THE Λ-ADIC SHINTANI-WALDSPURGER CORRESPONDENCE

MATTEO LONGO, MARC-HUBERT NICOLE

Abstract. We generalize the Λ-adic Shintani lifting for $GL_2(\mathbb{Q})$ to indefinite quaternion algebras over \mathbb{Q}.

1. INTRODUCTION

Langlands’s principle of functoriality predicts the existence of a staggering wealth of transfers (or lifts) between automorphic forms for different reductive groups. In recent years, attempts at the formulation of p-adic variants of Langlands’s functoriality have been articulated in various special cases. We prove the existence of the Shimura-Shintani-Waldspurger lift for p-adic families.

More precisely, Stevens, building on the work of Hida and Greenberg-Stevens, showed in [21] the existence of a Λ-adic variant of the classical Shintani lifting of [20] for $GL_2(\mathbb{Q})$. This Λ-adic lifting can be seen as a formal power series with coefficients in a finite extension of the Iwasawa algebra $\Lambda := \mathbb{Z}_p[X]$ equipped with specialization maps interpolating classical Shintani lifts of classical modular forms appearing in a given Hida family.

Shimura in [19], resp. Waldspurger in [22] generalized the classical Shimura-Shintani correspondence to quaternion algebras over \mathbb{Q}, resp. over any number field. In the p-adic realm, Hida ([7]) constructed a Λ-adic Shimura lifting, while Ramsey ([17]) (resp. Park [12]) extended the Shimura (resp. Shintani) lifting to the overconvergent setting.

In this paper, motivated by ulterior applications to Shimura curves over \mathbb{Q}, we generalize Stevens’s result to any non-split rational indefinite quaternion algebra B, building on work of Shimura [19] and combining this with a result of Longo-Vigni [9]. Our main result, for which the reader is referred to Theorem 3.8 below, states the existence of a formal power series and specialization maps interpolating Shimura-Shintani-Waldspurger lifts of classical forms in a given p-adic family of automorphic forms on the quaternion algebra B. The Λ-adic variant of Waldspurger’s result appears computationally challenging (see remark in [15, Intro.]), but it seems within reach for real quadratic fields (cf. [13]).

As an example of our main result, we consider the case of families with trivial character. Fix a prime number p and a positive integer N such that $p \nmid N$. Embed the set $\mathbb{Z}^{\geq 2}$ of integers greater or equal to 2 in $\text{Hom}(\mathbb{Z}_p^\times, \mathbb{Z}_p^\times)$ by sending $k \in \mathbb{Z}^{\geq 2}$ to the character $x \mapsto x^{k-2}$. Let f_∞ be an Hida family of tame level N passing through a form f_0 of level $\Gamma_0(Np)$ and weight k_0. There is a neighborhood U of k_0 in $\text{Hom}(\mathbb{Z}_p^\times, \mathbb{Z}_p^\times)$ such that, for any $k \in \mathbb{Z}^{\geq 2} \cap U$, the weight k specialization of f_∞
gives rise to an element $f_k \in S_k(\Gamma_0(Np))$. Fix a factorization $N = MD$ with $D > 1$ a square-free product of an even number of primes and $(M, D) = 1$ (we assume that such a factorization exists). Applying the Jacquet-Langlands correspondence we get for any $k \in \mathbb{Z}_{>2} \cap U$ a modular form f_k^{JL} on Γ, which is the group of norm-one elements in an Eichler order R of level Mp contained in the indefinite rational quaternion algebra B of discriminant D. One can show that these modular forms can be p-adically interpolated, up to scaling, in a neighborhood of k_0. More precisely, let \mathcal{O} be the ring of integers of a finite extension F of \mathbb{Q}_p and let \mathbb{D} denote the \mathcal{O}-module of \mathcal{O}-valued measures on \mathbb{Z}_p^2 which are supported on the set of primitive elements in \mathbb{Z}_p^2. Let Γ_0 be the group of norm-one elements in an Eichler order $R_0 \subseteq B$ containing R. There is a canonical action of Γ_0 on \mathbb{D} (see [9, §2.4] for its description). Denote by F_k the extension of F generated by the Fourier coefficients of f_k. Then there is an element $\Phi \in H^1(\Gamma_0, \mathbb{D})$ and maps $\rho_k : H^1(\Gamma_0, \mathbb{D}) \rightarrow H^1(\Gamma, F_k)$ such that $\rho(k)(\Phi) = \phi_k$, the cohomology class associated to f_k^{JL}, with k in a neighborhood of k_0 (for this we need a suitable normalization of the cohomology class associated to f_k^{JL}, which we do not touch for simplicity in this introduction). We view Φ as a quaternionic family of modular forms. To each ϕ_k we may apply the Shimura-Shintani-Waldspurger lifting ([19]) and obtain a modular form h_k of weight $k + 1/2$, level $4Np$ and trivial character. We show that this collection of forms can be p-adically interpolated. For clarity’s sake, we present the liftings and their Λ-adic variants in a diagram, in which the horizontal maps are specialization maps of the p-adic family to weight k; JL stands for the Jacquet-Langlands correspondence; SSW stands for the Shimura-Shintani-Waldspurger lift; and the dotted arrows are constructed in this paper:

More precisely, as a particular case of our main result, Theorem 3.8, we get the following

Theorem 1.1. There exists a p-adic neighborhood U_0 of k_0 in $\text{Hom}(\mathbb{Z}_p^\times, \mathbb{Z}_p^\times)$, p-adic periods Ω_k for $k \in U_0 \cap \mathbb{Z}_{\geq 2}$ and a formal expansion

$$\Theta = \sum_{\xi \geq 1} a_\xi q^\xi$$

with coefficients a_ξ in the ring of \mathbb{C}_p-valued functions on U_0, such that for all $k \in U_0 \cap \mathbb{Z}_{\geq 2}$ we have

$$\Theta(k) = \Omega_k \cdot h_k.$$

Further, $\Omega_{k_0} \neq 0$.
2. Shintani integrals and Fourier coefficients of half-integral weight modular forms

We express the Fourier coefficients of half-integral weight modular forms in terms of period integrals, thus allowing a cohomological interpretation which is key to the production of the Λ-adic version of the Shimura-Shintani-Waldspurger correspondence. For the quaternionic Shimura-Shintani-Waldspurger correspondence of interest to us (see \cite{15}, \cite{22}), the period integrals expressing the values of the Fourier coefficients have been computed generally by Prasanna in \cite{16}.

2.1. The Shimura-Shintani-Waldspurger lifting. Let $4M$ be a positive integer, $2k$ an even non-negative integer and χ a Dirichlet character modulo $4M$ such that $\chi(-1) = 1$. Recall that the space of half-integral weight modular forms $S_{k+1/2}(4M,\chi)$ consists of holomorphic cuspidal functions h on the upper-half place \mathbb{H} such that $h(\gamma(z)) = j_1^{1/2}(\gamma,z)^{2k+1}\chi(d)h(z)$, for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4M)$, where $j_1^{1/2}(\gamma,z)$ is the standard square root of the usual automorphy factor $j_1(\gamma,z)$ (cf. \cite[2.3]{15}).

To any quaternionic integral weight modular form we may associate a half-integral weight modular form following Shimura’s work \cite{19}, as we will describe below.

Fix an odd square free integer N and a factorization $N = M \cdot D$ into coprime integers such that $D > 1$ is a product of an even number of distinct primes. Fix a Dirichlet character ψ modulo M and a positive even integer $2k$. Suppose that $\psi(-1) = (-1)^k$. Define the Dirichlet character χ modulo $4N$ by

$$\chi(x) := \psi(x) \left(\frac{-1}{x}\right)^k.$$

Let B be an indefinite quaternion algebra over \mathbb{Q} of discriminant D. Fix a maximal order O_B of B. For every prime $\ell|M$, choose an isomorphism $i_\ell : B \otimes_{\mathbb{Z}} \mathbb{Q}_\ell \cong M_2(\mathbb{Q}_\ell)$ such that $i_\ell(O_B \otimes_{\mathbb{Z}} \mathbb{Z}_\ell) = M_2(\mathbb{Z}_\ell)$. Let $R \subseteq O_B$ be the Eichler order of B of level M defined by requiring that $i_\ell(R \otimes_{\mathbb{Z}} \mathbb{Z}_\ell)$ is the suborder of $M_2(\mathbb{Z}_\ell)$ of upper triangular matrices modulo ℓ for all $\ell|M$. Let Γ denote the subgroup of the group R^\times of norm 1 elements in R^\times consisting of those γ such that $i_\ell(\gamma) \equiv \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ mod ℓ for all $\ell|M$. We denote by $S_{2k}(\Gamma)$ the \mathbb{C}-vector space of weight $2k$ modular forms on Γ, and by $S_{2k}(\Gamma,\psi^2)$ the subspace of $S_{2k}(\Gamma)$ consisting of forms having character ψ^2 under the action of R^\times. Fix a Hecke eigenform $f \in S_{2k}(\Gamma,\psi^2)$ as in \cite[Section 3]{19}.

Let V denote the \mathbb{Q}-subspace of B consisting of elements with trace equal to zero. For any $v \in V$, which we view as a trace zero matrix in $M_2(\mathbb{R})$ (after fixing an isomorphism $i_\infty : B \otimes \mathbb{R} \cong M_2(\mathbb{R})$), set

$$G_v := \{ \gamma \in SL_2(\mathbb{R}) | \gamma^{-1}v\gamma = v \}$$

as in \cite[Section 3]{19}.
and put $\Gamma_v := G_v \cap \Gamma$. One can show that there exists an isomorphism $\omega: \mathbb{R}^\times \xrightarrow{\sim} G_v$ defined by $\omega(s) = \beta^{-1}(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \beta$, for some $\beta \in \text{SL}_2(\mathbb{R})$. Let t_ℓ be the order of $\Gamma_v \cap \{\pm 1\}$ and let γ_v be an element of Γ_v which generates $\Gamma_v \langle \pm 1 \rangle / \{\pm 1\}$. Changing γ_v to γ_v^{-1} if necessary, we may assume $\gamma_v = \omega(t)$ with $t > 0$. Define V^* to be the \mathbb{Q}-subspace of V consisting of elements with strictly negative norm. For any $\alpha = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in V^*$ and $z \in \mathcal{H}$, define the quadratic form

$$Q_\alpha(z) := cz^2 - 2az - b.$$

Fix $\tau \in \mathcal{H}$ and set

$$P(f, \alpha, \Gamma) := -\left(2(-\text{nr}(\alpha))^{1/2}/t_\alpha\right) \int_{\tau}^{\gamma_\alpha(\tau)} Q_\alpha(z)^{k-1}f(z)dz$$

where $\text{nr}: \mathbb{B} \to \mathbb{Q}$ is the norm map. By [11] Lemma 2.1, the integral is independent on the choice τ, which justifies the notation.

