Extracellular vesicles-mediated interaction within intestinal microenvironment in inflammatory bowel disease

Qichen Shen a, Zhuizui Huang a, Jiachen Yao b, Yuanxiang Jin a,⇑

a Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
b Faculty of Technology, University of Turku, Turku 20014, Finland

HIGHLIGHTS
- EVs derived from different sources play modulatory functions in the intestine, especially interaction associated with microbiota.
- An EV-mediated interaction system was established to describe the possible mechanism of IBD pathogenesis and its cure.
- EVs-based treatments show great potential of clinical applications in IBD diagnosis and therapy.

ARTICLE INFO
Article history:
Received 22 May 2021
Revised 1 July 2021
Accepted 5 July 2021
Available online 8 July 2021

Keywords:
Inflammatory bowel disease
Extracellular vesicles
Microbiota
Intestinal barrier
Therapy

ABSTRACT
Background: The intestinal tract is a complicated ecosystem with dynamic homeostasis via interaction of intestine and microbiota. Inflammatory bowel disease (IBD) is chronic intestinal inflammation involving dysbiosis of intestinal microenvironment. Extracellular vesicles (EVs), as vital characteristics of cell–cell and cell-organism communication, contribute to homeostasis in intestine. Recently, EVs showed excellent potential for clinical applications in disease diagnoses and therapies.

Aim of Review: Our current review discusses the modulatory functions of EVs derived from different sources in intestine, especially their effects and applications in IBD clinical therapy. EV-mediated interaction systems between host intestine and microbiota were established to describe possible mechanisms of IBD pathogenesis and its cure.

Key Scientific Concepts of Review:
EVs are excellent vehicles for delivering molecules containing genetic information to recipient cells. Multiple pieces of evidence have illustrated that EVs participate the...
interaction between host and microbiota in intestinal microenvironment. In inflammatory intestine with
dysbiosis of microbiota, EVs as regulators target promoting immune response and microbial reconstruc-
tion. EVs-based immunotherapy could be a promising therapeutic approach for the treatment of IBD in
the near future.

© 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The gut hosts a complex microbiota that is currently considered
to be a new organ that is strongly associated with host health and
multiple diseases [1,2]. The microbiota in the intestine is initially
composed of microbes from the mother and then shaped by feeding
and other environmental contacts [3]. Previous studies have
demonstrated the contacts between the host and gut microbiota prin-
cipally rely on metabolites [4,5], nucleic acids [6] and proteins [7,8].

Extracellular vesicles (EVs) and membrane vesicles (MVs)
derived from host cells and microbiota, respectively, also partici-
pate in interactions in the intestinal microenvironment [9,10].
Accumulated evidence has proven that vesicles, as important
means of cell–cell and cell-organism communication, are essential
for intestinal homeostasis [11,12].

At present, inflammatory bowel disease (IBD) had affected more
than 3.5 million people, with an increasing incidence worldwide
[13]. The etiology and pathogenesis of IBD were very complex
and remain unclear. In addition to genetic susceptibility and envir-
onmental pollution [14,15], several studies reported that dysbio-
sis of the gut microbiota of IBD patients with abnormal
metabolism of intestinal epithelial cells (IECs) is associated with
a changing abundance of cargo in EVs and MVs [16]. Moreover,
EVs are involved in the formation of IBD and they have roles in
the regulation of the intestinal mucosa and epithelial barrier func-
tion [17] and the export of cellular metabolites [10], as well as
being important regulators of immune cell recruitment [18].

Here, we will review the possible role of EVs in the interaction
between the gastrointestinal (GI) tract and gut microbiota in IBD
patients, especially the mechanism of action and the effects of
extracellular vesicles and bacterial membrane vesicles on IBD
pathogenesis. In addition, we summarized the potential utility of
EVs as diagnostic markers and as a novel therapeutic approach,
as well as the application of modified EVs in IBD patients.

An overview of IBD and gut microbiome

IBD is a chronic inflammatory condition of the GI tract with two
main subtypes, ulcerative colitis (UC) and Crohn’s disease (CD),
which are characterized by debilitating and chronic relapsing and
remitting inflammation in the colon and GI tract, respectively.
IBD patients have unique but inordinate microbial signatures
[19], which commonly show reduced bacterial diversity [20] and
a decreased abundance of Firmicutes [21–24]. Meanwhile, a signif-
ically increased abundance of Bacteroidetes and Proteobacteria,
mainly Escherichia coli [25], has been reported [22,23], as well as
a decrease in obligate anaerobic producers, including Faecalibac-
terium prausnitzii and Roseburia intestinalis, which are specifically
associated with short-chain fatty acid (SCFA) [26] production, in
CD [27]. Decreased levels of SCFAs can inhibit histone deacetylase
activity and modulate gene expression, cell proliferation and even
the immune response [28]. In particular, reduced butyrate can
aggravate colitis by increasing Treg cell production and decreasing
the antibacterial activity of macrophages in GI [29].

In addition, some previous studies reported that the fungal
microbiota was skewed [30] in IBD with the expansion of bacterio-
phages [31]. In pediatric IBD patients, the diversity of fungi also
decreased, while Pacific Candida taxa were found to be increased
in abundance [32]. The same results were also found in mature
patients with an increased abundance of Basidiomyctes/Ascomyctes
and decreased levels of Saccharomyces cerevisiae [30]. Another
study indicated that the intestinal microenvironments of Crohn’s
disease-specific bacteria might favor the proliferation of fungi at
the expense of bacteria. For bacteriophages, some previous reports
indicated that bacteriophage levels were significantly different in
IBD patients when compared to controls [33,34], such as Caulovi-
rales [35], which was associated with a reduction in bacterial diver-
sity by increasing the abundance of bacteriophage-exacerbated
colitis via Toll-like receptor (TLR) 9 and IFN-γ [31].

Under stimulation from dysbiosis and a disordered GI environ-
ment, the immune system and mucosal barrier integrity are
impaired, leading to chronic inflammation and aberrant immune
responses [36]. For instance, increasing numbers of pathogenic
bacteria affect the permeability of the intestine and they are
involved in the regulation of inflammatory gene expression
[20,37], resulting in intestinal inflammation [38]. Accordingly,
many therapies targeting microbiota have been developed to
restore the health of a diseased microbiome through diet [39,40],
prebiotics [41], antibiotics [42] and fecal microbiota transplanta-
tion (FMT) [28,43]. However, on account of the complexity of
IBD, more detail should be elucidated in many more clinical
experiments.

Origin, compositions and general functions of EVs

EVs were initially described nearly 35 years ago [44] and they
play a crucial role in cell-to-cell communication. EVs are classified
based on their cellular origin and/or biological function or biogen-
esis. According to their biogenesis, EVs are divided into three main
classes: exosomes, microvesicles and apoptotic bodies, with char-
acteristic markers respectively (Table 1) [45]. Exosomes are ~40 to
~200 nm (or ~30 to ~150 nm), single-membrane, endosome-
derived sEVs secreted by most cells. Briefly, exosomes are a homo-
genous population of vesicles formed with the intraluminal bud-
ing of the multivesicular body membrane [45]. MVs are ~200 to
~1000 nm EVs formed by budding of the cell membrane, and apop-
totic bodies (500–2000 nm) are products of apoptotic cell disas-
sembly [46,47]. Both microvesicles and exosomes are excellent
vehicles for delivering molecules containing genetic information
to recipient cells. Thus, in the following discussion, we mainly con-
centrate on the role of microvesicles and exosomes in IBD.

