On quasi-separative semigroups

Yu. I. Krasilnikova, B. V. Novikov

ABSTRACT. We built some congruences on semigroups, from where a decomposition of quasi-separative semigroups was obtained.

1 Introduction

The research of separative semigroups was being begun from the famous paper of Hewitt and Zuckerman [3, 5], where, in particular, they proved that any commutative separative semigroup is isomorphic to a semilattice of cancellative semigroups. An generalization for the noncommutative case has been made by Burmistrovich [1] and independently by Petrich [4]. Drazin [2] introduced the term 'quasi-separativity' and studied connections between it and others semigroup properties (inversity, regularity etc).

We shall follow the terminology proposed by Drazin:

Definition 1 A semigroup \(S \) is called separative\(^1 \) if

\[
\begin{align*}
 x^2 &= xy \\
y^2 &= yx
\end{align*}
\implies x = y
\]

and

\[
\begin{align*}
 x^2 &= yx \\
y^2 &= xy
\end{align*}
\implies x = y
\]

for all \(x, y \in S \).

A semigroup \(S \) is called quasi-separative if

\[
x^2 = xy = yx = y^2 \implies x = y
\]

for all \(x, y \in S \).

Drazin also showed that in the definition of quasi-separativity we can replace \([2] \) by the next condition

\[
x^2 = xy = y^2 \implies x = y.
\]

It often simplifies considerably proofs of assertions.

\(^1\)Burmistrovich [1] called it weakly cancellative
The main result of this paragraph is an extension of the Burmistrovich’s theorem (Theorem 3): any quasi-separative semigroup is decomposable into a semilattice of subsemigroups, which are called *quasi-cancellative* by us. With this aim we previously build certain congruences on arbitrary semigroup (Theorem 1); they give semilattice decompositions in the quasi-separative case. As a corrolary, in Sect. 4 we consider an intermediate class of semigroups (*weakly balanced semigroups*) between separative and quasi-separative ones and discuss the connections between them.

2 Relation Ω

Let S be an arbitrary semigroup. By analogy with [2], we define two binary relations $E(a), F(a) \subset S \times S$ for every element $a \in S$:

$$E(a) = \{(x, y) \mid ax = ay\}, \quad F(a) = \{(x, y) \mid xa = ya\}.$$

The next properties of these relations are obvious:

$$E(b) \subset E(ab) \quad (4)$$
$$F(a) \subset F(ab) \quad (5)$$
$$bE(ab) \subset E(a) \quad (6)$$
$$F(ab)a \subset F(b) \quad (7)$$

(here and below for a binary relation $R \subset S \times S$ and for an element $x \in S$ the relation $\{(x, y) \mid (a, b) \in R\}$ is denoted by xR; analogously, Rx).

In what follows, the main tools for our studying will be the relations $\Omega \subset S \times S$, which satisfy the next conditions:

$$\forall a \quad \Omega \cap E(a) = \Omega \cap F(a) \quad (8)$$
$$\forall a, b \quad b(\Omega \cap E(ab)) \subset \Omega \quad (9)$$
$$\forall a, b \quad (\Omega \cap F(ab))a \subset \Omega \quad (10)$$

and the equivalences \sim_{Ω} on S corresponding to these relations:

$$a \sim_{\Omega} b \iff \Omega \cap E(a) = \Omega \cap E(b).$$

According to [8], such definition is equal to the following:

$$a \sim_{\Omega} b \iff \Omega \cap F(a) = \Omega \cap F(b).$$

Lemma 1 For all elements $a, b \in S$ and a relation Ω which satisfies the conditions (8)-(10)

$$\Omega \cap E(a) \subset \Omega \cap E(ab) \cap E(ba).$$
Proof. By (8) we have:

$$\Omega \cap E(a) = (\Omega \cap E(a)) \cap (\Omega \cap F(a)).$$

From here, using (11) and (12), we get:

$$\Omega \cap E(a) \subset (\Omega \cap E(b)) \cap (\Omega \cap F(ab)) = \Omega \cap E(ba) \cap E(ab)$$

(the last equality follows from (8)). ■

Our first result is fulfilled for an arbitrary semigroup:

Theorem 1 Let $\Omega \subset S \times S$ satisfies the conditions (8)-(10). Then the equivalence \sim_Ω is a congruence on S.

