Characterisation and protein expression profiling of annexins in colorectal cancer

R Duncan¹, B Carpenter², LC Main¹, C Telfer² and GI Murray*¹

¹Department of Pathology, University of Aberdeen, Aberdeen, UK; ²Auvation Ltd, Cambric Lodge, Aberdeen Science Park, Balgownie Drive, Aberdeen, UK

The annexins are family of calcium-regulated phospholipid-binding proteins with diverse roles in cell biology. Individual annexins have been implicated in tumour development and progression, and in this investigation a range of annexins have been studied in colorectal cancer. Annexins A1, A2, A4 and A11 were identified by comparative proteomic analysis to be overexpressed in colorectal cancer. Annexins A1, A2, A4 and A11 were further studied by immunohistochemistry with a colorectal cancer tissue microarray containing primary and metastatic colorectal cancer and also normal colon. There was significant increase in expression in annexins A1 (P = 0.01), A2 (P < 0.001), A4 (P < 0.001) and A11 (P < 0.001) in primary tumours compared with normal colon. There was increasing expression of annexins A2 (P = 0.001), A4 (P = 0.03) and A11 (P = 0.006) with increasing tumour stage. An annexin expression profile was identified by k-means cluster analysis, and the annexin profile was associated with tumour stage (P = 0.01) and also patient survival. Patients in annexin cluster group 1 (low annexin expression) had a better survival (log rank = 5.33, P = 0.02) than patients in cluster group 2 (high annexins A4 and A11 expression). In conclusion, this study has shown that individual annexins are present in colorectal cancer, specific annexins are overexpressed in colorectal cancer and the annexin expression profile is associated with survival.

British Journal of Cancer (2008) 98, 426 – 433. doi:10.1038/sj.bjc.6604128 www.bjcancer.com

Published online 11 December 2007
© 2008 Cancer Research UK

Keywords: annexin; immunohistochemistry; proteomics; prognosis; tissue microarray

All annexins share an ability to bind to negatively charged phospholipid membranes in a calcium-dependent manner. This property is found within the annexin core motif where the calcium- and membrane-binding sites are located. Annexins bind to the cytosolic surface of the plasma membrane and to organelle membranes such as the Golgi apparatus. This binding can be reversed by the removal of calcium, freeing the annexin from the phospholipid membrane. However, the functional significance of their reversible membrane-binding ability remains unknown in many annexins, although in some it is thought to be important for vesicle aggregation and membrane organisation (Liemann and Huber, 1997; Rand, 2000; Hayes and Moss, 2004; Rescher and Gerke, 2004; Lim and Pervaiz, 2007). Although all annexins share this binding property, there is variation in calcium sensitivity and phospholipid specificity between individual annexins. For example, within one cell there can be differences in the distribution of annexins, with annexin A1 having an endosomal localisation, A2 to be found in cytosol and A4 being associated with the plasma membrane (Liemann and Huber, 1997).

Some annexins are capable of calcium-independent binding and several have roles in vesicle aggregation. Annexins A1, A2 and A11 function in cooperation with other calcium-binding proteins to form complexes while annexins A1, A2 and A5 interact with cytoskeletal proteins. Many annexins are involved in exocytic and endocytic pathways and some have roles in ion channel regulation (Gerke and Moss, 2003). Extracellularly, annexin A1 has a role in controlling the inflammatory response while annexin A2 is present on the external surface of endothelial cells, where it may act as a receptor for ligands, including plasminogen and tissue plasminogen.
Annexins and colorectal cancer
R. Duncan et al.

MATERIALS AND METHODS

Proteomics

Two-dimensional gel electrophoresis and matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) on normal colon and colorectal cancer were performed as previously described (Lawrie et al., 2004; Dundas et al., 2005; Coglin et al., 2006). Proteins were solubilised from Dukes C adenocarcinoma tissue samples and patient-matched morphologically normal colorectal mucosa. The annexins A1, A2, A4 and A11 were identified as four such cancer, compared with morphologically normal colorectal mucosa (Zimmermann et al., 2004b), prostate adenocarcinoma (Patton et al., 2005), breast cancer (Shen et al., 2006) and B-cell non-Hodgkin’s lymphoma (Vishwanatha et al., 2004).

