Dissolved organic matter from tropical peatlands impacts shelf sea light availability on coral reefs in the Singapore Strait, Southeast Asia

Patrick Martin1*, Nivedita Sanwlan1, Tiffany Wan Qi Lee1, Joel Meng Cheng Wong2, Kristy Chang1, Elizabeth Wing-See Wong2, Soo Chin Liew2

1Asian School of the Environment, Nanyang Technological University, Singapore
2Centre for Remote Imaging, Sensing, and Processing, National University of Singapore, Singapore

*Corresponding author: Patrick Martin
Tel: +65 6514 8683
Email: pmartin@ntu.edu.sg

List of ORCIDs:
Patrick Martin: 0000-0001-8008-5558
Elizabeth Wing-See Wong: 0000-0002-6465-1756
Kristy Chang: 0000-0001-6387-2744

Keywords:
Optical water quality; Underwater light attenuation; Coloured dissolved organic matter; Dissolved organic carbon; Tropical peatlands
Abstract

Shelf seas provide valuable ecosystem services, but their productivity and ecological functioning depend critically on sunlight transmitted through the water column. Anthropogenic reductions in underwater light availability are thus recognized as a serious threat to coastal habitats. The flux of strongly light-absorbing coloured dissolved organic matter (CDOM) from land to sea may have increased world-wide, but how this has altered the availability and spectral quality of light in shelf seas remains poorly known. Here, we present time-series data from the Sunda Shelf in Southeast Asia, where the monsoon-driven reversal in ocean currents supplies water enriched in CDOM from tropical peatlands for part of the year, resulting in 5–10-fold seasonal variation in light absorption by CDOM. We show that this terrigenous CDOM can dominate underwater light absorption at wavelengths up to 500 nm, and shift in the underwater irradiance spectrum towards longer wavelengths. The seasonal presence of terrigenous CDOM also causes the depth of 10% light penetration to shoal by 1–5 m, or 10–45%. We further estimate that on average 0.6 m, or 25%, of this terrigenous CDOM-mediated shoaling might be attributable to the enhanced loss of dissolved organic matter caused by peatland disturbance. We show that the seasonal change in the light environment is correlated with photo-acclimation by phytoplankton, and infer that terrigenous CDOM likely contributes to limiting the depth distribution of photosynthetic corals. Our results thus reveal an ecologically important but largely overlooked impact of human modifications to carbon fluxes that is likely becoming increasingly important in coastal seas.
1. Introduction

Shelf seas account for less than 10% of the global ocean area, but contribute more than 50% of the value of all marine ecosystem services (Costanza et al. 2014). These ecosystem services are largely contributed by benthic habitats that require sunlight for photosynthesis, such as coral reefs and seagrass beds. The attenuation of sunlight with depth is consequently a critical aspect of shelf sea water quality (Kirk 1988), and can strongly control the productivity and areal extent of light-dependent benthic ecosystems (Gattuso et al. 2006).

Changes in light attenuation and water clarity are therefore highly significant stressors of shelf sea ecosystems (Dupont & Aksnes 2013, Filbee-Dexter & Wernberg 2018, Heery et al. 2018).

Underwater light attenuation varies chiefly as a result of absorption and backscattering of light by phytoplankton, suspended organic detritus particles, suspended inorganic sediment particles, and dissolved organic matter (DOM). Each of these optically active constituents can contribute significantly to light attenuation in aquatic ecosystems (IOCCG 2000).

Moreover, because their absorption and backscattering spectra differ, the attenuation of an equal amount of sunlight by different constituents results in a different spectral distribution of light underwater. DOM absorbs most strongly at short wavelengths in the ultraviolet (UV) and blue range, and therefore plays an important role in protecting marine organisms from harmful UV radiation (Arrigo & Brown 1996, Banaszak & Lesser 2009, Häder et al. 2015).

Yet by also absorbing blue light, DOM can shift the underwater irradiance to longer wavelengths that are less effectively absorbed by many photosynthetic organisms. Such spectral variation in the available light underwater can, for example, alter the phytoplankton community structure (Stomp et al. 2007, Gerea et al. 2017).

However, especially in the context of anthropogenic impacts on underwater light availability, the most widely recognized drivers of light attenuation in coastal waters are eutrophication.
Manuscript submitted to Marine Ecology Progress Series

4 (Dennison et al. 1993, Duarte 1995, Burkholder et al. 2007) and suspended sediment particles
1 (Fabricius 2005, Storlazzi et al. 2015, Edmunds et al. 2018, Heery et al. 2018). In contrast,
3 even though DOM can strongly control the optical properties of coastal waters (DeGrandpre
4 et al. 1996, Kowalczuk et al. 2005, Foden et al. 2008, Kuwahara et al. 2010, Mascarenhas et
5 al. 2017, Petus et al. 2018), the potential for DOM to drive ecologically significant changes in
6 light attenuation, and the consequences for the spectral quality of underwater irradiance, are
7 often neglected outside of the specialist optical oceanography literature.
8
9 The light absorbing substances in DOM, such as humic acids, are collectively known as
10 coloured dissolved organic matter (CDOM). Although CDOM is also produced by bacteria
11 and phytoplankton in the ocean (Coble 2007, Dainard & Guéguen 2013, Osburn et al. 2019),
12 dissolved organic matter that originates from the partial decomposition of terrestrial
13 vegetation is particularly strongly light-absorbent (Vantrepotte et al. 2015, Massicotte et al.
14 2017). The flux of this CDOM-rich terrigenous dissolved organic carbon (terrigenous DOC,
15 or tDOC) from land to coastal oceans is a quantitatively significant part of the global carbon
16 cycle and has increased by tens of percent in many parts of the world (Evans et al. 2005,
17 Monteith et al. 2007, Moore et al. 2013). In Europe and North America, these trends may be
18 largely driven by the recent reductions in atmospheric acid deposition, because high acid
19 deposition can reduce organic matter solubility in soils (Skjelkvåle et al. 2005, Evans et al.
20 2006, Monteith et al. 2007). However, climate warming, increased water run-off, and land-
21 use change are also driving increased tDOC fluxes both in high- and low-latitude regions
22 (Hessen et al. 2010, Larsen et al. 2011, Weyhenmeyer et al. 2012, Moore et al. 2013, de Wit
23 et al. 2016, Noacco et al. 2017, Wauthy et al. 2018). CDOM is an integral part of tDOC, and
24 the concentrations of tDOC and of CDOM are therefore highly correlated in rivers and river
25 plumes (Fichot & Benner 2011, Leech et al. 2016, Cook et al. 2017, Massicotte et al. 2017,
26 Martin et al. 2018). Thus, increases in tDOC flux to coastal waters will necessarily entail
increases in terrigenous CDOM flux. Moreover, tDOC and the associated terrigenous CDOM frequently exhibit relatively conservative mixing behaviour across salinity gradients in estuaries and shelf seas (Blough et al. 1993, Yamashita et al. 2011, Fichot & Benner 2012, Chen et al. 2015, Martin et al. 2018, Painter et al. 2018), such that shelf seas and adjacent oceanic regions can have high concentrations of tDOC and terrigenous CDOM (Blough et al. 1993, Kaiser et al. 2017, Medeiros et al. 2017, Carr et al. 2019, Zhou et al. 2019).

Terrigenous CDOM thus has the potential to spread extensively across shelf seas, and increases in tDOC flux might therefore affect the light environment over large areas of coastal ocean. That terrigenous, as opposed to marine, CDOM can significantly affect the underwater light environment in the sea has been recognised in regions where the CDOM pool is predominantly terrestrial (Blough et al. 1993, Kjeldstad et al. 2003, Kowalczuk et al. 2006, Hessen et al. 2010, Mizubayashi et al. 2013, Cherukuru et al. 2014). However, CDOM in coastal waters often consists of a mixture of marine and terrigenous CDOM in proportions that can vary strongly spatially and temporally. The most common way to distinguish marine from terrigenous CDOM is by measuring the slope of the CDOM absorption spectrum, originally over large wavelength ranges from UV to visible (Stedmon & Markager 2001, Kowalczuk et al. 2006, Astoreca et al. 2009). More recently, spectral slopes over narrow ranges of shorter wavelengths have become increasingly established for identifying terrigenous CDOM in terrestrially influenced marine waters, especially the spectral slope between 275–295 nm, $S_{275–295}$ (Helms et al. 2008, Vantrepotte et al. 2015, Lu et al. 2016, Medeiros et al. 2017, Carr et al. 2019, Signorini et al. 2019). $S_{275–295}$ has also been used successfully to quantify tDOC concentrations in shelf seas (Fichot & Benner 2012, Fichot et al. 2013, Fichot et al. 2014).
However, although the importance of terrigenous CDOM for the light environment of coastal waters has clearly been recognised, the relative contributions of terrigenous and marine CDOM to light attenuation in shelf seas have usually not been partitioned quantitatively. Consequently, although large-scale anthropogenic changes in land–ocean tDOC fluxes have the potential to alter the light environment of shelf seas by altering the terrigenous CDOM concentration, our knowledge of such impacts is still very limited. Based on long-term trends in salinity and correlations between salinity and CDOM in Norwegian fjords, Aksnes et al. (2009) inferred that increased terrigenous CDOM had resulted in “coastal browning”, which may have contributed to mesopelagic regime shifts from fish (visual predators) to jellyfish (tactile predators). Similarly, an increase in non-autotrophic particulate organic carbon in southern Norway was interpreted as indicating an increase in terrigenous CDOM, and this was hypothesised to have contributed to the collapse of coastal kelp forests (Frigstad et al. 2013). An increase in terrigenous CDOM was also invoked as a possible mechanism driving decreased water clarity in the North Sea (Dupont & Aksnes 2013), which may have caused a shift in the timing of the spring phytoplankton bloom by up to three weeks (Opdal et al. 2019). Ecosystem modelling has additionally demonstrated that increased terrigenous CDOM absorption can lead to a shallower distribution of phytoplankton and a shallower nutricline, resembling symptoms of eutrophication (Urtizberea et al. 2013). Moreover, recent time series of CDOM and comparison to historical chromaticity measurements suggest that terrigenous CDOM concentrations in the Gulf of Maine have increased as a result of greater river run-off (Balch et al. 2012, Balch et al. 2016), although the impacts for light attenuation could not be quantified in these studies. Consequently, it remains unclear to what extent coastal browning due to terrigenous CDOM has impacted shelf sea ecosystems and productivity. This contrasts with our better understanding of the ecological impacts of freshwater “lake browning” caused by rising inputs of tDOC and terrigenous CDOM (Larsen et al. 2011,
Graneli 2012, Wauthy et al. 2018). These impacts include reductions in primary productivity, shifts from benthic to pelagic primary productivity, thermocline shoaling, and possibly reductions in stocks of visually hunting fish (Ask et al. 2009, Thrane et al. 2014, Solomon et al. 2015, Vasconcelos et al. 2019). However, the freshwater lakes where lake browning has been reported contain far higher concentrations of terrigenous CDOM than do shelf seas, so much so that filtered lake water can have a noticeably yellow-brown colouration (Solomon et al. 2015). Whether CDOM-mediated browning can affect the ecological functioning of shelf seas to the same degree as lakes is still unclear.

Here, we use biogeochemical and optical time-series data from the Singapore Strait in the Sunda Shelf Sea in Southeast Asia to estimate seasonal changes in the proportion of marine and terrigenous CDOM, and then to quantify how terrigenous CDOM impacts underwater light availability. Tropical peatlands are the dominant source of tDOC and terrigenous CDOM in this part of Southeast Asia (Baum et al. 2007, Siegel et al. 2019). Previous research suggests that the extensive and recent anthropogenic disturbance and drainage of these peatlands (Miettinen et al. 2016) have increased their tDOC flux by about 50% (Moore et al. 2013, Yupi et al. 2016). Given that tDOC and CDOM show a strong relationship in Southeast Asian peatlands (Cook et al. 2017, Martin et al. 2018), we present a first-order estimate of the potential anthropogenic contribution to CDOM-mediated light attenuation.

