Space electric field concentrated effect for Zr:SiO₂ RRAM devices using porous SiO₂ buffer layer

Kuan-Chang Chang¹, Jen-wei Huang²*, Ting-Chang Chang³⁴ *, Tsung-Ming Tsai¹, Kai-Huang Chen⁵, Tai-Fa Young⁶, Jung-Hui Chen⁷, Rui Zhang⁸, Jen-Chung Lou⁸, Syuan-Yong Huang¹, Yin-Chih Pan¹, Hui-Chun Huang¹, Yong-En Syu³, Der-Shin Gan¹, Ding-Hua Bao⁹ and Simon M Sze¹⁰

Abstract

To improve the operation current lowering of the Zr:SiO₂ RRAM devices, a space electric field concentrated effect established by the porous SiO₂ buffer layer was investigated and found in this study. The resistive switching properties of the low-resistance state (LRS) and high-resistance state (HRS) in resistive random access memory (RRAM) devices for the single-layer Zr:SiO₂ and bilayer Zr:SiO₂/porous SiO₂ thin films were analyzed and discussed. In addition, the original space charge limited current (SCLC) conduction mechanism in LRS and HRS of the RRAM devices using bilayer Zr:SiO₂/porous SiO₂ thin films was found. Finally, a space electric field concentrated effect in the bilayer Zr:SiO₂/porous SiO₂ RRAM devices was also explained and verified by the COMSOL Multiphysics simulation model.

Keywords: RRAM; Porous SiO₂; Space charge limited current; Zr

Background

Recently, various non-volatile random access memory (NvRAM) such as magnetic random access memory (MRAM), ferroelectric random access memory (FeRAM), phase change memory (PCM), and resistive random access memory (RRAM) were widely investigated and discussed for applications in portable electronic products which consisted of low power consumption IC [1], non-volatile memory [2-6], and TFT LCD display [7-10]. To overcome the technical and physical limitation issues of conventional charge storage-based memories [11-18], the resistive random access memory (RRAM) device which consisted of the oxide-based layer sandwiched by two electrodes was a great potential candidate for the next-generation non-volatile memory because of its superior properties such as low cost, simple structure, fast operation speed, low operation power, and non-destructive readout properties [19-42].

In our previous report, the resistive switching stability and reliability of RRAM device can be improved using a high/low permittivity bilayer structure [43]. Because the permittivity of porous SiO₂ film is lower than that of SiO₂ film, the zirconium metal doped into SiO₂ (Zr: SiO₂) thin film fabricated by co-sputtering technology and the porous SiO₂ buffer layer prepared by inductively coupled plasma (ICP) treatment were executed to form Zr:SiO₂/porous SiO₂ RRAM devices in this study. In addition, the resistive switching behaviors of the Zr:SiO₂ RRAM devices using the bilayer structure were improved and investigated by a space electric field concentrated effect.

Methods

To generate a space electric field concentrated effect in RRAM devices, the porous SiO₂ buffer layer in the bilayer Zr:SiO₂/porous SiO₂ structure was proposed. The patterned TiN/Ti/SiO₂/Si substrate was obtained by standard deposition and etching process; after which, 1 μm x 1 μm via holes were formed. After that, the C: SiO₂ film was prepared by co-depositing with the pure SiO₂ and carbon targets, and the porous SiO₂ thin film (about 6 nm) was formed by ICP O₂ plasma technology. Then, the Zr:SiO₂ thin film (about 20 nm) was deposited on the porous SiO₂ thin film by co-sputtering with the pure SiO₂ and zirconium targets. The sputtering power...
was fixed with rf power 200 W and direct current (DC) power 10 W for silicon dioxide and zirconium targets, respectively. A Pt electrode of 200-nm thickness was deposited on all samples by DC magnetron sputtering. Finally, all electrical devices were fabricated through lithography and lift-off techniques. Besides, the Fourier transform infrared spectroscopy (FTIR) was used to analyze the chemical composition and bonding of the ZrSiO$_2$ thin films, and the entire electrical measurements of devices with the Pt electrode were performed using Agilent B1500 semiconductor parameter analyzer (Santa Clara, CA, USA).

