Using WordNet to Build Lexical Sets for Italian Verbs

Anna Feltracco1,2, Lorenzo Gatti1,3, Simone Magnolini1,4, Bernardo Magnini1, Elisabetta Jezek2

1\textit{Fondazione Bruno Kessler}, 2\textit{University of Pavia}, 3\textit{University of Trento}, 4\textit{University of Brescia}

feltracco@fbk.eu, l.gatti@fbk.eu, magnolini@fbk.eu, magnini@fbk.eu, jezek@unipv.it

27-30 January 2016, Bucharest
OUTLINE

• What is a lexical set?
• Building lexical sets: goal and motivation
• Methodology: Sentence annotation and lexical sets extraction
 • The Baseline algorithm
 • The LEA algorithm
• Results
• Final considerations and further work
WHAT IS A LEXICAL SET?

Lexical sets are paradigmatic sets of words which occupy the same argument position for a verb, as found in a corpus. (cf. Hanks, 1996 and Jezek and Hanks, 2015)[1]

to read

- Subject *reads* Object

 -> Object *{book, letter, newspaper, report, paper, word, article, story, papers, time, text, mind, page, novel, magazine, poem, passage, ..}*[2]
Lexical sets change from verb to verb

• to read – OBJ: \{book, letter, newspaper, report, paper, word, article, story, papers, time, text, mind, page, novel, magazine, poem, passage, bible, ..\}

• to publish – OBJ: \{report, book, article, paper, result, work, letter, study, document,..\}

• to write – OBJ: \{letter, book, article, poem, report, song, name, program, story, word, ..\}

• to send – OBJ: \{letter, message, copy, child, man, troops, money, ..report, ..food,..\}

• to devour – OBJ: \{book, meal, animal, plant, child, Mariana, buffalo, carcass, ..food, ..\}

• to eat – OBJ: \{food, meal meat, fish, breakfast, sandwich, lunch, dinner, bread, diet, ..\}

Lemmas are extracted from the BNC Corpus, using SketchEngine (Kilgarriff, A. et al.,2004, "Itri-04-08 the sketch engine." Information Technology 105: 116.)
Different senses of a verb have different lexical sets

Subject of ‘to rise’ for different senses of the verb:

• to rise up, to rear: \{building, home, church,..\}

• to come up, to uprise: \{sun, moon\}

• to go up, to increase (in value): \{turnover, price, share, rate, unemployment, profit, income, figure, temperature, cost, level, ..\}

• to come up, to move up: \{smoke, ..\}
MOTIVATION

- Verbs’ selectional preferences
- Word Sense Disambiguation

if lexical sets are associated to verb senses -> verb meaning can be induced

Lexical sets for WSD

To rise

- The **sun** *rose* in the east. → {rise#16, come up#10, uprise#5, ascend#7} [{sun, moon, star}-subj]

- A **church** *rose* upon that hill. → {rise#4, lift#12, rear#3} [{building, home, church,..}-subj]
MOTIVATION

- Verbs’ selectional preferences
- Word Sense Disambiguation
 if lexical sets are associated to verb senses -> verb meaning can be induced
- Semantic Role Labeling -> to automatically annotate roles

Lexical sets for SRL

To rise
- The land was silent when the sun rose in the east.

Rise.01 :
 \textbf{Arg1}: \textit{Logical subject, patient, thing rising}

 \textit{Candidate}: “land” and “sun”
 [{building, home, church, sun, moon, star}-subj]
 no “land” -> Arg1: sun
OUR EXPERIMENT

GOAL: Building lexical sets for argument positions of Italian verbs at sense level

WE NEED:

• a repository of verbs with the specification of their argument structure for each sense

• a repository of sentences associated to each verb sense from which the members of the lexical sets can be extracted
METHODOLOGY

- We use the **T-PAS resource**[^1], a repository of **verb frames** for Italian in which:
 - the expected **semantic type** for each argument slot is specified (e.g. Human, Food, Event, Location, Artifact, ...)
 - each frame is related to **sentences in a corpus** in which the verb is annotated

- In these sentences, we **automatically annotate** the sets of fillers for the argument slots of the selected verb -> the **Baseline Algorithm** and the **Lea Algorithm**

- Both algorithms use a **mapping** from Semantic types to **MultiWordNet synsets**[^2]

[^1]: Jezek E. et al., 2014, "T-PAS: a resource of corpus-derived Typed Predicate Argument Structures for linguistic analysis and semantic processing" In **Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC’14)**, Reykjavik, Iceland.

[^2]: Pianta E. et al., 2002. "MultiWordNet: developing an aligned multilingual database". In **Proceedings of the 1st international conference on global WordNet**, volume 152, pages 55–63.
T-PAS: Typed Predicate Argument Structures

T-PAS is a repository of corpus-derived verb patterns for Italian with specification of the expected semantic type for each argument slot. T-PASs are acquired following Corpus Pattern Analysis methodology (Hanks, 2004).

