Impact of a Dementia-friendly Program on Detection and Management of Patients with Cognitive Impairment and Delirium in Acute-care Hospital Units: A Controlled Clinical Trial Design

Nina Mickelson Weldingh (nina.mickelson.weldingh@ahus.no)
Akershus University Hospital

Marte Rognstad Mellersæter
Akershus University Hospital

Bendik Westlund Hegna
Akershus University Hospital

Jūratė Šaltytė Benth
University of Oslo

Gunnar Einvik
Akershus University Hospital

Vibeke Juliebø
Akershus University Hospital

Bente Thommessen
Akershus University Hospital

Marit Kirkevold
University of Oslo

Research Article

Keywords: Cognitive impairment, Delirium, Dementia-friendly hospital, Delirium screening, Delirium prevention, Delirium treatment measures, Delirium detection, Implementation

Posted Date: December 15th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-206980/v2

License: ☇️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Frail older persons with cognitive impairment (CI) are at special risk of experiencing delirium during acute hospitalisation. The purpose of this study was to investigate whether a dementia-friendly hospital program contributes to improved detection and management of patients with CI and risk of delirium at an acute-care hospital in Norway. Furthermore, we aimed to explore whether the program affected the prevalence of delirium, pharmacological treatment, 30-day re-hospitalisation, 30-day mortality and institutionalisation afterwards.

Methods: This study had a controlled clinical trial design with a historical control group. It was conducted at two different medical wards at a large acute-care hospital in Norway from September 2018 to December 2019. A total of 423 acute hospitalised patients 75 years of age or older were included in the study. Delirium screening and cognitive tests were recorded by research staff with the 4 ‘A’s Test (4AT) and the Confusion Assessment Measure (CAM), while demographic and medical information was recorded from the electronic medical records (EMR).

Results: Implementation of the dementia-friendly hospital program did not show any significant changes in the identification of patients with CI. However, the share of patients screened with 4AT within 24 hours increased from 0% to 35.5% ($P<.001$). The proportion of the patients with CI identified by the clinical staff, who received measures to promote “dementia-friendly” care and reduce the risk for delirium increased by 32.2% ($P<.001$), compared to the control group. Furthermore, the number of patients with CI who were prescribed antipsychotic, hypnotic or sedative medications was reduced by 24.5% ($P<.001$). There were no differences in prevalence of delirium, 30-day readmission or 30-day mortality.

Conclusions: A model for early screening and multifactorial non-pharmacological interventions for patients with CI and delirium may improve management of this patient group, and reduce prescriptions of antipsychotic, hypnotic and sedative medications. The implementation in clinical practice of early screening using quality improvement methodology deserves attention.

Trial registration: The protocol of this study was retrospectively registered in the ClinicalTrials.gov Protocol Registration and Results System with the registration number: NCT04737733 and date of registration: 03/02/2021.

Background

The number of people over 60 years is increasing, estimated to double between 2015 and 2050 (1). Comorbidity and impaired physical and cognitive function is more common in older age, and the patients require hospitalisations more frequently. One third of older patients presenting in the hospital emergency department have some type of cognitive impairment (CI) (2, 3). CI includes dementia diagnoses, cognitive impairment without a specific diagnosis and acute cognitive dysfunction. CI (chronic and acute) is a risk factor for developing delirium during hospital stays (4–6), and the prevalence of delirium in general medical wards is estimated to be 18-35% (5). Delirium during acute hospital stays is associated with
falls, increased length of stay, admission to long-term care and increased mortality (5, 7, 8). However, despite the frequency of the conditions and the evidence of delirium as preventable (9), screening of CI and delirium is rarely implemented as routine practice in hospital wards, and in about 75% of the cases, delirium is not detected (9). Since the risk of delirium increases with the number of risk factors present, a multi-component approach targeting the patient’s risk factors is probably the most effective strategy for reducing the risk of delirium (10). Effective preventive approaches are implemented in the National Institute for Health and Care Excellence Guidelines (NICE) (11), the Hospital Elder Life Program (HELP) (12) and the Acute Care for Elders (ACE) strategy (13). However, such effective interventions and preventive strategies have often included additional staff and volunteers (14–17) or specialized geriatric wards or consultations (7, 18). Due to differences in the organization of health care, models may not be directly transferable to Norwegian hospital wards and programs that are adapted and tested in routine practice of current health service organisations are warranted. User organizations and health governments have advocated a call for more “dementia-friendly” hospital services, adjusted to the needs of patients with some form of cognitive impairment (19). Therefore, a “dementia-friendly” hospital program emphasising improved care to patients with CI was designed to improve the detection, routine care and management of patients with CI and the risk of delirium in acute medical wards. This multi-component intervention program included implementation of an educational program for healthcare professionals, systematic screening of CI, and preventive and treatment measures to reduce the incidence of delirium. The program was also designed to raise staff awareness of CI and delirium in the hospital.

The primary aim of the study was to explore whether the “dementia-friendly” program improves the detection rate of CI and/or delirium and the initiation of preventive and treatment measures for these patients at medical wards. Secondary aims were to assess the effects of the program on rate of CI and delirium screening within the first 24 hours of admission, prevalence of delirium, initiation of antipsychotic medications, hypnotics or sedatives, length of hospital stay, admission to a higher level of care in the primary health service after discharge, 30-day re-hospitalisation and 30-day mortality.

Methods

Study design

This study had a controlled clinical trial design with a historical control group and was carried out at two medical wards at Akershus University Hospital, a large acute-care hospital in Norway, with a catchment area of 600,000 inhabitants. A pulmonary (27 beds) and a cardiac bed ward (28 beds) participated in this project. The control group received usual care, whereas the experimental group received usual care plus the dementia-friendly program. The study is part of a larger research study; results from qualitative interviews with patients and their informal carers about experiences from the hospital stay will be described elsewhere. A study flow chart (Figure 1.) summarises the design of the study.

