Supplemental Information

Title. Prompt active restoration of peatlands substantially reduces climate impact

Kelly A. Nugent, Ian B. Strachan, Nigel T. Roulet, Maria Strack, Steve Frolking, Manuel Helbig

S1 Study sites information

The four tables provided below detail the main characteristics of the study sites, the measurements that were taken, how the data was managed and the annual flux results.

Site Name	Coordinates	Climate	Ecosystem State/Type	Age at study start (yr)	Vegetation Composition	T (°C)	P (mm)	WTD (m)	References
Bois-des-Bel	47.97 N, 69.43 W	Temperate	Unrestored peat extraction site	19	BP, O	3.5 ± 2.9	964	0.55	Waddington et al., 2010
Bois-des-Bel			Restored peat extraction site	1	BP, S, E, O			0.32	Waddington et al., 2010
Bois-des-Bel			Restored peat extraction site	14	S, ES, E, O	0.29 ± 0.12		0.29 ± 0.12	Nugent et al., 2018
Mer Bleue	45.41 N, 75.52 W	Temperate continental	Intact ombrogenic bog	8500	S, ES, E, O	6.4 ± 0.8	943	0.41 ± 0.06	Nugent et al., 2018
Saint-Alexandre	47.73 N, 69.61 W	Temperate	Unrestored peat extraction site	14	BP, E, O	3.5 ± 2.9	964	0.46 ± 0.14	Rankin et al., 2018; this study
Seba Beach Restored	53.46 N, 114.88 W	Boreal continental	Unrestored peat extraction site	1	S, C, E, O	3.5 ± 1.1	550	0.45 ± 0.12	This study
Seba Beach Unrestored	53.46 N, 114.88 W	Boreal continental	Unrestored peat extraction site	1	BP	3.5 ± 1.1	550	0.66 ± 0.07	This study
Seba Beach Wet	53.46 N, 114.88 W	Boreal continental	Restored peat extraction site	4	O, S, BP, E	3.5 ± 1.1	550	0.34 ± 0.07	This study

Temperature (T) and precipitation (P) are 30-year climate normals (1981-2010; Environment Canada), water table depth (WTD) refers to seasonal averages, with positive values indicating a water table below the surface.

S, Sphagnum spp.; ES, ericaceous shrub spp.; E, Eriophorum spp.; C, Carex spp.; O, others; BP, bare peat.
Site name	Timeline	Measurement technique, CO₂ fluxes	Measurement technique, CH₄ fluxes	DOC fluxes	References
Bois-des-Bel	1999-2001	-	-	Yes	Waddington et al., 2008
	1999-2002	-	Closed chambers	-	Waddington and Day, 2007
	2000-2001	Eddy covariance LI-7500	-	-	Petrone et al., 2003
	2014-2016	Eddy covariance LI-7500A	Eddy covariance LI-7700	Yes	Nugent et al., 2018
Mer Bleue	1999-2015	Eddy covariance LI-7000	Autochambers LI-6262	Yes	Nugent et al., 2018
Saint-Alexandre	2014-2015	Eddy covariance LI-7500A	Eddy covariance LI-7700	-	Rankin et al., 2018; this study
Seba Beach Restored	2013-2015	-	Closed chambers	-	This study
	2014-2015	Eddy covariance LI-7500A	-	-	This study
	2016	Eddy covariance LI-7500A	Eddy covariance LI-7700	-	This study
Seba Beach Unrestored	2013-2015	-	Closed chambers	-	This study
	2014	Eddy covariance LI-7500A	-	-	This study
Seba Beach Wet	2016	Eddy covariance LI-7500A	Eddy covariance LI-7700	-	This study
Table S1.3					
Site name	Timeline	Gap-filling CO₂	Gap-filling CH₄	References	
------------------------	-------------------	--	---	-------------------------------------	
Bois-des-Bel	1999-2002	-	Weighted average seasonal flux	Waddington and Day, 2007	
	2000-2001	Time dependent light and temperature response (e.g. Barr et al., 2004)	-	Petrone et al., 2003	
	2014-2016	Marginal distribution sampling method (MDS; e.g. Reichstein et al., 2005)	MDS, exponential temperature model	Nugent et al., 2018	
Mer Bleue	1999-2015	Time dependent light and temperature response	Linear regression with log 10 flux	Roulet et al., 2007; Lai et al., 2012	
Saint-Alexandre	2014-2015	MDS	MDS, exponential temperature model	Refer to Nugent et al., 2018	
Seba Beach Restored	2013-2015	-	Weighted average seasonal flux	refer to Strack et al., 2016	
	2014-2015	MDS	-	refer to Nugent et al., 2018	
	2016	MDS	MDS, exponential temperature model	refer to Nugent et al., 2018	
Seba Beach Unrestored	2013-2015	-	Weighted average seasonal flux	refer to Strack et al., 2016	
	2014	MDS	-	refer to Nugent et al., 2018	
Seba Beach Wet	2016	MDS	MDS, exponential temperature model	refer to Nugent et al., 2018	
Table S1.4
Annual CO\(_2\), CH\(_4\) and DOC fluxes at the study sites

