Models for the n-Swiss Cheese operads

Thomas Willwacher

Abstract
We describe combinatorial Hopf (co-)operadic models for the Swiss Cheese operads built from Feynman diagrams. This extends previous work of Kontsevich and Lambrechts-Volić for the little disks operads.

1. Introduction
The little n-disks operads D_n are operads of rectilinear embeddings of ‘small’ n-dimensional disks in the n-dimensional unit disk. The operadic composition is obtained by gluing one such configuration into one of the small disks, cf. Figure 1. Similarly, one may consider spaces D^1_n of rectilinear embeddings of ‘small’ disks and half-disks in the n-dimensional unit half-disk, such that the equators of the small half disks sit in the equatorial plane of the unit half-disk.

By gluing such configurations, one can naturally define a two-colored operad structure on the pair $SC_n = (D_n, D^1_n)$, which is called the n-dimensional Swiss Cheese operad, cf. [14]. The little disks and Swiss-Cheese operads play a central role in several disciplines of mathematics. In particular, understanding their rational homotopy theory is important for computing the factorization homology of manifolds with boundary [1], and in the embedding calculus for such manifolds [7].

The goal of this short note is to describe real combinatorial (cofibrant) dg Hopf cooperad models for the topological colored operads SC_n. We expect that the result will have applications in the aforementioned areas of mathematics.

In fact, we will work with versions of the Swiss Cheese operads built from configuration spaces of points rather than configurations of disks as in [14]. Concretely, the topological operad FM_n is defined as a compactification of the space of configurations of finite sets of points in \mathbb{R}^n, modulo scaling and translation. It is homotopic to D_n, see [9]. Similarly, the (homotopic) variant of D^1_n are configurations of points in the upper halfplane and on the real axis, modulo scaling and translation, suitably compactified so that the operadic compositions...
MODELS FOR THE n-SWISS CHEESE OPERADS

are defined [14]. We denote these configuration spaces collectively by FM_n^1, and the two-colored topological operad formed by

$$SFM_n = (FM_n, FM_n^1).$$

In fact, SFM_n is an operad of semi-algebraic manifolds, and in each fixed arity we may consider the dg algebras of PA forms [8] on the underlying configuration spaces. We denote this collection by $\Omega_{PA}(SFM_n)$.

The main result of this paper is to describe a combinatorial 2-colored differential graded Hopf† cooperad $SGraphs_n = (Graphs_n, Graphs_n^1)$ with a map (of colored collections) $SGraphs_n \rightarrow \Omega_{PA}(SFM_n)$ that satisfies the following properties.

- In each arity, the map is a quasi-isomorphism of differential graded commutative algebras.
- The map is compatible with the (co)operadic (co)compositions in the sense that the following diagrams commute:

$$\begin{align*}
\text{Graphs}_n(r) &\rightarrow \Omega_{PA}(FM_n(r)) \\
\Omega_{PA}(FM_n(r - k + 1) \times FM_n(k)) \\
\text{Graphs}_n(r - k + 1) \otimes \text{Graphs}_n(k) &\rightarrow \Omega_{PA}(FM_n(r - k + 1)) \otimes \Omega_{PA}(FM_n(k))
\end{align*}$$

(1)

$$\begin{align*}
\text{Graphs}_n^1(r, s) &\rightarrow \Omega_{PA}(FM_n^1(r, s)) \\
\Omega_{PA}(FM_n^1(r - k, s - l + 1) \times FM_n^1(k, l)) \\
\text{Graphs}_n^1(r - k, s - l + 1) \otimes \text{Graphs}_n^1(k, l) &\rightarrow \Omega_{PA}(FM_n^1(r - k, s - l + 1)) \otimes \Omega_{PA}(FM_n^1(k, l))
\end{align*}$$

(2)

$$\begin{align*}
\text{Graphs}_n^1(r, s) &\rightarrow \Omega_{PA}(FM_n^1(r, s)) \\
\Omega_{PA}(FM_n^1(r - k + 1, s) \times FM_n(k)) \\
\text{Graphs}_n^1(r - k + 1, s) \otimes \text{Graphs}_n(k) &\rightarrow \Omega_{PA}(FM_n^1(r - k + 1, s)) \otimes \Omega_{PA}(FM_n(k))
\end{align*}$$

(3)

- The graded commutative algebras underlying $SGraphs$ are free.

Given the above properties, we consider $SGraphs_n$ to be a dg Hopf cooperadic model for the topological Swiss Cheese operads SFM_n and SC_n.

In fact, our construction is merely an extension to the Swiss-Cheese setting of a similar construction of Kontsevich [9] for the little n-disks operads, which was implemented in detail and more rigor by Lambrechts and Volić [11]. Our contribution in this paper is to solve some technical issues which before have prevented this extension, and whose solution the author had missed in [16].

To describe the model, let us quickly summarize Kontsevich’s construction.‡ For this one considers a cooperad $fGraphs_n$ whose operations in arity r are linear combinations of graphs

†A Hopf cooperad is a cooperad in the category of differential graded commutative algebras, cf. [13].

‡We present a slightly nonstandard (and slightly too complicated) approach to Kontsevich’s construction. This approach will, however, set the stage for the Swiss Cheese case later.
with \(r \) numbered ("external") vertices and an arbitrary (finite) number of unidentifiable ‘internal’ vertices like the following:

\[
\begin{array}{c}
\begin{array}{c}
\text{(4)}
\end{array}
\end{array}
\]

For each such graph \(\Gamma \in \mathfrak{Graphs}(r) \) (with, say, \(k \) internal vertices), one may define a PA form \(\omega_\Gamma \in \Omega_{PA}(\mathbf{F}M_n(r)) \). This is done by a fiber integral

\[
\omega_\Gamma = \int_{\mathbf{F}M_n(k+r)\to \mathbf{F}M_n(r)} \bigwedge (i,j) \text{ edge } \pi_{ij}^* \Omega S^{n-1},
\]

where the integral is taken over the fiber of the forgetful map \(\mathbf{F}M_n(k+r) \to \mathbf{F}M_n(r) \), and the integrand is obtained as a product of pullbacks of the round volume form on the sphere by the forgetful maps

\[
\pi_{ij} : \mathbf{F}M_n(k+r) \to \mathbf{F}M_n(2) = S^{n-1}
\]

forgetting all but two points.

The spaces \(\mathfrak{Graphs}_n(r) \) naturally assemble into a dg Hopf cooperad \(\mathfrak{Graphs}_n \), and it can be checked using Stokes’ Theorem that the map \(\mathfrak{Graphs}_n \to \Omega_{PA}(\mathbf{F}M_n) \) is compatible with all algebraic operations, in particular the cooperad structure in the sense of (1). However, the maps \(\mathfrak{Graphs}_n(r) \to \Omega_{PA}(\mathbf{F}M_n(r)) \) are not quasi-isomorphisms (yet). To have a quasi-isomorphism, one has to pass to the connected quotient. We call a graph in \(\mathfrak{Graphs}_n(r) \) externally disconnected if it has a connected component containing only internal vertices but no external. For example, the graph in the above picture is externally disconnected. One then has the following result.

Theorem 1 [9, 11]. The space of externally disconnected graphs \(\mathfrak{Graphs}^{disc}_n \) is a bi-ideal, so that the quotient collection

\[
\text{Graphs}_n = \mathfrak{Graphs}_n/\mathfrak{Graphs}^{disc}_n
\]

inherits a dg Hopf cooperad structure.

The map \(\mathfrak{Graphs}_n \to \Omega_{PA}(\mathbf{F}M_n) \) factors through \(\text{Graphs}_n \), and the map

\[
\text{Graphs}_n \to \Omega_{PA}(\mathbf{F}M_n)
\]

is a quasi-isomorphism compatible with all algebraic structures.

In this paper, we extend the Kontsevich construction as follows. To model the spaces \(\mathbf{F}M^1_{n}(r,s) \) of configurations of \(r \) points in the halfspace and \(s \) on the boundary, we consider the dg commutative algebra \(\mathfrak{Graphs}^1_{n}(r,s) \), whose elements are linear combinations of directed graphs with two types of vertices (usually denoted by type I and type II), with \(r \) type I vertices and \(s \) type II vertices numbered (‘external’), and the remainder of vertices unidentifiable (‘internal’), as, for example, in the following picture:

\[
\begin{array}{c}
\begin{array}{c}
\text{(6)}
\end{array}
\end{array}
\]
For \(n = 2 \), we require in addition that all type II vertices (internal and external) are equipped with a linear ordering, which we indicate by drawing these vertices on a line as above.