There is a characteristic subset of cell-derived components
packaged in EVs, including proteins, nucleic acids, lipids, and gly-
cocoonjugates [48]. As one of the important components of EV
components, proteins are abundant in variety and complex in structure
and can be mainly divided into two types: structural proteins (such as Alix, TSG101, CD9, CD63, and Hsp90) and specific proteins (such
as MCH-Ⅰ, MCH-Ⅱ, CD80, CD86, FasL, and TGF-β) [49]. In addition,
nucleotides, approximately 200 bp in size, in EVs are also proproto-
nists for EV functions, such as genomic DNA, mitochondrial DNA
and RNA. These extracellular nucleic acids can be transferred to
other tissues and cells by EVs. The number of species of RNA in

222
EVs are abundant, mainly including mRNAs and small regulatory RNAs [50], among which small noncoding RNAs are particularly enriched in exosomes [51,52]. Compared to RNA, EVs containing DNAs are more controversial. Accumulating evidence has indicated that EVs contain various DNAs, including single- and double-stranded DNA, genomic DNA and mitochondrial DNA, and even reverse-transcribed complementary DNAs [53–56], which may participate in the regulation of inflammation and are regarded as biomarkers of cancer, viral infection, and chemotherapeutic resistance [5].

Hence, the hypothesis that exosomes contain DNA was negated in a recent report [57]. In this research, investigators directly captured EVs by immunoaffinity to precisely characterize their constituents by virtue of high-resolution density gradient fractionation and found that small EVs are not vehicles of active DNA release. Under this circumstance, further exosomal DNA research needs more in-depth and comprehensive research with a high purity separation protocol.

In GI, EVs are mainly secreted by immune cells and IECs [58,59]. Abundant research has convincingly shown that EVs are important contributors to the communication between the microbiota [60], IECs [58], endothelial cells [61], and immune cells [59]. EVs are the main participants in vascular and epithelial barrier function in inflamed intestines and wound healing, as well as being important regulators of immune cell recruitment. Thus, in the following sections, we will discuss in detail the role of EVs in intestinal homeostasis, intestinal barrier integrity and immune cell function in the IBD-GI tract.

Extracellular vesicles from host cells in IBD-GI

Extracellular vesicles in GI contain different molecular particles according to their parental cells, which determine the function of exosomes. Exosomes from immune cells contribute to evasion of the immune system, and IEC-derived exosomes have been proven to be important regulators of IEC-induced immune tolerance (Fig. 1). These functions are critical in exosome-mediated immune responses, intestinal barrier modulation and gut microbiota shaping in IBD.

Extracellular vesicles-mediated immune responses

Extracellular vesicles are involved in immunomodulation via the functional transfer of nucleotides, proteins and other cargos between immune cells. In the active IBD intestinal microenvironment, increased recruitment of innate immune cells such as macrophages, monocytes, dendritic cells (DCs), neutrophils and T-cells, takes place. Under these circumstances, EVs are tightly related to macrophages in IBD (Table 2). For example, dextran sulfate sodium (DSS)-induced colitis mice treated with exosomes from human bone marrow-derived mesenchymal stromal cells (MSC-Exos) act mainly on colonic macrophages [62], which polarize M2b macrophages without favoring intestinal fibrosis [63]. In addition, nuclear paraspeckle assembly transcript 1 (NEAT1) was also proven to be involved in the inflammatory response by polarization of macrophages [64]. Polarized M2b macrophage secretes exosomes to increase number of regulatory Treg cells and inhibit pro-inflammatory cytokine, resulting in attenuation of colitis [65] (Fig. 1). Exosomes from DSS-induced colitis mouse serum increase the phosphorylation of p38 and ERK and the production of tumor necrosis factor by macrophages [66]. Epithelial cells exposed to adherent-invasive *Escherichia coli* and extracellular vesicles from IBD patients’ intestinal lumen induce increasing proinflammatory responses and the migration of a significantly greater number of macrophages [67,68]. In contrast, exosomes from visceral adipose tissue predispose the intestine to inflammation by promoting M1 macrophage polarization [69]. These studies support the hypothesis that exosomes are involved in the activation of macrophages. Furthermore, EVs have been found to have immunosuppressive effects, such as suppressing the activation of DCs to induce immune tolerance and participating in regulatory T cell (Treg) activation [18]. Activated Treg also secretes exosomes containing miR-195-3p, targeting pro-apoptotic Caspase 12, to alleviate IBD in mice [70]. IEC-derived exosomes are crucial regulators among sections, mediating the modulation of resident immune cells. In IBD development, IECs secrete epithelial cell adhesion molecule-dependent EVs with increased levels of TGF-β1 in an ERK-dependent manner to maintain the intestinal tract immune balance and decrease IBD severity [11]. In addition, IEC-derived exosomes are capable of binding to HLA-DR4 molecules and inducing productive T-cell activation by preferentially interacting with DCs [71]. These EVs also contain abundant immunomodulatory molecules, such as higher levels of major histocompatibility complex class I and class II molecules, in IBD [58,72]. DCs are the only APCs capable of activating naïve T cells, which contribute significantly to IBD pathogenesis [16]. Exosomes derived from DCs treated with IL-10 upregulate the levels of Tregs in the colonic lamina propria and relieve 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis [73]. These immunomodulatory molecules are also essential in initiating adaptive immunity, including consolidating B-cell maturation [74].

Exosomal miRNAs are also important regulators of intestinal immune responses, modulating immune cell function and thereby coordinating the immune system in IBD (Table 2) [75]. For instance, exosomal miR155 and miR146a enter recipient DCs, mediating the repression of target genes [76]. In addition, T cells are activated by miR-1246 by activating proinflammatory nuclear factor in active IBD [77,78]. The NF-kB signaling pathway is an important factor in the immune response activated in UC by targeting exosomal miRNAs, which promote the transcription of various proinflammatory cytokine genes, such as miR-16, an adenosine A2a receptor inhibitor mediating NF-kB signaling pathway activation [79].

In summary, the functional molecules in exosomes that express anti- and proinflammatory factors mediate immune responses in IBD pathogenesis (Fig. 1).

Extracellular vesicles-mediated intestinal barrier modulation

Intestinal barrier dysfunction is another pivotal factor in IBD pathogenesis. The mechanisms of gut barrier maintenance are dis-

Table 1

Vesicle	Size (nm)	EV class	Origin	Protein markers
Exosomes	40–200 (30–150)	Small EV	Endosomes	CD63 (CD81 CD9)
Microvesicles	200–1000	Large EV	Plasma membrane	Annexin A1
Apoptotic bodies	500–2000	Large EV	Plasma membrane, endoplasmic reticulum	Annexin V

