Original Article

Relationship between Serum Uric Acid and Vascular Function and Structure Markers and Gender Difference in a Real-World Population of China-From Beijing Vascular Disease Patients Evaluation Study (BEST) Study

Huan Liu, Jinbo Liu, Hongwei Zhao, Yingyan Zhou, Lihong Li and Hongyu Wang, For the BEST Research Group

Department of Vascular Medicine, Peking University Shougang Hospital, Beijing, China

Aim: The study was done to establish the relationship between serum uric acid (UA) and vascular function and structure parameters including carotid femoral pulse wave velocity (CF-PWV), carotid radial pulse wave velocity (CR-PWV), cardio ankle vascular index (CAVI), ankle brachial index (ABI), and carotid intima-media thickness (CIMT), and the gender difference in a real-world population from China.

Methods: A total of 979 subjects were enrolled (aged 60.86 ± 11.03 years, male 416 and female 563). Value of UA was divided by 100 (UA/100) for analysis.

Results: Body mass index (BMI), diastolic blood pressure (DBP), fasting plasma glucose (FPG), UA, and UA/100 were significantly higher in males compared with females (all \(p < 0.05 \)); pulse pressure (PP), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C) were lower in males than females (all \(p < 0.05 \)). All vascular parameters including CF-PWV, CR-PWV, CAVI, ABI, and CIMT were higher in males than females (all \(p < 0.05 \)). Multiple linear regression analysis showed that UA/100 was independently positively linearly correlated with CAVI (B = 0.143, \(p = 0.001 \)) and negatively correlated with ABI in the male population (B = −0.012, \(p = 0.020 \)). In people with higher UA, the risk of higher CF-PWV was 1.593 (\(p < 0.05 \)).

Conclusions: 1. All vascular parameters were higher in males than females. There was no gender difference in the relationship between UA and vascular markers except in ABI. 2. UA was independently linearly correlated with CAVI. 3. In people with higher UA level, the risk of higher CF-PWV increased. Therefore, higher UA may influence the vascular function mainly instead of vascular structure.

Key words: Serum uric acid (UA), Carotid femoral pulse wave velocity (CF-PWV), Cardio ankle vascular index (CAVI), Ankle brachial index (ABI), Carotid intima-media thickness (CIMT).

Copyright©2018 Japan Atherosclerosis Society
This article is distributed under the terms of the latest version of CC BY-NC-SA defined by the Creative Commons Attribution License.
for cardiovascular disease prevention in clinical practice. The carotid intima-media thickness (CIMT) was a measurement of early atherosclerosis which was also related to future cardiovascular risk. ABI, CIMT, carotid plaque, CF-PWV were all recommended for risk assessment of future vascular disease by domestic and international guidelines.

High UA has been associated with several vascular related diseases. Many studies indicated that high levels of UA were independently related with myocardial infarction, silent brain infarction, white matter atrophy and worse cognition and vascular dementia, hypertension and metabolic syndrome prevalence, diabetic vascular complications. In addition, high UA has been confirmed as an independent risk factor for cardiovascular mortality and sudden cardiac death. However, in the relationship between UA and vascular diseases there still exists some inconsistency. Another study showed lower UA levels were independently correlated with vascular events in the first year in acute ischemic stroke patients.

UA has been confirmed to be related to markers of vascular injuries and vascular related diseases. CF-PWV was a marker reflecting vascular function, CAVI was a reflection of both vascular function and structure, and CIMT was a parameter of vascular structure. Therefore, the present study was designed to evaluate the relationship between UA and various vascular function and structure markers and gender differences in a real-world population.

Methods

The Beijing Vascular Disease Patients Evaluation Study (BEST) enrolled a sample of individuals through clinics or hospitals from the community of the western region of Beijing, China, since 2010. The western region of Beijing was chosen as the site of the study because of the homogeneity of life-style among its residents, with a very low rate of immigration. For the present investigation, we included participants from part of the BEST study with complete data of vascular parameters and UA. Subjects with ABI <0.9 and medication on UA lowering agents were excluded.

The ethics committee of Peking University Shougang Hospital approved the study protocol, and all participants provided written informed consent before participating, which was conducted in accordance with the Declaration of Helsinki.

