Quorum Sensing Mediated Pathogenicity, Virulence Genes and Class 1 Integron in Carbapenem-Resistant Clinical Pseudomonas Aeruginosa Isolates

Ceren Başkan (ceren.yavuz@amasya.edu.tr)
Amasya University: Amasya Universitesi
https://orcid.org/0000-0001-7849-4459

Belgin Sırıken
Ondokuz Mayis University: Ondokuz Mayis Universitesi

Enis Fuat Tüfekci
Kastamonu University: Kastamonu Universitesi

Çetin Kılınç
Kastamonu University: Kastamonu Universitesi

Ömer Ertürk
Ordu University: Ordu Universitesi

İrfan Erol
Eastern Mediterranean University: Dogu Akdeniz Universitesi

Research Article

Keywords: carbapenem-resistant Pseudomonas aeruginosa, QS system, virulence genes, class 1 integron

Posted Date: December 9th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1148175/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Carbapenems are the most effective agents for treating carbapenem-resistant clinical P. aeruginosa (CRPsA) infections. During an infection, a quorum-sensing (QS) system and its regulating virulence genes have a great role. The aim of the study was to detect the presence of a las and rhl QS system and related virulence genes and a class 1 (Cls1) integron. A total of 52 CRPsA isolates obtained from Kastamonu, Turkey was analyzed. A conventional culture method, an oprL gene-based molecular assay for P. aeruginosa isolates, and an automated VITEK-2 compact system were applied for the isolation and identification of CRPsA isolates. The oprL gene was detected in all of the isolates tested. At least one of the las or rhl system genes was detected in 98.07% of the isolates, and the percentage of las system genes (98.07%) were higher than that of rhl system genes (90.38%). algD, lasB, toxA and aprA genes were detected in between 46.15% and 88.46% of the isolates, and co-existence of four genes were detected in 40.38% of the isolates. Cls1 integron and slime production using Congo Red Agar (CRA) were present in 51.92% and 67.30%, respectively, of the isolates. There was a significant positive correlation (p < .10) between the las system and the rhl system and a strongly positive correlation (p < .01 or p < .05) between the rhl system-four virulence genes and slime production-and among some virulence genes. In conclusion, the CRPsA isolates tested in the study are highly virulent and QS systems have a significant role in pathogenesis.

Introduction

Carbapenems (imipenem, ertapenem, meropenem and doripenem) are β-lactam, antibiotic class members and one of the most effective antipseudomonal drugs for curing infections commonly caused by P. aeruginosa. However, recent study results have shown that P. aeruginosa is becoming increasingly resistant against carbapenem (Tacconelli et al., 2018; Hu et al., 2019). According to the World Health Organization reports, carbapenem-resistant clinical P. aeruginosa (CRPsA) ranks second based on most criteria for bacteria among 20 antidrug-resistant bacterial species (Tacconelli et al., 2018). There are several major causes of carbapenem resistance, such as extensive clinical use of this antibiotic, overexpression of efflux systems, alterations or losses in outer membrane porin D (OprD) and carbapenemase production. The most common and globally reported carbapenemase genes, known as metallo-β-lactamases (MBLs) are transported from mobile genetic elements, specifically via integrons (Rojo-Bezares et al., 2016). In addition to these antibiotic resistance mechanisms of P. aeruginosa, its ability to produce biofilms and its success in escaping from the host immune system are related to the infection formation that is difficult to treat. Because bacterial biofilms have multiple tolerance mechanisms for antibiotic therapy, they cause biofilm infections to persist despite antibiotic exposure (Radovanovic et al., 2020). This result is owing to extracellular polymeric substances (EPS), which are detected around biofilm-forming bacteria and form a barrier against antimicrobial agents and host immune system elements (Brindhadevia et al., 2020; Chakraborthy et al., 2020).

Bacteria work together to carry out cell-to-cell communication by secreting small signaling molecules (autoinducers, AIs). When the population number reaches the threshold level, they start to form a biofilm due to EPS. This communication procedure is referred to as QS. The QS system of P. aeruginosa contains two major AI signaling molecules (AHL: 3-oxo-C₁₂-HSL and C₄-HSL). Each system (Las and Rhl) is encoded by two components: AI synthesis (lasI and rhlI genes) and their cognate transcriptional activating protein (lasR and rhlR genes). There is also a third system in P. aeruginosa known as the Pseudomonas quinolone signal, which is induced by 2-heptyl-3-hydroxy-4-quinolone and controlled by the las and rhl systems (Brindhadevia et al., 2020; Sirken et al., 2020; Elnegery et al., 2021). These systems in the QS mechanism cause the bacteria to have a successful role in
pathogenicity by adjusting the population densities and activating the relevant virulence factors. *P. aeruginosa* has many virulence factors. Some virulence factor-encoding genes, such as elastase (*lasB*), toxin A (*toxA*), and alkaline protease (*aprA*), are governed by the las and rhl synthesis genes (*lasI/lasR* and *rhlI/rhlR*) (Attiah et al., 2021). These virulence genes have been shown to host many proteins hydrolyses, causing host tissue damage, disrupting immune response, and supporting inflammation (Iiyama et al., 2017; Haghi et al., 2019; Everett and Davies, 2021). For instance, alginate is responsible for biofilm formation and has a great role in the structural preservation and stability of biofilms (Gholami et al., 2017).

The *oprL* gene encodes the structural membrane lipoprotein of *P. aeruginosa*. The presence of this specific outer membrane protein also has a key role in the hereditary resistance of *P. aeruginosa* to many antibiotics (efflux transport system or membrane selectivity). The gene is also employed for the determination of *P. aeruginosa* in clinical and other samples by polymerase chain reaction (PCR) at the species level or by reverse transcription (RT)-PCR assay (De Vos et al., 1997).

Due to the above-mentioned findings, understanding the QS system involved in pathogenicity and the regulatory mechanisms that regulate the virulence genes expression is critical for the development of alternative curing approaches for the monitoring and prevention of pseudomonal infections. Therefore, this study aimed to analyze (i) the presence of las and rhl QS genes and their relation to the role of regulation of virulence factors, (ii) the presence of *lasB*, *algD*, *toxA* and *aprA* virulence genes, (iii) the presence of Cls 1 integron, and (iv) biofilm formation.

Material And Methods

Isolation, identification, carbapenem-resistance profile of *P. aeruginosa*

A total of 52 carbapenem-resistant *P. aeruginosa* isolates obtained from various clinical samples [tracheal aspirate (*n* = 37), blood (*n* = 8), urine (*n* = 5) and wound (*n* = 2)] at the Clinical Microbiology Laboratory of Kastamonu Training and Research Hospital in Turkey, were employed as a material. The isolation and identification of the isolates were performed using a conventional method (determination of Gram and oxidase reaction, beta-hemolytic activity on sheep blood agar, colony morphology, pigment production, growth at 42°C) and the VITEK 2 compact system, and the carbapenem-resistance profile of the isolates was detected by the VITEK 2 compact system (BioMéreux, France) (Nakasone et al., 2007). Molecular confirmation of the isolates was applied using PCR assay based on *P. aeruginosa* species-specific *oprL* gene region detection according to Ahmadi and Roodsari (Ahmadi and Roodsari, 2016).

Slime production

Slime production was determined by cultivation of the isolates on CRA (including 37 g/L BHI broth, 10 g/L agar base, 50 g/L sucrose, 1 L water and 0.8 g/L Congo Red indicator) plates, as described by Freeman et al (Freeman et al., 1989).

The isolates were kept in nutrient broth with 15% glycerol at -86 °C for further analysis. *P. aeruginosa* ATCC 15692 was employed as a positive reference strain for detection of the *oprL* gene region, two QS systems and four virulence genes, and slime production tested.

DNA extraction
The isolates were sub-cultured on Trypticase Soya Agar (TSA) and a maximum of five colonies grown on TSA were collected. DNA extraction of the isolates was carried out using boiling method according to Katvoravutthichai et al. (Katvoravutthichai et al., 2016). The sequence, product size of the primers and amplification program (TurboCycler Lite 9020, Blue-Ray, Biotech) for the PCR assay utilized in this study are depicted in Table 1.

Detection of QS system genes

For this purpose, four gene regions (lasI/R, rhlI/R) associated with the las and rhl QS system were analyzed in the CRPsA isolates using PCR assay, previously described by Schaber et al. (Schaber et al., 2004).

Detection of QS-related virulence factors and class 1 integron

For this purpose, lasB, algD, toxA, and aprA virulence gene regions were determined using single target PCR assay with minor modifications to the protocol proposed by Martins (Martins et al., 2014). The total PCR mixture was 25 µL, including 1XPCR Buffer, 2.5 mM of MgCl₂, 0.2 mM of dNTPs, 0.2 µM of each primer, 1U of Taq polymerase, and 1 µL of template DNA.

Detection of Cls1 integron: For the presence of Cls1 integron, the integrase gene (intI1) was determined using the PCR assay previously described by Bass (Bass et al., 1999).

Statistical analysis

Fisher’s exact test was performed to analyze the relationship among the las and rhl QS systems, virulence gene distribution and biofilm formation. A statistical analysis was carried out using SPSS/20.0 software.

Results and discussion

CRPsA infections are one of the most serious healthcare-related infections because they are most commonly utilized for the last-choice antibiotic to cure P. aeruginosa infections (Morita et al., 2014). Many researchers stated that CRPsA’s infections cause problems such as increased mortality, longer hospital stay duration, and increased medical costs. According to available data from Turkey and other countries, the maximum human clinical CRPsA ratio is 60% (Baumgart et al., 2010; Bocharva et al., 2020; ECDC, 2020; Walters et al., 2019; Akgün et al., 2020; Çeken et al., 2021).

There have been limited data on the QS system and the presence of virulence genes in CRPsA isolates in contrast to its genetic diversity (Bogiel et al., 2021; Kumar et al., 2009; Ellappan et al., 2018; El-Mahdy, El-Kannishy, 2019). It is well known that the P. aeruginosa’s virulence genes expression is a highly complex procedure that is generally governed by las and rhl QS system genes. Kumar et al. stated that QS system-deficient strains that fail to create successful infection were associated with a decrease in virulence factors expression (Kumar et al., 2009). In the present study, two QS system genes were detected in almost all isolates (98.7%) and compared with the presence of the two QS system genes, the percentage of las system genes (98.07%) were higher than that of rhl system genes (90.38%). In addition, there was a positive correlation between two QS system genes (p < .10). Ellappan et al. reported that lasR genes and rhlR genes were identified in 81% and 84%, respectively, of the clinical CRPsA isolates (Ellappan et al., 2019). The current study results are higher [lasR (94.23%) and rhlR (82.69%)] than Ellappan et. Al.’s study results but lower than El-Mahdy and El-Kannishy’s study findings, in which QS lasR and rhlR genes were detected in all of the isolates (El-Mahdy, El-Kannishy, 2019).
Bacteria with QS systems that govern virulence factors and biofilm formation are more resistant to most treatment agents, such as carbapenems and next-generation antibiotics (Tanveer et al., 2020). The present study results supported this viewpoint to some extent. Hence, four virulence genes were identified at a ratio between 46.15% and 88.46% for 52 CRPsA isolates. When considering two QS system genes and slime production (67.30%) with four virulence genes, it can be concluded that the CRPsA isolates are highly virulent.

Pathogenesis of *P. aeruginosa* involves many stressful conditions (interferon, IFN), etc.) created by the host immune system, and to ensure that bacteria overcome many stressful factors and survive, a wide range of virulence genes are expressed, particularly by the las and rhl QS systems (Gonçalves et al., 2017). For instance, IFN-α produced by T-cells coordinates many different immunological responses (Schroder et al., 2004). IFN-α binds to *P. aeruginosa* outer membrane protein E (OprF). When the binding step occurs, the rhl QS system activates for the production of some virulence factors, such as lecA (encodes lecA, which are cytotoxic and adhesive factors) and pyocyanin. Afterward, the rhl QS system induces cytotoxic exoproducts such as exotoxin A to enter the host cell and then cause biofilm formation (Laughlin et al., 2000). Therefore, *toxA* gene is an important virulence factor in encoding exotoxin A (exoA). Our result of 86.53% is consistent with the results of Gonçalves et al. (Gonçalves et al., 2017). (87.3%) and Bogiel et al. (93.9%). These findings indicate that the *toxA* gene is highly common among CRPsA strains (Bogiel et al., 2021). In addition, according to some researchers there is a positive correlation among rhl system, exoA and biofilm formation, and the results of the present study also show agreement with the results (Laughlin et al., 2000; Diggle et al., 2006).

Another virulence factor is AprA, which also has a role in *P. aeruginosa* pathogenesis due to the degradation of wide proteins and destroys the host defense system (Hoge et al., 2010). In our study, the *aprA* gene was detected in 88.48% of the isolates, whereas Rojo-Bezares et al. and Bogiel et al. detected the gene in 100% of the isolates. There was also a positive significant correlation between the rhl system and *aprA* (*p* < 0.01) (Rojo-Bezares et al., 2016; Bogiel et al., 2021).

As an important virulence factor, the *algD* gene has a crucial role, especially in chronic lung infections and alginate biosynthesis. During infection and antibiotic therapy, the bacteria are transformed from the nonmucoid phenotype into mucoid-producing bacteria and start to produce alginate (Dogget, 1969). In the late stage of infection, mucoid-producing bacteria are dominant and cause deterioration, leading to a high mortality rate (Davis et al., 1980). In the current study, the *algD* gene was detected in 46.15% of the isolates. The results indicate that nearly half of the isolates have the mucoid-producing property and that there were significant correlations between *algD* and the rhl system (*p* < 0.05), between *algD* and slime production (*p* < 0.01), between *algD* and *lasB* (*p* < 0.05) and between *algD* and *toxA* (*p* < 0.05). Bogiel et al. and Ellappan et al. detected the *algD* gene in 92.5% and 93%, respectively, of the CRPsA isolates. The results of both studies are higher than our study results (Ellappan et al., 2018; Bogiel et al., 2021).

In our study, the CRPsA isolates were capable of biofilm formation due to *algD* gene (46.15%) and slime production (67.30%). These co-existing properties were present in 22 (42.30%) of the CRPsA isolates. From 37 tracheal origin isolates, 72.97% and 51.33% of the CRPsA isolates were capable of slime production and carried the *algD* gene, respectively. Thus, the majority of the tracheal origin CRPsA isolates have the potential of biofilm formation. According to Bogiel et al.’s study results, there was a positive correlation between *toxA* genes and *algD* genes (*p* < 0.05). Our study supports their results in terms of a positive correlation between *toxA* genes and *algD* genes (Bogiel et al., 2021).
There is limited research on biofilm formation of CRPsA isolates (Kumar et al., 2009). In El-Mahdy and El-Kannishy’s study, biofilm formation was detected in 65.2% and 94.1% of carbapenem-sensitive strains and carbapenem-resistant strains, respectively, and lasR and rhlR genes were identified in all CRPsA isolates (El-Mahdy and El-Kannishy, 2019). The authors concluded that biofilm formation was significantly related to carbapenem-resistant isolates. Kumar et al.’s study results support this conclusion. Similarly, in our study, slime production was determined in 67.30% of the isolates, and there was a positive correlation between the rhl QS system and slime production. A significant correlation between slime production and algD, as well as lasB genes (Table 3), was also detected (Kumar et al., 2009).

As a protease enzyme, elastase B (lasB) (pseudolysin) is encoded by the lasB gene. LasB is associated with cystic fibrosis due to elastinolytic activation and with vascular inflammation due to elastin fiber’s disorganization in vascular tissue due to protease degradation by lasB (Schultz and Miller, 1974). Similar to aprA, lasB also degrades some proteins, such as INF-γ, tumor necrosis factor-α and interleukin-6 (Horvat et al., 2010). lasB has an important role in the differentiation of pseudomonal biofilms (Yu et al., 2014). Tielen et al. showed that overexpression of lasB gene was not applicable to hard biofilm, but it contributes to the altering of the extracellular polymeric substances of the biofilm structure, such as reducing the alginate content but increasing the rhamnolipids concentration (Tielen et al., 2010). In this respect, in our study, lasB was detected in 69.23% of the CRPsA isolates, and there was a positive correlation between lasB and slime production and between lasB and algD genes. In the present study, lasB was identified in 69.23% of the CRPsA isolates. The ratio was quite lower than the ratios indicated by Ellappan et al. and Rojo-Bezares et al.’s study results. They detected the gene in CRPsA isolates at a ratio of 94% and in all of the imipenem resistance P. aeruginosa isolates, respectively (Rojo-Bezares et al., 2016; Ellappan et al., 2018).

CRPsA occurs primarily due to chromosomal mutation in P. aeruginosa isolates (Bocharva et al., 2020). The carbapenemase genes of the bacterium generally carries on mobile genetic elements such as integrons, and the gene spreads the resistance within and between species by integrons (Castanheira et al., 2009; Bocharva et al., 2020). Similar to this study, certain studies investigate the presence of integrons among CRPsA isolates, and a corresponding ratio between 67% and 13.6% has been obtained (Sung et al., 2009; Estepa et al., 2015; Liapis et al., 2019; Bocharva et al., 2020). Liapis et al. reported that most blaIMP genes in P. aeruginosa isolates are carried by Cls 1 integrons (Liapis et al., 2019). In the current study, Cls 1 integron was detected in 51.92% (27/52) of the CRPsA isolates, which is higher than the results of Sung et al. (13.6 %) and Bocharova et al. (44.1 %) but lower than the results of Estepa et al. (67%) (Sung et al., 2009; Estepa et al., 2015; Bocharova et al., 2020). Similar to our study, all study results indicate that carbapenemase gene can be transferred among bacteria due to the presence of integrons.

In conclusion, based on the findings of the current study, there is a significant positive correlation between las-rhl system, and between the QS system and four virulence genes and slime production. Cls 1 integron is common in the tested CRPsA isolates. Therefore, the CRPsA isolates are highly virulent and QS systems have a significant role in pathogenesis. Carbapenemase gene can be transferred among bacteria. All of the results indicate that CRPsA isolates are great concerns in terms of clinical aspects and to control of spread of the carbapenemase gene.

Results And Discussion

CRPsA infections are one of the most serious healthcare-related infections because they are most commonly utilized for the last-choice antibiotic to cure P. aeruginosa infections (Morita et al., 2014). Many researchers stated
that CRPsA's infections cause problems such as increased mortality, longer hospital stay duration, and increased medical costs. According to available data from Turkey and other countries, the maximum human clinical CRPsA ratio is 60% (Baumgart et al., 2010; Bocharva et al., 2020; ECDC, 2020; Walters et al., 2019; Akgün et al., 2020; Çeken et al., 2021).

There have been limited data on the QS system and the presence of virulence genes in CRPsA isolates in contrast to its genetic diversity (Bogiel et al., 2021; Kumar et al., 2009; Ellappan et al., 2018; El-Mahdy, El-Kannishy, 2019). It is well known that the *P. aeruginosa* virulence genes expression is a highly complex procedure that is generally governed by las and rhl QS system genes. Kumar et al. stated that QS system-deficient strains that fail to create successful infection were associated with a decrease in virulence factors expression (Kumar et al., 2009). In the present study, two QS system genes were detected in almost all isolates (98.7%) and compared with the presence of the two QS system genes, the percentage of las system genes (98.07%) were higher than that of rhl system genes (90.38%). In addition, there was a positive correlation between two QS system genes (*p* < .10). Ellappan et al. reported that *lasR* genes and *rhlR* genes were identified in 81% and 84%, respectively, of the clinical CRPsA isolates (Ellappan et al., 2019). The current study results are higher [*lasR* (94.23%) and *rhlR* (82.69%)] than Ellappan et. Al.'s study results but lower than El-Mahdy and El-Kannishy's study findings, in which QS *lasR* and *rhlR* genes were detected in all of the isolates (El-Mahdy, El-Kannishy, 2019).

Bacteria with QS systems that govern virulence factors and biofilm formation are more resistant to most treatment agents, such as carbapenems and next-generation antibiotics (Tanveer et al., 2020). The present study results supported this viewpoint to some extent. Hence, four virulence genes were identified at a ratio between 46.15% and 88.46% for 52 CRPsA isolates. When considering two QS system genes and slime production (67.30%) with four virulence genes, it can be concluded that the CRPsA isolates are highly virulent.

Pathogenesis of *P. aeruginosa* involves many stressful conditions (interferon, IFN), etc.) created by the host immune system, and to ensure that bacteria overcome many stressful factors and survive, a wide range of virulence genes are expressed, particularly by the las and rhl QS systems (Gonçalves et al., 2017). For instance, IFN-α produced by T-cells coordinates many different immunological responses (Schroder et al., 2004). IFN-α binds to *P. aeruginosa* outer membrane protein E (OprF). When the binding step occurs, the rhl QS system activates for the production of some virulence factors, such as lecA (encodes lecA, which are cytotoxic and adhesive factors) and pyocyanin. Afterward, the rhl QS system induces cytotoxic exoproducts such as exotoxin A to enter the host cell and then cause biofilm formation (Laughlin et al., 2000). Therefore, *toxA* gene is an important virulence factor in encoding exotoxin A (exoA). Our result of 86.53% is consistent with the results of Gonçalves et al. (Gonçalves et al., 2017). (87.3%) and Bogiel et al. (93.9%). These findings indicate that the *toxA* gene is highly common among CRPsA strains (Bogiel et al., 2021). In addition, according to some researchers there is a positive correlation among rhl system, exoA and biofilm formation, and the results of the present study also show agreement with the results (Laughlin et al., 2000; Diggle et al., 2006).

Another virulence factor is AprA, which also has a role in *P. aeruginosa* pathogenesis due to the degradation of wide proteins and destroys the host defense system (Hoge et al., 2010). In our study, the *aprA* gene was detected in 88.48% of the isolates, whereas Rojo-Bezares et al. and Bogiel et al. detected the gene in 100% of the isolates. There was also a positive significant correlation between the rhl system and *aprA* (*p* < .01) (Rojo-Bezares et al., 2016; Bogiel et al., 2021).
As an important virulence factor, the *algD* gene has a crucial role, especially in chronic lung infections and alginate biosynthesis. During infection and antibiotic therapy, the bacteria are transformed from the nonmucoid phenotype into mucoid-producing bacteria and start to produce alginate (Dogget, 1969). In the late stage of infection, mucoid-producing bacteria are dominant and cause deterioration, leading to a high mortality rate (Davis et al., 1980). In the current study, the *algD* gene was detected in 46.15% of the isolates. The results indicate that nearly half of the isolates have the mucoid-producing property and that there were significant correlations between *algD* and the rhl system (*p* < .05), between *algD* and slime production (*p* < .01), between *algD* and *lasB* (*p* < .05) and between *algD* and *toxA* (*p* < .05). Bogiel et al. and Ellappan et al. detected the *algD* gene in 92.5% and 93%, respectively, of the CRPsA isolates. The results of both studies are higher than our study results (Ellappan et al., 2018; Bogiel et al., 2021).

In our study, the CRPsA isolates were capable of biofilm formation due to *algD* gene (46.15%) and slime production (67.30%). These co-existing properties were present in 22 (42.30%) of the CRPsA isolates. From 37 tracheal origin isolates, 72.97% and 51.33% of the CRPsA isolates were capable of slime production and carried the *algD* gene, respectively. Thus, the majority of the tracheal origin CRPsA isolates have the potential of biofilm formation. According to Bogiel et al.’s study results, there was a positive correlation between *toxA* genes and *algD* genes (*p*<0.05). Our study supports their results in terms of a positive correlation between *toxA* genes and *algD* genes (Bogiel et al., 2021).

There is limited research on biofilm formation of CRPsA isolates (Kumar et al., 2009). In El-Mahdy and El-Kannishy’s study, biofilm formation was detected in 65.2% and 94.1% of carbapenem-sensitive strains and carbapenem-resistant strains, respectively, and *lasR* and *rhlR* genes were identified in all CRPsA isolates (El-Mahdy and El-Kannishy, 2019). The authors concluded that biofilm formation was significantly related to carbapenem-resistant isolates. Kumar et al.’s study results support this conclusion. Similarly, in our study, slime production was determined in 67.30% of the isolates, and there was a positive correlation between the rhl QS system and slime production. A significant correlation between slime production and *algD*, as well as *lasB* genes (Table 3), was also detected (Kumar et al., 2009).

As a protease enzyme, elastase B (*lasB*) (pseudolysin) is encoded by the *lasB* gene. LasB is associated with cystic fibrosis due to elastinolytic activation and with vascular inflammation due to elastin fiber's disorganization in vascular tissue due to protease degradation by *lasB* (Schultz and Miller, 1974). Similar to aprA, lasB also degrades some proteins, such as INF-γ, tumor necrosis factor-α and interleukin-6 (Horvat et al., 2010). *lasB* has an important role in the differentiation of pseudomonal biofilms (Yu et al., 2014). Tielen et al. showed that overexpression of *lasB* gene was not applicable to hard biofilm, but it contributes to the altering of the extracellular polymeric substances of the biofilm structure, such as reducing the alginate content but increasing the rhamnolipids concentration (Tielen et al., 2010). In this respect, in our study, *lasB* was detected in 69.23% of the CRPsA isolates, and there was a positive correlation between *lasB* and slime production and between *lasB* and *algD* genes. In the present study, *lasB* was identified in 69.23% of the CRPsA isolates. The ratio was quite lower than the ratios indicated by Ellappan et al. and Rojo-Bezares et al.’s study results. They detected the gene in CRPsA isolates at a ratio of 94% and in all of the imipenem resistance *P. aeruginosa* isolates, respectively (Rojo-Bezares et al., 2016; Ellappan et al., 2018).

CRPsA occurs primarily due to chromosomal mutation in *P. aeruginosa* isolates (Bocharva et al., 2020). The carbapenemase genes of the bacterium generally carries on mobile genetic elements such as integrons, and the gene spreads the resistance within and between species by integrons (Castanheira et al., 2009; Bocharva et al.,
2020). Similar to this study, certain studies investigate the presence of integrons among CRPsA isolates, and a corresponding ratio between 67% and 13.6% has been obtained (Sung et al., 2009; Estepa et al., 2015; Liapis et al., 2019; Bocharva et al., 2020). Liapis et al. reported that most \textit{bla}MP genes in \textit{P. aeruginosa} isolates are carried by \textit{Cls} 1 integrons (Liapis et al., 2019). In the current study, \textit{Cls} 1 integron was detected in 51.92% (27/52) of the CRPsA isolates, which is higher than the results of Sung et al. (13.6%) and Bocharova et al. (44.1%) but lower than the results of Estepa et al. (67%) (Sung et al., 2009; Estepa et al., 2015; Bocharova et al., 2020). Similar to our study, all study results indicate that carbapenemase gene can be transferred among bacteria due to the presence of integrons.

In conclusion, based on the findings of the current study, there is a significant positive correlation between las-rhl system, and between the QS system and four virulence genes and slime production. \textit{Cls} 1 integron is common in the tested CRPsA isolates. Therefore, the CRPsA isolates are highly virulent and QS systems have a significant role in pathogenesis. Carbapenemase gene can be transferred among bacteria. All of the results indicate that CRPsA isolates are great concerns in terms of clinical aspects and to control of spread of the carbapenemase gene.

Declarations

Author contributions

C.B., BS and İ.E designed the study; E.F.T and Ç.K. collected carbapenem-resistant \textit{P. aeruginosa} isolates and carried out phenotypic identification; C.B. and B.S. performed the molecular assay; C.B., B.S., E.F.T., Ç.K., Ö.E., and İ.E. prepared and revised the manuscript. All authors gave the final approval of the version to be published.

Disclosure Statement

All the authors report that they have no competing interests in this work.

Financial Disclosure

There is no financial support.

References

1. Ahmadi GJA, Roodsari RZ (2016) Fast and specific detection of \textit{Pseudomonas aeruginosa} from other \textit{Pseudomonas} species by PCR. (Détection rapide et spécifique de \textit{Pseudomonas aeruginosa} par PCR). Ann Burn Fire Disaster 29(4): 264-267. PMID: 28289359.

2. Akgün KB, Yeşiloğlu C, Durmuş MA, Tosun O, Gürler N (2020) Investigation of resistance profile of \textit{Pseudomonas aeruginosa} isolated from lower respiratory tract samples (Alt solunum yolu örneklerinden izole edilen \textit{Pseudomonas aeruginosa} direnç profilinin incelenmesi). Bozok Med J 10(3): 48-52.

3. Attiah SA, Majeed GH, Mohammed TK. Molecular detection of the \textit{exoU} and \textit{toxA} genes among \textit{Pseudomonas aeruginosa} of patients with burn and wound infection in Baghdad City. Annals R.S.C.B. 2021; 25(6): 109-122.

4. Bass L, Liebert CA, Lee MD, Summers AO, White DG et al (1999) Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian \textit{Escherichia coli}. Antimicrob Agents Chemother 43(12): 2925-2929. doi: 10.1128/AAC.43.12.2925
5. Baumgart AMK, Molinari MA, de Oliveira Silveira AC (2010) Prevalence of carbapenem resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii* in high complexity hospital. Braz J Infect Dis 14: 433–436. doi: 10.1590/s1413-86702010000500002.

6. Bocharova Y, Savinova T, Lazareva A, Polikarpova S, Gordinskaya N et al. (2020) Genotypes, carbapenemase carriage, integron diversity and oprD alterations among carbapenem-resistant *Pseudomonas aeruginosa* from Russia. Int J Antimicrob Agents 55(4): 1-6. doi: 10.1016/j.ijantimicag.2020.105899.

7. Bogiel T, Prażyńska M, Kwiecińska-Piróg J, Mikucka A, Gospodarek-Komkowska E (2021) Carbapenem-resistant *Pseudomonas aeruginosa* strains distribution of the essential enzymatic virulence factors genes. Antibiotics (Basel) 10(8): 1-10. doi: 10.3390/antibiotics10010008.

8. Brindhadevia K, Oscarb FL, Mylonakisb E, Shanmugamc S, Vermad TN et al (2020) Biofilm and Quorum sensing mediated pathogenicity in *Pseudomonas aeruginosa*. Process Biochem 96: 49-57. doi: 10.1016/j.procbio.2020.06.001.

9. Castanheira M, Deshpande LM, Costello A, Davies TA, Jones RN (2014) Epidemiology and carbapenem resistance mechanisms of carbapenem non-susceptible *Pseudomonas aeruginosa* collected during 2009-11 in 14 European and Mediterranean countries. J Antimicrob Chemother 69: 1804-1814. doi: 10.1093/jac/dku048.

10. Chakraborty P, Dastidar DG, Paul P, Dutta S, Basu D (2020) Inhibition of biofilm formation of *Pseudomonas aeruginosa* by caffeine: a potential approach for sustainable management of biofilm. Arch Microbiol 202: 623–635.

11. Çeken N, Duran H, Atik B (2021) The profile of *Pseudomonas aeruginosa* strains isolated from intensive care units over a four-year span (Yoğun bakım ünitelerinden izole edilen *Pseudomonas aeruginosa* suşlarının dört yıllık direnç profili). Pam Med J 14: 306-11. doi: 10.31362/patd.789332.

12. Davis SD, Sarf LD, Hyndiuk RA (1980) Relative efficacy of the topical use of amikacin, gentamicin and tobramycin in experimental *Pseudomonas* keratitis. Can J Ophthalom 15(1): 28-29. PMID: 6769572.

13. De Vos D, Lim Jr A, Pirnay JP, Struelens M, Vandelvende A et al (1997) Direct detection and identification of *Pseudomonas aeruginosa* in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, *oprI* and *oprL*. J Clin Microbiol 35: 1295-1299. doi: 10.1128/jcm.35.6.1295-1299.

14. Doggett RG (1969) Incidence of mucoid *Pseudomonas aeruginosa* from clinical sources. Appl Microbiol 18: 936–37. doi: 10.1128/am.18.5.936-937.1969.

15. Diggle SP, Stacey RE, Dodd C, Camara M, Williams P et al (2006) The galactophilic lectin, LecA, contributes to biofilm development in *Pseudomonas aeruginosa*. Environ Microbiol 8: 1095-1104. doi: 10.1111/j.1462-2920.2006.001001.x

16. ECDC (European Centre of Diseases Prevention and Control). Antimicrobial resistance in the EU/EEA (EARS-Net), Annual Epidemiological Report for 2019. Stockholm: ECDC; 2020.

17. Ellappan K, Narasimha HB, Kumar S (2018) Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant *Pseudomonas aeruginosa* strains from a tertiary care hospital in South India. J Glob Antimicrob Resist 12: 37-43. doi: 10.1016/j.jgar.2017.08.018.

18. El-Mahdy R, El-Kannishy G (2019) Virulence factors of carbapenem-resistant *Pseudomonas aeruginosa* in hospital-acquired infections in Mansoura, Egypt. Infect Drug Resist 12: 3455-3461. doi: 10.2147/IDR.S222329.

19. Elnegery AA, Mowafy VK, Zahra TA, El-Khier NTA (2021) Study of quorum-sensing *LasR* and *RhlR* genes and their dependent virulence factors in *Pseudomonas aeruginosa* isolates from infected burn wounds. Access
20. Estepa V, Rojo-Bezares B, Azcona-Gutiérrez J, Olarte I, Torres C et al (2017) Characterisation of carbapenem-resistance mechanisms in clinical Pseudomonas aeruginosa isolates recovered in a Spanish hospital. Enferm Infecc Microb Clin 35(3): 141-147. doi: 10.1016/j.eimc.2015.12.014.

21. Everett MJ. Davies DT (2021) Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discov Today 26(9): 2108-2123.

22. Freeman DJ, Falkiner FR, Keane CT (1989) New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 42: 872-874. doi:10.1136/jcp.42.8.872.

23. Gholami S, Tabatabaei M, Sohrabi N (2017) Comparison of biofilm formation and antibiotic resistance pattern of Pseudomonas aeruginosa in human and environmental isolates. Microb Pathog 109: 94-98. doi:10.1016/j.micpath.2017.05.004.

24. Gonçalves IR, Dantas RCC, Ferreira ML, da Fonseca Batistão WF, Gontijo-Filho PP et al (2017) Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol 48(2): 211-17. doi: 10.1016/j.bjm.2016.11.004.

25. Haghi F, Nezhad BB, Zeighami H (2019) Effect of subinhibitory concentrations of imipenem and piperacillin on Pseudomonas aeruginosa toxA and exoS transcriptional expression. New Microbes and New Infect 32: 1-5. doi:10.1016/j.nmni.2019.100608.

26. Hoge R, Pelzer A, Rosenau F, Wilhelm S (2010) Weapons of a pathogen: proteases and their role in virulence of Pseudomonas aeruginosa. In: Mendoza-Vilas A, ed. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Badajoz: Formatex Research Center 383–395.

27. Horvat RT, Clabaugh M, Duval-Jobe C, Parmely MJ (1989) Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin. Infect Immun 57: 1668-74. doi:10.1128/iai.57.6.1668-1674.1989.

28. Hu YY, Cao JM, Yang Q, Chen S, Lv HY et al (2019) Risk Factors for carbapenem-resistant Pseudomonas aeruginosa, Zhejiang Province, China. Emerg Infect Dis 25(10): 1861-1867. doi:10.3201/eid2510.181699.

29. Iiyama K, Takahashi E, Lee JM, Mon H, Morishita M et al (2017) Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol Lett 364: 1-7. doi: 10.1093/femsle/fnx051.

30. Katvoravutthichai C, Boonbumrung K, Tiyawisutsri R (2016) Prevalence of β-lactamase classes A, C, and D among clinical isolates of Pseudomonas aeruginosa from a tertiary-level hospital in Bangkok, Thailand. Genet Mol Res 15(3): 1-12. doi:10.4238/gmr.15038706.

31. Kumar R, Chhibber S, Harjai K. (2009) Quorum sensing is necessary for the virulence of Pseudomonas aeruginosa during urinary tract infection. Kidney Int 76(3): 286-92. doi: 10.1038/ki.2009.183.

32. Laughlin RS, Musch MW, Hollbrook CJ, Chang EB, Alverdy JC (2000) The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg 232: 133-42. doi: 10.1097/00000658-200007000-00019.

33. Liapis E, Bour M, Triponney P, Jove T, Zahar JR et al (2019) Identification of diverse integron and plasmid structures carrying a novel carbapenemase among Pseudomonas species. Front Microbiol 10:404. doi: 10.3389/fmicb.2019.00404

34. Martines VV, Pitondo-Silva A, de Melo Manço L, Falcão JP, Freitas SdS et al (2014) Pathogenic potential and genetic diversity of environmental and clinical isolates of Pseudomonas aeruginosa. APMIS 122(2): 92-100. doi:10.1111/apm.12112.
35. Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to Antimicrobials. Front Microbiol 4: 1-8. doi: 10.3389/fmicb.2013.00422.

36. Nakasone I, Kinjo T, Yamane N, Kisanuki K, Shiohira CM (2007) Laboratory-based evaluation of the colorimetric VITEC-2 Compact system for species identification and of the advanced expert system for detection of antimicrobial resistances: VITEK-2 compact system identification and antimicrobial susceptibility testing. Diagnostic Microbiol Infect Dis 58:191-198. doi: 10.1016/j.diagmicrobio.2006.12.008

37. Radovanovic RS, Savic NR, Ranin L, Smitran A, Opavski NV et al (2020) Biofilm production and antimicrobial resistance of clinical and food isolates of Pseudomonas spp. Curr Microbiol 77: 4045-4052. doi:10.1007/s00284-020-02236-4.

38. Rojo-Bezares BR, Cavalie L, Dubois D, Oswald E, Torres C et al (2016) Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital. J Med Microbiol 65: 311–319. doi: 10.1099/jmm.0.000225.

39. Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvvapa R et al (2016) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53: 841–853. doi:10.1099/jmm.045617-0.

40. Schroder K, Hertzog PJ, Ravasi T, Hume DA (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163-89. doi: 10.1189/jlb.0603252.

41. Schultz DR, Miller KD (1974) Elastase of Pseudomonas aeruginosa: inactivation of complement components and complement-derived chemotactic and phagocytic factors. Infect Immun 10: 128-135. doi:10.1128/iai.10.1.128-135.1974.

42. Sirken B, Öz V, Erol İ (2020). Quorum sensing systems, related virulence factors, and biofilm formation in Pseudomonas aeruginosa isolated from fish. Arch Microbiol 203: 1519-1528.

43. Sung JY, Koo SH, Kwon KC, Ko CS, Shin SY et al (2009) Characterization of class 1 integrons in metello-ß-lactamase-producing Pseudomonas aeruginosa. Korean J Clin Microbiol 12(1): 17-23. doi:10.5145/KJCM.2009.12.1.17

44. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18: 318-327. doi:10.1016/S1473-3099(17)30753-3.

45. Tanveer A, Pattnaik S, Kahan MB, Ampasala DR, Busi S et al (2020) Inhibition of quorum sensing-associated virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 by Mycoleptodiscus indicus PUTY1. Braz J Microbiol 51(2): 467-487. doi:10.1007/s42770-020-00235-y.

46. Tielen P, Rosenau F, Wilhelm S, Jaeger EK, Flemming HC et al. (2010) Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiol 156: 2239-2252. doi:10.1099/mic0.037036-0.

47. Walters MS, Grass JE, Bulens SN, Hancock EB, Phipps EC et al (2015) Carbapenem-Resistant Pseudomonas aeruginosa at US Emerging Infections Program Sites. Emerg Infect Dis 25(7): 1281-1288. doi:10.3201/eid2507.181200.

48. Yu H, He X, Xie W, Xiong J, Sheng H et al (2014) Elastase lasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can J Microbiol 60: 227-35. doi:10.1139/cjm-2013-0667.

Tables
Primer	Primer Sequence 5' → 3'	Product size (bp)	Amplification program	References
Species specific			groom denaturation; cycles program; extension	
OprL-F	ATGGAAATGCTGAAATTCCGGC	504	94°C for 5 min 30 cycles: 94°C for 1 min, 52°C for 1 min, 72°C for 1 min	Ahmadi and Roodsari et al., 2016
OprL-R	CTTCTTCAGCTCGACCGACGG		72°C for 10 min	
Virulence genes				
lasB-F	GGAATGAACGAAAGCGTTCTC	300		
lasB-R	GGTCCAGTAGTGACGGTTGG			
algDF	ATGCGAATCAGCATCTTTTGT	1310	94°C for 3 min, 30 cycles of denaturation at 94°C	
algDR	CTACCAGCAGATGCGCTTGG		30 cycles: 94°C for 30 s, 55°C for 1 min, 72°C for 1 min	Martins et al., 2014
toxA-F	GGTAACCAGCTCCAGCGCACAT	352	72°C for 5 min	
toxA-R	TGATGTCAGGTCAATGCTTC			
aprA-F	ACCCTGTCTATTTCCGGTC	140		
aprA-R	GATTGCAGCGACAACCTTGG			
QS system genes				
lasF	TCGACGAGATGGAAATCGATG	363		
lasR	GCTCGATGCGATCTTTCAG			
lasR-F	TGCCGATTTCGGTGAACC	362		
lasR-R	CCGCCGAATTTTCATCATG		95°C for 5 min	Schaber et al., 2004
rhlF	CGAATTGCTCTCTGAATCGCT	143	34 cycles: 94°C for 30 s, 59°C for 30 s, and 72°C for 2 min	
rhlR	GGCTCATGCGACGATGTA		72°C for 10 min	
rhlR-F	TCGATTACTAGCCTATTGGCG	207		
rhlR-R	TTCCAGAGCATCCGGCTCT			

Integrate gene for Class 1 integron
Primer	Primer Sequence 5' → 3'	Product size (bp)	Amplification program	References
intl 1-F	CCT CCC GCA CGA TGA TC	280	94°C for 5 minutes, 30 cycles followed by 1 min at 94°C followed by 1.5 30 30 cycles: 94°C for 1 min; 55°C for 1.5 min, 72°C for 1 min	Bass et al., 1999
intl 1-R	TCC ACG CAC TGT CAG GC	72°C for 7 min		
Table 2
PRESENCE OF TWO QS SYSTEM GENES, FOUR VIRULENCE GENES, BIOFILM PRODUCTION AND CLASS 1 INTEGRON IN CLINICAL CARBAPENEM-RESISTANT PSEUDOMONAS AERUGINOSA ISOLATES (n=52)

Sample	oprL	Two QS system genes (n=51, 98.07%)	Virulence genes	Biofilm	Class1
		lasI lasR rhlI rhlR	lasB algD toxA aprA	CRA	Intl1
1^U	+	+ + + + + + + + + + + - - +			
2^U	+	+ + + + + + + + + + - - -			
3^U	+	+ + + + + - - - - + - -			
4^U	+	- - - - - - - + + - - -			
5^U	+	+ + + + + + - - + + + + +			
6^B	+	+ + + + + + + - + + + + + + +			
7^B	+	+ + + + + - - - + + + - -			
8^B	+	+ + + + + + + + + + + + + + +			
9^B	+	+ + + + + + - + - - - -			
10^B	+	+ + + + + + - - - - + + -			
11^B	+	+ + + - - - - - - - - -			
12^B	+	+ + + + + + + + + + + + + + +			
13^B	+	+ + + + + + - + + + + + + -			
14^W	+	+ + + + + + + - + + + + + -			
15^W	+	+ + - - - + - - - - - +			
16^T	+	+ + + + + + + + + + + + + + +			
17^T	+	+ + + + + + - + + + + + + +			
18^T	+	+ + + + + + + + + + + + + + +			
19^T	+	+ + + + + + - + + + + + + +			
20^T	+	+ + + + + + + + + + + + + + +			
21^T	+	+ + + + + + + + + + + + + + -			
22^T	+	+ + + + + + + + + + + + + + +			

U: Urine origin; B: Blood origin; T: Tracheal origin
Sample	oprL	Two QS system genes (n=51, 98.07%)	Virulence genes	Biofilm	Class1
		lasI lasR rhlI rhlR (n=47, 90.38%)	lasB algD toxA aprA	CRA	IntI1
23T	+	+ + + + + + + + + + + -			
24T	+	+ + + + + - - + + + - -			
25T	+	+ + + + + + + + + + + +			
26T	+	+ + + + + + + + + + + +			
27T	+	+ + + + + + + + + + + +			
28T	+	+ + + + + + + + + + + +			
29T	+	+ + + + + + - + + + + + +			
30T	+	+ + + + + + + - + + + + +			
31T	+	+ + + + + + + - + + + - -			
32T	+	+ + + + + + + + + + + -			
33T	+	+ + + + + + + + + + + +			
34T	+	+ + + + + + + + + + + +			
35T	+	+ + + + + + + + + + + +			
36T	+	+ + + + + + + - + + + - -			
37T	+	+ + + + + + + - + + + + +			
38T	+	+ + + + + + + - + + + - -			
39T	+	+ + + + + + + - + + + + +			
40T	+	+ + + + + + - - + + + + +			
41T	+	+ + + + + + + + + + + +			
42T	+	+ + + + + - - + + + - -			
43T	+	+ + + + + + + + + + + +			
44T	+	+ + + + + + + + + + + +			
45T	+	+ + + + + + - - + + + + +			

U: Urine origin; B: Blood origin; T: Tracheal origin
Sample	oprL	Two QS system genes (n=51, 98.07%)	Virulence genes lasI lasD rhlI rhlR (n=51, 98.07%)	Biofilm CRA	Class1 IntI1						
46T	+	+ + + + + + - + + - - - - - - -									
47T	+	+ + + + + + + + + + + + - - - -									
48T	+	- + + + + + + - + + + - - - - -									
49T	+	+ + - - - - - - + - - - - - - -									
50T	+	+ + + - - - - - - - - - - - + -									
51T	+	+ + + - - - - - - - + - - - - -									
52T	+	+ + + + + + - + + + + + + + + +									
Total number	52	50	49	46	43	36	24	45	46	35	27
%	100.00	96.15	94.23	88.46	82.69	69.23	46.15	86.53	88.46	67.30	51.92

U: Urine origin; B: Blood origin; T: Tracheal origin
Table 3
STATISTICAL ANALYSES RESULTS USING FISHER'S EXACT TEST

Correlation	p-values
lai and rhl system	0.096*
lai system and laiB	0.3077
lai system and toxA	1
lai system and aprA	0.1154
lai system and CRA	0.3269
rhl system and laiB	0.001***
rhl system and algD	0.054**
rhl system and toxA	0.013**
rhl system and aprA	0.0002***
rhl system and CRA	0.002***
algD and CRA	0.0008***
laiB and CRA	0.024**
laiB and algD	0.014**
toxA and algD	0.011**

*Significant of 10% level ($p \leq 0.10$); ** significant of 5% level ($p \leq 0.05$); *** significant of 1% level ($p \leq 0.01$)