Supplementary material

Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America

Cécile C. Remy1,2,*, Christelle Hély1,2,3, Olivier Blarquez4, Gabriel Magnan5, Yves Bergeron1,6, Martin Lavoie7, Adam A. Ali1,2
Appendix 1. Main characteristics of lakes. Sedimentary sequences for lakes in the Eastern, Central and Western regions have been published by Remy *et al* (2016), El Guellab *et al* (2015) and Oris *et al* (2014), respectively.

Region	Lake	Coordinates	Elevation (m a.s.l.)	Current local vegetation	Lake surface (ha)	Water depth (m)	Length of organic core (cm)	Mean sediment accumulation rate (cm year\(^{-1}\))	Median time-resolution (year per sample)
Eastern	Ayla	52°53'39.3" N 67°02'27.3" W	582	*Picea mariana*, *Picea glauca*, *Abies balsamea*	10.8	10.2	408	0.0499	10
	Steeve	51°56'23.9" N 68°09'19.2" W	548	*Picea mariana*	3.4	3.5	327	0.0349	17
	Innu	50°04'10.9" N 68°48'40.7" W	399	*Picea mariana*, *Abies balsamea*	1.4	7.7	370	0.0415	13
Central	Twin	50°56'68.9" N 74°33'91.2" W	376	*Picea mariana*, *Pinus banksiana*	2.9	5.7	189	0.0317	21
Location	Coordinates	Species Details	Diameter	Height	Age	DBH			
------------	-------------------	--	----------	--------	---------	-------			
Richard	50°36'69.9" N 74°40'69.9" W	Picea mariana, Pinus banksiana	4.0	5.3	160	0.0234			
Aurelie	50°25'06.6" N 74°13'67.6" W	Picea mariana, Pinus banksiana	0.18	5.7	355	0.0731			
Nans	50°22'07.1" N 74°18'21.3" W	Picea mariana	5.0	213	0.0494				
Western Loup	53°03'18.1" N 77°24'01.9" W	Picea mariana, Pinus banksiana	1.6	3.0	106	0.0145			
Nano	53°01'25.5" N 77°21'51.3" W	Picea mariana, Pinus banksiana	0.4	3.2	140	0.0185			
Marie-Eve	52°01'47.4" N 75°31'14.6" W	Picea mariana, Pinus banksiana	16.5	8.7	290	0.0416			
Trèfle	51°57'54.7" N 76°04'52.0" W	Picea mariana, Pinus banksiana	6.8	5.4	150	0.0208			
Location	Latitude	Longitude	Species	Diameter	Height	DBH	Density	Area	Notes
----------	------------	------------	----------	----------	--------	------	---------	---------	--------
Garot	51°05'58.7" N 77°33'12.9" W	291	*Picea mariana*, *Pinus banksiana*	2.8	7.0	133	0.0181	26	
Schön	50°35'41.7" N 77°34'06.1" W	248	*Picea mariana*, *Pinus banksiana*	5.1	6.9	100	0.0133	37	
Appendix 2. Analysis of CHAR series using CharAnalysis

To remove the bias induced by differences in sedimentation rates, CHAR series were interpolated (CHAR_{interpolated}) using a constant time-resolution of 20 years per sample, corresponding approximately to the mean of the median time-resolution of all records. CHAR_{interpolated} series were decomposed into a low-frequency component (CHAR_{background}) and a high-frequency component (CHAR_{peak}; appendix 4B). CHAR_{background} results from long-distance burning and/or redeposition processes of charcoal particles that are unrelated to local fire occurrences. CHAR_{background} was estimated by applying the LOWESS-smoother robust technique to outliers and removing CHAR_{interpolated} to isolate the CHAR_{peak} component. CHAR_{peak} was decomposed into two subpopulations: CHAR_{noise}, representing variability in sediment mixing and sampling as well as analytical and naturally occurring noise, and CHAR_{fire}, representing significant charcoal peaks considered to originate from local fire events (Gavin et al. 2006, Higuera et al. 2010). For each peak, we used a Gaussian mixture model to identify the CHAR_{noise} distribution according to a locally-defined threshold. Signal-to-noise index (Kelly et al. 2011) and goodness-of-fit (Brossier et al. 2014) were used to evaluate the effectiveness of the discrimination between CHAR_{fire} and CHAR_{noise} and to assess peak detection accuracy by comparing the empirical and fitted noise distributions, respectively. Each CHAR_{peak} that exceeded the 99th percentile threshold was assumed to originate from a local fire event, but could actually have originated from more than one fire (Gavin et al. 2006).
Appendix 3. Additional Pearson’s correlation coefficients between reconstructed RegFF and RegBB history and main climatic variables

