The dynamics abundance of meroplankton in Nusalaut coastal waters, Central of Maluku Regency

H A Mulyadi & A S Adji
Research Center for Deep Sea-Indonesian Institute of Sciences
Jl. Y. Syaranamual, Guru-guru Poka Ambon, Maluku 97233
Email: hanu001@lipi.go.id

Abstract. Abundance and diversity of meroplankton (larvae of benthos and nekton, including eggs) in the Nusalaut coastal waters were investigated. The research was conducted in two months (May 2009; April 2014). The abundance of meroplankton was collected from NORPAC net (0.33 mm, mesh size) by vertical hauling from 10 meters of deep to the surface. The samples were taken in 8 stations and repeated in April 2014. All samples were preserved with 4% formaldehyde and analyzed using microscope. In May 2009, total abundance of meroplankton varied between 84 ind.m\(^{-3}\) and 780 ind.m\(^{-3}\), but mainly fluctuated around 300-500 ind.m\(^{-3}\). Larvae of 13 taxa were identified. Fish eggs represented the most predominant taxa (average abundance 96 ind.m\(^{-3}\)), followed by echinodermata larvae (81 ind.m\(^{-3}\)). Meanwhile, in April 2014 total abundance was lower. During this period, the total abundance varied between 8 ind.m\(^{-3}\) and 48 ind.m\(^{-3}\). Larvae of 7 taxa were found. Echinodermata larvae represented the most predominant taxa (average abundance 6 ind.m\(^{-3}\)), followed by gastropoda larvae (5 ind.m\(^{-3}\)). It is suggested that spawning season occurred during May, indicated from the high value of total abundance of meroplankton.

Keywords: meroplankton, fish eggs, echinodermata larvae, Nusalaut.

1. Introduction
Meroplankton consists of wide taxa of planktonic marine organisms such as crustaceans, sea urchin, bivalvia and annelida. These organisms being planktonic in early stages during a few weeks or months [1, 2]. After a period of time in plankton, they become nekton or a benthic organism which may have different habitat. Survival or mortality of meroplankton depends on complex factors eg. food supply, predation, competition and oceanographic patterns [3]. Meroplankton feeds on plankton or they survive off the yolk from the egg they hatched from. Survival rate of meroplankton is critical part of reproductive strategy of adult marine organisms. They are used on current for dispersal [4, 5], which ocean current transporting planktonic larvae to specific settlement area.

Intensive study of meroplankton around the world has been reported [5,6,7]. Meroplankton distribution and spatio-temporal variability were conducted in the northern Bay of Biscay, North East (NE) Atlantic [5]; long-term changes in the meroplankton of the North Sea was monitored [6] and the community of meroplankton in the south-western Ross Sea, Antarctica was investigated [7]. In detail, describes that meroplankton varied during observations[8]. In May, total abundance ranged between 0.1-32.0 ind.m\(^{-3}\) and total 27 taxa of meroplankton were identified. Polychaetes represented the most diverse group (13 species) and echinodermata (8 species), respectively.
However, in Indonesian waters there are few studies has been conducted [9,10,11]. In Pemalang coastal waters, there are consists of 12 taxa meroplankton such as bivalvia larvae, brachyura (zoa) larvae, brachyura (megalop) larvae, echinodermata larvae, penaidae larvae, gastropoda larvae, fish eggs, fish larvae, cirripedia larvae and cyponautes larvae [9]. Further [10] reported that abundance of meroplankton in inner of Ambon Bay higher compare to in outer bay. Furthermore [11] explained that composition of meroplankton in Jakarta Bay and Seribu Island consists of six groups and shrimps, fish and mollusks larvae have no specific habitat preferences. This research aims to study the dynamics of abundance and composition of meroplankton in Nusalaut coastal waters.

