On the stability of the cosmological solutions in $f(R, G)$ gravity

Álvaro de la Cruz-Dombriz1,2 and Diego Sáez-Gómez3

1 Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, 7701 Rondebosch, Cape Town, South Africa
2 Department of Mathematics and Applied Mathematics, University of Cape Town, 7701 Rondebosch, Cape Town, South Africa
3 Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, E-48080 Bilbao, Spain

E-mail: alvaro.delacruzdombriz@uct.ac.za and diego.saez@ehu.es

Received 11 September 2012, in final form 26 October 2012
Published 29 November 2012
Online at stacks.iop.org/CQG/29/245014

Abstract

Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable of explaining the phenomena of dark energy imposes that current research focuses on a more precise study of the possible effects of modified gravity on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called $f(R, G)$ gravity, and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future.

PACS numbers: 04.50.Kd, 95.36.+x, 98.80.--k

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, modified gravity theories have become one of the most popular candidates for explaining the current accelerated expansion of the Universe. As is very well known, general relativity (GR) in its standard form cannot explain such behavior of the Universe expansion without either extra terms in the gravitational Lagrangian (for reviews on modified theories of gravity, see [1, 2]) or exotic fluid components (see [3–5]). Modified gravity theories have been widely studied, and it has been shown that they are not only capable of mimicking the dark energy epoch, but also the inflationary era [6]. Therefore, by the only use of large scale observations (Ia type supernova, BAO, or the cosmic microwave background) which depend
uniquely on the evolution history of the Universe, the nature and the origin of DE cannot be determined due to the fact that identical evolutions for the cosmological background can be explained by a diverse number of theories. This is the so-called degeneracy problem. It is thus required, in order to confirm or discard the validity of these theories, to obtaining solutions that can also describe correctly, e.g., the growth factor of scalar perturbations (see [7]), the stability of cosmological solutions against small perturbations and the existence of GR-predicted astrophysical objects such as black holes [8].

In this sense, the simplest, and in fact the most studied, modification of GR is the one where the Hilbert–Einstein action is generalized to a general function of the Ricci scalar R, the so-called $f(R)$ gravities [9, 10]. These theories are able to mimic the behavior of the cosmological constant (see for instance [11]), but can also reproduce the entire cosmological history (see [6]). In addition, they seem to behave quite well at local scales, where the GR limit must be recovered [12], and the existence of GR-predicted astrophysical objects such as black holes can be achieved [13]. Nonetheless, these candidates have their own shortcomings [10] and have to pass rigorous theoretical and observational scrutiny before they can be accepted as viable theories [12]. Another possible modification of the standard gravitational Lagrangian includes a wider number of curvature invariants ($R, R_{\mu\nu}R^{\mu\nu}, R_{\mu\lambda\nu\sigma}R^{\mu\lambda\nu\sigma}$ among others). Within these modifications, the so-called Gauss–Bonnet gravity can be included. In these theories, the gravitational Lagrangian consists of a function $f(R, G)$, where G holds for the usual Gauss–Bonnet invariant. This modified gravity has also been widely studied and it is known that can also reproduce any kind of cosmological solution (see [14–21]), where special attention has been already paid to models able to mimic the ΛCDM model, as well as other important cosmological solutions (see [15, 16]). Finally, the cosmological perturbations have been explored within different standard scenarios for this class of theories [17].

In this investigation, we are interested in studying the stability behavior of several kinds of cosmological solutions in the framework of Gauss–Bonnet gravities when subjected to homogeneous perturbations. Our analysis will therefore exclude anisotropic, i.e. cosmological scalar, perturbations. Homogeneous and isotropic perturbations have been historically considered as the mean to determine the stability of different modified gravity theories (see, e.g., [3, 22, 24]). The usual approach in these works consisted in perturbing both the Hubble parameter and the matter density in order to check the background stability in the time evolution. This way, one can determine the stability of the modified Einstein equations when treated as differential equations. With respect of the cosmological perturbations, the full anisotropic analysis of cosmological perturbations in modified gravity theories is out of the scope of this investigation, whereas some significant advances have been made over the last few years, in particular for $f(R)$ theories [7].

With regard to Gauss–Bonnet gravity theories, a particular subclass has been studied in [18, 19], where the Hilbert–Einstein action plus a function $f(G)$ is considered. However, the extension to a more general form for the $f(R, G)$ gravitational theory is a mandatory task that may help understanding the viability and features of more general Lagrangians. These theories may present ghost degrees of freedom in an empty anisotropic universe, i.e. the Kasner-type background [20]. Nonetheless, these degrees of freedom are absent on Friedmann–Lemaître–Robertson–Walker (FLRW) backgrounds (see also [20]). This is precisely the type of cosmological background that will be considered in our investigation. Hence, in this paper, we analyze some important cosmological solutions in $f(R, G)$ gravity, both in a vacuum scenario and with the presence of standard perfect fluids. The stability of cosmological solutions has been studied for $f(R)$ gravity in [22], as well as for other curvature invariants in [3]. For some particular cases of $f(R, G)$, the perturbations on the solutions have been analyzed in [23], whereas for Hořava–Lifshitz gravity, the analysis has been performed in [24]. Here, we
extend the analysis to more general actions, where we shall find the stability conditions for different cosmological evolutions in FLRW universes such as inflationary epoch and late-time accelerated era as described by the ΛCDM model. Therefore, these analyses can help in understanding the viability of cosmological evolution provided by this kind of modified gravity, and constraining the viable candidates for the underlying gravitational action.

The remainder of this paper is organized as follows. In section 2, we present the general features of the $f(R, G)$ gravity theories by writing the corresponding modified Einstein equations. In section 3, we introduce the evolution equations of perturbations appearing in these scenarios once that an FLRW background is assumed. Sections 4 and 5 are then devoted to the study of stability around the de Sitter (dS) and power-law solutions, respectively. In the latter case, we pay special attention to configurations including perfect fluids such as radiation and dust. Section 6 is finally devoted to the study of the stability of the $f(R, G)$ model able to mimic the ΛCDM cosmological evolution without any cosmological constant. We conclude the paper by giving our conclusions in section 7. An appendix is included at the end of the paper to provide explicitly the coefficients of perturbations equations introduced in section 3.

2. $F(R, G)$ gravity

Let us start by writing the most general action for the modified Gauss–Bonnet gravity, which is given by

$$ S = \int d^4x\sqrt{-g} \left[\frac{1}{2\kappa^2} f(R, G) + \mathcal{L}_m \right], $$

where $\kappa^2 = 8\pi G_N$, G_N is the Newton constant and \mathcal{L}_m represents the matter Lagrangian. The symbol G holds for the Gauss–Bonnet invariant, which is expressed as

$$ G \equiv R^2 - 4R\mu\nu R^{\mu\nu} + R_{\mu\nu\lambda\sigma} R^{\mu\nu\lambda\sigma}. $$

Then, by varying expression (1) with respect to the metric tensor $g_{\mu\nu}$, the modified Einstein field equations are obtained [14]:

$$ 0 = \kappa^2 T^{\mu\nu} + \frac{1}{2} g^{\mu\nu} f(G) - 2f_G R_{\mu\nu} + 4f_G R^2 R_{\mu\nu} - 2f_G R^{\rho\sigma\tau\nu} R_{\rho\sigma\tau}^\nu - 4f_G R^{\mu\rho\sigma} R_{\rho\sigma} + 2(\nabla^{\mu} \nabla^{\nu} f_G) R - 2g^{\mu\nu} (\nabla^4 f_G) R - 4(\nabla^\rho \nabla^\nu f_G) R^{\rho\nu} - 4(\nabla^\rho \nabla^\nu f_G) R^{\rho\nu} + 4(\nabla^2 f_G) R^{\mu\nu} + 4g^{\mu\nu} (\nabla^{\rho} \nabla^\sigma f_G) R^{\rho\sigma} - 4(\nabla^{\rho} \nabla^\sigma f_G) R^{\rho\sigma} - f_G R^{\mu\nu} + \nabla^\mu \nabla^\nu f_G - g^{\mu\nu} \nabla^2 f_G, $$

where ∇ holds for the usual covariant derivative and subindices G and R in f hold for derivatives of the gravitational Lagrangian $f(R, G)$ with respect to those arguments. In this investigation, we are interested in studying different cosmological solutions described by a flat FLRW universe, such that we assume along the paper the metric

$$ ds^2 = -dt^2 + a^2(t) \sum_{i=1}^{3} (dx^i)^2. $$

Then, the Hubble parameter H takes its usual definition $H \equiv \dot{a}/a$, and G and R become

$$ G = 24(HH^2 + H^4), \quad R = 6(H + 2H^2), $$

where the dot holds for the derivative with respect to cosmic time t. By substituting expressions (5) and the metric (4) into the field equations (3), the FLRW equation for indices $\mu = \nu = 0$ yields

$$ 0 = \frac{1}{2}(Gf_G - f - 24H^3 \dot{f}_G) + 3(H + H^2) f_R - 3H \dot{f}_R + \kappa^2 \rho_m. $$
Let us assume from now on that the matter fluid will be given under the form of a perfect fluid with a constant equation of state \(p_m = \omega \rho_m \), with the matter energy density \(\rho_m \) satisfying the standard continuity equation
\[
\dot{\rho}_m + 3H(1 + \omega)\rho_m = 0. \tag{7}
\]

3. Perturbations of flat FLRW solutions in \(F(R, G) \) gravity

Let us now study the homogeneous and isotropic perturbations around a particular cosmological solution for the \(f(R, G) \) theory described by the action (1). Here, we establish the perturbed equations for a general case, but specific cases will be studied in the upcoming sections, specially dS and power-law solutions, as well as the behavior of \(\Lambda \text{CDM} \) solution in the context of these theories of gravity.

