Mean Structure and Seasonality of the Norwegian Atlantic Front Current Along the Mohn Ridge From Repeated Glider Transects

Anthony Bosse and Ilker Fer

1 Geophysical Institute, Bjerknes Center for Climate Research, University of Bergen, Bergen, Norway

Abstract
The poleward flow of Atlantic Water in the Nordic Seas forms the upper limb of the meridional overturning circulation driving an important heat transport. The Norwegian Atlantic Front Current along the Mohn Ridge between the Greenland and Norwegian Seas is characterized for the first time, using repeated sections over 14 months from autonomous underwater gliders and two research cruises. The Norwegian Atlantic Front Current follows the 2,550-m isobath with a width of 38 ± 2 km and absolute geostrophic velocities peaking at 0.56 ± 0.03 m s⁻¹. The mean transport of Atlantic Water is 3.2 ± 0.2 Sv (equivalent to temperature transport of 71 ± 5 TW). Seasonal variability was observed with a magnitude of 0.8 Sv and maximum values in the fall. The deep currents at 1,000 m explained most of this seasonal variation and were anticorrelated with time-integrated wind stress curl over the Lofoten Basin. Part of this flow might recirculate within the Lofoten Basin, while the rest continues toward the Arctic.

1. Introduction
Ocean circulation plays a key role in the climate system by redistributing heat from low to high latitudes (Ganachaud & Wunsch, 2000). The upper limb of the meridional overturning circulation in the Atlantic carries warm and salty Atlantic Water (AW) poleward across the north Atlantic toward the Arctic Ocean. The role of Nordic Seas (Greenland, Iceland, and Norwegian Seas) in the meridional overturning circulation, through heat exchanges with the atmosphere and production of North Atlantic deep water, is increasingly recognized (Chafik & Rossby, 2019; Lozier et al., 2019). The transport of AW affects the climate of western Europe (Árthun et al., 2017; Rhines et al., 2008), water mass transformation (Bosse et al., 2018; Mauritzen, 1996; Rossby et al., 2009), sea ice extent (Lind et al., 2018; Onarheim et al., 2014), as well as marine ecosystems (Árthun et al., 2018; Fosheim et al., 2015; Oziel et al., 2017). Characterizing the structure, magnitude and variability of this poleward transport is therefore highly important.

The ocean currents carrying warm AW in the Nordic Seas are organized in two poleward branches (Orvik & Niiler, 2002) (Figure 1a): the barotropic Norwegian Atlantic Slope Current (NwASC) and the baroclinic Norwegian Atlantic Front Current (NwAFC). The NwASC follows the shelf break northward and continues to the Barents Sea and Fram Strait. The NwAFC is the western branch and follows the 2,000-m isobath along the Voring Plateau and then the Mohn and the Knipovich ridges farther north (Orvik & Niiler, 2002) (see Figure 1a and supporting information Figure S1 for a detailed bathymetric map of the Mohn Ridge region), before it partly joins the Fram Strait branch and recirculates into the Greenland Sea. Along their poleward pathway, the slope and frontal branches exchange waters (Rossby et al., 2009) and a slab of AW fills the Lofoten Basin (LB), forming the largest heat and salt reservoir of the Nordic Seas (Björk et al., 2001; Bosse et al., 2018; Mork et al., 2014; see Figure S2).

South of the Voring Plateau at the Svinøy section (63° N), continuous measurements since 1995 set the NwASC annual transport to 4.2–4.4 Sv (Orvik & Skagseth, 2003; Orvik et al., 2001) (Sv = 10⁶ m³ s⁻¹). This barotropic branch is relatively well constrained by observations. Transport of the NwAFC in the same section, on the other hand, is highly uncertain. Based on limited hydrographic data and assuming a deep level of no motion, a baroclinic geostrophic transport estimate was 3.4 Sv (Orvik et al., 2001). Similar baroclinic transport calculations using limited surveys gave 2.4 Sv over the Mohn Ridge (Gascard et al., 2004), 2.6 Sv (Walczowski et al., 2005) and 3 Sv (van Aken et al., 1995) over the Knipovich Ridge. While these transports are roughly consistent, all exclude the barotropic contribution which was suggested to be important using theoretical arguments (Orvik, 2004), limited deep current profiling (Walczowski et al., 2005), and...
Figure 1. (a) Bathymetric map of the Nordic Seas from global ETOPO gridded data. Bathymetry contours smoothed at 25-km are shown every 500 m (in gray). The main currents and bathymetric features are annotated: Norwegian Atlantic Slope and Front Current (NwASC and NwAFC), West Spitsbergen Current (WSC), East Greenland Current (EGC), Jan Mayen Current (JMC), Mohn Ridge (MR), Knipovitch Ridge (KR), Voring Plateau (VP), Lofoten Basin (LB), and Greenland Sea (GS). (b) Trajectory of the glider across the Polar Front with depth-averaged current vectors (black) overlain on a sea surface temperature (SST) image captured by satellite on 1 May 2016. Smoothed isobaths are drawn every 100 m (gray). Red vectors show the AW transport for each individual front crossing (numbered circles) from glider and cruises (Sections 1 and 19). Purple dots are CTD/L-ADCP stations taken during two PROVOLO cruises. The mean position and direction of the individual PF samplings define the mean PF axis. Cross-front distance and time distribution of (c) absolute salinity (0–25 m average) and (d) conservative temperature (300–400 m average) for individual dives (circles) and the objectively interpolated fields with correlation scales of 30 days and 30 km.

