Continuous glucose monitoring reveals a novel association between duration and severity of hypoglycemia, and small nerve fiber injury in patients with diabetes

Hoda Gad1, Einaas Elgassim1, Ibrahim Mohammed1,2, Ahmad Yaser Alhaddad3, Hussein Ahmed Hussein Zaky Aly4, John-John Cabibihan5, Abdulaziz Al-Ali4, Kishor Kumar Sadasivuni6, Aliya Haji1, Neila Lamine1, Adnan Khan6, Ioannis N Petropoulos1, Georgios Ponirakis1, Alise Kalteniece7, Maryam Ferdousi7, Shazli Azmi7, Uazman Alam8,9,10, Wajeeka Abuhelaiza11, Amin Jayyousi11, Dabia AlMohanadi11, Khaled Baagar11 and Rayaz A Malik1,7

1Department of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
2Department of Internal Medicine, Albany Medical Center Hospital, Albany, New York, USA
3Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
4KINDI Center for computing research, Qatar University, Doha, Qatar
5Center for Advanced Materials, Qatar University, Doha, Qatar
6Faculty of Healthy Sciences, Khyber Medical University, Peshawar, Pakistan
7Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK
8Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, UK
9Hamad Medical Corporation, National Diabetes Center, Doha, Qatar

Correspondence should be addressed to R A Malik: ram2045@qatar-med.cornell.edu

Abstract

Objective: Continuous glucose monitoring (CGM) has revealed that glycemic variability and low time in range are associated with albuminuria and retinopathy. We have investigated the relationship between glucose metrics derived from CGM and a highly sensitive measure of neuropathy using corneal confocal microscopy in participants with type 1 and type 2 diabetes.

Methods: A total of 40 participants with diabetes and 28 healthy controls underwent quantification of corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL) and inferior whorl length (IWL) and those with diabetes underwent CGM for four consecutive days.

Results: CNBD was significantly lower in patients with high glycemic variability (GV) compared to low GV (median (range) 25.0 (19.0–37.5) vs 38.6 (29.2–46.9); P = 0.007); in patients who spent >4% compared to ≤4% time in level 1 hypoglycemia (54-69 mg/dL) (25.0 (22.9–37.5) vs 37.5 (29.2–46.9); P = 0.045) and in patients who spent >1% compared to ≤1% time in level 2 hypoglycemia (<54 mg/dL) (25.0 (19.8–41.7) vs 35.4 (28.1–44.8); P = 0.04). Duration in level 1 hypoglycemia correlated with CNBD (r = −0.342, P = 0.031). Duration in level 1 (181–250 mg/dL) and level 2 (>250 mg/dL) hyperglycemia did not correlate with CNFD (P > 0.05), CNBD (P > 0.05), CNFL (P > 0.05) or IWL (P > 0.05).

Conclusions: Greater GV and duration in hypoglycemia, rather than hyperglycemia, are associated with nerve fiber loss in diabetes.
Introduction

Diabetic peripheral neuropathy (DPN) affects ~50% of people with diabetes mellitus (T1DM) and (T2DM) (1, 2). It has an insidious onset, which can lead to painful diabetic neuropathy, erectile dysfunction, foot ulceration and lower limb amputation (1). Recognized risk factors for DPN include poor glycemic control, obesity, hypertension and dyslipidemia (3, 4). However, HbA1c provides limited insight into the short-term variations in blood glucose, which may affect nerve fibers (5). Continuous glucose monitoring (CGM) provides not only time in range (TIR) which is directly related to HbA1c but also additional measures in relation to high and low blood glucose levels (6, 7).

Increased glycemic variability and low TIR were associated with albuminuria and retinopathy, whilst neuropathy was associated with the s.d. of blood glucose levels and mean amplitude of glycemic excursions (MAGE) (5). In a small proof-of-principle study, a higher mean glucose, M-value and greater glycemic excursions were demonstrated in patients with painful compared to painless diabetic neuropathy (8). A recent systematic review demonstrated that a 10% increase in TIR was associated with a reduction in the prevalence of DPN and cardiac autonomic neuropathy (CAN) (9).

Severeiatrogenic hypoglycemia can lead to neurological sequelae, including cerebral dysfunction, seizures and death, and recurrent hypoglycemia is associated with hypoglycemia-associated autonomic failure, reduced sympathetic neural responses and autonomic neuropathy (10, 11, 12). In a recent study, higher MAGE and CV and especially nocturnal hypoglycemia were associated with an increased risk of DPN (13). In a study of 80 adults with T1DM, the s.d., coefficient of variation (CV), mean amplitude of glycemic excursion, percent time in level 1 (glucose 54–69 mg/dL) and level 2 (glucose < 54 mg/dL) hypoglycemia, low blood glucose index and high blood glucose index were independently associated with CAN (14). Sudomotor dysfunction, a measure of peripheral autonomic dysfunction (15), has also been independently associated with TIR in T1DM (16) and T2DM (17).

