Partial Substitution of K by Na Alleviates Drought Stress and Increases Water Use Efficiency in Eucalyptus Species Seedlings

Nikolas de Souza Mateus1*, Antônio Leite Florentino2, Elcio Ferreira Santos3, Alexandre de Vicente Ferraz4, José Leonardo de Moraes Goncalves2 and José Lavres1

1 Stable Isotope Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil, 2 Applied Ecology Laboratory, Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil, 3 Federal Institute of Mato Grosso Do Sul, Nova Andradina, Brazil, 4 Institute of Forest Research and Studies, Piracicaba, Brazil

Eucalyptus, the most widely planted tree genus worldwide, is frequently cultivated in soils with low water and nutrient availability. Sodium (Na) can substitute some physiological functions of potassium (K), directly influencing plants’ water status. However, the extent to which K can be replaced by Na in drought conditions remains poorly understood. A greenhouse experiment was conducted with three Eucalyptus genotypes under two water conditions (well-watered and water-stressed) and five combination rates of K and Na, representing substitutions of 0/100, 25/75, 50/50, 75/25, and 100/0 (percentage of Na/percentage of K), to investigate growth and photosynthesis-related parameters. This study focused on the positive effects of Na supply since, depending on the levels applied, the Na supply may induce plants to salinity stress (>100 mM of NaCl). Plants supplied with low to intermediate K replacement by Na reduced the critical level of K without showing symptoms of K deficiency and provided higher total dry matter (TDM) than those Eucalyptus seedlings supplied only with K in both water conditions. Those plants supplied with low to intermediate K replacement by Na had improved CO2 assimilation (A), stomatal density (Std), K use efficiency (UEK), and water use efficiency (WUE), in addition to reduced leaf water potential (Ψw) and maintenance of leaf turgidity, with the stomata partially closed, indicated by the higher values of leaf carbon isotopic composition (δ13Cch). Meanwhile, combination rates higher than 50% of K replacement by Na led to K-deficient plants, characterized by the lower values of TDM, δ13Cch, WUE, and leaf K concentration and higher leaf Na concentration. There was positive evidence of partial replacement of K by Na in Eucalyptus seedlings; meanwhile, the ideal percentage of substitution increased according to the drought tolerance of the species (Eucalyptus saligna < Eucalyptus urophylla < Eucalyptus camaldulensis).

Keywords: sodium application, drought, stable carbon isotope, water use efficiency, water consumption, photosynthesis

Abbreviations: StdAD, adaxial stomatal density of leaf surface; StdAB, abaxial stomatal density of leaf surface; A, CO2 assimilation rate; gs, stomatal conductance; E, transpiration rate; δ13Cch, leaf carbon isotopic composition; Ψw, leaf water potential; K, potassium; LA, leaf area; WUE, water use efficiency; UE, use efficiency; WW, well-watered; WS, water stressed.
INTRODUCTION

The genus *Eucalyptus* plays an important role in meeting the growing global wood demand (Paquette and Messier, 2010). However, it is largely dependent on fertilization (Smethurst, 2010) and vulnerable to drought, the main limiting factors for plant growth (Gonçalves et al., 2017). Against the background of a changing climate, the intensity, and frequency of drought will increase in the near future (IPCC, 2019). Adequate management strategies to improve tolerance to water deficit, such as enhancing plant water use efficiency (WUE), are necessary to mitigate the adverse impacts of drought (Asensio et al., 2020). Stomatal closure by osmotic adjustment (Oddo et al., 2011) is a key factor to mitigating the negative impacts of drought, avoiding excessive water loss at the expense of photosynthetic rate restrictions (Anjum et al., 2011) and turgor loss, decreasing cell growth (Steudle, 2000). Among the macronutrients, potassium (K) is one of the most required nutrients for *Eucalyptus*, enhancing yields by 50% compared to plants under K deficiency (Battie-Laclau et al., 2013). Changes in cell turgor involve the controlled uptake of K and other ions, mediated by voltage-gated K⁺ transporters at the cellular plasma membrane, inducing solute accumulation (Shabala and Lew, 2002), water uptake from the apoplast, and, finally, stomata aperture (Ahmad and Maathuis, 2014). Thus, the ion flux in and out of the guard cells mediates stomatal aperture and closure (Kim et al., 2010).

Sodium (Na), a beneficial element, is absorbed and taken up as Na⁺ and might replace K partially as an osmotically active solute, stimulating cell elongation and improving stomatal control, which, in turn, contributes to maintain cell turgor (Jeschke, 1977), directly affecting plant WUE (Mateus et al., 2019). Additionally, some ATPases require both K and Na for maximal activity (Marschner, 2012). This occurs due to the similarity between the hydrated ionic radii of Na (0.358 nm) and K (0.331 nm) (Marschner, 2012). Despite the well-known importance of K, the effects of Na application on water balance are not well studied (Gattward et al., 2012). A major benefit of replacing K fertilization by Na is the relatively lower cost of NaCl compared to KCl, bringing greater profitability to the forest sector; besides, nutrient interaction may be a strategy to increase K use efficiency and decrease the critical K leaf concentration (Laclau et al., 2003). K deficiency reduces plant tolerance to water deficit due to its influence on plant osmoregulation, playing a critical role in stress avoidance and adaptation (Tränkner et al., 2018). It also reduces the photosynthetic efficiency (Jin et al., 2011), consequently affecting carbon partitioning to wood production, influencing the plant's anatomical composition (Epron et al., 2012). Moreover, maximum growth can be reached with concomitant application of Na and K, in addition to improving stomatal conductance (gs) and mitigating the anatomical and biochemical deficiencies of plants caused by low K availability (Battie-Laclau et al., 2013; Mateus et al., 2019).

A comprehensive literature indicates the benefits of Na supply to plants (Hampe and Marschner, 1982; Subbarao et al., 1999; Martínez et al., 2005; Idowu and Aduayi, 2006; Ivahupa et al., 2006; Ma et al., 2011; Wakeel et al., 2011; Kronzucker et al., 2013; Erel et al., 2014; Krishnasamy et al., 2014; Pi et al., 2014), as also in drought adaptations of halophyte plants (Lv et al., 2012; Yue et al., 2012; Xi et al., 2018). Non-halophytic plants, such as *Eucalyptus*, although salt-sensitive (Pardo and Quintero, 2002), are also able to utilize Na to some extent (Subbarao et al., 2003; Mateus et al., 2019). Depending on the species and the levels applied, the Na supply may be toxic for plants (Kronzucker et al., 2013), which in turn demands more attention with regard to using Na in fertilizing non-halophytes in order to fulfill plants’ nutritional requirements under K deficiency (Mateus et al., 2019). Plants can behave differently under nutritional stress conditions and vary in nutritional efficiency (Pita-Barbosa et al., 2016), which allows some species to grow more at the highest levels of Na (Subbarao et al., 2003). However, despite the great variety of studies involving nutrient application, plant growth, and water deficit (Müller et al., 2017), studies involving K and Na use efficiency of different species and water regimes are still scarce. Thus, this study aimed to evaluate the partial replacement of K by Na and its impacts on water use and K use efficiency in three useful *Eucalyptus* species under different water conditions, investigating to what extent Na can substitute K and attenuate the effects of drought.

