Evaluation of Anti-Cancer Effects of Alcoholic Extract of Ginger on \textit{SORT1} Gene Expression and Viability of the A2780s Ovarian Cancer Cell Line

Zahra Lotfi1, Majid Morovati-Sharifabad1*, Elham Salehi1, Fatemeh Sarkargar2, Gholamhossein Pourghanbari3

1. Department of Basic Sciences, Faculty of Veterinary Medicine, Ardakan University, Ardakan, Iran.
2. Expert Laboratory of Genetic, Meybod Genetic Research Center, Meybod, Iran.
3. Department of Clinical Sciences, Faculty of Veterinary Medicine, Ardakan University, Ardakan, Iran.

\textbf{A B S T R A C T}

\textbf{Aim:} Ovarian cancer is the most common fatal malignancy of the female genital tract and is often at an advanced stage when diagnosed. Ginger is one of the most well-known medicinal plants with antioxidant and anti-cancer properties. \textit{SORT1} gene is overexpressed in ovarian cancer cell lines. The present study evaluates the anti-cancer effects of ginger extract on \textit{SORT1} gene expression and viability of the A2780s ovarian cancer cell line.

\textbf{Methods & Materials:} The viability percentage of the A2780s ovarian cancer cells with ginger extract at concentrations of 40, 60, 80, and 100 \(\mu\text{g/mL}\) compared to the control group was evaluated by the Neubauer slide method for 24 hours, and \(IC_{50}\) of the ginger extract was determined within 24 hours. Then, the viability percentage of the cells with 60 \(\mu\text{g/mL}\) of ginger extract was investigated at 24, 48, and 72 hours. After treating cells with ginger extract, the cells' RNA was extracted at 24 and 48 hours, then cDNA was synthesized. Finally, the expression of the \textit{SORT1} gene was evaluated compared to the \textit{GAPDH} gene (reference gene) using real-time PCR.

\textbf{Findings:} Ginger extract in a dose- and time-dependent manner inhibited the viability of ovarian cancer cells. The ginger extract reduced \textit{SORT1} gene expression in A2780s cells.

\textbf{Conclusion:} The ginger extract has significant inhibitory activity against A2780s ovarian cancer cells. Therefore, with further research, this compound can be used to develop ovarian anti-cancer drugs.
the most common ovarian malignancy because they remain asymptomatic until metastasis, with more than two-thirds of patients in advanced stages of the disease when diagnosed [5]. Epithelial ovarian cancer occurs commonly between the ages of 56 and 60. The prevalence of this disease increases with age [6]. Hormones, diet, family history, environmental pollutants, job position, and genetic mutations are also risk factors for ovarian cancer [7].

SORT1 gene is an NTR3/sortilin encoder with 22 exons in humans and is located on the short arm of chromosome 1, close to the centromere (1p21.3-p13.1). This gene encodes a copy of 7028 nucleotides (NM002959.4), from which a protein with 831 amino acids and a weight of 100 kD (NP002950.3) is translated.

In 1997, Petersen et al. showed that copies of the SORT1 gene are present in the thyroid, heart, brain, skeletal muscle, spinal cord, placenta, and testicles but not in ovarian tissue [8]. Gene expression profiles in ovarian cancer tissue have shown a fourfold increase in SORT1 gene expression compared to non-malignant ovarian tissue [9].

The ginger plant, scientifically named *Zingiber officinale*, belongs to the Zingiberaceae family. This medicinal plant is widely used worldwide as an important spice and in traditional medicine. Its essential oil contains more than 46 different compounds such as shogaol, gingerol, gingerdion, terpene, and sesquiterpene, which often have antioxidant properties [10]. The therapeutic properties of this plant include rheumatism, fever, hypertension, vomiting, pain, infection, asthma, diabetes, neurological diseases, digestive problems, inflammation, cancer, and improving sexual health [11].

Gingerol inhibits the growth and proliferation of cancer cells through normal cell death. Ginger’s anti-inflammatory capacity is associated with its ability to inhibit cancer by reducing oxidative stress and inducing normal cell death [12]. Quercetin, as one of the flavonoids in ginger, plays a cellular immune role against oxidative stress due to its potent antioxidant activity. It seems that this compound not only protects cells from free radical damage due to its antioxidant effect but also causes programmed cell death through oxidative activity and prevents tumorigenesis [13]. The active compounds of this plant, such as gingerol and shogaol, are well capable of inhibiting the production of inflammatory prostaglandins, nitric oxide inhibitors, and even interleukins involved in inflammation [14]. Cyclooxygenases play a role in all stages of malignant tumorigenesis, such as increased cell proliferation, reduction of apoptosis, angiogenesis, and mobility of cancer cells. Cyclooxygenase enzymes are an important factor in developing ovarian cancer [15]. Gingerol and gingerdion are potent inhibitors of prostaglandins by inhibition of cyclooxygenase enzymes [11]. The anti-cancer effect of ginger extract has been reported on cell lines of cancers, such as colon [16], skin [17], liver, breast [18], prostate [19], endometrium [20], and ovary [21]. This study aimed to evaluate the anti-cancer effects of ginger extract on SORT1 gene expression and viability of the A2780s ovarian cancer cell line.

