Chapter from the book *Adaptive Control*

Downloaded from: http://www.intechopen.com/books/adaptive_control

Interested in publishing with InTechOpen? Contact us at book.department@intechopen.com
Adaptive Control for a Class of Non-affine Nonlinear Systems via Neural Networks

Zhao Tong

School of Automatization and Electronic Engineering, Qingdao University of Science and Technology, China

1. Introduction

Adaptive control of highly uncertain nonlinear dynamic systems has been an important research area in the past decades, and in the meantime neural networks control has found extensive application for a wide variety of areas and has attracted the attention of many control researches due to its strong approximation capability. Many significant results on these topics have been published in the literatures (Lewis et al., 1996; Yu & Li 2002; Yesidirek & Lewis 1995). It is proved to be successful that neural networks are used in adaptive control. However, most of these works are applicable for a kind of affine systems which can be linearly parameterized. Little has been found for the design of specific controllers for the nonlinear systems, which are implicit functions with respect to control input. We can find in literatures available there are mainly the results of Calise et al. (Calise & Hovakimyan 2001) and Ge et al. (Ge et al. 1997). Calise et al. removed the affine in control restriction by developing a dynamic inversion based control architecture with linearly parameterized neural networks in the feedback path to compensate for the inversion error introduced by an approximate inverse. However, the proposed scheme does not relate to the properties of the functions, therefore, the special properties are not used in design. Ge, S.S. et al., proposed the control schemes for a class of non-affine dynamic systems, using mean value theorem, separate control signals from controlled plant functions, and apply neural networks to approximate the control signal, therefore, obtain an adaptive control scheme.

Furthermore, when controlling large-scale and highly nonlinear systems, the presupposition of centrality is violated due to either due to problems in data gathering when is spread out or due to the lack of accurate mathematical models. To avoid the difficulties, the decentralized control architecture has been tried in controller design. Decentralized control systems often also arise from various complex situations where there exist physical limitations on information exchange among several subsystems for which there is insufficient capability to have a single central controller. Moreover, difficulty and uncertainty in, measuring parameter values within a large-scale system may call for adaptive techniques. Since these restrictions encompass a large group of applications, a variety of decentralized adaptive techniques have been developed (Ioannou 1986).
Earlier literature on the decentralized control methods were focused on control of large-scale linear systems. The pioneer work by Siljak (Siljak 1991) presents stability theorems of interconnected linear systems based on the structure information only. Many works consider subsystems which are linear in a set of unknown parameters (Ioannou 1986; Fu 1992; Sheikholeslam & Desor 1993; Wen 1994; Tang et al. 2000), and these results were focused on systems with first order interconnections. When the subsystems have nonlinear dynamics or the interconnected is entered in a nonlinear fashion, the analysis and design problem becomes even challenging.

The use of neural networks' learning ability avoids complex mathematical analysis in solving control problems when plant dynamics are complex and highly nonlinear, which is a distinct advantage over traditional control methods. As an alternative, intensive research has been carried out on neural networks control of unknown nonlinear systems. This motivates some researches on combining neural networks with adaptive control techniques to develop decentralized control approaches for uncertain nonlinear systems with restrictions on interconnections. For example, in (Spooner & Passino 1999), two decentralized adaptive control schemes for uncertain nonlinear systems with radial basis neural networks are proposed, which a direct adaptive approach approximates unknown control laws required to stabilize each subsystem, while an indirect approach is provided which identifies the isolated subsystem dynamics to produce a stabilizing controller. For a class of large scale affine nonlinear systems with strong interconnections, two neural networks are used to approximate the unknown subsystems and strong interconnections, respectively (Huang & Tan 2003), and Huang & Tan (Huang & Tan 2006) introduce a decomposition structure to obtain the solution to the problem of decentralized adaptive tracking control a class of affine nonlinear systems with strong interconnections. Apparently, most of these results are likewise applicable for affine systems described as above. For the decentralized control research of non-affine nonlinear systems, many results can be found from available literatures. Nardi et al. (Nardi & Hovakimyan 2006) extend the results in Calise et al. (Calise & Hovakimyan 2001) to non-affine nonlinear dynamical systems with first order interconnections. Huang (Huang & Tan 2005) apply the results in (Ge & Huang 1999) to a class of non-affine nonlinear systems with strong interconnections.

Inspired by the above researches, in this chapter, we propose a novel adaptive control scheme for non-affine nonlinear dynamic systems. Although the class of nonlinear plant is the same as that of Ge et al. (Ge et al. 1997), utilizing their nice reversibility, and invoking the concept of pseudo-control and inverse function theorem, we find the equitation of error dynamics to design adaptation laws. Using the property of approximation of two-layer neural networks (NN), the control algorithm is gained. Then, the controlled plants are extended to large-scale decentralized nonlinear systems, which the subsystems are composed of the class of non-affine nonlinear functions. Two schemes are proposed, respectively. The first scheme designs a RBFN-based (radial basis function neural networks) adaptive control scheme with the assumption which the interconnections between subsystems in entire system are bounded linearly by the norms of the tracking filtered error. In the scheme, unlike most of other approaches in available literatures, the weight of BBFN and center and width of Gaussian function are tuned adaptively. In another scheme, the interconnection is assumed as stronger nonlinear function. Moreover, in the former, in every subsystem, a RBFN is adopted which is used to approximate unknown function, and in the latter, in every subsystem, two RBFNs are respectively utilized to approximate unknown function.
Adaptive Control for a Class of Non-affine Nonlinear Systems via Neural Networks

339

function and uncertain strong interconnection function. For those complicated large-scale
decentralized dynamic systems, in order to decrease discontinuous factors and make
systems run smooth, unlike most of control schemes, the hyperbolic tangent functions are
quoted in the design of robust control terms, instead of sign function. Otherwise, the citation
of the smooth function is necessary to satisfy the condition of those theorems.

The rest of the paper is organized as follows. Section 2 gives the normal form of a class of
non-affine nonlinear systems. Section 3 proposes a novel adaptive control algorithm, which
is strictly derived from some mathematical and Lyapunov stability theories, and the
effectiveness of the scheme is validated through simulation. Extending the above-mentioned
result, Section 4 discusses two schemes of decentralized adaptive neural network control for
the class of large-scale nonlinear systems with linear function interconnections and
nonlinear function interconnections, respectively. Finally, the Section 5 is concluding
remarks.

2. Problem Statement

We consider a general analytic system

$$\begin{cases}
\zeta = g(\zeta, u), & \zeta \in \mathbb{R}^n, \quad u \in \mathbb{R} \\
y = h(\zeta), & y \in \mathbb{R}.
\end{cases}$$

(1)

where \(g(\cdot, \cdot)\) is a smooth vector fields and \(h(\cdot)\) is a scalar function. In practice, many
physical systems such as chemical reactions, PH neutralization and distillation columns are
inherently nonlinear, whose input variables may enter in the systems nonlinearly as
defined by the above general form (Ge et al. 1998). Then, the Lie derivative (Tsini\&s &
Kalouptsidis 1983) of \(h(\zeta)\) with respect to \([g(\cdot, \cdot), g(\cdot, \cdot)]\) is a scalar function defined
by \(L_h = \frac{\partial h(\zeta)}{\partial \zeta} g(\zeta, u)\). Repeated Lie derivatives can be defined recursively
as \(L^i_h = L_h(L^{i-1}_h)\), for \(i = 1, 2, \ldots\). The system (1) is said to have relative degree \(\alpha\)
at \((\zeta_0, u_0)\), if there exists a smallest positive integer \(\alpha\) such that
\(\partial L^i_h / \partial u = 0, \quad \partial L^\alpha_h / \partial u \neq 0, \quad i = 1, \ldots, \alpha - 1\).

Let \(\Omega_\zeta \subset \mathbb{R}^n\) and \(\Omega_u \subset \mathbb{R}\) be compact subsets containing \(\zeta_0\) and \(u_0\), respectively. System
(1) is said to have a strong relative degree \(\alpha\) in a compact set \(D = \Omega_\zeta \times \Omega_u\), if it has relative
degree \(\alpha\) at every point \((\zeta_0, u_0) \in D\). Therefore, system (1) is feedback linearizable and the
mapping \(\Phi(\zeta) = [\phi_1(\zeta), \phi_2(\zeta), \ldots \phi_n(\zeta)]\), with \(\phi_j(\zeta) = L^{j-1}_h, \quad j = 1, 2, \ldots, \alpha\)
has a Jacobian matrix which is nonsingular for all \(\mathbf{x} \in \Phi(\zeta)\), system (1) can be transformed into a normal form
\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
& \vdots \\
\dot{x}_n &= f(x, u) \\
y &= x_1
\end{align*}
\]
(2)

where \(f(x, u) = L^x h \) and \(x = \Phi^{-1}(\zeta) \) with \(x = [x_1, x_2, \cdots, x_n]^T \). Define the domain of normal system (2) as \(\Omega \subset \Omega \times R \).

\begin{align*}
\text{Assumption 1. } & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \partial f(x,u)/\partial u \neq 0 \text{ for all } (x,u) \in \Omega \times R.
\end{align*}

\begin{align*}
\text{Assumption 2. } & \ \ \ \ f(\cdot) : R^{n+1} \rightarrow R, \text{ is an unknown continuous function and } f(x,u) \text{ a smooth function with respect to control input } u.
\end{align*}

The control objective is: determine a control law, force the output, \(y \), to follow a given desired output, \(x_d \), with an acceptable accuracy, while all signals involved must be bounded.

\begin{align*}
\text{Assumption 3. } & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{The desired signals } x_d(t) = [y_d, y_d(1), \cdots, y_d(n-1)], \text{ and } X_d = [x_d^T, y_d^{(n)}]^T \text{ are bounded, with } ||X_d|| \leq X_d, \ \overline{X}_d \text{ a known positive constant}.
\end{align*}

Define the tracking error vector as
\[
e = x - x_d,
\]
(3)

and a filtered tracking error as
\[
\tau = [\Lambda^T \ 1]e,
\]
(4)

with \(\Lambda \) a gain parameter vector selected so that \(e(t) \rightarrow 0 \) as \(\tau \rightarrow 0 \). Differentiating (4), the filtered tracking error can be written as
\[
\dot{\tau} = \dot{x}_n - x_d^{(n)} + [0 \ \Lambda^T]e.
\]
(5)

Define a continuous function
where \(k \) is a positive constant. We know \(\partial f(x,u)/\partial u \neq 0 \) (Assumption 1), thus, \(\partial [f(x,u) - \delta]/\partial u \neq 0 \). Considering the fact that \(\partial \delta/\partial u = 0 \), we invoke the implicit function theorem (Lang 1983), there exists a continuous ideal control input \(u^* \) in a neighborhood of \((x,u) \in \Omega \times \mathbb{R} \), such that \(f(x,u^*) - \delta = 0 \), i.e. \(\delta = f(x,u^*) \) holds. \(\delta = f(x,u^*) \) may represent ideal control inverse.

Adding and subtracting \(\delta \) to the right-hand side of \(\dot{x}_n = f(x,u) \) of (2), one obtains

\[
\dot{x}_n = f(x,u) - \delta - k\tau + x_d^{(n)} - [0 \quad \Lambda^T]e,
\]

and yields

\[
\dot{\tau} = -k\tau + f(x,u) - \delta.
\]

Considering the following state dependent transformation \(\psi = \dot{x}_n \), where \(\psi \) is commonly referred to as the pseudo-control (Calise & Hovakimyan 2001). Apparently, the pseudo-control is not a function of the control \(u \) but rather a state dependent operator. Then, \(\partial \psi/\partial u = 0 \), from Assumption 1, \(\partial f(x,u)/\partial u \neq 0 \) thus \([\psi - f(x,u)]/\partial u \neq 0 \).