Results and discussion

To verify the porous SiO$_2$ layer generated and formed, the FTIR spectra of the non-treated and treated C:SiO$_2$ thin film prepared by the oxygen plasma treatment was compared and showed in Figure 1. It was clearly observed that the absorption of anti-symmetric stretch mode of Si-O-Si bonding was at 1,064 cm$^{-1}$ in the non-treated and treated C:SiO$_2$ thin film by oxygen plasma treatment. In addition, the C=C bonding at 2,367 cm$^{-1}$, C:SiO$_2$ coupling OH bonding at 3,656 cm$^{-1}$, C-O bonding, and C-C bonding from 1,250 to 1,740 cm$^{-1}$ were found. This result implicated that the porous SiO$_2$ thin film was formed by the chemical reaction between carbon and oxygen plasma treatment.

The forming process for the compliance current of 1 μA was required to activate all of the single-layer Zr:SiO$_2$ and bilayer Zr:SiO$_2$/porous SiO$_2$ thin film RRAM devices. For Zr:SiO$_2$ RRAM devices, the sweeping voltage was applied on TiN electrode with the grounded Pt electrode. Figure 2 shows the resistive switching characteristics of the single-layer Zr:SiO$_2$ and the bilayer Zr:SiO$_2$/porous SiO$_2$ RRAM devices, respectively.

In order to further discuss the resistive switching mechanism in single-layer Zr:SiO$_2$ and bilayer Zr:SiO$_2$/porous SiO$_2$ RRAM devices, the conduction mechanism of current–voltage ($I-V$) curves in LRS and HRS were analyzed to discuss the carrier transport in the switching layer in Figures 3 and 4. The carrier transport of the LRS in Zr:SiO$_2$ RRAM devices dominated by ohmic

Figure 1 Comparison of FTIR spectra of the C:SiO$_2$ thin film before and after oxygen plasma treatment.

Figure 2 Current–voltage curves and the resistive switching characteristics of Zr:SiO$_2$ and bilayer Zr:SiO$_2$/porous SiO$_2$ RRAM devices. The schematic configuration of the Zr:SiO$_2$ RRAM and bilayer Zr:SiO$_2$/porous SiO$_2$ RRAM in the inset of the figure.

Figure 3 Carrier transport analyzed for LRS and HRS of the Zr:SiO$_2$ RRAM by the curve fitting.
conduction mechanism is shown in the left inset of Figure 3. The result revealed that the conductive filament formed by the defect is induced by the zirconium atoms as the current flows through the Zr:SiO₂ film. As shown in the right inset of Figure 3, the carrier transport in HRS of Zr:SiO₂ RRAM was dominated by Pool-Frenkel emission, which resulted from the thermal emission of trapped electrons in the Zr:SiO₂ film. However, for the bilayer Zr:SiO₂/porous SiO₂ structure, the current mechanism of the LRS in Zr:SiO₂ RRAM devices was dominated

Figure 4 Carrier transport and I-V plots. (a) The carrier transport analyzed in conduction mechanism for LRS and HRS of the single bilayer ZrSiO₂/porous SiO₂ RRAM devices by the curve fitting. (b) In (I-V), (c) In (I-V¹/²), and (d) In (I-V) plots.

in HRS of Zr:SiO₂ RRAM was dominated by Pool-Frenkel emission, which resulted from the thermal emission of trapped electrons in the Zr:SiO₂ film. However, for the bilayer Zr:SiO₂/porous SiO₂ structure, the current mechanism of the LRS in Zr:SiO₂ RRAM devices was dominated

Figure 5 Electric field simulation in LRS and HRS for Pt/ZrSiO₂/porous SiO₂/TiN RRAM devices.
by the space charge limited current (SCLC) conduction (Figure 4b). Additionally, the current conduction mechanism of the HRS in Zr:SiO₂/porous SiO₂ RRAM devices was transferred from Schottky emission to SCLC conduction in Figure 4c,d. These results indicated that the filament is connected to the pore of porous SiO₂ film after the forming process and the SCLC conduction mechanism is caused by an electric field concentrated effect.

