Proyecto de entrenamiento óptimo durante el embarazo en la prevención de la hipertensión gestacional y preeclampsia: una revisión sistemática

Sandra Sánchez Parente¹, Alejandro Sánchez Delgado¹, José Castro-Piñero¹,²
¹Departamento de Didáctica de la Educación Física, Pístdica y Musical, Facultad de Ciencias de la Educación. Universidad de Cádiz. Cádiz. ²Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA). Cádiz. España.

Recibido: 15/10/2020
Aceptado: 19/01/2021

Resumen
La hipertensión gestacional (HTG) y preeclampsia son trastornos hipertensivos, y la principal causa mundial de mortalidad materna y perinatal. Actualmente, la evidencia avala el beneficio del ejercicio físico (EF) moderado durante embarazos sin complicaciones en la prevención de HTG y preeclampsia. Sin embargo, no existe evidencia sobre qué tipo de entrenamiento es más eficaz para su prevención.

El objetivo de este estudio es analizar qué tipo de ejercicio, duración de la intervención y sesión, frecuencia e intensidad producen mayores beneficios en la prevención de la HTG y preeclampsia en mujeres con embarazos sin complicaciones.

Se llevó a cabo una búsqueda exhaustiva en PubMed y Web of Science hasta el 21 de octubre de 2020. De 705 estudios encontrados, analizamos 14 artículos originales de intervención a texto completo en inglés o español, con un programa de EF en embarazadas sin complicaciones, que evaluaran la presión arterial e incluyeran en su metodología, al menos, frecuencia, duración, intensidad o tipo de ejercicio.

El entrenamiento en mujeres sanas con embarazos sin complicaciones reduce la incidencia de HTG y preeclampsia. El programa con más beneficios es el entrenamiento concurrente combinado con flexibilidad, con una duración mínima de 29 semanas, desde la 8º-9º semana gestacional hasta la 36, pudiendo extenderse hasta el final del embarazo. Se recomienda una frecuencia de entrenamiento igual o mayor a 3 días semanales, con sesiones al 50-70% de la frecuencia cardíaca máxima y 10-14 sobre 20 en la Escala de Borg, con una duración de 45 y 60 minutos por sesión.

Palabras clave: Embarazo. Hipertensión gestacional. Pre-eclampsia. Ejercicio. Hipertensión.

Correspondencia: Sandra Sánchez Parente
E-mail: sandra.sanchezparente@alum.uca.es

Summary
Gestational hypertension and pre-eclampsia are hypertensive disorders which are the world’s leading cause of maternal and perinatal mortality. Currently, evidences support the benefit of moderate physical exercise (PE) during uncomplicated pregnancies in the prevention of HTG and pre-eclampsia. However, there is no evidence on which kind of training is more effective for its prevention.

The aim of this study was to analyze which kind of exercise, duration of the intervention and session, frequency and intensity produce the greatest benefits in the prevention of gestational hypertension and pre-eclampsia in women with uncomplicated pregnancies.

An exhaustive search of PubMed and Web of Science was carried out until October 21, 2020. From 705 studies found, we analyzed 14 original full-text intervention articles in English or Spanish, with a PE program in pregnant women without complications, evaluating BP and including in their methodology, at least, frequency, duration, intensity, or kind of exercise.

Exercise training in healthy women with uncomplicated pregnancies reduces the incidence of HTG and preeclampsia. The program with most benefits is concurrent training combined with flexibility, with a minimum duration of 29 weeks, from the 8th-9th gestational week to 36, but can be extended until the end of pregnancy. It’s recommended to get to a training frequency equal to or greater than 3 days a week, with sessions at 50-70% of the maximum heart rate and 10-14 on the Borg Scale, and a duration of 45 and 60 minutes per session.

Key words: Pregnancy. Gestational hypertension. Pre-eclampsia. Exercise. Hypertension.
Introducción

El Instituto Nacional de Salud Infantil y Desarrollo Humano (NICHD) define el embarazo como el periodo en el cual un feto se desarrolla en el útero de una mujer. Se trata de un proceso fisiológico con una duración normativa de 36-41 semanas, divididas en 3 trimestres en los que se producen ajustes anatómicos, fisiológicos, hormonales y emocionales, para permitir adaptaciones que mantengan la homeostasis materna y fetal necesaria en un medio rápidamente cambiante.

Centrándonos en los cambios fisiológicos a nivel vascular, destacamos un aumento del volumen sanguíneo circulante, acompañado de una retención acumulativa de sodio. Sin embargo, la presión arterial (PA) tiende a disminuir, principalmente en el segundo trimestre, debido principalmente al descenso de las resistencias vasculares periféricas, que se han vinculado a la acción del oxido nítrico, la relaxina y la progesterona sobre la musculatura de la pared arterial. Desde el inicio del tercer trimestre, la PA media se incrementa hasta alcanzar los valores previos a la gestación.

La hipertensión arterial (HTA) está considerada como un factor de riesgo de mortalidad cardiovascular independiente de cualquier otro. Esta patología presenta factores de riesgo modificables, como padecer sobrepeso u obesidad, tener niveles altos de colesterol en sangre, el consumo de alcohol y tabaco, y la inactividad física. Los factores de riesgo no modificables son genéticos, la raza negra, y el sexo masculino. En la mujer, el periodo más propenso a sufrir esta patología es tras la menopausia.

Según el Colegio Americano de Obstetras y Ginecólogos (ACOG), la hipertensión gestacional (HTG) se define como una PA sistólica en reposo mayor a 140 mmHg o diastólica de 90 mmHg tras 20 semanas de gestación (o antes de cumplir 12 semanas tras el parto), sin proteínuria (cociente proteínas/creatinina en orina ≥300 mg/g) ni pérdida de funcionalidad de órganos vitales. Suele ser transitoria, pero puede volverse crónica, ser precursora de preeclampsia, o una preeclampsia en fase precoz en la que aún no haya aparecido la proteínuria. Está relacionada con complicaciones prenatales, incluido el parto prematuro.

A su vez, la preeclampsia es una enfermedad específica del embarazo humano, caracterizada por HTA y proteinuria tras la semana 20 de gestación. Se considera severa cuando los síntomas previamente explicados se acompañan de algún signo de afectación multiorgánica. En la mayoría de casos, la preeclampsia severa concluye en aborto. Al igual que en la HTG, se desconoce su etiología, sin embargo, algunas fuentes sugieren la disfunción de células endoteliales vasculares, lo que reduce la síntesis de vasodilatadores, lo que conducirá a un vasoespasmo que provocará disminución de la PA. Además, se ha observado que la realización de EF supervisado puede mejorar de manera segura y significativa el rendimiento físico y la calidad de vida de pacientes con HTA.

