The National Ecological Observatory Network (NEON) provides open-access measurements of stable isotope ratios in atmospheric water vapor (δ²H, δ¹⁸O) and carbon dioxide (δ¹³C) at different tower heights, as well as aggregated biweekly precipitation samples (δ²H, δ¹⁸O) across the United States. These measurements were used to create the NEON Daily Isotopic Composition of Environmental Exchanges (NEON-DICEE) dataset estimating precipitation (P; δ²H, δ¹⁸O), evapotranspiration (ET; δ²H, δ¹⁸O), and net ecosystem exchange (NEE; δ¹³C) isotope ratios. Statistically downscaled precipitation datasets were generated to be consistent with the estimated covariance between isotope ratios and precipitation amounts at daily time scales. Isotope ratios in ET and NEE fluxes were estimated using a mixing-model approach with calibrated NEON tower measurements. NEON-DICEE is publicly available on HydroShare and can be reproduced or modified to fit user specific applications or include additional NEON data records as they become available. The NEON-DICEE dataset can facilitate understanding of terrestrial ecosystem processes through their incorporation into environmental investigations that require daily δ²H, δ¹⁸O, and δ¹³C flux data.

Background & Summary
The stable isotope ratios of carbon and water fluxes are natural environmental tracers that can be used to provide new insights into hydrological, ecological, and meteorological processes, as well as provide supportive metrics for understanding the complex feedbacks between the land surface and atmosphere. These tracers are informative in ecohydrologic modeling applications because they provide additional points of comparison between observed and modeled environmental pools and fluxes, and provide a benchmark with which to evaluate the performance and efficiency of modeling approaches.

Tracers commonly used in studies of land surface processes from global to local scales include the stable isotope ratios of hydrogen (²H/¹H), oxygen (¹⁸O/¹⁶O), and carbon (¹³C/¹²C), found in water and carbon dioxide, hereafter expressed as δ²H, δ¹⁸O and δ¹³C values. Water isotope ratios provide useful information for partitioning evapotranspiration (ET) into evaporation and transpiration at the ecosystem scales, as well as understanding water use efficiency in forests, agricultural, and other ecosystems. Carbon isotope ratios provide valuable information about the component fluxes that determine net ecosystem exchange (NEE) of carbon dioxide between ecosystems and the atmosphere. Insights into such processes support the understanding of plant water uptake strategies and the underlying principles of water, carbon, and energy cycling in the soil-vegetation-atmosphere continuum.

The United States National Ecological Observatory Network (NEON) collects long-term ecological data in eco-climatologically diverse field sites across the United States and provisions these data through an open-access data portal (https://data.neonscience.org/). These publicly available isotope datasets are part of an important...
network documenting hydrometeorological tracer patterns throughout North America. The NEON atmospheric gas stable-isotope measurements are collected at different tower heights, with each height being sampled approximately hourly (varying by site), enabling robust daily calculations of NEE and ET flux isotope ratios (e.g., via mass balance approaches developed by Keeling and Miller–Tans). The precipitation isotope data are collected at biweekly intervals, but they can be downscaled to a daily resolution using a validated approach.

By conducting those pre-processing steps, we can facilitate subsequent applications using these published daily flux data products.

We generated daily records of a) $\delta^{2}H$ and $\delta^{18}O$ in precipitation fluxes (F_P) at 25 NEON core sites and 19 NEON gradient sites, b) $\delta^{2}H$ and $\delta^{18}O$ of ET fluxes (F_{ET}) at 19 NEON core sites and 2 NEON gradient sites, and c) $\delta^{13}C$ of NEE fluxes (F_{FNEE}) at 19 NEON core sites and 28 NEON gradient sites. These products form the NEON Daily Isotopic Composition of Environmental Exchanges (NEON-DICEE) datasets characterizing flux isotope ratios across diverse ecosystems over a multi-year span created using consistent instrumentation and methodology. The NEON-DICEE datasets provided here are reproducible with the published python and R scripts. The methods can be modified to fit a user's specific application or as additional NEON data records become available in the future. The subsequent sections detail the methods used to derive isotope ratios associated with the F_P, F_{ET} and F_{FNEE} fluxes, the validation of each method, and a description of the associated metadata.