Now, to each such graph \(\Gamma \in \text{fGraphs}_n^1(r, s) \) (with say \(k \) and \(l \) internal vertices of types I and II) we may associate a differential form \(\omega^1_\Gamma \in \Omega_{PA}(\text{FM}_n^1(r, s)) \) by the following variant of (5) above:

\[
\omega^1_\Gamma = \int_{\text{FM}_n^1(r+k,s+l)\to\text{FM}_n^1(r,s)} \chi_\Gamma \bigwedge_{(i,j) \text{ edge}} \pi_{ij}^\ast \Omega S^{n-1}.
\]

Here the integral is again over the fiber of the forgetful map, with the additional caveat that for \(n = 2 \) we integrate only over those connected components for which the linear order of the type II points in the configuration matches the one in the graph, as ensured by the indicator function \(\chi_\Gamma \). The integrand is again a product of pullbacks of the round volume form on the sphere along the forgetful maps

\[
\pi_{ij} : \text{FM}_n^1(r+k,s+l) \to \begin{cases} \text{FM}_n^1(2,0) & \text{for } i,j \text{ of type I} \\ \text{FM}_n^1(1,1) & \text{for } i \text{ of type } I, j \text{ of type II} \end{cases} \to S^{n-1},
\]

where the final projection is by projecting the \(j \)th point into the unit sphere in the tangent space at the \(i \)th point, along the hyperbolic geodesic, as indicated in the following picture (for two dimensions).

Analogously to the little-disks setting, one may again endow the pair

\[
\text{fSGraphs}_n = (\text{fGraphs}_n, \text{fGraphs}_n^1)
\]

with a two-colored dg Hopf operad structure, such that the maps

\[
\text{fSGraphs}_n \to \Omega_{PA}(\text{SFM}_n)
\]

are compatible with all algebraic structures. Continuing in analogy with the little disks setting, we wish to (i) define a bi-ideal of ‘externally disconnected’ graphs \(\text{fSGraphs}_n^{\text{disc}} \) such that the map \(\text{fSGraphs}_n \to \Omega_{PA}(\text{SFM}_n) \) factors through the quotient, and such that (ii) this map on the quotient is a quasi-isomorphism. We note that step (i) is not obvious if \(n = 2 \), since the naive definition of having connected components with only internal vertices does not work. Computing the cohomology in step (ii) is a bit more complicated than in the little disks setting, owed in part to the fact that the Swiss-Cheese operads are not formal \([12]\). The contribution of this note is to solve the problems (i) and (ii) and show the following result.

Theorem 2. There is a natural Hopf cooperadic bi-ideal \(\text{fSGraphs}_n^{\text{disc}} \subset \text{fSGraphs}_n \) such that the map \(\text{fSGraphs}_n \to \Omega_{PA}(\text{SFM}_n) \) factors through the quotient dg Hopf cooperad

\[
\text{SGraphs}_n = \text{fSGraphs}_n / \text{fSGraphs}_n^{\text{disc}},
\]
and such that the induced map $\text{SGraphs}_n \to \Omega_{P.A}(\text{SFM}_n)$ is a quasi-isomorphism compatible with the differential graded commutative algebra structures and the (co)operadic (co)compositions as in (1)–(3).

Furthermore, one can easily check that all arity components of SGraphs_n are free as graded commutative algebras, and thus SGraphs_n forms the desired dgca model (in the sense described above) for the Swiss-Cheese operad SC_n.

The remainder of this paper is organized as follows: Section 2 is devoted to a somewhat more careful recollection/definition of the notation, in particular of the graphical models sketched above. Section 4 discusses the bi-ideal $\text{fSGraphs}_{\text{disc}}$. The cohomology computation for the quotient that finishes the proof of Theorem 2 is contained in Section 5. Finally, in Section 6 we present an application of our result to deformation quantization: We show that any L_∞ stable formality morphism may be extended (up to homotopy, see Theorem 10 below) to a homotopy Gerstenhaber formality morphism.

2. Notation

We generally work over the ground field \mathbb{R}. All vector spaces and differential graded vector spaces considered are \mathbb{R}-vector spaces. We use cohomological conventions for all differential graded (dg) vector spaces we consider, that is, the differential always has degree +1 under all circumstances. In particular, this means that, for example, the homology of a topological space is considered to be concentrated in nonpositive degrees.

We use the language of (co)operads and colored (co)operads, and refer to the textbook by Loday and Vallette [13] for an introduction. Operads of particular importance for us are the associative operad Assoc, the Lie operad Lie, and the n-Poisson operad Pois_n, generated by two binary operations of degree 0 (the product) and degree $1 - n$ (the bracket). In particular $\text{Pois}_1 = \text{Pois}$ is concentrated in degree 0 and is the operad governing ‘ordinary’ Poisson algebras. Finally, we will need the braces operad Br, cf. [16] for the definition we will use here.

We denote the k-fold (de)suspension of an operad P by $P\{k\}$, cf. [13]. In particular, we denote $\text{Lie}_k := \text{Lie}\{k - 1\}$, so that one has a map $\text{Lie}_n \to \text{Pois}_n$.

At several (few) places we will use quasi-free resolutions of these operads. In particular, we denote by

$$\text{hoLie}_2 = \Omega(\text{Lie}_2^\vee)$$

the operadic cobar construction of the Koszul dual cooperad Lie_2^\vee of Lie_2. Similarly, we define $\text{hoPois}_2 = \Omega(\text{Pois}_2^\vee)$.

Finally a Hopf cooperad is a cooperad in the category of dg commutative algebras.

2.1. Compactified configuration space operads

Let us also briefly recall the definition of the compactified configuration spaces models SFM_n for the n-Swiss Cheese operads. First consider the space $\text{Conf}_r(\mathbb{R}^n)$ of r distinguishable points in
The space FM_n naturally assemble into a topological operad FM_n, with the operadic composition defined by ‘inserting’ one configuration of points at some point of another. The composition takes values on the boundary. One may or may not define $FM_n(0)$ to consist of a single point, insertion of which is the forgetful map. To distinguish both variants we will call the ‘unital version’ uFM_n, with $uFM_n(0) = \ast$, while $FM_n(0) = \emptyset$. In this note, we will mostly disconsider this zero-ary operation until Remark 8.

Similarly, we consider the space of configurations $Conf_{r,s}(\mathbb{R}_{\geq 0} \times \mathbb{R}^{n-1})$ of r points in the upper halfspace $\mathbb{R}_{\geq 0} \times \mathbb{R}^{n-1}$ and s points on the boundary \mathbb{R}^{n-1}. This configuration space admits a natural action of the group $\mathbb{R}_{\geq 0} \ltimes (\mathbb{R}^{n-1})$ by scaling and translation parallel to the boundary. One defines again the Fulton–MacPherson–Axelrod–Singer compactification of the quotient

$$FM_n^1(r,s) = (Conf_{r,s}(\mathbb{R}_{\geq 0} \times \mathbb{R}^{n-1})/\mathbb{R}_{\geq 0} \ltimes \mathbb{R}^{n-1})^-.$$

Again, by insertion of configurations the pair $SFM_n = (FM_n, FM_n^1)$ defines a topological operad \cite{14}, which we will use as our variant of the n-Swiss Cheese operad. Finally, we will consider another variant $uSFM_n = (uFM_n, uFM_n^1)$ by declaring that $uFM_n^1(0,0) = \ast$, the additional operation acting by forgetting points.

3. Graphical (co)operads

We briefly recall here the definition of several combinatorial (co)operads. Most definitions have appeared in the literature, see, for example, \cite{9–11, 16}. Let $gra_{r,k}$ be the set of directed graphs with vertex set $\{1, \ldots, r\}$ and edges labeled by $\{1, \ldots, k\}$. We allow graphs with multiple edges, but not short cycles (tadpoles), that is, edges connecting a vertex to itself.