For this purpose, let us assume a general solution for the cosmological background of FLRW metric, which is given by a Hubble parameter \(H = H_0(t) \) that satisfies the background equation (6) for a particular \(f(R, G) \) model. The evolution of the matter energy density can be expressed in terms of this particular solution by solving the continuity equation (7) yielding
\[
\rho_{m0}(t) = \rho_0 e^{-3(1+\omega_0)\int H_0(t)dt}. \tag{8}
\]

Since we are interested in studying the perturbations around the solutions \(H = H_0(t) \) and density given by (8), let us consider small deviations from the Hubble parameter and the energy density evolution. Hence,
\[
H(t) = H_0(t)(1 + \delta(t)), \quad \rho_m(t) = \rho_{m0}(t) (1 + \delta_m(t)), \tag{9}
\]
where \(\delta(t) \) and \(\delta_m(t) \) hold for the isotropic deviation of the background Hubble parameter and the matter overdensity, respectively. In order to study the behavior of these perturbations in the linear regime, we expand the function \(f(R, G) \) in powers of \(R_0 \) and \(G_0 \) evaluated at the solution \(H = H_0(t) \):
\[
f(R, G) = f^0 + f^0_0(R - R_0) + f^0_0(G - G_0) + \mathcal{O}^2, \tag{10}
\]
where the superscript 0 refers to the values of \(f(R, G) \) and its derivatives evaluated at \(R = R_0 \) and \(G = G_0 \). The \(\mathcal{O}^2 \) term includes all the terms proportional to square or higher powers of \(R \) and \(G \) that will be included in the equation, although only the linear terms of the induced perturbations are considered. Hence, by introducing expression (9) in the FLRW background equation (6) and using the expansion (10), the equation for the perturbation \(\delta(t) \) becomes in the linear approximation:
\[
c_0 \ddot{\delta}(t) + c_1 \dot{\delta}(t) + c_0 \delta(t) = c_m \delta_m(t), \tag{11}
\]
where coefficients \(c_{0,1,2} \) and \(c_m \) are explicitly written in the appendix at the end of the communication. These coefficients depend explicitly on the \(f(R, G) \) and its derivatives evaluated in the background solution. In addition, there is a second perturbed equation obtained from the matter continuity equation (7) once it is perturbed with expressions (9). Thus,
\[
\dot{\delta}_m(t) + 3H_0(t)\delta_m(t) = 0. \tag{12}
\]

Hence, for a particular FLRW cosmological solution, its stability can be studied in the context of \(f(R, G) \) gravity by analyzing and solving equations (11) and (12). Due to the linear character of (11), the solution for \(\delta(t) \) can be in general split into two branches: the first one corresponding to the solution of the homogeneous equation in (11), which reflects the perturbations induced by the particularly chosen gravitational Lagrangian. The second branch
would correspond to the particular solution of that equation, which is merely affected by the
growth of matter perturbations \(\delta_m(t) \). Hence, the general solution can be written as
\[
\delta(t) = \delta_{\text{homogeneous}}(t) + \delta_{\text{particular}}(t).
\]
In the following sections, we shall consider several cosmological solutions, and their stability
will be then studied. Nevertheless, let us first make some general considerations. By recovering
the Hilbert–Einstein \(f(R, G) = R \), the stability equation (11) yields
\[
-6H_0^2 \delta(t) = c_m \delta_m(t),
\]
which can be understood as an algebraic relation between the geometrical and the matter
perturbations. Hence, in GR, the full perturbation around a cosmological solution is fully
determined by the matter perturbations (or vice versa). In fact, by taking an explicit expression
for \(c_m \) in the appendix and equation (12), it is straightforward to prove that
\[
\delta(t) = -\frac{1}{2} \delta_m(t) \propto a(t)^{3/2}.
\]
Nevertheless, the algebraic relation (15) between \(\delta(t) \) and \(\delta_m(t) \) in GR is in general absent
for higher order theories of gravity. For these theories, the evolution of the perturbations is
in general determined by a coupled system of ordinary differential equations (11) and (12),
where the underlying gravitational Lagrangian plays an essential role in the form of the
coefficients as can be seen in the appendix. Let us illustrate the previous comments by
considering theories whose Lagrangians can be rewritten as follows:
\[
f(R, G) = f_1(G) + f_2(R).
\]
Then, the perturbation equation (11) becomes much simpler and some information can
consequently be extracted. For instance, after assuming that GR should be recovered in some
limit, which basically means that the higher derivatives of the function (16) should become
negligible, the coefficient \(c_1 \) in (11) becomes null, and by dividing the equation by \(c_2 \), it yields
\[
\delta(t) + \frac{f_R^0}{3(16f_{GG}^0 H_0^6 t^4 + f_{RR}^0)} \delta(t) = \frac{c_m}{18(16f_{GG}^0 H_0^6 t^4 + f_{RR}^0)} \delta_m(t),
\]
where \(c_m' = \frac{c_m}{18(16f_{GG}^0 H_0^6 t^4 + f_{RR}^0)} \). In order to ensure the stability of a particular solution in vacuum
in the GR limit and provided that \(f_R^0 > 0 \), the denominator in (17) has to satisfy:
\[
16f_{GG}^0 H_0^6 t^4 + f_{RR}^0 > 0.
\]
In fact, this constraint was also proved in [25] to guarantee the generalized second law of
thermodynamics for these theories in dS scenarios. Note that for \(f(R, G) = R + f(G) \), the
Lagrangian is restricted to be \(f_{GG}^0 > 0 \) to ensure the stability of any solution in the GR limit [18].
Nonetheless, this constraint on the second derivative with respect to \(G \) may produce, according
to [19], instabilities in the matter cosmological perturbations for this kind of models. However,
a wider range of functions \(f_1(R) \) in (16) may circumvent the existence of such instabilities.

4. Stability of dS solutions

Let us start our study of the stability of different cosmological solutions by studying some of
the simplest cosmological solutions, namely the dS solutions:
\[
H_0(t) = H_0 \rightarrow a(t) = a_0 e^{H_0 t},
\]
where \(H_0 \) is constant. According to (5), the Ricci and Gauss–Bonnet terms are given in this
case by \(R_1 = 12H_0^2 \) and \(G_0 = 24H_0^2 \). Then, inserting the expression for the Hubble parameter
(19) into equation (6) once vacuum is considered, we obtain
\[
\frac{1}{2}(G_0 f_G(R_0, G_0) - f(G_0, R_0)) + 3H_0^2 f_R(R_0, G_0) = 0.
\]
Therefore, any \(f(R, G) \) function can in principle admit vacuum dS solutions provided that the previous algebraic equation has positive roots for \(H_0 \). Hence, for some particular \(f(R, G) \) models, the current accelerating epoch of the Universe expansion—as well as the inflationary epoch—can be explained. Following a different approach, one can consider equation (20) as an ordinary differential equation for the \(f(R_0, G_0) \) function so that the corresponding solution would admit any \(H_0^2 \) value. Thus, by solving equation (20) in terms of \(f(R, G) \), the following action is obtained:

\[
\frac{f(R, G)}{\rho_R} = \frac{\dot{\rho}_R}{\rho_R} + \frac{1}{2} \frac{\ddot{\rho}_R}{\rho_R} = 0
\]

where \(\alpha \) is an arbitrary integration constant. Therefore, functions as the one in (21) admit an infinite number of vacuum dS solutions \(H_0 \).

Let us now study the stability of dS solutions in vacuum, where the perturbation is affected only by the underlying gravitational theory. According to the equation for the perturbations (11), it yields

\[
(16H_0^4 \rho_R^0 + 8H_0^2 \rho_R + f_R^0 \dot{\delta}(t) + (48H_0^3 \rho_R^0 + 24H_0^2 \rho_R + 3H_0 \rho_R^0) \ddot{\delta}(t)
\]

\[
- (64H_0^3 \rho_R^0 - \frac{1}{2} f_R^0 + 32H_0 \rho_R + 4H_R^0 \rho_R^0)\delta(t) = 0.
\]

(22)

Therefore, the stability of each dS solution depends on the values of the function \(f(R, G) \) and its derivatives evaluated in \(\{R_0, G_0\} \). The general solution of equation (22) can be easily obtained and is given by

\[
\delta(t) = C_1 e^{\mu_- t} + C_2 e^{\mu_+ t},
\]

(23)

where

\[
\mu_{\pm} = 9H_0 F_0 \pm \sqrt{3F_0 (-4F_R^0 + 75H_0^2 F_0^0)}.
\]

(24)

Here, the variable \(F_0 \equiv 16H_0^4 \rho_R^0 + 8H_0^2 \rho_R + f_R^0 \) was introduced to lighten the notation. The growth of the perturbation will depend on both the overall sign of the parameters \(\mu_{\pm} \) in expression (24) and the real or the imaginary character of the square root. Thus, the following four different cases can be distinguished.