MATERIALS AND METHODS

Experimental Design and Growth Conditions

The experiment was carried out in a greenhouse at the Center for Nuclear Energy in Agriculture (CENA-USP) in Piracicaba, São Paulo State, Brazil, from July to November 2018. Plants were grown at temperatures between 18 and 32°C (mean of 25°C) with an average relative humidity of 65%. Three *Eucalyptus* species with different levels of drought tolerance (*Eucalyptus saligna* Sm., drought sensitive; *Eucalyptus urophylla* S.T. Blake, moderate tolerance; and *Eucalyptus camaldulensis* Dehn., drought tolerant) (Gonçalves et al., 2017) of approximately 90 days old and 30 cm in height, germinated from seeds obtained from the Institute of Forest Research and Studies (IEPE, Brazil), were transplanted into individual plastic pots (5 kg) containing Oxisol soil (16% clay, 5% silt, and 79% sand), collected from the top layer at the Itatinga Experimental Station, Itatinga, São Paulo State, Brazil. The physiochemical characteristics were: pH = 4.2; organic matter = 25 g dm⁻³; P = 4 mg dm⁻³; K = 0.3 mmol dm⁻³; Ca = 1 mmol dm⁻³; Mg = 1 mmol dm⁻³; H + Al = 25 mmol dm⁻³; Al = 3 mmol dm⁻³; B = 0.14 mg dm⁻³; Cu = 0.6 mg dm⁻³; Fe = 33 mg dm⁻³; Mn = 0.8 mg dm⁻³; and Zn = 0.8 mg dm⁻³.

Based on the soil K critical level (<1.20 mmol dm⁻³ of K) for *Eucalyptus* to respond to potassium fertilization, K was replaced by Na (as NaCl), representing substitutions of 0/100, 25/75, 50/50, 75/25, and 100/0 (percentage of Na/percentage of K) for 120 days. Thus, the treatments consisted of five combinations of Na and K application rates (0/0.90, 0.22/0.67, 0.44/0.44, 0.67/0.22, and 0.90/0 mmol dm⁻³ of Na/millimoles of charge per cubic decimeter of K), which, when added to the soil K content, reached the soil K critical level (1.20 mmol dm⁻³ of K). The rates 0 and 0.90 mmol dm⁻³ of Na represented the control (solely K supplied plants) and the K deficiency...
Partial K/Na Replacement Increases WUE

Stomatal Density and Leaf Area

Stomatal density (Std, stomates per square millimeter) was calculated using the two youngest fully expanded leaves per plant (Mateus et al., 2019) on abaxial and adaxial surfaces, applying the software package ImageJ\(^1\). Complementary micrograph material of Std was obtained by scanning electron microscopy (JEOL JSM-IT300 LV, Tokyo-Japan) at 20 kV, and digital images were recorded (Lavres et al., 2019).

Plants were harvested 120 days after the onset of the treatments, and their leaves, stems, branches, and roots were separated. Leaf area (LA) was obtained by passing all leaves through a leaf area integrator (LI-3100).

Dry Matter Production and Mineral Element Analysis

After drying in a forced air ventilation oven at 60°C for 72 h, each plant part was weighed to determine dry matter. Subsequently, the plant material was ground in a Wiley-type mill and forwarded to nitric-perchloric digestion (Malavolta et al., 1997) to quantify K and Na by inductively coupled plasma optical emission spectrometry (ICP-OES; Thermo Fisher Scientific, Waltham, United States). Based on the leaf K and Na concentrations, we calculated the K/Na ratio, which was correlated with the estimated rate of maximum dry matter production (critical level of 90% maximum yield) of each genotype, obtained by equaling the equation to zero. The accumulations of K and Na were obtained by multiplying the concentration of each element in the tissue by the dry matter production of the respective tissue (root, stems, and leaves) and used to determine the use efficiency (UE, in grams per milligram) (Siddiqi and Glass, 1981) according to Equation 3.

\[
\text{UE} = \frac{(\text{plant dry matter} \times 2)}{\text{nutrient in plant (mg)}}
\]

\(^1\)https://imagej.nih.gov/ij/
where nutrient refers to K or Na accumulation.

Leaf Carbon Isotope Composition ($\delta^{13}C\%$)

The same samples used for leaf dry matter determination were also used to assess the carbon isotope composition, determined using a mass spectrometer (ANCA-GSL Hydra 20-20 model, SERCON Co., Crewe, GBR) coupled to a C automatic analyzer (Barrie and Prosser, 1996), and the isotope values (in per mill) were calculated via Equation 4 (Farquhar and Sharkey, 1982).

$$\delta^{13}C \% : \left(\frac{R_{sample}}{R_{pdb}} - 1 \right) * 1000 \quad (4)$$

where R is the ratio of $^{13}C/^{12}C$. The reference material is the Vienna Pee Dee Belemnite (PDB).

Statistical Analyses

Data were analyzed by the F test ($p < 0.05$), and significant differences among means were determined via Tukey’s post-hoc test ($p < 0.05$) to compare the WW and WS conditions. The significant effects of Na application were described by linear, quadratic, and square root regression models, in which the significant model ($p < 0.05$) with the highest determination coefficient (R^2) was selected. The original data were standardized to be analyzed by principal component analysis (PCA) and cluster analysis, correlating the measured variables in each genotype and water condition. In cluster analysis, the treatments were grouped into functional units by their similarity; for the PCA, we used the treatments with Na supply for the first two main components (PC1 and PC2).

Statistical analyses were performed using the software packages SAS version 9.1 (SAS Institute Inc, 2004) and R version 3.5.1 (R Development Core Team, 2018). Data variability was indicated with standard error and shown graphically using SigmaPlot 11.0 (Systat Software Inc., San Jose, CA, United States).

RESULTS

Adaxial and Abaxial Stomatal Density

The leaves of *E. saligna* and *E. urophylla* were hypostomatous, occurring mainly on the abaxial surface, with lower than 25 stomates per square millimeter. In *E. camaldulensis*, however, the leaves were amphistomatous, with stomates occurring on both surfaces. Adaxial stomatal density (Std$_{AD}$) was influenced by Na, WS, and Na×WS in *E. saligna*, *E. urophylla*, and *E. camaldulensis* (Figures 1A–C). Abaxial stomatal density (Std$_{AB}$) was influenced by Na and WS in *E. saligna* and *E. urophylla*, whereas in *E. camaldulensis*, it was affected by Na application (Figures 1D–F). *E. saligna* and *E. camaldulensis* seedlings grown under WW and WS conditions showed higher Std$_{AD}$ and Std$_{AB}$ levels with partial K replacement by Na. Additionally, the highest Na rate (0.9 mmol, dm$^{-3}$ of Na) led to decreased Std$_{AB}$ levels by 50, 30, and 20% in *E. saligna*, *E. urophylla*, and *E. camaldulensis*, respectively. Water stress also decreased the mean Std$_{AB}$ by 15 and 10% in *E. saligna* and *E. urophylla*, respectively, irrespective of the Na rate.

Leaf Gas Exchange

Parameters A (assimilation rate; Figures 2A–C), E (transpiration rate; Figures 2D–F), and g_s (Figures 2G–I) were influenced by Na and WS in all species. Partial K replacement by Na (up to 0.44 mmol, dm$^{-3}$) increased A up to 55, 50, and 20% in *E. saligna*, *E. urophylla*, and *E. camaldulensis*, respectively, when compared to the control (0 mmol, dm$^{-3}$ of Na). Meanwhile, the K-deficient plants of all genotypes had lower A. Compared to the control, the intermediary rates of Na also increased E up to 200 and 50% in *E. saligna* and *E. urophylla*, respectively, under both water conditions, and 40% in *E. camaldululensis* under WW. Against the other genotypes, E decreased until the intermediary Na rates for *E. camaldululensis* under WS conditions. The K-deficient plants had higher E, except for *E. urophylla* under WW. The g_s increased with partial K replacement by Na up to 250% in *E. saligna* and to 50% in *E. urophylla* and *E. camaldululensis* under both water conditions compared to the control. K-deficient plants had significantly lower g_s in *E. urophylla* under WW and *E. camaldululensis* under WS. Considering the mean of all rates, drought increased A by 20% in *E. saligna* and decreased its values by 15% in *E. urophylla* and *E. camaldululensis*; it also reduced the E values by 45, 35, and 75% and the g_s values by 50, 30, and 55%, in *E. saligna*, *E. urophylla*, and *E. camaldululensis*, respectively, compared to those under WW.

