The RNase III Enzyme DROSHA Is Essential for MicroRNA Production and Spermatogenesis

Received for publication, March 13, 2012, and in revised form, May 31, 2012. Published, JBC Papers in Press, June 4, 2012, DOI 10.1074/jbc.M112.362053

Qixia Wu‡, Rui Song‡, Nicole Ortogero‡, Huili Zheng‡, Ryan Evanoff‡, Chris L. Small§, Michael D. Griswold§, Satoshi H. Namekawa‡, Helene Royo**, James M. Turner**, and Wei Yan††

From the ‡Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, the §School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, the ¶Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, the ¶Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, and the **Division of Stem Cell Biology and Developmental Genetics, Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom

Background: miRNA biogenesis requires two RNase III enzymes, DROSHA and DICER.

Results: Lack of DROSHA in the male germ line leads to deficiency in miRNA production and male infertility.

Conclusion: DROSHA and DICER have both common and unique functions in male germ cell development.

Significance: This study reveals an essential role of DROSHA, DICER, and DROSHA-/DICER-dependent small noncoding RNAs spermatogenesis.

DROSHA is a nuclear RNase III enzyme responsible for cleaving primary microRNAs (miRNAs) into precursor miRNAs and thus is essential for the biogenesis of canonical miRNAs. DICER is a cytoplasmic RNase III enzyme that not only cleaves precursor miRNAs to produce mature miRNAs but also dissects naturally formed/synthetic double-stranded RNAs to generate small interfering RNAs (siRNAs). To investigate the role of canonical miRNA and/or endogenous siRNA production in spermatogenesis, we generated Drosha or Dicer conditional knock-out (cKO) mouse lines by inactivating Drosha or Dicer exclusively in spermatogenic cells in postnatal testes using the Cre-loxP strategy. Both Drosha and Dicer cKO males were infertile due to disrupted spermatogenesis characterized by depletion of spermatocytes and spermatids leading to oligotestes. This developmental course of spermatogenic disruptions was similar at morphological levels between Drosha and Dicer cKO males, but Drosha cKO testes appeared to be more severe in spermatogenic disruptions than Dicer cKO testes. Microarray analyses revealed transcriptomic differences between Drosha- and Dicer-null pachytene spermatocytes or round spermatids. Although levels of sex-linked mRNAs were mildly elevated, meiotic sex chromosome inactivation appeared to have occurred normally. Our data demonstrate that unlike DICER, which is required for the biogenesis of several small RNA species, DROSHA is essential mainly for the canonical miRNA production, and DROSHA-mediated miRNA production is essential for normal spermatogenesis and male fertility.

Spermatogenesis refers to the process through which male germ line stem cells undergo mitotic multiplication, meiotic chromosomal reduction, and haploid differentiation and eventually become male gametes called spermatogonia/spermatids in the testis (1–3). Although spermatogenesis can be divided into mitotic, meiotic, and haploid/spermiogenesis phases based upon the three major cellular events, these processes actually occur concurrently within the seminiferous epithelium, and specific cellular associations are formed among developing male germ cells and between germ cells and their supporting somatic cells (e.g. Sertoli cells and peritubular myoid cells) (1, 2). These complex and highly regulated cellular processes require multilayered regulatory networks, which have been shown to involve regulators that function at both transcriptional (e.g. transcription factors, epigenetic modulators, large noncoding RNAs, etc.) and post-transcriptional (small noncoding RNAs, RNA-binding proteins, etc.) levels (4–10). Among the small noncoding RNAs (sncRNAs)2 identified to date, miRNAs have been demonstrated to play a role as post-transcriptional regulators through binding to the 3′-untranslated regions (3′UTRs) of mRNAs and thereby affecting mRNA stability and translational efficiency (11–13).

The canonical miRNA biogenesis pathway has largely been defined, and it involves the processing of miRNA primary transcripts (i.e. primary miRNAs [pri-miRNAs]) into precursor miRNAs (pre-miRNAs) by the microprocessor complex consisting of mainly DROSHA, an RNase III enzyme, and its cofactor DGCR8 (also called PASHA) in the nucleus (14, 15). Exportin 5 then exports pre-miRNAs to the cytoplasm, where DICER, another RNase III enzyme, further cleaves the pre-miRNAs to produce two mature miRNAs. Mature miRNAs serve as sequence guides by directing their associated effector complex by.

2 The abbreviations used are: snRNA, small noncoding RNA; miRNA, microRNA; pre-miRNA, precursor miRNA; pri-miRNA, primary miRNA; cKO, conditional knock-out; qPCR, quantitative PCR; ANOVA, analysis of variance; miRNA-Seq, miRNA deep sequencing; EGFP, enhanced GFP; MSCI, meiotic sex chromosome inactivation; P, postnatal day; E, embryonic day; endo-siRNA, endogenous siRNA; mg, membrane-bound EGFP; RPKM, reads/kb of exon model/million; mT, membrane-bound Tomato Red; TE, transposable element; IAP, intracisternal A particle element.

* This work was supported, in whole or in part, by National Institutes of Health Grants HD050281 and HD060858 (to W.Y.).
‡ This article contains supplemental Tables S1–S3.
§ To whom correspondence should be addressed: Dept. of Physiology and Cell Biology, University of Nevada School of Medicine, CMM Bldg., Rm. 202, 1664 North Virginia St., MS0575, Reno, NV 89557. Tel.: 775-784-7765; Fax: 775-784-6903; E-mail: wyan@unr.edu.
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

plexes (e.g. RNA-induced silencing complex) to their targets, which are usually located in the 3’UTRs of miRNAs, and exert effects that can be stabilization/destabilization of miRNAs or activation/suppression of translation, depending on the cellular context and functional status (16–19). DROSHA recognizes pri-miRNAs, which are long primary transcripts derived from RNA polymerase II-mediated transcriptions from an miRNA locus or loci of several miRNA genes forming a cluster, and contains one or multiple stem-loop regions formed by sequences of future mature miRNAs (20, 21). Unlike DROSHA, DICER not only cleaves stem-loop structures in pre-miRNAs but also dissects double-stranded RNAs (dsRNAs), either exogenous synthetic ones introduced into the cell or naturally occurring ones in the cell, into small RNAs, such as mature miRNAs, small interfering RNAs (siRNAs), and endo-siRNAs (22, 23). Therefore, ablation of Dicer affects the production of all DICER-dependent small RNAs, whereas loss of Drosha or Dgcr8 affects largely the formation of pre-miRNAs and consequently mature miRNA production (20, 21).

Inactivation of Dicer in mice leads to embryonic lethality at about embryonic day 7.5 (E7.5) (24), suggesting an essential role in post-implantation embryonic development. Conditional knock-out (cKO) of Dicer in various organs or cell lineages has revealed that DICER is required for normal development and function of almost every single cell type or organ tested so far (25–45), suggesting an essential role of DICER-dependent snRNAs in normal physiology of the cell or organs. Ablation of DGCR8, a cofactor of DROSHA essential for the RNase III activity of DROSHA, results in embryonic lethality in ~E6.5, implying an essential role of miRNAs in early embryonic development (46). By comparing the phenotypes of cKO mice deficient in Dicer or Dgcr8 in developing oocytes, two studies discovered that it is endo-siRNAs, but not miRNAs that are essential for normal oocyte development and maturation, and miRNA functions in developing oocytes are largely suppressed (47, 48). These data suggest that although both DICER and DROSHA are involved in miRNA biogenesis, the effects of ablation of DICER or DROSHA can be different because they control the production of different species of snRNAs. Thus, a comparative study of Dicer and Drosha cKO mice may reveal phenotypes unique to either Dicer or Drosha inactivation.

