EVIDENCE REVIEW

Gastrin: From Physiology to Gastrointestinal Malignancies

Suzann Duan, Karen Rico, Juanita L. Merchant

Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724, USA

*Address correspondence to J. L. M. (e-mail: jmerchant@email.arizona.edu)

Abstract

Abetted by widespread usage of acid-suppressing proton pump inhibitors (PPIs), the mitogenic actions of the peptide hormone gastrin are being revisited as a recurring theme in various gastrointestinal (GI) malignancies. While pathological gastrin levels are intricately linked to hyperplasia of enterochromaffin-like cells leading to carcinoid development, the signaling effects exerted by gastrin on distinct cell types of the gastric mucosa are more nuanced. Indeed, mounting evidence suggests dichotomous roles for gastrin in both promoting and suppressing tumorigenesis. Here, we review the major upstream mediators of gastrin gene regulation, including inflammation secondary to Helicobacter pylori infection and the use of PPIs. We further explore the molecular biology of gastrin in GI malignancies, with particular emphasis on the regulation of gastrin in neuroendocrine neoplasms. Finally, we highlight tissue-specific transcriptional targets as an avenue for targetable therapeutics.

Key words: somatostatin; G-cell; hypergastrinemia; gastrinoma; MEN1; neuroendocrine tumor; GEP-NET; Helicobacter pylori

Discovery and Controversy

The earliest concept of a hormonal axis in the regulation of digestive physiology was borne from a series of experiments conducted in 1902 by English physiologists William Bayliss and Ernest Starling. Prior to their introduction, the prevailing doctrine on gastrointestinal (GI) secretory function was firmly established by Ivan Pavlov’s 1897 publication The Work of the Digestive Glands. In direct opposition to Pavlov’s assertion of a local nerve-centric mechanism in regulating the digestive response, Bayliss and Starling presented clear evidence of a circulating hormonal messenger (ie, secretin) that stimulated pancreatic secretory activity. Shortly thereafter, a series of seminal studies led by John Edkins elucidated an analogous mechanism in the stomach and contributed to the pivotal discovery of the acid-stimulating hormone known as gastrin. Edkins’s studies centered on venous injection of gastric mucous membrane extracts into anesthetized cats and subsequent evaluation of fluctuations in gastric acid secretion. In these experiments, Edkins noted that cats injected with pyloric extracts produced markedly elevated levels of gastric acid and pepsin compared to those injected with extracts prepared from the fundic mucosa. In his 1905 manuscript entitled On the Chemical Mechanism of Gastric Acid Secretion, Edkins communicated his observations and posited that an excitatory paracrine factor secreted by antral mucosal cells, which he termed gastrin, was responsible for activating secretory cells of the stomach during digestion. However, Edkins’s claims were largely dismissed in favor of accruing evidence that supported a histamine-centric humoral mechanism for gastric motility and secretion that emerged from its discovery in 1910. For the remainder of his career, Edkins’s theory on gastrin remained the target of substantial scrutiny from the scientific establishment. Consequently, a pro-secretory role for gastrin only began to emerge after his death in 1940.

In 1938, Simon Komarov, a research assistant working under Boris Babkin at McGill University, successfully isolated an active preparation of gastrin from pyloric mucosa. In 1942,
Komarov published his work showing that the histamine-free concentrate could indeed stimulate acid secretion, thereby validating Edkin’s initial report released nearly four decades prior. On the heels of this discovery, Roderic Gregory and Hilda Tracy further developed Komarov’s early isolation techniques and identified a pair of heptadecapeptides, subsequently defined as gastrin I and II. Processing hundreds of porcine antra per week, Gregory and Tracy generated industrial volumes of the peptide and enlisted chemist George Kenner to perform the sequencing. As a result of these efforts, gastrin became the first GI peptide to have its complete molecular structure elucidated, thus laying the groundwork for further investigation into gastrin analogues and therapeutic antagonists.

Gastrin Synthesis and Physiological Signaling

Gastrin is released by antpyloric G-cells in response to vagal, luminal, and hormonal stimuli. Central efferent vagal fibers permeating the gastric myenteric plexus stimulate the release of gastrin-releasing peptide (GRP) and vasoactive peptide (VIP) from neurons that innervate antpyloric G-cells. Mechanical distention from food ingestion stimulates vagal nerves, whereas the presence of digested peptides and amino acids in the lumen directly stimulate GRP-containing neurons. Additionally, peripheral mechanisms mediating gastrin release depend on the suppression of inhibitory signals, including somatostatin. D-cells within the pyloric antrum release somatostatin upon vagal and luminal stimulation following fasting and gastric acidification (pH < 3.0). Somatostatin inhibits gastrin in a paracrine fashion by binding to the transmembrane somatostatin 2 receptor (SSTR2), a G-protein coupled receptor expressed on neighboring antral G-cells. Conversely, meal ingestion inhibits somatostatin secretion via chemosensory signaling pathways mediated by acetylcholine release. While D-cells open to the lumen exist predominantly in the antrum, a smaller subpopulation of “closed” oxyntic D-cells exists in the corpus. Unlike their antral counterparts, these “closed” oxyntic D-cells lack luminal access, and thus respond exclusively to vagal stimulation and locally produced hormones, including GRP, CCK, and secretin.

Gastrin primarily mediates its effects by binding to the cholecystokinin B (CCKB) receptor expressed on parietal cells and enterochromaffin-like (ECL) cells of the stomach. Activation of the G-protein coupled receptor generally stimulates phospholipase C and downstream calcium mobilization through protein kinase C activity. CCKB receptor-mediated activation of parietal cells directly stimulates the release of H+ ions through upregulation of H+/K+ -ATPase. In contrast, gastrin-mediated activation of oxyntic ECL cells indirectly potentiates gastric acid secretion by releasing histamine, which in turn stimulates parietal cell acid secretion.

Gastrin As a Growth Factor

Gastrin has long been characterized as a trophic factor in both normal GI epithelial development and during neoplastic transformation. Indeed, gastrin is known to activate multiple mitogenic signal transduction pathways, including those mediated by the epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), and MAPK activity. Prolonged hypergastrinemia resulting from dysregulated negative feedback mechanisms is associated with hyperplasia of the oxyntic mucosa. Disruption of acid-mediated gastrin inhibition leads to atrophic gastritis, sustained induction of gastrin gene expression, and expansion of ECL and parietal cell populations. Zollinger–Ellison syndrome occurs secondary to tumor-mediated hypergastrinemia in the absence of parietal cell atrophy. The resulting Type II carcinoids develop in response to gastrin stimulating proliferation of the ECL cells. Hypergastrinemia may also result from autoimmune gastritis, a chronic inflammatory syndrome in which autologous antibodies target and destroy the parietal cell (atrophic gastritis). These events preface the appearance of chronic achlorhydia and increased production of gastrin by antpyloric G-cells. Foveolar epithelial cell proliferation within the gastric pit coincides with a marked loss of parietal cells and reduced acid secretion (gastric atrophy), further potentiating gastrin gene expression. Subsequent gastrin-induced hyperplasia of ECL cells due to gastric atrophy supports the emergence of Type 1 gastric carcinoids that constitute a majority of gastrin-dependent tumors.

Gastrin in Gastric Stem Cell Differentiation

Hyperplastic lesions of the oxyntic mucosa exhibit low Ki-67 immunoreactivity, suggesting that gastrin-mediated mitogenic signaling favors underlying changes to stem cell differentiation in otherwise terminally differentiated parietal and ECL cell populations. In support of this, Wang and colleagues reported a role for gastrin in activating a population of CCKBR+ progenitor cells located in the proliferative isthmus of the gastric glands. Intriguingly, activation of CCKBR by amidated gastrin stimulates expansion of the stem cell pool in the gastric cardia and proximal corpus, while amidated gastrin exerts an inhibitory effect on CCKBR+ stem cells of the antrum. The distinct actions of gastrin on progenitor cells of the corpus and antrum correlate with the development of proximal gastric tumors and oxyntic hyperplasia. By contrast, gastrin-deficient mice exhibit a greater propensity for antral carcinogenesis. These dichotomous effects may, in part, be explained by the selective responsiveness of antral CCKBR+ stem cells to progastin and insensitivity to pro-proliferative signaling effects mediated by amidated gastrin.

There remains a general consensus that ECL cell hyperplasia in the corpus arises from proliferation of the existing resident enteroendocrine cell (EEC) population as a direct result of elevated gastrin signaling. However, more recent evidence points to an alternative cellular target upstream of an expanding ECL cell pool. In these studies, mice receiving gastrin infusion or the proton pump inhibitor (PPI) omeprazole exhibited increased Ki-67 labeling of CCKBR+ progenitor cells near the gastric isthmus. These cells lacked any apparent expression of the ECL cell marker histidine decarboxylase. Subsequent lineage-tracing studies confirmed that CCKBR marks a short-lived population of immature ECL and parietal cells, which expand in response to hypergastrinemia and serve as a reservoir for mature ECL cells with reduced proliferative potential.

