Sequential measurements of conjugate observables

Claudio Carmeli1,2, Teiko Heinosaari3 and Alessandro Toigo4,5

1 Dipartimento di Fisica, Universit`a di Genova, Via Dodecaneso 33, 16146 Genova, Italy
2 Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy
3 Department of Physics and Astronomy, Turku Centre for Quantum Physics, University of Turku, 20014 Turku, Finland
4 Dipartimento di Matematica ‘Francesco Brioschi’, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
5 Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

E-mail: claudio.carmeli@gmail.com, teiko.heinosaari@utu.fi and alessandro.toigo@polimi.it

Received 29 January 2011, in final form 16 May 2011
Published 15 June 2011
Online at stacks.iop.org/JPhysA/44/285304

Abstract

We present a unified treatment of sequential measurements of two conjugate observables. Our approach is to derive a mathematical structure theorem for all the relevant covariant instruments. As a consequence of this result, we show that every Weyl–Heisenberg covariant observable can be implemented as a sequential measurement of two conjugate observables. This method is applicable both in finite- and infinite-dimensional Hilbert spaces, therefore covering sequential spin component measurements as well as position-momentum sequential measurements.

PACS numbers: 03.65.Ta, 03.67.--a

1. Introduction

A sharp measurement of position affects the state of a quantum system in a dramatic way; any subsequent measurement can give only redundant information on the initial state of the system. On the other hand, if we perform a measurement which does not disturb the system at all, then nothing on the initial state can be inferred from the measurement outcome statistics. This latter consequence of quantum theory is usually referred as ‘no information without disturbance’.

Obviously, there is no need to restrict to these two extremes and actually the intermediate cases are more interesting and practical. In particular, in a sequential measurement, the aim is to perform several measurements in succession and gather additional information on the initial state at each step. The benefit of sequential measurements is that we also get correlations and not just separate measurement outcome distributions. For this reason, a
sequential measurement scheme can give more information on the initial state than separate measurements together.

Performing measurements sequentially can be seen as a method to combine some simple measurements in order to realize a more complicated measurement. Especially in quantum information theory, it has become evident that sharp observables (described by projection-valued measures) are not enough for all purposes [29]. One also needs more involved observables, generally described by positive operator-valued measures [7, 16, 24], in order to perform various tasks. This opens up the question how to realize these more complicated measurements.

One particular class of interesting observables consists of covariant phase space observables. In our context, covariance refers to a certain type of symmetry property with respect to the (finite or infinite) Weyl–Heisenberg group. The most prominent example of a covariant phase space observable is the Q-function, which was first introduced by Husimi for infinite-dimensional systems [25] and later studied also in the connection of finite-dimensional systems [30].

It is known that some of the covariant phase space observables are informationally complete [1], meaning that the obtained measurement outcome distribution determines the initial state completely. (Conditions for informational completeness have been discussed e.g. in [13] for infinite-dimensional and in [14] for finite-dimensional cases, respectively.) Informational completeness is the main reason for making the class of covariant phase space observables so interesting. An additional impetus comes from the special role of the Weyl–Heisenberg group in the topic of symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) [34]. In fact, most of the known SIC-POVMs are covariant phase space observables [3, 18].

Additional physical insight can be gained when we recognize the connection of covariant phase space observables to joint measurements of conjugate observables. It is known that a covariant phase space observable in infinite dimension gives marginals which are approximate position and momentum observables [16, 23] and can therefore be interpreted as a joint measurement of unsharp position and momentum observables [5]. This kind of joint measurement is limited, of course, by Heisenberg’s uncertainty relation [8]. It is also known that a suitable sequential scheme of an unsharp position measurement followed by a (sharp) momentum measurement yields a covariant phase space observable [7].

In this work, we give a systematic treatment of sequential measurements of conjugated pairs and demonstrate that in this way one can implement all covariant phase space observables. Our investigation is formulated by starting from a (locally compact and second countable) Abelian group G and its dual group \hat{G}, and then passing to the associated Weyl–Heisenberg group \hat{H}_G. The results are therefore general and applicable, in particular, to the common situations of the position–momentum pair and mutually unbiased bases.

Outline. The necessary basic concepts are briefly reviewed in section 2. In section 3, we explain a scheme how an instrument with appropriate covariance properties leads to an implementation of a covariant phase space observable. In section 4, we derive a general structure theorem for these covariant instruments, and as a corollary this leads to the conclusion that all covariant phase space observables can be realized with this sequential method. Finally, in section 5, we illustrate the results in two concrete cases of position–momentum and orthogonal spin components. Section 6 contains the proofs for the most technical parts of the paper.

Notations. In the following, \mathcal{H} is a Hilbert space (and we always assume that our Hilbert spaces are separable). We denote by $L(\mathcal{H})$ and $T(\mathcal{H})$ the Banach spaces of bounded operators and trace class operators on \mathcal{H}, respectively. We let $\|\cdot\|_\infty$ be the uniform norm in $L(\mathcal{H})$, and
∥·∥₁ be the trace class norm in $T(ℋ)$. The cone of positive elements in $T(ℋ)$ is denoted by $T(ℋ)_+$, and $S(ℋ)$ is the set of states on $ℋ$, i.e., the convex closed subset of trace 1 elements in $T(ℋ)_+$.

2. Instruments and sequential measurements

The mathematical framework for sequential measurements was introduced by Davies and Lewis in [17]. In the following, we briefly summarize the essential concepts.

A linear mapping $Φ₁ : T(ℋ) → T(ℋ)$ is an operation if it is completely positive and satisfies $0 ≤ \text{tr}[Φ(ρ)] ≤ 1$ for all $ρ ∈ S(ℋ)$. An operation $Φ$ describes a conditional state change in the following way: if the initial state is $ρ$, the final (unnormalized) state is $Φ₁(ρ)$, provided this is a nonzero operator. The number $\text{tr}[Φ(ρ)]$ is the probability for the occurrence of the particular event associated with $Φ$. An operation $Φ$ defines its dual mapping $Φ^*$ via the formula

$$\text{tr}[ρΦ^*(A)] = \text{tr}[Φ(ρ)A] \quad ∀ρ ∈ S(ℋ), A ∈ L(ℋ).$$

The dual operation $Φ^*$ acts on $L(ℋ)$ and it describes the same event than $Φ$ but in the Heisenberg picture.

In a measurement process, the relevant events are of the type ‘the measurement gave an outcome belonging to a set X’. To describe all the corresponding conditional state changes, let $Ω$ be the set consisting of all measurement outcomes. The set $Ω$ is assumed to be a locally compact topological space, which is Hausdorff and satisfies the second axiom of countability (lcsc space, in short). The Borel $σ$-algebra of $Ω$ is denoted by $B(Ω)$, and the Borel sets are identified with the possible events in the measurement.

Definition 1. An instrument on $Ω$ is a mapping $I : X → I_X$ from $B(Ω)$ to the set of operations on $T(ℋ)$ such that for each state $ρ ∈ S(ℋ)$, the mapping $X → \text{tr}[I_X(ρ)]$ is a probability measure.

An instrument gives a description of two things: measurement outcome probabilities and conditional state changes. It is the general form of a channel yielding classical information together with a quantum output. On the other hand, it can be shown that every instrument arises from a measurement process [31].

After a measurement has been performed, we can directly (i.e. without further measurements) observe only the measurement outcome distribution. An instrument I on $Ω$ determines a unique associated observable E^I, given by

$$E^I(X) = I_X(1) \quad ∀X ∈ B(Ω). \quad (1)$$

If the system is initially in a state $ρ$, then the measurement gives an outcome from a set X with probability

$$\text{tr}[E^I(X)] = \text{tr}[I_X(1)] = \text{tr}[I_X(ρ)]. \quad (2)$$

Mathematically speaking, the mapping $X → E^I(X)$ is a positive operator-valued measure (POVM). We recall the following standard definition [7, 16, 24].

Definition 2. An observable on $Ω$ is a mapping $E : B(Ω) → L(ℋ)$ such that for all states $ρ ∈ S(ℋ)$ the mapping $X → \text{tr}[E(X)]$ is a probability measure. The observable E is sharp if $E(X ∩ Y) = E(X)E(Y)$ for all X, Y (i.e., if and only if E is a projection-valued measure).

Suppose that two measurements, described by instruments I and I', are performed sequentially. This means that the second measurement is performed on the perturbed state.
The operation corresponding to the event ‘the first measurement led to a measurement outcome from a set X and the second measurement led to a measurement outcome from a set Y’ is the composite mapping $\mathcal{I}_Y \circ \mathcal{I}_X$. As shown in [17], there exists a unique instrument \mathcal{J} on $\mathcal{B}(\Omega \times \Omega')$ such that $\mathcal{J}_{X \times Y} = \mathcal{I}_Y \circ \mathcal{I}_X$ for all $X \in \mathcal{B}(\Omega)$ and $Y \in \mathcal{B}(\Omega')$; this is called the composition of $\mathcal{I'}$ following \mathcal{I} and gives the mathematical description of the sequential measurement.

The observable $E^\mathcal{J}$ on $\Omega \times \Omega'$, associated with the composition instrument \mathcal{J}, satisfies

$$E^\mathcal{J}(X \times Y) = \mathcal{J}_{X \times Y}(\mathbb{1}) = \mathcal{I}_X^\mathcal{J}[E^\mathcal{I}(Y)]$$

(3)

for all $X \in \mathcal{B}(\Omega)$ and $Y \in \mathcal{B}(\Omega')$. We observe that $E^\mathcal{J}$ depends on \mathcal{I}' only through the associated observable $E^\mathcal{I}$. The marginal observables are

$$E^\mathcal{J}(X \times \Omega') = \mathcal{I}_X^\mathcal{J}(\mathbb{1}) = E^\mathcal{I}(X) \quad \forall X \in \mathcal{B}(\Omega)$$

and

$$E^\mathcal{J}(\Omega \times Y) = \mathcal{I}_Y^\mathcal{J}[E^\mathcal{I}(Y)] \quad \forall Y \in \mathcal{B}(\Omega').$$

The fact that the first measurement disturbs the second measurement is manifested in the difference of the operators $\mathcal{I}_X^\mathcal{J}[E^\mathcal{I}(Y)]$ and $E^\mathcal{J}(Y)$. If the Hilbert space \mathcal{H} is finite dimensional and the set of outcomes Ω' is finite, then one can even quantify the least amount of disturbance induced on $E^\mathcal{J}$ by an $E^\mathcal{I}$-measurement [21].

Clearly, a sequential measurement scheme is motivated only if we can gain additional information on the initial state at each step. So, after the first measurement is performed, is it possible to learn something more on the initial state by performing another measurement? In particular, does the joint observable $E^\mathcal{J}$ defined in equation (3) give more information than the first observable $E^\mathcal{I}$ alone? The answer evidently depends on the way the first measurement was carried out, i.e. it depends on the structure of the instrument \mathcal{I}. However, some observables allow only instruments that trivialize all subsequent measurements. For instance, if an observable E consists of countable number of rank-1 operators, then any measurement of E disturbs the initial state of the system in a way that all subsequent measurements can only give redundant information [21]. As another example, suppose that each $E(X)$ is a projection and that the set $\{E(X) \mid X \in \mathcal{B}(\Omega)\}$ generates a maximal Abelian von Neumann subalgebra of $\mathcal{L}(\mathcal{H})$. It then follows that any observable F that satisfies the marginal condition $F(X \times \Omega') = E(X)$ for all $X \in \mathcal{B}(\Omega)$ can actually be obtained from E by smearing it [26]. In physical terms these examples mean that in order to have a useful sequential measurement, one has to allow additional imprecision in the first measurement to make it less violent.