With the implicit function theorem, for every \((x,u) \in \Omega \times \mathbb{R} \), there exists a implicit function such that \(\psi - f(x,u) = 0 \) holds, i.e. \(\psi = f(x,u) \). Therefore, we have

\[
\psi = f(x,u).
\]

Furthermore, using inverse function theorem, with the fact that \([\psi - f(x,u)]/\partial u \neq 0 \) and \(f(x,u) \) is a smooth with respect to control input, \(u \), then, \(f(x,u) \) defines a local diffeomorphism (Slotine & Li 1991), such that, for a neighborhood of \(u \), there exists a smooth inverse function and \(u = f^{-1}(x,\psi) \) holds. If the inverse is available, the control problem is easy. But this inverse is not known, we can generally use some techniques, such as neural networks, to approximate it. Hence, we can obtain an estimated function, \(\hat{u} = f^{-1}(x,\hat{\psi}) \). This result in the following equation holding:

\[
\hat{\psi} = f(x,\hat{u}),
\]

where \(\hat{\psi} \) may be referred to as approximation pseudo-control input which represents actual dynamic approximation inverse.
Remark 1. According to the above-mentioned conditions, when one designs the pseudo-control signal, \(\hat{\psi} \), must be a smooth function. Therefore, in order to satisfy the condition, we adopt hyperbolic tangent function, instead of sign function in design of input. This also makes control signal tend smooth and system run easier. The hyperbolic tangent function has a good property as follows (Polycarpou 1996):

\[
0 < |\eta| - \eta \tanh\left(\frac{\eta}{\alpha}\right) \leq \zeta \alpha,
\]

(11)

with \(\zeta = 0.2785 \), \(\alpha \) any positive constant. Moreover, theoretically, \(\hat{\psi} \) is approximation inverse, generally a nonlinear function, but it must be bounded and play a dynamic approximation role and make system stable. Hence, it represents actual dynamic approximation inverse.

Based on the above conditions, in order to control the system and make it be stable, we design the approximation pseudo-control input \(\hat{\psi} \) as follows:

\[
\hat{\psi} = f(x,u^*) + u_{ad} + v_r,
\]

(12)

where \(u_{ad} \) is output of a neural network controller, which adopts a two-layer neural network, \(v_r \) is robustifying control term designed in stability analysis.

Adding and subtracting \(\hat{\psi} \) to the right-hand side of (8), with \(\delta = f(x,u^*) \), we have

\[
\dot{\tau} = -k \tau + f(x,u) + \hat{\psi} - f(x,u^*) - u_{ad} - v_r - \delta
\]

\[
= -k \tau + \Delta(x,u,u^*) + \hat{\psi} - \delta - u_{ad} - v_r,
\]

(13)

where \(\Delta(x,u,u^*) = f(x,u) - f(x,u^*) \) is error between nonlinear function and its ideal control function, we can use the neural network to approximate it.

3.1 Neural network-based approximation

A two-layer NN consists of two layers of tunable weights, a hidden layer and an output layer. Given a \(\varepsilon > 0 \), there exists a set of bounded weights \(M \) and \(N \) such that the nonlinear error \(\check{\Delta} \in C(\Omega) \), with \(\Omega \) compact subset of \(\mathbb{R}^n \), can be approximated by a two-layer neural network, i.e.

\[
\check{\Delta} = M^T \sigma(N^T x_{nn}) + \varepsilon(x_{nn}),
\]

(14)

with \(x_{nn} = [1,x_d^T,e^T,\hat{\psi}] \) input vector of NN.
Assumption 4. The approximation error ε is bounded as follows:

$$|\varepsilon| \leq \varepsilon_N,$$

where $\varepsilon_N > 0$ is an unknown constant.

Let \hat{M} and \hat{N} be the estimates respectively of M and N. Based on these estimates, let u_{ad} be the output of the NN

$$u_{\text{ad}} = \hat{M}^T \sigma(\hat{N}^T x_{nn}).$$

Define $\tilde{M} = M - \hat{M}$ and $\tilde{N} = N - \hat{N}$, where we use notations: $Z = \text{diag}[M, N]$, $\tilde{Z} = \text{diag}[\tilde{M}, \tilde{N}]$, $\tilde{Z} = \text{diag}[\tilde{M}, \tilde{N}]$ for convenience. Then, the following inequality holds:

$$\text{tr}(\tilde{Z}^T \tilde{Z}) \leq \left\| \tilde{Z} \right\|_F^2.$$

The Taylor series expansion of $\sigma(N^T x_{nn})$ for a given x_{nn} can be written as:

$$\sigma(N^T x_{nn}) = \sigma(\hat{N}^T x_{nn}) + \sigma'(\hat{N}^T x_{nn}) \hat{N}^T x_{nn} + O(\hat{N}^T x_{nn})^2,$$

with $\hat{\sigma} := \sigma(\hat{N}^T x_{nn})$ and $\hat{\sigma}'$ denoting its Jacobian, $O(\hat{N}^T x_{nn})^2$ the term of order two. In the following, we use notations: $\sigma := \sigma(N^T x_{nn})$, $\hat{\sigma} := \sigma(\hat{N}^T x_{nn})$.

With the procedure as Appendix A, the approximation error of function can be written as

$$M^T \sigma(N^T x_{nn}) - \hat{M}^T \sigma(\hat{N}^T x_{nn}) = \hat{M}^T (\hat{\sigma} - \hat{\sigma}' \hat{N}^T x_{nn}) + \hat{M}^T \hat{\sigma}' \hat{N}^T x_{nn} + \omega,$$

and the disturbance term ω can be bounded as

$$|\omega| \leq \left\| N \right\|_F \left\| x_{nn} \hat{M}^T \hat{\sigma}' \right\|_F + \left\| M \right\| \left\| \hat{\sigma}' \hat{N}^T x_{nn} \right\| + \left\| M \right\|,$$

where the subscript “F” denotes Frobenius norm, and the subscript “1” the 1-norm. Redefine this bound as

$$|\omega| \leq \rho_\omega \vartheta_\omega (\hat{M}, \hat{N}, x_{nn}),$$
where \(\rho_\omega = \max \{ \| M \|, \| N \|, \| M \|, \| N \| \} \) and \(\vartheta_\omega = \| x_m^T \hat{M}^T \hat{\sigma}' \| + \| \hat{\sigma}' N^T x_m \| + 1 \). Notice that \(\rho_\omega \) is an unknown coefficient, whereas \(\vartheta_\omega \) is a known function.

3.2 Parameters update law and stability analysis

Substituting (14) and (16) into (13), we have

\[
\hat{\dot{t}} = -k_1 \tau + M^T \sigma(N^T x_m) - \hat{M}^T \sigma(\hat{N}^T x_m) + \psi - v_r - \delta + \varepsilon(x_m).
\]

Using (19), the above equation can become

\[
\hat{\dot{t}} = -k_1 \tau + \hat{M}^T (\hat{\sigma} - \hat{\sigma}' \hat{N}^T x_m) + \hat{M}^T \hat{\sigma}' \hat{N}^T x_m + \psi - \delta - v_r + \omega + \varepsilon.
\]

Theorem 1. Consider the nonlinear system represented by Eq. (2) and let Assumption 1-4 hold. If choose the approximation pseudo-control input \(\hat{\psi} \) as Eq. (12), use the following adaptation laws and robust control law

\[
\begin{align*}
\hat{\dot{M}} &= F[\hat{\sigma} - \hat{\sigma}' N x_m] \tau - k_1 \hat{M} \tau, \\
\hat{\dot{N}} &= R[x_m^T \hat{M}^T \hat{\sigma}' \tau - k_1 \hat{N} \tau], \\
\hat{\dot{\phi}} &= \gamma \left\{ \tau (\vartheta_\omega + 1) \tanh \left[\frac{\tau (\vartheta_\omega + 1)}{\alpha} \right] - \lambda \hat{\phi} \right\}, \\
v_r &= -\hat{\phi} (\vartheta_\omega + 1) \tanh \left[\frac{\tau (\vartheta_\omega + 1)}{\alpha} \right]
\end{align*}
\]

where \(F = F^T > 0, R = R^T > 0 \) are any constant matrices, \(k_1 > 0 \) and \(\gamma > 0 \) are scalar design parameters, \(\hat{\phi} \) is the estimated value of the uncertain disturbance term \(\phi = \max(\rho_\omega, \varepsilon_N) \), defining \(\tilde{\phi} = \phi - \hat{\phi} \) with \(\tilde{\phi} \) error of \(\phi \), then, guarantee that all signals in the system are uniformly bounded and that the tracking error converges to a neighborhood of the origin.

Proof. Consider the following positive define Lyapunov function candidate as

\[
L = \frac{1}{2} \tau^2 + \frac{1}{2} \text{tr}(\hat{M}^T F^{-1} \hat{M}) + \frac{1}{2} \text{tr}(\hat{N}^T R^{-1} \hat{N}) + \frac{1}{2} \gamma^{-1} \hat{\phi}^2
\]

The time derivative of the above equation is given by

\[
\dot{L} = \dot{\tau} \tau + \text{tr}(\hat{M}^T F^{-1} \dot{\hat{M}}) + \text{tr}(\hat{N}^T R^{-1} \dot{\hat{N}}) + \gamma^{-1} \dot{\hat{\phi}} \hat{\phi}
\]
Substituting (23) and the anterior two terms of (24) into (26), after some straightforward manipulations, we obtain

\[
\dot{L} = -k\tau^2 + \tau [\hat{M}^T (\hat{\sigma} - \hat{\sigma}^T \hat{N}^T x_m) + \hat{M}^T \hat{\sigma}^T \hat{N}^T x_m + (\hat{y} - \delta) - v + \omega + \varepsilon] \\
+ \text{tr}(\hat{M}^T F^{-1} \hat{M}) + \text{tr}(\hat{N}^T R^{-1} \hat{N}) + \gamma^{-1} \hat{\phi}^2 \\
= -k\tau^2 + \tau (\hat{y} - \delta) - \tau v + \tau (\omega + \varepsilon) + \gamma^{-1} \hat{\phi}^2 + k_1 |\tau| \text{tr}(\hat{Z}^T \hat{Z}). \\
\leq -k\tau^2 + \tau (\hat{y} - \delta) - \tau v + |\tau| \phi(\theta_c + 1) + \gamma^{-1} \hat{\phi}^2 + k_1 |\tau| \text{tr}(\hat{Z}^T \hat{Z}).
\]

(27)

With (4),(6),(12),(16) and the last two equations of (24), the approximation error between actual approximation inverse and ideal control inverse is bounded by

\[
|\hat{y} - \delta| \leq c_1 + c_2 |\tau| + c_3 \|\hat{Z}\|_F,
\]

(28)

where \(c_1, c_2, c_3\) are positive constants.

Using (11) and the last two terms of (24), we obtain

\[
\dot{L} \leq -k\tau^2 + \tau (\hat{y} - \delta) - \tau \hat{\phi}(\theta_c + 1) \tanh \left[\frac{\tau(\theta_c + 1)}{\alpha} \right] \\
+ |\tau| \phi(\theta_c + 1) - \hat{\phi} \left[\tau(\theta_c + 1) \tanh \left[\frac{\tau(\theta_c + 1)}{\alpha} \right] - \lambda \hat{\phi} \right] + k_1 |\tau| \text{tr}(\hat{Z}^T \hat{Z}) \\
\leq -k\tau^2 + \tau (\hat{y} - \delta) + \zeta \phi\alpha + \lambda \hat{\phi}^2 + k_1 |\tau| \text{tr}(\hat{Z}^T \hat{Z}).
\]

(29)

Applying (17),(28), and \(\hat{\phi} \leq \bar{\phi} = \|\phi\| - \|\phi\|^2\), after completing square, we have the following inequality

\[
\dot{L} \leq -(k - c_2)|\tau|^2 + D_1 |\tau| + D_2
\]

(30)

where \(D_1 = c_1 + \frac{k_1}{4} (Z_M + c_3)^2, D_2 = \frac{1}{4} \bar{\phi}^2 + \zeta \phi\alpha\).

