Association of the porcine C3 gene with haemolytic complement activity in the pig

Supamit MEKCHAY, Siriluck PONSUKSILI, Karl SCHELLANDER, Klaus WIMMERS*

Institute of Animal Breeding Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany

(Accepted 4 February 2003)

Abstract – The complement component C3 plays an essential role in the activated complement system, which is involved in phagocytosis, inflammation and immunoregulation to destroy infectious microorganisms. The C3 molecule has more implications in the general defence mechanisms. In this study, the porcine C3 cDNA sequences including 5'- and 3'- flanking regions were determined and the polymorphisms in this gene were identified to carry out an association analysis between C3 and complement activity traits. Porcine C3 gene has high homology with human C3. Five single nucleotide polymorphisms (SNPs) and one microsatellite were detected in the porcine C3 gene. Haemolytic complement activity of alternative and classical pathways (ACH, CCP) was measured in 416 F2 animals of a crossbred of Duroc × Berlin Miniature Pig, which were immunized with Mycoplasma, Aujeszky and PRRS vaccines. C3 markers were found to be significantly associated (P < 0.05) with both ACP and CCP. Animals with the more frequent haplotype present in Duroc and other commercial breeds exhibit higher ACP and CCP levels than the animals with haplotype specific to some Berlin Miniature Pigs. The association of C3 with complement activity reinforces the importance of C3 as a candidate gene for natural resistance to microorganisms.

porcine C3 gene / natural resistance / haemolytic complement activity / association / pig

1. INTRODUCTION

The complement cascade defines an important link between the innate and the specific immune system [13]. The complement component C3 is the key molecule of the three pathways of complement activation (alternative, classical and lectin pathways), which are involved in phagocytosis, inflammation and immunoregulation processes to destroy infectious microorganism [19].

* Correspondence and reprints
E-mail: kwim@itz.uni-bonn.de
C3 deficiency in hosts causes increasing susceptibility to bacterial or viral infections [1,4,13,22]. C3 has more implication in general defence mechanisms. We have previously found polymorphic sites within the porcine C3 which were used for genetic mapping of the locus [25]. The present study was carried out to investigate the porcine C3 gene as a candidate gene for complement activity traits. Therefore, the full length cDNA sequence of the porcine C3 as well as 5′- and 3′- flanking regions were obtained, screened for additional polymorphisms in this gene and, finally, association analysis was conducted between C3 markers and complement activity traits.

2. MATERIALS AND METHODS

2.1. Animals

Sequence information of the porcine C3 gene was identified in a DUMI F2-animal of a reciprocal cross of Duroc × Berlin Miniature Pig [9]. Screening for polymorphisms in the porcine C3 gene was performed in Duroc (n = 6), German Landrace (n = 28), Pietrain (n = 23), DUMI F2 (n = 902) and Thai native (n = 32) pigs. For association study, haemolytic complement activity was recorded in 416 animals of the DUMI-F2 resource population.

2.2. cDNA sequence and 5′ and 3′ flanking regions of the porcine C3 gene

Total RNA was extracted from pig liver using TRIzol™ Reagent (Life Technologies, Karlsruhe, Germany). Full length porcine C3 cDNA sequence was determined by the SMART™ RACE cDNA Amplification Kit (Clontech, Heidelberg, Germany). RACE primers and gene specific primers were designed based on partial porcine C3 sequence information (GenBank accession number AF110278, F14640) (Fig. 1):

RACE: 5′-ctaatacgactcactatagggcaacgtagtggataacgcagagt-3′
C3-A2: 5′-ccttctccagacatccagatctacg-3′
C3-B1: 5′-ccaccaagaccatgaatgtg-3′
C3-B2: 5′-tagagcttctggccaggttc-3′
C3-C1: 5′-ggtgggtacccgatgttaccaacg-3′.