* Small EVs are <200 nm in diameter.
* Large EVs are >200 nm in diameter.
ruptured in the inflammatory intestine, including downregulating epithelial cadherin (E-cadherin), reduced the thickness of the mucus layer, and dysfunction of goblet cells and Paneth cells [80]. IECs, a basic component of the intestinal barrier, are mainly affected by nucleotides in EVs from immune cells, the gut microbiome, and the ingesta. DC exosomes activate the NF-κB pathway to improve intestinal barrier function in DSS-induced colitis via exosomal miR-146b [81]. IncRNA NEAT1 modulates the intestinal epithelial barrier to suppress the inflammatory response in IBD, including downregulating TNF-α and increasing the expression of CD206, IL-10, and arginase-1 [64]. In addition, epithelial-mesenchymal transition (EMT) occurs in the process of inflammation and cancer metastasis, while miR-200b plays an antifibrotic role in the inhibition of EMT by targeting Zeb1 and Zeb2 [82]. Jia and his group used bone marrow mesenchymal stem cell (BMSC)-derived microvesicles overexpressing miR-200b to prevent colon fibrosis induced by TNBS in colitis models [83]. On the contrary, another study showed that stimulating effect of exosomal miR-200b on colorectal cancer cell-derived xenografts to effective tumor growth, which indicated different roles of miRNA in the pathogenesis of IBD and colon cancer [84]. Exosomal miR-223 is a unique miRNA in IBD pathogenesis that breaches the integrity of intestinal tight junctions (TJs) by interacting with the IL-23 pathway by targeting Claudin-8 to promote IBD progression [85,86]. miR-21, a characteristic marker in colon cancer, is also regarded as one of the most dysregulated miRNAs with highly enriched expression in exosomes derived from various intestinal cells in IBD pathogenesis [87]. Several studies have proven that the expression of miR-21 is significantly increased and this has important implications in different phases of IBD pathogenesis [18,87]. Deletion of miR-21 resulted in the exacerbation of both the TNBS-induced and T-cell transfer models of colitis [88], whereas decreased levels of miR-21 in T cells obtained from colonic mucosa were reported during the recovery stage of UC [87]. These evidences proved that partial same pathogenesis was found in the process of IBD and gastrointestinal cancers, according with the occurrence of IBD increases the risk of gastrointestinal tumors and cancer metastasis. Hence, some markers of colorectal cancer, such as the levels of exosomal miR-21, should also be considered in IBD pathogenesis.

Proteins packaged in exosomes have also been demonstrated to mediate modulation of intestinal barrier function. Cellular prion protein, released from platelet-derived exosomes, maintains the function of the TJ barrier and protects lateral junctional complexes in IBD [89]. In addition, exosomal glucose-regulated protein 78 participates in cell–cell communication between colon cancer cells [90]. IECs secrete EVs containing Annexin A1 (ANXA1), a protein activating wound repair circuits, which was found to be signifi-

Table 2

A summary of EVs and their components in studies of IBD.

EVs component	Source and type of EVs	Target	Disease model	Effects and mechanisms	References	
Immune response modulation	BMSC-EVs	Macrophage	DSS-induced colitis	Promote M2-like macrophage polarization, regulate the JAK1/STAT1/STAT6 signaling pathway	[62]	
	BMSC-Exos	Macrophage	DSS-induced colitis	Exosomal-metallothionein-2 suppress NF-κB activation	[63,136]	
	NEAT1 blood serum-Exos	Macrophage	DSS-induced colitis	NEAT1 inhibition promote macrophage polarization	[64]	
	M2b macrophage-Exos	Tregs	DSS-induced colitis	Suppress inflammatory cytokine, regulate CCL1/CCR8 axis	[65]	
	Colitis blood serum-Exos	Macrophage	–	Uregulated phosphorylation of both p38 and ERK	[66]	
	IBD blood serum-Exos	Colonic epithelial cells	–	Increase translation of IL-8 protein in recipient cells, induced migration of macrophages	[67]	
miR-155	Visceral adipose tissue-Exos	Macrophage	HFD/DSS-induced colitis	Promote M1 differentiation via transferring miR-155	[69]	
miR-195a-3p	Treg-Exos	Caspase 12	–	Promote colonic epithelial cells proliferation and inhibited cell apoptosis	[70]	
TGF-β1	IECs-EVs	Tregs	DSS-induced colitis	EpCAM-dependent IECs-EVs with increased levels of TGF-β1 alleviate IBD	[71]	
	–	IECs-EVs	DCs	TNBS-induced colitis	Induce productive T-cell activation by interacting with DCs	[73]
miR-155	DCs-Exos	Tregs	LPS-induced IBD	Increased levels of anti-inflammatory cytokine down-regulates mRNA expression of pro-inflammatory cytokines	[73]	
miR-146a	DCs-Exos	–	LPS-induced IBD	miR-146a enhances inflammatory gene expression	[76]	
Intestinal barrier modulation	miR-146b	–	NF-κB pathway	miR-146b-mediated inhibition of the ubiquitination of TRAF proteins upstream of NF-κB	[81]	
	miR-200b	BMSC-Exos	EMT	TNBS-induced colitis	Suppress the development of EMT by targeting ZEB1 and ZEB2.	[82,83]
	miR-223	HMCs-Exos	CLDN8	TNBS-induced colitis	miR-223 interacts with the IL23 pathway by inhibiting CLDN8	[85,86]
	ANXA1	IECs-EVs	Epithelial FPRs	TNBS-induced colitis	Target epithelial FPRs (FPR1 and FPR2/ALX) to promote wound repair	[91]
Gut microbial structure shaping	–	TLR 2-deficient mouse serum EVs	–	Inhibit the activity of Toll-like receptor (TLR2/6 in probiotics leading microbial dysbiosis	[92]	
	–	Fecal EVs	Probiotic gene transcripts	Enter F. nucleatum and E. coli to regulate bacterial gene transcripts and affect bacterial growth	[6]	

References

BMSC: Bone marrow mesenchymal stem cell; DSS: Dextran sulfate sodium; HFD: High fat diet; DCs: Dendritic cells; TNBS: 2,4,6-trinitrobenzenesulfonic acid; EMT: Epithelial-mesenchymal transition; HMCs: Human mast cells; CLDN8: Claudin 8; ANXA1: Annexin A1; FPRs: Formyl peptide receptors; TLR: Toll-like receptor.
Significantly increased in sera from active IBD patients, accelerating the recovery of intestinal barrier function [91].

The gut microenvironment and ingesta are also important factors in intestinal barrier modulation, and we will discuss them in a following section. In summary, exosomal nucleotides and proteins from host cells show crucial functions in maintaining intestinal barrier function and activating intestinal wound repair circuits in IBD pathogenesis (Fig. 1, Table 2).

Extracellular vesicles-mediated gut microbial structure shaping

The importance of gut microbiota in the process of intestinal inflammation is undisputed. There are abundant conjectures about crosstalk between host and intestinal microbes. However, to date, a completely clear interaction network has not been described in IBD-GI. Several previous studies have proven that EVs from host cells participate in this network and play an important role in microbial reconstruction and dysbiosis (Fig. 1, Table 2). The activity of TLR 2/6 in probiotics is significantly reduced by EVs from TLR 2-deficient mouse sera, such as Bifidobacterium and Lactobacillus, leading to microbial dysbiosis [92]. Heat shock protein 70 (HSP70), a common component of exosomes, was able to stimulate proinflammatory responses by utilizing gram-positive (TLR2) and gram-negative bacteria (TLR4) receptors in a CD14-dependent fashion [93]. In addition, exosomal nucleic acids have also been proven to participate in microbial structure shaping. Liu investigated fecal miRNAs between humans and mice and found that several miRNAs are enriched in fecal samples as well as in intestinal extracellular vesicles. These miRNAs, such as miR-515-5p and miR-1226-5p, can enter Fusobacterium nucleatum and Escherichia coli (E. coli) to regulate bacterial gene transcripts and affect bacterial growth [6]. Moreover, fecal miRNA from WT mouse transplantation reconstitutes the colonic microbes and ameliorates colitis in IEC-miRNA-deficient mice [6].

Compared to extracellular vesicle-mediated immune responses and intestinal barrier modulation, studies about exosomal functions in the gut microbiome are scarce. Nevertheless, exosome-mediated gut microbial reconstruction is a potential strategy for manipulating the microbiome, which may become an important application in IBD and other intestinal disease therapies.