2. Materials and Methods

Preparation of extract

About 500 g of fresh and coarse rhizome of ginger (*Zingiber officinale*) was prepared in autumn. This species was approved by the expert of the Herbarium Laboratory of Yazd Faculty of Agriculture and Natural Resources, Yazd City, Iran. After washing, some of it was peeled and cut into thin pieces. The ginger plant was dried in an oven at 50°C and ground. Ethanol 80% was added to the resulting powder. The solution was completely mixed for 3 days using a magnetic device. It was then flattened with Whatman 42 filter paper. To smooth and prepare raw alcoholic extracts, a Buchner funnel was used, and all fine particles were taken. The obtained liquid was placed in the rotary (78°C) to distillation, and the alcohol in it was separated. The extract was stored in autoclave capped glass at 4°C [22].

Cell culture

In this study, the A2780s cell line (Pasteur Institute, Iran) was used. The cells were cultured in RPMI1640 (Inoclon, Iran) containing 10% FBS (Gibco, the USA) and 1% Pen-strep antibiotic (Inoclon, Iran), and they were incubated at 37°C with a 5% CO₂.

Every 48 hours, the culture medium was replaced. After reaching 70% density level, the passage was performed. At first, the culture medium of the cells was slowly poured out and washed with PBS. To separate the cells from the flask surface, trypsin was added. After isolation of cells, some culture medium with FBS was added to neutralize the effect of trypsin. After centrifugation (1200 rpm for 5 minutes), the upper medium was discarded, and the new medium was added. Finally, 10 μL of the solution was poured on the Neubauer slide for counting.

Viability assay

After counting, 25×10⁴ cells were cultured in each well of a 24-well plate. After 24 hours of incubation under optimum conditions, for calculating IC₅₀ (half maximal inhibitory concentration), the medium containing ginger extract with concentrations of 40, 60, 80, and 100 μg/mL were add-
ed to the wells, and the cells were incubated for 24 hours. To calculate the time, a culture medium containing ginger extract with appropriate concentration (according to the viability percentage of cells in each concentration) was added to the wells. Then, the cells were incubated for 24, 48, and 72 hours. The wells of the control group were treated with a culture medium for 24 hours.

After the desired time, the cells were separated from the plate surface by PBS and trypsinization. After centrifugation, 10 μL of cell suspension was poured on the Neubauer slide for counting.

It should be noted that the RPMI1640 medium was used as a solvent to prepare desired concentrations. All experiments have been repeated at least three times.

RNA extraction

One million cells were cultured into each well of a 6-well plate. The cells were treated with 60 μg/mL of ginger extract for 24 and 48 hours. The control group was treated with a culture medium for 24 hours. Cells were centrifuged after separation from plate surface, and cell plaques were quickly transferred to nitrogen tank to maintain RNA. The extraction of RNA was performed according to the High Pure RNA Isolation Kit (Roche) guidelines. Electrophoresis was performed on an agarose gel to ensure the quality of the extracted RNA. The presence of two clear bands on the gel confirmed the health of the extracted RNA. For quantitative investigation of extracted RNA, an optical absorption ratio of 260/280 and 260/230 nm was obtained by NanoDrop. This ratio was between 1.7 and 1.9 in all samples, indicating the high purity of extracted RNA.

c-DNA synthesis

cDNA synthesis was performed based on the Thermo Scientific Kit protocol. About 1 μL RNA, 1 μL Random Hexamer, and 6 μL DEPC water were mixed, spun, and incubated in a thermal cycler for 5 min at 65°C. About 4 μL 5x reaction buffer, 2 μL dNTP, and 1 μL RT enzyme were added to it and reached the final volume of 20 μL with D.D.W. The temperature-time program was performed as follows: 25°C for 10 min, 42°C for 60 min and 65°C for 10 min. Using the NanoDrop device, the synthesized cDNA quality was ensured.

Real-time PCR

Sequences of SORT1 and GAPDH genes were obtained from the NCBI website. Dedicated primers were designed by the gene runner program and blasted by NCBI (Table 1). For real-time PCR, SYBR Green Master Mix (Applied Biosystems, Warrington, UK) was used. About 10 μL SYBR green, 1 μL of forward and reverse primers of each gene, 5 μL cDNA was mixed and reached the final volume of 20 μL with D.D.W. The temperature-time program was performed as follows: 95°C for 1 min, 95°C for 15 s, and 60°C for 60 s. To ensure the specificity of the product, the melting curve was investigated. All experiments in this study were repeated three times. Gene expression was measured by the 2^(-∆∆Ct) method.

Statistical analysis

After measuring the gene expression by the 2^(-∆∆Ct) method and using Excel software, the obtained data from real-time PCR and viability assay sections were analyzed with 1-way ANOVA and Tukey’s test in SPSS v. 25. The results were calculated as Mean±Standard Deviation, and P<0.05 was considered significant.

3. Results

IC50 assay

The percentage of living cells compared to the control group (Mean±SD) in the treated groups with concentrations of 40, 60, 80, and 100 μg/mL extracts of ginger after 24 hours is shown in Figure 1. According to the results, ginger extract in different concentrations significantly decreased
the percentage of living cells compared to the control group, and the treatment groups also had a significant difference. This diagram shows that ginger extract in a dose-dependent manner reduces the viability of A2780s cells. The IC\textsubscript{50} of ginger extract at 24 hours is 76.8 μg/mL. A concentration of 60 μg/mL in which 66% of the cells survived was selected for further investigation.

