A battery monitoring IC with an isolated communication interface for electric vehicles

Tong Wang¹,², Ye Zhao¹, and Jie Chen¹

¹Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, China
²School of Microelectronics of University of Chinese Academy of Sciences, Beijing, 100049, China

a) wangtong3@ime.ac.cn

Abstract: This paper presents a Li-ion battery monitoring and protection IC suitable for monitoring 12 battery cells for electric vehicles (EVs). A two-wire, transformer based, isolated interface is proposed to provide the interface for the cascaded ICs. The interface uses the “balanced” two-wire technology and encodes the four SPI signals into DC-free pulse that can be coupled by a transformer, which features high-speed, low electromagnetic interference (EMI), and reliable data transmission. The IC was fabricated in a 0.18 µm, 60V BCD process, with a total chip area of 4.4×3.6 mm². Measurement results show that the proposed interface can achieve a data rate up to 1Mbps. Meanwhile, the measured current consumption is less than 45 µA in sleeping mode.

Keywords: battery monitoring, isolated interface, SPI, electric vehicle, BMS

Classification: Integrated circuits

References

[1] A. Affanni, et al.: “Battery Choice and Management for New-Generation Electric Vehicles,” IEEE Trans. Industrial Electronics 52 (2005) 1343 (DOI: 10.1109/TIE.2005.8590528).
[2] Linear Technology, Inc.: LTC6802 Datasheet (2009) http://www.linear.com.
[3] K. Kadirvel, et al.: “A Stackable, 6-Cell, Li-Ion, Battery Management IC for Electric Vehicles With 13, 12-bit ADCs, Cell Balancing, and Direct-Connect Current-Mode Communications,” IEEE J. Solid-State Circuits 49 (2014) 928 (DOI: 10.1109/JSSC.2014.2300861).
[4] R. Kliger: “Integrated transformer-coupled isolation,” IEEE Instrumentation and Measurement Magazine 6 (2003) 16 (DOI: 10.1109/MIM.2003.1184271).
[5] C. H. Hsu, et al.: “On the implementation of CAN buses to battery management systems,” IEEE International Midwest Symposium on Circuits and Systems (2011) 1 (DOI: 10.1109/MWSCAS.2011.6026561).
1 Introduction

In the Li-ion battery systems for EVs, the battery management system (BMS) is essential for improving battery life and safety. High precision battery parameters detection, cell balancing and battery protection are three essential aspects of BMS. Many battery monitoring ICs [1, 2, 3] have been developed in recent years. In BMS, the battery pack is usually composed of up to 96 Li-ion batteries in series, supplying a total voltage near 400V. So multiple cascaded battery monitoring ICs are required to detect the battery status. The voltage domains of monitoring ICs in the cascaded chain are different, resulting in a big challenge to design the data bus interface among the cascaded ICs. The previous works [4, 5] use the optocoupler as the isolated interface. But the high power consumption, low integration, low speed (the data rate is generally less than 1Mbps) and degradation of light emitting diode (LED) limit its application. Digital isolators using magnetic coupling or capacitive coupling are proposed in [6, 7, 8]. But the magnetic coupling and capacitive coupling can generate EMI to the surrounding circuits, which reduces the communication reliability. Besides, the digital isolator needs to provide four isolated channels for SPI signals and configure four transformers or four pairs of capacitors. Especially, the digital isolator requires an independent isolated power supply, which increases the cost and system complexity. In [2], the battery monitoring IC adopts a 4-wire, current-mode Serial Peripheral Interface (SPI) which allows the IC to be directly connected to one another without optocouplers or isolators. The ICs can be daisy-chained to monitor the battery pack. But if one IC in this daisy-chained system breaks down, the whole network will collapse. So it’s not suitable for expansion and implement. To resolve all the mentioned problems, a two-wire, isolated transformer interface is presented in this paper to form a daisy chain bus configuration between the cascaded ICs. Besides, the IC uses a 12-bit Sigma-Delta analog-to-digital (ΣΔ ADC) to measure voltage and the

