REGULARIZATION OF RATIONAL GROUP ACTIONS

HANSPETER KRAFT

Abstract. We give a modern proof of the Regularization Theorem of André Weil which says that for every rational action of an algebraic group G on a variety X there exist a variety Y with a regular action of G and a G-equivariant birational map $X \dashrightarrow Y$. Moreover, we show that a rational action of G on an affine variety X with the property that each g from a dense subgroup of G induces a regular automorphism of X, is a regular action.

The aim of this note is to give a modern proof of the following Regularization Theorem due to André Weil, see \cite{Wei55}. We will follow the approach in \cite{Zai95}. Our base field k is algebraically closed. A variety is an algebraic k-variety, and an algebraic group is an algebraic k-group.

Theorem 1. Let G be an algebraic group and X a variety with a rational action of G. Then there exists a variety Y with a regular action of G and a birational G-equivariant morphism $\phi: X \dashrightarrow Y$.

We do not assume that G is linear or connected, nor that X is irreducible. This creates some complications in the arguments. The reader is advised to start with the case where G is connected and X irreducible in a first reading.

We cannot expect that the birational map ϕ in the theorem is a morphism. Take the standard Cremona involution σ of \mathbb{P}^2, given by $(x : y : z) \mapsto (\frac{1}{x}, \frac{1}{y}, \frac{1}{z})$, which collapses the coordinate lines to points. This cannot happen if σ is a regular automorphism. However, removing these lines, we get $k^* \times k^*$ where σ is a well-defined automorphism.

More generally, consider the rational action of $G := \text{PSL}_2 \times \text{PSL}_2$ on \mathbb{P}^2 induced by the birational isomorphism $\mathbb{P}^1 \times \mathbb{P}^1 \dashrightarrow \mathbb{P}^2$. Then neither an open set carries a regular G-action, nor \mathbb{P}^2 can be embedded into a variety Y with a regular G-action.

As we will see in the proof below, one first constructs a suitable open set $U \subseteq X$ where the rational action of G has very specific properties, and then one shows that U can be equivariantly embedded into a variety Y with a regular G-action.

1.1. Rational maps

We first have to define and explain the different notion used in the theorem above. We refer to \cite{Bla16} for additional material and more details.

Recall that a rational map $\phi: X \dashrightarrow Y$ between two varieties X, Y is an equivalence class of pairs (U, ϕ_U) where $U \subseteq X$ is an open dense subset and $\phi_U: U \rightarrow Y$ a morphism. Two such pairs (U, ϕ_U) and (V, ϕ_V) are equivalent if $\phi_U|_{U \cap V} = \phi_V|_{U \cap V}$. We say that ϕ is defined in $x \in X$ if there is a (U, ϕ_U) representing ϕ such that $x \in U$. The set of all these points forms an open dense subset $\text{Dom}(\phi) \subseteq X$ called the domain of definition of ϕ. We will shortly say that ϕ is defined in x if $x \in \text{Dom}(\phi)$.

Date: October 2016, with additions from June 2018.
For all $(U, φ_U)$ representing $φ: X \rightarrow Y$ the closure $\overline{φ_U(U)} \subseteq Y$ is the same closed subvariety of Y. We will call it the closed image of $φ$ and denote it by $φ(X)$.

The rational map $φ$ is called dominant if $φ(X) = Y$. It follows that the composition $ψ \circ φ$ of two rational maps $φ, ψ: X \rightarrow Y$ and $ψ: Y \rightarrow Z$ is a well-defined rational map $ψ \circ φ: X \rightarrow Z$ in case $φ$ is dominant.

A rational map $φ: X \rightarrow Y$ is called birational if it is dominant and admits an inverse $ψ: Y \rightarrow X$, $ψ \circ φ = \text{id}_X$. It then follows that $ψ$ is also dominant and that $φ \circ ψ = \text{id}_Y$. Clearly, $ψ$ is well-defined by $φ$, and we shortly write $ψ = φ^{-1}$. It is easy to see that $φ$ is birational if and only if there is a $(U, φ_U)$ representing $φ$ such that $φ_U: U \hookrightarrow Y$ is an open immersion with a dense image. The set of birational maps $φ: X \rightarrow Y$ is a group under composition which will be denoted by Bir(Y).

A rational map $φ: X \rightarrow Y$ is called biregular in x if there is an open neighborhood $U \subseteq \text{Dom}(φ)$ of x such that $φ_U: U \hookrightarrow Y$ is an open immersion. It follows that the subset $X' := \{x \in X \mid φ$ is biregular in $x\}$ is open in X, and the induced morphism $φ: X' \hookrightarrow Y$ is an open immersion. This implies the following result.

