Roche volume filling of star clusters in the Milky Way

A. Ernst* and A. Just

Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg, Mönchhofstrasse 12-14, D-69120 Heidelberg, Germany

Accepted 2012 November 30. Received 2012 November 30; in original form 2012 October 6

ABSTRACT

We examine the ratios r_h/r_J of projected half-mass and Jacobi radius as well as r_1/r_J of tidal and Jacobi radius for open and globular clusters in the Milky Way using data of both observations and simulations. We applied an improved calculation of r_J for eccentric orbits of globular clusters. A sample of 236 open clusters of Piskunov et al. within the nearest kiloparsec around the Sun has been used. For the Milky Way globular clusters, data are taken from the Harris catalogue. We particularly use the subsample of 38 Milky Way globular clusters for which orbits have been integrated by Dinescu et al. We aim to quantify the differences between open and globular clusters and to understand, why they form two intrinsically distinct populations. We find under certain assumptions, or, in other words, in certain approximations (i) that globular clusters are presently Roche volume underfilling, (ii) with at least 3σ confidence that the ratio r_h/r_J of half-mass and Jacobi radius is three to five times larger at present for an average open cluster in our sample than for an average globular cluster in our sample and (iii) that a significant fraction of globular clusters may be Roche volume overfilling at pericentre with $r_1 > r_J$. Another aim of this paper is to throw light on the underlying theoretical reason for the existence of the van den Bergh correlation between half-mass and Galactocentric radius.

Key words: globular clusters: general – Galaxy: kinematics and dynamics – open clusters and associations: general.

1 INTRODUCTION

Open star clusters (OCs) are abundant in the Milky Way disc. Their number is estimated to be of order 10^5 (Piskunov et al. 2006). In contrast, there are approximately 150 globular clusters (GCs) known in the Milky Way (Harris 2010). While the GCs are orbiting on eccentric orbits with partly high inclinations with respect to the stellar disc plane of the Milky Way, most OCs reside on near-circular orbits in the disc (although they may show a vertical oscillation with an amplitude of order ≈ 0.5 kpc (Cararro & Chiosi 1994). The GCs are long-lived 1 with a mean age of 10 Gyr. The OCs are short-lived with a mean lifetime of only 300 Myr (Binney & Tremaine 2008, fig. 8.5, hereafter BT2008). Moreover, the lifetimes of OCs range from a few tens of Myr to a few Gyr. Age distributions are also given by Lamers & Gieles (2006) and Bonatto & Bica (2011).

Baumgardt et al. (2010) presented a weak evidence that there are two distinct GC populations outside the solar radius, namely a population of massive compact clusters with very small half-mass radii compared to the Lagrange radius and a population of low-mass and extended clusters with $r_h/r_J > 0.1$. They argued that King models allow only a restricted range of r_h/r_J and used the half-mass radius to quantify the Roche volume filling of GCs. However, there are other dynamical models like polytropes (see e.g. Converse & Stahler 2010) with a much larger half-mass radius compared to the tidal radius. Additionally Baumgardt et al. used the Jacobi radius of circular orbits instead of the more general definition provided by King (1962) for eccentric orbits (see Appendix B4 for a more detailed comparison to the present work). We apply a more general derivation for circular and eccentric orbits including r_1 and r_J in order to distinguish the compactness of a cluster and the Roche volume filling factor.

It has been shown by van den Bergh (1994) that the half-light radii r_h of GCs are correlated with the Galactocentric radius R according to the relation

$$r_h \propto R^{2/3}. \quad (1)$$

This relation has never been explained in terms of a deeper physical reason, although van den Bergh suspected already in 1994 that the correlation (1) could be imposed by the underlying galactic tidal field. Assuming that the GCs are moving in an isothermal halo we find from analytical calculations that the time-dependent Jacobi radius (i.e. the distance to the Lagrange points L_1 and L_2) for eccentric orbits in such a halo scales as

$$\lim_{R \to L/V_c} r_{J, \text{isoth.}} \propto R^{2/3} \quad (2)$$

(see Appendix B2). From the assumption of an isothermal halo, equations (1) and (2) and ($R > (L)/V_c$, where $(R), (L)$ and V_c are median Galactocentric radius, orbital angular momentum and the halo’s circular velocity, respectively, it is possible to conclude that

*E-mail: aernst@ari.uni-heidelberg.de

1 If one considers them as ‘living’.

© 2013 The Authors

Published by Oxford University Press on behalf of the Royal Astronomical Society.

doi:10.1093/mnras/sts530

Accepted 2012 November 30. Received 2012 November 30; in original form 2012 October 6.
GCs in the Milky Way are characterized by a ratio \(r_h/r_t \) which is independent of \(R \). The consequence is that, within the scatter of the correlation (which may be due to the scatter in GC masses), GCs are characterized by a common average relative size. We note that the Jacobi radius (i.e. the distance from the cluster centre to the Lagrange points \(L_1 \) and \(L_2 \)) provides a natural scale for star clusters in the tidal field. Other (dependent) scales are given by the positions/widths of the dominant resonances in the star cluster.