The set $gra_{r,k}$ carries a natural action of the group $S_k \ltimes (S_2)^k$ by permuting the edge labels and edge directions. One defines vector spaces

$$dGra_n(r) := \bigoplus_k \left(\mathbb{R}(gra_{r,k}) \otimes (\mathbb{R}[n-1])^{\otimes k} \right)_{S_k},$$

where the action of S_k is the diagonal one, by permutation of edge labels and of the weight factors $\mathbb{R}[n-1]$, with appropriate Koszul signs. The spaces $dGra_n(r)$ assemble into a cooperad $dGra_n$, with the right S_r action by permuting vertex labels, and the cocomposition by ‘subgraph contraction’, cf. Figure 2. In this picture, it is understood that the second factor on the right-hand side is the full subgraph on the vertices contracted by the cocomposition (vertices 3 and 4 in Figure 2), and the first factor is obtained by replacing that subgraph by one external vertex. Note that this operation cannot create edges connecting a vertex to itself.

Furthermore, $dGra_n$ is a Hopf cooperad, with the commutative algebra structure on each $dGra_n(r)$ defined by gluing two graphs at their vertices, that is, by taking the union of the sets of edges.
There is furthermore an interesting quotient Hopf cooperad
\[\text{Gra}_n \twoheadrightarrow \text{dGra}_n \]
obtained by identifying a directed edge with \((-1)^n\) times the oppositely directed edge. The Hopf operad \(\text{Gra}_n\) (and hence also \(\text{dGra}_n\)) comes equipped with a natural map
\[\text{Gra}_n \to \Omega_{PA}(\text{FM}_n) \]
by sending a graph \(\Gamma\) to the differential form
\[\omega'_\Gamma := \bigwedge_{(i,j)} \pi_{ij}^* \Omega_{S^{n-1}}, \]
where the product is over the edges in the graph,
\[\pi_{ij} : \text{FM}_n(r) \to \text{FM}_n(2) \cong S^{n-1} \]
is the forgetful map forgetting all points but points \(i\) and \(j\), and finally \(\Omega_{S^{n-1}}\) is the round volume form on the sphere \(S^{n-1}\). Furthermore, there is a natural map of Hopf cooperads \(\text{Gra}_n \to \text{Pois}_n\), whose dual is the map of Hopf operads \(\text{Pois}_n \to \text{Gra}_n^*\) which maps the product and bracket generators as follows:
\[\text{[-, -]} \mapsto \begin{array}{c} 1 \quad 2 \\ \end{array}, \]
\[\begin{array}{c} \begin{array}{c} \text{[-, -]} \mapsto \begin{array}{c} 1 \quad 2 \\ \end{array} \end{array} \end{array} \]

From the cooperads \(\text{Gra}_n\) and \(\text{dGra}_n\), we may build further cooperads by (co)operadic twisting [5]. Concretely, we define collections \(\text{fGraphs}_n\), \(\text{fdGraphs}_n\) such that
\[\text{fGraphs}_n(r) = \bigoplus_{r' \geq 0} (\text{Gra}_n(r + r') \otimes (\mathbb{R}[-n])^\otimes r')_{S,r}, \]
\[\text{fdGraphs}_n(r) = \bigoplus_{r' \geq 0} (\text{dGra}_n(r + r') \otimes (\mathbb{R}[-n])^\otimes r')_{S,r}. \]

In other words, one formally ‘fills’ some of the ‘slots’ in cooperations. In pictures, we will draw the corresponding (unlabeled) vertices black, cf. (4). We furthermore call the \(r\) labeled vertices the ‘external’ vertices and the \((r')\) black vertices the ‘internal’ vertices. The collections \(\text{fGraphs}_n\) and \(\text{fdGraphs}_n\) carry natural dg Hopf cooperad structures. The differential is defined by contracting edges, removing one internal vertex, for example,

The Hopf structure is defined as before by gluing graphs at their external vertices, and finally
\[\text{fGraphs}_n \to \Omega_{PA}(\text{FM}_n) \]
from before factors through \(\text{fGraphs}_n\). More concretely, a graph \(\Gamma \in \text{Gra}_n(r + r')\) is sent to the differential form
\[\omega'_\Gamma = \int_{\text{FM}_n(r + r')} \omega'^\Gamma, \]
where \(\int_{\text{FM}_n(r + r')} \omega'^\Gamma\) is the fiber integral, for a more precise definition of this operation, we refer to [8].

The map \(\text{fGraphs}_n \to \Omega_{PA}(\text{FM}_n)\) is not a quasi-isomorphism. However, one may pass to a quotient operad
\[\text{Graphs}_n \twoheadrightarrow \text{fGraphs}_n \]
obtained by equating graphs to zero that contain connected components of only internal vertices. It is easy to check that for such graphs \(\Gamma\) we have \(\omega'_\Gamma = 0\) so that one obtains a
map $\text{Graphs}_n \to \Omega_{PA}(FM_2)$. Now the main theorem by Kontsevich, Lambrechts and Volić is that this map is a quasi-isomorphism.

Theorem 3 [9, 11]. The map

$$\text{Graphs}_n \to \text{Pois}^*_n$$

is a quasi-isomorphism of Hopf cooperads. The map

$$\text{Graphs}_n \to \Omega_{PA}(FM_n)$$

is a quasi-isomorphism of Hopf collections compatible with the (co)operadic compositions in the sense that the diagram \((1)\) commutes.

The goal of the present paper is to describe the generalization of the above construction to the Swiss-Cheese setting. Define $k\text{gra}_{r,s,k}$ to be the set of directed graphs with vertex set $\{1,\ldots,r\} \sqcup \{\bar{1},\ldots,\bar{s}\}$, and directed edges numbered $\{1,\ldots,k\}$, such that no edge starts at a vertex in $\{\bar{1},\ldots,\bar{s}\}$. Following Kontsevich, we call the vertices $\{1,\ldots,r\}$ the type I vertices and the $\{\bar{1},\ldots,\bar{s}\}$ the type II vertices. We define collections

$$\text{Gra}_n^1(r,s) = \bigoplus_k \big(R^{kgra_{r,s,k}} \otimes (R[-n-1])^{\otimes k} \big)_S$$

for $n > 2$

$$\text{Gra}_n^2(r,s) = \bigoplus_k \big(R^{kgra_{r,s,k}} \otimes (R[-n-1])^{\otimes k} \otimes R[S_s] \big)_S$$

for $n = 2$.

Note that we distinguish the case $n = 2$, and the group ring $R[S_s]$ occurring in the definition effectively equips our graphs with additional data, namely an additional linear ordering on the set of type II vertices. The bi-collection Gra_n carries a natural right comodule structure over the cooperad $d\text{Graphs}_n$ by contracting subgraphs of type I vertices only. Furthermore, $d\text{Gra}_n$ and Gra_n^1 assemble into a two-colored operad $SG\text{Gra}_n$ such that

$$SG\text{Gra}_n^1(r,s) = \begin{cases}
\text{Gra}_n(r) & \text{for } s = 0 \\
0 & \text{otherwise}
\end{cases}$$

$$SG\text{Gra}_n^2(r,s) = \text{Gra}_n(r,s).$$

The map $\text{Gra}_n \to \Omega_{PA}(FM_n)$ may be extended to a map of colored collections

$$SG\text{Gra}_n \to \Omega(SFM_n)$$

by sending a graph Γ in $\text{Gra}_n^1(r,s)$ to the differential form

$$\omega_\Gamma = \chi_{\Gamma} \bigwedge_{(i,j) \text{ edge}} \pi_{ij}^* \tilde{\Omega},$$

where π_{ij} is the forgetful map forgetting all but vertices i and j and $\tilde{\Omega}$ is the ‘hyperbolic’ $n-1$-form described in the introduction, cf. (8). The indicator function χ_{Γ} is 1 in the case $n > 2$. In the case that $n = 2$, χ_{Γ} is 1 on the connected component of the configuration space $FM_1^2(r,s)$ on which the ordering of the s type II vertices agrees with the ordering prescribed in Γ, and $\chi_{\Gamma} = 0$ on all other connected components.

