Associativity of fusion products of C_1-cofinite \mathbb{N}-gradable modules of vertex operator algebra

Masahiko Miyamoto *
Institute of Mathematics, University of Tsukuba
Institute of Mathematics, Academia Sinica

Abstract

We prove an associative law of the fusion products \boxtimes of C_1-cofinite \mathbb{N}-gradable modules for a vertex operator algebra V. To be more precise, for C_1-cofinite \mathbb{N}-gradable V-modules A, B, C and their fusion products $(A \boxtimes B, \mathcal{Y}^{AB})$, $(A \boxtimes B) \boxtimes C, \mathcal{Y}^{AB}C, (B \boxtimes C, \mathcal{Y}^{BC}), (A \boxtimes (B \boxtimes C), \mathcal{Y}^{ABC})$ with logarithmic intertwining operators $\mathcal{Y}^{AB}, \ldots, \mathcal{Y}^{ABC}$ satisfying the universal properties for \mathbb{N}-gradable modules, we prove that four-point correlation functions $(\theta, \mathcal{Y}^{AB}(v, x)\mathcal{Y}^{BC}(u, y)w)$ and $(\theta', \mathcal{Y}^{AB}(v, x-y)u, y)w)$ are locally normally convergent over $\{(x, y) \in \mathbb{C}^2 | 0 < |x-y| < |y| < |x|\}$.

We then take their respective principal branches

$$\tilde{F}(\theta, \mathcal{Y}^{AB}(v, x)\mathcal{Y}^{BC}(u, y)w)$$

on $D^2 = \{(x, y) \in \mathbb{C}^2 | 0 < |x-y| < |y| < |x|, x, y, x-y \notin \mathbb{R} \leq 0\}$ and then show that there is an isomorphism $\phi^{*}_{[AB]C} : (A \boxtimes B) \boxtimes C \rightarrow A \boxtimes (B \boxtimes C)$ such that

$$\tilde{F}(\theta, \mathcal{Y}^{AB}(v, x)\mathcal{Y}^{BC}(u, y)w)) = \tilde{F}(\phi^{*}_{[AB]C}(\theta), \mathcal{Y}^{AB}(v, x-y)u, y)w))$$

on D^2 for $\theta \in (A \boxtimes (B \boxtimes C))^\vee$, $v \in A$, $u \in B$, and $w \in C$, where W^\vee denotes the contragredient module of W and $\phi^{*}_{[AB]C}$ denotes the dual of $\phi_{[AB]C}$. We also prove the pentagon identity.

1 Introduction

As a counterpart of a tensor product of two modules in the VOA theory, Huang and Lepowsky[4] have introduced a concept of fusion products $\boxtimes_{p(x)}$. Huang [3] has also shown that four-point correlation functions for three C_1-cofinite \mathbb{N}-gradable modules satisfy differential equations with regular singularity and then as an application, he has proved an associative law of fusion products under some conditions, where a V-module W is called to be ”C_1-cofinite” if $\dim V/C_1(W) < \infty$ for $C_1(W) := \text{span}_{\mathbb{C}}\{\alpha_{-1}w \in W | w \in W, \alpha \in V, \text{wt}(\alpha) \geq 1\}$ and a V-module W is called \mathbb{N}-gradable if W has a decomposition $W = \oplus_{m \in \mathbb{N}} W_{(m)}$ satisfying $\alpha_{k}W_{(m)} \subseteq W_{(m+\text{wt}(\alpha)-k-1)}$ for $\alpha \in V$ and $k \in \mathbb{Z}$. From now on, \mathcal{N}_1 denotes the set of all C_1-cofinite \mathbb{N}-gradable V-modules. Before we explain our results, let us show basic knowledge for C_1-cofinite \mathbb{N}-gradable modules. If

*Partially supported by the Grants-in-Aids for Scientific Research, No.21K03195, The Ministry of Education, Science and Culture, Japan
We write $\text{gr}(w)$ homogeneous and denoted by $\text{wt}(w)$. We always choose this grading for indecomposable modules α.

For $A, B \in \mathcal{NC}_1$, as the author has shown in [3], a pair $(A \boxtimes B, \mathcal{Y}^{AB})$ of a V-module $A \boxtimes B$ and a logarithmic intertwining operator $\mathcal{Y}^{AB} \in I_{AB}^{\otimes V}$ satisfying the universal property for \mathbb{N}-graded modules (see §2) is always uniquely well-defined up to isomorphism and $A \boxtimes B$ is also in \mathcal{NC}_1 and \mathcal{Y}^{AB} is also a logarithmic intertwining operator. Let $A, B, C \in \mathcal{NC}_1$ and assume to be \mathbb{N}-graded. Since $A \boxtimes B, B \boxtimes C \in \mathcal{NC}_1$, we also have $((A \boxtimes B) \boxtimes C, \mathcal{Y}^{(AB)C})$ and $(A \boxtimes (B \boxtimes C), \mathcal{Y}^{A(BC)})$ and we denote these logarithmic intertwining operators by

$$\mathcal{Y}^{A(BC)}(v, x) = \sum_{h=0}^{K_1} \mathcal{Y}_h^{A(BC)}(v, x) \log^h(x),$$

$$\mathcal{Y}^{BC}(u, y) = \sum_{k=0}^{K_2} \mathcal{Y}_k^{BC}(u, y) \log^k(y),$$

$$\mathcal{Y}^{AB}(v, x-y) = \sum_{k=0}^{K_3} \mathcal{Y}_k^{AB}(v, x-y) \log^k(x-y),$$

$$\mathcal{Y}^{(AB)C}((\delta, y)) = \sum_{k=0}^{K_4} \mathcal{Y}_k^{(AB)C}((\delta, y) \log^k(y),$$

for $v \in A, u \in B, \delta \in A \boxtimes B$ with formal \mathbb{C}-power series $\mathcal{Y}_h^{A(BC)}(v, x)$ of x with coefficients in $\text{Hom}(B \boxtimes C, A \boxtimes (B \boxtimes C))$, etc. To simplify the notation, we use notation $K^2 = \{(h, k) \in \mathbb{N}^2 \mid h \leq K_1, k \leq K_2\}, K^2 = \{(h, k) \in \mathbb{N}^2 \mid h \leq K_3, k \leq K_4\}$ and we often denote $A \boxtimes (B \boxtimes C)$ and $(A \boxtimes B) \boxtimes C$ by $A(BC)$ and $(AB)C$, respectively. Then for $\theta \in (A(BC))^\vee, \theta' \in ((AB)C)^\vee$, we define two four-point correlation functions and the coefficients of $\log^h(x)$ and $\log^k(y)$ and $\log^h(x-y) \log^k(y)$ in them as follows:

$$F^{A(BC)}(\theta, v, u, w; x, y) := \langle \theta, \mathcal{Y}_h^{A(BC)}(v, x) \mathcal{Y}_k^{BC}(u, y)w \rangle,$$

$$F^{(AB)C}(\theta', v, u, w; x-y, y) := \langle \theta', \mathcal{Y}_h^{(AB)C}(v, x-y) \mathcal{Y}_k^{AB}(u, y)w \rangle,$$

$$F_{h,k}^{(AB)C}(\theta, v, u, w; x, y) := \langle \theta, \mathcal{Y}_h^{A(BC)}(v, x) \mathcal{Y}_k^{BC}(u, y)w \rangle,$$

$$F_{h,k}^{A(BC)}(\theta', v, u, w; x-y, y) := \langle \theta', \mathcal{Y}_h^{(AB)C}(v, x-y) \mathcal{Y}_k^{AB}(u, y)w \rangle.$$

Set $\Omega = (A(BC))^\vee \times A \times (BC)$ and $\Omega' = ((AB)C)^\vee \times A \times (BC)$. We use $\vec{\xi}$ and $\vec{\xi}'$ to denote a quadruple $(\theta, v, u, w) \in \Omega$ and $(\theta', v, u, w) \in \Omega'$ so that $F_{h,k}^{A(BC)}(\vec{\xi}; x, y)$ denotes $F_{h,k}^{A(BC)}(\theta, v, u, w; x, y)$ and so on. For $\alpha \in V$, we use notation α_i^n to denote the action of α_n on the i-th coordinate of Ω, e.g. $\alpha^{[2]}_n \vec{\xi} = (\theta, \alpha_n v, u, w)$. For $\vec{\xi} = (\theta, v, u, w) \in \Omega$, define $\text{gr}(\vec{\xi}) = \text{gr}(\theta) + \text{gr}^{234}(\vec{\xi})$ and the total grade $\text{gr}(\vec{\xi}) = \text{gr}(\theta) + \text{gr}^{234}(\vec{\xi})$.

The main purpose in this paper is to show the associative law of fusion products (Theorem 4.1) for $A, B, C \in \mathcal{NC}_1$. We may assume that A, B, C are indecomposable. As a proof, we will construct a surjective homomorphism $\phi^{A(BC)}_A : (A \boxtimes B) \boxtimes C \rightarrow A \boxtimes (B \boxtimes C)$ by starting from $F^{A(BC)}(\vec{\xi}; x, y)$. The reverse homomorphism is given by starting from $F^{(AB)C}(\vec{\xi}^2; x, y)$ with the similar argument. Our proofs are based on Huang’s ideas in [3]. The differences from [3] are that we will treat formal \mathbb{C}-power series $F_{h,k}^{A(BC)}(\vec{\xi}; x, y)$ andshow that their modified versions satisfy two Fuchsian systems on discs by fixing one variable $y = y_0 \not\in \mathbb{R}^{\leq 0}$ or $x = x_0 \not\in \mathbb{R}^{\leq 0}$. Furthermore, in order to expand $F^{A(BC)}(\vec{\xi}; x, y_0)$ in a \mathbb{C}-power series of $(x-y_0)$ with logarithm functions $\log^h(x-y_0)$ as a component.
of a solution of Fuchsian system, we restrict the variable x into a domain $D^2_{x,y}(\zeta,\xi) = \{x \in \mathbb{C} \mid 0 < |x-y|_0 < |y|_0 < |x|, \text{ and } x,y, x-y \notin \mathbb{R}^\leq 0\}$ and take a principal branch $F^{A(BC)}(\zeta) \in F^{A(BC)}(\xi;x,y)$. A key result we get from our Fuchsian system is that there is a finite set $\Delta \subseteq \mathbb{C}$ such that the powers of $(x-y)_0$ in these expansions are all in $\Delta - \text{gr}(v) - \text{gr}(u) + \mathbb{N}$ for any ζ. This supports the existence of an \mathbb{N}-gradable V-module isomorphic to $A \otimes B$.

In order to get Fuchsian sets, we consider finite spaces. Let P_{W} denote a complement of $C_1(W)$ in W and let \tilde{P}_W be a finite dimensional subspace of W containing P_W and spanned by homogeneous elements. For $N \in \mathbb{N}$, we define $W_N = \oplus_{m=0}^{\infty} \text{Hom}(W_m, \mathbb{C})$ and set $\Omega_N = \{ (\theta, u, v, w) \in (A(BC))_N \times A \times B \}$.

Choose bases $j_{P_A} = \{ i \mid i \in \mathcal{P}_A \}$, $j_{P_B} = \{ j \mid j \in \mathcal{P}_B \}$, $j_{P_C} = \{ q \mid q \in \mathcal{P}_C \}$. Furthermore, for the residue classes of coefficients modulo \mathbb{N}, the coefficients in \mathbb{C} and take a principal branch.

Then we will obtain the following reduction theorem.

Theorem 3.1 for $G^{A(BC)}$ For $\zeta = (\theta, u, v, w) \in \Omega_N$, $\alpha \in V$, and $x_0 \neq y_0$, we have:

1. $G^{A(BC)}_{h,k}(\zeta; x_0, y_0)$ is a linear combination of $\{ G^{A(BC)}_{h,k}(\zeta; x_0, y_0) | \bar{\mu} \in \mathcal{J}_N \}$ with coefficients in $\mathbb{C}[x_0, y_0]([-x_0, y_0])^{-1} \subseteq \mathbb{C}[x_0, y_0]$ and
2. $G^{A(BC)}_{h,k}(\zeta; x, y)$ is a linear combination of $\{ G^{A(BC)}_{h,k}(\zeta; x, y) | \bar{\mu} \in \mathcal{J}_N \}$ with coefficients in $\mathbb{C}[x_0, y_0]([-x_0, y_0])^{-1} \subseteq \mathbb{C}[x_0, y_0]$.

Furthermore, for the residue classes of coefficients modulo $\mathbb{C}[x_0, y_0]([-x_0, y_0])^{-1}$, we have:

- $G^{A(BC)}_{h,k}(\zeta; x_0, y_0) \equiv 0 \mod \mathbb{C}[x_0, y_0]([-x_0, y_0])^{-1}$
- $G^{A(BC)}_{h,k}(\zeta; x, y) \equiv 0 \mod \mathbb{C}[x_0, y_0]([-x_0, y_0])^{-1}$

Using $L(-1)$-derivative properties: $F^{A(BC)}(L(-1)^{[3]} \zeta; x, y)$ and $F^{A(BC)}(L(-1)^{[2]} \zeta; x, y)$, we will show that there are $\lambda^{34}_{\bar{\mu}, p, q}(x_0, y_0) \in \mathbb{C}[x_0, y_0]([-x_0, y_0])^{-1} \subseteq \mathbb{C}[x_0, y_0]([-x_0, y_0])^{-1}$ such that

- $\frac{\partial}{\partial y} G^{A(BC)}_{h,k}(\zeta; x_0, y_0) = \frac{1}{y} \sum_{\bar{\mu} \in \mathcal{J}_N} \sum_{(p, q) \in K} \lambda^{34}_{\bar{\mu}, p, q}(x_0, y_0) G_{p,q}^{A(BC)}(\bar{\mu}; x_0, y_0)$
- $\frac{\partial}{\partial x} G^{A(BC)}_{h,k}(\zeta; x, y_0) = \frac{1}{x-x_0} \sum_{\bar{\mu} \in \mathcal{J}_N} \sum_{(p, q) \in K} \lambda^{34}_{\bar{\mu}, p, q}(x, y_0) G_{p,q}^{A(BC)}(\bar{\mu}; x, y_0)$

as formal \mathbb{C}-power series. Set $r = |\mathcal{J}_N| K^2$ and define matrix-valued functions

- $\Lambda^{34}(x_0, y_0) = (\lambda^{34}_{\bar{\mu}, p, q}(x_0, y_0))_{(\bar{\mu}, p, q) \in \mathcal{J}_N \times K^2} \in M_{r \times r}(\mathcal{O}(\mathbb{D}|_{y_0}(y_0)))$
- $\Lambda^{34}(x, y_0) = (\lambda^{34}_{\bar{\mu}, p, q}(x, y_0))_{(\bar{\mu}, p, q) \in \mathcal{J}_N \times K^2} \in M_{r \times r}(\mathcal{O}(\mathbb{D}|_{x_0}(0)))$.

Here and hereafter
\[\mathbb{D}_R(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < R \} \] and \(\mathcal{O}(U) \) denotes the set of holomorphic functions on \(U \).

