Towards Optimal Running Times for Optimal Transport

Jose Blanchet∗
Stanford University
jose.blanchet@stanford.edu

Arun Jambulapati
Stanford University
jmblpati@stanford.edu

Carson Kent
Stanford University
crkent@stanford.edu

Aaron Sidford
Stanford University
sidford@stanford.edu

Abstract

In this work, we provide faster algorithms for approximating the optimal transport distance, e.g. earth mover’s distance, between two discrete probability distributions $\mu, \nu \in \Delta^n$. Given a cost function $C : [n] \times [n] \rightarrow \mathbb{R}_{\geq 0}$ where $C(i,j) \leq 1$ quantifies the penalty of transporting a unit of mass from i to j, we show how to compute a coupling X between r and c in time $\tilde{O}(n^2/\epsilon)$ whose expected transportation cost is within an additive ϵ of optimal. This improves upon the previously best known running time for this problem of $\tilde{O}(\min\{n^{9/4}/\epsilon, n^2/\epsilon^2\})$.

We achieve our results by providing reductions from optimal transport to canonical optimization problems for which recent algorithmic efforts have provided nearly-linear time algorithms. Leveraging nearly linear time algorithms for solving packing linear programs and for solving the matrix balancing problem, we obtain two separate proofs of our stated running time. Further, one of our algorithms is easily parallelized and can be implemented with depth $\tilde{O}(1/\epsilon)$.

Moreover, we show that further algorithmic improvements to our result would be surprising in the sense that any improvement would yield an $o(n^{2.5})$ algorithm for maximum cardinality bipartite matching, for which currently the only known algorithms for achieving such a result are based on fast-matrix multiplication.

∗J. Blanchet gratefully acknowledges support from the following NSF grants 1915967, 1820942, 1838576.
1 Introduction

In this paper, we consider the discrete optimal transportation problem. That is, given two vectors r and c in the n-dimensional probability simplex Δ^n, we seek to compute a coupling $X \in \Delta^{n \times n}$ between r and c such that, for a given, non-negative cost function $C : [n] \times [n] \to \mathbb{R}_{\geq 0}$ the expected cost with respect to X is minimized. Due to [Kan58], this problem has a relatively simple expression as a linear program, namely

$$\min_{X \in \mathcal{U}(r,c)} \langle C, X \rangle \text{ where } \mathcal{U}(r,c) := \left\{ X \in \mathbb{R}^{n \times n}_{\geq 0} : X1 = r, X^T1 = c \right\},$$

(1)

$\langle \cdot, \cdot \rangle$ is the element-wise inner product, X denotes our coupling/transformation plan between r and c, and $C \in \mathbb{R}^{n \times n}_{\geq 0}$ is our given cost function expressed as a matrix. In this paper, we focus on computing additive ϵ-optimal solutions to (1), i.e. $\tilde{X} \in \mathcal{U}(r,c)$ such that

$$\langle C, \tilde{X} \rangle \leq \min_{X \in \mathcal{U}(r,c)} \langle C, X \rangle + \epsilon$$

(2)

The computation of such solutions, both for discrete distributions r, c and for distributions over more general metric spaces, is playing an increasing role in varied tasks throughout machine learning and statistics. Recent applications in unsupervised learning [ACB17], computer vision [SdGP+15, BvdPPH11], distributionally-robust optimization [MEK18, BKZM17, BK17], and statistics [SR, PZ16] all leverage the ability to compute solutions of (1) or its continuous analogues. Moreover, these applications have created a need for fast (nearly-linear1) time algorithms for (1) in settings where the cost function C is quite general— for instance, in the case where C does not satisfy metric assumptions.

As a consequence, recent efforts in the fields of optimization and machine learning [Cut13, AWR17, GCPB16, CK18, DGK18] have focused on establishing nearly-linear time guarantees through the development of a sequence of new iterative algorithms for (1). This has led to a sequence of increasingly sharper complexity bounds for (1).

In this paper we shed light on the complexity of (1) by giving a pair of simple reductions from optimal transport to canonical problems in theoretical computer science, namely packing linear programming and matrix scaling. Through these reductions we provide new algorithms for (1) with improved asymptotic running times to previous methods2. Moreover, we show that these running times cannot be further improved without a major breakthrough in algorithmic graph theory.

1.1 Contributions and Overview

The contribution of this paper is two-fold. First, we exhibit two separate algorithms for computing an ϵ-approximate solution to (1) in $\tilde{O}(n^2 \|C\|_{\max} / \epsilon)$ time. Throughout, we use \tilde{O} to hide logarithms in n.

1We consider nearly-linear time to be any complexity which is of input size $O(n^2)$ after neglecting factors in ϵ and logarithms in n.

2During the final revision process for this work, a paper [Qua18] offering partially overlapping results was published to ArXiv. This concurrent work constitutes an independent research effort. The result which is shared by [Qua18] and this work is the serial, randomized running time for (1) that is obtained in Sections 4 and 5 of this paper and Theorem 2 of [Qua18]. Indeed, a reduction to packing LPs which is similar to the one given in Section 4 appears in [Qua18]. [Qua18] also appeals to further results concerning packing LP solvers and an additional reduction from (1) to mixed packing and covering LPs in order to provide deterministic and parallel running times for (1) which do not appear in this paper— see Theorem 2 in [Qua18]. To preserve the independence of these two works following their appearance on ArXiv, only edits for clarity were made to the original version of this manuscript during preparation— with one notable exception. The parallel complexity for (1) which appears in Section 5 was added to highlight the difference between the reduction of Section 5 and the reductions obtained in [Qua18]— indeed, in the case of parallel, randomized running time, the result of Section 5 improves upon [Qua18] by a factor of $1/\epsilon$.

2
ithmic factors in n and ϵ and use $\|C\|_{\text{max}}$ to denote the largest entry of C. This improves upon the following previous best known complexity for this problem\footnote{\cite{DGK18}}

$$\tilde{O}\left(\min\left\{ \frac{n^{9/4}}{\epsilon} \sqrt{\|C\|_{\text{max}}}, \frac{n^2}{\epsilon^2} \|C\|_{\text{max}} \right\}\right) \text{ \cite{DGK18}}$$

Additionally, one of our algorithms achieves $\tilde{O}(\|C\|_{\text{max}}/\epsilon)$ parallel depth-- an improvement on the previously best known parallel depth by a factor of $1/\epsilon$.

