Association between cardiovascular diseases and depressive symptoms in adults. A pooled analysis of population-based surveys: WOBASZ, NATPOL 2011, and WOBASZ II

INTRODUCTION
Psychosocial risk factors play an important role in the origins of cardiovascular risk.

OBJECTIVES
The aim of the study was to evaluate the prevalence of depressive symptoms (DSs) in relation to some sociodemographic characteristics and selected cardiovascular diseases (CVDs) and to assess the relationship between self-reported CVDs and the severity of DSs.

PATIENTS AND METHODS
Three cross-sectional population-based surveys: WOBASZ (2003–2005), NATPOL 2011 (2011), and WOBASZ II (2013–2014) covered a total sample of 20,514 participants (9,614 men and 10,900 women), aged 20 to 74 years, who all completed the Beck Depression Inventory.

RESULTS
One-fifth of men and one-third of women had DSs. The prevalence of DSs increased with age, was higher in unmarried persons and in individuals with a medical history of CVDs, and decreased with increasing education level. Individuals with DSs, both men and women, even those with borderline depression, had from 1.5- to more than 2-fold higher odds of either coronary artery disease or arrhythmia, and 2- to almost 4-fold higher chance of previous stroke in their medical history.

CONCLUSIONS
This study showed that DSs were a frequently observed condition in the general Polish population including patients with CVDs. We also demonstrated that there is a relationship between self-reported CVDs and severity of DSs regardless of age, marital status, education, and concomitant disorders.
WHAT’S NEW?

Psychosocial factors are considered to be risk factors for cardiovascular diseases and the association between depression and these disorders is of constant great interest to researchers around the world. Our study is within this scope. A combined data set of 3 large cross-sectional studies: WOBASZ, NATPOL 2011, and WOBASZ II, which aimed to examine 3 independent samples of the Polish adult population (more than 20,000 participants) providing very reliable results. To our best knowledge, this is the first analysis of psychosocial risk factors in such a large population in Poland. We demonstrated an association between cardiovascular disease and severity of depressive symptoms (DSs) regardless of age, marital status, education, and concomitant disorders. Furthermore, DSs were a frequently observed condition in Polish adults, thus, we would like to emphasize the necessity of screening patients with chronic diseases toward DSs.

in psychiatry and the most underdiagnosed condition in clinical practice. In general, mental disorders increase the risk for communicable and noncommunicable diseases and contribute to unintentional and intentional injury. Conversely, many health conditions increase the risk for mental disorders and comorbidity complicates help-seeking, diagnosis, and treatment and affects prognosis, and thus are a challenge for public health. Depression can impair the ability to function and is ranked by the World Health Organization (WHO) as the single largest contributor to global disability and to suicide death. According to the WHO Regional Office for Europe, each year, about 25% of the population suffers from depression or anxiety, about 50% of major depressions are untreated, and up to 50% of chronic sick leave is due to depression/anxiety. The cost of mood disorders and anxiety in the European Union (EU) is about 170 billion EUR per year. The results of the GBD (Global Burden of Disease) study, analyzing more than 350 causes of disease and injuries from EU countries, demonstrated that in 2017, depressive disorders took a very high ninth place in age-standardized rates of disability-adjusted life-years.

The pathogenesis of atherosclerosis that leads to CVDs is multifactorial and with the exception of conventional risk factors like hypertension, dyslipidemia, and tobacco smoking, psychosocial risk factors (mainly depression, chronic stress, low social support) are an important component of cardiovascular risk. The results of a meta-analysis of 30 prospective cohort studies (893,850 participants) suggest that depression is independently associated with an increased risk of CAD and myocardial infarction (MI) with pooled risk ratio of 1.3 for both. Psychosocial risk factors not only enhanced the risk of the first coronary event but also worsened the outcome and compliance to drug therapy and to lifestyle modification. Furthermore, there is evidence from a large prospective HAPIEE (Health, Alcohol and Psychosocial Factors in Eastern Europe) study, carried out in Poland, Czech Republic, and Russia, that depression is a strong predictor of CVDs and all-cause mortality in the population of Eastern Europe (comparable to the classic CVD risk factors). The European Guidelines (2016) recommended, in addition to behavioral intervention and health education, psychosocial therapy in order to improve psychosocial health, quality of life, classical risk factors, and illness prognosis in patients with established CVDs and psychological symptoms (class of recommendation, I; level of evidence, A).

The objective of our study was to evaluate the prevalence of depressive symptoms (DSs) in relation to some demographical characteristics and selected self-reported CVDs in a random sample of the adult Polish population and to study the association between CVDs and the severity of DSs.