2. Methodology

Meroplankton samples were collected during two surveys conducted in May 2009 and April 2014 in Nusalaut coastal water [figure 1]. The samples were taken in 8 stations, in which the abundance of meroplankton was determined by NORPAC net (mesh size 0.33mm) with depth varied from 10m to surface. All samples were preserved in bottle containing 4% formaldehyde and then analyzed using Wickstead method [12]. We used some meroplankton identification books to classify the samples [13,14]. The number of zooplankton was counted in ind.m\(^{-3}\) unit. To examine the relationship between the two seasonal data sets, principal component analysis (PCA) was approached on the meroplankton abundance.

![Figure 1. Map of sampling location, Nusalaut coastal water 2009 and 2014.](image)

3. Result and Discussion

Taxonomic composition

A total of 13 taxa of meroplankton were identified during the study. Comparing to other site observations, total composition of meroplankton in Nusalaut coastal water was higher than in Ambon Bay [10] and in Jakarta Bay and Seribu Island water [11]. The composition of meroplankton in May 2009 is higher than in April 2014. In May, total composition of meroplankton was 13 taxa whereas during April seven taxa of total composition of meroplankton were found. Total composition of meroplankton in each period was shown in Table 1 and 2.

In May, total composition of meroplankton in each station were ranged between 3-9 taxa but mainly fluctuated nearly 3-6 taxa (Table 1). Echinodermata larvae was found in all stations (except in station 9, absent), followed by gastropoda larvae and bivalvia larvae (both of these two larvae could be
found in 6 stations). While in April, total composition of meroplankton decrease compare to the previous observation. A total 1-6 taxa of meroplankton was identified during this season. Similar to the first survey, echinodermata and gastropoda larvae were found in half of total stations (Table 2). However, 6 taxa of meroplankton such as palaemonidae larvae, cirripedia larvae, brachyura (megalop) larvae, other decapoda larvae, cephalopoda larvae and fish larvae were absent during April 2014.

Table 1. Composition of meroplankton during May 2009.

No	Meroplankton	St 1	St 2	St 3	St 4	St 5	St 6	St 7	St 8
1	Penaeidae larvae	-	-	●	-	-	-	•	-
2	Palaemonidae larvae	-	-	-	●	-	-	-	-
3	Cirripedia larvae	-	-	-	-	-	-	-	●
4	Brachyura (zoea) larvae	-	-	-	-	-	-	●	-
5	Brachyura (megalop) larvae	-	-	-	-	-	-	-	●
6	Other decapoda larvae	•	-	-	●	-	-	-	-
7	Echinodermata larvae	●	•	●	●	●	●	●	●
8	Gastropoda larvae	●	●	-	●	●	●	●	●
9	Cephalopoda larvae	-	-	-	-	-	-	-	-
10	Bivalvia larvae	●	-	●	-	●	●	●	●
11	Annelida larvae	●	●	-	●	●	●	●	●
12	Fish eggs	-	-	-	-	-	-	-	-
13	Fish larvae	-	-	-	-	-	-	-	-

Remarks: - absent; ● presence.

Table 2. Composition of meroplankton during April 2014.

No	Meroplankton	St 1	St 2	St 3	St 4	St 5	St 6	St 7	St 8
1	Penaeidae larvae	-	●	-	-	-	-	-	●
2	Palaemonidae larvae*	-	-	-	-	-	-	-	-
3	Cirripedia larvae*	-	-	-	-	-	-	-	-
4	Brachyura (zoea) larvae	-	-	●	-	-	-	●	-
5	Brachyura (megalop) larvae*	-	-	-	-	-	-	-	-
6	Other decapoda larvae*	-	-	-	-	-	-	-	-
7	Echinodermata larvae	●	●	-	●	●	●	●	●
8	Gastropoda larvae	●	●	-	●	●	●	●	●
9	Cephalopoda larvae*	-	-	-	-	-	-	-	-
10	Bivalvia larvae	-	-	●	-	-	-	-	●
11	Annelida larvae	-	-	●	-	●	●	●	●
12	Fish eggs	-	-	●	-	-	-	-	-
13	Fish larvae*	-	-	-	-	-	-	-	-

Remarks: * absent in all sites; - absent; ● presence.