Remark 2.1. The definition of $P(f, \alpha, \Gamma)$ given in [11] (2.5)] looks different: the above expression can be derived as in [11] page 629 by means of [11] (2.20) and (2.22)].

Let $R(\Gamma)$ denote the set of equivalence classes of V^* under the action of Γ by conjugation. By [11] (2.6)], $P(f, \alpha, \Gamma)$ only depends on the conjugacy class of α, and thus, for $C \in R(\Gamma)$, we may define $P(f, C, \Gamma) := P(f, \alpha, \Gamma)$ for any choice of $\alpha \in C$. Also, $q(C) := -\text{nr}(\alpha)$ for any $\alpha \in C$.

Define O'_B to be the maximal order in B such that $O'_B \otimes \mathbb{Z}_\ell \cong O_B \otimes \mathbb{Z}_\ell$ for all $\ell \nmid M$ and $O'_B \otimes \mathbb{Z}_\ell$ is equal to the local order of $B \otimes \mathbb{Q}_\ell$ consisting of elements γ such that $i_\ell(\gamma) = \left(\begin{smallmatrix} a & b/M \\ c & d \end{smallmatrix} \right)$ with $a, b, c, d \in \mathbb{Z}_\ell$, for all $\ell | M$. Given $\alpha \in O'_B$, we can find an integer b_α such that

$$i_\ell(\alpha) \equiv \left(\begin{smallmatrix} * & b_\alpha/M \\ * & * \end{smallmatrix} \right) \mod i_\ell(\mathbb{Z}_\ell), \quad \forall \ell | M.$$

Define a locally constant function η_ψ on V by $\eta_\psi(\alpha) = \psi(b_\alpha)$ if $\alpha \in O'_B \cap V$ and $\eta_\psi(\alpha) = 0$ otherwise, with $\psi(a) = 0$ if $(a, M) \neq 1$ (for the definition of locally constant functions on V in this context, we refer to [11] p. 611]).

For any $C \in R(\Gamma)$, fix $a_C \in C$. For any integer $\xi \geq 1$, define

$$a_\xi(\tilde{h}) := (2\mu(\Gamma \setminus \mathcal{G}))^{-1} \cdot \sum_{C \in R(\Gamma), q(C) = \xi} \eta_\psi(a_C)\xi^{-1/2}P(f, C, \Gamma).$$

Then, by [11] Theorem 3.1*, $\tilde{h} := \sum_{\xi \geq 1} a_\xi(\tilde{h})q^\xi \in S_{k+1/2}(4N, \chi)$ is called the Shimura-Shintani-Waldspurger lifting of f.

2.2. Cohomological interpretation

We introduce necessary notation to define the action of the Hecke action on cohomology groups; for details, see [9] §2.1. If G is a subgroup of B^s and S a subsemigroup of B^s such that (G, S) is an Hecke pair, we let $\mathcal{H}(G, S)$ denote the Hecke algebra corresponding to (G, S), whose elements are written as $T(s) = GsG = \bigsqcup_s Gs_t$ for $s, s_t \in S$ (finite disjoint union). For any $s \in S$, let $s^* := \text{norm}(s)s^{-1}$ and denote by S^* the set of elements of the form s^* for $s \in S$. For any $\mathbb{Z}[S^*]$-module M we let $T(s)$ act on $H^1(G, M)$ at the level of cochains $c \in Z^1(G, M)$ by the formula $(c|T(s))(\gamma) = \sum_t s_t^*c(t_\gamma)$, where t_γ are
defined by the equations $G_{s_1}\gamma = G_{s_j}$ and $s_1\gamma = t_i(\gamma)s_j$. In the following, we will consider the case of $G = \Gamma$ and
\[S = \{ s \in B^x | i_\ell(s) \text{ is congruent to } (1^_0 _1^\ell) \mod \ell \text{ for all } \ell | M \}. \]

For any field L and any integer $n \geq 0$, let $V_n(L)$ denote the L-dual of the L-vector space $P_n(L)$ of homogeneous polynomials in 2 variables of degree n. We let $M_2(L)$ act from the right on $P(x, y)$ as $P|\gamma(x, y) := P(\gamma(x, y))$, where for $\gamma = (\begin{smallmatrix} a & b \\ c & d \end{smallmatrix})$ we put
\[(ax + by, cx + dy). \]
This also equips $V_n(L)$ with a left action by $\gamma \cdot \varphi(P) := \varphi(P|\gamma)$. To simplify the notation, we will write $P(z)$ for $P(z, 1)$.

Let F denote the finite extension of \mathbb{Q} generated by the eigenvalues of the Hecke action on f. For any field K containing F, set
\[\mathbb{W}_f(K) := H^1(\Gamma, V_{k-2}(K))^I \]
where the superscript f denotes the subspace on which the Hecke algebra acts via the character associated with f. Also, for any sign \pm, let $\mathbb{W}_f^\pm(K)$ denote the \pm-eigenspace for the action of the archimedean involution ι. Remember that ι is defined by choosing an element ω_∞ of norm -1 in R^x such that $i_\ell(\omega_\infty) \equiv (1^_0 _0^{-1}) \mod M$ for all primes $\ell | M$ and then setting $\iota := T(\omega_\infty)$ (see [9, §2.1]). Then $\mathbb{W}_f^\pm(K)$ is one dimensional (see, e.g., [9, Proposition 2.2]); fix a generator ϕ_f^\pm of $\mathbb{W}_f^\pm(F)$.

To explicitly describe ϕ_f^\pm, let us introduce some more notation. Define
\[f|\omega_\infty(z) := (Cz + D)^{-k/2}f(\omega_\infty(z)) \]
where $i_\infty(\omega_\infty) = (A \begin{smallmatrix} B \\ D \end{smallmatrix})$. Then $f|\omega_\infty \in S_{2k}(\Gamma)$ as well. If the eigenvalues of the Hecke action on f are real, then we may assume, after multiplying f by a scalar, that $f|\omega_\infty = f$ (see [19, p. 627] or [10, Lemma 4.15]). In general, let $I(f)$ denote the class in $H^1(\Gamma, V_{k-2}(\mathbb{C}))$ represented by the cocycle
\[\gamma \mapsto I(\gamma)(f)(P) := \int P \mapsto I(\gamma)(f)(P) := \int f(z)P(z)dz \]
for any $\gamma \in \mathcal{H}$ (the corresponding class is independent on the choice of γ). With this notation,
\[P(f, \alpha, \Gamma) = -\left(2(-nr(\alpha))^{1/2}/t_\alpha\right) \cdot I_{\gamma_\alpha}(f)(Q_{\alpha}(z)^{k-1}). \]

Denote by $I^\pm(f) := (1/2) \cdot I(f) \pm (1/2) \cdot I(f)|_{\omega_\infty}$, the projection of $I(f)$ to the eigenspaces for the action of ω_∞. Then $I(f) = I^+(f) + I^-(f)$ and $I_f^\pm = \Omega_f^\pm \cdot \phi_f^\pm$, for some $\Omega_f^\pm \in C^\times$.

Given $\alpha \in V^*$ of norm $-\xi$, put $\alpha' := \omega_\infty^{-1} \alpha \omega_\infty$. By [19, 4.19], we have
\[\eta(\alpha)\xi^{-1/2}P(f, \alpha, \Gamma) + \eta(\alpha')\xi^{-1/2}P(f, \alpha', \Gamma) = -\eta(\alpha) \cdot t_\alpha^{-1} \cdot I_{\gamma_\alpha}^+(Q_{\alpha}(z)^{k-1}). \]
We then have
\[a_\xi(\tilde{h}) = \sum_{c \in R_{2}(\Gamma, \mathcal{O}(\mathcal{C})) = \xi} -\eta(\alpha)\xi^{-1/2}P(f, \alpha, \Gamma) + \eta(\alpha')\xi^{-1/2}P(f, \alpha', \Gamma) = -\eta(\alpha) \cdot t_\alpha^{-1} \cdot I_{\gamma_\alpha}^+(Q_{\alpha}(z)^{k-1}). \]
We close this section by choosing a suitable multiple of h which will be the object of the next section. Given $Q_\alpha(z) = cz^2 - 2az - b$ as above, with α in
V^*,$ define $\tilde{Q}_\alpha(z) := M \cdot Q_\alpha(z)$. Then, clearly, $I^\pm(f)(\tilde{Q}_\alpha(z)^{k-1})$ is equal to $M^{k-1}I^\pm(f)(Q_\alpha(z)^{k-1})$. We thus normalize the Fourier coefficients by setting

$$a_\xi(h) := \frac{a_\xi(h) \cdot M^{k-1} \cdot 2\mu(\Gamma \setminus H)}{\Omega_f} = \sum_{\mathcal{C} \in R(\Gamma, \mathcal{O}(\mathcal{C}))} \frac{\eta_\psi(\alpha_\mathcal{C})}{\mathcal{C} \alpha_\mathcal{C}} \cdot \phi_f^+(\tilde{Q}_\alpha(z)^{k-1}).$$

So

$$h := \sum_{\xi \geq 1} a_\xi(h) q^\xi$$

belongs to $S_{k+1/2}(4N, \chi)$ and is a non-zero multiple of \tilde{h}.

3. The Λ-adic Shimura-Shintani-Waldspurger Correspondence

At the heart of Stevens’s proof lies the control theorem of Greenberg-Stevens, which has been worked out in the quaternionic setting by Longo–Vigni [9].

Recall that $N \geq 1$ is a square free integer and fix a decomposition $N = M \cdot D$ where D is a square free product of an even number of primes and M is coprime to D. Let $p \nmid N$ be a prime number and fix an embedding $\bar{Q} \hookrightarrow \bar{Q}_p$.

3.1. The Hida Hecke algebra. Fix an ordinary p-stabilized newform

$$f_0 \in S_{k_0}(\Gamma_1(Mp^n) \cap \Gamma_0(D), \epsilon_0)$$

of level $\Gamma_1(Mp^n) \cap \Gamma_0(D)$, Dirichlet character ϵ_0 and weight k_0, and write \mathcal{O} for the ring of integers of the field generated over \mathbb{Q}_p by the Fourier coefficients of f_0.

Let Λ (respectively, $\mathcal{O}[\mathbb{Z}_p^\times]$) denote the Iwasawa algebra of $W := 1 + p\mathbb{Z}_p$ (respectively, \mathbb{Z}_p^\times) with coefficients in \mathcal{O}. We denote group-like elements in Λ and $\mathcal{O}[\mathbb{Z}_p^\times]$ as $[\ell]$. Let $\mathcal{H}_\text{cont}^{\text{alg}}$ denote the p-ordinary Hida Hecke algebra with coefficients in \mathcal{O} of tame level $\Gamma_1(N)$. Denote by $\mathcal{L} := \text{Frac}(\Lambda)$ the fraction field of Λ. Let \mathcal{R} denote the integral closure of Λ in the primitive component \mathcal{K} of $\mathcal{H}_\text{cont}^{\text{alg}} \otimes_{\Lambda} \mathcal{L}$ corresponding to f_0. It is well known that the Λ-algebra \mathcal{R} is finitely generated as Λ-module.