Let \(D_3 = \sqrt{D_1^2 + 4D_2(k - c_2)} + D_1\), thus, as long as \(|\tau| \geq D_3/[2(k - c_2)]\), and \(k > c_2\), then \(\dot{L} \leq 0\) holds.

Now define
Since \(Z, k, k, D, D, D, c, c, c \) are positive constants, as long as \(k \) is chosen to be big enough, such that \(k > c_2 \) holds, we conclude that \(\Omega_\phi, \Omega_Z \) and \(\Omega_\tau \) are compact sets. Hence \(\dot{L} \) is negative outside these compact sets. According to a standard Lyapunov theorem, this demonstrates that \(\dot{\phi}, \dot{Z} \) and \(\tau \) are bounded and will converge to \(\Omega_\phi, \Omega_Z \) and \(\Omega_\tau \), respectively. Furthermore, this implies \(e \) is bounded and will converge to a neighborhood of the origin and all signals in the system are uniformly bounded.

3.3 Simulation Study

In order to validate the performance of the proposed neural network-based adaptive control scheme, we consider a nonlinear plant, which described by the differential equation

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -\omega^2 x_1 - 0.02(\omega + x_1^2) x_2 + u^3 + (x_1^2 + x_2^2) \sigma(u) + \tanh(0.2u) + d
\end{align*}
\]

(32)

where \(\omega = 0.4\pi \), \(\sigma(u) = (1 - e^{-u})/(1 + e^{-u}) \) and \(d = 0.2 \). The desired trajectory \(x_d = 0.1\pi[\sin(2t) - \cos(t)] \).

To show the effectiveness of the proposed method, two controllers are studied for comparison. A fixed-gain PD control law is first used as Polycarpou, (Polycarpou 1996). Then, the adaptive controller based on NN proposed is applied to the system.

Input vector of neural network is \(x_{in} = [1, x_1^T, x_T, \dot{\phi}] \), and number of hidden layer nodes 25.

The initial weight of neural network is \(\tilde{M}(0) = 0, \tilde{N}(0) = 0 \). The initial condition of controlled plant is \(x(0) = [0.1, 0.2]^T \). The other parameters are chosen as follows: \(k_1 = 0.01, \gamma = 0.1, \lambda = 0.01, \alpha = 10, \Lambda = 2, F = 8I_M, R = 5I_N \), with \(I_M, I_N \) corresponding identity matrices.

Fig.1, 2, and 3 show the results of comparisons, the PD controller and the adaptive controller based on NN proposed, of tracking errors, output tracking and control input, respectively. These results indicate that the adaptive controller based on NN proposed presents better control performance than that of the PD controller. Fig.4 depicts the results of output of NN, norm values of \(\tilde{M}, \tilde{N}, \) respectively, to illustrate the boundedness of the estimates of \(\tilde{M}, \tilde{N} \) and the control role of NN. From the results as figures, it can be seen that the learning rate of neural network is rapid, and tracks objective in less than 2 seconds. Moreover, as desired, all signals in system, including control signal, tend to be smooth.
Fig. 1. Tracking errors: PD(dot) and NN(solid).

Fig. 2. Output tracking: desired (dash), NN(solid) and PD(dot).

Fig. 3. Control input: PD (dash), NN(solid)

Fig. 4. $\|\hat{M}\|$ (dash), $\|\hat{N}\|$ (dot), output of NN(solid)
4. Decentralized Adaptive Neural Network Control of a Class of Large-Scale Nonlinear Systems with linear function interconnections

In the section, the above proposed scheme is extended to large-scale decentralized nonlinear systems, which the subsystems are composed of the class of the above-mentioned non-affine nonlinear functions. Two schemes are proposed, respectively. The first scheme designs a RBFN-based adaptive control scheme with the assumption which the interconnections between subsystems in entire system are bounded linearly by the norms of the tracking filtered error. In another scheme, the interconnection is assumed as stronger nonlinear function.

We consider the differential equations in the following form described, and assume the large-scale system is composed of the nonlinear subsystems:

\[
\begin{aligned}
 \dot{x}_{i1} &= x_{i2} \\
 \dot{x}_{i2} &= x_{i3} \\
 & \vdots \\
 \dot{x}_{ii} &= f_i(x_{i1}, x_{i2}, \cdots, x_{ii}, u_i) + g_i(x_1, x_2, \cdots, x_n) \\
 y_i &= x_{i1}
\end{aligned}
\]

\[i = 1, 2, \cdots, n, \tag{33}\]

where \(x_i \in \mathbb{R}^i\) is the state vector, \(x_i = [x_{i1}, x_{i2}, \cdots, x_{ii}]^T\), \(u_i \in \mathbb{R}\) is the input and \(y_i \in \mathbb{R}\) is the output of the \(i\)-th subsystem.

\(f_i(x, u_i) : \mathbb{R}^{ii+1} \to \mathbb{R}\) is an unknown continuous function and implicit and smooth function with respect to control input \(u_i\).

Assumption 5. \(\partial f_i(x_i, u_i) / \partial u_i \neq 0\) for all \((x_i, u_i) \in \Omega_i \times \mathbb{R}\).

\(g_i(x_1, x_2, \cdots, x_n)\) is the interconnection term. In according to the distinctness of the interconnection term, two schemes are respectively designed in the following.

4.1 RBFN-based decentralized adaptive control for the class of large-scale nonlinear systems with linear function interconnections

Assumption 6. The interconnection effect is bounded by the following function:

\[|g_i(x_1, x_2, \cdots, x_n)| \leq \sum_{j=1}^{n} \gamma_j |\tau_j|, \tag{34}\]

where \(\gamma_j\) are unknown coefficients, \(\tau_j\) is a filtered tracking error to be defined shortly.
The control objective is: determine a control law, force the output, \(y_i \), to follow a given desired output, \(x_{di} \), with an acceptable accuracy, while all signals involved must be bounded.

Define the desired trajectory vector \(x_{di} = [y_{di}, \dot{y}_{di}, \cdots, y_{di}^{(l_i-1)}]^{T} \) and \(X_{di} = [y_{di}, \dot{y}_{di}, \cdots, y_{di}^{(l_i)}]^{T} \), tracking error \(e_i = x_i - x_{di} = [e_{i1}, e_{i2}, \cdots, e_{il_i}]^{T} \), thus, the filter tracking error can be written as

\[
\tau_i = [\Lambda_i^{T} - 1]e_i = k_{i1}e_{i1} + k_{i2}\dot{e}_{i1} + \cdots + k_{i(l_i-1)}e_{i(l_i-2)}^{(l_i-2)} + e_{i(l_i-1)},
\]

where the coefficients are chosen such that the polynomial \(k_{i1} + k_{i2}s + \cdots + k_{i(l_i-1)}s^{(l_i-2)} + s^{(l_i-1)} \) is Hurwitz.

Assumption 7. The desired signal \(x_{di}(t) \) is bounded, so that \(|X_{di}| \leq \bar{X}_{di}\), where \(\bar{X}_{di} \) is a known constant.

For an isolated subsystem, without interconnection function, by differentiating (35), the filtered tracking error can be rewritten as

\[
\dot{\tau}_i = \dot{x}_{di} - x_{di}^{(l_i)} + [0 \ 0 \ \cdots \ 0 \ \Lambda_i^{T}]e_i = f_i(x_i, u_i) + Y_{di}
\]

with \(Y_{di} = -x_{di}^{(l_i)} + [0 \ \Lambda_i^{T}]e_i \).

Define a continuous function

\[
\delta_i = -k_i\tau_i - Y_{di}
\]

where \(k_i \) is a positive constant. With Assumption 5, we know \(\partial f(x_i, u_i)/\partial u_i \neq 0 \), thus, \(\partial[f(x_i, u_i) - \delta_i]/\partial u_i \neq 0 \). Considering the fact that \(\partial \delta_i/\partial u_i = 0 \), we invoke the implicit function theorem, there exists a continuous ideal control input \(u_i^{*} \) in a neighborhood of \((x_i, u_i) \in \Omega_i \times \mathbb{R} \), such that \(f(x_i, u_i^{*}) - \delta_i = 0 \), i.e. \(\delta_i = f_i(x_i, u_i^{*}) \) holds. \(\delta_i = f_i(x_i, u_i^{*}) \) represents ideal control inverse.

Adding and subtracting \(\delta_i \) to the right-hand side of \(\dot{x}_{di} = f_i(x_i, u_i) + g_i \) of (33), one obtains

\[
\dot{x}_{di} = f_i(x_i, u_i) + g_i - \delta_i - k_i\tau_i - Y_{di},
\]

and yields
\[\dot{t}_i = -k_i \tau_i + f_i(x_i, u_i) + g_i - \delta_i. \]

(39)

In the same the above-discussed manner as equations (9)-(10), we can obtain the following equation:

\[\hat{\psi}_i = f_i(x_i, \hat{u}_i). \]

(40)

Based on the above conditions, in order to control the system and make it be stable, we design the approximation pseudo-control input \(\hat{\psi}_i \) as follows:

\[\hat{\psi}_i = -k_i \tau_i - Y_{di} + u_{ci} + v_{ri}, \]

(41)

where \(u_{ci} \) is output of a neural network controller, which adopts a RBFN, \(v_{ri} \) is robustifying control term designed in stability analysis.

Adding and subtracting \(\hat{\psi}_i \) to the right-hand side of (39), with \(\delta_i = -k_i \tau_i - Y_{di} = f_i(x_i, u_i^*) \), we have

\[\dot{\tilde{t}}_i = -k_i \tau_i + \tilde{\Delta}_i(x_i, u_i, u_i^*) - u_{ci} + \hat{\psi}_i - \delta_i - v_{ri} + g_i, \]

(42)

where \(\tilde{\Delta}_i(x_i, u_i, u_i^*) = f_i(x_i, u_i) - f_i(x_i, u_i^*) \) is error between nonlinear function and its ideal control function, we can use the RBFN to approximate it.

4.1.1 Neural network-based approximation

Given a multi-input-single-output RBFN, let \(n_i \) and \(m_i \) be node number of input layer and hidden layer, respectively. The active function used in the RBFN is Gaussian function, \(S_i(x) = \exp[-0.5(\|z_i - \mu_i\|^2 / \sigma_i^2)] \), \(i = 1, \ldots, n_i, k = 1, \ldots, m_i \) where \(z_i \in R^{n_i \times 1} \) is input vector of the RBFN, \(\mu_i \in R^{n_i \times m_i} \) and \(\sigma_i \in R^{m_i \times 1} \) are the center matrix and the width vector.

Based on the approximation property of RBFN, \(\tilde{\Delta}_i(x_i, u_i, u_i^*) \) can be written as

\[\tilde{\Delta}_i(x_i, u_i, u_i^*) = W_i^T S_i(z_i, \mu_i, \sigma_i) + \varepsilon_i(z_i), \]

(43)

where \(\varepsilon_i(z_i) \) is approximation error of RBFN, \(W_i \in R^{m_i \times 1} \).

Assumption 8. The approximation error \(\varepsilon(x_{nn}) \) is bounded by \(|\varepsilon_i| \leq \varepsilon_{Ni} \), with \(\varepsilon_{Ni} > 0 \) is an unknown constant.

The input of RBFN is chosen as \(z_i = [x_i^T, \tau_i, \hat{\psi}_i]^T \). Moreover, output of RBFN is designed as
Define $\hat{W}_i, \hat{\mu}_i, \hat{\sigma}_i$ as estimates of ideal W_i, μ_i, σ_i, which are given by the RBFN tuning algorithms.

