STARLIKENESS OF CERTAIN ANALYTIC FUNCTIONS

AHMAD SULAIMAN AHMAD EL-FAQEER, MAISARAH HAJI MOHD,
V. RAVICHANDRAN, AND SHAMANI SUPRAMANIAM

Dedicated to Prof. Dato’ Indera Rosihan M. Ali

Abstract. Let \(f \) and \(g \) be analytic functions on the open unit disk of the complex plane with \(f/g \) belonging to the class \(\mathcal{P} \) of functions with positive real part consisting of functions \(p \) with \(p(0) = 1 \) and \(\text{Re} \, p(z) > 0 \) or to its subclass consisting of functions \(p \) with \(|p(z) - 1| < 1 \). We obtain the sharp radius constants for the function \(f \) to be starlike of order \(\alpha \), parabolic starlike, etc. when \(g/k \in \mathcal{P} \) where \(k \) denotes the Koebe function defined by \(k(z) = z/(1-z)^2 \).

1. Motivation and Radii Results

Let \(\mathcal{A} \) be the class of all analytic function \(f \) on the open unit disk \(\mathbb{D} \) normalized by \(f(0) = 0 \) and \(f'(0) = 1 \), and let \(\mathcal{S} \) be the subclass of all univalent function in \(\mathcal{A} \). For two arbitrary subclasses \(\mathcal{F} \) and \(\mathcal{G} \) of \(\mathcal{A} \), the \(\mathcal{G} \) radius of \(\mathcal{F} \), denoted by \(R_{\mathcal{G}}(\mathcal{F}) \), is defined as the largest number \(R_{\mathcal{G}} \) such that \(r^{-1}f(rz) \in \mathcal{G} \) for all \(r \) with \(0 < r < R_{\mathcal{G}} \), and for all \(f \in \mathcal{F} \). Whenever the class \(\mathcal{G} \) is characterized by a geometric property \(\mathbf{P} \) the number \(R_{\mathcal{G}} \) is called as the radius of the property \(\mathbf{P} \) of the class \(\mathcal{F} \). Although there are variety of radius problems considered in literature, we investigate the functions \(f \) characterized by the ratio of \(f \) with another function \(g \in \mathcal{A} \); these kinds of problems were considered by MacGregor [10, 11, 12]. Ali et al. determined various radii results for functions \(f \) satisfying the following conditions: (i) \(\text{Re} \, (f(z)/g(z)) > 0 \) where \(\text{Re} \, (g(z)/z) > 0 \) or \(\text{Re} \, (g(z)/z) > 1/2 \) (ii) \(|(f(z)/g(z) - 1) - 1| < 1 \) where \(\text{Re} \, (f(z)/g(z)) > 0 \) or \(g \) is convex. All these classes are associated to class of functions with positive real part; this class, denoted by \(\mathcal{P} \), consists of all analytic functions \(p : \mathbb{D} \to \mathbb{C} \) with \(p(0) = 1 \) and \(\text{Re} \, (p(z)) > 0 \) for all \(z \in \mathbb{D} \). Asha and Ravichandran [15] investigated several radii for the functions \(f/g \in \mathcal{P} \) and \((1+z)g/z \in \mathcal{P} \), belonging to some subclasses of starlike functions (see [6, 7] for further works). For \(0 \leq \alpha < 1 \), we let \(\mathcal{P}(\alpha) := \{ p \in \mathcal{P} : \text{Re} \, p(z) > \alpha \} \). Let \(k \) be the Koebe function defined by \(k(z) = z/(1-z)^2 \). In this paper, we consider the two subclasses \(\Pi_1 \) and \(\Pi_2 \) of analytic functions given below:

\[
\Pi_1 := \{ f \in \mathcal{A} : f/g \in \mathcal{P} \text{ for some } g \in \mathcal{A} \text{ with } g/k \in \mathcal{P} \},
\]

and

\[
\Pi_2 := \{ f \in \mathcal{A} : |f/g - 1| < 1 \text{ for some } g \in \mathcal{A} \text{ with } g/k \in \mathcal{P} \}.
\]

1991 Mathematics Subject Classification. 30C45; 30C80.

Key words and phrases. Starlikeness; radius problem; functions with positive real part; parabolic starlike functions; univalent functions.
We determine radii for functions in these two classes to belong to several subclasses of starlike functions which we discuss below.

