Title

All-trans retinoic acid inhibits migration and invasiveness of rheumatoid fibroblast-like synoviocytes

Authors: Nerea Mosquera, Angela Rodriguez-Trillo, Francisco J Blanco, Antonio Mera-Varela, Antonio Gonzalez, and Carmen Conde.

Affiliations: Laboratorio de Reumatología Experimental y Observacional, y Servicio de Reumatología, Instituto de Investigacion Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), SERGAS. Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain (N.M., A.R.T., A.G., C.C.); Servicio de Reumatología, INIBIC-Hospital Universitario A Coruña. A Xubias 84, A Coruña, 15006, Spain (F.J.B.); Servicio de Reumatología, Instituto de Investigacion Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), SERGAS. Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain (A.M-V).
Running title: ATRA on rheumatoid synoviocytes behavior.

Corresponding author: Carmen Conde, Laboratorio de Reumatología Experimental y Observacional, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), SERGAS. Travesía da Choupana s/n, Santiago de Compostela, 15706, Spain; Tel: 00 34 981 950 903;

Email:Carmen.Conde.Muro@sergas.es

Number of text pages: 34

Number of Tables: 2

Number of Figures: 5

Number of references: 69

Abstract: 234 words

Introduction: 736 words

Discussion: 1493 words

Non-standard Abbreviations

FLS: Fibroblast-like synoviocytes
ATRA: All-trans retinoic acid
CRABP2: Cellular retinoic acid binding protein 2
ACR: American College of Rheumatology
EPSTIN: Epithelial stromal interaction 1
MMP1: Matrix metalloprotease 1
CX3CL1: C-X3-C motif chemokine ligand 1
VCAM1: Vascular cell adhesion protein 1
CXCL9: C-X-C motif chemokine ligand 9
CXCL3: C-X-C motif chemokine ligand 3
ST3GAL5: ST3 beta-galactoside alpha-2, 3-sialyltransferase 5
NOD2: Nucleotide-binding oligomerization domain 2

Section assignment: Rheumatology
Abstract

Fibroblast-like synoviocytes (FLS) are pivotal in inflammation and joint damage of rheumatoid arthritis (RA). They acquire an active and aggressive phenotype, displaying increased migration and invasiveness, contributing to perpetuate synovial inflammation and destruction of cartilage and bone. The main current therapies of RA are focused against inflammatory factors and immune cells, however, a significant percentage of patients do not successfully respond. Combined treatments with drugs that control inflammation and that reverse the pathogenic phenotype of FLS could improve the prognosis of these patients. An unexplored area includes the retinoic acid, the main biological retinoid, which is a candidate drug for many diseases, but that has reached clinical use only for a few. Here, we explored the effect of all-trans retinoic acid (ATRA) on the aggressive phenotype of FLS from RA patients. RA FLS were treated with all-trans retinoic acid (ATRA), TNF or TNF+ATRA and cell migration and invasion were analysed. In addition, a microarray analysis of expression, followed by gene-set analysis and qPCR validation was performed. We showed that ATRA induced a notable decrease in FLS migration and invasion that were accompanied by complex changes in gene expression. At supraphysiological doses, many of these effects were overridden or reverted by the concomitant presence of TNF. In conclusion, these results have demonstrated the therapeutic potential of retinoic acid on RA FLS provided TNF could be counterbalanced, either with high ATRA doses or with TNF inhibitors.
Significance Statement

ATRA reduced the RA FLS migration and invasiveness, and downregulated gene expression of cell motility and migration genes. At supraphysiological doses, some of these effects were reverted by TNF. Therefore, ATRA could be an RA drug candidate that would require high doses or combined treatment with anti-inflammatory drugs.
Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation of the peripheral joints involving synovitis and cartilage and bone degradation (McInnes et al, 2011; Klareskog et al, 2009). The resident synovial cells, macrophages and fibroblast-like synoviocytes (FLS), contribute to the disease pathogenesis in multiple ways. Specifically, FLS acquire an activated status leading to secretion of pro-inflammatory mediators, cytokines, and chemokines, together with metalloproteases, cathepsins and other factors contributing to cartilage and bone erosion. In addition, RA-FLS acquires some features of transformed cells that are described as unregulated proliferation, resistance to apoptosis and insensitivity to contact inhibition. These characteristics contribute to cartilage and bone damage by the invasion of the hyperplasic and aggressive synovia. This is a stable phenotype maintained by epigenetic marks and somatic mutations that seems critical for disease persistence and that differentiates RA FLS from healthy FLS (Bartok et al, 2010; Neumann E et al, 2010; Ospelt et al, 2017). Preclinical models have shown the effectiveness of targeting RA FLS, although none of the tested drugs has reached yet clinical use (Dong-Liang et al, 2016). In contrast, available drugs target the immune and inflammatory components of RA but as monotherapy often they are insufficient to achieve remission or adequate control of the disease activity (Smolen et al, 2017). This circumstance has motivated the common use of drug combinations, with the most frequent including methotrexate together with a targeted biological drug, as one of the monoclonal anti-TNF antibodies (Smolen et al, 2017). A sizable fraction of patients does not reach adequate response even with these drug combinations. Therefore, there is a growing interest in developing treatments aimed to revert the activated phenotype of RA-FLS (Niedermeier M et al, 2010). Recently, we found that a transporter of retinoids, Cellular Retinoic Acid
Binding Protein 2 (CRABP2), is a candidate drug target of this type because CRABP2 suppression reverts RA-FLS resistance to apoptosis (Mosquera N et al, 2018). In the same study, we observed unconventional responses of RA-FLS to the main biological retinoid, all-trans retinoic acid. These results prompted us to investigate further the effects of ATRA on the activated phenotype of RA-FLS (Mosquera et al, 2018). Vitamin A and retinoids are generic designations for an array of essential organic molecules that include retinal, retinol and retinoic acid. They are needed for the visual system, cell homeostasis and differentiation, integrity of epithelia, erythropoiesis, reproduction, lymph node morphogenesis, response to infection, and other immune functions (Al Tanoury et al, 2013; Coyle et al, 2013). Some retinoids are used since long ago to treat psoriasis, where they act on keratinocyte differentiation and proliferation and on the balance between different CD4 subsets (Brown et al, 2015). In addition, retinoids have been considered for the treatment of several types of cancer and autoimmune diseases. In cancer cells, retinoids induce differentiation, cell cycle arrest, apoptosis and inhibition of cell migration and invasiveness (Flamini et al, 2014; Li et al, 2017; Young et al, 2015; Cui et al, 2016). In autoimmune diseases, retinoids have shown improvement of animal models of multiple sclerosis (Massacesi et al, 1991), systemic lupus erythematosus (Perez de Lema et al, 2004), type 1 diabetes (Wang et al, 2016) and RA (Kwok et al, 2012; Kuwabara et al, 1996). However, progress to further development of retinoids as new drugs for these diseases has been slow. In the case of RA animal models, some studies have shown disease aggravation in place of improvement (Trentham et al, 1982, Beehler et al, 2003). The current study was started to explore the effects of ATRA on the key features of the RA-FLS phenotype, namely cell migration and invasion. Given that TNF is one of the most relevant cytokines in RA
pathogenesis, as supported by the efficacy of anti-TNF treatments, the experiments also involved analysis of the potential influence of TNF on the results.

