ABSTRACT

The pancreatic beta-cell has a pivotal role in the regulation of glucose homeostasis and its impairment leads to diabetes mellitus. The exponential increase in number of diabetics across the world poses a daunting task to the current therapeutic approach with exogenous insulin. As the insulin therapy led to long term complications, search for alternative therapies had begun. Transplantation of insulin-producing cells is the hallmark of diabetes treatment. But due to the acute shortage of pancreatic-islet donors, researchers met with a limited success. In this light, stem cell research & therapy in terms of diabetes has opened new avenues for diabetes treatment and received lot of attention recently. A stem cell with extensive proliferative capacity may provide a valuable source of islet progenitor cells. Key signaling pathways and transcription factors paved a significant role in pancreas development from progenitor cells. This review has been structured to explore the various ways and means and sources of cells responsible for generating beta cells. Hence the role of stem cells, their adverse effects in terms of therapeutic implications and their current trends in modern medicine have been discussed at length. So, this review projects the different types of sources, mechanisms, signaling pathways with transcription factors and remaining challenges regarding the limitations of cell replacement therapy.

Keywords: Stem cells; signaling; diabetes

1. INTRODUCTION

Diabetes mellitus results from inadequate mass of insulin-producing pancreatic beta cells. The most common type of diabetes is - type 2 diabetes, characterized by relative deficiency of β-Cell, impaired β-cell function with insulin resistance in peripheral organs. Type 1 diabetes is characterized by absolute loss of beta cells due to autoimmune-mediated destruction affecting just 10 % of diabetic patients. So be it type 1 or type 2 diabetes, the chief problem is reduced and insufficient number of insulin producing beta cells leading to derailed glucose metabolism with life threatening complications1.

1.1 Time for a change (shift) - insulin to islet replacement therapy: The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The urban population in developing countries is projected to double between 2000 and 2030. These findings indicate that diabetes has grown to proportions of being called as epidemic2. As the number of diabetic patients in the world is increasing in recent years, the prevention of diabetes mellitus is therefore one of the urgent medical issues. The traditional method of treatment for diabetes is exogenous insulin injections. The current treatment of insulin supply is not fully capable of achieving tight control of glucose levels, leading to long-term complications. The fact is, exogenous insulin cannot maintain the optimum physiological level of glucose and is often accompanied by
hypoglycemia\(^3\). The alternative treatment methods are transplantation of pancreas and islet cells for beta-cell replacement therapy\(^4\).

Over the last few decades, islet transplantation from the cadavers has been developed as a promising method to achieve strict control of blood glucose compared with insulin and a potential cure for type 1 diabetes. Islet transplantation, though proposed long back, its clinical usage was limited for many years because of its low success rate. Despite this great transition from traditional insulin to islet transplantation, it faces many challenges like limited donor availability, and a need for lifelong immune-suppression for the long-term survival and function of human islet grafts. The acute shortage of pancreatic donors needs a special mention here since only 1% per year of the total type 1 diabetics are able to receive the islet grafts\(^5\). So this critical shortage of pancreatic donors, led to exploration of alternative sources of beta cells from stem cells, use of porcine islets, and beta cell expansion with growth factors. Hence the focus of research has been shifted to generating beta cells via transdifferentiation from stem or progenitor cells\(^6\).

1.2 Stem cells – future ahead: Repairing or replacing the damaged tissue in diabetes using stem cells has become the most dynamic topic of interest as stem cells are blessed with the potential of treating many debilitating & degenerative diseases. Stem cell is an unspecialized cell, which has the capacity of continuous self-renewal and can differentiate into any type to every type of specialized cell lineages of the body. There are 2 types of stem cells: 1. Human embryonic stem cells (hESC) and 2. adult stem cells. The plasticity of Pluripotent embryonic stem cells (ESCs) generates all the cells in the human body, except extra embryonic tissue like placenta\(^7\). The existence of adult multipotent stem cells in human beings, and their ability to maintain plasticity, has led to the differentiation into many types of cells for example, adult bone marrow stem cells can give rise to hepatocytes, cardiomyocytes, neural cells etc\(^8\). Despite the success in transforming and differentiation of the stem cells into insulin-producing cells, the rate of success is highly variable and this method is equally controversial. But the results from the recent studies have demonstrated promising outcome in the generation of beta-like cells from hESCs\(^9,10\). The important characteristics of ESCs include the capacity to self-renew and the potential to differentiate into all embryonic cell types, termed pluripotency, under in vivo and in vitro conditions.

