DEGREE-SCALE GEV “JETS” FROM ACTIVE AND DEAD TEV BLAZARS

A. Neronov1, D. Semikoz2,3, M. Kachelriess4, S. Ostapchenko4,5, A. Elyiv6,7

1 ISDC Data Centre for Astrophysics, Ch. d’Ecogia 16, Versoix, Switzerland
2 APC, 10 rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13, France
3 Institute for Nuclear Research RAS, 60th October Anniversary prasp. 7a, Moscow, 117312, Russia
4 Institut für fysikk, NTNU, Trondheim, Norway
5D. V. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Russia
6 Institut d’Astrophysique et de Geophysique, Universite de Liege, 4000 Liege, Belgium
7 Main Astronomical Observatory, Academy of Sciences of Ukraine, 27 Akademika Zabolotnogo St., 03080 Kyiv, Ukraine

ABSTRACT

We show that images of TeV blazars in the GeV energy band should contain, along with point-like sources, degree-scale jet-like extensions. These GeV extensions are the result of electromagnetic cascades initiated by TeV γ-rays interacting with extragalactic background light and the deflection of the cascade electrons/positrons in extragalactic magnetic fields (EGMF). Using Monte-Carlo simulations, we study the spectral and timing properties of the degree-scale extensions in simulated GeV band images of TeV blazars. We show that the brightness profile of such degree-scale extensions can be used to infer the lightcurve of the primary TeV γ-ray source over the past 107 yr, i.e. over a time scale comparable to the life-time of the parent active galactic nucleus. This implies that the degree-scale jet-like GeV emission could be detected not only near known active TeV blazars, but also from “TeV blazar remnants”, whose central engines were switched off up to ten million years ago. Since the brightness profile of the GeV “jets” depends on the strength and the structure of the EGMF, their observation provides additionally information about the EGMF.

Subject headings: gamma rays: galaxies – galaxies: active – galaxies: jets – methods: numerical

Introduction. Significant progress in understanding the activity of blazars, i.e. active galaxies with relativistic jets aligned with the line of sight, was achieved with the start of operation of the Fermi telescope. The combination of data from Fermi in the 0.1 – 10 GeV energy band and from ground based γ-ray telescopes like HESS, MAGIC and VERITAS in the 100 GeV – 10 TeV band provides detailed simultaneous spectral and timing information for the most extreme representatives of the blazar population (Abdo et al. 2009).

The TeV γ-ray flux from distant blazars is significantly attenuated on the way from the source to the Earth by pair production on the infrared/optical extragalactic background light (EBL) (Kneiske et al. 2004; Stecker et al. 2006; Franceschini et al. 2008; Primack et al. 2008). TeV γ-rays that are absorbed on the way from the primary γ-ray source initiate electromagnetic cascades in the intergalactic space. Charged component of the electromagnetic cascade is deflected by the EGMF. Potentially observable effects of such electromagnetic cascades in the EGMF include the delayed “echoes” of multi-TeV γ-ray flares (Plaga 1995; Murase et al. 2008) and the appearance of extended emission around initially point-like γ-ray sources (Aharonian et al. 1994; Neronov & Semikoz 2004, 2005; Dolag et al. 2004; Elyiv et al. 2004).

TeV γ-ray emission from blazars is believed to be relativistically beamed into a narrow cone (jet) with an opening angle \(\Theta_{\text{jet}} \sim \Gamma^{-1} \sim 5^\circ \) [\(\Gamma = 10 \)], where \(\Gamma \) is the bulk Lorentz factor of the γ-ray emitting plasma. Blazars are a special type of γ-ray emitting AGN for which the angle between the line of sight (LOS) and the jet axis, \(\theta_{\text{obs}} \), is

\[
\theta_{\text{obs}} \lesssim \Theta_{\text{jet}}, \text{ see Fig. 2 (Urry et al. 1991).}
\]

In general, the number of blazars with a given jet-LOS misalignment angle is expected to scale as \(dN/d\theta_{\text{obs}} \sim \theta_{\text{obs}} \) in the range \(0 < \theta_{\text{obs}} \leq \Theta_{\text{jet}} \). This means that most of the observed TeV blazars should have \(\theta_{\text{obs}} \sim \Theta_{\text{jet}} \), rather than \(\theta_{\text{obs}} \sim 0 \). Consequently, the TeV γ-ray emission pattern is not symmetric with respect to the axis source-observer. In sources with \(\theta_{\text{obs}} \sim \Theta_{\text{jet}} \), most of the TeV γ-rays are emitted preferentially on one side of the LOS, as it is shown in Fig. 1. As a result, the extended emission from the cascade initiated by the absorption of TeV γ-rays in interactions with EBL photons should appear as one-sided extension next to the primary point source, rather than as an extended axially symmetric halo discussed in previous studies (Aharonian et al. 1994; Neronov & Semikoz 2004, 2005; Dolag et al. 2004; Elyiv et al. 2004).

