Comparison of 3-weekly cisplatin versus 3-weekly carboplatin in patients with locally advanced nasopharyngeal carcinoma receiving concurrent chemoradiotherapy: A multicentre analysis

CURRENT STATUS: POSTED

Arunee Dechaphunkul
Prince of Songkla University Faculty of Medicine

Pongwut Danchaivijitr
Mahidol University Faculty of Medicine Siriraj Hospital

Rungarun Jiratrachu
Prince of Songkla University Faculty of Medicine

Tanadech Dechaphunkul
Prince of Songkla University Faculty of Medicine

Chatsuda Sookthon
Mahidol University Faculty of Medicine Ramathibodi Hospital

Chuleeporn Jiarpinitnun
Mahidol University Faculty of Medicine Ramathibodi Hospital

Chudchanok Paoin
Mahidol University Faculty of Medicine Siriraj Hospital

Jiraporn Setakornnukul
Mahidol University Faculty of Medicine Siriraj Hospital

Bhoom Suktitipat
Mahidol University Faculty of Medicine Siriraj Hospital

Poompis Pattaranutaporn
Mahidol University Faculty of Medicine Ramathibodi Hospital

Sarayuth Lucien Geater
Prince of Songkla University Faculty of Medicine
Nuttapong Ngaimphaiboon
Mahidol University Faculty of Medicine Ramathibodi Hospital
Nuttapong.nga@mahidol.ac.th

Corresponding Author
ORCiD: https://orcid.org/0000-0002-6535-6345

DOI:
10.21203/rs.2.19749/v2

SUBJECT AREAS
Oncology Cancer Biology

KEYWORDS
nasopharyngeal carcinoma, chemoradiotherapy, cisplatin, carboplatin
Abstract

Background Although concurrent chemoradiotherapy (CCRT) with high-dose cisplatin remains a standard of care for patients with locally advanced nasopharyngeal carcinoma (LA-NPC), carboplatin has alternatively been used, particularly for cisplatin-ineligible patients. However, the comparable efficacy of these two regimens remains unclear. The present study aimed to evaluate the efficacy and tolerability of 3-weekly carboplatin and 3-weekly cisplatin therapies.

Methods From May 2005 to November 2014, we identified patients with LA-NPC treated with CCRT from a Thai multicentre head and neck cancer database. The patients were administered a chemotherapy (CT) regimen of either cisplatin (75–100 mg/m²) or carboplatin (AUC-5 or 6). Patient tolerability and survival were analysed and compared between regimens.

Results Overall, 780 patients with LA-NPC were identified. Of these, the 76 patients (9.7%) treated with carboplatin showed significantly more comorbidity and lower baseline creatinine clearance than those treated with cisplatin. Compared with the cisplatin group, a higher number of patients in the carboplatin group completed three planned cycles of CT during CCRT (88.2% vs 52.0%; p <0.001) and three planned cycles of adjuvant CT (92.1% vs 78.7%; p =0.004). Furthermore, 28% of patients in the cisplatin group, as opposed to only 2.8% in the carboplatin group, required a dose reduction of CT in the subsequent cycle due to toxicities (p <0.001). At the time of analysis, the 5-year disease-free survival rate was 59.0% and 59.0% (p =0.935) and the 5-year overall survival rate was 64.0% and 66.0% (p =0.530), in the cisplatin and carboplatin groups, respectively.

Conclusions Carboplatin provided comparable efficacy to that of cisplatin but with better tolerability and could be considered as an alternative regimen, particularly in cisplatin-ineligible patients with LA-NPC. These findings still warrant a randomised phase III study to compare these two CT regimens.

