Dynamic chirality in mass regions $A=105$ and $A=130$

M.S. Yavahchova1, D. Tonev1, G. de Angelis2, P. Petkov1,3, N. Goutev1, R.K. Bhowmik4, R. P. Singh4, S. Muralithar4, N. Madhavan5, R. Kumar6, M. Kumar Raju8, J. Kaur9, G. Mohanto10, A. Singh11, N. Kaur12, R. Garg5,7, A. Shukla13, R. Mateva1, E. Geleva1, B. Slavchev1, and S. Brant14,†

1 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
2 INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
3 Horia Hulubei NIPNE, R-76900, Bucharest-Magurele, Romania
4 Inter University Accelerator Centre, New Delhi-110067, India
5 Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
6 Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
7 Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
8 Nuclear Physics Department, Andhra University, Visakhapatnam 530003, India
9 Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005, India
10 Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
11 Indian Institute of Technology, Kharagpur 721302, India
12 Department of Physics, Panjab University, Chandigarh, India
13 Department of Physics, Banaras Hindu University, Varanasi, India
14 Department of Physics, Faculty of Science, Zagreb University, Zagreb, Croatia

Corresponding author’s e-mail address: m.yavahchova@gmail.com

Abstract. Chiral symmetry is dichotomic and its spontaneous breaking by the axial angular momentum vector leads to a pair of degenerate $\Delta I = 1$ rotational bands, called chiral doublet bands. In many cases the energy degeneracy of the chiral candidate bands has almost been observed but the transition probabilities of the analogue states have been found to be different. In the angular momentum region where chirality sets in the $B(E2)$ values of the electromagnetic transitions deexciting analogue states of the chiral twin bands should be almost equal. Correspondingly the $B(M1)$ values should exhibit staggering. Experimental data for two nuclei from different mass regions are compared with theoretical predictions. Excited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, $4n$)134Pr, while excited states in 160Rh were populated in the fusion-evaporation reaction 94Zr(11B, 3n)160Rh. Our lifetime measurements and level-scheme investigations show that there are similarities in both chiral candidates nuclei related to dynamic chirality.

1. Introduction

Chirality is recognized as an interesting phenomenon in different branches of science. Some of the most popular cases, which are easy to understand, are identified in chemistry. The chiral molecule is non-superimposable on its mirror image. The mirror images of a chiral molecule are called enantiomers and they could be right- and left-handed. The terminology emphasizes the analogy to the human hands, for which one hand can be superimposed onto the mirror image of the other. The term “chirality” originates from the Greek word for hand and is a synonym to “handedness”.

In the last decades chirality in nuclei is among the most studied phenomena. A spontaneous breaking of chiral symmetry can take place for configurations where the angular momenta of the valence proton, the valence neutron, and the core are mutually perpendicular [1]. Under such conditions, the angular momenta of the valence particles are aligned along the short and long axes of the triaxial core, while the angular momentum of the rotational core is aligned along the intermediate axis. The resulting aplanar...
total angular momentum can be arranged into a right- or a left-handed systems, which differs by intrinsic chirality [2]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity [1,2,3].

Due to the underlying symmetry, the pairs of chiral twin bands should exhibit systematic properties [4, 5, 6, 7]. The first property is the existence of a couple of yrast and side bands, which are nearly degenerate. In the angular momentum region where chirality sets in, the $B(E2)$ values of the electromagnetic transitions deexciting analogue states of the chiral twin bands should be almost equal. Correspondingly the $B(M1)$ values should exhibit odd-even staggering, being much bigger for transitions deexciting states with odd spins than for transitions deexciting states with even spin [6]. The $B(M1)$ values for $\Delta I=1$ transitions connecting the side to the yrast band should have odd-even staggering which is out of phase with respect to the $B(M1)$ staggering for transitions deexciting states in the yrast band and the side band. This is a fingerprint of the ideal static chirality as discussed in [6,8,9]. To investigate the presence of chirality in a certain nucleus, it is crucial to determine the $B(E2)$ and $B(M1)$ values.

In many cases, the energy degeneracy of the chiral candidate bands is nearly observed but the corresponding transition probabilities are different, as in the cases of 134Pr [7,10] and 102Rh [11]. We will study in the present paper the similarities in these two nuclei and investigate the existence of dynamic chirality in real nuclei.

2. Experiments

We have performed three experiments to determine reduced transition probabilities in 134Pr and 102Rh. The goal of the present work is to investigate similarities in the level-schemes and transition probabilities in the chiral twin bands in these two nuclei from the mass region $A=130$ and $A=105$.