The 5′ and 3′ flanking regions of porcine C3 gene were isolated from a genomic DNA library, which was constructed using Lambda DASH II® (Stratagene, Amsterdam, Netherlands). Two positive clones of 5′ and 3′ flanking region were amplified with primers specific to porcine C3 (5′-flanking region 5′-tgtgccccctcttctgttgg-3′, 3′-flanking region 5′-gtccgatgatgtagggtatgg-3′) and T3/T7
standard primers. All the PCR fragments were ligated in pGEM®-T vector (Promega, Mannheim, Germany) and sequenced using the SequiTherm Excel cycle sequencing Kit (Epicentre Technologies, Biozym, Hessisch Oldendorf, Germany) and a LI–COR 4200 automated sequencer (LI–COR Biosciences, Bad Homburg, Germany).

2.3. Polymorphism screening and marker genotyping

To identify polymorphisms in the porcine C3 gene, oligonucleotide primers were designed revealing 17 overlapping PCR fragments (Tab. I). They were amplified from individual liver cDNA and genomic DNA of six pig breeds. PCR was performed in a 25 µL reaction volume containing 50 ng of liver cDNA, 0.2 µM of each primers, 50 µM each dNTPs, 0.5 U of Pfu polymerase (Promega) in 1 × Pfu-PCR buffer. PCR cycling program was 94 °C for 3 min, followed by 35 cycles of 94 °C for 30 s, 52–60 °C (Tab. I) for 30 s, 72 °C for 1 min and final extension at 72 °C for 5 min. PCR products were gel purified, cloned and sequenced. The nucleotide sequences of each animal were compared to find out polymorphisms in the porcine C3 gene.

To genotype each polymorphic site in the porcine C3 gene, PCR-RFLP, allele specific PCR, SSCP and microsatellite analysis were performed. Oligonucleotide primers (Tab. II) were used to amplify PCR fragments from genomic DNA. PCR reactions were carried out in 20 µL volume using Taq polymerase (Promega). Amplified PCR fragments with primer C3-I (Tab. II) were mixed with 1:10 with loading buffer (95% formamide, 10 mM NaOH, 0.25% bromophenol blue, 0.25% xylene cyanol), denatured at 95 °C for 5 min, then cooled on ice immediately and separated on 12% polyacrylamide gel (49:1 acrylamide/bis-arylamide) at room temperature with a constant 12 W for 6 h at 0.5 × TBE. The SSCP-bands were stained by silver staining procedure. Amplicon C3-II was digested with restriction enzyme TaqI (Promega). The digested PCR fragments were analysed on 2% agarose gels. Genotyping the SNPs within amplicons C3-III and C3-IV was done as described previously [25]. Fragments with length polymorphism were amplified with primer C3-V (Tab. II) and were identified on 6% SequiGel®XR-denaturating polyacrylamide gels.
Table I. Primer sequences used for screening polymorphisms in the porcine C3 gene.

Name	Forward primer sequence \((5' \text{ to } 3')\)	Reverse primer sequence \((5' \text{ to } 3')\)	Annealing temp. \(\text{ (°C)}\)	cDNA \(\text{(bp)}\)	Genomic-DNA \(\text{(bp)}\)
C3–5'	GCATCGACTTTGAATTCACAG	CCATGATGGAGGGACGGTG	55	–	477
C3–01	TCCTTTCCCCCTGTCCTTTT	GGGAGTCCCCGGTGTATGTC	58	577	–
C3–02	TGAGACACCTGAAGGCATTG	GCTGTTCATACACACACTCTC	58	306	~ 700
C3–03	TCAACATCATGCCCCAGGTTC	GGGCTCTGGTGAAGTGGATC	58	324	–
C3–04	CATCTGACCTCCCTCTAATC	GTGCGCAGGTGGAAGTTAAC	59	393	~ 1000
C3–05	TCAAGCCAGGAGGAATCTC	TCTCAGGTACATCGTGTGC	59	360	~ 1500
C3–06	GAAGCAAGACAAGCAGCATC	TGTCATCCTTTTCTCCATG	56	338	~ 900
C3–07	GTGCACTGTATGGAGAAAAAG	ATTCATGCTTTGCTTGGAG	56	360	–
C3–08	CTCAACAGACACATGAAAT	TCTTCAAGGCAACAAATG	56	356	–
C3–09	CATTGTGACCTTGAAGGAAG	GTGCTGTCCAGGTAGTGAC	55	396	–
C3–10	CAGTCTACGGTTGACATCA	GTTCTTGAAGCACCACATC	55	343	–
C3–11	GATTTGGCTGGCTTCAAAGAC	CTACCAGCAAGACCAAG	52	341	–
C3–12	CTGGGTCTCTGTGCTGTA	CTGGGTACATGGTCAC	52	338	~ 1000
C3–13	GTGACCATGTACACCG	CCTCCAGGTTGTGAGAC	52	337	~ 1300
C3–14	GATCTCACACACCCCGGAGG	CACTTCACGGAGCCCTGATT	55	379	–
C3–15	AATCAGGCTCCGATGTAAGTG	GGCAACCAAGACGACCAT	56	270	–
C3–3’	TGGCAACTTCTCTTGAGAGA	TGCAGGGAGAATCAGGGT	60	–	530
Table II. Nucleotide sequence primers for genotyping the polymorphisms in the porcine \(C3\) gene.

