Cardiac adverse reactions of COVID-19 vaccination: cardiac MRI findings

Dmitrij Kravchenko1,2 · Julian Alexander Luetkens 1,2
1 Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
2 Quantitative Imaging Lab Bonn (QILaB), University Hospital Bonn, Bonn, Germany

Abstract

Background: The rapid development of COVID-19 vaccines in the wake of the COVID-19 pandemic has led to an equally expediently deployed vaccination campaign with more than 12 billion vaccinations administered worldwide. Reports of vaccine-associated adverse reactions (VAARs) have ranged from headaches and pain at the injection site to potentially life-threatening events such as cerebral venous sinus thrombosis. The heart has also not been spared of VAARs, as vaccine-associated myocardial infarction and more commonly, albeit still rare, myocarditis and perimyocarditis have been reported in predominantly young male recipients.

Methodological innovations: Cardiac magnetic resonance imaging findings of vaccine-associated myocarditis such as prolonged T1 and T2 relaxation times, increased T2 signal intensity ratio, and subepicardial late gadolinium enhancement have been demonstrated to be similar to those in virus-induced myocarditis, enabling the use of the modified 2018 Lake Louise Criteria for diagnostic purposes to confirm vaccination-associated myocardial inflammation. Other reported cardiac findings such as cardiomyopathies and arrhythmias were confined to case reports. The incidence of myocardial infarction was not noted to be higher than in the overall population.

Conclusion: The overall preliminary prognosis of vaccine-associated myocarditis seems to be good as suggested by initial reports, but long-term follow-up is needed to sufficiently assess possible sequelae and consequences.

Keywords
Magnetic resonance imaging · Myocarditis · Covid-19 · Myocardial injury · Side effect

Introduction

As of August 2022, there have been approximately 591 million confirmed cases of coronavirus disease 2019 (COVID-19) and 6.4 million confirmed deaths worldwide, according to the World Health Organization [1]. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially described as an infection of the lower airways resulting in atypical pneumonia, but it has since been recognized as a multi-organ disease, with the potential to affect the skin, the brain, and the heart [2]. The development of COVID-19 vaccines cumulated in a total of 12.4 billion doses administered worldwide [1]. This rapidly deployed vaccination campaign has helped to contain the spread of SARS-CoV 2 as well as to prevent many unwanted effects of COVID-19, with studies estimating the overall efficacy of all available vaccines at over 70%, and even over 94% for mRNA-based vaccines [3]. In the 1990s, a database called “Vaccine Adverse Event Reporting System” (VAERS) was set up by the Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) to document possible side effects after the administration of U.S. licensed vaccines. This has been a vital tool in the current pandemic and has allowed healthcare providers to independently report all vaccine-associated adverse reactions (VAARs). While there is no doubt about the benefits of COVID-
19 vaccines, a number of reports have emerged detailing VAARs, which usually range from headaches, pain at the injection site, or chills to potentially life-threatening events such as sinus venous thrombosis or myocarditis [3–6]. Cardiovascular VAARs tend to manifest mainly as myocarditis, pericarditis, or both (perimyocarditis) in predominantly young males. Arrhythmias have also been frequently described. To date, reports of myocardial infarction have been confined to case reports [7]. As the COVID-19 pandemic is currently still ongoing, only long-term follow-up studies will be able to show the true extent of the effects of the pandemic.

Imaging-based assessment of cardiac vaccine-associated adverse events

Myocarditis or pericarditis

By far the most commonly reported, yet still rare, cardiovascular VAAR after COVID-19 vaccination is an acute myocarditis or pericarditis, which has an estimated incidence of 0.48 cases per 100,000 vaccinations [8]. After the widespread adoption of COVID-19 vaccines, reports of myocarditis in predominantly young males usually after the second-dose vaccination started to emerge [5, 9–11]. The VEARS noted 94 cases of myocarditis for the Ad26.COV2-S [recombinant] (Janssen) vaccine, 980 for the mRNA-1273 (Moderna) vaccine, and 1897 cases for the BNT162b2 (Pfizer/BioNTech) vaccine [12]. Acute-onset myocarditis after vaccination is not a new phenomenon and has been previously described for influenza and smallpox vaccines [13]. The main clinical findings are usually dyspnea or chest pain but can also include arrhythmias [9]. Elevated troponin T and other cardiac enzymes have been observed in most cases of myocarditis [5,8]. Although the definitive pathomechanism is not fully understood, hyperimmunity has been proposed to play a key role: Parts of the vaccines, for example, the mRNA itself or the viral spike protein might be seen as antigens by the body, resulting in an inflammatory cascade inside cardiomyocytes [14, 15].