PATIENTS AND METHODS Data were obtained from 3 cross-sectional surveys: 2 multi-center studies, the WOBASZ and WOBASZ II (National Population Health Examination Surveys) and the NATPOL 2011 (2011 National Polish Study to Evaluate the Prevalence of Cardiovascular Disease Risk Factors). In the first study, the WOBASZ (2003–2005), 6392 men and 7153 women aged 20 to 74 years were screened, and in the second one, the WOBASZ II (2013–2014), included 2751 men and 3418 women aged 20 or older. Sample drawing, using an electronic register database of national individual personal identity numbers (PESEL), had 3 stages and was stratified according to administrative units (voivodeships), type of urbanization (commune), and gender. For each province, 2 small, 2 medium, and 2 large communes were selected. The WOBASZ II covered the same communes as those participating in the WOBASZ study; however, the sample of individuals drawn in each commune was independent. The aims and methods of the WOBASZ and WOBASZ II were described previously. The examination was conducted by trained nurses or interviewers and the total participation rate was 76.9% for the WOBASZ and 45.5% for the WOBASZ II.

The NATPOL 2011 study examined 2413 persons aged 18 to 79, randomly selected in territorial bundles including 11 subjects on average, with stratification according to the place of residence, age, and gender. Sampling was made, as in the WOBASZ studies, using PESEL register database. Respondents were examined by trained nurses and the response rate was 66.5%. A detailed description of the NATPOL 2011 was published previously. The present analysis involved a total sample of 20,514 participants (9614 men and 10,900 women), aged between 20 and 74 years. Alongside the main questionnaire, all of the respondents filled in a psychological questionnaire and signed a written informed consent form prior to data collection. The studies were accepted by the Field Bioethics Committee.
For the purpose of the present analyses, we identified subjects with DSs, CAD, hypertension, arrhythmia, stroke, and diabetes. Individuals with CAD were defined based on a self-reported medical history of hospitalization due to acute coronary syndrome including MI, percutaneous coronary intervention, coronary artery bypass grafting, a history of MI, or a diagnosis of CAD without hospitalization. Patients with arrhythmia were identified based on a self-reported medical history of arrhythmia or hospitalization due to arrhythmia (in the NATPOL 2011, only information on atrial fibrillation was available, so the prevalence of arrhythmia in this survey was underestimated). Hypertensive persons were defined as those with arterial blood pressure of 140/90 mm Hg or greater (mean taken from the second and third blood pressure measurement made during the survey) or the use of an antihypertensive drug. Those with a medical history of diabetes or with fasting blood glucose level of 7 mmol/l or greater or on hypoglycemic treatment were considered diabetic. We also included concomitant diseases as a variable and defined them as a self-reported presence of at least 1 of following diseases: hypertension, CAD, arrhythmia, stroke, diabetes.

To evaluate the presence and severity of DSs, the 1961 version of the Beck Depression Inventory (BDI) was used. The BDI is a patient-rated scale with 21 items, scored by the respondent from 0 to 3, depending on symptom severity. The BDI focuses on cognitive rather than somatic symptoms of depression. It assesses mood, pessimism, sense of failure, lack of satisfaction, feelings of guilt, expectations of punishment, self-dislike, desire to die, crying, irritability, social withdrawal, body image, problems at work, sleeplessness, fatigue, loss of appetite, body weight reduction, and somatic complaints. The presence of DSs was defined as a BDI score of at least 10. According to the original descriptors, we divided Beck scores into following grades of depression: scores from 0 to 9 indicated no or minimal depression; 10 to 14, borderline depression; 15 to 20, mild depression; 21 to 63, moderate/severe depression.

Statistical analysis Statistical analyses were performed using the Statistical Analytical Software, version 9.4 (SAS, Cary, North Carolina, United States). For all analyses we assumed a significance level of 0.05 and performed them separately for men and women. Categorical variables were presented as frequencies with 95% CI (GLM procedure). Frequencies between groups were compared using the least squares method. To analyze the relation between selected CVDs (dependent variable) and DSs independent of age, marital status, education, and concomitant diseases, multivariable logistic regression analysis was used. A generalized linear model with random effects of survey (GENMOD procedure) was applied to conduct logistic regression analyses due to the pooled analysis of data from 3 different surveys.

RESULTS The characteristics of the included studies are presented in **TABLES 1 and 2**. Among persons who participated in the psychological part of combined WOBASZ, NATPOL 2011, and WOBASZ II surveys, 46.9% were men, about 70% of both men and women were older than 35 years of age, and the majority of them had at least secondary education and were married. With the exception of arrhythmia, men when compared with women, significantly more often had CAD, hypertension, and diabetes regardless of age. We found significant differences between the studies when analyzing them separately for sociodemographic and health status characteristics (except for the prevalence of hypertension and stroke in women and the rates of secondary educated women). Additionally, about one-fifth of men and one-third of women had DSs (**TABLES 1 and 2**), but more than 80% of them had borderline or mild depression (BDI score, 10–20). The observed prevalence of DSs in the WOBASZ II was lower compared with WOBASZ and NATPOL 2011 (**TABLES 1 and 2**). The rates of DSs increased with age of participants, decreased with higher education levels and were higher in unmarried persons (**TABLE 3**).

After analyzing the prevalence of DSs in persons with and without medical history of self-reported CVDs or diabetes, we found higher rates of DSs in individuals with a medical history of each of the analyzed conditions, regardless of age. It was especially visible in individuals with CAD and with previous stroke (**TABLE 4**).

