Longitudinal Survey of Coronavirus Circulation and Diversity in Insectivorous Bat Colonies in Zimbabwe

Vimbiso Chidoti¹, Hélène De Nys²,³, Valérie Pinarello¹,²,³, Getrude Mashura¹, Dorothée Missé¹, Laure Guerrini²,³, Davies Pfukenyi¹, Julien Cappelle²,³, Ngoni Chiweshe³, Ahidjo Ayouba⁶, Gift Matope¹, Martine Peeters⁶, Elizabeth Gori¹, Mathieu Bourgarel²,³ and Florian Liégeois¹,⁴ *.

¹ University of Zimbabwe, Faculty of Veterinary Science, Harare, Zimbabwe
vimbisochidoti@gmail.com; gori.elizabeth@gmail.com; getrudemashura@gmail.com; giftmatope@gmail.com; dmpfukenyi@vet.uz.ac.zw

² ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
Julien.cappelle@cirad.fr; laure.guerrini@cirad.fr; Helene.de_nys@cirad.fr; Valerie.pinarello@cird.fr; mathieu.bourgarel@cirad.fr; chiweshengoni@gmail.com

³ CIRAD, UMR ASTRE, Harare, Zimbabwe
laure.guerrini@cirad.fr; Helene.de_nys@cirad.fr; Valerie.pinarello@cird.fr; mathieu.bourgarel@cirad.fr,

⁴ MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
Dorothee.misse@ird.fr, florian.liegeois@ird.fr

⁵ CIRAD, UMR ASTRE, F-34398 Montpellier, France.
Julien.cappelle@cirad.fr

⁶ TransVIHMI, University of Montpellier, IRD, Inserm, Montpellier, France
Martine.peeters@ird.fr, Ahidjo.ayouba@ird.fr

* Correspondence: author: Florian.liegeois@ird.fr

Abstract: Background: Studies have linked bats to outbreaks in human populations such as SARS-CoV-1 and MERS-CoV and the ongoing SARS-CoV-2 pandemic.

Method: We carried out a longitudinal survey from August 2020 to July 2021 at two sites in Zimbabwe with bat-human interactions: Magweto cave and Chirundu farm. A total 1732 and 1866 individual bat faecal samples were collected respectively. Coronaviruses and bat species were amplified using PCR systems respectively.

Results: Analysis of the coronavirus sequences revealed a high genetic diversity and we identified different sub-viral groups in the Alphacoronavirus and Betacoronavirus genus. The established sub-viral groups fell within the described Alphacoronavirus sub-genera: Decacovirus, Duvinacovirus, Rhinacovirus, Setracovirus and Minunacovirus and for Betacoronavirus sub-genera: Sarbecoviruses, Merbecovirus and Hibecovirus. Our results showed an overall proportion for CoV positive PCR tests of 23.7% at Chirundu site, 16.5% and 38.9% at Magweto site for small insectivorous bats and Macronycteris gigas respectively.

Conclusion: The higher risk of bat coronaviruses exposure for humans ranged from December to March in relation to higher viral shedding peaks of coronaviruses in the parturition, lactation and weaning months of the bat populations at both sites. We also highlight the need to further document viral infectious risk in human/domestic animal populations surrounding bat habitats in Zimbabwe.

Keywords: Bat Coronavirus (Bt CoVs); human-bat interaction; genetic diversity; reproductive phe-nology; Zimbabwe

1. Introduction

The Coronaviridae family is a monophyletic cluster in the order of Nidovirales. These are enveloped positive stranded RNA viruses of three classes of vertebrates: mammals (corona- and toroviruses), birds (coronaviruses) and fish (bafiniviruses) [1]. They are classified into four genera: Alphacoronavirus and Betacoronavirus, hosted by mammals; Gam-macoronavirus and Deltacoronavirus, infecting avian species [2,3].
Coronaviruses are aetiological agents of respiratory, enteric, hepatic and neurological diseases in animals and humans [4], with variable severity, from asymptomatic to severely ill individuals [5]. Surveillance of coronaviruses in wild animals has led to the discovery of a high diversity of viruses in bats and avian species suggesting these animals as the natural reservoirs [6].

Six coronaviruses have been identified in humans [3]. The first human coronaviruses were discovered in the early 1960s, nCoV-OC43 and HCoV-229E [7,8], they are known to cause mild respiratory disease [9]. HCoV-NL63 and -HKU1 were discovered in 2004 and 2005, respectively [10], they also associated with mild respiratory disease [9]. Other high profile human disease outbreaks of the respiratory system caused by coronaviruses took place during the last two decades namely severe acute respiratory syndrome type 1 and 2 (SARS-CoV-1 and SARS-CoV-2) and Middle East Respiratory Syndrome (MERS-CoV) [11–13].

Phylogenetic evidence shows that HCoV-NL63 and -229E originated from bat coronaviruses [7,8] whereas HCoV-OC43 and HCoV-HKU1 originated from rodents [8,14]. Bats are major and ancient reservoirs of several viral families among others [15].

Insectivorous bats have recently been shown to harbour the precursor of severe acute respiratory syndrome coronavirus (SARS-CoV-1) [17]. Studies have linked bats (Rhinolophus spp) to SARS-CoV-1 outbreak in humans, transmitted through an intermediate host, i.e. civet cats [18]. Recent research on the outbreak of SARS-CoV-2 (Covid-19) suggest that bats are the original source of the coronavirus due to genetic similarity of the virus to other known bat coronaviruses [12,19,20]. Bat coronaviruses have also been identified in numerous insectivorous and frugivorous bats in Asia, Africa, America and Europe [21].

Bats are the second most diverse mammalian order after rodents [22], and the only order of mammals capable flying. Bats constitute the order Chiroptera [22] and are classified into two groups: Yinpterochiroptera: megabats and a number of microbats and Yangochiroptera which mainly covers insectivorous microbats [23,24]. Bats possess characteristics that maximise their effectiveness as reservoir hosts. These include high species diversity, long life span, long flight distance and dispersal, interspecies dense roost aggregations, social behaviours, hibernation and torpor as well as unique innate immunology [25,26].

Circulation of viruses in bat populations is affected by seasonality and the prevailing environmental conditions [22,27]. Each of these directly affects reproduction periods, gregarious behaviour, torpor, population density and rate of contacts between individuals in a population [26,27] consequently determining reproductive number of viruses and their transmission [27]. Hence risks of viral spill-over to other animal species and humans are strongly influenced by these factors. The effect of seasonality on viral circulation has been shown in several studies on coronaviruses in bats [28,29]. Temporal variations associated with the bat reproduction phenology have been shown in several coronavirus studies across the world in bats, with higher coronaviruses prevalence detected in juvenile and sexually immature individuals [30,31].

Previous studies carried out in Zimbabwe included the characterisation of Dicistrovirus, Coronavirus and Paramyxovirus in insectivorous bats (Hipposideros caffer) [32,33]. More than 60 bat species have been recorded in Zimbabwe and in rural areas, people are in close contact with these animals [34], posing a risk of spill over of bat associated viruses to humans. Temporal variations associated with the bat reproduction phenology have been shown in several coronavirus studies across the world in bats, with higher coronaviruses prevalence detected in juvenile and sexually immature individuals [30,31]. The prevalence and genetic diversity of coronaviruses circulating in insectivorous bat colonies and they seasonal pattern are not well established. This study sought to establish the prevalence...
and the genetic diversity of coronaviruses in insectivorous bats according to bat reproduction phenology in two multi-species bat sites in Zimbabwe.