Corneal confocal microscopy (CCM) is a rapid non-invasive ophthalmic imaging technique that can identify early small nerve fiber loss in patients with DPN (18) and has demonstrated comparable diagnostic utility to intraepidermal nerve fiber density (4, 19, 20). A recent meta-analysis has confirmed the diagnostic utility of CCM in subclinical and clinical DPN (21). In the current study, we have investigated the relationship between different glucose metrics obtained using CGM and corneal nerve pathology using CCM in patients with type 1 and type 2 diabetes.

Methods

Patients

We recruited 68 participants (20 T1DM, 20 T2DM and 28 healthy volunteers) between June 2021 and October 2021. Inclusion criteria were age ≥ 18 years and treatment with insulin. Exclusion criteria included vitamin B12 or folic acid deficiency, cancer, pregnancy, breastfeeding, or cardiac, liver or renal dysfunction. Participants were also excluded if they had corneal pathology, allergy to eye drops or previous ocular trauma or surgery in the past 6 months. The study was approved by the Ethics Committee of Weill Cornell Medicine-Qatar, Hamad Medical Corporation and Qatar University and was designed in accordance with the principles of the Helsinki Declaration. Written informed consent was obtained from all participants.

Basic and clinical demographics

Participants’ height, weight, BMI and blood pressure were measured. Total cholesterol, triglyceride, HDL-C, LDL-C and HbA1c were assessed only in participants with diabetes.

Continuous glucose monitoring

The Freestyle Libre 1 system (Abbott) was used for s.c. interstitial CGM. The sensor recorded glucose levels every 5 min for four consecutive days. The sensor was placed on the upper back part of the arm. The recommended target TIR (70–180mg/dL) was >70% of the glucose readings (~16 h 48 min), time below range (TBR) <70 mg/dL was <4% of the readings (~58 min) (level 1 hypoglycemia), TBR <54 mg/dL was <1% of the readings (~14 min) (level 2 hypoglycemia), time above range (TAR) >180 mg/dL was <25% of the readings (~6 h) (level 1 hyperglycemia) and TAR >250 mg/dL was <5% of the readings (1 h 12 min) (level 2 hyperglycemia). Glycemic variability (GV) was defined as percent CV with a target ≤36%. Hypoglycemia was defined according to continuous glucose reading of <70 mg/dL.

Corneal confocal microscopy

CCM was undertaken using the Heidelberg Retina Tomograph Cornea Module (Heidelberg Engineering,
Heidelberg, Germany). Both eyes were anesthetized with two drops of Bausch & Lomb Minims® (oxybuprocaine hydrochloride 0.4% w/v). A drop of hypotears gel (carbomer 0.2% eye gel) was placed on the tip of the objective lens, and a sterile disposable TomoCap was placed over the lens, allowing optical coupling of the objective lens to the cornea. Six images were selected from the sub-basal nerve plexus in the central cornea, and corneal nerve fiber density (CNFD) (fibers/mm²), corneal nerve branch density (CNBD) (branches/mm²) and corneal nerve fiber length (CNFL) (mm/mm²) were quantified manually using CCMetrics. Six images centered on the inferior whorl and immediately adjacent area were selected, and inferior whorl length (IWL) (mm/mm²) was quantified manually using the manual CNFL mode in CCMetrics. The investigator was blind to the study group when performing CCM and analyzing CCM images.

Statistical analysis

All statistical analyses were performed using IBM SPSS Statistics software version 27, and P < 0.05 was considered statistically significant. Normality of the data was assessed using the Shapiro–Wilk test and by visual inspection of the histogram and a normal Q–Q plot. Data are expressed as mean and s.d for the normally distributed variables and as median and range for the skewed variables. Inferential analyses were conducted for the corneal nerve parameters and clinical demographics using both parametric (t-test) and non-parametric (Mann–Whitney U test) tests, with post-hoc adjustment. To investigate the association between corneal nerve parameters and clinical and CGM variables, Pearson and Spearman correlations were performed as appropriate. Graph prism version 9 was used to build dot plots.

Results

A total of 40 participants with diabetes aged 37–48 years and 28 healthy controls aged 24–49 years were enrolled in the study. Participants with diabetes and controls had comparable systolic blood pressure (mmHg) (P = 0.45), diastolic blood pressure (mmHg) (P = 0.45) and BMI (kg/m²) (P = 0.20) (Table 1). Interstitial glucose was in the range for 60% of participants with diabetes, 32% were above range and 8% were very high (Fig. 1). CNFD (fiber/mm²) (25.79 ± 5.96 vs 29.97 ± 6.02; P = 0.006), CNBD (branch/mm²) (31 (26.0–40.60) vs 56.25 (46.87–68.75); P < 0.001), CNFL (mm/mm²) (16.78 ± 4.10 vs 22.55 ± 3.57; P < 0.001) and IWL (mm/mm²) (15.35 ± 6.2 vs 20.82 ± 5.07; P < 0.001) were significantly lower in participants with diabetes compared to controls (Table 1). Participants with diabetes spent 50 ± 22.4% (719.4 ± 322.7 min) of the TIR, 27 ± 15%, 388.62 ± 223.57 min above range (level 1 hyperglycemia) and 73.77±76.70 min (level 1 hypoglycemia) below range with an average of 2.9 hypoglycemic events over a period of 4 days (Table 1).

