Monte-Carlo Simulation

Prof. Dr. Michael Fröhlich

DAA-Workshop für junge Mathematiker im Bachelorstudium
Reisenburg, 03.09.2014
Agenda

1. Simulationstechniken (Monte-Carlo-Methoden)

2. Excel-Beispiele
Die **Binomialverteilung**, eine der wichtigsten diskreten Wahrscheinlichkeitsverteilungen, beschreibt die Anzahl der Erfolge bei einer Serie von unabhängigen **Bernoulli-Versuchen**. Tritt das Ereignis „Erfolg“ mit einer Wahrscheinlichkeit von $p \in (0,1)$ ein, so beschreibt die Binomialverteilung die Wahrscheinlichkeit, dass bei n unabhängigen Bernoulli-Versuchen k-mal das Ereignis „Erfolg“ eintritt. Diese Wahrscheinlichkeit ist gegeben durch

$$P(Z = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Um eine binomialverteilte Zufallsgröße Z zu erzeugen, erzeugen wir zunächst n Bernoulli-verteilte Zufallsgrößen. Hierfür ziehen wir zufällig Zahlen aus dem Intervall $(0;1)$, wobei die Ziehung jeder Zahl gleich wahrscheinlich sein muss. Ist die gezogene Zahl kleiner als p, so erhält die Bernoulli-verteilte Zufallsgröße den Wert 1, ist sie jedoch größer als p, so notieren wir den Wert 0. Auf diese Weise konstruieren wir n Bernoulli-verteilte Zufallsgrößen, also eine Folge von n Zahlen, die den Wert 0 oder 1 haben. Durch Summation erhalten wir dann unsere binomialverteilte Zufallsgröße Z.
Wie kann man eine exponential-verteilte Zufallsvariable simulieren?
PC und Taschenrechner können nur im Intervall \([0,1]\) gleichverteilte Zufallsvariablen simulieren?

Lösungsansatz:

- Man bestimme die Quantilsfunktion der Verteilung, d.h. die Umkehrfunktion der Verteilung.
1. Simulationstechniken (Monte-Carlo-Methoden)

Wie kann man eine exponential-verteilte Zufallsvariable simulieren? PC und Taschenrechner können nur im Intervall \([0,1]\) gleichverteilte Zufallsvariablen simulieren?

Lösungsansatz:

- Man bestimme die Quantilsfunktion der Verteilung, d.h. die Umkehrfunktion der Verteilung.
- Man ermittelt eine Realisation der gleichverteilten Zufallsgröße aus \([0,1]\).
1. Simulationstechniken (Monte-Carlo-Methoden)

Wie kann man eine exponential-verteilte Zufallsvariable simulieren? PC und Taschenrechner können nur im Intervall \([0,1]\) gleichverteilte Zufallsvariablen simulieren?

Lösungsansatz:

- Man bestimme die Quantilsfunktion der Verteilung, d.h. die Umkehrfunktion der Verteilung.
- Man ermittelt eine Realisation der gleichverteilten Zufallsgröße aus \([0,1]\).
- Man setzt diese in die Quantilsfunktion der Verteilung ein und erhält eine Realisation einer exponential-verteilten Zufallsgröße.
1. Simulationstechniken (Monte-Carlo-Methoden)

Wie kann man eine exponential-verteilte Zufallsvariable simulieren? PC und Taschenrechner können nur im Intervall [0,1] gleichverteilte Zufallsvariablen simulieren?

Lösungsansatz:

- Man bestimme die Quantilsfunktion der Verteilung, d.h. die Umkehrfunktion der Verteilung.
- Man ermittelt eine Realisation der gleichverteilten Zufallsgröße aus [0,1].
- Man setzt diese in die Quantilsfunktion der Verteilung ein und erhält eine Realisation einer exponential-verteilten Zufallsgröße.
- Man nennt diese Methode *Inversionsmethode*.
1. Simulationstechniken (Monte-Carlo-Methoden)

Der Beweis, warum die Inversionsmethode funktioniert:

Sei X eine Zufallsvariable mit Verteilungsfunktion F und U eine auf $[0, 1]$ gleichverteilte Zufallsvariable. Dann haben $Y := F^{-1}(U)$ und X dieselbe Verteilungsfunktion.