Visit tpas.fbk.eu and download T-PAS

Hanks P., 2004. “Corpus pattern analysis”. In Proceedings of the Eleventh EURALEX International Congress, Lorient, France, Universite de Bretagne-Sud;
SENTENCE ANNOTATION
AND LEXICAL SET BUILDING

Input data from T-PAS

repository of T-PASs

T-PAS#2 of *preparare*

[[Human]] *prepara* [[Food | Drug]]
Eng.: [[Human]] *prepare* [[Food | Drug]]

Sentences

"La nonna, prima di infornare le patate, *prepara* una torta"
Eng. "The grandmother, before baking the potatoes, *prepares* a cake"

Sentence annotation = annotate lexical items corresponding to Semantic type

[[Human]] – subj = ? [[Food]] – obj = ? [[Drug]] – obj = ?
THE BASELINE ALGORITHM

to identify possible candidate members:

[[Human]] – subj = ? [[Food]] – obj = ? [[Drug]] – obj = ?

1) uses TextPro 2.0[1] for \textit{PoS-tagging} and \textit{lemmatization}
2) checks if each lemma is in \textit{MWN}
3) uses the \textit{Semantic type – synsets mapping}

\begin{center}
\textbf{Automatic Semantic Type-Synsets mapping}

([Human]) -> human#n
([Food]) -> food#n
([Drug]) -> drug#n
\end{center}

checking if the lemma belongs to a corresponding mapped synset or if it is an hyponym of one such synsets

[1] Pianta E. et al., 2008. The TextPro Tool Suite. In Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC’08), Marrakech, Morocco.
"La nonna, prima di infornare le patate, prepara una torta"
Eng. "the grandmother, before baking the potatoes, prepares a cake"
to identify possible candidate members:

\[
[[\text{Human}]] - \text{subj} = ? \quad [[\text{Food}]] - \text{obj} = ? \quad [[\text{Drug}]] - \text{obj} = ?
\]

Baseline +

• uses dependency tree of the sentence
• recognizes named entities with TextPro 2.0
• checks for multiword expressions in MWN

-> we expect a higher Precision
"La nonna, prima di infornare le patate, prepara una torta"
Eng. "the grandmother, before baking the potatoes, prepares a cake"
LEA: NER and MWE

T-PAS#2 of preparare
[[Human]] prepara [[Food | Drug]]
Eng.: [[Human]] prepare [[Food | Drug]]

[[Human]] – subj = ? [[Food]] – obj = ? [[Drug]] – obj = ?

human#n

...

NER: Person

Noun - Subj

"Maria Rossi prepara la conserva di frutta"
Eng.: "Maria Rossi prepares the fruit conserve"

food#n

...

MWE - Obj

Noun - Obj
GOLD STANDARD

• **3 annotators** manually marked the lexical items or the multiword expressions that correspond to the STs (no pronouns, no relative clauses)

• **500 examples**
 (10 sentences x a selection of 10 different STs x 5 different T-PASs;
 e.g. 10 sentences x [[Food]] x 5 T-PASs)

• **981 annotated tokens** out of 15090
RESULTS: SENTENCE ANNOTATION

Results for sentence annotation for Baseline and LEA

	Automatic mapping			
	Precision	Recall	F1	
Baseline	0.28	0.42	0.34	
LEA	0.70	0.25	0.37	

Evaluation.
Inaccuracies are due to:
• recognition of proper names (Baseline 10/185, Lea 26/185)
• PoS tagging step
• dependency parsing step
• automatic mapping of STs - synsets
• different structure of the two resources (e.g. in T-PAS [[Machine]] is a hypernym of [[Vehicle]], the same is not true for machine#n in MWN)

Results after manual revision of the Semantic Type - synsets mapping

	Mapping with manual revision of 11 ST			
	Baseline	0.30	0.52	0.38
	LEA	0.72	0.32	0.44
RESULTS: LEXICAL SET

Similarity between Gold Standard lexical set and lexical set annotated with Baseline and LEA (Dice’s coefficient)

5 most populated lexical sets	Baseline	LEA
Cuocere#2-SBJ-[[Food]] \{pasta, pesce, sugo, carciofo,..\}	0.54	0.57
Crollare#1-SBJ-[[Building]]	0.71	0.60
Dirottare#1-OBJ-[[Vehicle]]	0.83	0.66
Prescrivere#2-OBJ-[[Drug]]	0.42	0.46
Togliere#4-OBJ-[[Garment]]	0.72	0.61

Baseline -> low precision causes major differences with the gold standard sets

LEA -> low recall penalizes the amount of detected items given few sentences to annotate
CONSIDERATIONS AND FURTHER WORK

Final considerations:
• on large scale acquisition, the higher precision for LEA is more promising than the Baseline
• first step on automatic acquisition of lexical sets

Further work:
• extension of the sentence annotation and lexical set population for all T-PAS
• comparison of lexical set in different T-PASs with the same Semantic type
Thank you for your attention