Several previous studies have reported an essential role of DICER in primordial germ cell development and spermatogenesis by analyzing cKO mice with Dicer inactivation in the male germ line at different developmental time points (49–53). However, given that Dicer ablation simultaneously eliminates multiple snRNA species (46–48, 54), the phenotype cannot be ascribed solely to miRNAs. To evaluate the specific role of miRNAs, germ line-specific inactivation of Drosha or Dgcr8 is required. In addition, one common problem associated with the Cre-loxP strategy in generating cKO mice is the incomplete penetrance of Cre expression/activity in the targeted cell type, which usually leads to hypomorphism and mosaicism (55–57).

To overcome this problem, we generated two compound cKO mouse lines, in which Drosha or Dicer was specifically inactivated in postnatal male germ cells, and meanwhile, the Cre-expressing male germ cells were labeled with membrane-bound EGFP (mG) as a reporter to monitor true Drosha-null or Dicer-null spermatogenic cells in vivo. This study was designed with the following goals: 1) to define the physiological role of Drosha in miRNA biogenesis and in spermatogenesis in vivo; 2) to compare potential phenotypic differences between Drosha and Dicer cKO males because any difference, if observed, should reflect the potential roles of endo-siRNAs as Drosha cKO cells lacking only canonical miRNAs, and Dicer cKO cells are deficient in both canonical miRNAs and endo-siRNAs; and 3) to determine transcriptomic changes in purified Drosha-null or Dicer-null spermatogenic cells, which have never been performed thus far. Here, we report our findings.

Experimental Procedures

Generation of Postnatal Male Germ Line-specific Drosha or Dicer Knock-out Mice—All of the animal work performed was approved by the Institutional Animal Use and Care Committee (IACUC) of the University of Nevada, Reno. Dicerlox/lox mice (The Jackson Laboratory) (30) and Droshalox/lox mice (58) were bred with Stra8-iCre mice (The Jackson Laboratory) (59) to generate Stra8-iCre-Dicerlox/lox and Stra8-iCre-Droshalox/lox offspring. These heterozygotes were further crossed with Dicerlox/lox and Droshalox/lox mice to obtain Stra8-iCre-Dicerlox/lox and Stra8-iCre-Droshalox/lox males. Rosa26mTmG organisms (The Jackson Laboratory) (60) were used as a Cre reporter line to visualize the Cre-expressing cells. Female Stra8-iCre-Dicerlox/lox and Stra8-iCre-Droshalox/lox were crossed with Dicerlox/lox-Rosa26mTmG/+ males, respectively, to produce Stra8-iCre-Dicerlox/lox-Rosa26mTmG+tg and Stra8-iCre-Droshalox/lox-Rosa26mTmG+tg offspring for morphological analyses, spermatogenic cell purification, and subsequent molecular analyses.

Histological and Immunohistochemical Analyses—Testes were dissected and fixed in Bouin’s solution overnight at 4 °C followed by paraffin embedding. Paraffin sections (5 μm) were prepared and stained with the periodic-acid Schiff (PAS) solution (Sigma) for histological analyses. For observing membrane-bond Tomato Red (mT) and EGFP (mG) in control and cKO testes and悄悄插入了一部分句子“...null spermatogenic cells in vivo. This study was designed with the following goals: 1) to define the physiological role of Drosha in miRNA biogenesis and in spermatogenesis in vivo; 2) to compare potential phenotypic differences between Drosha and Dicer cKO males because any difference, if observed, should reflect the potential roles of endo-siRNAs as Drosha cKO cells lacking only canonical miRNAs, and Dicer cKO cells are deficient in both canonical miRNAs and endo-siRNAs; and 3) to determine transcriptomic changes in purified Drosha-null or Dicer-null spermatogenic cells, which have never been performed thus far. Here, we report our findings.”}

TUNEL Assay—Paraffin testis sections were used for TUNEL analyses of apoptotic cells. TUNEL was performed using the ApoTag Plus Peroxidase In Situ Apoptosis Detection kit (Millipore, Billerica, MA), according to the manufacturer’s instructions.
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

Purification of Pachytene Spermatocytes and Round Spermatids from Adult Control and cKO Tests—Pachytene spermatocytes and round spermatids were purified from control (Stra8-iCre-Rosha26mTmG+/−/g) and cKO (Stra8-iCre-Droshalox/lox-Rosha26mTmG+/−/g and Stra8-iCre-Dicerlox/lox-Rosha26mTmG+/−/g) adult testes using a mini-STA-PUT method modified from the method described previously (61, 62).

Small and Large RNA Isolation—mirVana™ miRNA isolation kit (Ambion, Grand Island, NY) was used to isolate both large and small RNA fractions from purified pachytene spermatocytes and round spermatids following the manufacturer’s protocol.

Western Blot Analyses—Protein isolation and Western blot analyses were performed as described previously (63). GAPDH was used as a loading control, and the rabbit anti-GAPDH polyclonal antibody was purchased from Cell Signaling Technology (catalog no. T4266). The rabbit anti-DROSHA polyclonal antibody was also from Cell Signaling Technology (catalog no. 3364). The rabbit anti-DICER polyclonal antibodies were generated by GenScript Inc. according to our antigen design, and its specificity has been evaluated (54).

miRNA Deep Sequencing (miRNA-Seq)—Small RNA cDNA libraries were prepared using the Ion Total RNA-Seq kit (Ivitrogen). Briefly, small RNAs were ligated to an ion adaptor sequence. A complementary reverse transcription primer was used to anneal the ion adaptor to initiate reverse transcription and generate cDNAs using ArrayScript reverse transcriptase. Small RNA cDNAs were subsequently size-selected using the Novex TBE/urea gel system (Ivitrogen) and amplified using Amplicon DNA polymerase. Emulsion PCR was used to clonally amplify cDNA on ion sphere particles. This was done using the Ion OneTouch (Ivitrogen) in conjunction with the Ion OneTouch Template kit (Ivitrogen). Enrichment for templated ion spheres was performed using the Ion OneTouch Enrichment System (Ivitrogen) and Dynabeads MyOne Streptavidin C1 beads (Ivitrogen). Subsequent sequencing of templated ion sphere particles was performed on an Ion Torrent Personal Genome Sequencer (Ivitrogen) using the Ion Sequencing kit Version 2.0 (Ivitrogen) and Ion 314 chips.

Sequencing reads were aligned using the Ion Torrent Server t-map aligner (Ivitrogen). Aligned reads were analyzed using Partek Genomic Suite (version 6.6 beta, Partek, St. Louis, MO). To begin, aligned reads were matched to known mature miRNA sequences downloaded from the Functional RNA Database (fRNAdb) (64). To account for variances in sequencing depth and transcript length, the abundance of miRNA reads was normalized using a modified reads/kb of exon model/million (RPKM) (65). RPKM = total miRNA reads/total mapped reads (million) × miRNA sequence length (kb)). Transcripts with low abundance (<1 RPKM) in control and cKO samples were filtered and removed from expression analyses. RPKM values were normalized to the mean expression for generating heat maps showing differential expression analysis.

Large RNA cDNA Synthesis and qPCR—After large RNAs, including total miRNAs, were isolated using the mirVana™ miRNA isolation kit (Ambion), DNA contamination was removed by DNase-free™ DNase (Ambion). After DNase treatment, 25 µl of large RNA was mixed with 2 µl of 10 mm dNTP and 1 µl of random primers (3 µg/µl, Invitrogen). The mixture was heated at 65 °C for 5 min and incubated on ice for 1 min. 8 µl of 5 × First-Strand Buffer, 2 µl of 0.1 M DTT, 1 µl of RNase OUT (Invitrogen), and 1 µl of SuperScript III reverse transcriptase (Invitrogen) were added to the mixture and incubated at 50 °C for 60 min. 40 µl of H2O was added to the mixture; the concentration of the large RNA cDNAs was measured, and then they were diluted into 25 ng/µl as PCR working templates. By using gene-specific forward and reverse primers (supplemental Table S1), SYBR Green-based real time quantitative PCR was performed to examine mRNA expression levels. Gapdh or β-actin was used as an internal control. IAP, LINE1, and SINE B2 primer sequences are listed in supplemental Table S1.