Amplicon	Primer (5’ to 3’)	Size (bp)	Annealing temp. (°C)
C3-I	F: GCATCGACTTGAATTACAG		
	R: CCATGATGGAGGGACGGTG		
	477	55	
C3-II	F: CACCCTGATTTGCTGCAATG		
	R: TACCTCAACTTACTGCAGTG		
	383	60	
C3-III	F: TGAGAATGTGGATGGACCAG		
	R: GGACTTGAATGGCCCAAGATC		
	384	60	
C3-IV	F1: AAGGATCTGAACCTGGATGTGA		
	F2: GGATCTGAACCTGGATGTG		
	R: ACCCCGCTAATCTGTGATGC		
	454, 452	64	
C3-V	F: TGGGCAACTTCTCTGAGAAC		
	R: TAGGATGAACCTGAGCTTG		
	204, 207	60	

(Biozym Diagnostik GmbH) by the LI-COR 4200 automated sequencer (LI-COR Biosciences). The fragment size of alleles was analysed by One-Dscan software (Scanalytics, MWG Biotech).

2.4. Haemolytic complement activity phenotypes

Total haemolytic complement activities were determined in 416 F2-animals of the DUMI-resource population produced from 11 F1 sows (2 full-sib groups) mated with 3 F1 boars. The animals were reared in the Frankenforst research farm of the University of Bonn. They were immunized with Mycoplasma, Aujeszky and PRSS vaccines at 6, 14 and 16 weeks of age, respectively. Blood samples were taken immediately before vaccination and on 4 and/or 10 days after vaccination (Fig. 2). Total haemolytic activity of the alternative (ACP) and classical complement pathway (CCP) was determined by a method modified from Liu and Young [15]. Non sensitised rabbit erythrocytes and sensitised sheep erythrocytes were used as target cells, for ACP and CCP respectively. The haemolytic complement activity was expressed as the titre that lysed 50% of erythrocytes (CH50 unit · mL\(^{-1}\)).

2.5. Association analysis between \(C3\) and complement activity traits

Association between \(C3\) markers and haemolytic complement activity traits was analysed using the REPEATED statement of the SAS® PROC MIXED procedure [14]. The statistical model included \(C3\) genotype, time of blood
sampling, sire, and interaction of $C3$ genotype and time of blood sampling as fixed effects, and dam nested within sire as random effect. A heterogeneous compound-symmetry (CSH) covariance structure was included in the statistical model to analyse fixed effects because it gave the best fit when compared to other covariance structures.

