Title
The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo

Permalink
https://escholarship.org/uc/item/9q3493hp

Journal
GLOBAL CHANGE BIOLOGY, 17(9)

ISSN
1354-1013

Authors
Beck, Pieter SA
Goetz, Scott J
Mack, Michelle C
et al.

Publication Date
2011-09-01

DOI
10.1111/j.1365-2486.2011.02412.x

Supplemental Material
https://escholarship.org/uc/item/9q3493hp#supplemental

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo

PIETER S. A. BECK*, SCOTT J. GOETZ*, MICHELLE C. MACK†, HEATHER D. ALEXANDER‡, YUFANG JIN‡, JAMES T. RANDERSON‡ and M. M. LORANTY*

*Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540, USA, †Department of Botany, University of Florida, 220 Bartram Hall, Gainesville, FL 32611-8526, USA, ‡Department of Earth System Science, University of California, Irvine, CA 92697, USA

Abstract

Climate warming and drying are modifying the fire dynamics of many boreal forests, moving them towards a regime with a higher frequency of extreme fire years characterized by large burns of high severity. Plot-scale studies indicate that increased burn severity favors the recruitment of deciduous trees in the initial years following fire. Consequently, a set of biophysical effects of burn severity on postfire boreal successional trajectories at decadal timescales have been hypothesized. Prominent among these are a greater cover of deciduous tree species in intermediately aged stands after more severe burning, with associated implications for carbon and energy balances. Here we investigate whether the current vegetation composition of interior Alaska supports this hypothesis. A chronosequence of six decades of vegetation regrowth following fire was created using a database of burn scars, an existing forest biomass map, and maps of albedo and the deciduous fraction of vegetation that we derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The deciduous fraction map depicted the proportion of aboveground biomass in deciduous vegetation, derived using a RandomForest algorithm trained with field data sets (n = 69, 71% variance explained). Analysis of the difference Normalized Burn Ratio, a remotely sensed index commonly used as an indicator of burn severity, indicated that burn size and ignition date can provide a proxy of burn severity for historical fires. LIDAR remote sensing and a bioclimatic model of evergreen forest distribution were used to further refine the stratification of the current landscape by burn severity. Our results show that since the 1950s, more severely burned areas in interior Alaska have produced a vegetation cohort that is characterized by greater deciduous biomass. We discuss the importance of this shift in vegetation composition due to climate-induced changes in fire severity for carbon sequestration in forest biomass and surface reflectance (albedo), among other feedbacks to climate.

Keywords: carbon storage, climate change, difference Normalized Burn Ratio (dNBR), feedback, Geoscience Laser Altimeter (GLAS), IceSat, Landsat, LIDAR, postfire succession

Received 23 August 2010 and accepted 24 January 2011

Introduction

Fire is a primary driver of long-term boreal forest dynamics including successional changes in vegetation composition (Viereck, 1973; Foote, 1983; Wurtz et al., 2006) and carbon cycling (Bond-Lamberty et al., 2007). In addition, fire generates an array of feedbacks between vegetation and climate, through combustion emissions during the fire event and through changes in carbon and energy exchange for decades afterwards due to fire impacts on soil moisture, temperature, drainage, decomposition, and vegetation composition (Chambers et al., 2005; Liu et al., 2005; Randerson et al., 2006). These feedbacks have the potential to modify northern hemisphere climate because the boreal biome is both expansive and dense in organic carbon, and because fire has substantial impacts on multiple forcing agents, including greenhouse gas fluxes, aerosols, black carbon deposition on snow and sea-ice, and surface albedo within burn perimeters (Bonan et al., 1995; Randerson et al., 2006).

The area of forest burned in Alaska has increased over the last four decades (Kasischke & Turetsky, 2006), and is projected to increase in the 21st century as a consequence of warming and drying during the fire season (Duffy et al., 2005; Balshi et al., 2009). The first, third, and seventh largest fire years since records began in the 1940s, were 2004, 2005, and 2009, respectively (Chapin et al., 2008; AICC, 2010). The annual area burned in Canada also shows an increasing trend during the second half of the 20th century (Gillett et al., 2004). Historical estimates from Russia are sparse (Conard et al., 2002) but recent fires have been anomalously large

Correspondence: Pieter S. A. Beck, tel. +1 508 444 1507, fax +1 508 444 1850, e-mail: pbeck@whrc.org

© 2011 Blackwell Publishing Ltd
larly willow (Salix spp) and trembling aspen (Populus tremulous) (hereafter simply aspen), tend to characterize severely burned landscapes in the first decade after fire (Johnstone & Kasischke, 2005; Johnstone et al., 2010b). In less severe burns, however, aspen are largely restricted to asexual resprouting (Viereck, 1973; Greene & Johnson, 1999) and evergreen seedlings have a higher recruitment success, relative abundance and persistence (Johnstone, 2005).

A similar pattern of high aspen recruitment in severely burned sites has been observed in other forested ecosystems of northwestern America such as Grand Teton and Yellowstone National Parks (Kay, 1993; Turner et al., 2003; Romme et al., 2005). In Yellowstone National Park, the intense ungulate browsing suppresses the growth of aspen seedlings in favor of coniferous trees such as lodgepole pine, preventing aspen trees from ever dominating the canopy except in areas where ungulate browsing is restricted (Turner et al., 2003). In interior Alaska, however, ungulates are unlikely to play a significant role in postfire succession because the region has a much lower density of ungulates: before wolf introduction in 1995, northern Yellowstone had 1.5–9 elk km\(^{-2}\) (White & Carrott, 2005), vs. 1–1.3 moose km\(^{-2}\) in a state-designated game management unit in interior Alaska (Wurtz et al., 2006).

Evidence suggests that in boreal forest of North America early postfire recruits, i.e. those that establish 3–6 years after fire, often dominate intermediate and mature boreal stand ages (Gutsell & Johnson, 2002; Johnstone et al., 2004). Yet specific differences in mortality can shift dominance patterns over a period of decades during regrowth (Gutsell & Johnson, 2002). The present ubiquity of spruce trees in interior Alaska despite the common presence of deciduous cohorts early in succession, for example, indicates that mortality of deciduous trees is higher than that of evergreen trees (Greene & Johnson, 1999; Yao et al., 2001). Despite this knowledge, there have been very few attempts to describe succession at decadal scales in response to boreal burn severity (Johnstone et al., 2004; Keane et al., 2004; Mack et al., 2008). This is due to the difficulty of measuring burn severity, particularly post hoc at the landscape level, and the paucity of long-term monitoring studies (see, however, Johnstone et al., 2004). Meanwhile, rates of biomass accumulation and the relative abundance of deciduous and evergreen species are pivotal to determining climate feedbacks associated with postfire succession (Viterbo & Betts, 1999; Lyons et al., 2008; Mack et al., 2008).