Other annexins have also been implicated in tumorigenesis. Overexpression of annexin A2 has been found in renal cell cancer, where it is associated with tumour stage (Zimmermann et al., 2004a), invasive breast cancer (Sharma et al., 2006) and sarcomas, including both soft tissue sarcomas (Sayed et al., 2007) and osteosarcomas (Gillette et al., 2004). There is increased expression of annexin A4 in renal clear cell carcinoma (Zimmermann et al., 2004b). In prostate cancer, decreased expression of annexin A4 has been shown to correlate with worsen pathological stage (Xin et al., 2003), and loss of annexin A7 has been associated with metastatic and local recurrences of hormone refractory prostate cancer (Srivastava et al., 2001).

However, the annexins have received no significant study in colorectal cancer and in this study we used comparative proteomic analysis to identify proteins that are overexpressed in colorectal cancer, compared with morphologically normal colorectal mucosa. The annexins A1, A2, A4 and A11 were identified as four such proteins. In order to further define the roles played by these proteins in colorectal neoplasia, their expression and cellular localisation was studied by immunohistochemistry in a large series of colorectal cancers represented within a colorectal cancer tissue microarray.

Table 1 Clinicopathological data of the patients in this study

Characteristic	Number (%)	
Gender		
Male	135 (50.4%)	
Female	133 (49.6%)	
Age (years)		
Mean	68	
Range	33–92	
<70	127 (47.4%)	
>70	141 (52.6%)	
Dukes stage		
A	53 (19.8%)	
B	104 (38.8%)	
C	111 (41.4%)	
Tumour site		
Proximal colon	95 (35.4%)	
Distal colon	97 (36.2%)	
Rectum	76 (28.4%)	
Tumour differentiation		
Well	10 (3.7%)	
Moderate	228 (85.1%)	
Poor	30 (11.2%)	
Department of Pathology, University of Aberdeen for diagnosis. The tumour excision specimens were fixed in formalin, representative blocks were embedded in wax and sections were stained with haematoxylin and eosin. Permission for this study was obtained from the Grampian Research Ethics Committee.

A colorectal cancer tissue microarray was constructed as described (Dundas et al, 2005; Kumarakulasingham et al, 2005). The tumours within the array were representative of the distribution of anatomical locations and the Dukes stages found in colorectal cancers within this population. The tissue microarray contained primary colorectal cancer (Dukes A = 53, Dukes B = 104 and Dukes C = 111). In addition, it contained lymph node metastases and morphologically normal colonic mucosal samples. The lymph node metastases were from the corresponding Dukes C cases (n = 111). Each normal sample (n = 52) was acquired from at least 10 cm distant from the tumour as previously described (Kumarakulasingham et al, 2005). Using a steel Menghini needle, a representative 1.6 mm core of tissue was taken from each donor block and arrayed into the recipient wax block. In order to check the histopathological diagnosis and the adequacy of tissue sampling, a section from each microarray was stained with haematoxylin and eosin and examined by light microscopy.

Immunohistochemistry

Annexin immunohistochemistry was carried out using a Dako autostainer (Dako, Ely, UK) as previously described (Dundas et al, 2005; Coghlin et al, 2006). Sections (4 μm) of the tissue microarray were dewaxed, rehydrated and an antigen retrieval step performed when required. The antigen retrieval step consisted of microwave heating the sections in 0.01 M citrate buffer at pH 6.0 for 20 min in an 800 W microwave oven operated at full power. The sections were then allowed to cool to room temperature. Primary antibody was appropriately diluted (Table 2) in antibody diluent (Dako) was applied for 60 min at room temperature, washed with buffer (Dako) followed by peroxidase blocking for 5 min (Dako), followed by a single 2-min buffer wash. Prediluted peroxidase polymer-labelled goat anti-mouse/rabbit secondary antibody (Envision™, Dako) was applied for 30 min at room temperature, followed by further washing with buffer to remove unbound antibody. Sites of peroxidase activity were then demonstrated with dianinobenzidine as the chromogen applied for three successive 5 min periods. Finally, sections were washed in water, lightly counterstained with haematoxylin, dehydrated and mounted. Omitting the primary antibody from the immunohistochemical procedure and replacing it with antibody diluent or non-immune rabbit serum served as negative controls.

