New data on water beetles (Coleoptera: Gyrinidae, Haliplidae, Noteridae, Dytiscidae, Hydrophilidae, Elmidae) of Primorsky Krai (Russia)

Новые данные по фауне водных жуков (Coleoptera: Gyrinidae, Haliplidae, Noteridae, Dytiscidae, Hydrophilidae, Elmidae) Приморского края (Россия)

A.S. Sazhnev1, A.A. Prokin1, M.E. Sergeev2
A.C. Сажнев1, А.А. Прokin1, М.Е. Сергеев2

1 Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia. E-mail: sazh@list.ru, prokina@mail.ru
2 Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia. E-mail: elkgauster@inbox.ru

KEY WORDS: Russian Far East, Sikhote-Alin Nature Reserve, new records, protected areas.

ABSTRACT. Twenty-seven species of six families are recorded from the Sikhote-Alin Nature Reserve: Gyrinidae (1 species), Haliplidae (2), Noteridae (1), Dytiscidae (13), Hydrophilidae (9), and Hydraenidae (1). Additional records are provided for 29 species from Primorsky Krai: Dytiscidae (8), Hydrophilidae (20), and Elmidae (1). Three species (Oreodytes mongolicus, Sphaeridium bipustulatum and S. marginatum) are recorded for the first time from the Russian Far East. One species of Gyrinidae (Gyrinus sachalinensis), one species of Dytiscidae (Oreodytes mongolicus), and two species of Hydrophilidae (Sphaeridium bipustulatum and S. marginatum) are recorded from Primorsky Krai for the first time. A new synonymy is established: Cercyon terminatus (Marsham, 1802) = Cercyon emarginatus Baranowski, 1985 syn.n.

Introduction

The protected areas of Primorsky Krai in the Russian Far East include six nature reserves, four national parks, ten habitat/species management areas, one botanical garden, one dendrological park, and one nature park [Maslovskaja et al., 2020]. Our study is based mainly on material collected in the Sikhote-Alin Nature Reserve.

The Sikhote-Alin Nature Reserve is a biosphere reserve in Primorsky Krai. It is located in a watershed (between Sereryanka and Dzhigitovka Rivers) that stretches from the eastern part of the krai (province) of the humid golets-forested medium height eastern slopes of the Central Sikhote-Alin mountain range (Terneysky, Krasnoarmeysky, and Dalnegorsky Districts of Primorsky Krai) up to the Sea of Japan. The total area of the Sikhote-Alin Nature Reserve is 3,901.84 km².

The Sikhote-Alin Nature Reserve is recorded the middle and lower reaches of the Kolumbe River (tributary of the Bolshaya Ussurka River), upper and middle reaches of the rivers Serebryanka and Zab-
New data on water beetles of Primorsky Krai

olochnennaya, and three tributaries of the Dzhigitovka River (Kuruma, Lianovaya, and Kunaleyka Rivers) [Pimenova, 2016].

The Sikhote-Alin mountain range contains one of the richest (in terms of the number of species) temperate forests of the world, located in the mixed forest zone between the taiga and subtropics (this territory includes the distinct Okhotsk taiga oceanic and Manchurian moderate continental assemblages of broad-leaved forests). The climatic conditions of the Central Sikhote-Alin are defined by the regularities of the typical monsoon climate of Primorsky Krai.

![Image of beetle](image)

Figs 1–5. *Ametor scabrosus* Horn, 1873, holotype and paratype of *Hydrocassis lucifer* Shatrovskiy, 1989: 1 — habitus, ventral view; 2 — aedeagus; 3, 5 — labels; 4 — habitus, dorsal view; 1–3 — holotype; 4–5 — paratype. Photographs by V.M. Loktionov.

Рис. 1–5. *Ametor scabrosus* Horn, 1873; голотип и паратип *Hydrocassis lucifer* Shatrovskiy, 1989: 1 — габитус, снизу; 2 — эдеагус; 3, 5 — этикетки; 4 — габитус, сверху; 1–3 — голотип, 4–5 — паратип. Фотографии В.М. Локtionova.
Unfortunately, published lists of the water beetles of the Sikhote-Alin Nature Reserve are sporadic and fragmentary, which determined the aim of our study. Only two species from studied families have been described from this territory: *Hydrocassis lucifer* Shatrovskiy, 1989 (Figs 1–5) — junior synonym of the Holarctic *Ametor scabrosus* Horn, 1873 (Hydrophilidae) — and *Agabus (Gaurodytes) udege* Nils-son, 1994 (Dytiscidae) [Shatrovskiy, 1989b, 1992; Nilsson, 1994].

In this study, we provide new records of beetles of the studied families from the Sikhote-Alin Nature Reserve and some other areas of the Primorsky Krai.

Material and methods

This study is mainly based on specimens collected by M.E. Sergeev (the material on the list is indicated without the name of the collector), which are deposited in the Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences (Borok, Russia). The material was collected mainly by sweeping with an aquatic net or using a light trap.

