Introducing.—Topological phases in non-Hermitian systems have attracted much attention both theoretically [1–34] and experimentally [35–42]. Many interesting characters have been found in different non-Hermitian systems [16–30]. One of their unique features is that not only the edge states, but also the non-topologically-protected bulk states are localized at the edges, which is called skin effect [1–15]. It causes that one cannot characterize the edge states by the topological properties of the bulk spectrum. This is the non-Hermiticity induced breakdown of bulk-boundary correspondence (BBC) [1–5], which lays the foundation for the classification of topological phases in Hermitian systems [43–46]. To describe the topological features of the edge states, many strategies including biorthogonal eigenstate [3], singular-value decomposition [32], gauge transformation [47], and modified periodic boundary condition [48] have been proposed to restore the BBC. A milestone among these is the non-Bloch band theory established in the generalized Brillouin zone (BZ) for the one-dimensional (1D) chirally symmetric systems [4].

Coherent control via periodic driving dubbed as Floquet engineering has become a versatile tool in artificially synthesize nonequilibrium quantum matters in systems of ultracold atoms [49, 50], photonics [51, 52], superconductor qubits [53], and graphene [54]. Many intriguing exotic topological phases absent in static systems [55–66] have been simulated by periodic driving in Hermitian systems. The key role played by periodic driving is changing symmetry and inducing an effective long-range hopping in lattice systems [67–69]. A natural question is what extra topological characters can periodic driving bring to non-Hermitian systems. Given the fact that the chiral symmetry would be broken by periodic driving, one cannot apply the generalized BZ well developed in 1D chirally symmetric static systems [4] to the periodic ones for recovering the BBC and defining topological invariants. Without touching the topological characterization, the transport phenomena of the non-Hermitian Floquet edge states was studied in Refs. [70, 71]. For some special cases in the absence of the skin effect, the topological numbers were defined in the traditional BZ [72, 73]. However, a general theory to characterize the Floquet topological phases in the presence of the non-Hermitian skin effect is still lacking.

In this work, we investigate the topological phases in periodically driven non-Hermitian disordered systems. A general description is established to characterize the Floquet topological phases of such nonequilibrium systems both in the momentum and the real spaces. The main idea to define the topological invariants in both spaces is to restore the chiral symmetry of the periodically driven systems by the proposed unitary transformations, which do not change the quasienergy spectrum. Taking the non-Hermitian Su-Schrieffer-Heeger (SSH) model as an example, we find that rich exotic topological phases absent in the static case are induced by the periodic driving. The further studies on the real-space topological physics reveal that the extra phases called non-Hermitian Floquet topological Anderson insulator phases are induced by the disorder. Our results demonstrate that the periodic driving and its constructive interplay with the disorder supply us useful way to engineer exotic topological phases in the non-Hermitian systems.

Floquet topological phases.—For a time-periodic system $H(t) = H(t + T)$ with period T, there is a complete set of basis $|u_\alpha(t)⟩ = |u_\alpha(t + T)⟩$ determined by Floquet equation $[H(t) - i\hbar\partial_t]|u_\alpha(t)⟩ = \varepsilon_\alpha|u_\alpha(t)⟩$ such that the evolution of any state can be expanded as $|\Psi(t)⟩ = \sum_\alpha c_\alpha e^{-i\varepsilon_\alpha T/\hbar}|u_\alpha(t)⟩$ [74, 75]. The time-independence of $c_\alpha \equiv \langle u_\alpha(0)|\Psi(0)⟩$ and ε_α indicates that $|u_\alpha(t)⟩$ and ε_α play the same role as stationary states and eigenenergies in static systems. They are thus called quasi-stationary states and quasienergies, respectively. Being equivalent to $U(T)|u_\alpha(0)⟩ = e^{-i\varepsilon_\alpha T/\hbar}|u_\alpha(0)⟩$ with $U(T)$ the one-periodic evolution operator, the Floquet equation defines an effective Hamiltonian $H_{eff} = \frac{i\hbar}{T} \ln[U(T)]$ whose eigenvalues are just the quasienergies. The topological properties of our periodic system are defined in such quasienergy spectrum. Different from the static
Consider a non-Hermitian two-band system $H(k) = \mathbf{h}(k) \cdot \sigma$ in momentum space with the parameters in \(\mathbf{h} \) periodically driven between two specific \(\mathbf{h}_1 \) and \(\mathbf{h}_2 \) within the respective time duration \(T_1 \) and \(T_2 \). Applying the Floquet theorem and choosing \(\hbar = 1 \), we obtain $H(\mathbf{k}) = \mathbf{h}_{\text{eff}}(\mathbf{k}) \cdot \sigma = i \ln [e^{-i \mathbf{h}_1(k)/2} e^{-i \mathbf{h}_2(k)/2}] / T$ with the Bloch vector $\mathbf{h}_{\text{eff}}(\mathbf{k}) = -\arccos(\epsilon) \gamma / T$ and $\epsilon = \cos(T_1 E_1) \cos(T_2 E_2) - \mathbf{h}_1 \cdot \mathbf{h}_2 \sin(T_1 E_1) \sin(T_2 E_2)$.

