The Histone Octamer Is Invisible When NF-κB Binds to the Nucleosome*

Received for publication, June 28, 2004, and in revised form, July 19, 2004
Published, JBC Papers in Press, July 21, 2004, DOI 10.1074/jbc.M407235200

Dimitar Angelov‡§§, François Lenouvel‡, Fabienne Hans‡, Christoph W. Müller‡, Philippe Bouvet‡, Jan Bednar**†, Evangelos N. Moudrianakis‡‡, Jean Cadet‡‡§, and Stefan Dimitrov‡‡‡

From the ‡Laboratoire de Biologie Moléculaire et Cellulaire de la Différenciation, INSERM U309, Institut Albert Bonniot, Domaine de la Merci, 38706 La Tronche Cedex, France, the ‡European Molecular Biology Laboratory, Grenoble Outstation, BP 181, 38042 Grenoble Cedex 9, France, §École Normale Superieure de Lyon, CNRS-Unite Mixte de Recherche 5161, 46 Allée d’Italie, 69007 Lyon, France, **CNRS, Laboratoire Spectrometrie Physique, BF87, 38402 St. Martin d’Heres Cedex, France, the ††Departments of Biology and Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, and §§Commissariat à l’Energie Atomique/Département de Recherche Fondamentale sur la Matière Condensée, SCIB/LAN, F-38054 Grenoble Cedex 9, France

The transcription factor NF-κB is involved in the transcriptional control of more than 150 genes, but the way it acts at the level of nucleosomal templates is not known. Here we report on a study examining the interaction of NF-κB p50 with its DNA recognition sequence in a positioned nucleosome. We demonstrate that NF-κB p50 was able to bind to the nucleosome with an apparent association constant close to that for free DNA. In agreement with this, the affinity of NF-κB p50 binding does not depend on the localization of its recognition sequence relative to the nucleosome dyad axis. In addition, the binding of NF-κB p50 does not induce eviction of histones and does not perturb the overall structure of the nucleosome. The NF-κB p50-nucleosome complex exhibits, however, local structural alterations within the NF-κB p50 recognition site. Importantly, these alterations were very similar to those found in the NF-κB p50-DNA complex. Our data suggest that NF-κB p50 can accommodate the distorted, bent DNA within the nucleosome. This peculiar property of NF-κB p50 might have evolved to meet the requirements for its function as a central switch for stress responses.

The Rel/NF-κB protein family regulates several vital processes in mammalian cells, including inflammation and immune responses, formation of dorsal-ventral polarity, cell adhesion, cancer, and apoptosis (1–4). The large role of these transcription factors is their function in transcriptional control of more than 150 genes, but the way it acts at the level of nucleosomal templates is not known. Here we report on a study examining the interaction of NF-κB p50 with its DNA recognition sequence in a positioned nucleosome. We demonstrate that NF-κB p50 was able to bind to the nucleosome with an apparent association constant close to that for free DNA. In agreement with this, the affinity of NF-κB p50 binding does not depend on the localization of its recognition sequence relative to the nucleosome dyad axis. In addition, the binding of NF-κB p50 does not induce eviction of histones and does not perturb the overall structure of the nucleosome. The NF-κB p50-nucleosome complex exhibits, however, local structural alterations within the NF-κB p50 recognition site. Importantly, these alterations were very similar to those found in the NF-κB p50-DNA complex. Our data suggest that NF-κB p50 can accommodate the distorted, bent DNA within the nucleosome. This peculiar property of NF-κB p50 might have evolved to meet the requirements for its function as a central switch for stress responses.

The Rel/NF-κB protein family regulates several vital processes in mammalian cells, including inflammation and immune responses, formation of dorsal-ventral polarity, cell adhesion, cancer, and apoptosis (1–4). The large role of these transcription factors is their function in transcriptional control of more than 150 genes, but the way it acts at the level of nucleosomal templates is not known. Here we report on a study examining the interaction of NF-κB p50 with its DNA recognition sequence in a positioned nucleosome. We demonstrate that NF-κB p50 was able to bind to the nucleosome with an apparent association constant close to that for free DNA. In agreement with this, the affinity of NF-κB p50 binding does not depend on the localization of its recognition sequence relative to the nucleosome dyad axis. In addition, the binding of NF-κB p50 does not induce eviction of histones and does not perturb the overall structure of the nucleosome. The NF-κB p50-nucleosome complex exhibits, however, local structural alterations within the NF-κB p50 recognition site. Importantly, these alterations were very similar to those found in the NF-κB p50-DNA complex. Our data suggest that NF-κB p50 can accommodate the distorted, bent DNA within the nucleosome. This peculiar property of NF-κB p50 might have evolved to meet the requirements for its function as a central switch for stress responses.