The map \((11)\) is not a quasi-isomorphism. Again, to repair the defect we may pass to a twisted version, using the colored (co)operadic twisting construction, cf. [2, 16]. Concretely, this means that we extend the cooperad $f\text{Graphs}_n$ to a two-colored cooperad $f\text{Gra}_n = (f\text{Graphs}_n,f\text{Graphs}_n^1)$, whose color 2 components are given by the bi-collection

$$f\text{Gra}_n^1(r,s) = \bigoplus_{r',s'} \big(\text{Gra}_n^1(r + r', s + s') \otimes (R[-n])^{\otimes r'} \otimes (R[1-n])^{\otimes s'} \big)_{S_{r'} \times S_{s'}}.$$
Elements may be depicted as graphs with four kinds of vertices: internal and external vertices, of type either I or II, cf. (6). Again, similarly to (9) we define for such a graph Γ in $\text{Gra}_n^1(r + r', s + s')$ a PA form $\omega_\Gamma \in \Omega_{PA}(\text{FM}^1(r, s))$ by a fiber integral

$$\omega_\Gamma = \int_{\text{FM}^1_n(r + r', s + s')} \omega_\Gamma'$$

along the fiber of the forgetful map $\text{FM}^1_n(r + r', s + s') \to \text{FM}^1(r, s)$. Again, we refer to [8] for the more precise definition of the fiber integral for PA forms.

We may equip fSGraphs_n with a two-colored dg Hopf cooperad structure. The commutative algebra and cooperad structures are induced from those on SGra_n and are given by gluing graphs at the external vertices, and by subgraph contraction, respectively, as before. The definition of the differential in the operadic twisting construction is more tricky. It is defined so that the map $\text{fSGraphs}_n \to \Omega_{PA}(\text{FGr}_n)$ commutes with the differentials. More concretely, the arity $(0,0)$ components of the map $\text{fSGraphs}_n \to \Omega_{PA}(\text{FGr}_n)$ assign to each graph Γ in $\text{Graphs}_n^1(0, 0)$ without external vertices, and with say r' and s' internal vertices of types I and II a number

$$c_\Gamma = \int_{\text{FGr}_n^1(r', s')} \omega_\Gamma'^{s'}.$$

The differential on a general graph $\Gamma \in \text{Graphs}_n^1(r, s)$ now has three pieces: First, we may contract an edge connecting to least one internal type I vertex.

Secondly, we may contract a subgraph Γ_1 containing at most one external vertex, with coefficient c_{Γ_1}.

Finally, we identify a subgraph Γ' containing all external vertices. The third piece of the differential then sends Γ to $\pm c_{\Gamma/\Gamma'} \Gamma'$.

We emphasize that the differential on Graphs_n^1 is relatively complicated, involving many nonzero terms. In particular, for $n = 2$ the cooperad Graphs_2^1 encodes a stable formality quasi-isomorphism in the sense of [4].

As before the map

$$\text{fGraphs}_n \to \Omega_{PA}(\text{FGr}_n^1)$$

is not (yet) a quasi-isomorphism. We shall repair this defect in the following section.
4. The (bi-)ideal $\text{fSGraphs}^\text{disc}_n$

We split the construction of the bi-ideal $\text{fSGraphs}^\text{disc}_n$ in two cases.

For $n \geq 3$, we define the bi-ideal $\text{fSGraphs}^\text{disc}_n$ in the ‘obvious’ way by defining a graph $\Gamma \in \text{fGraphs}_n$ to be externally disconnected if it contains a connected component made of internal vertices only. We claim that this definition yields a bi-ideal, that is, it is compatible with the dg Hopf cooperad structure by the following reasoning. We only consider the ‘novel’ piece of that statement, that is, the bi-ideal conditions on $\text{fGraphs}^1,\text{disc}_n \subset \text{fGraphs}^1,\text{disc}_n$, and take the statements on $\text{fGraphs}^\text{disc}_n$ for granted.

- By inspection, it is clear that the cooperadic cocomposition cannot co-compose an externally disconnected graph into two externally connected graphs. Hence $\text{fSGraphs}^\text{disc}_n$ is a cooperadic coideal.
- The commutative product (fusion at external vertices) cannot remove connected components of internal vertices only, so each $\text{fSGraphs}^1,\text{disc}_n(r,s)$ is a graded ideal in the graded algebra $\text{fSGraphs}_n(r,s)$.
- The subset $\text{fSGraphs}^\text{disc}_n$ is closed under the differential since the numbers c^Γ_l of the differential form is zero. The same argument also shows the statement above that the differential form defined on the quotient by scaling and translation. Thus the top degree piece of the differential is not closed under the differential, that is, the differential can map a disconnected graph to a connected one. To find a better definition of ‘externally disconnected’, we will first consider a change of basis in fSGraphs_n. Recall the construction

$$\text{SGraphs}_n = \text{fSGraphs}_n / \text{fSGraphs}^\text{disc}_n.$$

To check that the map $\text{fSGraphs}_n \to \Omega_{PA}(\text{SFM}_n)$ factors through the quotient SGraphs_n, we have to check that the fiber integrals (7) vanish on externally disconnected graphs Γ. To this end, let some k' type I and l' type II vertices form a connected component Γ_2 without external vertices, so that we can write $\Gamma = \Gamma_1 \cup \Gamma_2$. We then also have $\omega^\Gamma_1 = \pm \omega^\Gamma_1,\omega^\Gamma_2$. Using Fubini’s theorem to factor out the integral over the positions of the vertices of Γ_2, the fiber integral reads

$$\omega^\Gamma = \int_{\text{FM}^1,\text{I}}(r+k,k',s+l,l') \to \text{FM}^1,\text{I}(r,s) \int_{\text{FM}^1,\text{II}}(r+k,s+l) \to \text{FM}^1,\text{II}(r+k-k',s+l-l') \, \omega^\Gamma_1$$

$$= \pm \int_{\text{FM}^1,\text{I}}(r+k-k',s+l-l') \to \text{FM}^1,\text{I}(r,s) \, \omega^\Gamma_{1,1} \int_{\text{Conf}_{k,l}(R^n \times R^{n-1})} \omega^\Gamma_{1,2}.$$

The right-hand integral yields zero, because the integrand depending on the locations of the $k' + l'$ internal points is basic under scaling and translation, that is, it is a pullback of a differential form defined on the quotient by scaling and translation. Thus the top degree piece of the differential form is zero. The same argument also shows the statement above that the numbers c^Γ_l are zero for disconnected Γ.

Remark 4. Note that instead of defining SGraphs_n as a quotient as above, we could have defined it to consist only of externally connected graphs from the start. This would have avoided or made obvious some parts of the above discussion. However, we next want to treat the case $n = 2$, where the above statements are not immediate.

The case $n = 2$: First note that in the case $n = 2$ one cannot define $\text{fSGraphs}^\text{disc}_2$ in the same way as before, since there is the disconnected graph

$$\Gamma = \bullet$$

which is assigned nonzero weight $c^\Gamma_1 = 1 \neq 0$ under (13). Hence the naively defined subspace of externally disconnected graphs is not closed under the differential, that is, the differential can map a disconnected graph to a connected one. To find a better definition of ‘externally disconnected’, we will first consider a change of basis in fSGraphs_2. Recall the construction
of the object $\mathfrak{f}_{\text{Graphs}}$ in (10), (12), and in particular the factor $\mathbb{R}[S_{s+s'}]$ (group algebra of the symmetric group), that we have been interpreting as giving a linear order on the type II vertices.

Let us next identify $\mathbb{R}[S_{s+s'}] \cong \text{Assoc}^*(s+s') \cong \text{AsPois}^*(s,s')$, where the bisymmetric sequence AsPois is as introduced in the Appendix, and its isomorphism with the associative operad is given by the dual of the Poincaré–Birkhoff–Witt map Ψ_{PBW} of that Appendix. The bisymmetric sequence AsPois has a basis given by products of Lie expressions. We can use this to give the space $\mathfrak{f}_{\text{Graphs}}$ the alternative combinatorial interpretation as the space of Lie decorated graphs. By a Lie decorated graph, we mean a graph Γ as in $\mathfrak{f}_{\text{Graphs}}$, but with a linear ordering on the external type II vertices only, and with an arrangement of the internal type II vertices in a product of formal co-Lie expressions. It is best explained by a picture:

Compared to our original interpretation of graphs as equipped with a linear ordering on all type II vertices, this can be seen as a change of basis. A Lie decorated graph is then expressed by a linear combination of graphs with linear orderings on the type II vertices via the Poincaré–Birkhoff–Witt map Ψ_{PBW} of the Appendix. Again, this procedure is best explained by an example. The Lie decorated graph above corresponds to the linear combination of ordinary graphs

(To obtain the signs, one needs to consider the type II vertices as odd objects.)

We are now ready to state our definition of $\mathfrak{f}_{\Sigma\text{Graphs}}^{\text{disc}}$.

