Quality of surgical care can impact survival in patients with bladder cancer after robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium

Youssef Ahmed
Ahmed A. Hussein
Paul R. May
Basel Ahmad
Amir Khan

See next page for additional authors
Authors
Youssef Ahmed, Ahmed A. Hussein, Paul R. May, Basel Ahmad, Amir Khan, John Benkowski, Ayesha Durrani, Saira Khan, Justen Kozlowski, Matthias Saar, Carl J. Wijburg, Lee Richstone, Andrew Wagner, Bertram Yuh, Joan Palou Redorta, Prokar Dasgupta, Mohammad Shamim Khan, Mani Menon, James O. Peabody, Abolfazl Hosseini, Franco Gaboardi, Giovannalberto Pini, Francis Schanne, Alexandre Mottrie, Koon-ho Rha, Ashok Hemal, Michael Stockle, John Kelly, Wei Shen Tan, Thomas J. Maatman, Vassilis Poulakis, Jihad Kaouk, Abdullah Erdem Canda, Mevlana Derya Balbay, Peter Wiklund, and Khurshid A. Guru
Quality of surgical care can impact survival in patients with bladder cancer after robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium

Youssef Ahmed1, Ahmed A. Hussein1,2*, Paul R. May1, Basel Ahmad1, Amir Khan1, John Benkowski1, Ayesha Durrani1, Saira Khan1, Justen Kozlowski1, Matthias Saar3, Carl J. Wijburg4, Lee Richstone5, Andrew Wagner6, Bertram Yuh7, Joan Palou Redorta8, Prokar Dasgupta9, Mohammad Shamim Khan9, Mani Menon10, James O. Peabody10, Abolfazl Hosseini11, Franco Gaboardi12, Giovannalberto Pini12, Francis Schanne13, Alexandre Mottrière14, Koon-ho Rha15, Ashok Hemal16, Michael Stockle3, John Kelly17, Wei Shen Tan17, Thomas J. Maatman18, Vassilis Poulakis19, Jihad Kaouk20, Abdullah Erdem Canda21, Mevlana Derya Balbay21, Peter Wiklund11 and Khurshid A. Guru1*

Abstract

Background: Although pathological factors remain the main determinate of survival for patients with bladder cancer, quality of surgical care is crucial for satisfactory outcomes. Using a validated quality score, we investigated the impact of surgical factors on the overall survival (OS), recurrence-free survival (RFS) and disease-specific survival (DSS) in patients with locally advanced and organ-confined disease (OCD). Retrospective review of IRCC database includes 2460 patients from 29 institutions across 11 countries. The final cohort included 1343 patients who underwent RARCs between 2005 and 2016. Patients with locally advanced disease (LAD) (> pT2 and/or N+) were compared with OCD (≤ pT2/N0). Validated Quality Cystectomy Score (QCS) based on four sets of quality metrics was used to compare surgical performance. Kaplan–Meier method was used to compute RFS, CSS and OS rates. Multivariable stepwise logistic regression was used to evaluate variables associated with RFS, DSS and OS.