The basic unit of chromatin, the nucleosome, is formed upon the wrapping of two superhelical turns of DNA around an octamer of core histones (two of each of H2A, H2B, H3, and H4). The structures of both the histone octamer and the nucleosome were solved previously (5–7). A detailed picture of the chromatin higher order structures and the nucleosome higher order interactions as well as the nature of the perturbations of the nucleosome structure and dynamics of these complexes in solution is, however, still missing.

The structures of both the histone octamer and the nucleosome were solved previously (5–7). A detailed picture of the chromatin higher order structures and the nucleosome higher order interactions as well as the nature of the perturbations of the nucleosome structure and dynamics of these complexes in solution is, however, still missing.

The basic unit of chromatin, the nucleosome, is formed upon the wrapping of two superhelical turns of DNA around an octamer of core histones (two of each of H2A, H2B, H3, and H4). The structures of both the histone octamer and the nucleosome were solved previously (5–7). A detailed picture of the chromatin higher order structures and the nucleosome internal architecture both might interfere with the binding of the transcription factors to their recognition DNA sequence. Two main strategies used by the cell to allow transcription factors to overcome the nucleosome-imposed structural impediments have been the focus of several studies. The first strategy uses ATP-dependent chromatin-remodeling activities. Several remodeling complexes have been isolated and studied (11–15), and all of these complexes are able to assist histone octamer sliding in an ATP-dependent manner and thus to facilitate access of nucleosomal DNA to transcription factors (for recent reviews, see Refs. 16 and 17). In the second strategy, a transient unraveling of a portion of the nucleosomal DNA is used as a key event in increasing the accessibility of the transcription factor recognition site (18–20). In this case a reduction in the association constant of the transcription factors in the order of 10^2–10^5 is expected, depending on the localization of the binding site relative to the nucleosome dyad (18).

In addition to these two strategies, the cell may also use specially designed transcription factors that are able to overcome the nucleosome barrier and to bind to nucleosomal DNA (21). Indeed, several transcription factors, including steroid hormone receptors, can bind efficiently to nucleosomal DNA (21–23). The mechanism of binding of these transcription factors as well as the nature of the perturbations of the nucleosome structure induced by their binding is, however, largely unknown.

Here we analyzed the binding of NF-κB p50 to its recognition sequence in positioned nucleosomes. It is shown that at equilibrium, a dimer of NF-κB p50 is found bound to nucleosomal DNA as efficiently as to naked DNA templates. In addition, the overall structure of the nucleosome within NF-κB p50-nucleosome complexes was preserved. The local alterations in the NF-κB p50 recognition site in the NF-κB p50-nucleosome complexes were very similar to those found in the NF-κB p50-naked DNA structures. Therefore, the presence of the core histones does not significantly interfere with the interaction of
NF-kB p50 with nucleosomal DNA. We hypothesized that this specific property of NF-kB p50 is required for fulfilling its functions as a key factor for the different stress responses.

EXPERIMENTAL PROCEDURES

Oligonucleotides—37-Mer oligonucleotides 5′-ACGCACTCGAGTGGGATCCCCAGCTCAGAGGTG and 5′-CAGCTCTTAGAGGGCTACCCAAGCTTACAGGATG were purchased from Genosys (UK) and gel-purified. Typically 10 pmol from either the top or the bottom strand were 5′-end-labeled by T4 polynucleotide kinase with [γ-32P]ATP. The specific activity of the labeled probe was 2−3 × 10^6 cpm/μg. After annealing with the complementary strand, DNA was treated by Fpg DNA N-glycosylase (a kind gift from Serge Boiteux, Commissariat à l’Energie Atomique-Fontenay aux Roses) to remove preexisting oxidative guanine lesions, gel-purified, and reannealed (31). Under the conditions used, 100% of duplexes were obtained.

DNA Fragments—Plasmid pXP10 was digested with EcoRI and RsaI, and the 152-bp fragment containing the Xenopus borealis somatic 5 S gene was isolated by standard procedures (44). The QuikChange™ site-directed mutagenesis kit (Stratagene) was used to introduce the recognition sequence of NF-κB p50 (gggagattc) at positions 16 to 23 (NF1), −41 to −51 (NF2), and −53 to −63 (NF3). The 5′- or 3′-ends at the EcoRI site of the 152-bp fragment were 32P-labeled by using either polynucleotide kinase and [γ-32P]ATP or klenow fragment and [α-32P]ATP. The typical specific activity was 2−3 × 10^7 cpm/μg.

Nucleosome Reconstitution—Recombinant Xenopus laevis full-length histone proteins were used for nucleosome reconstitution (45). Nucleosomes were constituted as described previously (46). Briefly, a stoichiometric solution of the four histones in 10 mM HCl was formed essentially as described by Angelov and Lee (48).