In what follows we discuss the spectral and timing properties of such one-sided cascade extensions in the 0.1-1 GeV energy band images of TeV blazars. Our study is based on two independent Monte Carlo codes for the modeling of γ-ray induced electromagnetic cascades in the intergalactic space, which were introduced by Dolag et al. (2004) and Elyiv et al. (2004).

Basic formulae. Before presenting our numerical results, we discuss the basic physics of the phenomenon in
a simplified picture. In particular, we assume that the electromagnetic cascade consists of only two steps and replace probability distributions by their means. Then the mean free path of VHE γ-rays through the EBL can be approximated by

$$D_\gamma(E_{\gamma 0}) = \kappa \left[\frac{E_{\gamma 0}}{1 \text{ TeV}} \right]^{-1} \text{ Gpc},$$

(1)

where the numerical factor $\kappa = \kappa(E_{\gamma 0}, z) \sim \mathcal{O}(1)$ includes the uncertainties of the EBL modeling. Pair production on EBL reduces the flux of γ-rays from the source by a factor $\exp[-\tau(E_{\gamma 0})]$, where $\tau = D/D_\gamma$ is the optical depth with respect to pair production and D is the distance to the source.

Electron-positron pairs created in interactions of multi-TeV γ-rays with EBL photons produce secondary γ-rays via inverse Compton (IC) scattering on Cosmic Microwave Background (CMB) photons. Typical energies of the IC photons reaching the Earth are

$$E_\gamma = \frac{4}{3} \epsilon_{\text{CMB}} \frac{E^2_{\gamma 0}}{m_e^2} \simeq 0.8 \left[\frac{E_{\gamma 0}}{1 \text{ TeV}} \right]^2 \text{ GeV},$$

(2)

where $\epsilon_{\text{CMB}} = 6 \times 10^{-4} \text{ eV}$ is the typical energy of CMB photons.

Deflections of e^+e^- pairs produced by the γ-rays, which were initially emitted away from the observer, can redirect secondary photons toward the observer. This effect leads to the appearance of extended emission around an initially point source of γ-rays (Neronov & Semikoz 2007, Dolag et al. 2009, Eliv et al. 2009).

In the absence of perfect alignment of the jet axis with the line of sight, the extended cascade emission might be strongly asymmetric. It might appear as a jet-like feature next to the primary γ-ray source. The maximal angular size of this jet-like feature can be estimated as the size of the projected γ-ray mean free path as

$$\Theta_{\text{ext, max}} \approx \frac{D_\gamma \theta_{\text{obs}}}{D - D_\gamma},$$

(3)

if $D_\gamma < D$ (i.e., $\tau > 1$). If $\tau(E_{\gamma 0}) < 1$, the cascade emission from the TeV γ-ray beam can extend to very large angles $\Theta_{\text{ext, max}} \sim \pi/2$.

The jet-like extended emission can be observed only if deflections of the cascade e^+e^- pairs are sufficiently large to redirect the cascade emission toward the observer. If the correlation length of the EGMF is larger than the electron cooling distance

$$D_e = \frac{3m_e^2c^3}{4\sigma_T U_{\text{CMB}} E_e} \simeq 0.7 \left[\frac{E_e}{0.5 \text{ TeV}} \right]^{-1} \text{ Mpc},$$

(4)

where σ_T denotes the Thomson cross section and U_{CMB} the energy density of the CMB photons, then the deflection angle can be estimated as (Neronov & Semikoz 2009)

$$\delta = \frac{D_e}{R_L} \simeq 3\left[\frac{B}{10^{-17} \text{ G}} \right] \left[\frac{E_e}{0.5 \text{ TeV}} \right]^{-2}$$

(5)

with R_L as the Larmor radius of electrons and positrons.