The principal result of this work has been the discovery of selective modulation by ATRA of several aspects of the RA FLS phenotype. This regulation produces beneficial effects, as decreased migration and invasion. However, ATRA effects on RA-FLS were in many instances overrode or reverted by the concomitant presence of TNF. The TNF overturning of ATRA effects was observed at supraphysiological doses of ATRA, but a decreased migration could be restated by further increasing the ATRA dose. This need for counterbalancing TNF modulation should inform the design of treatment trials of ATRA and further studies of its role in RA pathogenesis.
Material and Methods

Patients and cell culture
FLS were derived from synovial tissue obtained from 11 patients with RA (8 women and 3 men) showing acute synovitis and undergoing synovectomy by clinical indication and with independency of this study. The patients fulfilled the American College of Rheumatology (ACR) criteria for the classification of RA (Arnett et al, 1987) and provided their informed written consent. The study was performed according to the recommendations of the Declaration of Helsinki and was approved by the Comité Ético de Investigación Clínica de Galicia. Approval nº 2014/393.

The synovial tissue was enzymatically digested and the adherent cells were grown to 80-90% confluence in Dulbecco’s Modified Eagle Medium (DMEM) with 10% Fetal Bovine Serum (FBS), 1% Glutamine and 1% Penicillin/ streptomycin, as previously described (Orosa et al, 2012). Once confluent, cultures were trypsinised and diluted at a 1:3 split ratio for a new passage. The experiments were restricted to FLS from passages 3 to 8 because FLS become a homogeneous population at passage 3 and keep their phenotype to passages 8-9 (Lories et al, 2003; Rosengren et al, 2007).

Migration Assay
The capacity of RA FLS to migrate was analysed with a cell wound closure assay. We used the Ibidi Culture Inserts (Ibidi, Martinsried, Germany) to improve the reproducibility of the results. These inserts, composed of two chambers separated by a 500 µm thick wall, were placed into each of the 24 wells of the plate. FLS were seeded into the chambers of the inserts (5x10^3 cells/chamber) and cultured until confluence was reached. At this time, the inserts were removed to create the cell-free gap (time = 0 h). Also at this moment, the culture medium was replaced by a serum-deprived (1% FBS) medium containing ATRA (5µM), Tumor necrosis factor (TNF, 10ng/ml), ATRA+TNF.
(5µM and 10ng/ml, respectively) or Dimethyl Sulfoxide (DMSO, 0.05 %) and cells were incubated for 96 hours. Photographs were taken under a microscope Axio Vert.A1 (Zeiss, Oberkochen, Alemania) at 0 and 96 h, and the fraction of the initial gap that was filled with cells at 96 h was quantified with the Image J software (National Institutes of Health, USA).

Transwell invasion assay
The ability of RA FLS to invade extracellular matrix was tested using the 24-Well Milicell® Hanging Cell Culture Inserts (Merck Millipore, Darmstadt, Germany) covered with Matrigel (BD Biosciences, Franklin Lakes, NJ, USA). The inserts create a Boyden chamber separated by a membrane of polyethylene terephthalate with 8.0 µm pore size. This membrane was coated with 200 µg/ml of Matrigel, which mimics the extracellular matrix. The FLS (5 x10⁴ cells in 200 µL) were suspended in a serum-deprived medium (1% FBS) containing ATRA (5µM), TNF (10ng/ml), ATRA+TNF (5µM and 10ng/ml, respectively) or DMSO (0.05 %) and plated in the upper chamber. Simultaneously, culture medium containing 10% FBS (500 µL) was placed in the lower chamber as a chemoattractant. Afterwards, the system was incubated for 48h. At this time, the cells were fixed with paraformaldehyde, stained with Giemsa and photographed under the microscope. The number of cells in the lower side of the membrane in 10 random fields at 200 x magnification were counted with the help of the ImageJ software.

Microarray analysis
Gene expression analysis was performed with the SurePrint G3 8x60K v3 ID: 072363 (Agilent Technologies, CA, USA) one colour microarray following the manufacturer protocols. This analysis involved the four culture conditions compared in previous experiments, ATRA (5µM), TNF (10ng/ml), ATRA+TNF (5µM and 10ng/ml,
respectively) or DMSO (0.05 %). Here, the FLS from six patients were cultured for 12h with the different treatments in the serum-deprived medium. Total RNA was obtained using the Speedtools total RNA extraction Kit (Biotools, Madrid, Spain). Its integrity was assessed with the Agilent 2100 Bioanalyzer in combination with Agilent RNA 6000 Nano Chips. Subsequently, RNA was pooled (two pools of three patients each) and one μg of total RNA was subjected to cDNA synthesis and Cy3-CTP labeling using Agilent's Low Input Quick-In-One Kit. The product was hybridized on the microarray using SureHyb hybridization chambers (Agilent). Once the microarray was processed, fluorescence data were extracted with the Agilent Feature Extraction software and normalized with the GeneSpring GX 13.0 software (Agilent). However, no comparisons of expression data were done at the individual gene level. In its place, a gene set functional analysis was performed. It was based in the rank product order of gene expression, which was provided as the pre-ranked input for the Gene Set Enrichment Analysis (GSEA) algorithm. We used the Hallmark gene sets of the Molecular Signatures Database (MSigDb), which summarize and represent specific well-defined biological states or processes and display coherent expression. The names of the gene sets do not fully represent their content, which is available at http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=H. A gene set was considered significantly enriched if its Normalized Enrichment Score (NES) ≥ 3 (all of them showed Family wise error rate (FWER < 10⁻⁴)). GSEA and MSigDb have been developed and are maintained at the Broad Institute of the MIT (http://www.broad.mit.edu/gsea/).