Electrophoretic Mobility Shift Assay and Hydroxyl Radical and DNase I Footprinting—The binding reactions were carried out in 10 μl of solution of 20 mM Hepes, 100 mg/ml bovine serum albumin, 50 mM NaCl, pH 7.5. Carrier DNA was added to the nucleosomes, NF1 and NF3 DNA samples to concentrations equal to those in the labeled nucleosome samples. 5−10 fmol of either labeled nucleosomes or free DNA were mixed with the indicated amounts of NF-κB. After incubation for 15 min at 30 °C the samples were analyzed by electrophoretic mobility shift assay (EMSA). The EMSA was done in a 4% acrylamide gel at room temperature in 0.5× TBE—150 mM Tris-borate—150 mM NaCl, pH 7.5. Carrier DNA was added to the nucleosomal DNA and NF-κB p50-nucleosome complexes were formed according to Angelov et al. (22).

RESULTS

NF-κB Is Able to Bind to Its Recognition Sequence

RESULTS

NF-κB Is Able to Bind to Its Recognition Sequence Inserted within a Positioned Nucleosome—To determine whether NF-κB p50 was able to interact with positioned nucleosomes, three different constructs, each containing a single NF-κB p50 binding site inserted at different locations within a 152-bp fragment comprising the 5 S RNA gene of X. borealis, were made. Because the X. borealis 5 S RNA gene contains a strong positioning signal, this allowed the reconstitution of precisely positioned nucleosomes (NF1, NF2, and NF3) containing the NF-κB p50 target sequence located at different distances from the nucleosome dyad (Fig. 1A). Recombinant highly purified X. laevis histones were used for reconstitution of nucleosomes. EMSA of the reconstituted particles using low ionic strength conditions showed that complete reconstitution was achieved because no or very little free DNA was observed on the gel (Fig. 1B) and showed that all particles migrated with the same mobility, suggesting that there were no detectable alterations of the positioning of the histone octamer on the 5 S DNA fragment.

Proteins present in the gel-purified nucleosome particles were analyzed by SDS-PAGE (Fig. 1C). The expected protein composition for a nucleosome particle and the integrity of histones were preserved in the reconstituted nucleosomes. It should be noted that recombinant histones H2A and H2B show the same electrophoretic mobility and cannot be well separated on the SDS gel (Fig. 1C). To further characterize the reconstituted nucleosomes on these altered 5 S DNA sequences, a DNase I footprinting was performed on each reconstituted nucleosome (Fig. 1D). A clear footprint pattern in all three reconstituted nucleosomes, NF1, NF2, and NF3, identical to the pattern obtained on the 5 S nucleosomal template was observed, indicating that the introduction of the NF-κB binding site in the 5 S DNA sequence does not perturb nucleosome formation and positioning.

To test whether NF-κB p50 was able to interact with these nucleosomes, NF1, NF2, and NF3, we determined the apparent dissociation constant of NF-κB p50 for nucleosomes and compared it with that of free DNA (Fig. 2A). Briefly, DNA of NF1, NF2, and NF3 was radioactively end-labeled and reconstituted into nucleosomes. Increasing amounts of NF-κB p50 were incubated with identical amounts of NF1, NF2, or NF3 nucleosomes or with naked NF1 or NF2 DNA. The respective complexes were allowed to form, and they were then separated on native polyacrylamide gels. The portions of NF-κB p50 un-
EC-M has the advantage that it provides a relatively high resolution snapshot of the solution conformation of unfixed and unstained specimen. It was extremely powerful in studying both the structure of the nucleosome and the nucleosomal conformational transitions occurring upon the passage of SP6 RNA polymerase (25, 26). We used a 208-bp DNA fragment containing the 5 S RNA gene of X. borealis with the inserted NF-κB p50 recognition sequence at positions −16 to −26 to reconstitute a nucleosome with the NF-κB p50 recognition sequence located in the vicinity of the dyad. About 30 bp of free DNA are present on each end of this nucleosome, which allows easier visualization of nucleosomal DNA (Fig. 3). NF-κB p50 was allowed to interact with both free DNA and the reconstituted nucleosome. The assembled complexes were visualized by EC-M (Fig. 3). The electron cryomicrographs of the NF-κB p50-DNA complexes (Fig. 3A) clearly show the presence of a dense structure located roughly in the middle of the DNA molecule where the NF-κB p50 recognition sequence was inserted. Such structures are not observed in the naked DNA fragment alone (Fig. 3B). We attributed this structure to the presence of bound NF-κB p50. This dense structure was also observed in the micrographs of the NF-κB p50-nucleosome complexes (Fig. 3, d–f and d’–f’), and it was absent in those of the nucleosome alone (Fig. 3, a–c and a’–c’). The dense structure was visualized in the middle of the nucleosome, as expected for a bona fide NF-κB p50-nucleosome complex. Therefore, EC-M distinctly detected NF-κB p50 bound to its recognition sequence within a positioned 5 S nucleosome. Interestingly, the overall shape of the nucleosomal DNA of the NF-κB p50-nucleosome complexes was essentially the same as that of the nucleosome alone (Fig. 3, compare a–c with d–f) suggesting that the binding of NF-κB p50 does not perturb the overall structure of the nucleosome or that the structural changes are minor and below the resolving power of EC-M imaging.