Abundance of Meroplankton

The total abundance of meroplankton in May is higher than in April. In may 2009, total abundance of meroplankton varied between 84 ind.m⁻³ and 780 ind.m⁻³, but mainly fluctuated around 300-500 ind.m⁻³. While in April 2014, the total abundance varied between 8 ind.m⁻³ and 48 ind.m⁻³ (mainly fluctuated around 15-30 ind.m⁻³). Analog with meroplankton abundance in Nusalaut coastal waters, the abundance of meroplanktonic invertebrate larvae were high abundance during May in Central Barent Sea [8]. Detail abundance of meroplankton in each period is described in figure 2 and 3.
Figure 2. Abundance of meroplankton during May 2009.

It is clearly shown that during May 2009, fish eggs represented the most predominant taxa varied between 0-300 ind.m$^{-3}$ (average abundance 96 ind.m$^{-3}$), followed by echinodermata with varied between 0-200 ind.m$^{-3}$ (average abundance 81 ind.m$^{-3}$), and bivalvia larvae with varied 0-180 ind.m$^{-3}$ (average abundance 61 ind.m$^{-3}$) respectively. The first predominant taxa, fish eggs comprised of 0-54% of total larvae. The high abundance of fish eggs during this period indicating spawning time [15]. Further, Echinodermata larvae account for 0-43% of total larvae and bivalvia larvae contributed to 0-25% of total larvae. According to [16] echinoid larvae constituting 50% of total echinodermata larvae and present all monthly samples indicating that reproduction occurs throughout the year, with the peak of later-stage ophiuroidea during June, August and October which may be indicated of recruitment activities. However, during this sampling period the penaeidae larvae, palaemonidae larvae, cirripedia larvae, brachyura (zoea) larvae, brachyura (megalop) larvae, other decapoda larvae, cephalopoda larvae and fish larvae presence in less abundant. Meroplankton abundance was highest in the west part (St 6) compare to the other sites. Fish eggs indicated the most predominant taxa. The high abundance of fish eggs at Station 6 was most likely affected by local habitat. Mangrove and seagrass in this area are in good condition which is known as a suitable habitat of spawning or nursery ground for several fishes.

Figure 3. Abundance of meroplankton during April 2014.
In contrast, meroplankton presence in lower abundance at all stations in April 2014. This may reflect a temporal succession of reproduction of different taxa [8]. Echinodermata larvae ranged between 0-15 ind.m$^{-3}$ (mean abundance 6 ind.m$^{-3}$) and gastropoda larvae ranged between 0-15 ind.m$^{-3}$ (mean abundance 5 ind.m$^{-3}$) respectively (figure 3). The third position represented by annelida larvae with ranged between 0-15 ind.m$^{-3}$ (mean abundance 4 ind.m$^{-3}$). While six meroplanktonic larvae such as palaemonidae larvae, cirripedia larvae, brachyura (megalop) larvae, other decapoda larvae, cephalopoda larvae, fish eggs and fish larvae were absent during this sampling time. Several taxa of planktonic larvae were absent in upper layer, [17] described that larvae are often retained in the water depth where they are hatched and drift close to the bottom. During this period, meroplankton abundance was highest in the north part (St 3) compare to the other sites. In this site, the abundance of brachyura (zoea) larvae, echinodermata larvae, gastropoda larvae, bivalvia larvae, annelida larvae, and fish eggs were 8 ind.m$^{-3}$, respectively.

Principal Component Analysis (PCA) of Measurements

The results from the PCA analysis for abundance of meroplankton in May 2009 showed that the first principal component (F1) depleted 43.42% of total variance with values of 31.27% and 13.23% respectively for the second (F2) and third (F3) component. It is observable from the results that the three main components covered 87.92% of total variance and confirmed the graphic interpretation of the results, that the first three factors are the main components (Table 3).

Table 3. The resulting principal component analysis scores on the first 3 axes, eigenvalues and proportions of total variance in May 2009.

