Case report

Uterine corpus tumor with neuroectodermal differentiation and frequent ganglion-like cells in a postmenopausal woman

Taku Homma,⁎ Takehiro Nakao, Toshiya Maebayashi, Toshiyuki Ishige, Hiroyuki Hao

Division of Human Pathology, Department of Pathology and Microbiology, Nihon University School of Medicine, 1-30 Ohyaguchikamimachi, Itabashi, Tokyo 173-0032, Japan

Department of Gynecology, Nihon University School of Medicine, 1-30 Ohyaguchikamimachi, Itabashi, Tokyo 173-0032, Japan

Department of Radiology, Nihon University School of Medicine, 1-30 Ohyaguchikamimachi, Itabashi, Tokyo 173-0032, Japan

1. Introduction

Uterine neuroectodermal tumors (NETs) are uterine neoplasms with a poor prognosis (Elizalde et al., 2016; Euscher et al., 2008; Novo et al., 2015; Prat et al., 2014). They are pathologically classified into 2 groups: 1) those resembling central nervous system (CNS) embryonal tumors (central-type NETs) (Euscher et al., 2008; McLendon et al., 2016; Prat et al., 2014), and 2) those resembling peripheral primitive neuroectodermal tumors/Ewing sarcomas (peripheral-type NETs) (Elizalde et al., 2016; Novo et al., 2015; Prat et al., 2014). Uterine NETs are also associated with endometrial adenocarcinomas, carcinosarcomas, and high-grade sarcomas (Prat et al., 2014). However, the pathogenesis of NETs remains unknown because of the rarity of this type of malignancy (Elizalde et al., 2016; Euscher et al., 2008; Novo et al., 2015; Prat et al., 2014). Here, we present a patient with a rare uterine NET comprising frequent ganglion-like cells.

2. Case report

A 62-year-old Japanese woman was receiving medications for cellulitis and deep vein thrombosis of her right and left lower extremities. During follow-up visits for these ailments, contrast-enhanced computed tomography (CT) revealed a solid uterine tumor exhibiting heterogeneous enhancement (Fig. 1A) with multiple swollen intra-pelvic and para-abdominal aortic lymph nodes. The uterine mass exhibited hypointensity and high intensity on T1-weighted (Fig. 1B) and T2-weighted (Fig. 1C) pelvic magnetic resonance imaging, respectively. As the patient also complained of vaginal bleeding, she was admitted to our hospital for further examinations. Blood tests revealed elevated levels of the following tumor markers: carcinoembryonic antigen, 14.8 ng/mL (normal, < 5 ng/mL); carbohydrate antigen (CA) 19-9, 1300 U/mL (normal, < 40 U/mL); CA125, 68 U/mL (normal, < 35 U/mL); and neuron-specific enolase (NSE), 77.4 ng/mL (normal, < 16.3 ng/mL). Endometrial biopsy was performed, and the specimen was diagnosed as a leiomyosarcoma. There were para-abdominal aortic lymph node metastases (Fig. 1D), resulting in hydronephrosis of both kidneys (Fig. 1E). One month later, the patient underwent total abdominal hysterectomy (TAH), bilateral salpingo-oophorectomy (BSO), and partial omentectomy. However, her renal dysfunction did not improve and her general condition gradually worsened to a level that precluded postoperative chemotherapy or radiation therapy. She died of multiple organ failure 2 months after the discovery of the tumor.

3. Pathologic findings

The resected uterus comprised almost entirely of a milky-whitish tumor with necrosis, measuring 15 × 9 cm in size (Fig. 2A). The tumor was histopathologically classified as a highly malignant cellular neoplasm (Fig. 2B) and was mainly composed of small naked neoplastic cells (Fig. 2C). The following additional histological components were noted: atypical ganglion-like cells with a fibrillary background (Fig. 2D), endometrial adenocarcinoma with squamous differentiation (Fig. 2E), rhabdoid-like cells (Fig. 2F), atypical spindle cells resembling skeletal muscular cells, and an atypical cartilaginous component. The
component comprising atypical ganglion-like cells with a fibrillar background occupied approximately 92% of the uterine tumor. The neoplasm directly infiltrated the parametrium and had metastasized to both ovaries as well as the major omentum.

