MODULI SPACES OF GERMS OF SEMIQUASIHOMOGENEOUS LEGENDRIAN CURVES

MARCO SILVA MENDES AND ORLANDO NETO

ABSTRACT. We construct a moduli space for Legendrian curves singularities which are contactomorphic-equivalent and equisingular through a contact analogue of the Kodaira-Spencer map for curve singularities. We focus on the specific case of Legendrian curves which are the conormal of a plane curve with one Puiseux pair.

1. Introduction

Greuel, Laudal, Pfister et all (see [5], [8]) constructed moduli spaces of germs of plane curves equisingular to a plane curve \{y^k + x^n = 0\}, (k, n) = 1. Their main tools are the Kodaira Spencer map of the equisingular semiuniversal deformation of the curve and the results of [6]. We extend their results to Legendrian curves.

Let Y be the germ of a plane curve that is a generic plane projection of a Legendrian curve L. The equisingularity type of Y does not depend on the projection (see [12]). Two Legendrian curves are equisingular if their generic plane projections are equisingular. We say that an irreducible Legendrian curve L is semiquasihomogeneous if its generic plane projection is equisingular to a quasihomogeneous plane curve \{y^k + n^n = 0\}, for some k, n such that (k, n) = 1. Hence the generic plane projection of L is a semiquasihomogeneous plane curve.

In section 2 we recall the main results of relative contact geometry. In section 3 we construct the microlocal Kodaira Spencer map and study its kernel \(L_B\), a Lie algebra of vector fields over the base space \(C^B\) of the semiuniversal equisingular deformation of the plane curve \{y^k + n^n = 0\}. We use \(L_B\) in order to construct a Lie algebra of vector fields \(L_C\) over the base space \(C^C\) of the microlocal semiuniversal equisingular deformation of \{y^k + n^n = 0\}. In section 4 we recall some results of [6]. In section 5 we study the stratification of \(C^\omega\) induced by \(L_C\) and show that the conormals of two fibers \(F_b, F_c\) of the microlocal semiuniversal equisingular deformation of \{y^k + n^n = 0\} are isomorphic if and only if b and c are in the same integral manifold of \(L_C\). Moreover, we construct the moduli spaces. The final section is dedicated to presenting an example.

Date: 2018.
2. Relative contact geometry

Let \(q : X \to S \) be a morphism of complex spaces. We can associate to \(q \) a coherent \(\mathcal{O}_X \)-module \(\Omega^1_{X/S} \), the sheaf of relative differential forms of \(X \to S \), and a differential morphism \(d : \mathcal{O}_X \to \Omega^1_{X/S} \) (see [7] or [9]).

If \(\Omega^1_{X/S} \) is a locally free \(\mathcal{O}_X \)-module, we denote by \(\pi = \pi_{X/S} : T^*(X/S) \to X \) the vector bundle with sheaf of sections \(\Omega^1_{X/S} \). We say that \(T(X/S) \) is the relative tangent bundle [cotangent bundle] of \(X \to S \).

Let \(\varphi : X_1 \to X_2 \), \(q_i : X_i \to S \) be morphisms of complex spaces such that \(q_2 \varphi = q_1 \). There is a morphism of \(\mathcal{O}_{X_i} \)-modules

\[
\varphi^* \Rightarrow \mathcal{O}_{X_2/S} = \mathcal{O}_{X_1} \otimes_{\varphi^* \mathcal{O}_{X_2}} \varphi^* \Omega^1_{X_2/S} \to \Omega^1_{X_1/S}.
\]

If \(\Omega^1_{X_i/S}, i = 1, 2 \), and the kernel and cokernel of (2.1) are locally free, we have a morphism of vector bundles

\[
\rho \varphi : X_1 \times X_2 T^*(X_2/S) \to T^*(X_1/S).
\]

If \(\varphi \) is an inclusion map, we say that the kernel of (2.2), and its projectivization, are the conormal bundle of \(\varphi \) relative to \(X \) of \(\mathcal{O}_{X/S} \). We will replace "\(M \times S \)" by "\(M|S \)". Let \(r \) be the projection \(M \times S \to M \).

Notice that \(\Omega^1_{M|S} \to r_{*} \mathcal{O}_M \) is a locally free \(\mathcal{O}_{M \times S} \)-module. Moreover, \(T^*(M|S) = T^*M \times S \)

We say that \(\Omega^1_{M|S} \) is the sheaf of relative differential forms of \(M \) over \(S \). We say that \(T^*(M|S) \) is the relative cotangent bundle of \(M \) over \(S \).

Let \(N \) be a complex manifold of dimension \(2n - 1 \). Let \(S \) be a complex space. We say that a section \(\omega \) of \(\Omega^1_{N|S} \) is a relative contact form of \(N \) over \(S \) if \(\omega \wedge dw^{n-1} \) is a local generator of \(\Omega^1_{N|S} \). Let \(\mathcal{C} \) be a locally free subsheaf of \(\Omega^1_{N|S} \). We say that \(\mathcal{C} \) is a structure of relative contact manifold on \(N \) over \(S \) if \(\mathcal{C} \) is locally generated by a relative contact form of \(N \) over \(S \). We say that \((N \times S, \mathcal{C}) \) is a relative contact manifold over \(S \). When \(S \) is a point we obtain the usual notion of contact manifold.

Let \((N_1 \times S, \mathcal{C}_1), (N_2 \times S, \mathcal{C}_2) \) be relative contact manifolds over \(S \). Let \(\chi \) be a morphism from \(N_1 \times S \) into \(N_2 \times S \) such that \(q_{N_2} \circ \chi = q_{N_1} \). We say that \(\chi \) is a relative contact transformation of \((N_1 \times S, \mathcal{C}_1) \) into \((N_2 \times S, \mathcal{C}_2) \) if the pull-back by \(\chi \) of each local generator of \(\mathcal{C}_2 \) is a local generator of \(\mathcal{C}_1 \).

We say that the projectivization \(\pi_{X/S} : \mathbb{P}^*(X/S) \to X \) of the vector bundle \(T^*(X/S) \) is the projective cotangent bundle of \(X \to S \).

Let \((x_1, ..., x_n, \xi_1, ..., \xi_n) \) be a partial system of local coordinates on an open set \(U \) of \(X \). Let \((x_1, ..., x_n, \xi_1, ..., \xi_n) \) be the associated partial system of symplectic coordinates of \(T^*(X/S) \) on \(V = \pi^{-1}(U) \). Set \(p_{i,j} = \xi_i \xi_j^{-1}, i \neq j, \)

\[
V_i = \{(x, \xi) \in V : \xi_i \neq 0\}, \quad \omega_i = \xi_i^{-1} \theta, \quad i = 1, ..., n.
\]
each ω_i defines a relative contact form $dx_j - \sum_{i\neq j} p_{i,j} dx_i$ on $\mathbb{P}^*(X/S)$, endowing $\mathbb{P}^*(X/S)$ with a structure of relative contact manifold over S.

Let ω be a germ at (x, o) of a relative contact form of \mathcal{C}. A lifting $\tilde{\omega}$ of ω defines a germ $\tilde{\mathcal{C}}$ of a relative contact structure of $N \times T_o S \to T_o S$. Moreover, $\tilde{\mathcal{C}}$ is a lifting of the germ at o of \mathcal{C}.

Let $(N \times S, \mathcal{C})$ be a relative contact manifold over a complex manifold S. Assume N has dimension $2n - 1$ and S has dimension ℓ. Let \mathcal{L} be a reduced analytic set of $N \times S$ of pure dimension $n+\ell-1$. We say that \mathcal{L} is a relative Legendrian variety of $N \times S$ over S if for each section ω of \mathcal{C}, ω vanishes on the regular part of \mathcal{L}. When S is a point, we say that \mathcal{L} is a Legendrian variety of N.

Let \mathcal{L} be an analytic set of $N \times S$. Let $(x, o) \in \mathcal{L}$. Assume S is an irreducible germ of a complex space at o. We say that \mathcal{L} is a relative Legendrian variety of N over S at (x, o) if there is a relative Legendrian variety \mathcal{L} of (N, x) over $(T_o S, 0)$ that is a lifting of the germ of \mathcal{L} at (x, o). Assume S is a germ of a complex space at o with irreducible components $S_i, i \in I$. We say that \mathcal{L} is a relative Legendrian variety of N over S at (x, o) if $S_i \times S \mathcal{L}$ is a relative Legendrian variety of $S_i \times S N$ over S_i at (x, o), for each $i \in I$.

We say that \mathcal{L} is a relative Legendrian variety of $N \times S$ if \mathcal{L} is a relative Legendrian variety of $N \times S$ at (x, o) for each $(x, o) \in \mathcal{L}$.

Let Y be a reduced analytic set of M. Let \mathcal{Y} be a flat deformation of Y over S. Set $X = M \times S \setminus \mathcal{Y}_{\text{sing}}$. We say that the Zariski closure of $\mathbb{P}^* Y_{\text{reg}}(X/S)$ in $\mathbb{P}^*(M/S)$ is the conormal $\mathbb{P}^*_Y(M/S)$ of \mathcal{Y} over S.

Theorem 2.1. The conormal of \mathcal{Y} over S is a relative Legendrian variety of $\mathbb{P}^*(M/S)$. If \mathcal{Y} has irreducible components $\mathcal{Y}_1, ..., \mathcal{Y}_r$,

\[
\mathbb{P}^*_Y(M/S) = \bigcup_{i=1}^r \mathbb{P}^*_Y(M/S).
\]

Theorem 2.2. Let \mathcal{L} be an irreducible germ of a relative Legendrian analytic set of $\mathbb{P}^*(M/S)$. If the analytic set $\pi(\mathcal{L})$ is a flat deformation over S of an analytic set of M, $\mathcal{L} = \mathbb{P}^*_\pi(\mathcal{L})(M/S)$.

Let $\theta = \xi dx + \eta dy$ be the canonical 1-form of $T^*\mathbb{C}^2 = \mathbb{C}^2 \times \mathbb{C}^2$. Hence $\pi = \pi_{\mathbb{C}^2} : \mathbb{P}^* \mathbb{C}^2 = \mathbb{C}^2 \times \mathbb{P}^1 \to \mathbb{C}^2$ is given by $\pi(x, y; \xi : \eta) = (x, y)$. Let $U [V]$ be the open subset of $\mathbb{P}^* \mathbb{C}^2$ defined by $\eta \neq 0 [\xi \neq 0]$. Then $\theta/\eta \theta/\xi$ defines a contact form $dy - pdx [dx - qdy]$ on $U [V]$, where $p = -\xi/\eta, q = -\eta/\xi$. Moreover, $dy - pdx$ and $dx - qdy$ define the structure of contact manifold on $\mathbb{P}^* \mathbb{C}^2$.

