Murine protein serine/threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family that plays an important role in various cellular processes, including cell cycle, signaling pathways, and self-renewal of stem cells. Here we demonstrate a functional association between MPK38 and apoptosis signal-regulating kinase 1 (ASK1). The physical association between MPK38 and ASK1 was mediated through their carboxyl-terminal regulatory domains and was increased by H₂O₂ or tumor necrosis factor α treatment. The use of kinase-dead MPK38 and ASK1 mutants revealed that MPK38-ASK1 complex formation was dependent on the activities of both kinases. Ectopic expression of wild-type MPK38, but not kinase-dead MPK38, stimulated ASK1 activity by Thr⁸³⁸ phosphorylation and enhanced ASK1-mediated signaling to both JNK and p38 kinases. However, the phosphorylation of MKK6 and p38 by MPK38 was not detectable. In addition, MPK38-mediated ASK1 activation was induced through the increased interaction between ASK1 and its substrate MKK3. MPK38 also stimulated H₂O₂-mediated apoptosis by enhancing the ASK1 activity through Thr⁸³⁸ phosphorylation. These results suggest that MPK38 physically interacts with ASK1 in vivo and acts as a positive upstream regulator of ASK1.

Apoptosis signal-regulating kinase 1 (ASK1)² is one of the mitogen-activated protein kinase kinase kinases (MAPKKK) that is stimulated in response to various cellular stresses, including reactive oxygen species, tumor necrosis factor α (TNF-α), Fas, ischemia insult, and anti-tumor agents. AKT stimulation leads to activation of the c-Jun NH₂-terminal kinase (JNK)/p38 signaling cascade by phosphorylating and activating mitogen-activated protein kinase kinases (MAPKK) such as MKK3, -4, -6, and -7 (1–3). Emerging evidence indicates that ASK1 activity is regulated by its interaction with several cellular partners (3–8), including thioredoxin (Trx), glutaredoxin, heat shock protein 72 (Hsp72), 14-3-3, and protein serine/threonine phosphatase 5 (PP5). For example, Trx and glutaredoxin bind to the NH₂- and COOH-terminal domains of ASK1, respectively, and inhibit ASK1 kinase activity, and Hsp72 inhibits ASK1 activation through direct interaction. These findings suggest that other ASK1-interacting proteins could be involved in the regulation of ASK1 activity.

Murine protein serine/threonine kinase 38 (MPK38), also known as maternal embryonic leucine zipper kinase (Melk), is a member of the AMP-activated protein kinase-related serine/threonine kinase family (9, 10). MPK38 was originally identified as a murine counterpart for its human homolog, HPK38/hMelk/KIAA175, that may be involved in the proliferation of interleukin-4-induced normal human keratinocytes (9). The importance of MPK38 in oncogenesis is also underscored by the finding that MPK38 expression is increased in tumor-derived progenitor cells as well as in cancers of nondifferentiated cells (11–13). However, the physiological regulation and functions of MPK38 have remained unclear.

To explore a functional link between ASK1 and MPK38 signaling pathways, we investigated the effect of MPK38 on ASK1 and its downstream targets. We demonstrated that MPK38 physically interacts with ASK1. MPK38 phosphorylates Thr⁸³⁸ (corresponding to Thr⁸⁴⁵ in mice) within the activation loop of human ASK1, which subsequently leads to the stimulation of ASK1 kinase activity. Moreover, this interaction results in the enhancement of JNK-mediated transactivation and H₂O₂-induced apoptosis.

MATERIALS AND METHODS

Cell Culture, Plasmids, Reagents, and Cell Line Construction—HEK293, 293T, HaCaT, and SK-N-BE(2)C cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (Invitrogen). HA-tagged wild-type and kinase-dead ASK1 were kindly provided by Dr. H. Ichijo (Tokyo Medical and Dental University, Tokyo, Japan). HA-tagged ASK1-K and ASK1-C were a gift from Dr. S. Cho (Korea Research Institute of Bioscience and Biotechnology, Taejon, Korea). The activator protein 1 (AP-1)-Luc reporter, pSuper vector, and c-Fos were the kind gifts from Dr. Y. Yeom (Korea Research Institute of Bioscience and Biotechnology, Taejon, Korea). Glutathione S-transferase (GST)-tagged MKK6(K82A)
Positive Regulation of ASK1 by MPK38