To gain a better understanding of the difference between OCs and GCs and why they form two distinct populations, one may ask: which values takes ratio \(r_h/r_t \) on in the case of OCs. While for GCs on eccentric orbits we may assume that their size is enforced by quantities in the pericentre, it seems reasonable to suspect that OCs on near-circular orbits are not strongly influenced by the orbital evolution.

In the following discussions, we denote the ratio \(r_h/r_t \) of 3D half-mass radius and Jacobi radius with the letter \(\lambda \). We also define \(\hat{\lambda} = r_h/r_t \) using the cluster cut-off radii \(r_t \) (i.e. the radii at which the density drops to zero) instead of the projected half-mass radii \(r_h \).

The 3D half-mass radius \(r_h = r_{h,3D} \) of a spherically symmetric stellar system is typically larger than the projected (2D) half-mass radius \(r_h \). We have \(r_{h,3D} \approx 1.3 r_h \). For the Plummer model \(r_{h,3D}/r_{h,2D} \approx 1.30 \) can be obtained analytically.

This paper is organized as follows: Section 2 presents the theory; Section 3 lists the current status of observations and simulations. In Section 4 the results are calculated, and Section 5 contains the discussion and conclusions.

2 Theory

Following the approach by King (1962), the Jacobi radius of a star cluster in the tidal field of a galaxy (i.e. the distance from the star cluster centre to the Lagrange points \(L_1 \) and \(L_2 \)) can generally be written as

\[
\lambda = \left[\frac{GM_{cl}}{\Omega^2 - \frac{d^2 \Phi}{dr^2}} \right]^{1/3},
\]

where \(G, M_{cl}, \Omega, \Phi \) and \(R \) are the gravitational constant, the star cluster mass, the angular speed, the gravitational potential of the galaxy and the galactocentric radius, respectively. The last closed (critical) equipotential surface through the Lagrange points \(L_1 \) and \(L_2 \) encloses the Roche or Hill volume.

Furthermore, we define the ‘(circular) velocity radius’:

\[
r_s = \frac{GM_{cl}}{V_C^2}.
\]

It is the length scale at which the Keplerian circular velocity in the cluster (assuming a point mass cluster potential) would be equal to the circular velocity \(V_C \) in the Milky Way.

The orbital periods \(t_{orb} \) and \(T_{orb} \) of a star at the half-mass radius of the star cluster and that of the star cluster orbit around the galaxy, respectively, are given by

\[
t_{orb} = \frac{2\pi v_t}{\sigma_0} \approx 2\pi \sqrt{\frac{2 r_t^3}{GM_{cl}}}
\]

and

\[
T_{orb} = \frac{2\pi}{\Omega_{cl}} = \frac{2\pi R_{cl}}{V_C},
\]

where \(t_{orb} \) is the crossing time (i.e. the time needed for a star to cross the half-mass sphere) and \(\sigma_0^2 = GM_{cl}/(2r_h) \) in dynamical equilibrium.

2.1 Circular orbits

For an OC on a circular orbit with radius \(R_C \) and velocity \(V_C \) in a tidal field the Jacobi radius from equation (3) can be written as (King 1962; Küpper, Macleod & Heggie 2008; Just et al. 2009)

\[
\lambda = \left[\frac{GM_{cl}}{(4 - \beta_C^2)\Omega_C^2} \right]^{1/3} = \left[4 - \beta_C^2 \right]^{-1/3} r_{h,3D}^{1/3} R_C^{2/3},
\]

with \(\beta_C = c_C/\Omega_C \) (see Appendix A), where \(G, M_{cl}, c_C, \Omega_C \) and \(R_C \) are the gravitational constant, the total mass of the star cluster, the epicyclic and the circular frequency and the orbital radius, respectively, and \(r_h \) is given by equation (4).

Inserting (5) and (6) into (7) yields

\[
\lambda_{OC} = \left(\frac{r_h}{r_t} \right)_{OC} = \left[\frac{4 - \beta_C^2}{2} \right]^{1/3} \left(\frac{t_{orb}}{T_{orb}} \right)_{OC}^{2/3}
\]

for star clusters on circular orbits.

While \(\lambda \) determines the geometry of equipotential surfaces and cannot be observed, \(r_h, t_{orb} \propto r_t/\sigma_0 \) and \(T_{orb} \) can be determined by observations and simulations. For realistic Milky Way models, the ratio \(\beta_C \) is approximately constant as a function of Galactocentric radius and the dependency on it is weak (see Fig. 1 and Appendix A) that we can safely neglect its variation beyond 2–3 kpc of the centre of the Milky Way.