If L is a germ of a Legendrian curve of $\mathbb{P}^* M$ and L is not a fiber of π_M, $\pi_M(L)$ is a germ of plane curve with irreducible tangent cone and $L = \mathbb{P}^*_\pi_M(L)$.

Let Y be the germ of a plane curve with irreducible tangent cone at a point o of a surface M. Let L be the conormal of Y. Let σ be the only point of L such that $\pi_M(\sigma) = o$. Let k be the multiplicity of Y. Let f be a defining function of Y. In this situation we will always choose a system of
Lemma 2.3. The following statements are equivalent:

1. $\text{mult}_0(L) = \text{mult}_o(Y);$
2. $C_\sigma(L) \nsubseteq (D\pi(\sigma))^{-1}(0,0);$
3. $f \in (x^2, y)^k;$
4. if $t \mapsto (x(t), y(t))$ parametrizes a branch of Y, x^2 divides y.

Definition 2.4. Let S be a reduced complex space. Let Y be a reduced plane curve. Let Y' be a deformation of Y over S. We say that Y' is generic if its fibers are generic. If S is a non reduced complex space we say that Y' is generic if Y' admits a generic lifting.

Given a flat deformation Y of a plane curve Y over a complex space S we will denote $P^*_Y(C^2|S)$ by $\text{Con}(Y)$.

Theorem 2.5 (Theorem 1.3, [2]). Let $\chi : (\mathbb{C}^3, 0) \to (\mathbb{C}^3, 0)$ be a germ of a contact transformation. Let L be a germ of a Legendrian curve of \mathbb{C}^3 at the origin. If L and $\chi(L)$ are in generic position, $\pi(L)$ and $\pi(\chi(L))$ are equisingular.

Definition 2.6. Two Legendrian curves are equisingular if their generic plane projections are equisingular.

Lemma 2.7. Assume Y is a generic plane curve and $Y \hookrightarrow Y'$ defines an equisingular deformation of Y with trivial normal cone along its trivial section. Then Y' is generic.

Definition 2.8. Let L be (a germ of) a Legendrian curve of \mathbb{C}^3 in generic position. Let \mathcal{L} be a relative Legendrian curve over (a germ of) a complex space S at o. We say that an immersion $i : L \hookrightarrow \mathcal{L}$ defines a deformation

$$L \hookrightarrow \mathbb{C}^3 \times S \to S$$

of the Legendrian curve L over S if i induces an isomorphism of L onto \mathcal{L}_o and there is a generic deformation Y of a plane curve Y over S such that $\chi(\mathcal{L})$ is isomorphic to $\text{Con}Y$ by a relative contact transformation verifying (2.6).

We say that the deformation (2.3) is equisingular if Y is equisingular. We denote by $\text{Def}_{es}L$ the category of equisingular deformations of L.

Remark 2.9. We do not demand the flatness of the morphism (2.3).

Lemma 2.10. Using the notations of definition 2.8 given a section $\sigma : S \to \mathcal{L}$ of $\mathbb{C}^3 \times S \to S$, there is a relative contact transformation χ such that $\chi \circ \sigma$ is trivial. Hence \mathcal{L} is isomorphic to a deformation with trivial section.

Consider the maps $i : X \hookrightarrow X \times S$ and $q : X \times S \to S$.

4
Theorem 2.11. Assume \mathcal{Y} defines an equisingular deformation of a generic plane curve Y with trivial normal cone along its trivial section. Let $\chi : X \times S \to X \times S$ be a relative contact transformation verifying
\[\chi \circ i = i, \quad q \circ \chi = q \quad \text{and} \quad \chi(0,s) = (0,s) \quad \text{for each} \ s. \]
Then $\mathcal{Y}^\chi = \pi(\chi(\text{Con}(\mathcal{Y})))$ is a generic equisingular deformation of Y.

Definition 2.12. Let $\text{Def}^{es,\mu}_f$ (or $\text{Def}^{es,\mu}_Y$) be the category given in the following way: the objects of $\text{Def}^{es,\mu}_f$ are the objects of Def^{es}_f; two objects Y, Z of $\text{Def}^{es,\mu}_f(T)$ are isomorphic if there is a relative contact transformation χ over T such that $Z = Y^\chi$.

Lemma 2.13. Assume $f \in \mathbb{C}\{x,y\}$ is the defining function of a generic plane curve Y. Let L be the conormal of Y. For each $\ell \geq 1$ there is $h_\ell \in \mathbb{C}\{x,y\}$ such that
\[((\ell + 1)p^\ell f_x + \ell p^{\ell+1} f_y) \equiv h_\ell \mod I_L. \]
Moreover, h_ℓ is unique modulo I_Y.

Definition 2.14. Let f be a generic plane curve with tangent cone $\{y = 0\}$. We will denote by I_f the ideal of $\mathbb{C}\{x,y\}$ generated by the functions g such that $f + \varepsilon g$ is equisingular over T_ε and has trivial normal cone along its trivial section. We call I_f the equisingularity ideal of f.

We will denote by I^μ_f the ideal of $\mathbb{C}\{x,y\}$ generated by $f, (x,y)f_x, (x^2,y)f_y$ and $h_\ell, \ell \geq 1$.

Theorem 2.15 (9). Assume Y is a generic plane curve with conormal L, defined by a power series f. Assume f is SQH or f is NND. If $g_1,\ldots,g_n \in I_f$ represent a basis of I_f/I^μ_f with Newton order ≥ 1, the deformation G defined by
\[G(x,y,s_1,\ldots,s_n) = f(x,y) + \sum_{i=1}^{n} s_i g_i \]
is a semiuniversal deformation of f in $\text{Def}^{es,\mu}_f$.

Lemma 2.16. Let S be the germ of a complex space. Assume F defines an object \mathcal{F} in $\text{Def}^{es}_f(S)$. Given $\gamma \geq 1$ there are $H^\gamma \in \mathcal{O}_S\{x,y\}$ such that
\[H^\gamma \equiv p^\gamma \partial_x F \mod I_{\text{Con}(\mathcal{F})} + \Delta_F. \]
If f has multiplicity k, $H^\gamma \equiv 0$ for $\gamma \geq k - 1$.

Proof. Let us first show that
\[H^\gamma \equiv (\gamma + 1)p^\gamma \partial_x F + \gamma p^{\gamma+1} \partial_y F \mod I_{\text{Con}(\mathcal{F})}. \]
This is a relative version of Lemma 7.2 of [9]. Since \mathcal{F} is equisingular, the multiplicity and the conductor are constant. Moreover, there are parametrizations of each component of \mathcal{F}. Therefore, we can generalize the argument in the proof of the quoted Lemma.
Now it is enough to show that

\[(2.5) \quad \partial_x F + p \partial_y F \equiv 0 \mod I_{\text{Con}(F)}.\]

Assume \(\mathcal{F} \) is irreducible. Let \((t, s) \mapsto (X, Y, P)\) be a parametrization of \(\text{Con}(\mathcal{F})\). Since \(F(X, Y) = 0\) we conclude that

\[\partial_x F \partial_t X + \partial_y F \partial_t Y = 0.\]

Since \(P = \partial_t Y / \partial_t X\), (2.5) holds. \(\square\)

Let \(T_\varepsilon\) be the complex space with local ring \(\mathbb{C}\{\varepsilon\}/(\varepsilon^2)\). Let \(I, J\) be ideals of the ring \(\mathbb{C}\{s_1, \ldots, s_m\}\). Assume \(J \subset I\). Let \(X, S, T\) be the germs of complex spaces with local rings \(\mathbb{C}\{x, y, p\}, \mathbb{C}\{s\}/I, \mathbb{C}\{s\}/J\). Consider the maps \(i: X \hookrightarrow X \times S, j: X \times S \hookrightarrow X \times T\) and \(q: X \times S \rightarrow S\).

Let \(m_X, m_S\) be the maximal ideals of \(\mathbb{C}\{x, y, p\}\), \(\mathbb{C}\{s\}/I\). Let \(n_S\) be the ideal of \(O_{X \times S}\) generated by \(m_X m_S\).

Let \(\chi: X \times S \rightarrow X \times S\) be a relative contact transformation. If \(\chi\) verifies

\[(2.6) \quad \chi \circ i = i, \quad q \circ \chi = q \quad \text{and} \quad \chi(0, s) = (0, s) \quad \text{for each} \ s.\]

there are \(\alpha, \beta, \gamma \in n_S\) such that

\[(2.7) \quad \chi(x, y, p, s) = (x + \alpha, y + \beta, p + \gamma, s).\]

Theorem 2.17. (1) Let \(\chi: X \times S \rightarrow X \times S\) be a relative contact transformation that verifies (2.6). Then \(\gamma\) is determined by \(\alpha\) and \(\beta\). Moreover, there is \(\beta_0 \in n_S + pO_{X \times S}\) such that \(\beta\) is the solution of the Cauchy problem

\[(2.8) \quad \left(1 + \frac{\partial \alpha}{\partial x} + p \frac{\partial \alpha}{\partial y}\right) \frac{\partial \beta}{\partial p} - p \frac{\partial \alpha}{\partial p} \frac{\partial \beta}{\partial y} - \frac{\partial \alpha}{\partial p} \frac{\partial \beta}{\partial x} = p \frac{\partial \alpha}{\partial p},\]

\(\beta + pO_{X \times S} = \beta_0\).

(2) Given \(\alpha \in n_S\), \(\beta_0 \in n_S + pO_{X \times S}\), there is a unique relative contact transformation \(\chi\) that verifies (2.6) and the conditions of statement (a). We denote \(\chi\) by \(\chi_{\alpha, \beta_0}\).

(3) If \(S = T_\varepsilon\) the Cauchy problem (2.8) simplifies into

\[(2.9) \quad \frac{\partial \beta}{\partial p} = p \frac{\partial \alpha}{\partial p}, \quad \beta + pO_{X \times T_{\varepsilon}} = \beta_0.\]

Consider the contact transformations from \(\mathbb{C}^3\) to \(\mathbb{C}^3\) given by

\[(2.10) \quad \Phi(x, y, p) = (\lambda x, \lambda \mu y, \mu p), \quad \lambda, \mu \in \mathbb{C}^\ast,\]

\[(2.11) \quad \Phi(x, y, p) = (ax + bp, y + \frac{ac}{2} x^2 + \frac{bd}{2} p^2 + bcxp, cx + dp), \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} = 1,\]

Theorem 2.18. (See [2] or [10].) Let \(\Phi: (\mathbb{C}^3, 0) \rightarrow (\mathbb{C}^3, 0)\) the the germ of a contact transformation. Then \(\Phi = \Phi_1 \Phi_2 \Phi_3\), where \(\Phi_1\) is of type (2.10), \(\Phi_2\) is of type (2.11) and \(\Phi_3\) is of type (2.7), with \(\alpha, \beta, \gamma \in \mathbb{C}\{x, y, p\}\). Moreover,
there is $\beta_0 \in \mathbb{C}\{x,y\}$ such that β verifies the Cauchy problem \((2.8)\), $\beta - \beta_0 \in (p)$ and

\[(2.12) \quad \alpha, \beta, \gamma, \beta_0, \frac{\partial \alpha}{\partial x}, \frac{\partial \beta}{\partial x}, \frac{\partial \beta}{\partial p}, \frac{\partial^2 \beta}{\partial x \partial p} \in (x, y, p).\]

If $D\Phi(0)(\{y = p = 0\}) = \{y = p = 0\}$, $\Phi_2 = id_{\mathbb{C}^3}$.

