A review of system integration and current integrity monitoring methods for positioning in intelligent transport systems

Tarek Hassan | Ahmed El-Mowafy | Kan Wang

School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

Correspondence
Kan Wang, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
Email: kan.wang@curtin.edu.au

Funding information
Australian Research Council, Grant/Award Number: DP170103341

Abstract
Applications of intelligent transportation systems are continuously increasing. Since positioning is a key component in these systems, it is essential to ensure its reliability and robustness, and monitor its integrity so that the required levels of positioning accuracy, integrity, continuity and availability can be maintained. In challenging environments, such as urban areas, a single navigation system is often difficult to fulfill the positioning requirements. Therefore, integrating different navigation sensors becomes intrinsic, which may include the global navigation satellite systems, the inertial navigation systems, the odometers and the light detection and ranging sensors. To bind the positioning errors within a pre-defined integrity risk, the integrity monitoring is an essential step in the positioning service, which needs to be fulfilled for integrated vehicular navigation systems used in intelligent transportation systems. Developing such innovative integrity monitoring techniques requires knowledge of many relevant aspects including the structure, positioning methodology and different errors affecting the positioning solution of the individual and integrated systems. Moreover, knowledge is needed for the current mitigation techniques of these errors, for possible fault detection and exclusion algorithms and for computation of protection levels. This paper provides an overview and discussion of these aspects with a focus on intelligent transportation systems.

1 | INTRODUCTION

The development and spread of many intelligent transportation systems (ITS) applications necessitate the use of effective integrity monitoring (IM) algorithms of positioning as a crucial component in these systems. Generally, ITS applications are classified into two categories; safety-of-life applications and liability-critical applications. If the undetected errors in navigation can cause life threat, the corresponding application is classified as safety-of-life. Examples are the emergency services management, collision alert, and advanced driver-assistance systems. On the other hand, if the undetected positioning errors can lead to undesirable economic and legal actions, the corresponding application is classified as liability-critical, such as the electronic toll collection and the pay-per-use insurance [1,2].

The availability of redundant GNSS observations has enabled positioning IM for applications in open-sky environments, such as in aviation. However, GNSS so far, even with the presence of multiple constellations, cannot provide the same level of IM in ITS applications, especially in dense urban environments. The main reasons are the blockage of GNSS signals by surrounding buildings and obstructions, and the presence of the no-line of sight (NLOS) signals and high multipath interference as shown in Figure 1. The NLOS occurs when the signals along the line of sight (LOS) are blocked but are received through reflected paths. The multipath interference occurs when both reflected and direct LOS signals are received. The effect of NLOS and multipath can cause significant positional errors, in particular when using pseudorange code observations if these signals are not eliminated or mitigated before deriving positional solutions.

To mitigate the NLOS effects, some studies proposed the use of 3D maps in urban areas to detect the NLOS signals by identifying the visible and blocked signals [3–5]. Other studies proposed the shadow-matching technique to estimate the user location by comparing the signal availability determined from...
FIGURE 1 Signal scenarios in urban environments including line of sight, no-line of sight, multipath and blocked signals

the receiver and the signal predictions determined from the 3D maps [6,7]. In the same context, the integration of GNSS with a fish-eye camera, to distinguish the visible satellites from the hidden ones, was presented for example in [8,9]. In a different approach [10], presented a method to detect NLOS signals by using dual-polarization antennas based on the carrier-to-noise ratio (C/N0) information. In addition, a consistency check technique was adopted in [11,12] to exclude the NLOS signals. Height aiding and C/N0 weighting were investigated in [11] to improve positioning. A vector tracking technique for NLOS detection was proposed in [13]. Additionally, a number of studies focused on the antenna and receiver design to mitigate the multipath interference effect [14,15]. Other studies investigated the use of weighting models considering the elevation angles and the C/N0 [16,17].

In the dense urban environment, GNSS frequently experience an outage due to observing an insufficient number of observations under bad measurement conditions. Therefore, to deliver continuous positioning solutions, GNSS is typically supported by other navigation systems such as the inertial navigation system (INS). In vehicular navigation, and due to cost restrictions, the low-cost micro-electro-mechanical system (MEMS) sensors are often used in the INS. In addition, the odometer sensors can be integrated with GNSS and INS to improve the positioning performance as they can provide the scalar vehicular speed, which is transformed to a velocity vector using the attitude derived from the INS. Such velocities can be integrated in time to give positioning change. The advantage of using self-contained systems, such as MEMS INS and odometer sensors, is that they are independent of the multipath and NLOS errors, light in weight, have low-cost and low-power consumption. Their main drawback, however, is the significant increase of the biases with time if kept unaided by another system [18].

Another navigation system that is used in ITS applications is the automotive light detection and ranging (LiDAR) sensor. It is becoming a popular positioning system, in particular for autonomous systems. In dense urban environments, when GNSS suffers from signal blockage and multipath, LiDAR can bridge positioning by extracting enough features from the surrounding environment [19]. Positional differences can then be derived by matching different scans. On the other hand, in the open-sky areas, which are favourable for GNSS with the presence of a good number of observations, LiDAR may struggle due to the lack of features in its range, which may result in failed extraction or matching processes. Therefore, LiDAR and GNSS can complement each other and provide INS and odometer sensors with continuous corrections.

To ensure positioning reliability, its integrity should be monitored. Integrity refers to the level of trust in the navigation system. Integrity has two tasks, the first is to detect and exclude system faults and the second is to check that the positional error (PE) does not exceed a threshold, called the alert limit (AL). If this happens, it should provide a warning to the user within a specified time called the time to alert. The probability of hazardous misleading information (HMI) should be taken into consideration, which is the probability of having a PE larger than the AL without raising an alert. It is selected according to the application at hand. Since positioning errors are not known in practice, the protection levels (PLs) are computed, which statistically defines the largest PE that may affect the position output without raising an alert, with a probability smaller than or equal to the permissible probability of HMI.

Over the past couple of decades, some studies proposed IM schemes for aviation. However, similar schemes that can be used for land applications of ITS to maintain the required levels of positioning accuracy, integrity, continuity and availability, are lacking and some groups are currently working on its development. In addition, IM algorithms for the integrated positioning systems are limited, and mostly only focus on the fault detection step. The integrity algorithms, which are suitable for ITS applications, will be reviewed in this article, in addition to discussing their limitations and the development needed.

This contribution gives an overview of the possible integrations of the different navigation systems, in addition to the current IM approaches, that are relevant to ITS. The paper is organized as follows: Section 2 briefly introduces the different navigation systems that can be used in ITS prior to delving into the integration process among them. Section 3 gives an overview of the integration process of these navigation systems and the algorithms needed to derive the integrated vehicular position. Subsequently, Sections 4 and 5 discuss the integrity concept, the different navigation parameters needed for a successful integrity process, the strategies used for IM, together with the current integrity algorithms relevant to ITS applications.

2 | NAVIGATION SYSTEMS

In this section, a brief description of the positioning systems used in ITS is given. Then, the main characteristics and vulnerabilities of each system will be overviewed.
2.1 | GNSS

GNSS provides absolute positioning, where the code and phase measurement equations can be formulated as [20]:

\[p = G_t + \epsilon (dt_i - dt^s) + T + I + \epsilon (d_i - d^s) + \xi_i^s + \varepsilon. \tag{1} \]

\[L = G_t + \epsilon (dt_i - dt^s) + T + \lambda (N + P_W) - I + \epsilon (\delta_i - \delta^s) + \gamma_i^s + \varepsilon. \tag{2} \]

where \(p \) and \(L \) are the pseudorange code and carrier-phase measurements, respectively. \(G_t \) is the geometric range and \(\epsilon \) is the speed of light. \(dt_i \) and \(dt^s \) denote the receiver and the satellite clock offsets, respectively. \(T \) and \(I \) represent the troposphere and ionosphere delays. \(d_i \) and \(d^s \) are the receiver and satellite code biases, respectively. \(\delta_i \) and \(\delta^s \) are the receiver and satellite phase biases. \(\xi_i^s \) and \(\gamma_i^s \) are corrections applied to code and phase measurements, correspondingly, due to the phase center offsets and phase center variations. \(\varepsilon \) and \(\epsilon \) are the code and phase noise, including multipath. \(N \) is the carrier-phase ambiguity and \(P_W \) is the phase wind-up correction. The different GNSS algorithms that can be used in ITS, such as real-time kinematic (RTK) and precise point positioning (PPP) are reviewed extensively in the literature [20,21]. The GNSS vulnerabilities that need to be included in the IM threat model in ITS applications are described in [22] and will be later mentioned in Table 1.

2.2 | Odometer

Odometers measure the rotation of the vehicle’s wheel, which can be used continuously to calculate the vehicle’s speed and travelled distance. The odometer speed \((v_{od}) \) is proportional to the frequency of the sensor signal \((f_s) \), and can be calculated as [23]:

\[v_{od} = \frac{O_w}{N_t} f_s = \frac{2\pi r_c}{N_t} f_s, \tag{3} \]

where \(O_w \) is the wheel’s circumference, \(r_c \) is the wheel’s radius and \(N_t \) is the number of teeth on the wheel.

The use of odometers in navigation is based on the assumption that the wheel’s revolutions can be converted to linear distance. However, some errors can affect the accuracy of this conversion [24–26]. These errors are summarized in the last part of this section in Table 1.

