Prospective directions of information and communication systems and technologies development in logistics

Ekatrina V. Pustynnikova, 1 ebrezneva@list.ru
Vadim V. Baklushinskiy 1 vbaklushinskiy@mail.ru

Summary. At present time the high trade turnover is typical of the Russian economy, which in turn, activates a sufficient intensity of goods movement. Logistics, as a goods movement path in the context of a variety of delivery methods: road, air, water, pipeline, railroad transport, including across the customs border, is acutely affected by all kinds of economic transformation. Therefore, the creation of stable conditions for movement of goods under the terms of mutually beneficial cooperation is a priority for logistics. Trends of economic development are characterized by growth of integration processes which have expressed themselves in the logistics operations, use of which is aimed at solving specific problems for the shaping of information infrastructure, business processes information support in circumstances of logistical integration is considered in this article. The basis of the information system consists of information and communication resources, tools and technologies, the use of which is aimed at solving specific problems for the shaping of information infrastructure, business process reengineering, supporting economic security of business. In process of this issue studying are becoming obvious undeniable advantages of information and communication technologies use in logistics operations, the gaining of which is possible as a result of an integrated system’s interests harmonization. The article provides evidence that the market has a certain influence on the improvement of information and communication systems and technologies for complex carrying out logistical operations, which, in turn, optimizes the duration of the movement of goods and related with this process costs, thereby determines the improvement of logistic conditions in terms of business growth and competitiveness development. The article provides evidence that the market has a certain influence on the improvement of information and communication systems and technologies for complex carrying out logistical operations, which, in turn, optimizes the duration of the movement of goods and related with this process costs, thereby logistic conditions in terms of business growth and competitiveness development are made better.

Keywords: information and communication resources and technologies, software, information integration in logistics

Theoretical basis of business’s information support

Sustainable and mutually beneficial cooperation of organizations is the key to high competitiveness of business. The expediency of the integration processes in the modern reality is not in doubt. There is a wide variety of different approaches to the creation of an integration environment for conducting certain business operations, including logistics, and for the development of the organization as a whole. To our mind, in this aspect of the problem, introduction and development of dataware for logistics processes management is quite urgent. It should be noted that the logistics has a huge potential and opportunities for business growth, and fast development of information technologies affects processing and decision-making speed, thus it is one of the most effective ways to reduce costs. Figure 1 demonstrates the information and communication technologies (ICT) support...
scheme, which are recommended for implementation to support logistics processes. It should be borne in mind that it is necessary to harmonize the methods, tools, and technologies of company’s information resources management.

The basis of the company’s information system is business software that covers information and communication resources, tools, and technologies of materials and related processes management. There is plenty of information resources used in business. The list of information and communication resources designed to support logistics processes is formed in table 1 on the basis of systems approach.

Table 1. Terminological review of information and communication resources

Resource name	Abbreviation expansion
MES	Manufacturing execution system
MRP	Material requirements planning
MRP II	Manufacturing resource planning
ERP	Enterprise resource planning
CSRP	Customer synchronized resources planning
SCM	Supply chain management
GIS	Geographic information system
CRM	Customer relations management
SRM	Supplier relations management
BRM	Business Performance Management
WMS	Warehouse management system
EDI	Electronic data interchange
FMS	Fleet management system
GSM	Global System for Mobile connections
WAP	Wireless Application Protocol
ASP	Application service providing (technology outsourcing various programs with user access via the Internet)
RFID	Radio frequency identification
VLC	Virtual logistics center
APS	Advanced planning & scheduling
GPS	Global positioning system
OLAP	Online analytical processing
BI	Business Intelligence
e-SCOR	Supply Chain Operation Reference model
CASE	Computer Aided System Engineering

Selection of a specific software is aimed at solving specific problems for the formation of information infrastructure, the choice of hardware and software, business process reengineering based on information systems, information outsourcing, ensuring the information security of business. When creating information space for support of logistics operations in the supply chain it is important to coordinate decisions on the selection of a particular set of information and communication resources, otherwise, lack of harmonization does not allow participants of product distribution to recognize the information. It should be noted that the market of information and communication technologies is very diverse, which in turn determines the high demands of the abilities and skills of IT-managers, both in design and development of information solutions, as well as when they are used in business practice.
Directions in the development of logistics software.

