The importance of addressing different Red Lists in conservation studies: an analysis comparing the conservation status of Brazilian mammals

M. C. Drago, D. Vrcibradic

Drago, M. C., Vrcibradic, D., 2021. The importance of addressing different Red Lists in conservation studies: an analysis comparing the conservation status of Brazilian mammals. Animal Biodiversity and Conservation, 44.1: 79–88, Doi: https://doi.org/10.32800/abc.2021.44.0079

Abstract
The importance of addressing different Red Lists in conservation studies: an analysis comparing the conservation status of Brazilian mammals. Red Lists are important conservation tools because they attempt to estimate the extinction risks of species. We compared the conservation status of Brazilian mammals presented in the Brazilian Red Book with those presented in the IUCN Red List, highlighting the importance of each list and why they should be used jointly. Out of 636 species, 181 were considered endemic to Brazil and 121 were considered threatened by at least one of the lists. Considering the complete database, 86 % of the species had the same status on both lists, whereas only 48 % of the threatened species had the same status. Some possible factors responsible for variations are the period in which the evaluations were carried out, the evaluation process and the fact that a species threatened nationally may not be threatened globally. We recommend that communication should be improved, that lists should be kept updated, and that both the type of information and the data itself to be used in the assessments should be standardized.

Key words: Brazilian Red Book of Threatened Fauna, IUCN Red List, Mammalia, Biodiversity, Endemic species, Threatened species

Resumen
La importancia de abordar diferentes Listas Rojas en los estudios de conservación: un análisis que compara el estado de conservación de los mamíferos brasileños. Las Listas Rojas son importantes herramientas de conservación porque intentan estimar el riesgo de extinción de las especies. Comparamos los estados de conservación de los mamíferos brasileños presentados en el Libro Rojo de Brasil con los presentados en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) y destacamos la importancia de cada lista y el motivo por el que se deberían usar conjuntamente. De 636 especies, 181 se consideraron endémicas del Brasil y 121 se consideraron ameazadas en al menos una de las listas. Considerando la base de datos completa, el 86 % de las especies tenía el mismo estado en ambas listas; no obstante, esto solo ocurrió en el 48 % de las especies amenazadas. Las variaciones se explican, entre otros factores, por el período en el que se realizaron las evaluaciones, el proceso de evaluación y el hecho de que una especie amenazada a nivel nacional puede no estarlo a nivel mundial. Recomendamos que se mejore la comunicación, que las listas se mantengan actualizadas y que se estandaricen tanto el tipo de información como los propios datos que se utilizarán en las evaluaciones.

Palabras clave: Libro Rojo de Fauna Amenazada de Brasil, Lista Roja de la UICN, Mammalia, Biodiversidad, Especies endémicas, Especies amenazadas

Received: 23 VII 20; Conditional acceptance: 28 X 20; Final acceptance: 25 XI 20

Matheus C. Drago, Programa de Pós–Graduação em Ciências Biológicas (Biodiversidade Neotropical), Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brasil.– Davor Vrcibradic, Departamento de Zoologia, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brasil.

Corresponding author: Matheus C. Drago. E–mail: matheusdrago96@gmail.com

ORCID ID: M. C. Drago: 0000-0003-3737-8552; D. Vrcibradic: 0000-0002-6355-3441

ISSN: 1578–665 X
eISSN: 2014–928 X

©[2021] Copyright belongs to the authors, who license the journal Animal Biodiversity and Conservation to publish the paper under a Creative Commons Attribution 4.0 License.
Introduction

Biodiversity conservation is one of the biggest challenges facing the current generation (Vale et al., 2009). Megadiverse countries, such as Brazil, therefore have an enormous responsibility when it comes to protecting endangered species (Brandon et al., 2005). The richness of Brazil’s mammal species, for example, is considered by some authors to be the highest in the world, with over 700 species and a high degree of endemism at the national level (Mittermeier et al., 1997; Costa et al., 2005; Lewinsohn and Prado, 2005; Quintela et al., 2020).

When species are assigned to categories (known as conservation status) that represent their degree of threat, their risk of extinction can be estimated, making it easier to infer which species need urgent conservation actions (Peres et al., 2011), evaluate the state of biodiversity, identify sites for conservation action, and inform policy and management (Rodrigues et al., 2006). Red Lists of threatened fauna are, from this point of view, important conservation tools. Having already assessed the global risk of extinction of more than 116,000 species (including more than 5,000 mammals), the International Union for Conservation of Nature (IUCN) has played a major role in making these lists known worldwide. Some of the criteria used in those assessments are restricted geographic distribution, small and declining population size, and, based on quantitative analysis, a high probability of extinction in nature. Its scheme of species classification according to threat status uses the following categories: Not Evaluated (NE), Data Deficient (DD) (when there is no adequate information to assess the risk), Least Concern (LC) (when the species is evaluated but does not fall into the other categories; usually encompassing abundant and widely distributed taxa), Near Threatened (NT) (when the species is close to qualifying as threatened or when it is expected to be classified as such soon), Vulnerable (VU) (when the species faces a high risk of extinction in the wild), Endangered (EN) (when the species faces a very high risk of extinction in the wild), Critically Endangered (CR) (when the species face an even higher risk of extinction in the wild), Extinct in the Wild (EW) and Extinct (EX).

In Brazil, the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), a Brazilian government institution from the Ministry of Environment, periodically publishes the so-called Red Books of Threatened Fauna. These Red Books have a similar role to the IUCN Red Lists, listing the species considered to be threatened nationally, classifying them according to their conservation status, and providing ecological information about them. The most recent Red Book was published in 2018, representing a huge effort to evaluate all described vertebrate taxa occurring in the country and listing 680 mammal species officially known to occur in Brazil. Of these, 108 (15.9 %) were considered nationally threatened (ICMBio/MMA, 2018).

In the present study, we compared the conservation status of Brazilian mammal species listed in the Brazilian Red Book of Threatened Fauna with those presented in the IUCN Red List, highlighting the importance of each list and why they should be used jointly in order to generate even more accurate assessments. We expected to find some differences in the status of species whose geographic distribution was broad and exceeded the country’s territorial limits (i.e. non–endemic species). However, as the national distribution of species that occur exclusively in Brazil (i.e. endemic species) corresponds to their global distribution, we postulated that the status of those species would not vary between lists. In case some endemic species (especially those considered to be threatened) had a different conservation status in each list, we would emphasize the need for special attention the next time their conservation status is assessed.

Material and methods

We compiled a database (see table 1s in supplementary material) containing all Brazilian mammal species (regardless of subspecies) according to the Brazilian Red Book of Threatened Fauna (ICMBio/MMA, 2018), their national (obtained from the Brazilian Red Book itself) and global conservation status (obtained from the IUCN Red List of Threatened Species platform, 2019–3 version), and the year in which the species’ status was assessed in each of the lists. In the Brazilian Red Book, however, the pampas deer (Ozotoceros bezoarticus) and some primates were evaluated only at the subspecific level. In these cases, to standardize our analysis, we chose to consider the status of the least threatened subspecies as the status of the species. Using the data found in the ‘Geographic Range’ section of the IUCN Red List and the Brazilian Red Book, we also added the information of whether a species was endemic to Brazil or not. The lists were then compared according to the conservation status of each species to observe which species differed in status between lists.

We also observed whether each species had the same status on both lists or if it had a lower conservation status (i.e. less threatened) on one of the lists. For example, if a species was assessed as not threatened (i.e. Least Concern or Near Threatened) by the Brazilian Red Book but as threatened (i.e. Vulnerable, Endangered or Critically Endangered) by the IUCN Red List, we considered it had a lower status in the national list. Similarly, if a species was classified as Critically Endangered in the Brazilian Red Book and as Vulnerable in the IUCN Red List, we considered that it had a lower status in the global list, despite being considered threatened by both lists. We made those comparisons considering four different scenarios: a) all species present in our database; b) only the endemic species; c) only the species considered to be threatened (i.e. species classified as either Vulnerable, Endangered or Critically Endangered) by at least one of the lists; d) species considered, simultaneously, as endemic and threatened. These analyses did not include species that were categorized as Data Deficient in either of the lists.
In order to better analyze the differences between the lists, we divided the analyzed species into eight groups based on taxonomy (Order rank) and/or ecological characteristics: Aquatic Mammals (comprising cetaceans and sirenians), Carnivora, Chiroptera, Didelphimorphia, Glires (comprising Rodentia and Lagomorpha), Primates, Ungulates (comprising Artiodactyla and Perissodactyla) and Xenarthra (comprising Pilosa and Cingulata). For each group, we compared the proportions of species classified in each conservation status with lists using Fisher’s exact test (only the species classified as Near Threatened, Vulnerable, Endangered and Critically Endangered were considered). The analyses were performed in R version 4.0.2.

Results

According to the Brazilian Red Book of Threatened Fauna, 680 mammal species were known to occur in Brazil. Since we chose not to include taxa that were not evaluated by the IUCN Red List, as well as those that IUCN considers as subspecies (as opposed to full species), and the candango mouse (Juscelinomys candango), classified as extinct by IUCN, our database comprised 636 species. Additionally, 181 species present in our database (28.5 % of the total) were considered endemic to Brazil, and three other groups presented a low number of endemic species: Carnivora (the hoary fox, Lycalopex vetulus, was the only endemic species), Ungulates (the small red brocket deer, Mazama bororo, was the only endemic species), and Xenarthra (the three–banded armadillo, Tolypeutes tricinctus, and the maned three–toed sloth, Bradypus torquatus, were the only endemic species).

One hundred and twenty–one species (19.0 % of the total) were considered threatened by at least one of the lists (table 1). Of these, 104 were considered threatened according to the Brazilian Red Book, with 54 (51.9 %) being classified as Vulnerable, 40 (38.5 %) as Endangered and 10 (9.6 %) as Critically Endangered. In the IUCN Red List, 40 species (47.1 %) were classified as Vulnerable, 32 (37.6 %) as Endangered and 13 (15.3 %) as Critically Endangered, totaling 85 threatened species. Considering only the endemic species, 70 (38.7 %) are threatened to some level. According to the Brazilian Red Book, 23 (39.0 %) of these endemics are classified as Vulnerable, 29 (49.1 %) as Endangered and seven (11.9 %) as Critically Endangered, totaling 59 species. According to the IUCN Red List, 19 species (35.2 %) are classified as Vulnerable, 23 (42.6 %) as Endangered and 12 (22.2 %) as Critically Endangered, totaling 54 species.