Denote by \mathcal{X} the \mathcal{O}-module $\text{Hom}_{\mathcal{O}_{\text{alg}}(\mathcal{R}, \bar{Q}_p)}$ of continuous homomorphisms of \mathcal{O}-algebras. Let \mathcal{X}^arith be the set of arithmetic homomorphisms in \mathcal{X}, defined in [9 §2.2] by requiring that the composition

$$W \longrightarrow \Lambda \longrightarrow \bar{Q}_p$$

has the form $\gamma \mapsto \psi_\gamma(\gamma)^{n_\gamma}$ with $n_\gamma = k_\gamma - 2$ for an integer $k_\gamma \geq 2$ (called the weight of γ) and a finite order character $\psi_\gamma : W \rightarrow \bar{Q}_p$ (called the wild character of γ). Denote by r_γ the smallest among the positive integers t such that $1 + p^t\mathbb{Z}_p \subseteq \ker(\psi_\gamma)$. For any $\kappa \in \mathcal{X}^\text{arith}$, let P_κ denote the kernel of κ and \mathcal{R}_κ the localization of \mathcal{R} at κ. The field $F_\kappa := \mathcal{R}_\kappa / P_\kappa \mathcal{R}_\kappa$ is a finite extension of $\text{Frac}(\mathcal{O})$. Further, by duality, κ corresponds to a normalized eigenform

$$f_\kappa \in S_{k_\kappa}(\Gamma_0(Np^n), \epsilon_\kappa)$$

for a Dirichlet character $\epsilon_\kappa : (\mathbb{Z}/Np^n \mathbb{Z})^\times \rightarrow \bar{Q}_p$. More precisely, if we write $\psi_\mathcal{R}$ for the character of \mathcal{R}, defined as in [4] p. 555, and we let ω denote the Teichmüller character, we have $\epsilon_\kappa := \psi_\kappa \cdot \psi_\mathcal{R} \cdot \omega^{-n_\kappa}$ (see [6] Cor. 1.6). We call $(\epsilon_\kappa, k_\kappa)$ the signature of κ. We let κ_0 denote the arithmetic character associated with f_0, so $f_0 = f_{\kappa_0}$, $k_0 = k_{\kappa_0}$, $\epsilon_0 = \epsilon_{\kappa_0}$, and $r_0 = r_{\kappa_0}$. The eigenvalues of f_κ under the action of the Hecke operators T_n ($n \geq 1$ an integer) belong to F_κ. Actually, one can show that f_κ is a p-stabilized newform on $\Gamma_1(Mp^n) \cap \Gamma_0(D)$.

Let \(\Lambda_N \) denote the Iwasawa algebra of \(\mathbb{Z}_p^\times \times (\mathbb{Z}/N\mathbb{Z})^\times \) with coefficients in \(\mathcal{O} \). To simplify the notation, define \(\Delta := (\mathbb{Z}/NP\mathbb{Z})^\times \). We have a canonical isomorphism of rings \(\Lambda_N \simeq \Lambda[\Delta] \), which makes \(\Lambda_N \) a \(\Lambda \)-algebra, finitely generated as \(\Lambda \)-module.

Define the tensor product of \(\Lambda \)-algebras

\[
\mathcal{R}_N := \mathcal{R} \otimes_\Lambda \Lambda_N,
\]

which is again a \(\Lambda \)-algebra (resp. \(\Lambda_N \)-algebra) finitely generated as a \(\Lambda \)-module, (resp. as a \(\Lambda_N \)-module). One easily checks that there is a canonical isomorphism of \(\Lambda \)-algebras

\[
\mathcal{R}_N \simeq \mathcal{R}[\Delta]
\]

(where \(\Lambda \) acts on \(\mathcal{R} \)): this is also an isomorphism of \(\Lambda_N \)-algebras, when we let \(\Lambda_N \simeq \Lambda[\Delta] \) act on \(\mathcal{R}[\Delta] \) in the obvious way.

We can extend any \(\kappa \in \mathcal{X}^{\text{arith}} \) to a continuous \(\mathcal{O} \)-algebra morphism

\[
\kappa_N : \mathcal{R}_N \rightarrow \bar{\mathbb{Q}}_p
\]

setting

\[
\kappa_N \left(\sum_{i=1}^n r_i \cdot \delta_i \right) := \sum_{i=1}^n \kappa(r_i) \cdot \psi_R(\delta_i)
\]

for \(r_i \in \mathcal{R} \) and \(\delta_i \in \Delta \). Therefore, \(\kappa_N \) restricted to \(\mathbb{Z}_p^\times \) is the character \(t \mapsto \epsilon(t)t^n \).

If we denote by \(\mathcal{X}_N \) the \(\mathcal{O} \)-module of continuous \(\mathcal{O} \)-algebra homomorphisms from \(\mathcal{R}_N \) to \(\bar{\mathbb{Q}}_p \), the above correspondence sets up an injective map \(\mathcal{X}^{\text{arith}} \hookrightarrow \mathcal{X}_N \). Let \(\mathcal{X}_N^{\text{arith}} \) denote the image of \(\mathcal{X}^{\text{arith}} \) under this map. For \(\kappa_N \in \mathcal{X}_N^{\text{arith}} \), we define the signature of \(\kappa_N \) to be that of the corresponding \(\kappa \).

3.2. The control theorem in the quaternionic setting

Recall that \(B/\mathbb{Q} \) is a quaternion algebra of discriminant \(D \). Fix an auxiliary real quadratic field \(F \) such that all primes dividing \(D \) are inert in \(F \) and all primes dividing \(Mp \) are split in \(F \), and an isomorphism \(i_F : B \otimes \mathbb{Q} F \simeq M_2(F) \). Let \(\mathcal{O}_B \) denote the maximal order of \(B \) obtained by taking the intersection of \(B \) with \(M_2(\mathcal{O}_F) \), where \(\mathcal{O}_F \) is the ring of integers of \(F \). More precisely, define

\[
\mathcal{O}_B := \iota^{-1}(i_F^{-1}(i_F(B \otimes 1) \cap M_2(\mathcal{O}_F)))
\]

where \(\iota : B \hookrightarrow B \otimes \mathbb{Q} F \) is the inclusion defined by \(b \mapsto b \otimes 1 \). This is a maximal order in \(B \) because \(i_F(B \otimes 1) \cap M_2(\mathcal{O}_F) \) is a maximal order in \(i_F(B \otimes 1) \). In particular, \(i_F \) and our fixed embedding of \(\mathbb{Q} \) into \(\bar{\mathbb{Q}}_p \) induce an isomorphism

\[
i_p : B \otimes \mathbb{Q} \mathbb{Q}_p \simeq M_2(\mathbb{Q}_p)
\]

such that \(i_p(\mathcal{O}_B \otimes \mathbb{Z} \mathbb{Z}_p) = M_2(\mathbb{Z}_p) \). For any prime \(\ell | M \), also choose an embedding \(\mathbb{Q} \hookrightarrow \mathbb{Q}_\ell \) which, composed with \(i_F \), yields isomorphisms

\[
i_\ell : B \otimes \mathbb{Q} \mathbb{Q}_\ell \simeq M_2(\mathbb{Q}_\ell)
\]

such that \(i_p(\mathcal{O}_B \otimes \mathbb{Z} \mathbb{Z}_\ell) = M_2(\mathbb{Z}_\ell) \). Define an Eichler order \(R \subseteq \mathcal{O}_B \) of level \(M \) by requiring that for all primes \(\ell | M \) the image of \(R \otimes \mathbb{Z} \mathbb{Z}_\ell \) via \(i_\ell \) consists of upper triangular matrices modulo \(\ell \). For any \(r \geq 0 \), let \(\Gamma_r \) denote the subgroup of the group \(R^r \) of norm-one elements in \(R \) consisting of those \(\gamma \) such that \(i_{\ell}(\gamma) = \left(\begin{smallmatrix} a & b \\ c \cdot d \end{smallmatrix} \right) \) with \(c \equiv 0 \mod Mp \) and \(a \equiv d \equiv 1 \mod Mp \), for all primes \(\ell | Mp \). To conclude this list of notation and definitions, fix an embedding \(F \hookrightarrow \mathbb{R} \) and let

\[
i_\infty : B \otimes \mathbb{Q} \mathbb{R} \simeq M_2(\mathbb{R})
\]

be the induced isomorphism.
Let \(Y := \mathbb{Z}_p^2 \) and denote by \(X \) the set of primitive vectors in \(Y \). Let \(D \) denote the \(\mathcal{O} \)-module of \(\mathcal{O} \)-valued measures on \(Y \) which are supported on \(X \). Note that \(\mathbb{M}_2(\mathbb{Z}_p) \) acts on \(Y \) by left multiplication; this induces an action of \(\mathbb{M}_2(\mathbb{Z}_p) \) on the \(\mathcal{O} \)-module of \(\mathcal{O} \)-valued measures on \(Y \), which induces an action on \(D \). The group \(R^x \) acts on \(D \) via \(t_p \). In particular, we may define the group:

\[
\mathcal{W} := H^1(G_0, D).
\]

Then \(D \) has a canonical structure of \(\mathcal{O}[\mathbb{Z}_p^2] \)-module, as well as \(\mathfrak{h}_\text{ord}^\ast \)-action, as described in [9, §2.4]. In particular, let us recall that, for any \([t] \in \mathcal{O}[\mathbb{Z}_p^2] \), we have

\[
\int_X \varphi(x, y) d([t] \cdot \nu) = \int_X \varphi(tx, ty) d\nu,
\]

for any locally constant function \(\varphi \) on \(X \).

For any \(\kappa \in \mathcal{X}_\text{arith} \) and any sign \(\pm \in \{-, +\} \), set

\[
\mathcal{W}_\kappa^\pm := \mathcal{W}_2^\pm(F_\kappa) = H^1(\Gamma_{r_\kappa}, V_{n_\kappa}(F_\kappa))^{f_\kappa, \pm}
\]

where \(f_\kappa \) is any Jacquet-Langlands lift of \(f_\kappa \) to \(\Gamma_{r_\kappa} \); recall that the superscript \(f_\kappa \) denotes the subspace on which the Hecke algebra acts via the character associated with \(f_\kappa \), and the superscript \(\pm \) denotes the \(\pm \)-eigenspace for the action of the archimedean involution \(\iota \). Also, recall that \(\mathcal{W}_\kappa^\pm \) is one dimensional and fix a generator \(\phi_\kappa^\pm \) of it.

