Review Article

Indian J Med Res 153, May & June 2021, pp 591-605
DOI: 10.4103/ijmr.IJMR_3842_20

Factors affecting decontamination of N95 masks for reuse: Feasibility & practicality of various methods

Rimjhim Kanaujia1, Archana Angrup1, Manisha Biswal1, Inderpaul Singh Sehgal2 & Pallab Ray1

Departments of 1Medical Microbiology & 2Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India

The SARS-CoV-2 pandemic has led to an enormous increase in cases worldwide in a short time. The potential shortage might call for the reuse of personal protective equipment especially N95 masks. In this review, the methods available for decontamination of N95 masks have been compared to highlight the advantages and efficacies of different methods. Studies conducted to evaluate the biocidal efficacy, effect on filtration efficacy of the decontamination method, and maintenance of structural integrity of masks, were reviewed. Ultraviolet germicidal irradiation (UVGI) and hydrogen peroxide (H₂O₂) vapour were the most commonly evaluated interventions and showed good germicidal activity without significant deleterious effects on mask performance. Vapourous H₂O₂ was the best method as it maintained NIOSH (The National Institute for Occupational Safety and Health) recommendations of the mask on re-use and additionally, one mask could be decontaminated and reused 30 times. Ethylene oxide (EtO) preserved the maximum filtration efficacy and flow resistance. Chemical and heat-based methods had the advantages of being cost-effective and feasible but affected the structural integrity and fit of the masks. For the decontamination of N95 masks, among the heat-based methods steam was found to be the best for low middle-income countries setting. H₂O₂-based methods, UVGI, and EtO all exhibited both adequate biocidal efficacies and functionality (fit testing and structural integrity). Further studies on logistics, healthcare worker acceptability of reuse, and actual efficacy of protection against SARS-CoV-2 infection should be carried out to validate the use of decontamination in the real-life settings.

Key words Biocidal efficacy - COVID-19 - decontamination - heat - N95 mask - personal protective equipment - SARS-CoV-2

The current pandemic of SARS-CoV-2 has led to an enormous increase in cases worldwide in a short period. This rapid increase has led to a high demand for personal protective equipment (PPE), particularly masks. The Infectious Diseases Society of America recommended the use of reprocessed N95 masks based on laboratory evidence1. The panic buying of N95 masks by the general population has also contributed to the depletion of the stocks worldwide. The potential shortage led to the reuse of PPE especially N95 masks.

Many studies have reported methods for reprocessing the used masks2,3. Physical methods included heat-based methods like dry and moist heat, autoclave and microwave generated heat (MGH), and ultraviolet germicidal irradiation (UVGI). Chemical methods included the application of the alcohol and chlorine-based solution (Bleach), ethylene oxide (EtO), hydrogen peroxide (H₂O₂) sterilization (ionized, gas plasma, and vaporized form). However, which method is the best for disinfection of masks remains to be determined.
In this review, we discuss the various methods of decontamination of the N95 masks along with the advantages and disadvantages of the methods.

Physical methods

Heat-based methods

N95 masks are made of multiple layers of polypropylene non-woven fabrics and the most critical part among these layers is the one that is produced through the melt-blown process. Since the maximum operating temperature for polypropylenes is 80-100°C and the melting point is 165°C, temperatures >80°C can soften and melt the filter, hence compromising its performance.

Heat is the most basic, easy, and cheapest method of decontamination. The main concern with heat-based methods is the loss of structural integrity and fit due to overheating, which could render the mask non-wearable or could impact fit. The identification of a temperature that provides the user a good fit along with maintenance of structural integrity while fulfilling other NIOSH (The National Institute for Occupational Safety and Health) criteria is required.

Heat-based methods (Table I) included dry heat (3 studies), moist heat (3 studies), steam (2 studies), autoclave (2 studies), and MGH (6 studies).

(i) **Structural integrity**: Viscusi et al. assessed the filtration performance and structural integrity following decontamination by the method of dry heat at two temperatures (80°C and 160°C). At 160°C the N95 masks melted and were unfit for use but tolerated the heat up to the 80°C. Bergman et al. demonstrated that moist heat at 60°C was able to maintain structural integrity up to one cycle. Beyond three cycles, slight melting of the head straps with partial separation of the inner foam nose cushion was observed. Ma et al. studied the efficacy of steam (100°C) at four different durations of 0, 20, 60, and 120 min. The masks were able to tolerate steam at 100°C up to one cycle in contrast to autoclave and MGH where the masks were deformed, shrunken, stiff, and mottled. Also, there was a loss of elasticity of the rubber straps of the masks with each autoclave treatment. The use of MGH/irradiation (MGH/MGI) resulted in loss of structural integrity of the mask and caused sparking due to the metallic noseband. A study by Lore et al. also concluded that rather than the structural make of the mask, the type of heat based method along with the time of exposure was a critical factor affecting the end result of decontamination.

(ii) **Biocidal efficacy (BE)**: is critical for assessing the efficacy of a decontamination procedure in controlling the microbial burden. The BE has been assessed by using bacteriophages and the H1N1 virus as a surrogate. Cadnum et al. demonstrated a good BE for surrogate phage Phi 6 and MS2 by the dry heating method. Liao et al. and Heimbuch et al., demonstrated a reduction of 8-5.5 log_{10} TCID50/ml of H1N1 by moist heat and microwave generated irradiation (MGI). All methods of heating provided a good BE.