A range of legacy effects of burn severity on North American boreal forests have been hypothesized, with composition playing a central role in the direction and magnitude of productivity and albedo feedbacks to climate (Goetz et al., 2007; Mack et al., 2008). Where burning is severe, deciduous trees are expected to be more abundant for decades following fire disturbance. Since aspen, the dominant deciduous species in Alaska, generally show higher growth rates than black spruce (Yarie & Billings, 2002), more severely burned sites would accumulate biomass more quickly during intermediate stages of succession. Deciduous forests also have substantially higher albedo than evergreen forests, both during winter and summer (Amiro et al., 2006; Liu & Randerson, 2008; McMillan & Goulden, 2008) causing increased albedo with burn severity. Accumulation of soil organic carbon could change too because deciduous...
vegetation produces more litter than does evergreen vegetation, although deciduous litter is generally more readily decomposed than evergreen litter and could potentially suppress moss growth (Johnstone et al., 2010a).

The balance of different climate forcing agents associated with a shift in vegetation composition will determine the net effect of the boreal fire regime on the climate system (Hinzman et al., 2003; Randerson et al., 2006; Euskirchen et al., 2009). Thus far, however, little empirical work has been done to quantify the impacts of burn severity on species composition at a landscape scale or to assess the associated feedbacks to climate. Here, we investigate whether vegetation patterns across the current Alaskan landscape reflect the expected legacy effects of burn severity over the past six decades. Specifically, we tested whether severely burned areas display higher deciduous cover, biomass, and albedo than less severely burned areas during intermediate stages of succession (10–50 years since fire). To do so, we relied on a chronosequence of current stands with ages, i.e. time since last fire, ranging from 10 to greater than 50 years, an existing biomass map (Blackard et al., 2008), and newly developed maps of deciduous cover and albedo.

Materials and methods

We describe (a) mapping of albedo and deciduous fraction of vegetation, which is defined as the percentage of aboveground biomass (AGB) stored in deciduous species, as derived from remote sensing data; (b) creation of a series of chronosequences reflecting biomass regrowth and albedo following fire; (c) stratification of burns in the study region (interior Alaska) into high- and low-severity burns; (d) assessment of the stratification approach, focusing on data uncertainty and potentially confounding covariates of burn severity. An overview of the main processing steps is given in Fig. 1.

Mapping albedo and deciduous fraction

Total short-wave albedo for spring and summer were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) parameters (MCD43A1, Schaaf et al., 2002) at 500 resolution for the periods March 14–21 and July 28–August 4, respectively, using observations from the years 2004–2008 as input. We first calculated black sky albedo (BSA) at the mean solar zenith angle at 3 hourly intervals using the Ross-Thick-LiSparse-Reciprocal model (Lucht et al., 2000) with MODIS total short-wave BRDF parameters, since the operational MODIS BRDF/Albedo products only provides BSA at local solar noon. Daily all sky albedo was then calculated as a sum

Fig. 1 Flowchart of data processing used to create chronosequences of biomass, deciduous fraction (FD), and short-wave albedo during postfire succession. Bold fonts indicate original data sets and oval boxes RandomForest models, with predictor variables indicated as P, response variables used for model training as T and validation data as V. MODIS, Moderate Resolution Imaging Spectroradiometer; NBAR, Nadir Bidirectional Reflectance Distribution Function Adjusted Reflectance; DEM, Digital Elevation Model; GLAS, Geoscience Laser Altimeter System; HOME, Height of Medium Energy; dNBR, difference Normalized Burn Ratio.
of 3 hourly BSA weighted by the ratio of 3 hourly direct
incoming radiation over daily total incoming solar radiation
plus white sky albedo weighted by the ratio of total daily
diffuse radiation over total daily incoming solar radiation
(Lewis & Barnsley, 1994). Radiation values were taken from
the surface radiation budget data set provided by the World
Climate Research Program/Global Energy and Water-Cycle
Experiment (WCRP/GEWEX, Stackhouse et al., 2000).

The deciduous fraction (FD) of AGB was mapped using
monthly composites of MODIS reflectance and field measure-
ments using an ensemble regression tree model (Random
Forest, Breiman, 2001). The field measurements of FD served
as training data for the model and were collected in the
summers of 2008 and 2009 in areas of homogenous vegetation
cover that had not burned since 1987. The basal area of deci-
duous and evergreen trees and shrubs was measured in 269 plots
measuring 10 and 20 m² and located along 100 m transects, with
a maximum of 5 plots transect⁻¹. Using allometric equations,
plot measurements were converted into deciduous and ever-
green AGB from which FD was derived. Equations were
produced from raw data available from the Bonanza Creek
Long-Term Ecological Research Station (http://www.lter.uaf.
edu/ascii/files/230_tree.biomass.data.csv) and augmented with
those published by Yarie et al. (2007) and Bond-Lamberty et al.
(2003). Plots were spread across 69 MODIS pixels, and data
falling within identical MODIS pixels were grouped and reg-
arded as single measurements in the analysis.