2.3 | Inertial navigation system

An INS is a dead reckoning relative-positioning system that provides position changes with time. It consists of accelerometers and gyroscopes, which constitute the inertial sensor assembly (ISA). The ISA with the related electronics comprises the inertial measurement unit (IMU). The IMU with a computer, applying the mechanization and filtering algorithms, constitute the INS which can provide continuous navigational solutions. The errors affecting the INS navigation process were extensively described in the literature [18,27–30]. These error sources are summarized in Table 1, and generally, they are classified into two groups; systematic errors and random errors. The random part is modelled by stochastic models employing the first-order Gauss–Markov (GM), random-walk and autoregressive processes [31]. In most GNSS/INS integrations using a Kalman filter, the stochastic errors are modelled with a first-order GM process [32,33], which models a correlation that decays with time using a constant time length. The constant time is determined as the maximum time until reaching an insignificant autocorrelation determined from the autocorrelation analysis.

The integration between navigation systems in ITS applications requires understanding their different coordinate systems (frames) and their relationship. Basically, four frames are involved in the navigation process, namely; the earth centred earth fixed frame, the earth centred inertial (ECI) frame, the local-level frame (l-frame) and the body frame (b-frame). The detailed description of each system and the transformation among these systems can be found for instance in [30,34].

The IMU outputs come from the gyroscopes and accelerometers. The gyroscopes give a vector of rotation rates, which is interpreted as the rotation of the b-frame with respect to the ECI-frame as resolved in the b-frame. The accelerometers give the vector representing the specific forces in the three-body axes [18]. The mechanization process converts these IMU outputs to attitude, velocity and position information. For ITS applications, the output is often given in the l-frame. We thus consider the l-frame mechanization process in this paper. The mechanization process depends on the available aiding sources. For ITS applications, odometer sensors can aid the velocity continuously, and hence, the mechanization algorithm can be simplified. The process can be more accurate after eliminating several error sources in the low-cost IMU mechanization. This simple algorithm can be represented as [30,35]:

\[\varphi^k = \varphi^{k-1} + \frac{\Delta t}{R_s + k} \Delta f \]

\[\lambda^k = \lambda^{k-1} + \left(\frac{R_s + k}{R_s + k + \lambda} \right) \Delta f \]

\[b^k = b^{k-1} + \Delta t \Delta f \]

\[r_c^k = r_c^{k-1} \sin \Delta f \cos \varphi^k \]

\[r_n^k = r_n^{k-1} \cos \Delta f \cos \varphi^k \]

\[\Delta \varphi^k = \sin^{-1} \left(\frac{\Delta \varphi}{\lambda} \right) \]

\[\Delta \lambda^k = \sin^{-1} \left(\frac{\Delta \lambda}{\lambda} \right) \]

\[\Delta r^k = \Delta r_{od} \sin \varphi^k \Delta t + \frac{\Delta \varphi^k}{R_s + k} \Delta t \]

where \(\Delta t \) is the time interval from epoch \(k - 1 \) to epoch \(k \), shown in the superscript of the symbols. \(\omega_z \) is the rotation rate measured by the vertically aligned gyroscope. \(f_s \) and \(f_f \) denote
TABLE 1 Characteristics and vulnerabilities of navigation systems used in intelligent transportation systems

System	GNSS	Low-cost micro-electro-mechanical system inertial measurement unit and odometer	Automotive light detection and ranging
Accuracy	- Single point positioning: few meters	Detrimentously significant with time. For instance, a performance analysis was performed for MTi-G-700 micro-electro-mechanical system-inertial measurement unit in [58]. During global positioning system individual outages of 30 s in ten areas, the error varied from 0.31 to 34.49 m with average error 19.04 m	Aiding inertial navigation system by light detection and ranging can provide few centimeters positioning accuracy [59]
	- Precise point positioning: few decimeters before convergence and few centimeters after convergence		
	- Real-time kinematic: few centimeters		
Continuous	No (environment-dependent)	Yes (environment-independent)	No (environment-dependent)
navigational output			
Error accumulation	No	Yes	Yes
Cost	New dual-frequency receivers cost a few hundreds of US dollars, potential use in intelligent transportation systems	A few tens or hundreds of US dollars	Below US $10,000 and it is predicted to drop to less than US $200 by 2022 [60]
Sampling rate	Up to 100 Hz [61]	Up to 1000 Hz [34]	Up to 50 Hz [62]
Computational burden	Lighter than light detection and ranging and heavier than inertial navigation system and odometer	Light	Heavy
Navigation system	- Satellite hardware errors	Inertial measurement unit systematic errors:	- Instrumental errors of the linear and angular measurements
vulnerabilities and	- Receiver hardware errors	- Bias offset	- Misalignment with the vehicle body
errors	- No-line of sight signals	- Scale factor	- Severe vibrations
	- Multipath	- Misalignment	- Errors based on the used scan matching technique. For instance, in the case of the line-based scan matching, errors can be caused by:
	- Ionosphere delay errors	- Non-orthogonality	- Detection of moving (not fixed) lines
	- Troposphere delay errors	- Scale factor sign asymmetry	- The threshold set in the line detection process
	- Harsh space weather		- The search space set in the line matching process
	- Signal deformations		
	- Jamming and spoofing		
	- Unintentional interference		
	- In-correct ambiguity resolution in case of using carrier-based		
	positioning such as RTK		

the specific forces obtained from the transversal and forward accelerometers, respectively. \(\nu_e, \nu_n \) and \(\nu_u \) are the velocities in the local east, north and up directions. \(\varphi, \lambda \) and \(b \) denote the latitude, longitude and ellipsoidal height of the point, which are next transformed to the \(l \)-frame for consistency of the output. \(\rho, r \) and \(A \) are the pitch, roll and azimuth angles. \(\nu_{od} \) and \(a_{od} \) are the velocity and acceleration obtained from the odometer, and \(\omega_e \) is the Earth’s rotation about its spin axis, which is taken \(\approx 15.041° \) h \(^{-1} \) [36]. \(R_m \) and \(R_n \) denote the radii of curvature in the meridian and prime vertical planes, respectively [37]. \(g \) denotes the gravity acceleration which can be computed as described in [38]. The rotation rates and specific forces should be corrected from the biases and scale factors before entering the mechanization process. To simplify the azimuth calculation, the vertical gyroscope is assumed aligned with the vertical axis of the \(l \)-frame. This assumption agrees with the actual situation in ITS applications.

2.4 Automotive light detection and ranging

Automotive LiDAR sensors use the simple time-of-flight distance-measuring principle by measuring the signal travel time \(\Delta T \) (go and return) and compute the range by multiplying it
by the signal speed, such that \(R = c\Delta T/2 \). Unlike the RA
detection and ranging system which uses microwaves, LiDAR
uses ultra-violet or infrared beams within the visible light
spectrum [39]. There are different LiDAR systems available
for environment perception [40]. However, few systems can
be used with vehicles in the different ITS applications. These
systems comprise one or more light emitters (TX) in addition to
one or more reflected light detectors (RX) to provide coverage
for the required Field-of-View (FoV) and a large number of
points in each frame (scan). LiDAR systems generate a large
amount of data which can reach several GBits per second.
In ITS applications, these data should be transferred to an
electronic computing unit in real time. This is a challenging
research task. The amount of data depends on the required
range resolution, the number of frames per second, the FoV
frame size and the laser pulse repetition frequency. Additional
influencing factors are the number of avalanche photodiodes
elements and analogue-to-digital converters sampling frequency
[41].

Automotive LiDAR systems can work as aiding systems
when being integrated with INS. This integration can provide
navigational solutions (localization), and it mainly depends
on scan matching, which can be classified into three main
categories, namely; the point-based, the feature-based, and the
mathematical property-based scan matching. The point-based
scan matching depends on the direct searching and matching
of the corresponding points in consecutive frames, using the
Iterative Closest Point algorithm [42,43] and its derivatives.
The feature-based scan matching depends on matching features
from consecutive frames to get the positional change
between these frames. The features used in this category are
lines [44–46], corners [47], curbs [48], curvatures [49] and
lane markers [50]. The most commonly used method is the
line-based scan matching because of the frequent appearance
of the lines in urban environments, and the computation effi-
ciency of this method. The mathematical property-based scan
matching can be based on the use of cross-correlation [51],
histograms [52], normal distribution transforms [53] or Hough
transformations [54].

In addition to the localization, the simultaneous localization
and mapping (SLAM) utilizes digital maps in the process and
provides localization and mapping at the same time. The vehicle
pose states and the map states are estimated simultaneously, and
maps are updated with the most recent measurements. SLAM is
widely used in the robotics field [55,56].

In this article, the line-based scan matching is reviewed. The
basic idea of this type of scan matching follows the definition
of normal points in two consecutive frames. The normal point
can be defined as the intersection between the extracted line
and the perpendicular line from the used LiDAR equipment
to this extracted line. This point can be characterized by two
parameters; the polar range \(\rho \) and the polar angle \(\alpha \). The
change of the location of this point between two frames can be
used to calculate the change in position and heading between
these frames. Figure 2 shows this process, where frames i
and j are considered. In a 2D representation, \(X_i \) and \(Y_i \)
represent the axes of the i-frame, whereas \(X_j \) and \(Y_j \)
represent the axes of the j-frame. \(\rho_i \) and \(\rho_j \) are the polar ranges of the
normal points of those frames, respectively, and \(\alpha_i \) and \(\alpha_j \)
are the polar angles of the normal points of the i-frame and
j-frame. \(\Delta X_i \) and \(\Delta Y_i \) refer to the displacements between
the two scans, resolved in the i-frame, in the \(X_i \) and \(Y_i \) directions.
The term \(\Delta A \) denotes the heading change between the two
scans.

