Contribution of IL9, IL2RA and IL2RB genetic polymorphisms in coronary heart disease in Chinese Han population

CURRENT STATUS: UNDER REVIEW

Xianghong Chen
The Second Affiliated Hospital of Hainan Medical University

Xingfan Wang
The Second Affiliated Hospital of Hainan Medical University

Zaozhang q Zhang
The second Affiliated Hospital of Hainan Medical University

Yuewu Chen
The Second Affiliated Hospital of Hainan Medical University

Chao Wang wangchao201901@sina.com
The Second Affiliated Hospital of Hainan Medical University

Corresponding Author
ORCiD: 0000-0001-5632-9778

DOI: 10.21203/rs.2.18401/v1

SUBJECT AREAS Medical Genetics
Abstract

Background: Coronary heart disease (CHD) is one of the leading causes of disability and death worldwide. In the pathogenesis of CHD, inflammatory cytokines take an essential part. This study was designed to detect the potential association between IL-9, IL-2RA and IL-2RB variants and CHD in Chinese Han population. Methods: This case-control study conducted 499 CHD patients and 496 healthy controls. Seven selected SNPs were genotyped to investigate the possible association between the polymorphisms and the CHD risk. The interaction of SNP-SNP in the CHD risk was analyzed by Multifactor dimensionality reduction (MDR). Results: We observed an association between IL-9 rs55692658 (OR = 1.72, p = 0.003) and the increased CHD risk. The stratification analysis by age indicated that no matter participants who were older or younger than 61 years, IL-9 rs55692658 and IL-2RB rs1573673 contributed to the CHD susceptibility significantly (p < 0.05, respectively). IL-9 rs55692658 showed an increasing-risk effect (OR = 2.32, p = 0.003), while IL-2RA rs12722498 was correlated with the decreased susceptibility of CHD (OR = 0.54, p = 0.033) in female. Furthermore, IL-2RA rs12569923 was related to the diabetes risk in the CHD patients (OR = 1.50, p = 0.028). MDR analysis revealed a positive interaction between the SNPs. Conclusion: The present study firstly demonstrated that IL-9 rs55692658, IL-2RA rs12569923, rs12722498 and IL-2RB rs3218264 polymorphisms might be related to CHD. The results required further validation by larger studies.

Introduction

Coronary heart disease (CHD), also known as coronary artery disease (CAD), is one
of the leading causes of death worldwide. The disease is characterized by formation of arterial plaques which are mainly comprised of lipids, calcium and inflammatory cells(1) The pathogenesis of CHD is thought to be associated with multifactor, including atherosclerosis, obesity, hypertension, diabetes and smoking habits(2, 3). It was reported that inflammatory factors involving cytokines take an essential part in the progression of atherosclerosis, which eventually leads to CHD(4, 5). Although researches in CHD have been ongoing in the latest years, the specific mechanism remains to be further clarified. Notably, genetic and environmental factors are widely considered to play crucial role in the etiology of CHD, especially the genetic factors which are key to an individual’s susceptibility to CHD, accounting for 30–60% of inter-individual variation in the risk of CHD(6, 7).

Interleukin-9 (IL-9) is a pleiotropic cytokine, and its gene is located on 5q31.1(8). Previous studies revealed that serum IL-9 level was significant higher in patients with atherosclerosis or CHD (9, 10). However, there were not any relative studies to research on the genetic effects of IL-9 with CHD. Additionally, Interleukin-2 (IL-2) was known as a T-cell growth factor when it was discovered in 1976 (11). The high affinity IL-2 receptor (IL-2R) is a heterotrimer consisting of the α chain (IL-2RA, CD25), the β chain (IL-2RB, CD122) and the common cytokine receptor γ chain (γc, CD132) (12). The previous studies indicated that IL-2, IL-2RA or IL-2RB genes caused muti-organ inflammation in both mice and human (13, 14). Importantly, IL-2RA and IL-2RB play crucial role in the development of CHD mainly through the combination with IL-2(15–17). It was reported that the gene variants in IL-2 were contributed the susceptibility to the CHD risk(18). However, it had little research to explore the IL-2R with CHD risk.

Therefore, in this study, we will conduct a case-control study to identify the
association between CHD susceptibility and seven SNPs in the IL-9, IL-2RA and IL-2RB in the Chinese Han population. The study aims to identify a positive finding for the early prevention of CHD.