Clinical and Laboratory Evaluation

The personal history including life-style habits such as pharmacological treatments, history of vascular related diseases, such as hypertension, diabetes mellitus, coronary artery disease, stroke, and peripheral artery disease (PAD) was obtained by medical records or a questionnaire. In the present study, pharmacological treatments included hypoglycemic drugs and lipid-lowering drugs. Cardiovascular drugs were described as ABCD drugs, namely one of the medications including angiotensin-converting enzyme inhibitor, or angiotensin receptor blocker, or beta-receptor antagonist, or calcium channel blocker, or diuretic. The basic parameters recorded with standardized methods by trained personnel are: fasting plasma glucose (FPG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), high sensitive C reactive protein (hs-CRP). Fasting UA was measured using an auto-analyzer with a phosphotungstic acid reagent.

Vascular Measurements

CF-PWV and Carotid Radial Pulse Wave Velocity (CR-PWV) Measures

CF-PWV and CR-PWV were simultaneously measured by an automatic equipment Compliar SP (Artech Medical, Pantin, France). The measurement was undertaken with the participant in a supine position after 5 to 10 minutes of rest and CF-PWV and CR-PWV were calculated by knowing the pulse transit time and distance.

CAVI and ABI Measures

CAVI and ABI were recorded using a VS-1000 vascular screening system (Fukuda Denshi, Tokyo, Japan) with the participants resting in a supine position for 5 to 10 minutes and cuffs were wrapped around both the arms and ankles. The value of CAVI, ABI, heart rate, and blood pressure of both arms were obtained automatically. And we chose the mean level of left and right CAVI and ABI for the analysis.

CIMT Measures

CIMT was measured as recommended by the Mannheim Consensus, i.e., in supine position in the left and right common carotid arteries in anterolateral, posterolateral, and mediolateral directions. The extracranial carotid arteries were bilaterally examined with ultrasound EUB-7500 (Hitachi, Japan), equipped with a linear array transducer. The analysis of CIMT was calculated as the mean of bilateral CIMT measurements, namely CIMT = (left CIMT + right CIMT)/2.

Statistical Methods

The researchers conducted a cross-sectional analysis of UA levels and CF-PWV, CR-PWV, CAVI, ABI, CIMT of 979 participants according to gender. The researchers then performed multiple linear regression
Table 1. General characteristics of participants in global, male and female population.

Variables	Total \(n=979\)	Male \(n=416\)	Female \(n=563\)	\(t\) value	\(p\) value
Age (year)	60.86 ± 11.03	60.93 ± 12.58	60.81 ± 9.74	0.157	.875
BMI (kg/m²)	24.95 ± 3.48	23.66 ± 3.43	24.43 ± 3.43	5.556	.000*
HR (beats/min)	67.95 ± 10.97	68.28 ± 11.67	67.71 ± 10.43	0.784	.433
SBP (mmHg)	136.59 ± 17.30	137.44 ± 16.42	135.96 ± 17.92	1.320	.187
DBP (mmHg)	83.65 ± 10.07	86.06 ± 10.40	81.87 ± 9.45	6.578	.000*
PP (mmHg)	52.94 ± 12.88	51.38 ± 12.10	54.09 ± 13.31	-3.328	.001*
FPG (mmol/L)	5.87 ± 1.42	6.13 ± 1.71	5.69 ± 1.13	4.485	.000*
hs-CRP (mg/L)	3.17 ± 0.82	3.61 ± 0.82	2.84 ± 0.64	15.819	.000*
TC (mmol/L)	4.84 ± 1.13	4.58 ± 1.17	5.03 ± 1.06	-6.282	.000*
TG (mmol/L)	1.73 ± 1.22	1.82 ± 1.49	1.67 ± 0.98	1.742	.082
HDL-C (mmol/L)	1.28 ± 0.30	1.17 ± 0.27	1.36 ± 0.30	-10.592	.000*
LDL-C (mmol/L)	3.00 ± 0.86	2.87 ± 0.87	3.09 ± 0.83	-3.949	.000*
UA (umol/L)	316.94 ± 81.54	361.05 ± 82.35	284.35 ± 63.70	15.819	.000*
UA/100 (umol/L)	3.17 ± 0.82	3.61 ± 0.82	2.84 ± 0.64	15.819	.000*

Values are described as mean ± SD for continuous variables and percentage or median for categorical variables. *indicated \(p<0.05\).