The development of ICT and their practical application level in logistics is directly related to changes in the market economy. A qualitative picture of the dynamics of the logistics services market on the basis of information support is shown in Figure 2.

According to Figure 2, information support of logistics processes meets the requirements of the market environment and trends of its development. In turn, enhancement of information support promotes the complex automation of material flows management in time and space.

Information component in this format of development is becoming increasingly global, especially with the development of electronic forms of doing business based on Internet technologies. Due to market globalization logistics systems are subject to significant changes. Currently, in virtue of the integration processes development, a new commercial paradigm forms. It is integration paradigm based on material flow management concepts synchronized on the basis of MRP, MRPII, ERP, CSRP, CALS concepts presented in Table 2.

Market's requirements	Reliability
	Expansion of choice and assortment
	Unique services
Quality of services	
Price	
1960’s	Today

Company’s priorities	Economic efficiency
MRPII	New techniques and technologies
ERP	Innovations
CSRP	Integration

Figure 2. Market trends of logistics services development

The main types of information systems applied in a comprehensive logistics automation

IS type	Purpose
MRP	Material requirements planning. These systems are used in planning of parts demand for production of certain products quantity. Thus MRPs allow enterprise to determine optimal stocks for manufacturing goods according to forecasted sales. Nowadays MRP concept is outdated and usually isn’t used singly, but it forms part of current information systems [11]
MRPII	Manufacturing resource planning. MRPII systems have the capabilities of MRPs and provide additional functions of planning and controlling of cost calculation, procurement, sales and production data acquisition. Main idea of MRPII systems is to take into account all relevant resources for company’s success in planning. However, these systems include only manufacturing resources.
ERP	Enterprise resource planning. ERP systems include MRPII functionality and provide general functions of accounting, controlling, financial planning and HR.
CSRP	Customer synchronized resource planning. This type of systems has abilities of ERP and CRM. Concept of CSRP is inclusion of customer in the production process. It allows customer to order manufacturing of product and control it’s implementation and deadline.
CALS	Continuous acquisitions and life cycle support. CALS is an approach to designing and production of highly technological products. CALS technologies provide information support at all stages of lifecycle of the merchandise. This approach is based on creation of unified information space implemented according requirements of international standards system.

These concepts reflect the importance of managing both of the internal resources of the company and external, such as consumer behavior, the means of distribution of goods and service maintenance, which are fundamentally important aspects under the conditions of modern integration processes.

A typical response to the needs of companies in the information integration can be seen in the evolution of information systems, and this process is accompanied by not only expanding their functionality, but also increasing compatibility with other systems, such as CRM, SCM, BPM (Figure 3).

Trade Logistics and Delivery Management. The development of program is going in the direction of the integrated logistics and SCM network formation with the appropriate information support based on the concept of a unified information technology environment “Northern Dimension”.

Figure 3. The evolution of corporate information system in the direction of information resources integration
Among the promising, emerging logistics trends in domestic practice there are several ones that require the use of ICT and should be noticed first and foremost:

- Automation of supply planning and re-planning with minimal losses;
- Client-oriented supply management using CRM and SRM integrated automation technologies based on personified accounting of demand, ranging customers and suppliers;
- Automation of supplies on the basis of electronic planning (e-commerce).
- Transportation outsourcing in coordination of logistics operations, including interactive kind, that operate through virtual centers;
- Design of supply chain on the basis of automation principles (e-SCOR).

Information integration should be carried out comprehensively and in the combination of different organizational and technological forms. In the modern economic practice there are the most demanded ones:

- network integration associated with the construction of the physical topology of computer networks and data networks driven by network operating systems;
- integration of business processes (business integration), focused on the office integration through e-mail and document management systems;
- intra-industrial integration, related to the automation of planning and management of manufacturing processes on the basis of MRP, ERP, MES systems;
- cross-enterprise integration based on Internet network, expandable up to the level of integration with customers;
- integration of business applications and resources sharing enterprise-level data, providing a comprehensive, interlinked solution of organization’s tasks, tactical production management, long-term planning and business process reengineering.