In the analysis of the association between particular selected CVDs (CAD, arrhythmia, and stroke as dependent variables) and the severity of DSs, we observed higher odds of having each of analyzed CVDs when DSs were present. This was a dose-response relationship because the chance of CVDs raised with severity of DSs. Individuals with DSs, both men and women, even those with borderline depression, had also from 1.5- to more than 2-fold higher odds of either CAD or arrhythmia, and from more than 2- to almost 4-fold higher odds of stroke (**TABLES 5 and 6**).

DISCUSSION The results of pooled data from cross-sectional, national-based surveys (WOBASZ, NATPOL 2011, and WOBASZ II) confirmed that in the Polish population, DSs were a frequently observed condition. Furthermore DSs were significantly associated with selected CVDs (CAD, arrhythmia, stroke). The odds of CVDs raised with the severity of DSs, starting from borderline depression (BDI score, 10–14).

Up until now, we published only data from the WOBASZ and the NATPOL 2011, and the obtained results were inconsistent. Therefore, we pooled individual data from all population-based cross-sectional surveys made in the last 2 decades in Poland (WOBASZ, WOBASZ II, and NATPOL 2011) and analyzed again the association between DSs and CVDs.

The prevalence of mental diseases in the general population reaches up to 30% and even more
between depression and coronary heart disease was a dose-response relationship because the effect of clinical depression was much stronger than the effect of a depressive mood. In our study, we also observed a dose-response association between DSs and selected CVDs (CAD, arrhythmia, stroke) because the chance that a person with DSs also had a particular CVD raised with greater severity of DSs (higher BDI score).

Up to 40% of individuals who had a major cardiac event have had major depression. In the population-based cohort of the PURE (Prospective Urban Rural Epidemiology) study conducted in 21 countries (including Poland) on 5 continents, it was found that DSs in persons aged 35 to 70 years were associated with an increased risk of CVDs and mortality, especially in urban areas.

The recurrent CAD or mortality from CAD in persons after an originally nonfatal MI could possibly be due to being less motivated and less adherent to cardiac rehabilitation programs, lifestyle modifications, and less likely to reduce CVD risk factors. We also demonstrated in our previous study that DSs adversely affect lifestyle. Especially lack of physical activity, tobacco smoking, and regular among individuals with chronic disorders. In Poland, after a stable situation between 2003 and 2011, when DSs were present on average in 24.2% of men and 34.3% of women in 2003 to 2005, and 24.2% and 35.2%, respectively in 2011, we observed a decline in the prevalence of DSs to 17.3% of men and 23.4% of women in 2013 to 2015. In the European Healthcare Panel, a study performed in the years 2007 to 2008 in a population of 240,005 individuals aged 18 to 69 years from 5 countries (the United Kingdom, the Netherlands, Germany, France, and Italy), the rate of self-reported history of depression ranged from 31% in the Netherlands to 46% in France.

Depression is 2- to 3-fold less likely in people without a chronic disease compared to those with such diseases, like diabetes or CAD. It is considered to be a risk factor for CVDs, independent of classic risk factors. One study suggesting an independent role of psychosocial factors in cardiovascular risk origination is the meta-analysis by Rugulies, who concluded that depression predicted coronary heart disease in initially healthy persons (risk ratio, 1.64; 95% CI, 1.29–2.09; \(P < 0.001 \)) and that the relation between depression and coronary heart disease was a dose-response relationship because the effect of clinical depression was much stronger than the effect of a depressive mood. In our study, we also observed a dose-response association between DSs and selected CVDs (CAD, arrhythmia, stroke) because the chance that a person with DSs also had a particular CVD raised with greater severity of DSs (higher BDI score).

Up to 40% of individuals who had a major cardiac event have had major depression. In the population-based cohort of the PURE (Prospective Urban Rural Epidemiology) study conducted in 21 countries (including Poland) on 5 continents, it was found that DSs in persons aged 35 to 70 years were associated with an increased risk of CVDs and mortality, especially in urban areas. The recurrent CAD or mortality from CAD in persons after an originally nonfatal MI could possibly be due to being less motivated and less adherent to cardiac rehabilitation programs, lifestyle modifications, and less likely to reduce CVD risk factors. We also demonstrated in our previous study that DSs adversely affect lifestyle. Especially lack of physical activity, tobacco smoking, and regular

TABLE 1 Sociodemographic characteristics and health status of men who participated in the psychological part of national surveys