Real-time qPCR

Real-time qPCR was performed in a Rotor-Gene (Corbett Research, Australia), using 1-Step QRTPCR-Brilliant III SYBR Green (Agilent Technologies), according to the
manufacturer’s protocol. Relative levels of gene expression were normalized to the TATA Box Binding Protein (TBP) gene using the comparative C_t method, where C_t is the cycle at which the amplification is initially detected. The relative amount of mRNA was calculated according to the $2^{-\Delta\Delta C_t}$ method, where:

$$\Delta C_t = C_{t \text{ target}} - C_{t \text{ TBP}} \quad \Delta \Delta C_t = (C_{t \text{ target}} - C_{t \text{ TBP}})_{\text{Basal}} - (C_{t \text{ target}} - C_{t \text{ TBP}})_{\text{Treatment}}$$

In this way, $\Delta \Delta C_t = 0$, and $2^0 = 1$ for RA FLS incubated with DMSO 0.05 %. For the experimental treatments, the value $2^{-\Delta C_t}$ indicates gene expression relative to TBP and the value $2^{-\Delta \Delta C_t}$ indicates the fold change in gene expression relative to the control. The primers were obtained for the database PrimerBank (Table 1) and manufactured by Sigma-Aldrich.

Data availability

Data from microarray study have been deposited in NCBI’S Gene Expression Omnibus and are accessible through the GEO Series accession number [GEO: GSE120785]. To review go to: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120785. Enter token ilitwayybfqjfyz into the box.

The rest of the data generated during this study are available upon request from the authors.

Statistical analysis

Differences between experimental groups were assessed with the Mann-Whitney U test or the Wilcoxon matched-pairs test. A value of $P<0.05$ was considered significant. Analyses were performed with GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego CA).
Results

ATRA reduces migration and invasiveness of RA FLS

We have analysed whether the treatment with ATRA could reduce the migration ability of RA FLS using a cell wound-healing assay. We used the dose of 5 µM ATRA based on previous literature (Chen and Stallings, 2007; Das et al, 2010; Das et al, 2012; Foley et al, 2011; García-Regalado et al, 2013) and our previous work (Nerea et al., 2018). When the FLS cells were cultured with ATRA, the healed area was reduced to about half the control at 96 hours (p< 0.01, Fig 1A and 1B). In contrast, the cell wound-healing assay in the presence of TNF showed increased RA-FLS migration and this increase was not overcome by the addition of ATRA in the ATRA+TNF assays (Fig 1A and 1B).

In a second step, we tested whether the reduction of migration with ATRA correlated with similar changes in FLS invasion. For these experiments, invasion through an extracellular matrix mimic, Matrigel, was used. The average result of FLS from 9 RA patients showed a significantly reduced number of invading cells (30 % fewer FLS) with 5µM ATRA than in the control (Fig 2A and 2B, p< 0.05). This decrease in invasiveness was similar to the observed in the presence of TNF, and not significantly different to the found in the presence of ATRA+TNF (Fig 1C and 1D).

Identification of ATRA and ATRA+TNF regulated gene sets by microarray analysis

In an attempt to discover clues explaining the previous results at the molecular level, a microarray study was performed. It included one colour microarrays containing about 60 thousand probes that were hybridized with cDNA from FLS cultured in four conditions: control medium, ATRA, TNF, and ATRA+TNF. Two pools including FLS from three different RA patients each were prepared with the RNAs and hybridized with
the array. The results were used to screen for gene sets that were specifically modified by ATRA (either in the comparison of ATRA with the control or in the comparison of ATRA+TNF vs TNF) or by the interaction between ATRA and TNF (showing differential effects with ATRA+TNF than the observed either with ATRA or with TNF).

Some gene sets showed evidence of interaction between ATRA and TNF effects leading to differential modulation of expression (Fig 3). Two of them, pertaining to interferon gamma response and interferon alpha response, were enriched in genes upregulated by TNF, ATRA or ATRA+TNF relative to their paired condition except in the ATRA+TNF vs. TNF comparison, where ATRA+TNF was associated with lower expression than TNF (Fig 3). Another gene set showing evidence of interaction between ATRA and TNF concerned the epithelial-mesenchymal transition. The genes in this set were downregulated by ATRA compared with the control, but upregulated by ATRA+TNF in relation with ATRA. This latter result was observed in spite of the absence of a significant effect of TNF on its own (Fig 3). Some of the most downregulated extracellular matrix genes by ATRA were COL5A3, lumican, elastin, tenascin C, COL6A3, COL8A2, COL1A2, COL1A1 and other collagen genes. Six other gene sets showed an enhancement of expression with the combined treatment (Fig 3). The clearest pattern in this category corresponded to oxidative phosphorylation, which was upregulated in all ATRA+TNF comparisons without experiencing a significant increase in the wells cultured separately with TNF or with ATRA. A similar pattern was found for the mitotic spindle, DNA repair, adipogenesis, mechanistic target of rapamycin complex 1 (MTORC1) signalling, and cholesterol homeostasis gene sets (Fig 3).
There were other four gene sets showing up-regulated expression associated with ATRA. For three of them, the increase was uniform in all comparisons, indicating that they were stimulated by both, ATRA and TNF, and further increased by the combination of ATRA+TNF. These three sets are denominated: E2F targets, G2M checkpoint, and MYC targets v1. The other set that showed a similar, although less consistent, pattern was TNFA signalling via NFKB (Fig 3).

The remaining gene sets showing significant enrichment were exclusively related to induction by TNF and, therefore, of less interest in the current study. However, it is worth to signal their substantial number, 12, and that 11 of them were enriched in upregulated genes. This bias towards increased gene transcription and the identity of the enhanced gene sets reflected the known effect of TNF in the immune response (Fig 3).

For the confirmatory experiments, we selected the genes from the first decile of the most significantly enriched pathways (inflammatory response, interferon gamma response, TNFA signalling via NFKB, and epithelial-mesenchymal transition) that were of interest in cell migration, invasion, motility or inflammation (Table 2). Some of the eleven genes fulfilling this selection appeared in several pathways, and they were validated by real-time PCR.

Analysis of ATRA and TNF in the regulation of specific genes

Real-time PCR of the eleven selected genes were done with FLS from five to seven RA patients. The commonest effect of ATRA was to downregulate gene expression. The decrease was significant for *Epithelial Stromal Interaction 1 (EPTSI1), Matrix Metalloprotease 1 (MMP1), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), Pentraxin 3 (PTX3) and Vascular Cell Adhesion Protein 1 (VCAM1)* in the comparison between ATRA and control (Fig 4). There was also a significant decrease in FLS treated with
ATRA+TNF relative to the FLS incubated with TNF (Fig 4). This reduction was observed for some of the same genes that were downmodulated by ATRA alone, specifically for *EPTSII, MMP1* and *VCAM1* (Fig 4). However, it was also observed for *C-X-C Motif Chemokine Ligand 9 (CXCL9), C-X-C Motif Chemokine Ligand 3 (CXCL3)* and *ST3 Beta-Galactoside Alpha-2, 3-Sialyltransferase 5 (ST3GAL5)* that did not demonstrate differences in the ATRA vs. control comparison, and for *Nidogen 2 (NID2)* that showed upregulation with ATRA alone. However, ATRA only reverted for *MMP1* the TNF-induced expression to the control level (Fig 4). The inability of ATRA to revert TNF effects was equally apparent in the two genes that were downregulated by TNF, *NID2* and *ST3GAL5*. These two genes were further downregulated by the ATRA+TNF treatment in comparison with the treatment with TNF alone. This potentiated downregulation was particularly striking for *NID2* because the *NID2* expression was induced by ATRA in the absence of TNF (Fig 4).