3. RESULTS

3.1. Sequence analysis of the porcine $C3$ gene

The complete porcine $C3$ cDNA sequence (accession No. AF154933) was determined. The 5127 bp cDNA contains an open reading frame coding for 1661 amino acids, including a 22-amino acids signal peptide, 643 amino acids β-chain, a 4 amino acids linker and 992 amino acids α-chain. The ORF of porcine $C3$ shows 80, 78 and 77% homology with human, rat and mouse $C3$ nucleotide sequence, respectively [6,7,17]. The 63 bp 5′-UTR is a pyrimidine rich region (approximately 80% pyrimidines). A 56 bp of 3′-UTR was sequenced and a polyadenylation signal (AATAAA) was found at position 5074 to 5079 of cDNA sequence (AF154933). The sequence information of the 5′-flanking region (Fig. 3a) contained several features of promoter region. The putative TATA-box (GATAAA) sequence was located at −29 bp of the first nucleotide $C3$ sequence (AF154933) and various putative enhancer/transcription factor binding sequences were also found (Tab. III). Comparison of the porcine 5′-flanking sequence with the promoter region of human $C3$ sequence (X62904) [10] revealed 74% sequence identity. However, the 3′-flanking region (Fig. 3b) of porcine $C3$ had low homology with human $C3$ sequence (M63422) [21].

3.2. Polymorphism and allelic frequency of the porcine $C3$ gene

Six polymorphic sites were found in the porcine $C3$ gene including five SNPs and one microsatellite (Fig. 4a). Two SNPs were found in the 5′-flanking
Figure 3. Sequence of the 5′-flanking region upstream from ATG start codon (a) and of the 3′-flanking region downstream from TGA codon (b) of the porcine C3 gene (accession No. F154933). The 5′-UTR is indicated in italics and the putative transcription start site is indicated in italics, bold and underlined. A putative TATA box and polyadenylation signal are indicated in bold and underlined in the 5′- and 3′-flanking regions, respectively.

region at position −384 (G > A) and −44 (C > T) nucleotide (nt) upstream ATG start codon. The other three SNPs were located in the coding region at 1905 (C > A), 3882 (G > A) and the nt 204 (T > C) of the intron 13. A microsatellite with (T)_{14-21}-repeat units was found in the 3′-flanking region of C3 and was located at 71 bp downstream from the TGA stop codon.

The two SNPs of 5′-flanking region were genotyped by SSCP analysis (Fig. 4b). *Taq* I-RFLP was used to detect the variation of the nt 204 in the intron 13 of C3-cDNA sequence (amplicon C3-III) and showed either undigested PCR product (384 bp, allele T), and/or digested product (285 bp and 143 bp, allele C) (Fig. 4c). Similarly, restriction enzyme *Hsp*92 I was used to test polymorphism at position 1502 (amplicon C3-III) and revealed either
Table III. Position of transcription factor binding sites in the 5′-flanking region of the porcine C3 gene.

Factor	Consensus sequence	Position	Homology (%)	Ref.
Enhancer core	GGGGAAAA	−110 to −103	88	[8]
C/EBP	TTGAGAAAT	−176 to −168	100	[23]
IL-6-RE	AGGGGGA	−112 to −106	86	[21]
	TCTGGGG	−168 to −162	100	[21]
	TGAGAAA	−175 to −169	100	[21]
	TGAAAAA	−197 to −191	100	[21]
	TGAGAGA	−290 to −284	100	[21]
	TGGGGAA	−371 to −365	100	[21]
IL-6 RE rev	TTCCCCCA	−220 to −226	100	[8]
	TCCTCCA	−351 to −345	100	[8]
IFNγ RE	GAAAAACTTTTGGA	−196 to −192	87	[8]
AP-2	CCCTTAGG	−132 to −139	88	[18]
LF-A1	TGGCCA	−210 to −205	83	[8]
LF-B1/HNF-1	GTTAAT	−443 to −438	100	[8]
	GTTATT	−232 to −227	83	[8]
Estrogen RE	TGTCCCTTGTCC	−31 to −19	85	[21]

digested PCR product (237 bp and 146 bp, allele C) and/or 383 bp (allele A) of undigested product (Fig. 4d). The SNP located at 3882 was genotyped by allele specific PCR technique with two different primer sets (Fig. 4e). Microsatellite analysis in the 3′-flanking region of porcine C3 revealed three alleles of 211, 207 and 204 bp (amplicon C3-V), and these alleles corresponded to (T)$_{21}$-, (T)$_{17}$-, and (T)$_{14}$-repeat units, respectively (Fig. 4f, allele 204 not shown).

