Facial aesthetic fat graft retention rates after filtration, centrifugation, or sedimentation processing techniques measured using three-dimensional surface imaging devices

Guan-Hui-Er Wang¹, Jian-Fang Zhao², Hong-Yu Xue¹, Dong Li¹

¹Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, Peking University, Beijing 100191, China; ²Beijing University Health Science Center, Peking University, Beijing 100191, China.

Abstract

Objective: How to increase the long-term retention rate of autologous fat grafting has been widely discussed. This study aimed to evaluate long-term fat graft retention rates for the most widely used fat processing methods in the area of facial esthetic surgery, including centrifugation, filtration, and sedimentation, using three-dimensional (3D) imaging.

Data Sources: PubMed, Embase, Wiley/Cochrane Library, and Web of Science databases were comprehensively searched from inception to July 2018 according to the guidelines of the American Society of Plastic Surgeons Fat Graft Task Force Assessment Methodology.

Study Selection: Articles were screened using predetermined inclusion and exclusion criteria. Data collected included patient characteristics, follow-up devices, fat grafting techniques, and clinical outcomes. Patient cohorts were pooled, and fat graft retention rates were calculated. Complications were summarized according to different clinical characteristics.

Results: Of 77 articles, 10 clinical studies met the inclusion criteria and reported quantified measurement outcomes with 3D imaging which provide precise volumetric data with approximately 2% standard deviation compared to real volumes. Data of 515 patients were included. Fat grafting retention varied from 21% to 82%. We found filtration and centrifugation techniques could result in better retention outcomes. However, retention varied within each processing technique, with no significant difference among the 3 techniques. Twenty-two complications were reported among 515 patients, including donor-site hematoma (1 case), mild post-operative erythema (2 cases), mild volumetric asymmetries (2 cases), chronic edema (2 cases), overcorrection (2 cases), skin irregularity (6 cases), and headache or dysesthesia (7 cases).

Conclusions: Filtration and centrifugation techniques may result in better fat grafting retention outcomes than gravity sedimentation; however, more accurate statistical evidence is needed. Controversies continue to exist with respect to the performance of the different fat-processing techniques in fat graft retention.

Keywords: Autologous fat grafting; fat retention rate; filtration; centrifugation; sedimentation

Introduction

Autologous fat transfer was first attempted by Neuber in the 1890s followed by Lexer in the 1900s, both of whom used adipose tissue to treat facial deformities.¹² In the 1950s, Peer first calculated the resorption rate of transplanted autologous fat 1 year after surgery.³ Since then, the retention rate of autologous fat grafts has always been closely monitored. In 1983, Illouz successfully injected aspirated fat that was harvested by a suction technique.⁴ Over the subsequent 3 decades, surgeons continued to optimize techniques to improve the viability and longevity of fat grafting. Currently, fat grafting is used for facial contouring, breast augmentation, breast reconstruction, repair of radiation damage, and treatment of post-traumatic deformities, congenital anomalies, and burn injuries.⁵–¹¹

Although the techniques of harvesting, processing, and injecting autologous fat have been developed and modified, the long-term retention of grafted material has been highly variable in different reports. Factors that may have led to this variability remain uncertain; however, surgeons believe that this variability may have resulted in a lack of...
procedural standardization, specifically with respect to the fat processing methods after fat harvesting[9,12]. The main methods for fat processing are simple decantation, cotton gauze rolling, filtration, and centrifugation.[9,13,14] The detailed procedures for each of these processing methods have been different among different surgeons and reports.

Three-dimensional (3D) surface analysis systems can provide precise and exact volume analyses with rapid data acquisition while patients are in the standing position[3,5] The ability to perform this test repeatedly and with relative ease makes it more practical to use than computed tomography (CT) and magnetic resonance imaging (MRI) for patients that require frequent clinical follow-up.[16] Hence, the 3D surface analysis method has been commonly used in volumetric studies in recent years. Of the many authors who have used 3D surface analysis systems to follow surgical-site volumetric changes, some have collected abundant data on volume and fat graft retention changes in long-term follow-up. Many clinical trials have been designed and published comparing the outcomes of different surgical techniques in the collection, processing, and injection of fat, as measured by 3D surface analysis systems.

According to our retrieval, no systematic review has been published that report the use of a unified measuring device to explore whether 1 fat processing technique is superior at contributing to better fat graft survival outcomes.

In this review, we sought to evaluate the long-term fat graft retention rates of the most widely used fat processing methods, including centrifugation, filtration, and sedimentation in the area of facial esthetic surgery. By selecting and reviewing the related articles and clinical trials that used 3D surface analysis systems for volumetric measurement, we hope to clarify the optimal methods for processing autologous fat grafts.