Proposition 2.19. Let f and g be two microlocally equivalent SQH or NND generic plane curves. Then, f and g have equisingular semiuniversal microlocal deformations with isomorphic base spaces.

Proof. Let X, Y denote the germs of analytic subsets at the origin of \mathbb{C}^3 defined by $Conf$ and $Cong$ respectively. Let $\chi : \mathbb{C}^3 \to \mathbb{C}^3$ be a contact transformation such that $\chi(Y) = X$ and $\mathcal{X} := (i, \Phi) : X \hookrightarrow \mathbb{C}^3 \times \mathbb{C}^\ell \to \mathbb{C}^\ell$ be a semiuniversal equisingular deformation of X (to see that such an object exists see Theorem 2.15). Let us show that $(i \circ \chi, \Phi)$ is a semiuniversal equisingular deformation of Y:

Let $\mathcal{Y} := (j, \Psi) : Y \hookrightarrow \mathbb{C}^3 \times \mathbb{C}^k \to \mathbb{C}^k$ be an equisingular deformation of Y. Because \mathcal{X} is versal there is $\varphi : \mathbb{C}^k \to \mathbb{C}^\ell$ such that $\varphi^* \mathcal{X} \cong (j \circ \chi^{-1}, \Psi)$.

\[(2.13) \quad \begin{array}{ccc}
Y & \xleftarrow{\chi^{-1}} & X \\
\downarrow j & & \uparrow \varphi^* i \\
\mathbb{C}^3 \times \mathbb{C}^k & \cong & \mathbb{C}^3 \times \mathbb{C}^k \\
\downarrow \Psi & & \uparrow \varphi^* \Phi \\
\mathbb{C}^k & \cong & \mathbb{C}^k
\end{array}\]

Then, $(\varphi^* i \circ \chi, \varphi^* \Phi) \cong (j, \Psi)$ which means that $\varphi^*(i \circ \chi, \Phi) \cong \mathcal{Y}$. The result follows from the fact that a semiuniversal deformation is unique up to isomorphism (see Lemma 2.1.12 of [4]).

Recall that, for a SQH or NND generic plane curve f, there is a semiuniversal microlocal equisingular deformation with base space \mathbb{C}^k, where k is the the dimension as vector space over \mathbb{C} of I_f/I^μ_f. So, because of Proposition 2.19 and Proposition 2.2.17 of [4], the following defines an invariant between microlocally equivalent fibers of F.

Definition 2.20. Let f be a SQH or NND generic plane curve. Then

$$\widehat{\tau}(f) := \dim_{\mathbb{C}} \frac{\mathbb{C}\{x, y\}}{I^\mu_f}$$

is the microlocal Tjurina number of f.

7
3. The microlocal Kodaira-Spencer map

Assume k, n are coprime integers, $0 < 2k < n$. Set $f = y^k - x^n$, $\mu = (n - 2)/(k - 2)$. Consider in $\mathbb{C}[x, y]$ the grading given by $o(x^iy^j) = ki + nj$, $(i,j) \in \mathbb{N}^2$. Set $\omega = o(x^{n-2}y^{k-2}) - kn$, $\varpi = o(x^{n-k}y^{k-2}) - kn$, $e(x^iy^j) = (i,j) \in \mathbb{N}^2$.

$$B = \{(i,j) \in \mathbb{N}^2 : i \leq n - 2, j \leq k - 2\},$$
$$C = \{(i,j) \in B : i + j \leq n - 2\},$$
$$D = \{(i,j) \in B : o(x^iy^j) - kn \leq \varpi\},$$
$$A_0 = \{(i,j) \in A : ki + nj > kn\}, \text{ for each } A \subseteq B.$$

Let m_1, \ldots, m_μ be the family x^iy^j, $(i,j) \in B$, ordered by degree. Set $b = \#B_0$. If $\mu - b + 1 \leq \ell \leq \mu$, set $o(\ell) = o(m_\ell) - kn$ and $o(s_{o(\ell)}) = -o(\ell)$.

Let $A \subseteq B$. Set $I_A = \{\ell : e(m_\ell) \in A_0\}$, $s_A = (s_{o(\ell)})_{\ell \in I_A}$. Set $A^A = \mathbb{C}^{#A^0}$ with coordinates s_A. Notice that $I_B = \{\mu - b + 1, \ldots, \mu\}$. Moreover,

$$F_A = f + \sum_{\ell \in I_A} s_{o(\ell)}m_\ell$$

is homogeneous of degree kn.

Let Y be the plane curve defined by f. Let Γ be the conormal of Y. Let F_A be the deformation defined by F_A. Notice that

- F_B is a semiuniversal equisingular deformation of Y,
- F_C is a semiuniversal equisingular microlocal deformation of Y,
- if $C \subseteq A \subseteq B$, F_A is a complete equisingular microlocal deformation of Y.

Let Δ_{F_A} be the ideal of $\mathbb{C}[s_A]$ generated by $\partial_x F_A$ and $\partial_y F_A$. Assume $o(p) = n - k$ in order to guarantee that the contact form $dy - pdx$ is homogeneous.

Lemma 3.1. Assume $C \subseteq A \subseteq B$ and $\gamma \geq 1$. There is $H_A^\gamma \in \mathbb{C}[s_A]\{x,y\}$ such that $H_A^\gamma \equiv p^\gamma \partial_x F_A \mod I_{\text{Con}(F_A)} + \Delta_{F_A}$ where H_A^γ is homogeneous of degree $\gamma(n - k) + kn - k$. If $\gamma \geq k - 1$, $H_A^\gamma \in \Delta_{F_A}$. If $C \subseteq A' \subseteq A \subseteq B$, $H_A' = H_A^\gamma |_{C \cdot A'}$.

Proof. Set $\psi_0 = \theta$, where $\theta^k = -1$. There are $\psi_i \in (s_A)\mathbb{C}[s_A]$, $i \geq 1$, such that

$$X(t, s_A) = t^k, \quad Y(t, s_A) = \sum_{i \geq 0} \psi_i t^{n+i}$$

defines a parametrization Φ of F_A. Setting $P(t, s_A) = \sum_{i \geq 0} \frac{n+i}{k+i} \psi_i t^{n-k+i}$, X, Y, P defines a parametrization Ψ of $\text{Con}(F_A)$. Since x is homogeneous of degree k and $x = t^k$, we assume t homogeneous of degree 1. Let us show

8
that Y is homogeneous of degree n. The \mathbb{C}^*-action acts on Φ by

$$a \cdot \Phi(t, s_A) = \left(a^k t^k, a^n (\theta t^n + \sum_{i \geq 1} (a \cdot \psi_i) a^i t^{n+i}) \right).$$

Since F_A is homogeneous, for each s_A,

$$t \mapsto \Phi_a(t, s_A) = \left(t^k, \theta t^n + \sum_{i \geq 1} (a \cdot \psi_i) a^i t^{n+i} \right)$$

is another parametrization of the curve defined by $(x, y) \mapsto F_A(x, y, s_A)$. Since the first term of both parametrizations coincide, $\Phi_a = \Phi$, $a \cdot \psi_i = a^{-1} \psi_i$ and Φ is homogeneous. Therefore, Ψ is homogeneous.

There is an integer c such that $\Phi^*(\Delta_{F_A}) \supset t^c \mathcal{C}[s_A]\{t\}$. Remark that $p^\gamma \partial_x F_A$ is homogeneous of degree $\gamma(n - k) + kn - k$. We construct H_A^γ in the following manner. There is a monomial ax^iy^j, $a \in \mathcal{C}[s_A]$ such that the monomials of lowest t-order $\Phi^*(ax^iy^j)$ and $\Psi^*(p^\gamma \partial_x F_A)$ coincide. Replace $p^\gamma \partial_x F_A$ by $p^\gamma \partial_x F_A - ax^iy^j$ and iterate the procedure. After a finite number of steps we construct H_A^γ such that

$$\Psi^*(p^\gamma \partial_x F_A - H_A^\gamma) \in t^c \mathcal{C}[s_A]\{t\}.$$

Therefore,

$$p^\gamma \partial_x F_A - H_A^\gamma \in I_{\text{Con}(F_A)} + \Delta_{F_A}.$$

Remark that the monomial ax^iy^j is homogeneous of degree $\gamma(n - k) + kn - k$.

Set $\Theta_B = \text{Der}_{\mathcal{C}} \mathcal{C}[s_B]$, $\partial_{o(\ell)} = \partial_{s_{o(\ell)}}$ and $o(\partial_{s(\ell)}) = o(\ell)$ for each $\ell \in I_B$. Assume $C \subseteq A' \subseteq A \subseteq B$. Let $\Theta_{A, A'}$ be the $\mathcal{C}[s_A]$-submodule of Θ_B generated by $\partial_{s(\ell)}$, $\ell \in I_{A'}$. Set $\Theta_A = \Theta_{A, A'}$. There are maps

$$\Theta_A \leftarrow \Theta_{A, A'} \stackrel{r_{A, A'}}{\rightarrow} \Theta_{A'},$$

where $r_{A, A'}$ is the restriction to $\mathcal{C}^{A'}$.

Definition 3.2. Let I_F^μ be the ideal of $\mathcal{C}[s_B][[x, y]]$ generated by F_B, ΔF_B and H_B^γ, $\gamma = 1, \ldots, k - 2$. We say that the map

$$\rho : \Theta_B \rightarrow \mathcal{C}[s_B][[x, y]]/I_F^\mu,$$

given by $\rho(\delta) = \delta F_B + I_F^\mu$ is the microlocal Kodaira-Spencer map of f. We will denote the kernel of ρ by \mathcal{L}_B.

Assume we have defined \mathcal{L}_A. We set

$$\mathcal{L}_{A, A'} = \mathcal{L}_A \cap \Theta_{A, A'} \text{ and } \mathcal{L}_{A'} = r_{A, A'}(\mathcal{L}_{A, A'}).$$

Let L be a Lie subalgebra of Θ_A. Consider in \mathcal{C}^A the binary relation \sim given by $p \sim q$ if there is a vector field δ of L and an integral curve γ of δ such that p and q are in the trajectory of γ. We denote by \mathcal{L} the equivalence relation
generated by \sim. We say that a subset M of \mathbb{C}^4 is an integral manifold of L if M is an equivalence class of L.