The sections were evaluated by light microscopic examination, and cellular localisation and intensity (negative = 0, weak = 1, moderate = 2, strong = 3) of immunostaining in each section were assessed by two observers (RD and GIM).

Table 2 Details of annexin antibodies used in this study

Antibody	Source	Type	Antigen retrieval	Dilution
Annexin A1	BD Bioscience	Monoclonal	Yes	1/100
Annexin A2	BD Bioscience	Monoclonal	Yes	1/100
Annexin A4	Own laboratory	Polyclonal	Yes	1/500
Annexin A7	BD Bioscience	Monoclonal	Yes	1/100
Annexin A11	BD Bioscience	Monoclonal	Yes	1/400

RESULTS

Proteomics

Comparative proteomic analysis using two-dimensional gel electrophoresis identified certain protein spots that were represented in the colorectal cancer samples but not in the normal colorectal mucosal samples (Figure 1). Protein spots of interest were digested and the masses of the tryptic fragments were determined using MALDI-TOF MS. These masses were entered into MS-Fit, which identified annexins A1, A2, A4 and A11 with a high degree of significance. The MOWSE score (a measure of the identity of the protein) for annexin A1 was 1.68e+003, annexin A2 was 6.53e+005, annexin A4 was 1.52e+008 and annexin A11 was 6.67e+005.

Immunohistochemistry

Primary colorectal cancer The annexins with the exception of annexin A7 showed increased immunostaining in primary tumours in comparison to normal colon (Figures 2 and 3). Weak staining was seen for all annexins varying from 0.4 to 25.9% of tumours. Moderate and strong tumour cell staining was seen in the

Mann–Whitney U-test. The chi-square (χ²) test was used to compare annexin expression with tumour stage while the annexin expression profile was determined by k-means cluster analysis. The relationship of patient survival and annexin expression was determined using the method of Kaplan–Meier and the log-rank test. Cox-multivariate analysis was used to determine the relative significance of individual clinicopathological factors, annexin expression and patient survival. All the statistical analyses were performed using SPSS v15 for Windows XP™ (SPSS UK Ltd, Woking, UK).

Figure 1 Two-dimensional gels of (A) colorectal cancer and (B) normal colon mucosa. The circles labelled A1, A2, A4 and A11 correspond to the protein spots annexins A1, A2, A4 and A11, respectively (Coomassie blue-stained two-dimensional electrophoresis gel).
Figure 2 The immunohistochemical localisation of annexins in normal colon and colorectal cancer. Normal colon (A, C, E, G and I) and colorectal cancer (B, D, F, H and J). Annexin A1 (A and B), annexin A2 (C and D), annexin A4 (E and F), annexin A7 (G and H) and annexin A11 (I and J).
Annexins A1, A2, A4 and A11. More tumours showed strong staining for A1, A2 and A4 than showed moderate staining. The highest percentage of strong staining was seen in annexin A4, with 64.9% of tumours showing strong staining. However, for annexin A11, moderate staining was observed in 33.3% of tumours compared to 31.1% of tumours that showed strong staining (Figures 2 and 3). There was significant increase in expression in annexins A1 ($P = 0.01$), A2 ($P < 0.001$), A4 ($P < 0.001$) and A11 ($P < 0.001$) in primary tumours compared with normal colon (Figure 3). There was increased expression of annexins A2, A4 and A11 with increasing tumour stage (Table 3).