In 1985, Padmanabhan and Parvatham [14] used the Hadamard product (convolution) and subordination to introduce the class of functions \(f \in A \) satisfying
\[
z(k_0 \ast f)'/(k_0 \ast f) < h
\]
where \(k_0(z) = z/(1-z)^\alpha, \alpha \in \mathbb{R} \), and \(h \) is convex. When \(h \) is the normalized mapping of \(\mathbb{D} \) onto the right half-plane, this class reduces to the usual classes of starlike and convex functions respectively for \(\alpha = 1 \) and \(\alpha = 2 \). Later, in 1989, Shanmugam [16] studied the class \(S^*_\alpha(\varphi) =: \{ f \in A : z(f \ast g)'/(f \ast g) < \varphi \} \) where \(g \) is fixed and \(\varphi \) a convex function, respectively; this class includes several classes defined by means of linear operator such as Rucheweyh differential operator and Salagean operator. When \(g(z) = z/(1-z) \) and \(g(z) = z/(1-z)^2 \), the subclass \(S^*_\alpha(\varphi) \) is denoted respectively by \(S^*(\varphi) \) and \(K(\varphi) \). In 1992, Ma and Minda [9] studied growth, distortion, covering theorems and coefficient problems for the classes \(S^*(\varphi) \) and \(K(\varphi) \) when \(\varphi \in P \) is just a univalent function mapping unit disk \(\mathbb{D} \) onto domain symmetric with respect to the real line and starlike with respect to \(\varphi(0) = 1 \) and \(\varphi'(0) > 0 \). For \(\varphi(z) = (1 + (1 - 2\alpha)z)/(1-z) \) with \(0 \leq \alpha < 1 \), the classes \(S^*(\varphi) \) and \(K(\varphi) \) reduce to the class \(S^*(\alpha) \) of starlike functions of order \(\alpha \) and the class \(K(\alpha) \) of convex functions of order \(\alpha \) respectively. For more work in this direction, see [3] [5]. When \(\varphi \) equals \(1 + (2/\pi)^2(\log((1 + \sqrt{z})/(1 - \sqrt{z})))^2, \sqrt{1+z}, e^z, 1 + (4/3)z + (2/3)z^2, \sin z, z + \sqrt{1+z^2} \) and \(1 + (zk + z^2/(k^2 - k)z) \) where \(k = \sqrt{2} + 1 \), we denote the class \(S^*(\varphi) \) respectively by \(S_P, S^*_L, S^*_c, S^*_s, S^*_t, S^*_q, \) and \(S^*_k \). The class \(S^*_L \) was introduced by Sokół and Stankiewicz [19]. For information about the other classes, we refer to the recent articles [15] [6] [7].

The functions \(f_0, f_1 : \mathbb{D} \to \mathbb{C} \) defined by

\[
f_0(z) = \frac{z(1+z)^2}{(1-z)^3} \quad \text{and} \quad f_1(z) = \frac{z}{(1+z)^2}
\]

(1.1)

belongs to the class \(\Pi_1 \) and therefore the class \(\Pi_1 \) is non-empty. They satisfy the required conditions with the functions \(g_0, g_1 : \mathbb{D} \to \mathbb{C} \) defined by

\[
g_0(z) = \frac{z(1+z)}{(1-z)^3} \quad \text{and} \quad g_1(z) = \frac{z}{1-z^2},
\]

indeed, we have

\[
\text{Re} \left(\frac{f_i(z)}{g_i(z)} \right) > 0 \quad \text{and} \quad \text{Re} \left(\frac{(1-z)^2 g_i(z)}{z} \right) > 0
\]

for \(i = 0, 1 \). The function \(f_0 \) is an extremal function for the radius problem that we consider. However, the function \(f_1 \) is univalent, but the function \(f_0 \) is not univalent as the coefficients of the Taylor’s series \(f_0(z) = z + 6z^2 + 19z^3 + 44z^4 + \cdots \) do not satisfy the de Branges theorem (previously the Bieberbach conjecture). The derivative of \(f_0 \) is given by

\[
f_0'(z) = \frac{(1+6z+z^2)(1+z)}{(1-z)^3}.
\]

Since \(f_0'(-3 + 2\sqrt{2}) = 0 \) and, by Theorem [14] (1), the radius of starlikeness of the class \(\Pi_1 \) is \(3 - 2\sqrt{2} \), it follows that the radius of univalence of this class is also
Theorem 1.1. The following radius results hold for the class Π_1:

1. The $S^*(\alpha)$ radius is $R_{S^*(\alpha)} = (1 - \alpha)/(3 + \sqrt{8 + \alpha^2})$, \quad 0 \leq \alpha < 1.
2. The S_L^* radius is $R_{S_L^*} = (\sqrt{2} - 1)(\sqrt{10} - 3) \approx 0.067217$.
3. The S_P^* radius is $R_{S_P^*} = (6 - \sqrt{33})/3 \approx 0.0851$.
4. The S_e^* radius is $R_{S_e^*} = (e - 1)/(3e + \sqrt{8e^2 + 1}) \approx 0.1080$.
5. The S_c^* radius is $R_{S_c^*} = (9 - \sqrt{73})/4 \approx 0.1140$.
6. The S_{sin}^* radius is $R_{S_{sin}^*} = \sin(1)/(\sqrt{9 + \sin^2(1) + 2\sin(1) + 3}) \approx 0.1320$.
7. The S_{q}^* radius is $R_{S_{q}^*} = 3/\sqrt{2} - \sqrt{1/2} (11 - 2\sqrt{2}) \approx 0.09999$.
8. The S_{R}^* radius $R_{S_{R}^*} = (3 - 2\sqrt{5} - 2\sqrt{2})/(2\sqrt{2} - 1) \approx 0.0289$.

The functions $f_2, f_3 : \mathbb{D} \to \mathbb{C}$ defined by

$$
 f_2(z) = \frac{z}{1 - z} \quad \text{and} \quad f_3(z) = \frac{z(1 + z)^2}{(1 - z)^3},
$$

satisfy the conditions $|f_i(z)/g_i(z) - 1| < 1$ and $\text{Re}((1 - z)^2g_i(z)) > 0$ for $i = 2, 3$ with $g_2, g_3 : \mathbb{D} \to \mathbb{C}$ defined by

$$
 g_2(z) = \frac{z}{1 - z^2} \quad \text{and} \quad g_3(z) = \frac{z(1 + z)}{(1 - z)^3},
$$

and hence $f_2, f_3 \in \Pi_2$. This proves that the class Π_2 is non-empty. The Taylor series $f_3(z) = z + 5z^2 + 13z^3 + 25z^4 + \cdots$ shows that it is not univalent. It is an extremal function for the radius problems we consider. The derivative of f_3 is given by

$$
 f_3'(z) = \frac{(1 + 5z)(1 + z)}{(1 - z)^4}.
$$

Since $f_3'(-1/5) = 0$ and, by Theorem 1.2 (1), the radius of starlikeness of the class Π_1 is $1/5$, it follows that the radius of univalence of this class is also $1/5$. The other radius results for class Π_2 are given in the following theorem.

