Study on stationary solutions to the problem of phytoplankton dynamics considering transformation of phosphorus, nitrogen and silicon compounds

Yu.V. Belova¹, A.M. Atayan², A.E. Chistyakov³, A.V. Strazhko⁴

¹²³,⁴ Don State Technical University, Rostov-on-Don, Russian Federation

Introduction. The solution to the problem of transformation of phosphorus, nitrogen and silicon forms is studied. This problem arises under modeling phytoplankton dynamics in shallow-water bodies including the Azov Sea. The phytoplankton dynamics model is formulated as a boundary value problem for the system of diffusion-convection-response equations and takes into account the absorption and release of nutrients by phytoplankton, as well as the transition of nutrients from one compound to another. To calculate the initial conditions and parameters of the equations under which the steady-state regime occurs, the software is developed, which is based on the model describing changes in phytoplankton concentrations without considering current effects. This model is represented by a system of inhomogeneous differential equations. Based on the developed software, the initial conditions and parameters of the phytoplankton dynamics model in the Azov Sea are calculated experimentally.

Materials and Methods. A 3D model of phytoplankton dynamics is considered taking into account the transformation of phosphorus, nitrogen and silicon compounds based on the system of nutrient transport equations. The case of a spatially uniform distribution of substances is considered to specify the parameters of the model at which the stationary modes occur. Because of simplification, a system of ordinary differential equations solved through the Runge-Kutta method is obtained. Result. The software is developed to specify the initial conditions and parameters of the phytoplankton dynamics model considering the transformation of phosphorus, nitrogen and silicon compounds. Several numerical experiments are performed under the assumption that the development of phytoplankton is limited by the absorption and release of nutrients by biomass, as well as the transition of nutrients from one compound to another. To calculate the initial conditions and parameters of the equations under which the steady-state regime occurs, the software is developed, which is based on the model describing changes in phytoplankton concentrations without considering current effects. This model is represented by a system of inhomogeneous differential equations. Based on the developed software, the initial conditions and parameters of the phytoplankton dynamics model in the Azov Sea are calculated experimentally.

Research Results. The software is developed to specify the initial conditions and parameters of the phytoplankton dynamics model considering the transformation of phosphorus, nitrogen and silicon compounds. Several numerical experiments are performed under the assumption that the development of phytoplankton is limited by the absorption and release of nutrients by biomass, as well as the transition of nutrients from one compound to another.

Because of simplification, a system of ordinary differential equations solved through the Runge-Kutta method is obtained. Result. The software is developed to specify the initial conditions and parameters of the phytoplankton dynamics model considering the transformation of phosphorus, nitrogen and silicon compounds. Several numerical experiments are performed under the assumption that the development of phytoplankton is limited by the absorption and release of nutrients by biomass, as well as the transition of nutrients from one compound to another.

Because of simplification, a system of ordinary differential equations solved through the Runge-Kutta method is obtained. Result. The software is developed to specify the initial conditions and parameters of the phytoplankton dynamics model considering the transformation of phosphorus, nitrogen and silicon compounds. Several numerical experiments are performed under the assumption that the development of phytoplankton is limited by the absorption and release of nutrients by biomass, as well as the transition of nutrients from one compound to another.

Because of simplification, a system of ordinary differential equations solved through the Runge-Kutta method is obtained. Result. The software is developed to specify the initial conditions and parameters of the phytoplankton dynamics model considering the transformation of phosphorus, nitrogen and silicon compounds. Several numerical experiments are performed under the assumption that the development of phytoplankton is limited by the absorption and release of nutrients by biomass, as well as the transition of nutrients from one compound to another.
a single biogenic substance. As a result of the computational experiment, it can be seen that with the obtained values of the initial concentrations and parameters of the equations, stationary modes occur for the system of ordinary differential equations describing the case of the spatially uniform distribution of substances.

Discussion and Conclusions. The mathematical model of the transformation of phosphorus, nitrogen and silicon forms in the problem of phytoplankton dynamics is studied. Stationary modes for the system of ordinary differential equations are obtained, for which the values of the system parameters and initial conditions are determined. The results obtained can be used in further simulation of the phytoplankton dynamics considering the transformation of phosphorus, nitrogen and silicon compounds with account for convection-diffusion, salinity, and temperature.

Keywords: phytoplankton, phosphorus, nitrogen, silicon, biogen, chemical-biological source, convection-diffusion-response equation, Cauchy problem for system of ordinary differential equations, stationary mode.