Characteristics	Combined (n = 9614)	WOBASZ (n = 6074)	NATPOL 2011 (n = 1011)	WOBASZ II (n = 2529)	\(P \) value (for difference between studies)
Age groups					
20–34 y	27.2 (26.3–28.1)\(^a\)	27.6 (26.5–28.8)	29.4 (26.6–32.1)	25.5 (23.7–27.2)	0.03
35–54 y	42.6 (41.6–43.6)\(^a\)	43.9 (42.6–45.1)	40.8 (37.7–43.8)	40.1 (38.2–42.1)	0.003
55–74 y	30.2 (29.3–31.1)\(^a\)	28.5 (27.3–29.6)	29.9 (27.3–32.7)	34.4 (32.6–36.2)	<0.001
Education					
Primary	17.2 (16.5–18.8)\(^a\)	21.3 (20.4–22.2)	10.5 (8.2–12.7)	10.3 (8.9–11.7)	<0.001
Secondary/vocational	67.7 (66.5–67.9)\(^a\)	66.7 (65.5–67.9)	69.4 (66.5–72.2)	69.6 (67.8–71.4)	<0.001
Higher/incomplete higher	15 (14.3–15.8)\(^a\)	12 (11.1–12.9)	20.2 (18.2–22.3)	20.1 (18.8–21.5)	<0.001
Marital status					
Single	21.9 (21.2–22.5)\(^b\)	20.7 (19.8–21.6)	22.5 (20.3–24.6)	24.4 (23–25.8)	<0.001
Married/cohabiting	72.3 (71.4–73.2)\(^b\)	74.1 (73.1–75.2)	70.7 (68.2–73.3)	68.5 (66.9–70.1)	<0.001
Divorced/separation	3.6 (3.2–4)\(^b\)	3 (2.5–3.4)	4.3 (3.5–5.5)	4.9 (4.2–5.6)	<0.001
Widowed	2.2 (1.8–2.7)\(^b\)	2.2 (1.9–2.6)	2.5 (1.6–3.4)	2.2 (1.6–2.7)	<0.001
Health status					
Coronary artery disease	10.1 (9.5–10.6)\(^b\)	11.2 (10.5–11.9)	7 (5.3–8.8)	8.7 (7.6–9.8)	<0.001
Hypertension	43.2 (42.3–44.1)\(^b\)	41.1 (39.9–42.2)	48.1 (45.3–51.9)	46.5 (44.7–48.3)	<0.001
Stroke	1.8 (1.6–2)\(^b\)	1.6 (1.2–1.9)	2.6 (1.8–3.4)	2 (1.5–2)	0.054
Arrhythmia	8.5 (7.9–9.1)\(^b\)	9.6 (8.9–10.3)	5.1 (3.4–6.8)	7.2 (6.2–8.3)	<0.001
Diabetes	8.5 (7.9–9)\(^b\)	7.6 (6.9–8.3)	8 (6.4–9.7)	10.7 (9.6–11.8)	<0.001
Depressive symptoms	22.3 (21.4–23.2)\(^b\)	24.2 (23.2–25.2)	24.2 (21.6–26.7)	17.3 (15.7–18.9)	<0.001
Borderline	13.6 (12.9–14.4)\(^b\)	14.8 (14–15.7)	12.8 (10.7–14.9)	11.3 (10–12.6)	<0.001
Mild	6 (5.4–6.5)\(^b\)	6.5 (5.9–7.1)	7.4 (6–8.9)	4.2 (3.3–5.2)	<0.001
Moderate/severe	2.7 (2.3–3)\(^b\)	2.9 (2.5–3.3)	3.9 (2.9–4.9)	1.8 (1.1–2.4)	<0.001

Data are presented as frequencies with 95% CIs.

a Adjusted for survey

b Adjusted for age and survey
c Adjusted for age
alcohol consumption (only in women) were associated with DSs regardless of differences in sociodemographic characteristics or the risk factor profile. Thus, patients with depression require particular care for both adequate treatment of their affective disorder and reduction of their cardiac risk. Therefore, screening towards DSs among those with chronic diseases, especially diseases leading to major disability like stroke, CAD, heart failure, or chronic obstructive pulmonary disease is of great importance.

In older depressed persons, such collaborative care with support towards a healthier lifestyle leads to a reduction of mortality by 25% and reduces metabolic risk. Furthermore, psychosocial risk factors are often cumulated in the same person, which additionally affects CVDs or other diseases. Indeed, cumulative exposure to low education, material deprivation, depression, and low perceived control was associated with an increased risk of CVDs in a 10-year observation of the population-based Polish cohort.

Among the mechanisms leading to an increase of cardiovascular risk, we can mention activation of the sympathetic nervous system and hypothalamic-pituitary-adrenal axis, endothelial dysfunction, platelet activation, and production of proinflammatory cytokines. People with depression experience mental stress, which among other factors may activate cardiac sympathetic nerves, resulting in an increased heart rate, ventricular arrhythmia, MI, and sudden death.

In our study, arrhythmia in medical history was significantly related to DSs with odds ratio (OR) from about 1.5 to even 2.5 depending on the severity of symptoms. There is no doubt that patients after stroke are at increased risk of depression. Stroke survivors have a greatly elevated risk for clinically significant DSs even 2 or more years after stroke, independent of functional disability, cerebrovascular risk factors, and previous DSs. Approximately one-third of them develop poststroke depression and its frequency is higher in the first year after stroke. A 2014 meta-analysis of 61 studies (n = 25,488) revealed depression in 33% of patients one year after stroke with a decline to 23% at 5 years. In our study, the prevalence of DSs in individuals reporting stroke in their medical history was 45.6% of men and 51.3% of women and we found significant association between DSs and stroke (eg, for borderline depression, OR of 1.5-2.5).