Methods

Precipitation flux data products. We acquired 30-minute precipitation amount data and stable water isotope ratios in precipitation collected in biweekly intervals from the NEON Data Portal using the neonUtilities R package. A wet deposition collector at each site opens during rain events to collect samples. These precipitation event samples were composited to create a 2-week weighed, filtered, and analyzed dataset. All datasets with stable water isotopes in precipitation (as of February 2022) were downloaded, as well as the corresponding precipitation amount data. There were 44 sites across the NEON network with water isotope data, 38 of which contained sufficient data to perform the downsampling methodology (refer to the NEON data product number DP1.00006.001 for precipitation amounts and DP1.00038.001 for precipitation stable isotope ratios). At the time of this publication, NEON’s “primary” precipitation data had a documented issue where the weighing gauge had recorded spurious small precipitation amounts. Consequently, we used the “secondary” collector data (from a tipping bucket rain gauge) when available, and the primary data was only used at sites that did not have secondary data. As a further quality check, we removed trace precipitation events, defined here as less than 0.25 mm of accumulated precipitation in one day. This threshold can be changed within the code to generate new data products.

The NEON precipitation samples for isotope analysis are collected at a biweekly resolution. This temporal resolution is higher relative to past network collections (e.g., the Global Network of Isotopes in Precipitation (GNIP) contains data mostly at monthly resolutions) but remains coarser than what is ideal for land modeling applications. Consequently, by downsampling from stable isotope analyses on the bi-weekly precipitation composites to daily resolution a fine-scale product is available for future studies. The daily stable water isotopes associated with the F_P were generated at each NEON site with sufficient observation data to conduct a statistical downsampling method, which translated the observed biweekly water isotope samples to a daily estimate correlating with known precipitation amounts. The downsampling method was run 100 times to create an ensemble of F_P timeseries with associated isotope ratios ($\delta^{2}H$ and $\delta^{18}O$) to characterize the range of expected values. We provide all 100 ensemble realizations, as well as ensemble summary statistics (mean and standard deviation). The statistical downsampling method was described in detail and validated by Finkenbiner et al., here we provide a summary of the method applied to the NEON datasets.

At each NEON site, the 30-minute precipitation amounts were aggregated to daily and biweekly totals to correspond with the biweekly tracer observations and provide a daily time series on which to condition the generated daily tracer values. The seasonal component of each $\delta^{2}H$ and $\delta^{18}O$ time series was characterized using a combination of sinusoidal functions through Fourier decomposition, following the methods from Allen et al., and removed. The remaining isotope values were assumed to be drawn from a purely stochastic process with a mean of zero. The daily covariance statistics were predicted based on trends in the means, standard deviations, and Pearson correlation coefficients as each time series was aggregated from biweekly to coarser resolutions. Some NEON sites had few biweekly observations and were unable to be aggregated to the 12-week resolution required for the downsampling method. We anticipate as NEON continues to collect observations and the site data represents longer seasonal time scales, this downsampling method can be applied at additional sites. $\delta^{2}H$ and $\delta^{18}O$ stable water isotopes are strongly correlated with each other and often share a weaker, but significant, relationship with precipitation amount. A Gaussian copula conditioned on daily precipitation amounts was used to generate pseudo-random values from the predicted de-seasonalized daily statistics of $\delta^{2}H$ and $\delta^{18}O$ from the stochastic signal. A copula is a multivariate cumulative distribution function used to model the dependence between random variables, here the random variables were precipitation amount and its isotopic ratios. Lastly, the pre-defined seasonal component was added to each stochastic isotope series and a residual correction was performed. The residual correction adjusts the downscaled daily $\delta^{2}H$ and $\delta^{18}O$ values by forcing the biweekly precipitation weighted means of the downscaled data to match those of the observed biweekly dataset. At each NEON site with sufficient observation data, we generated 100 final synthetic daily time series which corresponded with daily precipitation amounts, seasonal signals, and stochastic variability.

