ARTICLE
The Growth Parameters and Mortalities of Five Species of Synodontis in the Lower River Benue at Makurdi

Akombo, Pauline Mbakaan Atile, John Iornyiman* Shima, Judith Nguvan

Department of Biological Sciences, Benue State University, Makurdi, Nigeria

ARTICLE INFO

Article history
Received: 28 June 2021
Accepted: 26 July 2021
Published Online: 5 August 2021

Keywords:
Growth parameters
Mortalities
Synodontis
River Benue

ABSTRACT

The growth parameters and mortalities of five species of Synodontis in the lower river Benue at Makurdi, Benue State were studied from January, 2016 to December, 2018. The asymptotic length (L∞) calculated for the five species ranged from 18.80cm in S.clarias females to 37.04cm in S.membranaceus females. The t₀ values were all negative in the combined sexes of S.clarias, S.omias, S.gambiensis and S.membranaceus. In both combined sexes of S.membranaceus and S.schall, the t₀ values were positive. The growth rate (K) was low in S.clarias and S.omias (0.301 - 0.497, 0.171 - 0.310) respectively and higher in S.membranaceus (0.310 - 0.640), S.schall females (0.430 - 0.580), S.schall males (0.573), S.gambiensis (0.500 - 0.571). Growth performance index (Ø') was 2.212 in S.gambiensis and 2.946 in S.schall combined. Natural Mortality (M) ranged from 0.5422 in S.omias females to 1.3340 in S.membranaceus males. Fishing Mortality (F) was 0.8214 in S.omias combined and 3.0934 in S.membranaceus females. Total mortality (Z) ranged from 1.52 in S.omias combined to 4.078 in S.membranaceus combined. Mean Exploitation (E) ratios was 0.61 in S.clarias, 0.64 in S.omias, 0.53 in S.gambiensis, 0.70 in S.membranaceus, and 0.66 in S.schall. The rate at which these species survived in the River was low (from 0.147, in S.omias combined, to 1.482 in S.membranaceus combined).

1. Introduction

The growth of a fish like any other organism results from its food consumption and assimilation [1]. The growth of fishes can be affected by many factors which include food availability (amount and quality), population density, food consumption, genetic composition, photoperiods, and length of growing periods. Temperature affects the rate of metabolism of fishes as they are ectothermic. Changes in temperature from season to season affect the growth rate [2,11]. Other factors include salinity, amount of dissolved oxygen, the physiological condition of the fish, parasitism, competition, predation and presence of adequate anions and cations in the water body [3-5].

Age determination and growth are important aspects of fisheries management [6,7]. The study of factors influencing fish growth which include maturation, migration, food and feeding habits, spawning frequency, stock responses to changes in habitats are essential to the fishery biologist [8].

Fish growth can be used to describe the status of a given fish population as well as for predicting the potential yield of the fishery. It also facilitates the assessment of production, stock size and recruitment to adult stock [9]. According to [10], fish growth can be used to measure

*Corresponding Author:
Atile, John Iornyiman,
Department of Biological Sciences, Benue State University, Makurdi, Nigeria;
Email: johnatile@gmail.com
characteristics of fish stocks, species and is fundamental to the understanding of the life histories of demographics, ecosystem dynamics and sustainability of fisheries. The Walford plot analysis for fish is used to determine the Von Bertalanffy growth parameters for different sexes of fish species in a given body of water. However, [10] observed that information on growth parameters of many tropical fishes were either scarce, few or no records were available at all in Fishbase. There are no published works on the determination of true asymptotic length (L∞) of Synodontis species in this River. This research therefore, focus on the determination of the true asymptotic length (L∞) and length-at-age (Lt) of five Synodontis species in River Benue at Makurdi.

2. Materials and Methods

2.1 The Study Area

The study area was the Lower Benue River at Makurdi. The Lower Benue River is part of the Benue River contained within Benue state of Nigeria to the confluence at Lokoja [11].

Benue state is located in the middle belt area of Nigeria. It is located between Latitudes 7° 25’N and 8° 8’N and Longitudes 7° 47’E and 10°E. (http://www.absoluteastronomy.com).