To clarify and discuss the SCLC conduction mechanism in bilayer Zr:SiO₂/porous SiO₂ RRAM devices, the COMSOL Multiphysics simulation model was employed to analyze the distribution of electric field concentrated effect. Figure 5 shows the distribution of the electric field in the bilayer Zr:SiO₂/porous SiO₂ RRAM devices for LRS and HRS. A high density of electric field exists in and around the area of the pore in porous SiO₂ film, which confirms the electric field concentrating capability of nanopores. Thus, during the set process, the metal conduction filament has an inclination to form towards the direction of the pore, and the conduction of the electron was dominated by the SCLC conduction in the porous SiO₂ film.

Conclusion
In conclusion, a space electric field concentrated effect was demonstrated to cause the operation current lowering for the Zr:SiO₂ RRAM devices. In addition, the single-layer Zr:SiO₂ and bilayer Zr:SiO₂/porous SiO₂ were prepared to investigate the resistive switching characteristics of RRAM devices. Compared with the conduction mechanism of the bilayer Zr:SiO₂/porous SiO₂ RRAM with single-layer Zr:SiO₂ RRAM, the conduction mechanism of the LRS was transferred from ohmic to SCLC conduction mechanism. Besides, the conduction mechanism of the HRS was transferred from Pool-Frenkel emission to Schottky emission at low field and dominated by SCLC at high field. Through a space electric field concentrated effect, the SCLC conduction of the Zr:SiO₂ RRAM devices using the porous SiO₂ buffer layer was explained and discussed by the COMSOL Multiphysics simulation model.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
K-CC designed and set up the experimental procedure. J-WH and T-CC planned the experiments and agreed with the paper’s publication. T-MT, K-HC, T-FY, J-HC, D-SG, and J-CL revised the manuscript critically and made some changes. RZ fabricated the devices with the assistance of S-YH. Y-CP conducted the electrical measurement of the devices. H-CH and Y-ES performed the FTIR spectra measurement. SMS and DHB assisted in the data analysis. All authors read and approved the final manuscript.

Acknowledgements
This work was performed at the National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in the Kaohsiung-Pingtung area and was supported by the National Science Council of the Republic of China under contract nos. NSC-102-2120-M-110-001 and NSC-101-2221-E-110-044-MY3.

Author details
1Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan. 2Department of Physics, R.O.C., Military Academy, Kaohsiung, Taiwan. 3Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan. 4Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan. 5Department of Electronics and Computer Science, Tung Fang Design Institute, Kaohsiung, Taiwan. 6Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan. 7School of Software and Microelectronics, Peking University, Beijing, People’s Republic of China. 8State Key Laboratory of Opto-electronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, 510275, Guangzhou, China. 9Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan.