Upon proliferation in a cell culture the stem cell maintains its properties; hence unlimited expansion is achieved without compromising on its differentiation capacity. As large cell numbers are required for therapeutic purposes, ESCs are superior to other cells because of this property. Hence, to generate insulin-producing \(\beta\)-cells, certain protocols have to be followed compounded with signaling molecules and transcription factors to facilitate undifferentiated progenitors to differentiated endocrine cells of pancreas\(^11\).

The fundamental question is how to make terminally matured pancreatic \(\beta\)-Cells. Many years of research have shown different approaches for the neogenesis of \(\beta\)-Cells using ESCs, adult stem cells residing in the pancreas, or other nonpancreatic cell types. Various cell types are studied along with ESCs, bone marrow stem cells etc to understand the differentiation into islet hormone secreting cells\(^12\). Evidence is mounting to prove that adult pancreas might contain progenitor cells as it is exhibiting the property of self-recovery when exposed to stressful stimuli\(^13\). Identifying and isolating these stem cells or progenitor cells would open the door for in vitro generation of islet tissue for use in transplantation.
1.3 Sources of islet cells-pancreatic beta-cell development: The most fascinating and intriguing aspect of pancreatic development is 2 morphologically distinct types of tissues arise from one simple epithelium. The 2 different tissues, exocrine and endocrine serve 2 different functions with a different morphology. The pancreas is a complex endoderm-derived organ. Several varieties of genes are required for endoderm formation; they are, Wnt/betacatenin, Nodal GATA4/6, FoxA2 and Mix and a set of Sox family including Sox17. The organ has both exocrine and endocrine parts. In recent years, tremendous work has been done to unravel the molecular mechanisms that regulate pancreas organogenesis, epithelial cell differentiation, and beta-cell replacement therapy. Pancreas development is controlled by a complex interaction of signaling pathways and transcription factors that lead to differentiation of endocrine pancreas.

1.4 From ductal cells of adult pancreas: Jonsson and others proposed that ductal cells express a transcriptional factor (Pdx-1) essential for islet neogenesis. Hence, it has been speculated that ductal cells are the primary source of new islet cells. It was demonstrated later that these islet-like clusters could treat diabetes in mice. Several workers have confirmed the same finding with lot of authority and it was understood that human ductal cells can generate islet-like clusters by expressing Pdx-1, thereby serving as progenitor cells of adult pancreas. The major drawback of these studies is the starting culture got contaminated by other pancreatic cell types. Despite these negative aspects, evidence shows that pancreatic stem/progenitor cells may be the potential sources of diabetes treatment. Numerous in vitro studies have demonstrated that adult pancreatic ductal tissues and acinar cells are the potential sources for differentiation into insulin-producing cells.