Investigation of cell viability at different times

Figure 2 shows the percentage of living cells (Mean±SD) in groups treated with 60 μg/mL concentrations of ginger extract at 24, 48, and 72 hours compared to the control group. Ginger extract at different times, after adding the extract, significantly decreases the percentage of living cells compared to the control group. Treatment groups also showed significant differences. This diagram indicates that ginger extract reduces the viability of A2780s cells in a time-dependent manner.

Table 2. Comparison of \textit{SORT1} gene expression in different groups

Groups	Fold Change	Interpret
24 h vs control	0.727	Down: 1.37
48 h vs control	0.452	Down: 2.21
48 h vs 24 h	0.621	Down: 1.61

\textit{SORT1} gene expression analysis

Figure 3 shows that \textit{SORT1} gene expression level in cells treated with 60 μg/mL concentration of ginger extract decreased significantly at 24 and 48 hours compared to the control group. Gene expression significantly decreased in cells treated with ginger extract for 48 hours compared to cells treated with ginger extract for only 24 hours. Table 2 compares the reduction of gene expression in different groups.

4. Discussion

The present study results showed that the alcoholic extract prepared from fresh ginger rhizome has a lethal effect on the A2780s ovarian cancer cell line. We found that with increasing the concentration of ginger extract in 24 hours, the cell viability percentage decreased significantly compared to the control group. In addition, the percentage of living cells decreased significantly compared to the control group by increasing the duration of treatment of cancer cells with a concentration of 60 μg/mL of ginger extract. The results

\textbf{Figure 1.} Percentage of living cells compared to the control group in the treated groups with concentrations of 40, 60, 80, and 100 μg/mL extracts of ginger after 24 hours

a: A significant difference between the control and other treatment groups; b: A significant difference between the control and other treatment groups; c: A significant difference between the control and other treatment groups; d: A significant difference between the control and other treatment groups (P<0.05).
of real-time PCR showed that treatment of cancer cells with 60 μg/mL concentration of ginger extract for 24 and 48 hours significantly reduced SORT1 gene expression compared to the control group.

During a study on colon cancer cells, the results showed that ginger extract inhibits proliferation and induces apoptosis in HT29 and HCT116 cell lines by stopping cell cycles in G0/G1 stage and decreasing DNA synthesis [16]. In another study, 6-gingerol, 10-gingerol, 6-shogaol, and 10-shogaol prevented the proliferation of pc3R prostate cancer cell lines by inhibition of GSTλ and MRP1 proteins [19]. In another study, they found that terpenoids in ginger extract induce apoptosis in endometrial cancer cell lines by activating the p53 pathway. Also, treatment of endometrial cancer cells with ginger extract leads to a significant increase in intracellular calcium, a decrease in mitochondrial membrane potential, an increase in caspase-3 expression, and a significant reduction in Bcl-2 expression [20].

Phenolic composition of 6-gingerol inhibits the growth and proliferation of skin carcinoma cells and induces apoptosis, regulates mitochondrial function by ROS through disruption of Bax/BCL-2 ratio, and up-regulation of cytochrome C, caspase-3, and -9, and induces caspase cascades. Therefore, 6-gingerol can effectively treat skin cancer [17]. Kim et al. evaluated the antitumor and anti-angiogenesis activity of ginger rhizome extract on VEGF and MTA1 factors, which played a major role in angiogenesis in cancer cells. They concluded that gingerol in ginger rhizome extract could effectively reduce VEGF and MTA1 inducing cell proliferation [23]. Gingerols are a promising factor in cancer treatment because of their ability to prevent NF-κB activation, induce apoptosis and inhibit proliferation, invasion, metastasis, and angiogenesis. Dose-dependent gingerols increase the fracture levels of caspase -9, -7, -3, and PARP and reduce the expression of BCL2 [24].

6-Shogaol and 6-gingerol effectively inhibit invasion and metastasis of hepatocellular carcinoma through various molecular mechanisms, including inhibition of the MAPK and PI3k/Akt pathways and NF-κb and STAT3 activities to suppress the expression of MMP-2/9 and upa and block angiogenesis [25]. Methanolic extract of ginger has significant inhibitory activity against liver cancer cells (HePG2) and breast cancer cells (MCF7). Gingerol and paradol are essential in inhibiting cell growth through oxidation-reduction reaction by trapping free radicals, ultimately reducing reactive oxygen [18]. In another study, the ginger extract inhibited the activity of the MMP-9 enzyme in a concentration-dependent manner and thus inhibited migration in the MDA-MB-231 breast cancer cell line. In this study, the ginger extract induced the viability of MDA-MB-231 cells in a concentration-dependent manner [26]. In another study, the researchers used in silico method. They found the beneficial role of 6-gingerol and 6-shogaol compounds as growth inhibitors and modulators of lymphangiogenesis and angiogenesis molecules (VEGF-A, VEGF-C, Npr2, angioptetin-2, PDGF-B, KDR, SERPINFI, etc.). They play a role in the metastatic progression of breast cancer [27].