Five of these polymorphic sites (at positions −44, 204 of intron 13, 1509, 3882 and +71) were segregating in the DUMI F2-resource population, and these alleles were coming from some Berlin Miniature Pig of the grandparent generation. All six polymorphic sites were segregating only in Thai native pigs, but no polymorphism was found among the 86 Duroc, German Landrace, Large White and Pietrain pigs. Allelic frequencies of the polymorphic sites in porcine C3 gene among pig breeds are given in Table IV.

3.3. Association analysis

Means and standard deviation of the haemolytic complement activity of alternative and classical pathways were estimated (Tab. V). Only 3 SNPs
Figure 4. Polymorphism in the porcine C3 gene including the 5'- and 3'-flanking regions (a); SSCP analysis at positions −384 and −44 bp in the 5'-flanking region (b); TaqI-PCR-RFLP test at position 204 in intron 13 (c); Hsp92 I-PCR-RFLP test at position 1905 (d); allele specific PCR test at position 3882 (e); and SSLP analysis at position +71 bp in the 3'-flanking region (f).

and one microsatellite (nt 204 of intron 13, 1905, 3882, +71) were genotyped. These four alleles were segregating with two haplotype patterns that can be described [2] as follows: allele C3*I, [IVS13+204T; 1905C; 3882G; c.5038+71(T)₂₁] and allele C3*I, [IVS13+204C; 1905A; 3882A; c.5038+71(T)₁₇]. The numbers of pigs for each genotype class were 290, 109 and 17 for C3*I/C3*I, C3*I/C3*I, and C3*I/C3*I genotypes respectively. Subsequently, the genotype C3*I/C3*I was excluded from the analysis because of its low frequency and unequal distribution over parities and litters.
Table IV. Allele frequencies at the porcine C3 gene in six genetic groups of pigs.

Position	Allele	F2-DUMI Frequency	Duroc Frequency	German Landrace Frequency	Large White Frequency	Pietrain Frequency	Thai native pig Frequency
−384	G	1.00	1.00	1.00	1.00	1.00	0.99
−44	G	0.99	1.00	1.00	1.00	1.00	0.97
204 (intron 13)	T	0.75	1.00	1.00	1.00	1.00	0.82
1905	C	0.74	1.00	1.00	1.00	1.00	0.70
3882	G	0.74	1.00	1.00	1.00	1.00	0.82
+71(T)_{21}	T_{21}	0.76	1.00	1.00	1.00	1.00	0.00
+71(T)_{17}	T_{17}	0.24	0.00	0.00	0.00	0.00	0.12
+71(T)_{14}	T_{14}	0.00	0.00	0.00	0.00	0.00	0.17

Table V. Haemolytic complement activities (mean ± SD) of alternative and classical pathways in DUMI resource population.

Blood sampling	Haemolytic complement activity (Unit · mL$^{-1}$)	
	ACH50	CCH50
Time-1	53.64 ± 28.31	40.70 ± 23.13
Time-2	53.22 ± 28.43	48.23 ± 28.81
Time-3	55.05 ± 24.86	47.97 ± 29.19
Time-4	56.86 ± 30.13	59.08 ± 36.46
Time-5	62.31 ± 32.08	64.91 ± 35.71
Time-6	68.46 ± 47.63	59.79 ± 39.10
Time-7	69.75 ± 41.70	62.53 ± 35.58
Time-8	69.71 ± 37.42	60.99 ± 40.89

Table VI. Significance in analysis of variance of alternative (ACH50) and classical (CCH50) complement activity traits.

Traits	Test of fixed effects (P value)			
	C3 marker	Time	C3 × time	Sire
ACH50	0.0255	< 0.0001	< 0.0001	< 0.0001
CCH50	0.0286	< 0.0001	0.0014	0.0151

Analysis of variance revealed that hemolytic complement activity of both alternative and classical pathways was significantly affected ($P < 0.05$) by C3 marker, time of blood sampling and their interaction, and by sire effect (Tab. VI). The profiles of the haemolytic complement activities between the different C3
Figure 5. Haemolytic complement activity profiles of alternative (a) and classical (b) pathways for pigs with $C3^*1/C3^*1$ and $C3^*1/C3^*2$ genotypes were not parallel over time (Fig. 5). Complement activities in the alternative and classical pathway were 5.8 and 6.9 units · mL$^{-1}$ higher for animals homozygous for the $C3^*1$ allele than for $C3^*1/C3^*2$ animals.