The Sonic hedgehog (Shh) signaling pathway has more recently emerged as a player in gastric cancer progression, with mounting evidence of aberrant Shh signaling during Helicobacter pylori-mediated inflammation and tumorigenesis. Shh is expressed in all major cell lineages of the corpus and is required for maintaining the gastric mucosa by controlling epithelial cell proliferation and apoptosis. Gastric atrophy accompanied by H. pylori infection coincides with the loss of Shh expression in parietal cells. Further, parietal cell-specific deletion of Shh stimulates hypergastrinemia and hyperplasia of surface mucous cells in transgenic mice. In the healthy adult

FUNCTION, 2021, Vol. 3, no. 1
stomach, gastrin regulates Pepsin A-mediated proteolytic processing of Shh peptide into its active form through its ability to induce gastric acid. However, Shh processing was inhibited in the hypochlorhydric stomach due to parietal cell atrophy that precedes gastric cancer. Furthermore, a direct role for gastrin in regulating gastric epithelial architecture is supported by evidence of gastrin-mediated induction of Indian hedgehog (Ihh) expression and surface epithelial proliferation in the gastric mucosa of mice lacking parietal cell-specific Shh expression. Collectively, these studies expand on a potential Hedgehog-dependent mechanism for gastrin-mediated proliferation of the gastric epithelium, creating an environment supportive of neoplastic development.

Chronic infection with H. pylori and widespread usage of proton pump inhibitors (PPIs) have been extensively studied as a cause of hypergastrinemia secondary to atrrophic gastritis. H. pylori infection is associated with a 9-fold increase in gastric cancer risk, particularly in the distal stomach. In recent years, Western nations have seen a dramatic shift in the location of gastric adenocarcinoma from the distal antrum to the proximal stomach. Tumors arising in the proximal stomach tend to be poorly differentiated, implicating deregulation of mitogenic signaling and stem cell differentiation pathways that support normal gastric cell specification. PPI-induced hypergastrinemia use has been speculated to play a potential role in this epidemiological shift. Indeed, studies in mice suggest a growth-promoting role for gastrin that synergizes with other cofactors or mutant phenotypes. Furthermore, recent independent and large-scale population studies suggest a link between PPI use and elevated gastric cancer risk.

Mechanisms of Gastrin Signaling in Adenocarcinoma

The gastric epithelium undergoes constant renewal that requires the integration of intrinsic and non-cell autonomous regulatory cues to maintain homeostasis. Thus, perturbations of normal growth patterns and programmed cell death machinery may contribute to neoplastic transformation. In addition to its role in stimulating gastric stem cell activation and epithelial proliferation, gastrin exerts both antiapoptotic and mitogenic signaling in various GI malignancies. These effects are largely mediated through activation of CCKBR, known to be upregulated in human gastric neuroendocrine neoplasms and gastric, pancreatic, and colorectal adenocarcinomas. Gastrin exerts a direct trophic effect on gastric cancer cells in vitro and stimulates the growth of human colorectal and gastric cancer xenografts through a CCKBR-dependent mechanism. Moreover, gastrin stimulates downstream pro-proliferative pathways, including those mediated by β-catenin/cyclin D1 and the EGF receptor. In the latter mechanism, gastrin-mediated activation of CCKBR transactivates EGFR via PKC signaling, and these events converge on the heparin-binding (HB)-EGF promoter through a gastrin-responsive cis-acting regulatory element to stimulate cell proliferation.
An antiapoptotic role for gastrin has been demonstrated across multiple studies employing in vitro and in vivo models of tumorigenesis. Genome-wide microarray analysis of a rat pancreatic adenocarcinoma cell line revealed significant induction of pro-survival genes following sustained treatment with gastrin, and these events coincide with a PKC-dependent reduction in caspase-mediated apoptosis.64 Consistent with this report, elevated expression of the pro-survival protein cluster has been observed in rodent models of hypergastrinemia as well as in human biopsies of gastric adenocarcinoma and carcinoids.65,66 Moreover, gastrin-induced cluster expression was reported to exert a cyto-protective effect by driving resistance to starvation and chemotherapy-induced cell death.65 Concomitantly, gastrin was reported to modulate the activity of the antiapoptotic BCL-2 signaling pathway and stimulate cell proliferation by upregulating the expression of MCL-1,67 BCL-2, and BAK.68,69 For example, gastric biopsies from 10 patients with gastric carcinoids and hypergastrinemia showed positive immunoreactivity for MCL-1 and this correlated with low expression of the apoptotic marker cleaved caspase-3 in regions of ECL cell hyperplasia.67

While these studies support a role for gastrin in modulating cytoprotective pathways leading to proliferation and resistance to chemical stress, the mechanisms that regulate gastrin gene expression in response to these conditions remain poorly defined. To address this, Westwood and colleagues demonstrated a context-specific role for HIF1α in regulating gastrin expression under conditions of hypoxia. Here, HIF1α binds the gastrin promoter to induce gastrin gene expression, leading to enhanced resistance to hypoxia-induced apoptosis.70 Interestingly, Wang and colleagues identified opposing effects of gastrin on various gastric cell types leading to cell proliferation or alternatively, apoptosis.71,72 Using the INS-GAS mouse model, the authors demonstrated a cytotoxic role for gastrin in stimulating apoptosis of parietal cells, extraglandular stromal cells, and infiltrating immune cells. These events were concomitant with high cellular turnover and an increased density of gastric pit cells preceding carcinogenesis.72

Gastrin During H. pylori Infection

In 1989, Calam and colleagues introduced the “gastrin link hypothesis” and suggested that hypergastrinemia resulting from *H. pylori* infection directly supports ulcerations in the duodenum.73 This concept was further refined to elucidate two distinct pathophysiological outcomes resulting from *H. pylori* infection in the stomach. Generally, patients infected with *H. pylori* exhibit 2–3-fold higher fasting gastrin levels and elimination of the infection has been shown to restore basal gastrin expression.73–76 These events are primarily supported by a reduction in CCK and D-cell-mediated release of somatostatin, thus resulting in impaired normal gastrin inhibitory mechanisms.76

The response of the oxyntic mucosa to elevated gastrin levels operates as a defining feature in determining the pathophysiological outcome. Hypergastrinemia resulting from antral-dominant gastritis stimulates the proliferation of parietal cells and enhances acid secretion. This creates an ulcer-prone environment in which the pH neutralization processes in the duodenum are overwhelmed.77 In contrast, non-ulcer patients presenting with corpus-dominant or pangastritis exhibit reduced oxyntic sensitivity to gastrin (2-fold reduction), likely as a result of widespread inflammation in the gastric body.78 As a consequence, *H. pylori* infection results in achlorhydria and promotes atrophic gastritis, bacterial overgrowth, and gastric metaplasia, a microenvironment predisposing to gastric cancer.79–81

Hypergastrinemia underlying *H. pylori* infection has been explored extensively in vitro, beginning with reports of gastrin secretion by canine antral G-cells following direct exposure to *H. pylori*.82,83 Further work demonstrated that the *H. pylori*-elicited cytokines IL-8, IL-1β, and TNFα stimulate canine antral G-cells and human antral biopsy fragments to release gastrin.84,85 Colonization of the gastric antrum by *H. pylori* is known to induce a Th1/Th17 response that coincides with an increase in gastrin secretion and prefaces gastric atrophy and intestinal metaplasia. Mechanistically, IFN-γ, a classical Th1 cytokine, and IL-1β are thought to play a role in this process as both cytokines are upregulated following gastric infection. Translating these observations in vivo has proved challenging, as mice exhibit a corpus-dominant phenotype following infection with Helicobacter sp., while infection in humans tends to be antral-predominant. To address this, an increasing number of mouse models have been generated with tissue-restricted expression of cytokines downstream of infection with Helicobacter sp. such as Helicobacter felis. Using this approach, we recently showed that the downstream signaling effects of specific Helicobacter-elicited cytokines are more nuanced and likely reflect the temporal progression of inflammatory signaling during gastric infection. Whereas, directing IFN-γ expression to the antrum in mice increased gastrin expression and stimulated antral hyperplasia, overexpressing IL-1β resulted in reduced gastrin levels but also coincided with antral hyperplasia. Mechanistically, IFN-γ-mediated induction of gastrin was found to occur through suppression of Gli2, a repressor of gastrin gene expression and mediator of Shh signaling. In contrast, IL-1β induced Gli2 expression and suppressed gastrin expression through modulation of primary cilia length on gastrin-expressing cells. These observations support a critical role for primary cilia in transducing upstream IL-1β signaling in the regulation of gastrin expression, ultimately leading to loss of endocrine cells types in favor of epithelial hyperplasia. Importantly, these studies highlight opposing effects of Helicobacter-elicited cytokines in regulating gastrin expression (Figure 1).86 It should be noted that primary cilia mediate other GPCR such as SST3,87–91 which might have relevance for understanding somatostatin inhibition of the G-cell.

Additionally, direct mechanisms of *H. pylori*-mediated gastrin regulation have also been proposed, with conflicting evidence to support a role for the *H. pylori* virulence factor cytotoxin-associated protein A (CagA) in regulation of the gastrin promoter. In human gastric cancer cells, infection with *H. pylori/CagA* induces gastrin mRNA through a MEK/ERK and JAK-dependent mechanism.90,91 However, previous studies by our group show that the CagA element is dispensable for gastrin gene activation.92 Interestingly, CagA+ *H. pylori* infection has also been reported to exert epigenetic regulation of the gastrin promoter through a genome-wide decrease in methylation at CpG sites.93 Expanding our understanding of *H. pylori*-induced hypergastrinemia has revealed a synergistic relationship that may contribute to the development of gastric metaplasia and predisposition to cancer.94

Regulation of Gastrin Gene Expression

G-cell extrinsic regulatory cues that modulate gastrin gene expression include paracrine regulation by D-cells and stimulatory ligands that are produced locally or during bacterial
Gastrinomas

In contrast to overall declining cancer incidence rates, GEP-NETs have seen a 6-fold upsurge in incidence since the 1970s. Similarly, the prevalence of GEP-NETs continues to climb, placing these malignancies among the most prevalent digestive cancers in the United States. GEP-NETs are physiologically complex neoplasms and include gastric carcinoids, gastrinomas, and pancreatic neuroendocrine tumors. In recent years, a substantial effort to characterize the signaling mechanisms that underlie these malignancies has shed light on their unique origins, mutational signatures, and clinical features.