If the correlation length λ_B of the EGMF is much smaller than the electron cooling distance D_e, the deflection angle can be estimated using the diffusion approximation as

$$\delta = \frac{\sqrt{D_e\lambda_B}}{R_L} \simeq 3\left[\frac{E_e}{0.5 \text{ TeV}} \right]^{-3/2} \left[\frac{B}{10^{-17} \text{ G}} \right] \left[\frac{\lambda_B}{0.7 \text{ Mpc}} \right]^{1/2}.$$

(6)

If the EGMF is weak, electron/positron trajectories are not strongly deflected during one cooling time and thus secondary γ-rays are emitted within a cone with opening angle of order $\mathcal{O}(\delta)$. In this case only a part of the cascade emission could be observed. If the mean free path of the primary γ-rays is much shorter than the distance to the source, the angular extension could be estimated from the simple geometrical consideration of Fig. 1 as

$$\sin (\Theta_{\text{ext}}(B)) = \frac{D_\gamma}{D} \sin \delta.$$

(7)

Otherwise, the angular size of the source is found from the sum of the angles of triangle with vertices at the source, at the pair production point and at the position of the observer (see Fig. 1) as

$$\Theta_{\text{ext}}(B) = \delta - \theta_{\text{obs}}.$$

(8)

Most of the known TeV blazars have moderate distances, so that $\tau(E_{\gamma 0} = 1 \text{ TeV}) < 1$. In this case, $\Theta_{\text{ext, max}} \sim \pi/2$ and $\Theta_{\text{ext}}(B) = \delta - \theta_{\text{obs}}$. A measurement of $\Theta_{\text{ext}} \ll \Theta_{\text{ext, max}}$ thus provides a measurement of δ and, in this way, gives a constraint on the parameters of the EGMF, i.e., \hat{B} and λ_B.

The difference in the path length between the direct and cascade γ-rays leads to a significant time delay of the cascade emission signal. For a given jet misalignment angle θ_{obs}, the time delay of emission coming from the direction θ away from the source is

$$T_{\text{delay}} \sim \frac{D}{c} \left(\frac{\sin \theta + \sin(\theta_{\text{obs}} + \Theta_{\text{jet}})}{\sin(\theta + \theta_{\text{obs}} + \Theta_{\text{jet}})} - 1 \right)$$

$$\simeq \frac{D \theta(\theta_{\text{obs}} + \Theta_{\text{jet}})}{2c} \approx 3 \times 10^6 \left[\frac{\theta_{\text{obs}} + \Theta_{\text{jet}}}{5^\circ} \right] \frac{\theta}{5^\circ} \text{ yr}.$$

(9)

Comparing this time scale with the typical time scale of AGN activity, $T_{\text{AGN}} \sim 10^7 \text{ yr}$, one sees that degree-scale extended emission in the GeV energy range depends on the TeV γ-ray luminosity of the blazar integrated over its life time.

Results of numerical modeling. To model the asymmetric extended emission from the γ-ray initiated electromagnetic cascade in intergalactic space, we have extended the two Monte-Carlo codes introduced by Dolag et al. (2009) and Eliv et al. (2009): The codes follow now the three-dimensional trajectories of individual cascade particles moving through the EGMF. The turbulent component of the EGMF has been calculated following the algorithm of Giacalone & Jokipii (1994).

To produce an image of the γ-ray induced electromagnetic cascade, as it would be detected by a γ-ray telescope, we use the algorithm described by Eliv et al. (2009). We have verified that the results obtained using the two different codes are compatible with each other.
We record positions and directions of all secondary γ-rays which cross a sphere of the radius \(R = D \) around the source. We choose the directions of primary γ-rays to be distributed within a cone with an opening angle \(\Theta_{\text{jet}} \). We consider a primary γ-ray beam with a Gaussian profile, so that the probability for a primary γ-ray to have a direction misaligned by an angle \(\Theta \) with respect to the jet axis is \(p(\Theta) \sim \exp(-\Theta^2/\Theta_{\text{jet}}^2) \).

