Test-retest variability of adenosine A_{2A} binding in the human brain with 11C-TMSX and PET

Mika Naganawa1,2,*, Masahiro Mishina2,3, Muneyuki Sakata2, Keiichi Oda4, Mikio Hiura5, Kenji Ishii2 and Kiichi Ishiwata2

Abstract

Background: The goal of the present study was to evaluate the reproducibility of cerebral adenosine A_{2A} receptor (A_{2A}R) quantification using 11C-TMSX and PET in a test-retest study.

Methods: Five healthy volunteers were studied twice. The test-retest variability was assessed for distribution volume (V_T) and binding potential relative to non-displaceable uptake (BP_{ND}) based on either metabolite-corrected arterial blood sampling or a reference region. The cerebral cortex and centrum semiovale were used as candidate reference regions.

Results: Test-retest variability of V_T was good in all regions (6% to 13%). In the putamen, BP_{ND} using the centrum semiovale displayed a lower test-retest variability (3%) than that of BP_{ND} using the cerebral cortex as a reference region (5%). The noninvasive method showed a higher or similar level of test-retest reproducibility compared to the invasive method.

Conclusions: Binding reproducibility is sufficient to use 11C-TMSX as a tool to measure the change in A_{2A}R in the human brain.

Keywords: Adenosine A_{2A} receptor; Positron emission tomography; 11C-TMSX; Reproducibility

Background

The regional cerebral binding of adenosine A_{2A} receptor (A_{2A}R) antagonists, [7-methyl-11C]-([E]-8-(3,4,5-trimethoxyxtystyryl)-1,3,7-trimethylxanthine (11C-TMSX) [1] and 11C-KW-6002 [2,3], were quantitatively investigated in vivo in healthy human. 11C-TMSX has been evaluated in human brain studies in not only healthy human controls [4-7] but also in drug-naive Parkinson’s disease patients before and after therapy [8]. An aging effect on A_{2A}R was also evaluated using 11C-TMSX PET [9]. Several outcome measures, such as distribution volume (V_T), distribution volume ratio (DVR), and binding potential (BP_{ND}), can be used to detect changes of A_{2A}R binding due to disease progression or therapeutic treatment. The reproducibility of these measures is important to conduct studies to detect change in A_{2A}R. Given that A_{2A}R distribution is heterogeneous, with only a very small amount of extrastriatal-specific binding, either the frontal cortex in the rat [3], the cerebellum in the monkey [10,11], or centrum semiovale [7] or cerebral cortex [8,9] in human, was used as a reference region to estimate non-displaceable binding of 11C-TMSX. Since only a few postmortem human brain studies and blocking studies are available, it is not clear which region is a suitable reference region.

The aim of this paper was to assess the test-retest reproducibility of PET outcome measures, V_T and BP_{ND}, with the centrum semiovale and cerebral cortex as candidate reference regions.

Methods

Human subjects

All studies were performed under a protocol approved by the Ethics Committee of the Tokyo Metropolitan Institute of Gerontology. Five healthy, male subjects participated in this study (mean age ± SD, 22.4 ± 2.6 years old, range: 21 to 27 years old). Subjects were all right-handed.
and screened for history of neurological, psychiatric, and physical diseases. All subjects did not have a history of alcoholism and not on any medications to affect brain function. Caffeine intake was not allowed for at least 12 h prior to PET scanning. Written informed consent was obtained from all subjects after receiving an explanation of the study. Magnetic resonance (MR) images were acquired on all subjects to eliminate those with any brain abnormalities and to place regions of interest (ROIs) on PET images. The MR imaging was conducted with three-dimensional spoiled gradient-recalled echo (SPGR) imaging on a SIGNA 1.5 Tesla machine (General Electric, Waukesha, WI, USA) [6].

Radiochemistry
Radiosynthesis of 11C-TMSX followed the literature procedure [12]. All procedures were conducted under dim light to prevent photoisomerization of 11C-TMSX. The radiochemical purity of 11C-TMSX was >99%.

