DUST CONTENT, GALAXY ORIENTATIONS, AND SHAPE NOISE IN IMAGING SURVEYS

PETCHARA PATTARAKIJWANICH1 AND FABIAN SCHMIDT2
1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
2 Max-Planck-Institute for Astrophysics, D-85748 Garching, Germany

Received 2014 November 24; accepted 2015 March 27; published 2015 May 27

ABSTRACT

We show that dust absorption in disk galaxies leads to a color- and orientation-dependent centroid shift, which is expected to be observable in multi-band imaging surveys. This centroid shift is an interesting new probe that contains astrophysically and cosmologically relevant information: it can be used to probe the dust content of a large sample of galaxies and to reduce the shape noise due to inclination of disk galaxies for weak lensing shear. Specifically, we find that data sets comparable to CFHTLenS, the Dark Energy Survey, or the Hyper Suprime-Cam survey should provide a dust measurement for several hundred galaxies per square degree. Conversely, given knowledge of the dust optical depth, this technique will significantly lower the shape noise for the brightest galaxies in the sample (signal to noise greater than a few hundred), thereby increasing their relative importance for the weak lensing shear measurement.

Key words: dust, extinction – gravitational lensing: weak

1. INTRODUCTION

Observational cosmology is currently benefiting from an enormous growth in large photometric survey data sets, as delivered by the CFHTLenS,3 Hyper Supreme-Cam (HSC),4 Dark Energy Survey (DES),5 KiDS,6 and other surveys. These state-of-the-art surveys deliver images in several bands for a hundred million galaxies or more. Currently, these data sets are exploited primarily through three observables: image shapes, which are used to measure weak gravitational lensing shear, galaxy number counts, used to measure angular auto- and cross-correlation functions, and image magnitudes in different bands, which are the input for photometric redshift estimation.

In this paper, we show that the image centroid measured in different bands can also serve as a valuable source of cosmological information. In particular, it can be used to infer the dust content of galaxies and to infer the orientation of disk galaxies independently of their observed shape. The underlying idea is that dust absorption modifies galaxy images by a different amount in different bands. The most easily observable of these modifications is a shift in the centroid of the image between different bands. As we will show, a radial gradient in the disk plane of the optical depth is sufficient to produce such a centroid shift, which is approximately proportional to the tangent of the inclination angle.

Direct measurements of the optical depth due to dust absorption through the disk of spiral galaxies has mainly been done using two techniques. The first is to observe occulting galaxy pairs, where comparing the unobscured part to the obscured part of the background galaxy can give information on the transparency of the foreground one (e.g., White et al. 2000). The second approach is through the number count of distant background galaxies observed through the disk of local face-on galaxies (e.g., Holwerda et al. 2013). Both of these methods rely on spatially resolved observation, limiting

3 http://www.cfht.org/
4 http://www.subarutelescope.org/Projects/HSC/
5 http://www.darkenergysurvey.org/
6 http://kids.strw.leidenuniv.nl/
shear measurements. Thus, any independent constraint on the orientation of a disk galaxy can increase the signal-to-noise of shear measurements. This is especially relevant since disk galaxies typically make up the majority of galaxies in flux-selected samples from imaging surveys. We show how (noisy) information on the orientation, in our case from the centroid shift, can be included in the shear estimate from galaxy shapes. This could also be useful in other contexts, for example when incorporating orientation information from spectra (Huff et al. 2013).

The outline of the paper is as follows. In Section 2, we present the calculation of the centroid shift due to dust absorption in disk galaxies. We perform both a numerical solution of the radiative transfer problem as well as an analytical estimate. Section 3 then shows how the information on the galaxy orientation can be incorporated in shear estimation to lower the shape noise. We then briefly describe the constraints on the dust content that can be obtained via this technique. We conclude in Section 5. The appendices present further details on analytical estimates and the expected accuracy of centroid measurements in imaging surveys.

2. CENTROID SHIFT FROM DUST EXTINCTION

In this section, we use a simplified radiative transfer calculation to show why dust extinction in disk galaxies leads to a relative centroid shift between different bands. For this, we will ignore scattering. The radiative transfer equation then simplifies to

$$\frac{dI_s(x(s), \hat{n})}{ds} = -\kappa_s(x(s))I_s(x(s), \hat{n}) + \epsilon_s(x(s), \hat{n}),$$

where I_v is the photon intensity, \hat{n} is the unit photon momentum vector, s is the line element, $x(s)$ is the position along the ray, and κ_s, ϵ_s are the opacity and emissivity, respectively. In the following, we will drop the subscript λ for clarity. We will assume an isotropic opacity κ and emissivity ϵ, and correspondingly drop the argument \hat{n} throughout. The solution to Equation (1) is then given by

$$I(s) = \int_{-\infty}^{s} ds' \epsilon(x(s')) \exp \left[-\int_{s'}^{s} \kappa(x(s''))ds''\right].$$

Let us consider a galaxy with cylindrical symmetry, so that in cylindrical coordinates around the galaxy center ("galaxy frame," $(r_{gf}, z_{gf}, \varphi)$) we can write $\epsilon(x) = \epsilon(r_{gf}, z_{gf})$ and $\kappa(x) = \kappa(r_{gf}, z_{gf})$. Consider a ray that intersects the $z_{gf} = 0$ plane ("the disk," see Figure 1) at (x_{gf}, y_{gf}), which we define as $s = 0$, at an angle θ with the z_{gf} axis. The angle θ corresponds to the inclination angle as seen by a distant observer, with $\theta = 0$ corresponding to a face-on view and $\theta = \pi/2$ being edge-on. This yields

$$z_{gf}(s) = s \cos \theta; \quad r_{gf}(s) = \left((x_{gf} + s \sin \theta)^2 + y_{gf}^2\right)^{1/2}.$$

We can replace s with z (provided that $\theta \neq \pi/2$). Furthermore, we are interested in the flux $f_{\text{obs}} \propto I_{\text{obs}}$ far away from the galaxy, and thus let $s \to \infty$. Equation (2) becomes

$$I_{\text{obs}}(\theta, x_{gf}, y_{gf}) = \frac{1}{\cos \theta} \int_{-\infty}^{\infty} dz_{gf} \epsilon(r_{gf}(z_{gf}), z_{gf}) \times \exp \left[-\frac{1}{\cos \theta} \int_{z_{gf}}^{\infty} \kappa(r_{gf}(z'), z')dz'\right].$$

Evaluating this expression yields the appearance of the disk with inclination angle θ as seen by a distant observer. For this purpose, we define a coordinate system on the sky (x, y), assuming the flat-sky approximation, centered on the true center of the galaxy and scaled with the angular diameter distance to the galaxy. The mapping between (x, y) and (x_{gf}, y_{gf}) then is

$$\begin{pmatrix} x_{gf} \\ y_{gf} \end{pmatrix} = \begin{pmatrix} x \cos \theta \cos \varphi_i - y \cos \theta \sin \varphi_i \\ x \cos \varphi_i + y \sin \varphi_i \end{pmatrix},$$

where φ is the azimuthal angle of the inclination axis.