Leaf Carbon Isotope Composition ($\delta^{13}C\%$)

Factors Na, WS, and Na×WS significantly influenced the leaf carbon isotopic compositions ($\delta^{13}C\%$) of *E. saligna* and *E. urophylla*, whereas for *E. camaldululensis*, it was affected by Na and WS (Figures 3A–C). Under WW, for *E. saligna* and *E. camaldululensis*, the $\delta^{13}C\%$ increased with lower Na application rates (0.22 mmol$_c$ dm$^{-3}$ of Na) and decreased with higher Na rates. In contrast, the values of $\delta^{13}C\%$ for *E. urophylla* were reduced at lower rates (0.22 mmol$_c$ dm$^{-3}$ of Na). The lowest $\delta^{13}C\%$ values were observed in K-deficient plants (0.9 mmol$_c$ dm$^{-3}$ of Na) of *E. urophylla* and *E. camaldululensis* under both water conditions and in the intermediate Na rates (0.44 and 0.67 mmol$_c$ dm$^{-3}$ of Na) of *E. saligna* under WS. Drought stress increased the $\delta^{13}C\%$ values of all species when compared to WW.

Predawn and Noon Leaf Water Potentials

In *E. saligna*, both predawn (Ψ_{WP}) and noon (Ψ_N) leaf water potentials were affected by Na, WS, and Na×WS (Figures 4A,D), while in *E. urophylla* (Figures 4B,E) and *E. camaldululensis* (Figures 4C,F), these were affected by Na and WS. The lowest Ψ_{WP} and Ψ_N values were found at low to intermediate Na rates (0.22 and 0.44 mmol$_c$ dm$^{-3}$) in *E. saligna* as well as for *E. urophylla* under both water conditions, except the Ψ_N of *E. saligna* under WW, which increased linearly with Na application. Otherwise, the Ψ_{WP} of *E. camaldululensis* increased up to 0.67 mmol$_c$ dm$^{-3}$ in both conditions, while the Ψ_N decreased with
increasing Na application rates. The Ψ_{wp} values of all genotypes were lower under WS than under WW, while the opposite was found in Ψ_{wN} values since the WS conditions decreased up to 25, 10, and 55% for *E. saligna*, *E. urophylla*, and *E. camaldulensis*, respectively, considering the mean of all Na application rates.

Total Dry Matter Yield

The TDM of all genotypes was affected by Na, WS, and Na\timesWS (Table 1). Partial K replacement by Na increased the TDM of all genotypes under both conditions, except in *E. saligna* under WS, which had a higher TDM than the control (0 mmol, dm$^{-3}$ of Na), decreasing linearly with higher Na rates. The K-deficient plants (0.9 mmol, dm$^{-3}$ of Na) had lower TDM levels by 35% under both water conditions compared to the control. Under WW, the maximum TDM (critical level) was reached with 0.048 mmol, dm$^{-3}$ Na and 0.852 mmol, dm$^{-3}$ of K, corresponding to 5.3% substitution and 48.9 g per plant.

In *E. urophylla*, a higher TDM level was found in plants with low Na rates (0.22 mmol, dm$^{-3}$) at both water conditions, whereas K-deficient plants had decreased TDM by 50 and 30% than the control treatment in WW and WS, respectively. The estimated Na rate to give the maximum TDM was 0.06 mmol, dm$^{-3}$ of Na and 0.84 mmol, dm$^{-3}$ of K, which corresponded to 6.7% of substitution reaching 69.9 g per plant. Under WS, the estimated Na rate was 0.085 mmol, dm$^{-3}$ and 0.815 mmol, dm$^{-3}$ of K, corresponding to 9.3% substitution and 55.13 g per plant.

In contrast to the other genotypes, the higher TDM values of *E. camaldulensis* were observed up to an Na rate of 0.44 mmol, dm$^{-3}$ under both water conditions, which means a substitution of K by Na around 50%. The K-deficient plants had lower TDM by 55 and 35% than the control treatment under the WW and WS conditions, respectively. The rates estimated to obtain the maximum TDM under WW was 0.27 mmol dm$^{-3}$ of Na and 0.63 mmol, dm$^{-3}$ of K, corresponding to a substitution level of 30% and 69.81 g per plant. Under WS, the estimated rates were 0.09 mmol, dm$^{-3}$ of Na and 0.81 mmol, dm$^{-3}$ of K, corresponding to 10% K replacement by Na and 46.4 g per plant.
Leaf Area

Leaf area (LA) was influenced by Na, WS, and Na*WS in *E. saligna* (Table 1). Under WW, LA decreased up to 30% with higher Na application, while under WS, an increase around 10% occurred with intermediary rates of Na (0.44 and 0.67 mmol·dm$^{-3}$) when compared to the control (0 mmol·dm$^{-3}$ of Na). The LA of *E. urophylla* and *E. camaldulensis* was affected by Na and WS. Low to intermediary Na rates (0.22 and 0.44 mmol·dm$^{-3}$) increased the LA of *E. urophylla* by up to 60 and 25% compared to the control under WW and WS, respectively. In *E. camaldulensis*, these Na rates increased the LA by 6% compared to the control under WW. Otherwise, K-deficient
Mateus et al. Partial K/Na Replacement Increases WUE

FIGURE 3 | Leaf Carbon Isotope Composition (δ¹³Cₗ) of Eucalyptus saligna (A), Eucalyptus urophylla (B), and Eucalyptus camaldulensis (C) seedlings under K partial replacement by Na in well-watered (WW) and water-stressed (WS) conditions. Vertical bars indicate standard errors among blocks (n = 4). The adjustment model is indicated by not significant (ns) and without suitable adjustment (wa).

FIGURE 4 | Predawn (ΨᵥPD) (A–C) and noon (ΨᵥN) (D–F) leaf water potentials of Eucalyptus saligna (A,D), Eucalyptus urophylla (B,E), and Eucalyptus camaldulensis (C,F) seedlings under K partial replacement by Na in well-watered (WW) and water-stressed (WS) conditions. Vertical bars indicate standard errors between blocks (n = 4).
TABLE 1 | Mean values (±standard errors, n = 4) of total dry matter (TDM) production, leaf area, and long-term water use efficiencies (WUE) in the leaves of Eucalyptus saligna, Eucalyptus urophylla, and Eucalyptus camaldulensis seedlings under K partial replacement by Na in well-watered (WW) and water-stressed (WS) conditions.