Received: 22 August 2013 Accepted: 26 November 2013
Published: 11 December 2013

References
1. Rodbell KP, Heidel DF, Tang HHK, Gordon MS, Oldiges P, Murray CE: Low-energy proton-induced single-event-upsets in 65 nm node, silicon-on-insulator, latches and memory cells. IEEE Trans Nucl Sci 2007, 54:2474.
2. Xu ZG, Hsu ZL, Zhu CX, Cui YX, Wang M, Zheng ZW, Liu J, Wang YM, Li FH, Liu M: Performance-improved nonvolatile memory with aluminum nanocrystals embedded in Al₂O₃ for high temperature applications. J Appl Phys 2011, 110:104514.
3. Jiang DD, Zhang MH, Hsu ZL, Wang Q, Liu J, Yu ZA, Yang YN, Wang Y, Zhang B, Chen JN, Liu M: A study of cycling induced degradation mechanisms in Si nanocrystal memory devices. Nanotechnology 2011, 22:254009.
4. Chang TC, Jian FY, Chen SC, Tsai YT: Developments in nanocrystal memory. Mater Today 2011, 14(12):608.
5. Liu J, Wang Q, Long SB, Zhang MH, Liu M: MetalAl₂O₃/ZrO₂/SiO₂/Sl (MAZOS) structure for high-performance non-volatile memory application. Semicond Sci Technol 2010, 25:055013.
6. Chen CH, Chang TC, Liao IH, Xi PB, Hsieh J, Chen J, Huang T, Sze SM, Chen US, Chen JR: Tungsten oxide/tungsten nanocrystals for nonvolatile memory devices. Appl Phys Lett 2008, 92(10):13114.
7. Chung WF, Chang TC, Li HW, Chen SC, Chen YC, Tseng TY, Tai YH: Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors. Appl Phys Lett 2011, 98(15):152109.
8. Tsao SW, Chang TC, Huang SY, Chen MC, Chen SC, Tsai CT, Kuo YJ, Chen YC, Wu WC: Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid State Electron 2010, 54:1497.
9. Chen TC, Chang TC, Hsieh TY, Tsai CT, Chen SC, Lin CS, Hung MC, Tu CH, Chang JI, Chen PL: Light-induced instability of an InGaZnO thin film transistor with and without SiO₂ passivation layer formed by plasma-enhanced-chemical-vapor-deposition. Appl Phys Lett 2010, 97(19):192103.
10. Chen TC, Chang TC, Hsieh TY, Lu WS, Jian FY, Tsai CT, Huang SY, Lin CS: Investigating the degradation behavior caused by charge trapping effect under DC and AC gate-bias stress for InGaZnO thin film transistor. Appl Phys Lett 2011, 99(20):202104.
11. Zhu CX, Hsu ZL, Xu ZG, Zhang MH, Wang Q, Liu J, Long SB, Liu M: Performance enhancement of multilevel cell nonvolatile memory by using a bandgap engineered high-kappa trapping layer. Appl Phys Lett 2010, 97:253503.
12. Zhu CX, Xu ZG, Hsu ZL, Yang P, Zheng ZW, Cui YX, Liu J, Wang YM, Shi DX, Zhang GY, Li FH, Liu M: Investigation on interface related charge trap and loss characteristics of high-k based trapping structures by electrostatic force microscopy. Appl Phys Lett 2011, 99:213104.
13. Chen WR, Chang TC, Yeh JL, Sze SM, Chang CY: Reliability characteristics of NiSi nanocrystals embedded in oxide and nitride layers for nonvolatile memory application. Appl Phys Lett 2008, 92(15):152114.
14. Yeh PH, Chen LJ, Liu PT, Wang DY, Chang TC: Metal nanocrystals as charge storage nodes for nonvolatile memory devices. Electrochim Acta 2007, 52(8):2920.
15. Yeh PH, Yu CH, Chen LJ, Wu HH, Liu PT, Chang TC: Low-power memory device with NiS2 nanocrystals embedded in silicon dioxide layer. *Appl Phys Lett* 2005, 87(19):193511.

16. Chen SC, Chang TC, Liu PT, Wu YC, Lin PS, Tseng BH, Shy JH, Sze SM, Chang CY, Lien CH: A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory. *IEEE Electron Device Lett* 2007, 28(1):60–62.

17. Yang SQ, Wang Q, Zhang MH, Long SB, Liu J, Liu M: Titanium tungsten nanocrystals embedded in SiO2/Al2O3 gate dielectric stack for low-voltage operation in non-volatile memory. *Nano Technology* 2010, 21:24201.

18. Zhen LJ, Guan WH, Shang LW, Liu M, Liu G: Organic thin film transistor memory with gold nanocrystals embedded in polyimide gate dielectric. *J Phys D Appl Phys* 2008, 41:35111.

19. Tsai TM, Chang KC, Chang TC, Syu YE, Chuang SL, Chang GW, Liu GR, Chen MC, Huang HC, Liu SK, Tai YH, Gan DS, Yang YL, Young TF, Tseng BH, Chen KH, Tsai MJ, Ye C, Wang H, Sze SM: Bipolar resistive RAM characteristics induced by nickel incorporated into silicon oxide dielectrics for IC applications. *IEEE Electron Device Lett* 2012, 33(12):1696.

