Effects of Phytoremediation on industrial wastewater

Zhaojun Liu1,2,3, Hua Lin1,2,3, Tongbo Cai1,2,3, Kaiwei Chen1,2,3, Yi Lin1,2,3, Yuan Xi1,2,3, Kong Chhuond4

1College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China,
2Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
3Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
4Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnom Penh 120000, Cambodia

*Corresponding author’s e-mail: linhua5894@163.com

Abstract: Due to the development of industry, there are different levels of heavy metal pollution in domestic waters, and the treatment of heavy metal pollution is also imminent. As a hot plant for phytoremediation, Leersia hexandra Swartz has a good effect on remediation of chromium, copper and nickel polluted water. The highest removal rates of chromium, copper and nickel are 100%, 93.8% and 89.3% respectively. Leersia hexandra Swartz also has good enrichment characteristics of chromium, copper and nickel in heavy metal contaminated soil. In the soil containing chromium, copper and nickel, Leersia hexandra Swartz can grow normally and has strong tolerance to high concentration of heavy metal contaminated soil, which indicates that Leersia hexandra Swartz has certain research value in the field of remediation of heavy metal contaminated soil or water.

1. Introduction

Industrial wastewater is unavoidable in today's society, and the subsequent pollution problem has become a hot topic. Phytoremediation as the most popular technology to solve heavy metal pollution, more and more super-enriched plants have been found, Leersia hexandra Swartz is one of them. Leersia hexandra Swartz is a wet plant of perennial Gramineae and the only chromium-enriched plant found and reported in China. In recent years, Leersia hexandra Swartz's chromium enrichment ability and its influence on chromium enrichment have attracted much attention. All aspects of exploration have laid a foundation for the research of removing heavy metals and optimizing water body.

2. Production and Classification of Wastewater

Industrial wastewater includes production wastewater, production wastewater and cooling water. It refers to wastewater and waste liquid produced in industrial production process, which contains industrial production materials, intermediate products, by-products and pollutants produced in production process. There are many kinds of industrial wastewater with complex components. Because industrial wastewater often contains many kinds of toxic substances, polluting the environment is very harmful to human health. Therefore, it is necessary to develop comprehensive...
utilization and turn harm into benefit. According to the composition and concentration of pollutants in wastewater, appropriate purification measures can be taken to dispose of them before they are discharged.

3. Current Situation of Soil Pollution

Soil heavy metal pollution in China is mainly caused by the "three wastes" produced by mining, smelting, electroplating, chemical industry and other agricultural measures such as sewage irrigation and unreasonable application of pesticide and chemical fertilizers. Soil heavy metal pollution is one of the main problems affecting human health and environmental quality. It not only affects crop production, but also affects the quality of the atmosphere and water environment, and even endangers human health through the food chain[1].

3.1 Current status of copper, arsenic and chromium pollution in soils

3.1.1 Soil Copper Pollution

The background values of soil copper in China are 7.3-55.1 mg/kg[2], and the background values of copper content in layer A are 7.3-55.1 mg/kg. The median, 75 and 90 values are 20.7, 27.3 and 36.6 mg/kg[3], respectively. The normal copper content in soil is 2-200 mg per kg. The soil copper content in China ranges from 3 to 300 mg per kg, with an average of 22 mg per kg. Copper can be enriched in soil and absorbed by crops. Soils near copper smelters contain high concentrations of copper. Rock weathering and irrigation with copper-containing wastewater can accumulate copper in soil and retain it for a long time. The main sources of soil copper pollution are copper and zinc mining and smelting, metal processing, machinery manufacturing, iron and steel production, sewage irrigation, pesticides and so on[4]. Soil copper contamination has led to copper content in agricultural products in some areas, such as Beijing, Tianjin, Xi'an, Shenyang, Changchun, Wuhan, Chengdu and Shanghai, exceeding national food hygiene standards[5]. The sources of copper in agricultural soils in China are animal manure, atmospheric sedimentation, sewage and sludge in turn[6].

