Phylogenomic Analyses of *Snodgrassella* Isolates from Honeybees and Bumblebees Reveal Taxonomic and Functional Diversity

Luc Cornet,* Ilse Cleenwerck,† Jessy Praet,‡ Raphaël R. Leonard,§ Nicolas J. Vereecken,¶ Denis Michez,* Guy Smagghe,* Denis Baurain,* Peter Vandamme*" #

*BCCM/IHEM, Mycology and Aerobiology, Sciensano, Brussels, Belgium
†Laboratory of Microbiology and BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, Ghent, Belgium
‡InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
¶Agroecology Lab, Université libre de Bruxelles (ULB), Brussels, Belgium
§Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
¶Laboratory of Agrozoology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

ABSTRACT *Snodgrassella* is a genus of Betaproteobacteria that lives in the gut of honeybees (*Apis* spp.) and bumblebees (*Bombus* spp.). It is part of a conserved microbiome that is composed of a few core phyotypes and is essential for bee health and metabolism. Phylogenomic analyses using whole-genome sequences of 75 *Snodgrassella* strains from 4 species of honeybees and 14 species of bumblebees showed that these strains formed a monophyletic lineage within the *Neisseriaceae* family, that *Snodgrassella* isolates from Asian honeybees diverged early from the other species in their evolution, that isolates from honeybees and bumblebees were well separated, and that this genus consists of at least seven species. We propose to formally name two new *Snodgrassella* species that were isolated from bumblebees: i.e., *Snodgrassella gandavensis* sp. nov. and *Snodgrassella communis* sp. nov. Possible evolutionary scenarios for 107 species- or group-specific genes revealed very limited evidence for horizontal gene transfer. Functional analyses revealed the importance of small proteins, defense mechanisms, amino acid transport and metabolism, inorganic ion transport and metabolism and carbohydrate transport and metabolism among these 107 specific genes.

IMPORTANCE The microbiome of honeybees (*Apis* spp.) and bumblebees (*Bombus* spp.) is highly conserved and represented by few phyotypes. This simplicity in taxon composition makes the bee’s microbiome an emergent model organism for the study of gut microbial communities. Since the description of the *Snodgrassella* genus, which was isolated from the gut of honeybees and bumblebees in 2013, a single species (i.e., *Snodgrassella alvi*), has been named. Here, we demonstrate that this genus is actually composed of at least seven species, two of which (*Snodgrassella gandavensis* sp. nov. and *Snodgrassella communis* sp. nov.) are formally described and named in the present publication. We also report the presence of 107 genes specific to *Snodgrassella* species, showing notably the importance of small proteins and defense mechanisms in this genus.

KEYWORDS honeybee, bumblebee, microbiome, metagenomics, *Snodgrassella*, phylogenomics, species delineation, functional analysis, metabolic modeling

Honeybees (*Apis* spp.) and bumblebees (*Bombus* spp.) harbor a gut microbiome that is important in health and metabolism (1–3). This microbiome is highly conserved, with 95% of the gut microbionts falling within a few phyotypes that include Actinobacteria (*Bifidobacterium, Bombiscardovia*), Bacteroidetes (*Apirbacter*), Firmicutes (*Lactobacillus* [the so-called Firm-5 or Lacto-1 taxon], *Bombilactobacillus* [Firm-4, Lacto-2], and *Apilactobacillus*...
RESULTS AND DISCUSSION

Species delimitation within the *Snodgrassella* genus. We studied the diversity within the genus *Snodgrassella* using extensive phylogenomic and average nucleotide identity (ANI) analyses (Fig. 1). Highly conserved genes were selected to perform the phylogenomic analyses. Multiple events of HGT affecting *Snodgrassella* genomes have been reported (2, 31, 32), and such events may be damaging for inferring species phylogenies (36–38). To minimize interference of HGT, we used shared *Neisseriaceae* core genes only, by incorporating 35 non-*Snodgrassella* bacteria from this family into our data set. We further imposed a strict unicity presence onto core genes in order to avoid artifacts linked to paralogous sequences, which also have been reported to be deleterious to phylogenomic studies (39, 40). Finally, we enforced high geometric and functional indices (0.8 for both), resulting in the selection of genes with less than 20% gap insertions and 20% substitutions, respectively. Our phylogenomic data set was thus composed of 254 genes that were structurally and functionally conserved within the family *Neisseriaceae*. Our analyses of the *Neisseriaceae* phylogeny confirmed with 100% bootstrap support that the genus *Snodgrassella* is monophyletic within the family *Neisseriaceae* (see Fig. S1 in the supplemental material) (21, 41). Its nearest-neighbor taxon was *Populibacter corticis* (40). Prior to the description of *P. corticis* in 2017 (41), the lineage formed by *Stenoxybacter acetivorans* and *Snodgrassella* spp. was suggested to represent a gut-specific clade within the *Betaproteobacteria*, based on the observation that also *S. acetivorans* was isolated from an insect (i.e., termite gut sample) (21). The description of *P. corticis*, an organism isolated from bark tissue of poplar canker, appeared to disrupt this image, yet, more
should be known about the latter organism before the hypothesis of a gut-specific clade within the Betaproteobacteria is abandoned. In the rest of the present study, we used *P. corticis* CFCC 13594T as an outgroup for studying *Snodgrassella* phylogeny.

Our amino acid- and nucleotide-based phylogenomic and leave-one-out analyses all revealed a clear separation between *Snodgrassella* isolates from *A. mellifera* and *Bombus* spp., with full support values in bootstrap and leave-one-out analyses (Fig. S2 and S3). The 75 *Snodgrassella* strains formed three clades. Those isolated from Asian honeybees, referred to as Apis group1, formed a monophyletic group separated from the two other clades with full support in both bootstrap and leave-one-out analyses (Fig. S2 and S3). The same three clades were reported by Powell et al. (42) using *minD* as a single phylogenetic marker gene. Yet, the latter study did not use an outgroup to root the obtained phylogeny. Using 254 core genes and *P. corticis* CFCC 13594T as an outgroup, we demonstrated that Apis group1 is the first diverging group of the *Snodgrassella* phylogeny (Fig. S2 and S3). The separation into three lineages was confirmed by removing *P. corticis* CFCC 13594T from the phylogenomic analyses in order to check the presence of a long-branch attraction artifact (Fig. S4). The *Snodgrassella* phylogeny showed shorter branch lengths in *Snodgrassella* isolates from *A. mellifera* (here referred to as Apis group2) than those in isolates from *Bombus* spp. (Fig. 2). The latter represented five lineages (Fig. 2 and Table 1). The first, *Bombus* group1, was composed of four isolates from *Bombus pensylvanicus* (all collected in the United States) and was fully supported by the bootstrap and leave-one-out analyses (Fig. S2 and S3). The second, *Bombus* group2, consisted of a single isolate from *Bombus nevadensis* (United States). The three remaining groups were fully supported in the bootstrap and leave-one-out analyses as well and were referred to as *Bombus* group3, which was composed of three isolates from *Bombus appositus* (United States), *Bombus* group4, which was composed of two isolates from *Bombus pascuorum* and *Bombus lapidarius* (Belgium), and *Bombus* group5, which comprised 17 isolates collected from 11 *Bombus*
species in Belgium and the United States (Fig. 2 and Table 1) and which included the isolates wkB12 and wkB29, reported by Kwong and Moran (21). This topology was confirmed with sparser taxon sampling, after removing 40 strains with dRep (43) and computing another large phylogenomic analysis (Fig. 3). The branching patterns of the seven groups were the same in all amino acid- and nucleotide-based trees inferred, except for Bombus group2. Bombus group2 appeared as a sister group of Bombus group3 and Bombus group4 in all analyses (with a bootstrap of \(70 \)), except in the nucleotide-based phylogenomic analysis, in which Bombus group2 branched with Bombus group1 (Fig. S3).