Na application rate (mmol dm⁻³)	TDM (g per plant)	Leaf area (m² per plant)	WUE (plant dry matter kg⁻¹ H₂O)	
	WW	WS	WW	WS
E. saligna				
0	50.54 ± 3.96	49.1 ± 5.00	0.18 ± 0.009	0.12 ± 0.002
0.22	53.8 ± 9.30	40.45 ± 2.00	0.13 ± 0.007	0.12 ± 0.003
0.44	42.23 ± 4.50	39.55 ± 3.90	0.14 ± 0.013	0.13 ± 0.005
0.67	37.6 ± 8.40	39.96 ± 2.10	0.12 ± 0.009	0.13 ± 0.008
0.9	32.42 ± 6.00	31.5 ± 4.50	0.10 ± 0.010	0.10 ± 0.003
Model				
y = 51 - 43.25Na + 20Na² + 0.5	y = 56.1 - 14.1Na + 33.7Na²	y = 0.27 + 0.2Na² - 0.42Na²	y = 1.66 - 1.1Na + 0.5Na² - 3.94Na²²	
R²	0.93	0.6	0.94	0.89
E. urophylla				
0	71.65 ± 1.30	56.2 ± 3.85	0.18 ± 0.010	0.13 ± 0.020
0.22	73.52 ± 3.00	61.6 ± 4.15	0.20 ± 0.020	0.14 ± 0.003
0.44	65.2 ± 0.22	52.0 ± 2.50	0.29 ± 0.010	0.16 ± 0.020
0.67	46.7 ± 3.95	47.4 ± 4.55	0.18 ± 0.030	0.14 ± 0.020
0.9	36.6 ± 4.15	39.0 ± 2.00	0.17 ± 0.030	0.10 ± 0.004
Model				
y = 71.7 - 89.4Na + 46.4Na²²	y = 56.1 - 55Na + 33.7Na²²	y = 0.12 + 0.1Na² - 0.22Na²	y = 2.19 + 0.12Na - 1.26Na²	
R²	0.98	0.96	0.93	0.84
E. camaldulensis				
0	69.5 ± 5.76	50.3 ± 5.00	0.15 ± 0.003	0.10 ± 0.009
0.22	74.7 ± 5.85	51.3 ± 3.00	0.16 ± 0.010	0.10 ± 0.015
0.44	68.08 ± 4.10	47.8 ± 5.55	0.16 ± 0.020	0.10 ± 0.002
0.67	65.25 ± 5.74	42.7 ± 4.00	0.14 ± 0.008	0.08 ± 0.004
0.9	31 ± 7.49	32.8 ± 0.98	0.10 ± 0.010	0.08 ± 0.020
Model				
y = 67.1 ± 69.9Na + 116.7Na²²	y = 51.3 + 6Na - 0.14Na²²	y = 0.1 + 0.02Na + 0.07Na²²	y = 2.18 + 1Na² - 1.82Na²	
R²	0.83	0.99	0.98	0.72

For each parameter, *, **, and *** indicate the statistical influence (F test with a significance threshold of p < 0.05) of Na rates, WS, and WS × Na, respectively. The adjustment model is indicated by without suitable adjustment (wa).

plants (0.9 mmol dm⁻³ of Na) significantly decreased the LA up to 40% in all genotypes compared to the control. Water stress decreased the LA by 15, 35, and 36% in E. saligna, E. urophylla, and E. camaldulensis, respectively, according to the mean of all Na rates.

Water Use Efficiency

Water use efficiency (WUE) was influenced by Na, WS, and Na×WS in E. saligna and E. camaldulensis, whereas in E. urophylla, it was only affected by Na and WS (Table 1). In E. saligna and E. urophylla under WW and in E. camaldulensis under both conditions, low K replacement by Na increased the WUE and decreased it in higher Na rates. Otherwise, plants of E. saligna and E. urophylla under WS decreased the WUE due to Na supply. Drought stress increased the WUE by 33, 35, and 17% in E. saligna, E. urophylla, and E. camaldulensis, respectively, irrespective of the Na rate. In addition, the mean WUE was higher in E. camaldulensis (drought tolerant), followed by E. urophylla (moderate tolerance) and E. saligna (drought sensitive) in both water conditions.

K and Na Leaf Concentrations and Efficiency of Use

The Na leaf concentration [Na] was influenced by Na and WS in E. saligna (Figure 5A), E. urophylla (Figure 5B), and E. camaldulensis (Figure 5C). While the K leaf concentration [K] was affected by Na, WS, and Na×WS (Figure 5D) in E. saligna, E. urophylla (Figure 5E), and E. camaldulensis (Figure 5F). This affected only the Na rates and WS. Overall, K decreased and Na increased with increasing Na rates. In addition, the concentration levels were higher in plants under WW than in WS. In E. saligna under WW, the replacement of 5.3%, corresponding to 90% of TDM and reaching rates of 0.041 and 0.85 mmol dm⁻³ of Na and K, respectively, decreased the K by 0.06 g kg⁻¹, while Na increased by 0.12 g kg⁻¹ compared to the application of only K, increasing plant growth. Furthermore, K of 2.9 g kg⁻¹ was still above the critical level of K, without symptoms of deficiency, E. urophylla under WW with 6.7% of K replacement by Na reached the rates 0.06 and 0.83 mmol dm⁻³ of Na and K, respectively; K decreased by 0.13 g kg⁻¹, while Na increased by 0.018 g kg⁻¹ compared to the application of only K. Under WS, 9.3% of K replacement by Na reached the rates 0.085 and
FIGURE 5 | Leaf Na (A–C) and leaf K (D–F) concentrations of Eucalyptus saligna (A,D), Eucalyptus urophylla (B,E), and Eucalyptus camaldulensis (C,F) seedlings under K partial replacement by Na in well-watered (WW) and water-stressed (WS) conditions. Vertical bars indicate standard errors between blocks (n = 4).

0.815 mmol c dm−³ of Na and K, respectively; K decreased by 0.07 g kg−¹, while Na increased by 0.052 g kg−¹ compared to the application of only K. Conversely, E. camaldulensis under WW, with 30% of K replacement by Na, reached the rates 0.27 and 0.63 mmol, dm−³ Na and K, respectively; K decreased by 0.46 g kg−¹, while Na increased by 0.44 g kg−¹ compared to the application of only K.

Additionally, the leaf K/Na ratios decreased with increasing Na levels. According to the estimated rate of Na to achieve the maximum TDM of E. saligna, E. urophylla, and E. camaldulensis, the optimal leaf K/Na ratios were 1.7, 2.9, and 2.2, respectively, under WW and 2.6, 2.2, and 3.2, respectively, under WS (Table 2). UEK was affected by Na and WS, increasing up to 30% mainly with low K replacement by Na, while UEKNa was affected by Na, WS, and Na∗WS (Table 2), decreasing up to 70% with higher K replacement by Na. Water stress decreased the UE of both K and Na compared to WW.

Characterization Among Genotypes

In E. saligna (Figure 6A), the total variance was explained by 64% (PC1 + PC2), with PC1 being explained by \bar{V}_{NW}, UEK, [K], and δ^{13}C‰, while PC2 was explained by TDM, StdAB, and [Na]. The parameters A, WUE, LA, E, and g_s contributed with average weights to explain the data variance in PC1 and PC2. Under WW, low to intermediate Na rates (up to 0.44 mmol, dm−³) were characterized by higher values of TDM and StdAB and lower values of Na and δ^{13}C‰. Plants under lower Na rates and WS showed higher WUE and δ^{13}C‰ values. The Na rate of 0.9 mmol, dm−³ resulted in higher Na levels and lower K, TDM, and StdAB values.

In E. urophylla (Figure 6C), the total variance was explained by 66% (PC1 + PC2), with PC1 being explained by g_s and E and PC2 by WUE, δ^{13}C‰, [K], TDM, and Na. The parameters StdAB, UEK, A, \bar{V}_{NW}, and LA contributed with average weights to explain the data variance in PC1 and PC2. Under WW, low to intermediate Na rates were characterized by higher values of TDM and StdAB, UEK, A, LA, g_s, and E. Higher Na rates were identified by higher Na and lower TDM, [K], WUE, and δ^{13}C‰ levels. Under WS, Na rates of 0 and 0.22 mmol, dm−³ resulted in higher WUE and δ^{13}C‰ and lower LA, E, and g_s levels.