There is no doubt that the prevalence of DSs is higher in the first year after stroke. A 2014 meta-analysis of 61 studies (n = 25,488) revealed depression in 33% of patients one year after stroke with a decline to 23% at 5 years. In our study, the prevalence of DSs in individuals reporting stroke in their medical history was 45.6% of men and 51.3% of women and we found significant association between DSs and stroke (eg, for borderline depression, OR of 1.5-2.5).
Gender, age, education, and marital status have been shown to be associated with depression. Our results also confirm this relationship. Beyond biological losses, older persons experience changes in their social position, losses of family, friends, and cognitive capacity resulting in a higher prevalence of DSs in older individuals compared with younger ones.

A simple association between increasing DSs and age is not always apparent. Data from 18 high- and low-to-mid adult populations showed an association between increasing DSs and age (OR 2.36 and 2.01, respectively for men and women). Results of the case-control INTERSTROKE study (made between 2007 and 2010) showed that depression is associated with an increased risk of first stroke with OR of 1.35 (95% CI, 1.1–1.68). The effective treatment of depression would improve not only patient symptoms but may also decrease stroke risk, influence functional recovery, decrease mortality, and reduce poststroke healthcare utilization.

Table 3: Rates of depressive symptoms in relation to the sociodemographic status and gender

Socio-demographic status	Men (n = 2153)	Women (n = 3413)
Age groups		
20–34 y	11.4 (9.8–12.9)	19 (17.4–20.6)
35–54 y	21.9 (20.7–23.2)	30.2 (28.9–31.5)
55–74 y	33 (31.5–34.5)	44 (42.5–45.5)
P value	<0.001	<0.001
Education		
Primary	29.2 (27.2–31.3)	40.2 (38.2–42.3)
Secondary / vocational	21.9 (20.9–22.9)	30.6 (29.5–31.7)
Higher / incomplete higher	16.6 (14.5–18.8)	24.9 (23–26.8)
P value	<0.001	<0.001
Marital status		
Married / cohabiting	20.3 (19.3–21.3)	28.9 (28–30)
Single	28.1 (26.1–30.1)	34.3 (31.9–36.7)
Divorced / separation	29 (24.7–33.2)	38.2 (34.6–41.7)
Widowed	23.4 (17.8–28.9)	39.6 (35.8–41.3)
P value	<0.001	<0.001

Data are presented as frequencies with 95% CIs.

a Adjusted for survey

b Adjusted for age and survey

Table 4: Mean rates of depressive symptoms in subjects with and without selected diseases

Self-reported selected diseases	Presence of depressive symptoms					
	Men (n = 9614)	Women (n = 10 900)				
	Yes	No	P value	Yes	No	P value
Hypertension	24.7 (23.4–26.2)	20.7 (19.6–21.8)	<0.001	34.3 (32.7–35.9)	29.8 (28.7–30.9)	<0.001
n = 4137	n = 3705	n = 922		n = 785	n = 727	
Coronary artery disease	35.8 (33.1–38.5)	20.9 (20–21.7)	<0.001	46.7 (43.6–49.7)	29.8 (28.9–30.7)	<0.001
n = 965	n = 922	n = 1209		n = 107	n = 1209	
Arrhythmia	33 (30.1–35.8)	21.4 (20.5–22.2)	<0.001	45.3 (42.8–47.9)	29.5 (28.6–30.3)	<0.001
n = 814	n = 1209	n = 1209		n = 107	n = 1209	
Stroke	45.6 (39.4–51.7)	22 (21.2–22.8)	<0.001	51.3 (42.7–59.8)	31 (30.1–31.8)	<0.001
n = 171	n = 107	n = 107		n = 107	n = 107	
Diabetes	32.2 (29.3–35.1)	21.5 (20.7–22.4)	<0.001	42.5 (39.1–45.9)	30.4 (29.6–31.3)	<0.001
n = 783	n = 727	n = 727		n = 4530	n = 4530	
Concomitant diseases	25.7 (24.4–26.9)	19.2 (17.9–20.4)	<0.001	35.8 (34.4–37.3)	28.1 (26.9–29.3)	<0.001
n = 4785	n = 4530	n = 4530		n = 4530	n = 4530	

Data are presented as frequencies (95% CIs).

a Adjusted for age and survey

b Self-reported medical history of at least one of following diseases: arrhythmia, coronary artery disease, diabetes, hypertension, or stroke.
People who are separated, divorced, or widowed have higher rates of depression than those currently married.46,47 We obtained similar results because currently unmarried persons had about a 60% higher odds of DSs compared with married persons.