- \(F_0 < 0 \) and \(f_R^0 < 75H_0^2 F_0^0/4 \): this implies complex solutions and \(\Re(\mu_{\pm}) < 0 \); therefore, solutions behave as a damped oscillator of decreasing amplitude. Solutions are thus stable.
- \(F_0 > 0 \) and \(f_R^0 > 75H_0^2 F_0^0/4 \): this implies complex solutions and \(\Re(\mu_{\pm}) > 0 \); therefore, solutions as an oscillator of increasing amplitude. Solutions are thus non-stable.
- \(F_0 > 0 \) and \(4f_R^0/75H_0 F_0^0 \in (0, 1) \): this implies that both \(\mu_{\pm} \) are real and \(\mu_+ > 0 \). Solutions are thus non-stable.
- \(F_0 < 0 \) and \(4f_R^0/75H_0 F_0^0 \in (0, 1) \): this implies that both \(\mu_{\pm} \) are real and \(\mu_- < 0 \). In this case, \(\mu_+ > 0 \) provided that \(|f_R^0| > |12H_0^2 F_0^0| \) and \(\mu_- < 0 \) whenever \(|f_R^0| < |12H_0^2 F_0^0| \). Therefore, the solutions are non-stable and stable, respectively.

According to the definitions in the appendix, since \(F_0 = -\frac{c_2}{16H_0^2} \), then \(c_2 > 0 \), i.e. the positivity of the second-order coefficient in the perturbation equation (11), turns out to be the necessary (but not sufficient) condition to provide the stability of the dS solutions in vacuum.

In order to illustrate the previous calculations, let us consider the function

\[
f(R, G) = \kappa_1 R + \kappa_2 R^2 G^m.
\]

(25)

Here, \(\{\kappa_1, \kappa_2\} \) are the positive coupling constants. For simplicity, we take \(n = 1 \) and \(m = 3 \), so that equation (20) can be solved, and we find the following dS solution:

\[
H_0 = \frac{1}{2\sqrt{3}} \left(\frac{\kappa_1}{16\kappa_2} \right)^{1/6}.
\]

(26)
Thus, considering the perturbation solution (24), and introducing function (25) and its derivatives evaluated in (26), the solution for the perturbation is determined:

$$\delta(t) = C_1 \exp \left(\frac{\sqrt{25\kappa_1\kappa_2} - 2^{23/3}3^{2/3}\kappa_1^{1/3}\kappa_2^{5/3}}{\sqrt{3}\sqrt{2^5\kappa_1\kappa_2^2}} t \right) + C_2 \right) \times \exp \left(-\frac{3\sqrt{\kappa_1} + \sqrt{25\kappa_1} - 2^{23/3}3^{2/3}\kappa_1^{1/7}\kappa_2^{2/3}}{\sqrt{3}\sqrt{2^5\kappa_1\kappa_2^{1/6}}} t \right).$$

(27)

Hence, the stability depends on the value of the exponential of the first term in (27), which is given by the values of the coupling constants κ_1 and κ_2. In this sense, for $\kappa_1 > 2 \left(\frac{1152}{25} \right)^{3/2} \kappa_2$, the perturbation grows exponentially, and the dS solution becomes unstable; otherwise, the perturbation turns out to behave as a damped oscillator that tends to zero, so that the solution becomes stable.

5. Stability of power-law solutions

In this section, we are interested in cosmological solutions of the type

$$a(t) \propto t^\alpha \rightarrow H(t) = \frac{\alpha}{t},$$

(28)

that shall be referred to as power laws. These solutions represent the scale factor evolution for standard fluids, such as dust ($\alpha = 2/3$)-dominated or radiation ($\alpha = 1/2$)-dominated Universe provided that GR is assumed as the underlying valid gravitational theory.

For the solutions (28), the Gauss–Bonnet term and the Ricci scalar, given by expressions (7), take, respectively, the following form:

$$G = \frac{24\alpha^3(\alpha - 1)}{t^4}, \quad R = \frac{6\alpha(2\alpha - 1)}{t^2}.$$

(29)

Let us now explore two different kinds of gravitational Lagrangians $f(R, G)$ able to mimic the power-law solutions described by (28) in the presence of standard fluids. It is obvious that one has to solve first the background FRLW equation (6) in order to find the appropriate function $f(R, G)$. The considered two types of $f(R, G)$ Lagrangians are the following.

5.1. $f(R, G) = f_1(G) + f_2(R)$

For the sake of simplicity, let us start by considering the subfamily of functions given in (16). Then, for this type of Lagrangian, the Friedmann equation (6) can be split into two equations [15] as

$$-24H^2G(f_1)_{GG} + G(f_1)_{G} - f_1 = 0, \quad -3HR(f_2)_{RR} + 3(H + H^2)(f_2)_{R} - \frac{1}{2}f_2 + \kappa^2\rho_m = 0.$$

(30)

The first equation in (30) can be written in terms of G as

$$G^2(f_1)_{GG} + \frac{\alpha - 1}{4}G(f_1)_{G} - \frac{\alpha - 1}{4}f_1 = 0,$$

(31)

which is an Euler equation, whose solution is easily obtained, and yields

$$f_1(G) = C_1G^{\frac{\alpha}{4}} + C_2G,$$

(32)
where $C_{1,2}$ are the integration constants. Note that the second term in (32) is the trivial Gauss–Bonnet solution and can be removed, since it becomes a total derivative and does not contribute to the field equations. In the same way, the second equation in (30) takes the form
\[
R^2 (f_2)_RR + \frac{\alpha - 1}{2} R (f_2)_R - \frac{2\alpha - 1}{2} f_2 + \kappa^2 (2\alpha - 1) \rho_{m0} = 0.
\] (33)

In the presence of a perfect fluid, whose equation of state is given by $p_{m0} = w_{m0} \rho_{m0}$, from the energy conservation equation (7) with the class of cosmological solutions given in (28), the energy density yields
\[
\rho_{m0} = \rho_{m0}(t_{\text{today}}) \alpha^{-3(\omega_m+1)\alpha} = \rho_{m0}(t_{\text{today}}) \left[\frac{R}{6\alpha(2\alpha - 1)} \right]^{\frac{3(\omega_m+1)\alpha}{2}},
\] (34)

where $\alpha \neq 1/2$ has been assumed⁴. Hence, equation (33) for $f_2(R)$ gives the solution
\[
f_2(R) = k_1 R^{\mu_+} + k_2 R^{\mu_-} + \beta R^A,
\] (35)

where $k_{1,2}$ are the integration constants and
\[
\mu_\pm = \frac{3 - \alpha(7 - 2\alpha)}{4(1 - 2\alpha)} \pm \frac{\sqrt{1 + \alpha(10 + 2\alpha)}}{4},
\]
\[
\beta = \frac{-3\kappa^2 \rho_{m0}(t_{\text{today}})(2\alpha - 1)}{6\alpha(2\alpha - 1)^4 \left[A(A - 1) + \frac{3}{2} A(\alpha - 1) - \frac{3\alpha - 1}{2} \right]},
\]
\[
A = \frac{3(1 + \omega_m)\alpha}{2}.
\] (36)

Then, the complete function $f(R, G)$ is reconstructed for this class of cosmological solutions and can be expressed as the sum of expressions (32) and (35).

Concerning the stability of this kind of solutions, we have to evaluate the function $f(R, G)$ and its derivatives in (28) and to solve the perturbation equations (11) and (12). However, analytical solutions for equation (11) are in general difficult to be found. Only numerical solutions can be obtained by fixing the values of the free parameters of the theory, i.e. the coupling constants. In order to circumvent this intrinsic difficulty, let us consider the following particular cases: the radiation and dust matter evolutions, where $\alpha = 2/3$ and $\alpha = 1/2$, respectively, and $\alpha > 1$, which gives an accelerating expansion.

5.1.1. Dust-dominated Universe, $\alpha = 2/3$. In the case of an expansion of the type of dust matter, given by $\alpha = 2/3$, the Gauss–Bonnet term $G < 0$ according to (29), so that the gravitational Lagrangian (32) becomes complex, which may be interpreted as a non-physical case. In order to avoid this scenario, we set $C_1 = 0$, and thus, the Lagrangian turns out $f(R, G) = f_2(R)$, given by (35). For solving the differential equation (11), we use numerical methods. In order to illustrate the richness of this case, we considered specific values for the coupling constants $k_1 = k_2 = 0.1 \rho_{m0}$ with the appropriate dimensions. In figure 1, the evolution of $\delta(z)$ and $\delta_m(z)$ are plotted as functions of redshift z, and assuming different initial conditions for both perturbations. We also explore the effects of the variation of the initial condition for the first derivative $\delta'(z)$ in figure 2. We can see that regardless of the initial conditions, the perturbation δ oscillates tending to zero at $z = 0$ and similarly for δ_m in figures 1 and 2. Moreover, the case of a radiation-like fluid $\omega_m = 1/3$ is explored in figures 3 and 4, where the perturbations increase at small values of the redshift $z = 0$ in comparison with the pressureless case. While in figure 5 the values $\delta(z = 0)$ and $\delta_m(z = 0)$ are plotted versus the initial conditions assumed at $z = 1000$.

