ELECTRIC S-BRANE SOLUTIONS WITH A PARALLEL CHARGE DENSITY FORM ON A RICCI-FLAT FACTOR SPACE

I.S. Goncharenko, V.D. Ivashchuk
d, S. Rudametkin-Aguilar and D. Singleton

1† Centre for Gravitation and Fundamental Metrology, VNIIMS, and
Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia,
6 Miklukho-Maklay St., 117198 Moscow, Russia

† Physics Department, CSU Fresno, Fresno, CA 93740-8031, USA

We generalize the previously studied cosmological solutions in D-dimensional gravity with an antisymmetric (p + 2)-form to the case when the spatial part of the metric is Ricci-flat rather than flat. These generalized solutions are characterized by a parallel self-dual or anti-self-dual charge density form Q of rank 2m and satisfy the condition Q^2 > 0. As with the previous flat-space case, these electric S-brane solutions only exist when D = 4m + 1 = 5, 9, 13,... and p = 2m − 1 = 1, 3, 5,... We further generalize these solutions by adding Ricci-flat factor-spaces which are not covered by branes.

1. Introduction

In the paper, we continue the study of S-brane solutions with a maximum number of electric branes [1,2]. S-branes are brane solutions having “warp” factors which are time-dependent rather than spatially dependent. They are thought to play a role in higher-dimensional cosmological models, especially string theory inspired cosmologies. A sampling of the work done on S-brane solutions and their physical applications can be found in [4–18] and references therein.

In [1], electric S-brane solutions, with a maximum number of orthogonal branes, were constructed. These solutions only occurred for D = 4m + 1 spacetime dimensions with (2m + 1)-forms. They also had the property that the charge density forms of the electric branes were either self-dual or anti-self-dual. For example, in the case when D = 5 with 3-forms, the six electric branes obeyed the following relations:

\[Q_{12} = \mp Q_{34}, \quad Q_{13} = \pm Q_{24}, \quad Q_{14} = \mp Q_{23}. \] (1.1)

or, equivalently,

\[Q_{ij} = \pm \frac{1}{2} \varepsilon_{ijk} Q^{kl} = \pm (\ast Q)_{ij}. \] (1.2)

The solution (metric plus form fields and scalar fields) for the case when all the Q_{ij}, i < j, were non-zero, followed from the restrictions coming from the non-diagonal part of Hilbert-Einstein equations.

Some of the cosmological consequences of these maximal electric S-brane solutions (in case of the absence of scalar fields) were investigated in [2], e.g., suppression of oscillating behaviour near the singularity due to constraints coming from the diagonal form of the metric was found. (This is important for the billiard approach for models with branes suggested in [19].)

In addition to their relation to cosmology, the study of electric S-branes with various charge densities may be of possible interest to string theory because of the important role played by the relations between the charge densities of D-branes [20]. Such relations in the general case may be described mathematically by K-theory (see [21,22] and references therein). Here, as in our previous work [1,2], the relationships between the charge densities follow directly from the equations of motion.

2. S-brane solution with flat factor space

2.1. D dimensional gravity and (p + 2)-form

As in [1], we consider the model governed by the action

\[S = \int_M d^D z \sqrt{|g|} \left[R[g] - \frac{1}{q!} F^2 \right], \] (2.1)

where \(g = g_{MN} dz^M \otimes dz^N \) is the metric, \(R[g] \) is the D-dimensional Ricci scalar calculated from the metric \(g \), and

\[F = dA = \frac{1}{q!} F_{M_1...M_q} dz^{M_1} \wedge ... \wedge dz^{M_q} \]

is a q-form, \(q = p + 2 \geq 1 \). For \(p = 0 \) one would have a 2-form analogous to the Maxwell field strength tensor. Thus the action considered in [21] gives D-dimensional gravity coupled to an “electromagnetic” field. In [21], we denote \(|g| = |\det(g_{MN})| \) and \(F^2 = F_{M_1...M_q} F_{N_1...N_q} g^{M_1 N_1} ... g^{M_q N_q} \), The equations of motion corresponding to (2.1) are