The natural landmarks in the Sikhote-Alin Nature Reserve are represented by traditionally allocated areas of its territory [Pimenova, 2016]. The material was collected in 18 localities of the nature reserve (Fig. 6): 1 — Terney: floodplain of the Serebryanka River (45.0335° N 136.3733° E);

2 — Terney: Ivan Ivanovich branch of the Serebryanka River (45.0835° N 136.6166° E);

3 — Blagodatnoe: vicinity of Blagodatnoe Lake (44.5714° N 136.3250° E);

4 — Golubichnoe: vicinity of Golubichnoe Lake (44.5430° N 136.3136° E);

5 — Yasnya: floodplain of the Zabolochennaya River (44.5325° N 136.2018° E);

6 — Yasnya: floodplain of the Berezovyy Stream (45.2333° N 136.5166° E);

7 — Kuruma: floodplain of the Kuruma River (44.9152° N 136.2118° E);

8 — Ust-Serebryanye: floodplain of the Serebryan Stream (45.0825° N 136.2243° E);

9 — Zimoveynyy: floodplain of the Zymoveyny Stream (45.0829° N 136.1835° E);

10 — Kabany: floodplain of the Kabany Stream (45.1102° N 135.8672° E);

11 — Sporny: upper reaches of the Serebryanka River (45.1940° N 135.9901° E);

12 — Venera: floodplain of the Venera Stream (45.2962° N 135.8010° E);

13 — Yupiter: floodplain of the Yupiter Stream (45.5765° N 135.8928° E);

14 — Kolumbe: floodplain of the Kolumbe River (45.5387° N 135.9855° E);

15 — Rezvushka: floodplain of the Rezvushka River (45.5410° N 136.1660° E);

16 — Ust-Prokhodnaya: stream in valley of the Kolumbe River (45.3324 N 136.1365° E);

17 — Sakhalinsky: upper reaches of the Sakhalinsky Stream (45.4147° N 136.3713° E);

18 — Perevalnaya: floodplain of the Tayozhnaya River (45.6063° N 136.4454° E).

Photographs were taken with an Olympus SZX16 stereomicroscope and an Olympus DP74 digital camera and then stacked using Helicon Focus software. All scale bars are given in mm. The illustrations were post-processed for contrast and brightness corrections using Adobe Photoshop software.

Results

The results of this study are given as a list of species with information on the localities. The species list is based on the material studied. The species distribution data is mainly based on the Catalogue of Palaearctic Coleoptera [Fikáček et al., 2015; Hájek, 2017a, b; Hájek, Fery, 2017; Jäch, 2015; Jäch et al., 2016; Kobayashi et al., 2021; van Vondel, 2017]. New records from Primorsky Krai are indicated with an asterisk (*).

List of species

Family Gyrinidae Latreille, 1810

Gyrinus (Gyrinus) sachalinensis Kamyma, 1936

Figs 7–10.

MATERIAL EXAMINED. 3:11.VI.2015, 3 exs., same locality, 24.VII.2017, 2 exs.; 8: 30.06.2018, 2 exs.

DISTRIBUTION. Russian Far East (Kuril Islands, Sakhalin), Japan [Nilsson et al., 2001; Hájek, Fery, 2017].

NOTE. The first record from continental Russian Far East and Primorsky Krai.
New data on water beetles of Primorsky Krai

Family Haliplidae Aubé, 1836
Haliplus (Haliplus) simplex Clark, 1863
MATERIAL EXAMINED. 12: 5.IX.2017, 3 exs. (G.A. Nacharkin).
DISTRIBUTION. Mongolia, North and South Korea, China, Russian Far East (Amur Oblast, Khabarovsky Krai and Primorsky Krai) [Zaitzev, 1953; Gramma, 1980; Lafer, 1996; Nilsson, Sundukov, 2009b; van Vondel, 2017].

Haliplus (Liaphlus) basinotatus A. Zimmermann, 1924
MATERIAL EXAMINED. 4: 17.VII.2017, 2 exs.
DISTRIBUTION. Mongolia, North and South Korea, north-eastern China, Russian Far East (Primorsky Krai, Sakhalin) [Nilsson, Sundukov, 2009b; van Vondel, 2017].

Family Noteridae C.G. Thomson, 1860
Noterus (Noterus) japonicus Sharp, 1873
MATERIAL EXAMINED. 9: 17.V.2017, 1 ex.
DISTRIBUTION. North-East China, “Korea,” Russian Far East (Primorsky Krai), Japan [Nilsson, Sundukov, 2009c; Hájek, 2017b].

Family Dytiscidae Leach, 1815
Agabus (Acatodes) congener Thunberg, 1794
MATERIAL EXAMINED. 12: 2.VII.2019, 1 ex.
DISTRIBUTION. Europe, Asian Turkey, Kazakhstan, Mongolia, China (Jilin, Qinghai), West and East Siberia, Russian Far East (Amur Oblast, Khabarovsky Krai, Kuril Islands, Magadan Oblast, Primorsky Krai, Sakhalin), Japan [Lafer, 1989; Nilsson, Kholin, 1994; Nilsson et al., 1999; Nilsson, Sundukov, 2009a; Hájek, 2017a].

Agabus (Gauroydites) affinis (Paykull, 1798)
MATERIAL EXAMINED. 4: 18.IX.2018, 1 ex.
DISTRIBUTION. Europe, West and East Siberia, Russian Far East (Kamchatka, Primorsky Krai), Japan (Hokkaido) [Zaitzev, 1953; Lafer, 1989; Nilsson, Sundukov, 2009a; Hájek, 2017a].

Agabus (Gauroydites) udege Nilsson, 1994
MATERIAL EXAMINED. 1: 6.VIII.2015, 1 ex.; 11: 1.VIII.2020, 4 exs.
DISTRIBUTION. China (Jilin), Mongolia, North Korea, Russian Far East (Primorsky Krai) [Nilsson, 1994; Nilsson, Sundukov, 2009a; Hájek, 2017a; Enkhnasan, Boldgiv, 2019].