and p38 were a gift from Dr. E.-J. Choi (Korea University, Seoul, Korea). To generate the kinase-dead MPK38(K40R) construct, site-directed mutagenesis was carried out using the QuickChange II site-directed mutagenesis kit (Stratagene, La Jolla, CA). PCR was performed using the full-length MPK38 cDNA cloned into plasmid pBluescript KS (Stratagene) as the template in the presence of forward (5′-GAGATGTGACTATAAGCTACAT-GTGTAGAAGCATTTACTGGT-3′) and reverse (5′-TCTCGATATGTAGCTATACGTATG-3′) primers. The amplified PCR products were cut with ClaI plus NotI and cloned into pEG vectors to generate the GST-MPK38(K40R) construct. pEGB-MPK38 (wobble) was generated by QuickChange II site-directed mutagenesis kit using KS-MPK38 as the template and the anti-FLAG (M2), anti-His, and anti-caspase-3 antibodies were described previously (14). The identities of all the PCR products were confirmed by nucleotide sequencing analysis on both strands. Anti-FLAG (M2), anti-His, and anti-β-actin antibodies were from Sigma; the anti-hemagglutinin (HA), anti-ASK1, anti-MKK3, anti-ATF2, and anti-poly-(ADP-ribose) polymerase (PARP) antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA); the anti-phospho-MKK3/6 (S189/207), anti-p38, anti-phospho-p38(T180/Y182), anti-biotin, anti-phospho-MKK3 or MKK6, and anti-phospho-ATF2(T71) antibodies were from Cell Signaling Technology (Danvers, MA); the anti-phospho-MKK3/6 (S189/207), anti-phospho-p38(T180/Y182), anti-actin antibodies were from Sigma; the anti-hemagglutinin (HA-ASK1(WT) as the template. The following mutant primers and the following parameters: 4 min at 94 °C, 1 cycle; 30 s at 94 °C, 1 min at 62 °C, 3 min at 72 °C, 18 cycles; 7 min at 72 °C, 1 cycle. A third round of PCR amplification was then performed using ASK1 forward and reverse primers and the following parameters: 4 min at 94 °C, 1 cycle; 30 s at 94 °C, 1 min at 62 °C, 3 min at 72 °C, 18 cycles; 7 min at 72 °C, 1 cycle. To generate GST-tagged fusion proteins of ASK1(K709R) mutants, amplified PCR products were digested with Sall and NotI and ligated into pGEX4T-3 (Amersham Biosciences). To generate the HA-ASK1-N construct, PCR was performed using HA-ASK1(WT) as the template. The following primers were used: forward primer (5′-GCGTCGACATG-GACAGGAGGCCGGACGAGGAC-3′) containing a SalI site (underlined), reverse primer (5′-GCGTCGACCCTGAAGAGGAG-3′) containing a SalI site (underlined). The amplified PCR products were cut with Sall and cloned into a pcDNA-HA vector using Xhol site to generate the HA-ASK1-N.

In Vivo and in Vitro Binding Assay—Each plasmid DNA utilized in the study was transfected into HEK293, 293T, or HaCaT cells using WelFect-Ex™ Plus (WelGENE, Daegu, Korea), according to the manufacturer’s instructions. In vivo binding assays were performed as described previously (18). For native PAGE to determine the in vitro binding between MPK38 and ASK1, the procedure was the same as that of denaturing SDS-PAGE, except that solutions did not contain SDS or β-mercaptoethanol, and samples were not boiled prior to loading (18).

In Vitro Kinase Assay—In vitro kinase assays were performed as described previously (6). Cells transiently transfected with the indicated expression vectors were harvested and lysed with buffer (20 mM HEPES, pH 7.9, 10 mM EDTA, 0.1 mM KCl, and 0.1 mM NaCl). The cleared lysates were subjected to immunoprecipitation by incubation for 2 h at 4 °C with the appropriate antibodies. After washing the immunoprecipitates three times with lysis buffer, then twice with each kinase buffer (for ASK1, 20 mM Tris-HCl, pH 7.5, 0.1 mM sodium orthovanadate, 1 mM DTT, and 20 mM MgCl₂; for MKK3/6, 25 mM HEPES, pH 7.4, 0.1 mM sodium orthovanadate, 25 mM sodium β-glycerophosphate, 2 mM DTT, and 25 mM MgCl₂; for p38, 50 mM HEPES, pH 7.4, 1 mM sodium orthovanadate, 0.2 mM DTT, 1 mM phenylmethylsulfonyl fluoride, and 1 mM MgCl₂), the immunoprecipitates were assayed for the indicated protein kinase activities in the presence of each kinase buffer containing 5 μg of recombinant GST-tagged substrates. The reaction mixtures were separated by SDS-PAGE, transferred to polyvinylidene difluoride membranes, and detected by autoradiography. Recombinant GST-tagged ZPR9, MKK6(K82A), p38, and ATF2 were used as substrates for MPK38, ASK1, MKK3 or MKK6, and p38 mitogen-activated protein kinase (MAPK), respectively. Protein concentration was determined by the Bradford assay.
Assays for MPK38 and JNK Activities—Cells were transiently transfected with GST-tagged MPK38 or JNK, along with indicated expression vectors, and solubilized with lysis buffer (20 mM HEPES, pH 7.9, 10 mM EDTA, 0.1 M KCl, and 0.3 M NaCl). The cleared lysates were precipitated by glutathione-Sepharose beads. The GST precipitates were washed three times with lysis buffer and twice with kinase buffer (for MPK38, 50 mM HEPES, pH 7.4, 1 mM DT, and 10 mM MgCl₂) for JNK, 20 mM HEPES, pH 7.6, 0.1 mM sodium orthovanadate, 25 mM sodium β-glycerophosphate, 2 mM DT, and 20 mM MgCl₂), and then subjected to an in vitro kinase assay using recombinant ZPR9 (19) or c-Jun as a substrate in the presence of 5 μCi of [γ-32P]ATP, followed by SDS-PAGE and autoradiography.

