Cemented versus uncemented hemiarthroplasty for elderly patients with displaced fracture of the femoral neck

A PRISMA-compliant meta-analysis of randomized controlled trial

Binfeng Liu, MD, Ang Li, MD, Jialin Wang, Hongbo Wang, MD, Gongwei Zhai, MD, Haohao Ma, MD, Xiaoyu Lian, MD, Bo Zhang, MD, Liyun Liu, PhD*, Yanzheng Gao, PhD*

Abstract

Background: This meta-analysis was performed to incorporate newly published, high-quality randomized controlled trials (RCTs) to determine the effects of cemented versus uncemented hemiarthroplasty for elderly patients with displaced fracture of the femoral neck.

Methods: The following electronic databases were extensively searched from the inception of the database through December 2018: EMBASE, Medline, the Cochrane Library, and Web of Science. RCTs focusing on the outcomes of cemented and uncemented hemiarthroplasty were reviewed and screened for eligibility. We used the Cochrane Collaboration’s Review Manager Software to perform meta-analyses. Two independent reviewers extracted the data and assessed the study quality and bias risk through the Cochrane Collaboration tool. Use fixed effect model or random effect model to pooled data. Cochran’s Q statistic was used to evaluate heterogeneity, and I^2 statistic was used to quantify heterogeneity.

Results: Fifteen RCTs were enrolled (n=3790) (uncemented hemiarthroplasty group = 1015; cemented hemiarthroplasty group = 1037) (mean age ranged from 70–85.3 years; all patients >65 years). The meta-analysis showed that cemented hemiarthroplasty has a longer operating time (weighted mean difference, 8.03; 95% confidence interval (CI) 4.83–11.23; P<.00001), less pain (odds ratio, 0.48; 95% CI 4.83–11.23; P=.02), lower mortality 1-year (odds ratio, 0.78; 95% CI 0.62–0.98; P=.03) and fewer implant-related complications (odds ratio, 0.20; 95% CI 0.13–0.30; P<.00001) than Uncemented hemiarthroplasty. However, there are still some limitations in our study, such as the uniformity of the surgery administration programme and rehabilitation scheme, and the small sample size of the included studies.

Conclusions: Cemented hemiarthroplasty for elderly patients with displaced fracture of femoral neck may acquire better functional results.

Abbreviations: CI = confidence interval, HHS = Harris hip score, ORs = odds ratios, RCT = randomized controlled trial, WMD = weighted mean difference.

Keywords: cemented, displaced fracture of the femoral neck, hemiarthroplasty, meta-analysis, uncemented

Cemented versus uncemented hemiarthroplasty for elderly patients with displaced fracture of the femoral neck: a PRISMA-compliant meta-analysis of randomized controlled trial. Medicine 2020;99:33(e21731).

Received: 29 March 2019 / Received in final form: 23 June 2020 / Accepted: 11 July 2020

http://dx.doi.org/10.1097/MD.00000000000021731
1. Introduction

Femoral neck fracture is a common and costly health problem worldwide. With increases in the ageing population and average life expectancy, the frequency of these fractures is steadily increasing.[1,2] This problem is expected to worsen. Hemiarthroplasty is the most common treatment for displaced fractures of the femoral neck in the elderly individuals and is associated with better functional outcome and fewer reoperations than internal fixation.[3] There are 2 different methods for hemiarthroplasty: fixation with bone cement or press-fit without cement.

Many studies, systematic reviews and meta-analyses[4–7] have suggested that cemented hemiarthroplasty can be achieved with less pain by providing an immediate strong interlock between the prosthesis and the periprosthetic bone tissue. Cement fixation can decrease postoperative complications related to late mobilization, such as pneumonia or urinary tract infection, compared with uncemented fixation. However, other studies favor uncemented prostheses as the operative time, blood loss and incidence of perioperative mortality are less.[8] As there is still a dispute about which treatment is more suitable for elderly patients with displaced fracture of femoral neck, we need critical evidence to provide guidance for clinical treatment.

Until recently, few systematic reviews and meta-analyses comparing cemented hemiarthroplasty with uncemented hemiarthroplasty had been published. However, several new randomized controlled trials (RCTs) have been published in recent years. The purpose of this meta-analysis was to include newly published high-quality RCTs to compare the clinical outcome of cemented and uncemented hemiarthroplasty for the treatment for elderly patients with displaced fracture of femoral neck in order to provide the best clinical evidence to provide guidance for clinical treatment.