\[R_N^M - \frac{1}{2} \delta_N^M R = T_N^M, \] (2.2)

\[\nabla_M |g| F^{M_1...M_q} = 0. \] (2.3)
In $\nabla[g]$, $\nabla[g]$ is the covariant derivative operator corresponding to g. Eqs. (2.2) and (2.3) are the multidimensional Einstein-Hilbert equations and the “Maxwell” equations for the q-form, respectively. The source term in (2.2), the stress-energy tensor of q-form, reads

$$T^M_N[F,g] = \frac{1}{q!} \left[-\frac{1}{2} S^M_F F^2 + q F_{N M_1 ... M_q} F^{N M_1 ... M_q} \right].$$

(2.4)

2.2. Cosmological type solutions for $D = 5, 9, 13, ...$

Here we give a quick summary of Sp-brane solutions from 2.1 in dimensions

$$D = n + 1 = 4m + 1 = 5, 9, 13, \ldots$$

with $(p + 2)$-forms whose rank is given by

$$p = 2m - 1 = 1, 3, 5, \ldots,$$

(2.6)

These solutions are defined on the manifold

$$M = (t_-, t_+) \times \mathbb{R}^n$$

(2.7)

and have the following form:

$$ds^2 = -e^{2n\phi(t)} dt^2 + e^{2\phi(t)} \sum_{i=1}^n (dy^i)^2,$$

(2.8)

$$F = e^{2f(t)} dt \wedge Q,$$

(2.9)

$$Q = \frac{1}{(p + 1)!} Q_{i_0 ... i_p} dy^{i_0} \wedge \cdots \wedge dy^{i_p}.$$

(2.10)

$Q_{i_0 ... i_p}$ are constant components of the charge density form Q. Q is self-dual or anti-self-dual in flat Euclidean space \mathbb{R}^n, i.e.,

$$Q_{i_0 ... i_p} = \pm \frac{1}{(p + 1)!} \varepsilon_{i_0 ... i_p j_0 ... j_p} Q^{j_0 ... j_p} = \pm (\ast Q)_{i_0 ... i_p}.$$

(2.11)

We now put

$$Q^2 = \frac{1}{(p + 1)!} \sum_{i_0 ... i_p} Q_{i_0 ... i_p}^2 > 0,$$

(2.12)

i.e., at least one charge density is non-zero: $Q_{i_0 ... i_p} \neq 0$, for some $i_0 < \ldots < i_p$. Then it can be shown II that Eqs. (2.2), (2.3) reduce to the set of equations

$$\ddot{f} = j^2 = -Q^2 K e^{2f}.$$

(2.13)

The dots denote derivatives with respect to t and

$$K \equiv -\frac{n}{4(n - 1)}.$$

(2.14)

The function $\phi(t)$ is given in terms of $f(t)$ by

$$\phi(t) = \frac{2}{n} f(t).$$

(2.15)

Thus, the solution of the system is determined once (2.13) is solved. A solution for $f(t)$ is given by

$$f = -\ln \left[[t - t_0] K Q^2 \right]^{1/2}.$$

(2.16)

The above solution describes a collection of $l \leq (4m)!/(2m)!$ electric Sp-branes.

3. Generalization to Ricci-flat factor space

Here we generalize the solution from the previous section to the case when the manifold 2.1 is replaced by the manifold

$$M = (t_-, t_+) \times N,$$

(3.1)

where N is an n-dimensional oriented manifold of dimension $n = 4m$, $m = 1, 2, \ldots$, equipped with the Ricci-flat metric $h = h_{ij}(y)dy^i \otimes dy^j$ of Euclidean signature, i.e., the Ricci tensor calculated from h is zero, $R_{ij}[h] = 0$. Let

$$Q = \frac{1}{(p + 1)!} Q_{i_0 ... i_p}(y) dy^{i_0} \wedge \cdots \wedge dy^{i_p}.$$