For citation: Yu.V. Belova, et al. Study of stationary solutions to the problem of phytoplankton dynamics considering transformation of phosphorus, nitrogen and silicon compounds. Vestnik of DSTU, 2019, vol. 19, no. 1, pp. 4-12. https://doi.org/10.23947/1992-5980-2019-19-1-4-12

Introduction. Because of the development of major cities on the coast of shallow water bodies and river systems that flow into these water bodies, eutrophication has become more frequent. The growth of algae in reservoirs is caused by an increase in the flow of nitrogen and phosphorus compounds from the adjacent land areas. Each water body is unique and requires a thorough study. Field investigations [1] and mathematical modeling are used to explore water bodies. Without downplaying the role of field experiments, we can say that mathematical modeling is less costly, and it allows us to predict the behavior of the ecosystem.

To study the Sea of Azov, a three-dimensional model of hydrodynamics [2, 3] including the equations of motion in three spatial directions was developed. In [4], this model was made for the case of dynamic rebuilding of the computational domain geometry due to the tidal effects. The investigation of this model accuracy is given in [5]. In [6–8], the reconstruction of an ecological catastrophe that occurred in 2001 caused by an excessive concentration of algae in the eastern part of the Sea of Azov is given. In [9], methods of controlling the suffocation phenomena arising in the Sea of Azov were proposed. The [10–12] papers are devoted to studying the dynamics of phyto- and zooplankton.

The water condition in shallow water bodies is changing rapidly, and mathematical models need to be refined. The parameters determination of the three-dimensional model of the phyto- and zooplankton dynamics is laborious; therefore, it is proposed to use a simplified model to calculate these parameters.

The work objective is to improve the parameters of the model of the phytoplankton dynamics considering the transformation of phosphorus, nitrogen and silicon compounds, under which stationary regimes occur with the assumption of a spatially uniform distribution of substances.

Materials and Methods. The model is based on the system of equations for the transport of nutrients [15, 16], the form of which for each F_i model block is
where \(q_i \) is concentration of the \(i \)-th component, [mg/l]; \(i \in M, M=\{F_1, F_2, F_3, PO_4, POP, DOP, NO_3, NO_2, NH_4, Si\}; \{u, v, w\} \) are components of the velocity vector of the water flow, [m/s]; \(k \) is turbulent exchange coefficient, [m^2/s]; \(R_s \) is function-source of nutrients, [mg/1·s].

In equation (1), \(i \) index indicates the type of substance (Table 1).

Table 1

No.	Notation	Name
1	F_1	Chlorella vulgaris green algae
2	F_2	Aphanizomenon flos-aquae green-blue algae
3	F_3	Sceletonema costatum diatom
4	PO_4	phosphates
5	POP	suspended organic phosphor
6	DOP	soluble organic phosphor
7	NO_3	nitrates
8	NO_2	nitrates
9	NH_4	ammonium
10	Si	soluble inorganic silica (silicic acids)

Chemical and biological reactions are described by the following equations

\[
R_{F_i} = C_{F_i} \left(1 - K_{F_i}q_{F_i} - K_{EC, F_i}q_{EC} - K_{EZ, F_i}q_{EZ}\right),
\]

\[
R_{PO, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{PO, F_i}q_{PO, F_i} - K_{PO, F_i}q_{PO, F_i}\right),
\]

\[
R_{NO, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{NO, F_i}q_{NO, F_i} + K_{NO, F_i}q_{NO, F_i}\right),
\]

\[
R_{DOP, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{DOP, F_i}q_{DOP, F_i} - K_{DOP, F_i}q_{DOP, F_i}\right),
\]

\[
R_{NH, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{NH, F_i}q_{NH, F_i} - K_{NH, F_i}q_{NH, F_i}\right),
\]

\[
R_{Si, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{Si, F_i}q_{Si, F_i} - K_{Si, F_i}q_{Si, F_i}\right),
\]

\[
R_{EC, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{EC, F_i}q_{EC, F_i} - K_{EC, F_i}q_{EC, F_i}\right),
\]

\[
R_{EZ, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{EZ, F_i}q_{EZ, F_i} - K_{EZ, F_i}q_{EZ, F_i}\right),
\]

\[
R_{PO, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{PO, F_i}q_{PO, F_i} - K_{PO, F_i}q_{PO, F_i}\right),
\]

\[
R_{NO, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{NO, F_i}q_{NO, F_i} + K_{NO, F_i}q_{NO, F_i}\right),
\]

\[
R_{DOP, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{DOP, F_i}q_{DOP, F_i} - K_{DOP, F_i}q_{DOP, F_i}\right),
\]

\[
R_{NH, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{NH, F_i}q_{NH, F_i} - K_{NH, F_i}q_{NH, F_i}\right),
\]

\[
R_{Si, F_i} = \sum_{j=1}^{3} s_{ij} \left(K_{Si, F_i}q_{Si, F_i} - K_{Si, F_i}q_{Si, F_i}\right),
\]