The NF-κB-Nucleosome Complex Exhibits Both Histone Content and a Hydroxyl Radical Footprinting Pattern Identical to Those of the Nucleosome Alone—To further characterize the organization of DNA of the NF-κB p50-nucleosome complex we used a hydroxyl radical footprinting analysis. Because of its small size and lack of sequence selectivity, this probe allows a detailed resolution of the DNA conformation within the nucleosome (27, 28). A NF1 nucleosome was incubated with NF-κB p50; then the DNase I and hydroxyl radical footprinting was performed with (Fig. 4A, lanes 1, 2, 4, and 5) and without (lane 3) gel purification of the complex. The DNase I footprinting shows that NF-κB p50 binds to its cognate sequence under the conditions used (Fig. 4A, lanes 1–2). The hydroxyl radical footprinting pattern of the NF-κB p50 bound samples is the same as that of the nucleosome alone (Fig. 4A, compare lane 5 with lane 4). Indeed, in all cases a clear enhancement of the hydroxyl radical cleavage at every 10 bp is observed, a pattern typical for the nucleosome (27, 29). Interestingly, the hydroxyl radical pattern of the region, which is covered by the protein, is not perturbed. Therefore, the binding of NF-κB is unlikely to affect the regular exposure of the nucleosomal DNA strands toward the solution. This conclusion is supported by the DNase I footprinting data of the NF-κB p50-nucleosome complexes where the sequences flanking the NF-κB p50 binding site exhibit a 10-bp cleavage repeat typical for the nucleosomes (Fig. 4A, lanes 1–2).

The interaction of a DNA-binding protein with the nucleosome may be associated with a removal of some of the core histones. For example, the loss of the H2A-H2B dimer was reported upon passage of RNA polymerase II through a nucleosome (30). If the above results and conclusions are correct, i.e.
NF-κB Binding to the Nucleosome

Fig. 2. NF-κB-p50 exhibits very similar binding affinity for both free DNA and nucleosomes. A, typical EMSA of NF-κB p50-DNA and NF-κB p50-nucleosome complexes. An increasing amount of NF-κB p50 was allowed to bind to NF1, NF2, or NF3 nucleosomes as well as to the respective naked NF1 and NF2 DNA fragments. The nucleoprotein complexes were then separated on a native 4% polyacrylamide gel. The positions of the naked DNA, the nucleosomes, and the NF-κB p50-DNA and NF-κB p50-nucleosome complexes are indicated. For the determination of the NF-κB apparent dissociation constants K_d for DNA and for nucleosomes, the percentage of NF-κB p50 unbound nucleosomes or NF-κB p50 unbound free DNA at a given NF-κB p50 concentration was calculated from EMSA data. Data points, averaged over at least three independent experiments, were fitted by non-linear least squares to the following binding equation: fraction unbound = 1/(1 + $[\text{NF-κB p50}]_0/K_d$). The value of 50% unbound NF-κB p50 to the nucleosome corresponds to the apparent constant of dissociation. Note that the apparent dissociation constant of NF-κB p50 for free NF1 or NF2 DNA is only 2- and 4-fold less than for the NF2 nucleosome and the NF1 and NF3 nucleosomes, respectively. B, NF-κB p50 was allowed to interact with the reconstituted nucleosomes, and its binding was visualized by DNase I footprinting. The recognition sequence of NF-κB is designated by the vertical bold line. The top strand (lanes 1–6) was labeled at the 5′-end, and the bottom strand (lanes 1′–6′) was labeled at the 3′-end.

Fig. 3. Cryoelectron micrographs of DNA-NF-κB p50 and nucleosome-NF-κB p50 complexes. A 205-bp DNA fragment containing the X. borealis somatic 5S RNA gene with the inserted NF-κB binding site at positions –16 to +26 was used to reconstitute a nucleosome. This nucleosome contains about 30 bp of free DNA on both of its ends, allowing easier visualization. A, cryoelectron micrographs for three 205-bp DNA-NF-κB p50 complexes. The binding of NF-κB p50 to DNA resulted in the generation of a dense structure (arrows) located roughly at the middle of the DNA filament. B, cryoelectron micrographs for three naked 205-bp DNA fragments. a–c, cryoelectron micrographs of three reconstituted nucleosomes. Note the free DNA ends of the nucleosomes. d–f, cryoelectron micrographs of three nucleosome-NF-κB p50 complexes. The arrows designate NF-κB p50 bound to nucleosomal DNA in the vicinity of the dyad axis, a′–c′ and d′–f′, schematic drawings of the nucleosomes visualized on the a–c and d–f electron cryomicrographs, respectively.