Liang et al. reported that 6-shogaol increased ROS production, increased expression of Bax, caspase-9, and -3, and decreased expression of cyclin D1, PCNA, IL-6, JAK,
and Bcl-2 in the A2780 ovarian cancer cell line. They showed that 6-shogaol caused apoptosis by inhibiting STAT-3 transmission in ovarian cancer cells and inhibiting the growth of ovarian cancer cells [21]. Another study was conducted on zerombon, another compound found in ginger. The results showed that zerombon better than cisplatin induces cell death in ovarian and cervical cancer cell lines by stimulating apoptosis. Zerombon inhibits the cellular cycle at the G2/M stage in a dose-dependent manner and significantly decreases IL-6 secretion levels in CAOV-3 and HeLa cell lines [28]. Rhode et al. showed that ginger selectively inhibits the growth of ovarian cancer cells compared to normal ovarian epithelial cells. In addition, ginger inhibits the products of the NF-κB regulatory gene, including IL-8, and VEGF, which are involved in cell proliferation and cellular angiogenesis. According to the results of this study, 6-shogaol is the most active ginger substance tested in ovarian cancer cells [29]. In another study, researchers reported dose- and time-dependent reductions in the number of ovarian cancer cells treated with 10-gingerol. Reduction of cancer cell proliferation was associated with an increase in the percentage of cells in the G2 phase of the cell cycle and a decrease in the percentage of cells in the G1 stage. Ovarian cancer cells showed a decrease in cyclin A, B1, and D3 expression after exposure to 10-gingerol [30]. In another study conducted on ovarian cancer cells, the growth of SKOV-3 cell line cells was significantly inhibited by the ginger extract. This study showed a more than 0.4-fold decrease in Bcl-2 gene expression after treatment with ginger extract, and the p53 gene expression level increased about 7 times in cells treated with ginger extract compared to the control group. Therefore, the researchers concluded that the p53 gene stimulates apoptosis by deleting the Bcl-2 gene [31].

The results of this study confirmed previous research studies on ginger extract as effective anti-cancer plant material and demonstrated its effect on the A2780s cell line.

5. Conclusion

Ginger extract has an inhibitory effect on the survival of the A2780s ovarian cancer cell line in a dose-dependent and time-dependent manner. It also reduces SORT1 gene expression in A2780s cells. The present study confirms previous research studies and promises that ginger extract has a toxic effect on the A2780s ovarian cancer cell line, and this compound can be used to develop ovarian anti-cancer drugs.

Ethical Considerations

Compliance with ethical guidelines

This study was conducted at Cell and Developmental Laboratory of the Basic Sciences Department, Faculty of Veterinary Sciences, Ardakan University (Code: IR.YAZD.REC.1399.035).

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Figure 3. Percentage of living cells compared to the control group in groups treated with 60 μg/mL concentration of ginger extract decreased significantly at 24 and 48 hours.

- a: A significant difference between the control and other treatment groups;
- b: A significant difference between the control and other treatment groups (P<0.05).
Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors want to thank the sincere cooperation of Ardakan University Laboratory Officer, Mr. Mohsen Rashidi.
مقدمه
سرطان تخمدان اپیتلیال، شایع‌ترین سرطان کشنده در زنان، اکثریت مبتلایان آن دو درصد از تعداد مبتلایان کلیه سرطان‌ها هستند و حدود ۶۰ درصد از مرگ‌ها و میران در این بیماری رخ می‌دهد. تومور‌های تخمدان، متافت‌شده و حالت پیشرفته، به‌طور معمول در سن‌های جوان و نوجوان ایجاد می‌شوند. بیماران مبتلا به سرطان تخمدان، همچنین اتاق‌های بیمارستانی، استقامت درمانی، رژیم غذایی و شرایط زندگی را نیز پیش‌بینی کرده‌اند. درمان تخصصی در این بیماری شامل ژنتیکی، اداری و زنان‌شناختی می‌باشد. این افراد ممکن است به دلیل عدم بهره‌برداری در درمان، سرطان تخمدان را نداشته باشند. پیشنهادات درمانی شامل تحقیق، پیش‌بینی، اتاق‌بندی و نیز استفاده از تزریق نیکوتین و کاربامیت می‌باشد. درمان‌های نیکوتین و کاربامیت شامل تزریق دی‌هیتر، تزریق نیکوتین و تزریق کاربامیت می‌باشد. درمان‌های نیکوتین و کاربامیت شامل تزریق دی‌هیتر، تزریق نیکوتین و تزریق کاربامیت می‌باشد.

مواد و روش‌ها
در این مطالعه، سرطان تخمدان A2780s سلول‌های سرطانی تخمدان (A2780s) به‌کار گرفته شدند. عصاره زنجبیل در نمایه‌های مختلفی از زنجبیل به‌کار گرفته شد. در این مطالعه، اثرات ضدسرطان عصاره زنجبیل بر بیان ژن SORT1 را بررسی کردند.

نتایج این مطالعه نشان می‌دهد که عصاره زنجبیل به شکل وابسته به دوز و زمان، زنده ماندن سلول‌های سرطانی تخمدان را مهار می‌کند. عصاره زنجبیل در سلول‌های A2780s به‌عنوان یکی از فعال‌ترین عصاره‌های ضدسرطانی بررسی شده است. در این مطالعه، میزان تعداد سلول‌های زنده در هر گروه از تعداد سلول‌های شاهد محاسبه شد.