Proof. Let $a, b, c \in S$ and $a \sim_\Omega b$. Obviously, for the proving the right compatibility of \sim_Ω it is enough to verify the inclusion

$$\Omega \cap E(ac) \subset \Omega \cap E(bc).$$

Let $(x, y) \in \Omega \cap E(ac)$. Owing to Ω $(cx, cy) \in \Omega$. On the other hand, (9) implies the inclusion $(cx, cy) \in cE(ac) \subset E(a)$. Therefore,

$$(cx, cy) \in \Omega \cap E(a) = \Omega \cap E(b).$$

From here it follows that $(x, y) \in \Omega \cap E(bc)$.

Similarly, by (7) and (10) the left compatibility can be proved. ■

Example. Let S be a commutative semigroup, $\Omega = S \times S$. Then the conditions of Theorem 1 are true and the equivalence

$$a \sim b \iff E(a) = E(b)$$

is a congruence relation.

3 A decomposition of quasi-separative semigroups

In this section we apply the preceding theorem to quasi-separative semigroups.

Note that the definition of quasi-separativity in the form (3) may be formulated in terms of the relations $E(a)$ and $F(a)$:

$$(a, b) \in E(a) \cap F(b) \implies a = b$$

(11)

for all $a, b \in S$. 3
Theorem 2 Let Ω be a relation on quasi-separative semigroup S which satisfies the conditions (8)-(10). Then S/\sim_Ω is a semilattice.

Proof. First, show that S/\sim_Ω is a band. In order to verify this statement it is sufficient to justify that the equality $\Omega \cap E(a) = \Omega \cap E(a^2)$ is right for any $a \in S$.

An inclusion

$$\Omega \cap E(a) \subset \Omega \cap E(a^2)$$

at once follows from Lemma 1. Conversely, if $(x, y) \in \Omega \cap E(a^2)$, then $(ax, ay) \in E(a)$. Moreover, owing to (9)

$$(ax, ay) \in a(\Omega \cap E(a^2)) \subset \Omega,$$

hence, $(ax, ay) \in \Omega \cap E(a)$. By Lemma 1

$$(ax, ay) \in \Omega \cap E(ax) \cap E(xa) \cap E(ya) \cap E(ay),$$

whence, in particular,

$$(ax, ay) \in \Omega \cap E(ax) \cap E(ay) = \Omega \cap E(ax) \cap F(ay)$$

by the condition (8). From (11) we obtain $ax = ay$, that is $(x, y) \in E(a)$. Therefore, $\Omega \cap E(a^2) \subset \Omega \cap E(a)$ and the first part of Theorem is proved.

Now we shall prove that S/\sim_Ω is commutative, viz. that $\Omega \cap E(ab) = \Omega \cap E(ba)$. The successive using the properties (4), (8) and (5) gives us:

$$\Omega \cap E(ab) \subset \Omega \cap E(bab) = \Omega \cap F(bab) \subset \Omega \cap F((ba)^2) = \Omega \cap E((ba)^2).$$

Since, as proved above, S/\sim is a band, then

$$\Omega \cap E(ab) \subset \Omega \cap E(ba).$$

Analogously,

$$\Omega \cap E(ba) \subset \Omega \cap E(ab),$$

what completes the proof of Theorem. ■

Next assertion gives us a preliminary information about \sim_Ω-classes. Denote by Δ_T the diagonal of Cartesian square $T \times T$.

Proposition 1 If S is a quasi-separative semigroup, then each \sim_Ω-class T satisfies the next condition for all $a \in T$:

$$\Omega \cap E(a) \cap (T \times T) \subset \Delta_T.$$
Proof. Indeed, let \((x, y) \in \Omega \cap E(a) \cap (T \times T)\). Since \(x \sim_\Omega y \sim_\Omega a\), then
\[
(x, y) \in \Omega \cap E(a) = \Omega \cap E(x) \cap F(y),
\]
whence, by (11), we have \(x = y\). ■

Definition 2 We call a semigroup \(S\) quasi-cancellative if the condition
\[
\begin{align*}
\forall x, y \in S^1 & \quad xby = xcy \iff yxb = yxc \iff byx = cyx \\
ab & = ac.
\end{align*}
\]
implies \(b = c\).