Primates and Glires made up most of the threatened species (table 1). Only one species classified as Critically Endangered according to the IUCN Red List did not belong to one of these two groups: the single–striped opossum (Monodelphis unistriata) (Didelphimorphia). The Brazilian Red Book, however, classified one didelphimorph (the black–shouldered opossum, Caluromysiops irrupta) and two cetaceans (the blue whale, Balaenoptera musculus, and the Franciscana dolphin, Pontoporia blainvillei) as Criti-
Tabla 1. Number of species per group classified under each conservation status according to the Brazilian Red Book (national scale) and the IUCN Red List (global scale).

Group	DD	LC	NT	VU	EN	CR
Aquatic Mammals	8	14	2	3	5	2
Carnivora	1	13	1	12	1	0
Chiroptera	41	126	1	6	1	0
Didelphimorphia	6	38	2	2	1	1
Glires	23	158	5	8	16	2
Primates	9	55	10	14	15	5
Ungulates	3	2	0	6	0	0
Xenarthra	4	10	0	3	1	0
Total (%)	95 (14.9)	416 (65.4)	21 (3.3)	54 (8.5)	40 (6.3)	10 (1.6)

Tabla 1. Número de especies por grupo clasificadas en cada estado de conservación según el Libro Rojo de Brasil (escala nacional) y la Lista Roja de la UICN (escala global).

Group	DD	LC	NT	VU	EN	CR
Aquatic Mammals	4	19	3	5	3	0
Carnivora	0	18	7	2	1	0
Chiroptera	29	140	4	0	2	0
Didelphimorphia	4	42	2	1	0	1
Glires	38	150	4	5	12	3
Primates	4	56	7	18	14	9
Ungulates	1	4	1	5	0	0
Xenarthra	0	12	2	4	0	0
Total (%)	80 (12.6)	441 (69.3)	30 (4.7)	40 (6.3)	32 (5.0)	13 (2.1)

Tabla 1. Número de especies por grupo clasificadas en cada estado de conservación según el Libro Rojo de Brasil (escala nacional) y la Lista Roja de la UICN (escala global).

Group	DD	LC	NT	VU	EN	CR
Aquatic Mammals	0	0	0	0	0	0
Carnivora	0	0	0	1	0	0
Chiroptera	5	5	1	2	0	0
Didelphimorphia	1	5	1	2	0	0
Glires	16	50	3	8	15	2
Primates	5	25	5	8	13	5
Ungulates	0	0	0	1	0	0
Xenarthra	0	0	0	1	1	0
Total (%)	27 (14.9)	85 (47.0)	10 (5.5)	23 (12.7)	29 (16.0)	7 (3.9)
cally Endangered nationally. Proportionally, however, the most threatened groups (i.e. the groups in which the proportion of species classified as Vulnerable, Endangered or Critically Endangered was greater) were Ungulates, Carnivora and Primates (with, respectively, 54.5%, 46.4%, and 39.8% of the species considered threatened in at least one of the lists).

Regarding the conservation status of species by group, the Least Concern status was the one in which most of the species of any group were classified. The group Carnivora, however, presented the most significant difference between the lists, with 13 species considered threatened according to the national list but only three according to the global one (table 1). Statistically significant differences between the proportions of species classified in each conservation status (excluding Least Concern) between the two lists were only observed for the groups Carnivora (p-value = 0.001) and Chiroptera (p-value = 0.01). While the Brazilian list has more species classified as Vulnerable, IUCN classifies more species as Near Threatened. Considering only the endemic species (and also excluding species classified as Least Concern), on the other hand, no statistically significant difference was observed between lists for any group. Although the two lists are similar when considering the total number of species classified in each conservation status; further analysis shows that the equivalence may be apparent, since the status of many species varies between the two lists.

Considering the complete lists and excluding the species that are classified as Data Deficient in either assessment, 420 species (85.7% of the total) had the same conservation status on both lists, whereas 27 (5.5%) had a lower status according to the national assessment, and 43 (8.8%) had a lower status on the global list (table 2). However, when only the endemic species were considered, we observed that 100 species (79.4%) were classified with the same status on both lists, while 16 (12.7%) had a lower status on the national list and 10 (7.9%) had a lower status on the global list (table 2). Nevertheless, divergence between lists was even more pronounced when we restricted our analysis to threatened species. In this case, 51 species (47.7%) had the same conservation status on both lists, 21 (19.6%) had a lower status according to the national assessment, and 35 (32.7%) had a lower status on the global list (table 2). Finally, considering the endemic species that are also threatened, 35 species (60.4%) had the same status on both lists, whereas 13 (22.4%) had a lower status on the national list and 10 (17.2%) on the global list (table 2).

Considering the species analyzed by group, the Carnivora, once again, stands out: of the 13 analyzed species considered to be threatened, 11 (84.6%) had a lower status according to the global assessment. Aquatic Mammals also presented a tendency of divergence between lists: only half of the six species considered had the same conservation status on both lists. The average difference between the years in which species evaluations took place in each list was 2.73 years, with 21 species evaluated in the same year on both lists, six evaluated one year apart, 341 two years apart, 153 three years apart, 17 four years apart, 67 five years apart, 30 six years apart and one that was evaluated seven years apart.

Discussion

Although the two lists pursue the same goal (i.e. to evaluate extinction risks of species and classify them accordingly) and use the same categories of threat and the same criteria on their assessments, the conservation status of more than half of the threatened taxa differed between lists, and this variation was more marked in some mammal groups than in others. Since a species threatened nationally may not be threatened globally (Gädendorfs, 2001), one...
Table 2. Number of species (out of a total of 490) that have either the same or lower conservation status according to the analyzed lists.

All species	Same status in both lists	Lower status in Brazilian Red Book	Lower status in IUCN Red List
Aquatic Mammals	14	1	7
Carnivora	15	1	11
Chiroptera	114	4	3
Didelphimorphia	35	1	5
Glires	148	3	8
Primates	74	17	7
Ungulates	7	0	1
Xenarthra	13	0	1
Total (%)	420 (85.7)	27 (5.5)	43 (8.8)

Endemic species	Same status in both lists	Lower status in Brazilian Red Book	Lower status in IUCN Red List
Aquatic Mammals	0	0	0
Carnivora	0	0	1
Chiroptera	4	2	0
Didelphimorphia	3	1	2
Glires	46	3	6
Primates	45	10	0
Ungulates	1	0	0
Xenarthra	1	0	1
Total (%)	100 (79.4)	16 (12.7)	10 (7.9)

Threatened species	Same status in both lists	Lower status in Brazilian Red Book	Lower status in IUCN Red List
Aquatic Mammals	4	0	6
Carnivora	1	1	11
Chiroptera	1	1	3
Didelphimorphia	0	1	4
Glires	13	3	6
Primates	24	15	3
Ungulates	5	0	1
Xenarthra	3	0	1
Total (%)	51 (47.7)	21 (19.6)	35 (32.7)
of the main reasons why the conservation status of many non–endemic species differ between the two lists becomes clear. If we look at mammal groups composed mostly of species with wide geographic distributions, in which rates of endemism are low (such as the orders Carnivora and Cetacea), this becomes even more evident. Indeed, the groups Carnivora and Aquatic Mammals were those with the greatest proportion of threatened species having a lower status in the global list than on the national list. The puma (Puma concolor), for example, can be found across much of the American continent, from Canada to southern Argentina (Nielsen et al., 2015) and it is classified as Least Concern globally, even though it is considered Vulnerable in Brazil. Similarly, the southern right whale (Eubalaena australis) has a circumpolar distribution across the entire Southern Hemisphere (Cooke and Zerbini, 2018) and is also classified as Least Concern globally, but as Endangered in Brazil. In such cases, the IUCN recommends that national assessments evaluate species as if they were endemic or completely isolated from other populations to obtain a preliminary status. After taking this first step, the status of the species can either be changed or subsequently maintained, considering the possibility of migration of individuals into and out of the region under analysis (IUCN, 2012).

Endemic species, on the other hand, present a more delicate situation. As an endemic species only occurs within a restricted area, its regional population also corresponds to the global one. Therefore, it was expected that the conservation status of endemic species would not differ between national and global lists. However, our analysis has shown that this was not always the case, as the conservation status of 20.6% of the endemic species and of 39.6% of the species that were both threatened and endemic varied between lists. One possible factor responsible for variation in status between lists is the period in which the evaluation of the status of taxa was carried out. However, if we consider the time interval between the national and global evaluations of a given species, it is noteworthy that this never exceeded seven years. Furthermore, the Brazilian three–banded armadillo (Tolypeutes tricinctus) was classified as Endangered according to the Brazilian Red Book and as Vulnerable according to the IUCN Red List, despite being endemic to Brazil and both assessments taking place in 2013. This could indicate that the period in which the evaluation was carried out may not be the only reason for the divergences observed, nor the main reason for all of them. Nonetheless, we recognize that changes in the conservation status of a given species can occur within short periods of time, following new publications concerning reassessments of its geographic distribution and of major changes undergone by its habitat (e.g. Fernandes et al., 2007; Attias et al., 2009; Hirsch and Chiarello, 2012), and taxonomic revisions (especially in cases where a single species is divided into two or more, e.g. Agapow et al., 2004; Nascimento and Feijó, 2017; Ang et al., 2020). The Brazilian Red Book (ICMBio/MMA, 2018) also mentions that more recent and accurate information (especially regarding declines or recoveries of populations) and adjustments in the method itself may be responsible for changes in the conservation status of species, sometimes even resulting in their removal from the list of threatened taxa (i.e. when a species classified as Vulnerable, Endangered or Critically Endangered is re–classified as Least Concern or Near Threatened). This was the case of the humpback whale (Megaptera novaeangliae): previously classified as nationally threatened, the prohibition of whaling activities by the Brazilian government in 1987 resulted in an increase in the number of individuals in national waters (Andriolo et al., 2010; Bortolotto et al., 2016) and led to the re–classification of the species under the Near Threatened status (ICMBio/MMA, 2018).
A possible additional cause of divergences may be the evaluation process itself. Although both lists are based on expert opinion and follow a strict process to have assessments performed as accurately as possible, it should be considered that there may be a subjective component in assessing the risk of losing species (especially if the methods are not strictly followed). Costa et al. (2005) stated that national lists could also benefit from scientific knowledge generated by unpublished data, including theses, dissertations, local journals, and personal field experience. However, we observed that global lists can also use this type of data to assess species extinction risks. Therefore, some divergences between lists may not be related to the type of publication used, but as we have mentioned, to the data and to the process itself.