The two remaining genes, *Nucleotide-Binding Oligomerization Domain 2 (NOD2)* and *Interleukin 1B (IL1B)* were not downregulated by ATRA in any experimental setting, but for different reasons. *NOD2* expression showed a complete insensitivity to ATRA (Fig 4). In contrast, expression of *IL1B* was induced by ATRA, both alone and in the TNF+ATRA combination (Fig 4).

Dose-effect curve of ATRA on the TNF-induced migration of RA FLS

In order to analyse how the interplay between ATRA and TNF affect RA FLS migration at different relative concentrations, we varied the doses of ATRA while keeping the dose of TNF constant (Fig 5). These experiments showed that ATRA in isolation was able to decrease RA FLS migration even at the lower dose assayed, which was one tenth of the previously used, with further decrease at higher doses. In contrast, the increase in
migra

migration observed in the presence of TNF was not significantly modified with the addition of ATRA in the 0.5-10 \(\mu \) M range. However, higher doses of ATRA were able to significantly overcome the TNF potentiation (0.04 and 0.03 with 20 and 40 \(\mu \) M, respectively). Specifically, the TNF-induced migration of RA FLS was reduced by 35.6 \% with 40 \(\mu \)M ATRA (Fig 5).
Discussion

Our experiments have identified new areas in which ATRA could control the FLS activated phenotype. They include a decrease in FLS migration and invasion, which uncontrolled are pivotal contributors to cartilage and bone damage of the inflamed joints. In addition, ATRA showed downregulatory effect on the expression of specific genes related to cell motility. However, it was not opposed to all aspects of the FLS activated pattern of expression. This complexity of actions was compounded by the strong effect of TNF, which showed a dominant effect on many of the aspects of the RA FLS phenotype. These results integrate appropriately with the growing evidence indicating the contextual dependency of retinoids actions. Interestingly, we also observed that TNF has opposed effects on the migration and invasion of RA FLS. The cause of this discrepancy is unknown. However, it is necessary to note that concordant increased cell migration and invasion is characteristic of metastatic cancer cells not of tissue growth, inflammation, or wound repair, where cell motility is increased without invasiveness (Wu and Zhou, 2010; Hulkower et al, 2011). In RA animal models, synovial invasion and attachment to cartilage and bone and even transmigration to other joints are present, but TNF is not able on its own to promote them. The experiments in hTNF transgenic mice show that these processes are dependent on the presence of IL-1 or cartilage damage (Korb-Pap A et al, 2012; Hillen J et al, 2017; Ospelt C et al, 2017). No previous study has analysed the role of ATRA, or any other retinoid, in the RA FLS except from our previous work that was restricted to FLS proliferation and survival. FLS proliferation was insensitive to ATRA, whereas their resistance to apoptosis was exacerbated (Mosquera et al, 2018). The inhibitory effects of ATRA on FLS migration and invasion observed in the current study were in concordance with that found in cancerous and non-malignant cells.
The reduced migration and invasion of cancer cell lines induced by retinoids correlate in animal models with decreased tumour growth and metastases (Williams et al, 2018; Benelli et al, 2010; Waters et al, 2015; Tabata et al, 2009; Applegate et al, 2015; Zhao et al, 2009). These effects together with other beneficial actions have motivated the use of retinoids for the treatment of several malignancies including acute promyelocytic leukaemia (Lengfelder et al, 2018; Cicconi et al, 2018), head and neck squamous cell carcinoma (Bhatia et al, 2017) and neuroblastoma (Cheung et al, 2015).

Gene set analysis of the microarray data identified a single ATRA downregulated gene set, the epithelial-mesenchymal transition, which is critical in the RA FLS phenotype (Steenvoorden et al, 2006; Choi et al, 2017; Ekwall et al, 2011; Li et al, 2013). In effect, the FLS from healthy subjects show some typical markers and functional features of epithelial cells in spite of their mesenchymal origin. These epithelial features are lost more or less completely in the early phases of RA, in a process that resembles the epithelial-mesenchymal transition and that includes enhanced migration and active invasiveness. In addition, the epithelial-mesenchymal transition pathway has been identified as the most upregulated pathway associated with RA FLS invasiveness in a previous transcriptomic study (You et al, 2014). Therefore, downregulation of the epithelial-mesenchymal transition by ATRA could explain the inhibition of migration and invasion we have observed.

Additional genes that could be involved in migration inhibition were suggested by qPCR results. They showed a marked downregulation with ATRA of CX3CL1 and EPSTI1, together with decreases of MMP1, PTX3, and VCAM1, which are included in the epithelial-mesenchymal transition gene set. All these genes are involved in cell migration and invasion (Kong et al, 2018; Li et al, 2014; Tan et al, 2016; Tung et al, 2016; Chang et al, 2017, Bernardini et al, 2017; Wang et al, 2017; Huang et al, 2017).
In effect, VCAM1 participates in the transendothelial migration of leukocytes (Kong et al, 2018), whereas EPST11 (Li et al, 2014; Tan et al, 2016), and PTX3 (Tung et al, 2016; Chan et al, 2017) contribute to cancer invasion and metastasis. Even more relevant are downregulation of CX3CL1 and MMP1, because they participate in RA FLS migration. On one side, CX3CL1 is a chemokine ligand that induces FLS proliferation, migration and pannus formation in an autocrine way (Bernardini et al, 2017), whereas MMP1 contributes to migration and invasion as an extracellular matrix protease (Wang et al, 2017; Huang et al, 2017).

Another relevant aspect of our results is the modulation of ATRA actions by the presence of TNF. Its most notable manifestation was the reversal of its inhibition of RA FLS migration. The nature of this modulation is not known, but it was possible to reverse it with larger concentrations of ATRA. In addition, 5 µM ATRA in combination with TNF modulated the gene expression differently than ATRA alone. Many interaction types were observed in our analysis: from potentiation of the TNF effect to its reversal. Then, in further studies it would be interesting to more thoroughly analyses the effect of TNF+ATRA in these pathways.