Gas flux data products. The NEON atmospheric isotope measurements provide continental-scale ongoing measurements of $\delta^{13}C$-CO$_2$, $\delta^{18}O$-H$_2$O$_{aq}$, and $\delta^{2}H$-H$_2$O$_{aq}$ at established eddy covariance towers. The NEON eddy covariance bundled product (refer to NEON data product number DP4.00200.001) provides $\delta^{2}H$, $\delta^{18}O$, and $\delta^{13}C$ values of the atmospheric gases at different tower heights with a typical averaging interval of 9-minutes.
Gas flux data products. For each stable isotope time series, a value of $≥ 9999$ was used to fill days when no calibrated isotope data were available, and this was marked with a “1” quality flag in the metadata file. A flag value of “2” was used if there was a low number ($n ≤ 5$) of calibrated isotope values used to generate the daily flux values. A quality flag value of “3” was assigned when the Miller-Tans mixing model r-squared (R^2) was below 0.9. To identify cases
where the interred point falls outside the range of observations, an interquartile (IQR) range flag was applied to each time series meeting the above criteria ($n \geq 5$, $R^2 \geq 0.9$); if the inferred isotope value of the flux was beyond the 1.5 times IQR of the 25th percentile (Q₁ - 1.5 IQR) and 75th percentile (Q₃ + 1.5 IQR) of the observation data, then a flag of “4” was assigned to those data points. A “0” quality flag was used to indicate a good isotope value of the flux estimated from the isotope ratios of the gases where $n \geq 5$ from the regression analysis, $R^2 \geq 0.9$, and the isotope value was within the desired interquartile. Users of these data products are encouraged to use the isotope...
values in the time series with a quality flag value of "0". The isotope ratios of the ET and NEE fluxes which passed all quality flags at ONAQ and WREF were shown in Fig. 1e–j, along with the fluxes themselves. The site averaged (± standard deviation) all time isotope flux values ranged from $-252.4 (72.8) \permil$ to $-51.9 (8.9) \permil$ for δ^2H$_{ET}$, $-34.1 (9.3) \permil$ to $-7.8 (1.2) \permil$ for δ^{18}O$_{ET}$, and $-32.8 (9.5) \permil$ to $-17.6 (1.1) \permil$ for δ^{13}C$_{NEE}$ (Fig. 2e–j). The site averaged (± standard deviation) daytime isotope flux values ranged from $-236.6 (61.9) \permil$ to $-51.4 (9.5) \permil$ for δ^2H$_{ET}$, $-32.6 (10.7) \permil$ to $-7.7 (1.3) \permil$ for δ^{18}O$_{ET}$, and $-32.8 (7.3) \permil$ to $-18.8 (1.2) \permil$ for δ^{13}C$_{NEE}$. The site averaged (± standard deviation) nighttime isotope flux values ranged from $-262.4 (75.7) \permil$ to $-50.5 (9.5)$

![Fig. 2](https://example.com/fig2.png)