In E. camaldulensis (Figure 6E), the total variance was explained by 77% (PC1 + PC2), with PC1 being explained by...
TABLE 2 | Mean values (±standard errors, n = 4) of leaf K/Na ratio and K and Na use efficiency of Eucalyptus saligna, Eucalyptus urophylla, and Eucalyptus camaldulensis seedlings under K partial replacement by Na in well-watered (WW) and water-stressed (WS) conditions.

Na application rate (mmol dm\(^{-3}\))	Leaf K/Na ratio	Use efficiency (g\(^2\) mg\(^{-1}\))		
	WW	WS	WW	WS
	K	Na		
E. saligna				
0	2.14 ± 0.12	2.97 ± 0.31	20.8 ± 2.8	21.7 ± 1.5
0.22	1.54 ± 0.17	1.49 ± 0.14	28.5 ± 3.0	19.2 ± 2.2
0.44	1.32 ± 0.22	1.06 ± 0.07	27.3 ± 0.9	25.9 ± 3.2
0.67	0.81 ± 0.13	0.80 ± 0.11	33.5 ± 1.5	29.2 ± 2.7
0.9	0.44 ± 0.09	0.41 ± 0.03	30.1 ± 3.6	22.7 ± 3.3
Model				
	y = 2 - 1.8Na		y = 20.8 - 8.0Na +	wa
			3.45Na\(^{0.5}\)	
R\(^2\)	0.98	0.99	0.82	0.96
E. urophylla				
0	3.74 ± 0.46	3.00 ± 0.49	46.5 ± 2.5	38.7 ± 4.4
0.22	2.41 ± 0.27	1.95 ± 0.27	60.87 ± 5.0	45.6 ± 5.7
0.44	1.54 ± 0.12	1.25 ± 0.10	47.14 ± 4.2	41.74 ± 2.1
0.67	0.7 ± 0.04	0.79 ± 0.06	46.48 ± 0.7	40.01 ± 2.3
0.9	0.4 ± 0.04	0.50 ± 0.03	37.8 ± 4.5	33.82 ± 1.9
Model				
	y = 3.7 - 6.5Na + 3Na\(^2\)		y = 47.1 - 65.78Na + 51.7Na\(^{0.5}\)	
			2.6Na\(^2\)	
			+ 31.87Na\(^{0.5}\)	
R\(^2\)	0.99	0.99	0.83	0.96
E. camaldulensis				
0	6.17 ± 0.41	4.62 ± 1.04	51.5 ± 5.0	21.8 ± 0.3
0.22	3.1 ± 0.22	2.79 ± 0.09	53.4 ± 4.7	26.8 ± 0.1
0.44	1.26 ± 0.10	0.96 ± 0.16	52.4 ± 5.0	31.7 ± 1.0
0.67	0.84 ± 0.06	0.75 ± 0.07	73.2 ± 4.2	30.1 ± 0.2
0.9	0.75 ± 0.20	0.52 ± 0.11	32.1 ± 4.8	28.5 ± 1.2
Model				
	y = 6 - 15.8Na + 10.6Na\(^{0.5}\)		y = 5.2 - 2.33Na + 2.15Na\(^{0.5}\)	
			6.9Na\(^{2}\)	+ 8.6Na\(^2\)
			- 2.15Na\(^{0.5}\)	
R\(^2\)	0.99	0.99	0.77	0.99

For each parameter, *, **, and *** indicate the statistical influence (F test with a significance threshold of p < 0.05) of Na rates, WW, and WS × Na, respectively. The adjustment model is indicated by without suitable adjustment (wa).

TDM, g\(_{s}\), LA, \(\Psi_{WN}\), and [Na] and PC2 by WUE, \(\delta^{13}\)C\(_{w}\), and E. The parameters [K], \(\text{Std}_{AB}\), A, and \(UE_{K}\) contributed with average weights to explain the data variance in PC1 and PC2. Under WW, low to intermediate Na rates were characterized by higher values of TDM, g\(_{s}\), LA, \(\Psi_{WN}\), and \(UE_{K}\) by and lower values of [Na]. Moreover, the Na rate of 0.9 mmol dm\(^{-3}\) resulted in higher E and [Na] and lower \(\delta^{13}\)C\(_{w}\), WUE, and [K] values. Plants under WS with low to intermediate Na supply were characterized by higher values of [K], WUE, and \(\delta^{13}\)C\(_{w}\) and by lower E values.

Cluster analysis showed the formation of three main groups among the treatments in all genotypes. In E. saligna (Figure 6B), group 1 was represented by Na rates of 0, 0.22, and 0.44 mmol dm\(^{-3}\) under WW, which represented the control and low to intermediate rates; group 2 by the rate of 0.67 mmol dm\(^{-3}\) under WW and the rates of 0, 0.22, 0.44, and 0.67 mmol dm\(^{-3}\) under WS; and group 3 contained K-deficient plants (0.9 mmol dm\(^{-3}\) of Na) under both conditions. In E. urophylla (Figure 6D), group 1 comprised plants receiving no Na under WW and 0.22, 0.44, and 0.9 mmol dm\(^{-3}\) of Na under WS, while group 2 contained plants receiving 0.67 and 0.9 mmol dm\(^{-3}\) of Na under WS. In group 3, the plants received 0.22, 0.44, and 0.67 mmol dm\(^{-3}\) of Na under WW and no Na under WS. In E. camaldulensis (Figure 6F), group 1 was composed of plants receiving 0, 0.22, 0.44, and 0.67 mmol dm\(^{-3}\) of Na under WW, while in group 2, plants received 0, 0.22, 0.44, and 0.67 mmol dm\(^{-3}\) of Na under WS. In group 3, plants received only 0.9 mmol dm\(^{-3}\) of Na under both water regimes.

DISCUSSION

To withstand drought periods, plants have evolved numerous mechanisms that vary among species (Merchant et al., 2007), which include morphological adaptations such as growth inhibition and stomatal closure (Warren et al., 2007), lowering its LA to avoid overheating (Ahrens et al., 2020) and water loss by leaf transpiration rates (Drake et al., 2019). For this, the plant reduces its tissue water content as a coordination of physiological and structural adaptations (Merchant et al., 2006), as well as cell contraction, turgor loss (Cosgrove, 1997),
and slower leaf expansion (Pita-Barbosa et al., 2016). The Ψ_{WN} inducing stomatal closure plays a critical role in drought avoidance by protecting the integrity of xylem water transport, given that early stomatal closure and leaf shedding precede the beginning of embolism during prolonged drought stress (Li et al., 2020). The drought-induced reductions in plant growth were accompanied by a decrease in LA and leaf gas exchanges, differing in degree among species. Our findings clearly suggest that different genotypes provided adaptations to face drought stress (Table 1) and confirming Ψ_w as an effective indicator for measuring the drought tolerance of plants.