2.1. Numerical Evaluation

In the following, we perform a numerical integration of the radiative transfer solution Equation (4) for the case when both the absorbing and emitting components of the galaxy follow a double exponential distribution in r_{gf} and z_{gf},

$$\epsilon(r_{gf}, z_{gf}) = \epsilon_0 e^{-r_{gf}/r_{e}} e^{-|z_{gf}|/z_{e}};$$

$$\kappa(r_{gf}, z_{gf}) = \kappa_0 e^{-r_{gf}/r_{e}} e^{-|z_{gf}|/z_{e}}.$$

Assuming this model, Equation (4) can be evaluated numerically for any set of parameters. The emissivity normalization ϵ_0 and the absolute scale length r_e do not need to be specified, since they only scale the solution in a trivial way. The relevant quantities are the opacity κ_0 and the ratios of the scale lengths and heights. We estimate the value of κ_0 from the face-on optical depth, $\tau_{0\phi}$, which is the optical depth corrected for inclination and averaged over the inner $2r_{e}$ (approximately one effective radius, consistent with how it is measured in the
literature, see Calzetti (2001) for a review). In the following, we assume the values of optical depths in B and I bands and ratios of scales to be

\begin{align}
\tau_{0, B} &\approx 0.5 \\
\tau_{0, I} &\approx 0.2 \\
z_e/r_e &\approx 0.2 \\
r_{r}/r_e &\approx 1.4 \\
z_e/z_r &\approx 0.5. \quad (8)
\end{align}

These values of optical depths are typical for Sb-Scd galaxies summarized by Calzetti (2001; see however Driver et al. 2007 who obtain somewhat larger values). Note that these values are for optically selected low-redshift galaxies and there is evidence that infrared-selected galaxies and galaxies at higher-redshift have significantly larger optical depths (Sargent et al. 2010; Boquien et al. 2013; Grootes et al. 2013). Therefore, it is possible that the galaxies detected in deep imaging surveys will show larger values of τ_0. The values used for ratios of scale lengths and heights are representative of what is found in the literature, where they are derived from analyses of edge-on local spiral galaxies (Byun et al. 1994; Xilouris et al. 1999; Bianchi 2007; Gadotti et al. 2010). Despite the significant variation from galaxy to galaxy, all measurements consistently suggest that $z_e/z_r < 1$, i.e., the source of attenuation is more concentrated to the disk than the emission. We show in Section 2.2 that this ratio governs the sign of centroid shift, and therefore our fiducial model with fixed parameters is still qualitatively robust despite possible variations in these parameters.

With the surface brightness at each position (x, y) on the sky-plane projection of the disk calculated, one can explore how the extinction affects the appearance of the disk in different bands. The appearance of the disk in one band is shown in Figure 2. The solid black contour shows the disk if no dust is present, while the blue dashed contour includes the effect of dust extinction. The disk shown in this figure is at inclination angle $\theta = 70^\circ$ with our fiducial set of parameters except for the dust optical depth, which is boosted by a factor of 10 to $\tau_0 = 5.0$ in order to show the effect more clearly.

The effect of extinction shifts the disk systematically to one side, as expected because the radiation from one side goes through a thicker column of absorber than the other. As dictated by symmetry, the shift is perpendicular to the axis around which the galaxy is rotated. The amount of shifting, however, is not uniform across the disk but depends on each surface brightness level. The bright, central part is shifted by a larger fractional amount than the fainter part. This is a consequence of the larger extinction gradient toward the center of the galaxy. To explore this effect, we divide the simulated disk image into isophotes (contours of constant surface brightness), and plot the shift of isophotes above some surface brightness threshold as a function of threshold value (see Figure 3). Here and throughout, we scale the centroid shift to the effective radius r_{eff}, or half-light radius, the radius within which one half of the total luminosity of the galaxy is emitted. This radius is related to the radial scale length r_e approximately by $r_{\text{eff}} \approx 1.7 r_e$. As the threshold increases, we only calculate the centroid from the brightest part of the disk, and the centroid shift grows as expected. For the almost edge-on disk, a strongly nonlinear behavior is apparent.

Figure 2. Contours showing the appearance of the disk with (blue dashed) and without (black solid) the effect of dust obscuration. Inclination angle here is $\theta = 70^\circ$. The disk parameters used here are the fiducial set of parameters (Equation (8)) except for the optical depth which is boosted from $\tau_{0, B} = 0.5$ to 5.0 to show the effect clearly. The axes are scaled to the effective radius r_{eff} (half-light radius) for a face-on view.

Figure 3. Magnitude of the fractional centroid shift $\Delta x/r_{\text{eff}}$ as a function of cutoff surface brightness (in units of the peak value at the galaxy center) of the region used to measure the centroid. The different lines show the same disk from different inclination angles. The disk parameters are given in Equation (8) with $\tau_{0, B} = 0.5$.
The Astrophysical Journal, 805:108 (13pp), 2015 June 1

2.2. Analytical Estimates

The physical reason for the centroid shift can be inferred from Figure 1, where we have let the y axis (perpendicular to the page) be the orientation axis of the galaxy. A ray emitted toward the observer from the negative x axis passes through matter closer to the center than the opposite ray from the positive x axis. This means that it will experience more emission and absorption than the latter; which contribution dominates depends on the configuration of absorbing and emitting material. Since the $x > 0$ half of the galaxy image now has a different flux than the $x < 0$ half, the centroid of the observed image, i.e., the center of mass of the light distribution, is shifted from the $x = 0$ position of the actual galaxy center. Of course, for $\theta = 0$, both rays pass through equivalent emission and absorption (on average), and there will be no centroid shift. More generally, both a radial and z-gradient is necessary in either the opacity or emissivity.

An analytical calculation of the centroid shift can be performed for the small inclination angle by expanding Equation (4) to linear order in $\tan \theta$. The details of this are given in Appendix A. For the fiducial parameters in Equation (8), the centroid shift is along the negative x axis, i.e., the effect of more emission at smaller radii wins over the higher absorption. This is due to the more concentrated distribution of opacity as compared to the emissivity; while the former is dominated by gas clouds largely confined to the disk, the latter also receives contributions from older stellar populations, which are more extended. Quantitatively, the analytical estimate yields (Equation (65))

$$\frac{\Delta x_{\text{cen}}}{r_{\text{eff}}} \approx -0.06 \tan \theta \tau_{\text{fo}}.$$

This linear approximation is compared to the direct numerically evaluated result in Figure 4. For inclination angles less than about 45°, the numerical results follow $\tan \theta$ closely. Moreover, the coefficient of the analytical estimate, which uses some simplifications in various weighting integrals, agrees with the numerical result to better than 10%.

2.3. Parametrization of Centroid Shift

For the purpose of forecasting how well the centroid shift can be measured in imaging surveys, we need a parametrization of the centroid shift as a function of optical depth τ_{fo} and inclination θ. Since the effect depends on the isophote level (Figure 3), the first step is to devise an optimal centroid estimator for the purpose of measuring the centroid shift, which is described by a radial weight function $w(r)$. This derivation is given in Appendix B. It turns out that this kernel is strongly peaked at small radii, so that, for all but the most highly resolved galaxies, most of the information on the centroid shift is contained in the innermost resolved region around the centroid of the galaxy, i.e., within one FWHM radius r_{PSF} of the point-spread function (PSF).

We then measure the centroid shift within r_{PSF} in the simulated galaxy image as a function of inclination. In a realistic galaxy survey, one has to take into account that differently resolved galaxies will have different centroid shifts. For the sake of simplicity, and to conservatively estimate the effect for galaxy samples used for weak lensing, we will consider a poorly resolved galaxy with $r_{\text{eff}} = 2r_{\text{PSF}}$ in the following. This is a conservative assumption since a better-resolved galaxy will yield a larger centroid shift.

In order to provide an accurate description even for very inclined galaxies, we use a fit function to describe the dependence on θ. We found that the magnitude of the fractional centroid shift is well fitted by a function of the form

$$\frac{\Delta x_{\text{cen}}}{r_{\text{eff}}} = F(\tau_{\text{fo}}, \theta) = \alpha \tau_{\text{fo}} \tan(\beta \theta),$$

where $\alpha = 0.066$ and $\beta = 0.85$, which is a slight generalization of the analytical result given in the previous section. The fit function is compared with the numerical result in Figure 4 and is found to represent the centroid shifts well in both bands.

2.4. Measuring Orientation

With the relationship between inclination angle and the centroid shift calibrated, it is now possible to use this information to measure the orientation of a disk from images in two bands (called bands a and b respectively; in this case, our fiducial model parameters are from the B band and the I band). This orientation measurement assumes that the optical depth is known for the given galaxy; the converse case, i.e., inferring the optical depth from the centroid shift when assuming a certain orientation, is considered in Section 4. Furthermore, we also assume that there is no scatter in the optical depths and scale ratios (Equation (8)) that control the centroid shift at fixed inclination. In reality, there can be...
significant variation in these parameters and the empirical relation calculated in Section 2.3 can be thought of as a median relationship.