Definition 5. A Lie decorated graph $\Gamma \in \mathfrak{f}_{\text{Graphs}}^{(r,s)}$ is called externally disconnected if it contains a connected component consisting of internal vertices only, where we count type II vertices in a formal co-Lie expression as belonging to the same connected component. The subspace $\mathfrak{f}_{\Sigma\text{Graphs}}^{1,\text{disc}}(r,s) \subset \mathfrak{f}_{\text{Graphs}}^{1}(r,s)$ is defined to be the linear span of the externally disconnected Lie decorated graphs.

We claim that this definition indeed satisfies our requirements.

Proposition 6. The sub-collection $\mathfrak{f}_{\Sigma\text{Graphs}}^{\text{disc}}$ made of $\mathfrak{f}_{\text{Graphs}}^{\text{disc}}$ in the first color and the spaces $\mathfrak{f}_{\Sigma\text{Graphs}}^{1,\text{disc}}(r,s)$ in the second is a dg Hopf cooperadic bi-ideal. Furthermore, the map $\mathfrak{f}_{\Sigma\text{Graphs}}^{2} \to \Omega_{PA}(\text{SFM}_2)$ factors through the quotient dg Hopf cooperad

$$S\text{Graphs}_2 = (\text{Graphs}_n, \text{Graphs}_m^\text{1}) = \mathfrak{f}_{\Sigma\text{Graphs}}^{2}/\mathfrak{f}_{\Sigma\text{Graphs}}^{\text{disc}}$$

Proof. The only new part of the Proposition are the statements for the second color, so we focus on those. Let us first check the factorization property, that is, that an externally disconnected graph is assigned zero weight. Suppose that we are given a Lie decorated graph $\Gamma = \Gamma_1 \cup \Gamma_2 \in \mathfrak{f}_{\Sigma\text{Graphs}}^{1,\text{disc}}(r,s)$, with Γ_2 consisting of internal vertices only, and Γ_2 not being connected to Γ_1. Using the PBW map we can again express Γ through a linear combination of graphs with a linear ordering of all type 2 vertices. Here the only thing we need to know is that the PBW map is compatible with the shuffle product, and hence the graphs obtained
MODELS FOR THE n-SWISS CHEESE OPERADS

are obtained by summing over all shuffles of the type II vertices of Γ_2 into those of Γ_1. As a consequence, one again has that $\omega_1 = \pm \omega_1 \omega_2$, and the integral factorizes as

$$\omega_1 = \int_{FM^1_1(r+k-k',s+l-l')} FM^1_2(r,s) \int_{FM^1_1(r+k,s+l+l')} FM^1_2(r+k-k',s+l-l') \omega_1'$$

$$= \pm \int_{FM^1_2(r+k-k',s+l-l')} FM^1_2(r,s) \omega_1' \int_{Conf_{k,l}(R^{\geq 0} \times R)} \omega_1' \Gamma_2.$$

The second factor is again zero because the integrand is basic under scaling and translation.

We also have to check compatibility with the commutative algebra structure and the cooperad structure. That the subspace $f_{\text{Graphs}}^1_{\text{disc}}(r,s) \subset f_{\text{Graphs}}^1_{\text{disc}}(r,s)$ is an ideal for the commutative algebra structure follows again from the compatibility of the PBW map with the shuffle product. Finally, cooperadic cocompositions of externally disconnected graphs cannot contain terms with only externally connected graphs. This follows essentially since the cocomposition can at most remove cobrackets from the Lie expressions but not create new, so that connectivity is only reduced, but not increased. (We leave the details to the reader.)

5. The cohomology of f_{SGraphs}_n

In this section, we will show that the map

$$f_{\text{SGraphs}}_n \rightarrow \Omega_{PA}(SF_n)$$

is a quasi-isomorphism, by computing the cohomology of the left-hand side. Since the part of the result in the first color is already known (by Theorem 1), we focus on the piece of color 2, that is, on the maps

$$f_{\text{Graphs}}^1_n(r,s) \rightarrow \Omega_{PA}(FM^1_n(r,s)).$$

We have to consider the cases $n = 2$ and $n \geq 3$ separately. We begin with the case $n = 2$. To compute the cohomology of $f_{\text{Graphs}}^1_2(r,s)$, we consider a filtration on the number of internal type I vertices. No piece of the differential can create such vertices. Furthermore, there is only one piece of the differential not destroying internal type I vertices, and that piece is a ‘Hochschild type’ differential contracting internal type II vertices, schematically:

$$\delta_1: \text{Graphs}^1_2(r,s) \rightarrow \Omega_{PA}(FM^1_2(r,s)).$$

This is the differential we will see on the first page of the spectral sequence. By standard arguments (cf. [16, Proposition 74]), we find that the homology of the complex $(Graphs^1_2(r,s), \delta_1)$ is spanned by Lie decorated graphs Γ such that all internal type II vertices are univalent and in their own Lie cluster, and all external type II vertices are zero valent. (In other words, the corresponding classes of plain graphs are found by antisymmetrizing over the positions of the internal type II vertices.) The differential on the next page removes exactly one internal type I vertex, together with zero or one edges. Again we may borrow the argument of [16, Proposition 74] to show that the resulting complex is quasi-isomorphic to $Graphs^1_2$ (for each fixed linear ordering of the external type II vertices), and hence the cohomology is identified with $sl!$ copies of $\text{Pois}^2_2(r)$, one for each ordering of the external type II vertices. But this space is exactly the cohomology of $FM^1_2(r,s)$. It remains to show that the spectral sequence abuts at this point. However, this is immediate since all cohomology classes found may be represented by graphs without internal vertices, which are evidently closed under the full differential.

Now let us turn to the case $n \geq 3$. We consider a filtration by the total number of internal vertices. Any piece of the differential reduces the number of internal vertices by at least one, and the piece that reduces the number by exactly one is just the contraction of one edge between an internal type I vertex and another vertex.
We will show by an induction on the arity \((r, s)\) that the cohomology can be identified with \(\text{Pois}_n^*(r) \otimes \text{Graphs}_{n-1}(s)\). More concretely, elements of \(\text{Pois}_n^*(r)\) may be represented by components of the graph connecting the \(r\) external type I vertices, without involvement of internal vertices. Elements \(\gamma \in \text{Graphs}_{n-1}(s)\) can be represented by replacing each edge by a zigzag of the form

The procedure is best explained by an example:

Note again that the order of type II vertices in the last picture is irrelevant since we are in the case \(n \geq 3\). We merely draw the horizontal line to distinguish the type II vertices on it from the type I vertices above it. (One should consider the line as an \((n-1)\)-plane.)

Now let us prove that the cohomology may be identified with \(\text{Pois}_n^*(r) \otimes \text{Graphs}_{n-1}(s)\). First we may filter our complex again by the number of non-(internal-bivalent-type I-vertices). The first differential in the associated spectral sequence then removes one internal bivalent type I vertex by contracting an adjacent edge. Similarly to \([15, \text{Appendix K}]\) the resulting complex factors into subcomplexes, one for each pair of nonbivalent vertices connected by a string of bivalent vertices. Those subcomplexes are acyclic is the string that connects a type I and a type II vertices. If the string connects two type I vertices, the cohomology of the string-complex is one- dimensional, spanned by an edge connecting the two vertices directly, in either direction. If the string connects two type I vertices, the cohomology of the string-complex is again one dimensional, a representative being obtained by connecting the two endpoints by a length 2 zigzag of the form \((14)\). From this argument, one can see that \((\text{Graphs}_{n}^1(r, s), \delta_1)\) is quasi-isomorphic to its quotient, say \(V_{r,s}\), obtained by:

1. equating graphs to zero in which type II vertices are connected to type I vertices other than those in length 2 zigzags \((14)\) connecting to another type 2 vertex;
2. equating graphs to zero which contain bivalent internal type I vertices, other than those in the length 2 zigzags \((14)\) between two external type II vertices;
3. equating graphs up to sign that are obtained by changing directions of edges connecting two type I vertices.