The interaction of ATRA and TNF has been previously observed in chondrocytes (Huang et al, 2017) and the T helper subset differentiation (Brown et al, 2015; Basu et al, 2015). However, no previous evidence of interaction was available in RA or healthy FLS or in any other fibroblasts. In addition, epidemiological studies have found a paradoxical disparity attributed to the contextual dependency of the retinoid effect. So, high plasma levels of retinoids are associated with decreased frequency of some chronic diseases (Rubin et al, 2017; Toti et al, 2018). In RA, low levels of retinoids in plasma are associated with increased prevalence (Comstock et al, 1997), whereas treatment with retinoids of arthritis models has resulted in a variety of results, from an increase in
disease severity (Trentham et al., 1982; Beehler et al., 2003) to its attenuation (Kwok et al., 2012; Kuwabara et al., 1996).

The beneficial effect of ATRA was observed at the supraphysiological dose of 5 µM, which has been frequently used in in vitro studies (Chen and Stallings, 2007; Das et al., 2010; Das et al., 2012; Foley et al., 2011; García-Regalado et al., 2013; Nerea et al., 2013) and that broadly corresponds to the ATRA concentrations attainable with the doses used to markedly suppress collagen induced arthritis in DBA mice (Kwok et al., 2012). In effect, the 0.5 mg/Kg of ATRA given to these mice leads to peak ATRA concentrations between 0.6 and 3 µM in serum and tissues as estimated from the available data in mice (Jing et al., 2017). These concentrations are about one thousand times larger than the endogenous concentration found in the plasma of human subjects (Jing et al., 2017), but there is no reason to expect they will be associated with intolerable adverse effects because they are about one hundredth the concentrations found in plasma with the recommended dose for the treatment of acute promyelocytic leukemia (Sanz et al., 2009; Osman et al., 2018; Castaigne et al., 1993). Therefore, the 5 µM concentration was both clearly larger than the endogenous ATRA, sufficient for eliciting significant effects in preclinical arthritis models and likely to be well tolerated.

The dominance of TNF over ATRA on RA FLS reinforces the need for complementary approaches when considering drugs aimed to control the RA FLS phenotype. This idea is widely accepted (Niedermeier et al., 2010). The experience of drugs targeting synoviocytes in RA does not go beyond pre-clinical studies (Dong-Liang S et al., 2016). However, several therapies addressed to reduce synovial hyperplasia, including radioactive, surgical and arthroscopic synovectomy are still applied with success in refractory RA patients (Chalmers PN et al., 2011; Lee et al., 2014; Knut et al., 2015).
The possibility that ATRA could be used for the treatment of RA has been pursued only in pre-clinical studies as already mentioned (Kwok et al., 2012; Kuwabara et al., 1996). However, the clinical experience of combining treatments in RA is extensive. Current recommendations include the combination of a non-targeted drug as methotrexate with a targeted drug as an anti-TNF monoclonal antibody to treat the patients that show inadequate response (Smolen JS et al., 2017). The significant fraction of patients that still do not respond has motivated the search of other combinations. Therefore, a combination of drugs targeting inflammation and the synoviocytes will follow in this tradition.

Overall the data shown here have demonstrated for the first time that ATRA can modulate the aggressive phenotype of FLS from RA patients. On practical grounds, it seems reasonable to consider that combined treatments will include drugs to control inflammation and autoimmunity, together with the RA FLS directed drug. Therefore, future preclinical trials should consider the many effects of retinoids, including the effect on FLS, the interactions with TNF and other contextual influences. It is possible that in this way, the effect of retinoids on arthritis models could be clarified and the path towards clinical trials could be open in the context of drug repositioning.
Acknowledgements

We thank Carmen Pena for excellent technical assistance and the patients for their contribution. The authors also thank for technical and human support provided by SGIIker of UPV/EHU and European funding (ERDF and ESF).

Authorship Contributions

Participation in research design: A. Gonzalez and C. Conde

Conducted experiments: N. Mosquera, A. Rodriguez-Trillo

Performed data analysis: N. Mosquera, A. Rodriguez-Trillo, F.J. Blanco, A. Mera-Varela, A. Gonzalez, C. Conde

Wrote or contributed to writing of the manuscript: N. Mosquera, A. Rodriguez-Trillo, F.J. Blanco, A. Mera-Varela, A. Gonzalez, C. Conde
References

Al Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54: 1761-1775.

Applegate CC, Lane MA (2015) Role of retinoids in the prevention and treatment of colorectal cancer. World J Gastrointest Oncol 7(10): 184-203.

Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA, Mitchell DM, Neustadt DH, Pinals RS, Shaller JG, Sharp JT, Wilder RL, Hunder GG (1987) The American Rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31: 315-324.

Bartok B, Firestein GS (2010) Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233: 233-255.

Basu R, Whitley SK, Bhaumik S, Zindl CL, Schoeb TR, Benveniste EN, Pear WS, Hatton RD, Weaver CT (2015) IL-1 signaling modulates activation of STAT transcription factors to antagonize retinoic acid signaling and control the TH17 cell-iTreg cell balance. Nat Immunol 16: 286-295.

Beehler B, Hei YJ, Chen S, Lupisella JA, Ostrowski J, Starrett JE, Tortolani D, Tramposch KM, Reczek PR (2003) Inhibition of disease progression by a novel receptor antagonist in animal models of arthritis. J Rheumatol 30: 355-363.

Benelli R, Monteghirfo S, Venè R, Tosetti F, Ferrari N (2010) The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by
interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability.

Mol Cancer 9:142.

Bernardini G, Benigni G, Scrivo R, Valesini G, Santoni A (2017) The
multifunctional role of the chemokine system in arthritogenic processes.
Curr Rheumatol Rep 19(3): 11.

Bhatia AK, Lee JW, Pinto HA, Jacobs CD, Limburg PJ, Rubin P, Arusell RM,
Dunphy EP, Khandekar JD, Reiner SA, Baez-Diaz L, Celano P, Li S, Li
Y, Burtness BA, Adams GL, Pandya KJ (2017) Double-blind,
randomized phase 3 trial of low-dose 13-cis retinoic acid in the
prevention of second primaries in head and neck cancer: Long-term
follow-up of a trial of Eastern Cooperative Oncology Group-ACRIN
Cancer Research Group (C0590). Cancer 123(23): 4653-4662.

Brown CC, Noelle RJ (2015) Seeing through the dark: New insights into the
immune regulatory functions of vitamin A. Eur J Immnuol 45(5): 1287-
1295.