Small Interfering RNA (siRNA) Experiments—The MPK38 siRNAs of the oligonucleotide 1 (5'-CAGCCAGCAAAUGGAGGAUUTT-3') targeting a coding region (amino acids 297–303) and oligonucleotide 2 (5'-AACCCAAGGUAACAGGATT-3') targeting a coding region (amino acids 156–162) on MPK38 (GenBank™ accession number NM010790), as well as ASK1 siRNA (5'-GGUAUCAAGUGAGGAUUTT-3') (20), were synthesized from SamChully Pharm. Co., Ltd. (Seoul, Korea). The sense and antisense oligonucleotides for each siRNA were mixed and heated at 90 °C for 2 min, and the combined reaction was incubated at 30 °C for 1 h. HKE293 cells grown were plated in 6-well flat-bottomed microplates (Nunc) at a concentration of 2 × 10⁶ cells per well the day before transfection. siRNA oligonucleotides with the indicated concentrations were transfected into cells using WellFect-Ex™ Plus. After 48 h of transfection, immunoblotting were carried out to confirm the down-regulation of target proteins.

Luciferase Reporter Assay—293T cells were transfected according to the WellFect-Ex™ Plus method with the AP-1-Luc reporter plasmid, along with each expression vector as indicated. After 48 h, the cells were harvested, and luciferase activity was monitored with a luciferase assay kit (Promega) following the manufacturer’s instructions. Light emission was determined with a Berthold luminometer (Microlumat LB96P). Total DNA concentration was kept constant by supplementing with empty vector DNAs. The values were adjusted with respect to expression levels of a cotransfected β-galactosidase reporter control, and experiments were repeated at least three times.

Assays for Apoptosis—For cell death experiments using the green fluorescent protein (GFP) system (18), HKE293 cells grown on sterile coverslips were transfected with pEGFP (a GFP-encoding expression vector) together with expression vectors as indicated. After 24 h of transfection, the cells were washed with phosphate-buffered saline and then incubated for 40 h in serum-free medium. The cells were fixed with ice-cold 100% methanol, washed three times with phosphate-buffered saline, and then stained with 4',6'-diamidino-2-phenyldine dihydrochloride. The 4',6'-diamidino-2-phenylindole dihydrochloride-stained nuclei of GFP-positive cells were analyzed for apoptotic morphology by fluorescence microscopy. The percentage of apoptotic cells was calculated as the number of GFP-positive cells with apoptotic nuclei divided by the total number of GFP-positive cells. Terminal deoxynucleotide transferase-mediated dUTP nick-end labeling (TUNEL) staining was performed according to the manufacturer’s instructions (Roche Applied Science). Cells exposed to 1 mM H₂O₂ for 9 h were used as a positive control.

RESULTS

Direct Interaction of MPK38 and ASK1 in Vivo and in Vitro—We initially performed in vitro kinase assays using 293T cells to identify MPK38-specific stimuli that modulate MPK38 kinase activity. Among the various stimuli tested, MPK38 precipitate from cell lysates treated with H₂O₂, at concentrations of more than 0.5 mM significantly induced MPK38 kinase activity compared with untreated MPK38 precipitate (Fig. 1A, left). We next analyzed the kinetics of MPK38 and ASK1 kinase activity in H₂O₂-stimulated 293T cells. The stimulation of MPK38 and ASK1 kinase activity was detected at 5 min after treatment with 2 mM H₂O₂, peaked at 30 min, and decreased thereafter (Fig. 1A, right). These results suggested that cross-talk between MPK38 and ASK1 signaling pathways may exist as H₂O₂ is well known to activate ASK1.

To test whether MPK38 is associated with ASK1 in cells, we performed cotransfection experiments using GST-MPK38 and FLAG-ASK1 expression vectors. The interactions between FLAG-tagged ASK1 proteins and GST-MPK38 fusion proteins were analyzed by immunoblotting with an anti-FLAG antibody. ASK1 was detected in the coprecipitate only when coexpressed with GST-MPK38 but not with control GST alone, demonstrating that MPK38 physically interacts with ASK1 (Fig. 1B, left). To confirm the endogenous interaction between MPK38 and ASK1, we carried out immunoprecipitation experiments using endogenous MPK38 and ASK1 in HEK293 cells. Immunoprecipitation of endogenous MPK38 by anti-MPK38 antibody and then immunoblotting with an anti-ASK1 antibody led to the clear identification of an interaction between the two endogenous MPK38 and ASK1 proteins (Fig. 1B, middle). We have further determined this association using other cell lines, including NIH 3T3 cells and R1.1 hematopoietic cells highly expressing MPK38 (15), and we confirmed that this association could occur in vivo (data not shown).

We also analyzed the in vitro association of purified, recombinant ASK1 with MPK38 using nondenaturing PAGE. Autophosphorylated recombinant MPK38 was incubated with an unlabeled, recombinant kinase-dead form of ASK1 (ASK1(K709R)) or with GST as a nonspecific control. A shift in the mobility of ³²P-labeled MPK38 was clearly evident upon incubation in the presence of ASK1(K709R), but it was undetectable when ³²P-labeled MPK38 was incubated with GST alone or in the absence of ASK1(K709R), providing additional evidence of a physical association between MPK38 and ASK1 (Fig. 1B, right).

To investigate whether the activity of both kinases was involved in the association between MPK38 and ASK1, we used an in vivo binding assay to examine the effects of the kinase-dead forms of MPK38 and ASK1 on MPK38-ASK1 complex formation. Expression of kinase-dead ASK1 (ASK1(K709R)) or ASK1(T838A), which is defective in ASK1 activation, resulted in a significant reduction of complex formation compared with expression of wild-type ASK1 (Fig. 1C, left and middle). Similar results were also observed with the kinase-dead MPK38 (MPK38(K40R)) in the analysis of the association between
Positive Regulation of ASK1 by MPK38

MPK38 and ASK1 (Fig. 1C, right). Consistent with this, the interaction was very weakly detected when the kinase-dead forms of both MPK38 and ASK1 were expressed (Fig. 1C, right, 6th lane). In addition, H2O2 treatment did not contribute to the modulation of the association between MPK38 and ASK1 containing kinase-dead MPK38 and/or ASK1 (Fig. 1D, 3rd and 4th lanes versus 5th to 10th lanes), indicating that the kinase activity of both MPK38 and ASK1 is important for H2O2-mediated modulation of MPK38-ASK1 complex formation.