PET acquisition
Each subject underwent two 11C-TMSX brain PET scans on two different days, and time of scanning was identical for test and retest scans of each individual subject, in order to remove the influence of circadian rhythm. The inter-scan interval was 28 to 35 days. Dynamic PET images were acquired in the Positron Medical Center, Tokyo Metropolitan Institute of Gerontology with the SET-2400 W PET scanner (Shimadzu, Kyoto, Japan), which acquires 63 slices (3.125-mm slice separation) with a spatial resolution of 4.4 mm full width at half maximum (FWHM) and a z-axis resolution of 6.5 mm FWHM [13]. Prior to the scan, a 5-min 68Ga/68Ge transmission scan was conducted for attenuation correction. 11C-TMSX was injected intravenously over 60 s. Emission data were collected in two-dimensional mode for 1 h in 27 frames of increasing duration (6 × 10 s; 3 × 30 s; 5 × 1 min; 5 × 2.5 min; 8 × 5 min). Head movement was minimized with an air cushion. The dynamic images were reconstructed by the filtered back-projection method using a Butterworth filter (second-order low-pass filter, cutoff frequency was 1.25 cycles/cm) with corrections for scatter and randoms.

Input function measurement
In advance of each scan, an arterial catheter was inserted into the radial artery for blood sampling. After radiotracer injection, arterial blood samples were manually collected every 10 s for the first 2 min and thereafter at longer intervals, 2.25, 2.5, 3, 5, 7, 10, 15, 20, 30, 40, 50, and 60 min post-injection. A total of 24 samples were obtained per scan. Whole blood and plasma were counted in a cross-calibrated well-type gamma-counter (BSS-1, Shimadzu, Kyoto, Japan). An additional venous blood sample was taken before 11C-TMSX administration, which was used for the in vitro assessment of the fraction of 11C-TMSX in plasma bound to plasma proteins (f_b). Arterial blood sampling was not available in one subject. Thus, a total of five subjects were included in reference region analyses and four subjects were also analyzed using plasma data.

Plasma metabolite and protein binding analysis
The fraction of intact radioligand to total plasma activity was determined from blood samples collected at 3, 10, 20, 30, 40, and 60 min after injection by high-performance liquid chromatography (HPLC). The blood was centrifuged at $\times 7,000$ g for 1 min at 4°C to obtain the plasma, which was denatured with an equivalent volume of acetonitrile in an ice-water bath. The suspension was centrifuged under the same conditions and divided into soluble and precipitable fractions. The precipitate was resuspended in 2 vol. of 50% aqueous acetonitrile followed by centrifugation. The recovery yield of the radioactivity in the two soluble fractions was 98.7%. Two soluble fractions were combined, and into this solution, an equivalent volume of a solution of 50-mM aqueous acetic acid and 50-mM aqueous sodium acetate (pH 4.5; 50/50, v/v) was added. After centrifugation of the samples as described above, the supernatant was loaded onto a Nova-Pak C8 column equipped in an RCM 8 × 10 module (8 mm diameter × 100 mm length; Millipore-Waters, Milford, MA, USA). The mobile phase was a mixture of acetonitrile, 50-mM aqueous acetic acid and 50-mM aqueous sodium acetate (pH 4.5; 4/3/3, v/v/v) at a flow rate of 2 mL/min. The elution profile was detected with a radioactivity monitor (FLO-ONE 150TR; Packard Instrument, Meriden, CT, USA). The retention time of 11C-TMSX was 6.2 min. The recovery in the eluate of the injected radioactivity was essentially quantitative. The six measured parent fractions were fitted by a sum of exponential functions. The metabolite-corrected plasma curve was generated as the product of the total plasma activity and the fitted parent fraction curve.

Individual f_b values were determined by ultrafiltration. Prior to administration of 11C-TMSX, approximately 6 mL of blood was taken from each subject. A reference blood sample was created by adding 22.9 ± 15.7 MBq (at the time of administration, range: 10.1 to 49.5 MBq of 11C-TMSX in approximately 60 μL to this blood sample and incubated for 10 min at 37°C). Following centrifugation (2,000 g at room temperature for 3 min), triplicates of 400 μL aliquots of plasma sample were pipetted into ultrafiltration tubes (Microcon-30, 30 kDa, Merck Millipore, Billerica, MA, USA), and centrifuged at room temperature (14 min at 14,000 g). The free fraction f_b was calculated as the ratio of activity in the ultrafiltrate to the total plasma. The amount of nonspecific binding of 11C-TMSX to the
filter was also determined by applying the same procedure to a sample created by addition of 11C-TMSX to saline.

Image analysis

Regions of interest were defined by manually drawing circles using the registered MR images as additional reference. The details are written in [6,14]. Time-activity curves (TACs) were generated for eight ROIs: anterior putamen, posterior putamen, putamen, caudate head, thalamus, cerebellum, centrum semiovale, and cerebral cortex. The putamen ROI consists of the anterior and posterior putamen subregions. The cerebral cortex ROI included the frontal, temporal, and occipital cortices.

