Microwave-assisted synthesis of 4-oxo-2-butenoic acids by aldol-condensation of glyoxylic acid

Mélanie Uguen, a, * Conghao Gai, b Lukas J. Sprenger, a Hang Liu, b Andrew G. Leach, c and Michael J. Waring, a, *

a Cancer Research UK Drug Discovery Unit, Newcastle University Centre for Cancer, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, U.K; b Organic Chemistry Group, College of Pharmacy, Naval Medical University, Shanghai, P. R. China; c Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester M13 9PT, U.K. orcid.org/0000-0003-1325-8273; *Co-authors.

Supplementary information

Content

1. Table S1. Optimisation of the transformation of 4-methoxyacetophenone into 1 via aldol-condensation. ..2
2. Figure S1. Crude NMR of TsOH-promoted aldol-condensation on pentan-2-one. A mixture of desired product 15 and side-product 19 1:1.5 was obtained. ..3
3. Table S2. Calculated HOMO and LUMO energies for different methyl ketone substrates and glyoxylic acid..4
4. General Information for the Synthesis ..5
5. Analytical Equipment ..5
6. NMR spectra..6
1. Table S1. Optimisation of the transformation of 4-methoxyacetophenone into 1 via aldol-condensation.

![Chemical structure](image)

Entry	Conditions	Yield after purification
1	1.5 eq. glyoxylic acid monohydrate, 1.7 eq. NaH 60% dispersion in mineral oil, DMSO, 80 °C, 18 h	Low conversion¹
2	1.5 eq. glyoxylic acid monohydrate, 1.7 eq. NaH 60% dispersion in mineral oil, DMSO, 80 °C, 18 h, then 1.5 eq. NaH 60% dispersion in mineral oil, 1.5 eq. TsCl, 80 °C, 5 min	Low conversion¹
3	1.5 eq. glyoxylic acid monohydrate 1.7 eq. LiOH monohydrate MeOH, 80°C, 18h	Moderate conversion²
4	3.0 eq. glyoxylic acid monohydrate, 1.0 eq. pyrrolidine, 1.0 eq. acetic acid, MeOH, MW, 80°C, 8 h	Moderate conversion²
5	3.0 eq. glyoxylic acid monohydrate 3.0 eq. TsCl, dioxane, 80°C, 18 h	Moderate conversion²
6	3.0 eq. glyoxylic acid monohydrate 3.0 eq. Tf₂O, dioxane, 80°C, 18 h	No product
7	3.0 eq. glyoxylic acid monohydrate 1.0 eq. TsOH monohydrate dioxane, 80°C, 48 h	70%

¹Low conversion: < 10% desired product by UV and/or ELSD LC-MS analysis. ²Moderate conversion: < 50% desired product by UV and/or ELSD LC-MS analysis.
2. Figure S1. Crude NMR of TsOH-promoted aldol-condensation on pentan-2-one. A mixture of desired product 15 and side-product 19 1:1.5 was obtained.
3. Table S2. Calculated HOMO and LUMO energies for different methyl ketone substrates and glyoxylic acid.

Calculations employed the RHF/6-31+G** level of theory in the Gaussian09 suite of programs. Geometries were optimised and frequencies computed to verify that they are minima.

Methyl ketone substituent	Substituent class	ENOL HOMO	ENOL LUMO	ENOLATE HOMO	ENOLATE LUMO	ENAMINE_HOMO	ENAMINE_LUMO
cyclohexyl	aliphatic	-0.33597	0.07163	-0.08481	0.16325	-0.29239	0.06944
cyclopentyl	aliphatic	-0.32685	0.06935	-0.08144	0.18209	-0.2852	0.07097
isopropyl	aliphatic	-0.33841	0.07206	-0.08243	0.18843	-0.29357	0.07363
n-propyl	aliphatic	-0.33828	0.07428	-0.08121	0.17438	-0.29256	0.07546
t-butyl	aliphatic	-0.33857	0.07477	-0.08406	0.18351	-0.30383	0.07418
p-methylphenyl	aromatic	-0.30309	0.06808	-0.09087	0.14946	-0.28913	0.07035
p-ethylphenyl	aromatic	-0.30318	0.06618	-0.09156	0.14344	-0.296	0.06673
p-fluorophenyl	aromatic	-0.31576	0.0643	-0.09751	0.1698	-0.29798	0.06697
p-chlorophenyl	aromatic	-0.3168	0.06266	-0.1016	0.1533	-0.2998	0.06417
p-methoxyphenyl	aromatic	-0.29375	0.06866	-0.09049	0.14403	-0.28246	0.06718
p-cyanophenyl	aromatic	-0.33266	0.0507	-0.11218	0.1525	-0.31016	0.05943

