Procalcitonin kinetics – prognostic and diagnostic significance in septic patients

Małgorzata Lipińska-Gediga¹, Magdalena Mierzchała-Pasierb², Grażyna Durek¹

¹Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
²Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland

Submitted: 20 January 2014
Accepted: 24 March 2014
Arch Med Sci 2016; 12, 1: 112–119
DOI: 10.5114/aoms.2016.57587
Copyright © 2016 Termedia & Banach

Abstract

Introduction: Severe sepsis and septic shock are advanced clinical conditions representing the patient’s response to infection and having a variable but high mortality rate. Early evaluation of sepsis stage and choice of adequate treatment are key factors for survival. Some study results suggest the necessity of daily procalcitonin (PCT) monitoring because of its prognostic and discriminative value.

Material and methods: An observational and prospective study was conducted to evaluate the prognostic and discriminative value of PCT kinetics in comparison to PCT absolute value measurements. In a group of 50 intensive care unit patients with diagnosis of severe sepsis or septic shock, serum PCT measurements were performed on admission, and on the 2nd, 3rd and 5th day of therapy. The level of PCT was determined with a commercially available test according to the manufacturer’s protocol.

Results: The kinetics of PCT assessed by ΔPCT was statistically significant in the survivors vs. the non-survivors subgroup (ΔPCT₃/₁, p = 0.022; ΔPCT₅/₁, p = 0.021). ΔPCT has no statistical significance in the severe sepsis and septic shock subgroups for all analyzed days. Only the 5th day PCT level was significantly higher in the non-survivors vs. survivors group (p = 0.008). The 1st day PCT level in the severe sepsis vs. septic shock group has a discriminative impact (p = 0.009).

Conclusions: According to the results, single serum PCT measurement, regardless of absolute value, has a discriminative impact but no prognostic significance, during the first 2 days of therapy. The PCT kinetics is of prognostic value from the 3rd day and is of earlier prognostic significance in comparison to changes in the patient’s clinical condition evaluated by SOFA score kinetics.

Key words: severe sepsis, septic shock, biomarker variation.

Introduction

Procalcitonin (PCT) is a prohormone of calcitonin consisting of 114 to 116 amino acids. The physiological PCT serum level is below 0.5 ng/ml, but the rise to a value higher than 2 ng/ml is indicative of sepsis [1]. The PCT induction period at 4 to 12 h is longer than for cytokines, but it is shorter than for C-reactive protein (CRP) [2]. The half-life of PCT is about 22 to 35 h [3], and in blood samples PCT is a relatively stable protein.

Procalcitonin originates from the calcitonin-I (CALC-I) gene on chromosome 11 [4]. A microbial infection induces a ubiquitous increase in
CALC-I gene expression and a significant release of PCT from various tissues and cell types [5]. Tissues with high levels of PCT-I and PCT-II mRNA expression are potential sources of serum PCT in septic conditions [6, 7]. Whang et al. considered that PCT is a secondary mediator, intensifying rather than initiating the septic response [8]. Hoffmann et al. stated that PCT is a modulator of the inflammatory cascade [9]. Furthermore, the extent of PCT release is thought to be closely dependent on the extent of host response to microbial challenge [10].

Sepsis is not a single disease, but rather a highly heterogeneous syndrome that is the net result of host and pathogen interactions [11]. Severe sepsis/septic shock remains a leading cause of death in the intensive care unit (ICU), with mortality rates varying from 25% to 80% [12].

The purpose of our study was to assess the predictive and discriminative value of PCT kinetics in comparison to the PCT level in ICU patients with severe sepsis or septic shock during the first 5 days of therapy.

Material and methods

Definition of sepsis, severe sepsis and septic shock

According to the Surviving Sepsis Campaign (SSC) international Guidelines, sepsis is defined as the presence of infection (suspected or documented) in association with systemic manifestations of infection. Severe sepsis is defined as sepsis associated with tissue hypoperfusion or sepsis-induced organ dysfunction (any of the following should result from the infection). Sepsis-induced hypoperfusion is defined as infection-induced hypotension, elevated lactate (>1 mmol/l), or oliguria. Sepsis-induced hypotension is defined as systolic blood pressure (SBP) < 90 mm Hg or mean arterial pressure (MAP) < 70 mm Hg or SBP decrease >40 mm Hg or less than two standard deviation below normal for age in the absence of other causes of hypotension. Septic shock is defined as sepsis-induced hypotension persisting despite adequate fluid resuscitation [13].