Consider a disk galaxy with an inclination angle θ and azimuthal angle ϕ with respect to a fixed direction i on the sky. We will denote positions on the sky (approximated as flat) with x here. The centroid position in each band will be shifted from the unknown true position by

$$
x_a = x_a + y_a = F(\tau_a, \theta)(-\cos \phi i + \sin \phi j) r_{\text{eff,a}},
$$

$$
x_b = x_b + y_b = F(\tau_b, \theta)(-\cos \phi i + \sin \phi j) r_{\text{eff,b}},
$$

where $F(\tau_0, \theta)$ is defined in Equation (10) and $\tau_{a,b}$ denotes the optical depths τ_0 of the galaxy in each band.

What we measure is the differential shift between the two bands given by,

$$
\Delta x = \Delta x + \Delta y = F(\tau_a - \tau_b, \theta) \times (-\cos \phi i + \sin \phi j) r_{\text{eff}},
$$

where we have assumed that the shift is linear in τ and that the effective radii of the galaxy in each band are approximately equal; the latter assumption is merely for the sake of simplicity and can be easily dropped.

By assuming a value for $\tau_a - \tau_b$, the angles θ and ϕ can then be solved for through

$$
\theta = \frac{1}{\beta} \arctan \left(\frac{\sqrt{\Delta x^2 + \Delta y^2}}{\alpha(\tau_a - \tau_b)r_{\text{eff}}} \right)
$$

$$
\phi = \arctan \left(-\frac{\Delta y}{\Delta x} \right),
$$

where $[F^{-1}]$ denotes the inverse function (with respect to θ) of Equation (10), given explicitly in the second line.

In order to obtain quantitative forecasts for the information contained in the centroid shifts, we also need an estimate of the observational uncertainty of the centroid shift measured in actual imaging surveys. For this, we performed a study using simulated Hubble Space Telescope imaging (Massey et al. 2007) which is described in detail in Appendix C. The fractional uncertainty in centroid position is approximately given by

$$
\text{rms} \left(\frac{x_i}{r_{\text{eff}}} \right) = \frac{3.3}{\nu},
$$

where ν is the signal-to-noise of the galaxy image. In other words, the uncertainty in each of the centroid components for a galaxy measured at $\nu = 10$ is roughly one quarter of the effective radius. We will use this estimate for the numerical studies presented in the next section.

3. Improving Shear Estimation

We now derive how the orientation information contained in the centroid shift can be used to reduce shape noise in weak lensing shear estimation of disk galaxies. This corresponds to an increase in the information of weak lensing shear surveys at no observational cost, and could thus be highly relevant to ongoing and upcoming imaging surveys.

Our goal is to construct the posterior

$$
P(\gamma | \Delta x, \hat{I}_{\text{sky}}),
$$

where $\gamma = (\gamma_1, \gamma_2)$ is the shear vector and $\hat{\Delta x}$, \hat{I}_{sky} denote the measurements of the centroid shift and second moment tensor of the galaxy image, respectively. For the sake of simplicity, we will assume no noise in the measurement of \hat{I}_{sky}, since this is not the main focus of the paper and can be straightforwardly included in the approach described here. In full generality, we have to allow for magnification as well. We assume, however, that we have no knowledge of the intrinsic size of the galaxy, so that marginalizing over the intrinsic size will remove all information on the magnification. To simplify the derivation, we will thus ignore the magnification and only work with the two components of the shear. Specifically, we use the shear parametrization of Bernstein & Jarvis (2002), in which the symmetric unit-determinant shear matrix is given by

$$
S_{\eta} = R_{\phi} \left(\begin{array}{cc} e^{\eta/2} & 0 \\ 0 & e^{-\eta/2} \end{array} \right) R_{\phi}^T,
$$

where η is the conformal shear vector, $\eta = |\eta|$, and ϕ is the azimuthal angle of η. R_{ϕ} denotes a rotation by ϕ around the line of sight. Note that in the small-η limit, $\eta = 2\gamma$.

Consider the second moment tensor of an infinitely thin disk inclined by an angle θ, with azimuthal angle $\phi = 0$. Normalizing this tensor to unit determinant, we obtain

$$
\frac{I_i}{\mu} = \left(\begin{array}{cc} 1/\cos \theta & 0 \\ 0 & \cos \theta \end{array} \right) = S_\eta l_2 S_\eta^T,
$$

where l_2 is the two-dimensional identity matrix, and we have defined the effective shear η through $\exp(-\eta) = \cos \theta$ and $\phi = 0$. The relation between η and $\mu = \cos \theta$ for a thin disk can also be derived by noting that the ellipticity (Equation (27)) is given by $e = (1 - \mu^2)/(1 + \mu^2)$ and $e = \tan \theta \eta$ (Bernstein & Jarvis 2002). Thus, the image of a disk galaxy oriented by angles θ, ϕ is given by the action on a face-on disk (circular image) by a shear

$$
\eta_{\text{shear}}(\theta, \phi): \exp[-\eta] = \cos \theta; \quad \phi = \phi.
$$

Here we have chosen by convention to make η non-negative; face-on ($\theta = 0$) corresponds to $\eta = 0$, while edge-on ($\theta = \pi/2$) corresponds to $\eta \to +\infty$. We can thus perform the complete calculation of rotation/projection and lensing in conformal shear space. For this, we need the composition law of conformal shear, which is non-commutative. The sum of two shears is given by the unique symmetric unit-determinant matrix, which is equal to the composition of the two shear matrices modulo a rotation (Bernstein & Jarvis 2002).
This yields
\[
\eta = \eta_1 \oplus \eta_2:
\]
\[
\begin{align*}
\cosh \eta &= \cosh \eta_1 \cosh \eta_2 + \sinh \eta_1 \\
\times \sinh \eta_2 \cos\left(2\left[\varphi_1 - \varphi_1\right]\right)
\end{align*}
\]
\[
\sinh \eta \sin\left(2\left[\varphi_1 - \varphi_1\right]\right) = \sinh \eta_2 \sin\left(2\left[\varphi_2 - \varphi_1\right]\right).
\] (18)

We now turn to Equation (14), written in terms of the conformal shear for the time being. We replace the moment tensor on the sky \(I_{\text{sky}}\) with the shear \(\hat{\eta}\) estimated using standard techniques from the second moments. Using Bayes’ theorem, the posterior is given by
\[
P(\eta | \Delta x, \hat{\eta}) = \frac{1}{\mathcal{N}}P(\Delta x, \hat{\eta} | \eta)P(\eta)
\]
\[
= \frac{1}{\mathcal{N}}P(\eta) \int_0^{2\pi} d\cos \theta
\]
\[
\times \int_0^{2\pi} d\phi \ P(\Delta x, \hat{\eta} | \eta, \theta, \phi).
\] (19)

where \(\mathcal{N}\) is a normalization constant and \(P(\eta)\) is the prior probability of the shear \(\eta\) (we assume that there is a flat prior on the angle of the shear). \(P(\Delta x, \hat{\eta} | \eta, \theta, \phi)\) is the probability of obtaining a centroid shift and shear as measured (\(\Delta x\) and \(\hat{\eta}\)) respectively), given true shear vector \(\eta\) and orientation angles \(\theta, \phi\). We now transform the integral over orientation angles \(\theta\) to shear \(\eta_d\), through Equation (17):
\[
P(\eta | \Delta x, \hat{\eta}) = \frac{P(\eta)}{\mathcal{N}} \int_0^{\infty} e^{-\eta_d} d\eta_d
\]
\[
\times \int_0^{2\pi} d\phi \ d \eta \ P(\Delta x, \hat{\eta} | \eta, \eta_d)
\]
\[
= \frac{P(\eta)}{\mathcal{N}} \int_0^{\infty} e^{-\eta_d} d\eta_d \int_0^{2\pi} d\phi \ P(\Delta x | \eta_d)
\]
\[
\times P(\hat{\eta} | \eta, \eta_d).
\] (20)

