EULER-LIKE RECURRENCES FOR SMALLEST PARTS FUNCTIONS

SCOTT AHLGREN AND NICKOLAS ANDERSEN

In memory of Basil Gordon

Abstract. We obtain recurrences for smallest parts functions which resemble Euler’s recurrence for the ordinary partition function. The proofs involve the holomorphic projection of non-holomorphic modular forms of weight 2.

1. Introduction

Let $p(n)$ denote the unrestricted partition function. One of the fundamental results in partition theory is Euler’s recurrence, which states that for $n > 0$ we have

$$\sum_k (-1)^k p \left(n - \frac{k(3k+1)}{2} \right) = 0. \quad (1.1)$$

The smallest parts function $\text{spt}(n)$, which counts the number of smallest parts in the partitions of n, was introduced by Andrews [4]. This and other smallest parts functions have been studied widely in recent years from a number of perspectives (see, e.g. [1, 2, 5, 7, 8, 9, 10] and the many references therein). Many of the beautiful properties of these functions originate from the fact that the associated generating functions are components of mock modular forms of weight $3/2$.

Here we use the technique of holomorphic projection (as described by Sturm [14] and Gross-Zagier [12]) to derive analogues of (1.1) for smallest parts functions. The basic principle (also used recently in [3] and [11]) is that for a non-holomorphic modular form $f = f^+ + f^-$ written as a sum of holomorphic and non-holomorphic parts, we have $\pi_{\text{hol}}(f) = f^+ + \pi_{\text{hol}}(f^-)$. If one can identify the holomorphic modular form $\pi_{\text{hol}}(f)$ and can compute $\pi_{\text{hol}}(f^-)$ explicitly, then a formula for f^+ results. The simplest such analogue involves $\text{spt}(n)$. The associated holomorphic projection has been described (without proof) by Zagier [15, §6]; for completeness we give a brief account here.

Let

$$\eta(z) := q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n)$$

denote Dedekind’s eta function and let $E_2(z)$ be the quasimodular weight 2 Eisenstein series on $\text{SL}_2(\mathbb{Z})$. Define

$$F(z) := \sum_{n=1}^{\infty} \text{spt}(n) q^{n-\frac{1}{4}} - \frac{1}{12} \cdot \frac{E_2(z)}{\eta(z)} + \frac{\sqrt{3}i}{2\pi} \int_{-\infty}^{\infty} \frac{\eta(\tau)}{(z + \tau)^{\frac{3}{2}}} d\tau.$$

2010 Mathematics Subject Classification. 11F37, 11P84.

Key words and phrases. Smallest parts functions, holomorphic projection.

The first author was supported by a grant from the Simons Foundation (#208525 to Scott Ahlgren).
Let ε be the multiplier on $SL_2(\mathbb{Z})$ associated to the eta function. It can be shown (see [6] or [1, §3]) that $F(z)$ is a weak harmonic Maass form of weight $3/2$ on $SL_2(\mathbb{Z})$ with multiplier ε, so the function $\eta(z)F(z)$ transforms like a modular form of weight 2 on $SL_2(\mathbb{Z})$. For positive integers n, define
\[a(n) := -\sum_{\substack{ab=6n \\ 0 < a < b}} \left(\frac{12}{b^2-a^2} \right) \cdot a. \]

We have
\[\sum_{n=1}^{\infty} a(n)q^n = q + 2q^2 + q^3 + 2q^4 - q^5 + 3q^6 - 2q^7 + 2q^8 + q^9 + q^{10} + \ldots. \]

Letting $E^*_2(z)$ denote the non-holomorphic Eisenstein series on $SL_2(\mathbb{Z})$, it can be shown that the holomorphic projection of $\eta(z)F(z) + \frac{1}{12}E^*_2(z)$ is equal to 0. By computing this projection directly (using an argument similar to those given below) one can deduce that
\[\prod_{n=1}^{\infty} (1 - q^n) \cdot \sum_{n=1}^{\infty} \text{spt}(n)q^n = \sum_{n=1}^{\infty} a(n)q^n. \]

In other words, we have the following Euler-like recurrence for $\text{spt}(n)$, which is recorded in a slightly different form by Zagier [15] and Andrews-Rhoades-Zwegers [3, Thm. 11.1].

