \neq \psi$, cf. [37, 29].

3 Functoriality of dynamics

The study of a dynamical system often focuses on the properties of its invariant sets. A subset $S \subset X$ is invariant if it is the union of complete orbits, or equivalently $\phi(t)(S) = S$ for all $t \in T$. One of the most important classes of invariant sets are the attractors. In [16], it is shown that the set of attractors has the algebraic structure of a bounded, distributive lattice. In this section, we characterize such algebraic structures in terms of functors on the category of dynamical systems.

For a given dynamical system $\phi: T \times X \to X$ and a subset $U \subset X$, the maximal invariant set in U is

$$\text{Inv}_{\phi}(U) := \bigcup \{S \subset U : \phi(t, U) = U \text{ for all } t \in T^+\}.$$

The omega-limit set of U is defined by

$$\omega_{\phi}(U) := \bigcap_{t \geq 0} \overline{\bigcup_{s \geq t} \phi_s(U)}.$$

Recall from [16] some properties of $\omega_{\phi}(U)$.

(i) $\omega_{\phi}(U)$ is compact, closed, and nonempty whenever $U \neq \emptyset$,
(ii) $\omega_{\phi}(U)$ is an invariant set,
(iii) $\omega_{\phi}(\omega_{\phi}(U)) = \omega_{\phi}(U)$,
(iv) $\omega_{\phi}(\text{cl} U) = \omega_{\phi}(U)$,
(v) $\omega_{\phi}(U \cup V) = \omega_{\phi}(U) \cup \omega_{\phi}(V)$.

A subset $U \subset X$ is called an attracting neighborhood if $\omega_{\phi}(U) \subset \text{int } U$. Attracting neighborhoods form a bounded, distributive lattice denoted by $\text{ANbd}(\phi)$. The binary operations are \cap and \cup, see [16]. A subset $A \subset X$ is called an attractor if there exists an attracting neighborhood $U \subset X$ such that $A = \omega_{\phi}(U)$, which is a neighborhood of A by definition. Attractors are compact, closed invariant sets, and the set of all attractors is a bounded, distributive lattice $\text{Att}(\phi)$ with binary operations: $A \vee A' = A \cup A'$ and $A \wedge A' := \omega_{\phi}(A \cap A')$, cf. [16].

\footnote{For a forward invariant set U, i.e. $\phi_t(U) \subset U$ for all $t \geq 0$, it holds that $\text{Inv}_{\phi}(\text{cl} U) = \omega_{\phi}(U)$.}
Remark 3.1 In the above listed properties of omega-limit sets and attractors, the compactness of X is crucial. If we drop the compactness assumption on X, some of the properties, such as invariance and idempotency, do not hold in general.

When the spaces T, X are fixed, we often write DS in place of $\text{DS}(T, X)$. The categorical structure of DS can now be used to reformulate the above lattices in terms of functors. For notational convenience we write $\psi_t := \psi(t, \cdot, \cdot)$

Lemma 3.2 Let $\phi, \psi \in \text{ob}(\text{DS})$ and let $\tau \times h \in \text{hom}(\phi, \psi)$. Then, for all $U \subset Y$ we have

$$\phi_t(h^{-1}(U)) \subset h^{-1}(\psi_t(U)) \quad \forall t \geq 0.$$

In particular,

$$\omega_\phi(h^{-1}(U)) = \omega_\phi(h^{-1}(\omega_\psi(U))) \subset h^{-1}(\omega_\psi(U)). \quad (3.1)$$

Proof See Appendix B.

Now suppose we have $\tau \times h \in \text{hom}(\phi, \psi)$ and $U \in \text{ANbhd}(\psi)$. Then, by Lemma 3.2,

$$\omega_\phi(h^{-1}(U)) \subset h^{-1}(\omega_\psi(U)) \subset h^{-1}(\text{int}(U)) \subset \text{int}(h^{-1}(U)),$$

where the latter inclusion follows from the continuity of f. Therefore $h^{-1}(U) \in \text{ANbhd}(\phi)$, and the inverse image operator induces a well-defined map $h^{-1}: \text{ANbhd}(\psi) \to \text{ANbhd}(\phi)$. This map is in fact a homomorphism by the properties of inverse images, since the lattice operations on $\text{ANbhd}(\phi)$ and $\text{ANbhd}(\psi)$ are union and intersection, so using functor notation, $\text{ANbhd}(\tau \times h) = h^{-1}$. Thus, by assigning to each dynamical system its attracting neighborhood lattice and to each morphism its inverse image operator, by the properties of inverse images and Lemma 3.2, we have a contravariant functor, $\text{ANbhd}: \text{DS} \to \text{BDLat}$, from the category of dynamical systems to the category of bounded, distributive lattices.

Remark 3.3 A neighborhood $U \in \text{ANbhd}(\phi)$ is an attracting block if $\phi_t(\text{cl} U) \subset \text{int}(U)$ for all $t > 0$. Now suppose $\tau \times h \in \text{hom}(\phi, \psi)$ and $U \in \text{ABlock}(\psi)$. Then for all $t > 0$

$$\phi_t(h^{-1}(U)) \subset \phi_t(h^{-1}(\text{cl} U)) \subset h^{-1}(\psi_t(\text{cl} U))$$

$$\subset h^{-1}(\text{int}(U)) \subset \text{int}(h^{-1}(U)),$$

which implies that $h^{-1}(U) \in \text{ABlock}(\phi)$ so that we can restrict h^{-1} to $h^{-1}: \text{ABlock}(\psi) \to \text{ABlock}(\phi)$. As before, $\text{ABlock}(\tau \times h) = h^{-1}$. This makes $\text{ABlock}: \text{DS} \to \text{BDLat}$ a contravariant functor. We will primarily use attracting neighborhoods, but Remark 5.4 demonstrates that restricting to attracting blocks does not change the theory.

A similar construction can be used to define a contravariant functor $\text{Att}: \text{DS} \to \text{BDLat}$, but its action on morphisms must be modified, since the inverse image of an attractor need not be an attractor.

Proposition 3.4 Suppose $\tau \times h \in \text{hom}(\phi, \psi)$ and $A \in \text{Att}(\psi)$. Then $\omega_\phi(h^{-1}(A)) \in \text{Att}(\phi)$. Moreover, for $\tau \times h \in \text{hom}(\phi, \psi)$, the map $\omega_\phi \circ h^{-1}: \text{Att}(\psi) \to \text{Att}(\phi)$ is a lattice homomorphism.
Continuation sheaves in dynamics

Proof See Appendix B.

Thus, by assigning each dynamical system its attractor lattice and each morphism \(\tau \times h \in \text{hom}(\phi, \psi) \) the operator \(\text{Att}(\tau \times h) = \omega_\phi \circ h^{-1} \), we have a contravariant functor \(\text{Att}: \mathbf{DS} \to \mathbf{BDLat} \).

Remark 3.5 If \(\tau \times h \in \text{hom}(\phi, \psi) \) is a conjugacy, i.e. \(h: X \to Y \) is a homeomorphism, then also \(\tau^{-1} \times h^{-1} \in \text{hom}(\psi, \phi) \) is a conjugacy, where \(\tau^{-1}(s, y) \) is defined by \(s = \tau(t, h^{-1}(y)) \). As a consequence, \(A \in \text{Att}(\phi) \) if and only if \(h(A) \in \text{Att}(\psi) \), cf. Appendix B.

Remark 3.6 Similar statements as in Lemma 3.2 also hold for \(\alpha \)-limit sets, as defined in [15]. Therefore we can define functors \(\mathbf{RNbhd}, \mathbf{RBlock}: \mathbf{DS} \to \mathbf{BDLat} \) for repelling neighborhoods and repelling blocks analogously. As for \(\text{Att} \), one builds \(\mathbf{Rep}: \mathbf{DS} \to \mathbf{BDLat} \) by replacing \(\omega \) with \(\alpha \). The details for these constructions are in Appendix C.

Remark 3.7 In some situations it is useful to consider attracting neighborhoods in the algebra of regular closed sets using analogous constructions, cf. [17].

Remark 3.8 In the spirit of Montgomery we one can also consider the semilattice of isolating neighborhoods \(\mathbf{INbhd}(\phi) \) defined by the property \(\phi_t(\text{cl}\, U) \subset \text{int}\, U \), cf. [26]. An isolated invariant set is obtained as the maximal invariant set of an isolating neighborhood: \(S = \text{Inv}_\phi(U) \). The semilattice of isolated invariant sets is denoted by \(\mathbf{Isol}(\phi) \), with \(S \lor S' = \text{Inv}_\phi(S \cap S') \). As for attractors \(\text{Inv}_\phi: \mathbf{INbhd}(\phi) \to \mathbf{Isol}(\phi) \) is a semi-lattice homomorphism and \(\mathbf{INbhd} \) and \(\mathbf{Isol} \) may be regarded as functors.

Given this functorial description of dynamical structures, we now turn to the primary focus of this paper, representing continuation of dynamical features in terms of sheaves over \(\mathbf{DS}(\mathbb{T}, X) \). To keep the underlying theory flexible, and so as not to repeat theoretical arguments, we first introduce the underlying concepts and theorems abstractly, and then apply this general theory in specific contexts.

4 Abstract continuation

Recall from the introduction that a fundamental feature of Conley theory is that an isolated invariant set continues under perturbation of a dynamical system, which leads to the concept of continuation of isolated invariant sets. In this section, we provide an abstract framework to expand the continuation property to algebraic structures of dynamics.

4.1 \(\mathbf{C} \)-structures and categories of elements

Let \(\mathbf{D} \) be a category such that \(\text{ob}(\mathbf{D}) \) forms a topological space, and let \(\mathbf{C} \) be a \textit{concrete category}, i.e. there exists a faithful functor, \(\mathbf{C} \to \mathbf{Set} \), into the category of sets. In applications \(\mathbf{D} \) is a category of dynamical systems equipped with a topology on \(\text{ob}(\mathbf{D}) \), such as \(\mathbf{DS}(\mathbb{T}, X) \), and \(\mathbf{C} \) is the category characterizing the algebraic structure of the dynamical feature to be continued, for example bounded, distributive lattices.
A \textit{C-valued contravariant functor} on \textit{D} is referred to as a \textit{C-structure} on \textit{D}. Let \(E, G : D \to C\) be \textit{C}-structures and let \(w : E \Rightarrow G\) be a natural transformation. For objects \(\phi \in \text{ob}(D)\) the functors \(E\) and \(G\) yield objects \(E(\phi)\) and \(G(\phi)\) in \(C\) and the component \(w_\phi\) of the natural transformation yields a morphism \(w_\phi : E(\phi) \to G(\phi)\).

In applications, typically the functor \(G\) represents a dynamical feature such as attractors, and the functor \(E\) denotes a corresponding neighborhood feature such as attracting neighborhoods or attracting blocks.

Furthermore, we assume the existence of a constant, contravariant functor \(F : D \to C\), \(\phi \mapsto F_0\), referred to as the \textit{universe functor}, for which there exists an injective natural transformation \(\iota : E \Rightarrow F\). In dynamics applications, when \(D = \text{DS}(\mathcal{T}, \mathcal{X})\), the universe functor assigns to each \(\phi\) a fixed subalgebra of the Boolean algebra \(\text{Set}(\mathcal{X})\), the power set of the phase space, or a fixed subalgebra of the Boolean algebra \(\mathcal{P}(\mathcal{X})\), the regular closed subsets of \(\mathcal{X}\). For example, if \(E = \text{ANbhd}\), the lattice of attracting neighborhoods, \(E(\phi)\), is a sublattice of \(\text{Set}(\mathcal{X})\).

Now we have a span of functors and natural transformations \(F \Leftarrow \ E \Rightarrow G\) which are summarized in the following diagrams:

\[
\begin{array}{cccc}
E & \downarrow \iota & D & \downarrow \phi \\
\iota & \downarrow & F & \downarrow \phi \\
\phi & \downarrow & C & \downarrow \phi \\
\phi & \downarrow & G & \downarrow \phi \\
\end{array}
\]

Since \(C\) is a concrete category, we may regard a functor \(E\) into \(C\) as a \textit{Set-valued function}, and thus consider \(\Pi[E]\), its \textit{category of elements}, cf. [23, 24]. The category of elements construction is used in the next section to generate an \textit{étalé space}. To define the \textit{category of elements} \(\Pi[E]\), let \(\text{ob}(\Pi[E])\) be the set of all pairs \((\phi, U)\) such that \(\phi \in \text{ob}(D)\) and \(U \in E(\phi)\). The morphisms of \(\Pi[E]\) are maps \((\phi, U) \to (\phi', U')\) for which there is a \(D\)-morphism \(h : \phi \to \phi'\) with \(E(h)(U') = U\). The projection \((\phi, U) \mapsto \phi\) defines a canonical projection functor \(\pi : \Pi[E] \to D\).

Moreover, given a natural transformation between functors, \(w : E \Rightarrow G\), we have the functor between the associated categories of elements

\[
\Pi[w] : \Pi[E] \to \Pi[G]
\]

\[
(\phi, U) \mapsto (\phi, w_\phi(U)).
\]

From the span of functors \(F \Leftarrow \ E \Rightarrow G\) we obtain a span of functors on the associated categories of elements:

\[
\begin{array}{cccc}
\Pi[F] & \overset{\Pi[\iota]}{\longrightarrow} & \Pi[E] & \overset{\Pi[w]}{\longrightarrow} & \Pi[G] \\
(\phi, U) & \mapsto & (\phi, U) & \mapsto & (\phi, w_\phi(U)).
\end{array}
\]

Note that in (4.2), the set \(U \in E(\phi)\). To localize \(\Pi[E]\), for a fixed element \(U \in F_0\) we define the subcategory \(\Pi[E; U]\) via

\[
\text{ob}(\Pi[E; U]) := \{ (\phi, U) \in \text{ob}(\Pi[E]) \mid U \in E(\phi) \}\]
with morphisms \((\phi, U) \rightarrow (\phi', U)\) for which there is a \(D\)-morphism \(h: \phi \rightarrow \phi'\) with \(E(h)(U) = U\).

Applying the projection functor \(\pi\) yields a corresponding subcategory \(\Phi[E; U]\) of \(D\). The objects of \(\Phi[E; U]\) are given by \(\text{ob}(\Phi[E; U]) = \{\phi \in \text{ob}(D) \mid U \in E(\phi)\}\) with morphisms \(h: \phi \rightarrow \phi'\) with \(E(h)(U) = U\). This yields the following commutative diagrams:

\[
\begin{array}{ccc}
\Pi[E] & \xrightarrow{\pi} & D \\
\downarrow & & \downarrow \\
\Pi[E; U] & \xrightarrow{\pi} & \Phi[E; U]
\end{array}
\quad
\begin{array}{ccc}
\Pi[G] & \xrightarrow{\pi} & \Pi[G] \\
\downarrow & & \downarrow \\
\Pi[E; U] & \xrightarrow{\pi} & \Phi[E; U]
\end{array}
\]

\[
\begin{array}{ccc}
\Phi[E; U] & \xrightarrow{\theta[w; U]} & D \\
\downarrow & & \downarrow \\
\Phi[E; U] & \xrightarrow{\theta[w; U]} & \Phi[E; U]
\end{array}
\]

where \(\theta[w; U](\phi) := (\phi, w_\phi(U))\) is called the partial section functor, which satisfies:

\[
\theta[w; U] \circ \pi = \Pi[w] \quad \text{and} \quad \pi \circ \theta[w; U] = \text{id}.
\]

We leave it to the reader to verify functoriality.

Remark 4.1 In settings where \(\Phi[E; U]\) is a used as a subset of \(D\) we abuse notation and write \(\phi \in \Phi[E; U]\). The same applies to open subsets \(\Omega \subset D\), cf. Sect. 2.

4.2 Continuation frames and étalé spaces

In the same way that \(\text{ob}(D)\) forms topological space, we will equip \(\text{ob}(\Pi[G])\) with a topology. This is done such that the functors \(\theta[w; U]\) become continuous maps on objects. We will abuse notation and drop the \(\text{ob}(\cdot)\) when referring to “elements of \(\Pi[G]\).” A \(C\)-structure \(E: D \rightarrow C\) is called stable if \(\Phi[E; U]\) is open in \(D\) for all elements \(U \in F_0\). Otherwise a \(C\)-structure is said to be unstable. In the remainder of the paper we will always assume that \(E: D \rightarrow C\) admits a universe \(F_0\) for which it is stable.

Definition 4.2 A \(C\)-continuation frame on \(D\) is a triple \((G, E, w)\) consisting of \(C\)-structures \(E, G: D \rightarrow C\) and a natural transformation \(w: E \Rightarrow G\) such that

(i) \(w_\phi: E(\phi) \rightarrow G(\phi)\) is surjective for all \(\phi \in \text{ob}(D)\);

(ii) \(E\) is a stable \(C\)-structure.

(iii) The sets \(\{\phi \in \Phi[E; U] \cap \Phi[E; U'] : w_\phi(U) = w_\phi(U')\}\) are open for all pairs \(U, U' \in F_0\).

Condition (i) can be paraphrased by saying that \(w\) is componentwise surjective. The \(C\)-structure \(E\) in a continuation frame is is called a stable extension of \(G\).

Condition (iii) is crucial for continuity of the sections \(\theta[w; U]\). In the application of \(C\)-structures in dynamics, \(G\) is typically unstable as the examples in the next section show.

The next step is to topologize \(\Pi[G]\) with the topology generated by

\[
\mathcal{B}(G) := \{\theta[w; U](\Omega) \mid U \in F_0, \Omega \subset \Phi[E; U] \text{ open}\},
\]

where \(\theta[w; U](\Omega)\) is the image under \(\theta[w; U]\) of objects \(\phi \in \Omega\).
Lemma 4.3 \(\mathcal{B}(G) \) is a basis for a topology on \(\Pi[G] \). The maps \(\Theta[w; U] : \Phi[E; U] \rightarrow \Pi[G] \) are all continuous.

Proof Let \(\Theta[w; U](\Omega_1) \), \(\Theta[w; U'](\Omega_2) \) be some elements of \(\mathcal{B}(G) \). We can write their intersection in the following way:

\[
\Theta[w; U](\Omega_1) \cap \Theta[w; U'](\Omega_2) = \Theta[w; U]\{\Omega, \}
\]

where we let \(\Omega = \Omega_1 \cap \Omega_2 \cap \{ \phi \in \Phi[E; U] \cap \Phi[E; U'] : w_\phi(U) = w_\phi(U') \} \). For any given \(\Theta[w; U] \) and basis element \(\Theta[w; U'](\Omega) \), one has

\[
\Theta[w; U]^{-1}(\Theta[w; U'](\Omega)) = \Omega \cap \{ \phi \in \Phi[E; U] \cap \Phi[E; U'] : w_\phi(U) = w_\phi(U') \},
\]

which is open.

The functor \(\pi : \Pi[G] \rightarrow D \) may be regarded as a projection \(\pi : \text{ob}(\Pi[G]) \rightarrow \text{ob}(D) \), and with the above defined topology on \(\text{ob}(\Pi[G]) \), it is also a continuous map between topological spaces. In this setting we denote the objects of the category of elements by \(\Pi[G] \), and we show that \((\Pi[G], \pi) \) is an étale space in the category \(\text{Set} \) by establishing that \(\pi \) is a local homeomorphism.

Theorem 4.4 Let \((G, E, w) \) be a C-continuation frame on \(D \). Then, the pair \((\Pi[G], \pi) \) is an étale space on \(D \).

Proof To establish \((\Pi[G], \pi) \) as an étale space with the above defined topology on \(\Pi[G] \) we show that \(\pi \) is a local homeomorphism.

Let \((\phi, S) \) be a point in \(\Pi[G] \). Then, since \(w_\phi : E(\phi) \rightarrow G(\phi) \) is surjective for all \(\phi \), there exists \(U \in E(\phi) \) such that \(w_\phi(U) = S \). Consequently, the point \((\phi, S) \) is contained in the image of the map \(\Theta[w; U] : \Phi[E; U] \rightarrow \Pi[G] \), which is open by the definition of the topology. The image under \(\pi \) of the set \(\text{Im}(\Theta[w; U]) \) is the set \(\Phi[E; U] \) which is open by assumption. It remains to show that \(\pi : \text{Im}(\Theta[w; U]) \rightarrow \Phi[E; U] \) is a homeomorphism.

First we show bijectivity. By definition \(\pi : \text{Im}(\Theta[w; U]) \rightarrow \Phi[E; U] \) is onto and since \(\phi \mapsto (\phi, w_\phi(U)) \) for \(\phi \in \Phi[E; U] \) is a section by Lemma 4.3, we establish bijectivity.

Second we show that \(\pi : \text{Im}(\Theta[w; U]) \rightarrow \Phi[E; U] \) is continuous and open. Let \(\Omega \subset \Phi[E; U] \) be open. Then, \(\pi^{-1}(\Omega) = \Theta[w; U]\{\Omega, \} \) is open by the definition of the topology which proves the continuity of \(\pi \). Let \(\Theta[w; U']\{\Omega, \} \) be a basic open set. Then,

\[
\pi(\Theta[w; U']\{\Omega, \}) = \Omega \cap \{ \phi \in \Phi[E; U] \cap \Phi[E; U'] : w_\phi(U) = w_\phi(U') \}
\]

is open, and thus \(\pi \) is a homeomorphism. This proves that \(\Pi[G] \) is an étale space in \(\text{Set} \).

In the spirit of [26] two points \((\phi, S) \) and \((\phi', S') \) are related by continuation if they are contained in the same quasicomponent of \(\Pi[G] \), or equivalently \((\phi', S') \) is contained in the quasicomponent of \((\phi, S) \). Recall that a quasicomponent of \((\phi, S) \) of \(\Pi[G] \) is the intersection of all clopen subsets of \(\Pi[G] \) containing \((\phi, S) \). The following result characterizes this topology.
Proposition 4.5 Let \((G, E, w)\) be a \(C\)-continuation frame. The topology generated by the basis \(\mathcal{B}(G)\) is the coarsest topology such that the maps \(\Theta[w; U] : \Phi[E; U] \to \Pi[G]\) are continuous, and \(\pi : \Pi[G] \to D\) is a local homeomorphism.

Proof Theorem 4.4 and Lemma 4.3 give us that \(\mathcal{B}(G)\) generates such a topology. Now suppose the maps \(\Theta[r; w] : \Phi[r; E] \to \Pi[G]\) are continuous, and \(\pi : \Pi[G] \to D\) is a local homeomorphism in some topology \(\tau\). Let \(\Omega \subset \Phi[E; U]\) be an open set in \(D\) for some \(U\). We have that \(\pi \circ \Theta[w; U] = \iota\) where \(\iota\) denotes the inclusion of \(\Omega\) into \(D\). Since \(\iota\) and \(\pi\) are both local homeomorphisms, so is \(\Theta[w; U]\), which implies that the image \(\Theta[w; U](\Omega)\) is in \(\tau\). Every element of \(\mathcal{B}(G)\) is of this form; thus, \(\mathcal{B}(G)\) is coarser than \(\tau\).

The stable \(C\)-structure in a \(C\)-continuation frame yields a second étale space. Topologize \(\Pi[E]\) as follows. Define the embedding \(\Theta[id; U] : \Phi[id; E] \to \Pi[E]\) as the trivial section \(\phi \mapsto (\phi, U)\) and define a subbasis for the topology on \(\Pi[E]\) as follows:

\[
\mathcal{B}(E) := \left\{ \Theta[id; U](\Omega) \mid U \in F_0, \Omega \subset \Phi[E; U] \text{ open} \right\}.
\]

Corollary 4.6 Let \((G, E, w)\) be a \(C\)-continuation frame on \(D\). Then, the pair \((\Pi[E], \pi)\) is an étale space on \(D\).

Proof The projection \(\pi : \Pi[E] \to \text{ob}(D)\) given by \((\phi, U) \mapsto \phi\) is a local homeomorphism with the above defined topology, i.e. \(\pi : \Pi[E; U] \to \Phi[E; U]\) is a homeomorphism.

The category of elements \(\Pi[F]\) trivially gives an étale space and makes the span of functors in (4.2) into a span of étale spaces. A continuous map \(\Pi[w] : \Pi[E] \to \Pi[G]\) is called an étale morphism if the following diagram in commutes, cf. [35, Definition 3.3].

\[
\begin{array}{ccc}
\Pi[E] & \xrightarrow{\Pi[w]} & \Pi[G] \\
\pi & \downarrow & \pi \\
D & & D
\end{array}
\] (4.5)

Such a map is then a local homeomorphism by [4, Proposition 2.4.8], [35, Lemma 3.5].