Site name	Period	Chronosequence	CO\(_2\) (95% CI) (g C m\(^{-2}\) yr\(^{-1}\))	CH\(_4\) (95% CI) (g C m\(^{-2}\) yr\(^{-1}\))	DOC (g C m\(^{-2}\) yr\(^{-1}\))
Bois-des-Bel (unrestored section)	1999	UNR	-	0.1	31.7
	2000	UNR	-	0.9	33.7
	2001	UNR	-	0.4	48.6
	2002	UNR	-	1.0	-
Bois-des-Bel (section restored in Fall 1999)	1999	UNR	-	0.0	26.2
	2000	RES-1yr	695 (587-804)\(^2\)	0.1	7.9
	2001	RES-1yr	685 (577-794)\(^2\)	1.4	10.6
	2002	RES-4yr	-	4.1	-
	2014	RES-15yr	-94 (-102--82)	4.4 (4.3-4.5)	9.2
	2015	RES-15yr	-105 (-111--97)	4.5 (4.3-4.6)	6.6
	2016	RES-15yr	-70 (-76--63)	4.2 (4.1-4.4)	4.8
Mer Bleue	1999-2015	REF (RES-30yr)	-73 ± 40\(^1\)	6 ± 4\(^1\)	17 ± 3\(^1\)
Saint-Alexandre	2014	UNR-15yr	173 (169-177)	0.5 (0.5-0.6)	-
	2015	UNR-15yr	259 (253-274)	0.8 (0.7-0.8)	-
Seba Beach Restored	2013	RES-1yr	-	1.8	-
	2014	RES-1yr	275 (271-279)	0.9	-
	2015	RES-1yr	362 (358-366)	1.5	-
	2016	RES-4yr	225 (220-231)	1.2 (1.1-1.3)	-
Seba Beach Unrestored	2013	UNR-1yr	-	0.7	-
	2014	UNR-1yr	445 (426-460)	0.4	-
	2015	UNR-1yr	-	0.5	-
Seba Beach Wet	2016	RES-4yr	65 (54-72)	7.6 (7.0-8.0)	-

\(^1\) Mean ± SD for the 17-year period

\(^2\) Annual flux was estimated from the published seasonal flux by adding 1 (± 0.5) g C m\(^{-2}\) day\(^{-1}\) for the missing period.
S2 Additional model methodology

We simulated the peatland atmospheric flux perturbations as annual net fluxes of CO₂ and CH₄ from peatland initiation to 500 years after peat extraction termination that occurred in 1980 CE. The spin up period, of peatland initiation through to extraction termination, was used to establish an atmospheric concentration perturbation baseline. Peat accumulation at Bois-des-Bel was 3 m over 6985 years (Lavoie et al., 2001) and was represented as a constant CO₂ sequestration rate of 22 g CO₂-C m⁻² yr⁻¹. Peat extraction lasted 10 years, during which 334 g CO₂-C m⁻² yr⁻¹ and 0.5 g CH₄-C m⁻² yr⁻¹ was emitted. The CO₂ flux is based on a 19-yr peat oxidation/erosion rate of 5.7 ± 1.1 mm y⁻¹ measured at Bois-des-Bel prior to restoration (Waddington and McNeil, 2002). This gas loss during extraction implicitly includes wind erosion and particulate organic carbon (POC) export, the latter of which can represent upward of 65% of total carbon loss at peat extraction sites (excluding extracted peat) (Evans et al., 2016). For this analysis, we assume that any POC exported was oxidized during the year it was lost. The CH₄ flux for the extraction period is a multiplication of ditch cover fraction (0.05) and mean growing season ditch emissions (10.9 g CH₄-C m⁻²) measured in a section of Bois-des-Bel that remains unrestored (Waddington and Day, 2007). While we lack direct measurements from peatlands under extraction, we expect the fluxes to be broadly similar, as no management actions occurred at the site after extraction termination.