Results: 48% had LAD. When compared to patients with OCD, they received neobladders less frequently (17% vs. 28%, p < 0.001) and experienced higher estimated blood loss (513 vs. 376 ml, p = 0.05). Postoperatively, more patients in the LAD group received adjuvant chemotherapy (24% vs. 4%, p < 0.001) and positive surgical margins (14% vs. 2%, p < 0.001) and had higher 90-day mortality (6% vs. 2%, p < 0.001). On multivariable analysis, female gender, higher QCS score, intracorporeal diversion, pT stage, positive lymph node status and recurrence are considered as predictors of survival. Patients with OCD exhibited better RFS, DSS and OS than patients with LAD. For patients with OCD, higher QCS was associated with improved OS but not RFS or DSS. On the other hand, patients with LAD and higher QCS exhibited higher RFS, DSS and OS when compared to those with lower QCS.
1 Background
Robot-assisted radical cystectomy (RARC) has been increasingly utilized for muscle-invasive bladder cancer, as it provides similar oncological efficacy to open radical cystectomy (RC) and is superior in terms of perioperative outcomes and recovery [1]. Approximately 37% of patients have locally advanced disease (LAD) (extravesical disease (> pT2) and/or positive lymph nodes) at surgery [2]. The negative impact of tumor stage (pT stage) and lymph node stage (pN stage) on oncological outcomes following RC has been reported by several open and robot-assisted series [3–5]. Surgery in the setting of LAD may invariably become inevitable to alleviate adverse urinary symptoms and poor quality of life that may occur [6]. Additionally, similar to ovarian cancer and renal cell carcinoma, surgery offers good local control, decreases tumor burden and therefore may be associated with survival benefit [7]. Moreover, advents in neoadjuvant chemotherapy (NAC) have been associated with significant pathologic downstaging and improved survival, and surgery may be done even with curative intent in this setting [8].

Controversy remains with regards to the best approach for locally advanced bladder cancer, with concerns regarding poor oncological outcomes, higher morbidity and mortality, cost-effectiveness and the economic impact [9]. In addition to patient comorbidities and extent of the disease, it has been shown that quality of surgical performance can largely contribute to outcomes of RC independent of the extent of the disease [10, 11]. However, the role RARC in the setting of LAD is yet to be defined. The lack of tactile feedback and the potential higher risk of positive surgical margins may advocate against the use of RARC [12]. Additionally, there have been concerns about possible higher incidence of extrapelvic lymph node (LN) metastasis, local recurrence and peritoneal carcinomatosis with RARC when compared to open surgery [13].

In this context, we sought to describe the outcomes of our patients who underwent RARC for LAD and investigate the impact of quality of surgical performance on perioperative outcomes and survival.

2 Methods
A retrospective review of the International Robotic Cystectomy Consortium (IRCC) database was performed (I-79606) which includes 2460 patients who underwent RARC between 2005 and 2016, from 29 institutions across 11 countries.

Patients were divided into two groups: patients with LAD (> pT2 and/or N +) and those with organ-confined disease (OCD) (≤ pT2/N0). Patients were reviewed for demographics (age, sex, body mass index [BMI] and American Society of Anesthesiologists [ASA] score), preoperative characteristics (prior abdominal or pelvic surgery, prior irradiation, neoadjuvant chemotherapy [NAC] and clinical staging), operative (type and technique of diversion, operative time, blood loss and transfusion), postoperative variables (hospital and intensive care unit stay, complications, readmissions, pathological staging, lymph node yield) and oncological outcomes (disease recurrence and survival). Patients were again grouped according to the quality of surgical care they received, measured by the validated Quality Cystectomy Score (QCS) for RARC into high and low QCS [10]. The score comprises four domains that measure surgical quality of RARC independent of patient and disease characteristics and then assigned a star score depending on the number of quality metrics fulfilled (Additional file 1: Fig. S1). Oncological outcomes were then compared between the different groups.

2.1 Statistical analysis
Data were described in terms of means and standard deviations. Univariable associations were statistically assessed using the Wilcoxon rank sum test or Kruskal–Wallis test for ordinal data, and Pearson chi-square test for categorical variables. Kaplan–Meier curves were used to describe recurrence-free (RFS), disease-specific (DSS) and overall (OS) survival. Multivariable stepwise logistic regression models were fit to evaluate preoperative, operative and postoperative predictors of RFS, DSS and OS, excluding factors included in the QCS to avoid collinearity. All tests were two-sided, with statistical significance defined as \(p < 0.05 \). All statistical analyses were performed using SAS software (version 9.3, SAS Institute Inc., Cary, NC).