4. DISCUSSION

Activated complement system plays an important role in killing and neutralization of microorganisms, and $C3$ is a key molecule of this system. Therefore, $C3$ can be regarded as a candidate gene for complement activities. The 5.1 kb sequence of full-length porcine $C3$ gene has a 4983-bp ORF which coded for α- and β-chain of $C3$ protein. The porcine $C3$ is a conserved gene and has high homology with the other mammalian species $C3$ gene. Indeed, the putative promoter region contains one TATA-box and several cis-regulating
elements similar to that of the human C3 promoter [8,21]. The variation of haemolytic complement activities before and after vaccination within the F2-DUMI resource population was found to be associated with C3 markers. Although these C3 markers were silent at the amino acids level, another nucleotide exchange in the 5′-flanking promoter region of the C3 gene and in linkage disequilibrium with these C3 variants might be responsible for its function. Animals with the more frequent C3*1/C3*1 haplotype, present in Duroc and other commercial breeds, exhibited higher complement reactivity than those carrying the allele C3*2 coming from Berlin Miniature Pigs.

Genetic variation in C3 affecting the complement activity has been observed in human [3], rabbit [11], and mouse [5]. These reports indicated that the genetic defect of C3 gene caused low (or lack of) haemolytic complement activity and increased susceptibility to microorganisms. Phenotypic variation of haemolytic complement activity in pigs has been associated with effects due to vaccination, genomic variation at the swine leukocytes antigen locus (SLA) [16,20], breed [12], age as well as sire or/dam [16,24].

Although the complement is a complex system and is controlled by many genes, the present work showed there was an association of C3 and haemolytic complement activity – a defence mechanism active against many pathogenic agents – which reinforces the importance of C3 as a candidate gene for natural resistance to microorganisms.

ACKNOWLEDGEMENTS

We wish to express our great appreciation to Prof. Dr. S. Rattanaronchart, Department of Animal Science, Faculty of Agriculture, Chiang Mai University, Thailand, for providing us with the blood samples. We would also like to thank the German research Council (DFG), and the German Academic Exchange Service (DAAD) for financial aid.

REFERENCES

[1] Ameratunga R., Winkelstein J.A., Brody L., Binns M., Cork L.C., Colombani P., Valle D., Molecular analysis of the third component of canine complement (C3) and identification of the mutation responsible for hereditary canine C3 deficiency, J. Immunol. 160 (1998) 2824–2830.
[2] Antonarakis S.E., Nomenclature Working Group, Recommendations for a nomenclature system for human gene mutations, Hum. Mutat. 11 (1998) 1–3.
[3] Botto M., Fong K.Y., So A.K., Rudge A., Walport M.J., Molecular basis of hereditary C3 deficiency, J. Clin. Invest. 86 (1990) 1158–1163.
[4] Botto M., Fong K.Y., So A.K., Barlow R., Routier R., Morley B.J., Walport M.J., Homozygous hereditary C3 deficiency due to a partial gene deletion, Proc. Natl. Acad. Sci. USA 89 (1992) 4957–4961.
Association of complement activity and C3 gene

[5] Circolo A., Garnier G., Fukuda W., Wang X., Hidvegi T., Szalai A.J., Briles D.E., Volanakis J.E., Wetsel R.A., Colten H.R., Genetic disruption of the murine complement C3 promoter region generates deficient mice with extrahepatic expression of C3 mRNA, Immunopharmacology 42 (1999) 135–149.

[6] de Bruijn M.H., Fey G.H., Human complement component C3: cDNA coding sequence and derived primary structure, Proc. Natl. Acad. Sci. USA 82 (1985) 708–712.

[7] Fey G.H, Lundwall A., Wetsel R.A., Tack B.F., de Bruijn M.H., Domdey H., Nucleotide sequence of complementary DNA and derived amino acid sequence of murine complement protein C3, Philos. Trans R. Soc. Lond. B. Biol. Sci. 306 (1984) 333–344.