Corollary 4.7 The map \(\Pi[w] : \Pi[E] \to \Pi[G]\) is an étale morphism.

Proof By definition of the topologies on \(\Pi[E]\) and \(\Pi[G]\), the inverse image under \(\Pi[w]\) of a basis element \(\Theta[w; U](\Omega), \Omega \subset D\) open, is open in \(\Pi[E]\), which proves that \(\Pi[w]\) is continuous.
Lemma 4.8 Let E, E' be stable C-structures on D and let $n : E \Rightarrow E'$ be a natural transformation. Then, the induced functor $\Pi[n] : \Pi[E] \to \Pi[E']$, defined by

$$(\phi, U) \mapsto (\phi, n_\phi(U)),$$

defines a morphism of étale spaces if and only if the sets

$$\{ \phi \in \Phi[E; U] : n_\phi(U) = U' \},$$

are open for every pair $U, U' \in F_0$.

Proof Suppose $\Pi[n]$ is continuous, and $U, U' \in F_0$. Then,

$$\{ \phi \in \Phi[E; U] : n_\phi(U) = U' \} = \pi\left(\Pi[n]^{-1}(\text{Im}(\Theta[id; U])) \cap \text{Im}(\Theta[id; U']) \right),$$

which is open. Now for the converse. Let $\Theta[id; U'](\Omega)$ be a subbasis element of $\Pi[E']$. Then,

$$\bigcup_{U \in \Gamma} \left(\Omega \cap \{ \phi \in \Phi[E; U] : n_\phi(U) = U' \} \right) = \Pi[n]^{-1}(\Theta[id; U'](\Omega)),$$

which is a union of open sets, and therefore open. □

When the action of n_ϕ is independent of $\phi \in \text{ob}(D)$, the openness condition is trivially satisfied. This condition for stable structures translates to unstable structures in the following proposition.

Proposition 4.9 Let (G, E, w) and (G', E', w') be continuation frames on D, and let $\nu : G \Rightarrow G'$ be a natural transformation. Suppose there exists a natural transformation $\tilde{\nu} : E \Rightarrow E'$ such that $\Pi[\tilde{\nu}]$ is continuous, and the following diagram commutes:

$$
\begin{array}{ccc}
E & \xrightarrow{\tilde{\nu}} & E' \\
\downarrow{\nu} & & \downarrow{w'} \\
G & \xrightarrow{\nu} & G'
\end{array}
$$

Then, $\Pi[\nu]$ is a morphism of étale spaces. The lift $\tilde{\nu}$ is called a stable extension of ν.

Proof We have the following maps on étale spaces:

$$
\begin{array}{ccc}
\Pi[E] & \xrightarrow{\Pi[\tilde{\nu}]} & \Pi[E'] \\
\downarrow{\Pi[\nu]} & & \downarrow{\Pi[w']} \\
\Pi[G] & \xrightarrow{\Pi[\nu]} & \Pi[G']
\end{array}
$$

By Corollary 4.7 $\Pi[w]$ and $\Pi[w']$ are étale morphisms and by [4, Proposition 2.4.8], [35, Lemma 3.5] the map $\Pi[\tilde{\nu}]$ is an étale morphism. Diagram chasing then shows that $\Pi[\nu]$ is also an étale morphism by using the same results. □
5 Continuation of attractors and Morse representations

In this section we establish continuation frames for attractors and for finite sublattices of attractors. The latter induces continuation of Morse representations.

5.1 Attractors

In Section 3 we established the functors ANbhd and Att acting between the category of dynamical systems and the category of bounded, distributive lattices. The topologies introduced in Section 2 yield the following result.

Lemma 5.1 $\text{ANbhd}: \text{DS}(T, X) \to \text{BDLat}$ is a stable structure.

Proof As subset of $\text{DS}(T, X)$ we define $\Phi_{\text{ANbhd}}(U) := \{ \phi \in \text{DS}(T, X) \mid U \in \text{ANbhd}(\phi) \}$ for any subset $U \subset X$. The condition $U \in \text{ANbhd} (\phi)$ is equivalent to $\omega(\phi) \subset \text{int} U$. By [19, 16] we have the equivalent characterization: $U \in \text{ANbhd}(\phi)$ if and only if there exists a time $\tau > 0$ such that

$$\phi_t(\text{cl } U) \subset \text{int } U \quad \forall t \geq \tau,$$

which is equivalent to

$$\bigcup_{t \in [\tau, 2\tau]} \phi_t(\text{cl } U) = \phi([\tau, 2\tau] \times \text{cl } U) \subset \text{int } U. \quad (5.1)$$

Indeed, if (5.1) is satisfied then (5.2) follows. On the other hand if (5.2) is satisfied then

$$\phi([\tau, 2\tau] \times \text{cl } U) = \bigcup_{t \in [\tau, 2\tau]} \phi_{t+\tau}(\text{cl } U) = \phi_{\tau} \left(\bigcup_{t \in [\tau, 2\tau]} \phi_t(\text{cl } U) \right) = \phi_{\tau} \big(\text{int } U \big) \subset \phi_{\tau}(\text{cl } U) \subset \text{int } U.$$

By induction $\phi([n\tau, (n+1)\tau] \times \text{cl } U) \subset \text{int } U$ for all $n \geq 1$, which establishes (5.1). Summarizing,

$$\phi \in \Phi[\text{ANbhd}; U] \quad \text{if and only if} \quad \phi([\tau, 2\tau] \times \text{cl } U) \subset \text{int } U \quad \text{for some } \tau > 0. \quad (5.3)$$

For any $\tau > 0$ define $K_{\tau} = [\tau, 2\tau] \times \text{cl } U \subset T \times X$ which is a compact set. Consider the basic open sets

$$\mathcal{B}(K_{\tau}, \text{int } U) := \left\{ \phi \mid \phi(K_{\tau}) = \phi([\tau, 2\tau] \times \text{cl } U) \subset \text{int } U \right\},$$

which are contained in the subbasis for the compact-open topology on $\text{DS}(T, X)$. By (5.3) an element $\phi \in \Phi[\text{ANbhd}; U]$ is contained in $\mathcal{B}(K_{\tau}, \text{int } U)$ for some $\tau > 0$ and thus $\Phi[\text{ANbhd}; U] \subset \bigcup_{\tau > 0} \mathcal{B}(K_{\tau}, \text{int } U)$. On the other hand if $\phi \in \mathcal{B}(K_{\tau}, \text{int } U)$ for some $\tau > 0$, then (5.3) implies that $\phi \in \Phi[\text{ANbhd}; U]$ which shows that $\bigcup_{\tau > 0} \mathcal{B}(K_{\tau}, \text{int } U) \subset \Phi[\text{ANbhd}; U]$ and thus $\Phi[\text{ANbhd}; U] = \bigcup_{\tau > 0} \mathcal{B}(K_{\tau}, \text{int } U)$ which is a union of basic open set and thus open.

The next result we prove for isolating neighborhoods, cf. Remark 3.8, which applies to the special case of attracting neighborhoods.
Lemma 5.2 The sets \(\{ \phi \in \Phi[\text{INbhd}; U] \cap \Phi[\text{INbhd}; U'] : \text{Inv}_\phi(U) = \text{Inv}_\phi(U') \} \) are open in \(\text{DS}(\mathbb{T}, X) \).

Proof The proof is identical to Montgomery’s proof in [26] for flows. Let \(U_1, U_2 \in \text{INbhd}(\phi) \) for \(\phi \in \text{DS}(\mathbb{T}, X) \). If \(\text{Inv}_\phi(U_1) = \text{Inv}_\phi(U_2) = S \), then \(\text{Inv}_\phi(U) = S \) for \(U := U_1 \cap U_2 \). For any point \(x \in V_i := \text{cl}U_i \setminus \text{int}U, i = 1, 2 \), there exists a time \(\tau > 0 \) such that \(\phi(\tau, x) \in X \setminus V_i \). By compactness, we may in fact pick \(\tau > 0 \) such that \(\phi(\tau, V_i) \subset X \setminus V_i \). The set

\[
\Omega = \Phi[\text{INbhd}; U_1] \cap \Phi[\text{INbhd}; U_2] \cap \{ \phi \in \text{DS}(\mathbb{T}, X) : \phi(\tau, V_1) \subset X \setminus V_1 \}
\cap \{ \phi \in \text{DS}(\mathbb{T}, X) : \phi(\tau, V_2) \subset X \setminus V_2 \},
\]

is open in the compact-open topology. For any \(\psi \in \Omega \), \(\text{Inv}_\psi(U_1) = \text{Inv}_\psi(U) = \text{Inv}_\psi(U_2) \), so we are done.

Remark 5.3 Similar to attractors, the triple \((\text{INbhd}, \text{Isol}, \text{Inv})\) is a \(\text{MLat} \)-continuation frame on \(\text{DS}(\mathbb{T}, X) \), cf. [26].

In particular, \(\text{Inv}_\phi(U) = \omega_\phi(U) \) when \(U \in \text{ANbhd}(\phi) \) by Corollary 3.6 of [16]. Consequently, the triple \((\text{Att}, \text{ANbhd}, \omega)\) is a \(\text{BDLat} \)-continuation frame on \(\text{DS}(\mathbb{T}, X) \) and \(\text{ANbhd} \) is a stable extension for \(\text{Att} \). By Theorem 4.4 we have that \((\Pi[\text{Att}], \pi)\) is an étale space in \(\text{Set} \).

Remark 5.4 Stable extensions in a continuation frame are not unique. Following Remark 3.3, attracting blocks define attractors via \(\omega_\phi : \text{ABlock}(\phi) \to \text{Att}(\phi) \). As before we may regard \(\text{ABlock} : \text{DS}(\mathbb{T}, X) \to \text{BDLat} \) as a contravariant functor which is a stable extension of \(\text{Att} : \text{DS}(\mathbb{T}, X) \to \text{BDLat} \). Using the inclusion transformation \(\iota : \text{ABlock} \Rightarrow \text{ANbhd} \), we obtain the following commutative diagram of transformations:

\[
\begin{array}{ccc}
\text{ABlock} & \xrightarrow{\iota} & \text{ANbhd} \\
\downarrow{\omega} & & \downarrow{\omega} \\
\text{Att} & \xrightarrow{id} & \text{Att}
\end{array}
\]

Proposition 4.9 obtains an isomorphism between the étale spaces generated from the two continuation frames \((\text{Att}, \text{ANbhd}, \omega)\) and \((\text{Att}, \text{ABlock}, \omega)\).

The functor \(\text{Att} \) is the structure we wish to continue, with stable extension \(\omega : \text{ANbhd} \Rightarrow \text{Att} \). This gives

\[
\begin{array}{ccc}
\text{DS}(\mathbb{T}, X) & \xrightarrow{\omega} & \text{BDLat} \\
\Theta[\omega; U] & & \Phi[\text{ANbhd}; U] \\
& \xrightarrow{\pi} & \text{DS}(\mathbb{T}, X)
\end{array}
\]

We have the partial section map

\[
\Theta[\omega; U] : \Phi[\text{ANbhd}; U] \to \Pi[\text{Att}],
\]
which maps a dynamical system ϕ with attracting neighborhood U to the pair (ϕ, A) with its associated attractor $A = \omega_\phi(U)$. Since ω_ϕ is surjective, given a pair $(\phi, A) \in \Pi[\text{Att}]$, there exists an attracting neighborhood U such that $\Theta[\omega; U](\phi) = (\phi, A)$.

Remark 5.5 Following Remark 3.6, we can build a continuation frame $(\text{Rep}, \text{RNBhd}, \alpha)$ for repellers, which gives us an étale space $\Pi[\text{Rep}]$. Proposition 4.9 and the setup in Appendix C allow us to construct an isomorphism of étale spaces from the dual repeller operator $\Pi[\text{Reps}] : \Pi[\text{Att}] \rightarrow \Pi[\text{Rep}]$ by using the set complement on attracting neighborhoods as a stable extension of α. To view set complement and α as natural transformations, one can augment the hom-set of BDLat with anti-homomorphisms or compose with an opposite functor. This technicality appears again in 5.2 with μ and τ. Alas, note that so far these are Set-valued étale spaces. When we introduce lattice operations in Section 6, this will become an anti-isomorphism of BDLat-valued étale spaces.

Remark 5.6 Note that the dual repeller operator α is dependent on the underlying system ϕ: $A \mapsto A^\alpha = \{ x \in X : \omega_\phi(x) \cap A = \emptyset \}$. (5.4)

For convenience of notation, we will omit the subscript when the underlying system is understood.

5.2 Morse representations

Define the set $\text{sub}_F[\text{Att}]$ consisting of all the finite sublattices $A \subset \text{Att}(\phi)$. Every finite sublattice is understood to contain at least the elements \emptyset and $\omega_\phi(X)$. The set of finite sublattices can be given the structure of a semibounded lattice

$$A \land A' := A \cap A', \quad A \lor A' := [A \cup A'], \quad A, A' \subset \text{Att}(\phi),$$

where $[A \cup A']$ is the smallest sublattice containing $A \cup A'$. Note that, since the $\text{Att}(\phi)$ may be infinite, there may be no maximal element in $\text{sub}_F[\text{Att}(\phi)]$, and hence $\text{sub}_F[\text{Att}(\phi)]$ may not be a bounded lattice. The lattice $\text{sub}_F[\text{Att}(\phi)]$ has minimal element $\{\emptyset, \omega_\phi(X)\}$. Also $\text{sub}_F[\text{Att}(\phi)]$ is not a distributive lattice in general. The assignment $\text{Att}(\phi) \rightarrow \text{sub}_F[\text{Att}(\phi)]$ may be regarded as covariant functor $\text{sub}_F : \text{BDLat} \rightarrow \text{Lat}$, where Lat is the category of lattices. Indeed, if L and K are bounded, distributive lattices and $g : L \rightarrow K$ is a lattice homomorphism (preserves 0 and 1), then the inclusion of a finite sublattice $i : L' \subset L$ defines a finite sublattice $K' \subset K$ as the range of the composition $g \circ i$. We define the arrow

$$\text{sub}_F(g) : \text{sub}_F L \rightarrow \text{sub}_F K, \quad L'\mapsto \text{sub}_F(g)(L') := K'.$$

The composition of functors yields the the contravariant functors $\text{sub}_F \circ \text{ANbhd}$ and $\text{sub}_F \circ \text{Att}$ which provide the following diagrams:
where \(\iota \) is the natural transformation defined by inclusion. The bounded lattice \(\text{sub}_2 \text{Set}(X) \) consists of finite rings of sets over \(X \) in the universe for the continuation frame we construct. Moreover, \(\omega \) is a natural transformation defined as follows. Let \(U \in \text{sub}_2 \text{ANbhd}(\phi) \), then \(\omega_\phi(U) := \{ A = \omega_\phi(U) \mid U \subseteq U \}. \) This construction also yields the lattice homomorphism \(\omega_\phi : U \rightarrow \omega_\phi(U) \). From the definition of \(\text{sub}_2 \text{ANbhd} \) we obtain the following lemma.

Lemma 5.7 \(\text{sub}_2 \text{ANbhd} : \text{DS}(T, X) \rightarrow \text{Lat} \) is a stable structure. The sets \(\{ \phi \in \text{DS}(T, X) : \omega_\phi(U) = \omega_\phi(U') \} \) are open.

Proof For any finite sublattice \(U \in \text{sub}_2 \text{Set}(X) \) we observe that

\[
\Phi[\text{sub}_2 \text{ANbhd}; U] = \bigcap_{U \in U} \Phi[\text{ANbhd}; U],
\]

which, by Lemma 5.1, is open. Suppose we have two finite sublattices \(U, U' \in \text{sub}_2 \text{ANbhd}(\psi) \) such that \(\omega_\psi(U) = \omega_\psi(U') \). Then for each \(U \in U \), there exists a \(U' \in U' \) such that \(\omega_\psi(U) = \omega_\psi(U') \), and vice versa. Take a finite intersection of open sets

\[
\bigcap_{U \in U, U' \in U'} \{ \phi \in \Phi[\text{ANbhd}; U] \cap \Phi[\text{ANbhd}; U'] : \omega_\phi(U) = \omega_\phi(U') \}
\]

\[
\subseteq \{ \phi \in \Phi[\text{sub}_2 \text{ANbhd}; U] \cap \Phi[\text{sub}_2 \text{ANbhd}; U'] : \omega_\phi(U) = \omega_\phi(U') \},
\]

and we are done.

By construction the natural transformation \(\omega : \text{sub}_2 \text{ANbhd} \Rightarrow \text{sub}_2 \text{Att} \) is surjective, which in combination with Lemma 5.7 implies the following:

Lemma 5.8 The triple \((\text{sub}_2 \text{Att}, \text{sub}_2 \text{ANbhd}, \omega)\) is a \text{Lat}-continuation frame.

Following [14,18] we associate an ordered partition \(T(U) \) for every finite sublattice \(U \in \text{sub}_2 \text{ANbhd}(\phi) \): let \(J(U) \) be the poset of join-irreducible elements in \(U \), elements \(U \) with a unique predecessor \(\overline{U} \), and for \(U \in J(U) \) define \(T(U) = U \setminus \overline{U} \). The poset \(J(U) \), ordered by inclusion, induces an isomorphic poset structure on \(T(U) := \{ T(U) \mid U \subseteq J(U) \} \) with \(T(U) \subseteq T(U') \) if and only if \(U \subseteq U' \). The poset \(T(U) \) is called a Morse tessellation for \(\phi \). We can similarly consider a finite sublattice \(A \in \text{sub}_2 \text{Att}(\phi) \), and let \(J(A) \) be the poset of join-irreducible elements in \(A \). Define a map \(J(A) \rightarrow \text{Invset}(\phi) \) by \(A \mapsto M(A) := A \cap (\overline{A})^* = C_{\text{Att}}(A, \overline{A}) \). The elements \(M(A) \) compose the isomorphic poset \(M(A) := \{ M(A) \mid A \in J(A) \} \) with \(M(A) \subseteq M(A') \) if and only if \(A \subseteq A' \). The poset \(M(A) \) is called a Morse representation for \(\phi \).
Let $M\text{Repr}(\phi)$ denote the set of Morse representations for a dynamical system ϕ, and $MTess(\phi)$ the set of Morse tessellations. There are bijections:

\[
\tau_\phi: \text{sub}_F\text{ANbhd}(\phi) \to MTess(\phi), \quad \mu_\phi: \text{sub}_F\text{Att}(\phi) \to M\text{Repr}(\phi),
\]

These bijections let $M\text{Repr}(\phi)$ and $MTess(\phi)$ inherit the lattice structure of their dual counterparts $\text{sub}_F\text{Att}(\phi)$ and $\text{sub}_F\text{ANbhd}(\phi)$ respectively:

\[
T \vee T' := \tau_\phi(\tau_\phi^{-1}(T) \wedge \tau_\phi^{-1}(T')), \quad T \land T' := \tau_\phi(\tau_\phi^{-1}(T) \vee \tau_\phi^{-1}(T'))
\]

\[
M \vee M' := \mu_\phi(\mu_\phi^{-1}(M) \wedge \mu_\phi^{-1}(M')), \quad M \land M' := \mu_\phi(\mu_\phi^{-1}(M) \vee \mu_\phi^{-1}(M')).
\]

As such, τ and μ become lattice isomorphisms. We can view $M\text{Repr}$ and $MTess$ as functors assigning dynamical systems their Morse representations and Morse tessellations respectively. Define an action on morphisms using τ and μ:

\[
h \in \text{hom}(\phi, \psi), \quad MTess(h) := \tau^{-1} \circ \text{sub}_F\text{ANbhd}(h) \circ \tau, \quad M\text{Repr}(h) := \mu^{-1} \circ \text{sub}_F\text{Att}(h) \circ \mu.
\]

τ and μ become natural transformations in this way. The result is the following diagram of functors:

\[
\begin{array}{ccc}
\text{sub}_F\text{ANbhd} & \tau \leftrightarrow \tau^{-1} & \text{Lat} \\
\text{DS}(\mathbb{T}, X) & \text{MTess} & \\
\text{sub}_F\text{Att} & \mu \leftrightarrow \mu^{-1} & \text{Lat} \\
\text{DS}(\mathbb{T}, X) & \text{MRepr} & \\
\end{array}
\]

(5.6)

Let Δ be the natural transformation defined by

\[
\Delta := \mu \circ \omega \circ \tau^{-1}.
\]

Given a Morse tessellation T we obtain a Morse representation via $T \mapsto \Delta_\phi(T) =: M$. By the above correspondences $M = \mu_\phi(A)$ with $A = \mu_\phi^{-1}(\Delta_\phi(T))$ and $T = \tau_\phi(U)$ with $U = \tau_\phi^{-1}(T)$ and $\omega_\phi(\tau_\phi^{-1}(T)) = A$. For the elements U and $\omega_\phi(U)$ we have the homomorphism $\omega_\phi: U \to A = \omega_\phi(U)$. This implies the following relation for Morse tessellations and Morse representations. Associated with U we have $T = \tau_\phi(U)$ maps to $M = \Delta_\phi(T)$ and we obtain a canonical embedding $\iota: M \to T$, which will be called a tessellated Morse decomposition. The embedding ι is induced by the homomorphism ω_ϕ. The continuation frame is given by the following diagrams:

\[
\begin{array}{ccc}
\text{MTess} & \Downarrow \iota & \text{Lat} \\
\text{DS}(\mathbb{T}, X) & \text{OrdTess} & \\
\text{MRepr} & \Downarrow \Delta & \text{Lat} \\
\end{array}
\]

(5.7)
and establishes the continuation frame \((\text{MRepr}, \text{MTess}, \Delta)\). Here the universe is given by \(\text{OrdTess}(X)\) which is the (complete) bounded lattice of finite ordered tessellations of \(X\). In Section 7 we define the Morse representation sheaf which generalizes [11].

Remark 5.9 The lattice operations on \(\text{MRepr}(\phi)\) and \(\text{MTess}(\phi)\) are motivated by the duality between (Priestley) pre-orders and sublattices, i.e. for a bounded distributive lattice \(L\) there exist an anti-isomorphism to the lattice of Priestley pre-order on the Priestley \(\Sigma L\) and the lattice \(\text{sub} L\) of sublattices of \(L\), cf. [31, Thm. 3.7], [6, Thm. 2.5].

6 Algebraic constructions

In this section we incorporate the binary operations of lattices, groups, rings, etc. and augment the étale spaces with these operations.

6.1 Binary operations and lattices

Given two étale spaces \((\Pi, \pi), (\Pi', \pi')\) over a topological space. Define
\[
\Pi \bullet \Pi' := \{ (\sigma, \sigma') \in \Pi \times \Pi' : \pi(\sigma) = \pi'(\sigma') \},
\]
which is also an étale space with the same projection map and the product topology, cf. [35, Sect. 2.5].

Proposition 6.1 Suppose the category \(\mathcal{C}\) has concrete binary products. Let \((G, E, w), (G', E', w')\) be \(\mathcal{C}\)-continuation frames on \(D\). Then, \((G \times G', E \times E', w \times w')\) is a continuation frame and the map
\[
g : \Pi[G] \rightarrow \Pi[G \cdot G'], \quad (\phi, (S, S')) \mapsto ((\phi, S), (\phi, S'))
\]
is a homeomorphism.

Proof Since both \(w\) and \(w'\) are surjective componentwise, so is \(w \times w'\). For the openness conditions:
\[
\Phi[G \times G'; (U, U')] = \{ \phi \in \text{ob}(D) \mid (U, U') \in (G \times G')(\phi) \} = \Phi[G; U] \cap \Phi[G'; U'].
\]
\[
\{ \phi \in D : (w \times w')_\phi(U_1, U_2) = (w \times w')_\phi(U_1', U_2') \} = \{ \phi \in D : w_\phi(U_1) = w_\phi(U_1') \}
\]
\[
\cap \{ \phi \in D : w'_\phi(U_2) = w'_\phi(U_2') \}
\]
which is open. Bijectivity of \(g\) is immediate; it remains to be shown that \(g\) is continuous and open on subbasis elements. Let \(U, U' \in F\) and \(\Omega, \Omega'\) open in \(\Phi[E; U]\) and \(\Phi[E'; U']\) respectively.