1.5 From lineage tracing-beta cells form beta cells (replication Vs neogenesis): The expansion of β-Cell population in pancreas is by 2 ways: replication or neogenesis. While replication requires the existence of an already differentiated β-Cell, neogenesis depends on the presence of active stem cells. Dor and others used a novel genetic lineage tracing method to assess and identify beta cells generated from pre-existing beta-cells and from other sources. Using this unique mouse model they found that new beta cells arose through beta-cell replication not by neogenesis. This took by surprise because normally adult beta cells are in a fully differentiated stage and they lost the power of proliferation, even if such adult beta cells were made to proliferate and expand, usually they must have lost the power of differentiation and more importantly the secretory power of insulin in vitro. So this study was like a storm in the teacup. The author explains if beta-cells are the source of new beta cells, then the mandatory aspect is all of the existing beta cells in adult must dedifferentiate transiently into a progenitor state before becoming new beta cells. Dor’s study portrays a significant role of beta cell replication in maintaining beta cell mass in adults and this has been ably supported by another study from Georgia and Bhushan who have found that adult mice lacking a critical gene (cyclin D2) would not be able to maintain beta cell mass in mice as this gene is responsible for beta cell replication. These findings were confirmed by Teta who has used a DNA analogue- based lineage-tracing technique as well as other investigators. To further support these studies, human autopsy findings serve as hallmark evidence that beta-cell replication is the primary mechanism underlying beta-cell expansion. Recent evidence furthers re-iterates that all beta-cells contribute equally to islet growth and maintenance. It is understood that adult stem cell lacking tissues can be replenished equally by replication of all
differentiated cells27. According to Bonner-Weir, even though beta-cell replication can alone maintain the required pancreatic mass, growing amount of evidence is emerging with the view that new beta-cells are generated by neogenesis from pancreatic ductal stem cell28. The debate between beta cell replication versus neogenesis is at stake since there are many limitations and constraints involved with Dor's model. The reasons for debate are the study does not prove if the beta cell neogenesis has not occurred from other sources, how accurate and effective the model is and as this study has been done in mouse-can all the findings observed in mouse is extrapolated into human beings who are suffering from long standing type1 disease is still a huge question to ponder19. Hence further studies are required to take into account the study done by Dor and his colleagues, until this is answered the importance of replication versus neogenesis of beta-cell mass continues.

1.6 From PMPs-renewable beta cells: Pancreas-derived multipotent precursors (PMPs) are special variety of cells which can differentiate into many other varieties of pancreas cell types because they express marker Pdx-1 and also can generate neural-like cells. These cells were isolated from both ductal and islet cells obtained by special technique called clonal dilution29. Again the biggest constraint for this study is the percentage of PMP colony forming cells is so less (0.03\%) that its role is underplayed. Nevertheless, this novel finding triggers the possibility of coming to a conclusion that islet cell progenitors do exist beyond doubt in pancreas and they can induce differentiation into potential beta-like cells. This holds promise and does require more supportive studies which can identify and isolate progenitor cells so that beta-cell replacement therapy in diabetes can be taken to next level.

There are few other evidences from various studies which show generation of beta-cells. The differentiation of liver cells can generate beta cells. Bone marrow can do the same and neural progenitor cells from the brain also have the same potential to generate beta cells30,31. So, there are different cells in various areas of human body which can differentiate and generate beta cells. But the role of pluripotent stem cells which arise from the inner mass of blastocyst has a special mention here since they can differentiate into the 3 germ layers.

1.7 MSC-immunomodulation: The mesenchymal stromal cells derived from the bone marrow are a rare, heterogeneous, multipotent stromal population of non-haematopoietic progenitor cells with the capacity to differentiate into multiple mesenchymal lineages like bone, fat and cartilage. These are considered as the most promising therapeutic tool for tissue regeneration and repair. Because of immunosuppressive actions, it can be an ideal treatment choice for type 1 diabetes3. There are 2 ways MSCs can come in handy- Firstly, Human insulin gene is expressed in MSCs which is unique property. Secondly, MSCs from tissues like pancreas, bone marrow etc. have the potential to differentiate into IPCs under specific culture conditions compounded with genetic modification32. Another study demonstrated that MSCs derived from bone marrow can be transplanted to generate IPCs as they possess the T-cell suppressor activity, could be a novel therapeutic strategy to prevent type1 diabetes due to autoimmunity4,33. Cord blood MSCs in-vitro requires notch signaling mechanism, as it plays a crucial role in regulation of IPCs differentiation and the study done by Hu also shown that notch signaling inhibition is a novel method of increasing IPCs and hence this could be a potential treatment for type 1 diabetes because a solution for shortage of islet cells is found34.