(3.2)

be a form of rank $2m$ defined on the manifold N. The components $Q_{i_0 ... i_p}(y)$ now depend on the spatial coordinates y^i. The form Q satisfies two requirements. First, it is parallel, i.e., covariantly constant w.r.t. h:

(i) $\nabla[h]Q = 0,$

(3.3)

and, second, it is self-dual or anti-self-dual:

(ii) $Q = \ast Q.$

(3.4)

Here $\ast = \ast[h]$ is the Hodge operator corresponding to the metric h. From condition (i) it one finds that

$$Q^2 = \frac{1}{(p + 1)!} h^{i_0 j_0} \cdots h^{i_p j_p} Q_{i_0 ... i_p} Q_{j_0 ... j_p}.$$

(3.5)

is constant. It also follows from (3.3) that Q is closed:

$$dQ = 0.$$

(3.6)

In what follows we put

$$Q^2 > 0,$$

(3.7)

or, equivalently, Q is non-zero.

For the metric and p-form, we take the following ansatz on the manifold 3.1 similar to the ansatz used in the flat case, (2.2), (2.3):

$$ds^2 = -e^{2n\phi(t)} dt^2 + e^{2\phi(t)} h_{ij}(y) dy^i dy^j,$$

(3.8)

$$F = e^{2f(t)} dt \wedge Q.$$

(3.9)

The $2m$-form Q is defined in (3.2) and satisfies (3.3), (3.6), and (3.7). Except for the spatial metric h, this is similar to the previous flat case ansatz. In fact, we will find that the form of these new (“Ricci-flat”) solutions is essentially the same as in the flat case. K and the function $\phi(t)$ are again given by (2.11) and (2.15). As before, once $f(t)$ is given, the entire solution is obtained. The function $f(t)$ again obeys Eq. (2.13), and thus the solution is (2.16).

Now we show that the metric with the line element (3.8) and the $(2m + 1)$-form (3.3) do satisfy the field equations (2.2), (2.3) for the case when the manifold is
given by \((4.1)\). Because of \((4.3)\), the “Maxwell” equations \((4.2)\) reduce to those for the flat-case solution from the previous section, and so the \((p+2)\)-form part of the solution has the same form as in the flat case.

The gravitational equations \((4.2)\) are also satisfied by \((4.3)\), with \(\phi(t)\) given by \((4.5)\). It may be shown in the same way as it was done in \([1]\) that, due to the (anti-)self-duality condition, the energy-momentum tensor satisfies

\[
T[F, g]_{ij} = 0 \quad \Rightarrow \quad T[F, g]_{i}^j = 0, \quad (3.10)
\]

for all \(i, j = 1, \ldots, n\), i.e., the form field contributes as dust matter.

4. Generalization to a set of extra Ricci-flat spaces

Here we give a further generalization of the solution of the previous section to the case when the manifold \([4.1]\) is replaced by

\[
M = (t_-, t_+) \times N \times N_1 \times \ldots \times N_k, \quad (4.1)
\]

where \(N_r\) are Ricci-flat manifolds with the metric \(h^r\) of dimension \(d_r\). The solution reads

\[
ds^2 = \exp \left[\frac{4mf(t)}{K(2-D)} \right] \left(e^{2t} dt^2 + e^{f(t)/K} h^r dy^i dy^j + \sum_{r=1}^k e^{2 r_c t + 2r_c^2} ds_r^2 \right), \quad (4.2)
\]

\[
F = e^{f(t)/K} dt \wedge Q, \quad (4.3)
\]

where \(ds_r^2 = h^r_{m,n} \, dz_r^m dz_r^n\) is the line element corresponding to the metric \(h^r\), the constants \(c^r, c^r_0\) are given by

\[
c^r = \sum_{r=1}^k d_r c^r, \quad c^r_0 = \sum_{r=1}^k d_r c^r, \quad (4.4)
\]

and the function \(f(t)\) is again given by

\[
f(t) = - \ln \left[|z(t)| K Q^2 \right]^{1/2}, \quad (4.5)
\]

