INTRODUCTION
Allergic diseases, including allergic rhinosinusitis, asthma, eczema, and food allergies, are chronic inflammatory disorders affecting large segments of the population, both children and adults, that have come into prominence in recent decades by virtue of changes in life style and living conditions (1). They exact considerable morbidity and result in substantial financial costs incurred by affected individuals and their healthcare systems. Allergic diseases are characterized by a T helper type 2 (TH2)-type immune response against environmental allergens, foods, and drugs. This inflammatory response mobilizes innate immune components, including innate lymphoid cells type 2 (ILC2) mast cells, basophils, eosinophils, as well as adaptive immunity including T helper type 2 (TH2) cells and B cells switched to the production of immunoglobulin type E (IgE) (2-6). These pathways promote disease in the face of immune regulatory mechanisms that normally operate to maintain homeostasis and ward off exuberant or tissue damaging immune responses. In this review, we explore how chronic allergic inflammation can destabilize Treg cells and promote their acquisition of pathogenic T helper cell phenotypes that aggravate disease. We describe cellular and molecular mechanisms involved in such re-programming of Treg cells and therapeutic opportunities by which reprogramming can be reversed to re-establish enduring tolerance.

Abstract
Allergic diseases are highly prevalent disorders that exact a heavy toll of morbidity. Whereas a fine balance is normally struck between immune effector and tolerogenic mechanisms to ensure effective but self-contained and minimally damaging immune responses, this balance fails in those disorders. Of particular interest is the role in these disorders of regulatory T (Treg) cells, which act to maintain homeostasis and ward off exuberant or tissue damaging immune responses. In this review, we explore how chronic allergic inflammation can destabilize Treg cells and promote their acquisition of pathogenic T helper cell phenotypes that aggravate disease. We describe cellular and molecular mechanisms involved in tolerance breakdown in these disorders and pointed to potentially novel approaches to the re-establishment of tolerance in allergic diseases.

Keywords: Food Allergy, Regulatory T cells, Foxp3, Interleukin 4, Tip 2 T Yardımcı hücreler.
mice leads to severe inflammatory and autoimmune disease, reflective of the primacy of Treg cells in controlling immune responses to self and foreign antigens in the periphery (14, 15).

Treg cells comprise different subsets with suppressive capacity able to inhibit the initiation and development of allergic diseases and allergic patients seem to exhibit a specific impairment in the generation or homeostasis of regulatory T cells. Based on their developmental or functional differences, Treg cells are categorized into two main populations: naturally occurring (nTreg) cells that are generated in thymus and peripherally induced Treg (iTreg) cells generated in peripheral lymphoid tissues from non-Treg cells CD4+ precursor (16, 17). The latter are derived upon the engagement of the T cell receptor (TCR) of naïve CD4+ cells by antigen-presenting cells found in specialized niches in mucosal tissues that produce transforming growth factor-beta (TGF-β) and retinoic acid, including CD11c+CD103+ dendritic cells in the gut, and alveolar and interstitial macrophages in the lungs (18-22). It is now clear that both nTreg and iTreg act to cooperatively regulate peripheral tolerance (23, 24). Although the long-term stability and lineage commitment of iTreg cells are the subject of debate (25, 26), they appear to be mainly responsible for limiting de novo immune responses especially to innocuous non-self-antigens. Fate mapping analysis showed that under chronic inflammatory states iTreg cells are not stable and tend to acquire T helper cell-like effector phenotypes and down-regulate or completely lose FOXP3 expression (herein called ex-Treg cells) (27). Of note, recent evidences indicate the contribution of ex-Treg cells to the acceleration of inflammatory disease where transferring of ex-Treg cells promote inflammatory responses to a new healthy host (28).

In the field of allergy, the current approach to induce tolerance centers on allergen-specific immunotherapy (AIT), which involve the administration of increasing doses of the causative allergen to induce a state of allergen-specific non-responsiveness that may evolve upon extended therapy to a state of immune tolerance (29). Although many clinical trials have demonstrated the efficacy of AIT, the therapy itself requires a long period of time to achieve optimal efficacy and is marred by relatively high frequencies of disease relapse, especially in the treatment of food allergies. Thus, there is an acute need to develop novel efficacious strategies that aim to restore durable tolerance to allergens. In this review we detail the mechanisms that promote the reprogramming of allergen-specific Treg cells towards pathogenic effector T cell-like phenotypes in inflammatory allergic diseases, and potential therapeutic strategies to reverse such immune deviation in favor of durable allergen-specific immune tolerance.

