Species Diversity and Ecological Habitat of Absidia (Cunninghamellaceae, Mucorales) with Emphasis on Five New Species from Forest and Grassland Soil in China

Heng Zhao 1,2,*, Yong Nie 3, Tong-Kai Zong 4, Yu-Jie Wang 5, Mu Wang 5, Yu-Cheng Dai 1,5 and Xiao-Yong Liu 2,*

1 Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; zhaoheng21@bjfu.edu.cn
2 College of Life Sciences, Shandong Normal University, Jinan 250014, China
3 School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243002, China; lly19851207@126.com
4 Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; zongfungi@163.com
5 College of Plant Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China; 18503217053@163.com (Y.-J.W.); wangmutb@163.com (M.W.)

* Correspondence: yuchengdai@bjfu.edu.cn (Y.-C.D.); liuxiaoyong@im.ac.cn (X.-Y.L.)

Abstract: Although species of Absidia are known to be ubiquitous in soil, animal dung, and insect and plant debris, the species diversity of the genus and their ecological habitats have not been sufficiently investigated. In this study, we describe five new species of Absidia from forest and grassland soils in southwestern China, with support provided by phylogenetic, morphological, and physiological evidence. The species diversity and ecological habitat of Absidia are summarized. Currently, 22 species are recorded in China, which mainly occur in soil, especially in tropical and subtropical forests and mountains. An updated key to the species of Absidia in China is also provided herein. This is the first overview of the Absidia ecological habitat.

Keywords: fungal diversity; geographical distribution; early diverging fungi; mucoromycota

1. Introduction

The genus Absidia Tiegh., typified by A. reflexa Tiegh., was described nearly 150 years ago [1], belonging to Cunninghamellaceae, Mucorales, Mucoromycetes, Mucoromycota (http://www.indexfungorum.org/, accessed on 1 March 2022). However, it was initially placed in the family Absidiaceae [2]. With the development of molecular biology, it was grouped with Chlamydoabsidia Hesselt. and J.J. Ellis, Cunninghamellata Matr., Gongronella Ribaldi, and Halteromyces Shipton and Schipper and Hesseltinella H.P. Upadhay; this group was nominated as the family Cunninghamellaceae [3–7]. Nine other genera were thought to be allied with Absidia on the basis of morphological similarities, including Rhizopus Ehrenb. 1821, Phycomyces Kunze 1823, Tiegemalia Berl. and De Toni 1888, Mycocladus Beauverie 1900, Lichtheimia Vuill. 1903, Protoabsidia Bainier 1903, Pseudoabsidia Naumov 1935, and Gongronella Ribaldi 1952 [8]. As research progressed, Absidia s.l. has been well divided into three genera, i.e., Lichtheimia (thermotolerant, optimum growth temperature 37–45 °C), Absidia s.s. (mesophilic, optimum growth temperature 25–34 °C), and Lentamyes Kerst. Hoffm. and K. Voigt (parasitic on mucoralean fungi, optimum growth temperature 14–25 °C) [9–11]. Currently, species of Absidia are characterized by (1) sporangiophores single, in pairs or in groups on stolons, (2) rhizoids at both ends of stolons and never opposite the sporangiophores, (3) sporangia deliquescent-walled and apophysate, (4) columellae bearing one to several projections, (5) zygospores enclosed by appendages, and (6) optimum growth temperatures from 25 °C to 34 °C [1,9–15].
So far, a total of 46 species of *Absidia* have been described worldwide, and they are ubiquitous in soil, dung, insect, leaf litter, food, air, etc. (Figure 1; [16]). Among them, 30 species were initially collected from soil, including forest and rhizosphere soil, suggesting that *Absidia* species are mainly isolated from soil [17,18]. However, a few species are endemic to animal dung and insect remains, such as *A. psychrophilia* Hesselt. and J.J. Ellis from mycangia of ambrosia beetles [8,19], and *A. stercoraria* Hyang B. Lee et al. from rat dung [20].

Figure 1. Number of *Absidia* species in different ecological habitats when they were originally described. These data are from the Index Fungorum (http://www.indexfungorum.org/, accessed on 1 March 2022) and [16].

Absidia glauca Hagem and *A. repens* Tiegh. are considered as cosmopolitan species, reported in all continents except Antarctica [21–23]. *Absidia heterospora* Y. Ling was reported in China, New Zealand, and France [23,24]; *A. idahoensis* Hesselt. et al. and *A. macrospora* Váňová were reported in China, Czechia, and the USA [25–27]. Since 2018, 22 endemic species have been described from Korea, China, Thailand, Australia, USA, Mexico, and Brazil [14–16,28–36]. Type strains were collected from 17 countries, and the two most investigated countries are China and Brazil, with nine and eight type strains, respectively. The studies on *Absidia* in other countries and regions are obviously insufficient (Table 1).

Table 1. The origin of taxonomic types in *Absidia*.

Country	Type	Percentage (%)	Country	Type	Percentage (%)
China	9	19.6	Canada	1	2.2
Brazil	8	17.4	Cuba	1	2.2
USA	4	8.7	Egypt	1	2.2
France	3	6.5	Netherland	1	2.2
Korea	3	6.5	Mexico	1	2.2
Czechia	2	4.3	Pakistan	1	2.2
India	2	4.3	Switzerland	1	2.2
Thailand	2	4.3	Tanzania	1	2.2
Australia	1	2.2	Unknown	4	8.7

Note: These data are from the Index Fungorum (http://www.indexfungorum.org/, accessed on 1 March 2022) and [16].
Therefore, there are deficiencies in the studies on species distribution and ecological habitat of *Absidia* [8,13–16,18,20,27]. In this paper, we propose five new species from forest and grassland soil in Sichuan, Tibet, and Yunnan in southwestern China. A key to *Absidia* species in China is consequently updated. Along with the taxonomical study, we also conduct a preliminary investigation on the species distribution and ecological habitat of *Absidia*.

