Genetic diversity of Indian porcine circovirus type 2 (PCV2) isolates (2006–2018)

J K JOHN, J J KATTOOR, M SETHI, N TOMAR, T DAS and G SAIKUMAR*

ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

Received: 23 September 2019; Accepted: 15 October 2019

ABSTRACT

Porcine circovirus type 2 (PCV2) is an emerging viral infection in swine population and results in severe economic loss to piggeries worldwide. The present study was conducted to explore the genetic diversity of PCV2 circulating in swine population of India from 2006–2018. A total of 74 heart, lungs, spleen and lymph nodes collected from different regions in Uttar Pradesh, India were subjected to molecular analysis. For studying genetic diversity, the complete nucleotide and ORF2 sequences of 95 PCV2 including 43 nucleotide sequences from India were used. DNA was extracted from samples and positive samples were subjected to full genome sequencing and phylogenetic analysis was done by maximum likelihood method. Phylogenetic analysis of 40 Indian PCV2 genomes downloaded from GenBank along with three new isolates from the current study based on the complete genome and cap gene together with nucleotide sequences of PCV2 isolates from different countries results in a tree in which Indian isolates clustered in 4 different branches includes PCV2b-1C, PCV2a-2D, PCV 2b-1A/B, PCV 2d-2 recombinant group and two new cluster in which one clustered along with unclassified PCV2 viruses from Indonesia and Croatia. The comparison of ORF2 gene among Indian isolates revealed nucleotide identity ranging from 88.6% to 99.6%, indicating the genetic diversity of PCV2 strains circulating in Indian pig. The present work reports for the first time in India the PCV2-1A/B cluster of 2b genotype and all the Indian isolates available in India from 2006–2018 were used in this analysis.

Keywords: Diversity, Genetic, India, PCV2, Pig

Porcine circovirus type 2 (PCV2) is an emerging viral infection in swine population worldwide and results in severe economic loss to piggeries, viz. worldwide. The PCV2 are divided into five genotypes, viz. PCV2a, PCV2b, PCV2c, PCV2d, PCV2e based on pair-wise sequence comparison (Xiao et al. 2015). Again PCV2a is subdivided into 2A-D (four clusters), PCV2b is subdivided into 1A-C (three clusters) and PCV 2d is divided into PCV2d-1 and PCV2d-2 (two clusters) (Xiao et al. 2015). PCV2e is a new genotype circulating in USA and China (Davies et al. 2016). PCV2a and PCV2b are worldwide in distribution, PCV2c was reported only from Denmark and China (Dupont et al. 2008) and PCV2d was reported from 14 countries including India (Xiao et al. 2015). In India, PCV2 was reported first in 2005 from swine population and was reported from various places in India. Genotypes prevalent in India are PCV2a, PCV2b, PCV2d and some recombinant types (Sharma and Saikumar 2010, Anoopraj et al. 2014). Investigation of PCV2 genotype that is circulating in different regions of India by phylogenetic analysis gives an idea on the epidemiology and thereby finding out the molecular evolution of virus. It also gives information on the vaccine candidate that should be used in India for the control and prevention of further outbreaks. The present study was conducted to explore the genetic diversity of PCV2 circulating in swine population of India from 2006–2018.

MATERIALS AND METHODS

Sample collection: A total of 74 heart, spleen and lymph nodes were collected from different regions in Uttar Pradesh, India during February 2015–November 2016. The samples were collected on ice for molecular analysis and stored at –80°C until further use.

Data source: Along with the sequences obtained in this current study, the complete nucleotide and ORF2 sequence of 95 PCV2 including 43 nucleotide sequences from India was downloaded from GenBank for studying the genetic diversity of PCV2 circulating in India.

DNA extraction and PCV2 detection: Total viral DNA was extracted from the pooled sample using QIAamp DNA Mini kit (QIAGEN, Germany) according to manufacturer’s protocol. The DNA extracted was tested by PCR using the primers PCVLF and PCVLR (Larochelle et al. 2000). The positive samples were used for complete genome amplification using published primers (Anoopraj et al. 2015) and preceded further for sequencing. The complete genome was amplified in three overlapping fragments of size 661, 765 and 676 bp (Anoopraj et al. 2015). PCR reactions were performed in 50 µl reaction volume. Final
PCR products were subjected to electrophoresis on 1.5% agarose gel and was confirmed with Gel Documentation having ultraviolet imaging system. PCR products were purified using commercial DNA gel extraction kit and sample were sent for sequencing in both directions with respective forward and reverse primers used in the PCR amplification. The truncated sequences from all the three fragments were joined by ‘Megalign’ programme of Lasergene V.6 software (DNASTAR, USA) to obtain the PCV2 complete genome.