20. Tsai TM, Chang KC, Chang TC, Chang GW, Syu YE, Su YT, Liu GR, Liao KH, Chen MC, Huang HC, Tai YH, Gan DS, Sze SM: Origin of hopping conduction in Sn-doped silicon oxide RRAM with supercritical CO2 fluid treatment. *IEEE Electron Device Lett* 2012, 33(3):1693.

21. Guan WH, Long SB, Jia R, Liu M: Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. *Appl Phys Lett* 2007, 91:062111.

22. Guan WH, Long SB, Liu Q, Liu M, Wang W: Nonpolar nonvolatile resistive switching in Cu doped ZrO2. *IEEE Electron Device Lett* 2008, 29(5):434.

23. Liu Q, Guan WH, Long SB, Jia R, Liu M, Chen JN: Resistive switching memory effect of ZrO2 films with Zr+ implanting. *Appl Phys Lett* 2008, 92:012117.

24. Tsai TM, Chang KC, Zhang R, Chang TC, Lou JC, Chen JH, Young TF, Tseng BH, Shih CC, Pan YC, Chen MC, Pan JH, Syu YE, Sze SW: Performance and characteristics of double layer porous silicon oxide resistance random access memory. *Appl Phys Lett* 2013, 102:253509.

25. Chang KC, Tsai TM, Chang TC, Wu HH, Chen JH, Syu YE, Chang GW, Chu TJ, Liu GR, Su YT, Chen MC, Pan JH, Tung CW, Huang HC, Tai YH, Gan DS, Sze SW: Characteristics and mechanisms of silicon oxide based resistance random access memory. *IEEE Electron Device Lett* 2013, 34(3):399.

26. Chang KC, Tsai TM, Chang TC, Senior Member IEEE, Wu HH, Chen KH, Chen JH, Young TF, Chu TJ, Chen JY, Pan CH, Su YT, Syu YE, Tung CW, Chang GW, Chen MC, Huang HC, Tai YH, Gan DS, Wu JI, Hu Y, Sze SW: Low temperature improvement method on ZnS:SiO2 resistive random access memory devices. *IEEE Electron Device Lett* 2013, 34(4):511.

27. Chang KC, Tsai TM, Zhang R, Chang TC, Chen KH, Chen JH, Young TF, Lou JC, Chu TJ, Shih CC, Pan JH, Su YT, Syu YE, Tung CW, Chang GW, Chen MC, Hu JI, Hu Y, Sze SW: Electrical conduction mechanism of ZnS:SiO2 resistance random access memory with supercritical CO2 fluid process. *Appl Phys Lett* 2013, 103:285309.

28. Chang KC, Pan CH, Chang TC, Tsai TM, Zhang R, Lou JC, Young TF, Chen JH, Shih CC, Chu TJ, Chen JY, Su YT, Jiang JP, Chan KH, Huang HC, Syu YE, Gan DS, Sze SW: Hopping effect of hydrogen-doped silicon oxide insert RRAM by supercritical CO2 fluid treatment. *IEEE Electron Device Lett* 2013, 34(5):617.

29. Chang KC, Zhang R, Chang TC, Tsai TM, Lou JC, Chen JH, Young TF, Chen MC, Yang YL, Pan YC, Chang GW, Chu TJ, Shih CC, Chen JY, Pan CH, Su YT, Syu YE, Tai YH, Sze SM: Origin of hopping conduction in graphene-oxide-doped silicon oxide resistance random access memory devices. *IEEE Electron Device Lett* 2013, 34(5):577.

30. Tsai TM, Chang KC, Chang TC, Syu YE, Liao KH, Tseng BH, Sze SM: Dehydrosilyl effect of Sn-doped silicon oxide resistance random access memory with supercritical CO2 fluid treatment. *Appl Phys Lett* 2012, 101(1):120906.