Theorem 1. For $n > 0$ we have
\[\sum_k (-1)^k \text{spt} \left(n - \frac{k(3k+1)}{2} \right) = a(n). \]

We will derive similar recurrences for other smallest parts functions. An *overpartition* is a partition in which the first occurrence of each part may be overlined. Let $p(n)$ denote the number of overpartitions of n and let $\overline{\text{spt}}(n)$ denote the number of odd smallest parts in the overpartitions of n (see [7]). Define a divisor function $s(n)$ by
\[s(n) := \sum_{d|n} \min \left(d, \frac{n}{d} \right), \]
with the convention that $s(n) = 0$ if $n \notin \mathbb{Z}$. Define
\[b(n) := (-1)^{n+1} \begin{cases} 2s(n) & \text{if } n \text{ is odd}, \\ 4s(n/4) & \text{if } n \equiv 0 \pmod{4}, \\ 0 & \text{if } n \equiv 2 \pmod{4}. \end{cases} \]

Then we have the following analogue of (1.1) for $\overline{\text{spt}}(n)$.

Theorem 2. For $n > 0$ we have
\[\sum_k (-1)^k \overline{\text{spt}}(n - k^2) = b(n). \]

Theorem 2 is equivalent to the identity
\[\sum_{n \in \mathbb{Z}} (-1)^n q^n \sum_{m=1}^{\infty} \overline{\text{spt}}(m) q^m = \sum_{n=0}^{\infty} b(n)q^n = 2q + 4q^3 - 4q^4 + 4q^5 + 4q^7 - 8q^8 + \ldots. \]
EULER-LIKE RECURRENCES FOR SMALLEST PARTS FUNCTIONS

Since we have
\[\sum_{n=0}^{\infty} \overline{p}(n)q^n = \left(\sum_{n \in \mathbb{Z}} (-1)^n q^{n^2} \right)^{-1} = 1 + 2q + 4q^2 + 8q^3 + 14q^4 + 24q^5 + 40q^6 + \ldots, \]
we obtain the following

Corollary 3. For all \(N > 0 \) we have
\[\text{spt}(N) = \sum_{n+m=N} \overline{p}(n)b(m). \]

Following \([8]\), let \(m_2(n) \) denote the number of partitions of \(n \) without repeated odd parts, and define \(M_2\text{spt}(n) \) as the restriction of \(\text{spt}(n) \) to these partitions whose smallest part is even. Define
\[c(n) := \sigma(n) - \sigma(n/2) - \frac{1}{2} s(2n) + s(n/2), \]
where \(\sigma(n) \) denotes the usual sum of divisors function.

Theorem 4. For \(n > 0 \) we have
\[\sum_{k \geq 0} (-1)^{k(k+1)/2} M_2\text{spt} \left(n - \frac{k(k+1)}{2} \right) = (-1)^n c(n). \]

We will prove the theorem by establishing the identity
\[\sum_{n=0}^{\infty} q^n(n+1)/2 \sum_{m=1}^{\infty} (-1)^m M_2\text{spt}(m)q^m = \sum_{n=1}^{\infty} c(n)q^n = q^2 + q^3 + 3q^4 + 3q^5 + 4q^6 + \ldots. \]
Since
\[\left(\sum_{n=0}^{\infty} q^n(n+1)/2 \right)^{-1} = \sum_{n=0}^{\infty} (-1)^n m_2(n)q^n = 1 - q + q^2 - 2q^3 + 3q^4 - 4q^5 + 5q^6 + \ldots, \]
we obtain the following

Corollary 5. For all \(n > 0 \) we have
\[M_2\text{spt}(N) = \sum_{n+m=N} (-1)^m m_2(n)c(m). \]