Education and income are considered to be factors affecting the prevalence and severity of middle-income countries in the World Mental Health Survey Initiative showed that in high-income countries, younger age was associated with higher 12-month prevalence of a major depressive episode; by contrast, in several low-to-middle-income countries, older age was associated with a greater risk of a major depressive episode.45

TABLE 5
Cardiovascular diseases in relation to severity of depressive symptoms

Variables	Coronary artery disease (n = 965)	Arrhythmia (n = 814)	Stroke (n = 171)
	OR (95% CI) P value	OR (95% CI) P value	OR (95% CI) P value
Depressive symptoms			
No depression	1	1	1
Borderline	1.66 (1.51–1.82) <0.001	1.48 (1.44–1.53) <0.001	2.36 (1.86–3) <0.001
Mild	2 (1.95–2.05) <0.001	1.95 (1.71–2.21) <0.001	2.77 (2.27–3.39) <0.001
Moderate/severe	2.22 (2.02–2.42) <0.001	2.24 (1.97–2.54) <0.001	3.78 (3.1–4.61) <0.001
Age, y	1.07 (1.06–1.09) <0.001	1.04 (1.03–1.05) <0.001	1.08 (1.06–1.1) <0.001
Education			
Higher/incomplete higher	1	1	1
Secondary/vocational	1 (0.91–1.11) 0.95	1 (0.94–1.07) 0.91	1.62 (1.44–1.83) <0.001
Primary	0.9 (0.8–1) 0.06	0.74 (0.61–0.89) 0.001	1.31 (1.08–1.59) 0.005
Marital status			
Married	1	1	1
Unmarried	0.85 (0.73–0.98) 0.03	0.93 (0.72–1.21) 0.6	1.04 (0.99–1.1) 0.11
Concomitant diseasesa	2.6 (2.43–2.79) <0.001	2.68 (2.43–2.96) <0.001	2.89 (2.23–3.75) <0.001
Survey			
WOBASZ 1	1	1	1
NATPOL 2011	0.45 (0.48–0.5) <0.001	0.44 (0.44–0.45) <0.001	1.65 (1.59–1.7) <0.001
WOBASZ II	0.57 (0.56–0.58) <0.001	0.71 (0.7–0.73) <0.001	1.38 (1.35–1.41) <0.001

a At least one of following diseases: for coronary artery disease—arrhythmia, diabetes, hypertension, or stroke; for arrhythmia—coronary artery disease, diabetes, hypertension, or stroke; for stroke—coronary artery disease, diabetes, hypertension, or arrhythmia

TABLE 6
Cardiovascular diseases in relation to severity of depressive symptoms

Variables	Women (n = 10 900)		
	Coronary artery disease (n = 922)	Arrhythmia (n = 1209)	Stroke (n = 107)
	OR (95% CI) P value	OR (95% CI) P value	OR (95% CI) P value
Depressive symptoms			
No depression	1		
Borderline	1.52 (1.49–1.55) <0.001	1.7 (1.44–2) <0.001	2.01 (1.84–2) <0.001
Mild	1.83 (1.53–2.19) <0.001	2.41 (2.11–2.75) <0.001	2.78 (2.52–3.08) <0.001
Moderate/severe	2.28 (1.99–2.61) <0.001	2.71 (2.04–3.58) <0.001	1.94 (1.01–3.72) 0.047
Age, y	1.07 (1.06–1.09) <0.001	1.04 (1.03–1.04) <0.001	1.07 (1.05–1.09) <0.001
Education			
Higher/incomplete higher	1		
Secondary/vocational	1.33 (1.12–1.57) 0.001	0.79 (0.72–0.86) <0.001	0.77 (0.41–1.44) 0.42
primary	1.36 (1.12–1.65) 0.002	0.58 (0.55–0.62) <0.001	1.01 (0.66–1.54) 0.96
Marital status			
Married	1		
Unmarried	0.84 (0.78–0.9) <0.001	0.84 (0.74–0.96) 0.008	0.77 (0.52–1.15) 0.2
Concomitant diseasesa	2.86 (2.54–3.22) <0.001	2.12 (1.62–2.77) <0.001	5.46 (2.6–11.5) <0.001
Survey			
WOBASZ 1	1		
NATPOL 2011	0.54 (0.52–0.56) <0.001	0.33 (0.32–0.33) <0.001	1.78 (1.69–1.87) <0.001
WOBASZ II	0.47 (0.46–0.48) <0.001	0.74 (0.73–0.75) <0.001	1.2 (1.15–1.24) <0.001

a At least one of following diseases: for coronary artery disease—arrhythmia, diabetes, hypertension, or stroke; for arrhythmia—coronary artery disease, diabetes, hypertension, or stroke; for stroke—coronary artery disease, diabetes, hypertension, or arrhythmia

Abbreviations: OR, odds ratio
Limitations

Because WOBASZ, NATPOL 2011, and WOBASZ II are epidemiological studies, clinical verification of a depression diagnosis was not possible. In addition, due to the fact that BDI includes questions on nonspecific symptoms seen not only in depression but also in somatic disorders, some authors have suggested that the diagnostic threshold for DSS should be higher than 10 points. However, a cutoff point of a BDI score of 10 proposed by Beck is widely used in most analyses. A major limitation in the interpretation of the results is the cross-sectional nature of the original studies which does not allow to analyze the cause and effect relationship between DSS and CVDs. Also because of the response rate slightly less than 50%, the WOBASZ II is not a representative survey, but it follows trends of lower response rates in European studies.