La prevención de estos trastornos se basa en revisiones médicas de control prenatales, e ingesta de calcio y fármacos antihipertensivos y antiplaquetarios. Sin embargo, los suplementos de calcio sólo han demostrado ser eficaces en poblaciones con déficit nutricional. La eficacia de la aspirina a bajas dosis sólo se reconoce en mujeres con preeclampsia en más de un embarazo previo y casos de HTA crónica con preeclampsia añadida en embarazos previos.

Debido al desconocimiento causal de estos trastornos, no existe un método preventivo específico para la población obstétrica general, lo que provoca la necesidad de investigar posibles estrategias preventivas no-farmacológicas, como la actividad física (AF), pues su realización regular mejora la capacidad cardiovascular, y reduce factores de riesgo de estos trastornos hipertensivos, como la reducción del riesgo de diabetes, disfunción endotelial y obesidad previa al embarazo, y no contraer excesiva ganancia de peso durante la gestación. Todo ello colaboraría a la reducción del riesgo de HTG y preeclampsia, lo que abriría las puertas a una nueva estrategia preventiva.

Numerosas instituciones apoyan que embarazadas sin contraindicaciones se mantengan físicamente activas en el embarazo y postparto para mejorar su salud materno-fetal. La última Guía Canadiense para la Actividad Física en el Embarazo establece un mínimo de 150 minutos semanales de AF moderada, al menos en 3 sesiones por semana, combinando entrenamiento aeróbico (EA) y de fuerza, es decir entrenamiento concurrente (EC).

Recientemente, el ACOG publicó recomendaciones de entrenamiento en el embarazo para mujeres sanas: 3 o 4 días por semana, a una intensidad del 60-80% de la frecuencia cardíaca máxima (FCCmax) o 12-14 en la Escala de Percepción de Esfuerzo de Borg (EEP), desde el primer trimestre hasta el parto, en sesiones de 30-60 minutos. En el embarazo, el EC es la modalidad de ejercicio que parece inducir mayores beneficios en la salud maternal. Pese a que el efecto del ejercicio físico (EF) durante el embarazo en el feto y el recién nacido ha comenzado a estudiarse recientemente, la evidencia científica indica la seguridad y eficacia del entrenamiento materno durante el embarazo con respecto a la salud fetal y neonatal.

En población general, el EF moderado regular reduce la incidencia de HTA, contribuyendo a reducir la PA sistólica y diastólica, y asegura un flujo sanguíneo venoso adecuado al corazón. Además, se ha observado que la realización de EF supervisado puede mejorar de manera segura y significativa el rendimiento físico y la calidad de vida de pacientes con HTA.

Sabiendo que la inactividad física es un factor de riesgo modificable, el EF se muestra como una posible herramienta para reducir el riesgo de padecer HTG y preeclampsia. Pese a que la evidencia apoya los beneficios del EF en el embarazo ante la HTG y preeclampsia, aún se desconoce qué tipo de entrenamiento es el más eficaz para la prevención de estas patologías, tal y como recoge el ACOG (2020) para embarazos sin complicaciones, de forma genérica.

Por ello, el objetivo de la presente revisión es analizar qué tipo de ejercicio, duración de la intervención y de la sesión, frecuencia e intensidad producen mayores beneficios en la prevención de la HTG y preeclampsia en mujeres con embarazos sin complicaciones durante la gestación.
Programa de entrenamiento óptimo durante el embarazo en la prevención de la hipertensión gestacional y preeclampsia: una revisión sistemática

Metodología

El presente estudio llevó a cabo una búsqueda exhaustiva en 2 bases de datos de literatura científica: PubMed y Web of Science (WOS); hasta el 21/10/2020. Se incluyeron estudios de intervención que analizaran el efecto del entrenamiento durante el embarazo en mujeres sanas en relación a la HTG y preeclampsia. Por ello, los descriptores de la búsqueda utilizados se agruparon en aquellos relacionados con el embarazo, el entrenamiento, y la HTG y preeclampsia (Tabla 1).

En la búsqueda en PubMed se utilizó una combinación de palabras clave y términos MeSH, mientras que en WOS, se utilizaron palabras clave, seleccionando como base de datos su “Colección Principal”. En cuanto al campo de búsqueda, se utilizó el filtro “Tema”.

Tras determinar la estrategia de búsqueda, se precisaron los criterios de inclusión y de exclusión para la selección de estudios que formarían parte de la revisión.

Los criterios de inclusión fueron: 1) Estudios a texto completo en español o inglés, publicados en Pubmed o WOS; 2) Estudios originales de programas de intervención de EF en mujeres embarazadas, que incluyan una descripción detallada de la intervención (al menos, frecuencia, duración, intensidad y tipo de ejercicio); 3) Estudios que evalúen la PA.

Se excluyeron los estudios cuya muestra principal tuviera embarazos de riesgo según el NICHD: 1) Edad inferior a 18 años o superior a 35; 2) Enfermedades previas al embarazo: HTA previa, diabetes o ser VIH positivo; 3) Sobrepeso u obesidad; 4) Embarazo múltiple; 5) Consumo de tabaco, alcohol y drogas.

Tabla 1. Estrategias de búsqueda utilizadas en las bases de datos

Base de datos	Estrategia de búsqueda	Límites
Pubmed	(“Pregnant women”[Mesh] OR “Pregnant women” OR “Pregnancy”[Mesh] OR “Pregnancy”) AND (“Exercise”[Mesh] OR “Exercise”) AND (“Hypertension, Pregnancy-Induced/prevention & control”[Mesh] OR “Hypertension” OR “Pre-Eclampsia/ prevention & control”[Mesh] OR “Preeclampsia”)[Mesh] OR “Preeclampsia”[Mesh])	Fecha de publicación: “hasta el 2020/10/21”
WOS	(“Pregnant women” OR “Pregnant Woman” OR “Pregnancy” OR “Pregnancies” OR “Gestation”) AND (“Exercise” OR “Physical Activity” OR “Physical Activities” OR “Physical Exercise” OR “Physical Exercises” OR “Acute Exercise” OR “Acute Exercises” OR “Isometric Exercises” OR “Aerobic Exercise” OR “Aerobic Exercises” OR “Exercise Training” OR “Exercise Trainings”) AND (“Hypertension, Pregnancy-Induced/prevention & control” OR “Gestational Hypertension” OR “Transient Hypertension” OR “Pre-Eclampsia/prevention & control” OR “Pre-Eclampsia” OR “Preeclampsia” OR “Pregnancy Toxemia” OR “Edema Proteinuria Hypertension Gestosis” OR “Toxemia Of Pregnancy” OR “Toxemia Of Pregnancies” OR “EPH Complex” OR “EPH Toxemia” OR “EPH Toxemias” OR “EPH Toxemia” OR “EPH Gestosis” OR “Preeclampsia Eclampsia 1”)[Mesh]	Tipos de documento: “artículo”

Dos investigadores (SSP y ASD) evaluaron de forma independiente los títulos, resúmenes y textos completos de los artículos recuperados mediante la estrategia de búsqueda para determinar su elegibilidad en función de los criterios de inclusión. Cuando no se llegó a un consenso entre ambos, un tercer (JCP) tomó la decisión final sobre la inclusión. De los 705 estudios encontrados, 14 fueron incluidos tras la revisión por pares. Los motivos de exclusión de los estudios se observan en la Figura 1.

