Relationship of coregulator and oestrogen receptor isoform expression to de novo tamoxifen resistance in human breast cancer

LC Murphy*,1,2, E Leygue2, Y Niu3, L Snell3, S-M Ho4 and PH Watson3

1Manitoba Institute of Cell Biology, University of Manitoba, Faculty of Medicine, Winnipeg, Manitoba, Canada, R3E OW3; 2Department of Biochemistry and Medical Genetics, University of Manitoba, Faculty of Medicine, Winnipeg, Manitoba, Canada, R3E OW3; 3Department of Pathology, University of Manitoba, Faculty of Medicine, Winnipeg, Manitoba, Canada, R3E OW3; 4Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, MA 01655, USA

This study addresses the hypothesis that altered expression of oestrogen receptor-beta and/or altered relative expression of coactivators and corepressors of oestrogen receptors are associated with and may be mechanisms of de novo tamoxifen resistance in oestrogen receptor positive breast cancer. All cases were oestrogen receptor +, node negative, primary breast tumours from patients who later had no disease progression (tamoxifen sensitive) or whose disease progressed while on tamoxifen (tamoxifen resistant). Using an antibody to oestrogen receptor-beta that detects multiple forms of this protein (total) but not an antibody that detects only full-length oestrogen receptor-beta 1, it was found that high total oestrogen receptor beta protein expressers were more frequently observed in tamoxifen sensitive tumours than resistant tumours (Fisher’s exact test, P = 0.046). However, no significant differences in the relative expression of oestrogen receptor β2, oestrogen receptor β5 and full-length oestrogen receptor β1 RNA in the tamoxifen sensitive and resistant groups were found. Also, when the relative expression of two known coactivators, steroid receptor RNA activator and amplified in breast cancer 1 RNA to the known corepressor, repressor of oestrogen receptor activity RNA, was examined, no significant differences between the tamoxifen sensitive and resistant groups were found. Altogether, there is little evidence for altered coregulators expression in breast tumours that are de novo tamoxifen resistant. However, our data provide preliminary evidence that the expression of oestrogen receptor β protein isoforms may differ in primary tumours of breast cancer patients who prove to have differential sensitivity to tamoxifen therapy.

Keywords: SRA; AIB1; ROA; coregulators; OR isoforms; human breast cancer; tamoxifen

The ability of anti-oestrogens such as tamoxifen to compete with oestrogens for binding to OR and to antagonise their mitogenic action provides the basic rationale for endocrine therapy and prevention (for a review see (Osborne, 1998b)) in breast cancer. Adjuvant tamoxifen post-operative therapy reduces the number of recurrences and prolongs survival in women whose primary tumours are oestrogen receptor (OR) positive (Group, 1998). However, even though OR level is considered a marker for predicting the likelihood of responding to adjuvant hormonal therapies, some patients, whose primary tumours are OR positive do not respond to tamoxifen treatment. Such apparent de novo therapiess, some patients, whose primary tumours are OR positive (Group, 1998). However, even though OR level is considered a marker for predicting the likelihood of responding to adjuvant hormonal therapies, some patients, whose primary tumours are OR positive do not respond to tamoxifen treatment. Such apparent de novo therapiess, some patients, whose primary tumours are OR positive (Group, 1998). However, even though OR level is considered a marker for predicting the likelihood of responding to adjuvant hormonal therapies, some patients, whose primary tumours are OR positive do not respond to tamoxifen treatment. Such apparent de novo therapiess, some patients, whose primary tumours are OR positive (Group, 1998). However, even though OR level is considered a marker for predicting the likelihood of responding to adjuvant hormonal therapies, some patients, whose primary tumours are OR positive do not respond to tamoxifen treatment. Such apparent de novo therapiess, some patients, whose primary tumours are OR positive (Group, 1998). However, even though OR level is considered a marker for predicting the likelihood of responding to adjuvant hormonal therapies, some patients, whose primary tumours are OR positive do not respond to tamoxifen treatment.

Previously we have demonstrated that the relative expression of OR isoforms, two known coactivators (steroid receptor RNA activator (SRA), (Lanz et al, 1997)) and one corepressor (repressor of oestrogen receptor activity (ROA) (Montano et al, 1999)) of OR activity have been investigated in primary breast tumours from node negative patients whose tumours were OR

*Correspondence: Dr LC Murphy; Manitoba Institute of Cell Biology, CancerCare Manitoba, 675 McDermot Ave, Winnipeg, MB, R3E OV9, Canada; E-mail: lcmurph@cc.umanitoba.ca
Received 1 July 2002; revised 4 September 2002; accepted 19 September 2002
positive and that subsequently responded or had disease progression while on adjuvant tamoxifen therapy.