We may define specialization maps

\[
\rho_\kappa : D \rightarrow V_{n_\kappa}(F_\kappa)
\]

by the formula

\[
\rho_\kappa(\nu)(P) := \int_{\mathbb{Z}_p^2} \epsilon_\kappa(y) P(x, y) d\nu
\]

which induces (see [9, §2.5]) a map:

\[
\rho_\kappa : \mathcal{W}_\kappa^{\text{ord}} \rightarrow \mathcal{W}_\kappa^\pm.
\]

Here \(\mathcal{W}_\kappa^{\text{ord}} \) and \(\mathcal{W}_\kappa^{\text{ord}} \) denote the ordinary submodules of \(\mathcal{W} \) and \(\mathcal{W}_\kappa \), respectively, defined as in [9, Definition 2.2] (see also [9, §3.5]). We also let \(\mathcal{W}_\mathcal{X} := \mathcal{W} \otimes \mathcal{X} \mathcal{R} \), and extend the above map \(\rho_\kappa \) to a map

\[
\rho_\kappa : \mathcal{W}_\kappa^{\text{ord}} \rightarrow \mathcal{W}_\kappa^\pm
\]

by setting \(\rho_\kappa(x \otimes r) := \rho_\kappa(x) \cdot \kappa(r) \).

Theorem 3.1. There exists a \(p \)-adic neighborhood \(U_0 \) of \(\kappa_0 \) in \(\mathcal{X} \), elements \(\Phi^\pm \) in \(\mathcal{W}_\mathcal{X}^{\text{ord}} \) and choices of \(p \)-adic periods \(\Omega_\kappa^\pm \) in \(F_\kappa \) for \(\kappa \in U_0 \cap \mathcal{X}_\text{arith} \) such that, for all \(\kappa \in U_0 \cap \mathcal{X}_\text{arith} \), we have

\[
\rho_\kappa(\Phi^\pm) = \Omega_\kappa^\pm \cdot \phi_\kappa^\pm
\]

and \(\Omega_{\kappa_0}^\pm \neq 0 \).

Proof. This is an easy consequence of [9, Theorem 2.18] and follows along the lines of the proof of [21, Theorem 5.5], cf. [10, Proposition 3.2]. \(\square \)

We now normalize our choices as follows. With \(U_0 \) as above, define

\[
U_0^{\text{arith}} := U_0 \cap \mathcal{X}_\text{arith}.
\]

Fix \(\kappa \in U_0^{\text{arith}} \) and an embedding \(\mathbb{Q}_p \hookrightarrow \mathbb{C} \). Let \(f_\kappa \) denote a modular form on \(\Gamma_{r_\kappa} \) corresponding to \(f_\kappa \) by the Jacquet-Langlands correspondence, which is well
defined up to elements in \mathbb{C}^\times. View ϕ^\pm as an element in $H^1(\Gamma_{r_n}, V_n(\mathbb{C}))^\pm$. Choose a representative Φ^\pm_γ of Φ^\pm, by which we mean that if $\Phi^\pm = \sum_i \Phi^\pm_i \otimes r_i$, then we choose a representative Φ^\pm_i for all i. Also, we will write $\rho_\kappa(\Phi)(P)$ as

$$\int_{\mathbb{Z}_p \times \mathbb{Z}_p^2} \epsilon_\kappa(y) P(x, y) d\Phi^\pm_\gamma := \sum_i \kappa(r_i) \cdot \int_{\mathbb{Z}_p \times \mathbb{Z}_p^2} \epsilon_\kappa(y) P(x, y) d\Phi^\pm_i.$$

With this notation, we see that the two cohomology classes

$$\gamma \mapsto \int_{\mathbb{Z}_p \times \mathbb{Z}_p^2} \epsilon_\kappa(y) P(x, y) d\Phi^\pm_\gamma(x, y)$$

and

$$\gamma \mapsto \Omega^\pm_\kappa \cdot \int_{\tau} \gamma(z) P(z, 1) f_\kappa^\text{HL}(z) dz$$

are cohomologous in $H^1(\Gamma_{r_n}, V_n(\mathbb{C}))$, for any choice of $\tau \in \mathcal{H}$.

3.3. Metaplectic Hida Hecke algebras. Let $\sigma : \Lambda_N \to \Lambda_N$ be the ring homomorphism associated to the group homomorphism $t \mapsto t^2$ on $\mathbb{Z}_p^\times \times (\mathbb{Z}/N\mathbb{Z})^\times$, and denote by the same symbol its restriction to Λ and $\mathcal{O}[\mathbb{Z}_p^\times]$. We let Λ_σ, $\mathcal{O}[\mathbb{Z}_p^\times]_\sigma$ and $\Lambda_{N, \sigma}$ denote, respectively, Λ, $\mathcal{O}[\mathbb{Z}_p^\times]$ and Λ_N viewed as algebras over themselves via σ. The ordinary metaplectic p-adic Hida Hecke algebra we will consider is the Λ-algebra

$$\tilde{\mathcal{R}} := \mathcal{R} \otimes \Lambda \Lambda_\sigma.$$

Define as above

$$\tilde{\mathcal{X}} := \text{Hom}_{\mathcal{O}\text{-alg}}(\tilde{\mathcal{R}}, \mathcal{O}_p)$$

and let the set $\tilde{\mathcal{X}}_{\text{arith}}$ of arithmetic points in $\tilde{\mathcal{X}}$ to consist of those $\tilde{\kappa}$ such that the composition

$$W \xrightarrow{\lambda} \Lambda \xrightarrow{1 \otimes \lambda} \tilde{\mathcal{R}} \xrightarrow{\tilde{\kappa}} \mathcal{O}_p$$

has the form $\gamma \mapsto \psi_\kappa(\gamma)^{n_{\kappa}}$ with $n_{\kappa} := k_{\kappa} - 2$ for an integer $k_{\kappa} \geq 2$ (called the weight of κ) and a finite order character $\psi_\kappa : W \to \mathcal{O}_p$ (called the wild character of κ). Let r_{κ} the smallest among the positive integers t such that $1 + p^t \mathbb{Z}_p \subseteq \ker(\psi_\kappa)$.

We have a map $p : \tilde{\mathcal{X}} \to \mathcal{X}$ induced by pull-back from the canonical map $\mathcal{R} \to \tilde{\mathcal{R}}$. The map p restricts to arithmetic points.

As above, define the Λ-algebra (or Λ_N-algebra)

$$\tilde{\mathcal{R}}_N := \mathcal{R} \otimes \Lambda \Lambda_{N, \sigma}$$

via $\lambda \mapsto 1 \otimes \lambda$.

We easily see that

$$\tilde{\mathcal{R}}_N \simeq \tilde{\mathcal{R}}[\Delta]$$

as Λ_N-algebras, where we enhance $\tilde{\mathcal{R}}[\Delta]$ with the following structure of $\Lambda_N \simeq \Lambda[\Delta]$-algebra: for $\sum_i \lambda_i \cdot \delta_i \in \Lambda[\Delta]$ (with $\lambda_i \in \Lambda$ and $\delta_i \in \Delta$) and $\sum_j r_j \cdot \delta'_j \in \tilde{\mathcal{R}}[\Delta]$ (with $r_j = \sum_h r_{j,h} \otimes \lambda_{j,h} \in \tilde{\mathcal{R}}, r_{j,h} \in \mathcal{R}, \lambda_{j,h} \in \Lambda_\sigma$, and $\delta'_j \in \Delta$), we set

$$\left(\sum_i \lambda_i \cdot \delta_i \right) \cdot \left(\sum_j r_j \cdot \delta'_j \right) := \sum_{i,j,h} \left(r_{j,h} \otimes (\lambda_i \lambda_{j,h}) \right) \cdot (\delta_i \delta'_j).$$
As above, extend \(\tilde{\kappa} \in \tilde{X}_{\text{arith}} \) to a continuous \(\mathcal{O} \)-algebra morphism \(\tilde{\kappa}_N : \mathcal{R}_N \to \bar{\mathbb{Q}}_p \) by setting

\[
\tilde{\kappa}_N \left(\sum_{i=1}^{n} x_i \cdot \delta_i \right) := \sum_{i=1}^{n} \tilde{\kappa}(x_i) \cdot \psi_R(\delta_i)
\]

for \(x_i \in \mathcal{R} \) and \(\delta_i \in \Delta \), where \(\psi_R \) is the character of \(R \). If we denote by \(\tilde{X}_N \) the \(\mathcal{O} \)-module of continuous \(\mathcal{O} \)-linear homomorphisms from \(\mathcal{R}_N \) to \(\bar{\mathbb{Q}}_p \), the above correspondence sets up an injective map \(\tilde{X}_{\text{arith}} \hookrightarrow \tilde{X}_N \) and we let \(\bar{X}_{N, \text{arith}} \) denote the image of \(\tilde{X}_{\text{arith}} \). We also have a map \(\iota : \bar{X}_{N, \text{arith}} \rightarrow \bar{X}_N \) induced from the map \(\mathcal{R}_N \rightarrow \mathcal{R}_N \) taking \(r \mapsto r \otimes 1 \) by pull-back. The map \(\iota \) also restricts to arithmetic points. The maps \(p \) and \(p_N \) make the following diagram commute:

\[
\begin{array}{ccc}
\tilde{X}^{\text{arith}} & \xrightarrow{p} & \tilde{X}^{\text{arith}} \\
P & & \downarrow \iota \\
X^{\text{arith}} & \xrightarrow{p_N} & X^{\text{arith}}
\end{array}
\]

where the projections take a signature \((\epsilon, k) \) to \((\epsilon^2, 2k) \).

3.4. The \(\Lambda \)-adic correspondence

In this part, we combine the explicit integral formula of Shimura and the fact that the toric integrals can be \(p \)-adically interpolated to show the existence of a \(\Lambda \)-adic Shimura-Shintani-Waldspurger correspondence with the expected interpolation property. This follows very closely [21, §6].

Let \(\tilde{\kappa}_N \in \tilde{X}^{\text{arith}}_N \) of signature \((\epsilon_\kappa, k_\kappa) \). Let \(L_r \) denote the order of \(\mathcal{M}_2(F) \) consisting of matrices \(\left(\begin{array}{cc} a & b/Mp^r \\ Mp^r c & d \end{array} \right) \) with \(a, b, c, d \in \mathcal{O}_F \). Define

\[
\mathcal{O}_{B,r} := \epsilon_\kappa^{-1}(i_F^{-1}(i_F(B \otimes 1) \cap L_r))
\]

Then \(\mathcal{O}_{B,r} \) is the maximal order introduced in [21] (and denoted \(\mathcal{O}' \) there) defined in terms of the maximal order \(\mathcal{O}_B \) and the integer \(Mp^r \). Also, \(S := \mathcal{O}_B \cap \mathcal{O}_{B,r} \) is an Eichler order of \(B \) of level \(Mp \) containing the fixed Eichler order \(R \) of level \(M \).