(iii) Filtration efficiency and reduction in pressure drop: Filtration efficiency was best maintained by heat and steam compared to autoclaving and MSH/MGI. Liao et al. loaded three models of N95 masks into a preheated 5-sided heating chamber with dry heat (<85°C) under various relative humidity (<100% RH) conditions. They found this as the most promising, non-destructive method for the preservation of filtration properties in N95-grade respirators. Heating could be applied up to 50 cycles (85°C, 30% RH) without observation in the degradation of the filtration efficacy.

Thus, among the various methods of decontamination by heat, steam at 100°C best maintains the structural integrity, along with a good fit and filtration efficacy. Heat is effective in providing BE provided the temperature and contact time are sufficient. Installation of heat-based decontamination methods in a small setting is a feasible option. This method is cost-effective and does not require a large infrastructure. The disadvantage is that heat-based methods allow the decontamination for a single decontamination cycle only.

Ultraviolet germicidal irradiation (UVGI) based decontamination of N95 masks

UVGI is a highly energetic short-wave (254 nm) ultraviolet light shown to be a useful sterilization technique in a variety of applications. The virucidal mechanism of UVGI is derived from the energy contained within the electromagnetic wave and its effect on the viral genome. Single-stranded RNA viruses are especially susceptible to this type of radiation. This method was evaluated for its efficacy as a decontamination method in 10 studies (Table II).

(i) **Structural integrity**: A major disadvantage of UV radiation is that it tends to degrade polymers, which
Study	Place of study	Temperature (°C)	Time of exposure (min)	Biocidal efficacy	Filtration performance (%)	Pressure drop (mm H₂O)	Fit testing	Residual toxicity	Structural integrity	Performance cycles	
Dry heat											
Viscusi et al, 2007³	USA	80	60	ND	0.84	ND	ND	ND	ND	Maintained	1
		160	60	ND	Could not be tested as mask melted	ND	ND	ND	ND	Largely melted and unusable after twenty two minutes	1
Cadnum et al, 2020³	USA	70	30	Phi 6	ND	ND	ND	ND	ND	NM	1
Liao et al, 2020²³	USA	75	30	ND	>96	0.7 mm H₂O	ND	ND	NM	1	
Moist heat											
Bergman et al, 2010⁷	USA	60	30	ND	<4	<17.6.	ND	ND	Slight melting of the head straps, partial separation of the inner foam nose cushion	3	
Lore et al, 2012⁹	USA	65±5	180	H1N1-5.5 log₁₀ TCID₅₀/ml	ND	ND	ND	ND	NM	1	
Heimbuch et al, 2011¹⁰	Panama City	65±5	30	H1N1 - ~8 log₁₀ TCID₅₀/ml	ND	ND	ND	ND	NM	1	
Steam											
Liao et al, 2020²³	USA	100	10	ND	<6	0.8	ND	ND	NM	1	
Ma et al, 2020¹⁵	China	100	0	Avian infectious bronchitis virus H120	<2	ND	Passed	ND	Maintained	1	
			20	Avian infectious bronchitis virus H120	<2	ND	Passed	ND	Maintained	1	
			60	Avian infectious bronchitis virus H120	<2	ND	Passed	ND	Maintained	1	
			120	Avian infectious bronchitis virus H120	<2	ND	Passed	ND	Maintained	1	
Autoclave											
Viscusi et al, 2007³	USA	121 (15 psi)	15	ND	>18.7	ND	ND	ND	N95 FFRs were deformed, shrunken, stiff and mottled	1	
		121 (15 psi)	30	ND	>34.4	ND	ND	ND	N95 FFRs were deformed, shrunken, stiff and mottled	1	

Contd...
Study	Place of study	Temperature (°C)	Time of exposure (min)	Biocidal efficacy	Filtration performance (%)	Pressure drop (mm H₂O)	Fit testing	Residual toxicity	Structural integrity	Performance cycles
Bopp et al, 2020²⁵	USA	115	60	ND	>8	ND	Pass/fail	ND	Slight loss of elasticity in the rubber straps of the FFRs with each autoclave treatment	1
		115	60	ND	>12	ND	Pass/fail	ND	Slight loss of elasticity in the rubber straps	2
		115	60	ND	>13	ND	Pass/fail	ND	Slight loss of elasticity in the rubber straps	3
		121	30	ND	>14	ND	Pass/fail	ND	Slight loss of elasticity in the rubber straps	1
		121	30	ND	>25	ND	Pass/fail	ND	Slight loss of elasticity in the rubber straps	2
		121	30	ND	>58	ND	Pass/fail	ND	Slight loss of elasticity in the rubber straps	3
		130	2	ND	>13	ND	Fail	ND	Slight loss of elasticity in the rubber straps of the FFRs with each autoclave treatment	1
		130	4	ND	>18	ND	Fail	ND	Slight loss of elasticity in the rubber straps of the FFRs with each autoclave treatment	1
MGS/MGI					1.13	1.77			No visible changes were observed	1
		750	2	ND	1.13	1.77			N95 filter media melted at the ends of the aluminum nosebands and formed visible holes	1
Viscusi et al, 2007³	USA	750	2	ND	Melted - Could not be assessed	<15.8 mm H₂O, melted			Considered unwearable	4
		750	4	ND	Melted - Could not be assessed	<15.8 mm H₂O, melted			Considered unwearable	4
Viscusi et al, 2009⁹	USA	750	2	ND	Melted - Could not be assessed	<15.8 mm H₂O, melted			Considered unwearable	4
Bergman et al., 2010⁷	USA	750	2	ND	Melted - Could not be assessed	<15.8 mm H₂O, melted			Slight melting of the head straps, partial separation of the inner foam nose cushion	3
Lore et al, 2012²	USA	1250	2	H1N1-5.5 log₁₀ TCID₅₀/ml	0	NA			Moisture retention, metal noseband of FFRs generated combustion	1