1.8 iPSCs & Nuclear reprogramming-generate IPCs: IPCs generated from induced pluripotent stem cells (iPSCs) are derived from human fibroblasts have
opened the doors of success in designing patient specific treatment from patient’s own somatic cells by process of nuclear reprogramming with the aid of factors. iPSCs belong to a type of pluripotent stem cell artificially derived by reprogramming a somatic cell. iPSCs are morphologically similar to embryonic stem cells and are capable of differentiating into a variety of different somatic cell types; thereby offering a new cell source for type I diabetes, so this kind of cell therapy reduces the risk of immunologic rejection. Stadtfeld et al. studies provided evidence that terminally differentiated cells can be reprogrammed into pluripotent cells, suggesting that in vitro reprogramming is not restricted to certain cell types or differentiation stages. Recently, Zhang et al. reported a procedure where induced hESCs and iPSCs differentiate into mature IPCs in a culture system with the expression of defined beta-cell transcription markers. As an add on, derivation of iPSCs from patients helps in autologous cell replacement therapy, disease modeling and drug screening for both types of diabetes. These studies have confirmed that IPCs can be generated from skin fi broblasts, promising a new horizon and possibility that patient-specific iPSCs could potentially provide a treatment for diabetes in the future. Populations such as MSCs can be expanded to a much lesser extent than ESCs or iPSCs. Nuclear reprogramming, which is more of a direct genetic engineering process wherein right doses at right duration of critical transcription factors if expressed in right manner in ESCs can generate IPCs. A novel strategy for β-cell generation is inspired by the success of nuclear reprogramming. Introducing critical transcription factors into acinar cells can convert exocrine cells into insulin-secreting cells.

1.9 MicroRNAs (miRNAs) – next generation regulators: MicroRNAs (miRNAs) are a unique and novel group of non-coding RNAs with their potential therapeutic ability are responsible for precise regulation of biological functions by negatively modulating the gene expression either through promotion of mRNA degradation or through translational repression of proteins. The potential of these tiny regulators has been recently documented in many cellular pathways including development, cell differentiation, proliferation and apoptosis, and in diverse diseases including cardiovascular, different types of cancer as well as diabetes. Recent evidence suggests that miRNAs play an important role in insulin secretion pancreatic islet development, beta-cell differentiation, and indirectly control glucose and lipid metabolism. Poy et al. identified a novel islet-specific miRNA, miRNA-375, which is highly expressed in pancreatic islets, essential for normal glucose homeostasis, alpha- and beta-cell turnover and adaptive beta-cell expansion in response to increasing insulin demand in insulin resistance. Joglekar et al. provided evidence for miRNA-mediating silencing of ngn3, which inhibits endocrine cell development via the classical 'stem cell pathway' during mouse pancreatic regeneration, thereby favoring beta-cell regeneration. Growing evidence suggests that miRNAs play an important role in insulin production, secretion and action. The roles of miRNAs in diabetes are very complex as changes in miRNA levels may lead to diabetes in both early and late stages. Dicer is a special type of enzyme which can generate Micro RNAs (miRNAs), has been reported to have many important roles in the developmental processes. In this context, Dicer1 has critical functions in maintaining the adult pancreas. Exploring the molecular mechanisms of miRNAs regulation in insulin secretion and glucose homeostasis may lead to new horizons in analyzing and understanding the pancreatic cell biology and pathophysiology of diabetes. This is the
future strategy of therapeutic intervention as these appear to be the mainstay regulators for the treatment of diabetes and abrogate the complications51.