From Figure 2, noting the coordinates of the center of
the j-frame \((\Delta X_j, \Delta Y_j)\), its polar range \(\rho_j \) can be calculated as
follows:

\[
\rho_j = \rho_i - \Delta X_i \cos \alpha_i - \Delta Y_i \sin \alpha_i, \quad (5)
\]

and thus, the difference between the two polar ranges denoted
as \(\Delta \rho_i^L \), can be obtained as:

\[
\Delta \rho_i^L = \rho_i - \rho_j = \Delta X_i \cos \alpha_i + \Delta Y_i \sin \alpha_i, \quad (6)
\]

In addition, the heading change can be calculated as:

\[
\Delta A_i^L = \alpha_i - \alpha_j. \quad (7)
\]

Based on these relations, the algorithm can be divided into
three main steps; line detection, line matching and computa-
tion of the relative navigational solution. In the first step, the
modified incremental split and merge algorithm can be applied
for line detection, as described in [46]. In the second step, a
search is conducted to find a match between extracted lines in
two scans. This process can be achieved by predicting the polar
range and polar angle of the normal point in the next scan, using
the change in position and heading obtained from INS. Then,
the prediction variance-covariance (VC) matrix is calculated
and the search process is performed looking for the normal
point in the current scan as described in [57]. In the third and
final step, the relative navigational solution is computed. For \(n \)
number of matched lines, the mathematical relationship joining
the polar parameters and the relative navigational solution can
be expressed as:

$$
\begin{bmatrix}
\rho_{11} - \rho_{11} \\
\rho_{12} - \rho_{12} \\
\vdots \\
\rho_{ij} - \rho_{ij}
\end{bmatrix} =
\begin{bmatrix}
cos \alpha_{11} & sin \alpha_{11} & 0 \\
cos \alpha_{12} & sin \alpha_{12} & 0 \\
\vdots & \vdots & \vdots \\
cos \alpha_{ij} & sin \alpha_{ij} & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x_i \\
\Delta y_i
\end{bmatrix} + \epsilon.
\tag{8}
$$

which takes the parametric form, and thus, the least-squares (LS) estimation of the relative navigational solution with respect to the initial frame can be estimated. At least two non-collinear lines are required to calculate \(\Delta x_i \) and \(\Delta y_i \), while one line is enough to calculate \(\Delta A_i \).

Having now briefly reviewed the basic principles of the three navigation systems that can be used in ITS, namely; GNSS, Low-cost INS/odometers, and LiDAR, Table 1 summarizes the main characteristics of each one. As the outputs of the IMUs and odometers are processed together in the mechanization process to derive navigational solutions, they will be treated as one system here. The GNSS vulnerabilities that need to be included in the IM threat model in ITS applications were studied and discussed in [22] and summarized. The vulnerabilities that need to be considered in the IM process, in case of using the low-cost MEMS INS, odometer and automotive LiDAR sensors, are also given in Table 1 and will be discussed in detail in our future work.

3 | INTEGRATION OF NAVIGATION SYSTEMS IN ITS

Integrating INS and odometer with other navigation systems such as GNSS and LiDAR requires a good understanding of the nature of the sensor errors to be aided, which can be mitigated by proper modelling and estimation techniques. The most common estimation technique is the Kalman filter (KF) [63,64] in the extended form (EKF), that operates on the error states, since the measurement and dynamic models used are nonlinear. When integrating GNSS with INS/odometer, and LiDAR with INS/odometer, these error states are the differences between the INS/odometer states and the reference states, that is, either GNSS states or LiDAR states. The detailed equations implemented in the EKF can be found in [20].

There are three methods presented in the literature for the integration of the navigation systems; the loosely-coupled (LC), the tightly-coupled (TC), and the ultra-tightly- (or deeply-) coupled integrations [65–67]. The first two methods can be used for the integration of INS with GNSS or LiDAR, but the latter method is used in integrating INS with GNSS only as it is performed at the tracking loop level, which requires access to the GNSS hardware. Consequently, the focus here will be on the LC and TC integrations for GNSS/INS/odometer [30], and for LiDAR/INS/odometer combinations [68,69].

The main differences between the LC and TC schemes, in case of integrating GNSS with INS and odometer, are listed in Table 2. \(\delta \varphi, \delta \lambda \) and \(\delta h \) are the latitude, longitude and height errors, respectively. \(\delta v_x, \delta v_y \) and \(\delta v_z \) are the velocity errors in the east, north and up directions. \(\delta A \) is the error in the azimuth angle. \(SF_{od} \) denotes the velocity scale factor error from the odometer, and \(\delta \omega_z \) is the gyroscope drift. \(\delta b \) and \(\delta d \) denote the receiver clock bias and clock drift for each constellation. \(\delta A \) represents the unit matrix, and \(0 \) represents the zero matrix. \(\beta_{vod} \) and \(\beta_{od} \) are the reciprocals of the autocorrelation times for \(\delta v_{od} \) and \(\delta \omega_{od} \), respectively, modelled using a first-order GM process. \(\epsilon^2 \) is squared of the datum first eccentricity. \(\hat{\rho} \) and \(\bar{\rho} \) are the pseudoranges and pseudorange rates. The subscripts \(G \) and \(N \) denote the solutions obtained by GNSS, and obtained/predicted by INS and odometer, respectively. The flow diagrams for integrating the INS and odometer with GNSS in the LC and TC schemes are shown in Figures 3 and 4, respectively.

The main differences between the LC and TC schemes, in case of integrating LiDAR with INS and odometer using the line-based scan matching, are listed in Table 3. \(\delta \Delta x \) and \(\delta \Delta y \) are the displacement errors in \(X_i \) and \(Y_i \) directions, respectively. \(\delta v_x \) and \(\delta v_y \) are the velocity errors in \(X_i \) and \(Y_i \) directions. \(\delta v_{od} \) and \(\delta \omega_{od} \) denote the errors in the odometer velocity and acceleration, respectively. \(\delta \Delta A \) is the error in heading change, and \(\beta_{od} \) is the reciprocal of the autocorrelation time for \(\delta \omega_{od} \) modelled using a first-order GM process. In addition, the flow diagrams for integrating INS and odometer with LiDAR in the LC and TC schemes are illustrated in Figures 5 and 6, respectively.

4 | INTEGRITY AND NAVIGATION PERFORMANCE

The integrity of the navigation system defines the level of trust in the system as mentioned above. It was firstly used in aeronautical applications [70–72] as one of the key performance parameters, which are defined in [73,74] and include in addition to integrity the following:

- Accuracy, which defines the level of agreement between the estimated and the true positions. It can be measured by the 95% confidence interval, for instance, using the root mean square error, and it is computed assuming fault-free conditions and under standard system performance.
- Continuity, which defines the capability of the navigation system to provide a position output and maintain the required accuracy level and integrity over the operational period of the system without interruption or raising an alert; and
- Availability, which is the time ratio when the navigation system output is usable, maintaining the accuracy, integrity and continuity requirements.
| Integration | Loosely-coupled GNSS/inertial navigation system/odometer | Tightly-coupled GNSS/inertial navigation system/odometer |
|--|--|--|
| Solutions | Independent solutions (i.e. inertial navigation system/odometer solution and GNSS solution) + Integrated solution | Integrated solution |
| Minimum visible satellites | Four from the same constellation for SPP, and five for RTK and PPP | One and the filter will be running in the prediction mode |
| Complexity | Simpler | More complex |
| Correlation in GNSS Independent solution | Yes | No, as there are no independent solutions |

KF error states vector

$$
\begin{bmatrix}
\delta \varphi \\
\delta \lambda \\
\delta h \\
\delta v_e \\
\delta v_n \\
\delta v_u \\
\delta \psi_{od} \\
\delta \omega_{od} \\
\delta l_{od}
\end{bmatrix}_9^{T}
$$

KF transition matrix

$$
F_1 = \begin{bmatrix}
0 & 0 & \frac{\Delta t}{(R_N + \rho_{i-1}) \text{cos} \phi} & 0 \\
\frac{\Delta t}{(R_N + \rho_{i-1}) \text{cos} \phi} & 0 & 0 & \Delta t \\
0 & \Delta t & 0 & 0
\end{bmatrix}
$$

$$
F_2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}
$$

KF measurement vector

$$
\begin{bmatrix}
\varphi_N - \varphi_G \\
\lambda_N - \lambda_G \\
b_N - b_G \\
\rho_N - \rho_G \\
\rho_N - \rho_G
\end{bmatrix}_{6x1}
$$

KF design matrix

$$
\begin{bmatrix}
I_{9x9} & 0_{9x3} & 0_{9x3} \\
0_{3x9} & I_{3x3} & 0_{3x3} \\
0_{3x9} & 0_{3x3} & I_{3x3}
\end{bmatrix}_{9x11}
$$

$$
H = \begin{bmatrix}
U_{AX}^1 & U_{AY}^1 & U_{AZ}^1 \\
U_{AX}^2 & U_{AY}^2 & U_{AZ}^2 \\
\vdots & \vdots & \vdots \\
U_{AX}^{10} & U_{AY}^{10} & U_{AZ}^{10}
\end{bmatrix}_9^{T} \\
\begin{bmatrix}
-(R_N + \rho) \text{sin} \varphi \text{cos} \lambda & -(R_N + \rho) \text{sin} \varphi \text{cos} \lambda & \text{cos} \varphi \text{cos} \lambda \\
-(R_N + \rho) \text{sin} \varphi \text{sin} \lambda & (R_N + \rho) \text{cos} \varphi \text{cos} \lambda & \text{cos} \varphi \text{sin} \lambda \\
(R_N(1 - \rho^2) + \rho) \text{cos} \varphi & \cos \varphi & \sin \varphi
\end{bmatrix}
$$

$$
J = \begin{bmatrix}
U_{AX}^1 & U_{AY}^1 & U_{AZ}^1 \\
U_{AX}^2 & U_{AY}^2 & U_{AZ}^2 \\
\vdots & \vdots & \vdots \\
U_{AX}^{10} & U_{AY}^{10} & U_{AZ}^{10}
\end{bmatrix}_9^{T} \\
\begin{bmatrix}
\text{sin} \lambda & -\text{sin} \varphi \text{cos} \lambda & \text{cos} \varphi \text{cos} \lambda \\
\text{cos} \lambda & -\text{sin} \varphi \text{sin} \lambda & \text{cos} \varphi \text{sin} \lambda \\
0 & \text{cos} \varphi & \text{sin} \varphi
\end{bmatrix}
$$