Assumption 9. The ideal values of W_i, μ_i, σ_i satisfy

$$\left\| W_i \right\| \leq W_{IM}, \quad \left\| \mu_i \right\|_F \leq \mu_{IM}, \quad \left\| \sigma_i \right\| \leq \sigma_{IM},$$

where $W_{IM}, \mu_{IM}, \sigma_{IM}$ are positive constants. $\left\| \cdot \right\|_F$ and $\left\| \cdot \right\|_2$ denote Frobenius norm and 2-norm, respectively. Define their estimation errors as

$$\hat{W}_i = W_i - \hat{W}_i, \quad \hat{\mu}_i = \mu_i - \hat{\mu}_i, \quad \hat{\sigma}_i = \sigma_i - \hat{\sigma}_i.$$

Using the notations: $Z_i = \text{diag}[W_i, \mu_i, \sigma_i], \tilde{Z}_i = \text{diag}[\hat{W}_i, \hat{\mu}_i, \hat{\sigma}_i], \hat{Z}_i = \text{diag}[\hat{W}_i, \hat{\mu}_i, \hat{\sigma}_i]$ for convenience.

The Taylor series expansion for a given μ_i and σ_i is

$$S_i(z_i, \mu_i, \sigma_i) = S_i(z_i, \hat{\mu}_i, \hat{\sigma}_i) + \hat{S}_{\mu i} \hat{\mu}_i + \hat{S}_{\sigma i} \hat{\sigma}_i + O(\hat{\mu}_i, \hat{\sigma}_i)^2$$

where $\hat{S}_{\mu i} \equiv \partial S_k(z_i, \hat{\mu}_i, \hat{\sigma}_i)/\partial \mu_i, \quad \hat{S}_{\sigma i} \equiv \partial S_k(z_i, \hat{\mu}_i, \hat{\sigma}_i)/\partial \sigma_i$ evaluated at $\mu_i = \hat{\mu}_i$, $\sigma_i = \hat{\sigma}_i, O(\hat{\mu}_i, \hat{\sigma}_i)^2$ denotes the terms of order two. We use notations: $\hat{S}_i := S_i(z_i, \hat{\mu}_i, \hat{\sigma}_i), \quad \hat{S}_i := S_i(z_i, \hat{\mu}_i, \hat{\sigma}_i).$

Following the procedure in Appendix B, it can be shown that the following operation. The function approximation error can be written as

$$W_i^T S_i - \hat{W}_i^T \hat{S}_i = \hat{W}_i^T (\hat{S}_i - \hat{S}_{\mu i} \hat{\mu}_i - \hat{S}_{\sigma i} \hat{\sigma}_i) + \hat{W}_i^T (\hat{S}_{\mu i} \hat{\mu}_i + \hat{S}_{\sigma i} \hat{\sigma}_i) + \omega_i(t),$$

The disturbance term $\omega_i(t)$ is given by

$$\omega_i(t) = W_i^T (S_i - \hat{S}_i) + W_i^T (\hat{S}_{\mu i} \hat{\mu}_i + \hat{S}_{\sigma i} \hat{\sigma}_i) - \hat{W}_i^T (\hat{S}_{\mu i} \hat{\mu}_i + \hat{S}_{\sigma i} \hat{\sigma}_i)$$

Then, the upper bound of $\omega_i(t)$ can be written as

$$\left| \omega_i(t) \right| \leq \left\| W_i \right\| \left(\left\| \hat{S}_{\mu i} \right\|_F + \left\| \hat{S}_{\sigma i} \right\|_F \right) + \left\| \hat{W}_i \right\|_F \left\| \hat{S}_{\mu i} \right\|_F + \left\| \hat{W}_i \right\|_F \left\| \hat{S}_{\sigma i} \right\|_F + 2 \left\| W_i \right\| \leq \rho_{\text{est}} g_{\text{est}}$$

$$\left| \omega_i(t) \right| \leq \left\| W_i \right\| \left(\left\| \hat{S}_{\mu i} \right\|_F + \left\| \hat{S}_{\sigma i} \right\|_F \right) + \left\| \hat{W}_i \right\|_F \left\| \hat{S}_{\mu i} \right\|_F + \left\| \hat{W}_i \right\|_F \left\| \hat{S}_{\sigma i} \right\|_F + 2 \left\| W_i \right\| \leq \rho_{\text{est}} g_{\text{est}}$$

$$\left| \omega_i(t) \right| \leq \left\| W_i \right\| \left(\left\| \hat{S}_{\mu i} \right\|_F + \left\| \hat{S}_{\sigma i} \right\|_F \right) + \left\| \hat{W}_i \right\|_F \left\| \hat{S}_{\mu i} \right\|_F + \left\| \hat{W}_i \right\|_F \left\| \hat{S}_{\sigma i} \right\|_F + 2 \left\| W_i \right\| \leq \rho_{\text{est}} g_{\text{est}}$$
where $\rho_{oi} = \max(\|W_i\|_F, \|\mu_i\|_F, \|\sigma_i\|_F, 2\|W_i\|_F)$, $\mathcal{G}_{oi} = \|\hat{S}_{\mu i}^T \hat{\mu}_i\|_F + \|\hat{S}_{\sigma i}^T \hat{\sigma}_i\|_F + \|\hat{W}_i^T \hat{S}_{\mu i}^T\|_F + \|\hat{W}_i^T \hat{S}_{\sigma i}^T\|_F + 1$, with $\|\|_1$ 1 norm. Notice that ρ_{oi} is an unknown coefficient, whereas \mathcal{G}_{oi} is a known function.

4.1.2 Controller design and stability analysis

Substituting (43) and (44) into (42), we have

$$\dot{\tau}_i = -k_i\tau_i + W_i^T S_i - \hat{W}_i^T \hat{S}_i + \hat{\psi}_i - \delta_i - v_{ri} + g_i + \varepsilon_i(z_i), \quad (51)$$

using (48), the above equation can become

$$\dot{\tau}_i = -k_i\tau_i + \hat{W}_i^T (\hat{S}_i - \hat{S}_{\mu i} \hat{\mu}_i - \hat{S}_{\sigma i} \hat{\sigma}_i) + \hat{W}_i^T (\hat{S}_{\mu i}^T \hat{\mu}_i + \hat{S}_{\sigma i}^T \hat{\sigma}_i)$$

$$+ \hat{\psi}_i - \delta_i - v_{ri} + g_i + \varepsilon_i(z_i) + \omega_i(t). \quad (52)$$

Theorem 2. Consider the nonlinear subsystems represented by Eq. (33) and let assumptions hold. If choose the pseudo-control input $\hat{\psi}_i$ as Eq. (41), and use the following adaptation laws and robust control law

$$\dot{\hat{W}}_i = F_i \left[(\hat{S}_i - \hat{S}_{\mu i} \hat{\mu}_i - \hat{S}_{\sigma i} \hat{\sigma}_i) \tau_i - \gamma_{wi} \hat{W}_i |\tau_i| \right], \quad (53)$$

$$\dot{\hat{\mu}}_i = G_i \left[\hat{S}_{\mu i}^T \hat{W}_i \tau_i - \gamma_{wi} \hat{\mu}_i |\tau_i| \right], \quad (54)$$

$$\dot{\hat{\sigma}}_i = H_i \left[\hat{S}_{\sigma i}^T \hat{W}_i \tau_i - \gamma_{wi} \hat{\sigma}_i |\tau_i| \right], \quad (55)$$

$$\dot{\hat{\phi}}_i = \gamma_{\phi i} \left[\tau_i \mathcal{G}_{oi}^* \tanh(\frac{\tau_i \mathcal{G}_{oi}^*}{\alpha_i}) - \lambda_{\phi i} \hat{\phi}_i |\tau_i| \right], \quad (56)$$

$$\dot{\hat{d}}_i = \gamma_{di} (\tau_i^2 - \lambda_{di} \hat{d}_i |\tau_i|), \quad (57)$$

$$v_{ri} = \hat{\phi}_i \mathcal{G}_{oi}^* \tanh(\frac{\tau_i \mathcal{G}_{oi}^*}{\alpha_i}) + \hat{d}_i \tau_i, \quad (58)$$
where \(g_{0k} = g_{0k} + 1 \), \(F_i = F_i^T > 0, G_i = G_i^T > 0, H_i = H_i^T > 0 \) are any constant matrices, \(\gamma_{Wi}, \gamma_{\psi l}, \gamma_{di}, \lambda_{\psi l}, \lambda_{di} \) and \(\alpha_i \) are positive design parameters, \(\hat{\phi}_i \) is the estimated value of the uncertain disturbance term \(\phi_i = \max(\rho_{0k}, e_{Ni}) \), defining \(\tilde{\phi}_i = \phi_i - \hat{\phi}_i \) with \(\tilde{\phi}_i \) error, \(d_i > 0 \) is used to estimate unknown positive number to shield interconnection effect, \(\hat{d}_i \) is its estimated value, with \(\tilde{d}_i = d_i - \hat{d}_i \) estimated error, then, guarantee that all signals in the system are bounded and the tracking error \(e_i \) will converge to a neighborhood of the origin.

Proof. Consider the following positive define Lyapunov function candidate as

\[
L_i = \frac{1}{2} \tau_i^2 + \frac{1}{2} \left[tr(\hat{W}_i^T F_i^{-1} \hat{W}_i) + tr(\hat{\mu}_i^T G_i^{-1} \hat{\mu}_i) + tr(\hat{\sigma}_i^T H_i^{-1} \hat{\sigma}_i) + \gamma_{\psi l} \tilde{\phi}_i^2 + \gamma_{di} \tilde{d}_i^2 \right] (59)
\]

The time derivative of the above equation is given by

\[
\dot{L}_i = \tau_i \dot{\tau}_i + tr(\hat{W}_i^T F_i^{-1} \dot{\hat{W}}_i) + tr(\hat{\mu}_i^T G_i^{-1} \dot{\hat{\mu}}_i) + tr(\hat{\sigma}_i^T H_i^{-1} \dot{\hat{\sigma}}_i) + \gamma_{\psi l} \tilde{\phi}_i \dot{\tilde{\phi}}_i + \gamma_{di} \tilde{d}_i \dot{\tilde{d}}_i (60)
\]

Applying (52) to (60), we have

\[
\dot{L}_i = \tau_i \left[-k_i \tau_i + \hat{W}_i^T (\hat{S}_i - S_{\mu i} \hat{\mu}_i - S_{\sigma i} \hat{\sigma}_i) + \hat{W}_i^T (\hat{S}_{\mu i} \hat{\mu}_i + \hat{S}_{\sigma i} \hat{\sigma}_i) \right] \\
+ \hat{\psi}_i - \hat{\sigma}_i - v_i + g_i + \epsilon_i + \omega_i \\
+ tr(\hat{W}_i^T F_i^{-1} \dot{\hat{W}}_i) + tr(\hat{\mu}_i^T G_i^{-1} \dot{\hat{\mu}}_i) + tr(\hat{\sigma}_i^T H_i^{-1} \dot{\hat{\sigma}}_i) + \gamma_{\psi l} \tilde{\phi}_i \dot{\tilde{\phi}}_i + \gamma_{di} \tilde{d}_i \dot{\tilde{d}}_i (61)
\]

