Case–control study of the correlation between the five times sit to stand and 6-min walk distance in patients with pancreatic cancer

Yuki Nakashima1 · Daisuke Iwaki1 · Toshihiro Kawae2 · Kenichi Fudeyasu1 · Kenichiro Uemura3 · Hiroaki Kimura4

Received: 2 February 2022 / Accepted: 7 October 2022 / Published online: 28 October 2022 © The Author(s) 2022

Abstract
Purpose Cases of pancreatic cancer are increasing, and the risk of developing this disease reportedly increases with age. In recent years, there has been an increasing number of reports on physical function in patients with pancreatic cancer. Methods such as the 6-min walk distance (6 MWD) should be established to evaluate physical function, as a decline in exercise capacity is an important index in these patients. Recently, the 6 MWD has also been used to evaluate physical function in patients with pancreatic cancer. In healthy older adults, a decrease in 6 MWD is reportedly associated with intrinsic capacity and health status. Such factors make assessing 6 MWD important. However, the measurement of 6 MWD requires a sizable measurement environment. The five times sit to stand (FTSTS) test is a simple method that can be performed using a chair. FTSTS is hypothesized to be a useful assessment scale in patients with pancreatic cancer because it is easy to estimate the decline in physical function in clinical practice if the decline in 6 MWD can be estimated by evaluating FTSTS. The study’s purpose was to clarify this hypothesis and ascertain the cutoff required to determine the decrease in 6 MWD in clinical practice.

Methods Sixty consecutive patients with preoperative pancreatic cancer who were assessed for physical function were studied. 6 MWD (< 400 m) was the objective variable, and binary logistic regression analysis was performed, with age, BMI, sex, FTSTS, and HGS as explanatory variables. Receiver-operating characteristic (ROC) curve analysis was performed for the explanatory variables, which were found to be significant based on logistic regression analysis. The area under the curve (AUC) was also calculated. Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) were evaluated. This study was approved by Hiroshima University Hospital’s ethics committee (approval number: E808-1).

Results Fifty-seven of the 60 patients were included in the analysis. Logistic regression analysis showed that FTSTS was a significant explanatory variable; ROC curve analysis showed an AUC of 0.872 and a cutoff value of 8.98 s. The sensitivity, specificity, PPV, and NPV were 82.4%, 80.0%, 63.6%, and 91.4%, respectively.

Conclusions A decrease in 6 MWD in preoperative pancreatic cancer patients can be identified by performing FTSTS.

Keywords Pancreatic cancer · Surgery · 6-min walk distance · Sit to stand · Hand grip strength

Introduction
Cases of pancreatic cancer are on the rise, and the risk of developing this disease has been reported to increase with age [1, 2]. Patients with pancreatic cancer often suffer from sarcopenia, with the percentage reported to be as high as 17–65% in previous studies. Sarcopenia is associated with decreased motor function [3, 4]. In other words, an increasing number of elderly patients with pancreatic cancer are prone to loss of skeletal muscle mass and function.

In recent years, the number of reports on physical function in patients with pancreatic cancer has increased. A decrease in 6-min walk distance (MWD) has been shown to be associated with a decrease in health-related quality of life.
in patients with pancreatic cancer [5]. Methods such as the 6 MWD must be established to evaluate physical function, as a decline in exercise capacity is an important index in these patients [6]. In recent years, 6 MWD has also been used to evaluate physical function in patients with pancreatic cancer [7–10]. In healthy older adults, a decrease in 6 MWD has been reported to be associated with intrinsic capacity and health status [11, 12]. In preoperative abdominal surgery patients, exercise capacity has been reported to be associated with the occurrence of postoperative complications [13–15]. Such factors make the assessment of 6 MWD important.

However, a 30-m (m) walking path is usually required to measure 6 MWD, and its absence may make measurement difficult because the layout of the walking path may affect performance. The sit-to-stand test has become widely used as a simple method to assess physical function in clinical practice for patients with pancreatic cancer [9, 16]. The five times sit to stand (FTSTS) test is a simple method that can be performed using a chair. In a recent systematic review, FTSTS has been proven to be highly reliable in both healthy adults and those with pathologies [17]. Associations between 6 MWD and orthostatic testing have been reported in healthy adults [18] and in patients with pulmonary disease [19] and cancer [20]. In healthy adults, 6 MWD has been reported to correlate significantly with orthostatic sitting, indicating that the sit-to-stand test (STS) may be a quick surrogate measure of physical and functional capacity. Furthermore, a significant correlation between 6MWD and STS has been shown in patients with pulmonary disease [19] and breast cancer [20].