3 Results
The final cohort comprised 1343 patients, 41 surgeons from 24 institutions in 10 countries. Mean age was 67 years, 74% were men and 20% received NAC. A total of 640 (48%) patients had LAD (86% had extravesical disease, 47% had positive lymph nodes and 33% had
both). Patients with LAD received ileal conduits more often (83% vs. 72%, \(p < 0.001 \)), experienced higher estimated blood loss (444 vs. 376 ml, \(p = 0.05 \)) and received adjuvant chemotherapy more often (24% vs. 4%, \(p < 0.001 \)). Both groups exhibited a similar lymph node yield (median 18, standard deviation [SD] 11). There was no significant difference in terms of operative times, complications or readmissions up to 3 months after RARC. LAD patients had more positive soft tissue surgical margins (14% vs. 2%, \(p < 0.001 \)). They had higher incidence of both local (19% vs. 4%, \(p < 0.001 \)) and distant (31% vs. 8%, \(p < 0.001 \)) recurrences. They also exhibited higher mortality at 90 days (6% vs. 2%, \(p < 0.001 \)) (Table 1).

Variable	OCD	LAD	\(p \) value
N (%)	703 (52)	640 (48)	–
Preoperative			
Age, mean (SD), years	67 (10)	68 (10)	0.04
Sex, males, n (%)	528 (75)	461 (72)	0.24
BMI, kg/m², mean (SD)	28 (5)	27 (5)	0.01
ASA score, median (IQR)	2 (2–3)	3 (2–3)	0.06
Prior surgery, n (%)	221 (31)	209 (33)	0.63
NAC, n (%)	139 (20)	126 (20)	0.97
Operative			
Ileal conduit, n (%)	503 (72)	529 (83)	<0.001
Intracorporeal diversion, n (%)	435 (76)	347 (72)	0.12
Operative time, median (IQR), min	371 (310–450)	369 (310–442)	0.80
EBL, mean (SD), ml	376 (339)	444 (513)	0.05
Perioperative			
Hospital stay, median (IQR), days	9 (7–13)	9 (7–13)	0.42
ICU stay, median (IQR), days	1 (0–1)	1 (0–1)	0.73
Adjuvant treatment, n (%)	26 (4)	154 (24)	<0.001
30-d complications, n (%)	224 (32)	205 (32)	0.95
90-d complications, n (%)	261 (37)	249 (39)	0.50
30-d high-grade complications, n (%)	63 (9)	72 (11)	0.16
90-d high-grade complications, n (%)	74 (11)	88 (14)	0.07
30-d readmission, n (%)	48 (7)	50 (8)	0.49
90-d readmission, n (%)	85 (12)	91 (14)	0.25
30-d mortality, n (%)	4 (0.6)	7 (1)	0.29
90-d mortality, n (%)	12 (1.9)	33 (6)	<0.001
Pathologic			
LNY, mean (SD)	18 (11)	18 (11)	0.86
Positive LN, n (%)	0 (0)	301 (47)	NA
Pathologic T stage > 2	0 (0)	544 (86)	NA
PSM, n (%)	16 (2)	89 (14)	<0.001
Any recurrence, n (%)	73 (10)	252 (39)	<0.001
Local recurrence, n (%)	31 (4)	123 (19)	<0.001
Distant recurrence (n)	56 (8)	198 (31)	<0.001
Median time to any recurrence (months)	12 (6-21)	6 (3-11)	<0.001
Non-TCC histology, n (%)	163 (30)	171 (30)	0.76
QCS domains			
Preoperative	139 (20)	126 (20)	0.97
Operative	359 (51)	318 (50)	0.61
Postoperative	603 (86)	529 (83)	0.12
Pathologic	266 (38)	209 (33)	0.05
In terms of quality of surgical care provided, both groups received comparable surgical care, where 83% of LAD patients were assigned a high QCS score (3–4 stars) compared to 90% of OCD patients (Fig. 1). The proportion of patients who received high QCS score significantly increased with time, irrespective of their disease extent (linear regression test: OCD: \(p = 0.003 \); LAD \(p = 0.02 \)) (Fig. 2).