Phylogenetic analysis based on complete genome as well as ORF2 sequence was performed. Apart from the isolates (3 isolates) from this study, sequences of 92 PCV2 isolates representing different genotypes and clusters from various countries were retrieved from GenBank and used as input sequences. Two PCV1 isolates were incorporated as an out-group sequence. Multiple sequence alignment was carried out using ClustalW programme of MEGA v.6 software. The evolutionary history was inferred by using the Maximum Likelihood method based on the Hasegawa-Kishino-Yano model. Initial tree for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach. Evolutionary analyses were conducted in MEGA6.

RESULTS AND DISCUSSION

Characterization of the porcine circovirus 2 identified: Out of 74 cases which were screened by conventional PCR, 54 were pre-weaned piglets between 0–6 weeks and 20 were post-weaned animals. The virus was detected in 28 out of 74 (37.8%) pigs tested by conventional PCR. Out of these 28 positive cases, 26 piglets were pre-weaned piglets (13 stillborn and 2 mummified fetuses). Three positive cases were used for complete genome sequencing. The complete genome of PCV2 in three overlapping fragments of size 661 bp, 767 bp and 676 bp of 3 isolates (PCV2-IZN-2016, PCV2-IZN-2015, IZN-572-2016) were subjected to direct sequencing. The combined sequences were submitted in GenBank with following accession numbers MK035433 (IZN-572-2016), MK035432 (PCV2-IZN-2016), MK035434 (PCV2-IZN-2015).

Genetic diversity and phylogenetic analysis of porcine circovirus 2: BLAST analysis of full genome of PCV2-IZN-2016 and PCV2-IZN-2015 revealed 99% homology with different isolates from China, Vietnam and recombinant strains (PCV2Izn-218-13 and PCV2Izn-89-13) from India. The sequences obtained from this study were analyzed along with other sequences retrieved from NCBI database to construct a phylogenetic tree. The isolate PCV2-IZN-2016 and PCV2-IZN-2015 clustered with different recombinant strains from India (PCV2Izn-218-13 and PCV2Izn-89-13) and China (HQ395058 and HQ395049). Phylogenetic analysis of IZN-572-2016 revealed that it belongs to genotype PCV2b-1A/B (Fig. 1). IZN-572-2016 exhibited high nucleotide identity with isolates from China, India, Lithuania and Switzerland. Earlier studies from India suggesting genotypes circulating in India are PCV2a–2D, PCV2h–1C, PCV2d and recombinant strains. Further detailed analysis suggested that these strains evolved from inter-genotypic recombination between PCV2a–2C and PCV2h–1C genotypes within cap gene (Anoopraj et al. 2015). Since India shares boundary with Myanmar in the North eastern region and movement of pigs across the border is frequent, it is possible that genotypes sharing close homology with Chinese isolates gained access into the Indian pig population through this route. Another source may be pigs imported from European countries as a part of breeding programme to upgrade the native breeds which results in exchange of diseases between countries.

In PCV2 genome, high degree (around 93%) of nucleotide conservatism was noticed worldwide. Despite being a DNA virus, it shows substantial genetic variations and evolutionary dynamics similar to RNA viruses (Segales et al. 2013). PCV2 genetic diversity is mainly due to recombination and mutation happening in the genome resulting in evolution of new types (Csagola et al. 2006). Recent studies on PCV2 epidemiology have focused on the emergence of new variants and recombinant strains of PCV2. Point mutation together with recombination leads to evolution of new clusters of PCV2 (Franzo and Segales 2015). The isolate PCV2-IZN-2015 and PCV2-IZN-2016 were integrated into the recombinant cluster that provided proof for possible recombination event and these viruses shared high nucleotide identity with recently reported clusters of recombinant strains from India and China (Cai et al. 2012, Anoopraj et al. 2015).

The isolates from Northeastern region of India also used in analysis suggesting clustering of northeastern isolates into PCV 2a-2D, PCV 2h-1C, PCV 2b-1A/B, PCV 2d-2 and two new cluster. The comparison of ORF-2 gene among isolates from this region revealed a nucleotide identity ranging between 90.3% to 100% indicating the genetic diversity of PCV2 strains circulating in pigs of Northwestern region of UP. Latest reports in the north east region of India suggests the circulation of PCV2d and a new cluster similar to current study (Mukherjee et al. 2019, Barman et al. 2017).