MODIS BRDF-adjusted reflectance data (NBAR, MCD43A4)
from 2001 to 2008 were composited at 500 m spatial resolution
to create monthly images of reflectance in seven spectral bands,
based on the quality flags associated with the data (Baccini et al.,
2008). Two data sets were created, one with data from different
years processed separately, and one with data from the same
month in different years pooled. The resulting images in the
latter data set do not represent any changes in monthly reflec-
tance since 2001, such as those due to disturbance or land cover,
and were used to map FD. All band–month combinations
between May and September, comprising 35 images in total,
served as predictors in the RandomForest model calibrated using
the field observations of FD. RandomForest models are ensembles
of regression or classification trees, each using a bootstrap
sample of the data where splits of the trees are determined by
random subsets of the available predictors, randomly chosen at
each node (Breiman, 2001). Furthermore, RandomForest is gen-
erally not likely to overfit the model to the data set used and can
handle a large number of predictor variables, even when they
are correlated, as is often the case with reflectance data. Cru-
cially, performance metrics of RandomForest, such as the per-
centage of total variance in the reference observations explained by
the model, are based on residuals associated with the data not
included in the bootstrap sample used for calibration. Here, 500
trees with at least five observations in each terminal node
comprised the RandomForest model. The predicted FD values
were used to partition aboveground live forest biomass values
mapped by Blackard et al. (2008) from a combination of MODIS,
land cover, topography and climate images, into deciduous
biomass (dB) and evergreen biomass (eBM) in areas that
burned between 1950 and 1991.

In addition to mapping FD in the 2001–2008 period, we also
modeled the expected FD in absence of disturbance using
growing season length (McKenney et al., 2006), permafrost
extent (Jorgenson et al., 2008), geography and topography
(elevation, slope, southern exposure, and wetness, Beven &
Kirby, 1979; Skidmore, 1989) as predictors in an environmen-
tal envelope model. In this case, FD values in 1600 uniformly
distributed points in unburned areas (defined as areas more
than 1 km but <10 km from any burns) served as training data
for the RandomForest models.

Detecting burned areas

The database of Alaskan fire perimeters produced by the
Bureau of Land Management, Alaska Fire Service (AFS), was
acquired from the Alaska Geospatial Data Clearinghouse
(http://agdc.usgs.gov/data/blm/fire) and used to define
burns. Burn age was calculated with the year 2000 as reference,
which is the start of the MODIS data record. Only burns
between 10 and 50 years old were considered when construct-
ing succession chronosequences to focus the study on inter-
mediate stand ages (sensu Goetz et al., 2007; Mack et al.,
2008), and to reduce effects of temporal uncertainty in the FD and
albedo maps.

We focused our analysis on landscapes of interior Alaska
that would normally be expected to follow a successional
pathway ultimately leading from fire disturbance back to a
black spruce forest, either directly or relayed via a deciduous
phase. For the construction of the successional chronose-
quences, we excluded (i) fires that had burned areas smaller
than 3200 ha, to minimize the effect of small patches in the
landscape context and human-lit fires which are usually
smaller than 500 ha in Alaska (De Wilde & Chapin, 2006); (ii)
areas that were <1500 m from the burn perimeter, to
reduce the effects of geographic misregistration in the data-
base; (iii) areas that were <15 km from large roads or 7.5 km
from smaller roads or the Alaska pipeline, to avoid effects of
human disturbance and fire suppression activities, (iv) areas
that had burned more than once since 1950 according to the fire
database, to reduce effects of repeated burning, and (v) regions
that had an expected FD >65%, as predicted by the environ-
mental envelope model, in order to reduce the influence of areas
where vegetation succession was not expected to culminate in
evergreen-dominated forests, such as alpine areas.

Stratifying burned areas by burn severity

Landscape-level estimates of burn severity have largely relied
on changes (differences) in the Normalized Burn Ratio (dNBR,
Lopez Garcia & Caselles, 1991) which is derived from a
comparison of infrared reflectance in remotely sensed imagery
of the growing season before and following fire events. The
absence of such imagery historically renders the dNBR meth-
od unsuitable to retrospectively estimate burn severity before
the Earth observation satellite era. Hence, we had to rely on
nonremote sensing or retrospectively derived attributes of the
burn scars to infer burn severity. In theory, burns that occur
later in the year are likely to be more severe since boreal soil dries out with time since snow melt and thus becomes more combustible (Kasischke & Johnstone, 2005). Analyses of in situ measured burn severity in five 2004 fires appear to confirm this pattern (Barrett et al., 2010). Combining this finding with the empirical evidence that the extent of a burn and its severity are modestly correlated (Duffy et al., 2007) and that the limited fire suppression in interior Alaska has a negligible effect on burn size in our study domain (DeWilde & Chapin, 2006), we hypothesized that large burns (> 60 000 ha) that occur later in the year (after DOY 160) had higher levels of burn severity. These two criteria, burn timing and size, were then used to stratify all Alaskan burns since 1950 into low- and high-severity burns. The hypothesis underlying the stratification was tested using fires that occurred between 2002 and 2007 and for which July and August MODIS reflectance allowed us to map dNBR as a reference estimate of burn severity. To do this, NBR was mapped yearly from mean July–August reflectance values in MODIS band 2 (841–876 nm) and band 7 (2105–2155 nm) as NBR = (band 2 – band 7)/(band 2 + band 7). dNBR for a fire in year t was then calculated as NBR$_{t-1}$ – NBR$_{t}$.

The MODIS dNBR maps for the years 2002–2007 not only allowed us to test the burn severity stratification, but also to test the quality of the burn perimeter database. We tested (i) if the burn perimeters in the database contained remnant unburned areas, which would have to be excluded from analyses of postfire succession, (ii) whether the dNBR in 2002–2007 burns supported the proposed stratification into low- and high-severity burns based on burn size and timing, and (iii) if the burn severity stratification was correlated with landscape characteristics other than burn severity, which might bias patterns in successional trajectories. These three tests are described in more detail below.

Assessment of the burn severity stratification

The influence of unburned areas within burn perimeters. Any observations of successional changes in vegetation characteristics after fire are potentially sensitive to spatial inaccuracies in the burn perimeter database. Although spatial buffering of the perimeters can eliminate uncertainties regarding the exact location of the burn perimeter, it cannot account for the presence of unburned areas within the burn perimeters drafted by the AFS. There is evidence from Canada that the fraction of unburned area within burn perimeters increases with burn size (Eberhart & Woodward, 1987) and that unburned areas tend to have greater deciduous cover (Kafka et al., 2001). Including unburned areas in our analysis could thus bias our observations of successional vegetation changes and their dependency on burn severity, which we partly estimated from burn size. To avoid this, we first mapped unburned areas within burn perimeters where remote sensing data predating the fire were available. We then developed a model to retrospectively map potentially unburned areas in older burn perimeters in interior Alaska relying largely on the controls topography exerts over fire dynamics, primarily through soil moisture (Barrett et al., 2010).