Modulation of MPK38-ASK1 Complex Formation by ASK1 Stimuli—We assessed whether H2O2, a stimulator of ASK1, can influence the MPK38-ASK1 complex formation in HEK293 cells transfected with plasmid vectors expressing GST-MPK38 and FLAG-ASK1. After 48 h of transfection, cells were incubated in media with or without 2 mM H2O2 for 30 min. MPK38 was precipitated and the coprecipitation of ASK1 was determined by anti-FLAG immunoblot. MPK38-ASK1 association was significantly increased by H2O2 treatment compared with untreated control (Fig. 1E, upper left). Similarly, the interaction of MPK38 and ASK1 appears to be increased by other ASK1 stimuli, including TNF-α, endoplasmic reticulum stress (thapsigargin), and calcium overload (ionomycin) (Fig. 1E, upper right, and data not shown). We also determined the effect of ASK1 stimulators on the physical interaction between endogenous MPK38 and ASK1 in HEK293 cells. Exposure of the cells to TNF-α, H2O2, thapsigargin, and ionomycin resulted in a considerable increase in endogenous MPK38-ASK1 complex formation (Fig. 1E, lower, and data not shown), suggesting the involvement of MPK38 in the ASK1 signaling pathway.

Mapping of the Binding Domain Required for the MPK38-ASK1 Interaction—We performed in vivo binding assays to determine which domain of ASK1 contributes to MPK38 binding. The carboxyl-terminal regulatory domain (ASK1-C, amino acids 941–1375) of ASK1 was found to be responsible for MPK38 binding, whereas the amino-terminal (ASK1-N, amino acids 1–648) and kinase (ASK1-K, amino acids 649–940) domains...
were unable to bind with MPK38 (Fig. 2B), indicating that the carboxyl-terminal regulatory domain of MPK38 was responsible for ASK1 binding. Together, these results demonstrate that the physical association between MPK38 and ASK1 is mediated through their carboxyl-terminal regulatory domains.

MPK38 Stimulates ASK1 Kinase Activity in a Kinase-dependent Manner—To establish the physiological role for the MPK38-ASK1 interaction, we investigated the effects of this interaction on ASK1 function. To determine whether MPK38 has an effect on ASK1 kinase activity, 293T cells were transiently transfected with ASK1 alone or cotransfected with MPK38. The recombinant MKK6(K82A) protein expressed in *Escherichia coli* was purified and used as a substrate for the ASK1 kinase assay. ASK1 kinase activity significantly increased when ASK1 was coexpressed with MPK38 (Fig. 3A, left). In a separate experiment with recombinant wild-type ASK1, we also demonstrated that recombinant MPK38 proteins stimulated ASK1 kinase activity in a dose-dependent manner (Fig. 3A, right). However, the stimulatory effect of recombinant MPK38 on ASK1 kinase activity was not observed in the presence of recombinant ASK1-K, which was unable to bind with MPK38 (Fig. 3A, middle).

To examine whether the activity of MPK38 was involved in the ASK1 activation, we analyzed the effect of the kinase-dead mutant of MPK38 (MPK38(K40R)) on ASK1 kinase activity using an *in vitro* kinase assay. Coexpression of kinase-dead MPK38 had no effect on the modulation of ASK1 kinase activity compared with expression of wild-type ASK1 alone (Fig. 3B, top panel, 1st lane versus 3rd lane). Similarly, the phosphorylation of Thr838 of ASK1, which correlates with ASK1 activation (21), was not elevated by transfection with kinase-dead MPK38 (Fig. 3B, 2nd panel). The levels of immunoprecipitated ASK1 proteins were analyzed, and similar expression levels were found for the ASK1 construct (Fig. 3B, 3rd panel), indicating that the observed differences in phosphorylated MKK6(K82A) were not because of differences in ASK1 expression levels of HA immunoprecipitates. Taken together, these experiments demonstrate that MPK38 may be a positive regulator of ASK1 activity.
MPK38 Phosphorylates Thr^{838} within the Activation Loop of ASK1—Given that ASK1 physically interacts with MPK38 (see Figs. 1 and 2), we next determined whether ASK1 can act as a substrate for MPK38. The recombinant nonphosphorylated form of the ASK1(K709R) or wild-type ASK1 protein was expressed in E. coli, purified, and used as substrates for the MPK38 kinase assay. Extracts from 293T cells expressing GST-MPK38 were purified with glutathione-Sepharose beads and incubated with [\gamma-^{32}P]ATP to allow phosphorylation of the recombinant ASK1(K709R) or wild-type ASK1. In addition to the increase in the phosphorylation of wild-type ASK1, ASK1(K709R) phosphorylation was observed in the presence of MPK38 (Fig. 4A, top panel), indicating that ASK1 may be a substrate for MPK38. A similar result was also observed in the phosphorylation of ASK1 Thr^{838} (Fig. 4A, 2nd panel).