Bacterial membrane vesicles in IBD-GI

In addition to EVs from host cells, numerous MVs from gram-negative and gram-positive bacteria, fungi, and protozoa play a significant role in the GI. In general, MVs are often referred to as outer-membrane vesicles (OMVs) because they were first found to originate from controlled blebbing of the outer membrane of gram-negative bacteria [94]. However, a recent review indicated that MVs can be categorized by their different parent cells, structure and composition, including OMVs, outer-inner membrane vesicles from gram-negative bacteria and cytoplasmic membrane
vesicles (CMVs) from gram-positive bacteria (Table 3) [10]. Regrettably, the vast majority of previous studies focused on OMV-related host pathology and immune tolerance.

Types and general functions of MVs

Different MVs have different structures and compositions depending on the diverse routes of the formation of MVs. OMVs are bilayered lipid membrane nanostructures 20–250 nm in diameter with an outer leaflet of lipopolysaccharide (LPS) and an inner leaflet of phospholipids, and they are purposefully secreted by gram-negative bacteria [94,95]. Their cargo can include biological components found within the parent bacterium, including LPS, periplasmic and membrane-bound proteins, DNA, RNA, enzymes, toxins and peptidoglycan [96]. Interactions between OMVs and epithelial cells can modulate the intestinal tract barrier [97,98] and cellular mechanisms that control proliferation [99] and apoptosis [100,101], and ultimately immune responses.

However, MVs were also observed in gram-positive bacteria without outer membranes and were thus named CMVs [10]. CMVs contain membrane and cytoplasmic components as well, also including DNA, RNA, enzymes, toxins and peptidoglycan, but no LPS.

Bacterial-MVs regulation of IBD-GI metabolism and immunity

Alterations in the intestinal microbiota have been involved in the pathogenesis and development of many diseases, as well as in IBD [102]. Homeostasis between the host and microbial communities in the intestine is implicated in the maturation and functions of IECs and various immune cells. Recent studies reported that an abundance of LPS-positive bacterial EVs was observed in patients with intestinal barrier dysfunction [103]. Consequently, bacterial EVs are also important regulators in IBD pathogenesis to modulate immunomodulation and the corresponding signaling pathways [98,104] (Fig. 1). *E. coli* is mainly a pathogenic bacterium that has been observed to be significantly enriched in IBD-GI. OMVs from *E. coli* stimulate transcriptional upregulation of TLRs in the IEC lines HT29-19A and Caco-2, leading to a mild proinflammatory response [105] and reducing the proliferation of HT-29 cells [106]. In addition, enterohemorrhagic *E. coli* O157-derived OMVs stimulate TLR5 and the TLR4/MD-2 complex signaling pathway to increase the production of IL-8 in IECs [107] while targeting mitochondria to induce endothelial and epithelial apoptosis [108]. On the other hand, probiotic *E. coli* strain Nissle 1917 (ECN) secretes OMVs that contribute to intestinal homeostasis by activating NOD1 signaling pathways and regulating the expression of TJ proteins to enhance barrier function in IECs [109,110]. Moreover, ECN-derived OMVs were proven to mediate anti-inflammatory and barrier protection effects and to relieve UC in experimental colitis [111].

Probiotics are crucial components in the intestine that demonstrate significantly decreased abundance in IBD pathogenesis. In the case of *Bacteroides fragilis*, OMVs from *B. fragilis* can interact with DCs via TLR2 to induce the differentiation of IL-10-producing regulatory T cells and suppress TNBS-induced colitis [112]. OMVs also interact within DCs to induce IL-10 expression by regulatory T cells via the IBDb-associated gene ATG16L1 and could relieve intestinal inflammation in a colitis model [12]. Note, some regulations of bacterial-MVs are found only in healthy individuals rather than IBD, such as *Bacteroides thetaiotaomicron* [113]. The bacterium *Akkermansia muciniphila* is a vital strain in the healthy human intestinal tract that has a crucial role in the regulation of gut barrier homeostasis and metabolic functions [114]. OMVs from *A. muciniphila* are involved in gut permeability via regulation of intestinal TJs to improve metabolic functions [97]. Stenzel reported that *Bacteroides thetaiotaomicron*-derived mammalian InsP6 phosphatase was packaged inside OMVs, defending gut epithelial and intestinal barrier integrity. Meanwhile, EVs regulate the microbiota diversity and composition to promote intestinal homeostasis indirectly. In this microenvironment, microbiota with dysbiosis aggravate dysfunctions of intestinal mucosal barrier and levels of inflammation.

Table 3

Three major types of bacterial MVs.

Vesicle	Origin	Cargo
OMV	Outer-membrane blebbing	Outer-membrane proteins, plasmids
OIMV	Explosive cell lysis and cell budding	Outer-membrane proteins, cytoplasmic (or inner) membrane proteins, RNA, DNA, plasmids
CMV	‘Bubbling cell death’ and bacterial autolysis	Cytoplasmic (or inner) membrane proteins, RNA, DNA, plasmids

OMV: outer-membrane vesicle; OIMV: outer-inner membrane vesicle; CMV: cytoplasmic membrane vesicles.

The interacted network of intestinal microenvironments

The interacted between host and gut commensal had been demonstrated in abundant previous studies. However, the roles of EVs-based interacted network in inflammatory intestine is not clear. We summarized a compendious interacted network to show the importance of EVs in intestinal microenvironments base on existing work and above description (Fig. 2). In normal bowel, EVs contribute maturation of immune cells and maintaining intestinal barrier integrity. Meanwhile, EVs regulate the microbiota diversity and composition to promote intestinal homeostasis indirectly. In this microenvironment, microbiota with stabilized community structure secrete beneficial MVs to promote immunologic function perfection. When the intestines are under inflammatory conditions induced by stress from intestinal microenvironments, cyclic EVs are transported to intestine targeting macrophages polarization and associated with microbial reconstruction. These EVs contain various biomarkers of IBD and promote expressing anti- or pro-inflammatory factors mediate immune responses. On the contrary, MVs from microbiota with dysbiosis aggravate dysfunctions of intestinal mucosal barrier and levels of inflammation.
In summary, EVs-based interacted loop within intestine contributes homeostasis of normal intestine, whereas show double roles in IBD. However, the EVs-based interacted network in intestinal microenvironment, an extremely enormous ecosystem, is difficult described clearly without abundant in-depth work. Consequently, more systematic work associated with functional EVs in intestinal microenvironment need to be reported to demonstrate the irreplaceable roles of host-EVs-microbiota loop.

The clinical potential of EVs and MVs in IBD

EVs play a basic role in cell–cell and cell-organism communication and have shown strong potential in clinical diagnosis and therapies. Therefore, a large number of studies have explored their therapeutic value with high expectations from academia and industries.

