Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 pb$^{-1}$ and 0.14 nb$^{-1}$, respectively. The jets are identified with the anti-k_t algorithm with $R = 0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_T < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, R_{AA}, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to pp collisions. The R_{AA} shows a slight increase with p_T and no significant variation with rapidity.
Measurements of the Nuclear Modification Factor for Jets in Pb+Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS Detector

ATLAS Collaboration

Measurements of inclusive jet production are performed in pp and Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS detector at the LHC, corresponding to integrated luminosities of 4.0 pb$^{-1}$ and 0.14 nb$^{-1}$, respectively. The jets are identified with the anti-k_t algorithm with $R = 0.4$, and the spectra are measured over the kinematic range of jet transverse momentum $32 < p_T < 500$ GeV, and absolute rapidity $|y| < 2.1$ and as a function of collision centrality. The nuclear modification factor, R_{AA}, is evaluated and jets are found to be suppressed by approximately a factor of two in central collisions compared to pp collisions. The R_{AA} shows a slight increase with p_T and no significant variation with rapidity.

PACS numbers: 25.75.-q

Relativistic heavy-ion collisions at the LHC produce a medium of strongly interacting nuclear matter composed of deconfined color charges [1–4]. Hard scattering processes occurring in these collisions produce high transverse momentum (p_T) partons that propagate through the medium and lose energy, resulting in the phenomenon of “jet quenching.” The partonic energy loss can be probed through measurements of the suppression of jet production rates. The effects of energy loss have been observed through the suppression of single hadrons [5–11] and jets constructed from charged particles [12]. ATLAS has previously reported measurements with fully reconstructed jets [13] by comparing the jet yields in central collisions, where the colliding nuclei have large overlap, to the yields in peripheral collisions. Those results indicate that the rate of jets in Pb+Pb collisions is suppressed by a factor of approximately two in central collisions relative to peripheral collisions. A more sensitive probe of energy loss is provided by measurements of the suppression relative to pp collisions, where there are no quenching effects.

The magnitude of the suppression is expected to depend on both the p_T dependence of the energy loss as well as the shape of the initial jet production p_T spectrum [1]. This spectrum becomes increasingly steep at larger values of the jet rapidity [14]. Thus measurements of jet suppression for jets in different intervals of rapidity provide complementary information about the energy loss. Additionally, parton showers initiated by quarks may be quenched differently than gluons [15], and the fraction of quark-initiated jets is expected to evolve with rapidity.

Hard scattering rates are enhanced in more central collisions; the larger overlap results in a higher integrated luminosity of partons able to participate in hard scattering processes, T_{AA}. The suppression is quantified by the nuclear modification factor R_{AA} in Pb+Pb collisions at a nucleon–nucleon center-of-mass energy of $\sqrt{s_{NN}} = 2.76$ TeV. It utilizes Pb+Pb data collected during 2011 corresponding to an integrated luminosity of 0.14 nb$^{-1}$ as well as data from pp collisions recorded during 2013 at the same center-of-mass energy corresponding to 4.0 pb$^{-1}$. Results are presented for jets reconstructed in the calorimeter with the anti-k_t jet-finding algorithm [16] with jet radius parameter $R = 0.4$. The contribution of the underlying event (UE) to each jet, assumed to be uncorrelated and additive, was subtracted on a per-jet basis.

The measurements presented here were performed with the ATLAS calorimeter, inner detector, trigger, and data acquisition systems [17, 18]. The calorimeter system consists of a liquid argon (LAr) electromagnetic (EM) calorimeter ($|\eta| < 3.2$), a steel/scintillator sampling hadron calorimeter ($|\eta| < 1.7$), a LAr hadronic calorimeter ($1.5 < |\eta| < 3.2$), and a forward calorimeter (FCal) ($3.2 < |\eta| < 4.9$). Charged-particle tracks were measured over the range $|\eta| < 2.5$ using the inner detector [19], which is composed of silicon pixel detectors in the innermost layers, followed by silicon microstrip detectors and a straw-tube transition-radiation tracker ($|\eta| < 2.0$), all immersed in a 2 T axial magnetic field. The zero-degree calorimeters (ZDCs) are located symmetrically at $z = \pm 140$ m and cover $|\eta| > 8.3$. A ZDC coincidence trigger was defined by requiring a signal consistent with one or more neutrons in each of the calorimeters.