Background

Nasopharyngeal carcinoma (NPC) is endemic to Southern China, the Middle East, Alaska, Greenland and Southeast Asia, including Thailand (1, 2). Concurrent chemoradiotherapy (CCRT) with high-dose cisplatin followed by three cycles of adjuvant chemotherapy (CT) containing cisplatin plus 5-fluorouracil is considered the standard protocol for patients with locally advanced nasopharyngeal...
carcinoma (LA-NPC), based upon the significant survival benefits demonstrated by the Intergroup (INT) 0099 study (3). The significant improvement of progression-free survival (PFS) and overall survival (OS) favouring combined modality over radiotherapy (RT) alone group was shown, with the 5-year PFS of 58% and 5-year OS of 67% in the former group. Furthermore, a number of subsequent meta-analyses confirmed the added OS benefit of CCRT over RT alone (4-6). Nevertheless, the compliance rate of chemotherapy administration during CCRT in this protocol was quite low (63%) owing to intolerable toxicities secondary to that of high-dose cisplatin (3). Because of this, alternative chemotherapy regimens have been used, particularly for cisplatin-ineligible patients.

Carboplatin is another platinum-based CT that has been shown to have similar radiosensitising properties but less oto-, renal- and gastrointestinal toxicities compared with cisplatin (7-9). Therefore, carboplatin has alternatively been used, particularly for cisplatin-ineligible patients. A number of studies have demonstrated the survival benefits of CCRT with carboplatin in patients with LA-NPC; however, the majority of the trials were phase II, single-arm studies (10, 11). Only one phase II randomised controlled trial directly compared weekly carboplatin therapy to standard 3-weekly cisplatin therapy and suggested that weekly carboplatin therapy had a non-inferior benefit with better tolerability in patients with LA-NPC (12). Conversely, a phase I/II study of CCRT with weekly carboplatin predicted that survival outcomes would be inferior to those of the experimental arm in the INT 0099 study (13). Taken together, the benefit of carboplatin use with CCRT in patients with LA-NPC needs to be better defined. Therefore, we aimed to evaluate the efficacies and tolerabilities of CCRT between 3-weekly carboplatin and 3-weekly cisplatin therapies in patients with LA-NPC in a multicentre study in Thailand.

Methods

From May 2005 to November 2014, we retrospectively reviewed medical information of newly-diagnosed NPC patients from a large multicentre, multidisciplinary database of Thai head and neck cancer patients encompassing three university hospitals in Thailand: Ramathibodi and Siriraj Hospitals, Mahidol University and Songklanagarind Hospital, Prince of Songkla University. The eligibility criteria for the study included patients with histologically-confirmed, non-metastatic NPC in
stages II-IVb according to the 7th edition of the American Joint Committee on Cancer Staging System (AJCC 2010) (14) and those who had received CCRT with either cisplatin (75-100 mg/m²) or carboplatin (AUC-5 or 6). A radical dose of RT was planned for all patients. Major exclusion criteria included patients with distant metastasis or previous radiation and/or chemotherapy, including induction CT for LA-NPC. The variables extracted from the database included patient information (date of birth, sex, vital status, date of death or date of last follow-up and cause of death), diagnosis (primary site and date of diagnosis), treatment (CT regimen, number of cycles of CT received, radiation technique and dose) and recurrence (date of recurrence and site of recurrence). Ethics approval was obtained through either the ethics committee or institutional review board at each study center and all patient information was de-identified.

Statistical analysis

Descriptive statistics were used to compare the data between the two groups of patients. OS was calculated from the date of diagnosis to the date of death from any causes. Disease-free survival (DFS) was calculated from the date of diagnosis to the first documented date of disease recurrence or date of death from any causes. Data for OS and DFS, respectively, were censored for patients who were still alive or free of recurrence at the last date of follow-up visit. Death status was validated and cross-checked with the Thai Social Security Death Index database. The last date of follow-up for censored patients was 11 June 2019. To eliminate imbalance of the follow-up time between the two groups, the total observation period was 5 years. If the event occurred within the observation period, survival time is the point of event occurrence. On the other hand, if the event did not occur, survival time is equal to 5 years and censored. Survivals were calculated by using the Kaplan–Meier method. A log-rank test was used to compare the survival curves.

