We report Raman scattering results of YbRu$_2$Ge$_2$ single crystals to explore the phononic and crystal-field (CF) excitations. This heavy-fermion metal enters a B$_{1g}$-symmetry ferroquadrupolar (FQ) phase below $T_Q = 10K$. We establish the CF level scheme of the ground multiplet. We demonstrate that the static Raman susceptibilities in both B$_{1g}$ and B$_{2g}$ quadrupole channels exhibit a Curie-Weiss behavior with the Weiss temperature about 10K lower than T_Q. Electron-lattice coupling is crucial for the FQ transition to happen. Moreover, temperature-dependent study of four Raman-active phonon modes shows that the intensities of the A$_{1g}$ and one E$_g$ modes increase significantly on cooling, which is explained by a near-resonant coupling between these two phonon modes and CF transitions.

Supported by: spectroscopy (MY, GB): NSF DMR-1709161; crystal growth and characterization (E.W.R. and I.R.F.): the Gordon and Betty Moore Foundation through Grant GBMF4414.