RESEARCH ARTICLE

The complete chloroplast genome sequences of four Viola species (Violaceae) and comparative analyses with its congeneric species

Kyeong-Sik Cheon1*, Kyung-Ah Kim2*, Myounghai Kwak3, Byoungyoon Lee3, Ki-Oug Yoo2*

1 Department of Biological Science, Sangji University, Wonju, Gangwon, South Korea, 2 Department of Biological Sciences, Kangwon National University, Chuncheon, Gangwon, South Korea, 3 Plant Resources Division, National Institute of Biological Resources, Incheon, South Korea

* These authors contributed equally to this work.

*yooko@kangwon.ac.kr

Abstract

We report the complete chloroplast genomes of four Viola species (V. mirabilis, V. phalacrocarpa, V. raddeana, and V. websteri) and the results of a comparative analysis between these species and the published plastid genome of the congeneric species V. seoulensis. The total genome length of the five Viola species, including the four species analyzed in this study and the species analyzed in the previous study, ranged from 156,507 (V. seoulensis) to 158,162 bp (V. mirabilis). The overall GC contents of the genomes were almost identical (36.2–36.3%). The five Viola plastomes each contained 111 unique genes comprising 77 protein-coding genes, 30 transfer RNA (tRNA) genes, and 4 ribosomal RNA (rRNA) genes. Among the annotated genes, 16 contained one or two introns. Based on the results of a chloroplast genome structure comparison using MAUVE, all five Viola plastomes were almost identical. Additionally, the large single copy (LSC), inverted repeat (IR), and small single copy (SSC) junction regions were conserved among the Viola species. A total of 259 exon, intron, and intergenic spacer (IGS) fragments were compared to verify the divergence hotspot regions. The nucleotide diversity (Pi) values ranged from 0 to 0.7544. The IR region was relatively more conserved than the LSC and SSC regions. The Pi values in ten non-coding regions were relatively high (>0.03). Among these regions, all but rps19-trnH, petG-trnW, rpl16-trnS, and rpl2-rpl23 represent useful molecular markers for phylogenetic studies and will be helpful to resolve the phylogenetic relationships of Viola. The phylogenetic tree, which used 76 protein-coding genes from 21 Malpighiales species and one outgroup species (Averrhoa carambola), revealed that Malpighiales is divided into five clades at the family level: Erythroxylaceae, Chrysobalanaceae, Euphorbiaceae, Salicaceae, and Violaceae. Additionally, Violaceae was monophyletic, with a bootstrap value of 100% and was divided into two subclades.
Introduction

With the development of next-generation sequencing (NGS) technology, many studies have performed whole chloroplast genome sequencing. These studies have provided much information about plant taxonomy and evolution. The rapidly evolving loci identified by these studies are very important for resolving unclear phylogenetic relationships because they have a higher resolving power than that of traditional molecular markers. Therefore, many studies have focused on finding genic regions among specific families or genera to provide useful information about molecular markers for further studies [1–6].

Violaceae Batch. consists of approximately 22 genera and 1000–1100 species of herbs, shrubs, lianas, and trees [7–9]. The genus Viola L. comprises 583–620 species and is distributed mainly in temperate and tropical regions [7–8,10–11]. This genus is known as one of more difficult groups to classify because of the very similar external morphology characters among species and the many intermediate forms that exist due to frequent interspecies hybridization between closely related species [12–15].

For this reason, although many studies have been carried out, the phylogenetic relationships of Viola are still unclear among sections and/or species [7, 11, 13, 16–19]. This lack of clarity is because the molecular markers used by previous studies has low resolution to evaluate the phylogenetic relationships of Viola. Therefore, to correctly evaluate the phylogenetic relationships of Viola, the most suitable molecular markers should be selected via analyses of the sequence variation at each locus.

Among the four Viola species discussed in this study, three species (V. mirabilis L., V. raddeana Regel and V. websteri Hemsl.) are very rare because they are endangered in Korea. In particular, it is urgent to establish a conservation strategy for V. raddeana because this species only has a single, relatively small population of individuals in Gyeongsangnam-do Province [20]. V. phalacrocarpa Maxim. is not an endangered species, but various taxonomic data are needed because its taxonomic level is ambiguous due to its close relationship to V. seoulensis.