2. **Preliminaries**

Let \(k \in \mathbb{Z} \). For matrices \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2^+(\mathbb{Q}) \) and functions \(f \) on the upper half plane we define
\[(f|_k \gamma)(z) := \det(\gamma)^k \overline{f}(cz + d)^{-k} f \left(\frac{az + b}{cz + d} \right). \]
We say that \(f \) has weight \(k \) for \(\Gamma_0(N) \) if \(f|_k \gamma = f \) for all \(\gamma \in \Gamma_0(N) \). Let \(E_2 \) denote the weight 2 quasi-modular Eisenstein series
\[E_2(z) := 1 - 24 \sum_{n=1}^{\infty} \sigma(n)q^n. \]
Then the functions
\[E_2^*(z) := E_2(z) - \frac{3}{\pi y} \quad \text{and} \quad E(z) := 2E_2(2z) - E_2(z) \]
have weight 2 for SL_2(\mathbb{Z}) and \Gamma_0(2), respectively. Letting \(W_2 := \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix} \) denote the Fricke involution, we have \(E|_2 W_2 = -E \) and

\[
(E|_2 W_2) (z) = 2E_2(2z).
\]

Define

\[
G(z) := \sum_{n \geq 1} \text{spt}_1(n) q^n + \frac{1}{12} \frac{\eta(2z)}{\eta^2(z)} (E_2(z) - 4E_2(2z)) + \frac{1}{2\sqrt{2\pi i}} \int_{-\tau}^{i\infty} \frac{\eta^2(\tau)/\eta(2\tau)}{(-i(\tau + z))^{3/2}} d\tau \tag{2.1}
\]

and

\[
H(z) := \sum_{n \geq 1} (-1)^n \text{M2spt}(n) q^{n-\frac{1}{4}}
\]

\[
+ \frac{1}{24} \frac{\eta(z)}{\eta^2(2z)} (E_2(2z) - E_2(z)) + \frac{1}{2\pi i} \int_{-\tau}^{i\infty} \frac{\eta^2(\tau)/\eta(\tau)}{(-i(\tau + z))^{3/2}} d\tau. \tag{2.2}
\]

By work of Bringmann, Lovejoy, and Osburn [8], these functions are harmonic weak Maass forms of weight 3/2 (see, for example, [13] for details). In the notation of [8], \(G(z) = -\frac{1}{4} M(z) \) and (correcting a sign error) \(H(z) = M_2(z/8) \). From the proof of Lemma 6.1 of [8], we have

\[
(-i\sqrt{2}z)^{-\frac{3}{2}} G(-1/2z) = -2^\frac{3}{4} H(z). \tag{2.3}
\]

We use this fact to obtain the following proposition.

Proposition 6. The functions

\[
g(z) := \frac{\eta^2(z)}{\eta(2z)} G(z) \quad \text{and} \quad h(z) := \frac{\eta^2(2z)}{\eta(z)} H(z)
\]

have weight 2 for \(\Gamma_0(2) \).

Proof. The group \(\Gamma_0(2)/\{\pm I\} \) is generated by the matrices \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \). By (2.1) and (2.2) we have \(g(z+1) = g(z) \) and \(h(z+1) = h(z) \). To check the transformation under \(\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \), we write

\[
\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = W_2 \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} W_2^{-1}.
\]

Using (2.3) and the fact that \(\eta(-1/z) = \sqrt{-iz} \eta(z) \), we find that

\[
g(z)|_2 W_2 = 2h(z), \tag{2.4}
\]

from which

\[
g(z)|_2 \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} = g(z).
\]

The same is true for \(h(z) \), and the proposition follows. \(\square \)

We introduce the holomorphic projection operator. Let \(k \geq 2 \) be an even integer. Suppose that \(\phi(z) \) has weight \(k \) for \(\Gamma_0(N) \) and has Fourier expansion

\[
\phi(z) = \sum_{m \in \mathbb{Z}} \alpha(m, y) q^m.
\]

Define

\[
\pi_{\text{hol}}(\phi) := \sum_{m=1}^{\infty} a(m) q^m,
\]
Suppose that Lemma 7. ensures that the limit and integral at the bottom of page 296 may be interchanged. When \(k = 2 \) it follows from the proof of Proposition 6.2, loc. cit. (note that condition (2.6) ensures that the limit and integral at the bottom of page 296 may be interchanged).