1.10 Signaling pathways-growth, development, differentiation & specification of islet cells: The expression of pro-endocrine gene called neurogenin3 (Ngn3) is essential for the endocrine fate, in turn determined by notch signaling as it paves way for expansion and differentiation of pancreatic progenitor cells52,53. There are number of signal pathways like Hedgehog, Fgf, Notch, Wnt, and TGF-beta regulate the endocrine pancreatic cell development, proliferation and differentiation where as activin and growth differentiation factor (GDF) specifically regulate endocrine cell lineage54. It is important to understand the mechanisms how endogenous beta cells develop and differentiate, hence the extrapolation of these mechanisms in \textit{in-vitro} can develop pancreas from progenitor cells. Hedgehog signaling pathway plays an important role in differentiation of pancreas development and in disease condition55. Pancreas development, differentiation and specification are controlled by Hedgehog signaling and this pathway crosses with other signaling pathways56. Fibroblast growth factor (Fgf) and its receptors by virtue of Fgf signaling, act as key signaling molecules regulating pancreatic growth and development during the emergence of mature islet cells57. Wnt gene was identified in the year 1982, ever since its discovery, Wnt signaling regulate both embryonic stem cells and adult stem cells besides homeostasis58. Active and its receptors are one of the growth factors of super family of TGF-β, are expressed early in pancreatic epithelium and later in islets59. Vascular endothelial growth factor (VEGF) regulates insulin gene expression and beta-cell proliferation through laminin and maintains adult islet function52.

1.11 Transcription factors - markers for distinct pancreatic cell populations: Transcription factors form a regulatory cascade which promotes sequential transformation of uncommitted progenitors to specific endocrine precursors and finally completely differentiated β-cells. Transcriptional factors are the culmination of external and internal signals. Early stages of pancreatic development critically need two important transcription factors such as pdx1 and pancreas transcription factor 1a (Ptf1a). These are responsible for pancreatic growth, specification and maturation of β-cells60. As described in this review, Pdx-1 is an important marker and has a crucial role to play in exocrine and endocrine parts of pancreatic generation. More recently, Sox4 has been implicated in the regulation of insulin secretion in adult β cells61. Sox9 plays a critical role in the maintenance of the pancreatic progenitor pool and Sox9 positively regulates neurogenin3,62,63. Transcriptional regulator Islet-1 (Isl-1) is essential for the maturation, proliferation and survival of the endocrine pancreas64. Pdx1, Ptf1 and Sox constitute pancreatic progenitors.

HNF1β has a role in endoderm differentiation, overall pancreas development, in the precursor population for Ngn3-expressing islet progenitor cells65. Ngn3 can generate different endocrine cell lineages at different stages of development66. Lineage tracing reveals that Pax4+ cells contribute to all endocrine lineages. Pax-4 acts as a beta cell determining factor67. HNF1β, Ngn3 and Pax4 constitute islet progenitors. Pax-6 is essential for islet cell proliferation, morphology and beta cell function52.

The transcription factors responsible for lineage specification and β-cell differentiation are Nkx2.2, Nkx6.1, Mafs, Forkheads and HNF4α. MafA is a recent and new transcription factor discovered, controls insulin gene expressed on beta cell, development of beta cells and pathogenesis of diabetes58. Nkx2.2 is meant for final differentiation of beta cells leading to insulin production, whereas Nkx6.1 acts as beta cell determining
factor52. Hence great progress has been made in this regard in recent years regarding the transcription factors, regulation and pancreatic cell lineage specification.

1.12 Therapeutic limitations—challenges to be met: Cell-based therapeutics is still in the experimental phase, and many hurdles remain before they can be used as standard treatments. Some of the risks and side effects associated with cell therapy by transplanting islets into hepatic portal vein are met with challenges which had to be overcome. When ESC after differentiation are transplanted into humans certain negative effects are observed69,70. Risk of tumorigenesis-Stem cell therapies must be first tested in animal models before implementing in humans, as it can cause tumors like teratomas. The best solution is to transplant purified, fully differentiated cells generated from hESCs71.

Disadvantage of immature β-cells- In vitro generation of IPCs from hESCs are immature and glucose homeostasis is incomplete which does not serve the real purpose. In vitro conditions usually show absence of cell to cell interactions in comparison of in vivo. This is a setback which needs to be corrected72. A major difference between β-cells in the pancreas and the β-cells generated in vitro lies in the different environment they reside in.