2. Materials and Methods

2.1. Isolation and Strains

Strains were isolated from forest and grassland soil samples collected in September 2021, in Sichuan, Tibet, and Yunnan in southwestern China. An aliquot of soil samples (1 g) was evenly spread on 15 cm petri dishes containing potato dextrose agar medium (200 g potato, 20 g dextrose, 20 g agar, and 1000 mL distilled water) with streptomycin sulfate and ampicillin 100 mg/mL each, and then cultivated at 20 °C and 25 °C. According to morphological characteristics of *Absidia*, potential strains were picked out and purified. The purified living cultures (Table 2) were deposited in the China General Microbiological Culture Collection Center, Beijing, China (CGMCC) and the Shandong Normal University (XY), and dry cultures (Table 2) were deposited in the Herbarium Mycologicum Academiae Sinicae, Beijing, China (HMAS).

Species	Strain	GenBank Accession Nos.
Absidia abundans	CGMCC 3.16255,T	ON074695, ON074683
A. abundans	XY09265	ON074697, ON074681
A. aguabelensis	URM 2813, T	MW763074, MW762874
A. anomalata	CBS 125.68, T	NR_103626, NG_058562
A. bonitoensis	URM 7889, T	MN977786, MN977805
A. caatingaensis	URM 7156, T	KT308169, KT308171
A. caerulea	CBS 101.36	MH855718, MH867230
A. caerulea	FSU 767	AY944870, AF113443
A. californica	CBS 314.78	MH861141, MH872902
A. californica	FSU 4747	AY944872, EU736300
A. californica	FSU 4748	AY944873, EU736301
A. cornuta	URM 6100	MN625256, MN625255
A. cuneospora	CBS 101.59, T	NR_159602, NG058559
A. cylindrospora	CBS 100.08	JN205822, JN206588
A. edaphica	MFLU 20-0416	MT396372, MT393987
A. frigida	CGMCC 3.16201, T	OM108487, OM030223
A. fusca	CBS 102.35	NR103625, NG058552
A. gemella	CGMCC 3.16202, T	OM108488, OM030224
A. glauca	CBS 129233	MH865253, MH876693
A. glauca	CBS 101.08, T	NR_111658, NG_058550
A. glauca	FSU 660	AY944879, EU736302
A. globospora	CGMCC 3.16031, T	MW671537, MW671544
A. globospora	CGMCC 3.16035, T	MW671538, MW671545
Table 2. Cont.

Species	Strain	GenBank Accession Nos.
A. globospora	CGMCC 3.16036	MW671539
		MW671546
A. healeyae	UoMAU1, T	–
		MT436027
A. heterospora	STH021	JN942683
		JN982936
A. idahoensis	CBS 103.91, T	–
		NG_058545
A. inflata	NRRL 6591	–
		YES
A. jindoensis	CNUFC-PT11-1, T	MF926622
		MF926616
A. koreana	EML-IFS45-1, T	KR030062
		KR030056
A. lobata	CGMCC 3.16256, T	ON074690
		ON074679
A. lobata	XY08832-1	ON074691
		ON074680
A. longissima	CGMCC 3.16203, T	OM108489
		OM030225
A. macrospora	FSU 4746	AY944882
		EU736303
A. medulla	CGMCC 3.16034, T	MW671542
		MW671549
A. montepascoaldis	URM 2818, T	NR_172995
		–
A. multispora	URM 8210, T	MN953780
		MN953782
A. ovalispora	CGMCC 3.16018, T	MW264071
		MW264130
A. panacisoli	SYPF 7183, T	MF522181
		MF522180
A. pararepens	CCF 6352	MT193669
		MT192308
A. pernambucoensis	URM 7219, T	MN635568
		MN635569
A. pseudocylindrospora	CBS 100.62, T	NR_145276
		NG_058561
A. pseudocylindrospora	EML-FSDY6-2	KU923817
		KU923814
A. psychrophilia	FSU 4745	AY944874
		EU736306
A. radiata	CGMCC 3.16257, T	ON074698
		ON074684
A. radiata	XY09330-1	ON074699
		ON074685
A. repens	CBS 115583, T	NR103624
		HM849706
A. saloaensis	URM 8209, T	MN953781
		MN953783
A. sichuanensis	CGMCC 3.16258, T	ON074692
		ON074688
A. sichuanensis	XY09119	ON074693
		–
A. sichuanensis	XY09633	ON074694
		ON074689
A. soli	MFLU 20-0414, T	MT396373
		MT393988
A. spinosa	FSU 551	AY944887
		EU736307
A. stercoraria	EML-DG8-1, T	NR_148090
		KT921998
A. terrestris	FMR 14989	LT795003
		LT795005
A. turgida	CGMCC 3.16032, T	MW671540
		MW671547
A. yunnanensis	CGMCC 3.16259, T	ON074700
		ON074687
A. yunnanensis	XY09528	ON074701
		ON074686
A. zonata	CGMCC 3.16033, T	MW671541
		MW671548
Cunninghamella	CBS 782.68	JN205869
blakesleaneana		MH870950
C. elegans	CBS 167.53	JN205882
		HM849700

Notes: sequences obtained in this study are in bold. “T” after strain number represents strain type. “−” represents the absence of sequence in GenBank. “YES” represents the sequences from the whole-genome sequencing with BioProject accession PRJNA519280.
2.2. Morphology and Maximum Growth Temperature

Pure cultures were incubated with malt extract agar medium (MEA: 30 g malt extract, 3 g peptone, 20 g agar, and 1000 mL distilled water; [37]). For morphological studies, two plates of each strain were cultured at 20 °C and 27 °C, respectively, and then examined under a stereomicroscope (SMZ1500, Nikon, Tokyo, Japan) and a light microscope (Axio Imager A2, Carl Zeiss, Oberkochen, Germany). Maximum growth temperature tests followed the methods in our previous studies [14–16,38–41]. For maximum growth temperature tests, three plates were incubated at 20 °C for 2 d, then incubation temperature was increased by a gradient of 1 °C until the colonies stopped growing. For morphological features, the minimum and maximum sizes based on a statistic of more than 50 measurements were adopted [16]. All cultures were triplicated.