Using the fire perimeter database, we quantified for each post-2001 burn polygon the fraction that might not have burned (i.e. unburned remnant forest patches), by mapping (a) the MODIS dNBR in each polygon and comparing it to (b) the MODIS dNBR of areas outside the burn polygon (> 1500 m and < 5000 m from the burn perimeter and unburned since 1950). We then tagged as unburned the cells inside each burn perimeter where the dNBR was lower than the 95th percentile of the dNBR outside the burn (i.e. areas that were not significantly different from unburned areas). This allowed us to calculate for each burn since 2001 the unburned fraction within the burn perimeter. To assess the validity of this method for detecting unburned areas within the burn perimeters, we used light detection and ranging (LIDAR) data acquired by the Geoscience Laser Altimeter System (GLAS) onboard IceSat (Zwally et al., 2002). GLAS data are available since 2003 and are spatially discontinuous, with data recorded in ‘shots’ with a 65 m ellipsoidal footprint and spaced about 172 m apart along the overpass. GLAS data have previously been used to assess forest disturbance in Alaska (Goetz et al., 2010). We used the GLAS data here to derive estimates of vegetation height distribution (for GLAS processing stream, see Goetz et al., 2010). We used a GLAS metric that reflects the height at which half of the energy returned to the sensor is reached, commonly referred to as the Height of Medium Energy (HOME). HOME was used because we found it was less sensitive to algorithms designed to estimate canopy height by first detecting an initial return signal (from the top of the canopy) and then deconvolving a ground return (from the trailing edge of the LIDAR return). For the purpose of this study, we wanted to determine whether the distribution of HOME was lower in the year following fire than in the year before. Our assumption was that if HOME did not significantly change through time then it was unlikely that the location had experienced disturbance. In all, 12 622 GLAS measurements covering a total of 92 burns between 2004 and 2007 were processed to give pre- and postburn HOME estimates ($n_{\text{preburn}} = 5232$, $n_{\text{postburn}} = 7390$).

Once the unburned areas within the perimeters of post-2001 burns were mapped using dNBR, we characterized them by comparing their preburn land cover and their topography to that of the entire area within the burn perimeter. Land cover was estimated using a circa 2000 map at 0.01° spatial resolution [Global Land Cover (GLC) 2000, Bartholomé & Belward, 2005] reclassified into evergreen (GLC classes 4 and 11) vs. nonevergreen. The topographical variables southern exposure (Skidmore, 1989) and wetness [calculated as $\ln(z/\tan\beta)$ where z is the local upslope area draining through a certain point per unit contour length and $\tan\beta$ is the local slope, Beven & Kirkby, 1979] were calculated from a digital elevation model and transformed to quantiles of their distribution within the burn. Statistical significance of the differences between unburned and burned areas was assessed within each burn perimeter using a χ^2-test for the evergreen fraction, and Wilcoxon’s rank-sum tests for the other variables. Consistent patterns in the relative values of the topographical variables in unburned areas were then investigated across burn perimeters, by testing whether values were centered around 50%, for the quantiles, or 0%, for the differences in evergreen cover, using a Wilcoxon’s signed-rank test. The aforementioned topographical parameters and the size of the burn were...
used to develop a predictive classification model, using RandomForest, to retrospectively detect areas that were unlikely to have burned within all burn perimeters since 1950. Finally, we tested if there was a relationship between the fraction of unburned areas in a burn and its size, and if excluding areas that were modeled as unburned changed this relationship.

Comparison with dNBR

The validity of the burn severity stratification based on size and timing was tested using the dNBR. Because pre- and postfire remote sensing data are needed to calculate mean dNBR for a burn, only burns that occurred after 2001, and for which MODIS data were therefore available, were included in this test.

Covariates of burn size other than severity

After masking potentially unburned areas from burn perimeters since 1950 and prior to calculating chronosequences of regrowth after fire, we verified that the stratification of burn severity based on size and date of ignition did not introduce a bias in terms of topography (slope, southern exposure, and wetness) and bioclimate (growing season length and the expected deciduous fraction). If present, such a bias could influence the successional trajectories observed in low- and high-severity burns, independent of burn severity. To test for potential bias, both low- and high-severity burns were split into younger (<30 years) and older stands (>30 years), and a Kruskall–Wallis rank sum test applied to detect dissimilarities in topography and bioclimate between the different burn groups ($n_{\text{low severity, young}} = 125$, $n_{\text{high severity, young}} = 9$, $n_{\text{low severity, old}} = 93$, $n_{\text{high severity, old}} = 11$).

Results

We first describe the deciduous cover map we derived from MODIS remote sensing observations, then assess our approach used to estimate historical burn severity, and finally describe the chronosequences of biomass and albedo in response to burn severity.

Mapping deciduous fraction of vegetation

The deciduous fraction of the vegetation was robustly predicted by the RandomForest model using the MODIS reflectance image products (% variance explained = 71, $n = 69$, Fig. 2a). Spatial patterns in the resulting maps of FD clearly reflect the distribution of burn scars as well as non-disturbance-related ecotones, such as alpine belts and the boreal forest-tundra transition (Fig. 2a, b and d). The latter also are reflected by the map of expected FD in the absence of disturbance, predicted by a separate RF model (% variance explained = 54, $n = 1600$, Fig. 2c).

Assessment of the burn severity stratification

The influence of unburned areas within burn perimeters. We relied on a comparison of MODIS dNBR in- and outside burn perimeters to detect unburned areas within the burn perimeters, as recorded since 2001 in the AFS database (supporting information Fig. S1). An example is shown for the Boundary Fire in Fig. 3. The comparison of GLAS-derived canopy heights, and the HOME metric in particular, confirmed that the areas identified as unburned based on the MODIS dNBR undergo no detectable structural change (supporting information Fig. S2). Pre- and postburn GLAS-HOME values did not differ in unburned areas ($W = 47,436$, $P = 0.55$, $n_{\text{preburn}} = 271$, $n_{\text{postburn}} = 336$), whereas they did in burned areas ($W = 15,248,949$, $P < 0.001$, $n_{\text{preburn}} = 5021$, $n_{\text{postburn}} = 7099$).