Patients

The observational and prospective study was conducted in the Department of Anesthesiology and Intensive Therapy of Wroclaw Medical University, Poland. The research was approved by the Medical Ethics Committee of Wroclaw Medical University and was performed in accordance with Helsinki Declaration of 1975, as revised in 1983. Informed consent was obtained from the patients or their legal representatives.

Fifty critically ill patients were consecutively enrolled in the study starting from admission when they met SSC criteria for severe sepsis or septic shock. On admission to the ICU, patients exhibited different phases of severe sepsis or septic shock. The former antibiotic treatment (ineffective or delayed) and/or the type of experienced surgery influenced the admission PCT concentrations. Patients were divided into the following subgroups: survivors (52%) and non-survivors (48%); severe sepsis (38%) and septic shock (62%). For all patients the following data were reported: age, gender, source of infection, type of causative microorganisms, the Acute Physiology and Chronic Health Evaluation (APACHE) II score [14] on admission, and the Sequential Organ Failure Assessment (SOFA) score [15] and PCT level on admission and on the 2nd, 3rd, and 5th day of therapy (Table I). The treatment of all patients with severe sepsis or severe shock was performed according to established standards, including antimicrobial treatment, fluid resuscitation, vasopressor therapy and mechanical ventilation.

Blood samples were taken in relation to the time of admission to the ICU rather than the onset of sepsis, and were collected on admission (1st day), and on the 2nd, 3rd and 5th day. The obtained serum was aliquoted and stored at –80°C until further analysis. The PCT level measurements were executed with a commercially available test (LUMItest PCT, BRAHMS Diagnostica GmbH, Germany), according to the manufacturer's instructions. The detection limit of the test was 0.08 ng/ml.

Statistical analysis

All statistical analyses were performed with StatSoft, Inc. (2010) Statistica (data analysis software system), version 9.1. www.statsoft.com. The normality of the distribution was estimated by the Kolmogorov-Smirnov test. The data were analyzed with a nonparametric test (Mann-Whitney U-test) to compare the two groups. APACHE II and SOFA score values are presented as the mean ± SD. P-value ≤ 0.05 was considered statistically significant.

Results

All patients enrolled in the study were classified according to the International Sepsis Definitions Conference guidelines [16]. The patients’ status was assessed by APACHE II and SOFA scores. The APACHE II score on the 1st day in survivors and non-survivors was 18.3 and 27.0, respectively, and in the severe sepsis and septic shock subgroups it was 19.5 and 24.3, respectively. In the non-survivors and septic shock subgroups the most common source of infection was the lung (n = 10 and n = 13, respectively) and abdomen (n = 10 and n = 12, respectively). The mortality rate in the studied critically ill patient group was 48%.
Kinetics of serum procalcitonin in patient subgroups

Procalcitonin kinetics was expressed as delta PCT (ΔPCT) and calculated as the difference between PCT level on admission day (1st) and the consecutive days (2nd, 3rd, 5th) in relation to the 1st day value (chain index). The kinetics of PCT level for survivors vs. non-survivors subgroups was presented in Table II and for severe sepsis vs. septic shock subgroup in Table III. The PCT level on the 5th day was significantly higher in the non-survivors than survivors (p = 0.008). In survivors vs. non-survivors subgroups the differences between PCT levels on the 3rd and 1st day (ΔPCT 3/1), and the differences between PCT levels on the 5th and 1st day (ΔPCT 5/1) were statistically significant (p = 0.022 and p = 0.021, respectively) (Table II). In severe sepsis vs. septic shock subgroups the PCT level was statistically significant on the 1st (p = 0.009) and 3rd day (p = 0.047), but there was no statistically significant difference in ΔPCT for all analyzed days (Table III).

Sequential Organ Failure Assessment score changes in patient subgroups

The SOFA score value was significantly different in survivors vs. non-survivors subgroups for all analyzed days, and in contrast to the absolute value, only ΔSOFA 5/1 was significantly different in this subgroup (Table IV).

In severe sepsis vs. septic shock subgroups the SOFA score value was statistically significant in the course of the study, except for the 5th day, and there were no statistically significant differences in ΔSOFA in the study (Table V).