To quantify the taxonomic divergence between the observed phylogenomic groups, we performed ANI analyses. The latter are generally used for species delimitation in bacterial taxonomy (44), with ANI values of about 95 to 96% corresponding to the species delineation threshold (45, 46). The ANI analysis (Fig. 2, part ANI) revealed values within each of the phylogenomic groups (except Bombus group2, for which only a single genome was available) that were consistently above 95% ANI, while ANI values between genome sequences of different groups were consistently below 87%. Therefore, each of the seven phylogenomic groups corresponded to a distinct \textit{Snodgrassella} species in modern bacterial taxonomy. These seven \textit{Snodgrassella} species likely exist as gut symbionts in stingless bees and Bombus species from as yet poorly examined continents, as suggested by their SSU rRNA phylogeny (10). The \textit{S. alvi} strain wkB2T clustered within Apis group2, and by taxonomic convention, the name \textit{S. alvi} should therefore be restricted to organisms from Apis group2. All other phylogenomic groups detected in the present and in earlier studies represent novel \textit{Snodgrassella}.

FIG 2 \textit{Snodgrassella} phylogeny and ANI comparison. A maximum likelihood tree was inferred from 254 core gene sequences under the PROTGAMMALGF model with RAxML (71) from a supermatrix of 76 organisms by 86,654 unambiguously aligned amino acid positions. Only bootstrap values below 100 are shown at the nodes. (A) Host. Host species were taken from biosample metadata in the NCBI portal, except for the 9 newly sequenced genomes, for which the metadata were taken from reference 15. (B) ANI heat map. ANI values were computed with fastANI (74). A triangular matrix was constructed according to pairwise distances. Colors associated with ANI values are given in the fastANI key. (C) GTDB hits. The blue squares on the right were determined using GTDBtk on the genomes of the associated strains (77).
TABLE 1 Details of the Snodgrassella strains and public assemblies

Strain no.	Species Group	Isolation source	Geographic origin	N	Length (nt)
wkB237	A. cerana	Singapore	Singapore	50	2,338,271
wkB73*	A. andreniformis	Singapore	Singapore		
GCF_013344955.1	wkB9*	Snodgrassella sp. nov.	Singapore	50	2,272,927
GCF_016100435.1	wkB9*	Snodgrassella sp. nov.	Singapore	50	2,548,535
GCF_002088575.1	wkB9*	Snodgrassella sp. nov.	Singapore	50	2,403,335

(Continued on next page)
Genome accession no.	Strain no.	Species	Group	Isolation source	Geographic origin	Completeness (%)	Contamination (%)	Length (nt)	No. of contigs
GCF_00277695.1	wkB332*	Snodgrassella alvi	Apis group2	Malaysia	99.57	1.28	2,487,419	30	502,922
GCF_00277815.1	wkB339	Snodgrassella alvi	Apis group2	Malaysia	99.57	0.85	2,499,197	27	431,105
GCF_002406645.1	E1*	Snodgrassella alvi	Apis group2	Malaysia	98.24	0.85	2,388,322	156	47,816
GCF_00277795.1	HK9x*	Snodgrassella sp. nov.	Bombus group1	Malaysia	99.57	0.90	2,609,176	74	92,612
GCF_00277731.1	Pens2-2-5	Snodgrassella sp. nov.	Bombus group1	Malaysia	99.57	0.43	2,486,143	132	102,952
GCF_00277745.1	WF3-3*	Snodgrassella sp. nov.	Bombus group1	Malaysia	99.57	0.85	2,603,503	67	133,888
GCF_00277825.1	Nev2-*	Snodgrassella sp. nov.	Bombus group2	Malaysia	91.45	1.28	2,582,966	90	95,658
GCF_00277315.1	App2-2*	Snodgrassella sp. nov.	Bombus group3	Malaysia	99.57	0.00	2,483,892	119	47,667
GCF_00277425.1	App4-8	Snodgrassella sp. nov.	Bombus group3	Malaysia	99.57	0.43	2,577,724	115	71,597
GCF_00277465.1	App6-4*	Snodgrassella sp. nov.	Bombus group3	Malaysia	99.57	0.85	2,623,320	108	97,352
GCA_914768095	R-S3680*	Snodgrassella sp. nov.	Bombus group4	Belgium	99.57	0.43	2,526,951	46	155,676
GCA_914768025	LGM 30236*	Snodgrassella sp. nov.	Bombus group4	Belgium	99.57	0.00	2,507,157	45	132,469
GCF_000695566.1	wkB12*	Snodgrassella sp. nov.	Bombus group5	USA	99.57	0.43	2,438,497	34	337,275
GCF_00277415.1	Fer1-2*	Snodgrassella sp. nov.	Bombus group5	USA	99.57	0.85	2,442,708	66	153,029
GCF_00277485.1	Fer2-2*	Snodgrassella sp. nov.	Bombus group5	USA	99.57	0.85	2,358,796	53	132,767
GCF_00277335.1	Gris2-3-4	Snodgrassella sp. nov.	Bombus group5	USA	99.57	0.43	2,411,520	62	183,509
GCF_00277752.1	Gris1-3	Snodgrassella sp. nov.	Bombus group5	USA	99.57	0.48	2,441,972	58	128,979
GCF_00277615.1	Gris1-6	Snodgrassella sp. nov.	Bombus group5	USA	99.57	0.43	2,459,690	50	149,104
GCF_00277795.1	Gris3-4	Snodgrassella sp. nov.	Bombus group5	USA	99.57	0.43	2,453,208	48	122,377
GCA_914768055	R-S3528*	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,287,013	43	179,794
GCF_00277345.1	Snod2-1-5*	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,355,707	62	146,579
GCA_914768015	R-S4863*	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,434,137	60	124,074
GCA_914768085	R-S4236	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,314,670	26	184,956
GCA_914768035	R-S4678*	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,265,685	32	179,671
GCF_00277763.1	Occ4-2*	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,487,519	54	151,012
GCA_914768065	R-S3633*	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,402,464	42	196,721
GCA_914768075	R-S4841	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,400,984	40	170,243
GCA_914768045	LGM 28360*	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,310,392	28	184,956
GCF_00069554.1	wkB29	Snodgrassella sp. nov.	Bombus group5	Belgium	99.57	0.43	2,398,206	88	184,072
GCF_001590725.1	CFCC 13594*	Populibacter corticis	Outgroup	USA	98.72	0.00	2,372,914	131	95,649

*Completeness and contamination values/metrics were estimated with CheckM (61). Assembly statistics were computed with QUAST (62).

Asterisks indicate the strains retained by dRep after dereplication.
Snodgrassella, agreement with data reported by Powel et al. (42), who demonstrated that Bombus group 5 had more than one genome available, our data showed that indeed several Snodgrassella larvae is mainly vertical within a colony (27, 32, 48). Although for most of the groups (i.e., the common ancestor of the clade of the hosts (i.e., corbiculate bees, which include both Apis and Bombus)), host jumps in bees seems to be related to both phylogeny and sharing of common habitats/climates. Overall, the similarity of microbiota among corbiculate bees is related to the temperate climate, and not with the Apis cerana honeybee clade, which is associated with a subtropical to tropical warmer climate. Ancestors of bumblebees were likely associated with a global cooling of the Palearctic region (51). Ancestors of bumblebees were likely based on fossil records and molecular phylogeny (49, 50). The origin of this clade is associated with the Western honeybee additionally supports the hypothesis of horizontal transfer of symbionts between bee clades. The origin of extant bumblebees is estimated to the Miocene, as based on fossil records and molecular phylogeny (49, 50). The origin of this clade is associated with a global cooling of the Palearctic region (51). Ancestors of bumblebees were likely sharing host plants with the Western honeybee ancestor clade, which is also associated with a temperate climate, and not with the Apis cerana honeybee clade, which is associated with a subtropical to tropical warmer climate. Overall, the similarity of microbiota among corbiculate bees seems to be related to both phylogeny and sharing of common habitats/climates.