We may identify

\[V_{r,s} = \text{Graphs}_n(r) \otimes \text{Graphs}_{n-1}(s), \]

with the differential \(\delta_1\) inducing the differential on \(\text{Graphs}_n(r)\). From this (and Theorem 1), it follows that

\[H(\text{Graphs}_n^1(r, s), \delta_1) \cong \text{Pois}_n^*(r) \otimes \text{Graphs}_{n-1}(s). \]

The next differential \(\delta_2\) in the (outer) spectral sequence reduces the number of internal vertices by two. By inspection, we find that this differential is exactly the differential on the factor \(\text{Graphs}_{n-1}(s)\), and hence (using Theorem 1 again) we find that

\[H(H(\text{Graphs}_n^1(r, s), \delta_1), \delta_2) \cong \text{Pois}_n^*(r) \otimes \text{Pois}_{n-1}^*(s). \]

But the right-hand side is exactly \(H(\text{FM}_n^1(r, s))\). Again, we find that the spectral sequence abuts at this stage since all surviving classes are naturally represented by graph cocycles.

This finishes the proof of Theorem 2. \(\square\)
Remark 7. We remark that slightly smaller (but quasi-isomorphic) variants of the graphical cooperad SGraphs_n may be defined. First, for the piece in color 1, that is, Graphs_n, one may additionally postulate that all graphs with internal vertices of valence < 3 are zero, as is done in [9]. The resulting quotient graph cooperad is quasi-isomorphic to our version. Furthermore, one can check that the map $\text{Graphs}_n \to \Omega_{PA}(\text{FM}_n)$ factors through this quotient.

Similarly, we may define a smaller (but quasi-isomorphic) variant of Graphs_n by declaring that graphs with internal vertices of valence < 2 are zero, as well as graphs with internal vertices with in- and out valence exactly one, i.e., $\rightarrow\rightarrow = 0$. Again, one can check that the map $\text{Graphs}_n \to \Omega_{PA}(\text{FM}_1)$ factors through this quotient.

Remark 8. One may add a nullary cooperation to the cooperad Graphs_n whose coaction creates external vertices of valence zero, call the resulting Hopf cooperad uGraphs_n. The map $\text{Graphs}_n \to \Omega_{PA}(\text{FM}_n)$ above then naturally extends to a map $\text{uGraphs}_n \to \Omega_{PA}(\text{uFM}_n)$, cf. Section 2.1 for the notation.

Similarly, one may add a nullary cooperation to Graphs_1^n whose coaction creates external type II vertices of valence zero. Calling the resulting two-colored Hopf cooperad $\text{uSGraphs}_n = (\text{uGraphs}_n, \text{uGraphs}_1^n)$, one can naturally extend the map $\text{Graphs}_n \to \Omega_{PA}(\text{FM}_n)$ above to a map $\text{uSGraphs}_n \to \Omega_{PA}(\text{uSFM}_n)$.

6. An application: formality morphisms

In this section, we describe an application of the aforementioned results in the field of deformation quantization. Concretely, we sketch a proof that any L_∞ formality morphism can be extended to a homotopy Gerstenhaber formality morphism.

6.1. The Kontsevich formality Theorem in deformation quantization

Let T_{poly} be the Gerstenhaber algebra of multivector fields on \mathbb{R}^d and D_{poly} be the braces algebra of multi differential operators. The Kontsevich formality Theorem [10] states that these two objects are quasi-isomorphic as hoLie_2 algebras. Concretely, Kontsevich constructs an L_∞ morphism U between the Lie algebra $T_{\text{poly}}[1]$ and the Lie algebra $D_{\text{poly}}[1]$ given by a sum-of-graphs formula

$$U_n : S^n(T_{\text{poly}}[2]) \to D_{\text{poly}}[2]$$

$$(v_1, \ldots, v_n) \mapsto \sum_{\Gamma} c_\Gamma D_\Gamma(v_1, \ldots, v_n)$$

where:

- the sum is over graphs forming a basis of $\text{Graphs}_2^1(0,0)$, with n type I vertices;
- the coefficients c_Γ are defined by the integral formula (13);
- $D_\Gamma(v_1, \ldots, v_n)$ is a multidifferential operator naturally associated to the graph Γ, cf. [10] for details. (The precise formula for D_Γ will not be important for us.)

Note that the formality morphism is completely specified by providing the numbers c_Γ in the formula above. Formality morphisms of the form (15) have been christened stable formality morphisms in [4], under the mild additional condition that the linear piece of the L_∞ morphism agrees with the Hochschild–Kostant–Rosenberg map, that is, the coefficients of the graphs

$$\Gamma_n =$$

satisfy $c_{\Gamma_n} = \frac{1}{n!}$.

\[\begin{align*}
\sum_{\Gamma} c_\Gamma D_\Gamma(v_1, \ldots, v_n) = &
\end{align*}\]
Let us also introduce the following notion.

Definition 9. A stable formality morphism is called *connected* if the numbers c^Γ associated to any disconnected† Lie decorated graph vanish.

For example, the Kontsevich stable formality morphism is connected.

6.2. A model for the operadic bimodule $D^1_\alpha (\cdot , 0)$

It has been shown in [16] that the semi-algebraic chains $C(\text{FM}^1_2 (\cdot , 0))$ form an operadic Br-$C(\text{FM}^2_2)$-bimodule

$$\text{Br} \circ C(\text{FM}^1_2 (\cdot , 0)) \circ C(\text{FM}^2_2).$$

In fact, this operadic bimodule is even an operadic torsor in the sense of [3]. The construction of the operadic bimodule structure in [16] uses only naturally defined operations on the Swiss-Cheese operad SFM^2_2. Hence, by a similar construction, one can see that our model $K\text{GraphsM} := \text{Graphs}^1_2 (\cdot , 0)^*$

for $C(\text{FM}^1_2 (\cdot , 0))$ also carries a left braces action compatible with the right $\text{Graphs}^2_2^*$ action, and that all algebraic structures are preserved under the map $C(\text{FM}^1_2 (\cdot , 0)) \rightarrow K\text{GraphsM}$. In other words, we have a commutative diagram of operads and operadic bimodules (in fact: of operadic torsors)

$$
\begin{array}{ccc}
\text{Br} & \circ & C(\text{FM}^1_2 (\cdot , 0)) & \circ & C(\text{FM}^2_2) \\
\downarrow & & \downarrow & & \downarrow \\
\text{Br} & \circ & K\text{GraphsM} & \circ & \text{Graphs}^2_2^*
\end{array}
$$

The important point is now that the definition of Graphs^1_2 can be repeated, for any connected stable formality morphism U, which enters the definition in so far that it defines the coefficients (13) entering the differential on Graphs^1_2. Similar, we may define a variant of the Br-Graphs^2_2 bimodule $K\text{GraphsM}$ for any U, which we will denote by $K\text{GraphsM}^{U}$.

6.3. Our result

Concretely, as the application of our results, we will give a short proof of the following theorem.

Theorem 10. Suppose U is a connected (L_∞) stable formality morphism. Then one may pick a homotopic stable formality morphism U' that can be extended to a stable homotopy Gerstenhaber (or, equivalently homotopy braces) formality morphism.

Remark 11. We claim that in fact any stable formality morphism can be changed into a homotopic connected stable formality morphism using [4], and hence the above theorem also holds if we omit the word ‘connected’. However, we shall not prove this here.

The proof is relatively short. First, we consider the Br-$\text{Graphs}^2_2^*$ bimodule $K\text{GraphsM}^{U'}$. It generates a two-colored operad

$$\text{bigGraphs} := (\text{Br} K\text{GraphsM}^{U'} \text{Graphs}^2_2^*)$$

which naturally acts on the colored vector space $D_{\text{poly}} \oplus T_{\text{poly}}$. Let $E\text{Lie}$ be the two-colored operad governing two hoLie^* algebras and an ∞-morphism between them, and let similarly

†In the sense discussed above.
EGer be the two-colored operad governing two hoPois_2 algebras and an ∞-morphism between them. By twisting our stable formality morphism U gives a map

$$\text{ELie} \to \text{bigGraphs}$$

extending the canonical maps $\text{hoLie}_2 \to \text{Br}$ and $\text{hoLie}_2 \to \text{Graphs}^*_2$. Our objective is to define a stable homotopy Gerstenhaber formality morphism by extending the above map to a (suitable) map from the operad EGer into bigGraphs. This is done by the following arguments.

1. We know that $H(K\text{Graphs}M^U(1)) \cong \mathbb{R}$. Pick some cocycle generating the nontrivial cohomology $1 \in K\text{Graphs}M(1)$.