Lemma 7. Suppose that \(k \geq 2 \). Suppose that \(\phi(z) \) has weight \(k \) for \(\Gamma_0(N) \) and satisfies

\[
(\phi|_k \gamma)(z) \ll y^{-\varepsilon} \quad \text{as} \quad y \to \infty
\]

for some \(\varepsilon > 0 \) and for all \(\gamma \in SL_2(\mathbb{Z}) \). If \(k = 2 \), suppose in addition that for some \(\varepsilon' > 0 \) we have

\[
\alpha(m, y) \ll_m y^{-1+\varepsilon'} \quad \text{as} \quad y \to 0 \quad \text{for all} \quad m > 0.
\]

Then \(\pi_{\text{hol}}(\phi) \) is a weight \(k \) cusp form on \(\Gamma_0(N) \).

3. **Proof of Theorem 2**

Write \(G = G^+ + G^- \), where

\[
G^-(z) = \frac{1}{2\sqrt{2\pi}i} \int_{i\tau}^{i\infty} \frac{\eta^2(\tau)/\eta(2\tau)}{(-i(\tau + z))^2} d\tau
\]

is the non-holomorphic part. Since \(\eta^2(z)/\eta(2z) = 1 + 2 \sum_{n=1}^{\infty} (-1)^n q^n \), a computation gives

\[
G^-(z) = \frac{1}{2\sqrt{y}} + \frac{1}{\sqrt{\pi}} \sum_{n=1}^{\infty} (-1)^n n \beta(n^2 y) q^{-n^2},
\]

where \(\beta(y) := \Gamma(-1/2, 4\pi y) \) is the incomplete gamma function. Then

\[
g(z) = \frac{\eta^2(z)}{\eta(2z)} G(z) = \frac{\eta^2(z)}{\eta(2z)} \sum_{n=1}^{\infty} \text{spt} \Gamma(n) q^n + \frac{1}{12} (E_2(z) - 4E_2(2z)) + \sum_{N \in \mathbb{Z}} B(N, y) q^N,
\]

where

\[
B(N, y) = \frac{(-1)^N}{\sqrt{\pi}} \left\{ \begin{array}{ll}
2 \sum_{\begin{subarray}{c}m > n \\ m, n \geq 1 \end{subarray}} m \beta(m^2 y) + \delta_{\square}(|N|) \sqrt{|N|} \beta(|N| y) & \quad \text{if} \quad N < 0, \\
\frac{1}{2\sqrt{\pi} y} + 2 \sum_{m=1} m \beta(m^2 y) & \quad \text{if} \quad N = 0, \\
2 \sum_{\begin{subarray}{c}m > n \\ m, n \geq 1 \end{subarray}} m \beta(m^2 y) + \delta_{\square}(N) \frac{1}{\sqrt{\pi} y} & \quad \text{if} \quad N > 0.
\end{array} \right.
\]

Here \(\delta_{\square}(N) = 1 \) if \(N \) is a square, and 0 otherwise. Since \(\beta(y) \sim (4\pi y)^{-3/2} e^{-4\pi y} \) as \(y \to \infty \), we have

\[
\sum_{\begin{subarray}{c}n^2 - m^2 = N \\ n, m \geq 1 \end{subarray}} m \beta(m^2 y) \ll y^{-3/2} \sum_{\begin{subarray}{c}n^2 - m^2 = N \\ n, m \geq 1 \end{subarray}} \frac{1}{m^2} e^{-4\pi m^2 y},
\]