absolute geostrophic current calculations referenced to shipboard current measurements (Cisewski et al., 2003). Using Seaglider sections in the NwAFC at the Svinøy section, Høydalsvik et al. (2013) obtained absolute geostrophic transport (referenced to glider depth-averaged currents [DAC]) of 6.8 Sv, that is, larger than the transport of NwASC. Currently, the magnitude and structure of the NwAFC transport are thus poorly constrained by observations.

The LB is characterized by intense winter heat losses to the atmosphere (annual average of 80 W m$^{-2}$) (Isachsen et al., 2007; Richards & Straneo, 2015), a deep cyclonic circulation (Voet et al., 2010) (dashed line in Figure 1a), and winter mixed layer depths exceeding 500 m (Bosse et al., 2018; Latarius & Quadfasel, 2016; Nilsen & Falck, 2006). Consequently, a sharp and dynamic density front is established over the Mohn Ridge that separates the warm AW from cooler and less saline Arctic waters (Mork & Blindheim, 2000). The NwAFC flows as a baroclinic jet associated with this “Polar Front” (PF; also called “Arctic Front”). The frontal system is hypothesized to contribute approximately half of the total northward AW transport (Gascard et al., 2004; Høydalsvik et al., 2013; Orvik et al., 2001; Walczowski et al., 2005) and to mediate exchanges between the Norwegian and Greenland Seas (Segtnan et al., 2011; van Aken et al., 1995; Walczowski, 2013). However, despite its impact on ocean circulation and biology (van Aken et al., 1991), observations at the PF are scant.
Here, we present detailed observations of the PF and NwAFC along the Mohn Ridge using sustained measurements over a period of 14 months. We report the first accurate estimates of absolute AW transport, as well as its components associated with the deep currents at 1,000 m and with the geostrophic shear above this level. The data are collected from two cruises and repeated transects using autonomous underwater gliders. The average structure is well resolved, and the seasonal variability is discussed within the limitation of the data set. The NwAFC at the Mohn Ridge is a key contributor to redistribution of the AW heat toward the Arctic and must be monitored.

2. Data and Methods

2.1. Cruise Data

Measurements were made under the PROVOLO project (“Water mass transformation processes and vortex dynamics in the LB of the Norwegian Sea”). A 150-km section across the Mohn Ridge was repeated during two PROVOLO cruises with RV Håkon Mosby in June 2016 (14 stations) and RV Kristine Bonnevie in March 2017 (13 stations). Conductivity-Temperature-Depth profiles were acquired using a Sea-Bird Scientific SBE 911 plus with pressure, temperature, and salinity data accurate to ±0.5 dbar, ±0.002 °C, and ±0.003 g kg⁻¹, respectively. Conservative temperature Θ, absolute salinity S_A, and potential density anomaly σθ were calculated using the TEOS-10 Gibbs Seawater Oceanographic toolbox (McDougall & Barker, 2011). Horizontal current profiles were acquired by a pair of 300-kHz lowered acoustic Doppler current profilers (L-ADCP) attached to the rosette, sampling in 8-m vertical cells. The L-ADCP data were processed using the velocity inversion method of Visbeck (2002), implemented in the LDEO software version IX-12 (Thurnherr, 2010), with typical horizontal velocity uncertainty of 2–3 cm s⁻¹. The data set and further details can be found in Fer et al. (2019).