These algorithms are derived via black-box reductions to two canonical problems in theoretical computer science which can be solved using powerful iterative methods. The first of our reductions is to a standard packing linear program and the second of our reductions is to the so-called matrix scaling problem.

Definition 1 (Packing Linear Program). A packing linear program is a linear program of the form

$$V_\ast = \max_{x \in \mathbb{R}_{\geq 0}^n} \left\{ d^T x : Ax \leq b \right\}$$

(3)

for $b \in \mathbb{R}_{\geq 0}^m$, $d \in \mathbb{R}_{\geq 0}^l$, and $A \in \mathbb{R}_{\geq 0}^{m \times l}$. We say that $x_\epsilon \in \mathbb{R}_{\geq 0}^n$ is an ϵ-approximate solution for (3) if $Ax_\epsilon \leq b$ and $d^T x_\epsilon \geq (1-\epsilon)V_\ast$.

Definition 2 (Matrix scaling). Let A be a non-negative matrix and $r, c \in \mathbb{R}_{\geq 0}^n$ be vectors such that $\sum_{i=1}^n r_i = \sum_{i=1}^n c_i$ and $\|A\|_{\text{max}}, \|r\|_{\text{max}}, \|c\|_{\text{max}} \leq 1$. Two non-negative diagonal matrices X, Y are said to (r, c)-scale A if the matrix $B = XAY$ satisfies $B1 = r$ and $B^T1 = c$.

If, instead, $\|B1 - r\|_1 + \|B^T1 - c\|_1 \leq \epsilon$ we say that X, Y ϵ-approximately (r, c)-scale A. The matrix scaling problem is to compute non-negative diagonal matrices X, Y that ϵ-approximately (r, c)-scale A, provided such matrices exist.

The techniques used to achieve these reductions are relatively standard; the primary benefit of our result, beyond the gain of a $O(1/\epsilon)$ in complexity, is that it clarifies the optimal transport problem and exposes its relationship to two recent algorithmic breakthroughs in theoretical computer science.

The second contribution of this paper is the demonstration that the above running time of $\tilde{O}(n^2/\epsilon)$ is unimprovable by the approach of this paper or others \cite{GCPB16, AWR17, DGK18, AS14, ANOY14, SA12} for solving (1), barring a major breakthrough on a long-standing open problem in combinatorial optimization. More formally, we show that further running time improvements beyond those achieved in this paper would be surprising as they would yield running times for maximum cardinality bipartite matching, which currently are only known to be achievable using fast matrix multiplication. Given the significant recent attention optimal transport has received in machine learning and statistics, this hardness result contributes significantly to clarifying why further algorithmic improvements for (1) are difficult and additional problem assumptions may be need to obtain better performance.

As a road-map for the reader, after covering previous work in Section 2 and preliminaries in Section 3, in Section 4 we give a reduction from (1) to a packing linear program (LP) and then show how a recently-developed fast solver for packing LPs \cite{AZO18} can be applied to yield our desired sequential run-time. In Section 5 we give a reduction from (1) to matrix scaling and then provide our second algorithm, which obtains both our stated run-time and stated parallel depth. The surprising fact that we can recover the same overall complexity via these very different approaches then motivates Section 6 where we prove our hardness reduction to maximum cardinality bipartite matching.
Table 1: Running times for computing \(\varepsilon \)-optimal solutions of (1): In the table, \(\tilde{O} \) hides polylogarithmic factors in \(\varepsilon, n \). All results except for the interior point method also explicitly hide linear dependence on the norm of the cost matrix \(\|C\|_\infty \).

Algorithm	Running Time	Paper
Interior Point	\(\tilde{O}\left(n^{2.5}\right) \)	[LS14]
Sinkhorn/RAS	\(\tilde{O}\left(n^2 \varepsilon\right) \)	[DGK18]
APDAGD	\(\tilde{O}\left(\min\left\{n^{9/4}, \frac{n^2 \varepsilon^2}{\varepsilon}\right\}\right) \)	[DGK18]
Box-constrained Newton and Packing LP reduction	\(\tilde{O}\left(\frac{n^2}{\varepsilon}\right) \)	This paper

2 Previous Work

In this paper, we focus on the case of obtaining nearly-linear running time results for (1). While we could consider solving (1) as a general linear program, any approaches involving the fastest known methods (e.g. [LS14] via Laplacian system solvers or [LS15] for generic solvers) would be insufficient for our stated goal since they currently have running time at least \(\Omega(n^{2.5}) \) for (1).

Outside of such generic solvers and within the scope of previous algorithms which achieve nearly-linear running time (or better) for (1), contemporary literature comprises two veins. The first vein, encompasses those algorithms which impose further conditions on the costs of (1) in order to create a fast computational method for a more restricted subclass of applications. Examples in this line of work are [AS14, ANOY14, SA12], where nearly-linear run-times are obtained, but at the expense of assuming that the cost matrix \(C \) is induced by a metric– or, in the latter case, by a low dimensional \(l_p \) metric. For the purposes of this paper, we will only make positivity/boundedness assumptions on our costs (as metric or related assumptions on \(C \) can often be violated in practice). Thus, this line of inquiry is less relevant for our efforts.

The second vein of results, however, is more directly related to the algorithm that we will present in Section 5 and stems from the use of entropy-regularization to solve (1). Beginning with the work of [Cut13], this line of research [GCPB16, AWR17, CK18, DGK18] essentially centers around applying a particular iterative technique, such as alternating minimization (Sinkhorn/RAS) or an accelerated first order method (APDAGD), to solve the dual of an entropy-regularized version of (1). As shown in Table 1, this leads to different approaches for solving (1) in nearly-linear time. It is worth noting that the procedure which appears in Section 5 is tangentially alluded to in [DGK18], but no derivation or concrete running times were given.

3 Preliminaries

In this section, we define notation and several, canonical assumptions concerning (1) that will be relevant for the subsequent reductions.