Ilybius anjae Nilsson, 1999
MATERIAL EXAMINED. 3: 7.IX.2016, 1 ex.
DISTRIBUTION. East Siberia, China (Heilongjiang), Russian Far East (Amur Oblast, Khabarovsky and Primorsky krai, Sakhalin), Japan [Nilsson, 1999; Hájek, 2017a].

Ilybius chishimanus Kôno, 1944
MATERIAL EXAMINED. 12: 2.VII.2019, 1 ex.
DISTRIBUTION. East Siberia, Mongolia, China (Heilongjiang, Jilin), Russian Far East (Kamchatka, Kuril Islands, Primorsky Krai) [Nilsson et al., 1997, 1999; Nilsson, Sundukov, 2009a; Hájek, 2017a].

Figs 7–10. Gyrinus sachalinensis Kamyia, 1936 from floodplain of the Serebryany Stream: 7–8 — habitus, dorsal (7) and ventral (8) view; 9 — ninth sternite; 10 — male genitalia, lateral and dorsal view. Photographs by K.V. Makarov.

8
9
10

Рис. 7–10. Gyrinus sachalinensis Камыя, 1936 из поймы Серебряного ручья: 7–8 — габитус, сверху (7) и снизу (8); 9 — девятый стернит; 10 — гениталии самца, сбоку и сверху. Фотографии К.В. Макарова.
Hybium opacus Aubé, 1837
MATERIAL EXAMINED. 15: 20.IV.2018, 2 exs.; 16: 13.VI.2016, 1 ex.
DISTRIBUTION. Northern Europe, Mongolia, West and East Siberia, Russian Far East (Kamchatka, Sakhalin, Primorsky Krai) [Nilsson et al., 1999; Hájek, 2017a], North America [Larson et al., 2000].

Platambus koreanus (Nilsson, 1997)
MATERIAL EXAMINED. 4: 29.VI.2016, 1 ex.
DISTRIBUTION. South Korea, Russian Far East (Primorsky Krai) [Nilsson, Sundukov, 2009a; Hájek, 2017a].

Aciulus (*Aciulis*) *sulcatus* (Linnaeus, 1758)
MATERIAL EXAMINED. 4: 30.IX.2015, 1 ex.
DISTRIBUTION. Europe, North Africa (Algeria), Iran, Kirgizistan, Kazakhstan, Turkmenistan, Mongolia, West and East Siberia, Russian Far East (Primorsky Krai, Sakhalin) [Zaitzev, 1953; Lafer, 1989; Nilsson, Kholin, 1994; Hájek, 2017a; Prokin et al., 2020].

Dytiscus dauricus dauricus Gebler, 1832
MATERIAL EXAMINED. 4: 29.IV.2018, 1 ex.; 13: 17.VII.2017, 1 ex.
DISTRIBUTION. Mongolia, East Siberia, China (Heilongjiang, Jilin, Xinjiang), Russian Far East (Kamchatka, Khabarovsky Krai, Kuril Islands, Magadan Oblast, Primorsky Krai, Sakhalin), Japan, North America [Zaitzev, 1953; Lafer, 1989; Nilsson, Kholin, 1994; Nilsson et al., 1997, 1999; Nilsson, Larson et al., 2000; Sundukov, 2009a; Hájek, 2017a].

Dytiscus marginalis czerskii Zaitzev, 1953
MATERIAL EXAMINED. 1: 12.IV.2017, 1 ex.
DISTRIBUTION. Asian subspecies distributed in East Siberia, North Korea, north-eastern China, Russian Far East (Kuril Islands, Primorsky Krai, Sakhalin), Japan [Zaitzev, 1953; Lafer, 1989; Nilsson, Sundukov, 2009a; Hájek, 2017a].

Oreodytes mongolicus Brinck, 1943
MATERIAL EXAMINED. 7: 5–10.VI.2020, 2 exs.
DISTRIBUTION. Tuva, Mongolia [Brinck, 1943; Prokin et al., 2020].
NOTES. The first record from Far East and Primorsky Krai.

Oreodytes okulovi Lafer, 1988
MATERIAL EXAMINED. 8: 30.VI.2018, 1 ex.
DISTRIBUTION. East Siberia, Russian Far East (Jewish Autonomous Oblast, Kamchatka, Primorsky Krai) [Lafer, 1988; Nilsson et al., 1999, Fery, Petrov, 2014; Hájek, 2017a].

Hydroporus uenoi Nakane, 1963
MATERIAL EXAMINED. 5: 4.VII.2015, 1 ex.; 16: 17.V.2018, 1 ex.
DISTRIBUTION. East Siberia, Mongolia, China (Heilongjiang, Jilin), Russian Far East (Kamchatka, Khabarovsky Krai, Kuril Islands, Primorsky Krai, Sakhalin), Japan [Nilsson, Kholin, 1994; Nilsson et al., 1997, 1999; Hájek, 2017a].

Family Hydrophilidae Latreille, 1802

Hydrobius fuscipes (Linnaeus, 1758) sensu lato
MATERIAL EXAMINED. 4: 18.IX.2018, 1 ex.; 7: 20.VI.2018, 2 exs.; 15: 28.V.2020, 1 ex.; 16: 17.V.2018, 1 ex.; 18: 20.IV.2018, 2 exs.
DISTRIBUTION. Europe, North Caucasus, Azerbaijan, Near East, Central Asia, West and East Siberia, Mongolia, China, Russian Far East (Amur Oblast, Khabarovsky Krai, Kuril Islands, Magadan Oblast, Primorsky Krai); North America [Shatrovskiy, 1989b; Hebauer, 1995; Prokin, 2009; Fikáček et al., 2015; Ryndevich, 2016, Ryndevich, Angus, 2020].
NOTE. The Holarctic morphospecies *Hydrobius fuscipes* (Linnaeus, 1758) is represented by a complex of cryptic species, recently partly revised [Fossen et al., 2016; Ryndevich, Angus, 2020]. Material from the Far East needs to be revised using cytogenetic and molecular methods.