- \text{U}_{AX}^{n} = [U_{AX}^{n}, U_{AY}^{n}, U_{AZ}^{n}]^{T} \text{ is the line of sight unit vector between the receiver and satellite } n
To assure positioning reliability, the position error (PE) should be bounded by a specified region around the true position, where the boundaries of these regions are defined by the ALs. The integrity process aims to guarantee that the PEs lie inside this region with probability equals to at least, \((1 - P_{\text{HMI}})\) where \(P_{\text{HMI}}\) is the maximum allowed probability of HMI. At the same time, the integrity process aims to satisfy the continuity requirement by guaranteeing that the maximum probability of raising an alert and interrupting the operation, without a valid reason, is \(P_{\text{FA}}\), which is denoted as the probability of false alert (FA). \(P_{\text{FA}}\) is a sub-allocation of the continuity requirement \(C_0\), that is, \(P_{\text{FA}} < 1 - C_0\), where \(C_0\) should also account for the probability of the justified alert in case of the PL exceeding the AL [75].

In aviation, where the integrity concept using SPP is quite mature, the region defined by the ALs is cylindrical, where the radius of the cylinder is the horizontal alert limit and its height is the vertical alert limit (see Figure 7a). On the other hand, in ITS applications, in most cases only the horizontal errors are of interest and the concerned directions are the along-track (AT) and the cross-track (CT) directions with the corresponding ALs denoted as \(\text{AL}_{\text{AT}}\) and \(\text{AL}_{\text{CT}}\), respectively. Therefore, the region defined by the ALs is rectangular [76] (see Figure 7b). \(P_{\text{HMI}}\) maybe different in both directions, such
that:

\[R_{\text{HMI}} + R_{\text{HMI}} = R_{\text{HMI}} \]

(9)

where \(R_{\text{HMI}} \) and \(R_{\text{HMI}} \) are the maximum allowed HMI probability in the AT and CT directions, respectively. Since in practice PE is not known in real-time processing, it is replaced by its statistical bound, that is, the PL. Thus, in order to verify the availability of system integrity, the following two conditions have to be satisfied:

\[PL_{\text{AT}} \leq AL_{\text{AT}} \]

(10)

\[PL_{\text{CT}} \leq AL_{\text{CT}} \]

(11)

where \(PL_{\text{AT}} \) and \(PL_{\text{CT}} \) are the PLs in the AT and CT directions, respectively, and \(AL_{\text{AT}} \) and \(AL_{\text{CT}} \) are the ALs in the AT and CT directions.

Meeting the required integrity requirements is the main goal of each integrity process, and to achieve this target, it is essential to identify, characterize and consider the probability of all error sources affecting the navigation solution that may lead to its failure, according to the sensor used and the work environment. Since statistical testing is typically applied, the probability distributions of the system errors have to be considered. For instance, in GNSS navigation, and according to the method used such as
RTK or PPP, the clock and ephemerides error, multipath error, residual atmospheric errors and the noise can affect the navigational solution. These error sources then need to be over-bounded considering the different ways in which the errors can be presented when processing the data. The computation of the convolution of all error sources, in case of using empirical distributions for the different error sources, will be complicated and prohibitive even for powerful computers to calculate the exact integrity risk. Therefore, the process necessitates replacing the probability distribution of the combined error sources, that is, their empirical distribution, by one distribution, the so-called the over-bounding distribution.

For safety reasons, the integrity risk computed based on this over-bounding distribution should always exceed the integrity risk computed using the empirical distribution of the combined

FIGURE 5 Loosely-coupled integration of light detection and ranging, inertial navigation system and odometer using the line-based scan matching

FIGURE 6 Tightly-coupled integration of light detection and ranging, inertial navigation system and odometer using the line-based scan matching

FIGURE 7 (a) Cylindrical alert limit region in aviation and (b) rectangular alert limit region in intelligent transportation systems
errors. Since the only finite variance distribution that is stable through convolution is the normal distribution, therefore, it is almost unavoidable to use normal distributions as the basis for the over-bounding distributions [77]. A number of over-bounding strategies exist in the literature, such as the single cumulative distribution function (CDF) over-bound, the paired CDF over-bound, the moment over-bound, the excess-mass CDF over-bound, and the excess-mass probability distribution function over-bound [78]. As an example, Figure 8 shows the over-bounding strategy in the case of using the paired CDF over-bound.

In GNSS, IM is implemented either at the system level or at the user level. At the system level, space-based augmentation systems (SBAS) [79] or ground-based augmentation systems (GBAS) [80] while primarily provide real-time corrections that can improve the measurements accuracy, they determine and inform the user through their messages which satellites are faulty, such that the user does not use these satellites. In addition, they generate error bounds that bound the actual errors, to be used in the IM process. In aviation, SBAS and GBAS are efficient ways to guarantee the integrity for the positioning with an accuracy of a few meters. On the other hand, at the user level, the redundancy in GNSS signals can be exploited in IM by performing a consistency check of the observation residuals. This method is known as the receiver autonomous integrity monitoring (RAIM) [81,82]. So far, in aviation, only GNSS phase-smoothed code observations that meet the certification requirements are used, and only in non-precision approaches, with trials for some category I approaches. However, the accuracy obtained from code observations ranges between 1 and 10 m, which is not sufficient for ITS applications that need accuracy at the sub-m level. Therefore, carrier-phase observations need also to be used. Consequently, the traditional SPP used in aviation should be replaced by either RTK or PPP in ITS applications. In addition, successful ambiguity resolution in these methods in the harsh environments depends on the availability of observations from several GNSS systems as presented in [83,84], using observations from a number of frequencies and having a good satellite geometry. The need for ambiguity resolution in case of PPP was studied in [85], highlighting the need for fixed ambiguities in case of the accuracy requirement at a few centimetres. However, for the few decimetres accuracy needed for most ITS applications, float solutions could be sufficient.

5 | RECEIVER AUTONOMOUS INTEGRITY MONITORING ALGORITHMS FOR ITS

The RAIM algorithm, which relies on the redundancy of the observations, and therefore is suitable for GNSS, should be designed taking into consideration the different land environments involved in ITS applications. Many forms of RAIM GNSS-based algorithms exist in the literature. The main RAIM GNSS-based methods are presented and compared in [86,87], and the complexities and the existing research of the integrity process in urban environments are discussed in [86].

The classical RAIM algorithms were used with aviation applications for a long time. In the past decade, the method evolves into the advanced RAIM (ARAIM) GNSS-based algorithm [88–92] that offer multiple advantages over the traditional RAIM, which can be summarized as:

- ARAIM considers the possibility of multiple faults, whereas traditional RAIM only considers single faults
- ARAIM includes proof of safety for the integrity process
- ARAIM uses dual-frequency GNSS observations to eliminate the first-order ionospheric delays
- It exploits the multi-constellation GNSS, instead of using only GPS

As multi-band and multi-constellation GNSS observations are utilized in the RTK and PPP methods used in ITS, ARAIM is more suitable to be used. However, in the land environment, additional vulnerabilities such as NLOS effect, a more complicated multipath effect, spoofing, jamming and unintentional interference, exist in particular in the urban environment. The ARAIM baseline algorithm was developed applying the SPP technique, which is suitable for aviation. However, replacing SPP by either RTK or PPP, in ITS, requires further investigation of the additional vulnerabilities associated with the use of the PPP or RTK methods. In addition, mathematical modifications are required to adapt the traditional models to PPP or RTK. In this section, the traditional ARAIM LS snapshot algorithm will be first discussed as the basis for future developments. In the literature, this algorithm was applied to GNSS, but it can also be applied for LiDAR after a suitable modification as will be presented next. This algorithm can be useful in case of the LC integrations mentioned above, as the individual navigational solutions are obtained from the aiding system (GNSS or LiDAR) before being integrated with INS and odometer using KF. However, for the TC integrations, single KF-based processing is carried out integrating the different navigational systems, and therefore, new KF IM architectures are needed for this purpose. Thus, the KF IM architectures, existing in the literature, will be briefly discussed in this section as the basis for our future work in this field.
5.1 Least-squares-based snapshot advanced receiver autonomous integrity monitoring

The ARAIM algorithm can be divided into three main steps. The first step is defining the threat model, that is, the alternative hypotheses (fault modes) to be considered, their total number, and the probability of each fault mode. The second step is the FDE process. In GNSS, the fault modes mainly refer to outliers in code observations or undetected cycle slips in the phase observations. For other sensors, in cases of difficulties of obtaining good threat models, signal-based, knowledge-based and hybrid/active approaches can be used to diagnose the faults and perform the FDE process [93,94]. The third step is the computation of the PLs (as the maximum statistical value for PE computed at the designed integrity risk since PE cannot be computed in real-time practice) and next check that PL<AL to declare the availability of IM and the navigation solution. These three steps were extensively studied before in case of using GNSS for aviation, but very limited work was carried out for ITS. The LS-snap shot algorithm used in aviation can serve as the basis for future development in IM for ITS applications that will use GNSS and also in its integration with other sensors. Herein, the same approach will be tailored for its application with LiDAR using the line-based scan matching. The main differences between GNSS and LiDAR, when applying this strategy, will be addressed.