where the implied constants here and in the rest of the paragraph are absolute. Since \(n^2 - (n-1)^2 = 2n - 1 \), the equation \(n^2 - m^2 = N \) implies that \(n, m \leq (|N| + 1)/2 \). If \(N > 0 \),
then this sum is $\ll N y^{-3/2}$. If $N < 0$ then we have $m^2 > -N$ for each term in the sum, from which it follows that the sum is $\ll |N| y^{-3/2} e^{4\pi N y}$. We conclude that as $y \to \infty$, we have

$$B(N, y) \ll \begin{cases} |N| y^{-\frac{3}{2}} e^{4\pi N y} & \text{if } N < 0, \\ y^{-\frac{1}{2}} + N y^{-\frac{3}{2}} & \text{if } N \geq 0. \end{cases} \quad (3.2)$$

Define

$$\hat{g}(z) := g(z) + \frac{1}{6} E(z) + \frac{1}{12} E_2^*(z)$$

$$= \frac{\eta^2(z)}{\eta(2z)} \sum_{n=1}^{\infty} \text{spt}(n) q^n - \frac{1}{4\pi y} + \sum_{N \in \mathbb{Z}} B(N, y) q^N.$$

By (3.2) we have $\hat{g}(z) \ll y^{-1/2}$ as $y \to \infty$. From (2.4) we obtain

$$\hat{g} \big|_2 W_2 = 2 h(z) + \frac{1}{6} (E_2(z) - E_2(2z)) - \frac{1}{4\pi y}.$$

Therefore $\hat{g} \big|_2 W_2 \ll y^{-1}$ as $y \to \infty$ since $h(z)$ decays exponentially at ∞.

For $N > 0$, we have the bound

$$B(N, y) \ll N y^{-\frac{3}{2}} \quad \text{as } y \to 0$$

since $\lim_{y \to 0} \beta(y) = -2\sqrt{\pi}$. Therefore we may apply Lemma 7 to obtain

$$\pi_{\text{hol}}(\hat{g}) = 0$$

since there are no nontrivial cusp forms of weight 2 on $\Gamma_0(2)$.

We may also compute $\pi_{\text{hol}}(\hat{g})$ using (2.5). Since π_{hol} leaves holomorphic functions unchanged, we have

$$\pi_{\text{hol}}(\hat{g}) = \frac{\eta^2(z)}{\eta(2z)} \sum_{n=1}^{\infty} \text{spt}(n) q^n + \pi_{\text{hol}} \left(-\frac{1}{4\pi y} + \sum_{N \in \mathbb{Z}} B(N, y) q^N \right).$$

By (2.5) we have

$$\pi_{\text{hol}} \left(-\frac{1}{4\pi y} + \sum_{N \in \mathbb{Z}} B(N, y) q^N \right) = \sum_{N=1}^{\infty} \left(4\pi N \int_0^{\infty} B(N, y) e^{-4\pi N y} dy \right) q^N.$$

By (3.1), the coefficient of q^N above is

$$(-1)^N 8\sqrt{\pi} N \sum_{\substack{n^2 - m^2 = N \\text{ coprime}}} m \int_0^{\infty} \beta(m^2 y) e^{-4\pi N y} dy + \delta_\square(N)(-1)^N 4N \int_0^{\infty} y^{-\frac{1}{2}} e^{-4\pi N y} dy. \quad (3.3)$$

The second integral evaluates to $\frac{1}{2\sqrt{\pi}}$ and the first is evaluated using the following lemma. The proof is routine (some care is required to justify the change in the order of integration).

Lemma 8. If $A, B > 0$ then

$$\int_0^{\infty} \beta(A y) e^{-4\pi B y} dy = \frac{1}{2\sqrt{\pi B}} \left(\sqrt{1 + \frac{B}{A}} - 1 \right). \quad (3.4)$$
Therefore (3.3) becomes
\[
(-1)^N 4 \sum_{n^2 - m^2 = N \atop n, m \geq 1} m \left(\sqrt{1 + \frac{N}{m^2}} - 1 \right) + \delta_{\square}(N)(-1)^N 2\sqrt{N} \
= (-1)^N 2 \left(\sum_{n^2 - m^2 = N \atop n, m \geq 1} (n - m) + \delta_{\square}(N)\sqrt{N} \right).
\]

It remains to show that this evaluates to \(-b(N)\). If \(N \equiv 2 \pmod{4}\), then the sum is empty and \(\delta_{\square}(N) = 0\). If \(N\) is odd, then \(n - m\) runs over all divisors of \(N\) which are less than \(\sqrt{N}\).

