Utilization of Vegetation Indices to Interpret the Possibility of Oil and Gas Microseepages at Ground Surface

T M Susantoro1,2, K Wikantika1,3,4, A Saepuloh1,3,4 and A H Harsolumakso3

1 Center for Remote Sensing, Bandung Institute of Technology (ITB), Indonesia
2 Research and Development Center for Oil and Gas Technology “LEMIGAS”, Ministry of Energy and Mineral Resources, Indonesia
3 Faculty of Earth Sciences and Technology, Bandung Institute of Technology (ITB), Indonesia
4 ForMIND Institute (Indonesian Young Researcher Forum)

*trimuji_s@yahoo.com

Abstract. Microseepages is one way to identify the existence of oil and gas below the surface of the earth. Identification of microseepages could be done using remote sensing approaches. One of the remote sensing data that can be used is Landsat 8. The purpose of this study is to map the potential of microseepages on the ground surface of Tugu Barat oil and gas field, North West Java Basin, Indonesia. The Landsat 8 data processing were performed including radiometric and geometric corrections, and vegetation indices calculation. The indices calculated in this study are Normalized Differences Vegetation Index (NDVI), Enhanced Normalized Differences Vegetation Index (ENDVI) and Leaf Area Index (LAI). Based on the vegetation indices, we detected that physical condition of vegetation anomaly served as microseepages location. The results showed that microseepages is identified in the south to the east of the oil and gas field presented by vegetation anomaly. Field survey confirmed the possibility of microseepages is located at yellowish leaf vegetation, high spectral of the leaf at the visible wavelength and low magnetic susceptibility.

1. Introduction

Hydrocarbon seepages are common phenomenon occurs in oil and gas fields. It can cause the land surface vegetation to be stress [1]. Stress in vegetation can be defined as any disturbance that adversely influences growth [2]. The effects of hydrocarbon seepages pollution in vegetation are reducing plant transpiration rate, levels of chlorophyll content, higher levels of foliar water content and leaf structural changes. Cell injury may be the principal cause of photosynthesis inhibition because hydrocarbons tend to accumulate in the chloroplasts, which explains the reduced levels of chlorophyll content in vegetation affected by hydrocarbons. In the soil, interaction between hydrocarbons reduces the amount of oxygen and increases the CO$_2$ concentration, soils turn acidic and minerals are mobilised [3].

One of the remote sensing methods used in earth exploration is physical vegetation analyses. The spectra of optical wavelength is sensitive to land cover feature such as vegetation conditional at geothermal field [4]. Over the three decades, vegetation analyses has been used to extract specific information of vegetation properties [5]. Vegetation indices is constructed from reflectance measurements in two or more wavelengths, mainly from visible - near infrared to analyze specific
characteristics of vegetation, such as total leaf area, pigments (chlorophyll, carotenoids, anthocyanins), plant structure materials and water content. Vegetation index represents a single value for converting the reflectance spectrum to measure vegetation properties[6]. Vegetation properties can be divided into three categories: structure, biochemistry and plant physiology or stress condition [6]. Mapping vegetation properties are crucial to estimate the ground and near surface materials related to microseepages or mineral compositions in the rock under tropical conditions [7].

The purpose of this study is to interpret the possibility of microseepages in the surface of oil and gas field in Tugu Barat, North West Java Basin. In this basin there is a lot of seepages. The distribution of seepages is to the east of the study area and continuously south to Banyumas area. The previous studies explain there is an indication that the oil and gas field is affecting the vegetation conditions around it [8]. This study is a continuation of the previous study by mapping the potential of microseepages around of West Tugu oil and gas field. The identification of microseepages in this study by anomaly vegetation mapping as impact of microseepages.

2. Study area
The study area is in West Tugu oil and gas field located in the border of Indramayu and Majalengka districts. The topography area in this area is undulating. The study area is an anticline oil and gas structure with reservoir rock from Baturaja formation, Parigi formation and Zone 16 from Baturaja formation. In landuse/landcover map the study area is characterized by regular rectangular pattern of road that is a sugarcane plantation. The study area is part of the hydrocarbon production basin of North West Java. The first of oil and gas well at Tugu Barat field was drilled in 1979, the namely TGB-1. it’s an exploration well that reached a depth of 2545 m. TGB-1 produced gas from the equivalent layer of Baturaja formation [9]. In 1992, seven development well has been drilled and one well reached Baturaja formation with a depth of 2758 m and more than 300 m of formation thickness [10]. then one well drilled in that year was the TGB-25 that produced oil [11]. The area of study is in Figure 1.