Materials and Methods

Study participants

This hospital-based case-control study was performed with 499 CHD patients and 496 healthy controls randomly recruited from the Second Affiliated Hospital of Hainan Medical University. All of the participants were genetically unrelated Chinese Han adults. The patients were diagnosed with CHD based on the coronary angiography or the criteria of typical clinical symptom, elevation of cardiac enzymes, and representative set of electrocardiogram (ECG) (19). The cases with severe anto-immunity disease such as systemic lupus erythematosus, inflammatory bowel disease, or Graves’ disease were excluded. For controls, the healthy adults without any kinds of cardiovascular disease or relative medical history were recruited from the health checkup of the same hospital at the same period. We designed this protocol in compliance with the the Ethics Committee of the Second Affiliated Hospital of Hainan Medical University and the guidelines of the Declaration of Helsinki. All participants were provided and signed up the written informed consent.

Selection and genotyping of SNPs

We identified three single nucleotide polymorphisms (SNPs) in IL-2RA, three SNPs in IL-2RB and one in IL-9 with a minor allele frequency (MAF) > 0.05 in Chinese Han population from NCBI dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP) and the 1000 Genomes Projects (http://www.internationalgenome.org/). Fasting
Peripheral blood of all participants were collected in anticoagulant tubes and stored at -80°C. The whole blood genomic DNA extraction kit (GoldMag Co. Ltd, China) was used to extract DNA in accordance with manufacture’s protocol, and the DNA content was measured by spectrometry (NanoDrop 2000 spectrophotometer, Thermo Scientific, USA). Agena MassARRAY Assay Design Software (version 3.0, Agena Bioscience, USA) was used to design multiplexed SNP MassEXTEND assay. And Agena MassARRAY RS100 was used to detect SNP genotyping (20, 21). Data were analyzed with Agena Typer Software (version 4.0, Agena Bioscience, USA).

Bioinformatics analysis

Online softwares, HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) and SNP info Web Server (https://snpinfo.niehs.nih.gov/snpinfo/index.html), took essential part in predicting the possible functional effects on these candidate SNPs.

Statistical analysis

SPSS software (version 20.0) was used for data analysis. The independent sample t-test or χ² test was used to examine the differences of basic parameters between the cases and controls. Hardy-Weinberg equilibrium (HWE) was tested by χ² test for each SNP selected in this study. The CHD risk associated with genotyping was estimated by odds ratios (ORs) with 95% confidence intervals (CIs) for five different genetic models. Multifactor dimensionality reduction (MDR) (version 3.0.2) was performed to analyze the interactions between SNP and SNP in the CHD risk (22). The difference in clinical characteristics among different genotypes was analyzed using the one-way analysis and ANOVA test. For all test, a two-tailed p-value < 0.05 was considered statistically significant.
Results

Basic characteristic of the participants

The current study was included 499 CHD patients (319 males and 180 females) and 496 healthy controls (320 males and 273 females). The mean age of cases and controls were 61.34 ± 11.70 and 61.29 ± 8.94, respectively. Demographic and clinical characteristics were listed in **Table 1**, including age, gender, total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), platelet (PLT), plateletcrit (PCT), white blood cells (WBC), red blood cells (RBC), hemoglobin (HGB) and uric acid (UA). To examined the association in subgroup of CHD with diabetes or hypertension, the group of CHD patients were divided into four groups based on the presence or absence of hypertension or diabetes (CHD patients with diabetes or non-diabetes, CHD patients with hypertension or non-hypertension). And then we could observe that there were 59% CHD patients who were along with hypertension, while 20% CHD patients had diabetes.

Association of genetic polymorphism with the CHD risk

Basic information of the selected SNPs was presented in **Table 2**. All of genetic polymorphisms were complied with a Hardy-Weinberg equilibrium \((p > 0.05)\).

Significantly in **Table 3**, majority of the genetic model in *IL-9* (rs55692658) presented the increased risk with CHD (A vs G, \(OR = 1.72, 95\% CI = 1.20-2.48, p = 0.003\); GA vs AA, \(OR = 1.66, 95\% CI = 1.13-2.42, p = 0.010\); GG-GA vs AA, \(OR = 1.72, 95\% CI = 1.17-2.51, p = 0.006\); Log-additive, \(OR = 1.75, 95\% CI = 1.20-2.53, p = 0.003\)). However, the SNPs in *IL-2RA* and *IL-2RB* showed no statistical significance with CHD risk (**Supplementary Table 1**).
Stratification analysis of SNPs with the CHD risk