Assume $C \subseteq A \subseteq B$. The family $m_\ell, 1 \leq \ell \leq \mu$, defines a basis of the $\mathbb{C}[s_A]$-module

$$R_A = \mathbb{C}[s_A][[x,y]]/\Delta F_A.$$

Set $H^0_A = F_A$. The relations

$$m_\ell H_A^\gamma = \sum_{v=1}^\mu c^\gamma_{\ell,v} m_v \mod \Delta F_A$$

define $c^\gamma_{\ell,v} \in \mathbb{C}[s_A]$ for each $0 \leq \gamma \leq k-2, 1 \leq \ell, v \leq \mu$. Assume $A = B$ and set

$$\delta^\gamma_\ell = \sum_{v=\mu-b+1}^\mu c^\gamma_{\ell,v} \partial_{s_{o(v)}}, \quad \ell = 1,\ldots,\mu, \quad \gamma = 0,\ldots, k-2.$$

If $m_\ell = x^i y^j$ we will also denote δ^γ_ℓ by $\delta^\gamma_{i,j}$. For $1 \leq \gamma \leq k-2$, set

$$\alpha^0_\ell = o(m_\ell), \quad \alpha^\gamma_\ell = \alpha^0_\ell + \gamma(n-k) - k, \quad \ell = 1,\ldots,\mu,$$

$$\alpha^0_{i,j} = o(x^i y^j), \quad \alpha^\gamma_{i,j} = \alpha^0_{i,j} + \gamma(n-k) - k, \quad (i,j) \in B.$$

Lemma 3.3. With the previous notations, we have that:

1. The vector fields δ^γ_ℓ ($\delta^\gamma_{i,j}$) are homogeneous of degree α^γ_ℓ ($\alpha^\gamma_{i,j}$), $0 \leq \gamma \leq k-2, 1 \leq \ell \leq \mu$ ($i,j \in B$).
2. $\delta^\gamma_{i,j}(0) \neq 0$ if and only if $\gamma \geq 1$, $i \leq \gamma - 1, \gamma + j \leq k-2$.
3. $\delta^\gamma_{i,j} = 0$ if $\alpha^\gamma_{i,j} > \omega$.
4. The Lie algebra L_B is generated as $\mathbb{C}[s_B]$-module by $\{\delta^\gamma_\ell : 0 \leq \gamma \leq k-2, \alpha^\gamma_\ell \leq \omega\}$.
5. If $\sigma > \omega$, $\partial_{s_\sigma} \in L_B$.
6. If $(u,v) \in B \setminus C$ there is $\delta \in L_B$ such that $\delta = \partial_{s_\sigma} + \varepsilon$ is homogeneous of degree $\sigma = ku + nv - kn$, where ε is a linear combination of $\partial_{s_{o(v)}}, i \in I_B, i > \sigma$, with coefficients in $\mathbb{C}[s_B]$.

Proof. (3): Just notice that if $\alpha^0_{i,j} > \omega = o(m_\mu) - kn$ then $o(m_{i,j} F_B) = o(m_\mu)$. Now, because $n > 2k$, $o(H^0_B) > kn = o(F_B)$ for any $\gamma = 1,\ldots, k-2$, the result holds for $\gamma > 0$.

(4): For $\gamma = 0$ ($1 \leq \gamma \leq k-2$) and each $\ell = 1,\ldots,\mu$ such that $o(m_\ell) \leq \omega$, we have that $\rho(\delta^\gamma_\ell) = \delta^\gamma_\ell F_B + I^\mu_F = m_\ell F_B + I^\mu_F (m_\ell H^\gamma_B + I^\mu_F) = 0 + I^\mu_F$. So, $\{\delta^\gamma_\ell : 0 \leq \gamma \leq k-2, \alpha^\gamma_\ell \leq \omega\} \subseteq L_B$.

Now, let

$$\delta = \sum_{v=\mu-b+1}^\mu w_v \partial_{s_{o(v)}} \in \Theta_B$$

such that $\rho(\delta) = 0$. Then

$$\delta F_B = \sum_{v=\mu-b+1}^\mu w_v m_v = M_0 F_B + M_1 H^1_B + \ldots + M_{k-2} H^{k-2}_B \mod \Delta F_B,$$
with \(M_0, \ldots, M_{k-2} \in \mathbb{C}[s_B][[x,y]] \). Suppose

\[
M_0 = \sum_{\ell=1}^{\mu} M_{0,\ell m_{\ell}} \Delta F_B, \\
\ldots \\
M_{k-2} = \sum_{\ell=1}^{\mu} M_{k-2,\ell m_{\ell}} \Delta F_B,
\]

where the \(M_{\gamma,\ell} \in \mathbb{C}[s_B] \) for each \(\ell = 1, \ldots, \mu, \gamma = 0, \ldots, k-2 \). Then

\[
M_0 F_B = M_{0,1} m_1 F_B + \ldots + M_{0,\mu} m_{\mu} F_B \mod \Delta F_B \\
= M_{0,1} m_1 F_B + \ldots + M_{0,\mu} m_{\mu} F_B \mod \Delta F_B \\
= M_{0,1} \delta^0 F_B + \ldots + M_{0,\mu} \delta^0 F_B \mod \Delta F_B.
\]

Similarly, for any \(\gamma = 1, \ldots, k-2 \)

\[
M_\gamma H_B = M_{\gamma,1} m_1 H_B + \ldots + M_{\gamma,\mu} m_{\mu} H_B \mod \Delta F_B \\
= M_{\gamma,1} \delta^\gamma F_B + \ldots + M_{\gamma,\mu} \delta^\gamma F_B \mod \Delta F_B.
\]

So,

\[
\delta F_B = \sum_{\gamma=0}^{k-2} \sum_{\ell=1}^{b} M_{\gamma,\ell} \delta^\gamma F_B \mod \Delta F_B,
\]

which means that

\[
\delta = \sum_{\gamma=0}^{k-2} \sum_{\ell=1}^{b} M_{\gamma,\ell} \delta^\gamma.
\]

\(\square \)

Let \(L_B \) be the Lie algebra generated by \(\delta^\gamma, \gamma = 0, \ldots, k-2, \ell = 1, \ldots, b \). Remark that \(\mathbb{C}^B / L_B \cong \mathbb{C}^B / L_B \). Consider a matrix with lines given by the coefficients of the vector fields \(\delta^\gamma, \gamma = 0, \ldots, k-2, \ell = 1, \ldots, b \). After performing Gaussian diagonalization we can assume that:

- For each \(\sigma \in I_B \setminus I_C \) there is a line corresponding to a vector field \(\partial_{\psi(\sigma)} + \varepsilon \), where \(\varepsilon \in \Theta_{B,C} \).
- The remaining lines correspond to vector fields \(\delta^\ell, \ell \in J \), of \(\Theta_{B,C} \).

The vector fields \(\delta^\ell, \ell \in J \), generate \(L_{B,C} \) as a \(\mathbb{C}[s_B] \)-module. Let \(\delta^\ell \) be the restriction of \(\delta^\ell \) to \(\mathbb{C}^C \) for each \(\ell \in J \). The vector fields \(\delta^\ell, \ell \in J \), generate \(L_C \) as \(\mathbb{C}[s_C] \)-module. Note that \(\{\delta^\ell, \ell \in J\} \) is in general not uniquely determined but the \(\mathbb{C}[s_C] \)-module generated by them is. Let \(L_C \) be the Lie algebra generated by \(\{\delta^\ell, \ell \in J\} \). Since \(L_C \subseteq L_B \) the inclusion map \(\mathbb{C}^C \hookrightarrow \mathbb{C}^B \) defines a map \(\mathbb{C}^C / L_C \rightarrow \mathbb{C}^B / L_B \). By statement (6) of Lemma [3.3] this map is surjective.

Assume there is a vector field \(\delta\ell, \ell \in J, \) of order \(\alpha \). Let \(\{\delta^{\alpha, i} : i \in I_\alpha\} \) be the set of vector fields \(\delta\ell, \ell \in J, \) of order \(\alpha \), with \(I_\alpha = \{1, \ldots, \#I_\alpha\} \). If
there is \(\ell_0 \) such that \(\delta^{\alpha,j}(s_i) = 0 \) for \(\ell \leq \ell_0 \) and \(\delta^{\alpha,i}(s_{\ell_0}) \neq 0 \), we assume that \(i < j \). If \(I_\alpha = \{1\} \), set \(\delta^\alpha = \delta^{\alpha,1} \).

Remark 3.4. If \(k = 7, n = 15 \), we have that a semiuniversal equisingular microlocal deformation of \(f \) by

\[
F_C = y^7 + x^{15} + s_2x^{11}y^2 + s_3x^9y^3 + s_4x^7y^4 + s_5x^5y^5 + s_6x^3y^6 + s_7x^2y^7 + s_8x^6y^8 + s_9x^4y^9 + s_{10}x^3y^{10} + s_{11}x^8y^4 + s_{12}x^6y^5 + s_{13}x^4y^7 + s_{14}x^2y^8 + s_{15}x^4y^8 + s_{16}x^2y^8 + s_{17}x^4y^8 + s_{18}x^2y^8.
\]

Notice that the vector fields \(\delta^0 \) and \(\delta^1 \) give origin to the linearly independent vector fields

\[
\delta^{15,1} = 3s_3\partial_{s_{18}} + 4s_4\partial_{s_{19}} + \cdots.
\]

and

\[
\delta^{15,2} = \left(\frac{7^2}{15} - 3 \left(\frac{15}{7} \right)^2 s_4 \right) \partial_{s_{19}} + \cdots.
\]

Theorem 3.5. The map \(\mathbb{C}^C/L_C \to \mathbb{C}^B/L_B \) is bijective.

Proof. Let \(I_p \) be the subset of \(I_B \) that contains \(I_C \) and the \(p \) smallest elements of \(I_B \setminus I_C \). Set \(C_p = \{(i,j) \in B : ki + nj - kn \in I_p\} \). The Lie algebra \(L_{C_p} = L_{C_p} \cup L_B \) generates \(L_{C_p} \) as \(\mathbb{C}[s_{C_p}] \)-module. There is \(p \) such that \(C_p = D \). By statement (5) of Lemma 3.3 the integral manifolds of \(L_B \) are of the type \(M \times \mathbb{C}^{B \setminus D} \), where \(M \) is an integral manifold of \(L_{C_p} \). Therefore, \(\mathbb{C}^D/L_D \cong \mathbb{C}^B/L_B \). Assume \(\mathbb{C}^{C_p+1}/L_{C_p+1} \cong \mathbb{C}^B/L_B \) and \(I_{C_{p+1}} \setminus C_p = \{\sigma\} \). The Lie algebra \(L_{C_{p+1}} \) is generated by \(L_{C_p} \) and a vector field \(\partial_{s_{\sigma}} + \varepsilon \), where \(\varepsilon \in L_{C_{p+1}} \). Consider the flow of \(\partial_{s_{\sigma}} + \varepsilon \) with initial condition at a point of \(\mathbb{C}^{C_p} \). We can use this flow to construct an homogeneous affine isomorphism of \(\mathbb{C}^{C_p+1} \) into itself that equals the identity on \(\mathbb{C}^{C_p} \) and rectifies \(\partial_{s_{\sigma}} + \varepsilon \), leaving invariant \(L_{C_p} \). Hence, \(\mathbb{C}^{C_p}/L_{C_p} \cong \mathbb{C}^{C_{p+1}}/L_{C_{p+1}} \).