Castaigne S, Lefebvre P, Chomienne C, Sue E, Rigal-Huguet F, Gardin C,
Delmer A, Archimbaud E, Tilley H, Janvier M, Isnard F, Travade P,
Montfort L, Delannoy A, Rapp MJ, Christian B, Montastruc M, Weh H,
Fenaux P, Dombret H, Gourmel B, Degos L (1993) Effectiveness and
pharmacokinetics of low-dose all-trans retinoic acid (25 mg/m2) in acute
promyelocytic leukemia. Blood 82(12): 3560-3563.

Chalmers PN, Sherman SL, Raphael BS, Su EP (2011) Rheumatoid synovectomy:
Does the surgical approach matter?. Clin Orthop Relat Res 469(7): 2062-
2071.
Chan, SH, Tsai, JP, Shen CJ, Liao YH, Chen BK (2017) Oleate-induced PTX3 promotes head and neck squamous cell carcinoma metastasis through the up-regulation of vimentin. Oncotarget 8(25): 41364-41378.

Cheung BB (2015) Combination therapies improve the anticancer activities of retinoids in neuroblastoma. World J Clin Oncol 6(6): 212-15.

Chen Y, Stallings RL (2007) Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67(3): 976-983.

Choi IY, Karpus ON, Turner, JD, Hardie D, Marshall JL, de Hair MJH, Maijer KI, Tak PP, Raza K, Hamann J, Buckley CD, Gerlag DM, Filer A (2017) Stromal cell markers are differentially expressed in the sinovial tissue of patients with early arthritis. PLoS One 12(8): e0182751.

Cicconi L, Breccia M, Franceschini L, Latagliata R, Molica M, Divona M (2018) Prolonged treatment with arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA) for relapsed acute promyelocytic leukemia previously treated with ATRA and chemotherapy. Ann Hematol 97(10): 1797-1802.

Comstock GW, Burke AE, Hoffman SC, Helzlsouer KJ, Bendich A, Masi AT, Norkus EP, Malamet RL, Gershwin ME (1997) Serum concentrations of alpha tocopherol, beta carotene, and retinol preceding the diagnosis of rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis 56(5): 323-325.

Coyle KM, Sultan M, Thomas ML, Vaghar-Kashani A (2013) Retinoid signaling in cancer and its promise for therapy. J Carcinog Mutagen S7: 006.
Cui J, Gong M, He Y, Li Q, He T, Bi Y (2016) All-trans retinoic acid inhibits proliferation, migration, invasión and induces differentiation of hepa1-6 cells through reversing EMT in vitro. Int J Oncol 48: 349–357.

Das S, Foley N, Bryan K, Watts KM, Bray I, Murphy DM, Buckley PG, Stallings RL (2010) MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 70(20): 7874-7881.

Das S, Bryan K, Buckley PG, Piskareva O, Bray IM, Foley N, Ryan J, Lynch J, Creevey L, Fay J, Prenter S, Koster J, van Sluis P, Versteeg R, Eggert A, Schulte JH, Schramm A, Mestdagh P, Vandesompele J, Speleman F, Stallings RL (2013) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene 32(24): 2927-2936.

Ekwall AK, Eisler T, Anderberg C, Jin C, Karlsson N, Brisslert M, Bokarewa MI (2011) The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic sinovial lining layer in rheumatoid arthritis. Arthritis Res Ther 13: R40.

Flamini MI, Gauna GV, Sottile ML, Nadin BS, Sachez AM, Vargas-Roig LM (2014) Retinoic acid reduces migration of human breast cáncer cells: Role of retinoic acid receptor beta. J Cell Mol Med 18: 1113–1123.

Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T, Prehn JH, Stallings RL (2011) MicroRNAs 10ª and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 18(7): 1089-10898.
García-Regalado A, Vargas M, García-Carrancá A, Aréchaga-Ocampo E, González-De la rosa XH (2013) Activation of Akt pathway by transcription-independent mechanisms of retinoic acid promotes survival and invasión in lung cáncer cells. Mol Cancer 12:44.

Hillen J, Geyer C, Heitzmann M, Beckmann D, Karause A, Winkler I, Pavenstädt H, Bremer C, Pap T, Korb-Pap A (2017) Structural cartilage damage attracts circulating rheumatoid arthritis synovial fibroblasts into affected joints. Arthritis Res Ther 19(1): 40.

Hulkower KI Herber RL (2911) Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3(1): 107-124.

Jing J, Nelson C, Paik J, Shirasaka Y, Amory JK, Isoherranen N (2017) Physiologically based pharmacokinetic model of all-trans-retinoic acid with application to cancer populations and drug interactions. J Pharmacol Exp Ther 361(2): 246-258.

Klareskog L, Catrina AI, Paget S (2009) Rheumatoid Arthritis. Lancet, 373: 659-672.

Knut L (2015) Radiosynovectomy in the therapeutic management of arthritis. World J Nucl Med 14(1): 10-15.

Kong DH, Kim YK, Kim MR, Jang JH Lee S (2018) Emerging roles of vascular cell adhesión molecule-1 (VCAM-1) in immunological disorders and cancer. Int J Mol Sci 19(4): E1057.

Korb-Pap A, Stratis A, Mühlenberg K, Niederreiter B, Hayer S, Echtermeyer F, Stange R, Zwerina J, Pap T, Pavenstädt H, Schett G, Smolen JS, Redlich K (2012) Early structural changes in cartilage and bone are required for
the attachment and invasion of inflamed synovial tissue during destructive inflammatory arthritis. Ann Rheum Dis 71: 1004-1011.

Kuwabara K, Shudo K, Hori Y (1996) Novel synthetic retinoic acid inhibits rat collagen arthritis and differentially affects serum immunoglobulin subclass levels. FEBS Letters 378: 153-156.

Kwok SK, Park MK, Cho ML, Oh HJ, Park EM, Lee DG, Lee J, Kim HY, Park SH (2012) Retinoic acid attenuates rheumatoid inflammation in mice. J Immunol 189: 1062-1071.

Lee HI, Lee KH, Koh KH, Park MJ (2014) Long-term results arthroscopic wrist synovectomy in rheumatoid arthritis. J Hand Surg Am 39(7):1295-1300.

Lengfelder E, Görlich D, Nowak D, Spiekermann K, Haferlach C, Krug U (2018) Frontline therapy of acute promyelocytic leukemia: Randomized comparison of ATRA and intensified chemotherapy versus ATRA and anthracyclines. Eur J Haematol 100(2): 154-162.