River Benue is an inland water body which originates in the Adamawa Plateau of Northern Cameroon as the Benoue and flows to the west across east-central Nigeria as the Benue. It extends from the Adamawa mountains of Cameroon some 500 km beyond the Nigerian territory where it flows west through the town of Garoua and Lagdo Reservoir into Nigeria south of the Mandara mountains, and through Jimeta, Ibi and Makurdi before it joins with River Niger at Lokoja, about 1400 km long [11].

Makurdi town, the capital of Benue state and the headquarters of Makurdi Local Government Area are situated on both banks of this River within the flood plain. The town is between Latitudes 7° 38’N and 7° 50’N and Longitudes 8° 24’E and 8° 38’E. Its mean elevation is 92 meters above sea level [11].

The flood plain stretches for as much as 187 km with a width ranging between 3-10 km [12]. The flood plain is flooded mainly along the south bank. The large area of flood plain is flooded every in the rainy season when it rises extending to long distances along the shores [12]. The flooded plain forms breeding grounds for fish species.

At bankfull, the flooded plain can cover 129,000 ha, but when flooded, the area can rise to 310,000 ha. [11] observed that the highest water levels of the River were in August-September and the lowest were in March and April.

2.2 Length at Age

The length at age of the five species of Synodontis was calculated using the [13] growth model of in the LSA/FiSAT computer programmes using the formula below:

\[L(t) = L_\infty (1 - e^{-K(t-t_0)}) \]

Where \(L(t) \) = length at age \(t \)

\(L_\infty \) = the length at age \(t_0 \)

\(K \) = the asymptotic or maximum attainable length, assuming fish growth is indefinite.

\(t_0 \) = the time at which the asymptotic length is approached.

\(e \) = exponential and \(t \) = age in years.

Growth curves were fitted to the Von-Bertalanffy model and tested with Walford plots to obtained L∞ trials [7].

The gradient \(\log_\text{e} L_\infty + Kt_0 \) is the intercept, then \(t_0 = \frac{\text{Y-intercept} - \log L_\infty}{K} \).

\(K \) is the gradient of the line of best fit from the trial plots of \(\log_L_\text{e} (L_\infty - L_t) \) against age.

2.3 Mortality

2.3.1 Natural Mortality (M)

Natural mortality (M) for the five species of Synodontis was estimated using empirical formula below:

\[\log_{10} M = -0.0066 - 0.279 \log_{10} L_\infty + 0.6543 \log_{10} K + 0.463 \log_{10} T \]

Where,

\(L_\infty \) = the asymptotic length of the fish species in cm
\(K \) = the Von Bertalanffy parameters
\(T \) = the mean environmental temperature which was 27.6 in this study.

2.3.2 Total Mortality (Z)

Total Mortality (Z) was calculated on FiSAT II from the lengths of fish samples using the formula below:

\[Z = K \frac{|L_\infty - L_{\text{mean}}|}{|L_{\text{mean}} - L'|} \]

where

\(Z \) = Beveryton and Holt function, \(K \) = curvature parameter of the VBGF, \(L_\infty \) = asymptotic length of fish, \(L_{\text{mean}} \) = mean length of fish samples and \(L' \) = cut off or lower limit of the smallest length class.

2.3.3 Growth Performance Index

The growth performance index \(\Theta' \) was calculated using the formula below:

\[\Theta' = \log K + 2 \log L_\infty \]

Where, \(K \) and \(L_\infty \) are parameters of VBGF.
3. Results

The growth parameters and mortalities of the five species of Synodontis as obtained from the Walford and Rickert plots and estimations were shown in Table 1.

The growth rates (K) of the five species was generally low in S.clarias and S.omias males and female sexes. Growth rate of 0.640 was the highest in S.membranaceus males, followed by 0.580 in S.schall females, then 0.573 in S.schall males and 0.571 in S.gambiensis males.

The growth performance index (Ø) of all the species ranged between 2.212 in S.gambiensis females to 2.946 in S. schall males and females. In S. clarias, the growth performance index (Ø') in length was 2.453, 2.321 and 2.693 in females and males sexes respectively. In S.omias, the values were 2.440 and 2.321 in the females and males sexes respectively. S.gambiensis had the growth performance index of 2.212 and 2.374 for females and males respectively. The growth performance index was 2.562 in S.membranaceus females and 2.689 for the males. The growth performance of 2.756 was observed in S.schall females and 2.64 for the males. The growth performance was highest in S.schall followed by S.membranaceus and lowest in S.gambiensis.