Lymph node metastasis The annexins except annexin A7 showed immunoreactivity in lymph node metastasis. Annexins A2 and A11 showed the greatest percentage of weak staining at 20.7 and 29%, respectively, with less tumours showing moderate and strong staining for these annexins. As in normal and primary tumours, annexin A4 showed the greatest percentage of strong staining at 62.3% of tumours. Comparing the expression of annexins in lymph node metastasis with the corresponding primary tumours showed that there was a significant decrease in expression of annexin A11 ($P = 0.01$) in lymph node metastasis compared with corresponding primary colorectal cancers (Figure 4).

Annexin expression profile and clinicopathological factors

To further dissect the role of annexin expression in colorectal cancer, the annexin expression profile was determined. To identify the relationship of the overall annexin profile within tumours, k-means cluster analysis was performed and this identified four clusters or groups with distinct annexin profiles (Table 4). The annexin profile was associated with Dukes stage ($\chi^2 = 16.76$, $P = 0.01$). The annexin expression profile was also associated with survival. Patients in annexin cluster group 1 (low annexin expression) had a better survival (log rank $= 5.33$, $P = 0.02$; Figure 5) than patients in cluster group 2 (high annexin A4 and A11 expression). The mean survival in group 1 was 96 months (95% CI: 80 – 113 months) and in group 2 was 72 months (95% CI: 62 – 82 months). However, there was no relationship between the expression of individual annexins and patient survival and also the annexin profile was not an independent marker of prognosis following multivariate analysis.

DISCUSSION

The annexins are a multigene family of calcium-dependent phospholipid-binding proteins (Gerke and Moss, 2003; Hayes and Moss, 2004; Gerke et al, 2005). There are 12 human annexins each of which shows a cell- and tissue-type-specific pattern of expression. Some of the annexins have been well characterised while less is known about the biology of some of the other

Table 3 The relationship of annexin expression and tumour (Dukes) stage

Annexin	χ^2	P-value	Interpretation
A1	5.48	0.484	There is no relationship of annexin A1 expression and tumour stage
A2	23.6	0.001	There is increased expression of annexin A2 with increasing tumour stage
A4	7.1	0.029	There is increased expression of annexin A4 with increasing tumour stage
A7	NA	NA	NA
A11	10.2	0.006	There is increased expression of annexin A11 with increasing tumour stage

NA, not available. The expression of individual annexins as determined by immunohistochemistry in each tumour stage (Dukes A vs Dukes B vs Dukes C) was compared to assess the trend in annexin expression (i.e., increase, decrease, no change) with advancing tumour stage.
Annexins and colorectal cancer

R Duncan et al

Annexins and colorectal cancer (Falini et al, 2004). In oesophageal adenocarcinoma, the tumour cell expression of annexin A1 has been associated with poor prognosis (Wang et al, 2006). Furthermore, annexin A1 has been found to be overexpressed in immortalised colorectal cell lines (Guzman-Aranguez et al, 2005). This annexin has also a potential role in tumour invasion and metastasis, as inhibition of annexin A1 using siRNA resulted in a significant reduction of cell invasion using an in vitro assay on an immortalised colorectal cancer cell line (Babbini et al, 2006).

Annexin A2 shows increased expression in several type of cancer, including renal cell cancer (Zimmermann et al, 2004a), breast cancer (Sharma et al, 2006) and sarcomas (Gillette et al, 2004; Syed et al, 2007), and there are several possible mechanisms by which annexin A2 may be involved in tumour progression. Annexin A2 interacts with tissue-type plasminogen activator and disruption of this interaction resulted in decreased tumour cell invasion (Rand, 2000; Diaz et al, 2004; Sharma et al, 2006). Annexin A2 is also known to form a complex with cathepsin B that can initiate proteolytic cascades and degrade extracellular matrix proteins. These functions may enhance tumour cell detachment, invasion and motility and thus promote tumour invasion and metastasis (Mai et al, 2000). Cell-surface annexin A2 also acts as a receptor for tenasin C, a key extracellular matrix protein involved in epithelial–stromal interactions, and increased annexin A2 expression is associated with progression in pancreatic neoplasia from pancreatic intraepithelial neoplasia through to invasive pancreatic carcinoma (Esposito et al, 2006). Recently, it has also been shown that the production of matrix metalloproteinase 1, a key enzyme promoting colorectal cancer invasion (Murray et al, 1996), can be mediated by annexin A2. Inhibition of annexin A2 was associated with loss of production of this matrix-degrading enzyme (Zhang et al, 2007).