Patients with high QCS significantly demonstrated better 5-year OS irrespective of their disease stage (LAD: 29% vs. 23%, \(p = 0.02 \)) and (OCD: 70% vs. 55%, \(p = 0.03 \)). When compared to patients who had LAD and low QCS, patients with LAD and high QCS demonstrated better 5-year RFS (41% vs. 29%, \(p = 0.05 \)) and DSS (55% vs. 37%, \(p = 0.01 \)). This benefit was not demonstrated for patients with OCD (Fig. 3).

Looking at predictors of survival, > pT3 stage and N+ status at RARC were associated with worse RFS (hazards ratio [HR] 1.60, 95% confidence interval [CI] 1.15–2.22, \(p = 0.006 \); HR 1.63, 95% CI 1.19–2.24, \(p = 0.003 \)), DSS (HR 5.12, 95% CI 3.23–8.12, \(p < 0.0001 \); HR 2.05, 95% CI 1.39–3.04, \(p = 0.0003 \)) and OS (HR 3.66, 95% CI 2.76–4.84, \(p < 0.0001 \); HR 1.83, 95% CI 1.4–2.40, \(p < 0.0001 \)), respectively. Patients who received neobladders and high QCS score exhibited better DSS (HR 0.30, 95% CI 0.12–0.74, \(p = 0.009 \); HR 0.53, 95% CI 0.34–0.84, \(p = 0.007 \)) and OS (HR 0.366, 95% CI 0.21–0.65, \(p = 0.0005 \); HR 0.63, 95% CI 0.46–0.86, \(p = 0.004 \)). BMI had a modest effect on DSS and OS. Male patients (HR 0.69, 95% CI 0.49–0.95, \(p = 0.02 \)) and those who received extracorporeal diversion (HR 0.67, 95% CI 0.49–0.91, \(p = 0.01 \)) demonstrated better RFS. Higher ASA score was associated with worse OS (HR 1.41, 95% CI 1.13–1.75, \(p = 0.002 \)) (Table 2).

4 Discussion

For decades, RC has been the gold standard for treatment of muscle-invasive bladder cancer and refractory non-muscle-invasive disease. However, even with the advents in surgical techniques and perioperative care, it remains with considerable morbidity and mortality, especially for LAD (pT3–T4 and/or lymph node-positive) [14]. We aimed to explore the outcomes of RARC in the setting of locally advanced bladder cancer and whether the quality of surgical care affected survival in this setting or not (Additional file 2: Table S1).

Although RC in LAD (alone or as part of multimodality approach) may be of considerable risks, other alternatives, as bladder preservation modalities, which usually entail radiation and chemotherapy combined with transurethral resection (TUR) of the primary tumor, do not
Fig. 3 Kaplan–Meier curves for RFS, DSS and OS for patients with OCD versus LAD stratified by QCS score (high QCS vs. low QCS)

a- RFS:

RFS High vs Low QCS (LAD $p=0.046$, OCD $p=0.40$)

b- DSS:

DSS High vs Low QCS (LAD $p=0.01$, OCD $p=0.90$)

c- OS:

OS High vs Low QCS (LAD $p=0.02$, OCD $p=0.03$)
provide adequate primary tumor control. Additionally, they may be associated with worse voiding symptoms, uncontrollable bleeding, repeated hospital readmissions and poor quality of life [15]. Inadequate local tumor control may also cause fistulation, ureteral obstruction and symptomatic distant metastasis [6]. Consequently, approximately one-quarter of the patients will undergo salvage cystectomy for symptom relief [16]. RC following extensive chemo-irradiation and multiple TURs has very limited clinical efficacy and usually associated with even higher morbidity and mortality [17]. Therefore, resection of the bladder with an adequate safety margin and extended lymph node dissection may offer symptomatic relief and offer some oncological benefits especially when combined with chemotherapy for control of micrometastatic disease [6].