The pp events used in the analysis were selected using the ATLAS jet trigger [20] with multiple values of the trigger p_T thresholds. During pp data taking, the average number of pp interactions per bunch crossing (pile-up) varied from 0.3 to 0.6. The pp events were required to contain at least one primary vertex, reconstructed from at least two tracks, and jets originating from all such vertices were included in the cross section measurement.

Data from Pb+Pb collisions were recorded using either a minimum-bias trigger or a jet trigger. The minimum-bias trigger, formed from the logical OR of triggers based
on a ZDC coincidence or total transverse energy in the event, is fully efficient in the range of centralities presented here. The jet trigger identified jets by applying the anti-k_t algorithm with $R = 0.2$ with a UE subtraction procedure similar to that applied in the offline analysis. The jet trigger selected events having at least one jet with transverse energy $E_T > 20$ GeV at the electromagnetic scale [21]. Event selection and background rejection criteria were applied [22] yielding 53 million and 14 million events in the minimum-bias and jet-triggered samples, respectively.

The centrality of Pb+Pb collisions was characterized by ΣE_T^{FCal}, the total transverse energy measured in the FCal [22]. The centrality intervals were defined according to successive percentiles of the ΣE_T^{FCal} distribution ordered from the most central (highest ΣE_T^{FCal}) to the most peripheral collisions. A Glauber model analysis of the ΣE_T^{FCal} distribution was used to evaluate the $\langle T_{AA} \rangle$ and the number of nucleons participating in the collision, $\langle N_{\text{part}} \rangle$, in each centrality interval [22–24]. The centrality intervals used in this measurement are indicated in Table I along with the values of $\langle T_{AA} \rangle$ and $\langle N_{\text{part}} \rangle$ for those intervals.

The jet reconstruction and UE subtraction procedures described in Ref. [13] were applied to both pp and Pb+Pb data. The anti-k_t algorithm was applied to logical towers with segmentation $\Delta y \times \Delta \phi = 0.1 \times 0.1$ formed from energy deposits in the calorimeter. An iterative procedure was used to obtain an event-by-event estimate of the average η-dependent UE energy density while excluding actual jets from that estimate. The jet kinematics were obtained by subtracting the UE energy from the towers within the jet. Following reconstruction, the jet energies were corrected for the calorimeter energy response using the procedure described in Ref. [25].

In addition to the calorimetric jets, “track jets” were reconstructed by applying the anti-k_t algorithm with $R = 0.4$ to charged particles with $p_T > 4$ GeV. In the Pb+Pb analysis, the track jets were used in conjunction with electromagnetic clusters to exclude the contribution to the jet yield from UE fluctuations of soft particles incorrectly interpreted as calorimetric jets [13]. The jets were required to be within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.2$ of a track jet with $p_T > 7$ GeV or an electromagnetic cluster with $p_T > 8$ GeV.

The performance of the jet reconstruction in Pb+Pb collisions was evaluated using the GEANT4-simulated detector response [26, 27] in a Monte Carlo (MC) sample of pp hard scattering events at $\sqrt{s} = 2.76$ TeV. The events were produced with the PYTHIA event generator [28] version 6.423 with parameters chosen according to the so-called AUET2B tune [29] and overlaid with minimum-bias Pb+Pb collisions recorded by ATLAS during the same data-taking period as the data used in the analysis. Thus the MC sample contains a UE contribution that is identical in all respects to the data. A separate PYTHIA sample was produced for the analysis of the pp data with the detector simulation adjusted to match the conditions during the pp data taking including pile-up. Additional MC samples were used in evaluations of the jet energy scale (JES) uncertainty. The PYQUEN generator [30], which applies medium-induced energy loss to parton showers produced by PYTHIA, was used to generate a sample of jets with fragmentation functions that differ from those in the nominal PYTHIA sample in a fashion consistent with measurements of fragmentation functions in quenched jets [31–33].