Procalcitonin and receiver operating curve analysis in patient subgroups

In the receiver operating curve (ROC) analysis of the survival on the day of admission the cut-off value for PCT was 16.26 µg/l and area under the curve (AUC) = 0.567, the sensitivity was 0.46, and the specificity was 0.27. On the 2nd day of therapy the cut-off value was 16.65 µg/l and AUC = 0.567, the sensitiv-
Table II. Comparison of significance of changes in the PCT absolute value and its kinetics (ΔPCT) in survivors and non-survivors subgroups during the first 5 days following ICU admission

PCT [µg/l]	Survivors (n = 26)	Non-survivors (n = 24)	P-value*	ΔPCT	Survivors (n = 26)	Non-survivors (n = 24)	P-value*
PCT 1st day	7.38 (0.92–18.5)	11.1 (1.03–29.5)	0.42	ΔPCT	0.353 (–0.30–0.54)	0.198 (–0.36–0.47)	0.35
PCT 2nd day	5.84 (0.51–16.6)	7.13 (0.63–26.3)	0.42	ΔPCT	0.752 (0.40–0.90)	0.292 (0.03–0.72)	0.022
PCT 3rd day	1.03 (0.33–4.25)	10.1 (0.75–21.0)	0.08	ΔPCT	0.890 (0.74–0.98)	0.752 (–0.66–0.94)	0.021
PCT 5th day	1.01 (0.17–3.25)	3.91 (1.28–20.7)	0.008				

Data are presented as median values and interquartile range (IQR) (25th to 75th percentiles). PCT kinetics is expressed as delta PCT (ΔPCT) concentrations. ΔPCT was calculated as the difference between concentrations on admission day (1st) and the consecutive days (2nd, 3rd and 5th) in relation to the 1st day value. PCT – procalcitonin; *p-value for difference between survivors and non-survivors.

Table III. Comparison of significance of changes in the PCT absolute value and PCT kinetics (ΔPCT) in severe sepsis and septic shock subgroups during the first 5 days following ICU admission

PCT [µg/l]	Severe sepsis (n = 19)	Septic shock (n = 31)	P-value*	ΔPCT	Severe sepsis (n = 19)	Septic shock (n = 31)	P-value*
PCT 1st day	2.69 (0.34–9.71)	16.3 (1.55–31.9)	0.009	ΔPCT	0.33 (–1.53–0.59)	0.278 (–0.18–0.52)	0.63
PCT 2nd day	2.04 (0.57–14.9)	9.05 (0.67–28.1)	0.12	ΔPCT	0.793 (–0.65–0.94)	0.355 (0.18–0.79)	0.84
PCT 3rd day	0.56 (0.23–4.06)	5.12 (0.92–19.9)	0.047	ΔPCT	0.877 (0.14–1.00)	0.88 (0.03–0.95)	0.35
PCT 5th day	1.01 (0.26–7.22)	1.73 (0.95–8.74)	0.41				

Data are presented as median values and interquartile range (IQR) (25th to 75th percentiles). PCT kinetics is expressed as delta PCT (ΔPCT) concentrations. ΔPCT was calculated as the difference between concentrations on admission day (1st) and the consecutive days (2nd, 3rd and 5th) in relation to the 1st day value. PCT – procalcitonin; *p-value for difference between severe sepsis and septic shock.
ity was 0.42, and the specificity was 0.23. On the 3rd day of therapy the cut-off value was 5.99 µg/l and AUC = 0.649, the sensitivity was 0.59, and the specificity was 0.24. On the 5th day of therapy the cut-off value was 0.32 µg/l and AUC = 0.737, the sensitivity was 1.0, and the specificity was 0.567 (Figure 1 A).

In the ROC curve analysis of the septic shock diagnosis on the day of admission, the cut-off value for PCT was 8.01 µg/l and AUC = 0.72, the sensitivity was 0.70, and the specificity was 0.26. On the 2nd day of therapy the cut-off value was 5.55 µg/l and AUC = 0.634, the sensitivity was 0.67, and the specificity was 0.37. On the 3rd day of therapy the cut-off value was 0.6 µg/l and AUC = 0.68, the sensitivity was 0.83, and the specificity was 0.47. On the 5th day of therapy the cut-off value was 1.13 µg/l and AUC = 0.582, the sensitivity was 0.75, and the specificity was 0.46 (Figure 1 B).

White blood cell and C-reactive protein in patient subgroups

There was no statistically significant difference in the WBC level between the subgroups (Table VI and AUC). ROC = receiver operating curve, AUC = area under curve, PCT = procalcitonin.