MATERIALS AND METHODS

Human breast tumours

All breast tumour cases used for this study were selected from the NCIC- Manitoba Breast Tumour Bank (Winnipeg, Manitoba, Canada). As previously described (Hiller et al., 1996), tissues are accrued to the Bank from cases at multiple centres within Manitoba, rapidly collected and processed to create matched formalin-fixed-embedded and frozen tissue blocks for each case with the mirror image surfaces oriented by coloured inks. The histology of every sample in the Bank is uniformly interpreted by a pathologist in Hematoxylin/Eosin (H&E) stained sections from the face of the paraffin tissue block. This information is available in a computerized database along with relevant pathological and clinical information and was used as a guide for selection of specific paraffin and frozen blocks from cases for this study. For each case, interpretations included an estimate of the cellular composition (including the percentage of invasive epithelial tumour cells and stroma), tumour type and tumour grade (Nottingham score). Steroid receptor status was determined for all cases by ligand binding assay performed on an adjacent portion of tumour tissue. Tumours with oestrogen receptor levels above 3 fmol mg\(^{-1}\) of total protein were considered OR positive.

To identify cases that responded divergently to tamoxifen, review of approximately 1000 consecutive cases was undertaken to identify cases that were OR positive, node negative and that had been treated with adjuvant tamoxifen following surgery +/- local radiation. From these the first cohort of 27 cases was selected to include a subset (n=13) that had shown progression of disease (either died or alive with recurrent disease, referred to as tamoxifen resistant cases) and a similar control subset (n=14) specifically selected to comprise cases with similar lengths of follow-up, OR status, tumour grade and tumour histology, but that had shown no progression of disease (referred to as tamoxifen sensitive cases). The tumour characteristics were: (1) 'Tam Sensitive' group median OR was 60.5 fmol mg\(^{-1}\) protein (range 6–146 fmol mg\(^{-1}\) protein); median PR was 32 fmol mg\(^{-1}\) protein (range 8–216 fmol mg\(^{-1}\) protein); median grade was five (range 4–8); median age at biopsy was 69 years (range 35–87 years); median follow-up time was 56 months (range 24–79); (2) 'Tam Resistant' group median OR was 57 fmol mg\(^{-1}\) protein (range 4–136 fmol mg\(^{-1}\) protein); median PR was 14 fmol mg\(^{-1}\) protein (range 4–288 fmol mg\(^{-1}\) protein); median grade was six (range 4–9); median age at biopsy was 67 years (range 49–83 years); median follow-up time was 56 months (range 9–85).

For the RNA studies, frozen tissue corresponding to the blocks for several of the first cohort of older cases used above, were not available. Therefore, after further review of the tumour bank as described above, a second study cohort was selected that also had frozen tissue available. The relevant patient/tumour characteristics were similar to the above cohort, although the follow-up time was shorter: (1) 'Tam Sensitive' group (n=16) median OR was 37.5 fmol mg\(^{-1}\) protein (range 4.4–146 fmol mg\(^{-1}\) protein), median PR was 44 fmol mg\(^{-1}\) protein (range 13.1–216 fmol mg\(^{-1}\) protein); median grade was six (range 4–9); median age at biopsy was 72 years (range 47–87 years); median follow-up time was 39 months (range 13–76); (2) 'Tam Resistant' group (n=16) median OR was 21.5 fmol mg\(^{-1}\) protein (range 5.6–107 fmol mg\(^{-1}\) protein); median PR was 14.3 fmol mg\(^{-1}\) protein (range 7.8–288 fmol mg\(^{-1}\) protein); median grade was six (range 4–9); median age at biopsy was 71 years (range 60–89 years); median follow-up time was 34 months (range 9–63).