The overall structure of the nucleosome is not affected by the binding of NF-κB p50, one should expect that the binding of NF-κB p50 would not be associated with the displacement of histones from the nucleosome. To test this we analyzed the protein composition of the complex formed when NF-κB p50 is bound to nucleosomes (Fig. 4B). Briefly, NF1 nucleosomes (Fig. 4B, lane 1) and NF-κB p50-NF1 nucleosome complexes (lane 2) were separated on native polyacrylamide gel. The bands containing the nucleosomes (Fig. 4B, nuc, lane 1) or the shifted complex (cpx1, lane 2) were cut from the gel, and then the proteins were eluted and analyzed on a SDS-polyacrylamide gel. Fig. 4C demonstrates that all four histones are present in equimolar amounts in both the nucleosomes alone and the NF-κB p50-NF1 nucleosome complexes isolated from the gel (compare lanes 2 and 3). We conclude that the binding of NF-κB p50 does not affect the histone content of the nucleosome.

A NF-κB p50 Dimer Interacts with Nucleosomal DNA—The interactions of NF-κB p50 with free DNA have been well studied and show that the protein is found bound on the DNA as a dimer, each monomer recognizing an 11-bp binding site in the major groove, and on opposite faces of the DNA helix. Because this mode of binding should be reconciled with nucleosomal DNA structure, it was important to define the stoichiometry of NF-κB binding to positioned nucleosomal DNA. To this end the NF1, NF2, and NF3 DNA templates were 32P end-labeled and then used to reconstitute nucleosomes. NF-κB p50 was allowed to interact with both free NF1 DNA and the reconstituted nucleosomes, and then the complexes were analyzed on a native polyacrylamide gel (Fig. 5A). Interaction of NF-κB p50 with the free NF1 DNA gives rise to a major shift (Fig. 5A, cpx1) corresponding to the interaction of a dimer with the binding site (see also Fig. 2). In presence of an excess of NF-κB p50 a slightly slower migrating band (Fig. 5A, cpx2), corresponding to higher order complexes containing additional non-specifically bound NF-κB p50, is also observed. In the presence of the nucleosomal templates NF1, NF2, and NF3, similar
complexes (but with a slightly lower mobility) were observed (Fig. 5A, lanes 2–4). To determine the stoichiometry of the interaction of NF-κB p50 with nucleosomal DNA compared with the interaction with free DNA, the complexes resolved on the native polyacrylamide gel were transferred onto a nitrocellulose membrane, which was used to perform a Western blot analysis with an antibody against NF-κB (Fig. 5B). This Western blot was revealed using an Alexa anti-goat secondary antibody. The signals were quantified using PhosphorImager scanning. C, quantification of the amount of fluorescence (which detects the NF-κB protein) normalized to the amount of labeled DNA for each complex (cplx1 and cplx2). The presented data are averaged over three independent experiments.

The Binding of NF-κB p50 to Nucleosomes Induces Structural Alterations in Nucleosomal DNA Identical to Those in Naked DNA Templates—We have shown above that NF-κB p50 is able to bind to its recognition sequence inserted within nucleosomal DNA. This binding does not seem to affect the overall structure of the nucleosome and the wrapping of nucleosomal DNA around the histone octamer, and it is not associated with eviction of core histones. The x-ray studies of NF-κB-DNA complexes showed, however, specific local deformation of the DNA structure of the recognition sequence (5–7). The question arises as to whether similar local changes of the NF-κB recognition sequence are present within the NF-κB p50-nucleosome complexes. To address this question we used the recently developed UV laser footprinting technique (31, 32).

The UV laser footprinting is based on exposure of the DNA to high intensity laser pulse(s), which results in the induction of specific photolesions that arise via biphotonic excitation of the nucleobases (33). The photodamage formation depends on both the DNA sequence and its structure (34). The binding of a transcription factor induces a local change in the DNA struc-
ture at the binding site, which in turn affects the type and spectrum of the lesions induced upon laser irradiation. Because the DNA base photomodifications can be mapped at the nucleo-
tide level (31, 32, 34), this allows the visualization of local
changes in DNA conformation at a nucleotide resolution, i.e. to
carry out a UV laser footprinting (31, 32).

Initially, we studied by UV laser footprinting the solution
structure of the NF-κB p50 homodimer complexed with a 37-bp
DNA duplex that contained the major histocompatibility com-
plex H2 NF-κB p50 binding site (5'-GGGGATTCCCC). The
complex was exposed to a single high intensity 266 nm laser
pulse or multiple low intensity pulses. A treatment with hot
piperidine or digestion with either Fpg or phage T4 endonucle-
ase V allowed the visualization of the changes in the nucleo-
base photocactivity upon binding of the transcription factor.
The results showed a clear footprint within the DNA binding
sequence (Fig. 6, A and B).