Abbreviations: BMI, body mass index; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; FPG, fasting plasma glucose; UA, serum uric acid; UA/100, serum uric acid divided by 100; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; hs-CRP, high sensitive C reactive protein

(stepwise) and logistic regression analyses (enter) in total, male and female populations respectively, adjusting for traditional risk factors, to evaluate the independent effect of UA levels on measures of arterial parameters. The researchers assessed the independent relations between UA and vascular indices using multiple linear regression with adjustment for age, gender, body mass index (BMI), heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), high sensitive C reactive protein (hs-CRP), medication for hyperlipidemia, hypoglycemic agents, and ABCD drugs. CF-PWV, CR-PWV, CAVI, ABI, and CIMT were dependent variables, and UA/100 was an independent variable. Finally, the researchers adopted multivariable binary logistic regression analysis by translating the number variables to two-categorical variables. Higher CF-PWV, CAVI, and CIMT were described as higher than the fourth quartile in the total population. Descriptive values, expressed as mean ± SD or numbers and percentages, were reported by gender. A \(P\)-value less than 0.05 (bilateral) was regarded as statistically significant. Statistical analyses were performed using the SPSS 20.0 statistical software package. UA was divided by 100 (UA/100) to reduce heteroscedasticity and still restore directionality of associations.

Results

1. General Clinical Characteristics in Total, Male and Female Populations

The level of BMI, DBP, FPG, UA, and UA/100 were significantly higher in males than that in females; and PP, TC, HDL-C, and LDL-C were lower in males than females (see Table 1). In addition, the value of all vascular parameters, including CF-PWV, CR-PWV, CAVI, ABI, and CIMT were significantly higher in males than that in females (see Table 2). In the present population, percentages of records with history of vascular related diseases and medications are shown in Table 3. In about one third participants, the history of hypertension, diabetes mellitus, coronary artery disease, stroke, peripheral artery disease were not recorded. And a total of 152 (15.5%) participants were without any of the above vascular related diseases (see Table 3). The prevalence rate of hyperuricemia was significantly higher in males than that in females. And the prevalence rate of coronary artery disease and rate of medication on ABCD drugs were different between males and females (see Table 4).

2. Results of Multivariable-Adjusted Linear Regression Analyses

We further evaluated the independent linear association between UA/100 and vascular parameters adjusted for age, gender, BMI, HR, SBP, DBP, PP, FPG, TC, TG, HDL-C, LDL-C, hs-CRP, medication of ABCD
and hypoglycemic drugs, lipid-lowering drugs. The relationship between UA and various vascular function and structure markers including CF-PWV, CR-PWV, CAVI, ABI, and CIMT were not linearly correlated with UA in the male population. However, UA was not linearly correlated with CF-PWV, CR-PWV, and CIMT in total, male and female populations (see Table 5).

3. Results of Multivariable-Adjusted Logistic Regression Analyses

We evaluated the independent association between higher UA and higher vascular parameters adjusted for age, gender, BMI, HR, SBP, DBP, PP, FPG, TC, TG, HDL-C, LDL-C, hs-CRP, medication of ABCD drugs and hypoglycemic drugs, lipid-lowering drugs. The results showed that in people with higher UA, the risk of higher CF-PWV was 1.593 times than people with normal UA. In addition, people with higher UA had a risk tendency of higher CAVI ($p = 0.088$). However, higher UA was not correlated with higher CIMT ($p = 0.280$). We further analyzed the gender difference between UA with CAVI and CIMT in both genders, and found UA also not logarithically related with CAVI and CIMT in males or females (see Table 6). The value and meaning of variables are shown in Table 7.