2. Materials and methods

2.1. Literature search

The following electronic databases were extensively searched independently by 2 investigators from the inception of the database through December 2018: EMBASE, Medline, the Cochrane Library, and Web of Science. The search strategy was created with the assistance of a librarian using a combination of terms including hemiarthroplasty, femoral neck fracture, hip, hip fracture, bone cement, bone cements, cemented, uncemented, cementless, RCT, prospective, meta, review, and random. We limited searches to RCTs, systematic reviews, and meta-analyses and imposed no language or other limitations. Manual searches of relevant trials, reviews, and related articles were also performed. When possible, authors were contacted to obtain missing information.

2.2. Inclusion and exclusion criteria

To be included in this analysis, trials had to fulfil the following inclusion criteria:

(1) RCTs and
(2) studies comparing the outcome of cemented and uncemented hemiarthroplasty; The exclusion criteria included the following:
(3) patients with a previous fracture of the same hip or with a pathological fracture;
(4) case reports, editorials, experimental studies, conference articles, non-English studies, and other studies that failed to report the outcome of interest;
(5) repeated studies and data; and
(6) Articles that did not report any treatment results in the cemented or uncemented groups; 2 authors independently assessed the articles for compliance with the inclusion criteria, and disagreement was followed by discussion until consensus was reached.

2.3. Selection of the literature

After removing duplicates, the titles and abstracts were scanned by 2 independent investigators according to predefined selection criteria and potentially relevant RCTs were selected. Hard copies of all relevant articles were retrieved and read in full for further identification. The relevant data were extracted by adapting a predetermined standardized procedure, which involved first authors, year of publication, country, participant demographic characteristics, and treatment regime for each group. Disagreements regarding studies to be included and data abstraction were resolved by consensus or discussion with a 3rd author.

2.4. Quality assessment

The Cochrane collaboration’s tool for assessing the risk of bias was used to evaluate the methodological quality of the included trials. This tool focuses on the internal validity of the trial and assesses the risk of possible bias in different phases of the trial. The items in the tool are as follows: random sequence generation, allocation concealment, blinding of outcome assessment, blinding of participants and personnel, incomplete outcome data, selective reporting, and other bias. Each item was classified according to a high (H), low (L), and unclear (U), respectively. All of the assessments were conducted by 2 independent reviewers (LBF, LA). Any controversies were settled by consensus or discussion with a 3rd author (WHB).

2.5. Data extraction

All data were extracted independently by 2 reviewers. The following data were extracted: mortality, blood loss, operation time, length of hospital stay, residual pain, reoperation rate, complications, and functional outcomes. When only the survival curve was available, mortality was estimated. A consensus method was used to resolve disagreements, and a 3rd reviewer was consulted when disagreements persisted. To understand the baseline of each included study, we extracted data from trials that included the following information: number of patients enrolled, characteristics of participants, male/female ratio, and follow-up time.

2.6. Statistical analysis

The Cochrane Collaboration Review Manager Software Package (Rev Man Version 5.3) was used to perform the meta-analyses. The overall effect size of each anesthetic was calculated as the weighted average of the inverse variance for the study-specific estimates. For dichotomous variables, odds ratios (ORs) with the corresponding 95% confidence intervals (CIs) were calculated, and the weighted mean difference (WMD) was used to estimate numerical variables.
Heterogeneity was evaluated with the χ^2 distribution test and Higgins I2 index. They were synthesized results was done by pooling the data and using a fixed effects model meta-analysis. However, if the I2 indicated moderate or high heterogeneity (i.e., I2 above 50%), a random effect model was selected for analysis. As defined by Higgins et al,[9] heterogeneity was tested by Cochran’s Q. If essential, subgroup analysis was conducted to identify and explain the heterogeneity, stratifying the data according to different time periods. When only the median, the minimum, the maximum, or the 25th and 75th percentiles were available, the sample mean and standard deviation were estimated.

2.7. Ethical statement

As all analyses were conducted with data from previously published studies, ethical approval was not necessary.

3. Results

3.1. Description of studies

Figure 1 presents a flowchart describing the process by which we screened and selected trials. The initial literature search yielded 450 articles in all. According to the inclusion and exclusion criteria, duplicate checking and title and abstract screening resulted in 47 publications. One study was published twice with a different length of follow up.[10,11] We only used chose the most recent study.[11] Consequently, 15 studies[11–25] were analyzed in the meta-analysis. All selected studies in our meta-analysis were published between 1977 and 2018 and included 2052 patients: 1015 in the uncemented hemiarthroplasty group and 1037 in the cemented hemiarthroplasty group. The average reported age of the patients ranged from 70 to 85.3 years. Every patient in the included study had a fracture of the femoral neck, and the...
Table 1
Characteristics of the studies included in the meta-analysis.