Contd...
presents the possibility that UVGI exposure while decontaminating, may also reduce the efficacy of the mask and decrease the level of protection. Therefore, the energy of exposure needs to be standardized for the UVGI exposure. Varying amounts of energy ranging from 1 to 1000 J/cm² were administered in different studies. Lindsley et al.15 gauged the energy and noticed that the structural integrity was lost when the masks were exposed to energy >500 J/cm². Liao et al.14 evaluated the performance of the masks after 10 cycles, and even after multiple exposures the structural integrity was maintained if exposed to energy <500 J/cm². The time exposure varied in all studies ranging from 1 to 30 min. Lindsley et al.15 exposed both sides of material coupons and mask straps from four models of N95 masks to UVGI doses ranging from 120-950 J/cm². They found that at the higher UVGI doses, the strength of the layers of mask material was substantially reduced (in some cases, by >90%).

(ii) BE: Mills et al.16 evaluated the decontamination efficacy by UVGI on N95 masks contaminated with influenza virus after soiling them with artificial saliva or artificial skin oil. Significant reductions in influenza virus viability (≥3 logs) were observed for both soiling conditions (artificial saliva and artificial skin oil) on UVGI-treated face pieces from 12 of 15 filtering facepiece respirator (FFR) models and UVGI-treated straps from 7 of 15 FFR models. Lore et al.9 examined all FFRs post decontamination by viral culture. UVGI was successful in reducing the viral load by >4 logs median tissue culture infective dose (TCID₅₀).

(iii) Filtration efficiency: Viscusi et al.5 evaluated the filtration performance of the N95 and N100 masks after using UVGI through the poly-dispersed sodium chloride aerosol method. UVGI did not significantly affect the average penetration results. Lore et al.9 found that there was practically no reduction (<5%) in the penetration of 300 nm particles of sodium chloride (1%) after UV decontamination

(iv) Bergman et al.: found that the filter aerosol penetration and filter airflow resistance were maintained for three consecutive UVGI decontamination cycles. Thus, in all the above-mentioned studies, UVGI provided a good method for the maintenance of filtration efficacy and pressure resistance.

Study	Place of study	Time of exposure (min)	Temperature (°C)	Filtration performance (%)	Pressure drop (mm H₂O)	Fit testing	Residual toxicity	Structural integrity	Performance cycles		
Heimbuch et al.2011	Panama city	2	1250	1.5	NT	NA	NA	Slight separation of the foam nose cushion	1		
Fisher et al., 2011	USA	1.5	1100	3 log or ≥99.9% reduction in MS2	<4	NA	NA	NA	3		
Study	Place of study	Energy	Time of exposure (min)	Biocidal efficacy	Filtration performance (%)	Pressure drop (mm H₂O)	Fit testing	Residual toxicity	Structural integrity	Performance cycles	
---------------------	----------------	--------------	------------------------	-------------------	-----------------------------	------------------------	--------------	-------------------	----------------------	---------------------	
Viscusi et al, 2007	USA	2.4 J/cm²	30	ND	0.57	ND	ND	ND	ND	Maintained	1
		480 J/cm²		ND	0.79	ND	ND	ND	ND	Maintained	1
Bergman et al, 2010	USA	18 J/cm²	45	ND	<4	<17.6	ND	ND	ND	NM	3
Fisher and Shaffer, 2010	USA	0.03-4.7 J/cm²	2-266	(MS2) coliphage 3 LR	12-1	2-8	ND	ND	ND	NM	1
Lore et al, 2012	USA	18 kJ/m²	15	Influenza A/H5N1 >4 log_{10} TCID₅₀/ml	<5	ND	ND	ND	ND	NM	1
Heimbuch et al, 2015	Panama City	1.6-2.0 mW/cm²	15	H1N1 >4 log₁₀ TCID₅₀/ml	ND	ND	ND	ND	ND	Maintained	1
Lindsley et al, 2015	USA	1 J/cm²	1	ND	<5	Unchanged	ND	ND	ND	Maintained	1
		120 J/cm²	2	ND	<5	Unchanged	ND	ND	ND	Maintained	1
		240 J/cm²	3	ND	<5	Unchanged	ND	ND	ND	Maintained	1
		470 J/cm²	4	ND	<5	Unchanged	ND	ND	ND	Maintained	1
		710 J/cm²	5	ND	<5	Unchanged	ND	ND	ND	Maintained	1
		950 J/cm²	6	ND	NM	Unchanged	ND	ND	Strap breaks at >500 J/cm²	1	
Mills et al, 2018	Panama	1 J/cm²	1	H1N1 influenza 3 LR TCID₅₀	ND	ND	ND	ND	NM	1	
Cadnum et al, 2020	USA	Room (RDD)	30	+ (Phi 6, MS2, MRSA)	ND	ND	ND	ND	NM	1	
		UVC box	1	+	ND	NT	ND	ND	NM	1	
Liao et al, 2020	USA	254 nm, 8 W	30	ND	<5	0.72	ND	ND	NM	20	
		3.6 J/cm²		ND	>7	0.72	ND	ND	NM	30	

