Ribozyme-based insulator parts buffer synthetic circuits from genetic context

Chunbo Lou¹, Brynne Stanton¹, Ying-Ja Chen¹, Brian Munsky² & Christopher A Voigt¹

Synthetic genetic programs are built from circuits that integrate sensors and implement temporal control of gene expression1–4. Transcriptional circuits are layered by using promoters to carry the signal between circuits. In other words, the output promoter of one circuit serves as the input promoter to the next. Thus, connecting circuits requires physically connecting a promoter to the next circuit. We show that the sequence at the junction between the input promoter and circuit can affect the input-output response (transfer function) of the circuit5–9. A library of putative sequences that might reduce (or buffer) such context effects, which we refer to as ‘insulator parts’, is screened in Escherichia coli. We find that ribozymes that cleave the 5′ untranslated region (5′-UTR) of the mRNA are effective insulators. They generate quantitatively identical transfer functions, irrespective of the identity of the input promoter. When these insulators are used to join synthetic gene circuits, the behavior of layered circuits can be predicted using a mathematical model. The inclusion of insulators will be critical in reliably permuting circuits to build different programs.

A fundamental principle of synthetic biology is that genetic parts can be independently characterized and used to predict their combined behavior10,11. This principle underpins the high-throughput fabrication of valuable parts1,2, the storage of useful part information in a registry13,14 and the use of these data for computer-aided design15. In practice, however, the functions of parts are influenced by their genetic, environmental and cellular context16. This limits the designability of genetic systems, because each part needs to be characterized in its final context.

The function of a part can be affected by the sequence of neighboring parts, and we refer to this effect as ‘part-junction interference’. For example, a barcode part was found to contain a sequence similar to the –10 region of the constitutive promoter (http://2010.igem.org/Team:UC_Davis/notebook/c0051debug.html). Depending on the sequence of the upstream part, a promoter can be spontaneously formed at the junction between the barcode and neighboring part. Similarly, promoter parts are often defined by a relatively short (~50 bp) sequence, but regions 100 bp or more upstream can affect promoter strength17, and the effect of remote sequences can be reduced by including an insulator region18. A strong hairpin sequence has also been shown to insulate the ribosome binding site (RBS) from the sequence of the 5′ UTR19. Recently, it was shown that the processing of mRNA using CRISPR RNA processing elements could be used to reliably maintain relative promoter strengths and reduce interference between genes within an operon20.

Genetic circuits use biochemical interactions to implement a computational operation. Transcriptional circuits implement this operation on the level of promoters, where promoters serve as both the input and the output of the circuit. Thus, the connection of a new input to a circuit creates the possibility of junction interference. How the output of a logic gate changes as a function of the inputs is described by its transfer function. This should be an intrinsic property of the circuit, which is independent from the inducible system that is used to measure it. As part of building a program for an unrelated application, we characterized the transfer function of a circuit and serendipitously discovered the influence of part-junction interference. The circuit is a NOT gate where the signal of an input promoter is inverted by having it drive the expression of the CI repressor that turns off an output promoter (Fig. 1a)21–24. Because the transfer function is characterized using an inducible system, the raw data are in the form of concentrations (the input) and fluorescence (the output). So that the units of the inputs and outputs are the same, the activity of the inducible promoter in a cooperative function, where the output promoter activity declines as the input promoter turns on.

We characterized the transfer function again using the pBAD promoter to initiate transcription and drive the circuit. The activity of the pBAD promoter was first measured as a function of arabinose concentration. Then, the output of the pBAD-driven NOT gate was measured, and the two data sets were used to generate the transfer function of the NOT gate (Fig. 1c). Each point on the curve is the fluorescence measured using two genetic systems (pTAC-gfp and pTAC_CI_pOR1-gfp). This results in a cooperative function, where the output promoter activity activity declines as the input promoter turns on.

Initially, the IPTG-inducible pTAC promoter was used to characterize the NOT gate. The output of the CI-repressible pOR1 promoter was measured as a function of [IPTG] using green fluorescent protein (gfp). The activity of pTAC was also measured as a function of [IPTG]. These two data sets were used to generate the transfer function of the NOT gate (Fig. 1c). Each point on the curve is the fluorescence measured using two genetic systems (pTAC-gfp and pTAC_CI_pOR1-gfp). This results in a competitive function, where the output promoter activity activity declines as the input promoter turns on.