We note \(\lambda_{\mu,\nu}^{ABC,}\xi,0 = 0 = \lambda_{\mu,\nu}^{ABC,}\xi,0 \) if \(\mu \notin \mathcal{J}_N^0 \). Then we get:

Theorem 3.2 [Differential systems] Fix \(x_0 \neq 0 \) and \(N \in \mathbb{N} \). Then a vector valued function \(G^y(x_0, y) := (G^{ABC}_{h,k}(\xi, x_0, y))_{\xi \in \mathcal{J}_N(h,k) \subseteq K^2} \) satisfies a Fuchsian system

\[
\frac{d}{dy} G^y(x_0, y) = \frac{\Lambda_{AB}(x_0, y)}{y} G^y(x_0, y)
\]

over \(\mathbb{D}_{|x_0|}(0) \) with polar locus \(\{0\} \). Similarly, for a fixed \(0 \neq \xi_0 \in \mathbb{C} \) and \(N \in \mathbb{N} \), a vector valued function \(G^{x-y}(x, \xi_0) := (G^{ABC}_{h,k}(x-y(\xi_0, x, y)))_{\xi \in \mathcal{J}_N(h,k) \subseteq K^2} \) satisfies a Fuchsian system

\[
\frac{d}{dx} G^{x-y}(x, \xi_0) = \frac{\Lambda_{AB}(x, y)}{x-y} G^{x-y}(x, \xi_0)
\]

over \(\mathbb{D}_{|\xi_0|}(0) \) with polar locus \(\{\xi_0\} \). Furthermore, the sets of nonzero eigenvalues (without multiplicities) of the constant matrices \(\Lambda_{AB}(x_0, 0) \) of (D1) and \(\Lambda_{AB}(y_0, 0) \) of (D2) are determined by only the choices of the bases \(J_{PA} \) and \(J_{PB} \) of \(P_A \) and \(P_B \).

As a corollary of (D1) for \(G^{ABC}_{h,k} \) and (D2) for \(G^{ABC}_{h,k} \), we will obtain the following:

Corollary 3.3 \(F^{ABC}_{h,k}(\xi, x, y) \) and \(F^{ABC}_{h,k}(\xi, x-y, y) \) are locally normally convergent on \(\{(x, y) \in \mathbb{C}^2 \mid 0 < |x| < |x| \} \) and \(\{(x, y) \in \mathbb{C}^2 \mid 0 < |x-y| < |y| \} \), respectively.

Set \(\mathcal{D}^2 = \{(x, y) \in \mathbb{C}^2 \mid 0 < |x-y| < |y| < |x| \} \) and \(x, y, x-y \notin \mathbb{R} \). Let \(y_0 \notin \mathbb{R} \) and we take a principal branch \(G_{h,k}^{ABC}(x-y(\xi_0, x, y)) \) of \(G_{h,k}^{ABC}(x-y(\xi_0, x, y)) \) on a small domain \(\mathcal{D}^2_{(x,y_0)} = \{ x \in \mathbb{C} \mid (x, y_0) \in \mathcal{D}^2 \} \). As we will explain in Proposition 2.9 in \(\S 2 \), there is a finite subset \(\Delta' = \{ d_1, ..., d_p \} \subseteq \mathbb{C} \) which depends only on the choice of \(J_{PA} \) and \(J_{PB} \) such that all components of solutions of the Fuchsian system (D2) with polar locus \(\{y_0\} \) are written as

\[
\sum_{d=\Delta'} \sum_{m=\in\mathbb{N}} \sum_{t=0}^{K} r_{d+m,t}(x-y_0)^{d+m} \log^t(x-y_0)
\]

with \(r_{d+m,t} \in \mathbb{C} \) at \(\mathbb{D}_{|y_0|}(0) = \{ x \in \mathbb{C} \mid 0 < |x-y_0| < |y_0| \} \). Since this is true for every \(y = y_0 \notin \mathbb{R} \) and \(\xi \), there is \(r_{d+m,t}^{h,k}(\xi, y) \in \mathbb{C} \) and \(K(\xi) \in \mathbb{N} \) such that

\[
\tilde{G}_{h,k}^{ABC}(x-y(\xi, x, y)) = \sum_{\xi \in \mathcal{J}_N(h,k)} \sum_{m=\in\mathbb{N}} \sum_{t=0}^{K(\xi)} r_{d+m,t}(\xi, y)(x-y)^{d+m} \log^t(x-y_0)
\]

Multiplying it by \((x-y)^{-\varepsilon} \log^h(x) \log^k(y) \) for \(h, k \) and taking a sum of them and replacing \(\log(x) \) by \(\sum_{j=0}^{\infty} \frac{(-1)^j}{j+1} (x-y)^{j+1} + \log(y) \), we obtain an expansion of a principal branch.
A singularity of such a meromorphic system is a point in U (at least one of the coefficients of F is not analytic at that point).

For technical reasons, one usually fixes a discrete subset Σ of poles of Φ, and speaks of meromorphic systems $\frac{d}{dz}Y = AY$ over U with polar locus Σ if the "true polar locus" (i.e., the set of poles of A) is contained in Σ.

A meromorphic system of linear differential equations is a differential equation of the form $\frac{d}{dz}Y = AY$, where $A \in M_{r \times r}(\mathcal{M}(U))$ is a square matrix whose coefficients are meromorphic functions over some complex domain $U \subseteq \mathbb{C}$ (open, nonempty).

A singularity of such a meromorphic system is a point in U corresponding to a pole of (at least one of the coefficients of) A.

For technical reasons, one usually fixes a discrete subset $\Sigma \subseteq U$, and speaks of meromorphic systems $\frac{d}{dz}Y = AY$ over U with polar locus Σ if the "true polar locus" (i.e., the set of poles of A) is contained in Σ.

A meromorphic system $\frac{d}{dz}Y = \frac{A}{z-z_0}Y$ with a holomorphic matrix function A of size $r \times r$ defined on U is called a Fuchsian system and its singularity at $z = z_0$ is called a Fuchsian singularity.

Let $\frac{d}{dz}Y = AY$ be a meromorphic system of rank r over $U \subseteq \mathbb{C}$. Let $U' \subseteq U$ be open. A fundamental solution of $\frac{d}{dz}Y = AY$ over U' is a matrix-valued meromorphic function $\Phi \in M_{r \times r}(\mathcal{M}(U'))$ such that

$$\frac{d}{dz}\Phi(z) = A(z)\Phi(z) \quad \forall z \in U',$$
and moreover
\[\det(\Phi)(z) \neq 0 \quad \forall z \in U'. \]

From now on, let \(z_0 \in U \) and let \(A = \sum_{k \geq 0} (z - z_0)^k A_k \) with \(A_k \in M_{r \times r}(\mathbb{C}) \) and we will consider
\[
\frac{d}{dz} Y = \frac{A}{z - z_0} Y,
\]
which we will call Fuchsian system. Set \(D_R(z_0) = \{ z \in \mathbb{C} \mid |z - z_0| < R \} \). If \(A = A_0 \in M_{r \times r}(\mathbb{C}) \) and \(z_0 \in U \), then
\[
\frac{d}{dz} Y = \frac{A_0}{z - z_0} Y,
\]
is called Euler system. In this case, there is \(G \in GL_r(\mathbb{C}) \) such that \(GA_0G^{-1} \) has a Jordan standard form and \(\frac{d}{dz}(GY) = G \frac{d}{dz} Y = \frac{GA_0G^{-1}}{z - z_0} (GY) \).

Lemma 2.3 If an Euler system \((2.2)\) has a Jordan cell \(A_0 = J_r(a) \), that is, \(Y = \{ (f_1, \ldots, f_r) \} \) satisfies \((z - z_0) \frac{d}{dz} f_i = a f_i + f_{i+1} \) for \(i = 1, \ldots, r \) with \(f_{r+1} = 0 \), then \(\Phi = \{ (z - z_0)^s \times (\log(z - z_0)^t), 1, 0, \ldots, 0 \mid s = 0, \ldots, r - 1 \} \) is a fundamental solution, where \((\cdot)^t \) denotes the transpose of \((\cdot)\).

Therefore, in generally, all components of solutions of Euler system \((2.2)\) are written as
\[
f(z) = \sum_{i=1}^{r} \sum_{t=0}^{r} r_{i,t}(z - z_0)^{d_i} \log^{t}(z - z_0)
\]
with \(r_{i,t} \in \mathbb{C} \) and eigenvalues \(d_i \) of \(A_0 \). We also note that if \(\frac{d}{dz} Y = \frac{A}{z - z_0} Y \), then
\[
\frac{d}{dz} ((z - z_0)^d Y) = \frac{(A + dE_r)}{z - z_0} ((z - z_0)^d Y),
\]
where \(E_r \) is the identity matrix of size \(r \).

Definition 2.4 Let \(\frac{d}{dz} Y = AY \) be a meromorphic system over \(U \) with polar locus \(\Sigma \).

- A holomorphic gauge transformation over \(U' \subseteq U \) is the change of variable \(Y = \Delta Z \), yielding a meromorphic system \(\frac{d}{dz} Z = BZ \) over \(U' \) with polar locus \(\Sigma \cap U' \), where \(\Delta \in GL_r(\mathcal{O}(U')) \), i.e. \(\Delta \) is a holomorphic matrix function over \(U' \) with non-vanishing determinant.

- A meromorphic gauge transformation over \(U' \subseteq U \) is the change of variable \(Y = \Delta Z \), yielding a meromorphic system \(\frac{d}{dz} Z = BZ \) over \(U' \) with polar locus \(Z \cap U' \), where \(\Delta \in GL_r(\mathcal{M}(U')) \), i.e. \(\Delta \) is a meromorphic matrix function over \(U' \) whose determinant is not identically zero on any connected component of \(U' \), such that moreover, \(\Delta|_{U' \setminus \Sigma} \in M_{r \times r}(\mathcal{O}(U' \setminus \Sigma)) \) and \(\Delta^{-1}|_{U' \setminus \Sigma} \in M_{r \times r}(\mathcal{O}(U' \setminus \Sigma)) \).

- As usual, two meromorphic systems over \(U \) with polar locus \(\Sigma \) are said to be holomorphically (resp. meromorphically) gauge equivalent, if they are related via a global holomorphic (resp. meromorphic) gauge transformation.
Theorem 2.7 (Theorem 3.8 in [2]) Let $A(z) = \frac{\text{d}z}{z} Y = \frac{\text{d}z}{z}$ of rank r over \mathbb{D}, with polar locus $\{0\}$, is said to be of Levelt normal form if $B = \sum_{k \geq 0} B_k z^k$ such that for any $k \in \mathbb{N}$, the matrix $B_k \in M_{r,r} (\mathbb{C})$ satisfies $\text{ad}(B_{0,s})(B_k) = k B_k$, where $B_0 = B_{0,s} + B_{0,n}$ is the Dunford decomposition of B_0 into semisimple part $B_{0,s}$ and nilpotent part $B_{0,n}$ with $B_{0,s} B_{0,n} = B_{0,n} B_{0,s}$.

Lemma 2.6 The eigenvalues of $B(1) = \sum_{k=0}^{\infty} B_k$ are equal to the eigenvalues of B_0.

[Proof] We may assume that $B_{0,s}$ is a diagonal matrix $(\lambda_1, \ldots, \lambda_r)$ and $B_{0,n}$ is an upper triangular matrix. Furthermore, we may assume $\Re(\lambda_1) \geq \cdots \geq \Re(\lambda_r)$. Then since $\text{ad}(B_{0,s}) E_{i,j} = (\lambda_i - \lambda_j) E_{i,j}$, $\text{ad}(B_{0,s}) B_k = k B_k$ means that B_k are strictly upper triangular and $B(1) = \sum_{k=0}^{\infty} B_k$ is an upper triangular matrix with diagonal entries $\{\lambda_1, \ldots, \lambda_r\}$. □

Theorem 2.7 (Theorem 3.8 in [2]) Let $A(z) = \frac{\text{d}z}{z} Y = \frac{\text{d}z}{z}$ be a Fuchsian system over \mathbb{D}. This system is holomorphically gauge equivalent to some Fuchsian system $\frac{\text{d}z}{z} \hat{Y} = \frac{\text{d}z}{z} \hat{Y}$ of Levelt normal form over \mathbb{D}.

Remark 2.1 Under the setting of Theorem 2.7, the set of eigenvalues of $B(0)$ coincides with the set of eigenvalues of $A(0)$ counted with multiplicity.

Theorem 2.8 (Lemma 3.7 in [2]) Let $B_{0,s} \in M_{r,s} (\mathbb{C})$ be semisimple. Then there exists the unique semisimple matrix L such that L commutes with $B_{0,s}$ and has only integer eigenvalues and any eigenvalues μ of $B_{0,s} - L$ satisfies $\Re(\mu) \in [0, 1]$. Moreover, if $\frac{\text{d}z}{z} Y = \frac{\text{d}z}{z} Y$ is a Fuchsian system of Levelt normal form with $B(0) = B_{0,s} + B_{0,n}$ as above, then $B = z^t B(1) z^{-L}$.

Remark 2.2 As mentioned in the proof of Corollary 3.9 in [2], under the assumption in Theorem 2.8, $\hat{Y} := z^{-L} Y$ satisfies an Euler system $\frac{\text{d}z}{z} \hat{Y} = \frac{\text{d}z}{z} \hat{Y}$.

Using the these results, we get the following result.

Proposition 2.9 Let $A(z) = \frac{\text{d}z}{z} Z$ be a Fuchsian system with $B \in M_{r,s} (\mathbb{C}(U))$ and let $\{d_1, \ldots, d_r\}$ be the set of eigenvalues of the constant matrix B_0. Choose $t_i \in \mathbb{Z}$ so that $0 \leq d_i - t_i < 1$. Then all components of solutions of $\frac{\text{d}z}{z} Z = \frac{\text{d}z}{z} Z$ are written as

$$\sum_{j=1}^{r} \sum_{i=1}^{r} \sum_{m \in \mathbb{N}} \sum_{\ell=0}^{r} r_{i,m,t} z^{d_j - t_j + \ell_i + m} \log^\ell (z)$$

(2.5)

with $r_{i,m,t} \in \mathbb{C}$.

[Proof] If $\frac{\text{d}z}{z} Z = \frac{\text{d}z}{z} Z$ and $\frac{\text{d}z}{z} Y = \frac{\text{d}z}{z} Y$ are holomorphically equivalent, then all components of solutions of one are linear combinations of components of solutions of the other with coefficients in $\mathbb{C}[[z]]$ and so if all components of solutions of $\frac{\text{d}z}{z} Z = \frac{\text{d}z}{z} Z$ satisfy (2.5), then those of solutions of $\frac{\text{d}z}{z} Y = \frac{\text{d}z}{z} Y$ also satisfy (2.5). Therefore, we may assume that $\frac{\text{d}z}{z} Z = \frac{\text{d}z}{z} Z$ is a Fuchsian system of Levelt normal form over \mathbb{D} by Theorem 2.7. Furthermore we may assume that $B_{0,s} = \text{diag}(d_1, \ldots, d_r)$ satisfying $\Re(d_1) \geq \cdots \geq \Re(d_r)$ and $B_{0,n}$ is an upper triangular matrix. In this case, L in Theorem 2.8
is a diagonal matrix diag(\ell_1, ..., \ell_r). Then by Theorem 2.8 and Remark 2.1, we have \(B = z^L B(1) z^{-L}\) and \(\tilde{Y} := z^{-L} Y\) satisfies an Euler system \(\frac{d}{dz} \tilde{Y} = \frac{B(1) - L}{z} \tilde{Y}\). By Lemma 2.6, \(B(1)\) is an upper triangular matrix with diagonal entries \(\{d_1, ..., d_r\}\) and the eigenvalues of \(B(1) - L\) are \(d_1 - \ell_1, ..., d_r - \ell_r\). Hence all components of a solution \(\tilde{Y}\) are written as \(\sum_{j=1}^r \sum_{t \in \mathbb{N}} r_j^j z^{d_j - \ell_j + t} \log^t(z)\) by Lemma 2.3. In this case, since \(Y = z^L \tilde{Y}\), all components of solutions of \(\frac{d}{dz} Y = \frac{B}{z} Y\) are written as \(\sum_{i,j=1}^r \sum_{t \in \mathbb{N}} r_i^j d_i - \ell_i + t \log^t(z)\), as we desired. □

Regarding the radius of convergence of such a solution, we quote the following theorem.