*It was dependent on IFM specific to the particular model. ND, not done; NM, not mentioned; IFM, inner filter membrane; TCID, tissue culture infective dose; MRSA, methicillin resistant *Staphylococcus aureus*; RDD, room decontamination device; NT, ND, not done
middle-income countries (LMICs) may be an issue to be considered when considering implementation. Also, any factor that contributes to the non-uniform distribution of UV irradiation across the face of the mask can alter its effectiveness. UVGI can only be effective if the radiation reaches the surfaces. The efficacy varies with different mask types and in different locations on the mask. In N95 masks the edge can receive less UV, thus can lead to decreased efficacy of the method. The upper limit for the UVGI exposure during repeated disinfection cycles would be set by the physical degradation of the respirator material and not by the loss of infiltration capacity. UVGI is not associated with any residual toxicity. Thus, this method can be considered as a potential method of decontamination.

Chemical-based methods of decontamination of N95 masks

\(\text{H}_2\text{O}_2 \)-based methods

\(\text{H}_2\text{O}_2 \) can be used in various forms for mask decontamination; vaporized, ionized, liquid, and gas plasma. Many commercial platforms are available for decontamination including STERRAD, SteraMist, and Bioquell. The \(\text{H}_2\text{O}_2 \) concentration and the time of exposure vary with each form of \(\text{H}_2\text{O}_2 \) application used (Table IIIA)\(^{5-7,14}\).

(i) Structural integrity: \(\text{H}_2\text{O}_2 \) causes the elastic straps to degrade and also causes tarnishing of the aluminium nosebands\(^{5,6}\). Schwartz \(\textit{et al} \)\(^9\) found the method satisfactory in both the structural integrity and fit for up to 30 cycles. Cramer \(\textit{et al} \)\(^6\) found that the fit was retained for five cycles in all conditions. Similarly, Saini \(\textit{et al} \)\(^22\), showed maintenance of N95 fabric for up to 10 cycles.

(ii) BE: \(\text{H}_2\text{O}_2 \) treatment provided good BE on various surrogate viruses such as H1N1, and phage such as Phi 6 and T1, T7\(^{18,21}\).

(iii) Filtration efficiency: Bergman \(\textit{et al} \)\(^7\) compared three forms of \(\text{H}_2\text{O}_2 \) treatment along with other methods. When \(\text{H}_2\text{O}_2 \) was applied in plasma form, after three cycles it led to a decrease in filtration efficacy beyond recommended levels of >5 per cent. Vaporous \(\text{H}_2\text{O}_2 \) could be provided safely up to 30 cycles\(^{19}\). N95\(^5\) masks still met performance requirements after decontamination with vaporous \(\text{H}_2\text{O}_2 \) in the laboratory setting for over 50 cycles\(^{22}\). Others reported that filtration efficacy and pressure resistance were within recommended limits\(^{18,21}\).

Ethylene oxide (EtO)-based methods

(i) Structural integrity: Two studies by Viscusi \(\textit{et al} \)\(^5,6\) and one by Bergman \(\textit{et al} \)\(^7\) noted that masks were able to preserve their structural integrity after EtO reprocessing (Table IIIB).

(ii) BE: The three studies\(^5-7\) did not evaluate the ability of the ETO based decontamination to inactivate infectious biological organisms from the contaminated N95 masks.

(iii) Filtration efficiency: The three studies\(^5-7\) found that after EtO reprocessing the filter aerosol penetration, as well as the appearance and filter airflow resistance, were unaffected. Furthermore, changes in filter penetration following three cycles of treatment were <5 per cent. EtO was able to maintain filtration efficacy below four per cent and pressure resistance <17.6 mm H\(\text{O}_2 \). These criteria are acceptable for mask reuse according to the NIOSH guidelines\(^5-7\).

The limiting factor with the EtO method is that it requires a long duration in comparison to the other decontamination methods. There are always concerns regarding the carcinogenic potential of EtO, which hampers its usage for any application. There was a minor cosmetic effect of darkening of the straps. If a longer duration is given for aeration (4-5 h), the EtO evaporates making masks safe for usage\(^6\).