Author/yr (reference)	Enrollment period	Stage	Intervention	Hips enrolled	Hips analyzed	Mean age (yr)	Female (%)	Follow-up (mo)	ITT
Sadr B et al 1977[7]	Unclear	IV	Thompson/Thompson	40 (20/20)	25 (11/14)	77/78.4	65/65	12 No	
Sonne-Holm et al 1982[2]	1979	Unclear	Austin Moore/Austin Moore	112 (55/57)	75 (40/35)	76	75	12 No	
Dor L D et al 1980[8]	1980–1982	IV	Smooth stem	50 (37/13)	50 (37/13)	72/66	70/36/92	24 No	
Emery R J et al 1991[4]	Unclear	IV	Thompson/Austin Moore	57 (27/26)	57 (27/26)	78/79.6	88/94/64	17/18 (mean) No	
Santini S et al 2005[5]	2000–2001	Unclear	Unclear	106 (53/53)	106 (53/53)	82.09/79.68	75.5/79.2	12 No	
Parker M et al 2010[9]	2001–2006	IV	Thompson/Austin Moore	400 (200/200)	400 (200/200)	83/85	80/73	60 Yes	
Deangelis J P et al[12]	2005–2008	IV	LD/FX/beaded tufloc	130 (66/64)	130 (66/64)	81.82/86.2	78/76.05	12 Yes	
Taylor F et al 2012[6]	2006–2008	IV	Exter stem/allclassic stem	160 (80/80)	160 (80/80)	85.3/85.1	71.25/66.25	24 Yes	
Talones O et al 2013[3]	2005–2010	Unclear	Landos Titan/Landos Coral	334 (162/172)	334 (162/172)	84.3/84.0	72.41/78.5	12 No	
Vidovic D et al 2013[13]	2007–2010	IV	Modular/modular Austin Moore	79 (38/41)	60 (30/30)	82.9/82.04	100	12 No	
Langsetl E et al 2014[14]	2004–2006	IV	Spectrum/HA-coated	230 (115/115)	220 (112/108)	83.4/83.0	78/74	60 No	
Khomari M et al 2016[12]	Unclear	Unclear	Zimmer/Zimmer	51 (22/29)	51 (22/29)	79/71.7	90/41	18.9/15 (mean) No	
Moeran S et al 2017[17]	2008–2012	IV	Muller straight stem/DB-10	217	201 (110/91)	83.0/84.0	75/67	12 No	
Prashanth, Y S et al 2017[14]	2006–2014	IV	Unclear	52 (24/28)	52 (24/28)	70	57/69	59.3 (mean) No	
Banerius B et al 2018[9]	2009–2013	IV	Exter stem/HA-coated bimetric stem	83 (39/44)	83 (39/44)	Unclear	Unclear	48 Yes	

Stage: The Garden classification of femoral neck fractures; intervention: implant type; hips enrolled: peoples enrolled in study; hips analyzed: peoples analyzed finally in study; age is displayed as mean age for the total population and each subgroup; the information in front of “/” represents the information of cemented group, and after “/” represents the information of uncemented group. ITT = intention-to-treat, Unclear = it is represents a value was not included in the study.

3.3. Length of hospital stay
Eight studies[11,15–17,19,21,23,24] compared the length of hospital stay in this meta-analysis. However, there was no significant difference between the cement group and the non-cement group in these studies. The forest plot is illustrated in Figure 4.
our previous analysis (WMD = 9.26, 95% CI 7.74–10.78; \(P < .00001 \); fixed-effects model) with low heterogeneity (\(\chi^2 = 12.74; I^2 = 45\% ; P = .08 \)).

3.5. Reoperation rate

Seven studies included data on the reoperation rates reported in those studies.\[11,14,17–19,22,23\] In total, 25 patients from the cemented group of 627 patients and 37 patients from the uncemented group of 585 patients underwent revision surgery. In 1 trial,\[22\] no patients underwent revision surgery. The fixed-effects meta-analysis of the 7 trials showed that there was no significant difference in the reoperation rate between the cemented group and the uncemented group. The odds ratio of reoperation for any reason was 0.60 (95% CI 0.35–1.01;\(P = .06 \)), and there was no heterogeneity (\(\chi^2 = 1.70; I^2 = 0\% ; P = .89 \)). The forest plot is illustrated in Figure 7.

3.6. Residual pain

Overall 8 studies\[11–15,17,19,23\] reported residual pain. Five studies\[11–13,19,23\] showed no significant difference between the cemented groups and uncemented groups. However, the random-effects meta-analysis of all 8 trials revealed that the cemented groups were associated with less pain (OR = 0.48; 95% CI 0.27–0.88; \(P = .02 \); random-effects model) compared with the uncemented groups. (Heterogeneity: \(\chi^2 = 20.42; I^2 = 66\% ; P = .005 \)). The results are presented in Figure 8.