Transplant rejection-Two kinds of challenge are to be met when islet tissue is transplanted- 1. In type 1 diabetes patients, autoimmunity destroys β-cells, so the suppression of autuminity is crucial for success of the cell replacement therapy. 2. The immune system recognizes grafted tissue as foreign initiating a host vs graft, alloimmune reaction73. In spite of improved immunosuppression regimens there are still problems of rejection, the only solution is cellular programming which can effectively fight against the allograft reactions.

CONCLUSION

Adult progenitor cells with the ability to regenerate tissue during normal turnover or after damage are of considerable interest, even though their abilities to self-renew and to generate various cell types are greatly restricted. Key is signal pathways and transcription factors which transform progenitor cells to insulin producing beta cells. Though beta cell replacement by islet transplantation has provided new hope for a cure of type 1 diabetes and to certain extent type 2 diabetes patients, the unending transplant rejection problems restrict its role in permanent cure for diabetics. So, the research, therapeutic consideration and technology to identify, isolate, purify and characterize the adult cells have paved novel treatment option for diabetes in the future. However, significant challenges are to be met and overcome with ES before they can be used extensively in a clinical setting. Today, cell replacement therapy for both type I and type II diabetic patients has become a promising scenario that could be achieved in the near future. Although progress is encouraging, major gaps in our understanding of developmental biology of the pancreas and adult beta-cell dynamics remain to be bridged before a therapeutic application is made possible.

REFERENCES

1. Sordi V, Bertuzzi F, Piemonti L. Diabetes mellitus: an opportunity for therapy with stem cells? Regen Med. 2008 May;3(3):377-97.
2. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004 May; 27(5):1047-53.
3. Vija L, Farge D, Gautier JF, Vexiau P, Dumitrache C, Bourgarit A et al. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. Diabetes Metab. 2009;35:85–93.
4. Shapiro AM. Islet transplantation—the imperative need for continued clinical trials. Nat Clin Pract Nephrol. 2008;4:662–663.
5. Hansson M, Madsen OD. Pluripotent stem cells, a potential source of beta-cells for diabetes therapy. Curr Opin Investig Drugs. 2010 Apr;11(4):417-25.

6. Hogan A., Pileggi A., Ricordi C. Transplantation: Current developments and future directions; The future of clinical islet transplantation as a cure for diabetes. Front. Biosci. 2008;13:1192–1205.

7. Yu Huan T. Liao, C. Bruce Verchere, Garth L. Warnock. Adult stem or progenitor cells in treatment for type 1 diabetes: current progress. Can J Surg. 2007 April; 50(2): 137–142.

8. Poulsom R, Alison MR, Forbes SJ, Wright NA. Adult stem cell plasticity. J Pathol 2002;197:441-56).

9. Jiang J., Au M., Lu K. et al. Generation of insulin- producing islet-like clusters from human embryonic stem cells. Stem Cells. 2007;25:1940– 1953.

10. Kroon E., Martinson L.A., Kadoya K, Bang A.G., Kelly O.G., Eliazer S., et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 2008;26:553–452.

11. Guo T, Hebrok M. Stem Cells to Pancreatic β-Cells: New Sources for Diabetes Cell Therapy. Endocr Rev. 2009 May; 30(3): 214–227).

12. Hussain MA, Theise ND. Stem-cell therapy for diabetes mellitus. Lancet 2004;364:203-5.

13. Holland AM, Gonez LJ, Harrison LC. Progenitor cells in the adult pancreas. Diabetes Metab Res Rev 2004;20:13-27.

14. Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol. 2009 Feb 1;326(1):4-35.

15. Grapin-Botton A, Constam D. Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev. 2007;124:253–278.

16. De Santa BP, van den Brink GR, Roberts DJ. Development and differentiation of the intestinal epithelium. Cell Mol Life Sci. 2003;60:1322–1332.

17. Jonsson J, Carlsson L, Edlund T, Edland H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994;371:606-9.

18. Ramiya VK, Marait M, Arfors KE, Schatz DA, Peck AB, Cornelius JG et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 2000;6:278-82.

19. Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T et al. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 2004;5(Suppl 2):16-22.