Discussion

The present study was done to evaluate the relationship between UA and various vascular function and structure markers and gender difference in a real-world population. The results showed that all the vascular markers including CF-PWV, CR-PWV, CAVI, ABI, and CIMT were different between males and females, with a higher level in males. The differences between the prevalence rate of hyperuricemia may be the cause of the higher vascular parameters. We further explored the linear and logistic regression association between UA and various vascular function and structure markers and gender difference. The results indicated that only UA was linearly correlated with CAVI and independent of traditional risk factors, gender, and medications. However, UA was not linearly correlated with CF-PWV, CR-PWV, ABI, and CIMT independently. We further explored whether gender differences existed in the linear association between CF-PWV, CR-PWV, ABI, and CIMT, and found that only ABI was negatively linearly correlated with UA in males, the other vascular markers were not linearly correlated with UA, in male and female populations respectively. We further explored the logistic regression association between UA and vascular parameters; the results showed that in people with higher UA, the risk of higher CF-PWV was 1.593 times and independent of traditional risk factors, gender and medications. People with higher UA had a higher risk tendency of higher CAVI which was not independently correlated with higher CIMT. In addition, higher UA was not logarithically related with CAVI and CIMT in both genders. CF-PWV was a marker that reflects arterial stiffness and is regarded as a function marker. CAVI was a parameter reflecting both vascular function and structure. And CIMT indicated the changes in vascular structure. Therefore, we speculate that UA may mainly influence the vascular function instead of the vascular structure. The relation-

Table 2. Vascular parameters according to gender and total population

Variables	Total $n=979$	Male $n=416$	Female $n=563$	t value	p value
CF-PWV (m/s)	10.59 ± 2.28	10.77 ± 2.31	10.46 ± 2.26	2.108	.035*
CR-PWV (m/s)	8.75 ± 1.63	9.03 ± 1.86	8.54 ± 1.40	4.554	.000*
CAVI	8.35 ± 1.22	8.44 ± 1.26	8.28 ± 1.18	2.070	.039*
ABI	1.13 ± 0.08	1.15 ± 0.08	1.12 ± 0.07	6.429	.000*
CIMT (mm)	0.09 ± 0.04	0.10 ± 0.05	0.08 ± 0.03	6.093	.000*

Values are described as mean ± SD. *indicated $p < 0.05$.

Abbreviations: CF-PWV, carotid femoral pulse wave velocity; CR-PWV, carotid radial pulse wave velocity; CAVI, cardio ankle vascular index; ABI, ankle brachial index; CIMT, carotid intima-media thickness.

Table 3. Percentage of records with of history vascular related diseases and medications in total population

Variables	With records of disease history
Hypertension, NO. (%)	616 (62.9)
Diabetes Mellitus, NO. (%)	594 (60.7)
Coronary artery disease, NO. (%)	611 (62.4)
Stroke, NO. (%)	602 (61.5)
Peripheral artery disease, NO. (%)	609 (62.3)
ABCD drugs, NO. (%)	169 (17.3)
Hypoglycemic drugs, NO. (%)	59 (6.0)
Lipid-lowering drugs, NO. (%)	186 (19.0)
Without above diseases, NO. (%)	152 (15.5)

Abbreviations: NO., No. of records; ABCD, antihypertensive, blood glucose lowering, cholesterol-lowering; PWV, pulse wave velocity; CAVI, cardio ankle vascular index; ABI, ankle brachial index; CIMT, carotid intima-media thickness.
between vascular markers and UA showed an independent association between UA and CF-PWV, CR-PWV, CAVI, CIMT, lower ABI in several populations (28-31). However, the associations between UA and vascular markers have been reported inconsistently. Some studies showed no independent associations between higher UA and endothelial dysfunction (29, 32), CF-PWV (17), microalbuminuria, arterial stiffness, carotid plaque (29, 33), CIMT (17), CAC (25), which were consistent with the partial results of ours. Furthermore, the relationships between UA and vascular markers were different in males and females. Although advancing age is accompanied by increased aortic stiffness in both males and females, a significant sex difference exists, with females showing a steeper decline in aortic elasticity (34). In addition, UA is associated with alterations in systemic arterial stiffness that differ in men and women. Women might be more sus-

Table 4. The history of medications and vascular related diseases in total, male and female population.