With \(\alpha \in V^* \cap \mathcal{O}_{B,1} \), we have

\[
i_F(\alpha) = \left(\begin{array}{cc} a & b/(Mp) \\ c & -a \end{array} \right)
\]

in \(\mathcal{M}_2(F) \) with \(a, b, c \in \mathcal{O}_F \) and we can consider the quadratic forms

\[
Q_\alpha(x, y) := cx^2 - 2axy - (b/(Mp))y^2,
\]

and

\[
\hat{Q}_\alpha(x, y) := Mp \cdot Q_\alpha(x, y) = Mpcx^2 - 2Mpa xy - by^2.
\]

Then \(\hat{Q}_\alpha(x, y) \) has coefficients in \(\mathcal{O}_F \) and, composing with \(F \hookrightarrow \mathbb{R} \) and letting \(x = z, y = 1 \), we recover \(Q_\alpha(z) \) and \(\hat{Q}_\alpha(z) \) of [21] (defined by means of the isomorphism \(i_\infty \)).

Since each prime \(\ell | Mp \) is split in \(F \), the elements \(a, b, c \) can be viewed as elements in \(\mathbb{Z}_\ell \) via our fixed embedding \(\bar{\mathbb{Q}} \hookrightarrow \bar{\mathbb{Q}}_\ell \), for any prime \(\ell | Mp \) (we will continue writing \(a, b, c \) for these elements, with a slight abuse of notation). So,
letting \(b_\alpha \in \mathbb{Z} \) such that \(i_\ell(\alpha) = (^{*\ell}_{b_\alpha/(\mathbb{M}_p)}) \) modulo \(i_\ell(\mathbb{S} \otimes_{\mathbb{Z}} \mathbb{Z}_\ell) \), for all \(\ell | M_p \), we have \(b \equiv b_\alpha \) modulo \(\mathbb{M}_p \mathbb{Z}_\ell \) as elements in \(\mathbb{Z}_\ell \), for all \(\ell | M_p \), and thus we get
\[
(9) \quad \eta_\alpha(\alpha) = \epsilon_\ell(b_\alpha) = \epsilon_\ell(b)
\]
for \(b \) as in (7).

For any \(\nu \in \mathbb{D} \), we may define an \(\mathcal{O} \)-valued measure \(j_\alpha(\nu) \) on \(\mathbb{Z}_p^\times \) by the formula:
\[
\int_{\mathbb{Z}_p^\times} f(t) d(j_\alpha(\nu))(t) := \int_{\mathbb{Z}_p^\times \times \mathbb{Z}_p^\times} f(Q_\alpha(x, y)) dv(x, y).
\]
for any continuous function \(f : \mathbb{Z}_p^\times \to \mathbb{C}_p \). Recall that the group of \(\mathcal{O} \)-valued measures on \(\mathbb{Z}_p^\times \) is isomorphic to the Iwasawa algebra \(\mathcal{O}[\mathbb{Z}_p^\times] \), and thus we may view \(j_\alpha(\nu) \) as an element in \(\mathcal{O}[\mathbb{Z}_p^\times] \) (see, for example, \(\mathcal{R} \) \S 3.2). In particular, for any group-like element \([\lambda] \in \mathcal{O}[\mathbb{Z}_p^\times] \) we have:
\[
\int_{\mathbb{Z}_p^\times} f(t) d([\lambda] \cdot j_\alpha(\nu))(t) = \int_{\mathbb{Z}_p^\times} \left(\int_{\mathbb{Z}_p^\times} f(ts) d([\lambda](s)) \right) dj_\alpha(\nu)(t) = \int_{\mathbb{Z}_p^\times} f(\lambda t) dj_\alpha(\nu)(t).
\]
On the other hand,
\[
\int_{\mathbb{Z}_p^\times \times \mathbb{Z}_p^\times} f(Q_\alpha(x, y)) d(\lambda \cdot \nu) = \int_{\mathbb{Z}_p^\times \times \mathbb{Z}_p^\times} f(Q_\alpha(\lambda x, \lambda y)) d\nu = \int_{\mathbb{Z}_p^\times \times \mathbb{Z}_p^\times} f(\lambda^2 Q_\alpha(x, y)) d\nu
\]
and we conclude that \(j_\alpha(\lambda \cdot \nu) = [\lambda^2] \cdot j_\alpha(\nu) \). In other words, \(j_\alpha \) is a \(\mathcal{O}[\mathbb{Z}_p^\times] \)-linear map
\[
j_\alpha : \mathbb{D} \to \mathcal{O}[\mathbb{Z}_p^\times]_\sigma.
\]

Before going ahead, let us introduce some notation. Let \(\chi \) be a Dirichlet character modulo \(\mathbb{M}_p^r \), for a positive integer \(r \), which we decompose accordingly with the isomorphism \((\mathbb{Z}/\mathbb{N}p^r\mathbb{Z})^\times \simeq (\mathbb{Z}/\mathbb{N}\mathbb{Z})^\times \times (\mathbb{Z}/p^r\mathbb{Z})^\times \) into the product \(\chi = \chi_N \cdot \chi_p \) with \(\chi_N : (\mathbb{Z}/\mathbb{N}\mathbb{Z})^\times \to \mathbb{C}^\times \) and \(\chi_p : (\mathbb{Z}/p^r\mathbb{Z})^\times \to \mathbb{C}^\times \). Thus, we will write \(\chi(x) = \chi_N(x,N) \cdot \chi_p(x_p) \), where \(x_N \) and \(x_p \) are the projections of \(x \in (\mathbb{Z}/\mathbb{N}p^r\mathbb{Z})^\times \) to \((\mathbb{Z}/\mathbb{N}\mathbb{Z})^\times \) and \((\mathbb{Z}/p^r\mathbb{Z})^\times \), respectively. To simplify the notation, we will suppress the \(N \) and \(p \) from the notation for \(x_N \) and \(x_p \), thus simply writing \(x \) for any of the two. Using the isomorphism \((\mathbb{Z}/\mathbb{M}\mathbb{Z})^\times \simeq (\mathbb{Z}/M\mathbb{Z})^\times \times (\mathbb{Z}/D\mathbb{Z})^\times \) decompose \(\chi_N = \chi_M \cdot \chi_D \) with \(\chi_M \) and \(\chi_D \) characters on \((\mathbb{Z}/M\mathbb{Z})^\times \) and \((\mathbb{Z}/D\mathbb{Z})^\times \), respectively. In the following, we only need the case when \(\chi_D = 1 \).

Using the above notation, we may define a \(\mathcal{O}[\mathbb{Z}_p^\times] \)-linear map \(J_\alpha : \mathbb{D} \to \mathcal{O}[\mathbb{Z}_p^\times] \) by
\[
J_\alpha(\nu) = \epsilon_\ell,M(b) \cdot \epsilon_\ell,M(-1) \cdot j_\alpha(\nu)
\]
with \(b \) as in (7). Set \(\mathbb{D}_N := \mathbb{D} \otimes_{\mathcal{O}[\mathbb{Z}_p^\times]} \Lambda_N \), where the map \(\mathcal{O}[\mathbb{Z}_p^\times] \to \Lambda_N \) is induced from the map \(\mathbb{Z}_p^\times \to \mathbb{Z}_p^\times \times (\mathbb{Z}/\mathbb{N}\mathbb{Z})^\times \) on group-like elements given by \(x \mapsto x \otimes 1 \). Then \(J_\alpha \) can be extended to a \(\Lambda_N \)-linear map \(J_\alpha : \mathbb{D}_N \to \Lambda_N, \sigma \). Setting \(\mathbb{D}_{\mathcal{R}_N} := \mathcal{R}_N \otimes_{\Lambda_N} \mathbb{D}_N \) and extending by \(\mathcal{R}_N \)-linearity over \(\Lambda_N \) we finally obtain a \(\mathcal{R}_N \)-linear map, again denoted by the same symbol,
\[
J_\alpha : \mathbb{D}_{\mathcal{R}_N} \to \mathcal{R}_N.
\]
For \(\nu \in \mathbb{D}_N \) and \(r \in \mathcal{R}_N \) we thus have
\[
J_\alpha(r \otimes \nu) = \epsilon_\ell,M(b) \cdot \epsilon_\ell,M(-1) \cdot r \otimes j_\alpha(\nu).
\]
For the next result, for any arithmetic point \(\kappa_N \in \mathcal{X}_N^{\text{arith}} \) coming from \(\kappa \in \mathcal{X}^{\text{arith}} \), extend \(\rho_\kappa \) in (5) by \(\mathcal{R}_N \)-linearity over \(\mathcal{O}[\mathbb{Z}_p^\times] \), to get a map

\[
\rho_{\kappa_N} : \mathbb{D}_{\mathcal{R}_N} \rightarrow V_{\kappa_N}
\]
defined by \(\rho_{\kappa_N}(r \otimes \nu) := \rho_\kappa(\nu) \cdot \kappa_N(r) \), for \(\nu \in \mathbb{D} \) and \(r \in \mathcal{R}_N \). To simplify the notation, set

(10) \[
\langle \nu, \alpha \rangle_{\kappa_N} := \rho_{\kappa_N}(\nu)(\tilde{Q}_\alpha^{n_\kappa}/2).
\]
The following is essentially [21 Lemma (6.1)].

Lemma 3.2. Let \(\tilde{\kappa}_N \in \tilde{\mathcal{X}}_N^{\text{arith}} \) with signature \((\epsilon_{\tilde{\kappa}}, k_{\tilde{\kappa}}) \) and define \(\kappa_N := p_N(\tilde{\kappa}_N) \). Then for any \(\nu \in \mathbb{D}_{\mathcal{R}_N} \) we have:

\[
\tilde{\kappa}_N(J_\alpha(\nu)) = \eta_{k_\kappa}(\alpha) \cdot \langle \nu, \alpha \rangle_{\kappa_N}.
\]

Proof. For \(\nu \in \mathbb{D}_N \) and \(r \in \mathcal{R}_N \) we have

\[
\tilde{\kappa}_N(J_\alpha(\nu \otimes r)) = \tilde{\kappa}_N(\epsilon_{\tilde{\kappa},M}(b) \cdot \epsilon_{\tilde{\kappa},p}(-1) \cdot r \otimes j_\alpha(\nu))
\]

\[= \epsilon_{\tilde{\kappa},M}(b) \cdot \epsilon_{\tilde{\kappa},p}(-1) \cdot \tilde{\kappa}_N(r \otimes 1) \cdot \tilde{\kappa}_N(1 \otimes j_\alpha(\nu))
\]

\[= \epsilon_{\tilde{\kappa},M}(b) \cdot \epsilon_{\tilde{\kappa},p}(-1) \cdot \kappa_N(r) \cdot \int_{\mathbb{Z}_p^\times} \tilde{\kappa}_N(t) d\alpha(\nu)
\]

and thus, noticing that \(\tilde{\kappa}_N \) restricted to \(\mathbb{Z}_p^\times \) is \(\tilde{\kappa}_N(t) = \epsilon_{\tilde{\kappa},p}(t)t^{n_\kappa} \), we have

\[
\tilde{\kappa}_N(J_\alpha(\nu \otimes r)) = \epsilon_{\tilde{\kappa},M}(b) \cdot \epsilon_{\tilde{\kappa},p}(-1) \cdot \kappa_N(r) \int_{\mathbb{Z}_p^\times} \epsilon_{\tilde{\kappa},p}(\tilde{Q}_\alpha(x,y)) \tilde{Q}_\alpha(x,y)^{n_\kappa}/2 d\nu.
\]