Then,
\[
g^{-1}\left(\Theta[w; U](\Omega) \times \Theta[w; U'](\Omega') \cap \Pi[G] \cdot \Pi[G'] \right) = \Theta[w \times w; (U, U')](\Omega \cap \Omega'),
\]
which is open. Similarly, letting \(U, U' \in F\) and \(\Omega \subset \Phi[E \times E'; (U, U')\] open we have:
\[
g\left(\Theta[w \times w'; (U, U')] \right) = \Theta[w; U](\Omega) \times \Theta[w'; U'](\Omega) \cap \Pi[G] \cdot \Pi[G']
\]
which proves that \(g\) is an open map and therefore a homeomorphism. □
Remark 6.2 The universe functor in the product continuation frame is the product $F \times F'$.

We can apply Propositions 4.9 and 6.1 to the the BDLat-continuation frames $(\text{Att}, \text{ANbhd}, \omega)$ and $(\text{Rep}, \text{RNbhd}, \alpha)$ to interpret lattice operations as morphisms of étalé spaces. This permits us to regard $\Pi[\text{Att}]$ and $\Pi[\text{Rep}]$ as BDLat-valued.

For example $\wedge_\phi : \text{Att}(\phi) \times \text{Att}(\phi) \to \text{Att}(\phi)$ given by $(A, A') \mapsto A \wedge A'$ forms a natural transformation

$$\wedge : \text{Att} \times \text{Att} \Rightarrow \text{Att}.$$

From Proposition 4.9 $\wedge : \text{ANbhd} \times \text{ANbhd} \Rightarrow \text{ANbhd}$, given by $(U, U') \mapsto U \cap U'$ with $\omega_\phi(U) = A$ and $\omega_\phi(U') = A'$, acts as a lift for \wedge which yields an étalé space morphism from $\Pi[\text{Att} \times \text{Att}]$ to $\Pi[\text{Att}]$. Combining the latter with Proposition 6.1 yields an étalé space morphism:

$$\Pi[\wedge] : \Pi[\text{Att}] \bowtie \Pi[\text{Att}] \to \Pi[\text{Att}], \quad (\phi, A, (\phi, A')) \mapsto (\phi, A \wedge A'),$$

which establishes \wedge as a continuous binary operation on $\Pi[\text{Att}]$. The same can be achieved for \vee. Absorption, distributivity, and associativity follows immediately from the properties of \wedge and \vee. It remains to show that the assignments of the neutral elements

$$\phi \mapsto (\phi, \emptyset) \in \Pi[\text{Att}], \quad \phi \mapsto (\phi, \omega_\phi(X)) \in \Pi[\text{Att}],$$

are continuous. By composing the constant sections $\Theta[\text{id}; \emptyset], \Theta[\text{id}; X] : \text{DS}(T, X) \to \Pi[\text{ANbhd}]$ with the continuous map $\Pi[\omega]$ we obtain the desired result. A similar argument holds for Rep. Consequently, we have established $\Pi[\text{Att}]$ and $\Pi[\text{Rep}]$ as BDLat-valued étalé spaces. We later explore abelian structures and ring structures which are used in the treatment of sheaf cohomology.

6.2 The Conley form

Recall that the Conley form assigns to two attractors $A, A' \in \text{Att}(\phi)$ an associated invariant set $(A, A') \mapsto C_{\text{Att}}(A, A') := A \cap A^{*\phi}$, where $A^{*\phi} \in \text{Rep}(\phi)$ is dual to A' in the sense that $A^{*\phi} = \alpha_\phi(U^c)$ where $U \in \text{ANbhd}(\phi)$ with $\omega_\phi(U) = A'$. The repeller $A^{*\phi}$ is called the dual repeller to A'. The Conley form has a universal property in the sense that it is a unique extension of set-difference for bounded, distributive lattices, cf. [18].

A Morse neighborhood is a subset $T \subset X$ given by $T = U \cap V$ with $U \in \text{ANbhd}(\phi)$ and $V \in \text{RNbhd}(\phi)$. It holds that $\text{Inv}_\phi(T) = \omega_\phi(U) \cap \alpha_\phi(V) := M$ which is called a Morse set. By construction $M \subset \text{int} T$, cf. [18]. The Morse sets are denoted by $\text{Morse}(\phi)$ which is a bounded, meet-semilattice with binary operation $M \wedge M' := \text{Inv}_\phi(M \cap M')$. The Morse neighborhoods are denoted by $\text{MNbhd}(\phi)$ and form a bounded, meet-semilattice with intersection as binary operation. Both \emptyset and $\omega_\phi(X)$ are neutral elements. As before $\text{Inv} : \text{MNbhd} \Rightarrow \text{Morse}$ is a stable MLat-structure, where $\mathbb{C} = \text{MLat}$ is the category of bounded, meet-semilattices. The triple $(\text{Morse}, \text{MNbhd}, \text{Inv})$ is a MLat-continuation frame and by the general theory in Section 4 we obtain the MLat-étalé space $\Pi[\text{Morse}]$ of Morse sets.
By the same token we can treat the Conley form as natural transformation

\[\mathcal{C}_{\text{Att}} : \text{Att} \times \text{Att} \to \text{Morse}, \]

where the functor Morse assigns the bounded, meet-semilattice of Morse sets to \(\phi \). By Proposition 6.1 this leads to a continuous operation

\[\Pi_r \mathcal{C}_{\text{Att}} : \Pi_r \text{Att} \to \Pi_r \text{Morse} \quad ((\phi, A) (\phi, A')) \mapsto (\phi, \mathcal{C}_{\text{Att}}(A, A')). \]

The map \(\Pi_r \mathcal{C}_{\text{Att}} \) will play a role in setting up the appropriate algebraic construction for sheaf cohomology.

A variation on the Conley form is the symmetric Conley form which is defined as follows:

\[(A, A') \mapsto \mathcal{C}_s(A, A') := \mathcal{C}_{\text{Att}}(A \cup A', A \cap A') = (A \cap A^*) \cup (A' \cap A^*). \]

For the symmetric Conley form we use the following notation: \((A, A') \mapsto A + A' \).

Remark 6.3 The range of the symmetric Conley form is the same as for the standard Conley form. Indeed, if \(A' \subset A \) then \(C^s(A, A') = \mathcal{C}_{\text{Att}}(A, A') \). For any pair of attractor \(A, A' \) absorption implies that \(\mathcal{C}_{\text{Att}}(A, A') = \mathcal{C}_{\text{Att}}(A, A \land A') \) which shows that the Conley form can always be determined from nested pairs, in which case the standard and symmetric Conley forms coincide.

6.3 The algebra of attractors

In this section we take a closer look at the algebraic structure of attractors. Algebraic structures and in particular (abelian) group structures are important for the (co)homological theory of sheaves. Our starting point is the lattice of attractors \(\text{Att}(\phi) \) of a fixed dynamical system \(\phi \), which is a bounded, distributive lattice. Before treating the lattice of attractors we first consider bounded, distributive lattices from a more general point of view.

Let \((L, \land, \lor, 0, 1) \) be bounded, distributive lattice. Then, by the Priestley representation theorem, \(L \) is isomorphic to the lattice \(\Theta_{\text{clp}}(\Sigma L) \) of clopen downsets in the ordered topological space \(\Sigma L \), the spectrum of \(L \), whose points are the prime ideals in \(L \) and whose topology is the Priestley topology. The latter is a zero-dimensional, compact Hausdorff space. The Boolean algebra \(BL \) of clopen sets in \(\Sigma L \) is called the Booleanization, or minimal Boolean extension of \(L \), and \(j : L \to BL \) is a lattice-embedding given by \(j(a) = \{ I \in \Sigma L | a \notin I \} \). The Priestley topology is generated by the basis consisting of elements \(j(a) \land j(b), a, b \in L \). This construction is functorial; we have the Booleanization functor \(B : \text{BDLat} \to \text{Bool} \).

Boolean algebras can be given the structure of a ring, i.e. given a Boolean algebra \((B, \land, \lor, 0, 1) \) define

\[a + b := (a \lor b^c) \lor (b \land a^c) \quad \text{(symmetric difference)} \quad \text{and} \quad a \cdot b := a \land b. \]

Then, \((B, +, -, 0, 1) \) is a commutative, idempotent ring (idempotency with respect to multiplication). One retrieves the Boolean algebra structure via \(a \lor b = a + b + a \cdot b \). We can
formulate this as a faithful functor $l: \text{Bool} \rightarrow \text{Ring}$ from the category of Boolean algebras to the category of rings.

\[
\begin{array}{ccc}
\text{BDLat} & \xrightarrow{B} & \text{Bool} & \xrightarrow{l} & \text{Ring} \\
\end{array}
\]

Define the ring obtained from Booleanization of L as the (Boolean) lattice ring of L:

\[
\text{RL} := (l \circ B)(L) \tag{6.1}
\]

the composition is also denoted by $R := l \circ B$. This is the natural way to give an abelian structure to a bounded distributive lattice L. We note that RL is in general not free as additive \mathbb{Z}_2-module (vector space), nor as multiplicative monoid. Since L may be regarded as a (commutative) monoid with respect to \land we can use the monoid ring construction, cf. [22,3,34], to define the \mathbb{Z}_2-algebra \mathbb{Z}_2L, which is a free \mathbb{Z}_2-module (vector space). The elements of \mathbb{Z}_2L are finite formal sums $\sum_i a_i, a_i \in L$, with the additional requirement that $2a = a + a = 0$. Multiplication is given by $a \cdot b := a \land b$. We refer to \mathbb{Z}_2L as the lattice algebra of L which was first introduced in the context of minimal Boolean extension by MacNeille [25]. The lattice algebra \mathbb{Z}_2L is clearly a Boolean ring as is the lattice ring. The \mathbb{Z}_2-monoid ring construction defines a covariant functor

\[
\text{BDLat} \xrightarrow{\mathbb{Z}_2} \text{Ring}.
\]

The analog of the homomorphism $j: L \rightarrow \text{BL}$ is now given by the ring homomorphism:

\[
j: \mathbb{Z}_2L \rightarrow \text{RL}, \quad j\left(\sum_i a_i\right) := \sum_i j(a_i) = \sum_i a_i.
\]

By definition $j(a \land b) = j(a) \land j(b)$, which makes j an algebra homomorphism. The image of the generators of \mathbb{Z}_2L in RL are downsets in ΣL and via the induced \lor operation the lattice L can be retrieved. By construction

\[
j(a) + j(b) = \left(j(a) \lor j(b)\right) \land \left(j(a) \land j(b)\right) = j(a \lor b) \land j(a \land b)
\]

When $b \subset a$, then $j(a) + j(b) = C^\sigma(a,b)$ and thus the sums $j(a) + j(b)$ exhaust the range of the Conley form $C^\sigma: L \times L \rightarrow \text{RL}$. We define the set $\text{CL} := \{C^\sigma(a,b) \mid a,b \in L\}$ as the convexity monoid: for $\sigma, \sigma' \in \text{CL}$ we have $\sigma \cdot \sigma' = C^\sigma(a,b) \land C^\sigma(a',b') = C^\sigma(a \land a', b \lor b') \in \text{CL}$ and $\sigma \cdot 1 = C^\sigma(a,b) \cap C^\sigma(1,0) = C^\sigma(a,1,b \lor 0) = C^\sigma(a,b) = \sigma$. Clearly the embedding $i: \text{CL} \rightarrow \text{RL}$ is a monoid homomorphism.

Lemma 6.4 The ring homomorphism $j: \mathbb{Z}_2L \rightarrow \text{RL}$ is surjective.

Proof Let $\gamma \in \text{RL}$, then by a property of the Priestley topology we can express γ as finite union of the form: $\gamma = \bigcup_i a_i \land a'_i$, with $a_i = j(a_i), a'_i = j(a'_i)$ and $a_i, a'_i \in L$. The objective is to prove that γ is in the range of j. Consider $\alpha \land \beta \land \gamma \land \delta$. We may assume without loss of generality that $\beta \subset \alpha$ and $\delta \subset \gamma$. Indeed, use $a \land \beta = a \land (\alpha \land \beta)$. Therefore, $\alpha \land \beta \land \gamma \land \delta = (\alpha + \beta) \land (\gamma + \delta)$, and

\[
\begin{align*}
(\alpha + \beta) \land (\gamma + \delta) &= \alpha + \beta + \gamma + \delta + (\alpha + \beta) \land (\gamma + \delta) \\
&= \alpha + \beta + \gamma + \delta + (\alpha \land \gamma) + (\alpha \land \delta) + (\beta \land \gamma) + (\beta \land \delta),
\end{align*}
\]

Continuation sheaves in dynamics
which corresponds to a sum of \(j \)-images of elements in \(L \). We conclude that
\[
\gamma = \bigcup_i \alpha_i \setminus \alpha'_i = \sum_k \tilde{a}_k = \sum_k j(\tilde{a}_k), \tilde{a}_k \in L,
\]
which proves that \(\gamma \) is in the range of \(j \).

We now have the following short exact sequence:
\[
0 \longrightarrow \ker j \longrightarrow \mathbb{Z}_2 L \xrightarrow{j} RL \longrightarrow 0,
\]
and since the kernel \(\ker j \) is an ideal in \(\mathbb{Z}_2 L \) the first isomorphism theorem for rings yields
\[
RL \cong \frac{\mathbb{Z}_2 L}{\ker j},
\]
where the isomorphism is given \(\sum_i a_i \mod \ker j \rightarrow \sum_i \alpha_i \). If we regard \(j \) as a module (vector space) homomorphism then both \(\ker j \) and \(\mathbb{Z}_2 \text{Att}(\phi) \) are free \(\mathbb{Z}_2 \)-modules. The ideal \(\ker j \) can be characterized as follows.

Lemma 6.5 \(\ker j \) is the ideal freely generated by elements of the form \(a \lor b + a + b + a \cdot b \).

Proof For an element \(a \lor b + a + b + a \cdot b \) we have that
\[
\begin{align*}
 j(a \lor b + a + b + a \cdot b) &= j(a \lor b) + j(a) + j(b) + j(a \cdot b) \\
 &= j(a) \lor j(b) + j(a) + j(b) + j(a) \land j(b) \\
 &= 2(j(a) \lor j(b)) = \emptyset,
\end{align*}
\]
which proves that finite sums of elements of the form \(a \lor b + a + b + a \cdot b \) are contained in \(\ker j \). Let \(j \left(\sum_i a_i \right) = \sum_i \alpha_i = \emptyset \), then the sum must have an even number of terms. We can rearrange the sequence to a filtration \(\alpha'_1 \subset \cdots \subset \alpha'_{2m} \) such that \(\sum_i \alpha_i = \sum_i \alpha'_i = \emptyset \). Consequently \(\alpha'_{2k-1} + \alpha'_{2k} = \emptyset \) for \(k = 1, \ldots, m \), i.e. \(\alpha'_{2k-1} = \alpha'_{2k} \) for all \(k \). In order to have distinct elements mapping to \(\alpha'_{2j-1} = \alpha'_{2j} \) we have
\[
 j(b_k + c_k) = \alpha'_{2k-1} = \alpha'_{2k} = j(b_k \lor c_k + b_k \cdot c_k),
\]
which proves that element in \(\ker j \) is contained in the set of formal sums generated by terms of the form \(a \lor b + a + b + a \cdot b \).

Let us return to the lattice of attractors \(\text{Att}(\phi) \). Define the *attractor ring* of a dynamical system \(\phi \) as \(\text{RAtt}(\phi) := (I \cup \text{B}) \left(\text{Att}(\phi) \right) \) as the Boolean lattice ring of \(\text{Att}(\phi) \). This is the natural way to give an abelian structure to the attractors of a dynamical system. Via the monoid ring construction we obtain the algebra \(\mathbb{Z}_2 \text{Att}(\phi) \) which is called the *free attractor ring* over \(\mathbb{Z}_2 \).

7 Continuation sheaves

From an abstract continuation frame we have shown how to build an étalé space which encodes the continuation of the unstable structure of interest. This étalé space \(II[G] \) connects the topology of the base space to the algebraic structure of \(G \). To study this connection, we shift our attention to the sheaves of sections generated by the étalé spaces of continuation frames. While sheaves and étalé spaces are equivalent from a categorical viewpoint, the theory of sheaves contributes a rich algebraic toolkit to our study of continuation. Perhaps most prominent is the idea of sheaf cohomology.
Definition 7.1 Let \((G, E, w)\) be a continuation frame and let \(II(G), \pi\) be the associated étalé space over \(D\). A **section** in \(II(G)\) over an open set \(\Omega\) in \(D\) is a continuous map \(\sigma : \Omega \to II(G)\) such that

\[\pi \circ \sigma = \text{id}.\]

The set of all sections over \(\Omega\) is denoted by \(\mathcal{S}^G(\Omega)\). The set of global sections, \(\mathcal{S}^G(D)\), is also written as \(\Gamma(\mathcal{S}^G)\).

The presheaf

\[\mathcal{S}^G : \Theta(D) \to \text{Set},\]

where \(\Theta(D)\) is the category of open sets in \(D\), is in fact a sheaf over \(D\) and is called the **sheaf of sections**, cf. [35, Sect. 2.2C]. A stalk of the sheaf \(\mathcal{S}^G\) at \(\phi \in D\) is the object \(G(\phi)\). By considering sections in \(II(E)\) we obtain the sheaf of sections \(\mathcal{S}^E\) and stalks in \(\mathcal{S}^E\) are denoted by \(E(\phi)\), cf. [35, Prop. 3.6].

Remark 7.2 There are multiple equivalent ways to define stalks. The sheaf-theoretic definition is a direct limit \(\mathcal{S}^G_\phi := \lim_{\rightarrow} \mathcal{S}^G(U)\) over open neighborhoods \(U\) of a point \(\phi\). Equivalently, for an étalé space \(\pi : II(G) \to D\) the stalk at \(\phi\) can be defined as \(\pi^{-1}(\phi)\). In our setting, we make the identification between \(\pi^{-1}(\phi)\) and \(G(\phi)\).

Lemma 7.3 Let \((G, E, w)\) be a continuation frame and let \(\sigma : \Omega \to II(G)\) be a map with property that \(\pi \circ \sigma = \text{id}\) on \(\Omega\) (open). Then, \(\sigma\) is a section in \(II(G)\) if and only if for every \(\phi \in \Omega\) there exists an open neighborhood \(\Omega_0 \subset \Omega\) of \(\phi\) and \(U \in E(\phi)\), such that \(\sigma|_{\Omega_0} = \Theta[w; U]|_{\Omega_0}\).

Proof This follows immediately from the definition of sheaves.

Sections therefore act locally like \(\Theta[w; U]\). Following this intuition, observe that \(\Theta[w; U]\) is a section in \(II(G)\) over \(\Phi[E; U]\).

The above lemma means we only need to verify that a candidate section locally agrees with \(\Theta[w; U]\) for a particular \(U \in E(\phi)\) for some \(\phi \in \text{ob}(D)\), rather than all such \(U\). By the same token sections \(\sigma : \Omega \to II(E)\) are given locally by \(\Theta[1d; U]\), i.e. \(\sigma(\phi) = (\phi, U)\).

From the construction of the sheaves \(\mathcal{S}^E\) and \(\mathcal{S}^G\) we have the following property of the natural transformation \(w\):

\[
\begin{array}{ccc}
\mathcal{S}^E(\Omega) & \xrightarrow{w(\Omega)} & \mathcal{S}^G(\Omega) \\
\downarrow \rho_{\Omega', \Omega} & & \downarrow \rho_{\Omega', \Omega} \\
\mathcal{S}^E(\Omega') & \xrightarrow{w(\Omega')} & \mathcal{S}^G(\Omega')
\end{array}
\]

where \(w(\Omega) : \mathcal{S}^E(\Omega) \to \mathcal{S}^G(\Omega)\) is defined by \(\sigma \mapsto II[w] \circ \sigma\), \(\Omega\) open, and similarly for \(\Omega' \subset \Omega\). The maps \(\rho_{\Omega', \Omega}\) are the restriction maps. The latter defines a **morphism of sheaves** \(w : \mathcal{S}^E \to \mathcal{S}^G\). Since \(w\) yields the stalkwise surjections \(w_\phi : E(\phi) \to G(\phi)\), we say that the morphism \(w : \mathcal{S}^E \to \mathcal{S}^G\) is surjective.
7.1 Attractor sheaves

In Section 6.1 we constructed étale spaces in various categories such as bounded, distributive lattices. The above sheaf of sections construction creates sheaves with values in these same categories. For example, the C-structure $(\text{Att}, \text{ANbhd}, \omega)$ yields the étale morphism $\Pi[\omega]: \Pi[\text{ANbhd}] \rightarrow \Pi[\text{Att}]$ and the BDLat-valued sheaves $\mathcal{A}^{\text{ANbhd}}: \mathcal{O}(\text{DS}(T, X)) \rightarrow \text{BDLat}$ and $\mathcal{A}^{\text{Att}}: \mathcal{O}(\text{DS}(T, X)) \rightarrow \text{BDLat}$. Hence, we obtain the following morphism of sheaves

$$\omega: \mathcal{A}^{\text{ANbhd}} \rightarrow \mathcal{A}^{\text{Att}}$$

that assigns to every section $\sigma: \Omega \rightarrow \Pi[\text{ANbhd}]$ the section $\Pi[\omega](\sigma): \Omega \rightarrow \Pi[\text{Att}]$. The sheaf \mathcal{A}^{Att} is called the attractor lattice sheaf over $\text{DS}(T, X)$.

Similarly, we have the morphism of sheaves

$$\alpha: \mathcal{A}^{\text{RNbhd}} \rightarrow \mathcal{A}^{\text{Rep}},$$

where \mathcal{A}^{Rep} is the repeller lattice sheaf. Duality between Att and Rep, as well as between ANbhd and RNbhd, yields the following commutative diagram of sheaves:

$$\begin{array}{ccc}
\mathcal{A}^{\text{ANbhd}} & \xrightarrow{\omega} & \mathcal{A}^{\text{RNbhd}} \\
\downarrow & & \downarrow \\
\mathcal{A}^{\text{Att}} & \xrightarrow{\alpha} & \mathcal{A}^{\text{Rep}}
\end{array}$$

The Conley form on étale spaces in Section 6.2 gives rise to the MLat-valued sheaf $\mathcal{A}^{\text{Morse}}: \mathcal{O}(\text{DS}(T, X)) \rightarrow \text{MLat}$.

For \mathcal{A}^{Att} and $\mathcal{A}^{\text{Morse}}$, lattice-valued and meet lattice-valued sheaves respectively, we need to construct a suitable abelian structure in order to define their sheaf cohomology. In general, let C be a concrete category, and let $K: C \rightarrow \text{Ring}$ a covariant functor. Moreover, let $\mathcal{S}: \mathcal{O}(D) \rightarrow C$ be a C-valued sheaf over a topological category D. For every open set Ω in D we have the ring $K(\mathcal{S}(\Omega))$ and the ring-valued presheaf $K(\mathcal{S}(\mathcal{O}(D))) \rightarrow \text{Ring}$.

Via the sheafification functor $\# : \text{PrSh}_{C}(X) \rightarrow \text{Sh}_{C}(X)$, we then obtain the sheaf

$$\mathcal{K} := (K, \mathcal{S})^\#: \mathcal{O}(D) \rightarrow \text{Ring}.$$

In Section 6.3 we consider two functors that take values in the category of rings: the Boolean ring functor $R = 1 \circ B: \text{BDLat} \rightarrow \text{Ring}$ and the monoid ring functor $\mathbb{Z}_2: \text{Monoid} \rightarrow \text{Ring}$. In the case of the sheaf of attractors we obtain the abelian sheaves:

$$\mathcal{A} := (R, \mathcal{A}^{\text{Att}})^\#: \mathcal{O}(\text{DS}(T, X)) \rightarrow \text{Ring},$$

and

$$\text{Att} := (\mathbb{Z}_2, \mathcal{A}^{\text{Att}})^\#: \mathcal{O}(\text{DS}(T, X)) \rightarrow \text{Ring},$$

which are called the attractor sheaf and the free attractor sheaf over $\text{DS}(T, X)$ respectively.
Remark 7.4 Similar constructions can be applied to sheaves in other dynamical contexts. The construction via the functor $\mathbb{Z}_2: \text{Monoid} \to \text{Ring}$ works for all of the above examples since both bounded, distributive lattices and semilattices compose subcategories of the category of (commutative) monoids. Of particular interest is the free Morse sheaf

$$\text{Morse} := (\mathbb{Z}_2 \mathcal{I}_{\text{Morse}})^\# : \mathcal{O}(\text{DS}(T, X)) \to \text{Ring}.$$

Remark 7.5 The short exact sequence in (6.2) for Att yields:

$$0 \to \ker j \to \mathcal{A} \to \mathcal{A} \to 0,$$

where the stalks

$$\mathcal{A}_\phi = \mathcal{R}\text{Att}(\phi) \quad \text{and} \quad \mathcal{A}_\phi = \mathbb{Z}_2\text{Att}(\phi)$$

are the attractor ring at ϕ and the free attractor ring over \mathbb{Z}_2 at ϕ respectively. We define this to be the fundamental short exact sequence of the attractor sheaf. The fundamental exact sequence allows us to relate the sheaves \mathcal{A} and Morse. The generators of \mathcal{A} and the ring structure of \mathcal{A} recover the attractor lattice sheaf \mathcal{S}_{Att}.