3. Sequential measurement of conjugate observables

In this section we first explain a general setup (subsection 3.1) and then specify it in the case of conjugate observables (subsection 3.2). As will then be explained, the Weyl–Heisenberg group is the most convenient tool in our investigation (subsection 3.3).

3.1. General setup

Suppose we try to study the system by performing a sequential measurement of two observables. It seems reasonable to choose some observables which are, in some sense, very different from each other, as then they possibly lead to a complete picture of the state of the system. We are thus motivated to consider a pair of observables with ‘reciprocal’ covariance properties. We will specify the structure of canonically conjugated observables in subsection 3.2, but we first explain the general setup which does not depend on the detailed structure but only on the interplay between various symmetry conditions.
We assume that an observable A is based on a lcsc group G and another observable B is based on a lcsc group H. We further assume that there are unitary representations U of G and V of H such that

$$U_g A(X) U^*_g = A(gX), \quad V_h B(Y) V^*_h = B(hY)$$

(4)

and

$$V_h B(Y) V^*_h = B(hY), \quad U_g B(Y) U^*_g = B(Y)$$

(5)

for all $X \in B(G)$, $Y \in B(H)$, $g \in G$, $h \in H$. We have denoted $gX = \{gx | x \in X\}$ and $hY = \{hy | y \in Y\}$. Conditions (4)–(5) mean that A is U-covariant and V-invariant, while B is V-covariant and U-invariant.

We would like to have a sequential measurement scheme which provides the measurement outcome distributions of A and B. However, depending on A and B, their exact sequential realization may be impossible (see the end of section 2). For this reason, we will first only concentrate on the symmetry properties (4)–(5) and hope that this gives, if not A and B, at least something quite similar.

As a mathematical problem, our task is to find a suitable instrument describing this measurement scheme. Suppose there exists an instrument I based on G and satisfying

$$I_g X(\rho) = U_g I_X(U^*_g \rho U_g) U^*_g$$

(6)

and

$$I_X(\rho) = V_h I_X(V^*_h \rho V_h) V^*_h$$

(7)

for all $X \in B(G)$, $g \in G$, $h \in H$ and $\rho \in S(H)$. These properties are motivated by the U-covariance and V-invariance of A. Conditions (6)–(7) can be merged into the following single condition:

$$I_g X(\rho) = U_g V_h I_X(V^*_h \rho V_h) V^*_h U^*_g$$

(8)

We then consider a sequential measurement in which the first measurement is described by I and it is followed by any measurement of B. Hence, the observable C describing the sequential measurement satisfies

$$C(X \times Y) = I^*_X[B(Y)] \quad X \in B(G), Y \in B(H).$$

(9)

We denote the marginals of C by \tilde{A} and \tilde{B}, i.e.

$$\tilde{A}(X) = C(X \times H) = I^*_X(\mathbb{1})$$

(10)

$$\tilde{B}(Y) = C(G \times Y) = I^*_Y[B(Y)].$$

(11)

Generally, $\tilde{A} \neq A$ (since we have not required A is associated with I) and $\tilde{B} \neq B$ (since the first measurement disturbs the system).

The crucial point is that the symmetry properties of I and B guarantee that the obtained measurement outcome distributions have the desired symmetries. Indeed, C satisfies

$$U_g V_h C(X \times Y) V^*_h U^*_g = C(gX \times hY)$$

for all $X \in B(G)$, $Y \in B(H)$, $g \in G$, $h \in H$. In particular, its marginal observables \tilde{A} and \tilde{B} have the same symmetry properties (4)–(5) as A and B, respectively. For the first marginal \tilde{A}, we get

$$U_g \tilde{A}(X) U^*_g = \tilde{A}(gX) \quad V_h \tilde{A}(X) V^*_h = \tilde{A}(X)$$

(12)
for all $X \in B(G)$, $g \in G$, $h \in H$, and for the second marginal \widehat{B} we get
\begin{equation}
U_x^* \widehat{B}(Y) U_x = \widehat{B}(Y) \quad V_x^* \widehat{B}(Y) V_x = \widehat{B}(hY)
\end{equation}
for all $Y \in B(H)$, $g \in G$, $h \in H$.

In summary, we have seen that one simple condition (8) on instruments leads to favorable symmetry properties on the obtained measurement outcome distributions. The relevant questions are whether instruments satisfying condition (8) actually exist, and what kind of observables G we can realize by formula (9). In the following, we will answer these questions in the case of conjugated observables.

3.2. Canonically conjugated observables and their approximate versions

In subsection 3.1, the symmetry groups G and H had no connection. We will now add more structure and assume that the situation is more specific. This then leads to the usual notion of canonically conjugated observables.

Suppose G is an Abelian lcsc group and \widehat{G} is its dual group. We denote additively the product in G and multiplicatively the product in \widehat{G}. The pairing between $x \in G$ and $\chi \in \widehat{G}$ is the complex number $\chi(x)$.

Definition 3. A Weyl system for the pair (G, \widehat{G}) is a couple of unitary representations (U, V) of G and \widehat{G}, respectively, defined on the same Hilbert space \mathcal{H} and satisfying
\begin{equation}
U_x V_x = \overline{\chi(x)} V_x U_x
\end{equation}
for all $x \in G$, $\chi \in \widehat{G}$.

We recall that if A and B are sharp observables based on G and \widehat{G}, respectively, and both with values in $L(\mathcal{H})$, then by SNAG theorem formulas
\begin{equation}
U_x = \int \overline{\chi(x)} dB(\chi), \quad V_x = \int \chi(x) dA(x)
\end{equation}
define two unitary representations U of G and V of \widehat{G} in the Hilbert space \mathcal{H} and, conversely, any couple of unitary representations (U, V) of G and \widehat{G} in \mathcal{H} arise in this way from a unique couple of sharp observables (A, B) on G and \widehat{G}, respectively (see e.g. [20, theorem 4.44]).

Definition 4. A pair of sharp observables (A, B), with $A : B(G) \to L(\mathcal{H})$ and $B : B(\widehat{G}) \to L(\mathcal{H})$, are canonically conjugated if the couple of representations (U, V) defined in equations (15) is a Weyl system.

If canonically conjugated observables (A, B) and a Weyl system (U, V) are connected in this way, we call them associated.

Two Weyl systems (U, V) on \mathcal{H} and (U', V') on \mathcal{H}' (resp. two canonically conjugated observables (A, B) on \mathcal{H} and (A', B') on \mathcal{H}') are equivalent if there exists a unitary operator $W : \mathcal{H} \to \mathcal{H}'$ intertwining the pair of representations (U, V) and (U', V') (resp. the pair of sharp observables (A, B) and (A', B')). By equations (15), SNAG theorem establishes an identification of the class of Weyl systems and the class of canonically conjugated observables, and such identification preserves equivalence. The Stone–von Neumann theorem then asserts that there exists exactly one equivalence class of Weyl systems, or alternatively, canonically conjugated pairs [28].

As a consequence of equation (14), if (A, B) is a pair of canonically conjugated observables and (U, V) is its associated Weyl system, then for all $x \in G$, $\chi \in \widehat{G}$
\begin{equation}
U_x^* A(X) U_x = A(X + x) \quad V_x^* A(X) V_x = A(X)
\end{equation}
for all $X \in \mathcal{B}(G)$, and
\begin{equation}
V_f B(Y) V_f^* = B(\chi Y) \quad U_f B(Y) U_f^* = B(Y)
\end{equation}
for all $Y \in \mathcal{B}(\hat{G})$. This shows that a pair of canonically conjugated observables is a special instance of our general setting described in subsection 3.1.

The setup described in subsection 3.1 shows that an instrument with suitable symmetry properties leads to a sequential implementation of some observables A and B with the same symmetry properties than A and B. To describe this situation, we introduce the following definition.

Definition 5. A pair of observables (\hat{A}, \hat{B}), with $\hat{A} : \mathcal{B}(G) \to \mathcal{L}(\mathcal{H})$ and $\hat{B} : \mathcal{B}(\hat{G}) \to \mathcal{L}(\mathcal{H})$, are conjugated if there exists a Weyl system (U, V) on \mathcal{H} such that the covariance and invariance relations (16) and (17) hold with A and B replaced by \hat{A} and \hat{B}, respectively.

If (\hat{A}, \hat{B}) and (U, V) are connected in this way, we say that (\hat{A}, \hat{B}) are related to the Weyl system (U, V) or, equivalently, to the canonically conjugated observables (A, B) associated with (U, V).

Conjugated observables (\hat{A}, \hat{B}) can be expressed in a very simple form in terms of a canonically conjugated pair (A, B) related to them. Indeed, there exist probability measures σ on G and τ on \hat{G} such that $\hat{A} \equiv A_\sigma$ and $\hat{B} \equiv B_\tau$, where
\begin{equation}
A_\sigma(X) = \int \sigma(X-x) \, dA(x) \quad \forall X \in \mathcal{B}(G)
\end{equation}
and
\begin{equation}
B_\tau(Y) = \int \tau(\chi^{-1} Y) \, dB(\chi) \quad \forall Y \in \mathcal{B}(\hat{G}).
\end{equation}

This result has been proved in [10] in the case $G = \mathbb{R}^n$, and the extension of the proof to the general setting (i.e. G is a lcsc Abelian group) is straightforward. If $\sigma = \delta_0$ (resp. $\tau = \delta_1$) is the Dirac measure centered at 0 (resp. 1), then $A_\sigma = A$ (resp. $B_\tau = B$). The deviation of σ and τ from Dirac δ’s can be interpreted as imprecision or noise in the measurement of A and B.

We sometimes need to fix a concrete representation for conjugated and canonically conjugated observables. This representation also demonstrates that an equivalence class of canonically conjugated observables exists for any Abelian lcsc group G. By the Stone–von Neumann uniqueness theorem, fixing the representation does not affect the full generality of our discussion and results. To start with, we fix Haar measures λ and $\tilde{\lambda}$ in G and \hat{G}, respectively, and set $\mathcal{H} = L^2(G, \lambda) \equiv L^2(G)$ and $\mathcal{H} = L^2(\hat{G}, \tilde{\lambda}) \equiv L^2(\hat{G})$. There is then a unique real constant $c > 0$ (depending on the choices of λ and $\tilde{\lambda}$) such that the Fourier transform
\[(\mathcal{F} f)(\chi) = c \int \overline{\chi(x)} f(x) \, d\lambda(x) \quad f \in L^1(G) \cap L^2(G) \]
extends to a unitary map \mathcal{F} from \mathcal{H} to \mathcal{H}. We take U and V to be the left regular representations of G and \hat{G}, hence acting in \mathcal{H} as
\begin{align*}
U_f (y) &= f(y-x) \quad \forall x \in G, f \in \mathcal{H} \\
V_f (y) &= \chi(y) f(y) \quad \forall x \in \hat{G}, f \in \mathcal{H}.
\end{align*}
It is immediately checked that (U, V) is a Weyl system. Its associated pair of canonically conjugated observables (A, B) is given by
\begin{equation}
A(X) f(x) = 1 \chi(x) f(x) \quad \forall X \in \mathcal{B}(G), f \in \mathcal{H},
\end{equation}
where 1_X is the characteristic function of a set X, and

$$[\mathcal{F}B(Y)\mathcal{F}^{-1}\tilde{f}](\chi) = 1_Y(\chi)\tilde{f}(\chi) \quad \forall Y \in \mathcal{B}(\hat{G}), \; \tilde{f} \in \hat{\mathcal{H}}.$$ \hspace{1cm} (21)

If (A_{σ}, B_{τ}) are conjugated observables related to (A, B) as in equations (18)–(19), then

$$[A_{\sigma}(X)f](x) = \sigma(X - x)f(x) \quad \forall f \in \mathcal{H}, X \in \mathcal{B}(G)$$

and

$$[B_{\tau}(Y)f](x) = c[\mathcal{F}^{-1}\tau_Y * f](x) \quad \forall f \in \mathcal{H} \text{ and } Y \in \mathcal{B}(\hat{G}) \text{ such that } \hat{\lambda}(Y) < \infty,$$

where $*$ is the convolution and $\tau_Y(\chi) = \tau(\chi - 1_Y)$ for $\chi \in \hat{G}$.