Lemma 1. Let $φ: X \rightarrow Y$ be a birational map. Then the set
$$\text{Breg}(φ) := \{x \in X \mid φ$ is biregular in $x\}$$
is open and dense in X.

Remark 1. If X is irreducible, a rational dominant map $φ: X \rightarrow Y$ defines a k-linear inclusion $φ^*: k(Y) \hookrightarrow k(X)$ of fields. Conversely, for every inclusion $α: k(Y) \hookrightarrow k(X)$ of fields there is a unique dominant rational map $φ: X \rightarrow Y$ such that $φ^* = α$. In particular, we have an isomorphism Bir(X) \cong Aut$_k(k(X))$ of groups, given by $φ$ \mapsto $(φ^*)^{-1}$.

1.2. Rational group actions.

Definition 1. Let X, Z be varieties. A map $φ: Z \rightarrow \text{Bir}(X)$ is called a morphism if there is an open dense set $U \subseteq Z \times X$ with the following properties:

- (i) The induced map $(z, x) \mapsto φ(z)(x): U \rightarrow X$ is a morphism of varieties.
- (ii) For every $z \in Z$ the open set $U_z := \{x \in X \mid (z, x) \in U\}$ is dense in X.
- (iii) For every $z \in Z$ the birational map $φ(z): X \rightarrow X$ is defined in U_z.

Equivalently, we have a rational map $Φ: Z \times X \rightarrow X$ such that, for every $z \in Z$,

- (i) the open subset $\text{Dom}(Φ) \cap (\{z\} \times X) \subseteq \{z\} \times X$ is dense, and
- (ii) the induced rational map $Φ_z: X \rightarrow X, x \mapsto Φ(z, x)$, is birational.

This definition allows to define the Zariski-topology on Bir(X) in the following way.

Definition 2. A subset $S \subseteq \text{Bir}(X)$ is closed if for every morphism $ρ: Z \rightarrow \text{Bir}(X)$ the inverse image $ρ^{-1}(S) \subseteq Z$ is closed.

Now we can define rational group actions on varieties. Let G be an algebraic group and let X be a variety.

Definition 3. A rational action of G on X is a morphism $ρ: G \times X \rightarrow X$ such that the following holds:
(a) \(\text{Dom}(\rho) \cap \{(g) \times X\} \) is dense in \(\{g\} \times X \) for all \(g \in G \),
(b) the induced rational map \(\rho_g : X \dasharrow X, x \mapsto \rho(g, x) \), is birational,
(c) the map \(g \mapsto \rho_g \) is a homomorphism of groups.

If \(\rho \) is defined in \((g, x) \) and \(\rho(g, x) = y \) we will say that \(g \cdot x \) is defined and \(g \cdot x = y \).

We will also use the birational map
\[
\tilde{\rho} : G \times X \dasharrow G \times X, \quad (g, x) \mapsto (g, \rho(g, x)),
\]
see section 1.5 below.

Remark 2. Note that if \(\rho : G \times X \dasharrow X \) is defined in \((g, x) \), then \(\rho_g : X \dasharrow X \) is defined in \(x \), but the reverse implication does not hold. An example is the following.

Consider the regular action of the additive group \(G_a \) on the plane \(\mathbb{A}^2 = \mathbb{A}^2 \) by translation along the \(x \)-axis: \(s \cdot x := x + (s, 0) \) for \(s \in G_a \) and \(x \in \mathbb{A}^2 \). Let \(\beta : X \rightarrow \mathbb{A}^2 \) be the blow-up of \(\mathbb{A}^2 \) in the origin. Then we get a rational \(G_a \)-action on \(X \), \(\rho : G_a \times X \dasharrow X \). It is not difficult to see that \(\rho \) is defined in \((e, x) \) if and only if \(\beta(x) \neq 0 \), i.e. \(x \) does not belong to the exceptional fiber, but clearly, \(\rho_e = \text{id} \) is defined everywhere.

If \(\phi : Z \rightarrow \text{Bir}(X) \) is a morphism such that \(\phi(Z) \subseteq \text{Aut}(X) \), the group of regular automorphisms, one might conjecture that the induced map \(Z \times X \rightarrow X \) is a morphism. I don’t know how to prove this, but maybe the following holds.

Conjecture. Let \(\rho : G \rightarrow \text{Bir}(X) \) be a rational action. If \(\rho(G) \subseteq \text{Aut}(X) \), then \(\rho \) is a regular action.

We can prove this under additional assumptions.