Decontamination using other methods

Alcohols, in concentrations between 70-75 per cent have been used in a few studies\(^5-6,14\) (Table IIIC). It was found that small molecules such as solvents can permeate into the fabric and liberate the charge traps or frozen charges of the electret, thereby decreasing the filtration efficiency\(^24\). Bleach is another method of decontamination\(^5-7,14\). Bleach was shown to oxidize the aluminium nose-bands and staples and to create a peculiar smell persisting even after drying (Table IIID). Though lesser than alcohol-based methods, the use of chlorine-based solutions may also degrade the efficiency of the N95 masks due to their higher water content. As the material of the mask (i.e. the polypropylene) is hydrophobic, the chlorine-based solutions may have more difficulty penetrating the fabric, and the static charge of fibres deeper within the melt-blown may be less affected. Chlorine-based solutions, or soaps used to clean the mask, lead to degradation in the static charge that is necessary for the mask to meet the N95 standard\(^25\). These chemical methods are not recommended to use for decontamination of N95 masks.
Study	Place of study	Platform	Energy	Time of exposure (min)	Biocidal efficacy	Filtration performance (%)	Pressure drop (mm H₂O₂)	Fit	Residual toxicity	Structural integrity	Performance cycles
Viscusi et al, 2007	USA	STERRAD® NX	58% H₂O₂	28	ND	0.5	15.2	ND	ND	Aluminum nosebands were slightly tarnished and visibly not as shiny	1
		STERRAD® 100S	58% H₂O₂	28	ND	0.75	14.1	ND	ND	Aluminum nosebands were slightly tarnished and visibly not as shiny	2
Viscusi et al, 2009	USA	STERRAD® 100S	58% H₂O₂	55	ND	<2	<16.2	NA	NA/all hydrophobicity test positive	Metallic nosebands were slightly tarnished	3
Bergman et al, 2010	Pennsylvania, USA	BIOQUELL Clarus® R	30% H₂O₂	125	ND	<4	<17.6	NA	NA	No change	3
Battelle, 2016	Ohio	Bioquell Cl crusTM C	30% H₂O₂	150	ND	<0.2%	8-11	NA	NA	Straps degrade when stretched	30-50
Schwartz et al, 2020	Duke	Bioquell Cl rusTM C	35% H₂O₂	45	ND	ND	ND	Maintained	Smell and ppm levels*	No change	30
Grossman et al, 2020	St. Louis	Bioquell Z-2	10 g per unit volume H₂O₂	270	ND	ND	ND	ND	ppm levels checked^	No change	1
Perkins et al, 2020	USA	Bioquell Cl rusTM C	30% H₂O₂	129	ND	ND	ND	ND	ppm levels checked^	No change	20
Study	Place of study	Platform	Energy	Time of exposure (min)	Biocidal efficacy	Filtration performance (%)	Pressure drop (mm H₂O)	Fit	Residual toxicity	Structural integrity	Performance cycles
------------------	----------------	-------------------	-----------------------	------------------------	-------------------	----------------------------	------------------------	-----	-----------------	----------------------	---------------------
Kenney et al, 2020¹	USA	Bioquell ClusaTM C	30% H₂O₂	65-70	T1, T7, and Pseudomonas phage phi-6	ND	ND	ND	NA	No change	5
Saini et al, 2020²	India	In-house	7-8% H₂O₂	120-130	Escherichia coli, Mycobacterium smegmatis and spores of Bacillus stearothermophilus	ND	ND	ND	NA	No change	10
iHP											
Cramer et al, 2020³	USA	SteraMist HPV ionized	7.8% aqueous H₂O₂	15	ND	4	15.2	Passed⁵	ND	ND	1
			7.8% aqueous H₂O₂ aerosolized	100	ND	4	14.1	Passed⁵	ND	ND	2
			7.8% aqueous H₂O₂ aerosolized	100	ND	2	NM	Passed⁵	ND	ND	3
			7.8% aqueous H₂O₂ aerosolized	100	ND	2	NM	Passed⁵	ND	ND	4
Cheng et al, 2020⁴	Hong Kong	SteraMist HPV ionized	7.8% aqueous H₂O₂ aerosolized	100	ND	2	14.33	Passed⁵	ND	ND	5
			7.8% aqueous H₂O₂ aerosolized	6 s	H1N1	NA	NA	ppm levels (<1)	No change	NA	
			7.8% aqueous/ ionized	6 s	H1N1	NA	NA	ppm levels (<1)	No change	NA	
Viscusi et al, 2007⁵	USA	NM	3%	30	ND	0.75	ND	ND	ND	No change	3
Bergman et al, 2010⁶	Pennsylvania, Fisher scientific	USA	6%	30	NA	<4%	<17.6	NA	NA	No change	3

Liquid hydrogen peroxide

Viscusi et al, 2007⁵

Viscusi et al, 2007⁵

Bergman et al, 2010⁶

Contd...
Study	Place of study	Concentration (%)	Time of exposure	Biocidal efficacy	Filtration performance (%)	Pressure drop (mm H₂O)	Fit	Residual toxicity	Structural integrity	Performance cycles
Viscusi et al, 2007⁵	USA	70	One sec	ND	>17.8	ND	ND	ND	Severely degrading to N95 filters containing electret filter media	1
Viscusi et al, 2007⁶	USA	70	1 min	ND	>21.6	ND	ND	ND	Severely degrading to N95 filters containing electret filter media	1