5.1.1 Threat model

If \hat{x} is the unknown vector, the observation equations of the navigation system can be linearized in the form:

$$y = Ax + \epsilon$$

(12)

where y is the measurement vector, A is the design matrix and ϵ is the measurement error vector. The first step is to compute the total number of alternative hypotheses to be considered. Note that we only have one null hypothesis, that is, the system being in a fault-free mode, whereas the total number of fault modes, that is, the number of alternative hypotheses N_{Ha}, for n observations can theoretically be:

$$N_{\text{Ha}} = n + \frac{n!}{2! (n-2)!} + \cdots + \frac{n!}{N_{\text{fault}}! (n - N_{\text{fault}})!}.$$

(13)

In practice, the maximum number of simultaneous observation faults (i.e. code outliers or phase cycle slips in GNSS) that can be monitored, $N_{\text{fault}}^\text{max}$, is calculated iteratively as follows [88]:

$$N_{\text{fault}}^\text{max} = \max (r) : \left(\sum_{j=1}^{n} P_j \right)^r > P_{\text{thres}}.$$

(14)

where r is the number of simultaneous faults, P_j is the fault probability of measurement j and P_{thres} is the integrity risk threshold coming from the unmonitored measurements fault. max(r) should be less than/or equal the degrees of freedom (redundancy) in the system.

Assuming that faulty measurements are independent, the probability of occurrence of each fault mode P_{Ha} can be expressed as:

$$P_{\text{Ha}} = \prod P_j$$

(15)

for the number of simultaneous faulty measurements. For GNSS, a complete list of system vulnerabilities using the RTK technique is given in [22], from which one can decide which vulnerabilities can cause a fault (e.g. large multipath or NLOS causes an outlier in a code observation), its impact and probability. When multiple faults affect a single observation, their effects can be combined into one term. So far, faults due to multipath, NLOS, and ambiguity resolution have not been covered within a complete framework. Therefore, they are not going to be addressed in this review article and will be addressed in future work. Similarly, vulnerabilities of other sensors and their associated threat model will be addressed in our future work. As an example, Table 4 shows the main differences between GNSS and LiDAR in this step.

5.1.2 FDE algorithms

A key element of RAIM is the FDE process. Utilizing the redundancy in the observations, the FDE checks the consistency of all possible combinations of observations to identify the faulty ones (outliers) that are inconsistent with the rest of the observations. Therefore, increasing the measurements redundancy enhances the power of FDE. This process can be performed either in the position domain or in the observation domain [76].

The alternative hypotheses H_a (the faulty cases) are tested to detect any anomalies affecting the system. If anomalies are detected, the corresponding observations are excluded. This can be expressed as:

$$H_0 : y = Ax + \epsilon.$$

(16)

$$H_a : y = Ax + C \nu + \epsilon.$$

(17)

where H_0 is the null hypothesis. C is a matrix identifying the tested observations (suspected to be faulty) and ν is the error vector. For n observations and z number of faults, C will be $n \times z$ matrix, and ν will be $z \times 1$ vector containing the magnitude of each bias.

If the FDE process is performed in the position domain, the solution of each hypothesis is calculated as:

$$\hat{x}_0 = S_0 y.$$

(18)
TABLE 4 GNSS and light detection and ranging fault modes definition (n is the number of observations)

Navigation System	GNSS	Light detection and ranging
Linearization needed	Yes	No (Equation (8) is linear)
Number of measurements	Number of satellites	Number of matched lines x 2
Alternative hypotheses (faulty measurements)	Single or multiple faults in satellite measurements	Single or multiple faults in the matched lines between consecutive scans
Max number of simultaneous faulty observations	n − 3 − number of constellations	(n − 4)/2

TABLE 5 The FDE process in case of GNSS and light detection and ranging

Navigation system	GNSS	Light detection and ranging
Matrix C	Each of its columns has one corresponding to the faulty observation and zeros elsewhere	Each of its columns has 2 ones corresponding to the faulty line and zeros elsewhere
Rotation matrix R	Transforms the output from the ECEF-frame to the b-frame (AT and CT directions)	Unity matrix, because the solution is referred to the b-frame (AT and CT directions)
SS test statistic	\[
\begin{bmatrix}		
X_a - X_0 \\		
Y_a - Y_0 \\		
H_a - H_0		
\end{bmatrix}		
\]	\[
\begin{bmatrix}		
\Delta X_a - \Delta X_0 \\		
\Delta Y_a - \Delta Y_0		
\end{bmatrix}		
\]		
Continuity budget allocation for SS tests	• $P_{\lambda H}$: the allowed probability of false alert in the horizontal direction	
	• $P_{\lambda V}$: the allowed probability of false alert in the vertical direction	
	• $P_{\lambda \chi^2}$	
SS test thresholds	$k_{P_{\lambda H}} = -\Phi^{-1} \left(\frac{P_{\lambda H}}{4N_H} \right)$	$k_{P_{\lambda \chi^2}} = -\Phi^{-1} \left(\frac{P_{\lambda \chi^2}}{2N_H} \right)$, usually not needed in most intelligent transportation systems applications
	$k_{P_{\lambda V}} = -\Phi^{-1} \left(\frac{P_{\lambda V}}{2N_H} \right)$, usually not needed in most intelligent transportation systems applications	
	$P_{\lambda H}$ and $P_{\lambda \chi^2}$ are assumed to be equally distributed in the AT and CT directions.	
	$k_{P_{\lambda H}}$ and $k_{P_{\lambda \chi^2}}$ are used twice (for AT and CT directions)	
	Φ is the left side of the cumulative distribution function of a standard zero-mean Gaussian distribution	

\[\hat{x}_a = S_{a,y} x_a \quad (19)\]

where \hat{x}_0 denotes the solution obtained by using all observations (assuming a null hypothesis, i.e. no faulty observations, and thus all observations are used), and \hat{x}_a is the solution from a subset of observations, excluding the observations suspected to be faulty (the alternative hypothesis a). The pseudo-inverse matrices S_0 and S_a map the observation space onto the space of the estimated unknowns for the null hypothesis, and the alternative hypothesis a, respectively. In least squares, $S_0 = R(A^T W A)^{-1} A^T W$ and similarly S_a. W is the weight matrix of all-satellites, taken as the inverse of the VC matrix of the observations (Q), and considering the weight of faulty observations as zeros. The transformation matrix R is used to transform the output of the navigational solution onto the AT and CT directions.

For each alternative hypothesis, the solution separation (SS) method can be applied, where the test statistic $\Delta \hat{x}_a$ is computed as [89]:

\[\Delta \hat{x}_a = |\hat{x}_a - \hat{x}_0| \quad (20)\]

and its standard deviation $\sigma_{ss,aq}$ for the component q is computed. $\sigma_{ss,aq} = \sqrt{a_q^T (S_a - S_0) Q (S_a - S_0)^T a_q}$, where a_q is a column vector which keeps all elements as zeros and the required unknown position element (e.g. AT, CT) as one. H_0 is rejected in favour of H_a if

\[\frac{\Delta \hat{x}_a^T a_q}{\sigma_{ss,aq}} > k_{P_{\lambda \chi^2}}. \quad (21)\]
where k_{FA_q} is the SS test threshold, which depends on the tested element as will be addressed in Table 5, and q denotes the AT or CT direction.

The study in [95] shows that there could be a very small difference in the FDE outcome when it is applied in the position domain from that when being applied in the observation domain, due to changes in the size of the threshold zone of the projected faults in these domains. Therefore, the FDE process is complemented by its application in the observation domain [96,97]. The alternative hypotheses H_q are tested against H_0 using the generalized likelihood ratio (GLR) test derived from the Neyman–Pearson principle [98]. A uniformly most powerful invariant test statistic using the GLR criterion, can be formed as [97]:

$$T_{df} = \hat{\chi}_0^T WC (C^T W \check{Q}_0 W C)^{-1} C^T W \hat{y}_0 - \check{\Psi}^T \check{Q}_0^{-1} \check{\Psi}, \quad (22)$$

where $\hat{\chi}_0$ is the residual vector using LS in case of the null hypothesis and can be computed, with its VC matrix \check{Q}_0, through the best linear unbiased estimation (BLUE) as:

$$\hat{\chi}_0 = y - A \hat{\chi}_0 = \left[I - A (A^T W A)^{-1} A^T W \right] y. \quad (23)$$

The BLUE of $\check{\Psi}$ can be calculated, with its VC matrix \check{Q}_0, as:

$$\check{\Psi} = (C^T W \check{Q}_0 W C)^{-1} C^T W \hat{\chi}_0. \quad (25)$$

To accept the null hypothesis, the following condition should be satisfied:

$$T_{df} \leq \chi_{df}^{-1} (1 - P_{FA \chi^2}). \quad (27)$$

where χ_{df}^{-1} is the inverse CDF (quantile) of a central χ^2 distribution with df degrees of freedom and $P_{FA \chi^2}$ is the probability of false alert approximated as the continuity budget allocated to the χ^2 test. If the test fails, the null hypothesis is rejected and the faulty observations need to be identified and excluded. Consequently, the maximum value in the test statistics is chosen as the best candidate for exclusion. It is remarked that other testing statistics also exist. A comparison is given in [99].