2.2. Seaglider Missions

Autonomous underwater gliders collect data along a sawtooth trajectory between the surface and a typical maximum depth of 1,000 m (Testor et al., 2019). Between two consecutive dives, an estimate of the DAC is obtained by comparing the dead-reckoning position to accurate GPS fixes. Two Seagliders were deployed successively in June 2016 and January 2017 and repeatedly sampled the PF down to 1,000 m for 14 months with a 1.5-month gap in January 2017. In total, 25 sections were occupied from June 2016 to July 2017 along four main lines spread over about 150 km along the ridge’s axis (Figure 1b). No difference in the PF structure could be identified along the ridge. Each section took on average 10 days to be completed, while the frontal zone was crossed in about 3 days. The Seagliders were equipped with unpumped SBE-41 C/T sensors. Average horizontal and vertical speeds were 15 km day⁻¹ and 8 cm s⁻¹, respectively, giving a typical horizontal separation between profiles of 2.5 km (5 km between DAC estimates) and a vertical resolution of 0.8–1.6 m with the sampling rate of 10–20 s. Salinity was calculated after a thermal lag correction (Garau et al., 2011). Finally, glider temperature and salinity were corrected by an offset against the calibrated cruise Conductivity-Temperature-Depth profiles. The data set and further details can be found in Bosse and Fer (2019).

2.3. Temperature, Salinity, and Velocity Sections

For the 25 glider sections, along-stream absolute geostrophic velocities were computed in a cross-front axis defined by the direction of DAC, following Todt et al. (2016) and assuming DAC is aligned with the baroclinic surface jet. This hypothesis was validated by L-ADCP profiles in summer, while in winter, a cyclonic rotation of currents with increasing depth was noted. This can be due to β-spiral and surface cooling effects (Schott & Stommel, 1978). The traditional calculation of geostrophic velocities perpendicular to the glider track leads to smaller velocity amplitude, larger apparent width, and similar transport (see Figures S3 and S4 and Table S1 for methodological details). Scattered Θ/S_A were then optimally interpolated on a regular grid using a two-dimensional Gaussian correlation function: \(\text{cov}(X, Z) = \delta(X, Z) + (1 - e) \exp(-X^2/L_x^2 - Z^2/L_z^2) \) with \(\delta \) the Dirac function, \(e = 0.05 \) the relative error, \(L_x = 20 \) km, typical half-width of the PF, and \(L_z = 15 \) m, typical vertical scale of the seasonal thermocline. A 20-km scale corresponds to a sampling time scale of about 32 hr, larger than the dominant tidal (about 12 and 24 hr) and inertial (about 13 hr) periods, effectively filtering internal waves (Rudnick & Cole, 2011). Along-stream geostrophic velocities \(\left(U_g^1 \right) \) were finally obtained by vertically integrating the geostrophic shear and constraining its depth average by the DAC. The PF position \(\nu = 0 \) was defined as the location where 0- to 50-m averaged velocity was maximum.

For each glider section, absolute geostrophic velocities were decomposed into velocities at 1,000 m \(\left(U_g^{1,000} \right) \) and the remainder due to geostrophic shear above this level \(\left(U_g^{\text{shear}} \right) \) (i.e., equivalent to assuming a level of
no motion at 1,000 m). Seasonal composites were then obtained by averaging sections from different months (winter: JFMA, summer: MJJA, and fall: SOND). These 4-month periods correspond to the short period of heat gain from May to August and the long period of cooling from September to April (Yu et al., 2017). Finally, the mean PF section was calculated as the average of the three seasonal composites. For a consistent and homogeneous data set, shipboard measurements were not included in the composites but were used to describe the PF characteristics (seasonal and annual means summarized in Table S1). The water mass definitions follow the literature (Blindheim, 1990)—note that absolute salinity is larger by about 0.17 g kg\(^{-1}\) compared to practical salinity: AW, \(S_A > 35.17\) g kg\(^{-1}\); new AW (nAW), \(S_A > 35.27\) g kg\(^{-1}\) and \(\Theta > 6^\circ\) C; modified AW (mAW), \(35.28 < S_A < 35.34\) g kg\(^{-1}\) and \(27.71 < \sigma_\rho < 27.82\) kg m\(^{-3}\); and Arctic Surface Water (ASW), \(S_A < 35.12\) g kg\(^{-1}\) for \(\sigma_\rho < 27.8\) kg m\(^{-3}\) and \(S_A < 35.07\) g kg\(^{-1}\) otherwise. Mixed layer depths are estimated with a threshold on potential density increase of 0.03 kg m\(^{-3}\) (de Boyer Montégut et al., 2004).