Contd...
Study	Place of study	Concentration (%)	Time of exposure	Biocidal efficacy	Filtration performance (%)	Pressure drop (mm H₂O)	Fit	Residual toxicity	Structural integrity	Performance cycles
Liao, 2020	USA	75	Until dry	ND	>56	ND	ND	ND	NM	1
Chlorine based treatment										
Study	Place of study	Concentration	Time of exposure (min)	Biocidal efficacy	Filtration performance (%)	Pressure drop (mm H₂O)	Fit	Residual toxicity	Structural integrity	Performance cycles
Viscusi et al., 2007	USA	Bleach 0.53%	30	ND	<0.68	ND	ND	ND	Aluminum nose bands were tarnished	1
USA	Bleach 5.25%	30	ND	<3.79	ND	ND	ND	ND	Aluminum nose bands were tarnished	1
Viscusi et al., 2009	USA	0.6% aqueous	30	ND	<2	<17	ND	ppm levels (<1)/NA/all hydrophobicity test positive	Residual bleach odor, metallic nosebands were slightly tarnished, inner nose comfort cushion was discolored	5
Bergman et al., 2010	USA	0.60%	30	ND	<4	<17.6	ND	ND	Residual bleach odor, staples were oxidized, nosebands were slightly tarnished and visibly not as shiny, discolored (yellowed) inner nose pads	3
Liao et al., USA 2020	USA	2%	5	ND	<27	0.9	ND	ND	NM	1

Contd...
Study	Place of study	Method	Concentration	Time (min)	Biocidal efficacy	Filtration performance (%)	Pressure drop	Fit	Residual toxicity	Structural integrity	Performance cycles
Cadnum et al., 2020¹³	USA	HLD (aerosolized peracetic acid and H₂O₂)	HLD (aerosolized peracetic acid and H₂O₂)	21	Phi 6, MS2, MRSA	ND	ND	ND	ND	NM	3
		HLD (aerosolized peracetic acid and H₂O₂)	HLD (aerosolized peracetic acid and H₂O₂)	31	ND	ND	ND	ND	ND	NM	3
Viscui et al., 2007⁷	USA	Soap and water	-	2	ND	38.8	ND	ND	ND	NM	1
		Soap and water	-	20	ND	34.9	ND	ND	ND	NM	1

¹ Porta sens ITM sensor to ensure hydrogen peroxide levels were below the OSHA PEL³ of 1.0 ppm; ²H₂O₂ sensor (Bio quell, Horsham, Pennsylvania); ³Porta count quantitative fit test apparatus. ND, not done; NM, not mentioned; VHP, vaporous hydrogen peroxide; H₂O₂, hydrogen peroxide; iHP, ionized hydrogen peroxide; HPGP, H₂O₂ gas plasma; PEL, permissible exposure limit; HPV, human papillomavirus; NA, not available; ppm, parts per million; EtO, ethylene oxide; HLD, high-level disinfection; MRSA, methicillin resistant <i>Staphylococcus aureus</i>
Among other methods, HLD (aerosolized peracetic acid and \(\text{H}_2\text{O}_2 \)) and decontamination with soap and water has also been discussed. In the few studies on these methods, structural integrity and charge on the electret mask were not maintained (Tables III and F)\textsubscript{5,13}. Hence these methods would not be useful for mask decontamination.

Comparision of physical and chemical methods

Decontamination processes must meet the three major objectives. Firstly, these should be effective against the target virus (SARS-CoV-2 in this case). Secondly, the method of decontamination should not damage the mask filter. Thirdly, the decontaminated masks should be able to pass the fit test and exhibit no residual toxicity.

Heat-based methods are the simplest to implement and cost-effective for mask decontamination. Moist heat was found to have better efficacy than dry heat for decontamination of the N95 masks. MH technology provided a homogeneous distribution of heat over the entire surface of the mask and hence contributed to a more efficient method of decontamination9,10. The relative lack of efficacy of dry heat in these studies may be attributed to the fact that dry heat altered the N95 mask structure more than moist heat or steam interventions6. Among all heat-based methods, steam provides good BE, maintenance of structural integrity, filtration efficacy, and pressure reduction.

Other alternatives to heat are the low-temperature sterilization methods like UVGI, \(\text{H}_2\text{O}_2 \), and EtO, all of which exhibited excellent BE8,9,17. The advantage of using \(\text{H}_2\text{O}_2 \) as a decontamination method is that commercial systems such as BIOQUELL and STERRAD have already been tested and validated by manufacturing companies. The throughput capability of vaporous \(\text{H}_2\text{O}_2 \) processing is limited by the fact that cellulose-based products (e.g., cotton, which may be present in some head straps or some mask layers) absorb \(\text{H}_2\text{O}_2 \) and can cause the cycle to abort due to low \(\text{H}_2\text{O}_2 \) vapour concentration5. Significant levels of residual \(\text{H}_2\text{O}_2 \) vapours off-gassing from mask materials following the sterilization process are unlikely and not of concern because the vapours decompose readily into water vapour and oxygen, both of which are harmless. Biological indicators (\textit{Geobacillus stearothermophilus} spores) can be used to assess the quality control of the cycle19. The concentration of residual \(\text{H}_2\text{O}_2 \) in ppm levels should be checked before reusing the mask.