Theorem 1.2. The following radius results hold for the class Π_2:

1. The $S^*(\alpha)$ radius is $R_{S^*(\alpha)} = 2(1 - \alpha)/(5 + \sqrt{4\alpha^2 - 4\alpha + 25})$, \quad 0 \leq \alpha < 1.
2. The S_L^* radius is at least $R_{S_L^*} = (\sqrt{4\sqrt{2} + 25} - 5)/(2(\sqrt{2} + 2)) \approx 0.0786$.
3. The S_P^* radius is $R_{S_P^*} = 5 - 2\sqrt{5} \approx 0.1010$.
4. The S_e^* radius is $S_{e}^* = (2(e - 1))/(5e + \sqrt{25e^2 - 4e + 4}) \approx 0.1276$.
5. The S_c^* radius is $R_{S_c^*} = (15 - \sqrt{217})/2 \approx 0.1345$.
6. The S_{sin}^* radius is at least $S_{sin}^* = (\sqrt{25 + 4\sin(1)} + \sqrt{15})/(2(3 + \sin(1))) \approx 0.1508$.
7. The S_{q}^* radius is $R_{S_{q}^*} = (5 - \sqrt{41 - 12\sqrt{2}})/(2(\sqrt{2} - 1)) \approx 0.1183$.
8. The S_{R}^* radius $R_{S_{R}^*} = (5 - \sqrt{81 - 40\sqrt{2}})/(4(\sqrt{2} - 1)) \approx 0.0345$.

It is worth to point out that $R_{S_{P}^*} = R_{S^*(1/2)}$ and $R_{S_{c}^*} = R_{S^*(1/\epsilon)}$ in both theorems.
2. Proofs of theorems

We need the following lemmas to prove our results.

Lemma 2.1. [1] Lemma 2.2, p.4] For $0 < \alpha < \sqrt{2}$, let r_a be given by

$$r_a = \begin{cases} \alpha - a^2 - (1 - a^2)^{\frac{3}{2}}, & 0 < \alpha \leq 2\sqrt{2}/3 \\ \sqrt{2} - a, & 2\sqrt{2}/3 \leq \alpha < \sqrt{2}. \end{cases}$$

Then $\{\omega : |\omega - a| < r_a\} \subseteq \{\omega : |\omega^2 - 1| < 1\}$.

Lemma 2.2. [17] Lemma 1, p. 321] For $a > \frac{1}{2}$, let r_a be given by

$$r_a = \begin{cases} a - \frac{1}{2}, & \frac{1}{2} < a \leq \frac{3}{2} \\ \sqrt{2a - 2}, & a \geq \frac{3}{2} \end{cases}$$

Then $\{w : |w - a| < r_a\} \subseteq \{w : \text{Re} w > |w - 1|\}$.

Lemma 2.3. [13] Lemma 2.2, p.368] For $e^{-1} < a < e$, let r_a be given by

$$r_a = \begin{cases} a - e^{-1}, & e^{-1} < a \leq \frac{e + e^{-1}}{2} \\ e - a, & \frac{e + e^{-1}}{2} \leq a < e. \end{cases}$$

Then $\{w : |w - a| < r_a\} \subseteq \{w : |\log w| < 1\} = \Omega_e$.

Lemma 2.4. [18] Lemma 2.2, p. 926] For $\frac{1}{3} < a < 3$, let r_a be given by

$$r_a = \begin{cases} a - \frac{1}{3}, & \frac{1}{3} < a \leq \frac{5}{3} \\ 3 - a, & \frac{5}{3} \leq a < 3. \end{cases}$$

Then $\{w : |w - a| < r_a\} \subseteq \Omega_e$, where Ω_e is the region bonded by the cardioid given $\{x + iy : (9x^2 + 9y^2 - 18x + 5)^2 - 16(9x^2 + 9y^2 - 6x + 1) = 0\}$.

Lemma 2.5. [2] Lemma 3.3, p.7] For $1 - \sin 1 < a < 1 + \sin 1$, let $r_a = \sin 1 - |a - 1|$. Then $\{w : |\omega - a| < r_a\} \subseteq \Omega_\omega$; Ω_ω is the image of the unit disk \mathbb{D} under $1 + \sin z$.

Lemma 2.6. [4] Lemma 2.1, p. 3.] For $\sqrt{2} - 1 < a < \sqrt{2} + 1$, let $r_a = 1 - |\sqrt{2} - a|$. Then

$$\{w : |w - a| < r_a\} \subseteq \{w : |w^2 - 1| < 2|w|\}.$$ \(2.1\)

Lemma 2.7. [8] Lemma 2.2, p. 202] For $2(\sqrt{2} - 1) < a < 2$, let r_a be given by

$$r_a = \begin{cases} a - 2(\sqrt{2} - 1), & 2(\sqrt{2} - 1) < a \leq \sqrt{2} \\ 2 - a, & \sqrt{2} \leq a < 2. \end{cases}$$

Then $\{w : |w - a| < r_a\}$, where Ω_r is the image of the disk \mathbb{D} under the function $1 + (zk + z^2)/(k^2 - kz)$, $k = \sqrt{2} + 1$.