When \(T = T_1 + T_2 \), \(\mathbf{h}_j = \mathbf{h}_j / E_j \), and \(E_j = \sqrt{\mathbf{h}_j \cdot \mathbf{h}_j} \) is the complex eigenenergies of \(H_j(k) \). The phase transition of the periodically driven non-Hermitian system is associated with the closing of the quasienergy bands, which occurs for the \(k \) and driving parameters satisfying

$$T_j E_j = n_j \pi, \quad n_j \in \mathbb{Z},$$

or

$$\begin{cases} \mathbf{h}_1 \cdot \mathbf{h}_2 = \pm 1 \\ T_1 E_1 \pm T_2 E_2 = n \pi, \quad n \in \mathbb{Z} \end{cases}$$

at the quasienergy zero (or \(\pi / T \)) if \(n \) is even (or odd). As the sufficient condition for the topological phase transition, Eqs. (3) and (4) supply a guideline to manipulate the driving parameters for Floquet engineering to various topological phases at will. They reduce to the results in the Hermitian case as the \(\mathbf{h}_j \) vanish.

Periodically driven non-Hermitian system.—We consider 1D non-Hermitian SSH model [76, 77]

$$H = \sum_{l=1}^{L} [(t_1 + \frac{\gamma}{2}) a_l^\dagger b_l + (t_1 - \frac{\gamma}{2}) b_l^\dagger a_l + t_2 (a_l^\dagger a_{l-1} + \text{h.c.})],$$

where \(a_l (b_l) \) are the annihilation operators on the sublattice \(A (B) \), \(L \) is lattice length. In momentum space and the operator basis \((\hat{a}_k, \hat{b}_k)^T \) with \(\hat{a}_k (\hat{b}_k) \) being the Fourier transform of \(a_k (b_k) \), it reads

$$H(k) = d_x \sigma_x + (d_y + i \gamma / 2) \sigma_y,$$

where \(d_x = t_1 + t_2 \cos k, \quad d_y = t_2 \sin k, \quad \text{and} \quad \sigma_{x,y} \) are the Pauli matrices. We see that the bands close at \(k = \pi \) (or 0) when \(t_1 = t_2 \pm \gamma / 2 \) (or \(-t_2 \pm \gamma / 2 \)). It is in conflict with the result under the open-boundary condition, where the bands close when \(t_1 = \sqrt{t_2^2 + \gamma^2 / 4} \). It is called the breakdown of the BBC caused by the non-Hermitian term [1–5]. The problem for the system with chiral symmetry $\sigma_z^{-1} H(k) \sigma_z = - H(k)$ [40] such as Eq. (6) is curled by considering the non-Hermitian skin effect. By replacing $e^{i\beta k}$ by $\beta = \sqrt{(t_1 - \gamma / 2)/(t_1 + \gamma / 2)}$, Eq. (6) is converted into

$$H(\beta) = \sum_{n=-1}^1 R_n(\beta) \sigma_n,$$

where $\sigma_{\pm} = (\sigma_x \pm i \sigma_y) / 2$ and $R_\pm(\beta) = t_1 \pm \frac{\gamma}{2} + \beta^2 t_2$. Here \(\beta \) takes the place of \(k \) in Hermitian system and defines a generalized BZ. Obviously, $H(\beta)$ keeps the chiral symmetry of Eq. (6). Its topological property can be characterized by the winding number

$$W = -(W_+ - W_-) / 2,$$

where $W_\pm = \frac{1}{2\pi} \arg R_\pm(\beta) c_\beta$ with $\arg R_\pm(\beta) c_\beta$ being the phase change of R_\pm as β goes along the generalized BZ C_β in a counterclockwise way [4, 8]. This topological invariant equals exactly to the number of edge states. When $|t_1| < \sqrt{t_2^2 + \gamma^2 / 4}$, the system has $W = 1$ and hosts a pair of edge states.

When a periodic driving

$$t_2(t) = \begin{cases} f, & t \in [mT, mT + T_1) \\ g, & t \in [mT + T_1, (m + 1)T), \quad m \in \mathbb{Z} \end{cases}$$

is applied to Eq. (6), we can check from Eq. (2) that $H_{\text{eff}}(k)$ generally has three components even when the chirally symmetric \mathbf{h}_1 have only two. Thus the chiral symmetry in Eq. (6) is broken when the periodic driving is applied. The absence of the chiral symmetry in $H_{\text{eff}}(k)$ makes it hard to define proper topological invariants in the periodically driven non-Hermitian system directly using the generalized BZ, which is well developed in the chirally symmetric static system [4].