20. Noguchi H. Pancreatic stem/progenitor cells for the treatment of diabetes. Rev Diabet Stud. 2010 Summer;7(2):105-11.

21. Dor Y, Brown J, Martinez OL, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004;429:41-6.

22. Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest 2004;114:963-8.

23. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell. 2007;12:817–826.

24. Joglekar MV, Joglekar VM, Joglekar SV, Hardikar AA. Human fetal pancreatic insulin-producing cells proliferate in vitro. J Endocrinol. 2009;201:27–36.

25. Russ HA, Bar Y, Ravassard P, Efrat S. In vitro proliferation of cells derived from adult human beta-cells revealed by cell-lineage tracing. Diabetes. 2008;57:1575–1583.

26. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes. 2008;57:1584–1594).

27. Brennand K, Huangfu D, Melton. All beta cells contribute equally to islet growth and maintenance. PLoS Biol. 2007;5:e163.

28. Bonner-Weir S, Inada A, Yatoh S, Li WC, Aye T, Toschi E et al. Transdifferentiation of pancreatic ductal cells to endocrine beta-cells. Biochim Soc Trans. 2008;36:353–356.

29. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopoz G, Asghar Z, Wheeler MB et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 2004;22:1115-24.
30. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA. 2006;103:17438–17443.

31. Burns CJ, Persaud SJ, Jones PM. Diabetes mellitus: a potential target for stem cell therapy. Curr Stem Cell Res Ther. 2006;1:255–266.

32. Liu M, Han ZC. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med. 2008 Aug;12(4):1155-68.

33. Madec AM, Mallone R, Afonso G, Abou ME, Mesnier A, Eljaafari A et al. Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia. 2009;52:1391–1399.

34. Hu YH, Wu DQ, Gao F, Li GD, Zhang XC. Notch signaling: a novel regulating differentiation mechanism of human umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells in vitro. Chin Med J (Engl). 2010 Mar 5;123(5):606-14.

35. Gurdon JB, Melton DA. Nuclear reprogramming in cells. Science. 2008;322:1811–1815.

36. Zang D, Jiang W, Shi Y, Deng H. Generation of pancreatic islet cells from human embryonic stem cells. Sci China C Life Sci. 2009;52(7):615-21.

37. Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol. 2008;18:890–894.

38. Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S et al. Highly efficient differentiation of human ES cells and iPSCs into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–438.

39. Liew CG. Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the optimization of protocols Rev Diabet Stud. 2010 Summer;7(2):82-92.

40. Mark E. Furth, Anthony Atala. Stem cell sources to treat diabetes. J Cell Biochem. 2009).

41. Treff NR, Vincent RK, Budde ML, Browning VL, Magliocca JF, Kapur V et al. Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells 2006 24:2529–2537.

42. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 2008 455:627–632.

43. Liu Z, Sall A, Yang D. MicroRNA: an Emerging Therapeutic Target and Intervention Tool. Int J Mol Sci. 2008;9:978–999.

44. Mishra PK, Tyagi N, Kumar M, Tyagi SC. MicroRNAs as a therapeutic target for cardiovascular disease. J Cell Mol Med. 2009;13:778–789.

45. Hennessy E, O’Driscoll L. Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med. 2008;10:e24.

46. Wang V, Wu W. MicroRNA-based therapeutics for cancer. BioDrugs. 2009;23:15–23.

47. Correa-Medina M, Bravo-Egana V, Rosero S et al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas. Gene Expr Patterns. 2009;9:193–199.

48. Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns. 2009;9:109–113.

49. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA. 2009;106:5813–5818.

50. Morita S, Hara A, Kojima I, Horii T, Kimura M, Kitamura T et al. Dicer is required for maintaining adult pancreas. PLoS One. 2009;4(1):e4212. Epub 2009 Jan 16.

51. Tavintharan S, Chi LS, Fang SC, Arunmozhirasi A, Jayaseelan K. Riboregulators and metabolic disorders: getting closer towards understanding the pathogenesis of diabetes mellitus? Curr Mol Med. 2009;9:281–286.