As the phosphorylation of Thr^{838} of human ASK1 (Thr^{845} in mice) correlates with ASK1 activation (21) and MPK38 stimulates ASK1 kinase activity (Fig. 3), we used an in vitro kinase assay using recombinant MPK38 to examine whether this and other (Ser^{83}, Ser^{967}, and Ser^{1034}) ASK1 phosphorylation sites play a role in MPK38-mediated phosphorylation. Mutation of ASK1(K709R) Thr^{838} to Ala^{838} completely abolished MPK38-dependent phosphorylation compared with the control with ASK1(K709R) as a substrate (Fig. 4B, top panel, 3rd lane versus 5th lane), indicating that the Thr^{838} within the activation loop of ASK1 represents a potential phosphorylation site for MPK38. These results suggest that MPK38 directly phosphorylates ASK1 on Thr^{838} through physical interaction and activates ASK1.

MPK38 Is a Potential Upstream Kinase of ASK1—To examine whether ASK1 can phosphorylate MPK38 through direct interaction, we conducted an in vitro kinase assay using recombinant nonphosphorylated MPK38 (MPK38(K40R)) and wild-type MPK38 as substrates. ASK1 was unable to phosphorylate recombinant MPK38(K40R) (supplemental Fig. S1). Moreover, the phosphorylation of recombinant wild-type MPK38 was not affected by ASK1 (supplemental Fig. S1, lane 4 versus lane 5). These results suggest that, despite physical binding, MPK38 may not be a substrate for ASK1. Based on this, together with the above results obtained in Fig. 4, A and B, we reasoned that MPK38 may be an upstream kinase that activates ASK1. To examine this hypothesis, MPK38 was purified on glutathione-Sepharose beads using HEK293 cell extracts expressing GST-MPK38. MPK38 kinase activity was determined by in vitro
kinase assays using recombinant ASK1(K709R), MKK6(K82A), or p38 as substrates. MPK38 phosphorylated recombinant ASK1(K709R), whereas phosphorylation of recombinant MKK6(K82A) and p38 by MPK38 was not detectable (Fig. 4C). These findings suggest that MPK38 may act as an upstream regulator of the MAPKKK ASK1.

MPK38 Increases the Interaction between ASK1 and Its Substrate MKK3—We next examined whether MPK38 contributes to the interaction between ASK1 and its substrate MKK3. HEK293 cells transfected with vectors expressing FLAG-ASK1 and HA-MKK3 in the presence or absence of MPK38 were subjected to immunoprecipitation using an anti-HA antibody, followed by immunoblot analysis using an anti-FLAG antibody. There was a significant increase in complex formation between ASK1 and MKK3 in cells coexpressing MPK38 compared with expression in the absence of MPK38 (Fig. 5A). In contrast, no difference in complex formation was observed in the presence of N-acetyl-L-cysteine (Nac), a potent antioxidant (Fig. 5B). This indicates that intracellular redox regulation might be involved in MPK38-mediated increase of the association between ASK1 and MKK3. We also observed a similar trend showing the importance of the phosphorylation of Thr838 of ASK1 in MPK38-mediated modulation of the complex formation between ASK1 and MKK3 (Fig. 5C). Consistent with this, knockdown of endogenous MPK38 decreased the complex formation between ASK1 and MKK3, although this reduction was overcome by expressing a wobble mutant of MPK38 (Fig. 5D).
Positive Regulation of ASK1 by MPK38

These results suggested that ASK1 activation by MPK38 increased the interaction between ASK1 and its substrate.

Because ASK1 was shown to form inactive complexes with Trx or 14-3-3 (3, 8, 22), and ASK1 homo-oligomerization was important for its kinase activity (21, 23), we also investigated the effect of MPK38 on Trx (or 14-3-3) binding to ASK1 and ASK1 homo-oligomerization. Results indicated that MPK38 stimulated ASK1 activity by dissociating Trx (or 14-3-3) from ASK1. These results suggested that ASK1 activation by MPK38 specifically stimulated ASK1 kinase activity but had no effect on the kinase activities of MKK3, MKK6, or p38 (supplemental Fig. S4). These results suggest that MPK38 enhances ASK1-mediated signaling through direct stimulation of ASK1.

MPK38 Stimulates ASK1-mediated AP-1 Transcriptional Activity in a Kinase-dependent Manner—ASK1 is a MAPKKK involved in the activation of JNK/stress-activated protein kinase and p38 MAPK. Because AP-1 is a transcription factor activated by JNK and p38 kinases, we used an AP-1 luciferase reporter to determine whether MPK38 affects ASK1-mediated transactivation. Wild-type MPK38 (MPK38(WT)) significantly increased ASK1-mediated transactivation. Parental SK-N-BE(2)C cells or SK-N-BE(2)C cells stably expressing pCMV-MPK38 (SK-MPK38) were treated with H$_2$O$_2$ and subsequently immunoprecipitated using anti-ASK1, anti-MKK3, and anti-p38 antibodies. Endogenous ASK1, MKK3, and p38 kinase activities were evaluated using in vitro kinase assays. H$_2$O$_2$ sufficiently stimulated the kinase activities of ASK1, MKK3, and p38 in parental SK-N-BE(2)C cells, and these effects were further enhanced by overexpression of MPK38 (Fig. 6A, SK-MPK38, upper panels). A similar result was also observed in immunoblot analysis using anti-phospho-specific antibodies for ASK1 Th$_{838}$, MKK3/6, p38, and ATF2 (Fig. 6A, lower left). Consistent with this, knockdown of endogenous MPK38 showed an opposite trend in the modulation of ASK1, MKK3, and p38 kinase activities (Fig. 6B), suggesting that MPK38 stimulates ASK1-mediated signaling to p38 kinase.