2. Methods

2.1. Study sites

The study was conducted in Hurungwe district of Mashonaland West province in Zimbabwe, at two sites: Magweto cave and Chirundu farm known for their colonies of insectivorous bats. The two sites situated in communal lands represent habitats with close human/bat interactions (Figure 1).

2.2. Magweto cave:
Magweto cave site has been subject to preliminary research on virus circulation in *Hipposideros caffer* bats [32]. The site is considered to be a sacred place by the local community. The cave itself is used for various activities such as cultural and religious ceremonies. People also collect guano (bat faeces) and use it as fertilizer in their fields while others sell it. Additionally, *Macronycteris gigas* bats are also present in this cave, and are hunted for consumption.

2.3. Chirundu farm:
Chirundu farm site is surrounded by a banana plantation where a large group of people work daily. The building basement in which the bats roost is surrounded by a nursery of young trees. Due to irrigation of the plants, the tunnels are always flooded with water most part of the year. The bats fly around the property and feed on insects around the plantation.

2.4. Sample and data collection

On both sites, non-invasive sampling of bat faeces was done from August 2020 to July 2021 at monthly intervals. Two square metres plastic sheets were placed under the bat roosts overnight (5 sheets per site). Faeces were collected in the mid-morning from each plastic sheet. Individual sampling was done by assuming that a space of 20cm by 20cm on the plastic sheet was representative of the defecation area of one individual: one dropping of fresh faeces was selected and placed in 2 mL tubes with 0.5 mL of home-made RNA stabilisation solution (http://www.protocol-online.org/prot/Protocols/RNAlater-3999.html). Samples were then stored at -80°C before further laboratory analyses. During sampling other observations were recorded such as females showing pregnancy, puppies...
attached to mothers, puppies in specific roost nurseries. Gathering of this information allowed to map a timeline of bat reproductive phenology. Periods of gestation, parturition, lactation, weaning and presence of 4-6 months old juveniles were determined based on observations (from captures and observation of the roosting bats) combined with literature to confirm observations or to complete observation gaps (regarding periods or species) [34].

Additionally, two capture sessions were done at each site to assess the bat diversity and reproductive status. Bats were captured using nest and hard trap. All animals were released after collection of dried blood spot, faecal and salivary swab samples as well as morphometric measurements [35].

2.5. RNA/DNA Extraction

Both RNA and DNA were extracted from 200 µL of faecal samples using 5X MagMax Pathogen RNA/DNA Kit (Thermo Fisher Scientific, France), by using the faecal samples preserved in 0.5 mL of home-made preservative RNA solution. The faeces were vortexed vigorously (30Hz) using Retsh MM400 Tissue lyser for 5 min to fully homogenise and mix well the faecal particles, followed by centrifugation at 16000 x g for ~3 min to fully separate the supernatant from the faecal pellet. 130 µL of the supernatant were collected to isolate and purify the nucleic acids using Mag Max extraction kit (ThermoFisher Scientific, France) with the automatic KingFisher Duo Pure Purification System (ThermoFisher Scientific, France) following the manufacturer’s instruction. A final volume of 80 µL of eluted RNA/DNA was collected and stored at -80° C.

2.6. Reverse Transcription (RT) using random hexamers

A total of 5 µL of RNA/DNA sample template were reverse transcribed using 1 µL random hexamers, 0.5 µL Oligo dT primer, 0.4 µL of dNTPs (10 mM) (Thermofisher Scientific, France), 5.5 µL molecular grade water and incubated 5 min at 65° C, 4 µL of Buffer 5X, 2 µL of 0.1 M DTT (M-MLV Reverse Transcriptase, Thermofisher Scientific, France) and 1 µL of RNase OUT were added to the previous mix. After incubation 2 min at 37° C, 1 µL of M-MLV reverse transcriptase (M-MLV Reverse Transcriptase, Invitrogen, ThermoFisher Scientific) was added to the mixture followed by incubation at 25° C for 10 min, 37° C for 50 min and 70° C for 15 min. The cDNA obtained was stored at -20° C.

2.7. RNA-dependent RNA-polymerase (RdRp) nested-PCR on Coronaviruses using Pan-coronavirus primers

CoVs were amplified by nested PCR in 50 µL reaction mixture containing 5 µL of cDNA template, 0.5 µL DNA polymerase, 5 µL Buffer 10X, 4 µL MgCl₂ (25 mM) (Firepol DNA Polymerase, Solis Bio Dyne, Estonia), 0.4 µL dNTPs (25 mM) (Thermo Fisher Scientific), 31.1 µL of Molecular grade water and 2 µL of Pan-Coronavirus primers (10 mM) (ThermoFisher Scientific, France): Pan-CoV-F1: 5’-GKTGGGAYTAYCCKAARTG-3’ and Pan-CoV-R1: 3’TGYTGTSWRCARAAYTCRTG5’ for the first PCR round, Pan-CoVF2: 5’-GGTTGGGACTATCCTAAGTGTGA3’, Pan-CoVR2: 3’-CATCATCAGATA-GAATCAAC-5’ for the second PCR round as previously described [36]. First round PCR conditions were as follows: 95° C, 2 min denaturation followed by 40 cycles 95° C, 20 s denaturation, 50° C, 30 s hybridization, 72° C, 2 min elongation and a final extension of 72° C of 5 min. Second round PCR conditions were as follows: 95° C, 2 min denaturation, 40 cycles 95°C, 30 s denaturation, 52°C, 30 s hybridization, 72°C, 1 min elongation and a final extension of 72°C 5 min. Visualization of positive PCR product was done by gel electrophoresis using ethidium bromide on a 1% gel. PCR positive products (440bp) were directly purified (GeneClean Turbo Kit, MP Biomedicals, Illkirch, France) according to supplier’s instructions and then sequenced using sanger sequencing method in both the 5’ and 3’ directions (LGC, Germany).
2.8. Genetic Analyses

2.8.1. Viruses sequence identification and phylogenetic analysis

Generated sanger viral sequence assemblage was done using Geneious software package V. 2021.2.2 (Biomatters Ltd, New Zealand). The generated contigs were compared to a database of sequences online using Basic Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the amplified sequence. Mega 7 [37] was used to align the CoV sequences obtained in this study with references obtained from the GenBank. Maximum Likelihood phylogenetic tree of aligned CoV sequences were implemented by using IQ-Tree [38]. The reliability of branching orders was tested using the bootstrap approach (1000 replicates) and the GTR + F+ I substitution model was determined as the best suited evolution model [38].