For simplicity, we consider a monochromatic primary γ-ray beam with all the primary γ-rays having the same energy \(E_{\gamma_0} = 1 \text{ TeV} \). This is sufficient to demonstrate the existence of the effect discussed here for the first time, namely degree-scale jet-like extensions in \textit{Fermi} images of TeV blazars. The EBL background is taken from the calculations of [Kneiske et al. 2004]. We fix the distance to the source as \(D = 400 \text{ Mpc} \), so that \(\tau(E_{\gamma_0}) \sim 1 \). The EGMF is chosen to have a correlation length of the order of several Mpc, with its power spectrum sharply peaked at the wavenumber \(k \approx 1 \text{ Mpc}^{-1} \). Our results could be generalized in a straightforward way to the case of an arbitrary primary γ-ray spectrum, arbitrary distance to the source and different EBL models, when considering extended emission from particular TeV blazars with known TeV band spectra and known redshift.

Figure 2 shows the effect of the misalignment of the primary γ-ray beam with the LOS on the morphology of the extended emission. The left panel of the Figure corresponds to the situation \(\Theta_{\text{obs}} = 0^\circ \), which is equivalent to the axially-symmetric case considered by [Dolag et al. 2003] and [Eliv et al. 2009]. An axially-symmetric extended “halo” around the primary point source is clearly visible. The other panels of the Figure show the cases of a jet with opening angle \(\Theta_{\text{jet}} = 3^\circ \) misaligned by the angles \(\Theta_{\text{obs}} = 3^\circ, 6^\circ \) and \(9^\circ \), respectively. It is clear that the misalignment of the jet axis with the line of sight leads to the appearance of an extended jet-like feature on one side of the source. The ratio of the point source flux to the flux of the extension grows with the increase of the misalignment angle \(\Theta_{\text{obs}} \).

The angular extension of the cascade emission depends on the strength of the EGMF as long as the trajectories of \(\text{e}^+\text{e}^- \) pairs are not completely randomized. The morphological properties of the jet-like emission are practically independent from the properties of the EGMF, when the EGMF strength is such that the deflection angle \(\delta \geq 2\pi \), cf. Eqs. (5) and (6). Figure 3 shows the growth of the source extension with the increase of the EGMF strength. For magnetic fields stronger than \(B \sim 10^{-15} \text{ G} \), the size of the extended source reaches ten(s) of degrees. In this case, the extended source could significantly contribute to the diffuse γ-ray background.

Cascade emission coming from regions with angular distance \(\theta \geq 1^\circ \) to the primary source is delayed by \(T_{\text{delay}} \sim 10^5 - 10^7 \text{ yr} \) compared to the direct emission from the source (see Eq. (10)). This means that “echos” from periods of enhanced activity of the source (e.g. an enhanced accretion rate following major merger episodes), which happened all along the life time of an AGN some time \(T \) ago, could enhance the flux at the distance
\[\theta \simeq 1.7^\circ \left(\frac{T}{10^6 \text{ yr}} \right) \left(\frac{\theta_{\text{obs}} + \Theta_{\text{jet}}}{5^\circ} \right) \] from the source.

Figure 4 shows a time sequence of \(E > 1 \text{ GeV} \) band images of the sky region around a TeV source at different times after a short episode of TeV \(\gamma \)-ray emission. One can clearly see that the emission at large angular distances is delayed by up to \(10^7 \text{ yr} \).

The flux coming from the region at an angular distance \(\theta \) from the point source is proportional to the source flux averaged over the period \(T_{\text{delay}} \). Therefore it is possible that GeV \(\gamma \)-rays are detectable today from an AGN which was active some \(10^7 \text{ yr} \) ago, but is at present not active anymore. In this case a GeV source would be classified as “unidentified”: The parent AGN (a) could not be identified as an AGN in the optical, X-ray and TeV \(\gamma \)-ray bands or (b) the GeV source is displaced from the position of the parent AGN. The characteristic feature of such an unidentified “AGN remnant” is the absence of counterparts at lower energies. If the GeV \(\gamma \)-rays are produced by \(e^+e^- \) pairs deposited in the intergalactic medium by primary TeV \(\gamma \)-rays, the only energy loss mechanism for the pairs is inverse Compton scattering on CMB photons.

Discussion. The presence of extended jet-like emission at degree scales should be a generic feature of GeV band images of TeV blazars. The total flux of the jet-like extended source is proportional to the source luminosity in the TeV energy band. Taking into account the fact that TeV blazars have hard \(\gamma \)-ray spectra, the primary source luminosity in the TeV band could be much larger than its GeV luminosity, so that the overall extended source luminosity could be higher than the primary source luminosity in the GeV band. This means that the best candidates for the search of extended emission are TeV blazars with hard intrinsic spectra.