Received 25 May; accepted 19 September; published online 3 October 2012; doi:10.1038/nbt.2401
Figure 1  The transfer function of the NOT gate depends on the inducible system used to measure it. (a) Three inducible systems were connected to the NOT gate: pTAC, pLlacO-1 and pBAD. The NOT gate is based on the cl gene, which represses the pOR1 promoter. (b) The promoter activity of each inducible system is determined using gfp as a reporter alone and fused to the cl gene. (c) Data gathered using the constructs from parts a and b are used to determine the transfer function of the NOT gate. The transfer functions are shown as measured by the inducible systems of a. Each point represents one concentration of inducer that corresponds to expression from pOR1 (part a) and the output promoter of the inducible system (part b)). The inducer concentrations are: pTAC, 0, 0.1, 1, 5, 10, 20, 30, 40, 50, 70, 100 μM IPTG; pLlacO-1, 0.1, 1, 10, 50, 100, 150, 200, 300, 500, 1,000, 2,000, 3,000 μM IPTG; and pBAD, 0, 0.1, 1, 2, 5, 7, 10, 12.5, 25, 37.5, 50, 62.5 mM Ara. (d) The fluorescence measured from each inducible promoter driving the expression of gfp is compared to cl-gfp (part b)). The expression ratios are the slope of each line: 2.6 (pTAC) and 0.3 (pBAD). Expression of cl-gfp saturates at ~20 au (inset). As in part c, each point represents a single concentration of inducer. Error bars, mean ± s.d. obtained from at least three experiments performed on different days.

because the inputs are measured and reported as promoter activity, one would have expected the transfer functions to be identical.

The input promoter activity for both systems was measured using gfp, but the promoters controlled cl in the context of the circuit. Thus, we suspected that the expression ratios of CI to GFP were different under pBAD and pTAC control. To determine whether this was true, we constructed a fusion protein (cl-gfp) to monitor CI expression, and we compared it with GFP only (Fig. 1b). Indeed, these promoters yielded different ratios of CI-GFP to GFP expression: 0.3 for pBAD and 2.6 for pTAC (Fig. 1d). In other words, the identity of the upstream promoters caused the expression of CI-GFP to differ by an order of magnitude compared to GFP.

Whereas promoters technically end at the transcription start (+1) site, parts that are labeled as promoters often contain additional sequences downstream of position +1. This may be due either to the inclusion of additional regulatory elements or an unknown or misannotated start site. A potential explanation for the pBAD/pTAC discrepancy is that the two promoters generate transcripts with different 5′-UTR sequences on the mRNA. In particular, pTAC had a 27-nt leader sequence, whereas pBAD produced a 5-nt leader (Supplementary Fig. 1). To test the importance of these leader sequences, we used the pLlacO-1 promoter25, which is induced by IPTG, but in which the operator has been moved upstream of the transcription site (Supplementary Fig. 1). The resulting transfer function...