کلیدواژه‌ها:
سرطان تخمدان، زنجبیل، SORT1، A2780s.
بسیار سức شربت زنجبیل در تهیه عصاره ها و ترکیب داروهای روماتیزه به مصرف آنتی‌بیوتیک‌های فعال در تهیه عصاره‌های زنجبیل و کاهش آپوپتوز، رگزایی و تحرک سلول‌های سرطانی به مهار تولید پروستاگلاندین‌های التهابی، مهارکننده‌های اکسید قوی، آنتی‌اکسیدانی قوی، نقش ایمنی سلولی را در برابر استرس شربت زنجبیل در مطالعه‌های بیش از 40 ساله گزارش شده است. هدف از سنجش زنده بودن سلول‌های سرطانی پایه اضافه شد. برای صاف کردن و تهیه عصاره‌های آن را پوست کنده و به قطعات نازک برش دادند. گیاه زنجبیل در 1. Zingiber officinale درجه سانتی‌گراد خشک و آسیاب شد. اتانول 50 درصد اسید آنتی‌بیوتیک اضافه شد و پس از سانتریفیوژ 1000 × 118 گرفته شد. در مقاله با کمک این عصاره تهیه عصاره آنتی‌بیوتیکی بهره برداری در پژوهش‌های ژنتیکی در مقایسه با کمک این عصاره نتایج مثبت داشت.[6] پنئو پارسند و آنتی‌بیوتیک‌های متنوعی در تهیه عصاره‌های زنجبیل به خوبی قادر بودند به مهار تولید پروستاگلاندین‌های التهابی، مهارکننده‌های اکسید قوی، آنتی‌اکسیدانی قوی، نقش ایمنی سلولی را در برابر استرس شربت زنجبیل در مطالعه‌های بیش از 40 ساله گزارش شده است. هدف از سنجش زنده بودن سلول‌های سرطانی پایه اضافه شد. برای صاف کردن و تهیه عصاره‌های آن را پوست کنده و به قطعات نازک برش دادند. گیاه زنجبیل در 1. Zingiber officinale درجه سانتی‌گراد خشک و آسیاب شد. اتانول 50 درصد اسید آنتی‌بیوتیک اضافه شد و پس از سانتریفیوژ 1000 × 118 گرفته شد. در مقاله با کمک این عصاره تهیه عصاره آنتی‌بیوتیکی بهره برداری در پژوهش‌های ژنتیکی در مقایسه با کمک این عصاره نتایج مثبت داشت.[6] پنئو پارسند و آنتی‌بیوتیک‌های متنوعی در تهیه عصاره‌های زنجبیل به خوبی قادر بودند به مهار تولید پروستاگلاندین‌های التهابی، مهارکننده‌های اکسید قوی، آنتی‌اکسیدانی قوی، نقش ایمنی سلولی را در برابر استرس شربت زنجبیل در مطالعه‌های بیش از 40 ساله گزارش شده است. هدف از سنجش زنده بودن سلول‌های سرطانی پایه اضافه شد. برای صاف کردن و تهیه عصاره‌های آن را پوست کنده و به قطعات نازک برش دادند. گیاه زنجبیل در 1. Zingiber officinale درجه سانتی‌گراد خشک و آسیاب شد. اتانول 50 درصد اسید آنتی‌بیوتیک اضافه شد و پس از سانتریفیوژ 1000 × 118 گرفته شد. در مقاله با کمک این عصاره تهیه عصاره آنتی‌بیوتیکی بهره برداری در پژوهش‌های ژنتیکی در مقایسه با کمک این عصاره نتایج مثبت داشت.[6] پنئو پارسند و آنتی‌بیوتیک‌های متنوعی در تهیه عصاره‌های زنجبیل به خوبی قادر بودند به مهار تولید پروستاگلاندین‌های التهابی، مهارکننده‌های اکسید قوی، آنتی‌اکسیدانی قوی، نقش ایمنی سلولی را در برابر استرس شربت زنجبیل در مطالعه‌های بیش از 40 ساله گزارش شده است. هدف از سنجش زنده بودن سلول‌های سرطانی پایه اضافه شد. برای صاف کردن و تهیه عصاره‌های آن را پوست کنده و به قطعات نازک برش دادند. گیاه زنجبیل در 1. Zingiber officinale درجه سانتی‌گراد خشک و آسیاب شد. اتانول 50 درصد اسید آنتی‌بیوتیک اضافه شد و پس از سانتریفیوژ 1000 × 118 گرفته شد. در مقاله با کمک این عصاره تهیه عصاره آنتی‌بیوتیکی بهره برداری در پژوهش‌های ژنتیکی در مقایسه با کمک این عصاره نتایج مثبت داشت.[6] پنئو پارسند و آنتی‌بیوتیک‌های متنوعی در تهیه عصاره‌های زنجبیل به خوبی قادر بودند به مهار تولید پروستاگلاندین‌های التهابی، مهارکننده‌های اکسید قوی، آنتی‌اکسیدانی قوی، نقش ایمنی سلولی را در برابر استرس شربت زنجبیل در مطالعه‌های بیش از 40 ساله گزارش شده است. هدف از سنجش زنده بودن سلول‌های سرطانی پایه اضافه شد. برای صاف کردن و تهیه عصاره‌های آن را پوست کنده و به قطعات نازک برش دادند. گیاه زنجبیل در 1. Zingiber officinale درجه سانتی‌گراد خشک و آسیاب شد. اتانول 50 درصد اسید آنتی‌بیوتیک اضافه شد و پس از سانتریفیوژ 1000 × 118 گرفته شد. در مقاله با کمک این عصاره تهیه عصاره آنتی‌بیوتیکی بهره برداری در پژوهش‌های ژنتیکی در مقایسه با کمک این عصاره نتایج مثبت داشت.[6] پنئو پارسند و آنتی‌بیوتیک‌های متنوعی در تهیه عصاره‌های زنجبیل به خوبی قادر بودند به مهار تولید پروستاگلاندین‌های التهابی، مهارکننده‌ها در تمام مراحل تومورزایی بدخیم مانند افزایش. به مهار تولید پروستاگلاندین‌های التهابی، مهارکننده‌ها در تمام مراحل تومورزایی بدخیم مانند افزایش. به مهار تولید پروستاگلاندین‌های التهابی، مهارکننده‌ها در تمام مراحل تومورزایی بدخیم مانند افزایش.
پس از مدت زمان مورد نظر، سلول‌ها توسط 4 میکروگرم در میلی‌لیتر عصاره زنجبیل ثبات شدند.