Theorem 2.10 (Theorem 1.6) Let \(A = \sum_{k \in \mathbb{N}} A_k (z - z_0)^k\) with \(A_k \in M_{r \times r}(\mathbb{C})\) be a matrix power series with radius of convergence \(R > 0\). Let \(Y = \sum_{k=0}^\infty Y_k (z - z_0)^k\) with \(Y_k \in M_{r \times r}(\mathbb{C})\) be a formal power series satisfying \(\frac{d}{dz} Y = \frac{A}{z - z_0} Y\). Then the radius of convergence of \(Y\) is at least \(R\).

2.2 Intertwining operators among \(C_1\)-cofinite modules

Let \(A, B, C\) be \(V\)-modules. Let \(I(\mathcal{C})\) denote the set of logarithmic intertwining operators of type \((\mathcal{A}, \mathcal{B})\). We introduce a generalized concept of (logarithmic) intertwining operators. For a nonempty domain \(U \subseteq \mathbb{C}\) \(\setminus\{0\}\), we define a local intertwining operator \(Y\) of type \((\mathcal{A}, \mathcal{B})\) on \(U\) as a linear map \(A \otimes B \to C \otimes \mathcal{O}(U)\), we denote it by \(\langle \theta, Y(v, z)u \rangle\) for \(v \in A, u \in B, \theta \in C^\wedge\) and \(z \in U\), satisfying

(I 1) [commutativity] \(\langle \theta, \alpha_m Y(v, z)u - Y(v, z)\alpha_m u \rangle = \sum_{j=0}^\infty \binom{m}{j} \langle \theta, Y(\alpha_j v, z)u \rangle z^{m-j},\)

(I 2) [associativity] \(\langle \theta, Y(\alpha_m v, z)u \rangle = \sum_{j=0}^\infty \binom{m}{j} \langle \theta, \alpha_{m-j} z^j Y(v, z)u - (-1)^m Y(v, z)\alpha_j z^{m-j} u \rangle\), and

(I 3) \([L(-1)]\)-derivative property \(\langle \theta, Y(L(-1)v, z)u \rangle = \frac{d}{dz} \langle \theta, Y(v, z)u \rangle\)

for \(\alpha \in V\) and \(m \in \mathbb{Z}\), where \(\langle \theta, \alpha_m Y(v, z)u \rangle \) denotes \(\langle (\alpha_m)^* \theta, Y(v, z)u \rangle\) with a contragredient operator \((\alpha_m)^*\) of \(\alpha_m\).

An aim in this subsection is to show that every local intertwining operator for \(A, B, C\) in \(\mathcal{C}_1\) on a domain \(U\) is a branch of a logarithmic intertwining operator on \(U\).

Let \(W \in \mathcal{C}_1\). Since \(C_1(W) = \text{Span}_\mathbb{C}(\{(\alpha_1 - (P_W + C_1(W))| \alpha \in V_{\geq 1}\})\), we have:

Lemma 2.11 \(W = \text{Span}_\mathbb{C}(\alpha_1 \cdot \alpha_k w | w \in P_W, \alpha^j \in V_{\geq 1}, k \geq 0\). In particular, \(W\) is a finitely generated \(V\)-module.

Therefore, there are finitely many \(d_1, ..., d_r \in \mathbb{C}\) such that \(W = \bigoplus_{j=1}^{d_1} \bigoplus_{n \in \mathbb{N}} W_{d_1 + n}\) and \(\dim W_s < \infty\) for \(s \in \mathbb{C}\), where \(W_s\) denotes a generalized eigenspace in \(W\) of \(L(0)\) with eigenvalue \(s\). In particular, if \(W\) is indecomposable, then \(W = \bigoplus_{n \in \mathbb{N}} W_{d_1 + n}\) for some \(d \in \mathbb{C}\) and \(W_d \neq 0\). We use the notation \(\text{wt}(w) = s\) for \(w \in W_s\) and \(\text{wt}(\alpha) = \text{wt}(\alpha) - n - 1\) for \(\alpha \in V\). Define \(\text{wt}(1) \in \text{End}_\mathbb{C}(W)\) by \(\text{wt}(w) := \text{wt}(w)\) for \(w \in W\). Since \(W_{(m)} \leq \text{Span}_\mathbb{C}(\alpha_1 \cdot \alpha_k w | w \in P_W, \alpha^j \in V_{\geq 1}, \sum_{j=1}^k \text{wt}(\alpha^j) \leq m)\), we obtain:

Lemma 2.12 For \(m \in \mathbb{N}\), there is \(\mu(m) \in \mathbb{N}\) such that \(\dim W_{(m)} \leq \mu(m) \times \dim P_W\). Moreover, the restricted dual \(W^\vee = \bigoplus_{n \in \mathbb{N}} \text{Hom}(W_{(m)}, \mathbb{C})\) of an \(\mathbb{N}\)-graded module \(W = \bigoplus_{s \in \mathbb{C}} W_s\) in \(\mathcal{C}_1\) is isomorphic to the contragredient module \(\bigoplus_{s \in \mathbb{C}} \text{Hom}(W_s, \mathbb{C})\) of \(W = \bigoplus_{s \in \mathbb{C}} W_s\). In particular, \(W^\vee\) does not depend on the choice of an \(\mathbb{N}\)-grading on \(W\).
Since \(\text{wt}(\alpha_n w) = \text{wt}(w) + \text{wt}(\alpha) - n - 1 \) and \(L(0) \alpha_n w = (\text{wt}(\alpha) - n - 1) \alpha_n w + \alpha_n L(0) w = (\text{wt}(\alpha_n w) \alpha_n w + \alpha_n (L(0) - \text{wt}(w)) w \), we get:

Lemma 2.13 \(L(0) - \text{wt}(1) \) is a \(V \)-homomorphism. If \(W \in \mathcal{NC}_1 \), then there is \(K \in \mathbb{N} \) such that \((L(0) - \text{wt}(1))^K W = 0 \) and \((L(0) - \text{wt}(1))^K W^\vee = 0 \).

[Proof] As we have just proved, \(L(0) - \text{wt}(1) \) is a \(V \)-homomorphism. Since \(\dim P_W < \infty \), there is \(n \in \mathbb{N} \) such that \(P_W \subseteq \oplus_{i=0}^n W(i) \), which is \(L(0) - \text{wt}(1) \)-invariant and \(\dim \oplus_{i=0}^n W(i) < \infty \). Hence \((L(0) - \text{wt}(1))^K (\oplus_{i=0}^n W(i)) = 0 \) for some \(K \). Since \(W \) is generated from \(P_W \) by the actions of \(V \), we have \((L(0) - \text{wt}(1))^K W = 0 \). From \((L(0) - \text{wt}(1))^K W^\vee, W = (W^\vee, (L(0) - \text{wt}(1))^K W = 0, \) we also obtain \((L(0) - \text{wt}(1))^K W^\vee = 0 \). \(\square \)

Lemma 2.14 Let \(A, B, C \in \mathcal{NC}_1 \) and let \(\mathcal{Y} \) be a local intertwining operator of type \(^C A_B \) on a domain \(U \) with a form \(\langle \theta, \mathcal{Y}(v, z) u \rangle = \sum_{h=0}^{t_{h,v,u}} \langle \theta, Y_h(v, z) u \rangle \log^h(z) \) with \(\mathbb{C} \)-formal power series \(Y_h(v, z) u \) and \(K(\theta, v, u) \in \mathbb{N} \). Then there is \(K \in \mathbb{N} \) such that \(K(\theta, v, u) \leq K \).

[Proof] Since

\[
\sum_{h=0}^{K(\theta, v, u)} \langle \theta, Y_h(L(-1)v, z) u \rangle \log^h(z) = \frac{\partial}{\partial z} \left\{ \sum_{h=0}^{K(\theta, v, u)} \langle \theta, Y_h(v, z) u \rangle \log^h(z) \right\},
\]

we have \(Y_{k+1}(v, z) u = Y_k(L(-1)v, z) u - \frac{\partial}{\partial z} (Y_k(v, z) u) \times \frac{1}{k+1} \). We also get

\[
\langle \theta, (L(0) - \text{wt}(1))(Y_k(v, x) u) \rangle = \langle \theta, (L(0) - \text{wt}(1))(\sum m v_{m,k} u z^{-m-1}) \rangle
\]

\[
= (\text{gr}(v) + \text{gr}(u)) \langle \theta, (L(0) - \text{wt}(1))(\sum m v_{m,k} u z^{-m-1}) \rangle
\]

\[
= (\text{gr}(v) + \text{gr}(u)) \langle \theta, Y_k(v, x) u \rangle + \frac{\partial}{\partial z} \langle \theta, Y_k(v, z) u \rangle z.
\]

Using the notation \(\Xi = L(0) - \text{wt}(1) \) and \(\{X + Y + Z\} = \sum_{i,j,p} X^i Y^j Z^p \), we obtain

\[
\langle \theta, \{(X + Y + Z)^\ell \} \rangle = \sum_{i,j,p} X^i Y^j Z^p,
\]

so that

\[
\langle \theta, Y_k(v, x) u \rangle = \sum_{i,j,p} \langle \theta, Y_k(v, x) \Xi^i \rangle \langle \theta, Y_k(v, x) \Xi^p \rangle.
\]

Since there is \(K \in \mathbb{N} \) such that \((\Xi)^K A = (\Xi)^K B = (\Xi)^K C = 0 \) by Lemma 2.13, we have \(\langle \theta, Y_k(v, z) u \rangle = 0 \) for \(k \geq 3K \), that is, we can take \(K(\theta, v, u) \leq 3K \) for any \(\theta, v, u \). \(\square \)

We will use the following theorem after the proof of Theorem 4.1.

Theorem 2.15 Let \(A, B, C \in \mathcal{NC}_1 \) and \(N \in \mathbb{N} \). For a local intertwining operator \(\mathcal{Y} \) of type \(^C A_B \) over \(U \) satisfying \((11) \sim (13) \), there is a finite subset \(\Delta_N \) of \(C \) and \(K \in \mathbb{N} \) such that \(\langle \theta, \mathcal{Y}(v, z) u \rangle \) has the following expression:

\[
\langle \theta, \mathcal{Y}(v, z) u \rangle = \sum_{t=0}^{K} \sum_{s=-1 \in \Delta_N - \text{gr}(v) - \text{gr}(u) + \text{gr}(\theta)} \langle \theta, v_{s,t} u \rangle z^{-s-1} \log^t(z)
\]

for any \(\theta \in C_{\Delta_N}, v \in A, u \in B \), where \(v_{s,t} \in \text{Hom}(B, C) \) for \(v \in V \) and we take a principal branch of \(z^{-s} \) and \(\log(z) \). Furthermore, \(\tilde{\mathcal{Y}}(v, z) = \sum_{t=0}^{K} \sum_{s \in \mathbb{C}} v_{s,t} z^{-s} \log^t(z) \in I_{(C)} \). Namely, \(\mathcal{Y} \) is a branch of a logarithmic intertwining operator \(\tilde{\mathcal{Y}} \) on \(U \).
Set $S(\theta, v, u; z) = \langle \theta, \mathcal{Y}(v, z)u \rangle$. Choose $N \in \mathbb{N}$ so that $\text{gr}(\theta) \leq N$. Let $Q_N = \{ \theta^p : p \in \mathcal{Q}_N \}$, $J_A = \{ v^i \mid i \in \mathcal{P}_A \}$, $J_B = \{ w^j \mid j \in \mathcal{P}_B \}$ be bases of $C^{(\leq N)}$, P_A, P_B, respectively. From (I 1) and (I 2), for $\alpha \in V_{\geq 1}$, we have

$$
S(\theta, \alpha_{-1}v, u; z) = \sum_{j=0}^{\infty} S((\alpha_{-j})^*\theta, v, u; z) z^j + \sum_{j=0}^{\infty} S(\theta, v, \alpha_j u; z) z^{-j-1} + \sum_{j=0}^{\infty} (1) S(\theta, v, u; z) z^{-j-1}.
$$

Define $\text{gr}^- (\theta, v, u) = \text{gr}(\theta) + \text{gr}(v) + \text{gr}(u)$ and the total grade $\text{gr}^+ (\theta, v, u) = \text{gr}(\theta) + \text{gr}(v) + \text{gr}(u)$ and set $T(\theta, v, u; z) = \mathcal{F}(\theta, v, u; z) z^{\text{gr}^- (\theta, v, u)}$. Then we obtain

$$
T(\theta, \alpha_{-1}v, u; z) = \sum_{j=0}^{\infty} T((\alpha_{-j})^*\theta, v, u; z) + \sum_{j=0}^{\infty} T(\theta, v, \alpha_j u; z) z^{-j-1}.
$$

Therefore, for a vector valued function $Z = (T(\theta^p, v^i, u^j; z))_{(p, i, j) \in \mathcal{Q}_N \times \mathcal{P}_A \times \mathcal{P}_B}$ of size s, there is a matrix $A_0 \in M_{s \times s}(\mathbb{C})$ such that

$$
\frac{d}{dz} Z = A_0 Z,
$$

where $s = |\mathcal{Q}_N| \times |\mathcal{P}_A| \times |\mathcal{P}_B|$, that is, Z satisfies an Euler system (2.7) and $T(\theta, v, u; z)$ is a component of a solution of (2.7) for $(\theta, v, u) \in \mathcal{Q}_N \times J_A \times J_B$. By Lemma 2.3, all components of solutions $T(\theta, v, u; z)$ of (2.7) on $\mathbb{C} \setminus \{0\}$ are linear combinations of $\{ z^s \log^t(z) \mid s, t \in \mathbb{N} \}$. Namely, for each N, v, u with $N \geq \text{gr}(\theta)$, there is a finite set $\Delta_N \subseteq \mathbb{C}$ and $K(\theta, v, u) \in \mathbb{N}$ such that

$$
\langle \theta, \mathcal{Y}(v, z)u \rangle = \sum_{s_j \in \Delta_N - \text{gr}(v) - \text{gr}(u) + \text{gr}(\theta)} \sum_{t=0}^{K(\theta, v, u)} \langle \theta, v_{-s_j-1}u \rangle z^{s_j} \log^t(z)
$$

with $v_{-s_j-1} \in \text{Hom}(B, C)$. Since A and B are generated from P_A and P_B as V-modules, respectively, we know that Eq.(2.8) holds for any $\theta \in C^\vee, v \in A, u \in B$ and $z \in U$ by using (2.6). Although our argument depends on the choice of $N \geq \text{gr}(\theta)$, we note that there is K such that $K(\theta, v, u) \leq K$ by Lemma 2.4. Therefore it is easy to check that $\hat{\mathcal{Y}}(v, z) = \sum_{t=0}^{K} \sum_{s \in \mathbb{C}} v_{s,t} z^{-s-1} \log^t(z)$ is a logarithmic intertwining operator of type $(\overset{\circ}{C}_{AB})$ and \mathcal{Y} is a branch of it on U.