2.8.2. Bat species identification

Genotyping was done only on Coronavirus positive samples for bat species identification. Partial amplification of Cytochrome b and/or 12s RNA mitochondrial genes followed by sequencing were used for identification of bat species or genus respectively for all the CoV positive samples from the two sites. Cytochrome b/12S RNA partial sequences were amplified by one step PCR in 50 µL reaction mix containing 5 µL of RNA template, 0.5 µL DreamTaq DNA polymerase, 5 µL DreamTaq Buffer 10X (DreamTaq DNA Polymerase, Thermo Fisher Scientific, US), 0.4 µL dNTPs (25 mM) (Thermo Fisher Scientific), 35.35 µL of Molecular grade water and 2 µL of primers (10 mM) (ThermoFisher Scientific, France): Cytb-L14724: 5'- CGAAGCTTGATATGAAAAACCATCGTTG-3', Cytb-H115506: 5' -AGTGGRITRGCCTGGTGTARTTGTCT-3' [39] . For the 12S RNA, L1091: (5' -AAAAAG-CTTCAAACTGGGATTAGACCCCACTAT-3') and H1478: (5' -TGACTG-CAGAGGGTGACGGGCGGTGTGT- 3') primers were used [40]. The PCR reaction was carried out under the following conditions: 95° C, 3 min denaturation, 20 cycles 94° C, 20 s denaturation, 45° C, 30 s hybridization, 72° C, 1 min 30s, followed by 20 cycles 94° C, 20 s denaturation, 50° C, 30 s hybridization, 72° C, 1 min 30s elongation and a final extension of 72° C 5 min. Visualization of positive PCR product was done by gel electrophoresis using ethidium bromide on a 1% gel. PCR positive products for Cytochrome b (800bp) and for 12S RNA (400bp) were directly purified (GeneClean Turbo Kit, MP Biomedicals, Illkirch, France) according to supplier’s instructions and then sequenced using sanger sequencing method in both the 5’ and 3’ directions (LGC, Germany). Cytochrome B and/or 12S RNA sequences obtained were then compared to bat species sequences available in the GenBank database using BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

2.8.3. Temporal variations of coronavirus prevalence and bat reproduction phenology

The Prevalence were calculated at the community level for small insectivorous bat species from the two sites. The M. gigas prevalence were calculated separately as faecal samples could easily be attributed to this species given their size and location in the cave. The reproductive phases of the bats were allocated according to field observations and also literature review. The proportion of RNA CoV positive individuals were calculated by month and site with 95% confidence intervals (CI) using Wilson score test [41]. Descriptive analysis of prevalence of CoVs per month/per season at each site was done using R software (R-studio) programming to construct box plots. The boxplots were plotted with x-axis as the prevalence of CoVs and y-axis as the date and reproductive season when sampling occurred at each site. Similar analysis was also done to describe the effect of reproductive seasonality on the detection of the sub-viral groups described. Sub-viral groups with more than 30 sequences were analysed, only Chirundu site analyses were done, at Magweto there was limited data to allow an accurate conclusion to be drawn therefore it was left out.

In addition, the influence of the different phases of the bat reproduction cycle (pregnancy, parturition / lactation, weaning, weaned juveniles of 4 to 6 months old) on the
prevalence of coronaviruses at each site (Magweto and Chirundu) were tested by running two generalized linear mixed models (GLMM). Parturition and lactation were merged because our sampling sessions did not allow the separation of the two periods. The response variable with a binomial distribution was the coronavirus positivity of the samples and the explanatory variables with a fixed effect were the different phases of the reproduction cycle (coded as 1 if it was during the corresponding reproduction phase and 0 if it was not). To account for clustered samples collected during the same sampling session at the same site, we included session identification code as a random effect to control for repeated measures from the same trapping session.

2.8.4. GenBank Accession Numbers

The Coronavirus sequences have been deposited to the GenBank under the following numbers: OM469940 - OM470469

The Cytochrome B sequences have been deposited to the GenBank under the following numbers: OM487705 - OM488020

3. Results

3.1. Sampling, data collection and reproductive phenology

Due to travel restrictions linked to COVID-19 in Zimbabwe, no samples were collected in January, April and June at Chirundu farm and in Magweto none were collected from December to February as well as in May and July. We analysed 1558 and 308 fecal samples from small and large insectivorous bats, respectively from the Magweto cave site and a total of 1732 fecal samples from bats at the Chirundu farm site (Table 1).

At both sites the reproductive season, i.e., from gestation to weaning, was observed from September to February for the predominant small insectivorous bat species. At both sites, the different small insectivorous bat families observed were found to be synchronous regarding their reproductive cycles and consensus reproduction periods were determined based on literature and observations (Table 1, Table A1). The larger insectivorous *M. gigas* is a migratory bat species and was mainly present at Magweto cave from October 2020 to March 2021 during their gestation, parturition and 4-6 months juvenile periods and the reproductive cycle was also synchronous with that of the small bats (Table 1, Table A1).

Table 1. Prevalence of CoVs and confidence intervals (CI) per month at both sites in faecal samples from small and large insectivorous bat communities.

Site	Reproduction cycle	Month sampled	No of samples	No of CoVs positive	Prevalence (%) ± 95% CI
Chirundu	Pregnancy	October 2020	126	2	1.6 (0.4-5.6)
Chirundu	Pregnancy	November 2020	147	1	0.7 (0.1-4.6)
Chirundu	Weaning	February 2021	175	2	1.1 (0.3-5.1)
Chirundu	Juvenile	March 2021	240	6	2.5 (0.9-6.4)
Chirundu	Juvenile	May 2021	240	9	3.8 (1.3-10.0)
Chirundu	Pregnancy	February 2020	126	2	1.6 (0.4-5.6)
Chirundu	Pregnancy	November 2020	147	1	0.7 (0.1-4.6)
Chirundu	Weaning	February 2021	175	2	1.1 (0.3-5.1)
Chirundu	Juvenile	March 2021	240	6	2.5 (0.9-6.4)
Chirundu	Juvenile	May 2021	240	9	3.8 (1.3-10.0)
Magweto cave	Pregnancy	September 2020	146	2	1.4 (0.4-4.1)
Magweto cave	Pregnancy	October 2020	255	9	3.6 (1.3-8.4)
Magweto cave	Pregnancy	November 2020	328	8	2.5 (0.9-6.4)
Magweto cave	Juvenile	March 2021	240	6	2.5 (0.9-6.4)
Magweto cave	Juvenile	April 2021	245	10	4.1 (1.5-10.0)
Magweto cave	Juvenile	May 2021	240	7	2.9 (0.9-6.4)
Magweto cave	Juvenile	June 2021	240	7	2.9 (0.9-6.4)
Magweto cave	Juvenile	July 2021	240	7	2.9 (0.9-6.4)
Magweto cave	Juvenile	August 2021	240	7	2.9 (0.9-6.4)

Table 1. Prevalence of CoVs and confidence intervals (CI) per month at both sites in faecal samples from small and large insectivorous bat communities.
3.2. Bat species

By using BLAST to compare the newly obtained 800 bp Cytochrome B sequences of the CoV positive samples to the CytB sequences available in the GenBank we identified different bat species at the two sampling sites. We identified at least seven species, Hipposideros caffer and Miniopterus mossambicus were present at both sites. At Chirundu farm, we also identified Rhinolophus landeri and Nycteris thebaica whereas at Magweto cave we also characterized Macronycteris gigas, Cleotis percivali and Rhinolophus simulator. The presence of these species was confirmed by capture sessions. We also characterized bats from the Rhinolophus genus, close to Rhinolophus eloquens from the captured animals. Results obtained by BLAST analysis were confirmed by Maximum likelihood phylogenetic analysis (Figure B1).