31. Chang KC, Tsai TM, Chang TC, Syu YE, Liao KH, Chuang SL, Li CH, Gan DS, Sze SM: The effect of silicon oxide based RRAM with tin doping. *Electrochem Solid State Lett* 2012, 15(3):165.

32. Liu Q, Long SB, Wang W, Zuo QY, Zhang S, Chen JN, Liu M: Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. *IEEE Electron Device Lett* 2009, 30(12):1335.

33. Liu M, Abid Z, Wang W, He XL, Liu Q, Guan WH: Multilevel resistive switching with ionic and metallic filaments. *Appl Phys Lett* 2009, 94:233106.

34. Syu YE, Chang TC, Tsai TM, Chang GW, Chang KC, Lou JH, Tai YH, Tsai MJ, Wang YL, Sze SM: Asymmetric carrier conduction mechanism by tip electric field in WSO2, resistance switching device. *IEEE Electron Device Lett* 2012, 33(3):342–344.

35. Long SB, Perniola L, Cagli C, Buckley J, Lian XJ, Miranda E, Pan F, Liu M, Sune J: Voltage and power-controlled regimes in the progressive unipolar transition of HfO2-based RRAM. *Sci Rep* 2013, 3:2929.

36. Syu YE, Chang TC, Lou JH, Tsai TM, Chang KC, Tsai MJ, Wang YL, Liu M, Sze SM: Atomic-level quantized reaction of HfO2 memristor. *Appl Phys Lett* 2013, 102:172903.

37. Long SB, Lian XJ, Cagli C, Perniola L, Miranda E, Liu M, Sune J: A model for the set statistics of RRAM inspired in the percolation model of oxide breakdown. *IEEE Electron Device Lett* 2013, 34(8):999–1001.

38. Chu TJ, Chang TC, Tsai TM, Wu HH, Chen JH, Chang KC, Young TF, Chen KH, Syu YE, Chang GW, Chang YF, Chen MC, Lou JH, Pan JH, Chen JY, Tai YH, Ye C, Wang H, Sze SM: Charge quantity influence on resistance switching characteristic during forming process. *IEEE Electron Device Lett* 2013, 34(4):502–504.

39. Long SB, Lian XJ, Cagli C, Corti A, Rullari R, Miranda E, Jimenez D, Perniola L, Liu M, Sune J: Quantum-size effects in hafnium-oxide resistive switching. *Appl Phys Lett* 2013, 102(18):183505.

40. Su YT, Chang KC, Chang TC, Tsai TM, Zhang R, Lou JC, Chen JH, Young TF, Chen KH, Tseng BH, Shih CC, Yang YL, Chen MC, Chu TJ, Pan CH, Syu YE, Sze SM: Characteristics of hafnium oxide resistance random access memory with different setting compliance current. *IEEE Electron Device Lett* 2013, 34(6):63502.

41. Zhang R, Chang KC, Chang TC, Tsai TM, Chen KH, Lou JH, Young TF, Wang YL, Pan YC, Chu TJ, Huang SY, Pan CH, Su YT, Syu YE and Sze SM: High performance of graphene oxide-doped silicon oxide-based resistance random access memory. *Nanoscale Research Letters* 2013, 8:497.

42. Zhang R, Tsai TM, Chang TC, Chang KC, Chen KH, Lou JC, Young TF, Chen KH, Huang SY, Chen MC, Shih CC, Chen HL, Pan JH, Tung CW, Syu YE and Sze SM: Mechanism of power consumption inhibitive multi-layer ZnS:SiO2 structure resistance random access memory. *J. Appl. Phys.* 2013, 114:234501.

43. Huang JW, Zhang R, Chang TC, Tsai TM, Chang KC, Lou JC, Young TF, Chen JH, Chen HL, Pan YC, Huang X, Zhang FY, Syu YE, Sze SM: The effect of high/low permittivity in bilayer HfO2/BN resistance random access memory. *Appl Phys Lett* 2013, 102:203507.