Then we did stratified analysis of SNPs with CHD risk (Table 4). The results indicated that no matter in participants who were > 61 years or ≤ 61 years, *IL-9* rs55692658 and *IL-2RB* rs3218264 were significantly associated with the increased risk of CHD (in participants > 61 years old, *IL-9* rs55692658: G vs A, OR = 1.65, 95% CI = 1.03-2.65, \(p = 0.037 \), GG-GA vs AA, OR = 1.68, 95% CI = 1.01-2.81, \(p = 0.049 \), Log-additive, OR = 1.73, 95% CI = 1.05-2.83, \(p = 0.030 \); *IL-2RB* rs3218264: AG vs GG, OR = 1.61, 95% CI = 1.03-2.51, \(p = 0.037 \), AA-AG vs GG, OR = 1.59, 95% CI = 1.05-2.42, \(p = 0.030 \)). In participants ≤ 61 years old, *IL-9* rs55692658: G vs A, OR = 1.90, 95% CI = 1.07-3.39, \(p = 0.027 \), GG-GA vs AA, OR = 2.00, 95% CI = 1.10-3.66, \(p = 0.024 \), Log-additive, OR = 2.00, 95% CI = 1.10-3.66, \(p = 0.024 \); *IL-2RB* rs3218264: AG vs GG, OR = 1.59, 95% CI = 1.03-2.46, \(p = 0.036 \), AG-AA vs GG, OR = 1.51, 95% CI = 1.01-2.28, \(p = 0.046 \)). However, three selected SNPs in *IL-2RA* and another two SNPs in *IL-2RB* showed susceptibility to CHD risk with no statistical significance (Supplementary table 2).

By the stratification of gender shown in Table 4, we observed that *IL-9* rs55692658 was significantly correlated with the CHD risk (G vs A, OR = 2.32, 95% CI = 1.30-4.13, \(p = 0.003 \), GA vs AA, OR = 2.22, 95% CI = 1.21-4.09, \(p = 0.010 \), GG-GA vs AA, OR = 2.35, 95% CI = 1.28-4.30, \(p = 0.006 \), Log-additive, OR = 2.36, 95% CI = 1.31-4.25, \(p = 0.004 \)). Nevertheless, *IL-2RA* rs12722498 presented a significantly decreasing-risk effect in female (G vs A, OR = 0.54, 95% CI = 0.30-0.96, \(p = 0.033 \), GA vs AA, OR = 0.52, 95% CI = 0.28-0.97, \(p = 0.041 \), GG-GA vs AA, OR = 0.51, 95% CI = 0.28-0.95, \(p = 0.033 \), Log-additive, OR = 0.54, 95% CI = 0.30-0.96, \(p = 0.035 \)). On contrary, there were not any significant association between rs791588 and rs12569923 in *IL-2RA*, and three selected SNPs in *IL-2RB* and CHD risk.
Association with hypertension and diabetes

To evaluate the association in subgroups of CHD with diabetes or hypertension, a total of 499 CHD patients was divided into four groups according to presenting or absenting hypertension or diabetes, respectively. The results shown in Table 5 revealed that *IL-2RA* rs12569923 presented the increased risk with diabetes in CHD patients (G vs C, OR = 1.50, 95% CI = 1.04-2.17, \(p = 0.028 \); GG vs CC, OR = 2.70, 95% CI = 1.21-6.04, \(p = 0.015 \); GG vs GG-GC, OR = 2.59, 95% CI = 1.18-5.69, \(p = 0.018 \); Log-additive, OR = 1.43, 95% CI = 1.01-2.02, \(p = 0.044 \)). On the contrary, all of the SNPs selected in this study were not significantly associated with hypertension in the CHD patients (Supplementary table 3).

Haplotype analysis with the risk of CHD

Furthermore, we researched the linkage disequilibrium (LD) and haplotype analyses of the *IL-2RA* polymorphisms. The reconstructed LD plot was presented in **Supplementary Figure 1**, and the LD block was comprised of two SNPs including *IL-2RA* rs12569923 and rs791588. The frequencies distribution of haplotypes in the case and control groups were shown in **Supplementary Table 4**. However, there was no significant association between haplotype and the risk of CHD.

SNP-SNP interactions

We used MDR analysis to assess the effect of SNP-SNP interaction among seven selected SNPs in *IL-9*, *IL-2RA* and *IL-2RB* **(Table 6)**. In total, we found a three-locus mode including rs12569923 in *IL-2RA*, rs3218264 in *IL-2RB* and rs55692658 in *IL-9* was the best model (cross-validation consistency = 9/10, testing balanced accuracy = 0.539, \(p = 0.002 \)). Obviously, there were interactions between locus and locus presented in a dendrogram and the Fruchterman-Reingold in **Figure 1** (A and B,
respectively).