The quantitative analysis of the laser photolysis-mediated
one-electron oxidation nucleobase lesions revealed interesting
structural alterations concerning the NF-κB p50 DNA binding
site within the NF-κB p50-DNA complex (Fig. 6C). Indeed, the
quantum efficiency for 8-oxoGua formation decreases 11–13×
for the two central residues G–3 and G–4 in the guanine run
of the bottom strand and 4× for the related nucleobases G+3
and G+4 in the top strand (Fig. 6C, Fpg, High I) compared with
the naked oligonucleotide. It may be added that a decrease to a
smaller extent in 8-oxoGua induction is observed in the first
guanine residue (G+5 or G–5) of each individual strand (Fig.
6C, Fpg, High I). In contrast, only a small decrease in the
quantum efficiency for 2,2,4-triamino-5-(2H)-oxazolone (Ox)
(35) generation is noticed for these three guanines upon NF-κB
p50 binding (Fig. 6C, pip, High I). The picture is, however,
different for the guanine G+2 (or G–2), for which an increase
in the induction quantum efficiency is observed for both 8-ox-
Gua and Oz (Fig. 6C, Fpg, High I and pip, High I). The
formation of cyclobutane pyrimidine dimers (36) and the
pyrimidine (6-4) pyrimidine (PyrPyo) adducts within the NF-κB
p50 target site upon low intensity UV irradiation is markedly
decreased in the presence of bound NF-κB p50 (Fig. 6C, Low I).
Hence, the analysis of the mono- and biphotonic DNA modifi-
cations provides insights into DNA alterations at the nucleo-
tide level within the NF-κB p50-DNA complex and visualizes a
specific structural “signature” on DNA induced upon NF-κB
binding. This allows the use of UV laser light as a very sensi-
tive tool for probing the structural perturbation of nucleosomal
DNA induced upon binding of this transcription factor to posi-
tioned NF1, NF2, and NF3 nucleosomes (see Fig. 1).

Interestingly, the UV laser footprinting patterns of naked
NF1, NF2, and NF3 DNA were identical to the nucleosomally
organized DNA (Fig. 7, compare lane 2 with lane 6 and lane 4
with lane 8 in each panel). Therefore, the quantum efficiency of
induction of monophotonic and biphotonic lesions is not af-
fected by the wrapping of DNA around the histone octamer; i.e.
the laser UV light does not “see” the wrapping of nucleosomal
DNA, a result in agreement with the UV light genomic foot-
printing data (37). The binding of NF-κB p50 to the naked
152-bp DNA results in the same structural alterations in the
NF-κB binding site as in the 37-bp duplex oligonucleotide (com-
pare Fig. 7 with Fig. 6). Importantly, the specific NF-κB p50
signature of DNA perturbation (a dramatic decrease of the
quantum efficiency of 8-oxoGua in the first three residues of
the guanine run (shown by stars on Fig. 7) and a strong
increase of the fourth G residue as well as the marked decrease
in the yield of cyclobutane pyrimidine dimers (shown by circles
on Fig. 7) detected upon low intensity UV irradiation were also
observed (Fig. 7, compare lane 2 with lane 3 and lane 4 with
lane 5 in each panel). Remarkably, the binding of NF-κB p50 to
the NF1, NF2, and NF3 nucleosomes results in the same struc-
tural alterations in the NF-κB binding site as those in naked
DNA (Fig. 7, compare lanes 3 and 7 and lanes 5 and 9 in each
panel). Therefore, NF-κB p50 can accommodate the bent nu-
cleosomal DNA and can bind to its recognition sequence inde-
pendently of its localization relative to the dyad.

DISCUSSION

We have studied the binding of NF-κB p50 to its recogni-
tion sequence in positioned nucleosomes using DNase I, hy-
droxyl radical and UV laser footprinting analysis, EMSA, and
electron cryomicroscopy. The combination of these methods
allowed us to obtain information that was inaccessible to
date. Our results demonstrate that the NF-κB p50 recogni-
tion sequences within the nucleosomal DNA are accessible to
NF-κB p50. The stoichiometry of the interaction of NF-κB
p50 with nucleosomal DNA templates is identical to that of
the interaction with free DNA. Interestingly, the binding
of NF-κB p50 did not alter the global structure of the nucleo-
some; the electron cryomicrographs show no difference in the
overall structure of free nucleosomes and that of NF-κB p50
bound particles. The 10-bp nucleosome-specific DNase I and
hydroxyl radical footprinting patterns were not affected by
the presence of NF-κB p50, a result supporting the electron
cryomicroscopy data. In agreement with this, it was illus-
trated that no eviction of histones was occurring upon NF-κB
p50 binding to the nucleosome. As demonstrated by the high
resolution UV laser footprinting, the binding of NF-κB p50 to
the nucleosome results, however, in local alterations in the
structure of its recognition site. Remarkably, these alter-
ations were found to be very similar to those observed in the
NF-κB p50 DNA complex. Finally, the binding affinity of
NF-κB p50 to both free DNA and nucleosomally organized
templates was found to differ only very slightly. All these
data allow us to conclude that the histone octamer does not
significantly affect the binding of a homodimer of NF-κB p50
to the nucleosome; i.e. the histone octamer is “transparent”
with respect to the binding of NF-κB p50 to the nucleosome.
This implies that NF-κB p50 has evolved to be compatible with
the histone octamer-DNA interactions.