2. Materials & Methods

2.1 Study area

The Singapore Strait is located in the central Sunda Shelf Sea, close to the peatlands on Sumatra (Fig. 1). The ocean currents on the Sunda Shelf reverse direction seasonally (van Maren & Gerritsen 2012, Mayer & Pohlmann 2014, Susanto et al. 2016, Wei et al. 2019): during the Northeast (NE) Monsoon (November–February), water flows westwards from the
South China Sea through the Singapore Strait, and further northwards through the Malacca Strait to the Indian Ocean. During the Southwest (SW) Monsoon (May–September), the flow through the Malacca Strait stagnates or reverses direction, and water flows eastwards from the coast of Sumatra back through the Singapore Strait (Fig. 1). The annual mean flow is westwards from the South China Sea through the Singapore Strait and northward through the Malacca Strait to the Indian Ocean, with water residence times of 1–2 years for most parts of the shelf (Mayer et al. 2015, Mayer et al. 2018). This region of the Sunda Shelf (southern Malacca Strait, Singapore Strait, and Karimata Strait) experiences strong tidal currents that mix the water column all the way to the seafloor and prevent stratification (Mayer & Pohlmann 2014, Hamzah et al. 2020). This means that water from the open South China Sea reaches the Sumatran coast, receives large inputs of CDOM-rich tDOC from the peatlands, and then seasonally flows back into the Singapore Strait, while longer-term flowing towards the Indian Ocean via the Malacca Strait and the Java Sea. Seasonal variation in the Singapore Strait thus reflects primarily the regional spatial variability around the Singapore Strait.

For the present analysis, we defined the seasons as follows: Intermonsoon 1: 01 March to 14 May; SW Monsoon: 15 May to 14 September; Intermonsoon 2: 15 September to 14 November; NE Monsoon: 15 November to end of February.

2.2 Field sampling and sensor measurements

The present analysis uses data collected as part of an on-going biogeochemical time-series programme. Measurements of salinity, DOC, and CDOM were collected at monthly to biweekly frequency between October 2017 and August 2020. Bio-optical parameters (particulate absorption and backscattering) were measured approximately monthly between December 2018 and August 2020. We collected samples at two sites (Fig. 1): Kusu Island (an exposed site experiencing higher wave energy) and Hantu Island (a sheltered site with lower
Manuscript submitted to Marine Ecology Progress Series

wave energy). Both islands have artificial breakwaters, and narrow coral reefs that extend
about 20 m horizontally from the breakwaters. Additional sites in between Kusu and Hantu
were sampled occasionally to constrain spatial variability (Fig. 1). Conductivity-temperature-
depth profiles were measured with a Valeport FastCTD at 16 Hz to 12–15 m depending on
current and bottom depth; stratification was not observed. Water was collected adjacent to the
reefs at 5 m depth using a Niskin bottle. Samples for CDOM and DOC analysis were filtered
on board through 0.2 µm Supor polyethersulfone filters (all tubing and filter housings were
cleaned with 1 M HCl, then assembled with the filters and pre-rinsed with 200 mL of
ultrapure water (18.2 MΩ cm⁻¹) and with sample water; and stored in 40-mL amber
borosilicate EPA vials (pre-baked at 450°C for 4 h) with Teflon-coated septa. Water for
chlorophyll-α and particulate absorption was stored in acid-washed HDPE bottles in the dark
and filtered (25-mm Whatman GF/F) 3–6 hours later in the laboratory.
Backscattering was measured at 412, 440, 488, 510, 532, 595, 650, 676, and 715 nm using a
Wetlabs BB9 lowered to 1 m depth; 60 consecutive measurements were taken at 1 Hz and
averaged. The data were processed according to manufacturer instructions: the raw
measurement was converted to the total volume scattering coefficient by subtracting the dark
offset (measured before each field trip) and multiplying by a calibration scaling factor, and
corrected for non-water absorption as measured by a TriOS OSCAR instrument. Volume
scattering from pure seawater was subtracted and the particulate scattering converted to
particulate backscattering coefficients following Boss and Pegau (2001), which were then fit
with a power law at 1-nm resolution over the wavelength range of photosynthetically active
radiation (PAR, 400–700 nm).
The present analysis focuses on the period of December 2018 to August 2020, during which
we acquired 77 measurements of CDOM, DOC, and salinity, 60 measurements of particulate
absorption, and 36 measurements of backscattering.
2.3 CDOM and particulate absorption measurements

CDOM samples were stored at +4°C back on land and analysed within 24 h of collection. Samples were brought to room temperature and absorbance measured from 250–800 nm at 1-nm resolution in 10-cm pathlength quartz cuvettes on a Thermo Evolution 300 dual-beam spectrophotometer against ultrapure water as a reference. Data were baseline-corrected according to Green and Blough (1994), smoothed using a loess function, and converted to Napierian absorption coefficients, using the R package hyperSpec (Beleites & Sergo 2018). Here, we express the concentration of CDOM as the CDOM absorption coefficient at 440 nm, $a_{\text{CDOM}}(440)$, with units of m$^{-1}$. We also calculated the CDOM spectral slope from 275–295 nm, $S_{275-295}$, and the spectral slope ratio (S_R, the ratio of the 275–295 nm slope to the 350–400 nm slope) following Helms et al. (2008). Both $S_{275-295}$ and S_R have been shown to correlate with DOM molecular weight (Helms et al. 2008) and are widely used as markers of tDOC in coastal seas (Fichot & Benner 2012, Fichot et al. 2013, Vantrepotte et al. 2015, Lu et al. 2016, Meideiros et al. 2017, Painter et al. 2018, Carr et al. 2019). To test whether seasonal variation in CDOM could be explained by conservative mixing between terrigenous CDOM (with low $S_{275-295}$ and S_R) and marine CDOM (with high $S_{275-295}$ and S_R), we calculated a theoretical mixing model between the CDOM spectra measured on 15 March 2019 (with high $S_{275-295}$ and low $a_{\text{CDOM}}(440)$) and 16 July 2020 (lowest $S_{275-295}$ and highest $a_{\text{CDOM}}(440)$ in 2019 and 2020) as follows:

$$a_{\text{CDOM},\text{mix}}(\lambda) = a_{\text{CDOM,terr}}(\lambda) \times f_{\text{terr}} + a_{\text{CDOM,mar}}(\lambda) \times (1 - f_{\text{terr}})$$ \hspace{1cm} \text{Eq. (1)}

where $a_{\text{CDOM, mix}}(\lambda)$ is the predicted CDOM spectrum for conservative mixing, $a_{\text{CDOM,terr}}$ and $a_{\text{CDOM,mar}}$ are the measured CDOM spectra at Hantu Island on 16 July 2020 and 15 March 2019, respectively, and f_{terr} is the fractional contribution of the 16 July 2020 spectrum (which we varied between 0 and 1 in increments of 0.0125 to simulate conservative mixing). For
each predicted $a_{\text{CDOM,mix}}$ spectrum, $S_{275-295}$ and S_R were recalculated as for the original data. The theoretical mixing curves were plotted together with the measured data on scatter plots of $S_{275-295}$ and S_R against $a_{\text{CDOM}}(440)$, following Stedmon and Markager (2001). Samples for particulate absorption (500–1000 mL) were vacuum-filtered onto 25-mm diameter Whatman GF/F filters and stored in liquid nitrogen in tissue embedding cassettes (Kartell Labware) wrapped in aluminium foil. Samples were thawed to room temperature, moistened by briefly placing them on a sponge soaked in filtered seawater, and absorbance measured from 300–800 nm with filters held inside an integrating sphere using a centre-mount sample holder on a PerkinElmer Lambda 950 spectrophotometer, as recommended by Stramski et al. (2015). Multiple blank filters were measured throughout each batch of analysis. Filters were then depigmented (as assessed by the complete disappearance of the chlorophyll-α absorption peak at 668 nm) with 5 ml of 0.1% sodium hypochlorite in ultrapure water with 60 g l$^{-1}$ sodium sulphate for 15 min (Ferrari & Tassan 1999), rinsed with 5 ml ultrapure water, and remeasured. All blank and sample absorbance spectra were first corrected for baseline drift by subtracting the mean absorbance from 801–851 nm from the rest of the spectrum, and then blank-corrected by subtracting the mean baseline drift-corrected blank spectrum from all sample absorbance spectra. These corrected sample absorbances were then corrected for pathlength amplification according to Stramski et al. (2015):

$$A_s = 0.323 (A_f)^{1.0867}, \quad \text{(Eq. 2)}$$

where A_s is the pathlength-corrected sample absorbance, and A_f is the blank- and baseline-corrected absorbance of each filter. Corrected absorbances were then converted to Napierian absorption coefficients by accounting for the area of sample on each filter (the filtered area of each filter had a radius of 11.5 mm) and the sample volume filtered. Phytoplankton absorption (a_{phyto}) was calculated by subtracting the depigmented absorption spectrum (i.e.,
the non-algal particulate absorption, a_{NAP}, from the total particulate absorption spectrum.

From the a_{phyto} spectra, we further calculated the phytoplankton absorption spectral slope following Eisner et al. (2003):

$$a_{\text{phyto}} \text{ slope} = \frac{a_{\text{phyto}}(488) - a_{\text{phyto}}(532)}{a_{\text{phyto}}(676) 	imes (488 - 532)} \quad (\text{Eq. 3})$$

where numbers in parentheses indicate the wavelengths. We also calculated the ratio of phytoplankton absorption at 490 to 510 nm, $a_{\text{phyto}}(490):a_{\text{phyto}}(510)$, following Hickman et al. (2009). Both of these are measures of the ratio of photoprotective to photosynthetic carotenoid pigments in the phytoplankton community, which is indicative of photoprotective acclimation.

Seasonal average spectral absorption budgets were calculated as the fractional contribution of each absorbing constituent (CDOM, non-algal particles, phytoplankton, and water) to the total absorption at each wavelength, and then averaging these data seasonally.

2.4 DOC analysis and specific UV absorbance calculation

DOC samples (30 ml) were acidified with 100 µl of 50% H$_2$SO$_4$ in the field, stored at +4°C, and analysed within 2–3 months of collection on a Shimadzu TOC-L analyser with the Shimadzu high-salt combustion kit and calibrated using potassium hydrogen phthalate, as in our previous work (Martin et al. 2018). Certified reference material from the University of Miami (deep-sea water, 42–45 µmol l$^{-1}$ DOC) was analysed alongside every batch of measurements, and returned a long-term mean ± standard deviation of 48.0 ± 3.9 µmol l$^{-1}$ throughout our time series. DOC samples were collected and analysed in triplicate starting in December 2018. We used these data to calculate the specific UV absorbance at 254 nm (SUVA$_{254}$):

$$\text{SUVA}_{254} = \frac{A_{254}}{[\text{DOC}]} \quad (\text{Eq. 4})$$
Manuscript submitted to *Marine Ecology Progress Series*

where A_{254} is the CDOM absorbance at 254 nm per metre, and the DOC concentration is in mg C l$^{-1}$ (note that the absorbance is obtained by dividing the Napierian absorption coefficient by 2.303). SUVA$_{254}$ consequently has units of l mg$^{-1}$ m$^{-1}$, and is a measure of DOM aromaticity (Traina et al. 1990, Weishaar et al. 2003). Similar to $S_{275-295}$ and S_R, SUVA$_{254}$ is useful as a tracer of terrigenous DOM in aquatic ecosystems (Cao et al. 2018, Anderson et al. 2019, Carr et al. 2019).