Immunohistochemically, the small naked neoplastic cells showed varying degrees of immunoreactivity for vimentin, CD99, CD56, S100, synaptophysin (Fig. 3A), alpha-smooth muscle actin (α-SMA), neurofilament (NF), and chromogranin A (CGA). Both the atypical ganglion-like cells and fine fibrillar background were positive for synaptophysin (Fig. 3B), S100, CD56, CD99, and NF. The atypical ganglion-like cells were also positive for CGA. A few neuronal nuclei (NeuN)-positive atypical ganglion-like cells and glial acidic protein (GFAP)/oligodendrocyte lineage transcription factor 2 (Olig2)-positive fibrillary astrocytes were also detected (Fig. 3C). The endometrial adenocarcinoma with a squamous differentiation component was diffusely positive for cytokeratin (CK) AE1/AE3 (Fig. 3D) and epithelial membrane antigen (EMA), and was focally positive for vimentin. The squamous differentiation component showed p40 immunoreactivity. The rhabdoid-like cells revealed immunoreactivity for vimentin, synaptophysin, CGA, and NF, suggesting small ganglion cells, whereas it was negative for S-100, human melan black-45 (HMB-45), GFAP, Olig2, NeuN, epithelial markers (cytokeratin [CAM5.2], EMA, and pan-Ck [AE1/AE3]), and muscular markers (desmin, myogenin, and α-SMA). Nuclear IN11 protein immunoreactivity was preserved in the tumor, including in the rhabdoid-like cells (Fig. 3E). α-SMA-positive atypical spindle cells were intermingled with the epithelial and neuronal components. The MIB-1 labeling index was > 50% in the small round neoplastic cells (Fig. 3F) and approximately 20% in the ganglion-like cells with fibrillar background. No neoplastic cells were positive for melanoma (HMB-45 and melan-A) or skeletal muscle (desmin and myogenin) markers. Based on these features, the pathological diagnosis was uterine NET with frequent ganglion-like cells.

Widespread dissemination of the uterine NET was found on autopsy. The uterine neoplastic cells had metastasized or disseminated to the lungs, liver, appendix vermiformis, urinary bladder, ureters, Douglas’ pouch, peritoneum, mesenterium, and lymph nodes (para-aortic, peritracheal, and peri-pancreatic). The metastatic cells were mainly comprised of NET with ganglion-like cells and a fibrillar background; however, no metastases of the carcinomatous or sarcomatous components were noted. Both kidneys showed mild hydronephrosis that was secondary to tumor spreading. No remarkable changes were noted in the heart, alimentary tract, pancreas, gallbladder, thyroid gland, or adrenal glands.

4. Discussion

Uterine NET is rare; only 69 patients with this tumor type have been reported in the English-language literature to date (Table 1). Clinically, uterine NET usually occurs in postmenopausal women and presents with vaginal bleeding (Euscher et al., 2008; Prat et al., 2014). Indeed, 78.7% of the patients with uterine NETs listed in Table 1 experienced vaginal bleeding, and 72.9% of them were over 40 years old. Approximately 50% of these uterine neoplasms are found to have metastasized to the extra-uterine tissues/organs at diagnosis (Prat et al., 2014). The major metastatic sites of uterine NETs are the lymph nodes via the lymphatic system (Daya et al., 1992; Odunsi et al., 2004; Shah et al., 2009; Park et al., 2007; Elizalde et al., 2016) and lungs/liver via the vasculature (Bartosch et al., 2011; Gersell et al., 1989; Hendrickson and Scheithauer, 1986; Shah et al., 2009; Sinkre et al., 2000; Yi et al., 2015), as was also observed in our patient. Although the standard treatment for uterine NETs normally involves surgery (TAH + BSO) with or without chemotherapy and/or radiotherapy (Elizalde et al., 2016), we recommend that lymph node dissection also be performed when possible. However, the necessity of omentectomy in patients with uterine NETs remains unconfirmed because it has been performed in too few patients who underwent TAH + BSO (Table 1).

As for the prognosis of patients with uterine NETs, Euscher et al. (2008) reported a mortality rate of 47% in their largest uterine NET series; furthermore, the 2-year survival rate of postmenopausal patients with uterine NET was reported to be approximately 30% (Elizalde et al., 2016; Prat et al., 2014). Consistent with previous reports, our patient was also a postmenopausal woman with minimal vaginal bleeding, and had a uterine tumor with lymphadenopathy at the time of diagnosis. She died 2 months after the uterine mass was diagnosed despite undergoing TAH, BSO, and omentectomy; however, lymph node dissection was not possible. As such, our patients’ uterine NET was consistent
with previously reported tumors that had poor prognoses. Of the 69 patients with uterine NETs previously reported in the English-language literature (Table 1), 36% died of their uterine tumors after a mean postsurgical duration of 14.1 months (range, 2–26 months), 50% were free of disease after a maximum follow-up period of 72 months, and 14% were alive with disease after a maximum follow-up period of 38 months. Furthermore, the mean follow-up duration from diagnosis to death in the non-surviving patients was 14.5 ± 8.4 months. Taken together, uterine NETs may not necessarily have as poor a prognosis as previously thought (Elizalde et al., 2016; Euscher et al., 2008; Novo et al., 2015; Prat et al., 2014).