Hydrochara affinis Sharp, 1873
MATERIAL EXAMINED. 1: 23.VII.2016, 1 ex.; 3: 10.VIII.2016, 1 ex.
DISTRIBUTION. South European territory of Russia, North Caucasus, Azerbaijan, Central Asia, China, Mongolia, East Siberia, South Korea, Russian Far East (Amur Oblast, Khabarovsky Krai and Primorsky Krai, Sakhalin), Japan [Smetana, 1980; Shatrovskiy, 1986, 1989b; Hebauer, 1995; Hebauer, Ryndevich, 2005; Prokin, 2009; Fikáček et al., 2015].

Crenitis (*Crenitis*) *apicalis* (Reitter, 1896)
MATERIAL EXAMINED. 21: 21.IV.2015, 5 exs. (D.E. Shcherbakov); 2: 21.VI.2016, 2 exs.; 5: 4.VII.2015, 9 exs.; 6: 14–23.IV.2015, 5 ex. (D.E. Shcherbakov); 7: 5–10.VI.2020, 5 exs.; 8: 30.VI.2018, 6 exs.; 9: 18.IV.2018, 4 exs.; 10: 24–27.IV.2015, 20 exs. (D.E. Shcherbakov), same place, 26–28.V.2015, 8 exs.; 11: 1.VIII.2020, 5 exs.; 16: 17.VII.2018, 6 exs.; 17: 30.V.2020, 12 exs.; 18: 20.IV.2018, 11 exs.
DISTRIBUTION. East Siberia, Mongolia, north-eastern China, Russian Far East (Amur Oblast, Khabarovsky Krai, Magadan Oblast, Primorsky Krai), Japan [Shatrovskiy, 1989b; Hebauer, 1994, 1995; Prokin, 2009; Fikáček et al., 2015; Prokin et al., 2020].

Cercyon (*Cercyon*) *apicus* Sharp, 1873
MATERIAL EXAMINED. 4: 15.VII.2017, 3 exs.
DISTRIBUTION. China (Hebei), Russian Far East (Kuril Islands, Primorsky Krai, Sakhalin), Japan [Shatrovskiy, 1992; Hebauer, 1995; Ryndevich, 2003; Ōhara, Jia, 2006; Prokin, 2009; Fikáček et al., 2015].

Cercyon (*Cercyon*) *numerosus* Shatrovskiy, 1989
MATERIAL EXAMINED. 1: 8.VIII.2018, 3 exs.; 3: 1.VI.2018, 7 exs.; 4: 5.VII.2019, 1 ex.
DISTRIBUTION. South Korea, Russian Far East (Kuril Islands, Primorsky Krai), Japan [Shatrovskiy, 1992; Hehauer, 1995; Ryndevich, 2003; Ōhara, Jia, 2006; Prokin, 2009; Fikáček et al., 2015].

Cercyon (*Cercyon*) *olibrus* Sharp, 1874
MATERIAL EXAMINED. 5: 11.VII.2018, 1 ex.
DISTRIBUTION. China (Jiangxi, Tianjin), Russian Far East (Amur Oblast, Khabarovsky Krai, Primorsky Krai), Japan [Shatrovskiy, 1989b; Hebauer, 1995; Ōhara, Jia, 2006; Prokin, 2009; Fikáček et al., 2015].

Cercyon (*Cercyon*) *symbion* Shatrovskiy, 1989
MATERIAL EXAMINED. 3: 1.VI.2018, 1 ex.; 4: 5.VII.2019, 1 ex.
DISTRIBUTION. Russian Far East (Commander Islands, Kuril Islands, Primorsky Krai, Sakhalin, Isl.), Japan [Shatrovskiy, 1989b; Prokin, 2009; Fikáček et al., 2015; Szafirna, 2018].

Cercyon (*Cercyon*) *terminatus* (Marsham, 1802)
Figs 11–14.
Far East (Amur Oblast, Khabarovsk Krai and Primorsky Krai) [Shatrovskiy, 1989b; Fikáček et al., 2015], introduced to North America [Smetana, 1978, 1988].

NOTE. Studied specimens from Primorsky Krai morphologically are identical to *Cercyon emarginatus* Baranowski, 1985 description, but the external characters of this species are within the variability range of *Cercyon terminatus* (Marsham, 1802); the structure of the genitalia according to Baranowski [1985: P. 343, Figs 1–6] shows that type series is identical to that of specimens of *C. terminatus* from European Russia and Primorsky Krai (Fig. 4), as well as with pictures provided by A. Smetana for North American specimens [Smetana, 1978: Figs 133–135; Smetana, 1988: Figs 345–347]. Thus, a new synonymy is established here.

Cercyon (Clinocercyon) retius Ryndevich et Prokin, 2017

MATERIAL EXAMINED. 10: 28.05.2015, 2 exs. DISTRIBUTION. Russian Far East (Kunashir Island, Primorsky Krai) [Ryndevich, Prokin, 2017].