CCM in relation to CGM

CNFD (P = 0.50), CNBD (P = 0.68), CNFL (P = 0.71) and IWL (P = 0.10) did not differ between patients who had diabetes duration for <10 years, >10 years or more than 20 years (Table 2). There was no difference in CNFD (P = 0.67), CNBD (P = 0.89), CNFL (P = 0.85) and IWL (P = 0.47) between participants with an HbA1c <8% or >8%. CNBD was significantly lower in patients with high GV compared to low GV (25.0 (19.0–37.5) vs 38.6 (29.2–46.9); P = 0.007). There was no difference in CNFD (P = 0.62), CNFL (P = 0.09) and IWL (P = 0.73) between patients with high GV compared to low GV. There was no significant difference in CNFD (P = 0.64), CNBD (P = 0.75), CNFL (P = 0.91) and IWL (P = 0.59) between participants with diabetes who spent >70% TIR (70–180 mg/dl) and <70% TIR. CNBD was significantly lower (25.0 (22.9–37.5) vs 37.5 (29.2–46.9); P = 0.045) with no difference in CNFD (P = 0.38), CNFL (P = 0.51) and IWL (P = 0.35) in patients who spent >4% compared to <4% in level 1 (54–69 mg/dl) hypoglycemia. CNBD (25.0 (19.8–41.7) vs 35.4 (28.1–44.8); P = 0.04) was significantly lower, whilst CNFD (P = 0.79), CNFL (P = 0.36) and IWL (P = 0.62) did not differ between patients who spent >1% compared to <1% time in level 2 (<54 mg/dl) hypoglycemia. CNFD (P = 0.71), CNBD (P = 0.09), CNFL (P = 0.43) and IWL (P = 0.37) did not differ between patients who had >1 hypoglycemic event compared to those who had no hypoglycemic events. CNFD (P = 0.61), CNBD (P = 0.44), CNFL (P = 0.83) and IWL (P = 0.62) did not differ between patients who spent >25% compared to <25% time in level 1 (181–250 mg/dl) hyperglycemia. CNFD (P = 0.59), CNBD (P = 0.97), CNFL (P = 0.89) and IWL (P = 0.14) did not differ between patients who spent >5% compared to <5% in level 2 hyperglycemia (>250 mg/dl) (Table 1). CNFD (P = 0.11) did not differ significantly between patients in TIR, TAR or TBR compared to healthy controls. CNBD (P < 0.0001) and CNFL (P < 0.0001) were significantly lower in participants with diabetes in TIR, TAR and TBR compared to healthy controls (Fig. 2A-G).
Correlation between corneal nerve parameters and CGM indicators of glycemia

Duration of diabetes (years), plasma glucose, average interstitial glucose and HbA1c did not correlate with CNFD ($P > 0.05$), CNBD ($P > 0.05$), CNFL ($P > 0.05$) and IWL ($P > 0.05$) (Table 3). GV correlated significantly with CNBD ($r = –0.398$, $P = 0.011$) (Fig. 3A) but did not correlate with CNFD ($P > 0.05$), CNFL ($P > 0.05$) or IWL ($P > 0.05$).

Discussion

We have demonstrated that increased GV and hypoglycemia detected using CGM are associated with lower CNBD in patients with type 1 and type 2 diabetes. Studies have reported an association between corneal nerve measures and the duration of diabetes (22, 23) and HbA1c (24, 25) in people with type 1 and type 2 diabetes. Several large clinical trials have shown that improved glycemic control can prevent the development and progression of diabetic neuropathy in type 1 diabetes (26) but not type 2 diabetes (27, 28, 29, 30). However, smaller interventional studies utilizing CCM in type 1 and type 2 diabetes have shown a reduction in the duration of hypoglycemia and hyperglycemia in patients with type 1 diabetes (31, 32).

Table 1 Demographics of participants with diabetes and controls.

Demographics	Controls	Diabetes	P-value
Subjects	$n = 28$	T1DM ($n = 20$)	–
M:F ratio	22:6	28:12	–
Age (years)	36 (24–49)	41 (37–48)	0.11
Diabetes duration (years)	–	9 (22.5)	–
<10 years	–	23 (56.5)	–
10–20 years	–	8 (20)	–
SBP (mmHg)	122 (120–136)	123 (119–127)	0.45
DBP (mmHg)	79.04 ± 10.58	77.03 ± 10.39	0.45
BMI (kg/m2)	27.05 ± 5.48	28.84 ± 5.69	0.20
TC (mmol/L)	–	4.38 (3.90–4.95)	–
TG (mmol/L)	–	1.86 ± 2.33	–
HDL-C (mmol/L)	–	1.30 ± 0.36	–
LDL-C (mmol/L)	–	2.30 (0.90–3.60)	–
Average CGM glucose (mg/dL)	–	178.77 ± 47.38	–
HbA1c (%)	–	8.85 ± 1.70	–
CNFD (fiber/mm2)	29.97 ± 6.02	25.79 ± 5.96	0.006a
CNBD (branch/mm2)	56.25 (46.87–68.75)	31 (26.0–40.60)	<0.001a
CNFL (mm/mm2)	22.55 ± 3.57	16.78 ± 4.10	<0.001a
IWL (mm/mm2)	20.82 ± 5.07	15.35 ± 6.21	<0.001a
TIR % (min) glucose 70–180mg/dL	–	50 ± 22.4 (719.4 ± 322.7)	–
TAR % (min) level 1 hyperglycemia [glucose 181–250mg/dL]	–	27 ± 15 (388.62 ± 223.57)	–
TBR % (min) level 1 hypoglycemia [glucose 54–69mg/dL]	–	2 (0–29) (73.77 ± 76.70)	–
Number of hypoglycemic events	–	2.90 ± 3.43	–