Proof of Theorem 2.1. Let the function $f \in \Pi_1$. Then there is a function $g : \mathbb{D} \to \mathbb{C}$ satisfying

$$\text{Re} \left(\frac{f(z)}{g(z)} \right) > 0 \quad \text{and} \quad \text{Re} \left(\frac{(1-z)^2 g(z)}{z} \right) \quad \forall z \in \mathbb{D}.$$ \(2.1\)
Define functions $p_1, p_2 : \mathbb{D} \to \mathbb{C}$ as the following.

$$p_1(z) = \frac{(1 - z)^2 g(z)}{z} \quad \text{and} \quad p_2(z) = \frac{f(z)}{g(z)}. \quad (2.2)$$

By using (2.1) and (2.2), we have $p_1, p_2 \in \mathcal{P}$, and $f(z) = z p_1(z) p_2(z)/(1 - z)^2$. Then it follows that

$$\frac{zf'(z)}{f(z)} = \frac{zp'_1(z)}{p_2(z)} + \frac{zp'_2(z)}{p_2(z)} + \frac{1 + z}{1 - z}. \quad (2.3)$$

The bilinear transformation $(1 + z)/(1 - z)$ maps the disk $|z| \leq r$ onto the disk

$$\left| \frac{1 + z}{1 - z} - \frac{1 - r^2}{1 + r^2} \right| \leq \frac{2r}{1 - r^2}. \quad (2.4)$$

For $p \in \mathcal{P}(\alpha)$, we have

$$\left| \frac{zp'(z)}{p(z)} \right| \leq \frac{2(1 - \alpha)r}{(1 - r)(1 + (1 - 2\alpha)r)}, \quad |z| \leq r. \quad (2.5)$$

By using (2.3), (2.4) and (2.5), function f maps disk $|z| \leq r$ onto disk

$$\left| \frac{zf'(z)}{f(z)} - \frac{1 + r^2}{1 - r^2} \right| \leq \frac{6r}{1 - r^2}. \quad (2.6)$$

From (2.6), it follows that

$$\text{Re} \frac{zf'(z)}{f(z)} \geq \frac{1 - 6r + r^2}{1 - r^2} \geq 0, \quad (2.7)$$

for all $0 \leq r \leq 3 - 2\sqrt{2}$. Therefore, the function $f \in \Pi_1$ is starlike in $|z| \leq 3 - 2\sqrt{2} \approx 0.171573$. Hence, all our radii found here must be less than $3 - 2\sqrt{2}$.

1. The number $\rho = R_{S^*}(\alpha)$, is the smallest positive root of the equation $(1 + \alpha)r^2 - 6r + 1 - \alpha = 0$ in $[0, 1]$. For $0 < r \leq R_{S^*}(\alpha)$, from (2.7), it follows that

$$\text{Re} \frac{zf'(z)}{f(z)} \geq \frac{1 - 6\rho + r^2}{1 - r^2} \geq \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \alpha.$$

This shows that the radius of starlikeness of order α is at least $R_{S^*}(\alpha)$. To show that it is sharp, consider the function $f_0 \in \Pi_1$ given in (1.1). For this function f_0, we have

$$\frac{zf_0'(z)}{f_0(z)} = \frac{1 + 6z + z^2}{1 - z^2}.$$

At $z = -\rho$, we have

$$\text{Re} \frac{zf_0'(z)}{f_0(z)} = \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \alpha,$$

proving the sharpness of the radius.

2. We can give a proof using Lemma 2.1 but we give a different proof here. The number $\rho := R_{S_L}$ is the smallest positive root of the equation $(1 + \sqrt{2})r^2 + 6r + 1 - \sqrt{2} = 0$ in interval $(0, 1)$, and, from (2.6), it is clear that, for $0 \leq r \leq \rho$,

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \left| \frac{zf'(z)}{f(z)} - \frac{1 + r^2}{1 - r^2} \right| + \frac{2r^2}{1 - r^2} \leq \frac{6r + 2r^2}{1 - r^2} \leq \frac{6\rho + \rho^2}{1 - \rho^2} = \sqrt{2} - 1 \quad (2.8)$$

and
\[\left| \frac{zf'(z)}{f(z)} + 1 \right| \leq 2 + \left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \sqrt{2} + 1. \tag{2.9} \]

Thus, from (2.8) and (2.9), it follows that, for \(0 \leq r \leq \rho\),
\[\left(\frac{zf'(z)}{f(z)} \right)^2 - 1 = \left| \frac{zf'(z)}{f(z)} - 1 \right| \left| \frac{zf'(z)}{f(z)} + 1 \right| \leq (\sqrt{2} + 1)(\sqrt{2} - 1) = 1. \]

For the function \(f_0 \in \Pi_1\) given in (1.1), we have, at \(z = \rho\),
\[\frac{zf'_0(z)}{f_0(z)} = 1 + \frac{6\rho + 2\rho^2}{1 - \rho^2} = \sqrt{2} \]
and so, at \(z = \rho\),
\[\left| \left(\frac{zf'_0(z)}{f_0(z)} \right)^2 - 1 \right| = 1. \]

This proves the sharpness.