2.3. Molecular Phylogeny

DNA extraction, PCR amplification, and sequencing and phylogenetic analyses followed the methods in our previous studies [14,16,42–44]. In brief, total DNAs were extracted using a kit (GO-GPLF-400, GeneOnBio Corporation, Changchun, China) based on the instruction manual. Entire ITS and partial LSU rDNA sequences were amplified with primer pairs NS5M (5′-GGC TTA ATT TGA CTC AAC ACG G-3′) and LR5M (5′-GCT ATC CTG AGG GAA ACT TCG-3′; [14,16]). PCR procedures were as follows: an initial denaturation at 95 °C for 5 min, 30 cycles at 95 °C for 60 s, 55 °C for 45 s, and 72 °C for 60 s, and a final extra extension at 72 °C for 10 min. Sanger sequencing of PCR products were carried out by a company (SinoGenoMax, http://www.sinogenomax.com, accessed on 1 March 2022) with primers ITS1, ITS4, ITS5, and LR5M [14,16,45].

Phylogenetic analyses were conducted with maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) algorithms [39,41] using RAxML (version 8.1.12; [46]), PAUP (version 4.0b10; [47]) and MrBayes (version 3.2.7a; [48]), respectively. Maximum Likelihood analysis was performed using the GTRGAMMA substitution model with 1000 bootstrap replications. Maximum parsimony analysis was conducted with 1000 bootstrap replications using the heuristic search option with bisection and reconnection. Sequences were randomly added and max-trees were set to 5000. For BI analysis, eight cold Markov chains were run simultaneously for two million generations with the GTR + I + G model, sampling every 1000 generations and with the first 25% sampled tree being removed as burn-in. Obtained sequences and aligned dataset were deposited at GenBank (Table 2) and Supplementary File S1, respectively. Additionally, top hits of the BLAST search for ITS sequences are provided in the Supplementary Table S1.

3. Results

3.1. Phylogenetic Analyses

The ITS and LSU rDNA dataset for 62 strains, representing 45 species of Absidia and two species of Cunninghamella, contains 1642 characters, of which 501, 877, and 264 are constant, parsimony-informative, and parsimony-uninformative, respectively. Maximum parsimony (MP) analyses yielded two equal trees (tree length 6669, consistency index 0.3330, homoplasy index 0.6670, retention index 0.5669, and rescaled consistency index 0.1888). The most optimal model of Bayesian inference (BI) was GTR + I + G, and the average standard deviation of split frequencies was 0.07357. Topology of the ML tree was chosen to represent the phylogenetic relationship (Figure 2). In the phylogenetic tree, the five new species described herein are fully supported with Cunninghamella elegans Lendn. and Cunninghamella blakesleean Lendn. as outgroup.
Figure 2. Maximum likelihood (ML) phylogenetic tree of *Absidia* based on ITS and LSU rDNA sequences, with *Cunninghamella elegans* and *C. blakesleeanus* as outgroup shaded in blue. Five new species are in shade and bold. Maximum likelihood bootstrap values (≥50%)/Bayesian inference (BI) posterior probabilities (≥0.9)/maximum parsimony (MP) bootstrap values (≥50%) of each clade are indicated along branches. “T” after strain number represents type. A scale bar in the upper left indicates substitutions per site.
3.2. Taxonomy

In this paper, five new species of *Absidia* are proposed from southwestern China, i.e., Sichuan, Tibet, and Yunnan. Besides the ITS and LSU rDNA sequences provided above, all the new species are illustrated along with morphological characteristics and the maximum growth temperature; a physiological trait is also presented.

3.2.1. *Absidia abundans* H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.

Fungal Names: FN570973. Figure 3.

![Figure 3](image-url)

Figure 3. Morphologies of *Absidia abundans* ex-holotype CGMCC 3.16255. (a,b). Colonies on MEA ((a), obverse, (b), reverse); (c–e), sporangia; (f), sympodially branched sporangiophores; (g), swellings below sporangia; (h), columellae with projections; (i), columellae with projections and collars; (j), rhizoids; (k), sporangiospores—scale bars: (c–g), (j), 10 μm, (h,k), 5 μm.

Etymology: *abundans* (Lat.) refers to the species with abundant swellings below the sporangia.

Holotype: HMAS 351932.

Description: Colonies on MEA at 27 °C for 7 days, growing moderately fast, attaining 65 mm in diameter, initially white, soon becoming gray to brown, and irregularly and concentrically zonate with ring at reverse. Hyphae are branched, hyaline at first, brownish when mature, aseptate when juvenile, septate with age, and 3.0–15.5 μm in diameter. Stolons branched, hyaline, and smooth. Rhizoids are root-like, often unbranched, and well-developed. Sporangiophores arise from stolons, always erect, unbranched, or simple if branched, monopodial, or sympodial, hyaline, swellings usually present below sporangia, oval to pyriform, hyaline, often with a septum 12.0–17.0 μm below apophyses,
35.0–170.0 μm long, and 2.0–3.5 μm wide. Sporangia are oval to subglobose, hyaline when young, dark green when old, smooth, deliquescent-walled, multi-spored, 8.0–16.5 μm long, and 8.5–16.0 μm wide. Apophysae are distinct, hyaline or subhyaline, 2.5–5.5 μm high, gradually widened upwards, 2.5–4.5 μm wide at the base, and 4.5–8.0 μm wide at the top. Collars absent or present. Columellae are subglobose or oval, hyaline, subhyaline or light greenish brown when mature, aseptate when juvenile, septate with age, and 4.0–21.0 μm in diameter. Sporangia are cylindrical, oval or subglobose, light green, smooth, 2.5–3.5 μm long, and 2.0–3.5 μm wide. Chlamydospores are absent. Zygospores are not observed.

Maximum growth temperature: 31 °C.

Materials examined: China. Yunnan, Qujing, from forest soil sample, September 2021, Heng Zhao (holotype HMAS 351932, living ex-holotype culture CGMCC 3.16255, and living cultures XY09265 and XY09274).

3.2.2. Absidia lobata H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.

Fungal Names: FN570974. Figure 4.

Figure 4. Morphologies of Absidia lobata ex-holotype CGMCC 3.16256. (a,b). Colonies on MEA ((a), obverse, (b), reverse); (c,d), columellae with projections; (e,f), sporangia; (g), rhizoids; (h), sporangiospores—scale bars: (c–e), 10 μm, (f,g), 20 μm, (h), 5 μm.

Etymology: lobata (Lat.) refers to the species with a broadly lobed edge of colonies.