S3 Additional model analysis including nitrous oxide

We neglected N₂O emissions in our main analysis because we had insufficient data from our undrained, unrestored and restored post-extraction peatlands to make a defensible estimate of mean annual fluxes. IPCC Tier 1 assumes a N₂O flux of 0.03 g N m⁻² yr⁻¹ when drained and a
negligible flux after rewetting (IPCC, 2014). The N₂O lifetime in the atmosphere is 121 years (Myhre et al., 2013), whereby a constant addition to the atmosphere will reach equilibrium after about 500 years. Thus, the climate impact of even a small amount of N₂O is likely non-negligible over the 500-year time frame of our study. To test this, we conducted an additional IPCC Tier 1 simulation with N₂O included. Figure S3.1, which compares the no rewetting scenario with and without N₂O, clearly demonstrates the N₂O emission rates being discussed for post-extraction peatlands have a minimal climate impact relative to CO₂ and CH₄.

![Figure S3.1](image)

Figure S3.1 Instantaneous net radiative forcing of a post-extraction unrestored peatland using IPCC Tier 1 emission factors with (light blue line) and without (dark blue line) N₂O emission included.
S4 Comparison of atmospheric perturbation model results to applying the global warming potential metric

In Table S4.1, modelled RF and GWP show both a net warming effect for the Drained/Unrestored scenario. However, RF is increasing with longer timeframes while GWP is decreasing (Table S4.1). The difference is caused by considering a one-time pulse emission for GWP vs. continuous emissions for the modelled RF. Constant net CO₂ emissions for the Drained/Unrestored scenario lead to a steadily increasing positive RF. In contrast, the shorter atmospheric lifetime of CH₄ (compared to CO₂) causes GWP to decrease from the 20- to 100-year timeframe (Table S4.1). If continuous CH₄ emissions would be considered, instantaneous RF would increase and then remain constant after a few decades (Neubauer & Megonigal, 2015). Since a drained/unrestored peatland is a constant source of CO₂ and CH₄, modelled instantaneous RF is the appropriate tool to assess climate impacts.

For the Prompt Rewetted/Restored scenario, GWP is positive for Tier 1 for both timeframes, positive for Tier 2 for the 20-year timeframe and negative for Tier 2 for the 100-year timeframe (Table S4.1). The larger reductions in GWP between the 20- and 100-year timeframe compared to the Drained/Unrestored scenario are due to larger contributions from CH₄ emissions. For the Tier 2, the Prompt Rewetted/Restored scenario has a cooling effect (i.e. negative RF) for the 100- and 500-year timeframe (Table S4.1). The switch is caused by the development of a continuous net CO₂ sink, which leads to a cooling effect due to the longer atmospheric lifetime of CO₂ compared to CH₄. In this case, using a GWP approach does also identify the cooling effect of prompt rewetting/restoring activities within a century.
	RF (nW m\(^{-2}\))	GWP (g CO\(_2\)e m\(^{-2}\) yr\(^{-1}\))				
	at 20 yr	at 100 yr	at 500 yr	over 20 yr	over 100 yr	
Drained/Unrestored	Tier 1	0.36 (0.13 - 0.59)	1.15 (0.45 - 1.79)	3.80 (1.53 - 5.81)	1405 (457 - 2207)	1220 (420 - 1874)
	Tier 2	0.18 (0.11 - 0.25)	0.76 (0.43 - 1.08)	2.90 (1.76 - 4.07)	963 (592 - 1341)	926 (570 - 1289)
20-yr Delay Rewetted/Restored	Tier 1	0.36 (0.13 - 0.59)	0.46 (-0.07 - 2.29)	0.28 (-0.56 - 2.70)	-	-
	Tier 2	0.18 (0.11 - 0.25)	0.14 (-0.25 - 0.58)	-0.41 (-1.38 - 0.62)	-	-
Prompt Rewetted/Restored	Tier 1	0.27 (-0.04 - 1.58)	0.32 (-0.17 - 2.06)	0.31 (-0.63 - 2.53)	1027 (-160 - 5190)	339 (-182 - 1862)
	Tier 2	0.03 (-0.09 - 0.10)	-0.09 (-0.46 - 0.21)	-0.57 (-1.52 - 0.33)	190 (85 - 299)	-140 (-229 - 45)
S5 Relative climate benefit of peatland restoration actions

The relative climate benefit of peatland restoration actions at 20 years, calculated by defining a reference and calculating the difference in net radiative forcing between the baseline and alternative management action.