In this case we have
\[
2 \sum_{n^2 - m^2 = N \atop n, m \geq 1} (n - m) + \delta_{\square}(N)\sqrt{N} = \sum_{d \mid N} \min \left(d, \frac{N}{d} \right).
\]

Finally, if \(4 \mid N\) then each \(n - m\) is even. Letting \(r = \frac{n-m}{2}\) and \(s = \frac{n+m}{2}\), we find that
\[
\sum_{n^2 - m^2 = N \atop n, m \geq 1} (n - m) = \sum_{rs = N/4 \atop 0 < r < s} 2r = \sum_{d \mid \frac{N}{4}} \min \left(d, \frac{N}{d} \right) - \delta_{\square}(N)\sqrt{\frac{N}{4}}.
\]

\[
\square
\]

4. PROOF OF THEOREM 4

We proceed as in the proof of Theorem 2. Write \(H = H^+ + H^-\), where
\[
H^-(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{\eta^2(2\tau)/\eta(\tau)}{(-i(z + \tau))^2} d\tau.
\]

Since \(\eta^2(2z)/\eta(z) = \sum_{\text{odd } n \geq 1} q^{n^2/8}\), we have
\[
H^-(z) = \frac{1}{4\sqrt{\pi}} \sum_{\text{odd } n \geq 1} n\beta (\frac{n^2 y}{8}) q^{-\frac{n^2}{\pi}}.
\]

Define \(\hat{h}(z) := h(z) - \frac{1}{24}(E(z) - E_2(z))\). Then (2.2) gives
\[
\hat{h}(z) = \frac{\eta^2(2z)}{\eta(z)} \sum_{n=1}^{\infty} (-1)^n \text{M2pt}(n)q^{n-1} + \frac{1}{24}(E_2(z) - E_2(2z)) - \frac{1}{8\pi y} + \sum_N C(N, y)q^N,
\]

where
\[
C(N, y) = \frac{1}{4\sqrt{\pi}} \sum_{n^2-m^2=8N \atop n, m \geq 1 \text{ odd}} \beta (\frac{m^2 y}{8}).
\]

By an argument similar to that which gives (3.2), we find that as \(y \to \infty\) we have
\[
C(N, y) \ll \begin{cases} |N| y^{-\frac{1}{2}} e^{4\pi N y} & \text{if } N < 0, \\ y^{-\frac{3}{2}} & \text{if } N = 0, \\ N y^{-\frac{3}{2}} & \text{if } N > 0. \end{cases}
\]
Thus we have $h(z) \ll y^{-1}$ as $y \to \infty$. We have

$$
\hat{h} \big|_2 W_2 = \frac{1}{2} g + \frac{1}{24}(E(z) + 2E_2(2z)) - \frac{1}{8\pi y}.
$$

Therefore $\hat{h} \big|_2 W_2 \ll y^{-1/2}$ as $y \to \infty$ since the constant term of $g(z)$ is $-1/4$ and the constant term of $E(z) + 2E_2(2z)$ is 3. For $N > 0$ we have the bound $C(N, y) \ll_{N} 1$ as $y \to 0$. Therefore, we may apply Lemma 7 to conclude that $\pi_{hol}(\hat{h}) = 0$.