2.2 Eccentric orbits

For GCs on eccentric orbits in an isothermal halo (\(V_C = \text{const} \)) we must extend the theory (see Appendix B2). Following the approach by King (1962) the Jacobi radius from equation (3) can be written as

\[
\lambda = r_{h,3D}^{1/3} \left(\frac{R^3}{R_{cl}^2 + R^2} \right)^{1/3},
\]

where \(R = R(t) \) is time dependent, \(r_h \) is given by equation (4), \(V_C \) is the rotation speed of the isothermal sphere, \(R_t = L/V_C \) is a guiding radius and the angular momentum \(L = L(V_C, R_t, R_h) \) is a constant of motion given by equation (B10). From equations (3) and (5) we also find

\[
\lambda_{GC} = \left(\frac{r_h}{r_t} \right)_{GC} = \left(\frac{t_{orb}}{2\pi} \right)^{2/3} \left[\frac{L^2}{R(t)^3 + V_C^2} \right]^{1/3}
\]

and

\[
\lambda_{GC} = \left(\frac{t_{orb}}{2\pi} \right)^{2/3} \left(\frac{V_C^2}{2} \right)^{1/3} \left(\frac{R_{cl}^2 + R^2}{R(t)^3} \right)^{1/3}.
\]
Figure 2. Time evolution of half-mass and Jacobi radii for a direct N-body simulation of a star cluster with $N = 50,000$ particles on an eccentric orbit within the disc plane. The cluster has a standard double-segment Kroupa (2001) IMF and is initially Roche volume filling, i.e. the cut-off radius equals the Jacobi radius. The half-mass radius is calculated with respect to the current mass within the initial Jacobi radius. Both radii are scaled with the initial half-mass radius $r_{h,i} \approx 9 \, \text{pc}$.

We distinguish between two cases.

(i) With the van den Bergh correlation (1) we obtain from equation (5) along one orbit

$$t_{\text{orb}} \propto R$$

and

$$\frac{t_{\text{orb}}(t)}{R(t)} = \frac{t_{\text{orb},P}}{R_P} = \frac{t_{\text{orb},A}}{R_A}, \quad t_{\text{orb}} = \text{const},$$

where the subscripts 'P' and 'A' stand for peri- and apocentre. From equation (10) we obtain with (12)

$$\lambda_{GC}^3 \propto \frac{A}{R^3} + B,$$

where A and B are two constants. It follows that

$$\lim_{R \to R_P} \lambda_{GC} = \text{const}, \quad \lim_{R \to R_A} \lambda_{GC} \propto R^{-2},$$

where R_i is given by equation (B15).

(ii) Contrariwise, direct N-body simulations suggest that for a bound GC the half-mass radius changes more slowly than the time-scale T_{orb} while the Jacobi radius oscillates on that time-scale according to equation (B14) (see Fig. 2). This would mean that, if $M_{cl} \approx \text{const},$

$$t_{\text{orb}} \approx \text{const}$$

in difference to equation (12). From equation (10) we obtain with (16)

$$\lambda_{GC}^3 \propto \frac{C}{R^3} + \frac{D}{R^2},$$

where C and D are two constants.

3 OBSERVATIONS AND SIMULATIONS

3.1 Samples and medians for OCs and GCs

For OCs we use the sample of 236 OCs of Piskunov et al. (2007). We obtain the values given in the upper part of Table 1. The projected half-mass radii of the 236 OCs have been obtained by solving 236 transcendental equations with the Newton–Raphson method using the table of core and tidal radii provided by Piskunov et al. (2007) at the Centre des Données astronomiques de Strasbourg. The transcendental equation is given by

$$\ln \frac{X_h}{C} = 4\sqrt{\frac{X_h}{C}} - \frac{\ln C}{2} - \frac{1}{2C} - \frac{2}{\sqrt{C}} + \frac{3}{2} = 0$$

with

$$X_h = 1 + \left(\frac{r_h}{r_c} \right)^2 \quad \text{and} \quad C = 1 + \left(\frac{r_i}{r_c} \right)^2,$$

where r_c, r_h and r_i are the core, half-mass and tidal cut-off radii, respectively (cf. Ernst et al. 2010, section 3). Equation (18) is solved for r_h.

The error of the median value of the projected half-mass radius $r_{h, 2D}$ is defined as

$$\Delta r_{h, 2D} = \frac{\sum_{i=1}^{N_{GC}} \left(r_{h, i, 2D} - \text{Median}(r_{h, i, 2D}) \right)^2}{N_{GC}(N_{GC} - 1)}.$$

We do not have an error on the velocity dispersion σ_0 of OCs. Thus we have set $\Delta \sigma_0 = 0$ for OCs. Note also that in a bound system r_h and σ_0 are related through the virial theorem, i.e. we have $\Delta \sigma_0 / \sigma_0 = (1/2) \Delta r_h / r_h$ in virial equilibrium. We neglect this correlation since the virial theorem is not generally valid for star clusters in a tidal field. Namely, it is not valid for Roche volume overfilling star clusters. The derived crossing time and its relative error are given by

$$t_{\text{orb}} = 2r_{h, 2D} / \sigma_0, \quad \Delta t_{\text{orb}} / t_{\text{orb}} = \sqrt{\left(\Delta r_h / r_h \right)^2 + \left(\Delta \sigma_0 / \sigma_0 \right)^2}.$$

The OCs in the sample by Piskunov et al. (2007) have approximately the orbital period of the local standard of rest (LSR) taken from BT2008, table 1.2.