Some previous works have attempted to evaluate and compare Red Lists in a similar way to ours. However, contrary to what we expected, publications focusing on Brazilian mammals are not that common. Costa et al. (2005) briefly compared the conservation status of threatened Brazilian mammals using the 2003 national list. Nonetheless, in addition to the current list being much more comprehensive than the previous ones, those authors did not carry out as many analyses as we did. The Brazilian national species list was also compared with the IUCN Red List by Brito et al. (2010) in a work that addressed various taxa from three other countries besides Brazil: Colombia, China, and the Philippines. Other relevant works dealing with vertebrate groups other than mammals are those of Garcia and Marini (2006), who focused on threatened species.
Brazilian birds, Morais et al. (2012), who addressed threatened Brazilian amphibians, and Bender et al. (2012), who focused on Brazilian reef fishes. As in our study, these studies found divergences between lists that needed to be resolved because they could raise doubts on the credibility and usefulness of these important conservation tools.

Nonetheless, there is little point in debating whether one list is better than the other. The main goal of our study was to draw attention to the fact that differences in the conservation status of species may exist between global and national lists and that such differences do not necessarily represent errors or outdated information. The two lists are based on different spatial scales and, consequently, have distinct potential uses. The national list (i.e. the Brazilian Red Book), at least in Brazil, is the one used to define which species of Brazilian fauna are considered threatened, so that those species can be fully protected under the Brazilian laws, and actions such as their capture, transportation and commercialization be prohibited. The IUCN, on the other hand, aims to show what actions are needed to save species from extinction and where they should be directed (Rodrigues et al., 2006). The IUCN Red List therefore plays a fundamental role in guiding scientific research, influencing allocation of resources for conservation, and informing policies and conventions (especially international ones) (Rodrigues et al., 2006). Both lists also provide useful information about the assessed species, including their geographic range, ecology, natural history, and the main threats to their survival. It seems reasonable to assume that while regional lists are critical to decision makers within a given country, serving as a basis for the elaboration of national public policies and during the creation of conservation units and other legally protected areas, global lists, which can also guide such actions within a bigger scenario, may function as a “barometer of life” (an expression the IUCN often uses to describe its own potential) at a global scale. The global list gains a greater visibility than national lists, since it is internationally recognized, and is fundamental for the conservation of species with wide geographic distribution.

Assessing the extinction risk of a species is not an easy task since there are uncertainties and predictions throughout the process. We thus recognize the quality of the work that is done by the authorities responsible for evaluations and recommend that communication and information exchange between authorities and researchers be improved. Perhaps the best way to avoid future divergences between lists (especially for endemic species) would be to undertake a joint assessment between the authorities responsible for the national and global assessments. It is also extremely important to keep the lists updated so that they always reflect the current status of each species. Standardizing both the type of information and the data itself to be used in those assessments would, if possible, also be of great value, as would be the presentation, by the Brazilian Red Book, of the conservation status of all species at the specific level (as we have mentioned, some species were evaluated only at the subspecific level).

We also recommend special attention when making future conservation status assessments of species that, although endemic, were classified with different status in each of the lists (see table 3). Additionally, it is important to focus on species classified as Data Deficient since the main reason that leads a species to be classified as such is the lack of adequate information about its distribution and/or its population (ICMBio/MMA, 2018). Thus, the possibility that a given species classified as Data Deficient is threatened should not be overlooked.

Finally, we would like to mention that, while we focused on two main lists in this article, several other lists could be similarly analyzed. The larger the scale, the harder it is to detect and identify eventual regional discrepancies. Thus, state and biome lists, for example, can also be important, especially in a country of continental dimensions like Brazil. Indeed, while a few Brazilian states have their own lists of threatened fauna, most states still lack these (see Brito, 2008). Analyses at smaller scales may allow more accurate conclusions and, when interpreted together, tend to promote a better understanding of how threatened a species really is. In this regard, some recent studies deserve to be highlighted because they have proposed novel approaches related to conservation status assessments using, for example, data on habitat preference and population abundance (e.g. Santini et al., 2019), or on ecological traits (e.g. Davidson et al., 2009). It is also important to highlight that endemism is a relative measure related to the idea of habitat restriction. Since all species end up being endemic to a certain area (although this area may be large enough to correspond to several countries, for example), care must be taken when using this concept. Still, we believe that national lists may be easier to incorporate into effective conservation strategies than international lists. Conflicts in conservation policy can be avoided if the evaluation process is not confounded by processes that do not operate within the study area. Nonetheless, we believe that the use of both global and national lists in a complementary way (or at least the mention, in the publications, of how threatened the studied species is, both at the global level and where the corresponding study took place) tends to make conservation studies and publications more comprehensible, providing readers with a better understanding of how threatened the studied species is.

Acknowledgements

We would like to thank H. G. Bergallo, M. L. Lorini, J. C. Ferreira, L. N. dos Santos, V. A. Menezes, M. Almeida–Santos, J. L. do Nascimento and L. Jerusalinsky for the enlightening conversations and suggestions that contributed to the development of this work. L. M. Raposo for helping with the statistical tests, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the Master’s scholarship granted to MCD and all reviewers who participated in the process leading to the publication of this article.
References

Agapow, P., Bininda–Emonds, O. R. P., Crandall, K. A., Gittleman, J. L., Mace, G. M., Marshall, J. C., Purvis, A., 2004. The impact of species concept on biodiversity studies. The Quarterly Review of Biology, 79: 161–179.

Andriolo, A., Kinas, P. G., Engel, M. H., Martins, C. C. A., Ruffino, A. M., 2010. Humpback whales within the Brazilian breeding ground: distribution and population size estimate. Endangered Species Research, 11: 233–243.

Ang, A., Roesma, D. I., Nijman, V., Meier, R., Srivathsan, A., Rizalda, 2020. Faecal DNA to the rescue: Shotgun sequencing of non–invasive samples reveals two subspecies of Southeast Asian primates to be Critically Endangered species. Scientific Reports, 10: 9396.

Attias, N., Raices, D. S. L., Pessoa, F. S., Albuquerque, H., Jordão–Nogueira, T., Modesto, T. C., Bergallo, H. G., 2009. Potential distribution and new records of Trinomys species (Rodentia: Echimyidae) in the state of Rio de Janeiro. Zoologia, 26: 305–315.

Bender, M. G., Fleeter, S. R., Ferreira, C. E. L., Hanazaki, N., 2012. Mismatches between global, national and local red lists and their consequences for Brazilian reef fish conservation. Endangered Species Research, 18: 247–254.

Bortolotto, G. A., Danilewicz, D., Andriolo, A., Secchi, E. R., Zerbini, A. N., 2016. Whale, whale, everywhere: increasing abundance of Western South Atlantic humpback whale (Megaptera novaeangliae) in their wintering grounds. Plos One, 11: 1–17.

Brandon, K., Fonseca, G. A. B., Rylands, A. B., Silva, J. M. C., 2005. Brazilian Conservation: challenges and opportunities. Conservation Biology, 19: 595–600.

Brito, M. C. W., 2008. Apresentação. In: Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, Volume I: 13 (A. B. M. Machado, G. M. Drummond, A. P. Paglia, Eds.). Fundação Biodiversitas, Belo Horizonte.

Brito, D., Ambal, R. G., Brooks, T., De Silva, N., Foster, M., Hao, W., Hilton–Taylor, C., Paglia, A., Rodríguez, J. P., Rodrigues, J. V., 2010. How similar are national red lists and the IUCN Red List? Biological Conservation, 143: 1154–1158.

Cook, J. G., Zerbini, A. N., 2018. Eubalaena australis. The IUCN Red List of Threatened Species 2018: e.T8153A50354147, http://dx.doi.org/10.2305/IUCN.UK.2018-1.

Costa, L. P., Leite, Y. L. R., Mendes, S. L., Ditchfield, A. D., 2005. Mammal Conservation in Brazil. Conservation Biology, 19: 672–679.

Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H., Ceballos, G., 2009. Multiple ecological pathways to extinction in mammals. Proceedings of the National Academy of Sciences, 106: 10702–10705.

Fernandes, F. A., Fernández–Stolz, G. P., Lopes, C. M., Freitas, T. R. O., 2007. The conservation status of the tuco–tucos, genus Ctenomys (Rodentia: Ctenomyidae) in southern Brazil. Brazilian Journal of Biology, 67: 839–847.

Gádendorfs, U., 2001. Classifying threatened species at national versus global levels. Trends in Ecology and Evolution, 16: 511–516.

Garcia, F. I., Marini, M. A., 2006. Estudo comparativo entre as listas global, nacional e estaduais de aves ameaçadas no Brasil. Natureza e Conservação, 4: 24–49.

Hirsch, A., Chiarello, A. G., 2012. The endangered maned sloth (Bradypus torquatus) of the Brazilian Atlantic Forest: a review and update of the geographical distribution and habitat preference. Mammal Review, 42: 35–54.

ICMBio/MMA, 2018. Livro Vermelho de Fauna Brasileira Ameaçada de Extinção, Volume II, Mammíferos. Instituto Chico Mendes de Conservação da Biodiversidade, Brasília DF, Brazil.

IUCN, 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. IUCN, Gland, Switzerland.

Lewinsohn, T. M., Prado, P. I., 2005. Quantas espécies há no Brasil? Megadiversidade, 1: 36–42.

Mittermeier, R. A., Robles–Gil, P., Mittermeier, C. G., 1997. Megadiversity. Earth’s biologically wealthiest nations. CEMEX, Mexico City.

Morais, A. R., Braga, R. T., Bastos, R. P., Brito, D., 2012. A comparative analysis of global, national, and state red lists for threatened amphibians in Brazil. Biodiversity and Conservation, 21: 2633–2640.

Nascimento, F. O., Feijó, A., 2017. Taxonomic revision of the tigrina Leopardus tigrinus (Schreber, 1775) species group (Carnivora, Felidae). Papéis Avulsos de Zoologia, 57: 231–264.

