Spectral convergence bounds for classical and quantum Markov processes

Oleg Szehr, David Reeb, Michael M. Wolf
TU Muenchen

January 24, 2013
Introduction
 Motivation
 Definitions

Spectral bounds from a function space based approach
 Bounding functions of an operator
 Main result: spectrum and convergence

Conclusions and References
Classical and quantum Markov chains

Markov chain: Description of time-homogenous probabilistic evolution.

\[\mathcal{X} \xrightarrow{T} \mathcal{X} \xrightarrow{T} \mathcal{X} \xrightarrow{T} \mathcal{X} \cdots \xrightarrow{T} \mathcal{X} \]

\[
\rho \mapsto T(\rho) \mapsto T^2(\rho) \mapsto T^3(\rho) \cdots \mapsto T_\infty(\rho)
\]

\(\mathcal{X} \): state space, \(\rho \): state of system,
\(T \): transition map, \(T_\infty \): asymptotic evolution
Classical and quantum Markov chains

Markov chain: Description of time-homogenous probabilistic evolution.

\[\mathcal{X} \xrightarrow{T} \mathcal{X} \xrightarrow{T} \mathcal{X} \xrightarrow{T} \mathcal{X} \rightarrow \cdots \rightarrow \mathcal{T}\infty(\rho) \]

\[\rho \rightarrow \mathcal{T}(\rho) \rightarrow \mathcal{T}^2(\rho) \rightarrow \mathcal{T}^3(\rho) \rightarrow \cdots \rightarrow \mathcal{T}\infty(\rho) \]

\[\mathcal{X} : \text{state space,} \quad \rho : \text{state of system,} \quad \mathcal{T} : \text{transition map,} \quad \mathcal{T}\infty : \text{asymptotic evolution} \]

Classical:

- \(\mathcal{X} = \mathbb{R}^d \)
- \(\rho \): vector with non-negative components, sum to 1
- \(\mathcal{T} \): stochastic matrix

Quantum:

- \(\mathcal{X} = \{ X \in \mathbb{C}^{d\times d} | X = X^\dagger \} \)
- \(\rho \): positive semi-definite trace-one matrix
- \(\mathcal{T} \): trace-preserving and completely positive map
Approaching Asymptotic behavior

In many cases one is interested, when asymptotic behavior sets in:

Classical:
- Algorithms close to correct?
- Shuffling random?
 - Stability of fixed point of evolution
 - Cut-off phenomena

Quantum:
- Dissipative state preparation and computation
Approaching Asymptotic behavior

In many cases one is interested, when asymptotic behavior sets in:

Classical:
- Algorithms close to correct?
- Shuffling random?
- Stability of fixed point of evolution
- Cut-off phenomena

Quantum:
- Dissipative state preparation and computation

In this talk we consider convergence properties of classical and quantum Markov chains. How is the *spectrum* of T related to $\|T^n - T_\infty\|$?
Approaching Asymptotic behavior

In many cases one is interested, when asymptotic behavior sets in:

Classical:
- Algorithms close to correct?
- Shuffling random?

Quantum:
- Dissipative state preparation and computation
- Stability of fixed point of evolution
- Cut-off phenomena

In this talk we consider convergence properties of classical and quantum Markov chains.
How is the *spectrum* of \mathcal{T} related to $\|\mathcal{T}^n - \mathcal{T}_\infty\|$?
Mathematical primer

Linear maps \mathcal{M}:

- $\sigma(\mathcal{M}) = \{\lambda_1, \ldots, \lambda_d\}$ spectrum of \mathcal{M} with spectral radius $\mu_\mathcal{M}$,
- $m_\mathcal{M}(z) = \prod_i (z - \lambda_i)^{k_i}$ minimal polynomial of \mathcal{M}: smallest degree non-zero poly. with $m_\mathcal{M}(\mathcal{M}) = 0$
Mathematical primer

Linear maps \mathcal{M}:

- $\sigma(\mathcal{M}) = \{\lambda_1, \ldots, \lambda_d\}$ spectrum of \mathcal{M} with spectral radius $\mu_\mathcal{M}$,
- $m_\mathcal{M}(z) = \prod_i (z - \lambda_i)^{k_i}$ minimal polynomial of \mathcal{M}: smallest degree non-zero poly. with $m_\mathcal{M}(\mathcal{M}) = 0$
Mathematical primer

Linear maps \mathcal{M}:

- $\sigma(\mathcal{M}) = \{\lambda_1, ..., \lambda_d\}$ spectrum of \mathcal{M} with spectral radius $\mu_\mathcal{M}$,
- $m_\mathcal{M}(z) = \prod_i (z - \lambda_i)^{k_i}$ minimal polynomial of \mathcal{M}: smallest degree non-zero poly. with $m_\mathcal{M}(\mathcal{M}) = 0$

Quantum/classical transition maps \mathcal{T}:

- Spectral radius $\mu = 1$
Mathematical primer

Linear maps \mathcal{M}:

- $\sigma(\mathcal{M}) = \{\lambda_1, \ldots, \lambda_d\}$ spectrum of \mathcal{M} with spectral radius $\mu_{\mathcal{M}}$,
- $m_{\mathcal{M}}(z) = \prod_i (z - \lambda_i)^{k_i}$ minimal polynomial of \mathcal{M}: smallest degree non-zero poly. with $m_{\mathcal{M}}(\mathcal{M}) = 0$

Quantum/classical transition maps \mathcal{T}:

- Spectral radius $\mu = 1$
- Define

$$\mathcal{T}_\infty := \sum_{|\lambda_i| = 1} \lambda_i \mathcal{P}_i$$

via Jordan decomposition: $\mathcal{T} = \sum_i (\lambda_i \mathcal{P}_i + \mathcal{N}_i)$, \mathcal{P}_i spectral projector, \mathcal{N}_i nilpotent.
Mathematical primer

Linear maps \mathcal{M}:
- $\sigma(\mathcal{M}) = \{\lambda_1, ..., \lambda_d\}$ spectrum of \mathcal{M} with spectral radius $\mu_\mathcal{M}$,
- $m_\mathcal{M}(z) = \prod_i (z - \lambda_i)^{k_i}$ minimal polynomial of \mathcal{M}: smallest degree non-zero poly. with $m_\mathcal{M}(\mathcal{M}) = 0$

Quantum/classical transition maps \mathcal{T}:
- Spectral radius $\mu = 1$
- Define

$$\mathcal{T}_\infty := \sum_{|\lambda_i|=1} \lambda_i \mathcal{P}_i$$

via Jordan decomposition: $\mathcal{T} = \sum_i (\lambda_i \mathcal{P}_i + \mathcal{N}_i)$, \mathcal{P}_i spectral projector, \mathcal{N}_i nilpotent.
- $\mathcal{T}^n - \mathcal{T}_\infty^n = (\mathcal{T} - \mathcal{T}_\infty)^n$
Linear algebraic bounds

Use $\|T^n - T^n_\infty\| = \|(T - T_\infty)^n\|$ and Jordan/ Schur decompositions of $T - T_\infty$.
Linear algebraic bounds

Use $\| T^n - T^n_\infty \| = \| (T - T_\infty)^n \|$ and Jordan/ Schur decompositions of $T - T_\infty$.

Jordan:

Let $\mu = \mu_{T - T_\infty}$ and d_μ largest Jordan block for μ. There are n-independent $C_1, C_2 > 0$ such that

$$C_1 \mu^{n-d_\mu+1} n^{d_\mu-1} \leq \| T^n - T^n_\infty \| \leq C_2 \mu^{n-d_\mu+1} n^{d_\mu-1},$$
Linear algebraic bounds

Use $\|T^n - T^n_\infty\| = \|(T - T_\infty)^n\|$ and Jordan/ Schur decompositions of $T - T_\infty$.

Jordan:
Let $\mu = \mu T - T_\infty$ and d_μ largest Jordan block for μ. There are n-independent $C_1, C_2 > 0$ such that

$$C_1 \mu^{n-d_\mu+1} n^{d_\mu-1} \leq \|T^n - T^n_\infty\| \leq C_2 \mu^{n-d_\mu+1} n^{d_\mu-1},$$

Schur: (for quantum channels)

$$\|T^n - T^n_\infty\|_\diamond \leq 2d^{3/2}(\mu + 2d^{1/2})^{d^2-1} n^{d^2-1} \mu^{n-d^2+1}. $$
Linear algebraic bounds

Use $\|T^n - T^n_\infty\| = \|(T - T_\infty)^n\|$ and Jordan/ Schur decompositions of $T - T_\infty$.