In the second line, we have assumed that the probability factorizes into one for the centroid shift, which only depends on the orientation \(\eta_d\), and a second factor for the shear estimate. We assume a Gaussian error on \(\Delta x\), so that
\[
P(\Delta x | \eta_d) = N_2[\Delta x - \Delta x_{\text{true}}(\eta_d), \sigma_{\Delta x}].
\] (21)

Here, \(N_2\) denotes the bivariate normal distribution and \(\sigma_{\Delta x}\) is the square root of the variance of each component of \(\Delta x\) (given by the observational error on the centroid shift, in our case Equation (13)). Furthermore, \(\Delta x_{\text{true}}(\eta_d)\) denotes the true (mean) centroid shift of a galaxy oriented by \(\theta, \phi\) related to \(\eta_d\) through Equation (17). On the other hand, we neglect observational errors on the second moments of the galaxy image, so that
\[
P(\hat{\eta} | \eta, \eta_d) = \delta^{2\eta}_d[\hat{\eta} \oplus (\eta \oplus \eta_d)].
\] (22)

That is, the shear estimated from the observed second moments is exactly equal to the shear-space composition of the orientation \(\eta_d\) and the assumed lensing shear \(\eta\). Of course, in general, these do not have the same azimuthal angle. It is straightforward to generalize Equation (22) to allow for a finite uncertainty in the shear estimate \(\hat{\eta}\).

Performing the integral over \(\eta_d\) straightforwardly yields
\[
P(\eta | \Delta x, \hat{\eta}) = \frac{1}{\sqrt{\mathcal{N}2}}P(\eta)
\]
\[
\times \{e^{-\eta_d}N_2[\Delta x - \Delta x_{\text{true}}(\eta_d), \sigma_{\Delta x}]\}_{\eta_d \rightarrow \eta \oplus \eta_d}.
\] (23)

If there is no information on the centroid shift (equivalent to taking \(\sigma_{\Delta x} \rightarrow \infty\)) and we assume a flat prior, then
\[
P(\eta | \Delta x, \hat{\eta}) \propto \cos \theta(\eta, \hat{\eta}).
\] (24)

where \(\theta(\eta, \hat{\eta})\) is the orientation angle of a galaxy that, when lensed by \(\eta\), yields moments \(\hat{\eta}\). This is the expected PDF of shape noise for perfect circular disks.

For our studies, \(\hat{\eta}\) will be assumed to correspond to a disk oriented by some fixed fiducial angles \(\theta_0, \phi_0\) (that is, we assume no lensing), and we will let \(\phi_0 = 0\) without loss of generality. We then define \(\eta_0\) through \(\exp(-\eta_0) = \cos \theta_0\). Furthermore, let \(\phi\) denote the azimuthal angle of \(\eta\). Then, \(-\eta\) has azimuthal angle \(\phi + \pi/2\) (a sign flip in the shear corresponds to rotation by 90°). We then obtain
\[
\eta_d = \hat{\eta} \oplus (-\eta) \Rightarrow
\]
\[
\cos \eta_d = \cosh \eta_0 \cosh \eta - \sinh \eta_0 \sinh \eta \cos(2\phi)
\]
\[
\sin(2\phi_d) = -\frac{\sinh \eta \sqrt{\cosh^2 \eta_d - 1}}{\sin(2\phi)}.
\] (25)

Note that \(\phi = 0\) implies \(\phi_d = 0\). This is because the sum of two aligned shears is in the same direction. For \(\phi \neq 0\), we pick the solution that connects continuously to \(\phi = 0 = \phi_d\).

In order to solve for \(\theta_d\), we need to pick a branch of the quadratic solution. This is easily done using \(\cosh \eta_d \geq 1\) and \(\cos \theta_d \in [0, 1]\). We obtain
\[
\cos \theta_d = \cosh \eta_d - \sqrt{\cosh^2 \eta_d - 1}.
\] (26)

For a fixed value of \(\theta_0\), it is then straightforward to map out the posterior Equation (23) in the \(\eta\) plane.

However, in order to derive the shape noise predicted by this posterior, it is more practical to transform from \(\eta\) to the ellipticity (or distortion) \(e\), defined through
\[
e_1 = \frac{I_{11} - I_{22}}{\text{Tr } I_{ij}}, \quad e_2 = \frac{2I_{12}}{\text{Tr } I_{ij}}.
\] (27)

Note that \(e_1 \in [-1, 1]\), and that at linear order, lensing changes the ellipticity \(e\) through
\[
e \rightarrow e + 2\gamma
\] (28)

where \(\gamma\) is the shear vector. Following Equation (2.7) of Bernstein & Jarvis (2002),
\[
e(\eta) = \tanh \eta \left(\cos 2\phi \sin 2\phi\right).
\] (29)
where \(\varphi \) is the azimuthal angle of \(\eta \), so that
\[
P(e | \hat{x}, \hat{\eta}) = P\left(\eta(e) | \hat{x}, \hat{\eta}\right) \left| \frac{\partial \eta}{\partial e} \right| \left(1 - e^2\right)^{-2},
\]
where
\[
\eta(e) = \frac{1}{2} \ln\left(\frac{1 + e}{1 - e}\right).
\]

Figure 5 shows the posterior for the two components \(e_1, e_2 \) of the residual ellipticity for different true orientation angles at a fixed signal to noise of \(\nu = 1000 \). Clearly, the ellipticity is well constrained, with sharper constraints for smaller inclinations. This is because degeneracies between orientation and lensing increase for finite inclinations. The thin black line shows the posterior if no centroid shift is measured. The posterior is then very broad with a peak at \(e_i \to \pm 1 \). This is just the consequence of the uniform prior on \(\cos \theta \).

Figure 6 shows the posterior for the ellipticity components averaged over inclination angle \(\theta_0 \). The results are shown for different values of the image signal to noise. There is a rapid transition between values \(\nu \sim 100 \), up to which the distribution of residual ellipticity is broad, and \(\nu \sim 10^3 \), when the orientation of the galaxy is well constrained and the residual ellipticity follows a narrow distribution centered around zero.

In the end, we estimate the residual shape noise after the centroid shift has been optimally taken into account. This is approximately quantified by the rms of the posterior for the two ellipticity components, specifically
\[
\text{rms}(e_i) = \left[\int_{-1}^{1} d^2 e (e_i)^2 P(e | \hat{x}, \hat{\eta}) \right]^{1/2},
\]
where we have assumed that both components have vanishing expectation values (unlike the magnitude \(|e| \)). In order to estimate the residual shape noise, we use the quantity \(\sigma_e \) defined through
\[
\sigma_e = \frac{1}{\sqrt{2}} \left(\left[\text{rms}(e_1) \right]^2 + \left[\text{rms}(e_2) \right]^2 \right)^{1/2},
\]
which is the average noise per component of the ellipticity. As shown in Figure 5, this quantity depends on the orientation angle of the galaxy. In order to estimate the effective shape noise for an ensemble of galaxies with random orientations, we perform an inverse-variance weighting to obtain
\[
\bar{\sigma}_e = \left[\int_0^1 d \cos \theta_0 \sigma_e^{-2}(\theta_0) \right]^{-1/2}.
\]

This is not exactly what one would do in reality, since, in practice, one has to use the centroid shift and/or shape of the galaxy to estimate \(\theta_0 \). Furthermore, the posterior for \(e_i \) is highly non-Gaussian, especially for small signal to noise, so that Equation (34) is not optimal. However, we take it as a first approximation. The result is shown as a function of galaxy signal-to-noise in Figure 7, where we have divided the rms by two since that gives the shape noise contribution to the rms of each shear component. The line shows the fit given in Equation (40).