2.5 Chlorophyll-a

Samples for chlorophyll-a (200–1000 ml) were filtered onto 25 mm diameter Whatman GF/F filters, wrapped in aluminium foil, flash-frozen in liquid nitrogen, and stored at -80°C until analysis within 3 months. Filters were then extracted in 90% acetone at 4°C in the dark overnight, briefly centrifuged to remove particles, and fluorescence measured on a Horiba Fluoromax4 at excitation 436 nm and emission 680 nm with slit widths of 5 nm (Welschmeyer 1994). Fluorescence was acquired as the fluorescence signal normalised to the lamp reference measurement to account for variation in lamp intensity (using the Fluoromax4 S1c/R1c acquisition mode), and calibration was performed with a spinach chlorophyll-a standard (Sigma-Aldrich, C5753-1MG).

2.6 Calculating light attenuation spectra

Underwater light attenuation can be described by the diffuse attenuation coefficient of downwelling irradiance, K_d, which varies spectrally:

$$E_d(z, \lambda) = E_d(0, \lambda) \times e^{-K_d(\lambda) \times z} \quad (\text{Eq. 5})$$

where $E_d(z, \lambda)$ is the downwelling irradiance at depth z and wavelength λ, $E_d(0, \lambda)$ is the downwelling irradiance at wavelength λ at the surface, and $K_d(\lambda)$ is the diffuse attenuation coefficient at wavelength λ. We used our spectral measurements of absorption by CDOM and
particles, and backscattering by particles, to calculate spectra of K_d over the wavelength range 400–700 nm according to Lee et al. (2005):

$$K_d = (1 + 0.005\theta)a + 4.18(1 - 0.52e^{-10.8a})b_b$$ \hspace{1cm} (Eq. 6)

where θ is the solar zenith angle, a is total absorption, and b_b is total backscattering.

Absorption and backscattering spectra of pure seawater were taken from Pope and Fry (1997) and Smith and Baker (1981), respectively. We used the solar zenith angle at solar noon on each date (i.e., the time of day when the sun is at its highest point), such that the result reflects the maximum light penetration for each date. Solar zenith angles and solar noon times were calculated using the R packages GeoLight (Lisovski & Hahn 2012) and suncalc.

This calculation was originally developed to estimate K_d between the surface and the depth to which 10% of surface PAR penetrates ($Z_{10%}$) and was therefore denoted $K_d(E_{10%})$ by Lee et al. (2005); we refer to this as K_d here for simplicity, since K_d at individual wavelengths does not vary strongly with depth unless the absorption and backscattering spectra vary with depth. A total of 32 concomitant measurements of absorption and backscattering were available for this calculation, taken on 17 separate dates. We verified that this calculation yielded accurate estimates of K_d by comparing calculated K_d spectra to K_d spectra measured using a TriOS RAMSES radiometer at 19 of these 32 stations; the radiometer measurement methods and the results of this comparison are shown in the Supplementary Information.

2.7 Calculating underwater irradiance spectra and depth of PAR penetration

To examine how seasonal variation in absorption and backscattering affect both the spectral quality of irradiance underwater and the depth to which PAR penetrates, we used the K_d spectra together with modelled mid-day solar irradiance for each date to calculate depth profiles of underwater irradiance, the vertical attenuation coefficient of downwelling PAR, K_d(PAR), and $Z_{10%}$. Our objective with this analysis was not to derive the actual underwater
irradiance on each date, which depends especially on cloud cover, but rather to determine the
potential effects of the observed variation in absorption and backscattering on the underwater
light environment. We therefore modelled the downwelling irradiance spectrum just below
the water surface (E_d0°) for solar noon on each date using the Hydrolight model, assuming
identical cloud cover and wind speed for each day (20% and 2 m s^{-1}, respectively), and used
these modelled spectra as inputs for our calculations. This means that seasonal changes in
solar zenith angle (and their resulting effects on irradiance) are accounted for, but that our
results are otherwise representative of conditions experienced around mid-day on relatively
cloud-free days. Variation in cloud cover chiefly alters the total irradiance, but does not affect
the shape of the irradiance spectrum very strongly. Our purpose with these calculations was
not to estimate exact light doses, but rather to examine how the depth penetration and spectral
distribution of underwater light vary over time as a result of our measured changes in
absorption and backscattering, for which modelled irradiances are sufficient.

We first calculated the average underwater irradiance spectrum experienced by
phytoplankton in a fully mixed water column, $E_d(Z_{mean})$ (Ferrero et al. 2006, Gerea et al.
2017):

$$E_d(Z_{mean}) = E_d0^\circ \frac{1 - e^{-K_d Z}}{K_d Z} \quad \text{(Eq. 7)}$$

where Z is the depth of the water column. We selected 30 m, which is representative of much
of the Singapore Strait surrounding our sampling sites (Chan et al. 2006).

Next, to examine how the spectral light quality experienced by benthic organisms is affected,
we calculated the underwater irradiance spectrum at fixed depths within the upper 10 m for
each date by attenuating the Hydrolight-modelled noon-time E_d0° spectra with the calculated
K_d spectra according to Eq. (5).

Finally, to examine how the overall depth of light penetration varies, we calculated $K_d(PAR)$
and $Z_{10\%}$. To do this, we first attenuated the modelled E_d0° spectra with the calculated K_d
spectra (Eq. 5) at 0.1 m intervals from the surface down to a depth of 20 m to yield calculated depth profiles of downwelling irradiance (E_d). The calculated E_d spectrum at each depth was then converted from W m$^{-2}$ nm$^{-1}$ to the downward flux of photons, E_q, at each wavelength according to:

$$E_q = \frac{E_d[W\, m^{-2}\, nm^{-1}] \times 10^{-9}}{h \times c} \, [\text{photons}\, m^{-2}\, s^{-1}]$$ \hspace{1cm} (Eq. 8)

where h is Planck’s constant and c is the speed of light in m s$^{-1}$. E_q was converted to µmol photons m$^{-2}$ s$^{-1}$ and then summed across the wavelength range of 400–700 nm to yield a quantum flux of PAR at each depth. K_d(PAR) was then calculated as the slope of a linear regression of the natural log of quantum PAR flux versus depth, and $Z_{10\%}$ was calculated as 2.303/K_d(PAR). Unlike K_d at individual wavelengths, K_d(PAR) changes significantly with depth because of the large spectral variation in $K_d(\lambda)$ (Lee 2009, Lee et al. 2018).

Consequently, the value of K_d(PAR) calculated by regressing PAR against depth varies depending on the depth to which the regression is performed. Since our objective with this calculation was to quantify $Z_{10\%}$, the regression should ideally be performed down to $Z_{10\%}$ rather than to a fixed, arbitrary depth, so we sought to first estimate the approximate depth of $Z_{10\%}$ to determine the appropriate depth to which to perform the regression. Using our 19 measured radiometer profiles (described in the Supplementary Information), we found that $Z_{10\%}$ was closely related to K_d at 520 nm:

$$Z_{10\%} = 2.404 \times K_d(520)^{-0.7601}$$ \hspace{1cm} (Eq. 9)

where $K_d(520)$ is K_d at 520 nm (Fig. S1). We used this initial estimate of $Z_{10\%}$ for each station as the depth over which we calculated K_d(PAR) using a PAR versus depth regression as explained above. The final value of $Z_{10\%}$ for each station was then calculated from K_d(PAR) as described above.

2.8 Impact of terrigenous CDOM on $Z_{10\%}$
Our time-series of $S_{275-295}$, S_R, and $SUVA_{254}$ indicated that the variation in CDOM absorption is predominantly the result of conservative mixing between terrigenous CDOM and marine CDOM, as shown in Section 3.1 below. Based on these data, the CDOM during the March–April intermonsoon period was predominantly marine, while the CDOM during other periods consisted of a mixture of this background level of marine CDOM and a varying amount of terrigenous CDOM. We therefore quantified the amount of terrigenous CDOM in each sample by subtracting the intermonsoon CDOM spectrum measured on 15 March 2019 (which we also used as one endmember in our conservative mixing model; see Section 2.3) from the measured CDOM spectrum in each sample.

To quantify the impact of this terrigenous CDOM on the depth of PAR penetration, we recalculated our K_d spectra (Eq. 6) using the 15 March 2019 CDOM spectrum in place of the CDOM spectrum measured for each station. We then recalculated K_d(PAR) and $Z_{10\%}$, as well as $E_d(Z_{\text{mean}})$, as described in Section 2.7. This yielded estimates of what K_d(PAR), $Z_{10\%}$, and $E_d(Z_{\text{mean}})$ would have been at each station in the absence of terrigenous CDOM.

To quantify the potential anthropogenic contribution to CDOM-mediated light attenuation, we recalculated K_d again, this time with the terrigenous CDOM absorption reduced by 35% of the observed value. This is based on estimates from Borneo and Sumatra that land-use change has increased the flux of DOC from Southeast Asian peatlands by 54% (Moore et al. 2013, Yupi et al. 2016), and the fact that nearly all peatlands in the region have experienced disturbance (Miettinen et al. 2016). Because DOC and CDOM are very closely correlated in peatland-draining blackwater rivers and downstream coastal waters in Southeast Asia (Cook et al. 2017, Martin et al. 2018), these estimates imply that 35% of the observed terrigenous CDOM in peatland-influenced coastal waters is anthropogenic (if the modern, post-disturbance DOC flux is 1.54-fold greater than the pre-disturbance DOC flux, then the anthropogenic fraction of the modern DOC flux is $0.54/1.54 = 0.35$). We only estimated this...
anthropogenic contribution for the SW Monsoon period, as this is the season when the Singapore Strait receives terrestrial inputs from the large peatland areas on Sumatra.

3. Results

3.1 Bio-optical time-series data

The concentration of CDOM, \(a_{\text{CDOM}}(440) \), ranged from lowest values of 0.039–0.045 m\(^{-1}\) during the intermonsoon seasons to peak values of 0.27–0.45 m\(^{-1}\) during the May–September SW Monsoon (Fig. 2a). Smaller increases were also seen during the November–February NE Monsoon, with peak \(a_{\text{CDOM}}(440) \) of 0.10–0.17 m\(^{-1}\). During the SW Monsoon, the CDOM spectral slope between 275–295 nm (\(S_{275-295} \)) decreased from around 0.030 to ≤0.018 (Fig. 2b), and the spectral slope ratio (\(S_R \)) decreased from values around 2.0 to <1.25 (Fig. 2c), while the SUVA\(_{254} \) increased from values <1.0 to mostly between 2.0–3.0 (Fig. 2d). Smaller decreases in \(S_{275-295} \) and \(S_R \), and increases in SUVA\(_{254} \), were also seen during the NE Monsoon. Seawater salinity decreased from values of 32–33 during the intermonsoon periods to 31–32 during the NE Monsoon and even lower to 29–31 during the SW Monsoon (Fig. 2e). Additional data collected in 2018 show that the seasonal increases in CDOM and SUVA\(_{254} \), and decreases in salinity, \(S_{275-295} \), and \(S_R \) were similar to 2020, confirming that large and sustained inputs of CDOM are typical during the SW Monsoon (Fig. S2; particulate optical properties were not measured until 2019). These seasonal differences in \(a_{\text{CDOM}}(440) \), \(S_{275-295} \), \(S_R \), SUVA\(_{254} \), and salinity were all statistically significant (Kruskal-Wallis test, all \(\chi^2 > 77 \), d.f. = 3, all \(p < 0.001 \)).