The Tumor Suppressor Protein Menin in Gastrinoma Pathogenesis

GEP-NETs are commonly associated with sporadic and inherited mutations in the Multiple Endocrine Neoplasia type I (MEN1) gene. Consistent with Knudson’s “two-hit” hypothesis, the autosomal dominant condition is characterized by an acquired germline mutation in one MEN1 allele, followed by loss of the second allele within the tumor by deletion (loss of heterozygosity) or inactivating point mutations. Patients presenting with the MEN1 syndrome experience a higher risk for developing multiple endocrine tumors in the pancreas, pituitary, and upper GI tract. In addition, patients carrying a MEN1 mutation are predisposed to developing GI NETs that produce excess levels of gastrin. Such MEN1-associated gastrinomas preferentially develop in the submucosa of the duodenum, are small (<1 cm), multiple, and metastatic.

Inactivation of MEN1 as a result of frameshift, missense, and nonsense mutations causes loss of the tumor suppressor protein menin. Menin is a highly conserved and ubiquitously expressed nuclear scaffold protein that complexes with multiple transcription factors to regulate downstream target gene expression. Known transcriptional binding partners include the Mixed Lineage Leukemia proteins (MLL1 and MLL2), AP-1 transcription factor JunD among others. In endocrine cells, menin represses transcriptional activation of various gene targets involved in supporting cell growth and proliferation, including gastrin. For instance, menin-mediated interaction with JunD represses its function as a transactivator of gastrin gene expression. Therefore, loss of nuclear menin function in gastrin-expressing G cells is thought to be an essential event underlying the formation of MEN1 gastrinomas.

Despite the identification of over 1200 germline modifications, MEN1 mutations do not correlate with specific phenotypes. MEN1 mutations appear to be scattered throughout the gene locus and lack any apparent mutational hotspots. Moreover, individuals within the same family that carry identical mutations may exhibit disparate phenotypes. The most common MEN1 mutations are frameshift deletions or insertions (41%), followed by nonsense mutations (23%), missense mutations (20%), splice-site mutations (9%), in-frame deletions or insertions (6%), and whole or partial gene deletions (1%). Nevertheless, most of these mutation studies were performed in non-GEP-NETs. Therefore, the diversity among MEN1 mutations in tissue location and phenotype has precluded the full characterization of MEN1 mutations in GEP-NETs. Intriguingly, the majority of MEN1 gastrinomas originate from hyperplastic G cells that retain a functional MEN1 allele. This observation suggests the possibility of alternative mechanisms resulting in loss of menin function independent of MEN1 gene inactivation.

infection. While gastric acidity is a known stimulus for gastrin release, fluctuations in pH indirectly regulate gastrin gene expression through activation of D-cell-mediated release of somatostatin. Other factors known to regulate secretion but not expression of gastrin include the peptides GRP and bombesin. Early studies intended for screening gastrin regulatory factors identified epidermal growth factor (EGF) receptor ligands as direct modulators of gastrin gene expression in both human and rat endocrine tumor cell lines. Subsequently, a 16 bp GC-rich EGF response element (gERE) was mapped to the human gastrin promoter and Sp1 was subsequently shown to bind this element. A physiological role for the gERE is further supported by the presence of EGF receptor ligands in the stomach, produced locally either through a parietal cell-mediated response to hypergastrinemia, or via the immune compartment during acute and chronic inflammation.

Several DNA regulatory elements have been mapped to the gastrin promoter and include both tissue-specific and inducible elements. Tissue-specific regulatory elements, specifically a homeodomain, CACC, and gastrin negative element were mapped to 450 bp of the human gastrin promoter and the first exon. In contrast, inducible and basal regulation of gastrin gene expression by EGF, CAMP, and inflammatory cytokines are thought to require only the first 240 bp of the gastrin promoter. In addition to the gERE, Sp1 was observed to bind the CACC element, as well as to another GC-rich element upstream of the gERE to regulate gastrin gene expression. The transcriptional function of Sp1 is opposed by the recruitment of SEB-89, a Kruppel-type four zinc finger transcription factor that also binds to the gERE and acts to repress gastrin expression. Additional signaling factors and pathways have been reported to synergize and converge on Sp1 binding to the gastrin promoter. For instance, constitutive activation of the Ras-Erk pathway, such as that observed in K-ras-mutated colon cancers, induces phosphorylation of Sp1 and enhances its binding affinity to the human gastrin promoter. Interaction of Sp1 with AP-1 transcription factor family members at the proximal gastrin promoter has also been reported. In chromatin immunoprecipitation studies, Sp1 and JunD were shown to cooperate at the Sp1 and gERE binding sites and drive gastrin transactivation. Notably, JunD was also observed to bind a non-consensus AP-1 site within the proximal promoter, suggesting direct regulation of gastrin by JunD independent of Sp1 binding.

These findings provide a link between the emergence of MEN1 gastrinomas and the role of the tumor suppressor protein menin in regulating gastrin gene expression. Loss of menin, either in the context of the MEN1 syndrome or resulting from sporadic mutations within the MEN1 locus, is associated with the development of gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Previous work by our group has identified a role for menin in repressing gastrin gene expression by disrupting the association of JunD and Sp1 with their respective regulatory promoter elements.

Other transcriptional regulators of gastrin include the zinc finger transcription factor GLI2. Hedgehog (Hh) signaling renders GLI2 transcriptionally active in the nucleus, where it has been shown to bind the gastrin promoter and regulate downstream gene expression. Constitutive activation of GLI2 in the gastric epithelium was shown to suppress gastrin expression and promote antral cell proliferation leading to hyperplasia. These observations suggest a critical role for the hedgehog signaling pathway in mediating feedback regulation of gastric acid secretion and may potentially explain the discordant effects of gastrin in the corpus and antrum.
For example, studies of MEN1 gastrinomas have identified mutations in the MEN1 locus leading to aberrant nuclear translocation of menin as well as accelerated protein degradation.128–130

In vivo models of GEP-NET pathogenesis are historically lacking, in part due to tissue heterogeneity from which neoplasms arise, and the absence of known driver mutations preceding malignancy.113 Nevertheless, the 21st century has seen an expansion in the number of transgenic mouse models aimed at clarifying the role of MEN1 and other putative drivers in GEP-NET emergence.132–134 Francis Collin’s group at the National Human Genome Research Institute was among the first to recapitulate the human MEN1 syndrome through homologous recombination of the Men1 locus. Homozygous deletion of Men1 in murine embryonic stem cells results in embryonic lethality, whereas heterozygous inactivation coincides with multiple clinical features of the human MEN1 syndrome. Notably, while heterozygous mice develop endocrine tumors of the pancreatic islets and pituitary similar to those observed in patients, no gastrinomas were reported in this model.135 Subsequent mouse models generated by our group addressed the absence of any apparent gastric phenotype by conditionally deleting Men1 from the GI tract epithelium. Expressing Cre recombinase from the villin promoter deleted the Men1 locus in intestinal epithelial cells (Men1 ΔIEC) and resulted in antral G-cell hyperplasia and hypergastrinemia.108 Removal of the somatostatin-mediated feedback regulation by breeding the Men1 ΔIEC mice onto a somatostatin null background (Men1 ΔIEC; Sat−/−) led to significant hypergastrinemia and the development of gastric carcinoids.136 These events were accelerated following systemic gastric acid suppression using the PPI omeprazole. A total of 6 mo of omeprazole treatment was sufficient to synergistically stimulate the development of G-cell hyperplasia in the proximal duodenum of Men1 ΔIEC; Sat−/− mice.109 Collectively, these studies confirmed the ability of menin to suppress gastrin.

Molecular Heterogeneity of GEP-NETS

Understanding the mutational profile of GEP-NETS is essential to uncovering key driver mutations that can be therapeutically targeted. Previously, 48 small intestinal neuroendocrine neoplasms consisting mainly of carcinoids were analyzed by whole exome sequencing (WES).337 While a mutation in the cell-cycle inhibitor CDKN1B was found in a small population of tumors (8%), no common somatic mutations were shared amongst other GEP-NETS. Consistent with other reports, small intestinal neuroendocrine neoplasms (SI-NENs) such as ileal carcinoids, which arise from serotonin-secreting enterochromaffin cells, present with limited somatic driver mutations and are considered amongst the most genetically stable cancers.131,137,138 Thus, more promising avenues toward precision medicine may lie in targeting genomic instability and aberrant methylation phenomena. Indeed, both hypermethylation of select genomic loci129 and increased frequency of chromosomal losses (eg at the terminal end of chromosome 18q) have been observed in SI-NENs.140,141

In contrast to SI-NENs, large-scale molecular profiling identified recurrent spontaneous mutations in pancreatic neuroendocrine tumors (PNETs). For instance, WES analysis of 98 PNETs showed recurrent somatic mutations in MEN1 (44%), alpha thalassemia/mental retardation syndrome X-linked (ATRX; 18%) and death domain-associated protein (DAXX; 25%).142 Inactivating mutations in ATRX and DAXX are associated with altered telomeres,143 chromosomal instability, and reduced survival in patients with PNETs.144 In addition, the presence of chromosomal instability is well-established in PNETs.145,146 For example, 40% of patients with PNETs have deletions in the 16p chromosome region,147 and loss of TSC2 at this site is implicated in deregulation of the PI3K/AKT/mTOR pathway.138 Furthermore, the methylation profile of PNETs differs from that of SI-NENs, suggesting fundamental differences in pathogenesis.139 Indeed conditional deletion of Men1 and Pten, the inhibitor of the PI3K/AKT/mTOR pathway, induces both pancreatic and pituitary neuroendocrine tumors and confirms cooperation between the two loci.148