The histopathology of uterine NET is characterized by a monotonous population of small- to medium-sized round neoplastic cells growing in sheets, nests, and/or cords, with or without fibrillary backgrounds and rosette formations (Euscher et al., 2008; Prat et al., 2014). Some central-type NETs have been reported to show pathological features similar to those of medulloblastoma, medulloepithelioma, glioblastoma, and/or ependymoma (Chiang et al., 2017). Uterine NETs may also include other histologic elements, such as endometrial adenocarcinoma, carcinosarcoma, and/or high-grade sarcoma (Euscher et al., 2008; Prat et al., 2014). Our patient’s uterine NET had heterologous carcinosarcoma as a minor component, which has also been described in previous reports (Euscher et al., 2008; Prat et al., 2014). However, frequent ganglion-like cells with a fibrillary background were detected as a major component in our patient, whose NET resembled a ganglioneuroblastoma (McLendon et al., 2016). To the best of our knowledge, this uterine NET subtype is extremely rare, although a patient with a uterine NET comprising foci resembling ganglioneuroma was reported by Hendrickson and Scheithauer (1986).

Immunohistochemical analyses of our patient's tumor showed that the NET component expressed CD99, synaptophysin, NSE, and NF. Although rare, GFAP immunoreactivity is characteristic of CNS-type NETs (Prat et al., 2014). In addition to neuronal markers such as synaptophysin and NF, our patient’s tumor also expressed the glial markers GFAP and Olig2. Moreover, an α-SMA immunoreactive spindle cell component and both a vimentin and epithelial marker immunoreactive component were detected, suggesting leiomyosarcoma and endometrial adenocarcinoma, respectively, intermingled as minor components within the neuroectodermal component. EWSR1 rearrangement has been recently reported as a characteristic genetic finding of peripheral-type uterine NETs (Novo et al., 2015); however, we were unable to perform genetic analysis to test for EWSR1 rearrangement.

Surgery (TAH + BSO) with or without chemotherapy and/or radiotherapy is the standard treatment for uterine NETs (Elizalde et al.,

Fig. 2. Macroscopic and histopathological features of the uterine neuroectodermal tumor. The uterus was almost totally occupied by the neoplasm (A, sagittal section of the uterus). Histopathologically, the uterine tumor was a highly cellular neoplasm (B, hematoxylin and eosin [H&E]) mainly composed of small round neoplastic cells (C, H&E) and ganglion-like cells with fibrillary background (D, H&E). Moreover, components of adenocarcinoma with squamous metaplasia (E, H&E) and rhabdoid-like cells (F, H&E) were intermingled in the tumor.
As described in Table 1, approximately 92% of patients with uterine NETs underwent surgery, while 72% received chemotherapy and only 36% received radiotherapy. Therapeutic treatment regimens for gynecologic NETs might be selected according to their subtypes, such as NETs resembling medulloblastoma and Ewing sarcoma/peripheral primitive NETs (Chiang et al., 2017). Furthermore, Novo et al. (2015) recently reported a patient with uterine NET treated with surgery and adjuvant chemotherapy using cisplatin, etoposide, and bev-acizumab; their patient experienced no recurrence for 48 months. Although our patient was treated with TAH + BSO, she died of multiple organ failure 1 month after surgery owing to the metastasis of multiple tumors that comprised mainly of NET resembling ganglioneuroblastoma (according to autopsy results). In retrospect, treating the ganglioneuroblastoma with total tumor resection followed by chemoradiotherapy with temozolomide should have been considered for our patient, as it was previously reported that 2 patients with cerebral ganglioneuroblastoma treated with this regimen were free of tumor recurrence or progression after 12 and 14 months of follow-up, respectively (Schipper et al., 2012). Interestingly, as shown in Table 1, 42% of the patients with uterine NETs who underwent radiotherapy died of their disease, whereas 32% were free of disease. Although surgery with or without chemotherapy and/or radiotherapy is the standard treatment for uterine NETs (Elizalde et al., 2016), postoperative radiotherapy for such patients might need to be reconsidered. Nevertheless, the accumulation of additional patient data and detailed clinical and pathological analyses are required to devise better treatment modalities for uterine tumors.

Although the pathogenesis of primary uterine NETs remains poorly understood, several possibilities have been suggested, including 1) that they originate from the implantation of aborted fetal tissue in the uterus (Chiang et al., 2017; Fukunaga et al., 1996; Rose et al., 1987; Siddon and Hui, 2010; Young et al., 1981), 2) that they originate from abnormal migrated neural crest cells in the uterus (Chiang et al., 2017; Fukunaga et al., 1996; Rose et al., 1987), and 3) that they are of Müllerian origin (Chiang et al., 2017; Daya et al., 1992; Fukunaga et al., 1996; Gersell et al., 1989; Young et al., 1981). Liao and Choi (1986) reported that malignant mixed Müllerian tumors showed GFAP immunoreactivity; our patient had heterologous carcinosarcoma intermingled within the uterine NET as the minor component. Based on our clinicopathological findings, our patient’s tumor appeared to have been of Müllerian origin.