Specific gene analysis. Snodgrassella has been coevolving with other bacteria in the gut of honeybees and bumblebees for 80 million years (9, 10, 21). Interestingly the age of the common ancestor of the clade of the hosts (i.e., corbiculate bees, which include both Apis and Bombus), has been estimated to be 80 million years ago (9, 10, 21).

FIG 3 Snodgrassella phylogeny, after dereplication of highly similar genomes, and metabolic analysis per species group. (A) Maximum likelihood tree inferred on 254 core genes under the PROTGAMMALGF model with RAxML (71) from a supermatrix of 36 organisms by 86,654 unambiguously aligned amino acid positions. Bootstrap support values are shown at the nodes. (B) Functional analyses were performed using COG (68) and Mantis (53). Numbers indicated in the pie charts correspond to absolute numbers of OGs identified in the respective Snodgrassella subgroups. Specific genes were computed for entire groups before dereplication.
bacteria during 80 million years of coevolution, HGT events may have impacted the specific functionalities. The rationale was that a conserved gene probably confers a benefit to members of that group. We detected 107 specific genes: 19 were specific for Apis group1, 12 for Apis group2 (i.e., S. alvi), 10 for Bombus group1, 12 for Bombus group3, 24 for Bombus group4 (S. gandavensis), and 1 for Bombus group5 (S. communis) (Fig. 3). No specific genes were found for Bombus group2. In a next step, genes shared by multiple groups or species were examined. Only two group combinations presented specific genes: Apis group1 and Apis group2 shared 4 genes that were absent in all others, and all Snodgrassella spp. together shared 25 genes (Fig. 3).

Of these 107 genes, 37 did not correspond to proteins known in COG or Mantis (53). The latter is the most recent and comprehensive tool for protein annotation and contains Pfam, eggnog, NPFM, TIGRfams, and Kofam family data for the three domains of life (53). These 37 proteins were relatively short (median, 53 amino acids [aa]; interquartile range [IQR], 46 aa) compared to the rest of the 107 genes (median, 197 aa; IQR, 202.25), with only six proteins above 100 aa (Table 2). Small proteins in bacteria can have roles in transport and signal transduction, can act as chaperones, can be involved in stress responses or virulence (54, 55), and can also be used as bacteriocins (56). Unknown genes are a recurrent issue in metagenomic studies, where they may represent up to 40% of the genes (57). Besides these genes without a match, 24 genes encoded proteins with unknown function but with hits in COG or Mantis, while six genes had a general predicted function only and could not be affiliated with a metabolic pathway. Together, 67 of 107 specific genes (62.6%) and their putative benefits remained unknown (Table 2 and Fig. 3).

Eleven of the 40 identified specific genes represented defense mechanisms, which are important for gut colonization in bees (14) (Table 2 and Fig. 3). The two most conserved defense mechanisms (4 genes each) corresponded to drug exporter and Rhs proteins (Table 2). These two defense mechanisms generate similar benefits and can provide competitive advantages. Steele and Moran (34) recently demonstrated that Rhs proteins represent different toxins, which are injected in neighboring cells through a type VI secretion system (T6SS) (2, 32–34). The four Rhs proteins found in the present study were specific genes of Bombus group3, a gut symbiont thus far detected only in B. appositus. The presence of specific toxins in these three strains might explain the specificity for their host by T6SS mediated-competition. The last three defense mechanisms included proteins for glycosylation of phage DNA (Bombus group1), sensing of invasive viruses, and antibiotic production (Apis group1) (Table 2). Apis group1 possessed a specific protein closely related to the 2-oxo-3-(phosphooxy)propyl 3-oxoalkanoate synthase, which triggers the production of the antibiotic virginiamycin in Streptomyces virginiiae (58).

Among the remaining identified specific genes, 9 genes belonged to the metabolic category amino acid transport and metabolism, 4 genes belonged to inorganic ion transport and metabolism, and 4 genes belonged to carbohydrate transport and metabolism (Fig. 3). Because host gut environments are scarce in iron and amino acids, de novo biosynthetic pathways and iron importers have been reported to be essential for gut host colonization (59). Specific genes linked to carbohydrate metabolism might provide a benefit linked to a carbohydrate-rich diet (1), even if such genes are more commonly found in Gilliamella than Snodgrassella genomes (30). The 12 remaining identified specific genes represented different metabolic pathways with unclear function in, or benefit to, the host (Table 2).

Horizontal gene transfer. Horizontal gene transfer is a process that plays a major role in bacterial evolution. Because of the spatial proximity of *Snodgrassella* and other gut bacteria during 80 million years of coevolution, HGT events may have impacted the specific gene complement. We investigated the potential presence of such events by using MetaCHIP (60). We included all bee gut symbiont genomes available in RefSeq (561 genomes: i.e., 75 of *Snodgrassella* plus 486 of representatives of other bee gut symbionts) to maximize the odds of HGT detection and detected only 57 events of HGT in which *Snodgrassella* spp. were a donor or recipient (Fig. S5 and Table S3). This is less than the 87 events reported by Kwong et al. (2).
TABLE 2 Functional analysis of the specific genes

Group	Gene ID	Length (aa)	Gene product	Mapping tool	COG pathway	Function
Apis group 1	GC_00003784	100	AfsA	Mantis	Defense mechanisms	2-Oxo-3-(phosphoxygen)propyl 3-oxoalkanoate synthase
	GC_00004036	330	AfsA	Mantis	Amino acid transport and	ABC-type polar amino acid transport system, ATPase component (GlnQ)
	GC_00004009	235	GlnQ	Mantis	Metabolism	
	GC_00003806	86	Unknown	Mantis	Defense mechanisms	Permeases of drug metabolite transporter (DMT) superfamily
	GC_00003947	43	Unknown	Mantis	Function unknown	
	GC_00003950	83	Mantis	Mantis	Function unknown	
	GC_00003860	32	Unknown	Mantis	Function unknown	
	GC_00003920	32	Unknown	Mantis	Function unknown	
	GC_00003767	110	Unknown	Mantis	Function unknown	
	GC_00004005	86	Unknown	Mantis	Function unknown	
	GC_00004028	78	Unknown	Mantis	Function unknown	
	GC_00003774	33	Mantis	Mantis	Function unknown	
	GC_00003768	98	SoxR	Mantis	Transcription	DNA-binding transcriptional regulator, MerR family (SoxR) (PDB no. 2VZ4)
	GC_00003846	53	Unknown	Mantis	Function unknown	
	GC_00004043	69	Unknown	Mantis	Function unknown	
	GC_00004011	39	vWA-MoxR	Mantis	Defense mechanisms	vWA-MoxR-associated protein middle region (VMAP-M) 1—sensing of invasive
	GC_00003887	53	Unknown	Mantis	Function unknown	
	GC_00004656	72	Unknown	Mantis	Function unknown	
	GC_00003916	47	Unknown	Mantis	Function unknown	
Apis group 2	GC_00001836*	230	COG	Function unknown	Uncharacterized protein, contains DUF2461 domain	
	GC_00001864	244	YozG	COG	Transcription	Uncharacterized protein, contains DUF2461 domain
	GC_00001813	75	YozG	COG	Transcription	DNA-binding transcriptional regulator, XRE family (YozG) (PDB no. 3TYR)
	GC_00001812*	213	PspE	COG	Inorganic ion transport and	Rhodanese-related sulfurreductase (PspE)
	GC_00001818*	598	LepA	COG	Metabolism	Translation elongation factor EF-4, membrane-bound GTPase (LepA) (PDB no. 3DEG)
	GC_00001830	114	Mantis	Function unknown	Function unknown	
	GC_00001846	394	AraJ	COG	Carbohydrate transport and	Predicted arabinose efflux permease AraJ, MFS family (AraJ) (PDB no. 4LDS)
	GC_00001829	101	MdaB	COG	General function prediction only	Putative NADPH-quione reductase (modulator of drug activity B) (MdaB) (PDB no. 1D4A)
	GC_00001849	289	Mantis	Function unknown	Function unknown	
	GC_00001848	355	Lys9	COG	Amino acid transport and	Saccharopine dehydrogenase, NADP-dependent (Lys9) (PDB no. 1E5L)
	GC_00001833	272	FTR1	COG	Inorganic ion transport and	High-affinity Fe²⁺/Pb²⁺ permease (FTR1)
	GC_00001824*	180	Mantis	Function unknown	Function unknown	
Apis group 1&2	GC_00001778	262	YaaA	Mantis	Stress response	Peroxide stress protein YaaA
	GC_00001768	183	Unknown	Mantis	Stress response	
	GC_00001766	167	PadC	COG	Secondary metabolites bio	Phenolic acid decarboxylase (PadC) (PDB no. 2GC9)
	GC_00001776	328	Mantis	General function prediction only	General function prediction only	Short C-terminal domain
Bombus group 1	GC_00003663	110	MSP7_C	Mantis	General function prediction only	MSP7-like protein C-terminal domain
	GC_00003592	76	Mantis	Function unknown	Function unknown	
	GC_00003535	31	Unknown	Mantis	Function unknown	
	GC_00003491	70	GmrSD	COG	Defense mechanisms	DNAse/DNA nickase specific for phosphorothioated or glycosylated phage
	GC_00003648	62	Mantis	Function unknown	Function unknown	