with

\[
z(t) = \frac{1}{\sqrt{C}} \sinh \left[(t - t_0) \sqrt{C} \right], K < 0, \quad C > 0; \quad (4.6)
\]

\[
= \frac{1}{\sqrt{-C}} \sin \left[(t - t_0) \sqrt{-C} \right], K < 0, \quad C < 0; \quad (4.7)
\]

\[
t - t_0, \quad A < 0, \quad C = 0; \quad (4.8)
\]

\[
= \frac{1}{\sqrt{C}} \cosh \left[(t - t_0) \sqrt{C} \right], K > 0, \quad C > 0. \quad (4.9)
\]

Here \(D = 4m + 1 + \sum_{r=1}^k d_r\) and

\[
K = m + \frac{4m^2}{2-D} \neq 0 \quad (4.10)
\]

and the integration constants obey the relation

\[
CK^{-1} + \sum_{r=1}^k (c^r)^2 d_r - \left(\sum_{r=1}^k c^r d_r \right)^2 = 0. \quad (4.11)
\]

This solution may be readily verified by substitution into the field equations.

As a final remark, the metric \((4.2)\) may also be obtained from the exact cosmological solutions for a one-component anisotropic (“perfect”) fluid \([2,4]\) when the pressure in the subspace \(N\) is \(p_0 = 0\) (“dust”) and the pressures in the extra subspaces \(N_i\) are \(p_i = \rho\) (“stiff” matter), where \(\rho\) is the energy density. A systematic derivation of this (and more general) solution will be given in a separate publication.

5. Summary and conclusions

We have considered a \(D = (n + 1)\)-dimensional cosmological model with an antisymmetric \((p+2)\)-form. We have generalized the composite electric \(S\)-brane solutions from \([2]\) for \(D = 4m + 1 = 5, 9, 13, \ldots\) and \(p = 2m - 1 = 1, 3, 5, \ldots\) to the case when the \(Q\)-form of rank \(2m\) is defined on an \(n\)-dimensional oriented Ricci-flat space \(N\) of Euclidean signature. Here the form \(Q\) is an arbitrary (anti-)self-dual parallel (i.e., covariantly constant) \(2m\)-form on \(N\) with \(Q^2 > 0\). For the flat case, when \(N = \mathbb{R}^{4m}\) \([2]\), the components of this form in canonical coordinates are proportional to charge densities of electric \(p\)-branes.

We have also found generalizations of the solutions to the case when a chain of extra Ricci-flat factor-spaces is added.

Acknowledgement

The work of V.D.I. was supported in part by a grant of College of Science and Mathematics of California State University (Fresno), by DFG grant No. 436 RUS 113/807/0-1 and by the Russian Basic Research Foundation grant No. 05-02-17478. V.D.I. thanks the colleagues from the Physical Department of the California State University for hospitality during his visit in November-December 2005.

References

[1] V.D. Ivashchuk and D. Singleton, “Composite electric \(S\)-brane solutions with maximal number of branes”, JHEP 0410, 061 (2004); [hep-th/0407224]

[2] V.D. Ivashchuk, V.N. Melnikov and D. Singleton, “On avoiding cosmological oscillating behavior for \(S\)-brane solutions with diagonal metrics”, Phys. Rev. D 72, 103511 (2005); [gr-qc/0509065]

[3] H. Dehnen, V.D. Ivashchuk and V.N. Melnikov, “Composite electric \(S\)-brane solutions with maximal number of branes and several scalar fields”, Grav. & Cosmol. 11, 345-353 (2005); [hep-th/0509147]
I.S. Goncharenko, V.D. Ivashchuk, S. Rudametkin-Aguilar and D. Singleton

[4] K. Behrndt and S. Forste, “String Kaluza-Klein cosmology”, Nucl. Phys. B 430, 441 (1994); hep-th/9403179 (see also hep-th/9512167, hep-th/9704013).

[5] A. Lukas, B.A. Ovrut and D. Waldram, Cosmological solutions in type II string theory, Phys. Lett. B 393, 65 (1997); hep-th/9608195.