2.4. Volume and Temperature Transport

Optimally interpolated sections of \(U_g\) and \(\Theta\) were used to estimate the NwAFC volume and temperature transports. Lateral integration limits for each section were obtained by fitting a Gaussian jet (\(U_m e^{-\alpha x^2 / \sigma^2}\) with \(U_m\) the maximum velocity and \(\sigma\) the variance of the Gaussian function) to the depth-averaged geostrophic velocity, restricted to the values above half of the maximum value. Integration limits, also defining the width of the PF (\(L_m\) in Table S1), were then delineated by regions of poleward velocity (i.e., positive) within the maximum interval of \(x = \pm 2\sigma\), accounting for about 95% of the total transport of the theoretical jet. This was motivated to exclude spurious transports away from the front axis, captured because of the slow glider speed (about 3 days to cross the PF). Along-stream velocities were then categorized in different water masses and integrated.

For transports from the cruise data, direct measurements by L-ADCP were used, and the jet axis was defined at the location of maximum in 0- to 200-m depth-averaged velocity. Temperature transport across the PF was computed using a reference temperature of \(-0.1^\circ\) C, the mean temperature of the outflow from the Arctic Ocean (Aagaard & Greisman, 1975). Because these estimates are based on single sections and mass is not conserved, they represent temperature transport rather than heat transport.

Error in DAC from gliders can be considered as a random error of 0.02 m s\(^{-1}\) (Rudnick et al., 2018). A statistical analysis on 100 members of each cross-front section by adding random noise to DAC, together with the optimal interpolation error, gave a mean statistical error, averaged over the 25 glider sections, of 0.14 and 0.05 Sv for total and AW transports, respectively. Note that the errors in individual transport estimates are small compared to the standard error of the mean arising due to transect-to-transect variability (Table S1).

Cross-front sections were considered as independent if separated in space and time by scales larger than typical mesoscale. In the Nordic Seas, the deformation radius is about 10 km (Nurser & Bacon, 2014). Assuming decorrelation scales of 25 km and 5 days, Sections 5/6 and 18/19 were identified as dependent (Figure 1c) and averaged before computing seasonal means.

2.5. Atmospheric Reanalysis

Atmospheric forcing was obtained from ECMWF’s ERA-5 reanalysis for the period from June 2016 to July 2017 (Copernicus Climate Change Service, 2017). Hourly 10-m winds at 0.25° resolution were retrieved and averaged into 24-hr intervals. The daily wind stress was then computed as \(\tau_w = \rho_a C_d |v_w|\), where \(v_w\) is the wind, \(\rho_a = 1.2\) kg m\(^{-3}\) the air density, and \(C_d = 0.0012\) the surface drag coefficient for moderate winds (Large & Pond, 1981).

3. Results

3.1. Mean Hydrographic and Current Structure

The AW layer extends to a depth of 700 m in the LB and shoals toward the Mohn Ridge (see Figure S2). As captured by the satellite image in May 2016, the surface temperature across the PF decreased from about 6 to 1 °C through a succession of fronts influenced by mesoscale features (Figure 1b), similar to the PF structure described along the Knipovitch Ridge by van Aken et al. (1995). Higher salinities (about 35.3 g kg\(^{-1}\)) were observed on the warm side of the front (Figure 1c), with a freshening trend consistent with recent observations (Bosse et al., 2018; Mork et al., 2019). The salinity on the cold side was more variable and reached minimum values from October to March. This relatively fresh water, associated with ASW, can be linked to seasonal advection of ASW from the Greenland shelf by the Jan Mayen Current (Figure S5). At the depth of...
Figure 2. Annual composite of the PF over the Mohn Ridge. Mean section of (a) conservative temperature, (b) absolute salinity, and (c) along-stream geostrophic velocities. The section is seen from the north and positive velocity is directed toward the reader. (d)–(f) are individual CTD/L-ADCP profiles shown only below 1,000 m and collected during the two PROVOLO cruises in June 2016 (upward triangles) and March 2017 (downward triangles). The bathymetry is interpolated on the mean PF section (y axis in Figure 1b) and shown in gray. Dashed black line in (f) represents bathymetry smoothed over a 25-km horizontal scale. Dots show each PF position colored according to seasons. (g) Observed deep velocity field (900–1,000 m average) colored according to seasons. Thin lines show individual glider sections, thick lines are seasonal means, and crosses are shipborne observations by L-ADCP.