Because of a slight possibility of a discrepancy between the outcome of the two tests (SS and the test applied in the observation domain, simply known as Chi-square test), one can apply the SS test first, and when all test statistics are below the thresholds, a confirmation check is performed in the observation domain. If this test passes, we proceed to the next step in IM, that is, compute the PLs, and if the confirmation check fails, an alert has to be declared and the PL cannot be computed. If one of the SS tests fails, fault exclusion should commence by choosing the best candidate to be excluded. The subset giving the maximum value of the normalized $a_k \Delta \hat{\chi}_0 / \sigma_{AT,AT}$ is the best candidate for exclusion. After exclusion, all the previous steps have to be repeated again to ensure that the correct faulty observations are excluded until all the SS tests and the consistency check pass. Table 5 shows the main differences when applying the FDE algorithms described above in case of GNSS and LiDAR.

5.1.3 Computation of the protection level

When the FDE test passes in the previous step, the PL is computed. The effect of possible nominal biases on the solution should be considered and bounded by the PLs. Denoting the associated nominal bias in a measurement j by b_j, the measurement biases are projected in the position domain as:

$$b_{0q} = \sum_{j=1}^{n} |a_j^T \hat{\chi}_0| b_j, \quad (28)$$

$$b_{aq} = \sum_{j=1}^{n} |a_j^T \epsilon_j| b_j. \quad (29)$$

Assuming the observation errors are normally distributed by the over-bounding distribution (cf. Section 4), the upper-values of PLs in the CT direction (PL_CT) and in the AT direction (PL_AT) can be computed as [5]:

$$\sum_{j=1}^{N_h} R_{1j} \theta \left(\frac{\text{PL}_{CT} - k_{FAH} \sigma_{AT,CT} - \hat{b}_{CT}}{\sigma_{0CT}} \right) + 2 \theta \left(\frac{\text{PL}_{CT} - b_{0CT}}{\sigma_{0CT}} \right) = l_{CT} P_{HMI}. \quad (30)$$

$$\sum_{j=1}^{N_h} R_{1j} \theta \left(\frac{\text{PL}_{AT} - k_{FAH} \sigma_{AT,AT} - \hat{b}_{AT}}{\sigma_{0AT}} \right) + 2 \theta \left(\frac{\text{PL}_{AT} - b_{0AT}}{\sigma_{0AT}} \right) = l_{AT} P_{HMI}. \quad (31)$$

where σ_0 and σ_ϵ denote the standard deviations of $\hat{\chi}_0$ and ϵ_j, respectively. l_{CT} and l_{AT} are the allocation of P_{HMI} in the CT and AT directions, respectively, where $l_{CT} + l_{AT} = 1$. A
method to solve these equations using a half-interval search can be found in [88]. For sensors other than GNSS, for example, LiDAR, the same formulas can be used, where \(k_{\text{FAI}} \) is replaced by \(k_{\text{FAIhor}} \).

The PL can be approximated for low-cost systems with limited computational power as follows:

\[
\text{PL}_{\text{AT}} = k_{\text{AT}} \sigma_{0\text{AT}} + h_{0\text{AT}}. \tag{32}
\]

\[
\text{PL}_{\text{CT}} = k_{\text{CT}} \sigma_{0\text{CT}} + h_{0\text{CT}}. \tag{33}
\]

where

\[
k_{\text{AT}} = -\theta^{-1} \left(\frac{P_{\text{HMI}}}{2} \right). \tag{34}
\]

\[
k_{\text{CT}} = -\theta^{-1} \left(\frac{P_{\text{HMI}}}{2} \right). \tag{35}
\]

The PL algorithms, in case of using INS and odometer with the RTK technique in the de-coupled mode, is expressed as [100,101]:

\[
\text{PL}_{\text{AT}} = \sqrt{\sin \theta a_{1}^T S \left[\frac{h_{\text{IMU}}}{b_{\text{odo}}} \right] + k_{\text{AT}} \sigma_{\text{AT}}}. \tag{36}
\]

\[
\text{PL}_{\text{CT}} = \sqrt{\left(\cos \theta a_{2}^T S \left[\frac{h_{\text{IMU}}}{b_{\text{odo}}} \right] \right)^2 + \sin \theta a_{2}^T S \left[\frac{h_{\text{IMU}}}{b_{\text{odo}}} \right] + k_{\text{CT}} \sigma_{\text{CT}}}. \tag{37}
\]

where \(\theta \) is the azimuth angle, \(\sigma_{\text{AT}} \) and \(\sigma_{\text{CT}} \) are the standard deviations of the solution in the AT and CT directions, respectively, which can be computed by applying the covariance propagation as described in detail in [101]. \(h_{\text{IMU}} \) is the INS heading bias, which is assumed to increase linearly with time. \(b_{\text{odo}} \) denotes the bias caused by the odometer speed. \(a_{1}^T = [1, 0] \), \(a_{2}^T = [0, 1] \), and \(S \) is the pseudo-inverse matrix used to map the observations space onto the unknowns space as mentioned earlier.

5.2 Kalman filter-based integrity algorithms

A number of studies discussed the integrity process using Kalman filter processing. [102] analysed the performance of GPS/INS integration running a number of sub-filters and assuming single satellite faults. For fault detection, the SS test statistics are calculated between the all-in-view filter (i.e., assuming no faults) and the sub-filters. The main problem of running these sub-filters is the increased computational burden especially with the increase in the number of visible satellites when using multi-constellations. In another study, [103] studied the GNSS/INS integration, and proposed the inclusion of the predicted state parameters with the use of code observations in the adjustment to improve the FDE capability and test reliability.

The study in [104] presented a KF-based IM approach that provides a tight-bound on the integrity risk assuming the worst-case fault condition. The approach adopts a fault detection procedure in the observations domain. The KF predicted residual (vector of innovations) \(e_k \) is computed, and its weighted norm \(R_{\text{KF}} \) at epoch \(k \) is expressed as:

\[
r_{\text{KF},k} = e_k^T Q_k^{-1} e_k. \tag{38}
\]

where \(Q_k \) is the VC matrix of the vector of innovations. The cumulative KF test statistics \(R_{\text{KF},k} \) to a certain chosen time length, is then computed using the test statistics at the previous epoch as follows:

\[
R_{\text{KF},k} = R_{\text{KF},k-1} + r_{\text{KF},k}. \tag{39}
\]

The detection Chi-squared threshold is derived using the weights and the independent random variables, which can be obtained for example by the use of singular value decompositions in the recursive form as described in [104]. Regarding the integrity risk bound, a batch LS method is used to calculate the worst-case fault vectors (i.e. of all time epochs). At each epoch, the fault vector is used as an input to a second KF to compute the mean of the estimate error vector, which is used to calculate the PLs. The main problem of this approach is the computational burden needed to implement a batch LS and a second KF. In a following work, [105] derived a sequential IM technique based on the sum of squared weighted norms for a sequence of KF innovations. The study developed a recursive approach to compute the worst-case failure mode slope (FMS) and determine an upper bound on the integrity risk. In addition, they utilized the sequential FMS approach for fault exclusion by extracting the sub-set solutions without the need to run parallel KFs.

In [106], another KF-based RAIM algorithm was presented. For fault detection, a LS-based method is used applying three test statistics. Firstly, the pseudorange and pseudorange rate residual vector is obtained as the difference between the output pseudoranges/pseudorange rates and their predicted values. The predicted pseudorange/pseudorange rate are obtained based on the filter predicted receiver position, the satellite position, predicted receiver clock bias and the predicted atmospheric errors. Next, this vector is modelled as the observation vector in a parametric form, and the three test statistics are performed for three epoch ranges [106].

A sequential PPP KF IM architecture was proposed in [107]. The estimated parameters in the filter include the position, clock biases, float ambiguities, tropospheric delay and multi-path error. The method also requires running a bank of parallel KFs. To reduce the computational load, most modelled errors are computed only once based on the fault-free case. The approach assumes an optimal fault-free (all-in-view) estimator,
which gives for each subset filter [107]:

\[
\sigma_{\text{ss},a}^2 = \sigma_{0,KF}^2 - \sigma_{a,KF}^2,
\]

where \(\sigma_{0,KF}^2\) and \(\sigma_{a,KF}^2\) are the error variances obtained from the fault-free filter and the tested subset filter, respectively. Hence, the SS standard deviation \(\sigma_{\text{ss},a}\) can be updated easily, and the PLs can be computed using Equations (30) and (31).

The study in [108] presented IMU/LiDAR integration to enable the integrity risk evaluation, while accounting for the incorrect associations between mapped and observed landmarks, and incorporating LiDAR return-light intensity measurements to better distinguish between landmarks. An analytical integrity risk bound, provided by [109] is used to consider all possible incorrect associations. The performance assessment showed a significant reduction in the integrity risk by applying the developed integration and incorporating LiDAR return-light intensity.

6 | CONCLUSION

A reliable and robust IM is an essential task for ITS, in particular for safety-related applications such as autonomous driving. In open-sky environments, the precise GNSS-based positioning methods could be enough to satisfy the required navigation performance metrics (integrity, accuracy, continuity, and availability). In urban canyons, however, the large multipath and the poor satellite geometry with limited satellite visibility may hamper the achievement of this goal. Hence, the integration of GNSS with other positioning sensors such as INS, odometer and LiDAR sensors, becomes essential in such environments. The characteristics and vulnerabilities of each navigation system were briefly reviewed. In addition, the integration schemes between these sensors, for ITS applications were presented describing the merits, limitations and the basic mathematical model of each of them.

