Observation of the decay $B_c^+ \rightarrow \psi(2S)\pi^+$

LHCb Collaboration; et al; Bernet, R; Müller, K; Steinkamp, O; Straumann, U; Vollhardt, A

Abstract: The decay $B_c^+ \rightarrow \psi(2S)\pi^+$ with $\psi(2S) \rightarrow \mu^+\mu^-$ is observed with a significance of 5.2σ using pp collision data corresponding to an integrated luminosity of $1.0 fb^{-1}$ collected by the LHCb experiment. The branching fraction of $B_c^+ \rightarrow \psi(2S)\pi^+$ decays relative to that of the $B_c^+ \rightarrow J/\psi\pi^+$ mode is measured to be

$$\frac{\mathcal{B}(B_c^+ \rightarrow \psi(2S)\pi^+)}{\mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+)} = 0.250 \pm 0.068 \text{stat} \pm 0.014 \pm 0.006 \text{ (B)}.$$

The last term is the uncertainty on the ratio $\mathcal{B}(\psi(2S) \rightarrow \mu^+\mu^-)/\mathcal{B}(J/\psi \rightarrow \mu^+\mu^-)$.

DOI: https://doi.org/10.1103/PhysRevD.87.071103
Observation of the decay \(B_{c}^{+} \rightarrow \psi(2S)\pi^{+} \)

The LHCb collaboration\(^\dagger\)

Abstract

The decay \(B_{c}^{+} \rightarrow \psi(2S)\pi^{+} \) with \(\psi(2S) \rightarrow \mu^{+}\mu^{-} \) is observed with a significance of 5.2\(\sigma \) using \(pp \) collision data corresponding to an integrated luminosity of 1.0 fb\(^{-1} \) collected by the LHCb experiment. The branching fraction of \(B_{c}^{+} \rightarrow \psi(2S)\pi^{+} \) decays relative to that of the \(B_{c}^{+} \rightarrow J/\psi \pi^{+} \) mode is measured to be

\[
\frac{B(B_{c}^{+} \rightarrow \psi(2S)\pi^{+})}{B(B_{c}^{+} \rightarrow J/\psi \pi^{+})} = 0.250 \pm 0.068 \text{ (stat)} \pm 0.014 \text{ (syst)} \pm 0.006 \text{ (}\mathcal{B}\text{)}.
\]

The last term is the uncertainty on the ratio \(B(\psi(2S) \rightarrow \mu^{+}\mu^{-})/B(J/\psi \rightarrow \mu^{+}\mu^{-}) \).

Submitted to Physical Review Letters

\(\copyright \) CERN on behalf of the LHCb collaboration, license [CC-BY-3.0]