3.3. Prevalence and seasonality of RNA Coronavirus at the bat community level

The overall prevalence of coronaviruses at Chirundu farm site was 23.7% [95% CI: 22.08-26.13]. The lowest prevalence was 1.35% [95% CI: 0.5-3.4] observed in samples collected in October 2020 and prevalence increased between December and March 2021, corresponding to the lactation, weaning and 4-6 months juvenile periods, with the highest prevalence of 44.19% [95% CI: 37.4-45.2] in February, corresponding to the weaning period (Table 1, Figure 2a). At Magweto cave site the sampling prevalence were calculated for the small bat species and the Macronycteris gigas separately. For M. gigas the overall CoVs prevalence was 38.9% [95% CI: 33.68-44.51] with a peak of 56.4% [95% CI: 47.7-64.9] in October 2020 during the gestation period (Table 1, Figure 2b). For the small bat species which comprised Hipposideros spp., Rhinolophus spp., Nycteris spp. and Miniopterus spp., the overall prevalence was 16.5% [95% CI:14.74-18.42] with the lowest prevalence (2% - [95% CI: 0.98-4.1]) detected in September 2020 and the highest prevalence detected in November 2020 (35.9% - [95% CI: 30-42.4], corresponding to the period of gestation and parturition, and March 2021 (34.7%- [95% CI: 28.9-40.9], which corresponds to the juvenile periods (Table 1, Figure 2c). Prevalence during the weaning period for this site remains unknown as no samples were collected during that time.

Figure 2. Results of the longitudinal sampling at two sites for coronaviruses. Fig 2a shows estimation of the coronavirus prevalence (with CI 95%) at Chirundu site, Fig 2b & 2c show the same for small bats and Macronycteris gigas (respectively) at Magweto cave site. The areas coloured green, cyan, navy blue, magenta, red and pink show periods of gestation, parturition, lactation, weaning, 4-6 months old juvenile and non-gestation periods respectively observed in the dominant bat species at both sites.
Results from the first GLMM showed higher coronavirus prevalence associated with the parturition/lactation (Odds Ratio (OR) = 5.57, 95% CI) = [1.16 – 29.56], p-value = 0.012) and weaned juveniles of 4 to 6 months old periods (OR = 4.22 [0.83 – 21.35, p = 0.037) at the Magweto site. Results from the second GLMM showed higher coronavirus prevalence associated with the parturition/lactation period (OR = 6.04 [1.85 – 22.62, p = 0.0014) and the weaning period (OR = 5.29 [1.16 – 26.56, p = 0.0016) at the Chirundu site, while lower coronavirus prevalence were associated with the pregnancy period (OR = 0.165 [0.044 – 0.567, p = 0.0018).

The three viral groups analysed at Chirundu site, ASVG-01, ASVG-05 and BSVG-01 all showed varying prevalence of CoVs, with peaks in detection during different seasons (Figure B3). For ASVG-01, highest prevalence was detected in the 4-6 months old juvenile periods, whereas the highest peaks for ASVG-05 were during the lactation and non-gestation periods (Figure B3). For the betacoronavirus sub-viral group BSVG-01, the highest prevalence was corresponding to the weaning period (Figure B3).

3.4. Genetic diversity of Coronaviruses at Chirundu and Magweto sites

A high genetic diversity of Alpha and Beta coronaviruses was observed in the insectivorous bat ecosystem at both sites. We amplified and sequenced a total of 532 Coronavirus from both sites: 307 Alphacoronaviruses (Magweto cave N=103; Chirundu farm N=204) and 225 Betacoronaviruses (Magweto cave N=101; Chirundu farm N=124) (Table 2). A total of 279 out of the 532 CoV sequences were from Hipposideros species, 64 from Macronycteris spp., 89 from Rhinolophus spp., 17 from Nycteris spp. and six from Miniopterus spp. For the remaining 77 CoV sequences, the bat genus/ species could not be determined mainly owing to bad sequence qualities. (Table 2)

Table 2. Longitudinal detection of different viral groups in Magweto and Chirundu sites.

We observed different sub-viral groups by phylogenetic analyses (Fig. 3 and 4) which we named from A-SVG-01 to A-SVG-08 for Alphacoronaviruses and B-SVG-01 to B-SVG-08 for Betacoronaviruses (Table 2, Fig. 3 and 4).
Figure 3. Phylogenetic tree of AlphaCoV partial RdRp gene. The sequences detected at Chirundu site are in Red colour and from Magweto site in Blue colour. Pink = more sequences detected at Chirundu than Magweto within the same sub-clade and Purple = more sequences detected at Magweto site than Chirundu site within the sub-clade. The tree was built using the maximum likelihood method based on the GTR + G4 + I model. The robustness of nodes was assessed with 1000 bootstrap replicates. Bootstrap values >70 are in asterisk and those <70 are not shown.

Figure 4. Phylogenetic tree of BetaCoV partial RdRp gene. The sequences detected at Chirundu site are in Red colour and at Magweto site in Blue colour. Pink = more sequences detected at Chirundu than Magweto within the same sub-clade. The tree was built using the maximum likelihood method based on the GTR + G4 + I model. The robustness of nodes was assessed with 1000 bootstrap replicates. Bootstrap values >70 are in asterisk and those <70 are not shown.
3.5. Alphacoronaviruses:

A-SVG-01 to A-SVG-03 groups belonged to the Duvinacovirus sub-genus together with the Human CoV 229E strain (Fig. 3). Eight out of the 114 sequences comprising the A-SVG-01 group were identified at Magweto cave with four from H. caffer and four from M. gigas. The 99 remaining sequences were obtained from Chirundu farm with most of them amplified from H. caffer (N=89), whereas the remaining were from Rhinolophus (N=3) and Nycteris (N=7) species (Table 2). Viruses belonging to the A-SVG-01 group were found at Chirundu site from August 2020 to May 2021 and at Magweto site, from March to June 2021 only (Figure B2). A-SVG-02 group was mainly composed of sequences identified in M. gigas (N=41) sampled at Magweto. We also identified four other sequences obtained from Chirundu farm: two from Rhinolophus species and two from unclassified bat species (Figure 3, Table 2). These A-SVG-02 group sequences were collected in September and November 2020 at Magweto cave and from September to October 2020 at Chirundu site (Figure B2). The A-SVG-03 group was a sub-clade specific to Hipposideros spp. from Magweto site collected between September 2020 and March 2021. However, in this subgroup, two Rhinolophus and an unspecified bat species were also infected by this virus (Figure 3, Figure B2, Table 2, Table A1).

A-SVG-04 sub-group belongs to the Setravirus sub-genus together with the human CoV NL63 strain. Only one sequence, identified at Chirundu from a Miniopterus mossambicus bat species in May 2021 comprised of this group (Figure 3, Figure B2, Table 2).