Therefore, if the association between FTSTS and 6MWD can be clarified in pancreatic cancer patients as it has been clarified in healthy subjects and pulmonary disease, it would be more useful as an evaluation index because it would allow easy estimation of decline in physical function in clinical settings. To the best of our knowledge, no study has investigated the relationship between FTSTS and the decrease in 6 MWD in patients with pancreatic cancer. Therefore, this study aimed to clarify this and to ascertain the FTSTS cutoff required to determine the decrease in 6 MWD in clinical practice.

Materials and methods

Study design and sample

All information for this retrospective study was extracted from medical records. Sixty consecutive patients with pancreatic cancer on the waiting list for surgery who were referred to the Department of Rehabilitation Medicine at Hiroshima University Hospital for a physical function evaluation between March 2020 and July 2021 were included in the study. The inclusion criteria for this study were that the patients be diagnosed with pancreatic cancer and scheduled for surgery. Exclusion criteria included patients who needed assistance to walk, patients with severe leg pain or obvious neuropathy that could potentially strongly affect their physical function, and patients with missing motor function values. All assessments of physical function were performed by a physical therapist. Age, body mass index (BMI), sex, and diagnosis were extracted from medical records. This study was approved by the ethics committee of Hiroshima University Hospital (approval number: E808-1; approval date: January 24, 2020).

Outcome

6 MWD

The patients’ 6 MWD was calculated as the distance walked for 6 min (min). The guidelines of the American Thoracic Society Statement [21] were followed for measurement, and a 30-m walking path was created in an indoor corridor. Cones were placed at the start and at the 30-m point to indicate the turn-around point. The subjects were instructed to walk for as far as possible within 6 min of starting the test. The definition of a 6 MWD decline is now 400 m or less based on previous studies [22, 23].

FTSTS

FTSTS repeats the movements of sitting in and standing up from a chair of standard height (40 cm) five times, reproducing the movements as fast as possible [24]. The measurement began at the examiner’s signal, and the time between the initial sitting position and the fifth standing position was measured.

Hand grip strength (HGS)

HGS was measured using a Jamar-type digital handgrip dynamometer (MG-4800; CHARDER, Taichung, Taiwan) [25]. The HGS of the left and right hands was measured in a normal sitting position. The elbow was placed flexed at 90°. The maximum value obtained was used in the analysis.

Sample size calculations and statistical methods

Easy ROC, which is a web tool for receiver-operating characteristic (ROC) curve analysis (version 1.3.1; http://www.biosoft.hacettepe.edu.tr/easyROC/), was used to calculate the sample size. The sample size was estimated to be 54 (estimate area under the curve [AUC] of 0.7, 80% power, and an allocation ratio of 2:1).

All continuous variables are presented as median values (interquartile range). The association between decreased 6
MWD (<400 m) and FTSTS was examined in this study. Spearman’s rank correlation coefficient was used to investigate the association between 6 MWD and age, FTSTS, HGS, and BMI. Binary logistic regression analysis was performed to adjust for potentially confounding variables such as age, sex, BMI, and HGS to investigate factors contributing to a decrease in the 6 MWD. The cutoff FTSTS value that best predicted the presence or absence of 6 MWD (<400 m) was determined using the Youden index. The Youden index (maximum [sensitivity + specificity -1]) was used to calculate the cutoff value [26]. Sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) were used to measure diagnostic accuracy. These tools were all used to measure diagnostic accuracy [27]. The ROC curve analysis and AUC were calculated (0.7 ≤ AUC < 0.8 = acceptable discrimination, 0.8 ≤ AUC ≤ 0.9 = excellent discrimination, and 0.9 ≤ AUC = outstanding discrimination). Statistical significance was set at P < 0.05.

Results

Fifty-seven patients with pancreatic cancer who met the inclusion criteria were included in the analysis (one patient required assistance with walking, and two patients had missing data; Fig. 1). No adverse events were recorded during the measurement.