EtO meets the NIOSH performance requirements \textit{i.e.}, the filter penetration and pressure resistance. Minor limiting factors such as slight tarnishing of metallic nose-bands in VHP and darkening of the straps by EtO decontamination do not preclude its usage5. UVGI is limited by the non-uniform effect of its rays on surfaces of the mask, due to the shadow effect. Among these three methods, \(\text{H}_2\text{O}_2 \) provides the best alternative as it allows a maximum number of recycling of masks. Setting up these systems might be expensive in larger set-ups.

Other disinfectants evaluated in the included studies are widely used in household, commercial, healthcare, and food industry settings. Both ethanol and chlorine-based solution degrade the efficiency of the filter to unacceptable levels. Soap and water, although easily available in all settings, is not recommended. There is a possibility that the soap would remove the static charge on the fiber similar to the effect observed with isopropyl alcohol exposure. The severe degradation with soap and water suggests that other possible decontamination methods involving soap (\textit{e.g.}, washing machine, dishwasher) may have similar effects, but would need to be verified experimentally5.

An ideal decontamination method should not only demonstrate effective reductions in pathogen burden but also be able to preserve the structural and functional integrity of the mask without causing any residual chemical hazard to the wearer. In LMICs, the level of healthcare and availability of equipment are important factors that will guide the appropriate method to be used in a particular setting. Heat based methods can be used in settings with less patient inflow and basic equipment (autoclave /microwave) available. Though each of the methods has advantages along with disadvantages, the protocols need to be standardized and amended according to the requirement of the health care facility.

Another important factor is the acceptance of the recycled FFR by the healthcare workers. The transportation of masks from a healthcare facility to the place of decontamination requires a proper protocol to be followed. This mandates strict guidelines for transportation, treatment, and post-treatment storage and transportation of the masks to the designated place. Saini and Kaira16 have developed an institutional work-flow for the segregation, transportation, disinfection, storage and supply of contaminated masks. This will prevent
the person transporting the FFRs from infecting oneself. The availability of the instrument along with adequate healthcare staff is also a challenge. All these factors need due consideration besides the actual decontamination procedure per se.

Limitations

All these studies have been performed on the surrogate virus like H1N1 and bacteriophage. The actual performance of decontamination methods with COVID-19 virus will have greater impact in the current pandemic. Fischer et al.27 demonstrated the inactivation of SARS-CoV-2 on the surface of N95 masks in the preliminary results. Another important limitation is the lack of clinical studies. There are no studies that have evaluated the efficacy of recycling methods in a clinical setting. Whether reuse of N95 masks after decontamination would prevent the infection in healthcare workers is not known currently. Future studies should incorporate this aspect as an outcome while planning.

Conclusion

For the decontamination of N95 masks, among heat-based methods, steam is best for an LMIC setting. H2O2-based methods, UVGI, and EtO, all exhibited both adequate biocidal efficacies and functionality (fit testing and structural integrity). Vapourous H2O2 is the best method as it maintains NIOSH’s recommendations of the mask on re-use and one mask can be re-used 30 times. The selection and setting of the decontamination will have to be compared in terms of cost-effectiveness. Re-use of the N95 masks will decrease the pressure on increasing manufacturing demands. These conclusions have been derived from the studies performed on the surrogate virus. Further studies on logistics, HCW acceptability of reuse, and actual efficacy of protection against SARS-CoV-2 infection should be carried out to validate the use in real-life settings.

Financial support & sponsorship: None.

Conflicts of Interest: None.

References

1. Lynch JB, Davitkov P, Anderson DJ, Bhimraj A, Cheng VC, Guzman-CotrillJ, et al. Infectious Diseases Society of America Guidelines on Infection Prevention for Health Care Personnel Caring for Patients with Suspected or Known COVID-19. Clin Infect Dis 2020. doi: 10.1093/cid/ciaa1063.

2. Grossman J, Pierce A, Mody J, Gagne J, Sykora C, Sayood S, et al. Institution of a novel process for N95 respirator disinfection with vaporized hydrogen peroxide in the setting of the COVID-19 pandemic at a large academic medical center. J Am Coll Surg 2020; 231 : 275-80.

3. Cramer A, Plana D, Yang HL, Carmack D, Tian E, Sinha MS, et al. Analysis of SteraMist ionized hydrogen peroxide technology as a method for sterilizing N95 respirators and other personal protective equipment. medRxiv 2020. doi: 10.1101/2020.04.19.20069997.

4. Kapustin IA, Filatov IY, Filatov YN. Thermal destruction of nonwoven filter materials from polystyrene and polymethyl methacrylate. Fibre Chem 2013; 44 : 377-80.

5. Viscusi DJ, King WP, Shaffer RE. Effect of decontamination on the filtration efficiency of two filtering facepiece respirator models. Int Soc Respir Prot 2007; 24 : 93.

6. Viscusi DJ, Bergman MS, Eimer BC, Shaffer RE. Evaluation of five decontamination methods for filtering facepiece respirators. Ann Occup Hyg 2009; 53 : 815-27.