[**Fusion product**] In this paper, for N-gradable V-modules A and B, a fusion product $(A \boxtimes B, \mathcal{Y}^{AB})$ is defined to be a pair of an N-gradable V-module $A \boxtimes B$ and $\mathcal{Y}^{AB} \in I(\overset{\circ}{A}_{AB})$ satisfying the universal property for N-gradable modules, that is, for any N-gradable V-module C and $\mathcal{Y} \in I(\overset{\circ}{A}_{B})$, there is the unique isomorphism $\phi : A \boxtimes B \to C$ such that $\phi(\mathcal{Y}^{AB}(v, z)u) = \mathcal{Y}(v, z)u$ for $v \in A$ and $u \in B$.

\[\square \]

10
2.3 Borcherds Identities for four-point correlation functions

From the commutativity (I 1) and associativity (I 2), we have the following identities:

Lemma 2.16 (Borcherds identities) Let $\mathcal{Y}^1 \in I(A^{(ABC)}_B), \mathcal{Y}^2 \in I(B^{(A)}_C), \mathcal{Y}^3 \in I(A^{(AB)}_B), \mathcal{Y}^4 \in I(A^{(ABC)}_B)$. For $\theta \in (A^{(BC)})^\vee, \theta' \in (A^{(AB)}C)^\vee, v \in A, u \in B$, and $w \in C$ we set $F^{12}(\xi; x, y) = \langle \theta, \mathcal{Y}^1(v, x) \mathcal{Y}^2(u, y)w \rangle$ and $F^{34}(\xi; x, y) = \langle \theta', \mathcal{Y}^3(v, x - y)u, y)w \rangle$. Then for $\alpha \in V$ and $n \in \mathbb{Z}$, as formal \mathbb{C}-power series with logarithm functions, we have:

\[
\begin{align*}
(1A) & \quad F^{12}(\alpha_n^*; x, y) = \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_j^*; x, y)x^{n-j} \\
& \quad + \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_j^*; x, y)y^{n-j} + F^{12}(\alpha_n^*; x, y).
\end{align*}
\]

\[
\begin{align*}
(1B) & \quad F^{34}(\alpha_n^*; x, y) = \sum_{j=0}^{\infty} \binom{n}{j} F^{34}(\alpha_j^*; x, y)t_{y, x-y}\{x^{n-j}\} \\
& \quad + \sum_{j=0}^{\infty} \binom{n}{j} F^{34}(\alpha_j^*; x, y)t_{y, x-y}\{x^{n-j}\} + F^{34}(\alpha_n^*; x, y).
\end{align*}
\]

\[
\begin{align*}
(2A) & \quad F^{12}(\alpha_n^*; x, y) = \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_{n-j}^*; x, y)(-x)^j \\
& \quad - \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_j^*; x, y)x_{y, x}\{(y - x - y)^{n-j}\} - \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_j^*; x, y)(-x)^{n-j}.
\end{align*}
\]

\[
\begin{align*}
(2B) & \quad F^{34}(\alpha_n^*; x, y) = \sum_{j=0}^{\infty} \binom{n}{j} F^{34}(\alpha_{n-j}^*; x, y)t_{y, x-y}\{(y - x - y)^{n-j}\} \\
& \quad - \sum_{j=0}^{\infty} \binom{n}{j} F^{34}(\alpha_j^*; x, y)x_{y, x-y}\{(y - x - y)^{n-j}\}.
\end{align*}
\]

\[
\begin{align*}
(3A) & \quad F^{12}(\alpha_n^*; x, y) = \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_{n-j}^*; x, y) y^j \\
& \quad - \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_j^*; x, y)x_{y, x}\{(y - x - y)^{n-j}\} - \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_j^*; x, y)(y)^{n-j}.
\end{align*}
\]

\[
\begin{align*}
(3B) & \quad F^{34}(\alpha_n^*; x, y) = \sum_{j=0}^{\infty} \binom{n}{j} F^{34}(\alpha_{n-j}^*; x, y) t_{y, x-y}\{(y - x - y)^{n-j}\} \\
& \quad - \sum_{j=0}^{\infty} \binom{n}{j} F^{34}(\alpha_j^*; x, y)x_{y, x-y}\{(y - x - y)^{n-j}\}.
\end{align*}
\]

\[
\begin{align*}
(4A) & \quad F^{12}(\alpha_n^*; x, y) = F^{12}(\alpha_n^*; x, y) - \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_j^*; x, y)x^{n-j} \\
& \quad - \sum_{j=0}^{\infty} \binom{n}{j} F^{12}(\alpha_j^*; x, y)y^{n-j}.
\end{align*}
\]

\[
\begin{align*}
(4B) & \quad F^{34}(\alpha_n^*; x, y) = F^{34}(\alpha_n^*; x, y) - \sum_{j=0}^{\infty} \binom{n}{j} F^{34}(\alpha_j^*; x, y)t_{y, x-y}\{x^{n-j}\} \\
& \quad - \sum_{j=0}^{\infty} \binom{n}{j} F^{34}(\alpha_j^*; x, y)y^{n-j}.
\end{align*}
\]

Here $(\alpha_n^*)^*$ denotes its adjoint operator of α_n and $t_{x, y}\{(x - y)^s\} := \sum_{j=0}^{\infty} \binom{n}{j} x^{s-j}(y)^j$ and $t_{y, x-y}\{x^s\} := t_{y, x-y}\{(y + (x - y))^s\} = \sum_{j=0}^{\infty} \binom{n}{j} y^{s-j}(x - y)^j$.

Comment 2 (1) The coefficients are in $\mathbb{C}[x^\pm 1, y^\pm 1, \tau_{x, y}\{(x - y)^\pm 1\}, \tau_{y, x-y}\{x^\pm 1\}]$. Hence the same equations also hold for coefficients of logarithm functions.

(2) Then for $n \in \mathbb{Z}, m, \ell = 1, 2, 3, 4,$ and $j \geq 0$, the coefficients of $F^{12}(\alpha_n^*; x, y)$ in RHS of (mA) for $F^{12}(\alpha_n^*; x, y)$ are equal to the corresponding coefficients of $F^{34}(\alpha_n^*; x, y)$ in RHS of (mB) for $F^{34}(\alpha_n^*; x, y)$ excepting the expansions by $t_{x, y}$ or $t_{y, x-y}$. Hence the corresponding coefficients in (mA) and (mB) are same on a domain $\{(x, y) \in \mathbb{C}^2 | 0 < |x - y| < |y| < |x|\}$.

Proof First, we prepare the following equations:

\[
\begin{align*}
\sum_{\ell=0}^{\infty} \sum_{i=0}^{\infty} \binom{n}{i} \binom{i}{\ell} x^{n-j}y^{\ell}\xi \mathcal{Y} = \sum_{\ell=0}^{\infty} \binom{n}{i} \xi \mathcal{Y} (x + y)^{n-\ell} Z^\ell \\
\sum_{i, j \in \mathbb{N}} \binom{n}{i} \binom{i}{j} (-1)^{i+j}(x - y)^j y^j Z^{i+j} = \sum_{\ell=0}^{\infty} \binom{n}{i} (-1)^{i+j} t_{y, x-y}\{x^\ell\} Z^\ell
\end{align*}
\]

and we will use the equations between the coefficients of Z^ℓ of LHS and RHS.
By commutativity (I 1) and associativity (I 2), we have:

(1A) \(\langle \langle (\alpha_n)^{\theta}, \mathcal{Y}^1(v, x) \rangle \mathcal{Y}^2(u, y) \rangle w = \langle \langle \alpha_n, \mathcal{Y}^1(v, x) \mathcal{Y}^2(u, y) \rangle \theta \rangle w \)

\[= \theta, \mathcal{Y}^1(v, x) \mathcal{Y}^2(u, y) (\alpha_n) \rangle w + \sum_{j=0}^{\infty} \langle \langle \alpha_n, \mathcal{Y}^1(v, x) \mathcal{Y}^2(u, y) \rangle \theta \rangle w x^{n-j} \]
\[+ \sum_{j=0}^{\infty} \langle \langle \alpha_n, \mathcal{Y}^1(v, x) \mathcal{Y}^2(u, y) \rangle \theta \rangle w y^{n-j}. \]

(1B) \(\langle \alpha_n^{\theta}, \mathcal{Y}^3(v, x - y) u, y) \rangle w = \langle \langle \alpha_n, \mathcal{Y}^3(v, x - y) u, y) \rangle \theta \rangle w \)

\[= \theta, \mathcal{Y}^3(v, x - y) u, y) (\alpha_n) \rangle w + \sum_{j=0}^{\infty} \langle \langle \alpha_n, \mathcal{Y}^3(v, x - y) u, y) \rangle \theta \rangle w \]
\[+ \sum_{j=0}^{\infty} \langle \langle \alpha_n, \mathcal{Y}^3(v, x - y) u, y) \rangle \theta \rangle w y^{n-j}. \]

(2A) \(\langle \theta, \mathcal{Y}^1(\alpha_n v, x) \mathcal{Y}^2(u, y) \rangle w = \sum_{j=0}^{\infty} \langle \langle \theta, \mathcal{Y}^1(\alpha_n v, x) \mathcal{Y}^2(u, y) \rangle \theta \rangle w x^{n-j} \]
\[- \sum_{j=0}^{\infty} \langle \langle \theta, \mathcal{Y}^1(\alpha_n v, x) \mathcal{Y}^2(u, y) \rangle \theta \rangle w y^{n-j}. \]

(2B) \(\langle \theta, \mathcal{Y}^3(\alpha_n v, x) \mathcal{Y}^3(u, y) \rangle w = \sum_{j=0}^{\infty} \langle \langle \theta, \mathcal{Y}^3(\alpha_n v, x) \mathcal{Y}^3(u, y) \rangle \theta \rangle w x^{n-j} \]
\[- \sum_{j=0}^{\infty} \langle \langle \theta, \mathcal{Y}^3(\alpha_n v, x) \mathcal{Y}^3(u, y) \rangle \theta \rangle w y^{n-j}. \]

(3A) \(\langle \theta, \mathcal{Y}^1(v, x) \mathcal{Y}^2(u, y) \rangle w = \sum_{j=0}^{\infty} \langle \langle \theta, \mathcal{Y}^1(v, x) \mathcal{Y}^2(u, y) \rangle \theta \rangle w x^{n-j} \]
\[+ \sum_{j=0}^{\infty} \langle \langle \theta, \mathcal{Y}^1(v, x) \mathcal{Y}^2(u, y) \rangle \theta \rangle w y^{n-j}. \]

(3B) \(\langle \theta, \mathcal{Y}^3(v, x - y) (\alpha_n u, y) \rangle w = \langle \langle \theta, \mathcal{Y}^3(v, x - y) (\alpha_n u, y) \rangle \theta \rangle w \)
\[- \sum_{j=0}^{\infty} \langle \langle \theta, \mathcal{Y}^3(v, x - y) (\alpha_n u, y) \rangle \theta \rangle w x^{n-j} \]
\[- \sum_{j=0}^{\infty} \langle \langle \theta, \mathcal{Y}^3(v, x - y) (\alpha_n u, y) \rangle \theta \rangle w y^{n-j}. \]
Comment 3 Since $\text{gr}((\alpha_{-1})^\ast \theta) < \text{gr}(\theta)$, we have $(\alpha_{-1})^\ast \theta \in (A(BC))'_\leq N$ for $\alpha \in V_{\geq 1}$ and $j \in \mathbb{N}$. Since $\text{gr}(\alpha_j \omega) = \text{gr}(\alpha_{-1} \omega) - j - 1$ for $j \in \mathbb{N}$, the total grades of quadruples of each term in RHS are less than the total grade of quadruples in LHS, that is, $\text{gr}(((\alpha_{-1})^\ast [i] \xi), \text{gr}(\alpha_k \xi) < \text{gr}(\alpha_{-1} \xi)$. Therefore by iterating these reductions as long as we have an element of $C_1(A), C_1(B)$ or $C_1(C)$ in the second, third or fourth coordinates of quadruples, we finally get an expression of $F_{h,k}^{A(BC)}(\xi'; x, y)$ as a linear combination of

\[
\{ F_{h,k}^{A(BC)}(\vec{\eta}; x, y) : \vec{\eta} \in J_0^N \}
\]

with coefficients in $\mathbb{C}[x, x^{-1}, y, y^{-1}, t_{x,y} \{ (x-y)^{-1} \}]$ for any $\xi \in \Omega_N$.

Comment 4 Since Borcherds identities for $F_{h,k}^{A(BC)}$ and $F_{h,k}^{(AB)C}$ have the same coefficients except the way of expansions, we can get Borcherds identities (2B) \sim (4B) by viewing $F(\xi)$ as $F_{h,k}^{(AB)C}(\xi'; x, y)$ and expanding all coefficients by $t_{x,y}$.
Furthermore, for the residue classes of coefficients modulo C coefficients in G, Theorem 3.1 Here the first columns are Borcherds identities for n and x, y. We hence consider

$$
\begin{align*}
\mathcal{G}_{h,k}^{(BC)}(\vec{\xi}, x, y) & := F_{h,k}^{(BC)}(\vec{\xi}; x, y) y^{gr_{234}(\vec{\xi})}, \\
\mathcal{G}_{h,k}^{(BC):x-y}(\vec{\xi}, x, y) & := F_{h,k}^{(BC)}(\vec{\xi}; x, y) (x - y)^{gr_{234}(\vec{\xi})}, \\
\mathcal{G}_{h,k}^{(ABC)(C)}(\vec{\xi}, w; x, y) & := F_{h,k}^{(ABC)(C)}(\vec{\xi}; x, y) y^{gr_{234}(\vec{\xi})}, \quad \text{and} \\
\mathcal{G}_{h,k}^{(ABC):x-y}(\vec{\xi}, x, y) & := F_{h,k}^{(ABC):x-y}(\vec{\xi}; x, y) (x - y)^{gr_{234}(\vec{\xi})}.
\end{align*}
$$

(3.1)

Then we have:

Theorem 3.1 For $\vec{\xi} = (\theta, \nu, u, w)$ with $\theta \in J_N$, $\alpha \in \mathbb{Z}$, and $x_0 \neq 0 = y_0$, (1) $G_{h,k}^{(BC)}(\vec{\xi}; x_0, y)$ is a linear combination of $\{G_{h,k}^{(ABC)}(\vec{\mu}; x_0, y) \mid \vec{\mu} \in J_N^0\}$ with coefficients in $\mathbb{C}[x_0, y, x_0 - y]$, with $\vec{\mu} \in J_N^0$ and

$$
\begin{align*}
\mathcal{G}_{h,k}^{(BC):x-y}(\vec{\xi}, x, y) & := \sum_{j=0}^{\infty} \mathcal{G}_{h,k}^{(BC):x-y}(\vec{\xi}; x, y) y^{j} (\mod \mathbb{C}[x - y_0]) (x - y_0), \\
\mathcal{G}_{h,k}^{(ABC):x-y}(\vec{\xi}, x, y) & := \sum_{j=0}^{\infty} (-1)^{j+1} \mathcal{G}_{h,k}^{(ABC):x-y}(\vec{\xi}; x, y) y^{j} (\mod \mathbb{C}[x - y_0]) (x - y_0), \\
\mathcal{G}_{h,k}^{(ABC):y}(\vec{\xi}, x, y) & := \sum_{j=0}^{\infty} \mathcal{G}_{h,k}^{(ABC):y}(\vec{\xi}; x, y) y^{j} (\mod \mathbb{C}[y]), \\
\mathcal{G}_{h,k}^{(ABC):y}(\vec{\xi}, x, y) & := \sum_{j=0}^{\infty} (-1)^{j+1} \mathcal{G}_{h,k}^{(ABC):y}(\vec{\xi}; x, y) y^{j} (\mod \mathbb{C}[y]).
\end{align*}
$$

We also obtain the same results for $G_{h,k}^{(ABC):x-y}(\vec{\xi}; x_0, y_0)$ and $G_{h,k}^{(ABC):y}(\vec{\xi}; x_0, y_0)$ by replacing $A(BC), \vec{\xi}, \vec{\mu}, J_N, J_N^0, \iota_{x,y}$ by $(AB)(C), \vec{\xi}, \vec{\mu}, J_N, J_N^0, \iota_{x,y}$, respectively.