Remark 7.6 An alternative way to define the sheaves \mathcal{A} and \mathcal{A} is a direct definition via étalé spaces. In the case of \mathcal{A} we define an étalé space $\Pi[\mathbb{Z}_2\text{Att}]$ using the stable C-structure $(\mathbb{Z}_2\text{Att}, \mathbb{Z}_2\text{ANbhd}, \mathbb{Z}_2(\omega))$ via the monoid ring functor. The stability follows from the fact that stability is preserved under free sums. We obtain the étalé space $\pi: \Pi[\mathbb{Z}_2\text{Att}] \to \text{DS}(T, X)$ and the associated sheaf of sections $\mathcal{S}_{\mathbb{Z}_2\text{Att}}$. It holds that $\mathcal{S}_{\mathbb{Z}_2\text{Att}} \cong \mathcal{A}$. For the Boolean ring functor it is more involved to prove that $(\mathcal{R}\text{Att}, \mathcal{R}\text{ANbhd}, \mathcal{R}(\omega))$ is a continuation frame, but $\mathcal{S}_{\mathcal{R}\text{Att}} \cong \mathcal{A}$.

7.2 Finite sublattice and Morse representation sheaves

Following Lemma 5.8, we also have an Lat-valued étalé space $\Pi[\text{sub}_p\text{Att}]$, encoding the continuation of finite sublattices of attractors. As earlier, we can consider the corresponding sheaf of sections $\mathcal{S}_{\text{sub}_p\text{Att}}: \text{DS}(T, X) \to \text{Lat}$. For an open set $\Omega \subset \text{DS}(T, X)$, a section in $\mathcal{S}_{\text{sub}_p\text{Att}}(\Omega)$ assigns to each dynamical system $\phi \in \Omega$ a finite sublattice of $A \subset \text{Att}(\phi)$. The lattice operations on $\mathcal{S}_{\text{sub}_p\text{Att}}(\Omega)$, on stalks, send two finite sublattices to their intersection or the smallest sublattice containing both. This yields the following question concerning the structure of the sheaf $\mathcal{S}_{\text{sub}_p\text{Att}}$:

Can we view sections of $\mathcal{S}_{\text{sub}_p\text{Att}}$ as a lattice of sections of \mathcal{S}_{Att}?

This is not always possible, see Example 9.6.

To understand this structure one needs to be able to relate the sheaves $\mathcal{S}_{\text{sub}_p\text{Att}}$ and \mathcal{S}_{Att}. Define the following étalé space on $\text{DS}(T, X)$:

$$\Pi := \{ (\phi, A, A) \in \Pi[\text{sub}_p\text{Att}] \cdot \Pi[\text{Att}] : A \in A \}.$$
The projection from $\Pi[\text{s}_F\text{Att}] \cdot \Pi[\text{Att}]$ remains a surjective local homeomorphism when restricted to the subspace Π. There is a commutative diagram of restriction maps for étalé spaces:

![Diagram](image)

Denote the sheaf of sections associated to the étalé space Π by $E_{\text{s}_F\text{Att}}$: $O_{\text{DS}(T,X)} \rightarrow \text{Set}$.

A section of $E_{\text{s}_F\text{Att}}$ traces out the continuation of a finite sublattice of attractors, as well as a specific attractor in that sublattice. From the diagram, there are two morphisms:

$q: E_{\text{s}_F\text{Att}} \rightarrow \mathcal{A} \quad r: E_{\text{s}_F\text{Att}} \rightarrow \mathcal{A}_{\text{s}_F\text{Att}},$

which restricts sections to their attractor and finite sublattice components respectively. For an open set $\Omega \subset \text{DS}(T,X)$ and a section $\nu \in E_{\text{s}_F\text{Att}}(\Omega)$, we can consider the set $r^{-1}_{\Omega}(\nu)$ consisting of sections of $E_{\text{s}_F\text{Att}}$ which agree with ν on their finite sublattice component. This set has a bounded distributive lattice structure, defined on the attractor component. Suppose $\sigma, \sigma' \in r^{-1}_{\Omega}(\nu)$:

$$\sigma(\phi) = (\nu(\phi), A), \quad \sigma'(\phi) = (\nu(\phi), A'), \quad (\sigma \wedge \sigma')(\phi) := (\nu(\phi), A \wedge A').$$

The meet operation is defined similarly. We can then pass this lattice through q, and achieve a bounded distributive lattice of sections of \mathcal{A}:

$$q_{\Omega}: r^{-1}_{\Omega}(\nu) \subset E_{\text{s}_F\text{Att}}(\Omega) \rightarrow \mathcal{A}(\Omega)$$

We make the following observations:

- For any section $\sigma \in q_{\Omega}(r^{-1}_{\Omega}(\nu))$, with $\sigma(\phi) = (\phi, A)$, we have that $A \in A$, where $\nu(\phi) = (\phi, A)$. In other words, the value of σ at ϕ is contained in the value of ν at ϕ.

- Composing the stalk restriction map $\rho_\phi: \mathcal{A}(\Omega) \rightarrow \text{Att}(\phi)$ yields the composite lattice homomorphism

$$f_{\Omega,\phi}: q_{\Omega}(r^{-1}_{\Omega}(\nu)) \rightarrow A \subset \text{Att}(\phi),$$

where $\nu(\phi) = (\phi, A)$.

- If $f_{\Omega,\phi}$ is surjective at every $\phi \in \Omega$, we retrieve ν from these sections:

$$\nu(\phi) = (\phi, \{A_\sigma\}), \quad \text{where} \quad \sigma \in q_{\Omega}(r^{-1}_{\Omega}(\nu)), \quad \sigma(\phi) = (\phi, A_\sigma).$$

Proposition 7.7 Let $\nu \in \mathcal{A}_{\text{s}_F\text{Att}}(\Omega)$ for some open set $\Omega \subset \text{DS}(T,X)$ and let $\phi \in \Omega$. Then, there is an open neighborhood Ω' of ϕ such that $f_{\Omega,\phi'}$ defined by $\nu|_{\Omega'}$ is surjective for all $\phi' \in \Omega'$.

Proof By Lemma 7.3 \(\nu \) yields a neighborhood \(\Omega' \) of \(\phi \) upon which \(\nu|_{\Omega'} = \Theta[\omega; N]|_{\Omega'} \) for some \(N \in \text{sub}_F \text{ANbd}(\phi) \). For each \(U \in \mathbb{N} \), we have a section \(\Theta[\omega; U]|_{\Omega'} \in \mathcal{S}^{\text{Att}}(\Omega') \). Indeed, we can define the following section in \(\mathcal{E}^{\text{sub}_F \text{Att}}(\Omega') \):

\[
\phi \mapsto (\phi, \omega_{\phi}(N), \omega_{\phi}(U))
\]

which maps to \(\Theta[\omega; U]|_{\Omega'} \) under \(\phi \), and therefore \(\Theta[\omega; U]|_{\Omega'} \in \mathcal{E}^{\text{Att}}(\Omega') \). Let \(\phi' \in \Omega' \), and \(A \in A \), where \(\nu(\phi') = (\phi', A) \). Then \(A = \omega_{\phi}(U) \) for some \(U \in \mathbb{N} \), since \(\omega_{\phi}(N) = A \). Moreover, since \(f_{\Omega', \phi'}(\Theta[\omega; U]|_{\Omega'}) = A \) for arbitrary choices of \(\phi' \) and \(A \), the proof is complete.

Proposition 7.7 justifies that locally a section in \(\mathcal{S}^{\text{sub}_F \text{Att}} \) may be interpreted as a finite distributive lattice of sections in \(\mathcal{S}^{\text{Att}} \). We will investigate when this interpretation extends globally at a later stage.

Dually, we can consider the continuation frame \((\text{MRepr, MTess, } \Delta) \), which defines the \(\text{Lat} \)-valued Morse representation sheaf \(\mathcal{S}^{\text{MRepr}} \), cf. Sect. 5.2. Applying Proposition 4.9 to the natural transformation \(\mu: \text{sub}_F \text{Att} \to \text{MRepr} \) with stable extension \(\tau: \text{sub}_F \text{ANbd} \to \text{MTess} \) yields a sheaf isomorphism

\[
\mu: \mathcal{S}^{\text{sub}_F \text{Att}} \to \mathcal{S}^{\text{MRepr}}.
\]

The lattice structure of \(\mathcal{S}^{\text{MRepr}} \) allows common coarsings and refinements of Morse representations: let \(\sigma_M, \sigma'_M \in \mathcal{S}^{\text{MRepr}}(\Omega) \), then

\[
\sigma_M \vee \sigma'_M \in \mathcal{S}^{\text{MRepr}}(\Omega) \quad \text{and} \quad \sigma_M \wedge \sigma'_M \in \mathcal{S}^{\text{MRepr}}(\Omega),
\]

the common coarsening and common refinement of Morse representations continuations respectively. The binary operations are defined in the sheaf \(\mathcal{S}^{\text{sub}_F \text{Att}} \) via

\[
\mu^{-1}(\sigma_M) \wedge \mu^{-1}(\sigma'_M) \quad \text{and} \quad \mu^{-1}(\sigma_M) \vee \mu^{-1}(\sigma'_M),
\]

respectively. We can dualize the earlier theory for \(\mathcal{S}^{\text{sub}_F \text{Att}} \) to describe sections of \(\mathcal{S}^{\text{MRepr}} \).

For a section \(\zeta \in \text{MRepr}(\Omega) \), there is a corresponding section \(\nu := \mu(\zeta) \in \mathcal{S}^{\text{sub}_F \text{Att}}(\Omega) \). We again have \(f_{\Omega, \phi}: q_\Omega(r_{\Omega}^{-1}(\nu)) \to A \) where \(\nu(\phi) = (\phi, A) \). Suppose \(q_\Omega(r_{\Omega}^{-1}(\nu)) \) is finite. We can dualize to achieve:

\[
g_{\Omega, \phi}: M(A) \to P_\Omega,
\]

where \(P_\Omega \) denotes the poset of join-irreducible elements of \(q_\Omega(r_{\Omega}^{-1}(\nu)) \). The map \(g_{\Omega, \phi} \) composes the isomorphism between \(J(A) \), the join-irreducible elements of \(A \), and \(M(A) \) with the dual of \(f_{\Omega, \phi} \). The Morse representation \(M(A) \) is exactly the value of \(\zeta \) at \(\phi \), in other words, \(\zeta(\phi) = (\phi, M(A)) \). If the lattice morphism \(f_{\Omega, \phi} \) is surjective, then \(g_{\Omega, \phi} \) is an embedding and thus a Morse decomposition, cf. [18, Def. 7]. Thus we get an analogous statement to Proposition 7.7.

Corollary 7.8 Let \(\zeta \in \mathcal{S}^{\text{MRepr}}(\Omega) \) for an open \(\Omega \subset \text{DS}(T, X) \) such that \(q_\Omega(r_{\Omega}^{-1}(\mu_\Omega(\zeta))) \) is finite, and \(\phi \in \Omega \). Then there is an open neighborhood \(\Omega' \) of \(\phi \) such that \(g_{\Omega', \phi} \) is a Morse decomposition for all \(\phi' \in \Omega' \).
8 Parameter spaces and pullbacks

In this section we discuss continuation frames for parametrized families of dynamical systems and how the associated sheaves can be constructed.

8.1 Parametrized dynamical systems

Let \(\Lambda \) be a topological space. In keeping with the spirit of the paper we keep the conditions mild but in practical situations \(\Lambda \) is a CW-space.

Definition 8.1 Let \(X \) be a compact topological space. A parametrized dynamical system over \(\Lambda \) on \(X \) is a continuous map \(\phi : \hat{T} \times \hat{X} \rightarrow X \) such that \(\phi^\lambda := \phi(\cdot, \cdot, \lambda) \in DS(T, X) \) for all \(\lambda \in \Lambda \).

The category of dynamical systems \(DS(T, X) \) is a function space equipped with the compact-open topology. For a parametrized dynamical system \(\phi \) we define the transpose \(\phi^\bullet : \Lambda \rightarrow DS(T, X) \) by

\[
\phi^\bullet(\lambda) = \phi^\lambda := \phi(\cdot, \cdot, \lambda).
\]

The transpose \(\phi^\bullet : \Lambda \rightarrow DS(T, X) \) is a continuous map without additional assumptions on the topological spaces \(\Lambda \) and \(X \), cf. Appendix D.

For the continuation frame \((Att, ANbhd, \omega) \) on \(DS(T, X) \) a parametrized dynamical system yields a pullback étale space on \(\Lambda \):

\[
\phi^{-1}_\bullet \Pi[Att] := \{(\lambda, \phi, A) \in \Lambda \times \Pi[Att] \mid \phi^\bullet(\lambda) = \pi(\phi, A) = \phi\},
\]

i.e. the follows diagram commutes

\[
\begin{array}{ccc}
\phi^{-1}_\bullet \Pi[Att] & \xrightarrow{\lambda, \phi, A \mapsto (\phi, A)} & \Pi[Att] \\
\downarrow{(\lambda, \phi, A) \mapsto \lambda} & \quad & \downarrow{\pi} \\
\Lambda & \xrightarrow{\phi^\bullet} & DS(T, X)
\end{array}
\]

where \(\phi^{-1}_\bullet \Pi[Att] \) is the pullback in the category of topological spaces, cf. [5, Sect. I.3]. From [4, Prop. 2.4.9] it follow that \(\phi^{-1}_\bullet \Pi[Att] \rightarrow \Lambda \) is an étale space over \(\Lambda \). The binary operations on \(\Pi[Att] \) can be verified to be continuous on the inverse image étale space. As before we obtain the following \(\text{BDLat} \)-valued pullback sheaf

\[
\phi^{-1}_\bullet \mathcal{S}^{\text{Att}} : \mathcal{O}(\Lambda) \rightarrow \text{BDLat},
\]

as the sheaf of sections of \(\phi^{-1}_\bullet \Pi[Att] \). Applying the boolean ring functor \(R \) to the sheaf of sections yields a ring valued sheaf:

\[
\mathcal{A}^{\phi^\bullet} := (R\phi^{-1}_\bullet \mathcal{S}^{\text{Att}})^\# : \mathcal{O}(\Lambda) \rightarrow \text{Ring}.
\]

The ringed space \((\Lambda, \mathcal{A}^{\phi^\bullet}) \) encodes the continuation data of attractors for the parametrized dynamical system. Similarly, for the Monoid ring functor \(\mathbb{Z}_2 \) we obtain:

\[
\mathcal{M}^{\phi^\bullet} := (\mathbb{Z}_2 \phi^{-1}_\bullet \mathcal{S}^{\text{Att}})^\# : \mathcal{O}(\Lambda) \rightarrow \text{Ring}.
\]
Continuation sheaves in dynamics

where the multiplication is inherited from the monoidal structure of Att, cf. Section 6.3. We are now in the setting of sheaf cohomology. Since the category of sheaves of abelian groups has enough injectives, the ith sheaf cohomology groups may be defined as the right derived functors of the global section functor. A more direct and detailed construction can be found in [5]. We apply these, and their relative versions, to the sheaves $\mathcal{A}^{\phi *}$ and $\mathcal{A}^{\phi * \circ \Lambda}$. Theorem 8.7 and the later sections will show the cohomology groups $H^i(\Lambda, \mathcal{A}^{\phi *})$ and $H^i(\Lambda, \Lambda'; \mathcal{A}^{\phi *})$ are algebraic invariants which can detect bifurcations.

Remark 8.2 The sheaf $\mathcal{A}^{\phi *}$ is defined as follows. The Boolean ring functor yields the étalé space $\Pi_{\mathcal{R}_{\Lambda} \mathcal{A}}$ and the associated sheaf of sections $\mathcal{R}_{\Lambda} \mathcal{A}^{\phi *}$, which defines the sheaf as the pullback sheaf with respect to ϕ_{\ast}.

8.2 Conjugate dynamical systems and homeomorphic étalé spaces

We start off with the basic notion of conjugacy in dynamical systems.

Definition 8.3 Let X and Y be compact topological spaces, and let $\phi : \Lambda \to \text{DS}(\mathbb{T}, X)$ and $\psi : \Lambda \to \text{DS}(\mathbb{T}, Y)$ be parametrized dynamical systems. A **conjugacy** between ϕ and ψ is a continuous map $h : \Lambda \times X \to Y$ and a continuous reparametrization $\tau : \Lambda \times \mathbb{T} \times X \to T$, such that

(i) $h^\lambda \times \tau^\lambda := h(\lambda, \cdot) \times \tau(\lambda, \cdot, \cdot)$ is a conjugacy in $\text{hom}(\phi^\lambda, \psi^\lambda)$ for all $\lambda \in \Lambda$;

(ii) $h^\lambda(X_i) = Y_i$ uniformly for all $\lambda \in \Lambda$, where X_i and Y_i are the connected components of X and Y respectively.

If a conjugacy h exists, then ϕ and ψ are said to be **conjugate parametrized dynamical systems**.

Remark 8.4 Assumption (ii) is always satisfied pointwise for λ by appropriately indexing the components of X and Y. The uniformity in the above definition is not guaranteed since no restrictions on the topology of Λ are required. For specific topologies on Λ condition (ii) may be superfluous.

Remark 8.5 One may also consider quasiconjugacies between parametrized dynamical systems over Λ.

Since h^λ is a conjugacy we know from Remark 3.5 that the push-forward $U^\lambda \mapsto h^\lambda(U^\lambda)$ is an attracting neighborhood for ψ^λ and similarly, the push-forward $A^\lambda \mapsto h^\lambda(A^\lambda)$ is an attractor for ψ^λ.

Lemma 8.6 The following diagram commutes:

$$
\begin{array}{ccc}
\text{ANbhd}(\phi^\lambda) & \xrightarrow{\sim} & \text{ANbhd}(\psi^\lambda) \\
\omega_{\phi^\lambda} \downarrow & & \downarrow \omega_{\psi^\lambda} \\
\text{Att}(\phi^\lambda) & \xleftarrow{\sim} & \text{Att}(\psi^\lambda)
\end{array}
$$
Proof Indeed, the maps from above we have $U^\lambda \mapsto h^\lambda(U^\lambda) \mapsto \omega_{\phi^\lambda}(h^\lambda(U^\lambda))$. From below yields $U^\lambda \mapsto A^\lambda = \omega_{\phi^\lambda}(U^\lambda) \mapsto h^\lambda(A^\lambda)$. Since h is a conjugacy it follows from Remark 3.5 that Lemma 3.2 applies to both h^λ and $(h^\lambda)^{-1}$. This gives:

$$\omega_{\phi^\lambda}(h^\lambda(U^\lambda)) = \omega_{\phi^\lambda}(h^\lambda(\omega_{\phi^\lambda}(U^\lambda))) = \omega_{\phi^\lambda}(h^\lambda(A^\lambda)) = h^\lambda(A^\lambda),$$

(8.1)

which proves commutativity.

Lemma 8.6 holds for all $\lambda \in \Lambda$ and which provides stalkwise isomorphisms between the associated sheaves of attractors. This however does not give isomorphic sheaves necessarily!

Theorem 8.7 (Conjugacy Invariance Theorem) Let X, Y be compact metric spaces. Suppose $\phi_*: \Lambda \to \mathcal{DS}(\mathbb{T}, X)$ and $\psi_*: \Lambda \to \mathcal{DS}(\mathbb{T}, Y)$ are conjugate parametrized dynamical systems. Then, the étale spaces $\phi_*^{-1}\Pi[\text{Att}]$ and $\psi_*^{-1}\Pi[\text{Att}]$ are homeomorphic.

Proof From Lemma 8.6 we have the following commutative diagram of maps:

$$\phi_*^{-1}\Pi[\text{Att}] \xrightarrow{h_*} \psi_*^{-1}\Pi[\text{Att}]$$

where h_* is defined by $(\lambda, \phi^\lambda, A^\lambda) \mapsto h_*(\lambda, \phi^\lambda, A^\lambda) := (\lambda, \psi^\lambda, h^\lambda(A^\lambda))$. It is sufficient to show continuity, since if h_* is continuous, then h_* is a local homeomorphism, in which case h_*^{-1} is also a local homeomorphism (h_* is a bijection), cf. [4, Prop. 2.4.8]. This proves that $\phi_*^{-1}\Pi[\text{Att}]$ and $\psi_*^{-1}\Pi[\text{Att}]$ are homeomorphic.

In order to prove continuity we argue as follows. Consider the following commutative diagram

$$\phi_*^{-1}\Pi[\text{Att}]$$

where $\phi_*^{-1}\Phi[\text{ANbhd}; U] = \{\lambda \mid U \in \text{ANbhd}(\phi^\lambda)\}$ and $\phi_*^{-1}\Theta[\omega; U](\lambda) = (\lambda, \phi^\lambda, \omega_{\phi^\lambda}(U))$. Let $D_0 \subset \Lambda$ be an open neighborhood of $\lambda_0 \in \Lambda$ and let

$$\psi_*^{-1}\Theta[\omega; h^{\lambda_0}(U^{\lambda_0})](D_0) = \left\{ (\lambda, \psi^\lambda, \omega_{\phi^\lambda}(h^{\lambda_0}(U^{\lambda_0})) \mid \lambda \in D_0 \right\}$$

be an open neighborhood of $h_*(\lambda_0, \phi^\lambda, A^{\lambda_0}) = (\lambda_0, \psi^\lambda, h^{\lambda_0}(A^{\lambda_0}))$ in $\psi_*^{-1}\Pi[\text{Att}]$ for some compact $U^{\lambda_0} \in \text{ANbhd}(\phi^{\lambda_0})$. In order to establish continuity we seek a neighborhood $D'_0 \subset D_0 \subset \Lambda$ such that

$$h_*\left(\phi_*^{-1}\Theta[\omega; U^{\lambda_0}](D'_0)\right) = \left\{ (\lambda, \psi^\lambda, h^{\lambda_0}(\omega_{\phi^\lambda}(U^{\lambda_0})) \mid \lambda \in D'_0 \right\}$$

$$= \left\{ (\lambda, \psi^\lambda, \omega_{\phi^\lambda}(h^{\lambda_0}(U^{\lambda_0})) \mid \lambda \in D'_0 \right\} \subset \psi_*^{-1}\Theta[\omega; h^{\lambda_0}(U^{\lambda_0})](D_0),$$
where the second equality follows from Lemma 8.6, Eqn. (8.1). This is equivalent to saying
\[\omega_{\psi,\lambda}(h^\lambda(U^\lambda)) = \omega_{\psi,\lambda}(h^\lambda(U^\lambda_0)), \quad \forall \lambda \in D'_0. \]

For notational convenience we write
\[U := h^\lambda_0(U^\lambda_0) \in \text{ANbhd}(\psi^\lambda), \quad \text{and} \quad A = h^\lambda_0(A^\lambda_0) = \omega_{\psi,\lambda}(U^\lambda_0) \in \text{Att}(\psi^\lambda). \]

We rephrase the above condition as:
\[\omega_{\psi,\lambda}(h^\lambda(U^\lambda_0)) = \omega_{\psi,\lambda}(U), \quad \forall \lambda \in D'_0. \tag{8.2} \]

For \(U^\lambda_0 = \emptyset \), or for \(U^\lambda_0 = \bigsqcup X_i \subset X \), any union of connected components of \(X \), Eqn. (8.2) is satisfied by the uniform conjugacy condition in Defn. 8.3(ii), cf. Remark 8.4. For the remainder of the proof we assume \(U^\lambda_0 \neq \emptyset \) and \(U^\lambda_0 \neq \bigsqcup X_i \), for all unions of connected components of \(X \). Therefore, we may carry out the arguments for the components \(U^\lambda_0 = U^\lambda_0 \cap X_i \neq \emptyset, X_i \).