Genotypes and clinical characteristics

Additionally, we chose three SNPs in *IL-9, IL-2RA, IL-2RB* which presented the most significant association with the CHD risk according to the above studies to detected the relationship between different genotypes of these SNPs and clinical characteristics of patients, including total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), platelet (PLT), plateletcrit (PCT), white blood cells (WBC), red blood cells (RBC), hemoglobin (HGB), uric acid (UA). As shown in Table 7, there was no significant association between IL-9 rs55692658 and IL-2RA rs12569923 genotype polymorphisms and the clinical parameters mentioned above (*p > 0.05*). However, the AA genotype (1.61 ± 0.67 mmol/L) of *IL-2RB* rs3218264 were higher TG level than AG genotype (1.43 ± 0.60 mmol/L) and GG genotype (1.40 ± 0.64 mmol/L) (*p = 0.035*).

Discussion

CHD is considered to be a multifactorial disease, characterized by a chronic inflammatory process occurring primarily at the atherosclerotic plaque (23). Although the etiology of CHD remains to be further clarified, the genetic and environmental factors are regarded as important aspects in the progression of this disease. Previous studies have reported that serum interleukins level was correlated with the development of CHD, including IL-9 and IL-2 (23, 24). As a kind of key inflammatory factors, interleukins have been the center of attention up to now. Gradually, the multiple gene polymorphisms in interleukins with CHD risk began to be explore (25, 26), but little have reported about IL-9, IL-2RA and IL-2RB. Therefore, we designed this case-control study to investigate the association
between the SNPs in IL-9, IL-2A, IL-2RB and the susceptibility to CHD. The results revealed that there was a strong relationship of IL-9 rs55692658 with CHD risk. Furthermore, the stratification analysis by age showed that IL-9 rs55692658 and IL-2RB rs1573673 were significantly correlated with the increased risk of CHD without age relevant. For the subgroup of gender, we observed that IL-9 rs55692658 presented an increasing-risk effect, while IL-2RA rs12722498 was correlated with the decreased susceptibility to CHD in female. Moreover, IL-2RA rs12569923 was associated with the risk of diabetes in CHD patients. Since CHD represented a complex disease influenced by an interplay between genetic and environmental factors, SNP-SNP interaction studies might help identify the risk factors for CHD. Accordingly, we did MDR analysis to detected the potential SNP-SNP interactions in the selected SNPs. The results indicated that there was a strong interaction between IL-9 rs55692658, IL-2RA rs12569923 and IL-2RB rs3218264 regarding susceptibility to CHD. To our knowledge, this is the firstly to demonstrated the relationships between these SNPs in IL-9, IL-2RA, IL-2RB and the risk of CHD.

IL-9 gene was located on the long arm of chromosome 5. And IL-9 is specifically secreted not only by the eponymous Th9 cells, but also by a smaller amount by activated Th2 cells, Th17 cells, and regulatory T cells (27). Recently, few studies have revealed that IL-9 might mediate inflammatory cell infiltration into atherosclerotic lesions and might also play an important role in the atherosclerotic process (10, 28). According to these studies, we hypothesized that IL-9 SNPs might be related to CHD risk. In current study, we found that IL-9 rs55692658 was significant associated with an increased risk effect on CHD. Furthermore, gender and age were well-known risk factors in the prevalence of CHD (29). Therefore, we evaluated the correlation between the SNPs of IL-9 and CHD risk in different
subgroups. Furthermore, by the stratification analysis with age and gender, we found that IL-9 rs55692658 contributed the susceptibility to CHD risk without age relevant. However, its increasing risk effect was significantly correlated with female.

Besides, serum levels of IL-2 was reported the relationship with CHD (16, 30). IL-2, a type 1 four α-helical bundle cytokine, was produced primarily by CD4 + T cells following their activation by antigen (31). IL-2R, especially the IL-2RA and IL-2RB which had high affinity to the IL-2, was obviously detected an increased serum level compared with the healthy controls according to the previous studies (31).

Nevertheless, in the current study, we found that there was not any significant association between the selected SNPs in neither IL-2RA nor IL-2RB and the CHD risk. Thus, we did a further stratification analysis by age and gender. The results indicated that in patients who were at age ≤ 61, IL-2RB rs3218264 presented significantly increased risk effect on CHD. And in the subgroup of gender, it was revealed that IL-2RA rs12722498 was showed the decreased contribution to CHD susceptibility. The previous study had reported that CHD was associated with diabetes (32). Additionally, the morbidity and mortality of CHD were related to degrees of increased blood pressure (33, 34). These suggested that CHD had close relationship with hypertension and diabetes. Hence, we did stratification analysis of hypertension and diabetes in CHD patients. The results significantly indicated that IL-2RA rs12569923 contributed to diabetes risk for individuals with CHD patients.

There are also limitations in the current study. At first, the sample size was not big enough and the subjects are limited to Chinese Han population. Consequently, selection bias is inevitable due to this study was hospital-based design. Then, CHD is a multifactorial disease with many other risk factors. We could not completely
eliminate the potential influence of all the factors on the development of CHD. Hence, further studies with larger and multifarious sample are necessary.