Theorem 2. Let \(\rho : G \rightarrow \text{Bir}(X) \) be a rational action where \(X \) is affine. Assume that there is a dense subgroup \(\Gamma \subseteq G \) such that \(\rho(\Gamma) \subseteq \text{Aut}(X) \). Then the \(G \)-action on \(X \) is regular.

The proof will be given in the last section 1.9.

Definition 4. Given rational \(G \)-actions \(\rho \) on \(X \) and \(\mu \) on \(Y \), a dominant rational map \(\phi : X \rightarrow Y \) is called \(G \)-equivariant if the following holds:

(Equi) For every \((g, x) \in G \times X \) such that (1) \(\rho \) is defined in \((g, x) \), (2) \(\phi \) is defined in \(x \) and in \(\rho(g, x) \), and (3) \(\mu \) is defined in \((g, \phi(x)) \), we have \(\phi(\rho(g, x)) = \mu(g, \phi(x)) \).

Note that the set of \((g, x) \in G \times X \) satisfying the assumptions of (Equi) is open and dense in \(G \times X \) and has the property that it meets all \(\{g\} \times X \) in a dense open set.

Remark 3. If \(G \) acts rationally on \(X \) and if \(X' \subseteq X \) is a nonempty open subset, then \(G \) acts rationally on \(X' \), and the inclusion \(X' \hookrightarrow X \) is \(G \)-equivariant. Moreover, if \(G \) acts rationally on \(X \) and if \(\phi : X \dasharrow Y \) is a birational map, then there is uniquely define rational action of \(G \) on \(Y \) such that \(\phi \) is \(G \)-equivariant.

Note that for a rational \(G \)-action \(\rho \) on \(X \) and an open dense set \(X' \subseteq X \) with induced rational \(G \)-action \(\rho' \) we have
\[
\text{Dom}(\rho') = \{(g, x) \in \text{Dom}(\rho) \mid x \in X' \text{ and } g \cdot x \in X'\},
\]
\[
\text{Breg}(\tilde{\rho}') = \{(g, x) \in \text{Breg}(\tilde{\rho}) \mid x \in X' \text{ and } g \cdot x \in X'\}.
\]
1.3. The case of a finite group G. Assume that G is finite and acts rationally on an irreducible variety X. Then every $g \in G$ defines a birational map $g: X \rightarrow X$ and thus an automorphism g^* of the field $\mathbb{k}(X)$ of rational functions on X. In this way we obtain a homomorphism $G \rightarrow \text{Aut}_\mathbb{k}(\mathbb{k}(X))$ given by $g \mapsto (g^*)^{-1}$.

By Remark 3 above we may assume that X is affine. Hence $\mathbb{k}(X)$ is the field of fractions of the coordinate ring $\mathcal{O}(X)$. Since G is finite we can find a finite-dimensional \mathbb{k}-linear subspace $V \subseteq \mathbb{k}(X)$ which is G-stable and contains a system of generators of $\mathcal{O}(X)$.

Denote by $R \subseteq \mathbb{k}(X)$ the subalgebra generated by V. By construction,

(a) R is finitely generated and G-stable, and

(b) R contains $\mathcal{O}(X)$.

In particular, the field of fractions of R is $\mathbb{k}(X)$. If we denote by Y the affine variety with coordinate ring R, we obtain a regular action of G on Y and a birational morphism $\psi: Y \rightarrow X$ induced by the inclusion $\mathcal{O}(X) \subseteq R$. Now the Regularization Theorem follows in this case with $\phi := \psi^{-1}: X \rightarrow Y$.

There is a different way to construct a “model” with a regular G-action, without assuming that X is irreducible. In fact, there is always an open dense set $X_{\text{reg}} \subseteq X$ where the action is regular. It is defined in the following way (cf. Definition 5 below). For $g \in G$ denote by $X_g \subseteq X$ the open dense set where the rational map $\rho_g: x \mapsto g \cdot x$ is biregular. Then $X_{\text{reg}} := \bigcap_{g \in G} X_g$ is open and dense in X and the rational G-action on X_{reg} is regular. In fact, ρ_g is biregular on X_{reg}, hence also biregular on $h \cdot X_{\text{reg}}$ for all $h \in G$ which implies that $h \cdot X_{\text{reg}} \subseteq X_{\text{reg}}$.

1.4. A basic example. We now give an example which should help to understand the constructions and the proofs below. Let X be a variety with a regular action of an algebraic group G. Choose an open dense subset $U \subseteq X$ and consider the rational G-action on U. Then $X := \bigcup_{g \in G} gU \subseteq X$ is open and dense in X and carries a regular action of G.