The AW core, the PF manifested as an abrupt decrease of temperature of the AW layer (about −4 °C/40 km at 300- to 400-m depth; Figure 1d), stronger than at the surface. Instabilities of the front generate important lateral heat fluxes. In particular, warm anticyclonic features detaching from the front could restratify the upper layers on the cold side (Figure 1b).

The composite PF section confirms the existence of a steep temperature front at 200- to 500-m depth and a salinity signature near the surface (Figure 2). The isopycnal slope peaks at the front origin, defining the baroclinic jet of the PF. The geostrophic currents had an average maximum speed of 0.56 ± 0.03 m s\(^{-1}\) (mean ± standard error, standard error = \(\sigma/\sqrt{n}\) with \(\sigma\) the standard deviation and \(n\) the number of independent cross-front sections) with values ranging from 0.34 to 0.83 m s\(^{-1}\). The absolute currents at 1,000 m were significant (0.03 ± 0.01 m s\(^{-1}\)). The width of the PF was 38 ± 2 km. The PF position over the Mohn Ridge varied by about 100 km across the ridge between the 2,250- and 2,840-m isobaths, with an average at the 2,550-m isobath (with respect to the smoothed topography). This is about half the distance from the bottom to the ridge crest. More variability in PF position was observed during the winter and summer when deep currents were also weaker (Figure 2f). The jet was observed always on the same side of the ridge (i.e., retrograde jet in direction opposite to topographic Rossby waves) indicating stabilization of the barotropic flow (Li & Mcclimans, 2000; Poulin & Flierl, 2005). The topographic control of the barotropic jet along the Mohn and Knipovitch ridges indicates that parts of the AW could recirculate and flow to the southeast into the LB (Figure S6).

A mean flow in the opposite direction of the poleward frontal current was observed in the LB at about 40 km from the PF. This opposing flow was more intense at depth, with a mean value of about 0.05 cm s\(^{-1}\), as theoretically predicted by Orvik (2004) and described by Voet et al. (2010) from the drift of Argo floats at middepth. The deep currents directly measured during the cruises confirm the return flow on the warm side of the PF with even larger amplitude (Figure 2f), but they might be influenced by surrounding mesoscale features. The flow associated with the cyclonic circulation was stronger during the winter while almost nil during the summer and fall (Figure 2g), indicating either a decrease in intensity or a shift in position toward the center of the LB.
3.2. Seasonal Evolution

The vertical structure of the PF shows a seasonal evolution (Figure 3). Deep vertical mixing reaching 500 m cooled the AW to form a mode water of about 5.3 °C in winter 2017 (mAW, see Figure 3d). Cross-front exchanges of warm waters prevent deep vertical mixing on the cold side where the mixed layer depth was only about 200 m, in line with the shoaling of the AW pycnocline (i.e., $\sigma_\theta = 27.9$ kg m$^{-3}$). This transition zone, characterized in the upper 200 m by an intrusion of relatively cold and fresh AW of about 3 °C, extended to at least 50 km from the PF and was observed in all seasons (Figures 3a–3f), in agreement with climatological observations across the Mohn Ridge (Figure S2). The strongest cross-front temperature and salinity contrasts were detected in the fall. This was due to the presence of a 50-m-thick ASW layer, as well as the arrival of new warm and salty waters (nAW) in summer between 100 and 200 m, originating from the NwASC (Figures 3k and 3l).

Density gradients in the PF were typically dominated by temperature, but salinity difference reaching -0.2 g kg$^{-1}$ in fall compensated for approximately one third of the cross-front density increase from temperature. The temperature difference across the PF at 270 m depth increased from 3.7 °C in winter to 4.7 °C in fall. While the width of PF remained constant within errorbars throughout the seasons, the absolute currents at 1,000 m reached 0.06 ± 0.01 m s$^{-1}$ in fall, compared to insignificant velocities in winter and 0.04 ± 0.02 m s$^{-1}$ in summer. The return flow associated with the deep cyclonic gyre circulation of the LB was captured in winter with a DAC of 0.10 m s$^{-1}$, whereas it was absent in summer and fall.