(Continued on next page)
TABLE 2 (Continued)

Group	Gene ID	Length (aa)	Gene product	Mapping tool	COG pathway	Function
Bombus group3						
	GC_00004090	277	Mantis	Defense mechanisms	Rhs family protein	
	GC_00003889	86	DHAD	Amino acid transport and metabolism	Dihydroxy-acid dehydratase	
	GC_00003888	115	Unknown	Defense mechanisms	Rhs family protein	
	GC_00003882	62	Mantis	Defense mechanisms	Rhs family protein	
	GC_00003945	52	Unknown	Defense mechanisms	Rhs family protein	
	GC_00003718	266	Mantis	Defense mechanisms	Rhs family protein	
	GC_00003802	94	Unknown	Defense mechanisms	Rhs family protein	
	GC_00004066	361	Mantis	Function unknown	General function prediction only	Deoxyhypusine monooxygenase activity
Bombus group4						
	GC_00004382	166	Mantis	Function unknown		
	GC_00004653	110	Mantis	Function unknown		
	GC_00004442	38	Unknown	Function unknown		
	GC_00004629	47	Unknown	Function unknown		
	GC_00004489	36	Unknown	Function unknown		
	GC_00004467	254	MMPL	Defense mechanisms		
	GC_00004294*	395	AraJ	Carbohydrate transport and metabolism		Predicted arabinose efflux permease AraJ, MFS family (AraJ) (PDB no. 4LDS)
	GC_00004680	160	Unknown	Function unknown		
	GC_00004725	34	Unknown	Function unknown		
	GC_00004304	69	Fic_N	Transcription		Fic family protein (PDB no. 3CUC)
	GC_00004186	46	Unknown	Function unknown		
	GC_00004560*	62	HIS2	Amino acid transport and metabolism		Histidinol phosphatase or related hydrolase of the PHP family (HIS2) (PDB no. 1M65)
	GC_00004631	33	Unknown	Function unknown		
	GC_00004357	80	Unknown	Function unknown		
	GC_00004742	64	Unknown	Function unknown		
	GC_00004735	30	Unknown	Function unknown		
	GC_00004255	104	Mantis	Function unknown		
	GC_00004450	61	Unknown	Function unknown		
	GC_00004308	72	Mantis	Function unknown		
	GC_00004249	38	Mantis	Function unknown		
	GC_00004340	39	Unknown	Function unknown		
	GC_00004716	34	Unknown	Function unknown		
	GC_00004446	33	Unknown	Function unknown		
	GC_00004728	66	Mantis	Function unknown		
Bombus group5						
	GC_00002418	120	Unknown			
Apis-Bombus groups						
	GC_00001509	376	Mantis	Function unknown		
	GC_00001371	68	NlpA	Inorganic ion transport and metabolism	ABC-type metal ion transport system, periplasmic component/surface antigen (NlpA) (PDB no. 1P99)	
	GC_00001428*	270	NlpA	Inorganic ion transport and metabolism	ABC-type metal ion transport system, periplasmic component/surface antigen (NlpA) (PDB no. 1P99)	
	GC_00001520	548	DAK1	Carbohydrate transport and metabolism	Dihydroxyacetone kinase (DAK1) (PDB no. 1UN8)	
	GC_00001461	309	DnaJ	Posttranslational modification, protein turnover, chaperones	DnaJ-class molecular chaperone with C-terminal Zn finger domain (DnaJ) (PDB no. 1BQ0)	

(Continued on next page)
MetaCHIP is designed to infer HGT from genomes assembled from microbial communities and detects potential HGT events using a BLAST best-hit approach and then validates these hits by performing a duplication-transfer-loss (DTL) reconciliation between a species tree and an individual genome. The DTL filter used by MetaCHIP is more stringent than the BLAST E value threshold of 10^{-25} used by Kwong et al. (2), which may explain this difference.

None of the 107 specific genes described above was present among the 57 HGT-affected genes detected by MetaCHIP using BLASTP and a filter on 98% identity (Table S3). We investigated the absence of HGT in the group of 107 specific genes further by enriching the comparison with orthologous sequences taken from the 561 gut symbiont genomes used above and with orthologous sequences from the 247 genomes unrelated to the bee gut ecosystem, thereby also covering bacterial and archaeal diversity (Fig. 4). This allowed us to analyze the taxonomic diversity of the specific genes and revealed that 68 genes were unique to Snodgrassella, while 39 genes were found in other bacteria too (27 genes in multiple other bacteria and 12 genes in only one other bacterium) (Fig. 4). The evolutionary history of the 68 genes unique to Snodgrassella is explained more easily by duplication in Snodgrassella than by acquisition by HGT or gene loss in all other bacteria. In contrast, the 27 specific genes found in other bee gut symbionts or in other bacteria unrelated to the bee gut

Table 2 (Continued)