این نمودار نشان می‌دهد که عصاره زنجبیل نسبت به گروه کنترل کاهش داد.

در نظر گرفتن نتایج این نمودار، عصاره زنجبیل در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

در نظر گرفتن نتایج این نمودار، عصاره زنجبیل در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

پس از مدت زمان مورد نظر، سلول‌ها توسط میکروگرم در میلی‌لیتر عصاره زنجبیل ثبات شدند.

این نمودار نشان می‌دهد که عصاره زنجبیل نسبت به گروه کنترل کاهش داد.

در نظر گرفتن نتایج این نمودار، عصاره زنجبیل در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت تیمار شدند.

در شرایط مختلف، پس از صرفه جویی از روش‌های مختلف، درصد سلول‌های زنده را به طور معنی‌داری کاهش داد.

بر اساس نتایج مشاهده شد، میکروگرم در میلی‌لیتر عصاره زنجبیل به مدت 60 ثانیه، درجه سانتی‌گراد انکوبه شد و در مدت 95 دقیقه، دمای 65 درجه سانتی‌گراد با محیط کشت T
تجزیه و تحلیل بیان جن
نتایج موجود در تصویر شماره ۳ نشان می‌دهد که سطح بیان جن در سلول‌های تیمارشده با غلظت ۶۰ میکروگرم بر میلیلیتر عصاره زنجبیل در گروه کنترل به طور معنی‌داری کاهش یافته است. بیان جن در سلول‌های تیمارشده با عصاره زنجبیل به مدت ۴۸ ساعت در مقایسه با سلول‌های تیمارشده با عصاره زنجبیل به مدت ۲۴ ساعت بلندتر به طور معنی‌داری کاهش یافته است. جدول شماره ۲ کاهش بیان جن در گروه های مختلف مقایسه می‌کند.

بحث
نتایج مطالعه حاضر نشان داد که عصاره الکلی تهیه شده از ریزوم A2780s زنجبیل تأثیر بیولوژیکی سرطانی تخمدان رده سلولی فراهم می‌کند. در این مطالعه مشاهده شد که با افزایش غلظت میکروگرم بر میلیلیتر عصاره زنجبیل در گروه کنترل به طور معنی‌داری کاهش یافته است. علاوه بر این، با افزایش مدت تیمار کردن سلول‌های سرطانی با غلظت میکروگرم بر میلیلیتر عصاره زنجبیل، درصد سلول‌های زنده ۶۰ ساعت نسبت به گروه کنترل به طور معنی‌داری کاهش یافت.

جدول ۱ مطالعه پایان‌نامه گروه مطالعه مختلف تیمار ژن SORT1 در بیماران زن

Groups	Fold Change	Interpret
48h vs. 24h	0.621	Down: 1.61
48h vs. control	0.452	Down: 2.21
24h vs. control	0.727	Down: 1.37

جدول ۱ تئوری تریپل بایو برای

جدول ۲: تئوری تریپل بایو برای

جدول ۲: تئوری تریپل بایو برای
این پژوهش بررسی تأثیر عصاره زنجبیل زنده در کاهش اکسیداسیون سلول‌های سرطانی بود.

در این مطالعه، عصاره زنجبیل زنده مانند سلول‌های سرطانی را نسبت به گروه کنترل و سایر گروه‌های درمانی بیان می‌کرد. نتایج نشان دادکه عصاره زنجبیل مانند سلول‌های سرطانی را نسبت به گروه کنترل و سایر گروه‌های درمانی کاهش داد.

این نتایج با تحقیقات قبلی مطابقت دارد و نشان می‌دهد که عصاره زنجبیل مانند سلول‌های سرطانی را نسبت به گروه کنترل و سایر گروه‌های درمانی کاهش دهد.