We propose the following scheme to resolve this problem. A unitary transformation $G_1 = e^{i H_1(k) T_1 / 2}$ converts the evolution operator $U_T \to \tilde{U}_{T,1} = U_T^{1} U_{T_2}^{2}$ with $U_1^{1} = e^{-i H_1(k) T_1 / 2} e^{-i H_2(k) T_2 / 2}$ and $U_2^{1} = e^{-i H_2(k) T_2 / 2} e^{-i H_1(k) T_1 / 2}$. According to Eq. (2), we have

$$U_2^{1} = \epsilon_1^{r} e^{iZ_{2x} + i\lambda \cdot \sigma} \varepsilon_1^{r} = \epsilon_2^{r} = \epsilon_k \varepsilon_1^{r} = \epsilon_2^{r}$$

and

$$r' = \frac{1}{2} \mathbf{h}_2 - \mathbf{h}_1 \cdot \mathbf{h}_2 + \mathbf{ab} \cdot \mathbf{h}_2 \cdot \mathbf{h}_2 + \mathbf{ab}$$

$$-2 \mathbf{h}_2 \cdot (\epsilon'_1 \mathbf{b} + a \mathbf{h}_1 \cdot \mathbf{h}_2).$$

Equation (9) implies that if $H_1(k)$ and $H_2(k)$ have the chiral symmetry with a common symmetry operator, then $\tilde{U}_{T,1}$ would inherit this symmetry. The similar result can be obtained by $G_2 = e^{i H_2(k) T_2 / 2}$, which converts U_T into $\tilde{U}_{T,2} = U_T' U_2^{1}$. Leaving the quasienergy spectrum unchanged, the unitary transformations G_j have succeeded in making $H_{\text{eff,j}}(k) \equiv \frac{i}{2} \ln \tilde{U}_{T,j}$ preserve the chiral symmetry in $H_j(k)$. The scheme has been used in periodically driven Hermitian system [78]. Then we can solve the non-Hermiticity induced breakdown of the BBC and define proper topological invariants in our periodically driven system by introducing the generalized BZ in the similar manner as the static system [4]. The topological properties of the periodic non-Hermitian system are completely characterized by the two winding numbers W_j defined in the generalized BZ associated with $H_{\text{eff,j}}$.
The number of 0- and π/T-mode edge states relates to \(W_j \) as
\[
N_0 = |W_1 + W_2|/2, \quad N_{\pi/T} = |W_1 - W_2|/2. \tag{10}
\]

With this method at hand, we can investigate the Floquet topological phase transition in our periodically driven non-Hermitian SSH model. Figure 1(a) shows the quasienergy spectrum under the open boundary condition. It indicates that even the static system when \(f = 0 \) is topologically trivial, diverse topological phases at the quasienergies 0 and π/T can be induced by the periodic driving. However, this quasienergy spectrum has a dramatic difference from the one of \(H_{\text{eff}}(k) \) under the periodic boundary condition, which takes \(\sqrt{H_{\text{eff}}(k) \cdot H_{\text{eff}}(k)} \). It reveals that the non-Hermiticity induced breakdown of BBC occurs in our periodically driven system too. To curl this problem, we introduce the generalized BZ via replacing \(e^{ik} \) in \(H_{\text{eff}}(k) \) by \(\beta \). Then the effective Hamiltonian is converted to \(H_{\text{eff}}(\beta) \). First, \(H_{\text{eff}}(\beta) \) correctly explains the band closing points of the quasienergy spectrum under the open boundary condition. Remembering \(h(t) = t_1 + t_2(t)(\beta + \beta^{-1})/2 \), \(i[\gamma + t_2(t)(\beta^{-1} - \beta)]/2,0 \) and using Eqs. (3) and (4), we obtain the band-closing condition in the following cases. Without loss of generality, we choose \(t_1 > \gamma/2 > 0 \).

Case I: \(\mathbf{h}_1 \cdot \mathbf{h}_2 = 1 \). We can check that Eqs. (4) induce
\[
T_1|\kappa + e^{i\alpha} f| + T_2|\kappa + e^{i\gamma} q f| = n_\alpha \pi, \quad (n_\alpha \in \mathbb{Z}) \tag{11}
\]
for \(k \) in \(\beta \) being \(\alpha = 0 \) or \(\pi \), where \(\kappa = \sqrt{T_1^2 - \gamma^2}/4 \). Here \(\text{sgn}[(\kappa - f)(\kappa - q f)] \) is further needed for \(\alpha = \pi \).

Case II: \(\mathbf{h}_1 \cdot \mathbf{h}_2 = -1 \) requires \(k = \pi \) when \(\text{sgn}[(\kappa - f)(\kappa - q f)] = -1 \). Then Eqs. (4) give
\[
T_1|\kappa - f| - T_2|\kappa - q f| = n_\pi \pi. \tag{12}
\]

Case III: According to Eq. (3), any \(k \) in \(\beta \) satisfying
\[
T_1 E_1 = n_1 \pi, \quad T_2 E_2 = n_2 \pi, \quad (n_1, n_2 \in \mathbb{Z}) \tag{13}
\]
contributes the band closing.