Beweis: Sei F_Y die Verteilungsfunktion von Y. Dann gilt

$$F_Y(x) = P(Y \leq x) = P(F^{-1}(U) \leq x) = P(U \leq F(x)) = F(x),$$

was die Behauptung zeigt.

Die letzte Gleichung folgt aus der Tatsache, daß U gleichverteilt ist, also $P(U \leq x) = x$ für alle x.

Prof. Dr. Michael Fröhlich (OTH Regensburg)

Monte-Carlo Simulation

03.09.2014
Simulation einer Poisson-λ-verteilten Schadenanzahl:

Wir starten bei $n := 0$ und $T := 1$.

Simulation einer Pareto-verteilten Schadenhöhe:

Ist die Zufallsvariable X Pareto-verteilt mit Parameter α und Startwert x_0, so ist X verteilt wie $x_0 \cdot U^{-1/\alpha}$, wobei U eine auf $[0,1]$ gleichverteilte Zufallsvariable ist. (Inversionsmethode)
Simulation einer Poisson-λ-verteilten Schadenanzahl:

- Wir starten bei $n := 0$ und $T := 1$.
- Dann simulieren wir eine auf $]0, 1[$ gleichverteilte Zufallsvariable u und setzen $T := uT$.

Simulation einer Pareto-verteilten Schadenhöhe:

Ist die Zufallsvariable X Pareto-verteilte mit Parameter α und Startwert x_0, so ist X verteilt wie $x_0 \cdot U^{-1/\alpha}$, wobei U eine auf $]0, 1[$ gleichverteilte Zufallsvariable ist. (Inversionsmethode)
1. Simulationstechniken (Monte-Carlo-Methoden)

Simulation einer Poisson-λ-verteilten Schadenanzahl:

- Wir starten bei $n := 0$ und $T := 1$.
- Dann simulieren wir eine auf $]0, 1[$ gleichverteilte Zufallsvariable u und setzen $T := uT$.
- Falls $T \geq e^{-\lambda}$, setzen wir $n := n + 1$ und gehen zurück zu Schritt 2.

Simulation einer Pareto-verteilten Schadenhöhe:

Ist die Zufallsvariable X Pareto-verteilt mit Parameter α und Startwert x_0, so ist X verteilt wie $x_0 \cdot U^{-1/\alpha}$, wobei U eine auf $]0, 1[$ gleichverteilte Zufallsvariable ist. (Inversionsmethode)
1. Simulationstechniken (Monte-Carlo-Methoden)

Simulation einer Poisson-\(\lambda\)-verteilten Schadenanzahl:

- Wir starten bei \(n := 0\) und \(T := 1\).
- Dann simulieren wir eine auf \([0, 1]\) gleichverteilte Zufallsvariable \(u\) und setzen \(T := uT\).
- Falls \(T \geq e^{-\lambda}\), setzen wir \(n := n + 1\) und gehen zurück zu Schritt 2.
- Falls \(T < e^{-\lambda}\), so ist \(n\) eine Realisierung der Schadenanzahl \(N\).

Simulation einer Pareto-verteilten Schadenhöhe:

Ist die Zufallsvariable \(X\) Pareto-verteilt mit Parameter \(\alpha\) und Startwert \(x_0\), so ist \(X\) verteilt wie \(x_0 \cdot U^{-\frac{1}{\alpha}}\), wobei \(U\) eine auf \([0, 1]\) gleichverteilte Zufallsvariable ist. (Inversionsmethode)
2. Excel-Beispiele

Konstruktion eines \(B(100;0,1) \)-verteilten Würfels.