A-SVG-05 and -06 sub-groups belonged to the Decacovirus clade. A-SVG-05 sub-group was mainly comprised of sequences isolated from Rhinolophus bats (N=52) from September 2020 to July 2021 at Chirundu site. Furthermore, Hipposideros (N=1), Nycteris (N=1) and Miniopterus (N=2) bat species were also identified as carriers of this virus at this site in the same period. At Magweto site, six A-SVG-05 sequences from Hipposideros species (N=2) were identified in June 2021 and from Macronycteris spp. (N=4) in April and June 2021. A-SVG-06 group sequences (N=13) were only detected, at Magweto site from Rhinolophus (N=9), Hipposideros (N=1), Miniopterus (N=1) and from unspecified (N=2) bat species. This viral group was present from September to November 2020 at this site (Figure 3, Figure B2, Table 2).

A-SVG-07 sub-group belonged to the Minunacovirus clade, with one sequence obtained from Miniopterus spp. and one from an unspecified species (Figure 3, Table 2).

A-SVG-08 sub-group belonged to the Rhinacovirus clade and was comprised of sequences (N=16) obtained from samples collected in August, November, and December 2020 at Magweto site and in July 2021 at Chirundu site. Eight were from Rhinolophus, one from Nycteris and seven from uncharacterized bat species (Figure 3, Figure B2, Table 2).

3.6. Betacoronaviruses:

B-SVG-01 to B-SVG-05 groups belonged to the Hibecovirus clade. B-SVG-01 was the most important sub-clade with 105 sequences: five were from Hipposideros (N=3) and Macronycteris (N=2) bat species sampled at Magweto cave in March and April 2021. For the 100 remaining sequences, 73 were identified from Hipposideros, four from Rhinolophus, one from Nycteris and 22 from uncharacterized bat species collected from November 2020 to July 2021 (Figure 4, Figure B2, Table 2). B-SVG-02 and -04 were specific to Hipposideros caffer and Macronycteris gigas bat species from Magweto cave and were detected from November 2020 to April 2021 and from September to June 2021 respectively (Figure 4, Figure S2, Table 2). B-SVG-03 sub-clade was comprised of 6 sequences isolated at Chirundu site from Hipposideros (N=2), Rhinolophus (N=1) and from undetermined bat species (N=3). This sub-clade was detected in February, May, and June 2021 (Figure 4, Figure B2, Table 2). B-SVG-05 was composed of 52 sequences, 51 were detected at Magweto site and one at Chirundu site. Only Hipposideros bat species were infected by this sub-clade and these viruses were present at Magweto site from November 2020 to July 2021 and only in March 2021 at Chirundu site (Figure 4, Figure B2, Table 2).
B-SVG-06 and -07 belong to the Sabercovirus clade together with SARS-CoV-1 and -2 as well as numerous SARS related-Bat CoVs isolated from Rhinolophus bat species in Asia and Africa. B-SVG-06 sub-clade was specific to Magweto site with five sequences characterized from Rhinolophus bat species, one from Nycteris bat species and two from uncharacterized bat species and the presence of this sub-clade was detected from October 2020 to March 2021 (Fig 4, Fig 2S, Table 2). As for B-SVG-07 sub-clade, it was specific to Chirundu site and was comprised of only four sequences, (N=2) from Rhinolophus bat species and (N=2) from uncharacterized bat species collected in July 2021 (Figure 4, Figure B2, Table 2).

B-SVG-08 belonged to the Merbecovirus clade. This subclade was mainly composed of sequences isolated at Chirundu site from Hipposideros (N=8), Nycteris (N=6), Rhinolophus (N=1) and two unspecified bat species sampled from August 2020 to March 2021 (Figure 4, Figure B2, Table 2). Three sequences were isolated at Magweto site from Hipposideros (N=2) and Rhinolophus (N=1) bat species collected in April 2021.

4. Discussion

The majority of bat coronavirus studies in Africa mainly focused on CoVs genetic diversity and prevalence mostly based on single sampling sessions [42]. However, longitudinal studies covering bat reproduction cycles including the gestation, parturition, lactation, weaning and juvenile periods are crucial to further understand whether viral diversity and viral shedding might vary over time and to assess the high-risk season for CoV spillovers from bats to human and/or domestic animal populations in close contact with these bat populations [28,42,43]. Owing to logistical challenges, only few longitudinal studies have been conducted on bat coronaviruses. Moreover, these studies highlighted the variability of viral shedding over time and more particularly during the reproductive season [28,30,42,44,45]. We performed a longitudinal study in two multi-bat species roosting sites in Zimbabwe. We collected faecal samples monthly from August 2020 to July 2021. Unfortunately, due to the travel restrictions of the lock-down periods during the COVID-19 pandemic, only nine months at Chirundu farm site and six months at Magweto cave site were sampled instead of the expected 12 month follow up. Nonetheless we collected more than 3000 faecal samples covering reproductive and non-reproductive periods of the bat colonies. For this study we assumed that a faecal sample collected on a space of 20 cm² from the plastic sheet set beneath the roosting sites represented one individual defaecation area.

A high genetic diversity was observed among the newly identified coronaviruses including Alphacoronaviruses from five sub-genera; Duvinacovirus, Setracovirus, Decacovirus, Minunacovirus and Rhinacovirus, as well as Betacoronaviruses from three sub-genera; Hibecovirus, Sarbecovirus and Merbecovirus. All these sub-genera except for Decacovirus, Minacovirus and Rhinacovirus have been previously described in Africa [42]. Our study enlarges the knowledge on CoV diversity in bats from Africa.

The Hipposideros bat species were the most prominent carriers of CoVs representing 52.4% of our CoV sequences followed by Rhinolophus bats (16.7%), Macronycteris gigas species (12%) and more anecdotally some Nycteris species (3.1%) and very few Miniopterus bats (1.1%). Bat species were only characterized for the positive CoV samples, and it is therefore difficult to link these results with bat species community constitution at both sites during the time of this study. Nonetheless, at Chirundu farm we visually observed a shift of bat populations in June and July. Indeed, Hipposideros bat species were predominant before June whereas Rhinolophus species became predominant in June and July, a shift confirmed by cytochrome b analyses of all coronavirus positive samples. Thus, in June and July, most of our CoV positive samples were detected from Rhinolophus bat spp.

The Duvinacovirus sub-genus comprise the Hu-CoV 229E strain known to induce common cold in humans [31]. This virus originates from bats and more specifically from Hipposideros species [3]. In our study we confirmed Hipposideros species as the main carri-
ers of CoV 229E related strains in Zimbabwe. However, we also observed a *M. gigas* specific *Duvinacovirus* related sub-clade. This viral strain was also detected in a few *Rhinolophus* and *Nycteris* bats, presence in these species can be attributed to cross-species transmission from *Hipposideros* or *Macronycteris* bat species. However cross contamination among fecal samples collected on the floor cannot be excluded. Our phylogenetic analyses also showed phylogeographic sub-clades according to the sampling site.

We also identified a CoV clade belonging to the *Setracoovirus* sub-genus together with the Hu-CoV NL63 strain which also induces common cold in humans [31]. To date NL63-related bat CoV have been identified to originate from the *Triaenops* bat genus [42]. In our study we characterized a NL63 CoV related strain from a *Miniopterus* bat species. However, only one sequence was recovered suggesting a very rare circulation of this virus in our study sites. Moreover, it is possible that this virus was acquired by this bat through contact with a *Triaenops* bat species from another site. Nonetheless, only one *Triaenops* bat species has been recorded in this region, *Triaenops afer*, which seems to be marginally present in the Eastern region of Zimbabwe [46], thus suggesting that another bat species could also be a carrier of this CoV strain in Zimbabwe. Within the *Decacovirus* sub-genus, we observed two different sub-clades corresponding to the two sites with the majority of *Rhinolophus* bat species as carriers of this virus. Additionally, we also observed some cross-species transmissions of this virus from *Rhinolophus* bats to *Hipposideros, Nycteris* and *Miniopterus* bat species although here too cross contamination among fecal samples collected on the floor cannot be excluded. The two last Alpha subgroup viruses, A-SVG-07 and -08, were detected at Magweto and Chirundu sites respectively with A-SVG-07 belonging to the sub-genus *Minunacovirus* with only two sequences characterized and A-SVG-08 mainly present in *Rhinolophus* bat species belonging to the *Rhinacovirus* sub-genus.

The *Hibecovirus* sub-genus was the most important *Betacoronavirus* clade representing 88% of all ß-CoV sequences characterized in our study. Like the *Duvinacovirus* sub-genus, the majority of our *Hibecovirus* sequences were identified in *Hipposideros* bat species and a few *Rhinolophus* and *Nycteris* bats. The latter species might have been infected by cross-species transmission of the virus from *Hipposideros* bats. We also evidenced the presence of *Sarbecovirus* which is composed of SARS-CoV-01 and -02 strains and bat CoVs isolated from *Rhinolophus* bat species. This sub-genus was characterized at both sites. At Magweto site only eight samples were positive and four from Chirundu highlighting the low circulation of these viruses at both sites despite detection from October 2020 to March 2021 at Magweto site. Finally, our last ß-CoV sub viral group belonged within the *Merbecovirus* sub-genus which also comprised the MERS-CoV virus. Both *Hipposideros* and *Nycteris* bat species were infected as well as one *Rhinolophus* species. Bat CoVs from this sub-genus were mainly associated with Vespertilioniforme bat sub-order [42,47] from *Molosidae, Nycteridae*, and *Emballonuridae* bat families [48–50]. In this study we also evidenced *Merbecovirus* in Pteropodiforme bat sub-order and more particularly in *Hipposideridae* and *Rhinolophidae* bat families which extended the range of bat families as carriers of *Merbecoviruses*.

Globally, we identified bat CoVs belonging to five out of the eight CoV sub-genera previously described for *Alphacoronavirus* genus, and three out of the four sub-genera described for *Betacoronavirus* genus. We also observed what might indicate cross-species transmissions within the same site, but possibility of contamination cannot be excluded. Thus, the impact of these potential transmissions to new bat hosts has yet to be elucidated as well as establishing whether these new hosts might play a role in the dissemination of these viruses to other animal species or yet to humans. Additionally, we observed identical viruses in both sites suggesting that the two studied bat communities are somehow interconnected. Magweto and Chirundu sites are situated at 250 km apart and numerous caves are present in-between allowing bat population exchanges [51] alongside with their microorganism, over a large area.

CoV RNA was detected in 24% of the bat samples at Chirundu site, and in 16.5% of the small insectivorous bat samples and 39% of the *M. gigas* bat samples at Magweto site.
However, at Magweto site this result was probably underestimated since we were not able to collect samples from December 2020 to March 2021, which corresponds to the lactation and weaning periods with numerous juveniles in the cave. In other longitudinal surveys, high RNA CoVs detection was found to be associated with juvenile bats [28,30,45]. Pathogens respond to the influx of susceptible hosts (new recruits) through increased transmission following the birth pulse [52–54]. At Chirundu site we observed a peak of RNA CoV prevalence during the lactation, weaning and juvenile periods with 37%, 44% and 35% of RNA CoV detection respectively. We observed the same trend at Magweto site in the small bats with an RNA CoV detection of 35.9% during the parturition period in November 2020 and of 34.7% during the juvenile period in March 2021. The transmission and prevalence of pathogens is facilitated by higher proportion of juveniles who are immunologically immature [30,54] explaining thus the high CoVs prevalence during these seasons. Furthermore, the waning protection of maternal antibodies upon birth and weaning leads to increased prevalence in virus detection in bats [21]. Due to the similarity in dominant bat species between the two sites, it is likely that the Magweto site showed a similar trend in CoVs prevalence during the unsampled and unobserved months corresponding to the lactation and weaning periods as observed at Chirundu site. Additionally, within the M. gigas bat species the peak of RNA CoV detection (56.4%) was in October 2020 during the gestation period which was also the period with the most important M. gigas population in the cave. It is important to bear in mind that this study was conducted over 1 year only, and that sampling over a long period of time would be needed to confirm the annual seasonal trends observed in this study. Moreover, the prevalence peaks of the analysed viral sub-groups which occur at different stages of the reproductive season show that the global seasonal trend observed at the CoVs family level is not necessarily the case for very viral sub-group. Further research should thus be done on specific CoVs groups which are of great importance to domestic animal and public health.

Coronavirus evolution and emergence in new hosts is driven by different factors such as recombination, horizontal gene transfer, gene duplication and alternative open reading frame which expand their functional and adaptative capacity for its current and new host. During the high viral shedding season, bats are carriers of quasi-species pools of viruses which contribute to their genetic diversity and increase their potential to jump and emerge in a new species [55]. Due to the great genetic diversity observed at both sites as well as the important RNA bat CoVs prevalence during the reproductive season, our sites could be potential hot spots of new CoVs spillover and potential zoonotic emergence.

The risk of CoVs spillover to human population is higher at Magweto site than Chirundu site. At Chirundu, the roosting area is in the basement of an old, damaged building with very few direct interactions between the farm workers and the bat populations. Contrary to this, Magweto site could be more susceptible to lead to a viral spillover event. Human populations use the cave for different activities. Throughout the year, bat guano is collected inside the cave and applied as fertilisers in neighbouring fields and sold for commercial earnings, generating faecal dust which is inhaled by workers. The workers and buyers are thus directly exposed to bat dejections and aerosols. Moreover, this cave is considered to be sacred, with traditional and religious activities inside the cave, and finally some people hunt M. gigas bats for consumption. All these impose direct interactions between bats and humans. The interface between bats and human populations at Magweto cave is thus very tight, and increased surveillance of viral circulation and zoonotic transmissions should be recommended, especially during periods with peaks of viral shedding, between October and March.

5. Conclusion

Altogether, our biological results associated with the human activities at Magweto site and to a lesser extent at Chirundu site highlighted the need to further document the viral infectious risk in both human and domestic animal populations surrounding bat habitats in Zimbabwe. More particularly, the human population using caves is constantly
exposed to viral shedding and all factors required for viral spillover are met at least for the first and second stages of viral disease emergence [56,57]. This study falls within the One Health approach where the established results can be used to form a framework for further studies in human populations living in proximity to the study areas to further extrapolate the extent, if there is any of the bat coronaviruses circulation in humans and domestic animals, through a serological study.

Our study focused on Coronaviruses; however, bats host a plethora of potential infectious viruses and numerous bat species known to harbor highly fatal viruses are present in Zimbabwe. Therefore, further studies are needed to better understand the bat-viral ecology in Zimbabwe and to better assess the risk of viral disease emergence in this geographic area [42,47].

Acknowledgments: We thank Billy Butete for his field assistance. The authors gratefully acknowledge and thank the International Atomic Energy Agency for making available the sequencing services. We thank the Research Council of Zimbabwe for approving this study (research registration certificate N° 03006) and the Hurungwe Rural District council for their assistance and facilitation. We thank the Animal Research Ethics Committee of Zimbabwe for their approval (ref number 002/2017). This work was conducted within the framework of the Research Platform “Production and Conservation in Partnership” (RP–PCP).

Funding: This work was supported by grants of the Agence Nationale de Recherche sur le SIDA et les Maladies Infectieuses (ANRS-COVID10). The ANR (the French National Research Agency) under the "Investissements d’avenir" programme with the reference ANR-16-IDEX-0006 and the French Ministry of Europe and Foreign Affairs (Fond de Solidarité pour les Projets Innovants, les sociétés civiles, la francophonie et le développement humain—CAZCOM Project).

Conflicts of Interest: We declare that we have no conflicts of interest

Author’s contribution: Conceptualization: VC, HdN, MB, MP, AA, LG and FL.; Methodology: VC, LG, JC, HdN, DP, EG, GM and FL.; Software: VC, JC, HdN and FL.; Validation: VC, HdN, JC, and FL.; Formal Analysis: VC, HdN, JC, and FL.; Investigation: VC, VP, NC, GM, and FL.; Resources: DP, GM, MP, MB, HdN, LG, and Fl.; Data Curation: VC, HdN, JC and FL.; Writing – Original Draft Preparation: VC and FL; Writing – Review & Editing: HdN, MB, MP, AA, LG, VP, EG, DM, JC, DP, GM and FL.; Supervision: HdN, DP, GM, MB, and FL.; Project Administration: LG, MB, HdN and FL.; Funding Acquisition: MP, MB, HdN, LG and FL.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Table A1: The reproductive season of dominant bat species across months of the year. Figure B1: Phylogenetic tree of bat species identified by Cytochrome b; Figure B2: Time-line of sub-viral groups detection at Chirundu and Magweto sites; Figure B3: Results of the Chirundu site sub-viral groups CoVs prevalence;

REFERENCES
[1] ICTV. Positive Sense RNA Viruses: Coronaviridae. VIRUS Taxon [Internet]. 2020: Available from: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-ra-viruses-2011/w/posrna_viruses/222/coronaviridae.
[2] Al-Qahtani AA. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Emergence, history, basic and clinical aspects. Saudi J Biol Sci [Internet]. 2020;xxx:1–8. Available from: https://doi.org/10.1016/j.sjbs.2020.04.033.
[3] Corman VM, Muth D, Niemeyer D, et al. Hosts and Sources of Endemic Human Coronaviruses. Acad Press Inc [Internet]. 2018;100:163–188. Available from: https://dx.doi.org/10.1016/bs.aivir.2018.01.001.
[4] Li K, Lin X, Wang W, et al. Isolation and characterization of a novel arenavirus harbored by Rodents and Shrews in Zhejiang province, China. Virology [Internet]. 2015;476:37–42. Available from: https://dx.doi.org/10.1016/j.virol.2014.11.026.
[5] Monchatre-Leroy E, Boué F, Boucher JM, et al. Identification of alpha and beta coronavirus in wildlife species in france: bats, rodents, rabbits, and hedgehogs. Viruses [Internet]. 2017;9. Available from: https://dx.doi.org/10.3390/v9120364.
[6] Wertheim JO, Chu DKW, Peiris JSM, et al. A Case for the Ancient Origin of Coronaviruses. J Virol [Internet]. 2013;87:7039–7045. Available from: https://dx.doi.org/10.1128/jvi.01273-12.
[7] Macnaughton MR, Thomas BJ, Davies HA, et al. Infectivity of human coronavirus strain 229E. J Clin Microbiol [Internet]. 1980;12:462–468. Available from: https://dx.doi.org/10.1128/jcm.12.3.462-468.1980.
[8] Van Der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. Nat Med [Internet]. 2004;10:368–373. Available from: https://dx.doi.org/10.1038/nm1024.
[9] Razanajatovo NH, Nomenjanahary LA, Wilkinson DA, et al. Detection of new genetic variants of Betacoronaviruses in Endemic Frugivorous Bats of Madagascar. Virol J [Internet]. 2015;12:42:1–8. Available from: https://doi.org/10.1186/s12985-015-0271-y.

[10] Woo PCY, Lau SKP, Li KSM, et al. Molecular diversity of coronaviruses in bats. Virology [Internet]. 2006;351:180–187. Available from: https://dx.doi.org/10.1016/j.virol.2006.02.041.

[11] Hu B, Ge X, Wang L, et al. Bat origin of human coronaviruses: Emerging and re-emerging pathogens in humans and animals. Susanna Lau Positive-strand RNA viruses. Virol J [Internet]. 2015;1:–10. Available from: https://dx.doi.org/10.1186/s12985-015-0422-1.

[12] Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020;579:270–273. Available from: https://dx.doi.org/10.1038/s41586-020-1207-7.

[13] Vlasova A, Saif LJ. Bovine Coronavirus and the Associated Diseases. Front Vet Sci [Internet]. 2021;8:1–14. Available from: https://dx.doi.org/10.3389/fvets.2021.643220.

[14] Woo PCY, Lau SKP, Huang Y, et al. Coronavirus Diversity, Phylogeny and Interspecies Jumping. Exp Biol Med [Internet]. 2009;234:1117–1127. Available from: https://dx.doi.org/10.3811/0903-MR.94.

[15] Luis AD, O’Shea TJ, Hayman DTS, et al. Network analysis of host – virus communities in bats and rodents reveals determinants of cross-species transmission. Ecol Lett [Internet]. 2015;18:1153–1162. Available from: https://dx.doi.org/10.1111/ele.12491.

[16] Drexler JF, Corman VM, Müller MA, et al. Bats host major mammalian paramyxoviruses. Nat Commun [Internet]. 2012;3:1–12. Available from: https://dx.doi.org/10.1038/ncomms1976.

[17] Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med [Internet]. 2004;10:588–597. Available from: https://dx.doi.org/10.1038/nm1143.

[18] El-Sayed A, Kamel M. Coronaviruses in humans and animals: the role of bats in viral evolution. Environ Sci Pollut Res Int [Internet]. 2021;28:19589–1960. Available from: https://dx.doi.org/10.1007/s11356-021-12553-1.

[19] Li X, Zai J, Zhao Q, et al. Evolutionary history, potential intermediate animal host, and cross-species analyses of SARS-CoV-2. J Med Virol [Internet]. 2020;92:602–611. Available from: https://dx.doi.org/10.1002/jmv.25731.

[20] Dellaune D, Hul V, Karlsson EA, et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat Commun [Internet]. 2021;12:1–7. Available from: https://dx.doi.org/10.1038/s41467-021-26809-4.

[21] Letko M, Coertse J, De Vries L, et al. Bat-borne viruses in Africa: a critical review. J Zool [Internet]. 2020;311:77–98. Available from: https://doi.org/10.1111/jzo.12769.

[22] Markotter W, Coertse J, De Vries L, et al. Bat-borne viruses in Africa: a critical review. J Zool [Internet]. 2020;311:77–98. Available from: https://doi.org/10.1111/jzo.12769.

[23] Bourgarel M, Noël V, Pfukenyi DM, et al. Circulation of Alphacoronavirus, Betacoronavirus and Paramyxovirus in Hipposideros bat species in Zimabyrinth. Infect Genet Evol [Internet]. 2018;58:253–257. Available from: https://dx.doi.org/10.1016/j.meegid.2018.01.007.

[24] Bourgarel M, Pfukenyi D, Noël V, et al. Next-generation sequencing on insectivorous bat guano: An accurate tool to identify arthropod viruses of potential agricultural concern. Viruses [Internet]. 2019;11:1–14. Available from: https://dx.doi.org/10.3390/v11112102.

[25] Monadjem A, Taylor PJ, Cotterill FPD, et al. Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis. 2010.

[26] Anthony SJ, Johnson CK, Greig DJ, et al. Global patterns in coronavirus diversity. Virus Evol [Internet]. 2017;3:1–15. Available from: https://dx.doi.org/10.1093/ve vex012.

[27] Cappelle J, Furey N, Hoem T, et al. Longitudinal monitoring in Cambodia suggests higher circulation of alpha and betacoronaviruses in juvenile and immature bats of three species. Sci Rep [Internet]. 2021;11:1–11. Available from: https://dx.doi.org/10.1038/s41598-021-03169-z.

[28] Banerjee A, Kulcsar K, Misra V, et al. Bats and coronaviruses. Viruses [Internet]. 2019;11:1–14. Available from: https://dx.doi.org/10.3390/v11010076.

[29] Bourgarel M, Frukenyi DM, Boué V, et al. Circulation of Alphacoronavirus, Betacoronavirus and Paramyxovirus in Hipposideros bat species in Zimbabwe. Infect Genet Evol [Internet]. 2018;58:253–257. Available from: https://dx.doi.org/10.1016/j.meegid.2018.01.007.

[30] Bourgarel M, Noël V, Frukenyi D, et al. Next-generation sequencing on insectivorous bat guano: An accurate tool to identify arthropod viruses of potential agricultural concern. Viruses [Internet]. 2019;11:1–14. Available from: https://dx.doi.org/10.3390/v11112102.

[31] Monadjem A, Taylor PJ, Cotterill FPD, et al. Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis. 2010.
[36] Chu DKW, Leung CYH, Gilbert M, et al. Avian Coronavirus in Wild Aquatic Birds. J Virol [Internet]. 2011;85:12815–12820. Available from: https://doi.org/10.1128/jvi.05838-11.

[37] Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol [Internet]. 2016;33:1870–1874. Available from: https://doi.org/10.1093/molbev/msw054.

[38] Trifinopoulos J, Nguyen LT, von Haeseler A, et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res [Internet]. 2016;44:W232–W235. Available from: https://doi.org/10.1093/nar/gkw256.

[39] Yoder AD, Yang Z. Divergence dates for Malagasy lemurs estimated from multiple gene loci: Geological and evolutionary context. Mol Ecol [Internet]. 2004;13:757–773. Available from: https://dx.doi.org/10.1046/j.1365-294X.2004.02106.x.

[40] Kocher TD, Thomas WK, Meyer A, et al. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A [Internet]. 1989;86:6196–6200. Available from: https://doi.org/10.1073/pnas.86.16.6196.

[41] Agresti A, Coull BA. Approximate Is Better than “Exact” for Interval Estimation of Binomial Proportions. Am Stat. 1998;52:119–126.

[42] Geldenhuys M, Mortlock M, Epstein JH, et al. Overview of Bat and Wildlife Coronavirus Surveillance in Africa: A Framework for Global Investigations. Viruses [Internet]. 2021;13:936. Available from: https://doi.org/10.3390/v13050936.

[43] Seltmann A, Corman VM, Rasche A, et al. Seasonal Fluctuations of Astrovirus, But Not Coronavirus Shedding in Bats Inhabiting Human-Modified Tropical Forests. 2017;

[44] Drexler JF, Corman VM, Wegner T, et al. Amplification of emerging viruses in a bat colony. Emerg Infect Dis [Internet]. 2011;17:449–456. Available from: https://doi.org/10.3201/eid1703.100526.

[45] Montecino-Latorre D, Goldstein T, Gilardi K, et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Heal Outlook. 2020;2:1–13.

[46] Van Cakenberghe V, Seamark E. African Chiroptera Report 2020 [Internet]. 2020. Available from: http://dx.doi.org/10.13140/RG.2.2.32630.63049.

[47] Wong ACP, Li X, Lau SKP, et al. Global epidemiology of bat coronaviruses. Viruses. 2019;11:1–17.

[48] Allen SJ, Ojeda-Flores R, Rico-Chávez O, et al. Coronaviruses in bats from Mexico. J Gen Virol [Internet]. 2013;94:1028–1038. Available from: https://doi.org/10.1099/vir.0.049759-0.

[49] Annan A, Baldwin HJ, Corman VM, et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis [Internet]. 2013;19:456–459. Available from: https://doi.org/10.3201/eid1903.121503.

[50] Memish ZA, Mishra N, Olival KJ, et al. Middle East respiratory syndrome coronavirus in Bats, Saudi Arabia. Emerg Infect Dis [Internet]. 2013;19:1819–1823. Available from: https://doi.org/10.3201/eid1911.131172.

[51] Monadjem A, Soisook P, Thong V, et al. Family Hipposideridae (Old World Leaf-nosed Bats). Wilson, Don E., Mittermeier, Russel A. Handb. Mamm. World. 2019. p. 227–258. Available from: https://www.gbif.org/species/163433721.

[52] Plowright RK, Eby P, Hudson PJ, et al. Ecological dynamics of emerging bat virus spillover. Proc R Soc B Biol Sci [Internet]. 2014; Available from: https://doi.org/10.1098/rspb.2014.2124.

[53] Hayman DTS, Bowen RA, Cryan PM, et al. Ecology of Zoonotic Infectious Diseases in Bats: Current Knowledge and Future Directions. Zoonoses Public Health [Internet]. 2013;60:2–21. Available from: https://dx.doi.org/10.1111/zph.12000.

[54] Bergner LM, Orton RJ, Benavides JA, et al. Demographic and environmental drivers of metagenomic viral diversity in vampire bats. Mol Ecol [Internet]. 2020;29:26–39. Available from: https://dx.doi.org/10.1111/mec.15250.

[55] Menachery VD, Yount BL, Debbink K, et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med [Internet]. 2015;21:1508–1513. Available from: https://dx.doi.org/10.1038/nm.3985.

[56] Plowright RK, Parrish CR, Mccallum H, et al. Pathways to zoonotic spillover. Nat Rev Microbiol [Internet]. 2017;15:502–510. Available from: http://dx.doi.org/10.1038/nrmicro.2017.45.

[57] Parrish CR, Holmes EC, Morens DM, et al. Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiol Mol Biol Rev [Internet]. 2008;72:457–470. Available from: https://doi.org/10.1128/mmbr.00004-08.