First, we denote the set of non-negative real numbers by \(\mathbb{R}_{\geq 0} \), the set of integers \(\{1, \ldots, n\} \) by \([n]\), and the \(n \) dimensional probability simplex by \(\Delta^n = \{x \in \mathbb{R}_{\geq 0}^n : \sum_{i \in [n]} x_i = 1\} \). Correspondingly, let \(\Delta^{n \times n} = \{x \in \mathbb{R}_{\geq 0}^{n \times n} : 1^T X 1 = 1\} \) where \(1 \) is the all ones vector. Given a set \(S \subseteq [n] \) and \(r \in \Delta^n \) define \(r|_S \) to be the conditional distribution induced by \(r \) given \(S \). Denote the product distribution of \(r, c \in \Delta^n \) by \(r \otimes c \in \Delta^{n \times n} \).

For \(A \in \mathbb{R}^{n \times n} \), we define \(\|A\|_{\max} \) to be maximum modulus of any element of \(A \). Further, denote
the entry-wise exponential of A by e^A and for $A \in \mathbb{R}^{n \times n}_{\geq 0}$ define
\[
H(A) = -\sum_{i,j=1}^n A_{i,j} (\log A_{i,j} - 1)
\]
to be the (entry-wise) matrix entropy. For two matrices $A, B \in \mathbb{R}^{n \times n}$ we denote the Frobenius inner product by $\langle A, B \rangle = \sum_{i,j \in [n]} A_{i,j} B_{i,j}$.

We will refer to the linear program (1) as the optimal transport problem, Kantorovich problem, or primal. As is standard, the cost matrix $C \in \mathbb{R}^{n \times n}_{\geq 0}$ has also been assumed to be non-negative and the marginals have been taken to be strictly positive $(r, c > 0)$. Note, while we have implicitly assumed that the marginals $r, c \in \Delta^n$ have the same positive, this has been done for the sake of exposition and the complexities will suitably generalize for r and c of differing dimensions– i.e. our running times will become $\tilde{O}(mn/c)$ for r of dimension m and c of dimension n.

4 Solving by Packing LP Algorithms

In this section, we give a procedure for computing an ϵ-optimal solution to the optimal transport problem in $\tilde{O}(n^2 \|C\|_{\max}/\epsilon)$ time. To obtain our reduction, consider solving the linear program:

\[
\max_{X \in \mathbb{K}(r,c)} \langle B, X \rangle \tag{4}
\]

\[
\mathbb{K}(r,c) := \{ X \in \mathbb{R}^{n \times n}_+ : X1 \leq r, XT 1 \leq c \} \\
B := \|C\|_{\max} 11^T - C
\]

In other words, we turn the minimization problem (1) into a maximization problem by reversing the sign of C while adding a constant of $\|C\|_{\max}$ to the constraint matrix to keep the new cost matrix, B, non-negative. This allows us to just solve under upper bound constraints, rather than both upper and lower bound constraints, on the row and column sums of X. Indeed, the new objective encourages using X to make the row and column constraints tight while still minimizing the original cost. Furthermore, since B is an entry-wise, uniform perturbation of C by $\|C\|_{\max}$, (4) will maintain the same set of optimal solutions as (1) while only perturbing the objective function by an additive $\|C\|_{\max}$ term– since $\langle X, 11^T \rangle = 1^T X 1 = 1$.

Formally, we first show how to round solutions of (4) to solutions of (1).

Lemma 1. Suppose $X \in \mathbb{R}^{n \times n}_{\geq 0}$ satisfies $X 1 \leq r$ and $XT 1 \leq c$. Then, there exists a matrix $D \in \mathbb{R}^{n \times n}_{\geq 0}$ (which can be trivially computed in $O(n^2)$ time) such that $Y = X + D$ satisfies $Y 1 = r$ and $Y^T 1 = c$.

Proof. Define $e_r := r - X 1$ and $e_c := c - X^T 1$ and observe $e_r, e_c \geq 0$ coordinate-wise and that
\[
\|e_r\|_1 = 1^T (r - X 1) = 1 - 1^T X 1 = (c^T - 1^T X) 1 = \|e_c\|_1
\]

Hence, set $D := \frac{1}{\|e_c\|_1} e_r e_c^T$ where, by convention, $D = 0$ if $\|e_c\|_1 = 0$.

It is easy to verify that if $\|e_c\|_1 = 0$, then $Y = X + D$ has the prescribed marginals (row and column sums). Thus, assume that $\|e_c\|_1 \neq 0$. Then,
\[
Y 1 = \left(X + \frac{1}{\|e_c\|_1} e_r e_c^T \right) 1 = X 1 + e_r = r
\]

and, similarly, $Y^T 1 = c$. \qed
Using this lemma, the main result quickly follows:

Theorem 2. Suppose there exists an oracle O which computes an ϵ'-approximate solution (see Definition 1) to the packing LP (4) in time $O(\mathcal{T}(m, l, 1/\epsilon'))$.

Then, there is an algorithm which computes an ϵ-approximate solution to the optimal transport problem (1) in time

$$O\left(n^2 + \mathcal{T}\left(n, n, \frac{\|C\|_{\max}}{\epsilon}\right)\right)$$

Proof. Let $X_{\epsilon'}$ be the ϵ'-approximate solution obtained by running O on (4) with approximation parameter $\epsilon' = \epsilon/\|C\|_{\max}$. By Lemma 1, we can compute a $D \in \mathbb{R}^{n \times n}_{\geq 0}$ in $O(n^2)$ time such that $Y = X_{\epsilon'} + D$ is feasible for (1). Hence, denoting the optimal solution to the original transportation problem (1) by X_*, we have

$$\langle B, Y \rangle \geq \langle B, X_{\epsilon'} \rangle \geq (1 - \epsilon') \langle B, X_* \rangle$$

where we have used the definition of ϵ'-optimality for $X_{\epsilon'}$ and the fact that $Y \geq X_{\epsilon'}$ entry-wise. Expanding this relationship in B and using the fact that $1^T Y 1 = 1$ and $1^T X_* 1 = 1$, we obtain

$$\|C\|_{\max} - \langle C, Y \rangle \geq \|C\|_{\max} - \langle C, X_* \rangle - \epsilon' \langle B, X_* \rangle$$

Upon rearrangement this yields

$$\langle C, Y \rangle \leq \langle C, X_* \rangle + \epsilon' \langle B, X_* \rangle$$

As $\|B\|_{\max} \leq \|C\|_{\max}$ and $\epsilon' = \epsilon/\|C\|_{\max}$, Hölder’s inequality implies that

$$\langle C, Y \rangle \leq \langle C, X_* \rangle + \epsilon$$

Hence, Y is an ϵ-approximate solution of the optimal transportation problem (1). Moreover, it quickly follows that the total time of this procedure is $O\left(n^2 + \mathcal{T}(n, n, \|C\|_{\max}/\epsilon)\right)$.