Fig. 2 Average and standard deviation of each of NEON-DICEE time series from each of the NEON site locations with (a–d) precipitation flux (F_P) water isotopes (one time series), (d–h) flux tower ET (F_{ET}) estimates of water isotopes (“all time”), and (i,j) NEE (F_{NEE}) of carbon isotopes (“all time”).
for $\delta^{2}H_{ET} = -34.3 (9.8) \, \%$ to $-7.5 (1.2) \, \%$ for $\delta^{18}O_{ET}$, and $-30.1 (1.8) \, \%$ to $-17.2 (1.3) \, \%$ for $\delta^{13}C_{NEE}$. Across all NEON sites, the number of $\delta^{18}O_{ET}$ and $\delta^{2}H_{ET}$ flux values that passed all quality flags ranged from 127 to 829 days (7 to 45% of total days) and 197 to 1046 days (11 to 56% of total days), respectively. The number of $\delta^{13}C_{NEE}$ data points that passed all quality flags ranged from 43 to 1324 days (2% to 71% of total days). However, calculated flux isotope ratios that did not pass quality flags might not necessarily be low quality. For example, atmospheric conditions could be such that a two-member mixing model does not work. In this case, the raw data would be of high quality, but the Miller-Tans mixing model method would fail. Future work could investigate other methods besides the Miller-Tans method as to increase the number of data points that pass imposed quality flags.

Technical Validation

Precipitation flux data products. The implemented statistical downscaling method was previously validated at 27 globally distributed sites from the International Atomic Energy (IAEA) Global Network of Isotopes in Precipitation (GNIP) database. Downscaling biweekly observations to daily estimates cannot produce the true value (as these are unknown) but only statistically representative realizations. We quantified the uncertainty associated with the average of the daily precipitation estimates by calculating the standard deviation of each precipitation event across an ensemble of 100 precipitation time series at each site (Fig. 3). The average standard deviations ranged from 2.4 to 9.5‰ for $\delta^{2}H$ values and 0.3 to 1.6‰ for $\delta^{18}O$ values across sites. Sites with larger seasonal variability have larger standard deviations. The dataset provided here contains 100 realizations of the estimated daily precipitation’s isotopic composition based on the statistics of a coarser resolution observation time series (here biweekly observations). Depending on the application of the daily isotope ratios, generating an ensemble of daily time series may be advantageous to capture impacts of the standard error as a function of time or space. To generate ensemble sets, the provided python script, which generates a single random realization of the daily precipitation water isotope data product, can be run numerous times.

Gas flux data products. The generation of calibrated isotope ratios associated with the atmospheric carbon dioxide flux were validated by Fiorella et al. (with a bias of 0.11‰ and precision of ~0.4‰) and here similar procedures were used for the atmospheric water vapor ratios. Within the context of a simplified mixing model source estimation approach, uncertainty in the estimation of the isotope composition of surface-atmosphere fluxes is associated with accuracy of isotope measurements themselves and the range of atmospheric carbon dioxide and water vapor concentrations observed during the averaging interval. The average of the daily standard error in the mixing model regression slope is shown in Fig. 4 for the F_{ET} and Fig. 5 for the F_{NEE}. These standard errors represent the uncertainty associated with estimation of the isotope ratio of the F_{ET} and F_{NEE} within the mixing model framework. The mean of the standard error of the Miller-Tans model slope across all sites ranged from 1.3 to 3.5 ($+/−0.6$) for $\delta^{2}H$, from 0.2 to 0.5 ($+/−0.1$) for $\delta^{18}O$, and from 0.2 to 0.7 ($+/−0.1$) for $\delta^{13}C$. |
Usage Notes
Water isotope ratios of \(F_P \) are contained in four CSV files containing time series of \(^{b}H \) ("daily_p_d2H_mean.csv"), \(^{b}H \) ("daily_p_d2H_std.csv"), \(^{b}O \) ("daily_p_d18O_mean.csv"), and \(^{b}O \) ("daily_p_d18O_std.csv") ratios corresponding to observed precipitation derived from the 100 ensemble members. A corresponding metadata file ("daily_p_metadata.csv") describing the quality of each data point is provided as well are the 100 timeseries. The script "Estimate_daily_p_flux_iso.py" will implement the complete statistical downscaling method\(^\text{22}\) with 100 ensemble runs and save daily water isotope time series (mean and standard deviation) which correspond to observed daily precipitation amounts at each NEON site to comma-separated values (CSV) files. The user can change which site data are analyzed and how many ensembles are generated. The user can change the date range they wish to look at. Additionally, the user can change the "precip_filter" variable to change the magnitude of the precipitation events which will be filtered out of the downscaling method and consequently update the output time series and metadata files.