The asymptotic lengths (L∞) for the five species ranged between 18.80cm in S.clarias females to 37.04cm in S.membranaceus females. In S.clarias, the L∞ ranged between 18.80cm -28.50cm. S.omias had the range of 28.0cm - 28.50cm, S.gambiensis 23.0cm - 23.70cm, S.membranaceus 28.05cm-37.04cm and S.schall 28.05cm - 30.05cm (Table 1).

The hypothetical age at which length is zero (t₀) was negative in S.clarias, S.omias, S.gambiensis and S.membranaceus and positive in both sexes of S.membranaceus and S.schall.

The natural mortality (M) was 0.5422 in S.omias females and 1.3340 in S. membranaceus males. Natural mortalities were higher in S.schall and S.gambiensis than all the other species (Table 1).

The total mortality (Z) of the five species ranged between 1.5120 in S.omias combined to 4.078 in S.membranaceus females. The total mortality of the five species was generally high (Table 1).

The fishing mortality (F) for the five species ranged between 0.8214 in S.omias combined to 3.0934 in S.membranaceus females. The Fishing mortality for the species was higher than natural mortality (Table 1).

Table 1. Growth Parameters and Mortalities of the Five Species of Synodontis in the Lower River Benue.

Species	Sex	Growth Parameters	Mortality Coefficients									
	L∞ (cm)	K (1/yr)	t₀ (cm)	L∞ - Lw (cm)	Back-calculated	Ø	S	M (1/yr)	F (1/yr)	Z (1/yr)	E (F/Z)	
S.clarias	♀	18.80	0.385	-0.723	7.85	7.46	2.453	1.232	0.7403	1.1427	1.883	0.76
	♂	28.50	0.301	-0.440	5.50	8.55	2.331	0.961	0.8242	1.2238	2.048	0.60
Comb.		23.00	0.497	-0.900	6.55	8.18	2.693	0.659	1.2036	1.0844	2.288	0.47
S.omias	♀	28.05	0.171	-0.706	4.43	9.16	2.440	0.287	0.5422	1.6518	2.194	0.75
	♂	28.20	0.310	-0.419	8.50	8.66	2.321	0.375	0.8188	1.3882	2.207	0.63
Comb.		28.50	0.240	-0.542	10.90	9.82	2.649	0.147	0.6906	0.8214	1.512	0.54
S.gambiensis	♀	23.50	0.500	-0.714	9.84	6.38	2.212	0.389	1.1774	1.0096	2.187	0.46
	♂	23.70	0.571	-0.464	9.84	6.43	2.374	0.279	1.3070	2.1540	3.461	0.62
Comb.		23.00	0.523	-0.641	9.53	8.61	2.445	0.556	1.2444	1.3376	2.582	0.52
S.membranaceus	♀	37.04	0.320	0.344	8.90	9.86	2.562	0.945	0.9846	3.0934	4.078	0.77
	♂	28.25	0.640	0.890	12.65	9.53	2.689	1.466	1.3340	1.9850	3.319	0.60
Comb.		35.10	0.310	-0.032	6.70	8.46	2.869	1.482	0.8312	2.2108	3.042	0.73
S.schall	♀	30.05	0.580	0.830	9.10	7.78	2.756	0.431	1.2351	2.2029	3.438	0.64
	♂	30.00	0.570	0.332	9.50	7.55	2.645	0.327	1.2267	2.3553	3.582	0.66
Comb.		28.50	0.430	0.000	7.70	7.71	2.964	0.614	1.0453	2.3597	3.405	0.69

L∞ = Asymptotic Length, K = Growth curvature, t₀ = length at time 0, Lw - Lw = Change in length, Ø = Growth Performance Index, S=Survival Rate, M = Natural Mortality, F = Fishing Mortality, Z = Total Mortality, E= Exploitation Ratio

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jzr.v3i3.3408
Figure 1a. Walford plot for determination of L_∞ for *S. membranaceus* (males)