Family Hydraenidae Mulsant, 1844

Hydraena (Hydraena) riparia Kugelann, 1794

MATERIAL EXAMINED. 1: 21.IV.2015, 4 exs. (D.E. Shcherbakov); 2: 21.IV.2015, 8 exs. (D.E. Shcherbakov); 5: 14–23.04.2015, 21 exs. (D.E. Shcherbakov); 10: 24–27.IV.2015, 8 exs. (D.E. Shcherbakov).

DISTRIBUTION. Europe, Central Asia, Mongolia, West and East Siberia, China, South Korea, Russian Far East (Kuril Islands, Primorsky Krai), Japan [Jäch, 1988, 2015; Shatrovskiy, 1989a, Gusakov, 2009; Palatov, 2014].

The studied material from the Sikhote-Alin Nature Reserve is represented by 27 species of six families: Gyriinae (1 species), Halipilidae (2), Noteridae (1), Dytiscidae (13), Hydrophilidae (9), and Hydraenidae (1).

Taking into account published data, the fauna of the studied families of the Sikhote-Alin Nature Reserve includes only 28 recorded species, which indicates an insufficient level of regional faunological investigation. For example, more than 80 species of beetles of the studied families are recorded from the Lazovsky Nature Reserve [Gusakov, 2009; Nilsson, Sundukov, 2009a, b, c; Prokin, 2009, 2010].

Additional records from Primorsky Krai

Additional material was collected by different persons in 2015–2020 from various protected areas and their buffer zones in Primorsky Krai (Fig. 14). Distributional data for species that were indicated in the list above are not provided again.

Family Dytiscidae Leach, 1815

Ilybius chishimanus Kôno, 1944

MATERIAL EXAMINED. Krasoarnetsky Distr., “Udygeyskaya Legenda” National Park, floodplain of Armu River, 23.VII.2015, 1 ex.

Rhanthus (Rhanthus) suturalis (W.S. Macleay, 1825)

MATERIAL EXAMINED. Khasansky Distr., Vityaz village, unnamed stream, 12.IX.2019, 1 ex.; Spassk-Dalny, light-trapped, 10.VII.2016, 1 ex.; Peter the Great Bay, Popova Island, Starka village, light-trapped, 27.VIII.2018, 1 ex.; Vladivostok, Okeanskaya station, 24.09.2020, 1 ex.

DISTRIBUTION. Europe, North Africa, Near East, Central Asia, West and East Siberia, China, Mongolia, Russian Far East (Kuril Islands, Primorsky Krai, Sakhalin), Japan; North America, Australian and Oriental regions [Zaitzev, 1953; Lafer, 1989; Hájek, 2017a].

Copelatus weymarni J. Balfour-Browne, 1947

MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 2 exs.

DISTRIBUTION. north-eastern China, North and South Korea, Russian Far East (Amur Oblast, Primorsky Krai), Japan [Nilsson, Sundukov, 2009a; Hájek, 2017a].

Graphoderus adamsii (Clark, 1864)

MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 1 ex.

DISTRIBUTION. China, South Korea, Russian Far East (Primorsky Krai), Japan [Zaitzev, 1953; Lafer, 1989; Hájek, 2017a].

Hydaticus (Prodaticus) grammicus (Germar, 1827)

MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 1 ex.

DISTRIBUTION. Europe, Near East, Central Asia, China, North Korea, Japan (Hájek, 2017a); Russian Far East (Amur Oblast, Primorsky Krai) [Zaitzev, 1953; Lafer, 1992; Berlov, Berlov, 1996; Nilsson, Sundukov, 2009a].

Oreodytes mongolicus Brinck, 1943

MATERIAL EXAMINED. Krasoarnetsky Distr., Udygeyskaya Legenda National Park, floodplain of Armu River, 23.VII.2015, 1 ex.
Hydroporus uenoi Nakane, 1963
MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 1 ex.

Hygrotus (Coelambus) chinensis (Sharpe, 1882)
MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 2 exs.
DISTRIBUTION. Mongolia, China, North and South Korea, Russian Far East (Primorsky Krai), Japan [Nilsson, Sundukov, 2009a; Hájek, 2017a].

Family Hydrophilidae Latreille, 1802
Berosus (Berosus) punctipennis Harold, 1878
MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 5 exs.
DISTRIBUTION. Mongolia, East Siberia, China, South Korea, Russian Far East (Amur Oblast, Khabarovsk Krai and Primorsky Krai), Japan [Schödl, 1993; Hebauer, 1995; Ryndevich, Fikáček, 2013; Fikáček et al., 2015].

Berosus (Enoplurus) lewisi Shap, 1873
MATERIAL EXAMINED. Chuguevsky Distr., Chuguevka, light-trapped, 1–3.IX.2020, 1 ex. (K.A. Ostapenko).
DISTRIBUTION. Mongolia, China, North and South Korea, Russian Far East (Khabarovsk Krai and Primorsky Krai); Oriental region [Shatrovskiy, 1989b; Schödl, 1991; Hebauer, 1995; Prokin, 2009; Ryndevich, 2001a, 2011; Fikáček et al., 2015].

Hydrobius fuscipes (Linnaeus, 1758) sensu lato
MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.07.2016, 9 exs.; Vladivostok, Botanical Garden, 25.VIII.2019, 1 ex.; Peter the Great Bay, Russky Island, 1.X.2019, 1 ex.

Hydrochara affinis Shap, 1873
MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 8 exs.