Water isotope ratios of the \(F_{ET} \) and carbon isotope ratios of the \(F_{NEE} \) are contained in three CSV files per time-window ("daily_et_flux_d2H_xxx.csv", "daily_et_flux_d18O_xxx.csv", and "daily_nee_flux_d13C_xxx.csv"), where “xxx” is the time-window (“alltime”, “daytime”, and “nighttime”). Each is associated with a corresponding error and metadata file ("daily_et_flux_d2H_xxx_error.csv", "daily_et_flux_d2H_xxx_metadata.csv", "daily_et_flux_d18O_xxx_error.csv", "daily_et_flux_d18O_xxx_metadata.csv", "daily_nee_flux_d13C_xxx_error.csv", and "daily_nee_flux_d13C_xxx_metadata.csv") describing the error estimate of the flux and the quality of each data point. NEON isotope atmospheric isotope ratios were calibrated using the NEONiso package and the \(F_{ET} \) and \(F_{NEE} \) flux isotope composition estimation procedure for \(^{b}C \), \(^{b}H \), and \(^{b}O \) were done by leveraging the R scripts “mixing_model_d13C.R”, “mixing_model_d2H.R”, and “mixing_model_d18O.R”, respectively. The script “et_nee_flux.py” takes the output from the mixing-model scripts, reshapes, and assigns quality flags to the data. For the quality flags of \(F_{ET} \) and \(F_{NEE} \) fluxes, the user can adjust the minimum number of the data points used in the Miller-Tans mixing model, adjust the threshold value of the R\(^2\) regression, and implement other filters besides the IQR filtering.

Code availability
Python and R code and generated CSV files are available on HydroShare\(^\text{35}\). For the NEON data processing packages, refer to the NEONiso package\(^\text{24}\) found at on CRAN or at https://doi.org/10.5281/zenodo.3836875.

Received: 30 September 2021; Accepted: 20 May 2022;
Published online: 21 June 2022