Here, we report the whole chloroplast genome sequences of four Viola species (V. mirabilis, V. phalacrocarpa, V. raddeana, and V. websteri) and the results of a comparative analysis between these species and the published genome of a congeneric species (V. seoulensis Nakai). The main goal of this study was to provide important information about the most suitable chloroplast molecular markers for further studies to solve unclear phylogenetic relationships of Viola via the calculation of the rate of evolution of each chloroplast genome loci. Furthermore, this study could expand the current understanding of the chloroplast genome characteristics of the genus Viola and provide basic chloroplast phylogenomic data for Violaceae, thus supporting the development of conservation strategies for endangered Violaceae species.

Materials and methods

Sample collection, DNA extraction

Among the four Viola species in this study, three (V. mirabilis, V. raddeana, and V. websteri) are legally protected species. Therefore, samples of these species were collected with permission from the Ministry of Environment in Korea, with the following license numbers: 2015–15 (V. raddeana) and 2015–39 (V. mirabilis and V. websteri).

Fresh leaf materials of individual V. mirabilis, V. raddeana, V. phalacrocarpa, and V. websteri were collected from Hutan-ri in Gangwon-do Province (37°11'09"N 128°22'16"E), Youngdang-ri in Gyeongsangnam-do Province (35°22'15"N 128°54'34"E), Mt. Oeum in Gangwon-do Province (37°35'53"N 127°57'15"E), and Bugok-ri in Gangwon-do province (37°19'36"N 128°03'15"E) in South Korea, respectively. The voucher specimens were deposited in the National Institute of
Biological Resources Herbarium (KB) and the Kangwon National University Herbarium (KWNU). The voucher numbers are GEIBVP0000373630 (V. mirabilis), NIBRVP0000454691 (V. raddeana), KWNU91089 (V. phalacrocarpa), and GEIBVP0000373612 (V. websteri). Total DNA was extracted from approximately 100 mg of fresh leaves using a DNA plant mini kit (Qiagen Inc., Valencia, CA, USA).

Sequencing, assembly, annotation, genome comparison and repeat analysis

Genomic DNA was used for sequencing by an Illumina MiSeq (Illumina Inc., San Diego, CA, USA) platform. The DNA of Viola species were sequenced to produce 8,920,660–9,244,544 raw reads with a length of 301 bp. These reads were aligned with the reference genome of *Viola seoulensis* (GenBank accession number: KP749924). A total 542,183 to 667,526 reads were mapped to the reference genome. The genome coverage was estimated using CLC Genomics Workbench v7.0.4 software (CLC-bio, Aarhus, Denmark). The genome coverages of the sequencing data from *V. mirabilis*, *V. phalacrocarpa*, *V. raddeana*, and *V. websteri* were 1002, 875, 986, and 1073, respectively.

The protein-coding genes, transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs) in the plastid genome were predicted and annotated using Dual Organellar GenoMe Annotator (DOGMA) with the default parameters [21] and manually edited by a comparison with the published chloroplast genome sequence of Violaceae. tRNAs were confirmed using tRNAscan-SE [22]. The circular plastid genome map was drawn using OGDRAW [23].

The complete chloroplast genomes of five Viola species, including the four *Viola* species of this study and the previously published species (*V. seoulensis*), were compared using MAUVE [24]. The large single copy/inverted repeat (LSC/IR) and inverted repeat/small single copy (IR/SSC) boundaries of these species were also compared and analyzed.

The REPutter program [25] was used to identify repeats (forward, reverse, palindrome, and complement sequences). The size and identity of the repeats were limited to no less than 30 bp and 90%, respectively. The simple sequence repeats (SSRs) in the chloroplast genome of the five *Viola* species were detected using Phobos v.3.3.12 (http://www.ruhr-uni-bochum.de/ecoevo/cm/cm_phobos.htm). Repeats were ≥10 bp in length and had three repeat units for mono-, di-, tri-, tetra-, penta- and hexanucleotides.

Divergence hotspot identification

The five chloroplast genomes of *Viola* were analyzed to identify rapidly evolving molecular markers that can be used in further phylogenetic studies of *Viola*. Both coding and noncoding region fragments in each plastid genome were extracted separately by applying the “Extract” option of Geneious v7.1.8 (Biomatters Ltd., Auckland, New Zealand). Then, the homologous loci were aligned individually using MAFFT [26]. To analyze nucleotide diversity (Pi), the total number of mutations (Eta), average number of nucleotide differences (K) and parsimony informative characters (PICs) were determined using DnaSP [27].