Microarray Analysis—Large RNAs, including total miRNAs, were isolated from purified pachytene spermatocytes and round spermatids of control (Stra8-iCre-Rosha26mTmG+/−/g) and cKO (Stra8-iCre-Droshalox/lox-Rosha26mTmG+/−/g and Stra8-iCre-Dicerlox/lox-Rosha26mTmG+/−/g) testes using the mirVana™ miRNA isolation kit (Ambion), and DNA contamination was removed using DNA-free™ DNase (Ambion). DNA purity was examined by measuring A260/A280 ratios using a spectrophotometer (NanoDrop, Wilmington, DE), and RNA quality was analyzed using the Bioanalyzer (Agilent Technologies, Santa Clara, CA). Each sample was prepared in two biological replicates. These RNA samples were then subject to labeling, hybridization, washing, data acquisition, and analyses as described previously (66).

RNA FISH—RNA FISH analyses of de novo transcription of a Y-linked gene Uty was performed as described previously (67, 68). Cot-1 RNA FISH in conjunction with immunofluorescent staining was carried out following a published protocol (69).

RESULTS

Generation of Postnatal Male Germ Cell-specific Drosha or Dicer Conditional Knock-out Mice—Global inactivation of either Dgcr8 (46) or Dicer (24) leads to embryonic lethality, precluding functional analyses of postnatal germ cell development. To specifically inactivate Drosha or Dicer in postnatal male germ cells, we crossed a Drosha-lox (Droshalox/lox) (58) or a Dicer-loxp (Dicerlox/lox) (30) line with a Stra8 (stimulated by retinoic acid gene 8)-iCre transgenic line (59), which has been shown to express improved Cre (iCre) recombinase exclusively in male germ cells with an initial expression in the differentiating spermatogonia at postnatal day 3 (P3) (59). The Drosha conditional allele has two loxp sites flanking exon 9, and the excision of exon 9 induced by iCre recombination would lead to frameshift and result in multiple stop codons in exon 11 (58). The Dicer conditional allele contains two loxp sites flanking exon 23 of Dicer, which encodes for the most part the second RNase III domain (30), and thus iCRE-mediated recombination would inactivate Dicer cleavage activity. It has been validated that after iCre-mediated recombination, the activity of DROSHA or DICER is completely lost (30, 58).

To visualize the iCre-mediated germ cell-specific deletion of Drosha or Dicer, Stra8-iCre-Droshalox/lox and Stra8-iCre-Dicerlox/lox mice (herein called Dicer or Drosha cKO mice, respectively) were further crossed with a global double-fluores-
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

The fact that almost all of the spermatocytes and round spermatids at P21 and P40 were mG-positive is consistent with the previous report showing iCre expression starts in type A spermatogonia and ends in preleptotene spermatocyte (59). Based upon the spatiotemporal expression patterns of mG, we conclude that the iCre-mediated Drosha or Dicer deletion occurred to a full penetrance by P21, and in adult cKO testes, at least all pachytene spermatocytes and haploid germ cells were truly Drosha- or Dicer-null.

Inactivation of Drosha or Dicer in Postnatal Spermatogenic Cells—We purified pachytene spermatocytes and round spermatids using the STA-PUT method (62, 70, 71), and purity of the two cell types was ~90% based upon counting of mG (green) versus mT (red) cells (Fig. 2). Using purified pachytene spermatocytes and round spermatids, we performed qPCR to examine levels of Drosha or Dicer mRNAs. Levels of Drosha and Dicer mRNAs (corresponding to the portion encoded by the floxed exons) were significantly reduced in the Drosha- and Dicer-null pachytene spermatocytes and round spermatids, respectively (Fig. 3, A and B). Given that the purity of the cells was ~90%, it is highly likely that the remaining levels were derived from other contaminating testicular cell types. Drosha mRNA levels in the two Dicer-null spermatogenic cell types remained unchanged, whereas levels of Dicer mRNAs in Drosha-null pachytene spermatocytes and round spermatids were slightly elevated (Fig. 3, A and B). Previous studies have shown that iCRE-mediated deletion of the floxed Drosha and Drosa alleles would result in a mutant form of DICER without the second RNase III domain and a total loss of DROSHA due to nonsense mRNA decay, respectively (30, 58). To further confirm the expression of DICER and DROSHA protein in these cKO spermatogenic cells, we also performed Western blot analyses (Fig. 3C). Consistent with previous studies (30, 58), reduced levels of the slightly truncated DICER protein were detected in Dicer cKO pachytene spermatocytes, whereas DROSHA protein was mostly absent in Drosha cKO pachytene spermatocytes (Fig. 3C). Levels of DICER and DROSHA in Drosha and Dicer cKO cells were unchanged, respectively. These results were consistent with their respective mRNA levels (Fig. 3, A and B). These data further support the findings of the mTmG reporter assays in vivo (Fig. 1), demonstrating that a close to full penetrance of the Cre activity could be reached in pachytene spermatocytes and their subsequent cell type, round spermatids, in the two cKO mouse lines.

A previous report suggests that DROSHA may be involved in the 45 S pre-rRNA processing pathway, and DROSHA inactivation may thus affect the production of 18 S and 28 S rRNAs, leading to translational defects and cell death (72). To examine whether DROSHA deficiency can lead to defective production of 18 S and 28 S rRNAs in vivo, we analyzed levels of 18 S and 28 S rRNAs in control, Drosha, and Dicer cKO pachytene spermatocytes and round spermatids using qPCR (Fig. 3, D and E). No significant changes in levels of 18 S and 28 S rRNAs, as well as their precursor 45 S rRNAs, were observed among control, Drosha, and Dicer cKO pachytene spermatocytes (Fig. 3D). In round spermatids, both 18 S and 28 S rRNA levels showed no changes, whereas 45 S rRNA levels were slightly up-regulated (Fig. 3E). These data suggest that a lack of DROSHA does not
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

FIGURE 2. Purification of pachytene spermatocytes and round spermatids from control, Drosha, and Dicer cKO testes. A, phase-contrast and fluorescent images of purified pachytene spermatocytes. B, phase-contrast and fluorescent images of purified round spermatids. Green cells are the Cre-expressing pachytene spermatocytes or round spermatids, and the rare red cells represent non-Cre-expressing spermatogonia or somatic cells (i.e. Sertoli or Leydig cells). All panels are in the same magnification. Bar, 20 μm.

significantly affect 18 S/28 S rRNA production. This finding is consistent with an earlier report showing DGCR8 inactivation does not affect the 45 S rRNA processing pathway (46).

DROSHA Is Required for miRNA Biogenesis, whereas DICER Is Essential for the Production of Both miRNAs and Endo-siRNAs—We recently identified numerous endo-siRNAs (73). Based upon the difference in DICER and DROSHA activities and the biogenesis of miRNA-Seq assay on needed in the future to assign the correct identity for those thoroughly bioinformatic and experimental validation assays are ascribed to endo-siRNAs because endo-siRNA production in Drosha-null germ cells is unaffected, whereas miRNAs are absent in both Drosha- and Dicer-null male germ cells.