Here, \(K_{F_i} \) is specific breathing rate of phytoplankton; \(K_{r0} \) is specific die-off rate of phytoplankton; \(K_{r1} \) is specific excretion rate of phytoplankton; \(K_{r2} \) is specific rate of POP autolysis; \(K_{r3} \) is coefficient of POP phosphatification; \(K_{r4} \) is coefficient of DOP phosphatification; \(K_{r5} \) is specific rate of ammonium oxidation to nitrates under nitrification; \(K_{r6} \) is specific rate of nitrite oxidation to nitrates under nitrification; \(s_r, s_q, s_a \) are normalization coefficients between the content of \(N, P, Si \) in organic matter.

Phytoplankton growth rate is determined by the following expressions:

\[
C_{F_i} = K_{NF_i} \min \left\{ f_r \left(q_{PO}\right), f_s \left(q_{PO}, q_{Si}\right), f_w \left(q_{PO}, q_{Si}, q_{NH}\right) \right\},
\]

\[
C_{F_i} = K_{NF_i} \min \left\{ f_r \left(q_{PO}\right), f_s \left(q_{PO}, q_{Si}\right), f_w \left(q_{Si}, q_{NH}\right) \right\},
\]

where \(K_{NF} \) is maximum specific phytoplankton growth rate.
Functions describing nutrient content

\[-\text{for phosphorus: } f_\text{P}\left(q_{\text{PO}_4}\right) = \frac{q_{\text{PO}_4}}{q_{\text{PO}_4} + K_{\text{PO}_4}},\]
where K_{PO_4} is phosphates half saturation constant;

\[-\text{for silica: } f_\text{Si}\left(q_{\text{Si}}\right) = \frac{q_{\text{Si}}}{q_{\text{Si}} + K_{\text{Si}}},\]
where K_{Si} is silica half saturation constant;

\[-\text{for nitrogen: } f_\text{N}\left(q_{\text{NH}_4}, q_{\text{NO}_3}, q_{\text{NH}_3}\right) = f_\text{N}^{(1)}\left(q_{\text{NH}_3}, q_{\text{NO}_3}, q_{\text{NH}_3}\right) + f_\text{N}^{(2)}\left(q_{\text{NH}_3}\right),\]
where K_{NH_3} is nitrates half saturation constant, K_{NH_4} is ammonium half saturation constant, K_{PO_4} is ammonium inhibition ratio.

For the system (1), it is necessary to specify the vector field of the water flow velocities, as well as q_i initial values of the concentration functions

\[q_i(x, y, z, 0) = q_i^0(x, y, z), (x, y, z) \in \mathscr{G},\; t = 0,\; i \in M.\]

Assume Σ boundary of G cylindrical region is piecewise smooth and $\Sigma = \Sigma_\nu \cup \Sigma_\sigma \cup \sigma$, where Σ_ν is surface of the reservoir bottom, Σ_σ is still water surface, σ is lateral (cylindrical) surface. Suppose u_i is vector component of the water flow velocity normal to Σ, and n is outward normal vector to Σ. For q_i concentrations, we assume:

\[-\text{on side boundary:}\]
\[q_i = 0,\; \text{on } \sigma, \; \text{if } u_i < 0,\; i \in M;\]
\[\frac{\partial q_i}{\partial n} = 0,\; \frac{\partial q_i}{\partial n} = 0,\; \text{on } \sigma, \; \text{if } u_i \geq 0,\; i \in M;\]

\[-\text{on } \Sigma_\nu \text{ there is reservoir surface:}\]
\[\frac{\partial q_i}{\partial z} = 0,\; i \in M;\]

\[-\text{on the bottom } \Sigma_\nu:\]
\[k \frac{\partial q_i}{\partial z} = e_i q_i,\; i \in \{F_1, F_2, F_3\};\]
\[
\frac{\partial q_i}{\partial z} = \varepsilon_{ij} q_j, \ i \in \{PO_4, POP, DOP, NO_3, NO_2, NH_4, Si\},
\]

where \(\varepsilon_{ij}\) are sedimentation rates of algae and nutrients to the bottom.

