1: Catch sizes

We used generalized additive models (GAMs) to model temporal changes in best catch sizes for 13 of the most frequent target species family (local Malagasy name) identified from the interviews. GAMs were ideally suited to the structure of our data and the nature of our analysis because: 1) their non-parametric smoothing function (hereafter referred to as smoothers) allowed us to model nonlinear temporal trends (62,63); 2) they can incorporate both continuous and categorical variables; 3) they can accommodate random effects; and, 4) they estimate the shape of the relationship from the data itself (we did not have to specify any a-priori shape). For these reasons, GAM represented a flexible and powerful approach to model temporal trends in best catches, as well as their nature and timing.

For this analysis, you will need the following packages:

```r
library(mgcv) # GAM fitting
library(ggplot2) # plots
library(mgcViz) # plotting GAM
```

1.1 Load data

Here, we will use the “Catches.txt” dataset. In the code below, I named it ten_main.

```r
head(ten_main)
```

```
## Fisher_ID malagasy Nom_courant Family Genus species Quantite Year Technique
## 59 73 Ankasera Barracuda Sphyraenidae Sphyraena Sphyraena_barracuda 150 1997 Hook
## 60 73 Ankasera Barracuda Sphyraenidae Sphyraena Sphyraena_barracuda 150 2007 Hook
## 61 27 Ankasera Barracuda Sphyraenidae Sphyraena Sphyraena_barracuda 60 2012 Hook
## 62 61 Ankasera Barracuda Sphyraenidae Sphyraena Sphyraena_barracuda 60 2007 Filets
## 63 68 Ankasera Barracuda Sphyraenidae Sphyraena Sphyraena_barracuda 60 2007 Hook
## 64 83 Ankasera Barracuda Sphyraenidae Sphyraena Sphyraena_barracuda 60 2007 Filets
```

1.2 GAM fitting

We use negative binomial GAMs and a logit link. A first model (Mod1) included different intercept for each species, a smoother for time, and its interaction with species. As perceptions can vary among fishermen, we fit fisherman identity as a random intercept and slope. To investigate plausible alternative hypotheses, we also construct several additional candidate models:

- Mod2 included the species intercept and a smoother for time.
- Mod3 includes the species intercept.
• Mod4 includes the time smoother.

```r
# with species intercept, time smoother, interaction between the two, random slope+intercept
Mod1 <- gam(Quantite ~ malagasy + s(Year,bs="re") + s(Fisher_ID, Year, bs="re"),
data=ten_main,method="REML",family=nb()) # with random

# with species intercept, time smoother, and random slope+intercept
Mod2 <- gam(Quantite ~ malagasy + s(Year) + s(Fisher_ID, bs="re") + s(Fisher_ID, Year, bs="re"),
data=ten_main,method="REML",family=nb()) # with random

# with species intercept, time linear, and random slope + intercept
Mod3 <- gam(Quantite ~ s(Year) + s(Fisher_ID, bs="re") + s(Fisher_ID, Year, bs="re"),
data=ten_main,method="REML",family=nb()) # with random

# with random
Mod4 <- gam(Quantite ~ s(Year) + s(Fisher_ID, bs="re") + s(Fisher_ID, Year, bs="re"),
data=ten_main,method="REML",family=nb()) # with random
```

1.3 GAM Model selection

We identify the best model as the one with; the lowest AIC criterion, highest restricted log-likelihood, and highest explanatory power.

```r
modAIC <- AIC(Mod1,Mod2,Mod3,Mod4)
modAIC$spcrit <- c(summary(Mod1)$sp.criterion, summary(Mod2)$sp.criterion, summary(Mod3)$sp.criterion, summary(Mod4)$sp.criterion)
modAIC$rsq <- c(summary(Mod1)$r.sq, summary(Mod2)$r.sq, summary(Mod3)$r.sq, summary(Mod4)$r.sq)
modAIC$devexp <- c(summary(Mod1)$dev.expl, summary(Mod2)$dev.expl, summary(Mod3)$dev.expl, summary(Mod4)$dev.expl)
modAIC
```

	df	AIC	spcrit	rsq	dexp
Mod1	39.737631	4958.133	2477.603	0.16267807	0.48032022
Mod2	19.313170	4936.808	2471.420	0.16463800	0.46278094
Mod3	14.979450	4986.506	2493.368	0.16609875	0.40867742
Mod4	9.163456	5268.838	2641.140	0.01742669	0.05915808