Group	Gene ID	Length (aa)	Gene product	Mapping tool	COG pathway	Function
GC_00001484	YvaK	273	Secondary metabolites biosynthesis, transport and catabolism	COG	Esterase/lipase (YvaK) (PDB no. 4DIU)	
GC_00001382	YjiU	118	Function unknown	COG	Predicated phospholipase, patatin/cPLA2 family (YjiU)	
GC_00001454	NosY	299	Posttranslational modification, protein turnover, chaperones	COG	ABC-type transport system involved in multicopper enzyme maturation, permease component (NosY)	
GC_00001439	Manitis	381	Function unknown	COG	Multidrug transporter EmrE and related cation transporters (EmrE) (PDB no. 2168)	
GC_00001398	Manitis	208	Function unknown	COG	Predicted N-acyltransferase, GNAT family (ElaA) (PDB no. 1XEB)	
GC_00001469	ElaA	144	General function prediction only	COG	Arginase/Agmatinase family enzyme (SpeB) (PDB no. 1CEV)	
GC_00001463	SpeB	296	Amino acid transport and metabolism	COG	Multidrug transporter EmrE and related cation transporters (EmrE) (PDB no. 2168)	
GC_00001414	EmrE	118	Defense mechanisms	COG	ABC-type metal ion transport system, periplasmic component/surface antigen (NlpA) (PDB no. 1P99)	
GC_00001408	NlpA	277	Inorganic ion transport and metabolism	COG	Peptidase activity	
GC_00001441	Manitis	142	Function unknown	COG	2-Hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase (methylione salvage) (MtnX) (PDB no. 2FEA)	
GC_00001474	Manitis	186	General function prediction only	COG	Phage repressor protein C, contains Cro/C1-type HTH and peptidase s24 domains	
GC_00001539	MtnX	248	Amino acid transport and metabolism	COG	Aspartate/methionine/tyrosine aminotransferase (AspB) (PDB no. 200R)	
GC_00001507	Manitis	251	Mobilome: prophages, transposons, aminomutase Transferase (MtnX) (PDB no. 2150)			
GC_00001374	AspB	530	Amino acid transport and metabolism	COG	Acetylornithine aminotransferase-4-amino butyrate aminotransferase (ArgD) (PDB no. 2025)	
GC_00001419	ArgD	471	Amino acid transport and metabolism	COG	Permutated papain-like amidase enzyme, YaeF/YiiX, C92 family	

*Functional analyses were performed with anvi’o (67), using COGs (68) and Mantis (53). Pathways correspond to COG pathways as indicated by anvi’o. Unknown genes correspond to genes without hits (unseen in databases).

*Asterisks indicate putative HGT events.
microbiome suggest that gene loss in other Neisseriaceae was the most plausible evolutionary path of the genes. We computed individual gene trees for these 27 OGs (available at https://github.com/Lcornet/SNOD) and compared them manually to species trees (Fig. S6).

For only 8 genes out of the 27 (indicated in Table 2), Snodgrassella sequences clustered with those of other bee gut symbionts, which may suggest HGT events. For 12 genes (out of 107), no convincing evidence of HGT was detected because these genes were only present in two species, making the comparison to the species tree impossible. Ten of the latter genes were detected in Gilliamella and Snodgrassella only, and two were detected in Snodgrassella and Frischella only. These genes included three out of four specific Rhp proteins of Bombus group3, which were shared with Gilliamella genomes.

FIG 4 Orthologous enrichment of group-specific genes. A total of 107 specific genes from bee gut bacteria (including 75 Snodgrassella genomes) were enriched with sequences from 486 genomes from bee gut bacteria and 247 genomes from bacteria not related to the bee gut ecosystem, using Forty-Two (75, 76). The y axis represents the absolute number of sequences, and the x axis represents individual genes. Genes were grouped by species group: A.G.1 for Apis group1 (19 genes), A.G.2 for Apis group2 (12 genes), A.G.1&2 for the two Apis groups together (4 genes), B.G.1 for Bombus group1 (10 genes), B.G.3 for Bombus group3 (12 genes), B.G.4 for Bombus group4 (24 genes), B.G.5 for Bombus group5 (1 gene), and A.B.G for Apis and Bombus groups together (25 genes).
TABLE 3 Differential characteristics between *Snodgrassella alvi*, *Snodgrassella gandavensis*, and *Snodgrassella communis*

Characteristic	Result for *S. alvi* NCIMB 14803^T	*S. gandavensis* (Bombus group4)	*S. communis* (Bombus group5)
Growth on BHI agar	+	++	+
Growth on AC agar with 2% NaCl	+ +	w	++
Urease production	+	+	+
Growth on DNase agar	+	–	–
Hydrolysis of Tween 20	–	+	–

^{*+, present; –, absent; w, weak reaction.}

Conclusion. In the present study, we used highly conserved *Neisseriaceae* core genes to perform multiple phylogenomic analyses. We demonstrated monophyly of *Snodgrassella* strains isolated from bumblebees and paraphyly of strains isolated from honeybees. We also demonstrated that *Snodgrassella* strains from Asian honeybees are an early diverging group. Combined with ANI analyses, our data further indicated that this genus comprises at least seven species. Below we describe and formally name two new *Snodgrassella* species from bumblebees: i.e., *S. gandavensis* sp. nov. for Bombus group4 (with LMG 30236 as the type strain) and *S. communis* sp. nov. for Bombus group5 (with LMG 28360 as the type strain). We detected 107 specific genes among these seven species. For the large majority of these 107 genes, there was no evidence for HGT. Functional analyses revealed the importance of small proteins, defense mechanisms, amino acid transport and metabolism, inorganic ion transport and metabolism, and carbohydrate transport and metabolism among these specific genes.

Description of *Snodgrassella gandavensis* sp. nov. *Snodgrassella gandavensis* (gan.da ven’sis. M.L. masc. adj. *gandavensis*, of Gandavum, the Latin name for Ghent, referring to the place where these bacteria were first isolated).

Cells are nonmotile, Gram stain-negative rods about 1.2 μm long and 0.8 μm wide that occur singly or in pairs. Optimal growth is on rich agar medium at 37°C in a CO₂-enriched atmosphere. *S. gandavensis* grows under anaerobic conditions when supplemented with 10 mM KNO₃, but not under aerobic conditions. The bacterium is positive for catalase activity and nitrate reduction and negative for oxidase activity.

The type strain is LMG 30236 (=CECT 30450), which was isolated in 2015 from the gut of *Bombus pascuorum* sampled in 2015 in Wetteren, Belgium. The whole-genome sequence of LMG 30236^T has a size of 2.51 Mbp. The DNA G+C content is 43.76 mol%. The whole-genome sequence is publicly available under accession no. GCA_914768025.1. The 16S rRNA gene sequence is publicly available under accession no. OU943324.

Additional information is provided in Table 3 and the supplemental material.

Description of *Snodgrassella communis* sp. nov. *Snodgrassella communis* (com mu’nis. L. fem. adj. *communis*, common, because of its wide host range).

Cells are nonmotile, Gram stain-negative rods about 1.2 μm long and 0.8 μm wide that occur singly or in pairs. Optimal growth is on rich agar medium at 37°C in a CO₂-enriched atmosphere. *S. communis* grows under anaerobic conditions when supplemented with 10 mM KNO₃. Growth under aerobic conditions is strain dependent. The organism is positive for catalase activity and nitrate reduction and negative for oxidase activity.

The type strain is LMG 28360 (=CECT 30451), which was isolated in 2013 from the gut of *Bombus terrestris* sampled in 2013 in Ghent, Belgium. The whole-genome sequence of LMG 28360^T has a size of 2.31 Mbp. The DNA G+C content is 43.76 mol%. The whole-genome sequence is publicly available under accession no. GCA_914068745.1. The 16S rRNA gene sequence is publicly available under accession no. OU943323.

Additional information is provided in Table 3 and the supplemental material.

MATERIALS AND METHODS

All custom scripts specifically developed for this study are available at https://github.com/Lcornet/SNOD. *Snodgrassella* whole-genome sequences. Whole-genome sequences of 75 *Snodgrassella* isolates were analyzed. To this end, all *Snodgrassella* genomes from the Reference Sequence database of NCBI (RefSeq) (61, 62) were downloaded on 25 June 2021. CheckM v1.1.3 (63) with the lineage_wF option was
used to identify genomes with contamination levels below 5% and completeness above 95%, which yielded 66 RefSeq genomes. In addition, we determined whole-genome sequences of nine bumblebee isolates from an earlier study (15). Together, the genomes of 48 isolates originated from honeybee gut samples (from 4 species) and 27 from bumblebee gut samples (from 14 species). Assembly quality metrics for all 75 genomes were obtained with QUAST v5.0.2 (64). The isolates, along with their geographic origin, accession numbers, and CheckM and QUAST parameters, are listed in Table 1.

