The Characteristics of Volatile Compounds of Kenari (Canarium indicum L.) Shell Liquid Smoke

Yusnaini¹, Edi Suryanto*, Said Hasan⁴, Angela Wulansari² and Eka Kusuma Dewi³

¹, ², ³ Faculty of Agriculture, Khairun University, Jl. Yusuf Abdulrahman, Ternate, 97721, Indonesia. E-mail: ¹yusnaini@unkhair.ac.id, ²angela@unkhair.ac.id, ³ekakdagussalim@gmail.com
⁴ Faculty of Teacher Training and Education, Khairun University, Jl. Yusuf Abdulrahman, Ternate, 97721, Indonesia. E-mail: ⁴saidhasan1965@gmail.com
* Faculty of Animal Husbandry, Gadjah Mada University, Jl. Bulaksumur, Yogyakarta, 55281, Indonesia E-mail: edi_ugm@yahoo.com

Abstract. Kenari (Canarium indicum L.) shell is a potential raw material for liquid smoke. The quality of liquid smoke depends on the volatile compounds of it. This study was aimed to qualify the volatile properties of Kenari (Canarium indicum L.) shell liquid smoke. The characteristic of volatile compounds of Kenari shell liquid smoke was determined in qualitative study of it’s volatile components. Kenari shell liquid smoke was produced using pyrolysis method. The pyrolysis process was carried out at temperature 420°C for 100 mins. Volatile compounds of Kenari shell liquid smoke was analyzed using GC-MS. The GC-MS detected 58 peaks of Kenari shell liquid smoke sample. It was consisted of 32.8% phenolic compounds, 48.3% carbonyl compounds, 10.3% acidic compounds, and 8.6% unknown compounds. Major volatile compounds of it were consisted of acetic acid, 2,6-dimethoxyphenol (syringol), 2-furanecarboxaldehyde (furfural), phenol, and 2-methoxyphenol (guaiacol).

1. Introduction

Liquid smoke had been made by various raw material such as woods [1], coconut shell, coconut fiber, cinnamon [2], corn cob [3], palm kernel shell [4], cashew nut shell [5], durian peel [6], nutmeg shell [7], cocoa shell [8], and tobacco steam [9]. Liquid smoke has been used as antibacterial and antimicrobial [10]-[12], antioxidant [12]-[14], preservative [10], [15], [16], enhance organoleptic quality [17]-[20], enhance texture [21], [22] and enhance physico-chemical matters [23], [19], [11]. Kenari trees are one of Indonesia native plant. It grows well in East Indonesia [24], such as in North and South Sulawesi, Seram island, North Maluku, and Maluku. Kenari shell is waste product that have not utilized well because of its small shape. Kenari shell is a potential raw material to produce liquid smoke other than coconut shell which already well known as raw material of mostly liquid smoke product.

Kenari shell liquid smoke can be made using pyrolysis method [18]. Pyrolysis process is carried out to degrade organic compounds using heat in absence of oxygen condition. Pyrolysis process is referred to incomplete thermal degradation which produced charcoal, condensable liquid or tar, and gaseous products [25]. The chemical components of liquid smoke made from palm kernel shell was consisted of 41.03% acetic acid, 8.18% phenol, and 50.79% other compounds [10]. Other study reported liquid smoke made from cashew nut shell consist of 36.6% phenol, 7.1% carbonyl, and 18.8% [26]. Chemical components of liquid smoke widely used to enhance the flavour of foods, as antioxidant,
antibacterial, and antimicrobial. Liquid smoke has a lot of benefit. Kenari shell can be alternative raw material of liquid smoke and to utilize it as zero waste industry application. Identification of volatile compounds of liquid smoke made from Kenari shell is needed to be done. This study was carried out to measure the amount of liquid smoke produced from kenari shells and its volatile compounds.

2. Material and Method

Kenari shell kindly obtained from Moti, Ternate, North Maluku. Reagents used in this study were CH2Cl2 and catridge Sep-Pak Florisil. Equipments used in this study were pyrolysis reactor, rotary evaporator (IKA Werke HB4 Basic with vacuum evaporator Ikavac VC-2), and gas chromatography-mass spectrometer (GC-MS).