Drosha or Dicer cKO Mice Display Severe Disruptions in Both Meiotic and Haploid Phases of Spermatogenesis—Fertility tests by breeding Drosha or Dicer cKO males with WT adult females indicated that neither Drosha nor Dicer cKO males were fertile despite their normal mating behavior. To investigate the cause of infertility in Drosha or Dicer cKO male mice, we performed morphological analyses on Drosha or Dicer cKO testes at both gross (Fig. 5, A and B) and light microscopic (Fig. 5, C and D) levels. The adult Drosha or Dicer cKO testes were much smaller in size (Fig. 5A) than control testes of their heterozygous littermates (Strast-iCre-Drosha−/−) and Stra8-iCre-Dicer−/−). By analyzing the testis weight during testicular development (Fig. 5B), a significant decrease in testis weight was initially observed at P21 in both Drosha and Dicer cKO males, and by P40, the cKO testes weighed ~50% of the control testes. Consistent with the reduced testis weight, examination of the testis histology revealed severe germ cell depletion in both adult Drosha (Fig. 5C) and Dicer (Fig. 5D) cKO testes. Although littermate controls displayed robust spermatogenesis (Fig. 5, C, panel a, and D, panel a), both Drosha and Dicer cKO testes showed severely disrupted seminiferous epithelia containing few or no elongated spermatids (Fig. 5, C, panel b, and D, panel b). The presence of numerous vacuoles (arrows in panels c and d in Fig. 5, C and D) and multinucleated “giant” cells (arrowheads in panel d in Fig. 5, C and D) was indicative of active spermatogenic cell depletion. Accordingly, the control epididymis contained numerous spermatozoa (Fig. 5, C, panel e, and D, panel e), whereas the cKO epididymes were largely devoid of spermatozoa (Fig. 5, C, panel f, and D, panel f). The spermatogenic cells that were depleted or being depleted were mainly spermatocytes and early spermatids in both cKO testes. Interestingly, Drosha cKO testes appeared to be more severely disrupted than Dicer cKO testes at least at histological levels (Fig. 5, C, panel b, and D, panel b) because a lot more spermatogenic cells were present in Dicer cKO testes than in Drosha cKO testes. To
quantify the phenotypic differences between Drosha and Dicer cKO testes, we analyzed the proportions of seminiferous tubule cross-sections that were devoid of elongating/elongated spermatids (Fig. 5E) or contained vacuoles/multinucleated giant cells (Fig. 5F). In control testes, almost all tubule cross-sections contained either elongating (steps 9–11) or elongated (steps 12–16) spermatids. In contrast, ~23 and ~7% of tubule cross-sections in Drosha and Dicer cKO testes were devoid of elongating/elongated spermatids, respectively (Fig. 5E). Moreover, vacuoles or multinucleated giant cells were observed in only ~1% of the control tubule cross-sections, whereas ~43% and ~24% of the tubule cross-sections in Drosha and Dicer cKO testes contained numerous vacuoles and/or multinucleated cells, respectively (Fig. 5F). These data suggest that Drosha cKO testes displayed more severe spermatogenic cell depletion than Dicer cKO testes. Nevertheless, the depleted spermatogenic cell types were mainly spermatocytes and spermatids in both cKO testes, suggesting an essential role for either Drosha or Dicer to support the meiotic and haploid phases of spermatogenesis in mice.

Consistent with partial Cre penetrance in P4 and P7 cKO testes (Fig. 1), no discernable histological changes were observed in either Drosha or Dicer cKO testes between P4 and P12 (data not shown). By P14, histological changes in the seminiferous epithelial structures became discernable in both Drosha and Dicer cKO testes (Fig. 6A). Mid-pachytene spermatocytes were less in number, and some displayed cytoplasmic shrinkage with highly condensed nuclei resembling struc-
tural features of early apoptotic cells. Depletion of pachytene spermatocytes became more and more obvious/severe afterward, and the severity of disruptions reached to the maximum at P28 (Fig. 6A). At P40, although the germ cell depletion was still ongoing, the rate of depletion appeared to decrease because seminiferous epithelia of both cKO testes contained all types of spermatogenic cells despite a lower number compared with controls. TUNEL assays revealed enhanced apoptosis in spermatocytes in both Drosha and Dicer cKO testes (Fig. 6B). Interestingly, round spermatids that were being depleted were TUNEL-negative, supporting the notion that massive depletion of round spermatids is mainly achieved through detaching from

FIGURE 4. Absent or severely reduced miRNA expression in Dicer or Drosha cKO spermatogenic cells revealed by miRNA-Seq analyses. A, heat map representing levels of miRNAs with a 2-fold up- or down-regulation among control (wild type), Dicer, and Drosha cKO pachytene spermatocytes. B, heat map representing levels of miRNAs with a 2-fold up- or down-regulation among control (wild type), Dicer, and Drosha cKO round spermatids. Original miRNA-Seq data can be found in supplemental Table S2.
the seminiferous epithelium and sloughing into the lumen instead of the classic apoptotic pathway (74–76). Histological analyses of the developing testes (Fig. 6) further supported the observation in the adult cKO testes (Fig. 5), suggesting the spermatogenic cell types that were depleted were mainly pachytene spermatocytes and spermatids, and the
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

disrupted spermatogenesis accounts for the infertility phenotype of either Drosha or Dicer cKO male mice.

Altered mRNA Transcriptomes in Drosha- or Dicer-null Spermatogenic Cells—Using the Affymetrix mouse gene 1.0 ST array, we determined the mRNA transcriptomes in pachytene spermatocytes and round spermatids purified from control (heterozygous littersmates), Drosha, or Dicer cKO mice. Among the 28,853 mRNAs probed, 575 and 660 mRNAs displayed significant changes (a fold change >1.5 or less than –1.5, p < 0.05 in ANOVA) in Drosha-null pachytene spermatocytes and round spermatids, respectively (Fig. 7A, a and c). 457 and 1731 mRNAs showed significantly altered expression levels in Dicer-null pachytene spermatocytes and round spermatids, respectively (Fig. 7A, panels b and d). There appeared to be more mRNAs with altered expression levels in the Dicer-null (a total of 2188) than in Drosha-null (a total of 1235) spermatogenic cells (supplemental Table S3). This may suggest that the absence of both miRNAs and endo-siRNAs in Dicer-null spermatogenic cells have a more profound impact on mRNA levels than the lack of miRNAs alone in Drosha-null spermatogenic cells.