Taking care of the non-Hermitian skin effect via introducing \(\beta \), Eqs. (11)-(13) perfectly describe the band closing of the quasienergy spectrum under the open boundary condition. The \(\pi/T \)-mode band-closing points at \(f \approx 0.34 \gamma \) and 2.27 \(\gamma \) in Fig. 1(a) are obtainable from Eqs. (11) with \(n_0 = n_\pi = 1 \). The 0-mode ones at \(f \approx 0.97 \gamma \) and 1.657 \(\gamma \) are obtainable from Eqs. (12) with \(n_\pi = 0 \) and (11) with \(n_0 = 2 \), respectively.

Second, \(H_{\text{eff}}(\beta) \) well characterizes the topological properties of the quasienergy spectrum under the open boundary condition. The chiral symmetry is recovered in \(\tilde{H}_{\text{eff}} \), from which the two winding numbers \(W_2 \) can be calculated. According to Eq. (10), we plot in Fig. 1(b) and 1(c) the numbers of 0-mode and \(\pi/T \)-mode edge states calculated from the conventional and generalized BZs. Although qualitatively capturing the band touching behavior of the quasienergy under the periodic boundary condition, the ill-defined topological numbers from the conventional BZ nonphysically take half integers. However, the ones from the generalized BZ correctly count the number of the edge states. It is called the non-Bloch BBC \([4, 8]\). Note that, absent in the static system, such correspondence for the \(\pi/T \)-mode edge states is unique in our periodic system.

Third, the topological change of the quasienergy spectrum can be reflected by \(H_{\text{eff}}(\beta) \). We plot in Fig. 2 the trajectories of \(R_x \) in \(\tilde{H}_{\text{eff},1}(\beta) \) when \(f \) increases across the phase borders. Figures 2(a) and 2(b) show that \(R_x \) have no wrapping to the origin and thus \(W_1 = 0 \) before the
π/T-mode phase transition. When f increases across the critical point, \(R_\pm \) at the neighbourhood of \(k = 0 \) changes such that the quasienergy \(\varepsilon = \sqrt{R_+ R_-} \) crosses \(\pi/T \). Due to its periodicity, \(\varepsilon \) abruptly jumps to \(-\pi/T \) keeping the direction of \(R_+ \) unchanged. Then an anticlockwise and a clockwise wrappings to the origin are formed by \(R_+ \) and \(R_- \), respectively, and thus \(W_1 = 1 \) according to (7).

Figures 2(c) and 2(d) show that \(W_1 \) changes from 1 to 0, where \(R_+ \) at the neighbourhood of \(k = \pi \) changes such that \(\varepsilon \) crosses the quasienergy 0. This gives a geometric picture to the topological phase transition in Fig. 1.

As a useful tool in controlling phase transition, the periodic driving enables us to realize not only the topological phases inaccessible in the same static-system condition, but also rich exotic phases completely absent in its original static system. Figure 3 shows the phase diagram in the \(T_1-T_2 \) plane. A widely tunable number of \(W_1 \) and edge states are induced by changing the driving parameters. The presence of such rich phases originates from the distinguished role of periodic driving in simulating an effective long-range hopping in different lattices [67–69]. The phase boundaries in red solid lines (black dashed lines) are perfectly described by Eq. (11) with \(\alpha = 0 \) [by Eq. (12)]. \(T_2E_2 = \pi \) in Eqs. (13) is satisfied by \(T_2 \simeq 2.22/\gamma \). \(T_1E_1 = n_1\pi \) is satisfied by \(T_1 \simeq n_1\pi/(\gamma \sqrt{6 + 5.66 \cos \ell}) \). When \(k \) runs from 0 to \(\pi \) for given \(n_1 \), a series line segments with a common \(T_2 \simeq 2.22/\gamma \) (see the blue dot-dashed line in Fig. 3) are formed, which all give the phase boundaries. We see that our analytical method established in the generalized BZ successfully describes the topological phase transition in the periodically driven non-Hermitian system. The result reveals that, without changing the intrinsic parameters in the static system, the periodic driving supplies us another control dimension to realize exotic non-Hermitian topological phases.

Effects of disorder.—When the non-Hermitian term \(\gamma \) is disturbed by a disorder \(d_\xi \), where \(\xi_l \in [-0.5, 0.5] \) are the disorders in the 1th cell with strength \(d \), more exotic topological phases than the disorder-free case can be induced. We can similarly recover the chiral symmetry by \(G_j \) and characterize the topological properties of the periodically driven (5) in the presence of disorder by the winding numbers associated with \(H_{\text{eff},j} \). Regarding \(l \in [1, \ell] \) and \([L - \ell + 1, L]\) of the chain as the boundaries, we define the real-space winding numbers [79]

\[
W_j' = \frac{1}{2L} \text{Tr}'(S_Q [Q_j, X]).
\]

Here \(S_{t,t'} = \delta_{t,\xi} \left(\sigma_s \right)_{s,s'} \) and \(X_{t,t'} = \xi_\ell d_{\ell + 1} \delta_{s,s'} \) with \(s, s' = A, B \) being the sublattices, \(Q_j = \sum_n |n_j R_j|^2 - |n_j L_j|^2 \) with \(H_{\text{eff},j} |n_j R_j|^2 = \varepsilon_{j,n} |n_j R_j|^2 \) and \(H_{\text{eff},j} |n_j L_j|^2 = \varepsilon_{j,n} |n_j L_j|^2 \), and \(\text{Tr}' \) denotes the trace over the middle interval with length \(L' = L - 2\ell \). It can be checked that \(W_j' \) return to \(W \) when \(d = 0 \).