This does not automatically mean that the extended emission should be readily detectable in *Fermi* images of TeV blazars. In spite of the larger luminosity, the extended source flux might be suppressed if the EGMF is strong enough to randomize the trajectories of \(e^+e^- \) pairs before they lose their energy to the GeV band via inverse Compton emission. The maximal possible suppression of the extended source flux is by a factor \(\Theta_{\text{jet}}^{-2} \simeq 100 \).

Another potential problem for the detection of jet-like extended emission next to TeV blazars is that the extended source has to be identified on top of the diffuse \(\gamma \)-ray background (which is composed of the Galactic and extragalactic diffuse emission). The minimal detectable flux for extended sources increases roughly as \(\theta^{1/2} \), where \(\theta \) is the angular length of the jet-like extended source. In this respect, sources at larger distances, for which the jet-like extensions appear more compact, are better candidates for the search of extended emission in the *Fermi* energy band.

Finally, the detectability of extended emission close to TeV blazars strongly depends on the angular resolution of the LAT telescope. At low energies, \(E_{\gamma} \sim 0.1 \text{ GeV} \), the LAT angular resolution is relatively poor, \(\theta_{\text{PSF}} \simeq 10^\circ \). It is clear that only very large angular size jet-like extensions with an angular diameter \(\theta \sim \theta_{\text{PSF}} \) could be detected. However, the detectability of such large extended sources would be complicated by the high level of diffuse sky background within the \(\sim 10^\circ \) region around the source. At the same time, the size of the PSF decreases to \(\theta_{\text{PSF}} \lesssim 1^\circ \) above GeV energies. This dramatically improves the sensitivity of the telescope for the search of extended emission: Extensions of much smaller angular size could be detected on top of a strongly reduced background. This favors the search of extended emission at energies above \(\sim 1 \text{ GeV} \).

The detection of degree-scale jet-like extensions in *Fermi* images of TeV blazars would provide new insight into the physics of \(\gamma \)-ray emission from blazars. It might provide information about the history of activity of the supermassive black hole in the blazar central engine over a time span comparable to typical AGN life times. The study of the morphology of the extended emission would make a measurement of the opening angles \(\Theta_{\text{jet}} \) of blazar jets possible. It would also give information about the strength and correlation length of the EGMF.

To summarize, we have shown that GeV band images of TeV blazars should possess degree-scale jet-like extended features. These features trace the direction of the TeV \(\gamma \)-ray beam emitted by the blazar. They are produced as results of electromagnetic cascades initiated by TeV \(\gamma \)-rays interacting with EBL photons. We have performed Monte Carlo simulations of three-dimensional electromagnetic cascades developing in the EGMF. Using these Monte Carlo simulations, we have derived the properties of the GeV jet-like extended emission near TeV blazars. We have investigated the dependence of the characteristics of the jet-like extended sources (the angular size, the brightness profile) on the strength of the extragalactic magnetic fields and on the opening angle and orientation of the primary TeV \(\gamma \)-ray beam from the blazar. We have also demonstrated that the \(\gamma \)-ray signal in the jet-like extended emission is delayed up to \(10^7 \text{ years} \) compared to the direct \(\gamma \)-ray signal from the primary point source. The very long time delay of the cascade emission means that the extended GeV source could be detected next to a blazar which is no longer active as blazar.

Acknowledgments. A.E. is beneficiary of a fellowship granted by the Belgian Federal Science Policy Office. S.O. acknowledges a Marie Curie IEF fellowship from the European Community. This work was partially supported by the Romforskning program of the Norwegian Research Council. A.N. is supported by the Swiss Na-
T. M. Kneiske, T. Bretz, K. Mannheim and D. H. Hartmann, 2004, A& A, 413, 807.
K. Murase, K. Takahashi, S. Inoue, K. Ichiki and S. Nagataki, 2008, Ap.J., 686, L67.
A. Neronov and D. V. Semikoz, 2007, JETP Lett. 85, 473.
A. Neronov and D. V. Semikoz, 2009, Phys. Rev. D 80, 123012.
R. Plaga, 1995, Nature, 374, 430.
J. R. Primack, R. C. Gilmore and R. S. Somerville, 2009, AIP Conf. Proc. 1085, 71.
F. W. Stecker, M. A. Malkan and S. T. Scully, 2006, Ap. J. 648, 774.
C. M. Urry, P. Padovani, M. Stickel, 1991, Ap. J., 382, 501.