Mohammadi S., Hosseininejad M., Taghizadeg S., Kabir-Mokamelkhah E.

The relationship between different aspects of occupational stress and general health

Occupational Medicine Research Center, Occupational Medicine Department – Faculty of Medicine – Iran University of Medical Sciences, Tehran, IRAN

Introduction. Stress is one of the most common problems at work environments, which may have a negative effect on physical and mental health. Besides, general health problems are the most commonly discussed matter relating to occupational health, causing a reduction in the individual performance quality and work absence.

Aims and objectives. The objective of the study was to examine the relationship between the different indicators of occupational stress and general health.

Material and methods. This cross-sectional study was conducted among the office workers in Tehran in 2017. HSE’s occupational stress questionnaire was used to develop the different aspects of occupational stress. General health status was determined by General Health Questionnaire (GHQ-12). The relationship between different levels of occupational stress and general health was examined by statistical methods.

Results. The study was conducted among a total of 393 participants. The mean scores of occupational stress and general health were 3.23 ± 0.44 and 3.26 ± 2.92, respectively. A significant statistical relationship was observed between general health and the different indicators of occupational stress including role (OR = 10.95, P value <0.001), relationships (OR = 2.73, P value <0.001), manager support (OR = 2.43, P value <0.001), demand (OR = 1.98, P value = 0.001) and organizational change (OR = 3.03, P value <0.001), suggesting that as the level of occupational stress increased, the level of general health declined.

Conclusion. Attention to the different indicators of occupational stress and to the efficient ways to avoid and manage it can play an important role in improving the general health status of office workers.

Keywords: job stress; general health; office worker.
The mean score and frequency of the different occupational stress indicators in participants

Occupational stress indicators	Mean ± SD	No stress, % (N)	Low stress, % (N)	Moderate stress, % (N)	High stress, % (N)
Role	3.96 ± 0.73	75.8 (298)	20.1 (79)	4.1 (16)	Zero
Relationship	3.50 ± 0.88	45.8 (180)	37.9 (149)	14 (55)	2.3 (9)
Manager support	3.22 ± 0.79	36.4 (143)	44.5 (175)	17.8 (70)	1.3 (5)
Peer support	3.41 ± 0.78	39.2 (154)	44.8 (176)	15.3 (60)	0.8 (3)
Control	3.05 ± 0.63	20.6 (81)	56.5 (222)	22.6 (89)	0.3 (1)
Demand	2.50 ± 0.56	3.1 (12)	46.1 (181)	45.3 (178)	5.6 (22)
Changes	3.04 ± 0.83	30.5 (120)	44.5 (175)	20.9 (82)	4.1 (16)

Material and methods

This cross-sectional study was conducted among the office workers of a government organization in Tehran in 2017. At least one year of work experience and an informed consent for participation were criteria for inclusion in the study.

Demographic data such as age, gender, marital status, work experience, education, smoking and a history of psychiatric or medical disorders and drugs was collected by a checklist. Involvement in a field unrelated to the main occupation and a history of psychiatric disorders and drugs were criteria for exclusion from the study. HSE’ occupational stress questionnaire and 12-item General Health Questionnaire (GHQ-12) were used to determine the level of occupational stress and general health status, respectively.

HSE’ occupational stress questionnaire. The questionnaire was designed by Health and Safety Executive in the UK in the late 1990s. It contained 35 questions, demonstrating occupational stress indicators in 7 categories of demand, control, Manager support, peer support, relationships, role and change. Ratings were completed on a five-point Likert scale (never, rarely, sometimes, often and always that they were given a score from 0 to 4, respectively). The lower score, the higher stress level. The validity and reliability of the questionnaire has been confirmed in Persian [22].

12-item General Health Questionnaire (GHQ-12). The questionnaire was first developed by Goldberg in 1972. It has been widely used to diagnose mild mental illnesses. Ratings were completed on a four-point Likert scale (better than as usual, as usual, less than as usual and much less than as usual that they were given scores 1, 1, 0 and 0, respectively). The lower score, the better general health. The validity and reliability of the questionnaire has been confirmed in Persian (α = 0.81) [23]. SPSS software (version 22) was used to enter data and to conduct statistical analysis. Chi-square test and independent t-test were used to analyze qualitative and quantitative data, respectively. Logistic regression test was used to remove confounding effects. The level of significance was considered 0.05.

Results

The study had 437 participants. The survey covered a total of 393 staff after satisfying the exclusion criteria. Most of the subjects were female (71.2%) and married (73.7%). The mean age and work experience of the subjects were 41.05 ± 8.48 and 12.57 ± 8.39, respectively. Eighty of the subjects were non-smokers. In the study, 30.8 and 53.5 percent of the subjects had respectively a bachelor’s degree and a master’s degree or higher and the others had a degree lower than bachelor’s one.

The mean score of occupational stress was 3.23 ± 0.44. The subjects were included in 4 categories of high-stress (a mean score more than 3.5), moderate-stress (a mean score of 2.5-3.5) and non-stress (mean score lower than 2.5). Table 1 shows the mean score and frequency of the different occupational stress indicators for each category. The mean score and the lowest and highest values of the general health were 3.26 ± 2.92 and 4.20-5.00, respectively.