Despite the fact that some mRNAs showed similar changes in both Drosha- and Dicer-null spermatogenic cells (Fig. 7B), many mRNAs with altered expression levels appeared to be unique to either of the two genotypes. For example, levels of 393 mRNAs were altered in Drosha-null pachytene spermatocytes, and these mRNAs were not changed in Dicer-null pachytene spermatocytes. Similarly, 275 mRNAs displayed altered levels in Dicer-null pachytene spermatocytes, which were not changed in Drosha-null pachytene spermatocytes. Meanwhile, both Drosha- and Dicer-null pachytene spermatocytes shared 182 mRNAs with significant changes in their expression levels. These differences suggest Drosha and Dicer may functionally overlap with each other, but they do have their unique impact on steady-state levels of mRNAs, which may reflect the contribution of endo-siRNAs because Dicer-null spermatogenic cells lack both canonical miRNAs and endo-siRNAs, whereas Drosha-null cells are devoid of canonical miRNAs only. Overall, the microarray analyses revealed that both miRNAs and endo-siRNAs could indeed affect the steady-state levels of mRNAs either directly or indirectly, and this notion is consistent with recent reports demonstrating that miRNAs mainly function to regulate mRNA stability (77). In addition, mRNAs with altered levels in both Drosha- and Dicer-null cells may reflect the effect of miRNAs, whereas the differences in altered mRNAs may highlight the function of endo-siRNAs. The Affymetrix Mouse Gene 1.0 ST array contains a number of pri-miRNAs, and interestingly, levels of pri-miRNAs for four miRNA clusters, including miR-29 (29a and 29b-1), miR-30 (30b and 30d), miR-34 (34b and 34c), and miR-19 (17, 19b-1 and 92a-1) clusters, displayed 3–10-fold up-regulation in Drosha-null pachytene spermatocytes and round spermatids, whereas their levels remained unchanged in Dicer-null cells (Fig. 8 and supplemental Table S3). Elevated levels of pri-miRNAs may result from the accumulation of pri-miRNAs due to the lack of DROSHA, which cleaves pri-miRNAs into pre-miRNAs. To validate the microarray data, we chose 43 transcripts identified to be dysregulated in either Drosha or Dicer-null spermatogenic cells, and we performed qPCR (Fig. 8). Our qPCR results (Fig. 8) were consistent with the microarray data (supplemental Table S3).
Altered mRNA transcriptomes in Drosha- or Dicer-null pachytene spermatocytes and round spermatids. A, microarray analyses revealed numerous mRNAs displaying altered expression levels in Drosha-null (panels a and c) or Dicer-null (panels b and d) pachytene spermatocytes (panels a and b) and round spermatids (panels c and d). Each dot represents one mRNA transcript. Yellow dots are those up-regulated mRNAs with a fold change of >1.5 ($p < 0.05$ in ANOVA), and blue dots indicate the down-regulated ones with a fold change of less than -1.5 ($p < 0.05$ in ANOVA). B, number of mRNAs with significantly altered levels in Drosha- and Dicer-null pachytene spermatocytes (panel a) and round spermatids (panel b). 575 and 457 mRNAs displayed either up- or down-regulated levels in Drosha- and Dicer-null pachytene spermatocytes, respectively. Among the 850 mRNAs with altered levels, 182 were found in both Drosha- and Dicer-null pachytene spermatocytes (panel a). Levels of 660 and 1731 mRNAs were altered in Drosha- and Dicer-null round spermatids, respectively. Among the 1963 mRNAs changed, 428 were shared between the Drosha- and Dicer-null round spermatids (panel b).
Sex-linked mRNA Genes Are Up-regulated in Both Drosha- and Dicer-null Pachytenic Spermatocytes—By examining microarray data, we found several X- or Y-linked genes (e.g. Ott, Nxf2, Usp9y, Ube1y, etc.), which are known to be suppressed in pachyteic spermatocytes due to meiotic sex chromosome inactivation (MSCI), displayed a 2–4-fold up-regulation in Drosha-null pachyteic spermatocytes (supplemental Table S3), suggesting a potential defect in MSCI. We therefore chose nine X-linked (Magea5, Nxf2, Ott, Prame13, Taf7l, Tex11, Tex16, Tktl1, and Usp26) and three Y-linked (Rbmy1a1, Ube1y, and Usp9y) genes and examined their mRNA levels in control, Drosha-, or Dicer-null pachyteic spermatocytes. Levels of these 12 sex-linked miRNAs were indeed up-regulated by ~2-fold in either Drosha or Dicer-null pachyteic spermatocytes (Fig. 9). Both our qPCR data (Fig. 9) and previously published microarray data (78) showed that these 12 miRNAs are drastically up-regulated (by 10–20-fold) in round spermatids following MSCI. The 2-fold up-regulation may not be significant physiologically considering their much higher levels in round spermatids; generally, these sex-linked mRNA genes were still largely suppressed but just to a lesser extent. However, MSCI is known to be essential for meiotic progression, and even a slight relaxation in MSCI may result in disruptions (67, 79). So we examined de novo transcription using RNA FISH in conjunction with immunofluorescent staining of γ-H2AX (sex body marker) and HP1β (heterochromatin marker) (67–69, 80). The absence of transcription on the sex chromosomes in mid-pachyteic spermatocytes was verified by both Cot-1 (Fig. 10) and Uty RNA FISH assays (Fig. 11). Given that the slight up-regulation of sex-linked miRNAs may reflect an MSCI maintenance defect in diplotene spermatocytes, we further examined de novo transcription using Cot-1 RNA FISH assays. The sex body remains largely HP1β-positive and Cot-1-negative, suggesting a lack of discernable transcriptional activities even in diplotene stage (Fig. 10). These data suggest that MSCI is established normally in either Drosha- or Dicer-null pachyteic spermatocytes, and the maintenance of MSCI may have been slightly disrupted, causing the up-regulation of sex-linked miRNAs. But the MSCI defects, if any, may be too minor to be detected due to the limited resolution of the techniques utilized.

Levels of Transposable Elements Remain Unchanged in Either Drosha- or Dicer-null Spermatogenic Cells—Several studies have reported that Dicer deficiency in either somatic or germ cells can lead to up-regulated levels of repetitive elements (50, 81, 82). To study whether Drosha-deficient spermatogenic cells display transposable element (TE) derepression, we examined levels of IAP, LINE1 (long interspersed nuclear element 1), and SINE B2 (short interspersed nuclear element B2) in purified control, Drosha-, or Dicer-null pachyteic spermatocytes or round spermatids (Fig. 12). Similar to Dicer-null pachyteic spermatocytes, Drosha-null pachyteic spermatocytes displayed transposable element derepression, we examined levels of IAP, LINE1 (long interspersed nuclear element 1), and SINE B2 (short interspersed nuclear element B2) in purified control, Drosha-, or Dicer-null pachyteic spermatocytes or round spermatids (Fig. 12). Similar to Dicer-null pachyteic spermatocytes, Drosha-null pachyteic spermatocytes displayed transposable element derepression, we examined levels of IAP, LINE1 (long interspersed nuclear element 1), and SINE B2 (short interspersed nuclear element B2) in purified control, Drosha-, or Dicer-null pachyteic spermatocytes or round spermatids (Fig. 12). Consistent with one recent report (49), all three types of TEs showed no significant up-regulation in the testes of a male germ cell-specific Dicer cKO mouse line. However, a recent independent study (50) reported that the up-regulation of SINE B1, SINE B2, and LINE1 in Dicer-deficient spermatocytes (Ddx4-Cre-Dicerlox/lox) is due to the onset of Dicer inactivation due to different Cre lines used.

DISCUSSION

Lighting up Knock-out (KO) Cells with Fluorescent Proteins Allows Monitoring Cellular Changes in Vivo and Purifying KO Cells for Molecular Analyses—The Cre-loxP-mediated cKO system allows the inactivation of a gene of interest along a spec-
specific cell lineage and thus can overcome the embryonic lethality problem often associated with the global/universal knock-out approach. Although humans with a null mutation in DGCR8 are viable, both Dicer and Dgcr8 global inactivation in mice leads to embryonic lethality (24, 46), thus precluding the analyses of their functions during germ cell development. The routine method of determining Cre activity is to cross a Cre line with a reporter line that expresses either an enzyme (e.g. β-galactosidase, luciferase, etc.) or a fluorescent protein (e.g. EGFP, tomato Red, etc.), and reporter-expressing cells are automatically assumed to represent the site of Cre activity in the cKO mice. Several cKO mouse lines in which Dicer was selectively inactivated in the male germ line during fetal or postnatal development have been generated (49–53). However, one of the Cre mouse lines used is known to display partial penetrance of Cre expression and/or Cre activity in the targeted cell lineage (83). The incomplete Cre penetrance can lead to mosaicism/hypomorphism, and the phenotype observed thus cannot reflect the true effects of a complete ablation of Dicer. In addition, three of these studies used total testes to conduct the molecular analyses (49, 52, 53). Given that the total testes contain both somatic and developing male germ cell types, and the true cKO cells are only a proportion of the total testicular cells, analyses performed using total testes rendered the true effects being masked by normal or changed expression in other non-cKO cell types. Thus, phenotypes observed and molecular analyses performed more likely represent a hypomorphic scenario.

Figure 9. qPCR analyses of expression levels of nine X- and three Y-linked mRNA-coding genes in control, Drosha-, or Dicer-null pachytene spermatocytes and round spermatids. All of the nine X-linked genes (Magea5, Nxf2, Ott, Pramel3, Taf7l, Tex11, Tex16, Tktl1, and Usp26) and three Y-linked genes (Rbmy1a1, Ube1y, and Usp9y) examined have been shown to be largely suppressed during MSCI, and thus their levels in pachytene spermatocytes are at minimal levels. But once MSCI is completed, these genes are highly expressed in round spermatids. Levels of these genes in control pachytene spermatocytes were used as the normalizer. Gapdh was used as an internal control. The experiments were performed in biological triplicates.