May 2009	F1	F2	F3
Penaeidae larvae	-0.352	-0.532	2.703
Palaemonidae larvae	-1.333	-0.757	-0.248
Cirripedia larvae	-1.430	-0.216	-0.115
Brachyura (zoea) larvae	-1.504	-0.250	-0.254
Brachyura (megalop) larvae	-1.596	-0.503	-0.190
Other decapoda larvae	-0.397	-0.928	-0.094
Echinodermata larvae	4.423	0.570	1.007
Gastropoda larvae	2.979	-1.536	-1.434
Cephalopoda larvae	-1.596	-0.503	-0.190
Bivalvia larvae	0.373	2.147	1.016
Annelida larvae	1.756	-1.811	-0.751
Fish eggs	0.097	4.428	-1.233
Fish larvae	-1.421	-0.107	-0.217
Eigenvalue	3.474	2.502	1.058
Variability (%)	43.421	31.271	13.227
Cumulative %	43.421	74.692	87.919

In May 2009, F1 variables of meroplankton such as echinodermata larvae, gastropoda larvae, bivalve larvae, annelida larvae and fish eggs were showed with positive significant correlation, and penaeidae larvae, palaemonidae larvae, cirripedia larvae, brachyura (zoea) larvae, brachyura (megalop) larvae, other decapoda larvae, cephalopoda larvae and fish larvae were showed negative weight (Table 3). The F2 was associated with a positive weight with echinodermata larvae, bivalvia larvae and fish eggs. The variables penaeidae larvae, palaemonidae larvae, cirripedia larvae, brachyura (zoea) larvae, brachyura (megalop) larvae, other decapoda larvae, gastropoda larvae, cephalopoda larvae, annelida larvae and fish larvae had negative weight. Meanwhile, the variables penaeidae larvae, echinodermata larvae and bivalvia larvae were positive for the formation of F3. Positive correlation indicated their dispersal and distribution is driven by oceanographic transport and behavioral traits of larvae [18, 19].
and the higher abundance of meroplankton taxa echinodermata larvae, gastropoda larvae bivalve larvae and annelida larvae indicated the spawning season. [20] described that adult behaviour of marine organisms (spawning period and location) may be more important than larval behavior in determining larval dispersal.

Figure 4. Biplot axes (F1 and F2) in May 2009.

Biplot axes (F1 and F2) account for 74.69% of total variance. Figure 4 showed that gastropoda larvae coexist to variable 2 (Station 2), variable 4 (Station 4) and variable 5 (Station 5). It is characterized by higher abundance of gastropoda larvae compare to other larvae (Figure 2). Further, It is visible from the results that the bivalvia larvae coincide with variable 6 (Station 6) and variable 7 (Station 7), indicated by higher abundance of bivalvia larvae. PCA analysis of biplot model and figure 2 shows that Station 2, 4 and 5 used to be gastropoda larvae habitat. While Station 6 and 7 used to be bivalvia larvae feeding habitat. Physical transport processes play major rules in moving invertebrate larvae to the shore and the most important aspect after larvae have survived is food supply which bernacle nauplii and gastropod veligers are omnivorous [21].

In April 2014, PCA analysis for abundance of meroplankton illustrated that the first three principal components (F1, F2 and F3) account for 82.37% of total variance with value of 35.84%, 27.87% and 18.67% respectively. Detail of PCA analysis for abundance of meroplankton during April 2014 was shown in Table 4.

Table 4. The resulting principal component analysis scores on the first 3 axes, eigenvalues and proportions of total variance in April 2014.