3.1.2 Soil Chromium Pollution

Chromium widely exists in nature and mainly forms chromite. The valence of chromium is divalent, trivalent and hexavalent. The natural source is mainly rock weathering, mostly in trivalent form; the anthropogenic pollution source is mainly the discharge of industrial chromium-containing waste gas and wastewater. Chromium in industrial wastewater is mainly a hexavalent compound, such as chromium ion. The exhaust gas from coal and petroleum combustion contains particulate chromium. Chromium is transferred to chromium with different valences in the environment. For example, trivalent chromium can be adsorbed on solid substances and exists in sediments (sediments); hexavalent chromium is mostly soluble in water and relatively stable; but it can be reduced to trivalent chromium under anaerobic conditions. China stipulates that the standard six-price concentration of drinking water should be less than 0.05 mg/L. The maximum allowable concentration of chromium in surface water is 0.5 mg/L (trivalent chromium) and 0.05 mg/L (hexavalent chromium). The maximum allowable emission standard of hexavalent chromium and its compounds in industrial wastewater is 0.5 mg/L (hexavalent chromium). Fishery water is 0.5 mg/L (trivalent chromium) and 0.05 mg/L (hexavalent chromium). The maximum allowable concentration of hexavalent chromium in the air of residential area is 0.0015mg/m³ (primary determination value) and 0.1mg/m³ (converted into chromium trioxide) in the air of workshop[7].

4. Phytoremediation Technology

Phytoremediation is an environmental pollution control technology based on the theory of plant tolerance and excessive accumulation of certain or some chemical elements, which uses plants and their coexisting microbial systems to remove pollutants in the environment[8, 9]. At present, physical and chemical methods are commonly used in the remediation of environmental contaminated soils,
such as soil drainage, dilution, leaching, physical separation, stabilization and chemical methods. High cost, difficult to manage, easy to cause secondary pollution, and environmental disturbance. In recent years, bioremediation technology has attracted wide public and scientific interest because of its low cost, suitable for large-scale application, beneficial to the maintenance of soil ecosystem, aesthetic value to the landscape of polluted land and little damage to the environment. Bioremediation technology includes phytoremediation technology, microbial remediation technology and microbial-phytoremediation technology[10]. Phytoremediation technology belongs to in-situ remediation technology. Its cost is low and secondary pollution is easy to control. After vegetation formation, it has the effect of protecting topsoil, reducing erosion and soil erosion. It can be widely applied to vegetation and landscape restoration of mine reclamation and heavy metal contaminated sites[11].Phytoremediation technology relies mainly on biological processes, which are slow and time-consuming compared with some common engineering measures[12]. The remediation of deep pollution is difficult. Because of the limitation of plant growth due to climate and geology, there is the possibility of pollutants entering the nature through the "plant-animal" food chain.

There are many reviews on phytoremediation[1, 8, 9, 11, 13-15], but there are still many limitations on the use of phytoremediation alone. For example, the low growth rate and quantity of phytoremediation plants, the low transfer rate of heavy metals and the high or low concentration of heavy metal pollution will affect the efficiency of phytoremediation, which limits the practical application of phytoremediation[16]. Some studies have shown that Leersia hexandra Swartz constructed wetland still has a good effect on the water remediation of chromium (VI) exceeding 150 times the standard (7.50 mg/L)[17], but the contribution rate of direct absorption and removal of chromium by Leersia hexandra Swartz is less than 10%[18]. How to improve the enrichment efficiency of Leersia hexandra Swartz to chromium environmental pollution is the key point of applying Leersia hexandra Swartz to control the environment.

5.Discovery of Leersia hexandra Swartz
Leersia hexandra Swartz is a wet plant of perennial Gramineae and the only chromium-enriched plant found and reported in China[19]. In wet environment, the rapid reproduction and high density growth of Poa littoralis make the biomass per unit area large, which improves the efficiency of remediation of heavy metal contaminated environment. At first, Leersia hexandra Swartz was concerned as a kind of weed harming rice fields, and relevant agricultural scholars began to study it[20, 21]. After that, it was found that Leersia hexandra Swartz had the biological characteristics of drought tolerance and waterlogging tolerance, and some scholars explored its potential in the field of soil and water conservation and vegetation restoration[22, 23]. Because Leersia hexandra Swartz also has a good absorption effect on other heavy metals, many scholars have also applied Leersia hexandra Swartz to heavy metal contaminated soil, constructed wetland to remediate heavy metal contaminated water and mixed domestic sewage water[24-26].

6.Characteristics of Chromium Superconcentration by Leersia hexandra Swartz
Based on the study of wet plants near an electroplating plant in northern Guangxi, it was found that Leersia hexandra Swartz had the characteristics of super-enrichment of chromium. The average content of chromium absorbed by leaves was 1787 mg/L. The ratio of chromium content in leaves to chromium content in rhizomes was 12, the ratio of chromium content in soil was 57, and the ratio of chromium content in water was 518[27]. Leersia hexandra Swartz also has a high removal rate of chromium, copper and nickel in mixed polluted water. Table 1 shows the removal effect of Leersia hexandra Swartz on different concentrations of chromium, copper and nickel in 10 days[28].