Substituting the adaptive laws (53), (54) and (55) into (61), and \(\left(\ddot{z}_i \right) = - \left(\dot{z}_i \right) \), yields

\[
\dot{L}_i = \tau_i \left[-k_i \tau_i + \hat{\psi}_i - \hat{\sigma}_i - v_i + g_i + \epsilon_i + \omega_i \right] + \gamma_{Wi} \left| \tau_i \right| tr(\hat{Z}_i^T \dot{\hat{Z}}_i) + \gamma_{\psi l} \tilde{\phi}_i \dot{\tilde{\phi}}_i + \gamma_{di} \tilde{d}_i \dot{\tilde{d}}_i \\
\leq -k_i \tau_i^2 + \tau_i (\hat{\psi}_i - \hat{\sigma}_i) - v_i \tau_i + \tau_i g_i + \left| \tau_i \right| (\rho_{0k} \phi_{0k} + e_{Ni}) \\
+ \gamma_{Wi} \left| \tau_i \right| tr(\hat{Z}_i^T \dot{\hat{Z}}_i) + \gamma_{\psi l} \tilde{\phi}_i \dot{\tilde{\phi}}_i + \gamma_{di} \tilde{d}_i \dot{\tilde{d}}_i (62)
\]

\[
\leq -k_i \tau_i^2 + \tau_i (\hat{\psi}_i - \hat{\sigma}_i) - v_i \tau_i + \tau_i g_i + \left| \tau_i \right| \phi_{0k}^* \\
+ \gamma_{Wi} \left| \tau_i \right| tr(\hat{Z}_i^T \dot{\hat{Z}}_i) + \gamma_{\psi l} \tilde{\phi}_i \dot{\tilde{\phi}}_i + \gamma_{di} \tilde{d}_i \dot{\tilde{d}}_i
\]
Inserting (56) and (58) into the above inequality, we obtain

\[\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\hat{\psi}_i - \delta_i) + \tau_i g_i + |\tau_i| \phi_i \sigma_{\text{eq}} - \tau_i \phi \sigma_{\text{eq}} \tanh(\frac{\tau_i \sigma_{\text{eq}}^*}{\alpha_i}) \]

\[- \phi_i \left[\tau_i \sigma_{\text{eq}} \tanh(\frac{\tau_i \sigma_{\text{eq}}^*}{\alpha_i}) - \lambda_{\phi_i} \phi \right] - \tilde{d}_i \tau_i^2 \]

\[- \tilde{d}_i (\tau_i^2 - \lambda_{\tilde{d}_i} \tilde{d}_i) \right] + \gamma_{\tilde{W}_i} |\tau_i| \text{tr}(\tilde{Z}_i^T \tilde{Z}_i) \]

\[= -k_i \tau_i^2 + \tau_i (\hat{\psi}_i - \delta_i) + \phi_i \left[\tau_i \sigma_{\text{eq}}^* - \tau_i \sigma_{\text{eq}} \tanh(\frac{\tau_i \sigma_{\text{eq}}^*}{\alpha_i}) \right] + \lambda_{\phi_i} |\tau_i| \phi \]

\[- d_i \tau_i^2 + \tau_i g_i + \lambda_{d_i} |\tau_i| \tilde{d}_i \tilde{d}_i + \gamma_{\tilde{W}_i} |\tau_i| \text{tr}(\tilde{Z}_i^T \tilde{Z}_i) \]

Using (11), (63) becomes

\[\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\hat{\psi}_i - \delta_i) + \phi_i \xi_i \alpha_i - d_i \tau_i^2 + \tau_i g_i \]

\[+ |\tau_i| \left[\lambda_{\phi_i} \phi_{\hat{\phi}} \phi + \lambda_{d_i} \tilde{d}_i \tilde{d}_i + \gamma_{\tilde{W}_i} \text{tr}(\tilde{Z}_i^T \tilde{Z}_i) \right] \]

By completing square, we have

\[\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\hat{\psi}_i - \delta_i) + \phi_i \xi_i \alpha_i + \frac{g_i^2}{4d_i} \]

\[+ |\tau_i| \left[\lambda_{\phi_i} \phi_{\hat{\phi}} \phi + \lambda_{d_i} \tilde{d}_i \tilde{d}_i + \gamma_{\tilde{W}_i} \text{tr}(\tilde{Z}_i^T \tilde{Z}_i) \right] \]

With (41), (44), (53)-(58), approximation error between actual approximation inverse and ideal control inverse is bounded by

\[\|\hat{\psi}_i - \delta_i\| \leq c_{1i} + c_{2i} |\tau_i| + c_{3i} \|\tilde{Z}_i\|_F, \]

where \(c_{1i}, c_{2i}, c_{3i} \) are positive constants.

\[\dot{L}_i \leq - (k_i - c_{2i}) \tau_i^2 + |\tau_i| \left(c_{1i} + c_{3i} \|\tilde{Z}_i\|_F \right) + \phi_i \xi_i \alpha_i \]

\[+ \frac{g_i^2}{4d_i} + |\tau_i| \left[\lambda_{\phi_i} \phi_{\hat{\phi}} \phi + \lambda_{d_i} \tilde{d}_i \tilde{d}_i + \gamma_{\tilde{W}_i} \text{tr}(\tilde{Z}_i^T \tilde{Z}_i) \right] \]

Since \(\text{tr}(\tilde{Z}_i^T \tilde{Z}_i) \leq \|\tilde{Z}_i\|_F \|\tilde{Z}_i\|_F - \|\tilde{Z}_i\|^2 \), \(\phi_{\hat{\phi}} \phi \leq \|\phi\| - \|\hat{\phi}\|^2, \tilde{d}_i \tilde{d}_i \leq |\tilde{d}_i| |\tilde{d}_i| - |\tilde{d}_i|^2 \) hold, the
above inequality can be written as

\[
\dot{L}_i \leq -(k_i - c_{2i}) \tau_i^2 + |\tau_i| \left(c_i + c_{3i} \right) \left\| \tilde{Z}_i \right\|_F + \phi_i \zeta_i \alpha_i + \frac{g_i^2}{4d_i} \\
+ |\tau_i| \left[\lambda_{\phi_i} \left(|\phi_i| - |\tilde{\phi}_i| \right) + \lambda_{d_i} \left(|\tilde{d}_i| - |\tilde{d}_i| \right) + \gamma_{\tilde{W}_i} \left(\left\| \tilde{Z}_i \right\|_F - \left\| \tilde{Z}_i \right\|_F^2 \right) \right]
\]

(68)

By completing square for (68), we get

\[
\dot{L}_i \leq -(k_i - c_{2i}) \tau_i^2 + c_{5i} |\tau_i| + |\phi_i| \zeta_i \alpha_i + \frac{g_i^2}{4d_i}
\]

(69)

where \(c_{5i} = c_{1i} + c_{4i} \), with \(c_{4i} = \frac{\lambda_{\phi_i}}{4} |\phi_i|^2 + \frac{\lambda_{d_i}}{4} |d_i|^2 + \frac{\gamma_{\tilde{W}_i} \left(\left\| Z_i \right\|_F + c_{3i} \right)^2}{4} \).

For the overall system, it can be derived that the bound as

\[
\dot{L} = \sum_{i=1}^{n} L_i \leq \sum_{i=1}^{n} \left\{ -(k_i - c_{2i}) \tau_i^2 + c_{5i} |\tau_i| + |\phi_i| \zeta_i \alpha_i + \frac{g_i^2}{4d_i} \right\}
\]

(70)

According to (34), \(|g_i| \leq \sum_{j=1}^{n} \gamma_{ij} |r_j| = \chi^T \Gamma_i \), define \(\chi = [|r_1|, |r_2|, \cdots |r_n|]^T \),

\(\Gamma_i = [\gamma_{i1}, \gamma_{i2}, \cdots \gamma_{in}]^T \), \(K = \text{diag}[k_1 - c_{21}, k_2 - c_{22}, \cdots, k_n - c_{2n}] \), \(C = [c_{51}, c_{52}, \cdots, c_{5n}]^T \), \(D = \sum_{i=1}^{n} (|\phi_i| \zeta_i \alpha_i) \), the above inequality can be rewritten as

\[
\dot{L} \leq -\chi^T \left(K - \frac{1}{4d_i} \Gamma_i \Gamma_i^T \right) \chi + C^T \epsilon \chi + D = -\chi^T E \chi + C^T \chi + D
\]

(71)

where \(E = K - (4d_i)^{-1} \Gamma_i \Gamma_i^T \), \(\lambda_{\text{min}}(E) \) the minimum singular value of \(E \). Then \(\dot{L} \leq 0 \), as long as \(k_i > c_{2i} \) and sufficiently large \(d_i \), \(E \) would be positive definite, and
\[\| \mathcal{X} \| \geq \sqrt{\frac{\| C \| ^2 + D \lambda_{\min}(E)}{4 \lambda_{\min}(E)}} + \frac{\| C \|}{2 \lambda_{\min}(E)} = A, \]
(72)

\[| \tilde{\phi}_i | \geq | \phi_i |, | \tilde{d}_i | \geq | d_i |, \| \tilde{Z}_i \|_F \geq \frac{1}{\gamma_{W_i}} \left(\gamma_{W_i} \| Z_i \|_F + c_{3i} \right) \]

Now, we define

\[\Omega_{\mathcal{X}} = \left\{ \mathcal{X} \mid \| \mathcal{X} \| \leq A \right\}, \Omega_{\tilde{\phi}} = \left\{ \tilde{\phi}_i \mid | \tilde{\phi}_i | \leq | \phi_i | \right\}, \]
\[\Omega_{d_i} = \left\{ \tilde{d}_i \mid | \tilde{d}_i | \leq | d_i | \right\}, \Omega_{Z_i} = \left\{ \| \tilde{Z}_i \|_F \mid \| \tilde{Z}_i \|_F \leq \frac{1}{\gamma_{W_i}} \left(\gamma_{W_i} \| Z_i \|_F + c_{3i} \right) \right\} \]
(73)

Since \(\| Z_i \|_F, \phi_i, d_i, \gamma_{W_i}, c_{3i} \) are positive constants, we conclude that \(\Omega_{\mathcal{X}}, \Omega_{Z_i}, \Omega_{\tilde{\phi}} \) and \(\Omega_{d_i} \) are compact sets. Hence \(\dot{L} \) is negative outside these compacts set. According to a standard Lyapunov theorem, this demonstrates that \(\tilde{Z}_i, \tilde{\phi}_i, \tilde{d}_i \) and \(\mathcal{X} \) are bounded and will converge to \(\Omega_{\mathcal{X}}, \Omega_{Z_i}, \Omega_{\tilde{\phi}} \) and \(\Omega_{d_i} \), respectively. Furthermore, this implies \(e_i \) is bounded and will converge to a neighborhood of the origin and all signals in the system are bounded.

4.1.3 Simulation Study

In order to validate the effectiveness of the proposed scheme, we implement an example, and assume that the large-scale system is composed of the following two subsystems defined by

Subsystem 1:
\[
\begin{align*}
\dot{x}_{11} &= x_{12} \\
\dot{x}_{12} &= -\omega^2 x_{11} + 0.02(\omega - x_{11}^2)x_{12} + u_1 \\
&\quad + (x_{11}^2 + x_{12}^2)\sigma(u_1) + 0.2 + \sin(0.2x_{21})
\end{align*}
\]
(74)

Subsystem 2:
\[
\begin{align*}
\dot{x}_{21} &= x_{22} \\
\dot{x}_{22} &= x_{21}^2 + 0.1(1 + x_{22}^2)u_2 + \tanh(0.1u_2) \\
&\quad + 0.15u_2^3 + \tanh(0.1x_{11})
\end{align*}
\]
(75)

where \(\omega = 0.4\pi, \sigma(u_1) = (1 - e^{-u_1})/(1 + e^{-u_1}) \). The desired trajectory \(x_{d11} = 0.1\pi[\sin(2t) - \cos(t)], x_{d21} = 0.1\pi\cos(2t) \).
Input vectors of neural networks are $z_i = [x_i^T, \tau_i, \psi_i]^T, \ i = 1, 2$, and number of hidden layer nodes both 8. The initial weight of neural network is $\hat{W}_i(0) = (0)$. The center values and the widths of Gaussian function are initialized as zeroes, and $\sqrt{5}$, respectively. The initial condition of controlled plant is $x_1(0) = [0.1, 0.2]^T, x_2(0) = [0, 0]^T$. The other parameters are chosen as follows:

$\Lambda_i = 5, k_i = 5, \ \gamma_{wi} = 0.001, \ \gamma_{di} = 1, \ \lambda_{wi} = 0.01, \ \lambda_{di} = 0.01, \ \alpha_i = 10, \ F_i = 10I_{wi}, \ G = 2I_{\mu i}, \ H = 2I_{\alpha i}, \ \text{with} \ I_{wi}, I_{\mu i}, I_{\alpha i} \ \text{corresponding identity matrices.}$