Male Germ Line Ablation of Drosha Impairs Spermatogenesis
allele (mT/mG) into the loxp homozygous background, we generated two compound cKO lines, in which Cre-expressing cells expressed membrane-bound EGFP (mG) and Cre-negative cells expressed membrane-bound tomato red (mT) fluorescence. In this way, we could not only monitor the developmental course of cellular disruptions in vivo (Fig. 1) but also purify the cKO cells based upon mG or judge purity after purification based upon the ratio of green versus red cells (Fig. 2). It is note-

FIGURE 10. Evaluation of MSCI in control (WT), Drosha-, or Dicer-null mid-pachytene and diplotene spermatocytes using double immunofluorescence with anti-γH2AX and HP1β antibodies followed by Cot-1 RNA FISH. A–C, in mid-pachytene spermatocytes, XY body becomes prominent and protrudes from the rest of the nuclei in the mid-pachytene stage. Cot-1 signal was almost completely depleted from the XY body, and γH2AX accumulated on the XY body, and HP1β only localized on X-centromere at this stage (small dots in the XY body). No significant difference was observed among controls (A), Drosha-null (B), and Dicer-null (C) mid-pachytene spermatocytes, suggesting MSCI was initiated and developed normally in either Drosha- or Dicer-null pachytene spermatocytes. D–F, in the diplotene phase, HP1β was localized to the entire XY body. XY body became DAPI-intense and moved toward inside of the nuclei. Depletion of Cot-1 signals was the same between control and mutants. More than 50 cells with HP1β negativity on the XY body (mid-pachytene) and >50 cells with HP1β positivity on XY body (late pachytene to diplotene) were examined. However, no clear difference was detected between control and mutants. Dotted circle, XY body. Bars, 10 μm. >50 nuclei were counted, and all displayed the same staining patterns as those presented in this figure.
worthy that mG was initially expressed only in a small proportion of spermatogonia at P4, and its expression gradually occurred in most of spermatogonia during early postnatal development. In adult testes, levels of mG were much lower in spermatogonia than in spermatocytes and round spermatids (Fig. 1). Collectively, these data suggest that inactivation of Drosha or Dicer in spermatogonia using the Stra8-Cre line as a deleter is likely incomplete, and thus spermatogonia may have remained partially functional, which was sufficient to support their development. Therefore, the lack of discernable morphological disruptions in spermatogonial populations cannot exclude a role for Drosha or Dicer in the mitotic phase of spermatogenesis. In contrast, the full penetrance of Cre activity in spermatocytes and spermatids was consistent with the fact that these two cell types were those showing the most severe depletion in developing and adult cKO testes. In addition, the highly pure (≥90% of purity) pachytene spermatocytes and round spermatids allowed us to determine expression levels of small RNAs and sex-linked mRNAs, as well as microarray analyses of the whole mRNA transcriptome in the cKO cell types rather
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

Like Endo-siRNAs, miRNAs Can Affect Steady-state Levels of mRNAs—Previously, it was believed that miRNAs mainly function as post-transcriptional regulators by binding to the 3' UTRs and induce translational suppression (17, 84). Recent data, however, have demonstrated that some miRNAs can increase translation efficiency (85), and miRNAs generally can enhance the stability of their target mRNAs (77). Endo-siRNAs theoretically can induce mRNA degradation through the RNAi mechanism (54, 86, 87). The fact that the Drosha deficiency alone (lack of canonical miRNAs only) can induce changes in less than 600 mRNAs in either pachytene spermatocytes (575 mRNAs) or round spermatids (660 mRNAs) suggests that miRNAs have a role in the mRNA stability control. More mRNAs were altered in Drosha-null pachytene spermatocytes than in Dicer-null pachytene spermatocytes (575 versus 457 mRNAs), which is consistent with the more severe morphological disruptions in Drosha than in the Dicer cKO testes observed (Fig. 5). In contrast, Dicer inactivation, which led to deficiency in both miRNAs and endo-siRNAs, caused changes in 1700 mRNAs in round spermatids, which is much more than that in Drosha-deficient round spermatids (660 mRNAs), suggesting that endo-siRNAs can cause more changes in mRNA levels. This is consistent with the fact that endo-siRNAs are directly associated with mRNA stability. Also, this implies a more significant role of endo-siRNAs in endo-siRNAs in round spermatids than in pachytene spermatocytes in the regulation of mRNA stability. Among these mRNAs with altered levels, the majority displayed up-regulation (Fig. 7), suggesting that endo-siRNAs and/or miRNAs can induce mRNA degradation.

miRNAs and/or Endo-siRNAs Are Not Essential for the Initiation of MSCI—An ~2-fold increase in mRNA levels of many X- or Y-linked genes in both Drosha- and Dicer-null pachytene spermatocytes suggests a relaxation of the suppressive status due to MSCI. However, all the genes examined display de-suppression once the male germ cell development progresses from spermatocytes to round spermatids, which have been documented in a previous transcriptomic study (78) and this study (Fig. 9). In round spermatids, the levels of these X- or Y-linked genes are ~8–16-fold higher than their levels in pachytene spermatocytes. Therefore, when these much higher levels were compared with much lower levels in pachytene spermatocytes, an ~2-fold increase is still 4–8-fold lower than levels in round spermatids, indicating that these genes were still largely suppressed, and the disruption in MSCI is thus minimal, as reflected by the mild increase in X- or Y-linked mRNA gene expression (Fig. 9). Consistent with this notion, analyses on MSCI using two independent RNA FISH techniques (Figs. 10 and 11) demonstrated a lack of de novo transcription and normal formation of the sex body in either Drosha- or Dicer-null pachytene spermatocytes. These data suggest that miRNAs and/or endo-siRNAs are not required for the establishment of MSCI. But in the absence of these sncRNAs, the maintenance of MSCI may have been compromised to some extent. However, these potential disruptions appeared to be subtle/minor, which are beyond the detection sensitivity/resolution of the techniques used (i.e. RNA-FISH in conjunction with immunofluorescent staining). The potential minor MSCI defects may con-
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

tribute to the severe depletion of pachytene spermatocytes observed in both Drosha and Dicer ckO testes because defective MSCI is not compatible with meiotic progression and thus MSCI-defective spermatocytes must be eliminated through apoptosis by the meiotic checkpoint mechanism (67, 79). The fact that many spermatocytes managed to form round spermatids suggests that the disruption of MSCI is mild.

In summary, data from this study demonstrate an essential role of Drosha in canonical miRNA biogenesis in vivo, and the deficiency in Drosha or the lack of DROSHA-dependent miRNAs can lead to disrupted spermatogenesis and male infertility. Like Dicer, Drosha is essential for both the meiotic and haploid phases of spermatogenesis. Endo-siRNAs appear to have more profound impact on the mRNA stability than miRNAs do in round spermatids, suggesting a critical role of this novel snRNA species in the regulation of mRNA stability in the haploid phase of spermatogenesis. The phenotypes observed may represent direct or indirect effects of canonical miRNA and/or endo-siRNAs deficiency. Nevertheless, our data, together with other similar studies (49, 50), demand further investigations on the molecular mechanism underlying the spermatogenic defects observed in both Drosha- and Dicer-deficient testes.

Acknowledgment—We thank Dr. Dan R. Littman, Skirball Institute of Biomedical Medicine, for providing us with the Drosha-loxp mouse line.