Kenari shell was analysed to determine water, ash, cellulose, hemicellulose, and lignin content using method by Ref. [27]. Kenari shell liquid smoke was produced by pyrolysis process [18]. Pyrolysis furnace used in this study was equipped with electric heater encircling reactor (1500 watt), diameter 20 cm, height 40 cm, with maximum 4 kg sample or material. Pyrolysis process was carried out at temperature 420°C for 100 mins. Liquid smoke then centrifuged in 4000 rpm for 20 mins. Volatile compounds of Kenari shell liquid smoke was extracted using CH2Cl2. The procedure had done according to method [28,29].

Identification of volatile compounds of Kenari shell liquid smoke had done by GC-MS. As much as 1µl of sample was injected to GC-MS (6890N 5975B MSD) with column (AGILENT 19091s-433 HP-5MS 5% phenyl methyl siloxane capillary column) 30m i.d. 0.25 mm, helium as the carrier gas and ionization EI 70 Ev. GC operational condition was used oven temperature 50°C at the beginning for 0.5 mins then increased 7°C/muns until reached 290°C, injector temperature 250°C, and detector temperature 280°C. Volatile compound were identified according to their retention times and based on the data base on the MS tools.

3. Results and Discussion

3.1. Chemical composition of kenari shells

Chemical composition of kenari shells was dominated with cellulose (39.24%) and lignin (38.00%) (Fig 1). Kenari shells composition were same with other plant shells. Almond, coconut, chestnut, walnut, and pistachio shells also were dominated with cellulose. The difference was at the amount of lignin and hemicellulose. Kenari shells had high amount of lignin, almost as many as cellulose, but had low amount
of hemicellulose. Other plant shells (coconut, chestnut, walnut, and pistachio shells) mostly had almost the same amount of cellulose, hemicellulose, and lignin [30].

3.2. The yield of pyrolysis processing of kenari shells

![Fig 2. The yield of pyrolysis processing of kenari shells](image)

The amount of liquid smoke produced from kenari shells was 42.58% (Fig 2). The yield of liquid smoke from kenari shells was higher than coconut shells, fibers, rice husks, and corncobs [31]. But in other study, the yield of liquid smoke from kenari shell was almost the same as corncob (48%) [32] and less than coconut shell (51%) [33].

3.3. Volatile compounds of kenari shell liquid smoke

![Fig 3. Chromatogram of kenari shell liquid smoke](image)

GC chromatograms of kenari shell liquid smoke were presented in Figure 3. It showed kenari shell liquid smoke consisted of 58 components. It occurred from the peak that showed in the chromatograms. Identification of the components was conducted by comparing the mass spectra with MS data base. Based on these data, it could be predicted that the aromatic components were detected in kenari shell liquid smoke.
Volatile compounds detected from kenari shell liquid smoke were consisted of 32.8% phenolic compounds, 48.3% carbonyl compounds, 10.3% acidic compounds, and 8.6% unknown compounds (Table 1). Research liquid smoke made from cashew nut shell consist of 36.6% phenol, 7.1% carbonyl, and 18.8% acid [26]. Liquid smoke from coconut shell consist of 58.40% acid and 3.85% phenol [34]. Liquid smoke made from palm kernel shell were reported consist of 41.03% acetic acid, 8.18% phenol, and 50.79% other compounds [10]. Kenari shell liquid smoke had almost the same characteristic with cashew nut shell liquid smoke, but different than coconut shell and palm kernel shell liquid smoke. Kenari shell liquid smoke had higher phenolic compound than acidic compound.

Table 1. The Volatile Compounds Detected In Kenari Shell Liquid Smoke And The Description Of The Flavour