Immunohistochemistry

Immunohistochemistry was performed on serial 5 μm sections from a representative, formalin fixed paraffin embedded archival tissue block from each tumour. Immunohistochemical staining for OR\(b\) was performed using two different primary antibodies. IgYERB503 (a gift from Dr Jan-Ake Gustafsson) detects total OR\(b\) isoforms (Horvath et al., 2001; Saji et al., 2000) and GC17 (a gift from Dr Shuk-Mei Ho) detects only the full-length OR\(b\) (Leav et al., 2001). The GC17 polyclonal antibody was raised in rabbits against a peptide sequence in the F domain of the human OR\(b\) receptor (amino acids 449 to 465) and its specificity validated previously (Leav et al., 2001). The epitope to which the IgYERB503 antibody is directed is not known, but this polyclonal chicken anti-body was raised to an OR\(b\) recombinant protein which was disrupted in the ligand binding domain by insertion of 18 additional amino acids, but was subsequently shown to also recognise the full-length non-inserted OR\(b\) protein (Saji et al., 2000). Antibodies were applied using an automated tissue immunostainer (Discovery module, Ventana Medical Systems, Phoenix, AZ, USA), DAB immunohistochemistry kit and bulk reagents that were supplied by the manufacturer. Briefly, the Discovery staining protocol was set to 'Standard Cell Conditioning' procedure, followed by 12 h incubation with primary antibody and 32 min incubation with secondary antibody. Concentrations of primary antibodies initially applied to the Ventana instrument were 1:200 for IgYERB503 and 1:50 for GC17, which translates into final concentrations of 1:600 and 1:150 after a 1:3 dilution with buffer dispensed onto the slide with the primary antibody. Levels of nuclear OR\(b\) expression were scored semi-quantitatively, under the light microscope. Scores were obtained by estimating average signal intensity (on a scale of 0–300) and the proportion of epithelial cells showing a positive signal (0, none; 0.1, less than one tenth; 0.5, less than one half; 1.0 greater than one half). The intensity and proportion scores were then multiplied to give an overall IHC-score. Cases with a score lower than or equal to 100 were considered negative or weakly positive, whereas tumours with scores higher than 100 were classified as positive for OR\(b\) expression (Al-Haddad et al., 1999).

RNA Extraction and RT–PCR conditions

Total RNA was extracted from 20 μm frozen tissue sections (20 sections per tumour) using TrizolTM reagent (Life Technologies, NY, USA) according to the manufacturer’s instructions and quantified spectrophotometrically. One μg of total RNA was reverse transcribed in a final volume of 25 μl as previously described (Leygue et al., 1996).

Primers and PCR conditions

Coregulators The primers used were: SRacoreU primer (S'-AGGAACCCGGCTGGAAAGCA-3'; sense; positions 35–53, Genbank accession number AF092038) and SRacorel primer (S'-AGTCTGGGAAACCGAGGT-3'; antisense; position 696–678, Genbank accession number AF092038); ALB-I-U primer (S'-ATACTTCTGAGATGGTGGACT-3'; sense; positions 110–130, Genbank accession number AF012108); TCCCTGTCTTTTTATTTTG-3'; antisense; positions 458–438, Genbank accession number AF012108); OILO-U primer (S'-CGAAAAAATCTCCTCCCTACA-3'; sense; positions 385–405, Genbank accession number AF150962) and OR-A-L primer (S'-CCTGCTTGTCTTTTTTACCA-3'; antisense; positions 781–761, Genbank accession number AF150962).

Radioactive PCR amplifications for SRA were performed and PCR products analysed as previously described (Leygue et al., 1999b) with minor modifications. Briefly, 1 μl of reverse transcript-
tion mixture was amplified in a final volume of 15 μl, in the presence of 1.5 μCi of (z-32P) dCTP (3000 Ci mmol−1), 4 ng μl−1 of each primer and 0.3 unit of Taq DNA polymerase (Gibco BRL, Grand Island, NY, USA). For SRA each PCR consisted of 30 cycles (30 s at 94°C, 30 s at 60°C and 30 s at 72°C). PCR products were then separated on 6% polyacrylamide gels containing 7 M urea. Following electrophoresis, the gels were dried and exposed 2 h to a Molecular ImagerTM-FX Imaging screen (Bio-Rad, Hercules, CA, USA).