به طور کلی، این نتایج نشان می‌دهد که مصرف عصاره زنجبیل به صورت خوراکی می‌تواند بهبودی در نگاه به سلول‌های سرطانی را بررسی کند.
می‌توانسته‌ای‌ها رشد و تولید کلیت‌های مولکول‌های انتخابی و رگ‌بندی و آگ‌پوئیتین، VEGF-A، VEGF-C، NgF، PDGF-B، KDR، SERPINF1، poietin-2، PDGF-B، SERPINF1 نشان داده که در پیشگیری متقابلی سرطان پستان PINFI نقش دارد [72].

6-Shogaol، یک مکتان در مطالعه ای گزارش کرد که 6-Shogaol به طور انتخابی از رشد سلول‌های سرطانی تخمدان باعث آپوپتوز می‌شود. در یک مطالعه، لیانگ و همکاران در مطالعه‌ای گزارش کردند که عصاره الکلی از زنجبیل بر سلول‌های سرطانی تخمدان تحت تاثیر قرار گرفته بود [430]. در عصاره الکلی از زنجبیل، NF-κB، VEGF، JAK، PCNA، IL-6، Kaempferol و 6-Shogaol کلیه‌های یکسان باعث آپوپتوز و کاهش حسیبی شدند. سپس این طبقه‌بندی ژن‌های سلول‌های سرطانی تخمدان و همچنین رشد جزئی تیمار و کاهش حسیبی سلول‌های زنده نسبت به گروه کنترل در گروه‌های تیمار می‌گذارد.

به طور معنی‌داری، در یک مطالعه بر روی مارک‌های اسپلیت‌زنده، دیگری که در زنجی‌بیل (زنجی‌بیل) نشان داده شده است [72]. در این مطالعه، محققان کاهش وابسته به تیمار و کاهش حسیبی فاز G2 و Caspase9 و Bax، ROS و کلیه‌های یکسان باعث آپوپتوز و کاهش حسیبی سلول‌های سرطانی تخمدان می‌شود. این نتایج به طور معنی‌داری باعث آپوپتوز در مرحله G2/M و کاهش حسیبی سلول‌های زنده شد. همچنین در یک مطالعه دیگر، 6-Shogaol به طور معنی‌داری باعث آپوپتوز و کاهش حسیبی سلول‌های زنده شد [430]. در این مطالعه، محققان نشان دادند که 6-Shogaol به طور مشابه، در محیط‌های سرطانی تخمدان مشابه، کاهش حسیبی سلول‌های زنده و کاهش حسیبی سلول‌های زنده شد [72]. در این مطالعه، محققان نشان دادند که 6-Shogaol به طور معنی‌داری، به طور انتخابی از رشد سلول‌های سرطانی تخمدان باعث آپوپتوز می‌شود.

به طور مشابه، در یک مطالعه دیگر، 6-Shogaol به طور معنی‌داری باعث آپوپتوز و کاهش حسیبی سلول‌های زنده شد [72]. در این مطالعه، محققان نشان دادند که 6-Shogaol به طور مشابه، به طور انتخابی از رشد سلول‌های سرطانی تخمدان باعث آپوپتوز می‌شود.

به طور مشابه، در یک مطالعه دیگر، 6-Shogaol به طور معنی‌داری باعث آپوپتوز و کاهش حسیبی سلول‌های زنده شد [72]. در این مطالعه، محققان نشان دادند که 6-Shogaol به طور مشابه، به طور انتخابی از رشد سلول‌های سرطانی تخمدان باعث آپوپتوز می‌شود.
تولید درمانی ضدسرطان تخمدان استفاده کرد.

ملاحظات اخلاقی

یبریوری از اصول اخلاق پژوهشی

این مطالعه در آزمایشگاه سلولی و رشدی گروه علوم پايه تولید داروهای ضدسرطان تخمدان استفاده کرد.

توجه کنید که در این مطالعه، فاصله زمانی بین قدمت‌های مختلف آزمایشگاهی در دستگاه IR.YAZD. انجام شده است.

حمایت مالی

این تحقیق هیچ گونه کمک مالی از سازمان‌های غیرانتفاعی دریافت نکرد.

مشارکت‌نوعی‌دانان

تمام نویسندگان در طراحی، اجرای و نگارش همه پژوهش‌ها حاضر مشارکت داشتند.

تعارض منافع

بنابر اظهار نویسندگان این مقاله تعیین منافع ندارد.

تشکر و قدردانی

نویسندگان مقاله بر خود می‌خواهند از همکاران دانشگاه اردکان، جناب آقای محسن رشیدی تشکر و تقدیر کنند.
The pathogenesis of ovarian cancer. Lessons from molecular biology and clinical implications. International Journal of Gynecological Pathology. 2008; 27(2):151-60. [DOI:10.1097/PGPB0000000000000063] [PMID] [PMCID]

Triptolide inhibits ovarian cancer cell invasion by repression of matrix metalloproteinase 7 and 19 and upregulation of e-cadherin. Experimental & Molecular Medicine. 2012; 44(11):633-41. [DOI:10.3858/emmm.2012.11.072] [PMID] [PMCID]

Folate and choline metabolism gene variants in relation to ovarian cancer risk in the Polish population. Molecular Biology Reports. 2012; 39(5):5553-60. [DOI:10.1007/s11033-011-1359-0] [PMID] [PMCID]