While endomyocardial biopsy remains the reference standard for diagnosing myocarditis, it has been largely superseded...
Magnetic resonance imaging (MRI) demonstrates increased signal intensity at the midmyocardial, subepicardial lateral wall (a, d thick arrows) corresponding to focal edema with associated contrast enhancement in the late gadolinium enhancement (LGE) imaging (thin arrows) in short-axis (b, e) and four-chamber views (c, f). Note the resolution of myocardial edema from baseline to follow-up indicating a resolution of active myocardial inflammation. A decrease of LGE without complete resolution is also seen on follow-up, most likely reflection persistent myocardial scarring after myocardial remodeling and scar shrinkage.

Fig. 2 Magnetic resonance imaging (MRI) demonstrating the natural history of acute vaccine-associated myocarditis in a young 25-year-old male patient after receiving the second dose of the BNT162b2 (Pfizer/BioNTech) vaccine at baseline (MRI was performed 4 days after vaccination) and at the 7-month follow-up. T2 short tau inversion recovery (STIR) imaging demonstrates increased signal intensity at the midmyocardial, subepicardial lateral wall (a, d thick arrows) corresponding to focal edema with associated contrast enhancement in the late gadolinium enhancement (LGE) imaging (thin arrows) in short-axis (b, e) and four-chamber views (c, f). Note the resolution of myocardial edema from baseline to follow-up indicating a resolution of active myocardial inflammation. A decrease of LGE without complete resolution is also seen on follow-up, most likely reflection persistent myocardial scarring after myocardial remodeling and scar shrinkage.

Due to its invasive nature by cardiac magnetic resonance imaging (MRI), especially in uncomplicated cases. The modified 2018 Lake Louise criteria have been validated to be a reliable diagnostic tool for the diagnosis of acute myocarditis on cardiac MRI. Utilizing T1-based imaging (prolonged native T1 relaxation times, increased extracellular volume, or positive late gadolinium enhancement (LGE)) and T2-based imaging (prolonged T2 relaxation times or regional or global increased T2 signal intensity ratio), cardiac MRI has the ability to visualize inflammatory cardiac changes [16–18]. Recent studies have shown that cardiac MRI changes in vaccine-associated myocarditis are similar to those of viral-induced myocarditis, thus enabling the application of the modified Lake Louise criteria to vaccine-associated myocarditis, as demonstrated in **Fig. 1** [5, 17, 18]. Typical cardiac MRI findings include subepicardial LGE of the lateral wall, which tends to correlate with the degree of troponin T elevation. Other common findings are prolonged T1 and T2 relaxation times as well as increased focal or global T2 signal intensity ratios. Some researchers have noted that septal and midmyocardial segments were less commonly involved on LGE imaging in vaccine-associated myocarditis compared to acute viral induced myocarditis [19, 20], as well as a higher overall left ventricular ejection fraction was observed. Isolated vaccine-associated pericarditis has been previously described, but so far there are few imaging-based publications on this topic as most tend to report myocarditis and pericarditis as one event [21]. Inflammation of the pericardium is sometimes observed accompanying acute myocarditis resulting in pericarditis.

Clinical symptoms of acute vaccine-associated myocarditis or pericarditis as well as cardiac MRI findings tend to be self-limiting and resolve within a few weeks of onset [11]. There is currently a sparsity of literature concerning the natural history of vaccine-associated myocarditis. New research suggests vaccine-associated myocarditis demonstrates rapid improvement of cardiac MRI findings within 3 months of onset, although focal fibrotic changes were still appreciable on follow-up [22]. **Figure 2** shows the natural history of a 25-year-old male patient with acute myocarditis at initial cardiac MRI and the resolution of active inflammation at the 7-month follow-up.

Although these preliminary findings are promising, only long-term follow-up examinations will be able to show the true extent of myocardial injury and long-lasting clinical effects. Currently there are at
least 96 registered studies, including some large multicenter studies, on the clínicaltrials.gov website pertaining to the effects of the COVID-19 vaccines on myocytes [23]. A selection of currently published literature is highlighted in Table 1.