Renal clear cell carcinoma also shows overexpression of annexin A4 and this seems to be related to the metastatic potential of this type of tumour (Zimmermann et al, 2004b). Annexin A4 has a distinct subcellular localisation in tumour cells and this was linked to loss of cell-to-cell adhesion and increased tumour cell dissemination (Zimmermann et al, 2004b). Additionally, it has been demonstrated that overexpressed annexin A4 promotes cell migration in a model tumour system (Zimmermann et al, 2004b), which correlates with our observation that annexin A4 expression increased as tumour stage progressed, such findings are indicative that annexin A4 is implicated in tumour spread. Annexin A4 is known to form complexes with protein kinase C, and there are 10 isoforms of protein kinase C that have roles in cancer progression (metastasis) and some of these isoforms have been shown to be overexpressed in colorectal cancer (Gokmen-Polar et al, 2001). It could be through association with protein kinase C isoforms that annexin A4 has an effect on the pathogenesis of colorectal cancer. Annexin A4 has also been shown to be overexpressed in a paclitaxel-resistant cell line and, moreover, overexpression of annexin A4 in this cell line resulted in a four-fold increase in paclitaxel resistance also indicating a role for annexins in anticancer drug resistance (Han et al, 2000).

Annexin A11 was overexpressed in colorectal cancer and increased expression correlated with more advanced tumour stage. Annexin A11 is implicated as being involved in cell growth (Farnaes and Ditzel, 2003) and a reduction in annexin A11 expression using RNAi stops cell division (Tomas et al, 2004). However, annexin A11 expression was decreased in metastasis, suggesting further dysregulation of this protein with tumour progression and possibly indicating that the tumour microenvironment plays a role in regulating annexin A11, although the specific mechanisms regulating this annexin remain to be elucidated.

Annexin A7 expression was not detected in either normal colon or colorectal cancer, whereas annexin A7 has been proposed as a putative tumour suppressor gene in prostate cancer (Srivastava et al, 2001) and that high expression of annexin A7 is associated
with poor prognosis in breast cancer (Srivastava et al., 2004), thus providing further evidence that there is tumour-type-specific regulation and expression of individual annexins.

In conclusion, this study has shown that annexins A1, A2, A4 and A11 are significantly overexpressed in colorectal cancer and that the overexpression of annexins A2, A4 and A11 showed a significant correlation with increasing tumour stage. The overall expression profile of annexins was associated with survival in colorectal cancer, indicating collectively that annexin expression may contribute to outcome and this would be consistent with the putative roles of annexins in some of the cellular processes that led to tumour invasion. These annexins may also represent tumour biomarkers and potential therapeutic targets (Oh et al., 2004; Falsey et al., 2006; Wozney et al., 2007).

REFERENCES

Babbin BA, Lee WY, Parkos CA, Winfree LM, Akyildiz A, Peretti M, Nusrat A (2006) Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors. J Biol Chem 281: 19588–19599

Bai XF, Ni XG, Zhao P, Liu SM, Wang HX, Guo B, Zhou LP, Liu F, Zhang JS, Wang K, Xie YQ, Shao YF, Zhao XH (2004) Overexpression of annexin V in pancreatic cancer and its clinical significance. World J Gastroenterol 10: 1466–1470

Coghlin C, Carpenter B, Dundas SR, Lawrie LC, Telfer C, Murray GI (2006) Characterisation and over-expression of chaperonin T-complex proteins in colorectal cancer. J Pathol 208: 351–357