Transcriptional and biological alteration of Treg cells in allergic disease.

Classically the differentiation of T helper (TH) cell subsets is controlled by master transcription factors. Thus, the differentiation of the effector TH1, TH2 or TH17 subsets requires the expression of the TH cell lineage committing transcription factors T-bet, GATA-3 and ROR-γt, respectively, whereas Treg cells require FOXP3 expression (30). Treg cells might further differentiate and gain functional specialization based on their environment. The emerging paradigm of “paired differentiation” between Treg and effector T cells indicates that Treg cells acquire transcriptional program of specific effector T cells they suppress (31). Sharing transcriptional regulation allows Treg cells to adapt to the local environment and mediate suppression of the specific type of inflammation, including TH1 and TH17 cell responses (32, 33). Similarly, in the course of the TH2 cell type immune responses, Treg cells acquire the transcriptional machinery of TH2 cells, such as IRF4, to efficiently restrain the corresponding type of the immune response (34). The acquisition by Treg cells of a partial or an “aborted” forms of the transcriptional programs of the target TH cells, acquiring the relevant transcriptional factors and chemokine receptor expression but not effector cytokine production, enables them to coordinately regulate the tissue TH cell response. However, in the context of intense and sustained inflammation, Treg cell may become fully subverted to the TH cell effector cell type they are trying to suppress (28, 35, 36). Sustained TH cell polarizing cytokine signaling subvert Treg cell identity in part by antagonizing FOXP3 expression by transcriptional and epigenetic mechanisms (37, 38).

A critical transcription factor promoting the TH2 response in Treg cells is GATA3, which is normally expressed at a low, steady level in different populations of Treg cells and plays a broader role in maintaining their homeostasis (39, 40). GATA3-deficient Treg cells exhibit attenuated expression of FOXP3 and are deficit in controlling TH1, TH2, and TH17 responses (39, 40), whereas in severe and intense form of TH2-driven inflammatory responses the expression of GATA3 is elevated in Treg cells and promote an
acquisition of TH2-type phenotypes by those cells (41, 42). In the presence of IL-4, the induced GATA3 directly binds to a regulatory region in the FOXP3 gene promoter and represses FOXP3 transactivation and the Treg cell suppression capacity (43).

Pathogenic TH2 cell-like Treg cell reprogramming in allergic diseases.

Increasing evidence indicates that Treg cell lineage commitment may not be irreversible, as downregulation of Foxp3 and consecutive expression of effector TH cytokines by Treg cells has been noted by several groups (28, 42, 44-46). In particular, IL-4R-driven signaling pathways antagonize Foxp3 expression and overcome Treg cells stability and suppressive activities in the course of various TH2-type inflammatory diseases, including asthma and food allergy (42, 45, 47, 48). Food allergy development is associated with impaired generation of food allergen-specific iTreg cells (9). We have demonstrated that those food allergen-specific Treg cells that do develop are prone to acquire a pathogenic skewed TH2-like phenotype, resulting in increased GATA-3 expression and IL-4 secretion, in a STAT6 dependent manner (42, 49). The converted Treg cells are dysfunctional and lacking in suppressor function. In addition, in an acute murine model of food allergy we demonstrated that disease-susceptible mice, with a Tyrosine to Phenylalanine substitution at amino acid residue 709 of IL-4R alpha (IL-4Rα) chain that augments STAT6 activation (Il4raF709), exhibited impaired generation, stability and function of mucosal allergen-specific iTreg cells (42). Those allergen-specific Treg cells that were generated exhibited a TH2-cell-like phenotype evidenced by highly increased expression of IRF4 and GATA3 (two master-switch TH2 cells transcription factors) and production of TH2-type cytokines by mucosal Treg cells. The TH2-like iTreg cells were not able to control innate lymphoid cells type 2 (ILC2) activation, mast cell activation and expansion and the effector TH2 cell immune response, thus amplifying and perpetuating the food allergic response (Figure 1) (42, 50). Importantly, Treg cell-specific deletion of Il4 and Il13 in these mice normalized their airway inflammatory responses in both models and reversed Treg cell TH2 cell–like reprogramming (42). Thus, the aggravated food allergic phenotype manifested by Il4raF709 mice reflects in large part the destabilization of iTreg cells and their conversion to TH2–cell like effector cells.