Nielsen, C., Thompson, D., Kelly, M., Lopez–Gonzalez, C. A., 2015. Puma concolor. The IUCN Red List of Threatened Species 2015: e.T18868A97216466, http://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS. T18868A50663436.en

Peres, M. B., Vercillo, U. E., Dias, B. F. S., 2011. Avaliação do estado de conservação da fauna brasileira e a lista de espécies ameaçadas: o que significa, qual sua importância, como fazer? Biodiversidade Brasileira, número temático: 45–48.

Quintela, F. M., Rosa, C. A., Feijó, A., 2020. Updated and annotated checklist of recent mammals from Brazil. Anais da Academia Brasileira de Ciências, 92 (Suppl. 2): e20191004

Rodrigues, A. S. L., Pilgrim, J. F., Lamoreux, J. F., Hoffman, M., Brooks, T. M., 2006. The value of the IUCN Red List for conservation. Trends in Ecology and Evolution, 21: 71–76.

Santini, L., Butchart, S. H. M., Rondinini, C., Benítez–López, A., Hilbers, J. P., Schipper, A. M., Cengic, M., Tobias, J. A., Huijbregts, M. A. J., 2019. Applying habitat and population density models to land–cover time series to inform IUCN Red Lists assessments. Conservation Biology, 33: 1084–1093.

Vale, M. M., Alves, M. A. S., Lorini, M. L., 2009. Mudanças climáticas: desafios e oportunidades para a conservação da biodiversidade brasileira. Oecologia Brasiliensis, 13: 518–535.
Supplementary material

Table 1s. Mammal species, their conservation status according to the Brazilian Red Book (BR status) and to the IUCN Red List (IUCN status), whether they are endemic or not to Brazil, and the year in which their conservation status was analyzed: E, endemic; * species that were evaluated only as subspecies by the Brazilian Red Book.

Species	Order	Status	Year	BR	IUCN	E
Caluromys lanatus	Didelphimorphia	LC	2013	2013	2015	No
Caluromys philander	Didelphimorphia	LC	2013	2013	2015	No
Caluromysiops irrupta	Didelphimorphia	CR	2013	2013	2015	No
Chironectes minimus	Didelphimorphia	DD	2013	2013	2015	No
Cryptonanus agricolai	Didelphimorphia	LC	2013	2013	2016	Yes
Cryptonanus chacoensis	Didelphimorphia	DD	2013	2013	2016	No
Cryptonanus guahybae	Didelphimorphia	DD	2013	2013	2016	Yes
Didelphis albiventris	Didelphimorphia	LC	2013	2013	2015	No
Didelphis aurita	Didelphimorphia	LC	2013	2013	2015	No
Didelphis imperfecta	Didelphimorphia	LC	2013	2013	2015	No
Didelphis marsupialis	Didelphimorphia	DD	2013	2013	2016	No
Glironia venusta	Didelphimorphia	LC	2013	2013	2015	No
Gracilinanus agilis	Didelphimorphia	LC	2013	2013	2015	No
Gracilinanus emilae	Didelphimorphia	LC	2013	2013	2015	No
Gracilinanus microtarsus	Didelphimorphia	LC	2013	2013	2015	No
Hyladelphys kalinowskii	Didelphimorphia	LC	2013	2013	2016	No
Lutreolina crassicaudata	Didelphimorphia	LC	2013	2013	2016	No
Marmosa constantiae	Didelphimorphia	DD	2013	2013	2016	No
Marmosa demerarai	Didelphimorphia	LC	2013	2013	2015	No
Marmosa lepida	Didelphimorphia	LC	2013	2013	2016	No
Marmosa murina	Didelphimorphia	LC	2013	2013	2015	No
Marmosa paraguayana	Didelphimorphia	LC	2013	2013	2015	No
Marmosa regina	Didelphimorphia	LC	2013	2013	2015	No
Marmosops bishopi	Didelphimorphia	LC	2013	2013	2016	No
Marmosops impavidus	Didelphimorphia	LC	2013	2013	2015	No
Marmosops incanus	Didelphimorphia	LC	2013	2013	2015	Yes
Marmosops neblina	Didelphimorphia	LC	2013	2013	2015	No
Marmosops noctivagus	Didelphimorphia	LC	2013	2013	2015	No
Marmosops ocellatus	Didelphimorphia	NT	2013	2013	2016	No
Marmosops parvidens	Didelphimorphia	LC	2013	2013	2016	No
Marmosops paulensis	Didelphimorphia	VU	2013	2013	2016	Yes
Species	Order	BR	IUCN	BR	IUCN	E
-------------------------	--------------------	----	------	----	------	---
Marmosops pinheiroi	Didelphimorphia	LC	LC	2013	2015	No
Metachirus nudicaudatus	Didelphimorphia	LC	LC	2013	2015	No
Monodelphis americana	Didelphimorphia	LC	LC	2013	2016	No
Monodelphis brevicaudata	Didelphimorphia	LC	LC	2013	2015	No
Monodelphis dimidiata	Didelphimorphia	LC	LC	2013	2016	No
Monodelphis domestica	Didelphimorphia	LC	LC	2013	2016	No
Monodelphis emiliae	Didelphimorphia	LC	LC	2013	2015	No
Monodelphis glorina	Didelphimorphia	LC	LC	2013	2016	No
Monodelphis iheringi	Didelphimorphia	NT	DD	2013	2016	Yes
Monodelphis kunsi	Didelphimorphia	LC	LC	2013	2015	No
Monodelphis scalops	Didelphimorphia	LC	LC	2013	2016	No
Monodelphis unistrata	Didelphimorphia	DD	CR	2013	2016	No
Philander andersoni	Didelphimorphia	LC	LC	2013	2016	No
Philander frenatus	Didelphimorphia	LC	LC	2013	2016	No
Philander mcilhennyi	Didelphimorphia	LC	LC	2013	2015	No
Philander opossum	Didelphimorphia	LC	LC	2013	2016	No
Thylamys karimii	Didelphimorphia	LC	VU	2013	2016	Yes
Thylamys macrurus	Didelphimorphia	EN	NT	2013	2014	No
Thylamys velutinus	Didelphimorphia	VU	NT	2013	2016	Yes
Bradypus torquatus	Pilosa	LC	LC	2013	2013	Yes
Bradypus variegatus	Pilosa	LC	LC	2013	2013	No
Cyclopes didactylus	Pilosa	LC	LC	2013	2013	No
Choleopus didactylus	Pilosa	LC	LC	2013	2013	No
Choleopus hoffmanni	Pilosa	DD	LC	2013	2013	No
Myrmecophaga tridactyla	Pilosa	VU	VU	2013	2013	No
Tamandua tetradactyla	Pilosa	LC	LC	2013	2013	No
Cabassous tatouay	Cingulata	DD	LC	2013	2013	No
Cabassous uncininctus	Cingulata	LC	LC	2013	2013	No
Dasypus hybridus	Cingulata	DD	NT	2013	2013	No
Dasypus kappleri	Cingulata	LC	LC	2013	2013	No
Dasypus novemcinctus	Cingulata	LC	LC	2013	2013	No
Dasypus septemcinctus	Cingulata	LC	LC	2013	2013	No
Euphractus sexcinctus	Cingulata	LC	LC	2013	2013	No
Priodontes maximus	Cingulata	VU	VU	2013	2013	No
Tolypeutes matacus	Cingulata	DD	NT	2013	2013	No
Tolypeutes tricinctus	Cingulata	EN	VU	2013	2013	Yes
Tapirus terrestris	Perissodactyla	VU	VU	2012	2018	No
Blastocerus dichotomus	Artiodactyla	VU	VU	2012	2016	No
Mazama americana	Artiodactyla	DD	DD	2012	2015	No
Species	Order	Status	Year	E		
--------------------	--------------------	--------	------	----		
Mazama bororo	Artiodactyla	VU VU	2012	2015 Yes		
Mazama gouazoubira	Artiodactyla	LC LC	2012	2015 No		
Mazama nana	Artiodactyla	VU VU	2012	2015 No		
Mazama nemorivaga	Artiodactyla	DD LC	2012	2016 No		
Odocoileus virginianus	Artiodactyla	DD LC	2012	2015 No		
Ozotoceros bezoarticus	*Artiodactyla	VU NT	2012	2015 No		
Pecari tajacu	Artiodactyla	LC LC	2012	2011 No		
Tayassu pecari	Artiodactyla	VU VU	2012	2012 No		
Trichechus inunguis	Sirenia	VU VU	2012	2016 No		
Trichechus manatus	Sirenia	EN VU	2012	2008 No		
Eubalaena australis	Cetacea	EN LC	2012	2017 No		
Balaenoptera acutorostrata	Cetacea	LC LC	2012	2018 No		
Balaenoptera bonaerensis	Cetacea	DD NT	2012	2018 No		
Balaenoptera borealis	Cetacea	EN EN	2012	2018 No		
Balaenoptera edeni	Cetacea	DD LC	2012	2017 No		
Balaenoptera musculus	Cetacea	CR EN	2012	2018 No		
Balaenoptera physalus	Cetacea	EN VU	2012	2018 No		
Megaptera novaeangliae	Cetacea	NT LC	2012	2018 No		
Delphinus delphis	Cetacea	DD LC	2012	2008 No		
Feresa attenuata	Cetacea	LC LC	2012	2017 No		
Globicephala macrorhynchus	Cetacea	LC LC	2012	2018 No		
Globicephala melas	Cetacea	LC LC	2012	2018 No		
Grampus griseus	Cetacea	LC LC	2012	2018 No		
Lagenodelphis hosei	Cetacea	DD LC	2012	2018 No		
Orcinus Orca	Cetacea	LC DD	2012	2017 No		
Peponocephala electra	Cetacea	LC LC	2012	2019 No		
Pseudorca crassidens	Cetacea	LC NT	2012	2018 No		
Sotalia fluviatilis	Cetacea	NT DD	2012	2010 No		
Sotalia guianensis	Cetacea	VU NT	2012	2017 No		
Stenella attenuata	Cetacea	LC LC	2012	2018 No		
Stenella clymene	Cetacea	LC LC	2012	2018 No		
Stenella coeruleoalba	Cetacea	LC LC	2012	2018 No		
Stenella frontalis	Cetacea	DD LC	2012	2018 No		
Stenella longirostris	Cetacea	DD LC	2012	2018 No		
Steno bredanensis	Cetacea	LC LC	2012	2018 No		
Tursiops truncatus	Cetacea	DD LC	2012	2018 No		
Inia geoffrensis	Cetacea	EN EN	2012	2018 No		
Kogia breviceps	Cetacea	LC DD	2012	2012 No		
Kogia sima	Cetacea	LC DD	2012	2008 No		
Physeter macrocephalus	Cetacea	VU VU	2012	2008 No		
Species	Order	Status	Year	BR	IUCN	E
-------------------------------	-------------	--------	-------	----	------	----
Pontoporia blainvillei	Cetacea	CR	2012	2017	No	
Ziphius cavirostris	Cetacea	DD	2012	2008	No	
Aotus azarae*	Primates	DD	2013	2015	No	
Aotus nancymae	Primates	LC	2013	2017	No	
Aotus nigriceps	Primates	LC	2013	2015	No	
Aotus trivirgatus	Primates	LC	2013	2015	No	
Aotus vociferans	Primates	LC	2013	2015	No	
Alouatta belzebul	Primates	VU	2013	2019	Yes	
Alouatta caraya	Primates	NT	2013	2008	No	
Alouatta discolor	Primates	VU	2013	2008	Yes	
Alouatta guariba*	Primates	VU	2013	2008	No	
Alouatta juara	Primates	LC	2013	2008	No	
Alouatta macconnelli	Primates	LC	2013	2008	No	
Alouatta nigerimina	Primates	LC	2013	2015	Yes	
Alouatta puruensis	Primates	NT	2013	2008	No	
Alouatta ululata	Primates	EN	2013	2008	Yes	
Ateles belzebuth	Primates	VU	2013	2019	No	
Ateles chamek	Primates	VU	2013	2008	No	
Ateles marginatus	Primates	EN	2013	2019	Yes	
Ateles paniscus	Primates	LC	2013	2019	No	
Brachyteles arachnoides	Primates	EN	2013	2019	Yes	
Brachyteles hypoxanthus	Primates	CR	2013	2019	Yes	
Lagothrix cana	Primates	EN	2013	2008	No	
Lagothrix lagotricha	Primates	VU	2013	2008	No	
Lagothrix poeppigii	Primates	VU	2013	2008	No	
Callibella humilis	Primates	LC	2013	2015	Yes	
Callimico goeldii	Primates	LC	2013	2008	No	
Callithrix aurita	Primates	EN	2013	2015	Yes	
Callithrix flaviceps	Primates	EN	2013	2008	Yes	
Callithrix geoffroyi	Primates	LC	2013	2015	Yes	
Callithrix jacobus	Primates	LC	2013	2015	Yes	
Callithrix kuhlii	Primates	NT	2013	2015	Yes	
Callithrix penicillata	Primates	LC	2013	2015	Yes	
Cebuella pygmaea*	Primates	LC	2013	2015	No	
Leontopithecus caissara	Primates	EN	2013	2008	Yes	
Leontopithecus chrysomelas	Primates	EN	2013	2008	Yes	
Leontopithecus chrysopygus	Primates	EN	2013	2008	Yes	
Leontopithecus rosalia	Primates	EN	2013	2015	Yes	
Mico acariensis	Primates	LC	2013	2015	Yes	
Mico argentatus	Primates	LC	2013	2015	Yes	
Table 1s. (Cont.)