Methods

Study design

This was a systematic review of the literature to report on the post-harvest fat graft processing methods in facial esthetic surgery and the efficiency of these procedures as represented by fat graft retention rates. This study was conducted according to the PRISMA guidelines. The PubMed, Embase.com, Wiley/Cochrane Library, and Web of Science databases were searched from inception (by Wang GHE and Zhao JF) to the final screening on July 2018. The following terms were used (including synonyms and closely related words) as index terms or free-text words: “fat” or “adipocyte” or “lipo” and “grafting” or “filling” or “transplant” and “three dimensional” or “3D” and “face.” Articles were restricted to those written in English and Chinese. The 2 reviewers mentioned above independently screened the titles, keywords, and abstracts of the retrieved records. Articles were included if they reported on volumetric measurements of autologous fat grafting (AFG; including detailed fat graft retention data) in facial esthetic surgery using 3D surface analysis systems.

Inclusion and exclusion criteria

The inclusion criteria were: (1) articles reporting on adult patients that received facial fat grafting for esthetic purposes; (2) articles in which the researchers used 3D surface analysis systems to evaluate the volumetric measurements and fat graft retention rate during follow-up; (3) articles that reported follow-up periods of at least 3 months; (4) explicit data including injection volumes and fat graft retention rates were reported; (5) prospective and retrospective clinical trials, observational studies, and case series with sample sizes larger than 10; and (6) trials or case series including normal-sized larger than 10; and (6) trials or case series including normal-sized fat grafts without cell-assisted lipo-transfer (CAL).

The exclusion criteria were: (1) review articles and animal studies; (2) articles that studied fat graft retention for purposes other than esthetics (eg, trauma, scars, congenital disorders); (3) articles that used ultrasound, CT, or MRI for volumetric measurements; and (4) articles that reported follow-up periods of <3 months.

Results

Using the search terms described above, 77 publications were identified in total. After applying the inclusion and exclusion criteria, 10 studies[17-26] on 515 patients that reported volumetric outcomes and fat graft retention rates met the standard for this review [Figure 1]. The sample sizes ranged from 13 to 96 patients per article. The data extracted from clinical articles included patient characteristics (average age and sample size), fat grafting techniques (donor site, harvesting technique, fat-processing technique, injection technique, recipient site, and fat injection volume), and clinical outcomes (follow-up time, measurement technique, fat volume change, fat retention rate, and complications). Articles were reviewed manually for patient characteristics, follow-up devices, fat grafting techniques, and clinical outcomes. The data of patient characteristics and fat grafting techniques in each article are shown in Table 1. The most commonly used donor sites were the abdomen and thigh. The most commonly used fat grafting technique was Coleman technique, with multiple holes and blunt cannulae used for harvesting, and blunt cannulae used for injection. Most surgeons chose to inject into multiple planes or into multiple fat compartments.

Fat grafting retention in the 3 fat-processing techniques

According to the 10 clinical studies in this article, the average injected volume varied from 1.7 to 35.0 mL. For patients who received a partial augmentation of the chin,[24] nasal dorsum,[20] or cheek,[19,21] the injected volumes were relatively small, commonly <10 mL. For patients who received augmentation of multiple facial subunits,[22,23] the injected volumes were relatively large, commonly from 20 to 35 mL.