Hydrophilus (Hydrophilus) dauricus Mannerheim, 1852
MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 1 ex.
DISTRIBUTION. Mongolia, East Siberia, China, Russian Far East (Amur Oblast, Primorsky Krai), Japan [Shatrovskiy, 1989b; Prokin, 2009; Fikáček et al., 2015; Prokin et al., 2020].
New data on water beetles of Primorsky Krai

Enochrus (Lumetus) quadripunctatus (Herbst, 1797)

MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 1 ex.; Peter the Great Bay, Far East Marine Reserve, Furugelm Island, 17.VIII.2018, 1 ex.

DISTRIBUTION. Europe, Near East, Central Asia, Mongolia, China, West and East Siberia, Russian Far East (Amur Oblast, Khabarovsky Krai and Primorsky Krai) [Shatrovskiy, 1989b; Prokin, 2009; Ryndevich, Fikáček, 2013; Fikáček et al., 2015; Prokin et al., 2020].

Enochrus (Methydrus) affinis (Thunberg, 1794)

MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 3 exs.

DISTRIBUTION. Europe, Kazakhstan, Mongolia, China (Heilongjiang, Inner Mongolia), West and East Siberia, Russian Far East (Khabarovsky Krai and Primorsky Krai, Sakhalin), Japan [Shatrovskiy, 1989b; Hebauer, 1995; Prokin, 2009; Fikáček et al., 2015].

Enochrus (Methydrus) japonicus (Sharp, 1873)

Figs 15–17.

MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 8 exs.

Enochrus (Methydrus) puetzii Hebauer, 1995

MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 4 exs.

DISTRIBUTION. Russian Far East (Primorsky Krai) [Hebauer, 1995; Prokin, 2009; Fikáček et al., 2015].

Crenitis (Crenitis) apicalis (Reitter, 1896)

MATERIAL EXAMINED. Khasansky Distr., “Kedrovaya Pad” Nature Reserve, Barabash village, 10.05.2019, 1 ex.; Ussuriysk, Kaymanovka village, Barsukovka River, 43.6437°N 132.2504°E, 18.06.2020, 11 exs. (I.A. Zabaluev).

Crenitis (Crenitis) kanyukovae Shatrovskiy, 1989

MATERIAL EXAMINED. Khasansky Distr., 2 km NW Zanadvorovka village, unnamed spring, 43.3172°N 131.5712°E, 235 m a.s.l., 10.VII.2020, 2 exs. (I.A. Zabaluev).

DISTRIBUTION. Russian Far East (Primorsky Krai) [Shatrovskiy, 1992; Hebauer, 1994, 1995; Prokin, 2009; Fikáček et al., 2015].
A.S. Sazhnev, A.A. Prokin, M.E. Sergeev

Coelostoma (Coelostoma) orbiculare (Fabricius, 1775)
MATERIAL EXAMINED. Khanka Nature Reserve, Sopka Luzanova landscape unit (natural boundary), 5.VII.2016, 1 ex. (M.E. Sergeev); Spassk-Dalny, light-trapped, 10.VII.2016, 11 exs.
DISTRIBUTION. Europe, Central Asia, China, East and West Siberia, Russian Far East (Primorsky Krai), Japan [Shatrovskiy, 1989b; Fikáček et al., 2015].

Cercyon (Cercyon) bifenesstratus Küster, 1851
MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 1 ex.
DISTRIBUTION. Europe, Central Asia, Nepal, Mongolia, China, East and West Siberia, Russian Far East (Primorsky Krai), Japan [Shatrovskiy, 1989b; Hebauer, 1995; Fikáček et al., 2015].

Cercyon (Cercyon) marinus C.G. Thomson, 1853
MATERIAL EXAMINED. Spassk-Dalny, light-trapped, 10.VII.2016, 2 exs.
DISTRIBUTION. Europe, Kazakhstan, Mongolia, East and West Siberia, Russian Far East (Amur Oblast, Kamchatka, Khabarovsky Krai and Primorsky Krai) [Shatrovskiy, 1989b; Hebauer, 1995; Fikáček et al., 2015].

Sphaeridium bipustulatum Fabricius, 1781
MATERIAL EXAMINED. Khanka Nature Reserve, landscape unit (natural boundary) “Sopka Luzanova”, 6.VII.2016, 1 ex.
DISTRIBUTION. Widely distributed in Europe, North Africa, Central Asia, West Siberia; introduced to North America [Fikáček et al., 2015].
NOTE. The first record from Russian Far East and Primorsky Krai.

Sphaeridium marginatum Fabricius, 1787
MATERIAL EXAMINED. Khanka Nature Reserve, landscape unit (natural boundary) “Sopka Luzanova”, 6.VII.2016, 1 ex.
DISTRIBUTION. Widely distributed in Europe, North Africa, Central Asia, West Siberia; introduced to North America [Shatrovskiy, 1989b; Ryndevich, 2001c; Fikáček et al., 2015].
NOTE. The first record from Russian Far East and Primorsky Krai.

Sphaeridium scarabaeoides (Linnaeus, 1758)
MATERIAL EXAMINED. Primorsky Krai: Khasansky District, “Kedrovaya Pad” Nature Reserve, 3.V.2015, 2 exs.
DISTRIBUTION. Widely distributed in Europe, North Africa, Near and Central Asia, East and West Siberia, northeastern China, Russian Far East (Amur Oblast, Khabarovsky Krai and Primorsky Krai); introduced to the Afrotropical, Australian, and Nearctic regions [Shatrovskiy, 1989b; Ryndevich, 2001c; Fikáček et al., 2015].