Phylogenetic analyses

A total of 76 protein-coding genes from 22 species were compiled into a single file of 83,600 bp and aligned with MAFFT [26]. Twenty-one Malpighiales were selected as the ingroups, and one species from Oxalidaceae R. Br. (*Averrhoa carambola* L.) was chosen as the outgroup (S1 Table). Maximum likelihood (ML) analyses were performed using RAxML v7.4.2 with 1000 bootstrap replicates and the GTR+I model [28]. Bayesian inference (ngen = 1,000,000, sample-freq = 200, burninfrac = 0.25) was carried out using MrBayes v3.0b3 [29], and the best
substitution model (GTR+I) was determined by the Akaike information criterion (AIC) in jModeltest version 2.1.10 [30].

Results

Chloroplast genome features of five Viola species

The chloroplast genomes of V. mirabilis (accession no. MH229816), V. phalacrocarpa (accession no. MH229817), V. raddeana (accession no. MH229818), and V. websteri (accession no. MH229819) have been submitted to GenBank of National Center for Biotechnology Information (NCBI). The total length of the chloroplast genomes of the five Viola species, i.e., the four species analyzed in this study and species analyzed in a previous study (V. seoulensis), ranged from 156,507 (V. seoulensis) to 158,111 bp (V. websteri). All five Viola plastid genomes exhibited the typical quadripartite structure, consisting of a pair of IR regions (26,404–27,166 bp) separated by an LSC region (85,691–86,588 bp) and an SSC region (17,191–18,008 bp). Their overall GC contents were almost identical (36.2–36.3%). The chloroplast genomes of the five species contained 111 unique genes comprising 77 protein-coding genes, 30 tRNA genes, and 4 rRNA genes (Table 1 and Fig 1). Among the annotated genes, 14 genes (ndhA, ndhB, petB, petD, rpl2, rpl16, rpoC1, rps12, trnK-UUU, trnG-UCC, trnL-UAA, trnV-UAC, trnI-GAU, trnA-UGC) contained one intron each, and two genes (ycf3, clpP) contained two introns each.

The result of the chloroplast genome structure comparison using MAUVE [24] showed that all five Viola plastomes were the same (S1 Fig). The LSC/IR and IR/SSC boundaries were conserved in Viola. In all five Viola chloroplast genomes, trnH-GUG was located in the LSC near the IRa/LSC border, and ndhF was located in the SSC near the IRb/SSC border. Additionally, pseudogenes of rps16 and ycf1 situated in the IRb were created by IR extending into the LSC and SSC regions, respectively (Fig 2).

Four classes of tandem repeats (forward, reverse, complement and palindrome) were investigated. The number of tandem repeats for each class is shown in Fig 3A. Additionally, the tandem repeats that ranged from 30 to 39 bp were the most abundant, followed by those that ranged from 40 to 49 bp. Moreover, among the chloroplast genomes of all five Viola species, that of V. websteri had the highest number of tandem repeats longer than 50 bp (Fig 3B).

Table 1. Comparison of chloroplast genome feature of five Viola species.

Feature	V. mirabilis	V. phalacrocarpa	V. raddeana	V. seoulensis	V. websteri
Genome size	158,162	157,842	157,597	156,507	158,111
LSC	86,565	86,367	86,460	85,691	86,588
SSC	17,351	17,305	17,289	18,008	17,191
IR	27,123	27,085	26,924	26,404	27,166
GC content	36.2	36.3	36.2	36.3	36.2
LSC	33.8	33.9	33.8	33.8	33.7
SSC	29.9	29.8	29.9	29.6	29.9
IR	42.2	42.2	42.3	42.6	42.1
Number of genes	111	111	111	111	111
Protein coding genes	77	77	77	77	77
tRNA genes	30	30	30	30	30
rRNA genes	4	4	4	4	4

https://doi.org/10.1371/journal.pone.0214162.t001
The analysis of SSRs indicated that six categories of SSRs, i.e., mono-, di-, tri-, tetra-, penta- and hexanucleotide, were detected. The total number of SSRs was 64 in *V. mirabilis*, 56 in *V. phalacrocarpa*, 50 in *V. raddeana*, 43 in *V. seoulensis*, and 73 in *V. websteri*. The most dominant of SSRs were A/T mononucleotides. Only the *V. websteri* chloroplast genome had all six types of SSRs, and those of the other species had five types of SSRs, excluding the hexanucleotide SSR (Fig 3C).
Divergence hotspot regions in *Viola*