**Figure 2**  Screening the library of insulator parts. (a) The screen is based on the comparison of expression between gfp and cl-gfp. Each of the 54 putative insulators is inserted into both of these contexts, thus requiring 108 constructs. (b) Screening data are shown for the full library of insulators. Each line is a different insulator and each point is the fluorescence from the pair of constructs in part a at 0, 5, 50, 100, 300 or 1,000 μM IPTG. The solid black lines mark the upper (slope, 6.5) and lower (slope, 0.12) bounds of the distribution of insulators (pJSU and DG131 aRBS, respectively, in Supplementary Table 2). The blue curve corresponds to the behavior of pLlacO-1 without an insulator. (c) Under the pTAC promoter, RiboJ cleaves after the +34 nucleotide, thus removing the 5′ sequence from the promoter (+1 to +28). The primer used for the 5′RACE experiments is shown. (d) The agarose gel result for the cleaved mRNA and its controls. The gel result is for the amplified DNA samples that were reverse-transcribed from mRNA templates according to the 5′RACE protocol (Online Methods). In the presence of RiboJ, the TAP-4PNK-untreated sample has two faint bands (lane 5), but the TAP-4PNK-treated sample has one heavy dark band (lane 1). In the absence of RiboJ, the TAP-4PNK-treated (lane 6) and TAP-4PNK-untreated (lane 2) samples, respectively, have a weak or dark band. (e) 5′RACE sequencing data. All sequences are the complementary DNA sequences of RNA. The sequencing result of 5′RACE is for the DNA sample in lane 1 of d and read from an internal primer of the mRNA to the 5′-end. ‘RNA adapter’ is the reverse complementary DNA sequence of the RNA adaptor. The underlined sequence is removed from the mRNA by the ribozyme after the defined “G” site.
Figure 3 RiboJ and other insulators insulate the transfer function of the NOT and BUFFER gates. (a) The constructs from Figure 1b rebuilt to contain the RiboJ sequence between the output promoters of the inducible systems and the gfp and cI-gfp reporters. (b) The ratio between GFP and CI-GFP expression collapse onto a single curve for each inducible system. The concentrations of inducer are identical to those in Figure 1c. (c) The RiboJ insulator inserted upstream of the NOT gate for the three inducible systems. (d) The collapse of the data onto a single transfer function. The experiments are identical to those shown in Figure 1c. Error bars, mean ± s.d. of at least three experiments performed on different days. (e) The transfer functions of McbR NOT gate with and without the RiboJ and LtsvJ insulators. The transfer functions were measured using the pTACsym (red circles) and pSAL (black square) inducible systems. Their inducer concentrations are: pTACsym, 0, 0.1, 0.5, 1, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000 μM IPTG and pSAL, 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 μM salicylate. The reporter gene of the two new gates is gfp. (f) The transfer functions of R73a BUFFER gate with and without RiboJ. (g) The experimental data are compared to the predicted distribution when RiboJ is not included in the circuit. The inducer concentrations are (left to right): 0.1, 0.5, 10, 50 mM Ara. The hashed red lines show the difference between the predicted and measured distributions. Right: quantitative comparisons of distributions where the probability is divided into 30 bins for each curve. The data fit poorly to a line with slope of unity ($R^2 = 0.30$). (h) Same as g, but inclusion of RiboJ improves the predictability of the assembled circuit. The comparison between the predicted and experimental follows a linear fit ($R^2 = 0.89$). Far right, for g and h, the experimental mean and predicted mean of the probability distributions.
was very different from that of either pBAD or pTAC in that it sharply deactivated as a function of input promoter activity, but rapidly saturated at a high output activity (Fig. 1c, blue). With the pLacO-1 promoter, there was a nonlinear relationship between CI-GFP and GFP (Fig. 1d, inset). Additional experiments focusing on perturbations of the sequences around the part junction were performed to further elucidate the source of the interference (Supplementary Figs. 2–4). Constructs were tested where we systematically made mutations near the junction, truncated the ci gene and varied the 5′-UTR. These experiments revealed that the interference was not due to the promoter sequence near the transcriptional start site (Supplementary Fig. 2), or to the function of CI (Supplementary Fig. 3). The 5′-UTR (Supplementary Figs. 4) was required for part-junction interference, and the interference was at the level of transcription, as measured using qRT-PCR (Supplementary Fig. 5).

Based on these observations, we collated a library of 54 different 5′-UTR sequences that we thought might function as insulators (Supplementary Table 1) and screened this library to identify insulator parts that disrupted part-junction interference. We screened for insulators that either removed the saturation of CI-GFP (that is, linearized the curve), or prevented the transcribed promoter sequence from affecting translation (that is, fixed the ratio of CI-GFP to GFP). Candidate insulators were first inserted between pLacO-1 and ci-gfp or gfp and tested for their ability to linearize the curve (Fig. 2a). Most of the spacers in the library (48 out of 54) rescued the linear relationship between CI-GFP and GFP (Fig. 2b). However, the slopes of the lines varied, ranging from 0.12 to 6.5 (Supplementary Table 2). For each promoter, RiboJ collapsed these ratios to a single promoter-independent curve (Fig. 3b). The ratio generated by pTAC decreased from 2.6 to 1.1 and the ratio from pBAD increased from 0.3 to 1.2. The pLacO-1 promoter recovered a linear relationship between CI-GFP and GFP and the ratio became 1.3. These results indicate that the insulator sequence eliminated the impact of a part-junction sequence that was added by a promoter to the 5′-UTR. Each input promoter added a different sequence to the 5′-UTR which was cleaved off by the ribozyme (Fig. 2c).