CGM, continuous glucose monitoring; CNBD, corneal nerve branch density; CNFD, corneal nerve fiber density; CNFL, corneal nerve fiber length; DBP, diastolic blood pressure; F, female; HbA1c, glycated hemoglobin; IWL, inferior whorl length; M, male; SBP, systolic blood pressure; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; TAR, time above range; TBR, time below range; TC, total cholesterol; TG, triglycerides; TIR, time in range.

Data are expressed as mean ± SD or median (range).

aSignificant at $P < 0.05$.

Figure 1

Distribution of participants with diabetes based on their interstitial glucose targets.
H Gad et al.

Diabetes have demonstrated that lowering HbA1c is associated with an increase in corneal nerve parameters (31, 32, 33, 34). We have recently shown in patients with type 2 diabetes taking glucose-lowering therapies associated with weight gain and hypoglycemia that despite an improvement in HbA1c there was a reduction in CNBD (35).

Therefore, the relationship between glycemic control and complications is complex, and whilst HbA1c is an important measure of overall glucose control, it fails to capture the magnitude and frequency of glucose variation and the contribution of hypoglycemia. Indeed, intensive glycemic control is associated with an increased incidence of hypoglycemia and adverse cardiovascular outcomes (36). Hence, there has been an increasing emphasis on defining the role of optimal glucose range and GV in the development of diabetic complications (37). Diabetic neuropathy has been associated with an increase in the s.d. of blood glucose and MAGE (5), and a recent study also demonstrated that TIR was associated with DPN symptoms (38). A systematic review showed that a 10% increase in TIR was associated with a reduction in the prevalence of DPN and CAN (9). Whilst higher MAGE and CV were associated with an increased risk of DPN, there was also a significant association with the occurrence of nocturnal hypoglycemia (13). Furthermore, in adults with T1DM, a range of indices of hypoglycemia have been independently associated with CAN (14).

Table 2 Changes in corneal nerve morphology in relation to duration of diabetes and different glucose metrics on CGM.

Glycemic control indicators	CNFD	CNBD	CNFL	IWL
Duration of diabetes				
<10 years	27.21 ± 5.99	35.40 (25.0–50.0)	17.28 ± 2.17	15.54 ± 6.96
10–20 years	24.83 ± 5.64	29.2 (25.0–39.6)	16.32 ± 4.19	13.89 ± 5.57
21–40 years	26.96 ± 7.10	39.6 (18.7–55.2)	17.55 ± 5.62	19.31 ± 6.08
P-value	0.50	0.68	0.71	0.10
HbA1c%				
<8%	26.49 ± 6.30	33.3 (25.0–43.7)	17.0 ± 2.44	16.60 ± 5.57
>8%	25.55 ± 6.30	30.2 (25.0–40.6)	16.71 ± 4.56	14.93 ± 6.44
P-value	0.67	0.89	0.85	0.47
GV (%CV)				
Low <36%	26.17 ± 6.26	36.8 (29.2–46.9)	17.68 ± 4.64	5.63 ± 6.82
High>36%	25.21 ± 5.65	25.0 (19.0–37.5)	15.43 ± 2.75	14.92 ± 5.34
P-value	0.62	0.007a	0.09	0.73
TIR (glucose 70–180 mg/dL)				
In range >70%	26.70 ± 4.66	31.25 (26.0–44.8)	16.94 ± 3.0	14.29 ± 6.26
In range <70%	25.56 ± 6.29	31.20 (25.0–40.6)	16.74 ± 4.37	15.61 ± 6.27
P-value	0.64	0.75	0.91	0.59
TBR (glucose 54–69 mg/dL)				
Below range >4%	27.0 ± 5.08	25.0 (22.9–37.5)	16.15 ± 2.31	14.02 ± 6.45
Below range <4%	25.20 ± 6.35	37.5 (29.2–46.9)	17.08 ± 4.75	15.99 ± 6.11
P-value	0.38	0.045a	0.51	0.35
TBR (glucose <54 mg/dL)				
Severely below range >1%	26.37 ± 6.6	25.0 (19.8–41.7)	15.66 ± 2.93	14.42 ± 6.63
Severely below range <1%	25.65 ± 5.86	35.4 (28.1–44.8)	17.11 ± 4.38	15.62 ± 6.17
P-value	0.79	0.040a	0.36	0.62
Hypoglycemic events				
>1 event	26.1 ± 5.38	28.1 (25.0–39.6)	16.33 ± 3.51	14.59 ± 5.77
No events	25.37 ± 6.83	37.5 (29.2–51.0)	17.39 ± 4.84	16.38 ± 6.78
P-value	0.71	0.08	0.43	0.37
TAR (181–250 mg/dL)				
Level 1 hyperglycemia				
Above range >25%	25.34 ± 6.92	36.5 (25.0–50.0)	16.90 ± 5.23	15.80 ± 6.18
Above range <25%	26.33 ± 4.67	30.2 (25.0–37.5)	16.63 ± 2.19	14.79 ± 6.38
P-value	0.61	0.44	0.83	0.62
Level 2 hyperglycemia				
Severely above range >5%	25.51 ± 6.33	31.20 (25.0–41.7)	16.74 ± 4.46	16.13 ± 6.48
Severely above range <5%	26.74 ± 4.72	31.20 (27.10–43.70)	16.94 ± 2.75	12.53 ± 4.44
P-value	0.59	0.97	0.89	0.14