For GCs we use the median values from 34 out of a sample of 38 Milky Way globular clusters from Dinescu et al. (1999). The data compilation of 157 Milky Way GCs by Harris (2010) was also used. The median values are obtained from the equivalents of equations (20) and (21) for the observed/simulated and the derived quantities. We obtained the values given in the bottom part of Table 1.

Table 1. Values for OCs and GCs. The values are medians if not denoted otherwise. The errors are standard errors of the median, i.e. divided by \sqrt{N} of the sample size except for the error $\Delta T_{orb, OC}$. The data for OCs are derived from Piskunov et al. (2007) and BT2008. The data for GCs are derived from Harris (2010) and Dinescu et al. (1999).

OC parameter	Value
Sample size N_{OC}	236
Median projected half-mass radius $r_{h, 2D}$ (pc)	1.94 ± 0.15
Median tidal radius r_i (pc)	7.90 ± 0.51
Velocity dispersion σ_0 (pc Myr$^{-1}$)	0.31
Median crossing time $t_{orb, OC} = 2r_{h, 2D} / \sigma_0$ (Myr)	12.52 ± 0.96
Average orbital period $T_{orb, OC}$ (Myr)	220 ± 30
Average eccentricity e_{OC}	0.127 ± 0.003

GC parameter	Value
Sample size N_{GC}	34 (38)
Median half-light radius $r_{h, 2D}$ (pc)	3.13 ± 0.51
Median tidal radius r_i (pc)	33.02 ± 4.83
Median velocity dispersion σ_0 (pc Myr$^{-1}$)	5.11 ± 0.64
Median crossing time $t_{orb, GC} = 2r_{h, 2D} / \sigma_0$ (Myr)	1.175 ± 0.726
Median Galactocentric radius $R_{orb, GC}$ (kpc)	7.75 ± 0.84
Median height above the disc plane z_{GC} (kpc)	4.00
Median velocity V_{GC} (pc Myr$^{-1}$)	175 ± 16
Median orbital period $T_{orb, GC}$ (Myr)	207 ± 54
Median eccentricity e_{GC}	0.622 ± 0.044
The ratios $r_{h,3D}/r_{J}$ (top panel) and r_{t}/r_{J} (bottom panel) for OCs calculated from equation (8) for the sample of Piskunov et al. (2007). The histograms for a canonical ±20 per cent error on σ_0 and for the substitution $\sigma_0 \rightarrow 2\sigma_0$ in equation (8) are also shown. The vertical lines denote the medians. Note that $r_{h,2D}$ of the data set is corrected with a factor of 1.3 to obtain $r_{h,3D}$.

Only for 97 out of 157 GCs from the Harris catalogue σ_0 is given. For five of these 97 GCs r_h is not given as well. From the GC sample in Dinescu et al. (1999) with 38 GCs we further find a median value of the orbital period of GCs. Only for 34 out of 38 GCs in the Dinescu et al. sample σ_0 is given in the Harris catalogue. The minimum Galactocentric radius is $R = 2.7$ kpc for NGC 6144 such that we can neglect the dependency on β_C according to Fig. 1. We further remark that a few recently discovered GCs have been added to Harris’ compilation by Ortolani et al. (2012).

4 RESULTS

4.1 OCs

Fig. 3 shows the distributions of $\log_{10} \lambda_{OC}$ (top panel) and $\log_{10} \hat{\lambda}_{OC}$ (bottom panel) for OCs according to equation (8). We used the isothermal approximation $\beta_C = \sqrt{2}$. There is a large scatter of the sizes around the medians. We find also Roche volume overfilling OCs.

λ_{OC} was found from equation (8) with the values of Table 1 using the tidal radii instead of the half-mass radii in the definitions of crossing time (i.e. $t'_c = 2r_h/\sigma_0$ instead of $t_c = 2r_h/\sigma_0$).

Fig. 3 shows also the distributions of $\log_{10} \hat{\lambda}_{OC}$ with the substitution $\sigma_0 \rightarrow 2\sigma_0$ which leads to $t_{c,OCs} \rightarrow t_{c,OCs}/2$ in equation (10).

We find the medians Q_{50} given in Table 2. The quantiles Q_{10}, Q_{50} and Q_{90} have been calculated with an IDL routine by Hong, Schlegel & Grindlay (2004).

4.2 GCs

The top and middle panels of Fig. 4 show the distributions of $\log_{10} \lambda_{GC}$ today and in the peri- and apocentre calculated from equation (10) for 34 GCs of the sample by Dinescu et al. (1999) under the assumption that the GCs are moving in an isothermal halo with $V_C \approx 228.5$ km s$^{-1}$. In the top panel, we assumed that the van den Bergh correlation is valid, and for the middle panel we assumed that $n_h \propto R^0$, i.e. that it is independent of R.