In addition to their susceptibility to the induction of food allergy, Il4raF709 mice also exhibit grossly exaggerated allergic airway inflammatory responses allergen sensitization followed by allergen inhalation challenge (Figure 1) (47, 51). This phenotype recapitulates the human TH2-high asthma endotype, associated with heightened attributes of TH2 cell inflammation in the airways including airway eosinophilia and TH2 cytokine production. Of note, and the similar to the food allergy model, deletion of Il4 and Il13 in Treg cells protected Il4raF709 mice from exaggerated allergic airway inflammation following allergen sensitization and challenge (47). These results suggest that TH2 reprogramming of Treg cells into TH2 cell-like cells may be an important mechanism in diverse allergic disorders associated with strong TH2 skewing.

IL-4-driven reprogramming of Treg cells into TH17-like cells as a mechanism of generating mixed TH2-TH17 inflammation

While exaggerated IL-4R/STAT6 signaling directs Th2 cell-like reprogramming of Treg cells to promote Th2 cell-high allergic disease attributes, a second mechanism involving a different branch of IL-4R signaling has recently been implicated in directing...
mixed TH2-TH17 inflammation by directing Treg cell reprogramming into TH17 cell-like cells (47). This mechanism involves a common glutamine to arginine substitution at amino acid residue 576 of human IL-4Rα chain (IL-4RaQ576R). The Q576R polymorphism highly prevalent in populations of African descent, including African Americans, and also found at lower frequencies in other populations and ethnicities. It has been associated with asthma, especially with asthma severity and symptomatology (52-54). It has also been associated with eczema and atopy.

The mechanisms by which the Q576R polymorphism exacerbate allergic airway inflammation have been clarified in studies on a mouse model that took advantage of the conservation of the Q576 residue in the murine receptor to introduce the R576 substitution by germline knock-in mutagenesis. Mice bearing the R576 residue in their IL-4Rα exhibited exaggerated allergic airway inflammation with intense tissue eosinophilia as compared to control mice harboring the wild-type Q576 bearing IL-4Ra (55). We have recently dissected the mechanisms by which the Q576R substitution induced severe airway inflammation by showing that the IL-4RαR576 variant enables recruitment of the adaptor GRB2 to IL-4Rα at the adjacent Y575 residue. GRB2 recruitment establishes a new branch of IL-4R signaling that acts in parallel to the classical IL-4R-mediated STAT6 activation to activate the MAPK pathway, leading to IL-4 (and IL-13)-induced IL-6 production by T cells and other immune cells (Figure 2) (47). In the presence of TGF-β-produced by antigen presenting cells normally promoting iTreg cell differentiation such as lung macrophages (18), the aberrant IL-4-induced production of IL-6 directs TGF-β-dependent iTreg cell differentiation toward the TH17 cell-like lineage. Concurrent STAT6 activation by IL-4Rα and STAT3 activation by autocrine and paracrine produced IL-6 also drive hyper activation of the eotaxin promoter in lung macrophages and dendritic cells, leading to greatly increased recruitment of eosinophils into the airways. Thus, signaling via the IL-4Rα-R576 variant acts to promote a unique mixed TH2/TH17-type inflammation in the airways that has been associated in human subjects with recalcitrant, steroid resistant asthma. Of note, intervention strategies that target IL-6/IL-6R signaling in Treg cells, such as deletion of Il6ra in Treg cells or treatment of mutant mice with an IL-6-specific mAb, and those that target the skewing of Treg cells to TH17 effector cell, such as deletion of Rorc in Treg cells, protected against exaggerated airway inflammation, suppressed the TH17 cell skewing and normalized the Treg cell responses. In contrast, treatment with an IL-17 or eotaxin-specific mAbs only partially protected against airway inflammation and failed to prevent iTreg cell reprogramming toward the TH17 cell fate (47). Therefore, the efficacy of intervention strategies in airway inflammation associated with the IL-4Rα-R576 variant hinges on stabilizing Treg cell responses rather than targeting end products of inflammation.