Species	Order	Status	Year	
		BR	IUCN	
Mico chrysoleucos	Primates	LC	LC	2013
Mico emiliae	Primates	LC	LC	2013
Mico humeralifer	Primates	LC	DD	2013
Mico intermedius	Primates	LC	LC	2013
Mico leucippe	Primates	LC	VU	2013
Mico marcai	Primates	DD	DD	2013
Mico mauesi	Primates	LC	LC	2013
Mico melanurus	Primates	NT	LC	2013
Mico nigripicep	Primates	LC	NT	2013
Mico rondoni	Primates	VU	VU	2013
Mico saterei	Primates	LC	LC	2013
Saguinus bicolor	Primates	CR	CR	2013
Saguinus fuscicollis*	Primates	LC	LC	2013
Saguinus fuscus	Primates	LC	LC	2013
Saguinus imperator*	Primates	LC	LC	2013
Saguinus inustus	Primates	LC	LC	2013
Saguinus labiatus*	Primates	LC	LC	2013
Saguinus martinsi*	Primates	NT	NT	2013
Saguinus midas	Primates	LC	LC	2013
Saguinus mystax*	Primates	LC	LC	2013
Saguinus niger	Primates	VU	VU	2013
Saguinus nigricollis	Primates	DD	LC	2013
Cebus albifrons	Primates	LC	LC	2013
Cebus cuscins	Primates	DD	NT	2013
Cebus kaapori	Primates	CR	CR	2013
Saimiri boliviensis	Primates	LC	LC	2013
Saimiri sciuereus	Primates	LC	LC	2013
Saimiri ustus	Primates	NT	NT	2013
Saimiri vanzolini	Primates	VU	VU	2013
Sapajus apella	Primates	LC	LC	2013
Sapajus cay	Primates	VU	LC	2013
Sapajus flavius	Primates	EN	CR	2013
Sapajus libidinosus	Primates	NT	NT	2013
Sapajus macrocephalus	Primates	LC	LC	2013
Sapajus nigritus*	Primates	NT	NT	2013
Sapajus robustus	Primates	EN	EN	2013
Sapajus xanthosternos	Primates	EN	CR	2013
Cacajao ayresi	Primates	DD	VU	2013
Cacajao calvus*	Primates	LC	VU	2013
Cacajao hosomi	Primates	EN	VU	2013
Table 1s. (Cont.)

Species	Order	Status	Year	E	
Cacajao melanocephalus	Primates	LC	2013	2015	No
Callicebus baptista	Primates	DD	2013	2015	Yes
Callicebus barbarabrownae	Primates	CR	2013	2008	Yes
Callicebus bernhardi	Primates	LC	2013	2015	Yes
Callicebus brunnneus	Primates	NT	2013	2008	No
Callicebus caligatus	Primates	LC	2013	2015	Yes
Callicebus cinerascens	Primates	LC	2013	2015	Yes
Callicebus coimbrai	Primates	EN	2013	2008	Yes
Callicebus cupreus	Primates	LC	2013	2015	No
Callicebus donacophilus	Primates	DD	2013	2015	No
Callicebus dubius	Primates	LC	2013	2016	No
Callicebus hoffmannsi	Primates	LC	2013	2015	Yes
Callicebus lucifer	Primates	LC	2013	2015	No
Callicebus lugens	Primates	LC	2013	2015	No
Callicebus melanochir	Primates	VU	2013	2008	Yes
Callicebus moloch	Primates	LC	2013	2008	Yes
Callicebus nigrifrons	Primates	LC	2013	2008	Yes
Callicebus personatus	Primates	VU	2013	2008	Yes
Callicebus purinus	Primates	LC	2013	2015	Yes
Callicebus regulus	Primates	LC	2013	2015	Yes
Callicebus stephennashi	Primates	DD	2013	2015	Yes
Callicebus torquatus	Primates	LC	2013	2015	Yes
Callicebus vieirai	Primates	DD	2013	2015	Yes
Chiropotes albinasus	Primates	NT	2013	2008	Yes
Chiropotes chiroptes	Primates	LC	2013	2015	No
Chiropotes satanas	Primates	CR	2013	2008	Yes
Chiropotes utahickae	Primates	VU	2013	2008	Yes
Pithecia albicans	Primates	LC	2013	2015	Yes
Pithecia monachus	Primates	LC	2013	2015	No
Pithecia pithecia	Primates	LC	2013	2015	No
Atelocynus microtis	Carnivora	VU	2012	2011	No
Cerdocyon thous	Carnivora	LC	2012	2015	No
Chrysocyon brachyurus	Carnivora	VU	2012	2015	No
Lycalopex gymnocercus	Carnivora	LC	2012	2016	No
Lycalopex vetulus	Carnivora	VU	2012	2008	Yes
Speothos venaticus	Carnivora	VU	2012	2011	No
Leopardus colocolo	Carnivora	VU	2012	2014	No
Leopardus geoffroyi	Carnivora	VU	2012	2014	No
Leopardus guttulus	Carnivora	VU	2014	2014	No
Leopardus pardalis	Carnivora	LC	2012	2014	No
Table 1s. (Cont.)