In conclusion, uterine NETs with frequent ganglion-like cells such as the tumor diagnosed in our patient are extremely rare; their pathogenesis is poorly understood and afflicted patients have poor prognoses. Therefore, the accumulation of clinicopathological data from additional patients is needed to establish more effective treatment modalities for patients with these types of tumors.

Author contributions

Taku Homma: Pathological examination, manuscript preparation.
Takehiro Nakao: Patient care, data collection.
Case no	Age (y.o)	Symptom	FIGO stage	Surgery	Postoperative therapy	Prognosis
1	58	Vaginal bleeding	IIIc	+ (unknown detail)		DOD
2	31	Back pain	IV		+ (unknown regimen)	DOD
3	72	Vaginal bleeding	IIa	ND	ND	ND
4	48	Vaginal bleeding	IIIc	ND	ND	ND
5	81	Vaginal bleeding	ND	+	Letrozole	NED
6	66	Pelvic mass	IIb	TAH, BSO	+	NED
7	53	Vaginal bleeding	ND			ND
8	51	Vaginal bleeding	ND			ND
9	31	Vaginal bleeding	ND			ND
10	64	Endocervical polyp	IIIc	+	(unknown regimen)	NED
11	64	Vaginal bleeding	ND		(unknown regimen)	NED
12	69	Vaginal bleeding	IV			ND
13	62	Uterine fibroids	IIc	TAH, BSO		ND
14	55	Vaginal spotting	IIb	TAH, BSO	+	NED
15	52	Vaginal pressure	IV			ND
16	58	Vaginal pressure	IV		+	NED
17	57	Vaginal bleeding	IIc		(unknown regimen)	NED
18	12	Vaginal bleeding	IV	TAH, LSO		ND
19	57	Vaginal bleeding	IIc	TAH, BSO, PALND		DOD
20	17	Vaginal bleeding	IIc	TAH, PLND, left uretectomy, bilateral ovarian wedge biopsy	Cisplatin	NED
21	67	Vaginal bleeding	IIc	STAH, BSO		DOD
22	68	Vaginal bleeding	IVb	TAH, BSO, PLND		DOD
23	69	Vaginal bleeding	I	TAH, BSO, PLND		NED
24	68	Vaginal bleeding	I	TAH, BSO		NED
25	72	Vaginal bleeding	IIb	TAH, BSO		NED
26	54	Vaginal bleeding	IIa	TAH, BSO, PLND		AWD
Case no	Age (y.o)	Symptom	FIGO stage	Surgery	Postoperative therapy	Prognosis
--------	-----------	-----------------------	------------	----------------------	-----------------------	-----------
27	78	Vaginal bleeding	Ib	TAH, BSO, PLND	−	NED
28	62	Vaginal bleeding	Ib	TAH, BSO	Vincristine	DOD
					Cyclophosphamide	
					Cisplatin	
					teniposide	
29	36	Enlarged uterus	Ib	RH, BSO, PLND	−	ND
30	47	ND	Ib	TAH, BSO, LND	+	DOD
31	67	ND	IIc	TAH, BSO, LND	+	DOD
32	71	ND	IIc	TAH, BSO, LND	+	DOD
33	16	Vaginal bleeding	k	TAH, BSO, omentectomy	Vincristine	+
					Cyclophosphamide	
					Doxorubicin	
34	48	Vaginal bleeding	IIc	TAH, BSO	−	NED
35	68	Vaginal bleeding	I	TAH, BSO	−	NED
36	66	Vaginal bleeding	Ia	TAH, BSO, omentectomy	+	NED
37	65	Vaginal bleeding	IIc	TAH, BSO, PLND,	Cisplatin	AWD
				PALND, omentectomy, upper vaginectomy		
38	15	Abdominal pain	I	TAH, PLND	−	NED
39	43	Vaginal bleeding	IIc	TAH, BSO, PLND	−	NED
40	58	Vaginal bleeding	IV	TAH, BSO, right PLND,	Carboplatin	DOS
		Abdominal pain		segmental enterectomy,	Paclitaxel	
		Total coloectomy				
41	26	Vaginal bleeding	IV	TAH, BSO, PLND,	Cisplatin	−
		Abdominal pain		omentectomy		NED
42	50	Abdominopelvic pain	ND	TAH, BSO, omentectomy	−	NED
43	63	Vaginal bleeding	IIc	TAH, BSO, LND	−	DOD
44	80	Abdominal pain	I	TAH, BSO, LND	−	AWD
45	79	Vaginal bleeding	IIa	TAH, BSO, LND	−	ND
46	78	Vaginal bleeding	IIa	TAH, BSO, LND	−	NED
47	32	Abdominal pain	IIIa	TAH, BSO, PLND,	Cisplatin	+
				PALND, omentectomy, upper appendectomy		
					Ifosfamide	
					Adriamycin	
					Vincristine	
48	66	Vaginal bleeding	IVb	TAH, BSO	−	DOD