The bottom panel of Fig. 4 shows the distribution of $\log_{10} \hat{\lambda}_{GC}$ today calculated from equation (B14) for the same sample using the n_h given in the Harris catalogue. It seems as if the GCs are today Roche volume underfilling and, moreover, at most Roche volume filling with $\hat{\lambda}_{GC} = 0.3–1.0$.

We find the medians Q_{50} given in Table 3.

Parameter	10^{10}	10^{10}	10^{10}
λ_{OC}, Table 1	0.239	0.379	0.675
λ_{OC}, $\sigma_0 \rightarrow 2\sigma_0$	0.151	0.239	0.425
$\hat{\lambda}_{OC}$, Table 1	0.506	0.812	1.35
$\hat{\lambda}_{OC}$, $\sigma_0 \rightarrow 2\sigma_0$	0.319	0.511	0.852

Figure 4. Top panel: the ratio $r_{h,3D}/r_{J}$ of GCs today and in the peri- and apocentre calculated from equation (10) for 34 GCs of the sample by Dinescu et al. (1999) under the assumption that the GCs are moving in an isothermal halo with $V_C \approx 228.5$ km s$^{-1}$ and that the van den Bergh correlation holds. Middle panel: the same as in the top panel assuming that instead of the van den Bergh correlation n_h is independent of Galactocentric radius. Bottom panel: the ratio r_{h}/r_{J} for GCs today calculated from equation (B14). The vertical lines denote the medians. Note that $r_{h,3D}$ of the data set is corrected with a factor of 1.3 to obtain $r_{h,3D}$.
Table 3. Quantiles for GCs. The subscript ‘0’ denotes present-day values.

Parameter	10^{0.0}	10^{0.50}	10^{0.90}	
$\lambda_{GC,0}$	0.0318	0.0701	0.239	
$\lambda_{GC,0}$	0.286	0.469	0.742	
$\lambda_{GC,P}$	(r_{0} \propto R_{0}^{2/3})	0.0427	0.0928	0.178
$\lambda_{GC,A}$	(r_{0} \propto R_{0})	0.0297	0.0593	0.125
$\lambda_{GC,P}$	(r_{0} \propto R_{0}^{1})	0.0785	0.161	0.455
$\lambda_{GC,A}$	(r_{0} \propto R_{0})	0.0174	0.0313	0.0847

4.3 Comparison of OCs and GCs

Fig. 5 shows the ratio $r_{0,2D}/r_{i}$ for OCs and GCs today for the 236 OCs of the sample by Piskunov et al. (2007), the 34 GCs of the sample by Dinescu et al. (1999) and 156 GCs of the Harris catalogue (Harris 2010). Note that $r_{0} = r_{0,2D}$ is in this figure the projected half-mass radius (OCs) or the half-light radius (GCs) given in the Harris catalogue, respectively. The vertical lines denote the medians.

We find the medians (r_{0}/r_{i}) ≈ 3.9 (OCs), (r_{0}/r_{i}) ≈ 11.0 (Dinescu GCs) and (r_{0}/r_{i}) ≈ 8.7 (Harris GCs). Therefore, with respect to this ratio, the average OC corresponds to a King model with low W_{0} while the average GC corresponds to a King model with high W_{0} according to table 1 in Girkan, Freitag & Rasio (2004). We remark that the projected (2D) half-mass radius $r_{0} = r_{0,2D}$ is larger than the 3D half-mass radius $r_{0,3D}$. For the Plummer model $r_{0,3D}/r_{0,2D} \approx 1.30$ can be obtained analytically.

Applying equations (8) and (10) to the data we find that

$$\lambda_{GC} < \lambda_{OC}, \quad \hat{\lambda}_{GC} < \hat{\lambda}_{OC} \quad (22)$$

for an ‘average’ GC and an ‘average’ OC, with proportionality factors

$$\mu = \frac{\lambda_{OC}}{\lambda_{GC}}, \quad \hat{\mu} = \frac{\hat{\lambda}_{OC}}{\hat{\lambda}_{GC}} \quad (23)$$

with $\mu \approx 5.4$ today and $\hat{\mu} \approx 1.7$ today from the median values of crossing and orbital times given in Tables 1–3. The isothermal approximation $\beta c = \sqrt{2}$ was used.

The relative error in μ is given by

$$\Delta \mu = \sqrt{\left(\frac{\Delta \lambda_{OC}}{\lambda_{OC}} \right)^2 + \left(\frac{\Delta \lambda_{GC}}{\lambda_{GC}} \right)^2}$$

$$= \ln(10) \left[\frac{\Delta \log_{10}(\lambda_{OC})}{\sqrt{N_{OC}}} \right] + \left[\frac{\Delta \log_{10}(\lambda_{GC})}{\sqrt{N_{GC}}} \right]^2$$

$$\lesssim \ln(10) \left[\frac{(Q_{90} - Q_{10})_{OC}}{\sqrt{N_{OC}}} \right] + \left[\frac{(Q_{90} - Q_{10})_{GC}}{\sqrt{N_{GC}}} \right]^2. \quad (24)$$

The last line containing the 10 and 90 percentiles of the log_{10}(λ) distributions serves as an upper limit to the error. We obtain $\Delta \mu / \mu \lesssim 0.23$ for the upper limit.