The nucleotides with accession numbers LC004754.1 (Sikkim, SK-1), LC008140.1 (Meghalaya, ML-11), LC008139.1 (Assam, AS-3), LC004741.1 (Meghalaya, ML-6), LC004737.1 (Meghalaya, ML-2), LC004740.1 (Meghalaya, ML-5), LC004733.1 (Arunachal Pradesh, AR-2), LC008142.1 (Tripura, TR-1), LC004742.1 (Meghalaya, ML-7), LX009482.1 (Mizoram, PCV2/MZ/IND/43), LC008136.1 (Assam, AS-1), LC004744.1 (Meghalaya, ML-9), LC004743.1 (Meghalaya, ML-8) clustered separately belongs to 2d genotype and KJ729075.1 clustered with various isolates from China with 2d-2 genotype (HM038031.1, KC515005.1, HM038030.1, HM038017.1). In a study by Barman et al. (2017) stating the circulation of PCV2d genotype in Meghalaya and Assam.

The isolates MN-1 (Manipur, LC004735.1), India-GN-
07 (Uttar Pradesh, GU808525.1) belongs to genotype PCV2b–1C. It clustered along with other 2b isolates from China, Vietnam and Germany. Isolate IZN-572-2016 (Uttar Pradesh), MZ-7 (Mizoram, LC004752.1), PCV2/MZ/IND/42 (Mizoram, X009481.1), PCV2/MZ/IND/40 (Mizoram, KX009480.1) belongs to PCV2b–1A/B clustered along with isolates from Malaysia, China, Uttar Pradesh and Austria. In PCV2b–1A/B group falls the isolates from Mizoram and Uttar Pradesh.

The isolates AR-3 (Arunachal Pradesh, LC004734.1), PCV2Izn-200-12 (India, KJ729073.1), AR-1 (Arunachal Pradesh, LC004732.1) belongs PCV2a genotype. The isolates ML-1 (Meghalaya, LC004736.1), NL-2 (Nagaland, LC008141.1), MZ-1 (Mizoram, LC004746.1), AS-2 (Assam, LC008137.1), MZ-8 (Mizoram, LC008134.1), MZ-9 (Mizoram, LC008135.1) and ML-3 (Meghalaya, LC004738.1), forms a separate cluster not belonging to anyone of the existing genotypes. Also isolates NL-1 (Nagaland, LC004753.1), MZ-5 (Mizoram, LC004750.1), MZ-3 (Mizoram, LC004748.1), ML-4 (Meghalaya, LC004739.1), MZ-4 (Mizoram, LC004749.1), ML-10 (Meghalaya, LC004745.1) and MZ-6 (Mizoram, LC004751.1) clustered with the unclassified isolates from Croatia (HQ591381) and Indonesia (KT369067, KT369070, KT369068). Similar findings in a study conducted by Mukherjee et al. (2019) in these Megalaya isolates. The study indicates the novel cluster was originated by inter-genotypic recombination between PCV2c and PCV2d.

Phylogenetic analysis based on the ORF2 (cap gene) is suitable for typing of PCV2 isolates into 4 different genotypes (Fig. 2). For studying the evolution of viruses, phylogenetic analysis is a potent tool. Mutation and recombination mainly reported from the ORF2 region of
PCV2, so this region can be selected for the phylogenetic analysis along with the full genome analysis (Franzo et al. 2016). The classification of isolates into clusters within the genotypes is better achieved by phylogenetic analysis using entire viral genome. Genotypic analysis using complete genome is essential to elucidate the genetic variation in terms of recombination, in which ORF1 is the frequent site (Ramos et al. 2013). In our study, analysis based on cap gene and complete genome resulted in similar phylogenetic trees.

Co-infection of animals with different genotypes or viruses of different clusters of same genotype results in recombination to occur (Khaiseb et al. 2011). PCV2 has been recorded from India since 2006 (Sharma and Saikumar 2008). Additionally, many genotypes and different clusters of same genotypes are circulating among Indian pigs. Therefore, it is highly likely that the natural inter-genotypic recombination has happened within this closed herd over a period of time. PCV2 2a genotype is the most prevalent worldwide until 2003, due to genetic shift later prevalence changed to PCV2 2b. A similar situation have occurred since the appearance of the genotype 2d in 2010 which is rapidly spreading with detriment to PCV2b prevalence (Guo et al. 2010, Xiao et al. 2015).

In conclusion, in the present study, an investigation was carried out to identify the genetic differences of PCV2 isolates prevailing in different part of India and this study supplements knowledge on PCV2 genetic diversity in India. Phylogenetic analysis of 40 Indian PCV2 genomes downloaded from GenBank along with three new isolates from the current study based on the complete genome and cap gene together with nucleotide sequences of PCV2 isolates from different countries resulted in a tree in which Indian isolates clustered in 4 different branches namely PCV2b-1C, PCV2a-2D, PCV2b-1A/B, PCV2d-2 recombinant group and two new cluster in which one
from 2006–2018 were used in this analysis. 2b genotype and all the Indian isolates available in India reports for the first time in India the PCV2-1A/B cluster of PCV2 strains circulating in Indian pig. The present work from 88.6% to 99.6%, indicating the genetic diversity of among Indian isolates revealed nucleotide identity ranging from Indonesia and Croatia. The comparison of ORF2 gene clustered along with unclassified PCV2 viruses from 846

ACKNOWLEDGEMENTS

The authors thank Indian Council of Agricultural Research and Indian Council of Medical Research for their financial support and also acknowledge the Director, ICAR-Indian Veterinary Research Institute for providing facilities to conduct this research work.