The rational G-action ρ on U is rather special. First of all we see that ρ is defined in (g, u) if and only if $g \cdot u \in U$. This implies that ρ is defined in (g, u) if and only if ρ_g is defined in u. Next we see that if ρ is defined in (g, u), then $\tilde{\rho}: G \times U \rightarrow G \times U$, $(g, x) \mapsto (g, \rho(g, x))$, is biregular in (g, u). And finally, for any x the (open) set of elements $g \in G$ such that $\tilde{\rho}$ is biregular in (g, x) is dense in G.

A first and major step in the proof is to show (see section 1.5) that for every rational G-action on a variety X there is an open dense subset $X_{\text{reg}} \subseteq X$ with the property that for every $x \in X_{\text{reg}}$ the rational map $\tilde{\rho}: G \times X_{\text{reg}} \rightarrow G \times X_{\text{reg}}$ is biregular in (g, x) for all g in a dense (open) set of G. Then, in a second step in section 1.6, we construct from X_{reg} a variety Y with a regular G-action together with an open G-equivariant embedding $X_{\text{reg}} \hookrightarrow Y$.

1.5. G-regular points and their properties. Let X be a variety with a rational action $\rho: G \times X \rightarrow X$ of an algebraic group G. Define

$$\tilde{\rho}: G \times X \rightarrow G \times X, \quad (g, x) \mapsto (g, \rho(g, x)).$$

It is clear that $\text{Dom}(\tilde{\rho}) = \text{Dom}(\rho)$ and that $\tilde{\rho}$ is birational with inverse $\tilde{\rho}^{-1}(g, y) = (g, \rho(g^{-1}, y))$, i.e. $\tilde{\rho}^{-1} = \tau \circ \tilde{\rho} \circ \tau$ where $\tau: G \times X \rightarrow G \times X$ is the isomorphism $(g, x) \mapsto (g^{-1}, x)$.

The following definition is crucial.
Lemma 2. This implies the following result.

X point of

Proof. (a) Let G dense (open) set of

Lemma 4. Consider a rational

Proposition 1. In particular, $\text{pr}_Y(\Gamma(\phi)) = \phi(\text{Dom}(\phi))$.

The main proposition is the following.

Proposition 1. (a) X_{reg} is open and dense in X.

(b) If $x \in X_{\text{reg}}$ and if $\tilde{\rho}$ is biregular in (g, x), then $g \cdot x \in X_{\text{reg}}$.

Proof. (a) Let $G = G_0 \cup G_1 \cup \cdots \cup G_n$ be the decomposition into connected components. Then $D_i := \text{Breg}(\rho) \cap (G_i \times X)$ is open and dense for all i (Lemma 1), and the same holds for the image $D_i \subseteq X$ under the projection onto X. Since $X_{\text{reg}} = \bigcap_i D_i$, the claim follows.

(b) If $\tilde{\rho}$ is biregular in (g, x), then $\tilde{\rho}^{-1} = \tau \circ \tilde{\rho} \circ \tau$ is biregular in $(g, g \cdot x)$, hence $\tilde{\rho}$ is biregular in $\tau(g, g \cdot x) = (g^{-1}, g \cdot x)$. If x is G-regular, then ρ_h is biregular in x for all h from a dense open set $G' \subseteq G$. Now Lemma 2(b) implies that $\tilde{\rho}$ is biregular in $(h g^{-1}, g \cdot x)$ for all $h \in G'$, hence $g \cdot x \in X_{\text{reg}}$.

Note that for an open dense set $U \subseteq X$ a point $x \in U$ might be G-regular for the rational G-action on X, but not for the rational G-action on U. However, Proposition 1(b) implies the following result.

Corollary 1. For the rational G-action on X_{reg} every point is G-regular.

This allows to reduce to the case of a rational G-action such every point is G-regular.

Lemma 3. Assume that $X = X_{\text{reg}}$. If ρ_g is defined in x, then ρ_g is biregular in x.

Proof. Assume that ρ_g is defined in $x \in X$. There is an open dense subset $G' \subseteq G$ such ρ_h is biregular in $g \cdot x$ and $\rho_h \circ \rho_g$ is biregular in x for all $h \in G'$. Since $\rho_h \circ \rho_g = \rho_{h g}$ we see that ρ_g is biregular in x.

For a rational map $\phi: X \rightarrow Y$ the graph $\Gamma(\phi)$ is defined in the usual way:

$$\Gamma(\phi) := \{(x, y) \in X \times Y \mid \phi \text{ is defined in } x \text{ and } \phi(x) = y\}.$$

In particular, $\text{pr}_X(\Gamma(\phi)) = \text{Dom}(\phi)$ and $\text{pr}_Y(\Gamma(\phi)) = \phi(\text{Dom}(\phi))$.