(3) For \(\rho := R_{SP} = (6 - \sqrt{33})/3\), we have
\[\frac{1}{2} < 1 - a = \frac{1 + r^2}{1 - r^2} \leq \frac{1 + \rho^2}{1 - \rho^2} = \frac{3\sqrt{33} - 1}{16} \approx 1.0146 < 3/2. \]

Also, for \(\rho = R_{SP}\), we have
\[\frac{6\rho}{1 - \rho^2} \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{2} \]
and the disk in (2.6) for \(r = \rho\) becomes
\[\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{2} = a - \frac{1}{2}. \]

By Lemma 2.2, it follows that the disk in (2.6) lies inside region \(\Omega_{PAR}\). This proves that the radius of parabolic starlikeness is at least \(R_{SP}\).

The radius is sharp for the function \(f_0 \in \Pi_1\). At the point \(z = -\rho = -R_{SP}\), we have
\[\text{Re} \left(\frac{zf'_0(z)}{f_0(z)} \right) = \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \frac{1}{2} = \frac{6\rho - 2\rho^2}{1 - \rho^2} = \left| \frac{zf'_0(z)}{f_0(z)} - 1 \right|. \]

(4) For \(e^{-1} < a \leq \frac{e + e^{-1}}{2}\), Lemma 2.3 gives
\[\{ w \in \mathbb{C} : |w - a| < a - e^{-1} \} \subseteq \{ w \in \mathbb{C} : |\log w| < 1 \} =: \Omega_e, \tag{2.10} \]

For \(\rho = R_{Sz}\), we have
\[e^{-1} < a := \frac{1 + \rho^2}{1 - \rho^2} = \frac{1 + 9e^2}{e(1 + 3\sqrt{1 + 8e^2})} \approx 1.0236 \leq \frac{e + e^{-1}}{2} \approx 1.5430 \]
and, \(\rho\) being smallest positive root of the equation \((1 + e)r^2 - 6er + e - 1 = 0\),
\[\frac{6\rho}{1 - \rho^2} \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{e} = a - e^{-1}. \]
Consequently, the disk in (2.6) for $r = \rho$ becomes
\[
\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{e} = a - e^{-1}.
\]

By (2.10) the above disk is inside Ω_e proving that the S_e^* radius for the class Π_1 is at least $R_{S_e^*}$. The result is sharp for the function f_0 given in (1.1). Indeed, at $z = -\rho$ where $\rho = R_{S_e^*}$, we have
\[
\left| \log \left(\frac{zf'(z)}{f(z)} \right) \right| = \left| \log \left(\frac{1 - 6\rho + \rho^2}{1 - \rho^2} \right) \right| = 1.
\]

(5) For $\frac{1}{3} < a \leq \frac{5}{3}$, by an application of Lemma 2.4 it follows that
\[
\left\{ w \in \mathbb{C} : |w - a| < a - \frac{1}{3} \right\} \subseteq \Omega_c,
\]
where Ω_c is the domain bounded by the cardioid $\{x + iy : (9x^2 + 9y^2 - 18x + 5)^2 - 16(9x^2 + 9y^2 - 6x + 1) = 0\}$. For $\rho = R_{S_e^*}$, we have
\[
\frac{1}{3} < a := \frac{1 + \rho^2}{1 - \rho^2} = \frac{3\sqrt{3} - 1}{24} \approx 1.0263 \leq \frac{5}{3}
\]
and, ρ being the smallest positive root of the equation $2r^2 - 9r + 1 = 0$,
\[
\frac{6\rho}{1 - \rho^2} = \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{3}.
\]

Therefore, the disk in (2.6) becomes
\[
\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{3} = a - \frac{1}{3}
\]
and this disk is inside Ω_c. This shows that S_e^* radius is at least $R_{S_e^*}$.

For the function f_0 given in (1.1), at $z = \rho = R_{S_e^*}$, we have
\[
\frac{zf'(z)}{f(z)} = \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \frac{1}{3} = \varphi_c(-1) \in \partial \varphi_c(\mathbb{D})
\]
where $\varphi_c(z) = 1 + 4z/3 + 2z^2/3$.

(6) For $\rho = R_{S_{\sin}^*}$, and $a := (1 + r^2)/(1 - r^2)$, we have
\[
|a - 1| = \frac{2\rho^2}{1 - \rho^2} \approx 0.13199 < \sin 1 \approx 0.8414.
\]
and
\[
\frac{6\rho}{1 - \rho^2} \leq \sin 1 - \frac{2\rho^2}{1 - \rho^2}.
\]

The disk in (2.6) for $r = \rho$ becomes
\[
\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \leq \sin 1 - \frac{2\rho^2}{1 - \rho^2} = \sin 1 - |1 - a|.
\]

Lemma 2.5 shows that the disk in (2.6) is inside Ω_s where $\Omega_s := \varphi_s(\mathbb{D})$ is the image of the unit disk \mathbb{D} under the mapping $\varphi_s(z) = 1 + \sin z$. This proves that
the S_{\sin}^* radius is at least $R_{S_{\sin}^*}$. For the function f_0 given in (1.1), with $\rho = R_{S_{\sin}^*}$, we have
\[
\left(\frac{zf'(z)}{f(z)} \right) = \frac{1 + 6\rho + \rho^2}{1 - \rho^2} = 1 + \sin 1 \in \varphi_s(1) \in \partial \varphi_s(\mathbb{D}).
\]