Other choices of specific values for these coupling constants can be proved to provide analogous results to the ones presented here.

⁴ This is a special case to be discussed separately.
Figure 1. The stability of the solutions for the model \(f(R,G) = f_1(G) + f_2(R) \) is shown. Here, we assume \(\alpha = 2/3 \) and \(w_m = 0 \), and the action reduces to \(f(R,G) = f_2(R) \). The perturbations \(\delta(z) \) and \(\delta_m(z) \) are represented versus the redshift \(z \). At the top figures, the initial condition \(\delta_m(1000) \) at \(z = 1000 \) is varied, while \(\delta_0 = 0.001 \) and \(\delta'_0 = 0 \) are fixed. At the bottom, \(\delta_m(1000) = 0.001 \) is fixed, while the evolution of \(\delta(z) \) and \(\delta_m(z) \) is shown as a function of \(\delta'_0 \). As shown, independently of the initial conditions, the perturbations behave as a damped oscillator, turning out very small at \(z = 0 \).

Figure 2. As figure 1, the stability for the solutions described by \(\alpha = 2/3 \) and \(w_m = 0 \) is analyzed. Here, the perturbations \(\delta(z) \) and \(\delta_m(z) \) versus the redshift \(z \) are represented and the initial conditions \(\delta_0 = \delta'_0 = 0.001 \) are fixed, while \(\delta'_0 \) is varied along the range \(-10^{-3}, 10^{-3}\). Unlike figure 1, the values of the initial condition \(\delta'_0 \) may produce a large amplitude in the oscillations of the perturbations along the evolution, leading to large effects at \(z = 0 \).

5.1.2. Late-time acceleration, \(\alpha > 1 \). Another interesting example is given by a power-law cosmological solution with \(\alpha > 1 \). In GR, this kind of solution is provided by the presence of a perfect fluid whose EoS parameter is given by \(w < -1/3 \) and consequently compatible with the currently observed accelerating expansion. Coming back to \(f(R,G) \) gravity theories, we are interested in studying its stability when dust matter \(w_m = 0 \) is included. It can be shown that equation (11) exhibits a pole, whose position in relation with the redshift depends upon the coupling constants values. For small redshifts, the perturbation oscillates close to \(z = 0 \), where
Figure 3. The stability of the power-law solution with $\alpha = 2/3$ and $w_m = 1/3$ is studied for the model (35). As in figure 1, in the top figures, the initial condition δ_{m0} at $z = 1000$ is varied, whereas $\delta_0 = 10^{-3}$ and $\delta'_0 = 0$ are fixed. In the bottom figure, $\delta_{m0}(1000) = 10^{-3}$ is fixed, while the evolution of $\delta(z)$ and $\delta_m(z)$ is shown as a function of δ_0. Here, the perturbations for non-null initial conditions grow along the redshift evolution, producing instabilities at $z = 0$.

Figure 4. As in figure 3, the stability for the solutions given by $\alpha = 2/3$ and $w_m = 1/3$ is analyzed. However, here the perturbations $\delta(z)$ and $\delta_m(z)$ are represented versus the redshift with the initial conditions $\delta_0 = \delta_{m0} = 0.001$, whereas δ'_0 is varied along the range $[-10^{-3}, 10^{-3}]$. In this case, the perturbations grow very fast for non-null initial conditions on δ'_0, producing large instabilities at $z = 0$.

the dark energy epoch is expected. Hence, it seems that in the presence of dust matter (baryons and cold dark matter), this kind of solutions becomes unstable for large redshifts, when the radiation/matter-dominated epochs occur, and naturally, the power law with $\alpha > 1$ is no longer valid. However, the solution turns out to be stable when we approach to the current epoch, and late-time acceleration is well reproduced. For illustrative purposes, we have considered $k_1 = k_2 = 0.1 \times \delta_0$ and $C_1 \sim \rho_{m0}(_{\text{today}})$ whose perturbations are depicted in figure 6. In this case, the contribution coming from the Gauss–Bonnet part (32) has to be included since $G > 0$ and the action is therefore real. As in the above cases, different initial conditions for
Figure 5. This represents a summary of the stability of $f(R, G) = f_1(G) + f_2(R)$ for the power-law solutions in the dust case $\alpha = 2/3$: Evolution of cosmological and dust perturbations δ and δ_m for $w_m = 0$ (left panel) and $w_m = 1/3$ (right panel) respectively. Initial conditions $\{\delta_0, \delta_m\}$ are imposed at redshift $z = 1000$ and varied in the range $\{10^{-3}, 10^{-3}\}$, while $\delta'(z = 1000) = 0$ is fixed. In both figures, the hypersurfaces with larger slope correspond to $\delta_m(z = 0)$, while the other hypersurfaces corresponds to $\delta(z = 0)$, which are not constant but with a much more little growth than δ_m. In both cases, the evolution of the final values for the perturbations follow a linear relation with the initial conditions, as natural since the perturbations equations are studied in the linear regime.

Figure 6. Stability of $f(R, G) = f_1(G) + f_2(R)$ for $\alpha = 2$: the evolution of the perturbations $\delta(z)$ and $\delta_m(z)$ versus the redshift z, and the initial values for δ_m at the top, and δ_0 at the bottom. Here, we consider $\alpha = 2$ and initial conditions imposed close to the pole $z \sim \bar{z}_{\text{pole}}$, where $\delta_0 = 0.001$ and $\delta_m = 0$ are fixed in the top figures, and $\delta_m = 0.001$ in the bottom figures. In both cases, we have assumed $w_m = 0$. Different values of the coupling constants change the position of the pole \bar{z}_{pole}. In all the cases, the perturbation $\delta(z)$ behaves smoothly close to $z = 0$, while it obviously becomes very large for z close to the pole. In the same way, $\delta_m(z)$ tends to small values close to $z = 0$.

Both δ and δ_m were considered, but now at $z = 0$ since we are interested in studying the past evolution of this solution with $\alpha > 1$, as it reproduces late-time acceleration at the current epoch. As shown in figure 6, the perturbations diverge for large redshifts, so the solution is
5.1.3. Radiation-dominated Universe, $\alpha = 1/2$. In the case for $\alpha = 1/2$, the equation (33) has to be solved separately from the general case, which for $\alpha = 1/2$, becomes

$$R^2 (f_2)_{RR} - \frac{1}{2} R (f_2)_R = 0,$$

(37)

whose general solution is given by

$$f(R) = C_1 R^{3/4} + C_2.$$

(38)

Nevertheless, note that this is not the only solution for the case $\alpha = 1/2$ since this value for the power-law exponent implies straightforwardly $R = 0$. Thus, any function $f_2(R)$ that accomplish $\lim_{R \to 0} f_2(R) \sim R^n$ with $n \geq 0$ will satisfy equation (37). However, by analyzing the Friedmann equation for $f_2(R)$ in (30), in terms of the cosmic time instead of the Ricci scalar, one can show that no gravitational action other than Hilbert–Einstein ($n = 1$) will satisfy this equation. Let us prove the previous statement by considering an hypothetical action given by $f_2(R) \propto R^n$, equation (30) yields,

$$6^n \alpha^2 \left(1 - 2\alpha + n(2\alpha - 3) \left[\frac{\alpha(2\alpha - 1)}{R^2} \right]^{n-1} + k^2 \rho_0 \delta^{3(1+w_m)\alpha}\right) = 0.$$

(39)

Then, if $\alpha = 1/2$ is assumed, the first term on the l.h.s. of (39) vanishes, whilst the second is never zero unless $\rho_{m0} = 0$ (vacuum). Hence, the only possible solution is given for $n = 1$, where the $f_2(R)$ action becomes the Hilbert–Einstein action, which imposes that $w_m = 1/3$ as natural for a radiation-type expansion.

Hence, for $\alpha = 1/2$, the gravitational action needs to be either $f(R, G) = R + f_1(G)$, or $f(R, G) = f(G)$. In the first case, for $f_1(G)$ given by expression (32), but since $G < 0$ according to (29), the action (32) would become complex, and non-physical, such that...
\(f(R, G) = R \). For the second possibility, \(f(R, G) \equiv f(G) \), the action only depends on the Gauss–Bonnet term, and the FLRW equations (30) can be rewritten as
\[
G^2 f_{GG} + \frac{\alpha - 1}{4} G f_G - \frac{\alpha - 1}{4} f + \kappa^2 \frac{\alpha - 1}{4} \rho_m = 0,
\]
while the expression for the energy density of a perfect fluid \(\rho_m = w_m \rho_m \) is given by
\[
\rho_m(t) = \rho_{m0}(t_{\text{today}})^{\frac{3}{8\alpha}} = \rho_{m0} \left[\frac{G}{24\alpha^3(\alpha - 1)} \right]^{\frac{3}{8\alpha}}.
\]
Hence, equation (40) can be easily solved:
\[
f(G) = C_1 G^{\frac{\alpha}{2}} + C_2 G + \beta G^A,
\]
where
\[
\beta = \frac{\kappa^2 \rho_{m0}(t_{\text{today}})}{4} \frac{1 - \alpha}{[24\alpha^3(\alpha - 1)]^A (A - 1)A + \frac{\alpha + 1}{A}(A - 1)]}, \quad A = \frac{3(1 + w_m)\alpha}{4}.
\]
However, as above the Gauss–Bonnet term \(G < 0 \) since \(\alpha < 1 \) and the gravitational action becomes complex, which in principle lacks any physical sense. Hence, in the case of \(\alpha = 1/2 \), the gravitational action reduces to the Hilbert–Einstein action with the presence of a radiation-like fluid. This analysis provides an interesting consequence, since the universe evolution crosses a radiation-dominated epoch, if the gravitational action is of the type of \(f(R, G) = f_1(G) + f_2(R) \), the extra terms in the action should be negligible during such epoch, and the action must approach the Hilbert–Einstein action.