Variables	Total n=979	Male n=416	Female n=563	Chi-square Value	p value
Hyperuricemia	264 (27.0)	201 (48.3)	63 (11.2)	167.44	.000*
Hypertension, NO. (%)	362 (37.0)	165 (39.7)	197 (35.0)	1.536	.215
Diabetes Mellitus, NO. (%)	114 (11.6)	57 (13.7)	57 (10.1)	2.224	.136
Coronary artery disease, NO. (%)	185 (18.9)	97 (23.3)	88 (15.6)	8.545	.003*
Stroke, NO. (%)	119 (12.2)	59 (14.2)	60 (10.7)	2.601	.107
Peripheral artery disease, NO. (%)	40 (4.1)	23 (5.5)	17 (3.0)	3.575	.059
ABCD drugs, NO. (%)	169 (17.3)	84 (20.2)	85 (15.1)	4.347	.037*
Hypoglycemic drugs, NO. (%)	59 (6.0)	31 (7.5)	28 (5.0)	2.595	.107
Lipid-lowering drugs, NO. (%)	186 (19.0)	83 (20.0)	103 (18.3)	0.427	.514

* indicated p < 0.05.

Table 5. Multivariable-adjusted linear regression analyzes the association of CF-PWV, CR-PWV, CAVI, ABI and CIMT with UA/100, global and by gender.

Variables	Total (n=979)	Male (n=416)	Female (n=563)	
CF-PWV (m/s)				
UA/100	0.016	.627	-0.003	.939
CR-PWV (m/s)				
UA/100	-0.012	.745	-0.011	.811
CAVI				
UA/100	0.143	.001*		
ABI				
UA/100	-0.072	.056	0.015	.732
CIMT (mm)				
UA/100	-0.011	.766	0.065	.117

Adjusted for age, gender, BMI, HR, SBP, DBP, PP, FPG, TC, TG, HDL-C, LDL-C, hs-CRP, medication of ABCD and hypoglycemic drugs, lipid-lowering drugs.

* indicated p < 0.05.

ship between UA and ABI was a negative linear association (B = -0.072, p = 0.056), and UA was significantly correlated with ABI in the male population (B = -0.012, P = 0.020). We speculated that this maybe because of the high level of BMI, DBP, FPG, UA, and the high prevalence rate of hyperuricemia. Thus, further studies need to confirm this finding.

Many studies have confirmed nearly consistently an association of elevated UA level with CVD, although not all have found that the correlation is independent of other risk factors. Several studies showed UA was independently negatively correlated with vascular endothelial function (22, 23). UA was also a determinant of arterial stiffness independently from conventional risk factors (24) and was associated with vascular inflammation (hs-CRP) (25), coronary artery calcification (CAC) (26), and PAD (27). Studies on the relationship between vascular markers and UA showed an independent association between UA and CF-PWV, CR-PWV, CAVI, CIMT, lower ABI in several populations (28-31). However, the associations between UA and vascular markers have been reported inconsistently. Some studies showed no independent associations between higher UA and endothelial dysfunction (29, 32), CF-PWV (17), microalbuminuria, arterial stiffness, carotid plaque (29, 33), CIMT (17), CAC (25), which were consistent with the partial results of ours. Furthermore, the relationships between UA and vascular markers were different in males and females. Although advancing age is accompanied by increased aortic stiffness in both males and females, a significant sex difference exists, with females showing a steeper decline in aortic elasticity (34). In addition, UA is associated with alterations in systemic arterial stiffness that differ in men and women. Women might be more sus-
Table 6. Multivariable-adjusted logistic regression analyzes the association of higher CF-PWV, higher CAVI and higher CIMT with higher UA, global and by gender.

Subjects	Dependent variable	B	Wals	OR	95% C.I.	P
Total	Higher CF-PWV	0.466	4.395	1.593	1.031-2.463	.036*
	Higher CAVI	0.390	2.904	1.478	0.943-2.315	.088
	Higher CIMT	-0.244	1.168	0.784	0.503-1.220	.280
Male	Higher CAVI	0.189	0.410	1.208	0.678-2.153	.522
	Higher CIMT	-0.480	3.393	0.619	0.371-1.031	.065
Female	Higher CAVI	0.658	2.911	1.931	0.907-4.113	.088
	Higher CIMT	0.416	0.936	1.516	0.652-3.524	.333

Adjusted for age, gender, BMI, HR, SBP, DBP, PP, FPG, TC, TG, HDL-C, LDL-C, hs-CRP, medication of ABCD and hypoglycemic drugs, lipid-lowering drugs.