The next lemma will play a central role in the construction of the regularization.

Lemma 4. Consider a rational G-action ρ on a variety X and assume that every point of X is G-regular. Then, for every $g \in G$, the graph $\Gamma(\rho_g)$ is closed in $X \times X$.

Proof. Let $\Gamma := \overline{\{(\rho) \}}$ be the closure of the graph of ρ_0 in $X \times X$. We have to show that for every $(x_0, y_0) \in \Gamma$ the rational map ρ_0 is defined in x_0, or, equivalently, that the morphism $\pi_1 := \text{pr}_1 |_{\Gamma}: \Gamma \rightarrow X$ induced by the first projection is biregular in (x_0, y_0).

Choose $h \in G$ such that ρ_{h_0} is biregular in x_0 and ρ_h is biregular in y_0, and consider the induced birational map $\Phi := (\rho_{h_0} \times \rho_h): X \times X \dasharrow X \times X$. If Φ is defined in $(x, y) \in \Gamma(\rho_{h_0})$, $y := g \cdot x$, then $\Phi(x, y) = ((hg) \cdot x, (hg) \cdot x) \in \Delta(X)$ where $\Delta(X) := \{(x, x) \in X \times X \mid x \in X\}$ is the diagonal. It follows that $\Phi(\Gamma) \subseteq \Delta(X)$.

$$
\begin{array}{c}
\begin{array}{c}
X \times X \overset{\rho_{h_0} \times \rho_h}{\longrightarrow} X \times X \\
\downarrow \subseteq \\
\Gamma \\
\downarrow \phi \\
\pi_1 \\
\downarrow \text{pr}_1 \\
X \overset{\rho_{h_0}}{\longrightarrow} X
\end{array}
\end{array}
$$

Since Φ is biregular in (x_0, y_0), we see that $\phi := \Phi |_{\Gamma}: \Gamma \dasharrow \Delta(X)$ is also biregular in (x_0, y_0). By construction, we have $\rho_{h_0} \circ \pi_1 = \text{pr}_1 \circ \phi$. Since $\rho_{h_0} \circ \pi_1$ is biregular in $\phi(x_0, y_0)$ and ϕ is biregular in (x_0, y_0) (and $\text{pr}_1 |_{\Delta(X)}$ is an isomorphism) it follows that π_1 is biregular in (x_0, y_0), hence the claim.

The last lemma is easy.

Lemma 5. Consider a rational action ρ of G on a variety X. Assume that there is a dense open set $U \subseteq X$ such that $\tilde{\rho}$ defines an open immersion $\tilde{\rho}: G \times U \hookrightarrow G \times X$. Then the open dense subset $Y := \bigcup g \cdot U \subseteq X$ carries a regular G-action.

Proof. It is clear that every ρ_g induces an isomorphism $U \xrightarrow{\sim} g \cdot U$. This implies that Y is stable under all ρ_g. It remains to see that the induced map $G \times Y \rightarrow Y$ is a morphism. By assumption, this is clear on $G \times U$, hence also on $G \times g \cdot U$ for all $g \in G$, and we are done. \hfill \Box

1.6. The construction of a regular model. In view of Corollary 1 our Theorem 1 will follow from the next result.

Theorem 3. Let X be a variety with a rational action of G. Assume that every point of X is G-regular. Then there is a variety Y with a regular G-action and a G-equivariant open immersion $X \hookrightarrow Y$.

From now on X is a variety with a rational G-action ρ such that $X_{\text{reg}} = X$. Let $S := \{g_0 := e, g_1, g_2, \ldots, g_m\} \subseteq G$ be a finite subset. These g_i’s will be carefully chosen in the proof of Theorem 2 below. Let $X^{(0)}, X^{(1)}, \ldots, X^{(m)}$ be copies of the variety X. On the disjoint union $X(S) := X^{(0)} \cup X^{(1)} \cup \cdots \cup X^{(m)}$ we define the following relations between elements $x_i, x'_i \in \Xi$:

(1) For any i: $x_i \sim x'_i$ \iff $x_i = x'_i$;

(2) For $i \neq j$: $x_i \sim x_j$ \iff $\rho_{g_j^{-1}} g_i$ is defined in x_i and sends x_i to x_j.

It is not difficult to see that this defines an equivalence relation. (For the symmetry one has to use Lemma 3.) Denote by $\tilde{X}(S) := X(S)/ \sim$ the set of equivalence classes endowed with the induced topology.
Lemma 6. The maps \(\iota_i : \Xi \to \hat{X}(S) \) are open immersions and endow \(\hat{X}(S) \) with the structure of a variety.