Li N, Lu Y, Li D, Zheng X, Lian J, Li S, Cui H, Zhang L, Sang L, Wang Y, Yu JJ, Lu T (2017) All-trans retinoic acid suppresses the angiopoietin-Tie2 pathway and inhibits angiogenesis and metastasis in esophageal squamous cell carcinoma. PLoS One 12 (4): e0174555.

Li GQ, Zhang Y, Liu D, Qian YY, Zhang H, Guo SY, Sunagawa M, Hisamitsu T, Liu YQ (2013) PI3 kinase/Akt/HIF-1a pathway is associated with hypoxia-induced epithelial-mesenchymal transition in fibroblast-like synoviocytes of rheumatoid arthritis. Mol Cell Biochem 372: 221-231.

Li T, Lu H, Shen C, Lahiri SK, Wason MS, Mukherjee D, Yu L, Zhao J (2014) Identification of epithelial stromal interaction 1 as a novel effector
downstream of krüppel-like factor 8 in breast cancer invasión and metástasis. Oncogene 233(39): 4746-4755.

Lories RJ, Derese I, De Bari C, Luyen FP (2003) In vitro growth rate of fibroblast-like synovial cells is reduced by methotrexate treatment. Ann Rheum Dis 62: 568-571.

Massacesi L, Castigli E, Vergelli M, Olivotto J, Abbaondo AL, Sarlo F, Amaducci L (1991) Immunosuppressive activity of 13-cis-retinoic acid and prevention of experimental autoimmune encephalomyelitis in rats. J Clin Invest 88(4): 1331-37.

McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med, 365(23): 2205-2219.

Mosquera N, Rodriguez-Trillo A, Mera-Varela A, Gonzalez A, Conde C (2018) Uncovering cellular retinoic acid-binding protein 2 as a potential target for rheumatoid arthritis hyperplasia. Sci Rep 8(1): 8731.

Neumann E, Lefevre S, Zimmermann B, Gay S, Müller-Ladner U (2010) Rheumatoid arthritis progression mediated by activated sinovial fibroblasts. Trends Mol Med 16: 458-468.

Niedermeier M, Pap T, Korb A (2010) Therapeutic opportunities in fibroblasts in inflammatory arthritis. Best Practice & Research Clinical Rheumatology 24: 527-540.

Orosa B, Gonzalez A, Mera A, Gomez-Reino JJ, Conde C (2012) Lysophosphatidic acid receptor 1 suppression sensitizes rheumatoid fibroblast-like synoviocytes to TNF-induced apoptosis. Arthritis Rheum 64(8): 2460-2470.
Osman AEG, Anderson J, Churpek JE, Christ TN, Curran E, Godley LA, Liu H, Thirman MJ, Odenike T, Stock W, Larson RA (2018) Treatment of acute promyelocytic leukemia in adults. J Oncol Pract 14(11): 649-657.

Ospelt C (2017) Synovial fibroblasts in 2017. RMD Open 3:e000471.doi:10.1136/mdopen-2017-000471.

Perez de Lema G, Lucio-Cazaña FJ, Molina A, Luckow B, Schmid H, de Wit C, Moreno-Manzano V, Beas B, Mampaso F, Schlöndorff D (2004) Retinoic acid treatment protects MRL/lpr lupus mice from the development of glomerular disease. Kidney Int 66(3): 1018-28.

Rosengren S, Boyle DL, Firestein GS (2007) Acquisition, culture, and phenotyping of synovial fibroblasts. Methods Mol Med 135: 365-375.

Rubin LP, Ross AC, Stephensen CB, Bohn T, Tanumihardjo SA (2017) Metabolic effects of inflammation on vitamin A and carotenoids in humans and animal models. Adv Nutr 8(2): 197-212.

Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, Naoe T, Lengfelder E, Büchner T, Döhner H, Burnett AK, Lo-Coco F (2009) Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113(9): 1875-1891.

Shi DL, Shi GR, Xie J, Du X-Z, Yang D (2016) MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in rheumatoid arthritis. Mol Cells 39(8): 611-618.
Smolen JS, Landewé R, Billsma J, Burmester G, Chatzidionysiou K, Dougados M, Nam J, Ramiro S, Voshaar M, van Vollenhoven R, Aletaha D, Aringer M, Boers M, Buckleyn CD, Buttgereit F, Bykerk V, Cardiel M, Combe B, Cutolo M, van Eijk-Hustings Y, Emery P, Finckh A, Gabay C, Gomez-Reino J, Gossec L, Gottenberg JE, Hazes JMW, Huizinga T, Jani M, Karateev D, Kouloumas M, Kvien T, Li Z, Mariette X, McInnes I, Mysler E, Nash P, Pavelka K, Poór G, Richez C, van Riel P, Rubbert-Roth A, Saag K, da Silva J, Stamm T, Takeuchi T, Westhovens R, de Wit M, van der Heijde D (2017) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis 76(6): 960-977.

Steenvoorden MM, Tolboom TC, van der PLuijm G, Löwik C, Visser CP, DeGroot J, Gittenberger-DeGroot AC, DeRuiter MC, Wisse BJ, Huizinga TW, Toes RE (2006) Transition of healthy to diseased sinovial tissue in rheumatoid arthritis is associated with gain of mesenchimal/fibrotic characteristics. Arthritis Res Ther 8: R165.

Tabata C, Tabata R, Hirayama N, Yasumitsu A, Yamada S, Murakami A Lida S, Tamura K, Terada T, Kuribayashi K, Fukuoka K, Nakano T (2009) All-trans-retinoic acid inhibits tumor growth of malignant pleural mesothelioma in mice. Eur Respir J 34(5): 1159-1167.

Tan YY, Xu XY, Wang JF, Zhang CW, Zhang SC (2016) MiR-654-5p attenuates breast cancer progression by targeting EPSTI1. Am J Cancer Res 6(2): 522-532.
Toti E, Chen CO, Palmery M, Villaño Valencia D, Peluso I (2018) Non-provitamin A and Provitamin A carotenoids as immunomodulators: Recommended dietary allowance, therapeutic index, or personalized nutrition?. Oxid Med Cell Longev 4637861.

Trentham DE, Brinckerhoff CE (1982) Augmentation of collagen arthritis by synthetic analogues of retinoic acid. J Immunol 129: 2668-2672.

Tung JN, Ko CP, Yang SF, Cheng CW, Cheng PN, Chang CY, Lin CL, Yang TF, Hsieh YH, Chen KC (2016) Inhibition of pentraxin 3 in glioma cells impaires proliferation and invasión in vitro and in vivo. J Neurooncol 129(2): 201-209.

Wang Y, Zhong YJ, Wang YY, Xing J, Wang ZM (2016) All-trans retinoic acid prevents the development of type 1 diabetes by affecting the levels of interferon gamma and interleukin 4 in streptozotocin-induced murine diabetes model. Genet Mol Res 15(1) doi:10.4238/gmr.15017522.