2. The maps (of dg collections) $\text{Br} \to K\text{Graphs}M^U \leftarrow \text{Graphs}^*_2$ obtained by composing with the element 1 are quasi-isomorphisms. Hence we conclude that $K\text{Graphs}M^U$ is an operadic Br-Graphs^*_2-torsor in the sense of [3].

3. The main result of [3] states that if \mathcal{M} is an operadic \mathcal{P}-\mathcal{Q} torsor, then \mathcal{P} and \mathcal{Q} are quasi-isomorphic, and furthermore the triple

$$\mathcal{P} \circ \mathcal{M} \circ \mathcal{Q}$$

is quasi-isomorphic to the ‘canonical’ triple

$$\mathcal{Q} \circ \mathcal{Q} \circ \mathcal{Q}.$$

It follows further that the two colored operad generated by our triple is quasi-isomorphic to the two-colored operad governing two \mathcal{Q} algebras and a map between them. Furthermore, if we take any cofibrant model of that latter operad, a direct quasi-isomorphism to $(\mathcal{P} \circ \mathcal{M} \circ \mathcal{Q})$ may be constructed by lifting.

4. In our setup, $\mathcal{Q} = \text{Graphs}^*_2$ is quasi-isomorphic to the Gerstenhaber operad Pois_2, cf. Theorem 1. The operad EGer governing to hoPois_2 algebras and an ∞-morphism between them is a cofibrant replacement for the two-colored operad $(\mathcal{Q} \circ \mathcal{Q} \circ \mathcal{Q})$. Hence we obtain ‘for free’ from the above generalities a quasi-isomorphism of colored operads

$$\text{EGer} \to (\text{Br} K\text{Graphs}M^U \text{Graphs}^*_2).$$

Having constructed the map (16), we want to verify that it indeed defines a stable formality morphism, possibly after changing to a homotopic morphism. (That is, that (i) the induced maps $\text{hoLie}_2 \to \text{Graphs}^*_2$ and $\text{hoLie}_2 \to \text{Br}$ are the standard maps and (ii) the unary component is a deformation of the HKR map.) The construction of (16) is somewhat inexplicit, and we do not desire to unpack the underlying formalism. Fortunately, however, the space of homology nontrivial maps $\text{hoLie}_2 \to \mathcal{P}$ for any operad quasi-isomorphic to Pois_2 is very simple, up to homotopy: There is a one parameter family of homotopy classes of maps, indexed by the rescaling factor applied to the single generator in homology. This scaling freedom is exhausted by the automorphisms of the operad \mathcal{P} (or any operad) by rescaling by arity, that is, multiplying an arity r operation x by λ^{r-1} for $\lambda \in \mathbb{R} \setminus \{0\}$. Hence, by changing the morphism (16) to a homotopic one, and by exercising the rescaling freedom, we may always assume that the induced maps $\text{hoLie}_2 \to \text{Graphs}^*_2$ and $\text{hoLie}_2 \to \text{Br}$ are the standard ones. By essentially the same argument, one checks that a map of two-colored operads $\text{ELie} \to \mathcal{C}$, where \mathcal{C} is a two colored operad quasi-isomorphic to $(\text{Pois}_2 \text{Pois}_2 \text{Pois}_2)$, and which is an inclusion in homology is essentially unique, up to homotopy and rescalings. Hence we may assume that — possibly after rescaling and passing to a homotopic morphism — we may ensure that the restriction of our morphism (16) to ELie agrees with any given twistable stable formality morphism. For example, one such is obtained by operadic twisting from our given morphism. In particular, it follows that the linear piece is a deformation of the HKR morphism, and thus the theorem is shown.

\square
Appendix A

Poincar’e–Birkhoff–Witt and comparison of the operads Assoc and Pois

Let $L(x_1, \ldots, x_n)$ be the free Lie algebra in symbols x_1, \ldots, x_n of cohomological degree 0, and let similarly $A(x_1, \ldots, x_n)$ be the free associative algebra in these symbols. Note that $A(x_1, \ldots, x_n)$ is the universal enveloping algebra of $L(x_1, \ldots, x_n)$. Hence it is equipped with a cocommutative coproduct, which can be checked to be given by the unshuffle operation

$$\Delta : x_{i_1} \cdots x_{i_k} \mapsto \sum_{p+q=k} \sum_{\sigma \in \text{Sh}(p,q)} x_{i_{\sigma(1)}} \cdots x_{i_{\sigma(p)}} \otimes x_{i_{\sigma(p+1)}} \cdots x_{i_{\sigma(k)}},$$

with σ ranging over shuffle permutations. We shall also define the reduced coproduct Δ' by restricting the above sum to $p, q > 0$. Finally we let

$$\Delta'_r : A(x_1, \ldots, x_n) \to A(x_1, \ldots, x_n)^{\otimes r},$$

the $r-1$-fold composition of Δ'.

The Poincaré–Birkhoff–Witt Theorem states that there is an isomorphism of cocommutative coalgebras

$$\Phi_{PBW} : S(L(x_1, \ldots, x_n)) \to A(x_1, \ldots, x_n),$$

where $S(\cdots)$ denotes the symmetric (bi-)algebra. Concretely, the morphism Φ_{PBW} is defined as

$$\Phi_{PBW}(f_1 \wedge \cdots \wedge f_k) = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}_k} f_{\sigma(1)} \cdots f_{\sigma(k)},$$

where $f_1, \ldots, f_k \in L(x_1, \ldots, x_n)$ are some Lie expressions in the variables, which we (abusively) interpret on the right-hand side as elements of $A(x_1, \ldots, x_n)$ using the canonical inclusion $L(x_1, \ldots, x_n) \to A(x_1, \ldots, x_n)$. Furthermore we note that Φ_{PBW} respects the cocommutative coalgebra structures present on both sides, but not the algebra structures.

On all the spaces considered we have an action of the symmetric group S_n permuting indices, and a \mathbb{Z}^n-grading, counting the number of occurrences of each symbol x_1, \ldots, x_n. We can identify

$$\text{Assoc}(r) = A(x_1, \ldots, x_n)^{1 \cdots 1}$$

as the subspace of degree $(1, \ldots, 1)$. Its elements are linear combinations of words in which each x_j occurs exactly once. Similarly, we may write the Poisson operad as

$$\text{Pois}(n) = S(L(x_1, \ldots, x_n))^{1 \cdots 1}.$$

Hence we obtain:

Proposition 12. The PBW isomorphism induces an isomorphism of symmetric sequences

$$\Phi_{PBW} : \text{Pois} \to \text{Assoc}.$$

This is not a map of operads, but at least the filtration on Pois by the number of brackets is compatible with the operadic composition transferred from Assoc, and the associated graded operad is Pois.

It is also instructive to give a self-contained proof of Proposition 12, not (directly) using the Poincaré–Birkhoff–Witt theorem.

Proof. Let us temporarily denote $U = S(L(x_1, \ldots, x_n))^{1 \cdots 1}$ and $V = A(x_1, \ldots, x_n)^{1 \cdots 1}$ for brevity. It is elementary to check that $\dim U = \dim V = n!$, hence it is sufficient to show that Φ_{PBW} is injective.
Now V is equipped with an ascending filtration such that $\mathcal{F}_p V = \ker \Delta'_{p+1}$. We have $\mathcal{F}_0 V = \{0\}$ and (by degree reasons) $\mathcal{F}_n V = V$. Similarly, we have an ascending filtration on U such that $\mathcal{F}_p U = S^{q_p}(L(x_1, \ldots, x_n))^{1, \ldots, 1}$.

One checks that
\[
\Delta'_p(\Phi_{PBW}(f_1 \wedge \cdots \wedge f_q)) = \begin{cases}
0 & \text{if } p > q \\
\sum_{\sigma \in S_q} f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(q)} & \text{for } p = q
\end{cases} \in (A(x_1, \ldots, x_n)^{\otimes p})^{1, \ldots, 1}.
\]

It follows that $\Phi_{PBW}(\mathcal{F}_p U) \subset \mathcal{F}_p V$. Furthermore the composition
\[
\mathcal{F}_p U / \mathcal{F}_{p-1} U \xrightarrow{\Phi_{PBW}} \mathcal{F}_p V / \mathcal{F}_{p-1} V \xrightarrow{\Delta'_p} (A(x_1, \ldots, x_n)^{\otimes p})^{1, \ldots, 1}
\]
is clearly injective. But then the left-hand arrow must be an injection for all p and that is only possible if Φ_{PBW} is an injection. \hfill \Box

We shall also use a relative variant of the statement. Consider the subspace
\[
A(a_1, \ldots, a_r, x_1, \ldots, x_s)^{1, \ldots, 1} \subset A(a_1, \ldots, a_r, x_1, \ldots, x_s)^{1, \ldots, 1}
\]
spanned by words in which the symbols a_1, \ldots, a_r appear in the indicated order, from left to right.