The epidemiology of ovarian cancer. Cancer Epidemiology. 2009; 472:413-37. [DOI:10.1016/j.canep.2009.07.005] [PMID]

Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. Journal of Biological Chemistry. 1997; 272(6):3599-605. [DOI:10.1074/jbc.272.6.3599] [PMID] [PMCID]

Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene. 2004; 23(49):8065-77. [DOI:10.1038/sj.onc.1207959] [PMID] [PMCID]

The effect of extracts from ginger rhizome on inflammatory media- tor production. Phytomedicine. 2007; 14(2-3):123-8. [DOI:10.1016/j.phyto.2006.03.003] [PMID]

Ginger extract (Zingiber officinale) triggers apoptosis and GO/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines. African Journal of Biochemistry Research. 2010; 4(5):134-42. [DOI:10.1016/j.jbr.2010.08.003] [PMID]

Ginger root (Zingiber officinale) on liver and breast cancer. Zagazig Journal of Agricultural Research. 2018; 45(3):995-1001. [DOI:10.21608/jzajr.2018.49149]

Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell. Molecules. 2017; 22(5):1477. [DOI:10.3390/molecules22051477] [PMID] [PMCID]

The role of chalcones in inhibiting human hepatocarcinoma cell invasion by 6-shogaol and 6-gingerol. Molecular Nutrition & Food Research. 2012; 56(8):1304-14. [DOI:10.1002/mnfr.201200173] [PMID] [PMCID]

6-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chemico-Biological Interactions. 2009; 181(1):77-84. [DOI:10.1016/j.cbi.2009.05.012] [PMID] [PMCID]

Ginger inhibits cell proliferation and induces apoptosis through inhibition of STAT-3 translocation in ovarian cancer cell lines (A2780). Ichthyological Research. 2015; 3(2):59-68. [DOI:10.1007/s12257-018-0502-3] [PMID] [PMCID]

Asadi T, Zanguee N, Mousavi SM, Zakeri M, Batvandi Z. (Antimicrobial effects of Alcoholic extract of Zingiber officinale on some pathogenic bacteria of aquatic organisms (Persian)]. Journal of Applied Ichthyological Research. 2015; 3(2):59-68. [DOI:10.1007/s12257-018-0502-3] [PMID] [PMCID]

Prostate Cancer Research. 2010; 7(12):e53178. [DOI:10.1210/jc.2009-1748] [PMID] [PMCID]

Chemico-Biological Interactions. 2005; 165(1):300-8. [DOI:10.1016/j.cbi.2005.07.076] [PMID]

Antioxidant and cell toxicity (Persian)]. Journal of Medicinal Plants. 2016; 20(2):97-105. [DOI:10.21608/zjar.2018.49149] [PMID] [PMCID]

Inhibitory activity of extract, fractions, and terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PLoS One. 2012; 7(12):e53178. [DOI:10.1371/journal.pone.0053178] [PMID] [PMCID]

The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007; 14(2-3):123-8. [DOI:10.1016/j.phyto.2006.03.003] [PMID]

The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007; 14(2-3):123-8. [DOI:10.1016/j.phyto.2006.03.003] [PMID]

The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007; 14(2-3):123-8. [DOI:10.1016/j.phyto.2006.03.003] [PMID]

The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007; 14(2-3):123-8. [DOI:10.1016/j.phyto.2006.03.003] [PMID]

The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007; 14(2-3):123-8. [DOI:10.1016/j.phyto.2006.03.003] [PMID]

The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007; 14(2-3):123-8. [DOI:10.1016/j.phyto.2006.03.003] [PMID]

The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine. 2007; 14(2-3):123-8. [DOI:10.1016/j.phyto.2006.03.003] [PMID]
[27] Nanchari SR, Perugu S, Venkatesan V. Molecular docking studies to understand the potential role of ginger compounds (6-gingerol and 6-shogaol) on anti-angiogenic and anti-lymphangiogenic mechanisms. International Journal of Chemistry. 2020; 12(1):61-8. [DOI:10.5539/ijc.v12n1p61]

[28] Abdelwahab SI, Abdul AB, Zain ZNM, Hadi AHA. Zerumbone inhibits interleukin-6 and induces apoptosis and cell cycle arrest in ovarian and cervical cancer cells. International Immunopharmacology. 2012; 12(4):594-602. [DOI:10.1016/j.intimp.2012.01.014] [PMID]

[29] Rhode J, Fogoros S, Zick S, Wahl H, Griffith KA, Huang J, et al. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complementary and Alternative Medicine. 2007; 7(1):1-9. [DOI:10.1186/1472-6882-7-44] [PMID] [PMCID]

[30] Rasmussen A, Murphy K, Hoskin DW. 10-Gingerol inhibits ovarian cancer cell growth by inducing G2 arrest. Advanced Pharmaceutical Bulletin. 2019; 9(4):685-9. [DOI:10.15171/apb.2019.080] [PMID] [PMCID]

[31] Pashaei-Asl R, Pashaei-Asl F, Gharabaghi PM, Khodadadi K, Ebrahimi M, Ebrahimie E, et al. The inhibitory effect of ginger extract on ovarian cancer cell line: Application of systems biology. Advanced Pharmaceutical Bulletin. 2017; 7(2):241-9. [DOI:10.15171/apb.2017.029] [PMID] [PMCID]