5.2. \(f(R, G) = \mu R^\beta G^\gamma \)

Let us assume now a gravitational Lagrangian of the form
\[
f(R, G) = \mu R^\beta G^\gamma,
\]
where \(\mu \) is a dimensionful constant, and \(\beta \) and \(\gamma \) are the constant exponents and let us study the power-law solutions as the ones given in (28) for two standard fluids: radiation and dust matter.

5.2.1. Radiation-dominated era, \(\alpha = 1/2 \). For \(f(R, G) \) models as given in expression (44), it is straightforward to prove that in the absence of any fluid and provided that \(\beta > 1 \) and any even value of \(\gamma \) (since \(G < 0 \), this constraint gets rid of imaginary terms), they can mimic radiation-like scale factor evolution, i.e. \(\alpha = 1/2 \). This can be performed by solving equation (6) in the absence of fluid sources and considering a function like (44). For this kind of models, equation (11) becomes
\[
\dot{t}^2 \ddot{\epsilon}(t) - \frac{1}{2} \dot{t}(4\beta + 8\gamma - 9) \dot{\epsilon}(t) - \frac{1}{2} (4\beta + 8\gamma - 5) \dot{\delta}(t) = 0.
\]
This is an Euler-like equation that yields to the solutions
\[
\delta(t) = C_+ t^{\alpha_+} + C_- t^{\alpha_-},
\]
where \(C_\pm \) are arbitrary constants and
\[
\alpha_\pm = \beta + \frac{1}{2} (-7 + 8\gamma \pm |8\gamma + 4\beta - 3|).
\]
In order to understand the stability of the perturbation given by expression (46), one should study the sign of \(\alpha_\pm \) exponents: provided that the requirement \(\beta > 1 \) is satisfied, it can be proved that \(\alpha_- \) is always negative. Concerning \(\alpha_+ \), this exponent is negative provided that \(\gamma < 1/8(5 - 4\beta) \) and \(\gamma \) even number as explained above. Otherwise, \(\alpha_+ \) would be positive and the perturbation would be unstable.
Figure 8. Values evaluated today (z = 0) for cosmological and matter (dust) perturbations: δ and δm, respectively, for β = 5 (left panel) and β = −1 (right panel) in expression (53) and H0(t) = 2/3t in (12). Initial conditions were imposed at redshift z = 1000 ranging in the interval (−0.001, +0.001) for both δ(z = 1000) and δm(z = 1000). In both panels, the hyperplanes with larger slope correspond to δm evaluated today. The other hyperplanes which seem to have constant values in the three-dimensional representation correspond to δ today. In both panels, it can be seen that δm achieves today values bigger—in absolute value—than those under the initial conditions. On the other hand, δ remains with amplitudes today smaller than the initial values.

Figure 9. Stability of f(R, G) given by (44) in the dust (ω = 0) case: evolution of cosmological and dust perturbations, δ and δm, respectively, for β = 5 in expression (53). Different initial conditions at redshift z = 1000 were imposed. The two upper panels represent the evolution in redshift for δ (left) and δm (right) for fixed δm(z = 1000) = 10^{-3}, whereas δ(z = 1000) varied from −0.001 to 0.001. One can see how the evolutions of both perturbations acquire decreasing amplitudes when approaching today (z = 0). At the lower figures, δ (left) and δm (right) are depicted again, this time for fixed δ(z = 1000) = 10^{-3}, whereas δm(z = 1000) varied from −0.001 to 0.001. In the left panel, it can be seen how δ tends to null amplitude today regardless of the values for δm(z = 1000). In contrast, the values of δm (right panel) tend to decrease in amplitudes by depending on its initial value.
If one now considers a radiation fluid characterized by both \(\omega = 1/3 \) and \(\alpha = 2/3 \), it is possible to show that Lagrangians such as (44) cannot satisfy equation (6) for any value of their parameters. If we relax now the constraint on \(\alpha \) permitting \(\alpha \neq 1/2 \), then the combination \(\beta + 2\gamma \) has to be negative in order to guarantee \(\alpha > 0 \). It can be shown that in this case, equation (6) is not satisfied for any parameter combination\(^5\). Therefore, none of these two last cases can be accomplished by Lagrangians such as (44).

5.2.2. Dust-dominated era, \(\alpha = 2/3 \). For this case, we have considered three different scenarios. In the absence of matter, models given by (44) can hold a power-law scale factor with \(\alpha = 2/3 \). In this case, \(\mu \) can take in principle any value, whereas \(\gamma \) (which has to be even as in the previous case) and \(\beta \) must be related as follows:

\[
\gamma = \gamma_k = \frac{1}{2\alpha}(13 + 6\beta \pm \sqrt{121 - 180\beta + 324\beta^2})
\]

(48)

in order to satisfy the background equation (6). With this requirement, the perturbation equation (11) becomes a Euler-like equation

\[
\dot{t}^2 \ddot{\delta}(t) - \frac{1}{6}t^2 [17 + 18\beta \pm \sqrt{121 + 36\beta(-5 + 9\beta)}] \dot{\delta}(t)
+ \frac{1}{6}t [5 - 18\beta \mp \sqrt{121 + 36\beta(-5 + 9\beta)}] \delta(t) = 0,
\]

(49)

\(^5\) In fact, the required \(\mu \) would be imaginary.
whose solutions are
\[\delta_\pm(t) = \frac{C_1}{t} + C_2 t^{-3+2\beta+4\gamma_\pm}, \] (50)
where the second exponent is always a real number regardless of the β value. Moreover, it can be proved that $\delta_+(t)$, i.e. γ_+ choice, the second power-law solution in (50) possesses a positive exponent, whereas $\delta_-(t)$ holds both power-law solutions with negative exponents. Therefore, the solutions provided by the γ_+ choice would be stable, whereas the ones provided by γ_- would not be.

The second case consists in considering the presence of dust matter ($\omega = 0$) and a power-law scale factor with the exponent $\alpha = 2/3$. In that case, γ and μ depend on β as follows:
\[\gamma = \frac{1 - \beta}{2}, \quad \mu = \frac{(2\gamma - 1)3(3-\beta)/2\kappa^2\rho_m(t_{\text{today}})}{9\beta - 5}. \] (51)
From the last expression, it is straightforward to conclude that one of the two following constraints must be imposed to guarantee μ to be positive and real:
\[\beta = 4n + 1 \quad \text{and} \quad \beta > \frac{5}{9}; \quad \beta = 4n + 3 \quad \text{and} \quad \beta < \frac{5}{9} \quad \text{with} \quad n \in \mathbb{Z}. \] (52)
For this case, equation (11) is again Euler-type with a source term proportional to $\delta_M(t)$. Thus,
\[t^2 \ddot{\delta}(t) + 3t \dot{\delta}(t) + \left[1 + \frac{8}{45(1 + \beta)} + \frac{12}{5 + 45\beta} \right] \delta(t) = -\frac{2(-5 + 9\beta)}{9[1 + (8 - 9\beta)]} \delta_M(t). \] (53)
In order to illustrate the rich phenomenology of this case, we have considered $\beta = 5$ for the first constraint
\footnote{Note that $\beta = 1$ will imply $\gamma = 0$, i.e. the usual EH Lagrangian would be recovered.} and $\beta = -1$ for the second according to (52). For these two cases, in
Figure 12. Stability of $f(R,G)$ given by (44) in the case of dust ($\omega = 0$) and scale factor with the power-law exponent $\alpha = 4/3$: evolution in redshift of cosmological and dust perturbations, δ and δ_m, respectively. As in figure 11, parameters of the gravitational Lagrangian were chosen to be $\beta = -1$, $\gamma = 3/2$ and $\mu = 75/256\sqrt{3}\rho_m(t_{\text{today}})$.

Different initial conditions at redshift $z = 1000$ were imposed. The two upper panels represent the evolution in redshift for δ (left) and δ_m (right) for fixed $\delta_m(z = 1000) = 10^{-3}$, whereas $\delta(z = 1000)$ varied from -0.001 to 0.001. One can see how the δ perturbations tend to reduce its amplitudes when approaching today ($z = 0$) showing the stability of this case. Concerning δ_m, with the initial amplitude of 10^{-3}, acquired final amplitudes ranging from 10^{-3} to 4×10^{-3}, i.e. increasing its amplitude by a factor 4.