\(^\dagger\)Authors are listed on the following pages.
LHCb collaboration

R. Aaij 40, C. Abellan Beteta 35,n, B. Adeva 36, M. Adinolfi 45, C. Adrover 6, A. Affolder 51, Z. Ajaltouni 5, J. Albrecht 9, F. Alessio 37, M. Alexander 50, S. Ali 40, G. Alkhazov 29, P. Alvarez Cartelle 36, A.A. Alves Jr 24,37, S. Amato 2, S. Amerio 21, Y. Amhis 7, L. Anderlini 17,f, J. Anderson 39, R. Andreassen 50, R.B. Appleby 53, O. Aquines Gutierrez 10, F. Archilli 18, A. Artamonov 34, M. Artuso 56, E. Aslanides 8, G. Auriemma 24,m, S. Bachmann 11, J.J. Back 47, C. Baesso 57, V. Balagura 30, W. Baldini 16, R.J. Barlow 53, C. Barschel 37, S. Barsuk 7, W. Barter 46, Th. Bauser 40, A. Bay 38, J. Beddow 50, F. Bedeschi 22, I. Bediaga 1, S. Belogurov 30, K. Belous 34, I. Belyaev 30, E. Ben-Haim 8, M. Benayoun 8, G. Bencivenni 18, S. Benson 49, J. Benton 46, A. Berezhnoy 34, M. Berliner 39, M.-O. Bettler 46, M. van Beuzekom 40, A. Bien 11, S. Bifani 12, T. Bird 53, A. Bizzeti 17,h, P.M. Bjornstad 53, T. Blake 37, F. Blanke 38, J. Blouw 11, S. Blusk 56, V. Bocci 24, A. Bondar 53, N. Bondar 29, W. Bonivento 15, S. Borgli 53, A. Borgia 56, T.J.V. Bowcock 51, E. Bowen 39, C. Bozzi 16, T. Brambach 9, J. van den Brand 41, J. Bressieux 38, D. Brett 53, M. Britsch 10, T. Britton 56, N.H. Brook 45, H. Brown 51, I. Burducea 28, A. Bursche 39, G. Busetto 21, J. Buytaert 37, S. Cadadu 15, O. Callot 7, M. Calvi 20,j, M. Calvo 20, E. Cardozo 35, A. Camboni 36, P. Campana 18,37, A. Carbone 14,c G. Carboni 23,k, R. Cardinale 19,i, A. Cardini 15, H. Carranza-Mejia 49, L. Carson 12, K. Carvalho Akiba 2, G. Casse 51, M. Cattaneo 37, Ch. Cauet 9, M. Charles 54, Ph. Charpentier 37, P. Chen 38, N. Chiapolini 39, M. Chrzaszcz 25, K. Ciba 37, X. Cid Vidal 36, G. Ciezarek 52, P.E.L. Clarke 49, M. Clemente 37, H.V. Clift 46, J. Cloisier 37, C. Coca 28, V. Coco 40, J. Cogan 4, E. Cogneras 39, P. Collins 37, A. Conmera-Montells 35, A. Contu 15, A. Cook 45, M. Coombes 45, S. Coquerue 8, G. Corti 37, B. Couturier 37, G.A. Cowan 38, D. Craik 37, S. Cunliffe 52, R. Currie 49, C. D’Ambrosio 37, P. David 8, P.N.Y. David 40, I. De Bonis 4, K. De Bruyere 40, S. De Capua 53, M. De Cian 39, J.M. De Miranda 1, M. De Oyanguren Campos 35,o, L. De Pauw 2, W. De Silva 59, P. De Simone 18, D. Decamp 4, M. Deekenhoff 9, L. Del Buono 8, D. Derkach 14, O. Deschamps 5, F. Dettori 41, A. Di Canto 11, H. Dijkstra 37, M. Dogaru 28, S. Douleavy 51, F. Dordei 11, A. Dosil Suarez 36, D. Dossett 47, A. Dovbnya 42, F. Dupertuis 38, R. Dzhelyadin 34, A. Dziurda 29, A. Dzyuba 29, S. Easo 48,37, U. Egede 52, V. Egorychev 30, S. Eidelman 53, D. van Eijk 40, S. Eisenhardt 9, E. Eitschberger 9, R. Ekelhof 9, L. Eklund 50, I. El Rifai 4, S. Elsbury 39, D. Elsbury 41, A. Falabella 14,c, E. Faifer 11, G. Fardelli 49, C. Farinelli 40, S. Farry 12, V. Fave 38, D. Ferguson 49, V. Fernandez Albor 36, F. Ferreira Rodrigues 5, M. Ferro-Luzzi 37, S. Filipov 32, C. Fitzpatrick 55, M. Fontana 40, F. Fontanelli 19,i, R. Forty 37, O. Francisco 35, M. Frank 37, C. Frei 37, M. Frosini 20, E. Furfaro 23, A. Gallas Torreira 36, D. Galli 14,c, M. Gandelmann 5, P. Gaudin 54, Y. Gao 3, J. Garofoli 56, P. Garosi 53, J. Garra Tico 46, L. Garrido 35, C. Gaspar 37, R. Gauld 54, E. Gersabeck 11, M. Gersabeck 53, T. Gershon 47,37, Ph. Ghez 4, V. Gibson 46, V.V. Gligorov 37, C. Gőbel 57, D. Golubkov 40, A. Gomar 50,32,37, A. Gomes 2, H. Gordon 54, M. Grabalosa Gándara 5, R. Graciani Diaz 35, L.A. Granado Cardoso 37, E. Graugas 35, G. Graziani 17, A. Greco 28, E. Greening 54, S. Gregson 46, O. Grünberg 58, B. Gui 36, E. Gushchin 32, Yu. Gusev 34, T. Gyss 37, C. Hadjivasiliou 36, G. Haefeli 38, C. Haen 37, S.C. Haines 46, S. Hal 52, T. Hampson 45, S. Hansmann-Menzheimer 11, N. Harnew 54, S.T. Harnew 45, J. Harrison 53, T. Hartmann 58, J. He 7, V. Hejne 46, K. Hennessy 51, P. Henriard 5, J.A. Hernando Morata 36, E. van Herwijnen 37, E. Hicks 51, D. Hill 54, M. Hoballah 9, C. Hombach 50, P. Hopchev 4, W. Hulsbergen 40, P. Hunt 54, T. Huse 51, N. Hussain 54, D. Hutchcroft 51, D. Hynds 50, V. Iakovenko 43, M. Idzik 26, P. Ilten 12, R. Jacobsson 37, A. Jaeger 11, E. Jaus 40, P. Jaton 28, F. Jing 3, M. John 54, D. Johnson 54, C.R. Jones 46, B. Jost 37, M. Kabilia 9, S. Kandybei 42,}