Figure 1b. Ricker plot for determination of L_∞

Figure 2a. Walford plot for determination of L_∞ for *S. membranaceus* (females)

Figure 2b. Ricker plot for determination of L_∞

Figure 3a. Walford plot for determination of L_∞ for *S. membranaceus* combined

Figure 3b. Ricker plot for determination of L_∞

DOI: https://doi.org/10.30564/jzr.v3i3.3408
Figure 4a. WALFORD PLOT FOR DETERMINATION OF \(L_\infty \) FOR *S. clarias* (MALES)

Figure 4b. RICKER PLOT FOR DETERMINATION OF TRUE \(L_\infty \)

Figure 5a. WALFORD PLOT FOR DETERMINATION OF \(L_\infty \) FOR *S. clarias* (FEMALES)

Figure 5b. RICKER PLOT FOR DETERMINATION OF TRUE \(L_\infty \)

Figure 6a. WALFORD PLOT FOR DETERMINATION OF \(L_\infty \) FOR *S. clarias* combined

Figure 6b. RICKER PLOT FOR DETERMINATION OF TRUE \(L_\infty \)
Figure 7a. WALFORD PLOT DETERMINATION OF L_∞ FOR *S. omias* (MALES)

Figure 7b. RICKER PLOT FOR DETERMINATION OF TRUE L_∞

Figure 8a. WALFORD PLOT FOR DETERMINATION OF L_∞ FOR *S. omias* (FEMALES)

Figure 8b. RICKER PLOT FOR DETERMINATION OF TRUE L_∞

Figure 9a. WALFORD PLOT FOR DETERMINATION OF L_∞ FOR *S. omias* COMBINED

Figure 9b. RICKER PLOT FOR DETERMINATION OF TRUE L_∞
Figure 10a: WALFORD PLOT FOR DETERMINATION OF L∞ FOR S.schall (MALES)

Figure 10b. RICKER PLOT FOR DETERMINATION OF TRUE L∞

Figure 11a. WALFORD PLOT FOR DETERMINATION OF L∞ FOR S.schall (FEMALES)

Figure 11b. RICKER PLOT FOR DETERMINATION OF TRUE L∞

Figure 12a. WALFORD PLOT FOR DETERMINATION OF L∞ FOR S.schall COMBINED

Figure 12b. RICKER PLOT FOR DETERMINATION OF TRUE L∞
Figure 13a. WALFORD PLOT FOR DETERMINATION OF \(L_\infty \) FOR \(S.gambiensis \) (MALES)

Figure 13b. RICKER PLOT FOR DETERMINATION OF TRUE \(L_\infty \)

Figure 14a. WALFORD PLOT FOR DETERMINATION OF \(L_\infty \) FOR \(S.gambiensis \) (FEMALES)

Figure 14b. RICKER PLOT FOR DETERMINATION OF TRUE \(L_\infty \)

Figure 15a. WALFORD PLOT FOR DETERMINATION OF \(L_\infty \) FOR \(S.gambiensis \) COMBINED

Figure 15b. RICKER PLOT FOR DETERMINATION OF TRUE \(L_\infty \)
4. Discussion

The asymptotic lengths (L∞) calculated for the five species ranged from 18.80 cm in S.clarias females to 27.04 cm in S.membranaceus females. The highest L∞ of 28.50 cm was observed in S.clarias males, while the maximum length of fish of this species was 30.0 cm also a male. In S.omias the highest L∞ of 28.50 cm was observed in the combined, the maximum length of 22.8 cm was found in female. The highest L∞ of S.gambiensis was 23.70 cm in the males and the maximum length of 18.1 cm was still in male. The L∞ of S.membranaceus was 37.04 cm in the females where as the maximum length was 28.8 cm in female. The highest L∞ of female S.schall was 30.05 cm with the maximum length of 30.40 cm. The L∞ in S.omias, S.gambiensis and S.membranaceus were higher than the maximum length of other species of Synodontis under this research. This means that S.omias, S.gambiensis and S.membranaceus had a tendency to live long and grow bigger if the physico-chemical parameters of River Benue are favourable.