(continued on next page)
Case no	Age (y.o)	Symptom	FIGO stage	Surgery	Postoperative therapy	Prognosis
49	32	Pelvic pain	IV	TAH, BSO, PLND	Cyclophosphamide, Doxorubicin, Dexamethasone, Holoxan, Cisplatin, Paclitaxel, Carboplatin, Docetaxel, Irinotecan, Celecoxib	AWD
50	29	Abdominal swelling and pain	IVb	STAH, BSO, PLND, omentectomy, appendectomy, metastatic nodule resection	Carboplatin, Vincristine, Adriamycin, Cyclophosphamide, Ifosfamide, Etoposide	AWD
51	63	Constipation	ND	TAH, BSO	Cyclophosphamide, Vincristine, Adriamycin	NED
52	25	Vaginal bleeding	ND	TAH, BSO	Vincristine, Adriamycin, Cyclophosphamide, Etoposide, Cisplatin, Bleomycin	NED
53	12	Vaginal bleeding	ND	–	Cisplatin, Adriamycin, Cyclophosphamide, Etoposide, Bleomycin, Etoposide	NED
54	56	Vaginal bleeding	Ib	TAH, BSO, PLND	Adriamycin, Cyclophosphamide, Etoposide, Cisplatin	NED
55	59	Vaginal bleeding	IIc	TAH, BSO, PLND, PALND, omentectomy	Paclitaxel, Cisplatin	AWD
56	30	Vaginal bleeding	IVb	–	Doxorubicin, Adriamycin, Cyclophosphamide, Etoposide, Docetaxel, Irinotecan, Celecoxib	DOD
57	22	Vaginal bleeding	I	TAH, BSO, PLND, PALND, omentectomy	Cisplatin	NED
58	24	Adnexal mass	II	TAH, BSO, omentectomy	Doxorubicin, Adriamycin, Cyclophosphamide, Etoposide	AWD

(continued on next page)
Case no	Age (y.o)	Symptom	FIGO stage	Surgery	Postoperative therapy	Prognosis	Follow-up (month(s))	Pathological findings	Component	Metastasis	Reference
59	26	Pelvic mass (found at cesarean section)	III	Modified TAH, PLND, bilateral ovarian transposition	Vincristine Doxorubicin Cytoxan Mensa ifosfamide Etoposide	NED					
60	50	Vaginal bleeding	IIc	TAH, BSO, PLND, omentectomy	+ (unknown regimen)	NED					
61	51	Vaginal bleeding	III	TAH, BSO	+	ND					
62	50	Vaginal bleeding	III	TAH, BSO	-	ND					
63	31	Vaginal bleeding	III	TAH, BSO	-	ND					
64	26	Vaginal bleeding	I	TAH, BSO	-	ND					
65	64	ND	ND	ND	TAH, BSO	+	ND				
66	ND	ND	ND	ND	TAH, BSO	ND	ND				
67	60	Vaginal bleeding	IV	TAH, BSO, PALND	Carboplatin Etoposide	ND					
68	31	Vaginal bleeding	IIIc	+	Carboplatin	+	NED				
69	62	Vaginal bleeding	IVb	TAH, BSO, omentectomy	-	ND					