Using this reduction, we can now obtain our desired run-time for (1), simply by solving (4) using the current best packing algorithm.

Theorem 3 (See [AZO18]). Given a packing linear program (3), there exists an algorithm that computes an ϵ-approximate solution to (3) in time $\tilde{O}(m + l + \text{nnz}(A)/\epsilon)$ with high probability.

With Theorem 3 providing the oracle in Theorem 2, we immediately obtain the following corollary

Corollary 1. There exists an algorithm which computes an ϵ-approximate solution to the optimal transport problem (1) with high probability in time $\tilde{O}\left(n^2 \|C\|_{\max}/\epsilon\right)$.

5 Solving by Matrix Scaling and Box-constrained Newton

In this section, we give a different procedure for computing an ϵ-optimal solution to the optimal transport problem in time $\tilde{O}\left(n^2 \|C\|_{\infty}/\epsilon\right)$. The advantage of this new approach is that it not only obtains the currently-best known sequential run-time, but it also achieves the fastest known parallel complexity for solving (1) while preserving total work.
As a first step, we will note the following reduction to the matrix scaling problem which appears in prior work [Cut13, AWR17, DGK18]. The optimal transport problem naturally yields an entropy-regularized version
\[
\min_{X \in \mathcal{U}(r,c)} \langle C, X \rangle - \eta H(X)
\]
whose optimal value of (5) is called the Sinkhorn cost [Cut13]. The namesake refers to the fact that the dual of (5) is equivalent to the problem
\[
\min_{x, y \in \mathbb{R}^n} \psi(x, y) \overset{\text{def}}{=} 1^T B_{C/\eta}(x, y) \mathbf{1} - r^T x - c^T y \quad \text{where} \quad (B_{C/\eta}(x, y))_{ij} \overset{\text{def}}{=} e^{x_i + y_j - C_{ij}/\eta}
\]
(6)
More generally, we will write
\[
\min_{x, y \in \mathbb{R}^n} \psi_{A, r, c}(x, y) \overset{\text{def}}{=} 1^T M_A(x, y) \mathbf{1} - r^T x - c^T y \quad \text{where} \quad (M_A(x, y))_{ij} \overset{\text{def}}{=} A_{ij} e^{x_i + y_j}
\]
(7)
for any non-negative matrix \(A \in \mathbb{R}^{n \times n}\) and positive vectors \(r, c \in \mathbb{R}^n^*\). An optimal solution of (7) gives diagonal matrices which \((r, c)\)-scale \(A\).

It is known that solving (6) is sufficient to solve the optimal transport problem in the following sense.

Lemma 4 (See proof of Theorem 1 in [AWR17]). Let \(\hat{x}, \hat{y}\) be solutions which satisfy
\[
\left\| B_{C/\eta}(\hat{x}, \hat{y}) \mathbf{1} - r \right\|_1 + \left\| B_{C/\eta}(\hat{x}, \hat{y})^T \mathbf{1} - c \right\|_1 \leq \epsilon
\]
i.e. \(\|\nabla \psi(\hat{x}, \hat{y})\|_1 \leq \epsilon\). Then, there exists a projection \(\hat{X}\) of \(B_{C/\eta}(\hat{x}, \hat{y})\) onto \(\mathcal{U}(r, c)\) that can be computed in linear-time and work (i.e. \(O(n^2)\)) and \(\tilde{O}(1)\) depth such that
\[
\langle C, \hat{X} \rangle \leq \min_{X \in \mathcal{U}(r, c)} \langle C, X \rangle + 2\eta \log n + 4\epsilon \|C\|_{\infty}
\]

Moreover, using Lemma 4 and the following fact, the main reduction of this section is almost immediate.

Lemma 5. Given an instance of (1), there exist a pair of modified, input distributions \(\bar{r}, \bar{c}\) such that \(\bar{r}_i, \bar{c}_i \geq \frac{\epsilon}{2\|C\|_{\infty} n}\) for all \(i \in [n]\) and the solution
\[
\bar{X}_* = \min_{X \in \mathcal{U}(\bar{r}, \bar{c})} \langle C, X \rangle
\]
(8)
can be extended to an \(\epsilon\)-approximate solution \(\bar{X}\) of (1) in \(O(n^2)\) time/work and \(\tilde{O}(1)\) depth.

Proof. Let
\[
S_r = \left\{ i \in [n] : r_i \geq \frac{\epsilon}{2\|C\|_{\infty} n} \right\} \quad \text{and} \quad S_c = \left\{ i \in [n] : c_i \geq \frac{\epsilon}{2\|C\|_{\infty} n} \right\}
\]
and set \(\bar{r}\) and \(\bar{c}\) to be the corresponding marginal distributions of \(r_{|S_r} \otimes c_{|S_c} \in \Delta^{n \times n}\). Let \(\bar{X}_*\) be the solution of (8) for such marginals \(\bar{r}, \bar{c}\), denote
\[
\mu = \sum_{i \in S_r, j \in S_c} r_i c_j \leq 1
\]
and set $E = S_r \times S_c \in [n] \times [n]$. For the optimal solution X_\ast of (1) with marginals r, c and let X^E_\ast be the distribution induced by conditioning X_\ast on the set E.

The optimality of \tilde{X}_\ast implies that

$$\langle C, \tilde{X}_\ast \rangle \leq \langle C, X^E_\ast \rangle \leq \frac{1}{\mu} \langle C, X_\ast \rangle$$

Further, if we let \hat{X} be the coupling such that

$$\hat{X}_{ij} = \begin{cases} \mu \tilde{X}_{ij} & \text{if } i \in S_r, j \in S_c \\ r_i c_j & \text{otherwise} \end{cases}$$

it is easy to see that \hat{X} has marginals r and c and, by construction of S_r and S_c, satisfies

$$\langle C, \hat{X} \rangle \leq \mu \langle C, \tilde{X}_\ast \rangle + \epsilon \leq \langle C, X_\ast \rangle + \epsilon$$

Clearly, \tilde{r}, \tilde{c} and \hat{X} can be constructed in $O(n^2)$ time/work and $\tilde{O}(1)$ depth.