\(\square \)

Remark 3.6. Let us denote by \(P(s_{C}) \) the restriction of \(P \in \mathbb{C}[s_{C}][[x,y]] \) to \(\mathbb{C}^C \). Then, \(F_B(s_{C}) = F_C, \Delta F_B(s_{C}) = \Delta F_C \) and \(H_B^{\gamma}(s_{C}) = H_C^{\gamma} \) for each \(\gamma = 1, \ldots, k - 2 \). Let \(\{\delta_{\ell,\mu}, \ell \in J\} \subset \text{Der} \mathbb{C}[s_{C}] \) be the set of vector fields obtained if we proceed as in the definition of \(\{\delta^\ell, \ell \in J\} \), now with \(C \) in the place of \(B \). Then \(\langle \delta_{\ell,\mu} \rangle \rangle = \langle \delta_\ell \rangle \rangle \) as \(\mathbb{C}[s_{C}] \)-modules. To see this just notice that, if

\[
m_iF_B = \sum_{j=1}^{\mu} c^0_{ij}m_j \text{ mod } \Delta F_B
\]

\[
m_iH_B^\gamma = \sum_{j=1}^{\mu} c^\gamma_{ij}m_j \text{ mod } \Delta F_B
\]
then
\[m_i F_B(s_C) = \sum_{j=1}^{\mu} c_{i,j}^0(s_C) m_j \mod \Delta F(s_C) \]
\[m_i H_B^\gamma(s_C) = \sum_{j=1}^{\mu} c_{i,j}^\gamma(s_C) m_j \mod \Delta F(s_C). \]

4. Geometric Quotients of Unipotent Group Actions

An affine algebraic group is said to be unipotent if it is isomorphic to a group of upper triangular matrices of the form \(\text{Id} + \varepsilon \), where \(\varepsilon \) is nilpotent. If \(G \) is unipotent its Lie algebra \(L \) is nilpotent and the map \(\exp : L \to G \) is algebraic. Given a nilpotent Lie algebra \(L \), there is a unipotent group \(G = \exp L \) such that \(L \) is the Lie algebra of \(G \).

Let \(A \) be a Noetherian \(\mathbb{C} \)-algebra. A linear map \(D : A \to A \) is a derivation of \(A \) if
\[D(fg) = fD(g) + gD(f). \]
A derivation \(D \) of \(A \) is nilpotent if for each \(f \in A \) there is \(n \) such that \(D^n(f) = 0 \). Let \(\text{Der}^{\text{nil}}(A) \) denote the Lie algebra of nilpotent derivations of \(A \). Here, we set \(A = \mathbb{C}[s_C] \).

Let \(G \) be an algebraic group acting algebraically on an algebraic variety \(X \). If \(Y \) is an algebraic variety and \(\pi : X \to Y \) a morphism then \(\pi \) is called a geometric quotient, if
1. \(\pi \) is surjective and open,
2. \((\pi_* \mathcal{O}_X)^\mathcal{G} = \mathcal{O}_Y \),
3. \(\pi \) is an orbit map, i.e. the fibres of \(\pi \) are orbits of \(\mathcal{G} \).

If a geometric quotient exists it is uniquely determined and we just say that \(X/\mathcal{G} \) exists. Here, \(\mathcal{G} \) will act on each strata of \(\mathbb{C}^c = \text{Spec} A \) through the action of \(\mathcal{G} \) on each fiber of \(G \). On Theorem 5.3 we prove that \(\mathbb{C}^c/L_c \) is a classifying space for germs of Legendrian curves with generic plane projection \(\{y^k + x^n = 0\} \). The integral manifolds of \(L_c \) are the orbits of the action of \(\mathcal{G}_0 := \exp L_c \). Set \(L := [L_c, L_c] \) and \(\mathcal{G} = \exp L \). Note that \(L \) is nilpotent (\(\mathcal{G} \) unipotent) and \(L_c/L \cong \mathbb{C}^\delta_0 \), where \(\delta_0 \) is the Euler field.

Definition 4.1. Let \(\mathcal{G} \) be a unipotent algebraic group, \(Z = \text{Spec} A \) an affine \(\mathcal{G} \)-variety and \(X \subseteq Z \) open and \(\mathcal{G} \)-stable. Let \(\pi : X \to Y := \text{Spec} A^\mathcal{G} \) be the canonical map. A point \(x \in X \) is called stable under the action of \(\mathcal{G} \) with respect to \(A \) (or with respect to \(Z \)) if the following holds:
There exists an \(f \in A^\mathcal{G} \) such that \(x \in X_f = \{y \in X, f(y) \neq 0\} \) and \(\pi : X_f \to Y_f := \text{Spec} A^\mathcal{G}_f \) is open and an orbit map. If \(X = Z = \text{Spec} A \) we call a point stable with respect to \(A \) just stable.

Let \(X^s(A) \) denote the set of stable points of \(X \) (under \(\mathcal{G} \) with respect to \(A \)).

Proposition 4.2 ([6]). With the previous notations, we have that:
1. \(X^s(A) \) is open and \(\mathcal{G} \)-stable.
2. \(X^s(A)/\mathcal{G} \) exists and is a quasiaffine algebraic variety.
(3) If $V \subset \text{Spec } A^G$ is open, $U = \pi^{-1}(V)$ and $\pi : U \to V$ is a geometric quotient then $U \subset X^s(A)$.

(4) If X is reduced then $X^s(A)$ is dense in X.

Definition 4.3. A geometric quotient $\pi : X \to Y$ is **locally trivial** if an open covering $\{V_i\}_{i \in I}$ of Y and $n_i \geq 0$ exist, such that $\pi^{-1}(V_i) \cong V_i \times A^\text{nil}_{n_i}$ over V_i.

We use the following notations:

Let $L \subseteq \text{Der}^{\text{nil}}(A)$ be a nilpotent Lie-algebra and $d : A \to \text{Hom}_C(L, A)$ the differential defined by $\delta(a) = \delta(a)$. If $B \subset A$ is a subalgebra then $\int B := \{a \in A : \delta(a) \in B\}$ for all $\delta \in L$. If $\mathfrak{a} \subset A$ is an ideal, $V(\mathfrak{a})$ denotes the closed subscheme $\text{Spec } A/\mathfrak{a}$ of $\text{Spec } A$ and $D(\mathfrak{a})$ the open subscheme $\text{Spec } A - V(\mathfrak{a})$.

Let A be a noetherian C-algebra and $L \subseteq \text{Der}^{\text{nil}}(A)$ a finite dimensional nilpotent Lie-algebra. Suppose that $A = \bigcup_{i \in \mathbb{Z}} F^i(A)$ has a filtration

$$F^i : 0 = F^{-1}(A) \subset F^0(A) \subset F^1(A) \subset \ldots$$

by sub-vector spaces $F^i(A)$ such that

$$\delta F^i(A) \subset F^{i-1}(A)$$

for all $i \in \mathbb{Z}$ and all $\delta \in L$.

Assume, furthermore, that

$$Z_* : L = Z_0(L) \supseteq Z_1(L) \supseteq \ldots \supseteq Z_\ell(L) \supseteq Z_{\ell+1}(L) = 0$$

is filtered by sub-Lie-algebras $Z_j(L)$ such that

$$[L, Z_j(L)] \supseteq Z_{j+1}(L)$$

for all $j \in \mathbb{Z}$.

The filtration Z_* of L induces projections

$$\pi_j : \text{Hom}_C(L, A) \to \text{Hom}_C(Z_j(L), A).$$

For a point $t \in \text{Spec } A$ with residue field $\kappa(t)$ let

$$r_i(t) := \dim_{\kappa(t)} \text{Ad } F^i(A) \otimes_A \kappa(t) \quad i = 1, \ldots, \rho,$$

with ρ minimal such that $\text{Ad } F^\rho(A) = \kappa(t)$,

$$s_i(t) := \dim_{\kappa(t)} \text{Ad } F^i(A) \otimes_A \kappa(t) \quad j = 1, \ldots, \ell,$$

such that $s_j(t)$ is the orbit dimension of $Z_j(L)$ at t.

Let $\text{Spec } A = \bigcup U_\alpha$ be the flattening stratification of the modules

$$\text{Hom}_C(L, A)/\text{Ad } F^i(A), \quad i = 1, \ldots, \rho$$

and

$$\text{Hom}_C(Z_j(L), A)/\pi_j(\text{Ad } A), \quad j = 1, \ldots, \ell.$$

Theorem 4.4. Each stratum U_α is invariant by L and admits a locally trivial geometric quotient with respect to the action of L. The functions $r_i(t)$ and $s_j(t)$ are constant along U_α. Let $x_1, \ldots, x_\rho \in A_1, \delta_1, \ldots, \delta_q \in L$ satisfying the following properties:

1. The functions $r_i(t)$ and $s_j(t)$ are constant along U_α.
2. The functions x_1, \ldots, x_ρ are constant along U_α.
3. The functions $\delta_1, \ldots, \delta_q$ are constant along U_α.
4. The functions x_1, \ldots, x_ρ and $\delta_1, \ldots, \delta_q$ are constant along U_α.

Then U_α is locally trivial with respect to the action of L.

14
• there are $\nu_1, \ldots, \nu_\rho, 0 \leq \nu_1 < \ldots < \nu_\rho = p$, such that dx_1, \ldots, dx_{ν_1} generate the A-module $AdF^i(A)$;
• there are $\mu_0, \ldots, \mu_\ell, 1 = \mu_0 < \mu_1 < \ldots < \mu_\ell$ such that $\delta_{\mu_1}, \ldots, \delta_m \in Z_{j}(L)$ and $Z_{j}(L) \subseteq \sum_{i \geq \mu_j} A\delta_i$.

