Supporting Information

Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and Cyclic Stability for Sodium Ion Batteries

Yucheng Dong,‡,§,┴ Mingjun Hu,† Zhenyu Zhang,§ Juan Antonio Zapien,§ Xin Wang,†* Jong-Min Lee,†* Wenjun Zhang‡*

† International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangdong Province, 526060, China
‡ School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
§ Center of Super Diamond and Advanced Films (COSDAF), Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
┴ School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore

E-mail: wangxin@scnu.edu.cn*, jmlee@ntu.edu.sg*, apwjzh@cityu.edu.hk*
Figure S1 TGA curve of (a) Sb$_2$S$_3$@N-C and (b) Sb$_2$S$_3$@N-HC composites from room temperature to 700 °C at a heating rate of 10 °C min$^{-1}$ under air atmosphere.

Figure S2 Full survey of the XPS spectrum of Sb$_2$S$_3$@N-C composites. The XPS spectra of Sb$_2$S$_3$@N-C composites show that the binding between Sb$_2$S$_3$ nanowires and carbon mainly comes from the stable C-S bonds, possibly enhancing the electronic conductivity due to the synergistic bridging effect. It also improves performance by suppressing the dissolution of S during the cycling process, resulting in the long term stability for sodium ion batteries.

Figure S3 (a) and (b) SEM images of Sb$_2$S$_3$ nanowires with different magnifications.
The conductivity for the carbon materials was enhanced at the high annealing temperature. But Sb$_2$S$_3$ and carbon composites are not stable at the high temperature because of the dopamine layer annealed at 500 °C under Ar atmosphere was initially carbonized and then acted as the reduction agent to further convert Sb$_2$S$_3$ to metallic Sb.

Figure S4 CVs of Sb$_2$S$_3$@N-C composites at 0.1 mV s$^{-1}$ between 0.01 V and 2.5 V versus Na/Na$^+$ for the first three cycles.

The CVs of Sb$_2$S$_3$@N-C composites at 0.1 mV s$^{-1}$ between 0.01 V and 2.5 V versus Na/Na$^+$ for the first three cycles were obtained as shown in Figure S4.

Figure S5 (a) Rate capability of Sb$_2$S$_3$@N-HC composites at various current densities; (b) cyclic stability of Sb$_2$S$_3$ nanowires tested at a current density of 0.1 A g$^{-1}$ for the first 5 cycles and then tested at 1.0 A g$^{-1}$ for 1000 cycles.
Figure S6 (a) Rate capability of Sb$_2$S$_3$ nanowires at various current densities; (b) cyclic stability of Sb$_2$S$_3$ nanowires tested at a current density of 0.1 A g$^{-1}$ for the first 5 cycles and then tested at 1.0 A g$^{-1}$ for 300 cycles.

Figure S7 Cyclic stability of Sb$_2$S$_3$@N-C composites tested at a current density of 0.2 A g$^{-1}$ for the first 5 cycles and then tested at 2.0 A g$^{-1}$ for 2000 cycles.

Figure S8 Nyquist plots (Z' vs. $-Z''$) of Sb$_2$S$_3$ nanowires and Sb$_2$S$_3$/N-C composites in the frequency range from 100 kHz to 5 mHz.
Figure S9 (a) and (b) SEM images of Sb$_2$S$_3$@N-C composites with different magnification after 1000 cycles tested at a current density of 1.0 A g$^{-1}$.

Table S1 Comparison of electrode performance of the Sb$_2$S$_3$@N-C composites with previous reported Sb$_2$S$_3$-based anode materials for SIBs.

Sample	Voltage range (V)	Current density (mA g$^{-1}$)	Capacity (mAh g$^{-1}$) (Cycle number)
rGO/Sb$_2$S$_3$ 17	0-2	50	670 (50)
Sb$_2$S$_3$@C rods 38	0-2.5	200	640.8 (100)
Sb$_2$S$_3$-graphite 20	0-3	100	656 (100)
Flower like Sb$_2$S$_3$ 49	0-2	200	641.7 (50)
Sb$_2$S$_3$/SGS composite 26	0-2.5	2000	524.4 (900)
rGO/Sb$_2$S$_3$ 23	0.005-1	100	306 (60)
carbon-coated 1D Sb$_2$S$_3$ nanorod 47	0-2	100	570 (100)
Sb$_2$S$_3$ in P/C composite 22	0-2	50	611 (100)
MWNTs@Sb$_2$S$_3$@PPy 21	0-2	100	492 (85)
Sb$_2$S$_3$/RGO 28	0.005-3	50	581 (50)
Sb$_2$S$_3$/MWCNTs 16	0.005-3	50	412.3 (50)
This work: Sb$_2$S$_3$/N-C	0.01-3	1000	625 (1000)