The value of mean occupational stress score among the subjects less than 40 years old was more than others for all indicators, but there was a significant statistical relationship only for role, peer support and demand indicators (p < 0.05). Female subjects had a higher value of mean occupational stress score than men for all indicators, but a significant statistical relationship was observed only for peer support and control indicators (p < 0.05). In addition, role and Manager support indicators were significantly correlated with work experience in such a way that less-experienced subjects reached a higher level of occupational stress. The relationship between the other variables and the different indicators of occupational stress is summarized in Table 2.

General health status among male workers with more-experienced, non-smoker, with age more than 40 years old, normal BMI was better than others, but there was no significant relationship (Table 2).

In order to investigate further, the relationship between general health and the mean occupational stress score of the different Sub-scales was analyzed separately (Table 3). As can be seen from the table, there was a significant statistical relationship between general health and the different indicators of occupational stress including role (p-value < 0.001, OR = 10.95), relationships (p-value < 0.001, OR = 2.73), Manager support (p-value < 0.001, OR = 2.43), demand (p-value = 0.001, OR = 1.98) and change (p-value < 0.001, OR = 3.03) in such a way that an increase in occupational stress level has lowered general health. In addition, the general health status of those with occupational stress in terms of peer support and job control was worse than the others, but this difference was not statistically significant (Table 3).

Logistic regression test was used to remove the effect of confounding variables including age, gender and work history. After regression analysis, the relationship between general health and all occupational stress indicators except manager and peer support, control and change remained significant. In other words, by eliminating the effect of confounding variables, the relationship between general health and occupational stress in the dimensions of manager support and change, which was significant in the initial analysis, was no longer significant; But in other dimensions, there was still a significant relationship (Table 4).

Discussion

In this study which conducted among 393 office workers demand and role indicators achieved the highest and the lowest level of occupational stress, respectively. The subjects had a relatively good general health (mean score = 3.26 ± 2.92). The results showed a negative statistical relationship between the different indicators of occupational stress and general health, suggesting that staff with a high level of occupational stress had a lower general health status.
The relationship between occupational stress and general health with study variables in participations, M ± SD

Indicator	Role	Relationship	Manager support	Peer support	Control	Demand	Changes	GHQ	
Age (years)	< 40	3.9 ± 0.7	3.3 ± 0.8	3.1 ± 0.7	3.3 ± 0.7	3.0 ± 0.7	3.0 ± 0.6	3.0 ± 0.8	3.43 ± 0.8
	≥ 40	4.0 ± 0.7	3.6 ± 0.8	3.2 ± 0.8	3.5 ± 0.8	3.0 ± 0.9	2.5 ± 0.5	2.5 ± 0.8	3.08 ± 0.9
p value		0.09	0.006	0.49	0.02	0.28	0.02	0.20	0.073
Gender	Male	4.0 ± 0.7	3.6 ± 0.9	3.3 ± 0.6	3.6 ± 0.7	3.2 ± 0.5	2.5 ± 0.5	3.1 ± 0.7	2.84 ± 2.9
	Female	3.9 ± 0.7	3.4 ± 0.8	3.1 ± 0.8	3.3 ± 0.8	2.0 ± 0.6	2.4 ± 0.5	3.0 ± 0.8	3.43 ± 2.8
p value		0.47	0.014	0.09	0.002	< 0.001	0.24	0.07	0.073
BMI, Kg/m²	< 25	4.0 ± 0.6	3.5 ± 0.8	3.1 ± 0.7	3.4 ± 0.7	3.0 ± 0.6	2.4 ± 0.5	3.0 ± 0.8	3.17 ± 2.9
	≥ 25	3.9 ± 0.7	3.4 ± 0.8	3.2 ± 0.8	3.3 ± 0.8	3.1 ± 0.6	2.5 ± 0.5	3.0 ± 0.8	3.39 ± 2.8
p value		0.20	0.82	0.47	0.51	0.08	0.40	0.33	0.46
Smoking	Yes	4.0 ± 0.7	3.4 ± 1.0	3.0 ± 0.8	3.2 ± 0.7	3.0 ± 0.7	2.4 ± 0.6	2.8 ± 0.8	3.55 ± 3.0
	No	3.9 ± 0.7	3.5 ± 0.8	3.2 ± 0.7	3.4 ± 0.7	3.0 ± 0.6	2.5 ± 0.5	3.0 ± 0.8	3.19 ± 2.8
p value		0.47	0.53	0.03	0.06	0.82	0.70	0.07	0.33
Work history, years	< 12	3.8 ± 0.7	3.4 ± 0.8	3.3 ± 0.7	3.3 ± 0.7	3.0 ± 0.5	2.5 ± 0.5	3.1 ± 0.7	3.27 ± 2.7
	≥ 12	4.1 ± 0.6	3.5 ± 0.9	3.1 ± 0.8	3.4 ± 0.8	3.0 ± 0.6	2.4 ± 0.5	2.9 ± 0.8	3.25 ± 3.0
p value		< 0.001	0.36	0.02	0.47	0.31	0.32	0.13	0.94
Education	Low	4.0 ± 0.8	3.7 ± 0.8	3.2 ± 0.8	3.4 ± 0.8	3.1 ± 0.6	2.5 ± 0.6	3.2 ± 1.0	3.20 ± 2.7
	Medium	3.8 ± 0.7	3.4 ± 0.8	3.2 ± 0.7	3.3 ± 0.7	3.0 ± 0.5	2.5 ± 0.5	3.0 ± 0.7	3.33 ± 2.8
	High	4.0 ± 0.6	3.4 ± 0.9	3.1 ± 0.8	3.4 ± 0.7	3.0 ± 0.6	2.4 ± 0.5	2.9 ± 0.8	3.23 ± 2.9
p value		0.19	0.10	0.66	0.26	0.41	0.29	0.12	0.94