3.3. Weyl–Heisenberg group

As explained earlier, we are interested in instruments satisfying condition (8) for a Weyl system (U, V). This condition is not a single covariance condition (as there are two groups G and \hat{G} involved), and for this reason it is convenient to introduce the Weyl–Heisenberg group \mathfrak{H}_G associated with G. The Weyl–Heisenberg group \mathfrak{H}_G is the topological product $G \times \hat{G} \times \mathbb{T}$ (\mathbb{T} is the complex numbers with modulus 1) endowed with the composition law

$$(x, \chi, u)(y, \gamma, v) = (x + y, \chi\gamma, \chi(y)uv).$$

This makes \mathfrak{H}_G a non-Abelian topological group. Its center is the subgroup $Z = \{(0, 1, u) | u \in \mathbb{T}\}$.

The Abelian subgroup $N \equiv \{0\} \times \hat{G} \times \mathbb{T}$ is normal and closed in \mathfrak{H}_G, and the homogeneous space \mathfrak{H}_G/N is G. The group \mathfrak{H}_G acts on the homogeneous space \mathfrak{H}_G/N in the usual way. With the identification $\mathfrak{H}_G/N \cong G$, the action of an element $(x, \chi, u) \in \mathfrak{H}_G$ on $y \in G$ is simply

$$(x, \chi, u)[y] = x + y.$$

Setting

$$W(x, \chi, u) = \pi U_x V_{\chi},$$

we obtain an irreducible unitary representation of \mathfrak{H}_G in \mathcal{H}, which is called the Schrödinger representation. We refer to chapter 1, section 3, in [19] for more details on such a representation in the case $G = \hat{G} = \mathbb{R}^n$, and to [28] for the general case. We can now conclude that an instrument I on G satisfies equation (8) if and only if

$$I_{(x, \chi, u)[X]}(\varrho) = W(x, \chi, u)I_X[W(x, \chi, u)^*\varrho W(x, \chi, u)]W(x, \chi, u)^*$$

for all $X \in \mathcal{B}(G), (x, \chi, u) \in \mathfrak{H}_G$. This is a single covariance condition in the sense defined by Davies [15]. Therefore, to understand the sequential measurements of conjugated observables, we need to study W-covariant instruments based on \mathfrak{H}_G/N.

4. Covariant instruments

In this section, we characterize the structure of W-covariant instruments based on \mathfrak{H}_G/N. Our characterization of W-covariant instruments is best approached by first recalling a special class of measurement models (subsection 4.1). The main structure theorem (subsection 4.2) can then be seen as a natural extension of this model. Based on these results, we draw conclusions on the implementation of covariant phase space observables (subsection 4.3).
4.1. Von Neumann’s measurement model

In his famous book [36], von Neumann described a position measurement scheme. It is known that von Neumann’s measurement model leads to a covariant instrument [32] (see also [7, 11]). For this reason, it seems useful to have a closer look at it.

In our case, we intend to measure the observable A (defined in equation (20)) by suitably coupling the system with an ancillary copy of it and measuring the observable A of the copy. If we follow the idea of von Neumann’s model, the measurement coupling on the composite system is described by the unitary operator $L : \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$:

$$Lf(x, y) = f(x, y - x) \quad \forall f \in \mathcal{H} \otimes \mathcal{H} = L^2(G \times G, \lambda \otimes \lambda),$$

which can be alternatively written as

$$L = \int \chi(x) d(A \otimes B)(x, \chi)$$

for the standard identification $\mathcal{H} \otimes \mathcal{H} = L^2(G \times G, \lambda \otimes \lambda)$, see e.g. [20, theorem 7.16]). In the case $G = \hat{G} = \mathbb{R}$, with pairing $\chi_p(x) = e^{ipx}, p, x \in \mathbb{R}$, the last formula can be rewritten in the exponential form

$$L = e^{-iQ \otimes P}$$

with

$$Q = \int x dA(x), \quad P = \int p dB(\chi_p)$$

the standard position and momentum selfadjoint operators, thus showing the connection to von Neumann’s measurement model. For later purposes, it is useful to note that the unitary operator L satisfies the intertwining properties

$$L(U_x \otimes U_y) = (U_x \otimes U_{x+y})L, \quad L(V_x \otimes V_y) = (V_{x+y} \otimes V_y)L$$

for all $x, y \in G$ and $\chi, \gamma \in \hat{G}$.

We choose the pointer observable to be A on the probe system. Hence, if the initial state of the probe system is ω, then the instrument \mathcal{I}^{ω} derived from our measurement model is

$$\mathcal{I}^{\omega}_X(\varrho) = \text{tr}_2[11 \otimes A(X)L(\varrho \otimes \omega)L^*],$$

where $\text{tr}_2 : T(\mathcal{H} \otimes \mathcal{H}) \rightarrow T(\mathcal{H})$ is the partial trace in $T(\mathcal{H} \otimes \mathcal{H})$ with respect to the second factor (the probe system). Using the intertwining properties (23) of L, the covariance properties (4) of A and the cyclicity of tr_2 with respect to the second factor in the tensor product, one can check that \mathcal{I}^{ω} is a W-covariant instrument on G.

With different choices of the probe state ω we can realize different instruments \mathcal{I}^{ω}. There are also two ways to construct new W-covariant instruments from those of the form \mathcal{I}^{ω}. First, if we fix $x \in G$, then the translated instrument

$$X \mapsto U_x^* T^\omega_X(\cdot) U_x$$

is still W-covariant. Another observation is that the set of W-covariant instruments is convex, so for collections of states $\omega_{t_1}, \ldots, \omega_{t_n}$, group elements x_{t_1}, \ldots, x_{t_n} and positive numbers $t_1, \ldots, t_n, \sum_j t_j = 1$, we get a W-covariant instrument

$$X \mapsto \sum_{j=1}^n t_j U_{x_j}^* T^\omega_X(\cdot) U_{x_j}.$$

In the next subsection, we will see that indeed every W-covariant instrument arises in this way, possibly replacing the above finite sum with a suitably defined integral.
4.2. Structure of W-covariant instruments

Before stating the structure theorem for W-covariant instruments, we need to fix some additional mathematical notation. We recall that a $T(\mathcal{H})$-valued vector measure on G is a countably additive mapping $M : B(G) \to T(\mathcal{H})$ with finite total variation (we refer to [27] for details). A $T(\mathcal{H})$-valued vector measure M is positive if $M(X) \geq 0$ for all $X \in B(G)$, and normalized if $\text{tr}[M(G)] = 1$. We denote by $\mathcal{M}(G; T(\mathcal{H}))$ the linear space of $T(\mathcal{H})$-valued vector measure on G, and by $\mathcal{M}(G; T(\mathcal{H}))_1$ the convex subset of positive normalized elements in $\mathcal{M}(G; T(\mathcal{H}))$.

A mapping $M : B(G) \to T(\mathcal{H})$ is a vector measure if and only if there exists a positive measure μ on G and a map $M \in L^1(G, \mu; T(\mathcal{H}))$ (= the space of functions $M : G \to T(\mathcal{H})$ which are μ-integrable in the sense of Bochner) such that

$$M(X) = \int 1_X(x) M(x) \, d\mu(x)$$

for all $X \in B(G)$ [27]. If M and the couple (μ, M) are related in this way, we write $dM(x) = M(x) \, d\mu(x)$. Clearly, the correspondence $M \leftrightarrow (\mu, M)$ is one-to-many.

For each positive measure μ on G, we denote by $L^1(G, \mu; T(\mathcal{H}))_1$ the convex subset of elements in $L^1(G, \mu; T(\mathcal{H}))$ such that $M(x) \geq 0$ for μ-a.a. x and $\int \text{tr}[M(x)] \, d\mu(x) = 1$. If $M \in \mathcal{M}(G; T(\mathcal{H}))$ and $dM(x) = M(x) \, d\mu(x)$, then $M \in \mathcal{M}(G; T(\mathcal{H}))_1$ if and only if $M \in L^1(G, \mu; T(\mathcal{H}))_1$.

With this preparation, we are now ready to state our main structure theorem.

Theorem 1. There is a convex one-to-one correspondence between $\mathcal{M}(G; T(\mathcal{H}))_1$ and the set of W-covariant instruments. If $M \in \mathcal{M}(G; T(\mathcal{H}))_1$, with $dM(x) = M(x) \, d\mu(x)$, the corresponding instrument I is given by

$$I_X(\varrho) = \text{tr}_2 \left[(1 \otimes A(X)) L \left[\int U^*_x \varrho U_x \otimes M(x) \, d\mu(x) \right] L^* \right],$$

where $L : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ is the unitary operator defined in equation (22) and the integral in equation (26) is defined in $T(\mathcal{H} \otimes \mathcal{H})$ in the sense of Bochner.

The proof of theorem 1 requires some preliminary technical results; therefore, we postpone it to section 6.

If $M \in L^1(G, \mu; T(\mathcal{H}))_1$ and we define $M'(x) = U^*_x M(x) U_x$, then still $M' \in L^1(G, \mu; T(\mathcal{H}))_1$ and the $T(\mathcal{H})$-valued vector measure M' with $dM'(x) = M'(x) \, d\mu(x)$ still belongs to $\mathcal{M}(G; T(\mathcal{H}))_1$. Formula (26) becomes

$$I_X(\varrho) = \int U^*_x \text{tr}_2[(1 \otimes A(X)) L (\varrho \otimes M'(x)) L^*] U_x \, d\mu(x)$$

(27)

by the intertwining properties (23) of L. We can further normalize $M'(x)$ to the state $\omega'(x) = M'(x)/\|M'(x)\|_1$ (with the convention $0/0 = 0$), define the probability measure $d\nu(x) = \|M'(x)\|_1 \, d\mu(x)$, and then equation (27) can be rewritten as

$$I_X(\varrho) = \int U^*_x [I_X^{\omega(x)}(\varrho)] U_x \, d\nu(x),$$

(28)

where each $I_X^{\omega(x)}$ is an instrument of the standard form (24). Comparing equations (25) and (28) we see that I is a continuous convex combination of translations of von Neumann-type instruments $I_X^{\omega(x)}$.