Absorption by phytoplankton, non-algal particles, and particulate backscattering showed no significant differences between seasons (Kruskal-Wallis test, all \(\chi^2 < 6.2 \), d.f. = 3, all \(p > 0.10 \)), although the more exposed site typically had higher non-algal particulate absorption and particulate backscattering (Figs. 2f–h). Note that particulate backscattering at 440 nm
was highly correlated with particulate backscattering at each of the other eight wavelengths (Fig. S3; all Pearson’s correlation coefficients >0.97). Consistent with the low phytoplankton absorption, chlorophyll-α concentrations were relatively low (mean ± standard deviation of 1.0 ± 0.5 µg l⁻¹; Fig. S4) and did not show significant differences between seasons (Kruskal-Wallis test, $\chi^2 = 2.9$, d.f. = 3, $p = 0.40$).

We found that our measured $S_{275-295}$ and S_R values showed tightly constrained relationships with $a_{\text{DOM}}(440)$ across all seasons (Fig. 3a,b), which closely followed the theoretical mixing model (Eq. 1; grey lines in Fig. 3a,b) between the CDOM spectra measured on 15 March 2019 (intermonsoon) and on 16 July 2020 (SW Monsoon). Note that CDOM spectral slope parameters show non-linear changes during conservative mixing (Stedmon & Markager 2003). Moreover, there was a strong, positive correlation between $a_{\text{DOM}}(440)$ and SUVA$_{254}$ (Fig. 3c; Spearman’s rank correlation, $\rho = 0.906$, $p < 0.001$, $n = 129$).

3.2 Seasonal changes in light absorption budgets, underwater irradiance, and phytoplankton absorption spectra

The large seasonal changes in CDOM absorption altered the average spectral light absorption budget between seasons (Fig. 4). Absorption in the UV range (300–400 nm) was dominated by CDOM in all seasons, but to a greater extent in the SW Monsoon. Between 400–500 nm, CDOM was progressively less dominant, and especially in the intermonsoon seasons the absorption by CDOM at 500 nm was only around 20% of the total absorption (Fig. 4a,c). In the SW Monsoon, however, CDOM contributed ≥50% of the total absorption up to 500 nm, and still contributed 50% of the non-water absorption up to 600 nm (Fig. 4b). During the NE Monsoon, the absorption budget was less CDOM-dominated than in the SW Monsoon, but more than during the intermonsoon seasons (Fig. 4e). In all seasons, absorption by non-algal particles was greater than phytoplankton absorption from 300 nm to roughly 440 nm, then up
to 500–550 nm phytoplankton and non-algal particles contributed roughly equally, beyond
which phytoplankton increasingly dominated the particulate absorption. In all seasons, water
contributed >50% of absorption upwards of 550–570 nm (Fig. 4).

Using the modelled surface irradiance for solar noon on each sampling date, we found that
the underwater irradiance at fixed depths between 1 and 10 m was shifted to longer
wavelengths in the SW Monsoon: the wavelength of peak irradiance ranged from 531–539
nm during the intermonsoon and NE Monsoon seasons, but was shifted to between 547–566
nm in the SW Monsoon (Fig. 5). Similarly, the ratio of blue to green irradiance (calculated as
E_d(440) to E_d(550)) at each depth was significantly lower during the SW Monsoon than other
seasons (Kruskal-Wallis test, all χ² ≥13.5, d.f. = 3, all p <0.005), indicating a seasonal
decrease in the availability of blue light relative to longer wavelengths.

This spectral shift in the underwater irradiance was also evident in the average irradiance at
solar noon experienced by phytoplankton under turbulent mixing (Eq. 7), which peaked at
567 nm during the SW Monsoon, but at 537–538 nm during the other seasons (Fig. 6). The
ratio of blue to green irradiance was also significantly lower during the SW Monsoon (mean
ratio of 0.46) compared to the other seasons (mean ratios of 0.54–0.62) for these averaged
irradiances (Kruskal-Wallis test, χ² = 25.9, d.f. = 3, p <0.001).

The phytoplankton absorption spectra revealed a statistically significant decrease in the ratio
of a_phyto(490) to a_phyto(510) and a significant increase in the a_phyto spectral slope during the
SW Monsoon (Fig. 7; Kruskal-Wallis test; both χ² ≥12.4, d.f. = 3, both p ≤0.006). Both the
ratio of a_phyto(490) to a_phyto(510) and the a_phyto spectral slope were also significantly correlated
with a_CDOM(440) (Spearman’s rank correlation; ρ = -0.45 and 0.39; both p <0.003) and with
S_275–295 (Spearman’s rank correlation; ρ = 0.50 and -0.43; both p <0.001).

3.3 Z_{10%} and impacts of terrigenous CDOM
The depth of 10% PAR penetration, $Z_{10\%}$, ranged between 3.7–9.8 m, with an overall average of 7.1 m, and was typically deeper at the more sheltered site (Fig. 7a). Across both sites, $Z_{10\%}$ was on average deepest during Intermonsoon 1 (8.6 m) and shallowest during the SW Monsoon (6.6 m); this seasonal difference was statistically significant (Kruskal-Wallis test, $\chi^2 = 8.4$, d.f. = 3, $p = 0.038$). To quantify the impact of terrigenous CDOM on the euphotic zone depth, we recalculated K_d(PAR) and $Z_{10\%}$ by using only the background marine CDOM spectrum measured on 15 March 2019 in place of the observed total CDOM absorption (see Section 2.8). We found that relative to the actually observed value of $Z_{10\%}$, the value of $Z_{10\%}$ without terrigenous CDOM was deeper by 0.7–4.9 m (on average, 2.4 m). This corresponded to a shoaling of $Z_{10\%}$ by 13–45% due to terrigenous CDOM (Fig. 8a,b). Even during the NE Monsoon, when the terrigenous CDOM concentration was lower than during the SW Monsoon, the euphotic zone was shoaled by up to 1.9 m, or 17%. Across all seasons and sites, the percentage shoaling of $Z_{10\%}$ was strongly related to the terrigenous CDOM concentration (Fig. 8c), which shows that terrigenous CDOM had a large impact on the depth of underwater light penetration despite variation in the concentrations of suspended sediments and phytoplankton between sites and dates. We also repeated our calculation of the depth-averaged irradiance in a turbulent water column (Eq. 7), but using the K_d spectra calculated without terrigenous CDOM (see Section 2.8). We found that without terrigenous CDOM, the wavelength of peak irradiance was on average nearly identical between seasons (531–534 nm), and that the blue-to-green ratio $E_d(440)$: $E_d(550)$ no longer showed significant seasonal differences (average of 0.59–0.62 for each season; Kruskal-Wallis test, $\chi^2 = 1.9$, d.f. = 3, $p = 0.599$).

To estimate how much of the observed shoaling of $Z_{10\%}$ might be the result of anthropogenic disturbance of peatlands, we repeated our calculations of K_d for the SW Monsoon but with the terrigenous CDOM absorption reduced by 35% of the observed value (see Section 2.8).
We found that with only the estimated natural fraction of terrigenous CDOM, $Z_{10\%}$ was on average 0.6 m deeper than the actual observed values. This potentially anthropogenic contribution to light attenuation accounted for on average 25% of the observed $Z_{10\%}$ shoaling by terrigenous CDOM (Table 1).

4. Discussion

4.1 Sources and seasonality of CDOM

Our time series data showed strong and correlated seasonal variation in CDOM absorption, markers of CDOM terrestrial origin ($S_{275-295}$, S_R, and SUVA$_{254}$), and salinity. Moreover, the variability in CDOM across all seasons followed a pattern that is consistent with simple conservative mixing between two CDOM end-members (Fig. 3), where one end-member has high a_{CDOM} and SUVA$_{254}$ with low $S_{275-295}$ and S_R (SW Monsoon) and the other has low a_{CDOM} and SUVA$_{254}$ with high $S_{275-295}$ and S_R (intermonsoon). The spectral slope $S_{275-295}$ and the slope ratio S_R have become well established as accurate markers of terrigenous CDOM in regions receiving terrestrial inputs (Helms et al. 2008, Fichot & Benner 2012, Dainard & Guéguen 2013, Lu et al. 2016, Medeiros et al. 2017, Martin et al. 2018, Painter et al. 2018, Carr et al. 2019). Together with the correlated changes in SUVA$_{254}$, our data therefore show that the Singapore Strait receives a large input of high-molecular-weight, aromatic-rich, terrigenous CDOM during the SW Monsoon, and a smaller input of terrigenous CDOM during the NE Monsoon. In contrast, the CDOM pool during the intermonsoon seasons appears to be characterised by low molecular weight and low aromaticity, consistent with a primarily marine, autochthonous source of CDOM such as from planktonic production. Importantly, our data show that the seasonal changes in CDOM absorption can be largely explained by conservative mixing of the intermonsoon marine CDOM with terrigenous CDOM delivered during the monsoon seasons. This justifies our interpretation that CDOM in
the Singapore Strait is composed of a relatively constant and low background level of marine CDOM with a seasonally variable admixture of terrigenous CDOM. Our conclusion that the CDOM during the SW Monsoon is predominantly terrigenous is further supported by the fact that the stable carbon isotope composition of DOC (δ^{13}C$_{DOC}$) reached values as low as -25.5‰ during this time, which can only be explained by a large, seasonal input of tDOC (Zhou et al. submitted manuscript). In contrast, the δ^{13}C$_{DOC}$ averaged around -22‰ during the late NE Monsoon and Intermonsoon 1 periods (Zhou et al. submitted manuscript), which is consistent with a total DOC pool that is fully of marine origin. The high salinities during the intermonsoon seasons (up to 33) are also close to typical values for the central South China Sea, which are mostly <34 (Wong et al. 2007), indicating that freshwater input (and therefore the potential for new input of terrigenous CDOM) is small outside of the two monsoon seasons. Because terrigenous CDOM in Southeast Asia also appears to be readily photo-bleachable (Martin et al. 2018), any terrigenous CDOM delivered to the Singapore Strait during the NE Monsoon is also likely to be removed by photo-bleaching during the intermonsoon period.

The fact that chlorophyll-\(a\) concentrations did not vary seasonally and were overall relatively low for a coastal environment further indicates that production of autochthonous, marine CDOM is unlikely to show strong seasonal variation (note that benthic communities such as coral reefs and seagrasses are restricted to small areas of the Singapore Strait (Tan et al. 2016), and are hence very unlikely to be quantitatively significant sources of autochthonous CDOM). The close similarity in the values of $a_{CDOM}(440)$ between the intermonsoon months in all three years (2018–2020, Fig. S2) provides additional evidence at interannual time-scales that the background level of marine CDOM does not vary strongly over time in the Singapore Strait.
Given both the seasonal pattern of ocean currents and the seasonally high values of CDOM absorption, peatlands on Sumatra are the only plausible source of the terrigenous CDOM during the SW Monsoon. This is consistent with satellite remote sensing data that show CDOM spreading out from Sumatra into the Malacca and Karimata Straits (Siegel et al. 2019). Although the smaller input of terrigenous CDOM during the NE Monsoon follows the same theoretical mixing line as the data from the SW Monsoon (Fig. 3), the differences in ocean currents obviously rule out Sumatran peatlands as the source of this CDOM. The terrigenous CDOM during the NE Monsoon might be derived largely from river input along the east coast of the Malay Peninsula (Kuwahara et al. 2010, Mizubayashi et al. 2013), which mostly consists of mineral soils rather than peatlands (Fig. 1).

4.2 Impact of terrigenous CDOM on light availability

The strong light attenuation, and resulting shallow $Z_{10\%}$ depth that we observed in our time series is consistent with previous reports of strong vertical attenuation of photosynthetically active radiation (PAR) in the Singapore Strait (Dikou & van Woesik 2006, Chow et al. 2019, Morgan et al. 2020). Our data additionally show that the seasonal input of terrigenous CDOM to the Singapore Strait clearly contributes significantly to the extinction of PAR with depth, and also alters the spectral quality of the available light. This was already evident when just considering the seasonal averages of $Z_{10\%}$, even though the observed $Z_{10\%}$ was also clearly affected by the variability in particulate absorption and backscattering. After first estimating the fraction of CDOM that was terrigenous, we could quantify its impact directly by calculating hypothetically how the spectrum of K_d would differ in its absence; this showed that the advection of terrigenous CDOM during both monsoon seasons leads to shoaling of $Z_{10\%}$ by tens of percent (Fig. 8). Moreover, this shoaling was accompanied by spectral shifts.
in underwater irradiance, leading to less blue light and an irradiance peak shifted towards longer wavelengths (Figs. 5,6).

This result is consistent with the known importance of CDOM in reducing light penetration and altering the spectral quality of light in coastal waters (DeGrandpre et al. 1996, Foden et al. 2008, Mascarenhas et al. 2017). In coral reefs specifically, CDOM exerts a major control over the attenuation of UV radiation (Dunne & Brown 1996, Otis et al. 2004, Zepp et al. 2008, Kuwahara et al. 2010), and reefs off Peninsular Malaysia have been shown to receive significant inputs of terrigenous CDOM (Kuwahara et al. 2010, Bowers et al. 2012). Mizubayashi et al. (2013) further showed that this terrigenous CDOM input is correlated with changes in UV and PAR attenuation off north-eastern Malaysia. Our data thus provide further evidence of the importance of CDOM in controlling the light environment of coral reefs, but also demonstrate that the spectral distribution of PAR is affected.

Our results also provide further support for the use of CDOM spectral slope measurements, especially $S_{275-295}$, to distinguish between marine and terrigenous CDOM in coastal waters (Stedmon & Markager 2001, Helms et al. 2008, Astoreca et al. 2009, Dainard & Guéguen 2013, Vantrepotte et al. 2015, Lu et al. 2016). Such a partitioning between marine and terrigenous CDOM fractions and their respective contributions to the spectral light attenuation in coastal waters is needed for a better understanding of the potential drivers of shelf sea light availability.

Our analysis also indicates that around 25% of the seasonal CDOM-mediated shoaling of $Z_{10\%}$ might be an anthropogenic effect caused by the increase in tDOC flux due to peatland disturbance (Moore et al. 2013, Yupi et al. 2016). Although it has been well documented that the CDOM pool in shelf seas can contain a large fraction of terrigenous CDOM (Blough et al. 1993, Stedmon et al. 2010, Mizubayashi et al. 2013, Carr et al. 2019), the long-term dynamics and potential anthropogenic drivers of terrigenous CDOM in coastal waters remain
poorly known. So far, there is only limited and mostly indirect evidence that anthropogenic increases in coastal CDOM concentrations have occurred and reduced light penetration, and this has only been reported off southern Norway (Aksnes et al. 2009, Frigstad et al. 2013) and in the Gulf of Maine (Balch et al. 2016). Our estimate of the anthropogenic contribution to the observed CDOM-mediated light attenuation relies on earlier reports that the peatland tDOC flux has increased by slightly over 50% as a result of land conversion (Moore et al. 2013, Yupi et al. 2016). Future research should therefore aim to corroborate our estimate by reconstructing past variation in terrigenous CDOM in this region, which may become possible through measurements of humic acid concentrations in coral skeleton cores (Kaushal et al. 2020). Nevertheless, our study already indicates that the disturbance of tropical peatlands has likely resulted in CDOM-mediated coastal browning in Southeast Asia, and that peatland disturbance therefore entails an additional environmental impact beyond the large increases in CO₂ emissions from peat and peatland DOC oxidation (Hooijer et al. 2010, Murdiyarso et al. 2010, Wit et al. 2018).

4.3 Ecological implications

Primary production by benthic communities and by phytoplankton requires sufficient light availability, and strong extinction of PAR can therefore limit productivity and restrict the depth to which photosynthetic benthic communities can occur (Gattuso et al. 2006). Moreover, because different phytoplankton taxa differ in their pigment composition and photo-acclimation strategies, the spectral quality of underwater irradiance can control phytoplankton community composition (Glover et al. 1987, Palenik 2001, Grébert et al. 2018). This has been shown specifically also for large, CDOM-driven spectral shifts from blue/green to red wavelengths (Stomp et al. 2004, Stomp et al. 2007, Frenette et al. 2012, Lawrenz & Richardson 2017).
Our estimates of the depth-averaged underwater irradiance in a turbulent water column show that phytoplankton in the Singapore Strait are subject to seasonal changes in intensity and spectral composition of irradiance (Fig. 6). The fact that the phytoplankton absorption spectral slope increased and the $a_{\text{phyto}}(490):a_{\text{phyto}}(510)$ ratio decreased during the SW Monsoon suggests that the phytoplankton were adjusting their pigment composition in response to the changing light environment. Specifically, these data indicate a higher ratio of photoprotective to photosynthetic carotenoid pigments during the intermonsoon, and a lower ratio during the SW Monsoon (Eisner et al. 2003, Hickman et al. 2009). Given that the phytoplankton community in the Singapore Strait does not undergo major seasonal changes (Gin et al. 2000, Chénard et al. 2019), our data most likely reflect photo-acclimation by individual taxa rather than a taxonomic community shift.

Such chromatic adaptation of marine phytoplankton is known from coastal and open-ocean environments, as a function of both vertical and horizontal variation in the light environment (Hickman et al. 2009, Isada et al. 2013, Pérez et al. 2020). Whether the changes we observed in the a_{phyto} spectra were driven more by the seasonal change in spectral light quality or more by the overall reduction in underwater PAR is unclear, but they indicate that the seasonal change in light availability caused by peatland CDOM was sufficiently large to require changes in photo-acclimation by the phytoplankton community. Lower light availability during the SW Monsoon may be a reason for why the chlorophyll-a concentration remains relatively constant (Fig. S4) despite increases in nutrient concentrations during this season by 3–5 μmol l$^{-1}$ DIN and 0.3–0.4 μmol l$^{-1}$ DIP (Chénard et al. 2019).

Our data also show that benthic communities within the upper 10 m are exposed to seasonal changes both in total PAR intensity and in spectral quality of irradiance (Figs. 5,8). The Singapore Strait is home to >100 different scleractinian coral species, but their depth range is restricted to within the upper 10 m (Huang et al. 2009). This shallow depth distribution is...
attributed chiefly to a combination of sediment stress and light limitation (Dikou & van Woesik 2006, Guest et al. 2016, Chow et al. 2019, Morgan et al. 2020), and matches quite closely with the average Z10% of around 7 m that we measured. Sedimentation and light limitation together appear to have driven a process of vertical reef compression (Morgan et al. 2020), with coral reef monitoring data suggesting that coral cover at depths of 6–7 m (but not at 3–4 m) has decreased since the 1980s (Guest et al. 2016).

It has been suggested that coral communities in shallow low-light environments such as Singapore should be considered as mesophotic coral ecosystems, like those found below 30–40 m depth in clear, “blue-water” environments (Laverick et al. 2020, Morgan et al. 2020).

Although these systems do show many ecological similarities, e.g., in species composition (Eyal et al. 2016, Chow et al. 2019, Laverick et al. 2020), the spectral distribution of the available light in Singapore is clearly very different compared to deep mesophotic ecosystems that receive mostly blue wavelengths (Kahng et al. 2019). Whether such differences in spectral light quality, and the additional seasonal changes we report here, are physiologically and ecologically significant for coral reefs is unclear. Corals can clearly acclimate to low light intensities both in deep and shallow mesophotic conditions (see review by Kahng et al. (2019)), such as by altering their skeletal morphology to minimise self-shading (Todd 2008, Ow & Todd 2010), and by enhancing light scattering by the skeleton and light absorption within the tissue layer (Polinski & Voss 2018, Kramer et al. 2020).

However, the spectral light quality does appear to affect coral physiology. For example, calcification rates of two coral species were substantially increased under blue light compared to other wavelengths for equal light intensities (Cohen et al. 2016), and blue light acclimation increased maximum photosynthetic rates in Montipora verrucosa relative to green and red light (Kinzie & Hunter 1987). Branches of Stylophora pistillata acclimated to either blue or full-spectrum light showed better photosynthetic performance under the
spectral conditions they were acclimated to (Mass et al. 2010). Blue light also controls the fluorescent pigmentation of several coral taxa (D’Angelo et al. 2008), while red light was found to reduce the health and survival of *Stylophora pistillata* (Wijgerde et al. 2014). Whether fluorescent proteins play a photo-physiological role in enabling coral acclimation to low-intensity blue light is still debated (D’Angelo et al. 2008, Roth et al. 2015, Smith et al. 2017, Kahng et al. 2019). However, the presence of photoconvertible red fluorescent proteins was necessary for long-term survival of two coral species under low-intensity blue light (Smith et al. 2017). It is therefore possible that the spectral differences in irradiance between shallow and deep mesophotic systems will prove to be ecologically significant, perhaps by controlling lower depth limits and coral community composition, or requiring a greater reliance on heterotrophic *versus* autotrophic nutrition (Anthony & Fabricius 2000).

The decline in coral cover at 6–7 m in the Singapore Strait since the 1980s reported by Guest et al. (2016) was originally attributed to possible increases in suspended sediments and sedimentation. However, this period of coral cover loss at deeper sites also coincides with the major period of land conversion of peatlands across Southeast Asia (Miettinen et al. 2016). Our results indicate that if peatland disturbance has indeed increased tDOC fluxes by as much as currently thought, then the associated reduction in light transmission due to terrigenous CDOM has likely contributed to these benthic cover changes.

5. Conclusions

Our data demonstrate the importance of terrigenous CDOM for the optical properties of peatland-influenced areas of the Sunda Shelf Sea, and show further that the seasonal, monsoon-driven advection of this terrigenous CDOM drives significant variation in the transmission and spectral quality of light underwater. We also observed seasonal variation in phytoplankton absorption spectra that are indicative of changes in photo-acclimation, which...
suggests that this variation in light attenuation was ecologically relevant. Moreover, our study suggests that land conversion in the tropics has the potential to cause CDOM-mediated coastal browning in biodiverse shelf sea environments, which may have contributed to observed coral cover decline. Overall, our study underscores the importance of examining not only biogeochemical impacts of land–ocean tDOC fluxes, but also the consequences for optical water quality due to the associated terrigenous CDOM.

Acknowledgements: Yongli Zhou, Chen Shuang, Nikita Kaushal, Molly Moynihan, Rob Nichols, Tan Li, Daniel Kalbermatter, Jervis Ong Zhe Ao, Lee Tian Li, Phyllis Kho Yu Yi, Kyle Morgan, Woo Oon Yee, and Chen Yuan assisted with fieldwork and laboratory analyses. We thank Sapari, Surpato, and Francis Yeo of Dolphin Explorer for enabling the sample collection. Comments by Richard Sanders, Adam Switzer, and three anonymous reviewers improved this manuscript. Field work was carried out under permit NP/RP17-044-2 from the Singapore National Parks Board. This research was supported by the National Research Foundation Singapore, Prime Minister’s Office, under the Marine Science Research and Development Program through grant MSRDP-P32 to P.M.

Author contributions: Conceptualization: P.M., N.S. and E.W.W.; Investigation and Formal analysis: P.M., N.S, T.W.Q.L, K.C, J.M.C.W and E.W.W; Writing – Original draft: P.M.; Writing – Review and editing: all authors; Supervision: P.M. and S.C.L.; Funding acquisition and Project administration: P.M.

Competing interests: The authors declare no competing interests

Data availability: The final dataset used in this study, all data analysis codes, and all raw data are available via the NTU Data Repository under doi: 10.21979/N9/TXYRC3.

References

Aksnes DL, Dupont N, Staby A, Fiksen Ø, Kaartvedt S, Aure J (2009) Coastal water darkening and implications for mesopelagic regime shifts in Norwegian fjords. Mar Ecol Prog Ser 387:39-49

Anderson TR, Rowe EC, Polimene L, Tipping E, Evans CD, Barry CDG, Hansell DA, Kaiser K, Kitidis V, Lapworth DJ, Mayor DJ, Monteith DT, Pickard AE, Sanders RJ, Spears BM, Torres R, Tye AM, Wade AJ, Waska H (2019) Unified concepts for
understanding and modelling turnover of dissolved organic matter from freshwaters to
the ocean: the UniDOM model. Biogeochemistry 146:105-123
Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral
energetics under varying turbidity. J Exp Mar Biol Ecol 252:221-253
Arrigo KR, Brown CW (1996) Impact of chromophoric dissolved organic matter on UV
inhibition of primary productivity in the sea. Mar Ecol Prog Ser 140:207-216
Ask J, Karlsson J, Persson L, Ask P, Byström P, Jansson M (2009) Terrestrial organic matter
and light penetration: Effects on bacterial and primary production in lakes. Limnol
Oceanogr 54:2034-2040
Astoreca R, Rousseau V, Lancelot C (2009) Coloured dissolved organic matter (CDOM) in
Southern North Sea waters: Optical characterization and possible origin. Estuar Coast
Shelf Sci 85:633-640
Balch W, Huntington T, Aiken G, Drapeau D, Bowler B, Lubelczyk L, Butler K (2016)
Toward a quantitative and empirical dissolved organic carbon budget for the Gulf of
Maine, a semienclosed shelf sea. Glob Biogeochem Cycles 30:268-292
Balch WM, Drapeau DT, Bowler BC, Huntington TG (2012) Step-changes in the physical,
chemical and biological characteristics of the Gulf of Maine, as documented by the
GNATS time series. Mar Ecol Prog Ser 450:11-35
Banaszak AT, Lesser MP (2009) Effects of solar ultraviolet radiation on coral reef organisms.
Photochemical & Photobiological Sciences 8:1276-1294
Baum A, Rixen T, Samiaji J (2007) Relevance of peat draining rivers in central Sumatra for
the riverine input of dissolved organic carbon into the ocean. Estuar Coast Shelf Sci
73:563-570
Beleites C, Sergio V (2018) hyperSpec: a package to handle hyperspectral data sets in R.
http://hyperspec-forger-project.org
Blough NV, Zaffirio OC, Bonilla J (1993) Optical absorption spectra of waters from the
Orinoco River outflow: Terrestrial input of colored organic matter to the Caribbean. J
Geophys Res Oceans 98:2271-2278
Boss E, Pegau WS (2001) Relationship of light scattering at an angle in the backward
direction to the backscattering coefficient. Appl Opt 40:5503-5507
Bowers DG, Md-Suffian I, Mitchelson-Jacob EG (2012) Bio-optical properties of east coast
Malaysia waters in relation to remote sensing of chlorophyll. Int J Remote Sens
33:150-169
Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp
Mar Biol Ecol 350:46-72
Cao X, Aiken GR, Butler KD, Huntington TG, Balch WM, Mao J, Schmidt-Rohr K (2018)
Evidence for major input of riverine organic matter into the ocean. Org Geochem
116:62-76
Carr N, Davis CE, Blackbird S, Daniels LR, Preece C, Woodward M, Mahaffey C (2019)
Seasonal and spatial variability in the optical characteristics of DOM in a temperate
shelf sea. Prog Oceanogr 177:101929
Chan ES, Tkalich P, Gin KY-H, Obbard JP (2006) The Physical Oceanography of Singapore
Coastal Waters and Its Implications for Oil Spills. In: Wolanski E (ed) The
Environment in Asia Pacific Harbours. Springer Netherlands, Dordrecht
Chen Z, Doering PH, Ashton M, Orlando BA (2015) Mixing Behavior of Colored Dissolved
Organic Matter and Its Potential Ecological Implication in the Caloosahatchee River
Estuary, Florida. Estuaries Coasts 38:1706-1718
Chénard C, Wijaya W, Vaulot D, Lopes dos Santos A, Martin P, Kaur A, Lauro FM (2019)
Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal
waters. Sci Rep 9:16390
Manuscript submitted to *Marine Ecology Progress Series*

Cherukuru N, Brando VE, Schroeder T, Clementson LA, Dekker AG (2014) Influence of river discharge and ocean currents on coastal optical properties. *Cont Shelf Res* 84:188-203

Chow GSE, Chan YKS, Jain SS, Huang D (2019) Light limitation selects for depth generalists in urbanised reef coral communities. *Mar Environ Res* 147:101-112

Coble PG (2007) Marine optical biogeochemistry: The chemistry of ocean color. *Chem Rev* 107:402-418

Cohen I, Dubinsky Z, Erez J (2016) Light Enhanced Calcification in Hermatypic Corals: New Insights from Light Spectral Responses. *Front Mar Sci* 2:122

Cook S, Peacock M, Evans CD, Page SE, Whelan MJ, Gauci V, Kho LK (2017) Quantifying tropical peatland dissolved organic carbon (DOC) using UV-visible spectroscopy. *Water Res* 115:229-235

Costanza R, de Groot R, Sutton P, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. *Global Environ Change* 26:152-158

D’Angelo C, Denzel A, Vogt A, Matz MV, Oswald F, Salih A, Nienhaus GU, Wiedenmann J (2008) Blue light regulation of host pigment in reef-building corals. *Mar Ecol Prog Ser* 364:97-106

Dainard PG, Guéguen C (2013) Distribution of PARAFAC modeled CDOM components in the North Pacific Ocean, Bering, Chukchi and Beaufort Seas. *Mar Chem* 157:216-223

de Wit HA, Valinia S, Weyhenmeyer GA, Futter MN, Kortelainen P, Austnes K, Hessen DO, Räike A, Laudon H, Vuorenmaa J (2016) Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate. *Environmental Science & Technology Letters* 3:430-435

DeGrandpre MD, Vodacek A, Nelson RK, Bruce EJ, Blough NV (1996) Seasonal seawater optical properties of the U.S. Middle Atlantic Bight. *J Geophys Res Oceans* 101:22727-22736

Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing Water Quality with Submersed Aquatic Vegetation: Habitat requirements as barometers of Chesapeake Bay health. *Bioscience* 43:86-94

Dikou A, van Woesik R (2006) Survival under chronic stress from sediment load: Spatial patterns of hard coral communities in the southern islands of Singapore. *Mar Pollut Bull* 52:7-21

Duarte CM (1995) Submerged aquatic vegetation in relation to different nutrient regimes. *Ophelia* 41:87-112

Dunne RP, Brown BE (1996) Penetration of solar UVB radiation in shallow tropical waters and its potential biological effects on coral reefs; results from the central Indian Ocean and Andaman Sea. *Mar Ecol Prog Ser* 144:109-118

Dupont N, Aksnes DL (2013) Centennial changes in water clarity of the Baltic Sea and the North Sea. *Estuar Coast Shelf Sci* 131:282-289

Edmunds PJ, Tsounis G, Boulon R, Bramanti L (2018) Long-term variation in light intensity on a coral reef. *Coral Reefs* 37:955-965

Eisner LB, Twardowski MS, Cowles TJ, Perry MJ (2003) Resolving phytoplankton photoprotective : photosynthetic carotenoid ratios on fine scales using in situ spectral absorption measurements. *Limnol Oceanogr* 48:632-646

Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS (2006) Alternative explanations for rising dissolved organic carbon export from organic soils. *Glob Chang Biol* 12:2044-2053
Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ Pollut 137:55-71

Eyal G, Eyal-Shaham L, Cohen I, Tamir R, Ben-Zvi O, Sinniger F, Loya Y (2016) Euphylina paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35:91-102

Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125-146

Ferrari GM, Tassan S (1999) A METHOD USING CHEMICAL OXIDATION TO REMOVE LIGHT ABSORPTION BY PHYTOPLANKTON PIGMENTS. J Phycol 35:1090-902

Ferrero E, Eöry M, Ferreyra G, Schloss I, Zagarese H, Vernet M, Momo F (2006) Vertical Mixing and Ecological Effects of Ultraviolet Radiation in Planktonic Communities. Photochem Photobiol 82:971-982

Fichot CG, Benner R (2011) A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys Res Lett 38

Fichot CG, Benner R (2012) The spectral slope coefficient of chromophoric dissolved organic matter (S275–295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins. Limnol Oceanogr 57:1453-1466

Fichot CG, Kaiser K, Hooker SB, Amon RMW, Babin M, Bélanger S, Walker SA, Benner R (2013) Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci Rep 3:1053

Fichot CG, Lohrenz SE, Benner R (2014) Pulsed, cross-shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico. J Geophys Res Oceans 119:1176-1194

Filbee-Dexter K, Wernberg T (2018) Rise of Turfs: A New Battlefront for Globally Declining Kelp Forests. Bioscience 68:64-76

Foden J, Sivyer DB, Mills DK, Devlin MJ (2008) Spatial and temporal distribution of chromophoric dissolved organic matter (CDOM) fluorescence and its contribution to light attenuation in UK waterbodies. Estuar Coast Shelf Sci 79:707-717

Frenette J-J, Massicotte P, Lapierre J-F (2012) Colorful Niches of Phytoplankton Shaped by the Spatial Connectivity in a Large River Ecosystem: A Riverscape Perspective. PLOS ONE 7:e35891

Frigstad H, Andersen T, Hessen DO, Jeansson E, Skogen M, Naustvoll L-J, Miles MW, Johannessen T, Bellerby RGJ (2013) Long-term trends in carbon, nutrients and stoichiometry in Norwegian coastal waters: Evidence of a regime shift. Prog Oceanogr 111:113-124

Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D (2006) Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3:489-513

Gerea M, Pérez GL, Unrein F, Soto Cárdenas C, Morris D, Queimalinos C (2017) CDOM and the underwater light climate in two shallow North Patagonian lakes: evaluating the effects on nano and microphytoplankton community structure. Aquat Sci 79:231-248

Gin KY-H, Lin X, Zhang S (2000) Dynamics and size structure of phytoplankton in the coastal waters of Singapore. J Plankton Res 22:1465-1484

Glover HE, Keller MD, Spinrad RW (1987) The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J Exp Mar Biol Ecol 105:137-159

Graneli W (2012) Brownification of Lakes. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of Lakes and Reservoirs. Springer Netherlands, Dordrecht
Grébert T, Doré H, Partensky F, Farrant GK, Boss ES, Picheral M, Guidi L, Pesant S, Scanlan DJ, Wincker P, Acinas SG, Kehoe DM, Garczarek L (2018) Light color acclimation is a key process in the global ocean distribution of *Synechococcus* cyanobacteria. Proc Natl Acad Sci 115:E2010

Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39:1903-1916

Guest JR, Tun K, Low J, Vergés A, Marzinelli EM, Campbell AH, Bauman AG, Feary DA, Chou LM, Steinberg PD (2016) 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Sci Rep 6:36260

Häder D-P, Williamson CE, Wängberg S-Å, Rautio M, Rose KC, Gao K, Helbling EW, Sinha RP, Worrest R (2015) Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical & Photobiological Sciences 14:108-126