(7) For $\rho = R_{S_{\sin}^*}$, we have
\[
a := \frac{1 + \rho^2}{1 - \rho^2} \approx 1.0202 \in (\sqrt{2} - 1, \sqrt{2} + 1)
\]
and
\[
\frac{1 - 6\rho + \rho^2}{1 - \rho^2} = \sqrt{2} - 1.
\]
The disk in (2.6) becomes
\[
\left| \frac{zf'(z)}{f(z)} - a \right| \leq 1 - |\sqrt{2} - a|
\]
and by Lemma 2.6 it lies inside $\{w : |w^2 - 1| < 2|w|\}$. This shows that S_{\sin}^* radius is at least $R_{S_{\sin}^*}$. The sharpness follows as the function f_0 defined in (1.1) satisfies, at $z = -\rho = -R_{S_{\sin}^*}$,
\[
\left| \left(\frac{zf_0'(z)}{f_0(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 - 6\rho + \rho^2}{1 - \rho^2} \right)^2 - 1 \right| = 2(\sqrt{2} - 1)
\]
\[
= 2 \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = 2 \left| \frac{zf_0'(z)}{f_0(z)} \right|.
\]

(8) For $\rho = R_{S_R^*}$, we have
\[
2(\sqrt{2} - 1) < a := \frac{1 + \rho^2}{1 - \rho^2} \approx 1.00167 \leq \sqrt{2} < 2,
\]
and
\[
\frac{1 - 6\rho + \rho^2}{1 - \rho^2} = 2 - 2\sqrt{2}.
\]
The disk (2.6) becomes
\[
\left| \frac{zf'(z)}{f(z)} - a \right| < a - 2(\sqrt{2} - 1). \tag{2.12}
\]
By Lemma 2.7, this disk lies inside the domain Ω_r. This proves that S_{\sin}^* radius is at least $R_{S_R^*}$.

To prove sharpness, consider the function $f_0 \in \Pi_1$ given in (1.1). At $z = -\rho = -R_{S_R^*}$, we have
\[
\frac{zf'(z)}{f(z)} = \frac{1 - 6\rho + \rho^2}{1 - \rho^2} = 2(\sqrt{2} - 1) = \varphi_r(-1) \in \partial \varphi_r(\mathbb{D})
\]
where $\varphi_r(z) = 1 + (kz + z^2)/(k^2 - kz)$, $k = \sqrt{2} + 1$. \qed
Proof of Theorem 1.2. Since $|w - 1| < 1$ is equivalent to $\text{Re}(1/w) > 1/2$, the condition $|f(z)/g(z) - 1| < 1$ is the same as the condition $\text{Re}(g(z)/f(z)) > 1/2$. Let the function $f \in \Pi_2$. Let $g : \mathbb{D} \to \mathbb{C}$ be chosen such that

$$\text{Re}\left(\frac{g(z)}{f(z)}\right) > \frac{1}{2} \quad \text{and} \quad \text{Re}\left(\frac{(1-z)^2}{z} g(z)\right).$$

(2.13)

Define $p_1, p_2 : \mathbb{D} \to \mathbb{C}$ as

$$p_1(z) = \frac{(1-z)^2}{z} g(z), \quad p_2(z) = \frac{g(z)}{f(z)}.$$

(2.14)

From (2.13) and (2.14) it follows that $p_1 \in \mathcal{P}$, and $p_2 \in \mathcal{P}(1/2)$, and $f(z) = z/(1 - z)^2 p_1(z)/p_2(z)$. A calculation shows that

$$\frac{zf'(z)}{f(z)} = \frac{zp_1'(z)}{p_1(z)} - \frac{zp_2'(z)}{p_2(z)} + \frac{1+z}{1-z}.$$

(2.15)

The bilinear transformation $\omega = (1+z)/(1-z)$ maps the disk $|z| \leq r$ onto disk

$$\left|\frac{1+z}{1-z} - \frac{1+r^2}{1-r^2}\right| \leq \frac{2r}{1-r^2}.$$

(2.16)

Recall that for $p \in \mathcal{P}(\alpha)$, we have

$$\left|\frac{zp'(z)}{p(z)}\right| \leq \frac{2(1-\alpha)r}{(1-r)(1+(1-2\alpha)r)}, \quad |z| \leq r.$$

(2.17)

Using (2.16) and (2.17) in (2.15), we get

$$\left|\frac{zf'(z)}{f(z)} - \frac{1+r^2}{1-r^2}\right| \leq \frac{5r + r^2}{1-r^2}.$$

(2.18)

From (2.18), it follows that

$$\text{Re}\left(\frac{zf'(z)}{f(z)}\right) \geq \frac{1-5r}{1-r^2} \geq 0$$

(2.19)

for $0 \leq r \leq 1/5$. For the function f_3 given in (1.3), we have

$$\frac{zf_3'(z)}{f_3(z)} = \frac{1+5z}{1-z^2} = 0$$

for $z = -1/5$. Thus, the radius of starlikeness of the class Π_2 is $1/5$. All radius values to be computed here will be less than $1/5$.