Figure 4 shows the winding numbers \(W_j' \) and the quasienergies with the change of the disorder strength. We can see from 4(a, c) that the topological trivial character of the disorder-free case is robust when the disorder is weak for \(d \lesssim 2t_1 \). With the increase of \(d \), it is remarkable to find that a 0-mode edge state is triggered in a wide range \(d \in (2, 10) t_1 \). Such disorder-induced edge state has been found in static Hermitian systems [80–83]. Analogous to that, we call the similar state occurred in our periodically driven non-Hermitian system as Floquet topological Anderson insulator phase. Its presence can be further confirmed by Fig. 4(b, d), where a \(\pi/T \)-mode edge state exists in the disorder-free case. Here, it is interesting to observe a coexisted regime of the \(\pi/T \)-mode edge state and Floquet topological Anderson insulator state. Both of the states are absent in the static system. However, in the strong disorder regime, the band
gap is closed and all the edge states are destroyed, which is compatible to the result in the Hermitian case [84].

Conclusion.—We have investigated the topological phase transition in 1D periodically driven non-Hermitian disordered system. A scheme is proposed to curl the breakdown of the non-Hermiticity induced BBC, based on which a general description to the nonequilibrium topological phases in such non-Hermitian system is established using Floquet theorem. Taking the SSH model as an example, we have revealed that diverse exotic topological phases can be induced from the topologically trivial static system by the periodic driving. Further study reveals that the Floquet topological Anderson topological insulator phases can be triggered in the moderate disorder regime. Exhibiting a wide perspective of conventional insulator phases can be triggered in the moderate disorder regime. Our results hopefully promote further studies of both fundamental physics and potential applications of rich non-Hermitian Floquet topological phases.

Acknowledgments.—The work is supported by the National Natural Science Foundation (Grant Nos. 11875150 and 11834005), and the Fundamental Research Funds for the Central Universities of China.

Note added: In finishing our work, we notice a related one [85].