Aufgabe 1: Wir beginnen mit der Simulation einer binomialverteilten Zufallszahl:

a. Erzeugen Sie in Excel \(n = 100 \) gleichverteilte Zufallszahlen \(u_i \) auf dem Intervall \((0;1)\).

 Tipp: Hilfreich ist hierbei die vordefinierte Funktion ZUFALLSZAHL().

b. Definieren Sie in einer neuen Spalte eine neue Funktion, die folgendes leistet:

 Ist \(u_i \leq 0,1 \) (*allgemein:* \(p \)), dann wird in der Spalte eine 1 eingetragen; ist \(u_i > 0,1 \),
 dann eine 0. *Tipp: Hier hilft die Funktion WENN().*

Die so erhaltenen Zahlen \(x_i \) sind Bernoulli-verteilrt.

c. Berechnen Sie \(x = \sum_{i=1}^{n} x_i \). Auf diesem Weg haben Sie eine binomialverteilte Zufallszahl erzeugt.
2. Excel-Beispiele

Konstruktion eines B(100;0,1) -verteilten Würfels.

Nr. des Bernoulli-Experiments	Zufallszahl u_i	Ausgang des Bernoulli-Experiment	Summe der Bernoulli-Experimente
1	0,939103329	0	10
2	0,145116844	0	
3	0,404334334	0	
4	0,094229198	1	
5	0,638278723	0	
6	0,104667601	0	
7	0,151933017	1	
8	0,363966333	0	
9	0,029529285	1	
10	0,137566824	0	
11	0,360364839	1	
12	0,141615288	0	
13	0,135074472	0	

=ZUFALLSZahl()

=SUMME(C3:C102)

=WENN(B3<=0,1;1;0)
2. Excel-Beispiele

Aufgabe 2: Nun generieren wir exponentialverteilte Zufallszahlen:

a. Erzeugen Sie wieder wie in Aufgabe 1a eine auf dem Intervall (0;1) gleichverteilte Zufallszahl \(u \).

b. Setzen Sie die erhaltene Zahl \(u \) in die Funktion \(F^{-1}(u) = -\frac{1}{\lambda} \ln(1 - u) \) ein, wobei \(\lambda = 0,5 \) sei.

Das Ergebnis \(y \) ist dann eine exponentialverteilte Zufallszahl.
2. Excel-Beispiele

=ZUFALLSZAHL()

= -1/C2*LN(1-B7)
2. Excel-Beispiele

Wie würde man am geeignetsten eine $U(a, b)$ gleichverteilte Zufallsgröße X in Excel simulieren?
2. Excel-Beispiele

- Wie würde man am geeignetsten eine $U(a, b)$ gleichverteilte Zufallsgröße X in Excel simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $B(100; 0, 1)$-verteilte Zufallsgröße simulieren?
2. Excel-Beispiele

- Wie würde man am geeignetsten eine $U(a, b)$ gleichverteilte Zufallsgröße X in Excel simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $B(100; 0, 1)$-verteilte Zufallsgröße simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $Exp(0, 5)$-verteilte Zufallsgröße simulieren?
2. Excel-Beispiele

- Wie würde man am geeignetsten eine $U(a, b)$ gleichverteilte Zufallsgröße X in Excel simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $B(100; 0, 1)$-verteilte Zufallsgröße simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $Exp(0, 5)$-verteilte Zufallsgröße simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $Poi(\lambda)$-verteilte Zufallsgröße simulieren?
2. Excel-Beispiele

- Wie würde man am geeignetsten eine $U(a, b)$ gleichverteilte Zufallsgröße X in Excel simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $B(100; 0, 1)$-verteilte Zufallsgröße simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $Exp(0, 5)$-verteilte Zufallsgröße simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $Poi(\lambda)$-verteilte Zufallsgröße simulieren?
- Wie würden Sie in Excel mit einer $U(0, 1)$-verteilten Zufallsgröße eine $Par(x_0, \alpha)$-verteilte Zufallsgröße simulieren?
„Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher, und insofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit.“

Albert Einstein