Recent technological advances in lineage tracing allow us to trace the conversion of Treg cells into ex-Treg cells (27). In IL-4RaR576 mutant mice we further demonstrated that at the site of the inflammation, the ex-Treg cells constitute a fraction of ~30% of TH17 effector infiltrates, whereas in wild-type counterparts this number is as low as ~5%, indicating the pathogenic contribution of plastic Treg cells in the severity of disease.
Treg cell programming into TH17-like cells in autoimmunity

IL-6-dependent subversion of Treg cells into TH17-like cells has a critical role in the pathogenesis of other diseases rather than asthma. In a murine model of arthritis, Komatsu et al. has shown that TH17 cells with arthritogenic and autoreactive properties arise from FOXP3+ T cells, in an IL-6 dependent manner, emphasizing the critical pathological role of IL-6 in destabilization of Treg cells and skewing toward TH17 cells fate in different inflammatory contexts (28).

Unstable Treg cells are particularly enriched in the CD25low Treg population. Adoptive transfer of autoreactive, antigen-experienced CD25lowFOXP3+ T cells into mice followed by secondary immunization with collagen accelerated the onset and increased the severity of arthritis and was associated with the loss of FOXP3 expression in the majority of transferred T cells, indicating the contribution of ex-Treg in the pathogenesis of autoimmune and inflammatory disorders.

In addition, IL-6 acts to downregulate Foxp3 expression via downregulation of the co-repressor Eos expression in Treg cells, leading to loss of FOXP3 expression and rapid reprogramming of Treg cells (56). Eos is a member of the Ikaros family of transcription factors that forms a complex with FOXP3, and is required for FOXP3 to inhibit its downstream target genes and maintain the suppressive Treg cell phenotype (57). Thus, targeting the IL-6 axis is potentially an effective approach to increasing Treg cell lineage stability in allergic and other inflammatory conditions.

The role of follicular Treg cells in protection against TH2-type inflammatory responses.

A so-called subset of “follicular regulatory T (Tfr) cells” has been identified to express CXCR5 in a Bcl6 dependent manner and localize in the germinal centers in mice and in humans (58, 59). In addition to controlling the germinal center reactions, Tfr cells are essential in suppression of TH2-driven inflammatory responses. Mice whose Treg cells are selectively deficient in Bcl6 failed to suppress the TH2-mediated inflammation in a model of allergic airway disease (60). Further, adoptive transfer of Bcl6−/− Treg cells promotes spontaneous TH2-type inflammation in recipient that emphasize the indispensable role of Bcl6 in maintaining of Treg lineage homeostasis in TH2-driven allergic responses. Intriguingly, TGFβ and retinoic acid present in the mucosal surfaces induce miR-10a, a microRNA that targets Bcl6, so maintaining Treg cell stability and preventing Treg cell programming (61).

Epigenetic changes of the non-coding gene sequences of FOXP3 gene during inflammation.

Following Treg cell differentiation, continued expression of FOXP3 is imperative for the maintenance of the Treg cell suppressive functions (62, 63). Stable FOXP3 expression is accompanied by epigenetic modulation of the Treg-specific demethylated region (TSDR), an evolutionarily conserved CpG-rich non-coding sequence within the first intron of the FOXP3 gene locus (64). Ex-Treg cells developed during the inflammatory responses were noted to exhibit increased methylation levels of the evolutionarily conserved non-coding sequence CNS2, located in the TSDR, that directly correlated with loss of FOXP3 expression, instability of Treg cells, especially iTreg cells (28, 47). Interestingly, an increased demethylation level of FOXP3-TSDR occurs during the resolution phase of the inflammation (65). Demethylated CpG island of CNS2 serve as binding sites for Runx and CREB/ATF and Ets-1 complexes (66-68), Suggesting that recruitment of these TCR-response elements to the demethylated FOXP3 CNS2 facilitates the maintenance of the active state of the FOXP3 locus and, therefore, Treg cell lineage stability. In the same vein, we have shown that Treg cells isolated from IL-4RaQ576R mice with allergic airway disease exhibit decreased methylation of the FOXP3 CNS2 enhancer region, indicative of decreased Treg cell phenotypic stability.

Besides CNS2, two other conserved non-coding regions in the FOXP3 promoter region termed CNS1 and CNS3 are critical for optimal induction or maintenance of FOXP3 expression in iTreg or nTreg cells. CNS3 acts as a “pioneer” element to facilitate FOXP3 induction during thymic and peripheral Treg differentiation by recruiting c-Rel (68). In contrast, CNS1, which contains a TGF-β-NFAT binding site, is dispensable for nTreg cell differentiation, but has a prominent role in iTreg cell generation in gut-associated lymphoid tissues (68). Enzymes that regulate the demethylation of CNS elements, such as the ten-eleven translocation (Tet) enzymes Tet2/Tet3, which oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine and other oxidized methylcytosines intermediates in DNA demethylation, are also involved in maintaining FOXP3 promoter stability in Treg cells. Their deficiency results in compromised FOXP3 epigenetic stability and the destabilization of Treg cells. Vitamin C potentiates
Tet activity and acts through Tet2/Tet3 to increase the stability of Foxp3 expression in TGF-β-induced Treg cells, suggesting a potential role for small molecule activators like vitamin C in increasing iTreg cell stability (69).