![Figure 1](image.png)

Figure 1. Study area as part of North West Java Basin presented by landuse/landcover map overlaid with oil and gas well-head in red dots.

3. Data
Remote sensing data used were Landsat 8, with acquisition date at September 25, 2015 and path/row 121/165. Landsat 8 is a new generation of Landsat series that was launched. The primary mission is to
extend the Landsat record into the future and maintain continuity of observation. Landsat 8 system are consistent and comparable with the previous system. Landsat 8 has two sensor; the operational land imager (OLI) and the thermal infrared sensor (TIRS). The OLI and TIRS spectral remain broadly comparable to the Landsat 7 ETM+. But Landsat 8 in the OLI has two additional wavelength: a new shorter wavelength blue band (0,43-0,45 μm) and a new shortwave infrared band (1,36-1,39 μm). The TIRS senses emitted radiance in two 100 m thermal infrared bands, compared to the high and low gain single thermal infrared 60 m ETM+ band. The reduced TIRS spatial resolution is not optimal but was necessitated by engineering cost restrictions. However, the two thermal TIRS bands enable thermal wavelength atmospheric correction and more reliable retrieval of surface temperature and emissivity [12]. The Landsat data is in Figure 2.

4. Methods

The image processing of Landsat 8 includes radiometric correction, geometric correction and band ratio. A radiometric correction was a multi-step process. From radiometric calibration that is done by calculation the digital number to Top of Atmosphere (ToA) radiance value and then atmospheric correction. Atmospheric correction was used FLAASH method to change the radiance value of ToA into surface reflectance and undertake atmospheric correction [13].

Geometric correction is conducted by the image to image correction. Ikonos imagery and supporting by topographic map are used as the references image. This correction is conducted to minimize the bias of locations (Spatial displacement) [14]. The results showed that Landsat 8 Imagery has similar position in the study area.

More than 150 vegetation indices have been published in scientific literature, but only a small subset have the substantial biophysical basis or have been systematically tested [15]. In this study, there is three vegetation indices used: Normalized Difference Vegetation Index (NDVI), Enhanced Normalized Difference Vegetation Index (ENDVI) and Leaf Area Index (LAI). NDVI is the most popular of vegetation index [16]. It has been used in a wide application of vegetation studies [17]. It can be used to estimate vegetation canopy, fractional vegetation cover, vegetation condition, and biomass [18]. NDVI is also had relation with the fraction of photosynthetically active radiation that absorbed by vegetation. It’s a key parameter in crop biomass and yields as well net primary productivity models. But in greater values, NDVI is having a problem with saturation [19]. NDVI is defined as follows:
\begin{equation}
N = \frac{(\rho_n - \rho_{\text{red}})}{(\rho_n + \rho_{\text{red}})}
\end{equation}

Where ρ_{near} is the near infrared band reflectance and ρ_{red} is red band reflectance. The ENDVI is modification of NDVI. It’s calculated for low altitude monitoring systems, such as UAVs [20]. ENDVI is an indicator of live green vegetation and can be used for crops in all growth stages [21]. In a normal health, plant reflects both visible green and near infrared light accommodated by ENDVI as follows [20]:

\begin{equation}
E = \frac{((\rho + \rho_{\text{red}}) - (2\sigma \rho_{\text{red}}))}{((\rho + \rho_{\text{red}}) + (2\sigma \rho_{\text{red}}))}
\end{equation}