Stationary Mode. Consider the case of a spatially uniform distribution of substances (phytoplankton, forms of phosphorus, nitrogen and silica); then each of the equations (1) is simplified; and as a result, we get the following system of ordinary differential equations (ODE):

\[
\frac{dq_i}{dt} = C_i (1 - K_{r,p}) q_i - K_{r,p} q_i - K_{r,\sigma} q_i, \quad i = 1, 3,
\]

\[
\frac{dq_{POP}}{dt} = \sum_{i=1}^{3} s_i C_i (K_{r,p} - 1) q_i + K_{r,\sigma} q_i + K_{r,\sigma} q_i - K_{r,\sigma} q_i,
\]

\[
\frac{dq_{DOP}}{dt} = \sum_{i=1}^{3} s_i C_i (K_{r,p} - 1) q_i + K_{r,\sigma} q_i + K_{r,\sigma} q_i - K_{r,\sigma} q_i,
\]

\[
\frac{dq_{PO}}{dt} = \sum_{i=1}^{3} s_i C_i (K_{r,p} - 1) q_i + K_{r,\sigma} q_i + K_{r,\sigma} q_i + K_{r,\sigma} q_i - K_{r,\sigma} q_i,
\]

\[
\frac{dq_{NH}}{dt} = \sum_{i=1}^{3} s_i C_i (K_{r,p} - 1) q_i + K_{r,\sigma} q_i + K_{r,\sigma} q_i + K_{r,\sigma} q_i - K_{r,\sigma} q_i,
\]

\[
\frac{dq_{NO}}{dt} = \sum_{i=1}^{3} s_i C_i (K_{r,p} - 1) q_i + K_{r,\sigma} q_i + K_{r,\sigma} q_i + K_{r,\sigma} q_i - K_{r,\sigma} q_i.
\]

We solve the system of ordinary differential equations by the Runge–Kutta method [15–17]. We will conduct several numerical experiments, assuming that the development of phytoplankton depends on a single limiting substance.

Research Results. For the ODE system (7), we calculate the initial conditions and parameters of the equations at which the stationary regimes occur. Let us take the initial concentration values: \(q_{F}(0) = 2.5 \text{ mg/l}, \ q_{POP}(0) = 2.6 \text{ mg/l}; \ q_{PO}(0) = 0.91 \text{ mg/l}, \ q_{POP}(0) = 0.07 \text{ mg/l}, \ q_{DOP}(0) = 0.07 \text{ mg/l}, \ q_{PO}(0) = 0.005 \text{ mg/l}, \ q_{NH}(0) = 0.11 \text{ mg/l}, \ q_{NO}(0) = 0.0178 \text{ mg/l}, \ q_{SO}(0) = 0.304 \text{ mg/l}, \ q_{Si}(0) = 0.4 \text{ mg/l}; \) coefficients: \(K_{SP} = 2.8 \text{ day}^{-1}, \ K_{Sa} = 0.15 \text{ day}^{-1}, \ K_{PO} = 0.05 \text{ day}^{-1}, \ K_{PO} = 0.15 \text{ day}^{-1}, \ K_{PO} = 0.015 \text{ day}^{-1}, \ K_{PO} = 0.02 \text{ day}^{-1}, \ K_{DN} = 0.1 \text{ day}^{-1}, \ K_{22} = 0.9 \text{ day}^{-1}, \ K_{23} = 2.5 \text{ day}^{-1}, \ K_{Sl} = 1.46 \text{ day}^{-1}, \ s_{F} = 0.01, \ s_{N} = 0.016, \ s_{Si} = 0.023, \ K_{PO} = 0.024, \ K_{22} = 3.0, \ K_{Sl} = 2.0, \ K_{23} = 3.0.

The obtained stationary modes of the ODE system (7) on the assumption that the development of phytoplankton is limited by a single nutrient (phosphorus, nitrogen or silica) are shown in Fig. 2–4, respectively. Fig. 2 describes the effect of phosphorus on the development of various phytoplankton species; Fig. 3 describes the effect of nitrogen on the development of various phytoplankton species; Fig. 4 describes the effect of nitrogen on diatom development.
Belova Yu.V. et al. Study on stationary solutions to the problem of phytoplankton dynamics considering transformation

Belova Ю. В. и др. Исследование стационарных решений задачи динамики фитопланктона с учетом трансформации

Fig. 2. Stationary mode of ODE system under assumption that phytoplankton development is limited by phosphorus:
a) green algae (ChV), b) green-blue algae (AF-A), c) diatom (SC), d) suspended organic phosphorus (POP), e) soluble organic phosphorus (DOP), f) phosphates (PO4)
Fig. 3. Stationary mode of ODE system under assumption that phytoplankton development is limited by nitrogen: a) green algae (ChV), b) green-blue algae (AF-A), c) diatom (SC), d) ammonium (NH₄), e) nitrites (NO₂), f) nitrates (NO₃).