A total of 259 exon, intron and intergenic spacer (IGS) fragments were compared among the five *Viola* species to verify divergence hotspot regions. The \(\Pi \) values ranged from 0 to 0.7544 (Fig 4 and S2 Table). The IR region was much more conserved than the LSC and SSC regions.
because the IR region had the most fragments with a relatively low Pi value. The Pi value was 0.03 or more in ten regions. Among these, eight (rps19-trnH, trnH-psbA, trnG-trnR, trnD-trnY, psbZ-trnG, petA-psbJ, petG-trnW, rpl16-rps3) were located in the LSC region, one (rpl2-rpl23) was located in the IR region, and one (ndhF-trnL) was located in the SSC region. Additionally, all regions with a high Pi value were IGSs.

Phylogenetic relationships of Violaceae within Malpighiales

The ML tree using 76 protein-coding genes clearly divided into five clades at the family level: Erythroxylaceae Kunth, Chrysobalanaceae R. Br., Euphorbiaceae Juss., Salicaceae Mirb., and Violaceae. Violaceae and Viola were monophyletic with a bootstrap value of 100% and a sister to Salicaceae. Additionally, Violaceae was divided into two subclades: sect. Viola W. Becker (subsect. Rostratae W. Becker) and sect. Plagiostigma Solid (subsect. Patellares (Boiss.) Rouy & Foucaud and Bilobatae (W. Becker) W. Becker) (Fig 5).
Discussion

Comparison of the chloroplast genomes of five Viola plastomes

Many recent studies have been carried out to solve taxonomic problems between related taxa using complete chloroplast genome sequences. The chloroplast genome is known to be very conservative in land plants, but structural changes in chloroplast genomes, such as gene duplication and deletion and inversion due to occasional rearrangements, provide important taxonomic data [31–37]. This study showed that the gene order of five Viola plastomes was identical, and the sequence identity was also very similar among species in most of the chloroplast regions (Fig 6 and S1 Fig). Therefore, these results indicate that the plastid genome of Viola is very conservative.

Ycf15 in V. mirabilis was 66 bp shorter than that in the other four Viola species because there was a premature stop codon due to a point mutation of one nucleotide (S2 Fig). This important data supports the taxonomic position of V. mirabilis. In addition, future studies should be performed to determine whether ycf15 is a pseudogene.

The number of the tandem repeats in the five Viola plastomes ranged from 39 (V. seoulen-sis) to 47 (V. raddeana), and the number of tandem repeats according to type and length showed a slightly difference across each species (Fig 3A, 3B). The presence and abundance of repetitive sequences in the chloroplast or nuclear genome are likely to involve many phylogenetic signals [38–40]. Therefore, the different abundances of tandem repeats among the plastid genomes of the five Viola species may provide additional evolutionary information. In
addition, the SSRs identified in this study may provide various markers for population genetic studies of *Viola* species.

Selection of useful molecular marker regions for additional phylogenetic studies

The genus *Viola* is known as one of more difficult groups to study taxonomically since *Viola* has many morphologically similar species, and the creation of intermediate forms due to interspecific hybridization occurs freely [12–15]. Because of this external morphological complexity among species, although many taxonomic studies [7, 9, 11, 13, 16, 18] have been conducted, the taxonomic positions and phylogenetic relationships within sections level of *Viola* are remain insufficiently resolved.

The molecular markers used in previous studies, except for the ITS region of nuclear DNA, were ten chloroplast DNA sequences, *trnL*, *trnL-trnF*, *rbcl*, *atpB-rbcl*, *atpF-atpH*, *matK*, *psbA-trnH*, *psbK-psbl*, *rpl16* and *rpoC1*. The Pi values of these regions were calculated in this study, and all but *psbA-trnH*(0.06656) showed a very low Pi of 0.02510 or less (Fig 4 and S2 Table).
Therefore, the low phylogenetic resolution of the previous studies was due to the selection of molecular marker regions with very low Pi values.