Jordan:
Let $\mu = \mu_{T - T_\infty}$ and d_μ largest Jordan block for μ. There are n-independent $C_1, C_2 > 0$ such that

$$C_1 \mu^{n-d_\mu+1} n^{d_\mu-1} \leq \|T^n - T^n_\infty\| \leq C_2 \mu^{n-d_\mu+1} n^{d_\mu-1},$$

Schur: (for quantum channels)

$$\|T^n - T^n_\infty\|_\diamond \leq 2d^{3/2}(\mu + 2d^{1/2})^{d_\mu-1} n^{d_\mu-1} \mu^{n-d_\mu+1}.$$

Both bounds are not satisfactory: Jordan only qualitative, Schur too bad.
Certain spaces of analytic functions:

- $\text{Hol}(\mathbb{D})$: space of analytic functions on complex unit disc.
- $H^p \subset \text{Hol}(\mathbb{D})$ with $p > 0$: Hardy spaces

\[
H^p = \{ f \in \text{Hol}(\mathbb{D}) | \|f\|_{H^p}^p := \sup_{0 \leq r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\phi})|^p \, d\phi < \infty \}\]

- $W \subset \text{Hol}(\mathbb{D})$: Wiener algebra of absolutely convergent Taylor series

\[
W = \{ f = \sum_{k \geq 0} \hat{f}(k)z^k | \sum_{k \geq 0} |\hat{f}(k)| < \infty \}. \]
Power-bounded operators obey Wiener functional calculus

\[\mathcal{M} \text{ power-bounded iff } \| \mathcal{M}^n \| \leq C \ \forall n \in \mathbb{N}. \text{ Examples:} \]

- \(\mathcal{T} \) quantum channel: \(\| \mathcal{T}^n \|_\diamond = 1 \)
- \(\mathcal{T} \) classical stochastic matrix: \(\| \mathcal{T}^n \|_{1 \rightarrow 1} = 1 \)
- \(\mathcal{T} - \mathcal{T}_\infty: \| (\mathcal{T} - \mathcal{T}_\infty)^n \|_\diamond = \| \mathcal{T}^n - \mathcal{T}_\infty^n \|_\diamond \leq \| \mathcal{T}^n \|_\diamond + \| \mathcal{T}_\infty^n \|_\diamond = 2 \)
Power-bounded operators obey Wiener functional calculus

\mathcal{M} \text{ power-bounded iff } \|\mathcal{M}^n\| \leq C \ \forall n \in \mathbb{N}. \text{ Examples: }

- \mathcal{T} \text{ quantum channel: } \|\mathcal{T}^n\|_\diamond = 1
- \mathcal{T} \text{ classical stochastic matrix: } \|\mathcal{T}^n\|_{1\to 1} = 1
- \mathcal{T} - \mathcal{T}_\infty: \| (\mathcal{T} - \mathcal{T}_\infty)^n \|_\diamond = \| \mathcal{T}^n - \mathcal{T}_\infty^n \|_\diamond \leq \| \mathcal{T}^n \|_\diamond + \| \mathcal{T}_\infty^n \|_\diamond = 2

Suppose want to bound \(\| f(\mathcal{M}) \| \),
\(f \in \mathcal{W} = \{ f = \sum_{k \geq 0} \hat{f}(k) z^k | \sum_{k \geq 0} |\hat{f}(k)| < \infty \} \):
Power-bounded operators obey Wiener functional calculus

\(\mathcal{M} \) power-bounded iff \(\| \mathcal{M}^n \| \leq C \ \forall n \in \mathbb{N} \). Examples:

- \(\mathcal{T} \) quantum channel: \(\| \mathcal{T}^n \|_\circ = 1 \)
- \(\mathcal{T} \) classical stochastic matrix: \(\| \mathcal{T}^n \|_{1 \rightarrow 1} = 1 \)
- \(\mathcal{T} - \mathcal{T}_\infty \): \(\|(\mathcal{T} - \mathcal{T}_\infty)^n\|_\circ = \|\mathcal{T}^n - \mathcal{T}_\infty^n\|_\circ \leq \|\mathcal{T}^n\|_\circ + \|\mathcal{T}_\infty^n\|_\circ = 2 \)

Suppose want to bound \(\| f(\mathcal{M}) \| \),
\(f \in \mathcal{W} = \{ f = \sum_{k \geq 0} \hat{f}(k)z^k | \sum_{k \geq 0} |\hat{f}(k)| < \infty \} \):