Fig. 4. Stationary mode of ODE system under assumption that phytoplankton (diatoms) development is limited by silica: a) diatom (SC), b) silica (Si).
The result of the computational experiment shows that with the above values of the initial concentrations and parameters of the equations, stationary modes occur for the ODE system (7), which describes the case of a spatially uniform distribution of substances. The obtained values will be used in further simulation of the spatially inhomogeneous distribution of substances, saltiness and temperature considering the movement of the aquatic environment [18].

Conclusion. A mathematical model of the transformation of forms of phosphorus, nitrogen and silica in the problem of phytoplankton dynamics is studied in the paper. The case of spatially uniform distribution of substances (phytoplankton, forms of phosphorus, nitrogen and silica) is considered. The system is divided into three systems of ordinary differential equations, each of which simulates the dependence of phytoplankton growth on a single nutrient. These systems are solved by the Runge-Kutta method (Fig. 2–4); stationary modes are obtained, for which the values of the system parameters and initial conditions are determined.

The results obtained will be used for the further simulation of the phytoplankton dynamics considering the transformation of phosphorus, nitrogen and silica compounds, taking into account diffusion-convection, saltiness, and temperature.

References

1. yakushev, e.v., sukhinov, a.i., et al. kompleksnye okeanologicheskie issledovaniya azovskogo morya v 28-m reyse nauchno-issledovatel'skogo sudna «akvanav». [comprehensive oceanoalogical studies of the azov sea on the 28th voyage of the “aquanaut” research vessel.] oceanology, 2003, vol. 43 no. 1, pp. 44–53 (in russian).

2. sukhinov, a.i., et al. chislennoe modelirovanie ekologicheskogo sostoyaniya azovskogo morya s primeneniem shem povyshennogo porjadka tochnosti na mnogoprotseeoronyx vychislitel'nyx sistem. [numerical modeling of ecological situation of the azov sea with using schemes of increased order of accuracy on multiprocessor computer system.] computer research and modeling, 2016, vol. 8, no. 1, pp. 151–168 (in russian).

3. sukhinov, a.i., sukhinov a.a. 3d model of diffusion-advection-aggregation suspensions in water basins and its parallel realization. parallel computational fluid dynamics 2004: multidisciplinary applications — 2005, pp. 223–230. doi: 10.1016/b978-044452024-1/50029-4.

4. sukhinov, a.i., chistyakov, a.e., shishenya, a.v., timofeeva, e.f. mathematical model for calculating coastal wave processes. mathematical models and computer simulations, 2013, vol. 5, no. 2, pp. 122–129. doi: 10.1134/s2070048213020087.

5. sukhinov, a.i., et al. predskazatel'noe modelirovanie pribrezhnyx gidrofizicheskix protsessov na mnogoprotseornoj sistem. [predictive modeling of coastal hydrophysical processes in a multiprocessor system based on explicit schemes.] mathematical models and computer simulations, 2018, vol. 30, no. 3, pp. 83–100 (in russian).

6. sukhinov, a.i., et al. matematicheskoe modelirovanie usloviy formirovaniya zamorov v melkovodnykh vodoemakh na mnogoprotseornoj vychislitel'noy sistem. [mathematical modeling of the formation of suffocation conditions in shallow basins using multiprocessor computing systems.] numerical methods and programming, 2013, vol. 14, no. 1, pp. 103–112 (in russian).

7. sukhinov, a.i., sukhinov a.a. reconstruction of 2001 ecological disaster in the azov sea on the basis of precise hydrophysics models. parallel computational fluid dynamics 2004: multidisciplinary applications — 2005, pp. 231–238. doi: 10.1016/b978-044452024-1/50030-0.

8. debolskaya, e.i., yakushev, e.v., sukhinov, a.i. formation of fish kills and anaerobic conditions in the sea of azov. water resources, 2005, vol. 32, no. 2, pp. 151-162. doi: 10.1007/s11268-005-0020-5.

9. nikitina, a.v., et al. optimal'noe upravlenie ustochchivym razvitiem pri biologicheskom reabilitatsii azovskogo mora. [optimal control of sustainable development in biological rehabilitation of the azov sea.] mathematical models and computer simulations, 2016, vol. 28, no. 7, pp. 96–106 (in russian).