Theorem 6. Suppose there exists an oracle O which computes an ϵ'-approximate solution (see Definition 2) to the matrix scaling problem in time $O(T(n, 1/\epsilon', \nu, \xi))$ where $\nu = \max_{i,j} 1/A_{ij}$, $\xi = \max_{i \in [n]} (1/\min(r_i, c_i))$, and we let $T(n, 1/\epsilon', \nu, \xi) = \infty$ when $\nu = \infty$ or $\xi = \infty$. Then, there is an algorithm which computes an ϵ-approximate solution to the optimal transport problem (1) in time

$$O \left(n^2 + T \left(\frac{16 \|C\|_\infty}{\epsilon}, n^8 \|C\|_\infty / \epsilon, 4 \|C\|_\infty n \right) \right)$$

Proof. By Lemma 5, we can assume without loss of generality that $\xi \leq (4\|C\|_\infty n) / \epsilon$. Set $\eta = \epsilon / (4 \log n)$. From [LSW98] and the fact that $e^{-C_{i,j}/\eta, r_i, c_i} > 0$ we know that $e^{-C/\eta}$ is (r, c)-scalable. Thus, by running O on the matrix $e^{-C/\eta}$ with $\epsilon' = 8\|C\|_\infty / \epsilon$, we can produce an approximate (r, c)-scaling $B = X e^{-C/\eta} Y$ such that

$$\|B1 - r\|_1 + \|B^T1 - c\|_1 \leq \epsilon'$$

By Lemma 4, this scaling can be rounded in $O(n^2)$ time to produce a \hat{X} with

$$\langle C, \hat{X} \rangle \leq \min_{X \in \mathcal{U}(r, c)} \langle C, X \rangle + 2\eta \log n + 4\epsilon'\|C\|_\infty \leq \min_{X \in \mathcal{U}(r, c)} \langle C, X \rangle + \epsilon$$

Since

$$\nu = \max_{i,j} \frac{1}{e^{-C_{i,j}/\eta}} \leq \exp \left(\frac{4\|C\|_\infty \log n}{\epsilon} \right) = n^4\|C\|_\infty / \epsilon$$

It follows that this procedure takes

$$O \left(n^2 + T \left(\frac{8 \|C\|_\infty}{\epsilon}, n^8 \|C\|_\infty / \epsilon \right) \right)$$

total time.

Corollary 2. Suppose there exists an oracle O which computes an ϵ'-approximate solution to the matrix scaling problem in parallel in $O(T_{w}(n, 1/\epsilon', \nu, \xi))$ total work and $O(T_d(n, 1/\epsilon', \nu, \xi))$ depth.
Then, there is an algorithm which computes an ϵ-approximate solution to the optimal transport problem (1) in
\[
O \left(n^2 + T_w \left(n, \frac{16 \|C\|_\infty}{\epsilon}, n^8 \|C\|_\infty^4 / \epsilon, \frac{4 \|C\|_\infty n}{\epsilon} \right) \right)
\]
work and
\[
\tilde{O} \left(T_w \left(n, \frac{16 \|C\|_\infty}{\epsilon}, n^8 \|C\|_\infty^4 / \epsilon, \frac{4 \|C\|_\infty n}{\epsilon} \right) \right)
\]
depth.

Given this reduction between matrix scaling and optimal transport, it remains for us to provide concrete bounds for $T(n, 1/\epsilon', \nu, \xi)$ in order to show our desired run-time. To this end, consider the following guarantee given by a currently best algorithm for the matrix scaling problem\(^3\)

Theorem 7 (See Theorem 9 in [CMTV17]). Suppose that there exists a point $z^*_t = (x^*_t, y^*_t)$ for which $\psi_{A,r,c}(x^*_t, y^*_t) - \psi^* \leq \frac{\epsilon^2}{3n}$ and $\|z_t^*\|_\infty \leq B$, where $\psi^* = \min_{x,y \in \mathbb{R}^n} \psi_{A,r,c}(x,y)$. Then, there exists a Newton-type algorithm which, with high probability, computes an \tilde{x}, \tilde{y} such that
\[
\|M_A(\tilde{x}, \tilde{y}) \mathbf{1} - r\|^2_2 + \|M_A(\tilde{x}, \tilde{y})^T \mathbf{1} - c\|^2_2 \leq \epsilon
\]
in $\tilde{O}(n^2 B \log^2 (s_A))$ time—where s_A is the sum of the entries in A.

The following parallel complexity for the Newton-type algorithm of Theorem 7 is nearly trivial, but not explicitly stated in [CMTV17]. Hence, we provide a proof for completeness.

Theorem 8. Suppose that there exists a point $z^*_t = (x^*_t, y^*_t)$ for which $\psi_{A,r,c}(x^*_t, y^*_t) - \psi^* \leq \frac{\epsilon^2}{3n}$ and $\|z_t^*\|_\infty \leq B$, where $\psi^* = \min_{x,y \in \mathbb{R}^n} \psi_{A,r,c}(x,y)$. Then, there exists a Newton-type algorithm which, with high probability, computes an \tilde{x}, \tilde{y} such that
\[
\|M_A(\tilde{x}, \tilde{y}) \mathbf{1} - r\|^2_2 + \|M_A(\tilde{x}, \tilde{y})^T \mathbf{1} - c\|^2_2 \leq \epsilon
\]
in $\tilde{O}(n^2 B \log^2 (s_A))$ total work and $\tilde{O} \left(B \log^2 (s_A) \right)$ depth.

Proof. From the proof of Theorem 3.4 in [CMTV17], observe that the Newton-type algorithm of Theorem 7 performs $\tilde{O} \left(B \log^2 (s_A) \right)$ sequential (box-constrained) Newton steps on the function
\[
f(x,y) = \psi_{A,r,c}(x,y) + \frac{\epsilon^2}{36n^2 \epsilon^2 B} \left(\sum_{i \in [n]} (e^{x_i} + e^{-x_i} + e^{y_i} + e^{-y_i}) \right)
\]
Hence, it suffices to show that each Newton iteration can be implemented in $\tilde{O}(n^2)$ total work and $\tilde{O}(1)$ depth.