Study sample

Patients 75 years of age or older, admitted to one of the participating wards for acute medical illness between October 2018 and February 2019 (control group) and between September 2019 and December 2019 (intervention group), were eligible. Exclusion criteria included critical illness, inability to communicate (whether from aphasia, severe hearing loss, or inability to speak Norwegian) or isolated because of severe infections. Patients were only included once, implying that readmitted patients enrolled in a previous hospital stay were excluded.

Intervention: The dementia-friendly hospital program

Implementing innovative models of care with the intention to change daily routine care is challenging (20–22). To develop and implement the dementia-friendly program, we therefore used the principles of the quality improvement model (23). This model includes Deming’s Plan-Do-Study-Act (PDSA) method (24), which has been called a necessary strategy when implementing and evaluating the effectiveness of new models in practice (20–22).

The dementia-friendly hospital program was based on the National Institute for Health and Care Excellence (NICE) delirium guidelines (11) and the HELP program (25) and was reviewed for relevance by an advisory board for dementia at the National Association for Public Health (26) and the Oslo Delirium Research Group (27). The program comprised three parts, which are illustrated in Table 1: 1) **Educational program for health practitioners.** An educational program was developed to increase the staff’s knowledge and awareness of patients with CI and/or delirium and to support the implementation of the program; 2) **Screening of CI and delirium.** For early identification of CI, the program included screening within 24 hours after admission to the medical wards using the 4 ‘A’s Test (4AT) (28). The clinicians were encouraged to screen beyond 24 hours if they did not manage within 24 hours; 3) **Interventions to prevent and manage delirium.** A 4AT score > 0 was defined as potential CI and risk of delirium, implying that risk factor modifications should be implemented. For those with a 4AT score ≥ 4, the program promoted an additional delirium management plan. The main elements of the interventions program are summarised in Table 1. and in Figure 2.
Table 1
The dementia-friendly hospital program

Educational program for health practitioners	
Digital educational electronic course	How patients with CI may experience hospital admission
	Detection of patients with CI and delirium
	Delirium-prevention treatment strategy and follow-up of CI
‘Nurse-champions’	Three local ‘nurse-champions’, on each ward.
Morning lecture	30-minute lecture for the ward physicians by a geriatric specialist
Pocket-sized handouts	Visualizing the 4AT screening tool, the multi-component preventive interventions and delirium management suggestions

Screening of cognitive impairment and delirium

4AT screening within 24 hours after admission to the ward (If 4AT screening is not managed within 24 hours, screening should be performed as soon as possible)

Interventions to prevent delirium

Orientation	Orienting communications
	Ensure patient has eyeglasses and hearing aids, if needed
Nutrition and hydration	Early recognition of dehydration and risk of malnutrition
	Encouragement of oral intake of fluids and encouragement during meals
	Early correction of hypovolemia and electrolyte imbalance
Elimination	Prevent obstipation (e.g. encourage regular toilet routines)
	Early recognition of urinary retention (e.g. bladder scanning)
Mobilisation	Encourage daily mobilisation adapted to previous functional level
	Avoid restraints and immobilising equipment if possible (e.g. Foley catheters)
Sleep hygiene	Noise and light reduction at night
	Reschedule procedures to allow at least five hours of uninterrupted sleep at night
	Cognitive stimulation to reduce sleeping during the day
Pain management	Assess nonverbal signs of pain
	Optimize pain management, preferably with nonopioid medications
Educational program for health practitioners

Medications review
Review the patient’s medication list to reduce polypharmacy and to avoid any medications associated with precipitating delirium (e.g. benzodiazepines, antihistamines, high dose of opioids)

Family involvement
Facilitate presence of relatives when giving important information to the patient
Facilitate presence of relatives outside visits

Management of delirium

Identify and treat underlying causes
Search for infections, metabolic abnormalities and acute pain and treat as appropriate
Assess polypharmacy and side effects of medications

Reduce contributing factors and optimise orienting factors
Maintain preventive measures to optimise orientation and reduce contributing factors for delirium (e.g. stabilise vital abnormalities)
Increase continuity of care by reducing number of nurses caring for patient
Place patient in single room if possible
Early assessment of need for 24-hour nursing; facilitate the presence of relatives

Prevent complications
Prevent aspiration pneumonia, pressure sores, deep venous thrombosis and falls

Pharmacological strategies
Procedure with preferred use of type and dosage of antipsychotics to manage severe agitation
Manage sleep-wake cycle

Family involvement
Offer conversation with patients and relatives to inform them about delirium and follow-up after the delirium

Cognitive assessment
Referral to assessment of cognitive function after discharge

Data collection

The data collection was performed by three research nurses trained for the study.

Demographic data

Demographic data, such as age, gender, place of residence (home, adapted housing, institution), and family/relative network were obtained upon admission to the study.

Medical data
Medical data, such as cause of admission, comorbidities, medications and medical treatment, were obtained both at admission and from their electronic medical records (EMR) after discharge. Vital signs and severity of medical condition were obtained from the National Early Warning Score2 (NEWS2) (29) upon admission to the emergency unit. The NEWS2 score uses well-established vital parameters on respiratory rate, oxygen saturation, temperature, systolic blood pressure, pulse rate, and level of consciousness or new confusion to identify patients at risk of a worsening condition. NEWS2 scores range from 0–24, where a higher score indicates higher clinical risk (30). A score >7 indicates a high severity and requires continuous monitoring of vital parameters.