3. The case of 134Pr

The two chiral candidate bands are displayed in Fig.1. Excited states in 134Pr were populated using the fusion-evaporation reaction 119Sn(19F, 4n) at a beam energy of 87 MeV for the recoil distance Doppler-shift (RDDS) measurement. The beam was delivered by the Vivitron accelerator at IReS in Strasbourg. The target consisted of 0.5 mg/cm2 119Sn foil enriched to 89.9%. It was evaporated on a 1.8 mg/cm2 181Ta foil facing the beam. A 6.0 mg/cm2 gold foil was used to stop the recoils that were leaving the target with a mean velocity of 0.98(2)% of the velocity of light, c. The γ rays de-exciting the recoiling 134Pr nuclei were detected using the EUROBALL IV [12] detector array composed of 26 clover and 15 cluster Ge detectors and an inner BGO (bismuth germanate) ball. The cluster and clover detectors of EUROBALL were grouped into 10 rings corresponding to approximately the same polar angle with respect to the beam axis.

In order to measure the lifetimes in the femtosecond region the Doppler-shift attenuation method (DSAM) was utilized. For the DSAM experiment, a beam energy of 83 MeV was used. The target consisted of 0.7 mg/cm2 119Sn evaporated on a 9.5 mg/cm2 181Ta backing used to stop the recoils.

Detailed description of the experiments performed to investigate the structure of 134Pr is presented in work [7].
Figure 1. Partial level scheme of 134Pr from Ref. [7].

4. **The case of 102Rh**

The partial level scheme of 102Rh is displayed in Fig. 2. Excited states in 102Rh were populated using the reaction 94Zr(11B, 3n)102Rh at a beam energy of 36 MeV. The beam was delivered by the 15-UD Pelletron accelerator at the Inter University Accelerator Center (IUAC) in New Delhi. The target consisted of 0.9 mg/cm2 94Zr, enriched to 96.5%, evaporated onto an 8 mg/cm2 gold backing. The recoils were leaving the target with the mean velocity v of about 0.9% of the velocity of light, c. The deexciting γ rays were registered by the Indian National Gamma Array (INGA), whose 15 clover detectors are accommodated in a 4π geometry [13]. The detectors of INGA were grouped into rings with approximately the same position with respect to the beam axis. For more information see [11].

New accelerator centers like the National cyclotron center in Sofia [14] will open new opportunities for nuclear structure investigations.
Figure 2. Partial level scheme of 102Rh from Ref. [11].

5. Data analysis

6. 134Pr

The two chiral candidate bands of 134Pr are displayed in Figure 1 and in the angular momentum region where chirality sets in, they are almost degenerate. In addition, we have performed lifetime measurements to compare the transition probabilities. The lifetime determination we have used the differential decay curve method (DDCM), proposed in [15,16], using the approach described in [17]. According to this method, at each target-to-stopper distance x, the lifetime $\tau(x)$ of the level of interest is determined from quantities obtained directly from the measured data. For the DSAM measurement new advanced methods have been used [18,19]. Fourteen lifetimes of excited nuclear states were measured in both bands, 13 of them for the first time.

In addition to the lifetimes, branching ratios and the electric or magnetic character of some transitions was also investigated. Using the clover detectors of the EUROBALL spectrometer linear polarization measurements were performed [7].

7. 102Rh

The Doppler-shift attenuation method was utilized to determine lifetimes of excited states in 102Rh. The analysis was carried out within the framework of the differential decay curve method, according to the procedure outlined in [18,19]. In order to investigate the level scheme and electromagnetic properties of the transitions of interest in 102Rh we performed four types of data analysis. The ordering of the transitions in the level scheme was determined according to γ – ray relative intensities, γ-γ coincidence relationships, and γ-ray energy sums. The electric or magnetic character and multipolarity of the transitions were deduced by linear polarization and angular correlations measurements [11]. For the first time this four types of analysis were used in one experiment with the INGA spectrometer. Thus the
level-scheme was extended by a new $\Delta I=1$ band with negative parity and new eight lifetimes were determined for the first time, six in the yrast and two in the side band [11].

8. Discussion

Dynamic chirality in nuclear physics is introduced in the work [7]. The term dynamical chirality, refers to the possibility that the angular momenta of the proton, neutron, and core in the odd-odd nucleus, find themselves in the favorable geometry, as if they would in the equivalent triaxially deformed rotor. The IBFFM calculations in [7] show that such a possibility is present, but it is far from being dominant. The condition for the appearance of twin bands with wave functions realistic enough to reproduce the electromagnetic decay of the bands is that the core is a γ-unstable rotor whose effective γ is in the range of triaxial values.