In all, the fat grafting retention rates varied from 21.0% to 82.3% with 3- to 36-month follow-up periods. Among these articles, some studies[17,20-25] were designed to collect follow-up data at unified time points, commonly 3, 6, and/or 12 months. For these studies, we tried to list...
the measurement data of the unified points of time to better analyze the fat grafting retention rates among the different fat-processing techniques. Other studies [18,19,26] were designed to collect follow-up data at the latest follow-up time point (which did not occur at the same time), and we recorded the related fat grafting retention rates in these cases as well. Detailed information on the volumetric measurement outcomes is shown in Table 2. Two randomized controlled trials gave convincing evidence as to the priority of fat-processing techniques. Wu et al. [22] reported the volumetric outcomes of facial AFG using the centrifugation processing technique with cotton pad filtration and sedimentation. Their data showed that fat grafts processed by cotton pad filtration had significantly higher retention rates compared to the centrifugation and sedimentation methods at 3, 6, and 12 months follow-up. An [23] reported the volumetric outcomes of facial AFG using the filtration and sedimentation processing techniques. Their data showed that fat grafts processed by filtration had a better retention rate than those processed by sedimentation, but the result was not statistically significant. Huang et al. [25] reported an average fat grafting retention rate of 65.7% using the centrifugation processing technique in temporal augmentation. In their research, an average of 1.5 procedures was performed per temple, and the retention of the last procedure was calculated, which might explain why the retention rate in this study was higher than the rate that is commonly reported. Basile et al. [24] compared the total volume of the chin pre- and post-operatively to estimate the “remaining volume.” This calculation method could result in a larger retention rate compared to the result obtained based on our commonly used calculation. Apart from the studies of Huang et al. and Basile et al., the retention rates varied from 20% to 50% among the 3 processing techniques reported in the other 8 studies. Our average retention rates at the 3-, 6-, and/or 12-month follow-up points, and the average retention rates at the latest follow-up points in other studies with
Year	Author	Country/region	Sample size, n	Age (years), mean ± SD	Measurement device	Donor site	Harvesting technique	Fat-processing technique	Assisted factors or cells	Fat injection technique	Recipient site
2009	Meier et al[18]	USA	33	54 (39–70)	Vectra 3D	Abdomen, thigh	3-mm bullet-tip blunt cannula	Centrifugation (3000 rpm, 3 min)	None	Tulip blunt cannulas, injected in multiple planes	Multiple subunits of the face
2014	Gerth et al[19]	USA	26	55 ± 11	Vectra 3D	Abdomen, thigh	3-mm keel type	Filtration: Puregraft processing bag	None	Tulip blunt cannula, injected in subcutaneous plane (cheek) or suborbicularis plane	Check and periorbital area
2015	Sasaki et al[21]	USA	92	60.5 (58–63)	Artec 3D	Hip, abdomen	3–4 mm blunt tip Mercedes cannula	Centrifugation (3000 rpm, 3 min)	None	Blunt 1.3 mm cannula, injected in deep medial cheek fat, medial suborbicularis fat, lateral suborbicularis fat, superficial nasolabial fat, and superficial medial fat	Check
2016	Zhu et al[17]	China	22	39.50 ± 8.67	3D-Konica Minolta Vivid 910	Lower body	2.5-mm 2 holes cannula, with low-pressure aspiration	Centrifugation (1000 rpm, 2 min)	None	Blunt cannula, injected in multiple planes	Multiple subunits of the face
2017	Basile et al[24]	Brazil	42	28 (19–50)	Fiji package of ImageJ	Abdomen	2-mm blunt cannula	Sedimentation	None	Blunt 2 mm cannula, injected in subperiosteal (subcutaneous) plane	Chin
2017	Lin et al[20]	Taiwan, China	13	34.03 ± 7.28	3dMD System	abdomen	2.5-3 mm blunt one whole cannula	Centrifugation (3000 rpm, 3 min)	None	Blunt 18-G cannula, with MAFT-GUN, injected in multiple planes	Nasal dorsum
Year	Author	Country/region	Sample size, n	Age (years), mean ± SD	Measurement device	Donor site	Harvesting technique	Fat-processing technique	Assisted factors or cells	Fat injection technique	Recipient site
------	----------------------	----------------------	----------------	------------------------	--------------------	------------------------	--------------------------------------	----------------------------	-------------------------	--------------------------	---------------------------
2017	Wang et al[26]	China, Germany	78	35.1 ± 11.2	Konica Minolta	Abdomen, thigh	16-G cannula	Centrifugation (3000 rpm, 3 min)	None	18-G cannula, injected in multiple planes	Check
2017	An et al[23]	China	24	33.6 ± 10.0	Vectra 3D	Abdomen, thigh	2–3mm 1-hole blunt tip cannula	Filtration	None	Not mentioned	Multiple subunits of the face
2018	Huang et al[25]	China	26	30.8 ± 9.0	Konica Minolta	Abdomen, thigh	2-holed blunt-tip cannula	Sedimentation	None	Single-holed blunt tip cannula, injected in the upper temporal compartment, the lower temporal compartment, the lateral temporal-check fat compartment, and the lateral orbital fat compartment.	Temporal region
2018	Wu et al[22]	China	21	22.0 ± 8.0	Artec 3D	Lower abdomen	2.5 mm blunt cannula	Centrifugation, (1000 rpm, 3 min)	None	Not mentioned	Multiple subunits of the face
			21	22.0 ± 8.1	Cotton pad			cotton pad filtering			
			21	22.0 ± 8.2	Sedimentation			Sedimentation			

3D: three-dimensional; SD: standard deviation.
Table 2: Detailed data of volumetric outcomes in each article