The results of this study were different from [15] which computed the L∞ back calculated, and integrated methods in S.schall as 50.4 cm, 49.5 cm and 50.0 cm respectively. Again, the results of this study is different from [16] who observed the L∞ of 62.74 cm, 64.24 cm and 63.45 cm for males, females and combined sexes of S.schall respectively in Egypt at Gizza. Further, this study is similar to [17] who reported the L∞ of S.schall to be 38.7 cm, S.clarias 35.56 cm and S.membranaceus 43.8 cm from the Lower Nun River, Niger Delta.

According to [18], growth of fishes differed from species to species and from stock to stock even within the same species as a result of different environmental conditions. [19] posited that the maximum size attained in fishes was generally location specific. A study conducted by [20] revealed that the differences in the maximum size of Chrysichthys nigrodigitatus in the Lower Nun River was due to high fishing pressure, environmental pollution and degradation. [10] observed that the variations in the growth parameters of some of the species sampled in the central Amazon appeared to accord with the high degree of environmental variations in the ecosystem. The smaller sizes obtained in this river could also be attributed to fishing pressure and environmental pollution and degradation.

In this study, S.clarias, S.omias, S.gambiensis and S.membranaceus had negative hypothetical age at which length was zero (t0) and positive in S.membranaceus male and female and S.schall male and female. The results of this study was different from the work of [21] who observed a negative t0 of -1.543 in O.niloticus from a tropical shal-

low Lake in Mexico. Similarly the result of this study was different from [22] who obtained a negative t0 of -3.93 for Pellinula leonensis. The results of this study was similar to the work of [23] who reported positive t0 values of 0.12 for O.niloticus males, 0.66 for females; 0.30 for S.galilalaeus males, 0.86 for females and 0.50 for B.bayad males, 0.85 for females.

The growth rates (K) of the five species was generally low in S.clarias and S.omias in male and female sexes. The results of this study showed that the rate at which the males and females of S.schall approach L∞ is similar. Whereas in S.membranaceus, S.gambiensis and S.clarias, the males had a faster growth rate than the females. The findings of this study was similar with that of [21] and [24].

Growth performance indices of the studied species were very good (Table 1). The results of this work on Growth performance index (O') was in conformity with [9] who reported the length performance index (O') of 2.63 in Hemisynodontis membranaceus. More so, the results was similar to [24] who observed the length performance indices of 2.71 in S.schall, 2.63 in S.membranaceus, and 3.23 in S.clarias. Further, the result was similar to [19] who reported the growth performance indices in length of S.schall as 2.689, 2.692 and 2.709 in the males, females and combined sexes respectively. In addition, this research was similar to [28] who observed the performance index of 2.62 and 2.51 in Schilbe mystus in Asejire and Oyan Lakes respectively. [30] stated that L∞, K and t0 were highly related or correlated as K depended on the values of L∞ and t0. With all else held constant, K would be larger for smaller values of L∞.

The results of this study showed high mortality for all the species. Their Natural mortality (M) ranged from 0.5422 in S.omias females to 1.3240 in S.membranaceus males. Fishing mortality (F) ranged from 0.8214 in S.omias as combined to 3.094 in S.membranaceus females. Total mortality (Z) of the studied fish was low. The results of this study were similar to that of [20] who observed the total mortality (Z) for S.schall and S.clarias as 2.1, 1.5 in S.membranaceus. In addition, this study was similar to [25] who observed the Z of 2.54, M of 0.88 and F of 1.66 in Clarias gariepinus and [23] who obtained low values of mortalities in S.schall. This study is different from [28] who obtained the total mortality (Z) of 0.61-1.25 for some fish species in River Katsin-Ala. Again, this work is different from [28] who reported Z, M and F as 4.03, 2.77 and 1.26 respectively in Pellonula leonensis. Fish mortality in this study could be attributed to factors such as fish age, fish predation, environmental stress, parasites, diseases and fishing activities by man [22,30,9].
5. Conclusions

The studied species had potentials to grow more if the existing conditions in the river were favourable. However, among the studied species, the growth of *S. gambiensis* was very poor while that of *S. schall* and *S. membranaceus* was good.

The values of the asymptotic lengths obtained in this study from the Walford plots were appropriate for these species in the River Benue.