Figura 1. Proceso de selección de artículos según PRISMA.
Resultados

Tras la selección de estudios, se incluyeron en la revisión 14 estudios de intervención, cuyas características y resultados se reflejan en la Tabla 2.

Tabla 2. Cuadro resumen de los artículos incluidos en la revisión.

Estudio	Muestra	Tipo de ejercicio	Duración de la intervención	Frecuencia, duración e intensidad de la sesión	Resultados del programa de entrenamiento	Conclusiones
(42)	N: 765	Aeróbico, fuerza y flexibilidad	9/11 semana gestacional - fin de embarazo	F: 3 días/semana D: 50-55 minutos l: <70% FC_{max} 12-14 EEP	Incidencia HTG (G1 vs GC): 2,1% vs 5,7% (OR=2,96; IC=1,29-6,81; p=0,01 entre grupos) Incidencia preeclampsia (G1 vs GC): 0,5% vs 2,3% (p=0,03 entre grupos) Incidencia peso excesivo (G1 vs GC): 26,4% vs 34,2% (OR=1,47; IC=1,06-2,03; p=0,02 entre grupos) Incidencia macrosomía (G1 vs GC): 1,8% vs 4,7% (OR=2,53; CI=1,03-6,2; p=0,04 entre grupos)	El ejercicio materno puede prevenir la HTA y ayuda a controlar la ganancia de peso materno y fetal
(2)	N: 200	Aeróbico, flexibilidad y suelo pélvico	9/13 semana gestacional - fin de embarazo	F: 3 días/semana D: 55-60 minutos l: 55-60% FC_{max} 12-13 EEP	Incidencia de peso excesivo (G1 vs GC): 21,2% vs 35,6% (p=0,02 entre grupos)	El ejercicio regular moderado no supuso un riesgo materno-fetal y ayuda al control de la ganancia de peso materno
(36)	N: 171	Aeróbico	13 (G1) / 20 (G2) – 38 semana gestacional	F: 3 días/semana D: >15 minutos l: 60-80% FC_{max} 12-16 EEP	VO_{max} (G1 vs G2 vs GC): ↑ 11,2% vs ↑ 11,1% vs ↓ 1,16% (p=0,03 entre grupos) Sin relación significativa entre grupos en preeclampsia, macrosomía, PA e índice de pulsatividad (p=0,05)	La intervención mejoró la condición física de las embarazadas sin afectar el flujo sanguíneo placentario o crecimiento fetal.
(44)	N: 639	Aeróbico, fuerza y flexibilidad	16/20 – 32-36 semana gestacional	F: 3 días/semana D: 60 minutos l: 12-14 EEP	Sin relación significativa en el riesgo de parto prematuro, preeclampsia, ganancia de peso, diabetes gestacional y macrosomía (p=0,05)	Aunque no se relacione el ejercicio en embarazo y parto prematuro o preeclampsia, no presentó riesgo para el feto
(37)	N: 61	Aeróbico y fuerza	12 – >24 semana gestacional	F: >2 días/semana D: 60 minutos l: 12-14 EEP	PA sistólica de reposo (G1 vs GC): ↓ 2,6% vs 3,4% (CI=1,5-12,6; p=0,013 entre grupos)	El ejercicio redujo la PA en embarazadas previamente inactivas
(41)	N: 358	Aeróbico y fuerza	Sin especificar	F: 3 días/semana D: 60 minutos l: <1,25 Escala Likert 0-5	Partos prematuros (G1 vs GC): 4% vs 7% (p=0,0065 entre grupos) Bradicardia (G1 vs GC): 10% vs 16,3% (p=0,001 entre grupos) Incidencia preeclampsia (G1 vs GC): 6,6% vs 12,3% (p=0,002 entre grupos)	La intervención redujo los cuidados intensivos de los recién nacidos y los costos sanitarios
(43)	N: 1348	Aeróbico, fuerza, flexibilidad y suelo pélvico	9-38/39 semana gestacional	F: 3 días/semana D: 50-55 minutos l: <60% FC_{max} 10-12 EEP	Peso excesivo (G1 vs GC): ↓ (OR=0,6; IC=0,52-0,84; p = 0,001) Incidencia de HTG: ↓ HTG (OR=0,39; IC=0,67; p=0,001) Incidencia de diabetes (G1 vs GC): ↓ (OR=0,48; IC=0,28-0,84; p=0,015) Afecciones cardiometabólicas (G1 vs GC): ↓ (OR=0,27; IC=0,08-0,95; p=0,041) Incidencia macrosomía (G1 vs GC): (OR=0,36; IC=0,2-0,63; p=0,007) Peso previo en 6 meses (G1 vs GC): ↑ (OR=2,37; IC=1,26-4,54; p=0,007)	El ejercicio durante el embarazo puede proteger la salud materno-fetal

(continúa)
Siete estudios incluyeron mujeres embarazadas previamente sedentarias (n = 527) 16,26,36-40, mientras que uno analizó a embarazadas activas (n = 358) 41. Dos estudios incluyeron tanto mujeres embarazadas previamente activas (n = 346), como sedentarias (n = 1.767) 42,43. Cuatro estudios no detallaban la AF previa de la muestra 24-26. Así, un 76,5% de las mujeres estudiadas en esta revisión eran sedentarias (n = 2.294), mientras que el 23,5% (n = 704) eran físicamente activas.

La edad media fue de 29.62 años, y el índice de masa corporal, de 24,24. El 64,3% de las embarazadas eran nulíparas (n = 2.882), mientras que el 35,7% (n = 1599) habían presentado partos con anterioridad.