Year	Author	Country/Region	Sample size, n	Fat processing technique	Follow-up point of time	Follow-up time (months)	Injected volume (mL), mean ± SD	Maintained volume in the latest follow-up (mL), mean ± SD	Fat grafting retention at 3 months (%), mean ± SD	Fat grafting retention at 6 months (%), mean ± SD	Fat grafting retention at 12 months (%), mean ± SD	Fat grafting retention in the latest follow-up period (%), mean ± SD	
2018	Wu et al[21]	China	21	Centrifugation	Uniform	12	25.29 ± 5.77	25.29 ± 5.77	38 ± 4	36 ± 4	34 ± 3	–	
2016	Zhu et al[17]	China	22	Centrifugation	Uniform	12	18.00 ± 12.68	7.97 ± 4.57	61.08 ± 9.85	49.06 ± 7.27	45.43 ± 7.32	–	
2015	Sasaki et al[21]	USA	92	Centrifugation	Uniform	12	8.5 ± 1.0	11.7 ± 3.0	–	51.9 ± 10.0	46.3 ± 8.5	–	
2018	Huang et al[21]	China	96	Centrifugation	Uniform	12	17.4 ± 7.5	6.32 ± 4.72	–	–	–	–	
2017	Lin et al[20]	Taiwan, China	13	Centrifugation	Uniform	3	1.67 ± 0.95	0.74 ± 0.42	44.54 ± 15.13	–	–	–	
2009	Meier et al[18]	USA	33	Centrifugation	Latest	12-21	10.18 ± 4.31	8.5 ± 1.0	51.9 ± 10.0	46.3 ± 8.5	38.3 ± 12.9	–	
2017	Wang et al[21]	China, Germany	78	Centrifugation	Latest	12-27	29.3 ± 9.7	34 ± 1.2	–	–	27.1 ± 3.6	–	
2018	Wu et al[21]	China	21	Centrifugation	Unfiltered	12	22.40 ± 5.67	22.40 ± 5.67	–	–	–	–	
2017	An et al[23]	China	24	Centrifugation	Unfiltered	12	20.3 ± 16.0	20.3 ± 16.0	–	–	–	–	
2014	Gerth et al[21]	USA	26	Centrifugation	Unfiltered	10-36	8.88 ± 3.78	8.88 ± 3.78	–	–	–	–	
2018	Wu et al[21]	China	21	Sedimentation	Unfiltered	12	34.38 ± 10.80	34.38 ± 10.80	–	34 ± 4	31 ± 3	31 ± 3	–
2017	An et al[23]	China	26	Sedimentation	Unfiltered	12	35.0 ± 28.3	35.0 ± 28.3	–	34.1 ± 13.3	26.7 ± 9.6	21.0 ± 2.8	–
2017	Basile et al[24]	Brazil	42	Sedimentation	Unfiltered	6	7.5 ± 1.3	7.5 ± 1.3	82.3 ± 11.60	–	–	–	–

*: not applicable; SD: standard deviation.

Discussion

Although the 3D imaging systems are relatively costly,[29] the reproducibility of their measurements is very high, with a reliability of 99.6%.[30] This mechanism of measurement, which can reduce operator/human evaluator subjectivity and function at higher speed, thus improving the experience of clinical users.[31] These systems are able to automatically recognize anatomical landmarks. It can combine 3D systems with automation is considered 4-dimensional technology, which can reduce operator/human evaluator subjectivity and function at higher speed, thus improving the experience of clinical users.[31] Although the 3D imaging systems are relatively costly,[29] the reproducibility of their measurements is very high, with a reliability of 99.6%.[30] This mechanism of measurement, which can reduce operator/human evaluator subjectivity and function at higher speed, thus improving the experience of clinical users.[31] Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al.[31] These systems require an operator capable of clinical judgment. A not yet commercially available system called Precision Light presented by Creasman et al.[31] These systems require an operator capable of clinical judgment. A not yet commercially available system called Precision Light presented by Creasman et al.[31] Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al.[31] These systems require an operator capable of clinical judgment. A not yet commercially available system called Precision Light presented by Creasman et al.[31] Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al.[31] These systems require an operator capable of clinical judgment. A not yet commercially available system called Precision Light presented by Creasman et al.[31] Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al.[31] These systems require an operator capable of clinical judgment. A not yet commercially available system called Precision Light presented by Creasman et al.[31] Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al. Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al. Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al. Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al. Three-dimensional surface imaging devices can create a virtual 3D model of the face, breasts, and body contour in a standing patient and can simulate the post-augmentation appearance and calculate desired augmentation volumes. Studies have shown that the standard deviation of volume measurements in 3D imaging is approximately 2% compared to the real volumes.[27] A not yet commercially available system called Precision Light presented by Creasman et al.
subunit is currently limited but widely variable based on the different methods and anatomical terms used.[32] The retention rates in the different facial subunits could be quite different. However, relative data are insufficient, and thus we look forward to further studies.