Unburned remnants within post-2001 burn perimeters tended to occupy more mesic areas than areas that burned (Fig. 4a, $V = 189$, $P < 0.001$, $n = 113$) and often had a relatively northerly topographic aspect (Fig. 4b, $V = 683$, $P = 0.06$, $n = 113$). In addition, unburned remnants tended to contain more deciduous vegetation before the fire than did areas that burned (Fig. 4c, $V = 458$, $P = 0.001$, $n = 113$). If these areas were not accounted for, observations of deciduous fraction during postfire succession would tend to be biased towards showing greater shifts from evergreen to deciduous cover.

While prefire vegetation cover can only be mapped if prefire remote sensing data are available, topographic wetness and exposure can be mapped for historical as well as recent fires. We exploited the effects that topographical wetness and topographical exposure have on the likelihood of burning to detect potentially unburned remnants since 1950. Using burns since 2001, where dNBR made it possible to distinguish between burned and unburned areas, we calibrated a RandomForest classification model to predict potentially unburned remnants within burn perimeters based on topographical variables, expressed as quantiles, and fire size.

The post-2001 burns that were classified as high severity based on their size and date of ignition, had a larger proportion of unburned areas within their perimeter, based on the dNBR, than those classified as low severity ($\text{mean}_{\text{high sev.}} = 7\%$, $\text{mean}_{\text{low sev.}} = 3\%$, $W = 726$, $P < 0.01$, $n_{\text{high sev.}} = 30$, $n_{\text{low sev.}} = 83$). Using the RandomForest classification algorithm to mask potentially unburned remnants these proportions and the difference between them were reduced ($\text{mean}_{\text{high sev.}} = 4\%$, $\text{mean}_{\text{low sev.}} = 2\%$, $W = 960$, $P = 0.03$, $n_{\text{high sev.}} = 30$, $n_{\text{low sev.}} = 83$). The algorithm used to mask unburned areas successfully detected 86% of the unburned areas in post-2001 burns. Yet, 74% of the area masked as unburned had actually burned. As a result, 15% of the
burned area appeared to have been unnecessarily excluded from our analysis of succession. This deliberate choice in the trade-off between the errors of omission and commission ensured that any effects of unburned areas on the successional patterns were minimized. In low- and high-severity burns after 2001, respectively, 5% and 8% of the area was mapped as unburned based on the dNBR, on average, and 14% and 22% was predicted as unburned by the *RandomForest* model.

Comparison with dNBR. Mean MODIS dNBR in the burns that were classified as high severity, based on their size and date of ignition, was not statistically significantly higher than in those classified as low severity, \((\text{mean}_{\text{high sev.}} = 0.38, \text{mean}_{\text{low sev.}} = 0.33, \text{Student’s } t\text{-test: } t = -1.86, P = 0.06, n_{\text{high sev.}} = 26, n_{\text{low sev.}} = 87)\) but were less likely to show a low dNBR, while some burns classified as low severity did show a low dNBR (Fig. 5).

Covariates of burn size other than severity. The criteria used to identify high severity burns in the database since 1950, i.e. larger than 60 000 ha and ignition date after DOY 160, did not introduce a topographical or bioclimatic bias. Younger and older high- and low-severity burns did not show a different distribution along gradients of topography \((P_{\text{slope}} = 0.52, P_{\text{exposure}} = 0.41, P_{\text{wetness}} = 0.07)\), growing season length \((P = 0.06)\), or expected deciduous fraction \((P = 0.33, \text{ supporting information Fig. S3})\). Ultimately, the data selection described above retained 2.6 million ha for the construction of the chronosequences, of which 1.5 million ha were within

Fig. 2 (a, b) Deciduous fraction of vegetation in Central Alaska as mapped from MODIS NBAR reflectance. The black rectangle in (a) indicates the spatial domain of (b), (c), and (d), and orange hatched polygons indicate burn perimeters. (c) Expected deciduous fraction, in the absence of disturbance as predicted from bioclimate and topography. (d) A Landsat TM image (R-G-B = bands 5-4-3) acquired August 16, 2000. MODIS, Moderate Resolution Imaging Spectroradiometer; NBAR, Nadir Bidirectional Reflectance Distribution Function Adjusted Reflectance.
218 low-severity burns, and 1 million ha within 20 high-severity burns (supporting information Table S1).

Effects of burn severity on composition, biomass and albedo of regrowth

The deciduous fraction of vegetation in high severity burns was higher than in low-severity burns during the successional period considered here, i.e. from 10 to ~50 years after burning (Fig. 6). Deciduous vegetation-dominated biomass in the first 10–20 years of succession (mean DF = 75%, n = 81, W = 3284, P < 0.001, $H_1 = df > 50\%$). In low-severity burns, dBM showed a steady decline after 25–30 years ($W = 4028, P < 0.001, H_1: \text{dBM}_{< 30 \text{ years}} > \text{dBM}_{> 30 \text{ years}} n_{< 30 \text{ years}} = 125, n_{> 30 \text{ years}} = 93$), whereas it increased in high-severity burns ($W = 80, P < 0.001, H_1: \text{dBM}_{< 30 \text{ years}} < \text{dBM}_{> 30 \text{ years}} n_{< 30 \text{ years}} = 9, n_{> 30 \text{ years}} = 11$). At the same time, i.e. after 30 years or more, high-severity burns showed a greater total AGB than low-severity burns ($W = 665, P = 0.039, H_1: \text{AGB}_{\text{high sec.}} > \text{AGB}_{\text{low sec.}} n_{\text{high sec.}} = 11, n_{\text{low sec.}} = 94$), in large part due to the difference in deciduous growth ($W = 729, P = 0.007, H_1: \text{dBM}_{\text{high sec.}} > \text{dBM}_{\text{low sec.}}$).

Boreal biomass estimates calculated from DBH measurements can vary by almost 100% depending on the parameterization of the allometric equations used in the calculation, even when these are species specific, and biomass density can vary greatly within stands (Mack et al., 2008). The forest biomass values reported here were extracted from a map by Blackard et al. (2008).
which covers the entire US and reportedly included live tree bole wood, stumps, branches, and twigs of trees 2.54 cm in diameter or larger. Biomass values in the ensuing chronosequences presented here (Fig. 6b and c) correspond relatively well with the original transect-level live biomass estimates measured in the field in stands of similar ages and used for the calculation of deciduous fractions [12 ± 3 Mg ha⁻¹ (mean ± SE) in 22–30-year-old stands, n = 13, and 37 ± 8 Mg ha⁻¹ in 30–52-year-old stands, n = 18].