We further remark that taking $t_{c,OC}/2$ instead of $t_{c,OC}$ in equation (8) with all other quantities kept the same leads to $\mu \approx 4.4$ implying at least a 3\sigma confidence provided that there is no bias due to systematic errors (see discussion).

5 DISCUSSION AND CONCLUSIONS

The results of the present study are as follows.

(i) We found under the assumptions stated below that GCs are generally Roche volume underfilling in terms of $\lambda = r_{i}/r_{j}$. In the pericentres of their orbits a significant fraction might be Roche volume overfilling depending on the dynamical compression of the outer shells compared to the smaller Jacobi radius.

(ii) We found under the assumptions stated below with at least 3\sigma confidence that the ratio $\lambda = r_{i}/r_{j}$ of half-mass and Jacobi radius is tendentially larger for an average open cluster within the nearest kpc of the Sun than for an average globular cluster and quantified the proportionality factor

$$\mu = \left(\frac{r_{i}}{r_{j}} \right)_{OC} / \left(\frac{r_{i}}{r_{j}} \right)_{GC} \approx 3-5, \quad (25)$$

(iii) The difference between OCs and GCs seems to be that, with respect to the concentration, the average OC has low concentration while the average GC has a high concentration.

(iv) A fraction of OCs may be Roche volume overfilling. However, the simple assumption of virial equilibrium breaks down for Roche volume overfilling clusters.

(v) A closer inspection of Baumgardt et al. (2010) suggests that there is a physically extended subsample of low-mass GCs with $r_{h} > 10$ pc, which may represent the post-core-collapse sequence of dissolving clusters. Our sample of GCs with known orbits is too small to confirm this scenario.

We make the following remarks.

(i) The fact that $\lambda_{GC} \ll 1$ explains (i) why GCs are spherically shaped as compared to the often irregularly shaped OCs, (ii) why GCs are stable against dissolution over a Hubble time and (iii) why not many GC tidal tails have been found observationally.

(ii) A fraction of OCs may be Roche volume overfilling ($\lambda_{OC} > 1$) at the time of their formation, but the shear forces of the tidal field will rapidly remove the material outside the Jacobi radius.

(iii) Only if the star cluster is in virial equilibrium equation (5) is valid. Therefore the correlation found by van den Bergh (1994) suggests that an average GC is in virial equilibrium if we postulate that a constant ratio λ_{GC} is reasonable with respect to the general structure of GCs. We emphasize that the virial theorem cannot be valid for Roche volume overfilling clusters.
A. Ernst and A. Just

We rely on the following assumptions, stated in order of importance according to our view.

(i) That the orbits of GCs in the sample of Dinescu et al. (1999) can be approximated by orbits in a purely isothermal halo for which the total angular momentum is conserved.

(ii) That the orbits of OCs can be approximated by circular orbits (for orbit calculations of OCs see e.g. Cararro & Chiosi 1994).

(iii) That there are no selection effects concerning the GC sample, i.e. the sample of GCs in Dinescu et al. (1999) is representative for the GC population of the Milky Way.

(iv) That the half-light and projected half-mass radii coincide.

(v) That the velocity dispersion of OCs is not too much biased due to the presence of binaries.

It is crucial to this investigation whether the approximations (i) and (ii) are justified. In the future, our results may be falsified or improved towards higher confidence levels when more and better data are available.

Our investigation suggests that most GCs were formed deep in their potential well, i.e. Roche volume underfilling in contrast to OCs, which can be even Roche volume overfilling after gas expulsion. In future work we plan to investigate the dynamical reasoning for these intrinsic differences and to quantify the impact on the dissolution process of the star clusters.

ACKNOWLEDGMENTS

AE is grateful for support by grant JU 404/3-1 of the German Research Foundation (DFG) and thanks Professor Dr Eva Grebel for a comment made during a talk which directed his interest to the van den Bergh correlation. Discussions with Professor Dr Rainer Spurzem are gratefully acknowledged and the fact that the idea to equation (8) was first written down on a notepad of him. Both authors thank the referee for the thoughtful comments.

