An Efficient MDC based Set Partitioned Embedded Block Image Coding

Rahat Naz\(^1\) and Santosh Kumar Mishra\(^2\)
\(^1\)M.Tech Student, Department of Electronics & Communication Engineering, Integral University, Lucknow, INDIA
\(^2\)Assistant Professor, Department of Electronics & Communication Engineering, Integral University, Lucknow, INDIA

\(^1\)Corresponding Author: naz.rahat.hina@gmail.com

ABSTRACT

In this paper, fast, efficient, simple and widely used Set Partitioned Embedded bloCK based coding is done on Multiple Descriptions of transformed image. The maximum potential of this type of coding can be exploited with discrete wavelet transform (DWT) of images. Two correlated descriptions are generated from a wavelet transformed image to ensure meaningful transmission of the image over noise prone wireless channels. These correlated descriptions are encoded by set partitioning technique through SPECK coders and transmitted over wireless channels. Quality of reconstructed image at the decoder side depends upon the number of descriptions received. More the number of descriptions received at output side, more enhance the quality of reconstructed image. However, if any of the multiple description is lost, the receive can estimate it exploiting the correlation between the descriptions. The simulations performed on an image on MATLAB gives decent performance and results even after half of the descriptions is lost in transmission.

Keywords-- Discrete Wavelet Transform, Multiple Description Coding, SPECK, PSNR, Bits Per Pixel

I. INTRODUCTION

Sending, receiving and sharing of images has become the part of our daily lives. Social media fuelled this trend of sharing images with more and more people sharing images casually. To keep up with this ever increasing demand of image communication, compression of images is done so that the sharing and transfer of images is not hindered by the limitations of the bandwidth, battery power, storage and processing power of the handheld devices.

Uncompressed images have large amount of data, some of which can be redundant for our application and use. This uncompressed image data have high correlation. Therefore, image compression is done in almost every image after acquisition. The storage and bandwidth requirements of a compressed image data is only a fraction of the requirements of the original contents. But this is not the only reason for widespread use of image compression. The reduced computational complexity and memory and embedded feature of the compression algorithms being more important for several applications.

In our work on compression, we have processed the image using three main techniques. Firstly, we have transformed the image using Discrete Wavelet Transform (DWT)[9,11]. Multiple Descriptive Coding is done on the transformed image. Then, these descriptions are encoded using SPECK[5,6,7,8] coder. The paper is organized in such a way that the processes involved are described in the sequence of their application. Section 2 is the description of DWT. Sections 3 and 4 explains the application of MDC and SPECK respectively. Finally, we will have simulation results and conclusion.

II. DISCRETE WAVELET TRANSFORM

The Discrete Wavelet Transform is based on sub-band coding. By using digital filtering method, time-scale representation of the digital signal is obtained in DWT. These digital filters are mainly used to suppress either the high frequencies in the image (smoothing the image), or the low frequencies, (enhancing or detecting edges in the image).
In the discrete wavelet transform, the image signal is processed by passing through an analysis filter bank. At each decomposition stage of the process, the analysis filter banks consisting of a low-pass and high-pass filter is used. When the signal passes through these low and high pass filters, it split through two bands. The low-pass filter of this analysis bank, which is responsible for the averaging operation of the image sample, extracts the coarse information of the digital image. The high-pass filter operation corresponds to a differencing operation, and it extracts the detailed information of the signal or image. After that, the output of the filtering operation is decimated by two. The two-dimensional transformation of time and frequency is accomplished by performing two separate one-dimensional transforms. The image is filtered along the row and the the outcome is decimated by two. Then it is followed by filtering the sub bands of the image along the column and decimation by two. This DWT\cite{10,11} operation splits the image into four bands, which are LL, LH, HL, and HH respectively.

Inverse of DWT is done at the decoder side to get the compressed image. The process of filtering is inverted where decimation is inverted by interpolation.

The 2- level decomposition in DWT can also be represented as

The Wavelets transform captures most image information in the highly sub sampled low frequency band (LL) also called as the approximation signal. The additional information at localized edges in the form of coefficients will be in the high frequency bands (HL, LH, and HH). Another attractive aspect of the coarse to fine nature of the wavelet representation naturally facilitates a transmission feature that enables progressive transmission as an embedded bit stream.