Species	Order	Status BR	Status IUCN	Year BR	Year IUCN	E
Leopardus tigrinus	Carnivora	EN	VU	2014	2016	No
Leopardus wiedii	Carnivora	VU	NT	2012	2014	No
Panthera onca	Carnivora	VU	NT	2012	2016	No
Puma concolor	Carnivora	VU	LC	2012	2014	No
Puma yagouroundi	Carnivora	VU	LC	2012	2014	No
Conepatus chinga	Carnivora	LC	LC	2012	2015	No
Conepatus semistriatus	Carnivora	LC	LC	2012	2015	No
Eira barbara	Carnivora	LC	LC	2012	2015	No
Galictis cuja	Carnivora	LC	LC	2012	2015	No
Galictis vittata	Carnivora	LC	LC	2012	2015	No
Lontra longicaudis	Carnivora	NT	NT	2012	2014	No
Mustela africana	Carnivora	DD	LC	2012	2015	No
Pteronura brasiliensis	Carnivora	VU	EN	2012	2014	No
Otaria flavescens	Carnivora	LC	LC	2012	2015	No
Bassaricyon allenii	Carnivora	LC	LC	2012	2015	No
Nasua nasua	Carnivora	LC	LC	2012	2015	No
Potos flavus	Carnivora	LC	LC	2012	2015	No
Procyon cancrivorus	Carnivora	LC	LC	2012	2015	No
Centronycteris maximiliani	Chiroptera	LC	LC	2013	2016	No
Cormura brevirostris	Chiroptera	LC	LC	2013	2016	No
Cyttarops alecto	Chiroptera	DD	LC	2013	2016	No
Diclidurus albus	Chiroptera	LC	LC	2013	2016	No
Diclidurus ingens	Chiroptera	DD	DD	2013	2016	No
Diclidurus isabella	Chiroptera	DD	LC	2013	2016	No
Diclidurus scutatus	Chiroptera	DD	LC	2013	2016	No
Peropteryx kappleri	Chiroptera	LC	LC	2013	2016	No
Peropteryx leucoptera	Chiroptera	LC	LC	2013	2015	No
Peropteryx macrotis	Chiroptera	LC	LC	2013	2015	No
Peropteryx trinitatis	Chiroptera	DD	DD	2013	2016	No
Rhynchonycteris naso	Chiroptera	LC	LC	2013	2016	No
Saccopteryx bilineata	Chiroptera	LC	LC	2013	2015	No
Saccopteryx canescens	Chiroptera	LC	LC	2013	2015	No
Saccopteryx gymnura	Chiroptera	LC	DD	2013	2016	No
Saccopteryx leptura	Chiroptera	LC	LC	2013	2015	No
Furipterus horrens	Chiroptera	VU	LC	2013	2016	No
Cynomops abrusus	Chiroptera	LC	DD	2013	2016	No
Cynomops greenhalli	Chiroptera	DD	LC	2013	2015	No
Cynomops paranus	Chiroptera	DD	DD	2013	2016	No
Cynomops planirostris	Chiroptera	LC	LC	2013	2015	No
Eumops auripendulus	Chiroptera	LC	LC	2013	2015	No
Species	Order	Status	Year	BR	IUCN	E
-------------------------	-----------	--------	------	------	------	----
Eumops bonariensis	Chiroptera	DD	LC	2013	2016	No
Eumops delticus	Chiroptera	LC	DD	2013	2016	No
Eumops glaucinus	Chiroptera	LC	LC	2013	2016	No
Eumops hansae	Chiroptera	LC	LC	2013	2015	No
Eumops maurus	Chiroptera	LC	DD	2013	2016	No
Eumops patagonicus	Chiroptera	DD	LC	2013	2015	No
Eumops perotis	Chiroptera	LC	LC	2013	2015	No
Eumops trumbulli	Chiroptera	LC	LC	2013	2018	No
Molossops neglectus	Chiroptera	LC	DD	2013	2016	No
Molossops temminckii	Chiroptera	LC	LC	2013	2015	No
Molessus aztecus	Chiroptera	DD	LC	2013	2018	No
Molessus coibensis	Chiroptera	DD	LC	2013	2016	No
Molessus currentum	Chiroptera	DD	LC	2013	2016	No
Molessus molossus	Chiroptera	LC	LC	2013	2015	No
Molessus pretiosus	Chiroptera	DD	LC	2013	2018	No
Molessus rufus	Chiroptera	LC	LC	2013	2015	No
Neoplatymops mattogrossensis	Chiroptera	LC	LC	2013	2018	No
Nyctinomops aurispinosus	Chiroptera	LC	LC	2013	2018	No
Nyctinomops laticaudatus	Chiroptera	LC	LC	2013	2015	No
Nyctinomops macrotis	Chiroptera	LC	LC	2013	2015	No
Promops centralis	Chiroptera	LC	LC	2013	2018	No
Promops nasutus	Chiroptera	LC	LC	2013	2015	No
Tadarida brasiliensis	Chiroptera	LC	LC	2013	2015	No
Pteronotus davyi	Chiroptera	LC	LC	2013	2018	No
Pteronotus gymnnonotus	Chiroptera	LC	LC	2013	2018	No
Pteronotus parnessii	Chiroptera	LC	LC	2013	2016	No
Pteronotus personatus	Chiroptera	LC	LC	2013	2016	No
Natalus macrourus	Chiroptera	VU	NT	2013	2016	No
Noctilio albiventris	Chiroptera	LC	LC	2013	2015	No
Noctilio leporinus	Chiroptera	LC	LC	2013	2015	No
Ametrida centurio	Chiroptera	LC	LC	2013	2016	No
Anoura caudifer	Chiroptera	LC	LC	2013	2016	No
Anoura Geoffroyi	Chiroptera	LC	LC	2013	2016	No
Artibeus concolor	Chiroptera	LC	LC	2013	2016	No
Artibeus fimbriatus	Chiroptera	LC	LC	2013	2015	No
Artibeus lituratus	Chiroptera	LC	LC	2013	2015	No
Artibeus obscurus	Chiroptera	LC	LC	2013	2016	No
Artibeus planirostris	Chiroptera	LC	LC	2013	2015	No
Carolia benkeithi	Chiroptera	LC	LC	2013	2016	No
Carolia brevicauda	Chiroptera	LC	LC	2013	2016	No
Species	Order	Status	Year 1	Year 2	E	
--------------------------	-----------	--------	--------	--------	---	
Carollia perspicillata	Chiroptera	LC	LC	2013	2015	No
Chiroderma doriae	Chiroptera	LC	LC	2013	2015	No
Chiroderma trinitatum	Chiroptera	LC	LC	2013	2016	No
Chiroderma villosum	Chiroptera	LC	LC	2013	2015	No
Chiroderma vizottoi	Chiroptera	DD	DD	2013	2016	Yes
Choeroniscus godmani	Chiroptera	DD	LC	2013	2015	No
Choeroniscus minor	Chiroptera	LC	LC	2013	2016	No
Chrotopterus auritus	Chiroptera	LC	LC	2013	2015	No
Dermanura anderseni	Chiroptera	DD	LC	2013	2016	No
Dermanura cinerea	Chiroptera	DD	LC	2013	2016	No
Dermanura glauca	Chiroptera	DD	LC	2013	2015	No
Dermanura gnoma	Chiroptera	DD	LC	2013	2015	No
Desmodus rotundus	Chiroptera	LC	LC	2013	2015	No
Diaemus youngii	Chiroptera	LC	LC	2013	2015	No
Diphylla ecaudata	Chiroptera	LC	LC	2013	2016	No
Dryadonycteris capixaba	Chiroptera	DD	DD	2013	2016	Yes
Glossophaga commissaris	Chiroptera	LC	LC	2013	2016	No
Glossophaga longirostris	Chiroptera	DD	LC	2013	2017	No
Glossophaga soricina	Chiroptera	LC	LC	2013	2015	No
Glyphonycteris behnii	Chiroptera	LC	DD	2013	2016	No
Glyphonycteris davidii	Chiroptera	LC	LC	2013	2018	No
Glyphonycteris sylvestris	Chiroptera	LC	LC	2013	2018	No
Hsunycteris thomasi	Chiroptera	LC	LC	2013	2015	No
Lampronycteris brachyotis	Chiroptera	LC	LC	2013	2018	No
Lichonycteris degener	Chiroptera	DD	LC	2013	2016	No
Lionycteris spurrelli	Chiroptera	LC	LC	2013	2018	No
Lonchophylla bokermanni	Chiroptera	NT	EN	2014	2016	Yes
Lonchophylla dekeyseri	Chiroptera	EN	EN	2013	2016	No
Lonchophylla mordax	Chiroptera	LC	NT	2013	2016	Yes
Lonchophylla perachil	Chiroptera	LC	LC	2014	2016	Yes
Lonchorhina aurita	Chiroptera	VU	LC	2013	2015	No
Lonchorhina inusitata	Chiroptera	DD	DD	2013	2016	No
Lophostoma brasiliense	Chiroptera	LC	LC	2013	2016	No
Lophostoma carrikeri	Chiroptera	LC	LC	2013	2016	No
Lophostoma schulzi	Chiroptera	LC	LC	2013	2016	No
Lophostoma silvicola	Chiroptera	LC	LC	2013	2016	No
Macrophyllum macrophyllum	Chiroptera	LC	LC	2013	2015	No
Mesophylla macconnelli	Chiroptera	LC	LC	2013	2015	No
Micronycteris brossetii	Chiroptera	DD	DD	2013	2016	No
Micronycteris hirsuta	Chiroptera	LC	LC	2013	2016	No
Species	Order	Status	Year	IUCN	Year	E
-------------------------	----------------	--------	------------	------	------------	----
Micronycteris megalotis	Chiroptera	LC	2013	LC	2015	No
Micronycteris microtis	Chiroptera	LC	2013	LC	2019	No
Micronycteris minuta	Chiroptera	LC	2013	LC	2015	No
Micronycteris sanborni	Chiroptera	LC	2013	LC	2017	Yes
Micronycteris schmidtorum	Chiroptera	LC	2013	LC	2016	No
Mimon bennettii	Chiroptera	LC	2013	LC	2018	No
Mimon crenulatum	Chiroptera	LC	2013	LC	2018	No
Neonycteris pusilla	Chiroptera	DD	2013	DD	2016	Yes
Phyllostoma stenops	Chiroptera	LC	2013	LC	2015	No
Phyllostomus discolor	Chiroptera	LC	2013	LC	2015	No
Phyllostomus elongatus	Chiroptera	LC	2013	LC	2015	No
Phyllostomus hastatus	Chiroptera	LC	2013	LC	2015	No
Phyllostomus latifolius	Chiroptera	LC	2013	LC	2016	No
Platyrrhinus aurarius	Chiroptera	LC	2013	LC	2016	No
Platyrrhinus brachynephalus	Chiroptera	LC	2013	LC	2015	No
Platyrrhinus fusciventris	Chiroptera	LC	2013	LC	2016	No
Platyrrhinus incarum	Chiroptera	LC	2013	LC	2016	No
Platyrrhinus infuscus	Chiroptera	LC	2013	LC	2015	No
Platyrrhinus lineatus	Chiroptera	LC	2013	LC	2015	No
Platyrrhinus recifinus	Chiroptera	LC	2013	LC	2016	Yes
Pygoderma biliatum	Chiroptera	LC	2013	LC	2015	No
Rhinophylla fischerae	Chiroptera	LC	2013	LC	2016	No
Rhinophylla pumilio	Chiroptera	LC	2013	LC	2015	No
Scleronycteris ega	Chiroptera	DD	2013	DD	2016	No
Sphaeronycteris toxophyllum	Chiroptera	DD	2013	LC	2017	No
Sturnira lilium	Chiroptera	LC	2013	LC	2016	No
Sturnira magna	Chiroptera	DD	2013	LC	2015	No
Sturnira tildae	Chiroptera	LC	2013	LC	2016	No
Tonatia bidens	Chiroptera	DD	2013	LC	2016	No
Tonatia saurophila	Chiroptera	LC	2013	LC	2018	No
Trachops cirrhosus	Chiroptera	LC	2013	LC	2015	No
Trinectes nicefori	Chiroptera	LC	2013	LC	2015	No
Uroderma bilobatum	Chiroptera	LC	2013	LC	2019	No
Uroderma magnirostrum	Chiroptera	LC	2013	LC	2015	No
Vampyressa pusilla	Chiroptera	LC	2013	DD	2016	No
Vampyressa thyone	Chiroptera	LC	2013	LC	2015	No
Vampyriscus bidens	Chiroptera	LC	2013	LC	2016	No
Vampyriscus brocki	Chiroptera	LC	2013	LC	2016	No
Vampyrodes caraccioli	Chiroptera	LC	2013	LC	2016	No
Vampyrum spectrum	Chiroptera	LC	2013	NT	2018	No
Table 1s. (Cont.)