Furthermore, plants grown under WW showed the lowest decreases from Ψ_{WPD} to Ψ_{WN}, demonstrating a great reduction in osmotic pressure to maintain cell turgor in plants grown under WS, which unexpectedly showed higher Ψ_{WPD} than did plants under WW. Although different hydraulic systems have been found among species and genotypes of the same species (Costa e Silva et al., 2004), a lower Ψ_{WPD} was expected in WS relative to the WW condition (Drake et al., 2019). The replacement of K by Na in the vacuoles promoted a faster
decrease in cell osmotic potential in plants under drought, as it also increased cell expansion in plants under adequate water availability (Hampe and Marschner, 1982). Albeit the three species demonstrated adaptive capacity to the environmental conditions, the values measured differently respond to treatments and water conditions due to the contrasting genotypic patterns of control drought tolerance (Ahrens et al., 2020). The variance in the Ψw values under the WW and WS conditions indicated that the differences in drought tolerance between the *Eucalyptus* species are associated with osmotic adjustments and drought avoidance mechanisms, turning essential the integration of several adaptive strategies simultaneously (Shvaleva et al., 2006). According to the authors, differences in the metabolic responses may also reflect distinct degrees of stress experienced throughout the experimental period. In general, osmolyte accumulation as a consequence of drought reduces the cell osmotic potential and improves the water absorption and cell turgor, sustaining future physiological processes, such as stomatal opening, photosynthesis, cell growth, and enhanced dehydration tolerance under drought conditions. As observed, the drought-avoidance mechanisms of *E. camaldulensis* did not reach the same degree of tolerance to drought stress by *E. saligna* and *E. urophylla*. Stomata distribution on the leaf surface was also related to the amount of energy used in transpiration (latent heat transfer; Jarvis and McNaughton, 1986). In *E. saligna* and *E. urophylla*, stomata occurred on the underside (hypostomatous leaves), which is common in plants of mesophytic habitats (Figure 1 and Supplementary Figure S1). However, the stomata of *E. camaldulensis*, the drought-tolerant genotype (Gonçalves et al., 2017), occurred on both sides (amphistomatous leaves), which is common in arid environments (Parkhurst, 1978) and has been correlated with a reduced internal diffusion resistance by the lower pathway length of CO₂ molecules to the carboxylation sites (Mott and Michaelson, 1991). According to the authors, the occurrence of stomata on both sides would be advantageous in plants growing under high light intensity, where the internal CO₂ concentration limits the photosynthetic rates. As observed in our study, adaptations to drought stress were stimulated in all *Eucalyptus* species with partial K replacement by Na.

An adequate K nutritional status of plants promotes tolerance to abiotic stress (Cakmak, 2005) and enhances the WUE of trees (Battie-Laclau et al., 2016) since water uptake by the roots and stomatal opening are facilitated by K accumulation in the root xylem vessels and guard cells, increasing the tissue's water status and improving tolerance to water stress (Mengel et al., 2001). According to Ahrens et al. (2020), the WUE is correlated with δ^{13}C/δC, which in turn relates to leaf gas exchange properties. These statements are in agreement with our findings. Due to drought, the reduction in E (biophysical process) as a consequence of the significant decline in g_a was not accompanied in the same degree by A (biophysical/biochemical process), increasing WUE, δ^{13}C/δC, and plant drought resistance (Egilla et al., 2005; Sarabi et al., 2019). In contrast to *E. urophylla* and *E. camaldulensis*, the drought increased A in *E. saligna*, which was unexpected. We hypothesize that evaluations in leaf scale as A, E, and g_a produce accurate data of a specific time and may not always be reliable in predicting whole plant responses throughout their cycle (Jákli et al., 2016), which in turn can be reflected by δ^{13}C/δC and WUE (Condon et al., 2002), integrative indicators of changes in the environmental conditions that occur during the entire experimental period (Seibt et al., 2008). Furthermore, drought stress reduced EUK and EUW, being an adaptive strategy favoring nutrient accumulation in an unfavorable soil–climate situation to subsequently increase nutrient translocation and use under favorable growth conditions (Müller et al., 2017).

Our studies indicate that, to a certain degree, the replacement of K by Na promoted *Eucalyptus* growth (Subbarao et al., 1999; Krishnasamy et al., 2014), with a small amount of Na being equivalent to K in their function (Ivahupa et al., 2006). Plants with low K replacement by Na showed higher TDM compared to those receiving only K (0 mmol, dm$^{-3}$ of Na) or of K-deficient plants (0.9 mmol, dm$^{-3}$ of Na) even in those under WS, except for *E. saligna*, the drought-sensitive genotype (Table 1). As Na can partially substitute K in the vacuole, making more K available to the cytosol (Rodríguez-Navarro and Rubio, 2006), low K replacement by Na contributed to enhancing cell turgor and expansion (Wakeel et al., 2011), promoting plant growth (Martínez et al., 2005; Ma et al., 2011; Schulze et al., 2012; Battie-Laclau et al., 2013), as observed by the higher TDM concomitant to the lower Ψw in plants. Furthermore, the estimated ideal percentage of substitution increased according to the drought tolerance of the genotypes, reaching 30% in *E. camaldulensis* under WW, confirming Na as a beneficial element in plant dry matter (Subbarao et al., 2003; Idowu and Aduayi, 2006; Wakeel et al., 2011; Kronzucker et al., 2013) even under drought (Yue et al., 2012; Xi et al., 2018). The leaf K/Na ratio is commonly used as a predictor of plant performance (Munns and Tester, 2008), varying among *Eucalyptus* genotypes (Marcar and Termaat, 1990). An appropriate leaf K/Na ratio was found for low K replacement by Na, as observed by the estimated maximum yield, varying from 1.5 to 3.1 among the *Eucalyptus* genotypes (Marcar and Termaat, 1990) and water regimes (Table 1). A similar leaf K/Na ratio of 3.4 was found by Mateus et al. (2019) in hybrid *Eucalyptus* subjected to K replacement by Na in the nutrient solution. This indicates that Na can reduce the critical levels of leaf K under an adequate K/Na ratio, providing changes in plant performance and demand, albeit without any symptoms of K deficiency (Besford, 1978; Krishnasamy et al., 2014). There is no evidence of key cytosolic components being hampered by a low Na supply, unlike under salinity conditions (Gattward et al., 2012), although a greater efficiency in the osmotic function of plants supplied with both K and Na was observed in our study, corroborating the results of previous studies (Jeschke, 1977). These authors suggested that the replacement of K by Na in the process of osmoregulation in vacuoles improved turgor and cell expansion (Pi et al., 2014). In our study, the low K replacement by Na (up to 50%) increased Std and, consequently, A, E, and g_a at the expense of higher WUE values, evidencing the benefits of nutrient interaction to a certain degree.

Low K replacement by Na confirmed that nutrient interaction is a strategy to increase the UEK under low soil K availability, proposed by Laclau et al. (2003), not only allowing the maintenance of productivity despite the lower K supply but also favoring plant development (Ma et al., 2011) and...
allowing the increase in plant TDM. Notably, large proportions of substitution decreased the K/Na ratio and led to lower photosynthetic performance and biomass, as observed by the negative relationship between TDM and Na (Figure 6), evidencing the interaction among mineral nutrition, nutrient use, and soil water availability in Eucalyptus (Tariq et al., 2019). Potassium decreased concomitantly to the higher Na rates in Eucalyptus (Figure 5), suggesting that the Na ions were directed toward the vacuole as an alternative inorganic osmoticum (Flowers and Lauchli, 1983), including guard cells (Terry and Ulrich, 1973), and releasing K to the cytoplasm and metabolic pathways, such as in the chloroplast (Speer and Kaiser, 1991), stimulating photosynthesis (Krishnasamy et al., 2014) and water retention (Xi et al., 2018). It is widely hypothesized that despite the drop in K, the K cytoplasm concentration is maintained near 100 mmol L$^{-1}$ K, which is required for adequate enzyme activities (Britto and Kronzucker, 2008), as also suggested by Gattward et al. (2012).