![Figure 5](image5.png)

Figure 5. Marginalized posterior for the ellipticity components \(e_1, e_2 \) for \(\nu = 1000 \) and different inclination angles \(\theta \). In our coordinate convention \((\varphi = 0)\), \(e_2 \) is the component unaffected by the inclination angle. The thin black line shows the posterior without any orientation information, equivalent to letting \(\nu \to 0 \) in our calculation.

![Figure 6](image6.png)

Figure 6. Marginalized posterior for the ellipticity components \(e_1, e_2 \) averaged over inclination angles for different values of signal to noise.

![Figure 7](image7.png)

Figure 7. rms ellipticity averaged over \(\theta_0 \), following Equation (34) as a function of signal to noise. We have divided the rms by two since that gives the shape noise contribution to the rms of each shear component. The line shows the fit given in Equation (40).
3.1. Impact on Shear Surveys

We have seen that the centroid shift can significantly reduce the residual shape noise for disk galaxies at high signal to noise. In the following, we will use

$$\sigma_{\text{int, res}} = \frac{1}{2} \sigma_{\epsilon}$$ \hspace{1cm} (35)$$
as an estimate for the residual shape noise, i.e., the rms in each component of the shear, where the factor of one-half comes from Equation (28). The question then arises to what extent this reduces the noise overall in shear surveys. Note that this reduction only applies to disk galaxies, which make up the majority of, but not all, galaxies in imaging surveys. Thus, when we talk about the number density of galaxies in the following, we always mean the number density of disk galaxies. In order to estimate the reduction in noise, we define the Fisher information delivered by galaxies within a logarithmic interval in the signal-to-noise ν:

$$\frac{dF}{d \ln \nu} = \frac{dn_g}{d \ln \nu} \sigma_{\epsilon}^{-2}(\nu),$$ \hspace{1cm} (36)$$where $dn_g/d \ln \nu$ is the number density of source galaxies per logarithmic ν interval, and σ_{ϵ} is the effective shape noise for galaxies of signal-to-noise ν. At fixed redshift, $dn_g/d \ln \nu$ roughly follows a Schechter function, i.e., it drops exponentially at high ν. On the other hand, when averaged over a wide redshift range, $dn_g/d \ln \nu$ approaches a power law. Samples selected for lensing measurements typically use a cut on photometric redshift to exclude low-redshift galaxies which do not contribute to the lensing measurement. For this reason, we will assume an exponential distribution,

$$\frac{dn_g}{d \ln \nu} \propto \exp \left(-\frac{\nu}{\nu_g} \right),$$ \hspace{1cm} (37)$$up to a normalization constant which is irrelevant here. This choice is conservative, as it reduces the number of very high signal-to-noise galaxies as compared to a power law distribution. We have used the weak lensing shear sample of the COSMOS survey (Leauthaud et al. 2007) to confirm that $\nu_g \approx 60$ roughly describes the signal-to-noise distribution for photometric redshifts $z \in [0.5, 1.5]$ (note that the values of ν in the catalog are only approximate, since they neglect pixel-level noise correlations).

For the shape noise, we assume

$$\sigma_{\epsilon}^2(\nu) = \sigma_{\text{mean}}^2(\nu) + \sigma_{\text{int, res}}^2(\nu),$$ \hspace{1cm} (38)$$where σ_{mean} is the contribution from measurement errors in the galaxy shape, while $\sigma_{\text{int, res}}$ is the residual shape noise due to the imperfect measurement of the centroid shift and resulting uncertainty in the orientation. The latter is calculated from the results of the previous section through Equation (35). We assume that σ_{mean} is inversely proportional to ν, specifically

$$\sigma_{\text{mean}}(\nu) = \frac{\nu_0}{\nu},$$ \hspace{1cm} (39)$$and we adopt $\nu_0 = 10$ as a fiducial value. The scaling with ν^{-1} has been found to roughly describe the uncertainty of the image second moments in the simulations of Massey et al. (2007; see our Appendix C). The value of ν_0 was simply chosen to yield a typical noise level expected in shear samples involving a signal-to-noise threshold of 20–40. For convenience, we parametrize $\sigma_{\text{int, res}}$ through

$$\sigma_{\text{int, res}}(\nu) = 0.31 \frac{(\nu/\nu_c)^p}{1 + (\nu/\nu_c)^p},$$ \hspace{1cm} (40)$$with $\nu_c \approx 433$, $p \approx 1.6$, which provides a reasonable fit (see Figure 7). The results are shown in Figure 8. The centroid shift significantly increases the information content of high-signal-to-noise galaxies. For the fiducial values chosen here, it does not significantly increase the total information on weak lensing shear, given by the integral under the curves in Figure 8, which is dominated by galaxies with $20 \lesssim \nu \lesssim 100$. This conclusion, however, depends strongly on the amplitude of the centroid shift. A centroid shift greater by a factor of two, which could be possible in imaging surveys due to larger optical depths of galaxies at higher redshift, already yields a significant enhancement in the total information. Finally, these results also depend on the precise high-ν tail of the signal-to-noise distribution of galaxies, which will not be exactly exponential.

Note that for sufficiently high ν, one should take into account the noise from the fact that galaxy disks are not perfectly circular. However, this will only become important for $\nu \gtrsim 10^3$. One important caveat is that we have assumed that the centroid shift is only a function of inclination and neglected scatter in the dust content and scale height ratios from galaxy to galaxy. Further investigation, by using actual data in particular, is warranted in order to realistically assess the importance of the centroid shift for reducing the shape noise in shear surveys.

4. PROBING THE DUST CONTENT OF DISK GALAXIES

An alternative application of the centroid shift is to use the measurement in conjunction with measured shapes to obtain the optical depth due to dust extinction for a large sample of galaxies. This could be an interesting complement to existing studies of dust content, which are typically restricted to fairly small sample sizes.

The approach is as follows. We now use the galaxy shape to constrain the orientation of the galaxy, which in turn predicts...
the centroid shift assuming a value of the optical depth. Comparing this to the measured centroid shift allows us to constrain the optical depth. Let us write the actual centroid shift as
\[
\Delta x_\text{true}(\tau, \theta) = \tau \Delta x_0(\theta),
\]
where \(\tau = \tau_{0,a} - \tau_{0,b}\) is the difference in face-on optical depth between the two bands that are used to measure the centroid shift. \(\Delta x_0(\theta)\) is assumed to be a universal function, although in reality this will vary from galaxy to galaxy due to different dust distributions. Our goal is then to construct the posterior for \(\tau\) given a measurement of the centroid shift \(\Delta x\) and second moments on the sky \(\hat{I}_{\text{sky}}\). As in the previous section, we will parametrize \(\hat{I}_{\text{sky}}\) through the conformal shear vector \(\hat{\eta}\). Thus, our goal is to calculate \(P(\tau | \Delta x, \hat{\eta})\). In principle, one should marginalize over the weak lensing shear when estimating the orientation from \(\hat{\eta}\). However, since the lensing effect is small and we are only interested in a rough estimate, we will assume that there is no lensing; in the framework of the derivation in the previous section, we adopt a prior of \(\delta^{(2)}(\eta)\). This yields
\[
P(\tau | \Delta x, \hat{\eta}) = \frac{1}{N} P(\Delta x, \eta | \tau) P(\tau)
\]
\[
= \frac{P(\tau)}{N} \int d \cos \theta \int d \phi P(\Delta x, \eta | \tau, \theta, \phi),
\]
where \(N\) is a normalization constant, \(P(\tau)\) is the prior on \(\tau\), and \(\theta, \phi\) are the true orientation angles of the galaxy. As before, we neglect the uncertainty on \(\hat{\eta}\), assuming that the second moments are very well measured, and adopt a Gaussian distribution for the observed centroid shift. This yields
\[
P(\tau | \Delta x, \hat{\eta}) = \frac{1}{N} P(\tau)
\]
\[
\times \left\{ e^{-\eta N_{\Delta x}} \left[\Delta x - \Delta x_\text{true}(\tau, \eta), \sigma_{\Delta x} \right]_{\eta=\hat{\eta}} \right\}. \tag{43}
\]
Let us assume that the expectation value of \(\Delta x\) is \(\Delta x_\text{true}(\tau_\text{true}, \eta_\text{true})\), where \(\tau_\text{true}\) is the actual optical depth. One can easily see that Equation (43) becomes
\[
P(\tau | \Delta x, \hat{\eta}) = \frac{1}{N} P(\tau) \cos \theta
\]
\[
\times \exp \left[-\frac{(\Delta x_0(\theta) \sigma_{\Delta x})^2}{2} (\tau - \tau_\text{true})^2 \right], \tag{44}
\]
where \(\theta\) is the orientation angle estimated from \(\hat{\eta}\), which under our assumptions is the true orientation angle. Thus, at a fixed orientation angle, the optical depth is Gaussian-distributed with
\[
\text{rms}(\tau) = \frac{\sigma_{\Delta x}}{\Delta x_0(\theta)}. \tag{45}
\]
In particular, for \(\theta \to 0\) the variance becomes infinite, since the centroid shift vanishes for any \(\tau\). This is illustrated in Figure 9, where we show the posterior for \(\tau\) at fixed signal to noise for different values of \(\theta\).