Conclusion

In summary, the current study was the first to report that IL-9 rs55692658 significantly contributed the susceptibility to CHD risk. Specially, IL-2RA rs12722498 and IL-9 rs55692658 have significant differences in stratification analysis of gender. These results suggest that rs55692658 of IL-9 may serve as new biomarkers for the risk of CHD.

Declarations

Ethics approval and consent to participate

This study strictly obeyed the World Medical Association Declaration of Helsinki, which was also approved by the Ethical Committee of the Second Affiliated Hospital of Hainan Medical University. Written informed consent was obtained from each study participant.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Author Contributions

XHC drafted the manuscript. XFW and ZZZ performed the DNA extraction and genotyping; YWC and XFW performed the data analysis; ZZZ and YWC performed the
sample collection and information recording; XHC and CW conceived and supervised the study.

Acknowledgements

We are appreciated to all participants in this study. Furthermore, we are grateful to the clinicians and staff in the Second Affiliated Hospital of Hainan Medical University, as well as the contributors in this study.

References

1. Li H, Sun K, Zhao R, et al. (2018) Inflammatory biomarkers of coronary heart disease. *Front Biosci (Schol Ed)* **10**: 185-196.

2. Mitrokhin V, Nikitin A, Brovkina O, et al. (2017) Association between interleukin-6/6R gene polymorphisms and coronary artery disease in Russian population: influence of interleukin-6/6R gene polymorphisms on inflammatory markers. *J Inflamm Res* **10**: 151-160.

3. Jokinen E. (2015) Obesity and cardiovascular disease. *MINERVA PEDIATR* **67**: 25-32.

4. Min X, Lu M, Tu S, et al. (2017) Serum Cytokine Profile in Relation to the Severity of Coronary Artery Disease. *BIOMED RES INT* **2017**: 4013685.

5. Mirhafez SR, Zarifian A, Ebrahimi M, et al. (2015) Relationship between serum cytokine and growth factor concentrations and coronary artery disease. *CLIN BIOCHEM* **48**: 575-580.

6. Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. (1994) Genetic susceptibility to death from coronary heart disease in a study of twins. *N Engl J Med* **330**: 1041-1046.

7. Sjogren M, Almgren P, Melander O. (2019) Polygenetic risk for coronary artery
disease increases hospitalization burden and mortality. *Int J Cardiol Heart Vasc* **24**: 100391.

8. Rojas-Zuleta WG, Sanchez E. (2017) IL-9: Function, Sources, and Detection. *Methods Mol Biol* **1585**: 21-35.

9. Min X, Lu M, Tu S, et al. (2017) Serum Cytokine Profile in Relation to the Severity of Coronary Artery Disease. *BIOMED RES INT* **2017**: 4013685.

10. Gregersen I, Skjelland M, Holm S, et al. (2013) Increased systemic and local interleukin 9 levels in patients with carotid and coronary atherosclerosis. *PLOS ONE* **8**: e72769.

11. Morgan DA, Ruscetti FW, Gallo R. (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. *Science* **193**: 1007-1008.

12. Ruyssen-Witrand A, Lukas C, Nigon D, et al. (2014) Association of IL-2RA and IL-2RB genes with erosive status in early rheumatoid arthritis patients (ESPOIR and RMP cohorts). *JOINT BONE SPINE* **81**: 228-234.

13. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. *Immunity* **3**: 521-530.

14. Sharfe N, Dadi HK, Shahar M, Roifman CM. (1997) Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. *Proc Natl Acad Sci U S A* **94**: 3168-3171.

15. Simon AD, Yazdani S, Wang W, Schwartz A, Rabbani LE. (2001) Elevated plasma levels of interleukin-2 and soluble IL-2 receptor in ischemic heart disease. *CLIN CARDIOL* **24**: 253-256.

16. Sakamoto A, Ishizaka N, Saito K, et al. (2012) Serum levels of IgG4 and soluble interleukin-2 receptor in patients with coronary artery disease. *CLIN CHIM
ACTA 413: 577-581.

17. Wadwa RP, Kinney GL, Ogden L, et al. (2006) Soluble interleukin-2 receptor as a marker for progression of coronary artery calcification in type 1 diabetes. *Int J Biochem Cell Biol* 38: 996-1003.

18. Ding R, Gao W, Ostrodi DH, et al. (2013) Effect of interleukin-2 level and genetic variants on coronary artery disease. *INFLAMMATION* 36: 1225-1231.

19. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. (2012) Third universal definition of myocardial infarction. *Glob Heart* 7: 275-295.

20. Hoffman TW, van Moorsel C, Borie R, Crestani B. (2018) Pulmonary phenotypes associated with genetic variation in telomere-related genes. *Curr Opin Pulm Med* 24: 269-280.