At the lower figures, δ (left) and δ_m (right) are depicted again, this time for fixed $\delta(z = 1000) = 10^{-3}$, whereas $\delta_m(z = 1000)$ varied from -0.001 to 0.001. In the left panel, it can be seen how δ today acquires values ranging from 0 to 5×10^{-4}, i.e. decreasing its amplitude (initially 10^{-3}) for the δ_m initial condition. Concerning the evolution for δ_m (right panel), the amplitudes today range from 0 (for $\delta_m(z = 1000) = 10^{-3}$) to -4×10^{-2} (for $\delta_m(z = 1000) = -10^{-3}$).

Figure 8, we have plotted the values for δ and δ_m today ($z = 0$) for a wide range of initial conditions. On the one hand, for $\beta = 5$, the homogeneous Euler-like associated equation to (53) would present complex conjugate exponents. The presence of the matter term induces solutions as the ones presented in figures 9. In this figure, the perturbations amplitudes for δ seem to decrease, whereas those for δ_m increase but all of them remain in the linear regime. On the other hand, for $\beta = -1$, the homogeneous associated equation with (53) would present two distinct negative real exponents. The inclusion of the matter term leads to the perturbation amplitudes to decrease in the absolute value as presented in figure 10 both for matter and Hubble parameter perturbations.

Finally, we decided to study a dust fluid characterized by $\omega = 0$ but $\alpha \neq 2/3$. It is possible to show that Lagrangians such as (44) can satisfy equation (6) provided that

$$\alpha = \frac{2}{3}(\beta + 2\gamma),$$

and μ is a certain combination of $\{\beta, \gamma, \rho_m(t_{\text{today}})\}$ that guarantees this parameter to be both real and positive. Therefore, models like (44) may host dust fluid ($\omega = 0$) with a power-law evolution exponent $\alpha \neq 2/3$ for a suitable choice of parameters. In order to
Figure 13. Values today ($z = 0$) for cosmological and dust perturbations, δ and δ_m, respectively, for the $f(R, G)$ model (59) mimicking ΛCDM. Positive (negative) sign in expression (57) were represented in left (right) panels. Initial conditions were imposed at redshift $z = 1000$ ranking from $(-0.001, +0.001)$ for both $\delta(z = 1000)$ and $\delta_m(z = 1000)$. For the positive branch (left panel), the maximum amplitude of δ today is $\pm 2 \times 10^{-4}$. Thus, the final amplitude is 20 times smaller than the initial ones guaranteeing that δ remains in the linear regime and the perturbations remain small. The final value for δ turns out to be independent of the initial conditions for δ and does depend solely upon the initial conditions of δ_m. Concerning δ_m, its final amplitude for δ_m acquires maximum–minimum values of $\pm 2 \times 10^{-3}$, i.e. two times the initial amplitude. These values depend on the initial conditions for δ and δ_m. For the negative branch (right panel), the maximum amplitude of δ today is $\pm 2 \times 10^{-3}$. The value for δ_m today depends both upon the initial conditions fixed for δ and δ_m. The maximum amplitude for δ_m is ± 0.04, i.e. 40 times bigger than the initial amplitude.

illustrate this case, we consider one example with $\beta = -1$ and $\gamma = 3/2$, and consequently, $\mu = 75/256\sqrt{3/2}\kappa^2\rho_{m}(t_{\text{today}})$. According to expression (54), the obtained value for the α exponent is $4/3$. Figure 11 represents δ and δ_m evaluated today ($z = 0$) for a wide range of initial conditions for these two quantities. On the other hand, figure 12 represents the redshift evolution also for δ and δ_m by fixing different initial conditions. There, it can be seen how the Hubble parameter perturbation remains small and decreases in amplitude, and the matter perturbation grows in amplitude, while remaining in the linear regime.

6. Stability of $f(R, G)$ mimicking ΛCDM solution

We analyze in this section the stability of the $f(R, G)$ function mimicking ΛCDM cosmological evolution without any cosmological constant term. This model was originally presented in [15] and its key features will be described below. The cosmological speed-up effect of the cosmological constant in the concordance model is precisely replaced by the modification introduced by $f(R, G)$ with respect to the usual EH Lagrangian.

The scale factor solution within GR with dust and cosmological constant is given by
\begin{equation}
 a(t) = \left(\frac{\Omega_m}{\Omega_\Lambda} \right)^{2/3} \sinh^{1/3} \left(\frac{3\sqrt{\Omega_\Lambda}}{2} H_0 t \right),
\end{equation}

where H_0 holds for the Hubble parameter today and $\Omega_{m, \Lambda}$ hold, respectively, for dust and cosmological constant fractional densities today\(^7\). According to [15], the Gauss–Bonnet contribution to the gravitational action that is able to mimic ΛCDM evolution is given by
\begin{equation}
 f(G) = \theta \, \xi(G)^2 + \theta \, \xi(G) + H_0^2 \epsilon,
\end{equation}

\(^7\) For illustrative purposes, we shall consider $\Omega_m = 0.27$ and $\Omega_\Lambda = 0.73$.
Figure 14. Stability of \(f(R, G) \) given by (59) for positive sign in expression (57): evolution in redshift of cosmological and dust perturbations, \(\delta \) and \(\delta_m \), respectively. Different initial conditions at redshift \(z = 1000 \) were imposed. The two upper panels represent the evolution in redshift for \(\delta \) (left) and \(\delta_m \) (right) for fixed \(\delta_m(z = 1000) = 10^{-3} \), whereas \(\delta(z = 1000) \) varied from \(-0.001\) to \(0.001\). In the left panel, one can see that regardless of the initial conditions for \(\delta \) this quantity today \((z = 0)\) approaches null amplitude with decreasing oscillating amplitude. In the right panel, \(\delta_m \) follows the same behavior decaying from \(10^{-3}\) to null amplitude today. At the lower figures, \(\delta \) (left) and \(\delta_m \) (right) are depicted again this time for fixed \(\delta(z = 1000) = 10^{-3} \), whereas \(\delta_m(z = 1000) \) varied from \(-0.001\) to \(0.001\). The oscillatory character of the upper figures appears again. In fact, in both panels of the lower figures, \(\delta \) tends to zero regardless of the initial value of \(\delta_m \) as well as does \(\delta_m \) today.

where

\[
\zeta(G) = \frac{3H_0^2 - \sqrt{81H_0^4 - 3G}}{6l} \tag{57}
\]

with \(l = \kappa^2 \rho_0 a(t = t_{\text{today}})^{-3}/3 \) and \(G \) is given by expression (5), while according to [15], \(\{\theta, \vartheta\} \) are

\[
\theta = \frac{l^2}{H_0^2} \left[\kappa^{-2} - \frac{2}{9} (\epsilon + 1) \right]; \quad \vartheta = l \left[\frac{1}{5} \kappa^{-2} + \frac{2}{9} (\epsilon + 1) \right]. \tag{58}
\]

where \(\epsilon \) is a constant\(^8\) as well. Therefore, the full gravitational Lagrangian is expressed as follows [15]:

\[
f(R, G) = R + \frac{1}{2} (\theta \zeta(G))^2 + \vartheta \zeta(G) + H_0^2 \epsilon. \tag{59}
\]

\(^8\) In the original reference, authors used \(\delta \) symbol for this constant. In order to avoid confusion, we have preferred to use \(\epsilon \) symbol.
Figure 15. Stability of $f(R, G)$ given by (59) for negative sign in expression (57): Evolution in redshift of cosmological and dust perturbations, δ and δ_m, respectively. Different initial conditions at redshift $z = 1000$ were imposed. The two upper panels represent the evolution in redshift for δ (left) and δ_m (right) for fixed $\delta_m(z = 1000) = 10^{-3}$ whereas $\delta(z = 1000)$ varied from -0.001 to 0.001. In the left panel, one can see that regardless of the initial conditions for δ this quantity today ($z = 0$) approaches null amplitude. In the right panel, δ_m instead grows to bigger amplitudes achieving today values between $2 \cdot 4 \cdot 10^{-3}$. At the lower figures, δ (left) and δ_m (right) are depicted again this time for fixed $\delta(z = 1000) = 10^{-3}$ whereas $\delta_m(z = 1000)$ varied from -0.001 to 0.001. δ tends to zero amplitude regardless of the initial value of δ_m. Nonetheless, δ_m increases its final amplitude today ranging from $-4 \cdot 10^{-3}$ to $2 \cdot 10^{-3}$ with regard to the initial amplitude.

Now that we have revised the form of the $f(R, G)$ Lagrangian able to mimic the background solution (55), we study the system made of equations (11) and (12). The stability of this model for several different initial conditions can be established and has been represented in figures 13–15. Both signs in expression (57) were considered leading to two different analyses. For the positive branch in expression (57), the obtained solutions were oscillatory with decreasing amplitude for all the studied initial conditions. According to the numerical results depicted in figures 13(left) and 14, $\delta_m(t)$ attains bigger amplitudes today (in absolute value) than $\delta(t)$ in this branch. On the other hand, for the negative branch in expression (57), δ decreases in amplitude, whereas δ_m solutions increase for all the studied initial conditions. According to figure 13(right), δ_m increases in the absolute value faster than δ. Figure 15 illustrates how δ amplitude tends to decay, whereas δ_m increases.