The median age was 74 years (interquartile range 66 to 78), and BMI was 21.1 kg/m² (interquartile range 19.2 to 23.2). Forty-eight percent of the patients included were female. The median physical function was 469 m (interquartile range 383 to 518) for 6 MWD, 7.49 s (interquartile range 6.31 to 9.54) for FTSTS, and 22.8 kg (interquartile range 17.5 to 33.1) for HGS (Table 1). Seventeen patients (30%) had decreased 6 MWD (<400 m).

Age, HGS, and FTSTS indicated significant correlations with 6 MWD (Fig. 2). FTSTS was associated with a decrease in 6 MWD (<400 m) with an adjusted odds ratio of 2.00 (95% CI: 1.34–2.99, P < 0.001; Table 2). Age, sex, BMI, and HGS were not associated with the risk of 6 MWD (<400 m). ROC analysis showed that the FTSTS time had 82.4% sensitivity, 80.0% specificity, 63.6% PPV, and 91.4% NPV, with an AUC of 0.872 and a cutoff value of 8.98 s (s), which could discriminate the decline in 6 MWD (Fig. 3).

Discussion

This study aimed to clarify the association between the decrease in 6 MWD and FTSTS and to determine the cutoff to estimate the decrease in 6 MWD.

The 6 MWD of healthy subjects has been shown to correlate with age [28, 29]. Additionally, a study of hospitalized patients showed that 6 MWD tends to decrease in those with reduced HGS [30]. This study’s results showed that, similar to these previous studies, age, muscle strength, and 6 MWD were significantly associated with 6 MWD and not with BMI [31].

This study also clarified the relationship between 6 MWD (<400 m) and FTSTS. In this regard, 6 MWD has been reported to be associated with lower limb muscle strength in patients with pancreatic cancer [5], and FTSTS is an indicator of lower limb muscle strength, so the significant association between FTSTS and 6 MWD in this study is also reasonable. Furthermore, HGS is one of the criteria for sarcopenia as well as elevation [32] but may not be sufficient to infer a decline in 6 MWD. Previous studies on 6 MWD and rise time have investigated COPD patients and reported that 6 MWD is associated with FTSTS [19]. Therefore, evaluating FTSTS is important, as it reflects walking ability as well as HGS in patients with pancreatic cancer. In healthy older people, the mean 6 MWD has been reported to be 534–631 m [33], which is higher than this study’s data (median 464 m). This study’s results for the 6 MWD were similar to those of a previous study on patients with pancreatic cancer (mean 463 m) [8]. This study showed that a decrease in 6 MWD (<400 m) occurred in 30% of patients with pancreatic cancer before surgery, indicating that 6 MWD may already have decreased in patients with pancreatic cancer before surgery. Decreased exercise capacity before pancreatic resection has been reported to be associated with the risk of postoperative complications and a poor prognosis [34–36]. A decrease in 6 MWD (<400 m) has been reported to increase the risk

Table 1	Characteristics of the patients
Age (y.o.)	74 (66 to 78)
BMI (kg/m²)	21.1 (19.2 to 23.2)
SEX (male/female) (%)	28 (52/26 (48)
6MWD (m)	469 (383 to 518)
FTSTS (s)	7.49 (6.31 to 9.54)
HGS (kg)	22.8 (17.5 to 33.1)

Median (interquartile range), BMI, body mass index; 6 MWD, 6-min walk distance; FTSTS, five times sit to stand; HGS, hand grip strength.
of postoperative complications [36], and in recent years, prehabilitation to improve physical function and nutritional status, such as exercise and nutritional therapy, has been performed before surgery [16, 37]. A recent systematic review reported that cardiopulmonary exercise testing and 6 MWD are associated with death [38]. Therefore, evaluation of 6 MWD is considered important. However, in clinical practice, the measurement of cardiorespiratory fitness is difficult because of the need for a 30-m walking path and personal limitations. FTSTS has been used as a simple assessment of physical functions as it can be performed in a small space [32]. In an observational study, Karlsson et al. reported that the risk of postoperative complications increased with more time taken from sit to stand [37]. In healthy older subjects, FTSTS averaged 8.63 s and was reported to be lower than...
that of younger subjects [39]. This study’s FTSTS results were comparable to those of these older adults.