(1) The number $\rho := R_{S^*}(\alpha)$ is the smallest positive root of the equation $\alpha r^2 - 5r + 1 - \alpha = 0$. For $0 < r \leq R_{S^*}(\alpha)$, from (2.19), we have

$$\text{Re}\left(\frac{zf'(z)}{f(z)}\right) \geq \frac{1-5\rho}{1-r^2} \geq \frac{1-5\rho}{1-\rho^2} = \alpha.$$

For the function $f_2 \in \Pi_2$ given in (1.3), we have, at $z = -\rho = -R_{S^*}(\alpha)$,

$$\frac{zf_2'(z)}{f_3(z)} = \frac{1-5\rho}{1-\rho^2} = \alpha.$$

This proves that the radius of starlikeness of order α is $R_{S^*}(\alpha)$.
(2) From (2.18), it follows that
\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \left| \frac{zf'(z)}{f(z)} - \frac{1 + r^2}{1 - r^2} \right| + \frac{2r^2}{1 - r^2} \leq \frac{5r + 3r^2}{1 - r^2}. \tag{2.20}
\]

The number \(\rho = R_{S^*_L} \), is the positive root of the equation \(5r + 3r^2 - (1 - r^2)(\sqrt{2} - 1) = 0 \). For \(0 < r \leq \rho = R_{S^*_L} \), we have
\[
\frac{5r + 3r^2}{1 - r^2} \leq \frac{\sqrt{2} + 5}{\sqrt{2} - 1} = 1. \tag{2.21}
\]

Therefore, by (2.20), (2.21), and for \(0 < r \leq \rho = R_{S^*_L} \), it follows that
\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \sqrt{2} - 1, \tag{2.22}
\]

and
\[
\left| \frac{zf'(z)}{f(z)} + 1 \right| \leq \sqrt{2} + 1. \tag{2.23}
\]

The last two inequalities immediately yields
\[
\left(\frac{zf'(z)}{f(z)} \right)^2 - 1 \leq \frac{zf'(z)}{f(z)} + 1 \left| \frac{zf'(z)}{f(z)} - 1 \right| \leq (\sqrt{2} + 1)(\sqrt{2} - 1) = 1.
\]

This proves that \(S^*_L \) is at least \(R_{S^*_L} \).

(3) For \(0 \leq r \leq \rho := R_S = 5 - 2\sqrt{6} \), we have for
\[
\frac{1}{2} < 1 \leq a = \frac{1 + \rho^2}{1 - \rho^2} = \frac{5\sqrt{6}}{12} \leq 3/2
\]

and, \(\rho \) being the smallest positive root of the equation \(r^2 - 10r + 1 = 0 \),
\[
\frac{5\rho + \rho^2}{1 - \rho^2} \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{2}.
\]

The disk in (2.18) becomes
\[
\left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{2}.
\]

By Lemma 2.2, the disk in (2.18) is inside the region \(\Omega_{PAR} \). Thus, the radius of parabolic starlikeness of the class \(\Pi_2 \) is at least \(R_{S^*_p} \).

For the function \(f_3 \) given in (1.3) at \(z = -\rho \) where \(\rho = R_{S^*_p} \), we have
\[
\Re \left(\frac{zf_3'(z)}{f_3(z)} \right) = \frac{1 - 5\rho}{1 - \rho^2} = \frac{5\rho - \rho^2}{1 - \rho^2} = \left| \frac{zf_3'(z)}{f_3(z)} - 1 \right|.
\]

(4) For \(\rho = R_{S^*_z} \), we have \(1/e < a := (1 + \rho^2)/(1 - \rho^2) \approx 1.0331 \leq (e + e^{-1})/2 \) and
\[
\frac{5\rho + \rho^2}{1 - \rho^2} = \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{e}.
\]

The disk in (2.18) becomes
\[
\left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{e}.
\]
By Lemma 2.3 this disk is inside the region Ω_ϵ, proving that S^*_c radius is at least $R_{S^*_c}$.

The result is sharp for the function f_3 given in (1.3). For this function, we have, at $z = -\rho$ where $\rho = R_{S^*_c}$,

$$\left| \log \left(\frac{zf'_3(z)}{f_3(z)} \right) \right| = \left| \log \left(\frac{1 - 5\rho}{1 - \rho^2} \right) \right| = |\log(e^{-1})| = 1.$$

(5) For $\rho = R_{S^*_c}$, we have $1/3 < a := (1 + \rho^2)/(1 - \rho^2) = \frac{1}{42}(1 + 5\sqrt{21}) \approx 1.03686 \leq 5/2$ and, ρ being the smallest positive root of $r^2 - 15r + 2 = 0$,

$$\frac{5\rho + \rho^2}{1 - \rho^2} = \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{3}.$$

The disk in (2.18) becomes

$$\left| \frac{zf''(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \leq \frac{1 + \rho^2}{1 - \rho^2} - \frac{1}{3}.$$

By Lemma 2.3 this disk is inside the region Ω_c, proving that S^*_c radius is at least $R_{S^*_c}$.

The radius is sharp for the function f_3 given in (1.3). At $z = -\rho$ where $\rho = R_{S^*_c}$, we have

$$\frac{zf'_3(z)}{f_3(z)} = \frac{1 - 5\rho}{1 - \rho^2} = \frac{1}{3} = \varphi_c(-1) \in \partial \varphi_c(\mathbb{D})$$

where $\varphi_c(z) = 1 + 4z/3 + 2z^2/3$.