Choose a compact attracting neighborhood \(U' \in \text{ANbhd}(\psi^\lambda) \) such that \(U' \subset \text{int } U \) and \(\omega_{\psi^\lambda}(U') = A \). Indeed, since \(A \) is an attractor, \(\text{cl } U^c \cap A = \emptyset \), cf. [16, Lemma 3.23]. Therefore there exists open sets \(N, N' \) such that \(A \subset N, \text{cl } U^c \subset N' \) and \(N \cap N' = \emptyset \). As a matter of fact \(\text{cl } N \cap N' = \emptyset \). Define \(U' = \text{cl } N \). By construction \(A^* \subset U^c \subset \text{cl } U^c \subset N' \) and thus \(U' \cap A^* = \emptyset \) which proves that (i) \(\omega_{\psi^\lambda}(U') = A \), (ii) \(A \subset N \subset U' \), (iii) \(U' = \text{cl } N \subset N^c \subset (\text{cl } U^c)^c = \text{int } U \), and thus \(U' \) is an attracting neighborhood satisfying the properties stated above, cf. [16, Lemma 3.21]. From the fact that \(U \neq \bigsqcup Y_i \), a union of components, it follows that \(\text{int } U \subset U \). Thus by Property (iii) there exists a \(\delta_1 > 0 \) such that \(B_{\delta_1}(U') \subset U \) and therefore \(d_H(U, U') \geq \delta_1 > 0 \), where \(d_H \) is the Hausdorff metric on the space \(H(X) \) of compact subsets of \(X \).

By the same token we can choose a compact repelling neighborhood \(V \in \text{RNbhd}(\psi^\lambda) \) such that \(V \cap U = \emptyset \) and \(\omega_{\psi^\lambda}(V^c) = A \). Indeed, repeat the above arguments starting with \(U \cap A^* = \emptyset \). \(V \) is compact, so there exists a \(\delta_2 > 0 \) such that \(d_H(U, V) \geq \delta_2 > 0 \).

Since, \(\psi^{\lambda,1}\Theta[\omega; U], \psi^{\lambda,1}\Theta[\omega; U'] \) and \(\psi^{\lambda,1}\Theta[\omega; V^c] \) define local sections in \(\psi^{\lambda,1}\Pi[\text{Att}] \) over \(\psi^{\lambda,1}\Phi[\text{ANbhd}; U], \psi^{\lambda,1}\Phi[\text{ANbhd}; U'] \) and \(\psi^{\lambda,1}\Phi[\text{ANbhd}; V^c] \) respectively, and since
\[\psi^{\lambda,1}\Theta[\omega; U](\lambda_0) = \psi^{\lambda,1}\Theta[\omega; U'](\lambda_0) = \psi^{\lambda,1}\Theta[\omega; V^c](\lambda_0) \]
there exists an open set \(E_0 \subset A \) on which three sections coincide, i.e.
\[B^\lambda := \omega_{\psi,\lambda}(U) = \omega_{\psi,\lambda}(U') = \omega_{\psi,\lambda}(V^c), \quad \forall \lambda \in E_0, \]

and \(B^\lambda \subset \text{int } U, B^\lambda \subset \text{int } U' \) and \(B^\lambda \subset \text{int } V^c \) for all \(\lambda \in E_0 \).

Let \(\tilde{U} \) be any compact neighborhood such that \(d_H(U, \tilde{U}) < \delta = \min\{\delta_1, \delta_2\}/2 \) and let \(\lambda \in E_0 \). Then,
\[B^\lambda \subset U' \subset \tilde{U}, \quad \tilde{U} \cap (B^\lambda)^* \subset \tilde{U} \cap V = \emptyset, \]
which by [16, Lemma 3.21] implies that \(\omega_{\psi,\lambda}(\tilde{U}) = B^\lambda \) for all \(\lambda \in E_0 \).

Finally, using the continuity of \(h\lambda^\lambda \) in Lemma D.1, choose an open sets \(D'_0 \subset E_0 \cap D_0 \) such that \(d_H(h^\lambda(U^\lambda_0), U) < \delta \) for all \(\lambda \in D'_0 \). By the previous we choose \(\tilde{U} = h^\lambda(U^\lambda_0) \) which proves that
\[\omega_{\psi,\lambda}(h^\lambda(U^\lambda_0)) = B^\lambda = \omega_{\psi,\lambda}(U), \quad \forall \lambda \in D'_0. \]
establishing (8.2) and thereby the theorem.

Remark 8.8 The condition that the spaces X and Y are compact metric spaces is used at several places in the proof and in particular for using the Hausdorff metric. The characterizations of attracting and repelling neighborhoods via attractors and dual repellers at least works in compact Hausdorff spaces.

Theorem 8.7 can be extended to other structures. Since $\phi^{-1}_*\Pi[\text{Att}]$ is homeomorphic (as a sheaf of sets) to $\phi^{-1}_*\Pi[\text{Rep}]$, we can get a homeomorphism between $\phi^{-1}_*\Pi[\text{Rep}]$ and $\psi^{-1}_*\Pi[\text{Rep}]$. There is the following commutative diagram for Morse sets:

$$
\begin{array}{ccc}
\phi^{-1}_*\Pi[\text{Att}] & \phi^{-1}_*\Pi[\text{Att}] & \psi^{-1}_*\Pi[\text{Att}] \\
\downarrow[\Pi[C_{\infty}]] & & \downarrow[\Pi[C_{\infty}]] \\
\phi^{-1}_*\Pi[\text{Morse}] & \Lambda & \psi^{-1}_*\Pi[\text{Morse}] \\
\end{array}
$$

where the top horizontal map is given by

$$(\lambda, \phi^\lambda, A), (\lambda, \phi^\lambda, A') \mapsto (\lambda, \psi^\lambda, h^\lambda(A)), (\lambda, \psi^\lambda, h^\lambda(A'))$$

and the bottom horizontal map is given by

$$(\lambda, \phi^\lambda, M) \mapsto (\lambda, \psi^\lambda, h^\lambda(M)),$$

which, using a similar argument to Proposition 4.9, establishes that the étale spaces $\phi^{-1}_*\Pi[\text{Morse}]$ and $\psi^{-1}_*\Pi[\text{Morse}]$ are homeomorphic.

Corollary 8.9 Let X and Y be homeomorphic compact metric spaces and let Att_X and Att_Y be the attractor functors on $\text{DS}(\mathbb{T}, X)$ and $\text{DS}(\mathbb{T}, Y)$ respectively. Then, the étale spaces $\Pi[\text{Att}_X]$ and $\Pi[\text{Att}_Y]$ are homeomorphic.

Proof Let $h : X \to Y$ be a homeomorphism and let $\Lambda = \text{DS}(\mathbb{T}, X)$. Then, ϕ_* is the identity map. The map $\psi_* : \Lambda \to \text{DS}(\mathbb{T}, Y)$ is defined as follows: $\Lambda \ni \phi \mapsto h \circ \phi \circ h^{-1} = \psi$. Then,

$$h(\phi_t(x)) = h\left(\phi_t(h^{-1}(y))\right) = \psi_t(y) = \psi_t(h(x)),$$

which proves that ϕ_* and ψ_* are conjugate parametrized dynamical systems.

9 Bifurcations and sheaf cohomology

Sheaves attach both local and global data to a topological space. In our setting of continuation, they encode how dynamical structures vary with parameter values on open sets. Oftentimes, given an open cover of the topological space, one can glue together the local information on each element of the cover to obtain global information. However, sometimes local information fails to extend globally. Sheaf cohomology, which can be viewed as
a generalization of singular cohomology, is a powerful tool for studying this. An interpretation for singular cohomology groups is that they constitute obstructions to a topological space being contractible. Sheaf cohomology generalizes this by representing barriers for local sections to extend to global sections.

One can always solve an attractor’s continuation locally using an attracting neighborhood. But this problem is sometimes impossible globally. Sheaf cohomology provides a framework for quantifying when and how this occurs. Together with the conjugacy invariance theorem, this will build an algebraic invariant for parametrized dynamical systems, which can be used to study bifurcations.

Recall that a parametrized dynamical system on a topological space Λ is a continuous map $\phi_\bullet: \Lambda \to \text{DS}(\mathbb{T}, X)$ such that $\phi_\bullet(\lambda): \mathbb{T} \times X \to X$ is a dynamical system for all $\lambda \in \Lambda$. In principal Λ may be $\text{DS}(\mathbb{T}, X)$ but in practice simpler topological spaces for Λ are used. In this section, to utilize Theorem 8.7, we assume X is a compact metric space.

Definition 9.1 A parametrized dynamical system $\phi_\bullet: \Lambda \to \text{DS}(\mathbb{T}, X)$ is stable at a point $\lambda_0 \in \Lambda$ if there exists an open neighborhood $\Lambda' \ni \lambda_0$ such that $\phi_\bullet|_{\Lambda'}$ is conjugate to the constant parametrization $\theta_\bullet: \Lambda' \to \text{DS}(\mathbb{T}, X)$, given by $\lambda \mapsto \phi_\bullet(\lambda_0)$ for all $\lambda \in \Lambda'$. If λ_0 is not stable, it is called a bifurcation point. A parametrized dynamical system ϕ_\bullet is stable on a subset $\Lambda' \subset \Lambda$ if it is stable at every point in $\Lambda' \subset \Lambda$.

If a parametrized dynamical system $\phi_\bullet: \Lambda \to \text{DS}(\mathbb{T}, X)$ is conjugate to the constant parametrization $\theta_\bullet: \Lambda \to \text{DS}(\mathbb{T}, X)$ on Λ it is called uniformly stable.

In general stability of a parametrized dynamical system does not imply uniform stability. For instance if Λ is not connected then ϕ_\bullet need not be conjugate to a fixed constant system θ_\bullet. This example indicates that stability does not imply uniform stability in general if Λ is disconnected. See Example 9.5 for an counter example with a connected space Λ.

9.1 Locally constant sheaves

Let $\phi_\bullet: \Lambda \to \text{DS}(\mathbb{T}, X)$ be a parametrized dynamical system. From the previous we have the induced attractor sheaf and free attractor sheaf over Λ:

$$ \mathcal{A}^\phi_\bullet: \mathcal{O}(\Lambda) \to \text{Ring}, \quad \mathcal{A}^P\phi_\bullet: \mathcal{O}(\Lambda) \to \text{Ring}. $$

The ringed spaces $(\Lambda, \mathcal{A}^{\phi\bullet})$ and $(\Lambda, \mathcal{A}^{P\phi\bullet})$ encode the continuation data of attractors for the parametrized dynamical system. At a later stage we also include the attracting neighborhood sheaf and free attracting neighborhood sheaf \mathcal{N} and $\mathcal{A}\mathcal{M}\mathcal{O}\mathcal{H}\mathcal{D}$ respectively.

Recall that for an abelian group $E \in \text{Ab}$ the presheaf $\mathcal{E}: \mathcal{O}(\Lambda) \to \text{Ab}$ defined by $\mathcal{E}(\Lambda') := \{ \sigma: \Lambda' \to E \text{ constant} \}$, $\Lambda' \subset \Lambda$ open, is called the constant presheaf over Λ with values in E. The sheafification $\mathbb{E} := \mathcal{E}^\#$ is called the constant sheaf over Λ with values in E. The constant sheaf can be characterized as the sheaf of locally constant functions with values in E, i.e.

$$ \mathbb{E}(\Lambda') = \{ \sigma: \Lambda' \to E \text{ locally constant} \}, \quad \Lambda' \subset \Lambda, \text{ open}. $$
If we equip E with the discrete topology then such functions are continuous functions $\sigma: \Lambda' \to E$. This corresponds to the sheaf of section of the étale space $\Lambda \times E$, with E equipped with the discrete topology, cf. [35, Sect. 2.4], [38, Ex. 3.31 and 3.40]. If $\Lambda' \subset \Lambda$ is open and connected then $E(\Lambda') \cong E$. For an open set whose connected components are open then $E(\Lambda')$ is isomorphic to a direct product of copies of E, one for each connected component, cf. [12, Ex. 1.0.3]. An abelian sheaf F is called \textit{locally constant} if there exists an open covering $\{\Lambda_i\}$ of Λ such that $F|_{\Lambda_i}$ is a constant sheaf for all i. This is equivalent to saying that every point allows a neighborhood $\Lambda \subset \Lambda'$ such that $F|_{\Lambda}$ is constant, cf. [3, Defn. I.1.9]. Locally constant sheaves are sheaves of sections of covering spaces, [38, Ex. 3.41].

\textbf{Lemma 9.2} Let $\theta_\bullet: \Lambda \to DS_0(T, X)$ be a constant parametrization. Then, the sheaves $\mathcal{A}^{\theta_\bullet}$ and $\mathcal{A}^{\theta_\bullet}_{\text{Att}}$ are constant sheaves.

\textit{Proof} The pullback étale space $\theta_\bullet^{-1}\Pi[\text{Att}]$ is given by

$$\theta_\bullet^{-1}\Pi[\text{Att}] \cong \Lambda \times A,$$

where $A = \text{Att}(\phi_{\lambda_0})$, for some $\lambda_0 \in \Lambda$, is given the discrete topology. Therefore the sheaf of sections $\theta_\bullet^{-1}\mathcal{F}_{\text{Att}}$ is a constant sheaf. Consequently, $\mathcal{A}^{\theta_\bullet}$ and $\mathcal{A}^{\theta_\bullet}_{\text{Att}}$ are also constant sheaves.

\textbf{Lemma 9.3} Let $\phi_\bullet: \Lambda \to DS_0(T, X)$ be stable. Then, the sheaves $\mathcal{A}^{\phi_\bullet}$ and $\mathcal{A}^{\phi_\bullet}_{\text{Att}}$ are locally constant sheaves.

\textit{Proof} Pick a point $\lambda_0 \in \Lambda$. Since ϕ_\bullet is stable there exists a neighborhood $\Lambda' \ni \lambda_0$ such that $\phi_\bullet|_{\Lambda'}$ is conjugate to the constant parametrization. By the Conjugacy Invariance Theorem in 8.7 we have that $\mathcal{A}^{\phi_\bullet}|_{\Lambda'} \cong \mathcal{A}^{\theta_\bullet}|_{\Lambda'}$ as sheaves. The latter is a constant sheaf over Λ' and therefore $\mathcal{A}^{\phi_\bullet}|_{\Lambda'}$ is a constant sheaf over Λ' by definition. We conclude that $\mathcal{A}^{\phi_\bullet}$ is locally constant. The same applies to $\mathcal{A}^{\phi_\bullet}_{\text{Att}}$.

\textbf{Remark 9.4} If ϕ_\bullet is uniformly stable then ϕ_\bullet is conjugate to a constant parametrization θ_\bullet on Λ. The associated étale spaces are homemorphic by Theorem 8.7 and thus the sheaves $\mathcal{A}^{\phi_\bullet}$ and $\mathcal{A}^{\phi_\bullet}_{\text{Att}}$ are constant sheaves is this case.

\textbf{Example 9.5} Let X be the 2-point compactification of the line and consider the following family of differential equations

$$\dot{x} = \sin(x + \lambda), \quad x \in \mathbb{R}, \quad \lambda \in \mathbb{S}^1 = \mathbb{R}/2\pi\mathbb{Z}.$$

The above system defines a 1-parameter family of flows $\phi_\bullet: \Lambda \to DS_0(\mathbb{R}, X)$ of flows on X over parameter space $\Lambda = \mathbb{S}^1$. Via the conjugacy $x \mapsto x - \lambda$ we conclude that ϕ_\bullet is stable and thus the attractor sheaf $\mathcal{A}^{\phi_\bullet}$ is a locally constant sheaf as indicated by Lemma 9.3. Since $\pm \infty$ are not attractors, the only global sections in $\mathcal{A}^{\phi_\bullet}$ are \emptyset and X. The stalks of $\mathcal{A}^{\phi_\bullet}$ are infinite complete, atomic Boolean algebras which proves that $\mathcal{A}^{\phi_\bullet}$ is not a constant sheaf.
The above example shows that even if Λ is connected, then a stable system need not be uniformly stable. Indeed, ϕ in Example 9.5 allows a conjugacy over $\Lambda = S^1$, then

the attractor sheaf A_{ϕ} is constant which contradicts above statement that A_{ϕ} is locally constant but not constant.

Example 9.6 Define a vector field restricted to the compact subset $[-2, 2] \times [-2, 2]$ of \mathbb{R}^2:

$$F(x, y) = (-x(x + 1)(x - 1), -y).$$

We can rotate the vector field with a parameter θ:

$$F_\theta(x, y) = R_{-\theta} F(R_\theta(x, y)),$$

where R_θ denotes the rotation matrix of angle θ. Since $F_\pi(x, y) = F_0(x, y)$, gluing at 0 and π (not 2π) gives us a parametrized dynamical system $\phi : S^1 \to DS(\mathbb{R}, [0, 2] \times [0, 2])$ by integrating the vector field. The invariant set $[-1, 1] \times \{0\}$ undergoes a half-twist over S^1. There are only three global sections of $\phi^{-1} \mathcal{F}_{\text{att}}$:

$$\theta \mapsto \emptyset, \quad \theta \mapsto R_\theta([-1, 1] \times \{0\}).$$

Alas, each stalk is a five element lattice and S^1 is connected, so $\phi^{-1} \mathcal{F}_{\text{att}}$ is not the constant sheaf. Additionally, the five element attractor lattice is a global section in $\phi^{-1} \mathcal{F}_{\text{sub}_\mathcal{F}_{\text{att}}}$, but cannot be represented as a collection of global sections of $\phi^{-1} \mathcal{F}_{\text{att}}$.

As pointed out above, a locally constant sheaf is the sheaf of sections of a covering space. With additional conditions on Λ such sheaves may be constant sheaves.

Proposition 9.7 (cf. [13], Prop. 4.20 and [38], Prop. 7.5) Let Λ be a simply connected and locally path connected topological space, and let \mathcal{F} be a locally constant sheaf of rings on Λ. Then, \mathcal{F} is a constant sheaf.

The same statement holds for contractible spaces Λ, cf. [20, Exer. II.4]. We can apply the above proposition to the attractor sheaf A_{ϕ} and free attractor sheaf $A_{\text{att}} \phi$ for simple parametrized systems ϕ.
Corollary 9.8 Let $\phi \colon \Lambda \rightarrow DS(T, X)$ be stable and let Λ be a simply connected and locally path connected topological space. Then, $\mathcal{A}^{\phi \bullet}$ and $\mathcal{H}^{\phi \bullet}$ are constant sheaves.

For constant sheaves the sheaf cohomology can be related to singular cohomology which is a useful tool in our treatment of bifurcations.

Proposition 9.9 (cf. [28], Thm. 9) Let Λ be a locally contractible topological space ([33, p. 57]), and let R be an arbitrary ring. If R denotes the constant sheaf with values in R, then $H^k(\Lambda; R) \cong H^k_{\text{sing}}(\Lambda; R)$ for all k.

If we combine Lemma 9.3, Corollary 9.8 and Proposition 9.9 we obtain a result that determines the sheaf cohomology of the attractor sheaves for simple parametrized dynamical systems.

Corollary 9.10 Let $\phi \colon \Lambda \rightarrow DS(T, X)$ be stable and let Λ be a locally contractible and simply connected topological space. Then,

$$H^k(\Lambda; \mathcal{A}^{\phi \bullet}) \cong H^k_{\text{sing}}(\Lambda; \mathcal{A}^{\phi \bullet}), \quad \forall k,$$

where $\mathcal{A}^{\phi \bullet}_{\lambda_0} \in \text{Ring}$ is a stalk at any $\lambda_0 \in \Lambda$. A similar statement holds for $H^k(\Lambda; \mathcal{H}^{\phi \bullet})$.

Proof Lemma 9.3 implies that $\mathcal{A}^{\phi \bullet}$ is a constant sheaf. A locally contractible space is locally simply connected and locally path connected, but not necessarily simply connected. In combination with the condition of simple connectedness we can combine Corollary 9.8 and Proposition 9.9, which completes the proof.

9.2 Sufficient conditions

The statements about sheaf cohomology in Section 9.1 imply the following sufficient condition for bifurcations to exist. The theorems stated for the attractor sheaf $\mathcal{A}^{\phi \bullet}$ can also be stated for the free attractor sheaf $\mathcal{H}^{\phi \bullet}$.

Theorem 9.11 Let Λ be both contractible and locally contractible. Suppose that

$$H^k(\Lambda; \mathcal{A}^{\phi \bullet}) \neq 0, \quad \text{for some} \quad k > 0.$$

Then, there exist a bifurcation point in $\lambda_0 \in \Lambda$.

Proof Suppose there are no bifurcation points. This implies that $\phi \bullet$ is stable which by Corollary 9.10 implies that $H^k(\Lambda; \mathcal{A}^{\phi \bullet}) \cong H^k_{\text{sing}}(\Lambda; R)$ for all k (where R is isomorphic to a stalk of $\mathcal{A}^{\phi \bullet}$). Since Λ is contractible, we have that $H^k_{\text{sing}}(\Lambda; R) = 0$ for all $k > 0$. Combining these statements yields that $H^k(\Lambda; \mathcal{A}^{\phi \bullet}) \cong H^k_{\text{sing}}(\Lambda; R) = 0$ for all $k > 0$, which contradicts the above assumptions.

As we will see in Section 10 the above criterion does not always detect bifurcations. In order to get a more in depth look into local bifurcations we consider its relative sheaf cohomology for $\mathcal{A}^{\phi \bullet}$. We use the following lemma about long exact sequences in sheaf cohomology.
Lemma 9.12 Let \mathcal{F} be a sheaf of rings on Λ and let $\Lambda' \hookrightarrow \Lambda$. Assume that the induced homomorphisms $i^k_* : H^k(\Lambda; \mathcal{F}) \to H^k(\Lambda'; \mathcal{F})$ are isomorphisms for all $k \geq 0$. Then,

$$H^k(\Lambda, \Lambda'; \mathcal{F}) \cong 0, \quad \forall k \geq 0.$$

Proof For triple $(\Lambda', \varnothing) \hookrightarrow (\Lambda, \varnothing) \hookrightarrow (\Lambda, \Lambda')$ we have the long exact sequence,

$$0 \to \delta^0 H^0(\Lambda, \Lambda'; \mathcal{F}) \xrightarrow{j^0_*} H^0(\Lambda; \mathcal{F}) \xrightarrow{i^0_*} H^0(\Lambda'; \mathcal{F}) \to \cdots,$$

$$0 \to \delta^1 H^1(\Lambda', \mathcal{F}) \xrightarrow{j^1_*} H^1(\Lambda; \mathcal{F}) \xrightarrow{i^1_*} H^1(\Lambda'; \mathcal{F}) \to \cdots.$$

For the exactness of the maps and the isomorphisms i^k_* we have: $\ker j^0_* = \text{im} \delta^0 = 0$, which proves that j^0_* is injective. Furthermore, since i^0_* is an isomorphism we have $\ker i^0_* = 0 = \text{im} j^0_*$ and thus $H^0(\Lambda, \Lambda'; \mathcal{F}) \cong 0$. The remaining relative homology groups are determined as follows: $\ker \delta^1 = \text{im} i^0_* = H^0(\Lambda'; \mathcal{F}) \cong H^0(\Lambda; \mathcal{F})$. Therefore, $\ker j^1_* = \text{im} \delta^1 = 0$, which shows that j^1_* is injective. Furthermore, $\ker i^1_* = 0 = \text{im} j^1_*$, consequently $H^1(\Lambda, \Lambda'; \mathcal{F}) \cong 0$. The same argument can be repeated now for all other k.

As an immediate consequence of the long exact sequence we have the following corollary if we apply Lemma 9.12 to the attractor sheaf $\mathcal{A} \phi \ast$.

Corollary 9.13 Suppose $H^k(\Lambda, \Lambda'; \mathcal{A} \phi \ast) \neq 0$ for some k. Then, there exist $k_0 \geq 0$ for which the inclusion i does not imply an isomorphism $i^{k_0}_* : H^{k_0}(\Lambda; \mathcal{A} \phi \ast) \to H^{k_0}(\Lambda'; \mathcal{A} \phi \ast)$.

The relative sheaf cohomology can be used to formulate an analogous criterion as Theorem 9.11.