Borcherds identities	D:coefficient	q	$D \times (x-y)^{q}$ and $D \times x^{q}$
(2A) $F(\vec{\xi})$	$\vec{\xi}$	1	0
(2B) $F(\vec{\mu})$	$\vec{\mu}$	2	0
(2C) $F(\vec{\nu})$	$\vec{\nu}$	3	0
(2D) $F(\vec{\omega})$	$\vec{\omega}$	4	0
(2E) $F(\vec{\eta})$	$\vec{\eta}$	5	0
(2F) $F(\vec{\zeta})$	$\vec{\zeta}$	6	0

Table 1: Borcherds identity

Comment 5 In the case of $D \times (x-y)^{q}$, negative powers appear only on x or y. In the case of $D \times x^{q}$, negative powers occur only on $(x-y)$ or x. We hence consider

$$
\begin{align*}
\mathcal{G}_{h,k}^{(BC)}(\vec{\xi}; x_0, y) & := F_{h,k}^{(BC)}(\vec{\xi}; x_0, y) y^{gr_{234}(\vec{\xi})}, \\
\mathcal{G}_{h,k}^{(BC):x-y}(\vec{\xi}; x_0, y) & := F_{h,k}^{(BC)}(\vec{\xi}; x, y_0) (x - y_0)^{gr_{234}(\vec{\xi})}, \\
\mathcal{G}_{h,k}^{(ABC)(C)}(\vec{\xi}, w; x, y) & := F_{h,k}^{(ABC)(C)}(\vec{\xi}; x, y) y^{gr_{234}(\vec{\xi})}, \quad \text{and} \\
\mathcal{G}_{h,k}^{(ABC):x-y}(\vec{\xi}; x, y) & := F_{h,k}^{(ABC):x-y}(\vec{\xi}; x, y) (x - y)^{gr_{234}(\vec{\xi})}.
\end{align*}
$$

Then we have:
[Proof] We will show the proofs for $G_{h,k}^{A(BC):\ast}(\xi', x, y)$. To simplify the notation, we denote $G_{h,k}^{A(BC):\ast}(\xi'; x, y)$ by $G^\ast(\xi'; x, y)$ for $* = y, x - y$. From Table 1, we have

$$
G^y(\alpha_{-1}^2, x, y) = F(\alpha_{-1}^2, x, y)y^{p+\omega(a)} = \sum_{j=0}^\infty G^y((\alpha_{-1-j})^y \xi_0, x, y)x_0^jy^{\omega(a)} + \sum_{j=0}^\infty G^y(\alpha_j, x, y)x_0^j(x_0 - y)^{j-1}y^j + \sum_{j=0}^\infty G^y(\alpha_j, x, y)x_0^jy^j + \sum_{j=0}^\infty G^y(\alpha_j, x, y)x_0^jy^j + \sum_{j=0}^\infty G^y(\alpha_j, x, y),
$$

For $y = y_0 \neq 0$ and a variable x, we have:

$$
G^{x-y}(\alpha_{-1}^2, x, y_0) = \sum_{j=0}^\infty G(((\alpha_{-1-j})^y \xi_0, x, y_0)x^j(x - y_0)^{\omega(a)} + \sum_{j=0}^\infty G(\alpha_j, x, y_0)x_0^j(x - y_0)^{j-1}y^j + \sum_{j=0}^\infty G(\alpha_j, x, y_0)x_0^jy^j + \sum_{j=0}^\infty G(\alpha_j, x, y_0),
$$

In particular, for the residue classes of coefficients modulo $\mathbb{C}[[x-y]][x-y]$, it is easy to check the statements. Since these processes don't depend on the choice of $G^{A(BC)}$ nor $G^{(AB)C}$, we get the same expressions for $G^{(AB)C:y}(\xi'; x, y)$ and $G^{(AB)C:x-y}(\xi'; x, y)$ except the notation and expansions by ξ'. This completes the proof of Theorem 3.1.

3.2 Proof of Theorem 3.2 (Differential systems)

We will prove the Fuchsian systems (D1) and (D2) for $G_{h,k}^{A(BC):y}$ and $G_{h,k}^{A(BC):x-y}$. The proofs for the other cases are similar. From the (L^{-1})-derivative property of intertwining operators, as \mathbb{C}-formal power series with logarithmic terms, for $\xi = (\theta, v, u, w) \in \Omega$ and $\xi' = (\theta', v, u, w) \in \Omega'$, we have

$$
\frac{\partial}{\partial y} F^{A(BC)}(\xi', x, y) = F^{A(BC)}(L(-1)^{[3]}\xi'; x, y),
$$

$$
\frac{\partial}{\partial x} F^{A(BC)}(\xi'; x, y) = F^{A(BC)}(L(-1)^{[2]}\xi'; x, y),
$$

and

$$
\frac{\partial}{\partial (x-y)} F^{(AB)C}(\xi'; x, y) = F^{(AB)C}(L(-1)^{[2]}\xi'; x, y).
$$

From (2.11) in Remark 2.3, we get

$$
\frac{\partial}{\partial (x-y)} \left\{G_{h,k}^{A(BC):y}(\xi'; x, y) \right\} = \frac{\partial}{\partial (x-y)} \left\{F_{h,k}^{A(BC)}(\xi'; x, y)y^{p+34}\xi + 1 \right\}
$$

$$
= \frac{\partial}{\partial (x-y)} \left\{F_{h,k}^{A(BC)}(\xi'; x, y)y^{p+34}\xi + 1 \right\} + (y^{p+34}(\xi'; x, y)y^{p+34}(\xi))
$$

$$
= G_{h,k}^{A(BC):y}(L(-1)^{[3]}\xi'; x, y) - (k+1)G_{h,k}^{A(BC):y}(\xi'; x, y) + (y^{p+34}(\xi'; x, y)y^{p+34}(\xi))
$$

$$
= \sum_{\xi \in J_0} \xi'(x, y)G_{h,k}^{A(BC):y}(\xi'; x, y),
$$

15
where \(s_\xi(x, y) \in \mathbb{C}[x, x^{-1}, \xi, y, \{x - y\}^{-1}] \). On the other hand, we obtain:

\[
\frac{\partial}{\partial y} \left(G_{h,k}^{ABC:y} \left(\xi, x, y \right) \right) = \frac{\partial}{\partial y} \left(G_{h,k}^{ABC:y} \left(\xi, x, y \right) \right) + G_{h,k}^{ABC:y} \left(\xi, x, y \right).
\]

Combining it with the above, and then using Theorem 3.1, we get

\[
\frac{d}{dy} \left(G_{h,k}^{ABC:y} \left(\xi, x, y \right) \right) = y^{-1} \frac{d}{dy} \left(G_{h,k}^{ABC:y} \left(\xi, x, y \right) \right) - y^{-1} G_{h,k}^{ABC:y} \left(\xi, x, y \right) = \frac{1}{y} \sum_{\mu \in J_N} \sum_{(p, q) \subset K^2} \lambda_{\mu, p, q}^{34,ponents, the set of nonzero eigenvalues of the constant matrix \(\Lambda \)

Therefore, there are \(\lambda_{\mu, p, q}^{34,ponents, the set of nonzero eigenvalues of the constant matrix \(\Lambda \)

\[
\left(x - y_0 \right) \frac{\partial}{\partial (x - y_0)} G_{h,k}^{ABC:x-y} \left(\xi, x, y_0 \right) = G_{h,k}^{ABC:x-y} \left(L(-1)^{2} \xi^{2}, x, y_0 \right) - (h + 1) G_{h+k}^{ABC:x-y} \left(\xi, x, y_0 \right) x^{-1} (x - y_0) + \text{gr}^{234} \left(\xi \right) G_{h,k}^{ABC:x-y} \left(\xi, x, y_0 \right).
\]

\[
\frac{\partial}{\partial x} G_{h,k}^{ABC:x-y} \left(\xi, x, y_0 \right) = \frac{1}{x - y_0} \sum_{\mu \in J_N} \sum_{(p, q) \subset K^2} \lambda_{\mu, p, q}^{23,ponents, the set of nonzero eigenvalues of the constant matrix \(\Lambda \)

\[
\frac{d}{dx} G_{h,k}^{ABC:x-y} \left(x, y_0 \right) = \frac{\Lambda_{\mu, p, q}^{23,ponents, the set of nonzero eigenvalues of the constant matrix \(\Lambda \)

We next investigate the set of eigenvalues of constant matrices. Since \(\lambda_{\mu, p, q}^{23,ponents, the set of nonzero eigenvalues of the constant matrix \(\Lambda \)

\[
(x - y_0) \frac{\partial}{\partial (x - y_0)} G_{h,k}^{ABC:x-y} \left(\xi, x, y_0 \right) \equiv G_{h,k}^{ABC:x-y} \left(L(-1)^{2} \xi^{2}, x, y_0 \right) + \text{gr}^{234} \left(\xi \right) G_{h,k}^{ABC:x-y} \left(\xi, x, y_0 \right) \mod \mathbb{C}[x - y_0] (x - y_0).
\]

Furthermore, on each step of the reduction of \(G_{h,k}^{ABC:x-y} \left(L(-1)^{2} \xi^{2}, x, y_0 \right) \) into a linear combination of \(\{G_{h,k}^{ABC:x-y}(\mu; x, y) \mid \mu \in J_N\} \), the coefficients at the first term with \((\alpha_j)^{[1]} \xi \) and at the 4th term with \(\alpha_j^{[4]} \xi \) are contained in \(\mathbb{C}[x - y_0] (x - y_0) \) by Theorem 3.1. In other words, modulo \(\mathbb{C}[x - y_0] (x - y_0) \), the process of these reductions are independent from the choice of \((\theta, w) \) and we don’t change the subscripts \(h, k \). Therefore, for \(\xi = (\theta, v, u, w), \mu = (\theta, \tilde{v}, \tilde{u}, \tilde{w}) \in J_N \), there are \(\lambda_{(\tilde{v}, \tilde{w})}^{(\theta, v, u, w), h,k}(x, y_0) \equiv \delta_{h,p} \delta_{k,q} \delta_{\theta, \theta} \delta_{v, v} \lambda_{(\tilde{v}, \tilde{w})}^{(v,u), h,k}(x, y_0) \mod \mathbb{C}[x - y_0] (x - y_0) \), (3.3)

which means that the set of eigenvalues (without counting multiplicity) of the constant matrix \(\Lambda^{23,ponents, the set of nonzero eigenvalues of the constant matrix \(\Lambda \)

16
3.3 Corollary 3.3 (Local normal convergence)

Let \(S^1 \) be an indecomposable direct summand of \(B \boxtimes C \) and \(T^1 \) an indecomposable direct summand of \(A \boxtimes S^1 \). We note that \(A \boxtimes (B \boxtimes C) \) is a direct sum of such \(T^1 \)'s. We may choose \(\theta \in (T^1)^\vee \). Set \(p_1 = d(T^1) - d(A) - d(S^1) - 1 \) and \(p_2 = d(S^1) - d(B) - d(C) + 1 \). Then there are \(\lambda_{m,h,k}(\xi) \in \mathbb{C} \) such that

\[
G_{h,k}^{\theta}(\xi;x,y) = \langle \theta, \mathcal{Y}_{h}^{\theta}(v,x)\mathcal{Y}_{k}^{\theta}(u,y)w \rangle y^{gr_{234}(\xi)} = \sum_{m=0}^{\infty} \lambda_{m,h,k}(\xi)x^{p_1}y^{p_2}(y/x)^m,
\]

where \(\mathcal{Y}_{h}^{\theta}(v,z) = \pi_{T^1}(\mathcal{Y}_{h,k}^{\theta}(v,z)\delta) \) and \(\mathcal{Y}_{k}^{\theta}(u,z)w = \pi_{S^1}(\mathcal{Y}_{k}^{BC}(u,z)w) \) for \(\delta \in S^1 \) and \(\pi_{P} \) denotes the projection to \(P \).

Therefore, in order to prove its convergence on a domain \(\{(x,y) \in \mathbb{C}^2 \mid 0 < |y| < |x|\} \), it is enough to check the case where \(x = 1 \) and \(0 < |y| < 1 \). In other words, it is enough to treat a one-variable valued function \(Z = (G_{h,k}^{\theta}(\xi;y,1))_{\xi \in \mathcal{J}_N,(h,k) \in K^2} \) satisfying a Fuchsian system \(\frac{dZ}{dy} = (\xi_{n,h,k}(1,y)) \) with polar locus \(\{0\} \), where \(\xi_{n,h,k}(1,y) \in \mathbb{C}[(1-y)^{-1},y] \) by Theorem 3.1. Since \((1-y)^{-1} \) and \(y \) have radius of convergence at least 1, so does \(\xi_{n,h,k}(1,y) - \delta_{(\xi,h,k),(\mu,p,q)} \). Therefore, from Theorem 2.10 the radius of convergence of \(G_{h,k}^{\theta}(\xi,y,1) \) (and also of \(F_{h,k}^{\theta}(\xi,y,1) \)) is at least 1 for \(\xi \in \Omega \).

In a similar way, by using (D2) for \(F^{\theta}(\xi,v,x,0) \), we can show that \(F^{\theta}(\xi,v,x,0) \) is locally convergent on a domain \(\{(x,y) \in \mathbb{C}^2 \mid 0 < |y-x| < |y|\} \).

This completes the proof of Corollary 3.3.

4 Associativity

Set \(\mathcal{D}^2 = \{(x,y) \in \mathbb{C}^2 \mid 0 < |x-y| < |y| < |x| \} \), and \(x,y,x-y \notin \mathbb{R}^{\leq 0} \). In this section, we will prove the following main theorem.