We can now perform an inverse-variance weighting over orientation angles, in analogy with Equation (34). The result can be simply cast into the form
\[
\bar{\sigma}_\tau = 0.29 \left(\frac{\nu}{100} \right)^{-1}. \tag{46}
\]
For galaxies with signal to noise greater than a few hundred, \(\tau\) can thus be measured very accurately. In order to roughly estimate the number density of galaxies in state-of-the-art imaging surveys such as CFHTLenS (Heymans et al. 2012), DES (The Dark Energy Survey Collaboration 2005), or HSC (Miyazaki et al. 2012) that will yield dust estimates through centroid shift measurements, we assume a number density of \(~10\ \text{arcmin}^{-2}\) above \(\nu \approx 20\), which leads to an estimate of \(~0.1\ \text{arcmin}^{-2}\) for galaxies with \(\nu \gtrsim 200\) using our exponential ansatz in Equation (37). This corresponds to 360 galaxies per square degree with detectable centroid shift. Taking into account the considerable uncertainties in this measurement, an expectation of several hundred galaxies per square degree seems reasonable, which, for surveys covering thousands of square degrees, yields dust extinction estimates for several hundred thousand galaxies.

5. CONCLUSIONS

We have shown that dust extinction leads to a shift of the centroid of galaxy images in different bands, focusing on disk galaxies in particular. This shift is a well-defined function of inclination of the disk, with amplitude mainly determined by the intrinsic, face-on optical depth in each band, and the relative scale heights and lengths of opacity and emissivity in the galaxy. We estimated that this centroid shift should be detectable for galaxies with signal-to-noise values greater than or of the order of 100. In state-of-the-art imaging surveys, this translates to number densities of several hundred galaxies per square degree with measurable centroid shift. This centroid shift could be interesting for two purposes.

First, given independent (statistical) constraints on the dust optical depth, the centroid shift can be used to infer galaxy orientations. The unknown orientation is the main reason for non-circular apparent shapes of disk galaxies, and thus the main source of shape noise in weak lensing shear surveys. For high signal-to-noise galaxies, the centroid shift can thus reduce...
shape noise and significantly increase their importance for estimating shear. We have found that for our fiducial assumptions about typical optical depths, the increase in overall information on shear is modest. However, should dust extinction increase toward higher redshift (where most source galaxies in shear surveys reside), then this approach could yield a significant increase in lensing information extractable from imaging surveys. A caveat to this is that we have not included scatter in optical depth and scale height ratios, which determine the normalization of the centroid shift–inclination relation for a given galaxy. We believe, however, that this application of the centroid shift warrants further study.

A complementary application of this effect is to neglect lensing and use the observed galaxy shapes as a measure of their orientation. Then, the centroid shift is a new, independent probe of dust extinction which is directly applicable to a large number of galaxies (we have estimated hundreds of thousands of galaxies in state-of-the-art imaging surveys). Together with modeling of galaxy SEDs, this should provide crucial constraints breaking some of the degeneracies present in dust modeling, e.g., the distribution of dust and orientation.

Finally, and perhaps most importantly, one of the first steps should be to look for this effect in existing data. Our estimates show that it should easily be detectable in currently available samples such as from SDSS or CFTHLenS.

We thank Jim Bosch, Bruce Draine, Simone Ferraro, Brandon Hensley, Eric Huff, Guinevere Kauffmann, Alexie Leauthaud, Robert Lupton, Rachel Mandelbaum, Richard Massey, Hironao Miyatake, David Spergel, and Michael Strauss for helpful discussions and comments.

APPENDIX A

ANALYTICAL ESTIMATE OF CENTROID OFFSET

In this appendix we derive an analytical solution to Equation (4) in the limit that \(z_{gf} \tan \theta / r_{gf} \) is a small parameter. This limit assumes that the radial distance traveled by the light ray while within the region where \(\epsilon \) and \(\kappa \) are non-negligible is much smaller than the radial distance at which it originated. Clearly, this condition can be satisfied by making \(\theta \) sufficiently small, but it can also be satisfied at finite \(\theta \) when the disk scale height of the galaxy is much smaller than its scale length, since the integrand in Equation (4) is then only relevant for \(|z_{gf}| \ll r_{gf} \). Conversely, for sufficiently large inclinations \(\theta \), this expansion will break down.

Throughout, we will work in galaxy-frame cylindrical coordinates \(r_{gf}, \phi_{gf}, z_{gf} \), and for clarity we will drop the subscript ”gf” in the remainder of this appendix. We expand Equation (4) to linear order in \(z \tan \theta / r \), yielding

\[
L_{\text{obs}}(r; \varphi; \theta) = \frac{1}{\cos \theta} [L_0(r; \theta) + \cos \varphi L_1(r; \theta)]
\]

where we have defined

\[
L_0(r; \theta) = \int_{-\infty}^{\infty} dz \epsilon(r, z) \exp \left[-\frac{1}{\cos \theta} \int_{z}^{\infty} \kappa(r, z')dz' \right]
\]

\[
L_1(r; \theta) = \tan \theta \int_{-\infty}^{\infty} dz \left[\frac{\partial \epsilon(r, z)}{\partial r} \right] \nonumber
\]

\[
\times \exp \left[-\frac{1}{\cos \theta} \int_{z}^{\infty} \kappa(r, z')dz' \right].
\]

\[
l_0 \text{ is the leading order intensity distribution of the galaxy in this expansion, which is independent of } \varphi \text{ and hence does not show a centroid shift. The centroid shift is induced by the second term, Equation (49), which is proportional to } \cos \varphi. \text{ We define the centroid of the observed intensity } x_c \text{ through,}
\]

\[
x_c = \left[\int rdr w(r) \int d\varphi L_{\text{obs}}(r; \varphi; \theta) \right]^{-1} \times \int_0^\infty rdr w(r) \int_0^{2\pi} d\varphi \left(r \cos \varphi \right) L_{\text{obs}}(r, \varphi; \theta),
\]

where we have allowed for a weighting function \(w(r) \) (see Appendix B). Equations (48)–(49) then immediately yield at leading order

\[
x_c^1 = \frac{1}{2} \left[\int rdr w(r) l_0(r; \theta) \right]^{-1} \times \int_0^\infty rdr w(r) l_1(r; \theta); \quad x_c^2 = 0.
\]

As expected, the centroid shift is aligned with the \(x \) axis for the coordinate system adopted. We thus need to estimate the relative magnitudes of \(l_0(r; \theta) \) and \(l_1(r; \theta) \).