Furthermore, we can evaluate the significance of the fixed effect using Wald's test.

```r
anova.gam(Mod1,Mod2,test="F") # the interaction is not significant.
```

```
## Analysis of Deviance Table
##
## Model 1: Quantite ~ malagasy + s(Year, by = malagasy) + s(Fisher_ID, bs = "re") +
##   s(Fisher_ID, Year, bs = "re")
## Model 2: Quantite ~ malagasy + s(Year) + s(Fisher_ID, bs = "re") + s(Fisher_ID,
##   Year, bs = "re")
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 519.65 4878.7
## 2 542.82 4898.2 -23.17 -19.524 0.6798
```

```r
anova.gam(Mod2,Mod3,test="F")
```

```
## Analysis of Deviance Table
##
## Model 1: Quantite ~ malagasy + s(Year) + s(Fisher_ID, bs = "re") + s(Fisher_ID,
##   Year, bs = "re")
## Model 2: Quantite ~ malagasy + s(Fisher_ID, bs = "re") + s(Fisher_ID,
```
Analysis of Deviance Table

Model 1: Quantite ~ malagasy + s(Year) + s(Fisher_ID, bs = "re") + s(Fisher_ID, Year, bs = "re")
Model 2: Quantite ~ s(Year) + s(Fisher_ID, bs = "re") + s(Fisher_ID, Year, bs = "re")

Model	Resid. Df	Resid. Dev	Df Deviance	Pr(>Chi)
1	542.82	4898.2		
2	552.79	5250.5	-9.9612	< 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

1.4 GAM model diagnosis

gam.check(Mod2)

Method: REML Optimizer: outer newton
full convergence after 7 iterations.
Gradient range [-0.00515281,0.0001353548]
(score 2471.42 & scale 1).
Hessian positive definite, eigenvalue range [0.0003647243,299.3576].
Model rank = 24 / 24

Basis dimension (k) checking results. Low p-value (k-index<1) may indicate that k is too low, especially if edf is close to k'.

3
The plots show that the model fits well, but K is low. Let’s try to increase K and see if we can get p > 0.05. However, when increasing k, edf and k don’t really change. This shows that the model is fine; for this reason, default k (k=10) is fine.

1.5 Plot GAM

```r
#convert the gam to the gamviz class
b<- getViz(Mod2)
o <- plot(sm(b,1)) # this plots the first smooth component

plot(sm(b,1)) + l_fitLine(colour = "red", size=2) + # this adds the fitline
l_rug(mapping = aes(x=x, y=y), alpha = 0.8) + # add rugs on x and y axes
l_ciLine(level=0.95, colour = "blue", linetype = 2,size=2) + # 95% confidence intervals
l_points(shape = 21, size = 3) +
ylim(-1.5)
theme(axis.text = element_text(size=20,face="bold"),
      axis.title = element_text(size=24,face="bold"),
      panel.grid.major.y = element_blank(),
      panel.grid.major.x = element_line(colour = "grey"))
```

	k'	edf	k-index	p-value
s(Year)	9.0000	3.5636	0.59	<2e-16 ***
s(Fisher_ID)	1.0000	0.0103	0.50	<2e-16 ***
s(Fisher_ID,Year)	1.0000	0.8769	0.70	<2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2. Fishing site locations

Here, we used generalized linear models (GLM) to model temporal changes in best catch sizes for 13 of the most frequent target species family (local Malagasy name) identified from the interviews.
2.1 Load data

Here, we will use the “Distance.txt” dataset. In the code below, I named it Fi.

```
head(Fi)
```

```
# Organize levels for plotting later
Fi$TechP = factor(Fi$TechP, levels = c("Hook", "Net", "Diving", "Trap"))
```