CGM, continuous glucose monitoring; CNBD, corneal nerve branch density; CNFD, corneal nerve fiber density; CNFL, corneal nerve fiber length; GV, glucose variability; HbA1c, glycated hemoglobin; IWL, inferior whorl length; TAR, time above range; TBR, time below range; TIR, time in range.

*Significant at P < 0.05.
Sudomotor dysfunction has been independently associated with nocturnal TIR in T1DM (16) and T2DM (17). In a recent study, GV assessed by calculating the continuous overall net glycemic action and the percentage of time in normal and high range glucose was associated with nerve excitability and IWL but not CNFD or CNFL in a cohort of patients with T1DM (39). We now show that increased GV and TBR were associated with small nerve fiber damage evidenced by lower CNBD in patients with type 1 and type 2 diabetes. We believe the underlying mechanisms of nerve damage are very different from the severe insulin-induced experimental hypoglycemic neuropathy characterized by reduced motor and sensory nerve conduction velocities and a distal dying back axonal degeneration.

Figure 2
Corneal nerve fiber morphology and CCM parameters in participants with diabetes compared to healthy controls based on glycemic targets. CNFD: corneal nerve fiber density; CNBD, corneal nerve branch density; CNFL, corneal nerve fiber length; HC, healthy control; TAR, time above range; TBR, time below range; TIR, time in range.; (A) HC; (B) Participant with diabetes in TIR; (C) Participant with diabetes in TAR; (D) Participant with diabetes in TBR; (E) CNFD in HC vs participant with diabetes in TIR, TAR and TBR; (F) CNFD in HC vs participant with diabetes in TIR, TAR and TBR; (G) CNFL in HC vs participant with diabetes in TIR, TAR and TBR.

Table 3 Correlation between CCM parameters and glycemic variables derived using CGM.

Glycemic indicators	CNFD (fiber/mm²)	CNBD (branch/mm²)	CNFL (mm/mm²)	IWL (mm/mm²)
Duration of diabetes (years)	0.112 (0.49)	0.101 (0.53)	0.008 (0.96)	0.004 (0.98)
Plasma glucose (mmol/L)	0.195 (0.25)	-0.051 (0.77)	0.075 (0.66)	0.080 (0.64)
Average interstitial glucose (mg/dL)	-0.097 (0.55)	0.042 (0.79)	0.071 (0.66)	0.093 (0.57)
HbA1c (%)	-0.079 (0.63)	0.068 (0.67)	-0.046 (0.78)	-0.004 (0.98)
GV (%)	0.043 (0.79)	-0.398 (0.011)	-0.281 (0.08)	-0.050 (0.76)
Duration in level 1 hyperglycemia (min)	0.152 (0.35)	0.246 (0.12)	0.266 (0.09)	0.156 (0.337)
Duration in level 2 hyperglycemia (min)	-0.114 (0.48)	0.024 (0.88)	0.053 (0.74)	0.152 (0.35)
Duration in level 1 hypoglycemia (min)	0.121 (0.46)	-0.342 (0.031)	-0.232 (0.15)	-0.088 (0.59)
Number of hypoglycemic events	0.072 (0.66)	-0.258 (0.11)	-0.187 (0.25)	-0.074 (0.65)

CCM, corneal confocal microscopy; CGM, continuous glucose monitoring; CNBD, corneal nerve branch density; CNFD, corneal nerve fiber density; CNFL, corneal nerve fiber length; GV, glucose variability; HbA1c, glycated hemoglobin.
We acknowledge the limitations of the current study which include the lack of prior power calculation, relatively small cohort size and short duration of CGM. Nevertheless, CCM shows small nerve fiber damage in participants with diabetes with higher GV and in those who spent a longer duration in hypoglycemia. CGM and CCM are highly sensitive technologies to explore the relationship between glycemic variability and nerve damage and provide novel insights into the development of diabetic neuropathy.

Declaration of interest
There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
This work was supported by Qatar National Research Fund under the grant no. NPRP11S-0110-180247.