Fig. 5 shows the results of comparisons of tracking errors of two subsystems. Fig. 6 gives control input of two subsystems, respectively. Fig.9 and Fig.10 illustrate outputs of two RBFNs and the change of norms of $\hat{W}, \hat{\mu}, \hat{\sigma}$, respectively. From these results, it can be seen that the effectiveness of the proposed scheme is validated, and tracking errors converge to a neighborhood of the zeroes and all signals in system are bounded. Furthermore, the learning rate of neural network controller is rapid, and can track the desired trajectory in about 1 second. From the results of control inputs, after shortly shocking, they tend to be smoother, and this is because neural networks are unknown for objective in initial stages.
Fig. 7. Comparison of the tracking of subsystem 1: x_{11} (solid) and x_{d11} (dot)

Fig. 8. Comparison of the tracking of subsystem 2: x_{21} (solid) and x_{d21} (dot)

Fig. 9. Subsystem 1: Output of RBFN (solid), norms of \hat{W} (dash), $\hat{\mu}$ (dot), $\hat{\sigma}$ (dash-dot)
Adaptive Control for a Class of Non-affine Nonlinear Systems via Neural Networks

4.2 RBFN-based decentralized adaptive control for the class of large-scale nonlinear systems with nonlinear function interconnections

Assumption 10. The interconnection effect is bounded by the following function:

\[g_i(x_1, x_2, \cdots, x_n) \leq \sum_{j=1}^{n} \xi_{ij}(|\tau_j|), \]

where \(\xi_{ij}(|\tau_j|) \) are unknown smooth nonlinear function, \(\tau_j \) are filtered tracking errors to be defined shortly.

The control objective is: determine a control law, force the output, \(y_i \), to follow a given desired output, \(x_{di} \), with an acceptable accuracy, while all signals involved must be bounded.

Define the desired trajectory vector \(x_{di} = [y_{di}, \dot{y}_{di}, \cdots, y_{di}^{(l-1)}]^T \), \(X_{di} = [y_{di}, \dot{y}_{di}, \cdots, y_{di}^{(l-1)}]^T \) and tracking error \(e_i = x_i - x_{di} = [e_{i1}, e_{i2}, \cdots, e_{il}]^T \), thus, the filter tracking error can be written as

\[\tau_i = [\Lambda_i^T \ 1]e_i = k_{i,1}e_i + k_{i,2}\dot{e}_i + \cdots + k_{i,l-1}\frac{\dot{e}_i}{(l-2)} + e_i^{(l-1)}, \]

where the coefficients are chosen such that the polynomial \(k_{i,1} + k_{i,2}s + \cdots + k_{i,l-1}s^{(l-2)} + s^{(l-1)} \) is Hurwitz.

Assumption 11. The desired signal \(x_{di}(t) \) is bounded, so that \(\|X_{di}\| \leq \bar{X}_{di} \), with \(\bar{X}_{di} \) a known constant.

For an isolated subsystem, without interconnection function, by differentiating (77), the filtered tracking error can be rewritten as
\[
\dot{\tau}_i = \dot{x}_{\tau_i} - y_{dl_i}^{(l_i)} + [0 \ A_i^T]e_i = f_i(x_i, u_i) + Y_{di}, \quad (78)
\]

with \(Y_{di} = -y_{dl_i}^{(l_i)} + [0 \ A_i^T]e_i \).

Define a continuous function
\[
\delta_i = k_i \tau_i + Y_{di}, \quad (79)
\]

where \(k_i \) is a positive constant. With Assumption 5, we know \(\partial f(x_i, u_i)/\partial u_i \neq 0 \), thus, \(\partial [f(x_i, u_i) - \delta_i]/\partial u_i \neq 0 \). Considering the fact that \(\partial \delta_i/\partial u_i = 0 \), with the implicit function theorem, there exists a continuous ideal control input \(u_i^* \) in a neighborhood of \((x_i, u_i) \in \Omega_i \times R \), such that \(f(x_i, u_i^*) - \delta_i = 0 \), i.e. \(\delta_i = f_i(x_i, u_i^*) \) holds. Here, \(\delta_i = f_i(x_i, u_i^*) \) represents an ideal control inverse. Adding and subtracting \(\delta_i \) to the right-hand side of \(\dot{x}_{\tau_i} = f_i(x_i, u_i) + g_i \) of (33), one obtains
\[
\dot{x}_{\tau_i} = f_i(x_i, u_i) + g_i + \delta_i - Y_{di} - k_i \tau_i, \quad (80)
\]

and yields
\[
\dot{\tau}_i = -k_i \tau_i + f_i(x_i, u_i) + g_i + \delta_i, \quad (81)
\]

Similar to the above-mentioned equation (40), \(\hat{\psi}_i = f_i(x_i, \hat{u}_i) \) holds.

Based on the above conditions, in order to control the system and make it be stable, we design the approximation pseudo-control input \(\hat{\psi}_i \) as follows:
\[
\hat{\psi}_i = -k_i \tau_i - Y_{di} - u_{ci} - \hat{W}_{gl}^T S_{gl}(\tau_i) \tau_i - v_{ri}, \quad (82)
\]

where \(u_{ci} \) is output of a neural network controller, which adopts a RBFN, \(v_{ri} \) is robustifying control term designed in stability analysis, \(\hat{W}_{gl}^T S_{gl}(\tau_i) \) is used to compensate the interconnection nonlinearity (we will define later).

Adding and subtracting \(\hat{\psi}_i \) to the right-hand side of (81), with \(\delta_i = k_i \tau_i + Y_{di} = f_i(x_i, u_i^*) \), we have
\[
\dot{\tau}_i = -k_i \tau_i + \Delta_i(x_i, u_i, u_i^*) - u_{ci} - \hat{W}_{gl}^T S_{gl}(\tau_i) \tau_i + \delta_i - \hat{\psi}_i - v_{ri} + g_i, \quad (83)
\]
where \(\Delta_i(x_i,u_i,u_i^*) = f_i(x_i,u_i) - f_i(x_i,u_i^*) \) is error between the nonlinear function and its ideal control function, we can use the RBFN to approximate it.

4.2.1 Neural network-based approximation

Based on the approximation property of RBFN, \(\Delta_i(x_i,u_i,u_i^*) \) can be written as

\[
\Delta_i(x_i,u_i,u_i^*) = W_i^T S_i(z_i) + \epsilon_i(z_i),
\]

where \(W_i \) is the weight vector, \(S_i(z_i) \) is Gaussian basis function, \(\epsilon_i(z_i) \) is the approximation error and the input vector \(z_i \in R^q \), \(q \) the number of input node.

Assumption 12. The approximation error \(\epsilon_i(z_i) \) is bounded by \(|\epsilon_i| \leq \epsilon_{Ni} \), with \(\epsilon_{Ni} > 0 \) is an unknown constant. The input of the RBFN is chosen as \(z_i = [x_i^T, \tau_i, \tilde{\psi}_i]^T \). Moreover, output of the RBFN is designed as

\[
u_{ci} = \hat{W}_i^T S_i(z_i).
\]

Define \(\hat{W}_i \) as estimates of ideal \(W_i \), which are given by the RBFN tuning algorithms.

Assumption 13. The ideal value of \(W_i \) satisfies

\[
||W_i|| \leq W_{IM},
\]

where \(W_{IM} \) is positive known constant, with estimation errors as \(\hat{W}_i = W_i - \hat{W}_i \).

4.2.2 Controller design and stability analysis

Substituting (84) and (85) into (83), we have

\[
\dot{\hat{W}}_i = F_i[S_i \tau_i - \gamma_i \hat{W}_i | \tau_i |],
\]

Theorem 3. Consider the nonlinear subsystems represented by Eq. (33) and let assumptions hold. If choose the pseudo-control input \(\tilde{\psi}_i \) as Eq.(82), and use the following adaptation laws and robust control law
\[
\dot{\hat{W}}_{gi} = G_i [S_{gi} (|\tau_i|) \tau_i^2 - \gamma_{gi} \hat{W}_{gi} |\tau_i|],
\]

\[
\dot{\hat{\phi}}_i = \lambda_{\phi i} [\tau_i (|\tau_i| + 1) \tanh(\tau_i / \alpha_i) - \gamma_{\phi i} \hat{\phi}_i |\tau_i|],
\]

\[
v_{ri} = \phi_i (|\tau_i| + 1) \tanh(\tau_i / \alpha_i),
\]

where \(F_i = F_i^T > 0\), \(G_i = G_i^T > 0\) are any constant matrices, \(\lambda_{\phi i}, \gamma_{Wi}, \gamma_{gi}, \gamma_{\phi i}\) and \(\alpha_i\) are positive design parameters, \(\hat{\phi}_i\) is the estimated value of the unknown approximation errors, which will be defined shortly, then, guarantee that all signals in the system are bounded and the tracking error \(e_i\) will converge to a neighborhood of the origin.

Proof. Consider the following positive define Lyapunov function candidate as

\[
2L_i = \tau_i^2 + \hat{W}_i^T F_i^{-1} \hat{W}_i + \hat{W}_i^T G_i^{-1} \hat{W}_i + \lambda_{\phi i}^{-1} \dot{\hat{\phi}}_i^2
\]

The time derivative of the above equation is given by

\[
\dot{L}_i = \tau_i \dot{\tau}_i + \hat{W}_i^T F_i^{-1} \dot{\hat{W}}_i + \hat{W}_i^T G_i^{-1} \dot{\hat{W}}_i + \lambda_{\phi i}^{-1} \dot{\hat{\phi}}_i \dot{\hat{\phi}}_i
\]

Applying (87) and (53) to (59) and \((\dot{\cdot}) = - (\dot{\cdot})\), we have

\[
\dot{L}_i = \tau_i [-k_i \tau_i + \delta_i - \dot{\hat{\psi}}_i - v_{ri} + g_i - \hat{W}_i^T S_{gi} (|\tau_i|) \tau_i + e_i]
\]

\[
+ \gamma_{Wi} \hat{W}_i^T G_i^{-1} \hat{W}_i + \lambda_{\phi i}^{-1} \dot{\hat{\phi}}_i \dot{\hat{\phi}}_i
\]

Using (76), (94) is rewritten as

\[
\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\delta_i - \dot{\hat{\psi}}_i) - v_{ri} \tau_i + \tau_i \left[\sum_{j=1}^{n} \xi_{ij} (|\tau_j|) - \hat{W}_j^T S_{gi} (|\tau_i|) \tau_i \right]
\]

\[
+ |\tau_i| \epsilon_{Ni} + \lambda_{\phi i}^{-1} \dot{\hat{\phi}}_i \dot{\hat{\phi}}_i + \gamma_{Wi} \hat{W}_i^T G_i^{-1} \hat{W}_i + \hat{W}_i^T G_i^{-1} \hat{W}_i
\]

Since \(\xi_{ij}(\cdot)\) is a smooth function, there exists a smooth function \(\xi_{ij}(|\tau_j|), (1 \leq i, j \leq n)\) such that \(\xi_{ij}(|\tau_j|) = |\tau_j| \xi_{ij}(|\tau_j|)\) hold. Thus, we have
\[
\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\delta_i - \hat{\psi}_i) - v_i \tau_i + \tau_i \left[\sum_{j=1}^{n} \zeta_{ij} (| \tau_j |) - \hat{W}_{gi}^T S_{gi} (| \tau_j |) \right] \\
+ | \tau_i | e_{Ni} + \lambda^{-1}_{gi} \hat{\phi}_i \hat{\phi}_i + \gamma_{Wi} \hat{W}_{gi}^T \hat{W}_i | \tau_i | + \hat{W}_{gi}^T G_i^{-1} \hat{W}_{gi}
\]
(96)