Theorem 9.14 Let Λ be both contractible and locally contractible, and let $\Lambda' \subset \Lambda$ be a deformation retract of Λ with ϕ_\ast stable on Λ'. Suppose that

$$H^k(\Lambda, \Lambda'; \mathcal{A} \phi \ast) \neq 0, \quad \text{for some} \quad k \geq 0.$$

Then, there exist a bifurcation point in $\lambda_0 \in \Lambda \setminus \Lambda'$.

Proof Suppose there are no bifurcation points in $\Lambda \setminus \Lambda'$. This implies that ϕ_\ast is stable on Λ. Since Λ is contractible and locally contractible, it is simply connected and locally path connected. It follows from Proposition 9.8 that $\mathcal{A} \phi \ast$ is a constant sheaf on Λ. Since Λ' is a deformation retract of Λ, the same holds for Λ' and $(\mathcal{A} \phi \ast)|_{\Lambda'} \cong (\mathcal{A} \phi \ast)$. This implies that $H^0(\Lambda; \mathcal{A} \phi \ast) \cong H^0(\Lambda'; \mathcal{A} \phi \ast)$. By Corollary 9.10, since $i^k_* : H^k(\Lambda; \mathcal{R}) \to H^k(\Lambda'; \mathcal{R})$ is an isomorphism for all k, we have that $H^k(\Lambda; \mathcal{A} \phi \ast) \cong H^k(\Lambda'; \mathcal{A} \phi \ast) \cong 0$ for all $k \geq 1$. Combining these statements gives $H^k(\Lambda; \mathcal{A} \phi \ast) \cong H^k(\Lambda'; \mathcal{A} \phi \ast)$ for all k. This implies by Lemma 9.12 that $H^k(\Lambda, \Lambda'; \mathcal{A} \phi \ast) \cong 0$ for all k, which contradicts the assumption that $H^k(\Lambda, \Lambda'; \mathcal{A} \phi \ast) \neq 0$ for some k. Therefore, ϕ_\ast is not stable on $\Lambda \setminus \Lambda'$ and there exists a bifurcation point $\lambda_0 \in \Lambda \setminus \Lambda'$.
10 Examples of one-parameter bifurcations

In this section we discuss a number of standard one-parameter bifurcations such as a saddle-node bifurcation and a pitchfork bifurcation. We will also examine bifurcation at multiple bifurcation points. The objective is to show that sheaf cohomology picks up bifurcations. At a later stage we will discuss the more practical side of computing sheaf cohomology from limited data.

10.1 One-parameter bifurcations at a single parameter value

In this subsection we list three fundamental bifurcations in one-parameter systems. We apply the above results to compute the sheaf cohomology and to compare the criteria.

For example if \(\Lambda = \mathbb{R} \) or \(\Lambda = I \), a bounded interval, then the above theorem applies. This is of interest for one-parameter bifurcations. The following lemma addresses the case where \(\phi_{\ast} \) has one bifurcation point on \(\mathbb{R} \), which will assist in computations.

Lemma 10.1 Let \(\mathcal{F} \) be a sheaf of rings on \(\Lambda = \mathbb{R} \), such that \(\mathcal{F} \) is a constant sheaf on both \((\infty, \lambda_0) \) and \((\lambda_0, \infty) \) for some \(\lambda_0 \in \mathbb{R} \). Then, \(\mathcal{F} \) is acyclic, i.e. \(H^k(\Lambda, \mathcal{F}) = 0 \) for all \(k \geq 1 \).

Proof Let \(\epsilon > 0 \) and let \(B_\epsilon \) denote the interval \((\lambda_0 - \epsilon, \lambda_0 + \epsilon) \). There is a restriction cohomomorphism \(r: \mathcal{F} \twoheadrightarrow \mathcal{F}|_{B_\epsilon} \). We will show this induces an isomorphism of cohomology:

\[
r_{\ast}: H^k(\mathbb{R}; \mathcal{F}) \to H^k(B_\epsilon; \mathcal{F}|_{B_\epsilon}).
\]

First we address global sections. Because \(\mathcal{F} \) is constant on \((-\infty, \lambda_0) \) and \((\lambda_0, \infty) \), sections in \(\Gamma(\mathcal{F}|_{B_\epsilon}) \) extend uniquely to sections in \(\Gamma(\mathcal{F}) \). Thus, \(r_{\ast}^0: \Gamma(\mathcal{F}) \to \Gamma(\mathcal{F}|_{B_\epsilon}) \) is an isomorphism. For \(k > 1 \), \(H^k(\mathbb{R}; \mathcal{F}) \) and \(H^k(B_\epsilon; \mathcal{F}|_{B_\epsilon}) \) vanish, since intervals have covering dimension 1, cf. [20, Lemma 2.7.3 and Proposition 3.2.2]. So the maps

\[
r_{k}^\ast: H^k(\mathbb{R}; \mathcal{F}) \to H^k(B_\epsilon; \mathcal{F}|_{B_\epsilon})
\]

are trivially isomorphisms. Now we consider \(k = 1 \). Let \(\mathbb{R}^* = \mathbb{R} \setminus \{\lambda_0\} \), so that \(B_\epsilon \) and \(\mathbb{R}^* \) form a cover of \(\mathbb{R} \). Note that \(\mathcal{F}|_{\mathbb{R}^*} \) is locally constant, with vanishing higher cohomology groups. There is a Mayer-Vietoris exact sequence:

\[
0 \to \Gamma(\mathcal{F}) \xrightarrow{\alpha} \Gamma(\mathcal{F}|_{B_\epsilon}) \oplus \Gamma(\mathcal{F}|_{\mathbb{R}^*}) \xrightarrow{\beta} \Gamma(\mathcal{F}|_{B_\epsilon \cap \mathbb{R}^*}) \xrightarrow{\delta} H^1(\mathbb{R}; \mathcal{F}) \to H^1(B_\epsilon; \mathcal{F}|_{B_\epsilon}) \oplus H^1(\mathbb{R}^*; \mathcal{F}|_{\mathbb{R}^*}) \to H^1(B_\epsilon \cap \mathbb{R}^*; \mathcal{F}|_{B_\epsilon \cap \mathbb{R}^*}) \to 0.
\]

Since \(H^1(\mathbb{R}; \mathcal{F}|_{\mathbb{R}^*}) \) and \(H^1(B_\epsilon \cap \mathbb{R}^*; \mathcal{F}|_{B_\epsilon \cap \mathbb{R}^*}) \) vanish the sequence simplifies to:

\[
0 \to \Gamma(\mathcal{F}) \xrightarrow{\alpha} \Gamma(\mathcal{F}|_{B_\epsilon}) \oplus \Gamma(\mathcal{F}|_{\mathbb{R}^*}) \xrightarrow{\beta} \Gamma(\mathcal{F}|_{B_\epsilon \cap \mathbb{R}^*}) \xrightarrow{\delta} \Gamma(\mathcal{F}|_{B_\epsilon \cap \mathbb{R}^*}) \xrightarrow{r_{1}^\ast} H^1(B_\epsilon; \mathcal{F}|_{B_\epsilon}) \to 0.
\]
The map β is surjective, since the restriction from $\Gamma(\mathcal{F}|_{\mathbb{R}^*})$ to $\Gamma(\mathcal{F}|_{B_0,B^*})$ is surjective. Following the sequence yields $\text{Im} \delta = \ker r^\delta_1 = 0$, $\text{im} r^\delta_i = \ker 0 = H^i(B_0; \mathcal{F}|_{B_0})$, so r^δ_i is also surjective. This implies that the restriction cohomomorphism $r: \mathcal{F} \to \mathcal{F}|_{B_0}$ induces an isomorphism on cohomology and establishes (10.1). Indeed, for $\epsilon' < \epsilon$, the restriction cohomomorphism from $\mathcal{F}|_{B_0}$ to $\mathcal{F}|_{B_0'}$ is an isomorphism, again giving an isomorphism of cohomology. So,

$$H^*(\mathbb{R}; \mathcal{F}) \approx \lim_{\epsilon \to 0} H^*(B_0; \mathcal{F}|_{B_0}).$$

We can compute the limit using [5, Theorem 10.6]:

$$\lim_{\epsilon \to 0} H^*(B_0; \mathcal{F}|_{B_0}) \approx H^*(\{\lambda_0\}; \mathcal{F}|_{\{\lambda_0\}}).$$

Since $\mathcal{F}|_{\{\lambda_0\}}$ is flasque (restriction maps are surjective), it is acyclic, completing the proof.

The same results hold for $\Lambda = I$, a bounded, or semi-bounded interval. In the applications below Λ is typically the real line.

Lemma 10.2. Let \mathcal{F} be a sheaf of rings on Λ and let $\Lambda' \to \Lambda$. Assume that \mathcal{F} and $\mathcal{F}|_{\Lambda'}$ are acyclic. If

(i) $\iota^0_\Lambda: H^0(\Lambda; \mathcal{A}) \to H^0(\Lambda'; \mathcal{A})$ is injective, then $\text{im} \iota^0_\Lambda \cong H^0(\Lambda; \mathcal{F})$ and

$$H^1(\Lambda, \Lambda'; \mathcal{F}) \cong \frac{H^0(\Lambda'; \mathcal{F})}{\text{im} \iota^0_\Lambda}, \quad \text{and} \quad H^k(\Lambda, \Lambda'; \mathcal{F}) \cong 0, \quad \text{for} \quad k \neq 1;$$

(ii) $\iota^0_\Lambda: H^0(\Lambda; \mathcal{A}) \to H^0(\Lambda'; \mathcal{A})$ is surjective, then

$$H^0(\Lambda, \Lambda'; \mathcal{F}) \cong \ker \iota^0_\Lambda, \quad \text{and} \quad H^k(\Lambda, \Lambda'; \mathcal{F}) \cong 0, \quad \text{for} \quad k \neq 0.$$

Proof. As before for triple $(\Lambda', \emptyset) \to (\Lambda, \emptyset) \to (\Lambda, \Lambda')$ we have the long exact sequence,

$$0 \to H^0(\Lambda, \Lambda'; \mathcal{F}) \to H^0(\Lambda, \mathcal{F}) \to H^0(\Lambda, \mathcal{F}) \to H^1(\Lambda, \Lambda'; \mathcal{F}) \to H^1(\Lambda, \mathcal{F}) \to H^2(\Lambda, \mathcal{F}) \to \cdots.$$

Since, by Lemma 10.1, \mathcal{F} is acyclic we obtain the truncated sequence

$$0 \to H^0(\Lambda, \Lambda'; \mathcal{F}) \to H^0(\Lambda, \mathcal{F}) \to H^0(\Lambda, \mathcal{F}) \to H^1(\Lambda, \Lambda'; \mathcal{F}) \to H^1(\Lambda, \mathcal{F}) \to \cdots. \quad (10.2)$$

Since ι^0_Λ is injective and thus $\ker \iota^0_\Lambda = 0 = \text{im} \iota^0_\Lambda$. Moreover, $\ker \iota^0_\Lambda = \text{im} 0 = 0$, which implies that $H^0(\Lambda, \Lambda'; \mathcal{F}) \cong 0$. Consequently, we have the short exact sequence

$$0 \to H^0(\Lambda; \mathcal{F}) \to H^0(\Lambda'; \mathcal{F}) \to H^1(\Lambda, \Lambda'; \mathcal{F}) \to H^1(\Lambda, \mathcal{F}) \to \cdots. \quad (10.2)$$

from which the result for $H^1(\Lambda, \Lambda'; \mathcal{F})$ follows. The cohomology $H^k(\Lambda, \Lambda'; \mathcal{F}) \cong 0$, for $k \geq 2$ follows from Lemma 9.12, which completes the proof of (i).
As for (ii) we have the truncated exact sequence in (10.2). Now i^0_* is surjective which implies that $\ker \delta^1 = \text{im } i^0_* = H^0(\Lambda'; \mathcal{F})$. Therefore, $\ker j^1_* = \text{im } \delta^1 = 0$ and thus j^1_* is injective. Consequently, $H^1(\Lambda, \Lambda' \mathcal{F}) \cong 0$. We now have the short exact sequence

$$0 \xrightarrow{\delta^0} H^0(\Lambda, \Lambda' \mathcal{F}) \xrightarrow{j^0_*} H^0(\Lambda; \mathcal{F}) \xrightarrow{\delta^0} H^0(\Lambda'; \mathcal{F}) \xrightarrow{\delta^1} 0,$$

which implies that $H^0(\Lambda, \Lambda' \mathcal{F}) \cong \ker i^0_*$. The relative homology for $k \geq 1$ follows from Lemma 9.12. ■

Remark 10.3 The sheaf cohomology groups of the abelian attractor sheaf can be equipped with a cup product from the ring structure of the sheaf. We leave cup product computations and their interpretation for later work.

10.1.1 The pitchfork bifurcation

Consider a parametrized dynamical system on $X = \mathbb{R} \cup \{-\infty, \infty\}$, the 2-point compactification of \mathbb{R}, experiencing a pitchfork bifurcation, cf. Figure 10.1.1. The parametrized flow is defined via the differential equation

$$\dot{x} = \lambda x - x^3, \quad x \in \mathbb{R}, \quad \lambda \in \mathbb{R}.$$

Before the bifurcation point at $\lambda_0 = 0$ there are two repelling fixed points at $+\infty$ and $-\infty$ and a single attracting fixed point at $x = 0$. After $\lambda_0 = 0$, there are two additional attracting fixed points $x = \pm x_\lambda$ and $x = 0$ has changed to a repelling fixed point. We fix a parametrization:

$$\psi_\bullet: \Lambda \rightarrow \text{DS}(\mathbb{T}, X),$$

where $\Lambda = \mathbb{R}$ is parameter space, $\mathbb{T} = \mathbb{R}^+$ is the time space and X is the 2-point compactification of \mathbb{R}.

Fig. 10.1 In the pitchfork bifurcation, the section on $\Lambda' \subset \Lambda$ defined by $\sigma(\lambda) = (\lambda, \phi, \omega, \psi_\lambda(U))$ fails to extend globally.
Lemma 10.4 The global sections of the abelian attractor sheaf for the normal form pitchfork bifurcation are \(H^0(\Lambda; \mathcal{A}^\psi) \cong \Gamma(\mathcal{A}^\psi) \cong \mathbb{Z}_2^3 \).

Proof First, consider the global sections of the attractor lattice sheaf \(\psi^{-1}_*-\mathcal{A}^\psi \), which are uniquely characterized by their value at the bifurcation point \(\lambda = 0 \). Assigning \(\emptyset \) and \(X \) to every parameter value gives the bottom and top elements of \(\Gamma(\psi^{-1}_*-\mathcal{A}^\psi) \). Then, we have the section which assigns \(\lambda \leq 0 \) the sole attracting fixed point \(x = 0 \), and \(\lambda > 0 \) the interval \([-x_\lambda, x_\lambda]\). Finally, there are two sections which are \([-\infty, 0]\) and \([0, \infty]\) for \(\lambda \leq 0 \), but \([-x_\lambda, x_\lambda]\) and \([-x_\lambda, \infty]\) for \(\lambda > 0 \) respectively. This yields a five element lattice with three join irreducible elements: the latter three sections. Applying the boolean ring functor to this lattice yields \(\mathbb{Z}_2^3 \).

In later results we will omit the above types of computations.

Proposition 10.5 Let \(\Lambda' := [a, \infty) \). If \(a > 0 \), then \(H^k(\Lambda, \Lambda'; \mathcal{A}^\psi|_{\Lambda'}) \cong \mathbb{Z}_2^2 \) for \(k = 1 \), and \(H^k(\Lambda, \Lambda'; \mathcal{A}^\psi) = 0 \) otherwise. When \(a \leq 0 \), all relative cohomology groups vanish.

Proof Lemma 10.4 gives \(\Gamma(\mathcal{A}^\psi) \cong \mathbb{Z}_2^3 \). For \(a > 0 \), we have \(H^0(\Lambda'; \mathcal{A}^\psi) \cong \Gamma(\mathcal{A}^\psi|_{\Lambda'}) \cong \mathbb{Z}_2^3 \) and injectivity of \(i^\Lambda'_{\Lambda} \), which by Lemma 10.2(i) yields \(H^1(\Lambda, \Lambda'; \mathcal{A}^\psi) \cong \mathbb{Z}_2^2 \). For \(a \leq 0 \), we have \(H^0(\Lambda'; \mathcal{A}^\psi) \cong \Gamma(\mathcal{A}^\psi|_{\Lambda'}) \cong \mathbb{Z}_2^3 \), which implies \(H^1(\Lambda, \Lambda'; \mathcal{A}^\psi) = 0 \). Since by Lemma 10.1 both \(\mathcal{A}^\psi \) and \(\mathcal{A}^\psi|_{\Lambda'} \) are acyclic, the higher order relative cohomology groups vanish by Lemma 10.2(ii).

Proposition 10.6 Let \(\Lambda' := (-\infty, a] \). Then, \(H^k(\Lambda, \Lambda'; \mathcal{A}^\psi) \cong 0 \) for all \(k \) and for all \(a \in \mathbb{R} \).

Proof Note that \(\Gamma(\mathcal{A}^\psi|_{\Lambda'}) \cong \Gamma(\mathcal{A}^\psi) \cong \mathbb{Z}_2^3 \) for all \(a \in \mathbb{R} \) (the same computations as in Lemma 10.4 apply to \(\Lambda' \)). Therefore, \(H^0(\Lambda; \mathcal{A}^\psi) \cong H^0(\Lambda', \mathcal{A}^\psi) \) for all \(a \in \mathbb{R} \) and thus by Lemma 10.2(i) \(H^k(\Lambda, \Lambda'; \mathcal{A}^\psi) \cong 0 \) for all \(k \).

Theorem 10.7 Let \(\phi_\bullet \) be a parametrized dynamical system over \(\Lambda \) conjugate to the above canonical parametrization \(\psi_\bullet \) for the pitchfork bifurcation. Then, \(\mathcal{A}^\phi \) is acyclic and \(H^0(\Lambda; \mathcal{A}^\phi) \cong \mathbb{Z}_2^3 \).

Moreover, there exists a value \(\lambda_0 \in \mathbb{R} \) such that

\[
H^k(\Lambda, \Lambda'; \mathcal{A}^\phi) \cong \begin{cases}
\mathbb{Z}_2^2 & \text{if } k = 1 \text{ and } a > \lambda_0; \\
0 & \text{if } k \neq 1 \text{ or } a \leq \lambda_0,
\end{cases}
\]

where \(\Lambda' = [a, \infty) \). Furthermore, for \(\Lambda' := (-\infty, a] \), then \(H^k(\Lambda, \Lambda'; \mathcal{A}^\phi) \cong 0 \) for all \(k \) and for all \(a \in \mathbb{R} \).

Proof This follows immediately from Theorem 8.7, Lemma 10.1, and Propositions 10.5 and 10.6.

\(^2 \) If \(\Lambda' \) does not contain a bifurcation point then acyclicity follows from the fact that \(\mathcal{A}^\phi|_{\Lambda'} \) is a constant sheaf on a contractible manifold.
This theorem can be applied locally in parameter space. If $\phi_\bullet : \mathbb{R} \to \text{DS}(\mathbb{R} ; I)$ is some parametrized dynamical system such that ϕ_\bullet experiences a pitchfork bifurcation on an open set U, then $\mathcal{A} \phi_\bullet |_U$ has the above cohomology groups. Another important observation is that the relative cohomology in the example below is the same for a local pitchfork bifurcation.

Example 10.8 Let ϕ_\bullet be a parametrized flow over $\Lambda = \mathbb{R}$ on the interval $X = [-1, 1]$ with a single attracting fixed point at $x = 0$ for $\lambda \leq 0$. This system is a semi-flow with $T = \mathbb{R}^+$. For $\lambda \geq 0$ the system undergoes a pitchfork bifurcation with two branches $\pm x_\lambda$ of attracting fixed points converging to ± 1 respectively as $\lambda \to +\infty$, cf. Figure 10.1.1. If we repeat the analysis in Propositions 10.5 and 10.6 the sheaf cohomology over Λ is different: $\mathcal{A} \phi_\bullet$ is acyclic and $H^0(\lambda ; \mathcal{A} \phi_\bullet) \cong \mathbb{Z}_2$. On the other hand the relative sheaf cohomologies $H^k(\mathbb{R} , [-a, a] ; \mathcal{A} \phi_\bullet)$ and $H^k(\mathbb{R} , (-\infty, a] ; \mathcal{A} \phi_\bullet)$ are the same.

10.1.2 The saddle-node bifurcation

Consider a parametrized dynamical system on $X = \mathbb{R} \cup \{-\infty, \infty\}$, the 2-point compactification of \mathbb{R}, experiencing a saddle-node bifurcation. The parametrized flow is defined via the differential equation

$$\dot{x} = \lambda - x^2, \quad x \in \mathbb{R}, \; \lambda \in \mathbb{R},$$

and $+\infty$ and $-\infty$ are a repelling and attracting fixed point respectively. Before the bifurcation point at $\lambda_0 = 0$, the entire interval flows from $+\infty$ to $-\infty$. After $\lambda_0 = 0$, there is an additional attracting and repelling fixed point. We fix a parametrization:

$$\psi_\bullet : \Lambda \to \text{DS}(T, X),$$

where $\Lambda = \mathbb{R}$ is parameter space, $T = \mathbb{R}$ is the time space and X is the 2-point compactification of \mathbb{R}. Lemma 10.1 again shows that the attractor sheaf $\mathcal{A} \psi_\bullet$ has vanishing higher order cohomology, but relative cohomology recognizes the bifurcations.
Proposition 10.9 Let $\Lambda' = [a, \infty)$. If $a > 0$, then $H^k(\Lambda, \Lambda'; \mathcal{A}^{\psi\bullet}) \cong \mathbb{Z}_2$ for $k = 1$, and vanishes otherwise. When $a \leq 0$, then $H^k(\Lambda, \Lambda'; \mathcal{A}^{\psi\bullet}) = 0$ for all k.

Proof The global sections are $H^0(\Lambda; \mathcal{A}^{\psi\bullet}) \cong \Gamma(\mathcal{A}^{\psi\bullet}) \cong \mathbb{Z}_2$. For $a > 0$, we have $H^0(\Lambda'; \mathcal{A}^{\psi\bullet}) \cong \Gamma(\mathcal{A}^{\psi\bullet}|_{\Lambda'}) \cong \mathbb{Z}_2$. The injectivity of i^0_ψ and Lemma 10.2(i) yields $H^1(\Lambda, \Lambda'; \mathcal{A}^{\psi\bullet}) \cong \mathbb{Z}_2$. For $a \leq 0$, we have $H^0(\Lambda'; \mathcal{A}^{\psi\bullet}) \cong \Gamma(\mathcal{A}^{\psi\bullet}|_{\Lambda'}) \cong \mathbb{Z}_2$, which implies $H^1(\Lambda, \Lambda'; \mathcal{A}^{\psi\bullet}) = 0$. As before the higher order relative cohomology groups vanish by Lemma 10.2(ii).

Proposition 10.10 Let $\Lambda' = (-\infty, a]$. If $a > 0$, then $H^k(\Lambda, \Lambda'; \mathcal{A}^{\psi\bullet}) \cong \mathbb{Z}_2$ for all k. When $a < 0$, then $H^0(\Lambda, \Lambda'; \mathcal{A}^{\psi\bullet}) \cong \mathbb{Z}_2$ and vanishes otherwise.

Proof As before the global sections are $H^0(\Lambda; \mathcal{A}^{\psi\bullet}) \cong \Gamma(\mathcal{A}^{\psi\bullet}) \cong \mathbb{Z}_2$. For $a > 0$, we have $H^0(\Lambda'; \mathcal{A}^{\psi\bullet}) \cong \Gamma(\mathcal{A}^{\psi\bullet}|_{\Lambda'}) \cong \mathbb{Z}_2$. The injectivity of i^0_ψ and Lemma 10.2(i) yields $H^1(\Lambda, \Lambda'; \mathcal{A}^{\psi\bullet}) \cong 0$. For $a < 0$, we have $H^0(\Lambda'; \mathcal{A}^{\psi\bullet}) \cong \Gamma(\mathcal{A}^{\psi\bullet}|_{\Lambda'}) \cong \mathbb{Z}_2$. The surjectivity of i^0_ψ and Lemma 10.2(ii) then implies that $H^0(\Lambda, \Lambda'; \mathcal{A}^{\psi\bullet}) \cong \mathbb{Z}_2$. The higher order relative cohomology groups vanish by Lemma 10.2(i) and (ii).