References
1. Sloan G, Selvarajah D & Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nature Reviews. Endocrinology 2021 17 400–420. (https://doi.org/10.1038/s41574-021-00496-z)
2. Burgess J, Frank B, Marshall A, Khalil RS, Ponirakis G, Petropoulos IN, Cuthbertson DJ, Malik RA & Alam U. Early detection of diabetic peripheral neuropathy: a focus on small nerve fibres. Diagnostics 2021 11. (https://doi.org/10.3390/diagnostics11020165)
3. Tesfaye S, Chaturvedi N, Eaton SE, Ward JD, Manes C, Jonescu-Tirgoviste C, Witte DR, Fuller JH & EURODIAB Prospective Complications Study Group. Vascular risk factors and diabetic neuropathy. New England Journal of Medicine 2005 352 341–350. (https://doi.org/10.1056/NEJMoa032782)
4. Ferdousi M, Kalteniece A, Azmi S, Petropoulos IN, Ponirakis G, Alam U, Asghar O, Marshall A, Fullwood C, Jeziorska M et al. Diagnosis of neuropathy and risk factors for corneal nerve loss in Type 1 and Type 2 diabetes: a corneal confocal microscopy study. Diabetes Care 2021 44 150–156. (https://doi.org/10.2337/dc20-1482)
5. Yapanis M, James S, Craig ME, O’Neal D & Ekinci EI. Complications of diabetes and metrics of glycemic management derived from continuous glucose monitoring. Journal of Clinical Endocrinology and Metabolism 2022 107 e2221–e2236. (https://doi.org/10.1210/clinem/dgac034)
6. Beck RW, Bergenal RM, Cheng P, Kollman C, Carlson AL, Johnson ML & Rodbard D. The relationships between time in range, hyperglycemia metrics, and HbA1c. Journal of Diabetes Science and Technology 2019 13 614–626. (https://doi.org/10.1177/1932296818822496)
7. Hirsch IB, Welsh JB, Calhoun P, Puhr S, Walker TC & Price DA. Associations between HbA1c and continuous glucose monitoring-derived glycaemic variables. Diabetic Medicine 2019 36 1637–1642. (https://doi.org/10.1111/dme.14065)
8. Oyibo SO, Prasad YD, Jackson NJ, Jude EB & Boulton AJ. The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabetic Medicine 2002 19 870–873. (https://doi.org/10.1046/j.1464-5491.2002.00801.x)
9. Raj R, Mishra R, Jha N, Joshi V, Correa R & Kern PA. Time in range, as measured by continuous glucose monitor, as a predictor of microvascular complications in type 2 diabetes: a systematic review. BMJ Open Diabetes Research and Care 2022 10. (https://doi.org/10.1136/bmjdrc-2021-002573)
10 Seaquist ER, Anderson J, Childs B, Cryer P, Dagogo-Jack S, Fish L, Heller SR, Rodriguez H, Rosenzweig J & Vigersky R. Hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. Diabetes Care 2013 36 1384–1395. (https://doi.org/10.2337/dc12-2480)
11 Silva TP, Rohim LC, Sallum Filho C, Zimmermann LM, Malerbi F & Dib SA. Association between severity of hypoglycemia and loss of heart rate variability in patients with type 1 diabetes mellitus. Diabetes/Metabolism Research and Reviews 2017 33. (https://doi.org/10.1002/dmr.2830)
12 Cryer PE. Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes 2005 54 3592–3601. (https://doi.org/10.2337/diabetes.54.12.3592)
13 Shen Z, Jiang H, Huang R, Zhou Y, Li Q & Ma J. Association of glycemic variability and hypoglycemia with distal symmetrical polyneuropathy in adults with type 1 diabetes. Scientific Reports 2021 11 122875. (https://doi.org/10.1038/s41598-021-02258-3)
14 Jun JE, Lee SE, Lee YB, Ahn JY, Kim G, Hur KY, Lee MK, Jin SM & Kim JH. Continuous glucose monitoring defined glucose variability is associated with cardiovascular autonomic neuropathy in type 1 diabetes. Diabetes/Metabolism Research and Reviews 2019 35 e3092. (https://doi.org/10.1002/dmr.3092)
15 Ponirakis G, Fadavi H, Petroopoulo IN, Azmi S, Ferdousi M, Dabbah MA, Kheyami A, Alam U, Asghar O, Marshall A et al. Automated quantification of neuropad improves its diagnostic ability in patients with diabetic neuropathy. Journal of Diabetes Research 2015 2015 847854. (https://doi.org/10.1155/2015/847854)
16 Feng QZ, Guo QY, Wang W, Yuan YY, Jin XG, Zhou H, Liu J, Lei HY, Yang XJ, Liu J et al. Time in range, especially overnight time in range, is associated with sudomotor dysfunction in patients with type 1 diabetes. Diabetesology and Metabolic Syndrome 2021 13 119. (https://doi.org/10.18638/es2019-01-00739-2)
17 Guo QY, Lu B, Guo ZH, Feng QZ, Yuan YY, Jin XG, Zang P, Gu P & Shao QJ. Continuous glucose monitoring defined time-in-range is associated with sudomotor dysfunction in type 2 diabetes. World Journal of Diabetes 2020 11 489–500. (https://doi.org/10.4239/wjd.v11.i11.489)
18 Malik RA, Kalinikos P, Abbott CA, van Schie CHM, Morgan P, Efron N & Boulton AJM. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003 46 683–688. (https://doi.org/10.1007/s00125-003-1086-8)
19 Perkins BA, Lovblom LE, Bril V, Scarl D, Ostrowski I, Orszag A, Edwards K, Pritchard N, Russell A, Dehghani C et al. Corneal confocal microscopy for identification of diabetic sensorimotor neuropathy: a pooled multinational consortium study. Diabetologia 2018 61 1856–1861. (https://doi.org/10.1007/s00125-018-4653-8)