Primary outcome

CI in the total population was defined as all participants with either a diagnosis of CI/delirium at admission, detected CI during the hospital stay or a positive screening by research staff. The screening tools use for CI and delirium were: the 4 ‘A’s Test (4AT) (28) and the Confusion Assessment Method (CAM) (31).

The four ‘A’s in 4AT stand for Arousal, Attention, Abbreviated Mental Test – 4, and Acute change (28). 4AT is a brief orientation measure which include cognitive screening sensitive to general cognitive impairment, in addition to items on altered level of alertness and change in mental status, which are strong indicators of delirium (28). The 4AT instrument is validated (32–34) and consists of four variables: alertness, shortened mental assessment, attention, and acute change or fluctuating course. A score of four or more indicates delirium, while a score of 1–3 indicates CI (32). A positive 4AT score (> 3) has shown a sensitivity and specificity of detecting delirium of 78% and 95%, respectively (28). The 4AT has also shown a high specificity but low to moderate sensitivity with general cognitive impairment (28). The tool also allows assessment of drowsy patients and delirium superimposed on dementia (35, 36).

4AT was performed in all participants by trained research nurses during the first three days after patients were admitted to the ward. Measures were kept so that the clinical staff at the department were not aware of these assessments, i.e. these were performed with the study personnel alone in the room with the patient without clinical staff, and results were not recorded in the EMR. As part of the study intervention, 4AT was also scored by the clinical staff, who noted the score in the EMR. This information was obtained by the research nurses from the EMR after the patient’s discharge. The prevalence of clinically detected CI was defined as the percentage of all participants with CI that were recognized by the clinical staff according to EMR. Even though the 4AT score can both help rule out delirium and has been shown to be reasonably effective in detecting delirium, a more thorough follow up assessment of patients with a score that indicates delirium is recommended. In this project, CAM was used to verify delirium when a 4AT score indicated possible delirium (4AT score of ≥ 4). CAM is the most used, validated diagnostic tool for diagnosing delirium (31, 37). The CAM has shown some different results in specificity and sensitivity. Mariz et al. (37) showed a sensitivity of 94–100% and a specificity of 90–95% for detecting delirium. A more recent study by MacLullich et al. (28) showed a specificity of 100% (95% CI 98–100%) and a sensitivity of 40% of detecting delirium. The tool consists of two parts: part one screens for overall CI and part two includes assessment of: (1) acute onset and fluctuating course; (2) inattention; (3) disorganized
thinking; and (4) altered consciousness level. If all the features of (1) and (2), as well as either (3) or (4), are met, the diagnosis of delirium is likely (positive CAM) (37). The presence of ‘delirium in a participant’ was defined as ‘a positive CAM or delirium diagnosis registered in the EMR’.

The other predefined primary outcome was the type and extent of preventive or treatment measures against delirium the patients received during their stay. For all participants with CI thorough review of the EMR was conducted after discharge to record if, and in case of yes, which type of preventive or treatment measures were provided (according to the categorical measures in the dementia-friendly hospital program, Table 1.).

Secondary outcomes

The percentage of participants screened with the 4AT within 24 hours after admission by the clinical staff were registered from the EMR upon discharge, reflecting the adherence of the intervention. Other secondary variables included: The number of medications not recommended for persons at risk of delirium, that were prescribed during admission and after discharge (Table 2); new prescriptions of antipsychotic medications, sedatives or hypnotics during the hospital stay, prevalence of delirium, length of stay (number of days from admission to discharge), different needs of care at discharge (departure to home, home with home nursing, short-term stay/rehabilitation stay or institutional care/nursing home), 30-day readmissions from date of discharge and 30-day mortality. These variables were all collected through EMR reviews after discharge.

Table 2
Medications recommended avoiding for people at risk of delirium (39–42)

Tricyclic antidepressants	**Should be avoided**
Antipsychotic medications	High-dose antipsychotic medications should be avoided; if necessary, haloperidol, risperidone or quetiapine can be used
Histamine antagonists	Hydroxyzine and alimemazine are not recommended
Corticosteroids	Use caution with high-dose corticosteroids
Anticholinergic and beta-3 adrenergic agonist	Oksybutynin/tolterodine/solifenacin/ Darifenacin/fesoterodine/Mirabegron are not recommended
Benzodiazepines	Should be avoided, but do not quit abruptly after prolonged use
Opioid analgesics	Not recommended, but can/must sometimes be used
Metoclopramide	Not recommended but can/must sometimes be used
Clomethiazole	Could be used to induce sleep at night
Others	Caution with Digoxin and Lithium; monitor S-concentration
Data management

Study data were managed using the REDCap (Research Electronic Data Capture) tool hosted at the acute-care hospital (38, 39). REDCap is a secure, web-based software platform designed to support data capture for research studies, providing 1) an intuitive interface for validated data capture; 2) audit trails for tracking data manipulation and export procedures; 3) automated export procedures for seamless data downloads to common statistical packages; and 4) procedures for data integration and interoperability with external sources.

Statistical analysis

The study sample size was decided based on the outcome ‘proportion of patients with CI receiving delirium preventive and treatment measures’. In lack of empirical data, the protocol pre-specified that the final sample size would be based on the preliminary findings during the data collection in the historical control group, which at that time were low and equal to 10%. With the dementia-friendly hospital program, we expected that the proportion of patients receiving preventive treatment will increase to at least 50%. To show that a difference between the proportions of patients receiving preventive treatment before and after intervention is significant, according to χ^2-test at the level of 5% and with the power of 80%, it is sufficient with approximately 25 patients in each group. As the data in the control group were already collected, it was decided to include equally many patients in the intervention group, enabling sufficiently large datasets to analyse the secondary outcomes.