DNA extraction. Genomic DNA was extracted using a Maxwell 16 tissue DNA purification kit (catalog no. AS1030) and a Maxwell 16 instrument (catalog no. AS2000). The integrity and purity of the DNA were evaluated on a 1.0% (wt/vol) agarose gel and by spectrophotometric measurements at 234, 260, and 280 nm. A Quantus fluorometer and a Quantifluor ONE double-stranded DNA (dsDNA) system (Promega Corporation, Madison, WI, USA) were used to estimate the DNA concentration.

Library construction and genome sequencing. Library preparation and whole-genome sequencing were performed by the Oxford Genomics Centre (University of Oxford, United Kingdom). Library preparation was performed using an adapted protocol of the NEB prep kit. Paired-end sequence reads (PE150) were generated using an Illumina NovaSeq 6000 platform (Illumina, Inc., USA).

Genome assembly. Quality checking and trimming of the raw sequence reads and de novo genome assembly were performed using the Shovill v1.1.0 pipeline (https://github.com/tseemann/shovill), which uses SPAdes v3.14.0 (65) as its core and which subsamples reads to a sequencing depth of 150 x. Contigs shorter than 500 bp were excluded from the final assembly. Quality checking of the assembly was performed using QUAST v5.0.2 (64) and CheckM v1.1.3 (63).

Core gene analysis. ToFQuEMaDa (66), 10 June 2021 version, was used to select genomes representing the diversity of other Neisseriaceae (i.e., bacteria not belonging to the genus Snodgrassella). We selected 35 Neisseriaceae genomes using the following options of tqmnd_cluster.pl: dist-threshold of 0.90, kmer-size of 12 and max-occurrence of 10 and CheckM v1.1.3 activated (see Table S1 in the supplemental material). The 110 genomes were then imported into the pangenomic workflow of anvio v7.1 (67). The genomes were first loaded individually into anvio using the anv-gen-contigs-database script with default options, and NCBI COGs (68) were associated with each genome database using the anv-run-ncbi-cogs script with default options. The consolidated database was constructed using the anvio-gen-genomes-storage script with default options and anv-pan-genome script with the following options: min-occurrence of 2 and mcl-inflation of 10. The protein sequences of all genomes, along with their COG annotations, were extracted from the anvio database using the anv-get-sequences-for-gene-clusters script with default options and the anv-summarize script with default options, respectively. Functional and geometric indices of anvio were computed using the anv-compute-orthologous-group script with default options. Orthologous groups (OGs) were reconstructed from anvio using the custom script anvio_pan-to-OGs.py with default options. Finally, core genes were selected using the custom script anvio ООs-filtration.py with the following options: pfiferset to yes, fraction set to 1, unwanted orgs limit set to 0, cset to yes, maxcopy set to 1, hiferset to 1, maxfunctional index set to 0.8 and maxgeometricindex set to 0.8. These settings resulted in the selection of 254 core genes out of 11,185 OGs, present in 100% of the 110 Neisseriaceae genomes.

Phylogenomic analyses. (i) Neisseriaceae phylogeny. The 254 protein OGs were aligned using the anvio workflow. Conserved sites were selected using BMGE v1.12 (69) with moderately severe settings (entropy cut-off = 0.5, gap cut-off = 0.2). A supermatrix of 110 organisms by 85,654 unambiguously aligned amino acid positions (0.15% missing character states) was generated using SCaFoS v1.30k (70), with default settings. A Neisseriaceae phylogenetic analysis was inferred using RAxML v8.1.17 (71) using the PROTGAMMALGF model. A consensus tree was built from the set of 100 trees using the program conTree v3.695 (from the PHYLIP package [72], but modified to handle long sequence names), with default settings. In order to test the possible influence of a long branch attraction artifact, the outgroup was eliminated from the supermatrix, and a new phylogenomic analysis was performed with the same protocol as described above but on a matrix of 75 organisms by 85,654 unambiguously aligned amino acid positions (0.03% missing character states). We checked the effect of taxon sampling reduction by deleting 40 Snodgrassella strains from our supermatrix, while conserving their diversity and the outgroup, using dRep v2.2.3 (43) with default settings. A phylogenetic analysis was inferred with the same protocol described above but using a matrix of 36 organisms by 85,654 unambiguously aligned amino acid positions (0.22% missing character states). Subsequently, nucleotide-based phylogenetic trees were inferred from the 254 core genes. Protein sequence alignments were back-translated by capturing and aligning the corresponding DNA sequences with the program conTree (available at https://metacpan.org/distro/Bio-MUST-Apps-FortyTwo). A supermatrix of 76 organisms by 264,981 aligned nucleotides (1.59% of missing character states) was generated using SCaFoS v1.30k (70). A large phylogenomic analysis was inferred using RAxML v8.1.17 (71) with 100 bootstrap replicates under the GTRGAMMA model and using two different partitions for codon positions 1 and 2 together (here, “1&2”) and position 3. As for the protein trees, leave-one-out analyses were then performed by random selection of genes to construct
100 data sets of about 100,000 aligned nucleotides. The consensus trees were produced with the same protocol described above, but using the GTR+GAMMA model of RAxML v8.1.17 (71). Two leave-one-out analyses were generated: one using only codon positions 1 and 2 and one using two different partitions for codons positions 1 and 2.

Gut bacterial phylogeny. A total of 486 genomes representing the main phylotypes of bacteria found in the gut of *Apis* spp. and *Bombus* spp. (excluding *Snodgrassella*) were downloaded from RefSeq, prior to filtering the genomes with CheckM v1.1.3 (63) as described above. Also, 247 additional genomes covering a broad diversity of bacteria and archaea were selected with TorQuE-MaDa (66) using the following options: *dist-threshold* of 0.90, *kmer-size* of 12 and *max-round* of 10, and CheckM activated (Table S2). To perform a large phylogenomic analysis, we used core genes extracted by CheckM. The CheckM taxon set option was first run to produce a lineage set file. Then the CheckM–adapted option was run, using the bacterial domain set while providing 843 genomes as input (i.e., 75 *Snodgrassella* genomes, 33 *Neisseriaceae* genomes, and the 733 genomes mentioned above). The CheckM–adapted option was then used to produce the marker files. The custom script Checkm-to-OGs.py allowed us to reconstruct OGs from CheckM marker files, selecting only unicity OGs, thereby producing 76 OGs. The OGs were aligned using MAFFT v7.453 (73), run with the *anysymbol, auto and reorder* parameters. Conserved sites were selected using BMGE v1.12 (69) with moderately severe settings (*entropy cut-off* = 0.5, *gap cut-off* = 0.2). A matrix of 843 organisms by 12,930 unambiguously aligned amino-acid positions (67.2% missing character states) was produced using ScaFoS v1.30k (70), with default settings. A phylogenomic tree was produced with the same protocol as above for large phylogenomics.

Average nucleotide identity analysis. Pairwise average nucleotide identities were determined for 75 *Snodgrassella* genomes and the *P. corticis* (GCF_001590725.1) genome using fastANI v1.32 (74) with default settings.