Why does NF-κB exhibit such a peculiar property? Could this
be related to its function as a central regulator of stress re-
sponses? (For review, see Ref. 4.) Indeed, in most cells the
Rel/NF-κB proteins are found in the cytoplasm under the form
of inactive complexes with their inhibitor IκB. Numerous stimu-
uli are able to induce an activation of these transcription com-
plexes by freeing them from IκB (4). The Rel/NF-κB proteins
are then translocated into the nucleus where they bind to their
recognition DNA sequence and activate transcription. The
stress response requires rapidity and high efficiency. To fulfill
these requirements it appears that NF-κB proteins developed a
very interesting property, a compatibility with histone-DNA
interactions. This property of NF-κB could explain why euca-
ryotic cells respond to so many different stimuli by activating the
NF-κB target genes to be activated.
The affinity of NF-κB p50 for a nucleosome does not depend on the localization of its recognition site relative to the dyad axis (at least for the sites tested here), and it only slightly differs from the affinity for naked DNA templates. Our data show that the binding of NF-κB p50 to nucleosomes is associated with a slight increase of DNase I sensitivity of DNA sequences around –37 (see Fig. 2), suggesting that the conformation of this DNA region of the nucleosome has been altered by the binding of NF-κB p50. Disruption of a few histone-DNA contacts within this region might be sufficient for the binding of NF-κB p50 dimer. At this point our data cannot be easily reconciled with the crystal structure of the nucleosome (10) and...
NF-κB-DNA complexes (5–7). NF-κB transcription factors almost completely enclosed their DNA target sites, and docking NF-κB onto the nucleosome should lead to steric clashes with the histone octamer bound to the nucleosomal DNA. Integration of these currently disparate data will require more detailed analysis taking into account the dynamic properties of all components. It is possible that only one p50 monomer binds first to nucleosomal DNA and that the p50-cognate sequence is then peeled off away from the surface of the histone octamer, which allows the binding of the second p50 monomer.

Several transcription factors including Sp1, LEF-1, and upstream stimulatory factor (22, 23) as well as some steroid hormone receptors can bind to their cognate sites within the nucleosome (for review, see Ref. 21). It is possible that at least some of these factors might exhibit like NF-κB a compatibility with the histone octamer-DNA interactions; i.e., the histone octamer might be “compliant” when these transcription factors bind to the nucleosome. We hypothesize that many other DNA-binding proteins, including enzymes, also may have developed DNA binding properties compatible with the presence of the histone octamer within the nucleosome. The histone-DNA interaction compatibility of these proteins would greatly help their function on nucleosomal templates. In support of this are the recent data that illustrate that human DNA ligase I seals nicks in nucleosomal DNA with high efficiency (43).

Acknowledgments—We are grateful to Dr. T. Richmond for the histone expression vectors and to Dr. J. Hayes for advice on hydroxyl radical footprinting. We thank Dr. Apostolos Gittis for help with the crystallographic structures of NF-κB-DNA and of the nucleosome.

REFERENCES
1. Baueuerle, P. A., and Baltimore, D. (1996) Cell 87, 13–20
2. Epinat, J. C., and Gilmore, T. D. (1999) Oncogene 18, 6896–6909
3. Gilmore, T. D. (1999) Oncogene 18, 6842–6844
4. Pahl, H. L. (1999) Oncogene 18, 6853–6866
5. Ghosh, G., van Duyne, G., Ghosh, S., and Sigler, P. B. (1995) Nature 373, 303–310
6. Muller, C. W., Rey, F. A., Sodeoka, M., Verdone, G. L., and Harrison, S. C. (1995) Nature 373, 311–317
7. Cramer, P., Larson, C. J., Verdone, G. L., and Muller, C. W. (1997) EMBO J. 16, 7078–7090
8. Moudrianakis, E. N., and Arents, G. (1993) Cold Spring Harbor Symp. Quant. Biol. 58, 273–279
9. Arents, G., Burlingsame, R. W., Wang, B. C., Love, W. E., and Moudrianakis, E. N. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 10148–10152
10. Muller, C. W., Rey, F. A., Sodeoka, M., Verdone, G. L., and Harrison, S. C. (1997) Nature 389, 589–602
11. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Nature 389, 251–260
12. Cairns, B. R., Lorch, Y., Li, Y., Zhang, M., Lacroix, L., Erdjument-Bromage, H., Tempst, P., Du, J., Laurenzi, B., and Kornberg, R. D. (1996) Cell 87, 1249–1260
13. Peterson, C. L., and Tamaru, J. W. (1995) Trends Biochem. Sci. 20, 143–146
14. Tsukiyama, T., and Wu, C. (1995) Cell 81, 1011–1020
15. Varga-Weisz, P. D., Wilm, M., Bonne, E., Dumas, K., Mann, M., and Becker, P. B. (1997) Nature 388, 398–402
16. Becker, P. B. (2002) EMBO J. 21, 4749–4753
17. Langst, G., and Becker, P. B. (2001) J. Cell Sci. 114, 2561–2568