In the article [20], for shortness, the structure in which a pair of twin bands is close in excitation energy, but the electromagnetic decay properties do not show the chiral pattern, is denoted as case A. The structure where the pair of twin bands is close in excitation energy and the electromagnetic decay properties display the chiral pattern, is denoted as case B. We will use the same types of chiral description in the present work. Odd-odd nuclei in the $A \sim 130$ mass region can be classified as case A or case B nuclei. In all these nuclei the cores are γ-soft, their odd-proton odd-mass neighbors have also a similar structure and their odd-neutron odd-mass neighbors have a similar structure, too. Therefore, there is a priori no evident reason why should they be different in structure, some of them being chiral (case B) and some being not chiral (case A). Either the structure of all these nuclei is not chiral, or there is a mechanism that dynamically induces chirality, in such a way that in case B it is far more pronounced than in case A. For the first time we will investigate the possibility to have a nucleus from mass region $A\sim105$ with the same characteristics like 134Pr. The level-schemes of both nuclei as well as their electromagnetic properties will be compared with the theoretical expectations.
Figure 3. In the upper panels the excitation energies of levels in the yrast and side band of 134Pr (left) and 102Rh (right) are presented. In the second row of panels sister bands calculated in the IBFFM for case A (left) and case B (right) are shown.

In Figure 3 are presented the excitation energies of levels of the twin chiral bands in 134Pr and 102Rh as well as the predictions obtained from IBFFM for case A and case B [20]. The level energies for the yrast and side bands are becoming closer with increasing spin and cross at high spins, while in case B they are equidistant from the spin region where chirality sets up. In all cases, experiment and theory, the level energies of the side band are higher than these of the yrast band for low and middle spin regions. For the nucleus of 134Pr the behavior of the level energies is following case A. For 102Rh excitation energies are similar to both cases A and B. Due to the limited statistics we have identified only states up to 13 for the side band of 102Rh. Obviously an extension to higher spins for the second band will answer the question whether the twin bands cross in excitation energies of the states. We need to note that two bands could be called degenerate at least when the energy difference for analogue states is no more than 500 keV.

The predictions for case A are close to the two real nuclei in mass regions A~105 and A~130. From the point of view of the comparison of the level-schemes we could note that the two bands are almost degenerate and similarities for the nucleus of 102Rh with cases A and B are good for the low spins. For the nucleus of 134Pr we observe the behavior like in case A. Obviously we need more experimental data for band 2 in 102Rh.

In order to make conclusions about the existence of chirality in nuclei it is crucial to perform lifetime measurements.

Figure 4. In the upper panels experimentally determined B(E2) values for 134Pr (left) and 102Rh (right) are shown. In the second row of panels B(E2) values for twin bands calculated in the IBFFM for case A (left) and case B (right) are shown.
In Figure 4 are compared B(E2) values obtained for 102Rh and 134Pr with the predictions from the work [20]. For the nucleus of 134Pr determined B(E2) values in the chiral candidate bands are different and in addition they have different behavior. This fact clearly shows that static chirality is not present in this nucleus.

For the nucleus of 102Rh we have determined only B(E2) values in Band 1. These B(E2) values show a similar behavior like in the yrast band of 134Pr. Concerning Band 2 of 134Pr the B(E2) values show similarities like in case A.

In order to conclude about the presence of chirality we need to check for existence of staggering of B(M1) values determined in both nuclei. This test is may be the strongest one for existence of static chirality. Figure 5 shows experimentally determined B(M1) values for 134Pr and 102Rh. Chiral interpretation in IBFFM also like in the case of two quasiparticle plus triaxial rotor model (TQPTR) predicts the existence of staggering for B(M1). There is a pronounce similarity for B(M1) in Band 1 and Band 2 of 134Pr, but the staggering is not seen. The same is the case with the nucleus of 102Rh, where B(M1) staggering - the fingerprint for static chirality, is not present. The B(M1) staggering predicted for static chirality is not present in both nuclei, which means that we observe dynamic chirality only.

Even-even nuclei in the A~130 mass region are well described by the O(6) symmetry in IBM, that corresponds to γ-unstable rotor [21], and the accepted interpretation is that they are γ-soft. The potential energy surface is flat in the γ direction and rather broad in β direction for γ-unstable nuclei in the O(6) limit or close to it. The wave functions are not (β, γ) dependent, but an effective γ_{eff} can be calculated [22] and for O(6) is 30°. γ_{eff} is not the static geometrical deformation and the fluctuations of γ are very large [23]. In this context the term dynamical chirality refers to the possibility that the angular momenta of the proton, neutron, and core in the odd-odd nucleus, find themselves in the favorable geometry [7]. This means that the core is a γ-unstable rotor whose effective γ is in range of triaxial values.

![Figure 5](image)

Figure 5. In the upper panels experimentally determined B(M1) values for 134Pr (left) and 102Rh (right) are shown. In the second row of panels B(M1) values for twin bands calculated in the IBFFM for case A (left) and case B (right) are shown.