However, the stomata of plants under high K replacement by Na cannot function properly, favoring stomatal opening and promoting E. The absence of K stimulates ethylene synthesis (Benlloch-Gonzalez et al., 2010), impairing the action of abscisic acid on the stomata, decreasing g_s and delaying stomatal closure (Tanaka et al., 2006), thus reducing WUE and TDM (White et al., 2009; Christina et al., 2018). The LA development was also directly affected by the plant mineral nutritional status (Marschner, 2012), especially K nutrition (Egilla et al., 2005; Battie-Laclau et al., 2013; Tavakol et al., 2018). In our study, yellowing in the leaf margins and even delayed stomatal closure were noticed in K-deficient plants (0.9 mmol, dm$^{-3}$ of Na) (Wang et al., 2013), dramatically reducing LA (Bednarz et al., 1998). Plant yield also decreased due to K deficiency, an essential element that cannot be completely replaced (Arnon and Stout, 1939) due to its specific functions, such as enzyme activation, initiation (Spyrides, 1964), elongation (Lubin and Ennis, 1964), termination of translation (Näslund and Hultin, 1971), and conformation of ribosomes (Klein, 2004). Our results indicated that since K-deficient plants occurred at Na rates higher than 0.67 mmol, dm$^{-3}$, a K/Na ratio of 1:0 is critical for Eucalyptus growth since lower ratios significantly decreased plant TDM. Thus, understanding the K/Na ratio mechanisms may be useful for the development of strategies to reduce K fertilization by replacing it with more cost- and energy-efficient alternatives (Benito et al., 2014). Drought results in g_s and g_m impairments (Chaves et al., 2009), decreasing C_t and resulting in the fixation of available CO$_2$ molecules. Thus, under drought, stomatal closure leads to the enrichment in 13C and, consequently, in a higher δ^{13}C$\%$ (Robinson et al., 2000). In contrast, the decrease in δ^{13}C$\%$ indicated higher stomatal aperture (Farquhar et al., 1989), as shown by the lower WUE, confirming that the stomata of K-deficient plants cannot function properly, favoring stomatal opening and promoting E. Therefore, K-deficient plants under both conditions were characterized by lower δ^{13}C$\%$, WUE, TDM, and K levels and higher Na levels, which explains their grouping in the same cluster (0.9 mmol, dm$^{-3}$ of Na under WW and WS) (Figure 6). Low K replacement, markedly under drought, also resulted in lower numbers of open stomata, indicated by the higher δ^{13}C$\%$ (more positive) and WUE values, which was associated with a better response to drought, confirming the statement that the richer plants are in δ^{13}C$\%$, the greater the WUE, as proposed by Farquhar et al. (1989). Our results also showed greater relative whole plant transpiration than the control plants, suggesting adequate stomatal closure by osmotic adjustment to avoid water loss at the expense of photosynthetic restriction and mitigating drought impacts. Moreover, plants with low replacement levels of K by Na were grouped into the same cluster, with similar responses characterized by higher Std, UE$_K$, δ^{13}C$\%$, WUE, TDM, and K levels and lower Na levels.

CONCLUSION

Regardless of the water condition, the substitution of K by Na at a level of 25–50% reduced the critical level of K without symptoms of K deficiency and allowed optimum Eucalyptus dry matter production. It also improved CO$_2$ assimilation, Std, UE$_K$, and WUE and maintained leaf turgidity by reducing Ψ_{WN}, with the stomata partially closed, indicated by the higher δ^{13}C$\%$, mitigating the negative impacts of drought. Furthermore, the estimated ideal percentage of substitution increased according to the drought tolerance of the genotypes (E. saligna $<$ E. urophylla $<$ E. camaldulensis). When only Na was supplied, inferring K-deficient plants, in addition to the lower growth, plants were characterized by lower δ^{13}C$\%$, WUE$_L$, and K levels and higher Na levels. The ideal leaf K/Na ratio to provide the maximum yield varied from 1.7 to 3.2 among genotypes and water regimes; values below 1:0 were critical for Eucalyptus growth since lower ratios significantly decreased plant development.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors contributed to the literature search, discussion, and writing of the manuscript. NM, AVF, JG, and JL conceived and designed the study. NM performed most experiments. ALF and ES assisted with the management of pot culture and plant material, analysis, and interpretation of data. All authors checked and approved the submitted version.

FUNDING

This work was supported financially in part by the National Council for Scientific and Technological Development (CNPq, Project No. 137864/2017-5) and the agreement of
ACKNOWLEDGMENTS

We gratefully acknowledge the two reviewers for constructive suggestions on an earlier version of this manuscript. JL is grateful for the scholarship support to NM. JL thanks the “National Council for Scientific and Technological Development” from Brazil (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq) for the research fellowship (Grant No. #310572/2017-7).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.632342/full#supplementary-material
Martin, B., and Thorstenson, Y. R. (1988). Stable carbon isotope composition (delta C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F(1) hybrid. Plant Physiol. 88, 213–217. doi: 10.1104/pp.88.1.213

Martínez, J.-P., Kinet, J.-M., Baji, M., and Lutts, S. (2005). NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J. Exp. Bot. 56, 2421–2431. doi: 10.1093/jxb/eri235

Mateus, N., Ferreira, E., Arthur, J. Jr., Domec, J., Jordan-Meille, J., Gonçalves, J., et al. (2019). The ideal percentage of K substitution by Na in Eucalyptus seedlings: evidences from leaf carbon isotopic composition, leaf gas exchanges and plant growth. Plant Physiol. Biochem. 137, 102–112. doi: 10.1016/j.phyto.2019.02.006

Mengel, K., Kirkby, E. A., Kosgeraten, H., and Appel, T. (2001). “Potassium,” in Principles of Plant Nutrition, 5th Edn, eds K. Mengel, E. A. Kirkby, H. Kosegarten, and T. Appel (Dordrecht: Springer Netherlands), 481–511. doi: 10.1007/978-94-010-1099-2_10

Merchant, A., Callister, A., Arndt, S., Tausz, M., and Adams, M. (2007). Contrasting physiological responses of six Eucalyptus species to water deficit. Ann. Bot. 100, 1507–1515. doi: 10.1093/abob/mcm234

Merchant, A., Tausz, M., Arndt, S. K., and Adams, M. A. (2006). Cyclotides and carboxylates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant Cell Environ. 29, 2017–2029. doi: 10.1111/j.1365-3040.2006.01577.x

Mott, K. A., and Michaelson, O. (1991). Amphistomy as an adaptation to high light intensity in Ambrosia cordifolia (Compositae). Am. J. Bot. 78, 76–79. doi: 10.2307/2445350

Müller, C., Hodecker, B. E. R., Merchant, A., and de Barros, N. F. (2017). Nutritional efficiency of eucalyptus clones under water stress. Rev. Bras. Cienc. Solo 41:e0160528. doi: 10.1590/18069657rbs20160528

Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911

Naslund, P. H., and Hultin, T. (1971). Structural and functional defects in mammalian ribosomes after potassium deficiency. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 254, 104–116. doi: 10.1016/0005-2787(71)90117-1

Novais, R., Neves, J., and Barros, N. (1991). “Ensaios em ambiente controlado,” in Métodos de Pesquisa Em Fertilidade do Solo, ed. A. J. Oliveira (Brasília: EMBRAPA-SEA), 189–253.