* indicated p < 0.05.

Study Strengths and Weakness

The strengths of the present study include its large sample size involving all kinds of vascular related diseases and healthy subjects in a real world. In addition, the present study included various non-invasive vascular function and structure parameters and analyzed the relationship between them and UA and gender difference in a single population. However, there are also some limitations. First, the study was a cross-sectional study and could not provide some predicting value of UA and vascular parameters. Second, the history of vascular related disease and medication was not complete, and about one third data of participants
were missing. Therefore, further studies are needed to evaluate the predicting value of UA for vascular related disease and vascular markers.

Acknowledgements

This work was supported by Science and technology plan project of Shijingshan district committee of science and technology (No Serial number), and 2014 Medical innovation project of Fujian Province in China (NO. 2014-CXB-25).

Disclosure

The authors declare no conflict of interest.

Clinical Trials Registration

Clinical Trials.gov Identifier: NCT02569268.

References

1) Johnson RJ, Kang DH, Feig D, Kvilghn S, Kanellis J, Watanabe S, Tuttle KR, Rodriguez-Iturbe B, Herrera-Acosta J and Mazzali M: Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension, 2003; 41: 1183-1190
2) Shi Y: Caught red-handed: uric acid is an agent of inflammation. J Clin Invest, 2010; 120: 1809-1811
3) Pasalic D, Marinkovic N and Feher-Turkovic L: Uric acid as one of the important factors in multifactorial disorders-facts and controversies. Biochem Med (Zagreb), 2012; 22: 63-75
4) So A and Thorens B: Uric acid transport and disease. J Clin Invest, 2010; 120: 1791e9
5) Park JH, Jin YM, Hwang S, Cho DH, Kang DH and Jo I: Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development. Nitric Oxide, 2013; 32: 36-42
6) Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Gianottasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H and European Network for Non-invasive Investigation of Large Arteries: Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J, 2006; 27: 2588-2605
7) Wang H. Cardio-ankle vascular index: a new marker for vascular health evaluation (experience from China). J Hum Hypertens, 2015; 29: 136
8) Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, Albus C, Benlian P, Boysen G, Cifkova R, Deaton C, Ebrahim S, Fisher M, Germano G, Hobbs R, Hoes A, Karadeniz S, Mezzani A, Prescott E, Ryden L, Scherer M, Svyâne M, Scholte op Reimer WJ, Vrints C, Wood D, Zamorano JL, Zannad F and European Association for Cardiovascular Prevention & Rehabilitation (EACPR) and ESC Committee for Practice Guidelines (CPG): European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J, 2012; 33: 1635-1701
9) Fowkes FG, Price JF, Stewart MC, Butcher I, Leng GC, Pell AC, Sandercock PA, Fox KA, Lowe GD, Murray GD and Aspirin for Asymptomatic Atherosclerosis Trialists: Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA, 2010; 303: 841-848
10) Wang H. Chinese guideline for early vascular disease detection (Second report of 2011). Advances in Cardiovascular Diseases, 2011; 32: 318-323
11) Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, Greenland P, Lackland DT, Levy D, O’Donnell CJ, Robinson JG, Schwartz JS, Shero ST, Smith SC Jr, Sorkle P, Stone NJ, Wilson PW, Jordan HS, Nevo L, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC Jr, Tomasselli GF and American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation, 2014; 129 (suppl 2): S49-S57
12) Fenech G, Rajzbaum G, Mazighi M and Blacher J: Serum uric acid and cardiovascular risk: state of the art and perspectives. Joint Bone Spine, 2014; 81: 392-397
13) Bae MH, Lee JH, Lee SH, Park SH, Yang DH, Park HS, Cho Y, Jun JE and Chae SC: Serum uric acid as an independent and incremental prognostic marker in addition to n-terminal pro-b-type natriuretic peptide in patients with acute myocardial infarction. Circ J, 2011; 75: 1440-1447
14) Heo SH and Lee SH: High levels of serum uric acid are associated with silent brain infarction. J Neurol Sci, 2010; 297: 6-10
15) Verhaeren BF, Vernooij MW, Dehghan A, Vroomen HA, de Boer R, Hofman A, Witteman JC, Niessen WJ, Breter MM, van der Lugt A and Ikram MA: The relation of uric acid to brain atrophy and cognition: the Rotterdam Scan Study. Neuroepidemiology, 2013; 41: 29-34
16) Cervellati C, Romani A, Seripa D, Cremonini E, Bisi C, Magon S, Passaro A, Bergamini CM, Pilotto A, Zuliani G: Oxidative balance, homocysteine, and uric acid levels in older patients with Late Onset Alzheimer’s Disease or Vascular Dementia. J Neurol Sci, 2014; 337: 156-161
17) Cicero AF, Salvi P, D’Addato S, Rostici M, Borghi C and Brisighella Heart Study group: Association between serum uric acid, hypertension, vascular stiffness and subclinical atherosclerosis: data from the Brisighella Heart Study. J Hypertens, 2014; 32: 57-64
18) Yan D, Wang J, Jiang F, Zhang R, Wang T, Wang S, Peng D, He Z, Chen H, Bao Y, Hu C and Jia W: A causal relationship between uric acid and diabetic macrovascular disease in Chinese type 2 diabetes patients: A Mendelian
Serum Uric Acid and Vascular Function and Structure Markers