We then used propensity score adjusted probability of receiving cisplatin or carboplatin together with known post-treatment prognostic factors for multivariable Cox Regression model to explain the effect of chemotherapy regimens on time-to-event analysis (OS and DFS). The propensity score was
calculated based on baseline Eastern Cooperative Oncology Group (ECOG) performance status (PS), comorbidity and baseline creatinine clearance (CCr). A p-value of 0.05 or less was considered statistically significant. All analyses were performed using Stata/MP 16, StataCorp, College Station, TX 77845, USA.

Results

Patients and baseline disease characteristics

Between May 2005 and November 2014, we identified 780 eligible patients with newly-diagnosed LA-NPC who had received definitive CCRT with either 3-weekly cisplatin or 3-weekly carboplatin. Table 1 summarises the patient demographics and their baseline disease characteristics. A total of 76 of 780 patients (9.7%) were treated with carboplatin during CCRT. Patients who received carboplatin were significantly associated with smoking (p<0.001), higher incidences of comorbidity of vascular risk factors including hypertension, diabetes mellitus, dyslipidemia and/or previous vascular events (p=0.014) or lower baseline CCr (p=0.001). The majority of patients in this cohort were diagnosed with stage IVa or IVb LA-NPC at the time of diagnosis (43.4% and 48.7% in cisplatin and carboplatin groups, respectively). Histogram of propensity score distribution based on patient ECOG PS, comorbidity, and baseline CCr is shown in Figure 1.

Treatment

Chemotherapy toxicity and tolerability

More patients in the carboplatin group versus the cisplatin group completed three planned cycles of CT during CCRT (88.2% vs 52.0%, p<0.001) and three planned cycles of adjuvant CT (92.1% vs 78.7%, p=0.004), as shown in Table 2. Eighty-eight percent (624 out of 704) of patients in the cisplatin group and 95% (72 out of 76) in the carboplatin group were able to receive more than one cycle of CT during CCRT. Among these, 28.4% of patients in the cisplatin group, as opposed to only 2.8% in the carboplatin group, required a dose reduction of CT in the subsequent cycle due to toxicities (p<0.001). However, there was no difference in the percentage of patients who required switching of CT regimen between the two groups (p=0.566).
Radiotherapy

Intensity-modulated radiation therapy (IMRT) technique concurrently with CT as a definitive treatment was used significantly more in the cisplatin group (62.3%) than in the carboplatin group (0%; $p<0.001$), as shown in Table 2. Almost all patients (74 out of 76) in the carboplatin arm received a 2D-technique. Nevertheless, the mean actual dose of RT was not significantly different between the two groups ($p=0.755$).

Survivals

The median durations of follow-up were 6.1, 5.9, and 10.0 years for overall, patients treated with cisplatin, and carboplatin, respectively. The 5-year DFS of patients treated with cisplatin or carboplatin was 61.0% (95% CI: 57-64%) or 61.0% (95% CI: 49-71%), respectively (Fig. 2A). Multivariable Cox regression for DFS with adjustment for propensity score and post-treatment prognostic factors is summarized in Table 3. Age \geq 65, male, advanced stage at diagnosis, non-IMRT technique and actual dose of radiation <6600 cGy were associated with poor DFS. DFS was not significantly different between the patients who had received cisplatin or carboplatin (HR 0.66, 95% CI: 0.42–1.04) (Table 3 and Fig. 2B).

The 5-year OS of patients treated with cisplatin or carboplatin was 64.0% (95% CI: 60-67%) or 66.0% (95% CI: 54-75%), respectively (Fig. 3A). Multivariable Cox regression for OS with adjustment for propensity score and post-treatment prognostic factors is summarized in Table 4. Age \geq 65, male, advanced stage at diagnosis, non-IMRT technique and actual dose of radiation <6600 cGy were associated with poor OS. OS was not significantly different between the patients who had received cisplatin or carboplatin (HR 0.65, 95% CI: 0.40–1.05) (Table 4 and Fig. 3B).