The present outcomes showed similar perioperative outcomes between LAD and OCD, with only modest difference in the estimated blood loss (444 vs. 376). More patients in the LAD showed PSM (14% vs. 2%, \(p < 0.001 \)) and experienced recurrence more often (39% vs. 10%, \(p < 0.001 \)). This can be explained by disease aggressiveness. Even with adequate surgical techniques, LAD cohort may still experience more positive soft tissue surgical margins, which is associated with disease relapse [18, 19].

Survival following RARC depends on several key factors: stage of disease at presentation, patient age and comorbidities, and the quality of operative management [5, 20, 21]. Deal management should include multidisciplinary consultation regarding NAC, a procedure that respects oncological principles, optimized perioperative care and the availability of adequate institutional resources [22]. Disease factors mainly drive survival outcomes for bladder cancer. The adverse impact of advanced pT stage and nodal status has been shown, and long-term survival is dismal when bladder cancer invades the pelvic sidewall or adjacent structures [3, 4, 12, 23, 24]. Nodal involvement had a clear negative prognostic impact independent of pT stage [24].

While disease and patient characteristics are less controllable, disease management and perioperative care are “modifiable” and should be optimized. It has been previously shown that independent of patient and disease characteristics, high-quality surgical care is associated with RFS, DSS and OS [22]. In the current study, more patients in the OCD received higher quality of care when compared to LAD (90% vs. 83%), which is attributed primarily to the pathologic criteria that include positive soft tissue surgical margins (Table 1). The improvement in surgical care provided for patients with time corresponds to increased trends of utilization of NAC and is in agreement with data from National Medicare, which shows a 37% decline in mortality [22, 25]. Our findings confirm that quality of surgical care is mandatory to optimize OS for all patients, irrespective of their disease status. Among patients with OCD, those who received a higher quality of surgical care demonstrated better OS at 5 years (70% vs. 55%, \(p = 0.03 \)). Among patients with LAD, disease control benefit (in terms of RFS and DSS) has been additionally demonstrated. This reflects that a quality surgery that involves thorough lymphadenectomy is worthwhile and can provide recurrence-free and disease-free survival benefit even in patients with the locally advanced and micrometastatic disease. However, controversies do exist with respect to the required extent of lymphadenectomy and the number of nodes that should be retrieved. It has been concluded that bilateral and meticulous lymphadenectomy up to the common iliac artery is adequate and that such a dissection would provide a yield of approximately 20 lymph nodes [22]. The introduction of NAC has been associated with improved survival in these patients, especially in patients with complete pathological response [8]. Meticulous surgical clearance and extended lymph node dissection are crucial for achievement of optimal survival following RARC.

Table 2 Multivariable stepwise Cox proportional hazards regression modeling predictors of RFS, DSS and OS

Variables	RFS	DSS	OS
	HR CI	HR CI	HR CI
Gender (females)	0.685 0.493–0.952	0.956 0.924–0.99	0.964 0.943–0.986
BMI			
ASA			
Diversion type (ileal conduit)			
Diversion approach (intracorporeal)	0.67 0.49–0.91	0.297 0.12–0.736	0.366 0.208–0.645
pT (≤pT2)	1.595 1.146–2.218	5.119 3.225–8.124	3.656 2.762–4.837
pN (N–)	1.629 1.185–2.239	2.053 1.385–3.043	1.833 1.4–2.399
QCS (low QCS)	0.533 0.338–0.84	0.629 0.457–0.864	0.004
Other factors that have been shown in this study to affect survival included female gender, ASA score, intra-corporeal diversion and continent diversion. Females in general have worse outcomes of bladder cancer. The effects of the diversion technique and type may be related to patient selection bias, where sicker patients usually receive conduits that are mostly performed intracorporeally, or may be related to longer operative times associated with intracorporeal diversion.

The present study has its limitations. First, the limitations inherent to retrospective analysis are well recognized. Second, the study includes 24 different institutions which may vary in their management protocols. Still, our study reflects real practice patterns and may be used for better patient counseling. Regarding QCS score, an equal weight was assigned for each of the parameters used, which may not reflect their actual importance. Also, the pathologic criteria of QCS may still be affected by disease stage, which can affect the assessment of the quality of surgical care.