Species	Order	Status	Year	IUCN	E			
Xeronycteris vieirai	Chiroptera	VU	DD	2013	2015	Yes		
Thyroptera devivoi	Chiroptera	DD	DD	2013	2015	No		
Thyroptera discifera	Chiroptera	DD	LC	2013	2018	No		
Thyroptera lavali	Chiroptera	DD	DD	2013	2016	No		
Thyroptera tricolor	Chiroptera	LC	LC	2013	2015	No		
Eptesicus andinus	Chiroptera	LC	LC	2013	2016	No		
Eptesicus brasiliensis	Chiroptera	LC	LC	2013	2015	No		
Eptesicus chiriquinus	Chiroptera	LC	LC	2013	2018	No		
Eptesicus diminutus	Chiroptera	LC	LC	2013	2016	No		
Eptesicus furinalis	Chiroptera	LC	LC	2013	2015	No		
Eptesicus taddeii	Chiroptera	VU	DD	2013	2016	Yes		
Histiotus alienus	Chiroptera	DD	DD	2013	2016	No		
Histiotus laephotis	Chiroptera	DD	LC	2013	2019	No		
Histiotus macrotus	Chiroptera	LC	LC	2013	2016	No		
Histiotus montanus	Chiroptera	LC	LC	2013	2016	No		
Histiotus velatus	Chiroptera	LC	DD	2013	2016	No		
Lasiurus blossevillii	Chiroptera	LC	LC	2013	2016	No		
Lasiurus castaneus	Chiroptera	DD	DD	2013	2016	No		
Lasiurus cinereus	Chiroptera	LC	LC	2013	2015	No		
Lasiurus ebenus	Chiroptera	DD	DD	2013	2016	Yes		
Lasiurus ega	Chiroptera	LC	LC	2013	2016	No		
Lasiurus egregius	Chiroptera	DD	DD	2013	2016	No		
Myotis albenscens	Chiroptera	LC	LC	2013	2015	No		
Myotis dinelli	Chiroptera	DD	LC	2013	2016	No		
Myotis izecksohni	Chiroptera	DD	DD	2013	2016	Yes		
Myotis lavali	Chiroptera	DD	LC	2013	2017	No		
Myotis levis	Chiroptera	LC	LC	2013	2016	No		
Myotis nigricans	Chiroptera	LC	LC	2013	2019	No		
Myotis riparius	Chiroptera	LC	LC	2013	2015	No		
Myotis ruber	Chiroptera	LC	NT	2013	2018	No		
Myotis simus	Chiroptera	LC	DD	2013	2016	No		
Rhogeessa hussoni	Chiroptera	LC	DD	2013	2016	No		
Rhogeessa io	Chiroptera	DD	LC	2013	2016	No		
Cavia apera	Rodentia	LC	LC	2014	2016	No		
Cavia fulgida	Rodentia	LC	LC	2014	2016	Yes		
Cavia intermedia	Rodentia	CR	CR	2014	2016	Yes		
Cavia magna	Rodentia	NT	LC	2014	2016	No		
Galea spixii	Rodentia	LC	LC	2014	2016	Yes		
Hydrochoerus hydrochaeris	Rodentia	LC	LC	2014	2016	No		
Kerodon acrobata	Rodentia	VU	DD	2014	2016	Yes		
Species	Order	Status	Year	Status	Year	E		
--------------------------------	-----------	--------	------	--------	------	----		
Kerodon rupestres	Rodentia	VU	2014	LC	2014	Yes		
Abrawayaomys ruschii	Rodentia	LC	2014	LC	2014	No		
Akodon azarae	Rodentia	LC	2014	LC	2014	No		
Akodon cursor	Rodentia	LC	2014	LC	2014	No		
Akodon lindberghi	Rodentia	LC	2014	DD	2014	Yes		
Akodon mystax	Rodentia	VU	2014	DD	2014	Yes		
Akodon montensis	Rodentia	LC	2014	LC	2014	No		
Akodon paranaensis	Rodentia	LC	2014	LC	2014	No		
Akodon reigi	Rodentia	LC	2014	LC	2014	No		
Akodon sanctipaulensis	Rodentia	DD	2014	DD	2014	Yes		
Bibimys labiosus	Rodentia	LC	2014	LC	2014	No		
Blarinomys breviceps	Rodentia	LC	2014	LC	2014	No		
Brucepattersonius griserufescens	Rodentia	LC	2014	DD	2014	Yes		
Brucepattersonius heringi	Rodentia	LC	2014	LC	2014	No		
Brucepattersonius igniventris	Rodentia	DD	2014	DD	2014	Yes		
Brucepattersonius soncinus	Rodentia	LC	2014	DD	2014	Yes		
Calomys callidus	Rodentia	LC	2014	LC	2014	No		
Calomys callosus	Rodentia	LC	2014	LC	2014	No		
Calomys expulsus	Rodentia	LC	2014	LC	2014	Yes		
Calomys laucha	Rodentia	LC	2014	LC	2014	No		
Calomys tener	Rodentia	LC	2014	LC	2014	No		
Calomys tocantinsi	Rodentia	LC	2014	LC	2014	No		
Cerradomys maracajuensis	Rodentia	LC	2014	LC	2014	Yes		
Cerradomys marinus	Rodentia	LC	2014	LC	2014	Yes		
Cerradomys scotti	Rodentia	LC	2014	LC	2014	No		
Cerradomys subflavus	Rodentia	LC	2014	LC	2014	No		
Delomys dorsalis	Rodentia	LC	2014	LC	2014	No		
Delomys sublineatus	Rodentia	LC	2014	LC	2014	Yes		
Deltamys kempii	Rodentia	LC	2014	LC	2014	No		
Drymoreomys albimaculatus	Rodentia	DD	2014	NT	2014	Yes		
Euryoryzomys lamia	Rodentia	EN	2014	VU	2014	Yes		
Euryoryzomys russatus	Rodentia	LC	2014	LC	2014	No		
Euryoryzomys emmonsae	Rodentia	LC	2014	DD	2014	Yes		
Euryoryzomys macconnelli	Rodentia	LC	2014	LC	2014	No		
Euryoryzomys nitidus	Rodentia	LC	2014	LC	2014	No		
Holochilus brasiensis	Rodentia	LC	2014	LC	2014	No		
Holochilus chacarius	Rodentia	LC	2014	LC	2014	No		
Holochilus sciureus	Rodentia	LC	2014	LC	2014	No		
Hylaeamys laticeps	Rodentia	LC	2014	VU	2014	Yes		
Hylaeamys megacephalus	Rodentia	LC	2014	LC	2014	No		
Species	Order	Status	Year	Status	Year	E		
-------------------------------	---------	---------	--------	---------	--------	-----		
Hylaeamys oniscus	Rodentia	NT	2014	NT	2014	Yes		
Hylaeamys perenensis	Rodentia	LC	2014	LC	2014	No		
Hylaeamys yunganus	Rodentia	LC	2014	LC	2014	No		
Juliomys pictipes	Rodentia	LC	2014	LC	2014	No		
Juliomys rimosfrons	Rodentia	NT	2014	NT	2014	Yes		
Kunsia tomentosus	Rodentia	DD	2014	LC	2014	No		
Lundomys molitor	Rodentia	DD	2014	LC	2014	No		
Microakodontomys transitorius	Rodentia	EN	2014	EN	2014	Yes		
Neacomys minutus	Rodentia	LC	2014	LC	2014	Yes		
Neacomys dubosti	Rodentia	LC	2014	LC	2014	No		
Neacomys musseri	Rodentia	LC	2014	LC	2014	No		
Neacomys paracou	Rodentia	LC	2014	LC	2014	No		
Neacomys spinosus	Rodentia	LC	2014	LC	2014	No		
Necromys lasiurus	Rodentia	LC	2014	LC	2014	No		
Necromys lenguarum	Rodentia	LC	2014	LC	2014	No		
Nectomys apicalis	Rodentia	LC	2014	LC	2014	No		
Nectomys rattus	Rodentia	LC	2014	LC	2014	No		
Nectomys squamipes	Rodentia	LC	2014	LC	2014	No		
Neusticomys ferreirai	Rodentia	LC	2014	DD	2014	Yes		
Neusticomys oyapocki	Rodentia	LC	2014	DD	2014	No		
Oecomys auyantepui	Rodentia	LC	2014	LC	2014	No		
Oecomys bicolor	Rodentia	LC	2014	LC	2014	No		
Oecomys catherinae	Rodentia	LC	2014	LC	2014	No		
Oecomys cleberi	Rodentia	LC	2014	DD	2014	Yes		
Oecomys concolor	Rodentia	LC	2014	LC	2014	No		
Oecomys mamorae	Rodentia	LC	2014	LC	2014	No		
Oecomys paricola	Rodentia	LC	2014	DD	2014	No		
Oecomys rex	Rodentia	LC	2014	LC	2014	No		
Oecomys roberti	Rodentia	LC	2014	LC	2014	No		
Oecomys rutilus	Rodentia	LC	2014	LC	2014	No		
Oecomys superans	Rodentia	LC	2014	LC	2014	No		
Oecomys trinitatis	Rodentia	LC	2014	LC	2014	No		
Oligoryzomys chacoensis	Rodentia	LC	2014	LC	2014	No		
Oligoryzomys flavescens	Rodentia	LC	2014	LC	2014	No		
Oligoryzomys microtis	Rodentia	LC	2014	LC	2014	No		
Oligoryzomys moojeni	Rodentia	LC	2014	DD	2014	Yes		
Oligoryzomys nigripes	Rodentia	LC	2014	LC	2014	No		
Oligoryzomys rupestris	Rodentia	EN	2014	DD	2014	Yes		
Oligoryzomys stramineus	Rodentia	LC	2014	LC	2014	Yes		
Oxymycterus amazonicus	Rodentia	LC	2014	LC	2014	Yes		
Species	Order	Status	Year	BR	IUCN	BR	IUCN	E
--------------------------	--------------	--------	------	----	------	----	------	---
Oxymycterus dasytrichus	Rodentia	LC	2014	LC		2014	LC	Yes
Oxymycterus delator	Rodentia	LC	2014	LC		2014	LC	No
Oxymycterus inca	Rodentia	DD	2014	LC		2014	LC	No
Oxymycterus nasutus	Rodentia	LC	2014	LC		2014	LC	No
Oxymycterus quaestor	Rodentia	LC	2014	LC		2014	LC	No
Oxymycterus rufus	Rodentia	DD	2014	LC		2014	LC	No
Phaenomys ferrugineus	Rodentia	DD	2014	EN		2014	EN	Yes
Pseudoryzomys simplex	Rodentia	LC	2014	LC		2014	LC	No
Rhagomys rufescens	Rodentia	LC	2014	VU		2014	VU	Yes
Reithrodon typicus	Rodentia	NT	2014	LC		2014	LC	No
Rhipidomys cariri	Rodentia	VU	2014	DD		2014	DD	Yes
Rhipidomys emiliae	Rodentia	DD	2014	LC		2014	LC	Yes
Rhipidomys gardneri	Rodentia	LC	2014	LC		2014	LC	No
Rhipidomys ipukensis	Rodentia	DD	2014	DD		2014	DD	Yes
Rhipidomys itoan	Rodentia	DD	2014	LC		2014	LC	Yes
Rhipidomys leucodactylus	Rodentia	LC	2014	LC		2014	LC	No
Rhipidomys macrurus	Rodentia	LC	2014	LC		2014	LC	Yes
Rhipidomys mastacalis	Rodentia	LC	2014	LC		2014	LC	Yes
Rhipidomys nitelata	Rodentia	LC	2014	LC		2014	LC	No
Rhipidomys tribei	Rodentia	EN	2014	DD		2014	DD	Yes
Scapteromys aquaticus	Rodentia	LC	2014	LC		2014	LC	No
Scapteromys tumidus	Rodentia	DD	2014	LC		2014	LC	No
Scolomys ucayalensis	Rodentia	LC	2014	LC		2014	LC	No
Sigmodon alstoni	Rodentia	LC	2014	LC		2014	LC	No
Sooretamys angouya	Rodentia	LC	2014	LC		2014	LC	No
Thalpomys cerradensis	Rodentia	VU	2014	LC		2014	LC	Yes
Thalpomys lasiolis	Rodentia	EN	2014	LC		2014	LC	Yes
Thaptomys nigrita	Rodentia	LC	2014	LC		2014	LC	No
Wedomys cerradensis	Rodentia	LC	2014	DD		2014	DD	Yes
Wedomys pyrrhorhinos	Rodentia	LC	2014	LC		2014	LC	Yes
Wilfredomys oenax	Rodentia	EN	2014	EN		2014	EN	No
Zygodontomys brevicauda	Rodentia	LC	2014	LC		2014	LC	No
Ctenomys flamarioni	Rodentia	EN	2014	EN		2014	EN	Yes
Ctenomys ibicuiensis	Rodentia	NT	2014	DD		2014	DD	Yes
Ctenomys lami	Rodentia	EN	2014	VU		2014	VU	Yes
Ctenomys minutus	Rodentia	VU	2014	DD		2014	DD	Yes
Ctenomys nattereri	Rodentia	DD	2014	LC		2014	LC	No
Ctenomys torquatus	Rodentia	LC	2014	LC		2014	LC	No
Cuniculus paca	Rodentia	LC	2014	LC		2014	LC	No
Dasyprocta azarae	Rodentia	LC	2014	DD		2014	DD	No
Table 1s. (Cont.)