To identify transcriptional targets unique to duodenal gastrinomas (DGASTs), we recently reported on a genome-wide analysis of surgically resected DGASTs and PNETs. In these studies, RNA-sequencing revealed an enrichment of IL-17 and TNFα signaling pathways in DGASTs, however digital spatial profiling of tumors and the adjacent Brunner’s glands confirmed a scarcity of immune cells within the tumor. Immunofluorescent analysis indicated strong immunoreactivity of tumor cells, Brunner’s glands, and the tumor stroma for both cytokines and downstream pSTAT3 activation.149 Both IL-17 and TNFα are known to activate downstream targets through NF-κB and pSTAT3 signaling pathways. Furthermore, previous studies have shown that STAT3 binds the SYP promoter, suggesting a direct mechanism for cytokine-induced neuroendocrine reprogramming.150–152 In support of this, treatment of normal human duodenal organoids with TNFα stimulated NF-κB and pSTAT3 activation and these events coincided with increased expression of neuroendocrine transcripts SYP, CHGA, and the gastrin-specific factor NNX6.3.149,153,154 Cytokine-mediated regulation of NNX6.3 is underscored by in silico analysis identifying an NF-κB binding site in the 5′ UTR of the NNX6.3 promoter. Taken together, these observations suggest a role for inflammatory cytokines in potential reprogramming of the Brunner’s glands in favor of neuroendocrine differentiation and tumorigenesis (Figure 2).

Pancreatic and DGASTs: Differing Cellular Origins?

Accruing evidence suggests diverging mechanisms of pathogenesis in gastrinomas arising from the duodenum and pancreas. It was previously reported that patients with Zollinger–Ellison syndrome and MEN1-related DGASTs had proliferative and hyperplastic gastrin cells in the nontumorous duodenum (ie mucosal crypts and Brunner’s glands). In contrast, no proliferative gastrin cell lesions were identified in patients with sporadic non-MEN1-based gastrinomas.116 Unlike the duodenal neuroendocrine tumors, hyperplastic G-cells did not exhibit LOH of the MEN1 locus, thus implicating them as potential precursor lesions to DGASTs.155 However, the genetic and environmental stimuli that induce the transition of hyperplastic gastrin cells into tumors remains to be elucidated.

Generation of Men1 ΔIEC; Sat−/− mice led to the first report of a genetically engineered mouse model to display gastric carcinoids.136 Introduction of PPI-mediated gastric acid suppression in these mice resulted in the emergence of hyperplastic gastrin-expressing cells within the lamina propria of the duodenum. Intriguingly, these gastrin-positive cells were not of epithelial, neuronal, or smooth muscle origin. Rather, the gastrin positive cells were found to express markers of mucosal enteric glial cells (EGCs). Moreover, gastrin expression by EGCs required a loss of menin.109 In the enteric nervous system, EGCs constitute a significant cell population found in the enteric ganglia between the smooth muscle layers and within the lamina
Figure 2. Proposed model of cytokine–elicited epithelial reprogramming events that precede gastrinoma development in the duodenum. Duodenal gastrinomas (DGAST) arise within the Brunner’s glands of the proximal duodenum, raising the likelihood that this hormone producing tumor arises from a reprogrammed cell and does not arise directly from enteroendocrine cells. Here, we propose that stromal-derived inflammatory cytokines, such as TNFα or IL-17, activate STAT3 phosphorylation and NFκB signaling pathways that reprogram the Brunner’s glands toward a neuroendocrine phenotype. STAT3 and NFκB signaling induce transcription factor NKX6.3, a homeobox transcription factor required for gastrin gene expression and master regulator of gastric differentiation. Figure created with Biorender.com and adapted from Rico et al. (2021), BMJ Open Gastroenterology.

Propria. EGCs express the same markers as astrocytes in the CNS, such as Glial Fibrillary Acidic Protein (GFAP), p75NTR, and S100B protein. Additionally, EGCs express Sry-related HMG-Box gene 8 (SOX8), SOX9, and SOX10, all of which are expressed in multipotent progenitor cells of the enteric nervous system. The selective expression of various neuronal markers further defines EGC subpopulations. Recent application of a single-cell sequencing approach identified an EGC transcriptome signature consisting of Sox10, Erb-B2 receptor tyrosine kinase 3 (Erbb3), Fatty acid binding protein 8 (Fabpp), and Proteolipid protein 1 (Plp1).

As EGCs of Men1/DeltaIEC:Sst–/– mice express gastrin, Sundaresan et al. used immunohistochemistry staining to examine whether human DGASTs also exhibit these markers. Surprisingly, human DGASTs (4/5) and lymph node gastrinomas (2/2) stained for EGC markers while pancreatic gastrinomas (5/6) did not, raising the possibility of diverging cellular origins for duodenal and pancreatic gastrinomas. Indeed, DGASTs present with unique clinicopathologic features, eg, they are multiple, small (< 1 cm), and are more likely to metastasize to the lymph nodes. Since DGASTs express EGC markers, it remains plausible that hyperplastic G-cell lesions may differentiate from neural crest cells rather than from endoderm-derived epithelial cells, eg, EECs, as previously suggested.

EECs comprise approximately 1% of intestinal mucosal cells and function as mediators of paracrine and distant cell-to-cell communication. EECs express a variety of neuronal protein markers, in addition to neurotrophin receptors including the glial-derived neurotrophic factor (GDNF) receptor. Neuroendocrine cells are broadly identified by the secretion of Chromogranin A (CgA) or Chromogranin B (CgB), two key proteins that modulate neuroendocrine secretory function. Synaptophysin, a component of the presynaptic vesicle membrane, and the neural cell adhesion molecule CD56 (NCAM) are also signature proteins expressed by EECs. Furthermore, EECs represent a unique class of cells as they respond to both hormonal and neuronal signals.

As EECs exhibit both neuronal and endocrine markers, there remains some controversy as to whether neuroendocrine cells develop from the endoderm or neural crest. Lineage tracing experiments using the Lgr5+ CreERT2 transgene and the Rosa26R-LacZ reporter demonstrate that all epithelial cells, including neuroendocrine cells of the intestinal mucosa, originate from Lgr5+ pluripotent stem cells. Previous embryologic studies using chick-quail chimeras confirmed that ganglion cells of the submucosa and myenteric plexus of the GI tract express neural crest markers, while mucosal EECs did not. The absence of neural crest markers in EECs suggested that GI neuroendocrine cells originated from the endoderm and, therefore, the epithelium. While substantial evidence suggests that neuroendocrine cells in the GI tract develop from the endoderm, it remains unknown whether neural crest cells can undergo context-specific modification, eg, acquired mutations in MEN1, and give rise to neuroendocrine cells with hormone-secreting capabilities. Hopefully, applying newer approaches of molecular profiling to GEP-NETs will illuminate our understanding of these heterogeneous tumors, which invariably depend on cell location and cell type.

Summary

The mitogenic actions of gastrin on ECL cells have long been established, however, more recent evidence suggests additional roles for gastrin signaling in activation of other cell types.
Among these, gastrin has been reported to activate progenitor cells residing in the gastric isthmus of the proximal and distal stomach, leading to increased proliferation or asymmetric cell division. Further investigation into the cellular targets of gastrin signaling is needed to inform the potential effects of hypergastrinemia secondary to PPI use and infection by H. pylori. Pathological levels of circulating gastrin are perhaps best studied in the context of gastrin-producing GEP-NETs. GEP-NETs represent diverse neoplasms that vary in location, mutational profile, and response to therapy. The nonstochastic occurrence and invasive characteristics of these neoplasms suggest reprogramming of resident differentiated cell populations by the unique tissue microenvironment where GEP-NETs originate. For instance, up to 60% of DGASTs develop within mucous-producing Brunner’s glands located in the proximal duodenum. Importantly, Brunner’s glands provide a rich source of pro-proliferative growth factors, including EGFR ligands, and thus, may potentiate neoplastic transformation and pro-tumorigenic signaling within the duodenal microenvironment. Taken together, this knowledge suggests fundamental differences in the cellular origin and etiology of DGASTs compared to NETs arising from other tissues. In support of this, recent evidence presented by our group challenges the long-standing belief that hyperplastic gastrin-producing cells within the proximal duodenum originate from epithelial-derived EGCs. In these transgenic mouse studies, neural crest-derived EGCs were implicated as potential cellular precursors to MEN1-related gastrinomas, thus shifting the current paradigm on the cellular origin of these cancers.

Funding

This work has been supported by the Public Health Service Grant: R01 DK45729-27 to JLM.

Conflict of Interest Statement

JLM holds the position of Editorial Board Member for Function and is blinded from reviewing or making decisions on the manuscript. SD and KR have no conflicts to disclose.