For the nucleus of 134Pr the absence of the staggering in the IBFFM is due to fluctuations of the shape with contributions from near axial shapes that wash out the staggering at high spin. Therefore, the
experimental difference between the $B(E2)$ values in Bands 1 and 2 and the absence of the pronounced staggering of the $B(M1)$ values, indicate that the coupling due to shape fluctuations plays a central role in the structure of the twin bands in 134Pr [7].

The similar absence of an appreciable staggering of the data in Band 1 of 102Rh indicates that the expectations for the observation of a static chirality in 102Rh are not realized [11]. Also, the TQPTR calculations reveal that the optimum value of the triaxiality parameter $\gamma=20^\circ$ differs from the value of 30$^\circ$ characterizing the static chiral case. The differences in the core contributions to the yrast and yrare negative-parity bands mentioned above point that dynamic effects as coupling of the quasiparticles to fluctuations of the shape of the core may lead to differences in the properties of these two bands.

The same mechanisms are supposed to determine the structures of the twin bands in 134Pr and 102Rh, revealing dynamic character of chirality.

9. Conclusions

All models applied to describe chirality in nuclei, like the tilted axis cranking model [2], two quasiparticle-triaxial rotor model [10], core-particle-hole coupling model [1,3] suppose a rigid triaxial core. On the contrary all odd-odd nuclei in which twin bands have been observed are in regions of masses where even-even nuclei are γ-soft, effectively triaxial but not rigid. Their potential energy surface is rather flat in the γ-direction and the coupling with other core structures, not only the ground state band, are significant. It is evident that odd-odd nuclei in these mass regions could not reach the full requirements needed for the existence of chirality, but they can approach them. Our theoretical and experimental investigations clearly show that nuclei of 134Pr and 102Rh support the presence of dynamic chirality. In the cases of nuclei 126Cs [24], 135Nd [25] and 164Tl [26] next to the existence of degenerate bands, B(M1) and B(E2) are similar and could be that conditions for static chirality are fulfilled. More theoretical and experimental efforts are needed to investigate chirality in nuclear physics [27].

10. Acknowledgments

This research has been supported by Bulgarian Science Fund under Contract No. DN 08/6, 13.12.2016.

References

[1] Frauendorf S, Meng Jie 1997 Nucl. Phys. A 617 131
[2] Dimitrov V I, Frauendorf S, and Dönau F, 2000 Phys. Rev. Lett. 84 5732
[3] Starosta K, Koike T, Chiara C J, Fossan D B, and LaFosse D R, 2001 Nucl. Phys. A 682 375c
[4] Starosta K, et al., 2002 Phys. Rev. C 65 044328
[5] Koike T, et al., 2003 Phys. Rev. C 67 044319
[6] Koike T, Starosta K, and Hamamoto I 2004 Phys. Rev. Lett. 93 172502
[7] Tonev D, et al., 2007 Phys. Rev. C 76 044313
[8] Wang S Y, Zhang S Q, Qi B, and Meng J 2007 Chin. Phys. Lett. 24 664
[9] Meng J and Zhang S Q 2010 J. Phys. G 37 064025
[10] Tonev D, et al. 2006 Phys. Rev. Lett. 96 052501
[11] Tonev D et al. 2014 Phys. Rev. Lett. 112 052501
[12] Simpson J 1997 Z. Phys. A 358 139
[13] Muralithar S, et al. 2010 Nucl. Instrum. Methods Phys. Res., Sect A 622 281
[14] Tonev D, Goutev N, Georgiev L S 2016 J. Phys. Conf. Proc. 724 012049
[15] Dewald A, Harissopoulos S, and von Brentano P 1989 Z. Phys. A 334 163
[16] Böhmm G, Dewald A, Petkov P, and von Brentano P 1993 Nucl. Instrum. Methods Phys. Res. A 329 248
[17] Petkov P, Tonev D, Gableske J, Dewald A, Klemme T, von Brentano P 1999 Nucl. Instrum. Methods Phys. Res. A 431 208
[18] Petkov P, Tonev D, Gableske J, Dewald A, von Brentano P 1999 Nucl. Instrum. Methods Phys. Res. A 437 274
[19] Petkov P, Tonev D, Dewald A, von Brentano P 2002 Nucl. Instrum. Methods Phys. Res. A 488 555
[20] Brant S, Tonev D, de Angelis G, Ventura A 2008 Phys. Rev. C 78 034301
[21] Wilets L and Jean M 1956 Phys. Rev. 102 788
[22] Vogel O, et al. 1996 Phys. Rev. C 53 1660
[23] Jolos R V, et al. 1997 Nucl. Phys. A 618 126
[24] Grodner E, et al. 2006 Phys. Rev. Lett. 97 172501
[25] Mukhopadhyay S, et al. 2007 Phys. Rev. Lett. 99 172501
[26] Masiteng P L, et al. 2014 Eur. Phys. J A 50 119
[27] Starosta K and Koike T 2017 Phys. Scr. 92 093002