Observation	F1	F2	F3
Penaeidae larvae	-2.670	-0.316	3.289
Palaemonidae larvae	-0.955	-0.061	-0.955
Cirripedia larvae	-0.955	-0.061	-0.955
Brachyura (zoea) larvae	1.077	0.210	-0.129
Brachyura (megalop) larvae	-0.955	-0.061	-0.955
Other decapoda larvae	-0.955	-0.061	-0.955
Echinodermata larvae	3.495	-1.931	0.656
In April 2014, F1 variables of meroplankton taxa such as brachyura (zoea) larvae, echinodermata larvae, gastropoda larvae and annelida larvae were showed positive weight. However, penaeidae larvae, palaemonidae larvae, cirripedia larvae, brachyura (megalop) larvae, other decapoda larvae, cephalopoda larvae, bivalvia larvae, fish eggs and fish larvae were showed negative weight (Table 4). F2 represented the following taxa brachyura (zoea) larvae, gastropoda larvae and fish eggs with positive weight whereas penaeidae larvae, palaemonidae larvae, cirripedia larvae, brachyura (megalop) larvae, other decapoda larvae, echinodermata larvae, cephalopoda larvae, bivalvia larvae, annelida larvae and fish larvae were represented negative weight. Formation F3 variables showed the positive correlation with penaeidae larvae, echinodermata larvae, gastropoda larvae, bivalvia larvae and annelida larvae and the other larvae showed the negative correlation. Recruitment processes of the adult marine benthic organisms can be monitored by planktonic larvae dispersal [18]. Further [5] explained that the spawning periods, distribution and the size of adult populations can be significantly affected planktonic dispersal at spatially structured benthic populations.

Taxa	Var1	Var2	Var3
Gastropoda larvae	2.261	4.543	0.618
Cephalopoda larvae	-0.955	-0.061	-0.955
Bivalvia larvae	-0.754	-0.068	1.409
Annelida larvae	2.369	-2.107	0.336
Fish eggs	-0.048	0.034	-0.449
Fish larvae	-0.955	-0.061	-0.955
Eigenvalue	2.867	2.229	1.494
Variability (%)	35.835	27.866	18.672
Cumulative %	35.835	63.700	82.372

In April 2014, F1 variables of meroplankton taxa such as brachyura (zoea) larvae, echinodermata larvae, gastropoda larvae and annelida larvae were showed positive weight. However, penaeidae larvae, palaemonidae larvae, cirripedia larvae, brachyura (megalop) larvae, other decapoda larvae, cephalopoda larvae, bivalvia larvae, fish eggs and fish larvae were showed negative weight (Table 4). F2 represented the following taxa brachyura (zoea) larvae, gastropoda larvae and fish eggs with positive weight whereas penaeidae larvae, palaemonidae larvae, cirripedia larvae, brachyura (megalop) larvae, other decapoda larvae, echinodermata larvae, cephalopoda larvae, bivalvia larvae, annelida larvae and fish larvae were represented negative weight. Formation F3 variables showed the positive correlation with penaeidae larvae, echinodermata larvae, gastropoda larvae, bivalvia larvae and annelida larvae and the other larvae showed the negative correlation. Recruitment processes of the adult marine benthic organisms can be monitored by planktonic larvae dispersal [18]. Further [5] explained that the spawning periods, distribution and the size of adult populations can be significantly affected planktonic dispersal at spatially structured benthic populations.

Figure 5. Biplot axes (F1 and F2) in April 2014.

The PCA analysis for biplot axes (F1 and F2) account for 63.70% of total variance during April 2014 (figure 5). The result showed that annelida larvae coincide with variable 6. Echinodermata larvae has adjacent point to variable 6. Analog with the previous result, the second group is characterized by brachyura (zoea) larvae coexist to variable 3 and 7, and gastropod larvae has adjacent point to variable 4. It is marked by the presence of planktonic larvae on that site (figure 3) and assuming their preference for sharing the same habitat feeding [11].
4. Conclusion

The abundance of meroplankton in May is higher than April, indicating that during May the spawning season is occurred. The predominant taxa characterized by fish eggs, echinodermata larvae and bivalvia larvae, presence in higher abundance compare to other larvae during this period. Further, according PCA analysis, it was found that gastropoda and brachyura (zoea) larvae indicating has the same habitat feeding.