From the proof of Theorem 5.11 in [CMTV17], each Newton-step consists of constructing a vertex sparsifier chain $(M^{(1)}, \ldots, M^{(d)}; F_1, \ldots, F_{d-1})$ (see Definition 5.9 in [LPS15]) for the Hessian $\nabla^2 f(x^{(k)}, y^{(k)})$ at the current Newton iterate $x^{(k)}, y^{(k)}$ and then applying the procedure OPTIMIZECHAIN (see Figure 5.2 in [CMTV17]) to $(M^{(1)}, \ldots, M^{(d)}; F_1, \ldots, F_{d-1})$ and the gradient $\nabla f(x^{(k)}, y^{(k)})$. Trivially, the Hessian and gradient of f can be computed in $O(n^2)$ work and $\tilde{O}(1)$ depth. Further, by Theorem 5.10 in [LPS15], we know that a vertex sparsifier chain

\(^3\)It should be remarked that similar results to [CMTV17] were obtained independently by [AZLOW17]. We focus on the guarantee stated in [CMTV17] since it is more amenable for our use.
\((M^{(1)}, \ldots, M^{(d)}; F_1, \ldots, F_{d-1})\) of length \(d = O(\log n)\) and total sparsity \(O(n)\) can be constructed for the Hessian in \(O(n^2)\) work and \(\tilde{O}(1)\) depth. Thus, it need only be shown that \textsc{OptimizeChain} can be implemented in \(\tilde{O}(n^2)\) total work and \(\tilde{O}(1)\) depth.

The procedure \textsc{OptimizeChain} applies the subroutines \textsc{ApproxMapping} (see Figure 5.1 in [CMTV17]) and \textsc{FastSolve} (see Lemma 5.3 in [CMTV17]) to the members \((M^{(t)}, F_t)\) of the vertex sparsifier chain. The approximate voltage extension subroutine \textsc{ApproxMapping} computes \(O(\log (1/\epsilon))\) matrix-vector multiplications using \(M^{(t)}\) and disjoint sub-matrices \(\nabla^2 f(x^{(k)}, y^{(k)})\) induced by the vertices \(F_t\). Hence, \textsc{ApproxMapping} can be applied to all of the \(O(\log n)\) members of the vertex sparsifier in \(\tilde{O}(n^2)\) total work and \(\tilde{O}(1)\) depth.

Further, for each \(M^{(t)}\), \textsc{FastSolve} performs \(\tilde{O}(1)\) iterations of projected gradient descent on a quadratic function in \(M^{(t)}\); where the projection is onto an \(\ell_\infty\) ball. Since the gradient of any quadratic in \(M^{(t)}\) can be calculated in time equal to the sparsity of \(M^{(t)}\) and projection onto an \(\ell_\infty\) ball can be implemented simply by truncating coordinates, it follows that \textsc{FastSolve} can be applied to all the members of \((M^{(1)}, \ldots, M^{(d)}; F_1, \ldots, F_{d-1})\) in \(O(n)\) total work and \(\tilde{O}(1)\) depth. Thus, \textsc{OptimizeChain} can be implemented in \(\tilde{O}(n^2)\) total work and \(\tilde{O}(1)\) depth.

One would like to immediately apply Theorems 7 and 8 to give the oracles for Theorem 6 and Corollary 2. Unfortunately, there is a mismatch between the \(l_1\) guarantee required by Definition 2 and the \(l_2\) guarantee in Theorem 7 for which we need the following lemma.

Lemma 9. Suppose that there exists a point \(z^*_t = (x^*_t, y^*_t)\) for which \(\psi_{A,r,c}(x^*_t, y^*_t) - \psi^* \leq \epsilon^4 / (3n^3)\) and \(\|z^*_t\|_\infty \leq B\), where \(\psi^* = \min_{x,y} \psi_{A,r,c}(x,y)\). Then, there exists a Newton-type algorithm which computes an \(\hat{x}, \hat{y}\) such that

\[
\|M_A(\hat{x}, \hat{y}) - r\|_1 + \|M_A(\hat{x}, \hat{y})^T1 - c\|_1 \leq \epsilon
\]

in time/total work \(\tilde{O}(n^2 B \log^2 (s_A))\) and with \(\tilde{O}(B \log^2 (s_A))\) depth.

Proof. Let \(\delta = \epsilon^2 / (2n)\) be the error tolerance used in Theorem 7 and Theorem 8. Then, by Cauchy-Schwartz and the inequality \((a + b)^2 \leq 2(a^2 + b^2)\) we have

\[
\left(\|B_{C/\eta}(\hat{x}, \hat{y})1 - r\|_1 + \|B_{C/\eta}(\hat{x}, \hat{y})^T1 - c\|_1\right)^2 \leq n \left(\|B_{C/\eta}(\hat{x}, \hat{y})1 - r\|_2 + \|B_{C/\eta}(\hat{x}, \hat{y})^T1 - c\|_2\right)^2 \leq \epsilon^2
\]

Hence, for such a \(\delta\), the algorithms of Theorems 7 and 8 have the same sequential and parallel complexities, respectively, and produce a \(\hat{x}, \hat{y}\) satisfying

\[
\|B_{C/\eta}(\hat{x}, \hat{y})1 - r\|_1 + \|B_{C/\eta}(\hat{x}, \hat{y})^T1 - c\|_1 \leq \epsilon
\]

\(\square\)

The final step before combining Theorem 6, Corollary 2, and Lemma 9 is to bound the constant \(B\) in Lemma 9 in terms of \(\nu = \max_{i,j} 1/A_{ij}\) and \(\xi = \max_i 1/\min(r_i, c_i)\).

Lemma 10. Suppose that \(A\) and \(r, c\) are strictly positive in (7) and satisfy the hypotheses of Definition 2, then there exists an optimal solution \(z^* = (x^*, y^*)\) such that \(\|z^*\|_\infty \leq 2 \log (\nu \xi)\) where \(\nu, \xi\) are as defined in Theorem 6.
Proof. From [LSW98] and the fact that A and r, c are strictly positive, there exists an optimal solution $z^* = (x^*, y^*)$. It is easy to see that for any $\alpha \in \mathbb{R}$, $(x^* + \alpha 1, y^* - \alpha 1)$ is also optimal. Hence, without loss of generality, we can assume that z^* is an optimal solution such that $\min_{i \in [n]} \{ x^*_i \} = 0$.