Theorem 10.11 Let ϕ_\bullet be a parametrized dynamical system over Λ conjugate to the above canonical parametrization ψ_\bullet for the saddle-node bifurcation. Then,

$$\mathcal{A}^{\phi\bullet} \text{ is acyclic and } H^0(\Lambda; \mathcal{A}^{\phi\bullet}) \cong \mathbb{Z}_2.$$

Moreover, there exists a value $\lambda_0 \in \mathbb{R}$ such that

$$H^k(\Lambda, \Lambda'; \mathcal{A}^{\phi\bullet}) \cong \begin{cases} \mathbb{Z}_2 & \text{if } k = 1 \text{ and } a > \lambda_0, \\ 0 & \text{if } k \neq 1, \text{ or } a \leq \lambda_0, \end{cases} \text{ with } \Lambda' = [a, \infty),$$

$$H^k(\Lambda, \Lambda'; \mathcal{A}^{\phi\bullet}) \cong \begin{cases} \mathbb{Z}_2 & \text{if } k = 0 \text{ and } a > \lambda_0, \\ 0 & \text{if } k \neq 0, \text{ or } a \geq \lambda_0, \end{cases} \text{ with } \Lambda' = (-\infty, a].$$

Proof Apply Theorem 8.7, Lemma 10.1 and Propositions 10.9 and 10.10.

Remark 10.12 The generator of $H^k([\mathbb{R}, (-\infty, a]; \mathcal{A}^{\psi\bullet})$ when $a < \lambda_0$ is the sum of two global sections of attractors: the bottom fixed point and the maximal attractor. The two coincide before the bifurcation point, which leaves their sum zero. Afterwards, however, this corresponds to the Morse set between the top two fixed points. Continuation of this Morse set to the empty set via a global section yields nontrivial relative cohomology.

Example 10.13 Consider a saddle-node bifurcation in the system described in Figure 10.1.2. We impose an attracting fixed point at the bottom of Figure 10.1.2, such that we may restrict phase space to a forward-invariant compact interval $X = [1, 0]$. Call this parametrized dynamical system $\phi_\bullet : \mathbb{R} \to \text{DS}(\mathbb{R}^+, X)$. Lemma 10.1 again shows that $\mathcal{A}^{\phi\bullet}$ has vanishing higher cohomology. However, $H^0(\Lambda; \mathcal{A}^{\phi\bullet}) \cong \mathbb{Z}_2$ which differs from the above example. The relative cohomology groups are the same as in the above example as is the case for the pitchfork bifurcation.
Fig. 10.3 A trans-critical bifurcation. The section on \(\Lambda' \) defined by \(\sigma(\lambda) = (\lambda, \phi^\lambda, \omega_{\phi^\lambda}(U)) \) fails to extend globally.

10.1.3 The transcritical bifurcation

Consider a parametrized dynamical system on \(X = \mathbb{R} \cup \{-\infty, \infty\} \), the 2-point compactification of \(\mathbb{R} \), experiencing a transcritical bifurcation. The parametrized flow is defined via the differential equation

\[
\dot{x} = \lambda x - x^2, \quad x \in \mathbb{R}, \quad \lambda \in \mathbb{R},
\]

and \(+\infty \) and \(-\infty \) are a repelling and attracting fixed points respectively. As before we fix a parametrization:

\[
\psi : \Lambda \to \text{DS}(\mathbb{T}, X),
\]

where \(\Lambda = \mathbb{R} \) is parameter space, \(\mathbb{T} = \mathbb{R} \) is the time space and \(X \) is the 2-point compactification of \(\mathbb{R} \). Lemma 10.1 again shows that the attractor sheaf \(\mathcal{A} \psi \) has vanishing higher order cohomology.

Proposition 10.14 Let \(\Lambda' = (a, \infty) \). If \(a > 0 \), then \(H^k(\Lambda, \Lambda'; \mathcal{A} \psi) \cong \mathbb{Z}_2 \) for \(k = 1 \), and vanishes otherwise. When \(a \leq 0 \), then \(H^k(\Lambda, \Lambda'; \mathcal{A} \psi) = 0 \) for all \(k \).

Proof The global sections are \(H^0(\Lambda; \mathcal{A} \psi) \cong \Gamma(\mathcal{A} \psi) \cong \mathbb{Z}_2^3 \). For \(a > 0 \), we have \(H^0(\Lambda'; \mathcal{A} \psi) \cong \Gamma(\mathcal{A} \psi |_{\Lambda'}) \cong \mathbb{Z}_2^4 \). The injectivity of \(i_*^0 \) and Lemma 10.2(i) yields \(H^1(\Lambda, \Lambda'; \mathcal{A} \psi) \cong \mathbb{Z}_2 \). For \(a \leq 0 \), we have \(H^0(\Lambda'; \mathcal{A} \psi) \cong \Gamma(\mathcal{A} \psi |_{\Lambda'}) \cong \mathbb{Z}_2^3 \), which implies \(H^1(\Lambda, \Lambda'; \mathcal{A} \psi) = 0 \). As before the higher order relative cohomology groups vanish by Lemma 10.2(i).

Proposition 10.15 Let \(\Lambda' = (-\infty, a] \). If \(a \geq 0 \), then \(H^k(\Lambda, \Lambda'; \mathcal{A} \psi) \cong \mathbb{Z}_2 \) for all \(k \). When \(a < 0 \), then \(H^1(\Lambda, \Lambda'; \mathcal{A} \psi) \cong \mathbb{Z}_2 \) and vanishes otherwise.

Proof As before the global sections are \(H^0(\Lambda; \mathcal{A} \psi) \cong \Gamma(\mathcal{A} \psi) \cong \mathbb{Z}_2^3 \). For \(a \geq 0 \), we have \(H^0(\Lambda'; \mathcal{A} \psi) \cong \Gamma(\mathcal{A} \psi |_{\Lambda'}) \cong \mathbb{Z}_2^3 \). The injectivity of \(i_*^0 \) and Lemma 10.2(i) yields \(H^1(\Lambda, \Lambda'; \mathcal{A} \psi) \cong \mathbb{Z}_2 \). For \(a < 0 \), we have \(H^0(\Lambda'; \mathcal{A} \psi) \cong \Gamma(\mathcal{A} \psi |_{\Lambda'}) \cong \mathbb{Z}_2^4 \). The injectivity of \(i_*^0 \) and Lemma 10.2(i) then implies that \(H^1(\Lambda, \Lambda'; \mathcal{A} \psi) \cong \mathbb{Z}_2 \). The higher order relative cohomology groups vanish by Lemma 10.2(i).
Theorem 10.16 Let ϕ_\bullet be a parametrized dynamical system over Λ conjugate to the above canonical parametrization for the transcritical bifurcation. Then,

$$\mathcal{A}_{\phi_\bullet}$$ is acyclic and $H^0(\Lambda; \mathcal{A}_{\phi_\bullet}) \cong \mathbb{Z}_2$.

Moreover, there exists a value $\lambda_0 \in \mathbb{R}$ such that

$$H^k(\Lambda, \Lambda'; \mathcal{A}_{\phi_\bullet}) \cong \begin{cases} \mathbb{Z}_2 & \text{if } k = 1 \text{ and } a > \lambda_0, \\ 0 & \text{if } k \neq 1, \text{or } a \leq \lambda_0, \end{cases} \quad \text{with } \Lambda' = [a, \infty),$$

$$H^k(\Lambda, \Lambda'; \mathcal{A}_{\phi_\bullet}) \cong \begin{cases} \mathbb{Z}_2 & \text{if } k = 1 \text{ and } a < \lambda_0, \\ 0 & \text{if } k \neq 1, \text{or } a \geq \lambda_0, \end{cases} \quad \text{with } \Lambda' = (-\infty, a].$$

Proof Apply Theorem 8.7, Lemma 10.1 and Propositions 10.9 and 10.10. ■

Remark 10.17 Note the subtle difference in the relative sheaf cohomology for the saddle-node and transcritical bifurcations. For the latter we only find relative cohomology at $k = 1$ for different choices of Λ', as for the saddle-node we have cohomology at $k = 0$ and $k = 1$ for various choices of Λ'.

10.2 One-parameter bifurcations at multiple parameter values

In this subsection we consider a bifurcation that occur at multiple points.

10.2.1 The S-shaped bifurcation

Now we study the S-shaped bifurcation, as in Figure 10.2.1. Consider a parametrized dynamical system on $X = \mathbb{R} \cup \{-\infty, \infty\}$, the 2-point compactification of \mathbb{R}, experiencing an S-shaped bifurcation. The parametrized flow is defined via the differential equation

$$\dot{x} = \lambda + x - x^3, \quad x \in \mathbb{R}, \lambda \in \mathbb{R},$$

and $+\infty$ and $-\infty$ are a repelling fixed points. As before we fix a parametrization:

$$\psi_\bullet: \Lambda \to \text{DS}(\mathbb{T}, X),$$

where $\Lambda = \mathbb{R}$ is parameter space, $\mathbb{T} = \mathbb{R}$ is the time space and X is the 2-point compactification of \mathbb{R}. Here, there are two bifurcation points at $\lambda_1 = -1$ and $\lambda_2 = +1$.

Proposition 10.18 $\mathcal{A}_{\psi_\bullet}$ is acyclic.

Proof Pick $\lambda_1 < a < b < \lambda_2$, such that $\Lambda_1 := (-\infty, b]$ and $\Lambda_2 := [a, \infty)$ cover \mathbb{R}. Consider the Mayer-Vietoris exact sequence:

$$0 \xrightarrow{\delta^0} \Gamma(\mathcal{A}_{\psi_\bullet}) \xrightarrow{\alpha^0} \Gamma(\mathcal{A}_{\psi_\bullet}|_{\Lambda_1}) \oplus \Gamma(\mathcal{A}_{\psi_\bullet}|_{\Lambda_2}) \xrightarrow{\beta^0} \Gamma(\mathcal{A}_{\psi_\bullet}|_{[a,b]}) \xrightarrow{\delta^1} H^1(\Lambda_1; \mathcal{A}_{\psi_\bullet}|_{\Lambda_1}) \oplus H^1(\Lambda_2; \mathcal{A}_{\psi_\bullet}|_{\Lambda_2}) \xrightarrow{\beta^1} H^1([a,b]; \mathcal{A}_{\psi_\bullet}|_{[a,b]}) \to 0,$$
since $H^2(\mathbb{R}; \mathcal{A}^{\psi*}) \cong 0$, which uses the fact that intervals have covering dimension 1, cf. [20, Lemma 2.7.3 and Proposition 3.2.2]. We can compute the global sections:

$$
\Gamma(\mathcal{A}^{\psi*}) \cong \mathbb{Z}_2^3, \quad \Gamma(\mathcal{A}^{\psi*}|_{X}) \cong \Gamma(\mathcal{A}^{\psi*}|_{\Lambda_2}) \cong \mathbb{Z}_2^4, \quad \Gamma(\mathcal{A}^{\psi*}|_{X(\sigma)}) \cong \mathbb{Z}_2^5.
$$

Since $\text{im} \delta^0 \cong 0$ and $\ker \delta^0 \cong 0$ we have $\ker \alpha_0^0 = \text{im} \delta^0 \cong 0$. Consequently, $\text{im} \alpha_0^0 \cong \mathbb{Z}_2^3$. Similarly, $\ker \beta_0^0 = \text{im} \alpha_0^0 \cong \mathbb{Z}_2^3$ which implies that $\text{im} \beta_0^0 \cong \mathbb{Z}_2^5$. Furthermore, $\ker \delta^1 = \text{im} \beta_0^0 \cong \mathbb{Z}_2^5$ and thus $\delta^1 \cong 0$. Since Λ_1, Λ_2 both contain only one bifurcation point, we can apply Lemma 10.1 to conclude that $H^1(\Lambda_1; \mathcal{A}^{\psi*}|_{\Lambda_1})$ and $H^1(\Lambda_2; \mathcal{A}^{\psi*}|_{\Lambda_2})$ vanish for all $k \geq 1$. Hence, $\delta^1 = \ker \alpha_1^1 = H^1(\Lambda; \mathcal{A}^{\psi*})$, which proves that $H^1(\mathbb{R}, \mathcal{A}^{\psi*})$ is zero. The remaining sheaf cohomology vanishes due to the dimension restriction on Λ.

The S-shaped bifurcation is an example where $\mathcal{A}^{\psi*}$ and $\mathcal{A}^{\psi*}_{\text{free}}$, the attractor sheaf and free attractor sheaf respectively, have differing cohomologies.

Proposition 10.19 Let $\mathcal{A}^{\psi*}_{\text{free}}$ be the free attractor sheaf associated to ψ_*.

$$
H^k(\Lambda; \mathcal{A}^{\psi*}_{\text{free}}) \cong \begin{cases}
\mathbb{Z}_2^3 & \text{if } k = 0 \\
\mathbb{Z}_2^4 & \text{if } k = 1 \\
0 & \text{if } k \geq 2
\end{cases}
$$

Proof Let $\Lambda_1 = (-\infty, \lambda_2)$ and $\Lambda_2 = (\lambda_1, \infty)$ be an open covering for $\Lambda = \mathbb{R}$. We build the ordered Čech complex from this cover:

$$
0 \rightarrow \check{C}^0(\{\Lambda_1, \Lambda_2\}; \mathcal{A}^{\psi*}_{\text{free}}) \xrightarrow{\delta^0} \check{C}^1(\{\Lambda_1, \Lambda_2\}; \mathcal{A}^{\psi*}_{\text{free}}) \xrightarrow{\delta^1} \check{C}^2(\{\Lambda_1, \Lambda_2\}; \mathcal{A}^{\psi*}_{\text{free}}) \xrightarrow{\delta^2} \cdots ,
$$

which in our case is:

$$
0 \longrightarrow \mathcal{A}^{\psi*}_{\text{free}}(\Lambda_1) \oplus \mathcal{A}^{\psi*}_{\text{free}}(\Lambda_2) \xrightarrow{\rho^1_{1,2} \mathcal{A}^{\psi*}_{\text{free}}(\Lambda_1 \cap \Lambda_2) \longrightarrow 0},
$$

where $\rho^1_{1,2}$ denotes the restriction map from $\mathcal{A}^{\psi*}_{\text{free}}(\Lambda_1)$ to $\mathcal{A}^{\psi*}_{\text{free}}(\Lambda_1 \cap \Lambda_2)$, and $\rho^1_{2,2}$ from $\mathcal{A}^{\psi*}_{\text{free}}(\Lambda_2)$. We get cohomology groups from the above chain complex:

$$
\check{H}^0(\{\Lambda_1, \Lambda_2\}; \mathcal{A}^{\psi*}_{\text{free}}) = \ker \delta_1 \cong \mathbb{Z}_2^5, \quad \check{H}^1(\{\Lambda_1, \Lambda_2\}; \mathcal{A}^{\psi*}_{\text{free}}) = \ker \delta_2/\text{Im} \delta_1 \cong \mathbb{Z}_2^4,
$$

Fig. 10.4 An S-shaped bifurcation. The section on Λ' defined by $\sigma(\lambda) = (\lambda, \phi^\lambda, \omega_\lambda(U))$ fails to extend globally.
\[\hat{H}^k(\{\Lambda_1, \Lambda_2\}; \mathcal{A}\mathcal{T}^{\psi\bullet}) = 0 \text{ for } k > 1. \]

Since \(\Lambda_1 \cap \Lambda_2 \) contains no bifurcation points, \(\mathcal{A}\mathcal{T}^{\psi\bullet} \) is locally constant on \(\Lambda_1 \cap \Lambda_2 \) and therefore acyclic on \(\Lambda_1 \cap \Lambda_2 \). We now use Leray’s Theorem to determine the sheaf cohomology of \(\mathcal{A}\mathcal{T}^{\psi\bullet} \) from the above Čech cohomology groups, which yields the desired result. ■

The result of Proposition 10.19 is an example where Theorem 9.11 applies. The sheaf cohomology of \(\mathcal{A}\mathcal{T}^{\psi\bullet} \) picks up bifurcations. For the sheaf cohomology of \(\mathcal{A}\mathcal{T}^{\psi\bullet} \) Theorem 9.11 does not apply.

Proposition 10.20 Let \(\Lambda' = [a, \infty) \). If \(a \in (\lambda_1, \lambda_2] \), then \(H^k(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) \cong \mathbb{Z}_2 \) for \(k = 1 \), and vanishes otherwise. When \(a \notin (\lambda_1, \lambda_2] \), then \(H^k(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) = 0 \) for all \(k \).

Proof We achieve a truncated long exact sequence from Proposition 10.18 and Proposition 9.3:

\[0 \to H^0(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) \overset{f_0^*}{\to} H^0(\Lambda; \mathcal{A}\mathcal{T}^{\psi\bullet}) \overset{i_0^*}{\to} H^0(\Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) \overset{\delta^1}{\to} H^1(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) \to 0. \]

The map \(i_0^* \) is injective and thus \(H^0(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) \cong 0 \). Lemma 10.2 then yields:

\[H^1(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) \cong \frac{H^0(\Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet})}{\text{im } i_0^*}. \]

Note that \(\text{im } i_0^* \cong H^0(\Lambda; \mathcal{A}\mathcal{T}^{\psi\bullet}) = \Gamma(\mathcal{A}\mathcal{T}^{\psi\bullet}) \cong \mathbb{Z}_2^3 \). For \(b \in (\lambda_1, \lambda_2] \), we have \(H^0(\Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) = \Gamma(\mathcal{A}\mathcal{T}^{\psi\bullet}|_{\Lambda'}) \cong \mathbb{Z}_2^4 \), which implies \(H^1(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) \cong \mathbb{Z}_2 \). Otherwise, \(H^1(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) = 0 \). ■

Proposition 10.21 Let \(\Lambda' = (-\infty, a) \). If \(a \in [\lambda_1, \lambda_2) \), then \(H^k(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) \cong \mathbb{Z}_2 \) for \(k = 1 \), and is zero otherwise. When \(a \notin [\lambda_1, \lambda_2) \), then \(H^k(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\psi\bullet}) = 0 \) for all \(k \).

Proof An identical argument as in the proof of Proposition 10.20. ■

Theorem 10.22 Let \(\phi_\bullet \) be a parametrized dynamical system conjugate to the above parametrization \(\psi_\bullet \) of the S-shaped bifurcation. Then,

\[\mathcal{A}\mathcal{T}^{\phi\bullet} \text{ is acyclic and } H^0(\Lambda; \mathcal{A}\mathcal{T}^{\phi\bullet}) \cong \mathbb{Z}_2^3. \]

Moreover, there exists \(\lambda_1, \lambda_2 \in \mathbb{R} \) such that

\[H^k(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\phi\bullet}) \cong \begin{cases} \mathbb{Z}_2 & \text{if } k = 1 \text{ and } a \in (\lambda_1, \lambda_2] \text{ with } \Lambda' = [a, \infty), \\ 0 & \text{otherwise}. \end{cases} \]

\[H^k(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\phi\bullet}) \cong \begin{cases} \mathbb{Z}_2 & \text{if } k = 1 \text{ and } a \in [\lambda_1, \lambda_2) \text{ with } \Lambda' = (-\infty, a], \\ 0 & \text{otherwise}. \end{cases} \]

Proof Apply Theorem 8.7, Proposition 10.18, and Propositions 10.20 and 10.21. ■

Remark 10.23 Note that the relative cohomologies \(H^k(\Lambda, \Lambda'; \mathcal{A}\mathcal{T}^{\phi\bullet}) \) are the same for the trans-critical and S-shaped bifurcations.
Remark 10.24 If we consider the S-shaped bifurcation on an interval $X = I = [-c, c]$, $c > 1$, with time space $\mathbb{T} = \mathbb{R}^+$ and parameter space $\Lambda = [-\lambda_0, \lambda_0]$, with $\lambda_0 = -c + c^3 - \epsilon$, $0 < \epsilon \ll 1$ we obtain the following sheaf cohomology:

$$\mathcal{A}_\psi$$ is acyclic and $H^0(\Lambda; \mathcal{A}_\psi) \cong \mathbb{Z}/2$.

Moreover, there exists a value $\lambda_0 \in \mathbb{R}$ such that

$$H^k(\Lambda, \Lambda'; \mathcal{A}_\psi) \cong \begin{cases} \mathbb{Z}/2 & \text{if } k = 1 \text{ and } a \in (\lambda_1, \lambda_2) \text{ with } \Lambda' = [a, \infty) \cap \Lambda, \\ 0 & \text{otherwise.} \end{cases}$$

$$H^k(\Lambda, \Lambda'; \mathcal{A}_\psi) \cong \begin{cases} \mathbb{Z}/2 & \text{if } k = 1 \text{ and } a \in [\lambda_1, \lambda_2) \text{ with } \Lambda' = (-\infty, a] \cap \Lambda. \\ 0 & \text{otherwise.} \end{cases}$$

For free attractor sheaf we have:

$$H^k(\Lambda; \mathcal{At} \psi) \cong \begin{cases} \mathbb{Z}/2 & \text{if } k = 0 \\ \mathbb{Z}/2 & \text{if } k = 1, \\ 0 & \text{if } k \geq 2 \end{cases}$$

which is clearly not acyclic.

10.3 Comparing the attractor and free attractor sheaves

In the above treatment of the pitchfork, the saddle-node and transcritical bifurcations we have only used the attractor sheaf. We can reexamine the saddle-node bifurcation as studied in Propositions 10.9 and 10.10 with the free attractor sheaf. Let

$$\psi_\bullet : \Lambda \rightarrow DS(\mathbb{T}, X),$$

be the parametrized system for the saddle-node bifurcation as given in 10.1.2, where $\Lambda = \mathbb{R}$ is parameter space, $\mathbb{T} = \mathbb{R}$ is the time space and X is the 2-point compactification of \mathbb{R}. For the free attractor sheaf we have:

$$\mathcal{At} \psi_\bullet$$ is acyclic and $H^0(\Lambda; \mathcal{At} \psi_\bullet) \cong \mathbb{Z}/2$.

Moreover,

$$H^k(\Lambda, \Lambda'; \mathcal{At} \psi) \cong \begin{cases} \mathbb{Z}/2 & \text{if } k = 1 \text{ and } a > 0 \text{ with } \Lambda' = [a, \infty), \\ 0 & \text{if } k \neq 1 \text{ or } a \leq 0, \end{cases}$$

$$H^k(\Lambda, \Lambda'; \mathcal{At} \psi) \cong \begin{cases} \mathbb{Z}/2 & \text{if } k = 0 \text{ and } a < 0 \text{ with } \Lambda' = (-\infty, a]. \\ 0 & \text{if } k \neq 0 \text{ or } a \geq 0, \end{cases}$$

The abelian attractor sheaf, as shown in Theorem 10.22, is acyclic for the S-shaped bifurcation. Proposition 10.19 demonstrates nontrivial trivial cohomology in dimension one for the free attractor sheaf. Consider the continuation of the union of both attracting fixed points, a section of both the free and abelian attractor sheaves on the interval between both
two bifurcation points. Recall the ordered Čech complex on the open cover $\Lambda_1 = (-\infty, \lambda_2)$ and $\Lambda_2 = (\lambda_1, \infty)$:

$$
\begin{array}{cccc}
0 & \xrightarrow{\partial^{\psi} \bullet} & \text{Alt}^{\psi} \bullet (\Lambda_1) & \oplus & \text{Alt}^{\psi} \bullet (\Lambda_2) & \xrightarrow{\rho^1_2 - \rho^1_2} & \text{Alt}^{\psi} \bullet (\Lambda_1 \cap \Lambda_2) & \xrightarrow{\partial^{\psi} \bullet} & 0,
\end{array}
$$

For both sheaves, this is not the restriction of any section from Λ_1 or Λ_2. However, the symmetric Conley form lets us write this section as the sum of the sections corresponding to each attracting fixed point. Thus, for the abelian attractor sheaf, this gives a trivial cohomology class. For the free attractor sheaf the addition operation is formal, so we cannot write the union of the two attracting fixed points as a sum of sections from Λ_1 and Λ_2.