The investigation performed in the study demonstrated that an FTSTS result of 8.98 s was the cutoff to estimate 6 MWD (< 400 m). The results indicate that FTSTS is a simple physical function assessment that can be used in clinical practice to estimate the decline in 6 MWD in patients with pancreatic cancer. A previous study on 6 MWD and STS in women with breast cancer indicated a significant correlation [40]. This could be a useful method of assessment for busy clinicians and physical therapists to understand the decline in patients’ physical function.

The limitations of this study are twofold. First, it was a single-center case–control study. Therefore, a possibility of bias remained in the target population. A multicenter study is required in the future. However, because pancreatic cancer is deadly [41], these data are valuable. Second, this study did not investigate FTSTS in terms of postoperative complications and prognosis. Future prospective research studies that include the impact of FTSTS results on important clinically outcomes are needed. However, an FTSTS result of longer duration is associated with a shorter 6 MWD and may be useful in clinical practice as a simple method to assess physical function in patients with pancreatic cancer.

In conclusion, this study analyzed the factors associated with 6 MWD (< 400 m) in pancreatic cancer patients who were on the waiting list for surgery. Binary logistic regression analysis revealed that rise time was associated with a decrease in 6 MWD. The results of ROC curve analysis also showed that the measurement of FTSTS was an excellent indicator to estimate the decline in 6 MWD. Assessment of the ability of patients with pancreatic cancer via the sit-to-stand test is a simple method of assessment. Additional studies investigating the association between FTSTS and postoperative complications are needed in the future.

Author contribution Conceptualization: all authors; investigation: Yuki Nakashima, Daisuke Iwaki, Kenichi Fudeyasu; methodology: Yuki Nakashima, Daisuke Iwaki; Toshihiro Kawae; formal analysis and investigation: Yuki Nakashima, Toshihiro Kawae; writing—original draft preparation: Yuki Nakashima, Kenichi Fudeyasu; writing—review and editing: all authors; funding acquisition: Yuki Nakashima, Akihiro Kimura; resources: Kenichiro Uemura, Akihiro Kimura; supervision: Akihiro Kimura.

Funding This study was supported by JSPS KAKENHI (Grant numbers 20K194130).

Data availability Data is available upon request.

Code availability Not applicable.

Declarations

Ethics approval This study was performed in line with the principles of the Declaration of Helsinki. This study was approved by the ethics committee of Hiroshima University Hospital (approval number: E808-1).

Consent to participate This study was performed in accordance with the requirements set forth by the Declaration of Helsinki and the Japanese Ethical Guidelines for Epidemiological Research. The poster-based opt-out method was used, and the need for written informed consent was waived with the Institutional Review Board’s guidance and according to Japanese ethical guidelines. Posters were approved by the Institutional Ethics Review Board and displayed in the facility.

Consent for publication Not applicable. All data were de-identified.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Rawla P, Sunkara T, Gaduputi V (2019) Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 10:10–27. https://doi.org/10.14740/wjon1166
2. Pourhoseingholi MA, Ashtari S, Hajizadeh N et al (2017) Systematic review of pancreatic cancer epidemiology in Asia-Pacific Region: major patterns in GLOBACON 2012. Gastroenterol Hepatol Bed Bench 10:245–257.

3. Peng Y-C, Wu C-H, Tien Y-W et al (2021) Preoperative sarcopenia is associated with poor overall survival in pancreatic cancer patients following pancreaticoduodenectomy. Eur Radiol 31:2472–2481. https://doi.org/10.1007/s00330-020-02794-7

4. Carrara G, Pecorelli N, De Cobelli F et al (2017) Preoperative sarcopenia determinants in pancreatic cancer patients. Clin Nutr 36:1649–1653. https://doi.org/10.1016/j.clnu.2016.10.014

5. Nakashima Y, Kawae T, Iwaki D et al (2021) Changes in motor function and quality of life after surgery in patients with pancreatic cancer. Eur J Cancer Care 30:e13368. https://doi.org/10.1111/ecc.13368

6. Agarwala P, Salzman SH (2020) Six-minute walk test: clinical purpose, technique, coding, and reimbursement. Chest 157:603–611. https://doi.org/10.1016/j.chest.2019.10.014

7. Naito T, Mitsunaga S, Miura S et al (2019) Feasibility of early multimodal interventions for elderly patients with advanced pancreatic and non-small-cell lung cancer. J Cachexia Sarcopenia Muscle 10:73–83. https://doi.org/10.1002/jcsm.12351