Because winter short-wave albedo was negatively correlated with evergreen fraction (r = -0.71, P < 0.001, df = 340), i.e. albedo was lower in more densely forested evergreen areas, it decreased with stand age in low-severity burns (Fig. 7). A similar but weaker pattern was observed in summer (r = -0.55, P < 0.001, df = 340). The higher deciduous fraction in high severity burns in all but the first decade after fire resulted in consistently higher summer albedo for at least four decades of succession (W = 3702, P = 0.002, H₁; albedo high sev. > albedo low sev., n high sev. = 20, n low sev. = 218), which did not appear to decline with time (W = 47, P = 0.72, H₁; summer albedo <30 years > summer albedo ≥ 30 years, n <30 years = 9, n >30 years = 11). Differences between winter albedo in severe and nonsevere burns were apparent only after 20 years of succession (W = 1357, P = 0.032, H₁; winter albedo high sev. > winter albedo low sev., n high sev. = 15, n low sev. = 142).

Discussion

Post hoc estimation of burn severity

Our stratification of burns into low and high severity, based on their size and date of ignition, did not show a strong relationship with the dNBR of the burns. Burns in the high-severity stratum did have consistently high dNBR values, but so did some burns in the low-severity stratum (Fig. 5). This variability is not surprising because factors that operate at fine temporal and spatial scales are known to influence burn severity (Kasischke & Johnstone, 2005; Barrett et al., 2010; Boby et al., 2010). The ability of the dNBR
to reflect burn severity in boreal regions is limited, however. While the dNBR is useful for distinguishing burned from unburned areas (Lopez Garcia & Caselles, 1991), it is disproportionately sensitive to changes in the vegetation canopy, which in turn limits its sensitivity to the bulk of the carbon consumed by fire in boreal regions, i.e. in the soil organic layer (Murphy et al., 2008; Barrett et al., 2010). In contrast, a recent field survey of 178 distinct Alaskan burns, showed how the depth of burning, which is correlated with burn severity, increased with both burn size and the timing of the fire in the season, supporting the stratification of burns into low and high severity used here (Turetsky et al., 2011).

The potential presence of severe burns in the low-severity stratum, in combination with our averaging of observations within a single burn, most probably attenuated the actual differences in succession between burn severity regimes. Moreover, because we pooled the MODIS data acquired over the 2001–2008 period, in order to calculate FD (see Materials and methods), we limited the sensitivity of our FD predictions to a ± 4 year time window. This might have further limited the distinction between FD in low- and high-severity burns, particularly in very young stands.

Succession-mediated legacy effects of burn severity

Over the 50-year period of regrowth considered here, greater burn severity promoted AGB accumulation as a result of shifting composition towards deciduous trees which typically have higher growth rates (Goetz & Prince, 1996; Mack et al., 2008). Over a longer time period, however, severely burned sites might have lower biomass due to lower spruce cover and self-thinning of dBM. The combination of more decomposable litter from deciduous trees, and a smaller input of relatively recalcitrant litter from evergreen trees, would also limit the buildup of organic carbon in the duff and soil layers in more severe burns, increasing the risk of permafrost degradation (Harden et al., 2006).

Over a period of decades, the radiative forcing associated with successional shifts in plant species composition can offset the forcing caused by greenhouse gas emissions released during the burning of mature spruce forests (Randerson et al., 2006). This is due primarily to an early succession deciduous vegetation phase that has considerably higher albedo during spring and summer than mature conifer forests (Chapin et al., 2000; Amiro et al., 2006; Lyons et al., 2008; McMillan & Goulden, 2008). An important question in this context is the degree to which higher burn severities (which would generate more carbon and aerosol emissions and more short-term positive forcing) might be balanced on decadal timescales by increases in the net primary production, stand density, and canopy cover of deciduous trees that have biophysical cooling properties.

Another important biophysical difference, for example, between boreal deciduous and evergreen vegetation involves rates of mid-summer canopy conductance and latent heat fluxes. Reported latent heat fluxes (evapotranspiration) in deciduous forests during summer are substantially higher than in coniferous stands, whereas sensible heat fluxes show an opposite pattern (Baldocchi et al., 2000; Eugster et al., 2000; Amiro et al., 2006; Liu & Randerson, 2008). Higher mid-summer evapotranspiration fluxes in deciduous stands may be linked with high rates of stomatal conductance and leaf-level evapotranspiration (Ewers et al., 2005; Bond-Lamberty et al., 2009), whereas latent energy fluxes in spruce forests, with their lower productivity and canopy conductance, may have a larger contribution of evaporation from the moss layer. These contrasting carbon and energy balance dynamics are currently not adequately characterized relative to burn severity in process-based ecosystem models (Bond-Lamberty et al., 2007; Euskirchen et al., 2009), despite their considerable

Fig. 7 Total short-wave albedo in (a) winter and (b) summer during regrowth in high- and low-severity burns since 1950. Winter and summer albedo were estimated from MODIS measurements during the periods March 14–21 and July 28–August 4, respectively, in 2004–2008. Lines are created through second order local polynomial regression fitting (span = 1.2, Cleveland et al., 1992), where bold lines indicate the predicted mean and grey shading indicate estimated standard errors. MODIS, Moderate Resolution Imaging Spectroradiometer.
importance with respect to climate system feedbacks (McGuire et al., 2009).

Is boreal Alaska experiencing a biome shift?

The patterns of vegetation regrowth after fire in interior Alaska since 1950 indicate that severe burning promotes deciduous tree species for several decades. We expect the recent episodic fire years 2004, 2005 and 2009, in which a total of 5.7 million ha burned across the region (~5% of interior Alaska), to follow a similar trajectory. Extensive plot level field work in these burns supports this view (Johnstone et al., 2009). Directionality in the extent and severity of the fire regime and the consequences for postburn vegetation successional trajectories we documented here also support expectations of a shift towards a more deciduous-dominated landscape in Alaska in the near future (e.g. at least the next 50 years). These changes have implications not only for climate feedbacks, but also for game management and numerous other land management and resource uses of forest products in the region. We note that even in the absence of increased burn severity, a shortening of fire return interval will limit the development of mature spruce forests, increasing the presence of young deciduous vegetation (Johnstone et al., 2009).