References

1. Aguilar, M., Gitler, S., Prieto, C.: Algebraic topology from a homotopical viewpoint. Universitext. Springer-Verlag, New York (2002). Translated from the Spanish by Stephen Bruce Sontz
2. Arai, Z., Kalies, W., Kokubu, H., Mischaikow, K., Oka, H., Pilarczyk, P.: A database schema for the analysis of global dynamics of multiparameter systems. SIAM J. Appl. Dyn. Syst. 8(3), 757–789 (2009)
3. Bergman, G.M.: An Invitation to General Algebra and Universal Constructions. Springer Universitext (2015)
4. Borceux, F.: Handbook of Categorical Algebra 3: Categories of Sheaves (Categories of Sheaves) (1994)
5. Bredon, G.: Sheaf Theory. Graduate Texts in Mathematics. Springer New York (2012)
6. Cignoli, R., Lafalce, S., Petrovich, A.: Remarks on Priestley duality for distributive lattices. Order 8(3), 299–315 (1991)
7. Conley, C.: Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38. American Mathematical Society, Providence, R.I. (1978)
8. Curry, J., Ghrist, R., Nanda, V.: Discrete morse theory for computing cellular sheaf cohomology (2015)
9. Escardo, M., Heckmann, R.: Topologies on spaces of continuous functions. Topology Proc. 26 (2001)
10. Fox, R.H.: On topologies for function spaces. Bull. Amer. Math. Soc. 51, 429–432 (1945)
11. Franzosa, R.: The continuation theory for Morse decompositions and connection matrices. Transactions of the American Mathematical Society 310(2), 781–803 (1988)
12. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg (1977)
13. Iversen, B.: Cohomology of sheaves. Universitext. Springer-Verlag, Berlin (1986)
14. Kalies, W.D., Kasti, D., Vandervorst, R.: An algorithmic approach to lattices and order in dynamics. SIAM J. Appl. Dyn. Syst. 17(2), 1617–1649 (2018)
15. Kalies, W.D., Mischaikow, K., Vandervorst, R.: An algorithmic approach to chain recurrence. Found. Comput. Math. 5(4), 409–449 (2005)
16. Kalies, W.D., Mischaikow, K., Vandervorst, R.: Lattice structures for attractors I. J. Comput. Dyn. 1(2), 307–338 (2014)
17. Kalies, W.D., Mischaikow, K., Vandervorst, R.: Lattice structures for attractors II. Found. Comput. Math. 1(2), 1–41 (2015)
18. Kalies, W.D., Mischaikow, K., Vandervorst, R.C.: Lattice structures for attractors III. Journal of Dynamics and Differential Equations pp. 1–40 (2021). URL: https://doi.org/10.1007/s10884-021-10056-8
19. Kalies, W.D., Vandervorst, R.: Priestley space and chain-recurrence. In preparation (2022)
20. Kashiwara, M., Schapira, P.: Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292. Springer-Verlag, Berlin (1990). With a chapter in French by Christian Houzel
21. Kurland, H.L.: Homotopy invariants of repeller-attractor pairs. II. Continuation of R-A pairs. J. Differential Equations 49(2), 281–329 (1983)
22. Lang, S.: Algebra. Graduate Texts in Mathematics. Springer-Verlag (2011)
23. MacLane, S.: Categories for the working mathematician. Springer-Verlag, New York-Berlin (1971). Graduate Texts in Mathematics, Vol. 5
24. MacLane, S., Moerdijk, I.: Sheaves in geometry and logic. A first introduction to topos theory (2012)
25. MacNeille, H.M.: Extension of a distributive lattice to a Boolean ring. Bull. Amer. Math. Soc. 45(6), 452–455 (1939)
26. Montgomery, J.: Cohomology of isolated invariant sets under perturbation. Journal of Differential Equations 13, 257–299 (1973)
27. Muger, M.: Topology for the working mathematician. Course notes: math.ru.nl (2020)
28. Notzeb, J.: Notes on Sheaf Cohomology (2020)
29. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, second edn. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1999)
30. Salamon, D.: Connected simple systems and the Conley index of isolated invariant sets. Trans. Amer. Math. Soc. 291(1), 1–41 (1985)
31. Schmid, J.: Quasiorders and sublattices of distributive lattices. Order 19(1), 11–34 (2002)
32. Schwendiman, C.A.: Topological Properties of $C(X, Y)$. Thesis Utah State University (1978)
33. Spanier, E.H.: Algebraic topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London (1966)
34. Tarizadeh, A.: A fresh look into monoid rings and formal power series rings. arXiv.org (2017)
35. Tennison, B.R.: Sheaf Theory. Cambridge University Press, Cambridge, England-New York-Melbourne (1975). London Mathematical Society Lecture Note Series, No. 20
36. de Vries, J.: Elements of topological dynamics, Mathematics and its Applications, vol. 257. Kluwer Academic Publishers Group, Dordrecht (1993)
37. de Vries, J.: Topological Dynamical Systems: An Introduction to the Dynamics of Continuous Mappings, De Gruyter Studies in Mathematics, vol. 59. De Gruyter, Berlin (2014)
38. Wedhorn, T.: Manifolds, sheaves, and cohomology (2016)
A Table with important definitions

Notation	Description	Reference
\mathbb{T}	Time space, either \mathbb{Z}, \mathbb{Z}_+, \mathbb{R}, or \mathbb{R}_+	Sect 2
$\text{Inv}_\phi(U)$	Maximal invariant set in U	Sect 3, pg 7
$\omega_\phi(U)$	Omega limit set of U	Sect 3, pg 7
$\alpha_\phi(U)$	Alpha limit set of U	Rmk 3.6
ANbhd$^\phi(p,q)$	Lattice of attracting neighborhoods for ϕ	Sect 3, pg 7
Att$^\phi(p,q)$	Lattice of attractors for ϕ	Sect 3, pg 7
Rep$^\phi(p,q)$	Lattice of repellers for ϕ	Rmk 3.6
Morse$^\phi(p,q)$	Meet semilattice of Morse sets for ϕ	Sect 3, pg 7
MRepr$^\phi(p,q)$	Lattice of Morse representations for ϕ	Sect 5, pg 19
$\text{C}^\text{Att}(A,A')$	Conley form of two attractors	Sect 6, pg 21
$\text{DS}(T,X)$	Category of dynamical systems	Sect 2, pg 6
$\text{ob}(C), \text{hom}(C)$	Objects and morphisms of a category C	[23]
$\text{hom}(\phi, \psi)$	Morphisms between two objects	[23]
$\mathbb{F}: \mathbb{D} \to \mathbb{C}$	Universe functor	Sect 4.1, pg 10
$\mathbb{F}_0 \in \mathbb{C}$	Value of universe functor	Sect 4.1, pg 10
$\Pi[E]$	Category of elements for a functor E	[23,24]
$\Phi[E; U]$	Objects ϕ for which $U \in E(\phi)$	Sect 4.1, pg 11
$\Theta[w; U]$	Partial section functor on $\Phi[E; U]$	Sect 4.1, pg 11
(G, E, w)	Continuation frame	Def 4.2
$\text{sub}_\mathbb{F}: \text{Lat} \to \text{Lat}$	Lattice of finite sublattices functor	Sect 5.2, pg 17
\mathbb{U}	Unique immediate predecessor of U	[18]
$O: \text{Poset} \to \text{BDLat}$	Down-set functor	[18]
$J: \text{Lat} \to \text{Poset}$	Poset of join-irreducibles of U	[18]
$\mathbb{B}: \text{BDLat} \to \text{Bool}$	Booleanization functor	[18]
$\mathbb{R}: \text{BDLat} \to \text{Ring}$	(Boolean) lattice ring of L	Sect 6.3, pg 23
$\mathbb{Z}_2: \text{BDLat} \to \text{Ring}$	Lattice algebra of L	Sect 6.3, pg 23
$\mathcal{F}_G: \Theta(\mathbb{D}) \to \text{Set}$	Sheaf of sections for $\Pi[G]$	Def 7.1
$\Gamma(\mathcal{F}_G)$	Set of global sections for \mathcal{F}_G	Def 7.1
\mathcal{F}_ϕ	Stalk of a sheaf \mathcal{F} at ϕ	Rmk 7.2, [5]
\mathcal{F}^Att	Attractor lattice sheaf	Sect 7.1, pg 26
$\mathcal{A}_\phi^\text{Att}$	Attractor sheaf for ϕ_\ast	Sect 8, pg 30
$\mathcal{A}_\phi^\text{Att}$	Free attractor sheaf for ϕ_\ast	Sect 8, pg 30
$H^*(\Lambda; \mathcal{F})$	Sheaf cohomology of a sheaf \mathcal{F} on Λ	[5]
$H^*(\Lambda, \Lambda'; \mathcal{F})$	Relative sheaf cohomology	[5]

B Functorial properties of attractors

Proof (Lemma 3.2) For $t \geq 0$, we have $\phi_h(h^{-1}(U)) \subseteq (h^{-1} \circ h \circ \phi_t)(h^{-1}(U))$. Since h is a quasiconjugacy, we have $(h^{-1} \circ h \circ \phi_t)(h^{-1}(U)) = h^{-1}(\psi_t((h \circ h^{-1})(U))) \subseteq h^{-1}(\psi_t(U))$ and
Thus
\[\phi_t(h^{-1}(U)) \subset h^{-1}(\psi_t^1(U)), \quad \forall t \geq 0. \]

The inequality for \(\omega \) now follows from elementary properties of inverse images and closures:
\[
\omega_\phi(h^{-1}(U)) = \bigcap_{t \geq 0} \text{cl} \bigcup_{s \geq t} \phi_s(h^{-1}(U)) \subset \bigcap_{t \geq 0} \text{cl} \bigcup_{s \geq t} h^{-1}(\psi_s^1(U)) = \bigcap_{t \geq 0} \text{cl} h^{-1}\left(\bigcup_{s \geq t} \psi_s^1(U)\right)
\]
\[
\subset \bigcap_{t \geq 0} h^{-1}\left(\text{cl} \bigcup_{s \geq t} \psi_s^1(U)\right) = h^{-1}\left(\bigcap_{t \geq 0} \text{cl} \bigcup_{s \geq t} \psi_s^1(U)\right) = h^{-1}\left(\bigcap_{t \geq 0} \text{cl} \bigcup_{s \geq t} \psi_s(\tau,U)\right) = h^{-1}(\omega_\psi(U)),
\]
which uses the invertibility of the parametrization function \(\tau \). Finally applying \(\omega_\phi \) we obtain
\[
\omega_\phi(h^{-1}(U)) = \omega_\phi(\omega_\phi(h^{-1}(U))) \subset \omega_\phi(h^{-1}(\omega_\psi(U))) \subset \omega_\phi(h^{-1}(U))
\]
so that
\[
\omega_\phi(h^{-1}(U)) = \omega_\phi(h^{-1}(\omega_\psi(U))), \tag{B.1}
\]
which completes the proof. ■

Proof (Remark 3.6) To deal with negative times we define \(\tau(\cdot,t,x) := \tau(t,x) \) in which case
\[
\psi_{-t}^1 = \psi(\tau(\cdot,-t),\cdot) = \psi(-\tau(\cdot,t),\cdot) = (\psi_t^1)^{-1}.
\]
Let \(x \in \phi_{-t}(h^{-1}(U)) \) so that \(\phi_t(x) \in h^{-1}(U) \). Then, by the quasiconjugacy condition \(h(\phi_t(x)) = \psi_t^1(h(x)) \in U \), and therefore \(h(x) \in \psi_{-t}^1(U) \). This yields \(x \in h^{-1}(\psi_{-t}^1(U)) \). Summarizing we have
\[
\phi_{-t}(h^{-1}(U)) \subset h^{-1}(\psi_{-t}^1(U)), \quad \forall t \geq 0.
\]
The remainder of the proof is similar to the proof of Lemma 3.2. ■

Proof (Proposition 3.4) Since \(A \) is an attractor for \(\psi \), there exists an attracting neighborhood \(U \) such that \(\omega_\psi(U) = A \). By Eqn. (B.1) we have
\[
\omega_\phi(h^{-1}(U)) = \omega_\phi(h^{-1}(\omega_\psi(U))) = \omega_\phi(h^{-1}(A)),
\]
which proves that \(\omega_\phi(h^{-1}(A)) \) is an attractor for \(\phi \), since we already know \(h^{-1}(U) \) is an attracting neighborhood for \(\phi \).

Therefore, for a quasiconjugacy \(\tau \times h \in \text{hom}(\phi,\psi) \), the map \(\omega_\phi \circ h^{-1} : \text{Att}(\psi) \rightarrow \text{Att}(\phi) \) is well defined. It remains to show that the latter is a lattice homomorphism. Preservation of joins is clear, cf. Property (v) for omega-limit sets. Let \(A, A' \in \text{Att}(\psi) \), then
\[
\omega_\phi(h^{-1}(A \land A')) = \omega_\phi(h^{-1}(\omega_\psi(A \land A'))) \subset \omega_\phi(h^{-1}(A \land A')) = \omega_\phi(h^{-1}(A) \land h^{-1}(A'))
\]
\[
= \omega_\phi(\omega_\phi(h^{-1}(A) \land h^{-1}(A'))) \subset \omega_\phi(\omega_\phi(h^{-1}(A)) \land \omega_\phi(h^{-1}(A')))
\]
\[
= \omega_\phi(h^{-1}(A)) \land \omega_\phi(h^{-1}(A'))
\]
Idempotency of ω_ϕ and Equation (3.1) imply
\[
\omega_\phi(h^{-1}(A)) \cap \omega_\phi(h^{-1}(A')) = \omega_\phi(\omega_\phi(h^{-1}(A)) \cap \omega_\phi(h^{-1}(A')))
\]
\[
\subseteq \omega_\phi(h^{-1}(\omega_\phi(A)) \cap h^{-1}(\omega_\phi(A'))) = \omega_\phi(h^{-1}(\omega_\phi(A) \cap \omega_\phi(A')))
\]
\[
= \omega_\phi(h^{-1}(A) \cap h^{-1}(A')) = \omega_\phi(h^{-1}(A \cap A'))
\]
\[
= \omega_\phi(h^{-1}(A \cap A')) \subseteq \omega_\phi(h^{-1}(\omega_\phi(A \cap A')))
\]
\[
= \omega_\phi(h^{-1}(A \cap A')),
\]
which proves that
\[
\omega_\phi(h^{-1}(A \cap A')) = \omega_\phi(h^{-1}(A)) \cap \omega_\phi(h^{-1}(A')),
\]
and thus $\omega_\phi \circ h^{-1}: \text{Att}(\psi) \to \text{Att}(\phi)$ is a lattice homomorphism.

\textbf{Proof (Remark 3.5)} If $\tau \times h \in \text{hom}(\phi, \psi)$ is a conjugacy, then
\[
h(\phi_t(x)) = \psi_1^t(h(x)). \tag{B.2}
\]
Define $y = h(x)$ and $s = \tau(t, h^{-1}(y))$. Since h is a homeomorphism, we obtain $\tau^{-1}(s, y)$, and therefore
\[
\phi_s^1(h^{-1}(y)) = h^{-1}(\psi_s(y)), \tag{B.3}
\]
where $\phi_s^1 = \psi(\tau^{-1}(s, \cdot), \cdot)$. This proves that $\tau^{-1} \times h^{-1} \in \text{hom}(\psi, \phi)$ is a conjugacy.

Let $A \in \text{Att}(\psi)$, then by Proposition 3.4, we have $\omega_\phi(h^{-1}(A)) \in \text{Att}(\phi)$. By Equation (B.3) we have $\phi_s^1(h^{-1}(A)) = h^{-1}(\psi_s(A)) = h^{-1}(A)$ for all $s \geq 0$, which proves invariance of $h^{-1}(A)$. Furthermore, since h is a homeomorphism, it follows that $h^{-1}(A)$ is closed, and thus $\omega_\phi(h^{-1}(A)) = h^{-1}(A)$, which proves that $h^{-1}(A) \in \text{Att}(\phi)$. Similarly, $h(A) \in \text{Att}(\psi)$ for all $A \in \text{Att}(\phi)$.

\section{C Repellers}

In Remarks 3.6 and 5.5 we indicated that one can also construct continuation frames (Rep, RNbdh, α) based repelling neighborhoods and repellers which yields the étalé space $\Pi[\text{Rep}]$. For a dynamical system $\phi: \mathbb{T}^+ \times X \to X$ we define $\phi_{-t} := \phi_t^{-1}$ as the inverse image. The map $\phi(-t, x)$ also satisfies the semigroup property. This allows us to define the notion \textit{alpha-limit set} as
\[
\alpha_\phi(U) := \bigcap_{t \geq 0} \text{cl} \bigcup_{s \geq t} \phi_{-s}(U).
\]
Some properties of $\alpha_\phi(U)$ are: (i) $\alpha_\phi(U)$ is compact, closed, (ii) $\alpha_\phi(U)$ is a forward-backward invariant set for the dynamics, (iii) $\alpha_\phi(\alpha_\phi(U)) \supseteq \alpha_\phi(U)$, (iv) $\alpha_\phi(U \cup V) = \alpha_\phi(U) \cup \alpha_\phi(V)$. A neighborhood $U \subset X$ is called a repelling neighborhood if $\alpha_\phi(U) \subset \text{int} U$. Repelling neighborhoods form a bounded, distributive lattice denoted by RNbdh(ϕ). The binary operations are \cap and \circ. A subset $A \subset X$ is called a repeller if there exists an repelling neighborhood $U \subset X$ such that $R = \alpha_\phi(U)$, which is a neighborhood of R by definition. Repellers are compact, closed, forward-backward invariant sets and compose a bounded,
distributive lattice $\text{Rep}(\phi)$ with binary operations \cup and \cap. As before $\phi \mapsto \text{RNbhd}(\phi)$ and $\phi \mapsto \text{Rep}(\phi)$ define the contravariant functors RNbhd and Rep from $\text{DS}(T, X) \to \text{BDLat}$. The functor $\text{RNbhd}: \text{DS}(T, X) \to \text{BDLat}$ is a stable structure and $(\text{Rep}, \text{RNbhd}, \alpha)$ forms a continuation frame in a similar way. From the continuation frame $(\text{Rep}, \text{RNbhd}, \alpha)$ we obtain the étale space $\Pi(p, \text{Rep})$.

For a dynamical system ϕ consider the duality isomorphism $A \mapsto A^\circ$, $A \in \text{Att}(\phi)$. Since for $U \in \text{ANbhd}(\phi)$ the maps $U \mapsto U^\circ$ and $\omega_\phi(U) \mapsto \alpha_\phi(U^\circ)$ define lattice isomorphisms we also have the natural transformations $c: \text{ANbhd} \Rightarrow \text{RNbhd}$ and $*: \text{Att} \Rightarrow \text{Rep}$. This yields the following commutative diagram:

\[
\begin{array}{ccc}
\text{ANbhd}(\psi) & \xleftarrow{c} & \text{RNbhd}(\psi) \\
\downarrow{\omega_\psi} & & \downarrow{h^{-1}} \\
\text{ANbhd}(\phi) & \xleftarrow{c} & \text{RNbhd}(\phi) \\
\downarrow{\omega_\phi} & & \downarrow{h^{-1}} \\
\text{Att}(\psi) & \xleftarrow{\ast_\psi} & \text{Rep}(\psi) \\
\downarrow{\text{Att}(h)} & & \downarrow{\text{Rep}(h)} \\
\text{Att}(\phi) & \xleftarrow{\ast_\phi} & \text{Rep}(\phi)
\end{array}
\]

where $\text{Att}(h) = \omega_\phi \circ h^{-1}$ and $\text{Rep}(f) := \ast_\phi \circ \omega_\phi \circ h^{-1} \circ \ast_\psi$. This asymmetry between attractors and repellers is typical for noninvertible systems. For invertible systems the symmetry is restored so that $\text{Rep}(h) = \alpha_\phi \circ h^{-1}$.

D Function spaces and the compact-open topology

We recall some basic facts about topologies on function spaces of continuous functions. Let X and Y be arbitrary topological spaces and let $C(X, Y)$ denote the set of all continuous maps $f: X \to Y$. A topology on $C(X, Y)$ which is of particular importance is the compact-open topology which is defined as a subbasis of sets of the form

$$O(K, U) := \{ f \mid f(K) \subset U \text{ for } K \text{ compact in } X \text{ and } U \text{ open in } Y \},$$

where K ranges over all compact subsets in X and U ranges over all open subsets in Y, cf. [10]. If X is a locally compact, Hausdorff space then the compact-open topology is the weakest topology such that the map $(f, x) \mapsto f(x)$, $f \in C(X, Y)$, is continuous, cf. [1, Cor. 1.2.4]. If X is compact and Y is a metric space with metric d, then the compact-open topology corresponds with the metric topology on $C(X, Y)$ given by the metric:

$$d(f, g) = \sup_{x \in X} d(f(x), g(x)), \quad f, g \in C(X, Y),$$

cf. [27,32].

Let Λ be an arbitrary topological space. For a continuous map $h: \Lambda \times X \to Y$ we define the transpose of h by:

$$h^\bullet: \Lambda \to C(X, Y), \quad \lambda \mapsto h^\bullet(\lambda) = h^\lambda := h(\lambda, \cdot).$$
Following the terminology in [9] we say that a topology on $C(X, Y)$ is \textit{weak} if continuity of h implies continuity of the transpose h^\ast, and a topology is \textit{strong} if continuity of the transpose h^\ast implies continuity of h. For arbitrary topological spaces X, Y and Λ the compact-open topology is a weak topology on $C(X, Y)$, i.e. h continuous implies that h^\ast is continuous, cf. [10, Lemma 1], [27]. If X is regular and locally compact (in particular for locally compact, Hausdorff spaces), then the compact-open topology is is both weak and strong, i.e. h is continuous if and only if h^\ast is continuous, cf. [10, Theorem 1], [27]. This implies that for regular and locally compact spaces X the compact-open topology on $C(X, Y)$ is both weak and strong, which is also referred to as an \textit{exponential topology}, cf. [9]. The latter is unique. Finally, the map $h \mapsto h^\ast$ is an embedding when both Λ and X are Hausdorff spaces. The map is a homeomorphism when Λ is Hausdorff and X is locally compact, Hausdorff, cf. [27].

For a compact metric space (X, d) define $(H(X), d_H)$ to be the metric space of compact subsets of X equipped with the Hausdorff metric d_H. Every continuous function $f: X \to Y$ induces a continuous function $f^H: H(X) \to H(Y)$, which sends compact subsets to their image under the function f. Recall the Hausdorff metric:

$$d_H(K, K') := \max \left\{ \sup_{x \in K} \inf_{x' \in K'} d(x, x'), \sup_{x' \in K'} \inf_{x \in K} d(x, x') \right\}, \ K, K' \in H(X).$$

Lemma D.1 Let X, Y be compact metric spaces, Λ a topological space, and $h: \Lambda \times X \to Y$ continuous map. Then, the function

$$h^H: \Lambda \times H(X) \to H(Y) \quad (\lambda, K) \mapsto h^H(\{\lambda\} \times K)$$

is continuous.

Proof We will first prove the assignment

$$D: C(X, Y) \to C(H(X), H(Y)) \quad f \mapsto D(f) := f^H,$$

is continuous. Let $f, g \in C(X, Y)$. Then, $d_C(f, g) = \sup_{x \in X} d(f(x), g(x))$ and

$$d_C(f^H, g^H) = \sup_{K \in H(X)} d_H(f(K), g(K)).$$

Since $d(y, y') \leq \sup_{x \in X} d(f(x), g(x)) = d(f, g)$ for any choice of $y \in f(K), y' \in g(K)$ it follows that $d_C(f^H, g^H) \leq d_C(f, g)$. Moreover, since points are compact subsets, the reversed inequality holds as well:

$$d_C(f, g) = \sup_{x \in X} d_H(f(\{x\}), g(\{x\})) \leq d_C(f^H, g^H),$$

which proves that D is an isometry implying its continuity. The metric topology on $C(H(X), H(Y))$ coincides with the compact-open topology and therefore h^H is continuous if and only if its \textit{transpose} h^\ast_H, given by

$$h^\ast_H: \Lambda \to C(H(X), H(Y)), \quad \lambda \mapsto h^\ast_H(\lambda) = h^\ast_H := h_H(\{\lambda\}, \cdot),$$

is continuous, [10,9]. Note that $h^H = D \circ h^\ast$ which proves that h^H is continuous, which completes the proof.

\[\square\]
Remark D.2 In this paper we abuse notation by writing $h(K), K \in \mathcal{H}(X)$ denoting $h^H(K)$ in accordance with the analogous notation for $h(U) = \{y = h(x) \mid x \in U\}, U \subset X.$