* anjhong@szu.edu.cn

[1] Tony E. Lee, “Anomalous edge state in a non-hermitian lattice,” Phys. Rev. Lett. 116, 133903 (2016).
[2] Daniel Leykam, Konstantin Y. Bliokh, Chunli Huang, Y. D. Chong, and Franco Nori, “Edge modes, degeneracies, and topological numbers in non-hermitian systems,” Phys. Rev. Lett. 121, 004001 (2017).
[3] Flore K. Kunst, Elisabet Edvardsson, Jan Carl Budich, and Emil J. Bergholtz, “Biorthogonal bulk-boundary correspondence in non-hermitian systems,” Phys. Rev. Lett. 121, 026808 (2018).
[4] Shunyu Yao and Zhong Wang, “Edge states and topological invariants of non-hermitian systems,” Phys. Rev. Lett. 121, 086803 (2018).
[5] Shunyu Yao, Fei Song, and Zhong Wang, “Non-hermitian chern bands,” Phys. Rev. Lett. 121, 136802 (2018).
[6] L. Jin and Z. Song, “Bulk-boundary correspondence in a non-hermitian system in one dimension with chiral inversion symmetry,” Phys. Rev. B 99, 081103 (2019).
[7] Huitao Shen, Bo Zhen, and Liang Fu, “Topological band theory for non-hermitian hamiltonians,” Phys. Rev. Lett. 120, 144602 (2018).
[8] Kazuki Yokomizo and Shuichi Murakami, “Non-bloch band theory of non-hermitian systems,” Phys. Rev. Lett. 123, 066404 (2019).
[9] Zongping Gong, Yuto Ashida, Kohei Kawabata, Kazuaki Takasan, Sho Higashikawa, and Masahito Ueda, “Topological phases of non-hermitian systems,” Phys. Rev. X 8, 031079 (2018).
[10] Kohei Kawabata, Ken Shiozaki, Masahito Ueda, and Masatoshi Sato, “Symmetry and topology in non-hermitian physics,” Phys. Rev. X 9, 041015 (2019).
[11] Dan S. Borgnia, Alex Jura Kruchkov, and Robert-Jan Slager, “Non-hermitian boundary modes and topology,” Phys. Rev. Lett. 124, 056802 (2020).
[12] Nobuyuki Okuma, Kohei Kawabata, Ken Shiozaki, and Masatoshi Sato, “Topological origin of non-hermitian skin effects,” Phys. Rev. Lett. 124, 086801 (2020).
[13] Jong Yeon Lee, Junyeong Ahn, Hengyun Zhou, and Ashvin Vishwanath, “Topological correspondence between hermitian and non-hermitian systems: Anomalous dynamics,” Phys. Rev. Lett. 123, 206404 (2019).
[14] Ching Hua Lee and Ronny Thomale, “Anatomy of skin modes and topology in non-hermitian systems,” Phys. Rev. B 99, 201103 (2019).
[15] Qi-Bo Zeng, Yan-Bin Yang, and Yong Xu, “Topological phases in non-hermitian aubry-andré-harper models,” Phys. Rev. B 101, 020201 (2020).
[16] T. Gao, G. Li, E. Estrecho, T. C. H. Liew, D. Comber-Todd, A. Nalitov, M. Steger, K. West, L. Pfeiffer, D. W. Snoke, A. V. Kavokin, A. G. Truscott, and E. A. Ostrovskaya, “Chiral modes at exceptional points in exciton-polariton quantum fluids,” Phys. Rev. Lett. 120, 065301 (2018).
[17] Mário G. Silveirinha, “Topological theory of non-hermitian photonic systems,” Phys. Rev. B 99, 125155 (2019).
[18] S. Longhi, “Topological phase transition in non-hermitian quasicrystals,” Phys. Rev. Lett. 122, 237601 (2019).
[19] Tian-Shu Deng and Wei Yi, “Non-bloch topological invariants in a non-hermitian domain wall system,” Phys. Rev. B 100, 035102 (2019).
[20] Junpeng Hou, Zhitong Li, Xi-Wang Luo, Qing Gu, and Chuanwei Zhang, “Topological bands and triply degenerate points in non-hermitian hyperbolic metamaterials,” Phys. Rev. Lett. 124, 073603 (2020).
[21] Tao Liu, Yu-Ran Zhang, Qing Ai, Zongping Gong, Kohei Kawabata, Masahito Ueda, and Franco Nori, “Second-order topological phases in non-hermitian systems,” Phys. Rev. Lett. 122, 076801 (2019).
[22] Ching Hua Lee, Linhu Li, and Jiangbin Gong, “Hybrid higher-order skin-topological modes in nonreciprocal systems,” Phys. Rev. Lett. 123, 016805 (2019).
[23] Zhiwang Zhang, María Rosendo López, Ying Cheng, Xiaojun Liu, and Johan Christensen, “Non-hermitian sonic second-order topological insulator,” Phys. Rev. Lett. 122, 195501 (2019).
[24] Motohiko Ezawa, “Electric circuits for non-hermitian chern insulators,” Phys. Rev. B 100, 081401 (2019).
[25] Qi Zhang and Biao Wu, “Non-hermitian quantum systems and their geometric phases,” Phys. Rev. A 99, 023121 (2019).
[26] Mark R. Hirsbrunner, Timothy M. Philip, and Matthew J. Gilbert, “Topology and observables of the non-hermitian chern insulator,” Phys. Rev. B 100, 081104 (2019).
[27] Yu Chen and Hui Zhai, “Hall conductance of a non-hermitian chern insulator,” Phys. Rev. B 98, 245130 (2018).
[28] Huaiqiang Wang, Jiawei Ruan, and Haijun Zhang, “Non-hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence,” Phys. Rev. B 99, 075130 (2019).
[29] W. B. Rui, Moritz M. Hirschmann, and Andreas P.
Schnyder, “PT-symmetric non-hermitian dirac semimetals,” Phys. Rev. B 100, 245116 (2019).

[30] Zhicheng Zhang, Zhesen Yang, and Jianguing Hu, “The bulk-boundary correspondence in non-hermitian hopf-link exceptional line semimetals,” (2020), arXiv:2001.03841 [cond-mat.mes-hall].

[31] V. M. Martinez Alvarez, J. E. Barrios Vargas, and L. E. F. Foa Torres, “Non-hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points,” Phys. Rev. B 97, 121401 (2018).

[32] Loïc Herviou, Jens H. Bardarson, and Nicolas Regnault, “Defining a bulk-edge correspondence for non-hermitian Hamiltonians via singular-value decomposition,” Phys. Rev. A 99, 052118 (2019).

[33] Dan-Wei Zhang, Ling-Zhi Tang, Li-Jun Lang, Hui Yan, and Shi-Liang Zhu, “Non-hermitian topological Anderson insulators,” (2019), arXiv:1908.01172 [quant-ph].

[34] Xiao-Ran Wang, Cui-Xian Guo, and Su-Peng Kou, “Defective edge states and anomalous bulk-boundary correspondence in non-hermitian topological systems,” (2019), arXiv:1912.04024 [cond-mat.str-el].

[35] Julia M. Zeuner, Mikael C. Rechtsman, Yonatan Plotnik, Yaakov Lumer, Stefan Nolte, Mark S. Rudner, Mordechai Segev, and Alexander Szameit, “Observation of a topological transition in the bulk of a non-hermitian system,” Phys. Rev. Lett. 115, 094002 (2015).

[36] Kun Ding, Guancong Ma, Meng Xiao, Z. Q. Zhang, and C. T. Chan, “Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization,” Phys. Rev. X 6, 021007 (2016).