Specific gene analysis. A distinct anvi’o pangenomic data set using 75 genomes of *Snodgrassella* and *P. corticis* (GCF_001590725.1) was constructed using the same protocol described above. The custom script anvi’o_OGs-filtration.py was used to determine which genes occurred specifically in a given group of organisms. This specific gene analysis was performed on a set of 4,685 orthologous groups. We used the same options as for the core genes, with the exception that the number of representatives of a group was set to 0.6 (60%). The inflation number was set to 10 in anvi’o (67) with the value of 60% recovered orthologous groups, even if the inflation parameter was too strict for some of them. All members of a group had to comprise an OG before it was considered specific. An orthologous enrichment was then performed to compensate for the potential lack of sensitivity in orthology inference. In addition, to enrich the OGs with potentially absent members of the group due to the 60% threshold, the enrichment could also add any *Snodgrassella* from other groups to control that the added sequences were indeed specific and not the result of a false orthology inference. An orthologous enrichment with Forty-Two v0210570 (75, 76) (available at https://metapcan.org/dist/Bio-MUST-Apps-FortyTwo) was used to enrich the 76 *Snodgrassella* genomes for the performance. The custom script Confirm-OGs.py was used to validate the specific OGs based on the criteria that all *Snodgrassella* of the considered group, but no *Snodgrassella* from other groups, must be present in the OGs after enrichment. We performed this approach on all groups defined in the present study, as well as all pairwise combinations of them, including one with all groups together (i.e., all *Snodgrassella* strains). All nodes of the tree have also been tested to assess the presence of specific genes shared between groups defined in this study. A total of 107 individual gene phylogenies were computed by aligning the sequences using MAFFT v7.453 (73) with the same options described above, selecting the conserved sites with BMGE v1.12 (69) with the same options described above, and inferring the trees with RAxML v8.1.17 (71) with 100 bootstrap replicates under the PROTGAMMALGF model.

Metabolic analyses. The functions of the genome-specific OGs were first determined using NCBI COGs (68) if the information was available as a product of the anvi’o workflow. COG pathways and COG functions were used to label the metabolic functions. When COG analyses yielded no results, Mantis (53) was used with default settings, and the information from the consensus annotation file was used to label function. OGs without any hit in COG or Mantis analyses were considered unknown genes, while OGs having hits with proteins of unknown function were classified as “Unknown function.”

Horizontal gene transfer. GTDBtk (77) was used to infer the GTDB taxonomy (47) of the 561 phylotype genomes (75 *Snodgrassella* and 468 representatives of the other bacterial bee gut phylotypes [described above]). MetaCHiP v1.10.15 (60) with default settings was then used to infer HGT. The group-specific genes were then searched in the MetaCHiP results using BLASTp v2.2.28 (78) with a threshold of 98% of identity on the 843 genomes. Wordlists enriched with Forty-Two v0210570 (75, 76) (available at https://metapcan.org/dist/Bio-MUST-Apps-FortyTwo). We used the 843 genomes that included the 75 *Snodgrassella* genomes to perform the enrichment. The custom script Confirm-OGs.py was used to validate the specific OGs based on the criteria that all *Snodgrassella* of the considered group, but no *Snodgrassella* from other groups, must be present in the OGs after enrichment. We performed this approach on all groups defined in the present study, as well as all pairwise combinations of them, including one with all groups together (i.e., all *Snodgrassella* strains). All nodes of the tree have also been tested to assess the presence of specific genes shared between groups defined in this study. A total of 107 individual gene phylogenies were computed by aligning the sequences using MAFFT v7.453 (73) with the same options described above, selecting the conserved sites with BMGE v1.12 (69) with the same options described above, and inferring the trees with RAxML v8.1.17 (71) with 100 bootstrap replicates under the PROTGAMMALGF model.

Biochemical characterization. Biochemical characteristics were determined for the bumblebee isolates LMG 28360T, R-53528, R-54236, LMG 30236T, and R-53680, and for the type strain of *S. alvi*, NCIMB 14803.

Growth was tested on nutrient agar (Oxoid), tryptic soy agar (TSA) (Oxoid), brain heart infusion (BHI) agar (BD Difco), Columbia agar (Oxoid) supplemented with 5% sheep blood, and All Culture (AC) agar (2% tryptose, 0.3% beef extract, 0.3% yeast extract, 0.3% malt extract, 0.5% dextrose, 0.02% ascorbic acid, 1.5% agar) after 2, 3, and 4 days of incubation at 37°C in a CO2-enriched atmosphere (6% CO2, 9% O2, and 1% H2O). Growth was also tested at 37°C in ambient atmosphere (0.04% CO2, 20.99% O2) on AC agar and in an anaerobic atmosphere (9 to 13% CO2, <1% O2) provided by AnaeroGen sachets (Oxoid) on AC agar and on AC agar supplemented with 10 mM KNO3. For the tests mentioned below, cultures were incubated in a CO2-enriched atmosphere. The temperature growth range was tested after 2 days of incubation on AC agar at 4, 15, 20, 28, 37, 40, and 45°C. Cell and colony morphology, motility, oxidative and catalase activities and Gram stain reaction were assessed on cultures grown for 2 days on AC agar at 37°C. Motility was determined by examining wet mounts in broth by phase-contrast microscopy. Oxidase and catalase activities and Gram staining were tested using
conventional procedures (79). The effect of NaCl on growth was investigated in AC broth supplemented with different concentrations of NaCl (0 to 10% with 1% intervals (wt/vol)) after 3 days of incubation. The pH range for growth was evaluated after 3 days of incubation in AC broth buffered at pH 4.0 to 9.0 at intervals of 1 pH unit using the following buffer systems: acetate buffer (pH 4.0 to 5.0), phosphate buffer (pH 6.0 to 8.0), and Tris-HCl (pH 9.0). Nitrate reduction and denitrification and urease, indole and H₂S production were tested using standard microbiological procedures (79) after 72 h of incubation.

Cells were grown on DNase agar (Sigma-Aldrich), AC agar with 0.8% (wt/vol) gelatin (Merck), AC agar with 0.8% (wt/vol) soluble starch, AC agar with 1.3% (w/vol) dried skim milk (Oxoid), and AC agar with 1% (vol/vol) Tween 20 or 80 and were checked for growth after 72 of incubation and for DNase activity, gelatinase activity, and hydrolysis of starch, casein, and Tween 20 and 80, respectively.

Data availability. L. Cornet and P. Vandamme have submitted data to the European Nucleotide Archive (ENA) under project accession no. PRJEB47378, read accession no. SAMEA9570070 to SAMEA9570078, and genome accession no. GCA_914768015, GCA_914768025, GCA_914768035, GCA_914768045, GCA_914768055, GCA_914768065, GCA_914768075, GCA_914768085, and GCA_914768095. These database records are publicly available via the ENA website: https://www.ebi.ac.uk/ena/browser/home.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TEXT S1, PDF file, 0.7 MB.

FIG S1, PDF file, 0.02 MB.

FIG S2, PDF file, 0.1 MB.

FIG S3, PDF file, 0.1 MB.

FIG S4, PDF file, 0.02 MB.

FIG S5, PDF file, 0.03 MB.

FIG S6, PDF file, 0.02 MB.

TABLE S1, PDF file, 0.4 MB.

TABLE S2, PDF file, 0.6 MB.

TABLE S3, PDF file, 0.4 MB.

ACKNOWLEDGMENTS

We thank David Colignon and the CECI for help with computing cluster usage and Cindy Snauwaert for performing the phenotypic characterization tests.

This work was supported by a research grant (no. B2/191/P2/BCCM GEN-ERA) financed by the Belgian State—Federal Public Planning Service Science Policy (BELSPO). Computational resources were provided by the Consortium des Equipements de Calcul Intensif (CECI) funded by the F.R.S.-FNRS (2.5020.11) and through two research grants to D.B.: B2/191/P2/BCCM GEN-ERA (Belgian Science Policy Office—BELSPO) and CDR J0008.20 (F.R.S.-FNRS). P.V., N.J.V., D.M., and G.S. were supported through funding from the FWO and F.R.S.-FNRS under the Excellence of Science (EOS) program for the project “Climate Change and Its Impact on Pollination Services” (CLIPS, no. 3094785).