In the present study, the cerebral cortex and centrum semiovale were chosen as candidate reference regions. For 11C-TMSX kinetic analysis, the cerebellum was not used as a reference region, because $A_{2\alpha}R$ binding in our previous human study [7] was higher in the cerebellum than in neocortical regions. In a previous human autoradiographic study [15], the density of $A_{2\alpha}Rs$ in the frontal cortex was found to be low, as that in the temporal and occipital cortices.

Outcome measures

The DVR has been used in our previous study on an aging effect of $A_{2\alpha}R$ in human brain [8,9]. In this study, the two additional outcome measures, V_T and BP_{ND}, were estimated. The definition of the outcome measures is described in [16]. Regional TACs were analyzed using the Logan graphical analysis (LGA) with input function and reference tissue (two-parameter version) [17,18] to estimate the outcome parameters of V_T and BP_{ND}. Starting time (t^*) was set to 10 min post-injection [7].

Statistical analyses

The test-retest reproducibility was statistically evaluated according to the following three criteria: signed test-retest variability (TRV), absolute test-retest variability (aTRV), and intra-class correlation coefficient (ICC). TRV was calculated as the difference between the test and retest measurements, divided by the mean of the test and retest values ($2 \times (p_{\text{test}} - p_{\text{retest}})/(p_{\text{test}} + p_{\text{retest}})$). aTRV was calculated as the absolute value of TRV ($2 \times | p_{\text{test}} - p_{\text{retest}}/(p_{\text{test}} + p_{\text{retest}})$). TRV indicates whether there is a systematic trend between the test and retest scans. The test-retest reliability of the two parameter measurements was the ICC calculated using the following equation [19]:

$$\text{ICC} = \frac{\text{BSMSS} - \text{WSMSS}}{\text{BSMSS} + \text{WSMSS}}$$

where BSMSS and WSMSS are the mean sum of squares between subjects and within subjects, respectively. In the test-retest study, an ICC value ranges from -1 (no reliability) to 1 (maximum reliability) [20,21]. Sample sizes were calculated to detect a 20-percent difference in BP_{ND} between independent groups (two-tails t-test) using the software G’power 3.1 [22]. The confidence level was set to be 5% ($P < 0.05$) and statistical power to 0.8. The mean of the test scans was used as the mean of baseline scans, and the SDs of the baseline and blocking scans were assumed to be same as the SDs of the test scans. All statistical parameters except for power analysis were calculated with MATLAB Version 7.12.0.635 (the MathWorks Inc., Natick, MA, USA) and Microsoft Excel 2010 (Microsoft, Redmond, WA, USA).

Results

Injection parameters

Mean injected radioactivity and mean specific activity at the time of injection were 687 ± 73 MBq (range: 615 to 767 MBq) and 195 ± 80 GBq μmol$^{-1}$ (range: 131 to 305 GBq μmol$^{-1}$), respectively, for test scans $(n = 5)$ and 731 ± 53 MBq (range: 690 to 822 MBq, $n = 5$) and 143 ± 60 GBq μmol$^{-1}$ (range: 87 to 213 GBq μmol$^{-1}$), respectively, for retest scans $(n = 5)$. The injected dose and specific activity did not significantly differ between the test and retest scans (paired t-test, $P = 0.21$ for injected dose and $P = 0.24$ for specific activity).

Arterial input function

Figure 1A shows the averaged radioactivity in plasma with metabolite correction for test and retest scans $(n = 4)$. The metabolism speed of 11C-TMSX was slow in both scans (Figure 1B): the unchanged fraction was still 85% ± 5% in test scan and 82% ± 6% in retest scan at 60 min post-injection. The free fraction of 11C-TMSX in plasma was 2.40% ± 0.96% for test scans and 2.40% ± 0.47% for retest scans. There are no significant differences in f_{ir} between test and retest scans (paired t-test, $P = 0.72$). The ultrafiltrate-to-saline ratio was 46% ± 3% in test scans and 46% ± 3% in retest scan, indicating a high retention on the filter.