In a few studies to investigate the relationship between occupational stress and general health status, results are similar to our study. Lim et al. [24] observed a significant statistical correlation between general health and stress among accounting students. A study conducted among bank staff using HSE occupational stress questionnaire and GHQ12 indicated a negative statistical correlation between the different indicators of occupational stress and general health [25]. Whereas most studies on the factors affecting occupational stress have considered only one indicator of occupational stress and one or two its effective factors [26, 27], this study has investigated all occupational stress indicators in detail.

A systematic review in the relationship between working conditions and stress-related diseases identified a lack of manager and peer support as a risk factor for stress only in men [28]. In a study conducted by Guidi, a significant statistical correlation was observed between general health and occupational stress caused by peer support indicator in men [25]. In the present study as well as in studies among teachers [10] and prison staff [29], women reached a higher level of occupational stress than men. The varying results can be attributed to the cultural differences, the lack of reporting by men, the more supportive and friendly relationships between men in the workplace, as well as the greater responsibility of women outside the workplace, especially housework and taking care of children.

The findings of the present study showed that workers less than 40 years old reached a higher level of stress than others for all indicators. It is consistent with earlier researches [30] including a study conducted among military staff indicated that occupational stress was higher among people aged 20 to 40 years [17]. It can be said that the increasing age has likely made adaptation to the workplace, organizational change, role and demand fulfillment and improvement in relationships more successful.

In many studies, there was no significant statistical correlation between work experience and occupational stress [31-34]. However, the present study observed a negative significant relationship between occupational stress and work experience.
between work experience and occupational stress caused by role indicator so that the level of occupational stress was decreased by an increase in work experience. Although it was not significant, the greater work experience also decreased the level of occupational stress and peer support dimensions. It is consistent with earlier researchers [17], including Khatoon [35] that showed a negative statistical correlation between work experience and occupational stress. It can be said that the greater work experience has improved the ability to establish strong social relationships with others, and it has increased peer support. The present study also showed that the greater work experience increased the level of occupational stress caused by managersupport, change and demand, consist-
tent with Gharibi et al. [36].The present study is one of the few studies to investigate the relationship between different aspects of occupational stress and general health status in workers, whereas most studies have investigated only the factors affecting occupational stress, and they have given little attention to the effect of occupational stress on general health. In this study, several indi-
vidual and occupational factors that may affect occupational stress and general health are separately examined. Participants who were involved in a field unrelated to the main occupation and a history of psychiatric disorders and drugs were excluded from the study. Therefore, further studies are recommended considering all fac-
tors that may have an effect on occupational stress.

Conclusions

The results of the present study illustrate a significant statistical relationship between general health level and the distinct dimensions of occupational stress including role, relationships, Manag-
support, demand and change among the entire staff. Also, less-
experienced female subjects, less than 40 years old demonstrated a bigger increase at the level of occupational stress. Therefore, greater attention to younger and less-experienced staff and more support, female staff may reduce their occupational stress and consequently improve their general health.

References

1. Tajvar A., Saraji G.N., Ghanbarnejad A., Omid L., Hosseini S.S., Abadi A.S. Occupational stress and mental health among nurses in a medical intensive care unit of a general hospital in Bandar Abbas in 2013. <https://doi.org/10.1080/19338244.2016.1200004>
2. Roelen C.A., van Hoffen M.F., Waage S., Schaufeli W.B., Twisk J.W., Bjorvatn B., et al. Psychosocial work environment and mental health-related stressors in prison staff. <https://doi.org/10.1093/joh/lqs021>
3. Ryu H., Moon J., Jung J. Influence of health behaviors and occupational stress on prediabetic state among male office workers. <https://doi.org/10.1080/19338244.2016.1200004>
4. Ryu H., Kim H.R., Choi W.S., Jo S.E., Lee B., Koo J.W., et al. Office workers’ risk of metabolic syndrome–related indicators: A 10-year cohort study. West. J. Nurs. Res. 2016; 38(11): 1433–47.

Литература (п.п. 1–11, 13–36 см. References)