Peak	RT	Area (%)	Compound	Qual	Flavour Description	
1	2.058	0.645	Nt	9	-	
2	2.220	0.584	2-propanone	86	-	
3	2.324	12.176	Dichloromethane	96	-	
4	2.539	0.466	2,3-butanedione (diacetyl)	53	soft, caramel [35]	
					butter [36],[37]	
					cheese [37]	
5	2.587	0.787	2-Butanone (acetyl)	46	sap acetone [38]	
6	2.952	12.074	Acetic acid	91	acid [39],[40]	
					spicy [39]	
					vinegar [40],[41]	
7	3.085	2.195	1-hydroxy-2-Propanone	86	vinegar, sharp [38]	
8	3.277	0.234	2,3-pentanedione	70	Caramel [35]	
					cheese [37]	
					Acid [42]	
9	3.351	0.398	Hydroxyl acetic acid methyl ester	80	-	
10	3.447	0.570	3-hydroxy-2-Butanone (Acetoin)	59	butter [35],[37],[40], [42],[43]	
					Acid [41]	
					cheese [37]	
11	3.697	1.448	Propanoic acid	96	fume [39]	
12	3.942	0.262	2-Methoxytetrahydrofuran	90	-	
13	4.164	2.218	1-Hydroxy-2-butanone	91	-	
14	4.337	0.502	Propanal	86	-	
15	4.490	0.493	Cyclopentanone	93	caramel [39]	
16	5.238	7.205	2-Furancarboxaldehyde (Furfural)	96	Sweet and caramel [36]	
					Frosted peanut [44]	
No	Value	Retention Time	Compound	Detection Limit	Notes	
----	-------	----------------	------------------------------------	-----------------	------------------------------	
17	5.608	2.031	Nt	12	-	
18	5.796	1.177	1-(acetyloxy)-2-propanone	80	-	
19	6.291	0.257	1-isothiocyanato-propane	74	-	
20	6.536	0.702	2-methyl-2-cyclopenten-1-one	96	-	
21	6.635	0.257	1-(2-furanyl)-ethanone (Acetylfuran)	91	-	
22	6.768	1.500	Dihydro-2(3H)-furanone (α-butyrolactone)	91	-	
23	7.021	1.155	2-Hydroxy-2-cyclopenten-1-one	90	-	
24	7.628	0.445	2-methyl-3-pentanone	59	-	
25	7.706	1.025	Nt	22	-	
26	7.793	0.433	3-methyl-2-cyclopenten-1-one	97	-	
27	8.271	4.470	Phenol	97	Sea, vinegar, metal, sulphur [44] phenolic, drugs, smoke [45]	
28	8.624	1.404	Tetrahydro-2-furannethanol (Butanoic acid)	59	Rotten cheese, hard [37]	
29	9.288	2.143	2-hydroxy-3-methyl-2-cyclopenten-1-one	97	spicy, green [44]	
30	9.424	0.415	2,3-dimethyl-2-cyclopenten-1-one	81	-	
31	9.808	0.904	2-methylphenol (o-cresol)	98	smoke [43],[44] Burning rubber [43]	
32	10.299	1.904	3-methylphenol (m-cresol)	95	spicy [29]	
33	10.522	4.094	2-methoxyphenol (guaiacol)	97	drugs [39],[44] smoke [38],[44] Vaniline [44]	
34	11.104	0.268	3-hydro-2-methyl-4H-pyran-4-one (maltol)	95	Smell sweet [39]	
35	11.176	0.389	3-ethyl-2-hydroxy-2-cyclopenten-1-one	94	-	
36	12.350	0.267	2-methoxy-3-methylphenol (2-methoxy-m-cresol)	87	-	
37	12.680	2.208	2-methoxy-4-methylpheno (2-methoxy-p-cresol)	98	Wood, smoke, sweet [43]	
38	13.243	1.850	1,2-Benzenediol (pyrocatecol)	97	-	
39	13.510	0.383	[(1-methylthio)-thio] Benzenephthalene	59	-	
---	---	---	---	---		
40	13.726	0.383	5-hydroxy-2,3-dimethyl-2-cyclopenten-1-one	78	-	
41	14.258	2.410	3-methoxy-1,2-Benzenediol (3-methoxypyrocatecol)	97	-	
42	14.420	2.269	2-methoxybenzeethanol	94	-	
43	15.006	0.963	4-methyl-1,2-benzenediol (4-methy	pyrocatecol)	95	-
44	15.944	8.827	2,6-dimetoxyphenol (Syringol)	95	Light smoke [43],[44], spicy [44]	
45	16.150	1.324	3,4-dimetoxyphenol	60	Burnt smell [46]	
46	16.902	0.273	3-hydroxy-4-methoxy-benzaldehyde (vanillin)	96	Vaniline [41], sweet [41],[47]	
47	17.672	4.087	4-methoxy-2-methyl-1-(methylthio)benzene	83	-	
48	17.779	0.538	1-(2,3,4-trihydroxyphenyl)-ethanone	87	-	
49	18.456	0.281	1-(4-hydroxy-3-methoxyphenol)-ethanone (Acetovanillone)	95	Vaniline, sweet, honey [41]	
50	19.031	1.543	3-hydroxy-5-(hydroxymethyl)-2-methyl-4-pyridinecarboxaldehyde	87	-	
51	19.203	0.634	4-hydroxy-3-methoxy-benzenecacetid acid (Homovanillic acid)	72	-	
52	20.419	0.532	(3S)-2-chloro-1-phenyl-1-penten-3-ol	64	-	
53	21.181	0.388	Methyl-(2-hydroxy-3-ethoxy-benzyl)ether	90	-	
54	21.376	0.344	4-hydroxy-3,5-dimethoxy-benzaldehyde (Syringaldehyde)	97	-	
55	21.932	0.461	2,6-dimethohy-4-(2-propenyl)phenol	87	-	
56	22.529	0.768	1-(4-hydroxy-3,5-dimethoxyphenyl)ethanone (acetosyringone)	97	-	
57	23.089	1.700	Nt	80	-	
58	23.884	0.228	Nt	53	-	
The major components of kenari shell liquid smoke were acetic acid, 2-furanecarboxaldehyde (furfural), phenol, 2-methoxyphenol (guaiacol), and 2,6-dimethoxyphenol (syringol). Furfural component has a sweet taste like bread and caramel [48] and soft smell [49]. Derived phenol compound has strong, cresolic, and smoke smell [50]. It also reported has acidic, spicy, and soft smoking smell [49]. Derived carbonil has sweet, baked, and caramel taste [50].