3.3. Volume and Temperature Transport

The average AW transport was 3.2 ± 0.2 Sv, varying from 1.6 to 5.4 Sv with a seasonal evolution in volume and type of water masses (Figure 4a). The mAW was observed throughout the year but dominated the winter transport with 1.0 ± 0.9 Sv. On the contrary, the nAW was absent during the winter and peaked during the
The AW transport was decomposed into a component associated with the deep currents measured at 1,000 m and the remainder associated with the geostrophic shear above this depth. While the total transport had a marked seasonal signature varying from 2.8 ± 0.4 Sv in winter to 3.6 ± 0.2 Sv in the fall, the transport due to geostrophic shear was fairly constant with 3.0 ± 0.2 Sv. This transport is in good agreement with previous estimates along the Mohn Ridge (Gascard et al., 2004; Orvik, 2004) and farther north (van Aken et al., 1995; Walczowski et al., 2005). The seasonal variation in AW transport was thus primarily due to variation in the transport associated with deep currents that increased from near zero values in winter to 0.8 ± 0.2 Sv in fall, accounting for 22% of the total AW transport. Sinusoidal fits to the observed seasonal transport yielded minimum transport in March and amplitudes of 0.1, 0.2, and 0.4 Sv for the geostrophic shear, deep currents, and total transports, respectively (Figure 4c). We conclude that the AW transport at the PF is dominated by currents associated with the geostrophic shear above 1,000 m with a seasonal variability due to deep currents, representative of the barotropic circulation.

The poleward temperature transport at the PF was 71 ± 5 TW (TW = 10^{12} W). As a comparison, the AW temperature transport (using the same temperature reference) is about 300 TW at the AW inflow into the Nordic Seas (Hansen & Østerhus, 2007) and 30–60 TW toward the Arctic Ocean in Fram Strait (Schauer et al., 2004; Tsubouchi et al., 2018).
the sign of wind stress curl and the AW transport variations. Positive wind stress curl indeed increases the cyclonic LB gyre circulation, although Voet et al. (2010) showed that winds cannot alone explain the gyre variability. Consequently, a decrease in the poleward transport at the PF resulted from a reduction of the barotropic component (induced by a strengthened opposing barotropic circulation).

4. Discussion and Concluding Remarks

Average poleward volume and temperature transports of AW along the Mohn Ridge are 3.2 ± 0.2 Sv and 71 ± 5 TW. The transport associated with deep currents at 1,000 m accounts for about 10% of the total (up to 22% with 0.8 Sv in fall). This transport component, documented for the first time here, has often been neglected in previous studies mainly due to limitation of hydrographic surveys without direct currents measurements. The NwAFC is slightly weaker than the slope current, but comparable to the front current at the Svinøy section (63°N). Contrary to costly regular ship surveys, the glider technology can be effectively used to monitor topographically steered frontal currents such as the NwAFC. In particular, the fate of the flow of AW downstream of the Mohn Ridge remains unclear. Its connection with the Knipovich Ridge and farther north to Fram Strait could be investigated by sustained sampling using autonomous underwater gliders.

We found an anticorrelation between the AW transport variations along the Mohn Ridge and the sign of the wind stress curl over the LB. Previous studies have established a positive correlation between the AW transport along the Svinøy slope and the local wind forcing and the large-scale North Atlantic Oscillation (Orvik & Skagseth, 2003a; Skagseth, 2004; Skagseth et al., 2004). The NwAFC and NwASC seem to react in opposite ways to the wind forcing in the LB. Numerical models could help understand the response of the slope and frontal Norwegian Atlantic Currents in the LB where observations remain scarce.

Deep velocities of 0.1–0.2 cm s$^{-1}$ have been directly measured by lowered profilers. The large abyssal velocities should have important implications for mixing over the rough topography of the Mohn Ridge (Figure S1). The interaction of the barotropic jet of the PF and tides with numerous seamounts of O(1–10 km) horizontal scales found along the ridge could generate internal waves and turbulent mixing (Nikurashin & Ferrari, 2011). Moreover, the Mohn Ridge is an active hydrothermal vent (Schander et al., 2010), for which small-scale currents and mixing are important (Vic et al., 2018). The mixing generated by the barotropic component of the frontal current and tides is still unknown and needs further investigations.

The PF position over the ridge slope was fairly stable in the fall, when the frontal jet was more intense and characterized by stronger deep currents. The horizontal shear of deep currents, however, remained quite comparable throughout the year. Topographic slope plays an important role in the development of barotropic and baroclinic instabilities (Isachsen, 2015; Li & McClimans, 2000). The PF had shallower water on its cyclonic flank (i.e., in the opposite direction of topographic Rossby wave propagation), which is known to stabilize the flow (Poulin & Flierl, 2005). Variable winds associated with low-pressure systems can also excite upstream-propagating topographic Rossby waves (Li & McClimans, 1998). The strong variability in temperature and salinity across the PF captured by Seagliders and a satellite image suggest that the PF instability can be important and deserves further studies. A thorough understanding of the cross-front exchanges is indeed required to assess the role of lateral fluxes in setting the water column stratification and the local ecosystem dynamics, as well as in the propagation of heat and salt anomalies toward the Greenland Sea.