Estudio	Muestra	Tipo de ejercicio	Duración de la intervención	Frecuencia, duración e intensidad de la sesión	Resultados del programa de entrenamiento	Conclusiones
(26)	N: 62					
GI: 31						
GC: 31	Aeróbico	12/14 - >36 semana gestacional	F: 4 días/semana			
D: 45-60 minutos						
I: 12-14 EEP	VO_{max} (GI vs GC):					
↑ GI (p<0,05)						
Fuerza (GI vs GC):						
↑ GI (p<0,01)						
Incidencia cesárea (GI vs GC): 6% vs 32% (p<0,01)						
Tiempo recuperación postparto (GI vs GC):						
↓ GI (p<0,05)						
Incidencia HTG (GI vs GC):						
↓ GI (p=0,16)	El ejercicio mejoró la aptitud física en mujeres previamente inactivas y redujo complicaciones en el parto					
(38)	N: 20					
GI: 10						
GC: 10	Aeróbico y fuerza	16/20 – 28/32 semana gestacional	F: 3 días/semana			
D: 85 minutos						
I: 55-75% FC_{max}	Oxígeno nitroso y oxígeno nítrico (GI vs GC):					
↑ GI (p=0,05)						
Superóxido mitocondrial (GI vs GC):						
↓ 8% en comparación a GC (p=0,05)						
Peróxido de hidrógeno en las mitocondrias placenteras (GI vs GC):						
↓ 37% en comparación a CG (p=0,05)	Los cambios producidos por el ejercicio a nivel placental beneficiaron al sistema vascular y reducen el riesgo de preeclampsia, diabetes e HTG					
(45)	N: 64					
GI: 31						
GC: 33	Aeróbico	16/20 – 32/36 semana gestacional	F: 3 días/semana			
D: 60 minutos						
I: 50-65% FC_{max}	VO_{max} (GI vs GC):					
↑ GI (p>0,01)						
Dilatación medida por flujo (GI vs GC):						
Sin cambios vs ↓ 0,1% (p=0,02 entre grupos)						
FC de reposo (GI vs GC):						
↓ 11,2% vs ↑19,8% (p=0,02 entre grupos)						
Incidencia preeclampsia (GI vs GC):						
↓ 3,8% vs 3,8% (OR=1; CI=0,5-2; p=0,99 entre grupos)	La intervención mejoró la vasodilatación dependiente endotelial en el embarazo, lo que podría prevenir trastornos por disfunción endotelial					
(46)	N: 855					
GI: 429						
GC: 426	Aeróbico, fuerza y equilibrio	20 – 36 semana gestacional	F: <3 días/semana			
(1 supervisado)						
D: 60 minutos						
I: 13-14 EEP	Incidencia diabetes gestacional (GI vs GC):					
7% (IC=4,3-9,7) vs 6% (IC=3,3-8,6) (p=0,52 entre grupos)						
Incidencia HTG (GI vs GC):						
2,9% vs 3,2% (OR=0,9; CI=0,4-2; p=0,77 entre grupos)						
Incidencia preeclampsia (GI vs GC):						
3,8% vs 3,8% (OR=1; CI=0,5-2; p=0,99 entre grupos)	La intervención de ejercicio de no evitó diabetes gestacional ni mejoró la resistencia a la insulina en embarazadas sanas					
(39)	N: 10					
GI: 5						
GC: 5	Aeróbico	20 – 36 semana gestacional	F: 5 días/semana			
D: no especificado						
I: <40% FC de reserva						
L: 11-13 EEP	PA sistólica (GI vs GC):					
↓ 1,8% vs ↑ 3,7% (p<0,05 entre grupos)						
PA diastólica (GI vs GC):						
↓ 2,6% vs 1,35% (p=0,05 entre grupos)	El ejercicio aeróbico podría atenuar el aumento de la PA y disminuir la incidencia de HTG					
(16)	N: 124					
GI: 60						
G2: 64	G1: flexibilidad					
G2: aeróbico	18 semana gestacional – fin del embarazo	F: 5 días/semana				
D: 40 minutos						
I: 55-69% FC_{max}						
L: 12-13 EEP	FC de reposo (G1 vs G2):					
↓ 8±11ppm (IC=5,1-11,2) vs ↑14±16ppm (IC=9,1-17,9; p<0,01 entre grupos)						
Incidencia preeclampsia (G1 vs G2):						
↓ 3% vs 2% (IC=0,5-2; p<0,05 entre grupos)						
Incidencia HTG (G1 vs G2):						
↓ 6% vs 4% (IC=0,5-2; p<0,05 entre grupos)	El entrenamiento regular de flexibilidad durante el embarazo puede disminuir el riesgo de preeclampsia					
(34)	N: 79					
G1: 41
G2: 38 | G1: flexibilidad
G2: aeróbico | 18 semana gestacional – fin del embarazo | F: 3-5 días/semana
D: 31-40 minutos
I: 55-69% FC_{max}
L: 12-13 EEP | Incidencia preeclampsia (G1 vs G2):
2,6% (IC=0,07-13,8) vs 14,6% (IC=5,6-29,2) (p<0,05 entre grupos)
Incidencia HTG (G1 vs G2):
40% (IC=23,2-55,8) vs 22% (IC=8,7-35,2) (p<0,05 entre grupos) | El entrenamiento regular de flexibilidad durante el embarazo puede disminuir el riesgo de preeclampsia |

Abreviaciones: GC, grupo control; GI, grupo intervención; f, frecuencia; D, duración; I, intensidad; FC, frecuencia cardíaca; HTA, hipertensión arterial; HTG, hipertensión gestacional; PA, presión arterial; IC, intervalo de confianza al 95%; EEP, escala de esfuerzo percibido de esfuerzo de Borg.
Intervención

Tipo de ejercicio
Todos los estudios de esta revisión incluyen el EA en su intervención. La metodología llevada a cabo fue distinta según los autores, pero las actividades aeróbicas más repetidas fueron andar 2,16,23,25,34,38,39,42 y sesiones de baile 37,43,46. Cuatro estudios realizaron una intervención exclusivamente de EA 39,36,41,43, tres combinaron el EA y de fuerza 13,34,41, y dos combinaron el EA, de fuerza y flexibilidad 42,44. Dos estudios, que incluyeron el entrenamiento de suelo pélvico (SP) en su programa, analizaron por una parte el efecto combinado del EA, de flexibilidad y de SP, y por otra el de combinar el EA, de flexibilidad, de SP y de fuerza 44. Dos estudios separaron su muestra en quienes realizaron EA y quienes entrenaron flexibilidad 33,34. Por último, un estudio combinó EA, de fuerza y equilibrio 46.

Duración del programa de entrenamiento
La duración media de los programas analizados ha sido de 20 semanas. Tres estudios tuvieron una intervención menor o igual a 16 semanas 32,34,41, mientras que 3 realizaron su programa por más de 26 semanas 42,44. Lombardi et al.41 no especifican la duración de su intervención.

La mayoría de estudios finalIZan su programa de entrenamiento tras la 36ª semana gestacional, a excepción de 2 estudios que lo concluyeron con anterioridad 33,39 y otro que no lo especifica 41. Sin embargo, existe bastante heterogeneidad en el inicio de la intervención. Cinco estudios comenzaron en el 9ª al 14ª semana gestacional 2,26,37,42,43, y 7 estudios en la 16ª-20ª semana 13,34,36,39,44-46. Un estudio dividió su muestra en las mujeres que empezaron a entrenar en la 13ª semana, y las que lo hicieron en la 20ª; mientras que otro no aportó datos sobre el inicio de su programa 33.

Frecuencia semanal
En general, los estudios incluyeron una frecuencia de entrenamiento de 3 días por semana. Algunos estudios establecieron una frecuencia mayor 16,23,34,39,46. En el estudio de Haakstad et al.37, la muestra entrenó un mínimo de 2 días semanales.