iii
Universidad de Santiago de Compostela, Santiago de Compostela, Spain
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
Syracuse University, Syracuse, NY, United States
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
University of Cincinnati, Cincinnati, OH, United States, associated to
a P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
b Università di Bari, Bari, Italy
c Università di Bologna, Bologna, Italy
d Università di Cagliari, Cagliari, Italy
e Università di Ferrara, Ferrara, Italy
f Università di Firenze, Firenze, Italy
g Università di Urbino, Urbino, Italy
h Università di Modena e Reggio Emilia, Modena, Italy
i Università di Genova, Genova, Italy
j Università di Milano Bicocca, Milano, Italy
k Università di Roma Tor Vergata, Roma, Italy
l Università di Roma La Sapienza, Roma, Italy
m Università della Basilicata, Potenza, Italy
n LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
o IFIC, Universitat de Valencia-CSIC, Valencia, Spain
p Hanoi University of Science, Hanoi, Viet Nam
q Università di Padova, Padova, Italy
r Università di Pisa, Pisa, Italy
s Scuola Normale Superiore, Pisa, Italy
The B^+_c meson, discovered by CDF at the Tevatron \cite{1}, is the only known meson composed of two flavours of heavy quarks, charm and beauty. Both quarks can decay via the weak interaction with the other quark being considered as a spectator, therefore a wide range of decay channels are possible. However, only a few of these channels have been experimentally observed \cite{1,2,3,4}. The LHC opens a new era for B^+_c physics, with an expected production cross-section of $\sim 0.4 \, \mu\text{b}$ at centre-of-mass energy $\sqrt{s} = 7$ TeV for the B^+_c meson \cite{5,6}. The LHCb experiment has observed the decay $B^+_c \to J/\psi\pi^+$ \cite{7}, and new channels such as $B^+_c \to J/\psi\pi^+\pi^+\pi^-$ have started to emerge.

We report here the first observation of the decay $B^+_c \to \psi(2S)\pi^+$ with $\psi(2S) \to \mu^+\mu^-$ and the measurement of the ratio of branching fractions $B(B^+_c \to \psi(2S)\pi^+)/B(B^+_c \to J/\psi\pi^+)$. The inclusion of charge conjugate modes is implied throughout the paper. The relativistic quark model \cite{9} and several other models \cite{10,11,12,13} make various theoretical predictions for this ratio of branching fractions. As a two-body decay, $B^+_c \to \psi(2S)\pi^+$ is under better control theoretically than $B^+_c \to J/\psi\pi^+\pi^-\pi^+$, and therefore this measurement is particularly useful to test the models of B^+_c decays. The $B^+_c \to J/\psi\pi^+$ decay mode is chosen as the normalisation channel because of its identical final state and similar event topology. Both channels take advantage of the large trigger efficiency due to the two muons in the final state.

The analysis is based on pp collision data corresponding to an integrated luminosity of $1.0 \, \text{fb}^{-1}$ at $\sqrt{s} = 7$ TeV collected with the LHCb detector in 2011. The detector \cite{14} is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream. The combined tracking system has momentum resolution $\Delta p/p$ that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter (IP) resolution of 20 μm for tracks with high transverse momentum (p_T). Charged hadrons are identified using two ring-imaging Cherenkov detectors and good kaon-pion separation is achieved for tracks with momentum between 5 GeV/c and 100 GeV/c. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The trigger system \cite{15} consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software trigger that applies a full event reconstruction and reduces the event rate from 1 MHz to around 3 kHz.