	West RegBB	West RegFF	Centre RegBB	Centre RegFF	East RegBB	East RegFF
Temperature						
spring	0.003	-0.440***	-0.267***	-0.437***	-0.081	-0.335***
summer	0.481***	0.027	0.418***	0.215***	0.634***	0.607***
spring + summer	0.375***	-0.431***	0.052	-0.234***	0.346***	0.101
Precipitation						
spring	0.124**	-0.411***	0.002	-0.054	0.380***	0.230***
summer	-0.094**	-0.647***	0.340***	0.343***	0.888***	-0.232***
spring + summer	-0.024	-0.645***	0.288***	0.249**	0.846***	-0.096*
Fire season length						
spring	-0.321***	-0.460***	0.105	-0.037	-0.214***	-0.149**
summer	-0.003	0.114	-0.227***	-0.322***	-0.563***	0.167***
spring + summer	-0.164***	-0.128**	-0.191***	-0.440***	-0.569***	0.103**

Fire season is split into two periods: “spring” from April to June and “summer” from July to October. Significant correlation coefficients are marked in boldface type and asterisks indicate \(P \) values (* \(P < 0.1 \), ** \(P < 0.05 \), *** \(P < 0.01 \)) determined by permutation tests (sample size: \(n = 8 \) millennia).
Appendix 4. Sedimentation rates and CHAR series for each lake
(A) Sedimentation rates from sediment sequences of lakes. The black lines indicate the average sedimentation rate in lakes located in the corresponding regions. The grey areas indicate 90% bootstrap confidence intervals. (B) Charcoal area series from sediment sequences of lakes.
Appendix 5. Reconstructions of monthly means of daily Drought Code (DC) during the Holocene from UGAMP simulations. Numbers in parentheses are monthly means of DC at present-day.
Appendix 6. Simulated seasonal precipitation (left) and temperature (right) with standard errors, obtained from the HadCM3 model (anomalies relative to 0 cal. years BP) for the three regions of the study area (East, Centre and West) during the fire season (spring from April to June and summer from July to October). The temperature and precipitation at present-day are indicated for each of the three regions.
Appendix 7. Reconstructions of water table depth from reported values for three peatlands in the western region of the study area (van Bellen et al 2011) and four in the eastern region (Magnan et al 2014). Water table depths are negatively linked to atmospheric humidity.
References

Brossier B, Oris F, Finsinger W, Asselin H, Bergeron Y and Ali A A 2014 Using tree-ring records to calibrate peak detection in fire reconstructions based on sedimentary charcoal records *The Holocene* **24** 635–45

El-Guellab A, Asselin H, Gauthier S, Bergeron Y and Ali A A 2015 Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest *For. Ecosyst.* **2** 1–7

Gavin D G, Hu F S, Lertzman K and Corbett P 2006 Weak climatic control of stand-scale fire history during the late Holocene *Ecology* **87** 1722–32

Higuera P E, Gavin D G, Bartlein P J and Hallett D J 2010 Peak detection in sediment–charcoal records: impacts of alternative data analysis methods on fire-history interpretations *Int. J. Wildland Fire* **19** 996–1014

Kelly R F, Higuera P E, Barrett C M and Hu F S 2011 A signal-to-noise index to quantify the potential for peak detection in sediment–charcoal records *Quat. Res.* **75** 11–7

Magnan G and Garneau M 2014 Evaluating long-term regional climate variability in the maritime region of the St. Lawrence North Shore (eastern Canada) using a multi-site comparison of peat-based paleohydrological records *J. Quaternary Sci.* **29** 209–220

Oris F, Asselin H, Finsinger W, Hély C, Blarquez O, Ferland M-E, Bergeron Y and Ali A A 2014 Long-term fire history in northern Quebec: implications for the northern limit of commercial forests *J. Appl. Ecol.* **51** 675–83

Remy C C, Lavoie M, Girardin M P, Hély C, Bergeron Y, Grondin P, Oris F, Asselin H and Ali A A in press Wildfire size alters long-term vegetation trajectories in boreal forests of eastern North America *J. Biogeogr.*

van Bellen S, Garneau M and Booth R K 2011 Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: Impact of climate-driven ecohdrological change *The Holocene* **27** 1217-1231