Theorem 4.1 On \(\mathcal{D}^2 \), we choose a principal branch \(\tilde{F}(\langle \theta, \mathcal{Y}_{(A,B)}^{(v,x)}\mathcal{Y}_{(u,y)}^{BC}(u,y)w \rangle) \) of \(\langle \theta, \mathcal{Y}_{(A,B)}^{(v,x)}\mathcal{Y}_{(u,y)}^{BC}(u,y)w \rangle \) by taking the values of \(\log(x), \log(y) \) which satisfy \(-\pi < \mathfrak{R}(\log(x)), \mathfrak{I}(\log(y)) < \pi \) and viewing \(x^d_1, y^d_2 \) as \(e^{d_1\log(x)+d_2\log(y)} \). Similarly \(\tilde{F}(\langle \theta', \mathcal{Y}_{(A,B)}^{(v,x-y)}\mathcal{Y}_{(u,y)}^{BC}(u,y)w \rangle) \) is a branch of \(\langle \theta', \mathcal{Y}_{(A,B)}^{(v,x-y)}\mathcal{Y}_{(u,y)}^{BC}(u,y)w \rangle \) by taking the values of \(\log(y), \log(x-y) \) which satisfy \(-\pi < \mathfrak{R}(\log(y)), \mathfrak{R}(\log(x-y)) < \pi \) and considering \(y^d_1(x-y)^d_2 = e^{d_1\log(y)+d_2\log(x-y)} \). Then there is an isomorphism \(\phi_{(A,B)}^{(B,C)} : (A \boxtimes B) \boxtimes C \rightarrow (A \boxtimes (B \boxtimes C)) \) such that

\[
\tilde{F}(\langle \theta, \mathcal{Y}_{(A,B)}^{(v,x)}\mathcal{Y}_{(u,y)}^{BC}(u,y)w \rangle) = \tilde{F}(\langle \phi_{(A,B)}^{(B,C)}(\theta), \mathcal{Y}_{(A,B)}^{(v,x-y)}\mathcal{Y}_{(u,y)}^{BC}(u,y)w \rangle)
\]

on \(\mathcal{D}^2 \) for any \(\theta \in ((A \boxtimes B) \boxtimes C)^\vee, v \in A, u \in B, w \in C \), where \(\phi_{(A,B)}^{(B,C)} \) denotes the dual of \(\phi_{(A,B)}^{(B,C)} \).

4.1 Equation (4.9)

We may still assume \(\theta \in (T^1)^\vee \). Hence there are \(p_1, p_2 \in \mathbb{C} \) such that

\[
G_{h,k}^{\theta}(\xi;x,y) = \langle \theta, \mathcal{Y}_{h,k}^{(v,x)}\mathcal{Y}_{k}^{BC}(u,y)w \rangle (x-y)^{gr_{234}(\xi)} \in \mathbb{C}[y/x]x^{p_1}y^{p_2}
\]
is absolutely convergent on \(\{(x, y) \in \mathbb{C}^2 \mid 0 < |y| < |x|\} \). We also recall the definition \(\mathcal{J}_N \) which is the set of quadruples of basis of \((A(BC))_N^\prime, P_A, \hat{P}_B, \) and \(\hat{P}_C \). We choose a branch \(\tilde{G}_{h,k}^{A(BC):x-y}(\xi; x, y) \) of \(G_{h,k}^{A(BC):x-y}(\xi; x, y) \) on \(\mathcal{D}^2 \) by taking values of \(\log(x), \log(y) \) which satisfy \(-\pi < \Im(\log(x)), \Im(\log(y)) < \pi \) and viewing \(x^{p_1+m_y}y^{p_2+n} \) as \(e^{(p_1+m_y)\log(x)+(p_2+n)\log(y)} = e^{p_1\log(x)+p_2\log(y)}x^my^n \) for \(m, n \in \mathbb{Z} \). Then by Theorem 3.2, for \(y_0 \not\in \mathbb{R}^{-}\), a vector valued function

\[
G_{h,k}^{A(BC):x-y}(\xi; x, y_0) = \left(\tilde{G}_{h,k}^{A(BC):x-y}(\xi; x, y_0) \right)_{\xi \in \mathcal{J}_N, (h,k) \in \mathbb{C}^2}
\]

satisfies a Fuchsian system \((D2)\) for \(\xi \in \mathcal{J}_N \). Furthermore, the set of nonzero eigenvalues of the constant matrix \(\Lambda_{a,b}(y_0, y_0) \) depends only on the choice of bases \(J_{P_A} \) and \(J_{P_B} \). Therefore, by Proposition 2.9, there is a finite subset \(\Delta' \subseteq \mathbb{C} \) such that all components of solutions of \((D2)\) are written as

\[
\sum_{t=0}^{K} \sum_{d \in \Delta'} \sum_{m \in \mathbb{N}} r_{d,m,t}(x - y_0)^{d+m} \log^t(x - y_0)
\]

with \(r_{d,m,t} \in \mathbb{C} \). We note that we have also taken a branch of \((x - y_0)^{d+m} \log^t(x - y_0) \) on \(\mathcal{D}^2(x,y_0) \) by the same way. Since this holds for \(\tilde{G}_{h,k}^{A(BC):x-y}(\xi; x, y_0) \) with \(\xi \in \mathcal{J}_N \) and \(y = y_0 \not\in \mathbb{R}^{-}\), there are \(h,k,\tilde{\xi} \) \(\in \mathbb{C} \) and \(K(\tilde{\xi}) \in \mathbb{N} \) such that we can write

\[
\tilde{G}_{h,k}^{A(BC):x-y}(\xi; x, y) = \sum_{s \in \Delta' + \mathbb{N}} \sum_{t=0}^{K(\tilde{\xi})} r_{h,k}^{s,t}(\xi; y)(x - y)^s \log^t(x - y) \quad (4.1)
\]

on \(\mathcal{D}^2 \). Multiplying (4.1) by \(\log^h(x) \log^k(y)(x - y)^{-a_{234}(\tilde{\xi})} \) for all \((h,k) \in \mathbb{C}^2 \) and taking the sum of all of them, we obtain an equality:

\[
\tilde{F}_{A(BC)}(\xi; x, y) = \sum_{h,k} \sum_{s \in \Delta' + \mathbb{N}} \sum_{j=0}^{K(\tilde{\xi})} r_{h,k}^{s,j}(\xi; y) \log^k(y) \log^h(x)(x - y)^s \log^j(x - y) \quad (4.2)
\]

for a branch \(\tilde{F}_{A(BC)}(\xi; x, y) \) of \(F^{A(BC)}(\xi; x, y) \) on \(\mathcal{D}^2 \). About the derivations, we use \(\frac{\partial x}{\partial (x - y)} = 1 \) and \(\frac{\partial y}{\partial (x - y)} = 0 \). Since \(\frac{\partial \log(x)}{\partial x} = \frac{1}{x} = \frac{1}{y} \frac{\partial \log(x)}{\partial y} = \sum_{j=0}^{\infty} (-1)^j \left(\frac{x - y}{y} \right)^j \) and \(\frac{\partial \log(x)}{\partial y} = 0 \), we define

\[
p(x, y) := \sum_{j=0}^{\infty} \frac{(-1)^j}{j + 1} \left(\frac{x - y}{y} \right)^{j + 1} + \log(y), \quad (4.3)
\]

which satisfies the same property with \(\log(x) \) in a neighborhood of \(y \not\in \mathbb{R}^{-}\). We replace \(\log(x) \) in (4.2) by \(p(x, y) \). Since the powers of \(x - y \) in \(p(x, y) \) are non-negative, we can write

\[
\tilde{F}_{A(BC)}(\xi; x, y) = \sum_{l=0}^{K(\tilde{\xi})} \sum_{s \in \text{gr}(v(\xi) - \Delta' - \mathbb{N})} g_{s,t}(\xi; y)(x - y)^{-s - 1} \log^t(x - y) \quad (4.4)
\]

with \(g_{s,t}(\xi; y) \in \mathbb{C} \) for \(\xi \in \mathcal{J}_N \). Since \(\text{dim} \ P_C < \infty \), using \(\Delta = \{ d - \max\{\text{gr}(w) : w \in P_C \} \mid d \in \Delta' \} \), we can rewrite (4.4) into

\[
\tilde{F}_{A(BC)}(\xi; x, y) = \sum_{l=0}^{K(\tilde{\xi})} \sum_{s \in \text{gr}(v(\xi) + \text{gr}(u)) - \Delta - \mathbb{N}} g_{s,t}(\xi; y)(x - y)^{-s - 1} \log^t(x - y) \quad (4.5)
\]
for $\xi = (\theta, v, u, w) \in \Omega$ with $w \in P_C$.

Lemma 4.2 (4.5) holds for all $\xi \in \Omega$.

[Proof] Suppose false and let $\xi = (\theta, v, u, w')$ be a counterexample. Subject to counterexample, we choose w' with the smallest grade. Since (4.5) holds for elements with w in P_C, we may assume $w' = \alpha - 1 w$ with $\alpha \in V_{\geq 0}$ and $g_{s,t}(\theta, v, u, \alpha - 1 w; y) \neq 0$ for some $s \not\in wt(v) + wt(u) - 1 - \Delta - N$. In this case, by Borcherds identities, we obtain

$$
\tilde{F}^{A(BC)}(\alpha^{-1}[4] \xi; x, y) = \tilde{F}^{A(BC)}((\alpha^{-1})^{[1]} \xi; x, y) - \sum_{j=0}^{\infty} (-1)^j \tilde{F}^{A(BC)}(\alpha_j^{[2]} \xi; x, y)x^{-j-1}
- \sum_{j=0}^{\infty} (-1)^j \tilde{F}^{A(BC)}((\alpha_j^{[1]} \xi; x, y)y^j
- \sum_{i \in \mathbb{N}} (i) \tilde{F}^{A(BC)}((\alpha_i^{[1]} \xi; x, y)(x - y)^{-1}
- \sum_{j=0}^{\infty} (-1)^i j \sum_{i \in \mathbb{N}} (i) (-1)^{i+j+1} \tilde{F}^{A(BC)}((\alpha_j^{[2]} \xi; x, y)y^j
+ \sum_{j=0}^{\infty} \sum_{i \in \mathbb{N}} (i) (-1)^{i+j+1} \tilde{F}^{A(BC)}((\alpha_i^{[1]} \xi; x, y)y^j,
$$

by (2.9). However, since $\text{gr}(\alpha_j w) < \text{gr}(\alpha - 1 w) = \text{gr}(w')$ for $j \geq 0$ and the 2nd and 3rd components of $(\alpha_j^{[1]} \xi)$ in RHS of the last equation are v and u, none of the terms in RHS of the last equation have nonzero coefficients of $(x - y)^{-s-1} \log'(x - y)$ by the minimality of $\text{gr}(w')$, which is a contradiction.

Since $g_{s,t}(\xi; y)$ is multi-linear on $\xi \in \Omega_N = (A(BC))^\vee \times A \times B \times C$, we split $\xi = (\theta, v, u, w)$ into $\{v, u\}$ and $\{\theta, u\}$. In other words, using a formal operator $\tilde{Y}^3_{s,t} \in \text{Hom}(A \otimes B, \text{Hom}(C, A(BC) \otimes O(\mathbb{C} \setminus \mathbb{R}^2)))$, we can write

$$
\tilde{F}^{A(BC)}(\xi; x, y) = \sum_{s,s,t}^{K(\xi)} \sum_{s \in \text{gr}(v) + \text{gr}(u) - \Delta - N - 1} \langle \theta, \tilde{Y}^3_{s,t}(v, u; y)w \rangle (x - y)^{-s-1} \log'(x - y) \tag{4.6}
$$

for each $(x, y) \in D^2$. Namely, $\langle \theta, \tilde{Y}^3_{s,t}(v, u; y)w \rangle = \text{Cl}_{s,t}(\tilde{F}^{A(BC)}(\xi; x, y))$, where

$$
\text{Cl}_{s,t}(f(x, y)) \text{ denotes a coefficient } \lambda_{s,t}(f(x, y)) \text{ of } (x - y)^{-s-1} \log'(x - y) \text{ in } f(x, y) = \sum_{t \in \mathbb{N}} s \text{, with } \lambda_{s,t}(y)(x - y)^{-s-1} \log'(x - y).
$$

We introduce a formal vector space $A \otimes_{s,t} B$, which is isomorphic to $A \otimes B$ as a vector space and its isomorphism is given by $v \otimes v \mapsto v \otimes_{s,t} u$ for s, t. Set $A \otimes_{s,t} B = \oplus_{(s,t) \in \mathbb{N}^2} (A \otimes_{s,t} B)$ and define a formal operator \tilde{Y}^3 of type $(A \otimes_{s,t} B)$ by $\tilde{Y}^3((A \otimes B) \otimes O(D^2))$ by $\langle \theta, \tilde{Y}^3(v \otimes_{s,t} u, y)w \rangle = \langle \theta, \tilde{Y}^3(v, u; y)w \rangle (x - y)^{-s-1} \log'(x - y)$. Then we can rewrite Eq. (4.6) into

$$
\tilde{F}^{A(BC)}(\xi; x, y) = \langle \theta, \tilde{Y}^3(\tilde{Y}^4(v, x - y)u; y)w \rangle \tag{4.7}
$$

As it is well-known, $V[z, z^{-1}]$ has a Lie algebra structure by

$$
[a z^m, b z^n] = \sum_{j \in \mathbb{N}} \binom{m}{j} (a_j b) z^{n+m-j}.
$$

19
Lemma 4.3 Define the action of $V[z, z^{-1}]$ on $A \otimes_\infty B$ by $(\alpha z^m)(v \otimes_{s,t} u) = v \otimes_{s,t} \alpha_m u + \sum_{j=0}^\infty (\alpha_j v \otimes_{s+m-j,t} u)$ for $\alpha z^m \in V[z, z^{-1}]$. Then $A \otimes_\infty B$ is a $V[z, z^{-1}]$-module.

[Proof] To simplify the notation, we will omit the index t from $v \otimes_{s,t} u$. We also denote the action of αz^m by $\alpha|_m$. Then for $\alpha, \beta \in V$, we obtain

$$\alpha|_m \beta|_n (v \otimes s u) = \alpha|_m (\sum_{j=0}^\infty (\beta_j v) \otimes_{s+n-j} u) + \alpha|_m (v \otimes s (\beta_n u))$$

We hence get:

$$\alpha|_m \beta|_n (v \otimes s u) = \sum_{j=0}^\infty \sum_{i=0}^\infty (\alpha_i \beta_j v) \otimes_{s+m+n-i-j} u + \sum_{j=0}^\infty (\beta_j v) \otimes_{s+n-j} (\alpha_m u)$$

On the other hand, we have:

$$\sum_{p=0}^\infty (\alpha_p \beta)_{m+n-p} (v \otimes s u) = v \otimes s \sum_{p=0}^\infty (\alpha_p \beta)_{m+n-p} u + \sum_{p=0}^\infty (\alpha_p \beta)_{m+n-p} q = \sum_{p=0}^\infty (\alpha_p \beta)_{m+n-i-j} u + v \otimes s ([\alpha_m, \beta_n] u)$$

which coincides with the last terms in (4.8). Therefore $A \otimes_\infty B$ is a $V[z, z^{-1}]$-module. □

Definition 4.4 Let Γ be the kernel of $\widetilde{\mathcal{Y}}^3$, that is,

$$\Gamma = \{ \gamma \in A \otimes_\infty B \mid \langle \theta, \widetilde{\mathcal{Y}}^3(\gamma, y)w \rangle = 0 \text{ for all } \theta \in (A(BC))^\vee, w \in C \text{ and } y \notin \mathbb{R}^{\leq 0} \}.$$

In other words, $\sum_{n=1}^\infty v^t \otimes_{s,t} u^t \in \Gamma$ if and only if $\sum_{n=1}^\infty \text{Cf}_{s,t}(\tilde{F}(BC)(\theta, v^t, w; x, y)w) = 0$ for any $\theta \in (A(BC))^\vee$ and $w \in C$. Clearly, Γ is a subspace of $A \otimes_\infty B$. Define $A \otimes_\infty B = (A \otimes_\infty B)/\Gamma$. We denote $v \otimes s,t u + \Gamma$ in $A \otimes_\infty B$ by $[v \otimes s,t u]$ or $[v_{s,t} u]$.