[8] Fong K.Y., Botto M., Walport M.J., So A.K., Genomic organization of human complement component C3, Genomics 7 (1990) 579–586.

[9] Harde T., Köpke K., Reißmann M., Wimmers K., Maternal influences on litter size and growth in reciprocal crossed miniature pigs and Durocs, Arch. Tierz. Dummerstorf 42 (1999) 83–92.

[10] Kawamura N., Singer L., Wetsel R.A., Colten H.R., Cis- and trans-acting elements required for constitutive and cytokine-regulated expression of the mouse complement C3 gene, Biochem. J. 283 (1992) 705–712.

[11] Komatsu M., Yamamoto K., Nakano Y., Nakazawa M., Ozawa A., Mikami H., Tomita M., Migita S., Hereditary C3 hypocomplementemia in the rabbit, Immunology 64 (1988) 363–368.

[12] Komatsu M., Yoshiwara S., Akita T., Immunological characteristics of the meishan pig: serum complement activity, serum C3 level, immune response and skin structure, in: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 11–16 January 1998, Vol. 26, University of New England, Armidale, pp. 323–326.

[13] Kopf M., Abel B., Gallimore A., Carroll M., Bachmann M.F., Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection, Nat. Med. 8 (2002) 373–378.

[14] Littell R.C., Henry P.R., Ammerman C.B., Statistical analysis of repeated measures data using SAS® procedures, J. Anim. Sci. 76 (1998) 1216–1231.

[15] Liu C.C., Young J.D., A semiautomated microassay for complement activity, J. Immunol. Methods 114 (1988) 33–39.

[16] Mallard B.A., Wilkie B.N., Kennedy B.W., Influence of major histocompatibility genes on serum hemolytic complement activity in miniature swine, Am. J. Vet. Res. 50 (1989) 359–363.

[17] Misumi Y., Sohda M., Ikehara Y., Nucleotide and deduced amino acid sequence of rat complement C3, Nucleic Acids Res. 25 (1990) 2178.

[18] Ren Y., Liao W.S., Transcription factor AP-2 functions as a repressor that contributes to the liver-specific expression of serum amyloid A1 gene, J. Biol. Chem. 276 (2001) 17770–17778.

[19] Sahu A., Lambris J.D., Structure and biology of complement protein C3, a connecting link between innate and acquired immunity, Immunol. Rev. 180 (2001) 35–48.
[20] Vaiman M., Hauptmann G., Mayer S., Influence of the major histocompatibility complex in the pig (SLA) on serum haemolytic complement levels, J. Immuno- genet. 5 (1978) 59–65.

[21] Vik D.P., Amiguet P., Moffat G.J., Fey M., Amiguet-Barras F., Wetsel R.A., Tack B.F., Structural features of the human C_3 gene: intron/exon organization, transcriptional start site, and promoter region sequence, Biochemistry 30 (1991) 1080–1085.

[22] Wessels M.R., Butko P., Ma M., Warren H.B., Lage A.L., Carroll M.C., Studies of group B streptococcal infection in mice deficient in complement component C_3 or C_4 demonstrate an essential role for complement in both innate and acquired immunity, Proc. Natl. Acad. Sci. USA 92 (1995) 11490–11494.

[23] Wilson D.R., Juan T.S., Wilde M.D., Fey G.H., Darlington G.J., A 58-base-pair region of the human C_3 gene confers synergistic inducibility by interleukin-1 and interleukin-6, Mol. Cell Biol. 10 (1990) 6181–6191.

[24] Wimmers K., Lipperheide C., Ponsuksili S., Schmoll F., Hardge T., Petersen B., Schellander K., Haemolytic complement activity and C_3c serum concentration in pigs, Arch. Tierz. Dummerstorf 42 (1999) 93–102.

[25] Wimmers K., Mekchay S., Ponsuksili S., Hardge T., Schellander K., Polymorphic sites in exon 15 and 30 of the porcine C_3 gene, Anim. Genet. 32 (2001) 46–47.

To access this journal online:
www.edpsciences.org