L.C., I.C., D.B., and P.V. conceived the study. I.C. assembled the newly sequenced genomes. R.R.L. carried out the ToRQuEMaDA analyses. L.C. performed the rest of the analyses and drew the figures. L.C., I.C., D.M., D.B., and P.V. wrote the manuscript. P.V., D.B., N.J.V., D.M., and G.S. provided part of the funding. All authors read and revised the manuscript.

REFERENCES

1. Engel P, Moran NA. 2013. Functional and evolutionary insights into the simple yet specific gut microbiota of the honeybee from metagenomic analysis. Gut Microbes 4:60–65. https://doi.org/10.4161/gmic.22517.

2. Kwong WK, Engel P, Koch H, Moran NA. 2014. Genomics and host specialization of honeybee andumble bee gut symbionts. Proc Natl Acad Sci U S A 111:11509–11514. https://doi.org/10.1073/pnas.1405838111.

3. Zheng H, Perreau J, Powell JE, Han B, Zhang Z, Kwong WK, Tringe SG, Moran NA. 2019. Division of labor in honeybee gut microbiota for plant polysaccharide digestion. Proc Natl Acad Sci U S A 116:25909–25916. https://doi.org/10.1073/pnas.1916224116.

4. Billiet A, Meeus I, Nieuwerburgh FV, Deforce D, Wäckers F, Smagache G. 2017. Colony contact contributes to the diversity of gut bacteria in humblebees (Bombus terrestris). Insect Sci 24:270–277. https://doi.org/10.1111/1744-7917.12284.

5. Elleegaard KM, Brochet S, Bonilla-Rosso G, Emery O, Glover N, Hadadi N, Iaron KS, van der Meer JR, Robinson-Rechavi M, Senticchio V, Tagini F. SAGE class 2016-17, Engel P. 2019. Genomic changes underlying host specialization in the bee gut symbiont Lactobacillus Firm5. Mol Ecol 28:2224–2237. https://doi.org/10.1111/mec.15075.

6. Elleegaard KM, Engel P. 2018. New reference genome sequences for 17 bacterial strains of the honeybee gut microbiota. Microbiol Resour Announc 7:e00834-18. https://doi.org/10.1128/MRA.00834-18.

7. Guo J, Wu J, Chen Y, Evans JD, Dai R, Luo W, Li J. 2015. Characterization of gut bacteria at different developmental stages of Asian honeybees, Apis cerana. J Invertebr Pathol 127:110–114. https://doi.org/10.1016/j.jip.2015.03.010.

8. Hammer TJ, Le E, Moran NA. 2021. Thermal niches of specialized gut symbionts: the case of social bees. Proc Biol Sci 288:2021480. https://doi.org/10.1098/rspb.2020.1480.
9. Kwong WK, Moran NA. 2016. Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://10.1038/nr MICROBIOL.2016.43.
10. Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY, Ascher JS, Jaffe R, Moran NA. 2017. Dynamic microbiome evolution in social bees. Sci Adv 3: e1600513. https://10.1126/sciadv.1600513.
11. Martinson VG, Meeus I, Parmentier L, Billet A, Maes PW, Rodrigues PAP, Oliver R, Mott BM, Anderson KE. 2016. Diet-selective gut symbionts detected by single-cell genomics. PLoS One 10:e0125152. https://10.1371/journal.pone.0125152.
12. Moran NA, Hansen AK, Powell JE, Sabree ZL. 2016. Distinctive gut microbiota of honeybees assessed using deep sampling from individual worker bees. mSystems 1:003639. https://10.1128/mSYSTEMS.003639.
13. Powell JE, Martinson VG, Urban-Mead K, Moran NA. 2014. Routes of acquisition of the gut microbiota of the honeybee Apis mellifera. Appl Environ Microbiol 80:7378–7387. https://10.1128/AEM.01861-14.
14. Praet J, Parmentier A, Schmid-Hempel R, Meeus I, Smaghe G, Vandamme P. 2018. Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environ Microbiol 20:214–227. https://10.1111/1462-2920.13973.
15. Sabree ZL, Hansen AK, Moran NA. 2012. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honeybees. mSystems 1:0041250. https://10.1371/journal. pone.0041250.
16. Tola YH, Wawer JW, Hurst GD, Slippers B, Paredes JC. 2020. Characterization of the Kenyan honeybee (Apis mellifera) gut microbiota: a first look at tropical and sub-Saharan African bee associated microorganisms. Microorganisms 8:1271. https://10.3390/microorganisms8111271.
17. Zhang H, Steele MI, Leonard SP, Motta EVS, Moran NA. 2018. Honeybees as models for gut microbiota research. Lab Anim (NY) 47:317–325. https://10.1177/16006010.18.0173-x.
18. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer PY. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–255. https://10.1099/ijs.0.002692.
19. Steel MI, Kwong WK, Whiteley M, Moran NA. 2017. Diversification of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio 8:e001630-17. https://10.1128/mBio.01630-17.
20. Steele MI, Moran NA. 2021. Evolution of interbacterial antagonism in bee gut microbiota reflects host and symbiont diversification. mSystems 6: e00663-21. https://10.1128/mSYSTEMS.00663-21.
21. Koch H, Abrol DP, Li J, Schmid-Hempel P. 2013. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol 22: 2028–2044. https://10.1111/mec.12209.
22. Galtier N. 2007. A model of genome transfer and the bacterial phylogeny problem. Syst Biol 56:633–642. https://10.1086/5175015701546231.
23. Gribaldo S, Brochier C. 2009. Phylogeny of prokaryotes: does it exist and why should we care? Res Microbiol 160:513–521. https://10.1111/j.1742-8899.2009.01192.x.
24. Stanhope MJ, Lupsa A, Italia MJ, Koretke KK, Volker C, Brown JR. 2001. Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 410:199–203. https://10.1038/35082058.
25. Siu-Ting K, Torres-Sánchez M, San Mauro D, Wilcockson D, Wilkinson M, Pisani D, O’Connell MJ, Creevey CJ. 2019. Inadvertent paralog inclusion drives artifactual topologies and tree-tie estimates in phylogenomics. Mol Biol Evol 36:1344–1356. https://10.1093/molbev/msz067.
26. Struck TH. 2013. The impact of paralogy on phylogenetic studies—a case study on annelid relationships. PLoS One 8:e62892. https://10.1371/journal.pone.0062892.
27. Li Y, Yue H, Sang S, Lin C, Wang X. 2017. Phylogenetic analysis of family Neisseriaceae based on genome sequences and description of Populibacter corticis gen. nov., sp. nov., a member of the family Neisseriaceae, isolated from symptomatic bark of Populus × euramericana canker. PLoS One 12:e0174506. https://10.1371/journal.pone.0174506.
28. Powell E, Ratnayake N, Moran NA. 2016. Strain diversity and host specificity in a specialized gut symbiont of honeybees and bumblebees. Mol Ecol 25:4461–4471. https://10.1111/mec.13787.
29. Olm MR, Brown CT, Brooks B, Banfield JF. 2017. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11:2864–2868. https://10.1038/ISMEJ.2017.126.
30. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer PY. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266. https://10.1111/j.1462-2920.2010.01949.0-0.
31. Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 9192–9197. https://10.1073/pnas.0906412106.
32. Parks DH, Chovetchina M, Weite DW, Rinke C, Skarshewski A, Smagghe G, Pevzner P, Smagghe G. 2021. The holobiont as a key to the adaptation and conservation of type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio 12:e016005-17. https://10.1128/mBio.01600-17.
33. Kwong WK, Whiteley M, Moran NA. 2016. Gut microbial communities of social bees: the bee gut as a model. Gut Microbes 6:214–220. https://10.1089/gmb.2016.0130-17.