Diaz YM, Hurtado M, Thomas TM, Reventos J, Pacucci R (2004) Specific interaction of tissue-type plasminogen activator (t-PA) with annexin II on the membrane of pancreatic cancer cells activates plasminogen and promotes invasion in vitro. Gut 53: 993–1000

Dundas SR, Lawrie LC, Rooney PH, Murray GI (2005) Mortalin is overexpressed by colorectal cancer and correlates with poor survival. J Pathol 205: 74–81

Emoto K, Yamada Y, Sawada H, Fujimoto H, Ueno M, Takayama T, Kamada K, Naito A, Hirao S, Nakajima Y (2001) Annexin II over-expression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92: 1419–1426

Esposito I, Penzel R, Chaub-Harrirche M, Barcena U, Bergmann F, Riedl S, Kayed H, Giese N, Kleeff J, Fries H, Schirmacher P (2006) Tenascin C and annexin II expression in the process of pancreatic carcinogenesis. J Pathol 208: 673–685

Falini C, Biaccia E, Liso A, Basso K, Sabattini et al, Falini B, Tiacci E, Liso A, Basso K, Sabattini E, Pacini R, Foa R, Pulsoni A, Esposito I, Penzel R, Chaib-Harrireche M, Barcena U, Bergmann F, Lonsberry V, He J, Bose S, Chia D, Seligson D, Chang HR, Goodgluck L (2006) Decreased expression of annexin A1 is correlated with breast cancer development and progression as determined by a tissue microarray analysis. Hum Pathol 37: 1583–1591

Gasser TC, Kononen J, Sauter G, Kallioniemi OP, Srivastava S, Pollard HB (2004) Prognostic impact of ANX7-GTPase in metastatic and HER2-negative breast cancer. Clin Cancer Res 10: 1466–156

Kumarakulasingham M, Rooney PH, Dundas SR, Telfer C, Melvin WT, Curran S, Murray GI (2005) Cytochrome P450 profile of colorectal cancer: identification of markers of prognosis. Clin Cancer Res 11: 3759–3764

Lawrie LC, Dundas SR, Curran S, Murray GI (2004) Liver fatty acid binding protein expression in colorectal neoplasia. Br J Cancer 90: 1593–1596

Leicht FM, Lerner JH, Eisenhauer EA, Bell DW, Sargent DL, Bast RC Jr, Baselga J, D Miller, C Demetri, Keefe D (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429: 629–635

Paton KT, Chen HM, Joseph L, Yang XJ (2005) Decreased annexin I expression in prostatic adenocarcinoma and in high-grade prostatic intraepithelial neoplasia. Histopathology 47: 597–601

Pawelcetz CP, Ornstein DK, Roth MJ, Bichsel VE, Gillespie JW, Calvert VS, Vocke CD, Hewitt SM, Duray PH, Herring J, Wang QH, Xu N, Lineman WG, Taylor PR, Liotta LA, Emmert-Buck MR, Petricoin EF (2000) Loss of annexin I correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res 60: 6293–6297

Rand JH (2000) The annexinopathies: a new category of diseases. Biochim Biophys Acta 1498: 169–173

Rescher U, Gerke V (2004) Annexins – unique membrane binding proteins with diverse functions. J Cell Sci 117: 2631–2639

Roda O, Chiva C, Espuna G, Gabius HJ, Real FX, Navarro P, Andreu D (2006) A proteomic approach to the identification of new tPA receptors in pancreatic cancer cells. Proteomics 6(Suppl 1): S36–S41

Sharma MR, Koltowsi L, Ownby RT, Tuszynski GP, Sharma MC (2006) Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 81: 146–156

Shen D, Nsoara F, Elshimali Y, Lonsberry V, He J, Bose S, Chia D, Seligson D, Chang HR, Goodgluck L (2006) Decreased expression of annexin A1 is correlated with breast cancer progression and progression as determined by a tissue microarray analysis. Hum Pathol 37: 1583–1591