Glyoxylic acid	HOMO	LUMO
Neutral	-0.45302	0.05375
Protonated	-0.72186	-0.2152
4. General Information for the Synthesis
Chemicals were purchased from commercial suppliers and used without further purification. Thin layer chromatography (TLC) was performed on aluminium plates coated with 60 F254 silica from Merck. Flash chromatography was carried out using a Biotage SP4, Biotage Isolera or Varian automated flash system with Silicycle or GraceResolve normal phase silica gel pre-packed columns. Fractions were collected at 254 nm or if necessary on all wavelengths between 200 and 400 nm. Microwave irradiation was performed in a Biotage Initiator Sixty in sealed vials (Biotage microwave vials, Type I, Class A borosilicate, 28 mm outer diameter, 26 mm inner diameter, 83 mm long, round-bottom for 5-20 mL of total reaction volume; Biotage microwave vials, 16 mm outer diameter, 14 mm inner diameter, 83 mm long, round-bottom for 2-5 mL of total reaction volume). Reactions were irradiated at 2.45 GHz and were able to reach temperatures between 60 and 250 °C. Heating was at a rate of 2-5 °C/s and the pressure was able to reach 20 bars.

5. Analytical Equipment
Melting points were measured using a Stuart automatic melting point SMP40 apparatus or a Shanghai ShenGuang WRR apparatus. Fourier Transform InfraRed (FTIR) spectra were measured using an Agilent Cary 630 FTIR or a Bruker TENSOR II FTIR Spectrometer as a neat sample tableting with KBr. The abbreviations for peak description are as follows: b = broad; w = weak; m = medium and s = strong. Ultraviolet (UV) spectra were recorded on a Hitachi U-2900 spectrophotometer or an Agilent Cary 100 UV-Vis spectrophotometer and were performed in ethanol. High resolution mass spectrometry (HRMS) was provided by the ESPRC National Mass Spectrometry Service, University of Wales, Swansea, or the Mass Spectrometry Service, Department of Pharmacy, Naval Medical University and performed by Diya Lyu on an Agilent Technologies 6550 iFunnel Q-TOF LC-MS, or conducted using an Agilent 6550 iFunnel QTOF LC-MS with an Agilent 1260 Infinity UPLC system. The sample was eluted on Acquity UPLC BEH C18 (1.7μm, 2.1 x 50mm) with a flow rate of 0.7 mL/min and run at a gradient of 1.2 min 5-95% 0.1% aq. HCOOH in MeCN.
LC-MS analyses were conducted using a Waters Acquity UPLC system with photo diode array (PDA) and evaporating light scattering detector (ELSD) or using the ESI mass spectra which were performed by Zichao Ding on an Agilent Technologies 6120 Quadrupole LC-MS. When a 2 min gradient was used, the sample was eluted on an Acquity UPLC BEH C18, 1.7μm, 2.1 x 50mm, with a flow rate of 0.6 ml/min using 5-95% 0.1% HCOOH in MeCN. Analytical purity of compounds was determined using Waters X Terra RP18, 5 μm (4.6 × 150 mm) column at 1 ml/min using either 0.1% aq. ammonia and MeCN or 0.1% aq. HCOOH and MeCN with a gradient of 5-100% over 15 min. When a 12 min gradient was used, the sample was eluted on ZORBAX Eclipse XDB-C18, 3.5 μm, 4.6 x 100 mm, with a flow rate of 0.4 ml/min using 30-70% 0.1% HCOOH in MeCN.