8. Solheim TS, Laird BJA, Balstad TR et al (2017) A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J Cachexia Sarcopenia Muscle 8:778–788. https://doi.org/10.1002/jcsm.12201

9. Ngo-Huang A, Parker NH, Bruera E et al (2019) Home-based exercise prehabilitation during preoperative treatment for pancreatic cancer is associated with improvement in physical function and quality of life. Integr Cancer Ther 18:1534735419894061. https://doi.org/10.1177/1534735419894061

10. Claus D, Tjaden C, Hackert T et al (2017) Cardiorespiratory fitness and muscle strength in pancreatic cancer patients. Support Care Cancer. https://doi.org/10.1007/s00520-017-3694-8

11. Tay L, Tay EL, Mah SM et al (2022) Association of intrinsic capacity with frailty, physical fitness and adverse health outcomes in community-dwelling older adults. J Frailty Aging: 1–9. https://doi.org/10.14283/jfa.2022.28

12. Bautmans I, Lambert M, Mets T (2004) The six-minute walk test in community dwelling elderly: influence of health status. BMC Geriatr 4:6. https://doi.org/10.1186/1471-2318-4-6

13. Ramos RJ, Ladha KS, Cuthbertson BH et al (2021) Association of six-minute walk test distance with postoperative complications in non-cardiac surgery: a secondary analysis of a multicentre prospective cohort study. Can J Anaesth 68:514–529. https://doi.org/10.1007/s12630-020-01909-9

14. Awdeh H, Kassak K, Steir P et al (2015) The SF-36 and 6-minute walk test are significant predictors of complications after major surgery. World J Surg 39:1406–1412. https://doi.org/10.1007/s00268-015-2961-4

15. Hayashi K, Fukumoto K, Yokoi K et al (2018) Post-operative delayed ambulation after thymectomy is associated with pre-operative six-minute walk distance. Disabil Rehabil 40:1900–1905. https://doi.org/10.1080/09638288.2017.1315182

16. Ngo-Huang A, Parker NH, Wang X et al (2017) Home-based exercise during preoperative therapy for pancreatic cancer. Langenbeck’s Arch Surg 402:1175–1185. https://doi.org/10.1007/s00423-017-1599-0

17. Muñoz-Bermejo L, Adsuar JC, Mendoza-Muñoz M et al (2021) Test-retest reliability of five times sit to stand test (FTSST) in adults: a systematic review and meta-analysis. Biology (Basel) 10(6):510. https://www.mdpi.com/2079-7737/10/6/510

18. Gurses HN, Zeren M, Denizoglu Kulli H, Durugt E (2018) The relationship of sit-to-stand tests with 6-minute walk test in healthy young adults. Medicine (Baltimore) 97(1):e9489. https://doi.org/10.1097/MD.0000000000004989. PMID:29505521; PMCID:PMC5943107

19. Meriem M, Cherif J, Toujani S, Ouahchi Y, Hmida AB, Beji M (2015) Oct-Dec Sit-to-stand test and 6-min walking test correlation in patients with chronic obstructive pulmonary disease. Ann Thorac Med 10(4):269–273. https://doi.org/10.4103/1817-1737.165289

20. Díaz-Balboa E, González-Salvado V, Rodríguez-Romero B et al (2022) Thirty-second sit-to-stand test as an alternative for estimating peak oxygen uptake and 6-min walking distance in women with breast cancer: a cross-sectional study. Support Care Cancer 30:8251–8260. https://doi.org/10.1007/s00520-022-07268-z

21. American Thoracic Society Board of Directors (2013) ATS statement. Am J Respir Crit Care Med 166:111–117. https://doi.org/10.1164/ajccmm.166.1.at1102

22. Win T, Jackson A, Groves AM et al (2006) Comparison of shuttle walk with measured peak oxygen consumption in patients with operable lung cancer. Thorax 61:57–60.