3.7. Blood loss

Data regarding blood loss were reported in 6 studies.\[11,15,18–20,23\] All 6 studies reported intraoperative blood loss and 2 studies\[11,20\] reported postoperative blood loss. The random-effects meta-analysis showed no significant difference in intraoperative blood loss between the 2 groups, with a pooled WMD of 22.41 (95% CI –26.07–70.89; \(P = .36 \)). The forest plot is presented in Figure 9. With respect to the large statistical heterogeneity, the \(I^2 \) value was 80%. To compare the difference and evaluate the sensitivity of the meta-analyses, a sensitivity analysis was performed to evaluate the stability of the meta-analysis. When 2 studies\[11,20\] were excluded from the meta-analysis, the \(I^2 \) dropped to 56% and the sensitivity analysis is consistent with our previous analysis (WMD = –11.19; 95% CI –54.29 to 31.91 P = .61; \(\chi^2 = 6.79; I^2 = 56\% \); random-effects model). The sensitivity analysis are illustrated in Figure 10.

3.8. Mortality

Twelve studies\[11–13,15–21,23,25\] reported mortality at different times. There were no significant differences in short term postoperative mortality between the 2 groups (OR = 0.91; 95% CI 0.62–1.33;\(P = .65 \); heterogeneity: \(\chi^2 = 3.52; I^2 = 0\% ; P = .83 \)). Additionally, no significant differences were detected between the 2 groups for mortality at 2 years (OR = 1.02; 95% CI 0.70–1.48; \(P = .94 \); heterogeneity: \(\chi^2 = 1.14; I^2 = 0\% ; P = .77; \)) or 4 years (OR = 0.80; 95% CI 0.50–1.28; \(P = .35 \); heterogeneity: \(\chi^2 = 0.01; I^2 = 0\% ; P = .93 \)). However, fixed-effect meta-analysis of 8 trials showed that the mortality at 1 year in the cemented group was lower than that in the uncemented group. (OR = 0.78; 95% CI 0.62–0.98; \(P = .03 \); heterogeneity: \(\chi^2 = 5.82; I^2 = 0\% ; P = .56 \)). Forest plots for mortality at different times are presented in Figure 9.

3.9. Harris hip score (HHS)

Three studies\[11,21,24\] reported the HHS at different times, such as at 3 months, 6 months, 1 year or 5 years. The random-effect
Figure 3. Risk of bias graph of randomized controlled trials.

Figure 4. Forest plot for hospital stay.

Figure 5. Forest plot for operation time.

Figure 6. Forest plot for sensitivity analysis of operation time.
meta-analysis of 3 trials showed no significant difference in HHS at 3 months (WMD = 1.63; 95% CI: -1.89 to 5.14; \(P = .36\)); heterogeneity: \(x^2 = 4.20; I^2 = 52\%\); 6 months (WMD = 2.31; 95% CI: -1.81 to 6.43; \(P = .27\)); heterogeneity: \(x^2 = 2.62; I^2 = 62\%\); \(P = .11\)), or 1 year (WMD = 1.93; 95% CI: -1.34 to 5.19; \(P = .25\)); heterogeneity: \(x^2 = 4.09; I^2 = 51\%\); \(P = .13\). However, Langslet et al[11] showed that the HHS at 5 years in the cemented group was lower than that in the uncemented group (WMD = -9.90; 95% CI: -17.75 to -2.05; \(P = .01\)). Forest plots for HHS at different times are presented in Figure 12.
Figure 10. Forest plot for sensitivity analysis of intraoperative blood loss.

Figure 11. Forest plot for mortality.
3.10. Complication

Eleven studies reported complications. Our findings show that significantly fewer implant-related complications occurred in the cemented group than in the uncemented group (OR = 0.20, 95% CI 0.13–0.30, P < .00001), with small heterogeneity ($\chi^2 = 13.63; I^2 = 41\%$, $P = .09$). However, there was no significant difference between the cemented group and uncemented group in terms of cardiovascular complications (OR = 1.41, 95% CI 0.90–2.21, $P = .13$; $\chi^2 = 3.88; I^2 = 0\%$, $P = .79$), local complications (OR = 1.45, 95% CI 0.96–2.18, $P = .07$; $\chi^2 = 6.04; I^2 = 0\%$, $P = .74$) and general complications (OR = 0.84, 95% CI 0.62–1.14, $P = .26$; $\chi^2 = 6.05$; $I^2 = 0\%$, $P = .53$). The forest plot is presented in Figure 13.

