Pressure-induced insulator-to-metal transition in α-SnWO₄

Alexei Kuzmin¹, Andris Anspoks¹, Aleksandr Kalinko²,³, Janis Timoshenko¹, Robert Kalendarev¹, Lucie Nataf⁴, François Baudelet⁴, Tetsuo Irifune⁵, Pascale Roy⁴

1 Institute of Solid State Physics, University of Latvia, Riga, Latvia
2 University of Paderborn, Faculty of Sciences, Department of Chemistry, Germany
3 DESY Photon Science, Hamburg, Germany
4 Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
5 Geodynamics Research Center, Ehime University, Matsuyama, Ehime, Japan

E-mail: a.kuzmin@cfi.lu.lv

Abstract. In-situ high-pressure W L₁ and L₃ edges x-ray absorption and mid-infrared spectroscopies complemented by first-principles calculations suggest the existence of pressure-induced insulator-to-metal transition in α-SnWO₄ in the range of 5-7 GPa. Its origin is explained by a symmetrization of metal-oxygen octahedra due to a strong interaction of Sn 5s, W 5d and O 2p states along the b-axis direction, leading to a collapse of the band gap.

1. Introduction

Metal-insulator transitions in oxides are of considerable interest already for more than half a century [1, 2, 3]. The phenomenon finds applications in novel electronic and photonic devices, thus stimulating the discovery of new functional materials [4, 5]. In this study we present an overview of recent experimental and theoretical findings on novel pressure-induced insulator-to-metal transition in low-temperature α-phase of tin tungstate (α-SnWO₄).

Tin tungstate has two polymorphs, the low-temperature orthorhombic α-phase (space group Pnna, no. 52) and high-temperature cubic β-phase (space group P2₁₃, no. 198), which transform into each other by a diffusion-controlled phase transition mechanism at about 670°C [6]. The two phases have narrow band gaps ($E_g=1.7$ eV in α-SnWO₄ and 2.6 eV in β-SnWO₄) and unique band structures, strongly influenced by the charge transfer phenomena between oxygen and tungsten atoms and the presence of the lone pair of Sn 5s electrons [7, 8].

The crystal structure of α-SnWO₄ (Fig. 1) is composed of two-dimensional sheets of WO₆ octahedra, separated by layers of Sn²⁺ ions, which are also six-fold coordinated by oxygen atoms [6]. The WO₆ octahedra within a sheet are joined by four vertices, forming a 2D perovskite-like layer, and are distorted due to the second-order Jahn-Teller (SOJT) effect [9] because of the W⁶⁺(5d⁰) electronic configuration. This distortion is associated with an off-center displacement of W⁶⁺ ions in the direction of the octahedron edge, so that there are three distinct W–O bonds. The six-fold coordination of Sn²⁺(5s²6p⁰) ions is distorted even more, leading also to three different Sn–O bonds. The pair of stereochemically active Sn 5s electrons is responsible for the lone pair distortion of the SnO₆ octahedron via the SOJT effect [7, 8].
Figure 1. Crystal structure of α-SnWO₄ [6] and pressure dependence of band gap according to first-principles linear combination of atomic orbital (LCAO) calculations [10].

Figure 2. Pressure dependence of the W L₁-edge XANES and W L₃-edge EXAFS in α-SnWO₄.

Narrow band gap and easily deformable metal-oxygen octahedra make α-SnWO₄ a good candidate for pressure-induced insulator-to-metal transition. Here we have tackled this issue by in-situ high-pressure x-ray absorption and infrared spectroscopies complemented by first-principles calculations.

2. Experimental and calculation details
The synthesis of polycrystalline α-SnWO₄ was performed by solid-state reaction: an equimolar amount of SnO (99.99%) and WO₃ (99.9%) powders was placed in a sealed silica ampoule under a vacuum, annealed at 600°C for 8 hours and slowly cooled down to room temperature.

Room-temperature pressure-dependent x-ray absorption spectroscopy study was performed in the pressure range from 0 to 25 GPa at the W L₁ and L₃ edges using the dispersive set-up of the bending-magnet SOLEIL ODE beamline [11] and high-pressure nano-polycrystalline diamond anvil cell (DAC) [12]. The use of nano-polycrystalline DAC allowed us to eliminate spurious contributions from the Bragg peaks into the x-ray absorption spectra. Mid-infrared (550-8000 cm⁻¹) absorption measurements were performed in transmission mode using Bruker IFS 125MR spectrometer combined with recently developed high-pressure setup based on the DAC at the SOLEIL AILES beamline [13]. The sample pressure was monitored by the ruby
luminescence in both experiments.

The W L\textsubscript{1}-edge x-ray absorption near edge structure (XANES) and L\textsubscript{3}-edge extended x-ray absorption fine structure (EXAFS) were extracted following the conventional procedure [14] using the EDA package [15] and are shown in Fig. 2. The radial distribution functions (RDFs) within the first coordination shell of tungsten (Fig. 3) were reconstructed from EXAFS by the regularization-like method [16, 17], which was successfully employed by us in the analysis of several tungstates [18, 19, 20]. Theoretical scattering amplitude and phase shift functions, calculated by the \textit{ab initio} FEFF8 code [21] using the complex exchange-correlation Hedin-Lundqvist potential [22], were used in all simulations (see [8] for more details).