Controversial factors relevant to autologous fat survival

Many factors have been considered relevant to the long-term retention of autologous fat. Studies have evaluated the impact of harvesting methods on fat graft retention rates, including hand-held syringe aspiration,[33–35] suction-assisted lipectomy,[36–39] and ultrasound-assisted lipectomy.[36,37] These studies demonstrated differences in cell survival and adipocyte functionality among in vivo animal experiments and human studies. However, no significant differences in the volume or weight of the fat grafts isolated by the different methods were observed in a study of immunocompromised mice.[12] Surgeons now seem to agree that the actual harvesting methods are less important, as fat survival has been comparable among the different harvesting methods.[38]

In recent years, adipocyte-derived stem cells, platelet-rich plasma (PRP), and stromal vascular fraction (SVF) have been widely used for both therapeutic and esthetic indications because of their capacity for angiogenesis and wound healing.[39] Many studies have investigated the effects of cell-assisted fat grafting on increasing fat survival. Sasaki et al.[21] reported a prospective study of 236 patients in 4 groups using conventional fat grafting, PRP-assisted fat grafting, SVF-assisted fat grafting, and PRP/SVF-assisted fat grafting. This study showed that PRP, SVF, and PRP/SVF cell assistance of processed fat resulted in a statistically significant mean graft retention rate (68.5%, 72.9%, and 69.7%, respectively) over their baseline control at 12 months compared to conventional fat grafting methods (38.3%).

In the last 2 years (2016–2018), 3 systematic reviews and meta-analyses have yielded statistical evidence of the effect of increasing fat grafting retention rates in cell-assisted fat grafting techniques. In Zhou et al.'s review,[40] the pooled fat survival rate was significantly higher ($P = 0.0096$) in the CAL group (60%) than in the non-cell-assisted liposuction (non-CAL) group (45%). In Laloze et al.'s review,[41] the fat survival rate was significantly higher ($P < 0.0001$) in the CAL group (64%) than in the non-CAL group (44%), independent of injection site (breast or face). In Wang and Wu's review,[42] the fat survival rate was significantly higher in the CAL group than in the non-CAL group, with a weighted mean difference of 25.85%, ($P = 0.013$). All of these studies revealed that CAL can result in superior fat survival rates compared to conventional lipoinjection.

Studies have also investigated the impact of fat-processing techniques. According to an American national consensus survey, 34% of plastic surgeons used centrifugation as a processing technique for fat grafting, 45% used gravity sedimentation, 34% used filtration, and 11% used gauze rolling.[43–46] In the latest animal studies, no significant difference was found in the structure or weight of the fat graft when comparing centrifugation, filtration, and sedimentation methods.[12,47–49] Another study showed better outcomes in terms of fullness and smoothness with centrifugation than with gravity sedimentation.[48] Recently, in a randomized controlled trial of cotton pad filtration, centrifugation, and gravity sedimentation, the authors showed that cotton pad filtration demonstrated the highest fat graft retention rate, and this result was statistically significant.[22] Another randomized controlled trial of filtration and gravity sedimentation showed that there was no statistically significant difference between these 2 techniques. However, there was a trend showing better performance of filtration in fat survival.[23]

Our study has 2 primary limitations. In this updated systematic review, we concentrated on fat survival only in facial esthetic AFG measured with the 3D surface imaging technique. This was done to try to restrict bias and come to a convincing conclusion. Additionally, until now, the number of relative clinical trials and cases has not been adequate to make a strong comparison through a meta-

![Figure 2: The average retention rate for the different follow-up periods for each of the 3 fat-processing techniques in studies with unified follow-up periods. The average retention rates for centrifugation, filtration, and sedimentation methods in studies with unified follow-up periods are shown in red, yellow, and green, respectively. The average retention is recorded for “3, 6, and (or) 12 months.” Three studies used the last follow-up point >12 months. The average retention is 41.2% in Gerth et al.’s filtration, 31.8% in Meier et al.’s centrifugation, and 27.1% in Wang et al.’s centrifugation, respectively. Lin et al.’s centrifugation used the last follow-up point at 3 months, and the average retention is 44.5% in this study.](image)
Controversies continue to exist regarding the performance of the different fat-processing techniques in fat grafting. With the development of 3D measurement techniques, additional clinical trials with sufficient sample sizes and accurate volumetric measurements are necessary to identify the optimal technique for fat graft processing.