4. Discussion

Our study showed that there were no significant differences in the length of hospital stay between the 2 groups, which was consistent with 2 previous meta-analyses.\[26,27\] We also found there was no statistically significant difference in residual pain, which was different from 2 systematic reviews.\[15,28\] On the one hand, Xiangping Luo et al\[5\] and Azegami et al\[28\] suggested that the residual pain in the cemented group was lower than that in the uncemented group; on the other hand, Guangzhi Ning et al\[26\] showed that cemented hemiarthroplasty did not reduce the risk of residual pain. Our pooled data from the meta-analysis comparing cemented with uncemented hemiarthroplasty suggested that the cemented group is associated with a longer operation time. A previous meta-analysis\[26\] reported the same results. However, Veldman et al\[27\] reported that the mean operating time was 9 minutes shorter for cementless stems than for uncemented stems. Many potential factors, such as the type of prosthesis and doctor’s skill, may affect this clinical outcome. In our study, we also compared the mortality and HHSs between the 2 groups at different times. Our findings showed that there was no statistically significant difference in mortality rate between the 2 groups in terms of short-term postoperative mortality and that the 1-year mortality in the cement group was lower than that in the uncemented group; Tao Li et al\[4\] found that the use of cement did not increase the mortality 1 year postoperatively. Long-term mortality may better indicate the difference in mortality between the 2 groups and our finding showed that there was no statistically significant difference in mortality rates between the 2 groups at 2 and 4 years. Some studies\[29\] also showed that there was no significant difference in the mortality rate between the 2 groups at the 12 month follow-up. Many risk factors, such as deteriorated preoperative cardiopulmonary function, old age, and physical reserve, may increase patient mortality.\[30,31\] Regarding hip function, due to the various outcome parameters adopted for the assessment of postoperative hip function, it was difficult to pool all the results. Therefore, we compared the HHS at different times using 3 eligible RCTs. Our findings showed that the HHS at 3 months, 6 months, and 1 year were not significantly different between the cemented hemiarthroplasty groups and the uncemented hemiarthroplasty groups. However Vidovic et al\[21\] supported the view that cemented hemiarthroplasty should be used for the management of displaced femoral neck fractures, as it provides better functional outcomes than uncemented hemi-
8.1.1 Implant-related complication

Study or Subgroup	Events	Total	Weight	M-H, Fixed, 95% CI
Deangelis, J. P 2012	2	66	3	2.6% 0.64 [0.10, 3.93]
Khorami, M 2016	0	22	5	4.1% 0.10 [0.01, 1.89]
Langset, E 2014	7	112	11	9.3% 0.59 [0.22, 1.58]
Moerman, S 2017	8	110	19	17.1% 0.30 [0.12, 0.72]
Parker, M I 2010	2	200	18	15.8% 0.10 [0.02, 0.45]
Sadr, B 1977	1	11	10	7.1% 0.04 [0.00, 0.42]
Santini, S 2005	1	53	2	1.7% 0.49 [0.04, 5.58]
Sonne-Holm, S 1982	3	35	16	12.1% 0.14 [0.04, 0.54]
Taylor, F 2012	5	80	36	30.0% 0.08 [0.03, 0.22]
Subtotal (95% CI)	669	679	100.0%	0.29 [0.13, 0.59]

Total events: 29

Heterogeneity: Ch² = 13.63, df = 8 (P = 0.09); I² = 41%

Test for overall effect: Z = 7.54 (P < 0.00001)

8.1.2 Cardiovascular complication

Study or Subgroup	Events	Total	Weight	M-H, Fixed, 95% CI
Deangelis, J. P 2012	2	66	1	64 3.0% 1.97 [0.17, 22.26]
Elmer, R. J. 1991	1	27	0	26 1.5% 3.00 [0.12, 77.03]
Khorami, M 2016	3	22	1	29 2.3% 4.42 [0.43, 45.76]
Langset, E 2014	5	112	1	108 3.0% 5.00 [0.57, 43.52]
Moerman, S 2017	18	110	12	91 33.5% 1.29 [0.58, 2.84]
Parker, M I 2010	11	200	12	200 34.5% 0.91 [0.39, 2.12]
Santini, S 2005	4	53	2	53 5.6% 2.08 [0.36, 11.88]
Taylor, F 2012	7	80	6	80 16.7% 1.18 [0.38, 3.69]
Subtotal (95% CI)	670	651	100.0%	1.41 [0.90, 2.21]

Total events: 51

Heterogeneity: Ch² = 3.88, df = 7 (P = 0.79); I² = 0%

Test for overall effect: Z = 1.51 (P = 0.13)