Holotype: HMAS 351933.

Description: Colonies on MEA at 20 °C for 7 days, growing moderately fast, attaining 70 mm in diameter, zonate, broadly lobed at edge, white at first, gradually becoming light to dark brown and greenish, and irregular at reverse. Hyphae are branched, hyaline at first, greenish brown when mature, aseptate when juvenile, septate with age, and 4.0–21.0 μm in diameter. Stolons are branched, hyaline, brownish or light greenish, smooth, and septeate. Rhizoids are sometimes unbranched and rootlike when branched. Sporangiohphores arising from stolons, in pairs, unbranched, erect or slightly bent, hyaline or light brown, sometimes
with a septum 13.0–22.5 μm below apophyses, 50.0–360.0 μm long, and 3.0–7.0 μm wide. Sporangia are pyriform, colorless when young, light to dark brown when old, smooth, deliquescent-walled, multi-spored, 22.0–43.5 μm long, and 18.5–31.0 μm wide. Apophyses are always distinct, hyaline to light brown, 4.0–9.0 μm high, gradually widened upwards, 4.5–8.5 μm wide at the base, and 10.0–16.0 μm wide at the top. Collars are always absent. Columellae are subglobose to depressed globose, rarely irregular, subhyaline or light brownish when old, aseptate when juvenile, septate with age, and 3.0–16.0 μm long. Apophyses are mostly globose, occasionally subglobose, light green, smooth, and 2.5–3.0 μm in diameter. Chlamydospores are absent. Zygospores are not observed.

Maximum growth temperature: 26 °C.

Materials examined: China, Yunnan, Lijiang, 27°31′23″ N, 100°44′32″ E, altitude: 3153 m, from rhizosphere soil of *Pinus yunnanensis* Franch., September 2021, Heng Zhao (holotype HMAS 351933, living ex-holotype culture CGMCC 3.16256, and living culture XY08832-1).

3.2.3. *Absidia radiata* H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.

Fungal Names: FN570975. Figure 5.

![Figure 5. Morphologies of *Absidia radiata* ex-holotype CGMCC 3.16257. (a,b). Colonies on MEA (a), obverse, (b), reverse); (c,d), sporangia; (e), columellae with projections; (f), rhizoids; (g), sporangiospores—scale bars: (c–e), 10 μm, (f), 20 μm, (g), 5 μm.](image)

Etymology: *radiata* (Lat.) refers to the species with a radiate shape of colonies.

Holotype: HMAS 351934.

Description: Colonies on MEA at 27 °C for 7 days, growing moderately fast, attaining 65 mm in diameter, white at first, gradually becoming light to dark brown, with adjoining satellite colonies at the edge at reverse. Hyphae are branched, hyaline when young, light brownish when old, aseptate when juvenile, septate with age, and 3.0–16.0 μm in diameter. Stolons are branched, hyaline to light brown, and smooth. Rhizoids are rootlike, unbranched, and well-developed. Sporangioles arise from stolons, 1–5 in whorls, erect or slightly bent, unbranched, hyaline to light brown, sometimes with a septum 16.5–24.5 μm...
below apophyses, 45.0–273.0 μm long, and 3.0–5.0 μm wide. Sporangia are pyriform or subglobose, hyaline when young, brown when old, smooth, deliquescent-walled, multisored, 17.5–33.5 μm long, and 18.5–30.0 μm wide. Apophyses are distinct, hyaline to light brown, 5.5–12.5 μm high, with a turning point at the top of sporangiospores, then gradually widened upwards, 4.0–5.5 μm wide at the base, and 9.0–20.0 μm wide at the top. Collars absent. Columellae are mostly oval, depressed globose, occasionally subglobose to globose, subhyaline or hyaline, 13.5–22.5 μm long, and 14.0–24.0 μm wide. Projections are present or absent, single if present, subhyaline, and 2.0–4.5 μm long. Sporangiospores are oval, subhyaline, smooth, 3.0–5.0 μm long and 2.0–3.5 μm wide. Chlamydospores are absent. Zygospores are not observed.

Maximum growth temperature: 32 °C.

Materials examined: China, Yunnan, Yuxi, from forest soil sample, September 2021, Heng Zhao (holotype HMAS 351934, living ex-holotype culture CGMCC 3.16257, and living culture XY09330-1).

3.2.4. _Absidia sichuanensis_ H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.

Fungal Names: FN570977. _Figure 6._

![Figure 6. Morphologies of _Absidia sichuanensis_ ex-holotype CGMCC 3.16258. (a, b). Colonies on MEA (a, obverse, b, reverse); (c), columellae without projections; (d), columellae with a projection; (e), sporangia in whorls; (f), sporangiospores; (g, h). Rhizoids—scale bars: (c-e, g, h), 10 μm, (f), 5 μm.](image-url)

Etymology: _sichuanensis_ (Lat.) refers to the species found in Sichuan Province, southwest China.

Holotype: HMAS 351935.
Description: Colonies on MEA at 20 °C for 7 days, growing moderately fast, attaining 75 mm in diameter, white at first, soon becoming light brown, irregularly concentrically zonate at reverse. Hyphae are branched, hyaline at first, greenish brown when mature, aseptate when juvenile, septate with age, 5.5–15.5 μm in diameter. Stolons are branched, hyaline to brownish, smooth. Rhizoids are sometimes unbranched, fingerlike or rootlike when branched, and well-developed. Sporangiophores arise from stolons, 1–5 in whorls, unbranched, erect or slightly bent, hyaline, sometimes with a septum 14.0–16.5 μm below apophyses, 30.0–220.0 μm long, and 3.0–5.0 μm wide. Sporangia are pyriform, greenish when old, smooth, deliquescent-walled, multi-spored, 18.0–23.0 μm long and 17.0–21.5 μm wide. Apophyses distinct, hyaline or subhyaline, 2.0–6.5 μm high, gradually widened upwards but with a turning point at the top of sporangiophores, 3.0–5.0 μm wide at the base, and 5.5–12.0 μm wide at the top. Collars are usually absent and rarely present. Colomellae are mostly subglobose, occasionally globose, hyaline to greenish, 7.5–13.0 μm long, and 8.0–15.5 μm wide. Projections present or absent, single if present, hyaline or subhyaline, 4.0–6.0 μm long. Sporangiospores are cylindrical, subhyaline, smooth, 3.0–4.5 μm long and 2.0–2.5 μm wide. Chlamydospores are absent. Zygospores are not observed.