Candidate $B^+_c \to \psi\pi^+$ decays with $\psi \to J/\psi$ or $\psi(2S)$, are selected by requiring a single muon or dimuon with high p_T in the hardware trigger. In the software trigger, a charged particle is required to have $p_T > 1.7$ GeV/c, or $p_T > 1$ GeV/c if identified as a muon; alternatively a dimuon trigger requires two oppositely charged muons with $p_T > 500$ MeV/c, the invariant mass of the muon pair $M_{\mu^+\mu^-} > 2.95$ GeV/c^2, and that the muon track pair has a decay length significance with respect to the primary vertex greater than 5.
Further offline selections require both muons to have \(p_T > 550 \text{ MeV/c} \), and a track fit \(\chi^2_{tr} \) per degree of freedom (\(\chi^2_{tr}/\text{ndf} \)) of less than 5. The mass of the \(\psi \) candidate is required to be within a window of 100 MeV/c\(^2\) centred around the known \(\psi \) mass (3686 MeV/c\(^2\) for \(\psi(2S) \) and 3097 MeV/c\(^2\) for \(J/\psi \)) \(^{16}\). The \(\psi \) vertex fit \(\chi^2_{\text{vtx}}/\text{ndf} \) is required to be less than 20, and the \(\psi \) decay length significance larger than 5.

The \(B_c^+ \) candidate is reconstructed from the \(\psi \) and a bachelor pion. The pion is required to have \(p_T > 500 \text{ MeV/c} \), a track fit \(\chi^2_{tr}/\text{ndf} < 10 \) and \(\text{IP} \chi^2_{\text{IP}} \) with respect to the primary interaction greater than 4. The \(\text{IP} \chi^2_{\text{IP}} \) is defined as the difference between the \(\chi^2 \) of the primary vertex reconstructed with and without the considered track. The \(B_c^+ \) candidate is required to have mass within 0.5 GeV/c\(^2\) around the world average value \(^{16}\) and a vertex fit \(\chi^2_{\text{vtx}}/\text{ndf} < 16 \). A boosted decision tree (BDT) \(^{17}\), trained on data and simulation, is used to perform further background suppression. The \(pp \) collisions are simulated using PYTHIA 6.4 \(^{18}\) with a specific LHCb configuration \(^{19}\). The \(B_c^+ \) mesons are generated through the dominant hard subprocess \(gg \rightarrow B_c^+ + b + \bar{c} \) with the dedicated generator BCVEGPY \(^{20,21}\). Decays of hadronic particles are described by EvtGen \(^{22}\) in which final state radiation is generated using PHOTOS \(^{23}\). The interaction of the generated particles with the detector and its response are implemented using GEANT4 \(^{24}\) as described in Ref. \(^{25}\).

The choice of the variables used to train the BDT is based on two considerations: their power to separate signal and background, and the similarity of the distributions for the \(B_c^+ \rightarrow J/\psi \pi^+ \) and \(B_c^+ \rightarrow \psi(2S)\pi^+ \) candidates that causes the systematic uncertainties in the selections to cancel when the ratio of branching fractions is determined. The BDT input variables are: the \(\pi^+ \) IP \(\chi^2_{\text{IP}} \); the \(B_c^+ \) vertex fit \(\chi^2_{\text{vtx}}/\text{ndf} \); the \(B_c^+ \) IP \(\chi^2_{\text{IP}} \); the \(\chi^2 \) of the distance between the \(B_c^+ \) vertex and the associated primary vertex; the \(p_T \) of the \(B_c^+ \) candidate; and the \(\chi^2 \) from a refit of the \(B_c^+ \) decay vertex \(^{26}\) using a \(J/\psi \) or \(\psi(2S) \) mass constraint and a constraint that the \(B_c^+ \) candidate points to the primary vertex.

The BDT is trained using a \(B_c^+ \rightarrow J/\psi \pi^+ \) simulation sample for the signal and sidebands from the \(B_c^+ \rightarrow J/\psi \pi^+ \) mass spectrum (6164 < \(M_{J/\psi \pi} \) < 6206 MeV/c\(^2\) or 6346 < \(M_{J/\psi \pi} \) < 6388 MeV/c\(^2\)) for the background. The trained BDT is then applied to the data, and a signal estimator is calculated for each candidate; a large value indicates a signal-like candidate. The cut on the estimator is optimised to maximise the \(B_c^+ \rightarrow \psi(2S)\pi^+ \) signal significance. The BDT selection efficiencies, estimated from simulation, for \(B_c^+ \rightarrow \psi(2S)\pi^+ \) and \(B_c^+ \rightarrow J/\psi \pi^+ \) candidates are 35.8% and 37.2% respectively, and the fraction of accepted background is \(4.8 \times 10^{-4} \) as estimated from the sideband data.

