Experimental demonstration of macroscopic quantum coherence in Gaussian states

Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.; Takeno, Y.; Yukawa, M.; Yonezawa, H.; Furusawa, A.

Published in:
Physical Review A

Link to article, DOI:
10.1103/PhysRevA.76.030101

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Marquardt, C., Andersen, U. L., Leuchs, G., Takeno, Y., Yukawa, M., Yonezawa, H., & Furusawa, A. (2007). Experimental demonstration of macroscopic quantum coherence in Gaussian states. Physical Review A, 76(3), 030101. https://doi.org/10.1103/PhysRevA.76.030101
Experimental demonstration of macroscopic quantum coherence in Gaussian states

Christoph Marquardt,1 Ulrik L. Andersen,1,2 Gerd Leuchs,1 Yuishi Takeno,3 Mitsuyoshi Yukawa,3
Hidehiro Yonezawa,1 and Akira Furusawa3
1Institut für Optik, Information und Photonik, Max-Planck Forschungsgruppe, Universität Erlangen-Nürnberg,
Günther-Scharowsky-Strasse 1, 91058 Erlangen, Germany
2Department of Physics, Technical University of Denmark, Building 309, 2800 Lyngby, Denmark
3Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a
recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The
macroscopic coherence stems from interference between macroscopically distinct states in phase space, and we
prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 ± 0.02
shot noise units. This is surprising because coherent states are generally considered being at the border between
classical and quantum states, not yet displaying any nonclassical effect. For squeezed and entangled states the
effect may be larger but depends critically on the state purity.

DOI: 10.1103/PhysRevA.76.030101 PACS number(s): 03.65.Ta, 42.50.Ar, 42.50.Dv, 42.50.Xa

Quantum mechanics has led to many peculiar effects that were not easily conceivable with everyday perception. Fa-
mous examples are the concept of quantized energy [1], the double-slit experiment [2], and the Einstein-Podolsky-Rosen
(EPR) gedanken experiment [3]. Another striking example was introduced by Schrödinger in 1935, when discussing
quantum superpositions of macroscopically distinct states. In his famous gedanken experiment a cat could be in a state of being
neither dead nor alive [4]. By assigning the two quantum states “dead” and “alive” by |Ψ+⟩ and |Ψ−⟩, the envisioned state of the cat is the coherent superposition |Ψ⟩ = |Ψ+⟩ + |Ψ−⟩ until it is observed and collapses into one of the two macroscopically distinct states, thus determining the fate of the cat. Microscopic superposition states such as in two-level atoms are readily accepted, whereas the macroscopic superposition state such as the Schrödinger cat state is considered counterintuitive and hardly imaginable. However, in recent years there have been several attempts to produce superposition states approaching the macroscopic regime [5]. A severe hindrance for the production of these states, however, is decoherence associated with the unavoidable coupling to the surrounding reservoir which causes the system to evolve into a classical mixture [6].

Recently Cavalcanti and Reid introduced the concept of generalized macroscopic superpositions [7]. Instead of the original example of |Ψ⟩+|Ψ⟩ with two macroscopically distinct states, the generalized state is a three-component coherent superposition of the form |Ψ⟩+|Ψ⟩+|Ψ⟩. Thus in addition to the two macroscopically distinct states, an “inter-
mediate” state |Ψ⟩ was introduced. The neighboring pairs of states—that is, (|Ψ⟩, |Ψ⟩) and (|Ψ⟩, |Ψ⟩)—might be
macroscopically distinct as witnessed by nonzero off-diagonal density matrix elements close to the diagonal. It is, however, still possible to have the two outer states |Ψ⟩ and |Ψ⟩ macroscopically distinct. This macroscopic coherence, hidden in the overall microscopic state, is reflected by the most off-diagonal element (⟨Ψ||ρ||Ψ⟩) in the density matrix (ρ) being nonzero. As shown by Cavalcanti and Reid, such macroscopic coherences appear in various common states and can be witnessed through simple homodyne measurements of conjugate variables [7].