REFERENCES

1. Clermont, Y. (1972) Kinetics of spermatogenesis in mammals. Seminiferous epithelium cycle and spermatogonial renewal. Physiol. Rev. 52, 198–236

2. Hermo, L., Pelletier, R. M., Cyr, D. G., and Smith, C. E. (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1. Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc. Res. Tech. 73, 241–278

3. Yan, W. (2009) Male infertility caused by spermiogenic defects. Lessons from gene knockouts. Mol. Cell. Endocrinol. 306, 24–32

4. Idler, R. K., and Yan, W. (2012) Control of messenger RNA fate by RNA-binding proteins. An emphasis on mammalian spermatogenesis. J. Androl. 33, 309–337

5. Bettegowda, A., and Wilkinson, M. F. (2010) Transcription and post-transcriptional regulation of spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1637–1651

6. He, Z., Kokkinaki, M., Pant, D., Gallicano, G. I., and Dym, M. (2009) Small RNA molecules in the regulation of spermatogenesis. Reproduction 137, 901–911

7. Paronetto, M. P., and Sette, C. (2010) Role of RNA-binding proteins in mammalian spermatogenesis. Int. J. Androl. 33, 2–12

8. Braun, R. E. (1998) Post-transcriptional control of gene expression during spermatogenesis. Semin. Cell Dev. Biol. 9, 488–489

9. Rajender, S., Avery, K., and Agarwal, A. (2011) Epigenetics, spermatogenesis, and male infertility. Mutat. Res. 727, 62–71

10. Trasler, J. M. (2009) Epigenetics in spermatogenesis. Mol. Cell. Endocrinol. 306, 33–36

11. Djurunic, S., Nahvi, A., and Green, R. (2011) A parsimonious model for gene regulation by miRNAs. Science 331, 550–553

12. Bartel, D. P. (2009) MicroRNAs: Target recognition and regulatory functions. Cell 136, 215–233

13. Bartel, D. P., and Chen, C. Z. (2004) Micromanagers of gene expression. The potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400

14. Yang, J. S., and Lai, E. C. (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903

15. Murchison, E. P., and Hannon, G. J. (2004) miRNAs on the move. miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16, 223–229

16. Meister, G. (2007) miRNAs get an early start on translational silencing. Cell 131, 25–28

17. Bartel, D. P. (2004) MicroRNAs. Genomics, biogenesis, mechanism, and function. Cell 116, 281–297

18. Rissland, O. S., Hong, S. J., and Bartel, D. P. (2011) MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell cycle changes. Mol. Cell 43, 993–1004

19. Schnall-Levin, M., Rissland, O. S., Johnston, W. K., Perrimon, N., Bartel, D. P., and Berger, B. (2011) Unusually effective microRNA targeting within repeat-rich coding regions of mammalian miRNAs. Genome Res. 21, 1395–1403

20. Lee, Y., Han, J., Yeom, K. H., Jin, H., and Kim, V. N. (2006) Drosha in primary microRNA processing. Cold Spring Harbor Symp. Quant. Biol. 71, 51–57

21. Tomari, Y., and Zamore, P. D. (2005) MicroRNA biogenesis. drosha can’t cut it without a partner. Curr. Biol. 15, R61–R64

22. Carthew, R. W., and Sontheimer, E. J. (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655

23. Jaskiewicz, L., and Filipowicz, W. (2008) Role of Dicer in post-transcriptional RNA silencing. Curr. Top. Microbiol. Immunol. 320, 77–97

24. Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., Mills, A. A., Elledge, S. J., Anderson, K. V., and Hannon, G. J. (2003) Dicer is essential for mouse development. Nat. Genet. 35, 215–217

25. da Costa Martins, P. A., Bourajji, M., Gladka, M., Kortland, M., van Oort, R. J., Pinto, Y. M., Molkentin, J. D., and De Windt, L. J. (2008) Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118, 1567–1576

26. Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., and Ullian, E. M. (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J. Neurosci. 28, 4322–4330

27. Frezzetti, D., Reale, C., Cali, G., Nitsch, L., Fagman, H., Nilsson, O., Scarfò, M., De Vita, G., and Di Lauro, R. (2011) The microRNA-processing enzyme Dicer is essential for thyroid function. PLoS One 6, e27648

28. Georgi, S. A., and Reh, T. A. (2010) Dicer is required for the transition from early to late progenitor stage in the developing mouse retina. J. Neurosci. 30, 4048–4061

29. Georgi, S. A., and Reh, T. A. (2011) Dicer is required for the maintenance of notch signaling and gliogenic competence during mouse retinal development. Dev. Neurobiol. 71, 1153–1169

30. Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E., and Tabin, C. J. (2005) The RNase III enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. USA. 102, 10989–10903

31. Ho, J. I., and Marsden, P. A. (2008) Dicer cuts the kidney. J. Am. Soc. Nephrol. 19, 2043–2046

32. Huang, T., Liu, Y., Huang, M., Zhao, X., and Cheng, L. (2010) Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J. Mol. Cell Biol. 2, 152–163

33. Huang, T. C., Saharabuddhe, N. A., Kim, M. S., Getnet, D., Yang, Y., Peterson, J. M., Ghosh, B., Chakerady, R., Leach, S. D., Marchionni, L., Wong, G. W., and Pandey, A. (2012) Regulation of lipid metabolism by dicer revealed through SILAC mice. J. Proteome Res. 11, 2193–2205

34. Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D. M., and Rajewsky, K. (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501

35. Kim, G. J., Georg, I., Scherthan, H., Merkenschlager, M., Guillo, F., Scherer, G., and Barrionuevo, F. (2010) Dicer is required for Sertoli cell function and survival. Int. J. Dev. Biol. 54, 867–875

36. Lei, L., Jin, S., Gonzalez, G., Behringer, R. R., and Woodruff, T. K. (2010) The regulatory role of Dicer in folliculogenesis in mice. Mol. Cell. Endo.
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

37. Meng, D. M., Wang, L., Xu, J. R., Yan, S. L., Zhou, L., and Mi, Q. S. (2011) Fabp4-Cre-mediated deletion of the miRNA-processing enzyme Dicer causes mouse embryonic lethality. *Acta Diabetologia*, in press.

38. Muzhasani, R., Puri, V., Hoover, K., Czech, M. P., Imbalzano, A. N., and Jones, S. N. (2011) Dicer is required for the formation of white but not brown adipose tissue. *J. Cell Physiol.* 226, 1399–1406.

39. Muljo, S. A., Ansel, K. M., Kanellopoulou, C., Livingston, D. M., Rao, A., and Rajewsky, K. (2005) Aberrant T cell differentiation in the absence of Dicer. *J. Exp. Med.* 202, 261–269.

40. Nagaraja, A. K., Andreu-Vieyra, C., Franco, H. L., Ma, L., Chen, R., Han, D. Y., Zhu, H., Agno, J. E., Gunaratne, P. H., DeMayo, F. J., and Matzuk, M. M. (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. *Mol. Endocrinol.* 22, 2336–2352.

41. Nakamura, M., Ando, R., Nakazawa, T., Yudazono, T., Tsutsumi, N., Hanatani, N., Ohgake, T., Hanaoka, F., and Eki, T. (2007) Dicer-related drh-3 gene functions in germ line development by maintenance of chromosomal integrity in Caenorhabditis elegans. *Genes Cells* 12, 997–1010.

42. Pan, Y., Balazs, L., Tighi, G., and Yue, J. (2011) Conditional deletion of Dicer in vascular smooth muscle cells leads to the developmental delay and embryonic mortality. *Biochim. Biophys. Res. Commun.* 408, 369–374.

43. Saal, S., and Harvey, S. J. (2009) MicroRNAs and the kidney. Coming of age. *Curr. Opin. Nephrol. Hypertens.* 18, 317–323.

44. Sequeira-Lopez, M. L., Weatherford, E. T., Borges, G. R., Monteagudo, M. C., Lentz, S. W., Harfe, B. D., Cardoso, O., Sigmund, C. D., and Gomez, R. A. (2010) The microRNA-processing enzyme Dicer maintains juxtaglomerular cells. *J. Am. Soc. Nephrol.* 21, 460–467.

45. Tang, K. F., Wang, Y., Wang, P., Chen, M., Chen, Y., Hu, H. D., Hu, P., Wang, B., Yang, W., and Ren, H. (2007) Up-regulation of PHLD2A in Dicer knockdown HK293 cells. *Biochim. Biophys. Acta* 1770, 820–825.