The results of this study showed that the Pi values of ten non-coding regions (\textit{rps19-trnH}, \textit{trnH-psbA}, \textit{trnG-trnK}, \textit{trnD-trnY}, \textit{psbZ-trnG}, \textit{petA-psbJ}, \textit{petG-trnW}, \textit{rpl16-rps3}, \textit{rpl2-rpl23}, \textit{ndhF-trnL}) were relatively high (>0.03). For the selection of useful phylogenetic markers, however, the gene length and PIC also must be considered. Among the ten regions, four regions (\textit{rps19-trnH}, \textit{petG-trnW}, \textit{rpl16-rps3}, \textit{rpl2-rpl23}) are too short to be used as phylogenetic molecular markers. Therefore, that the other six regions will presumably be very useful for resolving the many unclear phylogenetic relationships of the genus \textit{Viola}.

\section*{Phylogenetic implications}

The phylogenetic analysis in this study produced an ML tree very similar to that of the Angiosperm Phylogeny Group (APG) system \cite{41}. However, in the APG system, the main clade of Malpighiales was an unresolved polytomy, while in this study, the phylogenetic tree formed a monophyly as follows: Erythroxylaceae and Chrysobalanaceae formed a clade, and Euphorbiaceae formed a sister of the Salicaceae and Violaceae clade. These results are attributed to the increase in resolution resulting from the greater amount of sequence data used in this study. However, only a few species were included in this study, so additional studies that include more species are needed to clarify the phylogenetic relationships in Malpighiales.

In a previous study, the phylogenetic position of \textit{V. seoulensis} was not identified, as it formed an unresolved polytomy with \textit{V. phalacrocarpa} \cite{11}. Based on the results of the phylogenetic analysis in the present study, it was not possible to confirm the exact phylogenetic position of \textit{V. seoulensis} because not enough species were included in the analysis, but \textit{V. seoulensis} was the most closely related to \textit{V. phalacrocarpa}. An analysis of the chloroplast genomes of the two species in this study revealed that the total genome size of \textit{V. phalacrocarpa} was 1335 bp longer than that of \textit{V. seoulensis}, and the LSC, IR, and SSC junctions also largely differed between the two species. Additionally, the Pi between the two species was 2.22\%. Therefore, it would be reasonable to recognize the two taxa as independent species rather than classifying them as variants, and we will carry out additional studies including allied species of \textit{V. phalacrocarpa} and \textit{V. seoulensis} to clarify their taxonomic positions.

\section*{Conclusion}

We first report of the complete chloroplast genome sequences of four \textit{Viola} species (\textit{V. mirabilis}, \textit{V. phalacrocarpa}, \textit{V. raddeana}, and \textit{V. websteri}), and analyzed these data compared to published congeneric species in genus \textit{Viola}. Results of this study, six non-coding regions (\textit{trnH-psbA}, \textit{trnG-trnK}, \textit{trnD-trnY}, \textit{psbZ-trnG}, \textit{petA-psbJ}, and \textit{ndhF-trnL}) will presumably be very useful for resolving the many unclear phylogenetic relationships of the genus \textit{Viola}. Phylogenetic analyses showed that Malpighiales is divided into five clades at the family level. Also, Violaceae and \textit{Viola} were monophyletic, and was divided into two subclades.

\section*{Supporting information}

S1 Fig. Comparison of five \textit{Viola} chloroplast genome structure using MAUVE program. (TIF)

S2 Fig. Sequence alignment of \textit{ycf15} gene in five \textit{Viola} plastid genomes. (TIF)
S1 Table. The GenBank accession numbers of all the 22 chloroplast genomes used for phylogenetic analysis.

(DOCX)

S2 Table. Eta, Pi value, and PICs of 259 homologous loci.

(XLSX)

Author Contributions
Conceptualization: Kyeong-Sik Cheon, Kyung-Ah Kim, Ki-Oug Yoo.

Data curation: Kyeong-Sik Cheon, Kyung-Ah Kim.

Formal analysis: Kyeong-Sik Cheon.

Investigation: Kyeong-Sik Cheon, Kyung-Ah Kim, Myounghai Kwak, Byoungyoon Lee.

Project administration: Ki-Oug Yoo.

Resources: Myounghai Kwak, Byoungyoon Lee.

Supervision: Ki-Oug Yoo.

Visualization: Kyeong-Sik Cheon, Kyung-Ah Kim.