We can make the expressions more transparent by defining the face-on integrated opacity or “partial optical depth” \(\tau_{f0}(z) = \int_{-\infty}^{\infty} dz' \kappa(r, z') \) and the scale lengths

\[
r_c^{-1}(r) = -\frac{\partial \ln \epsilon(r, z \approx 0)}{\partial r};
\]

\[
r_c^{-1}(r) \equiv -\frac{\partial \ln \kappa(r, z \approx 0)}{\partial r},
\]

which are positive if emissivity and opacity increase toward the center of the galaxy. Furthermore, we define an effective scale height for the emissivity \(z_e \) through

\[
z_e(r; \theta) \equiv \frac{1}{l_0(r; \theta)} \int_{z}^{\infty} dz \epsilon(r, z) e^{-\tau_{f0}(z)/\cos \theta}.
\]

Note that (for a galaxy symmetric under \(z \rightarrow -z \)) \(z_e \) vanishes unless \(\tau_{f0} \neq 0 \). Similarly, we define an effective opacity scale height,

\[
z_\kappa(r; \theta) \equiv \frac{1}{l_0(r; \theta) \cos \theta} \int_{z}^{\infty} dz \epsilon(r, z) e^{-\tau_{f0}(z)/\cos \theta} \times \int_{z}^{\infty} dz' \kappa(r, z').
\]

In the following, we will omit the \(r \) and \(\theta \) dependence of \(r_e, r_c, z_e, z_\kappa \) for clarity. At leading order, we then have

\[
\frac{l_1(r; \theta)}{l_0(r; \theta)} = \tan \theta \left(\frac{z_c}{r_c} - \frac{z_\kappa}{r_\kappa} \right).
\]
From Equation (51) we see that, modulo a radial weighting, this ratio determines the fractional centroid shift. As an example, consider the case where the emissivity is located at $z = 0$, while the absorbing material (dust) follows a more extended distribution, with $r_e \approx r_e$. Then, $\hat{z}_e \ll \hat{z}_e$. Thus, Equation (55) becomes

$$\frac{I_1(r; \theta)}{I_0(r; \theta)} = \tan \frac{\hat{z}_e}{r_e}.$$ \hspace{1cm} (56)

This says that the half of the galaxy closer to the observer ($x > 0$) suffers less absorption than the other half that is further away. In the opposite case, where a distribution of emissivity surrounds a dust screen at $z = 0$, we have

$$\frac{I_1(r; \theta)}{I_0(r; \theta)} = -\tan \frac{\hat{z}_e}{r_e}.$$ \hspace{1cm} (57)

In this case, more emissivity contributes on the side of the galaxy that is further away from the observer, leading to a centroid shift in the negative x direction. In general, some cancellation can occur between the two competing effects, though note that the effect will be non-zero for an identical distribution of ϵ and κ due to the different weighting involved in \hat{z}_e and \hat{z}_e (unless, of course, both \hat{z}_e and \hat{z}_e vanish). We thus already see the two main factors that determine the centroid shift: the optical depth $\tau \propto \int dz \kappa$ and the ratio z/r of typical scale height to scale length of the galaxy.

We can now specialize to the case of an exponential disk, Equation (7). For simplicity, we will also linearize the result in τ_{fo}, which given $\tau_{fo} \sim 0.2$–0.5 is sufficiently accurate for this approximate estimate. Defining the ratio $c_z = \hat{z}_e/c_r$ of opacity to emissivity scale heights, we obtain

$$\hat{z}_e = \frac{\tau_{fo}(r)}{c_z} \frac{1 + 2c_z}{\cos \theta} \hat{z}_e; \quad \hat{z}_e = \frac{\tau_{fo}(r)}{c_z} \frac{c_z^2 (2 + c_z)}{(1 + c_z)^3} \hat{z}_e,$$ \hspace{1cm} (58)

which using Equation (55) yields

$$\frac{I_1(r; \theta)}{I_0(r; \theta)} = \tan \theta \tau_{fo}(r) \left[\frac{r_e c_z^2 (2 + c_z)}{(1 + c_z)^3} - \frac{1 + 2c_z}{r_e} \right] \frac{\hat{z}_e}{r_e}.$$ \hspace{1cm} (59)

Here we have dropped a $1/\cos \theta$ factor, which converts the face-on opacity to the actual observed opacity, since this is unity at leading order in our expansion in $\tan \theta$.

Finally, performing the radial weighting in Equation (51), we obtain

$$\frac{|x_c|}{r_w} = \frac{1}{2} \tan \theta \left(\frac{\hat{z}_e}{r_e} \right) \frac{\left(\tau_{fo}(r) \right)}{r_e} \left[\frac{\hat{z}_e}{r_e} \right].$$ \hspace{1cm} (60)

and the radial weighting of the scale heights is defined through

$$\langle f(r) \rangle_{w} = \left[\int r^2 dr w(r) I_0(r; \theta) \right]^{-1} \times \int r^2 dr w(r) f(r) I_0(r; \theta).$$ \hspace{1cm} (62)

Using the results for the exponential disk Equation (58), this simply becomes

$$\frac{|x_c|}{r_w} = \frac{1}{2} \tan \theta \left(\frac{\tau_{fo}(r) \hat{z}_e}{r_e} \right) \left[\frac{\hat{z}_e}{r_e} \right].$$ \hspace{1cm} (63)

which involves the radially weighted face-on optical depth. Inserting the parameters from Equation (8), this becomes

$$\frac{|x_c|}{r_w} \approx 0.04 \tan \theta \left(\frac{\tau_{fo}(r) \hat{z}_e}{r_e} \right).$$ \hspace{1cm} (64)

This result explains both the behavior with inclination angle of the centroid shift determined using the radiative transfer calculation as well as the fact that the centroid shift is largest in the innermost regions: choosing a weighting function $w(r) = \Theta(r_{max} - r)$ which only includes the regions $r < r_{max}$, we see that $\langle \tau_{fo}(r) \hat{z}_e \rangle$ suffers less absorption than the other half that is further away. Thus, $\hat{z}_e \ll \hat{z}_e$. We thus already see the two main factors that determine the centroid shift: the optical depth $\tau \propto \int dz \kappa$ and the ratio z/r of typical scale height to scale length of the galaxy.

We can now specialize to the case of an exponential disk, Equation (7). For simplicity, we will also linearize the result in τ_{fo}, which given $\tau_{fo} \sim 0.2$–0.5 is sufficiently accurate for this approximate estimate. Defining the ratio $c_z = \hat{z}_e/c_r$ of opacity to emissivity scale heights, we obtain

$$\hat{z}_e = \frac{\tau_{fo}(r)}{c_z} \frac{1 + 2c_z}{\cos \theta} \hat{z}_e; \quad \hat{z}_e = \frac{\tau_{fo}(r)}{c_z} \frac{c_z^2 (2 + c_z)}{(1 + c_z)^3} \hat{z}_e,$$ \hspace{1cm} (58)

which using Equation (55) yields

$$\frac{I_1(r; \theta)}{I_0(r; \theta)} = \tan \theta \tau_{fo}(r) \left[\frac{r_e c_z^2 (2 + c_z)}{(1 + c_z)^3} - \frac{1 + 2c_z}{r_e} \right] \frac{\hat{z}_e}{r_e}.$$ \hspace{1cm} (59)

Here we have dropped a $1/\cos \theta$ factor, which converts the face-on opacity to the actual observed opacity, since this is unity at leading order in our expansion in $\tan \theta$.

Finally, performing the radial weighting in Equation (51), we obtain

$$\frac{|x_c|}{r_w} = \frac{1}{2} \tan \theta \left(\frac{\hat{z}_e}{r_e} \right) \left[\frac{\tau_{fo}(r) \hat{z}_e}{r_e} \right].$$ \hspace{1cm} (60)

where the weighted effective radius of the galaxy is

$$r_w = \left[\int r^2 dr w(r) I_0(r; \theta) \right]^{-1} \int_0^\infty r^2 dr w(r) I_0(r; \theta).$$ \hspace{1cm} (61)

APPENDIX B

OPTIMAL ESTIMATION OF CENTROID OFFSET

Figure 3 shows that the centroid shift due to dust extinction is not uniform over the galaxy image, but rather is most prominent in the inner regions. For this reason, we derive an approximation to the optimal estimation of the image centroid for the purpose of measuring the extinction-induced centroid offset. Throughout, we neglect PSF effects, i.e., we assume that the galaxy is perfectly resolved.