46. Wang, Y., Medvid, R., Melton, C., Jaenisch, R., and Blelloch, R. (2007) Dicer is required for haploid male germ cell differentiation in mice. *Proc. Natl. Acad. Sci. U.S.A.* 104, 6602–6607.

47. Wang, Y., Xu, H., Miraglia, I. L., and Cooke, S. T. (2000) Human RNA III is a 160-kDa protein involved in priribosomal RNA processing. *J. Biol. Chem.* 275, 36957–36965.

48. Chong, M. M., Rasmussen, J. P., Rudensky, A. Y., Rudensky, A. Y., and Littman, D. R. (2008) The RNA III enzyme Drosha is critical in T cells preventing for lethal inflammatory disease. *J. Exp. Med.* 205, 2005–2017.

49. Sadate-Ngatchou, P. I., Payne, C. J., Dearth, A. T., and Braun, R. E. (2008) Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice. *Genesis* 46, 738–742.

50. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., and Luo, L. (2007) A global double-fluorescent Cre reporter mouse. *Genesis* 45, 593–605.

51. Bellvé, A. R. (1993) Purification, culture, and fractionation of spermatogenic cells. *Methods Enzymol.* 225, 84–113.

52. Song, R., Ro, S., Michaels, J. D., Park, C., McCurry, J. R., and Yan, W. (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. *Nat. Genet.* 41, 488–493.

53. Zheng, H., Stratton, C. J., Morozumi, K., Jin, Y., Yamagami, R., and Yan, W. (2007) Lack of Spem1 causes aberrant cytoplasm removal, sperm deformaton, and male infertility. *Proc. Natl. Acad. Sci. U.S.A.* 104, 6652–6657.

54. Miyutina, T., Yamada, K., Hattori, E., Okida, H., Ono, Y., Terai, G., Yoshizawa, A., Komori, T., and Asai, K. (2009) The functional RNA database 3.0. Databases to support mining and annotation of functional RNAs. *Nucleic Acids Res.* 37, D89–D92.

55. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., and Gilad, Y. (2008) RNA-seq. An assessment of technical reproducibility and comparison with gene expression arrays. *Genome Res.* 18, 1509–1517.

56. Hogarth, C. A., Mitchell, D., Evanoff, R., Small, C., and Griswold, M. (2011) Identification and expression of potential regulators of the mammalian mitotic-to-metiotic transition. *Biochim. Biophys. Acta* 1815, 39–44.

57. Royo, H., Polikiewicz, G., Mahadevaiah, S. K., Prosser, H., Mitchell, M., Bradley, A., de Rooij, D. G., Burgoyne, P. S., and Turner, J. M. (2010) Evidence that meiotic sex chromosome inactivation is essential for male fertility. *Curr. Biol.* 20, 2117–2123.

58. Turner, J. M., Mahadevaiah, S. K., Ellis, P. J., Mitchell, M. J., and Burgoyne, P. S. (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. *Dev. Cell* 10, 521–529.

59. Namekawa, S. H., and Lee, J. T. (2011) Detection of nascent RNA, single-copy DNA and protein localization by immuno-FISH in mouse germ cells and prematuration embryos. *Nat. Protoc.* 6, 270–284.

60. McCurry, J. R., Berg, W. M., Paragoudakis, S. I., Zhang, P. L., Dhillon, D. D., Arnold, B. L., and Rossi, J. J. (1992) Differential transcription of Yk genes during spermatogenesis in the mouse. *Dev. Biol.* 154, 160–168.

61. Ro, S., Park, C., Sanders, K. M., McCurry, J. R., and Yan, W. (2007) Cloning and expression profiling of testis-expressed microRNAs. *Dev. Biol.* 311, 592–602.

62. Wu, H., Xu, H., Miraglia, I. L., and Cooke, S. T. (2000) Human RNA III is a 160-kDa protein involved in preribosomal RNA processing. *J. Biol. Chem.* 275, 36957–36965.

63. Kim, V. N., Han, J., and Siomi, M. C. (2009) Biogenesis of small RNAs in animals. *Nat. Rev. Mol. Cell Biol.* 10, 126–139.

64. Shukla, K. K., Mahdi, A. A., and Rajender, S. (2012) Apoptosis, spermatogenesis, and male infertility. *Front. Biosci. (Elite Ed)* 4, 746–754.

65. Print, C. G., and Loveland, K. L. (2000) Germ cell suicide. New insights into apoptosis during spermatogenesis. *BioEssays* 22, 423–430.

66. Yang, I., Medvedev, S., Yu, J., Tang, L. C., Agno, J. E., Matzuk, M. M., Schultz, R. M., and Hecht, N. B. (2005) Absence of the DNA-/RNA-bindng protein MSY2 results in male and female infertility. *Proc. Natl. Acad. Sci. U.S.A.* 102, 5755–5760.

67. Guo, H., Ingolia, N. T., Weissman, J. S., and Bartel, D. P. (2010) Mammmalian microRNAs predominantly act to decrease target mRNA levels. *Nature* 466, 835–840.

68. Namekawa, S. H., Park, P. J., Zhang, L. F., Shima, J. E., McCurry, J. R., Griswold, M. D., and Lee, J. T. (2006) Postmeiotic sex chromatin in the male germ line of mice. *Curr. Biol.* 16, 660–667.

69. Turner, J. M. (2007) Meiotic sex chromosome inactivation. *Development* 134, 1823–1831.

70. Namekawa, S. H., Vandenberg, J. L., McCurry, J. R., and Lee, J. T. (2007) Sex chromosome silencing in the marsupial male germ line. *Proc. Natl.
Male Germ Line Ablation of Drosha Impairs Spermatogenesis

81. Kaneko, H., Dridi, S., Tarallo, V., Gelfand, B. D., Fowler, B. J., Cho, W. G., Kleinman, M. E., Ponicsan, S. L., Hauswirth, W. W., Chiodo, V. A., Karikó, K., Yoo, J. W., Lee, D. K., Hadziahmetovic, M., Song, Y., Misra, S., Chaudhuri, G., Buas, F. W., Braun, R. E., Hinton, D. R., Zhang, Q., Grossniklaus, H. E., Provis, J. M., Madigan, M. C., Milam, A. H., Justice, N. L., Albuquerque, R. J., Blandford, A. D., Bogdanovich, S., Hirano, Y., Wittta, J., Fuchs, E., Littman, D. R., Ambati, B. K., Rudin, C. M., Chong, M. M., Provost, P., Kugel, J. F., Goodrich, J. A., Dunaeif, J. L., Baffi, J. Z., and Ambati, J. (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471, 325–330

82. Murchison, E. P., Stein, P., Xuan, Z., Pan, H., Zhang, M. Q., Schultz, R. M., and Hannon, G. J. (2007) Critical roles for Dicer in the female germ line. Genes Dev. 21, 682–693

83. Lomelí, H., Ramos-Mejía, V., Gertsenstein, M., Lobe, C. G., and Nagy, A. (2000) Targeted insertion of Cre recombinase into the TNAP gene. Excision in primordial germ cells. Genesis 26, 116–117

84. Nakahara, K., and Carthew, R. W. (2004) Expanding roles for miRNAs and siRNAs in cell regulation. Curr. Opin. Cell Biol. 16, 127–133

85. Vasudevan, S., Tong, Y., and Steitz, J. A. (2007) Switching from repression to activation. MicroRNAs can up-regulate translation. Science 318, 1931–1934

86. Suh, N., and Blelloch, R. (2011) Small RNAs in early mammalian development. From gametes to gastrulation. Development 138, 1653–1661

87. Tam, O. H., Aravin, A. A., Stein, P., Girard, A., Murchison, E. P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R. M., and Hannon, G. J. (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538