The demographic and clinical patient characteristics were presented as means and standard deviations (SD) for continuous variables and as frequencies and percentages for categorical variables. Categorical variables were compared between the intervention and control groups by χ^2-test, while the independent sample t-test was used for comparison of continuous variables. All tests were two-sided, and results with P-values below 0.05 were considered statistically significant. All statistical analyses were performed using SPSS v.26.

Ethical considerations

Ethical approval for the study was obtained from the local officer for data protection and the Regional Committee for Medical and Health Research Ethics (2018/666). All patients were asked to give written consent to the use of data collected in this project. A close relative was asked to provide proxy consent if the patient was considered not able to consent.

Results

Sample
There were 211 and 212 patients in the intervention group and control group, respectively. The characteristics of the patients in each study group at the time of admission are shown in Table 3. The mean age and number of patients with dementia or CI established prior to admission were similar in the two groups. There were more women and more patients diagnosed with pulmonary diseases (66.5 vs. 43.1%), infections (41.0 vs. 10.9%), heart failure (90.6 vs 83.9%), and mental illness (7.5 vs. 2.8%) in the control group compared to the intervention group.

Table 3

Demographic and clinical characteristics of patients, N=423
Detection and screening of CI

The total proportion of patients with identified CI by the clinical staff (including identification without using 4AT) was similar between the groups, with 57 of 90 patients (63.3%) with CI identified by the clinical staff in the intervention group and 60 of 102 patients (58.8%) with CI identified by the clinical staff in the control group \((P=0.523) \). In the control group, no patients were screened with the 4AT by the clinical staff within 24 hours after admission. In the intervention group, receiving the dementia-friendly
hospital program, 35.5% were screened within 24 hours after admission, while a total of 46.4% were screened with 4AT during the admission ($P<.001$).

Management of patients with cognitive impairment and delirium

Among all participants with CI in the historical control group, 23 of 102 received one or more preventive or treatment measure during the hospital stay (22.5%). This proportion increased to 61 of 90 participants with CI after the intervention (53.3%) ($p<0.001$). Among those patients with CI identified by the clinical staff (4AT score>1 documented in the EMR by the clinical staff, or other reporting of CI in the EMR during the stay), 77.2% in the intervention group, and 45% in the control group had documented interventions to prevent and/or manage delirium, according to the implemented dementia-friendly hospital (data shown in Table 4.). This was a statistically significant increase of 32.2% ($P<.001$). Furthermore, of those patients who had documented preventive and treatment measures, there was a higher number of measures documented in the intervention group (132 measures) than in the control group (52 measures) (mean 2.3 (SD 2.1) and mean 0.9 (SD 1.4), respectively, ($P<.001$)). Thus there were several patients in the intervention group who received measures from more than one category. Table 4. shows the distribution of the number of patients identified with CI by the clinical staff, receiving the different categories of measures. As can be seen, several of the categories increased significantly following the implementation of the dementia-friendly hospital program. The category ‘Family involvement’ had the highest increase, as 3.3% in the control group and 42.1% in the intervention group had documented measures in this category ($P<.001$).
Table 4
Documented preventive and treatment measures for patients identified with CI by the clinical staff

Characteristics	Control	Intervention	P-value¹
	N=60	N=57	
Documented measures in the EMR n (%)	27 (45.0)	44 (77.2)	<0.001
Orientation	5 (8.3)	14 (24.6)	0.016
Nutrition and hydration	2 (3.3)	14 (24.6)	0.001
Elimination	3 (5.0)	10 (17.5)	0.030
Stabilized vital abnormalities	1 (1.7)	1 (1.8)	0.971
Mobilization	2 (3.3)	11 (19.3)	0.005
Sleep hygiene	2 (3.3)	12 (21.1)	0.003
Pain management	0	4 (7.0)	0.038
Family involvement	2 (3.3)	24 (42.1)	<0.001
Medications review	3 (5.0)	1 (1.8)	0.326
Primary nursing	2 (3.3)	3 (5.3)	0.608
Single room	6 (10.0)	2 (3.5)	0.156
Referral to cognitive assessment	12 (20.0)	5 (8.8)	0.078
Other follow-up related to suspicion of CI	12 (20.3)	31 (54.4)	<0.001
Number of measures, mean (SD)	0.9 (1.4)	2.3 (2.1)	<0.001²

¹ P-value for χ²-test unless otherwise specified; ² P-values for independent samples t-test

Use of antipsychotic, hypnotic or sedative medications

The proportion of all patients with CI who received antipsychotic, hypnotic or sedative medications during their hospital stay was significantly reduced from 41.2% in the control group to 16.7% in the intervention group (P<.001, Table 5).

Among all patients identified with CI, there was a tendency to reduced use of benzodiazepines and opioids at discharge, controlled for use of corresponding medication at admission. Benzodiazepines were the most frequently used of the “not recommended medications” (Table 2), and were used by 41 of the 102 patients with CI in the control group (40.2%) and 30 of 90 patients with CI in the intervention group.
(33.3%) at discharge ($P<.326$). There were no significant differences between the intervention group and the control group in the use of other antipsychotic medications, hypnotics or sedatives.

| Table 5
Patients with CI given doses of antipsychotic, hypnotic or sedative medications during the hospital stay
Characteristics

Patients with CI given doses of antipsychotic, hypnotic or sedative medications
n (%)
1 medication, n (%)
2 medications, n (%)
3 medications, n (%)
4 medications or more, n (%)
Mean (SD)

1P-value for χ^2-test; 2P-value for independent samples t-test

Departure to rehabilitation or nursing home

There was no difference in institutionalisation after discharge between the control group and the intervention group. Among patients receiving home nursing care at the time of admission, there was a 16.9% increase in departure to rehabilitation or other types of short-term stay in a nursing home.