References

1. Pavlov IP. The Work of the Digestive Glands. Griffin; London, UK: Trans. by, W.H. Thompson. 1902.
2. Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol 1902;28(5):325–353. 10.1113/jphysiol.1902.sp000920 10.1113/jphysiol.1902.sp000920
3. Edkins J. The chemical mechanism of gastrin secretion. J Physiol 1906;34(1-2):133-144.10.1113/jphysiol.1906.sp001146
4. Dale HH, Laidlaw PP. The physiological action of beta-iminazolylethylamine. J Physiol 1910;41(5):318-344.10.1113/jphysiol.1910.sp001406
5. Modlin IM, Kidd M, Marks IN, et al. The pivotal role of John S. Edkins in the discovery of gastrin. World J Surg 1997;21(2):226–234.10.1007/s002689900221
6. Komarov SA. Gastrin. Exp Biol Med 1988;38(4):514-516.10.3181/00379727-38-9916P
7. Gregory RA, Tracy HJ. The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 1964;5(2):103–107.10.1136/gut.5.2.103
8. Berthoud HR. Morphological analysis of vagal input to gastrin releasing peptide and vasoactive intestinal peptide containing neurons in the rat glandular stomach. J Comp Neurol 1996;370(1):61–70.10.1002/(SICI)1096-9861(19960617)370:1<61::AID-CNNE<3.0.CO;2-J
9. Richardson CT, Walsh JH, Hicks MI, Fordtran JS. Studies on the mechanisms of food-stimulated gastric acid secretion in normal human subjects. J Clin Invest 1976;58(3):623-631.10.1172/JCI108509
10. Schubert ML, Jong MJ, Makhlof GM. Bombesin/GRP-stimulated somatostatin secretion is mediated by gastrin in the antrum and intrinsic neurons in the fundus. Am J Physiol 1991;261(5 Pt 1):G885–G889.
11. Uvnäs-Wallensten K, Efendic S, Johansson C, Sjödin L, Cranwell PD. Effect of intraluminal pH on the release of somatostatin and gastrin into antral, bulbar and ileal pouches of conscious dogs. Acta Physiol Scand 1980;110(4):391–400.10.1111/j.1748-1716.1980.tb06686.x
12. Holst JJ, Skak-Nielsen T, Orskov C, Seier-Poulsen S. Vagal control of the release of somatostatin, vasoactive intestinal polypeptide, gastrin-releasing peptide, and HCl from porcine non-antral stomach. Scand J Gastroenterol 1992;27(8):677–685.10.3109/00365529209000139
13. Tsunoda Y, Takeda H, Otaki T, Asaka M, Nakagaki I, Sasaki S. Intracellular Ca2+ shift and signal transduction from the tubulovesicular portion of gastric parietal cells during gastrin stimulation or Ca2+ ionophore treatment: comparison between luminescent and fluorescent probes, and electron probe X-ray microanalyzer. Biochem Biophys Acta 1988;664(2):279-287.10.1139/o88-037
14. Urushidani T, Muto Y, Nagao T, Yao X, Forte JG. ME-3407, a new antulcer agent, inhibits acid secretion by interfering with redistribution of H(+)-K(+)-ATPase. Am J Physiol 1997;272(5 Pt 1):G1122–G1134.
15. Waldum H, Sandvik AK, Syversen U, Brenna E. The enterochromaffin-like (ECL) cell. Physiological and pathophysiological role. Acta Oncol (Madr) 1993;32(2):141–147.10.1111/j.1748-1716.1980.tb06686.x
16. Majumdar AP. Role of tyrosine kinases in gastrin induction of ornithine decarboxylase in colon mucosa. Am J Physiol 1990;259(4 Pt 1):G626–G630.
17. Ferrand A, Bertrand C, Portolan G, et al. Signaling pathways associated with colon mucosa hyperpolarization in mice overexpressing gastrin precursors. Cancer Res 2005;65(7):2770–2777.10.1158/0008-5472.CAN-04-0978
18. Stepan VM, Dickinson CJ, del Valle J, Matsushima M, Todisco A. Cell type-specific requirement of the MAPK pathway for the growth factor action of gastrin. Am J Physiol 1999;276(6):G1363–G1372.
19. Todisco A, Takeuchi Y, Urumov A, Yamada T. Molecular mechanisms for the growth factor action of gastrin. Am J Physiol 1997;273(4):G891–G898.
20. Larsson H, Carlsson E, Ryberg B, Fryklund J, Wallmark B. Rat parietal cell function after prolonged inhibition of gastric acid secretion. Am J Physiol 1988;254(1 Pt 1):G33–G39.
21. Crean GP, Hogg DF, Rumsey RD. Hyperplasia of the gastric mucosa produced by duodenal obstruction. Gastroenterology 1969;56(2):193–199.10.1016/S0016-5085(69)80117-4
22. Metz DC. Diagnosis of the Zollinger-Ellison syndrome. Clin Gastroenterol Hepatol 2012;10(2):126–130.10.1111/j.1610-0349.2011.07.012
23. Al-Khafaji B, Noffsinger AE, Miller MA, DeVoe G, stemmermann GN, Fenoglio-Preiser C. Immunohistologic analysis
of gastrointestinal and pulmonary carcinoid tumors. Hum Pathol 1998;29(9):992–999.10.1016/S0046-8177(98)00206-4
24. Scheribl H, Cadiot G, Jensen RT, Rösch T, Stölzel U, Köppel G. Neuroendocrine tumors of the stomach (gastric carcinoids) are on the rise: small tumors, small problems? Endoscopy 2010;42(8):664–671.10.1055/s-0030-1255564
25. Lee Y, Urbanaka AM, Hayakawa Y, et al. Gastrin stimulates a cholecystokinin-2-receptor-expressing cardioid progenitor cell and promotes progression of Barrett’s-like esophagus. Oncotarget 2017;8(1):203–214.10.18632/oncotarget.10667
26. Hayakawa Y, Jin G, Wang H, et al. CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis. Gut 2015;64(4):544–553.10.1136/gutjnl-2014-307190
27. Takaishi S, Tu S, Dubeykovskaya ZA, et al. Gastrin is an essential cofactor for helicobacter-associated gastric corpus carcinogenesis in C57BL/6 mice. Am J Pathol 2009;175(1):365–375.10.2353/apjpath.2009.081165
28. Fossmark R, Rao S, Mjønes P, et al. PAI-1 deficiency increases the trophic effects of hypergastrinemia in the gastric corpus mucosa. Peptides 2016;79:83–94.10.1016/j.peptides.2016.03.016
29. Tomita H, Takaishi S, Menheniott TR, et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology 2011;140(3):879–891.e10.1053/j.gastro.2010.11.037
30. Zavros Y, Eaton KA, Kang W, et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene 2005;24(14):2354–2366.e10.1038/sj.onc.1208407
31. Sheng W, Malagola E, Nienhüser H, et al. Hypergastrinemia expands gastric ECL cells through CCK2R+ progenitor cells via ERK activation. Cell Mol Gastroenterol Hepatobiliary Disease 2020;10(2):434–449.e1.10.1016/j.cjch.2020.04.008
32. Waghrry M, Zavros Y, Saqui-Salces M, et al. Interleukin-1beta promotes gastric atrophy through suppression of Sonic Hedgehog. Gastroenterology 2010;138(2):562–572.e2.10.1053/j.gastro.2009.10.043
33. Zavros Y, Waghrry M, Tessier A, et al. Reduced pepsin A processing of sonic hedgehog in parietal cells precedes gastric atrophy and transformation. J Biol Chem 2007;282(46):33265–33274.10.1074/jbc.M707090200
34. Xiao C, Ogle SA, Schumacher MA, et al. Loss of parietal cell expression of Sonic Hedgehog induces hypergastrinemia and hyperproliferation of surface mucous cells. Gastroenterology 2010;138(2):550–561.e8.10.1053/j.gastro.2009.11.002
35. Feng R, Ahhara E, Kenny S, et al. Indian Hedgehog mediates gastrin-induced proliferation in stomach of adult mice. Gastroenterology 2014;147(3):655–666.e9.10.1053/j.gastro.2014.05.006
36. Miyaji H, Azuma T, Ito S, et al. Helicobacter pylori infection occurs via close contact with infected individuals in early childhood. J Gastroenterol Hepatol 2000;15(3):257–262.10.1046/j.1440-1746.2000.02070.x
37. Kamangar F, Dawsey SM, Blaser MJ, et al. Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Helicobacter pylori seropositivity. J Natl Cancer Inst 2006;98(20):1445–1452.10.1093/jnci/dj393
38. Abdi E, Latif-Navid S, Zahri S, Yazdanbod A, Pourfarzi F. Risk factors predisposing to cardiac gastric adenocarcinoma: insights and new perspectives. Cancer Med 2019;8(13):6114–6126.10.1002/cam4.2497
39. Watson SA, Grabowska AM, El-Zaataari M, Takhar A. Gastrin - active participant or bystander in gastric carcinogenesis? Nat Rev Cancer 2006;6(12):936–946.10.1038/nrc2014
40. Hayakawa Y, Sethi N, Sepulveda AR, Bass AJ, Wang TC. Oesophageal adenocarcinoma and gastric cancer: should we mind the gap?. Nat Rev Cancer 2016;16(5):305–318.10.1038/nrc2016.24
41. Cheung KS, Leung WK. Long-term use of proton-pump inhibitors and risk of gastric cancer: a review of the current evidence. Therap Adv Gastroenterol 2019;12:17562841983451. Published 2019 Mar 11.10.1177/175628419834511
42. Smith JP, Nadella S, Osborne N. Gastrin and gastric cancer. Cell Mol Gastroenterol Hepatobiliary Disease 2017;4(1):75–83. Published 2017 Mar 14.10.1016/j.cjch.2017.03.004
43. Cheung KS, Chan EW, Wong AYS, Chen L, Wong IC, Leung WK. Long-term proton pump inhibitors and risk of gastric cancer development after treatment for Helicobacter pylori: a population-based study. Gut 2018;67(1):28–35.10.1136/gutjnl-2017-314605
44. Brusselselaers N, Wahlin K, Enstrand L, Lagergren J. Maintenance therapy with proton pump inhibitors and risk of gastric cancer: a nationwide population-based cohort study in Sweden. BMJ Open 2017;7(10):e017739. Published 2017 Oct 30.10.1136/bmjopen-2017-017739
45. Seo SI, Park CH, You SC, et al. Association between proton pump inhibitor use and gastric cancer: a population-based cohort study using two different types of nationwide databases in Korea [published online ahead of print, 2021 May 11]. Gut 2021;70(1):2066–2075.
46. Abrahimi D, McDonald EG, Schnitzer ME, Barkun AN, Suissa S, Azoulay L. Proton pump inhibitors and risk of gastric cancer: population-based cohort study [published online ahead of print, 2021 Jul 5]. Gut 2021;gutjnl–2021-325097. doi:10.1136/gutjnl-2021-325097, https://gut.bmj.com/content/early/2021/07/04/gutjnl-2021-325097.
47. Mjønes P, Nordrum IS, Sør dall Ø, et al. Expression of the Cholecystokinin-B receptor in neoplastic gastric cells. Horm Cancer 2018;9(1):40–54.10.1007/s12672-017-0311-8
48. Henwood M, Clarke PA, Smith AM, Watson SA. Expression of gastrin in developing gastric adenocarcinoma. Br J Surg 2002;89(4):564–568.10.1046/j.1096-0868.2001.01716.x
49. McWilliams DF, Watson SA, Crosbee DM, Michaeli D, Seth R. Coexpression of gastrin and gastrin receptors (CCK-B and delta CCK-B) in gastrointestinal tumour cell lines. Gut 1998;42(6):795–798.10.1136/gut.42.6.795
50. Smith JP, Shih AH, Wotring MG, McLaughlin PJ, Zagon IS. Characterization of CCK-B/gastrin-like receptors in human gastric carcinoma. Int J Oncol 1998;12(2):411–419.
51. Goetze JP, Eiland S, Svendsen LB, Vainer B, Hannibal J, Rehfeld JF. Characterization of gastrins and their receptor in solid human gastric adenocarcinomas. Scand J Gastroenterol 2013;48(6):688–695.10.1002/sjgp.2013.783101
52. Goetze JP, Nielsen FC, Burchardt F, Rehfeld JF. Closing the gastrin loop in pancreatic carcinoma: coexpression of gastrin and its receptor in solid human pancreatic adenocarcinomas. Cancer 2000;88(11):2487–2494.10.1002/1097-0142(20000601)88:11<2487::AID-CNCR9>3.0.CO;2-E
53. Smith JP, Liu G, Soundararajan V, McLaughlin PJ, Zagon IS. Identification and characterization of CCK-B/gastrin receptors in human pancreatic cancer cell lines. Am J Physiol 1994;266(1 Pt 2):R277–R283.
54. Smith JP, Rickabaugh CA, McLaughlin PJ, Zagon IS. Cholecystokinin receptors and PACN-1 human pancreatic cancer cells. Am J Physiol 1993;265(1 Pt 1):G149–G155.
55. Hellmich MR, Rui XL, Hellmich HL, Fleming RY, Evers BM, Townsend CM, Jr. Human colorectal cancers express a constitutively active cholecystokinin-B/gastrin receptor that stimulates cell growth. J Biol Chem 2000;275(41):32122–32128.10.1074/jbc.M005574200