Next, we tested the ability of RiboJ to eliminate the interference mediated by the input promoter such that its identity was decoupled from the function of the NOT gate (Fig. 3c). All of the transfer functions collapsed onto the same curve (Fig. 3d). However, when we inactivated the cleavage activity of RiboJ, the NOT gate’s transfer functions generated by pTAC and pBAD diverged again (Supplementary Fig. 6). Circuit dynamics were measured and the influence of RiboJ was found to be independent of time (Supplementary Figs. 7–8). Thus, with the inclusion of an insulator, the transfer function became an intrinsic property of the circuit, meaning that the output promoter depended only on the activity of the input promoter parts, and not the sequence at the part junction. This was in sharp contrast with the performance of the circuit without the insulator (Fig. 1c). This function held for other genetic circuits we tested, including a NOT gate based on a different repressor (McbR) and a BUFFER gate based on a phage activator (R738) (Fig. 3e,f). These data were gathered using different inducible promoters (pSal and pTACsym) and a different reporter (yellow fluorescent protein), underscoring the broad utility of the insulator.

Genetic programs require the functional connection of multiple genetic circuits. Reusing the same 75-bp insulator for each circuit in a program could result in evolutionary instability27. The reuse of DNA sequences in multiple locations of a design can lead to homologous recombination. To expand the number of available insulators, nine additional ribozymes were identified in the NCBI sequence database and screened for their insulating capability (Table 1). Each ribozyme-based insulator was tested for its ability to produce the same ratio of CI-GFP to GFP, whether under the control of pTAC or pBAD (Table 1). As with RiboJ, we added an additional hairpin downstream of each ribozyme. Out of this library, five additional insulators were identified: LtsvJ, SccJ, SarJ, PlmJ, and VtmoJ (Supplementary Fig. 9). These insulators are statistically equally effective. The remaining four insulators were not selected because residual interference remained when the input promoter was changed. The LtsvJ insulator was shown to have the same effect on the McbR-based NOT gate as RiboJ (Fig. 3e).

### Table 1 Performance of ribozymes obtained via part mining

| Name | Sequence | Slope - pBAD | Slope - pTAC |
|------|----------|-------------|-------------|
| LtsvJ | AGTACGCTGAGTGTGATAACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 0.6 ± 0.1 | 0.6 ± 0.1 |
| SccJ | AGATGCTGAGTGTGATAACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 1.1 ± 0.1 | 1.2 ± 0.2 |
| Riboj | AGTGCTGACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 1.4 ± 0.3 | 1.3 ± 0.3 |
| SarJ | AGATGCTGACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 2.2 ± 0.2 | 2.4 ± 0.2 |
| PlmJ | AGTACAAGCTGACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 1.6 ± 0.2 | 1.8 ± 0.1 |
| VtmoJ | AGTGCTGACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 1.0 ± 0.1 | 1.3 ± 0.1 |
| ChmJ | AGAAAAGATGGAGTGTGATAACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 1.9 ± 0.1 | 2.4 ± 0.3 |
| ScvmJ | AGATGCTGACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 0.8 ± 0.1 | 1.4 ± 0.1 |
| SitJ | AGTACAAGCTGACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 2.2 ± 0.5 | 1.4 ± 0.2 |
| PlmvJ | AGAAAGATGGAGTGTGATAACCCCTGACAAGGAAGAAGCAGGTCTGACACTTGAATTTTTTATAACACTTCAATCAAAATATTAGTTTAA | 2.0 ± 0.5 | 5.9 ± 1.2 |

*The names are based on the ribozyme names from references 47, 48. Each insulator also contains an additional hairpin to expose the RBS. The green residues form stem I, the blue residues form stem II and the red residues are the conserved catalytic core. The pink residues represent the stem loop of the added hairpin. The sequence downstream of the hairpin is: actagaagagagagaattcctcctttcttctcaatcataataatTTTATAACACTTCAATCAAAATATTAGTTTAA.

a)The values are the average of at least three experiments on different days. The average error is 14%. The detailed measurements are provided in Supplementary Figure 9.

b)The values are the average of at least three experiments on different days. The average error is 14%. The detailed measurements are provided in Supplementary Figure 9.