Then
\begin{align}
(4.1) \quad \text{rank} (\delta_{\alpha}(x_{\beta})(t))_{\beta \leq \nu_i} = r_i(t) \quad i = 1, \ldots, \rho, \\
(4.2) \quad \text{rank} (\delta_{\alpha}(x_{\beta})(t))_{\alpha \geq \mu_j} = s_j(t) \quad j = 1, \ldots, \ell.
\end{align}

The strata U_{α} are defined set theoretically by fixing (4.1) and (4.2).

5. Filtrations and Strata

Set $L = [L_C, L_C]$. Fix a integer a such that $k \geq a \geq 0$. For each $i \in \mathbb{Z}$ let F^i_a be the \mathbb{C}-vector space generated by monomials in $\mathbb{C}[s_C]$ of degree $\geq -(a + ik)$. Since $o(\delta) \geq k$ for each homogeneous vector field of L, $LF^i_a \subseteq F^{i-1}_a$ for each j. For each $m \in \mathbb{Z}$ let I^m_a be the ideal of $\mathbb{C}[[x, y]]$ generated by the monomials of degree $\geq a + mk$. Let ρ be the smallest i such that dF^i_a generates $\mathbb{C}[s_C]d\mathbb{C}[s_C]$ as a $\mathbb{C}[s_C]$-module.

Given $\alpha \in \mathbb{Z}$, set $\alpha : = nk - k^2 - 2n - \alpha$. For each integer j set $S_j = \{\alpha : s_\alpha \in F^\rho_{a-j}, \alpha \neq 0\}$ and let Z^j_a be the sub-Lie algebra of L generated by the homogeneous vector fields $\delta \in L$ such that $o(\delta) \in S_j$. Remark that

$$Z^1_a = L, Z^0_{a+1} = 0 \quad \text{and} \quad [L, Z^a_j] \subseteq Z^a_{j+1}.$$

For each $t \in \mathbb{C}^C$ let I^m_t be the ideal of $\mathbb{C}[[x, y]]$ generated by $F_t, \Delta F_t$ and H^1_t, \ldots, H^{k-2}_t. Set

$$\tau^m_{a,1}(t) = \text{dim}_C \mathbb{C}[[x, y]]/(I^m_t, I^m_a), \quad \tau^m_{a,2}(t) = \text{dim}_C \mathbb{C}[[x, y]]/(\Delta F_t, (F_t, H^1_t, \ldots, H^{k-2}_t) \cap I^a_{\rho-1+2n-m}),$$

for $m = n, \ldots, n + \rho$ and

$$\tau^m_{a}(t) = (\tau^m_{a,1}(t), \ldots, \tau^{n+\rho}_{a,1}(t); \tau^m_{a,2}(t), \ldots, \tau^{n+\rho}_{a,2}(t)).$$

We say that $\tau^m_{a}(t)$ is the microlocal Hilbert function of X_t. Set

$$\hat{\mu} = \#C = \mu - (k - 2)(k - 1)/2, \quad \hat{\mu}^1_t = \hat{\mu} - \#\{m_\ell \in I^a_\mu : \ell \in I_C\},$$

$$\hat{\mu}^2_t = \mu - \#\{m_\ell \in I^a_{\rho-1+2n-k} : \ell \in I_B \setminus C\}.$$

We only define $\tau^m_{a}(t)$ for $m = n, \ldots, n + \rho$ because

$$\tau^m_{a,1}(t) = \tau^m_{a,2}(t) = \hat{\tau}(X_t)$$

(the microlocal Tjurina number of X_t) if m is big and

$$\tau^m_{a,1}(t) = \text{dim}_C \mathbb{C}[[x, y]]/I^m_a, \quad \tau^m_{a,2}(t) = \hat{\mu}^m$$

(hence independent of t) if m is small.

Let $\{U^a_{\alpha}\}$ be the flattening stratification of \mathbb{C}^C corresponding to F^\bullet_a and Z^a. It follows from Theorem 4.4 that $U^a_{\alpha} \to U^a_{\alpha}/L$ is a geometric quotient.
Moreover, $L_C/L \cong \mathbb{C}^*$ acts on U^a_α/L and $U^a_\alpha/L_C = U^a_\alpha/L_C$ is a geometric quotient of U^a_α by L_C. For $t \in \mathbb{C}^C$ let us define

$$e^a(t) = (u^a_0(t), \ldots, u^a_\rho(t); v^a_0(t), \ldots, v^a_\rho(t)) \in \mathbb{N}^{2\rho+2},$$

where

$$u^a_j(t) = \text{rank}(\delta(s'_\beta)(t))_{a(\tau(\beta))t \leq a+j}, \quad j = 0, \ldots, \rho,$$

and

$$v^a_j(t) = \text{rank}(\delta(s'_\beta)(t))_{a(\delta)t \leq a+j}, \quad j = 0, \ldots, \rho.$$

Lemma 5.1. The function $t \mapsto e^a(t)$ is constant on U^a_α and takes different values for different α. The analytic structure of U^a_α is defined by the corresponding subminors of $(\delta(s_C)(t))$. Moreover, $u^a_j(t) = \tilde{\rho}_1^{a+j} - \tilde{\tau}^n_{a,j}(t)$ and $v^a_j(t) = \tilde{\mu}_2^{a+j} - \tilde{\tau}^{n,j}_{a,2}(t)$. In particular, $u^a_0(t) = v^a_0(t) = \tilde{\mu} - \tilde{\tau}(X_t)$ where $\tilde{\tau}(X_t)$ is the microlocal Tjurina number of the curve singularity X_t.

Proof. That $e^a(t)$ is constant on U^a_α and takes different values for different α is a consequence of Theorem [4.4] as is the claim about the analytic structure of each strata.

Let $t \in U^a_\alpha$ and consider for each $m \in \{n, \ldots, n+\rho\}$ the induced \mathbb{C}-base $\{m_{t \in J_m(t)} = \{m_{t \in J_m}\}$ of $\mathbb{C} \{x, y\}/(\Delta F_t, I^m_\alpha)$. Then, for each $\ell \in J_m$

$$m_\ell F_t = \sum_{j=1}^b \delta^0_j(s_{o(j)}(t)m_{\mu^{-b+j}} \text{ mod } (\Delta F_t, I^m_\alpha)$$

and

$$m_\ell H^\gamma_t = \sum_{j=1}^b \delta^\gamma_j(s_{o(j)}(t)m_{\mu^{-b+j}} \text{ mod } (\Delta F_t, I^m_\alpha)$$

for $\gamma = 1, \ldots, k-2$. Then, by definition of $\tilde{\tau}^a(t)$ and from the definition of $\{\delta^a\}$, $u^a_j(t) = \tilde{\mu}_1^{a+j} - \tilde{\tau}^n_{a,1}(t)$.

The proof of the claim about the $v^a_j(t)$ is similar with the difference that we’re now interested in the relations mod ΔF_t between the $m_\ell F_t, m_\ell H^\gamma_t$ that belong to $I^{a-1+2n-m}_a$ for each $m \in \{n, \ldots, n+\rho\}$. Note that $m_\ell F_t, m_\ell H^\gamma_t \in I^{-1+2n-m}_a$ if and only if $a_1^0, a^\gamma \in S_{m-n}$.

Lemma 5.2. If $a, b \in \mathbb{C}^B$ are such that $\text{Con}(F_a) \cong \text{Con}(F_b)$, there is $\psi : \mathbb{C} \rightarrow \mathbb{C}^B$ microlocally trivial such that $\psi(0) = a$ and $\psi(1) = b$.

Proof. Let χ_0 be a contact transformation given by α, β_0 such that $F_b = uF_a^{x_0}$ for some unit $u \in \mathbb{C}\{x, y\}$. We can assume $\deg \chi_0 > 0$. There is a relative contact transformation $\chi(t)$ over \mathbb{C} such that $\chi(0) = id_{\mathbb{C}^3}$ and $\chi(1) = \chi_0$. Then

$$G(t) = u(tx, ty)F_B^y(x, y, a)$$
is an unfolding of F_a such that $G(1) = F_b$. By versality of F_B and because F_a is semiquasihomogeneous ($j(F_a) = (F_a, j(F_a))$) there is a relative coordinate transformation

$$\Phi : \mathbb{C} \times \mathbb{C}^2 \to \mathbb{C} \times \mathbb{C}^2$$

$$(t, x, y) \mapsto (t, \Phi_1, \Phi_2)$$

and $\psi : \mathbb{C} \to \mathbb{C}^B$ such that

$$\Phi(G(t)) = F_{\psi(t)}.$$

(see Remark 1.1 and Corollary 3.3 of [?]). Now, because F_B is semiversal (hence does not contain trivial subfamilies with respect to right equivalence) $\Phi(1) (G(1)) = \Phi(1) (F_b) = F_{\psi(1)}$ implies that $\psi(1) = b$.

Theorem 5.3. Given $a, b \in \mathbb{C}^C$, $\text{Con}(F_a) \cong \text{Con}(F_b)$ if and only if a and b are in the same integral manifold of L_C.

Proof. By Theorem 3.5 we can replace C by B.

Let us first prove sufficiency. Let $C \subset A \subset B$ and S be a complex space. We say that a holomorphic map $\psi : S \to \mathbb{C}^A$ is trivial if for each $o \in S$, $\psi^* F_A$ is a trivial deformation of $\text{Def}^{f^{es, \mu}}(S, o)$. Assume $\psi : (\mathbb{C}, 0) \to \mathbb{C}^B$ is the germ of an integral curve of a vector field δ in \mathcal{L}_B. Set $q = \psi(0)$. Let $\psi : T_\varepsilon \to \mathbb{C}^B$ be the morphism induced by ψ. There are $a_0, a_1, \ldots, a_l, \alpha_0, \beta_0 \in C\{s_B\}[[x, y]]$ such that

$$\delta F_B = a_0 F_B + \sum_{j=1}^\ell a_j H^j_B + \alpha_0 \partial_x F_B + \beta_0 \partial_y F_B.$$

Set $u = 1 + \varepsilon a_0(q)$, $\alpha = \alpha(q) + \sum_{j=1}^\ell a_j(q)p^j$ and $\beta = \beta(q) + \sum_{j=1}^\ell \frac{1}{j+1} a_j(q)p^{j+1}$. By Theorem 2.17 there is $\gamma \in C\{x, y, p\}$ such that

$$(x, y, p, \varepsilon) \mapsto (x + \alpha \varepsilon, y + \beta \varepsilon, p + \gamma \varepsilon, \varepsilon)$$

defines a relative contact transformation χ over T_ε. Let $G \in \mathbb{C}\{x, y, p, \varepsilon\}$ be defined by $G(x, y, p, \varepsilon) = F_B(x + \alpha \varepsilon, y + \beta \varepsilon, q)$. Since $\psi^* F_B \equiv uG \text{ mod } (\varepsilon)$ and

$$\partial_\varepsilon \psi^* F_B \equiv \partial_\varepsilon uG \text{ mod } I_{\text{Con}(F_a)} + (\varepsilon),$$

we have that

$$\psi^* F_B \equiv uG \text{ mod } I_{\chi^e(\text{Con}(F_a))} + (\varepsilon^2).$$

Therefore, $\psi^* F_B$ is a trivial deformation of $\text{Def}^{f^{es, \mu}}(T_\varepsilon)$. Then $\psi^* F_B$ is a trivial deformation of $\text{Def}^{f^{es, \mu}}(\mathbb{C}, 0)$ (see the proof of Theorem 2.15).