Intensidad de las sesiones
Para monITorizar la intensidad de las sesiones, se ha utilizado la FC media y/o EEP 6-20% a excepción de un estudio 41. Se utilizaron ambas medidas 2,37,39,42,43,44. 4 estudios usaron solo la EEP 2,13,37,39,40, y 2, la FC 36,45. Stutzman et al.34 monITorizaron la intensidad combinando la FC de reserva y la EEP, mientras que Lombardi et al.41 utilizó la escala de Likert.

Atendiendo a las técnicas de medida más utilizadas (FC media y EEP), la intensidad máxima media de las intervenciones se sitúa en un 68,5% de la FC media y una EEP de 13,6. Los valores de intensidad mínimos 32,34 y máximos 28-30 recogidos se han situado entre el 50-80% de la FC media y una EEP de 11-16.

Duración de las sesiones
Diez de los 14 estudios incluidos realizaron sesiones cuya duración oscilaba entre los 40 y 60 minutos. Solo dos intervenciones programaron entrenamientos con una duración fuera de este intervalo, durando 85 minutos 38 y 31-40 minutos cada sesión 41. Dos artículos no lo detallaban 34,39. La duración media total de las sesiones de los estudios incluidos fue aproximadamente de 60-65 minutos.

Resultados de los estudios
Tras analizar los estudios incluidos, observamos que ninguna de las intervenciones presentó riesgo para la salud materno-fetal. Todos los estudios salvo dos 44,46 recogieron mejoras significativas en el grupo intervención en alguna de las mediciones que evaluaron en comparación a los controles.

Siete estudios analizaron directamente el efecto del entrenamiento en el riesgo de HTG y/o preeclampsia 32,36,41-48. Cuatro estudios no hallaron diferencias significativas entre grupos 35,36,43,44. Aunque, Price et al.28 no hallaron dicha diferencia, no obtuvieron ningún caso de HTG en el grupo intervención.

Barakat et al.42 concluyeron que las mujeres inactivas en el embarazo tenían 3 veces más probabilidad de desarrollar HTA, independientemente de su índice de masa corporal, con respecto a las que realizaron el programa de entrenamiento (OR = 2,96; 95% IC = 1,29-6,81; p = 0,01). Así mismo hallaron que las controles eran 1,5 veces más propensas a ganar peso excesivo durante el embarazo (OR = 1,47; 95% IC = 1,06-2,03; p = 0,02). Esto coincide con el estudio de Barakat et al.42 y Perales et al.30 (OR = 0,60; 95% IC = 0,46-0,49).

Lombardi et al.30 hallaron una reducción significativa entre las mujeres que se mantuvieron activas durante el embarazo en relación con el riesgo de preeclampsia (p = 0,0002). Perales et al.30 concluyeron que el EF durante el embarazo redujo el riesgo de HTG (OR = 0,39; 95% IC = 0,23-0,67).

Se ha observado una menor incidencia de HTG y preeclampsia, y reducción de la FC de reposo en embarazadas que entrenaron flexibilidad 44,46. Por otra parte, de Oliveria et al.36 compararon el mismo programa de entrenamiento en mujeres embarazadas que lo comenzaron en la semana 13 (G1), las que lo hicieron en la 20ª semana (G2) y controles (G3). En la semana 28, se dio un mayor VO 2max en G2 (VO 2max = 27,3±4,3 (G1); 28±3,3 (G2); 25,5±3,8 (G3); p = 0,03). En la semana 32, observaron un aumento del VO 2max sin diferencias significativas entre G1 y G2, pero mayora los controles (3,2±0,43 (G1); 3,1±0,55 (G2); 1,4±0,41 (G3); p = 0,001).

Stafne et al.46 estudian el efecto de un programa de EA, de fuerza y equilibrio, sin encontrar diferencias significativas entre grupos en diabetes gestacional (7%; 95% IC = 4-11,4 (GI); 6%; 95% IC = 3,3-8,6 (GC)), HTG (2,9% (GI) vs 3,2% (GC)); OR=0,9; 95%IC=0,4-2 (GC)) y preeclampsia (3,8% en ambos grupos).

Salvo Oliveria et al.36 y Stafne et al.46, hallaron que la PA y FC disminuyeron en los grupos de intervención en comparación a los controles 32,34,45.

En cuanto al peso fetal, se encontró un mayor riesgo de macrosmia 36 en mujeres inactivas durante la gestación 34,44,48; mientras que otros 2 no advirtieron diferencias significativas 34,46. Barakat et al.42 observaron que las mujeres inactivas durante el embarazo tuvieron 2,5 veces más probabilidad de dar a luz un bebé macrosómico (OR = 2,53; 95% IC = 1,03-6,20; p = 0,04). Y Perales et al.30 también lo ratificaron (OR = 0,36; 95% IC = 0,20-0,63).

Para evaluar la capacidad cardiorrespiratoria se utilizó el test de 6 minutos caminando 28, test de 2 millas o test en tapiz rodante 30. Todos
Programa de entrenamiento óptimo durante el embarazo en la prevención de la hipertensión gestacional y preeclampsia: una revisión sistemática

los estudios coincidieron en que las mujeres activas durante el embarazo presentaban una mejor capacidad cardiorrespiratoria: $p = 0.014^{45}$, $p < 0.05^{38}$ y $p < 0.001^{36}$.

Discusión

El propósito de la presente revisión fue analizar qué tipo de ejercicio, duración de la intervención y de la sesión, frecuencia e intensidad producen mayores beneficios en la prevención de la HTG y preeclampsia en mujeres con embarazos sin complicaciones durante la gestación. Los resultados obtenidos, muestran que existe una relación beneficiosa en la realización de un programa de EF en el embarazo en mujeres sanas y el riesgo de padecer estos trastornos hipertensivos.

Tipo de ejercicio

Tras una revisión de la literatura, concluimos que las mujeres embarazadas sanas pueden realizar EF durante la gestación sin afectar negativamente a su salud materno-fetal24,46. El EF aeróbico principalmente utilizado en esta población es andar, baile y bicicleta estática$^{2,16,26,34,36-39,42,43,46}$. El ejercicio de fuerza en su mayoría se ha realizado con mancuernas, bandas elásticas o ejercicios de fortalecimiento de suelo pélvico$^{27,38,41-44}$. Además, la flexibilidad también ha sido estudiada en abundancia16,34,42,44. El ACOG recomienda realizar fundamentalmente un programa de EC21.

Price et al.26 encontraron que aquellas mujeres embarazadas que habían realizado un programa de EA durante su gestación, redujeron la incidencia de partos por cesárea y el tiempo de recuperación tras el parto.