Proposition 13. The map
\[
\Psi_{PBW}: \left(\bigotimes_{i=1}^{r} L(x_1, \ldots, x_s, a_i) \otimes S(L(x_1, \ldots, x_s)) \right)^{1, \ldots, 1} \to A(a_1, \ldots, a_r, x_1, \ldots, x_s)^{1, \ldots, 1}
\]
\[
\psi_{PBW}(f_1 \otimes \cdots \otimes f_r \otimes (f_{r+1} \wedge \cdots \wedge f_{r+k})) = \frac{r!}{(r+s)!} \sum_{\sigma \in S_{r+s}^{(1)} \cdots \sigma^{(r)} \sigma^{(r+r)}} f_{\sigma(1)} \cdots f_{\sigma(r+s)}
\]

is an isomorphism.

Proof. We denote $U = (\bigotimes_{i=1}^{r} L(x_1, \ldots, x_s, a_i) \otimes S(L(x_1, \ldots, x_s)))^{1, \ldots, 1}$ and $V = A(a_1, \ldots, a_r, x_1, \ldots, x_s)^{1, \ldots, 1}$. Inductively one checks that $\dim U = \dim V = \frac{(r+s)!}{r!}$, so it is sufficient to check that Ψ_{PBW} is injective.

Define the map Θ_p to be the composition
\[
V \xrightarrow{\Delta'_p} (A(a_1, \ldots, a_r, x_1, \ldots, x_s)^{\otimes r+s})^{1, \ldots, 1} \cong \left(\bigotimes_{i=1}^{r} A(a_i, x_1, \ldots, x_s) \otimes A(x_1, \ldots, x_s)^{\otimes p} \right)^{1, \ldots, 1},
\]
with the right-hand arrow being the projection, by setting the variables to zero that do not appear in the notation of the respective factor. We introduce a filtration on V by setting $\mathcal{F}_p V = \ker \Theta_p$. Again one has $\mathcal{F}_{s+1} V = 0$ by degree reasons and one can easily verify that $\mathcal{F}_0 V = \{0\}$. We endow U with a filtration such that $\mathcal{F}_p U = (\bigotimes_{i=1}^{r} L(x_1, \ldots, x_s, a_i) \otimes S^{q_p}(L(x_1, \ldots, x_s)))^{1, \ldots, 1}$.

One then computes that
\[
\Theta_p(\Phi_{PBW}(f_1 \otimes \cdots \otimes f_r \otimes f_{r+1} \wedge \cdots \wedge f_{r+q})) = \begin{cases}
0 & \text{if } p > q \\
\sum_{\sigma \in S_q} f_1 \otimes \cdots \otimes f_r \otimes f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(q+r)} & \text{for } p = q
\end{cases}
\]
This implies that \(\Psi_{PBW}(F_p U) \subset F_p V \) and that the composition

\[
F_p U / F_{p-1} U \xrightarrow{\Psi_{PBW}} F_p V / F_{p-1} V \xrightarrow{\Theta_p} (\bigotimes_{i=1}^r A(a_i, x_1, \ldots, x_s) \otimes A(x_1, \ldots, x_s)^{\otimes p})^{1,\ldots,1}
\]

is injective. Hence \(\Psi_{PBW} \) induces an injection on the associated graded spaces, and is hence an injection, and hence a bijection. \(\square \)

Combining again the possible orderings of the variables \(a_j \), we have

\[
\bigoplus_{\sigma \in S_r} A(a_1, \ldots, a_r, x_1, \ldots, x_s)^{1,\ldots,1} \cong \text{Assoc}(r + s).
\]

Similarly, we define the bi-symmetric collection

\[
\text{AsPois}(r, s) = \bigoplus_{\sigma \in S_r} \left(\bigotimes_{i=1}^r L(x_1, \ldots, x_s, a_{\sigma(j)}) \otimes S(L(x_1, \ldots, x_s)) \right)^{1,\ldots,1}.
\]

Then the above proposition may be interpreted as giving an isomorphism of bisymmetric sequences

\[
\Psi_{PBW} : \{\text{AsPois}(r, s)\}_{r,s} \rightarrow \{\text{Assoc}(r + s)\}_{r,s}.
\]

We may also dualize the construction to obtain an isomorphism

\[
\Psi_{PBW}^* : \{\text{Assoc}^*(r + s)\}_{r,s} \rightarrow \{\text{AsPois}^*(r, s)\}_{r,s}.
\]

Finally we note that \(\bigotimes_{i=1}^r L(x_1, \ldots, x_s, a_{\sigma(j)}) \otimes S(L(x_1, \ldots, x_s)) \) is naturally a (cofree) \((L(x_1, \ldots, x_s))-comodule\). Similarly, the right-hand side of (17) has a coaction by \(A(x_1, \ldots, x_s) \) (via the unshuffle coproduct), and the maps \(\Psi_{PBW} \) and \(\Psi_{PBW}^* \) intertwine the coactions. Dually the isomorphism \(\Psi_{PBW} \) respects the corresponding dual actions.

Acknowledgements. I am grateful for helpful discussions with Anton Khoroshkin and Victor Turchin. In particular, Anton Khoroshkin and Sergei Merkulov have independently obtained (yet unpublished) results in the direction of those of the present paper.

References
1. D. Ayala and J. Francis, ‘Factorization homology of topological manifolds’, J. Topol. 8 (2015) 1045–1084.
2. R. Campos, ‘BV formality’, Adv. Math. 306 (2017) 807–851.
3. R. Campos and T. Willwacher, ‘Operadic torsors’, J. Algebra 458 (2016) 71–86.
4. V. A. Dolgushev, ‘Stable Formality Quasi-isomorphisms for Hochschild Cohains I’, Mém. Soc. Math. Fr. (N.S.) 168 (2021) 108.
5. V. Dolgushev and T. Willwacher, ‘Operadic twisting - with an application to Deligne’s conjecture’, J. Pure Appl. Algebra 219 (2015) 1349–1428.
6. E. Getzler and J. D. S. Jones, ‘Operads, homotopy algebra and iterated integrals for double loop spaces’, Preprint, 1994, arXiv:hep-th/9403055.
7. T. G. Goodwillie and M. Weiss, ‘Embeddings from the point of view of immersion theory. II’, Geom. Topol. 3 (1999) 103–118 (electronic).
8. R. Hardt, P. Lambrechts, V. Turchin and I. Volić, ‘Real homotopy theory of semi-algebraic sets’, Geom. Topol. 11 (2011) 2477–2545.
9. M. Kontsevich, ‘Operads and Motives in Deformation Quantization’, Lett. Math. Phys. 48 (1999) 35–72.
10. M. Kontsevich, ‘Deformation quantization of Poisson manifolds’, Lett. Math. Phys. 66 (2003) 157–216.
11. P. Lambrechts and I. Volić, ‘Formality of the little N-disks operad’, Mem. Amer. Math. Soc. 230 (2014) viii+116.
12. M. Livernet, ‘Non-formality of the Swiss-cheese operad’, J. Topol. 8 (2015) 1156–1166.
13. J.-L. Loday and B. Vallette, Algebraic operads. Grundlehren der mathematischen Wissenschaften 346 (Springer, Heidelberg, 2012).
14. A. A. Voronov, ‘The Swiss-cheese operad’, Homotopy invariant algebraic structures, Contemporary Mathematics, 239 (eds J.-P. Meyer, J. Morava and W. S. Wilson; American Mathematical Society, Providence, RI, 1999) 365–373.
15. T. Willwacher, ‘M. Kontsevich’s graph complex and the Grothendieck–Teichmüller Lie algebra’, Invent. Math. 200 (2015) 671–760.
16. T. Willwacher, ‘The homotopy braces formality morphism’, Duke Math. J. 165 (2016) 1815–1964.

Thomas Willwacher
Department of Mathematics
ETH Zurich
Rämistrasse 101
Zurich, 8092
Switzerland

thomas.willwacher@math.ethz.ch