Obviously, every right- or left-cancellative semigroup is quasi-cancellative.

Our main result on structure of quasi-separative semigroups is the next

Theorem 3 A semigroup is quasi-separative if and only if it is a semilattice of quasi-separative quasi-cancellative semigroups.

Proof. Necessity. Denote a binary relation \(\Omega_S\) on \(S\):
\[
\Omega_S = \{(x, y) \mid \forall a, b \in S^1 \quad axb = aby \iff xba = yba \iff bax = bay\} \quad (12)
\]
and verify the conditions \([9]-[10]\) for it. Since for \(a = 1\) we have:
\[
xb = yb \iff bx = by,
\]
for any pair \((x, y) \in \Omega_S\), then obviously, \([9]\) holds. Now we prove that \(\Omega_S\) is left compatibility, from where \([5]\) will follow.

Let \((x, y) \in \Omega_S, b \in S\). To prove that \((bx, by) \in \Omega_S\) one needs to check the fulfilment of the implications:
\[
\forall c, d \in S^1 \quad cbxd = cbyd \iff dcxb = dcby \iff bxdc = bydc.
\]

The implication \(cbxd = cbyd \iff dcxb = dcby\) immediately follows from the definition of \(\Omega_S\). Let \(dcxb = dcby\). From \([12]\) we obtain:
\[
\begin{align*}
dcxb = dcby & \implies xdcb = ydcb.
\end{align*}
\]
Therefore
\[
(bxdc)^2 = bx(dcbx)dc = b(xdcby)dc = (bydc)^2
\]
and quasi-separativity implies \(bxdc = bydc\).

Similarly, if \(bxdc = bydc\), then
\[
bxdc = bydc \implies dcbx = dcby \implies xdcb = ydcb.
\]

5
Hence
\[(cbxd)^2 = cbx(dcbx)d = c(bxdc)byd = (cbyd)^2\]
and \(cbxd = cbyd\).

In the same way right compatibility is checked, and so the condition \(\text{(11)}\) is fulfilled.

Thus, \(S/\sim_{\Omega_S}\) is a commutative band by Theorem \(2\). It remains to show that its components are quasi-cancellative.

Let suppose that the conditions of Definition \(2\) hold for some elements \(a, b, c, d\) from the \(\sim_{\Omega_S}\)-class \(T \subset S\). It means that
\[(c, d) \in \Omega_T \cap E(a) \subset \Omega_S \cap E(a) = \Omega_S \cap E(b).\]

Hence \(bc = bd\). Moreover, \(\text{(8)}\) implies \(cb = db\). In particular, replacing \(b\) in the obtained equations by \(c\) and \(d\), we get:
\[c^2 = cd = dc = d^2,\]
whence \(c = d\).

Sufficiency. It is easy to see that any semilattice of quasi-separative semigroups is also quasi-separative. ■

4 Corollaries and Examples

In this section we show that Theorem \(3\) implies the theorem of Burmistrovich on the separative semigroups and obtain an assertion about certain intermediate class of semigroups.

Proposition 2 Every separative quasi-cancellative semigroup is cancellative.

Proof. Let \(S\) be separative and quasi-cancellative, \(a, b, c \in S, ab = ac\). By Lemma 1 from \(\text{[1]}\) for all \(x, y \in S\)

\[xby = xcy \implies byx = cyx \implies yxb = yxc \implies xby = xcy.\]

So, by quasi-separativity \(b = c\).

To prove the right cancellativity we ought to apply the Lemma 1 \(\text{[1]}\) to the equality \(ba = ca\) and to refer to the previous argumentation. ■

Corollary 1 (Burmistrovich’s Theorem \(\text{[1]}\)) A semigroup is separative if and only if it is isomorphic to a semilattice of cancellative semigroups. ■
Definition 3 A semigroup \(S \) is called weakly cancellative if for every \(a, b, x, y \in S \)

\[
\begin{align*}
ax &= ay \\
xb &= yb
\end{align*}
\]

implies \(x = y \).