10. sukhinov, a.i., nikitina, a.v., chistyakov, a.e. matematicheskoe modelirovanie protsessov eutrofikatsii v melkovodnykh vodoemakh na mnogoprotseornoj vychislitel'noy sistem. [mathematical modeling of eutrophication processes in shallow waters on multiprocessor computing system.] bulletin of the south ural state university: series “computer technologies, automatic control & radioelectronics”, 2016, vol. 5, no. 3, pp. 36–53 (in russian).

11. nikitina, a.v., puchkin, m.v., semenov, i.s. differentsiial'no-igrovaya model' predotvrashcheniya zamorov v melkovodnykh vodoemakh. [differential game of fish kill prevention in shallow water bodies.] large-scale systems control, 2015, iss. 55, pp. 343–361 (in russian).

12. sukhinov, a.i., belova, yu.v. matematicheskaya model' transformatsii form fosfora, azota i kremnia v dvizhushcheysya turbulentnoy vodnoy srede v zadachakh dinamiki planktonnykh populatsiy. [mathematical transform model of phosphorus, nitrogen and silicon forms in moving turbulent aquatic environment in the problems of plankton populations dynamics.] engineering journal of don, 2015, vol. 37, no. 3, pp. 50 (in russian).
13. Degtyareva, E.E., Protsenko, E.A., Chistyakov, A.E. Programmnaya realizatsiya trekhmernoy matematicheskoy modeli transporta vzvesi v melkovodnykh akvatoriyakh. [Software implementation of a 3D mathematical model of suspension transport in shallow water areas.] Engineering Journal of Don, 2012, vol. 2, no. 4 – 2, 30 p. Available at: ivdon.ru/ru/magazine/archive/n4p2y2012/1283 (accessed: 12.12.2018) (in Russian).

14. Samarskiy, A.A. Teoriya raznostnykh skhem. [Difference scheme theory.] Moscow: Nauka, 1989, 616 p. (in Russian).

15. Sukhinov, A.I., Sidoryakina, V.V., Sukhinov, A.A. Dostatochnye usloviya skhodimosti polozhitel'nykh resheniy linearizovannykh dvumernoy zadachi transporta nanosov. [Sufficient conditions for convergence of positive solutions to linearized two-dimensional sediment transport problem.] Vestnik of DSTU, 2017, vol. 17, no. 1 (88), pp. 5–17 (in Russian).

16. Samarskiy, A.A., Nikolaev, E.S. Metody resheniya setochnykh uravneniy. [Methods of finite-difference equation solution.] Moscow: Nauka, 1978, 532 p. (in Russian).

17. Marchuk, G.I. Matematicheskoе modelirovanie v probleme okruzhayushchej sredy. [Mathematical modeling in environmental problem.] Moscow: Nauka, 1982, 319 p. (in Russian).

18. Belova, Yu.V., Chistyakov, A.E., Protsenko, U.A. O chetyrehlayernoy iteratsionnoy skheme. [On four-layer iterative scheme.] Vestnik of DSTU, 2016, vol.16, no. 4 (87), pp. 146–149 (in Russian).

Authors:

Belova, Yuliya V.,
Junior research scholar, Research Institute for Mathematical Modeling and Forecasting of Complex Systems, Don State Technical University (1, Gagarin sq., Rostov-on-Don, 344000, RF),
ORCID: https://orcid.org/0000-0002-2639-7451
yvelova@yandex.ru

Atayan, Asya M.,
teaching assistant of the Computer and Automated Systems Software Department, Don State Technical University (1, Gagarin sq., Rostov-on-Don, 344000, RF),
ORCID: https://orcid.org/0000-0003-4629-1002
atayan24@yandex.ru

Chistyakov, Aleksandr E.,
professor of the Computer and Automated Systems Software Department, Don State Technical University (1, Gagarin sq., Rostov-on-Don, 344000, RF), Dr.Sci. (Phys.-Math.), professor,
ORCID: https://orcid.org/0000-0002-8323-6005
cheese_05@mail.ru

Strazhko, Aleksandr V.,
student of the Computer and Automated Systems Software Department, Don State Technical University (1, Gagarin sq., Rostov-on-Don, 344000, RF),
ORCID: https://orcid.org/0000-0002-2449-8531
strajcko2@gmail.com

Received 20.11.2018
Submitted 21.12.2018
Scheduled in the issue 11.01.2019