Let m be such that $x^*_m = 0$. For such a z^*, notice that first-order optimality conditions imply that
\[
\frac{e^{\max_i \{ y^*_i \}}}{\nu} \leq e^{x_m} \sum_{i \in [n]} e^{y_i} A_{m,i} = r_m \leq 1 \quad \text{and} \quad r_m = e^{x_m} \sum_{i \in [n]} e^{y_i} A_{m,i} \leq ne^{\max_i \{ y^*_i \}}
\]
where we have used that fact that $A_{i,j}, r_i \leq 1$ for all i, j. This gives that $\max_i \{ y^*_i \} \leq \log (\nu)$ and $- \max_i \{ y^*_i \} \leq \log (n\xi)$. Additionally, for $k = \arg \max_i \{ x^*_i \}$ and $t = \arg \min_i \{ y^*_i \}$ we have
\[
\frac{e^{x_k + \max_i \{ y^*_i \}}}{\nu} \leq e^{x_k} \sum_{i \in [n]} e^{y_i} A_{k,i} = r_k \leq 1 \quad \text{and} \quad c_t = e^{y_t} \sum_{i \in [n]} e^{x_i} A_{i,t} \leq ne^{y_t + x_k}
\]
This yields $\max_i \{ x^*_i \} \leq \log (n\nu\xi)$ and $- \max_i \{ y^*_i \} \leq 2 \log (n\nu\xi)$. Putting all these bounds together, it follows that $\|z^*\|_\infty \leq 2 \log (n\nu\xi)$. Using Lemma 10, we can now prove our final result.

Theorem 11. Consider an instance of the optimal transport problem (1). There exists an algorithm which computes an ϵ-approximate solution with high probability in time
\[
\tilde{O} \left(\frac{n^2 \|C\|_\infty}{\epsilon} \right)
\]
and in parallel with $\tilde{O} \left(n^2 \|C\|_\infty / \epsilon \right)$ total work and $\tilde{O} \left(\|C\|_\infty / \epsilon \right)$ depth.

Proof. Consider the Newton-type algorithm of Lemma 9. By Lemma 10, when A, r, c are strictly positive and satisfy the hypotheses of the matrix scaling problem, it follows that $B = O(\log (n\nu\xi))$ and $s_A = O(n^2)$ where ν and ξ are as defined in Theorem 6. Hence, in this case, the algorithm runs in
\[
\tilde{O} \left(n^2 \log (n\nu\xi) \right) \quad \text{time/total work and} \quad \tilde{O} \left(\log (n\nu\xi) \right) \quad \text{depth}
\]
This gives an oracle satisfying the requirements of Theorem 6 and Corollary 2 where, respectively,
\[
\tilde{O} \left(T \left(n, \frac{1}{\epsilon}, \nu, \xi \right) \right) = \tilde{O} \left(T_w \left(n, \frac{1}{\epsilon}, \nu, \xi \right) \right) = \tilde{O} \left(n^2 \log (n\nu\xi) \right)
\]
and
\[
\tilde{O} \left(T_d \left(n, \frac{1}{\epsilon}, \nu, \xi \right) \right) = \tilde{O} \left(\log (n\nu\xi) \right)
\]
Plugging in for ν and ξ, it follows that
\[
\tilde{O} \left(T \left(n, \frac{16 \|C\|_\infty}{\epsilon}, n^8 \|C\|_\infty / \epsilon, 4 \frac{\|C\|_\infty}{\epsilon} n \right) \right) = \tilde{O} \left(\frac{n^2 \|C\|_\infty}{\epsilon} \right)
\]
and
\[
\tilde{O} \left(T_d \left(n, \frac{16 \|C\|_\infty}{\epsilon}, n^8 \|C\|_\infty / \epsilon, 4 \frac{\|C\|_\infty}{\epsilon} n \right) \right) = \tilde{O} \left(\frac{\|C\|_\infty}{\epsilon} \right)
\]
giving the result. \qed
6 Hardness Reduction

In this section, we show that the $O(n^2 \|C\|_\infty /\epsilon)$ complexity of the previously-derived algorithms for the optimal transportation problem (1) cannot be improved without using fast matrix multiplication (i.e. [IM81]) barring a breakthrough on a long-standing open problem in algorithmic graph theory. Formally, we show that any further improvement in the complexity of solving (1), would yield a $o(n^{2.5})$ algorithm for maximum cardinality bipartite matching. Currently, the only known algorithms which achieve such a complexity are based on fast matrix multiplication (i.e. [IM81]).

In order to prove this reduction, consider an instance of the maximum cardinality bipartite matching problem where we have an undirected, bipartite graph $G = (V,E)$ such that V is the union of disjoint sets of vertices L and R (each of size n) and all edges go exclusively between L and R, i.e. $E \subseteq L \times R$. Our goal is to compute a matching, $F \subseteq E$ with

$$\deg_F(i) \overset{\text{def}}{=} |\{j \in V | \{i,j\} \in F\}| \leq 1 \quad \forall i \in V$$

which maximizes $|F|$. Consider the following lemma

Lemma 12. Given an oracle for computing an ϵ-approximate solution to the optimal transportation problem (1) (under the assumption $\|C\|_\infty = O(1)$) in time $T(n, \epsilon)$, one can compute a maximum cardinality matching F in time $O(T(n, \epsilon) + n^3 \epsilon)$.

Proof. We reduce an instance of the bipartite matching problem to optimal transport as follows. Without loss of generality, let $L = [n]$ and $R = [n]$ and let $r = c = \frac{1}{n} 1$. Furthermore, define a cost matrix $C \in \mathbb{R}^{n \times n}$ with $C_{ij} = 0$ if $\{i,j\} \in E$ and $C_{ij} = 1$ otherwise.