Observation I:

\[
\| f(\mathcal{M}) \| = \| \sum_{k \geq 0} \hat{f}(k)\mathcal{M}^k \| \leq \sum_{k \geq 0} |\hat{f}(k)| \| \mathcal{M}^k \| \leq C \sum_{k \geq 0} |\hat{f}(k)| = C \| f \|_{\mathcal{W}}
\]
Power-bounded operators obey Wiener functional calculus

\(\mathcal{M} \) power-bounded iff \(\| \mathcal{M}^n \| \leq C \ \forall n \in \mathbb{N} \). Examples:

- \(\mathcal{T} \) quantum channel: \(\| \mathcal{T}^n \|_\Diamond = 1 \)
- \(\mathcal{T} \) classical stochastic matrix: \(\| \mathcal{T}^n \|_{1 \rightarrow 1} = 1 \)
- \(\mathcal{T} - \mathcal{T}_\infty \): \(\|(\mathcal{T} - \mathcal{T}_\infty)^n\|_\Diamond = \|\mathcal{T}^n - \mathcal{T}_\infty^n\|_\Diamond \leq \|\mathcal{T}^n\|_\Diamond + \|\mathcal{T}_\infty^n\|_\Diamond = 2 \)

Suppose want to bound \(\| f(\mathcal{M}) \| \),
\(f \in \mathcal{W} = \{ f = \sum_{k \geq 0} \hat{f}(k)z^k | \sum_{k \geq 0} |\hat{f}(k)| < \infty \} \):

Observation I:

\[
\| f(\mathcal{M}) \| = \| \sum_{k \geq 0} \hat{f}(k)\mathcal{M}^k \| \leq \sum_{k \geq 0} |\hat{f}(k)| \| \mathcal{M}^k \| \leq C \sum_{k \geq 0} |\hat{f}(k)| = C \| f \|_\mathcal{W}
\]

Observation II:

\[
\| f(\mathcal{M}) \| = \| (f + mMg)(\mathcal{M}) \| \leq C \| f + m\mathcal{M}g \|_\mathcal{W} \ \forall g \in \mathcal{W}
\]
Bounding functions of operators

Thus, \(\|f(M)\| \leq C \inf_{g \in W} \|f + mMg\|_W \)

\(\leftrightarrow \) framework for spectral bounds on norm of function of operator:
Bounding functions of operators

Thus, \(\| f(M) \| \leq C \inf_{g \in W} \| f + mMg \|_W \)

\(\rightarrow \) framework for spectral bounds on norm of function of operator:

- Find “good” function space for given class of operators
- Use above to shift problem to function space
- Find bound in function space e.g. choose “good” \(h \) with

\(\inf_{g \in S} \| f + mMg \|_S \leq \| h \|_S \)
Bounding functions of operators

Thus, \(\| f(M) \| \leq C \inf_{g \in W} \| f + m_M g \|_W \)

\(\mapsto \) framework for spectral bounds on norm of function of operator:

- Find “good’’ function space for given class of operators
- Use above to shift problem to function space
- Find bound in function space e.g choose “good’’ \(h \) with \(\inf_{g \in S} \| f + m_M g \|_S \leq \| h \|_S \)

Examples:

- \(M \) Hilbert space contraction, then
 \(\| f(M) \| \leq \inf_{g \in H^\infty} \| f + m_M g \|_{H^\infty} \quad \forall f \in H^\infty \)
- \(T \) quantum channel, then [Nik06] \(\| T^{-1} \|_\diamond \leq \sqrt{2ed} / (\prod_i |\lambda_i|) \)
- \(T \) quantum channel, then

\[
\| T^n - T^n \|_\diamond = \| (T - T_\infty)^n \|_\diamond \leq 2 \inf_{g \in W} \| z^n + g \cdot m(T - T_\infty) \|_W
\]
Main result: Spectrum and convergence

Theorem (Szehr, Reeb, Wolf [SRW13])

Suppose $\|T^n\| \leq C \forall n \in \mathbb{N}$. Let $m = m_{T-T_\infty}$ be minimal polynomial and μ spectral radius of $T - T_\infty$. Then, for $n > \frac{\mu}{1-\mu}$ we have

$$\|T^n - T_\infty\| \leq \mu^n R(\mu, m, n) \prod_{m/(z-\lambda_D)} \frac{1 - (1 + \frac{1}{n})\mu|\lambda_i|}{\mu - |\lambda_i| + \frac{\mu}{n}},$$

where $R(\mu, m, n) = \frac{4Ce^2 \sqrt{|m|}(|m|+1)}{(1-(1+\frac{1}{n})\mu)^{3/2}}.$
Comparison to Schur and Jordan