![Figure 1](image-url)
Procalcitonin is elevated in patients with severe infection, complicated by septic shock [10]. Monitoring of the PCT concentration is used as an indicator of effectiveness of applied therapy in septic ICU patients without negative effects on the final clinical outcome [17]. The use of PCT-guided antibiotic single-dose therapy in everyday clinical use. It has been confirmed that the implementation of a PCT-guided antibiotic discontinuation algorithm to discontinue antibiotic treatment was associated with a reduced duration of antibiotic therapy and VII) and the differences in the C-reactive protein (CRP) concentration were not statistically significant in the survivors vs. non-survivors subgroup (Table VII).

Discussion

Currently the discriminative and prognostic significance of clinical research has started to be an object of clinical research. Karlsson et al. reported that PCT concentrations did not differ between survivors and non-survivors at day 0 and 72 h [24]. In Charles' and Sakran's results, like in ours, there was a trend toward higher PCT values in the non-survivors group [25, 26]. In contrast to the population, in Charles' results, the PCT level was associated with death in the study by Hermann et al. during the first 5 days of the severe sepsis/septic shock course [21, 22]. According to Hermann et al. during the first 5 days of the course, the highest PCT level in the population. In Charles' results, the significant difference in PCT levels is observed in the second week of the severe sepsis/septic shock course [23]. In our study, the ROC curve analysis for the septic shock subgroup was performed for the 1st day (AUC = 0.93, p = 0.00002; 2nd day = 0.91, p = 0.00004; 3rd day = 0.97, p = 0.00001; 5th day = 0.93, p = 0.0002; 7th day = 0.91). In the septic shock subgroup there was a strong correlation between PCT and WBC on all analyzed days except for the 5th day in the survivors vs. non-survivors subgroup (Table VI). There was no strong correlation between the survivors and non-survivors subgroup (Table VII).

Table VI. Evaluation of WBC and CRP levels in severe sepsis vs. septic shock subgroups during the first 5 days following ICU admission

WBC [$\times 10^3$/mm3]	Severe sepsis (n = 19)	Septic shock (n = 31)	P-value *	CRP [mg/l]	Severe sepsis (n = 19)	Septic shock (n = 31)	P-value *
WBC$_{1st\ day}$	10.0 (0.0–24.2)	14.7 (0.04–74.0)	0.21	CRP$_{1st\ day}$	190.5 (49.3–737.0)	302.1 (3.50–603.7)	0.63
WBC$_{2nd\ day}$	9.3 (0.10–17.4)	14.8 (0.10–48.9)	0.06	CRP$_{2nd\ day}$	221.5 (41.7–473.0)	243.0 (12.6–451.2)	0.56
WBC$_{3rd\ day}$	6.9 (0.0–16.6)	11.1 (0.10–40.7)	0.07	CRP$_{3rd\ day}$	98.7 (28.2–589.5)	118.4 (9.80–420.0)	0.89
WBC$_{5th\ day}$	7.3 (0.10–12.2)	9.2 (0.10–51.6)	0.15	CRP$_{5th\ day}$	85.6 (19.2–347.9)	72.8 (15.7–462.0)	0.60

Data are presented as median values and interquartile range (IQR) (25th to 75th percentiles). WBC – white blood cell count, CRP – C-reactive protein, *p-value for difference between severe sepsis and septic shock.

Table VII. Evaluation of WBC and CRP in survivors and non-survivors subgroups during the first 5 days following ICU admission

WBC [$\times 10^3$/mm3]	Survivors (n = 26)	Non-survivors (n = 24)	P-value *	CRP [mg/l]	Survivors (n = 26)	Non-survivors (n = 24)	P-value *
WBC$_{1st\ day}$	10.7 (2.9–74.0)	13.5 (0.0–32.7)	0.68	CRP$_{1st\ day}$	242.2 (49.3–737.0)	290.9 (3.5–515.1)	0.55
WBC$_{2nd\ day}$	11.4 (2.8–48.9)	14.1 (0.10–34.7)	0.91	CRP$_{2nd\ day}$	249.9 (41.7–473.0)	233.3 (12.6–451.2)	0.76
WBC$_{3rd\ day}$	9.15 (2.3–40.7)	10.9 (0.0–36.5)	0.80	CRP$_{3rd\ day}$	88.6 (28.2–589.5)	170.4 (9.8–454.1)	0.29
WBC$_{5th\ day}$	8.45 (2.7–32.9)	8.30 (0.10–51.6)	0.40	CRP$_{5th\ day}$	46.6 (15.7–287.2)	126.9 (24.2–462.0)	0.01