8.1.3 Local complication

Study or Subgroup	Events	Total	Weight	M-H, Fixed, 95% CI
Deangelis, J. P 2012	1	66	1	64 2.6% 0.97 [0.06, 15.83]
Khorami, M 2016	1	22	1	29 2.1% 1.33 [0.08, 22.57]
Langset, E 2014	4	112	1	108 2.5% 3.96 [0.44, 36.04]
Moerman, S 2017	19	110	12	91 28.1% 1.37 [0.63, 3.01]
Parker, M I 2010	15	200	13	200 31.1% 1.17 [0.54, 2.52]
Prashanth, Y. S 2017	4	24	0	28 1.0% 12.51 [0.64, 245.44]
Sadr, B 1977	0	11	2	14 5.5% 0.22 [0.01, 5.02]
Santini, S 2005	1	53	0	53 1.3% 3.06 [0.12, 76.76]
Sonne-Holm, S 1982	13	35	9	40 13.6% 2.04 [0.74, 5.59]
Taylor, F 2012	4	80	5	80 12.3% 0.79 [0.20, 3.05]
Subtotal (95% CI)	713	707	100.0%	1.45 [0.96, 2.18]

Total events: 62

Heterogeneity: Ch² = 6.04, df = 9 (P = 0.74); I² = 0%

Test for overall effect: Z = 1.76 (P = 0.07)

8.1.4 General complication

Study or Subgroup	Events	Total	Weight	M-H, Fixed, 95% CI
Deangelis, J. P 2012	5	66	5	64 8.4% 0.67 [0.16, 1.86]
Elmer, R. J. 1991	7	27	5	26 4.2% 1.47 [0.40, 5.40]
Khorami, M 2016	1	22	2	29 1.6% 0.64 [0.05, 7.58]
Langset, E 2014	6	112	9	108 9.6% 0.62 [0.21, 1.81]
Moerman, S 2017	45	110	32	91 23.0% 1.28 [0.72, 2.27]
Parker, M I 2010	15	200	28	200 28.8% 0.50 [0.26, 0.96]
Santini, S 2005	15	53	17	53 13.8% 0.84 [0.36, 1.92]
Taylor, F 2012	11	80	11	80 10.6% 1.00 [0.41, 2.46]
Subtotal (95% CI)	670	651	100.0%	0.84 [0.62, 1.14]

Total events: 105

Heterogeneity: Ch² = 6.05, df = 7 (P = 0.53); I² = 0%

Test for overall effect: Z = 1.13 (P = 0.26)

Test for subgroup differences: Ch² = 56.72, df = 3 (P < 0.00001); I² = 94.7%

Figure 13. Forest plot for complication.
arthroplasty. However, in Langslet et al.\(^{[11]}\) a 5-year follow-up of a randomized trial showed that the HHSs at 5 years were higher in the uncemented group than in the cemented group (86.2 vs 76.3; mean difference 9.9; 95% CI, 1.9–17.9). Finally, we compared the incidence of complications between the 2 groups. In total, 9 of the included studies reported implant-related complications and the pooled results showed that cemented hemiarthroplasty has a lower risk of implant-related complications compared with uncemented hemiarthroplasty with small heterogeneity. Jameson et al.\(^{[32]}\) reported that the uncemented group had more intraoperative and postoperative prosthesis loosening, periprosthetic fractures, and dislocation. Previous studies\(^{[4,33–36]}\) also concluded that cemented stems have fewer implant-related complications than cementless stems. Therefore, surgeons should pay attention to these possible implant-related complications before surgery. We also found no significant difference between the cemented group and the uncemented group in terms of local complications and general complications. This suggests that cement has little, if not no, effect on local complications and general complications. It is worth considering that there is no difference in the rate of cardiovascular complications between the 2 groups. Some previous studies\(^{[7,37,38]}\) reported that the cement prosthesis may increase the risk of hypoxemia and transient hypotension, cardiovascular accidents, and pulmonary embolism. Therefore, high-quality evidence and well-designed RCTs are still necessary.

Compared with previous meta-analyses, there are some advantages to our study. First, we used an exhaustive search strategy and more strict inclusion criteria. A total of 15 newly published, high-quality RCTs were strictly included in this study to provide more effective evidence. Second, our study analyzed clinical outcomes including the length of hospital stay, operation time, reoperation rate, residual pain, blood loss, mortality, HHS, and complications. Mortality was further stratified into short-term postoperative mortality and mortality at 1 year, mortality at 2 years, and mortality at 4 years postoperatively. Complications were also divided into 4 subgroups: implant-related complications, cardiovascular complications, local complications, and general complication. It can reduce the potential bias risk from pooling all kinds of mortality and complications. Third, the HHS was used as to evaluate hip function to reduce the deviation of descriptive analysis.

However, our research still has some limitations. The limitations of this meta-analysis involve the restrictions on the publication language, the uniformity of the surgery administration programme and rehabilitation scheme, and the small sample size of the included studies. The disturbing effects of location bias and publication bias on systematic reviews and meta-analyses are well documented.\(^{[39–41]}\) The variety of methods used to assess the functional results in the included studies, made it difficult to carry out a quantitative synthesis of the functional results. Due to certain features of the surgery techniques, it is impossible to blind orthopedic surgeons. Consequently, caution should be taken when interpreting the estimates of this meta-analysis. Finally, our evidence showed considerable statistical heterogeneity for several outcomes across the trials; however, the regression analysis and sensitivity analysis suggested that the results were stable.