7. Bergman MS, Viscusi DJ, Heimbuch BK, Wander JD, Sambol AR, Shaffer RE. Evaluation of multiple (3-Cycle) decontamination processing for filtering facepiece respirators. J Eng Fiber Fabr 2010; 5 : 33-41.

8. Bopp NE, Bouyer DH, Gibbs CM, Nichols JE, Ntifo CA, Grimaldi MA. Multicycle autoclave decontamination of N95 filtering facepiece respirators. Appl Biosaf 2020; 25 : 150-6.

9. Lore MB, Heimbuch BK, Brown TL, Wander JD, Hinrichs SH. Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators. Ann Occup Hyg 2012; 56 : 92-101.

10. Heimbuch BK, Wallace WH, Kinney K, Lumley AE, Wu CY, Woo MH, et al. A pandemic influenza preparedness study: Use of energetic methods to decontaminate filter facepiece respirators contaminated with H1N1 aerosols and droplets. Am J Infect Control 2011; 39 : e1-9.

11. Ma Q, Shan H, Zhang C, Zhang H, Li G, Yang R, et al. Decontamination of face masks with steam for mask reuse in fighting the pandemic COVID-19: Experimental supports. J Med Virol 2020; 92 : 1971-4.

12. Fisher EM, Williams JL, Shaffer RE. Evaluation of microwave steam bags for the decontamination of filtering facepiece respirators. PLoS One 2011; 6 : e18585.

13. Cadnum JL, Li D, Redmond SN, John AR, Pearlmutter B, Donskey C. Effectiveness of ultraviolet-C light and a high-level disinfection cabinet for decontamination of N95 respirators. Pathog Immun 2020; 5 : 52.

14. Liao L, Xiao W, Zhao M, Yu X, Wang H, Wang Q, et al. Can N95 respirators be reused after disinfection? How many times? ACS Nano 2020; 14 : 6348-56.

15. Lindsley WG, Martin SB, Thewlis RE, Sarkisian K, Nwoko JO, Mead KR, et al. Effects of ultraviolet germicidal irradiation (UVGI) on N95 respirator filtration performance and structural integrity. J Occup Environ Hyg 2015; 12 : 509-17.
16. Mills D, Harnish DA, Lawrence C, Sandoval-Powers M, Heimbuch BK. Ultraviolet germicidal irradiation of influenza-contaminated N95 filtering facepiece respirators. *Am J Infect Control* 2018; 46: e49-55.

17. Fisher EM, Shaffer RE. A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators. *J Appl Microbiol* 2010; 110: 287-95.

18. Cheng VC, Wong SC, Kwan GS, Hui WT, Yuen KY. Disinfection of N95 respirators by ionized hydrogen peroxide during pandemic coronavirus disease 2019 (COVID-19) due to SARS-CoV-2. *J Hosp Infect* 2020; 105: 358-9.

19. Schwartz A, Stiegel M, Greeson N, Vogel A, Thomann W, Brown M, *et al.* Decontamination and reuse of N95 respirators with hydrogen peroxide vapor to address worldwide personal protective equipment shortages during the SARS-CoV-2 (COVID-19) pandemic. *Appl Biosaf* 2020; 25: 67-70.

20. Perkins DJ, Villescas S, Wu TH, Muller T, Bradfute S, Hurwitz I, *et al.* COVID-19 global pandemic planning: Decontamination and reuse processes for N95 respirators. *Exp Biol Med* 2020; 245: 933-9.

21. Kenney P, Chan BK, Kortright K, Cintron M, Havill N, Russi M, *et al.* Hydrogen peroxide vapor sterilization of N95 respirators for reuse. *medRxiv* 2020; doi: 2020.03.24.20041087.

22. Saini V, Sikri K, Batra SD, Kalra P, Gautam K. Development of a highly effective low-cost vaporized hydrogen peroxide-based method for disinfection of personal protective equipment for their selective reuse during pandemics. *Gut Pathog* 2020; 12: 29.

23. U.S. Food and Drug Administration. *Final report for the Bioquell hydrogen peroxide vapor (HPV) decontamination for reuse of N95 respirators*. Available from: https://www.fda.gov/media/136386/download, accessed on September 9, 2020.

24. Xiao H, Song Y, Chen G. Correlation between charge decay and solvent effect for melt-blown polypropylene electret filter fabrics. *J Electrostat* 2014; 72: 311-4.

25. Moyer ES, Bergman MS. Electrostatic N-95 respirator filter media efficiency degradation resulting from intermittent sodium chloride aerosol exposure. *Appl Occup Environ Hyg* 2000; 15: 600-8.

26. Saini V, Kaira P. An illustrated step-by-step guide to establish a disinfection facility for reuse of personal protective equipment. *Res Sq* 2020. doi: 10.21203/rs.3.pex-1082/v1.

27. Fischer R, Morris D, van Doremalen N, Sarchette S, Matson J, Bushmaker T, *et al.* Assessment of N95 respirator decontamination and re-use for SARS-CoV-2. *medRxiv* 2020. doi: 10.1101/2020.04.11.20062018.

For correspondence: Dr Archana Angrup, Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh 160 012, India

e-mail: archanaangrup@yahoo.com