### Supplementary Information

1. The names are based on the ribozyme names from references 47, 48. Each insulator also contains an additional hairpin to expose the RBS. The green residues form stem I, the blue residues form stem II and the red residues are the conserved catalytic core. The pink residues represent the stem loop of the added hairpin. The sequence downstream of the hairpin is: actagaagagagagaattcctcctttcttctcaatcataataatTTTATAACACTTCAATCAAAATATTAGTTTAA.

2. The values are the average of at least three experiments on different days. The average error is 14%. The detailed measurements are provided in Supplementary Figure 9.
Efforts are underway to automate the assembly of complex, multicircuit programs. This requires mathematical models that can quickly predict the combined behavior of circuits when they are connected in series. Cellular regulation is notoriously noisy, and the signal that links the circuits (promoter activity) will fluctuate from cell to cell. When characterizing circuit transfer functions with flow cytometry, it is possible to measure the precise statistics of these cell-to-cell fluctuations within a population. These statistics are now recognized to contain valuable information about gene regulation phenomena. Ideally, one would fully utilize this information to constrain models and predict how signals propagate from one circuit to the next.

The Gillespie stochastic simulation algorithm (SSA) has been broadly applied to chemical and biological systems. This approach requires a large number of individual simulations to get sufficiently precise statistics. It also requires many kinetic rate parameters and is not suited for stiff problems. The stochastic analysis that we employ considers a large sequence with many part-junctions. Several approaches can mitigate this effect. First, computational methods based on bioinformatics and biophysics can actively scan a design to identify and eliminate putative interference. Second, the inclusion of insulators such as those described in this work enables classes of interference to be reduced without relying on predictions. Third, strict measurement reporting and carefully engineered context independence could improve the predictability of part combinations.

METHODS

Methods and any associated references are available in the online version of the paper.

ACKNOWLEDGMENTS

C.A.V. is supported by Life Technologies, Defense Advanced Research Projects Agency Chronicle of Lineage Indicator of Origins (DARPA CLIO, N66001-12-C-4018), Office of Naval Research (N00014-10-1-0245), National Science Foundation (NSF) (CCF-0943385), National Institutes of Health (AI867699) and the NSF Synthetic Biology Engineering Research Center (SynBERC, SA5284-111210).

