Identification of a novel YAP–14-3-3ζ negative feedback loop in gastric cancer

SUPPLEMENTARY MATERIALS

Supplementary Figure 1: Western blotting assay of YAP and 14-3-3ζ protein levels in gastric cancer. (A) The grading standard of YAP and 14-3-3ζ expression (B).
Supplementary Figure 2: Representative images of colony formation in vector and YAP-overexpressing adenovirus transfected MKN-45 and HGC-27 cells. The transfected cells were cultured for 5 days. (A) Statistical analysis of colony formation assay in Figure 2C and Supplementary Figure 2A (n = 6; *p < 0.05; **p < 0.01) (B) The migration ability of MGC-803 transfected with vector and YAP-overexpressing adenovirus was determined by scratch assay (C).

Supplementary Figure 3: Representative images of colony formation in vector and 14-3-3ζ-overexpressing adenovirus transfected MKN-45 and HGC-27 cells. The transfected cells were cultured for 10 days. (A) the migration ability of MGC-803 transfected with vector and 14-3-3ζ-overexpressing adenovirus was determined by scratch assay (B).
Supplementary Figure 4: Cytoplasmic and nuclear fractions were prepared from MGC-803 cells transfected with shControl or sh14-3-3ζ lentiviral and YAP protein levels were determined by western blotting (A) western blot assay for proliferation index (Cyclin-D3, Cyclin-D1, PCNA), HA and 14-3-3ζ in MGC-803 cells treated with blank-vector or YAP over-expressing adenovirus and shControl or sh14-3-3ζ lentiviral. (B) Expression of LATS1, Flag, p-YAP1, and YAP1 was determined in 14-3-3ζ-overexpressing or not overexpressing MGC-803 cells with or without the disruption of LATS expression (C) 14-3-3ζ disrupted and control MGC-803 cells were transfected with Flag-YAP plasmid and subjected to immunoprecipitation(IP) using Flag antibody or control IgG, followed by immunoblotting(IB) with YAP, p-LATS1 or 14-3-3ζ antibodies (D).

Supplementary Figure 5: Western blotting assay for 14-3-3η, 14-3-3ε, 14-3-3γ and 14-3-3σ expression after transfecting with Flag-vector or Flag-YAP plasmid in 293T cells at 60 h. (A) Western blotting assay for 14-3-3ζ expression in MKN-45 cells after transfecting with vector or YAP overexpressing adenovirus. (B) Representative images of YAP immunofluorescence treating with Ad-vector or Ad- YAP (C).
Supplementary Figure 6: Quantitative analyses of miR-30a, miR-30b, miR-30c, miR-30d, miR-30e, miR-617, miR-613 and miR-3619-5p in 293T cells transfected with Flag-vector or Flag-YAP plasmid at 60 h. (A) Quantitative analyses of miR-30a, miR-30b, miR-30c, miR-30d, miR-30e, miR-617, miR-613 and miR-3619-5p in YAP-overexpressed or control 293T cells. (B) Quantitative analyses of miR-30a, miR-30b, miR-30c, miR-30d, miR-30e, miR-617, miR-613 and miR-3619-5p in YAP-disrupted or control 293T cells. (C) Western blotting assay for 14-3-3ζ, p-YAP and YAP expression in 293T transfected with Flag-vector or Flag-YAP or Flag-YAP-Ser127A (Serine 127 site was mutated to Alanine) (D) Endogenous interaction between YAP, MDM2 and 14-3-3ζ was detected in MGC-803 cells (E).
Supplementary Figure 7: Representative images of tumor-bearing mice (A).

Supplementary Table 1: Antibodies

Antibody	Catalog number	Detection	Manufacturer
GAPDH	CW0100A	WB	KangCheng
MDM2	BS1447	WB	Bioworld
Cyclin D1	P24385	WB	Bioworld
PCNA	BS1289	WB	Bioworld
Cyclin-D3	P30281	WB/IHC	Bioworld
14-3-3-ζ	BS1001	WB/IP/ IHC	Bioworld
14-3-3 γ	BS2512	WB	Bioworld
14-3-3 ε	BS6109	WB	Bioworld
14-3-3 η	BS2384	WB	Bioworld
YAP	BS2000	WB/IHC/IF	Bioworld
p-YAP	4911	WB/IHC/IF	Cell signaling technology
LATS1	3477	WB	Cell signaling technology
Histone	sc-8655	WB	Santa Cruz Biotechnology
Flag	F1804	WB/IP/IF	Sigma
HA(Rabbit)	3724	WB/IP/IF	Cell signaling technology
HA(Mice)	H3663	WB	Sigma
Supplementary Table 2: Sequences of real-time PCR primers

mRNA/miRNA	Primer	Sequences (5′-3′)
Human-14-3-3ζ	Forward	CAGATGGCTCGAGAATACAG
	Reverse	CCTCAGCAGTAACGGTAG
Human-CTGF	Forward	ATCTTCGGTGAGTGGTG
	Reverse	GTGTCTCTCGGATGTAAGC
Human-Cy61	Forward	GCTTGCCGACACCTACAG
	Reverse	TGACCCAGGCTTGCTG
Human/ β-actin	Forward	GACCTTGAGCAACAGCT
	Reverse	GCAAGGGACTGAATACAG
hsa-miR-613	Forward	ACAGGCACAGAATACAG
	Reverse	GCAAGGCTTGAACTGAC
hsa-miR-3619-5p	Forward	TCCAGGCGAGCAGGACTG
hsa-miR-214	Forward	GCAAGGCACAGAATACAG
	Reverse	TGGCAATGGAAGAGTATG
hsa-miR-1	Forward	GCAAGGCACAGAATACAG
	Reverse	GCAAGGCACAGAATACAG
hsa-miR-206	Forward	TGAAATGGAAGAGTATG
	Reverse	GCAAGGCACAGAATACAG
hsa-miR-30d	Forward	TTAACATCCCCCGACTGGAAG
	Reverse	GCAAGGCACAGAATACAG
hsa-miR-30a	Forward	TTAACATCCCCCGACTGGAAG
	Reverse	GCAAGGCACAGAATACAG
hsa-miR-22	Forward	AGCTGCGTAGGAGCTGAAGACTG
	Reverse	GCAAGGCACAGAATACAG
miRNA-761	Forward	AGCTGCGTAGGAGCTGAAGACTG
	Reverse	GCAAGGCACAGAATACAG
miRNA-30b	Forward	TGAAATGGAAGAGTATG
	Reverse	GCAAGGCACAGAATACAG
miRNA-30c	Forward	TGAAATGGAAGAGTATG
	Reverse	GCAAGGCACAGAATACAG
miRNA-30e	Forward	TGAAATGGAAGAGTATG
	Reverse	GCAAGGCACAGAATACAG
Supplementary Table 3: ShRNA and siRNA Oligonucleotides

Target Gene	Sequences (5′-3′)
Human-sh14-3-3ζ	Forward CCGGGCAGAGAGCAAAGTCTTCTATCTCGAGATAGAAGACCTTTTGCTCTCTGCTTTTTG
	Reverse AATTCAAAAAGCAGAGAGCAAAGTCTTCTATCTCGAGATAGAAGACTTTTGCTCTCTGCTTCG
Human-shYAP	Forward CCGGGCCACCAAGCTAGATAAAGAACTCGAGTTCTTTATCTAGCTTTGCTGGT GG