Proof. By definition of the equivalence relation and the quotient topology the natural maps \(\iota_i : \Xi \to \hat{X}(S) \) are injective and continuous. Denote the image by \(\hat{X}^{(i)} \).

We have to show that \(\hat{X}^{(i)} \) is open in \(\hat{X}(S) \), or, equivalently, that the inverse image of \(\hat{X}^{(i)} \) in \(X(S) \) is open. This is clear, because the inverse image in \(\Xi \) of the intersection \(\hat{X}^{(i)} \cap \hat{X}^{(j)} \) is the open set of points where \(\rho_{g_{ij}^{-1}} \) is defined.

It follows that \(\hat{X}(S) \) carries a unique structure of a prevariety such that the maps \(\iota_i : \Xi \to \hat{X}(S) \) are open immersions. It remains to see that the diagonal \(\Delta(\hat{X}(S)) \subseteq \hat{X}(S) \times \hat{X}(S) \) is closed. For this it suffices to show that \(\Delta_{ij} := \Delta(\hat{X}(S)) \cap (\hat{X}^{(i)} \times \hat{X}^{(j)}) \) is closed in \(\hat{X}^{(i)} \times \hat{X}^{(j)} \) for all \(i, j \). This follows from Lemma 4, because \(\Delta_{ij} \) is the image of \(\Gamma(\rho_{g_{ij}^{-1}}) \subseteq \Xi \times \hat{X}(S) \). In fact, for \(x_i \in \Xi \) and \(x_j \in \hat{X}^{(j)} \), we have \((\bar{x}_i, \bar{x}_j) \in \Delta_{ij} \) if and only if \(x_i \sim x_j \). This means that \(\rho_{g_{ij}^{-1}} \) is defined in \(x_i \) and \(\rho_{g_{ij}^{-1}}(x_i) = x_j \), i.e. \((x_i, x_j) \in \Gamma(\rho_{g_{ij}^{-1}}) \).

\(\square \)

Fixing the open immersion \(\iota_0 : X = X^{(0)} \to \hat{X}(S) \) we obtain a rational \(G \)-action \(\bar{\rho} = \bar{\rho}_S \) on \(\hat{X}(S) \) such that \(\iota_0 \) is \(G \)-equivariant (Remark 3). If we consider each \(\Xi \) as the variety \(\hat{X}(S) \) with the rational \(G \)-action \(\rho^{(i)}(g, x) := \rho(g, g_{ij}^{-1} x) \), then, by construction of \(\hat{X}(S) \), the open immersions \(\iota_i : \Xi \to \hat{X}(S) \) are all \(G \)-equivariant.

Lemma 7. For all \(i \), the rational map \(\bar{\rho}_{g_i} \) is defined on \(\hat{X}^{(0)} \) and defines an isomorphism \(\bar{\rho}_{g_i} : \hat{X}^{(0)} \cong \hat{X}^{(i)} \).

Proof. Consider the open immersion \(\tau_i := \iota_i \circ \iota_0^{-1} : \hat{X}^{(0)} \to \hat{X}(S) \) with image \(\hat{X}^{(i)} \).

We claim that \(\tau_i(\bar{x}) = g_i \cdot \bar{\bar{x}} \). It suffices to show that this holds on an open dense set of \(\hat{X}^{(0)} \). Let \(U \subseteq X \) be the open dense set where \(g_i \cdot x \) is defined. For \(x \in U \) and \(y := g_i \cdot x \in X \) we get, by definition, \(\iota_0(y) = \iota_i(x) \). On the other hand, \(\iota_0(y) = \iota_0(g_i \cdot x) = g_i \cdot \iota_0(x) \). Hence, \(g_i \cdot \iota_0(x) = \iota_i(x) \), and so \(\tau_i(\bar{x}) = g_i \cdot \bar{x} \) for all \(\bar{x} \in \iota_0(U) \).

\(\square \)

Proof of Theorem 3. (a) Since \(X_{\text{reg}} = X \), we see that for any \(x \in X \) there is a \(g \in G \) such that \((g, x) \in D \), hence \(\bigcup gD = G \times X \) where \(G \) acts on \(G \times X \) by left-multiplication on \(G \). As a consequence, we have \(\bigcup gD = G \times X \) for a suitable finite subset \(S = \{g_0 = e, g_1, \ldots, g_m\} \subseteq G \). This set \(S \) will be used to construct \(\hat{X}(S) \).