52. Mishra PK, Singh SR, Joshua IG, Tyagi SC. Stem cells as a therapeutic target for diabetes. Front Biosci. 2010 January 1; 15: 461–477.

53. Liew CG. Generation of insulin-producing cells from pluripotent stem cells: from the selection of cell sources to the
optimization of protocols Rev Diabet Stud. 2010 Summer;7(2):82-92.
54. Scharffmann R, Duvillie B, Stetsyuk V, Attali M, Filhoulaud G, Guillaume G. Beta-cell development: the role of intercellular signals. Diabetes Obes Metab. 2008;4:195–200.
55. Lau J, Kawahira H, Hebrom K. Hedgehog signaling in pancreas development and disease. Cell Mol Life Sci. 2006 Mar;63(6):642-52.
56. Tehrani Z, Lin S. Antagonistic interactions of hedgehog, Bmp and retinoic acid signals control zebrafish endocrine pancreas development. Development. 2011 Feb;138(4):631-40.
57. Arnaud-Dabernat S, Kritzik M, Kayali AG, Zhang YQ, Liu G, Ungle C et al. FGFR3 is a negative regulator of the expansion of pancreatic epithelial cells. Diabetes. 2007 Jan;56(1):96-106.
58. Chen X, Yang J, Evans PM, Liu C. Wnt signaling: the good and the bad. Acta Biochim Biophys Sin (Shanghai). 2008 Jul;40(7):577-94.
59. Goto Y, Nomura M, Tanaka K, Kondo A, Morinaga H, Okabe T et al. Genetic interactions between activin type IIB receptor and Smad2 genes in asymmetrical patterning of the thoracic organs and the development of pancreas islets. Dev Dyn. 2007 Oct;236(10):2865-74.
60. Kaneto H, Miyatsuka T, Kawamori D, Yamamoto K, Kato K, Shiraia W et al. PDX-1 and MafA play a crucial role in pancreatic β-cell differentiation and maintenance of mature β-cell function. Endocr J 2008 55:235–252
61. Goldsworthy M., Hugill A., Freeman H, Horner E., Shimomura K., Bogani D et al. The role of the transcription factor Sox4 in insulin secretion and impaired glucose tolerance. Diabetes. 2008 Vol 57 no. 8 2234-2244.
62. Seymour P.A., Freude K.K., Tran M.N, Mayes E.E., Jensen J., Kist R. et al. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc. Natl. Acad. Sci. 2007;104:1865–1870.
63. Lynn F.C., Smith S.B., Wilson M.E., Yang K.Y., Nekrep N., German M.S. Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc. Natl. Acad. Sci. 2007;104:10500–10505.
64. Du A, Hunter CS, Murray J, Noble D, Noble D, Cai CL, Evans SM et al. Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes. 2009 Sep;58(9):2059-69.
65. Poll A.V., Pierreux C.E., Lokmane L, Haumaitre C., Achouri Y., Jacquepin P et al. A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes. 2006;55:61–69.
66. Johansson K.A., Dursun U., Jordan N, Gu G., Beermann F., Gradwohl G. et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Dev. Cell. 2007;12:457–465.
67. Wang Q., Elghazi L., Martin S, Martins I., Srinivasan R.S., Geng X et al. Ghrelin is a novel target of Pax4 in endocrine progenitors of the pancreas and duodenum. Dev. Dyn. 2008;237:51–61.
68. Miyatsuka T, Matsuoka TA, Kaneto H. Transcription factors as therapeutic targets for diabetes. Expert Opin Ther Targets. 2008;12:1431–1442.
69. Ichii H, Ricordi C. Current status of islet cell transplantation. J Hepatobiliary Pancreat Surg 2009 16:101–112.
70. Ryan EA, Paty BW, Senior PA, Shapiro AM. Risks and side effects of islet transplantation. Curr Diab Rep 2004 4:304–309.
71. Rao M. Tumorigenesis and embryonic stem cell-derived therapy. Stem Cells Dev 2007 16:903–904).
72. Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 2007 17:333–344.
73. Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat Rev Immunol 2007 7:622–632.