AUTHOR CONTRIBUTIONS

C.A.V. conceived of and supervised the project. C.L. designed and performed the experiments. B.S. performed experiments with the McbR repressor. Y.-J.C. and C.L. performed the q PCR experiments. B.M. and C.L. analyzed data. C.L., R.M., Y.-J.C. and C.A.V. wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/doifinder/10.1038/nbt.2401. Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Kim, P.M. & Tidor, B. Limitations of quantitative gene regulation models: a case study. Genome Res. 13, 2391–2395 (2003).
2. Del Vecchio, D., Ninfa, A.J. & Sontag, E.D. Modular cell biology: retroactivity and insulation. Mol. Syst. Biol. 4, 161 (2008).
3. Grünberg, R. & Serrano, L. Strategies for protein synthetic biology. Nucleic Acids Res. 38, 2663–2675 (2010).
4. Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5, 842–848 (2009).
5. Ellis, T., Wang, X. & Collins, J.J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 (2009).
6. Anderson, J.C., Voigt, C.A. & Arkin, A.P. Environmental signal integration by a modular AND gate. Mol. Syst. Biol. 3, 133 (2007).
7. Wang, B., Kitney, R.I., Joly, N. & Buck, M. Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun. 2, 508 (2011).
8. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102, 3581–3586 (2005).
9. Pedraza, J.M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).
10. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).
11. Voigt, C.A. Genetic parts to program bacteria.Curr. Opin. Biotechnol. 17, 548–557 (2006).
12. Bio Fab Group et al. Engineering life: building a lab for biology. Sci. Am. 294, 44–51 (2006).
13. Shetty, R.P., Endy, D. & Knight, T.F. Jr Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).
14. Anderson, J.C. et al. Bg/Bricks: A flexible standard for biological part assembly. J. Biol. Eng. 4, 1 (2010).
15. Clancy, K. & Voigt, C.A. Programming cells: towards an automated ‘Genetic Compiler’. 
Curr. Opin. Biotechnol. 21, 572–581 (2010).
16. Arkin, A. Setting the standard in synthetic biology. Nat. Biotechnol. 26, 771–774 
(2008).
17. Rhodius, V.A., Mutilak, V.K. & Gross, C.A. Predicting the strength of UP-elements and 
full-length E. coli αE promoters. Nucleic Acids Res. 10.1093/nar/gkr1190 (2012).
18. Davis, J.H., Rubin, A.J. & Sauer, R.T. Design, construction and characterization of a set of 
insulated bacterial promoters. Nucleic Acids Res. 39, 1131–1141 (2011).
19. Carrier, T.A. & Keasing, J.D. Engineering mRNA stability in E. coli by the addition of 
synthetic hairpins using a S’ cassette system. Biotechnol. Bioeng. 55, 577–580 (1997).
20. Qi, L., Haurwitz, R.E., Shao, W., Doudna, J.A. & Arkin, A.P. RNA processing enables 
predictable programming of gene expression. Nat. Biotechnol. advance online publica-
tion, doi:10.1038/nbt.2355 (16 September 2012).
21. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in 
Escherichia coli. Nature 403, 339–342 (2000).
22. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. 
Nature 403, 335–338 (2000).
23. Yokobayashi, Y., Weiss, R. & Arnold, F.H. Directed evolution of a genetic circuit. 
Proc. Natl. Acad. Sci. USA 99, 16587–16591 (2002).
24. Lou, C. et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off 
switch. Mol. Syst. Biol. 6, 350 (2010).
25. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in 
Escherichia coli via the LacI/O, the TetR/O and AraC/I–I2 regulatory elements. Nucleic 
Acids Res. 25, 1203–1210 (1997).
26. Buzayan, J.M., Gerlach, W.L. & Brunning, G. Satellite tobacco ringspot virus RNA: A 
subset of the RNA sequence is sufficient for autolytic processing. Proc. Natl. Acad. 
Sci. USA 83, 8859–8862 (1986).
27. Galdzicki, M., Rodriguez, C., Chandran, D., Sauro, H.M. & Gennari, J.H. Standard 
Biological Parts Knowledgebase. PLoS ONE 6, e17005 (2011).
28. Forster, A.C. & Symons, R.H. Self-cleavage of muroid RNA is performed by the proposed 
55-nucleotide active site. Cell 50, 9–16 (1987).
29. Di Serio, F., Daris, J.A., Ragazzino, A. & Flores, R. A 451-nucleotide circular RNA 
from cherry with hammerhead ribozymes in its strands of both polarities. J. Virol. 71, 
6603–6610 (1997).
30. Kaper, J.M., Tousignant, M.E. & Steger, G. Nucleotide sequence predicts circularity and 
self-cleavage of 300ribonucleotide satellite of arabis mosaic virus. Biochem. Biophys. 
Res. Commun. 154, 318–325 (1988).
31. Hernández, C. & Flores, R. Plus and minus RNAs of peach latent mosaic viroid 
self-cleave in vitro via hammerhead structures. Proc. Natl. Acad. Sci. USA 89, 
3711–3715 (1992).
32. Rossinck, M.J., Sleat, D. & Palukaitis, P. Satellite RNAs of plant viruses: structures and 
biological effects. Microbiol. Rev. 56, 265–279 (1992).
33. Beal, J., Lu, T. & Weiss, R. Automatic compilation from high-level biologically-ori-
ented programming language to genetic regulatory networks. PLoS ONE 6, e22490 
(2011).
34. Munksy, B., Neupert, G. & van Oudenaarden, A. Using gene expression noise to understand 
gene regulation. Science 336, 183–187 (2012).
35. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 
81, 2340–2361 (1977).
36. Arkin, A., Ross, J. & McAdams, H.H. Stochastic kinetic analysis of developmental pathway 
 bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).
37. Munksy, B. & Kharmash, M. The finite state projection algorithm for the solution of the 
chemical master equation. J. Chem. Phys. 124, 044104 (2006).
38. Munksy, B., Trinh, B. & Kharmash, M. Listening to the noise: random fluctuations reveal 
gene network parameters. Mol. Syst. Biol. 5, 318 (2009).
39. Moon, T.S., Lou, C., Tamsir, A., Stanton B.C. & Voigt, C.A. Genetic programs constructed 
from layered logic gates in single cells. Nature advance online publication, doi:10.1038/
nature11516 (7 October 2012).
40. Walczak, A.M., Mugler, A. & Wiggins, C.H. A stochastic spectral analysis of trans-
criptional regulatory cascades. Proc. Natl. Acad. Sci. USA 106, 6529–6534 
(2009).
41. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engi-
neered yeast. Nature 440, 940–943 (2006).
42. Temme, K., Zhao, D. & Voigt, C.A. Refactoring the nitrogen fixation gene cluster from 
Klebsiella oxytoca. Proc. Natl. Acad. Sci. USA 109, 7085–7090 (2012).
43. Rhodius, V.A. & Mutilak, V.K. Predicting strength and function for promoters of the 
Escherichia coli alternative sigma factor, sigmE. Proc. Natl. Acad. Sci. USA 107, 
2854–2859 (2010).
44. Solis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding 
sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).
45. Delcher, A.L., Harmon, D., Kasif, S., White, O. & Salzberg, S.L. Improved microbial gene 
identification with GLIMME. Nucleic Acids Res. 27, 4636–4641 (1999).
46. Kelly, J.R. et al. Measuring the activity of BioBrick promoters using an in vivo reference 
standard. J. Biol. Eng. 3, 4 (2009).
47. Khvorova, A., Lescombe, A., Westhof, E. & Jayasena, S.D. Sequence elements outside the 
hammerhead ribozyme catalytic core enable intracellular activity. Nat. Struct. Biol. 10, 
708–712 (2003).
48. Nelson, J.A., Shepetinovskaya, I. & Uhlenbeck, O.C. Hammerheads derived from sTRSV 
show enhanced cleavage and ligation rate constants. Biochemistry 44, 14577–14585 
(2005).
Fluorescence measurement. The fluorescence distribution of each sample was measured using a LSRII flow cytometer (BD Biosciences) with appropriate voltage settings (FSC:516, SSC:286, FITC:680, B:650). Each distribution contains at least 50,000 events and is gated by the forward and side scattering using FlowJo (v7.6). The geometric mean of each sample is calculated. The autofluorescence of E. coli DH10B cells containing pSB4C5 plasmid alone was measured and subtracted from the mean value to generate the fluorescence values reported.

5′-terminal mRNA analysis. To validate the self-cleaving activity of the RiboJ spacer, we sequenced the 5′-terminal end of the mRNA encoding cI under the control of pTAC. The mRNA was extracted and reverse-transcribed by rapid amplification of cRNA end (5′RACE) protocol (Invitrogen 5′RACE System for rapid amplification of cRNA ends, Version 2.0). Total RNA of each sample was isolated and purified using the RiboPure bacteria kit (Ambion). 14 µg total RNA of each sample was sequentially treated with T4 polynucleotide kinase (T4 PNK) (Invitrogen) and tobacco acid pyrophosphatase (TAP) (Epicentre) before ligation with the unique RNA adaptor (5′-GAGGACUCGAGCUCAAGC-3′). Treatment with the T4 PNK is important, because the 5′-hydroxyl terminus of the self-cleaved mRNA cannot ligate with the RNA adaptor until a phosphate is added by the T4 PNK. TAP facilitates converting the 5′-triphosphate to single-phosphate of the uncleaved mRNA, thus promoting the ligation between mRNA and the adaptor. After ligation, reverse transcription and subsequent amplification were performed by SuperScript III (Life Technologies) with a gene-specific primer (5′-TCCTGGGATAAGCCAAGTTC-3′), whose PCR product was purified and subsequently sequenced.