Stutzman et al.39 relacionaron el EA con una disminución de la PA de reposo e incidencia de HTG. Sin embargo, esto contradice a Oliveria et al.35, que aunque lo relacionaron con un aumento del VO$_{2max}$, no hallaron diferencias significativas en el riesgo de preeclampsia, macrosomía, PA e índice de pulsatividad. Ramírez-Vélez et al.44 avalan otros beneficios del EA en el embarazo, como el aumento de dilatación medida por flujo, o reducción de la FC de reposo.

Yeo et al.16,34 compararon el EA y de flexibilidad en mujeres embarazadas. Sus resultados muestran que el grupo que realizaba entrenamiento de flexibilidad presentaba una menor PA de reposo e incidencia de HTG. Sin embargo, este grupo mostraba una menor incidencia de HTG, lo que podría deberse a que este trastorno puede darse como precursor de la preeclampsia11, y la realización de un programa de ejercicios de flexibilidad podría prevenir su desarrollo.

Actualmente, las recomendaciones de entrenamiento en el embarazo se centran en programas de EC21. Barakat et al.27,42 y Perales et al.30 lo relacionaron con una menor ganancia de peso materno excesivo y, salvo Barakat et al.27, que no lo mencionaron, también con un menor riesgo de macrosomía fetal. Por su parte, de Stafne et al.40 y Ginar et al.44 no hallaron dicha relación. Tres estudios realizaron una intervención de EC27,38,41, y otros 3 combinaron el EC y de flexibilidad43,44. Cuatro estudios investigaron el efecto del entrenamiento en la incidencia de HTG43,45 o preeclampsia21,42,44. Todos redujeron el riesgo de padecer dichos trastornos hipertensivos, salvo Ginar et al.44, que no hallaron diferencias significativas. En comparación al EA, existe una mayor evidencia sobre el efecto preventivo del EC en la incidencia de HTG o preeclampsia41,45 que aquellos que solo emplearon el aeróbico. Al comparar el EA y de flexibilidad, las embarazadas que realizaron un entrenamiento de flexibilidad tuvieron una menor incidencia de preeclampsia y disminuyeron su PA de reposo16,34.

Por ello, el entrenamiento óptimo para reducir el riesgo de HTG y preeclampsia sería combinar EC y de flexibilidad.

Duración del programa de entrenamiento

Las recomendaciones indican que las mujeres embarazadas sanas deben empezar a entrenar tras la semana 12 de gestación37, ya que, como explica la *Oficina para la Salud de la Mujer en el Departamento de Salud y Servicios Humanos de los Estados Unidos (OWH)*, en el primer trimestre de embarazo existe un mayor riesgo de aborto espontáneo, sobre todo en las 8 primeras semanas37. En los estudios analizados, ninguno inició su intervención en las primeras 8 semanas gestacionales, y la mayoría lo hicieron pasadas las 12 primeras semanas$^{16,26,34,36-39,44-46}$. Sin embargo, la evidencia avala que, en mujeres sanas, entrenar en el primer trimestre de gestación no supone ningún riesgo para la salud materno-fetal43,45.

El ACOG (2020) no establece recomendaciones sobre la duración del programa de entrenamiento que deben realizar las mujeres con embarazos sin complicaciones. Esta puede ser la razón por la cual existe una gran heterogeneidad en la duración de las intervenciones de esta revisión, ya que existen estudios cuyo entrenamiento es de 12 semanas38 y otros que transcurren durante prácticamente la totalidad del embarazo44.

Mucho más homogénea es la finalización del programa de entrenamiento. La mayoría optaron por intervenciones que continuaron hasta la semana 3616,26,34,36,39,42,46. Los estudios con una mayor duración del programa de entrenamiento (29-31 semanas)25,36 advirtieron en las mujeres embarazadas una menor incidencia de HTG. Los estudios con un programa de duración menor a 12 semanas17,36 no midieron esa variable, aunque Haakstad et al.26 obtuvieron una menor PA sistólica de reposo en su grupo intervención con respecto a los controles. De Oliveria et al.35 realizaron una intervención de 25 y 18 semanas, dependiendo de los grupos en los que dividieron su muestra, y Ginar et al.44, de 12-16 semanas. Ninguno halló una relación significativa en el riesgo de HTG y preeclampsia y el entrenamiento en embarazo. En el estudio de Price et al.26, no se dieron casos de HTG en el grupo intervención, la cual tuvo una duración de 22-28 semanas, aunque las diferencias entre grupos no fueron significativas. Oliveria et al.35 sugieren que existiría una posible causa por la que no se hallaron diferencias significativas en sus mediciones, puede ser que la intervención comenzara en la semana 13 o 20 según el grupo, a diferencia de otro estudio que utilizaron de referencia, que comenzó su programa a las 8-9 semanas36, al igual que Perales et al.30 y Barakat et al.42, que sí encontraron una relación significativa. Del mismo modo, Ginar et al.44 no encontraron relación en la incidencia de preeclampsia comenzando su intervención a las 16-20 semanas gestacionales. Además, la finalización del entrenamiento fue a las 32-36 semanas, momento de inicio típico de preeclampsia44, Stafne et al.40 tampoco encontraron diferencias signifi-
cativas en la incidencia de HTG o preeclampsia, lo que podría deberse, a la reducida duración del programa de intervención (16 semanas), o a la alta mortalidad experimental del estudio.

Por todo ello, parece que existe una mayor reducción de la incidencia de HTG y preeclampsia en intervenciones con una duración mínima de 29 semanas, viéndose incrementado su efecto preventivo si la duración aumenta. Los mejores resultados se han visto en las intervenciones iniciadas entre las semanas 8 y 9, finalizando su intervención tras la 36ª semana gestacional. Serían necesarios más estudios para determinar con precisión la duración de un programa de entrenamiento para una mayor reducción de la incidencia de HTG y preeclampsia.

Frecuencia semanal

El ACOG recomienda que las mujeres con embarazos sin complicaciones entrenen al menos 3-4 veces por semana27. La mayoría de estudios llevaron a cabo una intervención de 3 días semanales2,26,38,41-45. De ellos, Barakat et al.42 y Perales et al.39 encontraron que las mujeres que habían realizado la intervención tenían un menor riesgo de HTG, y Lombardi et al.41, hallaron una menor incidencia de preeclampsia. Price et al.39, con una frecuencia de entrenamiento de 4 días semanales, encontraron un riesgo reducido de HTG, aunque no de manera significativa. De Oliveria et al.26 y Ginar et al.44, cuya frecuencia era de 3 días semanales, no hallaron diferencias significativas en la incidencia de preeclampsia, al igual que Stafne et al.41, con una frecuencia semanal mínima de 3 días. Stutzman et al.39, con una frecuencia de 5 días semanales, obtuvieron un menor PA de reposo en las embarazadas que entrenaron. Haakstad et al.31, cuyas mujeres entrenaban mínimo 2 días a la semana, hallaron que el grupo intervención obtuvo un menor PA sistólica de reposo, pero no ocurrió lo mismo con la diastólica.