In this Rapid Communication we experimentally witness the presence of macroscopic coherence in various states employing the criteria put forward in Ref. [7]. The states under interrogations are coherent, squeezed, and entangled states, all of which are proven to contain macroscopic coherence to some extent. We also investigate the sensitivity of the macroscopicality with regard to the degree of squeezing and purity of the squeezed states.

We start by shortly reviewing the definition of a generalized superposition state as presented in Ref. [7]. This state is given by

\[|Φ⟩ = c_+|Ψ⟩ + c_0|Ψ⟩ + c_-|Ψ⟩, \]

with the probability amplitudes \(c_+, c_0, c_- \neq 0 \). Measuring the state |Φ⟩ with the projectors |Ψ⟩⟨Ψ|, |Ψ⟩⟨Ψ|, and |Ψ⟩⟨Ψ| results in the outcomes +1, −1, and 0 (with probabilities \(|c_+|^2, |c_-|^2, \) and \(|c_0|^2 \)) where the +1 and −1 outcomes are macroscopically or mesoscopically distinguishable. In the case of quadrature measurements, a possible separation of the outcomes to yield an appropriate positive-operator-valued measurement is illustrated in Fig. 1. The results of the measurement of a quadrature variable \(x \) are divided into three distinct regions \(I=\{−1,0,+1\} \) corresponding to the outcomes of the states mentioned (with the probabilities \(P_-, P_0, \) and \(P_+ \) to get a result in that region). The \(I=−1 \) and \(I=+1 \) regions are separated by a distance \(S \), giving a measure for the macroscopicity of the generalized superpositions.

The next question is how to measure the existence of these superpositions. It is neither realistic nor feasible to construct a measurement device that projects directly onto the superposition state \(|c_+|Ψ⟩ + c_-|Ψ⟩ \); such an apparatus would be highly complex and the projected state necessarily highly sensitive to decoherence [8]. Alternatively, the presence of macroscopic coherence can be witnessed by tomographic reconstruction of the state’s density matrix in the basis spanned by the eigenstates |Ψ⟩, |Ψ⟩, and |Ψ⟩. The nonzero values
which takes any microscopic superpositions between neighboring subspaces. In that case Heisenberg’s uncertainty relation can be verified through simple ensemble measurements of conjugate quadratures.

We will now sketch the basic idea used in [7]. If phase space is divided into the three subspaces as indicated in Fig. 1 and no correlations between the subspaces are assumed, the overall variance of the \(p \) variable in the mixed state is the weighted sum of the variances of \(p \) in the individual regions:

\[
\Delta_{\text{mixed}}^2 p \geq P_\mu \Delta_{\mu}^2 p + P_\nu \Delta_{\nu}^2 p + P_\varepsilon \Delta_{\varepsilon}^2 p.
\]

Imagine for a moment there were no coherences between subspaces. In that case Heisenberg’s uncertainty relation would apply to each subspace separately and \(\Delta_{\mu}^2 p \geq \Delta^2 p \) for \(i = -, 0, + \) and \(\Delta_{\mu}^2 p \) calculated from \(\Delta_{\mu}^2 x \) according to the uncertainty principle (see Fig. 2). A violation of inequality (2) is therefore evidence for coherences between the different subspaces. At this point microscopic superpositions would suffice to violate the inequality. Therefore, Cavalcanti and Reid [7] replaced \(\Delta_{\mu}^2 p \) by the smaller variance \(\Delta_{\mu}^2 p \), etc., which takes any microscopic superpositions between neighboring regions into account. The resulting new inequality is now only violated if there are macroscopic superpositions between the two outer well-separated subspaces. The final step is expressing the various variances of \(p \) by quantities which are straightforward to measure. A violation of the resulting inequality

\[
(\Delta_{\text{mixed}}^2 x + P_\mu \Delta_{\mu}^2 x) \geq 1
\]