To determine whether MPK38 targets ASK1 directly, we also performed in vitro kinase assays of ASK1, MKK3, MKK6, and p38 in the presence or absence of recombinant MPK38. HEK293 cells were transiently transfected with HA-ASK1, HA-MKK3, HA-MKK6, or HA-p38 and treated with or without H$_2$O$_2$. The cells were then subjected to immunoprecipitation with an anti-HA antibody. The resulting immunoprecipitates were assayed for kinase activities of ASK1, MKK3, MKK6, or p38 in the presence or absence of recombinant MPK38. MPK38 specifically stimulated ASK1 kinase activity but had no effect on the kinase activities of MKK3, MKK6, or p38 (Fig. 6C). These results indicate that MPK38 stimulates ASK1-mediated signaling through direct stimulation of ASK1.

MPK38 Stimulates ASK1-mediated Transcriptional Activity in a Kinase-dependent Manner—ASK1 is a MAPKKK involved in the activation of JNK/stress-activated protein kinase and p38 MAPK. Because AP-1 is a transcription factor activated by JNK and p38 kinases, we used an AP-1 luciferase reporter to determine whether MPK38 affects ASK1-mediated transactivation. Wild-type MPK38 (MPK38(WT)) significantly increased ASK1-mediated AP-1 transcriptional activity in a dose-dependent manner, whereas kinase-dead MPK38 had no effect (Fig. 7A). We also confirmed the roles of MPK38 in ASK1-mediated transactivation using the MPK38—ASK1 is a MAPKKK involved in the activation of JNK/stress-activated protein kinase and p38 MAPK. Because AP-1 is a transcription factor activated by JNK and p38 kinases, we used an AP-1 luciferase reporter to determine whether MPK38 affects ASK1-mediated transactivation. Wild-type MPK38 (MPK38(WT)) significantly increased ASK1-mediated AP-1 transcriptional activity in a dose-dependent manner, whereas kinase-dead MPK38 had no effect (Fig. 7A). We also confirmed the roles of MPK38 in ASK1-mediated transactivation using the MPK38...
knockdown system. Transfection of MPK38 siRNA resulted in a significant decrease in ASK1-mediated AP-1 transcriptional activity that was proportional to the amount of MPK38 siRNA transfected (Fig. 7A, 4th lane versus 7th and 8th lanes).

Next, to test the effect of MPK38 on ASK1-mediated JNK activation, HEK293 cells were transfected with vectors expressing GST-JNK and HA-ASK1 in the presence or absence of wild-type and kinase-dead MPK38. JNK activity was evaluated using an in vitro kinase assay with c-Jun as a substrate. As expected, ASK1-mediated JNK activation was markedly increased by wild-type MPK38 in a dose-dependent manner, whereas kinase-dead MPK38 had no effect on ASK1-mediated JNK activation (Fig. 7B, left). To verify whether the knockdown of endogenous MPK38 contributed to altered ASK1-mediated JNK activation, HEK293 cells transfected with GST-JNK and HA-ASK1, together with MPK38-specific siRNA, were purified on glutathione-Sepharose beads, followed by an in vitro kinase assay using c-Jun as a substrate. ASK1-mediated JNK activation was decreased in a dose-dependent manner in MPK38-knockdown cells compared with control cells expressing JNK and ASK1 in the absence of MPK38 siRNA (Fig. 7B, middle, 4th lane versus 7th and 8th lanes). A similar result was also observed in HaCaT cells stably expressing MPK38 shRNA (Fig. 7B, right). These results suggest that ASK1 phosphorylation that is mediated via direct interaction with MPK38 increases ASK1-mediated signaling to both JNK and p38 kinases.

MPK38 Stimulates H$_2$O$_2$-mediated Apoptosis—Because MPK38 interacts with ASK1 (see Figs. 1 and 2) and the ASK1 activation induces apoptotic cell death under various conditions (2, 3), we next examined whether MPK38 could influence H$_2$O$_2$-mediated cell death. Expression of wild-type MPK38 in HEK293 cells resulted in a significant increase in H$_2$O$_2$-induced cell death in a dose-dependent manner, as determined by GFP system and TUNEL staining (Fig. 8). This indicated that MPK38 is involved in H$_2$O$_2$-mediated cell death. We also deter-
Positive Regulation of ASK1 by MPK38

A

B

H₂O₂ - + +

ASK1 Kinase assay

IP: α-ASK1

WB: anti-ASK1

WB: anti-GST

WB: anti-p38

WB: anti-phospho-ASK1(Thr38)

WB: anti-phospho-MKK3/6

WB: anti-ATF2

Lysate

IP: α-MKK3

WB: anti-MKK3

WB: anti-p38

WB: anti-phospho-p38

WB: anti-phospho-ATF2

H₂O₂ - + +

Mkk3 Kinase assay

WB: anti-MKK3

WB: anti-p38

WB: anti-phospho-p38

WB: anti-phospho-ATF2

Lysate

H₂O₂ - + +

p38 Kinase assay

WB: anti-p38

WB: anti-phospho-p38

WB: anti-phospho-ATF2

WB: anti-ATF2

B

H₂O₂ - + +

ASK1 Kinase assay

IP: α-ASK1

WB: anti-ASK1

WB: anti-GST

WB: anti-p38

WB: anti-phospho-ASK1(Thr35)