ARTICLE INFORMATION

ACKNOWLEDGMENTS

The authors express special thanks to the research team and to all collaborating persons and all participants of WOBASZ, NATPOL 2011, and WOBASZ II, without whom the development of this paper would not be possible. We are deeply grateful to Ms Dorota Szczesniakowsa for her help in the preparation of databases.

The WOBASZ study was supported by the Polish Ministry of Health—the PULSARD program 2003–2005 (no. 4/9/101/01/04; to SRI). The WOBASZ II was financed from the resources of the Polish Ministry of Health within the framework of the health program entitled National Program for the Equalization of Accessibility to Cardiovascular Disease Prevention and Treatment for 2010–2012 PULSARD—task: Analysts and epidemiology—“Monitoring of the epidemiological situation in Poland in the field of cardiovascular diseases” (no. 5/8/2012/101/945; to GB). The NATPOL 2011 was partially funded by the Polish Ministry of Health as a publicly-funded project representing part of the National CVD Prevention and Treatment Program and by statutory grants from the Medical University of Gdansk (no. ST-17; DZ-STAT02-0128/07/137 GUMED; to BW) and the Medical University in Warsaw (no. IWSW/19/16; to ZID). It was also partly funded by the following industry sponsors: main sponsor: Sanofi-Aventis, unrestricted educational grant; Abbott Laboratories Poland Ltd, unrestricted educational grant; Siemens Ltd, project partner, unrestricted educational grant; Polpharma, project partner, unrestricted educational grant (to the part of the project dedicated to heart failure). Funding agencies had no involvement in the design or conduct of the study, the collection, management, analysis, and interpretation of the data, or in the drafting of the manuscript.

CONTRIBUTION STATEMENT

JP and AMP created the idea of the study, equally contributed to the interpretation of data, co-drafted the manuscript, and intellectually contributed to its final version. TZ, AP, and WD critically revised the manuscript, AC-M and JS analyzed the data. All authors edited and intellectually contributed to its final version. All authors approved the final version of the paper.

CONFLICT OF INTEREST

None declared.

OPEN ACCESS

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0), allowing third parties to copy and re-distribute the material in any medium or format and to remix, transform, and build-upon the material, provided the original work is properly cited, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at pamw@mp.pl.

REFERENCES

1. World Health Organization. Noncommunicable diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases. Accessed June 1, 2018.
2. Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: The Global Burden of Disease 2010 study. Circulation. 2014;129: 1453-1462.
3. Ciernia-Piotrowska M, Dobryska A, Francka A et al. Deaths by age, sex of deceased and causes in 2017. In: Demographic Yearbook of Poland 2019. Warsaw: Statistics Poland, 2019: 322-324. https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/demographic-yearbook-of-poland/2019/5,13.html. Accessed October 16, 2019.
4. Rocca M, Gil M, Garcia-Garcia M, et al. Prevalence and comorbidity of common mental disorders in primary care. J Affect Disord. 2009; 119: 52-58.
5. Prince M, Patel V, Saxena S, et al. No health without mental health. Lancet. 2007; 367: 859-877.
6. World Health Organization. Depression and other common mental disorders: global health estimates. https://apps.who.int/iris/bitstream/handle/10665/254610/WHO‑MSD‑MER‑2017.2‑eng.pdf. Accessed June 21, 2021.
7. World Health Organization, Regional Office for Europe. Depression in Europe: facts and figures. https://www.euro.who.int/en/health-topics/non-communicable-diseases/mental-health/news/news/2012/10/depression-in-europe/depression-in-europe-facts-and-figures. Accessed June 22, 2021.
8. Santos JV, Souza J, Vale J, et al. The state of health in the European Union (EU-28) in 2017: an analysis of the burden of diseases and injuries. Eur J Public Health. 2020; 30: 573-578.
9. Rozanski A, Blumenthal JA, Davidson KW, et al. The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiovascular practice: the emerging field of behavioral cardiology. J Am Coll Cardiol. 2005; 45: 637-651.
10. Gan Y, Gong Y, Tong X, et al. Depression and the risk of coronary heart disease: a meta-analysis of prospective cohort studies. BMC Psychiatry. 2014; 14: 371.
11. Piworski J, Piworska A, Sygnowka E. Depressive symptoms adversely affect the life style? Results of the WOBASZ study. Kardiol Pol. 2010; 68: 919-918.
12. Kozda M, Babak M, Biesala A, et al. The association of depressive symptoms with cardiovascular and all-cause mortality in Central and Eastern Europe: prospective results of the HAPIEE study. Eur J Prev Cardiol. 2016; 23: 1839-1847.
13. Poppoli F, Hoos AW, Ageval S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016; 37: 2315-2381.
14. Rywik S, Kupcic W, Piotrowski W, et al. Polish multi-center national health survey – the WOBASZ project. Methodological assumption and logistics [in Polish]. Pol Popul Rev. 2005; 27: 37-50.
15. Drygas W, Nikitas AA, Piworska A, et al. Multi-center national health examination survey (WOBASZ II study): assumption, methods and implementation. Kardiol Pol. 2016; 74: 681-692.
16. Zdrojewski T, Rutkowski M, Bandosz P, et al. Prevalence and control of cardiovascular risk factors in Poland. Assumptions and objectives of the NATPOL 2011 survey. Kardiol Pol. 2013; 71: 381-392.
17. Kozda M, Babak M, Biesala A, et al. The association of depressive symptoms with cardiovascular and all-cause mortality. J Affect Disord. 2009; 119: 52-58.
18. Rudisch B, Nemeroff CB. Epidemiology of comorbid coronary artery disease and depression. J Affect Disord. 2017; 221: 36-46.
19. Anderson RJ, Freeland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care. 2001; 24: 1069-1078.
20. Rudisich B, Nemereff CB. Epidemiology of comorbid coronary artery disease and depression. Biol Psychiatry. 2003; 54: 227-240.
Association between cardiovascular diseases and depressive symptoms