Quantitative analysis

Brain activity in all regions reached the peak around 5 min post-injection of 11C-TMSX, and then gradually decreased. The average tissue-to-plasma ratio was shown in Figure 2. Typical parametric images of BP_{ND} were displayed in Figure 3 using a centrum semiovale as a reference region. The ratios in most regions became constant around 20 min post-injection of 11C-TMSX. The ratios in the putamen were decreased slightly throughout the scan. The values for V_T and BP_{ND} were summarized in Tables 1, 2, and 3. For each outcome parameter, the mean of the test and retest scans, the TRV (mean ± standard deviation), the aTRV, and the ICC were listed.
For V_T values, the mean TRV was smaller than 5%, and always smaller than its standard deviation, indicating that there is no systematic trend between test and retest scans. The absolute TRV was $\leq 10\%$ except for the thalamus. The ICC values were moderate (>0.65) except for the thalamus (0.27). We also calculated the normalized V_T (V_T/f_P). Global mean aTRV values were 8% and 15% for V_T and V_T/f_P, respectively, indicating that normalizing by the plasma free fraction f_P increased the variability of the outcome measure for 11C-TMSX. For BP_{ND} values, the mean TRV was between ±10% using either cerebral cortex or centrum semiovale as a reference region, and always smaller than its standard deviation, further indicating that there was no systematic trend between test and retest scans. Since BP_{ND} of the cerebellum from one subject was close to 0 in the test and retest scans with reference LGA with the cerebral cortex as a reference region, TRVs of the subject were different from the other subjects. Those values were removed from Table 2.

The mean BP_{ND} values were larger, and the TRV and aTRV were smaller when using the centrum semiovale as reference instead of the cerebral cortex. Global mean aTRV values were 8% and 15% for BP_{ND} using the centrum semiovale and cerebral cortex, respectively, as a reference region. Both TRVs using LGA with input function were comparable to those values using reference LGA. The BP_{ND} estimates using LGA with input function were in excellent agreement with those from reference LGA ($BP_{ND, \text{reference LGA}} = 1.00 BP_{ND, LGA} + 0.01$, $R^2 = 1.00$ with the cerebral cortex as a reference region, $BP_{ND, \text{reference LGA}} = 1.05 BP_{ND, LGA} + 0.01$, $R^2 = 0.98$ with the centrum semiovale).

Power analysis (two-tails t-test, statistical power 0.8) was conducted to estimate the samples sizes to detect a 20-percent difference in BP_{ND}. Using the cerebral cortex as a reference region, sample sizes ranged from 4 (thalamus) to 21 (caudate head) per group. Using the centrum semiovale as a reference region reduced the required sample sizes: 3 (putamen and thalamus) to 9 (caudate head).

Discussion

The plasma free fraction (f_P) was measured in this study, allowing for correction of V_T values. This correction by f_P is useful if f_P can be measured reliably and if there is...
substantial intra-subject variation. In our measurements, the f_p was consistently low (<3%), with evidence that 11C-TMSX stuck to the ultrafiltration tubes, which may lead to underestimation of f_p. However, the f_p value measured in [23] was 9.1% ± 0.4% (n = 6, human) by the ultrafiltration method. Such a discrepancy might be attributable to high stick factor in our data. Note that the stick factor was not reported in [23]. Another possibility is the difference in the preparation of the injection solution. Finally, the signed and absolute TRVs were larger for V_T/f_p compared to those of V_T. Hence, the normalization of V_T by f_p did not reduce variability in this case.

Inter-subject variability (% coefficient of variation (COV)) of V_T at retest scans were lower (approximately 7%) than that of the test scans (approximately 16%), while no significant difference was observed in the injected dose, specific activity, and f_p of 11C-TMSX. Another possibility to explain the difference in the inter-subject variability is a difference in the metabolism of the tracer. The subjects were controlled for caffeine intake, but not for smoking habituations. Nicotine consumption might change the metabolism of 11C-TMSX as seen in the study with adenosine A$_1$ receptor ligand 18F-CPFPX [24]. In a retrospective investigation, it turned out that subjects consisted of a nonsmoker, a smoker (blood sampling was not available), and three subjects with unknown status. However, the parent fraction of 11C-TMSX was very high and well reproducible (Figure 1B). Therefore, we concluded that a change in the metabolism speed was not a reason to increase the inter-subject variability. In contrast to V_T, such a difference in the inter-subject variability did not exist in BP$_{ND}$. The difference in the %COV between test and retest scans might come from errors included in the input function measurement.

The test-retest variability and reliability of V_T were good (aTRV ≤10%, ICC >0.6) across regions except for the thalamus (aTRV: 13% and ICC: 0.27). For BP$_{ND}$, a good absolute TRV was seen in the high A$_2A$ regions (putamen and caudate). However, lower-binding regions (BP$_{ND}$ <0.4) showed high aTRV (>15%) and low ICC values; this is not surprising, since BP$_{ND}$ is small in those regions. We examined the test-retest variability data of V_T and BP$_{ND}$ from a number of radioligands. The aTRV of V_T of 11C-TMSX (8% averaged across all regions) was comparable to that of other radioligands used to study dopamine and adenosine receptors. The reported aTRV values of V_T were 5% to 11% (average: 7%) with 11C-FLB457 [25] for dopamine D$_{2,3}$ receptor and 12% to 14% (average: 13%) with 18F-CPFPX [26] for

![Figure 3](image-url) Typical example of parametric image for BP$_{ND}$ in (A) test and (B) retest conditions. The centrum semiovale was used as a reference region. The parametric image was fused with the individual subject’s MR image.