[6] H. Lü, S. Mukherji, C.N. Pope and K.-W. Xu, “Cosmological solutions in string theories”, Phys. Rev. D 55, 7926-7935 (1997); hep-th/9610107.

[7] M.A. Grebeniuk, V.D. Ivashchuk and V.N. Melnikov, “Integrable multidimensional quantum cosmology for intersecting p-branes”, Grav. & Cosmol. 3, 243-249 (1997); gr-qc/9708031.

[8] K.A. Bronnikov, M.A. Grebeniuk, V.D. Ivashchuk and V.N. Melnikov, “Integrable multidimensional cosmology for intersecting p-branes”, Grav. & Cosmol. 3, 105–112 (1997).

[9] K.A. Bronnikov, V.D. Ivashchuk and V.N. Melnikov, “The Reissner-Nordström problem for intersecting electric and magnetic p-branes”, Grav. & Cosmol. 3, 203-212 (1997); gr-qc/9710054.

[10] V.D. Ivashchuk and V.N. Melnikov, “Multidimensional classical and quantum cosmology with intersecting p-branes”, J. Math. Phys. 39, 2866–2889 (1998); hep-th/9708157.

[11] V.D. Ivashchuk and S.-W. Kim, “Solutions with intersecting p-branes related to Toda chains”, J. Math. Phys. 41 (1) 444-460 (2000); hep-th/9907019.

[12] V.D. Ivashchuk and V.N. Melnikov, “Exact solutions in multidimensional gravity with antisymmetric forms”, topical review, Class. Quantum Grav. 18, R82-R157 (2001); hep-th/0110274.

[13] M. Gutperle and A. Strominger, “Spacelike branes”, JHEP 0204, 018 (2002); hep-th/0202210.

[14] C.M. Chen, D.M. Gal’tsov and M. Gutperle, “S-brane solutions in supergravity theories”, Phys. Rev. D 66, 024043 (2002); hep-th/0204071.

[15] V.D. Ivashchuk, “Composite S-brane solutions related to Toda-type systems”, Class. Quantum Grav. 20, 261–276 (2003); hep-th/0208101.

[16] N. Ohta, “Intersection rules for S-branes”, Phys. Lett. B 558, 213 (2003); hep-th/0301095.

[17] V.D. Ivashchuk, “On composite S-brane solutions with orthogonal intersection rules”, hep-th/0309027.

[18] V.D. Ivashchuk, “On exact solutions in multidimensional gravity with antisymmetric forms”, in: Proceedings of the 18th Course of the School on Cosmology and Gravitation: The Gravitational Constant. Generalized Gravitational Theories and Experiments (30 April-10 May 2003, Erice). Ed. by G.T. Gillies, V.N. Melnikov and V. de Sabbata, (Kluwer Academic Publishers, Dordrecht, 2004), pp. 39-64; gr-qc/0310114.

[19] V.D. Ivashchuk and V.N. Melnikov, “Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity”, J. Math. Phys. 41, 6341–6363 (2000); hep-th/9904077.

[20] J. Polchinski, “Dirichlet branes and Ramond-Ramond charges”, Phys. Rev. Lett. 75, 4724 (1995); hep-th/9510017.

[21] R. Minasian and G. Moore, “K-theory and Ramond-Ramond charge”, JHEP 9711, 002 (1997); hep-th/9710230.

[22] E. Witten, “D-Branes and K-Theory”, JHEP 9812, 019 (1998); hep-th/9810188.

[23] V.D. Ivashchuk and V.N. Melnikov, “Multidimensional cosmology with m-component perfect fluid”, Int. J. Mod. Phys. D 3, 795-812 (1994); gr-qc/9403064.

[24] V.R. Gavrilov, V.D. Ivashchuk and V.N. Melnikov, “Integrable pseudo-Euclidean Toda-like systems in multidimensional cosmology with multicomponent perfect fluid”, J. Math. Phys. 36, 5829-5847 (1995); gr-qc/9407019.