The local magnetic moments and hyperfine magnetic fields in disordered metal-metalloid alloys

A.K. Arzhnikov and L.V. Dobysheva
Physical-Technical Institute, Ural Branch of Russian Academy of Sciences, Kirov str. 132, Izhevsk 426001, Russia

The local magnetic moments and hyperfine magnetic fields (HFF) in the ordered alloys Fe_{15}Sn and Fe_{15}Si are calculated with the first-principles full-potential linear augmented plane wave (FP LAPW) method. The results are compared with the experimental data on Fe - M (M = Si, Sn) disordered alloys at small metalloid concentration. The relaxation of the lattice around the impurity and its influence on the quantities under consideration are studied. The mechanism of the local magnetic moment formation is described. It is proved that the main distinction between these alloys is connected with the different lattice parameters. Three contributions to the HFF are discussed: the contributions of the core and valence electron polarization to the Fermi-contact part, and the contribution from the orbital magnetic moment.

This paper deals with the low-concentration dependences of the local magnetic moments and hyperfine magnetic fields (HFF) at the Fe nuclei for the most typical metal-metalloid alloys Fe_{1-x}Si_{x} and Fe_{1-x}Sn_{x}.

The first-principles calculations were performed for the ordered alloys Fe_{15}Sn and Fe_{15}Si with lattices obtained by substituting a metalloid atom for one of the Fe atoms in the extended BCC cell of 16 atoms. The unit cell contains 4 non-equivalent Fe atoms located at different distances from the metalloid atom (Fig. 1). Such a model of the alloy was chosen in accordance with the experimental data [1,2] which show that the BCC structure of the alloy was retained up to 30% of metalloid.

The distinctions in the local magnetic moments at the impurity concentration of 6.25 at.% (Fig. 2) and extrapolated to the zero temperature were used (for Fe_{15}Sn a_{Sn} = 10.9924 a.u., for Fe_{15}Si a_{Si} = 10.7926 a.u.). To illustrate the lattice parameter effect, we carried out the calculations for Fe_{15}Sn with a_{Fe} = 10.8114 a.u. corresponding to pure Fe. For Fe_{15}Sn and Fe_{15}Si the relaxation was studied by shifting the iron atoms FeI closest to the metalloid atom along the main diagonal of the cube. The minimum total energy was obtained for a shift $\delta r = 0.008 a_{Sn} \sqrt{3}$ for tin and $\delta r = -0.001 a_{Si} \sqrt{3}$ for silicon, which corresponds to the experimental tendency of the lattice expansion/contraction in the case of Sn/Si (Fig. 3). This indicates that a slightly distorted BCC structure should occur in reality (see Fig. 1).

Hereafter the "local magnetic moment" means the integrated spin density of the d-like electrons in the muffin-tin sphere M_d. Fig. 2 shows the local magnetic moments at the Fe atoms as a function of the distance to the metalloid atom in the ordered alloys Fe_{15}M (M = Sn, Si) for the non-relaxed and relaxed structure. The M_d magnitude is governed by two opposite factors. The first is connected with the effective overlap of the d-like wave functions that decreases with the interatomic distance or impurity amount. The second deals with the d-band flattening with the increase of the s – d hybridization at an iron site due to the potential distortion by impurity. The local character of the s – d hybridization results in the fact that this effect takes place only near the impurity. The distinctions in the local magnetic moments at the equivalent positions between the alloys with Si and Sn are a result of different inter-atomic distances.

To prove this, the analysis of the Fe_{15}Sn alloy with the lattice parameter of the Fe_{15}Si system was conducted. The M_d values in alloys with Si and Sn were close if the lattice parameters were taken equal. The M_d values increase with the lattice parameter, which is also confirmed by the calculations for pure iron with different lattice parameters. One can see (Fig. 3) that decreasing the distance from FeIY to the nearest neighbours in the relaxed system Fe_{15}Sn results in a decrease of the magnetic moment which approaches that of pure iron.
FIG. 2. Concentrational dependence of the BCC lattice parameter for the disordered alloys Fe – Si (1) and Fe – Sn (2).

the distance to the farther spheres determined by the lattice parameter remains completely unchanged or, for some spheres, unchanged on the average, thus, the FeIY magnetic moment is governed mainly by the distance to the nearest neighbours. The difference in the total magnetization for the systems with Si and Sn corresponds to the experimental value at the concentration 6.25 at.%