(b) Let \(D^{(0)} \subseteq G \times \hat{X}^{(0)} \) be the image of \(D \), and consider the rational map \(\bar{\rho}_S : G \times \hat{X}^{(0)} \to G \times \hat{X}(S), (g, \bar{x}) \mapsto (g, \bar{\rho}(g, \bar{x})) \). We claim that \(\bar{\rho}_S \) is biregular. In fact, for any \(i \), the map \((g, x) \mapsto (g, g \cdot x) \) is the composition of \((g, x) \mapsto (g, g_i^{-1} g x) \) and \((g, y) \mapsto (g, g_i y) \) where the first one is biregular on \(g_i D^{(0)} \) with image in \(G \times \hat{X}(S) \), and the second is biregular on \(G \times \hat{X}^{(0)} \), by Lemma 7. Now the claim follows, because \(G \times \hat{X}^{(0)} = \bigcup g_i D^{(0)} \), by (a).

(c) It follows from (b) that the rational action \(\bar{\rho} \) of \(G \) on \(\hat{X}(S) \) has the property that \(\bar{\rho}_S \) defines an open immersion \(G \times \hat{X}^{(0)} \to G \times \hat{X}(S) \). Now Theorem 3 follows from Lemma 5, setting \(Y := \hat{X}(S) \).

\(\square \)
1.7. Normal and smooth models. If X is an irreducible G-variety, i.e., a variety with a regular action of G, then it is well-known that the normalization \tilde{X} has a unique structure of a G-variety such that the normalization map $\eta: \tilde{X} \to X$ is G-equivariant. If X is reducible, $X = \bigcup_i X_i$, we denote by \tilde{X} the disjoint union of the normalizations of the irreducible components X_i, $\tilde{X} = \bigcup_i \tilde{X}_i$, and by $\eta: \tilde{X} \to X$ the obvious morphism which will be called the normalization of X. The proof of the following assertion is not difficult.

Proposition 2. Let X be a G-variety and $\eta: \tilde{X} \to X$ its normalization. Then there is a unique regular G-action on \tilde{X} such that η is G-equivariant.

It is clear that for any G-variety X the open set X_{smooth} of smooth points is stable under G. Thus smooth models for a rational G-action always exist.

The next result, the equivariant resolution of singularities, can be found in KOLLÁR’s book [Kol07]. He shows in Theorem 3.36 that in characteristic zero there is a functorial resolution of singularities $BR(X): X' \to X$ which commutes with surjective smooth morphisms. This implies (see his Proposition 3.9.1) that every action of an algebraic group on X lifts uniquely to an action on X'.

Proposition 3. Assume $\text{char } k = 0$, and let X be a G-variety. Then there is a smooth G-variety Y and a proper birational G-equivariant morphism $\phi: Y \to X$.

1.8. Projective models. The next results show that there are always smooth projective models for connected algebraic groups G. More precisely, we have the following propositions.

Proposition 4. Let G be a connected algebraic group acting on a normal variety X. Then there exists an open cover of X by quasi-projective G-stable varieties.

Proposition 5. Let G be a connected algebraic group acting on a normal quasi-projective variety X. Then there exists a G-equivariant embedding into a projective G-variety.

Outline of Proofs. Both propositions are due to SUMIHIRO in case of a connected linear algebraic group G [Sum74, Sum75]. They were generalized to a connected algebraic group G by BRION in [Bri10, Theorem 1.1 and Theorem 1.2].

In this context let us mention the following equivariant Chow-Lemma. For a connected linear algebraic group G it was proved by SUMIHIRO [Sum74] and later generalized to the non-connected case by REICHSTEIN-YOSSUSIN [RY02]. It implies that projective models always exist for linear algebraic groups G.

Proposition 6 ([Sum74, Theorem 2], [RY02, Proposition 2]). Let G be a linear algebraic group. For every G-variety X there exists a quasi-projective G-variety Y and a proper birational G-equivariant morphism $Y \to X$ which is an isomorphism on a G-stable open dense subset $U \subseteq Y$.

1.9. Proof of Theorem 2. We start with a rational action $\rho: G \to \text{Bir}(X)$ of an algebraic group G on a variety X, and we assume that there is a dense subgroup $\Gamma \subseteq G$ such that $\rho(\Gamma) \subseteq \text{Aut}(X)$.

(a) We first claim that the rational G-action on the open dense set $X_{reg} \subseteq X$ is regular. For every $x \in X_{reg}$ there is a $g \in \Gamma$ such that $\tilde{\rho}$ is biregular in (g, x). Since, by assumption, the ρ_h are biregular on X for all $h \in \Gamma$ it follows from Lemma 2(b)
that $\bar{\rho}$ is biregular in (g', x) for any $g' \in \Gamma$. Moreover, by Proposition 1(b), we have $g' \cdot x \in X_{\text{reg}}$, hence X_{reg} is stable under Γ.