Let us divide the galaxy image into approximatively elliptical contours of constant surface brightness (isophotes). A general weighted estimate of the centroid of the galaxy image is then given by

$$x_w = \frac{\sum_{\text{pixels}} w(x_i) x_i}{\sum_{\text{pixels}} w(x_i)} = \frac{\int dr dr w(r) \mu(r) \int_0^\pi d\phi \bar{x}(r, \phi)}{\pi \int dr dr w(r) \mu(r)},$$ \hspace{1cm} (66)

where $\mu(r)$ is the surface brightness, and in the second equality we have gone to the continuum limit and elliptical coordinates.
parametrized through \((r, \phi)\). Our goal is to derive the weight function \(w(\mu)\) that optimally captures the centroid shift.

At fixed inclination \(\theta\), we can write for the centroid shift of a single isophote \(r\):

\[
\Delta x(r) = f(\mu(r)) \cdot \tau_{fo}.
\]

(67)

The optimal estimate for the centroid shift is then given by the optimal estimate for \(\tau_{fo}\). Let \(x_c(r)\) denote the centroid of the isophote \(r\), and \(\sigma_{x_c}(r)\) denote its error. Assuming that the errors from different isophotes are independent, the optimal estimate for \(\tau_{fo}\) is the inverse-variance weighted average of isophotes:

\[
\bar{\tau}_{fo} = N \int dr \frac{f^2(\mu) \cdot x_c(r)}{\sigma_{x_c}^2(r) \cdot f(\mu)}.
\]

(68)

where \(N\) is a normalization constant. Thus, the desired weighting function is given by

\[
w(r) = \frac{f(\mu)}{\sigma_{x_c}^2(r)}.
\]

(69)

We now need to estimate the error \(\sigma_{x_c}\), specifically its scaling with \(r\). Following the results of Appendix C, we assume that

\[
\frac{\sigma_{x_c}(r)}{\text{max}(r, \eta_{PSF})} \propto \nu^{-1} \propto \mu^{-1}(r),
\]

(70)

where we have assumed that the signal-to-noise \(\nu\) of the elliptical annulus is proportional to its surface brightness. Clearly, this is only a rough approximation, but sufficient for our desired purpose. We then obtain

\[
w(r) = \frac{f(\mu(r))\cdot \mu^2(r)}{\text{max}(r^2, \eta_{PSF}^2)},
\]

(71)

Figure 3 shows that \(f(\mu)\) can roughly be approximated as \(\propto \mu^2\). In this case, \(w(r) \propto \mu^4(r) / \text{max}(r^2, \eta_{PSF}^2)\), which for an exponential profile is very strongly peaked at small radii. Thus, for galaxies at cosmological redshifts the centroid estimate will be dominated by the innermost resolved scales, i.e., \(r \lesssim \eta_{PSF}\).

APPENDIX C

ESTIMATE OF OBSERVATIONAL CENTROID SHIFT UNCERTAINTY

In order to estimate what accuracy the centroid measurement in an imaging survey has, we use image simulations prepared for the Shear Testing Programme (Massey et al. 2007). These image simulations were designed to match space-based imaging. However, we expect that the rough scaling derived from these simulations will also describe ground-based imaging as long as the galaxies are well resolved.

We have several realizations of noise for the same galaxy images, and we calculate the quantities

\[
\Delta x = \frac{x_{c,1} - x_{c,2}}{d}; \quad \Delta y = \frac{y_{c,1} - y_{c,2}}{d},
\]

(72)

where \(x_{c,i}\) correspond to the \(x\)-component of the centroid measured in noise realization \(i\), and analogously for \(y\). Here, \(d\) is the weighted size following Rhodes et al. (2000). This is typically \(\sim 0.6\) times the half-light radius. We then calculate the rms values of \(\Delta x\) and \(\Delta y\) and average them in quadrature (the mean has been found to be consistent with zero, as expected). This exercise can be done for various subsamples of the set of simulated galaxy images. Note that the scatter in \(\Delta x\), \(\Delta y\) necessarily includes some contribution from the scatter in galaxy sizes between different noise realizations. We use the size averaged over noise realizations to reduce this effect, but note that our estimates of the centroid uncertainty will be conservative in this respect.

We have found that the relative offset defined through Equation (72) is quite insensitive to galaxy properties and mainly depends on the signal-to-noise \(\nu\) (while the absolute offset strongly depends on the size of the image in addition to the signal-to-noise). This is illustrated in Figure 10, which shows the rms of \(\Delta x\), \(\Delta y\), as a function of galaxy signal to noise, for two different samples of different size. There is some indication that larger galaxies have larger scatter in the relative centroid at fixed signal to noise, although the effect is not very large. The dashed line indicates a simple fit to the result for the smaller size sample:

\[
rms(\Delta_{x,y}) = \frac{5.6}{\nu},
\]

(73)

which translates to

\[
rms\left(\frac{x_{c}, y_{c}}{r_{eff}}\right) = \frac{3.3}{\nu},
\]

(74)

where \(r_{eff}\) is effective radius, or the half-light radius. In other words, roughly speaking, the uncertainty in each of the centroid components for a galaxy measured at \(\nu = 10\) is roughly one-third of the half-light radius. A more accurate estimate would also consider only the innermost resolved region of galaxies, but given the rough nature of our forecasts we have not considered this here. We have found that the scatter in second moments of galaxy images obeys a similar rough scaling with \(\nu^{-1}\).
REFERENCES
Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583
Bianchi, S. 2007, A&A, 471, 765
Boquien, M., Boselli, A., Buat, V., et al. 2013, A&A, 554, A14
Byun, Y. I., Freeman, K. C., & Kylafis, N. D. 1994, ApJ, 432, 114
Calzetti, D. 2001, PASP, 113, 1449
Chevallard, J., Charlot, S., Wandelt, B., & Wild, V. 2013, MNRAS, 432, 2061
Draine, B. T., Dale, D. A., Bendo, G., et al. 2007, ApJ, 663, 866
Driver, S. P., Popescu, C. C., Tuffs, R. J., et al. 2007, MNRAS, 379, 1022
Gadotti, D. A., Haeas, M., & Falony, S. 2010, MNRAS, 403, 2053
Grootes, M. W., Tuffs, R. J., Popescu, C. C., et al. 2013, ApJ, 766, 59
Heymans, C., van Waerbeke, L., Miller, L., et al. 2012, MNRAS, 427, 146
Holwerda, B. W., Allen, R. J., de Blok, W. J. G., et al. 2013, AN, 334, 268
Huff, E. M., Krause, E., Eifler, T., George, M. R., & Schlegel, D. 2013, arXiv:1311.1489
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33
Leauthaud, A., Massey, R., Kneib, J.-P., et al. 2007, ApJS, 172, 219
Massey, R., Heymans, C., Béré, J., et al. 2007, MNRAS, 376, 13
Miyazaki, S., Komiyama, Y., Nakaya, H., et al. 2012, in Proc. SPIE, 8446, 84460
Rhodes, J., Refregier, A., & Groth, E. J. 2000, ApJ, 536, 79
Ryden, B. S. 2004, ApJ, 601, 214
Sargent, M. T., Carollo, C. M., Kampczyk, P., et al. 2010, ApJL, 714, L113
Shao, Z., Xiao, Q., Shen, S., et al. 2007, ApJ, 659, 1159
The Dark Energy Survey Collaboration 2005, arXiv:astro-ph/0510346
White, R. E., III, Keel, W. C., & Conselice, C. J. 2000, ApJ, 542, 761
Xilouris, E. M., Byun, Y. I., Kylafis, N. D., Paleologou, E. V., & Papamastorakis, J. 1999, A&A, 344, 868
Yip, C.-W., Szalay, A. S., Carliles, S., & Budavári, T. 2011, ApJ, 730, 54