Regions	V_T [mL/cm3]a	aTRVb [%]	TRVb [%]	ICCc
	Test	Retest		
Putamen	1.43 (15%)	1.60 (6%)	1.0 ± 10	0.69
Anterior putamen	1.46 (15%)	1.44 (7%)	0.8 ± 10	0.68
Posterior putamen	1.39 (16%)	1.37 (6%)	1.2 ± 11	0.66
Caudate head	1.33 (15%)	1.26 (9%)	4.4 ± 7	0.77
Thalamus	1.30 (17%)	1.23 (2%)	4.4 ± 16	0.27
Cerebellum	1.20 (15%)	1.16 (8%)	2.6 ± 8	0.77
Cerebral cortex	0.98 (18%)	0.94 (9%)	2.8 ± 10	0.74
Centrum semiouale	0.71 (16%)	0.70 (7%)	0.6 ± 10	0.73

Logan graphical analysis with input function (t^ = 10 min) (n = 4). Data are presented as mean (%COV); aTRV = (p_{test} − p_{retest})/(p_{test} + p_{retest}) × 2, and aTRV is the absolute value of TRV; bICC = (BSMSS − WSMSS)/(BSMSS + WSMSS) where BSMSS is the mean sum of squares between subjects and WSMSS is the mean sum of squares within subjects.
Table 2 Test-retest variability and reproducibility of binding potential (BP_{ND}) using cerebral cortex as a reference region

Regions	Logan graphical analysis with input function (\(t^* = 10\) min, \(n = 4\))	Reference Logan graphical analysis (\(t^* = 10\) min, \(n = 5\))								
	Test\(^a\)	Retest\(^a\)	aTRV\(^b\) [\%]	TRV\(^b\) [\%]	ICC\(^c\)	Test\(^a\)	Retest\(^a\)	aTRV\(^b\) [\%]	TRV\(^b\) [\%]	ICC\(^c\)
Putamen	0.46 (11\%)	0.49 (9\%)	6	−6 ± 5	0.77	0.50 (17\%)	0.53 (16\%)	5	−5 ± 4	0.94
Anterior putamen	0.50 (15\%)	0.52 (6\%)	11	−6 ± 11	0.48	0.53 (18\%)	0.57 (16\%)	11	−7 ± 9	0.80
Posterior putamen	0.42 (15\%)	0.45 (13\%)	14	−6 ± 15	0.47	0.47 (21\%)	0.48 (16\%)	11	−2 ± 13	0.80
Caudate head	0.37 (23\%)	0.33 (13\%)	21	8 ± 26	0.18	0.38 (20\%)	0.39 (20\%)	19	0 ± 24	0.58
Thalamus	0.33 (8\%)	0.31 (34\%)	25	9 ± 31	0.38	0.33 (8\%)	0.32 (27\%)	22	5 ± 28	0.24
Cerebellum	0.23 (20\%)	0.23 (14\%)	15	−1 ± 22	0.44	0.23 (20\%)	0.23 (14\%)	14\(^d\)	−2 ± 22\(^d\)	0.47\(^d\)

\(^a\)Data are presented as mean (%COV); \(^b\)TRV = \((\text{TR}_{\text{test}} - \text{TR}_{\text{retest}})/(\text{TR}_{\text{test}} + \text{TR}_{\text{retest}}) \times 2\), and aTRV is the absolute value of TRV; \(^c\)ICC = (BSMSS − WSMSS)/(BSMSS + WSMSS)

\(^d\)Values for the cerebellum were calculated from four subjects.