The main instruments of information integration are unified protocols, documentation languages and data communication systems, Open-Source and Internet/Intranet technologies, remote access to data and mobile management systems, shown in Table 3.

Table 3.

Terminology of information resources integration system

Definition	Matter (functions)
Internet	Open global information system based on WEB technology; it is used for creation of a local network of a company, intercorporate associations (integration of Intranet) and regional networks (Extranet integration)
Integration	Technology and tools of integration of IS developed by various implementators (IBM WebSphere, AquaLogisBEASystems)
SOA	Service Oriented Architecture is a process technology of applications integration to the unified company’s information system
XML/XSL	Extensible Markup Language and Extensible Style Language are languages that simplify the interaction between different information systems on the document flow and data exchange. It serves as an environment for application integration
SCADA	Supervisory Control And Acquisition can be described as an automated process control system (APCS). These systems are quiet suitable for control over technological and business processes of industrial enterprise

Integration of information resources is related to the tactical tasks of information support of management in modern logistics, and therefore it’s implementation should be formed comprehensively by joined tools and technologies at all levels of the supply chain as follows:

- workplace should be automated to work with a local information system, e-mail, office applications and Internet access;
- department, service or unit should be equipped with a network information system of narrow functional orientation to work in groups, conduct electronic meetings management automation;
- at the level of the organization (corporation) a comprehensive management automation with a guide to the relevant sectoral, national and international projects and programs should be carried out.

One of main principles of describing the future development of logistics is the safety of product distribution and data transmission. In this connection there should be noted feasibility of important management tools to ensure security in the supply chain:

- Automatic tracking of the shipment (GPS);
- Generation of warnings about the dangers of electronic communication;
- Electronic seals;
- Audio and video identification when paying invoices by using special credit cards;
- Electronic flow of document, providing out-running information support;
- The virtual inspection of the goods packaging.

Table 4 provides a list of tools and technologies for monitoring the supply chain that are recommended for use in business practice.

Since logistical services market capacity is continuously growing, it causes the expansion of the logistics abilities of subjects (senders, recipients, freight forwarders, brokers, carriers, etc.) in the management of material and associated flows.

A promising direction in terms of this trend of market changes is the formation of logistical structures managed by operators of logistics and transport and logistics centers. An example of the logistics subjects’ interaction for transport of cargo is the multi-modal transportation of goods (Figure 4).
Means and technologies for monitoring the supply chain

Monitoring tool	Available functions
Satellite system	Ensuring global communication, navigation (GPS); global dispatching management of transport operations.
Mobile communications	Providing local level of the mobile voice communication; roaming in the global communication systems.
Internet	Video monitoring; notifications in real time.
Individual display	Special stickers for single use to control the object's state.
Board units	On-board computer; digital tachograph for control of work and rest of the crew; authorization of routing information record from the sensors.
Radio-electronic and optical equipment and technologies of identification	Passive and active RFID tags and devices designed for reading and processing information in warehousing management systems and the movement of goods.

Figure 4. Information interaction of the subjects of delivery through the control center on the basis of requests for information

Conclusion

The integration of information flows and communication chains ensuring the supply of goods on the basis of open client-server technologies and unified data delivery technology are going to become the key areas in the development of logistics services. Thus, information integration is needed to build a unified information space of the chain, which helps to secure the necessary speed, completeness and accuracy of obtaining the information useful for the provision of services at a particular time.

It should be noted that currently virtual technology in logistics are actively developing, because competition in this sector is quite high.