Lemma 4.5 $\widetilde{\mathcal{Y}}^3$ satisfies associativity (12) and Γ is $V[z, z^{-1}]$-invariant.

[Proof] By the definition of the action of $V[z, z^{-1}]$, we get:

$$\langle \theta, \widetilde{\mathcal{Y}}^3(\alpha|_m (v \otimes s,t u), y)w \rangle = \langle \theta, \widetilde{\mathcal{Y}}^3(v \otimes s,t \alpha_m u), y)w \rangle + \sum_{i=0}^\infty \langle \theta, \widetilde{\mathcal{Y}}^3(\alpha_i v \otimes_{s+n-i,t} u, y)w \rangle$$

$$= \text{Cf}_{s,t}(\tilde{F}(BC)(\theta, v, \alpha_n u, w; x, y)w) + \sum_{i=0}^\infty \text{Cf}_{s+n-i,t}(\tilde{F}(BC)(\theta, \alpha v, u; x, y)w).$$

20
Since $\widetilde{F}^{A(BC)}$ satisfies Borcherds identity (3B), we also have:

$$
\text{Cl}_{s,t}(\tilde{F}^{A(BC)}(\theta, v, \alpha_n u, w; x, y); y) = \text{Cl}_{s,t} \left(\left(\sum_{j=0}^{\infty} (-1)^j \tilde{F}^{A(BC)}((\alpha_{n-j})^{[1]} \xi^{[4]}, \epsilon^{[4]}; x, y)y^j \right) \right)
$$

Therefore, we have:

$$
\langle \theta, \tilde{\mathcal{Y}}^3(\alpha_n \gamma, y)w \rangle = \sum_{j=0}^{\infty} \langle \alpha_n \gamma, y \rangle \langle \tilde{\mathcal{Y}}^3, \psi_1, u \rangle w^y + \sum_{j=0}^{\infty} \langle \alpha_n \gamma, y \rangle \langle \tilde{\mathcal{Y}}^3, \psi_1, u \rangle w^{y^j}
$$

We next show that Γ is $\mathbb{C}[z, z^{-1}]-$invariant. If $\gamma = \sum_{i=1}^r \theta_i^{\otimes s_i,t_i}$ then we have

$$
\langle \theta, \tilde{\mathcal{Y}}^3(\alpha_n \gamma, y)w \rangle = \sum_{j=0}^{\infty} \langle \alpha_n \gamma, y \rangle \langle \tilde{\mathcal{Y}}^3, \psi_1, u \rangle w^y + \sum_{j=0}^{\infty} \langle \alpha_n \gamma, y \rangle \langle \tilde{\mathcal{Y}}^3, \psi_1, u \rangle w^{y^j} = 0
$$

for any θ and w, which means $\alpha_n \gamma \in \Gamma$ for any $\alpha z^n = \alpha_n$. Hence Γ is $\mathbb{C}[z, z^{-1}]-$invariant.

Clearly, we can define formal operators \mathcal{Y}^3 of type $(A^{(BC)}_{A^{B}}} B_C$ by $\mathcal{Y}^3(u, v) = [\mathcal{Y}^3(u, v)] = \sum_{s,t} [v \otimes s, t] u \xi^{-1} \text{log}(z)$ and $\langle \theta, \mathcal{Y}^3([v, s, t], u)w \rangle = \langle \theta, \mathcal{Y}^3(v \otimes s, t, u)w \rangle$ for $\xi \in \Omega$. Then we have

$$
\bar{F}^{A(BC)}(x, y; \xi) = \langle \theta, \mathcal{Y}^3(\mathcal{Y}^3(u, x-y)u, y)w \rangle
$$

for $\xi \in \Omega$. We use $\mathcal{Y}^3(x, y)$ to denote $\langle \theta, \mathcal{Y}^3(\mathcal{Y}^3(u, x-y)u, y)w \rangle$.

Theorem 4.6 $\langle \theta, \mathcal{Y}^3(\mathcal{Y}^3(u, x-y)u, y)w \rangle$ satisfies the Borcherds identities (1B) \sim (4B).

Proof As we mentioned in Remark 2, the coefficients of $F^{A(BC)}(\mu; x, y)$ in the expansion of $F^{A(BC)}(\alpha_n^{[1]} \xi^{[4]}, x, y)$ by Borcherds identities are all $C[x, x+y, \epsilon^{-1}], (x-y)^\pm 1]$, that is, integer powers of x, y and $x-y$. Hence branches $\bar{F}^{A(BC)}(x, y)$ of them on D^2 also satisfy the Borcherds identities (1A) \sim (4A). By Eq. (4.9), $\bar{F}^{A(BC)}(x, y)$ also satisfies the Borcherds identities (1A) \sim (4A) on D^2. Since the corresponding coefficients in (1A) \sim (4A) and (1B) \sim (4B) are same on D^2, we have the desired identities.

Proposition 4.7 \mathcal{Y}^3 and \mathcal{Y}^4 satisfy $L(-1)$-derivative properties.

Proof We note that we are considering the derivations satisfying $\frac{d}{d(x-y)}y = 0 = \frac{d}{d(y)}y = 1$, and $\frac{d}{d(x-y)}(x-y)$. By the choice of $p(x, y)$ in (4.4), we get

$$
\langle \theta, \mathcal{Y}^3(\mathcal{Y}^3(L(-1)u, x-y)u, y)w \rangle = \bar{F}^{A(BC)}(L(-1)\xi^{[4]}, x, y) = \frac{d}{d(x-y)}E^{A(BC)}(\xi, x, y)
$$

and

$$
\langle \theta, \mathcal{Y}^3(\mathcal{Y}^3(u, x-y)u, y)w \rangle = \frac{d}{d(x-y)}(\theta, \mathcal{Y}^3(\mathcal{Y}^3(u, x-y)u, y)w).
$$
We fix \(v \in A \). Since the above holds for every \(\theta \in (A(BC))^\gamma, u \in B, w \in C \), the above implies \(L(-1) \)-derivative property of \(\mathcal{Y}^4 \): \(\mathcal{Y}^4(L(-1)v, x - y) = \frac{d}{dx-y} \mathcal{Y}^4(v, x - y) \). Using \(F^{34}(L(-1)^3)\tilde{\xi}; x, y) = \frac{\partial}{\partial y} F^{34}(\tilde{\xi}; x, y) \), we obtain

\[
\langle \theta, \mathcal{Y}^4(L(-1)\mathcal{Y}^4(v, x - y)u, y)w \rangle = \langle \theta, \mathcal{Y}^3(\mathcal{Y}^4(L(-1)v, x - y)u, y)w \rangle + \langle \theta, \mathcal{Y}^3(\mathcal{Y}^4(v, x - y)L(-1)u, y)w \rangle = \frac{\partial}{\partial x} F^{A(BC)}(\tilde{\xi}; x, y) + \frac{\partial}{\partial y} F^{A(BC)}(\tilde{\xi}; x, y) = (\frac{\partial}{\partial x} + \frac{\partial}{\partial y}) F^{A(BC)}(\tilde{\xi}; x, y).
\]

Since \((\frac{\partial}{\partial x} + \frac{\partial}{\partial y})(x - y) = 0 \) and \((\frac{\partial}{\partial y} + \frac{\partial}{\partial x})y = 1 \), we also get

\[
\langle \theta, \mathcal{Y}^3(L(-1)\mathcal{Y}^4(v, x - y)u, y)w \rangle = \frac{\partial}{\partial y} \mathcal{Y}^3(\mathcal{Y}^4(v, x - y)u, y)w
\]

under the assumption \(\frac{\partial(x-y)}{\partial y} = 0 \), which proves \(L(-1) \)-derivative property of \(\mathcal{Y}^3 \). \(\square \)

As a corollary of the above and the existence of a finite set \(\Delta \) in (4.5), we have:

Corollary 4.8 \(L(-1)[v_{s,t}u] = -s[v_{s-1,t}u] + (t + 1)[v_{s-1,t+1}u] \) and \(wt([v_{s,t}u]) = wt(v) + wt(u) - s - 1 \). The weights of elements in \(A \bar{\otimes} B \) are contained in \(\Delta + N \) and so \(A \bar{\otimes} B \) is \(N \)-gradable. In particular, \(\alpha_n[v_{s,t}u] = 0 \) for \(n \gg 0 \) for \(\alpha \in V \).

Although Borchers identities are given from (I 1) and (I 2), we will show the reverse.

Proposition 4.9 \(\mathcal{Y}^3 \) and \(\mathcal{Y}^4 \) satisfy (I 1) and (I 2).

Proof We have already proved (I 2) for \(\mathcal{Y}^3 \). By the action of \(V \) on \(A \otimes \infty B \), we have:

\[
\langle \theta, \mathcal{Y}^3(\alpha n)\mathcal{Y}^4(v, x - y)u, y)w \rangle = \langle \theta, \tilde{\mathcal{Y}}^3(\alpha n)\tilde{\mathcal{Y}}^4(v, x - y)u, y)w \rangle = \langle \theta, \mathcal{Y}^3(\mathcal{Y}^4(v, x - y)\alpha n u, y)w \rangle + \sum_{j=0}^{\infty} \binom{n}{j} \langle \theta, \mathcal{Y}^3(\mathcal{Y}^4(v, x - y)\alpha j u, y)w \rangle (x - y)^{n-j}
\]

for all \(\theta \) and \(w \), which implies (I 1) for \(\mathcal{Y}^3 \). From Borchers identity (2B), we obtain:

\[
\langle \theta, \mathcal{Y}^3(\mathcal{Y}^4(v, x - y)\alpha n u, y)w \rangle = \sum_{j=0}^{\infty} \binom{n}{j} \langle \theta, \mathcal{Y}^3(\mathcal{Y}^4(v, x - y)\alpha j u, y)w \rangle (x - y)^{n-j}.
\]

On the other hand, from the associativity (I 2) for \(\mathcal{Y}^3 \), we have

\[
\sum_{j=0}^{\infty} \binom{n}{j} (-1)^j \langle \theta, \mathcal{Y}^3(\mathcal{Y}^4(v, x - y)\alpha j u, y)w \rangle (x - y)^{n-j}.
\]

Since \(\sum_{j=0}^{\infty} \binom{n}{j} (-1)^j (x-y)^j y^{n-j} = \binom{n}{0} x^n \) for \(\ell \in N \) and \(\sum_{j=0}^{\infty} \binom{n}{j} (-1)^j (x-y)^j y^{n-j} = \binom{n}{0} (-1)^{n-j}x^n \) by (2.9), we obtain (I 2) for \(\mathcal{Y}^4 \). Commutativity (I 1) for \(\mathcal{Y}^3 \) is a direct consequence of Borchers identity (B1) and the definition of action of \(V \) on \(A \bar{\otimes} B \). \(\square \)
4.2 Recovery of V-modules and intertwining operators

Theorem 4.10 $A\boxtimes B$ is an N-gradable V-module.

[Proof] We have proved that $A\boxtimes B$ is an N-gradable $V[z, z^{-1}]$-module in Corollary 4.8. In particular, the action of V on $A\boxtimes B$ satisfies commutativity. Therefore, the remaining thing is to prove associativity of the action of V. In particular, it is enough to show

$$
\langle \theta, \mathcal{Y}^3(\alpha_{[-1]}\beta_{[-1]}\gamma, y) w \rangle = \langle \theta, \mathcal{Y}^3(\alpha_{[-1]}\beta_{[-1]}\gamma, y) w \rangle + \sum_{j=0}^{\infty} \langle \theta, (\alpha_{[-2-j]}\beta_{[j]} + \beta_{[-2-j]}\alpha_{[j]})\gamma, y) w \rangle
$$

(4.10)

for $\gamma \in A\boxtimes B, w \in C, \theta \in (A(BC))^\vee$. We will develop the action of V into a triple $(A(BC))^\vee \times A\boxtimes B \times C$ by using (I 1) and (I 2). The rule is simple, that is, we shift $\alpha_{<0}$ and $\beta_{<0}$ to the left and $\alpha_{\geq 0}$ and $\beta_{\geq 0}$ to the right. Finally, the actions of V on $A\boxtimes B$ and C are given by $\alpha_{\geq 0}$ or $\beta_{\geq 0}$. We use notation $P(X(\alpha, \beta))$ to denote $X(\alpha, \beta) + X(\beta, \alpha)$ for any form X of α and β. For example, $P(\langle \theta, \mathcal{Y}^3(\alpha_{[-2-j]}\beta_{[j]}\gamma, y) w \rangle)$ denotes $\langle \theta, \mathcal{Y}^3(\alpha_{[-2-j]}\beta_{[j]} + \beta_{[-2-j]}\alpha_{[j]})\gamma, y) w \rangle$. Then by (I 2) and associativity of the action of V on $A(BC)$ and C, we have:

LHS of (4.10)

$$
\sum_{i,j \in \mathbb{N}} \langle \theta, \mathcal{Y}^3(\alpha_{[-1]}\beta_{[-1]}\gamma, y) w \rangle y^j + \sum_{i,j \in \mathbb{N}} \langle \theta, \mathcal{Y}^3(\gamma, y)(\alpha_{[-1]}\beta_{[-1]}w) y^{j-1}j \rangle
$$

$$
= \sum_{i,j \in \mathbb{N}} \langle \theta, \mathcal{Y}^3(\gamma, y)w \rangle y^j + \sum_{i,j \in \mathbb{N}} \langle \theta, \mathcal{Y}^3(\gamma, y)w \rangle y^{j-1}j
$$

Since there are many subscripts, in order to count the coefficients of terms in summations, we use monomials. For example, we denote $\langle \theta, \beta_{0}\mathcal{Y}^3([v,a], y)\alpha_{[b]}w \rangle y^c$ by $X^a Y^b Z^c$. Then since $i, j \in \mathbb{N}$, keeping the non-negative powers of Y, the following equation

$$
\sum_{i,j \in \mathbb{N}} X^{-2-i-j}Y^iz^j + \sum_{i,j \in \mathbb{N}} X^{-1-i-j}Y^iz^j = \sum_{i,j \in \mathbb{N}} X^{-1-i-j}Y^iz^j
$$

implies

$$
\sum_{i,j \in \mathbb{N}} \langle \theta, \beta_{-2-i-j}\mathcal{Y}^3(\gamma, y)\alpha_{i}w \rangle y^j + \sum_{i,j \in \mathbb{N}} \langle \theta, \beta_{-1-i-j}\mathcal{Y}^3(\gamma, y)\alpha_{j}w \rangle y^{j-1}j
$$