Table 3 Test-retest variability and reproducibility of binding potential (BP_{ND}) using centrum semiovale as a reference region

Regions	Logan graphical analysis with input function (\(t^* = 10\) min, \(n = 4\))	Reference Logan graphical analysis (\(t^* = 10\) min, \(n = 5\))								
	Test\(^a\)	Retest\(^a\)	aTRV\(^b\) [\%]	TRV\(^b\) [\%]	ICC\(^c\)	Test\(^a\)	Retest\(^a\)	aTRV\(^b\) [\%]	TRV\(^b\) [\%]	ICC\(^c\)
Putamen	1.02 (6\%)	1.01 (4\%)	1	1 ± 2	0.90	1.06 (9\%)	1.03 (7\%)	3	2 ± 4	0.87
Anterior putamen	1.07 (4\%)	1.06 (3\%)	4	1 ± 6	−0.10	1.10 (9\%)	1.09 (4\%)	5	1 ± 6	0.69
Posterior putamen	0.97 (12\%)	0.96 (7\%)	6	1 ± 10	0.53	1.02 (12\%)	0.97 (11\%)	7	5 ± 8	0.68
Caudate head	0.89 (14\%)	0.80 (5\%)	13	10 ± 14	0.00	0.90 (17\%)	0.85 (2\%)	13	4 ± 17	0.11
Thalamus	0.84 (6\%)	0.77 (14\%)	14	9 ± 17	−0.37	0.83 (22\%)	0.77 (19\%)	15	7 ± 17	0.65
Cerebellum	0.70 (9\%)	0.65 (2\%)	8	6 ± 9	0.05	0.63 (42\%)	0.58 (41\%)	10	8 ± 9	0.95

\(^a\)Data are presented as mean (%COV); \(^b\)TRV = \((\text{TR}_{\text{test}} - \text{TR}_{\text{retest}})/(\text{TR}_{\text{test}} + \text{TR}_{\text{retest}}) \times 2\), and aTRV is the absolute value of TRV; \(^c\)ICC = (BSMSS − WSMSS)/(BSMSS + WSMSS)

\(^d\)Where BSMSS is the mean sum of squares between subjects and WSMSS is the mean sum of squares within subjects.
size. As far as we know, the only available A2AR blocking study using an antagonist radiotracer in vivo in human brain is a 11C-KW-6002 PET study with varying dose of cold KW-6002 [3] However, blocking results in the centrum semiovale and neocortical regions were not included in the report. Thus, the suitability of the cerebral cortex or central semiovale as a reference region has yet to be determined by blocking or occupancy studies. Due to a lack of blocking study and postmortem study in the regions with low A2AR density, the region with lowest V/T was chosen. For the SPECT A2AR tracer 123I-MNI-420, while a reference region is not yet validated, a test-retest reproducibility of BPND was evaluated to facilitate the comparison between 123I-MNI-420 and other A2AR radiotracers [32]. We also took an exploratory approach to calculate BPND values using candidate reference regions in order to evaluate BPND reproducibility. However, the determination of the reference region is most desirable in order to establish the utility of 11C-TMSX for PET imaging. In this study, we evaluated outcome measures with input function in four subjects. We examined sample sizes for test-retest human studies using other radiomigands. As far as we know, the minimum sample size is three subjects for test-retest protocol [18 F-MK-6577 [33] for glycine transporter type 1 and 123I-MNI-420 [32] for A2AR).

Conclusions
The quantification of 11C-TMSX imaging was reproducible for PET studies of A2AR. The LGA with input function achieved good reproducibility for V/T in all regions. The results support the use of PET and 11C-TMSX as a suitable tool for receptor occupancy studies. The use of the cerebral cortex or centrum semiovale as a reference region with invasive and reference LGA produced good or moderate reproducibility of the BPND in high A2AR regions. While the centrum semiovale showed higher reproducibility of the BPND, blocking studies are required to determine the optimal reference region conclusively.

Abbreviations
11C-TMSX: [7-methyl-[11C]-8-(3,4,5-trimethoxyxynyl)-1,3,7-trimethylxanthine; A2AR: adenosine A2AR receptor; aTRV: absolute test-retest variability; BPND: binding potential relative to non-displaceable uptake; DVR: distribution volume ratio; fpl: plasma free fraction; HPLC: high-performance liquid chromatography; ICC: intra-class correlation coefficient; V/T: distribution volume; TACs: time-activity curves; TRV: signed test-retest variability.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
Contributions to the conception of the study and its design were made by MN, MM, KI, and Kla. The experiments were conducted by MM, MS, KO, MH, KI, and Kla. MS was responsible for measuring plasma free fraction. Kla was responsible for tracer synthesis and metabolite analysis. MN performed the analysis and wrote the manuscript. MM, MS, KO, MH, KI, and Kla helped in the discussions and drafting of the manuscript. All authors read and approved the final manuscripts.

Acknowledgements
The authors appreciate Dr. T. Oda for the production of 11C-TMSX and Ms. H. Tsukinari for caring for the subjects undergoing PET scanning at the Tokyo Metropolitan Institute of Gerontology. This work was funded by the Grants-in-Aid for Scientific Research (B) No. 16390348 and (B) No. 20390334 for K. Ishiwata and (C) No. 17590901, (C) No. 20591033, and (C) 23591287 for M. Mishina from the Japan Society for the Promotion of Science.