PCR amplifications for AIB1 and ROA were performed and PCR products analysed as previously described (Leygue et al, 1996) with minor modifications. Briefly, 1 μl of reverse transcription mixture was amplified in a final volume of 20 μl, in the presence of 4 ng μl−1 of each primer and 0.3 unit of Taq DNA polymerase (Gibco BRL, Grand Island, NY, USA). For AIB1, each PCR consisted of 30 cycles (30 s at 94°C, 30 s at 55°C and 30 s at 72°C). For ROA each PCR consisted of 30 cycles (30 s at 94°C, 30 s at 57°C and 30 s at 72°C). PCR products were then separated on agarose gels stained with ethidium bromide as previously described (Leygue et al, 1999a). Briefly, 1 μl of reverse transcription mixture was amplified in a final volume of 15 μl, in the presence of 1 μCi of (z-32P) dCTP (3000 Ci mmol−1), 2 ng μl−1 of ORz-U/ROz-L and 0.3 unit of Taq DNA polymerase (Gibco BRL, Grand Island, NY, USA). Each PCR consisted of 30 cycles (30 s at 94°C, 30 s at 60°C and 30 s at 72°C).

A previously validated triple primer assay was used to determine the relative expression of ORβ1 and its variant isoforms ORβ2 and ORβ5 (Leygue et al, 1999a). Briefly, 1 μl of reverse transcription mixture was amplified in a final volume of 15 μl, in the presence of 1 μCi of (z-32P) dCTP (3000 Ci mmol−1), 4 ng μl−1 of each primer (ORβ1U, ORβ1L and ORβ2L) and 0.3 unit of Taq DNA polymerase (Gibco BRL, Grand Island, NY, USA). All OR PCRs consisted of 30 cycles (30 s at 94°C, 30 s at 60°C, and 30 s at 72°C). PCR products were then separated on 6% polyacrylamide gels containing 7 M urea. Following electrophoresis, the gels were dried and autoradiographed. Three independent PCRs were performed.

Quantification of SRA and OR RNA expression Exposed screens were scanned using a Molecular ImagerTM-FX imaging screen (Bio-Rad, Hercules, CA, USA) and the intensity of the signal corresponding to SRA or the appropriate OR isoform PCR fragments was measured using Quantity OneTM software (Bio-Rad, Hercules, CA, USA). Three independent PCRs were performed. In order to control for variations between experiments, a value of 1 was arbitrarily assigned to the signal of one particular tumour measured in each set of PCR experiments (always the same tumour) and all signals were expressed relative to this signal. Levels of ORβ isoforms were expressed relative to other ORβ isoforms shown under statistical analysis and as previously described (Leygue et al, 1999a).

Quantification of the relative expression of the deleted SRA variant RNA It has previously been shown that the coamplification of a full-length and a deleted variant SRA (SRA-Del) cDNA resulted in the amplification of two PCR products, the relative signal intensity of which provided a reliable measurement of the relative expression of the deleted variant (Leygue et al, 1999b). For each sample, the signal corresponding to the SRA-Del was measured using Quantity OneTM software (Bio-Rad, Hercules, CA, USA) and expressed as a percentage of the corresponding core SRA signal. For each case, three independent assays were performed and the mean determined.

Quantification of ROA and AIB1 RNA expression Following analysis of PCR products on prestained agarose gels, signals were quantified by scanning using MultiAnalystTM (Bio-Rad, Hercules, CA, USA). At least, three independent PCRs were performed. A value of 1 was arbitrarily assigned to the ROA or AIB1 signal of one particular tumour and is the same tumour as described above and all signals were expressed relative to this signal. Levels of AIB1 were expressed relative to ROA (AIB1/ROA) and ORz (AIB1/ORz), and levels of ROA were expressed relative to ROz (ROA/ORz).

Statistical analysis Differences between tamoxifen sensitive and tamoxifen resistant cases were tested using the Mann–Whitney rank sum test, two-tailed. Potential differences in expression between the two groups with respect to each ORβ isoform RNA relative to other ORβ isoform RNA expression (e.g. log ORβ1/total ORβ; log ORβ2/total ORβ; log ORβ5/total ORβ, as previously described (Leygue et al, 1999a)), and the relative expressions of coregulators (i.e. logAIB1/ROA; logSRA/ROA; logSRA/AIB1; logAIB1/ORz; logSRA/ORz; logROA/ORz) were determined.

Tumours were classified as low (scores between 0 and 100) and high (150 – 300) ORβ protein expressors, and differences between tamoxifen sensitive and tamoxifen resistant cases were tested using Fisher’s exact test. Correlation between ORβ protein expression (IHC-score) and tumour characteristics was tested by calculation of the Spearman coefficient r.