Is this trend likely to continue in the future? Climate warming is projected to further intensify the fire regime, generating a higher frequency of extreme fire years characterized by large burns of high severity. At the same time, negative feedbacks from increasingly deciduous land cover have the potential to modify and mitigate future changes. Increasing the area burned annually will gradually reduce the amount of forest that has not recently burned across the landscape, and will reduce the mature conifer forest cover across interior Alaska. Deciduous forests that replace the fire adapted conifer-dominated stands are less likely to burn as a result of their architecture, lower flammability of tree tissues, and limited accumulation of fuels on the forest floor due to more rapid turnover of detritus (Dyrness et al., 1986; Hély et al., 2000; Krawchuk et al., 2006). This mechanism indicates increased deciduous cover may ultimately limit the intensification of the fire regime via a negative feedback effect, especially if warmer temperatures promote the longevity of deciduous trees.

The paleological record shows evidence of a strong black spruce-mediated biological control on the fire regime at centennial to millennial time scales: Between 6500 and 5600 years before present, following millennia when wildfires had been rare, black spruce expanded in interior Alaska, replacing less flammable vegetation communities dominated by birch, white spruce and alder (Lynch et al., 2003). This expansion of conifer-dominated vegetation appears to have been largely driven by an increased occurrence of wildfires resulting from, as well as promoting, increased black spruce cover, since there is no evidence of simultaneous climate change that would have intensified the fire regime (Lynch et al., 2004; Hu et al., 2006). However, the current climate in interior Alaska is moving beyond the optimal growth conditions for spruce growth (Beck et al., 2011) and is intensifying the fire regime at decadal timescales to the extent that it favors deciduous rather than evergreen regrowth, thus creating a negative feedback. Therefore, a new tipping point may be approaching where the boreal forest moves from evergreen dominance towards a greater cover of deciduous species. Such a biome shift would be accelerated by the other effects of ongoing climate change on spruce trees, such as drought stress (Barber et al., 2000; Beck et al., 2011) and increased susceptibility to pest outbreaks (Malström & Raffa, 2000). Additional research on burn severity and its influence on vegetation succession in the boreal landscape is needed, particularly with respect to the magnitude and directionality of net feedbacks to climate and associated disturbance regimes.

Acknowledgements

The authors thank Alessandro Baccini and Mindy Sun for assistance with the MODIS reflectance and GLAS data processing, respectively, Glenn Juday for discussions on biome shifts and three anonymous reviewers for their valuable insights and constructive comments which improved the manuscript. We acknowledge support from NASA Ecosystems and Carbon Cycle Grant NNX08AG13G and NOAA Global Carbon Cycle Grant NA080AR4310526.

References

AICC (2010) Yearly Alaska fire statistics. Alaska Interagency Coordination Center. Available at http://fire.ak.blm.gov/predsvcs/intel.php (accessed 1 April 2010).

Amiro BD, Oranschyke AL, Barr AG et al. (2006) The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 140, 41–50.

Baccini A, Laporte N, Goetz SJ, Sun M, Dong H (2008) A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environmental Research Letters, 3, 045011, doi: 10.1088/1748-9326/3/4/045011.

Baldocchi D, Kolbher FM, Black TA, Jarvis PG (2000) Climate and vegetation controls on boreal zone energy exchange. Global Change Biology, 6, 69–83.

Balshi MS, McGuire AD, Duffy P, Flanningham M, Walsh J, Mellilo J (2009) Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biology, 15, 578–600.

Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 406, 668–673.

Barrett K, Kasischke ES, McGuire AD, Turetsky MR, Kane ES (2010) Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data. Remote Sensing of Environment, 114, 1494–1503.

Bartholome E, Belward AS (2005) GLC2000: a new approach to global land cover mapping from earth observation data. International Journal of Remote Sensing, 26, 1999–1977.
Kay CE (1993) Aspen seedlings in recently burned areas of Grand Teton and Yellowstone National Parks. *Northwest Science*, 67, 94–104.

Keane RE, Cary CJ, Davies ID et al. (2004) A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics. *Ecological Modelling*, 179, 3–27.

Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. *International Journal of Wildland Fire*, 18, 116–126.

Krawchuk MA, Cumming SG, Flannigan MD, Wein RW (2006) Biotic and abiotic regulation of lightning fire initiation in the mixedwood boreal forest. *Ecology*, 87, 458–468.

Lewis P, Barnsley MJ (1994) Influence of the sky radiance distribution on various formulations of the earth surface albedo. Proceedings of the Sixth International Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’Isere, France, pp. 707–715.

Liu H, Randerson JT (2008) Intrannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence. *Journal of Geophysical Research*, 113, G01006, doi: 10.1029/2007JG000483.

Liu H, Randerson JT, Lindfors J, Chapin FS III (2005) Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. *Journal of Geophysical Research*, 110, D13101, doi: 10.1029/2004JD005158.

Lopez Garcia MJ, Caselles V (1991) Mapping burns and natural reforestation using Thematic Mapper data. *Geocarta International*, 1, 31–37.

Lucht W, Schaaf CB, Strahler AH (2000) An algorithm for the retrieval of albedo from space using semiempirical BRDF models. *IEEE Transactions on Geoscience and Remote Sensing*, 38, 977–996.

Lynch JA, Clark JS, Bigelow NH, Edwards ME, Finney BP (2003) Geographical and temporal variations in fire history in boreal ecosystems in Alaska. *Journal of Geophysical Research-Atmospheres*, 108, 8152, doi: 10.1029/2001JD000332.

Lynch JA, Hollis J, Hu P (2004) Climatic and landscape controls of the boreal forest fire regime: Holocene records from Alaska. *Journal of Ecology*, 92, 477–489.

Lyons EA, Jin Y, Randerson JT (2008) Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. *Journal of Geophysical Research*, 113, G02012, doi: 10.1029/2007JG000606.

Mack M, Treseder K, Manies K et al. (2008) Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska. *Ecosystems*, 11, 209–225.