We call a semigroup \(S \) weakly balanced, if (13) implies

\[
\begin{align*}
xa &= ya \\
xb &= yb
\end{align*}
\]

Obviously, every weakly cancellative semigroup is quasi-separative; but in general this is not hold in the weakly balanced case (for example, all commutative semigroups are weakly balanced). On the other hand, by above-mentioned Lemma 1 all separative semigroups are weakly balanced, so two next facts give a partial extension of Burmistrovich’s theorem to the more wide class of semigroups.

Proposition 3 If \(S \) is a quasi-cancellative weakly balanced semigroup, then \(S \) is also weakly cancellative.

Proof. Let \(S \) be quasi-cancellative and weakly balanced, \(a, b, x, y \in S \) and

\[
ax = ay, \quad xb = yb.
\]

If \(uxv = uyv \) for some elements \(u, v \in S^1 \), then by the weakly balancity from this last equality and from \(axv = ayv \) we obtain \(xuv = yuv \). Similarly, implications

\[
xvu = yvu \implies vux = vuy \implies uvx = uyv.
\]

can be obtained. Now \(x = y \) because of quasi-cancellativity. ■

Corollary 2 Every quasi-separative weakly balanced semigroup is isomorphic to a semilattice of weakly cancellative semigroups. ■

We don’t know whether the converse to the Corollary is true. One can affirm only that a semilattice of weakly cancellative semigroups (which, evidently, is quasi-separative) satisfies the next condition:

\[
\begin{align*}
a^2x &= a^2y \\
xa^2 &= ya^2 \implies \begin{cases}
ax &= ay \\
xa &= ya
\end{cases}
\]
\]

Really, it follows out of \(a^2x = a^2y \) that \(ax, ay, xa, ya \) contain in the same component of the semilattice. From the antecedent of (14) we have:

\[
\begin{align*}
(xa)(ax) &= (xa)(ay) \\
(ax)(a^2x) &= (ay)(a^2x)
\end{align*}
\]
Now weakly cancellativity implies \(ax = ay \) and, similarly, \(xa = ya \).

In conclusion we discuss the connections between considered classes of semigroups. They may be presented by a diagram:

\[
\begin{array}{c}
\text{Separativity} \Rightarrow \text{Quasi-separativity} \\
\quad \uparrow \\
\text{Weakly balancity} \Rightarrow \text{Quasi-separativity} \\
\quad \uparrow \\
\text{Cancellativity} \Rightarrow \text{Weak cancellativity} \Rightarrow \text{Quasi-separativity} \\
\quad \uparrow \\
\end{array}
\]

Now we shall show that all implications in this picture are strict.

Obviously, any commutative quasi-cancellative semigroup is cancellative. Hence not every separative semigroup is quasi-cancellative. From here it follows that all the vertical implications are strict.

Every completely simple semigroup is weakly cancellative, but not separative (if it is not a group). Hence the left horizontal implications are strict.

Bicyclic semigroup \(B = \langle a, b \mid ba = 1 \rangle \) is quasi-separative. Since \(B \) is simple, it cannot be decomposed into a nontrivial semilattice of its sub-semigroups. By Theorem 3 it is quasi-cancellative. On the other hand, the equalities

\[b^2 \cdot 1 = b^2 \cdot ab, \quad 1 \cdot a = ab \cdot a \]

imply that \(B \) is not weakly balanced. From here it follows that the right horizontal implications are strict.
References

[1] I. E. Burmistrovich, *The commutative bands of cancellative semigroups*. Siberian Math. Journal, 6(1965), N2, 284-299 (Russian).

[2] P. M. Drazin, *A partial order in completely regular semigroups*. J. Algebra 98(1986), 368-374.

[3] A. H. Clifford, G. B. Preston, *Algebraic Theory of Semigroups*, Amer. Math. Soc., Providence, 1964.

[4] M. Pertich, *Introduction to semigroups*. Merill Books (Columbus, Ohio), 1973.

[5] E. Hewitt, H. S. Zuckerman, *The L_1-algebra of a commutative semigroup*. Trans. Amer. Math. Soc., 83(1956), 70-97.

Lugansk National Pedagogical University
kji@leasat.net

Kharkov National University
boris.v.novikov@univer.kharkov.ua