Length of hospital stay, delirium, readmissions and mortality

Length of hospital stay decreased by 0.8 days in the intervention group (5.4 days) compared to the control group (6.2 days). However, this change was not statistically significant ($P<.152$). The number of patients with CAM results and delirium diagnosis recorded in the EMR were too low for statistical analyses of prevalence of delirium. There were no differences regarding 30-day readmission (49 of 212 (23.1%) in control group vs. 44 of 211 (20.9%) in intervention group) ($P<.575$) or 30-day mortality (13 of 212 (6.1%) in control group vs. 20 of 211 (9.5%) in intervention group) ($P<.199$).
Discussion

Detection and screening of cognitive impairment

In this study, we aimed to improve the detection and management of patients with CI and delirium by implementing a dementia-friendly hospital program. Our primary aim was to improve the detection of patients with CI, as patients with CI are at high risk of developing delirium, which is associated with several adverse outcomes. Implementation of the program improved the overall detection of patients with CI only slightly, but the change was not statistically significant. To interpret these results, it is important to note that we defined all reporting in the EMR of some form of cognitive impairment during the stay as ‘CI detected’. For example, if a nurse had written ‘patient not oriented this evening’, that was scored as ‘CI detected’, even if no more details or plan for follow-up were given. Furthermore, the control group seemed to have somewhat poorer health than the intervention group, with higher number of suspected CI documented at admission, which may have led to more CI detected in the control group.

A secondary outcome was to implement early systematic screening with 4AT. The 4AT instrument was not known or used in the wards at baseline. After implementing the program, 35.5% of patients in the intervention group were screened by the clinical staff within 24 hours after admission. The overall 4AT screening by clinical staff during the admission increased from 0% in the control group to 46.4% in the intervention group. One reason why the clinical staff only screened close to half of the patients in the intervention group could be due to problems reaching out to all the staff with information about the program. Vacancies were covered by new staff who had not been trained to conduct the screening. In addition, during the implementation period, high workloads might have reduced the time available to complete the screening because the staff had to prioritize care of acutely ill patients. Thus, they might have omitted screening patients who were assumed to have normal cognitive functions.

Previous studies aiming to improve the use of 4AT screening have shown a 21-64% improvement of screenings (40–43). However, Bearn et al. (42) was the only study with a baseline screening of 0%, as in our study, implying that the 4AT instrument was already known and in use by the healthcare staff in the other studies. We assume that implementation of a new screening instrument requires more resources and commitment. Despite Bearn et al. (42) showing an overall improvement in 4AT screenings from 0–64%, they only included screenings of newly confused patients, and the sample size was small. In our study, we intended to screen every patient 75 years and older, which means that many of them did not show signs of CI/delirium. Another explanation of the differences from our study may be the 13 weeks longer study period in the study by Bearn et al. (42). We experienced a prolonged and gradual incorporation of screenings into the daily routines due to time constraints and staff turnover, creating challenges in reaching out with training and information to all staff members. We assume that the share of patients screened would have been higher with a longer implementation and study period.

Management of patients with cognitive impairment and delirium

Implementing the dementia-friendly program in this study improved management of patients with CI by 32%, compared to the control group (Table 4.). The results also indicated that the patients with CI in the intervention group received more delirium preventive measures and improved communication with the informal careers’ during hospitalisation. In the control group, the EMR indicated that more focus was put on referrals for further assessment of cognitive functions during the hospitalisations or in the community care than on preventing delirium during the hospitalisation. This may indicate that the dementia-friendly hospital program increased nurses’ awareness of CI as a risk factor for developing delirium and the importance of differentiating delirium from dementia. Early screenings may also have led to earlier measures and follow-up during the hospitalisations. The results from this study do not tell to what extent delirium preventive measures may prevent incident delirium or reduce the prevalence of delirium. Furthermore, there will be cases where there is a need to give antipsychotics even though preventive measures have been used. However, the results support that the dementia-friendly program increased the use of non-pharmacological interventions, which is recommended in the literature (11–14). Results from this study contribute to the literature, showing that educational programs can improve the management of patients with CI and delirium (43–45). Qualitative interviews with relatives of patients with CI emphasise the importance of building good partnerships with family careers’ (46). The dementia-friendly program, including the e-learning course, may have improved the health professionals’ understanding of the importance of partnerships between the health care services and families. However, further studies are needed to explore this assumption.

Use of antipsychotic, hypnotic and sedative medications

Antipsychotic, hypnotic and sedative medications have potentially deliriogenic effects (47, 48). The dementia-friendly program tested in this study showed a 24.5% reduction in prescription of antipsychotic, sedative and hypnotic medications for patients with CI. These results may indicate that the health personnel had more knowledge and, thus, were more careful in using such medications. The program emphasises the importance of using non-pharmacological interventions rather than drugs. These results are in line with results from previous trials exploring the effects of non-pharmacological interventions targeted at delirium risk factors (15, 49). Chong, Chan (49) explored the effects of a program based on core interventions from the HELP program and detected a lower use of antipsychotic medications in the patients at the unit where these interventions were implemented.