After the BDT selection, it is further required that the unconstrained dimuon invariant mass is in the range 3030 < \(M_{\mu\mu} \) < 3170 MeV/c\(^2\) for \(J/\psi \) and 3620 < \(M_{\mu\mu} \) < 3760 MeV/c\(^2\) for \(\psi(2S) \). Information on particle identification for pions and kaons is also used to suppress the reflection background due to \(B_c^+ \rightarrow J/\psi K^+ \) decays. Figure 1 shows the invariant mass distributions of the \(B_c^+ \rightarrow J/\psi \pi^+ \) and \(B_c^+ \rightarrow \psi(2S)\pi^+ \) candidates.

The relative branching fraction is calculated using

\[
\frac{\mathcal{B}(B_c^+ \rightarrow \psi(2S)\pi^+, \psi(2S) \rightarrow \mu^+\mu^-)}{\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+, J/\psi \rightarrow \mu^+\mu^-)} = \frac{N(B_c^+ \rightarrow \psi(2S)\pi^+)}{N(B_c^+ \rightarrow J/\psi \pi^+)} \cdot \frac{\varepsilon(B_c^+ \rightarrow J/\psi \pi^+)}{\varepsilon(B_c^+ \rightarrow \psi(2S)\pi^+)},
\]

(1)
Figure 1: Invariant mass distributions of B_c^+ candidates reconstructed as (a) $B_c^+ \rightarrow J/\psi \pi^+$ and (b) $B_c^+ \rightarrow \psi(2S)\pi^+$. Points with error bars (black) show the data, the thick solid line (blue) represents the fit of the data, the dashed line (red) the signal distribution, the dotted line (green) the combinatorial background, the dot-dashed line (purple) the partially reconstructed background, and the thin solid line (light blue) the background from the $B_c^+ \rightarrow J/\psi K^+$ channel.

where N is the number of selected signal events and ε is the total efficiency.

The signal yields are obtained by performing an extended maximum likelihood fit to the B_c^+ mass spectra in Fig. 1. The signal is modelled with a double-sided Crystal Ball function [27] with the tail parameters on both sides determined from simulation. The main background component for both channels is combinatorial and is modelled using an exponential function. At the lower end of the mass spectrum, the contribution from the partially reconstructed background is modelled by an ARGUS function [28] convolved with a Gaussian distribution. For the $B_c^+ \rightarrow J/\psi \pi^+$ decay, the Cabibbo suppressed channel $B_c^+ \rightarrow \psi(2S)K^+$ also contributes, and is fitted with a double-sided Crystal Ball function with all parameters fixed to values obtained from simulation. The observed signal yields are 595 ± 29 for $B_c^+ \rightarrow J/\psi \pi^+$ and 20 ± 5 for $B_c^+ \rightarrow \psi(2S)\pi^+$. Therefore the ratio of yields is

$$\frac{N(B_c^+ \rightarrow \psi(2S)\pi^+)}{N(B_c^+ \rightarrow J/\psi \pi^+)} = 0.034 \pm 0.009 \text{(stat)}.$$

The total efficiency is the product of the detector acceptance, and the trigger, reconstruction and selection efficiencies. Each contribution has been determined using simulated events for the two channels, and the ratio of the total efficiencies has been evaluated to be

$$\frac{\varepsilon(B_c^+ \rightarrow \psi(2S)\pi^+)}{\varepsilon(B_c^+ \rightarrow J/\psi \pi^+)} = 1.040 \pm 0.009,$$

where the uncertainty is due to the limited size of the simulated sample.

Several sources of systematic uncertainty have been considered. The measured ratio of signal yields is expected to be independent of the BDT selection, given that the
Table 1: Relative systematic uncertainties.

Component	Value (%)
BDT selection	4.5
Signal shape	1.7
Background shape	2.9
Simulation sample size	0.9
Total	5.7

distributions of training variables are very similar for the two channels. The ratio of signal yields is measured for different cuts on the BDT response, and is constant within the statistical uncertainties. The average of these ratios differs from the nominal value by 4.5%, which is taken as the systematic uncertainty due to the BDT selection.