Now, suppose we solve the optimal transport problem corresponding to these inputs to ϵ-accuracy. Define OPT_T to be the optimal value of this transportation problem and let OPT_M to be the optimal value of the maximum cardinality matching in our graph. Clearly, we have computed a X with $X1 = X^T1 = \frac{1}{n} 1$ and such that $\langle C, X \rangle \leq OPT_T + \epsilon$. Furthermore, notice that by taking the maximum matching in our graph adding an arbitrary matching between it’s unmatched vertices, we can create a perfect matching $Y \in [0,1]^{n \times n}$ such that $\frac{1}{n} Y$ is feasible for our optimal transportation problem and we have $\langle C, Y \rangle = 1 - OPT_M / n$. Hence ϵ-optimality of X implies that

$$\langle C, X \rangle \leq 1 + \epsilon - \frac{OPT_M}{n}$$

Hence, as $Z = nX$ is a fractional perfect matching in our graph, this result immediately implies that our oracle for solving optimal transport gives us a fractional perfect matching Z where $\langle C, Z \rangle \leq (1 + \epsilon)n - OPT_M$. By removing all flow in Z along edges (i,j) where $C_{ij} = 1$ (i.e. edges which are non-existent in our original graph) and then rounding the corresponding fractional matching to an actual matching [KP15] (which can be done in nearly-linear time) we obtain an actual matching \hat{Z} such that

$$\langle C, \hat{Z} \rangle \leq (1 + \epsilon)n - OPT_M$$

Hence, \hat{Z} is a matching which has at least $OPT_M - n \epsilon$ edges. Thus, by running augmenting paths [Ful61] on \hat{Z} in $O(n^3 \epsilon)$ time (since G is dense) we can find the remaining $n \epsilon$ edges in the maximum matching. This yields an algorithm with complexity

$$O \left(T(n, \epsilon) + n^3 \epsilon \right)$$

for finding a maximum matching in a dense graph. \qed

Using Lemma 12, we see that, if $T(n, \epsilon) = \tilde{O}(n^2 / \epsilon)$, picking $\epsilon = 1 / \sqrt{n}$ gives a $\tilde{O}(n^{2.5})$ algorithm for matching. For any smaller $T(n, \epsilon)$ (more than log factors of course) an appropriate choice of ϵ would give a $o(n^{2.5})$ algorithm for maximum cardinality bipartite matching.
References

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 214–223, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[ANONY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel algorithms for geometric graph problems. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 574–583, New York, NY, USA, 2014. ACM.

[AS14] Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching with metric and geometric costs. In Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 555–564, New York, NY, USA, 2014. ACM.

[AWR17] Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation algorithms for optimal transport via sinkhorn iteration. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 1964–1974. Curran Associates, Inc., 2017.

[AZLOW17] Z. Allen-Zhu, Y. Li, R. Oliveira, and A. Wigderson. Much faster algorithms for matrix scaling. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 890–901, Oct 2017.

[AZO18] Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing and covering lp solvers. Mathematical Programming, Feb 2018.

[BK17] Jose Blanchet and Yang Kang. Distributionally robust groupwise regularization estimator. In Min-Ling Zhang and Yung-Kyun Noh, editors, Proceedings of the Ninth Asian Conference on Machine Learning, volume 77 of Proceedings of Machine Learning Research, pages 97–112. PMLR, 15–17 Nov 2017.

[BKZM17] Jose Blanchet, Yang Kang, Fan Zhang, and Karthyek Murthy. Data-driven optimal transport cost selection for distributionally robust optimization. 05 2017.

[BvdPPH11] Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement interpolation using lagrangian mass transport. ACM Trans. Graph., 30(6):158:1–158:12, December 2011.

[CK18] Deeparnab Chakrabarty and Sanjeev Khanna. Better and Simpler Error Analysis of the Sinkhorn-Knopp Algorithm for Matrix Scaling. In Raimund Seidel, editor, 1st Symposium on Simplicity in Algorithms (SOSA 2018), volume 61 of OpenAccess Series in Informatics (OASIcs), pages 4:1–4:11, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CMTV17] Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling and balancing via box constrained newton’s method and interior point
methods. *2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)*, Oct 2017.

[Cut13] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In *Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2*, NIPS’13, pages 2292–2300, USA, 2013. Curran Associates Inc.

[DGK18] Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport: Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In Jennifer Dy and Andreas Krause, editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 1366–1375, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[Ful61] D. Fulkerson. An out-of-kilter method for minimal-cost flow problems. *Journal of the Society for Industrial and Applied Mathematics*, 9(1):18–27, 1961.

[GCPB16] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-scale optimal transport. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, *Advances in Neural Information Processing Systems 29*, pages 3440–3448. Curran Associates, Inc., 2016.

[IM81] Oscar H. Ibarra and Shlomo Moran. Deterministic and probabilistic algorithms for maximum bipartite matching via fast matrix multiplication. *Inf. Process. Lett.*, 13(1):12–15, 1981.

[Kan58] L. Kantorovitch. On the translocation of masses. *Management Science*, 5(1):1–4, 1958.

[KP15] Donggu Kang and James Payor. Flow rounding. *CoRR*, abs/1507.08139, 2015.

[LPS15] Yin Tat Lee, Richard Peng, and Daniel A. Spielman. Sparsified cholesky solvers for sdd linear systems, 2015.

[LS14] Y. T. Lee and A. Sidford. Path finding methods for linear programming: Solving linear programs in square root rank iterations and faster algorithms for maximum flow. In *2014 IEEE 55th Annual Symposium on Foundations of Computer Science*, pages 424–433, Oct 2014.

[LS15] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear programming. In *Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS)*, FOCS ’15, pages 230–249, Washington, DC, USA, 2015. IEEE Computer Society.

[LSW98] Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A deterministic strongly polynomial algorithm for matrix scaling and approximate permanents. In *Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing*, STOC ’98, pages 644–652, New York, NY, USA, 1998. ACM.

[MEK18] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations. *Mathematical Programming*, 171(1):115–166, Sep 2018.
[PZ16] Victor M. Panaretos and Yoav Zemel. Amplitude and phase variation of point processes. *Ann. Statist.*, 44(2):771–812, 04 2016.

[Qua18] Kent Quanrud. Approximating Optimal Transport With Linear Programs. In Jeremy T. Fineman and Michael Mitzenmacher, editors, *2nd Symposium on Simplicity in Algorithms (SOSA 2019)*, volume 69 of *OpenAccess Series in Informatics (OASIcs)*, pages 6:1–6:9, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[SA12] R. Sharathkumar and Pankaj K. Agarwal. A near-linear time epsilon-approximation algorithm for geometric bipartite matching. In *Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12*, pages 385–394, New York, NY, USA, 2012. ACM.

[SdGP+15] Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. *ACM Trans. Graph.*, 34(4):66:1–66:11, July 2015.

[SR] Gábor J. Székely and Maria L. Rizzo. Testing for equal distributions in high dimensions. *InterStat*, page 2004.