Since the function \(d_i (| \tau_i |) = \sum_{i=1}^{n} \zeta_{ij} (| \tau_j |) \) is smooth and \(\tau_i \) is on a compact set, \(d_i (| \tau_i |) \) can be approximated via a RBFN, i.e., \(d_i (| \tau_i |) = W_{gi}^T S_{gi} (| \tau_i |) + \varepsilon_{gi} \), with bounded approximation error \(\varepsilon_{gi} , | \varepsilon_{gi} | \leq e_{gNi} \). \(\hat{W}_{gi} \) is estimate of ideal \(W_{gi} \), with boundedness \(||W_{gi}|| \leq W_{Mi} , W_{Mi} > 0 \) a known constant, and the estimation errors as
\(\hat{W}_{gi} = W_{gi} - \hat{W}_{gi} \). Then, (96) becomes

\[
\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\delta_i - \hat{\psi}_i) - v_i \tau_i + \tau_i \left[\sum_{j=1}^{n} \xi_{ij} (| \tau_j |) - \hat{W}_{gi}^T S_{gi} (| \tau_j |) \tau_j \right] \\
+ | \tau_i | e_{Ni} + \lambda^{-1}_{gi} \hat{\phi}_i \hat{\phi}_i + \gamma_{Wi} \hat{W}_{gi}^T \hat{W}_i | \tau_i | + \hat{W}_{gi}^T G_i^{-1} \hat{W}_{gi}
\]
(97)

Substituting the adaptive law (89), we obtain

\[
\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\delta_i - \hat{\psi}_i) - v_i \tau_i + \tau_i \left[\sum_{j=1}^{n} \xi_{ij} (| \tau_j |) - \hat{W}_{gi}^T S_{gi} (| \tau_j |) \tau_j \right] \\
+ | \tau_i | e_{Ni} + \lambda^{-1}_{gi} \hat{\phi}_i \hat{\phi}_i + \gamma_{Wi} \hat{W}_{gi}^T \hat{W}_i | \tau_i | + \hat{W}_{gi}^T G_i^{-1} \hat{W}_{gi}
\]
(98)

Define \(\phi_i = \max (e_{Ni} , \varepsilon_{gNi}) \), with \(\hat{\phi}_i \) is its estimate, and \(\bar{\phi}_i = \phi_i - \hat{\phi}_i \) with \(\bar{\phi}_i \) error. (98) can be rewritten as

\[
\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\delta_i - \hat{\psi}_i) - v_i \tau_i + \phi_i \tau_i \left[\tau_i \right] + e_{Ni} + \lambda^{-1}_{gi} \hat{\phi}_i \hat{\phi}_i \\
+ \gamma_{Wi} \hat{W}_{gi}^T \hat{W}_i | \tau_i | + \gamma_{gi} \hat{W}_{gi}^T \hat{W}_{gi} | \tau_i |
\]
(99)

Applying the adaptive law (56) and robust control term (58), we have
\[
\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\delta_i - \hat{\psi}_i) - \hat{\phi}_i \tau_i (|\tau_i| + 1) \tanh(\tau_i / \alpha_i) + \phi_i |\tau_i| (|\tau_i| + 1) \\
- \hat{\phi}_i (|\tau_i| + 1) \tanh(\tau_i / \alpha_i) + \gamma_{wi} \hat{W}_i^T \hat{W}_i |\tau_i| + \gamma_{gi} \hat{W}_{gi}^T \hat{W}_{gi} |\tau_i| + \lambda_{gi} \hat{\phi}_i |\tau_i| \\
= -k_i \tau_i^2 + \tau_i (\delta_i - \hat{\psi}_i) + \phi_i (|\tau_i| + 1) - \phi_i (|\tau_i| + 1) \tanh(\tau_i / \alpha_i) \\
+ \gamma_{wi} \hat{W}_i^T \hat{W}_i |\tau_i| + \gamma_{gi} \hat{W}_{gi}^T \hat{W}_{gi} |\tau_i| + \lambda_{gi} \hat{\phi}_i |\tau_i| \\
= -k_i \tau_i^2 + \tau_i (\delta_i - \hat{\psi}_i) + \phi_i (|\tau_i| + 1) \left[|\tau_i| - \tau_i \tanh(\tau_i / \alpha_i) \right] \\
+ \gamma_{wi} \hat{W}_i^T \hat{W}_i |\tau_i| + \gamma_{gi} \hat{W}_{gi}^T \hat{W}_{gi} |\tau_i| + \lambda_{gi} \hat{\phi}_i |\tau_i| \\
\text{(100)}
\]

Using (11), we get

\[
\dot{L}_i \leq -k_i \tau_i^2 + \tau_i (\delta_i - \hat{\psi}_i) + \phi_i (|\tau_i| + 1) \xi \alpha_i \\
+ \gamma_{wi} \hat{W}_i^T \hat{W}_i |\tau_i| + \gamma_{gi} \hat{W}_{gi}^T \hat{W}_{gi} |\tau_i| + \gamma_{gi} \hat{\phi}_i |\tau_i| \\
\text{(101)}
\]

With (82), (85), and (88)-(91), the approximation error between the ideal control inverse and the actual approximation inverse is bounded by

\[
|\delta_i - \hat{\psi}_i| \leq c_{i1} + c_{2i} |\tau_i| + c_{3i} \|\hat{W}_i\| + c_{4i} \|\hat{W}_{gi}\|, \text{with } c_{i1}, c_{2i}, c_{3i}, c_{4i} \text{ positive constants. Moreover, we utility the facts, } \tilde{a}^T \hat{a} \leq \|\tilde{a}\| \|a\| - \|\tilde{a}\|^2 , \text{(101) can be rewritten as}
\]

\[
\dot{L}_i \leq -(k_i - c_{2i}) \tau_i^2 + c_{i1} |\tau_i| + c_{3i} \|\hat{W}_i\| + c_{4i} \|\hat{W}_{gi}\| + |\tau_i| + \gamma_{gi} \|\hat{W}_{gi}\| \|\hat{W}_{gi}\| + \lambda_{gi} \|\hat{\phi}_i\| \\
\leq -(k_i - c_{2i}) \tau_i^2 + c_{i1} |\tau_i| + \phi_i \xi \alpha_i + |\tau_i| + \gamma_{gi} \|\hat{W}_{gi}\| \|\hat{W}_{gi}\| + \lambda_{gi} \|\hat{\phi}_i\| \\
\text{(102)}
\]

Completing square for (102), we have

\[
\dot{L}_i \leq -(k_i - c_{2i}) \tau_i^2 + c_{8i} |\tau_i| + \phi_i \xi \alpha_i \\
\text{(103)}
\]
with $c_{5i} = \gamma_{wi} \| W_i \| + c_{3i}$, $c_{6i} = \gamma_{gi} \| W_gi \| + c_{4i}$, $c_{7i} = \phi_i^2 / 4\lambda_{wi} + c_{6i}^2 / 4\gamma_{gi} + c_{5i}^2 / 4\gamma_{wi}$, $c_{8i} = c_{i} + \phi_i\zeta_i\alpha_i + c_{7i}$.

For the overall system, we have

$$
\dot{L} = \sum_{i=1}^{n} \tilde{L}_i \leq \sum_{i=1}^{n} \left[-(k_i - c_{2i}) \tau_i^2 + c_{8i} | \tau_i | + \phi_i\zeta_i\alpha_i \right]
$$

(104)

Now, define $\chi = [\tau_1, \ldots, \tau_n]^T$, $K = \text{diag}[k_1 - c_{21}, \ldots, k_n - c_{2n}]$, $C = [c_{81}, c_{82}, \ldots, c_{8n}]^T$, $D = \sum_{i=1}^{n} (\phi_i\zeta_i\alpha_i)$. (104) can be rewritten as

$$
\dot{L} \leq -\chi^T K \chi + C^T \chi + D \leq -\lambda_{\text{min}}(K) \| \chi \|^2 + \| C \| \| \chi \| + D
$$

(105)

By completing square, yields

$$
\dot{L} \leq -\lambda_{\text{min}}(K) \left(\| \chi \| - \frac{\| C \|}{2\lambda_{\text{min}}(K)} \right) + \frac{\| C \|^2}{4\lambda_{\text{min}}(K)} + D
$$

(106)

Clearly, $\dot{L} \leq 0$, as long as $k_i > c_{2i}$, and

$$
\| \chi \| \geq A, \quad \| \phi_i \| \geq \lambda_{\phi_i}^{-1} | \phi_i |, \quad \| \tilde{W}_i \| \geq c_{5i}\gamma_{wi}^{-1} \| W_i \|, \quad \| \tilde{W}_gi \| \geq c_{6i}\gamma_{gi}^{-1} \| W_gi \|
$$

(107)

where $A = \sqrt{\| C \|^2 + D\lambda_{\text{min}}(K)}/[4\lambda_{\text{min}}^2(K)] + \| C \|/[2\lambda_{\text{min}}(K)]$ with $\lambda_{\text{min}}(K)$ the minimum singular value of K.

Now, we define

$$
\Omega_{\chi} = \left\{ \chi \mid \| \chi \| \leq A \right\}, \Omega_{\phi_i} = \left\{ \tilde{\phi_i} \mid \| \tilde{\phi_i} \| \leq \lambda_{\phi_i}^{-1} | \phi_i | \right\},
\Omega_{\tilde{W}_i} = \left\{ \| \tilde{W}_i \| \mid \| \tilde{W}_i \| \leq c_{5i}\gamma_{wi}^{-1} \| W_i \| \right\}, \Omega_{\tilde{W}_gi} = \left\{ \| \tilde{W}_gi \| \mid \| \tilde{W}_gi \| \leq c_{6i}\gamma_{gi}^{-1} \| W_gi \| \right\}
$$

(108)

Since $\| W_i \|, \| W_gi \|, \phi_i, \gamma_{wi}, \gamma_{gi}, c_{5i}, c_{6i}$ are positive constants, we conclude that $\Omega_{\chi}, \Omega_{\phi_i}, \Omega_{\tilde{W}_i}$ and $\Omega_{\tilde{W}_gi}$ are compact sets. Hence \dot{L} is negative outside these compacts set. According to a standard Lyapunov theorem, this demonstrates that $\tilde{W}_i, \tilde{W}_gi, \tilde{\phi_i}$ and χ are bounded and will converge to $\Omega_{\chi}, \Omega_{\phi_i}, \Omega_{\tilde{W}_i}$ and $\Omega_{\tilde{W}_gi}$, respectively.
Furthermore, this implies e_j is bounded and will converge to a neighborhood of the origin and all signals in the system are bounded.