3. Results and discussion

Our first-principles linear combination of atomic orbital (LCAO) calculations [10] predict the existence of the insulator-to-metal transition in \(\alpha\)-SnWO\textsubscript{4} (Fig. 1). Its origin is explained by a symmetrization of metal-oxygen octahedra due to a strong interaction of Sn 5s, W 5d and O 2p states, leading to a collapse of the band gap at about 16 GPa [10]. The evidence of this transition was experimentally observed in the mid-infrared region (Fig. 4). Here the contribution of lattice vibrations is responsible for the absorption bands below \(\sim\)850 cm-1. An abrupt increase of the absorption, which is associated with optical indirect transition across the band gap [8, 10], was detected above \(\sim\)850 cm-1 upon increasing pressure above 5-7 GPa. Lower value of the experimental transition pressure compared to the predicted one [10] can be attributed to possible non-stoichiometry of the sample.

The structural origin of the insulator-to-metal transition can be probed directly by studying the W L\textsubscript{1,3}-edges absorption spectra. The analysis of the W L\textsubscript{1}-edge XANES indicates that upon increasing pressure WO\textsubscript{6} octahedra become less distorted, as is evidenced from a decrease of the pre-edge peak due to 2s(W)→5d(W)+2p(O) transition [23] (left panel in Fig. 2). This conclusion is well supported by the analysis of the W L\textsubscript{3}-edge EXAFS spectra (right panel in Fig. 2).

Pressure dependence of the radial distribution function (RDF) around tungsten \(G_{\text{W-O}}(R)\) was reconstructed and is shown in Fig. 3. The RDF at 0 GPa consists of two well defined peaks located at 1.80 and 2.14 Å, which correspond to four nearest and two distant oxygen atoms of the WO\textsubscript{6} octahedra distorted due to the SOJT effect [9]. Upon increasing pressure a distortion...
of the WO$_6$ octahedra decreases, affecting mainly the group of four nearest oxygen atoms: the average value of their W–O bond length becomes longer by $\sim 0.09\,$Å. At the same time, the group of two distant oxygen atoms at 2.14 Å is less influenced by pressure, however their average W–O bond length decreases by $\sim 0.03\,$Å above 19 GPa. Such pressure-induced reduction of the WO$_6$ octahedra distortion is compatible with a displacement of tungsten atoms towards the center of the WO$_6$ octahedra by about 0.2 Å at highest pressure. The observed symmetrization of the WO$_6$ octahedra correlates well with our results of first-principles LCAO calculations [10], which predict such behaviour for both WO$_6$ and SnO$_6$ octahedra upon increasing pressure.

4. Conclusions
X-ray absorption spectroscopy at the W L$_1$ and L$_3$-edges and infrared absorption spectroscopy were successfully applied to in-situ investigation of the pressure effect on the local atomic and electronic structure in α-SnWO$_4$. It is shown that a displacement of tungsten atoms by about 0.2 Å towards the center of the WO$_6$ octahedra occurs in α-SnWO$_4$ upon increasing pressure up to 25 GPa. The strong modification of α-SnWO$_4$ lattice is accompanied by the insulator-to-metal phase transition caused, according to the first-principles LCAO calculations [10], by interaction of Sn 5s, W 5d and O 2p states along the b-axis direction.

Acknowledgments
The authors are grateful to Professor Alain Polian for providing the NDAC cell. This work was supported by Latvian Government Research grant no. 187/2012. The experiment at the SOLEIL synchrotron radiation facility has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) CALIPSO under grant agreement no. 312284.

References
[1] Mott N F 1968 Rev. Mod. Phys. 40 677
[2] Honig J M and Zandt L V 1975 Ann. Rev. Mater. Sci. 5 225
[3] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1040
[4] Yang Z, Ko C and Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337
[5] Granqvist C G 2014 J. Vac. Sci. Technol. B 32 060801
[6] Jeitschko W and Sleight A W 1974 Acta Cryst. B 30 2088
[7] Cho I S, Kwak C H, Kim D W, Lee S and Hong K S 2009 J. Phys. Chem. C 113 10647
[8] Kuzmin A, Anspoks A, Kalinko A, Timoshenko J and Kalendarev R 2014 Phys. Scr. 89 044005
[9] Kunz M and Brown I D 1995 J. Solid State Chem. 115 395
[10] Kuzmin A, Anspoks A, Kalinko A, Timoshenko J and Kalendarev R 2015 Sol. Energy Sol. Mater. Cells 143 627
[11] Baudelet F, Kong Q, Nataf L, Cafun J D, Congeduti A, Monza A, Chagnon S and Itié J P 2011 High Press. Res. 31 136
[12] Tetsuo I, Ayako K, Shizue S, Toru I and Hitoshi S 2003 Nature 421 599
[13] Bernardina S D, Alabarse F G, Kalinko A, Roy P, Chapuis M, Vita N, Hienerwadel R, Berthomieu C, Judeinstein P, Zanotti J M, Mantgines J L, Haines J, Catafesta J, Creff G, Manceron L and Brubach J B 2014 Vib. Spectrosc. 75 154
[14] Aksenov V L, Kuzmin A Y, Purans J and Tyutyunnikov S I 2001 Phys. Part. Nucl. 32 675
[15] Kuzmin A 1995 Physico B 208-209 175
[16] Kuzmin A 1997 J. Physique IV (France) 7 C2-213
[17] Kuzmin A and Purans J 2000 J. Phys.: Condens. Matter 12 1959
[18] Kalinko A and Kuzmin A 2011 J. Non-Cryst. Solids 357 2595
[19] Kuzmin A, Kalinko A and Evarestov R A 2013 Acta Mater. 61 371
[20] Kuzmin A, Anspoks A, Kalinko A and Timoshenko J 2013 J. Phys.: Conf. Ser. 430 012109
[21] Ankudinov A L, Ravel B, Rehr J J and Conradson S D 1998 Phys. Rev. B 58 7565
[22] Rehr J J and Albers R C 2000 Rev. Mod. Phys. 72 621
[23] Kuzmin A and Purans J 1993 J. Phys.: Condens. Matter 5 9423