Volatile compounds of kenari shell liquid smoke were product of combusting process of cellulose, hemicellulose, and lignin. Furane and phenol compounds were the products of cellulose through pyrolysis process. Hemicellulose also would decompose into furane and its derivates during the combustion process. Lignin produced derivate of phenolic compound such as methyl ester, mixture guaiacol, crecol, and phenol compounds and also tar [49],[51].

4. Conclusion
Kenari shell is a potential raw material to be made as liquid smoke. The number of components detected by GC-MS were 58 components. It was consisted of 32.8% phenolic compounds, 48.3% carbonyl compounds, 10.3% acidic compounds, and 8.6% unknown compounds. The major components of kenari shell liquid smoke consisted of acetic acid, 2,6-dimethoxyphenol (syringol), 2-furanecarboxaldehyde (furfural), phenol, and 2-methoxyphenol (guaiacol).

References
[1] J. M. Lingberk, P. Cordero, C. A. O’Bryan, M. G. Johnson, S. C. Ricke, and P. G. Crandall, “Functionality of liquid smoke as an all-natural antimicrobial in food preservation”, Meat Science, vol.97(2), pp. 197-206, Jun. 2014.
[2] K. Budaraga, Arnim, Y. Marlida, and U. Bulanin, “Analysis of liquid smoke chemical components with GCMS from different raw materials variation production and pyrolysis temperature level”, International Journal of ChemTech Research, vol.9(06), pp. 694-708, Jan. 2016.
[3] F. Swastawati, H. Boesono, E. Susanto, A. I. Setyastuti, “Changes of amino acids and quality in smoked milkfish [Chanos chanos (Forskal 1775)] processed by different redestillation methods of corncob liquid smoke”, Aquatic Procedia, vol.7, pp. 100-105, Aug. 2016.
[4] M. Faisal, T. Chamzurni, and H. Daimon, “A study on the effectiveness of liquid smoke produced from palm kernel shells in inhibiting black pod disease in cacao fruit in vitro”, International Journal of GEOMATE, vol.14(43), pp. 36-41, Mar. 2018.
[5] Mashuni, M. Jahiding, W. S. Ilmawati, I. Kurniasih, W. Wati, Muzirah, and M. Burhan, “Characterization of liquid volatile matter (LVM) of cashew nut shell using pyrolysis and gas chromatography”, Journal of Physics: Conference Series, vol.846(1), pp. 1-6, May. 2017.
[6] M. Faisal, A. R. Y. Sunarti, and H. Desvita, “Characteristics of liquid smoke from the pyrolysis of durian peel waste at moderate temperature”, Rasayan J Chem, vol. 11(2), pp. 871-876, Apr-Jun. 2018.
[7] N. Salindeho, C. Manuaja, and E. Pandey, “Potential of liquid smoke product of pyrolysis of nutmeg shell as smoking raw material”. International Journal of ChemTech Research, vol.11(06), pp. 239-245, Jun. 2018.
[8] K. Budaraga, E. Susanti, A. Asnurita, E. Nurdin, and R. Ramaiyulis, “The antioxidant characteristics of the liquid smoke of cocoa shell (Theobroma cacao,L) in different water content variations”, Journal of Applied Agricultural Science and Technology, vol.3(2), pp.226-238, Aug. 2019.
[9] H. Prabowo, E. Martono, and W. Witjaksono, “Activity of liquid smoke of tobacco steam waste as an insecticide on Spodoptera litura Fabricius larvae”, Jurnal Perlindungan Tanaman Indonesia, vol. 20(1), pp.22-27, Jun. 2016.
[10] M. Faisal, and A. Gani, “The effectiveness of liquid smoke produced from palm kernel shells pyrolysis as a natural preservative in fish balls”, International Journal of GEOMATE, vol.15(47), pp.145-150, Jul. 2018.
[11] M. Soazo, L. M. Perez, G. N. Piccirilli, N. J. Delorenzi, and R. A. Verdini, “Antimicrobial and physicochemical characterization of whey protein concentrate edible films incorporated with liquid smoke”, LWT-Food Science and Technology, vol.72, pp.285-291, Apr. 2016.