Table I

Centrality [%]	$\langle T_{AA} \rangle$ [mb$^{-1}$]	$\langle N_{\text{part}} \rangle$
0–10	23.45 ± 0.37	356.2 ± 2.5
10–20	14.43 ± 0.30	260.7 ± 3.6
20–30	8.73 ± 0.26	186.4 ± 3.9
30–40	5.04 ± 0.22	129.3 ± 3.8
40–50	2.7 ± 0.17	85.6 ± 3.6
50–60	1.33 ± 0.12	53.0 ± 3.1
60–70	0.59 ± 0.07	30.1 ± 2.5
70–80	0.24 ± 0.04	15.1 ± 1.7
0–1	20.04 ± 0.36	400.1 ± 1.3
1–5	25.62 ± 0.40	377.6 ± 2.2
5–10	20.50 ± 0.34	339.3 ± 3.0
60–80	0.41 ± 0.05	22.6 ± 2.1

FIG. 1. The double differential jet cross section in pp collisions as a function of p_T in different rapidity bins (scaled by successive powers of 10^4). The statistical and systematic uncertainties are indicated by the error bars (too small to be seen on this scale) and shaded bands, respectively. The points and horizontal error bars indicate the p_T bin center and width, respectively.
The jet spectra, defined to be the average differential yield in a given p_T bin, were constructed from a mixture of minimum-bias (Pb+Pb only) and jet-triggered samples. In each p_T bin, the trigger with the most events and that was more than 99% efficient for that bin was used. The jet spectra were unfolded [13] to account for the p_T bin migration induced by the jet energy resolution (JER) using a method based on the Singular Value Decomposition [34]. The effects of the detector response were evaluated by applying the same procedure to the MC samples as was applied to the data and by matching the resulting reconstructed jets and “generator jets” that are reconstructed from final-state PYTHIA hadrons. For each pair, the p_T of the generator and reconstructed jets were used to populate a detector response matrix. Separate response matrices were obtained for each centrality interval.

The response matrix is generally diagonal, indicating that jets are likely to be reconstructed in the same p_T bin as the generator jets. The average p_T difference between reconstructed and generator jets, is $\lesssim 1\%$, independent of centrality. However, the response distributions broaden at low p_T as the relative JER increases due to the larger UE fluctuations. At $p_T = 200$ GeV, the relative JER is approximately 10% and is independent of centrality. However at $p_T = 40$ GeV, it varies from 20–40% between peripheral and central collisions. The unfolding is most sensitive in this region and the range of jet p_T used in the unfolding was chosen separately in each centrality interval to be as low as possible while maintaining stability in the unfolding procedure. The statistical covariance of each unfolded spectrum was evaluated using the pseudo-experiment procedure described in Ref. [13]. Systematic uncertainties in the unfolding procedure were evaluated by varying the choice of regularization parameter used in the unfolding.

The effects of any inefficiency in the jet reconstruction, including inefficiency introduced by the UE jet rejection requirement, were corrected for by a multiplicative correction applied after unfolding. This factor, obtained from the MC sample, is unity for $p_T > 100$ GeV and reaches a maximum of 1.3 in the most central collisions at the lowest p_T. For values larger than unity, an uncertainty of 0.5% was assigned to this correction based on the comparison of the jet reconstruction efficiency with respect to track jets between the data and MC sample.

Uncertainties on the JER and JES have been evaluated using data-driven techniques in pp collisions [21, 35]. A systematic uncertainty of 1.5% on the JES was assigned to account for potential differences, not described by the MC simulations, between the two data-taking periods. This value was obtained by comparing the calorimetric response with respect to the p_T of matched track jets in pp and peripheral Pb+Pb collisions.

A centrality-dependent uncertainty on the JES due to differences between pp and Pb+Pb in the partonic position of jets and in their fragmentation was estimated with the Pyquen sample. The jet response in that sample was found to differ by up to 1% from that in the Pythia sample. The magnitude of this variation was checked with a similar study using track jets to compare central and peripheral Pb+Pb data. The uncertainty was taken to be 1% in the most central collisions with the uncertainty decreasing in more peripheral collisions.

The impacts of the JER and JES uncertainties on the spectra were assessed by constructing new response matrices with a systematically varied relationship between the reconstructed and generator jet kinematics and repeating the unfolding. Correlations in the JES and JER uncertainties across the pp and Pb+Pb samples were accounted for in the propagation of the uncertainties to the R_{AA}.

Uncertainties on the T_{AA} and integrated luminosity [36] affect the overall normalization of the yields and thus
are independent of jet p_T and rapidity. The uncertainties on $\langle T_{AA} \rangle$ vary between 1% and 10% in the most central and peripheral collisions, respectively, with the full set of values given in Table I. An overall uncertainty on the luminosity in the pp sample was estimated to be 3.1%.