Por todo ello, queden ratificadas las recomendaciones del ACOG27, indicando que una frecuencia de entrenamiento mínima a 3 días semanales sería ideal para reducir el riesgo de HTG y preeclampsia.

Intensidad de las sesiones

Las recomendaciones actuales de entrenamiento en el embarazo detallan que la intensidad de las sesiones debe situarse entre el 60-80% de la FC\textsubscript{max}.27

La intensidad máxima media de los estudios de esta revisión se sitúa en un 68,5% de la FC\textsubscript{max} y un 13,6 sobre 20 de EEP. La mayoría de estudios aconsejaron entrenamientos con una intensidad entre 12-14 de EEP2,26,30,31,34,37,41-45. Sin embargo, Ramírez-Vélez et al.41 y Stutzman et al.39 realizaron estudios con una intensidad menor. Ramírez-Vélez et al.41, aunque no estudiaron directamente la incidencia de HTG o preeclampsia, obtuvieron una reducción de la FC de reposo y una mejora de la capacidad aeróbica y dilatación mediada por flujo. Stutzman et al.39 observaron una reducción de la PA en el grupo intervención, lo que podría inducir a una menor incidencia de HTG.

El estudio De Oliveria et al.26 realizó las sesiones de mayor intensidad, acogiéndose a las recomendaciones del ACOG27. Sin embargo, no encontraron una relación significativa entre el entrenamiento y la reducción del riesgo de preeclampsia, al igual que Ginar et al.44 y Stafne et al.41, cuyas sesiones de entrenamiento oscilaban entre 12 y 14 de EEP. Los estudios que encontraron una disminución de la HTG o preeclampsia siguieron un entrenamiento cuya intensidad fue de 12-14 de EEP26,42, incluso menor10,11; como fue el caso del estudio de Perales et al.39. Lombardi et al.41 también encontraron mejoras significativas en el riesgo de preeclampsia, con sesiones cuya intensidad era menor a 1,25 en la Escala de Likert 0-5.

Por ello, los resultados muestran que la intensidad óptima de entrenamiento para la reducción del riesgo de HTG y preeclampsia sería entre el 50-70% de la FC\textsubscript{max} y entre 10-14 sobre 20 de la EEP.

Duración de las sesiones

El ACOG recomienda que, en embarazos sin complicaciones, se realicen sesiones de 30 a 60 minutos37. Todos los estudios se mantenían en ese margen, salvo el de Ramírez-Vélez et al.36, con 85 minutos, y el de Oliveria et al.26, cuyas sesiones duraban un mínimo de 15 minutos. Quizás, la duración limitada de las sesiones de este estudio36 podría ser la causa por la cual es el único, junto a Ginar et al.44 y Stafne et al.41, que estudiando la incidencia de preeclampsia, no hayan encontrado una disminución en aquellas embarazadas que entrenaban. Los estudios que han registrado un menor riesgo de HTG42,45, preeclampsia41 o una reducción de la PA de reposo41,46 tuvieron sesiones de 45-60 minutos, salvo Stutzman et al.39, que no lo detalló.

Por ello, entrenamientos de 45 a 60 minutos por sesión serían efectivos para reducir el riesgo de HTG y preeclampsia.

Conclusión

El entrenamiento durante el embarazo en mujeres sanas reduce la incidencia de HTG y preeclampsia. El programa de intervención con más beneficios es el EC combinado con entrenamiento de flexibilidad y con una duración mínima de 29 semanas, que oscile entre la 8ª-9ª semana gestacional, hasta la 36, pudiendo extenderse hasta el final del embarazo. Se recomienda una frecuencia de entrenamiento mínima de 3 días semanales, con sesiones entre el 50-70% de la FC\textsubscript{max} y una EEP de 10-14 sobre 20. Para un efecto óptimo del entrenamiento en la reducción de HTG y preeclampsia, las sesiones deben oscilar entre 45 y 60 minutos.

Estas recomendaciones concuerdan en su mayoría con las recomendaciones que el ACOG sugiere para el entrenamiento en el embarazo en mujeres sanas.

Conflicto de intereses

Los autores no declaran conflicto de interés alguno.

Bibliografía

1. NICHD: Información sobre el embarazo [Internet]. National institute of child health and human development. 2020 [cited 2020 Apr 29]. Disponible en: https://espanol.nichd.nih.gov/salud/temas/pregnancy/informacion
2. Barakat R, Perales M, Bacchi M, Coteron J, Refoyo I. A Program of Exercise Throughout Pregnancy: Is It Safe to Mother and Newborn? Am J Heal Promot. 2014;29:2–8.
Programa de entrenamiento óptimo durante el embarazo en la prevención de la hipertensión gestacional y preeclampsia: una revisión sistemática

3. Santos IA, Stein R, Fuchs SC, Duncan BB, Ribeiro JP, Kroeff LJ, et al. Aerobic exercise and submaximal functional capacity in overweight pregnant women: a randomized trial. Obstet Gynecol. 2005;105:243–9.

4. Margulis AY, Palmsten K, Andrade SE, Charlton RA, Hardy JR, Cooper WC, et al. Beginning and duration of pregnancy in automated health care databases: Review of estimation methods and validation results. Pharmacoeconomic Drug Saf. 2015;24:335–42.

5. Barra S, Cachulo MDC, Providência R, Leitão-Marques A. Hypertension in pregnancy: The current state of the art. Rev Port Cardiol. Sociedade Portuguesa de Cardiologia. 2012;31:425–32.

6. Hutchison JA, Lissonova S, Joseph KS. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25:391–403.

7. Rosene-Montella K, Keely E, Lee R, Barbour L. Medical care of the pregnant patient. Obstet Med. 2009;2:42.

8. Hall ME, George EM, Granger JP. El corazón durante el embarazo. Can Fam Physician. 2015;60:233–9.

9. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. The JNC 7 Report. 2003;21:259–267.

10. Huerta Robles B. Factores de riesgo para la hipertensión arterial. Arch Méd Deporte 2021;38(2):127-135

11. Rosene-Montella K, Keely E, Lee R, Barbour L. Medical care of the pregnant patient. Obstet Med. 2009;2:42.

12. Roberts JM, Pearson GD, Cutler JA, Lindheimer MD. Summary of the NHLBI Working Group on Research on Hypertension during Pregnancy: Hypertens Pregnancy. 2003;22:109–27.

13. Dekker GA. Risk factors for preeclampsia. Clin Obstet Gynecol. 1999;42:422–35.

14. Awd MA, Hasinie ME, Taha MM, Gabar AA. Effect of stretching exercises versus a genetic training on preeclampsia. J Exerc Rehabil. 2019;15:109–13.