[12] J. M. Soares, P. F. da Silva, B. M. S. Puton, A. P. Brustolin, R. L. Cansian, R. M. Dallago, and E. Valduga, “Antimicrobial and antioxidant activity of liquid smoke and its potential application to bacon”, Innovative Food Science & Emerging Technologies, vol.38A, pp.189-197, Oct. 2016.

[13] B. Nieva-Echevarria, E. Goicoechea, and M. D. Guillen, “Effect of liquid smoking on lipid hydrolysis and oxidation reactions during in vitro gastrointestinal digestion of European sea bass”, Food Research International, vol.97, pp.51-61, Jul. 2017.

[14] J. F. Yang, C. H. Yang, M. T. Liang, Z. J. Gao, Y. W. Wu, and L. Y. Chuang, “Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis”, Molecules, vol.21, pp.1150, Aug. 2016.

[15] D. I. Ariestya, F. Swastawati, and E. Susanto, “Antimicrobial activity of microencapsulation liquid smoke on Tilapia [Oreochromis niloticus (Linnaeus, 1758)] meat for preservatives in cold storage (±5°C)”, Aquatic Procedia, vol.7, pp.19-27, Aug. 2016.

[16] E. Abustam, M. Yusuf, H. M. Ali, M. I. Said, and F. N. Yuliati. “Quality of Bali beef and broiler after immersion in liquid smoke on different concentrations and storage times”, International Journal of Biological, Biomolecular, Agricultural, Food, and Biotechnological Engineering, vol.10(2), pp.75-79, Jan. 2016.

[17] Yusnaini, S. Soeparno, E. Suryanto, and R. Armunanto, “Physical, chemical, and sensory properties of Kenari (Canarium indicum L.) shell liquid smoke immersed beef on different level of dilution”, Journal of The Indonesian Tropical Animal Agriculture, vol.37(1), pp.27-33, Mar. 2012.

[18] C. T. Nithin, T. R. Anantharayanan, R. Yathavamoorthi, J. Bindu, C. G. Joshy, and T. S. Gopal, “Physico-chemical changes in liquid smoke flavoured yellowfin yuna (Thunnus albacares) sausage during chilled storage”, Agric. Res., vol.4(4), pp.420-427, Nov. 2015.

[19] Rizo, V. Manes, A. Fuentes, I. Fernandez-Segovia, and J. M. Barat, “A novel process for obtaining smoke-flavoured salmon using water vapour permeable bags”, Journal of Food Engineering., vol.49, pp.44-50, Mar. 2015.

[20] S. Berhimpon, R. I. Montolalu, H. A. Dien, F. Mentang, and a. U. I. Meko, “Concentration and application methods of liquid smoke for exotic smoked skipjack (Katsuwonus pelamis L.)”, International Food Research Journal, vol.25(5), pp.1864-1869, Nov. 2018.