Discussion

In this study, we compared the clinical characteristics and survival outcomes for patients with LA-NPC who received definitive CCRT with either 3-weekly cisplatin or 3-weekly carboplatin. As expected, more patients in carboplatin group had comorbidity of vascular risk factors and lower baseline CCr;
both factors are considered high risk for cisplatin ineligibility (15). In cisplatin-ineligible patients with locally advanced non-NPC head and neck squamous cell carcinoma, cetuximab is recommended for concurrent use with RT (16, 17). However, recommendation for the agent being used in cisplatin-ineligible patients with LA-NPC is limited. In standard guideline, carboplatin has been for decades recommended for concurrent use with RT (18), according to data from phase II studies (10-12). In addition, anti-EGFR monoclonal antibodies such as cetuximab and nimotuzumab were evaluated as radiosensitisers in patients with LA-NPC, albeit with limited data (19-23).

The INT 0099 study was the first landmark trial that demonstrated the survival benefits of CCRT with high-dose cisplatin followed by three cycles of adjuvant chemotherapy over RT alone in patients with LA-NPC; hence, this protocol has become standard practice (3). In our study, we observed comparable survival outcomes between patients who received cisplatin and those who received carboplatin. The 5-year DFS and 5-year OS of patients treated with cisplatin in our study (61.0% and 64.0%, respectively) were similar to those reported by the INT 0099 study, which indicated a 5-year PFS of 58.0% and 5-year OS of 67.0%. Interestingly, although more patients in our study were able to complete three cycles of adjuvant CT (78.7%) in comparison to those in the INT 0099 study (55.0%), the higher survival outcomes that we anticipated were not observed. A potential explanation might be due to the fact that the survival benefits of adjuvant CT after CCRT remain controversial (24, 25). In particular, the results of a phase III trial showed no significant improvements of survival when adjuvant CT was added to CCRT versus CCRT alone (25, 26). In terms of the carboplatin group, we found a slightly lower 3-year DFS (66.0%) and 3-year OS (75.0%) than those of the previous study (10), which reported a 3-year PFS of 72.7% and 3-year OS of 89.7%. This might be explained by the fact that there was a lower proportion of patients in our study (88.2%) that were able to complete three planned cycles of carboplatin during CCRT as compared to the previous study (98.0%). Hence, this finding might emphasise the importance of cumulative dose of CT.

In this study, we ultimately evaluated the effect of chemotherapy regimens on survival using propensity score adjusted probability of receiving cisplatin or carboplatin together with known post-treatment prognostic factors for multivariable Cox Regression model. We found that after adjustment
for propensity score and those prognostic factors, DFS and OS remain comparable between the two
groups.

One main issue for high-dose cisplatin is toxicity, leading to the low compliance rate. In our
study, patients treated with carboplatin had a better compliance rate for CT than those treated with
cisplatin. More patients in the carboplatin group than in the cisplatin group were able to complete
planned cycles of CT. This result appeared similar to that of the INT 0099 study, which showed that
only 63.0% and 55.0% of patients received three planned cycles of cisplatin during CCRT and
adjuvant CT, respectively, and that the main reason for discontinuation of treatment was patient
intolerance to toxicities (3). Additionally, we found significantly more patients in the cisplatin group
who required a dose reduction for CT due to toxicities. In contrast, a study using 3-weekly carboplatin
demonstrated that 98.0% of patients could complete planned cycles of CT (10). Taken together, this
affirms a better tolerability of carboplatin over cisplatin in this setting.

IMRT is an advanced mode of RT that is expected to improve survival and reduce local
toxicities; however, the superior survival benefits of IMRT over 2D-RT technique remains uncertain
(27-32). Although the mean actual dose of RT was not different, the RT technique used was
significantly dissimilar between the two arms of our study. IMRT was the most-used technique in the
cisplatin group (62.3%), whereas the 2D-RT technique was practised the most in the carboplatin
group (97.4%). Though significantly fewer patients in cisplatin group were able to tolerate CT, we
found no survival differences between the two arms. It is still hard to conclude whether these findings
were affected by the enhanced benefit of IMRT. If the IMRT technique truly improves survival in
patients with LA-NPC, the tolerability and survival outcome of patients receiving carboplatin
concurrently with IMRT remains unknown because in our study, no patient in this arm received IMRT.