Malmström CM, Raffa KF (2000) Biotic disturbance agents in the boreal forest. *Mack M, Treseder K, Manies K (2008) Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska. Ecosystems, 11, 209–225.*

McGuire AD, Anderson LC, Christensen TR et al. (2009) Sensitivity of the carbon cycle in the Arctic to climate change. *Ecological Monographs*, 79, 823–855.

McKenney DW, Pedlar JH, Papadopol F, Hutchinson MF (2006) The development of 1901–2000 historical monthly climate models for Canada and the United States. *Agricultural and Forest Meteorology*, 138, 69–81.

McMillan AMS, Goulden ML (2008) Age-dependent variations in the biophysical properties of boreal forests. *Global Biogeochemical Cycles*, 22, GB2019, doi: 10.1029/2007GB003038.

Murphy KA, Reynolds JH, Koltun JM (2008) Evaluating the ability of the differentiated Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. *International Journal of Wildland Fire*, 17, 490–499.

Randerson JT, Liu H, Flanner MG et al. (2006) The impact of boreal forest fire on climate warming. *Science*, 314, 1130–1132.

Romme WH, Turner MG, Tuskan GA, Reed RA (2005) Establishment, persistence, and growth of aspen (*Populus tremuloides*) seedlings in Yellowstone National Park. *Ecology*, 86, 404–418.

Schaaf CB, Cao F, Strahler AH et al. (2002) First operational BRDF, albedo nadir reflectance products from MODIS. *Remote Sensing of Environment*, 83, 135–148.

Schopmeyer CS (1974) Seeds of Woody Plants in the United States. United States Department of Agriculture Forest Service, Washington, DC, USA.

Skidmore AK (1989) A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model. *International Journal of Remote Sensing*, 3, 323–334.

Stackhouse PW, Gupta SK, Cox SJ, Chiacchio M, Mikovitz JC (2000) The WCRP/GEWEX Surface Radiation Budget Project Release 2: an assessment of surface fluxes at 1 degree resolution. In: IRS 2000: *Current Problems in Atmospheric Radiation* (eds Smith WL, Timofeyev YM), pp. 24–29. International Radiation Symposium, St. Petersburg, Russia.

Stocks BJ, Fosberg MA, Wotton BM, Lynham TJ, Ryan KC (2000) Climate change and forest fire activity in North American boreal forests. In: *Fire, Climate Change, and Carbon Cycling in the Boreal Forest* (eds Kasischke ES, Stocks BJ), pp. 368–376. Springer, New York.

Tuvitsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasitschke ES (2011) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. *Nature Geoscience*, 4, 27–31.

Turner MG, Romme WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. *Frontiers in Ecology and the Environment*, 1, 351–358.

UNECE, FAO, GFMC (2005) Special issue on Russia. In: *International Forest Fire News*, Vol. 32 (ed. Goldammer JG). United Nations Publications, New York, 131pp.

van der Werf GR, Randerson JT, Giglio L et al. (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural and peat fires (1997–2009). *Atmospheric Chemistry and Physics Discussions*, 10, 16153–16230.

Viereck LA (1973) Wildfire in the taiga of Alaska. *Quaternary Research*, 3, 465–495.

Viterbo P, Betts AK (1999) Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. *Journal of Geophysical Research*, 104, 27803–27810.

White PJ, Garrott RA (2005) Yellowstone’s unglulates after wolves – expectations, realizations, and predictions. *Biological Conservation*, 125, 141–152.

Wurz TL, Ott RA, Maisch JC (2006) Timber harvest in interior Alaska. In: *Alaska’s Changing Boreal Forest* (eds Chapin FS III, Oزوار MW, Van Cleave K, Viereck LA, Verbily DLJ), pp. 302–308. Oxford University Press, New York.

Xia Y, Titus SJ, MacDonald A (2001) A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests. *Canadian Journal of Forest Research*, 31, 283–291.

Yarie J, Billings S (2002) Carbon balance of the taiga forest within Alaska: present and future. *Canadian Journal of Forest Research*, 32, 757–767.

Yarie J, Kane E, Mack MC (2007) Aboveground biomass equations for the trees of interior Alaska. *AFES Bulletin*, 115, 1–16.

Zwally HJ, Schutz B, Abdalati W et al. (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. *Journal of Geodynamics*, 34, 405–445.
Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. (a) The 95th percentile of the Moderate Resolution Imaging Spectroradiometer (MODIS) difference Normalized Burn Index (dNBR) observed in an unburned area around fire polygons (>1500 m and <5000 m from the burn perimeter and unburned since 1950) was used to screen the fire polygons as registered in a database of Alaskan fires produced by the Bureau of Land Management, Alaska Fire Service (AFS). For areas that burned between 2002 and 2007, areas within the fire polygon that had a dNBR below this associated threshold dNBR value were marked as potentially unburned. b) This screening resulted in an increase of the mean dNBR of the burned areas and c) a reduction in the size of the areas considered burned. Only burns where sets of at least 100 (500 m) MODIS pixels were available to determine the threshold (unburned) dNBR value and the mean dNBR in the burned area are included in the plots.

Figure S2. Distribution of vegetation heights as quantified by the Height of Medium Energy (HOME) recorded by the Geoscience Laser Altimeter System (GLAS) onboard Icesat. Height distributions are shown before (grey shading) and after (black lines) fire events in areas marked as a) unburned and b) burned inside the burn perimeters registered in a database of Alaskan fires produced by the Bureau of Land Management, Alaska Fire Service (AFS). Unburned areas were distinguished from burned areas based on the comparison of the difference Normalized Burn Ratio (dNBR) recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) inside and outside the fire polygons.

Figure S3. Topographic slope, exposure, and wetness, meteorological growing season length and the expected deciduous fraction predicted by a bioclimatic envelope model for low severity (LS) and high severity (HS) burns, that are younger and older than 30 years (labelled as young and old, respectively, LS-young: \(n = 124 \); LS-old: \(n = 94 \); HS-young: \(n = 9 \); HS-old: \(n = 11 \)).

Table S1. Names, sizes and year of burning as registered in a database of Alaskan fires produced by the Bureau of Land Management, Alaska Fire Service (AFS), of the fires classified here as ‘high severity’ in the creation of deciduous and evergreen biomass chronosequences.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.