ЛИТЕРАТУРА

1. Кашпирова М.А., Загумена Ю.С. Применение инновационных технологий в развитии логистики в кризисный период. Вестник ВГУИТ. 2016. № 2 (68). С. 346-349.
2. Министерство связи и массовых коммуникаций Российской Федерации. URL: http://minsvyaz.ru/ru/
3. Стратегия развития отрасли информационных технологий в Российской Федерации на 2014–2020 гг. и на перспективу до 2025 г. Утверждена распоряжением Правительства Российской Федерации от 1 ноября 2013 г. № 2036-р
4. Прогноз научно-технологического развития Российской Федерации на период до 2030 года (утв. Правительством РФ 3 января 2014 г.). URL: http://www.garant.ru/products/ipo/prime/doc/70484380/?i fixz4GeNdE6FpNP
5. Пустынникова Е.В., Романова М.М. Совершенствование интеграционного подхода управления как условие реализации политики импортозамещения // Актуальные проблемы развития социально-экономических систем 1 Международная научно-практическая конференция (18-22 апреля 2016 года Россия, г. Ульяновск). С. 127–132.
6. Пустынникова Е.В. Современные подходы управления производственными потоками промышленного предприятия в условиях корпоративной интеграции // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Экономические науки. 2015. № 3 (221). С. 254–262.
7. Пустынникова Е.В., Подгорнов В.В. Развитие единого информационного пространства как фактор формирования устойчивых региональных интегрированных систем // Симбирский научный вестник. 2012. № 3 (9). С. 145–151.
8. Пустынникова Е.В. Обоснование целесообразности внедрения автоматизированной системы управления производством // Симбирский научный вестник. 2014. № 1. С. 123–129.
9. Crumby J., Fryling M. Rocky Relationships: Enterprise Resource Planning and Supply Chain Management // Journal of Information Systems Applied Research. 2013. №6(2). P. 31–39.
СВЕДЕНИЯ ОБ АВТОРАХ

Екатерина В. Пустынникова д.э.н., профессор, кафедра экономики и организации производств, Ульяновский государственный университет, ул. Льва Толстого, 42, Ульяновск, 432000, Россия, ebrezneva@list.ru

Вадим В. Баклушинский аспирант, кафедра экономики и организации производств, Ульяновский государственный университет, ул. Льва Толстого, 42, Ульяновск, 432000, Россия, vbaklushinskii@mail.ru

КРИТЕРИЙ АВТОРСТВА

Екатерина В. Пустынникова написала рукопись, корректировала её до подачи в редакцию и несёт ответственность за плагиат

Вадим В. Баклушинский обзор литературных источников по исследуемой проблеме

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

ПОСТУПИЛА 01.07.2016

ПРИНИТА В ПЕЧАТЬ 13.08.2016

Информация о литературных источниках

REFERENCES

1 Kashirina M.L., Zagumennaya J.S. Application of innovative technologies in the development of logistics in the crisis period. Proceedings of the Voronezh State University of Engineering Technologies. 2016 no. (2) pp. 346–349. (In Russian) DOI:10.20914/2310-1202-2016-2-346-349

2 Ministry of Telecom and Mass Communications of the Russian Federation. 3 Strategy of development of the information technology industry in the Russian Federation for 2014–2020 years, and up to 2025. Approved by the Federal Government on November 1, 2013 no. 2036-p: URL: http://minsvyaz.ru/ru/documents/4084/

3 The forecast of scientific and technological development of the Russian Federation for the period up to 2030 (approved by the Government of the Russian Federation 3 January 2014): URL: http://www.garant.ru/products/ipo/prime/doc/70484380/#ixzz4GeNdE6Fp

INFORMATION ABOUT AUTHORS

Ekaterina V. Pustynnikova candidate of economical sciences, professor, economics and organization of production department, Ulianovsk State university, Lev Tolstoy str., 42, Ulyanovsk, 432000, Russia, ebrezneva@list.ru

Vadim V. Baklushinskii graduate student, economics and organization of production department, Ulianovsk State university, Lev Tolstoy str., 42, Ulyanovsk, 432000, Russia, vbaklushinskii@mail.ru

CONTRIBUTION

Ekaterina V. Pustynnikova wrote the manuscript, is responsible for the plagiarism, and corrects the manuscript prior to submission to the editorial board

Vadim V. Baklushinskii collected material for the review of existing information and communication resources

CONFLICT OF INTEREST

The authors declare no conflict of interest.

RECEIVED 7.1.2016

ACCEPTED 8.13.2016