RESULTS

Expression of ORβ protein in primary human breast tumours from patients who later progressed on tamoxifen treatment or showed no progression on tamoxifen treatment ORβ protein was determined immunohistochemically on adjacent sections from each tumour, using two different antibodies. GC-17 is an antibody recognizing an epitope in the C-terminus of full-length ORβ1 (Leav et al, 2001). Normal breast tissue was used as a positive control and is shown in Figure 1A. Examples of staining in human breast tumour sections are shown in Figure 1B–D. Some tumour sections showed no (Figure 1B, full-length ORβ score=0) or low (Figure 1C, full-length ORβ score=100), while others showed strong full-length ORβ signals (Figure 1D, wild-type ORβ score=300). Tumours were classified as low (scores between 0 and 100) and high (150 – 300) full-length ORβ protein expressors, and differences between tamoxifen sensitive and resistant tumours determined by Fisher’s exact test. No significant differences were found.

IgYERbeta503 is an antibody that recognises ligand binding and non-ligand binding ORβ protein isoforms (Horvath et al, 2001; Saji et al, 2000) and which we refer to as total ORβ protein. Normal breast tissue was used as a positive control and is shown in Figure 2A. Examples of staining with this antibody in human breast tumour sections are shown in Figure 2B–D. Some sections showed no (Figure 2B, total ORβ score=0) or low (Figure 2C, total ORβ score=100) total ORβ expression whereas others had strong total ORβ protein signal (Figure 2D, total ORβ score=300).
Tumours were classified as low and high total ORβ protein expressors, and there was a statistically significant difference in high total ORβ protein between the Tamoxifen sensitive and resistant groups (Fisher’s exact test, P=0.046). High total ORβ protein expressors were more frequently observed in tamoxifen sensitive tumours than resistant tumours.

Correlation between ORβ protein expression and tumour characteristics was tested by calculation of the Spearman coefficient. A positive correlation between ORβ (GC17) protein and progesterone receptor (PR) levels (Spearman r=0.44, P=0.022) was found when each was examined as continuous variables. When tumours were divided into PR+ (≥10 fmol mg⁻¹ protein) or PR− (<10 fmol mg⁻¹ protein) groups there was a significantly higher level of ORβ (GC17) protein in PR+ tumours compared to PR− tumours (Mann–Whitney test, P=0.0268; median for PR+ tumours=55, range 5–150 and median for PR− tumours=10, range 0–75). As well, there was also a significantly higher level of total ORβ (IgY503) protein in PR+ tumours compared to PR− tumours (Mann–Whitney test, P=0.0085; median for PR+ tumours=125, range 25–270 and median for PR− tumours=50, range 0–100).

Relative expression of ORβ isoform RNA in primary human breast tumours from patients who later progressed on tamoxifen treatment or showed no progression on tamoxifen treatment

To address the hypothesis that altered relative expression of steroid receptor coactivators and corepressors could underlie altered tamoxifen sensitivity in human breast tumours, and since we previously showed that the relative expression of two coactivators (SRA and AIB1) to a corepressor (ROA) is altered in OR+ breast tumours compared to their adjacent normal breast tissue, we previously showed that the relative expression of two coactivators (SRA and AIB1) to a corepressor (ROA) is altered in OR+ breast tumours compared to their adjacent normal breast tissue, we previously showed that the relative expression of any of these coactivator RNAs relative to ORβ RNA expression. As well, there was no significant difference in the relative expression of variant SRA/full-length SRA RNA in the tamoxifen sensitive and resistant groups was not significantly different.

Relative expression of coregulators in primary human breast tumours from patients who later progressed on tamoxifen treatment or showed no progression on tamoxifen treatment

Address the hypothesis that altered relative expression of steroid receptor coactivators and corepressors could underlie altered tamoxifen sensitivity in human breast tumours, and since we previously showed that the relative expression of two coactivators (SRA and AIB1) to a corepressor (ROA) is altered in OR+ breast tumours compared to their adjacent normal breast tissue, we previously showed that the relative expression of two coactivators (SRA and AIB1) to a corepressor (ROA) is altered in OR+ breast tumours compared to their adjacent normal breast tissue, we previously showed that the relative expression of any of these coactivator RNAs relative to ORβ RNA expression. As well, there was no significant difference in the relative expression of variant SRA/full-length SRA RNA in the tamoxifen sensitive and resistant groups was not significantly different.