Conclusion
This article presents a systematic review of 10 studies on 3 different fat-processing techniques, wherein the fat graft retention rates were measured using 3D imaging devices. We found that there was a trend toward filtration and centrifugation techniques resulting in better retention outcomes. However, there was a wide variation with respect to the retention outcomes within each single processing technique, and we could not find a significant difference among these 3 techniques.

Acknowledgements
None.

Funding
None of the authors has a financial interest in any of the products, devices, or drugs mentioned in this manuscript.

Conflict of interest
The authors report no conflict of interest.

Author contributions
Wang GHE: conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing, manuscript revising. Zhao JF: conception, collection and assembly of data, manuscript writing, manuscript revising. Xue HY: manuscript revising, interpretation. Li D: conception and design, interpretation, provision of study.

References
1. Neuber F. Fat transplantation. Chir Kongr Verhandl Dsch Gesellh Chir 1893;20:66.
2. Glashofer M, Lawrence N. Fat transplantation for treatment of the senescent face. Dermatol Ther 2006;19:169–176. doi: 10.1111/j.1529-8019.2006.00071.x
3. Peer LA. Loss of weight and volume in human fat grafts - with postulation of a cell survival theory. Plast Reconstr Surg 1950;5:217–230.
4. Illouz YG. The fat-cell graft - a new technique to fill depressions. Plast Reconstr Surg 1986;78:122–123.
5. Choi M, Small K, Levovitz C, Lee C, Fadl A, Karp NS. The volumetric analysis of fat graft survival in breast reconstruction. Plast Reconstr Surg 2013;131:185–191. doi: 10.1097/PRS.0b013e31822cd55e.
6. Clauser LC, Tieghir R, Galie M, Carinci F. Structural fat grafting; facial volumetric restoration in cosmetic surgery. J Craniofac Surg 2011;22:1695–1701. doi: 10.1097/SCS.0b013e31822cd55e.
7. Coleman SR. Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 2006;118:1085–120s. doi: 10.1097/01.PR.S.0000234610.81672.e7.
8. Coleman SR. Structural fat grafts - the ideal filler? Clin Plast Surg 2001;28:111–119.
9. Gir P, Brown SA, Oni G, Kashefi N, Mogalall A, Rohrich RJ. Fat grafting: evidence-based review on autologous fat harvesting, processing, reinjection, and storage. Plast Reconstr Surg 2012;130:249–258. doi: 10.1097/PRS.0b013e318224ab4d3.
10. Kaufman MR, Miller TA, Huang C, Roostaeian J, Wasson KL, Ashley RK, et al. Autologous fat transfer for facial reconquering: is there science behind the art? Plast Reconstr Surg 2007;119:2287–2296. doi: 10.1097/01prs.0000260712.44089.e7.
11. Wetterer M, Szpalski C, Hazen A, Warren SM. Autologous fat grafting and facial reconstruction. J Craniofac Surg 2012;23:315–318. doi: 10.1097/SCS.0b013e318224ab4d3.
12. Smith P, Adams WP, Lipschitz AH, Chau B, Sorokin E, Rohrich RJ, et al. Autologous human fat grafting: Effect of harvesting and preparation techniques on adipocyte graft survival, Plast Reconstr Surg 2006;117:1836–1844. doi: 10.1097/01.prs.0000218825.77014.7d.
13. Borti G, Pascali M, Botti C, Bodog F, Cervelli VA. Clinical trial in facial in fat grafting: filtered and washed versus centrifuged fat. Plast Reconstr Surg 2011;127:2464–2473. doi: 10.1097/PRS.0b013e318224ab4d3.
14. Conde-Green A, de Amorin NFC, Patamayu I. Influence of decantation, washing and centrifugation on adipocyte and mesenchymal stem cell content of aspirated adipose tissue: a comparative study. J Plast Reconstr Aesth Surg 2016;63:1375–1381. doi: 10.1016/j.bjps.2009.07.018.
15. Eder M, Kovacs L. Commentary on the article of Herold et al.: the use of pmma MRI volumetry to evaluate the rates of fat survival after autologous lipotransfer. Handchir Mikrochir Plast Chir 2010;42:133–139. doi: 10.1055/s-0030-1249616.
16. Herold C, Ueberritter K, Busche MN, Vogt PM. Autologous fat transplantation: volumetric tools for estimation of volume survival. A systematic review. Aesthetic Plast Surg 2013;37:380–387. doi: 10.1007/s00266-012-0046-4.
17. Meng Z, Yuan X, Zhu Y, Gang C, Li Q. A novel noninvasive three-dimensional volumetric analysis for fat-graft survival in facial reconquering using the 3L and 3M technique. J Plast Reconstr Aesth Surg 2020;66:249–254. doi: 10.1016/j.bjps.2015.09.016.
18. Meuer JD, Glassgold RA, Glassgold MJ. Autologous fat grafting: long-term evidence of its efficacy in midfacial rejuvenation. Arch Facial Plast Surg 2009;11:24–28. doi: 10.1001/jamafacial.2008.518.
19. Geth D, King B, Rabach L, Glasgold RA, Glasgold MJ. Long-term volumetric retention of autologous fat grafting processed with closed-membrane filtration. Aesth Surg J Oxford Acad Aesth Surg J 2014;34:985. doi: 10.1177/1090820X14542649.
20. Lin S, Hsiao YC, Huang JJ, Chang CS, Chen PK, Chen JP, et al. Minimal invasive rhinoplasty: fat injection for nasal dorsum contouring. Aesth Surg J 2017;17:833–846. doi: 10.1016/j.bjps.2015.09.016.
21. Sasaki GH. The safety and efficacy of cell-assisted fat grafting to traditional fat grafting in the anterior mid-face: an indirect assessment by 3D imaging. Aesthet Plast Surg 2015;53:985–986. doi: 10.1007/s00266-015-0533-5.
22. Wu R, Yang X, Jin X, Lu H, Jia Z, Li B, et al. Three-dimensional volumetric analysis of 3 fat-processing techniques for facial fat grafting: a randomized clinical trial. JAMA Facial Plast Surg 2018;20:222–229. doi: 10.1001/jamafacial.2017.2002.
23. An J. A study on preoperative morphological assessment and postoperative quantitative evaluation of autologous facial fat grafting based on three-dimensional surface imaging techniques (in Chinese). Beijing: Peking University, 2017.
24. Basile FV, Basile AK. Prospective controlled study of chin augmentation by means of fat grafting. Plast Reconstr Surg 2017;140:1133–1141. doi: 10.1097/PRS.0000000000003895.
25. Huang RL, Xie Y, Wang W, Tan P, Li Q. Long-term outcomes of temporal hollowing augmentation by targeted volume restoration of fat compartments in chinese adults. JAMA Facial Plast Surg 2018;20:387–393. doi: 10.1001/jamafacial.2018.0165.
26. Wang W, Xie Y, Huang RL, Zhou J, Tanja H, Zhao P, et al. Facial contouring by targeted restoration of facial fat compartment volume: the midface. Plast Reconstr Surg 2017;139:563–572. doi: 10.1097/PRS.0000000000003160.
Chinese Medical Journal 2019;132(1)