Multiple Descriptive Coding

Multiple Descriptive Coding\cite{2,3,4} increases the reliability of transmission through wireless channels. Two descriptions of the original image data are transmitted through two channels here but a higher number of descriptions are possible. In this figure 2, an image is coded such that two complementary and correlated descriptions that are individually decodable are generated and transmitted separately, through two different network paths. The descriptions may get lost due to noise or congestion in channels. So one or both descriptions can reach the receiving side. At the receiver side, if only one description is reached, it is decoded by the *side decoder* and the resulting quality (distortion) is called *side quality (distortion)*. When both descriptions are reached, they are decoded by the *central decoder* and the resulting quality (distortion) is called *central quality (distortion)*. In central decoder, the two descriptions are merged and hence an image with higher quality is achieved. In other words, two types of decoding is done at the receiver, when all descriptions are received, the central decoding is used, and if one or more descriptions are lost in the transmission, the side decoder is used for the description(s) received. As we shall see in our result that the PSNR value do not decrease significantly on the loss of information of descriptions, this is because the decoder exploit the correlation among descriptions, and approximate the lost data for reconstruction of image.
III. SPECK CODING TECHNIQUE

The basic logic behind the coding method of SPECK algorithm is given here. An image has been adequately transformed using discrete wavelet transformation. An image after wavelet transform exhibits a hierarchical pyramidal structure defined by the decomposition levels, with the topmost level being the root. The finest pixels of the transformed image lie at the bottom level of the structure while the coarsest pixels lie at the root level. The SPECK[7,8] algorithm exploits the rectangular regions of the image defined as sets. In the algorithm, sets of varying sizes are formed, depending on the characteristics of pixels in the original set. A set of size 1 will have just one pixel. These sets are formed by chopping off a small square part from the top left of a larger region. Following figure 3 shows the formation of sets.

There are two linked lists: LIS - List of Insignificant Sets, and LSP - List of Significant Pixels. These two lists are maintained in SPECK algorithm. The LIS contains sets of type S of varying sizes which is not found significant against a threshold n while LSP contains those pixels which have been tested significant against n.

Two types of set partitioning are used in SPECK: quad tree partitioning and octave band partition as shown in figure below.

IV. SPECK CODING PROCEDURE

The SPECK coding procedure[7] is explained here with an example of encoding data of the type resulting from an 8x8 two-level wavelet transform. In this type of coding, partitions are generated recursively. Here, partition of square blocks of contiguous data elements is presented. Since these elements are arranged as two-dimensional array, we shall call them pixels and suppose we have a square $2^n \times 2^n$ array of pixels. First, the square array of source data is split into four $2^{n-1} \times 2^{n-1}$ quadrants, pictured in figure. At least one of those quadrants contains an element greater than the threshold ($2^{n_{max}}$), i.e., $p_j \geq 2^{n_{max}}$.
labeled with “0” require at most n_{max} bits for lossless representation. Now, we split the “1” labeled quadrants into four $2^{j-2} \times 2^{j-2}$ element quadrants and test each of these four new quarter-size quadrants, whether or not all of its elements are smaller than $2^{n_{\text{max}}}$.

![Image](www.ijemr.net)

Figure 5(b): portioning 4x4 array further into 2x2 according to significance

Again, we label these new 2x2 quadrants with “1” or “0”, depending whether any element in the quadrant is significant, i.e., $p_j \geq 2^{n_{\text{max}}}$ or not, respectively. Again any “0” labeled quadrant requires n_{max} bits for lossless representation of its elements. Quadrant labeled “1” is again split into four equal parts (quadrisected), with each part tested again whether its elements exceed the threshold $2^{n_{\text{max}}}$. This procedure of quadrisection and testing is continued until the ‘1’-labeled quadrants are split into 4 single elements, whereupon all the individual elements greater than or equal to $2^{n_{\text{max}}}$ are located. These elements are known to be one of the $2^{n_{\text{max}}}$ integers from $2^{n_{\text{max}}}$ to $2^{n_{\text{max}}+1} - 1$, so their differences from $2^{n_{\text{max}}}$ are coded with n_{max} bits and inserted into the bitstream to be transmitted. The single elements less than $2^{n_{\text{max}}}$ can be coded now with n_{max} bits. What also remains are sets of sizes 2×2 to $2^{j-1} \times 2^{j-1}$ labeled with “0” to indicate that every element within these sets is less than $2^{n_{\text{max}}}$. Figures are shown above to understand level and types of decomposition. Three levels of splitting and labeling is done. But the algorithm would not be efficient by finding sets requiring just one less bit for representation of its elements. So, the threshold is lowered by a factor of 2 to $2^{n_{\text{max}}-1}$ and above procedure of quadrisection is repeated and labeling is done on the “0”-labeled sets already found.

In this way, SPECK coding exploits the clustering or accumulation of energy in frequency and space in the hierarchical structures of wavelet transformed images. For reconstructing the compressed image, inverse of SPECK coding is done at the decoder.

V. SIMULATION RESULT

To evaluate the performance of the presented method through MATLAB, the standard Lena image, Barbara image, Goldgate and House images (with 512*512 pixels and 8 Bpp bitrate) are used as the test images in the simulation. A 5-level wavelet decomposition quantized to nearest integers using filers is simulated through MATLAB. The test images are encoded up to the last bit plane. The encoding of images is done at 1bpp. After processing, these images are decoded at different bit rates as shown in the figure. Variation of PSNR with bits per pixel (bpp) is given in the chart below. We can see in the chart that the degradation in image quality (PSNR) is almost negligible when data is lost in transmission. This result shows that the quality of image remains almost same even if the 20% or 50% data is lost. So this scheme of compression is very reliable when image is transmitted on a noise prone channel. We get decent quality of image even after half of the data is lost.