By Theorem 3 we have a G-equivariant open immersion $X_{\text{reg}} \hookrightarrow Y$ where Y is a variety with a regular G-action. Since the complement $C := Y \setminus X_{\text{reg}}$ is closed and Γ-stable we see that C is stable under $\bar{\Gamma} = G$, hence the claim.

(b) From (a) we see that the rational map $\rho: G \times X \rightarrow X$ has the following properties:

(i) There is a dense open set $X_{\text{reg}} \subseteq X$ such that ρ is regular on $G \times X_{\text{reg}}$.

(ii) For every $g \in \Gamma$ the rational map $\rho_g: X \rightarrow X$, $x \mapsto \rho(g, x)$, is a regular isomorphism.

Now the following lemma implies that ρ is a regular action in case X is affine, proving Theorem 2.

Lemma 8. Let X, Y, Z be varieties and let $\phi: X \times Y \rightarrow Z$ be a rational map where Z is affine. Assume the following:

(a) There is an open dense set $U \subseteq Y$ such that ϕ is defined on $X \times U$;

(b) There is a dense set $X' \subseteq X$ such that the induced maps $\phi_x: \{x\} \times Y \rightarrow Z$ are morphisms for all $x \in X'$.

Then ϕ is a regular morphism.

Proof. We can assume that $Z = A^1$, so that $\phi = F$ is a rational function on $X \times Y$. We can also assume that X, Y are affine and that $U = Y_f$ with a non-zero divisor $f \in \mathcal{O}(Y)$. This implies that $f^kF \in \mathcal{O}(X \times Y) = \mathcal{O}(X) \otimes \mathcal{O}(Y)$ for some $k \geq 0$. Write $f^kF = \sum_{i=1}^n h_i \otimes f_i$ with k-linearly independent $h_1, \ldots, h_n \in \mathcal{O}(X)$. Setting $F_x(y) := f(x, y)$ for $x \in X$, the assumption implies that $F_x = \sum_{i=1}^n h_i(x) \frac{f_i}{f}$ is a regular function on Y for all $x \in X'$.

We claim that there exist $x_1, \ldots, x_n \in X'$ such that the $n \times n$-matrix $(h_i(x_j))_{i,j=1}^n$ is invertible. This implies that the rational functions $\frac{f_i}{f}$ are k-linear combinations of the $F_{x_i} = f(x_i, y) \in \mathcal{O}(Y)$. Hence they are regular, and thus F is regular. The lemma follows.

It remains to prove the claim. Assume that we have found $x_1, \ldots, x_m \in X'$ ($m < n$) such that the $m \times m$-matrix $(h_i(x_j))_{i,j=1}^m$ is invertible. Then there are uniquely defined $\lambda_1, \ldots, \lambda_m \in k$ such that $h_{m+1}(x_i) = \sum_{j=1}^m \lambda_j h_j(x_i)$ for $i = 1, \ldots, m$. Since $h_1, \ldots, h_m, h_{m+1}$ are linearly independent, it follows that $h_{m+1} \neq \sum_{j=1}^m \lambda_j h_j$. This implies that there exists $x_{m+1} \in X'$ such that $h_{m+1}(x_{m+1}) \neq \sum_{j=1}^m \lambda_j h_j(x_{m+1})$, and so the matrix $(h_i(x_j))_{i,j=1}^{m+1}$ is invertible. Now the claim follows by induction. □

References

[Bla16] Jérémie Blanc, *Algebraic structures of groups of birational transformations*, Proceedings of Symposia in Pure Mathematics (2016).

[Bri10] Michel Brion, *Some basic results on actions of nonaffine algebraic groups*, Symmetry and spaces, Progr. Math., vol. 278, Birkhäuser Boston Inc., Boston, MA, 2010, pp. 1–20.

[Kol07] János Kollár, *Lectures on resolution of singularities*, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007.

[RY02] Zinovy Reichstein and Boris Youssin, *Equivariant resolution of points of indeterminacy*, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2183–2187 (electronic).

[Sum74] Hideyasu Sumihiro, *Equivariant completion*, J. Math. Kyoto Univ. 14 (1974), 1–28.
[Sum75] ______, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573–605.
[Wei55] André Weil, On algebraic groups of transformations, Amer. J. Math. 77 (1955), 355–391.
[Zai95] Dmitri Zaitsev, Regularization of birational group operations in the sense of Weit, J. Lie Theory 5 (1995), no. 2, 207–224.

DEPARTEMENT MATHEMATIK UND INFORMATIK, UNIVERSITÄT BASEL
SPIEGELGASSE 1, CH-4051 BASEL
E-mail address: Hanspeter.Kraft@unibas.ch