Our study is limited by its retrospective nature and relatively small number of patients in the
carboplatin group. The selection bias of treating physicians is unavoidable in a retrospective study. In
addition, owing to incomplete control of confounders such as ECOG PS and histology, which may have
influenced the outcomes, our results should be interpreted with caution. However, given a larger
sample size and longer duration of follow-ups, our study results were consistent with those of
previous phase II studies that support the use of carboplatin CCRT in patients with LA-NPC.

Conclusions

Our study demonstrates that carboplatin provided comparable efficacy to that of cisplatin, but with better tolerability. Therefore, 3-weekly carboplatin concurrently with RT could be considered as a viable alternative regimen, particularly in cisplatin-ineligible patients with LA-NPC. Furthermore, carboplatin could serve as a better option in outpatient setting, given its short infusion without required fluid hydration. Importantly, our results still warrant a randomised phase III study to compare these two CT regimens, particularly in use with novel RT techniques such as IMRT.

List Of Abbreviations
CCRT: Concurrent chemoradiotherapy
CI: Confidence intervals
CT: Chemotherapy
DFS: Disease-free survival
HR: Hazard ratios
IMRT: Intensity-modulated radiation therapy
NPC: Nasopharyngeal carcinoma
OS: Overall survival
PFS: Progression-free survival
RT: Radiotherapy
RUN: Research University Network

Declarations

Ethics approval and consent to participate: Ethics approval was obtained through the ethics committee at the Ramathibodi (ID 07-59-48), and Siriraj (ECI 149/2562) hospitals, Mahidol university, and Songklanagarind hospital (REC.61-007-14-1), Prince of Songkla University, and all patient information was de-identified.

Consent for publication: Not applicable

Availability of data and materials: Not applicable

Competing interests: The authors declare that they have no competing interests.
Funding: The study was funded by the Thailand Grand Challenge Program for Research University Network (RUN) under the Precision Medicine for Cancer project by the National Research Council of Thailand (NRCT). The funding source has no involvement in the design of the study; data collection, analysis, and interpretation of data; and in writing the manuscript.

Authors' contributions

Study concepts: AD, NN

Study design: AD

Data acquisition: PD, RJ, CS, CJ, CP, JS

Quality control of data and algorithms: BS, PP, NN

Data analysis and interpretation: AD, BH, PP, NN

Statistical analysis: AD, TD, SLG

Manuscript preparation: AD

Manuscript editing: RJ, CJ, JS, BS, PP, NN

Manuscript review: All authors

Acknowledgements

The study was funded by the Thailand Grand Challenge Program for Research University Network (RUN) under the Precision Medicine for Cancer project by the National Research Council of Thailand (NRCT). The authors thank Chanaphat Pundorlha, and Sirichai Srigate for assisting with data collection and verification.

References

1. Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12(6):421-9.

2. Tangjaturonrasme N, Vatanasapt P, Bychkov A. Epidemiology of head and neck cancer in Thailand. Asia Pac J Clin Oncol. 2018;14(1):16-22.

3. Al-Sarraf M, LeBlanc M, Giri PG, Fu KK, Cooper J, Vuong T, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. J Clin Oncol. 1998;16(4):1310-7.
4. Baujat B, Audry H, Bourhis J, Chan AT, Onat H, Chua DT, et al. Chemotherapy in locally advanced nasopharyngeal carcinoma: an individual patient data meta-analysis of eight randomized trials and 1753 patients. Int J Radiat Oncol Biol Phys. 2006;64(1):47-56.

5. Blanchard P, Lee A, Marguet S, Leclercq J, Ng WT, Ma J, et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol. 2015;16(6):645-55.

6. Zhang L, Zhao C, Ghimire B, Hong MH, Liu Q, Zhang Y, et al. The role of concurrent chemoradiotherapy in the treatment of locoregionally advanced nasopharyngeal carcinoma among endemic population: a meta-analysis of the phase III randomized trials. BMC Cancer. 2010;10:558.

7. Coughlin CT, Richmond RC. Biologic and clinical developments of cisplatin combined with radiation: concepts, utility, projections for new trials, and the emergence of carboplatin. Semin Oncol. 1989;16(4 Suppl 6):31-43.