56. Schmitz F, Otte JM, Stechele HU, et al. CCK-B/gastrin receptors in human colorectal cancer. Eur J Clin Invest 2001;31(9):812–820.10.1046/j.1365-2362.2001.00870.x

57. Remy-Heintz N, Perrier-Meissonnier S, Nonotte I, et al. Evidence for autocrine growth stimulation by a gastrin/CHK-like peptide of the gastric cancer HGT-1 cell line. Mol Cell Endocrinol 1993;93(1):23–29.10.1016/0303-7207(93)90135-7

58. Zhou JJ, Chen ML, Zhang QZ, Zao Y, Xie Y. Blocking gastrin and CCK-B autocrine loop affects cell proliferation and apoptosis in vitro. Mol Cell Biochem 2010;343(1-2):133–141.10.1007/s11010-010-0507-5

59. Watson S, Durrant L, Morris D. Gastrin: growth enhancing effects on human gastric and colonic tumour cells. Br J Cancer 1989;59(4):554–558.10.1038/bjc.1989.112

60. Song DH, Rana B, Wolfe JR, et al. Gastrin-induced gastric adenocarcinoma growth is mediated through cyclin D1. Am J Physiol Gastrointest Liver Physiol 2003;285(1):G217–G222.10.1152/ajpgi.00516.2002

61. Pradeep A, Sharma C, Sathyanarayana P, et al. Gastrin stimulation of cyclin D1 transcription involves betacatenin and CREB pathways in gastric cancer cells. Oncogene 2004;23(20):3689–3699.10.1038/sj.onc.1207454

62. Miyazaki Y, Shinomura Y, Tsutsui S, et al. Gastrin induces heparin-binding epidermal growth factor-like growth factor in rat gastric epithelial cells transfected with gastrin receptor. Gastroenterology 1999;116(1):78–89.10.1016/S0016-5085(99)70231-3

63. Sinclair NF, Ai W, Raychowdhury R, et al. Gastrin regulates the heparin-binding epidermal-like growth factor promoter via a PKC/EGFR-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2004;286(6):G992–G999.10.1152/ajpgi.00206.2002

64. Selvik LK, Fjeldbo CS, Flatberg A, et al. The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis. BMC Genomics 2013;14(1):429. Published 2013 Jun 28.10.1186/1471-2164-14-429

65. Fjeldbo CS, Bakke I, Erlandsen SE, et al. Gastrin upregulates the prosurvival factor secretory clusterin in adenocarcinoma cells and in opossum mucoxa of hypergastrinemic rats. Am J Physiol Gastrointest Liver Physiol 2012;302(1):G21–G33.10.1152/ajpgi.00345.2011

66. Vange P, Bruland T, Døseb T, et al. The cytoprotective protein clusterin is overexpressed in hypergastrinemic rodent models of oesophageal preneoplasia and promotes gastric cancer cell survival. PLoS ONE 2017;12(9):e0184514. Published 2017 Sep 13.10.1371/journal.pone.0184514

67. Wichterich T, Bach H, Diederichs S, et al. Gastrin and CCK-2 receptor activation in gastric cancer. Am J Physiol Gastrointest Liver Physiol 2008;295(4):G798–G805.10.1152/ajpgi.00015.2008

68. Kidd M, Tang LH, Modlin IM, et al. Gastrin-mediated alterations in gastric epithelial apoptosis and proliferation in a mastocytes rodent model of gastric neoplasia. Digestion 2000;62(2-3):143–151.10.1159/000078086

69. Mao JD, Wu P, Xia XH, Hu JQ, Huang WB, Xu GQ. Correlation between expression of gastrin, somatostatin and cell apoptosis regulation gene bcl-2/bax in large intestine carcinoma. World J Gastroenterol 2005;11(5):721–725.10.3748/wjg.v11.i5.721

70. Westwood DA, Patel O, Baldwin GS. Gastrin mediates resistance to hypoxia-induced cell death in xenografts of the human colorectal cancer cell line LoVo. Biochem Biophys Acta Mol Cell Res 2014;1843(11):2471–2480.10.1016/j.bbrc.2014.06.016

71. Cui G, Koh TJ, Chen D, et al. Overexpression of glycine-extended gastrin inhibits parietal cell loss and atrophy in the mouse stomach. Cancer Res 2004;64(22):8160–8166.10.1158/0008-5472.CAN-04-0876

72. Cui G, Takaishi S, Ai W, et al. Gastrin-induced apoptosis contributes to carcinogenesis in the stomach. Lab Invest 2006;86(10):1037–1051.10.1038/labinvest.3700462

73. Levi S, Beardshall K, Swift I, et al. Antral Helicobacter pylori, hypergastrinaemia, and duodenal ulcers: effect of eradicating the organism. BMJ 1989;299(6714):1504–1505.10.1136/bmj.299.6714.1504

74. Smith JT, Pounder RE, Nwokolo CU, et al. Inappropriate hypergastrinaemia in asymptomatic healthy subjects infected with Helicobacter pylori. Gut 1990;31(5):522–525.10.1136/gut.31.5.522

75. Verhulst ML, Hopman WP, Tangerman A, Jansen JB. Eradication of Helicobacter pylori infection in patients with non-ulcer dyspepsia. Effects on basal and bombesin-stimulated serum gastrin and gastric acid secretion. Scand J Gastroenterol 1995;30(10):968–973.10.1111/j.1365-2164.1995.tb07634.x

76. Odum L, Petersen HD, Andersen IB, Hansen BF, Rehfeld JF. Gastrin and somatostatin in Helicobacter pylori infected antral mucosa. Gut 1994;35(5):615–618.10.1136/gut.35.5.615

77. Schultz V, Hackelsberger A, Günther T, Miehlke S, Roesser N, Malfertheiner P. Differing patterns of Helicobacter pylori gastritis in patients with duodenal, prepyloric, and gastric ulcer disease. Scand J Gastroenterol 1998;33(2):137–142.10.1080/00365529850166851

78. Gillen D, el-Omar EM, Wírz AA, Ardill JE, McColl KE. The acid response to gastrin distinguishes duodenal ulcer patients from Helicobacter pylori-infected healthy subjects. Gastroenterology 1998;114(1):50–57.10.1016/S0016-5085(98)70632-8