Fig. 7. The UV laser footprinting shows that the binding of NF-κB p50 and p50 complexes with NF1, NF2, and NF3 nucleosomes, respectively. A, UV laser footprinting of NF-κB p50 complexes with NF1 DNA and NF1 nucleosomes. B and C, UV laser footprinting of NF-κB p50 complexes with NF2 and NF3 DNA and NF2 and NF3 nucleosomes, respectively.
NF-κB Binding to the Nucleosome

18. Polach, K. J., and Widom, J. (1995) J. Mol. Biol. 254, 130–149
19. Anderson, J. D., and Widom, J. (2000) J. Mol. Biol. 296, 979–987
20. Miller, J. A., and Widom, J. (2003) Mol. Cell. Biol. 23, 1623–1632
21. Beato, M., and Eisfeld, K. (1997) Nucleic Acids Res. 25, 3559–3563
22. Angelov, D., Charra, M., Seve, M., Cote, J., Khochbin, S., and Dimitrov, S. (2000) J. Mol. Biol. 302, 315–326
23. Steger, D. J., and Workman, J. L. (1997) EMBO J. 16, 2463–2472
24. Angelov, D., Mella, A., Perche, P.-Y., Hans, F., Côte, J., Khochbin, S., Bouvet, P., and Dimitrov, S. (2003) Mol. Cell 11, 1033–1041
25. Bednar, J., and Woodcock, C. L. (1999) Methods Enzymol. 304, 191–213
26. Bednar, J., Studitsky, V. M., Grigoryev, S. A., Felsenfeld, G., and Woodcock, C. L. (1999) Mol. Cell 4, 377–386
27. Hayes, J. J., Bashkin, J., Tullius, T. D., and Wolfe, A. P. (1991) Biochemistry 30, 8434–8440
28. Hayes, J. J., and Wolfe, A. P. (1992) Trends Biochem. Sci. 17, 250
29. Hayes, J. J., Tullius, T. D., and Wolfe, A. P. (1996) Proc. Natl. Acad. Sci. U. S. A. 87, 7405–7409
30. Kireeva, M. L., Walter, W., Tehernajenko, V., Bondarenko, V., Kashlev, M., and Studitsky, V. M. (2002) Mol. Cell 9, 541–552
31. Angelov, D., Khochbin, S., and Dimitrov, S. (1999) in Chromatin Protocols (P. Becker, ed) Vol. 119, Methods in Molecular Biology, pp. 481–485, Humana Press, Totowa, NJ
32. Angelov, D., Novakov, E., Khochbin, S., and Dimitrov, S. (1999) Biochemistry 38, 11333–11339
33. Nikogosyan, D. N. (1990) Int. J. Radiat. Biol. 57, 233–299
34. Spassky, A., and Angelov, D. (1997) Biochemistry 36, 6571–6576
35. Cadet, J., Berger, M., Doki, T., and Ravanat, J. L. (1997) Rev. Physiol. Biochem. Pharmacol. 131, 1–87
36. Doki, T., and Cadet, J. (2001) Biochemistry 40, 2495–2501
37. Becker, M. M., Wang, Z., Grossmann, G., and Recher, K. A. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 5315–5319
38. Neely, K. E., Hassan, A. H., Wallberg, A. E., Steger, D. J., Cairns, B. R., Wright, A. P., and Workman, J. L. (1999) Mol. Cell 4, 649–655
39. Hassan, A. H., Neely, K. E., Vignali, M., Reese, J. C., and Workman, J. L. (2001) Proc. Natl. Acad. Sci. U. S. A. 86, 7405–7409
40. Fry, C. J., and Peterson, C. L. (2001) Curr. Biol. 11, R185–R197
41. Peterson, C. L., and Logie, C. (2000) J. Cell. Biochem. 78, 179–185
42. Wallberg, A. E., Neely, K. E., Hassan, A. H., Gustafsson, J. A., Workman, J. L., and Wright, A. P. (2000) Mol. Cell. Biol. 20, 2004–2013
43. Chafin, D. R., Vitolo, J. M., Henrickson, L. A., Bambara, R. A., and Hayes, J. J. (2000) EMBO J. 19, 5492–5501
44. Lee, K. M., and Hayes, J. J. (1998) Biochemistry 37, 8622–8628
45. Luguer, R., Rechsteiner, T. J., and Richmond, T. J. (1999) Methods Mol. Biol. 119, 1–16
46. Scrittori, L., Hans, F., Angelov, D., Charra, M., Prigent, C., and Dimitrov, S. (2001) J. Biol. Chem. 276, 30002–30010
47. Adams, C. C., and Workman, J. L. (1995) Mol. Cell. Biol. 15, 1405–1421
48. Hayes, J. J., and Lee, K. M. (1997) Methods 12, 2–9