To compare, note that

\[
\frac{1 - (1 + \frac{1}{n})\mu|\lambda_i|}{\mu - |\lambda_i| + \frac{\mu}{n}} \leq \frac{n}{\mu}(1 - \mu^2).
\]

i) Jordan:
- If $|\lambda_i| = \mu$ then catch factor $\frac{n}{\mu}$. Hence, Jordan bound is direct corollary.
- Advantage: Found quantitative bound since specified constants
Comparison to Schur and Jordan

To compare, note that

$$\frac{1 - (1 + \frac{1}{n})\mu |\lambda_i|}{\mu - |\lambda_i| + \frac{\mu}{n}} \leq \frac{n}{\mu} (1 - \mu^2).$$

i) Jordan:
- If $|\lambda_i| = \mu$ then catch factor $\frac{n}{\mu}$. Hence, Jordan bound is direct corollary.
- Advantage: Found quantitative bound since specified constants

ii) Schur:
- In case of worst spectrum find Schur bound as corollary.
- Advantage: *Exponential* improvement in dimension prefactor even for worst spectrum
Comparison to Schur and Jordan

To compare, note that

\[
\frac{1 - (1 + \frac{1}{n})\mu|\lambda_i|}{\mu - |\lambda_i| + \frac{\mu}{n}} \leq \frac{n}{\mu}(1 - \mu^2).
\]

i) Jordan:
 - If $|\lambda_i| = \mu$ then catch factor $\frac{n}{\mu}$. Hence, Jordan bound is direct corollary.
 - Advantage: Found quantitative bound since specified constants

ii) Schur:
 - In case of worst spectrum find Schur bound as corollary.
 - Advantage: *Exponential* improvement in dimension prefactor even for worst spectrum

Conclude: New bound outperforms Jordan and Schur
Some words about proof

Sufficient to bound \(\inf_{g \in \mathcal{W}} \left\| z^n + g \ m(T - T_\infty) \right\|_{\mathcal{W}}. \)

1. Interpolation problem [Nik09]:
\[\inf_{g \in \mathcal{W}} \left\| z^n + g \ m(T - T_\infty) \right\|_{\mathcal{W}} = \inf_{h \in \mathcal{W}} \left\{ \| h \|_{\mathcal{W}} \mid h(\lambda_i) = \lambda_i^n \right\} \]
Some words about proof

Sufficient to bound \(\inf_{g \in \mathcal{W}} \| z^n + g m(T - T_\infty) \|_W \).

1. Interpolation problem [Nik09]:
 \[
 \inf_{g \in \mathcal{W}} \| z^n + g m(T - T_\infty) \|_W = \inf_{h \in \mathcal{W}} \{ \| h \|_W \mid h(\lambda_i) = \lambda_i^n \}
 \]

2. Choose good representative: \(r \in (0, 1) \) and
 \[
 h_r(z) = \sum_k \lambda_k^n \tilde{B}(rz) \left(1 - r^2|\lambda_k|^2\right) \prod_{j \neq k} \frac{1 - r^2 \bar{\lambda}_j \lambda_k}{r \lambda_k - r \lambda_j}
 \]
Some words about proof

Sufficient to bound $\inf_{g \in \mathcal{W}} \| z^n + g \cdot m(T - T_\infty) \|_{\mathcal{W}}$.

1. Interpolation problem [Nik09]:
 $\inf_{g \in \mathcal{W}} \| z^n + g \cdot m(T - T_\infty) \|_{\mathcal{W}} = \inf_{h \in \mathcal{W}} \{ \| h \|_{\mathcal{W}} \mid h(\lambda_i) = \lambda_i^n \}$

2. Choose good representative: $r \in (0, 1)$ and

 $h_r(z) = \sum_k \lambda_k^n \frac{\tilde{B}(rz)}{rz - r\lambda_k} (1 - r^2|\lambda_k|^2) \prod_{j \neq k} \frac{1 - r^2\bar{\lambda}_j\lambda_k}{r\lambda_k - r\lambda_j}$

3. Bound in terms of Hardy norm:

 $\| h_r \|_{\mathcal{W}} \leq \sqrt{\sum_{k \geq 0} |\hat{h}(k)|^2 \sqrt{\frac{1}{1 - r^2}}} = \| h \|_{H^2} \sqrt{\frac{1}{1 - r^2}} \leq \| h \|_{H^\infty} \sqrt{\frac{1}{1 - r^2}}$
Some words about proof

Sufficient to bound \(\inf_{g \in W} \| z^n + g \, m(T - T_\infty) \|_W \).