The current integrity algorithms, that can be applied in ITS, were reviewed. The traditional ARAIM LS GNSS-based algorithm was discussed, and a similar algorithm with suitable modification to be applied with LiDAR was proposed. These LS algorithms are useful for the LC integrations and in case of using a single navigational system. In addition, the limited KF-based IM studies, available in the literature, were discussed. These studies can be useful in future work when applying the TC integrations, or the KF-based single system techniques (e.g. RTK and PPP).

The integrity main framework is discussed. However, while IM was comprehensively covered for GNSS in aviation, its methodology in the land environment applications is very limited. Moreover, the IM architectures for other sensors and the integrated systems, which can be applied in open-sky and urban environments, need to be developed. Therefore, future research will have more challenges, considering a large number of vulnerabilities of each sensor and when the sensors are combined, their FDE, PLs and the over bounding error distribution.

ACKNOWLEDGEMENT

This work is partially funded by the Australian Research Council Discovery Project: Trustworthy Positioning for Next Generation Intelligent Transport Systems, Project ID: DP170103341.

ORCID

Ahmed El-Mowafy https://orcid.org/0000-0001-7060-4123
Kan Wang https://orcid.org/0000-0001-5688-6937

REFERENCES

1. EGA: Technical analysis of new paradigms increasing EGNSS accuracy and robustness in vehicles. European GNSS Agency (2015)
2. EGA: Report on the performance and level of integrity for safety and liability critical multi-applications. European GNSS Agency (2015)
3. Suh, Y., Shibasaki, R.: Evaluation of satellite-based navigation services in complex urban environments using a three-dimensional GIS. IEICE Trans. Commun. E90B(7), 1816–1825 (2007)
4. Wang, L., et al.: Multi-constellation GNSS performance evaluation for urban canyons using large virtual reality city models. J. Navigation 65(3), 459–476 (2012)
5. El-Mowafy, A., Imparato, D.: Positioning integrity, availability and precision for journey planning and navigation using GNSS integrated with low-cost sensors. Paper presented at the 31st international technical meeting of the satellite division of the institute of navigation, Miami, USA, 24–28 September 2018
6. Groves, P.D.: Shadow matching: A new GNSS positioning technique for urban canyons. J. Navigation 64(3), 417–430 (2011)
7. Groves, P.D., et al.: GNSS shadow matching: The challenges ahead. In: Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS+, Tampa, USA, 14–18 September 2015, pp. 2421–2443
8. Suzuki, T., Kubo, N.: N-LOS GNSS signal detection using fish-eye camera for vehicle navigation in urban environments. In: 27th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2014, Tampa, USA, 8–12 September 2014, pp. 1897–1906
9. Kato, S., et al.: NLOS satellite detection using a fish-eye camera for improving GNSS positioning accuracy in urban area. J. Robotics and Mechatronics 28(1), 31–39 (2016)
10. Jiang, Z., Groves, P.D.: NLOS GPS signal detection using a dual-polarisation antenna. GPS Solutions, 18(1), 15–26 (2014)
11. Groves, P.D., Jiang, Z.: Height aiding, C/N0 weighting and consistency checking for GNSS NLOS and multipath mitigation in urban areas. J. Navigation 66(5), 653–669 (2013)
12. Hsu, L.-T., et al.: Multiple faulty GNSS measurement exclusion based on consistency check in urban canyons. IEEE Sensors 17(6), 1909–1917 (2017)
13. Hsu, L.-T., et al.: Multipath mitigation and NLOS detection using vector tracking in urban environments. GPS Solutions 19(2), 249–262 (2015)
14. Leitner, O., Knobe, V.: Optimizing small antennas for body-loading applications. GPS World 23(9), 40–44 (2012)
15. Hsu, L.-T., et al.: Assessment of the multipath mitigation effect of vector tracking in an urban environment. In: Proceedings of the ION 2013 Pacific PNT Meeting, Honolulu, Hawaii, 23–25 April 2013, pp. 498–509
16. Hartinger, H., Brunner, F.K.: Variances of GPS phase observations: the SIGMA-ε model. GPS Solutions 2(4), 35–43 (1999)
17. Tay, S., Marais, J.: Weighting models for GPS pseudorange observations for land transportation in urban canyons. In: 6th European Workshop on GNSS Signals and Signal Processing, Germany, 2013
18. Aggarwal, P., et al.: MEMS-Based Integrated Navigation. Artech House Publisher, London (2010)
19. Gao, Y., et al.: INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors 15(9), 23286–23302 (2015)
20. Teunissen, P.J.G., Montenbruck, O. (eds.): Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing, Switzerland (2017)

21. Hofmann-Wellenhof, B., et al.: GNSS-GLOBAL Navigation Satellite Systems. Springer, New York (2008)

22. Imparato, D., et al.: A review of SBAS and RTK vulnerabilities in intelligent transport systems applications. In: Proceedings of the IGGNSS Symposium, Sydney, Australia, 7–9 February 2018, pp. 1–18

23. Trobro, C., Magnusson, M.: Improving wheel speed sensing and estimation. Dissertation, Lund Institute of Technology (2003)

24. Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Trans. Robotics and Automation 12(6), 860–880 (1996)

25. Abbott, E., Powell, D.: Land-vehicle navigation using GPS. Proc. IEEE 87(1), 145–162 (1999)

26. Carlson, R., et al.: Error sources when land vehicle dead reckoning with differential wheelspeeds. Navigation 51(1), 13–27 (2004)

27. IEEE Std 952-1997: IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros (1997)

28. IEEE Std 1293-1998: IEEE Standard Specification Format Guide and Test Procedure for Linear, Single-Axis, Non-gyroscopic Accelerometers (1998)

29. Grewal, M.S., et al.: Global Positioning Systems, Inertial Navigation, and Integration. Wiley, New York (2007)

30. Noulérdin, A., et al.: Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration. Springer-Verlag, Berlin Heidelberg (2013)

31. Quinchia, A.G., et al.: A comparison between different error modeling of MEMS applied to GPS/INS integrated systems. Sensors 13(8), 9549–9588 (2013)

32. Gelb, A., et al.: Applied Optimal Estimation. The Massachusetts Institute of Technology Press, Cambridge (1974)

33. Brown, R., Hwang, Y.: Introduction to Random Signals and Applied Optimal Estimation. The Massachusetts Institute of Technology Press, Cambridge (1981)

34. Gotzig, H., Geduld, G.: Automotive LIDAR. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds.) Handbook of Driver Assistance Systems, Basic Information, Components and Systems for Active Safety and Comfort. Springer International Publishing, Cham (2016)

35. Li, X., et al.: A tightly coupled positioning solution for land vehicles in urban canyons. J. Sens. 2017, 1–11 (2017)

36. Torge, W.: Geodesy, 3rd edn. Walter de Gruyter, Berlin (2001)

37. Hofmann-Wellenhof, B., et al.: Global Positioning System, Theory and Practice, 5th edn. Springer-Verlag, Wien (2001)

38. Forsberg, R.: Gravity field terrain effect computations by FFT. Bulletin Géodésique 59, 342–360 (1985)

39. Gotzii, H., Geduld, G.: Automotive LIDAR. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds.) Handbook of Driver Assistance Systems, Basic Information, Components and Systems for Active Safety and Comfort. Springer International Publishing, Cham (2016)

40. Behrozpour, B., et al.: LiDAR system architectures and circuits. IEEE Commun. Mag. 55(10), 135–142 (2017)

41. Maksymova, I., et al.: Review of LiDAR sensor data acquisition and compression for automotive applications. Proceedings 2(13), 852 (2018)

42. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

43. Censi, A.: An ICP Variant Using a Point-to-line Metric. Paper presented at the 2008 IEEE International Conference on Robotics and Automation, Pasadena, USA, June 2008, pp. 19–25

44. Pfister, S., et al.: Weighted line fitting algorithms for mobile robot map building and efficient data representation. In: Proceedings of the 2005 IEEE International Conference on Robotics 61 Automation, Taipei, Taiwan, 14–19 September 2003 pp. 1304–1311

45. Nguyen, V., et al.: A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, August 2005 pp. 1929–1934

46. Soloviev, A., et al.: Tight coupling of laser scanner and inertial measurement for a fully autonomous relative navigation solution. Navigation 54(3), 189–205 (2007)

47. Lingemann, K., et al.: High-speed laser localization for mobile robots. Robot. Auton. Syst. 51(4), 275–296 (2005)

48. Hata, A.Y., et al.: Robust curb detection and vehicle localization in urban environments. In: IEEE Intelligent Vehicle Symposium (IV), Dearborn, Michigan, USA, June 2014 pp. 1257–1262

49. Núñez, P., et al.: Fast laser scan matching approach based on adaptive curvature estimation for mobile robots. Robotica 27(3), 469–479 (2009)

50. Kammel, S., Pittz, B.: LiDAR-based lane marker detection and mapping. In: Proceedings of the IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, June 2008 pp. 1137–1142

51. Olson, E.B.: Real-time cumulative scan matching. In: Proceedings of the IEEE ICRA, Kobe Japan, May 2009 pp. 4387–4393

52. Weiß, G., von Puttkamer, E.: A Map Based on Laserscans without Geometric Interpretation. In: Rembold, U., et al. (eds.) Intelligent Autonomous Systems, pp. 403–407. IOS Press, Amsterdam (1995)