The $B_c^+ \to \psi(2S)\pi^+$ signal is fitted with a double-sided Crystal Ball function. Alternatively we determine the signal shape directly from the simulation using kernel estimation 29, and convolve it with a Gaussian function to take into account the detector resolution while allowing the mean of the mass to vary. This results in a 1.7% difference with respect to the nominal ratio, which is taken as the uncertainty due to the signal shape.

To consider the contribution from partially reconstructed background, the background is fitted with an exponential function within a narrower range ($6164 < M_{\psi\pi} < 6500$ MeV/c²). This results in a 2.9% change with respect to the nominal fit, and is assigned as a systematic uncertainty.

The statistical uncertainty on the simulation when estimating the ratio of efficiencies leads to an uncertainty of 0.9% on the ratio of branching fractions. The difference between data and simulation introduces a systematic uncertainty, especially from variables used as input for the BDT. The distributions of these variables in simulation and data are compared, after the background is subtracted from the data using the sPlot technique 30. The difference is found to be negligible compared to the statistical fluctuation.

A summary of systematic uncertainties is given in Table 1. The total systematic uncertainty is 5.7%, with the most significant contribution coming from the BDT selection. Taking the systematic uncertainty into account and using the likelihood ratio test $\sqrt{-2\log(L_B/L_{S+B})}$ 31, the significance of the $B_c^+ \to \psi(2S)\pi^+$ decay is estimated to be a 5.2σ, where L_B and L_{S+B} represent the likelihood of the background-only hypothesis and the signal-plus-background hypothesis respectively.

In summary, a search for the decay $B_c^+ \to \psi(2S)\pi^+$ has been performed using a data sample corresponding to an integrated luminosity of 1.0 fb$^{-1}$ at $\sqrt{s} = 7$ TeV collected by LHCb in 2011. The signal yield is 20 ± 5 candidates, making the first observation of this decay channel. Using $B_c^+ \to J/\psi \pi^+$ as normalisation channel, the ratio of branching
fractions is measured to be
\[
\frac{\mathcal{B}(B_c^+ \rightarrow \psi(2S)\pi^+, \psi(2S) \rightarrow \mu^+\mu^-)}{\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+, J/\psi \rightarrow \mu^+\mu^-)} = 0.033 \pm 0.009 \text{ (stat)} \pm 0.002 \text{ (syst)}.
\]

Furthermore, taking \(\mathcal{B}(J/\psi \rightarrow e^+e^-) = (5.94 \pm 0.06)\% \) and \(\mathcal{B}(\psi(2S) \rightarrow e^+e^-) = (7.73 \pm 0.17) \times 10^{-3} \) \[16\] and assuming universality of the electroweak interaction, we obtain
\[
\frac{\mathcal{B}(B_c^+ \rightarrow \psi(2S)\pi^+)}{\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)} = 0.250 \pm 0.068 \text{ (stat)} \pm 0.014 \text{ (syst)} \pm 0.006 \text{ (B)},
\]
where the last term accounts for the uncertainty on \(\mathcal{B}(\psi(2S) \rightarrow \mu^+\mu^-)/\mathcal{B}(J/\psi \rightarrow \mu^+\mu^-) \).
This result favours the prediction made by the relativistic quark model \[9\] in comparison with the other models.

Acknowledgements

We thank Prof. Chao-Hsi Chang for valuable discussions. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECO, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

References

[1] CDF collaboration, F. Abe et al., *Observation of the \(B_c \) meson in \(p\bar{p} \) collisions at \(\sqrt{s} = 1.8 \) TeV*, Phys. Rev. Lett. 81 (1998) 2432 [arXiv:hep-ex/9805034].

[2] CDF Collaboration, A. Abulencia et al., *Measurement of the \(B_c^+ \) meson lifetime using \(B_c^+ \rightarrow J/\psi e^+\nu_e \)*, Phys. Rev. Lett. 97 (2006) 012002 [arXiv:hep-ex/0603027].

[3] CDF Collaboration, T. Aaltonen et al., *Observation of the decay \(B_c^+ \rightarrow J/\psi \pi^\pm \) and measurement of the \(B_c^+ \) mass*, Phys. Rev. Lett. 100 (2008) 182002 [arXiv:0712.1506].
[4] D0 collaboration, V. M. Abazov et al., Observation of the B_c meson in the exclusive decay $B_c \to J/\psi \pi$, Phys. Rev. Lett. 101 (2008) 012001, arXiv:0802.4258

[5] C.-H. Chang and X.-G. Wu, Uncertainties in estimating hadronic production of the meson B_c and comparisons between TEVATRON and LHC, Eur. Phys. J. C38 (2004) 267, arXiv:hep-ph/0309121.