Author details
1PET Center, Yale University School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT 06520-8048, USA. 2Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan. 3Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-0022, Japan. 4Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Hokkaido 006-8585, Japan. 5Faculty of Sports and Health Studies, Hosei University, Tokyo 194-0298, Japan.

Received: 7 October 2014 Accepted: 10 December 2014

Published online: 29 December 2014

References
1. Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, Tanaka A, Endo K, Suzuki F, Senda M: 11C-labeled KF18446: a potential central nervous system adenosine A2AR receptor ligand. J Nucl Med 2000, 41:345–354.
2. Hirani E, Gillies J, Karasawa A, Shimada J, Kase H, Opacka-Juffry J, Osman S, Luthra SK, Hume SP, Brooks DJ: Evaluation of [4-G-(methyl)]11C-KW-6002 as a potential PET ligand for mapping central adenosine A2AR receptors in rats. Synapse 2001, 42:164–176.
3. Brooks DJ, Doder M, Osman S, Luthra SK, Hirani E, Hume S, Kase H, Kilborn J, Martindill S, Mori A: Positron emission tomography analysis of [(11)C]KW-6002 binding to human and rat adenosine A2AR receptors in the brain. Synapse 2006, 62:671–681.
4. Ishiwata K, Kawamura K, Kimura Y, Oda K, Ishii K: Potential of an adenosine A2AR receptor antagonist [(11)C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann Nucl Med 2003, 17:457–462.
5. Ishiwata K, Mishina M, Kimura Y, Oda K, Sasaki T, Ishii K: First visualization of adenosine A2AR receptors in the human brain by positron emission tomography with [(11)C]TMSX. Synapse 2005, 55:133–136.
6. Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Katayama Y, Ishii K: Evaluation of distribution of adenosine A2AR receptors in normal human brain measured with [(11)C]TMSX PET. Synapse 2007, 61:778–784.
7. Naganawa M, Kimura Y, Mishina M, Marabe Y, Chihara K, Oda K, Ishii K, Ishiwata K: Quantification of adenosine A2AR receptors in the human brain using [(11)C]TMSX and positron emission tomography. Eur J Nucl Med Mol Imaging 2007, 34:679–687.
8. Mishina M, Ishiwata K, Naganawa M, Kimura Y, Kitamura S, Suzuki M, Hashimoto M, Ishibashi K, Oda K, Sakata M, Haramamoto M, Kobayashi S, Katayama Y, Ishii K: Adenosine A2AR receptors measured with [(11)C]TMSX PET in the striata of Parkinson’s disease patients. PLoS One 2011, 6: e17338.
9. Mishina M, Kimura Y, Naganawa M, Ishii K, Oda K, Sakata M, Toyohara J, Kobayashi S, Katayama Y, Ishiwata K: Differential effects of age on human striatal adenosine A1 and A2AR receptors. Synapse 2012, 66:832–839.
10. Moncos RO, Toddle S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, Galli-Kienle M, Fazio F: In vivo imaging of adenosine A2AR receptors in rat and primate brain using [(11)C]SC1442A16. Eur J Nucl Med Mol Imaging 2005, 32:405–413.
11. Mihara T, Noda A, Arai H, Mihara K, Iwashita A, Murakami Y, Matsuya T, Miyoshi N, Nishimura S, Matsuoka N: Brain adenosine A2AR receptor occupancy by a novel A1/A2AR receptor antagonist, ASP5854, in rhesus monkeys: relationship to anticausalitic effect. J Nucl Med 2008, 49:1183–1188.
12. Ishiwata K, Wang WF, Kimura Y, Kawamura K, Ishii K: Preclinical studies on [(11)C]TMSX for mapping adenosine A2AR receptors by positron emission tomography. Ann Nucl Med 2003, 17:205–211.
13. Fujiwara T, Watanuki S, Yamamoto S, Miyake M, Seo S, Itoh M, Ishii K, Chihara K, Fukuda H, Satoh T, Kitamura K, Tanaka K, Takahashi S.
Performance evaluation of a large axial field-of-view PET scanner: SET-2400 W. Ann Nucl Med 1997, 11:307–313.

14. Mishina M, Senda M, Kimura Y, Toyama H, Ishiwata K, Ohyama M, Nariai T, Ishii K, Oda K, Sasaki T, Katunuma S, Katayama Y: Intrasubject correlation between static scan and distribution volume images for [11C]Cflumazenil PET. Ann Nucl Med 2000, 14:193–198.