8. Douple EB, Richmond RC, O'Hara JA, Coughlin CT. Carboplatin as a potentiator of radiation therapy. Cancer Treat Rev. 1985;12 Suppl A:111-24.

9. Muggia FM. Overview of carboplatin: replacing, complementing, and extending the therapeutic horizons of cisplatin. Semin Oncol. 1989;16(2 Suppl 5):7-13.

10. Dechaphunkul T, Pruegsanusak K, Sangthawan D, Sunpaweravong P. Concurrent chemoradiotherapy with carboplatin followed by carboplatin and 5-fluorouracil in locally advanced nasopharyngeal carcinoma. Head Neck Oncol. 2011;3:30.

11. Songthong A, Chakkabat C, Kannarunimit D, Lertbutsayanukul C. Efficacy of intensity-modulated radiotherapy with concurrent carboplatin in nasopharyngeal carcinoma. Radiol Oncol. 2015;49(2):155-62.

12. Chitapanarux I, Lorvidhaya V, Kamnerdsupaphon P, Sumitsawan Y, Tharavichitkul E,
Sukthomya V, et al. Chemoradiation comparing cisplatin versus carboplatin in locally advanced nasopharyngeal cancer: randomised, non-inferiority, open trial. Eur J Cancer. 2007;43(9):1399-406.

13. Parliament M, Jha N, Rapp E, Smith C, MacKinnon J, Nabholtz JM, et al. Concurrent weekly carboplatin and radiotherapy for nasopharyngeal carcinoma: report of a joint phase II study. Radiother Oncol. 2001;58(2):131-6.

14. Edge SB BD, Campton CC. AJCC cancer staging handbook from the AJCC cancer staging manual, 7th edn. 38: Springer; 2011. p. 408.

15. Ahn MJ, D'Cruz A, Vermorken JB, Chen JP, Chitapanarux I, Dang HQ, et al. Clinical recommendations for defining platinum unsuitable head and neck cancer patient populations on chemoradiotherapy: A literature review. Oral Oncol. 2016;53:10-6.

16. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567-78.

17. Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet. 2019;393(10166):51-60.

18. Network NCC. Head and Neck Cancers (Version 3.2019) [Available from: https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf.

19. Li Y, Chen QY, Tang LQ, Liu LT, Guo SS, Guo L, et al. Concurrent chemoradiotherapy with or without cetuximab for stage II to IVb nasopharyngeal carcinoma: a case-control study. BMC Cancer. 2017;17(1):567.

20. Wu X, Huang J, Liu L, Li H, Li P, Zhang J, et al. Cetuximab concurrent with IMRT versus cisplatin concurrent with IMRT in locally advanced nasopharyngeal carcinoma:
A retrospective matched case-control study. Medicine (Baltimore). 2016;95(39):e4926.

21. Xu T, Liu Y, Dou S, Li F, Guan X, Zhu G. Weekly cetuximab concurrent with IMRT aggravated radiation-induced oral mucositis in locally advanced nasopharyngeal carcinoma: Results of a randomized phase II study. Oral Oncol. 2015;51(9):875-9.

22. Wang F, Jiang C, Ye Z, Sun Q, Liu T, Xu M, et al. Efficacy and Safety of Nimotuzumab Plus Radiotherapy With or Without Cisplatin-Based Chemotherapy in an Elderly Patient Subgroup (Aged 60 and Older) With Nasopharyngeal Carcinoma. Transl Oncol. 2018;11(2):338-45.

23. Kong L, Lin Q, Hu C, Xu T, Liao X, Shen C, et al. Radiation Plus Concurrent Nimotuzumab Versus Cisplatin-Based Chemotherapy in Locally Advanced Nasopharyngeal Cancer: An Interim Analysis of a Phase 3 Randomized Clinical Trial: Elsevier; 2015. S129 p.

24. Liang Z-G, Chen X-Q, Lin G-X, Yu B-B, Chen K-H, Zhong Q-L, et al. Significant survival benefit of adjuvant chemotherapy after concurrent chemoradiotherapy in locally advanced high-risk nasopharyngeal carcinoma. Scientific Reports. 2017;7(1):41449.