EVs as biomarkers in IBD clinical diagnosis

The advantages of EV-dependent diagnosis have been demonstrated in numerous studies. Compared to traditional histopathology diagnosis, regarding EVs as biomarkers in various diseases, they have higher targeting, provide more abundant biological information and have a reduced invasiveness of collection, which is more acceptable to patients, especially in cancer and inflammation diagnoses [119]. In human colorectal cancer (CRC), the proteomics and miRNA transcriptomics of serum have shown that multiple miRNAs and proteins are significantly altered in patients with gastrointestinal cancer [120–122]. Exosomal miR-19a with a significantly increased expression level was identified as a prognostic biomarker for the recurrence of CRC [121]. Likewise, SPARC and LRG1, extracellular matrix-related proteins, were found to promote metastasis in right-sided colon cancer serum [120]. The risk of intestinal cancer is markedly increased in IBD patients, as indicated in a number of studies [123–125]. Currently, many biomarkers are extensively used in the clinic, such as serum C-reactive protein levels, the expression of the NOD2 gene, and inflammatory cytokines, while none can be used separately for an accurate diagnosis of IBD due to nonspecificity [126]. Therefore, it is essential to establish an EV-dependent diagnostic system with high accuracy and convenience from the IBD patients’ serum, luminal contents or feces. Calcium-dependent phospholipid-binding protein ANXA1 is an important proresolving mediator associated with epithelial wound repair via Rac2-dependent NADPH oxidase-1 and it is an inhibitor of inflammation [127–129]. Subsequently, ANXA1 was observed packaged in EVs derived from IECs and had elevated levels in sera from active IBD patients [91]. ANXA1 mimetic peptide encapsulated within targeted polymeric nanoparticles accelerated murine colonic wound healing and the recovery from experimental colitis [91]. Accordingly, increasing levels of ANXA1 in IEC-derived EVs may become a specific diagnostic approach for IBD clinical diagnosis. In addition, Zheng demonstrated that exosomes isolated from saliva contained proteasome subunit alpha type 7 (PSMA7), showed significant differences between IBD patients and healthy controls [130]. Compared to existing diagnostic methods, sampling saliva PSMA7 is more convenient and painless, avoiding the pain of colonoscopy in clinical diagnosis. However, the expression of PSMA7 was also found to be overexpressed in colorectal cancer [131], which demonstrated that higher purity is essential for a comprehensive analysis of EVs as potential biomarkers in IBD. Moreover, EVs containing nucleotides also have the potential to be biomarkers of IBD, such as exosomal miR214 and NEAT1 lncRNA, which are both found at high levels in active IBD [64,132].

With the development of methods for EV purification and omics analysis, a large number of exosomal biomarkers for IBD have been reported, including proteins and nucleotides [133]. Regrettably, there is no purification technology that is convenient, efficient, steady, and has a high rate of recovery and operability for EVs targeting clinical samples, which seriously restricts the development of clinical applications. On the other hand, there is still a lack of research on screening different cell- or tissue-specific EV markers, and the sorting mechanism of EVs in cells is not clear. Consequently, multiple problems of EVs associated with separation, preservation and application need further study.
The therapeutic effect of exogenous EVs on IBD

Recently, accumulated evidence about therapeutic methods associated with EVs from different cells and tissues has adequately demonstrated the unique advantage of EVs in the treatment of multiple diseases. In colorectal cancer therapy, tumor derived EVs were eliminated to inhibited tumor metastasis and immune escape in a large number of studies [134]. In inflammatory diseases therapy, EV-related treatment methods can be mainly divided into two categories, regarding EVs from stem cells, immune cells, ingesta and microbiome as a new remedy, or considered nanocarriers to accomplish the purpose of targeted therapy.

Stem Cells Derived EVs

EVs from stem cells contribute to the self-renewal, immunomodulation, expansion and damage repair abilities of stem cells [135]. Compared to stem cell therapy, the application of SC-EVs avoids the potential risk of stem cell transplantation and is more convenient for transport and storage. Currently, MSCs-EVs have been proven in a number of experimental and clinical studies as potentially new remedies for the therapy of cancer and autoimmune and inflammatory diseases [136–139], including IBD. Several previous studies demonstrated that MSC therapy of colitis was mainly dependent on inhibition of colon macrophages, downregulation of proinflammatory cytokine levels and the suppression of NF-κB signaling pathways in BMSC-EV treatment [62,140], which was especially amplified after inflammatory exposure [141]. Similar therapeutic effects were also observed for Adipose-, Olfactory ecto- and human umbilical cord MSC (hucMSC)-derived EVs injection of DSS-induced colitis [142–144]. In addition, Wu and colleagues showed that hucMSC-exosomes modulate inflammatory levels in DSS-induced colitis by regulating the ubiquitin modification level (Fig. 3) [145,146]. Moreover, MSCs-EVs are also excellent nanocarriers to transport small molecule drugs, which is elaborated on in the following section.

Consequently, therapy associated with MSC-EVs is part and parcel of SCT, which represents a new, cell-free version of SCT, and has been investigated in various related diseases. Nevertheless, as a novel remedy for inflammatory diseases, a large number of experimental and clinical studies need to be done before MSC-EVs could be widely used in clinical therapy.

EVs from Ingesta

In addition to EVs from host cells and the microenvironment, daily intake of EVs, such as from plants and milk, is also one of the primary sources of EVs, which are generally considered safe [18,147]. These ingesta-derived EVs possess anti-inflammatory potential and are more acceptable to the public owing to the popularity of dietetic therapy.

Breast milk is a sole nutritional supply to newborn infants and plays a crucial role in the development of the infant intestinal mucosal immune system and microbiome [148]. Breast milk is also known to be a rich source of EVs, with early milk containing more EVs than mature milk [149], and these EVs participate in the maturation of the infant’s immune system [150]. In GI, breast milk-derived EVs and their components (miRNAs) survive digestion in vitro and are taken up by intestinal cells [151–153]; numerous studies have also indicated that EVs, regardless of the origin (human or different animals’ breast milk), promote the proliferation of intestinal epithelial cells, alter gut microbiota and enhance immunity of the intestine [154–158]. Hence, fresh milk may have the potential to prevent IBD [159] (Fig. 3).

Daily ingested food, such as fruits and vegetables, and derived exosome-like nanoparticles, also interact with the intestinal mucosa by osmosis (Fig. 3). Wang and colleagues demonstrated that exosome-like vesicles released from grapefruit were selectively taken up by intestinal macrophages and modulated increasing levels of heme oxygenase-1 and inhibition of IL-1 and TNF-α [160]. Consequently, they further developed an EV-based oral delivery system to realize targeted drug delivery to macrophages [160].

Moreover, grape and broccoli secrete exosome-like nanoparticles to relieve DSS-induced colitis by inducing stem cell-mediated intestinal tissue remodeling and activating DC amplitivated protein kinase, respectively [161,162]. Ginger, the rhizome of Zingiber officinale, is one of the most widely used natural products and has been used as a spice and medicine for the treatment of some digestive tract problems [163]. Ginger-derived exosome-like nanoparticles were proven to be taken up by IECs and macrophages, contributing to protection of the intestinal barrier and reconstitution of the gut microbiota [163,164].

In summary, food-derived EVs are closely related to homeostasis of the intestine and microbiota (Fig. 3). Studies associated with these vesicles have achieved encouraging outcomes in experimental animal models and have been accepted by the public. However, no clinical trials have been published to date.

EVs as Nanocarriers

With the development of nanotechnology, nanobased drug delivery systems have attained considerable importance. Multitudinous nanobased drug formulations have been applied in experimental and clinical therapy to improve therapeutic efficacy. For instance, macrophage-targeted siRNA and 5-aminosalicylic acid are packaged in nanoparticles and delivered to inflamed areas [165,166]. However, the nanoparticles could not cross the border of the cytomembrane to realize efficient utilization of the drugs, as well as suffering from a deficiency of precise targeting.