Writing – original draft: Kyeong-Sik Cheon, Kyung-Ah Kim.

Writing – review & editing: Kyeong-Sik Cheon, Ki-Oug Yoo.

References
1. Yang JB, Yang SX, Li HT, Yang J, Li DZ. Comparative chloroplast genomes of Camellia Species. PLoS ONE. 2013; 8:e73053. https://doi.org/10.1371/journal.pone.0073053 PMID: 24009730
2. Cai J, Ma PF, Li HT, Li DZ. Complete plastid genome sequencing of four Tilia species (Malvaceae): A comparative analysis and phylogenetic implications. PLoS ONE. 2015; 10:e0142705. https://doi.org/10.1371/journal.pone.0142705 PMID: 26566230
3. Choi KS, Chung MG, Park SJ. The Complete Chloroplast Genome Sequences of Three Veronicae Species (Plantaginaceae): Comparative Analysis and Highly Divergent Regions. Frontiers in Plant Science. 2016; 7:1–8.
4. Ni L, Zhao Z, Dorje GD, Ma M. The complete chloroplast genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae), an alpine Tibetan herb. PLoS ONE. 2016; 11:e0158488. https://doi.org/10.1371/journal.pone.0158488 PMID: 27391235
5. Yao X, Tan YH, Liu YY, Song Y, Yang JB, Corlett RT. Chloroplast genome structure in Ilex (Aquifoliaceae). Scientific Reports. 2016; 6:28559. https://doi.org/10.1038/srep28559 PMID: 27378489
6. Zhang Y, Du L, Liu A, Chen J, Wu L, Hu W, et al. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses. Frontiers in Plant Science. 2016; 7:306. https://doi.org/10.3389/fpls.2016.00306 PMID: 27014326
7. Marcusen T, Heier L, Brysting AK, Oxelman B, Jakobsen S. From gene trees to a dated allotetraploid network: insights from the Angiosperm genus Viola (Violaceae). Systematic Biology. 2015; 64: 84–101. https://doi.org/10.1093/sysbio/syu071 PMID: 25281848
8. Melchior H. Violaceae. In: Engler A, Prantl K, editors. Die Natürlichen Pflanzenfamilien 21. Leipzig: Wilhelm Engelmann; 1925.
9. Wahler G, Marcusen T, De Paula-Souza J, Feng M, Ballard HE. A phylogeny of the Violaceae (Malpighiales) inferred from plastid DNA sequences: implications for generic diversity and infraspecific classification. Systematic Botany. 2014; 39:239–252. https://doi.org/10.1600/036364414X678008
10. Clausen J. Cytotaxonomy and distributional ecology of western North American violets. Madroño. 1967; 17:173–204.
11. Yoo KO, Jang SK. Infrageneric relationships of Korean Viola based on eight chloroplast markers. Journal of Systematics and Evolution. 2010; 48:474–481. https://doi.org/10.1111/j.1759-6831.2010.00102.x
12. Becker W. *Viola europaeae*. Systematische Bearbeitung der Violen Europas und seiner benachbarten Gebiete. Dresden: C. Heinrich; 1910.

13. Marccussen T, Jakobsen KS, Danihelka J, Ballard HE, Braxland K, Brysting AK, et al. Inferring species network from gene trees in high-polyploid North American and Hawaiian violets (*Viola*, Violaceae). Systematic Biology. 2012; 61: 107–126. https://doi.org/10.1093/sysbio/syr096 PMID: 21918178

14. Russell NH. Three field studies of hybridization in the stemless white violets. American Journal of Botany. 1954; 41:679–686. https://doi.org/10.2307/2438295

15. Yoshida M, Takeda SI, Yokoyama J. A new and noteworthy hybrid of *Viola* (Violaceae) from Iwate, Northern Japan: *Viola rostrata var. japonica* × *V. violacea var. makinoi*. Acta Phytotaxonomica and Geobotanica. 2016; 67: 115–122. https://doi.org/10.18942/apg.201517

16. Ballard HE, Sytsma KJ, Kowal RR. Shrinking the violets: phylogenetic relationships of infrageneric groups in *Viola* (Violaceae) based on internal transcribed spacer DNA sequences. Systematic Botany. 1999; 23:439–458. https://doi.org/10.2307/2419376

17. Yockteng R, Ballard HE, Mansignon G, Dajoz I, Nadol S. Relationships among pansies (*Viola* section *Melanium*) investigated using ITS and ISSR markers. Plant Systematics and Evolution. 2003; 241:153–170. https://doi.org/10.1007/s00606-003-0045-7

18. Yoo KO, Jang SK, Lee WT. Phylogeny of Korean *Viola* based on ITS sequences. Korean Journal of Plant Taxonomy. 2005; 35:7–23.