is sufficient to prove the presence of generalized superpositions of the form (1) with a distance \(S \) in phase space. The variance \(\Delta_{\text{mixed}}^2 x \) of \(x \) is defined as \(\Delta_{\text{mixed}}^2 x = P_\mu \Delta_{\mu}^2 x + P_\nu \Delta_{\nu}^2 x \) with \(\Delta_{\mu}^2 x \) and \(\Delta_{\nu}^2 x \) being the variances of the distributions associated with the regions \(I = +1 \) and \(I = -1 \) (see Fig. 1), and \(\Delta_{\mu}^2 x \) is the variance of the conjugate variable \(p \). The distance \(S \) contributes to \(\delta = (\mu_+ + S/2)^2 + (\mu_- - S/2)^2 + S^2/2 + \Delta_{\mu}^2 x + \Delta_{\nu}^2 x \), where \(\mu_+ \) and \(\mu_- \) are the mean values of the distributions associated with the regions \(I = +1 \) and \(I = -1 \).

Inequality (3) determines the maximum distance \(S \), for which a generalized superposition can be proven for squeezed Gaussian states. \(S_{\text{max}} \) depends on the degree of squeezing as well as on the purity of the squeezed states [9]. For pure squeezed states generalized superpositions exist for an \(S_{\text{max}} \) of 0.51 of the standard deviation of the marginal probability distribution of the antisqueezed quadrature. Therefore, by squeezing the \(p \) quadrature, the associated antisqueezing of \(x \) enables the violation for larger distances \(S \), eventually reaching a truly macroscopic regime for large degrees of squeezing. However, in practice, the production of highly squeezed states is often accompanied with decoherence, which on the other hand makes it harder to violate the inequality (3) with large \(S \). Hence there exists a trade-off between squeezing and purity which is illustrated in Fig. 3.

Interestingly, even the ubiquitous coherent state contains generalized superpositions with a distance of half a shot
noise unit (SNU) [7], although it is generally believed not to display any measurable nonclassical properties. As the statistic of a coherent state is not altered by attenuation, these superpositions are immune to loss.

We now proceed with the experiment proving macroscopic coherence of the Gaussian-squeezed states sketched in Fig. 4. For the generation of squeezed states we used a periodically poled KTiOPO$_4$ (PPKTP) optical parametric oscillator (OPO) [10]. The OPO was pumped by the second harmonic of a cw Ti:sapphire laser (Coherent MBR110) at 430 nm, and the oscillation threshold was 180 mW. The squeezed states generated at 860 nm were measured using a balanced homodyne detector (HD). To ensure a high spatial overlap between the local oscillator and the squeezed states, the former was spatially cleaned using an empty cavity with the OPO and antisqueezing between 3.7 dB and 7.7 dB associated with different pump powers of the OPO and antisqueezing between 3.9 dB and 11.3 dB, respectively.

To prove the presence of macroscopic superposition states we record time series of the quadrature distributions of conjugate quadratures (x and p) in separate runs. Subsequently we compute the variance of p as well as the variances and mean values for the distinct regions resulting after binning the outcomes of the x measurements.

First we experimentally demonstrated the proof of generalized superpositions with distances of 0.51 SNU for vacuum (coherent) states. The vacuum state was measured by blocking the input beam of the homodyne system and measuring conjugate quadratures as mentioned above. After calculating the relevant variances and using inequality (3), generalized superposition states were proven with a distance of $S=0.51$ SNU.

To increase the maximum S, for which macroscopic superposition states can be witnessed, the probability distribution of a measured quadrature has to become broader, leading to a decrease of the variance of the conjugate variable. This can, as mentioned above, be accomplished with squeezed states. However, often a considerable amount of squeezing is accompanied with a loss of purity in real experiments, thus creating a trade-off between squeezing and purity.
tangled beams were generated by two OPOs using a setup of different pump powers. The best trade-off between squeezing and purity is found for a pump power of 30 mW, which results in squeezed states of −5.7 dB squeezing and a purity of 0.85. The purity shows its importance especially at the state of highest squeezing (pump power of 70 mW). Although −7.7 dB of squeezing is measured, generalized superpositions were only proven with a maximum distance of $S_{\text{max}}=0.40\pm0.02$ SNU, because the purity of the state dropped to 0.66. The vacuum coherent state shows a steep slope because of lack of squeezing and rises above 1 in inequality (3) for distances larger than 0.51 SNU. In Fig. 3 we plot the maximum distance (S_{max}) achieved for each pump power.