REFERENCES

Baumgardt H., Parmentier G., Gieles M., Vesperini E., 2009, MNRAS, 396, 2051
Baumgardt H., Parmentier G., Gieles M., Vesperini E., 2010, MNRAS, 401, 1832
Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn. Princeton Univ. Press, Princeton, NJ (BT2008)
Bonatto C., Bica E., 2011, MNRAS, 415, 2827
Carraro G., Chiosi C., 1994, A&A, 288, 751
Converse J. M., Stahler S. W., 2010, MNRAS, 405, 666
Dinescu D. I., Girard T. M., Altena W. F., 1999, AJ, 117, 1792
Ernst A., Just A., Berczik P., Petrov M. I., 2010, A&A, 524, A62
Gürkan A., Freitag M., Rasio F. A., 2004, ApJ, 604, 632
Harris W. E., 2010, preprint (arXiv:1012.3224)
Hong J., Schlegel E. M., Grindlay J. E., 2004, ApJ, 614, 508
Johnston K. V., Spergel D. N., Hernquist L., 1995, ApJ, 451, 598
Just A., Berczik P., Petrov M. I., Ernst A., 2009, MNRAS, 392, 969
Kharchenko N. V., Berczik P., Petrov M. I., Piskunov A. E., Röser S., Schilbach E., Scholz R.-D., 2009, A&A, 495, 807
King I. R., 1962, AJ, 67, 471
Kroupa P., 2001, MNRAS, 322, 231
Küpper A. H. W., Macleod A., Heggie D. C., 2008, MNRAS, 387, 1248
Lamers H. J. G. L. M., Gieles M., 2006, A&A, 455, L17
Ortolani S., Bonatto C., Bica E., Barbuy B., Saito R. K., 2012, AJ, 144, 147
Paczynski B., 1990, ApJ, 348, 485
Piskunov A. E., Kharchenko N. V., Röser S., Schilbach E., Scholz R.-D., 2006, A&A, 445, 545
Piskunov A. E., Schilbach E., Kharchenko N. V., Röser S., Scholz R.-D., 2007, A&A, 468, 151
van den Bergh S., 1994, AJ, 108, 2145

APPENDIX A: THE RATIO β_C

For any galactic potential Φ, the dimensionless ratio $\beta_C = \kappa_C / \Omega_C$ is given by

$$\beta_C^2 = 2 \left(1 + \frac{\ln V_C}{\ln R} \right) \left|_{R_C} \right. = 3 + R \left(\frac{d^2 \Phi / dR^2}{d \Phi / dR} \left|_{R_C} \right. \right), \quad (A1)$$

where κ_C and Ω_C are the epicyclic and circular frequency related to a circular orbit, R_C is its radius and $V_C = \Omega_C R_C$ is the circular velocity at that radius. Fig. 1 shows that β_C is approximately constant for a wide range of Galactocentric radii for three different analytic Milky Way potentials, among them that two models used in Dinescu et al. (1999).

B1 Kepler case

If we approximate the Milky Way potential by a Kepler potential $\Phi_K \propto r^{-1}$, we find $\beta_{C,K} = 1$. Apo- and peri-centre are defined by $R_P = a(1-e)$ and $R_A = a(1+e)$, where a and e are the semimajor axis and the eccentricity of the orbit. Also, we have the relation (cf. King 1962; BT2008)

$$L^2 = \Omega^2 R^4 = GM_\odot (1-e^2) \left(\frac{GM_\odot}{a} \right) R_A R_P, \quad (B1)$$

where M_\odot, Ω and R are the mass of the point-like galaxy, the angular speed and the galactocentric radius at any orbital phase, respectively.

With the gravitational potential and its derivatives,

$$\Phi = -\frac{GM_\odot}{R}, \quad \frac{d\Phi}{dR} = \frac{GM_\odot}{R^2}, \quad \frac{d^2\Phi}{dR^2} = -\frac{2GM_\odot}{R^3}, \quad (B2)$$

we obtain the Jacobi radius

$$r_j = \left(\frac{GM_\odot}{\Omega^2 - \frac{d^2\Phi}{dR^2}} \right)^{1/3} \left(\frac{a R^2}{R_A R_P + 2aR} \right)^{1/3} \quad (B3)$$

for circular and eccentric orbits (cf. King 1962).

B2 Isothermal case

If we approximate the Milky Way potential by the potential of an isothermal sphere $\Phi_\text{I} = V_C^2 \ln (R/R_0)$ with the circular velocity V_C, we find $\beta_{C,I} = \sqrt{2}$ (note that the isothermal sphere has a constant rotation curve).

The energy (say, of a globular cluster) in an isothermal sphere is given by

$$E = \frac{V^2}{2} + V_C^2 \ln \left(\frac{R}{R_0} \right), \quad (B5)$$

where R_0 is a length unit. This yields

$$V^2 = 2 \left(E - V_C^2 \ln \left(\frac{R}{R_0} \right) \right) = 2V_C^2 \ln \left[\exp\left(E/V_C^2 \right) \left(\frac{R_0}{R} \right) \right] = 2V_C^2 \ln \left(\frac{R_0}{R} \right) \quad (B6)$$
with \(R_0 = \exp(E/V_c^2)R_0 \). For simplicity we substitute in the following discussion \(R_0 \to R_0 \).