Conversely, assume that there is a germ of contact transformation χ such that $(F_\chi^1) = (F_b)$. We can assume $\deg \chi_1 > 0$. If χ_1 is of type $\frac{2.10}{17}$, by Lemma 5.2 there is a trivial curve $\psi : \mathbb{C} \to \mathbb{C}^B$ such that $\psi(0) = a$ and $\psi(1) = b$. Moreover, ψ is an integral curve of the Euler vector field. Since the derivative of χ_1 leaves $\{y = p = 0\}$ invariant, we can assume by Theorem 2.18 that χ_1 is of type $\frac{2.7}{17}$. Set $\chi = \chi_{\varepsilon a_1 b_0}$. There is a curve
with polynomial coefficients \(\psi : \mathbb{C} \to \mathbb{C}^b \) such that \(F_0^x = \psi^* F_B, \psi(0) = a \) and \(\psi(1) = b \).

Let \(\Omega \) be an open set of \(\mathbb{C} \). Let \(\psi : \Omega \to \mathbb{C}^b \) be a trivial curve. Let us show that \(\psi \) is contained in an integral manifold of \(\mathcal{L}_B \). Let \(U \) be the union of the strata \(U_0 \) such that, for each \(c \in U \) the microlocal Tjurina number of \(F_0 \) equals the microlocal Tjurina number of \(F_a \). Remark that the trajectory of \(\psi \) is contained in \(U \). By Theorem 4.4 \(\mathcal{L}_B[U] \) verifies the Frobenius Theorem. Hence, it is enough to show that, for each \(t_0 \in \Omega \), there is \(\delta \in \mathcal{L}_B \) such that \(\psi'(t_0) = \delta(\psi(t_0)) \). We can assume \(t_0 = 0 \). Since \(\psi \) is trivial, there are a relative contact transformation \(\chi \) and \(u \in \mathbb{C}\{x,y,t\} \) such that \(u(x, y, 0) = 1 \) and

\[
F(x, y, \psi(t)) \equiv uF(x, y, q) \mod I_{\chi(<c_{(u,F)})}.
\]

If \(\chi \) is of type \(\text{[2.10]} \) we can assume \(\delta \) is the Euler field. Hence we can assume that \(\chi \) is of type \(\text{(2.7)} \). Therefore there are \(\ell \geq 1 \) and \(a, b, a_i \in \mathbb{C}\{x,y\}, 1 \leq i \leq \ell \), such that

\[
F(x, y, \psi(t)) = uF(x, y, q) + \sum_{\ell=1}^{k-2} a_\ell t H^\ell_{x} + abt \partial_x F_q + bt \partial_y F_q \mod (t^2).
\]

Deriving in order to \(t \) and evaluating at 0, there is \(a_0 \in \mathbb{C}\{x,y\} \) such that

\[
\sum_{(i,j) \in C_0} \psi'_{i,j}(0)x^i y^j = a_0 F_q + \sum_{\ell=1}^{k-2} a_\ell H^\ell_{x} + a \partial_x F_q + b \partial_y F_q.
\]

There are \(\delta \in L_B \) and \(\varepsilon \in \Delta_{F_B} \) such that

\[
\delta F_B = a_0 F_B + \sum_{\ell=1}^{k-2} a_\ell H^\ell_{B} + \varepsilon.
\]

Hence

\[
\sum_{(i,j) \in B_0} \psi'_{i,j}(0)x^i y^j - \delta(q) F_B = \varepsilon(q) + a \partial_x F_q + b \partial_y F_q.
\]

If \(\delta = \sum_{(i,j) \in B_0} a_{i,j} \partial s_{i,j}, a_{i,j} (\psi(0)) = \psi'_{i,j}(0) \) for each \((i,j) \in B_0 \).

\[\square\`

Theorem 5.4. (1) Let \(\varepsilon = (e_1, \ldots, e_\rho) \in \mathbb{N}^{\rho + 1} \) and let \(U_{E}^\sigma \) denote the unique stratum (assumed to be not empty) such that \(\varepsilon^\sigma(t) = \varepsilon \) for each \(t \in U_{E}^\sigma \). The geometric quotient \(U_{E}^\sigma / \mathcal{L} \) is quasifinite and of finite type over \(\mathbb{C} \). It is a coarse moduli space for the functor which associates to any complex space \(S \) the set of isomorphism classes of flat families (with section) over \(S \) of plane curve singularities with fixed semigroup \(\langle k,n \rangle \) and fixed microlocal Hilbert function \(\tau_{\pi}^\bullet \).

(2) Let \(T_{\pi_{\min}} \) be the open dense set defined by singularities with minimal microlocal Tjurina number \(\tau_{\min} \). Then the geometric quotient \(T_{\pi_{\min}} / \mathcal{L}_C \) exists and is a coarse moduli space for curves with semigroup \(\langle k,n \rangle \) and microlocal Tjurina number \(\tau_{\min} \). Moreover, \(T_{\pi_{\min}} / \mathcal{L}_C \) is locally isomorphic to an open subset of a weighted projective space.

Proof. It follows from Lemma 5.1 and Theorems 4.4 and 5.3. \[\square\]
Choosing a \(f \) is a semiuniversal equisingular microlocal deformation of \(f = y^6 + x^{13} \). Let \(Y_s \) denote the germ at the origin of \(\{ F = 0 \} \) in \(\mathbb{C}^3 \). In the previous example, \(Y_{s, 0} = \langle s_2, s_3, s_4, s_9, s_{10} \rangle = \langle s_2, s_3, s_4, s_9, s_{10}, s_{16} \rangle \). We prove that \(Y_{s, 0} = \langle s_2, s_3, s_4, s_9, s_{10}, s_{16} \rangle \) by fixing the parameter \(\alpha \). For \(\alpha = 1 \), we get \(\langle s_2, s_3, s_4, s_9, s_{10}, s_{16} \rangle = \langle s_2, s_3, s_4, s_9, s_{10}, s_{16} \rangle \), and the stratification \(\{ U^a \} \) given by fixing \(\varepsilon^a(t) = (u_0^a(t), u_1^a(t), u_2^a(t); v_0^a(t), v_1^a(t), v_2^a(t)) \) is given by

\[
U_1 = \{ t = (t_2, t_3, t_4, t_9, t_{10}, t_{16}) \in \text{Spec } \mathbb{C}[s_C] : \varepsilon^a(t) = (1, 3, 4; 1, 3, 4) \}
\]
\[
= \{ t : 9t_2^2 - 8t_2t_4 + \frac{116}{39}t_2^3 \neq 0 \}.
\]

\[
U_2 = \{ t \in \text{Spec } \mathbb{C}[s_C] : \varepsilon^a(t) = (1, 2, 3; 1, 2, 3) \}
\]
\[
= \{ t : 9t_2^2 - 8t_2t_4 + \frac{116}{39}t_2^3 = 0 \text{ and } t_3 \neq 0 \text{ or } t_3 \neq 0 \text{ or } t_4 \neq 0 \}.
\]

\[
U_3 = \{ t \in \text{Spec } \mathbb{C}[s_C] : \varepsilon^a(t) = (0, 1, 2; 0, 1, 2) \}
\]
\[
= \{ t : t_2 = t_3 = t_4 = 0 \text{ and } t_{10} \neq 0 \}.
\]

\[
U_4 = \{ t \in \text{Spec } \mathbb{C}[s_C] : \varepsilon^a(t) = (0, 1, 1; 0, 0, 0) \}
\]
\[
= \{ t : t_2 = t_3 = t_4 = t_{10} = 0 \text{ and } t_9 \neq 0 \}.
\]

\[
U_5 = \{ t \in \text{Spec } \mathbb{C}[s_C] : \varepsilon^a(t) = (0, 0, 1; 0, 0, 1) \}
\]
\[
= \{ t : t_2 = \cdots = t_{10} = 0 \text{ and } t_{16} \neq 0 \}.
\]

\[
U_6 = \{ t \in \text{Spec } \mathbb{C}[s_C] : \varepsilon^a(t) = (0, 0, 0; 0, 0, 0) \}
\]
\[
= \{ t : t_2 = \cdots = t_{16} = 0 \}.
\]

\[U_1\] is the stratum with minimal microlocal Tjurina number.

Let us present detailed calculations concerning the generators of \(L_c \). Let \(Y \) denote the germ at the origin of \(\{ F_C = 0 \} \).
The relative conormal L of Y can be parametrized by

$$
\begin{align*}
x &= -t^6, \\
y &= t^{13} + \psi_2 t^{15} + \psi_3 t^{16} + \psi_4 t^{17} + \psi_5 t^{18} + \psi_6 t^{19} + \psi_7 t^{20} + \psi_8 t^{21} + \psi_9 t^{22} + \cdots, \\
p &= -\frac{13}{6} t^7 - \frac{5}{2} \psi_2 t^9 - \frac{8}{3} \psi_3 t^{10} - \frac{17}{6} \psi_4 t^{11} - 3 \psi_5 t^{12} - \frac{19}{6} \psi_6 t^{13} - \frac{10}{3} \psi_7 t^{14} - \frac{7}{2} \psi_8 t^{15} \\
&\quad - \frac{11}{3} \psi_9 t^{16} + \cdots,
\end{align*}
$$

where $\psi_i \in (s_C)C[s_C]$ are homogeneous of degree $-i$. These are the a_i such that the polynomial in $C[t]$ given by the following SINGULAR session is zero:

```plaintext
> ring r=(0,a2,a3,a4,a5,a6,a7,a8,a9,s2,s3,s4,s9,s10,s16),(x,y,t),dp;
> poly F=y6+x13+s2*x9y2+s3*x7y3+s4*x5y4+s9*x8y3+s10*x6y4+s16*x7y4;
> subst(F,x,-t6);
-t^78+(-s2)*y^2*t^54+(s9)*y^3*t^48+(-s16)*y^4*t^42+(-s3)*y^3*t^42+(s10)*y^4*t^36+(-s4)*y^4*t^30+y^6
> subst(-t^78+(-s2)*y^2*t^54+(s9)*y^3*t^48+(-s16)*y^4*t^42+(-s3)*y^3*t^42+(s10)*y^4*t^36+(-s4)*y^4*t^30+y^6,y,t^13+a2*t^15+a3*t^16+a4*t^17+a5*t^18+a6*t^19+a7*t^20+a8*t^21+a9*t^22)
```