Acknowledgments

This study received funding from the Research Council of Norway, through the PROVOLO project, Project 250784. Data collected during PROVOLO are available at the Norwegian Marine Data Center (Cruise data, http://doi.org/10.21335/NMDC-1093031037; Seaglider data, http://doi.org/10.21335/NMDC-980686647; and Climatological data, http://doi.org/10.21335/NMDC-1131411242). Seaglider data were processed using a toolbox developed by Bastien Queste at the University of East Anglia (https://bitbucket.org/bastienqueste/uea-seaglider-toolbox.git). ERA-5 data are made available by Copernicus Climate Change Service (https://cds.climate.copernicus.eu/cdsapp#!/home). We acknowledge crew members from RV Håkon Mosby and RV Kristine Bonnevie and the Norwegian glider infrastructure, who largely contributed to a successful data collection.

References

Aagaard, K., & Greisman, P. (1975). Toward new mass and heat budgets for the Arctic Ocean. Journal of Geophysical Research, 80(27), 3821–3827. Retrieved from https://doi.org/10.1029/JC080i027p03821

Arkun, M., Bogstad, B., Daewel, U., Keenlyside, N. S., Sande, A. B., Schrum, C., & Ottersen, G. (2018). Climate based multi-year predictions of the Barents Sea cod stock. PLoS ONE, 13(10), 1–13. https://doi.org/10.1371/journal.pone.0209619

Arkun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H. L., & Keenlyside, N. S. (2017). Skillful prediction of northern climate provided by the ocean. Nature Communications, 8, 15875. https://doi.org/10.1038/ncomms15875

Björk, G., Gustafsson, B. G., & Stigebrandt, A. (2001). Upper layer circulation of the Nordic seas as inferred from the spatial distribution of heat and freshwater content and potential energy. Polar Research, 20(2), 161–168. https://doi.org/10.1111/j.1751-8369.2001.tb00052.x

Blindheim, J. (1990). Arctic intermediate water in the Norwegian Sea. Deep Sea Research Part A. Oceanographic Research Papers, 37(9), 1475–1489. https://doi.org/10.1016/0198-0149(90)90138-L

Boose, A., & Fer, I. (2019). Seaglider missions in the Norwegian Sea during the PROVOLO project. https://doi.org/10.21335/NMDC-980686647

Boose, A., Fer, I., Søiland, H. H., & Rossby, T. (2018). Atlantic Water transformation along its poleward pathway across the Nordic Seas. Journal of Geophysical Research: Oceans, 123, 6428–6448. https://doi.org/10.1002/2018JC014147
Cisewski, B., Budéus, G., & Krause, G. (2003). Absolute transport estimates of total and individual water masses in the northern Greenland Sea derived from hydrographic and acoustic Doppler current profiler measurements. *Journal of Geophysical Research*, 108(C9), 3298. https://doi.org/10.1029/2002JC001530

Cuxart, J., & Bouffard, T. (2017). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Retrieved from https://www.ecmwf.int/sites/default/files/elibrary/2017/12-ERA5-5th-generation-ecmwf-atmospheric-reanalyses-global-climate-20170316100015371.pdf

Fer, I., Bosse, A., Søiland, H., Ferron, B., & Bourret-Aubertot, P. (2019). Ocean currents, hydrography and microstructure data from PROVOL cruises. https://doi.org/10.21335/NMDC-1093031037

Fossum, S., Hagen, J. O., & Østhus, S. (2020). The impact of wind and pressure on shifting phytoplankton blooms in the Barents Sea. *Geophysical Research Letters*, 47(14), e2020GL089347. https://doi.org/10.1029/2020GL089347

Hansen, B., & Østerhus, S. (2007). Faroe Bank Channel overflow 1995–2005. *Progres in Oceanography*, 75(4), 815–856. https://doi.org/10.1016/j.pocean.2007.09.004

Heydalvik, F., Mauritzén, C., Orvik, K. A., LaCasce, J. H., Lee, C. M., & Gobat, J. (2013). Transport estimates of the Western Branch of the Norwegian Atlantic Current from glider surveys. *Deep-Sea Research Part I*, 79(6), 86–95. https://doi.org/10.1016/j.dsr.2013.05.005

Isachsen, P. E. (2015). Baroclinic instability and the mesoscale eddy field around the Lofoten Basin. *Journal of Geophysical Research: Ocean*, 120, 2884–2903. https://doi.org/10.1002/2014JC010448