[6] Y.-N. Gao et al., Experimental prospects of the B_c studies of the LHCb experiment, Chin. Phys. Lett. 27 (2010) 061302.

[7] LHCb Collaboration, R. Aaij et al., Measurements of B_c^+ production and mass with the $B_c^+ \to J/\psi \pi\pi$ decay, Phys. Rev. Lett. 109 (2012) 232001, arXiv:1209.5634.

[8] LHCb collaboration, R. Aaij et al., First observation of the decay $B_c^+ \to J/\psi \pi^+\pi^-\pi^+$, Phys. Rev. Lett. 108 (2012) 251802, arXiv:1204.0079.

[9] D. Ebert, R. Faustov, and V. Galkin, Weak decays of the B_c meson to charmonium and D mesons in the relativistic quark model, Phys. Rev. D68 (2003) 094020, arXiv:hep-ph/0306306.

[10] C.-H. Chang and Y.-Q. Chen, Decays of the B_c meson, Phys. Rev. D 49 (1994) 3399.

[11] J.-F. Liu and K.-T. Chao, B_c meson weak decays and CP violation, Phys. Rev. D 56 (1997) 4133.

[12] P. Colangelo and F. De Fazio, Using heavy quark spin symmetry in semileptonic B_c decays, Phys. Rev. D61 (2000) 034012, arXiv:hep-ph/9909423.

[13] C.-F. Qiao, P. Sun, D. Yang, and R.-L. Zhu, B_c exclusive decays to charmonium and light mesons in QCD factorization at next-to-leading order accuracy, arXiv:1209.5859.

[14] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[15] R. Aaij et al., The LHCb trigger and its performance, arXiv:1211.3055, submitted to JINST.

[16] Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86 (2012) 010001.

[17] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, USA, 1984.

[18] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.

[19] I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155.
[20] C.-H. Chang, C. Driouichi, P. Eerola, and X. G. Wu, *BCVEGPY: An Event generator for hadronic production of the Bc meson*, Comput. Phys. Commun. **159** (2004) 192, arXiv:hep-ph/0309120.

[21] C.-H. Chang, J.-X. Wang, and X.-G. Wu, *BCVEGPY2.0: an upgrade version of the generator BCVEGPY with an addendum about hadroproduction of the P-wave Bc states*, Comput. Phys. Commun. **174** (2006) 241, arXiv:hep-ph/0504017.

[22] D. J. Lange, *The EvtGen particle decay simulation package*, Nucl. Instrum. Meth. A**462** (2001) 152.

[23] P. Golonka and Z. Was, *PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays*, Eur. Phys. J. C**45** (2006) 97, arXiv:hep-ph/0506026.

[24] GEANT4 collaboration, J. Allison et al., *Geant4 developments and applications*, IEEE Trans. Nucl. Sci. **53** (2006) 270; GEANT4 collaboration, S. Agostinelli et al., *GEANT4: A simulation toolkit*, Nucl. Instrum. Meth. A**506** (2003) 250.

[25] M. Clemencic et al., *The LHCb simulation application, GAUSS: design, evolution and experience*, J. of Phys. : Conf. Ser. **331** (2011) 032023.

[26] W. D. Hulsbergen, *Decay chain fitting with a Kalman filter*, Nucl. Instrum. Meth. A**552** (2005) 566, arXiv:physics/0503191.

[27] T. Skwarnicki, *A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances*, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

[28] ARGUS collaboration, H. Albrecht et al., *Search for hadronic b \to u decays*, Phys. Lett. B**241** (1990) 278.

[29] K. S. Cranmer, *Kernel estimation in high-energy physics*, Comput. Phys. Commun. **136** (2001) 198, arXiv:hep-ex/0011057.

[30] M. Pivk and F. R. Le Diberder, *SPlot: a statistical tool to unfold data distributions*, Nucl. Instrum. Meth. A**555** (2005) 356, arXiv:physics/0402083.

[31] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, *Asymptotic formulae for likelihood-based tests of new physics*, Eur. Phys. J. C**71** (2011) 1554, arXiv:1007.1727.