Departure to rehabilitation or nursing home

Several trials have studied the effects of HELP-related models on institutionalisation, but with ambiguous results (14). Our study shows no difference in overall admissions to long-term institutions at nursing homes. However, there was an insignificant increase in departures to rehabilitation or other types of short-term stays in nursing homes for the patient group receiving home care. Institutionalisation is often described as a negative result in the literature. On the other hand, discharge to rehabilitation or short-term stays may indicate better patient care because the patient’s need for care and/or rehabilitation has been identified. The results may also be seen in connection with another result in this study, as identification of CI and improved communication with families may lead to increased knowledge about the needs of this
patient group. The results must be carefully interpreted considering the organisation of the Norwegian health system, where nursing homes often include both long-term and short-term care. Acute hospitals often lack capacity and must discharge patients as soon as their acute medical needs are resolved. Thus, the patients often receive short-term stays at nursing homes in anticipation of being able to return home to the same level of care as before their hospital admissions.

Length of hospital stay

The effectiveness of multi-component non-pharmacological interventions in reducing the length of hospital stays has been studied in several trials (14, 50). However, the results are ambiguous. In this study, the length of hospital stay showed an insignificant reduction of 0.8 days in the intervention group compared to the control group. This result is in line with the meta-analysis by Hshieh, Yang (14) on the effectiveness of the HELP program, showing an insignificant mean reduction of 0.24 days in the intervention group. The difference was not statistically significant; however, the mean length of stay for patients ≥ 75 years in the two participating medical wards was only 4.1 days after the intervention, and thus a reduction of 0.8 days may be of clinical importance.

Delirium, readmissions and mortality

The number of patients with CAM results and delirium diagnosis recorded in the EMR were too low for statistical analyses of prevalence of delirium. No difference in the number of patients diagnosed with 30-day readmissions to the hospital or 30-day mortality was found. The results differ from a meta-analysis by Hshieh, Yang (14), which reports significant reductions in delirium incidences after implementation of HELP-based interventions. However, other studies suggests that effects of delirium-preventive interventions on outcomes, like readmissions and mortality rates, are ambiguous (51).

Strengths and limitations

Our study has some limitations. First, CI detected in the control group is based only on documentation in the EMR reporting some form of cognitive impairment, without any further descriptions or follow-up of any assumed CI. Delirium diagnosis was also based on reviews of the EMR, and these data were complicated, as delirium may not have been documented correctly or not documented at all in the EMR. Second, 4AT screening was limited to only three consecutive days in the hospital for each participant, and there was no screening by research staff on the weekends, implying that not all patients have three (consecutive) screening scores. Thirdly, according to the study design, we acknowledge that the severity of CI may be different in the two groups, as the two groups were not randomized. Thus we do not know whether the decrease in use of antipsychotic medications, hypnotics or sedatives are caused by an increased good practice or lower needs of these medications. However, the data collection was performed at the same departments, at the same time of year, and no administrative changes according to admittance rules for these departments were done between the time periods.

Our study also have some strengths. We used validated and established screening instruments to detect patients at risk, and the measures used in the intervention are based on well-known models and
guidelines. Additionally, we used an evidence-based quality improvement model to implement the dementia-friendly hospital program and engaged the wards in the development and implementation of the intervention, which may facilitate the incorporation of the program into the routine in these wards and lead to subsequent improvements beyond the project period.

Implications for clinical practice

Implementing this program has provided benefits for hospitalised older patients with CI and delirium. Furthermore, health care professionals have gained valuable knowledge about how to implement new tools and measures in a challenging, busy environment. From a clinical perspective, systematic and consistent screening with subsequent assessment of whether the CI detected is delirium or long-term cognitive impairment may be of more importance than the choice of screening tool. However, given the complexity and cost associated with managing patients with delirium, the simple 4AT screening tool may help target resources more appropriately.

Further implementation of this program should focus on communication with risk patients’ informal caregivers and community-based health care services on how to recognize and manage delirium, as early detection and management in the community may prevent further hospital admissions.

Conclusions

A dementia-friendly hospital program, consisting of an educational program, use of a screening tool, and protocols on prevention and treatment, did not show any significant effect on the identification of patients with CI. However, it significantly increased screening and early detection of CI and appropriate management of the patients identified with CI and at risk of delirium, including increasing the number of non-pharmacological measures and reducing the prescription of antipsychotic, hypnotic and sedative medications for these patients.

Abbreviations

HELP: Hospital Elder Life Program; ACE: Acute Care for Elders; NICE: National Institute for Health and Care Excellence Guidelines; CI: Cognitive Impairment; PDSA: Plan-do-study-act circle; QI: Quality Improvement; 4AT: 4 ‘A’s Test; CAM: Confusion Assessment Measure; Electronic Medical Records (EMR).

Declarations

Ethics approval and consent to participate

Ethical approval for the study was obtained from the local officer for data protection and the regional committees for medical and health research ethics (Case number: 2018/666) and all methods were performed in accordance with the relevant guidelines and regulations. Informed consent was obtained
from all study participants in this project. In cases where patients lacked consent capacity, informed consent was obtained from their relatives. Participants could refuse (further) participation at any time.

Consent for publication

Not applicable

Availability of data and materials

The dataset generated and/or analysed during the current study is available from the corresponding author by reasonable request.

Competing interests

The authors declare that they have no competing interests in this work.

Funding

The study was funded by the National Association for Public Health (26). The funding body had no influence on the analysis or design of the manuscript.

Authors’ contributions

NMW has been the primary author and has made substantial contributions to the design, data collection, analysis and drafting of the manuscripts. MK has been the primary supervisor and has contributed substantially with intellectual feedback through the development of design, data collection and analysis. BWH and MRM have contributed substantially to the design and development of the model. MRM has also contributed with supervision of analyses. JS has made all the statistical analyses and prepared data tables. GE, VJ and BT have contributed with supervision thought the study period. All Authors reviewed the manuscript.

Acknowledgements

We would like to thank Signe Anette Nærbø Strindhaug, Mette Eriksen, Linda Andresen, Helene Vestvik and Helena Tangstad Kuven for their contributions to the data collection.