7. Conclusions

In this work, we have extended the study of $f(R, G)$-modified gravity theories to provide an accurate description of the instabilities that these theories may present. For such scenarios,
Table 1. Summarization of the stability of power-law solutions for $f(R,G)$ models given by expressions (16) and (44). In the cases where no fluids are considered (vacuum), it can be seen that the stability of the cosmological solutions can be achieved for an appropriate choice in the parameters space. Once either dust or radiation fluids are considered, one sees that usual power-law evolution is, on the one hand, not feasible for radiation and, on the other hand, the stability depends on the initial conditions for dust. By a particular action for this kind of cosmological solutions, modified gravity may contribute during the matter/radiation-dominated eras, but also reproduce dark energy epoch ($\alpha = 2$).

Model $f(R,G) = f_1(G) + f_2(R)$	$a(t) \propto t^\alpha$	EoS	Stability
$2/3$	$w_m = 0$	Stable with $\delta_0 = 0$. δ_m grows very fast when $\delta_0 \neq 0$.	
$2/3$	$w_m = 1/3$	Unstable: δ and δ_m grow with z.	
2	$w_m = 0$	Existence of a pole z_{pole} fixed at large redshift. Stable close to $z = 0$.	

Model $f(R,G) = \mu R^\beta G^\gamma$

Configuration	$a(t) \propto t^\alpha$	EoS	Stability
Vacuum	$\alpha = 2/3$	$\beta > 1$, γ one or even number and $\gamma < \frac{1}{3} (5 - 4\beta)$	
Fluid	$\alpha = 1/3$	$\omega = 1/3$	Impossible to satisfy.
	$\alpha = 1/3$	$\omega = 0$	Any β and γ one or even number and $\gamma = \gamma_-$ given by eqn. (48)
	$\alpha \neq 1/3$	$\omega = 1/3$	Impossibility to satisfy. δ_m decreases and δ increases.
	$\alpha = 1/3$	$\omega = 0$	$\beta = -1$, $\gamma = 1/3$, δ tends to zero and δ_m increases.

The linearized perturbed equations have been derived. They were obtained once the modified Einstein equations are implemented with perturbations in both the Hubble parameter and the matter density. The resulting coefficients have been explicitly presented for the first time in the existing literature and a strong dependence on the chosen $f(R,G)$ model was observed.

We have studied three of the most important cosmological solutions in the standard cosmological concordance model around a spatially flat FLRW background: dS expansion, power laws and the scale factor solution as provided for the ΛCDM model. The required $f(R,G)$ gravitational Lagrangians to provide dS and power-law solutions are explicitly determined, whereas the model mimicking ΛCDM is revised. Concerning the perturbations, in the first case, we have found that a certain combination in the sign of some derivatives of the gravitational Lagrangian evaluated in the cosmological background is required to ensure the stability of the solution. This may provide a way to understand the end of an inflationary era produced by one of these dS points (which appear as natural solutions of $f(R,G)$ gravity), as well as for understanding the evolution of dark energy epoch.

With respect to the power-law solutions, the complexity of the coefficients for the perturbed equations led us to study two representative models: either a sum of functions of scalar curvature and Gauss–Bonnet term or powered products of these two scalars. These models may encapsulate the main features for cosmologically viable $f(R,G)$ theories in some asymptotic regimes. Their rich phenomenology was summarized in table 1.

Besides, the usual power-law behavior for the scale factor in GR when either dust or radiation are the dominant components in the fluid sector was found to be mimicked, even
in the absence of such fluids, by appropriate choices in the parameter space of these models. The radiation-dominated evolution, i.e. $a(t) \propto t^{1/2}$, deserves special attention in the case of actions of the type $f(R, G) = f(G) + f(R)$. For this case, we have shown that the background evolution reduces to the Hilbert–Einstein action, a result that was also naturally extended to $f(R)$ theories. Consequently, the radiation-dominated era cannot be described in principle for this kind of Lagrangians, or at least, effects of such terms should be negligible during that epoch. Concerning the evolution of the perturbations, we have shown that for models of the form $f(R, G) = f_1(G) + f_2(R)$, the perturbations oscillate tending to zero at $z = 0$ provided that the initial condition δ_0 is assumed to be null, and the background evolution (α) coincides with the EoS parameter of the perfect fluid. Also note that independently of the model, the final values has a direct linear relation with the initial ones imposed. Note also that in the case $\alpha = 2$ (accelerating expansion), the perturbed equation presents a pole at a particular redshift, while the perturbations remain small up to the divergence.

Finally, the case of the $f(R, G)$ model able to mimic the ΛCDM scale factor led us also to relevant conclusions. According to the previous literature, this model presents two branches. Our analysis showed the decreasing and oscillatory character of perturbations in the positive branch regardless of the initial conditions. Therefore, this solution may be considered as stable with respect to small perturbations. On the other hand, the negative branch showed that matter perturbations are not constrained in amplitude even if the perturbations for the Hubble parameter approach zero for a wide choice of initial conditions.

Hence, the wide study on both cosmological solutions and stability of homogeneous perturbations for $f(R, G)$ gravity carried out in this paper may help in better understanding of such higher order theories of gravity. We have shown that the gravitational action plays a very important role in the stability of the solutions depending on both the form of the $f(R, G)$ theory and the parameters of the model, which means a great difference with respect to GR. The search for stability in widely accepted cosmological solutions helps to constrain the parameters space of the $f(R, G)$ models that may be viable and therefore may deserve further study by future analyses of the full spectrum of cosmological perturbations in modified gravity.

Acknowledgments

We would like to thank Sergei D Odintsov and Antonio López Maroto for useful discussions on the topic. AdCD acknowledges financial support from URC (South Africa) and MICINN (Spain) projects numbers FIS2011-23000, FPA2011-27853-C02-01 and Consolider-Ingenio MULTIDARK CSD2009-00064. DSG acknowledges support from a postdoctoral contract from the University of the Basque Country (UPV/EHU) under the program ‘Specialization of research staff’. DSG was also supported by the research project FIS2010-15640 and by the Basque Government through the special research action KATEA and UPV/EHU under program UFI 11/55.

Appendix

In this appendix, we present explicitly the coefficients of equation (11):

\[c_2 = -18H_0^2(16f_{GG}^{0}H_{0}^{4} + 8f_{GR}^{0}H_{0}^{2} + f_{RR}^{0}), \]

\[c_1 = -18H_0[1536H_0^6 + f_{RR}^0 - f_{RR}^0 H_0 - 48H_0^2(f_{GG}^{0} + 8H_0(3f_{RRG}^{0} + 2H_0f_{SG}^{0}))]

\[- 8H_0^2(3f_{GG}^{0} + 2H_0(5f_{GG}^{0} + 18f_{RRG}^{0} + 24H_0f_{RRG}^{0}))] \]
\[\frac{1}{5} c_0 = -18432H_0^2f_{RR}^0 + 32H_0^0f_{0,RR}^0 + 192H_0^0f_{GG}^0 - 288H_0^0f_{0,GG}^0 - 6H_0^0f_{0,RR}^0, \]

\[\frac{1}{5} c_0 = -18432H_0^2f_{RR}^0 + 32H_0^0f_{0,RR}^0 + 192H_0^0f_{GG}^0 - 288H_0^0f_{0,GG}^0 - 6H_0^0f_{0,RR}^0. \]

\[c_m = \kappa^2 \rho_m(\ell). \]

(A.1)