Using (2.5), we find that

$$
0 = \pi_{hol}(\hat{h}) = \frac{\eta^2(2z)}{\eta(z)} \sum_{n=1}^{\infty} (-1)^n M2spt(n)q^{n-\frac{1}{8}} + \frac{1}{24}(E_2(z) - E_2(2z)) + \sum_{N=1}^{\infty} C(N)q^N,
$$

where

$$
C(N) = \sqrt{\pi N} \int_{0}^{\infty} \sum_{\substack{n^2 - m^2 = 8N \\ n, m \geq 1 \ \text{odd}}} m\beta \left(\frac{m^2y}{8} \right) e^{-4\pi Ny} dy.
$$

By Lemma 8 we obtain

$$
C(N) = \frac{1}{2} \sum_{\substack{n^2 - m^2 = 8N \\ n, m \geq 1 \ \text{odd}}} (n - m).
$$

Writing $u = \frac{n-m}{2}$ and $v = \frac{n+m}{2}$ gives

$$
C(N) = \sum_{\substack{uv=2N \\ u<\sqrt{N} \\ u+v \ \text{odd}}} u = \frac{1}{2}s(2N) - s(N/2).
$$

From (4.1) we conclude that

$$
\frac{\eta^2(2z)}{\eta(z)} \sum_{n=1}^{\infty} (-1)^n M2spt(n)q^{n-\frac{1}{8}} = \sum_{n=1}^{\infty} c(n)q^n.
$$

\[\square\]

References

[1] Scott Ahlgren, Kathrin Bringmann, and Jeremy Lovejoy. ℓ-adic properties of smallest parts functions. Advances in Mathematics, 228(1):629 – 645, 2011.

[2] Scott Ahlgren and Byungchan Kim. Mock modular grids and Hecke relations for mock modular forms. Forum Math., DOI 10.1515/forum-2012-0011.

[3] George Andrews, Robert Rhoades, and Sanders Zwegers. Modularity of the concave composition generating function. Algebra and Number Theory (to appear).

[4] George E. Andrews. The number of smallest parts in the partitions of n. J. Reine Angew. Math., 624:133–142, 2008.

[5] George E. Andrews, Frank G. Garvan, and Jie Liang. Combinatorial interpretations of congruences for the spt-function. Ramanujan J., 29(1-3):321–338, 2012.

[6] K. Bringmann. On the explicit construction of higher deformations of partition statistics. Duke Math., 144:195–233, 2008.

[7] Kathrin Bringmann, Jeremy Lovejoy, and Robert Osburn. Rank and crank moments for overpartitions. J. Number Theory, 129(7):1758–1772, 2009.

[8] Kathrin Bringmann, Jeremy Lovejoy, and Robert Osburn. Automorphic properties of generating functions for generalized rank moments and Durfee symbols. Int. Math. Res. Not. IMRN, (2):238–260, 2010.
[9] Amanda Folsom and Ken Ono. The spt-function of Andrews. *Proc. Natl. Acad. Sci. USA*, 105(51):20152–20156, 2008.

[10] F. G. Garvan. Congruences for Andrews’ spt-function modulo powers of 5, 7 and 13. *Trans. Amer. Math. Soc.*, 364(9):4847–4873, 2012.

[11] Özlem Imamoglu, Martin Raum, and Olav K. Richter. Holomorphic projections and Ramanujan’s mock theta functions. http://arxiv.org/abs/1306.3919.

[12] Benedict H. Gross and Don B. Zagier. Heegner points and derivatives of L-series. *Invent. Math.*, 84(2):225–320, 1986.

[13] Ken Ono. Unearthing the visions of a master: harmonic Maass forms and number theory. In *Current developments in mathematics, 2008*, pages 347–454. Int. Press, Somerville, MA, 2009.

[14] Jacob Sturm. Projections of C^∞ automorphic forms. *Bull. Amer. Math. Soc. (N.S.)*, 2(3):435–439, 1980.

[15] Don Zagier. Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann). *Astérisque*, (326):Exp. No. 986, vii–viii, 143–164 (2010), 2009. Séminaire Bourbaki. Vol. 2007/2008.

Department of Mathematics, University of Illinois, Urbana, IL 61801

E-mail address: sahlgren@illinois.edu

Department of Mathematics, University of Illinois, Urbana, IL 61801

E-mail address: nandrsn4@illinois.edu