CONCLUSION

Recent evidence indicates the association of the acquisition of iTreg cells of an effector T cell–like program with allergic inflammation and its severity. We have shown that pro-asthmatic IL-4R alpha chain polymorphisms promote food allergy or distinct asthma endotypes (a mixed TH2–TH17 cell inflammation) by reprogramming Treg cells differentiation toward the respective TH cell program. Blocking the IL-4R or IL-6R pathways may prevent the subversion of Treg cells into effector T cells fates and provide personalized therapeutic approaches for tolerance re-establishment in food allergies, asthma and other allergic disorders.

Acknowledgments

This work was supported by the National Institutes of Health (5R01AI065617 and R01AI126915), to T.A.C.

Conflict of interest: Authors declare that there is no conflict of interest between the authors of the article.

Financial conflict of interest: Authors declare that they did not receive any financial support in this study.

Address correspondence to: Talal Chatila, Division of Immunology, Boston Children’s Hospital and the Department of Pediatrics, Harvard Medical School. Karp Family Building, Room 10-214. 1 Blackfan Street, Boston, MA 02115. USA e-mail: talal.chatila@childrens.harvard.edu

REFERENCES

1. Platts-Mills TA. The allergy epidemics: 1870-2010. J Allergy Clin Immunol 2015;136(1):3-13.
2. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015;16(1):45-56.
3. Nakayama T, Hirahara K, Onodera A, et al. Th2 cells in health and disease. Annual Review of Immunology 2017;35(1):53-84.
4. Ebbo M, Crinier A, Vely F, et al. Innate lymphoid cells: Major players in inflammatory diseases. Nat Rev Immunol 2017;17(11):665-78.
5. Oettgen HC. Fifty years later: Emerging functions of IgE antibodies in host defense, immune regulation, and allergic diseases. J Allergy Clin Immunol 2016;137(6):1631-45.
6. Oettgen HC, Burton OT. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2015;127:203-56.
7. Palomares O, Martin-Fontecha M, Lauenner R, et al. Regulatory T cells and immune regulation of allergic diseases: Roles of IL-10 and TGF-beta. Genes Immun 2014;15(8):511-20.
8. Noval Rivas M, Chatila TA. Regulatory T cells in allergic diseases. J Allergy Clin Immunol 2016;138(3):639-52.
9. Abdel-Gadir A, Massoud AH, Chatila TA. Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases. F1000Res 2018;7:38.
10. Alroqi FJ, Chatila TA. Regulatory cell biology in health and disease. Curr Allergy Asthma Rep 2016;16(4):27.
11. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol 2012;30:531-64.
12. Benoist C, Mathis D. Treg cells, life history, and diversity. Cold Spring Harbor perspectives in biology 2012;4(9):a007021.
13. van der Veeken J, Arvey A, Rudensky A. Transcriptional control of regulatory T-cell differentiation. Cold Spring Harb Symp Quant Biol 2013;78:215-22.
14. Chatila TA, Blaeser F, Ho N, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmune-allergic regulation syndrome. J Clin Invest 2000;106(12):R75-81.
15. Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27(1):68-73.
16. Bilate AM, LaFalaise JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 2012;30:733-58.
17. Curotto de Lafaille MA, LaFalaise JJ. Natural and adaptive foxp3+ regulatory T cells: More of the same or a division of labor? Immunity 2009;30(5):626-35.
18. Soroosh P, Doherty TA, Duan W, et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J Exp Med 2013;210(4):775-88.
19. Coleman MM, Ruane D, Moran B, et al. Alveolar macrophages contribute to respiratory tolerance by inducing Foxp3 expression in naïve T cells. Am J Respir Cell Mol Biol 2013;48(6):773-80.
20. Benson MJ, Pino-Lagos K, Rosenblatt M, et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 2007;204(8):1765-74.
21. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007;204(8):1757-64.
22. Esterhazy D, Loschko J, London M, et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nat Immunol 2016;17(5):545-55.
23. Haribhai D, Lin W, Edwards B, et al. A central role for induced regulatory T cells in tolerance induction in experimental colitis. J Immunol 2009;182(6):3461-8.
24. Haribhai D, Williams JB, Jia S, et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 2011;35(1):109-22.
25. Yadav M, Stephan S, Bluestone JA. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Frontiers in immunology 2013;4:232.
26. Shevach EM, Thornton AM. iTregs, pTregs, and iTregs: Similarities and differences. Immunol Rev 2014;259(1):88-102.
27. Zhou X, Bailey-Bucktrout SL, Jeker LT, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol
2009;10(9):1000-7.

28. Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014;20(1):62-8.

29. Berings M, Karrasian C, Altmunbulaki C, et al. Advances and highlights in allergen immunotherapy: On the way to sustained clinical and immunologic tolerance. J Allergy Clin Immunol 2017;140(5):1250-67.

30. Kanno Y, Vahedi G, Hirahara K, et al. Transcriptional and epigenetic control of T helper cell specification: Molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 2012;30:707-31.

31. Barnes MJ, Powrie F. Hybrid Treg cells: Steel frames and plastic exteriors. Nat Immunol 2009;10(6):563-4.

32. Koch MA, Tucker-Heard G, Perdue NR, et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 2009;10(6):595-602.

33. Chaudhry A, Rudra D, Treuting P, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 2009;326(5955):986-91.

34. Zheng Y, Chaudhry A, Kas A, et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 2009;458(7236):351-6.

35. Charbonnier LM, Wang S, Georgiev P, et al. Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat Immunol 2015;16(11):1162-73.

36. Koch MA, Thomas KR, Perdue NR, et al. T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor beta2. Immunity 2012;37(3):501-10.

37. Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008;28(1):29-39.

38. Komatsu N, Mariotti-Ferrandiz ME, Wang Y, et al. Heterogeneity of natural Foxp3+ T cells: A committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA 2009;106(6):1903-8.

39. Wang Y, Su MA, Wan YY. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 2009;31(5):772-86.

40. Massoud AH, Charbonnier LM, Lopez D, et al. An asthma-associated IL4R variant exacerbates airway inflammation by promoting conversion of regulatory T cells to TH17-like cells. Nat Med 2016;22(9):1013-22.

41. Pelly VS, Coomes SM, Oettgen HC, et al. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. Clin Exp Allergy 2018;48(7):825-36.

42. Al-Muhsen S, Vazquez-Tello A, Alzaabi A, et al. IL-4 receptor alpha single-nucleotide polymorphisms rs1805100 and rs1801275 are associated with increased risk of asthma in a Saudi Arabian population. Annals of Thoracic Medicine 2014;9(2):81-6.

43. Tachdjian R, Mathias C, Al Khatib S, et al. Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma. J Exp Med 2009;206(10):2191-204.

44. Sharma MD, Huang L, Choi JH, et al. An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor eos. Immunity 2013;38(5):998-1012.

45. Pan F, Yu H, Dang EV, et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 2009;325(5944):1142-6.

46. Oldenhove G, Bouladoux N, Wohlfert EA, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 2009;31(5):772-86.

47. Oldenhove G, Bouladoux N, Wohlfert EA, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 2009;31(5):772-86.

48. Oldenhove G, Bouladoux N, Wohlfert EA, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 2009;31(5):772-86.

49. Oldenhove G, Bouladoux N, Wohlfert EA, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 2009;31(5):772-86.

50. Oldenhove G, Bouladoux N, Wohlfert EA, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 2009;31(5):772-86.

51. Oldenhove G, Bouladoux N, Wohlfert EA, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 2009;31(5):772-86.
FOXP3 expression: The key to a stable regulatory T-cell lineage? Nat Rev Immunol 2009;9(2):83-9.
65. Bailey-Bucktrout SL, Martinez-Llordella M, Zhou X, et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 2013;39(5):949-62.
66. Kim HP, Leonard WJ. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 2007;204(7):1543-51.
67. Polansky JK, Schreiber L, Thelemann C, et al. Methylation matters: Binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells. J Mol Med (Berl) 2010;88(10):1029-40.
68. Zheng Y, Josefowicz S, Chaudhry A, et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 2010;463(7282):808-12.
69. Yue X, Trifari S, Aijo T, et al. Control of Foxp3 stability through modulation of TET activity. J Exp Med 2016;213(3):377-97.