5. Conclusions

Cemented hemiarthroplasty for elderly patients with displaced fracture of femoral neck may acquire better functional results.

Author contributions

- **Data curation:** Binfeng Liu, Ang Li.
- **Formal analysis:** Jialin Wang, Hongbo Wang, Xiaoyu Lian.
- **Investigation:** Gongwei Zhai, Haohao Ma, Bo Zhang.
- **Methodology:** Binfeng Liu, Ang Li.
- **Project administration:** Jialin Wang.
- **Resources:** Yanzheng Gao, Liyun Liu.
- **Software:** Liyun Liu.
- **Validation:** Binfeng Liu.

Writing – original draft: Binfeng Liu.

Writing – review & editing: Yanzheng Gao.

References

1. Ju DG, Rajaei SS, Mirocha J, et al. Nationwide analysis of femoral neck fractures in elderly patients: a receding tide. J Bone Joint Surg Am 2017;99:1932–40.
2. Meurman JH, McKenna G, Murtomaa H, et al. Managing our older population: the challenges ahead. J Dent Res 2018;97:1077–8.
3. Kristensen TR, Dybvik F, Kristoffersen M, et al. Cemented or uncemented hemiarthroplasty for femoral neck fracture? Data from the Norwegian hip fracture register. Clin Orthop Relat Res 2020;478:90–100.
4. Li T, Zhang Q, Weng X, et al. Cemented versus uncemented hemiarthroplasty for femoral neck fractures in elderly patients: a meta-analysis. PLoS One 2013;8:e68903.
5. Luo X, He S, Li Z, et al. Systematic review of cemented versus uncemented hemiarthroplasty for displaced femoral neck fractures in older patients. Arch Orthop Trauma Surg 2012;132:455–63.
6. Yoon BH, Seo JG, Koo KH. Comparison of postoperative infection-related complications between cemented and cementless hemiarthroplasty in elderly patients: a meta-analysis. Clin Orthop Surg 2017;9:45–52.
7. Zhou S, Liu J, Zhen P, et al. Proximal femoral nail anti-rotation versus cementless bipolar hemiarthroplasty for unstable femoral intertrochanteric fracture in the elderly: a retrospective study. BMC Musculoskelet Disord 2019;20:500.
8. Fang C, Liu RP, Lau TW, et al. Is it time to phase out the austin moore hemiarthroplasty? A propensity score matched case control comparison versus cemented hemiarthroplasty. Biomed Res Int 2016;2016:7627162.
9. Higgin JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:537–40.
10. Fyved W, Opland V, Frihagen F, et al. Cemented versus uncemented hemiarthroplasty for displaced femoral neck fractures. Clin Orthop Relat Res 2009;467:2426–35.
11. Langslet E, Frihagen F, Opland V, et al. Cemented versus uncemented hemiarthroplasty for displaced femoral neck fractures: 5-year follow up of a randomized trial. Clin Orthop Relat Res 2014;472:1291–9.
12. Sadr B, Arden GP. A comparison of the stability of proplast-coated and cemented Thompson prostheses in the treatment of subcapital femoral fractures. Injury 1977;8:234–7.
13. Sonne-Holm S, Walter S, Jensen JS. Moore hema-arthroplasty with and without bone cement in femoral neck fractures. A clinical controlled trial. Acta Orthop Scand 1982;53:953–6.
14. Dorr LD, Gloumsan R, Hoy AL, et al. Treatment of femoral neck fractures with total hip replacement versus cemented and noncemented hemiarthroplasty. J Arthroplasty 1986;1:21–8.
15. Emery RJ, Broughton NS, Desai K, et al. Bipolar hemiarthroplasty for subcapital fracture of the femoral neck. A prospective randomised trial of cemented Thompson and uncemented Moore stems. J Bone Joint Surg Br 1991;73:322–4.
16. Santiu S, Rebecatto A, Bolgan I, et al. Hip fractures in elderly patients treated with bipolar hemiarthroplasty: comparison between cemented and cementless implants. J Orthop Traumatol 2005;6:80–7.
17. Parker MI, Pryor G, Gurusamy K. Cemented versus uncemented hemiarthroplasty for intracapsular hip fractures: a randomised controlled trial in 400 patients. J Bone Joint Surg Br 2010;92:116–22.
18. Deangelis JP, Ademi A, Staff I, et al. Cemented versus uncemented hemiarthroplasty for displaced femoral neck fractures: a prospective randomised trial with early follow-up. J Orthop Trauma 2012;26:135–40.
19. Taylor F, Wright M, Zhu M. Hemiarthroplasty of the hip with and without cement: a randomized clinical trial. J Bone Joint Surg Am 2012;94:577–83.
[20] Talsnes O, Hjelmstedt F, Pripp AH, et al. No difference in mortality between cemented and uncemented hemiprosthesis for elderly patients with cervical hip fracture. A prospective randomized study on 334 patients over 75 years. Arch Orthop Trauma Surg 2013;133:805–9.