19) Silbernagel G, Hoffmann MM, Grammer TB, Boehm BO and Márz W: Uric acid is predictive of cardiovascular mortality and sudden cardiac death in subjects referred for coronary angiography. Nutr Metab Cardiovasc Dis, 2013; 23: 46-52

20) Wu H, Jia Q, Liu G, Liu L, Pu Y, Zhao X, Wang C, Wang Y and Wang Y: Decreased uric acid levels correlate with poor outcomes in acute ischemic stroke patients, but not in cerebral hemorrhage patients. J Stroke Cerebrovasc Dis, 2014; 23: 469-475

21) Touboul PJ, Hennerici MG, Meairs S, Adams H, Ama- rencio P, Bornstein N, Csiba L, Desvarieux M, Ebrahim S, Hernandez Hernandez R, Jaff M, Kownator S, Naqvi T, Prati P, Rundek T, Sitzer M, Schminke U, Tardif JC, Taylor A, Vicaut E and Woo KS: Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis, 2012; 34: 290-296

22) Kanbay M, Yilmaz MI, Sonmez A, Turgut F, Saglam M, Cakir E, Yenicesu M, Covic A, Jalal D and Johnson RJ: Serum uric acid level and endothelial dysfunction in patients with nondiabetic chronic kidney disease. Am J Nephrol, 2011; 33: 298-304

23) Sincer I, Kurtoglu E, Caliskan M, Akkaya E, Veledar E, Latif MA, Aziz M, Ahmed R, Khan SA, Joseph J, Feiz H, Sposito A and Nasir K: Elevated serum uric acid is associated with vascular inflammation but not coronary artery calcification in the healthy octogenarians: the Brazilian study on healthy aging. Aging Clin Exp Res, 2014; 36: 315-320

24) Rodrigues TC, Maahs DM, Johnson RJ, Jalal DI, Kinney GL, Rivard C, Rewers M and Smell-Begeeron JK: Serum uric acid predicts progression of subclinical coronary atherosclerosis in individuals without renal disease. Diabetes Care, 2010; 33: 2471-2473

25) Li Y, Lu J, Wu X and Yang C: Serum uric acid concentration and asymptomatic hyperuricemia with subclinical organ damage in general population. Angiology, 2014; 65: 634-640

26) Mehta T, Nuccio E, McFann K, Madero M, Sarnak MJ and Jalal D: Association of Uric Acid With Vascular Stiffness in the Framingham Heart Study. Am J Hypertens, 2015; 28: 877-883

27) Soletsky B and Feig DI: Uric acid reduction rectifies pre-hypertension in obese adolescents. Hypertension, 2012; 60: 1148-1156