In the species studied, the hypothetical age at which length is zero (t_0) were all negative in *S. clarias*, *S. omia*, *S. gambiensis* and *S. membranaceus* combined and positive in *S. membranaceus* male and female and *S. schall* male, female and combined.

Recommendation

Based on the findings of this research which showed that growth performance of *S. gambiensis*, *S. clarias* and *S. omia* in the river was very poor, I recommend that a minimum mesh size of 7.5cm should be enforced to allow these species to reproduce at least once before they are captured.

Acknowledgments

We are most grateful to the laboratory technicians, Mr. Waya, J. I.; Mrs. Shiriki, D.; Mrs. Tyona, E.; Mr. Adanu, P. and all the other Laboratory Assistants for their support during the practical work. We are also grateful to Mr. Atoo Iyough and Mr. Richard Bul who used to drive us to the market landing sites to purchase the fishes and go for water sampling. We appreciate you and may God bless you all.

References

[1] Nikolsky, G. V. (1963). The Ecology of Fishes. Academic press, New York, 35-41.
[2] Lagler, K. F., Bardach, J. E., Litter, R. R. and Passimo, D. R. M. (1977). Ichthyology. John Wiley and Sons Inc., 506.
[3] Bagenal, T.B. (1978). Aspects of fish fecundity, pp 75-95. In:S.D.Gerking (ed) Ecology of Freshwater Fish Production, Blackwell Scientific.Oxford England.
[4] Adeyemi, S. O. (2011). Study of some physico-chemical parameters and their effect on Potential Fish Yield in Gbadikere Lake. Bassa, Kogi State, Nigeria. Pakistan Journal of Nutrition, 10 (5): 475-479.
[5] Deekae, S.N. & Abowei, J.F.N (2010).a. The mortality, exploitation rate and longevity of Macrobrachium macrobrachion (Herklots, 1851) in Luubara Creek, Ogoni land, Niger Delta, Nigeria. Journal of Biological Sciences, 2 (5): 323-327.
[6] Ricker, W. E. (1975). Computation and Interpretation of biological statistics of fish populations. Bull. Fish. Rep. Bill Can. Bull, 191: 1 - 382.
[7] Pauly, D. (1983). Some Simple Methods for the Assessment of Tropical Fish Stock. Food and Agricultural Organisation of the United Nations. FAO Technical Paper 234: 2-41.
[8] Ekelemu K. Jerimoth and Samuel A.A. Zelibe , 2007. Age Determination in *Citharinus citharus* (Pisces: Citharinidae) and *Synodontis nigrita* (Pisces: Mochokidae) in Lake Ona, Southern Nigeria. Journal of Fisheries International, 2: 4-11.
[9] Abowei, J. F. N. (2009). Aspects of *Hemisyndodontis membranaceus* (Geoffrey- St, Hilare, 1809) Population Dynamics from the Fresh Water Reaches of Lower Nun River, Niger Delta, Nigeria. Advance Journal of Food and Technology; 1 (1): 27-34.
[10] Guerreiro A., Amadio S., Fabré N., Batista V. (2018). Estimation of growth parameters of five fish species (Actinopterygii) caught in the central Amazon. Acta Ichthyol. Piscat. 48 (3): 303-313.
[11] Reid, M. G. and Sydenhan, H. L. (1979). A check-list of Lower Benue River fishes. Ichthyo - geographical review of the Benue River, West-Africa. Journal of Natural History; 13: 14-67.
[12] Reed, W., Burchark, J., Hopson, A. J., Jennes, J and Yaro, I. (1967). Fish and Fisheries of Northern Nigeria. Gaskiya Corporation, Zaria, Northern-Nigeria, 85-101.
[13] Von. B. (1957). The Endocrinology of Growth, Development, and Metabolism in Vertebrates.
[14] Pauly, D. (1980). On the interrelations between natural mortality, growth parameters and mean environmental temperature in 175 fish stock. J. Cons. Perm. Int. Explor. Mer., 39 (2): 175 - 192.