Data are presented as median values and interquartile range (IQR) (25th to 75th percentiles). WBC – white blood cell count, CRP – C-reactive protein, *p-value for difference between survivors and non-survivors.
was significantly different for the 3rd and 5th day of therapy in the survivors vs. non-survivors subgroup. Weak or no decline of PCT level noted on the 3rd and 5th day compared to admission was associated with unfavorable outcome, similarly to the results of Guan et al. [27] and Georgopoulou et al. [28]. In Karlsson’s study the effect on hospital survival was connected with a decrease in PCT concentrations of greater than 50% between the 1st and 3rd study day [24]. APCT 2nd day – 3rd day was an independent predictor of death in Charles’ study group [25]. In Seligman’s study the decrease of PCT on the 5th day vs. 1st day predicts favorable outcome [29]. In contrast to our results Boussekey et al. stated that PCT decline during the first 2 days of ICU stay was a good indicator of outcome, and PCT increase was independently associated with mortality, with an odds ratio greater than 4 [30]. The PCT level, which was significant only on the 5th day for survivors vs. non-survivors subgroups, did not reflect statistical significance in SOFA score results observed on all analyzed days. These findings are similar to those of de Oliveira et al. [31], where not the PCT level but the SOFA score value was highly associated with mortality in ICU patients with severe sepsis and septic shock. In our study in severe sepsis and septic shock subgroups the values of PCT and SOFA score were significantly different on the 1st day of therapy, similarly to Lavrentieva’s study [32]. According to our results in this subgroup the absolute SOFA score value was a better differentiating factor than absolute values of PCT. Kinetics of both elements did not reach statistical significance on any of the study days.

In conclusion, according to our results the PCT absolute values obtained on the 1st day of therapy significantly differ between severe sepsis and septic shock. Single PCT level measurements during the first 2 days of therapy have no prognostic impact, and the 5th day of PCT cut-off value represents the best prognostic properties. The PCT kinetics reflecting its level time course is of prognostic value from the 3rd day of therapy. The significant PCT level decrease reflecting therapy effectiveness might result in a good outcome. The kinetics of PCT achieves prognostic significance earlier than the changes of the patient’s clinical condition reflected by kinetics of SOFA score. These results indicate that PCT measurement is needed on an everyday basis because it provides a wide range of patient’s evaluation. According to our results the WBC and CRP measurements, though used for everyday septic patient’s assessment, have no diagnostic, prognostic or discriminative value. These elements should be taken into consideration in terms of individualization of septic patients’ clinical status monitoring and treatment. The question why there is a strong correlation between PCT and WBC in patient groups with an extremely different septic response (survivors and septic shock subgroups) is open to further study.

Acknowledgments

This work was financially supported by Wroclaw Medical University grant number 1430.

Conflicts of interest

The authors report no conflicts of interest.