Heavy Metal	Initial concentration mg/L	Day 1 concentration mg/L	Day 6 concentration mg/L	Day 10 concentration mg/L
Cr	10	3	0.9	-
It is obvious that Leersia hexandra Swartz has a good effect on remediation of chromium, copper and nickel polluted water. According to the experiment, the highest removal rates of chromium, copper and nickel are 100%, 93.8% and 89.3% respectively. Leersia hexandra Swartz can also enrich chromium, copper and nickel in soils polluted by heavy metals. In soils containing 8516, 3442 and 2992 mg/kg of chromium, copper and nickel, Leersia hexandra Swartz can still grow normally and has strong tolerance to soils polluted by high concentrations of heavy metals[29], which indicates that Leersia hexandra Swartz has research value in the field of remediation of soils polluted by heavy metals or water bodies.

7. Super-enrichment Characteristics of Copper by Leersia hexandra Swartz

The investigation area is located in an electroplating industrial zone in northern Guangxi, about 110 km away from Guilin City. The wastewater produced by the electroplating plant contains heavy metals such as copper, chromium and nickel. After chemical classification, the wastewater is discharged into a nearby pond and then into a nearby river. Heavy metals such as copper, chromium and nickel have been deposited in ponds for a long time, which has a certain impact on the environment around ponds and rivers[30].

Table 2 shows that a certain amount of soil and plant samples with different concentrations were dried, digested and measured before and after transplanting, and their copper content was analyzed.

Project	Copper addition	0	100	200	500	1000	2000
Transplanted soil		28.61	132.06	237.63	576.43	909.74	1100.22
Harvesting soil		26.63	120.05	216.04	524.03	827.65	1000.58
Leaf		46.54	52.75	80.00	150.42	163.49	307.89
Stem		39.22	47.03	125.40	200.22	287.96	335.81
Root		49.22	60.38	84.12	277.54	341.96	500.33
Bioconcentration coefficient	Leaf	1.75	0.88	0.74	0.58	0.40	0.62
	Stem	1.47	0.78	1.16	0.77	0.70	0.67
	Root	1.85	1.00	0.78	1.06	0.83	1.00

The results of soil culture showed that the content of copper in leaves of Poa ledeburi was 46.11-308.07 mg/kg, and the bioaccumulation coefficient of copper in leaves was 0.40-1.75. When the concentration of copper in soil was 2 000 mg/kg, the content of copper in leaves reached the maximum (307.89 mg/kg), which was higher than that in other concentrations. When the concentration of copper in soil was 0, the bioaccumulation coefficient of copper in leaves reached the maximum (1.75), which was higher than that in other concentrations.

8. Expectation

On the one hand, the most common weeds in the field have the ability to enrich heavy metals, but now an unavoidable problem is that although Leersia hexandra Swartz has the advantages of fast growth and large biomass, the biomass of individual Leersia hexandra Swartz is relatively small. If we can
start with genetic engineering, we can improve its growth characteristics, increase the biomass of individual plant, and then improve its ability to enrich heavy metals. On the other hand, the current studies on hyper-enriched plants mainly focus on the accumulation of heavy metals, tolerance and accumulation mechanism of plants, and how to improve the metal accumulation of plants. However, little attention has been paid to the late treatment of phytoremediation plants, and the technology is not yet mature.

Acknowledgments
This work was supported by the Programs of National Natural Science of China (51608143), Guangxi science and technology program (GuiKe AD17195023, GuiKe AD18126018), Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Program for High Level Innovation Team and Outstanding Scholar of Universities in Guangxi (Gui Cai Jiao Han [2018] 319), Guangxi special experts funded projects (Beidou Xi) and Special funding for Guangxi ‘BaGui Scholar’ construction projects (Huijuan Liu).