Tumour characteristics

No statistically significant differences were found between the tamoxifen sensitive and tamoxifen resistant cohorts in any of the tumour characteristics described in the Materials and Methods section except for PR. PR levels were statistically significantly different (P=0.044) between the two groups.
using a Mann–Whitney rank sum test (two sided). PR levels were higher (median PR was 32 fmol mg\(^{-1}\) protein; range 8–216 fmol mg\(^{-1}\) protein) in the tamoxifen 'sensitive' group compared to the tamoxifen 'de novo resistant' group (median PR was 14 fmol mg\(^{-1}\) protein; range 4–288 fmol mg\(^{-1}\) protein). This was a consistent finding in both selected cohorts (that used for immunohistochemistry and that used for the RNA study), and provides strong support for differences in oestrogen signalling pathways in these two groups since PR is a marker of OR signal transduction (Horwitz et al, 1975; Osborne, 1998a).

DISCUSSION

We and others have shown that the relative expression of ORx and OR\(\beta\) is significantly altered during breast tumourigenesis (Leygue et al, 1998; Roger et al, 2001), and a similar mechanism has been proposed to underlie tamoxifen resistance in breast cancers (Paech et al, 1997). The current study shows no significant differences in expression of full-length OR\(\beta\) (OR\(\beta\)1) between tamoxifen sensitive and resistant tumours. Interestingly, in this small cohort of tumours when total OR\(\beta\) expression was examined, there were significantly more high total OR\(\beta\) expressions in the tamoxifen 'sensitive' compared to the 'resistant' group. The data suggest the possibility that increased and altered OR\(\beta\) isoform protein expression may have a role in de novo tamoxifen resistance, or at least together with other parameters may provide better markers of endocrine sensitivity. The increased expression of OR\(\beta\) proteins in the tamoxifen sensitive group is also consistent with recently published data where patients with OR\(\beta\) positive tumours (determined using an antibody to an N-terminal epitope of the OR\(\beta\) protein, and defined as nuclear staining in >10% of cancer cells) had a significantly better overall survival than patients with OR\(\beta\) negative tumours while receiving adjuvant tamoxifen therapy (Mann et al, 2001). Both these latter data and those presented currently in this manuscript are in contrast to data showing increased OR\(\beta\) RNA expression in tamoxifen resistant tumours versus tamoxifen sensitive tumours previously published (Speirs et al, 1999). Together these studies suggest that the OR\(\beta\) status and the nature of OR\(\beta\) isoforms together with OR\(x\) status in human breast cancers may be important biomarkers of endocrine sensitivity, and warrants further study, in larger, prospectively gathered cohorts. The association of increased OR\(\beta\) isoform expression with tamoxifen sensitivity, suggests a possible mechanistic role, and one possible mechanism may be suggested by several publications which have shown that OR\(\beta\) isoforms have a modulatory effect on OR\(x\)s, both in normal tissues (Weihs et al, 2000) as well as in cell culture models (Ogawa et al, 1998; Hall and McDonnell, 1999).

The potential difference between tamoxifen sensitive and resistant groups with respect to OR\(\beta\)-like proteins, was not correlated with differences in the relative expression of full-length OR\(\beta\) and two known variants OR\(\beta\)2 and OR\(\beta\)5 at the RNA level between the tamoxifen 'sensitive' versus the tamoxifen 'resistant' groups, however, this may be due to differential regulation of protein versus RNA level or the likelihood that there are other potential OR\(\beta\) isoforms (known and unknown) expressed in breast tissues in addition to OR\(\beta\)1, OR\(\beta\)2 and OR\(\beta\)5 (Lu et al, 1998; Fuqua et al, 1999), whose cognate proteins would be detected by the antibody but not measured in the triple primer RT–PCR assay.