(continued on next page)
Case no	Follow-up (month(s))	Prognosis	Tumor size (cm)	Pathological findings	Component	Metastasis	Reference	
					Major component	Minor component	Ganglion cells	
15	6	ND	NET	−	−	−	ND	Euscher et al. (2008)
16	6	ND	Carcinosarcoma	NET	−	−	ND	Euscher et al. (2008)
17	35	ND	Carcinosarcoma	NET	+	ND	Lung	Hendrickson and Scheithauer (1986)
18	25	ND	NET	−	+		Lung	Hendrickson and Scheithauer (1986)
19	24	ND	NET	−	+	ND	Lung	Hendrickson and Scheithauer (1986)
20	10	ND	NET	−	+	ND	Lung	Rose et al. (1987)
21	6	ND	NET	−	ND	−	−	Daya et al. (1992)
22	12	7.5	NET	−	+	LNs (supraclavicular)	Daya et al. (1992)	
23	72	2	NET	EM stromal sarcoma	ND	−	−	Daya et al. (1992)
24	60	2	NET	EM carcinoma	ND	−	−	Daya et al. (1992)
25	8	6.5 × 3.5 × 3.0	NET	−	−	ND	Fukunaga et al. (1996)	
26	3	8.5 × 8.0 × 6.5	NET	Carcinosarcoma	−	−	−	Fukunaga et al. (1996)
27	9	6	NET	Cartilaginous component	−	−	−	Fraggetta et al. (1997)
28	18	4 × 2	NET	−	−	Terminal ileum Cecum	Soremen et al. (1998)	
29	ND	11	NET	Endometrioid carcinoma	−	−	−	Taieb et al. (1998)
30	18	7.8	NET	EM carcinoma	−	−	−	Sinkre et al. (2000)
31	3	4.5	NET	EM carcinoma	−	−	Peritoneum	Sinkre et al. (2000)
32	4	6	NET	EM carcinoma	−	−	Lung Peritoneum	Sinkre et al. (2000)
33	48	ND	NET	−	−	−	−	Kareladze et al. (2001)
Case no	Prognosis	Follow-up (month(s))	Tumor size (cm)	Component	Metastasis	Reference		
---------	-----------	----------------------	----------------	-----------	-----------	-----------		
				Major component	Minor component	Ganglion cells		
34	6	ND	NET	EM carcinoma	–	–	Ng et al. (2002)	
35	10	ND	NET	–	–	ND	Venizelos et al. (2004)	
36	24	4 × 3.5 × 2	NET	–	–	–	Odunsi et al. (2004)	
37	12	7	NET	–	–	Vagina Obturator lymph nodes	Odunsi et al. (2004)	
38	12	6 × 7	NET	–	–	–	Peres et al. (2005)	
39	2	13.3	NET	–	–	Left adnexa	Varghese et al. (2006)	
40	11	12	NET	EM carcinoma	–	Lung	Bartosch et al. (2011)	
41	48	5.8 × 4.2	NET	–	–	–	Novo et al. (2015)	
42	16	15	NET	–	–	–	Dizon et al. (2013)	
43	7	5.0 × 4.5 × 3.0	NET	Rhabdomyosarcoma	–	Pelvis	Dundr et al. (2010)	
44	6	5.0 × 4.0 × 3.0	NET	EM carcinoma	–	Mesenterium Peritoneum Intraabdominal metastasis	Dundr et al. (2010)	
45	29	4.5 × 3.0 × 3.0	NET	EM carcinoma	–	–	Dundr et al. (2010)	
46	8	7.5 × 7.0 × 5.5	NET	–	–	–	Dundr et al. (2010)	
47	38	3	NET	–	–	–	Celik et al. (2009)	
48	24	6 × 4	Carcinosarcoma	NET	–	Lung LNs (left supraclavicula, right axillary)	Gersell et al. (1989)	
49	24	9 × 6.5	NET	–	–	Peritoneal seeding	Aminimoghaddam et al. (2015)	
50	18	3.0 × 2.5 × 2.0	NET	–	–	Liver	Yi et al. (2015)	

(continued on next page)
Case no	Follow-up (month(s))	Prognosis	Tumor size (cm)	Component	Metastasis	Reference		
51	24		13.0 × 10.0	NET	–	–	Shimada et al. (2014)	
52	18		7.6 × 4.0 × 5.9	Rhabdomyosarcoma	NET	–	Vagina	Cate et al. (2013)
53	36		12	Rhabdomyosarcoma	NET	–	–	Stolnicu et al. (2012)
54	41		4.0 × 3.5 × 2.0	NET	–	–	Ren et al. (2011)	
55	12		1.1	NET	–	–	Shah et al. (2009)	
56	16		18 × 20 × 21	NET	–	–	Park et al. (2007)	
57	10		7.6 × 6.1	NET	–	–	Akbayir et al. (2008)	
58	1		9 × 10	NET	–	–	Residual tumor	Mittal et al. (2007)
59	16		7.0 × 5.0	NET	–	–	–	Bättner et al. (2007)
60	6		10 × 8	NET	Adenocarcinoma	–	Vaginal vault	Bhardwaj et al. (2010)
61	ND		ND	NET	EM carcinoma	–	ND	Chiang et al. (2017)

(continued on next page)
Case no	Prognosis	Pathological findings	Reference
62	Follow-up	Tumor size (cm)	Chung et al. (2017)
63			Chung et al. (2017)
64			Chung et al. (2017)
65			Elizalde et al. (2016)
66			Tosi et al. (2012)