25. Chen L, Hu CS, Chen XZ, Hu GQ, Cheng ZB, Sun Y, et al. Adjuvant chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: Long-term results of a phase 3 multicentre randomised controlled trial. Eur J Cancer. 2017;75:150-8.

26. Chen L, Hu CS, Chen XZ, Hu GQ, Cheng ZB, Sun Y, et al. Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a phase 3 multicentre randomised controlled trial. Lancet Oncol. 2012;13(2):163-71.

27. Zhang B, Mo Z, Du W, Wang Y, Liu L, Wei Y. Intensity-modulated radiation therapy
versus 2D-RT or 3D-CRT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis. Oral Oncol. 2015;51(11):1041-6.

28. Marta GN, Silva V, de Andrade Carvalho H, de Arruda FF, Hanna SA, Gadia R, et al. Intensity-modulated radiation therapy for head and neck cancer: systematic review and meta-analysis. Radiother Oncol. 2014;110(1):9-15.

29. Co JL, Mejia MB, Que JC, Dizon JM. Effectiveness of honey on radiation-induced oral mucositis, time to mucositis, weight loss, and treatment interruptions among patients with head and neck malignancies: A meta-analysis and systematic review of literature. Head Neck. 2016;38(7):1119-28.

30. Zhang MX, Li J, Shen GP, Zou X, Xu JJ, Jiang R, et al. Intensity-modulated radiotherapy prolongs the survival of patients with nasopharyngeal carcinoma compared with conventional two-dimensional radiotherapy: A 10-year experience with a large cohort and long follow-up. Eur J Cancer. 2015;51(17):2587-95.

31. Peng G, Wang T, Yang KY, Zhang S, Zhang T, Li Q, et al. A prospective, randomized study comparing outcomes and toxicities of intensity-modulated radiotherapy vs. conventional two-dimensional radiotherapy for the treatment of nasopharyngeal carcinoma. Radiother Oncol. 2012;104(3):286-93.

32. OuYang PY, Shi D, Sun R, Zhu YJ, Xiao Y, Zhang LN, et al. Effect of intensity-modulated radiotherapy versus two-dimensional conventional radiotherapy alone in nasopharyngeal carcinoma. Oncotarget. 2016;7(22):33408-17.

Tables
Table 1: Patient demographics and baseline characteristics

Characteristics	Treatment group	p	
	Cisplatin n=704 (%)	Carboplatin n=76 (%)	
Median Age (years) (Range)	61 (16-77)	58 (22-80)	
	Case	Control	
------------------	----------	----------	
Age ≥ 65	61 (8.7)	7 (9.2)	
Sex			
Male	496 (70.5)	55 (72.4)	
Female	208 (29.5)	21 (27.6)	
ECOG PS			
0	238 (71.3)	60 (90.9)	
1	88 (26.3)	6 (9.1)	
2	8 (2.4)	0	
Missing	370	10	
Smoker	224 (31.8)	46 (60.5)	
Any Comorbidity			
Hypertension	72 (10.2)	13 (17.1)	
Diabetes	32 (4.5)	4 (5.3)	
Hyperlipidemia	16 (2.3)	0	
Previous vascular events	8 (1.1)	1 (1.3)	
T stage			
T1	153 (21.8)	11 (14.5)	
T2	213 (30.4)	24 (31.6)	
T3	119 (17.0)	12 (15.8)	
T4	216 (30.8)	29 (38.1)	
Missing	3	0	
N stage			
N0	77 (10.9)	5 (6.6)	
N1	152 (21.6)	14 (18.4)	
N2	358 (50.9)	46 (60.5)	
N3	117 (16.6)	11 (14.5)	
Stage at diagnosis			
II	108 (15.3)	11 (14.5)	
III	289 (41.1)	28 (36.8)	
IVa	190 (27.0)	26 (34.2)	
IVb	117 (16.6)	11 (14.5)	
Histology			
WHO type I	5 (1.4)	0	
WHO type II	204 (55.1)	38 (50.0)	
WHO type III	161 (43.5)	38 (50.0)	
Missing	334	0	
Mean baseline CCr* ± SD	91 ± 26	80 ± 25	
	(mL/min/1.73 m²)		
*CCr - creatinine clearance calculated by Cockcroft-Gault formula