Wang W, Liu J, Yang B, Ma Z, Liu G, Shen W, Zhang Y (2017) Modulation of platelet-derived microparticles to adhesion and motility of human rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 12: e0181003.

Waters AM, Stewart JE, Atigadda VR, Mroczek-Musulman E, Muccio DD, Grubbs CJ, Beierle EA (2015) Preclinical evaluation of a novel RXR agonist for the treatment og neuroblastoma. Mol Cancer Ther 14(7): 1559-1569.

Wu Y, Zhou BP (2010) TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. British J Cancer 102: 639-644.

Williams AP, Waters AM, Stewart JE, Atigadda VR, Mroczek-Musulman E, Muccio DD, Grubbs CJ, Beierle EA (2018) A novel retinoid X receptor
agonist, UAB30, inhibits rhabdomyosarcoma cells in vitro. J Surg Res 228: 54-62.

You S, Yoo S-A, Choi S, Kim JY, Park SJ, Ji JD, Kim TH, Kim KJ, Cho CS, Hwang D, Kim WU (2014) Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a systems approach. Proc Natl Acad Sci USA 111(1): 550-555.

Young MJ, Wu YH, Chiu WT, Weng TY, Huang YF, Chou CY (2015) All-trans retinoic acid downregulates ALDH1-mediated stemness and inhibits tumour formation in ovarian cancer cells. Carcinogenesis 36: 498–507.

Zhao X, Graves C, Ames SJ, Fisher DE, Spanjaard RA (2009) Mechanism of regulation and suppression of melanoma invassiveness by novel retinoic acid receptor-gamma target gene carbohydrate sulfotransferase 10. Cancer Res 69(12): 5218-5225.

Footnotes

This work was supported by Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, with participation of FEDER funds (European Union) [grants PI1701660, PI1401153 and by RETICS Program, RD16/0012/0014].
Legends for Figures

Figure 1. ATRA reduces RA FLS migration

A. Migration rate of RA FLS measured by wound healing assays. RA FLS were stimulated for 96h with 5µM ATRA, 10ng/ml TNF or TNF+ATRA. Migration rate reached by RA FLS control was considered as 100%. B. Representative microphotographs are shown. Values are the mean ± ESM of FLS from 9 RA patients. * indicates p<0.05 and ** indicates p<0.01 versus control, and ## indicates p<0.01 between the signalled conditions, by Wilcoxon matched-pairs test.

Figure 2. ATRA reduces RA FLS invasion

A. Percentage of RA FLS stimulated with or without 5µM ATRA that invaded the inserts coated with Matrigel. Number of cells in untreated controls that invaded was used as 100%. B. Representative microphotographs are shown. Values are the mean ± ESM of FLS from 9 RA patients. * indicates p<0.05, by Wilcoxon matched-pairs test.

Figure 3. Heatmap showing the gene sets that were significantly enriched in overexpressed (red) or downregulated (blue) genes

The scale shows normalized enrichment scores (NES). Columns represent the comparisons of condition 1/condition 2. Rows show the gene set names. Significantly enriched gene sets were identify with NES ≥ 3 and FDR< 10^{-4} in GSEA preranked analysis.

Figure 4. ATRA modulates gene expression involved in inflammatory response and migration of RA FLS

Fold change of CX3CL1, MMP1, CX3CL1, PTX3, VCAM1, NID2, CXCL9, CXCL3, NOD, IL1B and ST3GAL5 mRNA in RA FLS stimulated with 5µM ATRA, 10ng/ml TNF or TNF+ATRA. mRNA in control was considered as 1 and indicate by dotted lines. Values are the mean ± ESM of FLS from 5-7 RA patients. * indicates p<0.05 and
** indicates p<0.01 versus control, whereas # indicates p<0.05 between the signaled conditions, by Wilcoxon matched-pairs test.

Figure 5. The interplay between ATRA and TNF on RA FLS migration is dose-dependent

Migration rate of RA FLS measured by wound healing assays. RA FLS were stimulated for 96h with the indicated ATRA concentrations in presence or absence of 10ng/ml TNF. The migration rate reached by control RA FLS was considered as 100%. Values are the mean ± ESM of FLS from 5 RA patients. * indicates p<0.05 versus control without TNF and # indicates p<0.05 versus control with TNF.
GENE	Primers Forward	Primer Reverse																	
CX3CL1	ACCACGGTTGTGACGAAATG	TGTTGATAGTGAGGATGAGCAAGC																	
CXCL3	TGGTCACTGAAGTCGGCT	ATGCGGGGTGAGACAGCT																	
EPST11	AGCAGGAGCTGGCCAACCTGGA	TTGTGGGCCAACAACAGCCT																	
VCAM1	GGGAAAGATGGTGATCGATCTCTT	TCTGGGTGGTGCTTCAGATTTTA																	
PTX3	TTATCCCACAATGCGTTCAAAGA	GCACCTAAAGACTCAAGGCTCAT																	
NOD2	CACCGTCTGGGATAAGGGTACT	TGTGACTTGGGCTGACGAAACC																	
MMP1	CTCTGGAGATAATGTCACCACCTCT	TGTGTTGGACCACCTTCATTTTC																	
IL1B	AGCTAGAATCTCCGACCAC	CGTTATCCCATGCTGCAAGAA																	
ST3GAL5	AGGAATGTCTGGCCAAGTTT	GGAGTAAAGTGCCACGTTACCT																	
CXCL9	CCAGTAGTGAGGAAAGGGTGC	AGGGCTTGGGGCCAAATTGTT																	
TBP	TGCACAGGGAGCAAAGATGAA	CACATCACAGGCTCCCCACCA																	
GENE SET	MMP1	PTX3	VCAM1	NID2	CX3CL1	CXCL9	NOD2	IL1B	EPSTI1	VCAM1	CXCL9	ST3GAL5	PTX3	CXCL3	IL1B	EPSTI1	CXCL9	IL1B	IL1B
----------------------------------	------	------	-------	------	--------	-------	------	------	--------	-------	-------	--------	------	-------	------	--------	-------	------	------
Epithelial Mesenchymal Transition																			
Inflammatory Response																			
Interferon Gamma Response																			
TNFA Signaling via NFkB																			
IL6 JAK STAT3 Signaling																			
Allograft Rejection																			
Interferon Alpha Response																			
KRAS Signaling Up																			
Figures
A

% Invasive cells

0 50 100 150

Control ATRA TNF TNF+ATRA

B

Control ATRA

TNF TNF+ATRA