The total systematic uncertainty on the pp cross sections is dominated by the JES uncertainty, which is as large as 15%. For the Pb+Pb jet yields this uncertainty is also dominant and in the most central collisions is 22%. In the R_{AA}, much of this uncertainty cancels, although the dominant contribution is due to the JES in most centrality and rapidity intervals and is typically 10%. The uncertainties due to the unfolding are generally a few per cent, but for some p_T values near the upper and lower limits included in the measurement the contributions from this source are as large as 15%. The contributions of the JER to the total uncertainty on R_{AA} are less than 3% except in the most central collisions at low p_T where they are as large as 10%. In the most peripheral bins the $\langle T_{AA} \rangle$ uncertainties that affect the overall normalization are the dominant contribution.

The pp differential jet cross sections are shown in Fig. 1 for the following absolute rapidity ranges: 0–0.3, 0.3–0.8, 0.8–1.2, 1.2–2.1 and 0–2.1. These results are consistent with a previous measurement with fewer events [37]. The differential per-event jet yield in Pb+Pb collisions, multiplied by $1/T_{AA}$, is shown in Fig. 2, in selected rapidity and centrality bins in the lower and upper panels, respectively. The dashed lines represent the pp jet cross sections for that same rapidity bin; the jet suppression is evidenced by the fact that the jet yields fall below these lines.

The jet R_{AA} as a function of p_T is shown in Fig. 3 for different ranges in collision centrality and jet rapidity. The R_{AA} is observed to increase weakly with p_T, except in the most peripheral collisions. In the 0–10% and $|y| < 2.1$ centrality and rapidity intervals, which have the smallest statistical uncertainty, the R_{AA} is 0.47 at $p_T = 55$ GeV and rises to 0.56 at $p_T = 350$ GeV. These distributions were fit, accounting for the pointwise correlations in the uncertainties, to the functional form $a \ln(p_T) + b$. The slope parameter was found to be significantly above zero in all but the most peripheral collisions. The magnitude and weak increase of the R_{AA} in central collisions are described quantitatively by recent theoretical calculations [38, 39]. The results of this measurement are consistent with measurements of the jet central-to-peripheral ratio [13], although in those measurements the uncertainties are too large to infer any significant p_T dependence.

The rapidity dependence of the R_{AA} is shown in the top panel of Fig. 4 for jets with $80 < p_T < 100$ GeV for three centrality bins. The R_{AA} shows no significant rapidity dependence over the p_T and rapidity ranges presented in this measurement. The $\langle N_{part} \rangle$ dependence is shown in the bottom panel of Fig. 4 for jets in the same p_T interval and with $|y| < 2.1$. The R_{AA} decreases smoothly from the most peripheral collisions (smallest $\langle N_{part} \rangle$ values) to central collisions, where it reaches a minimal value of approximately 0.4 in the most central 1% of collisions. A similar $\langle N_{part} \rangle$ dependence is observed.
for jets in different ranges of p_T and rapidity.