[6] V. R. H. Lorentz, et al.: “Novel cost-efficient contactless distributed monitoring concept for smart battery cells,” IEEE International Symposium on Industrial Electronics (2012) 1342 (DOI: 10.1109/ISIE.2012.6237285).
[7] S. Kaeriyama, et al.: “A 2.5 kV Isolation 35 kV/µs CMR 250 Mbps Digital Isolator in Standard CMOS With a Small Transformer Driving Technique,” IEEE J. Solid-State Circuits 47 (2012) 435 (DOI: 10.1109/JSSC.2011.2170775).
[8] M. Brandl, et al.: “Batteries and battery management systems for electric vehicles,” Design, Automation and Test in Europe Conference and Exhibition (2012) 971 (DOI: 10.1109/DATE.2012.6176637).
[9] H.J. Hsu and S.Y. Huang: “A low-jitter ADPLL via a suppressive digital filter and an interpolation-based locking scheme,” IEEE Trans. Very Large Scale Integration 19 (2011) 165 (DOI: 10.1109/TVLSI.2009.2030410).
[10] S. Byun: “A 400 Mb/s~2.5 Gb/s Referenceless CDR IC Using Intrinsic Frequency Detection Capability of Half-Rate Linear Detector,” IEEE Trans. Circuits and Systems 63 (2016) 1592 (DOI: 10.1109/TCSI.2016.2587751).
[11] Pulse Electronics, Inc.: PE-68386NL Datasheet (2007) http://www.pulseelectronics.com.
battery pack temperature. The cell balancing function and some protection features are also integrated in this IC to extend battery life and improve system safety.

This paper is organized as follows. Section 2 provides the architecture of the proposed communication interface. Section 3 describes the implementation details of the proposed communication interface. Section 4 provides the experimental results and compares this work to some published literatures.

2 Architecture of the proposed interface

Fig. 1 shows the symbol connection between the stacked battery monitoring ICs and a Li-ion battery charger microcontroller (MCU). Multiple ICs can be stacked in a vertical arrangement in order to monitor up to 96 Li-ion batteries. So the front-end monitoring ICs work in the high-voltage (HV) domain. When the ICs are connected to MCU which works in the low-voltage (LV) domain, isolated communication devices are needed. However, when the ICs and MCU are on the same board, they can be directly connected. Considering the two applications above, the IC integrates two communication interfaces: SPI and the proposed isolated interface. The SPI interface is used to link the bottom IC device in the stack to MCU. It’s a standard interface with a Chip Select (CS), a Clock (SCK), a Master-In-Slave-Out (SDI), and a Master-Out-Slave-In (SDO). The proposed interface is used to communicate between the daisy-chained ICs. As shown in Fig.1, the absolute voltage range of each monitoring IC increases with its position in the cascaded structure. So the proposed interface uses the transformer coupling isolation to achieve signal transmission among the stacked ICs. It uses the twisted pair cable as the transmission medium and encodes the four SPI signals into a balanced two-wire differential signal that can be transmitted on the twisted pair, which can remove the high common-mode voltage and cancel out the EMI from external sources. Compared with the literatures mentioned in the introduction, this
method can support data rates up to 1 Mbps and save the design of four isolation channels. Besides, it can achieve the flexible network configuration of the front-end monitoring ICs.

Fig. 2 shows the block diagram of the monitoring IC and a conceptual architecture of the proposed interface. The proposed interface consists of two pairs of bidirectional ports which are high ports (ISOH+/−) and low ports (ISOL+/−). Ports ISOH+/− are the high-side interfaces that communicate with the top side device while the ISOL+/− are the low-side interfaces to connect to the bottom-side device. Every pair of bidirectional port consists of a balanced transmission driver, a differential receiver and a pulse codec module.