WB: anti-phospho-MKK3/6

WB: anti-ATF2

Lysate

IP: α-MKK3

WB: anti-MKK3

WB: anti-p38

WB: anti-phospho-p38

WB: anti-phospho-ATF2

H₂O₂ - + +

Mkk3 Kinase assay

WB: anti-MKK3

WB: anti-p38

WB: anti-phospho-p38

WB: anti-phospho-ATF2

Lysate

H₂O₂ - + +

p38 Kinase assay

WB: anti-p38

WB: anti-phospho-p38

WB: anti-phospho-ATF2

WB: anti-ATF2

VOLUME 283 • NUMBER 50 • DECEMBER 12, 2008
mined whether the kinase activity of MPK38 was necessary for modulation of H\textsubscript{2}O\textsubscript{2}-mediated cell death because only wild-type MPK38 induced ASK1 activity (see Fig. 3B). No difference in the H\textsubscript{2}O\textsubscript{2}-mediated cell death was found in the presence of kinase-dead MPK38 compared with the control treated with H\textsubscript{2}O\textsubscript{2} in the absence of MPK38 (supplemental Fig. S5, lane 7 versus lanes 4 and 8), indicating an important role for MPK38 kinase activity in the modulation of H\textsubscript{2}O\textsubscript{2}-mediated cell death.

We also performed knockdown experiments of MPK38 using MPK38 siRNA. Transfection of HEK293 cells with siRNA duplexes targeting MPK38 resulted in a significant decrease of H\textsubscript{2}O\textsubscript{2}-mediated apoptosis, proportional to the amount of MPK38 expression. The relative level of JNK activity was quantitated by densitometric analyses, and fold increase relative to control HEK293 cells expressing JNK alone or untreated HaCaT cells expressing JNK and ASK1 was calculated. WB, Western blot.

FIGURE 7. Up-regulation of JNK-mediated transcription by MPK38.

A, 293T cells were transfected with 0.2 μg of AP-1 luciferase plasmid and increasing amounts of wild-type (WT) and kinase-dead (K40R) forms of MPK38 (6 and 9 μg) and MPK38 siRNA 1 (50 and 200 nm) as indicated in the presence or absence of c-Fos (0.6 μg). Data shown are means (± S.E.) of three independent experiments. *p < 0.05 relative to control; significance calculated by Student’s t test. B, enhancement of JNK activity by MPK38. HEK293 cells were cotransfected using GST-JNK (1.5 μg) and HA-ASK1 (2 μg) in the presence or absence of increasing amounts of wild-type (WT) and kinase-dead (K40R) forms of MPK38 (6 and 9 μg) or MPK38 siRNA 1 (100 and 200 nm). An in vitro kinase assay for JNK activity was performed as described under “Materials and Methods.” The amounts of precipitated JNK and the expression level of ASK1 and MPK38 in total cell lysates were determined by immunoblot analysis using anti-GST and anti-HA antibodies. MPK38KD cells transfected with GST-JNK and HA-ASK1 were also precipitated using glutathione-Sepharose beads (GST Purification), and the precipitates were subjected to an in vitro kinase assay using c-Jun as a substrate to determine JNK activity (right). The relative level of JNK activity was quantitated by densitometric analyses, and fold increase relative to control HEK293 cells expressing JNK alone or untreated HaCaT cells expressing JNK and ASK1 was calculated. WB, Western blot.
Positive Regulation of ASK1 by MPK38

DISCUSSION

The mechanism for ASK1 activation in response to apoptotic stimuli has not been fully elucidated, despite the proposed function of ASK1 in mediating multiple cell death pathways. Recent studies have demonstrated that ASK1 activity is positively or negatively regulated by its interacting partners, including tumor necrosis factor receptor-associated factor (28), Daxx (1), JNK/stress-activated protein kinase-associated protein 1 (JIP3) (29), thioredoxin (3, 4), glutaredoxin (7), HSP72 (6), Raf-1 (3), Akt/PKB (30), PP5 (5), and 14-3-3 (8, 21, 30). Akt/PKB binds to and phosphorylates Ser83 of ASK1, resulting in the inhibition of ASK1-mediated apoptosis (30); and 14-3-3 (8), ASK1 phosphorylation also regulates ASK1-mediated apoptosis (30), and phosphorylation of ASK1, and that the MPK38-ASK1 interaction may provide a molecular basis for the proposed signaling events involving MPK38 and ASK1. Moreover, the role of MPK38 as an inducer of ASK1-mediated signaling may clarify the mechanism(s) underlying MPK38-mediated signaling in carcinogenesis.
thesis. We have revealed that MPK38 directly binds to and activates ASK1 to stimulate ASK1-mediated signaling through ASK1 phosphorylation at Thr183, and our results suggest that MPK38 is a potential upstream kinase of ASK1. In addition, H$_2$O$_2$-dependent modulation of MPK38 activity may provide an effective way to study the biological role of MPK38 in detail.