As we’ll see, the only ψ_1 we actually need to find the generators of L_C is

$$
\psi_2 = s_2/6.
$$
Let us calculate the vector fields generating L_C. Here, all equalities are $\text{mod } \Delta F_C$ and in the vector fields we identify, by abuse of language, the monomials and the corresponding ∂’s:

- δ_{14}:

 $$xH_2 = xp^2 \partial_x F_C = 13p^2 x^{13} + 9s_2p^2 x^9 y^2 + \cdots$$

 Notice that, as a consequence of Lemma 3.3, the monomials occurring with order bigger than $\deg(x^7 y^4)$ can be ignored in this calculation. From now on, whenever we use the symbol \cdots we mean that bigger order monomials can be ignored. Now, continuing the previous SINGULAR session:

  ```
  > poly p=(-13t7-15*a2*t9-16*a3*t10-17*a4*t11-18*a5*t12-19*a6*t13-20*a7*t14
  -21*a8*t15-22*a9*t16)/6;
  > poly X=-t6;
  > poly Y=t13+a2*t15+a3*t16+a4*t17+a5*t18+a6*t19+a7*t20+a8*t21+a9*t22;
  > p^2*X^13-(13/6)^2*X^11*Y^2;
  > poly X=-t6;
  > poly Y=t13+a2*t15+a3*t16+a4*t17+a5*t18+a6*t19+a7*t20+a8*t21+a9*t22;
  > p^2*X^13-(13/6)^2*X^11*Y^2;
  (-35*a9^2)/4*t^-110+(-293*a8*a9)/18*t^-109+(-271*a7*a9-136*a8^2)/18*t^-108+(-249*a6*a9-251*a7*a8)/18*t^-107+(-454*a5*a9-460*a6*a8-231*a7^2)/36*t^-106+(-205*a4*a9-209*a5*a8-211*a6*a7)/18*t^-105+(-183*a3*a9-188*a4*a8-191*a5*a7-96*a6^2)/18*t^-104+(-161*a2*a9-167*a3*a8-171*a4*a7-173*a5*a6)/18*t^-103+(-292*a2*a8-302*a3*a7-308*a4*a6-155*a5^2)/36*t^-102+(-131*a2*a7-135*a3*a6-137*a4*a5-117*a9)/18*t^-101+(-116*a2*a6-119*a3*a5-60*a4^2-104*a8)/18*t^-100
  +(-101*a2*a5-103*a3*a4-91*a7)/36*t^-99+(-71*a2*a4-87*a3^2-156*a6)/36*t^-98+13/6)^2\quad x^{11} y^2 + \frac{13\psi_2}{9} x^7 y^4 + \cdots
  $$

  we see that

  $$p^2 x^{13} = \left(\frac{13}{6}\right)^2 x^{11} y^2 + \frac{13\psi_2}{9} x^7 y^4 + \cdots$$

  Now, $\delta_{13}$, given by $yH_1$, which has the same order as $xH_2$ can be used to, through elementary operations, eliminate from $\delta_{14}$ the monomial $x^{11} y^2$. Thus,

  $$\delta_{14} = s_2 x^7 y^4.$$  

- $\delta_{13}$:

  $$-6.13y F_C = 2s_2 x^9 y^3 + 3s_3 x^7 y^4 + \cdots$$

  But, as

  $$H_3 = \left(\frac{13}{6}\right)^3 \cdot 13 x^9 y^3 + \cdots$$

  we see that, through elementary operations involving $\delta_{13}^3$, we can eliminate from $\delta_{13}^3$ the monomial $x^9 y^3$. Thus,

  $$\delta_{13} = 3s_3 x^7 y^4.$$  

- $\delta_{12}$:

  $$-6.13x^2 F_C = 2s_2 x^{11} y^2 + 3s_3 x^9 y^3 + 4s_4 x^7 y^4 + \cdots$$
through elementary operations involving $\delta^1_3$ and $\delta^3_0$ we can eliminate the monomials $x^{11}y^2$ and $x^9y^3$ from $\delta^0_2$ and get:

$$\delta^0_2 = (4s_4 + *s^2_2)x^7y^4, \quad * \in \mathbb{C}.$$ 

Finally, using $\delta^{14}$ to eliminate $*s^2_2x^7y^4$, we have that

$$\delta^{12} = 4s_4x^7y^4.$$

For $\delta^7$:

$$xH_1 = x\partial_x F_C = 13px^{13} + 9s_2px^9y^2 + 7s_3px^7y^3 + 5s_4px^5y^4 + 8s_9px^4y^3 + \cdots$$

and

$$px^{13} = \frac{13}{6}x^{12}y + \frac{s_2}{18}x^8y^3 + \frac{s_3}{12}x^6y^4 + \cdots$$

Remark 6.1. The reason why we can ignore in $px^{13}$ the monomials that occur after $x^6y^4$ is that

1. All monomials after $x^6y^4$, except for $x^7y^4$, can be eliminated because of Lemma 3.3 and through elementary operations involving $\delta^3_1$ and $\delta^0_6$.

2. Even $x^7y^4$ can be ignored, observing that $px^{13}$ is homogeneous of degree 7 and as such, the only variables involved in the coefficient (in $\mathbb{C}[s_C]$) of $x^7y^4$ may be $s_2$, $s_3$ or $s_4$. Now, using $\delta^{14}$, $\delta^{13}$ and $\delta^{12}$ we can eliminate, through elementary operations, the monomial $x^7y^4$ from $\delta^7$.

From

$$y\partial_x F_C = 13x^{12}y + 9s_2x^8y^3 + 7s_3x^6y^4 + 5s_4x^4y^5 + 8s_9x^7y^4 + \cdots$$

we get that

$$\frac{13}{6}x^{12}y = -\frac{3}{2}s_2x^8y^3 - \frac{7}{6}s_3x^6y^4 - \frac{5}{6}s_4x^4y^5 - \frac{8}{6}s_9x^7y^4 + \cdots$$

Reasoning as in remark 6.1 we see that $s_4x^4y^5$ can be ignored. Thus,

$$13px^{13} = 13\left((-\frac{3}{2}s_2 + \frac{s_2}{18})x^8y^3 + \left(-\frac{7}{6}s_3 + \frac{s_3}{12}\right)x^6y^4 - \frac{8}{6}s_9x^7y^4 + \cdots\right)$$

Now,

$$px^9y^2 = \frac{13}{6}x^8y^3 + \cdots$$

$$px^7y^3 = \frac{13}{6}x^6y^4 + \cdots$$

$$px^8y^3 = \frac{13}{6}x^7y^4 + \cdots$$
Once again, the monomials ignored can be eliminated, reasoning as in Remark 6.1. So,

\[ xH_1 = \left( 13 \left( -\frac{3}{2}s_2 + \frac{s_9}{18} \right) + 9 \frac{13}{6}s_2 \right)x^8y^3 + \left( 13 \left( -\frac{7}{6}s_3 + \frac{s_9}{12} \right) + 7 \frac{13}{6}s_3 \right)x^6y^4 + \]
\[ + \left( -\frac{13}{6}s_9 + 8 \frac{13}{6}s_9 \right)x^7y^4 \]
\[ = \frac{13}{18}s_2x^8y^3 + \frac{13}{12}s_3x^6y^4. \]

We get that

\[ \delta^7 = \frac{s_2}{3}x^8y^3 + \frac{s_3}{2}x^6y^4. \]

• \( \delta^6 \):

\[-6.13xF_C = 2s_2x^{10}y^2 + 3s_3x^8y^3 + 4s_4x^6y^4 + 9s_6x^4y^5 + 10s_{10}x^7y^4 + \cdots \]

Because (monomials ignored as in Remark 6.1)

\[ H_2 = p^2\partial_x F_C = 13p^2x^{12} + 9s_2p^2x^8y^2 + \cdots, \]
\[ p^2x^{12} = \left( \frac{13}{6} \right)^2x^{10}y^2 + \frac{13}{6}9s_2x^6y^4 + \cdots, \]

and

\[ p^2x^8y^2 = \left( \frac{13}{6} \right)^2x^6y^4 + \cdots \]

we get

\[-6.13xF_C - 2s_2 \left( \frac{6}{13} \right)^2 \frac{H_2}{13} = \]
\[ = 3s_3x^8y^3 + \left( 4s_4 - 2s_2 \left( \frac{6}{13} \right)^2 \frac{13}{6}9s_2 - 2s_2 \left( \frac{6}{13} \right)^2 \left( \frac{9}{13} \right)^2s_2 \right)x^6y^4 + 10s_{10}x^7y^4 = \]
\[ = 3s_3x^8y^3 + \left( 4s_4 - \frac{58}{39}s_2 \right)x^6y^4 + 10s_{10}x^7y^4. \]

So,

\[ \delta^6 = 3s_3x^8y^3 + \left( 4s_4 - \frac{58}{39}s_2 \right)x^6y^4 + 10s_{10}x^7y^4. \]

REFERENCES

[1] A. Araújo and O. Neto, Moduli of Germs of Legendrian Curves, Ann. Fac. Sci. Toulouse Math., Vol. XVIII, 4, (2009), 645–657.
[2] J. Cabral and O. Neto, Microlocal versal deformations of the plane curves \( y^k = x^n \), C. R. Acad. Sci. Paris, Ser. I 347, (2009), 1409–1414.
[3] W. Decker, G.-M. Greuel, G. Pfister, H. Schönenmann: SINGULAR 4-0-2 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2015).
[4] G. M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer, (2007).
[5] G.-M. Greuel and G. Pfister, *Moduli for Singularities*, in Singularities, J.-P. Brasselet, London Mathematical Society Lecture Note Series, vol 20, (1994), 119–146.

[6] G.-M. Greuel and G. Pfister, *Geometric Quotients of Unipotent Group Actions*, Proceedings of the London Mathematical Society, s3-67: 75?105. doi:10.1112/plms/s3-67.1.75

[7] R. Hartshorne, *Algebraic Geometry*, Springer Verlag.

[8] O. A. Laudal and G. Pfister *Local Moduli and Singularities*, Lecture Notes in Math., Vol. 1310 (1988).

[9] A. R. Martins, M. S. Mendes, O. Neto, *Equisingular Deformations of Legendrian Curves*, arXiv.

[10] A. R. Martins and O. Neto, *On the group of germs of contact transformations*, Portugaliae Mathematica, vol. 72, no. 4, 2015, p. 393–406.

[11] M. S. Mendes and O. Neto, *Deformations of Legendrian Curves*, arXiv:1607.02873.

[12] O. Neto, *Equisingularity and Legendrian Curves*, Bull. London Math. Soc. 33, no. 5, (2001), 527–534.

[13] O. Zariski, *The Moduli Problem for Plane Branches*, American Mathematical Society, (2006).