![Block diagram of the IC and the proposed interface](image)

Fig. 2. Block diagram of the IC and the proposed interface

3 Circuit description

3.1 Transmitter and receiver

As shown in Fig. 2, the transmitter adopts a current-regulated differential driver and the receiver is designed as a window comparator with a differential voltage threshold. The transmitter drive current is designed to be $20I_{bias}$ and the comparator voltage threshold is half of the voltage on the COMP pin. The drive current and the voltage threshold can be set by two external resistors (R_1, R_2) between the BIAS pin and GND. A 2.5V reference drives the BIAS pin. So the current I_{bias} flowing through the resistance R_1 and R_2 can be calculated as follows:

$$I_{bias} = \frac{2.5V}{R_1 + R_2}$$

(1)

Then the drive current I_{drive} is written as follows:

$$I_{drive} = 20I_{bias}$$

(2)

The comparator voltage threshold V_{THR} can be written as

$$V_{THR} = \frac{V_{COMP}}{2} = \frac{I_{bias} \times R_2}{2}$$

(3)

where V_{COMP} is the voltage on the COMP pin.

Fig. 3 shows the schematic of the transmitter and its connection to the load resistance R_M and the external transformer U1. When the switch POS is closed and the switch NEG is off, the ISOH/L+ port sources current and the ISOH/L− port sinks current, then it can generate a positive voltage between the two ports across
the load resistor R_M. On the contrary, when the switch NEG is closed and the switch POS is off, the ISOH/L+ port sinks current and the ISOH/L- port sources current, then it generates a negative voltage. When not transmitting, the two ports maintain the voltage near VDD through a pair of 35K resistors. The isolation barrier U1 adopts a transformer with a 1:1 turns ratio. So the transmitted differential signal amplitude V_A can be calculated as follows:

$$V_A = I_{drive} \cdot \frac{R_M}{2}$$ \hfill (4)

Fig. 3. Schematic of transmitter and its connection to a transformer

Fig. 4 shows the schematic of the receiver and its connection to the transformer U2. The receiver consists of a comparator A1 whose negative terminal includes a voltage threshold reference (V_{THR}) and another comparator A2 whose positive terminal includes a V_{THR} reference. The following relationship can be established:

$$R_x = \begin{cases} +1, & V_{ISOH+} - V_{ISOH-} \geq V_{THR} \\ 0, & -V_{THR} < V_{ISOH+} - V_{ISOH-} < V_{THR} \\ -1, & V_{ISOH+} - V_{ISOH-} \leq -V_{THR} \end{cases}$$ \hfill (5)

where R_x is the logic value that the comparators detect.

Fig. 4. Schematic of receiver and its connection to transformer

Fig. 5. The details of the differential pulse
Based on the above analysis, the transmitter can generate three voltage levels: +V_A, 0V, and −V_A. Meanwhile, the receiver can detect three logic values according to V_{THR} as shown in Fig. 5.

From Eq. (1), the current I_{bias} can be set by two external resistors (R_1, R_2). So the drive current and the voltage threshold can also be configurable. The current I_{bias} can be varied from 0.5mA to 1 mA. A low I_{bias} can reduce the power consumption while a high I_{bias} can increase the amplitude of V_A, which means that we can configure the current I_{bias} according to the different application scenarios and requirements. When the communication distance (the length of twisted pair) is long or the working environment is poor, we can increase the current I_{bias} to compensate for the increased insertion loss in the cable and increase the noise immunity. However, when the application has certain requirements on the power consumption or the communication distance is short, we can choose to reduce the current I_{bias}. The typical configuration is shown in Table I.

Table I. Typical parameter values
Parameter

Config. 1
Config. 2

3.2 Coding and decoding scheme

The working environment of the BMS inside the car is very poor. There are many surge and pulse interference signals. In order to eliminate the DC signal components and enhance the reliability, we adopt a novel encoding method. We define pulses as the symmetric pulse pairs. A +1 pulse pair is defined as a $+V_A$ pulse followed by a $-V_A$ pulse. A -1 pulse pair is defined as a $-V_A$ pulse followed by a $+V_A$ pulse. In order to distinguish the signal type, five kinds of effective signals are generated via the combination of pulse width and polarity as shown in Table II. A pulse with 400ns duration (200ns+200ns) is used to transmit CS changing and a pulse with 250ns duration (125ns+125ns) is used to transmit SDI signal. A pulse with 100ns duration (50ns+50ns) is used to transmit SDO signal and corresponding SCK falling edge signal.

Table II. Communication events and the pulse type
Pulse type

200ns+200ns

Fig. 6 is the communication sequence diagram that illustrates how a bidirectional communication interface configured as a master interacts with another interface configured as a slave. The master IC initiates communication by lowing CS, then the transmitter converts this transition into a -1 pulse. The pulse traverses the isolation barrier and arrives at the slave IC’s interface. Once confirmed, the -1 pulse is converted back to a falling CS transition. The master uses the SCK rising edge to latch SDI data. Every SDI signal is encoded into a +1
or -1 pulse. When the slave IC receives the pulse, it will set the slave SDI to the proper state. It should be noticed that if the slave SDO=1, the slave IC does not transmit a pulse and the master IC sets the master SDO=1. At the end of the communication, the master IC raises CS. This CS changing is transmitted to the slave IC in the form of a +1 pulse, then the slave CS will rise to high state.

It should be noticed that there is no explicit clock signal connected between the upper and lower ICs. In order to achieve clock synchronization, we use an all-digital clock and data recovery circuit (CDR) to ensure the reliable serial communication [9, 10]. The transmitter embeds the clock signal into the data stream, and then the receiver extracts the clock signal by the CDR and uses this extracted clock for sampling and decoding. When multiple ICs are connected in series, a corresponding address must be assigned to each device. Address 0x01 is assigned to the bottom IC which is directly connected to MCU, and the non-zero addresses are assigned to the other ICs accordingly. All commands sent by MCU originate in the stack from the bottom IC, and then pass through the middle ICs up to the top IC. The IC responds to commands, measures and reports the data back to MCU when the address matches.

3.3 Selection of the transformer type

The transformer can isolate the DC voltages and remove the high voltage common mode signals. But the actual transformer cannot be completely coupled because of the leakage flux, which causes the insertion loss. The insertion loss can attenuate signal energy and cause the waveform distortion. The insertion loss (IL) can be calculated as:

\[
IL = -10 \log \left(\frac{U}{(1-\Delta)U} \right) = -20 \log \left(\frac{1}{1-\Delta} \right)
\]

where \(U\) is the source voltage and \(\Delta\) is the ratio of pulse fading. The relationship between the transformer magnetizing inductance \(L_d\) and \(\Delta\) can be described as:

\[
L_d = \frac{\tau \cdot R}{\Delta}
\]
where τ is the pulse width and R is the equivalent resistance of transformer primary loop. It can be calculated as:

$$R = \frac{r_0 \times R_L}{r_0 + R_L} = \frac{R_{\text{in}}}{2} = 60\Omega \quad (8)$$

where r_0 and R_L are the source internal resistance and the load resistance, respectively. In order to increase the system reliability, the IL should be less than -1.5dB. Referring to Eq. (6), (7) and (8), the magnetizing inductance L_d should be more than 50 μH. Fig. 7 shows the pulse waveforms through the transformer with different magnetizing inductance L_d. It can be seen that the insertion loss IL increases with the increasing of the magnetizing inductance L_d. Finally, in this work we choose the PE-6836NL transformer with a magnetizing inductance of 785 μH[11].

![Fig. 7. Pulse waveforms through a transformer with different L_d](image)

4 Chip fabrication and measurement results
The proposed Li-ion battery monitoring IC was implemented using 0.18 μm, 60V BCD process, with a total chip area of 4.4×3.6 mm2. Fig. 8 shows the chip micrograph. Fig. 9 shows the measurement setup. Two ICs connect together to communicate with an ARM development board. Addresses (0x01, 0x02) are assigned to every IC in the stack correspondingly. All commands from the ARM board originate in the stack from the bottom IC to the top IC. A PC connected to the ARM board is used to provide a graphic user interface.

![Fig. 8. Chip micrograph of the battery monitoring IC](image)
If no valid communication event happens in a given time 2s, the chip will go to
the sleeping mode to reduce power consumption. The SPI interface and the
isolated interface can be woken up by the falling edge of CS and the differential
pulse on the twisted pair, respectively. The measured wake-up process is shown in
Fig. 10. For the bottom IC (0x01), about 3.2μs after the CS falling edge, the SPI
interface wakes up and the BIAS pin settles to its final value of 2.5V. About
0.6μs later, the bottom IC sends a differential pulse which persists for 300ns or
longer to the upper IC by ISOH+ and ISOH-. About 4.1μs after the upper IC
(0x02) receives the differential pulse, the isolated interface wakes up and its BIAS
pin rises to 2.5V. When the chip operates in sleeping mode and operating mode, the
measured current consumption are 45μA and 560μA, respectively.

In this test, we select the bottom IC with address 0x01 to measure the cell
voltage. The voltages of the 12 batteries are detected repeatedly over 500 times at
room temperature. 20 groups of detecting results and error distribution of the
battery 6 is shown in Fig. 11. The results show that this monitoring IC can measure
the voltage of each battery cell precisely with a max detecting error of 2mV.
Fig. 1. Transmission data between MCU and the bottom IC

Fig. 2. Communication events: (a) CS falling, (b) CS rising, (c) SDO signal, (d) SDI signal

Fig. 11. Transmission data between MCU and the bottom IC

Fig. 12. Communication events: (a) CS falling, (b) CS rising, (c) SDO signal, (d) SDI signal

Fig. 12 shows the measurement results of four communication events. All of these events, CS falling, CS rising, SDI, SDO, demonstrate the same pulse width and polarity as shown in Table II. Fig. 13 shows the scope plot of the transmission data between MCU and the bottom IC. The SPI frequency is 1 MHz. The data writing from MCU to bottom IC is realized by SDI. As can be seen, the SDI signal (1010 0110) can be correctly encoded to corresponding pulses with 250ns duration on the twisted pair. Then the bottom IC receives and decodes these pulses into SDI signal (1010 0110). The reading data signal from the bottom IC to MCU is realized by SDO. The SDO signal (1010 0110) can also be correctly encoded to pulses with
100ns duration on the twisted pair. The MCU receives these pulses and sets SDO to the proper state. So every communication event can be transmitted correctly, which ensures that all digital data can be transferred correctly by this bus, including the control commands, battery voltages, temperatures and battery conditions.

The performance of this work is summarized and compared with some similar ICs from industry and academia in Table III. The proposed IC has the high voltage measurement accuracy which is 2mV. The novel isolated communication interface can achieve a data rate up to 1Mbps. Most important of all, this isolated interface can encode four SPI signals into a balanced two-wire differential signal that can be transmitted on the twisted pair, which features low EMI, high noise immunity, and reliable data transmission.

Fig. 13. Transmission data between MCU and the bottom IC

Properties	This work	[1]	[2]	[3]
Year	2017	2005	2009	2014
Number of battery channels	12	10	12	6
Max. battery pack voltage (V)	60	50	60	30
ADC type	12-bit ΣΔ ADC	No ADC	12-bit ΣΔ ADC	12-bit ΣΔ ADC
Voltage accuracy (mV)	2(5V input)	0.5%	9.2(5V input)	5(5V input)
Commu. interface	SPI, isolated interface	Optocoupler	SPI	SPI, UART
Max. data rate (Mbps)	1	≤ 1	1	N.A
Interface isolation scheme	Transformer isolation	Optocoupler isolation	No external components	No external components
Standby current (μA)	45	N.A	62.5	15
Standby power loss (mW)	2.7	N.A	3.75	0.6
5 Conclusion

A battery monitoring IC with an isolated transformer communication interface has been implemented in a 0.18 μm, 60V BCD technology. The isolated interface can provide bidirectional serial communication among the stacked ICs. It uses a simple pulse transformer as the isolation barrier to achieve hundreds of volts of isolation. Test results show that the interface can achieve a data rate up to 1Mbps. And the IC can be daisy-chained to monitor up to 12 series-connected cells with a total measurement error of less than 2 mV. This proposed IC with the isolated interface can be used in a battery management system to ensure the system security and increase the battery life.

Acknowledgments

This work was supported by the National Key Research and Development Plan of China “New Energy Vehicle Special” (2016YFB0100516). The author would like to thank Dr. Ye Zhao, and Dr. Jie Chen for their useful discussions and instruction.