REFERENCES

1. Chang, H. Y., Nishitoh, H., Yang, X., Ichijo, H., and Baltimore, D. (1998) J. Biol. Chem. 273, 10000–10005
2. Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moritani, S., Takagi, M., Matsumoto, K., Miyazono, K., and Gotoh, Y. (1997) Science 275, 90–94
3. Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998) EMBO J. 17, 2596–2606
4. Liu, H., Nishitoh, H., Ichijo, H., and Kyriakis, J. M. (2000) Mol. Cell. Biol. 20, 2198–2208
5. Morita, K., Saitoh, M., Tobiume, K., Matsuura, H., Enomoto, S., Nishitoh, H., and Ichijo, H. (2001) EMBO J. 20, 6028–6036
6. Park, H. S., Cho, S. G., Kim, C. K., Hwang, H. S., Noh, K. T., Kim, M. S., Huh, S. H., Kim, M. J., Ryoo, K., Kim, E. K., Kang, W. J., Lee, J. S., Seo, J. S., Ko, Y. G., Kim, S., and Choi, E. J. (2002) Oncogene 21, 234–244
7. Wu, J., Sun, X., Franke, W., and Chao, M. V. (2001) Cancer Res. 61, 13–22
8. Zhang, L., Chen, J., and Fu, H. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 7783–7788
9. Gil, M., Yang, Y., Lee, Y., Choi, I., and Ha, H. (1997) Gene (Amst.) 195, 295–301
10. Heyer, B. S., Warsowse, J., Solter, D., Knowles, B. B., and Ackerman, S. L. (1997) Mol. Reprod. Dev. 47, 148–156
11. Gray, D., Jubb, A. M., Hogue, D., Dowd, P., Klijavin, N., Yi, S., Bai, W., Frantz, G., Zhang, Z., Koeppen, H., de Sauvage, F. J., and Davis, D. P. (2005) Cancer Res. 65, 9751–9761
12. Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., and Kornblum, H. I. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 15178–15183
13. Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A. M. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 9309–9314
14. Wang, C., Gale, M., Jr., Keller, B. C., Huang, H., Brown, M. S., Goldstein, J. L., and Ye, J. (2005) Mol. Cell. 18, 425–434
15. Yang, Y., Gil, M., Lee, Y., and Ha, H. (1999) Appl. Biochem. Biotechnol. 80, 13–22
16. Jung, H., Kim, T., Chae, H. Z., Kim, K. T., and Ha, H. (2001) J. Biol. Chem. 276, 15504–15510
17. Seong, H.-A., Jung, H., and Ha, H. (2007) J. Biol. Chem. 282, 12075–12096
18. Jung, H., Seong, H.-A., and Ha, H. (2007) J. Biol. Chem. 282, 35293–35307
19. Seong, H.-A., Gil, M., Kim, K.-T., Kim, S. J., and Ha, H. (2002) Biochem. J. 361, 597–604
20. Ouyang, M., and Shen, X. (2006) J. Neurochem. 97, 234–244
21. Tobiume, K., Saitoh, M., and Ichijo, H. (2002) J. Cell. Physiol. 191, 95–104
22. Liu, Y., Yin, G., Surapisitchat, J., Berk, B. C., and Min, W. (2001) J. Clin. Investig. 107, 917–923
23. Gotoh, Y., and Cooper, J. A. (1998) J. Biol. Chem. 273, 17477–17482
24. Wang, X. S., Diener, K., Jannuzzi, D., Tolland, D., Tan, T. H., Lichenstein, H., Zukowski, M., and Yao, Z. (1996) J. Biol. Chem. 271, 31607–31611
25. Hatai, T., Matsuzaawa, A., Inoshita, S., Mochida, Y., Kuroda, T., Sakamaki, K., Kuida, K., Yonehara, S., Ichijo, H., and Takeda, K. (2000) J. Biol. Chem. 275, 26576–26581
26. Patel, T., Gores, G. J., and Kaufmann, S. H. (1996) FASEB J. 10, 587–597
27. Chinnaiyan, A. M., Orth, K., O’Rourke, K., Duan, H., Poirier, G. G., and Dixit, V. M. (1996) J. Biol. Chem. 271, 4573–4576
28. Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., Miyazono, K., and Ichijo, H. (1998) Mol. Cell 2, 389–395
29. Matsuura, H., Nishitoh, H., Takeda, K., Matsuzaawa, A., Amagasa, T., Ito, M., Yoshioka, K., and Ichijo, H. (2002) J. Biol. Chem. 277, 40707–40709
30. Kim, A. H., Khurshigara, G., Sun, X., Franke, T. F., and Chao, M. V. (2001) Mol. Cell. Biol. 21, 893–901
31. Fuji, K., Goldman, E. H., Park, H. R., Zhang, L., Chen, J., and Fu, H. (2004) Oncogene 23, 5099–5104
32. Takeda, K., Shimozono, R., Noguchi, T., Umeda, T., Morimoto, Y., Naguro, I., Tobiume, K., Saitoh, M., Matsuzaawa, A., and Ichijo, H. (2007) J. Biol. Chem. 282, 7522–7531
33. Mochida, Y., Takeda, K., Saitoh, M., Nishitoh, H., Amagasa, T., Ninomiya-Tsuji, I., Matsumoto, K., and Ichijo, H. (2000) J. Biol. Chem. 275, 32747–32752
34. Chen, J., Fuji, K., Zhang, L., Roberts, T., and Fu, H. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 7783–7788
35. Beullens, M., Vancauwenbergh, S., Morrice, N., Derau, R., Ceulemans, H., Waelkens, E., and Bollen, M. (2005) J. Biol. Chem. 280, 40003–40011