[15] Pauly, D. and Munro, J. L. (1984). Once more on growth comparison in fishes and vertebrates. Fishbyte, 2 (1): 21-25.
[16] Araoye, P. A. (1997). Bio-Ecology of a Mochokid *Synodontis Schall* (Bloch and Schneider, 1801) in Asa Lake, Ilorin, Nigeria. Ph. D. Thesis, University of Ibadan, 201.
[17] Abowei, J. F. N. and Hart, A. I. (2009). Some Morphometric Parameters of Ten Finfish species from the Lower Nun River, Delta, Nigeria. Research Journal of Biological sciences, 4 (3): 282-288.
[18] Midhat, A. E. K., Mohammed, M. N., A. and Seham, A. I. (2012). Environmental studies on *Synodontis*
schall (Bloch and Schneider, 1801), (Pisces: Mo-
chokidae) in The River Nile at Gizza Sector, Egypt:
Biological aspects of Population Dynamics. Journal
of Fisheries and Aquatic , 7: 104 - 133.
[19] Sparre, P., Ursin, E., Venema, S. C. (1992). Introduc-
tion to Fish Stock Assessment Part 1, manual FAO.
Fisheries Technical Paper No. 306/1 Revision 1.
Rome FAO, 396.
[20] King, R. P. (1991). The biology of Tilapia mariae
(Boulenger, 1899), (Pisces: Cichlidae) in a Nigerian
Rainforest Stream. Ph.D Thesis. University of Port-
harcourt, Nigeria, 386.
[21] Abowei, J. F. N., Hart, A. I. (2007). Size, composi-
tion, age, growth, mortality and exploitation rate of
Chrysichthys nigrodigitatus from Num River, Niger
Delta, Nigeria. Afr. J. Applied Zool. Environ. Biol.,
(9): 44 - 50.
[22] Gomez-Marquez, J. L., Perila-Mendoza, B. Sal-
gado-Ugarte, I.H., and Arredondo-Figueroa, J. L.
(2008). Age and growth of tilapia, Oreochromis nil-
oticus (Perciformes: Cichlidae) from a Tropical shal-
low lake in Mexico. Revista de Biologia Tropical, 56
(2). www.Scielo.Sa.Cr/Scielo.php.
[23] Okechukwu, I. O. (2011). Age, Growth and Mortality
of Clarias gariepinus (Siluriformes: Claridae) in the
Mid-Cross River Flood plain ecosystem, Nigeria. Re-
vista Biologia Tropical, 59 (4): 121-127.
[24] Sambo, F. and Haruna M. (2012). Some Aspects of
the growth parameters of the fishes of Ibrahim Ada-
mu Lake, Kazaure, Jigawa state, Nigeria. Bayero
Journal of Pure and Applied Science, 5 (1): 175 -
181.
[25] Lebo, P. E., King, R. P., Etim, L., Akpan, B. E. and
Jonathan, G. E. (2010). Breeding Seasonality and
population dynamics of the catfish Schilbe mystus
(Schilbeidae) in the Cross River, Nigeria. African
Journal on Line, www:ajol.info/index.
[26] Adedolapo, A. (2007). Age and growth of the Afri-
can butter catfish, Schilbe mystus (Linnaeus, 1758)
in Asajire and Oyan Lakes, South-Western Nigeria.
Journal of Fisheries and Aquatic Sciences, 2: 110-
119.
[27] Ogle, D. H. (2018). Growth (Von Bertalanffy) Ogle’s
Notes. Derekogle.com/NCNRS349/Theme by beauti-
ful-jekyll.
[28] Ogueri, C., Adaka, G. S., Nlewadim, A. A. and
Ben-Chendo, G. N. (2009). Comparative analysis of
growth parameters and ages of fish species in River
Katsin-Ala, Nigeria. Nigerian Journal of Fisheries, 6
(1&2): 35-43.
[29] Uneke, B. I., Nwani, C. D., Okogwu, O. and Okoh, F.
(2010). Growth, Mortality, Recruitment and Yield of
Pellonula leonensis Boulenger, 1917 (Osteichtyes:
Clupeidae) in a Tropical Flood River System. Jour-
nal of Fisheries International, (1): 19 - 26.
[30] Otobo, A. J. T. (1993). The Ecology and fishery of
the Pygmy Herring Sierrthensa leonensis (Thysvan
Den Audenaerde, 1969) in the Nun River and Taylor
Creek of the Niger Delta. Ph.D. Thesis University of
Port Harcourt, 298.