23. Przybylowsky T, Tomalak W, Siergiejko Z et al (2015) Polish Respiratory Society guidelines for the methodology and interpretation of the 6 minute walk test (6MWT). Adv Respir Med 83(4):283–297

24. Guinan EM, Doyle SL, Bennett AE et al (2018) Sarcopenia during neoadjuvant therapy for oesophageal cancer: characterising the impact on muscle strength and physical performance. Support Care Cancer 26:1569–1576. https://doi.org/10.1007/s00520-017-3993-0

25. Santagnelly SB, Martins FM, De Oliveira N, Junior G et al (2020) Improvements in muscle strength, power, and size and self-reported fatigue as mediators of the effect of resistance exercise on physical performance breast cancer survivor women: a randomized controlled trial. Support Care Cancer 28:6075–6084. https://doi.org/10.1007/s00520-020-05429-6 Published

26. Takahashi M, Maeda K, Wakabayashi H (2018) Prevalence of sarcopenia and association with oral health-related quality of life and oral health status in older dental clinic outpatients. Geriatr Gerontol Int 18:915–921. https://doi.org/10.1111/ggi.13279

27. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35. https://doi.org/10.1002/1097-0142(1950)3:1%3c32:aaid-cinc2 820030106%3e3.0.co%3e2-3

28. Śmigdański AM (2009) Measures of diagnostic accuracy: basic definitions. JEHFFC 19(4):203–11

29. Troosters T, Gosselin R, Drukker M (1999) Six minute walking distance in healthy elderly users. Eur Respir J 14:270–274. https://doi.org/10.1183/09031936.1999.14b06.x

30. Shrestha SK, Srivastava B (2015) Six minute walk distance and reference equations in normal healthy subjects of Nepal. Kathmandu Univ Med J (KUMJ) 13:97–101. https://doi.org/10.3126/kumj.v13i2.16780

31. Martín-Ponce E, Hernández-Betancor I, González-Reimers E et al (2014) Prognostic value of physical function tests: hand grip strength and six-minute walking test in elderly hospitalized patients. Sci Rep 4:7530. https://doi.org/10.1038/srep07530

32. Fernandes L, Mesquita AM, Vadalà R, Dias A (2016) Reference equation for six minute walk test in healthy Western India population. J Clin Diagn Res 10:01–04. https://doi.org/10.7860/JCDR/2016/17634.7714

33. Chen L-K, Woo J, Assantachai P et al (2020) Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 21:300–307.e2. https://doi.org/10.1016/j.jamda.2019.12.012

34. e-Stat Retrieved from https://www.e-stat.go.jp/dbview?sid=00032 88734. Accessed 29 Jan 2022

35. Ausania F, Snowden CP, Prentis JM et al (2012) Effects of low cardiopulmonary reserve on pancreatic leak following
pancreaticoduodenectomy. Br J Surg 99:1290–1294. https://doi.org/10.1002/bjs.8859
36. Chandrabalan VV, McMillan DC, Carter R et al (2013) Pre-operative cardiopulmonary exercise testing predicts adverse post-operative events and non-progression to adjuvant therapy after major pancreatic surgery. HPB 15:899–907. https://doi.org/10.1111/hpb.12060
37. Hayashi K, Yokoyama Y, Nakajima H et al (2017) Preoperative 6-minute walk distance accurately predicts postoperative complications after operations for hepatopancreato-biliary cancer. Surgery 161:525–532. https://doi.org/10.1016/j.surg.2016.08.002
38. Karlsson E, Egnell M, Farahnak P et al (2018) Better preoperative physical performance reduces the odds of complication severity and discharge to care facility after abdominal cancer resection in people over the age of 70 - A prospective cohort study. Eur J Surg Oncol 44:1760–1767. https://doi.org/10.1016/j.ejso.2018.08.011
39. Ezzatvar Y, Ramirez-Velez R, Sáez de Asteasu ML et al (2021) Cardiorespiratory fitness and all-cause mortality in adults diagnosed with cancer systematic review and meta-analysis. Scand J Med Sci Sports 31:1745–1752. https://doi.org/10.1111/sms.13980
40. Klukowska AM, Staatjes VE, Vandertop WP, Schröder ML (2021) Five-repetition sit-to-stand test performance in healthy individuals: reference values and predictors from 2 prospective cohorts. Neurospine 18(4):760–769. https://doi.org/10.14245/ns.2142750.375
41. Roth MT, Berlin JD (2018) Current concepts in the treatment of resectable pancreatic cancer. Curr Oncol Rep 20:39. https://doi.org/10.1007/s11912-018-0685-y

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.