Hamzah F, Agustiadi T, Susanto RD, Wei Z, Guo L, Cao Z, Dai M (2020) Dynamics of the Carbonate System in the Western Indonesian Seas During the Southeast Monsoon. J Geophys Res Oceans 125:e2018JC014912

Heery EC, Hoeckema BW, Browne NK, Reimer JD, Ang PO, Huang D, Friess DA, Chou LM, Loke LHL, Saksena-Taylor P, Alsagoff N, Yeemin T, Sutthacheep M, Vo ST, Bos AR, Gumanao GS, Syed Hussein MA, Waheed Z, Lane DJW, Johan O, Kunzmann A, Jompa J, Suharsono, Todd PA (2018) Urban coral reefs: Degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar Pollut Bull 135:654-681

Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955-969

Hessen DO, Carroll J, Kjeldstad B, Korosov AA, Pettersson LH, Pozdnyakov D, Sørensen K (2010) Input of organic carbon as determinant of nutrient fluxes, light climate and productivity in the Ob and Yenisey estuaries. Estuar Coast Shelf Sci 88:53-62

Hickman AE, Holligan PM, Moore CM, Sharples J, Krivtsov V, Palmer MR (2009) Distribution and chromatic adaptation of phytoplankton within a shelf sea thermocline. Limnol Oceanogr 54:525-536

Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO₂ emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505-1514

Huang D, Tun KPP, Chou LM, Todd PA (2009) An inventory of zooxanthellate scleractinian corals in Singapore, including 33 new records. Raffles Bull Zool 22:69-80

IOCCG (2000) Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. In: Sathyendranath S (ed) Reports of the International Ocean-Colour Coordinating Group, Dartmouth, NS, Canada

Isada T, Iida T, Liu H, Saitoh S-I, Nishioka J, Nakatsuka T, Suzuki K (2013) Influence of Amur River discharge on phytoplankton photophysiology in the Sea of Okhotsk during late summer. J Geophys Res Oceans 118:1995-2013

Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D (2019) Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystems. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic Coral Ecosystems. Springer International Publishing, Cham
Kaiser K, Benner R, Amon RMW (2017) The fate of terrigenous dissolved organic carbon on the Eurasian shelves and export to the North Atlantic. J Geophys Res Oceans 122:4-22

Kaushal N, Yang L, Tanzil JTI, Lee JN, Goodkin NF, Martin P (2020) Sub-annual fluorescence measurements of coral skeleton: relationship between skeletal luminescence and terrestrial humic-like substances. Coral Reefs 39:1257-1272

Kinzie RA, Hunter T (1987) Effect of light quality on photosynthesis of the reef coral Montipora verrucosa. Mar Biol 94:95-109

Kirk JTO (1988) Optical Water Quality: What Does It Mean and How Should We Measure It? Journal Water Pollution Control Federation 60:194-197

Kjeldstad B, Frette Øy, Erga SR, Browman HI, Kuhn P, Davis R, Miller W, Stamnes JJ (2003) UV (280 to 400 nm) optical properties in a Norwegian fjord system and an intercomparison of underwater radiometers. Mar Ecol Prog Ser 256:1-11

Kowalczyk P, A. Stedmon C, Markager S (2006) Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. Mar Chem 101:1-11

Kowalczyk P, Olszewski J, Darecki M, Kaczmarek S (2005) Empirical relationships between coloured dissolved organic matter (CDOM) absorption and apparent optical properties in Baltic Sea waters. Int J Remote Sens 26:345-370

Kramer N, Tamir R, Ben-Zvi O, Jacques SL, Loya Y, Wangpraseurt D (2020) Light-harvesting in mesophotic corals is powered by a spatially efficient photosymbiotic system between coral host and microalgae. bioRxiv:2020.2012.2004.411496

Kuwahara VS, Nakajima R, Othman BHR, Kushairi MRM, Toda T (2010) Spatial variability of UVR attenuation and bio-optical factors in shallow coral-reef waters of Malaysia. Coral Reefs 29:693-704

Larsen S, Andersen TOM, Hessen DO (2011) Climate change predicted to cause severe increase of organic carbon in lakes. Glob Chang Biol 17:1186-1192

Laverick JH, Tamir R, Eyal G, Loya Y (2020) A generalized light-driven model of community transitions along coral reef depth gradients. Global Ecol Biogeogr 29:1554-1564

Lawrenz E, Richardson TL (2017) Differential effects of changes in spectral irradiance on photoacclimation, primary productivity and growth in Rhodomonas salina (Cryptophyceae) and Skeletonema costatum (Bacillariophyceae) in simulated blackwater environments. J Phycol 53:1241-1254

Lee Z (2009) K_{PAR}: An optical property associated with ambiguous values. J Lake Sci 21:159-164

Lee Z, Shang S, Du K, Wei J (2018) Resolving the long-standing puzzles about the observed Secchi depth relationships. Limnol Oceanogr 63:2321-2336

Lee Z-P, Du K-P, Arnone R (2005) A model for the diffuse attenuation coefficient of downwelling irradiance. J Geophys Res Oceans 110:C02016

Leech DM, Ensign SH, Piehler MF (2016) Spatiotemporal patterns in the export of dissolved organic carbon and chromophoric dissolved organic matter from a coastal, blackwater river. Aquat Sci 78:823-836

Lisovski S, Hahn S (2012) GeoLight – processing and analysing light-based geolocation in R. Methods in Ecology and Evolution 3:1055-1059

Lu C-J, Benner R, Fichot CG, Fukuda H, Yamashita Y, Ogawa H (2016) Sources and Transformations of Dissolved Lignin Phenols and Chromophoric Dissolved Organic Matter in Otsuchi Bay, Japan. Front Mar Sci 3:85

Martin P, Cherukuru N, Tan ASY, Sanwani N, Mujahid A, Müller M (2018) Distribution and cycling of terrigenous dissolved organic carbon in peatland-draining rivers and coastal waters of Sarawak, Borneo. Biogeosciences 15:6847-6865
Manuscript submitted to Marine Ecology Progress Series

Mascarenhas VJ, Voß D, Wollschläger J, Zielinski O (2017) Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway. J Geophys Res Oceans 122:3828-3847

Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. The Journal of Experimental Biology 213:4084

Massicotte P, Asmala E, Stedmon C, Markager S (2017) Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans. Sci Total Environ 609:180-191

Mayer B, Pohlmann T (2014) Simulation of Organic Pollutants: First Step towards an Adaptation to the Malacca Strait. Asian Journal of Water, Environment and Pollution 11:75-86

Mayer B, Rixen T, Pohlmann T (2018) The Spatial and Temporal Variability of Air-Sea CO2 Fluxes and the Effect of Net Coral Reef Calcification in the Indonesian Seas: A Numerical Sensitivity Study. Front Mar Sci 5:116

Mayer B, Stacke T, Stöttemeier I, Pohlmann T (2015) Sunda Shelf Seas: flushing rates and residence times. Ocean Sci Discuss 2015:863-895

Medeiros PM, Babcock-Adams L, Seidel M, Castelao RM, De Iorio D, Hollibaugh JT, Dittmar T (2017) Export of terrigenous dissolved organic matter in a broad continental shelf. Limnol Oceanogr 62:1718-1731

Miettinen J, Shi C, Liew SC (2016) Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob Ecol Conserv 6:67-78

Mizubayashi K, Kuwahara VS, Segaran TC, Zaleha K, Effendy AWM, Kushairi MRM, Toda T (2013) Monsoon variability of ultraviolet radiation (UVR) attenuation and bio-optical factors in the Asian tropical coral-reef waters. Estuar Coast Shelf Sci 126:34-43

Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogansen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537-540

Moore S, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660-663

Morgan KM, Moynihan MA, Sawlani N, Switzer AD (2020) Light Limitation and Depth-Variable Sedimentation Drives Vertical Reef Compression on Turbid Coral Reefs. Front Mar Sci 7:931

Murdiyarso D, Heragualech K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc Natl Acad Sci 107:19655

Noacco V, Wagener T, Worrall F, Burt TP, Howden NJK (2017) Human impact on long-term organic carbon export to rivers. J Geophys Res Biogeosci 122:947-965

Opdal AF, Lindemann C, Aksnes DL (2019) Centennial decline in North Sea water clarity causes strong delay in phytoplankton bloom timing. Glob Chang Biol 25:3946-3953

Osburn CL, Kinsey JD, Bianchi TS, Shields MR (2019) Formation of planktonic chromophoric dissolved organic matter in the ocean. Mar Chem 209:1-13

Otis DB, Carder KL, English DC, Ivey JE (2004) CDOM transport from the Bahamas Banks. Coral Reefs 23:152-160

Ow YX, Todd PA (2010) Light-induced morphological plasticity in the scleractinian coral Goniastrea pectinata and its functional significance. Coral Reefs 29:797-808
Manuscript submitted to Marine Ecology Progress Series

1 Painter SC, Lapworth DJ, Woodward EMS, Kroeger S, Evans CD, Mayor DJ, Sanders RJ
2 (2018) Terrestrial dissolved organic matter distribution in the North Sea. Sci Total
3 Envir 630:630-647
4 Palenik B (2001) Chromatic adaptation in marine Synechococcus strains. Appl Environ
5 Microbiol 67:991-994
6 Pérez GL, Gali M, Royer S-J, Gerea M, Ortega-Runhuer E, Gasol JM, Marrasé C, Simó R
7 (2020) Variability of phytoplankton light absorption in stratified waters of the NW
8 Mediterranean Sea: The interplay between pigment composition and the packaging
9 effect. Deep Sea Research Part I: Oceanographic Research Papers:103460
10 Petus C, Devlin M, Silva E, Lewis S, Waterhouse J, Wenger A, Bainbridge Z, Tracey D
11 (2018) Defining wet season water quality target concentrations for ecosystem
12 conservation using empirical light attenuation models: A case study in the Great
13 Barrier Reef (Australia). J Environ Manage 213:451-466
14 Polinski JM, Voss JD (2018) Evidence of photoacclimatization at mesophotic depths in the
15 coral-Symbiont symbiosis at Flower Garden Banks National Marine Sanctuary
16 and McGrail Bank. Coral Reefs 37:779-789
17 Pope RM, Fry ES (1997) Absorption spectrum (380–700 nm) of pure water. II. Integrating
18 cavity measurements. Appl Opt 36:8710-8723
19 Roth MS, Padilla-Gamiño JL, Pochon X, Bigideg RR, Gates RD, Smith CM, Spalding HL
20 (2015) Fluorescent proteins in dominant mesophotic reef-building corals. Mar Ecol
21 Prog Ser 521:63-79
22 Siegel H, Gerth M, Stottmeister I, Baum A, Samiaji J (2019) Remote Sensing of Coastal
23 Discharge of SE Sumatra (Indonesia). In: Barale V, Gade M (eds) Remote Sensing of
24 the Asian Seas. Springer International Publishing, Cham
25 Signorini SR, Mannino A, Friedrichs MAM, St-Laurernt P, Wilkin J, Tatababai A, Najjar RG,
26 Hofmann EE, Da F, Tian H, Yao Y (2019) Estuarine Dissolved Organic Carbon Flux
27 From Space: With Application to Chesapeake and Delaware Bays. J Geophys Res
28 Oceans 124:3755-3778
29 Skjelkvåle BL, Stoddard JL, Jeffries DS, Tørseth K, Høgåsen T, Bowman J, Mannio J,
30 Monteith DT, Mosello R, Rogora M, Rzychon D, Vesely J, Wieting J, Wilander A,
31 Worsztynowicz A (2005) Regional scale evidence for improvements in surface water
32 chemistry 1990–2001. Environ Pollut 137:165-176
33 Smith EG, D'Angelo C, Sharon Y, Tchernov D, Wiedenmann J (2017) Acclimatization of
34 symbiotic corals to mesophotic light environments through wavelength
35 transformation by fluorescent protein pigments. Proceedings of the Royal Society B:
36 Biological Sciences 284:20170320
37 Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm).
38 Appl Opt 20:177-184
39 Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larsen S, Lennon JT,
40 Read JG, Sadro S, Saros JE (2015) Ecosystem Consequences of Changing Inputs of
41 Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future
42 Challenges. Ecosystems 18:376-389
43 Stedmon CA, Markager S (2001) The optics of chromophoric dissolved organic matter
44 (CDOM) in the Greenland Sea: An algorithm for differentiation between marine and
45 terrestrially derived organic matter. Limnol Oceanogr 46:2087-2093
46 Stedmon CA, Markager S (2003) Behaviour of the optical properties of coloured dissolved
47 organic matter under conservative mixing. Estuar Coast Shelf Sci 57:973-979
48 Stedmon CA, Osburn CL, Kragh T (2010) Tracing water mass mixing in the Baltic–North
49 Sea transition zone using the optical properties of coloured dissolved organic matter.
50 Estuar Coast Shelf Sci 87:156-162
Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104-107.