21. Lin Y, Xue Y, Huang X, et al. (2018) Association between interleukin-35 polymorphisms and coronary heart disease in the Chinese Zhuang population: a case-control study. *Coron Artery Dis* 29: 423-428.

22. Leem S, Park T. (2017) An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions. *BMC Genomics* 18: 115.

23. Wu MY, Li CJ, Hou MF, Chu PY. (2017) New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. *Int J Mol Sci* 18.

24. Kirbis S, Breskvar UD, Sabovic M, Zupan I, Sinkovic A. (2010) Inflammation markers in patients with coronary artery disease--comparison of intracoronary and systemic levels. *Wien Klin Wochenschr* 122 Suppl 2: 31-34.

25. Zhang T, Wang Z, Xiao W. (2017) A meta-analysis of interleukin-6 -572G>C polymorphism and coronary heart disease susceptibility. *Cardiol J* 24: 107-110.

26. Sun W, Han Y, Yang S, et al. (2019) The Assessment of Interleukin-18 on the
Risk of Coronary Heart Disease. *MED CHEM.*

27. Gerlach K, Weigmann B. (2019) The dichotomous function of interleukin-9 in cancer diseases. *J Mol Med (Berl)* **97**: 1377-1383.

28. Zhang W, Tang T, Nie D, et al. (2015) IL-9 aggravates the development of atherosclerosis in ApoE-/- mice. *CARDIOVASC RES* **106**: 453-464.

29. Khamis RY, Ammari T, Mikhail GW. (2016) Gender differences in coronary heart disease. *HEART* **102**: 1142-1149.

30. Rizos I, Tsiodras S, Rigopoulos AG, et al. (2007) Interleukin-2 serum levels variations in recent onset atrial fibrillation are related with cardioversion outcome. *CYTOKINE* **40**: 157-164.

31. Liao W, Lin JX, Leonard WJ. (2011) IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. *CURR OPIN IMMUNOL* **23**: 598-604.

32. Vedin O, Hagstrom E, Ostlund O, et al. (2017) Associations between tooth loss and prognostic biomarkers and the risk for cardiovascular events in patients with stable coronary heart disease. *INT J CARDIOL* **245**: 271-276.

33. Reunanen A, Takkunen H, Knekt P, Aromaa A. (1982) Hyperuricemia as a risk factor for cardiovascular mortality. *Acta Med Scand Suppl* **668**: 49-59.

34. Zhao XC, Yang SH, Yan YQ, et al. (2018) Identification of differential gene expression profile from peripheral blood cells of military pilots with hypertension by RNA sequencing analysis. *BMC MED GENOMICS* **11**: 59.

Tables

Table 1 Characteristics of patients with CHD patients and healthy controls
Characteristic	Cases	Controls	p
n = 499		**n = 496**	
Age (years)	61.34 ± 11.70	61.29 ± 8.94	0.939
mean ± SD			
61 \(\leq\)	250 (50.0 %)	223 (55.0 %)	
≤ 61	249 (50.0 %)	273 (45.0%)	
Gender			
Male	319 (63.7%)	320 (64.5%)	0.795
Female	180 (36.3%)	176 (35.5%)	
TC (mmol/L)	4.09 ± 1.14	4.61 ± 0.94	**< 0.001**
TG (mmol/L)	1.46 ± 0.63	1.52 ± 0.68	0.252
HDL (mmol/L)	1.09 ± 0.28	1.08 ± 0.27	0.571
LDL (mmol/L)	1.92 ± 0.88	2.61 ± 0.78	**< 0.001**
PLT \(10^9/L\)	182.97 ± 59.56	210.33 ± 53.30	**< 0.001**
PCT (%)	0.02 ± 0.11	0.02 ± 0.07	0.878
WBC \(10^9/L\)	7.52 ± 3.03	5.83 ± 1.51	**< 0.001**
RBC \(10^{12}/L\)	4.85 ± 0.54	4.72 ± 0.71	**0.003**
HGB (g/L)	130.58 ± 29.82	145.53 ± 13.24	**< 0.001**
Urea (mmol/L)	5.52 ± 1.74	5.18 ± 1.31	**0.031**
UA(\(\mu\)mol/L)	286.88 ± 72.50	322.88 ± 66.86	**< 0.001**
Hypertension	295/204		
(yes/no)			
Diabetes	101/39		
(yes / no)			

TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PLT, platelet; PCT, plateletcrit; WBC, white blood cells; RBC, red blood cells; HGB, hemoglobin; UA, uric acid

Variables are presented as the mean ± SD.
Bold values indicate significant difference ($p < 0.05$).
Table 2 Basic information and HWE about the selected SNPs