25. Rugulies R. Depression as a predictor for coronary heart disease: a review and meta-analysis. Am J Prev Med. 2002; 23: 51-61.

26. Celano CM, Huffman JC. Depression and cardiac disease: a review. Cardiol Rev. 2011; 19: 130-142.

27. Rajan S, McKeon M, Ranganjan S, et al. Association of symptoms of depression with cardiovascular disease and mortality in low-, middle-, and high-income countries. JAMA Psychiatry. 2020; 77: 1052-1063.

28. Lange-Asschenfeldt C, Lederbogen F. Antidepressant therapy in coronary artery disease [in German]. Nervenarzt. 2011; 82: 657-664.

29. Gallo JJ, Morales KH, Bogner HR, et al. Long term effect of depression care management on mortality in older adults: follow-up of cluster randomized clinical trial in primary care. BMJ. 2013; 346: f2570.

30. Katon WJ, Lin EHBB, Von Kroff M, et al. Collaborative care for patients with depression and chronic illnesses. N Engl J Med. 2010; 363: 2611-2620.

31. Rosengren A, Hawken S, Ounpuu S, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 364: 953-962.

32. Kozela M, Doryńska A, Bobak M, Pąjk A. Accumulation of psychosocial risk factors and incidence of cardiovascular disease: a prospective observation of the Polish HAPIEE cohort. Kardiol Pol. 2019; 77: 535-540.

33. Rubanyi GM. The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol. 1993; 22: S1-S4.

34. Spiker LE, Hurlimann D, Ruschitscha F, et al. Mental stress induces prolonged endothelial dysfunction via endothelin A receptors. Circulation. 2002; 106: 2611-2620.

35. Brydon L, Edwards S, Jia H, et al. Psychological stress activates interleukin-1β gene expression in human mononuclear cells. Brain Behav Immun. 2005; 19: 540-546.

36. Meredith IF, Broughton A, Jenning GL, et al. Evidence of a selected increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med. 1991; 325: 618-624.

37. Wittstein IS, Thiemann DR, Lima JA, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005; 352: 539-548.

38. Virani SS, Alonso A, Benjamin EJ, et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2020 update: a report from the American Heart Association. Circulation. 2020; 141: e139-e171.

39. Whyte EM, Mulsant BH, Vanderbildt J, et al. Depression after stroke: a prospective epidemiological study. J Am Geriatr Soc. 2004; 52: 774-778.

40. Towfighi A, Ovbiagele B, El Hussein N, et al; American Heart Association Stroke Council; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research. Poststroke depression: a scientific statement for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke. 2017; 48: e30-e43.

41. Hackett ML, Pickles K. Part I: frequency of depression after stroke: an updated systematic review and meta-analysis of observational studies. Int J Stroke. 2014; 9: 1017-1025.

42. O’Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010; 376: 112-123.

43. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics – 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007; 115: e69-e171.

44. World Health Organization. World report on ageing and health. Geneva: World Health Organization; 2015. https://apps.who.int/iris/handle/10665/186463. Accessed June 21, 2021.

45. Brotman E, Andrade LH, Hwang I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011; 9: 98.

46. Weissman MM, Bland RC, Canino GJ, et al. Cross-national epidemiology of major depression and bi-polar disorder. JAMA. 1996; 276: 293-299.

47. Andrade L, Caraveo-Anduaga JJ, Berglund P, et al. The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res. 2002; 12: 3-21.

48. Schlax J, Junger C, Beutel ME, et al. Income and education predict elevated depressive symptoms in the general population: results from the Gutenberg health study. BMC Public Health. 2019; 19: 430-440.

49. Lorant V, Deleforge D, Eaton W, et al. Socioeconomic inequalities in depression: a meta-analysis. Am J Epidemiol. 2003;157: 98-112.