Acknowledgment

The research activities were funded by DIPA Center for Deep Sea Research fiscal year 2009 and 2014. We thank our technicians, La Imu and Salomy Hehakaya for their assistance in the field and laboratory, and the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

References

[1] Stephens RE 1972. Studies on the development of the sea urchin Strongilocentrotus droebachiacensis I (ecology and normal development. Biol. Bull 142:132-144.
[2] Smith AB. 1997. Echinoderm larvae and phylogeny. Annu. Rev. Ecol. Syst 28:219-41.
[3] Arntz WE et al. 2003. Development trade-offs in Subantarctic meroplankton communities and the enigma of flow decapod diversity in high southern latitudes. Marine Ecology Progress series 260: 195-207.
[4] Pacheco et al. 2013. Dispersal of post-larval macrobenthos in subtidal sedimentary habitats: roles of vertical diel migration, water column, bedload transport and biological traits expression. Journal of Sea Research 77: 79-92.
[5] Ayata et al. 2011. Meroplankton distribution and its relationship to coastal mesoscale hydrological structure in the northern Bay of Biscay (NE Atlantic). Journal of Plankton Research 33(8): 1193-1211.
[6] Lindley JA and RR Kirby. 2007. Long-term changes in the meroplankton of the North Sea. ICES CM A: 16. 10pp.
[7] Sewell MA. 2005. Examination of the meroplankton community in the south-western Ross Sea, Antarctica, using a collapsible plankton net. Polar Biol 28: 119-131.
[8] Schluter M and E Rachor. 2001. Meroplankton distribution in the central Barent Sea in relation to local oceanographic patterns. Polar Biol 24(582-592).
[9] Mulyadi HA et al.2013. Composition and abundance of meroplankton in coastal of Pemalang Regency, Central Java. Prosiding seminar nasional tahunan X hasil penelitian kelautan dan Perikanan. Jurusan Perikanan Fakultas Pertanian, UGM. 7 pp. (in Indonesia, available abstract in english)
[10] Mulyadi HA.2013. The urgency of coastal management at Ambon Bay in meroplankton perspective. Prosiding seminar nasional pengelolaan sumberdaya alam dan lingkungan 2013. UNDIP. 342-348. (in Indonesia, available abstract in english)
[11] Puspasari and Aisyah.2018. Grouping of meroplankton habitat in Jakarta Bay and seribu Island. Oseanologi dan Limnologi di Indonesia 3(1):49-61
[12] Wickstead J H.1965. An introduction to the study of tropical plankton. HutchinsonTrop. Monogr: 160 pp
[13] Yamaji I E.1984. Illustrations of the marine plankton of Japan. Hoikusha Publishing Co., LTD, Japan. 536pp
[14] Rominioharto K and S Juwana. 2004. Marine meroplankton: marine larvae as plankton. Djambatan Jakarta 191 pp.
[15] Trathan et al. 2014. The South Georgia and the South Sandwich Islands MPA: protecting a biodiverse oceanic island chain situated in the flow of the Antarctic circumpolar current. Advances in Marine Biology 69:15-78
[16] Williams & Garcia-Sais. 2010. Temporal and spatial patterns of echinoderm larvae in La Parguera, Puerto Rico. Rev. Biol. Trop 58:81-88.
[17] Pearse JS and SJ Lockhart.2004. Reproduction in cold water: paradigm chanes in the 20th century and a role for cidaroid. Deep Sea Research II 51:1533-1549
[18] Belgrano et al. 1995. Spatial structure and ecological variation of meroplankton on the Belgian-Dutch coast of the North Sea. *Mar Ecol Prog Ser* 128: 51-59.

[19] Cowen R K and Sponaugle S. 2009. Larval dispersal and marine population connectivity. *Annual Review of Marine Science* 1, 443–466.

[20] Edward et al. 2007 Using 2-dimensional dispersal kernels to identify the dominant influences on larval dispersal on continental shelves. *Mar Ecol Prog Ser* 352: 77–87, 2007 doi:10.3354/meps07169.

[21] Vargas et al. 2006. Feeding by larvae of intertidal invertebrates: assessing their position in pelagic food webs. *Ecology* 87(2):444-57.