Srivastava M, Budendorf L, Raffeld M, Bucher C, Torhorst J, Sauter G, Olsén C, Kallioniemi OP, Eidelberg O, Pollard HB (2004) Prognostic impact of ANX7-GTPase in metastatic and HER2-negative breast cancer patients. Clin Cancer Res 10: 2344–2350

Srivastava M, Budendorf L, Srikantan V, Fossom L, Nolan L, Glasman M, Leighton X, Fehrle W, Pittaluga S, Raffeld M, Koivisto P, Willi N, Gasser TC, Kononen J, Sauter G, Kallioniemi OP, Srivastava S, Pollard

ACOLKNOWLEDGEMENTS

This research was supported by grants from Knowledge Transfer Partnership, Scottish Hospital Endowments Research Trust and the University of Aberdeen Development Trust. The technical assistance of Ms Joan Aitken and Mrs Nicky Fyfe is gratefully acknowledged.

Conflict of interest

GIM and CT are named inventors on a patent application made by the University of Aberdeen and Auvation Ltd to exploit the overexpression in colorectal cancer of proteins, including annexin A4, as diagnostic markers and therapeutic targets.
HB (2001) ANX7, a candidate tumor suppressor gene for prostate cancer. *Proc Natl Acad Sci USA* 98: 4575–4580
Syed SP, Martin AM, Haupt HM, Arenas-Elliot CP, Brooks JJ (2007) Angiostatin receptor annexin II in vascular tumors including angiosarcoma. *Hum Pathol* 38: 508–513
Tomas A, Futter C, Moss SE (2007) Annexin 11 is required for midbody formation and completion of the terminal phase of cytokinesis. *J Cell Biol* 165: 813–822
Vishwanatha JK, Salazar E, Gopalakrishnan VK (2004) Absence of annexin 1 expression in B-cell non-Hodgkin’s lymphomas and cell lines. *BMC Cancer* 4: 8
Wang KL, Wu TT, Resetkova E, Wang H, Correa AM, Hofstetter WL, Swisher SG, Ajani JA, Rashid A, Hamilton SR, Albarracin CT (2006) Expression of annexin A1 in esophageal and esophagogastric junction adenocarcinomas: association with poor outcome. *Clin Cancer Res* 12: 4598–4604
Wozny W, Schroer K, Schwall GP, Poznanovic S, Stegmann W, Dietz K, Rogatsch H, Schaefer G, Huebl H, Klocker H, Schrattenholz A, Cahill MA (2007) Differential radioactive quantification of protein abundance ratios between benign and malignant prostate tissues: cancer association of annexin A5. *Proteomics* 7: 313–322
Xin W, Rhodes DR, Ingold C, Chinnaiyan AM, Rubin MA (2003) Dysregulation of the annexin family protein family is associated with prostate cancer progression. *Am J Pathol* 162: 255–261
Zimmermann U, Woenckhaus C, Pietschmann S, Junker H, Maile S, Schultz K, Protzel C, Giebel J (2004a) Expression of annexin II in conventional renal cell carcinoma is correlated with Fuhrman grade and clinical outcome. *Virchows Arch* 445: 368–374
Zimmermann U, Balabanov S, Giebel J, Teller S, Junker H, Schmoll D, Protzel C, Scharf C, Klein B, Walther R (2004b) Increased expression and altered location of annexin IV in renal clear cell carcinoma: a possible role in tumour dissemination. *Cancer Lett* 209: 111–118
Zimmermann U, Woenckhaus C, Teller S, Venz S, Langheinrich M, Protzel C, Maile S, Junker H, Giebel J (2007) Expression of annexin A1 in conventional renal cell carcinoma (CRCC) correlates with tumour stage, Fuhrman grade, amount of eosinophilic cells and clinical outcome. *Histol Histopathol* 22: 527–534
Zhang Y, Zhou ZH, Bugge TH, Wahl LM (2007) Urokinase-type plasminogen activator stimulation of monocyte matrix metalloproteinase-1 production is mediated by plasmin-dependent signaling through annexin A2 and inhibited by inactive plasmin. *J Immunol* 179: 3297–3304