References

1. Becker KL, Snider R, Nylen ES. Procalcitonin assay in systematic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med 2008; 36: 941-52.
2. Meisner M. Pathobiochemistry and clinical use of procalcitonin. Chim Clin Acta 2002; 323: 17-29.
3. Reinhart K, Karzai W, Meisner M. Procalcitonin as a marker of the systemic inflammatory response to infection. Intensive Care Med 2000; 26: 1193-200.
4. Becker KL, Nylen ES, White JG, Mull B, Snider RH. Procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J Clin Endocrinol Metab 2004; 89: 1512-25.
5. Becker K, Muller B, Nylen ES, Cohen R, Silva Q, Snider R. Calcitonin gene family of peptides. In: Principles and practice of endocrinology and metabolism. Becker K (ed.), JB Lippincott, Philadelphia 2001; 520-34.
6. Russwurm S, Stonans J, Stonane E, et al. Procalcitonin and CGRP-1 mRNA expression in various human tissues. Shock 2001; 16: 109-12.
7. Muller B, Becker KL. Procalcitonin: how a hormone became a marker and mediator of sepsis. Swiss Med Wkly 2001; 131: 595-602.
8. Whang KT, Vath SD, Becker KL, et al. Procalcitonin and proinflammatory cytokine interactions in sepsis. Shock 2000; 14: 73-8.
9. Hoffmann G, Czechowski M, Schloesser M, Schobersberger W. Procalcitonin amplifies inducible nitric oxide synthase gene expression and nitric oxide production in vascular smooth muscle cells. Crit Care Med 2002; 30: 2091-5.
10. Llewelyn MJ, Berger M, Gregory M, et al. Sepsis biomarkers in unselected patients on admission to intensive or high-dependency care. Crit Care 2013; 17: R60.
11. Tsallik EL, Jagers LB, Glickman SW, et al. Discriminative value of inflammatory biomarkers for suspected sepsis. J Emer Med 2012; 43: 97-106.
12. Angus DC, Wax RS. Epidemiology of sepsis: an update. Crit Care Med 2001; 29 (7 Suppl.): S109-16.
13. Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign Guidelines Committee Including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41: 580-637.
14. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985; 13: 818-29.
15. Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe or-
gan dysfunction/failure. Intensive Care Med 1996; 22: 707-10.
16. Levy MM, Fink MP, Marshall JC, et al. SCCM/ESICM/
ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS Inter-
national Sepsis Definitions Conference. Crit Care Med
2003; 31: 1250-6.
17. Hohn A, Schroeder S, Gehrt A, et al. Procalcitonin-guided
algorithm to reduce length of antibiotic therapy in pa-
patients with severe sepsis and septic shock. BMC Infect
Dis 2013; 13: 158.
18. Clech C, Ferriere F, Karoubi P et al. Diagnostic and prog-
nostic value of procalcitonin in patients with septic
shock. Crit Care Med 2004; 32: 1166-9.
19. Tang BM, Eslick GD, Craig JC, McLean AS. Accuracy of
procalcitonin for sepsis diagnosis in critically ill pa-
tients: systemic review and meta-analysis. Lancet Infect
Dis 2007; 7: 210-7.
20. Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Pro-
calcitonin as a diagnostic test for sepsis in critically ill
adults and after surgery or trauma: a systemic review
and meta-analysis. Crit Care Med 2006; 34: 1996-2003.
21. Luzzani A, Polati E, Dorizzi R, Rungatscher A, Pavan R,
Merlini A. Comparison of procalcitonin and C-reactive
protein as markers of sepsis. Crit Care Med 2003; 31:
1737-41.
22. Balci C, Sungurtek H, Gurses E, Sungurtek U, Kap-
tanoglu B. Usefulness of procalcitonin for diagnosis of
sepsis in the intensive care unit. Crit Care Med 2003;
7: 85-90.
23. Herrmann W, Ecker D, Quast S. Comparison of procalci-
tonin, sCD14 and Interleukin-6 values in septic patients.
Clin Chem Lab Med 2000; 38: 41-6.
24. Karlsson S, Heikkinen M, Pettilä V, et al. Finnsepsis
Study Group. Predictive value of procalcitonin decrease
in patients with severe sepsis: a prospective observa-
tional study. Crit Care 2010; 14: R205.
25. Charles PE, Tinel C, Barbar S, et al. Procalcitonin kinet-
ics within the first days of sepsis: relationship with the
appropriateness of antibiotic therapy and the outcome.
Crit Care 2009; 13: R38.
26. Sakran JV, Michetti CP, Sheridan MJ, et al. The utility of
procalcitonin in critically ill trauma patients. J Trauma
Acute Care Surg 2012; 73: 413-8.
27. Guan J, Lin Z, Lue H. Dynamic change of procalcitonin,
rather than concentration itself, is predictive of survival
in septic shock patients when beyond 10 ng/ml. Shock
2011; 36: 570-4.
28. Georgopoulou AP, Savva A, Giamarellos-Bourboulis EJ,
et al. Hellenic Sepsis Study Group. Early changes of pro-
calcitonin may advise about prognosis and appropri-
teness of antimicrobial therapy in sepsis. J Crit Care 2011;
26: 331.el-7.
29. Seligman R, Meisner M, Lisboa TC, et al. Decreases in
procalcitonin and C-reactive protein are strong predic-
tors of survival in ventilator-associated pneumonia. Crit
Care Med 2006; 10: R125.
30. Boussekey N, Leroy O, Alfantari S, Devos P, Georges H,
Guery B. Procalcitonin kinetics in the prognosis of se-
vere community-acquired pneumonia. Intensive Care
Med 2006; 32: 469-72.
31. de Oliveira AIA, Cardoso CP, Santos FR, et al. Predictors
of mortality in patients with severe sepsis or septic
shock in the ICU of a public teaching hospital. Critical
Care 2013; 17 (Suppl 4): P31.
32. Lavrentieva A, Papadopoulou S, Klioumis J, Kaimaka-
mis E, Bitzani M. PCT as a diagnostic and prognostic
tool in burn patients. Whether time course has a role in
monitoring sepsis treatment. Burns 2012; 38: 356-63.