SNP ID	Genes	Chr: Position	Role	Alleles (A/B)	MAF	p-value for HWE	Haploreg 4.1	SNPinfo web server
rs556	IL-9	5: 13589	intronic	A/G	0.08/0.04	0.62/3	Enhancer histone marks	TFBS
rs125	IL-2RA	10: 60426	intronic	C/G	0.19/0.20	0.78/4	Enhancer histone marks, Motifs changed	
rs791	IL-2RA	10: 60473	intronic	G/T	0.36/0.37	0.77/4	Enhancer histone marks, Motifs changed	
rs127	IL-2RA	10: 60538	intronic	C/T	0.07/0.08	0.40/5	Promoter histone marks, Enhancer histone marks, DNAse, Proteins bound, Motifs changed	
rs228	1089	22: 37136	intronic	A/G	0.24/0.23	0.61/8	Enhancer histone marks	
rs321	2RB	22: 37145	intronic	C/T	0.48/0.48	0.07/3	Promoter histone marks, Enhancer histone marks, DNAse, Proteins bound, Motifs changed, Selected eQTL hits	
rs157	2RB	22: 37172	intronic	C/T	0.36/0.38	0.77/4	Enhancer histone marks, Motifs Changed, GRASP QTL hits	

SNP, single nucleotide polymorphism; CHD, coronary heart disease; MAF, minor allele frequency;

Table 3 Relationships between the SNPs of IL-9 and CHD risk
SNP ID	Model	Genotype	Case	Control	Adjusted by age and gender OR (95% CI)	p
IL-9	Allele	G	82	49	1.00	
		A	916	943	1.72 (1.20-2.48)	0.003
	Genotype	AA	420	447	1.00	
		GG	3	0	/	
		GA	76	49	1.66 (1.13-2.42)	0.010
	Dominant	AA	420	447	1.00	
		GG-GA	82	132	1.72 (1.17-2.51)	0.006
	Recessive	GA-AA	496	496	1.00	
		GG	3	0	/	
	Log-additive	-	-	-	1.75 (1.20-2.53)	0.003

SNP, single nucleotide polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.

p values were calculated by logistic regression analysis with adjustments for age and gender.

"-" indicates Log-additive model; "/" indicates data missing.

Bold values indicate significant difference (p < 0.05).

Table 4 The SNPs of IL-9, IL-2RA or IL-2RB associated with CHD risk in the age and gender subgroup tests
SNP ID	Model	Allele/genotype	Case	Control	OR (95% CI)	p	Case	Control	OR (95% CI)	p
Gender			Male	Male			Female	Female		
IL-9										
Allele										
A	59	609	1.00	320	320	1.00				
rs5569										
2658										
G	42	31	1.38	0.86	2.23	0.18				
Genotype										
AA	27	289	1.00							
GG	1	0	/							
GA	40	31	1.34	0.81	2.21	0.24				

- **Dominant Model**
- **Recessive Model**
- **Log-additive Model**

- IL-2RB Allele
- rs3218 264
- Genotype

SNP ID	Model	Allele/genotype	Case	Control	OR (95% CI)	p	Case	Control	OR (95% CI)	p
Gender			Male	Male			Female	Female		
IL-9										
Allele										
A	59	609	1.00	320	320	1.00				
rs5569										
2658										
G	42	31	1.38	0.86	2.23	0.18				
Genotype										
AA	27	289	1.00							
GG	1	0	/							
GA	40	31	1.34	0.81	2.21	0.24				
Allele	Genotype	p	95% CI	p	95% CI					
--------	----------	---	---------	---	---------					
IL-2RA	AA	1.00	161	161	1.00					
	GG	0.41	67	67	0.04-					
	GA	0.52	18	18	0.28-					
			3		0.97					
	GG-GA	0.51	41	41	0.28-					
	GA-AA	0.54	314	314	0.30-					
	GG	0.46	64	64	0.04-					
	GA	0.52	8	8	0.30-					
			4		0.96					
	GG-GA	0.54	50	50	0.30-					
	GA-AA	0.52	32	32	0.28-					
	GG	0.46	36	36	0.04-					
	GA	0.52	9	9	0.30-					
			4		0.96					

OR, odds ratio; 95% CI, 95% confidence interval.

p values were calculated by χ^2 test with adjustment for age and gender.

"-" indicates Log-additive model; "/" indicates data missing.

Bold values indicate significant difference ($p < 0.05$).