Maximum growth temperature: 28 °C.

Materials examined: China. Sichuan, Ngawa, 30°42′18″ N, 101°22′17″ E, altitude: 3727 m, from grassland soil sample, September 2021, Heng Zhao (holotype HMAS 351935, living ex-holotype culture CGMCC 3.16258), from rhizosphere soil of *Picea asperata* Mast., Heng Zhao (living culture XY09119). Tibet, Bome, from rhizosphere soil of *Pinus yunnanensis*, September 2021, Heng Zhao (living culture XY09633).

3.2.5. *Absidia yunnanensis* H. Zhao, Y.C. Dai and X.Y. Liu, sp. nov.

Fungal Names: FN570978. Figure 7.

Figure 7. Morphologies of *Absidia yunnanensis* ex-holotype CGMCC 3.16259. (a,b). Colonies on MEA ((a), obverse; (b), reverse); (c), sporangia; (d), swellings below sporangia; (e–g), colomellae; (h), rhizoids; (i), sporangiospores—scale bars: (c–g), 10 μm, (h), 20 μm, (i), 5 μm.
Etymology: yunnanensis (Lat.) refers to the species found in Yunnan Province, southwest China.

Holotype: HMAS 351936.

Description: Colonies on MEA at 27 °C for 7 days, growing moderately fast, attaining 65 mm in diameter, initially white, soon becoming light brown, and irregularly and concentrically zonate with ring at reverse. Hyphae are branched, hyaline at first, light brown when mature, asceptate when juvenile, septate with age, and 4.0–15.5 µm in diameter. Stolons are branched, hyaline, light brown or green, smooth. Rhizoids rootlike, often unbranched, and well-developed. Sporangiophores arise from rhizoids, 2–5 in whorls, erect or slightly bent, usually unbranched, rarely monopodially branched, hyaline, light brown or green, swellings usually present below sporangia, usually oval, rarely irregular, hyaline, often with a septum 12.0–16.5 µm below apophyses, 29.0–159.0 µm long, and 2.0–5.0 µm wide. Sporangia are pyriform to subglobose, hyaline when young, light green when old, smooth, deliquescent-walled, multi-spored, 16.0–27.5 µm long, and 16.5–27.0 µm wide. Apophyses are distinct, hyaline or subhyaline, 3.0–6.5 µm high, gradually widened upwards, 3.0–7.5 µm wide at the base, and 5.5–14.0 µm wide at the top. Collars are absent or present. Columellae are oval, depressed globose, or occasionally globose, hyaline, subhyaline or light green, 6.5–18.5 µm long, and 7.5–22.0 µm wide. Projections are present or absent, single if present, subhyaline, and 1.5–3.5 µm long. Sporangiospores are cylindrical, light green, smooth, 3.5–5.0 µm long, and 2.0–4.0 µm wide. Chlamydomospores are absent. Zygospores are not observed.

Maximum growth temperature: 32 °C.

Material examined: China. Yunnan, Yuxi, from forest soil sample, September 2021, Heng Zhao (holotype HMAS 351936, living ex-holotype culture CGMCC 3.16259). Chuxiong, 25°13’52” N, 101°18’24” E, altitude: 2060 m, from forest soil sample, September 2021, Heng Zhao (living culture XY09528).

3.3. Key to the Species of Absidia in China

Together with the five new species proposed in this study, a total of 51 species of Absidia have been described worldwide. Among these, 22 species are distributed in China. Consequently, we provide a key to the Chinese species of Absidia. Characteristics adopted in the key include maximum growth temperatures, hyphae, rhizoids, sporangiophores, sporangia, collars, columellae, projections, and sporangiospores.

1. Maximum growth temperature ≤ 28 °C
2. Maximum growth temperature > 28 °C
3. Sporangiospores subglobose to globose
4. Sporangiospores cylindrical
5. Maximum growth temperature 26 °C; sporangiospores subglobose to globose
6. Maximum growth temperature 28 °C; sporangiospores globose
7. Maximum growth temperature 24 °C
8. Maximum growth temperature 28 °C
9. Sporangiophores > 5 in whorls
10. Sporangiophores ≤ 5 in whorls
11. Sporangiospores two or more types
12. Sporangiospores one type
13. Sporangiospores sometimes irregular in shape
14. Sporangiospores never irregular in shape
15. Sporangia elliptical or elongate
16. Sporangia globose to pyriform
17. Hyphae without swellings; sporangiophores monopodial or verticillate
18. Hyphae with swellings; sporangiophores sometimes unbranched
19. Columellae with projections
20. Columellae without projections
11. Sporangiospores globose, 3.8–7.7 μm in diameter, or cylindrical to oval

 11. Sporangiospores globose, 2.5–3.5 μm in diameter, or cylindrical

 12. Sporangiospores globose

 12. Sporangiospores cylindrical, oval or ellipsoidal

 13. Collars absent

 13. Collars present

 14. Sporangiospores cylindrical

 14. Sporangiospores oval or ellipsoidal

 15. Sporangiospores oval to ellipsoidal; sporangiophores 2–6 in whorls with swellings

 15. Sporangiospores oval; sporangiophores 2–5 in whorls without swellings

 16. Sporangiospores neither in pairs nor in whorls

 16. Sporangiospores in pairs and in whorls

 17. Sporangiospores 7–11 in whorls

 17. Sporangiospores ≤ 6 in whorls

 18. Rhizoids aseptate

 18. Rhizoids septate

 19. Projections < 5 μm long, tapering at top

 19. Projections > 5 μm long, rounded at top

 20. Maximum growth temperature > 34 °C

 20. Maximum growth temperature ≤ 34 °C

 21. Sporangiospores always swollen

 21. Sporangiospores never swollen

3.4. Species Distribution and Ecological Habitat in China

A total of 22 species of Absidia were recorded in China (Table 3), including the five new species proposed in this study [14–16,27,49–51]. All species were found in soil, such as forest soil and rhizospheric soil, whereas other habitats, including leaf litter, dung, insect remains, and plant leaves, recorded one to several species. In terms of geographical distribution, Yunnan, Xinjiang, and Taiwan top the list with twelve, six, and five records, respectively.