References
1. World Health Organization. Ageing and health [Internet]. Geneva: WHO; 2018 [updated 5. Feb. 2018]. Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.

2. Evensen S, Saltvedt I, Ranhoff AH, Myrstad M, Myrstad C, Mellsingsæther M, et al. Delirium og kognitiv svikt blant eldre i norske akuttmottak [Translated title: Delirium and cognitive impairment among elderly in Norwegian acute emergency wards]. Tidsskrift for den Norske laegeforening: tidsskrift for praktisk medicin, ny raekke. 2019;2019;139.

3. Bickel H, Hendlmeier I, Heßler JB, Junge MN, Leonhardt-Achilles S, Weber J, et al. The Prevalence of Dementia and Cognitive Impairment in Hospitals. Deutsches Arzteblatt international. 2018;115(44):733–40.

4. Juliebø V, Krogsæth M, Neerland BE, Watne LO, Wyller TB. Delirium—a common condition associated with negative outcome in the elderly. Norsk epidemiologi. 2012;22(2).

5. Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet. 2014;383(9920):911–22.

6. Kolanowski A. Delirium in people living with dementia: a call for global solutions. Aging & mental health. 2018;22(4):444–6.

7. Oh ES, Fong TG, Hshieh TT, Inouye SK. Delirium in older persons: advances in diagnosis and treatment. Jama. 2017;318(12):1161–74.

8. Reynish EL, Hapca SM, De Souza N, Cvoro V, Donnan PT, Guthrie B. Epidemiology and outcomes of people with dementia, delirium, and unspecified cognitive impairment in the general hospital: prospective cohort study of 10,014 admissions. BMC Med. 2017;15(1):140-.

9. Flaherty JH, Yue J, Rudolph JL. Dissecting Delirium: Phenotypes, Consequences, Screening, Diagnosis, Prevention, Treatment, and Program Implementation. Clinics in geriatric medicine. 2017;33(3):393–413.

10. Inouye SK. Delirium-A Framework to Improve Acute Care for Older Persons. Journal of the American Geriatrics Society. 2018;66(3):446–51.

11. National Institute for Health and Care Excellence. Delirium: prevention, diagnosis and management [Internet]. London: NICE; 2010 [updated 2019 Mar 14]. Available from: https://www.nice.org.uk/guidance/cg103.

12. Inouye SK. Predisposing and precipitating factors for delirium in hospitalized older patients. Dement Geriatr Cogn Disord. 1999;10(5):393–400.

13. Sinha SK, Bennett J, Ramsden R, Bon J, Chalk T. Delivering improved patient and system outcomes for hospitalized older adults through an Acute Care for Elders Strategy. Healthcare management forum. 2018;31(4):126–32.

14. Hshieh TT, Yang T, Gartaganis SL, Yue J, Inouye SK. Hospital Elder Life Program: Systematic Review and Meta-analysis of Effectiveness. The American journal of geriatric psychiatry: official journal of the American Association for Geriatric Psychiatry. 2018;26(10):1015–33.

15. Gorski S, Piotrowicz K, Rewiuk K, Halicka M, Kalwak W, Rybak P, et al. Nonpharmacological Interventions Targeted at Delirium Risk Factors, Delivered by Trained Volunteers (Medical and
Psychology Students), Reduced Need for Antipsychotic Medications and the Length of Hospital Stay in Aged Patients Admitted to an Acute Internal Medicine Ward: Pilot Study. Biomed Res Int. 2017;2017:1297164.

16. Godfrey M, Smith J, Green J, Cheater F, Inouye SK, Young JB. Developing and implementing an integrated delirium prevention system of care: a theory driven, participatory research study. BMC health services research. 2013;13:341-.

17. Verma J, O'Connor P, Hodge J, Abrams H, Bennett J, Sinha S. Healthcare for the Aging Citizen and the Aging Citizen for Healthcare: Involving Patient Advisors in Elder-Friendly Care Improvement. Healthcare quarterly (Toronto, Ont). 2017;20(1):14–7.

18. Fox MT, Persaud M, Maimets I, O'Brien K, Brooks D, Tregunno D, et al. Effectiveness of acute geriatric unit care using acute care for elders components: a systematic review and meta-analysis. Journal of the American Geriatrics Society. 2012;60(12):2237–45.

19. National institute for health and care excellence (NICE). Hospital care [Internet]. London: National institute for health and care excellence.; 2020. Available from: https://www.nice.org.uk/about/what-we-do/into-practice/measuring-the-use-of-nice-guidance/impact-of-our-guidance/niceimpact-dementia/ch3-hospital-care.

20. Choudry MI, Stewart K, Woodhead T. The Royal College of Physician's Quality Improvement Hub - how can it help physicians to improve patient care? Future Hosp J. 2016;3(3):211–6.

21. Knudsen SV, Laursen HVB, Johnsen SP, Bartels PD, Ehlers LH, Mainz J. Can quality improvement improve the quality of care? A systematic review of reported effects and methodological rigor in plan-do-study-act projects. BMC health services research. 2019;19(1):683.

22. Taylor MJ, McNicholas C, Nicolay C, Darzi A, Bell D, Reed JE. Systematic review of the application of the plan-do-study-act method to improve quality in healthcare. BMJ quality & safety. 2014;23(4):290–8.

23. Langley G, Nolan K, Nolan T, Norman C, Provost L. A model for improvement. The improvement guide: a practical approach to enhancing organization performance San Francisco: Jossey Bass. 1996:3–11.