The electron-polarization contribution to the HFF was calculated by the standard procedure of electron spin-density integration with the relativistic effects taken into account [8]. This contribution includes two terms: the polarization of the inner-levels electrons ("core" electrons) in the nucleus region H_{cor} and that of the valence electrons H_{val}. The polarization of the core electrons follows the relation $H_{cor} = \gamma M_d$ closely. Usually, H_{cor} is considered to be proportional to the total magnetization, which is much worse. The factor γ depends on the type of the exchange-correlation potential. On the whole, the calculations were done with the generalized gradient approximation (GGA) of the potential [9], this gave $\gamma = -123kG/\mu_B$. The calculations with the local-density approximation (LDA) of the potential [10] change γ to $-112kG/\mu_B$. However, within the approximation chosen, γ keeps constant with an accuracy of one percent for different alloys (with Si or Sn), different lattices (BCC, hexagonal), different lattice parameters. The dependence of H_{val} on the distance to the impurity has an oscillatory shape and resembles the Ruderman-Kittel-Kasuya-Yosida (RKKY) polarization. As shown in [11], the simple function $\cos(2K_F r)/r^3$ obtained in the model of free-electron polarization reflects the main features of the RKKY polarization in these alloys, i.e. the period, amplitude, phase; but it does not take into consideration the spatial distribution of the $s – d$ exchange interaction and inhomogeneity of the valence-electron density, and so does not allow a quantitative analysis.

A large contribution to the HFF is due to the orbital magnetic moment M_{orb}. In pure iron, M_{orb} resulting from the reduction of the Hamiltonian symmetry by the spin-orbit correction is of 0.08μ_B. With the metalloid impurity inclusion, the cubic symmetry of the crystal potential is also violated, which gives an additional defreezing of the orbital magnetic moment, and its growth leads to a decrease in the HFF absolute value. This is corroborated by almost equal experimental differences $H_0 - H_1 \approx 20kG$ for both $Fe_{100-c}Si_c$ [12] and $Fe_{100-c}Sn_c$ [13] (H_0 is the HFF at the nucleus of Fe without metalloid atoms in the nearest environment, and H_1 is that with one metalloid atom in the nearest environment). This difference could not be explained by either change of the core electron polarization (H_{cor}) due to the magnetic moment change (Fig. 3), or the change in the RKKY polarization (H_{val}) as was shown in [11]. We would like to remind that slightly increasing the orbital magnetic moment by $\approx 0.06\mu_B$ should give a decrease of 20kG in the HFF absolute value [14]. Though present first-principles calculations do not give exactly the experimental values of the orbital magnetic moment, our computations [13] showed that the orbital magnetic moment and its contribution to the HFF increase when an impurity appears in the nearest environment of an iron atom.

This work was supported by Russian Fund for Basic Research.

FIG. 3. Local magnetic moments (μ_B) (integrated spin density of the d-like electrons) at Fe atoms in four non-equivalent positions, 1 - Fe_{15}Si, 2 - Fe_{15}Sn, 3 - pure Fe. Dashed/solid lines are guidelines for values in non-relaxed/relaxed lattice.
[1] E.P. Yelsukov, E.V. Voronina, and V.A. Barinov, J. Magn. Magn. Mater. 115, 271 (1992).
[2] E.P. Elsukov, V.A. Barinov, and G.N. Konygin, Phys. Met. Metallogr. 62, 719 (1986).
[3] P. Blaha, K. Schwarz, and J. Luitz, WIEN97, (Vienna University of Technology, Vienna, 1997).
[4] P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990).
[5] M.C.M. Farquhar, H. Lipson, and A.R. Weil, J. Iron Steel Inst. 152, 457 (1945).
[6] F. Richter and W. Pepperhoff, Arch. Eisenhuttenw. 45, 107 (1974).
[7] A.K. Arzhnikov, L.V. Dobysheva, E.P. Elsukov, and A.V. Zagainov, JETP 83, 623 (1996).
[8] H. Akai, M. Akai, S. Blugel, B. Drittler, H. Ebert, K. Terakura, R. Zeller, and P.H. Dederichs, Progr. of Theor. Phys. Suppl. 101, 11 (1990).
[9] J.P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Let. 77, 3865 (1996).
[10] J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
[11] A.K. Arzhnikov, L.V. Dobysheva, and F. Brouers, Phys. Sol. St. 42, 89 (2000).
[12] E.P. Elsukov, G.N. Konygin, V.A. Barinov, and E.V. Voronina, J. Phys.: Cond. Matt. 4, 7597 (1992).
[13] E.P. Elsukov, E.V. Voronina, V.M. Fomin, and G.N. Konygin, Phys. Met. Metallogr. 85, 307 (1998).
[14] M. Battocletti, H. Ebert, and H. Akai, Phys. Rev. B 53, 9776 (1996).
[15] A.K. Arzhnikov, L.V. Dobysheva, and F. Brouers, in Proceedings of Moscow International Symposium on Magnetism devoted to the memory of E.I. Kondorskii, edited by A. Granovsky and N. Perov (Moscow, 1999), Part 1, 229.