Table S5.1	Prompt active restoration	Active restoration	No restoration	Prompt average rewetting	Average rewetting	No rewetting
Prompt active restoration	-	-83%	-83%	-89%	-92%	-92%
Active restoration			0%	-32%	-50%	-50%
No restoration			-32%	-50%	-50%	-50%
Prompt average rewetting			-26%	-26%	-26%	-26%
Average rewetting			-	0%	-	-
No rewetting						

Negative values in Table S5.1 indicate a reduction in radiative forcing. Example: After 20 years, Prompt Active Restoration results in an 83% reduction in the radiative forcing when compared with No Restoration.
References

Barr, A. G., Black, T. A., Hogg, E. H., Kljun, N., Morgenstern, K. & Nesic, Z. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. *Agricultural and Forest Meteorology* **126**, 237–255 (2004).

Evans, C. D., Renou-Wilson, F. & Strack, M. The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. *Aquat Sci* **78**, 573–590 (2016).

IPCC. *2013 Supplement to the 2006 Inter-governmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories* (IPCC, Wetlands, 2014).

Lai, D. Y. F., Roulet, N. T., Humphreys, E. R., Moore, T. R. & Dalva, M. The effect of atmospheric turbulence and chamber deployment period on autochamber CO₂ and CH₄ flux measurements in an ombrotrophic peatland. *Biogeosciences* **9**, 3305–3322 (2012).

Lavoie, C., Zimmerman, C. & Pellerin, S. Peatland restoration in southern Quebec (Canada): a paleoecological perspective. *Ecoscience* **8**, 247–258 (2001).

Myhre, G., Shindel, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., ... Zhang, H. Anthropogenic and Natural Radiative Forcing. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.) *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (pp. 659-740). Cambridge, UK and New York, NY: Cambridge University Press (2013).

Neubauer, S. C. & Megonigal, J. P. (2015). Moving Beyond Global Warming Potentials to Quantify the Climatic Role of Ecosystems. *Ecosystems* **18**, 1000–1013.
Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T. & Rochefort, L. Multi-year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. *Global Change Biology*, **24**, 5751-5768 (2018).

Petrone, R. M., Waddington, J. M. & Price, J. S. Ecosystem-scale flux of CO₂ from a restored vacuum harvested peatland. *Wetlands Ecology and Management* **11**, 419–432 (2003).

Rankin, T., Strachan, I. B. & Strack, M. Carbon dioxide and methane exchange at a post-extraction, unrestored peatland. *Ecological Engineering* **122**, 241–251 (2018).

Reichstein, M. *et al.* On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. *Global Change Biol.* **11**, 1424–1439 (2005).

Roulet, N. T. *et al.* Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. *Global Change Biol.* **13**, 397–411 (2007).

Strack, M. *et al.* Controls on plot-scale growing season CO₂ and CH₄ fluxes in restored peatlands: Do they differ from unrestored and natural sites? *Mires and Peat* **17**, 1–18 (2016).

Waddington, J. M. & Day, S. M. Methane emissions from a peatland following restoration. *J. Geophys. Res.* **112**, G03018 (2007).

Waddington, J. M. & McNeil, P. Peat oxidation in an abandoned cutover peatland. *Can. J. Soil. Sci.* **82**, 279–286 (2002).

Waddington, J. M., Strack, M. & Greenwood, M. J. Toward restoring the net carbon sink function of degraded peatlands: Short-term response in CO₂ exchange to ecosystem-scale restoration. *J. Geophys. Res.* **115**, G01008 (2010).

Waddington, J. M., Tóth, K. & Bourbonniere, R. Dissolved organic carbon export from a cutover and restored peatland. *Hydrol. Process.* **22**, 2215–2224 (2008).