5 Conclusion
Disease-related factors remain the main determinant of survival for bladder cancer. Quality of surgical care can affect disease control and overall survival in patients with bladder cancer treated with robot-assisted radical cystectomy. In patients with locally advanced disease, quality surgical care is mandatory to achieve acceptable cancer control.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12301-020-00031-y.

Additional file 1: Figure S1 Criteria included in QCS.
Additional file 2: Table S1 Life tables for RFS, DSS and OS for LAD (high vs low QCS) vs OCD (high vs low QCS).

Abbreviations
RARIC: Robot-assisted radical cystectomy; RC: Radical cystectomy; LAD: Locally advanced disease; NAC: Neoadjuvant chemotherapy; LN: Lymph node; IRCC: International Robotic Cystectomy Consortium; OCD: Organ-confined disease; BMI: Body mass index; ASA: American Society of Anesthesiologists; QCS: Quality cystectomy score; RFS: Recurrence-free; DSS: Disease-specific; OS: Overall survival; TUR: Transurethral resection.

Acknowledgements
Roswell Park Alliance Foundation and Vattikuti Foundation.

Authors' contributions
YA, AAH and KAG conceived and designed the study; YA, AAH, BA, AK, JB, AD, SK, JK, MS, CW, LR, AW, BY, JPR, PD, M5K, JM, JOP, ABH, FG, GF, PS, AM, KR, AH, MS, JK, JST, TM, VP, JK, AEC, MB and PW collected the data and revised the final manuscript. YA and AAH drafted the manuscript. AAH and KAG supervised the study. All authors have read and approved the manuscript.

Funding
NA.

Availability of data and material
Available upon request.

Ethics approval and consent to participate
Roswell Park Cancer Institute IRB approval (I-79606).

Consent for publication
Not applicable.

Consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Roswell Park Cancer Institute, Elm & Carlton St, Buffalo, NY 14263, USA. 2 Cairo University, Giza, Egypt. 3 University of the Saarland, Homburg Saar, Germany. 4 Rijnstate Hospital, Arnhem, The Netherlands. 5 The Arthur Smith Institute for Urology, New York, NY, USA. 6 Beth Israel Deaconess Medical Center, Boston, MA, USA. 7 City of Hope and Beckman Research Institute, Duarte, CA, USA. 8 Fundació Puigvert, Barcelona, Spain. 9 Guy’s Hospital and King’s College London School of Medicine, London, UK. 10 Henry Ford Health System, Detroit, MI, USA. 11 Karolinska University Hospital, Stockholm, Sweden. 12 San Raffaele Torino Hospital, Milan, Italy. 13 Urological Surgical Associates of Delaware, Wilmington, DE, USA. 14 Onze-Lieve-Vrouwe Ziekenhuis, Aalst, Belgium. 15 Yonsei University Health System Severance Hospital, Seoul, Korea. 16 Wake Forest University Baptist Medical Center, Winston-Salem, NC, USA. 17 Division of Surgery and Interventional Science, Department of Urology, University College London, London, UK. 18 Michigan Urological Clinic, Grand Rapids, MI, USA. 19 Doctor’s Hospital of Athens, Athens, Greece. 20 Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA. 21 School of Medicine, Ankara Ataturk Training and Research Hospital, Yildirim Beyazet University, Ankara, Turkey.