From the angular momentum conservation we obtain at apo- and pericentre

\[
R_c^2 \ln \left(\frac{R_p}{R_0} \right) = R_p^2 \ln \left(\frac{R_0}{R_p} \right). \tag{B7}
\]

From the energy conservation we obtain

\[
\frac{V_p^2}{2} + V_c^2 \ln \left(\frac{R_p}{R_0} \right) = \frac{V_0^2}{2} + V_c^2 \ln \left(\frac{R_0}{R_0} \right). \tag{B8}
\]

We also obtain

\[
V_p^2 - V_c^2 = 2V_c^2 \ln \left(\frac{R_p}{R_0} \right). \tag{B9}
\]

The angular momentum as a function of \(R_0 \) and \(R_p \) is given by

\[
L = V_c R_p R_0 \sqrt{\frac{2 \ln \left(\frac{R_0}{R_p} \right)}{R_0^2 - R_p^2}}. \tag{B10}
\]

The limiting cases are circular and radial orbits. Using \(L^2 \) we have verified (1) with the rule of L’Hospital that the equation (B10) is consistent with the limiting case of a circular orbit with radius \(R_c \) and velocity \(V_c \) and (2) that the radial orbit has zero angular momentum. From equation (B10) follows the relation

\[
L^2 = \Omega^2 R^4 = 2V_c^2 R_p^2 R_0^2 \ln \left(\frac{R_0}{R_p} \right). \tag{B11}
\]

where \(\Omega \) is the angular velocity at any orbital radius \(R \). We follow now the derivation of \(r_i \) in King (1962) for the case of an isothermal sphere. The gravitational potential of the isothermal sphere and its derivatives are given by

\[
\Phi = V_c^2 \ln \left(\frac{R}{R_0} \right), \quad \frac{d\Phi}{dR} = \frac{V_c^2}{R}, \quad \frac{d^2\Phi}{dR^2} = -\frac{V_c^2}{R^2}. \tag{B12}
\]

We obtain for the Jacobi radius

\[
r_j^3 = \frac{GM_d}{\Omega^2 - \frac{V_c^2}{R^2}} \tag{B13}
\]

\[
= \frac{GM_d (R_p^2 - R_0^2)}{2V_c^2 R_p^2 R_0^2 \ln (R_0/R_P) + V_c^2 (R_0^2 - R_p^2) R_p^2} \tag{B14}
\]

for circular and eccentric orbits (cf. King 1962).

If we define a ‘guiding radius’

\[
R_g = \frac{L}{V_c}, \tag{B15}
\]

the Jacobi radius can be written as

\[
r_j = r_v^{1/3} \left(\frac{R_0^2}{r_v^2 + R_0^2} \right)^{1/3}, \tag{B16}
\]

where \(r_v = GM_d/V_c^2 \) is the velocity radius given by equation (4) with the constant \(V_c \) of the isothermal sphere. We also obtain

\[\lambda_i = \frac{r_j}{r_i} = \left(\frac{t_{obs}}{2\pi} \right)^{2/3} \left(\frac{V_c}{\sqrt{2R(t)}} \right)^{2/3} \left(1 + \frac{R_j^2}{R(t)^2} \right)^{1/3}, \tag{B17}\]

where \(R(t) \) is time dependent for an eccentric orbit.

B3 Harmonic case

In the case of a sphere with homogeneous density \(\rho_0 \) we have \(\beta_{C,H} = 2 \) and \(\Omega = \sqrt{4\pi GM_d/3} \) which is independent of \(R \). Both the Jacobi radius in equation (7) and the ratio in equation (8) are not well defined.

B4 Beyond the solar circle

Baumgardt et al. (2010) show that clusters with Galactocentric distances \(R > 8 \) kpc fall into two distinct groups: one group of compact, tidally underfilling clusters with \(r_i/r_j < 0.05 \) and another group of tidally filling clusters which have \(0.1 < r_i/r_j < 0.3 \). In Fig. B1 we calculated the ratio \(r_i, 3D \) of GCs today from equation (10) for 17 GCs out of the 34 GCs in the sample by Dinescu et al. (1999) for which \(R > 8 \) kpc under the assumption that the GCs are moving in an isothermal halo with \(V_c \approx 228.5 \text{ km s}^{-1} \) and that the van den Bergh correlation holds.

Figure B1. The ratio \(r_i, 3D/r_j \) of GCs today calculated from equation (10) for 17 GCs out of the 34 GCs in the sample by Dinescu et al. (1999) for which \(R > 8 \) kpc under the assumption that the GCs are moving in an isothermal halo with \(V_c \approx 228.5 \text{ km s}^{-1} \) and that the van den Bergh correlation holds.

\[
\lambda_i = \left(\frac{r_j}{r_i} \right) = \left(\frac{t_{obs}}{2\pi} \right)^{2/3} \left(\frac{V_c}{\sqrt{2R(t)}} \right)^{2/3} \left(1 + \frac{R_j^2}{R(t)^2} \right)^{1/3}, \tag{B17}\]

where \(R(t) \) is time dependent for an eccentric orbit.