[21] M. Mukhlis, S. A. S. Budi, I. N. G. Wardana, and K. Kamil, “Liquid smoke potential solution on texture and bonding sago fiber-matrix”, IOP Conference Series: Materials Science and Engineering, vol.494(1), pp.012029, Mar. 2019.

[22] Yusnaini, Soeparno, E. Suryanto, and R. Armunanto, “The effect of heating process using electric and gas ovens on chemical and physical properties of cooked smoked-meat”, Procedia Food Science, vol.3, pp.19-26, Jan. 2015.

[23] L. A. J. Thomson and B. Evans, Canarium indicum var. indicum and C.harveyi (canarium nut)-Burseraceae (torchwood family), In: Elevitch CR (ed), Traditional Trees of Pacific Islands: their culture, environment and use, permanent agriculture resources. Hawai‘i, USA:Holualoa, 2006.

[24] E. J. Soltis, and T. J. Elder, Pyrolysis, In I.S.Goldstein (Ed.), Organic chemicals from biomass (p.6395). London, UK: CRC Press, 2017.

[25] L. Ifa, S. Yani, Z. Sabara, N. Nurjannah, and A. Rusnaenah, “Production of phenol from liquid smoke resulted by the pyrolysis of cachew nut shells, IOP Conference Series: Earth and Environmental Science, vol.175(1), pp. 012033, Jul. 2018.

[26] AOAC, Official Methods of Analyses, 16 ed. Association of Official Analytical Chemists, Washington, D.C, 1995.
[28] M. D. Guillen, M. J. Manzanos, and L. Zabala, “Study of a commercial liquid smoke flavoring by means of Gas Chromatography/Mass Spectrometry and Fourier Transform Infrared Spectroscopy”, J. Agric. Food Chem, vol. 43, pp.463-468, Feb. 1995.

[29] E. Kostyra, and N. Barylko-Pikielna, “Volatile composition and flavor profile identity of smoke flavouring”, Food Quality and Preference, vol.17, pp.85-95, Jan-Mar, 2006.

[30] X. Li, Y. Liu, J. Hao, and W. Wang, “Study of Almond Shell Characteristics”, Materials (Basel), vol.11, pp.E1782, Sept, 2018.

[31] M. D. C. Surboyo, I. Arundina, R. P. Rahayu, D. Mansur, and T. Bramantoro, “Potential of distilled liquid smoke derived from coconut (Cocos nucifera L.) shell for traumatic ulcer healing in diabetic rats”, Eur J Dent, vol.13(02), pp.271-279, Sept. 2019.

[32] J. Z. Lombok, B. Setiaji, W. Trisunaryanti, and K. Wijaya, “Effect of pyrolysis temperature and distillation on character of coconut shell liquid smoke”, Asian J.Sci Tech, vol.5(6), pp.320-325, May. 2014.

[33] E. Heirro, L. de la Hoz, and J. A. Ordóñez, “Headspace volatile compounds from salted and occasionally smoked dried meats (Cecinas) as affected by animal species”, Food Chem, vol.85, pp.649-657, Dec. 2004.

[34] L. D. Falcoa, G. de Revel, J. P. Rosier, and M. P. Boédignon-Luiz, “Aroma impact components of Brazilian Cabernet Sauvignon wines using detection frequency analysis (GC-Olfactometry)”, Food Chem, vol.107, pp.497-505, Mar. 2008.
[48] M. D. Guillen, and M. J. Manzanos, “Extractable components of the aerial parts of Silvia lavandulifolia and composition of the liquid smoke flavoring obtained from them”, J. Agric. Food Chem, vol. 47, pp.3016-3027, Aug. 1999.

[49] J. P. Girard, Smoking in Technology of Meat and Meat Product, New York: Ellis Horwood, 1992.

[50] M. D. Guillen, and M. L. Ibargotia, “Relationships between the maximum temperature reached in the smoke generation processes from Vitis vinivera L. shoot sawdust and composition of the aqueous smoke flavoring preparations obtained”, J. Agric. Food Chem, vol. 44, pp.1302-1307, 1996.

[51] J. A. Maga, Smoke in Food Processing, Florida: CRC. Press. Inc Boca Raton, 1987.