Isachsen, P. E., Mauritzén, C., & Svendsen, H. (2007). Dense water formation in the Nordic Seas diagnosed from sea surface buoyancy fluxes. *Deep-Sea Research Part I: Oceanographic Research Papers*, 54(1), 22–41. https://doi.org/10.1016/j.dsr.2006.09.008

Large, W. G., & Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. *Journal of Physical Oceanography*, 11(3), 324–336. https://doi.org/10.1175/1520-0485(1981)011<0324:OMFMMS>2.0.CO;2

Latarious, K., & Quadfasel, D. (2016). Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets. *Deep-Sea Research Part I: Oceanographic Research Papers*, 114, 23–42. https://doi.org/10.1016/j.dsr.2016.04.012

Li, S., & Mcclamans, T. A. (1998). The effects of winds over a barotropic retrograde slope current. *Continental Shelf Research*, 18(5), 457–485. https://doi.org/10.1016/S0278-4343(97)00077-0

Li, S., & Mcclamans, T. A. (2000). On the stability of barotropic prograde and retrograde jets along a bottom slope. *Journal of Geophysical Research*, 105(C4), 8847–8855. https://doi.org/10.1029/1999JC000006

Lind, S., Ingvaldsen, R. B., & Furevik, T. (2018). Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. *Nature Climate Change*, 8, 634–639. https://doi.org/10.1038/s41558-018-0205-y

Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., et al. (2019). A sea change in our view of overturning in the subpolar North Atlantic. *Science*, 363(6426), 516–521. https://doi.org/10.1126/science.aau6592

Mauritzén, C. (1996). Production of dense overturning waters feeding the North Atlantic across the Greenland-Scotland Ridge. 1. Evidence for a revised circulation scheme. *Deep-Sea Research Part I*, 43, 769–806.

McDougall, T. J., & Barker, P. M. (2011). Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28p.

Mork, K. A., & Blindheim, J. (2000). Variations in the Atlantic inflow to the Nordic Seas, 1955–1996. *Deep-Sea Research Part I: Oceanographic Research Papers*, 47(6), 1035–1057. https://doi.org/10.1016/S0967-0637(99)00091-6

Mork, K. A., Skagseth, Ø., Ishvin, V., Ozhigin, V., Hughes, S. L., & Valdimarsson, H. (2014). Advection and atmospheric forcing changes in heat and fresh water content in the Norwegian Sea, 1951–2010. *Geophysical Research Letters*, 41, 6221–6228. https://doi.org/10.1002/2014GL061038

Mork, K. A., Skagseth, Ø., & Søiland, H. (2019). Recent warming and freshening of the Norwegian Sea observed by Argo data. *Journal of Climate*, 32(12), 3695–3705. https://doi.org/10.1175/JCLI-D-18-0591.1

Nikurashin, M., & Ferrari, R. (2011). Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. *Geophysical Research Letters*, 38, L05610. https://doi.org/10.1029/2011GL046576

Nilsen, J. E. Ø., & Falck, E. (2006). Variations of mixed layer properties in the Norwegian Sea for the period 1948–1999. *Progress in Oceanography*, 70(1), 58–90. https://doi.org/10.1016/j.pocean.2006.03.014

Nurser, A. J. G., & Bacon, S. (2014). The Rossby radius in the Arctic Ocean. *Ocean Science*, 10(4), 937–957. https://doi.org/10.5194/oa-10-937-2014

Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., & Nilsen, F. (2014). Loss of sea ice during winter north of Svalbard. *Tellus A: Dynamic Meteorology and Oceanography*, 66(1), 23933. https://doi.org/10.3402/tellusa.v66.23933

Ozél, L., Neukermans, G., Ardyna, M., Lancelot, C., Tison, J.-L., Wassmann, P., et al. (2017). Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. *Journal of Geophysical Research: Ocean*, 122, 5121–5139. https://doi.org/10.1002/2016JC012582

Poulin, F. J., & Filieri, G. R. (2005). The influence of topography on the stability of jets. *Journal of Physical Oceanography*, 35(5), 811–825. https://doi.org/10.1175/JPO2719.1
Erratum

In the originally published version of this article, the authors made an error in the data interpolation, which led to erroneous quantification of various parameters. The authors corrected the georeferencing of the glider measurements, recalculated all the parameters, recreated the figures, and updated the supplementary information. The editor approved the corrections, and the present version may be considered the authoritative version of record.