REFERENCES

Anoopraj R, John J K, Sethi M, Somvanshi R and Saikumar G. 2014. Isolation and identification of porcine circovirus 2 from cases of respiratory disease and postweaning multisystemic wasting syndrome in pigs. *Advances in Animal and Veterinary Sciences* 2(6): 365–68.

Anoopraj R, Rajkhowa T K, Cherian S, Arya R S, Tomar N, Gupta A, Ray P K, Somvanshi R and Saikumar G. 2015. Genetic characterisation and phylogenetic analysis of PCV2 isolates from India: indications for emergence of natural inter-genotypic recombinants. *Infection, Genetics and Evolution* 31: 25–32.

Barman N N, Nath B, Kumar V, Sen A, Dutta T K, Dutta B, Rahman T and Kumar S. 2018. The emergence of porcine circovirus 2 infections in the Northeastern part of India: A retrospective study from 2011 to 2017. *Transboundary and Emerging Diseases* 65(6): 1959–67.

Cai L, Ni J, Xia Y, Zi Z, Ning K, Qiu P, Li X, Wang B, Liu Q, Hu D and Yu X. 2012. Identification of an emerging recombinant cluster in porcine circovirus type 2. *Virus Research* 165(1): 95–102.

Csagola A, Keckemeti S, Kardos G, Kiss I and Tuboly T. 2006. Genetic characterization of type 2 porcine circoviruses detected in Hungarian wild boars. *Archives of Virology* 151: 495–507.

Davies B, Wang X, Dvorak C M, Marthaler D and Murtaugh M P. 2016. Diagnostic phylogenetics reveals a new Porcine circovirus 2 cluster. *Virus Research* 217: 32–37.

Dupont K, Nielsen E O, Baekbo P and Larsen L E. 2008. Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case–control study supports a shift in genotypes with time. *Veterinary Microbiology* 128(1–2): 56–64.

Franzo G, Cortey M, Segales J, Hughes J and Drigo M. 2016. Phylogenetic analysis of porcine circovirus type 2 reveals global waves of emerging genotypes and the circulation of recombinant forms. *Molecular Phylogenetics and Evolution* 96: 269–80.

Franzo G and Segales J. 2018. Porcine circovirus 2 (PCV-2) genotype update and proposal of a new genotyping methodology. *PLoS ONE* 13(12): e0208585.

Guo L J, Lu Y H, Wei Y W, Huang L P and Liu C M. 2010. Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. *Virology Journal* 7(1): 273.

Khaibie S, Sydler T, Zimmermann D, Pospischil A, Sidler X and Brugnera E. 2011. Coreplication of the major genotype group members of porcine circovirus type 2 as a prerequisite to coevolution may explain the variable disease manifestations. *Journal of Virology* 85: 11111–20.

Larochelle R, Bielanski A, Müller P and Magar R. 2000. PCR detection and evidence of shedding of porcine circovirus type 2 in boar semen. *Journal of Clinical Microbiology* 38(12): 4629–32.

Mukherjee P, Karam A, Chakraborty A K, Baruah S, Pegu R, Das S, Milton A A, Puro K, Sanjukta R, Ghatak S and Shakhuntala I. 2019. Identification of a novel cluster of PCV2 isolates from Meghalaya, India indicates possible recombination along with changes in capsid protein. *Infection, Genetics and Evolution* 71: 7–15.

Ramos N, Mirazo S, Castro G and Arbiza J. 2013. Molecular analysis of porcine circovirus Type 2 strains from Uruguay: Evidence for natural occurring recombination. *Infection Genetics and Evolution* 19: 23–31.

Segales J, Kekarainen T and Cortey M. 2013. The natural history of porcine circovirus type 2: from an inoffensive virus to a devastating swine disease. *Veterinary Microbiology* 165(1–2): 13–20.

Sharma R and Saikumar G. 2010. Porcine parvovirus-and porcine circovirus 2-associated reproductive failure and neonatal mortality in crossbred Indian pigs. *Tropical Animal Health Production* 42(3): 515–22.

Sharma R and Saikumar G. 2008. Porcine circovirus 2 associated reproductive failure in Indian pigs. *Indian Journal of Animal Sciences* 78(11): 1238.

Xiao C T, Halbur P G and Opriessnig T. 2015. Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d. *Journal of General Virology* 96(7): 1830–41.