20 Ferdossi M, Kaltenecke A, Azmi S, Petroopoulo IN, Worthington A, D’Omobiro L, Dhage S, Ponirakis G, Alam U, Marshall A et al. Corneal confocal microscopy compared with quantitative sensory testing and nerve conduction for diagnosing and stratifying the severity of diabetic peripheral neuropathy. BMJ Open Diabetes Research and Care 2020 8. (https://doi.org/10.1136/bmjdr-2020-001801)
21 Gad H, Petroopoulo IN, Khan A, Ponirakis G, MacDonald R, Alam U & Malik RA. Corneal confocal microscopy for the diagnosis of diabetic peripheral neuropathy: a systematic review and meta-analysis. Journal of Diabetes Investigation 2022 13 134–147. (https://doi.org/10.1111/jdi.13643)
22 Dehghani C, Pritchard N, Edwards K, Russell AW, Malik RA & Efron N. Risk factors associated with corneal nerve alteration in Type 1 diabetes in the absence of neuropathy: a longitudinal in vivo corneal confocal microscopy study. Cornea 2016 35 847–852. (https://doi.org/10.1097/ICO.0000000000000760)
23 Dehghani C, Pritchard N, Edwards K, Vagenas D, Russell AW, Malik RA & Efron N. Natural history of corneal nerve morphology in mild neuropathy associated with type 1 diabetes: development of a potential measure of diabetic peripheral neuropathy. Investigative Ophthalmology and Visual Science 2014 55 7982–7990. (https://doi.org/10.1167/iovs.14-15605)
24 Ishibashi F, Okino M, Ishibashi M, Kawasaki A, Endo N, Kosaka A & Uetake H. Corneal nerve fiber pathology in Japanese type 1 diabetic patients and its correlation with antecedent glycemic control and blood pressure. Journal of Diabetes Investigation 2012 3 191–198. (https://doi.org/10.1111/j.2040-1124.2011.00157.x)
25 Pellegrini L, Sebastiani S, Tucci L, Giannaccare G, Moscatiello S, Lafti G, Pagotto U, Di Dallan M & Versura P. Association between alterations of corneal sub-basal nerve plexus analyzed with in vivo confocal microscopy and long-term glycemic variability. European Journal of Ophthalmology 2021 31 2294–2299. (https://doi.org/10.1111/ejos.14062)
26 Nathan DM & DCC/T/EDIC Research Group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 2014 37 9–16. (https://doi.org/10.23736/S0149-1995.13-11212-2)
27 Callaghan BC, Little AA, Feldman EL & Hughes RA. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database of Systematic Reviews 2012 6 CD007543. (https://doi.org/10.1002/14651858.CD007543.pub2)
28 Chaitman BR, Hardison RM, Adler D, Gehbhart S, Grogan M, Ocampo S, Sopho G, Ramires JA, Schneider D, Frye RL et al. The Bypass angioplasty revascularization investigation 2 Diabetes randomized trial of different treatment strategies in type 2 diabetes mellitus with stable ischemic heart disease: impact of treatment strategy on cardiac mortality and myocardial infarction. Circulation 2009 120 2529–2540. (https://doi.org/10.1161/CIRCULATIONAHA.109.93111)
29 Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Golf DC, Jr, Bigger JT, Buse JB, Cushman WC, Gerin S, Ismail-Beigi F et al. Effects of intensive glucose lowering in type 2 diabetes. New England Journal of Medicine 2008 358 2545–2559. (https://doi.org/10.1056/NEJMoa0802743)
30 Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FF, Marks J, Davis SN, Hayward R et al. Glucose control and vascular complications in veterans with type 2 diabetes. New England Journal of Medicine 2009 360 129–139. (https://doi.org/10.1056/NEJMoa0808431)
31 Ponirakis G, Abdul-Ghani MA, Jayyousi A, Almuhammad N, Petroopoulo IN, Khan A, Gad H, Migahid O, Megahed A, DeFronzo R et al. Effect of treatment with exenatide and pioglitazone or basal bolus insulin on diabetic neuropathy: a substudy of the Qatar Study. BMJ Open Diabetes Research and Care 2020 8. (https://doi.org/10.1136/bmjdr-2020-001420)
32 Ishibashi F, Taniguchi M, Kosaka A, Uetake H & Tavakoli M. Improvement in neuropathy outcomes With normalizing HbA1c in patients With type 2 diabetes. Diabetes Care 2019 42 110–118. (https://doi.org/10.2337/dc18-1560)
33 Jia X, Wang X, Wang X, Pan Q, Xian T, Yu X & Guo L. In vivo Corneal Nerve Microscopy Detects Improvement of Corneal Nerve Parameters following glycemic control in patients with type 2 diabetes. Journal of Diabetes Research 2018 2018 8516276. (https://doi.org/10.1155/2018/8516276)
34 Azmi S, Jezierska M, Ferdousi M, Petroopoulo IN, Ponirakis G, Marshall A, Alam U, Asghar O, Atkinson A, Jones W et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 2019 62 1478–1487. (https://doi.org/10.1007/s00125-019-4897-y)
35 Ponirakis G, Al-Janahi I, Elgassim E, Gad H, Petroopoulo IN, Khan A, Ali H, Siddique MA, Gul W, Ferdousi M et al. Progressive loss of corneal nerve fibers is associated with physical inactivity and glucose lowering medication associated with weight gain in type 2 diabetes. Journal of Diabetes Investigation 2022 13 1703–1710. (https://doi.org/10.1111/jdi.13864)
36 Mattishent K & Loke YK. Meta-analysis: association Between hypoglycemia and serious adverse events in older patients treated with
glucose-lowering agents. *Frontiers in Endocrinology (Lausanne)* 2021 **12** 571568. (https://doi.org/10.3389/fendo.2021.571568)