Table 3. Absidia species distributions and ecological habitat in China.

Species	Location	Habitat	References
A. abundans	Yunnan	forest soil	This study
A. cylindrospora	Jilin, Taiwan, and Xinjiang	Soil and leaf litter	[27,50]
A. frigida	Xinjiang	soil	[16]
A. gemella	Xinjiang	soil	[16]
A. glauca	Beijing, Fujian, Hebei, Hubei, Inner Mongolia, Jilin, Liaoning, Shaanxi, Sichuan, Taiwan, Xinjiang, and Yunnan	soil, forest soil, air, rhizospheric soil of Populus and Pinus, and leaf litter	[27,50]
A. globospora	Hubei and Shaanxi	soil	[15]
A. heterospora	Guizhou, Sichuan, and Taiwan	soil	[27,50]
A. idahoensis	Yunnan	Soil and bee	[24]
A. lobata	Yunnan	rhizosphere soil of Pinus yunnanensis	This study
A. longissima	Yunnan	soil	[16]
A. medulla	Fujian, Jiangxi, and Yunnan	soil	[15]
A. ovalispora	Yunnan	soil	[14]
Table 3. Cont.

Species	Location	Habitat	References
A. radiata	Yunnan	forest soil	This study
A. repens	Xinjiang and Yunnan	soil, dung, paper, rhizosphere soil of *Ambrosia artemisiifolia*, and cave depositions	[27]
A. sichuanensis	Sichuan and Tibet	grassland soil, rhizosphere soil of *Picea asperata*, and rhizosphere soil of *Pinus yunnanensis*	This study
A. spinosa	Heilongjiang and Taiwan	soil, air, and leaf of *Comandra pallida*	[27,51]
A. turgida	Xinjiang	soil	[15]
A. yunnanensis	Yunnan	forest soil	This study
A. zonata	Beijing, Chongqing, Fujian, Shaanxi, and Yunnan	soil	[15]
A. panacisoli	Yunnan	rhizosphere soil of *Panax notoginseng*	[16]
A. pseudocylindrospora	Taiwan	soil	[27,51]
A. psychrophilia	Heilongjiang and Taiwan	soil, leaf litter, rhizosphere soil of *Pinus*, and gland of *Ambrosia* beetle	[27,51]

4. Discussion

In this study, five new species are proposed in the genus of *Absidia* being supported with molecular sequences and morphological and physiological features. Phylogenetically, *Absidia abundans* is closely related to *A. panacisoli* T. Yuan Zhang et al. based on the ITS and LSU rDNA sequences (Figure 2). However, *A. panacisoli* is distinguished from *A. abundans* by a higher maximum growth temperature (33 °C vs. 31 °C), shape of sporangia (spherical or subpyriform vs. oval to subglobose), sporangiospores (short cylindrical vs. cylindrical, oval or subglobose), and azigosporas (present vs. absent; [16]). Moreover, swellings below sporangia are always observed in *A. abundans*, while absent in *A. panacisoli* [16].

Absidia lobata is closely related to *A. glauca* and *A. globospora* T.K. Zong and X.Y. Liu (Figure 2), while distinguished by a lower maximum growth temperature (26 °C in *A. lobata*, 29 °C in *A. glauca*, 37 °C in *A. globospora*) [15,52]. Besides, sporangia are globose in *A. globospora*, while pyriform in *A. lobata* and *A. glauca* [15,52]. Moreover, zygospores and chlamydospores are produced in *A. glauca*, but not in *A. lobata* and *A. globospora* [15,52].

Absidia radiata is related to *A. yunnanensis* with full support (Figure 3). However, *A. yunnanensis* differs from *A. radiata* by colonies (light brown vs. dark brown), shape of sporangiospores (cylindrical vs. oval), and swellings below sporangia (present vs. absent).

Absidia sichuanensis is most closely related to *A. frigida* H. Zhao et al. and *A. psychrophilia* (Figure 4), but differs by a higher maximum growth temperature (28 °C in *A. sichuanensis*, 24 °C in *A. frigida*, and 25 °C in *A. psychrophilia*), sporangia (17.0–21.5 µm wide in *A. sichuanensis*, 12.5–32.0 µm wide in *A. frigida*, and 20.0–50.0 µm wide in *A. psychrophilia*), columnae (8.0–15.5 µm wide in *A. sichuanensis*, 15.5–18.0 µm wide in *A. frigida*, and 6.5–30.0 µm wide in *A. psychrophilia*), and number of whorls (1–5 in *A. sichuanensis*, 1–4 in *A. frigida*, and 1–8 in *A. psychrophilia*) [8,16]. In addition, collars are always absent in *A. sichuanensis* and *A. frigida* but present in *A. psychrophilia* [8,16]. Moreover, a morphological feature table including six species of *Absidia* without DNA sequences is listed for distinguishing between the five new species proposed in this study (Table 4).
Table 4. Morphological features of the five new *Absidia* species and other six related species without DNA evidence.