2.2 GLM fitting

To model temporal changes in fishing distance from the shore, we specified a poisson distribution and a log link. As the magnitude of the perceived changes could vary by gear, we fitted a first model (Mod1b) with an interaction between fishing gear and time as a fixed effect. Mod2b included an intercept for gear and time; Mod 3 and 4 included either one of the gear intercept or time.

```
M1 <- glm(Dist.m ~ Date * TechP, family = poisson, data = Fi)
M2 <- glm(Dist.m ~ Date + TechP, family = poisson, data = Fi)
M3 <- glm(Dist.m ~ TechP, family = poisson, data = Fi)
M4 <- glm(Dist.m ~ Date, family = poisson, data = Fi)
```

2.3 GLM selection

We identified the best model based on the lowest AIC and the variance explained.

```
AIC(M1, M2, M3, M4)
```

```
# df  AIC
# M1  8 732274.4
# M2  5 738363.5
# M3  4 802406.8
# M4  2 875276.7
```

```
with(summary(M1), 1 - deviance/null.deviance)
```

```
## [1] 0.2291898
```

```
with(summary(M2), 1 - deviance/null.deviance)
```

```
## [1] 0.2227572
```
Use likelihood ratio test to test the significance of each fixed effects.

```r
anova(M1,M2,test="Chisq")
```

```r
## Analysis of Deviance Table
## Model 1: Dist.m ~ Date * TechP
## Model 2: Dist.m ~ Date + TechP
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 199 730366
## 2 202 736461 -3 -6095 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```r
anova(M2,M3,test="Chisq")
```

```r
## Analysis of Deviance Table
## Model 1: Dist.m ~ Date + TechP
## Model 2: Dist.m ~ TechP
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 202 736461
## 2 203 800506 -1 -64045 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```r
anova(M2,M4,test="Chisq")
```

```r
## Analysis of Deviance Table
## Model 1: Dist.m ~ Date + TechP
## Model 2: Dist.m ~ Date
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 202 736461
## 2 205 873380 -3 -136919 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```r
##2.4 GLM model diagnosis
```

```r
par(mfrow=c(2,2))
plot(M1)
```
There are some outliers - those are individuals who have boats with engines, and so they go much further from the shore. The results are similar when the models are run without them. I chose to keep the outliers in because it is an adaptation and it does not affect model fitting.

2.5 GLM plotting

```r
Fi <- Fi[complete.cases(Fi$Dist.m),]
Fi <- Fi[complete.cases(Fi$TechP),]

int <- M1$coefficients[1]  #baseline; intercept for year=0 and technique=Hook
Dat <- M1$coefficients[2]  #multiplicative term for one unit increase in time
Net <- M1$coefficients[3]  #relative to hook
Div <- M1$coefficients[4]
Trp <- M1$coefficients[5]
Dat_Net <- M1$coefficients[6]
Dat_Div <- M1$coefficients[7]
Dat_Trp <- M1$coefficients[8]

ggplot(data=Fi,aes(x=Date,y=Dist.m)) +
  geom_point(shape=21,colour="black",size=3,aes(fill=TechP)) +
  stat_function(colour="navyblue",size=2, fun=function(Date) exp(int+Dat*Date)) +
  stat_function(colour="red",size=2, fun=function(Date) exp(int+Net+(Dat+Dat_Net)*Date)) +
  stat_function(colour="seagreen3",size=2, fun=function(Date) exp(int+Div+(Dat+Dat_Div)*Date)) +
  stat_function(colour="gold",size=2, fun=function(Date) exp(int+Trp+(Dat+Dat_Trp)*Date)) +
  scale_fill_manual(values=c("navyblue","red","seagreen3","gold")) +
  xlab("Year") + ylab("Distance (m)") +
  theme_classic()+
  ylim(c(0,15000))+
  theme(axis.text=element_text(size=16,face="bold"),
        axis.title=element_text(size=22,face="bold"),
        panel.grid.major.y = element_blank(),
        panel.grid.major.x = element_line(colour = "grey"),
        legend.title=element_blank(),
        legend.text=element_text(size=14))
```

Warning: Removed 4 rows containing missing values (geom_point).