Image	bpp	PSNR (in dB)		
	All data received	50% packet lost	25% data lost	
Lena	0.5	28.1504	27.4272	27.8091
	0.25	23.9964	23.9009	23.8903
	0.125	21.1391	21.1354	21.1421
Barbara	0.5	23.9682	22.9702	23.709
	0.25	20.9343	20.8579	20.9181
	0.125	19.0213	18.7791	18.7501
Goldgate	0.5	33.1238	31.045	32.3067
	0.25	29.3595	28.482	29.0553
	0.125	27.6008	27.2018	27.5061
House	0.5	23.9809	21.6488	23.3081
	0.25	21.3282	20.3638	21.0944
	0.125	19.8207	19.2443	19.6856

Table 1: Variations in PSNR with change in bit rate for test images

5.1 Comparative analysis of Coding efficiencies with data lost during transmission

Using the data from the simulation results, the degradation in quality of images is compared when no data is lost during transmission, when 50% data is lost during transmission and when 25% data is lost during transmission.

5.1.1 LENA Image

Through simulation we have represented a coding efficiency, when no data is lost during transmission (represented by red line), when 50% data is lost during transmission (represented by black line), and when 25% data is lost (represented by blue line).
5.1.2 BARBARA Image

Again we have used the test image of Barbara and simulated the coding to get data given in figure 4.1. The comparisons in image quality with subsequent loss in data is plotted separately as shown in figure 4.3. Red line represents the efficiency when no data is lost, black line represents when 50% data is lost, and blue line represents when 25% data is lost.

5.1.3 GOLDGATE Image

The coding efficiency of this standard test image is found out by simulation and results obtained are shown in figure 4.2. Now for comparative analysis, PSNR vs bitrates graphs are plotted for no loss in data during transmission (represented by red line), when 50% data is lost during transmission (represented by black line), and when 25% data is lost (represented by blue line).
done in hierarchy, starting from high magnitude and reliability. Sorting in the SPECK used in our work is but this drawback is optimized by the increased efficiency used here requires more memory than the listless SPECK, efficiency of the compression scheme improves, reducing overhead charges significantly.

VI. CONCLUSION

This paper, a simple, fast and efficient compression scheme using MDC is presented. This scheme provides reliable transmission through busy channels. Both bandwidth efficient MDC and SPECK coder require lesser computational power. MDC implemented provides reliability even if the considerable amount of data is lost. Transmitting data over two channels, reducing the congestion in wireless transmission network reduces overhead charges significantly. SPECK coding used here is also very simple and fast. The SPECK coder used in this work fully exploits the clustering of energy in lower frequency bands by DWT, improving the efficiency of the compression scheme. Though the SPECK used here requires more memory than the listless SPECK, but this drawback is optimized by the increased efficiency and reliability. Sorting in the SPECK used in our work is done in hierarchy, starting from high magnitude crucial data and progressing towards lesser magnitude data. So, in case, the coder is suddenly stopped in the middle, the amount of data already encoded can still be used to get a compressed image at the decoder side, but of somewhat lesser quality. The use of DWT, MDC and SPECK in the compression scheme improves efficiency of compression and reduces complexity.

REFERENCES

[1] Y. Wang, M.T. Orchard, V.A. Vaishampayan, & A.R. Reibman. (2001). Multiple description coding using pairwise correlating transforms. IEEE Transactions on Image Processing, 10(3), 351-366.
[2] S. D. Servetto, K. Ramchandran, & V.A. Vaishampayan. (2000). Multiple description wavelet based image coding. IEEE Transactions on Image Processing, 9(5), 813-826.
[3] V. K. Goyal & J. Kovacevic. (2001). Generalized multiple description coding with correlating transforms. IEEE Transactions on Information Theory, 47(6), 2199-2224.
[4] V.K. Goyal. (2001). Multiple description coding: Compression meets the network. IEEE Signal Processing Magazine, 18(5), 74-93.
[5] A. Said & W.A. Pearlman. (1996). A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243–250.
[6] A. Islam & W.A. Pearlman. (1999). An embedded and efficient low-complexity hierarchical image coder. Available at: https://www.ecse.rpi.edu/~pearlman/papers/vcip99_ip.pdf.
[7] W.A. Pearlman, A. Islam, N. Nagaraj, & A. Said. (2004). Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Transactions on Circuits and Systems for Video Technology, 14(11), 1219–1235.
[8] K. Sayood. (2000). Introduction to data compression. (2nd ed.). Academic Press, Morgan Kaufmann Publishers.
[9] G. Strang & T. Nguyen. (1996). Wavelets and filter banks. Cambridge: Wellesley-Cambridge Press.
[10] Li Ze-Nian, Drew Mark S. (2004). Image compression standards in Fundamentals of multimedia. Prentice-Hall.
[11] Lewis A. S. & Knowles G. (1992). Image compression using the 2-D wavelet transform. IEEE Transaction on Image Processing, 244-250.