References

- Akbey, O., Çiftçi, K., Rafiöglu, G., Gülkılık, A., Yavuz, E., Tekirdağ, A.L., Odabaş, E., 2008. Primary primitive neuroectodermal tumor of the uterus: a case report. Arch. Gynecol. Obstet. 277, 345–348.
- Aminomoghadam, S., Seifirad, S., Abbasi Dezfuli, G., Abbasi, N., Zare Mahjardi, A., Razavi, S.M., Mahmoudzadeh, F., 2015. Uterine primitive neuroectodermal tumor. Arch. Iran. Med. 18, 260–262.
- Bartosch, C., Vieira, J., Texeira, M.R., Lopes, J.M., 2011. Endometrial endometrioid adenocarcinoma associated with primitive neuroectodermal tumor of the uterus: a poor prognostic subtype of uterine tumours. Med. Oncol. 28, 1488–1494.
- Bhardwaj, M., Batra, M., Chawla, I., Malik, R., 2010. Uterine primitive neuroectodermal tumor with adenosarcoma: a case report. J. Med. Case Rep. 28, 195.
- Blattner, J.M., Gable, P., Quigley, M.M., McHale, M.T., 2007. Primitive neuroectodermal tumor of the uterus. Gynecol. Oncol. 106, 419–422.
- Cate, F., Bridge, J.A., Crispens, M.A., Keedy, V.L., Troutman, A., Coffin, C.M., Fadare, O., 2013. Composite uterine neoplasm with embryonal rhabdomyosarcoma and primitive neuroectodermal tumor components: rhabdomyosarcoma with divergent differentiation, variant of primitive neuroectodermal tumor, or unique entity? Hum. Pathol. 44, 656–663.
- Celik, H., Gurates, B., Karaoğlu, A., Yavuz, A., Daglı, F., Özerkan, R., 2009. Uterine primitive neuroectodermal tumor: a case report. Arch. Gynecol. Obstet. 279, 259–261.
- Chiang, S., Snuderl, M., Euscher, E.D., Deavers, M.T., Lopez-Terrada, D., Lazar, A.J., Silva, E.G., Malpica, A., Daya, D., Lukka, H., Clement, P.B., 1992. Primitive neuroectodermal tumors of the uterus: a report of 4 cases. Hum. Pathol. 23, 1120–1129.
- Dizon, A.M., Kilgore, L.C., Wang, L., Iafrate, A.J., Oliva, E., 2017. Primitive neuroectodermal tumors of the female genital tract: a morphologic, immunohistochemical, and molecular study of 19 cases. Am. J. Surg. Pathol. 41, 761–772.
- Daya, D., Lokha, H., Clement, P.B., 1992. Primary primitive neuroectodermal tumor of the uterus: a report of four cases. Hum. Pathol. 23, 1120–1129.
- Dixon, A.M., Kilgore, L.C., Grindstaff, A., Winkler, M., Kimball, K.J., 2013. High grade primitive neuroectodermal tumor of the uterus: a case report. Gynecol. Oncol. Case Rep. 19, 10–12.
- Dundur, P., Fischerová, D., Povýšil, I., Berková, A., Bauerová, L., Cibula, D., 2010. Uterine tumors with neuroectodermal differentiation. A case report of 4 cases. Pathol. Oncol. Res. 16, 601–608.
- Elizalde, C.R., Yagie, A., Fernandez, J., Dieste, P., Puente, M.J., Hernandez, J., 2016. Primary primitive neuroectodermal tumor of the uterus. Gynecol. Oncol. Oncop. 18, 25–28.
- Euscher, E.D., Deavers, M.T., Lopez-Terrada, D., Lazor, A.J., Silva, E.G., Malpica, A., 2008. Uterine tumors with neuroectodermal differentiation – a series of 17 cases and review of the literature. Am. J. Surg. Pathol. 32, 219–228.
- Fraggera, F., Magro, G., Vasquez, E., 1997. Primitive neuroectodermal tumour of the uterus with focal cartilaginous differentiation. Histopathology 30, 483–485.
- Fukunaga, M., Nomura, K., Endo, Y., Ishigome, S., Asazawa, S., 1996. Carcinosarcoma of the uterus with extensive neuroectodermal differentiation. Histopathology 29, 565–570.
- Gersell, D.J., Duncan, D.A., Fulling, K.H., 1989. Malignant mixed müllerian tumor of the uterus with neuroectodermal differentiation. Int. J. Gynecol. Pathol. 8, 169–178.
- Hendrickson, M.R., Scheithauer, B.W., 1986. Primitive neuroectodermal tumor of the endometrium: report of two cases, one with electron microscopic observations. Int. J. Gynecol. Pathol. 5, 249–259.
- Kaseladze, A.I., Filipova, N.A., Navarro, S., Llombart-Bosch, A., 2001. Primitive neuroectodermal tumor of the uterus: A case report. J. Reprod. Med. 46, 845–848.
- Liao, S.Y., Choi, B.H., 1986. Expression of glial fibrillary acidic protein by neoplastic cells of müllerian origin. Virchows Archiv. B 52, 183–193.
- McLendon, R., Ng, H.K., Jüttner, A.R., Huang, E., Eberhart, G.C., Kool, M., Fuller, G.N., Pfister, S., Sarkar, C., 2016. CNS embryonal tumours. In: Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K. (Eds.), WHO Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer, Lyon, pp. 206–208.