Table 5 A list of SNPs associated with CHD in the subgroup tests (hypertension vs. non-hypertension and diabetes vs. non-diabetes)
SNP ID	Model	Allele/ genotype	Case	Control	OR (95% CI)	p	Case	Control	OR (95% CI)	p
IL-2RA Allele	C	464	337	1.00			151	650	1.00	
	G	126	71	1.29 (0.93-1.78)	0.123	51	146	1.50 (1.04-2.17)	0.028	
Genotype	CC	187	144	1.00		61	270	1.00		
	GG	18	11	1.33 (0.60-2.94)	0.478	11	18	2.70 (1.21-6.04)	0.015	
	GC	90	49	1.43 (0.95-2.17)	0.089	29	110	1.15 (0.70-1.89)	0.581	
	CC	187	144	1.00		61	270	1.00		
	GG-GC	47	32	1.42 (0.96-2.09)	0.079	40	128	1.37 (0.87-2.15)	0.177	
	GC-CC	277	193	1.00		90	380	1.00		
	GG	18	11	1.20 (0.55-2.62)	0.649	11	18	2.59 (1.18-5.69)	0.018	
	-	-	-	1.28 (0.94-1.75)	0.117	-	-	1.43 (1.01-2.02)	0.044	

SNP, single nucleotide polymorphism; CHD, coronary heart disease; OR, odds ratio; 95% CI, 95% confidence interval

p values were calculated by \(\chi^2 \) test with adjustment for age and gender.

“-” indicates Log-additive model.

Bold values indicate significant difference (*p* < 0.05).
Table 6 MDR analysis of SNP-SNP interactions in relation to CHD risk.

Model	Training Bal. Acc	Testing Bal. Acc	OR (95% CI)	Testing χ^2 value	p value	CVC
rs3218264 (IL-2RB)	0.533	0.508	1.32 (1.01-1.71)	4.143	0.042	5/10
rs3218264 (IL-2RB), rs55692658 (IL-9)	0.551	0.539	1.52 (1.16-1.98)	9.384	0.002	9/10
rs12569923 (IL-2RA), rs3218264 (IL-2RB), rs55692658 (IL-9)	0.571	0.517	1.81 (1.37-2.38)	18.063	< 0.0001	5/10

MDR, multifactor dimensionality reduction; Bal. Acc., balanced accuracy; CVC, cross-validation consistency; OR, odds ratio; 95% CI, 95% confidence interval.

p values were calculated using χ^2 tests. $p < 0.05$ indicates statistical significance.

Table 7 Clinical characteristics of patients based on the genotypes of selected SNPs

Characteristics	IL-9 rs55692658	IL-2RA rs12569923	IL-2RB rs3218264									
	AA	GA	GG	p	CC	GC	GG	p	AA	AG	GG	p
TC (mmol/L)												
0 ± 1	4.1	4.0	3.8	0.8	4.0	4.1	3.7	0.2	4.1	4.0	4.1	0.5
1.1 ± 0.2	8 ± 1	7 ± 1	7 ±	0.2	1.1	1.1	1.2	45	1.1	1.1	0.6	1.1 ±
7 ± 1	3	3	1	1	3	3	1	1	3	3	1	4
TG (mmol/L)												
6 ± 1	1.4	1.5	1.1	0.6	1.4	1.4	1.2	0.2	1.6	1.4	1.4	0.0
0.6 ± 0.2	8 ± 1	7 ± 1	7 ±	0.2	8 ±	7 ±	7 ±	0.2	8 ±	7 ±	7 ±	0.2
0.6 ± 0.2	0.6	0.6	0.6	0.5	0.6	0.6	0.6	0.5	0.6	0.6	0.6	0.5

23
Table of Laboratory Results

Parameter	Value (mmol/L)	Value (10^9/L)	Value (%)	Value (μmol/L)
HDL	1.1 ± 0.2	18.3 ± 6.7	0.0 ± 0.1	28.7 ± 7.8
LDL	1.9 ± 0.3	3.5 ± 5.0	0.0 ± 0.1	1.0 ± 5.0
PLT	18 ± 2	3.5 ± 5.0	0.0 ± 0.1	28.7 ± 7.8
WBC	7.5 ± 2.4	4.7 ± 3.8	0.0 ± 0.1	28.7 ± 7.8
RBC	4.7 ± 3.4	6.3 ± 5.2	0.0 ± 0.1	28.7 ± 7.8
HGB	13 ± 3.5	18 ± 4.6	0.0 ± 0.1	28.7 ± 7.8
Urea	41 ± 3.5	132 ± 4.6	0.0 ± 0.1	28.7 ± 7.8

TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PLT, platelet; PCT, plateletcrit; WBC, white blood cells; RBC, red blood cells; HGB, hemoglobin; UA, uric acid

"/" indicates data missing.

p < 0.05 indicates statistical significance
Figures

![Figure 1](image)

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

- supplementary tables.docx
- supplementary figure 1.tif