Oddo, E., Inzerillo, S., La Bella, F., Grisafi, F., Salleo, S., and Nardini, A. (2011). Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol. 31, 131–138. doi: 10.1093/trphony/tpl015

Paquette, A., and Messier, C. (2010). The role of plantations in managing the world’s forests in the Anthropocene. Front. Ecol. Environ. 8,27–34. doi: 10.1890/090023

Pardo, J. M., and Quintero, F. J. (2002). Plants and sodium ions: keeping company with the enemy. Genome Biol. 3:reviews1017.1. doi: 10.1186/gb-2002-3-6-reviews1017

Parkhurst, D. F. (1978). The adaptive significance of stomatal occurrence on one or both surfaces of leaves. J. Ecol. 66, 367–383. doi: 10.2307/2259142

Pi, Z., Stevanato, P., Ye, L. H., Geng, G., Guo, X. L., Yang, Y., et al. (2014). Effects of potassium deficiency and replacement of potassium by sodium on sugar beet plants. Russ. J. Plant Physiol. 61, 224–230. doi: 10.1134/S1066518414100201

Pita-Barbosa, A., Hodecker, B. E. R., and de Barros, N. (2016). Boron as mitigator of drought damage in Eucalyptus: a genotype-dependent mechanism? Sci. For. 44, 851–861. doi: 10.18671/scifor.v44n112.07

Quais, M. K., Munawar, A., Ansari, N. A., Zhou, W. W., and Zhu, Z. R. (2020). Interactions between brown planthopper (Nilaparvata lugens) and salinity stressed rice (Oryza sativa) plant are cultivar-specific. Sci. Rep. 10:8051. doi: 10.1038/s41598-020-64925-1

R Development Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Robinson, D., Handley, L. L., Scrimgeour, C. M., Gordon, D. C., Forster, B. P., and Ellis, R. P. (2000). Using stable isotope natural abundances (delta 15N and delta 13C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch) genotypes. J. Exp. Bot. 51, 41–50.

Rodríguez-Navarro, A., and Rubio, F. (2006). High-affinity potassium and sodium transport systems in plants. J. Exp. Bot. 57, 1149–1160. doi: 10.1093/jxb/erj068
Sarabi, B., Fresneau, C., Ghaderi, N., Bolandnazar, S., Streb, P., Badeck, F.-W., et al. (2019). Stomatal and non-stomatal limitations are responsible in down-regulation of photosynthesis in melon plants grown under the saline condition: application of carbon isotope discrimination as a reliable proxy. Plant Physiol. Biochem. 141, 1–19. doi: 10.1016/j.plaphy.2019.05.010

SAS Institute Inc (2004). SAS/INSIGHT® 9.1 User’s Guide, Volumes 1 and 2. Cary, NC: SAS Institute Inc.

Schulze, L. M., Britto, D. T., Li, M., and Kronzucker, H. J. (2012). A pharmacological analysis of high-affinity sodium transport in barley (Hordeum vulgare L.): A 24Na+/4K+ study. J. Exp. Bot. 63, 2479–2489. doi: 10.1093/jxb/err419

Seibt, U., Rajabi, A., Griffiths, H., and Berry, J. A. (2008). Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155, 441–454. doi: 10.1007/s00442-007-0932-7

Shabala, S. N., and Lew, R. R. (2002). Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol. 129, 290–299. doi: 10.1104/pp.020005

Shvaleva, A. L., Costa, F., Breia, E., Jouve, L., Hausman, J. F., Almeida, M. H., et al. (2004). SAS Institute Inc (2004). SAS/INSIGHT® 9.1 User’s Guide, Volumes 1 and 2. Cary, NC: SAS Institute Inc.

Speer, M., and Kaiser, W. M. (1991). Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea and Pisum sativum L. under salinity. Plant Physiol. 97, 990–997. doi: 10.1104/pp.97.3.990

Spyrides, G. I. (1964). The effect of univalent cations on the binding of sRNA to the template-ribosome complex. Proc. Natl. Acad. Sci. U.S.A. 51, 1220–1226. doi: 10.1073/pnas.51.6.1220

Steudle, E. (2000). Water uptake by roots: effects of water deficit. J. Exp. Bot. 51, 1531–1542. doi: 10.1093/jexbot/51.350.1531

Subbarao, G. V., Ito, O., Berry, W. L., and Wheeler, R. M. (2003). Sodium - a functional plant nutrient. CRC. Crit. Rev. Plant Sci. 22, 391–416. doi: 10.1080/07352680390243495

Subbarao, G. V., Wheeler, R. M., Stutte, G. W., and Levine, L. H. (1999). How far can sodium substitute for potassium in red beet? J. Plant Nutr. 22, 1745–1761. doi: 10.1080/01904169909365731

Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N., and Hasezawa, S. (2006). Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 57, 2259–2266. doi: 10.1093/jxb/erj193

Tariq, A., Pan, K., Olatunji, O. A., Graciano, C., Li, Z., Li, N., et al. (2019). Impact of phosphorus application on drought resistant responses of Eucalyptus grandis seedlings. Physiol. Plant. 166, 894–908. doi: 10.1111/ppl.12868 Tavakol, E., Jäkli, B., Cakmak, I., Dittert, K., Karlovsky, P., Pfahl, K., et al. (2018). Optimized potassium nutrition improves plant-water-relationships of barley under PEG-induced osmotic stress. Plant Soil 430, 23–35. doi: 10.1007/s11104-018-3704-8

Terry, N., and Ulrich, A. (1973). Effects of potassium deficiency on the photosynthesis and respiration of leaves of sugar beet. Plant Physiol. 51, 783–786. doi: 10.1104/pp.51.4.783

Tränkner, M., Tavakol, E., and Jäkli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthesize translocation and photoprotection. Physiol. Plant. 163, 414–431. doi: 10.1111/ppl.12747

Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58, 339–366.

Wakeel, A., Farooq, M., Qadir, M., and Schubert, S. (2011). Potassium substitution by sodium in plants. CRC. Crit. Rev. Plant Sci. 30, 401–413. doi: 10.1080/07352689.2011.587728

Wang, M., Zheng, Q., Shen, Q., and Guo, S. (2013). The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14, 7370–7390. doi: 10.3390/ijms14077370

Warren, C. R., Bléy, T., and Adams, M. A. (2007). Changes in gas exchange versus leaf solutes as a means to cope with summer drought in Eucalyptus marginata. Oecologia 154, 1–10. doi: 10.1007/s00442-007-0803-2

White, D. A., Crombie, D. S., Kinal, J., Battaglia, M., McGrath, J. F., Mendum, D. S., et al. (2009). Managing productivity and drought risk in Eucalyptus globulus plantations in south-western Australia. For. Ecol. Manage. 259, 33–44. doi: 10.1016/j.foreco.2009.09.039

Xi, J. J., Chen, H. Y., Bai, W. P., Yang, R. C., Yang, P. Z., Chen, R. J., et al. (2018). Sodium-related adaptations to drought: new insights from the xerophyte plant zygophyllum xanthoxylum. Front. Plant Sci. 871:1678. doi: 10.3389/fpls.2018.01678

Xu, Z., Zhou, G., and Shimizu, H. (2009). Are plant growth and photosynthesis limited by pre-drought following rewatering in grass? J. Exp. Bot. 60, 3737–3749. doi: 10.1093/jxb/erp216

Yue, L. J., Li, S. X., Ma, Q., Zhou, X. R., Wu, G. Q., Bao, A. K., et al. (2012). NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. J. Arid Environ. 87, 153–160. doi: 10.1016/j.jaridenv.2012.06.002

Zhang, S., Yan, G., and Xu, B. (2016). Application of plant-growth-promoting fungi Trichoderma longibrachiatum t6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant Sci. 07:1405. doi: 10.3389/fpls.2016.01405

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Mateus, Florentino, Santos, Ferraz, Gonzalves and Lavres. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.