Species	Order	Status	Year	IUCN	E			
Dasyprocta croconota	Rodentia	LC	2014	2016	Yes			
Dasyprocta fuliginosa	Rodentia	LC	2014	2016	No			
Dasyprocta iacki	Rodentia	LC	2014	2016	Yes			
Dasyprocta leporina	Rodentia	LC	2014	2016	No			
Dasyprocta prymnolopha	Rodentia	LC	2014	2016	Yes			
Myoprocta acouchy	Rodentia	LC	2014	2016	No			
Myoprocta pratti	Rodentia	LC	2014	2016	No			
Dinomys branickii	Rodentia	DD	2014	2016	Yes			
Callistomys pictus	Rodentia	EN	2014	2016	Yes			
Carterodon sucidens	Rodentia	DD	2014	2016	Yes			
Clyomys laticeps	Rodentia	LC	2014	2016	No			
Dactylomys boliviensis	Rodentia	LC	2014	2016	No			
Dactylomys dactylinus	Rodentia	LC	2014	2016	No			
Echimys chrysurus	Rodentia	LC	2014	2016	No			
Echimys vieirai	Rodentia	DD	2014	2016	Yes			
Euryzygomatomys spinosus	Rodentia	LC	2014	2016	No			
Isothrix bistriata	Rodentia	LC	2014	2016	No			
Isothrix negensis	Rodentia	LC	2014	2016	No			
Isothrix pagueros	Rodentia	LC	2014	2016	Yes			
Isothrix sinnamariensis	Rodentia	LC	2014	2016	No			
Kannabateomys amblyonyx	Rodentia	LC	2014	2016	No			
Lonchothrix emiliae	Rodentia	DD	2014	2016	Yes			
Makalata didelphoides	Rodentia	LC	2014	2016	No			
Makalata macrura	Rodentia	LC	2014	2016	No			
Makalata obscura	Rodentia	DD	2014	2016	Yes			
Mesomys hispidus	Rodentia	LC	2014	2016	No			
Mesomys occultus	Rodentia	LC	2014	2016	Yes			
Mesomys stimulax	Rodentia	LC	2014	2016	Yes			
Myocastor cupus	Rodentia	LC	2014	2016	No			
Phyllomys brasiliensis	Rodentia	EN	2014	2016	Yes			
Phyllomys dasythrix	Rodentia	LC	2014	2016	Yes			
Phyllomys kerri	Rodentia	DD	2014	2016	Yes			
Phyllomys lamarum	Rodentia	DD	2014	2016	Yes			
Phyllomys lundi	Rodentia	EN	2014	2016	Yes			
Phyllomys mantiqueirensis	Rodentia	DD	2014	2016	Yes			
Phyllomys medius	Rodentia	LC	2014	2016	Yes			
Phyllomys nigrispinus	Rodentia	LC	2014	2016	Yes			
Phyllomys pattoni	Rodentia	LC	2014	2016	Yes			
Phyllomys sulinus	Rodentia	LC	2014	2016	Yes			
Phyllomys thomasi	Rodentia	EN	2014	2016	Yes			
Species	Order	Status	Year	BR	IUCN	E		
-------------------------	-------------	--------	------------	------	--------	---		
Phyllomys unicolor	Rodentia	CR	2014	2016	Yes			
Proechimys brevicauda	Rodentia	LC	2014	2016	No			
Proechimys cuvieri	Rodentia	LC	2014	2016	No			
Proechimys echinothrix	Rodentia	LC	2014	2016	Yes			
Proechimys gardneri	Rodentia	LC	2014	2016	No			
Proechimys goeldii	Rodentia	LC	2014	2016	Yes			
Proechimys guyannensis	Rodentia	LC	2014	2016	No			
Proechimys kuliniae	Rodentia	LC	2014	2016	No			
Proechimys longicaudatus	Rodentia	LC	2014	2016	No			
Proechimys pattoni	Rodentia	LC	2014	2016	No			
Proechimys quadruplicatus	Rodentia	LC	2014	2016	No			
Proechimys roberti	Rodentia	LC	2014	2016	Yes			
Proechimys simonsi	Rodentia	LC	2014	2016	No			
Proechimys steerei	Rodentia	LC	2014	2016	No			
Thrichomys apereoides	Rodentia	LC	2014	2016	Yes			
Thrichomys laurentius	Rodentia	LC	2014	2016	Yes			
Thrichomys inermis	Rodentia	LC	2014	2016	Yes			
Thrichomys pachyurus	Rodentia	LC	2014	2016	No			
Toromys grandis	Rodentia	LC	2014	2016	Yes			
Trinomys albispinus	Rodentia	LC	2014	2016	Yes			
Trinomys dimidatus	Rodentia	LC	2014	2016	Yes			
Trinomys eliasi	Rodentia	VU	2014	2016	Yes			
Trinomys iheringi	Rodentia	LC	2014	2016	Yes			
Trinomys mirapitanga	Rodentia	EN	2014	2016	Yes			
Trinomys moojeni	Rodentia	EN	2014	2016	Yes			
Trinomys paratus	Rodentia	LC	2014	2016	Yes			
Trinomys setosus	Rodentia	LC	2014	2016	Yes			
Trinomys yonenagae	Rodentia	EN	2014	2016	Yes			
Chaetomys subspinus	Rodentia	VU	2014	2016	Yes			
Coendou bicolor	Rodentia	LC	2014	2016	No			
Coendou baturitensis	Rodentia	DD	2014	2016	Yes			
Coendou insidiosus	Rodentia	LC	2014	2016	Yes			
Coendou melanurus	Rodentia	LC	2014	2016	No			
Coendou nycthemera	Rodentia	LC	2014	2016	Yes			
Coendou prehensilis	Rodentia	LC	2014	2016	No			
Coendou roosmalenorum	Rodentia	LC	2014	2016	No			
Coendou speratus	Rodentia	EN	2014	2013	Yes			
Coendou spinosus	Rodentia	LC	2014	2016	No			
Guerlinguetus aequans	Rodentia	LC	2014	2016	No			
Hadrosciurus igniventris	Rodentia	LC	2014	2016	No			
Species	Order	Status	Year	BR	IUCN	BR	IUCN	E
------------------------	------------	--------	------	----	------	----	------	---
Hadrosciurus pyrrhinus	Rodentia	LC	DD	2014	2016	No		
Hadrosciurus spadiceus	Rodentia	LC	LC	2014	2016	No		
Microsciurus flaviventer	Rodentia	LC	LC	2014	2016	No		
Sciurillus pusillus	Rodentia	LC	LC	2014	2016	No		
Sylvilagus brasiliensis	Lagomorpha	LC	EN	2014	2018	Yes		