1. Interpolation problem [Nik09]:
 \[
 \inf_{g \in W} \| z^n + g \, m(T - T_\infty) \|_W = \inf_{h \in W} \{ \| h \|_W \mid h(\lambda_i) = \lambda_i^n \}
 \]

2. Choose good representative: \(r \in (0, 1) \) and
 \[
 h_r(z) = \sum_k \lambda_k^n \tilde{B}(rz)(1 - r^2|\lambda_k|^2) \prod_{j \neq k} \frac{1-r^2 \bar{\lambda}_j \lambda_k}{r \lambda_k - r \lambda_j}
 \]

3. Bound in terms of Hardy norm:
 \[
 \| h_r \|_W \leq \sqrt{\sum_{k \geq 0} |\hat{h}(k)|^2} \sqrt{\frac{1}{1-r^2}} = \| h \|_{H^2} \sqrt{\frac{1}{1-r^2}} \leq \| h \|_{H^\infty} \sqrt{\frac{1}{1-r^2}}
 \]

4. Express \(h \) as contour integral and \(s \in (\mu, 1) \)
 \[
 \| h \|_{H^\infty} \leq \frac{s^{n+1}}{2\pi (n+1)} \sup_{|z|=1} \int_\gamma \left| \frac{1}{\tilde{B}_r(\lambda)(z-r \lambda)} \right|' \| d\lambda \|
 \]
Some words about proof

Sufficient to bound \(\inf_{g \in W} \| z^n + g \ m(T - T_\infty) \|_W \).

1. Interpolation problem [Nik09]:
\[
\inf_{g \in W} \| z^n + g \ m(T - T_\infty) \|_W = \inf_{h \in W} \{ \| h \|_W \mid h(\lambda_i) = \lambda_i^n \}
\]

2. Choose good representative: \(r \in (0, 1) \) and
\[
h_r(z) = \sum_k \lambda_k^n \frac{\tilde{B}(rz)}{rz - r\lambda_k} (1 - r^2|\lambda_k|^2) \prod_{j \neq k} \frac{1 - r^2\bar{\lambda}_j \lambda_k}{r\lambda_k - r\lambda_j}
\]

3. Bound in terms of Hardy norm:
\[
\| h_r \|_W \leq \sqrt{\sum_{k \geq 0} |\hat{h}(k)|^2 \sqrt{\frac{1}{1-r^2}}} = \| h \|_{H^2} \sqrt{\frac{1}{1-r^2}} \leq \| h \|_{H^\infty} \sqrt{\frac{1}{1-r^2}}
\]

4. Express \(h \) as contour integral and \(s \in (\mu, 1) \)
\[
\| h \|_{H^\infty} \leq \frac{s^{n+1}}{2\pi(n+1)} \sup_{|z|=1} \left| \int_{\gamma} \left[\frac{1}{\tilde{B}_r(\lambda)(z - r\lambda)} \right]' \right| d\lambda
\]

5. Use Spijker Inequality. Let \(|\lambda| = (1 + 1/n)\mu \)
\[
\| T^n - T_\infty^n \| \leq \sqrt{\frac{1}{1-r^2}} \frac{\mu^{n+1} |m| + 1}{nr|m|(1-r(1+1/n)\mu)} \sup_{\lambda} \left| \prod_i \frac{1 - \bar{\lambda}_i r^2 \lambda}{\lambda - \lambda_i} \right|
\]
Conclude:

- New framework for spectral bounds
- New convergence estimate even for classical Markov chains
- Outperform classical convergence estimates

Oleg Szehr, David Reeb, Michael M. Wolf TU Muenchen

Spectral convergence bounds for classical and quantum Markov processes
Conclusions and References

Conclude:

- New framework for spectral bounds
- New convergence estimate even for classical Markov chains
- Outperform classical convergence estimates

N.K. Nikolski, *Condition numbers of large matrices and analytic capacities*, St. Petersburg Math. J. **17** (2006), 641–682.

_____, *Operators, functions and systems: An easy reading*, AMS: Mathematical Surveys and Monographs: 93, 2009.

O. Szehr, D. Reeb, and M. M. Wolf, *Spectral convergence bounds for classical and quantum Markov chains*, arXiv: 1301.4827v1 [quant-ph].

Oleg Szehr, David Reeb, Michael M. Wolf TU Muenchen