Family Elmidae Curtis, 1830
Heterlimnius gapyeongensis (Jung, Kamite et Bae, 2011)
Figs 18–20.
MATERIAL EXAMINED. Ussuriysk District, 2 km S Kaymanovka village, Komarovka River, 43.6270°N 132.2650°E 23.VIII.2007, 1 ex. (K.V. Makarov), [deposited in Moscow Pedagogical State University, Moscow]; env. Ussuriysk, Kaymanovka village, Barsukovka River, 43.6437°N 132.2504°E, 18.VI.2020, 1 ex. (I.A. Zabaluev).
DISTRIBUTION. China (Liaoning), Nord and South Korea, Russian Far East (Primorsky Krai) [Jung et al., 2011; Jäch et al., 2016].
NOTE. Photographs of this species were published online by K.V. Makarov from Primorsky Krai (Khasansky District, env. Kedroviy, 10 km SES Barabash, 43.0833°N 131.5500°E, 17–24.VII.2018, window trap, K. Makarov and A. Zaitzev leg., 1♂), misidentified as *Heterlimnius hasegawai* Nomura, 1958 (https://www.zin.ru/animalia/coleoptera/rus/hethaskm.htm).

Figs 18–20. *Heterlimnius gapyeongensis* (Jung, Kamite et Bae, 2011) from Kaymanovka village: 18 — habitus, dorsal view; 19 — ninth sternite; 20 — aedeagus. Photographs by K.V. Makarov.

Рис. 18–20. *Heterlimnius gapyeongensis* (Jung, Kamite et Bae, 2011) из с. Каймановка: 18 — габитус, сверху; 19 — девятый стернит; 20 — эдеагус. Фотографии К.В. Макарова.
Thus, one species of Gyrinidae (Gyrinus sachalinensis), one species of Dytiscidae (Oreodytes mongolicus), and two species of Hydrophilidae (Sphaeridium bipustulatum and Sphaeridium marginatum) are recorded for the first time from Primorsky Krai. Three species (Oreodytes mongolicus, Sphaeridium bipustulatum, and Sphaeridium marginatum) are recorded for the first time from Russian Far East.

Acknowledgements. We are grateful to I.A. Zabaluev (Moscow, Russia), G.A. Nacharkin and D.E. Shcherbakov (Moscow, Russia), K.A. Ostapenko (Vladivostok, Russia) for material provided by them, P.N. Petrov (Moscow, Russia) for checking the identification of Hybius anjae and valuable review of the manuscript, H. Fery (Berlin, Germany), G. Gusafson (Lawrence, USA) and J. Bergsten (Umea, Sweden) for providing some of the cited publications; V.M. Loktionov (Vladivostok, Russia) for processing photographs of the type specimens of Hydrocassis lucifer, and K.V. Makarov (Moscow, Russia) for photographs of Gyrinus sachalinensis, Enochrus japonicus, and Heterolinus gapyeongensis. The work of A.S. Sazhnev and A.A. Prokin was carried out within the framework of a Russia State assignment no. 1201051100109-1.

Competing interests. The authors declare no competing interests.