Received: 24 October 2019 Accepted: 24 February 2020
Published online: 18 June 2020

References
1. Wilson TG et al (2015) Best practices in robot-assisted radical cystectomy and urinary reconstruction: recommendations of the Pasadena Consensus Panel. Eur Urol 67(3):363–375
2. Stein JP et al (2001) Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1054 patients. J Clin Oncol 19(3):666–675
3. Shariat SF et al (2006) Outcomes of radical cystectomy for transitional cell carcinoma of the bladder: a contemporary series from the Bladder Cancer Research Consortium. J Urol 176(6 Pt 1):2414–2422 (discussion 2422)
4. Hautmann RE et al (2012) Radical cystectomy for urethelial carcinoma of the bladder without neoadjuvant or adjuvant therapy: long-term results in 1108 patients. Eur Urol 61(5):1039–1047
5. Raza SJ et al (2015) Long-term oncologic outcomes following robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. Eur Urol 68(4):721–728
6. Lodde M et al (2005) Four years experience in bladder preserving management for muscle invasive bladder cancer. Eur Urol 47(6):773–778 (discussion 778-9)
7. Power NE et al (2012) Natural history of pT3-4 or node positive bladder cancer treated with radical cystectomy and no neoadjuvant chemotherapy in a contemporary North-American multi-institutional cohort. Can Urol Assoc J 6(6):E217–E223
8. Grossman HB et al (2003) Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med 349(9):859–866
9. Schrag D et al (2005) Cystectomy for muscle-invasive bladder cancer: patterns and outcomes of care in the Medicare population. Urology 65(6):1118–1125
10. Hussein AA et al (2016) Development and validation of a quality assurance score for robot-assisted radical cystectomy: a 10-year analysis. Urology 97:124–129
11. Herr HW et al (2004) Surgical factors influence bladder cancer outcomes: a cooperative group report. J Clin Oncol 22(14):2781–2789
12. Al-Daghmin A et al (2014) Efficacy of robot-assisted radical cystectomy (RARC) in advanced bladder cancer: results from the International Radical Cystectomy Consortium (IRCC). BJU Int 114(1):98–103
13. Nguyen DP et al (2015) Recurrence patterns after open and robot-assisted radical cystectomy for bladder cancer. Eur Urol 68(3):399–405
14. Park JC et al (2014) Multimodal management of muscle-invasive bladder cancer. Curr Probl Cancer 38(3):80–108
15. Nagele U et al (2008) Surgical approach in patients with T4 bladder cancer as primary treatment: disaster or option with improved quality of life. Indian J Urol 24(1):95–98
16. Tekin A, Aki FT, Ozen H (2001) Radical cystectomy versus alternative treatments for muscle-confined bladder cancer. Int Urol Nephrol 33(2):357–362
17. George L et al (2004) Clinical outcome in patients with locally advanced bladder carcinoma treated with conservative multimodality therapy. Urology 64(3):488–493
18. Dotan ZA et al (2007) Positive surgical margins in soft tissue following radical cystectomy for bladder cancer and cancer specific survival. J Urol 178(6):2308–2312 (discussion 2313)
19. Novara G et al (2010) Soft tissue surgical margin status is a powerful predictor of outcomes after radical cystectomy: a multicenter study of more than 4,400 patients. J Urol 183(6):2165–2170
20. Schiffmann J et al (2014) Contemporary 90-day mortality rates after radical cystectomy in the elderly. Eur J Surg Oncol 40(12):1738–1745
21. Eisenberg MS et al (2013) The SPARC score: a multifactorial outcome prediction model for patients undergoing radical cystectomy for bladder cancer. J Urol 190(6):2005–2010
22. Hussein AA, Dibaj S, Hinata N, Field E, O’leary K, Kuvshinoff B, Mohler JL, Wilding G, Guru KA (2016) Development and validation of a quality assurance score for robot-assisted radical cystectomy: a 10-year analysis. Urology 97:124–129
23. Madersbacher S et al (2003) Radical cystectomy for bladder cancer today: a homogeneous series without neoadjuvant therapy. J Clin Oncol 21(4):690–696
24. Ghoneim MA et al (2008) Radical cystectomy for carcinoma of the bladder: 2720 consecutive cases 5 years later. J Urol 180(1):121–127
25. Finks JF, Osborne NH, Birkmeyer JD (2011) Trends in hospital volume and operative mortality for high-risk surgery. N Engl J Med 364(22):2128–2137

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.