4.2.3 Simulation Study

In order to validate the effectiveness of the proposed scheme, we implement an example, and assume that the large-scale system is composed of the following two subsystems defined by

Subsystem 1:

\[
\begin{cases}
\dot{x}_{11} = x_{12} \\
\dot{x}_{12} = -\omega^2 x_{11} + 0.02(\omega - x_{11}^2)x_{12} + u_1 + (x_{11}^2 + x_{12}^2)\sigma(u_1) + 0.1 || x_2 || \exp(0.5 || x_2 ||)
\end{cases}
\]
(109)

Subsystem 2:

\[
\begin{cases}
\dot{x}_{21} = x_{22} \\
\dot{x}_{22} = x_{22}^2 + 0.1(1 + x_{22}^2)u_2 + \tanh(0.1u_2) + 0.15u_2^3 + 0.2 || x_2 || \exp(0.1 || x_2 ||)
\end{cases}
\]
(110)

where $\omega = 0.4\pi$, $\sigma(u_1) = (1 - e^{-u_1})/(1 + e^{-u_1})$. The desired trajectory $x_{d_{11}} = 0.1\pi[\sin(2t) - \cos(t)]$, $x_{d_{21}} = 0.1\pi\sin(2t)$. For the RBFNs as (84), input vectors are chosen as $z_i = [x_i^T, \tau_i, \hat{\psi}_i]^T$, $i = 1, 2$ and number of hidden layer nodes both 8, the initial weights $\hat{W}_i'(0) = (0)$ and the center values and the widths of Gaussian function zero, and 2, respectively. For the RBFNs, which used to compensate the interconnection nonlinearities, both input vectors are $[\tau_1, \tau_2]^T$, number of hidden layer nodes is 8, the initial weights $\hat{W}_{gi}'(0) = (0)$, and the center values and the widths of Gaussian function zero, and $\sqrt{5}$, respectively. The initial condition of controlled plant is $x_i(0) = [0.2, 0.2]^T$, $x_i(0) = [0.3, 0.2]^T$. The other parameters are chosen as follows: $\Lambda_i = 1, k_i = 2$, $\gamma_{wi} = 0.001, \gamma_{gi} = 0.1, \lambda_{gi} = 0.01, \alpha_i = 10$, $F_i = 10I_{wi}$, $G = 2I_{gi}$, with I_{wi}, I_{gi} corresponding identity matrices. Fig.11 and 12 show the results of comparisons of tracking errors and control input of two subsystems, Fig.13 and 14 the comparison of tracking of two subsystems, respectively. Fig.15 and Fig.16 illustrate the norm of the four weights in two subsystems, respectively. From these results, it can be seen that the effectiveness of the proposed scheme is validated, and tracking errors converge to a neighborhood of the zeroes and all signals in system are bounded. Furthermore, the learning rate of neural network controller is rapid, and can track the desired trajectory in less than 3 seconds. From the results of control inputs, after shortly shocking, they tend to be smoother, and this is because neural networks are unknown for objective in initial stages. As desired, though the system is complex, the whole running process is well.
Fig. 12. Control input of subsystem 1: u_1, and subsystem 2: u_2

Fig. 13. Comparion of tracking of subsystem 1

Fig. 14. Comparion of tracking of subsystem 2
5. Conclusion

In this chapter, first, a novel design ideal has been developed for a general class of nonlinear systems, which the controlled plants are a class of non-affine nonlinear implicit function and smooth with respect to control input. The control algorithm bases on some mathematical theories and Lyapunov stability theory. In order to satisfy the smooth condition of these theorems, hyperbolic tangent function is adopted, instead of sign function. This makes control signal tend smoother and system running easier. Then, the proposed scheme is extended to a class of large-scale interconnected nonlinear systems, which the subsystems are composed of the above-mentioned class of non-affine nonlinear functions. For two classes of interconnection function, two RBFN-based decentralized adaptive control schemes are proposed, respectively. Using an on-line approximation approach, we have been able to relax the linear in the parameter requirements of traditional nonlinear decentralized adaptive control without considering the dynamic uncertainty as part of the interconnections and disturbances. The theory and simulation results show that the neural network plays an important role in systems. The overall adaptive schemes are proven to
guarantee uniform boundedness in the Lyapunov sense. The effectiveness of the proposed control schemes are illustrated through simulations. As desired, all signals in systems, including control signals, are tend to smooth.

6. Acknowledgments

This research is supported by the research fund granted by the Natural Science Foundation of Shandong (Y2007G06) and the Doctoral Foundation of Qingdao University of Science and Technology.

7. References

Lewis, F.L.; Yesildirek A. & Liu K. (1996). Multilayer neural-net robot controller with guaranteed tracking performance. *IEEE Trans. on Neural Networks*, Vol. 7, No.2, Mar. 1996, pp.388-399, ISSN 1045-9227

Yu, W. & Li, X. (2002). Adaptive control with multiple neural networks. *Proceeding of the American Control Conference*, pp. 1543-1549, ISBN 0-7803-7298-0, May 8-10,2002 Anchorage, AK

Yesidirek, A. and Lewis, F.L. (1995). Feedback linearization using neural networks. *Automatica*, Vol.31, No.11, 1995, pp. 1659-1664, ISSN 0005-1098

Calise, A.J. & Hovakimyan, N. (2001). Adaptive output feedback control of nonlinear system using neural networks. *Automatica*, Vol.37, 2001, pp.1201-1211, ISSN 0005-1098

Ge, S. S.; Hang, C. C. & Zhang, T. (1997). Direct adaptive neural network control of nonlinear systems. *Proceedings of the American Control Conference*, pp. 1568-1572, ISBN 0-7803-3832-4, 1997, Albuquerque, New Mexico

Ioannou, P.A. (1986). Decentralized adaptive control of interconnected systems, *IEEE Trans. on Automatic Control*, Vol. 31, Apr. 1986, pp. 291-298, ISSN 0018-9286

Siljak, D.D. (1991). Decentralized control of complex systems. Academic, 1991, ISBN-10: 0126434301, Boston

Fu, L.C. (1992). Robust adaptive decentralized control of robot manipulators. *IEEE Trans. on Automatic Control*, Vol.37, 1992, pp.106–110, ISSN 0018-9286

Sheikholeslam, S. & Desor, C.A. (1993). Indirect adaptive control of a class of interconnected nonlinear dynamical systems. Int J Control, Vol. 57, No.3, 1993, pp.742–765, ISSN 0020-7179

Wen, C. (1994). Decentralized adaptive regulation. *IEEE Trans. on Automatic Control*, Vol.39, pp.2163–2166, ISSN 0018-9286

Tang, Y.; Tomizuka, M. & Guerrero, G. (2000). Decentralized robust control of mechanical systems. *IEEE Trans. on Automatic Control*, Vol.45, No.4, 2000, pp. 2163–2166, ISSN 0018-9286

Spooner, J.T. & Passino, K.M. (1999). Decentralized adaptive control of nonlinear systems using radial basis neural networks, *IEEE Trans. on Automatic Control*, Vol. 44, No.11, 1999, pp.2050-2057, ISSN 0005-1098

Huang, S.; Tan, K.K. & Lee, T.H. (2003). Decentralized control design for large-scale systems with strong interconnections using neural networks, *IEEE Trans. on Automatic Control*, Vol.48, No.5, 2003, pp. 805-810, ISSN 0018-9286

www.intechopen.com
Appendix A

As Eq.(19), the approximation error of function can be written as

\[M^T \sigma - \hat{M}^T \hat{\sigma} = M^T \sigma - \hat{M}^T \hat{\sigma} + \hat{M}^T \hat{\sigma} - \hat{M}^T \hat{\sigma} = \hat{M}^T (\sigma - \hat{\sigma}) + \hat{M}^T \sigma \]

Substituting (18) into the above equation, we have

\[\hat{M}^T (\sigma - \hat{\sigma}) + \hat{M}^T \sigma = \hat{M}^T \hat{\sigma} + \hat{M}^T \hat{\sigma} \hat{N}^T x_{nm} + O(\hat{N}^T x_{nm})^2 \]

\[= \hat{M}^T \hat{\sigma} + \hat{M}^T \hat{\sigma} \hat{N}^T x_{nm} + \hat{M}^T \hat{\sigma} \hat{N}^T x_{nm} + M^T O(\hat{N}^T x_{nm})^2 \]

\[= \hat{M}^T \hat{\sigma} + \hat{M}^T \hat{\sigma} \hat{N}^T x_{nm} - \hat{M}^T \hat{\sigma} \hat{N}^T x_{nm} + \hat{M}^T \hat{\sigma} \hat{N}^T x_{nm} + M^T O(\hat{N}^T x_{nm})^2 \]

Define that

\[\omega = \hat{M}^T \hat{\sigma} \hat{N}^T x_{nm} + M^T O(\hat{N}^T x_{nm})^2 \]
so that

$$M^T \sigma - \hat{M}^T \hat{\sigma} = \hat{M}^T (\hat{\sigma} - \hat{\sigma}' \hat{N}^T x_m) + \hat{M}^T \hat{\sigma}' \hat{N}^T x_m + \omega$$

Thus,

$$\omega = M^T \sigma - \hat{M}^T \hat{\sigma} - \hat{M}^T (\hat{\sigma} - \hat{\sigma}' \hat{N}^T x_m) - \hat{M}^T \hat{\sigma}' \hat{N}^T x_m$$

$$= M^T \sigma - \hat{M}^T \hat{\sigma} + \hat{M}^T \hat{\sigma}' \hat{N}^T x_m - \hat{M}^T \hat{\sigma}' \hat{N}^T x_m$$

$$= M^T (\sigma - \hat{\sigma}) + M^T \hat{\sigma}' \hat{N}^T x_m - \hat{M}^T \hat{\sigma}' \hat{N}^T x_m - \hat{M}^T \hat{\sigma}' \hat{N}^T x_m$$

$$= M^T (\sigma - \hat{\sigma}) + M^T \hat{\sigma}' \hat{N}^T x_m - \hat{M}^T \hat{\sigma}' \hat{N}^T x_m$$

Appendix B

Using (46) and (47), the function approximation error can be written as

$$W_i^T S_i - \hat{W}_i^T \hat{S}_i = W_i^T S_i - \hat{W}_i^T \hat{S}_i = W_i^T S_i + \hat{W}_i^T \hat{S}_i$$

$$= W_i^T [\hat{S}_i + \hat{S}_i' \mu_i + \hat{S}_i' \sigma_i + O(\mu_i, \sigma_i)] + \hat{W}_i^T [\hat{S}_i + \hat{S}_i' \mu_i + \hat{S}_i' \sigma_i + O(\mu_i, \sigma_i)]$$

$$= W_i^T S_i + \hat{W}_i^T (\hat{S}_i' \mu_i + \hat{S}_i' \sigma_i) + \hat{W}_i^T O(\mu_i, \sigma_i)$$

define as

$$\omega_i(t) = \hat{W}_i^T (\hat{S}_i' \mu_i + \hat{S}_i' \sigma_i) + \hat{W}_i^T O(\mu_i, \sigma_i)$$

Thus,
\[
\omega_i(t) = \dot{W}_i^T \dot{S}_i + \ddot{W}_i^T \ddot{S}_i - \ddot{W}_i^T (\dot{S}_i - \dot{S}'_{\mu_i} \hat{\mu}_i - \dot{S}'_{\sigma_i} \hat{\sigma}_i) - \dot{W}_i^T (\dot{S}'_{\mu_i} \hat{\mu}_i + \dot{S}'_{\sigma_i} \hat{\sigma}_i) \\
= \dot{W}_i^T \dot{S}_i + \ddot{W}_i^T \ddot{S}_i - \ddot{W}_i^T (\dot{S}'_{\mu_i} \hat{\mu}_i + \dot{S}'_{\sigma_i} \hat{\sigma}_i) - \dot{W}_i^T (\dot{S}'_{\mu_i} \hat{\mu}_i + \dot{S}'_{\sigma_i} \hat{\sigma}_i) \\
= W_i^T \dot{S}_i + \ddot{W}_i^T (\dot{S}'_{\mu_i} \hat{\mu}_i + \dot{S}'_{\sigma_i} \hat{\sigma}_i) - \dot{W}_i^T (\dot{S}'_{\mu_i} \hat{\mu}_i + \dot{S}'_{\sigma_i} \hat{\sigma}_i) \\
= W_i^T \dot{S}_i + \ddot{W}_i^T (\dot{S}'_{\mu_i} \hat{\mu}_i + \dot{S}'_{\sigma_i} \hat{\sigma}_i) - \dot{W}_i^T (\dot{S}'_{\mu_i} \hat{\mu}_i + \dot{S}'_{\sigma_i} \hat{\sigma}_i)
\]
Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development. The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zhao Tong (2009). Adaptive Control for a Class of Non-affine Nonlinear Systems via Neural Networks, Adaptive Control, Kwanho You (Ed.), ISBN: 978-953-7619-47-3, InTech, Available from: http://www.intechopen.com/books/adaptive_control/adaptive_control_for_a_class_of_non-affine_nonlinear_systems_via_neural_networks