Where ρ_{green} is green band reflectance and ρ_{blue} is blue band reflectance. The leaf area index (LAI) is usually defined as the one sided area of leaves per unit ground area [22]. LAI is an important vegetation parameter, which used widely in many applications [23]. Accurate measurement of LAI is important to characterize plant canopies linking to primary production [24]. It is essential for monitoring changes in ecosystem Carbon stocks and other ecosystem level fluxes. Remote sensing is an attractive technique for estimating LAI. LAI is calculated by the enhanced vegetation index (EVI) basis [25]. EVI was developed to optimize the vegetation signal by improving sensitivity in high biomass regions and vegetation monitoring through a de-coupling of the canopy background signal and a reduction in atmosphere influences [26]. The LAI was calculated as follows:

\begin{equation}
L = 3.618 \times \left(2.5 + \frac{(N - R)}{(N + 6\cdot R + 7.5 \cdot R + 1)}\right) - 0.118
\end{equation}

Interpretation of microseepages is conducted by three stages. The first stage identifies the vegetation cover based on the LAI. The next step maps the vegetation index based on NDVI and ENDVI, then the results are overlaid with LAI to produce vegetated areas but have low NDVI and ENDVI values. These results were interpreted as vegetation stress. The last step is to overlay the second results with oil and gas fields for identifying microseepages. The final results is a possibility of microseep that is a region dominated by stress vegetation around the oil field [27][28][29][30].

5. Results and discussion

The results of LAI shown that area around of oil and gas field is covered by vegetation from rare to medium. The LAI value range from 1.9 to 6.1. Its value was given the explanation that the study area is not totally covered by vegetation. The previous study showed that 100% area that covers by vegetation has LAI value 10 [18]. LAI value in the edge of oil and gas field is 2.2 to 4.3. Based on LAI results, vegetation anomalies is not yet detected. The problems of LAI are vegetation index approach a saturation level asymptotically when LAI exceeds 2 to 5, depending on the type of vegetation index; and there is no unique relationship between LAI and a vegetation index of choice, but rather a family of relationships, each a function of chlorophyll content and/or other canopy characteristics [31]. So that we only want to show the distribution of leaf area using LAI. The LAI result can be seen in Figure 3.
Figure 3. LAI map were extracted from Landsat 8.

The result of NDVI value range from -0.4 to 0.8. In Figure 4 shows that the low NDVI values form a circular pattern on the edge of the oil and gas field. This pattern is estimated as a possibility of microseepages that tends to occur in the edge oil and gas field. it caused the vegetation abnormal growth [30], affects the health of vegetation [32] and increases the spectral reflection in areas that are supposed to be absorbed in electromagnetic waves [33]. Linear regression analysis between LAI and NDVI were obtained $R^2 = 0.21$.

Figure 4. NDVI map were extracted from Landsat 8 with circular pattern in the south to east.
The result of ENDVI value range from -0.014 to 0.71. The ENDVI map result is more clearly the difference of low value with high value than NDVI. The comparison of NDVI and ENDVI using the linear regression were obtained $R^2 = 0.6806$. But the comparison of ENDVI and LAI using linear regression were obtained only $R^2 = 0.0721$. ENDVI and ENDVI provide similar information only at high values, but somewhat different information at low values [20]. The vegetation anomalies appearance in the edge of oil and gas field same as NDVI, the pattern follows the boundary of oil and gas field. The ENDVI results show in Figure 5.

The overlay between LAI, NDVI and ENDVI shown vegetation anomaly occur in 3.5 to 4 values of LAI, 0.20 to 0.25 values of NDVI and 0.21 to 0.35 values of ENDVI. ENDVI result more clear than NDVI. The overlay between anomaly results shown that the possibility of microseepages is happening on the edge of oil and gas field. The location is in the south to the east of the field. A field survey has evidenced that possibility of microseepages caused the vegetation are not growing well, making yellowish leaf vegetation, high spectral of the leaf at the visible wavelength and low magnetic susceptibility. In Figure 6 showed the vegetation anomaly is not growing well. The sugar cane condition grows in the south is less fertile and not much clump. While the sugar cane in the east looks yellowish. This is thought to be a possibility of vegetation anomalies and suspected as the effect of microseepages.
Figure 6. The appearance of vegetation indices calculation in study area interpreted as a microseepages location and presented by red dashed lines. Photographs showed the vegetation cover and condition at interpreted microseepages with low susceptibility values in this area.

6. Conclusion
The results of this study indicate that the LAI does not correlate well with NDVI and ENDVI. The NDVI and ENDVI provides similar information for mapping possibility of microseepages, but ENDVI is better than NDVI. Based on the results of NDVI and ENDVI analysis shows that on the edge of the field there are vegetation anomalies. The pattern formed on the anomaly that occurs in the form of the circular pattern. The anomaly is thought to be a microseepages that reach the surface. The existence of microseepages is proved by rare vegetation conditions with yellowish color and low magnetic susceptibility. Further research is needed with the uptake of the chlorophyll content in the leaves to identify the vegetation stress affected by microseepages.

Acknowledgements
We would like to express our thank to Exploration Division of Research and Development Center for Oil and Gas Technology “LEMIGAS” whose providing the equipments for field survey and
measurement. Special thank and appreciation were addressed to Mr Yudhi, Mr Heri and Mr Triwijaya for assisting the field survey.

References
[1] Li Q, X Chen, X Liu, B Mao and G Ni 2012 Study on Oil and Gas Exploration in Sparse Vegetation Areas by Hyperspectral Remote Sensing Data Chinese Optic Letter Col 10 (Suppl), S11004
[2] Jackson R D 1986 Remote Sensing of Biotic and Abiotic Plant Stress Annual Review of Phytopathology 24 265–287 Crossref
[3] Arellano P, K Tansey, H Alzter and D S Boyd 2015 Detecting the Effect of Hydrocarbon Pollution in the Amazon Forest Using Hyperspectral Satellite Images Environmental Pollution 205 225-239
[4] Muhammad R R D and A Saepuloh 2016 The Effectiveness of Hydrothermal Alteration Mapping based on Hyperspectral Data under Tropical Region IOP Conference Series: Earth and Environmental Science 42 1 012005
[5] Salas E A L and G M Henebry 2014 A New Approach for the Analysis of Hyperspectral Data: Theory and Sensitivity Analysis of the Moment Distance Method Remote Sensing 6 20-41
[6] Roberts D A, K L Roth and R L Perroy 2011 Hyperspectral Vegetation Indices (Chapter 14) in Thenkabail P S, J G Lyon and A Huete 2011 (eds) Hyperspectral Remote Sensing of Vegetation 782 CRC Press. Taylor a& Francis Group
[7] Wakila M H, A Saepuloh and M N Heriawan 2016 Performance Analysis of Mineral Mapping Method to Delineate Mineralization Zones under Tropical Region IOP Conference Series: Earth and Environmental Science 54 1 012019
[8] Susantoro T M, K Wikantika, A S Puspitasari and A Saepuloh 2017 Impact of Oil and Gas Field in Sugar cane Condition Using Landsat 8 in Indramayu Area and Its Surrounding, West Java Province, Republic of Indonesia IOP Conf. Series: Earth and Environmental Science 54 1 012019
[9] Pertamina 1994 Proposed Exploitation wells drilled Activities Plan 1995/1996 Production Geology. Pertamina Unit EP III Jakarta
[10] Prakasa Y, E Hartanto and D Sulisityo 1998 Carbon Dioxide Generation in Tugu Barat-C Field and Role in Hidrocarbon Migration Society of Petroleum Engineers (SPE) International SPE 40035
[11] Pertamina 1998 The Study of West Tugu C Structure Development Reevaluation and Operating Plan of SDS, BJR, TGB-C and PCT Structures Development Group. Pertamina-Operating, Exploration and Production, Karangampel Cirebon
[12] Roy D P, M A Wulder, T R Loveland, C E Woodcock, R G Allen, M C Anderson, D Helder, J R Irions, D M Johnson, R Kennedy, T A Scambos, C B Schaaf, J R Schott, y Sheng, E F Vermote, A S Belward, R Bindschadler, W B Cohen, F Gao, J D Hipple, P Hostert, J Huntington, C O Justice, A V Kovalskyy, Z P Lee, L Lymburner, J G Masek, J McCorkel, Y Shuai, R Trezza, J Vogelmann, R H Wynne and Z Zhu 2014 Landsat-8: Science and Product Vision for Terrestrial Global Change Research Remote Sensing of Environment 145 154-172
[13] Adamu B, Tansey K and Ogutu B 2015 Using vegetation indices to detect oil pollution in the Niger Delta Remote Sensing Letters 6 145-154
[14] Murti S H and Wicaksono P 2014 The analysis of the most effective spectral bands for coral reefs health identification: case study on Menjangan Besar and Menjangan Kecil Island, Karimunjawa Islands Globe Journal 16 117-124
[15] Pettorelli N 2013 The Normalized Difference Vegetation Index First Edition. Oxford University Press. Oxford United Kingdom 193 pages
[16] Rouse J, Haas R, Schell J and Deering D 1973 Monitoring Vegetation Systems in the Great Plains with ERTS Third ERTS Symposium, NASA 309-317 Crossref or Crossref.
[17] Xu D and X Guo 2014 Compare Extractedd from Landsat 8 Imagery with that from Landsat 7 Imagery American Journal of Remote Sensing 2 2 10-14 Crossref
[18] Carlson T N and D A Ripley 1997 On he Relation between NDVI, Fraction Vegetation Cover and Leaf Area Index Remote Sensing Environment. 62 241-252 Elsevier science Inc.
[19] Tan C, A Samanta, X Jin, L Tong, C Ma, W Guo, y Knyazikhin and R B Myneni 2013 Using Hyperspectral Vegetation Indices to Estimate Fraction of Photosynthetically Active Radiation Absorbed by Corn Canopies International Journal of Remote Sensing 34 24 8799-8802 Crossref
[20] Maxmax 2015 Enhanced Normalized Difference Vegetation Index https://www.maxmax.com /endvi.htm. Crossref
[21] Precisionmapper 2017 Enhanced Normalized Difference Vegetation Index https://www.precisionmapper.com/algorithms/enhanced-normalized-difference-vegetation-index. Crossref.
[22] Chen J M and T Black 1992 Defining leaf area index for non-flat leaves Plant, Cell & Environment 15 421–429
[23] Ke L, Z Qing-bo, W Wen-bin, X Tian and T Hua-jun 2016 Estimating the crop leaf area index using hyperspectral remote sensing Journal of Integrative Agriculture 15 2 475-491
[24] Bonan G 1993 Importance of leaf area index and forest type when estimating photosynthesis in boreal forests Remote Sensing of Environment 43 303-314
[25] Boegh E, H Soegaard, N Broge, C Hasager, N Jensen, K Schelde and A Thomsen 2002 Airborne Multi-spectral Data for Quantifying Leaf Area Index, Nitrogen Concentration and Photosynthetic Efficiency in Agriculture Remote Sensing of Environment 81 2-3 179-193
[26] Huete A, K Didan, T Miura and L G Ferreira 2002 Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices Remote Sensing of Environment 83 195–213
[27] Joshua J 2015 Hyperspectral Remote Sensing for Oil Exploration Published in Science http://www.slideshare.net/serjiojayanthjoshua/hyperspectral-remote-sensing-for-oil-exploration. Download at April 2, 2016.
[28] NASA 2011 Finding Oil and Gas from Space https://apollomapping.com/wp-content/user_uploads/2011/11/NASA_Remote_Sensing_Tutorial_Oil_and_Gas.pdf. Download at April 2, 2016.
[29] Sounder D F, K R Burson and C K Thompson 1999 Model for Hydrocarbon Microseepages and Related Near-Surface Alteration Bull. Am. Ass. Petrol. Geology 83 170-185.
[30] Yang H 1999 Imaging spectrometry for hydrocarbon microseepage Dissertation. TU Delft. Master of Science in Geology. ITC Publiciation Nuumber 76
[31] Haboudane D, J R Miller, E Pattey, P J Z Tejada and I B Strachan 2004 Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture Remote Sensing of Environment 90 337-352
[32] Lakkaraju V R, X Zhou, M E Apple, A Chunningham and L M Dobec 2010 Studying the Vegetation Response to Simulated Leakage of Sequestered CO2 Using Spectral Vegetation Indices. Economic Informatics Elsevier The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVII B8 Beijing
[33] Li Q, X Chen, X Liu, B Mao and G Ni 2012 Study on Oil and Gas Exploration in Sparse Vegetation Areas by Hyperspectral Remote Sensing Data Chinese Optic Letter Col 10 (Suppl), S11004