15. Svenningsson P, Hall H, Sedvall G, Fredholm BB: Distribution of adenosine receptors in the postmortem human brain: an extended autorigadographic study. Synapse 1997, 27:322–335.

16. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houlé S, Huang SC, Iachine M, Iida H, Ito H, Kimura Y, Koeppen RA, Knudsen GM, Knutl J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintent MA, Morris ED, Parsey R, Price JC, Sifistm M, Sossi V, Suhata T, Votaw JR, Wong DF, Carson RE: Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 2007, 27:1533–1539.

17. Logan J, Fowler JS, Volkod ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR, Hitzemann R, Bendirem B, Gatley SJ, Christman DR: Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl](-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990, 10:740–747.

18. Logan J, Fowler JS, Volkod ND, Wang GJ, Ding YS, Alexoff DL: Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996, 16:834–840.

19. Shrout PE, Fleiss JL: Intraclass correlations: uses in assessing rater reliability. Psychol Bull 1979, 86:420–428.

20. Ogden RT, Ojha A, Erlandsson K, Orquendo K, Mann JI, Parsey RW: In vivo quantification of serotonin transporters using [11C]DASB and positron emission tomography in humans: modeling considerations. J Cereb Blood Flow Metab 2007, 27:205–217.

21. Franklin WG, Sifistm M, Gunn RN, Huang Y, Hwang DR, Dar E, Narendran R, Ahi-Dargham A, Laruelle M: Estimation of serotonin transporter parameters with [11C]-DASB in healthy humans: reproducibility and comparison of methods. J Nucl Med 2006, 47:815–826.

22. Paul F, Erdfelder E, Lang AG, Buchner A: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007, 39:175–191.

23. Rissanen E, Virta J, Paavilainen T, Tuikin J, Helin S, Luoto P, Pasikola R, Rinne JO, Aaros L: Adenosine A2A receptors in secondary progressive multiple sclerosis: a [11C]TMSX brain PET study. J Cereb Blood Flow Metab 2013, 33:1394–1401.

24. Matusch A, Meyer PT, Bier D, Holschbach M, Woiota D, Elmenhorst D, Winz OH, Zilles K, Bauer A: Metabolism of the A2 adenosine receptor PET ligand [11C]FPFPX by CYP1A2: Implications for bolus/infusion PET studies. Nucl Med Biol 2006, 33:839–898.

25. Narendran R, Mason NG, May MA, Chen CM, Kendro S, Ridler K, Rabiner EA, Laruelle M, Mathis CA, Franklin WG: Positron emission tomography imaging of dopamine D2/D3 receptors in the human cortex with [11C]FLB 475: reproducibility studies. Synapse 2011, 65:35–40.

26. Elmenhorst D, Meyer PT, Matusch A, Winz OH, Zilles K, Bauer A: Test-retest stability of cerebral A2A adenosine receptor quantification using [18F] CPFPX and PET. Eur J Nucl Med Mol Imaging 2007, 34:1061–1070.

27. Cunningham VJ, Rabiner EA, Sifistm M, Laruelle M, Gunn RN: Measuring drug occupancy in the absence of a reference region: the Lassen plot revisited. J Cereb Blood Flow Metab 2010, 30:46–50.

28. Gunn RN, Murthy V, Catafa AM, Searle G, Bullock S, Sifistm M, Orelliet D, Zamuner S, Herance R, Salinas C, Pardo-Lozano R, Rabiner EA, Farre M, Laruelle M: Translational characterization of [11C]GSK931145, a PET ligand for the glycine transporter type 1. Synapse 2011, 65:1319–1332.

29. Elmenhorst D, Meyer PT, Matusch A, Winz OH, Bauer A: Caffeine occupancy of human cerebral A2A adenosine receptors in vivo quantification with [18F] C-CPFPX and PET. J Nucl Med 2012, 53:1723–1729.

30. Lindstrom K, Orngi E, Fredholm BB: The selective adenosine A2A receptor antagonist SCH 58261 discriminates between two different binding sites for [3H]-CGS 21680 in the rat brain. Naunyn Schmiedebergs Arch Pharmacol 1996, 354:539–541.

31. Gallezot JD, Weinzheimer D, Nebulisi N, Lin SF, Fowles K, Sandiego C, McCarthy TJ, Maguire RP, Coakley RE, Ding YK, Sossi V, Seibyl JP, Barret D, Tamagnan GD: Characterization of the novel GlyT1 PET tracer [11C]FMK-6577 in humans. Synapse 2015, 79:33–40.