Furthermore, from

$$
\langle \theta, \mathcal{Y}^3(\alpha_{[-1]}\beta_{[-1]}[v,a], y) w \rangle
$$

$$
= \sum_{i,j \in \mathbb{N}} \langle \theta, \mathcal{Y}^3(\alpha_{[-1]}\beta_{[-1]}[v,a], y) w \rangle y^{j+i+j} + \sum_{i,j \in \mathbb{N}} \langle \theta, \mathcal{Y}^3(\gamma, y)\beta_{i}w \rangle y^{j-i-j}
$$

$$
+ \sum_{i,j \in \mathbb{N}} \langle \theta, \mathcal{Y}^3(\gamma, y)\beta_{i}w \rangle y^{j-i-j}
$$

$$
+ \sum_{i,j \in \mathbb{N}} \langle \theta, \mathcal{Y}^3(\gamma, y)\beta_{i}w \rangle y^{j-i-j},
$$

23
we get

LHS of (4.10) \(-\langle \theta, \mathcal{Y}^3(\alpha_{-1}, \beta_{-1})[v, u], y \rangle w \)
= \(P(\sum_{i,j,k \in \mathbb{N}} \langle \theta, \beta_{-2-i-j}[\alpha_i, \beta_{j-i}]\mathcal{V}^3(\gamma, y) \rangle y^{j-i-k}) - P(\sum_{i,j,k \in \mathbb{N}} \langle \theta, \beta_{-2-i-j}[\alpha_i, \beta_{j-i}]\mathcal{V}^3(\gamma, y) \rangle y^{j-i-k}) \)

On the other hand, we obtain

RHS of (4.10) \(-\langle \theta, \mathcal{Y}^3(\alpha_{-1}, \beta_{-1})[v, u], y \rangle w \)
= \(P(\sum_{i,j,k \in \mathbb{N}} (-2i)\langle \theta, \beta_{-2-i-j}[\alpha_i, \beta_{j-i}]\mathcal{V}^3(\gamma, y) \rangle y^{j-i-k}) \)

which coincides with the above, since we obtain

\[
P(\sum_{i,j,k \in \mathbb{N}} (-2i)\langle \theta, \beta_{-2-i-j}[\alpha_i, \beta_{j-i}]\mathcal{V}^3(\gamma, y) \rangle y^{j-i-k}) = P(\sum_{i,j,k \in \mathbb{N}} \langle \theta, \beta_{-2-i-j}[\alpha_i, \beta_{j-i}]\mathcal{V}^3(\gamma, y) \rangle y^{j-i-k})
\]

from

\[
\sum_{i,j,k \in \mathbb{N}} \langle \theta, \beta_{-2-i-j}[\alpha_i, \beta_{j-i}]\mathcal{V}^3(\gamma, y) \rangle y^{j-i-k} = \sum_{i,j,k \in \mathbb{N}} X^{j-i-k}Z^j(Z + Y)^i
\]

where we denote \(\langle \theta, \alpha_a \mathcal{Y}^3(\beta[\gamma], y) w \rangle y^c \) by \(X^a Y^b Z^c \) and \(a, b \in \mathbb{N} \) and we also have

\[
P(\sum_{i,j,k \in \mathbb{N}} (-2i)\langle \theta, \beta_{-2-i-j}[\alpha_i, \beta_{j-i}]\mathcal{V}^3(\gamma, y) \rangle y^{j-i-k}) = P(\sum_{i,j,k \in \mathbb{N}} (-2i)\langle \theta, \beta_{-2-i-j}[\alpha_i, \beta_{j-i}]\mathcal{V}^3(\gamma, y) \rangle y^{j-i-k})
\]

where we replace \(\langle \theta, \mathcal{Y}^3(\beta[\gamma], y) \alpha_a \rangle w \) with \(X^a Y^b Z^c \) and \(a, b \in \mathbb{N} \).

This completes the proof of Theorem 4.10.

We now start the proof of Theorem 4.11. Since \(A \boxtimes B \) is an \(\mathbb{N}\)-graded modules, by Theorem 2.15 \(\mathcal{Y}^3 \) and \(\mathcal{Y}^4 \) are branches of some logarithmic intertwining operators of type \((\mathcal{A}^{(BC)}) \) and \((\mathcal{A}^{AB}) \) on \(\mathcal{D}^2 \). By the construction of \(\mathcal{Y}^3, \mathcal{Y}^4 \), for any \(\theta \in (\mathcal{A}^{BC}) \), there are \(v \in A, u \in B, w \in C \) such that \(\langle \theta, \mathcal{Y}^3(v, x - y)u, y \rangle w \) \(\neq 0 \), that is, the set of coefficients of \((x - y)^ry^s \log^a(x - y) \log^b(y) \) in \(\{\mathcal{Y}^3(\theta, v, x - y)u, y \rangle w \mid v \in A, u \in B, w \in C \} \) spans \(A^{(BC)} \). From the universal properties of fusion products (\(A \boxtimes B \boxtimes C, \mathcal{X}^{(A^{BC})}\)) and \((A \boxtimes B \boxtimes C, \mathcal{Y}^{(A^{BC})}) \), there is a surjective \(V\)-homomorphism \(\phi_{\mathcal{A}^{BC}} : (A \boxtimes B) \boxtimes C \to A \boxtimes (B \boxtimes C) \) such that

\[
\langle \theta, \phi_{\mathcal{A}^{BC}}(\mathcal{Y}^{(A^{BC})})(\mathcal{Y}AB(v, x - y)u, y)w \rangle = \langle \theta, \mathcal{Y}^3(\mathcal{Y}^{(A^{BC})}(v, x - y)u, y)w \rangle = \langle \theta, \mathcal{Y}^{(A^{BC})}(v, x) \mathcal{Y}^{(A^{BC})}(u, y)w \rangle
\]
on D^2 for any $v \in A, u \in B, w \in C$ and $\theta \in (A(BC))^\vee$. Similarly, by starting from $\langle \theta', Y^{AB(C)}(v, x-y)u, y, w \rangle$, we also have a surjective homomorphism $\phi_{A|BC|} : (A \boxtimes B) \boxtimes C \rightarrow A \boxtimes (B \boxtimes C)$ satisfying

$$\langle \theta', \phi_{A|BC|}(Y^{AB(C)}(v, x))Y^{BC}(u, y)w \rangle = \langle \theta', Y^{AB}(v, x-y)u, y, w \rangle$$
on D^2 for all v, u, w, θ'. From the construction, it is easy to see that $\phi_{A|BC|} \circ \phi_{AB|C} = 1$ and $\phi_{A|BC|} \circ \phi_{A|BC|} = 1$.

This completes the proof of the associativity law of fusion products. \hfill \square

Corollary 4.11 If $V^\vee \cong V$ and A and A^\vee are both C_1-cofinite N-gradable modules, then for any non-zero C_1-cofinite N-gradable V-module B, $A \boxtimes B$ and $B \boxtimes A$ are not zero.

[Proof] There is a surjective intertwining operator of type $(V^\vee_Q^{A})$ which comes from the V-module structure on A by skew-symmetry and duality. Hence $B \cong B \boxtimes V$ is a homomorphism image of $B \boxtimes (A \boxtimes A^\vee) \cong (B \boxtimes A) \boxtimes A^\vee$. Therefore, $(B \boxtimes A) \boxtimes A^\vee \neq 0$ and $B \boxtimes A \neq 0$. Similarly, we get $A \boxtimes B \neq 0$.

5 Pentagon axiom

Theorem 5.1 (Pentagon axiom) For C_1-cofinite N-gradable modules A, B, C, D, by using the above isomorphisms $\phi_{[a]}$, we have the following commutative diagram.

$$
\begin{array}{ccc}
(A \boxtimes B) \boxtimes C & \xrightarrow{\phi_{A|BC|} \times 1_D} & (A \boxtimes (B \boxtimes C)) \boxtimes D \\
\downarrow \phi_{A|BC|} & & \downarrow \phi_{A|BC|} \\
(A \boxtimes B) \boxtimes (C \boxtimes D) & \xrightarrow{1_A \times \phi_{A|BC|} D} & A \boxtimes (B \boxtimes (C \boxtimes D))
\end{array}
$$

[Proof] We consider a domain $D^3 = \{(x, y, z) \in \mathbb{C}^3 \mid x > |y| > |z| > |x-z| > |y-z| > |x-y| > 0, \text{ and } x, y, z, x-y, y-z, x-z \notin \mathbb{R}^{<0}\}$. We note $(7, 6, 4) \in D^3 \neq \emptyset$. Simplify the notation, we omit the notation \boxtimes. Let $\theta \in (A(B(CD)))^\vee, v \in A, u \in B, w \in C, d \in D$ and let ξ denote a quadruple $(v, u, w, d) \in A \times B \times C \times D$. We fix all intertwining operators for fusion products, say $Y^{AB}, Y^{BC}, Y^{CD}, Y^{(BC)D}, Y^{A(B(CD))}, \ldots,$, and consider their five-point correlation functions:

$$
\begin{align*}
F^{A(B(CD))}(\theta^1, \xi; x, y, z) &= \langle \theta^1, Y^{A(B(CD))}(v, x)Y^{BC}(u, y)Y^{CD}(w, z) \rangle \\
F^{A((BC)D)}(\theta^2, \xi; x, y-z, z) &= \langle \theta^2, Y^{A((BC)D)}(v, x)Y^{BC}(u, y-z)c, z) \rangle \\
F^{A(BC)D}(\theta^3, \xi; x-z, y-z, z) &= \langle \theta^3, Y^{A(BC)D}(v, x-z)Y^{BC}(u, y-z)w, z) \rangle \\
F^{A((AB)C)D}(\theta^4, \xi; x-y, y-z, z) &= \langle \theta^4, Y^{A((AB)C)D}(v, x-y)u, y-z)w, z) \rangle \\
F^{A((AB)CD)}(\theta^5, \xi; x-y, y, z) &= \langle \theta^5, Y^{A((AB)CD)}(v, x-y)u, y)Y^{CD}(w, z) \rangle
\end{align*}
$$

(5.1)

for $\theta^1 \in (A(B(CD)))^\vee, \theta^2 \in (A((BC)D))^\vee, \theta^3 \in ((A(BC))D)^\vee, \theta^4 \in (((AB)C)D)^\vee, \theta^5 \in ((AB)(CD))^\vee$. By the same way as we did for four-point correlation functions, it is not difficult to see that these five-point correlation functions are all locally normal convergent
on \(\{ (x, y, z) \in \mathbb{C}^3 \mid |x| > |y| > |z| > |x - z| > |y - z| > |x - y| > 0 \} \). We next choose their principle branches

\[
\tilde{F}^{A(B(CD))}(\theta^1, \tilde{\xi}; x, y, z), \tilde{F}^{A((BC)D)}(\theta^2, \tilde{\xi}; x - y, z, \ldots), \tilde{F}^{(AB)(CD)}(\theta^5, \tilde{\xi}; x - y, y, z)
\]

on \(D^3 \) by taking the values of \(\log(x), \log(y), \log(z), \log(x - y), \log(x - z), \log(y - z) \) which satisfy \(-\pi < \Im(\log(x)), \Im(\log(y)), \Im(\log(z)), \Im(\log(x - y)), \Im(\log(x - z)), \Im(\log(y - z)) < \pi \) and viewing \(x^a, y^b, z^c, (x - y)^d, (x - z)^e, (y - z)^f \) as \(e^{a\log(x)}, e^{b\log(y)}, e^{c\log(z)}, e^{d\log(x - y)}, e^{e\log(x - z)}, e^{f\log(y - z)} \), respectively.

From our construction of isomorphisms \(\phi_{[*],*} \), by Theorem 4.1, we have equations:

\[
\tilde{F}^{A((BC)D)}(\theta^1, \tilde{\xi}; x, y, z) = \tilde{F}^{A((BC)D)}((1_A \times \phi_{[BC]D}^*)(\theta^1), \tilde{\xi}; x - y, z, z),
\]

\[
\tilde{F}^{A((BC)D)}(\theta^2, \tilde{\xi}; x - y, z, z) = \tilde{F}^{A((BC)D)}(\phi_{[A(BC)]D}^*(\theta^2), \tilde{\xi}; x - z, y - z, z),
\]

\[
\tilde{F}^{((AB)C)D)}(\theta^3, \tilde{\xi}; x - y, y - z, z) = \tilde{F}^{((AB)C)D)}((\phi_{[AB]C}^* \times 1_D)(\theta^3), \tilde{\xi}; x - y, y - z, z),
\]

\[
\tilde{F}^{((AB)CD)}(\theta^4, \tilde{\xi}; x - y, y, z) = \tilde{F}^{((AB)CD)}(\phi_{([AB]CD)}^*(\theta^4), \tilde{\xi}; x - y, y, z),
\]

\[
\tilde{F}^{((AB)CD)}(\theta^5, \tilde{\xi}; x - y, y, z) = \tilde{F}^{((AB)CD)}(\phi_{([AB]CD)}^*(\theta^5), \tilde{\xi}; x - y, y, z),
\]

on \(D^3 \) at least, where \(\phi^* : U^\vee \to W^\vee \) denotes the dual of \(\phi : W \to U \). We hence have

\[
\tilde{F}^{((AB)CD)}((\phi_{[AB]C}^* \otimes 1_D)(\phi_{[A(BC)]D}^*(1_A \otimes \phi_{BC}^*)(\theta^1)), \tilde{\xi}; x - y, y - z, z)
\]

\[
= \tilde{F}^{A((BC)D)}(\theta^1, \tilde{\xi}; x, y, z) = \tilde{F}^{A((BC)D)}(\phi_{[A(BC)]D}^*(\phi_{[AB]C}^* \otimes 1_D)(\theta^1)), \tilde{\xi}; x - y, y - z, z)
\]

for all \(\theta^1 \in (A(B(CD)))^\vee \) and \(\tilde{\xi} \). As a consequence, we obtain \(1_A \otimes \phi_{[BC]D}^* \circ \phi_{[A(BC)]D}^* \circ \phi_{[AB]C}^* \otimes 1_D = \phi_{[AB]CD}^* \circ \phi_{[AB]CD}^* \), which implies the commutativity of the diagram.

This completes the proof of Theorem 5.1.

References

[1] R.E. Borcherds, *Vertex algebras, Kac-Moody algebras, and the Monster*, Proc. Natl. Acad. Sci. USA, 83 (1986), 3068-3071.

[2] V. Heu, *Linear complex differential equations*, mini-courses at Foliations and algebraic geometry, Summer School in Mathematics 2019.

[3] Y.-Z. Huang, *Differential equations and intertwining operators*, Commun. Contemp. Math. 7 (2005), no. 3, 375-400.

[4] Y.-Z. Huang and J. Lepowsky, *A theory of tensor products for module categories for a vertex operator algebra, III*, J. Pure Appl. Algebra 100 (1995) 141-171.

[5] Y. Ilyashenko and S. Yakovenko, *Lecture on Analytic Differential Equations*, American Mathematical Society 86, 2008.

[6] M. Miyamoto, *C_1-cofiniteness and fusion products for vertex operator algebras*, Conformal field theories and tensor categories, 271-279, Math. Lect. Peking Univ., Springer, Heidelberg, 2014.