79. El-Omar EM, Oien K, El-Nujumi A, et al. Helicobacter pylori infection and chronic gastric acid hyposecretion. Gastroenterology 1997;113(1):15–24.10.1016/S0016-5085(97)70075-1

80. Ruiz B, Correa P, Fontham ET, Ramakrishnan T. Antral atrophy, Helicobacter pylori colonization, and gastric pH. Am J Clin Pathol 1996;105(1):96–101.10.1093/ajcp/105.1.96

81. Correa P, Pizuelo MB. The gastric precancerous cascade. J Digest Dis 2012;13(1):2–9. 10.1111/j.1751-2980.2011.00550.x

82. Lehmann FS, Schiller N, Cover T, et al. H. pylori stimulates gastrin release from canine antral cells in primary culture. Am J Physiol Gastrointest Liver Physiol 1998;274(6):G992–G996.10.1152/ajpgi.1998.274.6.G992

83. Beales IL, Calam J. Helicobacter pylori increases gastrin release from cultured canine antral G-cells. Eur J Gastroenterol Hepatol 2000;12(6):641–644.10.1097/00004277-200006060-00011

84. Beales IL, Post L, Calam J, Yamada T, Delvalle J. Tumour necrosis factor alpha stimulates gastrin release from canine and human antral G cells: possible mechanism of the Helicobacter pylori-gastrin link. Eur J Clin Invest 1996;26(7):609–611.10.1046/j.1365-2362.1996.2040517.x

85. Beales IL, Calam J. Helicobacter pylori infection and tumour necrosis factor-alpha increase gastrin release
from human gastric antral fragments. Eur J Gastroenterol Hepatol 1997;9(8):773–778. 10.1097/00042737-199708000-00007

86. Ding L, Sontz EA, Saqui-Salces M, Merchant JL. Interleukin-1β suppresses gastrin via primary cilia and induces antral hyperplasia. Cell Mol Gastroenterol Hepatol 2021;11(5):1251–1266. 10.1016/j.jcmgh.2020.12.008

87. Chadha A, Paniagua AE, Williams DS. Comparison of ciliary targeting of two rhodopsin-like GPCRs: role of C-terminal localization sequences in relation to cilium type. J Neurosci 2021;41(36):7514–7531. 10.1523/JNEUROSCI.0357-21.2021

88. Einstein EB, Patterson CA, Hon BJ, et al. Somatostatin signaling in neuronal cilia is critical for object recognition memory. J Neurosci 2010;30(12):4306–4314. 10.1523/JNEUROSCI.5295-09.2010

89. Iwanaga T, Miki T, Takahashi-Iwanaga H. Restricted expression of somatostatin receptor 3 to primary cilia in the pancreatic islets and adenohypophysis of mice. Biomed Res 2011;32(1):73–81. 10.2202/biomedres.32.73

90. Zhou J, Xie Y, Zhao Y, Wang S, Li Y. Human gastrin mRNA expression up-regulated by Helicobacter pylori CagA through MEK/ERK and JAK2-signaling pathways in gastric cancer cells. Gast Cancer 2011;14(4):322–331. 10.1007/s10120-011-0044-2

91. Gunawardhana N, Jang S, Choi YH, et al. Front Cell Infect Microbiol 2018;7:541. Published 2018 Jan 15. https://www.frontiersin.org/articles/10.3389/fcimb.2017.00541/full. 10.3389/fcimb.2017.00541

92. Tucker TP, Gray BM, Eaton KA, Merchant JL. Helicobacter pylori induction of the gastrin promoter through GC-rich DNA elements. Helicobacter 2010;15(5):438–448. 10.1111/j.1101-2223.2007.x

93. Xie Y, Zhou JJ, Zhao Y, Zhang T, Mei LZ. Hel. pylori modifies methylation of global genomic DNA and the gastrin gene promoter in gastric mucosal cells and gastric cancer cells. Microb Pathog 2017;108:129–136. https://www.sciencedirect.com/science/article/pii/S08822401017302231?via%3Dihub, 10.1016/j.micpath.2017.05.003

94. Waldum HL, Hauso Ø, Sardal ØF, Fossmark R. Gastrin may mediate the carcinogenic effect of Helicobacter pylori infection of the stomach. Dig Dis Sci 2015;60(6):1522–1527. 10.1007/s10620-014-3468-9

95. Godley JM, Brand SJ. Regulation of the gastrin promoter by epidermal growth factor and neuroepitides. Proc Natl Acad Sci USA 1989;86(9):3036–3040. 10.1073/pnas.86.9.3036

96. Ford MG, Vallee JD, Soroka CJ, Merchant JL. EGF receptor activation stimulates endogenous gastrin gene expression in canine G cells and human gastric cell cultures. J Clin Invest 1997;99(11):2762–2771. 10.1172/JCI119466

97. Merchant JL, Du M, Todisco A. Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochem Biophys Res Commun 1999;254(2):454–461. 10.1006/bbrc.1998.9964

98. Wang TC, Dangler CA, Chen D, et al. Synergic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology 2000;118(1):36–47. 10.1016/S0016-5085(00)70412-4

99. Murayama Y, Miyagawa J, Higashiyama S, et al. Localization of heparin-binding epidermal growth factor-like growth factor in human gastric mucosa. Gastroenterology 1995;109(4):1051–1059. 10.1016/0016-5085(95)90562-6

100. Tuccillo C, Manzo BA, Nardone G, et al. Up-regulation of heparin binding epidermal growth factor-like growth factor and amphiuregulin expression in Helcobacter pylori-infected human gastric mucosa. Dig Liver Dis 2002;34(7):498–505. 10.1016/S1590-8568(02)80108-6

101. Konturek PC, Ernst H, Konturek SJ, et al. Mucosal expression and luminal release of epidermal and transforming growth factors in patients with duodenal ulcer before and after eradication of Helicobacter pylori. Gut 1997;40(4):463–469. 10.1136/gut.40.4.463

102. Tu S, Bhagat G, Cui G, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice [published correction appears in Cancer Cell. 2008 Dec 9;14(6):494] [published correction appears in Cancer Cell. 2011 Jan 18;19(1):154]. Cancer Cell 2008;14(5):408–419. 10.1016/j.ccr.2008.10.011

103. Wang TC, Brand SJ. Function and regulation of gastrin in transgenic mice: a review. Yale J Biol Med 1992;65(6):705–740.

104. Shiotani A, Merchant JL. cAMP regulates gastrin gene expression. Am J Physiol Gastrointest Liver Physiol 1995;269(3):G458–G464. 10.1152/ajpgi.1995.269.3.G458

105. Merchant JL, Shiotani A, Mortensen ER, Shumaker DK, Abraczinskas DR. Epidermal growth factor stimulation of the human gastrin promoter requires Sp1. J Biol Chem 1999;270(11):6314–6319. 10.1074/jbc.270.11.6314

106. Merchant JL, Iyer GR, Taylor BR, et al. ZBP-89, a Krüppel-like zinc finger protein, inhibits epidermal growth factor induction of the gastrin promoter. Mol Cell Biol 1996;16(12):6644–6653. 10.1128/MCB.16.12.6644

107. Mensah-Osman EJ, Veniaminova NA, Merchant JL. Menin and JunD regulate gastrin gene expression through proximal DNA elements. Am J Physiol Gastrointest Liver Physiol 2011;301(5):G783–G790. 10.1152/ajpgi.00160.2011

108. Veniaminova NA, Hayes MM, Varney JM, Merchant JL. Conditional deletion of menin results in antral G cell hyperplasia and hypergastrinemia. Am J Physiol Gastrointest Liver Physiol 2012;303(6):G752–G764. 10.1152/ajpgi.00109.2012

109. Sundaresan S, Meininge CA, Kang AJ, et al. Gastrin induces nuclear export and proteasome degradation of menin in enteric glial cells. Gastroenterology 2017;153(6):1555–1567.e15. 10.1053/j.gastro.2017.08.038

110. Saqui-Salces M, Covés-Datson E, Veniaminova NA, et al. Inflammation and Gli2 suppress gastrin gene expression in a murine model of antral hyperplasia. PLoS ONE 2017;12(10):e0180394. 10.1371/journal.pone.0180394

111. Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 2017;3(10):1335–1342. 10.1001/jamaoncol.2017.0589

112. Yao JC, Hassan M, Phan A, et al. One hundred years of carcinoid: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. JAMA Oncol 2017;3(10):1335–1342. 10.1001/jamaoncol.2017.0589

113. Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci 1971;68(4):820–823. 10.1073/pnas.68.4.820

114. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1). Best Pract Res Clin Endocrinol Metab 2010;24(3):355–370. 10.1016/j.beem.2010.07.003

115. Thakker RV, Newey PJ, Walls GV, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 2012;97(9):2990–3011. 10.1210/jc.2012-1230
Anlauf M, Perren A, Meyer CL, et al. Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology 2005;128(5):1187–1198.10.1053/j.gastro.2005.01.058

Hughes CM, Rozenblatt-Rosen O, Milne TA, et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004;13(4):587–597.10.1016/S1097-2765(04)00008-1

Yokoyama A, Wang Z, Wysocka J, et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004;24(13):5639–5649.10.1128/MCB.24.13.5639-5649.2004

Heppner C, Bilimoria KY, Agarwal SK, et al. The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation. Oncogene 2001;20(36):4917–4925.10.1038/sj.onc.1204529

Agarwal SK, Guru SC, Heppner C, et al. Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 1999;96(1):143–152.10.1016/S0092-8674(00)80967-8

Kim H, Lee JE, Cho EJ, Liu JO, Youn HD. Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res 2003;63(19):6135–6139.

Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Cancer Genet 2003;152(1):10.1016/S0092-8674(03)00081-4

Concolino P, Costella A, Capoluongo E. Multiple endocrine neoplasia type 1 (MEN1): an update of 208 new germline variants reported in the last nine years. Cancer Genet 2016;209(1-2):36–41.10.1016/j.canagen.2015.12.012

Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017;24(10):T119–T134.10.1126/science.1200609

Debelenko LV, Zhuang Z, Emmert-Buck MR, et al. Allergic deletions on chromosome 11q13 in multiple endocrine neoplasia type 1-associated and sporadic gastrinomas and pancreatic endocrine tumors. Cancer Res 1997;57(11):2238–2243.

Lubensky IA, Debelenko LV, Zhuang Z, et al. Allergic deletions on chromosome 11q13 in multiple tumors from individual MEN1 patients. Cancer Res 1996;56(22):5272–5278.

Anlauf M, Perren A, Henopp T, et al. Allergic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut 2007;56(6):637–644.10.1136/gut.2006.108910

Tala HP, Carvajal CA, González AA, et al. New splicing mutation of MEN1 gene affecting the translocation of menin to the nucleus. J Endocrinol Invest 2006;29(10):888–893.10.1007/BF03349192

Yaguchi H, Ohkura N, Takahashi M, Nagamura Y, Kitabayashi I, Tsukada T. Menin missense mutants associated with multiple endocrine neoplasia type 1 are rapidly degraded via the ubiquitin-proteasome pathway. Mol Cell Biol 2004;24(15):6569–6580.10.1128/MCB.24.15.6569-6580.2004

Canaff L, Vanbellinghen JF, Kanazawa I, et al. Menin missense mutants encoded by the MEN1 gene that are targeted to the proteasome: restoration of expression and activity by CHIP siRNA. J Clin Endocrinol Metab 2012;97(2):E282–E291.10.1210/jc.2011-0241

Priestley P, Baber J, Lolkema MP, et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 2019;575(7781):210–216.10.1038/s41586-019-1689-y

Brandl ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple endocrine neoplasia Type 1: latest insights. Endocr Rev 2021;42(2):133–170.10.1210/endrev/bnaa031

Mohr H, Pellegrata NS. Animal models of MEN1. Endocr Relat Cancer 2017;24(10):T161–T177.10.1530/ERC-17-0249

Sundaresan S, Kang AJ, Merchant JL. Pathophysiology of gastric NETs: role of gastrin and menin. Curr Gastroenterol Rep 2017;19(7):32. doi:10.1007/s11894-017-0572-y 10.1007/s11894-017-0572-y

Crabbett JS, Scacheri PC, Ward JM, et al. A mouse model of multiple endocrine neoplasia type 1, develops multiple endocrine tumors. Proc Natl Acad Sci 2001;98(3):1118–1123.10.1073/pnas.98.3.1118

Sundaresan S, Kang AJ, Hayes MM, Choi EK, Merchant JL. Deletion of Men1 and somatostatin induces hypergastrinemia and gastric carcinoids [published correction appears in Gut. 2017 Nov;66(11):2012]. Gut 2017;66(6):1012–1021.10.1136/gutjnl-2015-310928

Banck MS, Kanwar R, Kulkarni AA, et al. The genomic landscape of small intestine neuroendocrine tumors. J Clin Invest 2013;123(6):2502–2508.10.1053/j.jci.2013.02.002

Kidd M, Modlin I, Öberg K. Towards a new classification of gastroenteropancreatic neuroendocrine neoplasms. Nat Rev Clin Oncol 2016;13(11):691–705.10.1038/nrclinonc.2016.85

Chan AO, Kim SG, Bedeir A, Issa JP, Hamilton SR, Rashid A. CpG island methylation in carcinoid and pancreatic endocrine tumors. Oncogene 2003;22(6):924–934.10.1038/sj.onc.1206123

Kytölä S, Högö A, Nord B, et al. Comparative genomic hybridization identifies loss of 18q22-pter as an early and specific event in tumorigenesis of midgut carcinoids. Am J Pathol 2001;158(5):1803–1808.10.1016/S0002-9440(10)64136-3

Löllgen RM, Hesseman O, Szabo E, Westin G,akerström G. Chromosome 18 deletions are common events in classical midgut carcinoid tumors. Int J Cancer 2001;92(6):812–815.10.1002/ijc.1276

Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011;331(6041):1199–1203.10.1126/science.1200609

Heaphy CM, de Wilde RF, Jiao Y, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011;333(6041):425. doi:10.1126/science.1207313

Marinoni I, Kurrer AS, Vassella E, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 2014;146(2):453–60.e5. doi:10.1053/j.gastro.2013.10.020 10.1053/j.gastro.2013.10.020

Speel EJ, Scheidweiler AF, Zhao J, et al. Genetic evidence for early divergence of small functioning and nonfunctioning endocrine pancreatic tumors: gain of 9q34 is an early event in insulinomas. Cancer Res 2001;61(13):5186–5192.

Simon B, Lubomierski N. Implication of the INK4a/ARF locus in gastroenteropancreatic neuroendocrine
tumorigenesis. Ann N Y Acad Sci 2004;1014(1):284–299.10.1196/annals.1294.033

147. Zikusoka MN, Kidd M, Eick G, Latich I, Modlin IM. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer 2005;104(11):2292–2309.10.1002/cncr.21451

148. Wong C, Tang LH, Davidson C, et al. Two well-differentiated pancreatic neuroendocrine tumor mouse models. Cell Death Differ 2020;27(1):269–283.10.1038/s41418-019-0355-0

149. Rico K, Duan S, Pandey RL, et al. Genome analysis identifies differences in the transcriptional targets of duodenal versus pancreatic neuroendocrine tumours. BMJ Open Gastroenterol 2021;8(1):e000765.10.1136/bmjgast-2021-000765

150. Tang QP, Shen Q, et al. STAT3 signal that mediates the neural plasticity is involved in willed-movement training in focal ischemic rats. J Zhejiang Univ SCI B 2016, 17(7):493–502. PMC4940625 10.1631/jzus.B1500297

151. Walker CD, Long H, Williams S, Richard D. Long-lasting effects of elevated neonatal leptin on rat hippocampal function, synaptic proteins and NMDA receptor subunits. J Neurosci Res 2007, 85(4):816–828.10.1002/jnr.21173

152. Wei ZZ, Yu SP, Lee JH, et al. Regulatory role of the JNK-STAT1/3 signaling in neuronal differentiation of cultured mouse embryonic stem cells. Cell Mol Neurobiol 2014, 34(6):881–893.10.1007/s10571-014-0067-4

153. Choi MY, Romer AI, Wang Y, et al. Requirement of the tissue-restricted homeodomain transcription factor Nkx6.3 in differentiation of gastrin-producing G cells in the stomach antrum. Mol Cell Biol 2008, 28(10):3208–3218. PMC2423174 10.1128/MCB.01737-07

154. Yoon JH, Choi SS, Kim O, et al. Inactivation of Nkx6.3 in the stomach leads to abnormal expression of CDX2 and SOX2 required for gastric-to-intestinal transdifferentiation. Mod Pathol 2016;29(2):194–208.10.1038/modpathol.2015.150

155. Ochoa-Cortes F, Turco F, Linan-Rico A, et al. Enteric glial cells: a new frontier in neurogastroenterology and clinical target for inflammatory bowel diseases. Inflamm Bowel Dis 2016;22(2):433–449.10.1097/MIB.0000000000000667

156. Lasrado R, Boesmans W, Kleinjung J, et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 2017;356(6339):722–726.10.1126/science.aam7511

157. Norton JA, Foster DS, Ito T, Jensen RT. Gastrinomas: medical or surgical treatment. Endocrinol Metab Clin North Am 2018;47(3):577–601.10.1016/j.ecl.2018.04.009

158. Liddle RA. Neuropods. Cell Mol Gastroenterol Hepatol 2019;7(4):739–747.10.1016/j.jcmgh.2019.01.006

159. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449(7165):1003–1007.10.1038/nature06196

160. Fontaine J, Le Douarin NM. Analysis of endoderm formation in the avian blastoderm by the use of quail-chick chimaeras. The problem of the neuroectodermal origin of the cells of the APUD series. J Embryol Exp Morphol 1977;41:209–222.

161. Wang Y, Shi C, Lu Y, Poulin EJ, Franklin RJ. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. Am J Pathol 2015;185(4):1123–1134.10.1016/j.ajpath.2014.12.014

162. Dvorák B, Holubec H, LeBouton AV, Wilson JM, Koldovský O. Epidermal growth factor and transforming growth factor-alpha mRNA in rat small intestine: in situ hybridization study. FEBS Lett 1994;352(3):291–295.10.1016/0106-5793(94)00942-2

163. Poulsen SS, Nexø E, Olsen PS, Hess J, Kirkegaard P. Immunohistochemical localization of epidermal growth factor factor in rat and man. Histochemistry 1986;85(5):389–394.10.1007/BF00982668

164. Kirkegaard P, Olsen PS, Poulsen SS, Nexø E. Exocrine secretion of epidermal growth factor from Brunner’s glands. Stimulation by VIP and acetylcholine. Regul Pept 1983;7(4):367–372.10.1016/0167-0115(83)90108-8

165. Hormi K, Onolfo JP, Gres L, Lebraud V, Lehy T. Developmental expression of transforming growth factor-alpha in the upper digestive tract and pancreas of the rat. Regul Pept 1995;55(1):67–77.10.1016/0167-0115(94)00093-D