References

Baranowski R. 1985. Two new species of Cercyon Leach from Boreal Sweden // Swedish Entomol. Vol.15. P.341–347.
Berlov E.Ya., Bervov O.E. 1996. [Catalogue of diving beetles (Coleoptera, Dytiscidae) of the Asian part of Russia] // Vestnik Irkutskoi Gosudarstvennoi Sel'skokhozvystavnnoi Akademii, Biological Issue. P.68–75 [in Russian].
Brinck P. 1943. Insecta, e Siberia meridionali et Mongolia, in itinere Orn Olsen 1914 collecta. A. Coleoptera, a Fritz Jensen (Coleoptera, Dytiscidae) of the Asian part of Russia] // Vestnik Zoologii. Vol.563. P.87–108. doi.org/10.3897/zookeys.853.33908
Fery H., Petrov P.N. 2014. Notes on the identity of Oreodytes okulovi Lafer 1988 (Coleoptera: Dytiscidae) // Linzer Biologische Beiträge. Vol.46. No.2. P.1241–1254.
Fikáček M., Angus R.B., Gentili E., Jia F., Minoshima Y.N., Prokin A., Prazovzoy M., Ryndevich S.K. 2015. Family Hydrophilidae Latreille, 1802. // Jól Lőlő, D Lőlő (eds). Catalogue of Palaearctic Coleoptera. Vol. 2. Revised and Updated Edition. Leiden-Boston: Brill. P.37–76.
Fossen E.I., Ekrem T., Nilsson A.N., Bergsten J. 2016. Species delimitation in northern European water scavenger beetles of the genus Hydrobius (Coleoptera, Hydrophilidae) // ZooKeys. Vol.564. P.71–120. doi.org/10.3897/zookeys.564.6558.
Gramma V.N. 1980. [A new species of the genus Halperin Latr. (Coleoptera, Halphildidae) from the Far East] // Entomologicheskie Obozreniya. Vol.59. No.2. P.294–296 [in Russian, with English abstract].
Gusakov A.A. 2009. [Family Hydraenidae] // Storozhenko S.Yu (ed.). Nasekomye Lazovskogo zapovednika. Vladivostok: Dal’nauka. P.114 [in Russian].
Hájek J. 2017a. Family Dytiscidae Leach, 1815 // Jól Lőlő, D Lőlő (eds). Catalogue of Palaearctic Coleoptera. Vol.1. Revised and updated edition. Archostoma — Mysophaga — Adephega. Leiden-Boston: Brill. P.844–845.
Hájek J. 2017b. Family Noteridae G.C. Thomson, 1860 // Jól Lőlő, D Lőlő (eds.). Catalogue of Palaearctic Coleoptera. Vol.1. Revised and updated edition. Archostoma — Mysophaga — Adephega. Leiden-Boston: Brill. P.846–914.
Hájek J., Fery H. 2017. Family Gyrinidae Latreille, 1810 // Jól Lőlő, D Lőlő (eds). Catalogue of Palaearctic Coleoptera. Vol.1. Revised and updated edition. Archostoma — Mysophaga — Adephega. Leiden-Boston: Brill. P.822–29.
Hebauer F. 1994. The Crenitis of the Old World (Coleoptera, Hydrophilidae) // Acta Coleopterologica. Vol.10. No.2. P.3–40.
Hebauer F. 1995. Bekante und neue Hydrophiloida aus Ostbirenien (Col.) // Entomologische Nachrichten und Berichte. Vol.39. P.29–36.
Hebauer F., Ryndevich S.K. 2005. New data on the distribution of Old World Hydrophilidae (Coleoptera) // Acta Coleopterologica. Vol.21. No.1. P.43–51.
Jách M.A. 1988. Revisional notes on the Hydroa ripparia species complex (Coleoptera: Hydraenidae) // Aquatic Insects. Vol.10. No.3. P.125–139.
Jách M.A. 2015. Family Hydrophilidae Mulsant, 1844 // Jól Lőlő, D Lőlő (eds.). Catalogue of Palaearctic Coleoptera. Vol.2. Revised and Updated Edition. Leiden-Boston: Brill. P.130–162.
Jách M.A., Kodada J., Čimpror F. 2016. Family Elmidae Curtis, 1830 // Jól Lőlő, D Lőlő (eds.). Catalogue of Palaearctic Coleoptera. Vol.3. Scarabaeoidea — Scirtoidea — Dascilloidea. Leiden: Brill. P.591–603.
Jung S.W., Kamite Yu., Ba E.Y. 2011. Description of Optiosewus gapyeongensis new species and Heterolinus haegesevarii (Nomura) (Coleoptera: Elmidae) new to Korea // Entomological Research. Vol.41. P.178–184.
Kobayashi T., Hayashi M., Kamite Yu., Sota T. 2021. Molecular phylogeny of Elmidae (Coleoptera: Byrrhoidea) with a focus on Japanese species: implications for infraspecific classification // Systematic Entomology. Vol.1–13. DOI: 10.1111/syen.12499.
Lafer G.Sh. 1988. [New species of diving beetles (Coleoptera, Dytiscidae) from the Far East of the USSR] // Fauna, systematika i biologiya presnovodykh bespovannykh. Vladivostok: DVO AN SSSR. P.52–59 [in Russian].
Lafer G.Sh. 1989. 7. [Fam. Dytiscidae — The Diving beetles] // Lehr P.A. (ed.). Opredelitel’ nasekomikh Dal’nogo Vostoika SSSR. Vol.3. No.1. Lenindrad: Nauka Publ. P.229–253 [in Russian].
Lafer G.Sh. 1992. [Corrections and clarifications to the book “Keys to the Insects of the Far East of the USSR, Vol. 1, part 1” (1989 yr)] // Lehr P.A. (ed.). Opredelitel’ nasekomikh Dal’nogo Vostoika SSSR. Vol.3. No.2. Sankt-Peterburg: Nauka Publ. P.666–702 [in Russian].
Lafer G.Sh. 1996. Fam. Halphildidae. Dopolneniye 1. [Addition 1] // Lehr P.A. (ed.). Opredelitel’ nasekomikh Dal’nogo Vostoika Rossi. Vol.3. No.3. Vladivostok: Dal’nauka. P.408 [in Russian].
Larson D.J., Alarie Y., Roughley R.E. 2000. Predaceous diving beetles (Coleoptera: Dytiscidae) of the Nearctic region, with emphasis on the fauna of Canada and Alaska. Ottawa: NRC Research Press. 982 pp.
Maslovskaya O., Kopeva A., Petrova E., Ivanova O., Krháko O. 2020. Development of ecotourism infrastructure at protected areas of Primorsky Krai // IOP Conf. Series: Materials Science and Engineering. Vol.890. P.1–6. doi.org/10.1088/1757-899X/890/1/012002.
Nilsson A.N. 1994. Two new East Palaearctic Agabus species of the adpressus- and confinis-groups (Coleoptera, Dytiscidae) // Entomologica Fennica. Vol.5. P.169–175.
Nilsson A.N. 1999. Description of a new East Palaearctic species of Hybius Ericson previously mixed up with I. pippiasi Izaiiez (Coleoptera: Dytiscidae) // Koleopterologische Rundschau, Vol.69. P.33–40.
Nilsson A.N., Minakawa N., Obreg P.B.H. 1997. The diving beetles of the Kuril Archipelago in the Far East of Russia (Coleoptera: Dytiscidae) // Beiträge zur Entomologie. Vol.47. No.2. P.365–376.
Nilsson A.N., Kholin S.K. 1994. The diving beetles (Coleoptera, Dytiscidae) of Sakhalin — an annotated checklist // Entomologisk Tidsskrift. Vol.115. P.143–156.
Nilsson A.N., Kholin S.K., Minakawa N. 1999. The diving beetles of Kamchatka, with additional records from Sakhalin and the Kuril Islands // Beiträge zur Entomologie. Vol.49. No.1. P.107–131.
Nilsson A.N., Lundmark M., Kholin S.K., Minakawa N. 2001. A faunistic review of the Gyrinus species of the Far East of Russia // Koleopterologische Rundschau. Vol.71. P.27–35.

New data on water beetles of Primorsky Krai

273