As discussed in subsection 3.2, the actually measured observable (the one associated with I) is not A but its unsharp version \tilde{A} defined in equation (10). Similarly, the observable B defined in equation (11) is an unsharp version of B. Since by equations (12) and (13) the pair
of observables \((\hat{A}, \hat{B})\) are conjugated and related to the canonically conjugated observables \((A, B)\), we have \((\hat{A}, \hat{B}) = (A_\sigma, B_\tau)\) for some probability measures \(\sigma\) and \(\tau\). The relation of \(\sigma\) and \(\tau\) to theorem 1 is as follows.

Proposition 1. If \(I\) is the instrument defined by equation (27), and \((\hat{A}, \hat{B})\) is the pair of observables defined in equations (10) and (11), then \((\hat{A}, \hat{B}) = (A_\sigma, B_\tau)\), where the probability measures \(\sigma\) and \(\tau\) are given by

\[
\begin{align*}
\sigma(X) &= \text{tr}[A(X)M(G)] \\
\tau(Y) &= \text{tr}[B(Y^{-1})M(G)]
\end{align*}
\]

for all \(X \in B(G), \ Y \in B(\hat{G}).\)

The proof of proposition 1 is given in section 6.

4.3. Covariant phase space observables

The center of the Weyl–Heisenberg group \(\hat{\delta}_G\) is \(Z = \{0\} \times \{1\} \times \mathbb{T}\), and the homogeneous space \(\hat{\delta}_G/Z\) can be identified with \(G \times \hat{G}\). The action of an element \((x, \chi, u) \in \hat{\delta}_G\) on \((y, \gamma) \in G \times \hat{G}\) is then

\[
(x, \chi, u)(y, \gamma) = (x + y, \chi \gamma).
\]

The identification \(\hat{\delta}_G/Z \simeq G \times \hat{G}\) is used in the following formulation of covariant phase space observables.

Suppose that \(I\) is a \(W\)-covariant instrument based on \(G\). As we have seen earlier, the observable \(C\) defined by

\[
C(X \times Y) = I_X^*(B(Y)) \quad \forall X \in B(G), \ Y \in B(\hat{G}),
\]

satisfies

\[
U_x V_y C(X \times Y) V_y^* U_x^* = C((x + X) \times \chi Y)
\]

for all \(X \in B(G), \ Y \in B(\hat{G}), \ x \in G, \ \chi \in \hat{G}\). We can rewrite this condition as

\[
W(x, \chi, u)C(X \times Y)W(x, \chi, u)^* = C((x, \chi, u)[X \times Y]).
\]

This equation extends to the whole \(\sigma\)-algebra \(B(G \times \hat{G})\) generated by product sets; hence,

\[
C((x, \chi, u)[Z]) = W(x, \chi, u)C(Z)W(x, \chi, u)^*
\]

for all \(Z \in B(G \times \hat{G})\) and \((x, \chi, u) \in \hat{\delta}_G\). We will call an observable \(C\) satisfying equation (34) a covariant phase space observable.

The set of covariant phase space observables is in one-to-one correspondence with the set \(S(\mathcal{H})\). If \(S \in S(\mathcal{H})\), then the corresponding covariant phase space observable \(C_S\) is given by

\[
C_S(Z) = e^{2 \int_Z U_x V_y SV_x^* U_x^* d(\lambda \otimes \hat{\lambda})(x, \chi)} \quad \forall Z \in B(G \times \hat{G}).
\]

In particular, if \(S\) is a one-dimensional projection \(S = |\eta\rangle \langle \eta|\), then the observable \(C_S\) is generated by a family of generalized coherent states \([U_x V_y | (x, \chi) \in \hat{\delta}_G/Z]\).

Proposition 2. Let \(I\) be a \(W\)-covariant instrument defined in equation (27) and \(C\) the covariant phase space observable defined in equation (31). Then \(C = C_S\), with \(S \in S(\mathcal{H})\) determined by the condition

\[
\langle f_1 | S | f_2 \rangle = \langle \tilde{f}_2 | M(G) \tilde{f}_1 \rangle \quad \forall f_1, f_2 \in \mathcal{H},
\]

6 Several different proofs of this result are known in [38].
where \(f \mapsto \tilde{f} \) is the antiunitary mapping on \(\mathcal{H} = L^2(G) \) given by
\[
\tilde{f}(x) = f(-x).
\]
Again, we postpone the proof of proposition 2 to section 6.

If \(T \in \mathcal{T}(\mathcal{H}) \), then defining \(\tilde{T} \) as
\[
\langle f_1|\tilde{T}f_2 \rangle = \langle \tilde{f}_2|T\tilde{f}_1 \rangle \quad \forall \, f_1, f_2 \in \mathcal{H},
\]
we obtain a linear isometric isomorphism of \(\mathcal{T}(\mathcal{H}) \) with itself. This follows easily since if \(T = \sum \lambda_i |v_i\rangle \langle u_i| \) is the singular values decomposition of \(T \), then \(\tilde{T} = \sum \lambda_i |\tilde{u}_i\rangle \langle \tilde{v}_i| \) is the singular values decomposition of \(\tilde{T} \). Therefore, proposition 2 leads to the following conclusion.

Corollary 1. Every covariant phase space observable has a sequential implementation of the form (31).

Let us note that in formula (35) the \(\mathcal{T}(\mathcal{H}) \)-valued measure \(M' \) occurs only through its total value \(M'(G) \). This means, in particular, that each covariant phase space observable has a sequential implementation where the covariant instrument is of the standard form (24). Moreover, the correspondence \(\omega \leftrightarrow S \) between the probe states \(\omega \) and the generating operators \(S \) is then one-to-one and given by \(\omega = \tilde{S} \). We can thus state our result in the following form.

Corollary 2. All covariant phase space observables can be implemented with the same measurement coupling and pointer observable just by changing the probe state.

We recall that a \(\text{(measurement-assisted) programmable quantum processor} \) is a measurement process where the initial probe state can be changed [37]. The initial probe state is thought as a program that encodes different observables. We can translate corollary 2 into the statement that all covariant phase space observables can be implemented on a single programmable quantum processor.

5. Examples

In subsections 5.1 and 5.2, we illustrate the results in the concrete cases of position–momentum and orthogonal spin components. In particular, we show connections to some earlier studies.

5.1. Sequential measurement of position and momentum

Let us consider a particle moving in the real line \(\mathbb{R} \). Its associated Hilbert space is \(\mathcal{H} = L^2(\mathbb{R}) \), where the Haar measure \(\lambda \) on \(\mathbb{R} \) is just the Lebesgue measure. Characteristic symmetry transformations for the particle include space translations and velocity boosts. These are described by two unitary representations \(U \) (translations) and \(V \) (boosts) of \(\mathbb{R} \), acting on a vector \(\psi \in \mathcal{H} \) as
\[
[U_q \psi](x) = \psi(x - q), \quad [V_p \psi](x) = e^{ipx} \psi(x).
\]
Since \(\mathbb{R} = \mathbb{R} \), the couple \((U, V)\) is clearly a Weyl system for the pair \((\mathbb{R}, \mathbb{R})\). Its associated canonically conjugated observables \((A, B)\) are just sharp position and momentum observables, respectively.

A translation covariant instrument for an unsharp position observable was introduced by Davies in [16]. Here, we show its connection to our general structure theorem. We do this by writing equation (24), the definition of \(I^\omega \), in an alternative form. In the following, we assume that the probe state \(\omega \) is pure; hence, \(\omega = \langle \psi | \psi \rangle \) for some fixed unit vector \(\psi \in L^2(\mathbb{R}) \).
Let $\phi, \psi \in \mathcal{H}$ be unit vectors, and $\varrho = |\phi\rangle\langle\phi|$. We have

$$\langle\psi|T_X^{\varrho}(\varrho)|\psi\rangle = \text{tr}[[\psi]\langle\psi| \otimes A(X)]L(\varrho \otimes \omega)L^*],$$

$$= \text{tr}[[\psi]\langle\psi| \otimes A(X)]L(|\phi\rangle\langle\phi| \otimes \varphi)L^*],$$

$$= (L(\phi \otimes \varphi)[[\psi]\langle\psi| \otimes A(X)])L(\phi \otimes \varphi)),$$

$$= \int \int \phi(x)\psi(y-x)\psi(x) \left(\int \overline{\psi(z)}1_X(y)\phi(y-z)\,dz \right) \,dx \,dy,$$

$$= \int \overline{\psi(z)} \left[\phi(z) \int \left(\int 1_X(y)\phi(y-z)\overline{\psi(y-x)} \,dy \right) \phi(x) \psi(x) \,dx \right] \,dz.$$

It follows that $T_X^{\varrho}(\varrho)$ is the integral operator with the kernel

$$\Gamma(x, y) = \phi(x)\overline{\phi(y)} \int 1_X(u)\psi(u-x)\overline{\psi(u-y)} \,du,$$

i.e.

$$[T_X^{\varrho}(\varrho)](x) = \int \Gamma(x, y)\psi(y) \,dy.$$

If φ is not only square integrable but also essentially bounded, then the operator

$$K_{\varphi} : L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad [K_{\varphi}] \varphi(y) = \varphi(u-y)\psi(y)$$

is well defined and the instrument T^a_ϱ takes the form

$$T^a_\varrho(\varrho) = \int_X K_{\varrho}K_{\varphi}^a \,du \quad \forall \varrho \in \mathcal{S}(\mathcal{H}).$$

This way of writing is used e.g. in [7, 16, 32] and we have thus seen that it arises from the general description under certain conditions.

5.2. Sequential measurement of two orthogonal spin components

Let us consider a sequential measurement of two orthogonal spin components of a spin-$\frac{1}{2}$ system. The associated Hilbert space is $\mathcal{H} = \mathbb{C}^2$. A measurement outcome in each spin component measurement is either $+1$ (up) or -1 (down); hence, we set $G = \mathbb{Z}_2 = \{+1, -1\}$. The two sharp observables that we intend to measure are

$$S^a(\pm 1) = \frac{1}{2}(I \pm a \cdot \sigma), \quad S^b(\pm 1) = \frac{1}{2}(I \pm b \cdot \sigma),$$

for a and b are orthogonal unit vectors in \mathbb{R}^3, and $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ is the vector consisting of Pauli operators.

The covariance properties of these observables are formulated in terms of two representations U and V of $\mathbb{Z}_2 = \{+1, -1\}$, which correspond to the 180° rotations with axis in the directions of b and a, respectively. Therefore, these representations are given by

$$U_+ = \mathbb{I}, \quad U_- = b \cdot \sigma,$$

and the covariance properties are

$$U_- S^a(j) U_+^* = S^a(-j), \quad V_- S^a(j) V_+^* = S^a(j)$$

and

$$U_- S^b(j) U_+^* = S^b(j), \quad V_- S^b(j) V_+^* = S^b(-j).$$

It is straightforward to check that (U, V) is the Weyl system for the pair $(\mathbb{Z}_2, \mathbb{Z}_2)$ and its associated canonically conjugated observables are just (S^a, S^b).

Let $\{e_+^a, e_-^a\}$ be an orthonormal basis of \mathbb{C}^2 diagonalizing the operator $a \cdot \sigma$ with eigenvalues $1, -1$, respectively. We choose the phases of e_\pm^a such that $b \cdot \sigma e_\pm^a = e_\mp^a$.

J. Phys. A: Math. Theor. 44 (2011) 285304

C Carmeli et al
We can then write $S^a(k) = |e_i^a⟩⟨e_i^a|$ and $S^b(h) = F S^a(h) F = \frac{1}{2} |e_i^a + h e_i^a⟩⟨e_i^a + h e_i^a|$, where the Fourier transform $F : \mathbb{C}^2 \rightarrow \mathbb{C}^2$ reads

$$F(\alpha e_i^a + \beta e_i^b) = \frac{\alpha + \beta}{\sqrt{2}} e_i^a + \frac{\alpha - \beta}{\sqrt{2}} e_i^b.$$

By theorem 1, any W-covariant instrument I on \mathbb{Z}_2 is given by

$$I_k(T) = \sum_{\omega \in \mathbb{Z}_2} \text{tr}_2[(I \otimes S^a(k)) L(U^*_k T U_k \otimes M_\omega) L^*]$$

for some positive operators M_ω, M_ω satisfying $\text{tr}[M_\omega] + \text{tr}[M_\omega] = 1$. The unitary operator $L : \mathbb{C}^2 \otimes \mathbb{C}^2 \rightarrow \mathbb{C}^2 \otimes \mathbb{C}^2$ has the form

$$L(e_i^a \otimes e_j^a) = e_i^a \otimes e_k^a \quad \forall i, k \in \mathbb{Z}_2,$$

and we note that $L^2 = \mathbb{1}$ (hence $L^* = L$).

For our purposes, it is enough to analyze the standard form instruments I^ω (i.e. $M_\omega = 0$, $M_\omega \equiv \omega$) since all the covariant instruments are convex combinations of these and their translates. We get

$$\langle e_l^a | T^\omega_k(x) e_m^a \rangle = \langle e_l^a | \text{tr}_2 \left[\left(\mathbb{1} \otimes S^a(k) \right) L(\mathbb{1} \otimes \omega) L \right] e_m^a \rangle = \text{tr} \left[|e_l^a⟩⟨e_m^a| \text{tr}_2 \left[\left(\mathbb{1} \otimes S^a(k) \right) L(\mathbb{1} \otimes \omega) L \right] \right] = \text{tr} \left[|e_l^a⟩⟨e_m^a| e_i^a \otimes e_k^a \right] \mathbb{1} \otimes \omega L \right] = \text{tr} \left[|e_l^a⟩⟨e_m^a| e_i^a \otimes e_k^a \right] e_i^a \otimes e_k^a \right] \mathbb{1} \otimes \omega L \right] = \langle e_l^a | e_m^a \rangle \langle e_i^a | e_k^a \rangle \langle e_i^a | U_k \omega U_k e_i^a \rangle.$$

In other words, the matrix $\langle e_i^a | T^\omega_k(x) e_j^a \rangle$ is just the Kronecker product of the matrices $\langle e_i^a | \omega e_j^a \rangle$ and $\langle e_i^a | U_k \omega U_k e_i^a \rangle$.

By proposition 1, the conjugated observables $(\tilde{S}^a, \tilde{S}^b)$ corresponding to I^ω as in equations (10) and (11) are characterized by the probability distribution

$$\sigma(k) = \text{tr}[\omega S^a(k)]$$
$$\tau(k) = \text{tr}[\omega S^b(k)]$$

for all $k \in \mathbb{Z}_2$. Denoting $s = 2\sigma(1) - 1$ and $t = 2\tau(1) - 1$, we can write the observables $(\tilde{S}^a, \tilde{S}^b)$ in the form

$$\tilde{S}^a(\pm 1) := \tilde{S}^a(\pm 1) = \frac{1}{2} (\mathbb{1} \pm sa \cdot \sigma)$$
$$\tilde{S}^b(\pm 1) := \tilde{S}^b(\pm 1) = \frac{1}{2} (\mathbb{1} \pm t b \cdot \sigma).$$

These are recognized as unsharp spin observables, first introduced in [6].

If we write the state ω in the form $\omega = \frac{1}{2} (\mathbb{1} + r \cdot \sigma)$ for some vector $r \in \mathbb{R}^3$, $\|r\| \leq 1$, then $s = r \cdot a$ and $t = r \cdot b$. Since a and b are orthogonal unit vectors, we obtain

$$s^2 + t^2 = (r \cdot a)^2 + (r \cdot b)^2 \leq \|r\|^2 \leq 1.$$

This trade-off relation between the accuracies of \tilde{S}^a and \tilde{S}^b was derived in [6] from the assumption that \tilde{S}^a and \tilde{S}^b are jointly measurable (see also [2] and [9] for different types of derivations of the same relation).
6. Proofs

We first recall some basic facts from the theory of integral operators and tensor products.

Suppose \(\mu_1 \) and \(\mu_2 \) are positive Borel measures on lcsc spaces \(\Omega_1 \) and \(\Omega_2 \), respectively. A linear operator \(A : L^2(\Omega_1, \mu_1) \to L^2(\Omega_2, \mu_2) \) is an integral operator if there exists a measurable map \(A : \Omega_2 \times \Omega_1 \to \mathbb{C} \) (the kernel associated with \(A \)) such that

\[
Af(x) = \int A(x; y) f(y) \, d\mu_1(y) \quad \forall f \in L^2(\Omega_1, \mu_1)
\]

(we use the semicolon in the kernel to separate the variables referring to the \(L^2 \)-spaces of the domain and the image of \(A \)).

We then have the following fact.

Theorem 2. If \(\Omega \) is an lcsc space and \(\mu \) is a positive Borel measure on \(\Omega \), then a linear operator \(T : L^2(\Omega, \mu) \to L^2(\Omega, \mu) \) is in the space \(T(L^2(\Omega, \mu)) \) of trace class operators on \(L^2(\Omega, \mu) \) if and only if

1. \(T \) is an integral operator;
2. there exists an lcsc space \(\Omega' \), a positive Borel measure \(\mu' \) on \(\Omega' \), and elements \(A_1, A_2 \in L^2(\Omega \times \Omega', \mu \otimes \mu') \) such that
\[
\int A_1(x; z) A_2(y; z) \, d\mu'(z) \quad \text{for } \mu \otimes \mu' \text{-a.a. } (x, y).
\]

(39)

In this case, the trace of \(T \) is
\[
\text{tr } [T] = \int A_1(x; y) A_2(x; y) \, d(\mu \otimes \mu') (x, y).
\]

(40)

Moreover, \(T \in T(L^2(\Omega, \mu)) \) if and only if one can choose \(A_1 = A_2 \) in equation (39).

Proof. By theorem VI.22 in [33], \(T \) is trace class if and only if there exist two Hilbert–Schmidt operators \(A_1 \) and \(A_2 \) with \(A_i : L^2(\Omega', \mu') \to L^2(\Omega, \mu) \), such that \(T = A_1 A_2^* \). By theorem VI.23 in [33], each \(A_i \) is an integral operator with the kernel \(A_i \in L^2(\Omega \times \Omega', \mu \otimes \mu') \); hence, \(T \) is an integral operator with kernel (39). Moreover, \(\text{tr}[T] = \text{tr}[A_1 A_2^*] = \langle A_2 | A_1 \rangle_{\text{HS}} \), where \(\langle \cdot | \cdot \rangle_{\text{HS}} \) is the scalar product in the Hilbert space of Hilbert–Schmidt operators. By theorem VI.23 in [33],
\[
\langle A_2 | A_1 \rangle_{\text{HS}} = \int A_1(x; y) A_2(x; y) \, d(\mu \otimes \mu') (x, y),
\]

and equation (40) then follows. \(\square \)

We use this characterization of trace class operators in the next four auxiliary lemmas.

Lemma 1. Let \(\mu \) be a positive measure on the lcsc space \(\Omega \), and \(T \) an integral operator on \(L^2(\Omega, \mu) \). Then, \(T \in T(L^2(\Omega, \mu)) \) if and only if there exists a Hilbert space \(\mathcal{V} \) and functions \(\phi_1, \phi_2 \in L^2(\Omega, \mu; \mathcal{V}) \) such that
\[
T(x; y) = \langle \phi_2(y) | \phi_1(x) \rangle \quad \text{for } \mu \otimes \mu' \text{-a.a. } (x, y).
\]

(41)

In this case, the trace of \(T \) is
\[
\text{tr } [T] = \langle \phi_2 | \phi_1 \rangle_{L^2}.
\]

Moreover, \(T \) is positive if and only if one can choose \(\phi_1 = \phi_2 = \phi \) in equation (41), and in this case
\[
\| T \|_1 = \| \phi \|_{L^2}^2.
\]
Proof. If T is trace class, then choose $\mu', \Omega', A_1, A_2 \in L^2(\Omega \times \Omega', \mu \otimes \mu')$ as in equation (39), and let $\mathcal{V} = L^2(\Omega', \mu')$. Then, the maps $\phi_i : x \mapsto A_i(x; \cdot), i = 1, 2$, are in $L^2(\Omega, \mu; \mathcal{V})$ by Fubini’s theorem, and equation (41) is just a rewriting of equation (39).

Conversely, suppose \mathcal{V} is a Hilbert space and there exists $\phi_1, \phi_2 \in L^2(\Omega, \mu; \mathcal{V})$ for which equation (41) holds. Let $\{e_n\}_{n \in \mathbb{N}}$ be an orthonormal basis in \mathcal{V} and define $A_i(x, n) = \langle e_n | \phi_i(x) \rangle$, $i = 1, 2$. Then, $A_1, A_2 \in L^2(\Omega \times \Omega', \mu \otimes \mu')$, where $\Omega' = I$ and μ' is the counting measure of the index set I, and with this choice T satisfies equation (39). It then follows from the previous discussion that $T \in T(L^2(\Omega, \mu))$ and

$$\text{tr}[T] = \int \sum_n A_1(x; n)A_2(x; n) \, d\mu(x) = \int \langle \phi_2(x) | \phi_1(x) \rangle \, d\mu(x).$$

The rest of the statement is also a straightforward consequence of the above considerations and of the fact that if T is positive, then $\|T\|_1 = \text{tr}[T]$. \qed

If $f \in L^2(\Omega, \mu)$, we introduce the notation $T_f(x; y) = f(x)\overline{f(y)}$. The associated integral operator $T_f = [f]([f])$ on $L^2(\Omega, \mu)$ is clearly trace class and positive.

Lemma 2. Let \mathcal{V} be a Hilbert space and μ_1, μ_2 positive measures on the lcsc spaces Ω_1, Ω_2, respectively. Suppose $\phi \in L^2(\Omega_1 \times \Omega_2, \mu_1 \otimes \mu_2; \mathcal{V})$. If T is the integral operator on $L^2(\Omega_1 \times \Omega_2, \mu_1 \otimes \mu_2)$ with the kernel

$$T(x_1, x_2; y_1, y_2) = \langle \phi(y_1, y_2) | \phi(x_1, x_2) \rangle,$$

then $T \in T(L^2(\Omega_1 \times \Omega_2, \mu_1 \otimes \mu_2))$, $T = T(L^2(\Omega_1, \mu_1) \otimes L^2(\Omega_2, \mu_2))$, and its partial trace $\text{tr}_2[T]$ with respect to $L^2(\Omega_2, \mu_2)$ is the integral operator on $L^2(\Omega_1, \mu_1)$ with the kernel

$$[\text{tr}_2[T]](x_1; y_1) = \int \langle \phi(y_1, z) | \phi(x_1, z) \rangle \, d\mu_2(z).$$

Proof. $T \in T(L^2(\Omega_1 \times \Omega_2, \mu_1 \otimes \mu_2))$, by lemma 1. If $f \in L^2(\Omega_1, \mu_1)$, then

$$\langle f | \text{tr}_2[T] | f \rangle = \text{tr}[\langle T_f | \mathbb{1}_{L^2(\Omega_1, \mu_1)} \rangle T].$$

The operator $(T_f \otimes \mathbb{1}_{L^2(\Omega_2, \mu_2)}) T$ is the integral operator with the kernel

$$[\langle T_f | \mathbb{1}_{L^2(\Omega_2, \mu_2)} \rangle T](x_1, x_2; y_1, y_2) = \int f(x_1) \overline{f(z)} \phi(z, x_2) \, d\mu_1(z),$$

where it is easy to check that the map $(x_1, x_2) \mapsto f(x_1) \int \overline{f(z)} \phi(z, x_2) \, d\mu_1(z)$ is in $L^2(\Omega_1 \times \Omega_2, \mu_1 \otimes \mu_2; \mathcal{V})$ by an application of Hölder inequality and Fubini theorem. Then, by equation (43) and lemma 1,

$$\langle f | \text{tr}_2[T] | f \rangle = \int \int f(x_1) \overline{f(z)} \phi(z, x_2) \, d\mu_1(z) \, d\mu_2(x_1, x_2) = \int \int \int \phi(x_1, x_2) \phi(z, x_2) \, d\mu_2(x_2) \, d\mu_1(z) \, d\mu_1(z).$$

This shows that $\text{tr}_2[T]$ is the integral operator in $L^2(\Omega_1, \mu_1)$ with kernel (42), as claimed. \qed

We recall that $\mathcal{H} = L^2(G, \lambda)$, where λ is the Haar measure of G.

Lemma 3. Let \mathcal{V} be a Hilbert space and μ be a positive measure on G. Suppose $\phi_1, \phi_2 \in L^2(G \times G, \lambda \otimes \mu; \mathcal{V})$. Then there is an element $M \in L^1(G, \mu; T(\mathcal{H}))$ such that

$$[M(h)](x, y) = \langle \phi_2(y, h) | \phi_1(x, h) \rangle \text{ for } \mu \otimes \lambda \otimes \lambda\text{-a.a. } (h, x, y).$$

(44)
Moreover,
\[
\text{tr} \{ M(h) \} = \int (\phi_2(x, h)\phi_1(x, h)) \, d\lambda(x) \quad \text{for } \mu\text{-a.a. } h.
\] (45)

If \(\phi_1 = \phi_2 = \phi \) and \(\|\phi\|_{L^2} = 1 \), then \(M \in L^1(G, \mu; T(\mathcal{H})). \)

Proof. We prove the lemma for \(\phi_1 = \phi_2 = \phi \), the general case follows by polarization.

By Fubini’s theorem, there exists a \(\mu \)-null set \(Z \in \mathcal{B}(G) \) such that \(\phi(\cdot, h) \in L^2(G, \lambda; \mathcal{V}) \) for all \(h \in G \setminus Z \). For such \(h \)'s, equation (44) defines an element \(M(h) \in T(\mathcal{H}), \) and
\[
\text{tr} \{ M(h) \} = \| M(h) \|_1 = \| \phi(\cdot, h) \|_{L^1} = \int \| \phi(x, h) \|^2 \, d\lambda(x)
\]
by lemma 1.

For all \(f \in \mathcal{H}, \)
\[
\langle f | M(h) f \rangle = \left\| \int f(x)\phi(x, h) \, d\lambda(x) \right\|^2 \quad \forall h \in G \setminus Z.
\]

Since the map \(h \mapsto \int f(x)\phi(x, h) \, d\lambda(x) \) is measurable from \(G \) into \(\mathcal{V} \) by Fubini’s theorem, the map \(h \mapsto \langle f | M(h) f \rangle \) is measurable. The map \(h \mapsto \text{tr} \{ AM(h) \} \) is then measurable for every finite rank operator \(A \in \mathcal{L}(\mathcal{H}), \) hence is measurable for all \(A \in \mathcal{L}(\mathcal{H}) \) by sequential weak-* density of finite rank operators in \(\mathcal{L}(\mathcal{H}). \) By corollary 2, p 73 in [22], \(M : G \rightarrow T(\mathcal{H}) \) is then a measurable map. Moreover,
\[
\int \| M(h) \|_1 \, d\mu(h) = \int \| \phi(x, h) \|_2^2 \, d\mu(h) = \int \| \phi(\cdot, h) \|_{L^1}^2 \, d\mu(h) = \| \phi \|_{L^2}^2.
\]
This shows that \(M \in L^1(G, \mu; T(\mathcal{H})), \) and if \(\|\phi\|_{L^2} = 1, \) then \(M \in L^1(G, \mu; T(\mathcal{H})). \) \(\square \)

For each \(\omega \in S(\mathcal{H}), \) recall the definition of the \(W \)-covariant instrument \(T^\omega \) on \(G \) given in equation (24):
\[
T^\omega_X(T) = \text{tr}_2[(\mathbb{1} \otimes A(X))L(T \otimes \omega)L^*] \quad \forall X \in \mathcal{B}(G), T \in T(\mathcal{H}).
\]

Lemma 4. If \(f \in \mathcal{H} \) and \(X \in \mathcal{B}(G), \) then \(T^\omega_X(T_f) \) is the integral operator on \(\mathcal{H} \) with the kernel
\[
[T^\omega_X(T_f)](x; y) = f(x)f(y)\text{tr}[A(X)U_x\omega U_y^*].
\] (46)

Proof. By lemma 1, there exists a Hilbert space \(\mathcal{V} \) and a function \(\phi \in L^2(G, \lambda; \mathcal{V}) \) with \(\|\phi\|_{L^2} = 1 \) such that
\[
\omega(x; y) = (\phi(y)|\phi(x)) \quad \text{for } \lambda \otimes \lambda\text{-a.a. } (x, y).
\]

The operator \((\mathbb{1} \otimes A(X))L(T_f \otimes \omega)L^* \) is then the integral operator on \(L^2(G \times G, \lambda \otimes \lambda) \) with kernel
\[
[(\mathbb{1} \otimes A(X))L(T_f \otimes \omega)L^*](x_1, x_2; y_1, y_2)
= \langle f(y_1)\phi(y_2 - y_1)|f(x_1)1_X(x_2)\phi(x_2 - x_1) \rangle.
\]

By lemmas 1 and 2
\[
[T^\omega_X(T_f)](x; y) = f(x)f(y)\text{tr}[A(X)U_x\omega U_y^*]
= f(x)f(y)\text{tr}[A(X)U_x\omega U_y^*].
\]
since \(A(X)U_x \omega U_x^* \) is the integral operator on \(\mathcal{H} \) with the kernel
\[
[A(X)U_x \omega U_x^*](z; t) = \langle \phi(t - y)| \chi(z)\phi(z - x) \rangle.
\]

If \(M \in \mathcal{M}(G; \mathcal{T}(\mathcal{H})) \), with \(dM(x) = M(x) \, d\mu(x) \), its Fourier transform is
\[
\mathcal{F}M(\gamma) = \int \overline{\gamma(x)}M(x) \, d\mu(x) \quad \forall \gamma \in \hat{G},
\]
where the integral is defined in the sense of Bochner. Note that \(\mathcal{F}M \) is a continuous map from \(\hat{G} \) into \(\mathcal{T}(\mathcal{H}) \).

Lemma 5. Let \(M_1, M_2 \in \mathcal{M}(G; \mathcal{T}(\mathcal{H})) \). If
\[
\text{tr}[V_x U_t \mathcal{F}M_1(\gamma)] = \text{tr}[V_x U_t \mathcal{F}M_2(\gamma)] \quad \forall x \in G, \forall \gamma, \varphi \in \hat{G},
\]
then \(M_1 = M_2 \).

Proof. We first prove the following reconstruction formula\(^7\) for elements \(T \in \mathcal{T}(\mathcal{H}) \):
\[
\int \text{tr}[V_x U_t T]|f_i|U_x^* V_x^* f_i \, d(\lambda \otimes \hat{\lambda})(x, \chi) = \frac{1}{c^2} \langle f_2|T|f_1 \rangle \quad \forall f_1, f_2 \in \mathcal{H}.
\]
To do this, choose \(\phi_1, \phi_2 \in L^2(G, \lambda \otimes \lambda) \) such that \(T(x; y) = \langle \phi_2(y)|\phi_1(x) \rangle \). Then
\[
(V_x U_t T)(z; t) = \langle \phi_2(t)|\chi(z)\phi_1(z - x) \rangle,
\]
and lemma 1 yields
\[
\text{tr}[V_x U_t T] = \int \chi(z)\langle \phi_2(z)|\phi_1(z - x) \rangle \, d\lambda(z) = \frac{1}{c^2} [(\mathcal{F} \otimes 1)\Phi_{\phi_1, \phi_2}](\chi^{-1}, x),
\]
where \(\Phi_{\phi_1, \phi_2} \in L^2(G \times G, \lambda \otimes \lambda) \) is the function \(\Phi_{\phi_1, \phi_2}(z, x) = \langle \phi_2(z)|\phi_1(z - x) \rangle \). In a similar way, one obtains
\[
\langle f_1|V_x U_t f_2 \rangle = \frac{1}{c^2} [(\mathcal{F} \otimes 1)\Phi_{f_1, f_2}](\chi^{-1}, x),
\]
with \(\Phi_{f_1, f_2} \in L^2(G \times G, \lambda \otimes \lambda) \) given by \(\Phi_{f_1, f_2}(z, x) = f_2(z - x)f_1^*(z) \). By unitarity of the Fourier transform we then have
\[
\int \text{tr}[V_x U_t T]|f_i|U_x^* V_x^* f_i \, d(\lambda \otimes \hat{\lambda})(x, \chi)
\]
\[
= \frac{1}{c^2} \int \langle \Phi_{\phi_1, \phi_2}(z, x)|\chi^{-1}, x \rangle [(\mathcal{F} \otimes 1)\Phi_{\phi_1, \phi_2}](\chi^{-1}, x) \, d(\lambda \otimes \hat{\lambda})(x, \chi)
\]
\[
= \frac{1}{c^2} \int \Phi_{\phi_1, \phi_2}(z, x) \overline{\Phi_{f_2, f_1}(z, x)} \, d(\lambda \otimes \lambda)(x, z)
\]
\[
= \frac{1}{c^2} \int \langle \phi_2(z)|\phi_1(z) \rangle \overline{f_2(z)} f_1(z) \, d(\lambda \otimes \lambda)(x, z)
\]
\[
= \frac{1}{c^2} \langle f_2|T|f_1 \rangle,
\]
which is formula (48).

Now, if equation (47) holds for \(M_1, M_2 \in \mathcal{M}(G; \mathcal{T}(\mathcal{H})) \), then replacing \(T \) with \(\mathcal{F}M_i(\gamma) \) in the reconstruction formula (48), we see that
\[
\langle f_2|\mathcal{F}M_1(\gamma)|f_1 \rangle = \langle f_2|\mathcal{F}M_2(\gamma)|f_1 \rangle
\]
for all
\(^7\) Equation (48) follows directly from the square integrability of the Schrödinger representation \(W \) of the Weyl–Heisenberg group \(\mathcal{H}_0 \); see [4, section 5] for the definition of square integrable representations and for more details on this topic.
$f_1, f_2 \in L^2(G, \lambda)$ and $\gamma \in \hat{G}$. Thus, $F \mathcal{M}_1 = F \mathcal{M}_2$, and $\mathcal{M}_1 = \mathcal{M}_2$ follows by injectivity of the Fourier transform (see e.g. [20, theorem 4.33]).

□

After all this preparation, we are now in a position to prove our main theorem 1.

Proof of theorem 1. We divide the proof into several steps.

(1) If $M \in \mathcal{M}(G; T(\mathcal{H}))_1$, with $dM(x) = M(x) d\mu(x)$, then it is easily checked that the expression under the integral in equation (26) is in $L^1(G, \mu; T(\mathcal{H} \otimes \mathcal{H}))$. Looking at the equivalent formula (28), one immediately concludes that \mathcal{I} defined in equation (26) is a W-covariant instrument on G, since each $T^{\text{cov}}(X)$ is.

(2) Conversely, suppose \mathcal{I} is a W-covariant instrument on G. By theorem 1 in [12] this is equivalent to assume that there exists\(^8\)

- a transitive system of imprimitivity (D, R) for \mathcal{H}_G based on $G \simeq \mathcal{H}_G / N$ and acting in a Hilbert space K,
- an isometry $L : \mathcal{H} \to \mathcal{H} \otimes K$ intertwining the representations W and $W \otimes D$ such that

$$\mathcal{I}_X(T) = \text{tr}_2[(\mathbb{1}_K \otimes R(X))LT L^*] \quad \forall T \in T(\mathcal{H}).$$

Moreover, the system of imprimitivity (D, R) and the isometry L can be chosen in such a way that the set

$$\{(A \otimes R(X))Lv \mid X \in \mathcal{B}(G), A \in \mathcal{L}(\mathcal{H}), v \in \mathcal{H}\}$$

is total in $\mathcal{H} \otimes K$.

For $z = (0, 1, u) \in Z$, we have

$$(A \otimes R(X))Lf = u(A \otimes R(X))LW(z)f$$
$$= u(A \otimes R(X))(W(z) \otimes D(z))Lf$$
$$= u(W(z) \otimes D(z))(A \otimes R(z^{-1}X))Lf$$
$$= (\mathbb{1}_K \otimes D(z))(A \otimes R(X))Lf.$$ By totality of the set (50) in $\mathcal{H} \otimes K$, $\mathbb{1}_K \otimes D(z) = \mathbb{1}_{\mathcal{H} \otimes K}$, i.e. $D|_Z = \mathbb{1}_K$. Therefore, D factors to a representation \hat{D} of the Abelian group $\mathcal{H}_G / Z \simeq G \times \hat{G}$.

The couple (\hat{D}, R) is a transitive system of imprimitivity for the group $G \times \hat{G}$ based on G, where the action of $G \times \hat{G}$ on $G \simeq (G \times \hat{G}) / \hat{G}$ is

$$(x, \chi)[y] = x + y \quad \forall (x, \chi) \in G \times \hat{G}, y \in G.$$ By the imprimitivity theorem, (\hat{D}, R) is the system of imprimitivity induced by some representation σ of the group \hat{G}. Possibly enlarging the representation \hat{D} (thus dropping the requirement that the set (50) is total in $\mathcal{H} \otimes K$, but preserving equation (49)), we can assume that the representation σ has constant infinite multiplicity, i.e. there exists a positive measure μ on $\hat{G} = G$ and a separable infinite-dimensional Hilbert space \mathcal{V} such that σ acts on the space $L^2(G, \mu; \mathcal{V})$ as follows:

$$[\sigma(\chi)\phi](h) = \chi(h)\phi(h) \quad \forall \phi \in L^2(G, \mu; \mathcal{V})$$
(see e.g. [20, theorem 7.40]). With this assumption, the inducing construction gives

$$\mathcal{K} = L^2(G, \lambda; L^2(G, \mu; \mathcal{V})) = L^2(G \times G, \lambda \otimes \mu; \mathcal{V}),$$

\(^8\) We refer to chapter VI of [35] for more details on systems of imprimitivity, induced representations and the imprimitivity theorem.
and
\[[\hat{D}(t, \chi) f](y, h) = \chi(h) f(y - t, h) \]
\[[\mathcal{R}(X) f](y, h) = 1_X(y) f(y, h) \]
for all \(f \in \mathcal{K} \) (see theorem 6.7 in [35]).

Collecting these facts, we obtain that
\[\mathcal{H} \otimes \mathcal{K} = L^2(G, \lambda) \otimes L^2(G \times G, \lambda \otimes \mu; \mathcal{V}) \]
with
\[[(W \otimes D)(t, \chi, u) f](x, y, h) = u \chi(x + h - t) f(x - t, y - t, h) \]
\[[(\mathbb{1}_{\mathcal{H}} \otimes \mathcal{R}(X)) f](x, y, h) = 1_X(y) f(x, y, h) \]
for all \(f \in \mathcal{H} \otimes \mathcal{K}, (t, \chi, u) \in \mathcal{G}, X \in \mathcal{B}(G) \).

We define a unitary operator \(S \) on \(\mathcal{H} \otimes \mathcal{K} \) by
\[S f(x, y, h) = f(x + h, y - x, h) \]
for all \(f \in \mathcal{H} \otimes \mathcal{K}, (x, y, h) \in \mathcal{H} \).

It is easy to check that
\[(W \otimes D)(t, \chi, u) S = S(W(t, \chi, u) \otimes \mathbb{1}_{\mathcal{K}}), \]
i.e. \(S \) intertwines \(W \otimes \mathbb{1}_{\mathcal{K}} \) with \(W \otimes D \). On the other hand, by irreducibility of \(W \), every isometry \(R : \mathcal{H} \to \mathcal{H} \otimes \mathcal{K} \) intertwining \(W \) with \(W \otimes \mathbb{1}_{\mathcal{K}} \) has the form
\[R f \cdot \phi = f \otimes \phi =: R \phi f \]
for some choice of \(\phi \in \mathcal{K} \) with \(\| \phi \| = 1 \), fixed by \(R = R \phi \). Combining these two facts, every isometry \(L : \mathcal{H} \to \mathcal{H} \otimes \mathcal{K} \) intertwining \(W \) with \(W \otimes \mathbb{1}_{\mathcal{K}} \) is given by
\[L \phi = SR \phi \]
for some choice of \(\phi \) as before. Explicitly,
\[(L \phi f)(x, y, h) = f(x + h) \phi(y - x, h) \]

We now evaluate the expression in equation (49). For \(f, f' \in \mathcal{H} \), we have
\[\langle f'| I_X(T f) f' \rangle = \text{tr}[T f' \cdot \text{tr}[\mathbb{1}_{\mathcal{H}} \otimes \mathcal{R}(X)] L \phi T f L_\phi^*] \]
\[= \text{tr}[(T f' \otimes \mathcal{R}(X)) L \phi T f L_\phi^*] \]
\[= \langle L \phi f'| (T f' \otimes \mathcal{R}(X)) L \phi f \rangle \]
\[= \int f'(x) f'(z) f(x + h) f(x + h) d\lambda(\lambda \otimes \mu)(x, y, z, h) \]
\[\times \text{tr}[A(X) U_{\mathcal{K}} M(h) U_{\mathcal{K}}^*] \]
\[= \int f'(x) f'(z) f(x + h) f(x + h) d\lambda(\lambda \otimes \mu)(x, y, z, h) \]
\[\times \text{tr}[A(X) U_{\mathcal{K}} M(h) U_{\mathcal{K}}^*] \]

Let \(M \in L^1(G, \mu; T(\mathcal{H})) \) be defined as in equation (44) with \(\phi_1 = \phi_2 = \phi \). Then,
\[[A(X) U_{\mathcal{K}} M(h) U_{\mathcal{K}}^*] (y, t) = \langle \phi(t - x, h) | 1_X(y) \phi(y - z, h) \rangle \]

hence, by equation (45),
\[\langle f'| I_X(T f) f' \rangle = \int f'(x) f'(z) f(x + h) f(x + h) d\lambda(\lambda \otimes \mu)(x, y, z, h) \]
\[\times \text{tr}[A(X) U_{\mathcal{K}} M(h) U_{\mathcal{K}}^*] \]
\[= \int f'(x - h) f'(z - h) f(z) f(x) d\lambda(\lambda \otimes \mu)(x, y, z, h) \]
\[\times \text{tr}[A(X) U_{\mathcal{K}} M(h) U_{\mathcal{K}}^*] \]

Defining \(\omega(h) = U_{\mathcal{K}} M(h) U_{\mathcal{K}} / \| M(h) \|_1 \), \(d\nu(h) = \| M(h) \|_1 d\mu(h) \) by equation (46), the last expression is
\[\langle f'| I_X(T f) f' \rangle = \int [U_{\mathcal{K}} f'| I_X(T f) U_{\mathcal{K}} f' \rangle d\nu(h). \]

This equation clearly holds, replacing \(T f \) with any finite rank operator, and then equation (28) (which is equivalent to equation (26)) follows by density.
(3) We finally show that the correspondence $M \mapsto I$ established in equation (26) is injective from $\mathcal{M}(G; T(\mathcal{H}))$, into the set of W-covariant instruments.

Suppose that $\text{d}M(x) = M(x) \text{d}\mu(x)$ is a vector measure in $\mathcal{M}(G; T(\mathcal{H}))$, and let I be the instrument associated with M by equation (26). For all $T \in T(\mathcal{H})$, let $M^T \in \mathcal{M}(G; T(\mathcal{H}))$ be the vector measure

$$M^T(x) = I_x(T).$$

Rewriting I in the form of equation (27) and applying the second SNAG formula in (15), we have

$$F^T(y) = \int U^*_x \left[\text{tr}[(1 \otimes V_y)L(T \otimes M'(x))L^*]U_x \right] \text{d}\mu(x)$$

for all $y \in \tilde{G}$, where $M'(x) = U^*_x M(x) U_x$. It follows that if $y \in G$, $\chi \in \tilde{G}$,

$$\text{tr}[V_y U^*_x F^T(y^{-1})] = \int \overline{\chi(x)} \text{tr}[(V_y U^*_x \otimes V_y)L(T \otimes M'(x))L^*] \text{d}\mu(x)$$

$$= \text{tr}[(V_y U^*_x \otimes V_y)(T \otimes \mathcal{F}M'(\chi))]$$

$$= \text{tr}[V_y U^*_x T \text{tr}[V_y U_y \mathcal{F}M'(\chi)],$$

where $\text{d}M'(x) = M'(x) \text{d}\mu(x)$. Choose $T = U_y V^{*}_y Q$ with $Q \in \mathcal{S}(\mathcal{H})$. Then, we have

$$\text{tr}[V_y U^*_x F^T(y^{-1})] = \text{tr}[V_y U_y \mathcal{F}M'(\chi)].$$

Therefore, I determines the continuous mapping

$$(\gamma, y, \chi) \mapsto \text{tr}[V_y U_y \mathcal{F}M'(\chi)];$$

hence, it determines the vector measure M' or, equivalently, M by lemma 5. \hfill \square

We now prove the consequences of theorem 1 stated in propositions 1 and 2.

Proof of proposition 1. For all $f \in \mathcal{H}$ we have

$$\langle f | \hat{A}(X) f \rangle = \text{tr}[\hat{A}(X)T_f] = \text{tr}[I_x(T_f)]$$

$$= \int \text{tr}[U^*_x [\mathcal{F}^{M'(x)}(T_f)]U_x] \text{d}v(x)$$

$$= \text{tr}[I^*_x(T_f)],$$

where we used equation (28) and set $\omega = \int \omega(x) \text{d}v(x) = M'(G)$. By equation (46),

$$[I^*_x(T_f)](x; y) = \langle f(y) U^{1/2}_x f(x) A(X) U_x \omega^{1/2} \rangle_{\mathcal{H}_S},$$

(51)

where $\langle B | A \rangle_{HS} = \text{tr}[AB^*]$ is the scalar product in the Hilbert space of Hilbert–Schmidt operators on \mathcal{H}. Using then lemma 1 to evaluate the trace,

$$\langle f | \hat{A}(X) f \rangle = \int \langle f(x) U^{1/2}_x f(x) A(X) U_x \omega^{1/2} \rangle_{\mathcal{H}_S} \text{d}l(x)$$

$$= \int |f(x)|^2 \text{tr}[A(X - x)\omega] \text{d}l(x),$$

from which equation (29) follows by comparison with definition (18) of A_x.

For the observable \hat{B}, we have

$$\langle f | \hat{B}(Y) f \rangle = \text{tr}[\hat{B}(Y)T_f] = \text{tr}[B(Y)I_G(T_f)]$$

$$= \int \text{tr}[B(Y) U^*_x [\mathcal{F}^{M'(x)}(T_f)]U_x] \text{d}v(x)$$

$$= \int \text{tr}[B(Y)I^{M'(x)}_G(T_f)] \text{d}v(x)$$

$$= \text{tr}[B(Y)I^*_G(T_f)].$$
Combining the definition $B(Y)f = c(F^{-1}1_Y) * f$ and equation (51), we have (for $\hat{\lambda}(Y) < \infty$)

$$\left[B(Y)I^\omega_G(T_f) \right](x; y) = \left\langle f(y) U_y\omega^{1/2} | c \int F^{-1}1_Y(x - z)f(z)U_z\omega^{1/2} \, d\lambda(z) \right\rangle_{HS}.$$

By lemma 1

$$\langle f | \hat{B}(Y)f \rangle = \int \left\{ f(x)U_x\omega^{1/2} | c \int F^{-1}1_Y(x - z)f(z)U_z\omega^{1/2} \, d\lambda(z) \right\}_{HS} \, d\lambda(x) = \int F^{-1}1_Y(x - z)f(z)\overline{f(x)} \, d\lambda(x \otimes \lambda)(x, z).$$

Let β_ω be the measure on \hat{G} given by $\beta_\omega(Y) = \text{tr} \left[B(Y)\omega \right] \forall Y \in B(\hat{G})$. Since

$$\text{tr} [U_x^*\omega] = \int \chi(x) \, d\beta_\omega(\chi) =: F^{-1}1_Y(\chi),$$

we have

$$\langle f | \hat{B}(Y)f \rangle = c \int F^{-1}1_Y(x - z)F^{-1}1_{1_Y} \beta_\omega(x - z) f(z)\overline{f(x)} \, d\lambda(x \otimes \lambda)(x, z).$$

where $1_Y * \beta_\omega(x) = \int 1_Y(\chi x^{-1}) \, d\beta_\omega(\chi)$. Comparing with $B(Y)f = c(F^{-1}1_Y) * f$ (see subsection 3.2), we see that

$$\tau_Y = 1_Y * \beta_\omega;$$

hence,

$$\tau(Y) = \tau_Y(1) = \int 1_Y(\chi^{-1}) \, d\beta_\omega(\chi) = \text{tr}[B(Y^{-1})\omega],$$

which is equation (30). \square

Proof of proposition 2. Suppose $f, f' \in \mathcal{H}$ with $\|f\| = 1$, and let $\omega = T_f$. Then, for $X \in B(G), Y \in B(\hat{G})$, we have

$$\langle f' | T^\omega_X(B(Y))f' \rangle = \text{tr} \left[B(Y)T^\omega_X(T_f) \right]$$

$$= \text{tr} \left[(\mathcal{F} \otimes \mathbb{1})L(f' \otimes f)(A(Y) \otimes \mathbb{1})(\mathcal{F} \otimes \mathbb{1})L(f' \otimes f) \right],$$

where $\hat{A}(Y) = \mathcal{F}B(Y)F^{-1}$ is the operator on $\hat{H} = L^2(\hat{G}, \hat{\lambda})$ given by $[\hat{A}(Y)\hat{f}](\chi) = 1_Y(\chi)\hat{f}(\chi)$. Since

$$[(\mathcal{F} \otimes \mathbb{1})L(f' \otimes f)](\chi, x) = c \int \overline{x(y)}f'(y)f(x - y) \, d\lambda(y) = c \langle V_xU_y\hat{f} | f' \rangle,$$

the above formula rewrites

$$\langle f' | T^\omega_X(B(Y))f' \rangle = c^2 \int 1_x(x)1_Y(\chi)\langle V_xU_y\hat{f} | f' \rangle^2 \, d\lambda(x \otimes \hat{\lambda})(x, \chi)$$

$$= \langle f' | \mathcal{C}_\omega(X \times Y)f' \rangle,$$
with $\tilde{\omega}$ defined in equation (36). By density of finite rank operators in $S(H)$, the above equation extends by continuity to all $\omega \in S(H)$. If I is given by equation (28), we then have

$$
\langle f' | I_X^\dagger(B(Y)) f' \rangle = \int \langle f' | I_X^\dagger(B(Y)) f' \rangle \, d\nu(x)
$$

with $\omega = \int \omega(x) \, d\nu(x) = M'(G)$.

References

[1] Ali S T and Prugovečki E 1977 Classical and quantum statistical mechanics in a common Liouville space Physica A 89 501–21
[2] Andersson E, Barnett S M and Aspect A 2005 Joint measurements of spin, operational locality, and uncertainty Phys. Rev. A 72 042104
[3] Appleby D M 2005 Symmetric informationally complete-positive operator valued measures and the extended Clifford group J. Math. Phys. 46 052107
[4] Borel A 1972 Représentations de groupes localement compacts (Lecture Notes in Mathematics vol 276) (Berlin: Springer)
[5] Busch P 1985 Indeterminacy relations and simultaneous measurements in quantum theory Int. J. Theor. Phys. 24 63–92
[6] Busch P 1986 Unsharp reality and joint measurements for spin observables Phys. Rev. D 33 2253–61
[7] Busch P, Grabowski M and Lahti P J 1997 Operational Quantum Physics (Berlin: Springer) second corrected printing
[8] Busch P, Heinonen T and Lahti P 2007 Heisenberg’s uncertainty principle Phys. Rep. 452 155–76
[9] Busch P and Heinosaari T 2008 Approximate joint measurements of qubit observables Quantum Inf. Comput. 8 797–818
[10] Carmeli C, Heinonen T and Toigo A 2004 Position and momentum observables on \mathbb{R} and on \mathbb{R}^3 J. Math. Phys. 45 2526–39
[11] Carmeli C, Heinonen T and Toigo A 2008 Why unsharp observables? Int. J. Theor. Phys. 47 81–9
[12] Carmeli C, Heinosaari T and Toigo A 2009 Covariant quantum instruments J. Funct. Anal. 257 3353–74
[13] Cassinelli G, De Vito E, Lahti P and Leverero A 2000 Phase space observables and isotypic spaces J. Math. Phys. 41 5803–36
[14] D’Ariano G M, Perinotti P and Sacchi M F 2004 Informationally complete measurements and group representation J. Opt. B: Quantum Semiclass. Opt. 6 S487–91
[15] Davies E B 1970 On the repeated measurements of continuous observables in quantum mechanics J. Funct. Anal. 6 318–46
[16] Davies E B 1976 Quantum Theory of Open Systems (London: Academic)
[17] Davies E B and Lewis J T 1970 An operational approach to quantum probability Commun. Math. Phys. 17 259–60
[18] Flammia S 2006 On SIC-POVMs in prime dimensions J. Phys. A: Math. Gen. 39 13483–93
[19] Folland G B 1989 Harmonic Analysis in Phase Space (Annals of Mathematics Studies vol 122) (Princeton, NJ: Princeton University Press)
[20] Folland G B 1995 A Course in Abstract Harmonic Analysis (Boca Raton, FL: CRC Press)
[21] Heinosaari T and Wolf M M 2010 Nondisturbing quantum measurements J. Math. Phys. 51 092201
[22] Hille E and Phillips R S 1957 Functional Analysis and Semi-Groups (American Mathematical Society Colloquium Publications vol 31) revised edn (Providence, RI: American Mathematical Society)
[23] Holevo A S 1973 Optimal quantum measurements Theor. Math. Phys. 17 1172–7
[24] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland)
[25] Husimi K 1940 Some formal properties of the density matrix Proc. Phys. Math. Soc. Japan 22 264–314
[26] Jenčová A and Pulmannová S 2007 How sharp are PV measures? Rep. Math. Phys. 59 257–66
[27] Lang S 1983 Real Analysis 2nd edn (Reading, MA: Addison-Wesley)
[28] Mackey G W 1949 A theorem of Stone and von Neumann Duke Math. J. 16 313–26
[29] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[30] Opatrný T, Bužek V, Bajer J and Drobný G 1995 Propensities in discrete phase spaces: Q function of a state in a finite-dimensional hilbert space Phys. Rev. A 52 2419–28
[31] Ozawa M 1984 Quantum measuring processes of continuous observables J. Math. Phys. 25 79–87
[32] Ozawa M 1986 On information gain by quantum measurements of continuous observables J. Math. Phys. 27 759–63
[33] Reed M and Simon B 1980 Methods of Modern Mathematical Physics. Vol I: Functional Analysis revised and enlarged edn (London: Academic)
[34] Renes J M, Blume-Kohout R, Scott A J and Caves C M 2004 Symmetric informationally complete quantum measurements J. Math. Phys. 45 2171–80
[35] Varadarajan V S 1985 Geometry of Quantum Theory 2nd edn (New York: Springer)
[36] von Neumann J 1955 Mathematical Foundations of Quantum Mechanics (Princeton, NJ: Princeton University Press) (translated by R T Beyer in 1932 from Mathematische Grundlagen der Quantenmechanik (Berlin: Springer))
[37] Ziman M and Bužek V 2005 Realization of positive-operator-valued measures using measurement-assisted programmable quantum processors Phys. Rev. A 72 022343
[38] See Werner R 1984 J. Math. Phys. 25 1404–11
Cassinelli G, De Vito E and Toigo A 2003 J. Math. Phys. 44 4768–75
Kiukas J, Lahti P and Ylinen K 2006 J. Math. Anal. Appl. 319 783–801