Table 2: Treatment modality and tolerability of LA-NPC patients treated with carboplatin or cisplatin

CCRT

	Treatment group
	Cisplatin n=704 (%) Carboplatin n=76 (%)
Patients who completed 3 planned cycles during CCRT	366/704 (52.0) 67/76 (88.2)
Patients who required dose reduction of the subsequent cycle during CCRT	177/624 (28.4) 2/72 (2.8)
Patients who required chemotherapy regimen switching during CCRT	33/660 (5.0) 2/74 (2.7)
Patients who completed 3 planned cycles of adjuvant CT	554/704 (78.7) 70/76 (92.1)
RT technique	
2D	146/692 (21.1) 74 (97.4)
3D	115/692 (16.6) 2 (2.6)
IMRT	65/692 (9.4) 0
3D+IMRT	366/692 (52.9) 0
Missing	12
Mean actual dose of RT (cGy)	6955.42±331.90 6942.10±504.71

Table 3: Multivariable Cox regression with propensity score adjustment for DFS
Variables	HR	[95% CI]	Adjusted HR	[95% CI]	
Age ≥ 65	1.354	0.939	1.953	1.604	1.093
Male	1.655	1.258	2.178	1.551	1.132
Smoker	1.856	1.480	2.328	1.159	0.863
Stage at diagnosis					
stage II	1.000			1.000	
stage III	1.614	1.021	2.549	1.685	1.053
stage IVa	2.946	1.872	4.635	3.178	2.003
stage IVb	5.526	3.487	8.759	6.017	3.775
Radiation technique					
2D	1.000			1.000	
3D	0.918	0.663	1.270	0.875	0.606
IMRT	0.465	0.279	0.776	0.475	0.274
IMRT+3D	0.516	0.396	0.671	0.471	0.319
Actual Dose of Radiation cGy³ 6600					
< 6600	1.972	1.080	3.602	2.417	1.309
Chemo regimen					
cisplatin	1.000			1.000	
carboplatin	1.005	0.685	1.474	0.660	0.420
Propensity score	3.950	1.525	10.232	0.723	0.185

Table 4: Multivariable Cox regression with propensity score adjustment for OS

Variables	HR	[95% CI]	Adjusted HR	[95% CI]	
Age ≥ 65	1.470	1.017	2.124	1.640	1.115
Male	1.707	1.281	2.275	1.665	1.200
Smoker	1.781	1.408	2.253	1.143	0.844
Stage at diagnosis					
stage II	1.000			1.000	
stage III	1.764	1.071	2.904	1.845	1.108
stage IVa	3.231	1.976	5.299	3.432	2.079
stage IVb	6.412	3.895	10.554	6.899	4.168
Radiation technique					
2D	1.000			1.000	
3D	0.980	0.700	1.433	0.904	0.617
IMRT	0.494	0.291	0.839	0.514	0.292
IMRT+3D	0.584	0.444	0.767	0.530	0.353
Actual Dose of Radiation cGy³ 6600					
< 6600	1.710	0.880	3.323	2.088	1.062
Chemo regimen					
cisplatin	1.000			1.000	
carboplatin	0.931	0.622	1.393	0.646	0.399
Propensity score	2.778	1.000	7.723	0.698	0.163

Figures
Figure 1

Histogram of propensity score distribution
Figure 2

Kaplan-Meier (KM) survival curve for DFS (A) and survival curve in Multivariable Cox regression with propensity score adjustment for DFS (B) of LA-NPC patients treated with carboplatin or cisplatin CCRT
Kaplan-Meier (KM) survival curve for OS (A) and survival curve in Multivariable Cox regression with propensity score adjustment for OS (B) of LA-NPC patients treated with carboplatin or cisplatin CCRT.