Species	Colonies	Sporangiophore	Sporangia	Collars	Columellae	Projections	Sporangiospores	Zygospores	Temperature	References
Absidia abundans	on MEA at 27 °C for 7 days, 65 mm in diameter	unbranched, or simple if branched, monopodial, or sympodial	oval to subglobose, 8.0–16.5 × 8.5–16.0 µm	absent or present	subglobose or oval, 4.5–10.0 × 3.5–8.0 µm	single if present	cylindrical, oval or subglobose, 2.5–3.5 × 2.0–3.5 µm	unknown	mesophilic	This study
A. clavata	on MEA rapid growing	2–8 in whorls	pyriform to globose, 10.5–33.0 µm in diameter	globose to subglobose, 9.0–22.5 µm length	present, single	globose to oval, 2.0–5.0 × 1.8–3.2 µm	unknown	–	[53]	
A. dubia	–	branched with a whors	–	–	–	–	–	–	–	[54]
A. egyptiaca	–	–	usually globose, 25.3 µm	–	11.5–20.75 µm	–	ovoid to elliptical, 4.6–4.85 µm	heterozygotes, globose, up to 65 µm	–	MycoBank
A. fassatiae	on MEA for 6 days, 55 mm in diameter	3–9 in whorls	globose, 15–31 µm in diameter	–	hemispherical to coniform, 9–22 µm in diameter	–	cylindrical, 4.7–7.3 × 1.9–3.1 µm	unknown	–	[55]
A. lobata	on MEA at 20 °C for 7 days, 70 mm in diameter	in pairs, unbranched	pyriform, 22.0–43.5 × 18.5–31.0 µm	absent	subglobose to depressed globose, 12.0–26.5 × 11.0–25.0 µm	always present, single	mostly globose, occasionally subglobose, 2.5–3.0 µm in diameter	unknown	mesophilic	This study
A. narayanae	on SMA at 37 °C for 2 days, 75 mm in diameter	in group, up to 8	globose to subglobose, 19.5–41.5 × 24.0–41.0 µm	absent or present	globose, hemispherical to mammiform, 14.5–34.0 × 12.0–34.0 µm	–	globose to ovate, 3.0–4.0 µm	unknown	Thermophilic or thermotolerant	[56]
A. radiata	on MEA at 27 °C for 7 days, 65 mm in diameter	1–5 in whorls, unbranched	pyriform or subglobose, 17.5–33.5 × 18.5–30.0 µm	absent	mostly oval, depressed globose, occasionally subglobose to globose, 13.5–22.5 × 14.0–24.0 µm	single if present	oval, 3.0–5.0 × 2.0–3.5 µm	unknown	mesophilic	This study
Table 4. Cont.

Species	Colonies	Sporangiosphere	Sporangia	Collars	Columellae	Projections	Sporangiospores	Zygospores	Temperature	References
A. reflexa	–	pyriform	present	conical	one or several projections	spherical, 6 p. in diameter	unknown	–	[52]	
A. sichuanensis	on MEA at 20 °C for 7 days, 75 mm in diameter	pyriform, 18.0–23.0 × 17.0–21.5 µm	absent or present	mostly subglobose, occasionally globose, 7.5–13.0 × 8.0–15.5 µm	single if present	cylindrical, 3.0–4.5 × 2.0–2.5 µm	unknown	mesophilic	This study	
A. yunnanensis	on MEA at 27 °C for 7 days, 65 mm in diameter	pyriform to subglobose, 16.0–27.5 × 16.5–27.0 µm	absent or present	oval, depressed globose, or occasionally globose, 6.5–18.5 × 7.5–22.0 µm	single if present	cylindrical, 3.5–5.0 × 2.0–4.0 µm	unknown	mesophilic	This study	

Notes: New species proposed in this study are in bold. The “–” represents the absence of features.
Species of *Absidia* synthesized important metabolites, such as α-galactosidase, laccase, chitosan, and fatty acids [57–60], and our results provide a basis for their applications. In addition to the five new species proposed in this paper, 51 species of *Absidia* have previously been described from all around the world. A total of 22 species are recorded in China (https://nmdc.cn/fungarium/fungi/chinadirectories, accessed on 1 March 2022), accounting for 43% of worldwide species of the genus *Absidia* [14–16,18,27,39–51]. This result suggests that *Absidia*, a genus of Mucoromycota, is diverse, needing in-depth investigations to discover and describe more potential new species, as in Ascomycota and Basidiomycota [13,61–64].

The species of *Absidia* are ubiquitous in soil, dung, and decaying plants, as well as insect remains [1,8,15,16,51]. Most species, including the five new species described herein, are reported from soil and, hence, soil is their main habitat. Some species may be associated with plants (Table 3). For example, *A. lobata* and *A. panacisoli* were described in rhizosphere soil with *Pinus yunnanensis* and *Panax notoginseng* (Burkill) F. H. Chen ex C. Chow and W. G. Huang, respectively [16].

In China, most species of *Absidia* are recorded in Yunnan, Xinjiang, and Taiwan (Table 3), located in tropical, subtropical, and temperate zones. At the same time, a number of *Absidia* are described from Brazil and Thailand, which have a similar climate [17,28–30,33,34]. However, species of *Absidia* are rarely adapted to high temperatures, so that strains in tropical areas are usually described from forest soil or mountains [16,17,28,29,33,34]. Consequently, species diversity of *Absidia* in tropical and subtropical forest soil needs to be further explored.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof8050471/s1, Supplementary File S1: The aligned dataset for 62 strains, representing 45 species of *Absidia* and two species of *Cunninghamella*; Supplementary Table S1: Top hits for the new species based on BLAST search for ITS sequences from type materials.

Author Contributions: H.Z., experiment, validation, and writing—original draft preparation; Y.N., methodology; T.-K.Z., Y.-J.W. and M.W., resources and visualization; Y.-C.D. and X.-Y.L., funding acquisition, projection administration, and writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP), Grant No. 2019QZKK0503, and the National Natural Science Foundation of China, Grant Nos. 31970009 and 32170012.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Sequences have been deposited in GenBank (Table 2).

Acknowledgments: Many scholars are thanked for their help with sampling and depositing. They are Hong-Min Zhou, Meng Zhou (Beijing Forestry University), Ze-Fen Yu, Min Qiao (Yunnan University), Ke Wang, Zhuo Du, and You-Zhi Wang (Institute of Microbiology, Chinese Academy of Sciences).

Conflicts of Interest: All authors declare no conflict of interest.