24. Moen R. Foundation and History of the PDSA Cycle: Assoc Process Improv; 2009 [cited 2020 25. Aug]. Available from: https://deming.org/wp-content/uploads/2020/06/PDSA_History_Ron_Moen.pdf.

25. Inouye SK, Bogardus ST, Jr., Charpentier PA, Leo-Summers L, Acampora D, Holford TR, et al. A multicomponent intervention to prevent delirium in hospitalized older patients. The New England journal of medicine. 1999;340(9):669–76.

26. National Association of Public Health. [cited 2020 25. Aug.]. Available from: https://nasjonalforeningen.no/.

27. Oslo Delirium Research Group. University of Oslo; [cited 2020 25. Aug]. Available from: https://www.med.uio.no/klinmed/english/research/groups/delirium/.
28. MacLullich AM, Shenkin SD, Goodacre S, Godfrey M, Hanley J, Stíobhairt A, et al. The 4 'A's test for detecting delirium in acute medical patients: a diagnostic accuracy study. Health technology assessment (Winchester, England). 2019;23(40):1–194.

29. Royal College of Physicians. National Early Warning Score (NEWS) 2: Standardising the assessment of acute-illness severity in the NHS. Updated report of a working party. London RCP; 2017.

30. McGinley A, Pearse RM. A national early warning score for acutely ill patients. BMJ: British Medical Journal. 2012;345:e5310.

31. Inouye SK, van Dyck CH, Alessi CA, Balkin S, Siegal AP, Horwitz RI. Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Annals of internal medicine. 1990;113(12):941–8.

32. Bellelli G, Morandi A, Davis DH, Mazzola P, Turco R, Gentile S, et al. Validation of the 4AT, a new instrument for rapid delirium screening: a study in 234 hospitalised older people. Age and ageing. 2014;43(4):496–502.

33. Berg GV, Watne LO, Gjevjon ER. Ny screening gir sikrere diagnose. Bruk av screeninginstrumentet 4AT kan forbedre diagnoseringen av akutt delirium. Sykepleien. 2016;104:52–3.

34. Tieges Z, Maclullich AMJ, Anand A, Brookes C, Cassarino M, O'Connor M, et al. Diagnostic accuracy of the 4AT for delirium detection in older adults: systematic review and meta-analysis. Age and ageing. 2020.

35. De J, Wand AP. Delirium Screening: A Systematic Review of Delirium Screening Tools in Hospitalized Patients. The Gerontologist. 2015;55(6):1079–99.

36. Shenkin SD, Fox C, Godfrey M, Siddiqi N, Goodacre S, Young J, et al. Delirium detection in older acute medical inpatients: a multicentre prospective comparative diagnostic test accuracy study of the 4AT and the confusion assessment method. BMC Med. 2019;17(1):138-.

37. Mariz J, Costa Castanho T, Teixeira J, Sousa N, Correia Santos N. Delirium diagnostic and screening instruments in the emergency department: an up-to-date systematic review. Geriatrics. 2016;1(3):22.

38. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O'Neal L, et al. The REDCap consortium: Building an international community of software platform partners. Journal of biomedical informatics. 2019;95:103208.

39. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of biomedical informatics. 2009;42(2):377–81.

40. Dormandy L, Mufti S, Higgins E, Bailey C, Dixon M. Shifting the focus: A QI project to improve the management of delirium in patients with hip fracture. Future healthcare journal. 2019;6(3):215–9.

41. Vardy E, Collins N, Grover U, Thompson R, Bagnall A, Clarke G, et al. Use of a digital delirium pathway and quality improvement to improve delirium detection in the emergency department and outcomes in an acute hospital. Age and ageing. 2020;49(4):672–8.

42. Bearn A, Lea W, Kusznir J. Improving the identification of patients with delirium using the 4AT assessment. Nursing older people. 2018;30(7):18–27.
43. Bauernfreud Y, Butler M, Ragavan S, Sampson EL. TIME to think about delirium: improving
detection and management on the acute medical unit. BMJ open quality. 2018;7(3):e000200.
44. Palmer JL, Lach HW, Mcgillick J, Murphy-White M, Carroll MB, Armstrong JL. The Dementia Friendly
Hospital Initiative education program for acute care nurses and staff. Journal of continuing
education in nursing. 2014;45(9):416–24.
45. Sampson EL, Vickerstaff V, Lietz S, Orrell M. Improving the care of people with dementia in general
hospitals: evaluation of a whole-system train-the-trainer model. International psychogeriatrics.
2017;29(4):605–14.
46. Häikiö K, Sagbakken M, Rugkåsa J. Family carers' involvement strategies in response to sub-optimal
health services to older adults living with dementia - a qualitative study. BMC geriatrics.
2020;20(1):290.
47. Moore AR, O'Keeffe ST. Drug-induced cognitive impairment in the elderly. Drugs & aging.
1999;15(1):15–28.
48. Hipp DM, Ely EW. Pharmacological and nonpharmacological management of delirium in critically ill
patients. Neurotherapeutics. 2012;9(1):158–75.
49. Chong MS, Chan M, Tay L, Ding YY. Outcomes of an innovative model of acute delirium care: the
Geriatric Monitoring Unit (GMU). Clinical interventions in aging. 2014;9:603–12.
50. Hshieh TT, Yue J, Oh E, Puelle M, Dowal S, Travison T, et al. Effectiveness of multicomponent
nonpharmacological delirium interventions: a meta-analysis. JAMA internal medicine.
2015;175(4):512–20.
51. MacLullich AMJ, Shenkin SD. Delirium research, education and practice. Age and ageing.
2019;48(5):619–23.

Figures
Figure 1

Study flow chart: Recruitment and assessment in the dementia-friendly hospital program study
Figure 2

The dementia-friendly hospital program