Myocardial infarction

Even less common than vaccine-associated myocarditis is vaccine-associated myocardial infarction, with no conclusive data available to date. A few case reports have emerged describing myocardial infarcts after COVID-19 vaccination but other than a temporal relationship between symptom onset and vaccination, no clear causation could be attributed [7, 24, 25]. Thrombotic events are known to be precipitated by SARS-CoV2 infections and a similar pathomechanism might be at play for vaccine-associated myocardial infarction [26]. Alternative pathomechanisms such as vasospasms or atherosclerotic plaque rupture have also been proposed [25]. Systematic studies are required to further elucidate whether there is indeed a causal relationship between myocardial infarction and COVID-19 vaccination. Coronary computed tomography–angiography or coronary angiography should be performed for patients presenting with chest pain with elevated cardiac troponin levels and abnormal electrocardiograms so as to directly demonstrate the potentially underlying filling defect. Vaccines have been shown to reduce the risk of acute myocardial infarction after COVID-19, outweighing the potential risks of vaccine-associated acute coronary syndrome [27].

Summary and outlook

Physicians should be aware of the potential risk factors that current COVID-19 vaccines introduce. While rare (estimated incidence of 0.48 per 100,000 vaccinations), vaccine-associated myocarditis should be sus-

Authors	Year	Study type	Patients (n)	Males (n)	Age (years)	First/second dose (n)	Vaccine P/M/A/J (n)	Symptoms	Cardiac MRI findings
Ahmed SK. et al. [28]	2022	Case series	7	7	24.6	0/7	5/2/0/0	Chest pain, fatigue, shortness of breath, elevated troponin T	Acute non-severe myocarditis after vaccination
Fronza et al. [19]	2022	Retrospective study	21	17	31.0	4/17	9/12/0/0	Chest pain	LGE findings in all patients
Kravchenko et al. [5]	2022	Retrospective study	9	7	24.0	2/7	8/1/0/0	Chest pain, elevated troponin T, fatigue	All LLC-positive patients demonstrated elevated troponin T and LGE on cardiac MRI
Abellan C. et al. [29]	2021	Case series	3	3	28.7	0/3	0/3/0/0	Chest pain, elevated troponin T	Acute non-severe myocarditis after vaccination
Diaz AG. et al. [30]	2021	Retrospective study	20	15	36a	4/16	9/11/0/0	N/A	Acute non-severe myocarditis or perimyocarditis after vaccination
Isaak et al. [10]	2021	Case report	1	1	15.0	0/1	1/0/0/0	Fever, myalgia, chest pain, elevated troponin T	Subepicardial LGE. Intact ventricular function
Kim et al. [11]	2021	Case series	4	3	38.3	0/4	2/2/0/0	Fatigue, chest pain	All patients demonstrated subepicardial LGE and elevated T1 and T2 times
Larson KF. & Ammirati E. et al. [31]	2021	Case series	8	8	31.6	1/7	5/3/0/0	Chest pain	Elevated troponin T in 6 patients. All patients demonstrated LGE findings, most with associated edema
Marshall M. et al. [32]	2021	Case series	7	7	17a	0/7	7/0/0/0	Chest pain, elevated troponin T	All patients presented with LGE, hyperemia and cardiac edema
Montgomery J. et al. [33]	2021	Retrospective study	23	23	25a	3/20	7/16/0/0	Chest pain, elevated troponin T	Abnormal cardiac MRI findings including LGE in all cases where cardiac MRI was performed (8 out of 23)
Mouch et al. [34]	2021	Case series	6	6	–	1/5	5/0/0/0	Chest pain	Elevated troponin T in 4 out of 6 patients. All patients demonstrated LGE. Uncomplicated resolution
Rosner CM. et al. [35]	2021	Case series	7	7	27.4	2/7	5/1/0/1	Chest pain, elevated troponin T, fever	Cardiac edema in 5 patients. LGE in all patients

P Pfizer/BioNTech, AstraZeneca, J Johnson&Johnson, N/A not available, LGE late gadolinium enhancement, LLC Lake Louise criteria

*aData reported as median
Cardiac magnetic resonance imaging findings are typically similar to those found in viral-induced acute infarct-like myocarditis including subepicardial LGE, edema, and prolonged T1 and T2 relaxation times. Symptom resolution tends to be within weeks, with preliminary findings suggesting no relevant sequelae. However, vaccine-associated myocardial infarction should also be suspected and ruled out if typical symptoms of myocardial infarction such as acute chest pain and dyspnea present shortly after vaccination. As the COVID-19 pandemic is ongoing, we are still learning a great deal about the virus, the disease it causes, and potential VAARs. Only long-term follow-ups can reveal the true extent of the long-term effects of COVID-19 vaccines.