We also studied two other cases. In the first one two entangled beams were generated by two OPOs using a setup described in [11]. In the second one we studied coherent states emitted from a low noise laser, such as the one used in [12]. We demonstrated the violation of inequality (3) in both cases with a maximum distance of, respectively, 0.30±0.02 and 0.51±0.02 SNU. For the entangled beams the S value was limited by the impurity of the states used. For the coherent beam with 10^{10} photons per measurement time interval we reproduced the result obtained for the vacuum state in Fig. 6. Details will be reported elsewhere.

It is intriguing that in the ubiquitous coherent states sizable generalized superpositions can be proved. They serve as a signature of the quantumness of a coherent state, regardless of its displacement in phase space. For several quantum states we proved the existence of generalized superpositions with distances between the Ψ_{+} and Ψ_{-} regions approaching one shot noise unit, which is comparable to the distances obtained in recent efforts on generating a Schrödinger cat-like state known as a “kitten” state [13]. Finding a generally applicable definition of macroscopicality of such superpositions is not an easy task. The question is much debated also for other systems in quantum optics [14]. It is often not the overall number of photons in a mode which indicates macroscopicality but rather the effective number required to create the nonclassical nature of the field [15]. In a number of special cases measures of macroscopicality were suggested [16]. A connection to the definition of generalized superpositions as defined in [7] will be the goal of future investigations.

We would like to thank E. G. Cavalcanti, M. D. Reid, N. Treps, and C. Fabre for useful discussions. G.L. acknowledges support from the EU project COVAQIAL (Grant No. FP6-511004). A.F. acknowledges financial support from Japan Science and Technology Agency and the MEXT of Japan.

[1] M. Planck, Verh. Dtsch. Phys. Ges. 2, 237 (1900); Ann. Phys. 4, 553 (1901); A. Einstein, ibid. 17, 132 (1905).
[2] G. I. Taylor, Proc. Cambridge Philos. Soc. 15, 114115 (1909); C. Jönsson, Z. Phys. 161, 454 (1961).
[3] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
[4] E. Schrödinger, Naturwiss. 23, 807 (1935).
[5] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001); C. Monroe et al., Science 272, 1131 (1996); C. H. van der Wal et al., ibid. 290, 773 (2000); J. R. Friedman et al., Nature (London) 406, 43 (2000); W. Wernsdorfer et al., Phys. Rev. Lett. 79, 4014 (1997).
[6] A. O. Caldeira and A. J. Leggett, Phys. Rev. A 31, 1059 (1985); W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[7] E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97, 170405 (2006).
[8] W. H. Zurek, Phys. Rev. D 24, 1516 (1981).
[9] We define the purity as $P=1/\sqrt{\Delta^2+\Delta^2p}$.
[10] S. Suzuki et al., Appl. Phys. Lett. 89, 061116 (2006).
[11] N. Takei et al., Phys. Rev. A 74, 060101(R) (2006).
[12] O. Glöckl, U. L. Andersen, and G. Leuchs, Phys. Rev. A 73, 012306 (2006).
[13] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, Phys. Rev. Lett. 97, 083604 (2006); A. Ourjoumtsev et al., Science 321, 83 (2006); K. Wakui et al., Opt. Express 15, 3568 (2007).
[14] A. J. Leggett, J. Phys.: Condens. Matter 14, R415 (2002).
[15] W. P. Bowen et al., Phys. Rev. Lett. 90, 043601 (2003); W. P. Bowen et al., Phys. Rev. A 69, 012304 (2004); G. Leuchs and U. L. Andersen, Laser Phys. 15, 129 (2005).
[16] J. I. Korsbakken et al., Phys. Rev. A 75, 042104 (2007); F. Marquardt, B. Abel, and J. v. Delft, e-print arXiv:quant-ph/0609007; W. Dür, C. Simon, and J. I. Cirac, Phys. Rev. Lett. 89, 210402 (2002); A. J. Leggett, Suppl. Prog. Theor. Phys. 69, 80 (1980).