Compared to other nanocarriers, EVs are highly regarded as vectors in the clinic, especially in cancer therapy, due to their nanoscale size, ideal native structure and characteristics [167–169]. The methods of modified EVs manufacture divided in two mainly types, parental cell modifying and direct EVs modifying (Fig. 3). In IBD, various effective proteins, RNA and small molecule drugs can be directly or indirectly packaged in transformed EVs from IECs, human embryonic kidney cells and immune cells, and then taken up by the intestine [64,76]. MSCs-EVs are also excellent carriers. miRNA-200b and miRNA-146a were packaged in MSC-EVs via recombinant lentivirus construction and showed attenuation of experimental colitis [83,170]. In addition, bone marrow-derived DCs were transfected with miRNA-155 and miRNA-146a mimics to secrete miRNA-overexpressing EVs, which were subsequently taken up by recipient DCs to regulate inflammation in LPS-infected mice [76]. Antibiotics are frequently used in inflammatory diseases to protect against bacterial infection. Researchers loaded antibiotics in exosomes from IECs to resist intracellular infections of methicillin-resistant Staphylococcus aureus, which is also an excellent application in IBD therapy [171].

The application of EVs as nanocarriers in IBD is not intensive and comprehensive. Some data have reported that the delivery ability of EV carriers can be increased via modification of their surface. For instance, exosomes fused with liposomes possess less immunogenicity and have superior colloidal stability [168]. In summary, as competitive nanocarriers for drug delivery, modified EVs have shown numerous possibilities in novel IBD therapy. However, it is not sufficient to accumulate evidence about experimental studies without clinical trials (Fig. 3). Ultimately, the wide application of EV-based drug delivery systems in clinical treatment depends on standardized production of either derived exosomes or modified exosomes as drug delivery systems.
MVs from microbiota

FMT is a popular novel therapy that uses intestinal flora reconstruction to repair disruption of the normal microbial communities, but it has a higher risk for IBD patients [172]. In contrast, transplantation of microbiota-derived MVs shows gentler growth and lower risk. The importance of bacterial MVs in intestinal homeostasis and IBD pathogenesis was minutely described in the previous section (Fig. 3). In addition, GI parasites, hookworms in particular, and their derived EVs, interact with host cells and bacteria. Hookworms have been used in clinical trials to treat IBD and celiac disease. *Trichinella spiralis* EVs was proved significantly ameliorating colitis via targeting inhibition of macrophage polarization [173,174]. Eichenberger and colleagues indicated that helminth EVs show great potential applications in the development of remedies for dysregulated immune system-induced chronic noninfectious disease treatment [175]. Evidence regarding EVs from microbiota as a remedial approach for IBD is comparatively scarce. More mechanisms of interaction associated with EV-based communication between the host and intestinal microenvironment need to be identified and applied in clinical therapy.

Future directions

Obviously, the highly potent modulation and therapeutic effects of EVs within the IBD intestinal microenvironment are clearly evident and well documented. Notwithstanding, there is still massive work to be done in future studies. EVs have been regarded as ideal vectors for drugs transfer and delivery, and has more prospects in the applications of EVs. Accordingly, it is necessary to formulate standardized production, as MISEV 2018 [176], with regard to EVs modification, clinical preparation method, administration route and dosage, among other challenges. In addition, more details associated with mechanisms of EVs within the IBD need to be provided, so as to propose the possible pathogenesis related to EVs. As for the research of clinical application, future studies should try to combine with the clinical trials on the use of EVs-based diagnostic and therapeutic tool in IBD. Moreover, we believe that it is a prospective direction to modulate microbial structure or intestinal homeostasis targeting EVs-based interactive system in future studies.

Conclusion

In the current review, we mainly discussed the roles of EVs from different origins in the pathogenesis and progression of IBD, as well as their potential in clinical diagnosis and therapy. The development and study of EVs will build new understandings of cell–cell and cell-organism interactive communication and help develop novel therapeutic methods integrating safe, efficient and accurate targeting for the treatment and management of various conditions.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.
CRediT authorship contribution statement

Qichen Shen: Conceptualization, Writing - original draft, Visualization. Zhihuizhi Huang: Data curation, Writing - review & editing. Jiachen Yao: Visualization. Yuanxiang Jin: Writing - review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21777146).

References

[1] Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012;13:260–70.
[2] Findley K, Williams DR, Grice EA, Bonham VL. Health disparities and the microbiome. Trends Microbiol 2016;24:847–50.
[3] Mandaar BMM. Transmission of mother’s microflora to the newborn at birth. Biol Neonate 1996;30:5–5.
[4] Cani PD. Gut microbiota: Changes in gut microbes and host metabolism: squaring the circle? Nat Rev Gastroenterol Hepatol 2016;13:563–4.
[5] Turrioni S, Brigidi P, Cavalli A, Candela M. Microbiota-host transcormogenetic metabolism, bioactive molecules from the inside. J Med Chem 2018;61:47–61.
[6] Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 2016;19:32–43.
[7] Sbero H, Fremin BJ, Zliti S, Editors F, Greenfield N, Snyder MP, et al. Large-scale analyses of human microorganisms reveal thousands of small. Novel Genes Cell 2019;178:1245–59.
[8] Rodriguez-Fernandez IA, Qi Y, Jasper H. Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction. Nature Communication 2019;10:1050.
[9] Pegtel DM, Gould SJ. Exosomes. Annu Rev Biomed 2019;38:487–514.
[10] Toyofuku M, Nomura N, Ebel L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 2019;17:13–24.
[11] Jiang L, Shen Y, Guo D, Yang D, Liu J, Fei X, et al. EpCAM-dependent extracellular vesicles from intestinal epithelial cells maintain intestinal tract immune balance. Nat Commun 2016;7:13045.
[12] Chu HT, Khosravi A, Kusumawardhani IP, Kwon AHK, Vasconcelos AC, Cunha BT. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983;33:967–78.
[13] Francosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Noncoding landscape of extracellular RNA released by human glioma stem cells. Cells 2019;8:307.
[14] Kaplan GC. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol 2015;12:720–7.
[15] Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immuno Res 2019;2019:724738.
[16] Jin C, Yuan X, Wang C, Fu Z, Jin Y. Maternal exposure to imazalil disrupts intestinal barrier and bile acids enterohepatic circulation tightly related IL-22 expression in F0, F1 and F2 generations of mice. J Hazard Mater 2021;403:123668.
[17] Chuang X, Wang S-L, Zhao S-B, Shi Y-H, Pan P, Gu L, et al. Vesicle theranostics: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013;12:347–57.
[18] Pan BT, RM J. Fate of the transferin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983;33:967–78.
[19] Gokoghi L, Buhrike K, Bell R, Hoffman B, Brown DG, Hanke-Gokoghi C, et al. Expansion of bacloferophagis is linked to aggressed intestinal inflammation and colitis. Cell Host Microbe 2019;25:285–99; e6.
[20] Perencevich A, Burakoff R. Use of antibiotics in the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2016;13:647–60.
[21] Wagner J, Maksimovic J, Faries G, Sim WH, Bishop RF, Cameron DJ, et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 2008;57:424–5.
[22] Kim H, Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vehicles for genetic information transfer and gene therapy. Hum Mol Genet 2011;20:180.
[23] Jin C, Yuan X, Wang C, Fu Z, Jin Y. Maternal exposure to imazalil disrupts intestinal barrier and bile acids enterohepatic circulation tightly related IL-22 expression in F0, F1 and F2 generations of mice. J Hazard Mater 2021;403:123668.
[24] Pan BT, RM J. Fate of the transferin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983;33:967–78.
[25] Gokoghi L, Buhrike K, Bell R, Hoffman B, Brown DG, Hanke-Gokoghi C, et al. Expansion of bacloferophagis is linked to aggressed intestinal inflammation and colitis. Cell Host Microbe 2019;25:285–99; e6.
[26] Perencevich A, Burakoff R. Use of antibiotics in the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2016;13:647–60.
[27] Wagner J, Maksimovic J, Faries G, Sim WH, Bishop RF, Cameron DJ, et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 2008;57:424–5.
[28] Kim H, Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vehicles for genetic information transfer and gene therapy. Hum Mol Genet 2011;20:180.
[29] Pan BT, RM J. Fate of the transferin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983;33:967–78.
[30] Gokoghi L, Buhrike K, Bell R, Hoffman B, Brown DG, Hanke-Gokoghi C, et al. Expansion of bacloferophagis is linked to aggressed intestinal inflammation and colitis. Cell Host Microbe 2019;25:285–99; e6.
[31] Perencevich A, Burakoff R. Use of antibiotics in the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2016;13:647–60.
[32] Wagner J, Maksimovic J, Faries G, Sim WH, Bishop RF, Cameron DJ, et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 2008;57:424–5.
[33] Kim H, Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vehicles for genetic information transfer and gene therapy. Hum Mol Genet 2011;20:180.
[34] Pan BT, RM J. Fate of the transferin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983;33:967–78.
Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, et al. Double-

Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ. Identification of exosome composition. Sci Transl Med 2019;11(483):1-6;eaa1648.

van Niel G, Raposo G, Candall C, Boudjah M, Hershberg R, Cerf-Bensussan N, et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 2001;121:337–49.

Braun J, Morelli AE. Regulation of immune responses by exacellular vesicles. Nat Rev Immunol 2014;14:195–208.

Al-Nedawi K, Mian MF, Hossain N, Karimi K, Mao YK, Forsythe P, et al. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J 2015;29:684–95.

Yamamoto N, Saida A, Suzuki E, Yamagishi T, Muramatsu M, Huang TT, et al. Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Sci Rep 2015;5:8505.

Gao L, Xu H, Wang G, Liu M, Tian D, Yuan Z. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol 2019;72:264–74.

Liu L, Liang Z, Gao Z, Zhu C, Zheng X, Hu T, et al. Exosomes from mesenchymal stem cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight 2019;4:e131273.

Liu R, Tang A, Wang X, Chen X, Zhao L, Xiao Z, et al. Inhibition of IncRNA NEAT1 suppresses the inflammatory response in IBD by modulating the intestinal epithelial barrier and by exosome-mediated polarization of macrophages. Int J Mol Med 2018;42:2903–13.

Yang R, Liao Y, Wang L, He P, Hu Y, Yuan D, et al. Exosomes derived from M2b macrophages attenuate DSS-induced colitis. Front Immunol 2015;10:2346.

Wong WY, Lee MM, Chan BD, Kam RK, Zhang G, Lu AP, et al. Proteomic profiling of dextran sulfate sodium induced acute ulcerative colitis mice serum exosomes and their immunomodulatory impact on macrophages. Proteomics 2016;16:1131–45.

Mitsubishi S, Feldbrugge I, Ciszmadia E, Mitsubishi M, Robson SC, Moss AC. Luminal extracellular vesicles (EVs) in inflammatory bowel disease (IBD) exert pro-inflammatory effects on epithelial cells and macrophages. Inflamm Bowel Dis 2016;22:1587–95.

Carriere J, Bretni A, Darfeuil-Michaud A, Barnich N, Nguyen HT. Exosomes released from cells infected with crohn’s disease-associated adherent-invasive Escherichia coli exhibit pro-inflammatory and pro-fibrotic effects on epithelial cells and macrophages. Inflamm Bowel Dis 2016;22:516–28.

Wei M, Gao X, Liu L, Li Z, Wan Z, Dong Y, et al. Visceral adipose tissue-derived exosomes exhibit a low-level pro-inflammatory and growth factor pro-inflammatory phenotype in high fat diet fed mice. ACS Nano 2020;14:5099–110.

Liao F, Xu L, Dong X. Exosomes derived from T regulatory cells relieve DSS-induced colitis in dextran sulfate sodium induced colitis model. Front Immunol 2019;10:2346.

Mallegol J, Van Niel G, Lebreton C, Ellerport Y, Candall C, Dugave C, et al. T84-intestinal epithelial cells bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 2007;132:1690–702.

Mallegol J, Van Niel G, Heyman M. Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells Mol Dis 2005;35:11–6.

Yang X, Meng S, Jiang H, Chen T, Wu W. Exosomes derived from interleukin-1β-treated dendritic cells can inhibit trimethoxysilyl-triethoxy-silane-induced rat colitis. Scand J Gastroenterol 2010;45:1168–77.

Merkenschlager J, Eksmond FM, Daneli A, Attig J, Young GR, Nowosad C, et al. Requirement of cellular prion protein for intestinal barrier function and transfer of mitochondrial DNA via exosomes. Inflamm Bowel Dis 2016;22:1587–95.

Sameena Wanj RML, Pothoulakis Charalos. Role and mechanism of exosomal miRNAs in IBD pathophysiology. Am J Physiol Gastrointest Liver Physiol 2015;308:G61–68.

Alexander M, Hu R, Rutsch M, Kagele DA, Moshbruger TL, Tolmachova T, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 2015;6:7321.

Cook S, Faters ES, Jenkins LM, Patel KM, Robles AL, Morris J, et al. Mutant p53 cancers reprogram T cells to tumor supporting macrophages via exosomal miR-1246. Nat Commun 2014;5:1168–77.

Krisanapong SW, Yang Y, McQueen FM, Leung E, Peek D, Chan YC, et al. Overexpression of exosomal miR-1246 in patients with colorectal cancer enhances macrophage polarization. Sci Transl Med 2014;6:247ra164.

Tian T, Zhou Y, Feng X, Ye S, Wang H, Wu W, et al. MicroRNA-16 is putatively released from T regulatory cells relieve DSS-induced colitis in dextran sulfate sodium induced colitis model. Front Immunol 2019;10:2346.

Liao F, Lu X, Dong W. Exosomes derived from T regulatory cells relieve DSS-induced colitis in dextran sulfate sodium induced colitis model. Front Immunol 2019;10:2346.

Chen Y, Xiao Y, Ge W, Zhou K, Wen J, Yan W, et al. miR-200b inhibits TGF-beta-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells. Cell Death Dis 2013;4:e541.

Yang J, Zhou CZ, Zhu R, Fan H, Liu XX, Duan XY, et al. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J Gastroenterol Hepatol 2017;32:1966–74.

Zhang Z, Xing T, Chen Y, Xiao J. Exosome-mediated miR-200b promotes colorectal cancer progression upon TGF-β1 exposure. Biomed Pharmacother 2018;106:1135–43.

Wang H, Chao K, Ng SC, Bai AH, Yu Q, Yu J, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier function via macrophage-bacterial communication. Genome Biol 2013;14:R84.

Li M, Zhao J, Cao M, Liu R, Chen G, Li S, et al. Mast cell-derived MIR-223 destroys intestinal barrier function by inhibition of CLDN8 expression in intestinal epithelial cells. Biol Res 2020;53:12.

Ondo Y, Mazurzana I, Forkel M, Okazaki K, Aoi M, Schmidt PT, et al. Downregulation of MicroRNA-21 in colon CD3+ T cells in UC remission. Inflamm Bowel Dis 2016;22:2788–93.

Wu F, Dong F, Arendovich N, Zhang J, Huang YJ, Kwon JW. Divergent influence of microRNA-21 deletion on murine colitis phenotypes. Inflamm Bowel Dis 2014;20:1972–85.