(6) For $\rho = R_{S^*_{\sin}}$, and $a := (1 + \rho^2)/(1 - \rho^2)$, we have

$$|a - 1| = \frac{2\rho^2}{1 - \rho^2} \approx 0.0465396 < \sin 1 \approx 0.8414.$$

and

$$\frac{5\rho + \rho^2}{1 - \rho^2} \leq \sin 1 - \frac{2\rho^2}{1 - \rho^2}.$$

The disk in (2.6) for $r = \rho$ becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| = \left| \frac{zf'(z)}{f(z)} - \frac{1 + \rho^2}{1 - \rho^2} \right| \leq \sin 1 - \frac{2\rho^2}{1 - \rho^2} = \sin 1 - |1 - a|.$$

Lemma 2.5 shows that the disk in (2.18) is inside Ω_s where $\Omega_s =: \varphi_s(\mathbb{D})$ is the image of the unit disk \mathbb{D} under the mapping $\varphi_s(z) = 1 + \sin z$. This proves that the S^*_{\sin} radius is at least $R_{S^*_{\sin}}$.

(7) For $\rho = R_{S^*_q}$, we have

$$a := \frac{1 + \rho^2}{1 - \rho^2} \approx 1.02839 \in (\sqrt{2} - 1, \sqrt{2} + 1)$$

and

$$\frac{5\rho + \rho^2}{1 - \rho^2} = \frac{1 + \rho^2}{1 - \rho^2} + 1 - \sqrt{2}.$$

The disk in (2.18) becomes

$$\left| \frac{zf'(z)}{f(z)} - a \right| \leq 1 - |\sqrt{2} - a|.$$
and by Lemma 2.6 it lies inside \(\{ w : |w^2 - 1| < 2|w| \} \). This shows that \(S^*_L \) radius is at least \(R_{S^*_L} \). The sharpness follows as the function \(f_3 \) defined in (1.1) satisfies,

\[
\left| \left(\frac{zf_3'(z)}{f_3(z)} \right)^2 - 1 \right| = \left| \left(\frac{1 - 5\rho}{1 - \rho^2} \right)^2 - 1 \right| = 2(\sqrt{2} - 1) = 2 \left| \frac{zf_3'(z)}{f_3(z)} \right|.
\]

(8) For \(\rho = R_{S^*_L} \), we have

\[
2(\sqrt{2} - 1) < a := \frac{1 + \rho^2}{1 - \rho^2} \approx 1.00238 \leq \sqrt{2} < 2,
\]

and

\[
\frac{5\rho + \rho^2}{1 - \rho^2} = \frac{1 + \rho^2}{1 - \rho^2} - 2(\sqrt{2} - 1).
\]

The disk (2.18) becomes

\[
\left| \frac{zf'(z)}{f(z)} - a \right| < a - 2(\sqrt{2} - 1).
\]

By Lemma 2.7, this disk lies inside the domain \(\Omega_r \). This proves that \(S^*_L \) radius is at least \(R_{S^*_L} \).

To prove sharpness, consider the function \(f_3 \in \Pi_1 \) given in (1.1). At \(z = -\rho = -R_{S^*_L} \), we have

\[
\left| \frac{zf_3'(z)}{f_3(z)} \right| = \frac{1 - 5\rho}{1 - \rho^2} = 2(\sqrt{2} - 1) = \varphi_r(-1) \in \partial \varphi_r(\mathbb{D})
\]

where \(\varphi_r(z) = 1 + (kz + z^2)/(k^2 - k^2) \), \(k = \sqrt{2} + 1 \). □

We have only obtained lower bounds for the \(S^*_L \) and \(S^*_\sin \) radii for the class \(\Pi_2 \) and we believe the bounds are sharp but unable to prove it.

References

[1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 65576565.

[2] N. E. Cho, V.Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213232.

[3] P. L. Duren, Univalent Functions, GTM, 259, Springer-Verlag, New York, 1983.

[4] S. Gandhi and V. Ravichandran, Starlike functions associated with an alune, Asian-Eur. J. Math. 10 (2017), no. 4, 1750064, 12 pp.

[5] A. W. Goodman, Univalent Functions. Vol. II, Mariner, Tampa, FL, 1983.

[6] R. Kanaga and V. Ravichandran, Starlikeness for certain close-to-star functions, preprint. (arXiv:2003.05628)

[7] K. Khatter, S. K. Lee and V. Ravichandran, Radius of starlikeness for classes of analytic functions, preprint.

[8] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), no. 2, 199212.
[9] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
[10] T. H. MacGregor, The radius of convexity for starlike functions of order 12, Proc. Amer. Math. Soc. 14 (1963), 7176.
[11] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (1963), 514520.
[12] T. H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc. 15 (1964), 311317.
[13] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math. 25 (2014), no. 9, 1450090, 17 pp.
[14] K. S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc. 32 (1985), no. 3, 321–330.
[15] A. Sebastian and V. Ravichandran, Radius of starlikeness of certain analytic functions, Mathematica Slovaca, accepted. (arXiv:2001.06999v1)
[16] T. N. Shanmugam, Convolution and differential subordination, Internat. J. Math. Math. Sci. 12 (1989), no. 2, 333340.
[17] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, in Computational methods and function theory 1994 (Penang), 319324, Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ.
[18] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923939.
[19] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996), 101105.

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

E-mail address: ahmedfakier@student.usm.my

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

E-mail address: maisarah-hjmohd@usm.my

Department of Mathematics, National Institute of Technology, Tiruchirappalli 620 015, India

E-mail address: ravic@nitt.edu; vravi68@gmail.com

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

E-mail address: shamani@usm.my