Recalling (5), and viewing \(a, b, c \) as elements in \(\mathbb{Z}_p \), we have, for \((x, y) \in \mathbb{Z}_p \times \mathbb{Z}_p^\times \),

\[
\epsilon_{\tilde{\kappa},p}(\tilde{Q}_\alpha(x,y)) = \epsilon_{\tilde{\kappa},p}(-by^2) = \epsilon_{\tilde{\kappa},p}(-b)\epsilon_{\tilde{\kappa},p}(y^2) = \epsilon_{\tilde{\kappa},p}(-b)\epsilon_{\tilde{\kappa},p}(y^2) = \epsilon_{\tilde{\kappa},p}(-b)\epsilon_{\tilde{\kappa},p}(y).
\]

Thus, since \(\epsilon_{\tilde{\kappa}}(-1)^2 = 1 \), we get:

\[
\tilde{\kappa}_N(J_\alpha(\nu \otimes r)) = \kappa_N(r) \cdot \epsilon_{\tilde{\kappa},M}(b) \cdot \epsilon_{\tilde{\kappa},p}(b) \cdot \rho_\kappa(\nu)(\tilde{Q}_\alpha^{n_\kappa}/2) = \eta_{k_\kappa}(\alpha) \cdot \langle \nu, \alpha \rangle_{\kappa_N}
\]

where for the last equality use (4) and (10). \(\square \)

Define

\[\mathbb{W}_{\mathcal{R}_N} := \mathbb{W} \otimes_{\mathcal{O}[\mathbb{Z}_p^\times]} \mathcal{R}_N,\]

the structure of \(\mathcal{O}[\mathbb{Z}_p^\times] \)-module of \(\mathcal{R}_N \) being that induced by the composition of the two maps \(\mathcal{O}[\mathbb{Z}_p^\times] \rightarrow \Lambda_N \rightarrow \mathcal{R}_N \) described above. There is a canonical map

\[\vartheta : \mathbb{W}_{\mathcal{R}_N} \rightarrow H^1(\Gamma_0, \mathbb{D}_{\mathcal{R}_N})\]

described as follows: if \(\nu_\gamma \) is a representative of an element \(\nu \) in \(\mathbb{W} \) and \(r \in \mathcal{R}_N \), then \(\vartheta(\nu \otimes r) \) is represented by the cocycle \(\nu_\gamma \otimes r \).

For \(\nu \in \mathbb{W}_{\mathcal{R}_N} \) represented by \(\nu_\gamma \) and \(\xi \geq 1 \) an integer, define

\[\theta_\xi(\nu) := \sum_{C \in \mathcal{R}(\Gamma_0), q(C) = \xi} \frac{J_\alpha(\nu_{\gamma_{\alpha c}})}{t_{\alpha c}}.\]
Definition 3.3. For $\nu \in \mathcal{W}_{\mathcal{R}_N}$, the formal Fourier expansion
\[
\Theta(\nu) := \sum_{\xi \geq 1} \theta_\xi(\nu) q^\xi
\]
in $\mathcal{R}_N[\mathbb{g}]$ is called the Λ-adic Shimura-Shintani-Waldspurger lift of ν. For any $\tilde{\kappa} \in \tilde{X}^{\text{arith}}$, the formal power series expansion
\[
\Theta(\nu)(\tilde{\kappa}_N) := \sum_{\xi \geq 1} \tilde{\kappa}_N(\theta_\xi(\nu)) q^\xi
\]
is called the $\tilde{\kappa}$-specialization of $\Theta(\nu)$.

There is a natural map
\[
\mathcal{W}_\mathcal{R} \rightarrow \mathcal{W}_{\mathcal{R}_N}
\]
taking $\nu \otimes r$ to itself (use that \mathcal{R} has a canonical map to $\mathcal{R}_N \simeq \mathcal{R}[\Delta]$, as described above). So, for any choice of sign, $\Phi^+ \in \mathcal{W}_{\mathcal{R}}$ will be viewed as an element in $\mathcal{W}_{\mathcal{R}_N}$.

From now on we will use the following notation. Fix $\tilde{\kappa}_0 \in \tilde{X}^{\text{arith}}$ and put $\kappa_0 := p(\tilde{\kappa}_0) \in X^{\text{arith}}$. Recall the neighborhood \mathcal{U}_0 of κ_0 in Theorem 3.1. Define
\[
\tilde{\mathcal{U}}_0 := p^{-1}(\mathcal{U}_0) \text{ and } \tilde{\mathcal{U}}_0^{\text{arith}} := \mathcal{U}_0 \cap \tilde{X}^{\text{arith}}.
\]
For each $\tilde{\kappa} \in \tilde{\mathcal{U}}_0^{\text{arith}}$ put $\kappa = p(\tilde{\kappa}) \in \mathcal{U}_0^{\text{arith}}$. Recall that if $(\epsilon^\kappa, k^\kappa)$ is the signature of $\tilde{\kappa}$, then $(\epsilon^\kappa, k^\kappa) := (\epsilon^\tilde{\kappa}, 2k^\tilde{\kappa})$ is that of κ_0. For any $\kappa := p(\tilde{\kappa})$ as above, we may consider the modular form
\[
f_{\kappa}^{\text{JL}} \in S_{k^\kappa}(\Gamma_1^r, \epsilon^\kappa)
\]
and its Shimura-Shintani-Waldspurger lift
\[
h_{\kappa} = \sum_{\xi} a_\xi(h_{\kappa}) q^\xi \in S_{k^\kappa + 1/2}(4Np^{r_{\kappa}}, \chi_{\kappa}), \text{ where } \chi_{\kappa}(x) := \epsilon_{\tilde{\kappa}}(x) \left(\frac{-1}{x}\right)^{k^\kappa},
\]
normalized as in [2] and [3]. For our fixed κ_0, recall the elements $\Phi := \Phi^+$ chosen as in Theorem 3.1 and define $\phi^\kappa := \phi_{\kappa}^+$ and $\Omega_{\kappa} := \Omega_{\kappa}^+$ for $\kappa \in \mathcal{U}_0^{\text{arith}}$.

Proposition 3.4. For all $\tilde{\kappa} \in \tilde{\mathcal{U}}_0^{\text{arith}}$ such that $r_{\kappa} = 1$ we have
\[
\tilde{\kappa}_N(\theta_\xi(\Phi)) = \Omega_{\kappa} \cdot a_\xi(h_{\kappa}) \text{ and } \Theta(\Phi)(\tilde{\kappa}_N) = \Omega_{\kappa} \cdot h_{\kappa}.
\]
Proof. By Lemma 3.2 we have
\[
\tilde{\kappa}_N(\theta_\xi(\Phi)) = \sum_{\xi \in R(\Gamma_1; q(C))=\xi} \eta_\xi(\alpha_C) \rho_{\kappa_N}(\Phi)(\tilde{Q}_{\alpha_C}^{n_{\kappa}/2}).
\]
Using Theorem 3.1 we get
\[
\tilde{\kappa}_N(\theta_\xi(\Phi)) = \sum_{\xi \in R(\Gamma_1; q(C))=\xi} \eta_\xi(\alpha_C) \cdot \Omega_{\kappa} \cdot \alpha_C(\tilde{Q}_{\alpha_C}^{n_{\kappa}/2}).
\]
Now [2] shows the statement on $\tilde{\kappa}_N(\theta_\xi(\Phi))$, while that on $\Theta(\Phi)(\tilde{\kappa}_N)$ is a formal consequence of the previous one.

Corollary 3.5. Let a_p denote the image of the Hecke operator T_p in \mathcal{R}. Then
\[
\Theta(\Phi)T_p^2 = a_p \cdot \Theta(\Phi).
\]
Proof. For any \(\kappa \in \mathcal{X}_{\text{arith}} \), let \(a_p(\kappa) := \kappa(T_p) \), which is a \(p \)-adic unit by the ordinary assumption. For all \(\tilde{\kappa} \in \mathcal{U}_{\text{arith}} \) with \(r_\kappa = 1 \), we have
\[
\Theta(\Phi)(\tilde{\kappa}_N)|T_p^2 = \Omega_\kappa \cdot h_\kappa|T_p^2 = a_p(\kappa) \cdot \Omega_\kappa \cdot h_\kappa = a_p(\kappa) \cdot \Theta(\Phi)(\tilde{\kappa}_N).
\]
Consequently,
\[
\tilde{\kappa}_N(\theta_{\text{ad}}(\Phi)) = a_p(\kappa) \cdot \tilde{\kappa}_N(\theta_{\text{ad}}(\Phi))
\]
for all \(\tilde{\kappa} \) such that \(r_\kappa = 1 \). Since this subset is dense in \(\tilde{X}_N \), we conclude that \(\theta_{\text{ad}}(\Phi) = a_p \cdot \theta_{\text{ad}}(\Phi) \) and so \(\Theta(\Phi)|T_p^2 = a_p \cdot \Theta(\Phi) \). \(\square \)