[37] L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawasami, W. Yi, H. Obuse, B. C. Sanders, and P. Xue, “Observation of topological edge states in parity-time-symmetric quantum walks,” Nature Physics 13, 1117–1123 (2017).

[38] Weizhu Zhu, Xinsheng Fang, Dongting Li, Yong Sun, Yong Li, Yun Jing, and Hong Chen, “Simultaneous observation of a topological edge state and exceptional point in an open and non-hermitian acoustic system,” Phys. Rev. Lett. 121, 124501 (2018).

[39] Wange Song, Wenzhao Sun, Chen Chen, Qinghao Song, Shumin Xiao, Shining Zhu, and Tao Li, “Breakup and recovery of topological zero modes in finite non-hermitian optical lattices,” Phys. Rev. Lett. 123, 165701 (2019).

[40] Han Zhao, Xingduo Qiao, Tianwei Wu, Bikashkali Midya, Stefano Longhi, and Liang Feng, “Non-hermitian topological light steering,” Science 365, 1163–1166 (2019).

[41] Ananya Ghatak, Martin Brandenbourger, Jasper van Wezel, and Corentin Coulais, “Observation of non-hermitian topology and its bulk-edge correspondence,” (2019), arXiv:1907.11619 [cond-mat.mes-hall].

[42] Lei Xiao, Tianshu Deng, Kunkun Wang, Gaoyan Zhu, Zhong Wang, Wei Yi, and Peng Xue, “Observation of non-hermitian bulk-boundary correspondence in quantum dynamics,” (2019), arXiv:1907.12566 [cond-mat.mes-hall].

[43] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).

[44] Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).

[45] A. Bansil, Hsin Lin, and Tanmoy Das, “Colloquium: Topological band theory,” Rev. Mod. Phys. 88, 021001 (2016).

[46] Ching-Kai Chiu, Jeffrey C. Y. Teo, Andreas P. Schnyder, and Shinsei Ryu, “Classification of topological quantum matter with symmetries,” Rev. Mod. Phys. 88, 035005 (2016).

[47] Zi-Yong Ge, Yu-Ran Zhang, Tao Liu, Si-Wen Li, Heng Fan, and Franco Nori, “Topological band theory for non-hermitian systems from the dirac equation,” Phys. Rev. B 100, 054105 (2019).

[48] Ken-Ichiro Imura and Yositake Takane, “Generalized bulk-edge correspondence for non-hermitian topological systems,” Phys. Rev. B 100, 165430 (2019).

[49] André Eckardt, “Colloquium: Atomic quantum gases in periodically driven optical lattices,” Rev. Mod. Phys. 89, 011004 (2017).

[50] F. Meiner, M. J. Mark, K. Lauber, A. J. Daley, and H.-C. Nägerl, “Floquet engineering of correlated tunneling in the bose-hubbard model with ultracold atoms,” Phys. Rev. Lett. 116, 205301 (2016).

[51] Mikael C. Rechtsman, Julia M. Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev, and Alexander Szameit, “Photonic floquet topological insulators,” Nature 496, 196–200 (2013).

[52] Qingqing Cheng, Yiming Pan, Huaiqiang Wang, Chuoshi Zhang, Dong Yu, Avi Gover, Huijun Zhang, Tao Li, Lei Zhou, and Shining Zhiu, “Observation of anomalous π modes in photonic floquet engineering,” Phys. Rev. Lett. 122, 173901 (2019).

[53] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R. Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J. O’Hou Heng alley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, E. Kapit, H. Neven, and J. Martinis, “Chiral ground-state currents of interacting photons in a synthetic magnetic field,” Nature Physics 13, 146–151 (2017).

[54] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu, G. Meier, and A. Cavalleri, “Light-induced anomalous hall effect in graphene,” Nature Physics 16, 38–41 (2020).

[55] Arijit Kundu and Babak Serajdeh, “Transport signatures of floquet majorana fermions in driven topological superconductors,” Phys. Rev. Lett. 111, 136402 (2013).

[56] Sho Higashikawa, Masaya Nakagawa, and Masahito Ueda, “Floquet chiral magnetic effect,” Phys. Rev. Lett. 123, 066403 (2019).

[57] Fenner Harper and Rahul Roy, “Floquet topological order in interacting systems of bosons and fermions,” Phys. Rev. Lett. 118, 115301 (2017).

[58] Haiping Hu, Biao Huang, Erhai Zhao, and W. Vincent Liu, “Dynamical singularities of floquet higher-order topological insulators,” Phys. Rev. Lett. 124, 057001 (2020).

[59] Mark S. Rudner, Netanel H. Lindner, Erez Berg, and Michael Levin, “Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems,” Phys. Rev. X 3, 031005 (2013).

[60] János K. Asbóth and Hideaki Obuse, “Bulk-boundary correspondence for chiral symmetric quantum walks,” Phys. Rev. B 88, 121406 (2013).

[61] Mantas Račiunas, Giedrius Žlabys, André Eckardt, and Egidijus Anisimovas, “Modified interactions in a floquet topological system on a square lattice and their impact
on a bosonic fractional chern insulator state,” Phys. Rev. A 93, 043618 (2016).