53. Burguera, A., et al.: On the use of likelihood fields to perform sonar scan matching localization. Auton. Robots 26, 203–222 (2009)

54. Censi, A., et al.: Scan matching in the hough domain. In: Proceedings of the IEEE ICRA, Barcelona, Spain, April 2005 pp. 2739–2744

55. Bresson, G., et al.: Simultaneous localization and mapping: a survey of recent trends in autonomous driving. IEEE Trans. Intell. Veh. 2(3), 194–220 (2017)

56. Liu, R., et al.: High definition map for automated driving: overview and analysis. J. Navigation 73(2), 324–341 (2019)

57. Bates, D.P.: Navigation using optical tracking of objects at unknown locations. Dissertation, Ohio University (2007)

58. Lee, Y., Kwon, J.H.: Performance analysis of the GNSS/MEMS-IMU/on-board vehicle sensor/magnetometer-based positioning system during GNSS signal blockage. Int. J. Urban Sci. 23(3), 434–443 (2019)

59. Liu, H., et al.: A precise and robust segmentation-based lidar localization system for automated urban driving. Remote Sensing 11, 1348 (2019)

60. Khader, M., Chertan, S.: An Introduction to Automotive LiDAR. Texas Instruments Incorporated (2018)

61. Shu, Y., et al.: Stochastic models of very high-rate (50 Hz) GPS/BeiDou code and phase observations. Remote Sensing 9, 1188 (2017)

62. Jokela, M., et al.: Testing and validation of automotive point-cloud sensors in adverse weather conditions. Appl. Sci. 9, 2341 (2019)

63. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

64. Kailath, T.: Lectures on Wiener and Kalman Filtering. Springer, Berlin (1981)

65. Groves, P.D., Long, D.C.: Adaptive tightly-coupled, a low cost alternative anti-jam INS/GPS integration technique. In: Proceedings of the ION NTM, Anaheim, USA, January 2003 pp. 429–440

66. Abbott, A.S., Lillo, W.E.: Global positioning system and inertial measurement unit ultra-tight coupling method. US Patent 6,916,025, 2003

67. Yang, Y.: Tightly coupled MEMS INS/GPS integration with INS aided receiver tracking loops. Dissertation, The University of Calgary (2008)

68. Liu, S., et al.: A LiDAR-aided indoor navigation system for UGVs. J. Navigation 68(2), 253–273 (2015)

69. Liu, S., et al.: Adaptive covariance estimation method for LiDAR-aided multi-sensor integrated navigation systems. Micromachines 6(2), 196–215 (2015)

70. RTCA: Minimum Operational Performance Standards for Airborne Supplemental Navigation Equipment Using Global Positioning System (GPS). RTCA/DO-208, prepared by RTCA Special Committee 159 (1991)

71. ICAO: Manual on required navigation performance, 2nd edn. International Civil Aviation Organisation (1999)

72. FAA: Global positioning system standard positioning service performance standard, 4th edn. Federal Aviation Administration, U.S. Department of Transportation (2008)

73. ETSI: Intelligent Transport Systems (ITS). Vehicular Communications; Basic Set of Applications; Part 1: Functional Requirements. European Telecommunications Standards Institute, ETSI TS 102 637-1 V1.1.1 (2010)
74. Research and Innovative Technology Administration (RITA): Connected Vehicle Technology: Safety Pilot Driver Acceptance Clinic Overview. US Department of Transportation, Washington, USA (2011)
75. Imparato, D.: GNSS-based receiver autonomous integrity monitoring for aircraft navigation. Dissertation, Delft University of Technology (2016)
76. El-Mowafy, A.: On detection of observation faults in the observation and position domains for positioning of intelligent transport systems. J. Geod. 93(10), 2109–2122 (2019)
77. Blanch, J., et al.: Gaussian bounds of sample distributions for integrity analysis. IEEE Trans. Aerosp. Electron. Syst. 55(4), 1806–1815 (2019)
78. Rifqi, J., et al.: Overbounding SBAS and GBAS error distributions with excess-mass functions. In: Proceedings of the International Symposium on GNSS/GPS, Sydney, Australia, December 2004
79. Roturier, B., et al.: The SBAS integrity concept standardised by ICAO, application to EGNOS. Navigation-Paris 49, 65–77 (2001)
80. Murphy, T., Imam, T.: Implementation and operational use of ground-based augmentation systems (GBAS)—A component of the future air traffic management system. Proc. IEEE 96(12), 1936–1957 (2008)
81. Lee, Y.C.: Analysis of range and position comparison methods as a means to provide GPS integrity in the user receiver. In: Proceedings of the Annual Meeting of ION, Seattle, USA, June 1986 pp. 1–4
82. Sturza, M.A.: Navigation system integrity monitoring using redundant measurements. J. Institute of Navigation 35(4), 483–501 (1988)
83. Pesyna, K.M., et al.: Centimeter positioning with a smartphone-quality GNSS antenna. In: Proceedings of the ION GNSS++, Tampa, USA, September 2014 1568–1577
84. Murrian, M.J., et al.: Low-cost precise positioning for automated vehicles. GPS World 27(9), 32–39 (2016)
85. Seepersad, G., et al.: Do we need ambiguity resolution in multi-GNSS PPP for accuracy or integrity?. In: Proceedings of the ION GNSS++, Portland, USA, September 2017 2204–2218
86. Zhu, N., et al.: GNSS position integrity in urban environments: A review of literature. IEEE trans. Intell. Transp. Syst. 19(9), 2762–2778 (2018)
87. Zabalguet, P., et al.: A review of the evolution of the integrity methods applied in GNSS. IEEE Access 8, 45813–45824 (2020)
88. Blanch, J., et al.: Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation. In: Proceedings of the ION GNSS, Nashville, USA, September 2012 2828–2849
89. Blanch, J., et al.: Baseline advanced RAIM user algorithm and possible improvements. IEEE Trans. Aerosp. Electron. Syst. 51(1), 713–732 (2015)
90. WG-C: EU-US Cooperation on Satellite Navigation, Milestone 3 Report’ (Working Group C-ARAIM Technical Subgroup. Final Version (2016).
91. Blanch, J., et al.: Development of advanced RAIM minimum operational performance standards. In: Proceedings of the ION GNSS++, Miami, USA, September 2019 1381–1391
92. Walter, T.: An overview of advanced receiver autonomous integrity monitoring (ARAIM). In: Proceedings of the ION Pacific PNT Meeting, Honolulu, USA, April 2019 896–914
93. Gao, Z., et al.: A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)
94. Gao, Z., et al.: A survey of fault diagnosis and fault-tolerant techniques—Part II: Fault diagnosis with knowledge based and hybrid/active approaches. IEEE Trans. Ind. Electron. 62(6), 3768–3774 (2015)
95. El-Mowafy, A., et al.: On hypothesis testing in RAIM algorithms: Generalized likelihood ratio test, solution separation test and a possible alternative. Meas. Sci. Technol. 30(7), 075001 (2019)
96. Teunissen, P.J.G., et al.: Probability and Observation Theory Lecture Notes AE2-E01. Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands (2005)
97. Teunissen, P.J.G.: Testing Theory: An Introduction, 2nd edn. Delft VSSD, The Netherlands (2006)
98. Neyman, J., Pearson, E.S.: On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. A 231, 289–337 (1933)
99. Torabi, H., et al.: A test for normality based on the empirical distribution function. SORT 40(1), 55–88 (2016)
100. El-Mowafy, A., Kubo, N.: Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer. Meas. Sci. Technol. 28(5), 055102 (2017)
101. El-Mowafy, A., Kubo, N.: Integrity monitoring for positioning of intelligent transport systems using integrated RTK-GNSS, IMU and vehicle odometer, IET Intelligent Transport Systems 12(8), 901–908 (2018)
102. Brenner, M.: Integrated GPS/inertial fault detection availability. Navigation: J. Institute of Navigation 43(2), 111–130 (1996)
103. Hewitson, S., Wang, J.: Extended receiver autonomous integrity monitoring (eRAIM) for GNSS-INS integration. J. Surveying Engineering 136(1), 13–22 (2010)
104. Joerger, M., Pervan, B.: Kalman filter-based integrity monitoring against sensor faults. J. Guidance, Control, and Dynamics 36(2), 349–361 (2013)
105. Tanil, C., et al.: Sequential integrity monitoring for Kalman filter innovations-based detectors. In: Proceedings of the ION GNSS+, Miami, USA, September 2018 2440–2455
106. Bhattacharyya, S.: Kalman filter-based GNSS integrity monitoring. In: Proceedings of the ION GNSS+, Portland, USA, September 2016 1736–1749
107. Gunning, K., et al.: Design and evaluation of integrity algorithms for PPP in kinematic applications. In: Proceedings of the ION GNSS+, Miami, USA, September 2018 1910–1939
108. Hassani, A., et al.: Experimental integrity evaluation of tightly-integrated IMU/LiDAR including return-light intensity data. In: Proceedings of the ION GNSS+, Miami, USA, September 2019 2637–2658
109. Joerger, M., Pervan, B: Quantifying safety of laser-based navigation. IEEE Trans. Aerosp. Electron. Syst. 55(1), 273–288 (2019)

How to cite this article: Hassan T, El-Mowafy A, Wang K. A review of system integration and current integrity monitoring methods for positioning in intelligent transport systems. IET Intell Transp Syst. 2021;15:43–60. https://doi.org/10.1049/itr2.12003