1H and 13C NMR spectra were obtained using a Bruker Avance III 500 spectrometer using a frequency of 500 MHz, and 123 MHz, respectively, or using a Bruker Avance III 600 spectrometer operating at a frequency of 600 MHz, and 150 MHz, respectively. 19F NMR spectra were acquired using the Bruker Avance III 300 spectrometer using a frequency of 282 MHz. The abbreviations for spin multiplicity are as follows: s = singlet; d = doublet; t = triplet; q = quartet, p = quintuplet, h = sextuplet and m = multiplet. Combinations of these abbreviations are employed to describe more complex splitting patterns (e.g. dd = doublet of doublets).

6. NMR spectra
Compound 2
Compound 2

![Chemical Structure](image)

Bruker Data Parameters

- **NAME**: MD-466-123-F4
- **EXPN** 21
- **PROCNO** 1

Acquisition Parameters

- **DATE**: 20200214
- **TIME**: 4:41
- **INSTRUM**: spect
- **DDBB**: 8 mm DABRO B8
- **PULPROG**: gppg90
- **ID**: 65596
- **SOLVENT**: MeOD
- **NS**: 256
- **DS**: 1
- **SNR**: 29761.904 Hz
- **FIDRES**: 0.454131 Hz
- **AQ**: 1.2010048 sec
- **RG**: 456
- **DM**: 16,890 usec
- **DE**: 7.65 usec
- **TE**: 298.2 K
- **TD1**: 1,000,000,000 sec
- **TD1**: 9.9999999 sec
- **TD0**: 1

Channel 1

- **SF01**: 115.813151 MHz
- **ND1**: 1417
- **P1**: 9.90 usec
- **PLW1**: 81.3899999 W

Channel 2

- **SF02**: 500.30200012 MHz
- **ND2**: 1417
- **CPDPRG[2]**: walt16
- **P2**: 80.00 usec
- **PLW2**: 19.8000000 W
- **PLW1**: 0.78978902 W
- **PLW1**: 0.39725000 W

Processing Parameters

- **ST**: 65596
- **SF**: 115.800545 MHz
- **TD**: 0
- **GB**: 1.00 Hz
- **PC**: 1.40
Compound 3
zqj-Aldol-11

Br

O

O

10

Bruker

Current Data Parameters
NAME zqj-Aldol-11
EXPNM 2
PROCNO 1

F2 - Acquisition Parameters
Date 20210413
Time 2.18
INSTRUM spect
DDOBB 6 mm DABCO BB-
PULPROG zgppg20
TD 373.7
SOLVENT DMSO
NS 604
DS 8
SWN 37978.789 Hz
FIDRES 1.000126 Hz
AQ 0.4999966 sec
RG 2050
DR 14.000 usec
DE 6.80 usec
TE 201.0 K
DD1 1.0000000 sec
DD2 9.0000000 sec
TD0 1

Z = 1

== CHANNEL f1 ==
SF01 150.9178950 MHz
NUC1 1H
P1 9.00 usec
PLW1 41.50000000 W

== CHANNEL f2 ==
SF02 600.1240058 MHz
NUC2 1H
CPSFID[2] waltz16
CPDRX 70.00 usec
PLW2 19.4000015 W
PLW12 1.01040006 W
PLW18 0.49509999 W

F2 - Processing parameters
SF 65536
CF 150.9028112 MHz
GSW 1H
SSB 0
LB 3.00 Hz
GB 0
PC 1.40
Compound 6
Compound 19

Bruker NMR Spectrogram

Current Data Parameters
- INSTRUM: 8 mm DABBO BB-
- SPCP: 9990
- SOLVENT: MeOD
- DS: 16
- SNR: 10360.973 Hz
- FIDRES: 0.187691 Hz
- AQ: 8.2714458 sec
- RG: 2.07
- DM: 49.300 usec
- TD: 291.6 usec
- TE: 1.0000000 sec

Channel 1
- BF: 500.300000 MHz
- UFL: 16.190 MHz
- PLM1: 19.5000000 W

Processing parameters
- BF: 500.300000 MHz
- NDW: -1
- SB: 0
- LB: 0.90 Hz
- PB: 1.00