Petit CS, Barreau F, Besnier L, Gandille P, Riveau B, Chateau D, et al. Non-coding RNA expression profile identifies cellular compartments involved in paneth cell differentiation. Mol Cell 2014;55:1915–28.

Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Front Cell Infect Microbiol 2018;8:26.

Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, et al. Novel signal delivered by extracellular vesicles affects the host immune response. Proc Natl Acad Sci USA 2007;104:494–9.

Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial outer membrane vesicles. Front Cell Infect Microbiol 2018;8:26.

Yang J, Zhou CZ, Zhu R, Fan H, Liu XX, Duan XY, et al. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J Gastroenterol Hepatol 2017;32:1966–74.

Zhang Z, Xing T, Chen Y, Xiao J. Exosome-mediated miR-200b promotes colorectal cancer progression upon TGF-β1 exposure. Biomed Pharmacother 2018;106:1135–43.

Wang H, Chao K, Ng SC, Bai AH, Yu Q, Yu J, et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier function via macrophage-bacterial communication. Genome Biol 2013;14:R84.
Alvarez CS, Badia J, Bosch M, Gimenez R, Baldoma L. Outer membrane vesicles from Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. PLoS ONE 2013;8:e67907.

Alvarez CS, Badia J, Bosch M, Gimenez R, Baldoma L. Outer membrane vesicles and soluble factors released by probiotic Escherichia coli nissle 1917 and commensal ECO963 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front Microbiol 2016;7:1981.

Canas MA, Fabrega MJ, Gimenez R, Badia J, Baldoma L. Outer membrane vesicles from Campylobacter jejuni 90603 promote intestinal inflammation of outbred mice. Front Microbiol 2018;9:489.

Fabrega MJ, Rodriguez-Nogales A, Garrido-Mesa J, Algersi F, Badia J, Gimenez R. Exosomal miRNAs of intestinal epithelial cells from escherichia coli nissle 1917 in DSS-experimental colitis in mice. Front Microbiol 2017;8:1274.

Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 2012;12:509–20.

Durant L, Stenzl R, Noble A, Brooks J, Gicheva N, Reddi D, et al. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease. Microbiome 2020;8,88.

Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in neonates, adults, and the elderly. Appl Environ Microbiol 2007;73:7767–70.

Stenzl R, Osborne S, Horn N, Li AW, Hautefort I, Bongaerts E, et al. A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cytokine and lipopolysaccharide-induced toxicity in murine models of colitis. PLoS Rep 2014;1:13008.

Elmi A, Nasser F, Jaghati H, Gundogdu O, Bajaj-Elliott M, Wren B, et al. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell tight junction. Am J Physiol Gastrointest Liver Physiol 2013;304:G665–74.

Chatterjee D, Chaudhuri K. Vibrio cholerae O395 outer membrane vesicles contain SPARC and LRG1 as biomarkers of colon cancer and differ by disease stage. J Cell Physiol 2017;232:4975–83.

Chatterjee D, Chaudhuri K. Vibrio cholerae O395 outer membrane vesicles modulate intestinal epithelial cells in a NOD1 protein-dependent manner and induce dendritic cell-mediated Th2/Th17 responses. J Biol Chem 2013;288:42985–94.

Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta 2019;488:165–71.

Zhong ME, Chen Y, Xiao Y, Xu L, Zhang C, Gu L, et al. Serum extracellular vesicles contain SPARC and LR1G1 as biomarkers of colon cancer and differ by tumour primary location. EBioMedicine 2019;50:211–23.

Matsumura T, Sugimachi K, Inuma H, Takahashi Y, Kurasjhe S, Sawada G, et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer 2015;113:275–81.

Nedaensia R, Manian M, Jazayeri MH, Ranjbar M, Salehi R, Sharifi M, et al. Differences in exosome populations in human breast milk in relation to allergic sensitization and lifestyle. Allergy 2014;69:463–71.

G764–9

Le Doare K, Holder B, Bassett A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.

Le Doare K, Holder B, Kessell A, Pannaraj PS. Mother’s milk: a purposeful contribution to the development of the infant microbiota and immunity. Front Immunol 2018;9:361.

Di Gioia S, Hossain MN, Comes M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med (Wars) 2020;15:1096–122.
[161] Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 2013;21:1345–57.

[162] Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther 2017;25:1641–54.

[163] Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016;101:321–40.

[164] Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. Plant-derived exosomal MicroRNA shapes the gut microbiota. Cell Host Microbe 2018;24(6):637–52.e8.

[165] Xiao B, Larou H, Ayyadurai S, Viennois E, Charania MA, Zhang Y, et al. Mannosylated biodegradable nanoparticle-mediated macrophage-specific TNF-alpha RNA interference for IBD therapy. Biomaterials 2013;34:7471–82.

[166] Davoudi Z, Peroutka-Bigus N, Bellaire B, Wannemuehler M, Barrett TA, Narasimhan B, et al. Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. J Biomed Mater Res A 2018;106:876–86.

[167] Hood JL, Wickline SA. A systematic approach to exosome-based translational nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012;4:458–67.

[168] Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnology 2018;16:81.

[169] Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 2017;38:754–63.

[170] Wu H, Fan H, Shou Z, Xu M, Chen Q, Ai C, et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. Int Immunopharmacol 2019;68:204–12.

[171] Yang X, Shi G, Gao J, Wang C, He Y. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. Int J Nanomedicine 2018;13:9095–104.

[172] Dailey FE, Turse EP, Daglar E, Taham V. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr Opin Pharmacol 2019;49:29–33.

[173] Yang Y, Liu L, Liu X, Zhang Y, Shi H, Jia W, et al. Extracellular vesicles derived from trichinella spiralis muscle larvae ameliorate TNBS-induced colitis in mice. Front Immunol 2020;11:1174.

[174] Gao X, Yang Y, Liu X, Wang Y, Yang Y, Boireau P, et al. Extracellular vesicles derived from Trichinella spiralis prevent colitis by inhibiting M1 macrophage polarization. Acta Trop 2021;213:105761.

[175] Eichenberger RM, Ryan S, Jones L, Buitrago G, Polster R, Montes de Oca M, et al. MicroRNA shapes the gut microbiota. Cell Host Microbe 2018;24(6):837–52.e8.

[176] Narasimhan B, et al. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice. Front Immunol 2013;21:4590.

[177] They C, Wittwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andrianisitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750.

[178] Qichen Shen is a doctoral degree research scholar at College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, China. He has published lots of scientific research articles associated with intestinal microbiota under the guidance of the professor. E-mail: shenqc1028@163.com

Zhizhu Huang is a master degree research scholar at College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, China. She has published several scientific research articles related to the gut microbiota. Recently, under the guidance of the professor, she has been engaged in the study of the environmental pollution-mediated interaction between host and gut microbiota. E-mail: 654726536@qq.com

Jiachen Yao completed her bachelor degree from Faculty of Technology, University of Turku, Turku, 20014, Finland, and has gained admission of Master’s Programme in Health Informatics, Karolinska Institutet, Stockholm, Sweden. She has abundant experience on academic article writing. She is currently focusing on metabolomics and transcriptomic analysis. E-mail: jiaoya@utu.fi

Yuanxiang Jin is professor of College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang Province, China. He has more than 126 research and review articles in the global recognized peer-review journal with high impact factor (h-Index=38). He is currently focusing research on environmental pollution-mediated interaction between host and gut microbiota in intestinal microenvironment. He has reviewed lots of articles with most cited in the recognized international scientific journals. E-mail: jinxyx@zjut.edu.cn