The importance of reporting VAARs of COVID-19 vaccinations should not be underestimated as it is vital for raising awareness among physicians of the potential risk factors that vaccines entail for their patients. This ensures that patients get the proper timely treatment they need. But this does not diminish the benefits COVID-19 vaccines have afforded us. Currently, vaccines are the most effective tool at our disposal to mitigate the COVID-19 pandemic and people should not be discouraged to undergo vaccination by rare possible adverse reactions.

Practical conclusion

- **Vaccine-induced myocarditis** is rarely observed after COVID-19 vaccination but should be considered in patients with an acute symptom onset after vaccination, especially after mRNA vaccination.
- **Cardiac magnetic resonance imaging findings** of vaccine-induced perimyocarditis have been reported to be similar to virus-induced myocarditis, allowing for the use of the Lake Louise criteria for diagnostic assessment of patients with suspected vaccine-induced perimyocarditis.
- The occurrence of other cardiac side effects such as cardiomyopathies or myocardial infarctions is currently confined to case reports.

References

1. WHO Coronavirus (COVID-19) Dashboard (2022) WHO Coronavirus (COVID-19) dashboard with vaccination data. https://covid19.who.int. Accessed 22 Aug 2022
2. Thakur V, Ratho RK, Kumar P, Bhatia SK, Bora I, Mohi GK et al (2021) Multi-organ involvement in COVID-19: Beyond pulmonary manifestations. JCM 10(3):446
3. Cai C, Peng Y, Shen E, Huang Q, Chen Y, Liu P et al (2021) A comprehensive analysis of the efficacy and safety of COVID-19 vaccines. Mol Ther 29(9):2794–2805
4. Schulz JB, Berlit P, Diener H-C, Gerloff C, Greinacher A, Klein C et al (2021) COVID-19 vaccine-associated cerebral venous thrombosis in Germany. Ann Neurol 90(4):627–639
5. Kravchenko D, Isaak A, Mesropyan N, Endler C, Dmitrij.kravchenko@ukbonn.de
6. Kravchenko D, Isaak A, Mesropyan N, Endler C, Dmitrij.kravchenko@ukbonn.de
7. Dmitrij Kravchenko, MD
Department of Diagnostic and Interventional Radiology, University Hospital Bonn Venusberg Campus 1, 53127 Bonn, Germany

Declarations

Conflict of interest. D. Kravchenko declares that he has no competing interests. J.A. Luetkens received payments from Philips Healthcare for lectures and from Bayer HealthCare for activities related to the scientific advisory board.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

The supplement containing this article is not sponsored by industry.

Corresponding address

Dmitrij Kravchenko, MD
Department of Diagnostic and Interventional Radiology, University Hospital Bonn Venusberg Campus 1, 53127 Bonn, Germany
dmitrij.kravchenko@ukbonn.de