In summary, this Letter presents measurements of inclusive jet production in pp and $Pb+Pb$ collisions over a wide range in p_T, rapidity and centrality. The jet nuclear modification factor, R_{AA}, obtained from these measurements shows a weak rise with p_T, with a slope that varies with collision centrality. No significant slope is observed in the most peripheral collisions. The R_{AA} decreases gradually with increasing $\langle N_{\text{part}} \rangle$. At forward rapidity, the increasing steepness of the jet production spectrum is expected to result in more suppression of the jet yields. In this kinematic region, the production is increasingly dominated by quark jets, which may lose less energy than gluon jets [15]. The observed lack of rapidity dependence in the R_{AA} places constraints on relative energy loss for quark and gluon jets in theoretical descriptions of jet quenching.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CCLNC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] K. Adcox et al. (PHENIX Collaboration). Nucl. Phys. A 757, 184 (2005), nucl-ex/0410003.
[2] J. Adams et al. (STAR Collaboration). Nucl. Phys. A 757, 102 (2005), arXiv:nucl-ex/0501009.
[3] B. Back et al. (PHOBOS Collaboration). Nucl. Phys. A 757, 28 (2005), arXiv:nucl-ex/0410022.
[4] I. Arsene et al. (BRAHMS Collaboration). Nucl. Phys. A 757, 1 (2005), arXiv:nucl-ex/0410020.
[5] S. Adler et al. (PHENIX Collaboration). Phys. Rev. Lett. 91, 72301 (2003), arXiv:nucl-ex/0304022.
[6] J. Adams et al. (STAR Collaboration). Phys. Rev. Lett. 91, 172302 (2003), arXiv:nucl-ex/0305015.
[7] I. Arsene et al. (BRAHMS Collaboration). Phys. Rev. Lett. 91, 72305 (2003), arXiv:nucl-ex/0307003.
[8] B. Back et al. (PHOBOS Collaboration). Phys. Rev. Lett. 94, 82304 (2005), arXiv:nucl-ex/0405003.
[9] CMS Collaboration, Eur. Phys. J. C 72, 1945 (2012), arXiv:1202.2554 [nucl-ex].
[10] K. Aniol et al. (ALICE Collaboration). Phys. Lett. B 696, 30 (2011), arXiv:1012.1004 [nucl-ex].
[11] B. Abelev et al. (ALICE Collaboration). Phys. Lett. B 720, 52 (2013), arXiv:1208.2711 [hep-ex].
[12] B. Abelev et al. (ALICE Collaboration). J. High Energy Phys. 03, 13 (2014), arXiv:1311.0633 [nucl-ex].
[13] ATLAS Collaboration. Phys. Lett. B 719, 220 (2013), arXiv:1208.1967 [hep-ex].
[14] ATLAS Collaboration. Phys. Rev. D 86, 014022 (2012), arXiv:1112.6297 [hep-ex].
[15] R. Baier, D. Schiff, and B. Zakharov. Ann. Rev. Nucl. Part. Sci. 50, 37 (2000), arXiv:hep-ph/0002198.
[16] M. Cacciari, G. P. Salam, and G. Soyez. J. High Energy Phys. 04, 63 (2008), arXiv:0802.1189 [hep-ph].
[17] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
[18] ATLAS Collaboration. JINST 3, S08003 (2008).
[19] ATLAS Collaboration. Eur. Phys. J. C 70, 787 (2010), arXiv:1004.5293 [hep-ex].
[20] ATLAS Collaboration. Eur. Phys. J. C 72, 1849 (2012), arXiv:1110.1530 [hep-ex].
[21] ATLAS Collaboration. Eur. Phys. J. C 73, 2304 (2013), arXiv:1112.6426 [hep-ex].
[22] ATLAS Collaboration. Phys. Lett. B 707, 330 (2012), arXiv:1108.6018 [hep-ex].
[23] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg. Ann. Rev. Nucl. Part. Sci. 57, 205 (2007), arXiv:nucl-ex/0701025.
[24] B. Alver, M. Baker, C. Loizides, and P. Steinberg. (2008), arXiv:0805.4411 [nucl-ex].
[25] ATLAS Collaboration. (2014), submitted to Eur. Phys. J. C. arXiv:1406.0076 [hep-ex].
[26] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[27] ATLAS Collaboration. Eur. Phys. J. C 70, 823 (2010), arXiv:1005.4568 [physics.ins-det].
[28] T. Sjostrand, S. Mrenna, and P. Z. Skands, J. High En-
[29] ATLAS Collaboration, (2011), ATL-PHYS-PUB-2011-009, http://cdsweb.cern.ch/record/1363300.
[30] I. Lokhtin and A. Snigirev, Eur. Phys. J. C 45, 211 (2006), arXiv:hep-ph/0506189.
[31] CMS Collaboration, J. High Energy Phys. 10, 87 (2012), arXiv:1205.5872 [nucl-ex].
[32] CMS Collaboration, Phys. Rev. C90, 024908 (2014), arXiv:1406.0932 [nucl-ex].
[33] ATLAS Collaboration, (2014), submitted to Phys. Lett. B, arXiv:1406.2979 [hep-ex].
[34] A. Höcker and V. Kartvelishvili, Nucl. Instrum. Methods Phys. Res., Sect. A 372, 469 (1996), arXiv:hep-ph/9509307.
[35] ATLAS Collaboration, Eur. Phys. J. C 73, 2306 (2013), arXiv:1210.6210 [hep-ex].
[36] ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013), arXiv:1302.4393 [hep-ex].
[37] ATLAS Collaboration, Eur. Phys. J. C 73, 2509 (2013), arXiv:1304.4739 [hep-ex].
[38] Y. He, I. Vitev, and B.-W. Zhang, Phys. Lett. B 713, 224 (2012), arXiv:1105.2566 [hep-ph].
[39] Z.-B. Kang, R. Lashof-Regas, G. Ovanesyan, P. Saad, and I. Vitev, (2014), arXiv:1405.2612 [hep-ph].
(c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Department of Physics, Nanjing University, Jiangsu, China
Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased