On Hypothesis Transfer Learning of Functional Linear Models

Haotian Lin1 and Matthew Reimherr1,2

1Department of Statistics, The Pennsylvania State University
2Amazon Science

Abstract

We study the transfer learning (TL) for the functional linear regression (FLR) under the Reproducing Kernel Hilbert Space (RKHS) framework, observing the TL techniques in existing high-dimensional linear regression is not compatible with the truncation-based FLR methods as functional data are intrinsically infinite-dimensional and generated by smooth underlying processes. We measure the similarity across tasks using RKHS distance, allowing the type of information being transferred tied to the properties of the imposed RKHS. Building on the hypothesis offset transfer learning paradigm, two algorithms are proposed: one conducts the transfer when positive sources are known, while the other leverages aggregation techniques to achieve robust transfer without prior information about the sources. We establish lower bounds for this learning problem and show the proposed algorithms enjoy a matching asymptotic upper bound. These analyses provide statistical insights into factors that contribute to the dynamics of the transfer. We also extend the results to functional generalized linear models. The effectiveness of the proposed algorithms is demonstrated on extensive synthetic data as well as a financial data application.

1 Introduction

Advances in technologies enable us to collect and process densely observed data over some temporal or spatial domains, which are coined functional data [Ramsay et al., 2005; Kokoszka and Reimherr, 2017]. While functional data analysis (FDA) has been proven useful in various fields like finance, genetics and etc., and has been researched widely in the statistical community, its effectiveness relies on having sufficient training samples drawn from the same distribution. However, this may not hold for functional data under some applications due to collection expenses or other constraints. Transfer learning (TL)[Torrey and Shavlik, 2010] leverages additional information from some similar (source) tasks to enhance the learning procedure on the original (target) task, and is an appealing mechanism when there is a lack of training samples. The goal of this paper is to develop TL algorithms for functional linear regression (FLR), one of the most prevalent models in the FDA. The FLR concerned in this paper is Scalar-on-Function regression, which takes the form:

\[Y = \alpha + \langle \beta, X \rangle_{L^2} + \epsilon = \alpha + \int_{\mathcal{T}} X(s) \beta(s) \, ds + \epsilon, \]

where Y is a scalar response, $X : \mathcal{T} \to \mathbb{R}$ and $\beta : \mathcal{T} \to \mathbb{R}$ are the square-integrable functional predictor and coefficient function respectively over a compact domain $\mathcal{T} \subset \mathbb{R}$, and ϵ is a random noise with zero mean.

A classical approach to estimating β is to reduce the problem to classical multivariate linear regression by expanding the X and β under the same finite basis, like deterministic basis functions, e.g. Fourier basis, or the eigenbasis of the covariance function of X [Cardot et al., 1999; Yao et al., 2005; Hall and Hosseini-Nasab, 2006; Hall and Horowitz, 2007], which we refer to truncation-based FLR in this paper. Conceptually, the offset transfer learning techniques developed in multivariate/high-dimensional linear regression [Kuzborskij and Orabona, 2013, 2017; Li et al., 2022; Bastani, 2021] can be applied to truncation-based FLR methods, though they lack a theoretical foundation in this context due to the truncation error inherent in a basis expansion of β. In particular, a key property distinguishing functional data from multivariate data is that they are inherently infinite-dimensional and generated through smooth underlying processes. Omitting this
fact and treating the finite coefficients as multivariate parameters loses the benefit that data are generated from smooth processes, see detailed discussion in Section 2. Observing these limitations we develop the first TL algorithms for FLR with statistical risk guarantees under the supervised learning setting.

We summarize our main contributions as follows.

1. We propose using the Reproducing Kernel Hilbert Space (RKHS) distance between tasks’ coefficients as a measure of task similarity. The transferred information is thus tied to the RKHS’s properties and makes the transfer more interpretable. One can tailor the employed RKHS to the task’s nature, offering flexibility to embed diverse structural elements, like smoothness or periodicity, into TL processes.

2. Built upon the offset transfer learning (OTL) paradigm, we propose TL-FLR, a variant of OTL for multiple positive transfer sources. We establish the minimax optimality for TL-FLR. Intriguingly, the result reveals that the faster statistical rate of TL-FLR, compared to non-transfer learning, not only depends on source sample size and the magnitude of discrepancy across tasks like most existing works, but also the signal ratio between offset and source model.

3. To deal with the practical scenario in which there is no available prior task similarity information, we propose Aggregation-based TL-FLR (ATL-FLR), utilizing sparse aggregation to mitigate negative transfer effects. We establish the upper bound for ATL-FLR and show the aggregation cost decreases faster than the transfer learning risk, demonstrating an ability to identify optimal sources without too much extra cost compared to TL-FLR. We further extend this framework to Functional Generalized Linear Models (FGLM) with theoretical guarantees, broadening its applicability.

4. In developing statistical guarantees, we uncovered unique requirements for making OTL theoretically feasible in the functional data context. These include the necessity for covariate functions across tasks to exhibit similar structural properties to ensure statistical convergence, and the coefficient functions of negative sources can be separated from positive ones within a finite-dimensional space to ensure optimal source identification.

Literature review. Apart from truncation-based FLR approaches mentioned before, another line of research proposed that one can obtain a smooth estimator, via smoothness regularization [Yuan and Cai, 2010; Cai and Yuan, 2012], and has been widely used in other functional models like the FGLM, functional Cox-model, etc. [Cheng and Shang, 2015; Qu et al., 2016; Reimherr et al., 2018; Sun et al., 2018].

Turning to the TL regime in supervised learning, the hypothesis transfer learning (HTL) framework has become popular [Li and Bilmes, 2007; Orabona et al., 2009; Kuzborskij and Orabona, 2013; Perrot and Habrard, 2015; Du et al., 2017]. Offset transfer learning (OTL) (a.k.a. biases regularization transfer learning) has been widely analyzed and applied as one of the most popular HTL paradigms. It assumes the target’s function/parameter is a summation of the source’s and the offset’s function/parameter. A series of works have derived theoretical analysis under different settings. For example, in Kuzborskij and Orabona [2013, 2017], the authors provide the first theoretical study of OTL in the context of linear regression with stability analysis and generalization bounds. Later, in Wang and Schneider [2015]; Wang et al. [2016] the authors derive similar theoretical guarantees for non-parametric regression via Kernel Ridge Regression. A unified framework that generalizes many previous works is proposed in Du et al. [2017] and the authors also present an excess risk analysis for their framework. Apart from the regression setting, generalization bounds for classification with surrogate losses have been studied in Aghbalou and Staerman [2023]. Other results that study HTL outside OTL can be found in Li and Bilmes [2007]; Cheng and Shang [2015]. Besides, OTL can also be viewed as a case of representation learning [Du et al., 2020; Tripuraneni et al., 2020; Xu and Tewari, 2021] by viewing the estimated source model as a representation for target tasks.

OTL has recently been adopted by the statistics community for various high-dimensional models with statistical risk guarantees. For example, Bastani [2021] proposed using OTL for high-dimensional (generalized) linear regression but only includes one positive transfer source. Later, Li et al. [2022] extended this idea to multiple sources scenario and leveraged aggregation to alleviate negative transfer effects. In Tian and Feng [2022], the learning procedure gets extended to the high-dimensional generalized linear model and the authors also proposed a positive sources detection algorithm via a validation approach. In these works, the similarity among tasks is quantified via ℓ^1-norm, which captures the sparsity structure in high-dimensional
parameters. There is no TL for FDA that we are aware of, but the closest work would be in the area of domain adaptation. Zhu et al. [2021] studied the domain adaptation problem between two separable Hilbert spaces by proposing algorithms to estimate the optimal transport mapping between two spaces.

Notation. For two sequence \(\{a_k\}_{k \geq 1} \) and \(\{b_k\}_{k \geq 1} \), we denote \(a_n \asymp b_n \) and \(a_n \lesssim b_n \) if \(|a_n/b_n| \to c \) and \(|a_n/b_n| \leq c \) for some universal constant \(c \) when \(n \to \infty \). For two random variable sequence \(\{A_k\}_{k \geq 1} \) and \(\{B_k\}_{k \geq 1} \), if for any \(\delta > 0 \), there exists \(M_\delta > 0 \) and \(N_\delta > 0 \) such that \(\mathbb{P}(A_k < M_\delta B_k) \geq 1 - \delta, \forall k \geq N_\delta \), we say \(A_k \sim P(B_k) \). For a set \(A \), let \(|A| \) denote its cardinality, \(A^c \) denote its complement. For an integer \(n \), denote \([n] := \{1, \cdots, n\} \).

We denote the covariance function of \(X \) as \(C(s, t) = \mathbb{E}[X(s) - \mathbb{E}X(s)][X(t) - \mathbb{E}X(t)] \) for \(s, t \in \mathcal{T} \). For a real, symmetric, square-integrable, and nonnegative kernel, \(K : \mathcal{T} \times \mathcal{T} \to \mathbb{R} \), we denote its associated RKHS on \(\mathcal{T} \) as \(\mathcal{H}_K \) and corresponding norm as \(\| \cdot \|_K \). We also denote its integral operator as \(L_K(f) = \int_{\mathcal{T}} K(\cdot, t)f(t)dt \) for \(f \in L^2 \). For two kernels, \(K_1 \) and \(K_2 \), their composition is \((K_1 K_2)(s, t) = \int_{\mathcal{T}} K_1(s, u)K_2(u, t)du \). For a given kernel \(K \) and covariance kernel \(C \), define bivariate function \(\Gamma \) and its integral operator as \(\Gamma := K^{1/2}CK^{1/2} \) and \(L_\Gamma(f) = L_{K^{1/2}}(L_C(L_{K^{1/2}}(f))) \).

2 Preliminaries and Backgrounds

Problem Set-up. We now formally set the stage for the transfer learning problem in the context of FLR. Consider the following series of FLRs,

\[
Y_i(t) = \alpha(t) + \left< X_i(t), \beta(t) \right>_{L^2} + \epsilon_i(t)
\]

for \(i \in [n_t], t = 0 \cup [T] \), where \(t = 0 \) denotes the target model and \(t \in [T] \) denotes source models. Denote the sample space \(\mathcal{Z} \) as the Cartesian product of the covariate space \(\mathcal{X} \) and response space \(\mathcal{Y} \). For each \(t \in 0 \cup [T] \), we denote \(\mathcal{D}^{(t)} = \{(X_i^{(t)}, Y_i^{(t)})\}_{i=1}^{n_t} = \{Z_i^{(t)}\}_{i=1}^{n_t} \). Throughout the paper we assume \(\epsilon_i^{(t)} \) are i.i.d. across both \(i \) and \(t \) with zero mean and finite variance \(\sigma^2 \).

As estimating \(\beta^{(0)} \) is our primary interest, we assume for simplicity that \(\alpha^{(t)} = 0 \) for all \(t \). We assume \(n_0 \ll \sum_{t=1}^{T} n_t \), a condition commonly validated in most TL literature and numerous practical applications. While our framework is designed primarily for the posterior drift setting, i.e. the marginal distributions of \(X^{(t)} \) remain the same but \(\beta^{(t)} \) vary, the excess risk bounds we establish are based on a comparatively more relaxed condition, see Section 4.

In the absence of source data, estimating \(\beta^{(0)} \) is termed as target-only learning and one can obtain a smooth estimator of \(\beta \) through the regularized empirical risk minimization (RERM) [Yuan and Cai, 2010; Cai and Yuan, 2012], i.e.

\[
\hat{\beta} = \arg\min_{\beta \in \mathcal{H}_K} \left\{ \frac{1}{n_0} \sum_{i=1}^{n_0} \ell(\beta, Z_i^{(0)}) + \lambda \|\beta\|_K^2 \right\},
\]

where \(K \) is an employed kernel and \(\ell : \mathcal{H}_K \times \mathcal{Z} \to \mathbb{R}^+ \) is the loss function. This approach has been proven to achieve the optimal rate in terms of excess risk, and we refer to it as Optimal Functional Linear Regression (OFLR) in this paper, which serves as a non-transfer learning baseline.

Similarity Measure. We first state the limitations of using \(\ell^1/\ell^2 \)-norm as a similarity measure in the truncation-based FLR method, which converts the problem into a classic multivariate one. For a given series of basis functions \(\{\phi_j \}_{j \geq 1} \) and truncated number \(M \), one can model the \(t \)-th FLR as

\[
Y_i^{(t)} \approx \sum_{j=1}^{M} X_i^{(t)} \beta_j^{(t)} + \epsilon_i^{(t)}
\]

where \(X_{ij} = \left< X_i^{(t)}, \phi_j \right>_{L^2} \) and \(\beta_j^{(t)} = \left< \beta^{(t)}, \phi_j \right>_{L^2} \). Denote \(\beta_{\text{trunc}}^{(t)} \in \mathbb{R}^M \) as the coefficient vector in (2), one can then measure the similarity between the target and the \(t \)-th FLR model by the \(\ell^1 \) or \(\ell^2 \) norm of \(\beta_{\text{trunc}}^{(t)} - \beta_{\text{trunc}}^{(0)} \) like the previous works did for multivariate linear regression. However, from the functional
data analysis literature, since the functional data are generated from some structural underlying process, it is well known that one has to have the same kind of structure in the estimator like smoothness for theoretical reliability. For example, when the coefficient functions are smooth, the above approach cannot measure the similarity, since \(\{ \beta_{t_{\text{true}}}^{(t)} \}_{t=0}^{T} \) are not necessarily sparse or might require regularization via an \(\ell^2 \)-norm, but the employed basis functions might not reflect the desired smoothness. Besides, the basis functions and \(M \) should be consistent across tasks, which reduces the flexibility of the learning procedure.

To explore the similarity tied to the structure of coefficient functions, one should quantify the similarity between tasks within certain functional spaces that possess the same structures. These structural properties, e.g., continuity/smoothness/periodicity, can be naturally encapsulated via kernels and their corresponding RKHS. Consequently, quantifying the similarity within a certain RKHS provides interpretability since the type of information transferred is tied to the structural properties of the used RKHS. We also note that this method is broadly applicable since the reproducing kernel can be tailored to the application problem accordingly. For example, one can transfer the information about continuity or smoothness by picking \(K \) to be a Sobolev kernel, and about periodicity by picking periodic kernels like \(K(x_1, x_2) = \exp(-2/l^2 \sin(\pi|x_1 - x_2|/p)) \) where \(l \) is the lengthscale and \(p \) is the period.

Given the reasoning above, for \(t = 0 \cup [T] \), we assume \(\beta^{(t)} \in \mathcal{H}_K \), and define the \(t \)-th contrast function \(\delta^{(t)} := \beta^{(0)} - \beta^{(t)} \). Given a constant \(h \geq 0 \), we say the \(t \)-th source model is “h-transferable” if \(\|\delta^{(t)}\|_K \leq h \). The magnitude of \(h \) characterizes the similarity between the target model and source models. We also define \(\mathcal{S}_h = \{ t \in [T] : \|\delta^{(t)}\|_K \leq h \} \) as a subset of \([T] \), which consists of the indexes of all “h-transferable” source models. It is worth mentioning that the quantity \(h \) is introduced for theoretical purposes to establish optimality, which is prevalent in recent studies such as Bastani [2021]; Cai and Wei [2021]. But for the implementation of the algorithm, it is not necessary to know the actual value of \(h \). We abbreviate \(\mathcal{S}_h \) as \(\mathcal{S} \) to generally represent the h-transferable sources index.

Learning Framework. This paper leverages the widely used OTL paradigm, see reviews in Section 1. Formally, in the FLR and single source \(\beta^{(1)} \) context, the OTL obtains the target function via \(\hat{\beta}^{(0)} = \hat{\beta}^{(1)} + \hat{\delta} \) where \(\hat{\beta}^{(1)} \) is the estimator trained on source dataset and \(\hat{\delta} \) is obtained from target dataset via following minimization problem:

\[
\hat{\delta} = \arg\min_{\delta \in \mathcal{H}_K} \frac{1}{n_0} \sum_{i=1}^{n_0} \ell(\delta + \hat{\beta}^{(0)}, Z_i^{(0)}) + \lambda \|\delta\|_K^2,
\]

where the loss function can be square loss [Orabona et al., 2009; Kuzborskij and Orabona, 2013] or surrogate losses [Aghbalou and Staerman, 2023]. The main idea is that the estimator \(\hat{\beta}^{(1)} \) can be learned well given sufficiently large source samples and the simple offset estimator \(\hat{\delta}^{(0)} \) can be learned with much fewer target samples.

3 Methodology

3.1 Transfer Learning with \(\mathcal{S} \) Known

For multiple sources, the idea of data fusion inspires us to obtain a centered source estimator \(\hat{\beta}_S \) via all source datasets in place of \(\beta^{(1)} \). Therefore, we can generalize single source OTL to the multiple sources scenario as follows.

Since the probabilistic limit of \(\hat{\beta}_S \) is not consistent with \(\beta^{(0)} \), calibration of \(\hat{\beta}_S \) is performed in (4). The regularization term in (4) is consistent with our similarity measure, i.e., it restricts \(\hat{\beta}^{(0)} \) to lie in a \(\mathcal{H}_K \) ball centered at \(\hat{\beta}_S \). Therefore, this term pushes the \(\hat{\beta}^{(0)} \) close to \(\hat{\beta}_S \) while the mean square error loss over the target dataset allows calibration for the bias. Intuitively, if \(\hat{\beta}_S \) is close to \(\beta^{(0)} \) then TL-FLR can boost the learning on the target model.

3.2 Transfer Learning with Unknown \(\mathcal{S} \)

Assuming the index set \(\mathcal{S} \) is known in Algorithm 1 can be unrealistic in practice without prior information or investigation. Moreover, as some source tasks might have little or even a negative contribution to the
target one, it could be practically harmful to directly apply Algorithm 1 by assuming all sources belong to \(S \). Inspired by the idea of aggregating multiple estimators in Li et al. [2022], we develop ATL-FLR which can be directly applied without knowing \(S \) while being robust to negative transfer sources.

The general idea of ATL-FLR is that one can first construct a collection of candidates for \(S \), named \(\{\hat{S}_1, \hat{S}_2, \ldots, \hat{S}_t\} \), such that there exists at least one \(\hat{S}_j \) satisfying \(\hat{S}_j = S \) with high probability and then obtain their corresponding estimators \(\mathcal{F} = \{\hat{\beta}(\hat{S}_1), \ldots, \hat{\beta}(\hat{S}_t)\} \) via TL-FLR. Then, one aggregates the candidate estimators in \(\mathcal{F} \) such that the aggregated estimator \(\hat{\beta}_a \) satisfies the following oracle inequality in high probability,

\[
R(\hat{\beta}_a) \leq \min_{\beta \in \mathcal{F}} R(\beta) + r(\mathcal{F}, n),
\]

where \(R(f) = E_{(X,Y)}[\ell(Y, f(X))|\{D(t) : t \in 0 \cup [T]\}] \), and \(r(\mathcal{F}, n) \) is the aggregation cost. Thus the \(\hat{\beta}_a \) can achieve similar performance as TL-FLR up to some aggregation cost. Formally, the proposed aggregation-based TL-FLR is as follows.

Algorithm 1 TL-FLR

1. **Input**: Target/Source datasets \(\{D(t)\}_{t=0}^T \); index set of source datasets \(S \); Loss function \(\ell \) as square loss.
2.
3. Transfer Step: Obtain \(\hat{\beta}_S \) via
 \[
 \hat{\beta}_S = \arg\min_{\beta \in \mathcal{H}_K} \frac{1}{n} \sum_{t \in S} \sum_{i=1}^{n_t} \ell(\beta, Z_i^{(t)}) + \lambda_1 \|\beta\|_{\mathcal{K}}^2.
 \]
4. Calibration Step: Obtain offset \(\hat{\delta} \) via
 \[
 \hat{\delta} = \arg\min_{\delta \in \mathcal{H}_K} \frac{1}{n_0} \sum_{i=1}^{n_0} \ell(\delta + \hat{\beta}_S, Z_i^{(0)}) + \lambda_2 \|\delta\|_{\mathcal{K}}^2.
 \]
5. Return \(\hat{\beta}_S + \hat{\delta} \).

Algorithm 2 Aggregation-based TL-FLR (ATL-FLR)

Input: Target/Source datasets \(\{D(t)\}_{t=0}^T \); index set of source datasets \(S \); Loss function \(\ell \) as square loss; A given integer \(M \).

Step 1: Split the target dataset \(D^{(0)} \) into \(D_I^{(0)} \) and \(D_{\overline{I}}^{(0)} \) with \(I \) be a random subset of \([n_0]\) such that \(|I| = \lfloor \frac{n_0}{2} \rfloor \).

Step 2: Build candidate sets of \(S \), \(\{\hat{S}_0, \hat{S}_1, \ldots, \hat{S}_T\} \) as:
1. Obtain \(\hat{\beta}_0 \) by OFLR using \(D_I^{(0)} \) and let \(\hat{S}_0 = \emptyset \).
2. For each \(t \in [T] \), obtain \(\hat{\beta}_t \) by OFLR using \(D^{(t)} \) and obtain truncated RKHS norm \(\hat{\Delta}_t = \|\hat{\beta}_0 - \hat{\beta}_t\|_{K^M} := \sum_{j=1}^M (\hat{\beta}_0 - \hat{\beta}_t, v_j)^2/\tau_j \).
3. Set \(\hat{S}_t = \{k \in [T] : \hat{\Delta}_k \text{ is among the first } t \text{ smallest} \} \).

Step 3: For \(t \in [T] \), fit TL-FLR by setting \(S = \hat{S}_t \) with dataset \(D_I^{(0)} \). Let \(\mathcal{F} = \{\hat{\beta}(\hat{S}_0), \hat{\beta}(\hat{S}_1), \ldots, \hat{\beta}(\hat{S}_T)\} \).

Step 4: Implement the sparse aggregation procedure in Algorithm 3 with \(\mathcal{F} \) as the dictionary and training dataset as \(D_I^{(0)} \). Obtain the sparse aggregated estimator \(\hat{\beta}_a \).

Remark 1. While exploring the estimated similarity across sources to the target in Step 2, we use a truncated RKHS norm, which is the distance between \(\hat{\beta}_0 \) and \(\hat{\beta}_t \) after projecting them onto the space spanned by the first \(M \) eigenfunctions of \(K \). Here, \(\{\tau_j\}_{j \geq 1} \) and \(\{v_j\}_{j \geq 1} \) are the eigenvalues and eigenfunctions of \(K \). Such a truncated norm guarantees the identifiability of \(\hat{S} \), see Section 4.2 for detail.
Step 2 ensures the target-only baseline \(\hat{\beta}_0 \) lies in \(\mathcal{F} \) while the construction of \(\hat{\mathbf{S}}_t \) ensures thorough exploration of \(\mathcal{S} \). If \(\mathcal{S} \) can be identified by one of the \(\hat{\mathbf{S}}_t \), then inequality (5) indicates that even without knowing \(\mathcal{S} \), the \(\hat{\beta}_n \) can mimic the performance of the TL-FLR estimator, while not being worse than the target-only \(\hat{\beta}_0 \), up to an aggregation cost.

The sparse aggregation is adopted from Gaïffas and Lecué [2011], see Appendix B. Although we note that other aggregation methods like aggregate with cumulated exponential weights (ACEW) [Juditsky et al., 2008; Audibert, 2009], aggregate with exponential weights (AEW) [Leung and Barron, 2006; Dalalyan and Tsybakov, 2007], and Q-aggregation [Dai et al., 2012] can replace sparse aggregation in Step 4, sparse aggregation is often preferred due to its computational efficiency and ability to eliminate negative transfer effects. Specifically, the final aggregated estimator is usually represented as a convex combination of elements in \(\mathcal{S} \). The sparse aggregation sets most of the \(\beta_j \) to zero, which effectively excludes the negative transfer sources. On the other hand, none of the ACEW, AEW, and Q-aggregation will set the \(\beta_j \) to 0 most of the time, meaning that negative transfer sources can still affect the target-only baseline. Although one can manually tune temperature parameters in these approaches to shrink the \(\beta_j \) close to zero, they are less computationally efficient given the fact that sparse aggregation does not require such a tuning process. In Section 6, we verify that sparse aggregation outperforms other aggregation methods under various settings.

4 Theoretical Analysis

In this section, we study the theoretical properties of the prediction accuracy of the proposed algorithms. We evaluate the proposed algorithms via excess risk, i.e.

\[
\mathcal{E}(\hat{\beta}^{(0)}) := \mathbb{E}_{Z^{(0)}} \left[\ell(\hat{\beta}^{(0)}, Z^{(0)}) - \ell(\beta^{(0)}, Z^{(0)}) \right]
\]

where the expectation is taken over an independent test data point \(Z^{(0)} \) from the target distribution. To study the excess risk of TL-FLR and ATL-FLR, we define the parameter space as

\[
\Theta(h) = \left\{ (\beta^{(0)}, \{\beta^{(t)}\}_{t \in \mathcal{S}}) : \max_{t \in \mathcal{S}} \|\delta^{(t)}\|_K \leq h \right\}.
\]

To establish the theoretical analysis of the proposed algorithms, we first state some assumptions. For \(t \in 0 \cup [T] \), denote \(\{s^{(t)}_j\}_{j \geq 1} \) and \(\{\phi^{(t)}_j\}_{j \geq 1} \) as the eigenvalues and eigenfunctions of \(\Gamma^{(t)} := K^{(t)} C^{(t)} K^{(t)} \) respectively.

Assumption 1 (Eigenvalue Decay Rate (EDR)). Suppose that the eigenvalue decay rate (EDR) of \(L^{(0)} \) is \(2r \), i.e.

\[
s^{(0)}_j \asymp j^{-2r}, \quad \forall j \geq 1.
\]

The polynomial EDR assumption is standard in FLR literature like Cai and Yuan [2012]; Reimherr et al. [2018]. RKHSs that satisfy this assumption, like Sobolev spaces, are natural choices when one is concerned about the smoothness being the structural properties in the TL processes.

Assumption 2. We assume either one of the following conditions holds.

1. \(L^{(t)} \) commutes with \(L^{(0)} \), \(\forall t \in \mathcal{S} \), i.e. \(L^{(0)} L^{(t)} = L^{(t)} L^{(0)} \), and

\[
a^{(t)}_j := \langle L^{(t)} (\phi^{(0)}_j), \phi^{(0)}_j \rangle \asymp s^{(0)}_j \quad \forall j \geq 1.
\]

2. Or the following linear operator is Hilbert–Schmidt.

\[
\mathbf{I} - (L^{(0)})^{-1/2} L^{(t)} (L^{(0)})^{-1/2}, \quad \forall t \in \mathcal{S}.
\]

We note that under the posterior drift setting, both conditions in Assumption 2 are satisfied automatically. Although neither condition implies the other, both conditions primarily focus on how the smoothness of the source kernel \(\Gamma^{(t)} \) relates to that of the target kernel \(\Gamma^{(0)} \). Specifically, Condition 1 implies \(L^{(0)} \) and \(L^{(t)} \) not
only share the same eigenspace but also have similar magnitudes of the projection onto the \(j \)-th dimension of the eigenspace, which commonly appears in FDA literature [Yuan and Cai, 2010; Balasubramanian et al., 2022]. This helps us to control the excess risk of \(\hat{\beta}_S \) over the target domain. Condition 2 implies the probability measures of \(X^{(0)} \) and \(X^{(1)} \) are equivalent, see Baker [1973]. Collectively, these conditions indicate the feasibility of OTL for functional data relies on the fact that source covariance function \(C^{(t)} \) should behave similarly to the target’s \(C^{(0)} \). Either a too “smooth” or a too “rough” \(X^{(t)} \) can degrade the optimality. This aligns with the principles of standard target-only FLR, where the performance of the estimator is jointly determined by the covariance function and reproducing kernel.

4.1 Minimax Excess Risk of TL-FLR

We first provide the upper bound of excess risk on TL-FLR.

Theorem 1 (Upper Bound). Suppose Assumption 2 and 1 hold. If \(n_0/n_S \to 0 \), let \(\xi(h,S) = \frac{h^2}{\|\beta_S\|_K} \), then for the output \(\hat{\beta} \) of Algorithm 1,

\[
\sup_{\Theta(h)} \mathcal{E}(\hat{\beta}) = O_P \left(n_S^{-\frac{2r}{2r+1}} + n_0^{-\frac{2r}{2r+1}} \xi(h,S) \right),
\]

if \(\lambda_1 \asymp n_S^{-\frac{2r}{2r+1}} \) and \(\lambda_2 \asymp n_0^{-\frac{2r}{2r+1}} \) where \(\lambda_1 \) and \(\lambda_2 \) are regularization parameters in Algorithm 1.

Theorem 1 provides the excess risk upper bound of \(\hat{\beta} \), which bounds the excess risk of two terms. The first term comes from the transfer step and depends on the sample size of sources in \(S \), while the second term is due to only using the target dataset to learn the offset. In the trivial case when \(S = \emptyset \), the upper bound becomes \(O_P(n_0^{-2r/(2r+1)}) \), which coincides with the upper bound of target-only baseline OFLR [Cai and Yuan, 2012]. When \(S \neq \emptyset \), compared with the excess risk of the target-only baseline, we can see the sample size \(n_S \) in source models and the factor \(\xi(h,S) \) are jointly affecting the transfer learning. The factor \(\xi(h,S) \) represents the relative task signal strength between the source and target tasks. Geometrically, one can interpret \(\xi(h,S) \) as the factor controlling the angle between the source and target models within the RKHS.

![Figure 1: Geometric illustration for how \(\xi(h,S) \) will affect the transfer dynamic. The circle represents an RKHS ball centered around \(\beta^{(0)} \) with radius \(h \). With the same \(h \), larger signal strength of \(\beta_S \), i.e. \(\|\beta_S\|_K \) leads to smaller \(\xi(h,S) \), while smaller signal strength of \(\beta_S \), i.e. \(\|\beta_S\|_K \) leads to larger \(\xi(h,S) \).](image)

Figure 1 shows how \(n_S \) and \(\xi(h,S) \) impact the learning rate. When the \(\beta_S \) and \(\beta^{(0)} \) are more concordant (\(\beta_S^{(1)} \) and \(\beta^{(0)}_1 \)), the angle between them are small and thus so the \(\xi(h,S) \), making the second term in the upper bound negligible in the excess risk, and thus the risk converges faster compared to baseline \(n_0^{-2r/(2r+1)} \) given sufficiently large \(n_S \). If \(\beta_S \) and \(\beta^{(0)} \) are less concordant (\(\beta_S^{(2)} \) and \(\beta^{(0)}_2 \)), leveraging \(\beta_S \) will be less effective since a large \(\xi(h,S) \) will make the second term the dominate term.

It is worth noting that most of the existing literature fails to identify how \(\xi(h,S) \) affects the effectiveness of OTL. For example, in Wang et al. [2016]; Du et al. [2017], this factor does not appear in the upper bound, and they claim \(n_S \gg n_0 \) provide successful transfer from source to target. In high-dimensional linear
regression [Li et al., 2022; Tian and Feng, 2022], the authors only identify $\xi(h, S)$ is proportional to h and claims a small h can provide a faster convergence rate excess risk. However, our analysis (Figure 1) shows even with the same h, the similarity of the two tasks can be different, since the signal strength of β_S will also affect the effectiveness of OTL. To this end, this reveals that one cannot obtain a faster excess risk in OTL by simply including more source datasets (larger n_S), but should also carefully select or construct the S.

Theorem 2 (Lower Bound). Under the same condition of Theorem 1, for any possible estimator $\hat{\beta}$ based on $\{D(t) : t \in \{0\} \cup S\}$, the excess risk of $\hat{\beta}$ satisfies

$$
\lim_{\alpha \to 0} \lim_{n \to \infty} \inf_{\beta} \sup_{\Theta(\alpha)} P \left\{ \mathcal{E} \left(\hat{\beta} \right) \geq \alpha \left(n_S^{-\frac{1}{2p+1}} + n_0^{-\frac{1}{2p+1}} \xi(h, S) \right) \right\} = 1. \tag{7}
$$

Combining Theorems 1 and 2 implies that the estimator from TL-FLR is rate-optimal in excess risk. The proof of the lower bound is based on considering the lower bound of two cases: (1) the ideal case where $\beta(t) = \beta(0)$ for all $t \in S$ and (2) the worst case where $\beta(t) = 0$, meaning no knowledge should be transferred at all.

4.2 Excess Risk of ATL-FLR

In this subsection, we study the excess risk for ATL-FLR. As we discussed before, making ATL-FLR achieve similar performance to TL-FLR relies on the fact that there exists a \hat{S}_t such that it equals to the true S (so $\hat{\beta}(\hat{S}_t) = \beta(S)$) with high probability. Therefore, to ensure the F constructed in Step 2 of Algorithm 2 satisfies such a property, we impose the following assumption to guarantee the identifiability of S and thus ensure the existence of such \hat{S}_t.

Assumption 3 (Identifiability of S). Suppose for any h, there is an integer M such that

$$
\min_{t \in S} \| \beta_0 - \beta_t \|_{K^M} > h,
$$

where $\| \cdot \|_{K^M}$ is the truncated version of $\| \cdot \|_K$ defined in Algorithm 2.

Assumption 3 ensures that $\forall t \in S^c$, there exists a finite-dimensional subspace of H_K, such that the norm of the projection of the contrast function, $\delta(t)$, on this subspace is already greater than h. This assumption indeed eliminates the existence of $\beta(t)$, for $t \in S^c$, that live on the boundary of the RKHS-ball centered at $\beta(0)$ with radius h in H_K. Under Assumption 3, we now show the F constructed in Algorithm 2 guarantees the existence of \hat{S}_t.

Theorem 3. Suppose Assumption 3 holds, then

$$
\max_{t \in S} \Delta_t < \min_{t \in S^c} \Delta_t \quad \text{and} \quad \mathbb{P} \left(\max_{t \in S} \hat{\Delta}_t < \min_{t \in S^c} \hat{\Delta}_t \right) \to 1,
$$

and hence there exists a t s.t. $\hat{S}_t \in F$ and

$$
\mathbb{P} \left(\hat{S}_t = S \right) \to 1.
$$

Remark 2. Assumption 3 ensures a sufficient gap between those Δ_t that belong to S and those that don’t, which ensures their estimated counterpart will also possess this gap with high probability, making one of the \hat{S} consistent with S.

With Proposition 1, which states the cost of sparse aggregation in Appendix C.5, and the excess risk of TL-FLR in Theorem 3, we can establish the excess risk for ATL-FLR.

Theorem 4 (Upper Bound of ATL-FLR). Let $\hat{\beta}_a$ be the output of Algorithm 2, then under the same settings of Theorem 1 and Assumption 3,

$$
\sup_{\Theta(\alpha)} \mathcal{E} \left(\hat{\beta}_a \right) = O_P \left(\frac{\log(T) \log(n_0)}{n_0} + \frac{\log(T) \log(n_0)}{n_0} \xi(h, S) + \frac{\log(T) \log(n_0)}{n_0} \right).
$$
One interesting note is that the transfer learning risk is the classical nonparametric rate while the aggregation cost is parametric (or nearly parametric). Therefore, the aggregation cost usually decays substantially faster than the transfer learning risk. However, in the high-dimensional linear regression TL, such a faster-decayed aggregation cost is diminished since the transfer learning risk is also parametric, see [Li et al., 2022].

5 Extension to Functional Generalized Linear Models

In this section, we show our approaches in the FLR model can be naturally extended to the functional generalized linear model (FGLM) settings, which includes wider application scenarios like classification. To start, consider the following series of FGLM models similar to the FLR setting (1),

\[P(Y_{i}^{(t)}|X_{i}^{(t)}) = \rho(Y_{i}^{(t)}) \exp \left\{ \frac{Y_{i}^{(t)} \eta(\theta_{i}^{(t)}) - \psi(\theta_{i}^{(t)})}{d(\tau)} \right\}, \]

where \(i \in [n]\) and \(t \in [T] \), \(\theta_{i}^{(t)} = \langle X_{i}^{(t)}, \beta^{(t)} \rangle_{L^2} \) is the canonical parameter. The functions \(\rho, \eta, \psi, d \) are known, and \(\tau \) is either known or out-of-interest parameter that is independent of \(X^{(t)} \). In this paper, we consider \(\eta \) to take the canonical form, i.e. \(\eta(x) = x \). The GLMs are characterized by the different \(\psi \). For example, in linear regression with Gaussian response, \(\psi(x) = x^2/2 \); in the logistic regression with binary response, \(\psi(x) = \log(1 + e^x) \); and in Poisson regression with non-negative integer response, \(\psi(x) = e^x \).

A standard method for addressing GLM involves minimizing the loss function defined as the negative log-likelihood. Therefore, to implement the transfer learning for FGLM, one can naturally substitute the square loss in TL-FLR (Algorithm 1) and ATL-FLR (Algorithm 2) with the negative log-likelihood, i.e.

\[\ell(\beta, Z_{i}^{(t)}) = -Y_{i}^{(t)} \eta(\theta_{i}^{(t)}) + \psi(\theta_{i}^{(t)}). \]

We refer to these transfer learning algorithms for FGLM as TL-FGLM and ATL-FGLM. To establish the optimality of TL-FGLM and ATL-FGLM, the following technical assumptions are required.

Assumption 4. Assume \(\psi \) is Lipschitz continuous on its domain, and \(\psi' < \infty \).

Assumption 5. Assume there exist constants \(0 < A_1 \leq A_2 < \infty \) such that the function \(\psi'' \) satisfies

\[A_1 \leq \inf_{s \in \mathcal{T}} \psi''(s) \leq \sup_{s \in \mathcal{T}} \psi''(s) \leq A_2. \]

Assumption 4 is natural in most GLM literature and is satisfied by many popular exponential families. Assumption 5 restricts the \(\psi'' \) in the bounded region and thus restricts the variance of \(y \).

Since the conditional mean for FGLM is \(E[Y_{i}|X_{i}] = \eta'\langle \beta, X^{(0)} \rangle_{L^2} \), we evaluate the accuracy by excess risk, i.e. \(\mathcal{E}(\hat{\beta}) := E_{X^{(0)}}[\eta'(\hat{\beta}, X^{(0)})_{L^2} - \eta'(\beta^{(0)}, X^{(0)})_{L^2}]^2 \).

Theorem 5. Under the same assumption of Theorem 1 and suppose Assumptions 4, 5 holds.

1. (Lower Bound) For any possible estimator \(\hat{\beta} \) based on target and source datasets, the excess risk of \(\hat{\beta} \) satisfies

\[\lim_{a \to 0} \inf_{\theta(h)} P \left\{ \mathcal{E} \left(\hat{\beta} \right) \geq a \left(n_{S}^{-\frac{2r}{2r+1}} + n_{0}^{-\frac{2r}{2r+1}} \xi(h, S) \right) \right\} = 1. \]

2. (Upper Bound) If \(n_{0}/n_{S} \to 0 \) and \(\lambda_{1} \geq n_{S}^{-\frac{2r}{2r+1}} \) and \(\lambda_{2} \leq n_{0}^{-\frac{2r}{2r+1}} \), then for the output \(\hat{\beta} \) of TL-FGLM,

\[\sup_{\theta(h)} \mathcal{E} \left(\hat{\beta} \right) = O_{p} \left(n_{S}^{-\frac{2r}{2r+1}} + n_{0}^{-\frac{2r}{2r+1}} \xi(h, S) \right). \]

Remark 3. The error bound of TL-FLR and TL-FGLM are the same, which is consistent with the case in the single-task learning scenario between FLR and FGLM, see Cai and Yuan [2012]; Du and Wang [2014]. However, we note the proof is not a trivial extension of FLR since minimizing the regularized negative likelihood usually will not provide an analytical solution.

Remark 4. Due to the same upper bound for TL-FLR and TL-FGLM, the upper bound of ATL-FGLM is the same as ATL-TLR, i.e. with the same aggregation cost.
6 Experiments

We illustrate our algorithms for FLR by providing results using simulated data and defer the financial market data application and FGLM results to Appendix E. We consider the following, OFLR, TL-FLR, ATL-FLR, Detection Transfer Learning (Detect-TL) [Tian and Feng, 2022] and Exponential Weighted ATL-FLR (ATL-FLR (EW)). To set up the RKHS, we consider the setting in Cai and Yuan [2012]. Let \(\psi_k(s) = \sqrt{2}\cos(\pi ks) \) for \(j \geq 1 \) and define the reproducing kernel \(K \) of \(\mathcal{H}_K \) as \(K(\cdot, \cdot) = \sum_{k=1}^{\infty} k^{-2} \psi_k(\cdot)\psi_k(\cdot) \).

For the target model, \(\beta(0)(s) \) is set to be (1) \(\beta_1(0)(s) = \sum_{k=1}^{\infty} 4\sqrt{2}(-1)^{k-1}k^{-2}\psi_k(s); \) (2) \(\beta_2(0)(s) = 4\cos(3\pi s); \) (3) \(\beta_3(0)(s) = 4\cos(3\pi s) + 4\sin(3\pi s) \). For a specific \(h \), let \(S = \{ l : \|\beta_0 - \beta\|_K \leq h \} \), then we generate source models as follows. We scale each target model such that their RKHS norm is the constants using cross-validation. The excess risk for the target tasks is calculated via the Monte-Carlo process with the mean function \(\cos(2\pi s) \) with kernel \(\exp(-15|s-t|) \) as covariance kernel. The predictors \(X^{(t)} \) are i.i.d., generated from a Gaussian process with the mean function \(\sin(\pi s) \) and the covariance kernels are set to be Matérn kernel \(C_{\nu,\rho} \) [Cressie and Huang, 1999] where the parameter \(\nu \) controls the smoothness of \(X^{(t)} \). We set the covariance kernel of \(X^{(t)} \) as \(C_{1/2,1} \) for the target tasks and \(C_{3/2,1} \) for source tasks, to fulfill Assumptions 2. We note that such a setting is more challenging than assuming that the target and source tasks have the same covariance kernel. All functions are generated on \([0,1]\) with 50 evenly spaced points and we set \(n_0 = 150 \) and \(n_t = 100 \). For each algorithm, we set the regularization parameters as \(\lambda_1 \) and \(\lambda_2 \) as the optimal values in Theorem 1 and select the constants using cross-validation. The excess risk for the target tasks is calculated via the Monte-Carlo method by using 1000 newly generated predictors \(X^{(0)} \).

![Figure 2](image-url)

Figure 2: Left panel (Heatmap): log relative excess risk of TL-FLR to OFLR. Right panels (Line Chart): Excess Risk of different transfer learning algorithms. Each row corresponds to a \(\beta(0) \) and the y-axes for each row are under the same scale. The result for each sample size is an average of 100 replicate experiments with the shaded area indicating \(\pm 2 \) standard error.

In the left panel of Figure 2 we compare TL-FLR with OFLR by considering relative excess risk, i.e. the ratio of TL-FLR’s excess risk to OFLR’s. We note that since RKHS of \(\beta(0) \) is fixed, the magnitude of \(h \) is proportional to \(\xi(h, \beta_0) \) and a large \(h \) indicates less similarity between sources and target tasks. Overall, the effectiveness of TL-FLR for different \(\beta(0) \) presents a consistent pattern, i.e, with more transferable sources involved and smaller \(h \) (bottom right), TL-FLR has a more significant improvement, while with fewer sources and larger \(h \) (top left), the transfer may be worse than OFLR.

In the right panel of Figure 2, we evaluate ATL-FLR under unknown \(S \) cases. We set \(S \) as a random subset of \(\{1,2, \cdots, 20\} \) such that \(|S| \) is equal to \(0,2, \cdots, 20 \). We also implement TL-FLR by using true \(S \)
and OFLR as baseline. In all scenarios, ATL-FLR outperforms all its competitors. Comparing ATL-FLR with ATL-FLR(EW), even though ATL-FLR(EW) has similar patterns as ATL-FLR, we can see the gaps between the two curves are larger when the proportion of S is small, showing that ATL-FLR(EW) is more sensitive to source tasks in S^c, while ATL-FLR is less affected. Detect-TL only has a considerable reduction on the excess risk with relatively small h, but provides limited improvement when h is large, indicating its limited learning effect when there is only limited knowledge available in sources.

7 Conclusion

In this paper, we study offset transfer learning in functional regression settings including FLR and FGLM. We derive excess risk and show a faster statistical rate depending on both source sample size and the magnitude of similarity across tasks. Our theoretical analysis will help researchers better understand the transfer dynamic of offset transfer learning. Moreover, we leverage the sparse aggregation to alleviate the negative transfer effect while having faster-decreasing aggregation costs compared to transfer learning risk.

References

Anass Aghbalou and Guillaume Staerman. Hypothesis transfer learning with surrogate classification losses: Generalization bounds through algorithmic stability. In International Conference on Machine Learning, pages 280–303. PMLR, 2023.

Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation. The Annals of Statistics, 37(4):1591–1646, 2009.

Charles R Baker. On equivalence of probability measures. The Annals of Probability, pages 690–698, 1973.

Krishnakumar Balasubramanian, Hans-Georg Müller, and Bharath K Sriperumbudur. Unified rkhs methodology and analysis for functional linear and single-index models. arXiv preprint arXiv:2206.03975, 2022.

Hamsa Bastani. Predicting with proxies: Transfer learning in high dimension. Management Science, 67(5):2964–2984, 2021.

T Tony Cai and Hongji Wei. Transfer learning for nonparametric classification: Minimax rate and adaptive classifier. The Annals of Statistics, 49(1):100–128, 2021.

T Tony Cai and Ming Yuan. Minimax and adaptive prediction for functional linear regression. Journal of the American Statistical Association, 107(499):1201–1216, 2012.

Hervé Cardot, Frédéric Ferraty, and Pascal Sarda. Functional linear model. Statistics & Probability Letters, 45(1):11–22, 1999.

Guang Cheng and Zuofeng Shang. Joint asymptotics for semi-nonparametric regression models with partially linear structure. The Annals of Statistics, 43(3):1351–1390, 2015.

Noel Cressie and Hsin-Cheng Huang. Classes of nonseparable, spatio-temporal stationary covariance functions. Journal of the American Statistical Association, 94(448):1330–1339, 1999.

Dong Dai, Philippe Rigollet, and Tong Zhang. Deviation optimal learning using greedy q-aggregation. The Annals of Statistics, 40(3):1878–1905, 2012.

Arnak S Dalalyan and Alexandre B Tsybakov. Aggregation by exponential weighting and sharp oracle inequalities. In International Conference on Computational Learning Theory, pages 97–111. Springer, 2007.

Pang Du and Xiao Wang. Penalized likelihood functional regression. Statistica Sinica, pages 1017–1041, 2014.
Simon S Du, Jayanth Koushik, Aarti Singh, and Barnabás Póczos. Hypothesis transfer learning via transformation functions. *Advances in neural information processing systems*, 30, 2017.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few shot learning via learning the representation, provably. *arXiv preprint arXiv:2002.09434*, 2020.

Stéphane Gaïffas and Guillaume Lecué. Hyper-sparse optimal aggregation. *The Journal of Machine Learning Research*, 12:1813–1833, 2011.

Peter Hall and Joel L Horowtiz. Methodology and convergence rates for functional linear regression. *The Annals of Statistics*, 35(1):70–91, 2007.

Peter Hall and Mohammad Hosseini-Nasab. On properties of functional principal components analysis. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(1):109–126, 2006.

Anatoli Juditsky, Philippe Rigollet, and Alexandre B Tsybakov. Learning by mirror averaging. *The Annals of Statistics*, 36(5):2183–2206, 2008.

Piotr Kokoszka and Matthew Reimherr. *Introduction to functional data analysis*. Chapman and Hall/CRC, 2017.

Ilja Kuzborskij and Francesco Orabona. Stability and hypothesis transfer learning. In *International Conference on Machine Learning*, pages 942–950. PMLR, 2013.

Ilja Kuzborskij and Francesco Orabona. Fast rates by transferring from auxiliary hypotheses. *Machine Learning*, 106:171–195, 2017.

Gilbert Leung and Andrew R Barron. Information theory and mixing least-squares regressions. *IEEE Transactions on information theory*, 52(8):3396–3410, 2006.

Sai Li, T Tony Cai, and Hongzhe Li. Transfer learning for high-dimensional linear regression: Prediction, estimation and minimax optimality. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 84(1):149–173, 2022.

Xiao Li and Jeff Bilmes. A bayesian divergence prior for classififer adaptation. In *Artificial Intelligence and Statistics*, pages 275–282. PMLR, 2007.

Francesco Orabona, Claudio Castellini, Barbara Caputo, Angelo Emanuele Fiorilla, and Giulio Sandini. Model adaptation with least-squares svm for adaptive hand prosthetics. In *2009 IEEE international conference on robotics and automation*, pages 2897–2903. IEEE, 2009.

Michaël Perrot and Amaury Habrard. A theoretical analysis of metric hypothesis transfer learning. In *International Conference on Machine Learning*, pages 1708–1717. PMLR, 2015.

Simeng Qu, Jane-Ling Wang, and Xiao Wang. Optimal estimation for the functional cox model. *The Annals of Statistics*, 44(4):1708–1738, 2016.

Jim Ramsay, James Ramsay, BW Silverman, et al. *Functional Data Analysis*. Springer Science & Business Media, 2005.

Matthew Reimherr, Bharath Sriperumbudur, and Bahaeddine Taoufik. Optimal prediction for additive function-on-function regression. *Electronic Journal of Statistics*, 12(2):4571–4601, 2018.

Xiaoxiao Sun, Pang Du, Xiao Wang, and Ping Ma. Optimal penalized function-on-function regression under a reproducing kernel hilbert space framework. *Journal of the American Statistical Association*, 113(524):1601–1611, 2018.

Ye Tian and Yang Feng. Transfer learning under high-dimensional generalized linear models. *Journal of the American Statistical Association*, pages 1–14, 2022.
Lisa Torrey and Jude Shavlik. Transfer learning. In *Handbook of research on machine learning applications and trends: algorithms, methods, and techniques*, pages 242–264. IGI global, 2010.

Nilesh Tripuraneni, Michael Jordan, and Chi Jin. On the theory of transfer learning: The importance of task diversity. *Advances in neural information processing systems*, 33:7852–7862, 2020.

Aad W Vaart and Jon A Wellner. Weak convergence. In *Weak convergence and empirical processes*, pages 16–28. Springer, 1996.

Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting codes. *Doklady Akad. Nauk, SSSR*, 117:739–741, 1957.

Xuezhi Wang and Jeff G Schneider. Generalization bounds for transfer learning under model shift. In *UAI*, pages 922–931, 2015.

Xuezhi Wang, Junier B Oliva, Jeff G Schneider, and Barnabás Póczos. Nonparametric risk and stability analysis for multi-task learning problems. In *IJCAI*, pages 2146–2152, 2016.

Holger Wendland. *Scattered data approximation*, volume 17. Cambridge university press, 2004.

Ziping Xu and Ambuj Tewari. Representation learning beyond linear prediction functions. *Advances in Neural Information Processing Systems*, 34:4792–4804, 2021.

Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional linear regression analysis for longitudinal data. *The Annals of Statistics*, 33(6):2873–2903, 2005.

Ming Yuan and T Tony Cai. A reproducing kernel hilbert space approach to functional linear regression. *The Annals of Statistics*, 38(6):3412–3444, 2010.

Jiacheng Zhu, Aritra Guha, Mengdi Xu, Yingchen Ma, Rayleigh Lei, Vincenzo Loffredo, XuanLong Nguyen, and Ding Zhao. Functional optimal transport: Mapping estimation and domain adaptation for functional data. 2021.
A Appendix: Background of RKHS and Integral Operators

In this section, we will present some facts about the RKHS and also the integral operator of a kernel that are useful in our proof and refer readers to Wendland [2004] for a more detailed discussion.

Let T be a compact set of \mathbb{R}. For a real, symmetric, square-integrable, and semi-positive definite kernel $K : T \times T \to \mathbb{R}$, we denote its associated RKHS as \mathcal{H}_K. For the reproducing kernel K, we can define its integral operator $L_K : L^2 \to L^2$ as

$$L_K(f)(\cdot) = \int_T K(s, \cdot) f(s) ds.$$

L_K is self-adjoint, positive-definite, and trace class (thus Hilbert-Schmidt and compact). By the spectral theorem for self-adjoint compact operators, there exists an at most countable index set N, a non-increasing summable positive sequence $\{\tau_j\}_{j \geq 1}$ and an orthonormal basis of L^2, $\{e_j\}_{j \geq 1}$ such that the integrable operator can be expressed as

$$L_K(\cdot) = \sum_{j \in N} \tau_j \langle \cdot, e_j \rangle_{L^2} e_j.$$

The sequence $\{\tau_j\}_{j \geq 1}$ and the basis $\{e_j\}_{j \geq 1}$ are referred as the eigenvalues and eigenfunctions. The Mercer’s theorem shows that the kernel K itself can be expressed as

$$K(x, x') = \sum_{j \in N} \tau_j e_j(x)e_j(x'), \quad \forall x, x' \in T,$$

where the convergence is absolute and uniform.

We now introduce the fractional power integral operator and the composite integral operator of two kernels. For any $s \geq 0$, the fractional power integral operator $L^s_K : L^2 \to L^2$ is defined as

$$L^s_K(\cdot) = \sum_{j \in N} \tau_j^s \langle \cdot, e_j \rangle_{L^2} e_j.$$

For two kernels K_1 and K_2, we define their composite kernel as

$$(K_1 K_2)(x, x') = \int_T K_1(x, s) K_2(s, x') ds,$$

and thus $L_{K_1 K_2} = L_{K_1} \circ L_{K_2}$. Given these definitions, for a given reproducing kernel K and covariance function C, the definition of Γ in the main paper is

$$L_{\Gamma} = L_{K^{1/2}} \circ L_C \circ L_{K^{1/2}} \quad \text{and} \quad \Gamma := K^{1/2} C K^{1/2}.$$

If both $L_{K^{1/2}}$ and L_C are bounded linear operators, the spectral algorithm guarantees the existence of eigenvalues $\{s_j\}_{j \geq 1}$ and eigenfunctions $\{\psi_j\}_{j \geq 1}$.

B Appendix: Sparse Aggregation Process

We provide the procedure of sparse aggregation in Step 4 of ATL-FLR (Algorithm 2) for readers’ reference and refer readers to Gaiffas and Lecué [2011] for more detail.

The sparse aggregation algorithm is stated in Algorithm 3. For the Oracle inequality and the pre-specified parameter c and ϕ, we refer the reader to Appendix C.5 for model detail. In general, the final aggregated estimator $\hat{\beta}_a$ will only select two of the best-performed candidates from the candidates set \mathcal{F}. This guarantees some of the incorrectly constructed \hat{S} are not involved in building $\hat{\beta}_a$ and thus alleviate the negative transfer sources.

Remark 5. In Gaiffas and Lecué [2011], the authors indicated $\hat{\beta}_a$ has a explicit solution with the form

$$\hat{\beta}_a = \hat{t} \hat{\beta}_1 + (1 - \hat{t}) \hat{\beta}_2$$

with $\hat{\beta}_1$ and $\hat{\beta}_2$ in belongs to \mathcal{F} and \hat{t} has an analytical form.
Algorithm 3 Sparse Aggregation

1: **Input:** The candidate set \(\mathcal{F} \); target dataset \(D_{T'}^{(0)} \); pre-specified parameter \(c, \phi \).
2: Split \(D_{T'}^{(0)} \) into equal size set, with index set \(I_1 \) and \(I_2 \)
3: Use \(D_{T'}^{(0)} \) to define a random subset of \(\mathcal{F} \) as
 \[
 \mathcal{F}_1 = \left\{ \beta \in \mathcal{F} : R_{n,T_i}^{(0)}(\beta) \leq R_{n,T_i}^{(0)}(\hat{\beta}_n) + c \max \left(\phi \left\| \hat{\beta}_n - \beta \right\|_{n,T_i}^2, \phi^2 \right) \right\}
 \]
 where
 \[
 \left\| \beta \right\|_{n,T_i}^2 = \frac{1}{|T_i|} \sum_{i \in T_i} (X_i^{(0)}, \beta)_{L^2}^2, \quad R_{n,T}^{(0)}(\beta) = \frac{1}{|T|} \sum_{i \in T} (Y_i^{(0)} - (X_i^{(0)}, \beta)_{L^2})^2, \quad \hat{\beta}_n = \arg\min_{\beta \in \mathcal{F}} R_{n,T_i}^{(0)}(\beta)
 \]
4: Set \(\mathcal{F}_2 \) as following:
\[
\mathcal{F}_2 = \{c_1\hat{\beta}_1 + c_2\hat{\beta}_2 : \beta_1, \beta_2 \in \mathcal{F}_1 \text{ and } c_1 + c_2 = 1\}
\]
 then, return
 \[
 \hat{\beta}_a = \arg\min_{\beta \in \mathcal{F}_2} R_{n,T_i}^{(0)}(\beta).
 \]

C Appendix: Proof of Section 4

C.1 Proof of Upper Bound for TL-FLR (Theorem 1)

Proof. We first prove the upper bound under Assumption 2 condition 1 and defer the proof under condition 2 at the end. WLOG, we assume the eigenfunction of \(L_{T}^{(0)} \) and \(L_{T(t)} \) are perfectly aligned, i.e. \(\phi_j^{(0)} = \phi_j^{(t)} \) for all \(j \in \mathbb{N} \). We also recall that we set all the intercept \(\alpha^{(t)} = 0 \) since \(\alpha^{(t)} \) will not affect the convergence rate of estimating \(\beta^{(t)} \) [Du and Wang, 2014].

Let \(L^2 = \{ f : T \rightarrow \mathbb{R} : \|f\|_{L^2} < \infty \} \) represent the set of all square integrable functions over \(T \). Since \(L_K^{1/2}(L^2) = \mathcal{H}_{K} \), for any \(\beta \in \mathcal{H}_{K} \), there exist a \(f \in L^2 \) such that \(\beta = L_K^{1/2}(f) \). In following proofs, we denote \(f^{(t)} \) as \(\beta^{(t)} \)'s corresponding element in \(L^2 \). Therefore, we can rewrite the minimization problem in the transfer step and the calibrate step as

\[
\hat{f}_{S_{\lambda_1}} = \arg\min_{f \in L^2} \left\{ \frac{1}{n_S} \sum_{t \in S} \sum_{i=1}^{n_t} \left(Y_i^{(t)} - \langle X_i^{(t)}, L_K^{1/2}(f) \rangle \right)^2 + \lambda_1\|f\|_{L^2}^2 \right\},
\]

where \(n_S = \sum_{t \in S} n_t \) and
\[
\hat{f}_{S_{\lambda_2}} = \arg\min_{f \in L^2} \left\{ \frac{1}{n_0} \sum_{i=1}^{n_0} \left(Y_i^{(0)} - \langle X_i^{(0)}, L_K^{1/2}(f_S + f_0) \rangle \right)^2 + \lambda_2\|f_S\|_{L^2}^2 \right\}.
\]

Thus the excess risk of \(\hat{\beta} \) can be rewritten as
\[
\mathcal{E}(\hat{\beta}) = \left\| \left(L_{T}^{(0)} \right)^{1/2}(\hat{f} - f_0) \right\|_{L^2}^2 \quad \text{where} \quad \hat{f} = \hat{f}_{S_{\lambda_1}} + \hat{f}_{S_{\lambda_2}}
\]

Define the empirical version of \(C^{(t)} \) as
\[
C_n^{(t)}(s_t) = \frac{1}{n_t} \sum_{i=1}^{n_t} X_i^{(t)}(s) X_i^{(t)}(t),
\]

and let
\[
L_{T}^{(0)} = L_{K}^{1/2} L_{C_n^{(0)}} L_{K}^{1/2}.
\]
To bound the excess risk $E(\hat{\beta})$, by triangle inequality,

$$
\left\|(L_{\Gamma(0)}^{1/2}(\hat{f} - f_0)\right\|_{L^2} \leq \left\|(L_{\Gamma(0)}^{1/2}(\hat{f}_S - f_S)\right\|_{L^2} + \left\|(L_{\Gamma(0)}^{1/2}(\hat{f}_\delta - f_\delta)\right\|_{L^2}
$$

where each term at the r.h.s. corresponds to the excess risk from the transfer and calibrate steps respectively.

Transfer Step. For the transfer step, the solution of minimization is

$$
\hat{f}_{S\lambda_1} = \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I\right)^{-1} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)}(f^{(t)}) + \sum_{t \in S} g^{(t)}_n\right),
$$

where I is identity operator, $\alpha_t = \frac{n_t}{n_S}$ and

$$
g^{(t)}_n = \frac{1}{n_S} \sum_{i=1}^{n_t} c^{(t)}_i L_{\Gamma(t)}^{1/2}(X_i^{(t)}).
$$

Besides, the solution of the transfer learning step, $\hat{f}_{S\lambda_1}$, converges to its population version, which is defined by the following moment condition

$$
\sum_{t \in S} \alpha_t E \left\{ L_{\Gamma(t)}^{1/2}(X^{(t)}) \left(Y^{(t)} - \langle L_{\Gamma(t)}^{1/2}(X^{(t)}), f_S\rangle_{L^2}\right)\right\} = 0,
$$

and therefore leads to the explicit form of f_S as

$$
\left(\sum_{t \in S} \alpha_t L_{\Gamma(t)}\right)f_S = \sum_{t \in S} \alpha_t L_{\Gamma(t)}(f^{(t)}).
$$

Define

$$
f_{S\lambda_1} = \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I\right)^{-1} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)}(f^{(t)})\right).
$$

By triangle inequality

$$
\left\|(L_{\Gamma(0)}^{1/2}(\hat{f}_{S\lambda_1} - f_S)\right\|_{L^2} \leq \left\|(L_{\Gamma(0)}^{1/2}(\hat{f}_{S\lambda_1} - f_{S\lambda_1})\right\|_{L^2} + \left\|(L_{\Gamma(0)}^{1/2}(f_{S\lambda_1} - f_S)\right\|_{L^2}.
$$

For approximation error, by Lemma 1 and taking $v = \frac{1}{2}$, the second term on r.h.s. can be bounded by

$$
\left\|(L_{\Gamma(0)}^{1/2}(f_{S\lambda_1} - f_S)\right\|_{L^2}^2 = O_{\beta} \left(\lambda_1 \|f_S\|_{L^2}^2\right).
$$

Now we turn to the estimation error. We further introduce an intermedia term

$$
\hat{f}_{S\lambda_1} = f_{S\lambda_1} + \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I\right)^{-1} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)}(f_S - f_{S\lambda_1}) + \sum_{t \in S} g^{(t)}_n - \lambda_1 f_{S\lambda_1}\right).
$$

We first bound $\|(L_{\Gamma(0)}^{1/2}(f_{S\lambda_1} - \hat{f}_{S\lambda_1}))\|_{L^2}^2$. Based on he fact that

$$
\lambda_1 f_{S\lambda_1} = \sum_{t \in S} \alpha_t L_{\Gamma(t)}(f^{(t)} - f_{S\lambda_1}) = \sum_{t \in S} \alpha_t L_{\Gamma(t)}(f_S - f_{S\lambda_1}),
$$

16
we have
\[\| (L_{\Gamma(0)})^\frac{1}{2} (f_{S\lambda_1} - \tilde{f}_{S\lambda_1}) \|_{L^2} \]
\[\leq \left\| (L_{\Gamma(0)})^\frac{1}{2} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} g_n \right) \right\|_{L^2} + \]
\[\left\| (L_{\Gamma(0)})^\frac{1}{2} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} \alpha_t (L_{\Gamma(t)} - L_{\Gamma(0)})(f_S - \tilde{f}_{S\lambda_1}) \right) \right\|_{L^2} \]
\[= \left\{ \sum_{j=1}^{\infty} \left(\left((L_{\Gamma(0)})^\frac{1}{2} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} g_n \right), \phi_j(0) \right)_{L^2} \right)^2 \right\}^\frac{1}{2} + \]
\[\left\{ \sum_{j=1}^{\infty} \left(\left((L_{\Gamma(0)})^\frac{1}{2} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} \alpha_t (L_{\Gamma(t)} - L_{\Gamma(0)})(f_S - \tilde{f}_{S\lambda_1}) \right), \phi_j(0) \right)_{L^2} \right)^2 \right\}^\frac{1}{2} \]

For the first term in the above inequality, by Lemma 3,
\[\left\{ \sum_{j=1}^{\infty} \left(\left((L_{\Gamma(0)})^\frac{1}{2} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} g_n \right), \phi_j(0) \right)_{L^2} \right)^2 \right\} = O_p \left(\sigma^2 \left(n_S \right)^{-1} \lambda_1^{\frac{3}{2}} \right) . \]

For second one, by Lemma 2 and 4,
\[\sum_{j=1}^{\infty} \left(\left((L_{\Gamma(0)})^\frac{1}{2} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} \alpha_t (L_{\Gamma(t)} - L_{\Gamma(0)})(f_S - \tilde{f}_{S\lambda_1}) \right), \phi_j(0) \right)_{L^2} \right)^2 = O_p \left(\left(n_S \right)^{-1} \lambda_1^{\frac{3}{2}} \right) . \]

Therefore,
\[\| (L_{\Gamma(0)})^\frac{1}{2} (f_{S\lambda_1} - \tilde{f}_{S\lambda_1}) \|_{L^2}^2 = O_p \left(\left(n_S \right)^{-1} \lambda_1^{\frac{3}{2}} \right) . \]

Finally, we bound \(\| (L_{\Gamma(0)})^\frac{1}{2} (\tilde{f}_{S\lambda_1} - f_{S\lambda_1}) \|_{L^2}^2 \). Once again, by the definition of \(\tilde{f}_{S\lambda_1} \)
\[\tilde{f}_{S\lambda_1} - f_{S\lambda_1} = \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} \alpha_t (L_{\Gamma(t)} - L_{\Gamma(0)})(\tilde{f}_{S\lambda_1} - f_{S\lambda_1}) \right) . \]

Thus, by Lemma 2
\[\| (L_{\Gamma(0)})^\frac{1}{2} (\tilde{f}_{S\lambda_1} - f_{S\lambda_1}) \|_{L^2}^2 \]
\[\leq \left\| (L_{\Gamma(0)})^\frac{1}{2} \left(\sum_{t \in S} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} \alpha_t \left(L_{\Gamma(t)} - L_{\Gamma(0)} \right)(L_{\Gamma(0)})^{-\frac{1}{2}} \right) \right\|_{op}^2 \left\| (L_{\Gamma(0)})^\frac{1}{2} (\tilde{f}_{S\lambda_1} - f_{S\lambda_1}) \right\|_{L^2}^2 \]
\[= O_p \left(\| f_S \|_{L^2}^2 \right) \left(\| (L_{\Gamma(0)})^\frac{1}{2} (\tilde{f}_{S\lambda_1} - f_{S\lambda_1}) \|_{L^2} \right)^2 \]
\[= o_P \left(\left\| (L_{\Gamma(0)})^\frac{1}{2} (\tilde{f}_{S\lambda_1} - f_{S\lambda_1}) \right\|_{L^2}^2 \right) . \]

Combine three parts, we get
\[\| (L_{\Gamma(0)})^\frac{1}{2} (\tilde{f}_{S\lambda_1} - f_S) \|_{L^2}^2 = O_P \left(\| f_S \|_{L^2}^2 \lambda_1 + \left(\sigma^2 + \| f_S \|_{L^2}^2 \right) n_S^{-1} \lambda_1^{\frac{3}{2}} \right) , \]

by taking \(\lambda_1 \approx \left(n_S \right)^{-\frac{3}{2}} \) and notice the fact that \(\frac{\sigma^2}{|\beta_S|\|s\|_K} \) is bounded above. (This is a reasonable condition since the signal-to-noise ratio can’t be 0, otherwise one can hardly learn anything from the data), we have
\[\| (L_{\Gamma(0)})^\frac{1}{2} (\tilde{f}_{S\lambda_1} - f_S) \|_{L^2}^2 = O_P \left(\| f_S \|_{L^2}^2 n_S^{-\frac{3}{2}} \right) . \]

The desired upper bound is proved given the fact that \(\frac{\sigma^2}{|\beta_S|\|s\|_K} \) and \(\frac{\sigma^2}{n_S} \) is bounded above.
Calibrate Step. The estimation scheme in the calibrate step is in the same form as the transfer step and thus its proof follows the same logic as the transfer step. The solution to the minimization problem in the calibration step is

\[
\hat{f}_{\delta\lambda_2} = (L_n^{(0)} + \lambda_2 I)^{-1} \left(L_n^{(0)} (f_{S} - \hat{f}_{S\lambda_1} + \delta) + g_{n}^{(0)} \right),
\]

where

\[
g_{n}^{(0)} = \frac{1}{n_0} \sum_{i=1}^{n_0} X_i^{(0)}.\]

Similarly, define

\[
f_{\delta\lambda_2} = (L_n^{(0)} + \lambda_2 I)^{-1} \left(L_n^{(0)} (f_{S} - \hat{f}_{S} + \delta) \right),
\]

where \(f_{\delta}\) is the population version of the estimator, i.e. \(\hat{f}_{\delta}\).

By triangle inequality,

\[
\| (L_n^{(0)})^{\frac{1}{2}} (\hat{f}_{\delta} - f_{\delta}) \|_{L^2} \leq \| (L_n^{(0)})^{\frac{1}{2}} (\hat{f}_{\delta} - \hat{f}_{\delta\lambda_2}) \|_{L^2} + \| (L_n^{(0)})^{\frac{1}{2}} (f_{\delta\lambda_2} - f_{\delta}) \|_{L^2}.
\]

For the second term in r.h.s.,

\[
\| (L_n^{(0)})^{\frac{1}{2}} (f_{\delta\lambda_2} - f_{\delta}) \|_{L^2} \leq \| (L_n^{(0)})^{\frac{1}{2}} (L_n^{(0)} + \lambda_2 I)^{-1} L_n^{(0)} (f_{S} - \hat{f}_{S\lambda_1}) \|_{L^2} + \| (L_n^{(0)})^{\frac{1}{2}} (f_{\delta\lambda_2} - f_{\delta}) \|_{L^2} \\
\leq \| (L_n^{(0)})^{\frac{1}{2}} (L_n^{(0)} + \lambda_2 I)^{-1} (L_n^{(0)})^{\frac{1}{2}} \|_{op} \| L_n^{(0)} (f_{S} - \hat{f}_{S}) \|_{L^2} \\
+ \| (L_n^{(0)})^{\frac{1}{2}} (f_{\delta\lambda_2} - f_{\delta}) \|_{L^2},
\]

where \(f_{\delta\lambda_2} = (L_n^{(0)} + \lambda_2 I)^{-1} L_n^{(0)} (f_{\delta})\).

By Lemma 1 with \(S = \emptyset\),

\[
\| (L_n^{(0)})^{\frac{1}{2}} (f_{\delta\lambda_2} - f_{\delta}) \|_{L^2}^2 \leq \frac{\lambda_2}{4} \| f_{\delta} \|_{L^2}^2 \\
\lesssim \lambda_2 h^2,
\]

where the second inequality holds with the fact the \(S = \{1 \leq l \leq L : \| f_{0} - f^{(l)} \|_{L^2} \leq h \}\). Therefore,

\[
\| (L_n^{(0)})^{\frac{1}{2}} (f_{\delta\lambda_2} - f_{\delta}) \|_{L^2}^2 = O_P \left(\frac{2}{S} + \lambda_2 h^2 \right).
\]

For the first term, we play the same game as **transfer step**. Define

\[
\tilde{f}_{\delta\lambda_2} = f_{\delta\lambda_2} + (L_n^{(0)} + \lambda_2 I)^{-1} \left(L_n^{(0)} (f_{S\lambda_1} - \hat{f}_{S\lambda_1} + \delta) + g_{n}^{(0)} - L_n^{(0)} (f_{\delta\lambda_2} - \lambda_1 f_{\delta\lambda_2}) \right),
\]

and the definition of \(f_{\delta\lambda_2}\) leads to

\[
\tilde{f}_{\delta\lambda_2} - f_{\delta\lambda_2} = (L_n^{(0)} + \lambda_2 I)^{-1} \left((L_n^{(0)} - L_n^{(0)}) (f_{S\lambda_1} - \hat{f}_{S\lambda_1} + \delta) - f_{\delta\lambda_2} + g_{n}^{(0)} \right).
\]

Therefore,

\[
\| (L_n^{(0)})^{\frac{1}{2}} (\tilde{f}_{\delta\lambda_2} - f_{\delta\lambda_2}) \|_{L^2} \leq \| (L_n^{(0)})^{\frac{1}{2}} (L_n^{(0)} + \lambda_1 I)^{-1} g_{n}^{(0)} \|_{L^2} + \\
\| (L_n^{(0)})^{\frac{1}{2}} (L_n^{(0)} + \lambda_2 I)^{-1} (L_n^{(0)} - L_n^{(0)}) (L_n^{(0)})^{-\frac{1}{2}} \|_{op} \\
\{ \| (L_n^{(0)})^{\frac{1}{2}} (f_{S\lambda_1} - \hat{f}_{S\lambda_1} + \delta - f_{\delta\lambda_2}) \|_{L^2} \},
\]

18
thus by Lemma 2,

\[\left\| (L_{\Gamma(0)})^{\frac{1}{2}} (f_{\delta \lambda_2} - f_{\lambda_2}) \right\|_{L^2} = O_P \left(\left(n_0 \lambda_2^{\frac{1}{2}} \right)^{-1} + \left(n_0 \lambda_2^{\frac{1}{2}} \right)^{-1} \left[n_S^{-\frac{2}{5\pi \tau}} + \lambda_2 h^2 \right] \right), \]

where the first term and operator norm comes from Lemma 2 and 3 with \(S = \emptyset \), and bounds on \(\left(L_{\Gamma(0)} \right)^{\frac{1}{2}} (f_{\delta \lambda_1} - f_{\delta \lambda_2}) \) comes from transfer step and bias term of calibrate step.

Finally, for \(\left(L_{\Gamma(0)} \right)^{\frac{1}{2}} (\hat{f}_{\delta \lambda_2} - \hat{f}_{\lambda_2}) \)², notice that

\[\hat{f}_{\delta \lambda_2} - \hat{f}_{\lambda_2} = (L_{\Gamma(0)} + \lambda_2 I)^{-1} \left((L_{\Gamma(0)} - L_{\Gamma(0)})(\hat{f}_{\delta \lambda_2} - \hat{f}_{\lambda_2}) \right), \]

thus by Lemma 2,

\[\left\| (L_{\Gamma(0)})^{\frac{1}{2}} (\hat{f}_{\delta \lambda_2} - \hat{f}_{\lambda_2}) \right\|_{L^2} = O_P \left(\left(L_{\Gamma(0)} \right)^{\frac{1}{2}} (\hat{f}_{\delta \lambda_2} - \hat{f}_{\lambda_2}) \right)². \]

Combine three parts, we get

\[\left\| (L_{\Gamma(0)})^{\frac{1}{2}} (f_{\delta \lambda_2} - f_{\delta}) \right\|_{L^2} = O_P \left(\lambda_2 h^2 + (h^2 + \sigma^2) (n_0 \lambda_2^{\frac{1}{2}})^{-1} \right), \]

taking \(\lambda_2 \approx n_0^{-\frac{2}{5\pi \tau}} \) and notice the fact that \(\frac{n_0}{\xi \lambda_2} \) is bounded above (similar reasoning as the transfer step), we have

\[\left\| (L_{\Gamma(0)})^{\frac{1}{2}} (f_{\delta \lambda_2} - f_{\delta}) \right\|_{L^2} = O_P \left(h^2 n_0^{-\frac{2}{5\pi \tau}} \right). \]

Combining the results from transfer step and calibrate step, and reorganizing the constants for each term, we have

\[\mathcal{E}(\hat{\beta}) = \left\| (L_{\Gamma(0)})^{\frac{1}{2}} (f - f_0) \right\|_{L^2} = O_P \left(n_0^{-\frac{2}{5\pi \tau}} + n_0^{-\frac{2}{5\pi \tau}} \xi(h, S) \right). \]

To prove the same upper bound under Assumption 2, we only need to show Lemma 1 to Lemma 5 still hold under Assumption 2. Let \(\{ (s_j^{(0)}, \phi_j^{(0)}), \} \) be the eigen-pairs of \(L_{\Gamma(0)} \). We show that

\[\left\langle L_{\Gamma(0)} (\phi_j^{(0)}), \phi_j^{(0)} \right\rangle_{L^2} = s_j^{(0)} (1 + o(1)). \] (8)

Consider

\[\left\| \left((L_{\Gamma(0)} - L_{\Gamma(0)} \phi_j^{(0)}), \phi_j^{(0)} \right)_{L^2} \right\| = \left\| \left((L_{\Gamma(0)})^{\frac{1}{2}} \left((L_{\Gamma(0)})^{\frac{1}{2}} L_{\Gamma(0)} \right)^{-\frac{1}{2}} - I \right) (L_{\Gamma(0)})^{\frac{1}{2}} \phi_j^{(0)}, \phi_j^{(0)} \right\|_{L^2} \]

\[= \lambda_j^{(0)} \left\| \left((L_{\Gamma(0)})^{\frac{1}{2}} L_{\Gamma(0)} \right)^{-\frac{1}{2}} - I \right) \phi_j^{(0)}, \phi_j^{(0)} \right\|_{L^2}. \]

Since \((L_{\Gamma(0)})^{\frac{1}{2}} L_{\Gamma(0)} \left(L_{\Gamma(0)} \right)^{-\frac{1}{2}} - I \) is Hilbert–Schmidt, then

\[\left\| (L_{\Gamma(0)})^{\frac{1}{2}} L_{\Gamma(0)} \left(L_{\Gamma(0)} \right)^{-\frac{1}{2}} - I \right\|_{HS}^{2} = \sum_{i,j} \left\| \phi_i^{(0)}, \left((L_{\Gamma(0)})^{\frac{1}{2}} L_{\Gamma(0)} \left(L_{\Gamma(0)} \right)^{-\frac{1}{2}} - I \right) \phi_j^{(0)} \right\|_{L^2} < \infty \]

which leads to

\[\left\| \left((L_{\Gamma(0)})^{\frac{1}{2}} L_{\Gamma(0)} \left(L_{\Gamma(0)} \right)^{-\frac{1}{2}} - I \right) \phi_j^{(0)}, \phi_j^{(0)} \right\|_{L^2} = o(1) \quad as \quad j \to \infty. \]

Therefore, Equation (8) holds. One can now replace the common eigenfunctions \(\phi_j \) by \(\phi_j^{(0)} \) in the proofs of Lemma 1 to Lemma 5, and it is not hard to check the results still hold. \(\square \)
C.2 Proof of Lower Bound for TL-FLR (Theorem 2)

In this part, we proof the alternative version for lower bound, i.e.

$$\lim_{a \to 0} \lim_{n \to \infty} \inf_{\beta \in \Theta(h)} \sup_{t} \left\{ E \left(\beta \right) \geq a \left(n_{S} + n_{0} \right) - \frac{2\epsilon}{\pi r} + n_{0} - \frac{2\epsilon}{\pi r} \xi(h, S) \right\} = 1.$$

This alternative form is also proved in other contexts like high-dimensional linear regression or GLM to show optimality. However, the upper bound we derive for TL-FLR can still be sharp since in the TL regime, it is always assumed $n_{S} \gg n_{0}$, and leads to $(n_{S} + n_{0}) - \frac{2\epsilon}{\pi r} \propto n_{S} - \frac{2\epsilon}{\pi r}$.

On the other hand, one can modify the transfer step in TL-FLR by including the target dataset $D^{(0)}$ to estimate β_{S}, which produces an alternative upper bound $(n_{S} + n_{0}) - \frac{2\epsilon}{\pi r} + n_{0} - \frac{2\epsilon}{\pi r} \xi(h, S)$, and mathematically aligns with the alternative lower bound we mention above. However, we would like to note that such a modified TL-FLR is not computationally efficient for transfer learning, since for each new upcoming target task, TL-FLR needs to recalculate a new β_{S} with the huge datasets $\{D^{(t)} : t \in 0 \cup S\}$.

Proof. Note that any lower bound for a specific case will immediately yield a lower bound for the general case. Therefore, we consider the following two cases.

(1) Consider $h = 0$, i.e.

$$y_{i}^{(t)} = \langle X_{i}^{(t)} \beta \rangle + e_{i}^{(t)}, \quad \forall t \in \{0\} \cup S.$$

In this case, all the source model shares the same coefficient function as the target model, i.e. $\beta^{(t)} = \beta^{(0)}$ for all $t \in S$, and therefore the estimation process is equivalent to estimate β under target model with sample size equal to n_{S}. The lower bound in Cai and Yuan [2012] can be applied here directly and leads to

$$\lim_{a \to 0} \lim_{n \to \infty} \inf_{\beta \in \Theta(h)} \sup_{t} \left\{ E \left(\beta \right) \geq a \left(n_{S} + n_{0} \right) - \frac{2\epsilon}{\pi r} \right\} = 1.$$

(2) Consider $\beta^{(0)} \in B_{H}(h)$ where $B_{H}(h)$ is a ball in RKHS centered at 0 with radius h, and $\beta^{(t)} = 0$ for all $t \in S$ and $\sigma \geq h$. That is all the source datasets contain no information about $\beta^{(0)}$. Consider slope functions $\beta_{1}, \ldots, \beta_{M} \in B_{H}(h)$ and P_{1}, \ldots, P_{M} as the probability distribution of $\{(X_{i}^{(0)}, Y_{i}^{(0)}) : i = 1, \ldots, n_{0}\}$ under $\beta_{1}, \ldots, \beta_{M}$. Then the KL divergence between P_{i} and P_{j} is

$$KL(P_{i} | P_{j}) = \frac{n_{o}}{2\sigma^{2}} \left\| L_{(C^{(0)})}^{2} (\beta_{i} - \beta_{j}) \right\|_{K}^{2} \text{ for } i, j \in \{1, \ldots, K\}.$$

Let $\tilde{\beta}$ be any estimator based on $\{(X_{i}^{(0)}, Y_{i}^{(0)}) : i = 1, \ldots, n_{0}\}$ and consider testing multiple hypotheses, by Markov inequality and Lemma 6

$$\left\| L_{(C^{(0)})}^{2} (\tilde{\beta} - \beta_{i}) \right\|_{K}^{2} \geq P_{1} (\tilde{\beta} \neq \beta_{i}) \min_{i,j} \left\| L_{(C^{(0)})}^{2} (\beta_{i} - \beta_{j}) \right\|_{K}^{2} \times \left(1 - \frac{n_{o}}{2\sigma^{2}} \max_{i,j} \left\| L_{(C^{(0)})}^{2} (\beta_{i} - \beta_{j}) \right\|_{K}^{2} + \log(2) \right) \frac{\min_{i,j} \left\| L_{(C^{(0)})}^{2} (\beta_{i} - \beta_{j}) \right\|_{K}^{2}}{\log(M - 1)}.$$

Our target is to construct a sequence of $\beta_{1}, \ldots, \beta_{M} \in B_{H}(h)$ such that the above lower bound matches with the upper bound. We consider Varshamov-Gilbert bound in Varshamov [1957], which we state as Lemma 7.

Now we define,

$$\beta_{i} = \sum_{k=N+1}^{2N} \frac{b_{i,k-N}^{2N} h^{2}}{\sqrt{N}} L_{K^{2}}(\phi_{k}) \quad \text{for } i = 1, 2, \ldots, M,$$

where $(b_{i,1}, b_{i,2}, \ldots, b_{i,N}) \in 0, 1^{N}$. Then,

$$\left\| \beta_{i} \right\|_{K}^{2} = \sum_{k=N+1}^{2N} \frac{b_{i,k-N}^{2N} h^{2}}{\sqrt{N}} \left\| L_{K^{2}}(\phi_{k}) \right\|_{K}^{2} \leq h^{2},$$

where
hence $\beta \in B_{H_K}(h)$. Besides,

$$\left\| L_{(C^{(0)})} \right\|^2_K (\beta_i - \beta_j) = \frac{h^2}{N} \sum_{k=N+1}^{2N} (b_{i,k-N} - b_{j,k-N})^2 s_i^{(0)}$$

$$\geq \frac{h^2 s_i^{(0)}}{N} \sum_{k=N+1}^{2N} (b_{i,k-N} - b_{j,k-N})^2$$

$$\geq \frac{h^2 s_i^{(0)}/N}{4},$$

where the last inequality is by Lemma 7, and

$$\left\| L_{(C^{(0)})} \right\|^2_K (\beta_i - \beta_j) = \frac{h^2}{N} \sum_{k=N+1}^{2N} (b_{i,k-N} - b_{j,k-N})^2 s_k^{(0)}$$

$$\leq \frac{h^2 s_k^{(0)}/N}{M} \sum_{k=M+1}^{2N} (b_{i,k-N} - b_{j,k-N})^2$$

$$\leq h^2 s_N^{(0)}.$$

Therefore, one can bound the KL divergence by

$$KL(P_i | P_j) \leq \max_{i,j} \left\{ \frac{n_0}{2\sigma^2} \right\} \left\| L_{(C^{(0)})} \right\|^2_2 (\beta_i - \beta_j)$$

Using the above results, the r.h.s. of Equation 9 becomes

$$\left(1 - \frac{4n_0 h^2 s_i^{(0)}}{N} + 8\log(2) \right) \frac{s_i^{(0)} h^2}{N}.$$

Taking $N = \frac{8h^2}{\sigma^2} n_0 h^{-1}$, which implies $N \to \infty$, would produce

$$\left(1 - \frac{4n_0 h^2 s_i^{(0)}}{N} + 8\log(2) \right) \frac{s_i^{(0)} h^2}{4N} \approx \left(\frac{1}{2} - \frac{8\log(2)}{N} \right) h^2 N^{-2r} \approx n_0^{-\frac{2r}{\sigma^2 + 1}} h^2$$

Combining the lower bound in case (1) and case (2), we obtain the desired lower bound.

\[\square \]

C.3 Proof of Consistency (Theorem 3)

Proof. Under Assumption 3,

$$\max_{t \in S} \Delta_t < \min_{t \in S^c} \Delta_t$$

holds automatically. To prove

$$P \left(\hat{S}_j = S \right) \to 1,$$

we only need to show the following fact holds

$$P \left(\max_{t \in S} \hat{\Delta}_t < \min_{t \in S^c} \Delta_t \right) \to 1.$$

Observe that

$$\|f\|_{K^M} = \sum_{j=1}^M \frac{f_j^2}{v_j} \leq \frac{1}{v_M} \sum_{j=1}^M f_j^2 \leq \frac{1}{v_M} \|f\|_{L^2} \lesssim \|f\|_{L^2}$$
for any finite M, then by Corollary 10 in Yuan and Cai [2010]

$$\| \hat{\beta}_0 - \hat{\beta}_t - (\beta_0 - \beta_t) \|_{K^M} \lesssim (\hat{\beta}_0 - \hat{\beta}_t - (\beta_0 - \beta_t)) = o_P(1).$$

Therefore, for $t \in S^c$

$$\| \hat{\beta}_0 - \hat{\beta}_t \|_{K^M} \geq (1 - o_P(1)) \| \beta_0 - \beta_t \|_{K^M}$$

and also for $t \in S$

$$\| \hat{\beta}_0 - \hat{\beta}_t \|_{K^M} \leq (1 + o_P(1)) \| \beta_0 - \beta_t \|_{K^M} \leq (1 + o_P(1)) \| \beta_0 - \beta_t \|_{K^M}$$

with high probability. Finally,

$$P \left(\max_{t \in S} \hat{\Delta}_t < \min_{t \in S^c} \hat{\Delta}_k \right) \geq P \left((1 + o(1)) \max_{t \in S} \| \beta_0 - \beta_t \|_{K^M} < (1 - o(1)) \min_{t \in S^c} \| \beta_0 - \beta_t \|_{K^M} \right) \rightarrow 1,$$

where the convergence in probability is guaranteed by Assumption 3.

\[\square \]

C.4 Proof of Upper Bound for ATL-FLR (Theorem 4)

The Theorem directly holds by combining Theorem 1, Proposition 1 with setting (2), and Theorem 3.

C.5 Proposition

Proposition 1 (Gaïffas and Lecué [2011]). Given a confidence level δ, assume either setting (1) or (2) holds for a constant b,

1. $\max\{\|Y^{(0)}\|, \max_{\beta \in H_K} \| (X^{(0)}, \beta)_{L^2} \| \} \leq b$
2. $\max\{\|\epsilon^{(0)}\|_{\psi}, \sup_{\beta \in H_K} \| (X^{(0)}, \beta - \beta^{(0)}) \| \} \leq b$

where $\|\epsilon^{(0)}\|_{\psi} := \inf\{c > 0 : E[\exp(\| \epsilon^{(0)} / c \|)] \leq 2\}$. Let $\sigma_{\epsilon^{(0)}}^2$ be the upper bound for $E[\| \epsilon^{(0)} \|^2 X^{(0)}]$. The pre-specified parameter ϕ in Algorithm 3 is defined as

$$\phi = \begin{cases}
\begin{aligned}
&b \sqrt{\frac{\log(\|F\| + \delta)}{|I^c|}}, & \text{if setting (1) holds} \\
&\sigma_{\epsilon^{(0)}} + b \sqrt{\frac{(\log(|F| + \delta)\log(|I^c|))}{|I^c|}}, & \text{if setting (2) holds}
\end{aligned}
\end{cases}$$

Let $\hat{\beta}_a$ be the output of Algorithm 2, then

$$E \left(\hat{\beta}_a \right) \leq \min_{t=0, 1, \ldots, T} E \left(\hat{\beta}(\hat{S}_t) \right) + r_\delta(F, n_0) \quad (10)$$

holds with probability at least $1 - 4e^{-\delta}$ where

$$r_\delta(F, n_0) = \begin{cases}
\begin{aligned}
&C_{b1} \frac{(1 + \delta)\log(T)}{n_0}, & \text{if setting (1) holds} \\
&C_{b2} \frac{(1 + \log(4\delta^{-1})\log(T)\log(n_0))}{n_0}, & \text{if setting (2) holds}
\end{aligned}
\end{cases}$$

and C_{b1}, C_{b2} are some constants depend on b.

Remark 6. We call the setting (1) bounded setting and (2) sub-exponential setting. The latter one is milder but leads to a suboptimal cost. We refer readers to Gaïffas and Lecué [2011] for more detailed discussions about the optimal cost in sparse aggregation.

22
C.6 Lemmas

In this part, we prove the lemmas that are used in the proof of Theorem 1. We prove them under the Assumption 2 condition 1 and let \(\phi_j \) denote perfectly aligned eigenfunctions of \(\Gamma(t) \) with \(t \in \{0\} \cup \mathcal{S} \).

Lemma 1.

\[
\| (L_{\Gamma(0)})^v (f_{\mathcal{S} \lambda_1} - f_{\mathcal{S}}) \|_{L^2}^2 \leq (1 - v)^{2(1-v)} v^{2v} \lambda_1^{3v} \| f_{\mathcal{S}} \|_{L^2}^2 \max_j \left\{ \left(\frac{s_j^{(0)}}{\sum_{t \in \mathcal{S}} \alpha_t s_j^{(t)}} \right)^{2v} \right\}.
\]

Proof. By the definition of \(f_{\mathcal{S}} \) and \(f_{\mathcal{S} \lambda_1} \),

\[
\left(\sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right) f_{\mathcal{S} \lambda_1} = \sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} \left(f(t) \right) \text{ and } \left(\sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} \right) f_{\mathcal{S}} = \sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} \left(f(t) \right)
\]

then

\[
f_{\mathcal{S} \lambda_1} - f_{\mathcal{S}} = - \left(\sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \lambda_1 f_{\mathcal{S}}.
\]

Hence,

\[
\| (L_{\Gamma(0)})^v (f_{\mathcal{S} \lambda_1} - f_{\mathcal{S}}) \|_{L^2} \leq \lambda_1 \left\| (L_{\Gamma(0)})^v \left(\sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \right\|_{op} \| f_{\mathcal{S}} \|_{L^2} \]

\[
\leq \lambda_1 \max_j \left\{ \left(\frac{s_j^{(0)}}{\sum_{t \in \mathcal{S}} \alpha_t s_j^{(t)} + \lambda_1} \right)^{2v} \right\} \| f_{\mathcal{S}} \|_{L^2}^2.
\]

By Young’s inequality, \(\lambda_1 + \sum_{t \in \mathcal{S}} \alpha_t s_j^{(t)} \geq (1 - v)^{-1} v^{-v} \lambda_1^{1-v} \||\sum_{t \in \mathcal{S}} \alpha_t s_j^{(t)}\||^v
\]

\[
\| (L_{\Gamma(0)})^v (f_{\mathcal{S} \lambda_1} - f_{\mathcal{S}}) \|_{L^2}^2 \leq (1 - v)^{2(1-v)} v^{2v} \lambda_1^{2v} \| f_{\mathcal{S}} \|_{L^2}^2 \max_j \left\{ \left(\frac{s_j^{(0)}}{\sum_{t \in \mathcal{S}} \alpha_t s_j^{(t)}} \right)^{2v} \right\}.
\]

Lemma 2.

\[
\left\| (L_{\Gamma(0)})^v \left(\sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in \mathcal{S}} \alpha_t \left(L_{\Gamma(t)} - L_{\Gamma_n(t)} \right) \right) (L_{\Gamma(0)})^{-v} \right\|_{op} = O_P \left(\left(\eta \lambda_1^{1 - 2v + \frac{d}{2}} \right)^{-\frac{1}{2}} \right)
\]

Proof.

\[
\left\| (L_{\Gamma(0)})^v \left(\sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in \mathcal{S}} \alpha_t \left(L_{\Gamma(t)} - L_{\Gamma_n(t)} \right) \right) (L_{\Gamma(0)})^{-v} \right\|_{op} = \sup_{h : \|h\|_{L^2} = 1} \left\| h \left(L_{\Gamma(0)} \right)^v \left(\sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in \mathcal{S}} \alpha_t \left(L_{\Gamma(t)} - L_{\Gamma_n(t)} \right) \right) (L_{\Gamma(0)})^{-v} h \right\|_{L^2}.
\]

Let

\[
h = \sum_{j \geq 1} h_j \phi_j,
\]

then

\[
\left\langle h, \left(L_{\Gamma(0)} \right)^v \left(\sum_{t \in \mathcal{S}} \alpha_t L_{\Gamma(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in \mathcal{S}} \alpha_t \left(L_{\Gamma(t)} - L_{\Gamma_n(t)} \right) \right) (L_{\Gamma(0)})^{-v} h \right\rangle_{L^2}
\]

\[
= \sum_{j,k} \left(s_j^{(0)} \right)^v \left(s_k^{(0)} \right)^{-v} h_j h_k \left\langle \phi_j, \sum_{t \in \mathcal{S}} \left(L_{\Gamma(t)} - L_{\Gamma_n(t)} \right) \phi_k \right\rangle_{L^2}.
\]
By Cauchy-Schwarz inequality,

\[
\left\| (L_{T(t)})^v \left(\sum_{t \in S} \alpha_t L_{T(t)} + \lambda_1 I \right)^{-1} \left(\sum_{t \in S} \alpha_t (L_{T(t)} - L_{T_n(t)}) \right) (L_{T(t)})^{-v} \right\|_{op} \\
\leq \left(\sum_{j,k} \frac{(s_j^{(0)})^{2v}(s_k^{(0)})^{-2v}}{(\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1)^2} \left(|E\left(\sum_{t \in S} \alpha_t \left(L_{T(t)} - L_{T_n(t)} \right) \phi_k \right) \right)^2 \right)^{\frac{1}{2}}.
\]

Consider \(E(\phi_j, \sum_{t \in S}(L_{T(t)} - L_{T_n(t)})\phi_k)^2 \), note that

\[
E \left(\phi_j, \sum_{t \in S} \alpha_t \left(L_{T(t)} - L_{T_n(t)} \right) \phi_k \right)^2 \\
= E \left(\sum_{t \in S} \alpha_t \left(L_{K_n(t)} + (C(t) - L_{C_n(t)}) L_{K_n(t)} \right) \phi_j \right)^2 \\
= E \left(\sum_{t \in S} \alpha_t \frac{1}{n_t} \sum_{i = 1}^{n_t} \int_{T^2} L_{K_n(t)}(\phi_j)(s) \left(X_i(t)(s)X_i(t)(t) - E X_i(t)(s)X_i(t)(t) \right) \Gamma_{K_n(t)}(\phi_j)(t) dt ds \right)^2 \\
\leq |S| \sum_{t \in S} \frac{\alpha_t^2}{n_t} s_j^{(t)} s_k^{(t)}
\]

By Jensen’s inequality

\[
E \left(\sum_{j,k} \frac{(s_j^{(0)})^{2v}(s_k^{(0)})^{-2v}}{(\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1)^2} \left(\phi_j, \sum_{t \in S} \alpha_t \left(L_{T(t)} - L_{T_n(t)} \right) \phi_k \right)^2 \right)^{\frac{1}{2}} \\
\leq \left(\sum_{j,k} \frac{(s_j^{(0)})^{2v}(s_k^{(0)})^{-2v}}{(\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1)^2} \right)^{\frac{1}{2}} \left(\sum_{t \in S} \alpha_t s_j^{(t)} s_k^{(t)} \right)^{\frac{1}{2}} \\
\leq \max_{j,k} \left(\frac{\sum_{t \in S} \alpha_t s_j^{(t)} s_k^{(t)}}{s_j^{(0)} s_k^{(0)}} \right)^{\frac{1}{2}} \left(\sum_{j,k} \frac{(s_j^{(0)})^{1+2v}(s_k^{(0)})^{-1-2v}}{(\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1)^2 (n_S)} \right)^{\frac{1}{2}} \\
\leq \max_{j,k} \left(\frac{\sum_{t \in S} \alpha_t s_j^{(t)} s_k^{(t)}}{s_j^{(0)} s_k^{(0)}} \right)^{\frac{1}{2}} \left(\frac{1}{n_S} \right)^{\frac{1}{2}} \left(\frac{1}{\lambda_1^{1-2v+\frac{1}{2}}} \right)^{\frac{1}{2}}.
\]

By assumptions of eigenvalues, \(\max_{j,k} \left(\frac{\sum_{t \in S} \alpha_t s_j^{(t)} s_k^{(t)}}{s_j^{(0)} s_k^{(0)}} \right) \leq C_1 \) for some constant \(C_1 \). Finally, by Lemma 5

\[
E \left(\sum_{j,k} \frac{(s_j^{(0)})^{2v}(s_k^{(0)})^{-2v}}{(\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1)^2} \left(\phi_j, \sum_{t \in S} \alpha_t \left(L_{T(t)} - L_{T_n(t)} \right) \phi_k \right)^2 \right)^{\frac{1}{2}} \leq \left(\frac{1}{n_S} \right)^{\frac{1}{2}} \left(\frac{1}{\lambda_1^{1-2v+\frac{1}{2}}} \right)^{\frac{1}{2}}.
\]

The rest of the proof can be completed by Markov inequality.
Lemma 3.

\[
\left\| (L_{T^{(0)}})^v (\sum_{t \in S} \alpha_t L_{T^{(t)}} + \lambda_1 I)^{-1} \sum_{t \in S} g_n^{(t)} \right\|_{L^2}^2 = O_p \left(\left((n_S) \lambda_1^{1-2\nu + \frac{1}{2}} \right)^{-1} \right)
\]

Proof.

\[
\left\| (L_{T^{(0)}})^v (\sum_{t \in S} \alpha_t L_{T^{(t)}} + \lambda_1 I)^{-1} \sum_{t \in S} g_n^{(t)} \right\|_{L^2}^2 = \sum_{j \geq 1} \left\| (L_{T^{(0)}})^v (\sum_{t \in S} \alpha_t L_{T^{(t)}} + \lambda_1 I)^{-1} \sum_{t \in S} g_n^{(t)} \right\|_{L^2}^2
\]

\[
= \sum_{j \geq 1} \left(\sum_{t \in S} g_n^{(t)} \cdot \frac{(s_j^{(0)})^2}{\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1} \right)^2
\]

\[
= \sum_{j \geq 1} \frac{(s_j^{(0)})^2}{\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1} \cdot \left(\frac{1}{n_S} \sum_{t \in S} \sum_{i = 1}^{n_t} \left(\frac{\epsilon_1^{(t)} X_1^{(t)} L K \frac{1}{2}}{L} (\phi_j) \right) \right)^2
\]

Therefore,

\[
E \left\| (L_{T^{(0)}})^v (\sum_{t \in S} \alpha_t L_{T^{(t)}} + \lambda_1 I)^{-1} \sum_{t \in S} g_n^{(t)} \right\|_{L^2}^2 = \sum_{j \geq 1} \frac{(s_j^{(0)})^2}{\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1} \cdot \left(\frac{1}{n_S} \sum_{t \in S} \sum_{i = 1}^{n_t} \left(\frac{\epsilon_1^{(t)} X_1^{(t)} L K \frac{1}{2}}{L} (\phi_j) \right) \right)^2
\]

\[
= \sum_{j \geq 1} \frac{(s_j^{(0)})^2}{\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1} \cdot \left(\frac{1}{n_S} \sum_{t \in S} \sum_{i = 1}^{n_t} \left(\frac{\epsilon_1^{(t)} X_1^{(t)} L K \frac{1}{2}}{L} (\phi_j) \right) \right)^2
\]

\[
\leq \max_j \left\{ \frac{\alpha_0 s_j^{(0)} + \sum_{t \in S} \alpha_t s_j^{(t)}}{(s_j^{(0)})^2}, \frac{C_1 n_S \sum_{j \geq 1} (s_j^{(0)})^{1+2\nu}}{(\sum_{t \in S} \alpha_t s_j^{(t)} + \lambda_1)^2} \right\}
\]

thus by assumption on eigenvalues and Lemma 5 with \(\nu = \frac{1}{2} \),

\[
E \left\| (L_{T^{(0)}})^v (\sum_{t \in S} \alpha_t L_{T^{(t)}} + \lambda_1 I)^{-1} \sum_{t \in S} g_n^{(t)} \right\|_{L^2}^2 \lesssim \left(n_S \lambda_1^{1-2\nu + \frac{1}{2}} \right)^{-1},
\]

with the constant proportional to \(\sigma^2 \). The rest of the proof can be completed by Markov inequality. \(\square \)

Lemma 4.

\[
\left\| \sum_{t \in S} \alpha_t L_{T^{(t)}} \left(f^{(t)} - f_S \right) \right\|_{L^2}^2 = O_p \left((n_S)^{-1} \right)
\]

25
Lemma 5.

\[\lambda_i^\pm \preceq \sum_{j=1}^{N} \frac{(s_j^{(0)})^{1+2v}}{(\sum_{t\in S} \alpha_t s_j^{(t)} + \lambda_1)^{1+2v}} \preceq 1 + \lambda_i^\pm \cdot \]

Proof. The proof is exactly the same as Lemma 6 in Cai and Yuan [2012] once we know that \(\max_{j} \left(\frac{s_j^{(0)}}{\sum_{t\in S} \alpha_t s_j^{(t)}} \right) \leq C \), which got satisfied under the assumptions of eigenvalues.

Lemma 6 (Fano’s Lemma). Let \(P_1, \cdots, P_M \) be probability measure such that

\[KL(P_i | P_j) \leq \alpha, \quad 1 \leq i \neq j \leq K \]

then for any test function \(\psi \) taking value in \(\{1, \cdots, M\} \), we have

\[P_i(\psi \neq i) \geq 1 - \frac{\alpha + \log(2)}{\log(M-1)}. \]

Lemma 7. (Varshamov-Gilbert) For any \(N \geq 1 \), there exists at least \(M = \exp(N/8) \) \(N \)-dimensional vectors, \(b_1, \cdots, b_M \subset \{0,1\}^N \) such that

\[\sum_{l=1}^{N} b_{lk} \neq b_{jk} \geq N/4. \]

D Appendix: Proof of Section 5

We prove the upper bound and the lower bound of TL-FGLM. We first note that under Assumption 5, the excess risk \(\mathcal{E}(\hat{\beta}) \) is equivalent to \(E_{X|0} (\hat{\beta} - \beta^{(0)}, X^{(0)})^2_{L^2} \) up to universal constants. Thus we focus on \(E_{X|0} (\hat{\beta} - \beta^{(0)}, X^{(0)})^2_{L^2} \) in following proofs.

Although we are focusing on \(E_{X|0} (\hat{\beta} - \beta^{(0)}, X^{(0)})^2_{L^2} \), which is exactly the same as FLR. However, minimizing the regularized negative log-likelihood will not provide an analytical solution of \(\hat{\beta} \) as those in FLR, meaning that the proof techniques we used in proving TL-FLR and ATL-FLR are not applicable. Therefore, we use the empirical process to prove the upper bound.

We abbreviate \(\langle \cdot, \cdot \rangle_{L^2} \) as \(\langle \cdot, \cdot \rangle \) in following proofs. We first introduce some notations. Let

\[\mathcal{L}^S(\beta) = \sum_{t\in S} \alpha_t E \left[Y^{(t)} \langle X^{(t)}, \beta \rangle - \psi(\langle X^{(t)}, \beta \rangle) \right], \]

\[\mathcal{L}(\beta) = E \left[Y^{(0)} \langle X^{(0)}, \beta + \hat{\beta}_S \rangle - \psi(\langle X^{(0)}, \beta + \hat{\beta}_S \rangle) \right] \]
and their empirical version are denoted as
\[
\mathcal{L}^{S}_{nS}(\beta) = \frac{1}{n_0 + n_S} \sum_{t \in S} \sum_{i = 1}^{n_t} \left[Y_i^{(t)} \langle X_i^{(t)}, \beta \rangle - \psi((X_i^{(t)}, \beta)) \right],
\]
\[
\mathcal{L}_n(\beta) = \frac{1}{n_0} \sum_{i = 1}^{n_0} \left[Y_i^{(0)} \langle X_i^{(0)}, \beta + \hat{\beta}_S \rangle - \psi((X_i^{(0)}, \beta + \hat{\beta}_S)) \right].
\]

Let \(P^S \) and \(P \) be the conditional distribution of \(\bigcup_{t \in S} Y^{(t)} | X^{(t)} \) and \(Y^{(0)} | X^{(0)} \) respectively, and \(P^S_{n_S} \) and \(P_n \) as their empirical version, by define
\[
\ell^S(\beta) = \sum_{t \in S} \alpha_t \left[Y^{(t)} \langle X^{(t)}, \beta \rangle - \psi((X^{(t)}, \beta)) \right],
\]
\[
\ell(\beta) = \frac{1}{n_0} \sum_{i = 1}^{n_0} \left[Y^{(0)} \langle X^{(0)}, \beta + \hat{\beta}_S \rangle - \psi((X^{(0)}, \beta + \hat{\beta}_S)) \right]
\]
we get
\[
P^S_{n_S} \ell^S(\beta) = \mathcal{L}^{S}_{nS}(\beta), \quad P^S \ell^S(\beta) = \mathcal{L}^{S}(\beta), \quad P_n \ell(\beta) = \mathcal{L}_n(\beta), \quad P \ell(\beta) = \mathcal{L}(\beta).
\]

D.1 Proof of Upper bound for TL-FGLM (Theorem 5)

Proof. As mentioned before, we are focusing on \(|| \hat{\beta} - \beta^{(0)} ||_{C^{(0)}}^2 \), i.e.
\[
|| \hat{\beta} - \beta^{(0)} ||_{C^{(0)}}^2 = \int_T \int_T (\hat{\beta}(s) - \beta^{(0)}(s))C^{(0)}(s,t)(\hat{\beta}(t) - \beta^{(0)}(t))dsdt = E(\langle X^{(0)}, \hat{\beta} - \beta^{(0)} \rangle)^2.
\]
Therefore, we only need to show \(|| \hat{\beta} - \beta^{(0)} ||_{C^{(0)}}^2 \) is bounded by the error terms in Theorem 5. Notice that
\[
\left| || \hat{\beta} - \beta^{(0)} ||_{C^{(0)}} \right| \leq || \hat{\beta}_S - \beta_S ||_{C^{(0)}} + || \delta_S - \delta_S ||_{C^{(0)}},
\]
we then bound the two terms in r.h.s. separately. We denote \(|| a - b ||_{C^{(0)}} = d^2_t(a,b) \) for all \(t \in 0 \cup [T] \) and \(a, b \in H_K \).

We first focus on the transfer learning error. Based on the Theorem 3.4.1 in [Vaart and Wellner, 1996], if the following three conditions hold,
1. \(\sup_{t \leq 2T \leq t_0, \beta, \delta_S} \frac{1}{\sqrt{n^*}} (\mathcal{L}^S_{n_S} - \mathcal{L}^S)(\beta - \beta_S) \leq \rho^{2r-1} \sqrt{2}\rho^r; \)
2. \(\sup_{t \leq 2T \leq t_0, \beta, \delta_S} P^S \ell^S(\beta) - P^S \ell^S(\beta_S) \leq -\rho^2; \)
3. \(\mathcal{L}^{S}_{n_S}(\hat{\beta}_S) \geq \mathcal{L}^S(\beta_S) - \Omega_T(r^{-2}_n || \beta_S ||^2_K). \)

then
\[
d^2_t(\hat{\beta}_S, \beta_S) = \Omega_T(r^{-2}_n || \beta_S ||^2_K).
\]

For part (1), define
\[
\Pi^S_{\rho} = \{ \ell^S(\beta) - \ell^S(\beta_S) : \beta \in B_{\rho} \} \quad \text{where} \quad B_{\rho} = \{ \beta \in H_K : d^0_0(\beta, \beta_S) \in [\frac{\rho}{2}, \rho] \}.
\]
Then \(\sup_{\beta \in B_{\rho}} || (\mathcal{L}^{S}_{n_S} - \mathcal{L}^S)(\beta - \beta_S) || = \sup_{f \in \Pi^S_{\rho}} || (P_{n_S}^S - P^S)f || \) and by Cauchy-Schwarz inequality,
\[
E \sup_{f \in \Pi^S_{\rho}} || (P_{n_S}^S - P^S)f || \leq \left\{ E \left[\sup_{f \in \Pi^S_{\rho}} || (P_{n_S}^S - P^S)f ||^2 \right] \right\}^{1/2} \leq \left\| \sup_{f \in \Pi^S_{\rho}} || (P_{n_S}^S - P^S)f || \right\|_{p^S,2}.
\]
To bound the right hand side, by Theorem 2.14.1 in [Vaart and Wellner, 1996], we need to find the covering number of Π^S_ρ, i.e. $\mathcal{N}(\epsilon, \Pi^S_\rho, \| \cdot \|_{p^S,2})$. We first show that

$$
\log \left(\mathcal{N}(\epsilon, \Pi^S_\rho, \| \cdot \|_{p^S,2}) \right) \leq O \left(\epsilon^{-\frac{1}{2}} \log(\frac{L}{\epsilon}) \right).
$$

Suppose there exist functions $\beta_1, \cdots, \beta_M \in B_\rho$ such that

$$
\min_{1 \leq m \leq M} \| \ell^S(\beta) - \ell^S(\beta_m) \|_{p^S,2} < \epsilon, \quad \forall \beta \in B_\rho.
$$

Since

$$
(\ell^S(\beta) - \ell^S(\beta_i))^2 = \left[\sum_{t \in S} \alpha_t Y^{(t)}(X^{(t)}, \beta - \beta_i) - \left(\psi((X^{(t)}, \beta)) - \psi((X^{(t)}, \beta_i)) \right) \right]^2
$$

$$
\leq |S| \sum_{t \in S} \alpha_t^2 (Y^{(t)})^2 + (C^{(t)})^2 \langle X^{(t)}, \beta - \beta_i \rangle^2
$$

$$
\leq |S| \max_{t \in S} \left\{ (Y^{(t)})^2 + (C^{(t)})^2 \right\} \sum_{t \in S} \alpha_t^2 \langle X^{(t)}, \beta - \beta_i \rangle^2
$$

thus

$$
\| \ell^S(\beta) - \ell^S(\beta_i) \|^2_{p^S,2} \leq |S| \max_{t \in S} \left\{ (Y^{(t)})^2 + (C^{(t)})^2 \right\} \sum_{t \in S} \alpha_t^2 \langle X^{(t)}, \beta - \beta_i \rangle^2
$$

where the inequality follows the fact for all $t \in S$, and $d_0(\beta, \beta_i) = d_0(\beta, \beta_i)$ under Assumption 2. Hence, the covering number of Π^S_ρ under norm $\| \cdot \|_{p^S,2}$ is bounded by covering number of B_ρ under norm d_0, i.e.

$$
\mathcal{N}(\epsilon, \Pi^S_\rho, \| \cdot \|_{p^S,2}) \leq \mathcal{N}(\frac{\epsilon}{C_1}, B_\rho, d_0).
$$

Define $\tilde{B}_\rho = \{ \beta \in \mathcal{H}_K : d_0(\beta, \beta_S) \in [0, \rho] \}$, then

$$
\mathcal{N}(\frac{\epsilon}{C_1}, B_\rho, d_0) \leq \mathcal{N}(\frac{\epsilon}{C_1}, \tilde{B}_\rho, d_0).
$$

Next, we will show $\mathcal{N}(\frac{\epsilon}{C_1}, \tilde{B}_\rho, d_0)$ can be bounded by covering number for a ball in \mathbb{R}^J for some finite integer J.

Notice that $\mathcal{H}_K = L_{K^{1/2}}(L^2) = \{ \sum_{j \geq 1} b_j L_{K^{1/2}}(\phi_j) : \| b_j \|_{L^2} \leq 1 \}$, hence for any $\beta = \sum_{j \geq 1} b_j L_{K^{1/2}}(\phi_j) \in \mathcal{H}_K$,

$$
d_0^2(\beta, \beta_S) = (\beta - \beta_S; L_{C^{(0)}}(\beta - \beta_S))^2
$$

$$
= \sum_{j \geq 1} (\langle b_j - b_j^S, L_{K^{1/2}}(\phi_j) \rangle - \langle \phi_j, \beta - \beta_S \rangle)^2
$$

$$
= \sum_{j \geq 1} s_j^0 (b_j - b_j^S)^2
$$

which allows one to rewrite \tilde{B}_ρ as

$$
\tilde{B}_\rho = \left\{ \sum_{j \geq 1} b_j L_{K^{1/2}}(\phi_j) : \sum_{j \geq 1} s_j^0 (b_j - b_j^S)^2 \leq \rho^2 \right\}.
$$

Let $J = \lfloor \frac{\epsilon}{2C_1} \rfloor$ be a truncation number, and define

$$
\tilde{B}_\rho^* = \left\{ \sum_{j = J+1}^\infty b_j L_{K^{1/2}}(\phi_j) : \sum_{j = J+1}^\infty s_j^0 (b_j - b_j^S)^2 \leq \rho^2 \right\}.
$$

For any $\beta \in \tilde{B}_\rho$, let $\beta^* \in \tilde{B}_\rho^*$ be its counterpart, then

$$
d_0^2(\beta, \beta^*) = \sum_{j = J+1}^\infty s_j^0 b_j^2 \leq s_j^0 \sum_{j = J+1}^\infty b_j^2 \ll J^{-2r} = \left(\frac{\epsilon}{2C_1} \right)^2.
$$

28
Suppose there exist function $\beta_1^*, \ldots, \beta_M^* \in \tilde{B}_\rho^*$ such that
\[
\min_{1 \leq m \leq M} d_0(\beta^*_m, \beta_m^*) < \frac{\epsilon}{2C_1} \quad \forall \beta \in \tilde{B}_\rho^*,
\]
then by triangle inequality
\[
\min_{1 \leq m \leq M} d_0(\beta, \beta^*_m) < \frac{\epsilon}{C_1} \quad \forall \beta \in B_\rho.
\]
The above inequality indeed shows that the covering number of \tilde{B}_ρ^* with radius $\frac{\epsilon}{2C_1}$ can be bounded by the covering of \tilde{B}_ρ^* with radius $\frac{\epsilon}{2C_1}$, i.e.
\[
\mathcal{N}(\frac{\epsilon}{C_1}, \tilde{B}_\rho^*, d_0) \leq \mathcal{N}(\frac{\epsilon}{2C_1}, \tilde{B}_\rho^*, d_0).
\]
It is known that the covering number for a unit ball in \mathbb{R}^N, then the covering number is less than $(\frac{2}{\epsilon} + 1)^N$. Therefore,
\[
\mathcal{N}(\frac{\epsilon}{2C_1}, \tilde{B}_\rho^*, d_0) \leq \left(\frac{2\rho + \frac{\epsilon}{2C_1}}{\rho}\right)^{\frac{1}{2}}
\]
which leads to
\[
\log \mathcal{N}(\frac{\epsilon}{2C_1}, \tilde{B}_\rho^*, d_0) \leq O_\rho \left(\epsilon^{-1/2}\log\frac{\rho}{\epsilon}\right).
\]
By Dudley entropy integral, we know
\[
sup_{f \in L_S^2} |(P_{nS}^S - P^S)f| \lesssim \int_0^\rho \sqrt{\frac{\log \mathcal{N}(\frac{\epsilon}{2C_1}, \tilde{B}_\rho^*, d_0; \epsilon)}{nS}} d\epsilon
\]
\[
= \rho^{\frac{2r-1}{2}} n^{-\frac{1}{2}} \int_1^\infty \exp\{(1 - \frac{1}{2\epsilon})u^2\} u^2 du
\]
\[
= O(\rho^{\frac{2r-1}{2}} n^{-\frac{1}{2}})
\]
Hence, by Theorem 2.14.1 in [Vaart and Wellner, 1996], we finish the proof of (1).

For part (2), let $G(t) = \ell^S(\beta_S + t\tilde{\beta})$ where $\tilde{\beta} = \beta - \beta_S$, then we notice $G(1) = \ell^S(\beta)$ and $G(0) = \ell^S(\beta_S)$. We further notice
\[
G'(t) = -\sum_{i \in S} \alpha_i \left\{ Y(t-i) (X(t), \tilde{\beta}) - \psi'(X(t), \beta_S + t\tilde{\beta}) (X(t), \tilde{\beta}) \right\}
\]
and thus
\[
\mathbb{E} G'(0) = \sum_{i \in S} \alpha_i \mathbb{E} \left\{ Y(t-i) (X(t), \tilde{\beta}) - \psi'(X(t), \beta_S) (X(t), \tilde{\beta}) \right\}
\]
\[
= \sum_{i \in S} \alpha_i \mathbb{E} \left\{ Y(t-i) - \psi'(X(t), \beta_S) X(t) \right\} \left\{ X(t), \tilde{\beta} \right\}
\]
\[
= 0
\]
Besides, by direct calculation,
\[
G''(t) = -\sum_{i \in S} \alpha_i \left\{ \psi''((X(t), \beta_S + t\tilde{\beta})(X(t), \tilde{\beta})^2 \right\},
\]
By Taylor expansion, there exists a $\gamma \in [0, 1]$ such that
\[
G(1) - G(0) = G'(0) + \frac{1}{2} G''(\gamma)
\]
\[
= G'(0) - \frac{1}{2} \sum_{i \in S} \alpha_i \left\{ \psi''((X(t), \beta_S + \gamma\tilde{\beta}))(X(t), \tilde{\beta})^2 \right\}.
\]
Notice that $P^S \ell^S(\beta) - P^S \ell^S(\beta_S) = E[G(1) - G(0)]$, and then
\[
P^S \ell^S(\beta) - P^S \ell^S(\beta_S) = E[G(1) - G(0)]
= \frac{1}{2} \sum_{t \in S} \alpha_t E \left\{ \psi''((X(t), \beta_S + \gamma \hat{\beta}))(X(t), \hat{\beta})^2 \right\}
\leq - \frac{\min_{t \in S}\{A_1\}}{2} \sum_{t \in S} \alpha_t (X(t), \hat{\beta})^2,
\]
and
\[
P^S \ell^S(\beta) - P^S \ell^S(\beta_S) = E[G(1) - G(0)]
= \frac{1}{2} \sum_{t \in S} \alpha_t E \left\{ \psi''((X(t), \beta_S + \gamma \hat{\beta}))(X(t), \hat{\beta})^2 \right\}
\geq - \frac{\max_{t \in S}\{A_2\}}{2} \sum_{t \in S} \alpha_t (X(t), \hat{\beta})^2,
\]
which leads to
\[
P^S \ell^S(\beta) - P^S \ell^S(\beta_S) \simeq - \sum_{t \in S} \alpha_t d_t^2(\beta, \beta_S)
\]
Hence, we get
\[
\sup_{\rho/2 < L(\hat{\beta}_S) \leq \rho} \left\{ P^S \ell^S(\beta) - P^S \ell^S(\beta_S) \right\} \simeq - \left(\rho^2 + \sum_{t \in S} \alpha_t d_t^2(\beta, \beta_S) \right)
\leq - \rho^2,
\]
which proves part (2).

Finally for part (3), we pick $r_{\delta_S} = n^{1-m} \|\beta_S\|_{K}^{-2r_{1-S}}$ which satisfies $r_{\delta_S}^2 \phi_n(r_{\delta_S}^{-1}) \leq \sqrt{n_S}$ where $\phi_n(x) = x^{2r_{1-S}}$. Let $\lambda_1 = O(r_{\delta_S}^{-2})$, since
\[
-L_n(\hat{\beta}_S) + \lambda_1 \|\hat{\beta}_S\|_K^2 \leq -L_n(\beta_S) + \lambda_1 \|\beta_S\|_K^2,
\]
therefore
\[
L_n(\hat{\beta}_S) \geq L_n(\beta_S) + \lambda_1 \left(\|\beta_S\|_K^2 - \|\beta_S\|_K^2 \right)
\geq L_n(\beta_S) - \lambda_1 \|\beta_S\|_K^2
\geq L_n(\beta_S) - O(r_{\delta_S}^{-2} \|\beta_S\|_K^2).
\]
Combining part (1)-(3), based on the Theorem 3.4.1 in [Vaart and Wellner, 1996], we know
\[
d_t^2(\hat{\beta}_S, \beta_S) = O_P \left(r_{\delta_S}^{-2} \|\beta_S\|_K^2 \right).
\]
To bound the second term in the r.h.s. of (11), we follow the same proof procedure as the proof of bounding first term. Specifically, we need to show
1. $E \sup_{\rho/2 < L(\hat{\beta}_S) \leq \rho} \sqrt{n_0}(L_{\delta_0} - L(\delta - \delta_0)) \lesssim \rho^{2-\nu_1}$;
2. $\sup_{\rho/2 < L(\hat{\beta}_S) \leq \rho} P(\delta) - P(\hat{\beta}_S) \lesssim - \rho^2$;
3. $L_{\delta_0}(\hat{\delta}_S) \geq L(\hat{\delta}_S) - O_P \left(r_{\delta_0}^{-2} \|\delta_S\|_K^2 \right)$.

It is not hard to check, including the estimator from transfer step $\hat{\beta}_S$ into the loss function for debias step defined at the beginning of the proof will not affect the statements (1)-(3). For example, in part (1), the $\hat{\beta}_S$ will vanish when calculating $(\ell(\delta) - \ell(\hat{\delta}))^2$; in part (2), its effect will vanish since our assumption of the second order derivatives of ψ_s are bounded from infinity and zero; in part (3), the inequality holds as δ_S is the minimizer of the regularized loss function. Therefore, in the end, we have
\[
d_t^2(\hat{\delta}_S, \delta_S) = O_P \left(r_{\delta_S}^{-2} \|\delta_S\|_K^2 \right)
\]
where \(r_{n_0} = n_0^{\frac{2r-\alpha}{2}} \|\delta_S\|_K^{\frac{\alpha}{2}}. \)

Combining the bounds of \(d_0(\hat{\beta}_S, \beta_S) \) and \(d_0(\hat{\delta}_S, \delta_S) \), we reach to

\[
E(\hat{\beta}) = O_p \left(n_S^{\frac{2r}{2r+\alpha}} + \left(\frac{h^2}{\|\beta_S\|_K} \right)^a n_0^{\frac{2r}{2r+\alpha}} \right),
\]

for some \(a > 0. \)

\[\square \]

D.2 Proof of Lower Bound for TL-FGLM (Theorem 5)

Proof. Similar to the lower bound of TL-FLR, we consider the following two cases.

(1) Consider \(h = 0 \), i.e. all the source datasets come from the target domain, and thus \(\beta^{(t)} = \beta^{(0)} \) for all \(t \in S \). This can also be viewed as finding the lower bound of the estimator on \(\beta^{(0)} \) with the size of the target dataset as \(n_0 + n_S \).

We first calculate the Kullback–Leibler divergence between \(P_i \) and \(P_j \) under the exponential family. By the definition of KL divergence and density function of the exponential family, we have

\[
KL(P_i||P_j) = (n_0 + n_S) \mathbb{E} \left\{ \langle X^{(0)}, \beta_i - \beta_j \rangle \psi' \langle X^{(0)}, \beta_i \rangle - \psi \langle X^{(0)}, \beta_i \rangle - \psi' \langle X^{(0)}, \beta_j \rangle \right\}
\]

\[
= (n_0 + n_S) \mathbb{E} \left\{ \frac{1}{2} \psi' \langle X^{(0)}, \hat{\beta} \rangle < X^{(0)}, \beta_i - \beta_j >^2 \right\}
\]

\[
\leq (n_0 + n_S) d_0^2(\beta_i, \beta_j),
\]

for some \(\hat{\beta} \) between \(\beta_i \) and \(\beta_j \). For any estimator \(\hat{\beta} \) based on \(\{(X^{(0)}_i, Y^{(0)}_i)\}_{i=1}^{n_0 + n_S} \), by Markov inequality and Fano’s Lemma, we have

\[
d_0^2(\hat{\beta}, \beta_i) \geq P_i \left(|\langle X^{(0)}, \hat{\beta} - \beta_i \rangle | \geq \min_{i,j} d_0(\beta_i, \beta_j) \right) \min_{i,j} d_0^2(\beta_i, \beta_j)
\]

\[
= P_i(\hat{\beta} \neq \beta_i) \min_{i,j} d_0^2(\beta_i, \beta_j)
\]

\[
\geq \left(1 - \frac{(n_0 + n_S) \max_{i,j} d_0^2(\beta_i, \beta_j) + \log(2)}{\log(M-1)} \right) \min_{i,j} d_0^2(\beta_i, \beta_j).
\]

To have the lower bound matches with the upper bound, we need to construct the series of \(\beta_1, \beta_M \in B_{H,h} \) such that the r.h.s. of the above inequality is equal to \((n_0 + n_S)^{-\frac{\alpha}{2r+\alpha}} \) up to a constant. Let \(N \) be a fixed integer and

\[
\beta_i = \sum_{k=N+1}^{2N} \frac{b_{i,k-N}}{\sqrt{N}} L_{K^{1/2}}(\phi_k) \quad \text{for} \quad i = 1, 2, \cdots, M.
\]

Then,

\[
d_0^2(\beta_i, \beta_j) = \frac{1}{N} \sum_{k=N+1}^{2N} (b_{i,k-N} - b_{j,k-N})^2 s_i^{(0)}
\]

\[
\geq \frac{s_{2N}^{(0)}}{N} \sum_{k=N+1}^{2N} (b_{i,k-N} - b_{j,k-N})^2
\]

\[
\geq \frac{s_{2N}^{(0)}}{4},
\]

31
where the last inequality is by Lemma 7, and

\[d_0^2(\beta_i, \beta_j) = \frac{1}{N} \sum_{k=N+1}^{2N} (b_{k,k-N} - b_{j,k-N})^2 s_k^{(0)} \]
\[\leq \frac{s(0)}{N} \sum_{k=M+1}^{M} (b_{k,N} - b_{j,N})^2 \]
\[\leq s(0). \]

Combining the upper and lower bound of \(d_0^2(\beta_i, \beta_j) \) with the r.h.s. of (12), we obtain

\[d_0^2(\beta_i, \beta_j) \geq \left(1 - \frac{4(n_0 + n_S)s(0) + 8 \log(2)}{N} \right) \frac{s(0)}{4}. \]

Taking \(N = 8(n_0 + n_S) \frac{2^{2r}}{r} \), which implies \(N \to \infty \), would produce

\[\left(1 - \frac{4(n_0 + n_S)s(0) + 8 \log(2)}{N} \right) \frac{s(0)}{4} \approx \left(\frac{1}{2} - \frac{8 \log(2)}{N} \right) N^{-2r} \approx (n_S + n_0)^{-\frac{2r}{r+1}}. \]

Now we finish the proof of the first half part of the lower bound. To prove the second half, we consider the following case.

(2) Consider \(\beta(t) = 0 \) for all \(t \in S \), i.e. all the source domains have no useful information about the target domain. Then we know the \(\beta(0) \in B_H(h) \), and our goal is to show \(d_0^2(\tilde{\beta}, \beta_i) \) is bounded by \(n_0^{\frac{2r}{r+1}} \) up to a constant related to \(h \) by constructing a sequence of \(\beta_1, \ldots, \beta_M \in B_H(h) \).

Again, let \(N \) be a fixed integer and

\[\beta_i = \sum_{k=N+1}^{2N} \frac{b_{k,N}h}{\sqrt{N}} L K_{\frac{1}{2}}(\phi_k) \quad \text{for} \quad i = 1, 2, \ldots, M. \]

Then similar to case (1), we can prove that

\[d_0^2(\beta_i, \beta_j) \geq \frac{s(0)}{4} h^2 \quad \text{and} \quad d_0^2(\beta_i, \beta_j) \leq s(0) h^2. \]

Then for any estimator \(\tilde{\beta} \) based on \(\{(X_i, Y_i)^t \}_{i=1}^{n_0} \) and follows a similar process as case (1),

\[d_0^2(\beta_i, \beta_j) \geq \left(1 - \frac{4n_0h^2s(0)}{N} + 8 \log(2) \right) \frac{s(0)}{4} h^2. \]

Again, taking \(N = 8h^2(n_0 + n_S)^{\frac{2r}{r+1}} \) leads to

\[d_0^2(\beta_i, \beta_j) \geq n_0^{-\frac{2r}{r+1}} h^2. \]

Combining the lower bound in case (1) and case (2), we obtain the desired lower bound.

\[\square \]

E Appendix: Additional Experiments for TL-FLR/ATL-FLR

In this section, we explore how the smoothness of the coefficient functions, \(\beta(t) \), for \(t \in S_c \), will affect the performance of ATL-FLR. We also explore how different temperatures will affect the performance of Exponential Weighted ATL-FLR (ATL-FLR (EW)).

We consider the setting that \(\beta(t) \) with \(t \in S_c \) are generated from a much rougher Gaussian process, i.e. \(\beta_t \) are generated from a Gaussian process with mean function \(\cos(2\pi t) \) with covariance kernel \(\min(s, t) \),
which is exactly Wiener process, and thus the β_is are less smooth than β_is that are generated from Ornstein–Uhlenbeck process (the one we used in main paper). For ATL-FLR (EW), we consider three different temperatures, i.e., $T = 0.2, 2, 10$, where a lower temperature will usually produce small aggregation coefficients. All the other settings are the same as the simulation section.

The results are presented in Figure 3. In general, the patterns of using the Wiener process are consistent with using the Ornstein–Uhlenbeck process, which demonstrates the robustness of the proposed algorithms to negative transfer source models. We also note that while the temperature is low ($T = 0.2$), the small convex combination coefficients $\{c_j\}$ will make ATL-FLR(EW) have almost the same performance as ATL-FLR, but it still cannot beat ATL-FLR. While we increase the temperature ($T = 2, T = 10$), the gap between ATL-FLR(EW) and ATL-FLR increases, especially when the proportion of $|S|$ is small. Therefore, selecting the wrong T can hugely degrade the performance of ATL-FLR(EW). This demonstrates the superiority of sparse aggregation in practice since its performance does not depend on the selection of any hyperparameters.

F Appendix: Real Data Application

In this section, we demonstrate an application of the proposed algorithms in the financial market. The goal of portfolio management is to balance future stock returns and risk, and thus investors can rebalance their portfolios according to their goals. Some investors may be interested in predicting the future stock returns in a specific sector, and transfer learning can borrow market information from other sectors to improve the prediction of the interest.

In this stock data application, for two given adjacent months, we focus on utilizing the Monthly Cumulative Return (MCR) of the first month to predict the Monthly Return (MR) of the subsequent month and improving the prediction accuracy on a certain sector by transferring market information from other sectors. Specifically, suppose for a specific stock, the daily price for the first month is $\{s^1(t_0), s^1(t_1), \ldots, s^1(t_m)\}$ and for the second month is $\{s^2(t_0), s^2(t_1), \ldots, s^2(t_m)\}$, then the predictors and responses are expressed as

$$X(t) = \frac{s^1(t) - s^1(t_0)}{s^1(t_0)} \quad \text{and} \quad Y = \frac{s^2(t_m) - s^2(t_0)}{s^2(t_0)}. \quad (13)$$

The stock price data are collected from Yahoo Finance (https://finance.yahoo.com/) and we focus on stocks whose corresponding companies have a market cap over 20 Billion. We divide the sectors based on the division criteria on Nasdaq (https://www.nasdaq.com/market-activity/stocks/screener). The raw data obtained from websites are processed to match the format in (13) and both the raw data and processed data are available in https://github.com/haotianlin/TL-FLM.

After pre-processing, the dataset consists of total 11 sectors: Basic Industries (BI), Capital Goods (CG), Consumer Durable (CD), Consumer Non-Durable (CND), Consumer Services (CS), Energy (E), Finance (Fin), Health Care (HC), Public Utility (PU), Technology (Tech), and Transportation (Trans), with the number of stocks in each sector as 60, 58, 31, 30, 104, 55, 70, 68, 46, 103, 41. The period of the stocks’ price is 05/01/2021 to 09/30/2021.

We compare the performance of Pooled Transfer (Pooled-TL), Naive Transfer (Naive-TL), Detect-TL, ATL-FLR(EW) and ATL-FLR. Naive-TL implements TL-FLR by setting all source sectors belonging to S, while the Pooled-TL one omits the calibrate step in Naive-TL, and the other three are the same as the former simulation section. The learning of each sector is treated as the target task each time, and all the other sectors are sources. We randomly split the target sector into the train (80%) and test (20%) set and report the ratio of the four approaches’ prediction errors to OFLR’s on the test set. We consider the Matérn kernel as the reproducing kernel K again. Specifically, we set $\rho = 1$ and $\nu = 1/2, 3/2, \infty$ (where $\nu = 1/2$ is equivalent to the exponential kernel and $\nu = \infty$ is equivalent to Gaussian kernel) which endows K with different smoothness properties. The tuning parameters are selected via Generalized Cross-Validation (GCV). Again, we replicate the experiment 100 times and report the average prediction error with standard error in Figure 4.

First, we note that the Pooled-TL and Naive-TL only reduce the prediction error in a few sectors, but make no improvement or even downgrade the predictions in most sectors. This implies the effect of direct transfer learning can be quite random, as it can benefit the prediction of the target sector when it shares high
Figure 3: Excess Risk of different transfer learning algorithms. Each row corresponds to different $\beta^{(0)}$ and the y-axes for each row are under the same scale. The result for each sample size is an average of 100 replicate experiments with the shaded area indicating ± 2 standard error.
Figure 4: Relative prediction error of Pooled-TL, Naive-TL, Detect-TL, ATL-FLR(EW), and ATL-FLR to OFLR for each target sector. Each bar is an average of 100 replications, with standard error as the black line.
similarities with other sectors while having worse performance when similarities are low. Besides, Naive-TL shows an overall better performance compared to the Pooled-TL, demonstrating the importance of the calibrate step. For Detect-TL, all the ratios are close to 1, showing its limited improvement, which is as expected as it can miss positive transfer sources easily. Finally, both ATL-FLR(EW) and ATL-FLR provide more robust improvements on average. We can see both of them have improvements across almost all the sectors, regardless of the similarity between the target sector and source sectors. Comparing the results from different kernels, we can see the improvement patterns are consistent across all the sectors and adjacent months, showing the proposed algorithms are also robust to different reproducing kernels.