- Mistal, S., Sumana, G., Gupta, M., Gupta, B., 2007. Primitive neuroectodermal tumor of...
the uterus: a case report. Int. J. Gynecol. Cancer 17, 524–527.
Molyneux, A.J., Deen, S., Sundaresan, V., 1992. Primitive neuroectodermal tumour of the uterus. Histopathology 21, 584–585.
Ng, S.B., Sirrampalam, K., Chuah, K.L., 2002. Primitive neuroectodermal tumours of the uterus: a case report with cytological correlation and review of the literature. Pathology 34, 455–461.
Novo, J., Bitterman, P., Guirguis, A., 2015. Central-type primitive neuroectodermal tumor of the uterus: case report of remission of stage IV disease using adjuvant cisplatin/etoposide/bevacizumab chemotherapy and review of the literature. Gynecol. Oncol. Rep. 14, 26–30.
Odunsi, K., Olatunwo, M., Collins, Y., Withiam-Leitch, M., Lele, S., Spiegel, G.W., 2004. Primary primitive neuroectodermal tumor of the uterus: a case report of two cases and review of the literature. Gynecol. Oncol. 92, 689–696.
Park, J.Y., Lee, S., Kang, H.J., Kim, H.S., Park, S.Y., 2007. Primary Ewing's sarcoma-primitive neuroectodermal tumor of the uterus: a case report and literature review. Gynecol. Oncol. 106, 427–432.
Peres, E., Mattoo, T.K., Poulik, J., Warrier, I., 2005. Primitive neuroectodermal tumor (PNET) of the uterus in a renal allograft patient: a case report. Pediatr. Blood Cancer 44, 283–285.
Prat, J., Palacios, J., Oliva, E., Wells, M., 2014. Miscellaneous tumours. In: Kurman, R.J., Carcangiu, M.L., Herrington, C.S., Young, R.H. (Eds.), WHO Classification of Tumours of Female Reproductive Organs. Lyon, International Agency for Research on Cancer, pp. 151–152.
Ren, Y.L., Tang, X.Y., Li, T., 2011. Ewing sarcoma-primitive neuroectodermal tumor of the uterus: a clinicopathologic, immunohistochemical and ultrastructural study of one case. Arch. Gynecol. Obstet. 283, 1139–1143.
Rote, P.G., O'Toole, R.V., Keyhani-Rofagha, S., Quisman, S., Boutsalis, J.G., 1987. Malignant peripheral primitive neuroectodermal tumor of the uterus. J. Surg. Oncol. 35, 165–169.
Schipper, M.H., van Duinen, S.G., Taphoorn, M.J., Klot, A., Walchenbach, R., Wiggenraad, R.G., Vecht, C.J., 2012. Cerebral ganglioneuroblastoma of adult onset: two patients and a review of the literature. Clin. Neurol. Neurosurg. 114, 529–534.
Shah, J.P., Jelsema, J., Bryant, C.S., Ali-Fehmi, R., Malone, J.M., 2009. Carboplatin and paclitaxel adjuvant chemotherapy in primitive neuroectodermal tumor of the uterine corpus. Am. J. Obstet. Gynecol. 200, 66–69.
Shimada, C., Todo, Y., Okamoto, K., Akashi, D., Yamashiro, K., Hasegawa, T., 2014. Central type primitive neuroectodermal tumor/neuroblastoma of the uterus: a case report. J. Obstet. Gynaecol. Res. 40, 2118–2122.
Sinkre, P., Alonso-Saavedra, J., Miller, D.S., Copeland, L.J., Hameed, A., 2000. Endometrial endometrioid carcinomas associated with Ewing sarcoma/peripheral primitive neuroectodermal tumor. Int. J. Gynecol. Pathol. 19, 127–132.
Sørensen, J.B., Schulze, H.R., Madsen, E.L., Heland, B., 1998. Primitive neuroectodermal tumor (PNET) of the uterine cavity. Eur. J. Obstet. Gynecol. Reprod. Biol. 76, 181–184.
Stolnicu, S., Goyenaga, P., Hincu, M., Marian, C., Murillo, R., Nogales, F.F., 2012. Embryonal (botryoides) rhabdomyosarcoma of the uterus harboring a primitive neuroectodermal tumor component. Int. J. Gynecol. Pathol. 31, 387–389.
Taib, S., Cabaret, V., Bonodeau, F., Leblanc, E., Besson, P., 1998. MRI of primitive neuroectodermal tumor of the uterus. J. Comput. Assist. Tomogr. 22, 896–898.
Varghese, L., Amesen, M., Boente, M., 2006. Primitive neuroectodermal tumor of the uterus: a case report and review of literature. Int. J. Gynecol. Pathol. 25, 373–377.
Venizelos, I.D., Zafrakas, M., Dragoumis, K., Tzveleakis, P., Kellartzis, D., Bontis, J., 2004. Primitive neuroectodermal tumor (PNET) of the uterine isthmus. Eur. J. Gynaecol. Oncol. 25, 384–386.
Yi, T., Wang, P., Lin, L., Jiang, W., 2015. Ewing's sarcoma/peripheral primitive neuroectodermal tumors of the uterus confirmed with fluorescence in situ hybridization in a 29-year-old Chinese female: a case report and published work review. J. Obstet. Gynaecol. Res. 41, 478–482.
Young, R.H., Kleinman, G.M., Schully, R.E., 1981. Glioma of the uterus. Report of a case with comments on histogenesis. Am. J. Surg. Pathol. 5, 695–699.