www.cmj.org

27. Losken A, Seify H, Denson DD, Paredes AA Jr, Carlson GW. Validation of three-dimensional imaging of the breast. Ann Plast Surg 2003;50:471–476. discussion 477–8. doi: 10.1097/01.sap.000015278.87790.a1.

28. Kovacs L, Eder M, Hollweck R, Zimmermann A, Settles M, Schneider A, et al. Comparison between breast volume measurement using 3D surface imaging and classical techniques. Breast 2007;16:137–145. doi: 10.1016/j.breast.2006.08.001.

29. Tepper OM, Small KH, Unger JG, Feldman D, Kumar N, Choi M, et al. Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation. Plast Reconstr Surg 2013;132:351–359. doi: 10.1097/PRS.0b013e3182958796.

30. Creasman CN, Mordant D, Liohos T, Chiu C, Gabriel A, Maxwell GP. Four-dimensional breast imaging, part I: introduction of a technology-driven, evidence-based approach to breast augmentation planning. Aesthet Surg J 2011;31:914–924. doi: 10.1177/1090820X11423916.

31. Creasman CN, Mordant D, Liohos T, Chiu C, Gabriel A, Maxwell GP. Four-dimensional breast imaging, part II: validation of a computer imaging system for breast augmentation planning. Aesthet Surg J 2011;31:925–938. doi: 10.1177/1090820X11424147.

32. Shue S, Kurlander DE, Guyuron B. Fat injection: a systematic review of injection volumes by facial subunit. Aesthetic Plast Surg 2018;42:1261–1270. doi: 10.1007/s00066-017-0936-6.

33. Crawford JL, Hubbard BA, Colbert SH, Puckett CL. Fine tuning lipopropelgation viability for fat grafting. Plast Reconstr Surg 2010;126:1342–1348. doi: 10.1097/PRS.0b013e3181e44a9.