References
[1] Bai Jie, Sun Xuekai, and Wang Daohan, Review of Heavy Metal Pollution in Soil and Phytoremediation Technology. Environmental Protection and Circular Economy, 2008(03): p. 49-51.
[2] Wei Fusheng, et al., Study on Background Value of Soil Environment in China. environmental science, 1991(04): p. 12-19-94.
[3] Environment Monitoring of China, Background values of soil elements in China [M]. Beijing: China Environmental Publishing House, 1990: p. 86—87.
[4] Jiang Liying, et al., Effects of Copper Smelter on Heavy Metals Content and Spatial Distribution in Surrounding Soils and Crops. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2002(06): p. 102-106.
[5] Zheng Xishen, et al., Current Situation of Heavy Metal Pollution in Soil and Its Prevention and Control. Soil and Environment, 2002(01): p. 79-84.
[6] al., L.L.M.Y.B.Z.S.Z.e., An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 2009: p. 90 (8): 2 524—2 530.
[7] Qu Geping, Dictionary of Environmental Science. Shanghai Lexicographical Publishing House, 1994.
[8] Tang Shirong, Huang Changyong, and Zhu Zuxiang, Advances in phytoremediation of contaminated soils. Progress in Environmental Science, 1996(06): p. 11-17.
[9] Zhou Ning, Review on Phytoremediation of contaminated soil. journal of anhui agricultural sciences, 2011. 39(06): p. 3390-3391+3404.
[10] Shen Jianying, Wu Jun, Wild herbaceous plant resources. Shanghai Jiaotong University Press, 2012.
[11] Shi Run, et al., Plant species applied in phytoremediation of heavy metal contaminated soil. Journal of Central South University of Forestry Science and Technology, 2015. 35(04): p. 139-146.
[12] Wang Qinghai and Que Xiaoe, Green Phytoremediation Technology for Environmental Pollution Control. Chinese Journal of Eco-Agriculture, 2013. 21(02): p. 261-266.
[13] Ma Yan, A review of heavy metal pollution in soil and its phytoremediation. Gansu Agricultural Science and Technology, 2016(02): p. 69-75.
[14] Ran Lie and Li Meet, Current situation and harm of cadmium pollution in soil. Journal of Chongqing University of Arts and Sciences (Natural Science Edition)), 2011. 30(04): p. 69-73.
[15] Ren Qiongmei, Phytoremediation of cadmium-contaminated soil. Green technology, 2013(04): p. 162-163.
[16] Lebeau, T., A. Braud, and K. Jezequel, *Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review*. Environmental Pollution, 2008. 153(3): p. 497-522.

[17] Wu Qingxin, et al., *Study on the Purification Performance of Cr(VI) Polluted Water by Lishihe Constructed Wetland*. Journal of Environmental Engineering, 2014. 8(02): p. 536-540.

[18] Liu, J., et al., *Function of Leersia hexandra Swartz in constructed wetlands for Cr(VI) decontamination: A comparative study of planted and unplanted mesocosms*. Ecological Engineering, 2015. 81: p. 70-75.

[19] Zhang, X.-H., et al., *Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz*. Chemosphere, 2007. 67(6): p. 1138-1143.

[20] Liu Huanlu, et al., *Damage and Control Measures of Weeds in Paddy Field*. Tianjin Agricultural Sciences, 2000(04): p. 38-40.

[21] Yuan Linze, et al., *Investigation of dominant weed species in paddy fields in Hangjiang District of Yangzhou City*. Modern Agricultural Science and Technology, 2015(07): p. 132-134+138.

[22] Zhu Guicai, *Physiological and Ecological Adaptation Mechanisms of Water Stress in Co-tolerant Plant Leersiahexandra*. 2011, Sun Yat-sen University.

[23] Zhu Guicai, Gao Shujie, and Zhang Xia, *Response of Root Growth Leersiahexandra to Waterlogging Stress and Removal*. Journal of Yangtze University (Natural Science Edition) Agronomy Volume, 2010. 7(04): p. 52-55+129.

[24] Li Kai, et al., *Experiments on Purification of domestic sewage containing heavy metals by Leersiahexandra*. Environmental Science and Technology, 2014. 37(11): p. 151-155.

[25] Wu Qingxin, et al., *Study on the mechanism of purification of Cr(VI) polluted water by Leersiahexandra wetland system*. Journal of Environmental Science, 2014. 34(09): p. 2306-2312.

[26] Zhang Xuehong, Liu Jie, Hu Cheng, Huang Haitao, Luo Yaping, *Study on Copper Accumulation Characteristic and Resistance of Leersiahexandra to Soil Copper*. journal of anhui agricultural sciences, 2008: p. 5586-5587+5590.

[27] Zhang Xuehong, et al., *Leersia hexandra Swartz, a newly discovered wet chromium hyperaccumulator*. Journal of Ecology, 2006(03): p. 950-953.

[28] Chen Jun, et al., *Potential Study on Rehabilitation of Water Contaminated by Heavy Metals (Cr, Cu, Ni) by Leersia hexandra Swartz*. Journal of Agricultural Environmental Science, 2008(04): p. 1514-1518.

[29] Tao Duxun, et al., *Absorption and Accumulation of Chromium, Copper and Nickel in Polluted Soil Contaminated by Electroplating Sludge by Leersia hexandra Swartz*. Journal of Guilin University of Technology, 2010. 30(01): p. 144-147.

[30] Zhang Xuehong, et al., *Study on Copper Accumulation Characteristic and Resistance of Leersia hexandra Swartz to Soil Copper*. journal of anhui agricultural sciences, 2008(13): p. 5586-5587+5590.