15. Wiltin A, Saade G, Mattar F, Sibai B. Predictors of neonatal outcome in women with severe preeclampsia or eclampsia between 24 and 33 weeks’ gestation. Am J Obstet Gynecol. 2000;182:607–11.

16. Yeo S. Prenatal stretching exercise and autonomic responses: preliminary data and a model for reducing preeclampsia. (J Nurs Sch. 2010;42:113–21).

17. Ros HS, Crnattingius S, Lipworth L. Comparison of Risk Factors Preeclampsia and Gestational Hypertension in a Population-based Cohort Study. Am J Epidemiol. 1998;147:1062–70.

18. Melamed N, Ray JG, Hladunewich M, Cox B, Kingdom JC. Gestational Hypertension and Preeclampsia: Are They the Same Disease? J Obstet Gynecol Can. 2016;38:647–54.

19. Tzengda LA, Austdal M, Skrastid RB, Salvesen KA, Austuglen R, Bathen TD, et al. Distinct First Trimester Cytokine Profiles in Gestational Hypertension and Preeclampsia. Arter Thromb Vasc Biol. 2015;35:2478–85.

20. Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA. Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension. 2001;38:718–22.

21. Acuria E, Còrdoba A, Bustamante M del R, Suarndly Garzón L, Rojas JL, Franco A, et al. Trastornos hipertensivos en el embarazo con infección urinaria. Arch Méd Deporte 2021;38(2):127-135

22. Marín R, Gorostidi M, Álvarez S. Hipertensión arterial y embarazo. NeuroPlus. 2011;4:1–56.

23. Askie LM, Duley L, Henderson-Smatt DJ, Stewart LA. Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet. 2007;369:1791–1798.

24. Mayer C, Livingston J, Fang X, May LE. Influence of exercise mode on pregnancy outcomes: ENHANCED by Mom project. BMC Pregnancy Childbirth. 2015;15:133.

25. Haakstad LAH, Bø K. Effect of regular exercise on prevention of excessive weight gain in pregnancy: A randomized controlled trial. Eur J Contracept Reprod Heal Care. 2011;16:116–25.

26. Price BB, Amini SB, Kappeler K. Exercise in pregnancy: effect on fitness and obstetric outcomes-a randomized trial. Med Sci Sport Exerc. 2012;44:2263–9.

27. ACOG. Physical Activity and Exercise During Pregnancy and the Postpartum Period. Obstet Gynecol. 2020;135:e178-e188.

28. Mottola MF, Davenport MH, Ruchat S-M, Davies GA, Poitras VJ, Gray CE, et al. Canadian guideline for physical activity throughout pregnancy. Br J Sports Med. 2016;50:1339–46.

29. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2:92–8.

30. Perales M, Santos-Lozano A, Ruiz JR, Lucia A, Barakat R. Benefits of aerobic or resistance training during pregnancy on maternal and neonatal outcomes: A systematic review. Early Hum Dev. 2016;94:43–8.

31. Ghaedi AS, Saab B. Evidence for exercise training in the management of hypertension in adults. Can Fam Physician. 2015;60:233–9.

32. Glick R, Schneeberger T, Boeselt T, Kern K, Kaczuilla AR, Held M, et al. Exercise Training in Patients with Pulmonary Hypertension: A Systematic Review and Meta-analysis. Pneumologie. 2019;73:677-685.

33. Safias AF, Logsdon-Sackett N, Wang W, Woolson R, Bracken MB. Work, leisure-time physical activity, and risk of preeclampsia and gestational hypertension. Am J Epidemiol. 2004;160:728–65.

34. Yeo S, Davidge S, Bonis DL, Antonakos CL, Hayashi R, O’Leary S. A comparison of walking versus stretching exercises to reduce the incidence of preeclampsia: a randomized clinical trial. Hypertens pregnancy. 2008;27:113–30.

35. Kasavara KT, do Nascimento SI, Costa ML, Suriá FG, e Silva JL. Exercise and physical activity in the prevention of pre-eclampsia: systematic review. Acta Obstet Gynecol Scand. 2012;91:1147–57.

36. de Oliveira AS, Silva JP, Tavares JS, Barros VO, Leite DF, Amorim MMR. Effect of a physical exercise program during pregnancy on uteroplacental and fetal blood flow and fetal growth: a randomized controlled trial. Obstet Gynecol. 2012;120:302–10.

37. Haakstad LAH, Edvardsen B, Ito K. Effect of regular exercise on blood pressure in normotensive pregnant women: A randomized controlled trial. Hypertens Pregnancy. 2016;35:170–80.

38. Ramírez-Velez R, Bustamante J, Czmeczyencí A, Aguilar de Plata AC, Loés-Arnaz S. Effect of exercise training on eNOS expression, NO production and oxygen metabolism in human placenta. PLoS One. 2013;8:e80225.

39. Stutzman SS, Brown CA, Hains SM, Godwin M, Smith GN, Parlow JL, et al. The effects of exercise conditioning in normal and overweight pregnant women on blood pressure and heart rate variability. Biol Nurs. 2010;12:137–48.

40. Yeo S. Adherence to walking or stretching, and risk of preeclampsia in sedentary pregnant women. Res Nut Health. 2009;32:379–90.

41. Lombardi W, Wilson S, Peniston PB. Wellness intervention with pregnant soldiers. Mil Med. 1999;164:22–9.

42. Barakat, Pelaez M, Cordero Y, Perales M, Lopez C, Cotelon J, et al. Exercise during pregnancy protects against hypertension and macrosomia: randomized clinical trial. Am J Obstet Gynecol. 2016;214:649.e1-8.

43. Perales M, Valenzuela PL, Barakat R, Cordero Y, Pelaez M, Lopez C, et al. Gestational Exercise and Maternal and Child Health: Effects until Delivery and at Post-Natal Follow-up. J Clin Med. 2020;9.

44. Ginan S, Curi F, Rodrigues M, Damaso A, Freitas da M, Bassani D, et al. A randomized controlled trial of exercise conditioning in normal and overweight pregnant women: results from the PAMELA study. Int J Behav Nutr Phys Act. 2017;14:175.

45. Ramírez-Velez R, de Plata AC, Mosquera Escudero M, Echeverry I, Guillermo Ortega J, Salazar B, et al. Evidence for exercise training in the management of hypertension in adults. Can Fam Physician. 2011;57:1601–8.

46. OWH. Aborto espontáneo [Internet]. Office on Women’s Health. 2019 [cited 2020 May 29]. Disponible en: https://espanol.womenshealth.gov/pregnancy/youre-pregnant-now-what/pregnancy-loss/29]. Disponible en: https://espanol.womenshealth.gov/pregnancy/youre-pregnant-now-what/pregnancy-loss/29.

47. Clapp JF, Kim H, Buciu B, Lopez B. Beginning regular exercise in early pregnancy: Effect on fetoplacental perfusion. Am J Obstet Gynecol. 2000;183:1484–8.