8. Witberg G, Barda N, Hoss S, Richter I, Wiessman M, Aviv Y et al (2021) Myocarditis after Covid-19 vaccination in a large health care organization. N Engl J Med 385(23):2132–2139
9. Bokzurt B, Kamar I, Hotez PJ (2021) Myocarditis with COVID-19 mRNA vaccines. Circulation 144(6):471–484
10. Isaak A, Feist A, Luetkens JA (2021) Myocarditis following COVID-19 vaccination. Radiology 301(1):E378–E379
11. Kim HW, Jenista ER, Wendell DC, Azevedo CF, Campbell MJ, Darty SN et al (2021) Patients with acute myocarditis following mRNA COVID-19 vaccination. JAMA Cardiol 6(10):1196–1201
12. United States Department of Health and Human Services (DHHS), Public Health Service (PHS), Centers for Disease Control (CDC), Food and Drug Administration (FDA) Vaccine Adverse Event Reporting System (VAERS) 1990–07/22/2022, CDC WONDER on-line database. http://wonder.cdc.gov/vaers.html. Accessed 2 Aug 2022
13. Kunz J, Crane B, Wei WI, Linenweber AL (2018) Myocarditis and pericarditis are rare following live viral vaccinations in adults. Vaccine 36(12):1524–1527
14. Heymans S, Cooper LT (2022) Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat Rev Cardiol 19(2):75–77
15. Segal Y, Shoenfeld Y (2018) Vaccine-induced autoimmunity: the role of molecular mimicry and immune crossreaction. Cell Mol Immunol 15(6):586–594
16. Luetkens JA, Faroo A, Isaak A, Dabir D, Kuetting D, Feist A et al (2019) Comparison of original and 2018 Lake Louise criteria for diagnosis of acute myocarditis: results of a validation cohort. Radiol Cardiothoracic Imaging 1(3):e190010
17. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. JAm CollCardiol72(24):3158–3176
18. Lurz P, Luecke C, Eitel F, Fohrenbach F, Creutzig D, Grothoff M et al (2016) Comprehensive cardiovascular magnetic resonance imaging in patients with suspected myocarditis: the myocartrialy trial. J Am CollCardiol67(15):1800–1811
19. Fronza M, Thavendiranathan P, Chan V, Karur GR, Udell JA, Wahl RM et al (2022) Myocardial injury pattern at MRI in COVID-19 vaccine-associated myocarditis. Radiology. https://doi.org/10.1148/radiol.225589
20. Patel YR, Shah NR, Lombardi K, Agarwal S, Has P, Patel R et al (2022) Cardio MRI findings in male patients with acute myocarditis in the presence or absence of COVID-19 vaccination. Radiol Cardiothoracic Imaging 4(3):e2020008
21. Wang HL, Wu M, Zhou CK, Lloyd PC, Amend KL, Beachler DC et al (2022) Risk of myocarditis and pericarditis after the COVID-19 mRNA vaccine in the USA: a cohort study in claims databases. Lancet399(10342):2139–2149
22. Alhussein MM, Rabbani M, Sarak B, Dykstra S, Labid D, Flewitt J et al (2022) Natural history of myocardial injury following COVID-19 vaccine associated myocarditis. Can J Cardiol. https://doi.org/10.1016/j.cjca.2022.07.017
23. ClinicalTrials.gov Incidence, patient characteristics and outcome of myocarditis after COVID-19 mRNA vaccine. https://clinicaltrials.gov/ct2/show/NCT05438472?term=COVID-19+AND+myocarditis&draw=2&rank=1. Accessed 1 Aug 2022
Zusammenfassung

Unerwünschte kardiale Nebenwirkungen einer COVID-19-Impfung: Befunde in der kardialen MRT

Hintergrund: Die rasche Entwicklung von COVID-19-Impfstoffen im Rahmen der COVID-19-Pandemie hat zu einer zügigen Impfkampagne geführt, im Rahmen derer mehr als 12 Mrd. Impfungen weltweit durchgeführt wurden. Die Berichte über Impfnebenwirkungen („vaccine-associated adverse reactions“, VAAR) reichen dabei von Kopfschmerzen und Schmerzen an der Injektionsstelle bis hin zu potenziell lebensbedrohlichen Ereignissen wie zerebrale Venen- und Sinusthrombosen. Auch kardiale Impfnebenwirkungen wurden beschrieben. Solche kardialen VAAR scheinen überwiegend junge Männer zu betreffen. Obwohl diese kardialen Impfnebenwirkungen sehr selten sind, gibt es einige Berichte über Myokarditiden und Perimyokarditiden nach Impfung.

Methodische Innovationen: Die Magnetresonanztomographie (MRT)-Befunde der impfassoziierten Myokarditis, wie verlängerte T1- und T2-Relaxationszeiten, fokale T2-Signalerhöhungen und ein subepikardiales Late-Gadolinium-Enhancement ähneln nachweislich denen der virusinduzierten Myokarditis, sodass die modifizierten Lake-Louise-Kriterien 2018 für diagnostische Zwecke zum Nachweis einer impfassoziierten myokardialen Inflammation verwendet werden können. Sonstige kardiale Befunde wie Kardiomyopathien und Arrhythmien beschränken sich aktuell auf Fallberichte. Berichte über Myokardinfarkte nach Impfung sind ebenfalls sehr selten. Die Inzidenz von Myokardinfarkten ist nicht höher als in der Gesamtbevölkerung.

Schlussfolgerung: Die vorläufige Gesamtprognose der impfassoziierten Myokarditis scheint den ersten Berichten zufolge gut zu sein, doch sind langfristige Nachuntersuchungen erforderlich, um mögliche Folgeerkrankungen und Konsequenzen ausreichend bewerten zu können.

Schlüsselwörter
- Magnetresonanztomographie
- Myokarditis
- Covid-19
- Myokardverletzung
- Nebenwirkung