34. Pa LLQ, Coleman SR, Cui X, Ferguson REH, Vasconez HC. Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast Reconstr Surg 2008;122:932–937. doi: 10.1097/PRS.0b013e3181811ff0.

35. Keck M, Kober J, Riedl O, Kitzinger HB, Wolf S, Stulnig TM, et al. Power assisted liposuction to obtain adipose-derived stem cells: impact on viability and differentiation to adipocytes in comparison to manual aspiration. J Plast Reconstr Aesthet Surg 2014;67:E1–E8. doi: 10.1016/j.bps.2013.08.019.

36. Fisher C, Grahovac TL, Schafer ME, Shippert RD, Marra KG, Rubin JP. Comparison of harvest and processing techniques for fat grafting and adipose stem cell isolation. Plast Reconstr Surg 2013;132:351–361. doi: 10.1097/PRS.0b013e3182587976.

37. Schafer ME, Hicok KC, Mills DC, Cohen SR, Chao JJ. Acute adipocyte viability after third-generation ultrasound-assisted liposuction. Aesthet Surg J 2013;33:e69–704. doi: 10.1177/1090820X13483239.

38. Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B. The current state of fat grafting: a review of harvesting, processing, and injection techniques. Plast Reconstr Surg 2015;135:e97–912. doi: 10.1097/PRS.0000000000001590.

39. Cohen SR, Hewett S, Ross L, Delaunay F, Goodacre A, Ramos C, et al. Regenerative cells for facial surgery: biolifting and biocontouring. Aesthet Surg J 2017;37:516–522. doi: 10.1097/jasp.0000000000000778.

40. Zhou Y, Wang J, Li H, Liang X, Bae J, Huang X, et al. Efficacy and safety of cell-assisted lipotransfer: a systematic review and meta-analysis. Plast Reconstr Surg 2016;137:44e–57e. doi: 10.1097/PRS.0000000000001981.

41. Laloue J, Varin A, Gilhodes J, Bertheuil N, Grolleau JL, Brie J, et al. Cell-assisted lipotransfer: friend or foe in fat grafting? Systematic review and meta-analysis. J Tissue Eng Regen Med 2018;12:e1237–e1250. doi: 10.1002/term.2524.

42. Wang Y, Wu Y. Assessment of the clinical efficacy of cell-assisted lipotransfer and conventional fat graft: a meta-analysis based on case-control studies. J Orthop Surg Res 2017;12:155. doi: 10.1186/s13018-017-0645-5.

43. Kling RE, Mehrara BJ, Pusic AL, Young VL, Hume KM, Crotty CA, et al. Trends in autologous fat grafting to the breast: a National Survey of the American Society of Plastic Surgeons. Plast Reconstr Surg 2013;132:35–46. doi: 10.1097/PRS.0b013e318290fad1.

44. Butterwick KJ. Lipoplastination for aging hands: a comparison of the longevity and aesthetic results of centrifuged versus non-centrifuged fat. Dermatol Surg 2002;28:987–991.

45. Botti G, Pascal M, Botti C, Bodog F, Cervelli V. A clinical trial in facial fat grafting: filtered and washed versus centrifuged fat. Plast Reconstr Surg 2011;127:2464–2473. doi: 10.1097/PRS.0b013e3182131d3d.

46. Khater R, Atanassova P, Anastassov Y, Pellerin P, Martinot-Duquenoy V. Clinical and experimental study of autologous fat grafting after processing by centrifugation and serum lavage. Aesthetic Plast Surg 2009;33:37–43. doi: 10.1007/s00266-008-9269-9.

47. Conde-Green A, Wu J, Graham I, Chaz JJ, Drachenberg CB, Singh DP, et al. Comparison of 3 techniques of fat grafting and cell-supplemented lipotransfer in athymic rats: a pilot study. Aesthet Surg J 2013;33:713–721. doi: 10.1177/1090820X13487371.

48. Minn KW, Min KH, Chang H, Kim S, Heo EJ. Effects of fat preparation methods on the viabilities of autologous fat grafts. Aesthetic Plast Surg 2010;34:626–631. doi: 10.1007/s00266-010-9525-7.

49. Ramon Y, Shoshani O, Peled IJ, Gilhar A, Caemi N, Fodor L, et al. Enhancing the take of injected adipose tissue by a simple method for concentrating fat cells. Plast Reconstr Surg 2005;115:197–201. doi: 10.1097/01.PRS.0000145713.49152.77.