Another mechanism for differential tamoxifen sensitivity in OR\(x\)+ breast tumours could be altered coregulator expression. Although the relative expression of OR coregulators SRA, AIB1 and ROA is altered between normal breast and OR\(x\)+ breast tumours, there were no significant differences in the ratios of any of the coactivators/corepressors or any of the ratios of these coregulators to OR\(x\) RNA levels between primary breast tumours from patients who were later found to be disease free (sensitive) or have disease progression (resistant) while on adjuvant tamoxifen treatment. These data suggest that altered relative expression of these coregulators is unlikely to be a marker of tamoxifen sensitivity in OR\(x\)+, node negative, primary breast tumours, and unlikely to have a functional role in de novo tamoxifen resistance. Although SRA is functional as an RNA molecule, ROA and AIB1 are functional as proteins. Furthermore, other factors can affect protein activity for example phosphorylation in the case of AIB1 (Mora and Brown, 2000) or sequestration by other proteins such as prothymosin-alpha in the case of ROA (Martini et al, 2000). Our studies do not exclude differences at the protein and/or activity levels of ROA and AIB1 being involved in de novo tamoxifen resistance, nor do they exclude altered expression of these factors having a role in acquired tamoxifen resistance (Lavinsky et al, 1998). Altogether, there is little evidence for altered coregulators expression in breast tumours that are de novo tamoxifen resistant. However, our data provide preliminary evidence that the expression of OR\(\beta\) protein isoforms may differ in primary tumours of breast cancer patients who prove to have differential sensitivity to tamoxifen therapy. As well our data support distinct differences in the OR signalling pathways between these two groups of patients since the expression of a known oestrogen responsive gene PR is significantly different between the two groups, the precise mechanisms underlying these differences remain to be elucidated.

ACKNOWLEDGEMENTS

This work was supported by grants from the Canadian Breast Cancer Research Initiative (CBCRI), the Canadian Institutes for Health Research (CIHR) and the US Army Medical Research and Materiel Command (USAMRMC). PH Watson is a recipient of a CIHR Scientist Award and a US Army Academic Award. E Leygue has a USAMRMC Career Development Award.

REFERENCES

Al-haddad S, Zhang Z, Leygue E, Snell L, Huang A, Niu Y, Hiller-Hitchcock T, Hole K, Murphy L, Watson P (1999) Psoriasin (S100A7) expression and the nature of OR\(\beta\) isoforms together with OR\(x\) status in human breast cancers may be important biomarkers of endocrine sensitivity, and warrants further study, in larger, prospectively gathered cohorts. The association of increased OR\(\beta\) isoform expression with tamoxifen sensitivity, suggests a possible mechanistic role, and one possible mechanism may be suggested by several publications which have shown that OR\(\beta\) isoforms have a modulatory effect on OR\(x\)s, both in normal tissues (Weihs et al, 2000) as well as in cell culture models (Ogawa et al, 1998; Hall and McDonnell, 1999).

The potential difference between tamoxifen sensitive and resistant groups with respect to OR\(\beta\)-like proteins, was not correlated with differences in the relative expression of full-length OR\(\beta\) and
Mol Cell Biol 20: 5041 – 5047
Murphy L, Simon S, Parkes A, Leygue E, Dotzlaw H, Snell L, Troup S, Adeyinka A, Watson P (2000) Altered relative expression of estrogen receptor coregulators during human breast tumorigenesis. Cancer Res 60: 6266 – 6271
Ogawa S, Inoue S, Watanabe T, Orimo A, Hosoi T, Ouchi Y, Muramatsu M (1998) Molecular cloning and characterization of human estrogen receptor bxc: potential inhibitor of estrogen action in human. Nucleic Acids Res 26: 3505 – 3512
Osborne C (1998a) Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 51: 227 – 238
Osborne C (1998b) Tamoxifen in the treatment of breast cancer. N Engl J Med 339: 1609 – 1618
Paech K, Webb P, Kuiper G, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS (1997) Differential Ligand Activation of Estrogen Receptors ERalpha and ERbeta at AP1 Sites. Science 277: 1508 – 1510
Roger P, Sahla M, Makela S, Gustafsson JA, Baldeit P, Rochefort H (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 61: 2537 – 2541
Saji S, Jensen E, Nilsson S, Rylander T, Warner M, Gustafsson J-A (2000) Estrogen receptors x and beta in the rodent mammary gland. Proc Natl Acad Sci USA 97: 337 – 342
Speirs V, Malone C, Walton D, Kerin M, Atkin S (1999) Increased expression of estrogen receptor beta mRNA in tamoxifen-resistant breast cancer patients. Cancer Res 59: 5421 – 5424
Weihua Z, Saji S, Makinen S, Cheng G, Jensen EV, Warnier M, Gustafsson JA (2000) Estrogen receptor (ER) beta, a modulator of ERalpha in the uterus. Proc Natl Acad Sci USA 97: 5936 – 5941