References

[1] Nojiri S and Odintsov S D 2007 Int. J. Geom. Methods Mod. Phys. 4 115
Nojiri S and Odintsov S D 2011 Phys. Rep. 505 59 (arXiv:1011.0544[gr-qc])
Capozziello S and Francaviglia M 2008 Gen. Rel. Grav. 40 357
Sitoufri T P and Faraoni V 2010 Rev. Mod. Phys. 82 451
Lobo F S N 2008 arXiv:0807.1640[gr-qc]
Capozziello S and De Laurentis M 2011 Phys. Rep. 509 167–321
de la Cruz-Dombriz A and Sáez-Gómez D 2012 Entropy 14 1717
[2] Capozziello S and Faraoni V 2011 Beyond Einstein Gravity (Fundamental Theories of Physics vol 170) (Dordrecht: Springer)
[3] Dobado A and Maroto A L 1995 Phys. Rev. D 52 1895
[4] Dvali G, Gabadadze G and Porrati M 2000 Phys. Lett. B 485 208
[5] Beltrán J and Maroto A L 2008 Phys. Rev. D 78 063005
Beltrán J and Maroto A L 2009 J. Cosmol. Astropart. Phys. JCAP03(2009)016
Beltrán J and Maroto A L 2009 Phys. Rev. D 80 063512
Beltrán J and Maroto A L 2009 Int. J. Mod. Phys. D 18 2243–8
[6] Nojiri S and Odintsov S D 2006 Phys. Rev. D 74 086005 (arXiv:hep-th/0608008)
Elizalde E and Sáez-Gómez D 2009 Phys. Rev. D 80 044030 (arXiv:0903.2732[hep-th])
Nojiri S, Odintsov S D and Sáez-Gómez D 2009 Phys. Lett. B 681 74 (arXiv:0908.1269[hep-th])
[7] Bardeen J M 1980 Phys. Rev. D 22 1882
Carroll S M, Sawicki I, Silvestri A and Trodden M 2006 New J. Phys. 8 323
Song Y S, Hu W and Sawicki I 2007 Phys. Rev. D 75 044004
Starobinsky A A 2007 JETP Lett. 86 157
Bean R, Bernat D, Pogosian L, Silvestri A and Trodden M 2007 Phys. Rev. D 75 064020
Carlson S, Dunsby P K S and Troisi A 2008 Phys. Rev. D 77 024024
Tsujikawa S 2008 Phys. Rev. D 77 023507
Tsujikawa S, Uddin K and Tavakol R 2008 Phys. Rev. D 77 043007
de la Cruz-Dombriz A, Dobado A and Maroto A L 2008 Phys. Rev. D 77 123515
de la Cruz-Dombriz A, Dobado A and Maroto A L 2009 Phys. Rev. Lett. D 103 179001
Abbe E A et al 2012 Class. Quantum Grav. 29 135011
[8] Mignemi S and Wiltshire D L 1992 Phys. Rev. D 46 1475
Cvetic M, Nojiri S and Odintsov S D 2002 Nucl. Phys. B 628 295
Cai R G 2002 Phys. Rev. D 65 084014
Cho Y M and Neupane I P 2002 Phys. Rev. D 66 024044
Cognola G, Elizalde E, Nojiri S, Odintsov S D and Zerbini S 2004 J. Cosmol. Astropart. Phys. JCAP02(2005)010
Cai R G 2004 Phys. Lett. B 582 237
Matyjasek J, Telecka M and Tryniecki D 2006 Phys. Rev. D 73 124016
Mullamaki T and Viltia J 2006 Phys. Rev. D 74 064022
Olimo G J 2007 Phys. Rev. D 75 023511
Volfick D N 2007 Phys. Rev. D 76 124001
Brusto E and Elizalde E 2008 Phys. Rev. D 77 044009
Nziozi M A, Carloni S, Goswami R and Dunsby P K S 2010 Phys. Rev. D 81 084028
Capozziello S, De Laurentis M and Stabile A 2010 Class. Quantum Grav. 27 165008
Myung Y S 2011 Phys. Rev. D 84 024048
[9] Starobinsky A A 1980 Phys. Lett. 91 99
Nojiri S and Odintsov S 2003 Phys. Rev. D 68 123512
Nojiri S and Odintsov S 2004 Gen. Rel. Grav. 36 1765
Capozziello S 2002 Int. J. Mod. Phys. D 11 483
Carroll S M et al 2005 Phys. Rev. D 71 063515
Carloni S, Dunsby P K S, Capozziello S and Troisi A 2005 Class. Quantum Grav. 22 4839
Sotiriou T P and Liberati S 2007 Ann. Phys. 332
Cembranos J A R 2006 Phys. Rev. D 73 064029
Clifton T and Barrow J D 2005 Phys. Rev. D 72 103005
Capozziello S, Carloni S and Troisi A 2003 Recent Res. Dev. Astron. Astrophys. 1 625 (arXiv:astro-ph/0303041)
Cembranos J A R 2009 Phys. Rev. Lett. 102 141301 (arXiv:0809.1653 [hep-ph])
Sáez-Gómez D 2009 Gen. Rel. Grav. 41 1527 (arXiv:0809.1311 [hep-th])
Dunsby P K S, Elizalde E, Goswami R, Odintsov S D and Sáez-Gómez D 2010 Phys. Rev. D 82 023519 (arXiv:1005.2205 [gr-qc])
[10] Faraoni V 2008 arXiv:0810.2602v1 [gr-qc]
[11] de la Cruz-Dombriz A and Dobado A 2006 Phys. Rev. D 74 087501 (arXiv:gr-qc/0607118)
[12] Hu W and Sawicki I 2007 Phys. Rev. D 76 064004 (arXiv:0705.1158 [astro-ph])
Nojiri S and Odintsov S D 2008 Phys. Rev. D 77 026007 (arXiv:0710.1738 [hep-th])
Pogosian L and Silvestri A 2008 Phys. Rev. D 77 023503 (arXiv:0709.0296 [astro-ph])
Capozziello S and Tsujikawa S 2008 Phys. Rev. D 77 107501 (arXiv:0712.2268 [gr-qc])
[13] de la Cruz-Dombriz A, Dobado A and Maroto A L 2009 Phys. Rev. D 80 124011
de la Cruz-Dombriz A, Dobado A and Maroto A L 2011 Phys. Rev. D 83 029903 (erratum)
de la Cruz-Dombriz A, Dobado A and Maroto A L 2010 J. Phys.: Conf. Ser. 229 012033
Cembranos J A R, de la Cruz-Dombriz A and Romero P J 2011 arXiv:1109.4519 [gr-qc]
Cembranos J A R, de la Cruz-Dombriz A and Romero P J 2011 AIP Conf. Proc. 1458 439 (arXiv:1202.0853 [gr-qc])
Cembranos J A R, de la Cruz-Dombriz A and Nunez B Montes 2012 J. Cosmol. Astropart. Phys. JCAP04(2012)021 (arXiv:1201.1289 [gr-qc])
Cembranos J A R, de la Cruz-Dombriz A and Nunez B Montes 2011 AIP Conf. Proc. 1458 491
Cognola G, Elizalde E, Nojiri S, Odintsov S D and Zerbini S 2006 Phys. Rev. D 73 084007 (arXiv:hep-th/0610008)
Elizalde E, Myrzakulov R, Obukhov V V and Sáez-Gómez D 2010 Class. Quantum Grav. 27 095007 (arXiv:1001.3636 [gr-qc])
Myrzakulov R, Sáez-Gómez D and Tureanu A 2011 Gen. Rel. Grav. 43 1671 (arXiv:1009.0902 [gr-qc])
De Felice A and Suyama T 2009 J. Cosmol. Astropart. Phys. JCAP06(2009)034
De Felice A and Suyama T 2009 Phys. Rev. D 80 083523
De Felice A and Suyama T 2011 Prog. Theor. Phys. 125 603
De Felice A, Gerard J M and Suyama T 2010 Phys. Rev. D 82 063526
De Felice A and Tsujikawa S 2009 Phys. Lett. B 675 1 (arXiv:0810.5712 [hep-th])
De Felice A, Motu D F and Tsujikawa S 2010 Phys. Rev. D 81 023532 (arXiv:0911.1811 [gr-qc])
De Felice A and Tanaka T 2010 Prog. Theor. Phys. 124 503
Nojiri S and Odintsov S D 2005 Phys. Lett. B 631 1 (arXiv:hep-th/0508049)
Nojiri S and Odintsov S D 2003 Phys. Rev. D 68 123512 (arXiv:hep-th/0307288)
Nojiri S, Odintsov S D and Sasaki M 2005 Phys. Rev. D 71 123509 (arXiv:hep-th/0504052)
Nojiri S, Odintsov S D and Gorbunova O G 2006 J. Phys. A: Math. Gen. 39 6627 (arXiv:hep-th/0510183)
Nojiri S, Odintsov S D and Sama M 2006 Phys. Rev. D 74 064004 (arXiv:hep-th/0605039)
Zhou S-Y, Copeland E J and Saffin P M 2009 J. Cosmol. Astropart. Phys. JCAP07(2009)009 (arXiv:0903.4610)
Goheer N, Goswami R, Dunsby Peter K S and Ananda P K 2009 Phys. Rev. D 79 121301 (arXiv:0904.2559)
Uddin K, Lidsey J E and Tavakol R 2009 Gen. Rel. Grav. 41 2725 (arXiv:0903.0270)
Boehmer C G and Lobo F S N 2009 Phys. Rev. D 79 067504 (arXiv:0902.2982)
Alimohammadi M and Ghalee A 2009 Phys. Rev. D 79 063006 (arXiv:0911.1286)
De Felice A and Tsujikawa S 2009 Phys. Rev. D 80 063516 (arXiv:0907.1830)
De Felice A and Tsujikawa S 2009 Phys. Lett. B 675 1 (arXiv:0810.5712)
Cognola G, Elizalde E, Nojiri S, Odintsov S D and Zerbini S 2007 Phys. Rev. D 75 086002 (arXiv:hep-th/0611198)
Gurses M 2007 arXiv:0707.0347
Li B, Barrow J D and Mota D F 2007 *Phys. Rev.* D **76** 044027 (arXiv:0705.3795)
Nojiri S, Odintsov S D and Tretyakov P V 2007 *Phys. Lett.* B **651** 224 (arXiv:0704.2520)
Bamba K, Odintsov S D, Sebastiani L and Zerbini S 2009 *Eur. Phys. J.* C **67** 295–310 (arXiv:0911.4390)
Capozziello S, De Laurentis M, Nojiri S and Odintsov S D 2009 *Phys. Rev.* D **79** 124007 (arXiv:0903.2753)
Bamba K, Nojiri S and Odintsov S D 2008 *J. Cosmol. Astropart. Phys.* JCAP10(2008)045 (arXiv:0807.2575)
[22] Barrow J D and Ottewill A C 1983 *J. Phys. A: Math. Gen.* **16** 2757
[23] Saltas I D and Kunz M 2011 *Phys. Rev.* D **83** 064042 (arXiv:1012.3171[gr-qc])
[24] Sáez-Gómez D 2011 *Phys. Rev.* D **83** 064040 (arXiv:1011.2099[hep-th])
[25] Sadjadi H M 2010 *Europhys. Lett.* **92** 50014 (arXiv:1009.2941v2[gr-qc])