For any integer \(n \geq 1 \) and any quadratic form \(Q \) with coefficients in \(F \), write \([Q]_n\) for the class of \(Q \) modulo the action of \(i_F(\Gamma_n) \). Define \(\mathcal{F}_{n,\xi} \) to be the subset of the \(F \)-vector space of quadratic forms with coefficients in \(F \) consisting of quadratic forms \(\tilde{Q}_\alpha \) such that \(\alpha \in V^* \cap \mathcal{O}_{B,n} \) and \(-\text{nr}(\alpha) = \xi \). Writing \(\delta_{Q,\alpha} \) for the discriminant of \(Q, \alpha \), the above set can be equivalently described as
\[
\mathcal{F}_{n,\xi} := \{ \tilde{Q}_\alpha \mid \alpha \in V^* \cap \mathcal{O}_{B,n}, \delta_{Q,\alpha} = Np^n \xi \}.
\]
Define \(\mathcal{F}_{n,\xi}/\Gamma_n \) to be the set \(\{ [\tilde{Q}_\alpha]_n \mid \tilde{Q}_\alpha \in \mathcal{F}_{n,\xi} \} \) of equivalence classes of \(\mathcal{F}_{n,\xi} \) under the action of \(i_F(\Gamma_n) \). A simple computation shows that \(Q_{g^{-1}ag} = Q_{\alpha} \) for all \(\alpha \in V^* \) and all \(g \in \Gamma_n \), and thus we find
\[
\mathcal{F}_{n,\xi}/\Gamma_n = \{ [\tilde{Q}_\alpha]_n \mid C \in R(\Gamma_n), \delta_{Q,\alpha} = Np^n \xi \}.
\]
We also note that, in the notation of [24], if \(f \) has weight character \(\psi \), defined modulo \(Np^n \), and level \(\Gamma_n \), the Fourier coefficients \(a_\xi(h) \) of the Shimura-Shintani-Waldspurger lift \(h \) of \(f \) are given by
\[
a_\xi(h) = \sum_{[Q] \in \mathcal{F}_{n,\xi}/\Gamma_n} \frac{\psi(Q)}{t_Q} \phi_j^+(Q(z)^{k-1})
\]
and, if \(Q = \tilde{Q}_\alpha \), we put \(\psi(Q) := \eta_\psi(b_\alpha) \) and \(t_Q := t_\alpha \). Also, if we let
\[
\mathcal{F}_{n}/\Gamma_n := \prod_{\xi} \mathcal{F}_{n,\xi}/\Gamma_n
\]
we can write
\[
h = \sum_{[Q] \in \mathcal{F}_{n}/\Gamma_n} \frac{\psi(Q)}{t_Q} \phi_j^+(Q(z)^{k-1}) q^{\delta_{Q}/(Np^n)}.
\]
Fix now an integer \(m \geq 1 \) and let \(n \in \{1, m\} \). For any \(t \in (\mathbb{Z}/p^n\mathbb{Z})^\times \) and any integer \(\xi \geq 1 \), define \(\mathcal{F}_{n,\xi,t} \) to be the subset of \(\mathcal{F}_{n,\xi} \) consisting of forms such that \(Np^n b_\alpha \equiv t \mod Np^m \). Also, define \(\mathcal{F}_{n,\xi,t}/\Gamma_n \) to be the set of equivalence classes of \(\mathcal{F}_{n,\xi,t} \) under the action of \(i_F(\Gamma_n) \). If \(\alpha \in V^* \cap \mathcal{O}_{B,m} \) and \(i_F(\alpha) = (a b \ c \ d) \), then
\[
\tilde{Q}_\alpha(x, y) = Np^n cx^2 - 2Np^n axy - Np^n by^2
\]
from which we see that there is an inclusion \(\mathcal{F}_{m,\xi,t} \subset \mathcal{F}_{1,\xi,\rho^m-1,t} \). If \(\tilde{Q}_\alpha \) and \(\tilde{Q}_{\alpha'} \) belong to \(\mathcal{F}_{m,\xi,t} \), and \(\alpha' = gag^{-1} \) for some \(g \in \Gamma_m \), then, since \(\Gamma_m \subseteq \Gamma_1 \), we see that \(\tilde{Q}_\alpha \) and \(\tilde{Q}_{\alpha'} \) represent the same class in \(\mathcal{F}_{1,\xi,\rho^m-1,t}/\Gamma_1 \). This shows that \([\tilde{Q}_\alpha]_m \mapsto [\tilde{Q}_\alpha]_1 \) gives a well-defined map
\[
\pi_{m,\xi,t} : \mathcal{F}_{m,\xi,t}/\Gamma_m \longrightarrow \mathcal{F}_{1,\xi,\rho^m-1,t}/\Gamma_1.
\]
Lemma 3.6. The map \(\pi_{m,\xi,t} \) is bijective.
Proof. We first show the injectivity. For this, suppose \(\tilde{Q}_\alpha \) and \(\tilde{Q}_{\alpha'} \) are in \(F_{m,\ell,t} \) and
\[[\tilde{Q}_\alpha]_1 = [\tilde{Q}_{\alpha'}]_1. \]
So there exists \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) in \(i_F(\Gamma_1) \) such that such that \(\tilde{Q}_\alpha = \tilde{Q}_{\alpha'} g \).
If \(\tilde{Q}_\alpha = cx^2 - 2axy - by^2 \), and easy computation shows that \(\tilde{Q}_{\alpha'} = c'x^2 - 2a'xy - b'y^2 \) with
\[
c' = ca^2 - 2a\alpha\gamma - b\gamma^2
\]
\[
a' = -ca\beta + a\alpha\gamma + a\alpha\delta + b\gamma\delta
\]
\[
b' = -c\beta^2 + 2a\beta\delta + b\delta^2.
\]
The first condition shows that \(\gamma \equiv 0 \mod Np^m \). We have \(b \equiv b' \equiv t \mod Np^m \),
so \(\delta^2 \equiv 1 \mod Np^m \). Since \(\delta \equiv 1 \mod Np \), we see that \(\delta \equiv 1 \mod Np^m \) too.
We now show the surjectivity. For this, fix \([\tilde{Q}_{\alpha C}]_1 \) in the target of \(\pi \), and choose a representative
\[\tilde{Q}_{\alpha C} = cx^2 - 2axy - by^2 \]
(recall \(Mp^m \xi|\tilde{Q}_{\alpha C} \), \(Np|c, Np|a \), and \(b \in O_F^\times \)), the last condition due to \(\eta_F(\alpha C) \neq 0 \).
By the Strong Approximation Theorem, we can find \(\tilde{g} \in \Gamma_1 \) such that
\[i_F(\tilde{g}) \equiv \begin{pmatrix} 1 \\ ab^{-1} \\ 0 \\ 1 \end{pmatrix} \mod Np^m \]
for all \(\ell|Np \). Take \(g := i_F(\tilde{g}) \), and put \(\alpha := g^{-1}\alpha C g \). An easy computation, using
the expressions for \(a', b', c' \) in terms of \(a, b, c \) and \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) as above, shows that
\(\alpha \in V^* \cap O_{B,m}, \eta_F(\alpha) = t \) and \(\delta_{\tilde{Q}_\alpha} = Np^m \xi \), and it follows that \(\tilde{Q}_\alpha \in F_{m,\ell,t} \).
Now
\[\pi ([\tilde{Q}_\alpha]_m) = [\tilde{Q}_\alpha]_1 = [\tilde{Q}_{g^{-1}\alpha C g}]_1 = [\tilde{Q}_{\alpha C}]_1 \]
where the last equality follows because \(g \in \Gamma_1 \).

Proposition 3.7. For all \(\tilde{\kappa} \in \tilde{U}^\overline{0}_{\theta} \) we have
\[\Theta(\Phi)(\tilde{\kappa}_N)|T_p^{r_{\kappa} - 1} = \Omega_\kappa \cdot h_\kappa. \]

Proof. For \(r_\kappa = 1 \), this is Proposition 3.4 above, so we may assume \(r_\kappa \geq 2 \). As in
the proof of Proposition 3.4 above, we may assume \(r_\kappa \geq 2 \). As in
the proof of Proposition 3.4 above, we may assume \(r_\kappa \geq 2 \). As in
the proof of Proposition 3.4 above, we may assume \(r_\kappa \geq 2 \). As in
Therefore, splitting the above sum over \(t \in (\mathbb{Z}/Np^r\mathbb{Z})^\times \), we get

\[
\Theta(\Phi)(\tilde{\kappa}_N)[T_p^{r-1}] = \sum_{t \in (\mathbb{Z}/p^r\mathbb{Z})^\times} \sum_{[Q] \in \mathcal{F}_{t,t}} \frac{\epsilon_{\tilde{\kappa}(Q) \cdot \Omega_{\kappa}(Q^{k_{\kappa}})} \cdot \phi_{\kappa}(Q^{k_{\kappa}-1})q^{\delta_{Q}/(Np^r)}}{tQ} = \sum_{t \in (\mathbb{Z}/p^r\mathbb{Z})^\times} \sum_{[Q] \in \mathcal{F}_{m,t,T_m}} \frac{\epsilon_{\tilde{\kappa}(Q) \cdot \Omega_{\kappa}(Q^{k_{\kappa}})} \cdot \phi_{\kappa}(Q^{k_{\kappa}-1})q^{\delta_{Q}/(Np^r)}}{tQ} = \sum_{[Q] \in \mathcal{F}_{m,T_m}} \frac{\epsilon_{\tilde{\kappa}(Q) \cdot \Omega_{\kappa}(Q^{k_{\kappa}})} \cdot \phi_{\kappa}(Q^{k_{\kappa}-1})q^{\delta_{Q}/(Np^r)}}{tQ}.
\]

Comparing this expression with (12) gives the result.

We are now ready to state the analogue of [21, Thm. 3.3], which is our main result. For the reader’s convenience, we briefly recall the notation appearing below. We denote by \(X \) the points of the ordinary Hida Hecke algebra, and by \(X_{\text{arith}} \) its arithmetic points. For \(\kappa_0 \in X_{\text{arith}} \), we denote by \(U_0 \) the \(p \)-adic neighborhood of \(\kappa_0 \) appearing in the statement of Theorem 3.8 and put \(U_{\text{arith}}^0 := U_0 \cap X_{\text{arith}} \). We also denote by \(\Phi = \Phi^+ \in \mathcal{W}_{\text{ord}} \) the cohomology class appearing in Theorem 3.1. The points \(X \) of the metaplectic Hida Hecke algebra defined in [3,3] are equipped with a canonical map \(p : X_{\text{arith}} \to X_{\text{arith}} \) on arithmetic points. Let \(U_{\text{arith}}^0 := U_0 \cap X_{\text{arith}} \).

For each \(\tilde{\kappa} \in U_{\text{arith}}^0 \) put \(\kappa = p(\tilde{\kappa}) \in U_{\text{arith}}^0 \). Recall that if \((\epsilon_{\tilde{\kappa}}, k_{\tilde{\kappa}}) \) is the signature of \(\tilde{\kappa} \), then \((\epsilon_{\kappa}, k_{\kappa}) := (\epsilon_{\tilde{\kappa}}, 2k_{\tilde{\kappa}}) \) is that of \(\kappa_0 \). For any \(\kappa := p(\tilde{\kappa}) \) as above, we may consider the modular form

\[
f_{\kappa}^{\text{HL}} \in S_{\kappa}(\Gamma_{1,\kappa}, \epsilon_{\kappa})
\]

and its Shimura-Shintani-Waldspurger lift

\[
h_{\kappa} = \sum_{\xi} a_{\xi}(h_{\kappa}) q^{\xi} \in S_{\kappa+1/2}(4Np^r, \chi_{\kappa}), \quad \text{where} \quad \chi_{\kappa}(x) := \epsilon_{\kappa}(x) \left(\frac{-1}{x} \right)^{k_{\kappa}},
\]

normalized as in [2] and [3]. Finally, for \(\tilde{\kappa} \in X_{\text{arith}} \), we denote by \(\tilde{\kappa}_N \) its extension to the metaplectic Hecke algebra \(\mathcal{R}_N \) defined in [3,3].