[21] Vidovic D, Matejcic A, Punda M, et al. Periprosthetic bone loss following hemiarthroplasty: a comparison between cemented and cementless hip prosthesis. Injury 2015;44(Suppl 3):S62–6.

[22] Khorami M, Arn H, Aghdam AA. Cemented versus uncemented hemiarthroplasty in patients with displaced femoral neck fractures. Pak J Med Sci 2016;32:44–8.

[23] Moorman S, Mathissen NMC, Niesten DD, et al. More complications in uncemented compared to cemented hemiarthroplasty for displaced femoral neck fractures: a randomized controlled trial of 201 patients, with one year follow-up. BMC Musculoskelet Disord 2017;18:169.

[24] PrashanthYS, Niranjank. Comparative study of surgical management of fracture neck of femur with cemented versus uncemented bipolar hemiarthroplasty. J Clin Diagn Res 2017;11:RC17–21.

[25] Barenius B, Inngul C, Alagic Z, et al. A randomized controlled trial of cemented versus cementless arthroplasty in patients with a displaced femoral neck fracture. Bone Joint J 2018;100-B:1087–93.

[26] Ning GZ, Li YL, Wu Q, et al. Cemented versus uncemented hemiarthroplasty for displaced femoral neck fractures: an updated meta-analysis. Eur J Orthop Surg Traumatol 2014;24:7–14.

[27] Veldman HD, Heyligers IC, Grimm B, et al. Cemented versus cementless hemiarthroplasty for a displaced fracture of the femoral neck: a systematic review and meta-analysis of current generation hip stems. Bone Joint J 2017;99-B:421–31.

[28] Azegami S, Gurusamy KS, Parker MJ. Cemented versus uncemented hemiarthroplasty for hip fractures: a systematic review of randomised controlled trials. Hip Int 2011;21:509–17.

[29] Santini S, Rebecatto A, Bolgan I, et al. Hip fractures in elderly patients treated with bipolar hemiarthroplasty: comparison between cemented and cementless implants. J Orthop Trauma 2005;6:80–7.

[30] Hossain M, Andrew JG. Is there a difference in perioperative mortality between cemented and uncemented implants in hip fracture surgery? Injury 2012;43:2161–4.

[31] Kesmezacar H, Ayhan E, Unlu MC, et al. Predictors of mortality in elderly patients with an intertrochanteric or a femoral neck fracture. J Trauma 2010;68:133–8.

[32] Jameson SS, Jensen CD, Elson DW, et al. Cemented versus cementless hemiarthroplasty for intracapsular neck of femur fracture—a comparison of 60,848 matched patients using national data. Injury 2013;44:730–4.

[33] Grammatopoulos G, Wilson HA, Kendrick BJ, et al. Hemiarthroplasty using cemented or uncemented stems of proven design: a comparative study. Bone Joint J 2015;97-B:94–9.

[34] Laflamme M, Angers M, Vachon J, et al. High incidence of intraoperative fractures with a specific cemented stem following intracapsular displaced hip fracture. J Arthroplasty 2020;35:485–9.

[35] Morris K, Davies H, Wronka K. Implant-related complications following hip hemiarthroplasty: a comparison of modern cemented and uncemented prostheses. Eur J Orthop Surg Traumatol 2015;25:1161–4.

[36] Yli-Kyyryny T, Ojampera J, Venesmaa P, et al. Perioperative complications after cemented or uncemented hemiarthroplasty in hip fracture patients. Scand J Surg 2013;102:124–8.

[37] Donaldson AJ, Thomson HE, Harper NJ, et al. Bone cement implantation syndrome. Br J Anaesth 2009;102:10–22.

[38] Morrin I, Thomson HE, Harper NJ, et al. Cemented versus uncemented hemiarthroplasty for displaced femoral neck fractures: a randomized controlled trial with two years follow-up. Acta Orthop Traumatol Turc 2020;54:83–8.

[39] Egger M, Smith GD. Bias in location and selection of studies. BMJ 1998;316:61–6.

[40] Sood A, Krudsen K, Sood R, et al. Publication bias for CAM trials in the highest impact factor medicine journals is partly due to geographical bias. J Clin Epidemiol 2007;60:1123–6.

[41] Ernst E, Pittler MH. Alternative therapy bias. Nature 1997;385:480.