19. Liang GX, Xing FW. Infrageneric phylogeny of the genus *Viola* (Violaceae) based on *tml-tmF*, *psbA-trnH*, *rpl16*, ITS sequences, cytological and morphological data. Acta Botanica Yunnanica. 2010; 32:477–488.

20. National Institute of Biological Resources. Red data book of endangered vascular plants in Korea. Incheon: National Institute of Biological Resources; 2012. ISBN 978-89-97462-44-5.

21. Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004; 20:3252–3255. https://doi.org/10.1093/bioinformatics/bth352 PMID: 15180927

22. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research. 2005; 33:W686–W689. https://doi.org/10.1093/nar/gkx366 PMID: 15980953

23. Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Current Genetics. 2007; 52:267–274. https://doi.org/10.1007/s00294-007-0161-y PMID: 17957389

24. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Research. 2004; 14:1394–1403. https://doi.org/10.1101/gr.1928904 PMID: 15231754

25. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research. 2001; 29:4633–4642. PMID: 11713313

26. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research. 2002; 30:3059–3066. https://doi.org/10.1093/nar/gk436 PMID: 12136088

27. Librado P, Rozas J. DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25:1415–1421. https://doi.org/10.1093/bioinformatics/btp187 PMID: 19346325

28. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2688–2690, https://doi.org/10.1093/bioinformatics/btl446 PMID: 16928733

29. Huelsenbeck JP, Ronquist R, MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 2001; 17:754–755. PMID: 11524383

30. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 2012; 9:772. https://doi.org/10.1038/nmeth.2109 PMID: 22847109

31. Olmstead RG, Palmer JD. Chloroplast DNA systematics: a review of methods and data Analysis. American Journal of Botany. 1994; 81:1205–1224.

32. Sugiura M. History of chloroplast genomics. Photosynthesis Research. 2003; 76:371–377. https://doi.org/10.1023/A:1024913304263 PMID: 16238593

33. Cosner ME, Raubeson LA, Jansen RK. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evolutionary Biology. 2004; 4:27. https://doi.org/10.1186/1471-2148-4-27 PMID: 15324459

34. Kim YK, Park CW, Kim KJ. Complete chloroplast DNA sequence from a Korean endemic genus, *Mega-lanthis saniculifolia*, and its evolutionary implications. Molecular and Cells. 2009; 27:365–381. https://doi.org/10.1007/s10059-009-0047-6 PMID: 19326085
35. Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B, Fu XY, et al. Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnology Advances. 2009; 27:340–347. https://doi.org/10.1016/j. biotechadv.2009.01.012 PMID: 19472510

36. Tangphatsornruang S, Sangsrukru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, et al. The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: Structural organization and phylogenetic relationships. DNA Research. 2010; 17:11–22. https://doi.org/10.1093/dnares/dsp025 PMID: 20007682

37. Wicke S, Schneeweiss GM, de Pamphilis CW, Muller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology. 2011; 76:273–297. https://doi.org/10.1007/s11103-011-9762-4 PMID: 21424877

38. Zhang YJ, Ma PF, Li DZ. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS ONE. 2011; 6: e20596. https://doi.org/10.1371/journal.pone.0020596 PMID: 21655229

39. Dodsworth S, Chase MW, Kelley LJ, Leitch IJ, Macas J, Novak P, et al. Genomic repeat abundances contain phylogenetic signal. Systematic Biology. 2014; 64:112–126, https://doi.org/10.1093/sysbio/syu080 PMID: 25261464

40. Wang WC, Chen SY, Zhang XZ. Chloroplast genome evolution in Actinidiaceae: clpP loss, heterogenous divergence and phylogenomic practice. PLoS ONE. 2016; 11:e0162324. https://doi.org/10.1371/ journal.pone.0162324 PMID: 27589600

41. The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the order and families of flowering plants: APG IV. Bot. J. Linnean Soc. 2016, 181, 1–20.