Stomp M, Huisman J, Vörös L, Pick FR, Laamanen M, Haverkamp T, Stal LJ (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290-298.

Storlazzi CD, Norris BK, Rosendberg KJ (2015) The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems. Coral Reefs 34:967-975.

Stramski D, Reynolds RA, Kaczmarek S, Uitz J, Zheng G (2015) Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. Appl Opt 54:6763-6782.

Susanto RD, Zexun W, Adi TR, Guohong F, Bin F, Agus S, Teguh A, Shuijiang L, Mukti T, Agus S (2016) Oceanography Surrounding Krakatau Volcano in the Sunda Strait, Indonesia. Oceanography 29:264-272.

Tan KS, Acriber E, Lauro FM (2016) Marine habitats and biodiversity of Singapore’s coastal waters: A review. Regional Studies in Marine Science 8:340-352.

Thrane J-E, Hessen DO, Andersen T (2014) The Absorption of Light in Lakes: Negative Impact of Dissolved Organic Carbon on Primary Productivity. Ecosystems 17:1040-1052.

Todd PA (2008) Morphological plasticity in scleractinian corals. Biological Reviews 83:315-337.

Traina SJ, Novak J, Smeck NE (1990) An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids. J Environ Qual 19:151-153.

Urtizberea A, Dupont N, Rosland R, Aksnes DL (2013) Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models. Ecol Model 256:16-22.

van Maren DS, Gerritsen H (2012) Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment. J Geophys Res Oceans 117.

Vantrepotte V, Danhiez F-P, Loisel H, Ouillon S, Mériaux X, Cauvin A, Dessailly D (2015) CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation. Opt Express 23:33-54.

Vasconcelos FR, Diehl S, Rodriguez P, Hedström P, Karlsson J, Byström P (2019) Bottom-up and top-down effects of browning and warming on shallow lake food webs. Glob Chang Biol 25:504-521.

Wauthy M, Raitio M, Christoffersen KS, Forssström L, Laurion I, Mariash HL, Peura S, Vincent WF (2018) Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnology and Oceanography Letters 3:186-198.

Wei Z, Li S, Susanto RD, Wang Y, Fan B, Xu T, Sulistyo B, Adi TR, Setiawan A, Kuswardani A, Fang G (2019) An overview of 10-year observation of the South China Sea branch of the Pacific to Indian Ocean throughflow at the Karimata Strait. Acta Oceanologica Sinica 38:1-11.

Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ Sci Technol 37:4702-4708.

Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985-1992.
Manuscript submitted to Marine Ecology Progress Series

1 Weyhenmeyer GA, Fröberg M, Karltn E, Khalili M, Kothawala D, Temnerud J, Tranvik LJ
2 (2012) Selective decay of terrestrial organic carbon during transport from land to sea.
3 Glob Chang Biol 18:349-355
4 Wijgerde T, van Melis A, Silva CIF, Leal MC, Vogels L, Mutter C, Osinga R (2014) Red
5 Light Represses the Photophysiology of the Scleractinian Coral Stylophora pistillata.
6 PLOS ONE 9:e92781
7 Wit F, Rixen T, Baum A, Pranowo WS, Hutahaean AA (2018) The Invisible Carbon
8 Footprint as a hidden impact of peatland degradation inducing marine carbonate
9 dissolution in Sumatra, Indonesia. Sci Rep 8:17403
10 Wong GTF, Ku T-L, Mulholland M, Tseng C-M, Wang D-P (2007) The SouthEast Asian
11 Time-series Study (SEATS) and the biogeochemistry of the South China Sea—An
12 overview. Deep Sea Res II 54:1434-1447
13 Yamashita Y, Panton A, Mahaffey C, Jaffé R (2011) Assessing the spatial and temporal
14 variability of dissolved organic matter in Liverpool Bay using excitation–emission
15 matrix fluorescence and parallel factor analysis. Ocean Dynam 61:569-579
16 Yupi HM, Inoue T, Bathgate J, Putra R (2016) Concentrations, loads and yields of organic
17 carbon from two tropical peat swamp forest streams in Riau Province, Sumatra,
18 Indonesia. Mires and Peat 18:1-15
19 Zepp RG, Shank GC, Stabenau E, Patterson KW, Cyterski M, Fisher W, Bartels E, Anderson
20 SL (2008) Spatial and temporal variability of solar ultraviolet exposure of coral
21 assemblages in the Florida Keys: Importance of colored dissolved organic matter.
22 Limnol Oceanogr 53:1909-1922
23 Zhou Y, Martin P, Müller M (2019) Composition and cycling of dissolved organic matter
24 from tropical peatlands of coastal Sarawak, Borneo, revealed by fluorescence
25 spectroscopy and parallel factor analysis. Biogeosciences 16:2733-2749
Table 1. Estimated contribution to the shoaling of the depth of 10% PAR penetration ($Z_{10\%}$) by terrigenous CDOM released by land-conversion of peatlands. Because our sites only receive peatland-derived CDOM during the Southwest Monsoon, this estimate was only made for measurements collected during this season. The percentage anthropogenic shoaling was calculated relative to the amount of shoaling caused by the total observed terrigenous CDOM. The anthropogenic terrigenous CDOM fraction was estimated as 35% of observed terrigenous CDOM, based on previous work (Moore et al. 2013, Yupi et al. 2016).

Date	Site	Latitude (°N)	Longitude (°E)	$Z_{10\%}$ shoaling due to anthropogenic terrigenous CDOM (m)	Anthropogenic contribution to total shoaling by terrigenous CDOM (%)
2019-05-29	Hantu	1.227	103.746	0.56	27.2
2019-05-29	Kusu	1.226	103.860	0.40	28.1
2019-05-29	Other	1.246	103.738	0.48	26.4
2019-07-15	Hantu	1.227	103.746	0.50	24.4
2019-07-15	Kusu	1.226	103.860	0.45	26.3
2019-08-01	Hantu	1.227	103.746	0.52	26.3
2019-08-01	Kusu	1.226	103.860	0.24	27.9
2019-09-06	Hantu	1.227	103.746	0.79	23.7
2019-09-06	Kusu	1.226	103.860	1.00	23.8
2020-06-25	Hantu	1.227	103.746	0.33	24.1
2020-06-25	Kusu	1.226	103.860	0.18	27.1
2020-07-16	Hantu	1.227	103.746	0.89	18.2
2020-07-16	Kusu	1.226	103.860	0.65	21.9
2020-07-30	Hantu	1.227	103.746	0.71	25.6
2020-07-30	Kusu	1.226	103.860	0.87	26.1
Fig. 1. (a) Study region showing location of peatlands (brown shading) and ocean bathymetry; the purple box corresponds to the area shown in (b). (b) Map of the Singapore Strait, with the red and purple arrows showing the mean current direction during each monsoon season. The two main sampling sites are marked by the two crosses on yellow background; the eastern site (“K”) is the exposed site, Kusu, while the western site (“H”) is the sheltered site, Hantu. Other stations that were sampled occasionally are shown in small blue dots.
Fig. 2. Biogeochemical and optical time-series data. (a) Absorption coefficient of CDOM at 440 nm, (b) CDOM spectral slope between 275–295 nm, (c) CDOM spectral slope ratio, (d) specific UV absorbance at 254 nm (SUVA\textsubscript{254}), and (e) seawater salinity all showed seasonal variation consistent with a large input of terrigenous CDOM during the Southwest Monsoon (brown shading), and to a lesser extent during the Northeast Monsoon (blue shading). In contrast, time series of absorption by (f) non-algal particles and (g) phytoplankton (both at 440 nm), and (h) backscattering by particles (at 440 nm) showed no clear seasonality, but absorption by non-algal particles and particulate backscattering were quite variable and typically higher at the more exposed site.
Fig. 3. Scatterplots showing strong relationships between (a) $S_{275-295}$, (b) S_R, and (c) SUVA$_{254}$ and CDOM absorption at 440 nm. Grey lines in (a,b) show predicted variation from the conservative mixing between the marine CDOM spectrum measured on 15 March 2019 and the primarily terrigenous CDOM spectrum measured on 16 July 2020. Data from the SW Monsoon consistently show high CDOM absorption associated with low $S_{275-295}$, low S_R, and high SUVA$_{254}$, indicative of a primarily terrigenous CDOM pool during this season.
Fig. 4. Light absorption budgets across the ultraviolet and visible wavelengths. Data are seasonal means across all stations. Phyto = absorption by phytoplankton; NAP = absorption by non-algal particles; CDOM = absorption by coloured dissolved organic matter; Water = absorption by seawater.
Fig. 5. Seasonal average downwelling irradiance (E_d) spectra calculated for solar noon at fixed depths for (a) the March–April Intermonsoon 1; (b) the Southwest Monsoon; (c) the October–November Intermonsoon 2; and (d) the Northeast Monsoon. Circles indicate the wavelength of maximum irradiance for each spectrum. The depths for spectra in panels c–d are as in panel a.
Fig. 6. Seasonal averages of depth-averaged downwelling irradiance at solar noon from 0–30 m, assuming turbulent mixing of the water column, for (a) March–April Intermonsoon 1, (b) Southwest Monsoon, (c) October–November Intermonsoon 2, and (d) Northeast Monsoon. Solid black line indicates the seasonal average irradiance spectrum, grey shading indicates ± 1 standard deviation. Vertical dotted lines indicate the wavelength of maximum irradiance.
Fig. 7. Time series of (a) the ratio of phytoplankton absorption at 490 nm to phytoplankton absorption at 510 nm, and (b) the phytoplankton absorption spectral slope (Eisner et al. 2003) both indicate that phytoplankton during the Southwest Monsoon have a lower proportion of non-photosynthetic to photosynthetic carotenoid pigments than during the other seasons (seasonal shading is as in Figs. 2 and 8).
Fig. 8. Time-series data showing the impact of terrigenous CDOM on the depth of 10\% PAR penetration ($Z_{10\%}$). (a) Bars show the actually observed depth of $Z_{10\%}$, and arrows indicate by how much the depth of $Z_{10\%}$ was shoaled due to the presence of terrigenous CDOM (i.e., without terrigenous CDOM, $Z_{10\%}$ would extend to the bottom of the arrows). (b) Time series of the percentage reduction in $Z_{10\%}$ due to terrigenous CDOM. (c) Scatter plot showing the strong relationship between percentage reduction in $Z_{10\%}$ and the absorption coefficient at 440 nm by terrigenous CDOM.