References
1. Chai et al. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements. J. Hydrol. 523, 67–78 (2015).
2. Brooks et al. Stable isotope estimates of evaporation: Inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol. Oceanogr. 59, 2150–2165 (2014).
3. Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).
4. Gupta, A., Gerber, E. P. & Lauritzen, P. H. Numerical impacts on tracer transport: A proposed intercomparison test of atmospheric general circulation models. Quart. J. Roy. Meteor. Soc. 146, 3937–3964 (2020).
5. Kanner, L. C., Buenning, N. H., Stott, L. D., Timmermann, A. & Noone, D. The role of soil processes in d18O. Global Biogeochem. Cycles 28, 239–252 (2014).
6. Remondi, F., Kircher, I. W., Burlando, P. & Fatichi, S. Water flux tracking with a distributed hydrologic model to quantify controls on the spatio-temporal variability of transit time distributions. Water Resour. Res. 54, 3081–3099 (2018).
7. Abbott, B. W. et al. Using multi-tracer inference to move beyond single catchment ecohydrology. Earth-Sci. Rev. 160, 19–42 (2016).
8. Krause, P., Boyle, D. P. & Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. in Geosci. 5, 89–97 (2005).
9. Bowen, G. J. & Good, S. P. Incorporating water isotopes in hydrological and water resource investigations. Wiley Interdiscip. Rev.: Water 2, 107–119 (2015).
10. McGuire, K. J. & McDonnell, J. J. A review and evaluation of catchment transit time modeling. J. Hydrol. 330, 543–563 (2006).
11. Sprenger, M. et al. The demographics of water: A review of water ages in the critical zone. Rev. Geophys. 57, 800–834 (2019).
12. Turnadge, C. & Smerdon, B. D. A review of methods for modelling environmental tracers in groundwater: Advantages of tracer concentration simulation. J. Hydrol. 519, 3674–3689 (2014).
13. Fiorella, R. et al. Calibration Strategies for Detecting Macroscale Patterns in NEON Atmospheric Carbon Isotope Observations. J. Geophys. Res. Biogeosci. 126 (2021).
14. Xiao, W., Wei, Z. & Wen, X. Evapotranspiration partitioning at the ecosystem scale using the stable isotope method—A review. Agric For Meteorol. 263, 346–361 (2018).
15. Wu, Y. et al. Stable isotope measurements show increases in corn water use efficiency under deficit irrigation. Sci Rep 8, 14113 (2018).
16. Al-Opadi, F., Good, S. P., Frost, K. & Higgins, C. W. Differences in soil evaporation between row and interrow positions in furrowed agricultural fields. Vadose Zone J. 19, e20086 (2020).
17. Bowen, G. J., Cai, Z., Fiorella, R. P. & Putman, A. L. Isotopes in the water cycle: Regional- to global-scale patterns and applications. Annu. Rev. Earth Planet. Sci. 47, 453–479 (2019).
18. Lu, X. et al. Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system. Agric. Water Manag. 179, 103–109 (2017).
19. Wiems, G. R. et al. Stable water use efficiency under climate change of three sympatric conifer species at the alpine treeline. Front. Plant Sci. 7, 799 (2016).
20. Pataki, D. E. et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochem. Cycles. 17 (2003).
21. Miller, J. B., & Tans, P. P. Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus, 55 (2003).
22. Finkenbiner, C. E., Good, S. P., Allen, S. T., Fiorella, R. P. & Bowen, G. J. A statistical method for generating temporally downscaled geochemical tracers in precipitation. J. Hydrometeorol. 22 (2021).
23. NEON (National Ecological Observatory Network). Precipitation (DP1.00006.001), RELEASE-2022. https://doi.org/10.48443/6wkc-1p05. Dataset accessed from https://data.neonscience.org on May 12, 2022.
24. Lunch, C. K. & Laney, C. M. NEON (National Ecological Observatory Network). neonUtilities: Utilities for working with NEON data. R package version 1.3.4. https://github.com/NEONScience/NEON-utilities (2020).
25. Lee, R. and S. Weintraub. NEON User Guide to Stable Isotopes in Precipitation (NEON.DP1.00038) Version B. NEON (National Ecological Observatory Network). (2021).
26. IAEA: Global network of isotopes in precipitation. https://www.iaea.org/services/networks/gnip 2020.
27. Allen, S. T., Krichner, J. W. & Goldsmith, G. R. Predicting spatial patterns in precipitation isotope (δ2H and δ18O) seasonality using sinuoidal isoclines. Geophys. Res. 45, 4859–4868 (2018).
28. Craig, H. Isotopic variations in meteoric waters. Science 133, 1702–1703 (1961).
29. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).
30. Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris. 8, 229–231 (1959).
31. NEON (National Ecological Observatory Network). Bundled data products – eddy covariance (DP4.00200.001). https://data.neonscience.org (2021).
32. Good, S. P., Sodergen, K., Wang, L., & Caylor, K. K. Uncertainties in the assessment of the isotopic composition of surface fluxes: A direct comparison of techniques using laser-based water vapor isotope analyzers. J. Geophys. Res. Atmos. 177 (2012).
33. Wutzler, T. et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosci. 15, 5015–5030 (2018).
34. Zobitz, J. M., Keener, J. P., Schnyder, H. & Bowling, D. R. Sensitivity analysis and quantification of uncertainty for isotopic mixing packages. C.F., B.L., L.S., Z.B. and M.H. analyzed the NEON datasets and contributed to published code. R.F., C.F., B.L. and L.S. wrote the manuscript. R.F. provided calibration code and updated NEON data processing