References
1. Van Tieghem, P. Troisième mémoire sur les Mucorinées. *Ann. Sci. Nat. Bot. Ser.* 1876, 4, 312–399.
2. Von Arx, J. On Mucoraceae s. str. and other families of the Mucorales. *Sydowia* 1984, 35, 10–26.
3. Voigt, K.; Cigelnik, E.; O’donnell, K. Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. *J. Clin. Microbiol.* 1999, 37, 3957–3964. [CrossRef]
4. Voigt, K.; Wöstemeyer, J. Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1α genes. *Gene* 2001, 270, 113–120. [CrossRef]
5. O’donnell, K.; Lutzoni, F.M.; Ward, T.J.; Benny, G.L. Evolutionary relationships among mucoralean fungi (Zygomycota): Evidence for family polyphyly on a large scale. *Mycológia* 2001, 93, 286–297. [CrossRef]
6. Cannon, P.F.; Kirk, P.M. *Fungal Families of the World*; Cabi: Wallingford, UK, 2007.
7. Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. *Dictionary of the Fungi*, 10th ed.; CAB International: Wallingford, UK, 2008.
34. Lima, D.X.; Cordeiro, T.R.; de Souza, C.A.; de Oliveira, R.J.; Lee, H.B.; Souza-Motta, C.M.; de Santiago, A.L.A. Morphological and molecular evidence for two new species of Abisidia from Neotropical soil. *Phytotaxa* 2020, 446, 61–71. [CrossRef]

35. Urquhart, A.S.; Idrurm, A. *Abisidia houyae*: A new species of *Abisidia* (Mucorales) isolated from Victoria, Australia. *Mycoscience* 2021, 62, 331–335. [CrossRef]

36. Wanasingshe, D.N.; Phukhamsakda, C.; Hyde, K.D.; Jeewon, R.; Lee, H.B.; Jones, E.G.; Tiplromma, S.; Tennakoon, D.S.; Dissanayake, A.J.; Jayasiri, S.C.; et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. *Fungal Divers.* 2018, 89, 1–236. [CrossRef]

37. Benny, G.L. Methods used by Dr. RK Benjamin, and other mycologists, to isolate zygomycetes. *Alise* 2008, 26, 37–61. [CrossRef]

38. Zheng, R.Y.; Chen, G.Q.; Hu, F.M. Monosporus varieties of *Syncephalastrum*. *Mycosistema* 1988, 1, 35–52.

39. Zheng, R.Y.; Liu, X.Y. Taxa of *Pilaira* (Mucorales, Zygomycota) from China. *Nova Hedwig.* 2009, 88, 255–267. [CrossRef]

40. Zheng, R.Y.; Chen, G.Q.; Huang, H.; Liu, X.Y. A monograph of *Rhizopus*. *Sydowia* 2007, 59, 273–372.

41. Zheng, R.Y.; Liu, X.Y.; Li, R.Y. More *Rhizomucor* causing human mucormycosis from China: *R. chlamydosporus* sp. nov. *Sydowia* 2009, 61, 135–147.

42. Nie, Y.; Cai, Y.; Gao, Y.; Yu, D.S.; Wang, Z.M.; Liu, X.Y.; Huang, B. Three new species of *Conidiobolus sensu stricto* from plant debris in eastern China. *Mycowords* 2020, 73, 133–149. [CrossRef] [PubMed]

43. Nie, Y.; Wang, Z.M.; Zhao, H.; Liu, X.Y.; Huang, B. Complete mitochondrial genome of *Neocandidobolus thomboideus* (Entomophthorales: Ancylistaceae). *Mitochondrial DNA Part B.* 2021, 1840–1841. [CrossRef] [PubMed]

44. Nie, Y.; Yu, D.S.; Wang, C.F.; Liu, X.Y.; Huang, B. A taxonomic revision of the genus *Conidiobolus* (Ancylistaceae, Entomophthorales): Four clades including three new genera. *Mycowords* 2020, 66, 55–81. [CrossRef] [PubMed]

45. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *Intervirology* 1990, 31, 1312–1313. [CrossRef] [PubMed]

46. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 2014, 30, 1312–1313. [CrossRef] [PubMed]

47. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, 61, 539–542. [CrossRef]

48. Swofford, D.L. PAUP*: Phylogenetic analysis using parsimony (* and Other Methods); Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002.

49. Ho, H.M.; Huang, S.C.; Chen, S.J. Notes on zygomycetes of Taiwan (IV): Three *Absidia* species (Mucoraceae). *Fungal Sci.* 2004, 19, 125–131.

50. Hsu, T.H.; Ho, H.M. Notes on *Absidia* species (Mucorales) of Taiwan VIII: Three new records of *Absidia* in Taiwan. *Fungal Sci.* 2010, 25, 5–11. [CrossRef]

51. Hsu, T.H.; Ho, H.M.; Chien, C.Y. Taxonomic Study of *Absidia sensu lato* in Taiwan. Asian Mycological Congress and 11th International Marine and Freshwater Mycology Symposium Abstract Book; Walter de Gruyter: Berlin, Germany, 2009; p. 42.

52. Ellis, J.J.; Hesseltine, C.W. The genus *Abisidia*: Globose-spored species. *Mycologia* 1965, 57, 222–235. [CrossRef]

53. Mehrotra, B.S.; Nand, K. An interesting new species of *Abisidia* (Mucorales: Ancylistaceae). *Ceska Mykol.* 2009, 66, 292–297. [CrossRef]

54. van der Mark, P.A.; Innis, M.A., Sninsky, J.J., White, T.J., Eds.; *Academic Press,* London, UK, 1990; p. 42.

55. Kitahata, S.; Ishikawa, H.; Miyata, T.; Tanaka, O. Production of rubusoside derivatives by transgalactosylation of various α-galactosidases. *Agric. Biol. Chem.* 1989, 53, 2929–2934. [CrossRef]

56. Kristanti, R.A.; Zubir, M.M.F.A.; Hadibarata, T. Biotransformation studies of cresol red by *Abisidia spina* M15. *J. Environ. Manag.* 2017, 172, 107–111. [CrossRef]

57. Zhao, H.; Lu, M.L.; Liu, Z.; Zhang, M.Z.; Wang, Y.N.; Ju, X.; Song, Z.; Ren, L.Y.; Jia, R.B.; Qiao, M.; et al. High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota. *BioEnerg. Res.* 2021, 14, 1196–1206. [CrossRef]

58. Wu, F.; Yuan, H.S.; Zhou, L.W.; Yuan, Y.; Cui, B.K.; Dai, Y.C. Global diversity and systematics of the important macrofungi in Chinese forests. *Mycosystema* 2021, 40, 770–805. [CrossRef]

59. Wu, F.; Zhou, L.W.; Vlasák, J.; Bai, Y.C. Diversity and systematics of *Hymenoehaeacea* with poroid hymenophore. *Fungal Divers.* 2022, 113, 1–192. [CrossRef]