[62] Botao Wang, F. Nur ¨Unal, and Andr´e Eckardt, “Floquet engineering of optical solenoids and quantized charge pumping along two-dimensional charge insulators,” Phys. Rev. Lett. 120, 243602 (2018).

[63] M. Rodríguez-Vega and B. Seradjeh, “Universal fluctuations of floquet topological invariants at low frequencies,” Phys. Rev. Lett. 121, 036402 (2018).

[64] Muhammad Sajid, János K. Ashbóth, Dieter Meschede, Reinhard F. Werner, and Andrea Alberti, “Creating anomalous floquet chern insulators with magnetic quantum walks,” Phys. Rev. B 99, 245430 (2018).

[65] Muhammad Sajid, János K. Ashbóth, Dieter Meschede, Reinhard F. Werner, and Andrea Alberti, “Creating anomalous floquet chern insulators with magnetic quantum walks,” Phys. Rev. Lett. 121, 036402 (2018).

[66] Lei Xiao, Xingze Qiu, Kunkun Wang, Zhihao Bian, Xiaang Zhan, Hideaki Obuse, Barry C. Sanders, Wei Yi, and Peng Xue, “Higher winding number in a nonunitary photonic quantum walk,” Phys. Rev. A 98, 063847 (2018).

[67] Longwen Zhou and Jiangbin Gong, “Recipe for creating an arbitrary number of floquet chiral edge states,” Phys. Rev. B 97, 245430 (2018).

[68] Qing-Jun Tong, Jun-Hong An, Jiangbin Gong, Hong-Gang Luo, and C. H. Oh, “Generating many majorana modes via periodic driving: A superconductor model,” Phys. Rev. B 87, 201109 (2013).

[69] Tian-Shi Xiong, Jiangbin Gong, and Jun-Hong An, “Towards large-chern-number topological phases by periodic quenching,” Phys. Rev. B 93, 184306 (2016).

[70] Hui Liu, Tian-Shi Xiong, Wei Zhang, and Jun-Hong An, “Floquet engineering of exotic topological phases in systems of cold atoms,” Phys. Rev. A 100, 023622 (2019).

[71] Bastian H"ockendorf, Andreas Alvermann, and Holger Fehske, “Non-hermitian boundary state engineering in anomalous floquet topological insulators,” Phys. Rev. Lett. 123, 190403 (2019).

[72] Xizheng Zhang and Jiangbin Gong, “Non-hermitian floquet topological phases with arbitrary many real-quasienery edge states,” Phys. Rev. B 98, 205417 (2018).

[73] Longwen Zhou, “Non-hermitian floquet topological superconductors with multiple majorana edge modes,” Phys. Rev. B 101, 041306 (2020).

[74] Hideo Sambe, “Steady states and quasienergies of a quantum-mechanical system in an oscillating field,” Phys. Rev. A 7, 2203–2213 (1973).

[75] Chong Chen, Jun-Hong An, Hong-Gang Luo, C. P. Sun, and C. H. Oh, “Floquet control of quantum dissipation in spin chains,” Phys. Rev. A 91, 052122 (2015).

[76] W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in polyacetylene,” Phys. Rev. Lett. 42, 1698–1701 (1979).

[77] Baogang Zhu, Rong Lü, and Shu Chen, “PT symmetry in the non-hermitian su-schrieffer-heeger model with complex boundary potentials,” Phys. Rev. A 89, 062102 (2014).

[78] J. K. Ashbóth, B. Tarasinski, and P. Delplace, “Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems,” Phys. Rev. B 90, 125143 (2014).

[79] Fei Song, Shunyu Yao, and Zhong Wang, “Non-hermitian topological invariants in real space,” Phys. Rev. Lett. 123, 246801 (2019).

[80] Jian Li, Rui-Lin Chu, J. K. Jain, and Shun-Qing Shen, “Floquet control of quantum dissipation in spin chains,” Phys. Rev. A 91, 052122 (2015).

[81] Eric J. Meier, Fangzhao Alex An, Alexandre Dauphin, Maria Maffei, Pietro Massignan, Taylor L. Hughes, and Bryce Gadway, “Observation of the topological anderson insulator in disordered atomic wires,” Science 362, 929–933 (2018).

[82] H.-M. Guo, G. Rosenberg, G. Refael, and M. Franz, “Topological anderson insulator in three dimensions,” Phys. Rev. Lett. 105, 216601 (2010).

[83] Paraj Titum, Erez Berg, Mark S. Rudner, Gil Refael, and Netanel H. Lindner, “Anomalous floquet-anderson insulator as a nonadiabatic quantized charge pump,” Phys. Rev. X 6, 021013 (2016).

[84] Oles Shtanko and Ramis Movassagh, “Stability of periodically driven topological phases against disorder,” Phys. Rev. Lett. 121, 126803 (2018).

[85] Xizheng Zhang and Jiangbin Gong, “Non-hermitian floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect,” Phys. Rev. B 101, 045415 (2020).