Theorem 3.8. Let \(\kappa_0 \in X_{\text{arith}} \). Then there exists a choice of \(p \)-adic periods \(\Omega_{\kappa} \) for \(\kappa \in U_0 \) such that the \(\Lambda \)-adic Shimura-Shintani-Waldspurger lift of \(\Phi \)

\[
\Theta(\Phi) := \sum_{\xi \geq 1} \theta_{\xi}(\Phi)q^{\xi}
\]

in \(\mathcal{R}_N \llbracket q \rrbracket \) has the following properties:

1. \(\Omega_{\kappa_0} \neq 0 \).
2. For any \(\tilde{\kappa} \in U_{\text{arith}}^0 \), the \(\tilde{\kappa} \)-specialization of \(\Theta(\Phi) \)

\[
\Theta(\nu)(\tilde{\kappa}_N) := \sum_{\xi \geq 1} \tilde{\kappa}(\theta_{\xi}(\Phi)) q^{\xi} \text{ belongs to } S_{\kappa+1/2}(4Np^r, \chi_{\kappa}'),
\]

where \(\chi_{\kappa}'(x) := \chi_{\kappa}(x) \cdot \left(\frac{N}{x} \right)^{k_{\kappa}-1} \), and satisfies

\[
\Theta(\Phi)(\tilde{\kappa}_N) = \Omega_{\kappa} \cdot h_{\kappa} |T_p^{1-r_{\kappa}}.
\]
Proof. The elements Ω_k are those Ω^+_k appearing in Theorem 3.1 which we used in Propositions 3.4 and 3.7 above, so (1) is clear. Applying $T_p^\infty \cdot$ to the formula of Proposition 3.7 using Corollary 3.5 and applying $a_p(\kappa) t^{-r_j}$ on both sides gives

$$\Theta(\Phi)(\kappa_N) = a_p(\kappa) t^{-r_j} \Omega_k \cdot h_0|T_p^\infty \cdot .$$

By [18] Prop. 1.9, each application of T_p has the effect of multiplying the character by $(\,\,)$, hence

$$h'_k := h_k|T_p^{-r_j} \in S_{k,+1/2}(4Np^{r_j}, \chi'_k)$$

with χ'_k as in the statement. This gives the first part of (2), while the last formula follows immediately from Proposition 3.7. \qed

Remark 3.9. Theorem 1.1 is a direct consequence of Theorem 3.8 as we briefly show below.

Recall the embedding $\mathbb{Z}^{\geq 2} \hookrightarrow \text{Hom}(\mathbb{Z}_p^\times, \mathbb{Z}_p^\times)$ which sends $k \in \mathbb{Z}^{\geq 2}$ to the character $x \mapsto x^{k-2}$. Extending characters by \mathcal{O}-linearity gives a map

$$\mathbb{Z}^{\geq 2} \hookrightarrow \mathcal{X}(\Lambda) := \text{Hom}(\mathcal{O}_{\text{alg}}(\Lambda, \mathbb{Q}_p)).$$

We denote by $k(\Lambda)$ the image of $k \in \mathbb{Z}^{\geq 2}$ in $\mathcal{X}(\Lambda)$ via this embedding. We also denote by $\varpi : \mathcal{X} \rightarrow \mathcal{X}(\Lambda)$ the finite-to-one map obtained by restriction of homomorphisms to Λ. Let $k^{(\mathcal{R})}$ be a point in \mathcal{X} of signature $(k, 1)$ such that $\varpi(k^{(\mathcal{R})}) = k(\Lambda)$. A well-known result by Hida (see [6] Cor. 1.4]) shows that \mathcal{R}/Λ is unramified at $k^{(\mathcal{R})}$. As shown in [21] §1, this implies that there is a section $s_{\mathcal{R}, \Lambda}$ of ϖ which is defined on a neighborhood $\mathcal{U}_{k^{(\mathcal{R})}}$ of $k^{(\mathcal{R})}$ in $\mathcal{X}(\Lambda)$ and sends $k^{(\mathcal{R})}$ to $k^{(\mathcal{R})}$.

Fix now k_0 as in the statement of Theorem 1.1 corresponding to a cuspform f_0 of weight k_0 with trivial character. The form f_0 corresponds to an arithmetic character $k_0^{(\mathcal{R})}$ of signature $(1, k_0)$ belonging to \mathcal{X}. Let \mathcal{U}'_0 be the inverse image of \mathcal{U}_0 under the section $s_{\mathcal{R}, \Lambda}^{(-1)}$, where $\mathcal{U}_0 \subseteq \mathcal{X}$ is the neighborhood of $k_0^{(\mathcal{R})}$ in Theorem 3.8. Extending scalars by \mathcal{O} gives, as above, an injective continuous map $\text{Hom}(\mathbb{Z}_p^\times, \mathbb{Z}_p^\times) \hookrightarrow \mathcal{X}(\Lambda)$, and we let \mathcal{U}'_0 be any neighborhood of the character $x \mapsto x^{k_0-2}$ which maps to \mathcal{U}'_0 and is contained in the residue class of k_0 modulo $p - 1$. Composing this map with the section $\mathcal{U}'_0 \hookrightarrow \mathcal{U}_0$ gives a continuous injective map

$$\zeta : \mathcal{U}_0 \longrightarrow \mathcal{U}'_0 \longrightarrow \mathcal{U}_0$$

which takes k_0 to $k_0^{(\mathcal{R})}$, since by construction the image of k_0 by the first map is $k_0^{(\mathcal{R})}$. We also note that, more generally, $\zeta(k) = k^{(\mathcal{R})}$ because by construction $\zeta(k)$ restricts to $k^{(\Lambda)}$ and its signature is $(1, k)$, since the character of $\zeta(k)$ is trivial. To show the last assertion, recall that the character of $\zeta(k)$ is $\psi_k \cdot \psi_{\mathcal{R}} \cdot \omega^{-k}$, and note that ψ_k is trivial because $k^{(\Lambda)}(x) = x^{k-1}$, and $\psi_{\mathcal{R}} \cdot \omega^{-k}$ is trivial because the same is true for k_0 and $k \equiv k_0$ modulo $p - 1$. In other words, arithmetic points in $\zeta(U_0)$ correspond to cuspforms with trivial character. This is the Hida family of forms with trivial character that we considered in the Introduction.

We can now prove Theorem 1.1. For all $k \in U_0 \cap \mathbb{Z}^{\geq 2}$, put $\Omega_k := \Omega_{k^{(\Lambda)}}$ and define $\Theta := \Theta(\Phi) \circ \zeta$ with Φ as in Theorem 3.8 for $k_0 = k_0^{(\mathcal{R})}$. Applying Theorem 3.8 to $k_0^{(\mathcal{R})}$, and restricting to $\zeta(U_0)$, shows that U_0, Ω_k, and Θ satisfy the conclusion of Theorem 1.1.
Remark 3.10. For $\tilde{\kappa} \in \tilde{\mathcal{U}}_{\operatorname{arith}}^0$ of signature $(\epsilon_{\tilde{\kappa}}, k_{\tilde{\kappa}})$ with $r_{\tilde{\kappa}} = 1$ as in the above theorem, $h_{\tilde{\kappa}}$ is trivial if $(-1)^{k_{\tilde{\kappa}}} = 1$. However, since $\phi_{\kappa_0} \neq 0$, it follows that h_{κ_0} is not trivial as long as the necessary condition $(-1)^{k_0} = 1$ is verified.

Remark 3.11. This result can be used to produce a quaternionic Λ-adic version of the Saito-Kurokawa lifting, following closely the arguments in [8, Cor. 1].

References

[1] J. Coates, R. Sujatha, Cyclotomic fields and zeta values. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2006.

[2] H. Darmon, G. Tornaria, Stark-Heegner points and the Shimura correspondence. Compositio Math., 144 (2008) 1155-1175.

[3] R. Greenberg, G. Stevens, p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111 (1993), no. 2, 407–447.

[4] Kohlbrix, N., Introduction to elliptic curves and modular forms. Graduate Texts in Mathematics, 97. Springer-Verlag, New York, 1984. viii+248 pp.

[5] W. Kohnen, Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271 (1985), no. 2, 237–268.

[6] Hida, H., Galois representations into $\text{GL}_2(\mathbb{Z}_p[[X]])$ attached to ordinary cusp forms. Invent. Math. 85 (1986), no. 3, 545–613.

[7] Hida, H., On Λ-adic forms of half-integral weight for $\text{SL}(2)/\mathbb{Q}$. Number Theory (Paris 1992-3). Lond. Math. Soc. Lect. Note Ser.

[8] M. Longo, M.-H. Nicole, The Saito-Kurokawa lifting and Darmon points, to appear in Math. Ann. DOI 10.1007/s00208-012-0846-5

[9] M. Longo, S. Vigni, A note on control theorems for quaternionic Hida families of modular forms, Int. J. Number Theory, 2012 (to appear).

[10] M. Longo, S. Vigni, The rationality of quaternionic Darmon points over genus fields of real quadratic fields, preprint 2011.

[11] J. Nekovář, A. Plater, On the parity of ranks of Selmer groups. Asian J. Math. 4 (2000), no. 2, 437–497.

[12] J. Park, p-adic family of half-integral weight modular forms via overconvergent Shintani lifting Manuscripta Mathematica, Volume 131, 3-4, 2010, 355-384.

[13] A. Popa, Central values of Rankin L-series over real quadratic fields. Compos. Math. 142 (2006), no. 4, 811–866.

[14] K. Prasanna, Integrality of a ratio of Petersson norms and level-lowering congruences. Ann. of Math. (2) 163 (2006), no. 3, 901–967.

[15] K. Prasanna, Arithmetic properties of the Shimura-Shintani-Waldspurger correspondence. With an appendix by Brian Conrad. Invent. Math. 176 (2009), no. 3, 521–600.

[16] K. Prasanna, On the Fourier coefficients of modular forms of half-integral weight. Forum Math. 22 (2010), no. 1, 153–177.

[17] Ramsey, N., The overconvergent Shimura lifting, Int. Math. Res. Not., 2009, no. 2, p. 193-220.

[18] G. Shimura, On modular forms of half integral weight. Ann. of Math. (2) 97 (1973), 440–481.

[19] G. Shimura, The periods of certain automorphic forms of arithmetic type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 605-632 (1982).

[20] T. Shintani, On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J. 58 (1975), 83–126.

[21] G. Stevens, Λ-adic modular forms of half-integral weight and a Λ-adic Shintani lifting. Arithmetic geometry (Tempe, AZ, 1993), 129–151, Contemp. Math., 174, Amer. Math. Soc., Providence, RI, 1994.

[22] J.-L. Waldspurger, Correspondances de Shimura et quaternions. Forum Math. 3 (1991), no. 3, 219–307.

Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy

E-mail address: mlongo@math.unipd.it
Institut de mathématiques de Luminy, Université d’Aix-Marseille, campus de Luminy, case 907, 13288 Marseille cedex 9, France

E-mail address: nicole@iml.univ-mrs.fr