37 Galindo RJ & Aleppo G. Continuous glucose monitoring: the achievement of 100 years of innovation in diabetes technology. *Diabetes Research and Clinical Practice* 2020 **170** 108502. (https://doi.org/10.1016/j.diabres.2020.108502)

38 Mayeda L, Katz R, Ahmad I, Bansal N, Batacchi Z, Hirsch IB, Robinson N, Trenc DL, Zelnick L & de Boer IH. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. *BMJ Open Diabetes Research and Care* 2020 **8**. (https://doi.org/10.1136/bmjdrd-2019-000991)

39 Issar T, Tummanapalli SS, Kwai NCG, Chiang JCB, Arnold R, Poynten AM, Markoulli M & Krishnan AV. Associations between acute glucose control and peripheral nerve structure and function in type 1 diabetes. *Diabetic Medicine* 2020 **37** 1553–1560. (https://doi.org/10.1111/dme.14306)

40 Mohseni S. Neurologic damage in hypoglycemia. *Handbook of Clinical Neurology* 2014 **126** 513–532. (https://doi.org/10.1016/B978-0-444-53480-4.00036-9)

41 Ozaki K, Sano T, Tsuji N, Matsuura T & Narama I. Insulin-induced hypoglycemic peripheral motor neuropathy in spontaneously diabetic WBN/Kob rats. *Comparative Medicine* 2010 **60** 282–287.

42 Jensen VFH, Molck AM, Soeborg H, Nowak J, Chapman M, Lykkesfeldt J & Bogh IB. Proximal neuropathy and associated skeletal muscle changes resembling denervation atrophy in hindlimbs of chronic hypoglycaemic rats. *Basic and Clinical Pharmacology and Toxicology* 2018 **122** 165–175. (https://doi.org/10.1111/bcpt.12870)

43 Jamali R & Mohseni S. Hypoglycaemia causes degeneration of large myelinated nerve fibres in the vagus nerve of insulin-treated diabetic BB/Wor rats. *Acta Neuropathologica* 2005 **109** 198–206. (https://doi.org/10.1007/s00401-004-0932-1)

44 Mohseni S. Hypoglycaemic neuropathy in diabetic BB/Wor rats treated with insulin implants affects ventral root axons but not dorsal root axons. *Acta Neuropathologica* 2000 **100** 415–420. (https://doi.org/10.1007/s004010000204)

45 Mohseni S, Lillesaar C, Theodorsson E & Hildebrand C. Hypoglycaemic neuropathy: occurrence of axon terminals in plantar skin and plantar muscle of diabetic BB/Wor rats treated with insulin implants. *Acta Neuropathologica* 2000 **99** 257–262. (https://doi.org/10.1007/p00007435)

46 Tesfaye N & Seaquist ER. Silent hypoglycemia presenting as dysesthesias. *Diabetes Care* 2004 **27** 628–629. (https://doi.org/10.2337/diacare.27.2.628)

47 Ohshima J & Nukada H. Hypoglycemic neuropathy: microvascular changes due to recurrent hypoglycemic episodes in rat sciatic nerve. *Brain Research* 2002 **947** 84–89. (https://doi.org/10.1016/s0006-8993(02)02910-4)

48 Kihara M, Zollman PJ, Smithson IL, Lagerlund TD & Low PA. Hypoxic effect of exogenous insulin on normal and diabetic peripheral nerve. *American Journal of Physiology* 1994 **266** E980–E985. (https://doi.org/10.1152/ajpendo.1994.266.6.E980)

49 Hilsted J, Bonde-Petersen F, Norgaard MB, Grenimann M, Christensen NJ, Parving HH & Suzuki M. Haemodynamic changes in insulin-induced hypoglycaemia in normal man. *Diabetologia* 1984 **26** 328–332. (https://doi.org/10.1007/BF00266031)

50 Sidenius P & Jakobsen J. Anterograde fast component of axonal transport during insulin-induced hypoglycaemia in nondiabetic and diabetic rats. *Diabetes* 1987 **36** 853–856. (https://doi.org/10.2337/db87-853)

Received in final form 11 October 2022
Accepted 14 October 2022
Accepted Manuscript published online 14 October 2022